Meeting the Scaling Challenge for Post-Silicon Nanoelectronics using CaF$_2$ Insulators

Yury Yu. Illarionov,∗,†,‡ Alexander G. Banshchikov,† Dmitry K. Polyushkin, P Stefan Wachter, P Theresia Knobloch,† Mischa Thesberg,† Michael Stöger-Pollach,§ Andreas Steiger-Thirsfeld,§ Mikhail I. Vexler,‡ Michael Walzl,† Nikolai S. Sokolov,† Thomas Mueller, P and Tibor Grasser∗,†

†Institute for Microelectronics (TU Wien), Gusshausstrasse 27–29, 1040 Vienna, Austria
‡Ioffe Physical-Technical Institute, Polytechnicheskaya 26, 194021 St-Petersburg, Russia
PInstitute for Photonics (TU Wien), Gusshausstrasse 27–29, 1040 Vienna, Austria
§University Service Center for Transmission Electron Microscopy (TU Wien), Wiedner Hauptstrasse 8-10/052, 1040 Vienna, Austria

E-mail: illarionov@iue.tuwien.ac.at; grasser@iue.tuwien.ac.at

Abstract

Two-dimensional (2D) semiconductors have been suggested both for ultimately-scaled field-effect transistors (FETs) and More-than-Moore nanoelectronics. However, these targets can not be reached without accompanying gate insulators which are scalable into the nanometer regime. Despite the considerable progress in the search for channel materials with high mobilities and decent bandgaps, finding high-quality insulators compatible with 2D technologies has remained a challenge. Typically used oxides (e.g. SiO$_2$, Al$_2$O$_3$ and HfO$_2$) are amorphous when scaled, while two-dimensional hBN exhibits excessive gate leakages. To overcome this bottleneck, we extend the natural stacking properties of 2D heterostructures to epitaxial fluorite (CaF$_2$), which forms a quasi van der Waals interface with 2D semiconductors. We report scalable single-layer
MoS$_2$ FETs with a crystalline CaF$_2$ insulator of about 2 nm thickness, which corresponds to an equivalent oxide thickness of less than 1 nm. While meeting the stringent requirements of low leakage currents, our devices exhibit highly competitive performance and record-small hysteresis. As such, our results present a breakthrough for very large scale integration towards commercially competitive nano-electronic devices.

Various two-dimensional (2D) semiconductors are now considered as channel materials in next-generation field-effect transistors (FETs), which are potentially suitable to extend the life of Moore’s law by enabling scaled channel geometries below 5 nm. For instance, several groups have reported FETs with graphene,1 silicene,2 black phosphorus3,4 and transition metal dichalcogenides, such as MoS$_2$,5–9 MoSe$_2$,10 MoTe$_2$,11 WS$_2$,12 and WSe$_2$.13,14 Excellent transistor characteristics have already been obtained for MoS$_2$ FETs, such as on/off current ratios7 up to 10^{10} and sub-threshold swing values down to 69 mV/dec.9 Furthermore, some attempts on circuit integration of MoS$_2$ FETs have already been undertaken.15,16

However, one of the major research problems of 2D technologies is their miniaturization without considerable loss in already achieved device performance thresholds. While fabrication of competitive 2D FETs with scaled channel dimensions is already possible,17 scaling and precise control of the insulator thickness and quality remain a challenge. Typically, oxides known from Si technologies (e.g. SiO$_2$, Al$_2$O$_3$ and HfO$_2$) are used. These materials are amorphous when grown in thin layers, which makes the fabrication of high-quality interfaces with the channel difficult. In order to address this problem, different insulators have to be identified for next-generation 2D technologies. In particular, hexagonal boron nitride (hBN) has been intensively discussed in the literature.18 However, hBN has a small bandgap of about 6 eV,19 a small dielectric constant of 5.06,20 and unfortunate band offsets to most 2D materials. As scaled technologies require equivalent oxide thicknesses (EOT) below 1 nm (corresponding to a physical thickness of below 1.3 nm in hBN), hBN will result in excessive thermionic and tunneling leakage currents (see Supplementary Section 1). To overcome this bottleneck, we suggest here to use epitaxially grown (and thus crystalline) calcium fluoride
(fluorite, CaF$_2$) which has outstanding insulating properties even for a physical thickness of just about 2 nm (EOT of about 0.9 nm).

Epitaxially grown CaF$_2$ is a high-k crystalline material with a very favourable combination of dielectric properties,21 such as a high dielectric constant ($\varepsilon = 8.43$), wide bandgap ($E_g = 12.1$ eV) and high effective carrier mass ($m^* = 1.0m_0$). Also, its nearly perfectly matching lattice constant (0.546 nm) with Si (0.543 nm) and similarities between the fluorite and Si lattice structures allow growth of CaF$_2$ layers on Si and Ge substrates using molecular-beam epitaxy (MBE)22,23 with very high quality. Furthermore, the CaF$_2$(111) surface is terminated by F atoms, which makes it chemically inert and free of dangling bonds with H passivation24 known to result in numerous reliability challenges. Owing to this, heteroepitaxy of 2D materials on the 3D CaF$_2$ surface is possible even for considerable lattice mismatch,25 while leading to high-quality quasi van der Waals interface. In particular, recent studies have reported epitaxy of MoSe$_2$26 and MoTe$_2$27 on CaF$_2$(111) bulk substrates. This further underlines that CaF$_2$ is fully compatible with 2D semiconductors and thus can be considered an extremely promising insulating material for very large scale integration of 2D devices.

Note that CaF$_2$ is only one material out of a wide class of epitaxial fluorides.22 Some of these materials (e.g. anti-ferromagnetic NiF$_2$28 and MnF$_2$, diamagnetic ZrF$_2$, ferroelectric BaMgF$_4$30) have additional fascinating properties which may revolutionize future electronic device technologies. Nevertheless, the real potential of fluorides in modern electronic devices is still not fully exploited. For instance, previously, CaF$_2$ films have been mostly used as barrier layers in resonant tunneling diodes31 and superlattices,32 together with CdF$_2$ films. As for the use of CaF$_2$ as a gate insulator in FETs, only a few working transistors with 640 nm thick CaF$_2$ and poor reproducibility were reported.33 The considerable progress in MBE grown tunnel-thin CaF$_2$ layers achieved in the last decade has revived the idea of fluoride insulators in FETs.34

In this study we combine the epitaxial growth of CaF$_2$ with chemical vapour deposition (CVD) of MoS$_2$ in a single device. In order to study the variability and reproducibility
of these devices, we fabricated hundreds of electrically stable single-layer MoS$_2$ FETs with about 2 nm thick CaF$_2$ gate insulators. Ultra-thin CaF$_2$ layers were deposited onto an atomically clean Si(111) surface using our well-adjusted MBE growth technique23 at 250°C (for more details see the Methods section). The growth process and crystalline quality of CaF$_2$ were controlled in real time using reflection high-energy electron diffraction (RHEED),35 the corresponding images are provided in Supplementary Section 2. The thickness of CaF$_2$ measured by a quartz oscillator is 6 – 7 monolayers (ML, 1 ML = 0.315 nm), which is close to the values measured using transmission electron microscope (TEM). The first step of transistor fabrication consisted in formation of SiO$_2$(5 – 10 nm)/Ti/Au source/drain contact pads using sputtering. Then, a single-layer MoS$_2$ film grown by CVD36 at 750°C was transferred onto the substrate according to the method of [37] (for more details see the Methods section) and MoS$_2$ channels with L and W varied between 400 and 800 nm were shaped. Finally, additional e-beam evaporated Ti/Au layers were deposited to contact the channels. More details about the structure of our devices can be found in Supplementary Section 3.

In Fig. 1a we show that the atomic structure of CaF$_2$(111) is rather similar to that of 2D materials, with F-Ca-F monolayers having a thickness of 0.315 nm. This makes fluorite a natural candidate for the integration into 2D process flows. An essential ingredient of our devices is the virtually defect-free CaF$_2$(111)/MoS$_2$ interface, which is formed by the F-terminated fluorite substrate, a quasi van der Waals gap and an atomically flat MoS$_2$ layer (Fig. 1a). This interface is present in the channel area and under the source/drain electrodes, as marked in the scanning electron microscope (SEM) image in Fig. 1b. In order to verify the layer structure of our device, we cut a 70 nm thick specimen using focused ion beam (FIB) along the line marked in Fig. 1b and performed TEM measurements. In Fig. 1c we show a TEM image obtained for the channel area. We can clearly see the interface between single-layer MoS$_2$ and layered crystalline CaF$_2$ of about 8 ML, which corresponds to a physical thickness of about 2.5 nm. For different substrates, the number of CaF$_2$ monolayers varies between 6 and 8 (thickness between 1.9 and 2.5 nm). By recording electron energy
Figure 1: (a) Atomistic structure of the quasi van der Waals interface between F-terminated CaF$_2$(111) and MoS$_2$ in the channel area of our devices. (b) SEM image of our MoS$_2$ FET. The black box indicates the channel area with the source/drain electrodes, where MoS$_2$ is on top of CaF$_2$, as shown in (a). The red line indicates the approximate location of the cut for the TEM sample, with two locations where the images were collected. (c) TEM image obtained in the channel area (location 1). (d) Low resolution TEM image obtained outside the channel area (location 2). The structure is the same as for the contact pads, with an SiO$_2$ isolation layer deposited on top of CaF$_2$ and MoS$_2$ sandwiched between two metal layers. (e) High resolution TEM image obtained in location 2 where the CaF$_2$ layers are visible. (f) Gate leakage through the CaF$_2$ layer is negligible compared to the drain current, which underlines the high quality of our MoS$_2$ FETs.

loss spectra (EELS, see Supplementary Section 5) at the interface between CaF$_2$ and the Si substrate we observe some SiO$_2$ (less than 1 nm thick), which is formed by oxidation.
resulting from prolonged exposure to air of our CaF$_2$/Si substrates before device fabrication. Taking into account thickness fluctuations23 of CaF$_2$ and the presence of a thin thermal oxide layer, we model the tunnel leakages measured for numerous devices and find that the effective gate insulator thickness is about 2 nm (see Supplementary Section 4). The layered structure of our CaF$_2$ films is clearly visible in the TEM image obtained using low dose imaging. Although electron irradiation is known to be destructive for CaF$_2$ samples,38 these investigations indicate the extremely high stability of our thin CaF$_2$ layers, where the desorption of F by the electron beam and subsequent formation of CaO are not as favourable as in CaF$_2$ bulk crystals.38 Nevertheless, we found that TEM measurements can destroy the Si substrate a few nanometers below the Si/CaF$_2$ interface, which, however, only occurs within the channel area (see Supplementary Section 5). Interestingly, outside the channel area our sample is unaffected by TEM irradiation. There we can clearly see MoS$_2$ sandwiched between two metal layers and an SiO$_2$ isolation layer on top of the CaF$_2$/Si substrate (Fig. 1d,e). As a final verification of the properties of our 2 nm thick CaF$_2$ insulator, in Fig. 1f we show that the measured gate leakage is negligible compared to the drain current of our MoS$_2$ FET.

Figure 2: (a) $I_D - V_G$ characteristics of 50 MoS$_2$/CaF$_2$ FETs from two different Si/CaF$_2$ substrates. (b) Distributions of measured on/off current ratios and subthreshold swings for these devices. (c) Some devices exhibit SS down to 90 mV/dec.

Using the process flow described above, we fabricated over 100 devices on two different CaF$_2$ substrates. In Fig. 2a we show the gate transfer ($I_D - V_G$) characteristics measured
for 50 devices from both substrates. The typical on-currents vary from 1 nA to nearly 10μA, which is likely because of the non-homogeneous nature of the CVD MoS₂ film and different effective channel widths. At the same time, the measured on/off current ratios of some devices approach 10⁷ (Fig. 2b), which is excellent for back-gated MoS₂ FETs with a tunnel-thin gate insulator. Note that for the devices with overall lower currents, the measured on/off current ratios are probably underestimated due to the limited measurement resolution, which affects the off current. At the same time, the subthreshold swing (SS) values of most devices are smaller than 150 mV/dec, while being close to 90 mV/dec for some devices (Fig. 2b,c). These values are among the best ever reported for back-gated MoS₂ FETs. Although in these prototypes SS ~ 90 mV/dec is achieved mostly for the devices with lower current (Fig. 2c), several high-current devices also exhibit small SS values (e.g. Fig. 3). As such, we believe that further optimization of CVD MoS₂ FETs on epitaxial fluorides and transition to more versatile configurations, such as top-gated devices and perhaps negative capacitance FETs with ferroelectric fluorides, will lead to further improvements of these emerging devices.

![Figure 3](image)

Figure 3: (a) $I_D - V_G$ characteristics measured for the best high current device. (b) On/off current ratio and SS extracted at different V_D. The best performance of this device is achieved at $V_D = 1$ V, with maximum measured on current about 5 µA (or about 6 µA/µm if normalized to the channel width), on/off current ratio close to 10^7 and SS as small as 93 mV/dec (Fig. 3b). The output ($I_D - V_D$) characteristics recorded on the same device exhibit saturation.

In Fig. 3a we show typical $I_D - V_G$ characteristics measured for a device which simultaneously exhibits high drain currents and steep SS. The best transistor performance is achieved at $V_D = 1$ V, with maximum measured on current about 5 µA (or about 6 µA/µm if normalized to the channel width), on/off current ratio close to 10^7 and SS as small as 93 mV/dec (Fig. 3b). The output ($I_D - V_D$) characteristics measured for different V_D (Fig. 3c) also
show promising behaviour with a large degree of current control and saturation. All these results confirm the promising nature of our devices and thus the high potential for further development.

Figure 4: (a) Ultra-slow sweep $I_D - V_G$ characteristics measured for our MoS$_2$/CaF$_2$(2 nm) FETs and Al$_2$O$_3$ encapsulated MoS$_2$/SiO$_2$(25 nm) devices reported in our previous work.7 (b) For comparable sweep times, the hysteresis width has to be normalized to the insulator field factor $\Delta V_G/d_{\text{ins}}$. For our MoS$_2$/CaF$_2$(2 nm) devices it is smaller compared to other 2D FETs and already close to commercial Si/high-k FETs.

Finally, we verify the electrical stability of our MoS$_2$/CaF$_2$ FETs by performing ultra-slow sweep hysteresis measurements with total sweep times t_{sw} of several kiloseconds. In Fig. 4a we compare the $I_D - V_G$ characteristics measured for our MoS$_2$/CaF$_2$ devices with those of MoS$_2$/SiO$_2$ FETs with Al$_2$O$_3$ encapsulation reported in our previous work,7 which were found to exhibit the smallest hysteresis ever reported in 2D technologies. In addition to comparable values of I_D normalized to the channel width and considerably smaller SS for our MoS$_2$/CaF$_2$ FETs, we found that the hysteresis width near V_{th} is about 0.2 V in both cases. However, for a fair comparison these values need to be normalized to the insulator field factor $\Delta V_G/d_{\text{ins}}$,7 with ΔV_G being the width of V_G sweep range. While our devices with ultra-thin fluorite operate at considerably higher insulator fields of up to 15 MV/cm (against 6.4 MV/cm for the devices with thick SiO$_2$), their hysteresis stability is even better than for encapsulated MoS$_2$/SiO$_2$ FETs and close to commercial Si/high-k FETs, not to mention less advanced devices (Fig. 4b). This confirms both the high electrical stability of CaF$_2$ as a
gate insulator and the reduced number of slow insulator traps near the CaF$_2$/MoS$_2$ interface. The latter indicates that in addition to an excellent transistor performance, 2D FETs with CaF$_2$ are also more than competitive in terms of their reliability, which is a fundamental requirement for commercial applications.

In summary, we have reported single-layer CVD MoS$_2$ FETs on an epitaxially grown CaF$_2$ insulator of record small 2 nm thinness and demonstrated that our fully scalable technology allows fabrication of numerous transistors on a single chip. We have found that already these prototype devices can exhibit SS down to 90 mV/dec and on/off current ratios up to 10^7, which are among the best values ever reported for back-gated devices. Furthermore, we have demonstrated that our devices are of very high electrical stability even for insulator fields of 10^{-15} MV/cm and exhibit record small hysteresis ever measured for 2D devices. All this is due to the outstanding dielectric properties of CaF$_2$ and its good compatibility with MoS$_2$, which leads to a virtually defect-free quasi van der Waals interface between these materials. Together with the recent demonstration of epitaxial growth of 2D semiconductors on CaF$_2$(111),26,27 our findings present a breakthrough towards enabling ultra-scaled dielectric layers for next-generation 2D nanoelectronics.

Methods

MBE growth of CaF$_2$ insulators

Ultra-thin CaF$_2$ layers were epitaxially grown on weakly doped single-crystal n-Si(111) substrates with $N_D = 10^{15}$ cm$^{-3}$ and a misorientation of 5 to 10 angular minutes. Before the growth process, a protective oxide layer was formed after chemical treatment by following the procedure suggested by Shiraki.39 Then, this layer was removed by annealing for 2 minutes at 1200°C under ultra-high vacuum conditions ($\sim 10^{-8}-10^{-7}$ Pa). This allowed us to obtain an atomically clean 7×7 Si(111) surface. After this, the CaF$_2$ film was grown on this surface by MBE at 250°C, which is known to be the optimum temperature to produce pinhole-free
homogeneous fluorite layers. The deposition rate of fluorite measured by a quartz oscillator was about 1.3 nm/min. The growth processes and crystalline quality of the CaF$_2$ layers were monitored using RHEED with an electron energy of 15 keV (see the diffraction images shown in Supplementary Section 2).

Device fabrication

A single-layer MoS$_2$ film serving as a channel was grown on c-plane sapphire using the CVD process described by Dumcenco et al. Namely, CVD growth was performed at atmospheric pressure and 750°C using sulfur and MoO$_3$ as powder precursors and ultra-high-purity Ar as the carrier gas.

All lithography steps were done using E-Beam lithography. First we deposited SiO$_2$(5–10 nm)/Ti/Au contact pads using sputtering. An isolation with the SiO$_2$ layer is required to minimize parasitic leakage currents through the 15–20 μm sized square electrodes, which have to be so large for a reliable contact with the probe. Then 7×7 mm CVD-grown MoS$_2$ films were transferred onto the CaF$_2$(111) substrate with pre-shaped isolated contact pads using the process suggested by Gurarslan et al. In particular, we used a polystyrene film as a carrier polymer and dissolved it in toluene after the transfer process. The transferred MoS$_2$ film was subsequently etched by reactive ion etching, in order to define the transistor channels with L and W between 400 and 800 nm. Finally, the channels were contacted by e-beam evaporated Ti/Au pads deposited on top of MoS$_2$ in the contact areas. This second layer of Ti/Au was slightly extended to contact MoS$_2$ on top of the bare CaF$_2$ surface.

TEM measurements

In order to achieve a high contrast in TEM measurements, the devices were covered by a 10 nanometers thick carbon layer deposited using sputtering. After this a TEM lamella preparation process was performed with a dual beam system. First a thicker granular platinum protective layer was deposited using a focused electron beam followed by a focused ion beam deposition. Then a TEM lamella was cut out along the channel of the device. Finally, the samples were examined using a TEM setup at the pressure of about 10^{-5} Pa. During
the measurements, we recorded EELS spectra to verify the layer structure of our device.

Electrical characterization

Electrical characterization of our MoS$_2$/CaF$_2$ FETs consisted in the measurements of $I_D - V_G$ and $I_D - V_D$ characteristics. These measurements were conducted using a Keithley 2636 parameter analyzer in the chamber of a Lakeshore vacuum probestation ($\sim 5 \times 10^{-6}$ torr) at room temperature and in complete darkness. In order to correctly resolve the on/off current ratio, we used the autorange measurement mode. The hysteresis of the $I_D - V_G$ characteristics was investigated by doing double sweeps with a constant sweep rate.

Acknowledgement

The authors thank for the financial support through the Austrian Science Fund FWF grant n° I2606-N30. T.M., D.K.P. and S.W. acknowledge financial support by the Austrian Science Fund FWF (START Y 539-N16) and the European Union (grant agreement No. 785219 Graphene Flagship). This work was partly supported by the Russian Foundation for Basic Research (grant No. 18-57-80006 BRICS). We also gratefully acknowledge useful discussions with Mr. Markus Jech. Y.Y.I. is a member of Mediterranean Institute of Fundamental Physics (MIFP).

Author contributions

Y.Y.I. introduced the idea of MoS$_2$ FETs with ultra-thin CaF$_2$ insulator, performed their characterization and prepared the manuscript. A.G.B. performed MBE growth of CaF$_2$ and provided the substrates. D.K.P. and S.W. fabricated MoS$_2$ FETs. M.S.-P. did TEM measurements. T.K. and M.T. contributed to preparation of figures. M.S-P. and A.S.-T. performed TEM measurements and sample preparation, respectively. M.I.V. performed quantitative analysis of gate leakage currents using tunnel models. M.W. programmed electrical measurements. N.S.S., T.M. and T.G. supervised this work. All authors regularly discussed the
results and commented on the manuscript.

References

(1) Guerriero, E.; Pedrinazzi, P.; Mansouri, A.; Habibpour, O.; Winters, M.; Rorsman, N.; Behnam, A.; Carrion, E.; Pesquera, A.; Centeno, A.; Zurutuza, A.; Pop, E.; Zirath, H.; Sordan, R. High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide. Sci. Rep. 2017, 7, 2419.

(2) Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene Field-Effect Transistors Operating at Room Temperature. Nature Nanotechnol. 2015, 10, 227.

(3) Li, L.; Yu, Y.; Ye, G.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377.

(4) Chen, X.; Chen, C.; Levi, A.; Houben, L.; Deng, B.; Yuan, S.; Ma, C.; Watanabe, K.; Taniguchi, T.; Naveh, D.; Du, X.; Xia, F. Large-Velocity Saturation in Thin-Film Black Phosphorus Transistors. ACS Nano 2018, 12, 5003–5010.

(5) Kang, J.; Liu, W.; Banerjee, K. High-performance MoS2 Transistors with Low Resistance Molybdenum Contacts. Appl. Phys. Lett. 2014, 104, 093106.

(6) Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R.; Javey, A. MoS2 P-Type Transistors and Diodes Enabled by High Work Function MoOx Contacts. Nano Lett. 2014, 14, 1337–1342.

(7) Illarionov, Y.; Smithe, K.; Waltl, M.; Knobloch, T.; Pop, E.; Grasser, T. Improved Hysteresis and Reliability of MoS2 Transistors with High-Quality CVD Growth and Al2O3 Encapsulation. IEEE Electron Device Lett. 2017, 38, 1763–1766.
(8) Smithe, K.; Suryavanshi, S.; Munoz-Rojo, M.; Tedjarati, A.; Pop, E. Low Variability in Synthetic Monolayer MoS$_2$ Devices. *ACS Nano* **2017**, *11*, 8456–8463.

(9) Bolshakov, P.; Zhao, P.; Azcatl, A.; Hurley, P.; Wallace, R.; Young, C. Improvement in Top-Gate MoS$_2$ Transistor Performance due to High Quality Backside Al$_2$O$_3$ Layer. *Appl. Phys. Lett.* **2017**, *111*, 032110.

(10) Liao, W.; Wei, W.; Tong, Y.; Chim, W. K.; Zhu, C. Electrical Performance and Low Frequency Noise in Hexagonal Boron Nitride Encapsulated MoSe$_2$ Dual-Gated Field Effect Transistors. *Appl. Phys. Lett.* **2017**, *111*, 082105.

(11) Cho, Y.; Park, J.; Kim, M.; Jeong, Y.; Ahn, J.; Kim, T.; Choi, H.; Yi, Y.; Im, S. Fully Transparent p-MoTe$_2$ 2D Transistors Using Ultrathin MoOx/Pt Contact Media for Indium-Tin-Oxide Source/Drain. *Adv. Fun. Mater.* **2018**, *28*, 1801204.

(12) Yang, L.; Majumdar, K.; Liu, H.; Du, Y.; Wu, H.; Hatzistergos, M.; Hung, P.; Tieckelmann, R.; Tsai, W.; Hobbs, C.; Ye, P. Chloride Molecular Doping Technique on 2D materials: WS$_2$ and MoS$_2$. *Nano Lett.* **2014**, *14*, 6275–6280.

(13) Liu, W.; Kang, J.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of Metal Contacts in Designing High-Performance Monolayer n-type WSe$_2$ Field Effect Transistors. *Nano Lett.* **2013**, *13*, 1983–1990.

(14) Prakash, A.; Appenzeller, J. Bandgap Extraction and Device Analysis of Ionic Liquid Gated WSe$_2$ Schottky Barrier Transistors. *ACS Nano* **2017**, *11*, 1626–1632.

(15) Wang, H.; Yu, L.; Lee, Y.-H.; Shi, Y.; Hsu, A.; Chin, M.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Integrated Circuits Based on Bilayer MoS$_2$ Transistors. *Nano Lett.* **2012**, *12*, 4674–4680.

(16) Das, T.; Chen, X.; Jang, H.; Oh, I.-K.; Kim, H.; Ahn, J.-H. Highly Flexible Hybrid
CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide. *Small* 2016, 12, 5720–5727.

(17) Xie, L.; Liao, M.; Wang, S.; Yu, H.; Du, L.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X.; Wang, G.; Xie, G.; Yang, R.; Shi, D.; Zhang, G. Graphene-Contacted Ultrashort Channel Monolayer MoS$_2$ Transistors. *Adv. Mater.* 2017, 29, 1702522.

(18) Hui, F.; Pan, C.; Shi, Y.; Ji, Y.; Grustan-Gutierrez, E.; Lanza, M. On the Use of Two Dimensional Hexagonal Boron Nitride as Dielectric. *Microelectron. Eng.* 2016, 163, 119–133.

(19) Cassabois, G.; Valvin, P.; Gil, B. Hexagonal Boron Nitride is an Indirect Bandgap Semiconductor. *Nature Photonics* 2016, 10, 262–266.

(20) Geick, R.; Perry, C.; Rupprecht, G. Normal Modes in Hexagonal Boron Nitride. *Phys. Rev.* 1966, 146, 543.

(21) Hayes, W. *Crystals with the Fluorite Structure*; Clarendon Press, 1974.

(22) Sugiyama, M.; Oshima, M. MBE Growth of Fluorides. *Microelectronics Journal* 1996, 27, 361–382.

(23) Illarionov, Y.; Vexler, M.; Fedorov, V.; Suturin, S.; Sokolov, N. Electrical and Optical Characterization of Au/CaF$_2$/p-Si(111) Tunnel-Injection Diodes. *J. Appl. Phys.* 2014, 115, 223706.

(24) Foster, A.; Trevethan, T.; Shluger, A. Structure and Diffusion of Intrinsic Defects, Adsorbed Hydrogen, and Water Molecules at the Surface of Alkali-Earth Fluorides Calculated using Density Functional Theory. *Phys. Rev. B* 2009, 80, 115421.

(25) Koma, A.; Saiki, K.; Sato, Y. Heteroepitaxy of a Two-Dimensional Material on a Three-Dimensional Material. *Appl. Surf. Sci.* 1990, 41, 451–456.
(26) Vishwanath, S.; Liu, X.; Rouvimov, S.; Mende, P.; Azcatl, A.; McDonnell, S.; Wallace, R.; Feenstra, R.; Furduya, J.; Jena, D.; Xing, H. Comprehensive Structural and Optical Characterization of MBE Grown MoSe$_2$ on Graphite, CaF$_2$ and Graphene. *2D Mater.* 2015, 2, 024007.

(27) Vishwanath, S. et al. MBE Growth of Few-Layer 2H-MoTe_2 on 3D Substrates. *J. Cryst. Growth* 2018, 482, 61–69.

(28) Banshchikov, A.; Golosovskii, I.; Krupin, A.; Koshmak, K.; Sokolov, N.; Chernenko, Y.; Yagovkina, M.; Ulin, V.; Tabuchi, M. Epitaxial Layers of Nickel Fluoride on Si (111): Growth and Stabilization of the Orthorhombic Phase. *Phys. Solid State* 2015, 57, 1647–1652.

(29) Kaveev, A.; Anisimov, O.; Banshchikov, A.; Kartenko, N.; Ulin, V.; Sokolov, N. Epitaxial Growth on Silicon and Characterization of MnF$_2$ and ZnF$_2$ Layers with Metastable Orthorhombic Structure. *J. Appl. Phys.* 2005, 98, 013519.

(30) Ravez, J. The Inorganic Fluoride and Oxyfluoride Ferroelectrics. *Journal de Physique III* 1997, 7, 1129–1144.

(31) Watanabe, M.; Funayama, T.; Teraji, T.; Sakamaki, N. CaF$_2$/CdF$_2$ Double-Barrier Resonant Tunneling Diode with High Room-Temperature Peak-to-Valley Ratio. *Jpn. J. Appl. Phys.* 2000, 39, L716.

(32) Suturin, S.; Basun, S.; Gastev, S.; Langer, J.; Meltzer, R.; Sokolov, N. Optical Detection of Electron Transfer through Interfaces in CaF$_2$: Eu–CdF$_2$ SLs. *Appl. Surf. Science* 2000, 162, 474–478.

(33) Smith III, T.; Phillips, J.; Augustyniak, W.; Stiles, P. Fabrication of Metal-Epitaxial Insulator-Semiconductor Field-Effect Transistors using Molecular Beam Epitaxy of CaF$_2$ on Si. *Appl. Phys. Lett.* 1984, 45, 907–909.
(34) Tyaginov, S.; Illarionov, Y.; Vexler, M.; Bina, M.; Cervenka, J.; Franco, J.; Kaczer, B.;
Grasser, T. Modeling of Deep-Submicron Silicon-based MISFETs with Calcium Fluoride Dielectric. J. Computational Electronics 2014, 13, 733–738.

(35) Sokolov, N.; Alvarez, J.; Yakovlev, N. Fluoride Layers and Superlattices Grown by MBE on Si(111): Dynamic RHEED and Sm$^{2+}$ Photoluminescence Studies. Appl. Surf. Sci. 1992, 60, 421–425.

(36) Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazic, P.; Gibertini, M.; Marzari, N.; Sanchez, O.; Kung, Y.-C.; Krasnozhon, D.; Chen, M.-W.; Bertolazzi, S.; Gillet, P.; Fontcuberta i Morral, A.; Radenovic, A.; Kis, A. Large-Area Epitaxial Monolayer MoS$_2$. ACS Nano 2015, 9, 4611–4620.

(37) Gurarslan, A.; Yu, Y.; Su, L.; Yu, Y.; Suarez, F.; Yao, S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Monolayer and Few-Layer MoS$_2$ Films onto Arbitrary Substrates. ACS Nano 2014, 8, 11522–11528.

(38) Jiang, N. On the Oxidation of CaF$_2$ in Transmission Electron Microscope. Micron 2012, 43, 746–754.

(39) Ishizaka, A.; Shiraki, Y. Low Temperature Surface Cleaning of Silicon and its Application to Silicon MBE. J. Electrochem. Soc. 1986, 133, 666–671.
1. Tunnel leakage currents through CaF$_2$ and other insulators

In Fig. S1a we show the energetic alignment of CaF$_2$, hBN and SiO$_2$ relative to Si and several single-layer TMD semiconductors obtained using the band offsets known from literature.1,2 Clearly, CaF$_2$ has a considerable advantage in terms of bandgap, which is twice as large as that of hBN. This fact alone should lead to considerably smaller tunnel currents for the same equivalent oxide thickness (EOT). The other parameters which affect tunnel leakages are the dielectric constant ε, the electron and hole effective masses (m_e and m_h, respectively) and the conduction band offset with the Si substrate χ_e. The values known from the literature$^{2–8}$ for CaF$_2$, hBN, SiO$_2$ and high-k oxides HfO$_2$ and La$_2$O$_3$ are summarized in Fig. S1b. Using these parameters and our well-established modeling technique,9,10 we modeled the tunnel currents through the Au/insulator/n-Si(111) system. Our approach is based on a WKB calculation of the tunneling probability and accounts for transverse momentum conservation$^{9–11}$ in the case of crystalline CaF$_2$ on Si(111). As for the case of oxide insulators and hBN, the tunneling
Figure S1: (a) Band alignment of CaF$_2$, hBN and SiO$_2$ relative to several single-layer TMD semiconductors. (b) Dielectric parameters for different insulators. (c) Simulated tunnel leakages for a Au/insulator/n-Si(111) system with EOT = 0.5 nm (left) and EOT = 1.0 nm (right). The doping level of the substrate was $N_D = 10^{15}$ cm$^{-3}$. In order to maintain a proper comparison of different insulator systems, the condition $\chi_m = \chi_e + 0.25$ eV is used for the band offset with Au.

current is supposed to occur as if silicon were a direct-band semiconductor (otherwise a huge difference between the Si(111) and Si(100) cases would have been predicted, which is never observed). The results obtained for EOT = 0.5 nm and EOT = 1.0 nm are shown in Fig. S1c. Clearly, in both cases the tunnel leakage through CaF$_2$ is even smaller than for high-k oxides, not to mention hBN, which is closer to SiO$_2$ rather than to high-k materials. Together with a defect-free substrate and a quasi van der Waals interface with 2D semiconductors, small leakages through CaF$_2$ layers with sub-1 nm EOT make this material the most promising for scaled next-generation 2D devices.

Note that for hBN we use the best case values of $\chi_e \sim 3$ eV2 and $\varepsilon = 5.06$. However, this material is not perfectly parameterized. For instance, other suggested χ_e values are about 1 eV smaller than in Fig. S1a and an alternative ε would be 3.76. As such, our model provides the results for minimum possible tunnel leakages through hBN.
2. RHEED control of CaF$_2$ epitaxy

![RHEED patterns](image)

Figure S2: RHEED patterns of the Si(111) surface showing the 7×7 superstructure (a) and a 2 nm thick CaF$_2$ layer grown at 250°C (b). Azimuth of the electron beam is [110].

The MBE growth process and the crystalline quality of the CaF$_2$ layers were monitored using reflection high energy electron diffraction (RHEED)14 with an electron energy of 15 keV. In Fig. S2 we show the typical RHEED patterns obtained for atomically clean Si(111) before the beginning of fluorite epitaxy (a) and from a deposited CaF$_2$ layer at the final stage of the MBE process (b). The presence of distinct reflections in the CaF$_2$ pattern indicates its high crystalline quality even at a comparably low MBE growth temperature of 250°C. Note that although the use of a higher growth temperature (e.g. 750°C) would further improve the crystalline quality of fluorite, the layer would then become non-homogeneous with a number of pinholes.
3. Geometry of our MoS$_2$/CaF$_2$ FETs

Figure S3: (a) Schematic cross-section of our MoS$_2$/CaF$_2$ FETs. (b) SEM image of two devices with contact pads. (c) SEM image of the channel area with marked channel dimensions. (d) AFM image of the channel area.

In Fig. S3a we show a schematic cross-section of our MoS$_2$/CaF$_2$ FETs. Reliable contact of the test devices with the probes requires contact pads as large as 15–20 μm. However, the CaF$_2$ layer may contain some thickness fluctuations and local pinholes with the depth of several angstroms, which may locally increase the tunnel leakage by orders of magnitude. The density of these pinholes typically depends on the quality of the Si(111) substrate (e.g.
misorientation angle, roughness, etc.) and the MBE growth parameters. It is commonly assumed that for a well adjusted MBE process of CaF$_2$ on Si(111) there should be less than one pinhole per 100 μm2. As such, the probability of having some pinholes under the 225 – 400 μm2 sized pads is quite high, which may lead to a smaller number of functional devices. Thus, in order to reduce parasitic leakages, the contact pads received some additional insulating layer with 5 – 10 nm thick SiO$_2$. At the same time, the contact of the SiO$_2$ layer with the MoS$_2$ film is completely avoided, which is necessary to block possible charge trapping events at the MoS$_2$/SiO$_2$ interface and thus make the transistor characteristics more stable. As such, within the contact area, the MoS$_2$ film is sandwiched between two Ti/Au layers, in which a thin (few nanometers) Ti layer is used as an adhesion layer. A typical view of our devices obtained using a scanning electron microscope (SEM) is shown in Fig. S3b. A detailed SEM image of the channel area (Fig. S3c) allows to estimate the channel dimensions. For our devices both L and W are typically between 400 and 800 nm. However, the CVD MoS$_2$ film contains some imperfections, which may lead to different effective channel widths for different devices. Within the channel area, the MoS$_2$ film is just on top of the CaF$_2$ insulator. As shown in Fig. S3d, the channel area of our devices can be also nicely resolved using atomic-force microscope (AFM).

4. Estimation of the effective gate insulator thickness in our MoS$_2$/CaF$_2$ FETs

Taking into account that thickness fluctuations may be present in tunnel-thin CaF$_2$ films, the effective thickness of the insulator can be different from the physical thickness which can be visually seen in TEM images. For a qualitative estimation of the effective thickness, we theoretically model the tunnel leakages and compare the results with our experimental data. First we model the tunnel leakages through Au/SiO$_2$/CaF$_2$/n-Si structures which form our contact pads. In Fig. S4a we show that already for a SiO$_2$ thickness of 3 nm the
leakage becomes negligible, while an increase of the insulator thickness by 1 nm leads to a decrease of the tunnel current by about 5 orders of magnitude. As such, our 15–20 µm sized contact pads with 5–10 nm SiO₂ can not contribute to the measured tunnel leakage. This means that the measured gate current is mostly given by the tunnel leakage within the channel area. The corresponding modeling results are shown in Fig. S4b. Based on our TEM measurements, we assume that the physical thickness of CaF₂ is 7 ML (1 ML=0.315 nm), which is about 22 Å. The root mean square (rms) amplitude of fluctuations σ measured for this fluorite thickness using atomic-force microscope (AFM) is about 2.7 Å. This gives an effective thickness \(d_{\text{eff}} = d_{\text{phys}} - \sigma^2 \), all values in angstroms) of CaF₂ \(d_{\text{eff}} \sim 1.5 \) nm. In agreement with our previous observations, ambient storage of CaF₂ films grown on Si leads to some oxidation at the CaF₂/Si interface, since oxygen is able to penetrate through the thinnest places in the CaF₂ layers. As a result, a thin SiO₂ layer is formed underneath CaF₂. While previously we observed this oxidation as a decrease of the tunnel currents after several months of device storage, in this study the presence of the thin SiO₂ layer was confirmed by TEM measurements (see Fig. S5c). As such, in our model we assume MoS₂/CaF₂/SiO₂/n-Si

\[\text{MoS}_2 / \text{CaF}_2 / \text{SiO}_2 / n-\text{Si} \]

Figure S4: (a) Simulated tunnel leakages for Au/SiO₂/CaF₂/n-Si(111) structures representing the contact pads of our MoS₂ FETs. (b) Simulated tunnel leakages for MoS₂/CaF₂/SiO₂/n-Si(111) structures representing the channel and experimental data measured for 17 devices. It appears that the effective thickness of our gate insulator is about 2 nm, which roughly corresponds to 1.5 nm of CaF₂ and 0.3–0.7 nm of SiO₂ due to oxygen penetration.

\[\text{MoS}_2 / \text{CaF}_2 / \text{SiO}_2 / n-\text{Si} \]

\[\text{Figure S4: (a) Simulated tunnel leakages for Au/SiO}_2/\text{CaF}_2/\text{n-Si(111)} \text{ structures representing the contact pads of our MoS}_2 \text{ FETs. (b) Simulated tunnel leakages for MoS}_2/\text{CaF}_2/\text{SiO}_2/\text{n-Si(111)} \text{ structures representing the channel and experimental data measured for 17 devices. It appears that the effective thickness of our gate insulator is about 2 nm, which roughly corresponds to 1.5 nm of CaF}_2 \text{ and 0.3–0.7 nm of SiO}_2 \text{ due to oxygen penetration.} \]
structures and vary the thickness of SiO\textsubscript{2}. Fitting of our modeling results with the tunnel gate currents measured for numerous devices in Fig. S4b allows us to conclude that the effective thickness of the SiO\textsubscript{2} oxidation layer is about 0.3–0.7\,\text{nm}. Therefore, the total effective thickness of the gate insulator in our MoS\textsubscript{2} FETs is about 2\,\text{nm}. Note that the oxidation layer underneath CaF\textsubscript{2} does not affect the device performance, since it is far away from defect-free CaF\textsubscript{2}/MoS\textsubscript{2} interface.

5. EELS analysis and sample degradation during TEM

In Fig. S5a we show the TEM image measured at the beginning of our study. We observe that already during the first measurement the TEM irradiation leads to a partial damage of Si substrate a few nanometers below the Si/CaF\textsubscript{2} interface. The origin of this issue is not clear yet, but could be a chemical modification of Si (e.g. by acetone penetrating through CaF\textsubscript{2} during MoS\textsubscript{2} transfer). Additionally, this damaged region is less stable with respect to irradiation. In particular, this damage appears only in the areas where MoS\textsubscript{2} is right on top of CaF\textsubscript{2}. However, it does not appear away from the channel, where CaF\textsubscript{2} is isolated by sputtered SiO\textsubscript{2}. After two more minutes of irradiation and focusing of the beam, the damaged area expands considerably (Fig. S5b). Nevertheless, the Si/CaF\textsubscript{2} and CaF\textsubscript{2}/MoS\textsubscript{2} interfaces remained stable enough to allow for recording an electron energy loss spectrometry (EELS) line scan employing the scanning mode of the TEM. In this situation a low dose electron beam is focused and scanned along the line shown in Fig. S5b. In each position an EELS spectrum is recorded, thus having a spatial resolution of 0.5\,\text{nm}. As shown in Fig. S5c, the EELS profile clearly confirms the layered structure of our device, though the measured thickness is broadened by an unknown factor \(K\) due to the non-planar surface. Also, the presence of the thin SiO\textsubscript{2} layer at the Si/CaF\textsubscript{2} interface is clearly confirmed by observation of the fine structure of the S-L ionization edge at the respective position of the linescan. This thin oxide layer appears as a result of several months of storage of the Si/CaF\textsubscript{2} substrates.
Figure S5: (a) TEM image obtained at the beginning of our measurements. The Si substrate is damaged by TEM a few nanometers below the CaF$_2$/Si interface. (b) TEM image obtained after 2 more minutes. The damage of the Si substrate is progressing. However, the features of the Si/CaF$_2$/MoS$_2$/Ti structure can be clearly resolved. (c) The cross-sectional EELS spectrum measured along the line marked in (b) confirms the layer alignment and suggests the presence of a thin SiO$_2$ layer at the Si/CaF$_2$ interface. (d) EELS spectra of each particular material detected.

before device fabrication and has been accounted for in the model above. Interestingly, in the damaged area the Si signal drops, which confirms the removal of the material by TEM irradiation. The EELS spectra of all the materials detected are shown in Fig. 5Sd and agree well with their reference shapes from the EELS atlas.
Figure S6: TEM images of the channel measured with high electron dose rate. Images a-d are taken within 4 minutes, which is enough to destroy the channel completely.

Finally, we record TEM images of the channel with an illuminated area of about 75 nm in diameter, a beam current of 26 nA giving an electron dose rate of 3.7×10^7 electrons/s/nm2, which is at least an order of magnitude larger than for all our previous TEM measurements. As shown in Fig. S6, already the first measurement with such a high electron dose rate leads to a complete amorphisation of CaF$_2$ and partial damage of MoS$_2$. A further increase of irradiation time leads to a severe damage of the Si substrate, and after about 4 minutes all layers are completely destroyed (Fig. S6d). These results confirm that TEM is in general destructive for MoS$_2$/CaF$_2$ FETs and reasonable results can be obtained only with moderate electron dose rates.

References

(1) Illarionov, Y.; Vexler, M.; Suturin, S.; Fedorov, V.; Sokolov, N. Characteristics of Thin Calcium Fluoride Barrier Layers for Field-Effect Transistors and Functional Electronic Devices. Techn. Phys. Lett. 2010, 36, 404–407.

(2) Rasmussen, F.; Thygesen, K. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. J. Phys. Chem. C 2015, 119, 13169–13183.

(3) Geick, R.; Perry, C.; Rupprecht, G. Normal Modes in Hexagonal Boron Nitride. Phys. Rev. 1966, 146, 543.
(4) Hayes, W. *Crystals with the Fluorite Structure*; Clarendon Press, 1974.

(5) Robertson, J. Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices. *J. Vac. Sci. Technol. B* **2000**, *18*, 1785–1791.

(6) Hou, Y.; Li, M.; Yu, H.; Kwong, D.-L. Modeling of Tunneling Currents through HfO$_2$ and (HfO$_2$)$_x$(Al$_2$O$_3$)$_{1-x}$/Gate Stacks. *IEEE Electron Device Lett.* **2003**, *24*, 96–98.

(7) Miranda, E.; Molina, J.; Kim, Y.; Iwai, H. Effects of High-Field Electrical Stress on the Conduction Properties of Ultrathin La$_2$O$_3$ Films. *Appl. Phys. Lett.* **2005**, *86*, 232104.

(8) Vexler, M.; Tyaginov, S.; Shulekin, A. Determination of the Hole Effective Mass in Thin Silicon Dioxide Film by Means of an Analysis of Characteristics of a MOS Tunnel Emitter Transistor. *J. Phys.: Cond. Matter* **2005**, *17*, 8057.

(9) Vexler, M.; Sokolov, N.; Suturin, S.; Banshchikov, A.; Tyaginov, S.; Grasser, T. Electrical Characterization and Modeling of the Au/CaF$_2$/nSi(111) Structures with High-Quality Tunnel-Thin Fluoride Layer. *J. Appl. Phys.* **2009**, *105*, 083716.

(10) Vexler, M.; Illarionov, Y.; Suturin, S.; Fedorov, V.; Sokolov, N. Tunneling of Electrons with Conservation of the Transverse Wave Vector in the Au/CaF$_2$/Si(111) System. *Phys. Solid State* **2010**, *52*, 2357–2363.

(11) Illarionov, Y.; Vexler, M.; Suturin, S.; Fedorov, V.; Sokolov, N.; Tsutsui, K.; Takahashi, K. Electron Tunneling in MIS Capacitors with the MBE-grown Fluoride Layers on Si(111) and Ge(111): Role of Transverse Momentum Conservation. *Microelectron. Eng.* **2011**, *88*, 1291–1294.

(12) Lee, G.-H.; Yu, Y.-J.; Lee, C.; Dean, C.; Shepard, K.; Kim, P.; Hone, J. Electron Tunneling through Atomically Flat and Ultrathin Hexagonal Boron Nitride. *Appl. Phys. Lett.* **2011**, *99*, 243114.
(13) Laturia, A.; Van de Put, M.; Vandenberghe, W. Dielectric Properties of Hexagonal Boron Nitride and Transition Metal Dichalcogenides: from Monolayer to Bulk. *npj 2D Mater. & Applications* **2018**, *2*, 6.

(14) Sokolov, N.; Alvarez, J.; Yakovlev, N. Fluoride Layers and Superlattices Grown by MBE on Si(111): Dynamic RHEED and Sm$^{2+}$ Photoluminescence Studies. *Appl. Surf. Sci.* **1992**, *60*, 421–425.

(15) Illarionov, Y.; Vexler, M.; Fedorov, V.; Suturin, S.; Sokolov, N. Electrical and Optical Characterization of Au/CaF$_2$/p-Si(111) Tunnel-Injection Diodes. *J. Appl. Phys.* **2014**, *115*, 223706.

(16) Illarionov, Y. Tunnel Carrier Transport and Related Physical Phenomena in Gold - Calcium Fluoride - Si (111) Structures. Ph.D. thesis, Ioffe Physical-Technical Institute, St-Petersburg, 2015; in Russian.