Efficacy of Exogenous Calcium Applications for Reducing Upper Leaf Necrosis in Lilium ‘Star Gazer’

Yao-Chien Chang
Department of Horticulture, Cornell University, Ithaca, NY 14853-5904

Karen Grace-Martin
Office of Statistical Consulting, Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-5904

William B. Miller
Department of Horticulture, Cornell University, Ithaca, NY 14853-5904

Abstract. Upper leaf necrosis (ULN) on Lilium ‘Star Gazer’ is a calcium deficiency disorder. In this study, we evaluated the efficacy of foliar Ca sprays and bulb Ca dipping on reducing ULN. Necrosis severity of a single leaf was determined by an index from 0 (healthy) to 5, based on symptom progression and necrosed leaf area. Single leaf severity was then summed for all leaves to yield a whole-plant severity rating. Single daily applications of 25 mm (1%) calcium chloride or calcium nitrate sprays for 14 days was effective even at concentrations as high as 400 mm (2%) or 272 mm (4%) calcium chloride did not reduce tipburn on Asiatic hybrid lily ‘Pirate’ (Berghoef, 1986).

The incidence of ULN occurrence was defined as the percentage of plants that had any level of symptom expression. When the environment is not conducive to ULN occurrence, incidence is a good enough parameter to distinguish differences between treatments. However, in ULN-favorable environments, ULN occurrence is widespread, but plants exhibit a large variation in severity. Therefore, a more detailed parameter, ‘ULN severity,’ is needed, in order to further refine differences.

Received for publication 5 May 2003. Accepted for publication 23 Nov. 2003. This paper is mainly based on a PhD dissertation submitted by Y.C. Chang. Use of trade names does not imply endorsement of named products nor criticism of similar ones not named. We thank Timothy L. Setter, Leon V. Kochian, and Gary Legnam of Cornell Univ. for their sound advice on this project. This research was funded in part through a Specific Cooperative Agreement between the USDA/ARS Plant Protection Research Unit and the Cornell Dept. of Plant Pathology, Ithaca, N.Y. (SCA # 58-1907-0-035) funded by the USDA/ARS as part of the Floriculture and Nursery Research Initiative. We gratefully acknowledge the financial and material support from the Ministry of Education, Taiwan, the Fred C. Gloeckner Foundation, the Kenneth Post–Herman Schenkel Memorial Council, and the Royal Dutch Wholesalers’ Association for Flowerbulbs and Nursery Stock.

1 Former Graduate Research Assistant; currently Postdoctoral Research Associate.
2 Statistical Consultant.
3 Professor; to whom reprint requests should be addressed. E-mail: wbm8@cornell.edu

272
among treatments. An index from 0 to 5, based on symptom progression and necrosed leaf area, was used to describe the severity of necrosis on individual leaves: 0 = no visible necrosis symptoms; 1 = chlorotic spots; 2 = curled leaf margin; 3 = marginal necrosis; 4 = dead leaf tip; and 5 > 50% of the leaf area was necrotic. We have previously demonstrated that leaf Ca concentration is negatively correlated with necrosed leaf area (i.e., single leaf severity index) (Chang, 2002). The severities of the individual leaves were then summed to determine whole-plant severity. Since a ULN-affected plant may have only one leaf with very slight symptoms, or have many leaves with severe necrosis, in this study whole-plant severity is a better descriptor than necrosis incidence when the environment is favorable to ULN. When whole-plant severity was < 5, the symptoms were very light, and would not draw the consumers’ attention. This index system was also adapted to describe the phytotoxicity symptoms of leaf tip yellowing caused by high concentrations of Ca salts.

Foliar sprays of calcium salts. Three experiments were conducted to determine the effect of foliar Ca sprays. Two (reagent grade) Ca salts, calcium chloride (CaCl₂·2H₂O) and calcium nitrate (Ca(NO₃)₂·4H₂O), were used. Concentrations of 0, 10, 50, 100, and 150 mm of calcium chloride or calcium nitrate were used, with a total of five sprays applied at 15, 18, 22, 25, and 29 d after planting (DAP). Each treatment had 18 single-plant replicates in a completely randomized design (CRD). Experiment 2 began on 4 Dec.; the average bulb fresh weight was 66.3 ± 0.4 g. Five concentrations, 0, 10, 50, 100, and 150 mm of calcium chloride or calcium nitrate were used, with a total of five sprays applied at 15, 18, 22, 25, and 29 d after planting (DAP). Each treatment had 18 single-plant replicates in a completely randomized design (CRD). Experiment 2 began on 27 Jan., using bulbs with an average fresh weight of 69.2 ± 0.5 g. Calcium chloride and calcium nitrate were used at concentrations of 0, 25, 50, 100, and 150 mm and application frequency was once a day. Besides spraying to runoff, extra Ca solution, ±5 mL, was sprayed directly toward the shoot apex in order to have the solution reach young, folded leaves. Each treatment had 18 single-plant replicates in a CRD. A total of 14 sprays was applied daily from 22 to 35 DAP.

Experiment 3 began 30 May with bulbs weighing 65.5 ± 0.5 g. Treatments included 0, 12.5, 25, 50 mm calcium chloride and calcium nitrate with extra spraying into the apex (as described above), and 50 mm without the extra directed spray. Application frequency was once a day for 14 d (30–43 DAP). Each treatment had 18 single-plant replicates in a CRD.

Calcium chloride bulb dips. Two experiments were conducted to evaluate the efficacy of bulb Ca dips for preventing upper leaf necrosis. On 18 Oct., uniform bulbs (61.8 ± 0.4 g) were randomly selected and weighed (a process taking 4 h at room temperature). Bulbs were then dipped in calcium chloride solution for 15 min, with concentrations of 0, 25, 50, 100, 200, and 400 mm. The dipped bulbs were allowed to dry at 3°C overnight and planted on 19 Oct. In the second experiment, three Ca concentrations (0, 200, and 400 mm from calcium chloride) were tested, with dipping times of 0, 1.4, or 16 h. Bulbs weighing 68.7 ± 0.4 g were randomly selected and divided into seven groups to receive treatments, a process taking ≥ 7 h and causing a water loss of 3 g per bulb (on average, based on 56 bulbs). After dipping, excess solution was allowed to runoff for 30 min; then bulbs were weighed. Solution absorption per bulb was calculated as: fresh weight after dipping – initial fresh weight + 3 g (for water loss during the process). Dipping was conducted 9 July and bulbs planted 10 July.

In both experiments, a CRD was used. There were 32 single-plant replicates per treatment for the first experiment, and 28 for the second. Distilled water was used to make the solutions and dipping time was used to make the solutions and dipping time was used as a wetting agent.

Statistical analysis. All statistical tests were conducted using SAS version 8.01 (SAS Institute, Cary, N.C.). Incidence of ULN, calcium phytotoxicity, and lethal calcium damage were tested using the chi-square test of independence, and ULN severity was tested using one-way analysis of variance (ANOVA). Duncan’s multiple range test was used for differences among treatment means. Because the levels of the independent variables (calcium concentration and dipping time) are in fact numerical, we additionally tested for trends in ULN severity and phytotoxicity severity using linear regression. Results are only presented for phytotoxicity as no trends were evident for ULN severity (all R² ≤ 0.20).

Results

Effect of foliar calcium sprays. In the first foliar Ca spray experiment, with a spray frequency of twice a week, no effects on ULN were observed, even when the Ca concentration was as high as 150 mm (Table 1). In the second and third experiments, with 14 daily sprays, both calcium salts were effective for reducing the degree of symptom expression (Tables 2 and 3). Experiment 2 was done in a drier greenhouse and the plants were lightly affected by ULN. When ULN was light, both calcium chloride and calcium nitrate were able to reduce ULN incidence in a concentration–dependent manner (Table 2). When ULN was severe, 14 daily foliar Ca sprays significantly reduced ULN severity to an acceptable level (whole-plant severity < 5, which would not be noticed by consumers) (Fig. 1 and Table 3). Both calcium chloride and calcium nitrate were effective, and there was no notable difference in the effectiveness of these two salts (Tables 2 and 3). However, increased concentrations of both salts caused higher severity of yellowing and browning injury on leaf tips (Table 2). Mean comparisons indicated that at concentrations of 100 and 150 mm calcium chloride was more phytotoxic than calcium nitrate.
nitrate (Table 2). Thus, single daily foliar sprays of 25 mm calcium chloride or calcium nitrate for 14 d were safe and effective for reducing the risk of ULN (Tables 2 and 3).

The marginal effectiveness of the additional directed spray depended on the calcium salt used. With calcium nitrate, the extra spray had little effect. With calcium chloride, the 50-mm directed spray gave a further reduction in ULN severity as compared to 50 mm Ca without the directed spray (Table 3). Without the extra directed spray, the effect of 50 mm calcium chloride was even less than that of 12.5 mm with directed spray. Ensuring Ca solution reached enclosed leaves was thus imperative for foliar Ca sprays to be effective (Table 3).

Effect of bulb calcium dipping. Solution uptake by bulbs depended on the concentration and the dipping time (Table 5). Bulbs in the control group absorbed significantly more solution than in other treatments. After dipping in water for 16 h (control group), each bulb absorbed ≈5 mL solution. As concentration increased, less solution was absorbed by the bulb. In the 200-mm treatments, longer dipping time resulted in greater solution uptake (Table 5).

In both experiments, dipping bulbs in calcium chloride had no effect on ULN incidence. All dipping treatments had a ULN incidence greater than 81%, compared to the controls with 100% or 93% (Tables 4 and 5). In the first experiment, in which bulbs were dipped in calcium chloride solution for 15 min, ULN severity was slightly reduced at higher concentrations (200 and 400 mm). Controls had an average severity of 15.5, vs. 10.7 in the 400-mm treatment (Table 4). In the second experiment, however, there was no significant effect, even with much longer dipping times (Table 5).

Phytotoxicity was seen on young shoots due to high concentration of calcium chloride in the 4- or 16-h dips. These treatments proved fatal up to 11% of the plants, which died in early development stages (Table 5).

Discussion

The effectiveness of foliar Ca sprays to reduce the risk of Ca deficiency disorders has been controversial. Calcium sprays were effective in reducing marginal bract necrosis on poinsettia (Wissemeier, 1993) and tipburn

Table 3. Effectiveness of daily foliar calcium sprays and shoot apex directed sprays on upper leaf necrosis in *Lilium ‘Star Gazer’* (*n* = 18).

Calcium salt	Concen (mm)	Incidence (%)	Severity
Control	77.8	18.0 a*	
CaCl₂ · 2H₂O	12.5	72.2 a*	3.5 c
	25	61.1 a*	2.7 c
	50	55.6 a*	2.0 c
	50, no directed spray	77.8 a*	11.7 b
Ca(NO₃)₂ · 4H₂O	12.5	66.7 a*	4.5 c
	25	55.6 a*	2.0 c
	50	72.2 a*	2.6 c
	50, no directed spray	72.2 a*	4.7 c

*Ca solution was sprayed to runoff and extra solution, ≈5 mL, was sprayed directly toward the shoot apex unless otherwise noted.

†Means followed by a different letter are significantly different at *P* ≤ 0.05 by Duncan’s multiple range test.

Fig. 1. Effect of 14 daily foliar calcium sprays on reducing upper leaf necrosis on *Lilium ‘Star Gazer’*: (left) control; (top) calcium chloride treatments; and (bottom) calcium nitrate treatments.

Table 4. Effectiveness of a 15-min bulb dip in calcium chloride on upper leaf necrosis on *Lilium ‘Star Gazer’* (*n* = 32).

Concen (mm)	Incidence (%)	Severity
0 (Control)	100.0	15.5 a*
25	100.0 a*	15.9 a
50	93.8 a*	15.5 a
100	100.0 a*	14.3 ab
200	87.5 *	11.6 ab
400	93.8 a*	10.7 b

*Means followed by a different letter are significantly different at *P* ≤ 0.05 by Duncan’s multiple range test.

NS Nonsignificant or significant at *P* ≤ 0.05 compared to control by chi-square test.

Table 3. Effectiveness of daily foliar calcium sprays and shoot apex directed sprays on upper leaf necrosis in *Lilium ‘Star Gazer’* (*n* = 18).

Table 4. Effectiveness of a 15-min bulb dip in calcium chloride on upper leaf necrosis on *Lilium ‘Star Gazer’* (*n* = 32).
Table 5. Effects of calcium chloride concentration and length of bulb dip on upper leaf necrosis on *Lilium ‘Star Gazer’* (n = 28).

Conc (mM)	Dipping time (h)	Solution absorbed (mL)	Necrosis Incidence (%)	Necrosis Severity a	Lethal calcium damage (%)
0	16	5.3 a	92.9	12.8 a	0.0
200	1	2.0 d	92.9	12.3 a	0.0
100	4	2.7 c	100.0	14.2 a	3.6
100	16	3.4 b	81.5	12.3 a	0.0
400	1	1.9 de	92.9	13.2 a	0.0
400	4	2.0 d	85.2	14.0 a	3.6
400	16	1.6 e	84.0	12.7 a	10.7

*Means followed by a different letter are significantly different at P ≤ 0.05 by Duncan’s multiple range test.

on the Asiatic hybrid lily ‘Pirate’ (Berghoef, 1986). With lettuce, researchers have reached differing conclusions on the utility of foliar sprays in reducing leaf tipburn: Some researchers show positive results of Ca sprays (Kruger, 1966; Thibodeau and Minotti, 1969), while others report no effect (Collier and Tibbitts, 1982; Misaghi et al., 1981). The contrasting results may be attributed to genetic variation, Ca salt, Ca concentration, application timing, and frequency.

In this study, we demonstrated that 14 daily foliar sprays of 25 mm calcium chloride or calcium nitrate are effective in reducing the risk of ULN, and efficacy was improved by directing Ca to the enclosed leaves (Table 3). Calcium is an immobile nutrient element that is translocated mainly in the xylem. It is well established that Ca does not move from old leaves to young ones (Kirkby and Pilbeam, 1984; Marschner, 1995). Symptoms of ULN develop only on young expanding upper leaves (Chang, 2002), and expanding leaves are known to have a high calcium demand (Collier and Tibbitts, 1982; Kirkby and Pilbeam, 1984). Therefore, it is understandable that applying Ca to foliage twice a week didn’t reduce ULN (Table 1), since it could not meet the high demands of rapidly growing leaves. In tipburn of Asiatic lily ‘Pirate,’ it was reported a single Ca spray was not effective (van Nes, 1978), but daily sprays were (Berghoef, 1986; Berghoef et al., 1981). When calcium hydroxide was applied to reduce rain splitting in sweet cherries, multiple sprays gave better protection than a single spray (Meheriuk et al., 1991). Since the lower leaves are not susceptible to ULN (Chang, 2002), it is not necessary to spray calcium onto the lower leaves.

In foliar Ca spray experiments, there was no difference in the effectiveness of the two calcium salts used (Tables 2 and 3). Similar results were seen with calcium applications to control bitter bit in apple (Sharples and Little, 1970). However, it was reported that calcium nitrate seemed to be less effective than calcium chloride for reducing tipburn of ‘Pirate’ lily (Berghoef et al., 1981). With daily foliar sprays at Ca concentrations of 100 and 150 mm phytotoxicity, in the form of leaf tip yellowing, was observed. Similar toxicity from foliar Ca sprays was also observed on Asiatic hybrid lily ‘Pirate’ (Berghoef, 1986) and apple (Sharples and Little, 1970).

Dipping bulbs in calcium chloride failed to control ULN. In the first experiment, dipping bulbs in 400 mm CaCl₂·2H₂O for 15 min reduced ULN severity from 15.5 to 10.7 (Table 4). However, the same trend was not observed in the second experiment (Table 5). Since bulbs were immersed in calcium chloride for a longer time in the second experiment, we concluded bulb Ca dipping is not a feasible method to solve the problem. Similarly, 24-h bulb soaks were not effective, but some foliar Ca treatments were. It is understandable that spraying Ca directly to young expanding leaves was effective to reduce ULN and other Ca deficiency disorders, since mineral nutrient entry could occur through cuticular pores (Marschner, 1995) or stomatal openings (Levy and Horesh, 1984).

As a result of this research, growers interested in using calcium foliar sprays to reduce this problem could be advised to spray calcium nitrate or calcium chloride at no more than 25 mm daily, for 14 d starting 30 DAP. Furthermore, an effort to direct spray into the congested leaves should be made. Whether or not this is an economically viable treatment would need to be determined by the individual grower.

Literature Cited

Berghoef, J. 1986. Effect of calcium on tipburn of *Lilium ‘Pirate’*. Acta Hort. 177:433–438.

Berghoef, J., G.S.J. Kappelhof, and B. Willems. 1981. Control of leaf scorch on lilies, cv. ‘Pirate’, requires further research. Vakblad voor de Bloemisterij 36:22–23.

Chang, Y.C. 2002. Upper leaf necrosis on *Lilium cv. Star Gazer*—A calcium deficiency disorder. PhD Diss., Cornell Univ., Ithaca, N.Y. Diss. Abstr. Intl. 63-09B:4077.

Chang, Y.C. and W.B. Miller. 2003. Growth and calcium partitioning in *Lilium ‘Star Gazer’* in relation to leaf calcium deficiency. J. Amer. Soc. Hort. Sci. 128:788–796.

Chang, Y.C. and W.B. Miller. 2004. The relationship between leaf encroachment, transpiration, and upper leaf necrosis on *Lilium ‘Star Gazer’*. J. Amer. Soc. Hort. Sci. 129:128–133.

Collier, G.F. and T.W. Tibbitts. 1982. Tipburn of lettuce. Hort. Rev. 4:49–65.

Ferguson, I.B. and C.B. Watkins. 1989. Bitter pit in apple fruit. Hort. Rev. 11:289–355.

Kirkby, E.A. and D.J. Pilbeam. 1984. Calcium as a plant nutrient. Plant Cell Environ. 7:397–405.

Kruger, N.S. 1966. Tipburn of lettuce in relation to calcium nutrition. Queensland J. Agr. Animal Sci. 23:379–385.

Levy, Y. and J. Horesh. 1984. Importance of penetration through stomata in the correction of chlorosis with iron salts and low-surface-tension surfactants. J. Plant Nutr. 7:279–281.

Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press, London, U.K.

Meheriuk, M., G.H. Neilson, and D.L. McKenzie. 1991. Incidence of rain splitting in sweet cherries treated with calcium or coating materials. Can. J. Plant Sci. 71:231–234.

Miller, W.B. 1992. Easter and hybrid lily production—Principles and practice. Timber Press, Portland, Ore.

Misaghi, I.J., C.A. Matyac, and R.G. Grogan. 1981. Soil and foliar applications of calcium chloride and calcium nitrate to control tipburn of head lettuce. Plant Dis. 65:821–822.

Ranwala, A.P., G. Legnani, M. Reitmeier, B.B. Stewart, and W.B. Miller. 2002. Efficacy of plant growth retardants as preplant bulb dips for height control in LA and Oriental hybrid lilies. HortTechnology 12:426–431.

Sharples, R.O. and R.C. Little. 1970. Experiments on the use of calcium sprays for bitter pit control in apples. J. Hort. Sci. 45:49–56.

Thibodeau, P.O. and P.L. Minotti. 1969. The influence of calcium on the development of lettuce tipburn. J. Amer. Soc. Hort. Sci. 94:372–376.

van Berkel, N. 1988. Preventing tipburn in Chinese cabbage by high relative humidity during the night. Neth. J. Agr. Sci. 36:301–308.

van Nes, I.C. 1978. Bladverbranding bij leliecultivars ‘Pirate’. Bloemisterij Onderzoek in Nederland 1978:182–187.

Wissemeyer, A.H. 1993. Marginal bract necrosis in poinsettia cultivars and the relationship to bract calcium nutrition. Gartenbauwissenschaft 58:158–163.