The Life Span of Naive α/β T Cells in Secondary Lymphoid Organs
By Harald von Boehmer and Katrin Hafen

Summary
We have determined the life span of naive CD4$^+$ 8$^+$ T cells in T cell receptor transgenic mice. We find that such cells do not divide in secondary lymphoid organs in both normal euthymic mice and T cell-deficient mice. By both continuous labeling and by chasing pulse-labeled cells, we find that the minimum life span of the naive T cells is in the order of 8 wk.

The life span of a cell is the time it lives from its formation until it enters mitosis or dies. Our information on the life span of naive lymphocytes is scarce because it has been difficult in the past to distinguish naive from antigen-experienced T cells. It has been argued that the various forms of the CD45 molecule can be used to distinguish memory from naive T cells (1-5), but the fact that some of the supposed memory cells can convert back into the naive phenotype is somewhat perplexing and demands a more cautious interpretation of the results (6-9). The CD44 molecule has also been considered as a memory marker, but its expression may reflect T cell activation rather than T cell memory (10, 11).

A second reason for our limited knowledge has been the apparent different conclusions reached from experiments using different methods to estimate the life span of lymphocytes. While labeling with $[3H]$thymidine and some experiments using bromodeoxyuridine (BrdU) incorporation have yielded results indicating that a major fraction of T and B lymphocytes has a relatively long life span (12-14), experiments using hydroxyurea, which destroys dividing cells, have reached conflicting conclusions (15, 16). Both approaches have not really been used to distinguish naive from memory T cells.

Our recent experiments with T cells from TCR transgenic mice have indicated that naive T cells could have a considerable life span (17). These experiments showed that in the absence of antigen, naive T cells do not numerically increase in secondary lymphoid tissue even in T cell-deficient animals, i.e., the number of naive T cells with known specificity (HY antigen presented by Db MHC molecules) did not increase after transfer into female nude hosts but increased dramatically in male recipients. Nevertheless, it was still possible to recover a significant portion of the injected cells in female hosts 4-8 wk after transfer. This protocol, like others (18), could not, however, reveal information on the life span of T cells as it could not be excluded that some cells were dying while others divided periodically, and because it is not clear whether the transfer of T cells in T cell-deficient mice as carried out in experiments by us and others (18) mimics anything of physiological significance. We therefore studied cell division not only in this transfer model but also in euthymic and athymic TCR transgenic mice. The conclusion from all the experiments is that naive CD4$^+$ 8$^+$ α/β T cells, which leave the thymus after positive selection, have a minimum life span of \sim8 wk and thus challenge the idea that naive T cells are short lived (19).

Materials and Methods

Mice. TCR α/β transgenic mice used in this study were described previously (20). C57 Bl/6 mice were obtained from IFFA Credo (L’Arbresle, France). C57 Bl/6 (B6) nude mice were obtained from Bomholtgard (Copenhagen, Denmark).

Adult Thymectomy. Adult thymectomy was performed under anesthesia with Avertine (Fluka, Switzerland). The successful extraction of the thymus was carefully checked in all animals once they were killed for the analysis of BrdU labeling.

Continuous Labeling with BrdU. 5-bromo-2-deoxyuridine (Sigma Chemical Co., St. Louis, MO) was dissolved in PBS (4 mg/ml). 200 μl was injected intraperitoneally at 8 a.m. and 8 p.m. for up to 25 d (21).

Antibodies. For cell surface staining we used PE-coupled CD4 (1447; Becton Dickinson & Co., Mountain View, CA) fluorescein-conjugated CD8 (1353; Becton Dickinson & Co.,), and T3.70 TCR α chain antibody (22) conjugated with biotin.

Surface Staining and Sorting of Lymphocytes. 106 lymphocytes were pelleted in round-bottomed wells of 96-well microtiter plates. Cells were resuspended in 100 μl PBS containing the desired antibodies in optimal concentration and incubated for 15 min on ice. After incubation cells were washed twice in PBS containing 2% FCS and resuspended either in 100 μl of the same solution (in the case of direct staining with fluorochrome-marked antibodies) or in 100 μl of optimally diluted PE-streptavidin (Southern Biotechnology Associates, Inc., Birmingham, AL) or alkaline phosphocyanin-streptavidin (Molecular Probes, Inc., Eugene, OR), and incubated for another 15 min on ice. After washing cells were analyzed on...
BrdU Staining. After sorting, cells were pelleted in plastic tubes.

Table 1. Number of Lymphocytes in BrdU-injected Mice

BrdU labeling wk	Thymus	LN	Spleen
1	56	30	64
2	28	32	40
3	20	36	44

Thymus, lymph node, and spleen were removed, and single cell suspension was prepared as described (Materials and Methods).
Efficacy of BrdU labeling

B6 nu/nu ♂ ← T cells from αβTG (5 day labeling)

A

BM	CD8⁺, T3.70⁺	CD8⁺, T3.70⁻	CD4⁺
96	95	75	54

B

B6 nu/nu ♀ ← T cells from αβTG
7 d labeling

BM	CD8⁺, T3.70⁺	CD8⁺, T3.70⁻	CD4⁺
92	85	76	58

| 14 d labeling |

BM	CD8⁺, T3.70⁺	CD8⁺, T3.70⁻	CD4⁺
89	10	61	77

Figure 1. (A) The labeling of various T cell subsets transfer of B cell-depleted (anti-Ig column) T cells from female TCR α/β transgenic mice into nude male recipient mice. Labeling was assessed in bone marrow (BM) cells, in male-specific CD4⁻8⁺ T3.70⁺ cells (22), in CD4⁻8⁺ T3.70⁻ cells, which have other unknown specificities because they express endogenous TCR α chains, as well as CD4⁺ cells, which all express endogenous TCR α chains. Cells were analyzed 5 d after the transfer and after 5 d of continuous BrdU labeling. Spleen (top) and lymph node (bottom) cells were analyzed (BM, bone marrow cells). (B) The labeling of various T cell subsets after transfer of B cell-depleted T cells from TCR α/β transgenic mice into nude female recipient mice after 7 and 14 d of transfer and continuous labeling with BrdU. Cell subsets are as in A. Only spleen cells were analyzed. The few labeled CD8⁺, T3.70⁺ cells may be cells with endogenous TCR α chains in addition to transgenic TCR α chains.

A slow decay is observed over a 3-wk period (Fig. 5). Since the previous studies have indicated that CD4⁻8⁺ αβ⁺ T cells are not dividing at all during that time period, the results indicate again that naive CD4⁻8⁺ T cells have a relatively long life span. It is unlikely that this result is significantly influenced by export of labeled cells from the thymus as most of the label has disappeared from the thymus after 1 wk (Fig. 5), and since in continuous labeling experiments the increase in the number of labeled cells is <20% per week. Nevertheless, to completely rule out this possibility we determined also the decay of label in thymectomized mice.

Decay of Labeled Cells in Thymectomized Mice. Mice were continuously injected with BrdU for 3.5 wk, then thymectomized, and the decay of labeled CD4⁻8⁺ αβ⁺ T cells was investigated as above. Whereas the labeled cells disappeared rapidly from the bone marrow, the proportion of labeled CD4⁻8⁺ αβ⁺ T cells decayed very slowly during the subsequent 3-wk period of observation (Fig. 6). In fact, the decay was slower than in the euthymic mice. This may be due to better survival of cells in thymusless mice, which is expected because there is no de novo production of unlabeled cells.

Discussion

Before the advent of TCR transgenic mice, it was difficult to establish data on the life span of naive T lymphocytes be-
cause one could not be certain that one was dealing with such cells. These exist no surface markers that definitely distinguish between naive and antigen-experienced T cells because most of the markers used to date are markers that correlate with cell activation rather than still ill-defined memory (23). Male-specific cells in female TCR transgenic mice fulfill the criteria of naive T cells, as these cells are never found to be CD44 positive, while they rapidly acquire CD44 after deliberate antigenic stimulation (24). The number of naive T cells with the transgenic TCR, as well as the total number of lymphocytes decline initially after thymectomy performed in TCR transgenic female mice. The recovery of T cell numbers during the weeks after thymectomy is achieved exclusively by cells that can be antigenically stimulated, i.e., cells that express endogenous TCR α chains. The reduced proportion of cells with apparently naive phenotype in thymectomized mice may have previously led to the speculation that naive T cells are very short lived (19). Our results suggest that this interpretation is not correct and that it is the dilution of naive T cells in the pool of antigenically stimulated cells expanding after adult thymectomy that creates this illusion. The fact that there is no significant incorporation of DNA precursors into these cells once they leave the thymus supports the argument that these cells persist as naive T cells in peripheral lymph tissue.

By extrapolating the curve obtained during a 3-wk period of continuous labeling, one arrives at an estimate of a minimum life span of naive CD4−8+ T cells of 8 wk. This minimum estimate is supported by experiments in which the decay of labeling was monitored after a labeling period of 14 or 25 d in normal mice or mice that were thymectomized at the end
We thank Mark Dessing and Stefan Meyer for expert fluorocytometry.

The Basel Institute was founded and is supported by F. Hoffmann-La Roche, Inc.

Address correspondence to Harald von Boehmer, Basel Institute for Immunology, Grenzacherstrasse 487, CH-4058 Basel, Switzerland.

Received for publication 21 October 1992 and in revised form 16 December 1992.
References

1. Beverley, P.C.L. 1990. Human T-cell memory. *Curr. Top. Microbiol. Immunol.* 159:111.
2. Tedder, T.F., M.D. Cooper, and L.T. Clement. 1985. Human lymphocyte differentiation antigens HB-10 and HB11. II. Differential production of B cell growth and differentiation factors by distinct helper T cell subpopulations. *J. Immunol.* 134:2989.
3. Sanders, M.E., M.W. Makgoba, S.O. Sharrow, D. Stephany, T.A. Springer, H.A. Young, and S. Shaw. 1988. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. *J. Immunol.* 140:1401.
4. Bottomly, K., M. Luqman, L. Greenbaum, S. Carding, J. West, T. Pasqualini, and D.B. Murphy. 1989. A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. *Eur. J. Immunol.* 19:617.
5. Lee, W.T., and E.S. Vitetta. 1990. Limiting dilution analysis of CD45Rhi and CD45Rlo T cells: further evidence that CD45Rlo cells are memory cells. *Cell. Immunol.* 130:459.
6. Bell, E.B., and S.M. Sparshott. 1990. Interconversion of CD45R subsets of CD4 T cells in vivo. *Nature (Lond.)* 348:163.
7. Rothstein, D.M., A. Yamada, S.E. Schlossman, and C. Morimoto. 1991. Cyclic regulation of CD45 isoform expression in a long-term human CD4+CD45RA– T cell line. *J. Immunol.* 146:1175.
8. Warren, H.S., and L.J. Skipsey. 1991. Loss of activation-induced CD45RO with maintenance of CD45RA expression during prolonged culture of T cells and NK cells. *Immunology* 74:78.
9. Michie, C.A., A. McLean, C. Alcock, and P.C.L. Beverley. 1992. The life span of human T lymphocyte subsets defined by CD45 isoforms. *Nature (Lond.)* 360:264.
10. Cerottini, J.-C., and H.R. MacDonald. 1989. The cellular basis of T cell memory. *Annu. Rev. Immunol.* 7:77.
11. Budd, R.C., J.-C. Cerottini, C. Horvath, C. Bron, T. Pedrazzini, R.C. Howe, and H.R. MacDonald. 1987. Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. *J. Immunol.* 138:3120.
12. Sprunt, J., and A. Basten. 1973. Circulating T and B lymphocytes of the mouse. II. Lifespan. *Cell. Immunol.* 7:40.

The Life Span of Naive α/β T Cells