Standards of the Polish Ultrasound Society. Ultrasound examination of the portal system and hepatic vessels

Robert Lechowicz¹, Michal Elwertowski²

¹ Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
² Department of General Surgery and Thoracic Diseases, Medical University of Warsaw, Warsaw, Poland

Correspondence: Robert Lechowicz, MD, PhD, Department of General, Transplant and Liver Surgery, Independent Central Teaching Hospital, Medical University of Warsaw, ul. Banacha 1a, 02-097 Warsaw, Poland, e-mail: robert_lechowicz@wp.pl, tel. +48 609 858 171

DOI: 10.15557/JoU.2015.0018

Streszczenie
Wzrost zachorowań na choroby wątroby oraz rozwój chirurgii wątroby i innych inwazyjnych metod leczenia nadciśnienia wrotnego, a także zwiększająca się liczba zabiegów transplantacji wątroby wyznaczają wciąż nowe wyzwania dla ultrasonografii. Ultrasonografia, jako skuteczna i sprawdzona klinicznie metoda, stosowana jest od kilku dekad w diagnoście chorób wątroby, jej naczyń i nadciśnienia wrotnego. Wykorzystywana jest zarówno na poziomie diagnostyki wstępnej, jak i specjalistycznej – wykonywanej w ośrodkach referencyjnych. Wartość diagnostyczna ultrasonografii w dużym stopniu zależy od znajomości anatomicznej, fizjologicznej, patofizjologicznej i aspektów klinicznych, a także stopnia opanowania techniki badania. W rękach doświadченego lekarza metoda ta jest precyzyjnym i bardzo skutecznym narzędziem diagnostycznym, w przeciwnym razie jest bezużyteczna. W opracowaniu omówiono podstawowe elementy anatomii, fizjologii i patofizjologii, które stanowią o wyjątkowości układu wrotnego, a których znajomość jest kluczowa i niezbędna dla prawidłowego wykonania badania, a przede wszystkim właściwej interpretacji wyników. Przedstawiono wymagania dotyczące zaawansowania wykorzystywanej aparatury. Omówiono różne techniczne aspekty badania oraz prawdziwy obraz morfologiczny i parametry hemodynamiczne u osób zdrowych, a także najczęstsze sytuacje kliniczne i związane z nimi odchylenia od norm w wykonywanych badaniach. Prezentowana praca oparta jest na kilkunastoletnim doświadczeniu autora pracującego w największym ośrodku chirurgii wątroby w Polsce oraz na podstawie aktualnego piśmiennictwa.

Słowa kluczowe
żyła wrotna, żyły wątrobowe, nadciśnienie wrotno, ultrasonografia dopplerowska, przeszczepienie wątroby

Streszczenie
Wzrost zachorowań na choroby wątroby oraz rozwój chirurgii wątroby i innych inwazyjnych metod leczenia nadciśnienia wrotnego, a także zwiększającą się liczbę zabiegów transplantacji wątroby wyznaczają wciąż nowe wyzwania dla ultrasonografii. Ultrasonografia, jako skuteczna i sprawdzona klinicznie metoda, stosowana jest od kilku dekad w diagnoście chorób wątroby, jej naczyń i nadciśnienia wrotnego. Wykorzystywana jest zarówno na poziomie diagnostyki wstępnej, jak i specjalistycznej – wykonywanej w ośrodkach referencyjnych. Wartość diagnostyczna ultrasonografii w dużym stopniu zależy od znajomości anatomicznej, fizjologicznej, patofizjologicznej i aspektów klinicznych, a także stopnia opanowania techniki badania. W rękach doświadченego lekarza metoda ta jest precyzyjnym i bardzo skutecznym narzędziem diagnostycznym, w przeciwnym razie jest bezużyteczna. W opracowaniu omówiono podstawowe elementy anatomii, fizjologii i patofizjologii, które stanowią o wyjątkowości układu wrotnego, a których znajomość jest kluczowa i niezbędna dla prawidłowego wykonania badania, a przede wszystkim właściwej interpretacji wyników. Przedstawiono wymagania dotyczące zaawansowania wykorzystywanej aparatury. Omówiono różne techniczne aspekty badania oraz prawdziwy obraz morfologiczny i parametry hemodynamiczne u osób zdrowych, a także najczęstsze sytuacje kliniczne i związane z nimi odchylenia od norm w wykonywanych badaniach. Prezentowana praca oparta jest na kilkunastoletnim doświadczeniu autora pracującego w największym ośrodku chirurgii wątroby w Polsce oraz na podstawie aktualnego piśmiennictwa.
Abstract
Increased incidence of liver diseases, the development of liver surgery and other invasive methods for managing portal hypertension, plus an increasing number of liver transplant procedures pose more and more new challenges for ultrasonography. Ultrasonography, being an effective and clinically verified modality, has been used for several decades for diagnosing diseases of the liver, its vessels and portal hypertension. It is used for both initial and specialist diagnosis (performed in reference centers). The diagnostic value of ultrasonography largely depends on the knowledge of anatomy, physiology, pathophysiology and clinical aspects as well as on the mastering of the scanning technique. In the hands of an experienced physician, it is an accurate and highly effective diagnostic tool; it is of little use otherwise. The paper presents elements of anatomy, physiology and pathophysiology which make the portal system exceptional and the knowledge of which is crucial and indispensable for a correct examination and, above all, for the correct interpretation of results. The authors also present requirements regarding the equipment. Moreover, various technical aspects of the examination are presented and the normal morphological picture and hemodynamic parameters of healthy individuals are described. The authors discuss the most common clinical situations and rare cases during ultrasound examinations. The paper is based on the experience of the author who works in the largest center of liver diseases in Poland, and on the current literature.

Key words
portal vein, hepatic veins, portal hypertension, Doppler ultrasound, liver transplantation

Wprowadzenie
Ultrasonografia, jako skuteczna i sprawdzona klinicznie metoda, stosowana jest od kilku dekad w diagnostyce chorób wątroby, jej naczyń i naciśnienia wrotnego. Wykorzystywana jest zarówno w zakresie diagnostyki wstępnej, jak i specjalistycznej — wykonywanej w ośrod- kach referencyjnych. Wzrost zaczerwienień na przewlekle chorych wątroby, rozwój chirurgii wątroby, inwazyjne leczenie naciśnienia wrotnego i zwiększająca się liczba zabiegów transplantacji wątroby wyznaczają nowe wyzwania dla tej metody i dla lekarzy wykonujących badania.

Wartość diagnostyczna ultrasonografii w dużym stopniu zależy od znajomości anatomii, fiziologii, patofizjologii i aspektów klinicznych, a także stopnia opanowania techniki badania. W rękach doświadczonego lekarza metoda ta jest precyzyjnym i bardzo skutecznym narzędziem diagnosticznym, w przeciwnym razie jest bezużyteczna.

Wątroba otrzymuje podwójne zaopatrzenie w krew — 75% z żyły wrotnych i 25% z tętnicy wątrobowej. Żyla wrotna to naczyń o długości około 30–90 mm i szerokości 6–12 mm(1). Odprowadza krew z nieparzystych narządów jamy brzusznej do wątroby. Powstaje z połączenia żyły śledzio- newej i żyły krzękowej górnej.Jej początek znajduje się za głów trzustki. Następnie żyła biegnie do węzła wątroby, w tynkowej części wiązadla wątrobowo-dwunastniczego, przyśrodkowo od dróg żółciowych i bocznie od tętnicy wątrobowej właściwej. Razem z towarzyszącą jej tętnicą wątrobową dzieli się na naczynia płatowe, sektorowe i segmentalne, a ich końcowe gałąźce łączą się przez sieć kapilarną. Krew wrotne i tętnica miesza się na poziomie zatok wątrobowych, a następnie przechodzi do centralnych i końcowych tętnic wątrobowych, które stopniowo łączą się w większe żyły i jako żyły wątrobowe (prawa, środkowa i lewa) uchodzą do żyły głównej dolnej. Układ żył wątrobo- wych i rozgałęzień żyły wrotnej stanowi podstawę podziału wątroby na segmenty według Couinauda.

Introduction
Ultrasonography, being an effective and clinically verified modality, has been used for several decades for diagnosing diseases of the liver, its vessels and portal hypertension. It is used for both initial and specialist diagnosis (performed in reference centers). Increased incidence of chronic liver diseases, the development of liver surgery and invasive methods for managing portal hypertension, as well as an increasing number of liver transplant procedures pose more and more new challenges for ultrasonography and for physicians who use this method.

The diagnostic value of ultrasonography largely depends on the knowledge of anatomy, physiology, pathophysiology and clinical aspects of pathologies, and on the mastering of the scanning technique. In the hands of an experienced physician, it is an accurate and highly effective diagnostic tool; it is of little use otherwise.

The liver receives double blood supply: 75% from the portal vein and 25% from the hepatic artery. The portal vein is approximately 30–90 mm long and 6–12 mm wide(1). It delivers blood from unpaired abdominal organs to the liver. The vein is formed by the confluence of the splenic and superior mesenteric veins. It originates behind the head of the pancreas. The vein then runs towards the hepatic hilum in the posterior part of the hepatoduodenal ligament, medially to the bile ducts and laterally to the hepatic vein proper. Together with the accompanying hepatic artery, it divides into lobar and segmental vessels, the terminal branches of which join to create a capillary network. Portal and arterial blood mix at the level of the hepatic sinusoids and then run to the central hepatic veins and terminal hepatic venules which gradually join into larger veins and communicate with the inferior vena cava as the hepatic veins (right, middle and left). The system of the hepatic veins and portal vein branches is the basis for Couinaud’s division of the liver into segments.
Układ wrotowy jest żylnym łożyskiem niskociśnieniowym, bezzastawkowym, ze zróżnicowanym ciśnieniem, malejącym w kierunku przepływu krwi. Prawidłowe ciśnienie w żyły śledzionowej wynosi 9–11 mm Hg, w żyłe krzakowej górnej – 9–10 mm Hg, w żyły wrotnej i jej gałęziach – 6–8 mm Hg. W zatokach wątrobowych zmienia krew wrotna i tętnicza tworzy ciśnienie 3–5 mm Hg. Ciśnienie w żyłach wątrobowych wynosi 1–2 mm Hg. Fizjologiczny gradient ciśnien zapewnia samoistny, ciągły przepływ dowątrobowy (hepatopetalny).

Złotym standardem w ocenie ciśnienia w zatokach, które odzwierciedla ciśnienie w żyłce wrotnej, jest pomiar ciśnienia zaklinowania w jednej z żył wątrobowych. Istotnym parametrem jest gradient pomiędzy ciśnieniem zaklinowaniem a ciśnieniem mierzonym tzw. „wolnym” cewnikiem w żyłach wątrobowych (hepatic venous pressure gradient, HVPG). Gradient prawidłowo powinien wynosić do 10 mm Hg. Wartości wyższe przemawiają za rozpoznaniem bloku wewnątrzwętrobowego, pozazatokowego, którego przyczyną w 85–95% jest marskość wątroby(2–4).

Blok przepływu wątrobowego dzielimy anatomicznie na przedwątrobowe (np. zakrzepica żyły wrotnej, śledzionowej, wewnątrzwętrobowe (np. marskość) i pozawątrobowe (np. zespół Budda–Chiariego). Podział czynnościowy oparty na pomiarach gradientu ciśnienia wewnątrzwętrobowe przedzatokowe i pozazatokowe. Im większy gradient, tym bardziej nasilone nadciśnienie i większe ryzyko jego powikłań – rozwoju żylaków przyleku, krwotoków, wodoodporności, dekompensacji funkcji wątroby, rozwoju zespołu wątrobo-werkowego (hepato-renal syndrom, HRS).

W nadciśnieniu wrotym dochodzi do zwiększonego oporu przepływu w zatokach wątrobowych (na skutek włośnienia, bliznowactenia i powstawania guzków regeneracyjnych), a także do wzrostu całkowitej ilości krwi przepływającej przez układ wrotny (w wyniku zwiększenia trzewnego napływu tętniczego, stymulowanego działaniem wydzielanych do krążenia ważylatatorów(4). Przepływ w układzie wrotnym w nadciśnieniu jest więc przepływem hiperdynamicznym. Wzrost ciśnienia w układzie wrotnym powyżej 15 mm Hg (gradient powyżej 10 mm Hg) jest redukowany przez zwiększenie pojemności łożyska (powiększenie śledziony, poszerzenie światła naczyń żylnych) i otwieranie się pozazatokowych nośników naczyń wprowadzonych do układu wewnątrzwętrobowego oraz wewnątrzwętrobowych połączeń omijających zatokę(5). Około 65–90% naczyń obocznych można uwidocznić w USG(6).

Najczęstsze miejsca połączeń wrotno-systemowych z przepływem odważtrobowym (hepato-fugalnym) to(4–8):
- połączenia żołądkowo-przylekowe (zasilane przez żylę żołądkową lewą i żyły żołądkowe krótkie, w okolicy dna i wpustu żołądka, tworzą żylaki przylekowe, odpływ do żyły niepierżejstey);
- układ żył brzusznych (poszerzone żyły w powłokach jamy brzusznej, zasilane przez udrożoną żyłę pepkową – odpływ zilami nabrzusznymi dolnymi do żył biodrowych zewnętrznych) – tworzy tzw. głowę meduży;

The portal system is a low-pressure, valve-free vascular bed with diversified pressure which decreases with the direction of blood flow. Normal pressure in the splenic vein ranges from 9 to 11 mm Hg, in the superior mesenteric vein – 9–10 mm Hg, and in the portal vein and its branches – 6–8 mm Hg. In the hepatic sinuses, mixing of portal and arterial blood results in pressure of 3–5 mm Hg. Blood pressure in the hepatic veins is 1–2 mm Hg. A physiological pressure gradient ensures spontaneous continuous hepatofugal flow.

The gold standard in the assessment of pressure in the sinusesoids, which reflects blood pressure in the portal vein, is the measurement of wedged pressure in one of the hepatic veins. A gradient between wedged pressure and pressure measured with a so-called “free” catheter in the hepatic veins (hepatic venous pressure gradient, HVPG) is an important parameter. Its normal values do not exceed 10 mm Hg. Higher values indicate intrahepatic, postsinusoidal block which in 85–95% of cases is caused by liver cirrhosis(2–4).

Hepatic flow blocks are divided anatomically into prehepatic (e.g. portal or splenic vein thrombosis), intrahepatic (liver cirrhosis) and posthepatic (Budd–Chiari syndrome). The functional division, based on gradient measurement, distinguishes between intrahepatic, presinusoidal and postsinusoidal blocks. The greater the gradient, the greater the hypertension and the higher the risk of its complications, such as esophageal varices, bleeding, ascites, decompensation of liver function or hepatorenal syndrome (HRS).

Portal hypertension causes increased flow resistance in the hepatic sinusesoids (due to fibrosis, scarring and formation of regenerative nodules) as well as an increase in total amount of blood flowing through the portal system (as a result of an increase in the visceral arterial inflow stimulated by vasodilators released to the bloodstream) (4). Thus the portal flow in hypertension is hyperdynamic. Increased pressure in the portal system that is higher than 15 mm Hg (gradient greater than 10 mm Hg) is compensated by increased volume of the vascular bed (enlarged spleen, dilated venous lumina) and opening of extrahepatic anastomoses with the systemic venous system and intrahepatic ones that omit the sinusesoids(5). Approximately 65–90% of collateral vessels can be visualized in ultrasonography(6).

The most common portosystemic connections with hepatofugal flow include(4–8):
- gastroesophageal connections (supplied by the left gastric vein and short gastric veins in the region of the fundus and cardia of the stomach; create esophageal varices; drain to the azygos vein);
- abdominal veins (dilated veins in the abdominal wall; supplied by patent umbilical vein; drain through the inferior epigastric veins to the external iliac veins) form so-called “caput medusae” sign;
• sploty okołoodbytnicze (górny – zasilany przez żyłę krezkową dolną, oraz środkowy i dolny – drenowany przez żyły sromowe do żył biodrowych wewnętrznych) – two-rzy żyłaki odbytu;
• układ żył pozaostrzownych (sploty żyłne Retziusa), naj-mniej istotne klinicznie (ryc. 1 A, B);
• połączenia śledziono-nerkowe (duże, kręte naczynia pomiędzy wnęką śledziona i górnym biegunem nerki lewej i lewą żyłą nerkową).

Poza tym mogą uczynić się drogi krążenia omijającego w obrębie układu wrotnego, z przepływem dowątrobowym. Uwidaczniają się w badaniu USG, np. w regionalnym nadiśnieniu wrotnym, w przebiegu odcinkowej zakrzepicy:

• żyły Sappeya – sploty żylnie w ścianie pęcherzyka żółciowego; odpływ przez żyłę pęcherzykową do prawej gałęzi żyły wrotnej w przypadku zakrzepicy żyły wrotniej (ryc. 2);
• tzw. „przebudowa jamista” żyły wrotniej – liczne kręte naczynia oboczne wątrobowo-dwunastniczego wokół niedrożnej żyły wrotniej (ryc. 3 A, B, C);
• żyły trzustkowo-dwunastnicze, drenowane przez żyłę żołądkowo-sieciową lewą, uchodzącą do żyły krezkowej górnej;
• żyły wrotno dodatkowe – w więzadle sierpowatym i żołądkowo-wątrobowym.

Furthermore, collateral circulation channels within the portal system with hepatopetal flow may become active. They are visualized in an ultrasound examination in e.g. regional portal hypertension, in the course of partial thrombosis.

• Sappey’s veins – venous plexuses in the wall of the gallbladder; drain through the cystic vein to the right branch of the portal vein in the event of portal vein thrombosis (Fig. 2);
• so-called “cavernous transformation” of the portal vein – multiple tortuous collateral vessels of the hepato-duodenal ligament around the occluded portal vein (Fig. 3 A, B, C);
• pancreaticoduodenal veins – drained by the left gastro-omental vein to the superior mesenteric vein;
• accessory portal veins – in the falciform and hepatogastric ligaments.
Aparatura

Badania układu wrotnego i naczyń wątroby są w wielu przypadkach technicznie skomplikowane i dotyczą najczęściej tzw. pacjentów trudnych, dlatego wymagania sprzętowe są wysokie. Trudność w badaniu chorych z przewlekłymi chorobami wątroby wynika z zaburzeń wielkości i kształtu narządu oraz echogeniczności jego miąższu i echostruktury, które mogą istotnie zaburzać obraz struktur anatomicznych, w tym naczyń. Dodatkowo wodobrzusze i wzdęcie jelit powodują, że naczynia są słabo widoczne i trudno dostępne pod odpowiednim dla oceny dopplerowskiej kątem insonacji. Prędkości przepływu w układzie wrotnym, szczególnie w sytuacjach patologicznych, są relatywnie niskie, często rejestrowane z dużych głębokości, wśród licznych artefaktów. Jednocześnie w przypadku zwężenia naczyń, w przetokach tętniczo-wrotnych, tętniczo-żylnych oraz u pacjentów po zabiegach wewnątrzważylowego zespołu wrotno-systemowego (transjugular intrahepatic portosystemic shunt, TIPS), prędkości przepływu są wysokie. Stanowi to duże wyzwanie dla opcji dopplerowskich aparatu.

Ponieważ ocenę przepływu w układzie wrotnym i w żylach wątrobowych przeprowadza się przy swobodnym oddychaniu, wskazane jest, aby aparat miał opcję tripixel doppler, chociaż można też badać z opcją duplex doppler zamrożony obraz B-mode).

Powinno się więc stosować aparaty klasy premium, z dobrym obrazowaniem B-mode, obrazowaniem harmonicznym (tissue harmonic imaging, THI), czujnym i pracującym w szerokim zakresie dopplerem spektralnym, dopplerem kolorowym, z opcją dopplera mocy.

Equipment

In many cases, the evaluation of portal system and hepatic veins is a complex problem, and usually concerns so-called difficult patients. The equipment requirements are therefore high. The difficulty in examining patients with chronic liver diseases is a consequence of disorders in the liver size and shape as well as echogenicity of its parenchyma and echostructure, which can considerably blur the image of anatomic structures, including vessels. Moreover, ascites and intestinal flatulence make the vessels poorly visible and poorly accessible at the angle of insonation appropriate for Doppler assessment. Blood flow velocities in the portal system, particularly in pathological conditions, are relatively low and frequently recorded from considerable depths among numerous artefacts. At the same time, flow velocities are high when vessels are narrowed, in the arteriportal and arteriovenous shunts as well as in patients after transjugular intrahepatic portosystemic shunt (TIPS). This is a considerable challenge for the Doppler mode.

Since flow assessment in the portal system and hepatic veins is conducted with the patient breathing normally, the scanner should be equipped with the tripixel Doppler mode (but the duplex Doppler mode can also be used for assessment of frozen B-mode images).

Therefore, premium-class equipment should be used ensuring good B-mode imaging, tissue harmonic imaging (THI), sensitive and full-range spectral Doppler, color Doppler and power Doppler.
Aparat powinien być wyposażony w typową sondę sze- rokopasmową, typu convex 2–5 MHz, do oceny struktur jamy brzusznej, oraz typową sondę liniową 5–10 MHz, do oceny powierzchni przedniej wątroby w celu poszukiwania cech przebudowy marszkalnej. Poza tym w ośrodках specjalistycznych konieczna jest możliwość pracy aparatu z niskim indeksem mechanicznym (MI poniżej 0,1), z obrazowaniem drugiej harmonicznej metodą odwrócenia fazy impulsu, w celu wykonania ultrasonografii wzmocnionej kontrastem (contrast-enhanced ultrasound, CEUS), z zastosowaniem środka kontrastowego drugiej generacji. Ma to na celu ocenę miąższu i zmian oginskowych wątroby oraz droż- ności naczyń w przypadkach wątpliwych w ocenie dopeł- rowskiej. Nie oznacza to, że nie można badać układu wrotnego i naczyń wątroby mniej zaawansowanymi technicznie aparatami. Wiele badań na etapie wstępnej diagnostyki czy też badań kontrolnych układu wrotowego u pacjentów z przewlekłymi chorobami wątroby, bez zaawansowanych cech marszkalności i nadciśnienia wrotnego, może być wyko- nywanych aparatami klasy średniej.

Przygotowanie do badania

Pacjent powinien być na czczo (ostatni posiłek około 6–8 godzin przed badaniem) – najlepiej badanie przepro- wadzić rano. Przynajmniej pół godziny przed badaniem pacjent nie powinien wykonywać wysiłku fizycznego. W celu zmniejszenia ilości gazów w jelitach można stoso- wać w dzień poprzedzający doustne środki zmniejszające napięcie powierzchniowe22.

Technika badania

Wizualizacja naczyń wątroby oraz całego układu wrotnego w prezentacji B (B-mode) wpisuje się w technikę badania narządu jamy brzusznej, szczególnie ocenę nadbrzuszną, tj. wątroby, trzustki, śledziony, z wykorzysta- niem tych narządów jako „okien akustycznych”, dających wgląd w ich otoczenie oraz przebiegających w nich miąższu i sąsiedztwie naczynia.

Stosowany jest dostęp podżebrowy, międzyżebrowy i spod wyrostka mieczykowatego. Dostęp podżebrowy prawy daje wgląd w większą część wątroby, w żyły wątrobowe i ich spływy oraz żyłą główną dolną i żyłą wrotną. Podobny, a czasem lepszy wgląd w te struktury daje dostęp boczny prawy, poprzez międzyżebrza, dający dobry kąt insonacji dla oceny doplomerowskiej żyły wątro- bowej prawej, środkowej, żyły głównej dolnej i żyły wrotnej oraz jej prawej gałęzi. Dostęp spod wyrostka mieczy- kowatego oraz podżebrowy prawy przy linii przyprostnej prawej daje bardzo dobry wgląd w żyły wątrobową lewą i środkową oraz ich spływy, a przede wszystkim w lewą gałęź żyły wrotnej, pozwalając uzyskać tu kąt insonacji nawet 0–10º.

W celu uwidoczniienia oraz oceny morfologii wątroby, śle- dziony i trzustki stosuje się prostopadle względem siebie przekroje poprzeczne i podłużne oraz skośne. Należy badać The scanner should be outfitted with a conventional broadband 2–5 MHz convex probe for evaluation of the abdominal structures as well as a typical linear probe (5–10 MHz) for evaluation of the anterior aspect of the liver in search for cirrhotic changes. Furthermore, special- istic centers must be equipped with a scanner able to operate with a low mechanical index (MI lower than 0.1), with second harmonic imaging by reverse impulse phase to enable contrast-enhanced imaging (CEUS) with the use of second-generation contrast agents. This is needed for the assessment of the liver parenchyma, its focal lesions and patency of the vessels in the event of doubtful results of the Doppler examination. This does not mean, however, that the portal vein and hepatic ves- sels cannot be examined with less sophisticated scan- ners. Examinations at the level of initial diagnosis, of follow-up scans to check-up the portal system in patients with chronic liver diseases with no advanced cirrhosis or portal hypertension, can be conducted with the use of medium-class scanners.

Preparation for examination

The examination should be conducted with the patient fasting (the last meal ingested 6–8 hours before the exami- nation). It is preferable to conduct the examination in the morning. At least 30 minutes before the test, the patient should refrain from physical exertion. To reduce the amount of gas in the intestine, oral agents to decrease surface tension can be used on the day before the scan22.

Scanning technique

Visualization of the hepatic vessels and the entire portal system in the B-mode is a part of abdominal examination, particularly the examination of the epigastric region, that involves the assessment of the liver, pancreas and spleen, with the use of these organs as “acoustic windows” enabling the evaluation of their surroundings and vessels running in the parenchyma and in the vicinity of these organs.

The examination is conducted via the subcostal and inter- costal access and from below the xiphoid process. The right subcostal access enables assessment of the larger part of the liver, hepatic veins and their confluence as well as the infe- rior vena cava and the portal vein. A similar, or sometimes even better insight into these structures is provided by the right lateral access, through the intercostal spaces. It provides a good angle of insonation for the Doppler assessment of the right and middle hepatic veins, inferior vena cava and portal vein and its right branch. The access from below the xiphoid process and the right subcostal access at the right pararectus line guarantee a good insight into the left and middle hepatic veins, their confluence and, above all, into the left branch of the portal vein; the angle of insonation can be even 0–10º. In order to visualize and assess the morphology of the liver, spleen and pancreas, perpendicular, transverse, lon- gitudinal and oblique planes are used. The patient must be
pacjenta w sposób usystematyzowany, w ułożeniu na ple-
cach, z rękami wzdłuż ciała lub nad głową oraz w ułoże-
niu ciała na lewym i prawym boku. Pozwala to zmniejszyć
ryzyko przeoczenia patologii, daje lepszy wgląd w badane
struktury w wyniku przemieszczania i usuwania się struk-
tur utrudniających badanie, jak pętle jelitowe. Ułatwia też
odróżnienie artefaktów.

Struktury naczyńowe należy uwidocznić w miarę możli-
wości na całym przebiegu wzdłuż osi długiej oraz poprzecz-
nie, zaczynając od miejsca początkowego aż do podziału
czy też spływu, identyfikując ich odgałęzienia.

W celu dokonania wiarygodnej oceny ścian naczyń i ich
światła oraz pomiarów szerokości najlepiej obrazować
je w miarę możliwości pod kątem insonacji zmierzają-
cym do 90°, w opcji B mode, bez stosowania kolorowego
dopplera. Natomiast do oceny dopplerowskiej, tj. oceny
drożności naczyń oraz kierunku i prędkości przepływu
konieczne jest szukanie takich dostępów, aby kąt osi
naczynia i kierunku insonacji był mniejszy niż 60°,
lepiej aby wynosił poniżej 40°. Im mniejszy kąt dostępu,
tym silniejsze i bardziej jednoznaczne co do kierunku
i prędkości przepływu sygnał dopplerowskiego(7).

Badać należy w różnych fazach oddychania, w zależności
od potrzeb. Często w celu uwidocznienia pewnych obsza-
òw konieczny jest głęboki wdech, jednak przy ocenie
naczynia układu wrotnego oraz żył wątrobowych pomiarów
należy dokonywać w trakcie spokojnego oddychania lub
przy zatrzymanym swobodnym oddechu. Głęboki zatrzy-
many wdech może zwiększać szerokość naczyń wrotnych
i zmieniać w nich przepływ, tłumąc fizjologiczną fazowość
w żyłach wątrobowych.

Następnie oceniamy przepływ w naczyńach kolorowym
dopplerem. Na podstawie uzyskanego sygnału dopple-
rowskiego kodowanego kolorem, lub jego braku, stwier-
dzamy, czy naczynie jest drożne, czy nie, oraz jaki jest
kierunek przepływu, a także czy przepływ odbywa się pe-
nym światłem naczynia, czy są ubytki sygnału, sugerujące
np. skrzepiny. W przypadku wątpliwości co do drożno-
sći, szczególnie wynikających z trudności technicznych,
należy wyłączyć kolorowy doppler i ocenić obecność przepły-
u dopplerem spektralnym, który jest bardziej czuły.
Uzyskanie widma dopplerowskiego pozwala na ocenę
charakteru przepływu (turbulentny, laminarny, żylny, tę-
tniczy nisk- lub wysokosporowy, żylny arterializowany,
żylny z pulsacjami i oscylacjami lub bez nich), pozwala
określać prędkość maksymalną, minimalną, średnią oraz
współczynniki oporu, pulsacji i wartości innych oznaczeń
ilościowych.

Skala prędkości koloru powinna być ustawiana na podsta-
wie aktualnej oceny, na poziomie 1/3–1/2 prędkości mak-
symalnej, a wzmocnienie (gain) na około 75%. W praktyce
wyjątnie skala koloru dla przepływów wrotnych powinna
być ustawiona w zakresie od 15 cm/s do +15 cm/s. Jeśli
przepływy są bardzo wolne, należy obniżyć ją do około
10 cm/s lub niżej.

examined in a systematized way in the supine position with
the arms resting along the body or above the head, and in
the left and right lateral decubitus position. This reduces
the risk of overseeing pathologies, enables better visual-
ization of the structures examined due to movement and
elimination of obstacles, such as intestinal loops. Moreover,
it makes it easier to distinguish artefacts.

If possible, vascular structures should be visualized on
their entire course along the long axis and transversely.
The assessment should begin at their origin and continue
up to their branching or confluence; branches should be
identified.

In order to make the assessment of the vascular walls and
lumina reliable and to enable accurate width measure-
ments, it is best to use the angle of insonation of 90° in the
B-mode without using the color Doppler. In the Doppler
assessment, i.e. to evaluate the patency of the vessels as
well as the direction and velocity of blood flow, it is neces-
sary to find such access sites to obtain the angle between
the vessel axis and the direction of insonation below 60°,
or even below 40°. The lower the access angle, the stronger
and more unequivocal Doppler signal in terms of direction
and velocity of flow(7).

The examination should be conducted in different respi-
ratory phases, depending on the needs. Frequently, deep
inspiration is needed to visualize certain regions. However,
when portal vessels and hepatic veins are assessed, the
measurements should be taken during normal breathing
or while holding normal breath. Holding a deep inspiration
may increase the width of the portal vessels and change
their blood flow thus dampening the physiological phasicity
in the hepatic veins.

Subsequently, blood flow is assessed with the use of the
color Doppler. Based on the color-coded Doppler signal,
or the lack of it, it is possible to determine whether the
vessel is patent or not and what the direction of flow is,
as well as if blood flows in the entire lumen or whether
there are signal defects suggesting, e.g. perimural thrombi.
If there are doubts concerning patency, particularly result-
ing from technical problems, the color Doppler mode
should be turned off and the spectral Doppler, which is
more sensitive, should be used for flow determination. The
Doppler waveform enables the assessment of the character
of flow (turbulent, laminar, venous, arterial, low- or high-
resistance, arterialized venous, venous with pulsations
or oscillations, or without them) as well as the mea-
surements of the maximum, minimum and mean velocities,
resistivity indices, pulsation indices and other quantitative
parameters.

The color velocity scale should be set based on cur-
rent assessment at 1/3–1/2 of the maximum velocity,
with gain at approximately 75%. In practice, initial
color scale for portal flows should be set at -15 cm/s to
+15 cm/s. If flows are very slow, it should be lowered to
10 cm/s or lower.
Skala dopplerów spektralnego powinna być ustawiona tak, aby zapis zajmował 1/2 lub 2/3 skali, co umożliwi dokładną analizę widma i lepszą ocenę parametrów ilościowych. Należy pamiętać również o wartości filtru górnoprzepustowego (wall filter) i w przypadku niskich prędkości przepływu zmniejszyć go z 100 Hz do 50 Hz. Bramkę dopplerowską należy ustawić na 50% szerokości naczynia, w jego centralnej części. Należy rejestrować zapis z co najmniej trzech cykli pracy serca lub przez 2–3 sekundy. Prędkość przepływu w żyłce wrotnej wylicza aparat z wykonanym automatycznie lub manualnie obrysu widma dopplerowskiego, jako wartość średnią z prędkości maksymalnych rejestrowanych w tym czasie. Jest to tzw. prędkość TAM – time averaged max velocity(1,2,6,7).

Prawidłowe obrazy naczyń w USG dopplerowskim

Żyła wrotna (PV – portal vein):
- szerokość, mierzona, podczas swobodnego oddychania, 2 cm przed rozwidleniem, w miejscu skrzyżowania z tętnicą wątrobową – jest zmienna: 6–13 mm, najczęściej 9–11 mm, a przy głębokim wdechu może wzrosnąć do 16 mm (rośnie także po posiłku i zależy od powierzchni ciała);
- przepływ ciągliwy, dowątrobowy, jednofazowy, z niewielkimi oscylacjami widma zależnymi od cyklu serca i fazy oddychowej (ryc. 4);
- prędkość maksymalna: 15–30 cm/s (wzrasta po posiłku – od 50% do 100%, spada po pionizacji i wysiłku)(8);
- prędkość średnia (V_{mean}): 12–20 cm/s, TAM >20 cm/s.

Żyła krzewkowa górna (superior mesenteric vein, SMV):
- średnica: 4–13 mm, mierzona 2 cm przed spływem;
- prędkość maksymalna: 8–25 cm/s;
- prędkość średnia: 12–18 cm/s.

Żyła śledzionowa (splenic vein, SV):
- średnica: 5–10 mm, mierzona 2 cm przed spływem;
- prędkość maksymalna: 9–30 cm/s;
- prędkość średnia: 12–16 cm/s.

SMV i SV w warunkach prawidłowych – wzrost średnicy przy głębokim wdechu o 50–100%(1).

Żyły wątrobowe (hepatic veins, HVs):
- średnica ≤1 cm;
- prędkość: 16–40 cm/s;
- przepływ trójfazowy, związany z cyklem pracy serca – zmianami ciśnien w prawym przedścianku, tzw. typ I (ocena na zatrzynanym normalnym wdechu, głęboki wdech tłumi pulsacje – płaszcza widmo) (ryc. 5).

Żyła główna dolna (inferior vena cava, IVC):
- średnica zazwyczaj poniżej 2 cm, zależna od fazy oddechu;

The spectral Doppler reading should occupy 1/2 or 2/3 of the scale. This enables a thorough analysis of the waveform and improves measurements of quantitative parameters. One should also remember about the wall filter value; it needs to be reduced from 100 Hz to 50 Hz if flow velocities are low. The Doppler gate should be set at 50% of the vessel’s width in its central part. One should register the reading from at least three cardiac cycles or for 2–3 seconds. The flow velocity in the portal vein is calculated from the manual or automatic outline of the Doppler spectrum. It is a mean value of maximum velocities registered at a given time. This is so-called TAM velocity – time averaged max velocity(1,2,6,7).

Normal presentation of vessels in Doppler ultrasonography

Portal vein (PV):
- the width, measured during normal breathing 2 cm above the branching at the site where it crosses the hepatic artery, varies: 6–13 mm, usually 9–11 mm, and when the patient inhales deeply, it may increase to 16 mm (it also increases after a meal and depends on the body surface);
- continuous hepatoportal, monophasic flow with slight oscillations of the waveform that depend on the cardiac cycle and respiratory phases (Fig. 4);
- maximum velocity: 15–30 cm/s (increases after a meal from 50% to 100%, declines after assuming a vertical position and upon physical exertion)(9);
- mean velocity (V_{mean}): 12–20 cm/s, TAM >20 cm/s.

Superior mesenteric vein (SMV):
- diameter: 4–13 mm, measured 2 cm above the confluence;
- maximum velocity: 8–25 cm/s;
- mean velocity: 12–18 cm/s.

Splenic vein (SV):
- diameter: 5–10 mm, measured 2 cm above the confluence;
- maximum velocity: 9–30 cm/s;
- mean velocity: 12–16 cm/s.

In normal conditions, the diameters of SMV and SV increase upon a deep inspiration by 50–100%(1).

Hepatic veins (HVs):
- diameter ≤1 cm;
- velocity: 16–40 cm/s;
- triphasic flow associated with the cardiac cycle – the changes in pressures in the right atrium, so-called type I (it is assessed upon holding normal breath; deep inspiration dampens pulsations – flattens the waveform) (Fig. 5).

Inferior vena cava (IVC):
- the diameter does not usually exceed 2 cm and depends on the respiratory phase;
Ocena zmian patologicznych

Nadciśnienie wrotne w badaniu USG\(^{[2,3,5-8]}\)

- średnica PV: >13 mm, czułość: <50%, swoistość: 90–100%;
- SV i SMV: >11 mm, czułość: 72%, swoistość: 100%;
- wzrost średnicy PV, SMV i SV o <20–40% lub mniej przy głębokim wdechu (parametr bardziej czuły niż pomiar szerokości PV, czułość: 79,7%, swoistość: 100%);
- splenomegalia (dwubiegunowy wymiar: >12 cm, powierzchnia: >45 cm\(^2\), czułość: 93%, swoistość: 36%);
- makroskopowe cechy masywności (guzkowa powierzchnia wątrobna, gruboziarnista echostruktura miąższu, zmniejszony prawy płat, powiększony płat ogoniasty i segmenty lewoboczne, wodobrzusza);
- hepatofugalny przepływ w PV, SMV i SV, swoistość 100%, ale jest rzadko spotykany;
- brak oscylacji widma dopplerowskiego w PV (ryc. 7);

- tri- of tetraphasic flow;
- tends to collapse on expiration and dilate on inspiration.

Hepatic artery (HA) (Fig. 6):

- diameter: 3.5–4.5 mm;
- systolic velocity: 40–80 cm/s;
- diastolic velocity: 15–40 cm/s;
- resistivity index (RI): 0.59–0.8;
- pulsatility index (PI): 1.0–1.5.

The hemodynamic normal ranges are broad. Frequently, normal values reported by one author overlap with values describes as pathological by other authors. It should be in mind that the results of morphological and hemodynamic parameters are imperfect and may depend on technical conditions and possibilities, experience of the examiner and equipment. These values are then approximate. This is confirmed by the author’s own material. There are still no randomized studies with appropriate number of patients\(^{[2,3,5-7]}\).

Assessment of pathological lesions

Portal hypertension in a US examination\(^{[2,3,5-8]}\)

- PV diameter: >13 mm, sensitivity: <50%, specificity: 90–100%;
- SV and SMV: >11 mm, sensitivity: 72%, specificity: 100%
- an increase in PV, SMV and SV diameter by <20–40% or less on deep inspiration (the parameter is more sensitive than PV width measurements, sensitivity: 79.7%, specificity: 100%);
- splenomegaly (size along the long axis >12 cm, area: >45 cm\(^2\), sensitivity: 93%, specificity: 36%);
- macroscopic features of cirrhosis (nodular liver surface, coarse-grained parenchymal echotexture, smaller right lobe, enlarged caudate lobe and left lateral segments, ascites);
- hepatofugal flow in the PV, SMV and SV, specificity 100%; rarely observed;
Stosunki prawidłowe przepływu w wątrobie

- zwolnienie przepływu lub przepływ wahadłowy albo brak przepływu;
- obecność kolisterali wrotno-systemowych, czułość: 83%, swoistość: 100%, poszerzenie żyły pępekowej: >3 mm, poszerzenie żyły żołądkowej lewej powyżej 5 mm, a przy dużym nacieśnieniu – powyżej 7 mm;
- „tętniaki” żylne w PV i SV (ryc. 8 A, B);
- utrata fazowości widma dopplerowskiego w HVs (widmo dwufazowe, tzw. typ II, stwierdzane u około 31% chorzyń z marśkością lub widmo pozawieno fazowości, tzw. typ III, u 18% chorzyń z marśkością) (rcy. 9 A, B);
- RI w tętnicy nerkowej: >0,7 – mierzony wewnętrznerkowo (wskazuje na zespół wątrobowo-nerkowy);
- RI w tętnicy śledziową: >0,63 – mierzony wewnętrzmiąższowo;
- poszerzenie i kręty przebieg tętnicy wrotnej na skutek wzrostu przepływu tętniczego przy naciśnieniu i marśkości.

Hiperkinetyczne nadciśnienie wrotne

- szczególna postać nacieśnienia wrotnego wywołana zwiększeniem objętości krwi w układzie wrotnym w przebiegu przetoki tętniczo-wrotnej (arterio-portal fistula, APF);
- no undulation of the Doppler waveform in the PV (Fig. 7);
- slower or oscillating flow or no flow;
- presence of portosystemic collateral vessels, sensitivity: 83%, specificity: 100%, dilated umbilical vein >3 mm, dilated left gastric vein >5 mm and in considerable hypertension – above 7 mm;
- venous “aneurysms” in the PV and SV (Fig. 8 A, B);
- loss of Doppler waveform phasicity in the HVs (biphasic waveform, so-called type II, observed in approximately 31% of patients with cirrhosis or monophasic, type III, waveform observed in 18% of cirrhotic patients) (Fig. 9 A, B);
- RI in the renal artery >0.7, measured intrarenally (may indicate hepatorenal syndrome);
- RI in the splenic artery >0.63, measured in the parenchyma;
- dilated and tortuous hepatic artery due to an increase in arterial flow in hypertension and cirrhosis.

Hyperkinetic portal hypertension

- a particular form of portal hypertension caused by increased blood volume in the portal system in the course of arterioportal fistula (APF);
• APF can be intrahepatic or extrahepatic;
• PV flow is always hepatopetal with decreased velocity in intrahepatic fistulae and increased velocity in extrahepatic ones;
• in extrahepatic APF, blood flow in both PV branches is hepatopetal;
• in intrahepatic APF, blood flow in the PV branch that drains the fistula is always hepatofugal, and in the other branch, it is hepatopetal;
• intrahepatic fistulae are focal fluid areas with the dilated draining PV branch and dilated supplying artery with rapid, turbulent and low-resistance flow;
• blood flow in the venous bed is pulsatile, low-resistance or biphasic, consistent with the pulse (so-called arterialization);

Ryc. 9 A. Dwufazowy przepływ w HV – typ II. B. Jednofazowy przepływ w HV – typ III
Fig. 9 A. Biphasic flow in the HV – type II. B. Monophasic flow in the HV – type III

Ryc. 10 A. Pulsacyjne widma przepływu w PV w kształcie garbów – CTS. B. Poszerzenie HVs – CTS. C. Pogłębione pulsacje z żyle wątrobowej, z odwróconym zalamkiem S – CTS
Fig. 10 A. Pulsatile, hump-shaped flow waveforms in the PV – CTS. B. Dilation of the HVs – CTS. C. Deeper pulsations in the hepatic vein with inverted S wave – CTS
Nadięsienie wrotne w przebiegu niewydolności serca (cardiogenic transsinusoidal shunting, CTS)\(^9\)

- widmo w PV – pulsaycynie, o kształcie garbów, podatne na zmiany ciśnień w prawym przedśmiocie serca (w tym mechanizmie dochodzi do peridyołu cznego wzrostu ciśnienia po stronie wrotnej);
- przepływ hepatotepentalny, ze wstecznymi, periodycznymi załamkami hepatofugalnymi lub bez nich (ryc. 10 A);
- HVs i IVC poszerzone, również o pogłębionej pulsaycyności (ryc. 10 B, C).

Niedrożność żyły wrotnej w badaniu USG

Najczęstszą przyczyną jest zakrzepica (portal vein thrombosis, PVT) lub inwazja nowotworowa. Czułość kolorowego dopplera w wykrywaniu zakrzepicy 93%, swoistość 99%\(^3\).

- ostra zakrzepica:
 - hipoechoogeniczne lub bezechoowe skrzepliny w świetle żyły;
 - zatarcie ścian;
 - poszerzenie PV;
 - brak przepływu (ryc. 11 A);
 - zwolniony lub przyspieszony przepływ w miejscu zwiężenia lub odwrócony przepływ – przy niepełnej zakrzepicy (ryc. 11 B) (ważna odpowiednia korekcja ustawień dopplerowskich – do niskich przepływów i kąt <60º; w przypadku wątpliwości można ocenić po posiłku albo z zastosowaniem CEUS);
- przewlekła zakrzepica:
 - PV często wąska i niewidoczna, hiperechoogeniczna, zwłókonia;
 - tzw. przebudowa jamista – liczne kręte, drobne naczynia obce o przepływie dowratrowym, przebiegające w więźadle wątrobowo-dwunastniczynym, otaczające niedrożną zwłókonia PV, rozwija się po 6–20 dniach po PVT i wraz z hiperperfuzją tętniczą zapewnia dość dobre ukrwienie wątroby\(^6\);
- inwazja nowotworowa:
 - poszerzenie PV do 20–25 mm zazwyczaj sugeruje wypełnienie światła masami nowotworowymi, mogą być obce naczynia tętnicze w obrębie wrastających do światła naczyń mas tkankowych (ryc. 11 C).

Zespół Budd-Chiariego w badaniu USG\(^3,5–7\)

Rzadko spotykany stan upośledzenia odpływu żylnego z wątroby, objawiający się bólem brzucha, maswnym, opornym na leczenie wodobrzusznym. Pierwotny najczęściej powstaje w wyniku zakrzepicy, wtórny w wyniku inwazji.

Portal hypertension in the course of cardiac failure (cardiogenic transsinusoidal shunting, CTS)\(^9\)

- the PV waveform – pulsatile, hump-shaped and susceptible to pressure changes in the right atrium (in this mechanism, portal pressure raises periodically);
- hepatofugal flow with inverted, periodical hepatofugal waves or without them (Fig. 10 A);
- dilated HVs and IVC, also with increased pulsation (Fig. 10 B, C).

Portal vein obstruction in a US examination

Portal vein thrombosis (PVT) or neoplastic invasion are the most common causes. The sensitivity of the color Doppler in detecting thrombosis is 93% and specificity – 99%\(^3\).

- acute thrombosis:
 - hypoechoic or anechoic clots in the venous lumen;
 - blurred wall;
 - PV dilation;
 - absence of flow (Fig. 11 A);
 - slowed or accelerated flow at the stenosed site or inverted flow (in partial thrombosis) (Fig. 11 B). It is important to adjust Doppler settings for low flows and to the angle <60º; in the event of doubts, the examination can be repeated after a meal, or a CEUS should be performed;

- chronic thrombosis:
 - the PV is often narrow and invisible, hyperechoic and fibrotic;
 - so-called cavernous transformation – numerous tortuous slight collateral vessels with hepatofugal flow running in the hepatoduodenal ligament; they surround the occluded and fibrotic PV; it develops after 6–20 days following PVT and, together with arterial hyperperfusion, ensures good blood supply to the liver\(^6\);

- neoplastic invasion:
 - the PV dilated to 20–25 mm usually suggests that the lumina are filled with neoplastic masses;
 - arterial vessels can develop within the tissue masses growing into the vascular lumina (Fig. 11 C).

Budd-Chiari syndrome in a US examination\(^3,5–7\)

This rarely observed compromised venous confluence is manifested with abdominal pain and massive, treatment-resistant ascites. As a primary syndrome, it usually develops due to thrombosis; as a secondary syndrome – due to neoplastic invasion or external
nowotworowej lub ucisku z zewnątrz. Może dotyczyć tylko żył wątrobowych lub żyły głównej dolnej, albo obu.

Ostry zespół Budd-Chiariego:
- HVs poszerzone, wypełnione w całości lub częściowo przez hipoechoiniczną skrzepinę;
- HVs mogą być niewidoczne, bez przepływu;
- wątroba powiększona, obrzmiała, miąższ hipoechoinicny lub heterogeniczny, niejednorodny w wyniku obrzęku, zmian krwotocznego i zaburzeń perfuzji;
- segment 1 niepowiększony lub nieznacznie powiększony;
- zwolnienie przepływu w PV, ciągi przepływ bez oscylacji widma dopplerowskiego, możliwy przepływ odwrotowy;

Przewlekły zespół Budda-Chiariego:
- obraz kliniczny zależy od ciężkości uszkodzenia miąższu wątroby;
- znaczny, kompensacyjny przerost segmentu 1 z poszerzeniem do 3 mm jego żyły (w prawidłowych warunkach niewidocznych);
- zniekształcenie wątroby, zanik części bocznych obu płatów wątroby, przerost segmentów centralnych, tj. 8 i 4a, odcinkowe pseudoguzowate przerosty miąższu, wzrost echogenicznego miąższu włókien mięśniowych wątroby;
- żyły wątrobowe niewidoczne, niedrożne lub częściowo drożne ze zwężeniami;
- compression. It may be seen only in the hepatic veins or in the inferior vena cava, or in both of these vessels.

Acute Budd–Chiari syndrome:
- the HVs are dilated, partially or completely filled by hypoechoic clots;
- the HVs can be invisible with no signs of flow;
- the liver is enlarged, edematous; the parenchyma is hypoechoic or heterogeneous due to edema, hemorrhagic lesions and perfusion disorders;
- segment 1 is not enlarged or is slightly enlarged;
- PV flow is slower and continuous with no Doppler waveform oscillation; hepatofugal flow is possible;

Chronic Budd–Chiari syndrome:
- the clinical presentation depends on the severity of hepatic parenchyma damage;
- considerable compensatory hypertrophy of segment 1 with its veins (invisible in normal conditions) dilated to 3 mm;
- liver deformity, atrophy of the lateral aspects of both lobes, hypertrophy of the central segments, i.e. 8 and 4a, fragmentary pseudo-nodular hypertrophy of the parenchyma, increased echogenicity of the parenchyma in the fibrotic portions of the liver;
- the hepatic veins are invisible, occluded or partially patent with stenoses;
Podobne objawy kliniczne do zespołu Budda-Chiariowego występują w niedrożności końcowych żyłek wewnątrz-wątrobowych (veno-occlusive disease, VOD) u pacjentów po radioterapii, chemioterapii, po przeszczepieniu szpiku Budda-Chiariego oraz w przypadku stosowania niektórych lekówulturcznych (śmiertelne, natomiast przepływy w PV mogą być zwolnione, odwrócony lub wahadłowy. Może wystąpić zakrzepica PV.

Ultrasound assessment of TIPS (transjugular intrahepatic portosystemic shunt)\(^{2,5–7}\)

TIPS is conducted by creating an anastomosis between the hepatic vein and branches of the portal vein with the use of expandable metal stents (8–12 mm wide). It is usually conducted to connect the right hepatic vein with the right branch of the portal vein. In the liver parenchyma, the ultrasound examination reveals a hyperchoic tubular structure that is reticular or solid (in coated stents) with a gentle arching course.

Normal hemodynamic parameters:

- the flow in the stent is slightly pulsatile, turbulent and rapid with the velocity of at least 50–60 cm/s (usually 90–120 cm/s). The velocities of 100–200 cm/s can also be observed (Fig. 12 A);
- the flow velocities measured at the portal end, in the stent and at the venous end are similar;
- PV and SV flow is hepatopetal with the velocity of 35–45 cm/s; hepatofugal flow can be observed in the left branch of the portal vein.

Abnormal hemodynamic parameters:

- velocity >220 cm/s, highly turbulent;
- velocity changes within the stent >100 cm/s;
- velocity drops in two consecutive examinations by >50 cm/s;
- visible stenosis;
- stent flow velocity <50 cm/s;
- continuous, pulsation-free flow;
- decrease in the velocity in the PV compared to the value obtained prior to TIPS;
- development of hepatofugal or oscillating flow in the PV and SV;
- absence of flow (Fig. 12 B);
- recurrence of esophageal varices and development of ascites.

The aim of a US examination is to qualify patients for? TIPS, assess the position, patency and flow parameters after the procedure and monitor the patient over time in order to identify stenosis before recurrence of portal hypertension symptoms.
Zastosowanie USG w diagnoście żylaków przełyku (EV – esophageal varices)\(^{(10)}\)

Podejmowane są próby znalezienia metod mniej inwazyjnych niż pomiar HVPG i endoskopia dla oceny możliwości występowania żylaków i krwawienia z nich. Mimo wstępnych, obiegujących doniesień, żadne z oznaczanych parametrów ultrasonograficznych nie są powszechnie akceptowanym nieinwazyjnym algorytmem do monitorowania EV.

Chociaż jest większe prawdopodobieństwo występowania żylaków, gdy:

- szerokość żyły wrotnej jest >13 mm;
- współczynnik oporu w tętnicy nerkowej wynosi >0,7.

Natomiast ryzyko krwawienia z żylaków wznosi się, gdy stwierdza się:

- splenomegalicę >15 cm;
- indeks zastoju >0,154 cm/s (congestion index, CI – stosunek powierzchni przekroju PV do średniej prędkości – norma do 0,07 cm/s); czułość 70%, swoistość 64,9%;
- PHI >2,08 (Portal Hypertensive Index = HARI × 0,69 × SARI × 0,87/PVVmean);
- obecność nowych kółaterali w kolejnym badaniu.

Ważniejsze wydaje się monitorowanie wyżej wymienionych parametrów niż interpretacja poszczególnych pomiarów.

Ocena ultrasonograficzna naczyń wątroby po przeszczepieniu (orthotopic liver transplantation, OLTx)\(^{(5)}\)

Oceniamy drożność tętnicy, żyły wrotnej i żył wątrobowych oraz funkcjonowanie zespołów naczyniowych. Najważniejsza jest ocena drożności tętnicy.

HA (norma):

- przepływ niskooporowy, RI 0,5–0,8;
- czas akceleracji (AT) <80 ms.

HAS (hepatic artery stenosis) – zwężenie tętnicy wątrobowej:

- wzrost prędkości, PSV >200 cm/s oraz turbulencje w miejscu zwężenia (ryc. 13 A);
- RI <0,5 – distalnie od miejsca zwężenia (ryc. 13 B);
- AT >80 ms – distalnie od miejsca zwężenia (ryc. 13 C).

HAT (hepatic artery thrombosis) – zakrzepica tętnicy wątrobowej:

- brak przepływu w widocznej tętnicy;
- brak sygnału przepływu w okolic wniku i śródwątrobowo.

HAP (hepatic artery pseudoaneurysm) – pseudotętniak tętnicy wątrobowej:

Application of a US examination for diagnosing esophageal varices (EV)\(^{(10)}\)

It is attempted to find less invasive methods for diagnosing varices and variceal bleeding than HVPG and endoscopy. Despite initial promising reports, none of the ultrasound parameters have become commonly acknowledged in a non-invasive algorithm to monitor EV.

Nevertheless, varices are more likely to develop if:

- the diameter of the portal vein is >13 mm;
- the resistivity index in the renal artery is >0.7.

The risk of variceal bleeding is greater when the following are observed:

- splenomegaly >15 cm;
- congestion index (CI) >0.154 cm/s (ratio of the PV cross-sectional area to mean velocity – upper limit: 0.07 cm/s); sensitivity 70% and specificity 64.9%;
- PHI >2.08 (Portal Hypertensive Index = HARI × 0.69 × SARI × 0.87/PVVmean);
- presence of new collateral vessels in the subsequent examination.

It seems that monitoring of the aforementioned parameters is more important than the interpretation of individual measurements.

Ultrasound assessment of hepatic vessels after orthotopic liver transplantation (OLTx)\(^{(5)}\)

One should assess the patency of the artery, portal vein and hepatic veins as well as functioning of the vascular anastomoses. The most important parameter is arterial patency.

HA (normal values):

- low-resistance flow, RI 0.5–0.8;
- acceleration time (AT) <80 ms.

HAS (hepatic artery stenosis):

- an increase in velocity, PSV >200 cm/s and turbulence at the site of stenosis (Fig. 13 A);
- RI <0.5 – distally to the site of stenosis (Fig. 13 B);
- AT >80 ms – distally to the site of stenosis (Fig. 13 C).

HAT (hepatic artery thrombosis):

- absence of flow in the visible artery;
- absence of the flow signal in the region of the hilum and intrahepatically.

HAP (hepatic artery pseudoaneurysm):
• it not always develops at the site of an anastomosis (it may develop due to fungal infection of percutaneous intervention);
• rupture or fistula to the bile ducts and portal vein are possible.

PV (normal value):
• hepatopetal turbulent flow with the mean velocity of 40 cm/s.

PVS (portal vein stenosis) (Fig. 14 A, B):
• severe turbulence and increased flow velocity to over 100 cm/s, or its 3–4-fold increase.

Ryc. 12 A. TIPS – przepływ prawidłowy. B. TIPS – niedrożny – brak przepływu w kolorowym dopplerze
Fig. 12 A. TIPS – normal flow. B. TIPS – occlusion, the absence of flow in the color Doppler

Ryc. 13 A. HAS – zapis widma dopplerowskiego w zwężeniu (PSV 226 cm/s). B. HAS – obniżony RI (0.37) – dystalnie od zwężenia. C. HAS – wydłużony czas akceleracji (104 ms) – dystalnie od zwężenia
Fig. 13 A. HAS – Doppler waveform in the stenosed area (PSV 226 cm/s). B. HAS – decreased RI (0.37) – distally to the stenosed area. C. HAS – prolonged acceleration time (104 ms) – distally to the stenosed area
PVT:
- absence of flow, thrombotic masses in the vascular lumen;
- in partial thrombosis, flow is observed in a part of the lumen.

Disturbance of venous confluence at the level of anastomosis: stenosis or twisting of the IVC:
- severe turbulence and 3–4-fold increase of flow velocity (Fig. 15);
- flow slower than 15 cm/s in the HVs, absence of the Doppler waveform phasicity.

Test description

The assessment of the portal system and hepatic vessels is an indispensable part of an abdominal ultrasound examination.

All parenchymal abdominal organs and the bile ducts with gallbladder must be described. If ascites is present, its grade must be specified. In the case of the liver, one must describe its size, outlines and echostructure (to assess possible parenchymal damage, cirrhosis), possible focal lesions with their differentiation and their relationship with vascular structures (hepatocellular carcinoma may cause infiltration and thrombosis of the portal vessels or, more rarely, hepatic veins).

The spleen and pancreas should be described in a similar fashion (inflammatory tumors may cause infiltration and...
oraz SMV, a w konsekwencji regionalne nadciśnienie wrotne). Następnie opisujemy żyły wątrobowe: prawą, środkową, lewą, ich spływy, ewentualne żyły dodatkowe, ich szerokość, drożność i charakter przepływu – fazowość. Podobnej ocenie podlega żyła główna dolna.

Dalej oceniamy żyłę wrotną i jej gałęzie płatowe, sektorowe, segmentalne: ich szerokość, światło, drożność, kierunek przepływu, charakter widma dopplerowskiego, obecność lub brak fiziologicznych zmian w przepływie i szerokości naczyń pod wpływem fazy oddechowej i cyklu serca. Podobnej ocenie podlegają: żyła śledzionowa i kreżkowa górna, a w wybranych przypadkach – kiedy jest dostępna ocenie – żyła kreżkowa dolna.

Następnie poszukujemy naczyń krążenia obocznego wrotno-systemowego, w warunkach fiziologicznych niewidocznym w USG. W przypadkach nadciśnienia wrotnego najczęściej opisywane są spłynie żyłne we wnęce śledziony, przy krzywiznie mniejszej żołądka, poszerzona żyła żołądkowa lewa lub poszerzona udrożniona żyła-peprowka. Należy ocenić ich szerokość, drożność i w miarę możliwości kierunk i prędkość przepływu (tu trudności może sprawiać kręty przebieg naczyń).

 Ważna jest ocena naczyń tętniczych: tętnicy wątrobowej, tętnicy śledzionowej i kreżkowej górnej – charakteru widma dopplerowskiego, prędkości, współczynników oporowych: RI i PI – są to parametry pomocnicze w oce- nie układu wrotnego, ale również podstawowe i istotne w diagnozowaniu ewentualnych przekot tętnico-wrotnych i zastępczej hiperperfuzji tętniczej w wątrobie, przy spadku perfuzji wrotnej występującej w marości wątroby lub zakrzeszyc żyły wrotnej i/lub jej gałęzi płatowych.

Dokumentacja

Badanie można dokumentować na nośnikach cyfrowych jako zapis wideo lub pojedyncze obrazy zatrzymane. Jednak bardziej powszechne i wystarczające są zapisy obrazów „zamrożonych” na printach czarno-białych lub kolorowych.

Zakres dokumentacji zależy od zastanej sytuacji anatomicz-nej, przyczyn nadciśnienia wrotnego i zaawansowania zmian.

Należy udokumentować:

- cechy przebudowy marskiej wątroby, ewentualne guzy wątroby, wielkość śledziony, wodobrzusze;
- obraz żył wątrobowych z pomiarami szerokości oraz zapis widma dopplerowskiego;
- szerokość PV, SV, SMV, przy swobodnym oddychaniu lub zatrzymanym oddechu oraz przy głębokim oddychaniu;
- zapis widma dopplerowskiego z pomiarami prędkości średniej w PV, SV, SMV i ewentualnie w wybranych naczyńach obocznych;
- obraz 2D skrzelpliny w ' 'składu wrotnego uzupełniony o obrazy w opcji kolorowego doplera lub dop-pler mocy;

thrombosis of the SV and SMV and consequently, lead to regional portal hypertension). Subsequently, hepatic veins should be assessed: the right, middle and left one as well as their confluence, possible accessory veins, their width, patency and character of flow – phasicity. The assessment of the inferior vena cava is similar.

Subsequently, the portal vein with its lobar, sectorial and segmental branches must be assessed in terms of: their width, lumina, patency, direction of blood flow, character of the Doppler waveform and the presence or absence of physiological changes in flow and width of the vessels depending on the respiratory and cardiac cycles. A similar approach is conducted for the splenic, superior and inferior mesenteric veins if it is accessible for evaluation.

Next, one should search for collateral vessels or portosys-temic vessels, which in physiological conditions are not visible in ultrasonography. In cases of portal hypertension, the most commonly assessed vessels are: venous plexuses in the splenic hilum and at the lesser curvature of the stom-ach, dilated left gastric vein or dilated patent umbilical vein. Their evaluation involves their width, patency and, if possible, the direction and velocity of blood flow (the tortu-ous course of the veins makes the examination difficult).

It is necessary to assess arteries (hepatic artery, splenic artery and superior mesenteric artery), the character of Doppler waveform, flow velocity and resistivity indices: RI and PI. They can help assess the portal system, but they are also basic and essential parameters in diagnosing arteriop-ortal fistulae and compensatory arterial hyperperfusion in the liver when portal perfusion is reduced due to liver cirrhosis or thrombosis of the portal vein and/or its lobar branches.

Documentation

The examination can be documented either electronically as video recordings or in single “frozen” images (black and white or in color). The latter are more common and sufficient.

The scope of documentation depends on the anatomic situa-tion, causes of portal hypertension and progression of lesions.

The following must be documented:

- signs of cirrhotic transformation of the liver, possible liver tumors, size of the spleen and ascites;
- image of the hepatic veins, together with their width mea-surements, and of the Doppler waveform;
- PV, SV and SMV width at normal respiration or when holding breath, and at deep respiration;
- recording of the Doppler waveform with mean velocities in the PV, SV and SMV and possibly also in the selected collateral vessels;
- 2D image of thrombi in the veins of the portal system sup-plemented with color Doppler or power Doppler images;
- recording of the Doppler waveform from the HA, SA and intrarenal arteries (if cirrhosis and hepatorenal syn-drome are suspected);
Podsumowanie

Ultrasonografia dopplerowska jest powszechnie stosowaną, uznawaną, nieinwazyjną metodą diagnozowania narzędzi jamy brzusznej i układu wrotnego. Jest badaniem pierwszego wyboru wśród technik obrazowych w ocenie cech nadciśnienia wrotnego oraz zaawansowania zmian anatomicznych w jego przebiegu. Nie pozwala na ocenę ciśnien w układzie wrotnym, ich gradientu, a tym samym stopnia nadciśnienia wrotnego. USG nie daje też informacji na temat zaawansowania włóknienia wątroby (to domena elastografii), które koresponduje z zaawansowaniem klinicznym marskości i stopniem nadciśnienia wrotnego oraz ryzykiem krawawienia z źyłek przełyku. Najważniejszą rolę w tej ocenie odgrywa tu endoskopia.

W rękach doświadczonego lekarza ultrasonografia dopplerowska jest metodą o dużej skuteczności klinicznej, bogato opisaną w piśmiennictwie z lat 80. i 90. ubiegłego wieku, a także w obecnych doniesieniach. Jest skutecznym skróry uwy稼ywanym cech marskości, zmian nowotworowych wątroby, ocenie śledziony i wodobrzuśa. Ma dużą wartość w ocenie morfologicznej naczyń wrotnych i żył wątrobowych oraz w ocenie ich drożności, kierunku przepływu i podstawowych parametrów hemodynamicznych. Służy do diagnostyki wstępnej, monitorowania poznanych patologii, kwalifikacji pacjentów do TIPS i OLTx oraz monitorowania efektów klinicznych.

Conflict of interest

The authors do not report any financial or personal links with other persons or organizations, which might negatively affect the content of this publication and claim authorship rights to this publication.

Piśmiennictwo / References

1. Hennerici M, Neuerburg-Heusler D: Vascular Diagnosis with Ultrasound. Thieme, Stuttgart & New York 1998.
2. Berzigotti A, Piscaglia F, and the EFSUMB Education and Professional Standard Committee: Clinical recommendation for the performance and reporting of ultrasound examination for portal hypertension, EF-SUMB guidelines, 2013.
3. Middleton WD, Robinson KA: Ultrasound assessment of hepatic vasculature. In: Pellerito JS, Polak JF (eds.): Introduction to vascular ultrasound. Elsevier Saunders, Philadelphia 2012: 495–515.
4. Krawczyk M (ed.): Chirurgia dróg żołądkowych i wątroby. Wydawnictwo Lekarskie PZWL, Warszawa 2013.
5. Ahuja AT (ed.): Diagnostic imaging ultrasound. Amirsys 2007.
6. Harvey CJ, Lim AKP: Vascular disorders of the liver. In: Allan PL, Baxter GM, Weston MJ (eds.): Clinical Ultrasound. Vol. 1, Elsevier 2011.
7. Malek G, Elwetowski M: Wątroba, układ wrotny. In: Malek G (eds.): Ultrasonografia Dopplerowska. Zastosowanie kliniczne. Medipage, Warszawa 2003.
8. Patriquin H, Lafortune M, Burns PN, Dauzat M: Duplex Doppler examination in portal hypertension: technique and anatomy. AJR Am J Roentgenol 1987; 149: 71–76.
9. Meng Q, Lu L, Yang B, Fu N, Lu G: Fluctuating portal velocity tracing with rhytmicity: ultrasonic differential diagnosis and clinical significance. Radiol Oncol 2012; 46: 198–206.
10. Bintintan A, Chira RI, Mireea PA: Non-invasive ultrasound-based diagnosis and staging of esophageal varices in liver cirrhosis. A systematic review of the literature published in the third millennium. Med Ultrason 2013; 15: 116–124.

• zapis widma dopplerowskiego z HA, SA i tętnic wewnętrznerkowych (w przypadku marskości i podejrzenia zespołu wątrobowo-nerkowego);
• zapis morfologiczny, w kolorowym dopplerze i spektralnym w stentach (pacjenci po TIPS);
• zapisy przepływów lub ich braku w naczyniach: PV, HA i HVs u pacjentów po transplantacji wątroby.

• color and spectral Doppler images of morphology in stents (patients after TIPS);
• recording of flows of absence of flow in the PV, HA and HVs in patients with liver transplants.

Summary

Doppler ultrasonography is a commonly used, well-established and non-invasive method to assess abdominal organs and the portal system. It is the first choice among imaging modalities for evaluating the signs of portal hypertension and progression of anatomic changes in the course of this disease. It does not enable assessment of pressures in the portal system or their gradient and thus the grade of portal hypertension cannot be determined. Moreover, ultrasonography provides no information about the progression of liver fibrosis (this can be done with elastography) that corresponds to clinical advancement of cirrhosis and grade of portal hypertension and also with the risk of bleeding from esophageal varices. Endoscopy plays a major role in such cases.

In the hands of an experienced physician, Doppler ultrasonography is a modality of high clinical efficacy, which is abundantly discussed in the literature from the 1980s and 1990s as well as in contemporary reports. It is an effective tool in detecting the signs of cirrhosis and neoplastic lesions of the liver as well as in the evaluation of the spleen and ascites. It is valuable in morphological presentation of the portal vessels and hepatic veins as well as in evaluating their patency, direction of blood flow and basic hemodynamic parameters. It is used for initial diagnosis, monitoring of diagnosed pathologies, qualifying patients for TIPS and OLTx and monitoring of clinical effects of the treatment.