Abstract

In this paper, the performance and the emission testings are carried out on a single cylinder diesel engine. The experiment involves the blending of diesel with methanol, ethanol and biodiesel by some definite proportion by volume, in order to obtain the maximum blending at which the engine performs its best and also the emission of harmful gases get reduced. Biodiesel is obtained by trans-esterification of castor oil. Here the blending is done with 5%, 10% and 15% of methanol, ethanol and with 20% and 40% of biodiesel with that of diesel. By blending, improved efficiency of the diesel engine and consequently reduced emission of harmful gases can be obtained than diesel. Also the blended fuel has many other advantages. This blended fuel can be used in an automobile at lower cost than that of diesel and also with improved efficiency and reduced emission of gases.

Keywords: Trans Esterification, Blending, Biodiesel

1. Introduction

The world of century 2000 presents many critical challenges. One of the most important challenges concerns the environment. As population increases and the standard of living improve, there is an increasing concern that there will be shortage of energy to heat our homes and power the vehicles we so heavily depend on. We must also remember the need for clean air, clean water, clean fuel and biodegradable renewable materials. The demand for energy increases day by day. The world mostly depends on fossil fuels. Even though fossil fuels are the most efficient one, it has some deficiencies too. It has lower calorific values and higher shipping cost. Fossil fuels such as diesel, petrol etc; produces harmful gases such as oxides of carbon, sulphur and nitrogen as a result of combustion. These harmful gases disturb the ecological balance. The rising price of oil has brought a considerable strain to the economy of the world. Moreover developing countries does not posses oil reserves to satisfy the increasing need of energy. According to the recent studies fossil fuels are available for about 100 more years. While using fossils as a main source of thermal power, there is a fear that will get exhausted in the recent centuries. The present crisis demands the need of an alternative fuel. The need of an alternative fuel can be fulfilled by a processed fuel derived from biological sources called biodiesel. Advances in technology have allowed development of alternative energy sources. Alternative energy sources are renewable, cleaner, and more dependable than traditional fuels. Methanol, ethanol and biodiesel are an alternative energy sources.

2. Experimental Setup

These experiments are done in a single cylinder diesel engine. The main components of the experimental setup are:

- Single cylinder diesel engine.
- Fuel supply line.
- Exhaust gas analyzer.

The single cylinder diesel engine is connected to the fuel tank through a pipe. Through this pipe the fuel is supplied continuously to the engine cylinder\(^1\). The engine is having a cam shaft which is to be rotated to start the engine. The fuel tank is fitted with a burette having the divisions in centimeter.

*Author for correspondence
This is used to measure the time taken to consume 10 cc of fuel by the engine. Also the engine is having one manometer which shows the readings to measure the pressure in the pipe. The whole engine is supplied with water that acts as coolant which is circulated using a pump. The coolant takes away the heat from the engine and discharges it outside and is again circulated using the pump. The exhaust gas analyzer is used to measure the emission of harmful gases. This analyzer is fitted to one probe whose other end is connected to the exhaust pipe of the engine. Because of this, some exhaust gas will flow into the analyzer and thus it will show the readings. Care should be taken while draining out the excess fuel out of the engine in order to prevent air lock before doing the other sets of experiment.

2.1 An Engine Specifications

Engine type: Single cylinder diesel engine
Brake power: 3.7 KW
Speed: 1500 rpm
Bore: 80 mm
Stroke: 110 mm
Type of cooling: Water cooling
Type of loading: Brake drum dynamometer
Radius of brake drum: 0.1524 m.

3. Lists of Experiments

These are the following list of experiments that are performed for the emission and performance testing in a single cylinder diesel engine:

- Emission and performance test using diesel.
- Emission and performance test using 5% methanol blending.
- Emission and performance test using 10% methanol blending.
- Emission and performance test using 15% methanol blending.
- Emission and performance test using 5% ethanol blending.
- Emission and performance test using 10% ethanol blending.
- Emission and performance test using 15% ethanol blending.
- Emission and performance test using 20% biodiesel blending.
- Emission and performance test using 40% biodiesel blending.

4. Experimental Procedure

The fuel tank is first filled with the diesel using which the engine performance testing and emission testing is to be done. Then the cam shaft of the engine is rotated to start the engine at zero loads. As the engine started, it is left for 5 mins. Then the readings are taken for the time taken to consume 10 cc of fuel. Gradually the load is being increased on the engine by adding 1, 2, 3, 4 and 5 Kg. Similarly the readings are taken for the time taken to consume 10 cc of fuel. Also the manometer readings are taken to find out the pressure inside the pipe. Consequently the emission values of the exhaust gas at different load conditions are obtained. Using this exhaust gas analyzer NO\textsubscript{X}, CO\textsubscript{2}, CO and Hydrocarbon have been found out.

Once the experiment is done using diesel then we use the blended diesel with methanol, ethanol and biodiesel by varying the amount by volume. At first 5% methanol is blended with diesel and the performance and emission values are compared with that of diesel. This M5 (5% methanol) blending is then poured into the fuel tank only after draining out the entire earlier diesel left after the experiment. Care should be taken at the time of draining to prevent airlock of the engine. After that the same process is repeated as above.

Similarly the same procedure is done with other blending such as M10 (10% methanol), M15 (15% methanol), E5 (5% ethanol), E10 (10% ethanol), E15 (15% ethanol), B20 (20% biodiesel) and B40 (40% biodiesel). All the values are noted down and the performance and emission graphs are plotted with respect to diesel. The optimum blending has been found out after the experiments at which the engine performance is best and the emission of harmful gases are lesser.

5. Emission Observation

5.1 Emission Values of Diesel

LOAD(KG)	NO\textsubscript{X}(PPM)	CO\textsubscript{2} (%)	CO (%)	HC(PPM)
0	11	0.7	0.01	7
1	12	0.9	0.01	9
2	13	1.1	0.02	10
3	17	1.2	0.025	11
5	21	1.4	0.03	13
5.2 Emission Values of E5

Table 2.

LOAD(KG)	NOx (PPM)	CO$_2$ (%)	CO (%)	HC (PPM)
0	6	0.7	0.01	7
1	9	0.8	0.01	8
2	12	1.0	0.016	9
3	14	1.0	0.02	10
5	15	1.2	0.024	12

5.3 Emission Values of E10

Table 3.

LOAD(KG)	NOx (PPM)	CO$_2$ (%)	CO (%)	HC (PPM)
0	7	0.65	0.01	6
1	9	0.7	0.01	7
2	13	0.9	0.015	9
3	15	0.95	0.02	9
5	16	1.15	0.02	11

5.4 Emission Values of E15

Table 4.

LOAD(KG)	NOx (PPM)	CO$_2$ (%)	CO (%)	HC (PPM)
0	8	0.65	0.01	6
1	9	0.75	0.01	7
2	13	0.85	0.015	7
3	16	0.9	0.015	9
5	17	1.1	0.01	10

5.5 Emission Values of M5

Table 5.

LOAD(KG)	NOx (PPM)	CO$_2$ (%)	CO (%)	HC (PPM)
0	7	0.7	0.01	7
1	9	0.85	0.01	8
2	13	0.9	0.015	10
3	14	1.0	0.02	10
5	15	1.2	0.025	12

5.6 Emission Values of M10

Table 6.

LOAD(KG)	NOx (PPM)	CO$_2$ (%)	CO (%)	HC (PPM)
0	7	0.7	0.01	7
1	10	0.8	0.01	7
2	14	0.85	0.01	9
3	15	0.9	0.15	10
5	17	1.1	0.02	11

5.7 Emission Values of M15

Table 7.

LOAD(KG)	NOx (PPM)	CO$_2$ (%)	CO (%)	HC (PPM)
0	8	0.65	0.01	6
1	11	0.7	0.01	7
2	14	0.8	0.05	9
3	16	0.86	0.01	9
5	18	1.0	0.015	10

5.8 Emission values of B20

Table 8.

LOAD(KG)	NOx (PPM)	CO$_2$ (%)	CO (%)	HC (PPM)
0	3	0.6	0.01	3
1	8	0.9	0.01	5
2	12	1.1	0.015	7
3	15	1.2	0.02	8
5	19	1.2	0.02	9

5.9 Emission values of B40

Table 9.

LOAD(KG)	NOx (PPM)	CO$_2$ (%)	CO (%)	HC (PPM)
0	4	0.6	0.02	2
1	9	0.9	0.025	4
2	12	1.2	0.03	7
3	16	1.3	0.03	8
5	20	1.3	0.03	8

6. Results and Discussions

6.1 Emission Graphs

Figure 1.
This graph is drawn between the load and the emission of NO\textsubscript{X}. It is found out that after blending the emission reduces. Here E5 is optimum blending for emission since after this the NO\textsubscript{X} emission increases.

In this the emission of HC decreases as we increase the percentage of blending up to E15.

Figure 2.

Here the emission of CO\textsubscript{2} decreases after blending. After E5, emission decreases further.

Figure 3.

This graph shows the load vs emission of CO. Here also same behavior is shown, emission decreases after blending up to E15.

Figure 4.

Here also the emission characteristics are same like ethanol blending. The NO\textsubscript{X} emission decreases after blending but after E5 the emission increases.

Figure 5.

Here the emission of CO\textsubscript{2} decreases after blending. After E5 emission decreases further.

Figure 6.

This graph shows the load vs emission of CO. Here also same behavior is shown, emission decreases after blending up to E15.

Figure 7.
From this graph it is found out that the CO emission decreases after blending to B20. But after that it increases at B40 blending.

Figure 8.
In this the emission of HC decreases as we increase the percentage of blending up to E15.

Figure 9.
This graph shows the emission of NO\textsubscript{X} with the load. After blending the emission decreases for B20 but again increases at B40 blending.

Figure 10.
Here the emission of CO\textsubscript{2} decreases after blending up to B20. At B40 blending there is again an increase in emission.

7. Conclusion
Based on my experimental analysis of emission and performance testing, the following conclusions are drawn:

- The level of NO\textsubscript{X} was found to be considerably less after blending with methanol, ethanol and biodiesel.
- Also other gases like CO\textsubscript{2}, CO and HC were found to be less after blending with methanol, ethanol and biodiesel.
- Emission of CO is reduced by 40-50%.
- Emission of NO\textsubscript{X} is reduced by 25-40%.
- Emission of HC is reduced by 8-10%.
- Emission of CO\textsubscript{2} is reduced by 9-12%.

8. References
1. Pryde EH. Vegetable oil as diesel fuel. Overview. 1983.
2. Sathish Kumar M, Karrunakaran CM, Vikram M. Process facilitated enhancement of lipase production from
germinated maize oil in Bacillus spp. using various feeding strategies. Australian Journal of Basic and Applied Sciences. 2010; 4(10):4958–61. ISSN: 1991–8178.

3. Sridharan R, Mathai IM. Transesterification reactions. 1974.

4. Shirley Gloria DK, Immanuel B, Rangarajan K. Parallel context-free string-token petri nets. International Journal of Pure and Applied Mathematics. 2010; 59(3):275–89. ISSN: 1311–8080.

5. Venter JJ, McDade C. Transesterification catalyst. 1993.

6. Karthikeyan T, Subramaniam RK, Johnson WMS, Prabhu K. Placental thickness and its correlation to gestational age and fetal growth parameters: A cross sectional ultra-sonographic study. J Clin Diagn Res. 2012; 6(10):1732–5. ISSN: 0973–709X.

7. Brandin DS. Biodiesel Fuel. 1996.

8. Rekha CV, Aranganna P, Shahed H. Oral health status of children with autistic disorder in Chennai. European Archives of Paediatric Dentistry. 2012; 13(3):126–31. ISSN: 1818-6300.

9. Muniyappa PR. Production of biodiesel and utilisation of byproduct, [Master thesis]. Chemical Engineering. 1995.

10. Ramakrishnan V, Srivatsa SK. Pitch control of wind turbine generator by using new mechanism. Journal of Electrical Systems. 2010; 6(1):1–15. ISSN: 1112–5209.

11. Kimio T, Natarajan G, Hideki A, Taichi K, Nanao K. Higher involvement of sub telomere regions for chromosome rearrangements in leukemia and lymphoma and in irradiated leukemic cell line. Indian Journal of Science and Technology. 2012 April; 5(1):1801–11.

12. Cunningham CH. A laboratory guide in virology. 6th edn. Minnesota: Burgess Publication Company; 1973.

13. Sathishkumar E, Varatharajan M. Microbiology of Indian desert. In: Sen DN, editors. Ecology and vegetation of Indian desert. India: Agro Botanical Publ. 1990. p. 83–105.

14. Varatharajan M, Rao BS, Anjaria KB, Unny VKP, Thyagarajan S. Radiotoxicity of sulfur-35. India: Proceedings of 10th NSRP; 1993. p. 257–8.

15. Available from: http://www.indjst.org/index.php/vision