Impact of treated papermill effluent on yield and quality of Bhendi

M Deepasri, V Davamani, P Kalaiselvi, S Meena and M Maheswari

DOI: https://doi.org/10.22271/tpi.2020.v9.i11e.5359

Abstract
An attempt has been made to use the treated paperboard mill effluent and well water with STCR recommended NPK, MLSS (Mixed Liquor Suspended Solids) and pressmud compost as nutrient source for cultivating Bhendi crop to assess their impact on yield and fruit quality. Application of MLSS, Presssmud compost had increased the available nutrients (N, P, K) and organic carbon content in the soil. The treatment combination of 50% STCR recommended NPK + 50% MLSS (Mixed Liquor Suspended Solids) + effluent irrigation performed better compared to other treatments. The experimental results revealed that yield of Bhendi under treated effluent irrigation was higher than well water irrigation. The yield increase was recorded as 31.20 percent over the control (100% STCR NPK + well water). The quality parameters viz., crude fibre and total protein were higher under effluent irrigation.

Keywords: Treated papermill effluent, Bhendi, MLSS, STCR NPK, quality parameters

Introduction
Declining freshwater sources for the expanding population is a major concern in the world. To deal with the situations of fresh water shortages it is necessary to focus on the recycling and reuse of the wastewaters generated from various industries. The treated industrial wastewaters can be used for secondary purposes such as agricultural needs for irrigating the crops. (Kansal, 1994) [1] The organic carbon content and available NPK in the soil were found to be increased in the waste water irrigated soils (Singh et al., 2013) [2] and improve the soil fertility. The pulp and paper industry being one of the largest consumers of fresh water releases a huge quantity of effluent which when used to irrigate crops can be an alternative source of plant nutrients. The paper mill effluent irrigation has improved the soil nutrient status (Kumar et al., 2010) [3] and thereby improve the nutrient availability to the crops. Also effluents from some industries have the potential to improve the crop productivity (Sheela and Peethambaram, 2007) [4] without any deterioration of crop quality. (Palaniswami and Ramulu, 1994) [5] Such effective management would bring economic benefits and also prevent environment degradation. The vegetable consumption per capita per day in India is 135 g which is much lower than the requirement of 285 g per day. It shows the necessity to raise the vegetable production by increasing the area for cultivation and also increasing productivity of the crops. Abelmoschus esculentus (L.) is an economically valuable vegetable crop grown widely in tropical and subtropical countries of the world including India. (Kumar and Chopra, 2013) [6]. To combat the struggles of water scarcity and increasing the vegetable production in an effective way, the present investigation was carried out to study the impacts of treated paper mill effluent on Bhendi crop productivity.

Materials and Methods
The experiment was carried out at Seshasayee Papers and Boards Pvt. Ltd., Pallipalayam, Namakkal district of Tamil Nadu during 2019-2020. Bhendi hybrid Co 4 was used in this study and the experiment was laid out in split plot design. The main plot factors was the irrigation source viz., well water (M1) and treated effluent (M2) and the sub plot factors are: 100% STCR recommended NPK (S1), 50% STCR recommended NPK + 50% pressmud compost (S2), 50% STCR recommended NPK + 50% MLSS (S3) and 50% pressmud compost + 50% MLSS (S4). The STCR based NPK recommendation for the soil are: 135 g which is much lower than the recommendation of 285 g per day.
Based on the nutrient status of the soil the STCR (Soil Test Crop Response) recommended NPK was 100:60:98 kg ha$^{-1}$. The growth attributes, plant height was measured from the ground level to the tip of the main stem at interval of 30, 60 and 90 DAS (Days after Sowing). The yield attributes viz., fruit weight, fruit length and girth were recorded. The crude fibre content and total protein was estimated adopting the procedures given by (Chopra and Kanwar, 1976) (Lowry et al., 1951) [7, 8].

Statistical analysis
The statistical tool SPSS (Statistical Package for Social Sciences) was used to compute the ANOVA and determine any significant difference ($P<0.05$) among the factors. The treatment differences that are not significant were noted as Non-Significant (NS).

Results and Discussion
The soil from the experimental field was characterized and found to have 180, 14.1 and 261 kg ha$^{-1}$ of available N, P and K. The pH, EC and organic carbon were 7.79, 0.26 dSm$^{-1}$ and 0.56% respectively. Also, the pressmud compost and MLSS (Mixed Liquor Suspended Solids) were characterized. The pH, EC, organic carbon was 6.89, 1.93 dSm$^{-1}$, 38.10% and 7.63, 1.62 dSm$^{-1}$, 24.10% for pressmud compost and MLSS respectively. The total NPK were 1.53, 0.45 and 1.43, 0.93, 0.89% for pressmud compost and MLSS respectively.

Plant biometric observation
The plant height of bhendi measured on different stages during the growth period influenced by the different treatments is given in Table 1. At the harvest stage highest yield and the organic load present in the pressmud compost + effluent (9.9 t ha$^{-1}$) which received 50% STCR NPK +50% MLSS + effluent. The lowest yield was recorded in M$_1$S$_1$ – 100% STCR NPK +Well water (9.7 t ha$^{-1}$) followed by M$_3$S$_1$ – 100% STCR NPK + effluent (9.9 t ha$^{-1}$). The nutrients present in the treated effluent and the organic load present in the pressmud compost and MLSS have improved the yield of Bhendi crop. Similar results were obtained for different crops like cowpea, (Prasanthrajan et al., 2004) [10] chillies and brinjal (Udayasoorian and Ponmani, 2014 and 2009) [11, 12] when treated effluent combined with organic manures.

Table 1: Effect of treated papermill effluent irrigation on plant height (cm) of Bhendi

Treatments	30 DAS	60 DAS	At harvest
M$_1$	11.87	14.07	12.87
M$_2$	12.87	20.37	27.17
Mean	13.87	18.07	22.07

S$_1$	10.75	14.07	11.87
S$_2$	13.87	24.37	31.27
S$_3$	12.87	20.77	27.57
S$_4$	11.87	13.27	12.54
Mean	12.07	13.62	12.24

SEd	CD (0.05)	SEd	CD (0.05)	
M	2.566	5.787	0.763	1.662
S	1.533	NS	0.933	2.032
MS	1.564	3.400	1.564	3.400

M$_1$ – well water; M$_2$ – treated effluent
S$_1$ – 100% STCR NPK, S$_2$ – 50% STCR NPK + 50% Pressmud compost, S$_3$ – 50% STCR NPK +50% MLSS, S$_4$ – 50% Pressmud compost +50% MLSS.

Yield of Bhendi
The treatments received effluent irrigation recorded higher yield than the well water irrigated treatments. The maximum yield of Bhendi was recorded in M$_3$S$_1$ (14.1 t ha$^{-1}$) which received 50% STCR NPK +50% MLSS + effluent. The lowest yield was recorded in M$_1$S$_1$ – 100% STCR NPK +Well water (9.7 t ha$^{-1}$) followed by M$_3$S$_1$ – 100% STCR NPK + effluent (9.9 t ha$^{-1}$). The nutrients present in the treated effluent and the organic load present in the pressmud compost and MLSS have improved the yield of Bhendi crop. Similar results were obtained for different crops like cowpea, (Prasanthrajan et al., 2004) [10] chillies and brinjal (Udayasoorian and Ponmani, 2014 and 2009) [11, 12] when treated effluent combined with organic manures.

Table 2: Effect of treated papermill effluent irrigation and solid waste on bhendi fruit yield (t/ha)

Treatments	Total yield (t/ha)
M$_1$	9.7
M$_2$	10.5
S$_1$	11.6
S$_2$	10.7
S$_3$	10.7
S$_4$	10.7
Mean	10.63

SEd	CD (0.05)	
M	0.435	0.947
S	0.468	1.020
MS	0.221	0.481

M$_1$ – well water; M$_2$ – treated effluent
S$_1$ – 100% STCR NPK, S$_2$ – 50% STCR NPK +50% Pressmud compost, S$_3$ – 50% STCR NPK +50% MLSS, S$_4$ – 50% Pressmud compost +50% MLSS

Fig 1: Effect of treated papermill effluent and solid waste on bhendi fruit yield (t/ha)

Treatments	Well water	Effluent
S$_1$	10.7	
S$_2$	10.7	
S$_3$	10.7	
S$_4$	10.7	

Quality parameters
The quality parameters such as crude fibre and total protein were higher in the effluent irrigated treatments compared to well water irrigated treatments which is similar to the results of Kumar and Chopra (2013) [6]. The combination of treated effluent along with organic manures might have provided enough nutrients rich environment and thus improving soil fertility and crop quality of Bhendi. Crops like radish, onion (Prathiba, 2005) [13], ground nut, (Udayasoorian et al., 2004) [14] chillies and brinjal (Udayasoorian and Ponmani, 2009) [11, 12] have also shown similar results when cultivated using treated effluent and organic amendments. The results of fruit weight was higher in effluent irrigated treatments. Similarly in *Allium cepa*, application of organic manure combined with mineral
fertilizers increased bulb qualities like bulb size, total number of bulbs and fresh weight of bulbs (Srivastava et al., 2012).15

Table 3: Effect of treated papermill effluent irrigation and solid waste on Bhendi fruit quality

Treatments	Crude fibre (%)	Total protein (%)				
	M1	M2	Mean	M1	M2	Mean
S1	12.5	12.04	12.1	1.27	1.38	1.3
S2	12.9	13.11	13.0	1.5	1.62	1.6
S3	13.13	13.76	13.4	1.74	1.76	1.8
S4	13.01	13.11	13.1	1.61	1.8	1.7
Mean	12.8	13.0	13.0	1.5	1.6	1.6

SEd – well water; M1 – treated effluent
S1 - 100% STCR NPK, S2 – 50% STCR NPK + 50% Pressmud compost, S3 – 50% STCR NPK +50% MLSS, S4 – 50% Pressmud compost +50% MLSS.

Table 4: Effect of treated papermill effluent irrigation and solid waste on fruit length and girth (cm) and weight (g) of Bhendi

Treatments	Length (cm)	Girth (cm)	Weight (g)						
	M1	M2	Mean	M1	M2	Mean	M1	M2	Mean
S1	11.5	11.1	11.3	5.5	5.5	5.5	16.2	16	16.1
S2	11.3	9.8	10.6	5.6	5.2	5.4	14.4	14.2	14.3
S3	11.5	11.5	11.5	5.8	5.6	5.7	13.6	15.9	14.75
S4	10.5	11.5	11.0	5.5	5.5	5.5	15	16.7	15.85
Mean	11.2	11.0	11.0	5.6	5.5	5.6	14.8	15.7	15.7

SEd – well water; M1 – treated effluent
S1 - 100% STCR NPK, S2 – 50% STCR NPK + 50% Pressmud compost, S3 – 50% STCR NPK +50% MLSS, S4 – 50% Pressmud compost +50% MLSS.

Conclusion
Yield and quality of Bhendi under effluent irrigation and solid waste application was evaluated. Solid waste incorporation along with effluent irrigation increased the yield by 31.20%. This suggests that the cultivation of Bhendi with effluent irrigation is a viable option to increase the productivity.

Acknowledgement
The authors wish to thank the Seshasayee Papers and Boards Pvt. Ltd., Pallipalayam, Namakkal district of Tamil Nadu for providing financial support to this study.

Reference
1. Kansal BD. Effects of domestic and industrial effluents on agricultural productivity. In: Management of agricultural pollution in India. (Eds. Dhalial GS, Kansal BW.). Common wealth publishers, New Delhi 1994, P157-173.
2. Singh PK, Ladwani K, Ladwani K, Deshbrarar PB, Ramteke DS. Impact of paper mill wastewater on soil properties and crop yield through lysimeter studies. Environmental technology 2013;34(5):599-606.
3. Kumar V, Chopra AK, Pathak C, Pathak S. Agro- potentiality of paper mill effluent on the characteristics of Trigonella Foenum-graecum L. (Fenugreek). New York Science Journal 2010;3(5):68-77.
4. Sheela D. Deepa Peethambaram P. Impact of distillery factory effluent on Capsicum frutescences L. Nature Env Polln Technol 2007;6(2):259-262.
5. Palaniswami C, Sree Ramulu US. Effect of continuous irrigation with paper factory effluent on soil properties. J Indian Soc Soil Sci 1994;42:139-140.
6. Kumar V, Chopra AK. Ferti-irrigational effect of paper mill effluent on agronomical characteristics of Abelmoschus esculentus L. (Okra). Pakistan Journal of Biological Sciences 2013;16(22):1426-1437.
7. Chopra SL, Kanwar JS. Analytical Agricultural Chemistry. Kalyani publishers, New Delhi 1976, P332-341.
8. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of biological chemistry 1951;193:265-275.
9. Udayasoorian C, Jothismani P, Prabu PC. Impact of treated paper mill effluent and organic amendments on bhendi. J Environ Res 2003;13(2):50-56.
10. Prasanthrajan M, Udayasoorian C, Singaram P. Impact of paperboard mill solid sludge biocompost and treated effluent irrigation on growth and yield attributes of vegetable cowpea. Madras Agric J 2004;91:483-488.
11. Ponnani S, Udayasoorian C. Impact of treated paperboard mill effluent irrigation on yield and quality of chillies. Int J Res Rev 2014;1(3):11-15.
12. Udayasoorian C, Ponnani S. Effect of treated paperboard mill effluent irrigation on soil health and yield of vegetable crops. J Environ Res Dev 2009;3(3):879-889.
13. Prathiba S. Impact of treated paperboard mill effluent and solid waste on yield and quality of vegetable crops and soil. MSc (Env Sciences) Thesis, Tamil Nadu Agric Univ Coimbatore 2005.
14. Udayasoorian C, Prabu PC, Mini K. Influence of composted bagasse pith and treated paper mill effluent irrigation on groundnut. Madras Agric J 2004;91:126-129.
15. Srivastava PK, Gupta M, Upadhyay RK, Sharma S, Singh N, Tewari SK, Singh B. Effects of combined application of vermicompost and mineral fertilizer on the growth of Allium cepa L. and soil fertility. Journal of Plant Nutrition and Soil Science 2012;175(1):101-107.