Quantitative RT-PCR Detection of Human Noroviruses and Hepatitis A Virus in Surface Water and Fresh Produce

Mohamed N.F. Shaheen (✉ m_nrc2007@yahoo.com)
National Research Center

Elmahdy M. Elmahdy
National Research center

Lamiaa H. I. Mahmoud
Helwan University

Ibtisam A. Hammad
Helwan University

Elham R.S. Soliman
Helwan University Faculty of Science

Research Article

Keywords: Fresh produce, water, hepatitis A virus, noroviruses, real-time PCR

DOI: https://doi.org/10.21203/rs.3.rs-721472/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Vegetables can be considered as a vehicle for the transmission of human enteric viruses such as noroviruses (genogroups I and II) and hepatitis A virus (HAV) when irrigated with contaminated irrigation or when prepared by infected food handlers. In the current study, we investigated the presence of hepatitis A virus (HAV) and human noroviruses (genogroups I and II) in fresh produce and surface water used in cultivation of this produce using real-time PCR. Samples were collected from six different points in the Mansoura and Giza regions, Egypt. Our analysis showed that at least one virus was found in 41.6% (30/72) of surface water samples and 27% (13/48) of fresh produce samples. HAV (23/72) with a mean viral concentration $= 4 \times 10^6$ genome copies/litter (GC/L) was the most frequently identified virus in surface irrigation water samples, followed by human norovirus genogroup II (HNoV GII) (15/72, with a mean concentration $= 1.2 \times 10^6$ GC/L, and human noroviruses genogroup I (HNoV GI) (12/72, with a mean concentration $= 1.4 \times 10^4$ GC/L). Additionally, HAV (10/48) with a mean concentration $= 5.2 \times 10^5$ genome copies/gram (GC/g) was also the most frequently detected virus in the fresh produce samples, followed by HNoV GII (8/48, with a mean concentration $= 1.7 \times 10^4$ GC/g), meanwhile HNoV GI (6/48) was less detected virus with a mean concentration $= 3 \times 10^3$ GC/g. This work suggests a wide prevalence of human enteric viruses in surface irrigation waters and fresh produce, which is of concern when the fresh produce is eaten raw. Thus, Additional monitoring for viral pathogens in irrigation water and food is needed to increase produce safely.

Introduction

Water and food-borne outbreaks reported in 2018 in Europe were related to viruses (13.5% of all outbreaks), bacterial toxins (24.2% of all outbreaks), and bacterial agents (57.0% of all outbreaks). Viruses are known as important emerging infectious agents of food-borne illnesses (Bányai et al., 2018). In Egypt, the presence of enteric viruses, such as hepatitis A and E viruses, norovirus, rotavirus, adenovirus, human noroviruses, and human astrovirus has recently been reported in river water used in irrigation purpose (Elmahdy et al., 2020; Shaheen et al., 2020, 2019, 2018; Shaheen and Elmahdy, 2019a, 2019b). This underlines that irrigation water can play a role in transferring of these viruses to fresh produce.

Hepatitis A virus (HAV) and human noroviruses (HNoV), are recognized as major public health concerns where they are responsible for the majority of acute hepatitis or non-bacterial gastroenteritis which are occasionally fatal (Vaughan et al., 2014; Koo et al., 2010). HAV belong to the Picornaviridae family while HNoV is classified in the Caliciviridae. Both viruses possess a single-stranded and positive-sense RNA genome as they are small non-enveloped viruses. HNoV which was classified into ten genogroups (HNoV GI-GX) is responsible for about 20% of all cases of acute gastroenteritis, worldwide (Chhabra et al., 2019; Ahmed et al., 2014), with over 213,000 deaths and 677 million cases reported annually (Pires et al., 2015). Significant rates of morbidity and mortality due to HNoV infection are reported in risk groups comprising elderly, children, and immunocompromised individuals (Tian et al., 2014; Payne et al., 2013; Siebenga et al., 2009; Harris et al., 2008; Hutson et al., 2004). Also, HAV is a major cause of acute viral hepatitis, with nearly 1.4 million cases per year globally (Jacobsen, 2009; Yong and Son, 2009), and a high hepatitis A endemicity in areas with low sanitation (Osuolale and Okoh, 2015; Gupta and Ballani, 2014; Yong and Son, 2009). They
are primarily transmitted via the vomit-oral and faecal-oral routes, including contact with infected person, contact with contaminated surfaces, or by ingestion of polluted water and food: particularly vegetables, soft fruits, and shellfish (Kotwal and Cannon, 2014; Matthews et al., 2012; Nainan et al., 2006).

Contamination of groundwater or surface water with these viruses represents a potential risk of infection through food or drinking water (Moreira and Bondelind 2017; Mathijs et al. 2012). The contamination of fresh produce can occur during preharvesting, due to contact with contaminated irrigation water or during post-harvesting due to an infected worker through handling of the product or by contaminated equipment’s through the production process (Leon-Felix et al. 2010; Seymour and Appleton 2001; Bidawid et al. 2000). Viral contamination of irrigation, ground, surface water, and soil has been investigated in previous studies (Gerba and Choi, 2006; Lodder and de Roda Husman, 2005; Santamaria and Toranzos, 2003). To ensure the safety of water and fresh produce, the development of accurate and reliable quantitative methods for detecting the presence of enteric viruses in water and food is needed. The aim of this study was to investigate the presence of HAV and HNoV in fresh produce and to establish whether the river water used in irrigation is a potential source of fresh produce contamination.

Material And Methods

Sampling

A total of 72 surface water samples and 48 fresh produce (24 green onions and 24 lettuces) samples were collected from three sites at two regions (Giza and Mansoura) in Egypt. Three water samples were collected monthly from each region during the period March-2019 to February-2020. Also, 3 fresh produce samples from each kind were collected monthly from the same sites at each region according to the harvest season (November-2019 to February-2020).

Determination of virus recovery from fresh produce and water samples

In this study, we used murine norovirus (MNV-1) as a process control virus to investigate the virus recovery in all virus detection assays. In brief, autoclaved surface water samples (5 L) were inoculated with 200 μl of MNV-1 suspension (4.7 × 10^8 GC/mL) prior to concentration. Also, leaves of green and lettuce were chopped into small pieces then fifty grams of each sample was weighed and sanitized in chlorinated water for 20 min. After sanitation, the leaves of each fresh produce were divided into two equal parts and each part was placed into a sterile bag under aseptic conditions. One portion of the fresh produce sample was inoculated with the same amount of virus prior to concentration, while the other portion was left as blank. The efficiency of MNV-1 recovery from inoculated samples was assessed using the protocols described below. Furthermore, a representative sample was taken from green onion and lettuce collected during this study and inoculated with human MNV-1 as sample process control virus (SPCV) (previously tested negative for MNV-1 by RT-qPCR).

Virus concentration
Virus concentration from surface water samples was performed by using a protocol described by Katayama et al. (2002) while virus elution from fresh produce samples was done according to ISO/TS 15216-1 method (ISO 15216-1:2017 2017). Briefly, 25 g of green onion or lettuce in small pieces was mixed with 40 ml of Tris–glycine buffer (100 mM Tris–HCl, 50 mM glycine, and 1% beef extract, pH 9.5) in a sterile plastic bag. After 20 min at room temperature with constant rocking (approximately 70 oscillations/min) to elute the viruses from the surface of the fresh produce sample, the sample was distributed into clean centrifuge tubes. After centrifugation at 10,000×g for 30 min at 4 °C, the vegetable matter was discarded and the eluate was transferred into clean centrifuge tubes then the pH was adjusted 7.2 ± 0.3 using 1.0 N HCl. For the PEG precipitation, 0.25 volume of 50% (w/v) polyethylene glycol 8000/1.5 M NaCl were added to the eluates and incubated on rocking at 120 rpm at 4 °C for 1 h. After additional centrifugation for 30 min at 10,000×g at 4 °C, the resulting pellets were dissolved in 500 μl of 10 mM PBS then stored at − 20 °C until use.

RNA extraction and virus quantification
The final concentrates were used to extract viral RNA using a QIAamp MiniElute Virus Spin Kit (Qiagen, Germany) according to the manufacturer’s instructions. Phosphate buffer saline as a negative control for nucleic acid extraction was applied. For molecular detection of HAV, HNoV GI & GII, and MNV-1, the qPCR was carried out according to Jothikumar et al. (2005), Kageyama et al. (2003), Lee et al. (2015), respectively, using onestep Rotor-Gene Probe RT-PCR Kit. All amplifications were conducted in duplicate using Rotor-Gene system (QIAGEN, Germany). For each assay, PCR amplicon for each positive control was generated by cloning the amplicon into a plasmid (pGEM-T Easy Vector (Promega) for HAV strain HM175; and pCR2.1-TOPO vector (Promega) for HNoV GI, GII, and MNV-1), and concentrations of a purified plasmid DNA were calculated using a Nano Drop spectrophotometer (Thermo Fisher Scientific, USA). Standard curves were prepared by tenfold serial dilutions of the positive control plasmids. Ultra-pure water was used as negative controls in each assay to ensure that there was no cross-contamination in the assay. To increase PCR efficiency, serial ten-fold dilutions were prepared to viral nucleic acids to dilute the inhibitors (if found). Viral nucleic acid was amplified in a 25 μL Real-time PCR mixture containing 5 μL of the RNA extract, 12.5 μL RT-PCR Master Mix (Qiagen, Germany), 400 nM each primer, 250 nM of probe, and nuclease-free water to complete the volume reaction up to 25 μL. This mixture was transferred into a 48- well microplate then loaded into the Rotor-Gene system. Fluorescence data were measured at the end of annealing step. All primers and probes used in this study, as well as the thermal cycling conditions of each virus, are shown in Table 1. The percentage of MNV-1 recovery rate from spiked water or fresh produce samples was calculated by using the following formula: amount of virus detected after spiking experiments/amount of viral inoculum X 100 (Hennechart-Collette et al., 2021).

Statistical analysis
Statistical analyses were performed using GraphPad Prism version 5.0 (USA) software. The critical P value for the test was set at < 0.05. The Pearson correlation was applied to evaluate the correlations between viral distributions and water/fresh produce samples. The mean viral load was compared between samples with a one-way analysis of variance. The detection limits of the qPCR was established according to the highest dilution where it was possible to virus quantification (The detection limits for HAV were 2.5×10^1 genome
copies in 25 mg of fresh produce and in 10 L of water whereas the detection limit for both HNoV GI and HNoV GII were 2×10^1 genome copies in 25 mg of fresh produce and in 10 L of water).

Results

MNV-1 recovery assay

In the spiked surface water, green onion, and lettuce, the MNV-1 recoveries were $4.5 \times 10^8 \pm 3.7 \times 10^8$ GC/L (95.7%), $3.2 \times 10^8 \pm 2.4 \times 10^8$ GC/g (68%), $2.7 \times 10^8 \pm 2.1 \times 10^8$ GC/g (57.4%), respectively.

Detection of HAV and HNoV in irrigation water samples

Of the 72 water samples, 23 samples (31.9%) were positive for HAV, 12 (16.7%) for HNoV GI, and 15 (20.8%) for HNoV GII. The viral load of HAV ranged from 1.2×10^2 – 8.3×10^7 GC/L, with a mean viral load of 4.3×10^6 GC/L. The viral load of HNoV GI ranged from 2.6×10^2 – 7.3×10^4 GC/L, with a mean viral load of 1.4×10^4 GC/L. The HNoV GII concentrations ranged from 8.1×10^2 – 7.8×10^5 GC/L, with a mean viral load of 1.2×10^6 GC/L. The most positive samples for HAV and HNoV were found in the samples collected from Mansoura region than those collected from Cairo region (Table 2). This variation was statistically significant ($P \leq 0.01$).

Detection of HAV and HNoV in fresh produce samples

The prevalence of foodborne HAV and HNoV is given in Table 3. Of the 24 green onion samples, 9 samples were found to be contaminated with at least one virus. HAV, HNoV GI, and HNoV GII were detected in 6/24 (25%), 3/24 (12.5%), and 5/24 (20.8%) respectively. The HAV load ranged from 1.2×10^2 – 1.9×10^5 GC/g, with a mean viral load of 4.5×10^4 GC/g. The HNoV GI concentration ranged from 7.7×10^2 – 7.2×10^3 GC/g with a mean viral load of 2.9×10^3 GC/g. The HNoV GII load ranged from 2.2×10^2 – 7.2×10^3 GC/g with a mean viral load of 3.1×10^3 GC/g. Of the 24 lettuce samples, 7 samples were found to contain at least one of the viruses. HAV, HNoV GI, and HNoV GII were detected in 4/24 (16.6%), 3 (12.5%), and 3 (12.5%) respectively. The HAV load ranged from 4.9×10^3 – 4.8×10^6 GC/g, with a mean viral load of 1.2×10^6 GC/g. The HNoV GI load ranged from 2.4×10^2 – 8.2×10^3 GC/g, with a mean viral load of 3.1×10^3 GC/g. The HNoV GII load ranged from 7.2×10^3 – 2.9×10^4 GC/g, with a mean viral load of 4×10^4 GC/g.

Distribution of single and multiple viral agents in the positive water samples

As shown in Table 4, a single viral agent was found in 46.6% (14/30) of the positive samples; with HAV (9/7) being the most frequently found virus in samples contained only one viral agent. HNoV GI was found in 3 (10%) samples as a single viral agent whereas 2(6.6%) samples contained only HNoV GII. Contamination with two viruses was detected in 40% (12/30) of positive samples: 6.6%(2/30) of positive samples contained both HNoV GI and GII, 10% (3/30) contained both HNoV GI and HAV, and 23.3%(7/30) contained both HNoV GII and HAV. The three viral agents were detected in 4(13.3%) of positive samples.

Distribution of single and multiple viral agents in the positive fresh produce samples
In the green onion samples, single viral agent was detected in 25% (6/24) of positive samples. HAV, HNoV GI, and HNoV GII were detected in 50% (3/6), 16.6% (1/6) and 33.3% (2/6) as a single viral agent in the positive samples, respectively. Only one positive sample contained two viral agents (HAV + HNoV GII) while two samples contained the three viral agents (HAV+ HNoV GI+ HNoV GII). In the lettuce samples, contamination with single viral agent was found in 20.8% (5/24) of the positive samples. HAV (3/5) was the most frequently found alone in these samples, followed by HNoV GI (1/5) and by HNoV GI (1/5). Contamination with two viruses was detected only in one positive samples that contained both HNoV GI and HNoV GII. Also, combination of the three viral was detected in 14.3% (1/7) of the positive samples (Table 4).

Discussion

Enteric viruses can be transferred to fresh produce by various routes during growth, harvest, packaging, transportation, and preparation of foods. Several viral outbreaks associated with fresh produce consumption have been identified or suspected to have originated from direct contact with virus-contaminated irrigation water (Shaheen et al., 2019; Prez et al., 2018; Gerba et al., 2006). Human HNoV and HAV are known that they are major etiological contributors to foodborne illness outbreaks. A systematic review published in 2018 stated that HNoV and HAV caused 48.7% and 46.1% of all viral outbreaks linked to fresh produce consumption, respectively, worldwide (Chatziprodromidou et al., 2018). Unfortunately, in Egypt, there is currently no official reporting system focus on foodborne viral illness outbreaks, and there is no active surveillance system for foodborne viral infections. Hence, information on the involvement of Egyptian foods in enteric illness outbreaks is limited (Shaheen et al., 2019; Zaher et al., 2008).

There are several previous studies from Egypt reported the detection of enteric viruses in surface irrigation water (Shaheen et al., 2020, 2018; Shaheen and Elmahdy, 2019a, 2019b). However, very low studies focused on the simultaneous detection of these viruses in both fresh produce and irrigation water (Shaheen et al., 2019). Indeed, monitoring these viruses in both the fresh produce and irrigation water can provide a useful tool to reduce the risk of foodborne disease linked to the occurrence of these viruses. In this context, the aim of this study was to investigate the presence of HAV and HNoV in irrigation waters and fresh produce irrigated by this water and collected from two regions (Giza and Mansoura) in Egypt.

Overall, in both matrices (n = 120), HAV showed a relatively higher prevalence rate (27.5%, 33/120 samples). HNoV was detected in 25% (30/120) of both matrices where HNoV GI (19.2%, 23/120 samples) was higher than HNoV GI (15%, 18/120 samples). In contrast, the detection rate of HNoV GI was higher than HNoV GII genogroup identified both in irrigation water and vegetable samples (Emilse et al., 2021). In a recent study from Egypt, HAV was detected was detected in 11/32 (34.4%), 6/32 (18.7%), 8/32 (25%), 9/32 (28%), and 10/32 (31%) of surface water, leek, green onion, watercress, and lettuce samples, respectively (Shaheen et al., 2019). Khan et al. (2014) detected HAV in all cultivated vegetables due to exposure to faecally contaminated irrigation water. In addition, several HAV outbreaks associated with green onion consumption at several restaurants were documented in 2003 in Monaca, Pennsylvania; in 2000 in Kentucky and Florida; in 2003 in Georgia, and North Carolina; and in 1999 in Ohio (Amon et al. 2005; Wheeler et al. 2005; Datta et al. 2001; Dentinger et al. 2001). Indeed, Bidawid et al. (2000) reported that 9.2% of contaminated lettuce by infectious virus particles come from contaminated hands. In the farm and during the growing stage, food
can become contaminated by contact with sewage, contaminated fertilizers, or the use of contaminated irrigation water (Directorate, 2002).

In Egyptian study, Shaheen et al. (2018) detected HNoV GI in 10/32 (31%), 11/32 (34.4%), 13/32 (40.6%), and 9/32 (28%) of lettuce, watercress, green onion, and leek samples, respectively, while the virus was detected in 10/32 (31.2%) of surface irrigation water. A series of outbreaks of HNoV GI and HNoV GII gastroenteritis related to consumption of lettuce between 18 to 20 January 2010 were documented to Danish authorities (Ethelberg et al., 2010). In Canada and Malaysia, HNoV GI was found in 3.33%, 25%, 13.33% of red onions, and strawberries, green onions, respectively (Brassard et al. 2012; Hidayah et al. 2011). Various prevalence rates of HNoV in leafy greens were found in several countries; 2.9% in Italy (Purpari et al., 2019), 12.4–50% in France (Loutreul et al., 2014; Baert et al., 2011), 5.3% in United Kingdom (Cook et al., 2019), 33.3% in Belgium (Baert et al., 2011).

In this study, HAV detection in both matrices was higher than HNoV prevalence. This finding is similar to our previous study conducted on the same two regions (Shaheen et al., 2019), suggesting that surface irrigation water could be the source of fresh produce contamination. Since irrigation water can transmit the viral contamination for fresh produce, thus primary products must be produced only in regions where an appropriate water quality is used for irrigation purposes. If the quality control of irrigation water is not controlled, prior consumption, it is suggested to immerse the fresh produce with drinking water containing sodium hypochlorite (15–20 ppm free chlorine levels) for two minutes to reduce viral loads on the vegetable surfaces (Bosch et al., 2018).

This the first report of HNoV GII detection in fresh produce in Egypt. However, this study has some limitations to not investigate the viral genotypes in the positive samples. Difficulties in HAV and HNoVs sequencing were due to the small amount of PCR product obtained from the RT-qPCR and cannot be used for that purpose. This fact has also been reported in other studies (Felix-Valenzuela et al., 2012; Baert et al. 2011). A major limitation in this study, RT – qPCR technique used in the detection of viruses can not differentiate between the infections and non-infectious virus particles in the positive samples. Molecular assays may pick up both non- infectious and infectious viral particles. In this way, detection of viral nucleic acid in a sample does not necessarily mean the presence of infectious virus particles in that sample (Hamza et al., 2009). Thus, detection of enteric viruses by the molecular technique cannot confirm the role of fresh produce as transmitting routes of infectious enteric viruses.

An additional limitation in this study is the absence of clinical data. However, previous Egyptian studies have reported the detection of HAV and HNoV among the population in both regions. Zaki and El Kheir (2017) identified HNoV (GI and GII) in 30% of diarrheal specimens collected from Mansura City. A recent study from Mansura region, HNoV was also detected in 70.5% of diarrheal samples with HNoV GII as the prevalent genotype (Zaki et al., 2019). This findings agrees with our study that HNoV GII being the most prevalent genotype. In Cairo region, HNoV (GI and GII) and HAV were also identified in samples collected from patients with severe diarrhea or hepatitis-related symptoms (Kamel et al., 2011; 2010; 2009). The HNoV genotypes as well as HAV detected in the clinical samples are also detected in fresh produce, suggesting that viral contamination of the fresh produce could be originated from contact with contaminated irrigation water.
In the current study, the viral load of HAV was higher than HNoV in the surface water and fresh produce samples. Comparatively, HAV had high variability in the viral loads, where some fresh produce samples had as low as 1.1×10^2 GC/g up to 8.3×10^7 GC/mL detected in one of the surface irrigation water samples tested. In surface water samples, most of the positive samples had viral concentrations between 10^4 and 10^5 GC/L while between 10^3 and 10^4 GC/g in fresh produce samples. High variability in the viral loads was also observed for HNoV where some fresh produce samples had as low as 2.2×10^2 GC/g which increased to 7.8×10^6 GC/mL detected in one of the surface irrigation water samples tested. Most of the positive surface water samples had HNoV concentrations between 10^3 and 10^4 GC/L. However, the HNoV in fresh produce samples had low variability with viral loads ranged from 2.2×10^2 to 8.2×10^4 GC/g. The low prevalence of HAV and HNoV with low concentrations in fresh produce than surface water may be due to their direct exposure on fresh produce surfaces to the ultraviolet radiation emitted from the sun.

The low viral concentrations found in the positive fresh produce and surface samples are by far higher than the infective dose required to induce disease by most of the enteric viruses, ranging between $10–100$ viral particles for human rotavirus and HAV and even less for human HNoV (Yezli and Otter 2011). Thus, this low infective dose represents a potential risk for a viral outbreak if these fresh produce reach the consumers. In comparison, another study from Mexico found that the mean viral loads of HAV ranged from 2.8×10^2 to 2.4×10^3 GC/g while HNoV loads ranged from 2.1×10^2 to 1.3×10^3 GC/g (Felix-Valenzuela et al., 2012), which is lower than viral concentrations detected in this study. All precautions were applied in this study to prevent cross-contamination in the RT-qPCR reactions, and no amplification was found in negative controls.

In conclusion, The detection of HAV and HNoV both in surface irrigation waters and associated fresh produce, demonstrate that viral contamination of the fresh produce could be arisen, at least partially, during the production phase in the farm. Furthermore, the results obtained in this work highlight the importance of viral surveillance programme for fresh produce, due to the low infectious dose of most the gastroenteric viruses. We expect that this work will contribute to the management and control of microbiological risks in fresh food, reducing the public health risks from the eating of the contaminated foods.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

Not applicable

Competing interests
Funding
Not applicable

Authors’ contributions
Mohamed N. F. Shaheen was contributor in the plane design, performing RNA extraction and real time PCR, and data analysis as he was a major contributor in writing the manuscript. Elmahdy M. Elmahdy was contributor in the plane design, performing RNA extraction and real time PCR, and data analysis. Lamiaa H. I. Mahmoud was contributor in the sample collection, virus concentration, and in performing RNA extraction and real time PCR. Ibtisam A. Hammad was contributor in the plane design and data analysis as she revised the manuscript. Elham R. S. Soliman was contributor in the plane design, performing real time test, and data analysis as she revised the manuscript.

Acknowledgements
Not applicable

Authors’ information (optional)
Not applicable

References
1. Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans M, Lopman BA (2014) Global prevalence of norovirus in cases of gastroenteritis: A systematic review and meta-analysis. Lancet Infect Dis 14:725–730
2. Baert L, Mattison K, Loisy-Hamon F, Harlow J, Martyres A, Lebeau B, Stals A, Van Coillie E, Herman L, Uyttendaele M (2011) Review: Norovirus Prevalence In Belgian, Canadian And French Fresh: A Threat To Human Health? Int J Food Microbiol 151:261–269
3. Bányaik K, Estes MK, Martella V, Parashar UD (2018) Viral gastroenteritis. Lancet 392:175–186
4. Bidawid S, Farber JM, Sattar SA (2000) Contamination of foods by food handlers: Experiments on HAV transfer to food and its interruption. Appl Environ Microbiol 7:2759–2763
5. Bidawid S, Farber JM, Sattar SA (2000) Contamination of foods by food handlers: experiments on hepatitis a virus transfer to food and its interruption. Appl Environ Microbiol 66(7):2759–2763
6. Bosch A, Gkogka E, Le Guyader FS, Loisy-Hamon F, Lee A, van Lieshout L, Marthi B, Myrmel M, Sansom A, Schultz AC, Winkler A, Zuber S, Phister T (2018) Foodborne viruses: Detection, risk assessment, and control options in food processing. Int J Food Microbiol 285:110–128
7. Chatziprodromidou IP, Bellou M, Vantarakis G, Vantarakis A (2018) Viral outbreaks linked to fresh produce consumption: a systematic review. J Appl Microbiol 124(4):932–942
8. Chhabra P, de Graaf M, Parra GI, Chan MC, Green K, Martella V, Wang Q, White PA, Katayama K, Vennema H, Koopmans MPG, Vinjé J (2019) Updated classification of norovirus genogroups and genotypes. J Gen Virol 100(10):1393–1406
9. Emilse PV, Matías V, Cecilia ML, Oscar GM, Gisela M, Guadalupe D, Elizabethab RV, Victoriao PJ, Rodney C, Viviana NS, Angélica BP (2021) Enteric virus presence in green vegetables and associated irrigation waters in a rural area from Argentina. A quantitative microbial risk assessment. LWT 144:111201
10. Ethelberg S, Lisby M, Böttiger B, Schultz AC, Villif A, Jensen T, Olsen KE, Scheutz F, Kjelsø C, Muller L (2010) Outbreaks of gastroenteritis linked to lettuce, Denmark, January 2010. Eurosurveillance 15(6):19484
11. Felix-Valenzuela L, Resendiz-Sandoval M, Burgara-Estrella A, Hernández J, Mata-Haro V (2012) Quantitative detection of hepatitis A, rotavirus and genogroup I norovirus by RT-qPCR in fresh produce from packinghouse facilities. J Food Saf 32(4):467–473
12. Gerba CP, Choi CY (2006) Role of irrigation water in crop contamination by viruses. In: Viruses in Foods, Goyal SM, ed. 1st edition. New York: Springer, 2006, pp. 257–263
13. Gerba PC, Choi YP, Goyal SM (2006) Role of irrigation water in crop contamination by viruses. In: Viruses in foods. Springer, Boston, pp 257–263
14. Chhabra P, de Graaf M, Parra GI, Chan MC, Green K, Martella V, Wang Q, White PA, Katayama K, Vennema H, Koopmans MPG, Vinjé J (2019) Updated classification of norovirus genogroups and genotypes. J Gen Virol 100(10):1393–1406
15. Gupta E, Ballani N (2014) State of the globe: Hepatitis A virus—Return of a water devil. J Glob Infect Dis 6:57–58
16. Hamza IA, Jurzik L, Stang A, Sure K, Uberla K, Wilhelm M (2009) Detection of human viruses in rivers of a densely – populated area in Germany using a virus adsorption elution method optimized for PCR analyses. Water Res 43(10):2657–2668
17. Harris JP, Edmunds WJ, Pebody R, Brown DW, Lopman BA (2008) Deaths from norovirus among the elderly, England and Wales. Emerg Infect Dis 14:1546–1552
18. Hennechart-Collette C, Dehan O, Laurentie M, Fraisse A, Martin-Latil S, Perelle S (2021) Detection of norovirus, hepatitis A and hepatitis E viruses in multicomponent foodstuffs. Int J Food Microbiol 337:108931
19. Hutson AM, Atmar RL, Estes MK (2004) Norovirus disease: Changing epidemiology and host susceptibility factors. Trends Microbiol 12:279–287
20. ISO 15216-1:2017 (2017) Microbiology of food and animal stuffs—horizontal method for detection of hepatitis A virus and norovirus in food using real-time. RT-PCR. International Organization for Standardization
21. Jacobsen KH (2009) The Global Prevalence of Hepatitis A Virus Infection and Susceptibility: A Systematic Review (No. WHO/IVB/10.01); WHO Press: Geneva, Switzerland, 2009
22. Jothikumar N, Cromeans TL, Sobsey MD, Robertson H (2005) Development and evaluation of a broadly reactive TaqMan assay for rapid detection of hepatitis A virus. Appl Environ Microbiol 71:3359–3363
23. Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushima S, Hoshino FB, Takeda N, Katayama K (2003) Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol 41:1548–1557

24. Zaki ME, Abdel-Rahaman EA, El AshryAY, Al-Kasaby NM (2019) Molecular Study of Norovirus in Pediatric Patients with Gastroenteritis. The Open Microbiology Journal 13(1):324–329

25. Kamel AH, AliMA, El-Nady HG, De Rougemont A, Pothier P, Belliot G (2009) Predominance and circulation of enteric viruses in the region of Greater Cairo, Egypt. J Clin Microbiol 47(4):1037–1045

26. Kamel AH, Ali MA, El-Nady HG, Aho S, Pothier P, Belliot G (2010) Evidence of the co-circulation of enteric viruses in sewage and in the population of Greater Cairo. J Appl Microbiol 108(5):1620–1629

27. Kamel AH, Ali MA, El-Nady HG, Deraz A, Aho S, Pothier P, Belliot G (2011) Presence of enteric hepatitis viruses in the sewage and population of Greater Cairo. Clin Microbiol Infect 17(8):1182–1185

28. Katayama H, Shimasaki A, Ohgaki S (2002) Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Appl Environ Microbiol 68:1033–1039

29. Koo HL, Ajami N, Atmar RL, DuPont HL (2010) Noroviruses: The leading cause of gastroenteritis worldwide. Discov Med 10:61–70

30. Kotwal G, Cannon JL (2014) Environmental persistence and transfer of enteric viruses. Current opinion in virology 4C:37–43

31. Lee M, Seo DJ, Seo J, Oh H, Jeon SB, Ha SD, Myoung J, Choi IS, Choi C (2015) Detection of viable murine norovirus using the plaque assay and propidium-monoazide-combined real-time reverse transcription-polymerase chain reaction. J Virol Methods 221:57–61

32. Leon-Felix J, Martinez-Bustillos RA, Baez-Sañudo M, Peraza-Garay F, Chaidez C (2010) Norovirus contamination of bell pepper from handling during harvesting and packing. Food Environ Virol 2:211–217

33. Lodder WJ, de Roda Husman AM (2005) Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands. Appl Environ Microbiol 71:1453–1461

34. Lodder WJ, de Roda Husman AM (2005) Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands. Appl Environ Microbiol 71:1453–1461

35. Mathijs E, Stals A, Baert L, Botteleaen N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Uyttendaele M, Thiry E (2012) A review of known and hypothetical transmission routes for noroviruses. Food Environmental Virology 4(4):131–152

36. Matthews JE, Dickey BW, Miller RD, Felzer JR, Dawson BP, Lee AS, Rocks JJ, Kiel J, Montes JS, Moe CL, Eisenberg JN, Leon JS (2012) The epidemiology of published norovirus outbreaks: a review of risk factors associated with attack rate and genogroup. Epidemiol Infect 140:1161–1172

37. Moreira NA, Bondelind M (2017) Safe drinking water and waterborne outbreaks. Journal of Water Health 15(1):83–96

38. Nainan OV, Xia G, Vaughan G, Margolis HS (2006) Diagnosis of hepatitis a virus infection: a molecular approach. Clin Microbiol Rev 19:63–79
39. Osuolale O, Okoh A (2015) Incidence of human adenoviruses and Hepatitis A virus in the final e_uent of selected wastewater treatment plants in Eastern Cape Province, South Africa. Virol J 12:1–8
40. Payne DC, Vinjé J, Szilagyi PG, Edwards KM, Staat MA, Weinberg GA, Hall CB, Chappell J, Bernstein DI, Curns AT, Wikswo M, Shirley SH, Hall AJ, Lopman B, Parashar UD (2013) Norovirus and medically attended gastroenteritis in U.S. children. N Engl J Med 368:1121–1130
41. Pires SM, Fischer-Walker CL, Lanata CF, Devleesschauwer B, Hall AJ, Kirk MD, Duarte ASR, Black RE, Angulo FJ (2015) Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food. PLoS ONE 10:e0142927
42. Prez VE, Martinez LC, Victoria M, Giordano MO, Masachessi G, Re VE, Pavan JV, Colina R, Barril PA, Nates SV (2018) Tracking enteric viruses in green vegetables from central Argentina: Potential association with viral contamination of irrigation waters. The Science of the Total Environment 637–638:665–671
43. Santamaria J, Toranzos GA (2003) Enteric pathogens and soil: A short review. Int Microbiol 6:5–9
44. Seymour IJ, Appleton H (2001) Foodborne viruses and fresh produce. J Appl Microbiol 91:759–773
45. Shaheen MN, Abd El-Daim SE, Ahmed NI, Elmahdy EM (2020) Environmental monitoring of Aichi virus and human bocavirus in samples from wastewater treatment plant, drain, and River Nile in Egypt. Journal of water health 18(1):30–37
46. Shaheen MN, Elmahdy EM, Chawla-Sarkar M (2019) Quantitative PCR-based identification of enteric viruses contaminating fresh produce and surface water used for irrigation in Egypt. Environ Sci Pollut Res 26(21):21619–21628
47. Shaheen MN, Elmahdy EM (2019a) Environmental monitoring of astrovirus and norovirus in the Rosetta branch of the River Nile and the El-Rahawy drain, Egypt. Water Supply 19(5):1381–1387
48. Shaheen MN, Elmahdy EM (2019b) Molecular detection of group C rotavirus in environmental samples in Giza, Egypt. Asian J Water Environ Pollut 16(4):17–22
49. Shaheen MN, Abd El-Daim SE, Ahmed NI, Elmahdy EM (2018) Molecular detection of three gastroenteritis viruses in urban sewage treatment plant and river water in Egypt. Journal Aquatic Biology Fisheries 22(5):615–627
50. Siebenga JJ, Vennema H, Zheng DP, Vinjé J, Lee BE, Pang XL, Ho EC, Lim W, Choudekar A, Broor S, Halperin T, Rasool NB, Hewitt J, Greening GE, Jin M, Duan ZJ, Lucero Y, O’Ryan M, Hoehne M, Schreier E, Ratcliff RM, White PA, Iritani N, Reuter G, Koopmans M (2009) Norovirus Illness Is a Global Problem: Emergence and Spread of Norovirus GII.4 Variants, 2001–2007. J Infect Dis 200:802–812
51. Tian G, Jin M, Li H, Li Q, Wang J, Duan ZJ (2014) Clinical characteristics and genetic diversity of noroviruses in adults with acute gastroenteritis in Beijing, China in 2008–2009. J Med Virol 86:1235–1242
52. Vaughan G, Goncalves Rossi LM, Forbi JC, de Paula VS, Purdy MA, Xia G, Khudyakov YE (2014) Hepatitis A virus: Host interactions, molecular epidemiology and evolution. Infection genetics evolution 21C:227–243
53. YEZLI S, Otter JA (2011) Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment. Food Environ Virol 3:1–30
54. Yong HT, Son R (2009) Review Article Hepatitis A virus—A general overview. Int Food Res J 467:455–467

55. Zaher KS, Ahmed WM, Syame SM, El-Hewairy HM (2008) Detection of health hazard-food born viruses in animal products anticipated for human consumption. Global Veterinaria 2(4):192–197

Tables

Table 1

Virus	Primer sequence 5’-3’	Thermal cycling conditions	References
HAV	Fw: GGTAGGCTACGGGTGAAC, R: GCGGATATTGGGTAGTTTT, Probe: FAM-CTTAGGCTAATACTTCTATGAA GAGATGC -BHQ	48°C for 30 min, followed by 95°C for 15 min then 40 cycles of 95°C for 10 s, 55°C for 20 sec, and 72°C for 15 sec.	Jothikumar et al. (2005)
HNoV GI	Fw: CGYTGGATGCNGNTYCATGA, Rv: CTTAGACGCCATCATCATTYAC, Probe: FAM - AGATYGCATCYCCTGTCCA-TAMRA	50°C for 2 min, followed by 95°C followed by 10 min, then 45 cycles of 94°C for 20 s and 56°C for 1 min	Kageyama et al. (2003)
HNoV GII	Fw: CARGARBCNATGTTYAGRTGGTGAAG, Rv: TCGACGCCATCTTCATTCACA, Probe: FAM - TGGGAGGGCGATCGCAATCT-TAMRA		
MNV-1	Fw: ACGCTCAGCAGTCTTTGTGA, Rv: CTGGCCTCAGGCCCATTG, Probe: FAM-CGCTGCAGCCATCACTCC-TAMRA	95°C for 10 min then 40 cycles of at 95°C for 15 s and 60°C for 1 min.	Lee et al. (2015)
Table 2
Quantitative detection of HAV and HNoV (GI and GII) in irrigation water samples used for the production of fresh produce

Month	Region	HAV		HNoV GI		HNoV GII		
		S1	S2	S3	S1	S2	S3	
March	Man	-	6.70E + 05	-	-	-	-	
	Giza	-	-	8.53E + 04	-	-	-	
April	Man	6.25E + 05	-	-	2.56E + 02	1.98E + 06	-	
	Giza	-	-	-	-	-	-	
May	Man	-	-	8.23E05	-	-	-	5.27E + 06
	Giza	-	-	-	-	-	-	
June	Man	8.62E + 04	3.27E + 04	-	7.25E + 03	-	5.81E + 04	9.34E + 05
	Giza	-	-	5.84E + 03	-	5.12E + 03	-	7.82E + 06
July	Man	-	-	-	8.26E + 02	-	7.62E + 04	-
	Giza	4.25E + 02	-	-	-	-	-	
Aug	Man	1.24E + 02	-	-	-	-	4.17E + 03	-
	Giza	-	2.11E + 03	-	7.20E + 02	3.84E + 04	-	7.25E + 05
Sept	Man	-	4.90E + 05	-	-	-	-	
	Giza	5.61E + 05	-	4.35E + 04	5.24E + 03	-	7.28E + 04	5.87E + 04
Oct	Man	-	-	-	-	2.41E + 03	-	4.57E + 05
	Giza	-	1.84E + 04	-	-	-	2.81E + 04	-
NoV	Man	8.34E + 07	-	-	-	-	-	8.10E + 02

-, refers to negative samples
	Giza						
Dec	Man	4.68E			4.87E		
	Giza		7.30E			7.24E	
Jan	Man	3.28E	3.75E		5.64E		7.58E
	Giza						
Feb	Man		6.72E				
	Giza		2.57E	4.19E			5.72E

-, refers to negative samples
Month	Region	HAV	HNoV GI	HNoV GII			
		G. Onion	Lettuce	G. Onion	Lettuce	G. Onion	Lettuce
Nov	S1	-	7.20E+04M	-	-	-	-
	S2	-	-	-	-	-	2.24E+02G
	S3	1.92E+05M	-	-	-	-	-
Dec	S1	7.16E+03M	-	-	2.40E+02M	7.25E+03M	-
	S2	6.51E+04G	-	7.24E+03G	-	2.85E+03G	8.24E+04G
	S3	-	-	-	-	-	-
Jan	S1	1.13E+02G	4.80E+06M	-	9.21E+02M	-	7.23E+03M
	S2	-	-	6.25E+02M	-	-	-
	S3	3.68E+03M	-	7.69E+02M	-	4.68E+03M	-
Feb	S1	-	4.91E+04G	-	-	7.67E+02G	-
	S2	8.23E+02G	9.57E+04M	-	-	-	-
	S3	-	-	-	8.23E+03M	-	2.94E+04M

M, refers to sample collected from Mansoura; G, refers to sample collected from Giza; -, refers to negative samples
Table 4
Profiles of viruses detected in the surface irrigation water (n = 72)

Detection of viruses	No of positive samples
Single	
HAV	9
HNoV GI	3
HNoV GII	2
Double	
HNoV GI + GII	2
HAV + HNoV GI	3
HAV + HNoV GII	7
Multiple	
HAV + HNoV GI + GII	4
Total of positive samples (percentage)	30 (71.6%)

Table 5
Profiles of viruses detected in the green onion (n = 24)

Detection of viruses	No of positive samples
Single	
HAV	3
HNoV GI	1
HNoV GII	2
Double	
HNoV GI + GII	0
HAV + HNoV GI	0
HAV + HNoV GII	1
Multiple	
HAV + HNoV GI + GII	2
Total of positive samples (percentage)	9 (37.5%)
Table 6
Profiles of viruses detected in the green onion (n = 24)

Detection of viruses	No of positive samples
Single	
HAV	3
HNoV GI	1
HNoV GII	1
Double	
HNoV GI + GII	1
HAV + HNoV GI	0
HAV + HNoV GII	0
Multiple	
HAV + HNoV GI + GII	1
Total of positive samples (percentage)	7(29.1%)