On the Bias-Variance Characteristics of LIME and SHAP in High Sparsity Movie Recommendation Explanation Tasks

Claudia V. Roberts∗
claudiar@princeton.edu
Princeton University
USA

Ehtsham Elahi∗
eelahi@netflix.com
Netflix, Inc.
USA

Ashok Chandrashekar
ashok.chandrashekar@warnermedia.com
Warner Media
USA

ABSTRACT
We evaluate two popular local explainability techniques, LIME and SHAP, on a movie recommendation task. We discover that the two methods behave very differently depending on the sparsity of the data set. LIME does better than SHAP in dense segments of the data set and SHAP does better in sparse segments. We trace this difference to the differing bias-variance characteristics of the underlying estimators of LIME and SHAP. We find that SHAP exhibits lower variance in sparse segments of the data compared to LIME. We attribute this lower variance to the completeness constraint property inherent in SHAP and missing in LIME. This constraint acts as a regularizer and therefore increases the bias of the SHAP estimator but decreases its variance, leading to a favorable bias-variance trade-off especially in high sparsity data settings. With this insight, we introduce the same constraint into LIME and formulate a novel local explainability framework called Completeness-Constrained LIME (CLIMB) that is superior to LIME and much faster than SHAP.

ACM Reference Format:
Claudia V. Roberts, Ehtsham Elahi, and Ashok Chandrashekar. 2022. On the Bias-Variance Characteristics of LIME and SHAP in High Sparsity Movie Recommendation Explanation Tasks. In Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nmnnnn.nmnnnn

1 INTRODUCTION
Recommendation systems mediate our various online interactions on a daily basis by limiting and influencing our possible choices. Recommender system use cases include product recommendations, search engines, social media browsing, music and video streaming, online advertising, news dissemination, job candidate matching, and real estate recommendations. The recommendation system problem setting is a high sparsity problem both from the perspective of the user and the system making the recommendations. From the perspective of the user, the user only has prior information on a tiny subset of the total number of items at her disposal. From the perspective of the system, the system has very little interaction data for the vast majority of the available items. This makes the recommendation setting an important and challenging problem domain.

In the recommender domain, explanations can be an integral part of the user product experience and depending on the recommendation task, critical to the task description itself. Explanatory models provide explanations for why the underlying recommendation system model made the item selection, item position ranking, or point prediction estimate that it did. In this paper, we focus on local explanations, that is, explanations for a single prediction instance. Two popular, general purpose explanation frameworks whose aim is to faithfully explain the local predictions of machine learning models are Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). LIME is very easy to use, computationally fast, and works on tabular data, images, and text [1]. While SHAP is computationally much slower than LIME depending on the underlying prediction model, it has some important theoretical guarantees such as guaranteeing the fair distribution of the prediction across the features [1, 2].

The first research question we sought to answer was how do SHAP and LIME perform in the high sparsity recommendation system setting. We adapted LIME and SHAP to the task of explaining movie recommendations and evaluated the explanations using the delta-rank metric (described in Section 6). We observed that while SHAP outperforms LIME on aggregate, the two methods behave very differently depending on the sparsity of the data. LIME does better than SHAP in dense segments of the data set, and conversely, SHAP outperforms LIME in the sparse regions of the data set. We performed a bias-variance analysis and traced this difference in performance to the differing bias and variance characteristics of the underlying estimators of LIME and SHAP. We show that SHAP exhibits lower variance and higher bias compared to LIME and we postulate that this is the reason why SHAP outperforms LIME in high sparsity data settings where the bias-variance trade-off is especially favorable.

We hypothesize that the reason for SHAP’s lower variance is due to Shapley values satisfying the efficiency property or what other papers call the completeness axiom [3], the conservation property [4], or summation-to-delta property [5] (for the duration of this paper we will refer to this property as the completeness constraint). We argue that this completeness constraint acts as a regularizer and therefore increases the bias and decreases the variance of the SHAP estimator. With these collective insights supported by our analysis, we introduce this constraint into LIME; we call this new local explainability technique Completeness-Constrained LIME (CLIMB). Our experiments show that CLIMB indeed lowers the variance of the LIME estimator and improves its performance in sparse data settings. CLIMB allows users to enjoy some of the
When determining what items to present to a user, these systems
with their explanations lead to higher user acceptance of recom-
mendations though care must be taken because poorly designed
explanations can be less performant than the base case of no ex-
planations at all [13–15]. In the computer vision example of image
classification (and other mundane automation tasks), if the user
of the system is 100% confident that the system is correct 100% of
the time then there is no need for explanations—a cat is a cat, is
a cat yesterday, today, and tomorrow. In the highly dynamic world
of item recommendation where there are competing incentives,
explanations can be used to surprise and delight users as well as
build trust amongst multiple stakeholders. Today, a user might hate
horror movies but tomorrow, that same user might be delighted
to be recommended a particular horror movie because it is top
trending in the country and he wants to be part of that moment,
part of the cultural zeitgeist.
Evaluating the explanations of a single model prediction instance
is separated into two components 1) faithfulness of the explanation
2) ease of human understanding [16–18]. An explanatory model
is said to be locally faithful if the predictive behavior of the ex-
planatory model in the vicinity of the single instance of interest
is consistent with the predictive behavior of the underlying rec-
mommender model in the same vicinity. An explanatory model
is said to be intelligible or interpretable if the explanation for a sin-
gle recommendation instance is readily understood by a human.
Evaluating the ease of human understanding of a local explana-
tion is highly subjective and task dependent and not the focus
of this paper. Studying the faithfulness of an explanation model is
important because a low-fidelity explanation, an explanation that
does not closely approximate the behavior of the underlying model,
means that the explanation model is not accurately or honestly
describing the underlying recommender model’s decision making
process [19, 20].

3 RELATED WORK
Two of the most popular model-agnostic local explanation methods
are LIME and SHAP. LIME learns a separate interpretable model
trained on a new data set of random permutations of the original
data instance we are seeking to explain [16]. SHAP explains the
prediction of an individual data instance by computing Shapley values
[2]. Shapley values is a game theoretic technique that estimates the
contribution of each feature to the prediction also by perturbing the
original input data instance [21]. Previous work comparing SHAP
and LIME focuses on evaluating these explanation methods based
on their stability or reproducibility, that is, their ability to return
consistent explanations over numerous runs on the same input
[22–26]. Other work evaluating explanation frameworks assesses
their local fidelity or faithfulness to the original underlying model
[26–30]. Additionally, a common paradigm when evaluating and
comparing SHAP, LIME, and other explanation methods is to intro-
duce a new evaluation metric and evaluate the explanations against
this metric, e.g. effectiveness, efficiency, necessity, sufficiency, XAI
Test, feature importance similarity, feature importance consistency,
impact score, impact coverage [31–37]. Most recently, researchers
evaluated the robustness of LIME and SHAP and found them to be
vulnerable to adversarial attacks where the explanatory models can
be manipulated to hide potentially harmful biases in the original
model [38, 39].

2 BACKGROUND
When determining what items to present to a user, these systems
necessarily pare down the complete set of possible items from the
millions to a small handful. The recommendation system problem
setting is a high sparsity problem where the recommending system
has very little interaction data between all the available users and
all the available items [6–10]. Recommendation systems can also
suffer from the long-tail phenomenon—there is an outsized amount
of user interaction data for a tiny subset of the available item set
and an extremely large number of items which effectively have
no interaction data [11]. Further contributing to the high sparsity
nature of online recommenders is the highly dynamic and in some
cases transitory nature of the data. Users and product items are
constantly coming and going, whether physically or in terms of
relevancy, and user tastes are ever evolving.
An important aspect of recommendation systems is their corre-
sponding explanatory models. This tight coupling of recommen-
dation system models and explanation models is unique to the
recommendation system setting. In the computer vision domain,
explanations might come in the form of a visual saliency map that
indicates the specific pixels that most contributed to the predic-
tion of “cat” in an image classification task, for example. In the
natural language processing task of sentiment analysis, an explana-
tion method called CLIMB that includes one of the powerful
properties of SHAP while being as fast as LIME and main-
taining some of the desirable qualities of LIME
Analysis connecting bias and variance to the completeness
constraint
As we highlighted in Section 2, the recommender setting requires domain specific consideration given the unique technical challenges it poses and the unique and various needs it has for explanations. To the best of our knowledge, we are the first to evaluate SHAP and LIME on their performance in different data sparsity settings. More concretely, to the best of our knowledge, we are the first to evaluate these explanation models based on how they perform when explaining a recommendation for a data instance with very little historical interaction data versus when explaining a recommendation for a data instance with plentiful historical interaction data. We are also the first to connect this difference in data-sparsity-dependent performance to the differing bias-variance characteristics of SHAP and LIME and subsequently, the completeness constraint that is inherent in SHAP but missing in LIME. We then go on to prove this hypothesis by formulating a novel explanation method called Completeness-Constrained LIME (CLIMB) that indeed improves the performance of LIME in sparse data settings.

4 PRELIMINARIES

In this section, we lay down the mathematical foundation and build up the theoretical scaffolding necessary for understanding our ensuing contributions.

4.1 LIME

Local Interpretable Model-agnostic Explanations (LIME) is a framework for training a secondary interpretable model, or surrogate model, to explain the individual predictions coming from any opaque classifier [16]. The LIME algorithm for training a surrogate model works as following. First, select some data instance \(x \) for which you want an explanation, i.e. you want an explanation for why an opaque recommender model \(f \) predicted that user feature vector \(x \) would play/not play a movie with probability \(f(x) \). LIME requires that in order for the explanation to be understandable to humans, the data should be transformed into an interpretable representation such as a binary vector \(x' \in \{0, 1\}^d \) denoting the presence/absence of interpretable components, e.g. user watched/did not watch movie \(A \) in the past. Next, generate a new data set \(Z \) of perturbed samples \(z' \in \{0, 1\}^d \) by drawing nonzero elements of \(x' \) uniformly at random. Now that we have a new set of data instances \(Z \) in the neighborhood of \(x' \), we need labels for them. To obtain the labels needed for our new explanatory model, we transform the perturbed samples \(z' \) back into their original representation \(z \in \mathbb{R}^d \) and interrogate the opaque model for each instance \(f(z) \). Because we randomly generated the perturbed samples \(z' \) we would like to capture the fact that some samples might be closer or farther to the original data instance of interest \(x \) and thus should be weighted accordingly. This weighting scheme is captured by the proximity measure \(\pi_x(z) \), which measures the proximity between an instance \(x \) to \(z \).

Finally, using this new weighted data set \(Z \) and ground truth labels generated by obtaining \(f(Z) \) we train a new model \(g \in G \) where \(G \) is a class of interpretable models such as decision trees, linear models, etc. This new model \(g \) is our interpretable, explanatory surrogate model \(\xi(x) \) for explaining \(f(x) \):

\[
\xi(x) = \arg\min_{g \in G} L(f, g, \pi_x) + \Omega(g)
\]

(1)

where \(G \) is a class of interpretable models such as decision trees, linear models, etc. This new model \(g \) is our interpretable, explanatory surrogate model \(\xi(x) \) for explaining \(f(x) \):

\[
\xi(x) = \arg\min_{g \in G} L(f, g, \pi_x) + \Omega(g)
\]

(1)

\(L \) is any loss function of your choice which measures how unfaithful \(g \) is at approximating the behavior of \(f \) in the local neighborhood of \(x \). We want to minimize this loss function so that the behavior of \(g \) mimics the behavior of \(f \) as closely as possible in the locality defined by \(\pi_x \). \(\Omega(g) \) is a complexity term of the model—we want this to be low, e.g. we prefer fewer features in the case of linear models. In the original LIME paper, the authors use the square loss function \(L \) with \(\ell_2 \) penalty. Typically, \(g(z') \) is chosen to be a linear function i.e. \(g(z') = \Phi^T z' + \phi_0 \) which makes the above a weighted linear regression problem to solve for \(\Phi \) and intercept \(\phi_0 \).

\[
L(f, \Phi, \phi_0, \pi_x) = \sum_{z', z \in Z} \pi_x(z)(f(z) - (\phi_0 + \Phi^T z'))^2
\]

(2)

Some of the advantages of LIME include 1) off-the-shelf easy to use implementation available 2) relatively fast computationally 3) works with tabular data, text, and images 4) opaque model can change without needing to change the explanation model implementation [1]. Some of the previously reported disadvantages of LIME include 1) many hyperparameters to set whose choices heavily influence the resulting explanation and leads to many scientific degrees of freedom (perturbation sampling strategy, neighborhood definition, selection of \(g \)) 2) instability of explanation output as mentioned in Section 3 3) no theoretical guarantees that would help the LIME explanation of a prediction hold up in court [1, 40]. To the best of our knowledge, we are the first to shine a light on LIME’s decreased performance in high sparsity data regions as well as highlight its comparatively good performance in dense data regions as compared to SHAP in a recommender setting.

4.2 SHAP

Like LIME, SHapley Additive exPlanations is an attribution method, that is, a method that describes the prediction of a single data instance as the sum of the effects each feature had on the prediction [1]. Shapley values is an explanation framework that explains the prediction of an individual data instance by computing Shapley values [1, 2, 21]. We choose the model-agnostic Kernel Shap formulation (denoted as SHAP in the rest of the paper) which describes the local explanation as a weighted linear regression similar to LIME as shown in equation [1] with \(g(z') = \Phi^T z' + \phi_0 \). The regression loss function and the weights are given by:

\[
L(f, \Phi, \phi_0, \pi_x) = \sum_{z', z \in Z} \pi_x(z)(f(z) - (\phi_0 + \Phi^T z'))^2
\]

(3)

where \(\pi_x(z') = \frac{d' - 1}{(d' \text{ choose } |z'| |z'|)(d' - |z'|)} \)

\(d' \) is the dimensionality of \(x' \) and \(|z'| \) is the number of non-zero elements in \(z' \). In contrast to LIME, generation of the data set \(Z \) is very different in SHAP. In SHAP, \(Z \) is defined as the power set of all non-zero indices in \(x' \). Hence, \(Z \) has a size of \(2^{d'} \) if we exhaustively enumerate all possible subsets. (Typical software implementations do allow putting an upper limit on the number of samples in \(Z \)). Therefore, one of the computational complexities of SHAP is generating this data set \(Z \). Another (minor) difference
We would like to comment that We discuss the implications of this constraint in detail in the next

$$\Phi$$ has a number of implications: the completeness property

result from SHAP satisfying the completeness constraint. Furthermore, LIME in the sparsest groups and that LIME outperformed SHAP. We observed that as we increased the number of features that we removed from x, the gap in performance between SHAP and LIME widened, with SHAP outperforming LIME. In a second preliminary experiment, shown in Figure 3, we divided our movie recommendation data set into eight equal sized groups based on sparsity, i.e. based on the amount of interaction data each data instance had. We observed that SHAP significantly outperformed LIME in the sparsest groups and that LIME outperformed SHAP in the densest groups. This interesting reversal of performance based on the sparsity of the data has been observed many times in machine learning research [41] and has been found to be closely related to the bias-variance characteristics of models.

Both SHAP and LIME attempt to predict the behavior of an underlying model in the neighborhood of the given data instance x. Their ability to provide the correct explanations is therefore tied to their generalization ability in the local neighborhood around x. We can decompose the generalization capability in terms of their bias and variance. To be precise, since both SHAP and LIME are regression models, their generalization error can be measured in terms of the following mean-squared error.

$$MSE(x; \Phi) = \mathbb{E}[(f(x) - \hat{\Phi}(x))^2] = (f(x) - \mathbb{E}[\hat{\Phi}(x)])^2 + \mathbb{E}[(\hat{\Phi}(x) - \mathbb{E}(\Phi(x)))^2]$$

5 CLIMB: COMPLETENESS-CONSTRAINED LIME

5.1 Preliminary Experimental Results

Motivating CLIMB

In this section, we briefly summarize our initial experimental findings on a movie recommender explanation task that served as the catalyst for the resultant body of research. Full implementation details along with a detailed description of the evaluation metric we used can be found in Section 6.

Knowing how important explanations can be to the product experience of recommendation systems and knowing that these systems suffer greatly from having either no previous interaction data (the cold-start problem) or very little historical interaction data (in comparison to the available item set), we wanted to evaluate how well SHAP and LIME perform in varying data sparsity settings. In our first experiment, shown in Figure 2, we iteratively removed the top - k most important features from the data instance of interest x. We observed that as we increased the number of features that we removed from x, the performance of both SHAP and LIME got worse, as shown in Figure 2. In a second preliminary experiment, shown in Figure 3, we divided our movie recommendation data set into eight equal sized groups based on sparsity, i.e. based on the amount of interaction data each data instance had. We observed that SHAP significantly outperformed LIME in the sparsest groups and that LIME outperformed SHAP in the densest groups. This interesting reversal of performance based on the sparsity of the data has been observed many times in machine learning research [41] and has been found to be closely related to the bias-variance characteristics of models.

Both SHAP and LIME attempt to predict the behavior of an underlying model in the neighborhood of the given data instance x. Their ability to provide the correct explanations is therefore tied to their generalization ability in the local neighborhood around x. We can decompose the generalization capability in terms of their bias and variance. To be precise, since both SHAP and LIME are regression models, their generalization error can be measured in terms of the following mean-squared error.

$$MSE(x; \Phi) = \mathbb{E}[(f(x) - \hat{\Phi}(x))^2] = (f(x) - \mathbb{E}[\hat{\Phi}(x)])^2 + \mathbb{E}[(\hat{\Phi}(x) - \mathbb{E}(\Phi(x)))^2]$$

$$= \text{Bias}^2 + \text{Variance}$$
where \(\hat{\Phi} \) is an estimator of \(\Phi \). (Note: if the underlying model is non-stochastic, there is no residual error term).

Bootstrapping is one straightforward way to compute the bias and variance of any model. For the explanation models, the bootstrapping procedure proceeds by generating \(P \) local perturbations of \(x \) by randomly zeroing out features. For the \(p \)-th perturbed vector, we solve the explanation model to get \(\Phi_p \). So the empirical average
\[
\frac{1}{P} \sum_{p=1}^{P} \hat{\Phi}_p(x) = \Phi(x)
\]

can be plugged-in to estimate the bias and variance in the above equation. Note that this bias and variance is meant to capture the behavior of the explanation model in the neighborhood of \(x \).

With these analysis tools, we conducted a bias-variance analysis of SHAP and LIME (results shown in Figure 5) on the same eight sparsity groups from the previous evaluation experiment. We observed that in all segments of the dataset, SHAP exhibited higher bias and lower variance. In the sparest segments, there was a big variance reduction with a small increase in bias resulting in a favorable bias-variance trade-off. This favorable bias-variance trade-off leads to SHAP improving upon LIME significantly in the sparest regions of the dataset. In the denser regions, there is a small variance reduction with a large increase in the bias resulting in SHAP’s poor performance compared to LIME. This analysis provides strong evidence that the behavior of SHAP and LIME with respect to data sparsity can be easily explained in terms of their bias-variance characteristics. We hypothesize that this bias-variance difference arises due to the completeness constraint (present in SHAP and missing in LIME) which we discuss in the next section.

5.2 The Bias-Variances and Completeness Constraint Connection

Our preliminary findings showed that SHAP and LIME perform differently depending on the density or sparsity of the data instance whose prediction we seek an explanation for. We showed that this difference is statistically significant. After conducting a bias-variance analysis of SHAP and LIME, we observed that SHAP exhibits lower variance than LIME in high sparsity data regions. As we stated in Section 2, high sparsity data regions are commonplace in recommendation systems and thus, it is important that these explanation frameworks perform well in high sparsity settings. We posit that the completeness constraint property, inherent in SHAP and missing in LIME, is an important reason for why SHAP outperforms LIME in sparse data settings. In this section, we reason how the completeness constraint is tied to the observable bias-variance characteristics of SHAP, thus foreshadowing the motivation behind our novel completeness-constrained explanation model.

Given that SHAP enjoys the same game theoretic grounding as Shapley values, including the completeness constraint, we asked ourselves the following research question, “How is the completeness constraint connected to the bias-variance behavior exhibited by SHAP in sparse data regions?” The completeness constraint was originally motivated by the desire for attribution methods to fairly distribute the prediction among the features and served as a solution to the gradient saturation problem mentioned in Section 4.3. However, given our interest in explanations for recommender systems, we take an entirely different approach to analyzing its role in the performance of SHAP vs. LIME in sparse data settings.

Since the completeness constraint limits the flexibility of the explanation model, by eliminating both the intercept and one degree of freedom from \(\Phi \), we argue that it plays the same role as a regularizer. In other words, the limited flexibility prevents the explanation model’s regression function from fitting the behavior of the underlying model in the neighborhood of the data instance \(x \), thus resulting in increased bias. But this reduced flexibility would also reduce variance of the explanation model. As long as this bias-variance trade-off is favorable (for example in sparse settings), we expect to see improved accuracy in predicting the behavior of \(f \) from explanation models with the completeness constraint. Studying the bias-variance trade-off of the completeness constraint is a novel approach and forms the basis of our work.

5.3 Formulation of CLIMB

As mentioned in Section 4, LIME has highly desirable qualities such as off-the-shelf ease of use that makes it an attractive choice over the computationally slower but theoretically more sound SHAP. We propose introducing the completeness constraint into LIME to take advantage of the favorable bias-variance characteristics of SHAP. Additionally, adding this constraint into LIME would provide the fair attribution property found in SHAP and help protect against generating erroneous/zero explanations in locally flat sub-regions. We now introduce our straightforward formulation of Completeness-Constrained LIME (CLIMB).

We set up CLIMB identically to LIME. We have the data instance \(x \in \mathbb{R}^d \) and its interpretable binary representation \(x' \in \{0, 1\}^d \), a new data set \(Z \) comprised of perturbed data samples \(z' \) (in the original feature space) and their corresponding labels \(f(z) \), and the proximity weighting function \(\pi_k(z) \), all identical to LIME. In order to introduce the completeness constraint into LIME, we borrow the concept of a baseline feature vector \(b \in \mathbb{R}^d \) from SHAP. Like SHAP, the choice of \(b \) is problem dependent. We explain our choice of \(b \) for the recommendation model we use in Section 6.

CLIMB is the solution to the following constraint least squares problem,

\[
\min_{\Phi} \sum_{z, z' \in Z} \pi_k(z)(f(z) - (f(x) + \Phi^T(x' - x')))^2 \\
\text{s.t.} \quad \Phi^T x' = f(x) - f(b)
\]

(5)

Note that the intercept of the above regression function is \(f(b) \) like SHAP. The solution \(\Phi \in \mathbb{R}^d \) is a vector of coefficients and is interpreted in the same way as the solution for LIME and SHAP. Fortunately, we do not have to solve the above constraint optimization directly since that would make CLIMB computationally slower than LIME. The completeness constraint is a linear constraint, and we can eliminate the constraint by the following substitution. First, note that \(\Phi^T x' = \sum_{d=1}^D \phi_d \). Therefore, we can substitute out \(\phi_d = f(x_0) - f(b) - \sum_{d=1}^D \phi_d \) in the above equation. Let \(c = f(b) + x'_d (f(x) - f(b)) \) and \(r(z') = (z'_d - b_d) \), then the first \(d - 1 \) components of \(\Phi \) (denoted below as \(\Phi_{1:d-1} \)) are obtained by the following unconstrained least squares minimization

\[
\min_{\Phi_{1:d-1}} \sum_{z, z' \in Z} \pi_k(z)(f(z) - (c + r(z')^T \Phi_{1:d-1}))^2
\]

(6)
The last component of \(\Phi \) (denoted as \(\Phi_D \) above) is obtained by back substituting in the linear constraint. This way of solving for \(\Phi \) results in an algorithm that should be as fast as LIME as the problem dimension is reduced to having one less degree of freedom compared to LIME and there is no intercept to estimate.

6 EXPERIMENTS

6.1 Experimental Setup

6.1.1 Model. We use a Multinomial Variational Autoencoder (Multi-VAE) [42] trained on the MovieLens 20M data set [43] as the recommendation model whose predictions we want to explain. MovieLens is a data set of users that interacted with movies on the MovieLens website. For the Multi-VAE model, each user is represented as a bag-of-words of movies that they interacted with. Therefore, the feature vector \(x_u \) for a user \(u \) can be represented as k-hot binary vector of size 20,108 (total number of movies in the data set) with 1’s for the interacted movies and 0’s for the rest. For any user represented as this k-hot encoded vector, Multi-VAE model can score the entire collection of 20,108 movies. Typically, these scores are then used to rank the entire collection of movies (in descending order) to generate personalized recommendations/rankings.

6.1.2 Data Preparation. For our local explainability experiments, we use the validation split of 10,000 users outside of the training set. For each validation user \(u \), we generated the personalized ranking from the Multi-VAE model and use the top-ranked movie \(t_u \) for local explainability. Therefore the data instance \(x_u \) is the k-hot vector and \(f_{t_u}(x) \) is the score of the Multi-VAE model for the top-ranked movie. Note that the corresponding interpretable version of \(x \) is a vector \(x' \) of size \(d' \) of all ones where \(d' \) is the number of non-zero entries in \(x \). From this vector \(x \), the data set \(Z \) can be generated by sampling the non-zero indices and therefore are binary vectors of size \(d' \). This data set generation strategy is same for LIME and CLIMB whereas it is different for SHAP, as described in Section 4. We do control for the number of samples in \(Z \) and keep it fixed to 5,000 for the three explanation methods. Our evaluation metric (described next) requires a ranking of non-zero movies in \(x \), therefore we turn off the \(\ell_1 \) penalty in SHAP and any feature selection heuristic in LIME so that we may get explanation coefficients \(\Phi \) for all non-zero movies in the data instance \(x_u \). We keep the rest of the parameters fixed to their default values. For both SHAP and CLIMB, the choice of baseline is a zero feature vector meaning a null user without any interaction history. The Multi-VAE model outputs an unpersonalized score for each movie when this zero feature vector is used as input. The unpersonalized score is proportional to the number of non-zero interactions for each movie in the training data (typically called the training data popularities of movies in the recommendation models literature).

6.1.3 Evaluation Metric. We quantitatively evaluate the explanation methods using the delta-prediction metric (also seen in other papers as the “change in log-odds” [2, 5, 44, 45]) and adapt it to the recommendation task and call it the delta-rank metric. Given a ranking of non-zero movies in \(x_u \) according to the explanation model coefficient \(\phi_i, i = 1, \ldots, d' \), for each validation user \(u \), take the \(top-k \) input movies according to the explanation model coefficients and remove them from \(x_u \). This gives a modified data instance \(x_{u,m} \) which is the same as \(x_u \) except for the missing movies that we removed. Compute the output ranking from the Multi-VAE model with \(x_{u,m} \) as the input. Calculate the difference in the rank of the movie \(t_u \), which was the top ranked movie earlier. The idea is that if the movies that were removed from \(x_u \) were really important for the Multi-VAE to rank \(t_u \) at the top, we should expect to see a big drop in the ranking of \(t_u \). We remove a large number of movies (for example up-to 30) by taking a few of them at a time (for example 6 at a time) and plot the change in the rank (or delta-rank) as we remove each batch of 6 movies. We expect the delta-rank to be negative if important features are removed, and the magnitude of the drop to be proportional to the importance of features removed (therefore lower the better). We compute summary statistics of this delta-rank metric for all validation users.

Since we are interested in comparing the bias-variance and delta-rank performance of SHAP, LIME and CLIMB for different sparsity settings, we partition the 10,000 validation users in eight equal sized buckets according to the number of non-zero movie interactions in feature vector \(x_u \). In the results below, we label the data set segment with the highest sparsity as Sparsity Rank = 0 and the lowest sparsity segment as Sparsity Rank = 7. Figure 1 describes the sparsity characteristics of each segment.

Our results can be fully reproduced using the the Jupyter Notebooks found in the supplementary materials.

6.2 Results

6.2.1 Delta-rank Comparison Among LIME, SHAP, CLIMB. As shown in Figure 2, both CLIMB and SHAP outperform LIME significantly whereas the difference between CLIMB and SHAP is insignificant up to top-20 features. This validates our hypothesis that introducing the completeness constraint into LIME does indeed result in improved local explainability. We also compare the three methods according to sparsity using the eight segments described above (Figure 3). We see the expected outcome—the overall delta-rank improvements come from the sparse segments of the data set where CLIMB and SHAP outperform LIME. We attribute this improvement to an overall favorable bias-variance trade-off especially in the sparse segments of the MovieLens data set.
6.2.2 Computational Analysis. As mentioned earlier, integrating the completeness constraint into LIME results in an estimation problem of lower complexity and can be solved as fast as LIME. The second figure in Figure-2 shows this result.

6.2.3 Bias-Variance Analysis of LIME, SHAP, CLIMB. We use a validation set of size 1,000 for bias-variance computation (down from 10,000 to keep the computation time in check) and we solve LIME, SHAP and CLIMB estimation problems for 50 bootstrapped perturbation of each validation example. Figure-4 shows that indeed CLIMB and SHAP exhibit higher bias and lower variance as we hypothesized in the earlier section. Moreover, Figure-5 shows that the variance reduction (compared to LIME) is directly proportional to the sparsity whereas increase in bias (compared to LIME) is inversely proportional to the sparsity. These results show that we get the best bias-variance trade-off in the most sparse segments of the data set. Our results also show the role the completeness constraint plays as a regularization technique, therefore significantly improving the performance of LIME by incorporating completeness constraint in it in the sparse segments of the MovieLens dataset.

6.2.4 Qualitatively Examining Local Explanations. We find examples where the delta-rank metric for CLIMB is far better than LIME to build an intuition for how improvements in delta-rank affect the outward quality of the resulting explanations. "Star Wars: Empire Strikes Back" and "Harry Potter and The Goblet of Fire" are two such examples selected from the sparse region of the MovieLens data set. Looking at the explanations visually, the results for both CLIMB and SHAP are identical and qualitatively much better than LIME (we highlight the explanations in red that subjectively seem to make little sense). Looking at these explanations and noting the improvements in the delta-rank metric, we conclude that these explanations not only visually make sense but are in-agreement with the underlying model. We note that the metric or a visual examination alone will not allow us to make this claim. We also include one example from the dense region of the data set, "Star Trek: The Wrath of Khan", where the delta-rank metric for LIME is superior to CLIMB and SHAP. CLIMB seems to include a number of seemingly unrelated movies in its explanations. According to our analysis, the bias-variance trade-off due to the completeness constraint is unfavorable in the dense regions and this is reflected in the subjective quality of the explanations as well.
7 CONCLUSION

In this paper, we 1) provided motivation for why explanations for recommender systems require special consideration, 2) showed the shortcomings LIME, a popular, easy to use explanation method, had in addressing the needs of recommender systems, which often operate in high sparsity data settings, 3) traced the root of the issue to an important property that is found in another popular but slower explanation method, SHAP, 4) incorporated this property into LIME to create a novel explanation framework called CLIMB, and finally, 5) showed that CLIMB is superior to LIME in high sparsity data settings, is as fast as LIME (much faster than SHAP), and is as easy to use as LIME.

ACKNOWLEDGMENTS

Thank you to Arvind Narayanan for enabling this body of research and for helpful discussions. This research was supported by the National Defense Science and Engineering Graduate Fellowship and in part by the National Science Foundation under Award CHS-1704444.

REFERENCES

[1] Christoph Molnar. Interpretable Machine Learning. 2019. https://christophm.github.io/interpretable-ml-book/.
