Hierarchical incompatibility measures in multi-parameter quantum estimation

Hongzhen Chen,¹ Yu Chen,¹ and Haidong Yuan¹

¹Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
(Dated: January 19, 2022)

The incompatibility of the measurements constrains the achievable precisions in multi-parameter quantum estimation. Understanding the tradeoff induced by such incompatibility is a central topic in quantum metrology. Here we provide an approach to study the incompatibility under general \(p\)-local measurements, which are the measurements that can be performed collectively on at most \(p\) copies of quantum states. We demonstrate the power of the approach by presenting a hierarchy of analytical bounds on the tradeoff among the precision limits of different parameters. We also provide a necessary condition for the saturation of the quantum Cramér-Rao bound under \(p\)-local measurements, which includes the partial commutative condition under 1-local measurements and the weak commutative condition under \(\infty\)-local measurements as special cases. To further demonstrate the power of the framework, we present another set of tradeoff relations with the right logarithmic operators (RLD).

I. INTRODUCTION

By utilizing quantum mechanical effects, such as superposition and entanglement, quantum metrology can achieve higher precision limit than classical metrology. There is now a good understanding on the local precision limit for single-parameter quantum estimation, where the precision limit can be quantified by the single-parameter quantum Cramér-Rao bound\(^1\)--\(^2\). Practical applications, however, typically involve multiple parameters for which the precision limits are much less understood\(^3\)--\(^9\). Due to the incompatibility of the optimal measurements for different parameters, the multi-parameter quantum Cramér-Rao bound is in general not achievable. Tradeoffs among the precisions of different parameters have to be made. Quantifying such tradeoff is now one of the main subjects in quantum metrology\(^10\)--\(^19\).

The incompatibility of the measurements is rooted in the prohibition of simultaneous measurement of non-commutative observables, one of the defining features of quantum mechanics. Previous studies on the incompatibility mostly focus on the extreme cases: either the measurement is separable or can be performed collectively on infinite copies of quantum states. When collective measurements on infinite number of identical copies of quantum states can be performed, the precision can be quantified by the Holevo bound\(^2\)--\(^4\).\(^15\)--\(^17\). Except for few special cases\(^18\)--\(^19\), the Holevo bound in general can only be evaluated numerically\(^23\). In practise the measurements typically can only be performed collectively on a finite number of quantum states, under which the Holevo bound is also not achievable in general.

When the measurement is restricted to the separable measurement, the Gill-Massar bound provides a measure on the tradeoff induced by the incompatibility of the separable measurements\(^20\). In the case of two parameters, Nagaoka provided a bound under the separable measurement, which is tighter than the Holevo bound\(^50\)--\(^51\). Conlon et al. recently generalized the Nagaoka bound to more than two parameters, which in general requires numerical optimization\(^52\). For collective measurements on at most 2 copies of quantum states, Zhu and Hayashi have obtained a tradeoff relation for completely unknown states\(^23\). However, the incompatibilities under general \(p\)-local measurements—measurements that can be performed collectively on at most \(p\) copies of quantum states, are little understood.

Here we provides a framework to study the precisions under general \(p\)-local measurements. This approach provides new multi-parameter precision bounds which include the Holevo bound and the Nagaoka bound as special cases. We also provide a systematic way to generate hierarchical analytical tradeoff relations under general \(p\)-local measurements. The obtained tradeoff relations provide a necessary condition for the saturation of the multi-parameter quantum Cramér-Rao bound under \(p\)-local measurements, which recovers the partial commutative condition\(^21\) at \(p = 1\) and the weak commutative condition at \(p \to \infty\). Our study thus not only provides a framework that can generate new analytical bounds on the tradeoff under general \(p\)-local measurements, but also provides a coherent picture for the existing results on the extreme cases.

The article is organized as following: in Sec.II we introduce the notations and list the main results; in Sec.III we present analytical tradeoff relations for pure states; in Sec.IV we provide new multi-parameter precision bounds for mixed states and use it to derive analytical tradeoff relations for mixed states. The tradeoff relations leads to a necessary condition for the saturation of the QCRB and we show how it reduces to the partial commutative condition at \(p = 1\) and the weak commutative condition at \(p \to \infty\); in Sec.V we demonstrate the versatility of the approach by presenting another set of tradeoff relations in terms of the right logarithmic derivative; in Sec.VI some examples are presented and Sec.VII concludes.
II. PRECISION LIMIT IN QUANTUM METROLOGY

We first introduce the notations and terminologies that are used in this article and list the main results.

For the single-parameter quantum estimation, given a parametrized state, \(\rho_x \), with \(x \) as the parameter to be estimated, by performing a positive operator valued measurement (POVM), denoted as \(\{ M_\alpha \} \), on the state, we can get the measurement result, \(\alpha \), with a probability \(p(\alpha|x) = Tr(\rho_x M_\alpha) \). The variance of any locally unbiased estimator, \(\hat{x} \), is then lower bounded by the Cramér-Rao bound \(\delta \hat{x}^2 \geq \frac{1}{\nu F_Q} \), here \(\delta \hat{x}^2 = E[\hat{x} - x]^2 \) is the variance of the unbiased estimator, \(F_C = \int_{\alpha} \frac{1}{p(\alpha|x)} \left(\frac{\partial p(\alpha|x)}{\partial x} \right)^2 d\alpha \) is the Fisher information\(^{[54]} \), \(\nu \) is the number of repetitions of the procedure, which is assumed to be asymptotically large. By optimizing the POVM, we get the quantum Cramér-Rao bound (QCRB)\(^{[1][2]} \),

\[
\delta \hat{x}^2 \geq \frac{1}{\nu F_C} \geq \frac{1}{\nu F_Q},
\]

here \(F_Q \) is the quantum Fisher information (QFI), which is the maximization of the Fisher information over all POVM\(^{[1][2]} \). The QFI can be computed directly from the quantum state as \(F_Q = Tr(\rho_x L^2) \), here \(L \) is the symmetric logarithmic operator (SLD) which is implicitly defined via the equation \(\frac{\partial \rho_x}{\partial x} = \frac{1}{2} (L \rho_x + \rho_x L) \). For single-parameter estimation, the QCRB can always be saturated with the POVM performed separately on each copy of the state. One POVM that saturates the single-parameter QCRB is the projective measurement on the eigenvectors of the SLD.

For multi-parameter quantum estimation, where \(x = (x_1, \cdots, x_n) \) with \(n \geq 2 \), the quantum Fisher information becomes the quantum Fisher information matrix with the \(jk \)-th entry given by

\[
(F_Q)_{jk} = Tr(\rho_x L_j L_k + L_k L_j) \frac{2}{2},
\]

here \(L_q \) is the SLD corresponds to the parameter \(x_q \), which satisfies \(\partial_{x_q} \rho_x = \frac{1}{2} (\rho_x L_q + L_q \rho_x), \forall q \in \{1, \cdots, n\} \). The multi-parameter quantum Cramér-Rao bound is given by

\[
\text{Cov}(\hat{x}) \geq \frac{1}{\nu} F_Q^{-1},
\]

where \(\text{Cov}(\hat{x}) \) is the covariance matrix for locally unbiased estimators, \(\hat{x} = (\hat{x}_1, \cdots, \hat{x}_n) \), with the \(jk \)-th entry given by \(\text{Cov}(\hat{x})_{jk} = E[(\hat{x}_j - x_j)(\hat{x}_k - x_k)] \), \(\nu \) is the number of copies of quantum states. In this article, we assume \(F_Q \) is non-singular so \(F_Q^{-1} \) exists, in which case \(\text{Cov}(\hat{x}) \geq \frac{1}{\nu} F_Q^{-1} > 0 \) is also non-singular.

Different from the single-parameter quantum estimation, the multi-parameter quantum Cramér-Rao bound is in general not saturable. This is due to the incompatibility of the optimal measurements for different parameters. Such incompatibility is one of the main features of quantum mechanics and its manifested effect in multi-parameter estimation is the tradeoff on the precision limits for the estimation of different parameters.

We can quantify the incompatibility through either \(\frac{1}{2} Tr[F_Q^{-1} \text{Cov}^{-1}(\hat{x})] \)\(^{[27]} \) or \(\nu Tr[F_Q \text{Cov}(\hat{x})] \)\(^{[18][27][28]} \), which measures how close \(\text{Cov}(\hat{x}) \) is to \(\frac{1}{2} F_Q^{-1} \). These two quantities are roughly reciprocal to each other. Compared to the other quantities, such as \(\|\nu \text{Cov}(\hat{x}) - F_Q^{-1}\| \) or \(\frac{1}{2} \nu Tr[F_Q^{-1} \text{Cov}^{-1}(\hat{x})] \) and \(\nu Tr[F_Q \text{Cov}(\hat{x})] \) both have the advantage of being invariant under reparametrization. In this article we will use \(\Gamma = \frac{1}{\nu} Tr[F_Q^{-1} \text{Cov}^{-1}(\hat{x})] \) as the measure. When the QCRB is saturable, \(\text{Cov}(\hat{x}) = \frac{1}{2} F_Q^{-1} \), \(\Gamma = Tr(I_n) = n \), here \(I_n \) denotes the \(n \times n \) Identity matrix. This is the maximal value \(\Gamma \) can achieve. When the QCRB is not saturable we have \(\Gamma < n \). The gap between \(n \) and \(\Gamma \) quantifies the incompatibility. We will denote the measure under the \(p \)-local measurement as \(\Gamma_p = \frac{1}{\nu} Tr[F_Q^{-1} \text{Cov}^{-1}(\hat{x})] \) with \(\text{Cov}(\hat{x}) \) as the covariance matrix achieved under the optimal \(p \)-local measurement. The gap between \(n \) and \(\Gamma_p \) decreases with \(p \) since the measurements become less restrictive when \(p \) increases, we thus have \(\Gamma_1 \leq \Gamma_2 \leq \cdots \leq \Gamma_{\infty} \). For pure states, however, we have \(\Gamma_1 = \Gamma_2 = \cdots = \Gamma_{\infty} \) since for pure states the optimal measurement can be taken as the 1-local measurement\(^{[13]} \).

The existing results are mostly on the extreme cases with either \(p = \infty \) or \(p = 1, 2 \).

For \(p = \infty \), the precision limit can be characterized by the Holevo bound\(^{[2]} \), which is given by \(\nu Tr[W \text{Cov}(\hat{x})] \geq \min_{X_{\nu}} \{ Tr[W \text{Re} Z(X)] + \|\sqrt{W} \text{Im} Z(X) \sqrt{W}\|_1 \} \), where \(W \geq 0 \) is a weighted matrix, \(Z(X) \) is a matrix with its \(jk \)-th entry given by \(Z(X)_{jk} = Tr(\rho_x X_j X_k) \), here \(\{X_1, \cdots, X_n\} \) is a set of Hermitian operators that satisfy the local unbiased condition, \(Tr(\rho_x X_j) = 0 \) for any \(j \in \{1, \cdots, n\} \) and \(\text{Tr}(\partial_x \rho_x X_j) = \delta_k^j \) with \(\delta_k^j \) as the Kronecker delta, \(\delta_k^j = 1 \) when \(k = j \) and \(\delta_k^j = 0 \) when \(k \neq j \), \(\text{Re} Z(x) = \frac{Z(x) + Z^T(x)}{2} \) is the real part of \(Z(x) \), \(\text{Im} Z(x) = \frac{Z(x) - Z^T(x)}{2i} \) is the imaginary part. The Holevo bound can only be evaluated numerically in general\(^{[23]} \). For pure states, the Holevo bound can be saturated by 1-local measurements\(^{[13]} \). For mixed states, the saturation of the Holevo bound in general requires collective measurements on infinite copies of the state.

A necessary and sufficient condition for the Holevo bound to coincide with the QCRB is \(Tr(\rho_x [L_j, L_k]) = 0 \) for any \(j, k \in \{1, \cdots, n\} \), which is called the weak commutative condition. When the weak commutative condition holds, there exists compatible optimal collective measurements on infinite copies of quantum states and \(\Gamma_{\infty} = n \).

As the Holevo bound corresponds to the minimal value upon all choice of \(\{X_j\} \), by choosing a particular choice
of \(\{X_j\} \) as \(X_j = \sum_k (F_Q^{-1})_{jk} L_k \) and \(W = F_Q \), it gives \[28\]
\[
\nu Tr[F_Q Cov(\hat{x})] \leq n + \| F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}} \|_1 \leq 2n,
\]
here \(F_{lm} \) is a matrix with the \(jk \)-th entry given by \((F_{lm})_{jk} = \frac{1}{\nu} Tr(\rho_x | L_j, L_k \rangle \langle L_j, L_k |) \). The last inequality is obtained from the fact that \(F_Q + i F_{lm} \geq 0 \), which leads to \(\| F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}} \|_1 \leq Tr(F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}}) = n \). This provides a lower bound on \(\Gamma_\infty \) through the Cauchy-Schwarz inequality \[18\],
\[
Tr[F_Q Cov(\hat{x})]Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \geq \| Tr(F_Q^{-\frac{1}{2}} Cov(\hat{x}) Cov^{-\frac{1}{2}}(\hat{x}) F_Q^{-\frac{1}{2}}) \|^2 = n^2,
\]
as
\[
\Gamma_\infty = \frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \geq \frac{n^2}{n + \| F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}} \|_1}.
\]
We note that the lower bound alone is not sufficient to decide the incompatibility of the measurements at \(p = \infty \) as it can not tell how close \(\Gamma_\infty \) is to \(n \).

The upper bound is more informative in this sense. As if there exists an upper bound which is less than \(n \), we can tell for sure that the measurements are incompatible, and furthermore the gap between \(n \) and the upper bound provides a measure on the incompatibility. To our knowledge, except the trivial bound, \(\Gamma_\infty \leq n \), there were no analytical upper bounds on \(\Gamma_\infty \).

For the other extreme case with \(p = 1 \), Nagaoka provided a bound on the precision limit in the case of two parameters \(n = 2 \) \[50\] \[51\], which is tighter than the Holevo bound. The Nagaoka bound is given by
\[
\nu Tr[Cov(\hat{x})] \geq \min_{\{X_1, X_2\}} Tr(\rho_x X_1^2) + Tr(\rho_x X_2^2) + \| \sqrt{\rho_x} [X_1, X_2] \sqrt{\rho_x} \|_1,
\]
where \(\{X_1, X_2\} \) are two Hermitian operators satisfying the locally unbiased condition. This bound in general can only be evaluated numerically. Recently it has also been generalized to \(n \) parameters which also requires numerical evaluation \[52\].

Gill and Massar provided an analytical upper bound on \(\Gamma_1 \) as \[26\]
\[
\Gamma_1 \leq d - 1,
\]
where \(d \) is the dimension of the Hilbert space for a single \(\rho_x \). The Gill-Massar bound is nontrivial only when \(n > d - 1 \). Recent studies have also obtained some tradeoff relations with the Ozawa’s uncertainty relation for pairs of parameters \[29\].

A necessary condition for the saturation of the QCRB under 1-local measurements is the partial commutative condition \[21\], which requires all SLDS commute on the support of \(\rho_x \). Specifically if we write \(\rho_x \) in the eigenvalue decomposition as \(\rho_x = \sum_{i=1}^m \lambda_i |\Psi_i\rangle \langle \Psi_i| \) with \(\lambda_i > 0 \), the partial commutative condition is \(\langle \Psi_i, [L_j, L_k] | \Psi_s \rangle = 0 \) for any \(j, k \in \{1, \cdots, n\} \), and any \(r, s \in \{1, \cdots, m\} \). The connection between the partial commutative condition and the weak commutative condition remained open \[21\].

For \(p = 2 \), Zhu and Hayashi provided an upper bound on \(\Gamma_2 \) as
\[
\Gamma_2 = \frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq \frac{3}{2} (d - 1),
\]
which is nontrivial only when \(n > \frac{3}{2} (d - 1) \).

For general \(p \), the incompatibility is little understood. In this article, we provide a framework to study the incompatibility under general \(p \)-local measurements. This framework provides new precision bounds that include the Holevo bound and the Nagaoka bound as special cases, and leads to nontrivial analytical upper bounds for general \(\Gamma_p \). A necessary condition for the saturation of the QCRB can also be obtained, which recovers the partial commutative condition at \(p = 1 \) and the weak commutative condition at \(p \to \infty \). The new multi-parameter precision bounds are presented in Sec. [IV A] here we first list the analytical upper bounds and the necessary condition.

1. For pure states, we have
\[
\frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \| F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}} \|^2_F,
\]
\[
\frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{n-2}{(n-1)^2} \| F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}} \|^2_{\Psi,0},
\]
\[
\frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{1}{5} \| F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}} \|^2_F.
\]

Here \(\| \cdot \|_F \) is the Frobenius norm and \(n \) is the number of parameters. The first bound is tighter than the other two when \(n = 2 \), the second is tighter than the other two when \(n = 3 \) or \(4 \), and the third is tighter than the other two for \(n \geq 5 \).

We note the bounds for pure states do not depend on \(p \) since for pure states \(\Gamma_1 = \Gamma_2 = \cdots = \Gamma_\infty \).

2. For mixed states under \(p \)-local measurements, we have
\[
\Gamma_p \leq n - \frac{1}{4(n-1)} \| C_p \|^2_F,
\]
here
\[
(C_p)_{jk} = \frac{1}{2} \sqrt{\rho_x^{\otimes p}[\hat{L}_{jp}, \hat{L}_{kp}]} \sqrt{\rho_x^{\otimes p}(\cdot)}_1,
\]
\(\hat{L}_{ip} \) is the SLD of \(\rho_x^{\otimes p} \) under the reparametrization such that the QFIM of \(\rho_x \) equals to the Identity, specifically \(\hat{L}_{jp} = \sum_q (F_Q^{-\frac{1}{2}})_{jq} L_{qp} \) with \(L_{qp} \) as the SLD of \(\rho_x^{\otimes p} \) corresponding to the original parameter \(x_q \).
3. From the above bound, it can be seen that $C_p^r = 0$ is a necessary condition for the saturation of the QCRB under p-local measurements. For $p = 1$, this reduces to the partial commutative condition. For $p \to \infty$, we prove that

$$\lim_{p \to \infty} \frac{(C_p)^{j,k}}{p} = \frac{1}{2} |\text{Tr}(\rho_x[\hat{L}_j, \hat{L}_k])|.$$

The condition, $C_p^r = 0$, thus reduces to the weak commutative condition, $\text{Tr}(\rho_x[\hat{L}_j, \hat{L}_k]) = 0, \forall j, k$, at $p \to \infty$. This clarifies the connection between the partial commutative condition and the weak commutative condition, which solves an open question in previous study\cite{21}.

4. We can similarly obtain two other bounds for mixed states under p-local measurements as

$$\Gamma_p \leq n - \frac{n - 2}{(n - 1)^2} \frac{F_Q^{\frac{1}{2}} \mathbf{F}_{\text{Imp}} F_Q^{-\frac{1}{2}}}{p},$$

$$\Gamma_p \leq n - \frac{1}{5} \frac{F_Q^{-\frac{1}{2}} \mathbf{F}_{\text{Imp}} F_Q^{-\frac{1}{2}}}{p},$$

where \mathbf{F}_{Imp} is the imaginary part of $\mathbf{F} = \sum_q \tilde{F}_u q$ with each $\tilde{F}_u q$ equal to either $F_{u q}$ or $F_{u q}^T$, and $F_{u q}$ is a $n \times n$ matrix with the j, k-th entry given by

$$(F_{u q})^{j,k} = (u_q \sqrt{\rho_x^{\otimes p}} L_{j,p} \sqrt{\rho_x^{\otimes p}} u_q),$$

here $L_{j,p}$ is the SLD of $\rho_x^{\otimes p}$ corresponding to the parameter x_j, and $\{u_q\}$ are any set of vectors in $H_d^{\otimes p}$ that satisfies $\sum_q |u_q|^2 = I_d$, with I_d denoting the $d^p \times d^p$ identity matrix.

5. We provide another set of bounds for mixed states with single-letter expressions, i.e., only with operators on a single ρ_x.

Given $\rho_x = \sum_{q=1}^{m} \lambda_q |\Psi_q\rangle \langle \Psi_q|$ with $\lambda_q > 0$ in the eigenvalue decomposition, under p-local measurements we have

$$\Gamma_p \leq n - \frac{1}{4(n - 1)} \frac{T_p}{p},$$

where T_p is a $n \times n$ matrix with the j, k-th entry given by

$$(T_p)^{j,k} = \frac{1}{2} \sum_{v_1, \ldots, v_p} \left(\prod_{r=1}^{p} \lambda_{v_r} \right) \sum_{r=1}^{m} |\Psi_{v_r}\rangle [\hat{L}_j, \hat{L}_k] |\Psi_{v_r}\rangle$$

here $v_1, \ldots, v_p \in \{1, \ldots, m\}$, $\tilde{L}_j = \sum_{\mu} (F_Q^{-\frac{1}{2}})_{j, \mu} L_{\mu}$ and $\tilde{L}_k = \sum_{\mu} (F_Q^{-\frac{1}{2}})_{k, \mu} L_{\mu}$.

For large p, this bound is almost as tight as the bound with C_p^r, more specifically the difference between $\frac{T_p}{p}$ and C_p^r is at most of the order $O\left(\frac{1}{\sqrt{p}}\right)$ with

$$\left(\frac{T_p}{p}\right)^{j,k} \leq \frac{C_p^r}{p} \leq \left(\frac{T_p}{p}\right)^{j,k} + O\left(\frac{1}{\sqrt{p}}\right).$$

Asymptotically they converge to the same value,

$$\lim_{p \to \infty} \frac{(T_p)^{j,k}}{p} = \lim_{p \to \infty} \frac{(C_p)^{j,k}}{p} = \frac{1}{2} \left|\text{Tr}(\rho_x[\hat{L}_j, \hat{L}_k])\right|,$$

6. To demonstrate the versatility of the framework, we provide another set of bounds with the right logarithm derivative(RLD) operators.

$$\Gamma_p \leq \text{Tr}[F_Q^{-1} F_{RLD}^R] - \frac{1}{4(n - 1)} \frac{C_{RLD}^p}{p} \|F_Q^{-1}\|_F,$$

here F_{RLD}^R is the real part of the RLD quantum Fisher information matrix with the j, k-th entry given by $(F_{RLD}^R)^{j,k} = \text{Tr}(\rho_x L_j^R \rho_x L_k^R)$, here L_j^R is the RLD operator corresponding to the parameter x_j, which can be obtained from $\partial_{x_j} \rho_x = \rho_x L_j^R$, $(C_{p,RLD}^r)^{j,k} = \min \left\{ \frac{1}{2} \|\sqrt{\rho_x^{\otimes p}} (\tilde{L}_{j,p} L_{j,p}^{\dagger}) \sqrt{\rho_x^{\otimes p}} \|_1, 2p \right\}$ with $\tilde{L}_{j,p} = \sum_q (F_Q^{-\frac{1}{2}})_{j,k} L_{q,j,p}$ and $L_{k,p} = \sum_q (F_Q^{-\frac{1}{2}})_{k,q} L_{q,k,p}$ with $F_{q,k}$ as the RLD operator of $\rho_x^{\otimes p}$ corresponding to the parameter x_q.

These bounds are in general not saturable, however they are nontrivial regardless of the number of the parameters and the dimension of the quantum states. The upper bounds can also be directly transformed to the lower bounds for various other measures via the Cauchy-Schwarz inequality. For example, the Cauchy-Schwarz inequality gives

$$\nu \text{Tr}[F_Q \text{Cov}(\hat{x})] \geq \frac{n^2}{2} \left|\text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\hat{x})]\right|,$$

then from the upper bound

$$\Gamma_p = \frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{4(n - 1)} \frac{C_p^r}{p}\|F_Q^{-1}\|_F,$$

we can obtain

$$\nu \text{Tr}[F_Q \text{Cov}(\hat{x})] \geq \frac{n^2}{n - 1} \frac{C_p^r}{p} \|F_Q^{-1}\|_F \geq n + \frac{1}{4(n - 1)} \frac{C_p^r}{p} \|F_Q^{-1}\|_F,$$

which provides a lower bound for $\nu \text{Tr}[F_Q \text{Cov}(\hat{x})]$. $\nu \text{Tr}[F_Q \text{Cov}(\hat{x})]$ achieves the minimal value, n, when the QCRB is saturable and the gap between $\nu \text{Tr}[F_Q \text{Cov}(\hat{x})]$ and n provides a measure on the incompatibility. We note that the transformation from the upper bound
to the lower bound via the Cauchy-Schwarz inequality does not work the other way, i.e., the lower bound on \(\nu Tr[F_Q Cov(\hat{x})] \) can not be directly transformed to the upper bound on \(\frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \) via the Cauchy-Schwarz inequality. This is one advantage of choosing \(\frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \) over \(\nu Tr[F_Q Cov(\hat{x})] \) as the measure of the incompatibility.

Similarly we can obtain lower bounds on \(\nu Tr[W Cov(\hat{x})] \) via the Cauchy-Schwarz inequality as

\[
\nu Tr[W Cov(\hat{x})] \geq \left(\frac{Tr[F_Q^{-1} WF_Q^{-1}]}{\nu} \right)^2 \cdot \frac{\|C_p\|_{F}^{2}}{\|F\|_{F}^{2}}.
\]

(24)

For example, from the upper bound

\[
\Gamma_p = \frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \|C_p\|_{F}^{2},
\]

(25)

we can obtain a lower bound,

\[
\nu Tr[W Cov(\hat{x})] \geq \frac{(Tr[F_Q^{-1} WF_Q^{-1}])^2}{n - \frac{1}{4(n-1)} \|C_p\|_{F}^{2}},
\]

(26)

which constraints the precision that can be achieved under p-local measurements.

Besides these analytical bounds, new multi-parameter precision bounds for mixed states, which requires numerical optimization, are also presented in Sec. [14,15] which provides a useful tool for multi-parameter quantum estimation.

III. PRECISION BOUNDS FOR PURE STATES

We start the derivation with pure states, then generalize it to mixed states in the next section.

Given a probe state \(|\Psi_x\rangle\) with \(x = (x_1, x_2, \ldots, x_n)\), and \(q\) operators \(\{Y_1, Y_2, \ldots, Y_q\}\), we have

\[
S = \left\langle Y_1|\Psi_x\rangle \cdots Y_q|\Psi_x\rangle \right\rangle \left(Y_1|\Psi_x\rangle \cdots Y_q|\Psi_x\rangle \right)^* \geq 0.
\]

(27)

Here \(S\) is a \(q \times q\) matrix with its \(jk\)-th entry given by \((S)_{jk} = \langle \Psi_x|Y_j^\dagger Y_k|\Psi_x\rangle = Tr(\rho_x Y_j^\dagger Y_k)\) with \(\rho_x = |\Psi_x\rangle \langle \Psi_x|\). We first consider a single copy of the state. For \(\nu\) copies of the states, we can just replace \(|\Psi(x)\rangle\) with \(|\Psi(x)\rangle^{\otimes \nu}\). We note that \(S \geq 0\) also forms the basis for the generalized Robertson uncertainty relation[55,50].

Given a measurement, \(\{M_\alpha\}\) with \(\sum_\alpha M_\alpha = I\), we can construct \(n\) observables as

\[
X_j = \sum_\alpha \langle \hat{x}_j(\alpha) - x_j|M_\alpha,\]

(28)

where \(\hat{x}_j\) is the estimator for \(x_j\). For locally unbiased estimator, we have

\[
Tr(\rho_x X_j) = 0, \quad j = 1, \ldots, n
\]

(29)

and

\[
Tr(\partial_{x_j} \rho_x X_k) = \delta^j_k.
\]

(30)

Let \(L_j\) be the SLD for \(x_j\), here \(j \in \{1, \ldots, n\}\), then by replacing the set of \(\{Y_j\}\) in Eq.(27) with the \(2n\) operators, \(\{X_1, \ldots, X_n, L_1, \ldots, L_n\}\), we have

\[
S = \left(\begin{array}{cc} A & B \\ B^\dagger & F \end{array} \right) \geq 0,
\]

(31)

where \(A, B, F\) are \(n \times n\) matrices with the entries given by

\[
\begin{align*}
(A)_{jk} &= Tr(\rho_x X_k X_j), \\
(B)_{kj} &= Tr(\rho_x X_k L_j), \\
(F)_{kj} &= Tr(\rho_x L_k L_j).
\end{align*}
\]

(32)

We can write these matrices in terms of the real and imaginary part as \(A = A_{Re} + iA_{Im}\), \(B = B_{Re} + iB_{Im}\), \(F = F_Q + iF_{Im}\), where

\[
\begin{align*}
(A_{Re})_{kj} &= \frac{1}{2} Tr(\rho_x X_k X_j), \\
(B_{Re})_{kj} &= \frac{1}{2} Tr(\rho_x X_k L_j), \\
(F_Q)_{kj} &= \frac{1}{2} Tr(\rho_x L_k L_j).
\end{align*}
\]

(33)

\[
\begin{align*}
(A_{Im})_{kj} &= \frac{1}{2i} Tr(\rho_x X_k X_j), \\
(B_{Im})_{kj} &= \frac{1}{2i} Tr(\rho_x X_k L_j), \\
(F_{Im})_{kj} &= \frac{1}{2i} Tr(\rho_x L_k L_j),
\end{align*}
\]

(34)

here \(|X, Y\rangle = XY + Y X\) is the anti-commutator, and it is easy to see that \(F_Q\) is exactly the quantum Fisher information matrix, and the local unbiased condition in Eq.(30) can be equivalently written as

\[
Tr(\rho_x \frac{1}{2i}(L_j, X_k)) = \delta^j_k
\]

(35)

which means \(B_{Re} = I\). \(A\) is the same as \(Z(X)\) in the Holevo bound, however we use a different notation here as in the case of mixed states it can be different from \(Z(X)\).

As \(Cov(\hat{x}) \geq A_{re} \geq 15, 57\), we have

\[
\begin{pmatrix}
Cov(\hat{x}) & B \\
B^\dagger & F
\end{pmatrix} = \begin{pmatrix}
Cov(\hat{x}) - A & 0 \\
0 & 0
\end{pmatrix} + \begin{pmatrix}
A & B \\
B^\dagger & F
\end{pmatrix} \geq 0.
\]

(36)

From the Schur’s complement[58] we then have

\[
F - B^\dagger Cov^{-1}(\hat{x})B \geq 0,
\]

(37)

this can be equivalently written as

\[
F_Q - Cov^{-1}(\hat{x}) - B_{Im}^T Cov^{-1}(\hat{x})B_{Im} \\
+ i[F_{Im} + B_{Im}^T Cov^{-1}(\hat{x}) - Cov^{-1}(\hat{x})B_{Im}] \geq 0.
\]

(38)
Since for a positive semidefinite matrix, $M \geq 0$, the real part is also positive semidefinite, i.e., $M_{ij} = \frac{M + M^T}{2} \geq 0$. We thus have $F_Q - \text{Cov}^{-1}(\hat{x}) - B_{Im}^T \text{Cov}^{-1}(\hat{x}) B_{Im} \geq 0$, which can be equivalently written as

$$F_Q - \text{Cov}^{-1}(\hat{x}) \geq B_{Im}^T \text{Cov}^{-1}(\hat{x}) B_{Im}. \quad (39)$$

Note that $B_{Im}^T \text{Cov}^{-1}(\hat{x}) B_{Im} \geq 0$, thus the real part of Eq.\ref{38} already gives a tighter bound than the QCRB.

By multiplying $F_Q^{-\frac{1}{2}}$ from both the left and the right of Eq.\ref{38}, we get

$$I - \text{Cov}^{-1}(\hat{x}) - B_{Im}^T \text{Cov}^{-1}(\hat{x}) B_{Im} + i [\hat{F}_{Im} + B_{Im}^T \text{Cov}^{-1}(\hat{x}) - \text{Cov}^{-1}(\hat{x}) B_{Im}] \geq 0, \quad (40)$$

here $\text{Cov}^{-1}(\hat{x}) = F_{Q}^{-\frac{1}{2}} \text{Cov}^{-1}(\hat{x}) F_{Q}^{-\frac{1}{2}}, B_{Im} = F_{Q}^{-\frac{1}{2}} B_{Im} F_{Q}^{-\frac{1}{2}}$, $\hat{F}_{Im} = F_{Q}^{-\frac{1}{2}} F_{Im} F_{Q}^{-\frac{1}{2}}$. This is equivalent to the reparametrization which changes the QFIM to the Identity, and $\text{Cov}^{-1}(\hat{x})$ can be regarded as the covariance matrix under the reparametrization. Various tradeoff relations can be obtained from Eq.\ref{40}. In the supplementary material, we show that Eq.\ref{40} implies

$$1 - [\text{Cov}^{-1}(\hat{x})]_{jj} + 1 - [\text{Cov}^{-1}(\hat{x})]_{kk} \geq \frac{1}{2} |(\hat{F}_{Im})_{jk}|^2. \quad (41)$$

By summing over different choice of j, k, we can obtain a tradeoff relation as

$$\text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\hat{x})] = \text{Tr}[\text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \| F_{Q}^{-\frac{1}{2}} F_{Im} F_{Q}^{-\frac{1}{2}} \|_F^2, \quad (42)$$

here $\| \cdot \|_F = \sqrt{\sum_{j,k} |(\cdot)_{jk}|^2}$ is the Frobenius norm.

When there are n copies of the state, we can replace $|\Psi(x)\rangle$ with $|\Psi(x)\rangle^{\otimes n}$ and repeat the procedure to get the tradeoff relation as

$$\text{Tr}[F_{Q}^{-1} \text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \| F_{Q}^{-\frac{1}{2}} F_{Im} F_{Q}^{-\frac{1}{2}} \|_F^2 \quad (43)$$

where $F_{Q} = F_{Q}^{\nu} + i F_{Im}^{\nu}$ is the corresponding operator associate with $|\Psi(x)\rangle^{\otimes \nu}$. It is easy to verify that $F_{Q}^{\nu} = \nu F_{Q}$, which is the QFIM for $|\Psi(x)\rangle^{\otimes \nu}$, and $F_{Im}^{\nu} = \nu F_{Im}$. Thus when there are ν copies of the state, the tradeoff relation is given by

$$\frac{1}{\nu} \text{Tr}[F_{Q}^{-1} \text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \| F_{Q}^{-\frac{1}{2}} F_{Im} F_{Q}^{-\frac{1}{2}} \|_F^2. \quad (44)$$

This tradeoff relation holds for arbitrary measurements on ν copies of the states.

The tradeoff relation for ν copies of the pure state can also be obtained in an alternative way. Note that for pure states the optimal measurement can be taken as the 1-local measurement, if we repeat the 1-local measurement ν times with ν copies of the state, $\text{Cov}(\hat{x})$ will be reduced by ν times. Eq.\ref{42}, which is the tradeoff relation for a single state, then directly becomes Eq.\ref{44} since $\text{Cov}(\hat{x})$ is reduced by ν times. The two ways to get Eq.\ref{44}, however, have different meanings. The derivation that uses $|\Psi(x)\rangle^{\otimes \nu}$ allows arbitrary measurement on $|\Psi(x)\rangle^{\otimes \nu}$ while the derivation with the repetition of the 1-local measurement only uses 1-local measurement. The reason that they lead to the same tradeoff relation is that for pure states 1-local measurement is already optimal, allowing collective measurements does not improve the precision. The situation is different for mixed states as we will see in the next section.

The bound in Eq.\ref{44} is obtained by summing the tradeoff relations between pairs of parameters in Eq.\ref{41}, which ignores the correlations with the other parameters. The presence of other parameters, however, can affect the precisions. In the supplemental material we show that when $n \geq 3$, by including the correlations among the parameters, the bound can be improved as

$$\frac{1}{\nu} \text{Tr}[F_{Q}^{-1} \text{Cov}^{-1}(\hat{x})] \leq n - \frac{n-2}{(n-1)^2} \| F_{Q}^{-\frac{1}{2}} F_{Im} F_{Q}^{-\frac{1}{2}} \|_F^2 \quad (45)$$

Since $\frac{n-2}{n-1} > \frac{1}{2}$ when $n \geq 3$, this is tighter than the bound in Eq.\ref{44}. It is also tighter than summing the tightest bound for a pair of parameters in previous study [29].

We can obtain even tighter tradeoff relation for large n. From Eq.\ref{40}, we have

$$I - \text{Cov}^{-1}(\hat{x}) - B_{Im}^T \text{Cov}^{-1}(\hat{x}) B_{Im} \geq -i(\hat{F}_{Im} + B_{Im}^T \text{Cov}^{-1}(\hat{x}) - \text{Cov}^{-1}(\hat{x}) B_{Im}), \quad (46)$$

which leads to

$$\text{Tr}[I - \text{Cov}^{-1}(\hat{x}) - B_{Im}^T \text{Cov}^{-1}(\hat{x}) B_{Im}] \geq \| \hat{F}_{Im} + B_{Im}^T \text{Cov}^{-1}(\hat{x}) - \text{Cov}^{-1}(\hat{x}) B_{Im} \|_1, \quad (47)$$

thus

$$\text{Tr}[\text{Cov}^{-1}(\hat{x})] \leq n - \text{Tr}[\hat{B}_{Im}^T \text{Cov}^{-1}(\hat{x}) B_{Im}] + \| \hat{F}_{Im} + B_{Im}^T \text{Cov}^{-1}(\hat{x}) - \text{Cov}^{-1}(\hat{x}) B_{Im} \|_1. \quad (48)$$

This leads to (see appendix)

$$\text{Tr}[\text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{5} \| \hat{F}_{Im} \|_F^2. \quad (49)$$

With ν copies of quantum states, this can be written as

$$\frac{1}{\nu} \text{Tr}[F_{Q}^{-1} \text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{5} \| F_{Q}^{-\frac{1}{2}} F_{Im} F_{Q}^{-\frac{1}{2}} \|_F^2, \quad (50)$$

which is tighter than Eq.\ref{45} when $n \geq 5$.

IV. PRECISION BOUNDS FOR MIXED STATES

For pure states, the ultimate precision under the local measurement can be quantified by the Holevo bound since for pure states the Holevo bound can be saturated with the 1-local measurement. For mixed states, however, the Holevo bound is in general not saturable under
the local measurement. We will first provide a tighter bound for the mixed states under local measurement, then use it to obtain the upper bounds for the incompatibility measures.

A. Multi-parameter precision bound for mixed states

For a mixed state, \(\rho_x \), with \(x = (x_1, \ldots, x_n) \), given any POVM, \(\{M_u\} \), and any \(|u\rangle \), we define \(\text{Cov}_u \) as a \(n \times n \) matrix with the \(jk \)-th entry given by

\[
(C_{uj})_{jk} = \sum_{\alpha} (\hat{A}_\alpha(j) - x_j)(\hat{A}_\alpha(k) - x_k)|u\rangle \sqrt{\rho_x M_\alpha \rho_x} |u\rangle,
\]

and \(A_u \) as a \(n \times n \) matrix with the \(jk \)-th entry given by

\[
(A_{uj})_{jk} = \langle u| \sqrt{\rho_x} X_j X_k \sqrt{\rho_x} |u\rangle = \frac{1}{2} \langle u| \sqrt{\rho_x} \{X_j, X_k\} \sqrt{\rho_x} |u\rangle + \frac{i}{2} (\langle u| \sqrt{\rho_x} X_j \sqrt{\rho_x} |u\rangle - \langle u| \sqrt{\rho_x} X_k \sqrt{\rho_x} |u\rangle),
\]

where \(X_j = \sum_{\alpha} (\hat{x}_j(\alpha) - x_j)M_\alpha \) is locally unbiased.

We first note that for any set of \(\{|u_q\}\) that satisfies \(\sum_q |u_q\rangle \langle u_q| = I \), we have \(\text{Cov}(\hat{x}) = \sum_q \text{Cov}_{u_q} \). This can be verified by comparing \(\sum_q (C_{uj})_{jk} \) and \(\text{Cov}(\hat{x})_{jk} \) as

\[
\sum_q (C_{uj})_{jk} = \sum_q \sum_{\alpha} (\hat{A}_\alpha(j) - x_j)(\hat{A}_\alpha(k) - x_k)|u_q\rangle \sqrt{\rho_x M_\alpha \rho_x} |u_q\rangle = \text{Cov}(\hat{x})_{jk}.
\]

And for any \(|u\rangle \), we have \(\text{Cov}_{u_q} \geq A_u \) (see appendix D). Since \(\text{Cov}_{u_q} \) is symmetric, we also have \(\text{Cov}_{u_q} = \text{Cov}_{u_q}^T \geq A_{u_q}^T \). Thus for any set of \(\{|u_q\}\) that satisfies \(\sum_q |u_q\rangle \langle u_q| = I \) and any choices of \(A_{u_q} \in \{A_{u_q}, A_{u_q}^T\} \), we have

\[
\text{Cov}(\hat{x}) = \sum_q \text{Cov}_{u_q} \geq \tilde{A} = \sum_q \tilde{A}_{u_q},
\]

where \(\tilde{A}_{u_q} \) equal to either \(A_{u_q} \) or \(A_{u_q}^T \). We can write \(\tilde{A} \) in terms of the real and imaginary part as \(\tilde{A} = \tilde{A}_{RE} + i\tilde{A}_{IM} \), then

\[
\nu \text{Tr}[W \text{Cov}(\hat{x})] \geq \min_{\{X_j\}} \text{Tr}[W \tilde{A}_{RE}] + \|W \tilde{A}_{IM} \sqrt{W}\|_1.
\]

where \(W \geq 0 \) is the weight matrix and the number of repetition, \(\nu \), has been included.

This includes the Holevo bound\([2]\) and the Nagaoka bound\([50, 51]\) as special cases. To see the connection with the Holevo bound, we just choose \(\bar{A}_{u_q} = A_{u_q} \) for all \(q \), then for any set of \(\{|u_q\}\) that satisfies \(\sum_q |u_q\rangle \langle u_q| = I \), we have \(\bar{A} = \sum_q \bar{A}_{u_q} \) or \(\bar{A}_{u_q} \) as

\[
\bar{A}_{jk} = \sum_q (A_{u_q})_{jk} = \sum_q \langle u_q| \sqrt{\rho_x} X_j X_k \sqrt{\rho_x} |u_q\rangle = \text{Tr}(\rho_x X_j X_k) = Z(X)_{jk}.
\]

Eq.\((55)\) then reduces to the Holevo bound. When there are only two parameters, \(x_1 \) and \(x_2 \), we can choose the set of \(\{|u_q\}\) as the eigenvectors of \(\sqrt{\rho_x} X_1 X_2 \sqrt{\rho_x} \) and choose \(\bar{A}_{u_q} \) as

\[
\bar{A}_{u_q} := \{ A_{u_q}, \text{ when } \frac{1}{2} \langle u_q| \sqrt{\rho_x} X_1 X_2 \sqrt{\rho_x} |u_q\rangle \geq \frac{1}{2}\}
\]

We then have

\[
\bar{A} = \sum_q \bar{A}_{u_q}.
\]

\[
\nu \text{Tr}[W \text{Cov}(\hat{x})] \geq \min_{\{X_j\}} \text{Tr}[\bar{A}_{RE}] + \|\bar{A}_{IM}\|_1
\]

which recovers the Nagaoka bound\([50, 51]\).

The optimal choice of \(|u_q\rangle \) and \(\bar{A}_{u_q} \) provides the tightest bound, but any choice lead to a valid bound. We now show how non-trivial upper bounds on \(\Gamma_\rho \) can be obtained by making particular choices of \(|u_q\rangle \) and \(\bar{A}_{u_q} \).

B. Incompatibility under 1-local measurements

Given a mixed state, \(\rho_x \), we can make a reparametrization with \(\hat{x} = F_Q^\dagger x \) under which \(F_Q^\dagger = I \), and \(\text{Cov}(\hat{x}) = F_Q^\dagger \text{Cov}(\hat{x}) F_Q^\dagger \). Thus without loss of generality, we start with the case that the QFIM equals to the Identity.

We first consider the precision under 1-local measurements, i.e., separable measurements. Note that for any vector \(|u\rangle \), we have
\begin{align}
S_u &= \left(X_1 \sqrt{p_x|u} \cdots X_n \sqrt{p_x|u} \right) \left(L_1 \sqrt{p_x|u} \cdots L_n \sqrt{p_x|u} \right)^\dagger \\
&= \left(A_u B_u \right) \geq 0,
\end{align}

where the entries of A_u are given by Eq. (D2), B_u and F_u are $n \times n$ matrices with the entries given by

\begin{align}
(B_u)_{jk} &= \langle u| \sqrt{p_x} X_j^\dagger L_k \sqrt{p_x}|u \rangle \\
&= \frac{1}{2} \langle u| \sqrt{p_x} X_j L_k \sqrt{p_x}|u \rangle + \frac{1}{2i} \langle u| \sqrt{p_x} X_j L_k \sqrt{p_x}|u \rangle, \\
(F_u)_{jk} &= \langle u| \sqrt{p_x} L_j^\dagger L_k \sqrt{p_x}|u \rangle \\
&= \frac{1}{2} \langle u| \sqrt{p_x} L_j L_k \sqrt{p_x}|u \rangle + \frac{1}{2i} \langle u| \sqrt{p_x} L_j L_k \sqrt{p_x}|u \rangle.
\end{align}

We can now make particular choices of \{\{u_q\}\} to obtain upper bounds for the incompatibility measures.

For a fixed pair of indexes, say α and β, we choose \{\{u_1\}, \cdots, \{u_d\}\} as the orthonormal eigenvectors of $\sqrt{p_x} \Lambda_{\alpha} \sqrt{p_x}$. Note that $\sqrt{p_x} \Lambda_{\alpha} \sqrt{p_x}$ is skew Hermitian whose eigenvalues are pure imaginary (and the singular values are just the absolute values of these eigenvalues), thus for any eigenvector \{\{u_q\}\},

$$
\frac{1}{2} \langle u_q| \sqrt{p_x} \Lambda_{\alpha} \sqrt{p_x}|u_q \rangle = \langle u_q| \sqrt{p_x} \Lambda_{\alpha} \sqrt{p_x}|u_q \rangle
$$

is a real number, which is the imaginary axis of $(F_u)_{\alpha \beta} = \langle u_q| \sqrt{p_x} \Lambda_{\alpha} \sqrt{p_x}|u_q \rangle$. We then define

$$
\bar{S}_{u_q} := \{ \bar{S}_{u_q}^{a \beta} \} \text{ when } \frac{1}{2} \langle u_q| \sqrt{p_x} \Lambda_{\alpha} \sqrt{p_x}|u_q \rangle \geq 0,
$$

and sum \bar{S}_{u_q} to get

$$
\bar{S} = \sum_q \bar{S}_{u_q} = \left(\bar{A} \bar{B}^\dagger \bar{F} \right) \geq 0,
$$

where $\bar{F} = \sum_q \bar{F}_{u_q}$ with \bar{F}_{u_q} equal to either F_{u_q} or $F_{u_q}^T$ where the imaginary part of \bar{F}_{u_q} $\alpha \beta$ is always positive due to the choices in Eq. (63), $\bar{A} = \sum_q \bar{A}_{u_q}$ with \bar{A}_{u_q} equals to either A_{u_q} or $A_{u_q}^T$, and $\bar{B} = \sum_q \bar{B}_{u_q}$. It is easy to verify that according to the choices in Eq. (63), the imaginary part of the $\alpha \beta$-th entry of \bar{F}, which is the sum of the $\alpha \beta$-th entry of \bar{F}_{u_q}, is just

$$
(F_{\Lambda_{\alpha \beta}})_{\alpha \beta} = \frac{1}{2} \| \sqrt{p_x} \Lambda_{\alpha} \sqrt{p_x} \|_1,
$$

where $\| \|_1$ is the trace norm which equals to the sum of singular values and for the skew-Hermitian matrix just equals to the sum of the absolute value of the eigenvalues. Since \bar{S}_{u_q} has the same real part as S_{u_q}, the real part of \bar{F} still equals to the QFIM as

\begin{align}
(F_{\Lambda_{\alpha \beta}})_{\alpha \beta} &= \frac{1}{2} \| \sqrt{p_x} \Lambda_{\alpha} \sqrt{p_x} \|_1, \\
(\Lambda_{\alpha \beta})_{\alpha \beta} &= \frac{1}{2} \| \sqrt{p_x} \Lambda_{\alpha} \sqrt{p_x} \|_1.
\end{align}

As the real part of \bar{B} remains unchanged, we can write $\bar{B} = I + i \bar{B}_{\nu \lambda}$. Since $\text{Cov}(\tilde{x}) \geq \bar{A}$, we have

$$
\left(\frac{\text{Cov}(\tilde{x}) \bar{B} \bar{B}^\dagger}{\bar{F}} \right) \geq 0.
$$

Then by following the same derivation as in the previous section, under the parametrization that $F_Q = I$, we can get the same tradeoff relation as Eq. (61) with

$$
1 - |\text{Cov}^{-1}(\tilde{x})_{\alpha \alpha}| + 1 - |\text{Cov}^{-1}(\tilde{x})_{\beta \beta}| \geq \frac{1}{2} |(\tilde{F}_{\nu \lambda m})_{\alpha \beta}|^2.
$$

(68)

For different pairs of α, β, we can repeat the procedure to get the same tradeoff relations. By summing over all pairs of α and β we get

$$
\frac{1}{\nu} \text{Tr}[\text{Cov}^{-1}(\tilde{x})] \leq n - \frac{1}{4(n-1)} \| C_1 \|_F^2.
$$

(69)

here ν comes from repeating the 1-local measurement on ν copies of the state, C_1 is a matrix with its entries given by

$$
(C_1)_{jk} = \frac{1}{2} \| \sqrt{p_x} L_j L_k \sqrt{p_x} \|_1.
$$

(70)

We note that C_1 is different from $\tilde{F}_{\nu \lambda m}$ in Eq. (65) as Eq. (65) only holds for a fixed pair of α, β (we get different $\tilde{F}_{\nu \lambda m}$ when choosing different pairs of α, β) while Eq. (70) holds for all j, k.

As stated at the beginning of this section, when $F_Q \neq I$ in the original parametrization, we can make a reparametrization, $\tilde{x} = F_Q^T x$, under which $\tilde{F}_Q = I$, $\text{Cov}(\tilde{x}) = F_Q^T \text{Cov}(x) F_Q^T$, $L_j = \sum_q (F_Q^T)^{-1} L_j q L_q$, the tradeoff relation in Eq. (69) can be written in the original parametrization as

$$
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\tilde{x})] = \frac{1}{\nu} \text{Tr}[\text{Cov}^{-1}(\tilde{x})] \\
\leq n - \frac{1}{4(n-1)} \| C_1 \|_F^2,
$$

(71)

with the entries of C_1 given by

$$
(C_1)_{jk} = \frac{1}{2} \| \sqrt{p_x} L_j L_k \sqrt{p_x} \|_1
$$

(72)

The tradeoff relation immediately gives a necessary condition for the saturation of the QCRB under the 1-local measurement. To saturate the QCRB, i.e., for $\text{Cov}(\tilde{x}) = \frac{1}{2} F_Q^{-1}$, it requires \(\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\tilde{x})] = \)}
where $\tilde{F}_{I,m}$ is the imaginary part of $\tilde{F} = \sum_q \tilde{F}_{a_q}$ with each \tilde{F}_{a_q} equals to either F_{a_q} or \bar{F}_{a_q}. The choices of \tilde{F}_{a_q} can be optimized to get the maximal $\|F_{Q}^{-\frac{1}{2}} \tilde{F}_{I,m} F_{Q}^{-\frac{1}{2}} \|_F$. For mixed states with a particular choice of $\{|u_q\rangle\}$ this can be either tighter or less tighter than the bound in Eq. (71), as we have $\frac{n-2}{n-1} > \frac{4}{3(n-1)}$ when $n \geq 3$, $\|F_{Q}^{-\frac{1}{2}} \tilde{F}_{I,m} F_{Q}^{-\frac{1}{2}} \|_F^2$ can be smaller than $\|C_1\|_F^2$, whether we get a tighter bound depends on their multiplication. Similarly when $n \geq 5$ the bound can be further tightened as

$$\frac{1}{\nu} Tr[F_{Q}^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{1}{2} \|F_{Q}^{-\frac{1}{2}} \tilde{F}_{I,m} F_{Q}^{-\frac{1}{2}} \|_F^2. \quad (74)$$

C. Incompatibility measures under p-local measurements

For p-local measurements, which are the collective measurements on at most p copies of the state, we can get the tradeoff relation by replacing ρ_x with $\rho_x^{\otimes p}$ in the previous section. Again we first assume $F_Q = I$ for ρ_x, then $F_Q = p I$ for $\rho_x^{\otimes p}$. Following the same procedure as the previous section, for a fixed pair of j,k, by substituting $\text{Cov}^{-1}(\hat{x}) = F_{Q}^{-\frac{1}{2}} \text{Cov}^{-1}(\hat{x}) F_{Q}^{-\frac{1}{2}} = \frac{\text{Cov}^{-1}(\hat{x})}{p}$ and $\tilde{F}_{I,m} F_{Q}^{-\frac{1}{2}} = \frac{\tilde{F}_{I,m}}{p}$, in Eq. (41) we can get

$$1 - \frac{\text{Cov}^{-1}(\hat{x})_{jj}}{p} + 1 - \frac{\text{Cov}^{-1}(\hat{x})_{kk}}{p} \geq \frac{1}{2} \|\tilde{F}_{I,m} F_{Q}^{-\frac{1}{2}}\|_F^2 \quad (75)$$

with $(\tilde{F}_{I,m})_{jk} = \frac{1}{p} \|\rho_x^{\otimes p} [L_{jp}, F_{Q}^{-\frac{1}{2}} L_{kp}] \|_1$, here L_{jp} is the SLD corresponding to the parameter x_j for $\rho_x^{\otimes p}$, which can be written as $L_{jp} = \sum_{r=1}^{p} L_{j}^{(r)} \otimes L_{j}^{(r-1)} \otimes I_{j}^{(p-r)}$, $r = 1, \cdots, p$. L_{j} is the SLD for a single copy of the state.

Again we can repeat the procedure for different pairs of j,k and sum over all pairs of j,k to get the tradeoff relation. Under the parameterization that $F_Q = I$, we have

$$\frac{1}{\nu} Tr[\text{Cov}^{-1}(\hat{x})] = \frac{1}{\nu} Tr[\text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \|C_p\|_F^2, \quad (76)$$

where the factor $\frac{1}{\nu p}$ comes from repeating the p-local measurement ν/p times on a total ν copies of the state, C_p is a matrix with the entries given by

$$(C_p)_{jk} = \frac{1}{2} \|\sqrt{\rho_x^{\otimes p} [L_{jp}, L_{kp}] \rho_x^{\otimes p}}\|_1. \quad (77)$$

If $F_Q \neq I$ in the initial parameterization, we can again make a reparameterization $\tilde{x} = F_{Q}^{-\frac{1}{2}} x$ first, under which $\tilde{L}_{j} = \sum_q (F_{Q}^{-\frac{1}{2}})_{jq} L_q$. The tradeoff relation can then be written as

$$\frac{1}{\nu} Tr[F_{Q}^{-1} \text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \|C_p\|_F^2, \quad (78)$$

with

$$(C_p)_{jk} = \frac{1}{2} \|\sqrt{\rho_x^{\otimes p} [L_{jp}, \tilde{L}_{kp} \rho_x^{\otimes p}]\rho_x^{\otimes p}}\|_1. \quad (79)$$

Here $\tilde{L}_{jp} = \sum_q (F_{Q}^{-\frac{1}{2}})_{jq} L_{qp}$. $\|\sqrt{\rho_x^{\otimes p}}\|_F$ determines the gap between the bound and n, which measures the incompatibility of the measurements. Since p-local measurement is a subset of $(p+1)$-local measurement, we expect that $\|C_{p+1}\|_F \leq \|C_p\|_F$ since there should be less incompatibility when more measurements are allowed. This can be verified as

$$\|\sqrt{\rho_x^{\otimes (p+1)}} [\tilde{L}_{(p+1)}^{(j)} \tilde{L}_{(p+1)}^{(k)}] \rho_x^{\otimes (p+1)}\|_1 \leq \frac{1}{p+1} \|\sqrt{\rho_x^{\otimes (p+1)}} [\tilde{L}_{(j)}^{(r)} \tilde{L}_{(k)}^{(r)}] \rho_x^{\otimes (p+1)}\|_1 \leq \frac{1}{p+1} \|\sqrt{\rho_x^{\otimes (p+1)}} [\tilde{L}_{(j)}^{(r)} \tilde{L}_{(k)}^{(r)}] \rho_x^{\otimes (p+1)}\|_1 \leq \frac{1}{p+1} \|\sqrt{\rho_x^{\otimes (p+1)}} [L_{jp}, L_{kp}] \rho_x^{\otimes (p+1)}\|_1 \leq \frac{1}{p+1} \|\sqrt{\rho_x^{\otimes (p+1)}} [L_{jp}, \tilde{L}_{kp} \rho_x^{\otimes (p+1)}]\rho_x^{\otimes (p+1)}\|_1 \leq \frac{1}{p+1} \|\sqrt{\rho_x^{\otimes (p+1)}} [L_{jp}, L_{kp}] \rho_x^{\otimes (p+1)}\|_1 \leq \frac{1}{p+1} \|\sqrt{\rho_x^{\otimes (p+1)}} [L_{jp}, \tilde{L}_{kp} \rho_x^{\otimes (p+1)}]\rho_x^{\otimes (p+1)}\|_1$$

i.e., $(C_{p+1})_{jk} \leq (C_p)_{jk}$, which implies $\|C_{p+1}\|_F \leq \|C_p\|_F$. We immediately get a necessary condition for the saturation of the QCRB under the p-local measurement, which is $C_p = 0$, i.e., $\|\sqrt{\rho_x^{\otimes p} [L_{jp}, L_{kp}] \rho_x^{\otimes p}}\|_1 = 0$ for any j,k. This is equivalent to $\|\sqrt{\rho_x^{\otimes (p+1)} [L_{jp}, L_{kp}] \rho_x^{\otimes (p+1)}}\|_1 = 0$ for
any \(j, k\) in the original parameterization, and can be seen as the partial commutative condition under the \(p\)-local measurement.

At \(p = 1\), the condition \(\frac{C_p}{p} = 0\) is equivalent to the partial commutative condition. It is natural to ask whether this condition recovers the weak commutative condition when \(p \to \infty\). In the supplemental material we provide an explicit proof that this condition indeed reduces to the weak commutative condition when \(p \to \infty\). Specifically we show that (regardless of the parametrization)

\[
\lim_{p \to \infty} \frac{\| \sqrt{\rho_x^p} [\hat{L}_{jp}, \hat{L}_{kp}] \sqrt{\rho_x^p} \|_1}{p} = |Tr(\rho_x [\hat{L}_j, \hat{L}_k])|. \tag{81}
\]

When \(p \to \infty\) the partial commutative condition, \(\frac{C_p}{p} = 0\), is then equivalent to the weak commutative condition, \(\bar{F}_{lm} = 0\), which is equivalent to \(F_{lm} = 0\) in the original parametrization since \(\bar{F}_{lm} = F_{Q}^{-\frac{1}{2}} F_{lm} F_{Q}^{-\frac{1}{2}}\). This clarifies the connection between the partial commutative condition and the weak commutative condition and solves an open question\[21\]. The connection also suggests that the partial commutative condition under \(p\)-local measurements, \(\frac{C_p}{p} = 0\), is likely also sufficient for the saturation of QCRB under \(p\)-local measurements, although we do not have a proof.

Since \(\| \frac{C_p}{p} \|_F \) is monotone, we have

\[
\|C_1\|_F \geq \| \frac{C_2}{2} \|_F \geq \cdots \geq \lim_{p \to \infty} \| \frac{C_p}{p} \|_F = \| \bar{F}_{lm} \|_F \tag{82}
\]

where \(\| (C_{jk})_{jk} = \frac{1}{2} \| \sqrt{\rho_x} [\hat{L}_j, \hat{L}_k] \sqrt{\rho_x} \|_1 \) and \(\| (\bar{F}_{lm})_{jk} = \frac{1}{2} \| Tr(\rho_x [\hat{L}_j, \hat{L}_k]) \|_1 \) with \(\hat{L}_j\) and \(\hat{L}_k\) as the SLDs under the reparametrization that \(\bar{F}_Q = I\). All values of \(\| \frac{C_p}{p} \|_F \) are between \(\frac{1}{2} \| Tr(\rho_x [\hat{L}_j, \hat{L}_k]) \|_{\rho_x} \) and \(\frac{1}{2} \| \sqrt{\rho_x} [\hat{L}_j, \hat{L}_k] \sqrt{\rho_x} \|_1\), i.e., between the absolute value of the trace and the norm of the same matrix, \(\frac{1}{p} \sqrt{\rho_x} [\hat{L}_j, \hat{L}_k] \sqrt{\rho_x} \).

When \(p \to \infty\), by substituting \(\lim_{p \to \infty} \| \frac{C_p}{p} \|_F = \| \bar{F}_{lm} \|_F \) into the bound

\[
\Gamma_p = \frac{1}{\nu} Tr[F^{-1}_Q Cov^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \| \frac{C_p}{p} \|_F^2 \tag{83}
\]

we have

\[
\Gamma_{\infty} \leq n - \frac{1}{4(n-1)} \frac{\| \bar{F}_{lm} \|^2}{\| F_{lm} \|_1}. \tag{84}
\]

Combined with the lower bound in Eq. (6)\[25\],

\[
\Gamma_{\infty} \geq \frac{n^2}{n + \| F_{lm} \|_1} \geq n - \| \bar{F}_{lm} \|_1, \tag{85}
\]

we have

\[
n - \| \bar{F}_{lm} \|_1 \leq \Gamma_{\infty} \leq n - \frac{1}{4(n-1)} \| \bar{F}_{lm} \|^2, \tag{86}
\]

here \(\bar{F}_{lm} = F_{Q}^{-\frac{1}{2}} F_{lm} F_{Q}^{-\frac{1}{2}}\). It can be easily seen that the QCRB is saturable (in which case \(\Gamma_{\infty} = n\)) if and only if \(\bar{F}_{lm} = 0\), which is just the weak commutative condition. This provides an alternative way to obtain the weak commutative condition.

\(\bar{F}_{lm}\) has been proposed as a measure of quantumness based on the lower bound, \(\Gamma_{\infty} \geq n - \| \bar{F}_{lm} \|_1\)\[25\]. The upper bound obtained here adds another layer on the interpretation of \(\bar{F}_{lm}\) as the quantumness when \(p \to \infty\). We note that if \(\frac{C_p}{p} = 0\) is also sufficient for the saturation of the QCRB under \(p\)-local measurements, \(\frac{C_p}{p}\) can be used as a measure of the quantumness under \(p\)-local measurements.

When \(n \geq 3\), we can similarly get

\[
\frac{1}{\nu} Tr[F_{Q}^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{n - 2}{(n-1)^2} \| F_{Q}^{-\frac{1}{2}} \bar{F}_{lm} F_{Q}^{-\frac{1}{2}} \|_F^2, \tag{87}
\]

\[
\frac{1}{\nu} Tr[F_{Q}^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{1}{5} \| F_{Q}^{-\frac{1}{2}} \bar{F}_{lm} F_{Q}^{-\frac{1}{2}} \|_F^2, \tag{88}
\]

where \(\bar{F}_{lm}\) is the imaginary part of \(\hat{F} = \sum_q \bar{F}_{u_q}\) with \(\bar{F}_{u_q}\) equal to either \(F_{u_q}\) or \(F_{T_u}\). Here \(F_{u_q}\) is a \(n \times n\) matrix with the \(jk\)-th entry given by

\[
(F_{u_q})_{jk} = \langle u_q | \sqrt{\rho_x^p} L_{jp} L_{kp} \sqrt{\rho_x^p} | u_q \rangle. \tag{89}
\]

\(L_{jp}\) is the SLD of \(\rho_x^p\) corresponding to the parameter \(x_j\), and \(\{ | u_q \rangle \} \) are a set of vectors in \(H_{\rho_x^p}\) that satisfies \(\sum_{q} \langle u_q | \langle u_q \rangle = I_{dp}\) with \(I_{dp}\) denote the \(d^p \times d^p\) Identity matrix.

\section{D. Single-letter incompatibility measures}

The obtained tradeoff relation under the \(p\)-local measurement needs to compute \(\| \sqrt{\rho_x^p} [\hat{L}_{jp}, \hat{L}_{kp}] \sqrt{\rho_x^p} \|_1\), which involves operators whose dimension increases exponentially with \(p\). Here we provide an alternative tradeoff relation, which only uses operators on a single quantum state thus easier to compute.

If we write \(\sqrt{\rho_x^p} [\hat{L}_{jp}, \hat{L}_{kp}] \sqrt{\rho_x^p} = D_{p(jk)} + O_p(jk)\) with \(D_{p(jk)}\) as the diagonal part and \(O_p(jk)\) as the off-diagonal part, we have (see appendix)

\[
\| D_{p(jk)} \|_1 \leq \| D_{p(jk)} + O_p(jk) \|_1 \leq \| D_{p(jk)} \|_1 + \| O_p(jk) \|_1 \tag{89}
\]

In the appendix we show that with the eigenvalue decomposition, \(\rho_x = \sum_{q=1}^{n} \lambda_q | \Psi_q \rangle \langle \Psi_q | \) with \(\lambda_q > 0\),

\[
\| D_{p(jk)} \|_1 = \sum_{v_1, \cdots, v_p} \sum_{r=1}^{n} (\prod_{r=1}^{p} \lambda_{v_r} \sum_{r=1}^{n} | \Psi_{v_r} \rangle \langle \Psi_{v_r} | \langle \hat{L}_j, \hat{L}_k | \Psi_{v_r} \rangle \|_F \tag{90}
\]

where \(v_1, \cdots, v_p \in \{1, \cdots, m\}\), \(\hat{L}_j = \sum_{\mu} (F_{Q}^{-\frac{1}{2}})_{j\mu} L_{\mu}\) and \(\hat{L}_k = \sum_{\mu} (F_{Q}^{-\frac{1}{2}})_{k\mu} L_{\mu}\). Here \(\| D_{p(jk)} \|_1\) is quantitatively equivalent to the expected value of \(\sum_{v_1, \cdots, v_p} \sum_{r=1}^{n} (\prod_{r=1}^{p} \lambda_{v_r} \sum_{r=1}^{n} | \Psi_{v_r} \rangle \langle \Psi_{v_r} | \langle \hat{L}_j, \hat{L}_k | \Psi_{v_r} \rangle \|_F \) with each eigenvector \(| \Psi_{v_r} \rangle \) selected with probability \(\lambda_{v_r}\). As shown in the appendix,
\begin{equation}
\|O_p^{(jk)}\|_1 \approx O(\sqrt{p}), \text{ the difference between } \frac{\|D_p^{(jk)}\|_1}{p} \text{ and } \frac{\|\rho_{pE}^{\hat{L}_p}\|}{\sqrt{p}} \text{ is then within the order of } \frac{1}{\sqrt{p}}, \text{ i.e., }
\frac{\|D_p^{(jk)}\|_1}{p} \leq \frac{\|\rho_{pE}^{\hat{L}_p}\|}{\sqrt{p}} \leq \frac{\|D_p^{(jk)}\|_1}{p} + O\left(\frac{1}{\sqrt{p}}\right).
\end{equation}

By replacing \(\sqrt{\rho_{pE}^{\hat{L}_p}}|\tilde{L}_j\rangle \tilde{L}_k\rangle\) with \(\|D_p^{(jk)}\|_1\), we then obtain the alternative tradeoff relation
\begin{equation}
\frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \left(\frac{T_p}{p}\right)^2 F_{1m},
\end{equation}

with
\begin{equation}
(T_p)_{jk} = \frac{1}{2} \left(\frac{D_p^{(jk)}}{p}\right)_{11} = \frac{1}{2} \sum_{\nu_1, \nu_2, \nu_3} \sum_{r=1}^p \lambda_{\nu_1} \langle \Psi_{\nu_1} | (\tilde{L}_j, \tilde{L}_k) | \Psi_{\nu_2} \rangle.
\end{equation}

\(T_p\) is also monotonically decreasing with \(p\),
\begin{equation}
\|T_1\| \leq \frac{T_2}{2} \|F\| = \cdots \geq \lim_{p \to \infty} \left(\frac{T_2}{p}\right) F = \frac{\hat{F}_{1m} > F}{F_{1m}},
\end{equation}

where
\begin{equation}
(T_1)_{jk} = \frac{1}{2} \sum_{q=1}^m \lambda_q |\langle \Psi_q | (\tilde{L}_j, \tilde{L}_k) | \Psi_q \rangle| = \frac{1}{2} \sum_{q=1}^m \langle \Psi_q \rangle_{\sqrt{\rho_{pE}^{\hat{L}_p}} | \tilde{L}_j, \tilde{L}_k \rangle \sqrt{\rho_{pE}^{\hat{L}_p}} | \Psi_q \rangle,
\end{equation}

\(S_u = (X_1 \sqrt{\rho_{pE}^{\hat{L}_p}} u \cdots X_n \sqrt{\rho_{pE}^{\hat{L}_p}} u) L_1^{R_1} \sqrt{\rho_{pE}^{\hat{L}_p}} u \cdots L_n^{R_n} \sqrt{\rho_{pE}^{\hat{L}_p}} u)^\dagger \left(X_1 \sqrt{\rho_{pE}^{\hat{L}_p}} u \cdots X_n \sqrt{\rho_{pE}^{\hat{L}_p}} u \right),
\end{equation}

\[B = \begin{pmatrix} A & B \\ B^\dagger & F_{RLD} \end{pmatrix},
\]

with \((A_{u})_{jk} = \langle u | \sqrt{\rho_{pE}^{\hat{L}_p}} X_j X_k \sqrt{\rho_{pE}^{\hat{L}_p}} u \rangle\), \((B_{u})_{jk} = \langle u | \sqrt{\rho_{pE}^{\hat{L}_p}} X_j L_k^{R_1} \sqrt{\rho_{pE}^{\hat{L}_p}} u \rangle\), \((F_{u})_{jk} = \langle u | \sqrt{\rho_{pE}^{\hat{L}_p}} L_j^{R_1} L_k^{R_1} \sqrt{\rho_{pE}^{\hat{L}_p}} u \rangle\).

Similarly, if we choose a set of \(\{u_q\}\) with \(\sum_q \langle u_q | u_q \rangle = I\), we can get \(S = \sum_j S_{u_j} = \begin{pmatrix} A & B \\ B^\dagger & F_{RLD} \end{pmatrix}\) \(\geq 0\), where \((A)_{jk} = Tr(\rho_x X_j X_k)\), \((B)_{jk} = Tr(\rho_x X_j L_k^{R_1})\), \((F_{RLD})_{jk} = Tr(\rho_x L_j^{R_1} L_k^{R_1})\).

The standard RLD bound can then be obtained via the Schur's complement,
\begin{equation}
Cov(\hat{x}) \geq A \geq B(F_{RLD})^{-1} B^\dagger = (F_{RLD})^{-1},
\end{equation}

\[
\frac{1}{\nu} Tr(\rho_x |\tilde{L}_j, \tilde{L}_k\rangle |\tilde{L}_j, \tilde{L}_k\rangle) = \frac{1}{\nu} \sum_{q=1}^m \langle \Psi_q \rangle_{\sqrt{\rho_{pE}^{\hat{L}_p}} | \tilde{L}_j, \tilde{L}_k \rangle \sqrt{\rho_{pE}^{\hat{L}_p}} | \Psi_q \rangle,
\]

All values of \(\frac{T_p}{p}\) are thus between
\[
\frac{1}{\nu} \sum_{q=1}^m |\langle \Psi_q \rangle_{\sqrt{\rho_{pE}^{\hat{L}_p}} | \tilde{L}_j, \tilde{L}_k \rangle \sqrt{\rho_{pE}^{\hat{L}_p}} | \Psi_q \rangle|
\]

and
\[
\frac{1}{\nu} \sum_{q=1}^m |\langle \Psi_q \rangle_{\sqrt{\rho_{pE}^{\hat{L}_p}} | \tilde{L}_j, \tilde{L}_k \rangle \sqrt{\rho_{pE}^{\hat{L}_p}} | \Psi_q \rangle|,
\]

\(\text{i.e., between the absolute value of the summation and the summation of the absolute values of the diagonal entries of}
\frac{1}{\nu} \sqrt{\rho_{pE}^{\hat{L}_p}} |\tilde{L}_j, \tilde{L}_k \rangle |\sqrt{\rho_{pE}^{\hat{L}_p}} |\Psi_q \rangle,
\]

\(\text{We note that this bound can be equivalently obtained by choosing the set of} \{u_q\}\ \text{in Eq.}\ (93)\ \text{as the eigenvectors of} \ \rho_x \ \text{instead of the eigenvectors of} \ \sqrt{\rho_{pE}^{\hat{L}_p}} |\tilde{L}_j, \tilde{L}_k \rangle \sqrt{\rho_{pE}^{\hat{L}_p}}.
\]

\section{Incompatibility Measures with RLDs}

The approach can be used to obtain various other incompatibility measures from different operators. Here we demonstrate it with the right logarithmic operators (RLD).

Let \(L_j^R\) as the RLD for the parameter \(x_j\), i.e., \(\partial_{x_j} \rho_x = \rho_x L_j^R\), then the local unbiased condition can be written as
\begin{equation}
Tr(\rho_x L_j^R X_k) = \delta_{jk},
\end{equation}

By choosing the operators as \((X_1, \cdots, X_n, L_1^R, \cdots, L_n^R)\), we have
\begin{equation}
S_u = \left(X_1 \sqrt{\rho_{pE}^{\hat{L}_p}} u \cdots X_n \sqrt{\rho_{pE}^{\hat{L}_p}} u \right) L_1^{R_1} \sqrt{\rho_{pE}^{\hat{L}_p}} u \cdots L_n^{R_n} \sqrt{\rho_{pE}^{\hat{L}_p}} u \right)^\dagger \left(X_1 \sqrt{\rho_{pE}^{\hat{L}_p}} u \cdots X_n \sqrt{\rho_{pE}^{\hat{L}_p}} u \right)
\end{equation}

This leads to a tradeoff relation as
\begin{equation}
Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq Tr[F_Q^{-1} F_{RLD}] - ||F_{RLD} - F_{RLD}^\dagger||_1,
\end{equation}

where \(F_{RLD} = \frac{1}{2}[F_{Re} + (F_{RLD})^T]\) and \(F_{RLD} = \frac{1}{2}[F_{Re} - (F_{RLD})^T]\) are the real and imaginary part of \(F_{RLD}\) respectively. If there are \(\nu\) copies of the state, then by repeating the 1-local measurement \(\nu\) times, we can get the tradeoff relation as
\begin{equation}
\frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq Tr[F_Q^{-1} F_{RLD}] - ||F_{RLD} - F_{RLD}^\dagger||_1.
\end{equation}

For any \(p\)-local measurements, we can also replace \(\rho_x\) with \(\rho_x^{\sqrt{p}}\) and repeat the measurement \(\nu/p\) times, which leads to the same tradeoff relation as in Eq. (100). This is consistent with the fact the standard RLD bound holds for any measurements.

The standard RLD bound can be improved by taking transposes on subsets of \(\{S_{u_j}\}\). We make a particular choice of \(S_{u_j}\) as an illustration.
Again we first assume $F_Q = I$ and for a fixed pair of indexes, j,k, choose a complete basis, $\{|u_1\}, \cdots, \{|u_q\}\}$, as the orthonormal eigenvectors of $\sqrt{\rho_x}(L^R_k L^R_j - L^R_k L^R_j)\sqrt{\rho_x}$. For any $\{|u_q\}$, $\frac{1}{2\delta} \langle u_q | \sqrt{\rho_x} L^R_k L^R_j - L^R_k L^R_j | \sqrt{\rho_x} u_q \rangle$, which is the imaginary part of $(F_{u_q})_{jk}$, is a real number, which we denote as t_{jk}. We then define

$$\tilde{S}_{u_q} := \begin{cases} S_{u_q} & \text{when } t_{jk} \geq 0, \\ S_{u_q}^T & \text{when } t_{jk} < 0. \end{cases} \quad (101)$$

By summing \tilde{S}_{u_q} we get

$$\tilde{S} = \sum_q \tilde{S}_{u_q} = \left(\frac{A}{B} B \right) F^{RLD}, \quad (102)$$

where $B = I + iB_{Im}$, $A F^{RLD} = \sum_q F_{u_q}$ with F_{u_q} equals to either F_{u_q} or $F_{u_q}^T$ where the imaginary part of $(F_{u_q})_{jk}$ is always positive. The real part of $A F^{RLD}$ remains the same as F_{Re}, the imaginary part of the jk-th entry of F^{RLD} is

$$(A F^{RLD})_{jk} = \frac{1}{2} \langle \sqrt{\rho_x} (L^R_j L^R_k - L^R_k L^R_j) \sqrt{\rho_x} \rangle. \quad (103)$$

We then get $\text{Cov}(\hat{x}) \geq \tilde{A}$, which further gives $A F^{RLD} - B \tilde{A} \text{Cov}^{-1}(\hat{x}) B \geq 0$. By following the similar procedure, we obtain the tradeoff relation under the 1-local measurement (with the parametrization such that $F_Q = I$) as

$$\text{Tr}[\text{Cov}^{-1}(\hat{x})] \leq \text{Tr}[F^{RLD}_{Re}] - \frac{1}{4(n-1)} \| C_1^{RLD} \|_F^2, \quad (104)$$

where $(C^{RLD})_{jk} = \min \{ \frac{1}{2} \| \sqrt{\rho_x} (L^R_j L^R_k - L^R_k L^R_j) \sqrt{\rho_x} \|_1, 2 \}$. If we repeat the 1-local measurement on ν copies of the state, the tradeoff relation under 1-local measurements, with the parametrization such that $F_Q = I$, is then

$$\frac{1}{\nu} \text{Tr}[\text{Cov}^{-1}(\hat{x})] \leq \text{Tr}[F^{RLD}_{Re}] - \frac{1}{4(n-1)} \| C_1^{RLD} \|_F^2. \quad (105)$$

When $F_Q \neq I$ initially, we can first make a reparametrization with $\tilde{x} = F_Q^{-\frac{1}{2}} x$. The tradeoff relation in Eq. (105) can then be expressed in the original parametrization as

$$\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\tilde{x})] \leq \text{Tr}[F_{QRe}^{RLD}] - \frac{1}{4(n-1)} \| C_1^{RLD} \|_F^2. \quad (106)$$

with the entries of C_1^{RLD} given by

$$(C_1^{RLD})_{jk} = \min \{ \frac{1}{2} \| \sqrt{\rho_x} (\tilde{L}^R_j L^R_k - \tilde{L}^R_k L^R_j) \sqrt{\rho_x} \|_1, 0 \} \quad (107)$$

where $\tilde{L}^R_j = \sum_q (F_Q^{-\frac{1}{2}})_{jq} L^R_q$ and $\tilde{L}^R_k = \sum_q (F_Q^{-\frac{1}{2}})_{kq} L^R_q$.

For p-local measurements, we can similarly get

$$\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\tilde{x})] \leq \text{Tr}[F_{QRe}^{RLD}] - \frac{1}{4(n-1)} \| C_p^{RLD} \|_F^2, \quad (108)$$

where $(C_p^{RLD})_{jk} = \min \{ \frac{1}{2} \| \sqrt{\rho_x} (\tilde{L}^R_{jp} \tilde{L}^R_{kp} - \tilde{L}^R_{kp} \tilde{L}^R_{jp}) \sqrt{\rho_x} \|_1, 2p \}$. \vspace{0.5cm}

VI. EXAMPLES

A. Example 1

Consider a state $\rho_x = \frac{1}{2} (I + \delta |1\rangle \langle 1|)$, where the true values of the parameters, x_1, x_2, x_3 are all 0 and $|\delta| < 1$. The eigenvectors of ρ_x are $|0\rangle$ and $|1\rangle$ with $\langle 0 | \rho_x | 0 \rangle = \frac{1}{2} (1 + \delta) |0\rangle |0\rangle$, $\langle 1 | \rho_x | 1 \rangle = \frac{1}{2} (1 - \delta) |1\rangle |1\rangle$. The SLD operators corresponding to the parameters can be easily obtained as

$$(L_1)_{01} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad (L_2)_{01} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad (L_3)_{01} = \begin{pmatrix} \frac{1}{\sqrt{1+\delta}} & 0 \\ 0 & -\frac{1}{\sqrt{1+\delta}} \end{pmatrix}. \quad (109)$$

from which we can get the QFIM

$$F_Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{1-\delta^2} \end{pmatrix}. \quad (110)$$

The SLD under the reparametrization $\tilde{x} = F^{\frac{1}{2}}_Q x$ are given by

$$\tilde{L}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tilde{L}_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \tilde{L}_3 = \begin{pmatrix} \frac{1}{\sqrt{1+\delta}} & 0 \\ 0 & -\frac{1}{\sqrt{1+\delta}} \end{pmatrix}. \quad (111)$$

From $(C_{1})_{jk} = \frac{1}{2} \| \sqrt{\rho_x} \tilde{L}_j \tilde{L}_k \|_1 \sqrt{\rho_x}$ we have

$$C_1 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}. \quad (112)$$

which gives the tradeoff relation under the 1-local measurement as

$$\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\tilde{x})] \leq n - \frac{1}{4(n-1)} \| C_1 \|_F^2 = \frac{9}{4}. \quad (113)$$

With

$$(T_{1})_{jk} = \frac{1}{2} \left\{ \frac{1+\delta}{2} |0\rangle \langle 0| \tilde{L}_j \tilde{L}_k |0\rangle + \frac{1-\delta}{2} |1\rangle \langle 1| \tilde{L}_j \tilde{L}_k |1\rangle \right\} \quad (114)$$

we can obtain the bound with T_1 as

$$\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\tilde{x})] \leq n - \frac{1}{4(n-1)} \| T_1 \|_F^2 = \frac{11}{4}. \quad (115)$$
If we choose a set of \(\{|u_q\}\) as \(|u_0\rangle = (1, 0) \), \(|u_1\rangle = (0, 1) \), which satisfies \(|u_0\rangle \langle u_0| + |u_1\rangle \langle u_1| = I \), from \((F_{u_q})_{jk} = \langle u_q | \sqrt{\rho_x L_j \sqrt{\rho_x}} | u_q \rangle \) we can obtain

\[
F_{u_0} = \frac{1}{2} \begin{pmatrix}
1 + \delta & i(1 + \delta) & 0 \\
-i(1 + \delta) & 1 + \delta & 0 \\
0 & 0 & 1 - \delta
\end{pmatrix}, \\
F_{u_1} = \frac{1}{2} \begin{pmatrix}
1 - \delta & -i(1 - \delta) & 0 \\
i(1 - \delta) & 1 - \delta & 0 \\
0 & 0 & 1 + \delta
\end{pmatrix}. \tag{116}
\]

We can choose \(\tilde{F} = F_{u_0} + F_{u_0}^T \) whose imaginary part is

\[
\tilde{F}_{lm} = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \tag{117}
\]

the tradeoff relation in Eq. [87] then gives

\[
\frac{1}{\nu} Tr[F_Q^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{(n - 2)}{(n - 1)^2} \| \tilde{F}_{lm} \|^2_F = \frac{5}{2} \tag{118}
\]

For 2-local measurement, using \((C_2)_{jk} = \frac{1}{2} \| \rho_x^{\otimes 2} [\hat{L}_{j2}, \hat{L}_{k2}] \|_1 \) with \(\hat{L}_{j2} = \hat{L}_j \otimes I + I \otimes \hat{L}_j \), we can obtain

\[
C_2 = \begin{pmatrix}
0 & 1 + \delta^2 & \sqrt{1 + \delta^2} \\
1 + \delta^2 & 0 & \sqrt{1 + \delta^2} \\
\sqrt{1 + \delta^2} & \sqrt{1 + \delta^2} & 0
\end{pmatrix} \tag{119}
\]

which gives the tradeoff relation

\[
\frac{1}{\nu} Tr[F_Q^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n - 1)} \| C_2 \|^2_F = \frac{45}{16} - \frac{\delta^2}{16} - \frac{\delta^4}{16}. \tag{120}
\]

From

\[
(T_2)_{jk} = \frac{1}{2} \left(\frac{1 + \delta}{2} \right)^2 |\langle 0 | \hat{L}_j \hat{L}_k | 0 \rangle + \langle 0 | \hat{L}_j \hat{L}_k | 0 \rangle | + \frac{1}{2} \left(\frac{1 - \delta}{2} \right)^2 |\langle 0 | \hat{L}_j \hat{L}_k | 0 \rangle - \langle 0 | \hat{L}_j \hat{L}_k | 0 \rangle | + \frac{1}{2} \left(\frac{1 - \delta}{2} \right)^2 |\langle 1 | \hat{L}_j \hat{L}_k | 1 \rangle + \langle 1 | \hat{L}_j \hat{L}_k | 1 \rangle |, \tag{121}
\]

we have

\[
T_2 = \begin{pmatrix}
0 & 1 + \delta^2 & 0 \\
1 + \delta^2 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \tag{122}
\]

which gives the tradeoff relation with \(T_2 \) as

\[
\frac{1}{\nu} Tr[F_Q^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n - 1)} \| T_2 \|^2_F = \frac{47}{16} - \frac{\delta^2}{8} - \frac{\delta^4}{16}. \tag{123}
\]

If we choose a set of \(\{|u_q\}\) in the two-qubit space as \(|u_0\rangle = (00), |u_1\rangle = (01), |u_2\rangle = (10), |u_3\rangle = (11) \), we can obtain

\[
F_{u_0} = \frac{1}{2} \begin{pmatrix}
(1 + \delta)^2 & i(1 + \delta)^2 & 0 \\
i(1 + \delta)^2 & (1 + \delta)^2 & 0 \\
0 & 0 & 2(1 - \delta^2)
\end{pmatrix}, \tag{124}
\]

\[
F_{u_1} = \frac{1}{2} \begin{pmatrix}
1 - \delta^2 & 0 & 0 \\
0 & 1 - \delta^2 & 0 \\
0 & 0 & 2\delta^2
\end{pmatrix},
F_{u_2} = \frac{1}{2} \begin{pmatrix}
1 - \delta^2 & 0 & 0 \\
0 & 1 - \delta^2 & 0 \\
0 & 0 & 2\delta^2
\end{pmatrix},
F_{u_3} = \frac{1}{2} \begin{pmatrix}
(1 - \delta)^2 & -i(1 - \delta)^2 & 0 \\
i(1 - \delta)^2 & (1 - \delta)^2 & 0 \\
0 & 0 & 2(1 - \delta^2)
\end{pmatrix},
\]

where the entries of \(F_{u_q} \) are obtained as \((F_{u_q})_{jk} = \langle u_q | \sqrt{\rho_x^{\otimes 2} \hat{L}_{j2} \hat{L}_{k2} \sqrt{\rho_x^{\otimes 2}}} | u_q \rangle \). Let \(\tilde{F} = F_{u_0} + F_{u_1} + F_{u_2} + F_{u_3} \), which has the imaginary part as

\[
\tilde{F}_{lm2} = \begin{pmatrix}
0 & 0 & 1 + \delta^2 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}. \tag{125}
\]

This gives the tradeoff relation

\[
\frac{1}{\nu} Tr[F_Q^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{(n - 2)}{(n - 1)^2} \| \tilde{F}_{lm2} \|^2_F = \frac{3}{8} - \frac{1}{8}(1 + \delta^2)^2. \tag{126}
\]

When \(\delta = 0 \), i.e., \(\rho_x = \frac{1}{2}(I + x_{1}\hat{\sigma}_1 + x_2\hat{\sigma}_2 + x_3\hat{\sigma}_3) \), the tradeoff relations can be analytically calculated under general 2-local measurement. In this case the SLOD operators under the reparametrization is given by \(\hat{L}_1 = \sigma_1, \hat{L}_2 = \sigma_2, \hat{L}_3 = \sigma_3 \), thus

\[
(C_p)_{12} = \frac{1}{2} \| \rho_x^{\otimes p} [\hat{L}_{1p}, \hat{L}_{2p}] \rho_x^{\otimes p} \|_1 = \frac{1}{2} \| \rho_x^{\otimes p} [\sigma_{1p}, \sigma_{2p}] \rho_x^{\otimes p} \|_1 = \frac{1}{2p} \| \sigma_{3p} \|_1, \tag{127}
\]

where \(\sigma_{lp} = \sum_{l=1}^{p} \sigma_l^{(r)} \) for \(l \in \{1, 2, 3\} \). As the eigenvalues of \(\sigma_{lp} \) are \(-p + 2s\) with multiplicity \(\binom{p}{s} \), here \(s = 0, 1, ..., p \), thus

\[
\| \sigma_{3p} \|_1 = \sum_{s=0}^{p} \binom{p}{s} | -p + 2s | = 2 \sum_{s=0}^{p} \binom{p}{s} (p - 2s) = \begin{cases}
p \binom{p-1}{s-1}, & \text{if } p \text{ is odd,} \\
p \binom{p}{s}, & \text{if } p \text{ is even.} \end{cases} \tag{128}
\]

Due to the symmetry, \((C_p)_{jk} \) takes the same value for all \(j \neq k \in \{1, 2, 3\} \). The tradeoff relation under the 2-local
measurement is then given by
\[
\Gamma_p = \frac{1}{\nu} Tr[F_Q^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \| C_p \|_F^2 \\
= 3 - \frac{3}{4} \left(\frac{N_p}{p} \right)^2 ,
\]
where \(N_p = \frac{1}{p^2} \| \sigma_3 \|_1 \).

For the bound with \(T_p \), we have
\[
(T_p)_{12} = \frac{1}{2} \sum_{s=0}^{p} \binom{p}{s} \left(\frac{1 + \delta}{2} \right)^s \left(\frac{1 - \delta}{2} \right)^{p-s} |2s - 2(p - s)| \\
= \frac{1}{2p} \sum_{s=0}^{p} \binom{p}{s} (1 + \delta)^s (1 - \delta)^{p-s} |2s - p| ,
\]
and \((T_p)_{13} = (T_p)_{23} = 0\), thus
\[
\frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \left| \frac{T_p}{p} \right|_F^2 \\
= 3 - \frac{3}{4p^2} (T_p)^2 .
\]

In Fig. 1 we plot the bounds as a function of \(p \) in the case of \(\delta = 0 \). Note that in this case the weak commutative condition holds, the Holevo bound equals to the QCRB, which is achievable when \(p \to \infty \). For any finite \(p \), however, the bounds are strictly less than 3, thus any collective measurement on finite copies can not saturate the Holevo bound which is only achievable with the collective measurement on genuinely infinite copies of states. It can also be seen that the difference between the bounds obtained from \(C_p \) and \(T_p \) is large for small \(p \), but the difference decreases with \(p \).

We also plot the bounds for the state \(\rho_x = \frac{1}{2} (I + \delta \sigma_3 + x_1 \sigma_1 + x_2 \sigma_2 + x_3 \sigma_3) \) with general \(\delta \) in Fig. 2. The complexity of calculating the bound with \(C_p \), which we compute up to \(p = 10 \), increases exponentially with \(p \). As a comparison, the bound with \(T_p \) is much easier to compute, which we compute up to \(p = 100 \). Since the difference between these two bounds decreases with \(p \), a good strategy is to use the bound with \(C_p \) for small \(p \) and use the bound with \(T_p \) for large \(p \). We also plot the bound with the RLD for \(p = 2 \), it can be seen that the RLD bound can be either tighter or less tight than the bound with \(C_p \). We can combine these bounds and choose the minimal of them to get a tighter bound.

B. Example 2

We consider another example with a three dimensional state, \(\rho_x = \frac{1}{2} I + \sum_j x_j G_j \), where \(G_j = \frac{1}{2} A_j \), here \(\{A_j\}_{j=1}^8 \) are the Gell-Mann matrices,
\[
A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]
\[
A_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad A_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad A_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},
\]
\[
A_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad A_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},
\]
which form a basis for 3 by 3 Hermitian matrices. When the true values of the parameters are all 0, the SLDs can be obtained as \(L_j = 3G_j \), and \(F_Q = \frac{3}{2} I \). The SLDs after
the reparametrization which makes \(\hat{F}_Q = I \) are given by
\[
\hat{L}_j = \sqrt{\frac{2}{3}} L_j = \sqrt{6} G_j. \tag{133}
\]
Since
\[
(C_1)_{jk} = \frac{1}{2} \| \sqrt{p_x} [\hat{L}_j, \hat{L}_k] \sqrt{p_x} \|_1 = \| [G_j, G_k] \|_1, \tag{134}
\]
we have
\[
C_1 = \begin{pmatrix}
0 & 1 & 1 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
1 & 0 & 1 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
1 & 1 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\end{pmatrix}. \tag{135}
\]
This gives the tradeoff relation under the 1-local measurement as
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \| C_1 \|_F^2 \tag{136}
\]
\[
= 50 \approx 7.14. \tag{137}
\]
For \(p \)-local measurement, we can similarly obtain
\[
(C_p)_{jk} = \frac{1}{2} \| \sqrt{p_x} [\hat{L}_j, \hat{L}_k] \sqrt{p_x} \|_1 = \frac{1}{3p-1} \| [G_j, G_k] \|_1, \tag{138}
\]
where \([G_j, G_k] = \sum_{r=1}^{p} [G_j^{(r)}, G_k^{(r)}] \). Since the eigenvalues of \([G_j, G_k]\) are \(\{ -\lambda, 0, \lambda \} \), where \(\lambda = \frac{1}{2} (C_1)_{jk} \), the eigenvalues of \([G_j, G_k]\) are given by \(\lambda s \) with multiplicity \(\binom{p}{s} \), for \(s = -p, -p+1, \ldots, p \), here \(\binom{p}{s} = \sum_{r=0}^{p} (-1)^r \binom{p}{r} \binom{p-2r}{p-s-r} \) is the trinomial coefficient, which can be obtained as the \((j+p) \)-th coefficient of the polynomial \((1 + x + x^2)^p \) (see supplement for details). We thus have
\[
\| [G_j, G_k] \|_1 = \sum_{s=-p}^{p} |\lambda s| \binom{p}{s} = 2 \lambda \sum_{s=0}^{p} s \binom{p}{s} \tag{139}
\]
\[
= (C_1)_{jk} \sum_{s=0}^{p} s \binom{p}{s}, \tag{140}
\]
where we have used the fact that \(\binom{p}{s} = \binom{p}{p-s} \). Denote \(N_p = \sum_{s=0}^{p} s \binom{p}{s} \), we then have
\[
(C_p)_{jk} = \frac{1}{3p-1} \| [G_j, G_k] \|_1 = (C_1)_{jk} \frac{N_p}{3p-1}, \tag{141}
\]
which gives the Frobenius norm of \(C_p \) as
\[
\| C_p \|_F = \sqrt{\sum_{jk} (C_p)_{jk}^2} = \sqrt{\sum_{jk} \left((C_1)_{jk} \frac{1}{3p-1} N_p \right)^2} \tag{142}
\]
\[
= \frac{1}{3p-1} N_p \sqrt{\sum_{jk} ((C_1)_{jk})^2} = \frac{1}{3p-1} N_p \| C_1 \|_F. \tag{143}
\]
The tradeoff relation under the \(p \)-local measurement is then given by
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \| C_p \|_F^2 \tag{144}
\]
\[
= n - \frac{1}{4(n-1)} \| C_1 \|_F^2 \left(\frac{1}{p^{3p-1} N_p} \right)^2 \tag{145}
\]
\[
= 8 - \frac{6}{7} \left(\frac{1}{p^{3p-1} N_p} \right)^2. \tag{146}
\]
Here \(\frac{1}{p^{3p-1} N_p} \) monotonically decreases with \(p \) and it is only equal to 0 when \(p \to \infty \). The Holevo bound, which equals to the QCRB in this case since the weak commutative condition holds, can thus only be achieved with collective measurement on genuinely infinite number of quantum states in this case.

If there are only three parameters, for example, \(\{ x_1, x_2, x_5 \} \), the associated matrices are given by the \(3 \times 3 \) submatrices of the original ones. Under the \(1 \)-local measurement we have
\[
C_1 = \begin{pmatrix}
0 & 1 & 1 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
1 & 0 & 1 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
1 & 1 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\end{pmatrix}, \tag{147}
\]
which gives the tradeoff relation
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \| C_1 \|_F^2 \tag{148}
\]
\[
= 3 - \frac{3}{8} = 2.625. \tag{149}
\]
Under the \(p \)-local measurement, we have
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \| C_p \|_F^2 \tag{150}
\]
\[
= n - \frac{1}{4(n-1)} \| C_1 \|_F^2 \left(\frac{1}{p^{3p-1} N_p} \right)^2 \tag{151}
\]
\[
= 3 - \frac{3}{8} \left(\frac{1}{p^{3p-1} N_p} \right)^2. \tag{152}
\]
For \(p = 2 \), this gives
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \| C_2 \|_F^2 \tag{153}
\]
\[
= 3 - \frac{3}{8} \times \frac{1}{\sqrt{2}} \times \frac{16}{9} \tag{154}
\]
\[
= \frac{17}{6} \approx 2.83. \tag{155}
\]
The bound with \(T_p \) can be similarly calculated as
\[
(T_p)_{jk} = \frac{1}{2} \sum_{s=0}^{p} \sum_{r=0}^{p-s} \binom{p}{s} \binom{p}{r} \left(\frac{1}{3^3} \right)^s \left(\frac{1}{3^3} \right)^r \| s \times (0, L_j, L_k) + r \times (1, L_j, L_k) + (p-s-r) \times (2) L_j, L_k \|_2. \tag{156}
\]
For \(s = 0 \), the equation can be simplified as
\[
(T_p)_{12} = \frac{1}{2} \left(\frac{1}{3} \right)^p \sum_{s=0}^{p} \sum_{r=0}^{p-s} \binom{p}{s} \binom{p}{r} \left(p-s-r \right) |3s-3r| \tag{157}
\]
then given by
\[1 - \frac{1}{n} \frac{\nu Tr[F^{-1} Cov^{-1}(\hat{x})]}{\nu Tr[F^{-1} Cov^{-1}(\hat{x})]} \leq 3 - \frac{1}{4p^2}(T_p)^2. \] (146)

We plot the bounds for \(n = 3 \) as a typical case in Fig. 3. It can be seen that the Holevo bound, which equals to the QCRB as the weak commutative condition holds, is only achievable when \(p \to \infty \). For any finite \(p \), the bounds are strictly less than \(n \).

If there are only two parameters, the associated matrices are then given by the \(2 \times 2 \) submatrices of the original ones. For example, suppose the two parameters are \(\{x_1, x_2\} \), we then have
\[C_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] (147)

the tradeoff relation under the 1-local measurement is then given by
\[\frac{1}{\nu} Tr[F^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \|C_1\|^2_F = 3 - \frac{3}{2}, \] (148)
in this case it is tighter than the Gill-Massar bound.

Under general \(p \)-local measurement, we have
\[\frac{1}{\nu} Tr[F^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \|C_p\|^2_F = n - \frac{1}{4(n-1)} \|C_1\|^2_F \left(\frac{1}{p^{3p-1}N_p} \right)^2 \]
\[= 2 - \frac{1}{2} \left(\frac{1}{p^{3p-1}N_p} \right)^2. \] (149)

FIG. 3. Precision bounds \(\Gamma_p \) for \(p \)-local measurements and the Holevo bound when \(n = 3 \).

and \((T_p)_{13} = 0, (T_p)_{23} = 0 \). This then gives
\[\frac{1}{\nu} Tr[F^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \|T_p\|^2_F = 3 - \frac{1}{4p^2}(T_p)^2. \] (146)

We plot the bounds for \(n = 3 \) as a typical case in Fig. 3. It can be seen that the Holevo bound, which equals to the QCRB as the weak commutative condition holds, is only achievable when \(p \to \infty \). For any finite \(p \), the bounds are strictly less than \(n \).

If there are only two parameters, the associated matrices are then given by the \(2 \times 2 \) submatrices of the original ones. For example, suppose the two parameters are \(\{x_1, x_2\} \), we then have
\[C_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] (147)

the tradeoff relation under the 1-local measurement is then given by
\[\frac{1}{\nu} Tr[F^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \|C_1\|^2_F = 3 - \frac{3}{2}, \] (148)
in this case it is tighter than the Gill-Massar bound.

Under general \(p \)-local measurement, we have
\[\frac{1}{\nu} Tr[F^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \|C_p\|^2_F = n - \frac{1}{4(n-1)} \|C_1\|^2_F \left(\frac{1}{p^{3p-1}N_p} \right)^2 \]
\[= 2 - \frac{1}{2} \left(\frac{1}{p^{3p-1}N_p} \right)^2. \] (149)

FIG. 4. Comparison of different bounds of \(\Gamma_p \) for the estimation of \(\rho_x = \frac{1}{2} I + \delta G_3 + x_1 G_1 + x_2 G_2 + x_5 G_5 \) at \(x_1 = x_2 = x_5 = 0 \).

For \(p = 2 \), we have
\[\frac{1}{\nu} Tr[F^{-1} Cov(\hat{x})^{-1}] \leq \frac{16}{9} \approx 1.78, \] (150)

and for \(p = 3 \),
\[\frac{1}{\nu} Tr[F^{-1} Cov(\hat{x})^{-1}] \leq \frac{299}{162} \approx 1.85. \] (151)

Similar as the previous example, we also consider the estimation of the state \(\rho_x = \frac{1}{2} I + \delta G_3 + x_1 G_1 + x_2 G_2 + x_5 G_5 \) with general \(\delta \) and plot the precision bounds in Fig. 4, where we plotted the bounds with \(C_p \) up to \(p = 6 \) and the bounds with \(T_p \) up to \(p = 100 \). We also plotted the bounds with RLDs and \(\tilde{F}_{lm} \) for \(p = 2 \) (see supplement for detailed calculations), as it can be seen the bound given by \(\frac{1}{\nu} Tr[F^{-1} Cov(\hat{x})^{-1}] \leq n - \frac{(n-2)}{(n-1)^2} \|\tilde{F}_{lm}\|^2_F \) is tighter than the bounds given by \(C_2 \) and \(T_2 \) in this case.

VII. SUMMARY

The presented framework provided a versatile tool to obtain bounds on the precision limit in multi-parameter quantum estimation under general \(p \)-local measurements, which significantly increased our knowledge on the incompatibility in multi-parameter quantum estimation. The relation between the partial commutative condition and the weak commutative condition is also clarified. Future studies includes improving the bounds by exploring different choices of \(\{|u_q\}\) and operators in \(\tilde{S} \), clarifying
whether the partial commutative condition is sufficient for the saturation of the QCRB, and identifying the ultimate precision under general p-local measurements. The approach can also be used to strengthen the uncertainty relations for multiple observables, which is another interesting direction to pursue.

[1] Carl W. Helstrom. *Quantum Detection and Estimation Theory*. Academic Press, New York, 1976.

[2] A. S. Holevo. *Probabilistic and Statistical Aspects of Quantum Theory*. North-Holland, Amsterdam, 1982.

[3] Samuel L. Braunstein, Carlton M. Caves, and G. J. Milburn. Generalized uncertainty relations: Theory, examples, and Lorentz invariance. *Ann. Phys.*, 247(1):135–173, 1996.

[4] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum-enhanced measurements: Beating the standard quantum limit. *Science*, 306:1330, 2004.

[5] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum metrology. *Phys. Rev. Lett.*, 96:010401, 2006.

[6] B M Escher, R L de Matos Filho, and L Davidovich. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. *Nat. Phys.*, 5(5):406–411, May 2011.

[7] Tomohisa Nagata, Ryo Okamoto, Jeremy L O’Brien, Keiji Sasaki, and Shigeki Takeuchi. Beating the standard quantum limit with four-entangled photons. *Science*, 316(5825):726–729, 2007.

[8] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde. Entanglement-free Heisenberg-limited phase estimation. *Nature*, 450(7168):393–396, 2007.

[9] G. Y. Xiang, B. L. Higgins, D. W. Berry, H. M. Wiseman, and G. J. Pryde. Entanglement-enhanced measurement of a completely unknown optical phase. *Nat. Photonics*, 5:43, 2011.

[10] Sergei Slussarenko, Morgan M Weston, Helen M Chrzanowski, Lynden K Shalm, Varun B Verma, Sae Woo Nam, and Geoff J Pryde. Unconditional violation of the shot-noise limit in photonic quantum metrology. *Nature Photonics*, 11(11):700, 2017.

[11] Shakib Daryanoosh, Sergei Slussarenko, Dominic W Berry, Howard M Wiseman, and Geoff J Pryde. Experimental optical phase measurement approaching the exact heisenberg limit. *Nature communications*, 9(1):4606, 2018.

[12] Haidong Yuan and Chi-Hang Fred Fung. Quantum parameter estimation with general dynamics. *NPJ Quantum Information*, 3(1):14, 2017.

[13] K Matsumoto. A new approach to the cramér-rao-type bound of the pure-state model. *Journal of Physics A: Mathematical and General*, 35(13):3111–3123, mar 2002.

[14] Peter C. Humphreys, Marco Barbieri, Animesh Datta, and Ian A. Walmsley. Quantum enhanced multiple phase estimation. *Phys. Rev. Lett.*, 111:070403, Aug 2013.

[15] Luca Pezze, Mario A. Ciampini, Nicòlo Spagnolo, Peter C. Humphreys, Animesh Datta, Ian A. Walmsley, Marco Barbieri, Fabio Sciarrino, and Augusto Smerzi. Optimal measurements for simultaneous quantum estimation of multiple phases. *Phys. Rev. Lett.*, 119:130504, Sep 2017.

[16] M. Hayashi, editor. *Asymptotic Theory of Quantum Statistical Inference*. World Scientific, Singapore, 2005.

[17] Zhibo Hou, Zhao Zhang, Guo-Yong Xiang, Chuan-Feng Li, Guang-Can Guo, Hongzhen Chen, Liqiang Liu, and Haidong Yuan. Minimal tradeoff and ultimate precision limit of multiparameter quantum magnetometry under the parallel scheme. *Phys. Rev. Lett.*, 125:020501, Jul 2020.

[18] Federico Belliard and Vittorio Giovannetti. Incompatibility in quantum parameter estimation. *New Journal of Physics*, 23(6):063055, jun 2021.

[19] Zhibo Hou, Jun-Feng Tang, Hongzhen Chen, Haidong Yuan, Guo-Yong Xiang, Chuan-Feng Li, and Guang-Can Guo. Zero-trade-off multiparameter quantum estimation via simultaneously saturating multiple heisenberg uncertainty relations. *Science Advances*, 7(1), 2021.

[20] Zhibo Hou, Yan Jin, Hongzhen Chen, Jun-Feng Tang, Chang-Jiang Huang, Haidong Yuan, Guo-Yong Xiang, Chuan-Feng Li, and Guang-Can Guo. "super-heisenberg" and heisenberg scalings achieved simultaneously in the estimation of a rotating field. *Phys. Rev. Lett.*, 126:070503, Feb 2021.

[21] Jing Yang, Shengshi Pang, Yiyu Zhou, and Andrew N. Jordan. Optimal measurements for quantum multiparameter estimation with general states. *Phys. Rev. A*, 100:032104, Sep 2019.

[22] Nan Li, Christopher Ferrie, Jonathan A. Gross, Amir Kalev, and Carlton M. Caves. Fisher-symmetric informationally complete measurements for pure states. *Phys. Rev. Lett.*, 116:180402, May 2016.

[23] Huangjun Zhu and Masahito Hayashi. Universally fisher-symmetric informationally complete measurements. *Phys. Rev. Lett.*, 120:030404, Jan 2018.

[24] Magdalena Szczyszkulska, Tillmann Baumgratz, and Animesh Datta. Multi-parameter quantum metrology. *Advances in Physics: X*, 1(4):621–639, 2016.

[25] Francesco Albarelli, Jamie F. Friel, and Animesh Datta. Evaluating the holevo cramér-rao bound for multiparameter quantum metrology. *Phys. Rev. Lett.*, 123:200503, Nov 2019.

[26] Richard D. Gill and Serge Massar. State estimation for large ensembles. *Phys. Rev. A*, 61:042312, Mar 2000.

[27] F. Albarelli, M. Barbieri, M.G. Genoni, and I. Gianani. A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging. *Physics Letters A*, 384(12):126311, 2020.

[28] Angelo Carollo, Bernardo Spagnolo, Alexander A Dobrzański, Lynden K Shalm, Varun B Verma, Sae Woo Nam, and Geoff J Pryde. Unconditional violation of the shot-noise limit in photonic quantum metrology. *Nat. Phys.*, 11(11):700, 2017.

[29] Sammy Ragy, Marcin Jarzyna, and Rafal Demkowicz-Dobrzański. Compatibility in multiparameter quantum metrology. *Phys. Rev. A*, 94:052108, Nov 2016.
We derive the tradeoff relation from

\[S = \begin{pmatrix} A & B \\ B^\dagger & F \end{pmatrix} \geq 0, \]

(A1)
where A, B, F are $n \times n$ matrices with $\text{Cov}(\hat{x}) \geq A$, $B = I + iB_{Im}$ and $F = F_Q + iF_{Im}$. We note that the derivation below works regardless whether S is obtained from pure states or mixed states.

Since $\text{Cov}(\hat{x}) \geq A$, we have

$$
\begin{pmatrix}
\text{Cov}(\hat{x}) & B \\
B^T & F
\end{pmatrix} =
\begin{pmatrix}
\text{Cov}(\hat{x}) - A & 0 \\
0 & 0
\end{pmatrix} +
\begin{pmatrix}
A & B \\
B^T & F
\end{pmatrix} \geq 0.
$$

(A2)

This implies that $F - B^T\text{Cov}^{-1}(\hat{x})B \geq 0$. Since $F = F_Q + iF_{Im}$, $B = I + iB_{Im}$, we thus have

$$
F_Q + iF_{Im} - [\text{Cov}^{-1}(\hat{x}) + B_{Im}^T\text{Cov}^{-1}(\hat{x})B_{Im} + iB_{Im}^T\text{Cov}^{-1}(\hat{x}) - \text{Cov}^{-1}(\hat{x})B_{Im})] \geq 0,
$$

(A3)

which implies the real part is positive semidefinite, i.e.,

$$
F_Q - \text{Cov}^{-1}(\hat{x}) - B_{Im}^T\text{Cov}^{-1}(\hat{x})B_{Im} \geq 0.
$$

(A4)

This can be written as $F_Q - \text{Cov}^{-1}(\hat{x}) \geq B_{Im}^T\text{Cov}^{-1}(\hat{x})B_{Im} \geq 0$, which is stronger than the quantum Cramer-Rao bound $F_Q - \text{Cov}^{-1}(\hat{x}) \geq 0$, typically written as $\text{Cov}(\hat{x}) \geq F_Q^{-1}$. To saturate the bound, i.e., $\text{Cov}(\hat{x}) = F_Q^{-1}$, we need to have $B_{Im}^T\text{Cov}(\hat{x})^{-1}B_{Im} = 0$. When the covariance matrix is full rank, which is always the case when F_Q is invertable, this requires $B_{Im} = 0$. Eq. (A3) then becomes

$$
F_Q + iF_{Im} - \text{Cov}^{-1}(\hat{x}) \geq 0.
$$

(A5)

The saturation of the quantum Cramer-Rao bound then requires $iF_{Im} \geq 0$. Since F_{Im} is anti-symmetric and its eigenvalues are in the form of $\pm i\beta$ with $\beta \in \mathbb{R}$, $iF_{Im} \geq 0$ is only possible when all the eigenvalues are zero, i.e., $F_{Im} = 0$. This is exactly the weak commutative condition for the saturation of the quantum Cramer-Rao bound.

When $F_{Im} \neq 0$, the QCRB is not saturable. Denote $F_C = \text{Cov}^{-1}(\hat{x})$, we write Eq. (A3) as

$$
F_Q - F_C - B_{Im}^T F_C B_{Im} + i(F_{Im} + B_{Im}^T F_C - F_C B_{Im}) \geq 0.
$$

(A6)

By multiplying $F_Q^{-\frac{1}{2}}$ from both the left and the right, we get

$$
I - F^{-\frac{1}{2}}_Q F_C F^{-\frac{1}{2}}_Q - F^{-\frac{1}{2}}_Q B_{Im}^T F_C B_{Im} F^{-\frac{1}{2}}_Q + i(F^{-\frac{1}{2}}_Q F_C F^{-\frac{1}{2}}_Q + F^{-\frac{1}{2}}_Q B_{Im}^T F_C F^{-\frac{1}{2}}_Q - F^{-\frac{1}{2}}_Q B_{Im}^T F_C F^{-\frac{1}{2}}_Q) \geq 0.
$$

(A7)

Denote $\tilde{F}_C = F^{-\frac{1}{2}}_Q F_C F^{-\frac{1}{2}}_Q$, $\tilde{B}_{Im} = F^{-\frac{1}{2}}_Q B_{Im} F^{-\frac{1}{2}}_Q$, $\tilde{F}_{Im} = F^{-\frac{1}{2}}_Q F_{Im} F^{-\frac{1}{2}}_Q$, we can write the inequality as

$$
I - \tilde{F}_C - \tilde{B}_{Im}^T \tilde{F}_C \tilde{B}_{Im} + i(\tilde{F}_{Im} + \tilde{B}_{Im}^T \tilde{F}_C - \tilde{F}_C \tilde{B}_{Im}) \geq 0.
$$

(A8)

Since $F_C \leq F_Q$, we have $\tilde{F}_C \leq I$, thus $\tilde{F}_C \geq \tilde{F}_C^2$ and $\tilde{B}_{Im}^T \tilde{F}_C \tilde{B}_{Im} \geq \tilde{B}_{Im}^T \tilde{F}_C^2 \tilde{B}_{Im}$. We then have

$$
I - \tilde{F}_C - \tilde{B}_{Im}^T \tilde{F}_C^2 \tilde{B}_{Im} + i(\tilde{F}_{Im} + \tilde{B}_{Im}^T \tilde{F}_C - \tilde{F}_C \tilde{B}_{Im}) \geq 0.
$$

(A9)

Now denote $\tilde{F}_C \tilde{B}_{Im}$ as D,

$$
I - \tilde{F}_C - D^T D + i(\tilde{F}_{Im} + D^T - D) \geq 0.
$$

(A10)

Since any two by two principle submatrix of a positive semidefinite matrix is also positive semidefinite, we have

$$
\begin{pmatrix}
1 - (\tilde{F}_C)_{jj} - (D^T D)_{jj} & -(\tilde{F}_C)_{jk} - (D^T D)_{jk} \\
-(\tilde{F}_C)_{kj} - (D^T D)_{kj} & 1 - (\tilde{F}_C)_{kk} - (D^T D)_{kk}
\end{pmatrix} + i
\begin{pmatrix}
0 & (\tilde{F}_{Im})_{jk} + D_{kj} - D_{jk} \\
-(\tilde{F}_{Im})_{jk} + D_{kj} + D_{jk} & 0
\end{pmatrix} \geq 0.
$$

(A11)

Note that \tilde{F}_C and $D^T D$ are symmetric and the determinant of a positive semidefinite matrix is nonnegative, we thus have

$$
[1 - (\tilde{F}_C)_{jj} - (D^T D)_{jj}] [1 - (\tilde{F}_C)_{kk} - (D^T D)_{kk}] \geq [(\tilde{F}_C)_{jk} + (D^T D)_{jk}]^2 + [(\tilde{F}_C)_{jj} + D_{kj} - D_{jk}]^2,
$$

(A12)

from which we can get

$$
\begin{align*}
& [1 - (\tilde{F}_C)_{jj} - (D^T D)_{jj}] + [1 - (\tilde{F}_C)_{kk} - (D^T D)_{kk}] \\
& \geq 2\sqrt{[1 - (\tilde{F}_C)_{jj} - (D^T D)_{jj}] [1 - (\tilde{F}_C)_{kk} - (D^T D)_{kk}]} \\
& \geq 2\sqrt{[(\tilde{F}_C)_{jk} + (D^T D)_{jk}]^2 + [(\tilde{F}_C)_{jj} + D_{kj} - D_{jk}]^2} \\
& \geq 2[(\tilde{F}_{Im})_{jk} + D_{kj} - D_{jk}],
\end{align*}
$$

(A13)
i.e.,
\[
1 - \langle \hat{F}_C \rangle_{jj} + 1 - \langle \hat{F}_C \rangle_{kk} \geq 2(\langle \hat{F}_{lm} \rangle_{jk} + D_{kj} - D_{jk}^* + (D^T D)_{jj} + (D^T D)_{kk}.
\]
(A14)
As \((D^T D)_{jj} = \sum_p D_{pj}^2 \geq D_{kj}^2\) and \((D^T D)_{kk} = \sum_p D_{pk}^2 \geq D_{jk}^2\), we have
\[
(D^T D)_{jj} + (D^T D)_{kk} = \sum_p (D_{pj}^2 + D_{pk}^2) \geq D_{kj}^2 + D_{jk}^2 = \frac{1}{2}(D_{kj} - D_{jk}^*)^2 + \frac{1}{2}(D_{kj} + D_{jk}^*)^2,
\]
(A15)
and from \(I + i\hat{F}_{lm} = F_Q^{-\frac{1}{2}} F F_Q^{-\frac{1}{2}} \geq 0\), we have \(|\langle \hat{F}_{lm} \rangle_{jk}| \leq 1\). Thus
\[
1 - \langle \hat{F}_C \rangle_{jj} + 1 - \langle \hat{F}_C \rangle_{kk} \geq 2(\langle \hat{F}_{lm} \rangle_{jk} + D_{kj} - D_{jk}^* + (D^T D)_{jj} + (D^T D)_{kk})
\]
\[
\geq 2(\langle \hat{F}_{lm} \rangle_{jk} + D_{kj} - D_{jk}^*) + \frac{1}{2}(D_{kj} - D_{jk}^*)^2
\]
\[
\geq \frac{1}{2} |\langle \hat{F}_{lm} \rangle_{jk}|^2,
\]
(A16)
where the last inequality we used the fact that \(2|y + x| + \frac{1}{2} x^2 \geq \frac{1}{2} y^2\) when \(|y| \leq 1\), since
\[
2|y + x| + \frac{1}{2} x^2 = 2|y + x| + \frac{1}{2}(y + x - y)^2
\]
\[
= 2|y + x| + \frac{1}{2}(y + x)^2 - y(x + y) + \frac{1}{2} y^2
\]
\[
\geq 2|y + x| - |y(x + y)| + \frac{1}{2} y^2
\]
\[
= (2 - |y|)|x + y| + \frac{1}{2} y^2
\]
\[
\geq \frac{1}{2} y^2.
\]
(A17)
This provides a tradeoff relation between \(\langle \hat{F}_C \rangle_{jj}\) and \(\langle \hat{F}_C \rangle_{kk}\). When \(F_{lm} = 0\), the quantum Cramér-Rao bound is saturable, \(F_C\) can reach \(F_Q\), in this case \(\langle \hat{F}_C \rangle = I\), \(\langle \hat{F}_{C} \rangle_{jj}\) and \(\langle \hat{F}_{C} \rangle_{kk}\) can reach the maximal value simultaneously, which is 1. When \(\langle \hat{F}_{lm} \rangle_{jk} \neq 0\), \(\langle \hat{F}_{C} \rangle_{jj}\) and \(\langle \hat{F}_{C} \rangle_{kk}\) cannot simultaneously reach 1, Eq.(A16) puts a tradeoff between them.

By summing Eq.(A16) over different choice of \(j, k\) directly, we can get
\[
2(n - 1) \sum_j \left[1 - \langle \hat{F}_C \rangle_{jj} \right] \geq \frac{1}{2} \sum_{j, k, j \neq k} |\langle \hat{F}_{lm} \rangle_{jk}|^2 = \frac{1}{2} \|\hat{F}_{lm}\|^2_\mathcal{F},
\]
(A18)
which gives
\[
Tr(\hat{F}_C) \leq n - \frac{1}{4(n - 1)} \|\hat{F}_{lm}\|^2_\mathcal{F},
\]
(A19)
where \(\|\hat{F}_{lm}\|^2_\mathcal{F} = Tr(\hat{F}_{lm}^T \hat{F}_{lm})\). This can be rewritten as
\[
Tr[F_Q^{-\frac{1}{2}} Cov^{-1}(\hat{x})] \leq n - \frac{1}{4(n - 1)} \|F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}}\|^2_\mathcal{F}
\]
\[
= n - \frac{1}{4(n - 1)} Tr(F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}} F_{lm}^T F_{lm}),
\]
(A20)
The same relation can be obtained by including the number of copies of the state, \(\nu\), explicitly, essentially just replace \(F_Q\) and \(F_{lm}\) with \(\nu F_Q\) and \(\nu F_{lm}\). The tradeoff relation with \(\nu\) copies of the state is then
\[
\frac{1}{\nu} Tr[F_Q^{-\frac{1}{2}} Cov^{-1}(\hat{x})] \leq n - \frac{1}{4(n - 1)} \|F_Q^{-\frac{1}{2}} F_{lm} F_Q^{-\frac{1}{2}}\|^2_\mathcal{F}.
\]
(A21)
When the number of the parameters, \(n \geq 3\), the tradeoff can be tightened by keeping all terms in \((D^T D)_{jj}\) and \((D^T D)_{kk}\) in Eq.(A14) as
\[
\sum_{j, k, j \neq k} \left[1 - \langle \hat{F}_C \rangle_{jj} + 1 - \langle \hat{F}_C \rangle_{kk} \right] \geq \sum_{j, k, j \neq k} \left[2(\langle \hat{F}_{lm} \rangle_{jk} + D_{kj} - D_{jk}^*) + (D^T D)_{jj} + (D^T D)_{kk} \right],
\]
(A22)
here

$$(D^TD)_{jj} + (D^TD)_{kk} = \sum_p (D^2_{pj} + D^2_{pk}),$$ \hspace{1cm} (A23)

which not only includes the correlations between the j, k-th entry, but also with other entries. By summing over all choice of j, k, we have

$$2(n-1) \sum_j [1 - (\hat{F}_C)_{jj}] \geq \sum_{j,k,j \neq k} 2|\hat{F}_1m_{j,k} + D_{kj} - D_{jk}| + 2(n-1) \sum_j (D^TD)_{jj}$$

$$= \sum_{j,k,j \neq k} 2|\hat{F}_1m_{j,k} + D_{kj} - D_{jk}| + 2(n-1) \sum_{j,k} D^2_{jk}$$

$$\geq \sum_{j,k,j \neq k} \{2|\hat{F}_1m_{j,k} + D_{kj} - D_{jk}| + (n-1)(D^2_{jk} + D^2_{kj})\}$$

$$= \sum_{j,k,j \neq k} \{2|\hat{F}_1m_{j,k} + D_{kj} - D_{jk}| + \frac{n-1}{2} (D_{kj} - D_{jk})^2 + \frac{n-1}{2} (D_{kj} + D_{jk})^2\}$$

$$\geq \frac{2(n-2)}{n-1} \sum_{j,k,j \neq k} |(\hat{F}_1m_{j,k})|^2$$

$$= \frac{2(n-2)}{n-1} \|\hat{F}_1m\|_F^2,$$

where the last inequality we used the fact that

$$2|y + x| + \frac{n-1}{2} y^2 = 2|y + x| + \frac{n-1}{2} (y + x)^2$$

$$= 2|y + x| + \frac{n-1}{2} (y + x)^2 - (n-1)y(x + y) + \frac{n-1}{2} y^2$$

$$\geq \frac{n-1}{2} (y + x)^2 + 2|y||y + x| - (n-1)|y(x + y)| + \frac{n-1}{2} y^2$$

$$= \frac{n-1}{2} (y + x)^2 - (n-3)|y||x + y| + \frac{n-1}{2} y^2$$

$$= \frac{n-1}{2} (|y + x| - \frac{n-3}{n-1}|y|)^2 + \frac{2(n-2)}{n-1} y^2$$

$$\geq \frac{2(n-2)}{n-1} y^2.$$

This then gives a tradeoff relation on \hat{F}_C as

$$Tr(\hat{F}_C) \leq n - \frac{n-2}{(n-1)^2} \|\hat{F}_1m\|_F^2.$$ \hspace{1cm} (A26)

With ν copies of the state, this can be equivalently written

$$\frac{1}{\nu} Tr[\hat{F}_Q^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{n-2}{(n-1)^2} \|\hat{F}_1m F_Q^{-\frac{1}{2}} F_Q^{-\frac{1}{2}}\|_F^2.$$ \hspace{1cm} (A27)

The bound can be further improved. From Eq. (A10),

$$I - \hat{F}_C - D^TD + i(\hat{F}_1m + D^T - D) \geq 0,$$ \hspace{1cm} (A28)

we have

$$I - \hat{F}_C - D^TD \geq -i(\hat{F}_1m + D^T - D),$$ \hspace{1cm} (A29)

from which we can obtain

$$Tr(I - \hat{F}_C - D^TD) \geq \|\hat{F}_1m + D^T - D\|_1.$$ \hspace{1cm} (A30)
Note that $\tilde{F}_m + D^T - D$ is skew symmetric with purely imaginary eigenvalues, and the singular values are just the amplitude of the eigenvalues as $\{\lambda_1, \cdots, \lambda_n\}$. Since
\[-i(\tilde{F}_m + D^T - D) \leq I - \tilde{F}_C - D^T D \leq I, \tag{A31}\]
we have $|\lambda_j| \leq 1$, thus $|\lambda_j| \geq |\lambda_j|^2$. As
\[
||\tilde{F}_m + D^T - D||_1 = \sum_{j=1}^n |\lambda_j| \geq \sum_{j=1}^n |\lambda_j|^2 = Tr[(\tilde{F}_m + D^T - D)^T(\tilde{F}_m + D^T - D)] = \sum_{jk}[(\tilde{F}_m + D^T - D)_{jk}]^2, \tag{A32}\]
from Eq. (A30) we then have
\[
Tr(I - \tilde{F}_C) \geq Tr(D^T D) + ||\tilde{F}_m + D^T - D||_1 \\
\geq \sum_k (D^T D)_{kk} + \sum_{jk}[(\tilde{F}_m + D^T - D)_{jk}]^2 \\
= \sum_{jk} D_{jk}^2 + [(\tilde{F}_m)_{jk} + D_{kj} - D_{jk}]^2 \\
= \sum_{jk} \frac{1}{2}(D_{jk}^2 + D_{kj}^2) + [(\tilde{F}_m)_{jk} + D_{kj} - D_{jk}]^2 \\
\geq \sum_{jk} \frac{1}{4}(D_{jk} - D_{kj})^2 + [(\tilde{F}_m)_{jk} + D_{kj} - D_{jk}]^2 \\
\geq \sum_{jk} \frac{1}{5}(\tilde{F}_m)_{jk}^2 \\
= \frac{1}{5}||\tilde{F}_m||_F^2, \tag{A33}\]
where the last inequality we used the fact that
\[
\frac{1}{4}x^2 + (y + x)^2 = \frac{5}{4}x^2 + 2xy + y^2 \\
= \frac{5}{4}(x + \frac{4}{5}y)^2 + \frac{1}{5}y^2 \\
\geq \frac{1}{5}y^2. \tag{A34}\]
We thus have
\[
Tr(\tilde{F}_C) \leq n - \frac{1}{5}||\tilde{F}_m||_F^2. \tag{A35}\]
For ν copies of the state, this gives the tradeoff relation
\[
\frac{1}{\nu}Tr[F_Q^{-1}Cov^{-1}(\hat{x})] \leq n - \frac{1}{5}||F_Q^{-\frac{1}{2}}F_mF_Q^{-\frac{1}{2}}||_F^2, \tag{A36}\]
which is tighter than Eq. (A26) when $n \geq 5$.

Appendix B: Connection between the partial commutative condition and the weak commutative condition

Here we show
\[
\lim_{p \to \infty} \frac{\|\sqrt{\rho_p^{\otimes p}}[L_{jp}, L_{kp}]\sqrt{\rho_p^{\otimes p}}\|_1}{p} = |Tr(\rho_p[L_j, L_k])|. \tag{B1}\]
We write the state in the eigenvalue decomposition as \(\rho_x = \sum_{q=1}^{m} \lambda_q |\Psi_q\rangle \langle \Psi_q| \) with \(\lambda_q > 0 \) and \(\sum_{q=1}^{m} \lambda_q = 1 \). Then \(\sqrt{\rho_x} = \sum_{q} \sqrt{\lambda_q} |\Psi_q\rangle \langle \Psi_q| \),

\[
\| \sqrt{\rho_x^\otimes p} [L_{jp}, L_{kp}] \sqrt{\rho_x^\otimes p} \|_1 = \| \sqrt{\rho_x^\otimes p} \sum_{r=1}^{p} [I_j^{(r)}, I_k^{(r)}] \sqrt{\rho_x^\otimes p} \|_1 = \sum_{r=1}^{p} \rho_x^{(r-1)} \odot (\sqrt{\rho_x[L_j, L_k]\sqrt{\rho_x}}) \odot \rho_x^{(p-r)} \|_1, \tag{B2}
\]

here \(I_j^{(r)} = I^\otimes (r-1) \odot L_j \odot I^\otimes (p-r) \). The support of \(\sum_{r=1}^{p} \rho_x^{(r-1)} \odot (\sqrt{\rho_x[L_j, L_k]\sqrt{\rho_x}}) \odot \rho_x^{(p-r)} \) is in the subspace spanned by \(\{|\Psi_{v_1}, \Psi_{v_2}, \ldots, \Psi_{v_p}\}\} \), with \(|\Psi_{v_1}\rangle, \ldots, |\Psi_{v_p}\rangle \in \{|\Psi_1\rangle, \ldots, |\Psi_m\rangle\} \), here \(\{|\Psi_1\rangle, \ldots, |\Psi_m\rangle\} \) are the eigenvectors of \(\rho_x \) with nonzero eigenvalues. We can focus on the support space and calculate the entries of \(\sum_{r=1}^{p} \rho_x^{(r-1)} \odot \sqrt{\rho_x[L_j, L_k]\sqrt{\rho_x}} \odot \rho_x^{(p-r)} \) in the basis of \(|\Psi_{v_1}, \Psi_{v_2}, \ldots, \Psi_{v_p}\rangle \) with \(v_1, \ldots, v_p \in \{1, \ldots, m\} \) and show that when \(p \to \infty \),

\[
\| \sqrt{\rho_x^\otimes p} [L_{jp}, L_{kp}] \sqrt{\rho_x^\otimes p} \|_1 \to \| \text{Tr}(\rho_x[L_j, L_k]) \|_1.
\]

The entries of \(\sqrt{\rho_x^\otimes p} [L_{jp}, L_{kp}] \sqrt{\rho_x^\otimes p} \) is given by

\[
\langle \Psi_{\tilde{v}_1} \cdots \Psi_{\tilde{v}_p} | \sum_{r=1}^{p} \rho_x^{(r-1)} \odot \sqrt{\rho_x[L_j, L_k]\sqrt{\rho_x}} \odot \rho_x^{(p-r)} | \Psi_{v_1} \cdots \Psi_{v_p} \rangle = \sum_{r=1}^{p} \langle \Psi_{\tilde{v}_r} \sqrt{\rho_x[L_j, L_k]\sqrt{\rho_x}} | \rho_x^{(r-1)} \odot \rho_x^{(p-r)} | \Psi_{v_1} \cdots \Psi_{v_p} \rangle = \sum_{r=1}^{p} \langle \Psi_{\tilde{v}_r} \sqrt{\rho_x[L_j, L_k]\sqrt{\rho_x}} | \rho_x \rangle \prod_{q \neq r} (\delta_{v_q^* v_{\tilde{v}_q}}) \tag{B3}
\]

It is easy to see that when the indexes \(\{v_1, v_2, \ldots, v_p\} \) and \(\{\tilde{v}_1, \ldots, \tilde{v}_p\} \) differ at two or more entries, the corresponding matrix entry equals to 0. When the two indexes differ at only one entry, for example, \(v_r \neq \tilde{v}_r \) but \(v_q = \tilde{v}_q \) for all \(q \neq r \), the corresponding matrix entry equals to

\[
\langle \Psi_{\tilde{v}_r} \sqrt{\rho_x[L_j, L_k]\sqrt{\rho_x}} | \rho_x \rangle \prod_{q \neq r} (\delta_{v_q^* v_{\tilde{v}_q}}) = \frac{\langle \Psi_{\tilde{v}_r} \sqrt{\rho_x[L_j, L_k]\sqrt{\rho_x}} | \rho_x \rangle \prod_{q \neq r} (\delta_{v_q^* v_{\tilde{v}_q}})}{\lambda_{\tilde{v}_r}}. \tag{B4}
\]

When the indexes \(\{v_1, v_2, \ldots, v_p\} \) and \(\{\tilde{v}_1, \ldots, \tilde{v}_p\} \) are the same, we get the diagonal entries of \(\sqrt{\rho_x^\otimes p} [L_{jp}, L_{kp}] \sqrt{\rho_x^\otimes p} \) as

\[
\sum_{r=1}^{p} \langle \Psi_{v_r} \sqrt{\rho_x[L_j, L_k]\sqrt{\rho_x}} | \rho_x \rangle \prod_{q \neq r} (\delta_{v_q^* v_{\tilde{v}_q}}) = \sum_{r=1}^{p} \langle \Psi_{v_r} \sqrt{\rho_x[L_j, L_k]|\Psi_{v_r}} \prod_{q \neq r} (\delta_{v_q^* v_{\tilde{v}_q}}) \tag{B5}
\]

Next we write \(\sqrt{\rho_x^\otimes p} [L_{jp}, L_{kp}] \sqrt{\rho_x^\otimes p} = D_p^{(jk)} + O_p^{(jk)} \) with \(D_p^{(jk)} \) as the diagonal part of the matrix and \(O_p^{(jk)} \) as the off-diagonal part of the matrix. We then use the inequality

\[
\| D_p^{(jk)} \|_1 \leq \| D_p^{(jk)} \|_1 + \| O_p^{(jk)} \|_1 \leq \| D_p^{(jk)} \|_1 + \| O_p^{(jk)} \|_1 \tag{B6}
\]

to bound \(\| \sqrt{\rho_x^\otimes p} [L_{jp}, L_{kp}] \sqrt{\rho_x^\otimes p} \|_1 \), here the first inequality comes from the fact that for any matrix, \(M \), \(\| M \|_1 \geq \sum_q |M_{qq}| \), and for diagonal matrix \(\| D_p^{(jk)} \|_1 = \sum_q \| D_p^{(jk)} \|_{qq} \), the second inequality is from the triangle inequality of the trace norm.

The singular values of the diagonal matrix, \(D_p^{(jk)} \), are just the absolute value of the diagonal entries, which are \(\{\prod_{r=1}^{p} \lambda_{v_r}\} \sum_{r=1}^{p} \langle \Psi_{v_r} \sqrt{\rho_x[L_j, L_k]|\Psi_{v_r}} \} \). These entries can be interpreted as the absolute value of the summation of \(p \) randomly chosen \(\langle \Psi_{v_r} \sqrt{\rho_x[L_j, L_k]|\Psi_{v_r}} \} \) multiplied with the corresponding probabilities, where each term \(\langle \Psi_{v_r} \sqrt{\rho_x[L_j, L_k]|\Psi_{v_r}} \} \) is selected with probability \(\lambda_{v_r} \). For a given diagonal entry with a particular choice of \(p \) terms, \(\sum_{r=1}^{p} \langle \Psi_{v_r} \sqrt{\rho_x[L_j, L_k]|\Psi_{v_r}} \} \), the associated probability is \(\prod_{r=1}^{p} \lambda_{v_r} \).
Thus when $|\psi_{\nu}|$ corresponds to the expected value of $|\sum_{i=1}^{p}(\psi_{\nu}|L_j L_k|\psi_{\nu})|$ with each $|\psi_{\nu}|$ selected with probability λ_ν. When $p \to \infty$, by the law of large numbers, $\frac{1}{p}\sum_{i=1}^{p}(\psi_{\nu}|L_j L_k|\psi_{\nu})$ converges to the expected value of $|\psi_{\nu}| |L_j L_k| |\psi_{\nu}|$ with probability one, i.e.,

$$\lim_{p \to \infty} \frac{1}{p}\sum_{i=1}^{p}(\psi_{\nu}|L_j L_k|\psi_{\nu}) = E\langle \psi_{\nu}|L_j L_k|\psi_{\nu}\rangle$$

(B7)

Thus when $p \to \infty$,

$$\|D_p(jk)\|_1 = E\|\sum_{i=1}^{p}(\psi_{\nu}|L_j L_k|\psi_{\nu})\|$$

$$= 1 \times E\|\sum_{i=1}^{p}(\psi_{\nu}|L_j L_k|\psi_{\nu})\|$$

$$= Tr(\rho_x[L_j L_k]).$$

For the off-diagonal part, note that for any matrix, we have $\|M\|_1 \leq \sum_{ij} \sqrt{\sum_k |M_{ijk}|^2}$, and

$$\frac{|\langle \psi_{\nu}\rangle \sqrt{\rho_x[L_j L_k]\sqrt{\rho_x|[\psi_{\nu}]}}}{\lambda_{\psi_{\nu}}} \leq \prod_{q=1}^{p} \lambda_{\psi_{\nu}} \leq \prod_{q=1}^{p} \lambda_{\psi_{\nu}},$$

(B9)

here $l_\text{max} = \max_{\psi_{\nu} \neq \psi_{\nu}} |\langle \psi_{\nu}\rangle \sqrt{\rho_x[L_j L_k]\sqrt{\rho_x|[\psi_{\nu}]}}|$, we then have

$$\|O_p(jk)\|_1 \leq \sum_{\psi_1, \ldots, \psi_p} \sqrt{\sum_{r=1}^{p} \prod_{q=1}^{p} \lambda_{\psi_{\nu}}^{2}}$$

$$= \sum_{\psi_1, \ldots, \psi_p} \prod_{q=1}^{p} \lambda_{\psi_{\nu}}^{2}$$

(B10)

Thus when $p \to \infty$,

$$\|D_p(jk) + O_p(jk)\|_1 \geq \|D_p(jk)\|_1 = |Tr(\rho_x[L_j L_k])|,$$

$$\|D_p(jk) + O_p(jk)\|_1 \leq \|D_p(jk)\|_1 + \|O_p(jk)\|_1 \leq |Tr(\rho_x[L_j L_k])| + \sqrt{(m-1)l_\text{max}} / \sqrt{p},$$

(B11)

i.e.,

$$|Tr(\rho_x[L_j L_k])| \leq \frac{\|\sqrt{\rho_x\otimes|L_j L_k|\sqrt{\rho_x}}\|_1}{p} \leq |Tr(\rho_x[L_j L_k])| + \frac{\sqrt{(m-1)l_\text{max}}}{\sqrt{p}}.$$
From which it is easy to see that \(\lim_{p \to \infty} \frac{\|\sqrt{\rho_x^p} [L_j, L_k]\|_{1}}{p} = |Tr(\rho_x [L_j, L_k])| \). The condition,
\[\frac{\|\sqrt{\rho_x^p} [L_j, L_k]\|_{1}}{p} = 0, \]
then reduces to the weak commutative condition, \(Tr(\rho_x [L_j, L_k]) = 0 \), when \(p \to \infty \).

It can also be seen that \(\frac{\|D^{(jk)}_p\|_1}{p} \) provides a lower bound on \(\frac{\|\sqrt{\rho_x^p} [L_j, L_k]\|_{1}}{p} \) and the difference between them is in the order of \(O(\frac{1}{\sqrt{p}}) \). We can thus use \(\|D^{(jk)}_p\|_1 \) to provide an alternative tradeoff relation, which is less tight but easier to compute. Under \(p \)-local measurements the tradeoff relation can be written as

\[
\frac{1}{\nu} Tr[F_Q^{-1} Cov^{-1}(\hat{x})] \leq n - \frac{1}{4(n-1)} \|T_p\|^2_F, \tag{B13}
\]

where

\[
(T_p)_{jk} = \frac{1}{2} \|D^{(jk)}_p\|_1 \\
= \frac{1}{2} \sum_{v_1, \ldots, v_p} \left(\prod_{r=1}^{p} \lambda_{v_r} \right) |\sum_{r=1}^{p} |\langle \Psi_{v_r}, [\hat{L}_j, \hat{L}_k]\rangle |\Psi_{v_r}^\dagger|,
\]

where \(\hat{L}_j = \sum_{\mu}(F_Q^{-\frac{1}{4}})_{j\mu}L_{\mu} \) and \(\hat{L}_k = \sum_{\mu}(F_Q^{-\frac{1}{4}})_{k\mu}L_{\mu} \). Compared to \(C_p \), \(T_p \) is expressed only with operators on a single copy of the state. We note that \(T_p \) can be equivalently obtained by choosing the set of \(\{|u_j\} \) in Eq. (53) as the eigenvectors of \(\rho_x \), instead of the eigenvectors of \(\sqrt{\rho_x} [\hat{L}_j, \hat{L}_k] \sqrt{\rho_x} \).

Appendix C: Bound on the trace norm

For completeness, here we include a proof for the inequality \(\sum_j |M_{jj}| \leq \|M\|_1 \leq \sum_j \sqrt{\sum_k |M_{jk}|^2} \), which is used in the derivation that \(\frac{C_p}{\nu} = 0 \) reduces to the weak commutative condition when \(p \to \infty \).

We first show \(\|M\|_1 \leq \sum_j \sqrt{\sum_k |M_{jk}|^2} \).

From the singular value decomposition, \(M = UAV \), we have

\[
\|M\|_1 = Tr(A) = Tr(U^\dagger MV^\dagger) = Tr(V^\dagger U^\dagger M) = Tr(WM), \tag{C1}
\]

where \(W = V^\dagger U^\dagger \) is a unitary matrix. Note that

\[
(WM)_{jj} = \sqrt{||(WM)_{jj}||^2} \leq \sqrt{\sum_k |(WM)_{jk}|^2} \\
= \|(WM)_{j}\|_2 \\
= \|WM_{j}\|_2 \\
= \|M_{j}\|_2 \\
= \sqrt{\sum_k M_{jk}^2},
\]

where we used \((\cdot)_j\) to denote the \(j \)-th column of a matrix (thus \((WM)_{j}\) is the \(j \)-th column of \(WM \) which equals to \(WM_{j}\), \(W \) multiplies the \(j \)-th column of \(M \), and \(\|v\|_2 = \sqrt{\sum_k |v_k|^2} \) as the \(l_2 \) norm for a vector. It is then straightforward to see

\[
\|M\|_1 = Tr(WM) = \sum_j (WM)_{jj} \leq \sum_j \sqrt{\sum_k M_{jk}^2}, \tag{C3}
\]

Next we show \(\sum_j |M_{jj}| \leq \|M\|_1 \). From the singular value decomposition, \(M = UAV \), we have

\[
M_{jj} = \sum_k U_{jk} A_{kk} V_{kj}, \tag{C4}
\]
thus

\[
\sum_j |M_{jj}| = \sum_j |\sum_k U_{jk} \Lambda_{kk} V_{kj}| \\
\leq \sum_j \sum_k |U_{jk} \Lambda_{kk} V_{kj}| \\
= \sum_k \sum_j \Lambda_{kk} |U_{jk} V_{kj}| \\
\leq \sum_k \Lambda_{kk} \sqrt{(\sum_j |U_{jk}|^2)(\sum_j |V_{kj}|^2)} \\
= \sum_k \Lambda_{kk} \\
= \|M\|_1.
\] (C5)

Appendix D: Proof of $\text{Cov}_u \geq A_u$

For a mixed state, ρ_x, with $x = (x_1, \ldots, x_n)$, given any POVM, $\{M_\alpha\}$, and any $|u\rangle$, we define Cov_u as an $n \times n$ matrix with the jk-th entry given by

\[
(Cov_u)_{jk} = \sum_\alpha (\hat{x}_j(\alpha) - x_j)(\hat{x}_k(\alpha) - x_k)\langle u | \sqrt{\rho_x} M_\alpha \sqrt{\rho_x} | u \rangle,
\] (D1)

and A_u as a $n \times n$ matrix with the jk-th entry given by

\[
(A_u)_{jk} = \langle u | \sqrt{\rho_x} X_j X_k \sqrt{\rho_x} | u \rangle = \frac{1}{2} \langle u | \sqrt{\rho_x} [X_j, X_k] \sqrt{\rho_x} | u \rangle + \frac{1}{2i} \langle u | \sqrt{\rho_x} [X_j, \sqrt{\rho_x}] | u \rangle,
\] (D2)

to be a local unbiased.

We then have $\text{Cov}_u \geq A_u$ since for any vector $b = (b_1, \ldots, b_n)^T$,\n
\[
b^\dagger \text{Cov}_u b - b^\dagger A_u b \\
= \langle u | \sum_{j,k} b_j^* b_k \left\{ \sum_\alpha (\hat{x}_j(\alpha) - x_j)(\hat{x}_k(\alpha) - x_k)\sqrt{\rho_x} M_\alpha \sqrt{\rho_x} - \sum_\gamma (\hat{x}_j(\gamma) - x_j)\sqrt{\rho_x} M_\gamma \sum_\beta (\hat{x}_k(\beta) - x_k)M_\beta \right\} | u \rangle \\
= \langle u | \sum_{j,k} \left(\sum_\alpha (\hat{x}_j(\alpha) - x_j) b_j^* (\hat{x}_k(\alpha) - x_k) b_k \sqrt{\rho_x} M_\alpha \sqrt{\rho_x} \\
- \sum_\beta (\hat{x}_j(\beta) - x_j) b_j^* \sqrt{\rho_x} M_\beta \sum_\alpha M_\alpha \sum_\gamma (\hat{x}_k(\gamma) - x_k) b_k M_\gamma \sqrt{\rho_x} | u \rangle \\
= \langle u | \sum_{\alpha} \left(\sum_j (\hat{x}_j(\alpha) - x_j) b_j^* \sqrt{\rho_x} - \sum_\beta (\hat{x}_j(\beta) - x_j) b_j^* \sqrt{\rho_x} M_\beta \sum_k (x_k(\alpha) - x_k) b_k \sqrt{\rho_x} \\
- \sum_k (\hat{x}_k(\gamma) - x_k) b_k M_\gamma \sqrt{\rho_x} \right) | u \rangle \\
= \langle u | \sum_{\alpha} M^\dagger(b) M_\alpha M(b) | u \rangle \geq 0,
\] (D3)

here $M(b) = \sum_k (x_k(\alpha) - x_k)b_k \sqrt{\rho_x} - \sum_k \sum_\gamma (\hat{x}_k(\gamma) - x_k) b_k M_\gamma \sqrt{\rho_x}$.

Appendix E: Tradeoff relations with RLDs

Let

\[
S_u = \begin{pmatrix}
A_u & B_u \\
B_u^\dagger & F_u
\end{pmatrix} \geq 0,
\] (E1)
with \((A_u)_{jk} = \langle u | \sqrt{\rho_x} X_j X_k \sqrt{\rho_x} | u \rangle \), \((B_u)_{jk} = \langle u | \sqrt{\rho_x} X_j L^R_k \sqrt{\rho_x} | u \rangle \), \((F_u)_{jk} = \langle u | \sqrt{\rho_x} L^R_j L^R_k \sqrt{\rho_x} | u \rangle \), where \(L^R_j \) is the RLD corresponding to the parameter \(x_j \).

If we choose a complete basis, \(\{|u_1\}, \cdots, |u_d\} \), and let \(S = \sum_j S_{u_j} = \left(\begin{array}{c} A \\ B^T \end{array} \right) \geq 0 \), where \((A)_{jk} = \text{Tr}(\rho_x X_j X_k) \), \((B)_{jk} = \text{Tr}(\rho_x X_j L^R_k) = I \), \((F^{RLD})_{jk} = \text{Tr}(\rho_x L^R_j L^R_k) \), we obtain the RLD bound

\[
\text{Cov}(\hat{x}) \geq A \geq (F^{RLD})^{-1}.
\] (E2)

This can be equivalently written as

\[
\text{Cov}^{-1}(\hat{x}) \leq F^{RLD} = F^{RLD}_{\text{Re}} + i F^{RLD}_{\text{Im}},
\] (E3)

with \(F^{RLD}_{\text{Re}} \) and \(F^{RLD}_{\text{Im}} \) as the real and imaginary part of \(F^{RLD} \) respectively, \(F^{RLD}_{\text{Re}} = \frac{1}{2} [F^{RLD} + (F^{RLD})^T] \) is real symmetric and \(F^{RLD}_{\text{Im}} = \frac{1}{2} [F^{RLD} - (F^{RLD})^T] \) is real skew-symmetric. By taking the transpose, we also have (note \(\text{Cov}(\hat{x}) \) is symmetric)

\[
\text{Cov}^{-1}(\hat{x}) \leq (F^{RLD})^T = F^{RLD}_{\text{Re}} - i F^{RLD}_{\text{Im}}.
\] (E4)

From which we get

\[
F^\frac{1}{2}_Q \text{Cov}^{-1}(\hat{x}) F^{-\frac{1}{2}}_Q \leq F^\frac{1}{2}_{\text{Re}} F^{RLD} F^{-\frac{1}{2}}_{\text{Im}} + i F^\frac{1}{2}_{\text{Im}} F^{RLD} F^{-\frac{1}{2}}_{\text{Im}}.
\] (E5)

Then for any vector, \(|w\rangle \), we have

\[
\langle w | F^{-\frac{1}{2}}_Q \text{Cov}^{-1}(\hat{x}) F^{-\frac{1}{2}}_Q | w \rangle \leq \langle w | F^\frac{1}{2}_Q F^{RLD} F^{-\frac{1}{2}}_Q | w \rangle - |\langle w | F^\frac{1}{2}_Q F^{RLD} F^{-\frac{1}{2}}_Q | w \rangle |.
\] (E6)

By choosing \(|w\rangle \) as all the eigenvectors of \(F^\frac{1}{2}_Q F^{RLD} F^{-\frac{1}{2}}_Q \) and making a summation, we obtain the tradeoff relation from the standard RLD as

\[
\text{Tr}[F^{-\frac{1}{2}}_Q \text{Cov}^{-1}(\hat{x})] \leq \text{Tr}[F^{-\frac{1}{2}}_Q F^{RLD}] - \|F^\frac{1}{2}_Q F^{RLD} F^{-\frac{1}{2}}_Q\|_1.
\] (E7)

When there are \(\nu \) copies of the state, this gives

\[
\frac{1}{\nu} \text{Tr}[F^{-\frac{1}{2}}_Q \text{Cov}^{-1}(\hat{x})] \leq \text{Tr}[F^{-\frac{1}{2}}_Q F^{RLD}] - ||F^\frac{1}{2}_Q F^{RLD} F^{-\frac{1}{2}}_Q||_1.
\] (E8)

The bound can be improved by taking transposes on any \(S_{u_q} \). We choose a complete basis, \(\{|u_1\}, \cdots, |u_d\} \), as the orthonormal eigenvectors of \(\sqrt{\rho_x}(L^R_j L^R_k - L^R_k L^R_j)\sqrt{\rho_x} \). As mentioned in the main text, for any \(|u_q\rangle \),

\[
\frac{1}{\nu} \langle u_q | \sqrt{\rho_x}(L^R_j L^R_k - L^R_k L^R_j)\sqrt{\rho_x} | u_q \rangle,
\]

which is the imaginary part of \((F_{u_q})_{jk} \), is a real number, which we denote as \(t_{jk}^q \). We then define

\[
\tilde{S}_{u_q} := \{ S_{u_q}, \text{when } t_{jk}^q \geq 0; \tilde{S}_{u_q}^T, \text{when } t_{jk}^q < 0 \}.
\] (E9)

By summing \(\tilde{S}_{u_q} \) we get

\[
\tilde{S} = \sum_q \tilde{S}_{u_q} = \left(\begin{array}{c} A \\ B^T \end{array} \right)_{\text{FRLD}},
\] (E10)

here \(\tilde{B} = I + i \tilde{B}_{\text{Im}} \), \(\bar{F}^{\text{RLD}} = \sum_q \tilde{F}_{u_q} \) with \(\tilde{F}_{u_q} \) equals to either \(F_{u_q} \) or \(F_{u_q}^T \) so that the imaginary part of \((\tilde{F}_{u_q})_{jk} \) is always positive. The imaginary part of the \(jk \)-th entry of \(\bar{F}^{\text{RLD}} \) is then given by

\[
(\tilde{F}_{\text{Im}})_{jk} = \frac{1}{2} \| \sqrt{\rho_x}(L^R_j L^R_k - L^R_k L^R_j)\sqrt{\rho_x} \|_1,
\] (E11)

and the real part of \(\bar{F}^{\text{RLD}} \) remains the same as \(F^{RLD}_{\text{Re}} \).

By the Schur’s complement we then have \(\bar{F}^{RLD}_{\text{Re}} - B^T \text{Cov}^{-1}(\hat{x}) \bar{B} \geq 0 \), which can be equivalently written as

\[
\bar{F}^{RLD}_{\text{Re}} + i \bar{F}^{RLD}_{\text{Im}} - [\text{Cov}^{-1}(\hat{x}) + B^T_{\text{Im}} \text{Cov}^{-1}(\hat{x}) \bar{B}_{\text{Im}} + i (B^T_{\text{Im}} \text{Cov}^{-1}(\hat{x}) - \text{Cov}^{-1}(\hat{x}) \bar{B}_{\text{Im}})] \geq 0.
\] (E12)
We first assume $F_Q = I$, in this case $\text{Cov}^{-1}(\hat{x}) \leq F_Q = I$. Then by following the same procedure as previous, we denote $\text{Cov}^{-1}(\hat{x})B_{lm}$ as D and get

$$
\bar{F}_{\text{Re}}^{RLD} - \text{Cov}^{-1}(\hat{x}) - D^T D + i(\bar{F}_{\text{Im}}^{RLD} + D^T - D) \geq 0.
$$

(E13)

By taking a 2×2 principle submatrix we have

$$
\begin{pmatrix}
(F_{\text{Re}}^{RLD})_{jj} - \text{Cov}^{-1}(\hat{x})_{jj} - (D^T D)_{jj} & -\text{Cov}^{-1}(\hat{x})_{jk} - (D^T D)_{jk} \\
-\text{Cov}^{-1}(\hat{x})_{kj} - (D^T D)_{kj} & (F_{\text{Re}}^{RLD})_{kk} - \text{Cov}^{-1}(\hat{x})_{kk} - (D^T D)_{kk}
\end{pmatrix}
+i
\begin{pmatrix}
0 & (F_{\text{Im}}^{RLD})_{jk} + D_{kj} - D_{jk} \\
-(F_{\text{Im}}^{RLD})_{jk} - D_{kj} + D_{jk} & 0
\end{pmatrix}
\geq 0.
$$

(E14)

From the positiveness of the determinant, we have

$$
\begin{align*}
&\left|\begin{array}{cc}
(F_{\text{Re}}^{RLD})_{jj} - \text{Cov}^{-1}(\hat{x})_{jj} - (D^T D)_{jj} & \text{Cov}^{-1}(\hat{x})_{jk} - (D^T D)_{jk} \\
\text{Cov}^{-1}(\hat{x})_{kj} - (D^T D)_{kj} & (F_{\text{Re}}^{RLD})_{kk} - \text{Cov}^{-1}(\hat{x})_{kk} - (D^T D)_{kk}
\end{array}\right| \\
&\geq \text{Cov}^{-1}(\hat{x})_{jk} + (D^T D)_{jk}^2 + [(F_{\text{Im}}^{RLD})_{jk} + D_{kj} - D_{jk}]^2,
\end{align*}
$$

(E15)

from which we can get

$$
\begin{align*}
&\left|\begin{array}{cc}
(F_{\text{Re}}^{RLD})_{jj} - \text{Cov}^{-1}(\hat{x})_{jj} - (D^T D)_{jj} & \text{Cov}^{-1}(\hat{x})_{jk} - (D^T D)_{jk} \\
\text{Cov}^{-1}(\hat{x})_{kj} - (D^T D)_{kj} & (F_{\text{Re}}^{RLD})_{kk} - \text{Cov}^{-1}(\hat{x})_{kk} - (D^T D)_{kk}
\end{array}\right| \\
&\geq 2\sqrt{\left|\begin{array}{cc}
(F_{\text{Re}}^{RLD})_{jj} - \text{Cov}^{-1}(\hat{x})_{jj} - (D^T D)_{jj} & \text{Cov}^{-1}(\hat{x})_{jk} - (D^T D)_{jk} \\
\text{Cov}^{-1}(\hat{x})_{kj} - (D^T D)_{kj} & (F_{\text{Re}}^{RLD})_{kk} - \text{Cov}^{-1}(\hat{x})_{kk} - (D^T D)_{kk}
\end{array}\right|} \\
&\geq 2\sqrt{\text{Cov}^{-1}(\hat{x})_{jk} + (D^T D)_{jk}^2 + [(F_{\text{Im}}^{RLD})_{jk} + D_{kj} - D_{jk}]^2} \\
&\geq 2[(F_{\text{Im}}^{RLD})_{jk} + D_{kj} - D_{jk}],
\end{align*}
$$

(E16)

i.e.,

$$(F_{\text{Re}}^{RLD})_{jj} - \text{Cov}^{-1}(\hat{x})_{jj} + (F_{\text{Re}}^{RLD})_{kk} - \text{Cov}^{-1}(\hat{x})_{kk} \geq 2[(F_{\text{Im}}^{RLD})_{jk} + D_{kj} - D_{jk} + (D^T D)_{jj} + (D^T D)_{kk}].$$

(E17)

Again as $(D^T D)_{jj} = \sum_p D_{pj}^2 \geq D_{kj}^2$ and $(D^T D)_{kk} = \sum_p D_{pk}^2 \geq D_{jk}^2$, we have

$$(D^T D)_{jj} + (D^T D)_{kk} \geq \sum_p (D_{pj}^2 + D_{pk}^2) \geq D_{kj}^2 + D_{jk}^2 - \frac{1}{2}(D_{kj} - D_{jk})^2 + \frac{1}{2}(D_{kj} + D_{jk})^2.$$

(E18)

Thus

$$
(F_{\text{Re}}^{RLD})_{jj} - \text{Cov}^{-1}(\hat{x})_{jj} + (F_{\text{Re}}^{RLD})_{kk} - \text{Cov}^{-1}(\hat{x})_{kk} \geq 2[(F_{\text{Im}}^{RLD})_{jk} + D_{kj} - D_{jk}] + (D^T D)_{jj} + (D^T D)_{kk}.
$$

(E19)

$$
\geq 2[(F_{\text{Im}}^{RLD})_{jk} + D_{kj} - D_{jk}] + \frac{1}{2}(D_{kj} - D_{jk})^2
\geq \min\left\{ \frac{1}{2}[(F_{\text{Im}})_{jk}]^2, 2 \right\}
$$

where the last inequality we used the fact that when $|y| \leq 2$, $2|y + x| + \frac{1}{2}x^2 \geq \frac{1}{2}y^2$ since

$$
2|y + x| + \frac{1}{2}x^2 = 2|y + x| + \frac{1}{2}(y + x - y)^2
= 2|y + x| + \frac{1}{2}(y + x)^2 - y(x + y) + \frac{1}{2}y^2
\geq 2|y + x| - |y(x + y)| + \frac{1}{2}y^2
= (2 - |y|)|x + y| + \frac{1}{2}y^2
\geq \frac{1}{2}y^2,
$$

(E20)

while when $|y| \geq 2$, $2|y + x| + \frac{1}{2}x^2 \geq 2$ since

$$
2|y + x| + \frac{1}{2}x^2 \geq 2(|y| - |x|) + \frac{1}{2}x^2
= \frac{1}{2}(|x| - 2)^2 - 2 + 2|y|
\geq 2|y| - 2
\geq 2.
$$

(E21)
From which we can get
\[(\tilde{F}_{RLD})_{jj} - \text{Cov}^{-1}(\hat{x})_{jj} + (\tilde{F}_{RLD})_{kk} - \text{Cov}^{-1}(\hat{x})_{kk} \geq \min\{\frac{1}{2}|\tilde{F}_{RLD}|_{jk}^2, 2\} \tag{E22}\]

By repeating the procedure for different choices of \(j,k\) and make a summation, we then get the tradeoff relation, under the parametrization that \(F_Q = I\), as
\[\text{Tr}[\text{Cov}^{-1}(\hat{x})] \leq \text{Tr}[\tilde{F}_{RLD}] - \frac{1}{4(n-1)}\|C_1^{RLD}\|_F^2, \tag{E23}\]

with \((C_1^{RLD})_{jk} = \min\{\frac{1}{2}\|\sqrt{\rho_x}(L_j^R \tilde{L}_k^R - \tilde{L}_k^R \tilde{L}_j^R)|\sqrt{\rho_x}\|_1, 2\}\).

If we repeat the 1-local measurement on \(\nu\) copies of the state, the tradeoff relation under the 1-local measurement, with the parametrization that \(F_Q = I\), is then
\[\frac{1}{\nu}\text{Tr}[\text{Cov}^{-1}(\hat{x})] \leq \text{Tr}[\tilde{F}_{RLD}] - \frac{1}{4(n-1)}\|C_1^{RLD}\|_F^2 \tag{E24}\]

When \(F_Q \neq I\) initially, we can first make a reparametrization with \(\hat{x} = F_Q^{-\frac{1}{2}}x\). The tradeoff relation in Eq.\(\text{(E24)}\) can then be expressed in the original parametrization as
\[\frac{1}{\nu}\text{Tr}[F_Q^{-1}\text{Cov}(\hat{x})^{-1}] \leq \text{Tr}[F_Q^{-1}F_{RLD}] - \frac{1}{4(n-1)}\|C_1^{RLD}\|_F^2 \tag{E25}\]

with the entries of \(C_1^{RLD}\) given by
\[(C_1^{RLD})_{jk} = \min\{\frac{1}{2}\|\sqrt{\rho_x}(\hat{L}_j^R \hat{L}_k^R - \hat{L}_k^R \hat{L}_j^R)|\sqrt{\rho_x}\|_1, 2\}\] \tag{E26}

where \(\hat{L}_j^R = \sum_q(F_Q^{-\frac{1}{2}})_{jq}^R \hat{L}_q^R\) and \(\hat{L}_k^R = \sum_q(F_Q^{-\frac{1}{2}})_{kq}^R \hat{L}_q^R\).

For p-local measurements, we can similarly get
\[\frac{1}{\nu}\text{Tr}[F_Q^{-1}\text{Cov}^{-1}(\hat{x})] \leq \text{Tr}[F_Q^{-1}F_{RLD}] - \frac{1}{4(n-1)}\|C_p^{RLD}\|_p^2, \tag{E27}\]

where \((C_p^{RLD})_{jk} = \min\{\frac{1}{2}\|\sqrt{\rho_x^p}(\hat{L}_j^{R'} \hat{L}_k^{R'} - \hat{L}_k^{R'} \hat{L}_j^{R'})|\sqrt{\rho_x^p}\|_1, 2p\}\).

Appendix F: Example 2

Here we provided more detailed calculations for example 2.

For mixed states \(\rho_x = \frac{1}{2}I + \sum_j x_j G_j\) with \(G_j = \frac{1}{2}A_j\), where \(\{A_j\}_{j=1}^8\) are the Gell-Mann matrices,

\[
\begin{align*}
A_1 &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & A_2 &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & A_3 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\
A_4 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, & A_5 &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \\
A_6 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & A_7 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, & A_8 &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.
\end{align*}
\] \tag{F1}

If the parameters \(x_j\) are all close to 0, the SLDs and RLDs are all given by \(L_j = 3G_j\). Thus the tradeoff relations from the SLDs and RLDs will be the same. The QFI matrix is given as \(F_Q = F_{RLD} = \frac{3}{2}I\), thus \(\hat{L}_j = \sqrt{\frac{3}{2}}L_j = \sqrt{3}G_j\).

The entries of \(C_1\) is given by
\[(C_1)_{jk} = \frac{1}{2}\|\sqrt{\rho_x}[\hat{L}_j, \hat{L}_k]\|_1 = \|\{G_j, G_k\}\|_1, \tag{F2}\]

\]}
(a) definition:

\[a_{ij} \]

\[a_{ij} - \lambda \quad a_{ij} \quad a_{ij} + \lambda \]

(b) eigenvalues:

\[
\begin{array}{cccc}
0 & -\lambda & 0 & \lambda \\
-\lambda & 0 & \lambda & 2\lambda \\
-3\lambda & -2\lambda & 0 & \lambda \\
\end{array}
\]

(c) multiplicity:

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 2 & 1 \\
3 & 6 & 7 & 6 & 3 & 1 \\
\end{array}
\]

FIG. 5. Eigenvalues and multiplicities of \(\sum_{r=1}^{p}[G_{j}^{(r)}, G_{k}^{(r)}] \).

from which the matrix form of \(C_1 \) can be computed as

\[
C_1 = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\end{pmatrix}.
\] \hspace{1cm} (F3)

Thus we have

\[
\frac{1}{\nu} \text{Tr}[F_{Q}^{-1}\text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)}\|C_1\|_{F}^{2} = 8 - \frac{1}{28} \times 2(5\times 1 + 4\times \frac{3}{4} + 16 \times \frac{1}{4}) = \frac{50}{7} \approx 7.14.
\] \hspace{1cm} (F4)

For \(p \)-local measurements on \(\rho_x \), the entries of \(C_p \) is given by

\[
(C_p)_{jk} = \frac{1}{2} \| \sqrt{\rho_x \otimes p} [\tilde{L}_{jp}, \tilde{L}_{kp}] \|_{1} = \frac{1}{3p-1} \| [G_{jp}, G_{kp}] \|_{1},
\] \hspace{1cm} (F5)

For all \(j,k \), the eigenvalues of \([G_{j}, G_{k}] \) are \(\{ -\lambda, 0, \lambda \} \), where \(\lambda = \frac{1}{2} \) or \(\frac{1}{4} \) or \(\frac{\sqrt{3}}{2} \). Suppose that the eigenvectors corresponding to eigenvalues \(\{ -\lambda, 0, \lambda \} \) can be written as \{ \Phi_{l} \}_{l \in \{ -\lambda, 0, \lambda \}}. \] The eigenvectors of \([G_{jp}, G_{kp}] = \sum_{r=1}^{p}[G_{j}^{(r)}, G_{k}^{(r)}] \) are then given by \(\otimes_{r=1}^{p} \Phi_{l} \) with the corresponding eigenvalues \(\sum_{r=1}^{p} l_{r} \), here \(l_{r} \in \{ -\lambda, 0, \lambda \} \). The recursive relation to obtain the eigenvalues is depicted in Fig. 5(a), where in Fig. 5(b) a few possible values of \(\sum_{r=1}^{p} l_{r} \) have been listed(note that the \((p+1) \)-th row in Fig. 5(b) corresponds to all possible values of \(\sum_{r=1}^{p} l_{r} \)). The multiplicity of each eigenvalue can be obtained as Fig. 5(c), which is just the trinomial triangle that corresponds to the coefficients of \((1 + x + x^2)^p \). Hence the eigenvalues of \([G_{jp}, G_{kp}] = \sum_{r=1}^{p}[G_{j}^{(r)}, G_{k}^{(r)}] \) are \(\lambda s \) with multiplicity \(\binom{p}{2} \) for \(s = -p, -p+1, \ldots, p \), here \(\binom{p}{2} = \sum_{i=0}^{p}(-1)^{i}\binom{p}{i} \) is the trinomial coefficient.

Denote \(N_p = \sum_{s=0}^{p} s\binom{p}{2} \), we then have

\[
(C_p)_{jk} = \frac{1}{3p-1} \| [G_{jp}, G_{kp}] \|_{1} = (C_1)_{jk} \frac{N_p}{3p-1}.
\] \hspace{1cm} (F6)

The Frobenius norm of \(C_p \) is then given by

\[
\|C_p\|_{F} = \sqrt{\sum_{jk} (C_p)_{jk}^{2}} = \sqrt{\sum_{jk} ((C_1)_{jk} \frac{1}{3p-1} N_p)^{2}} = \frac{1}{3p-1} N_p \sqrt{\sum_{jk} ((C_1)_{jk})^2} = \frac{1}{3p-1} N_p \|C_1\|_{F}.
\] \hspace{1cm} (F7)
Using the tradeoff relations for \(p \)-local measurements, we have
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \| C_p \|_F^2
\]
\[= n - \frac{1}{4(n-1)} \| C_1 \|_F^2 \left(\frac{1}{\nu 3^{p-1} N_p} \right)^2 \]
\[= 8 - \frac{6}{7} \left(\frac{1}{\nu 3^{p-1} N_p} \right)^2 \] (F8)

Specifically, for 2-local measurements,
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n \leq \frac{1}{4(n-1)} \| C_2 \|_F^2 = 8 - \frac{6}{7} \times \frac{1}{4} \times \frac{16}{9} = \frac{160}{21} \approx 7.62 \] (F9)

and for 3-local measurements,
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n \leq \frac{1}{4(n-1)} \| C_3 \|_F^2 = 8 - \frac{6}{7} \times \frac{1}{9} \times \frac{25}{9} = \frac{1462}{189} \approx 7.74 \] (F10)

If we choose the basis \(\{ |u_i \rangle \} \) as computational basis \(|u_0 \rangle = |0 \rangle \), \(|u_1 \rangle = |1 \rangle \), \(|u_2 \rangle = |2 \rangle \), the matrices \(F_{u_q} \) are given as
\[
F_{u_0} = \frac{1}{2} \begin{pmatrix}
1 & i & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3}
\end{pmatrix},
F_{u_1} = \frac{1}{2} \begin{pmatrix}
1 & -i & 0 & 0 & 0 & 0 & 0 & 0 \\
i & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3}
\end{pmatrix},
F_{u_2} = \frac{1}{2} \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{4}{7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
F_{\bar{F}_{1m}} = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\] (F11)

Let \(\bar{F} = F_{u_0} + F_{u_1}^T + F_{u_2}^T \), this gives a bound as
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{(n-2)}{(n-1)^2} \| \bar{F}_{1m} \|_F^2 = 8 - \frac{6}{49} \times 4 \approx 7.51, \] (F13)

If we only estimate \(\{x_1, x_2, x_4, x_5\} \), the associated matrices are given by the \(4 \times 4 \) submatrices of the original ones,
\[
C_1 = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}, F_{\bar{F}_{1m}} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix},
F_{\bar{F}_{1m}} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix},
\] (F14)

which further gives \(\| C_1 \|_F = \sqrt{6}, \| \bar{F}_{1m} \|_F = 2 \). Then we have
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \| C_1 \|_F^2 = 4 - \frac{1}{2} = \frac{7}{2} = 3.5, \] (F15)

\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{(n-2)}{(n-1)^2} \| \bar{F}_{1m} \|_F^2 = 4 - \frac{8}{9} = \frac{28}{9} \approx 3.11. \] (F16)
For p-local measurements, by following the same derivation as the previous case, we have

$$\frac{1}{\nu} \text{Tr}[F_Q^{-1}Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \frac{\|C_p\|_F^2}{p}$$

$$= n - \frac{1}{4(n-1)} \|C_1\|_F^2 \left(\frac{1}{p^{3p-1}N_p} \right)^2$$

$$= 4 \left(\frac{1}{p^{3p-1}N_p} \right)^2$$

(Specifically, for $p=2$ we have)

$$\frac{1}{\nu} \text{Tr}[F_Q^{-1}Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \frac{\|C_2\|_F^2}{2} = 4 - \frac{1}{2} \times \frac{16}{9} = \frac{34}{9} \approx 3.78,$$

(F17)

and for $p=3$,

$$\frac{1}{\nu} \text{Tr}[F_Q^{-1}Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \frac{\|C_3\|_F^2}{3} = 4 - \frac{1}{2} \times \frac{25}{9} = \frac{623}{162} \approx 3.85.$$

(F18)

If we choose the basis $\{|u_\nu\rangle\}$ as the computational basis $|u_0\rangle = |00\rangle$, $|u_1\rangle = |01\rangle$, $|u_2\rangle = |02\rangle$, $|u_3\rangle = |10\rangle$, ..., $|u_8\rangle = |22\rangle$, the imaginary part of the matrices $F_{u\nu}$ are given as

$$F_{u_1lm} = \begin{pmatrix} 0 & \frac{4}{3} & 0 & 0 \\ -\frac{4}{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & 0 \end{pmatrix}, F_{u_4lm} = \begin{pmatrix} 0 & -\frac{1}{3} & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, F_{u_6lm} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \end{pmatrix},$$

$$F_{u_7lm} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

(F20)

The optimal \tilde{F}_{lm2} is then given by $\tilde{F}_{lm2} = F_{u_0lm} + F_{u_4lm}^T + F_{u_6lm}^T + (F_{u_1lm} + F_{u_3lm}) + (F_{u_2lm} + F_{u_4lm}) + (F_{u_5lm} + F_{u_7lm})^T$, i.e.,

$$\tilde{F}_{lm2} = \begin{pmatrix} 0 & \frac{4}{3} & 0 & 0 \\ -\frac{4}{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & 0 \end{pmatrix},$$

(F21)

which gives a tighter bound as

$$\frac{1}{\nu} \text{Tr}[F_Q^{-1}Cov(\hat{x})^{-1}] \leq n - \frac{(n-2)}{(n-1)^2} \frac{\|\tilde{F}_{lm2}\|_F^2}{2} = 4 - \frac{2}{9} \times \frac{16}{9} = \frac{4 - 32}{81} \approx 3.60.$$

(F22)

If we only estimate $\{x_1, x_2, x_3\}$, the associated matrices are given by the 3×3 submatrices of the original ones,

$$C_1 = \begin{pmatrix} 0 & 1 & \frac{1}{2} \\ 1 & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}, \tilde{F}_{lm} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

(F23)

which further gives $\|C_1\|_F = \sqrt{3}$, $\|\tilde{F}_{lm}\|_F = \sqrt{2}$. Then we have the tradeoff relations

$$\frac{1}{\nu} \text{Tr}[F_Q^{-1}Cov(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \frac{\|C_1\|_F^2}{p} = 3 - \frac{3}{8} = \frac{21}{8} = 2.625.$$

(F24)
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{(n-2)}{(n-1)^2} \|F_{\tilde{I}_m}\|_F^2 = 3 - \frac{1}{2} = \frac{5}{2} = 2.5.
\] (F25)

For \(p \)-local measurements, we have
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \|C_p\|^2_F = \left(\frac{3}{8} \times \frac{1}{4} \times \frac{16}{9}\right) = \frac{17}{6} \approx 2.83,
\] (F27)

and for \(p=3 \),
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \|C_3\|^2_F = \left(\frac{3}{8} \times \frac{1}{9} \times \frac{25}{9}\right) = \frac{623}{216} \approx 2.88.
\] (F28)

For 2-local measurements, if we choose the basis \{\{|u_j\}\} as the computational basis \{|u_0\} = |00\rangle, \{|u_1\} = |01\rangle, \{|u_2\} = |02\rangle, \{|u_3\} = |10\rangle, ...\}, \{|u_{12}\} = |22\rangle\}, the imaginary part of the matrices \(F_{u_4} \) are given as
\[
F_{u_01m} = \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, F_{u_41m} = \begin{pmatrix} 0 & -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, F_{u_11m} = F_{u_31m} = F_{u_41m} = 0,
\] (F29)

\[
F_{u_21m} = F_{u_41m} = \frac{1}{2} \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, F_{u_51m} = F_{u_71m} = \frac{1}{2} \begin{pmatrix} 0 & -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\] (F29)

The optimal \(F_{\tilde{I}_m} \) is then given by \(F_{\tilde{I}_m} = F_{u_01m} + F_{u_31m} + (F_{u_21m} + F_{u_41m}) + (F_{u_51m} + F_{u_71m})^T \), i.e.,
\[
\tilde{F}_{\tilde{I}_m} = \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
\] (F30)

which gives
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{(n-2)}{(n-1)^2} \|\tilde{F}_{\tilde{I}_m}\|_F^2 = 3 - \frac{1}{4} \times \frac{1}{4} \times \frac{16}{9} = \frac{2}{9} \approx 2.78.
\] (F31)

This is tighter than the bound given by \(C_2 \).

If we only estimate \(\{x_1, x_2\} \), the associated matrices are given by the \(2 \times 2 \) submatrices of the original ones,
\[
C_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\] (F32)

which further gives \(\|C_1\|_F = \sqrt{2} \). Then we have the tradeoff relation
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \|C_1\|^2_F = 2 - \frac{1}{2} = \frac{3}{2}.
\] (F33)

For \(p \)-local measurements, we have
\[
\frac{1}{\nu} \text{Tr}[F_Q^{-1} \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \|C_p\|^2_F = \left(\frac{3}{8} \times \frac{1}{4} \times \frac{16}{9}\right) = \frac{17}{6} \approx 2.83,
\] (F34)
FIG. 6. Upper bound on Γ_p and the QCRB/Holevo bound with the number of parameters equal to 8, 4, 3, 2 respectively.

Specifically, for $p=2$,
\[
\frac{1}{\nu} \text{Tr}[F^{-1}Q \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \| C_2^2 \|_F^2 = 2 - \frac{1}{2} \times \frac{1}{4} \times \frac{16}{9} = \frac{16}{9} \approx 1.78,
\]
and for $p=3$,
\[
\frac{1}{\nu} \text{Tr}[F^{-1}Q \text{Cov}(\hat{x})^{-1}] \leq n - \frac{1}{4(n-1)} \| C_3^3 \|_F^2 = 2 - \frac{1}{2} \times \frac{1}{9} \times \frac{25}{9} = \frac{299}{162} \approx 1.85.
\]

We plot the bound with different p in Fig. 6. It can be seen that the Holevo bound, which equals to the QCRB since the weak commutative condition holds in this case, is only achievable when $p \to \infty$.