Cancer-derived exosomal miR-7641 promotes breast cancer progression and metastasis

Songjie Shen
Yu Song
Bin Zhao
Yali Xu
Xinyu Ren
Yidong Zhou
Qiang Sun

Video Byte

Keywords: breast cancer, exosome, microRNA, tumor progression, metastasis, cancer, miR-7641, Cell Communication and Signaling

Posted Date: October 16th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-978663/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. 
Read Full License
Abstract

Breast cancer is the most commonly diagnosed cancer in women worldwide. Despite better treatments, metastatic breast cancer remains incurable and is a major cause of cancer-related death. Cancer progression and metastasis involve multiple steps that are dependent on intercellular communication, but much remains to be understood about this process. A recent study examined one aspect of cancer cell communication: exosomes carrying microRNA (miRNA) cargoes. Researchers isolated exosomes from human breast cancer cell lines. Using cell migration and invasion assays, they found that the tumor-promoting capacity of exosomes was positively correlated to their cells of origin. The most differentially expressed miRNA was miR-7641, which could promote tumor cell progression and metastasis. Exosomal miR-7641 could promote tumor growth in a mouse model, and its levels were elevated in the plasma of patients with distant metastasis. Bioinformatics analysis of breast cancer patient data connected miR-7641 with breast cancer survival. Future studies will focus on the mechanisms by which miR-7641 regulates downstream signaling pathways for intercellular communication, but the results suggest that miR-7641 is an important cancer exosome cargo, promoting tumor progression and metastasis, thus positioning exosomal miR-7641 as a promising biomarker and potential candidate for breast cancer treatment.