Secondary Metabolite Content In Pegagan (Centella asiatica) From North Sumatera

Noverita Sprinse Vinolina

1Agrotechnology Department, University of Sisingamangaraja XII, Medan 20235, Indonesia

Abstract. Centella asiatica is one of wild plant that widely used from nature. Conservation efforts for environmental sustainability and utilization of medicinal plants has been existing but very limited. Medicinal plant, Centella asiatica as a biomass potential is not only harvested from the nature but also cultivated to obtain uniform quality. Some chemical content are saponins compound such as asiaticoside, madecassoside and asiatic acid. The study was conducted in lowland and highland of North Sumatera. The materials is pegagan accession, Labu Beach, Deli Serdang, Kabanjahe accession, Berastagi accession, and Samosir accession. Tools used are waters alliance type of HPLC system, auto sampler 2695, photodiode array detector 996, coulomadsorbosphere C18 5μ, size 250 x 4.60 mm, UV absorbance, wavelength 210 nm, a flow rate 1.8 ml/min, injection volume 20 mL, and Empower Pro software. The results showed that the pattern of centelloside (asiaticoside, madecassoside and asiatic acid), when the content of one of bioactive compounds is high then otherwise be lower or biosynthetic pattern toward a compound needed. Age of Pegagan affect the content of centelloside. Centelloside pattern is influenced by growing medium condition, very high phosphorus content, and centelloside biosynthes is toward asiaticoside.

1. Introduction
Knowledge of medicinal plants in Indonesia comes was inherited from generation to generation, and is constantly enriched with knowledge from outside the archipelago, particularly from China and India. Medicinal plants that have been domesticated for generations and maintained in the corners of garden began neglected, forgotten and cleaned. As a result, generally public does not recognize medicinal plants and their use as drugs. The same thing is not happening in our neighboring countries such as Japan, China, Taiwan, Hong Kong, Korea and other Eastern countries. Conservation efforts and the use of medicinal plants is existing but it is very limited and the impact is very small compared to the existing needs. This happens due to lack of community support. But in the last decade of the 20th century, there is a global tendency back to nature. In term of medicine field, such tendency means back to traditional medicinal plants [6].

Bioactive compound of Centella asiatica is triterpenoid saponin and sapogenin with ursanestructure, namely asiaticoside and madecassosides as well as madecassic acid and asiatic acid. Asiaticoside can accelerate the wound healing process and are useful in the treatment of leprosy and tuberculosis, while madecassoside have anti-inflammatory properties and can significantly increase the secretion of collagen III. Pegagan is sweet, cooling, has function to cleaning blood, smoothing blood circulation, urine laxative (diuretics), fever (antipyretic), stop bleeding (haemostatic), improve neurological memory, anti-bacterial, tonic, antispasmoic, anti-inflammatory, hypotension, insecticides, anti-allergic.
and stimulants. Saponins can inhibit the production of excessive scar tissue (inhibit keloids occurrence) [8][9].

Drug industry still requires the cultivation of medicinal plants using natural fertilizer; therefore it is necessary to know the effect of natural fertilizer to support growth, biomass production and bioactive ingredients of medicinal plants. One plant that is widely known throughout the world as drug is Pegagan or *Centella asiatica* L. (Urban). Pegagan is still categorized as wild plant that has not domesticated yet. Some chemical compound that already known, among other are saponins compound such as asiaticoside, asiatic acid and madecassoside acid that stimulate the production of collagen I, thankunside, isothankunside, brahmoside, brahmikacid, madecassic acid, triterpenacacid, meso-inositol, centellosa, carotenoids, K salt, Na, Ca, Fe, phosphorus, vellarin, tannins, mucilago, resin, pectin, sugar, B vitamins, fatty oils, calcium oxalate, amigdalin [1][3][11].

There are some constraints faced by agro medicine industry in Indonesia, such as cultivation, production processes, research and development, products marketing, and uniformity of material quality [4]. In agribusiness, Pegagan has a promising prospect and in turn open biopharmaceutical business opportunity where demand is increasing every year both domestically and export destination [12] [13]. In efforts to make Pegagan as domestic plants, early observations on the growth habits of the plant are needed. The objective is providing further information on Pegagan cultivation system.

2. Research Method
The study was conducted in *lowland and highland of North Sumatera*. The materials is pegagan Deli Serdang accession, Kabanjahe accession, Berastagi accession, and Samosir accession. Tools used are waters alliance type of HPLC system, auto sampler 2695, photodiode array detector 996, coulomb adsorbosphere C_{18} 5μ, size 250 x 4.60 mm, UV absorbance, wavelength 210 nm, a flow rate 1.8 ml/min, injection volume 20 mL, and Empower Pro software.

3. Test Of Asiaticoside Content
Testing for asiaticoside content [5] of Pegagan leaf was conducted in every harvest to determine the stage of centelloside accumulation in leaves. Determination of centelloside is as follows:

Analysis stages of asiaticoside, madecassoside and asiatic acid are as follow: Pegagan powder either from leaves, petiole, roots and shoots are used 0.2 g respectively.

1. Add 4 ml of methanol 90% (90 methanol: 10 water).
2. For mixing, put in shaker for at least 5 hours.
3. The mixture is filtered using Whatman filter paper number 1.
4. The liquid evaporated using water bath at 50 °C.
5. Produced brown material is mixed with 1 ml of 90% methanol until completely dissolved.
6. Filter the mixture using PTFE filter 0.22 μM.
7. Save the filtrate for HPLC analysis; as many as 20 mL for each HPLC injection.

Mobile phase
All components of the mobile phase were filtered with a 0.2 μm membrane before use. Elution gradient is using 0.3% orthophosphoric acid (solution A) and acetonitrile (solvent B) as presented in Table 1. Wavelength is 210 nm, flow rate 1.8 ml/min, injection volume 20 uL.

No	Time (Minute)	Flow (ml)	% A	% B
1	0.00	1.80	95.0	5.0
2	1.00	1.80	95.0	5.0
3	5.00	1.80	80.0	20.0
4	15.00	1.80	50.0	50.0
5	20.00	1.80	20.0	80.0
6	23.00	1.80	20.0	80.0
4. Experimental Result

Results of HPLC analysis show content of centelloside for various pegagan accession harvested from nature (Table 2-6). Patterns of centelloside content show that when the content of one bioactive compound is high then the otherwise be lower. As described in biosynthesis of triterpene saponins (Figure 1), the last stage of this biosynthetic pathway is not known yet, but centelloside (asiaticoside, madecassoside, asiatic acid and madecassic acid) will be synthesized in pegagan. The affecting factors is not clear (allegedly influenced by the age of harvested plant, the content of soil phosphorus and also there is a certain signal for the formation of secondary metabolites.

Table 2. Content of Centelloside in Various Pegagan Accession Harvested from Nature

Sample (Accession)	Asiaticoside (µg/ml)	Madecassoside (µg/ml)	Asiatic Acid (µg/ml)
Medan	4,655	31,838	62,756
Deli Serdang	42,307	125,711	350,814
Berastagi	6,072	35,264	160,269
Kabanjahe	15,286	63,152	194,848
Samosir	4,492	49,205	279,689

Table 3. Pegagan Samples from Deli Serdang

Sample	Asiaticoside (µg/ml)	Madecassoside (µg/ml)	Asiatic acid (µg/ml)
Leaf	53,603	23,082	31,027
Petiole	46,489	9,637	57,185
Root	103,906	24,640	70,308

According to centelloside content of the leaf, petiole and root (Table 3), it can be seen that the highest content of asiaticoside found in root, followed by leaf and petiole. The age of Pagagan affect the content of centelloside as shown at Tables 4 below. Centelloside pattern can be seen on the media conditions (soil analysis), that is the content of asiaticoside higher than madecassoside or asiatic acid both at 4 and 6 weeks after planting (WAP). Soil analysis shows that phosphorous levels is very high, namely 857.25 ppm. Table 4 shows that at 6 WAP, the pattern of Centelloside biosynthesis more towards asiaticoside.

Table 4. Sample of Pegagan Leaf at 4 and 6 WAP (I)

Sample	Asiaticoside (µg/ml)	Madecassoside (µg/ml)	Asiatic acid (µg/ml)
Leaf 4 WAP	146,916	27,665	29,169
Leaf 6 WAP	1663,928	229,736	21,691

Noverita (2010) and Noverita, Siregar and Napitupulu (2012) confirm that soil phosphorus levels affect asiaticoside for some observed accession. Phosphorus levels in the growing medium are shown at Appendix. Here are presented some stage in the biosynthesis of triterpene saponins.

Centelloside is triterpenoid compounds that biosynthesized through mevalonate pathway in the cytoplasm. Biosynthesis can be divided into three stages:

1. Universal precursor synthesis of all terpenoids, isopentenyl diphosphate (IPP).
2. First Synthesis of triterpenes, squalene.
3. Centelloside Synthesis.

SQS = squalene synthase, CYS = cycloartenol synthase, βAS = β-amryn synthase

The last step of such biosynthetic pathway is not yet known. Centelloside (asiaticoside, madecassoside, asiatic acid and madecassic acid) specifies bioactive that will be synthesized.

5. Conclusions

The pattern of centelloside (asiaticoside, madecassoside and asiatic acid) is when the content of one of bioactive compounds is high then otherwise be lower or biosynthetic pattern toward a compound needed. Age of pegagan affect the content of centelloside. Centelloside pattern is influenced by growing medium condition, very high phosphorus content, and centelloside biosynthesis toward asiaticoside.

Acknowledgment

This work was supported in part by Ministry of Research, Technology and Higher Education, Indonesia under Grant No.027/K.1.1/LT.1/2017.

References

[1] Aziz, Z.A, M.R. Davey, J.B.Power, P. Anthony, R.M. Smith and K.C.Lowe. Production of asiaticoside and madecassoside in Centella asiatica in vitro and in vivo. Plant Sciences Division, School of Biosciences, University of Nottingham, UK. Biologia Plantarum 51(1) (2007) 34-42.
[2] Bonfill, M., Susana Mangas, Rosa M. Cusidó, Lídia Osuna, M. Teresa Piñol and Javier Palazón. Identification of triterpenoid compounds of Centella asiatica by thin-layer chromatography and mass spectrometry. Biomed. Chromatography 20 (2006) 151-153.
[3] Duke, J. 2005. Phytochemical and Ethnobotanical Databases, Maryland, Beltsuille Agricultural Research Center.
[4] Ghulamahdi, M., Sandra Arifin Aziz dan Nurliani Bermo. 2007. Evaluasi Karakter Morfologi Fisiologi dan Genetik Pegagan Mendukung Standarisasi Mutu Pegagan. Lab Balai Besar dan Pengembangan Pasca Panen, Lab PSPT IPB, Lab Pusat Studi Biofarmaka IPB Lab Tanah IPB.
[5] Jain, Prateek K. and Ram K. Agrawal. 2008. High Performance Liquid Chromatographic Analysis of Asiaticoside in Centella asiatica (L.) Urban. Chiang Mai J. Sci.; 35(3) (2008) 521-525.
[6] Januwati, Mariam dan M. Yusron. 2005. Budidaya Tanaman Pegagan. Balai Penelitian dan Pengembangan Pertanian. Balai Penelitian Tanaman Obat dan Aromatika.
[7] Makin. H.L. 1977. Biochemistry of Steroids Hormones. London, Nlack Well Scientific Oxford Ikan. R. 1991. Natural Products to Laboratory Guide, 2nd edition, University of Jerusalem.
[8] Mangas, S., Merce Bonfill, Lídia Osuna, Elisabeth Moyano, Jaime Tortoriello, Rosa M. Cusido, M. Teresa Piñol, Javier Palazón. The effect of methyl jasmonate on triterpene and sterol
metabolisms of *Centella asiatica*, *Ruscus aculeatus* and *Galphimia glauca* cultured plants. Phytochemistry 67 (2006) 2041-2049.

[9] Mangas, Susana, Elisabeth Moyano, Lidia Osuna, Rosa M. Cusido, Mercedes Bonfill, Javier Palazo. Triterpenoid saponin content and the expression level of some related genes in calli of *Centella asiatica* Lett 30 (2008) 1853-1859.

[10] Mangas S., Moyano E. Hernandez-Vazquez L. and Bonfill M. 2009. *Centella asiatica*(L) Urban: An updated approach Terpenoids. ISBN: 978-81-308-0332-6. Editors: Javier Palazón and Rosa M. Cusidó. Laboratorio de Fisiología Vegetal. Facultad de Farmacia, Universidad de Barcelona, Spain.

[11] Matsuda H, Morikawa T, Ueda H, et al. Medicinal foodstuffs. XXVII. Saponin constituents of Pegagan (2): structures of new ursane- and oleanane-type triterpene oligoglycosides, centellasaponins B, C, and D, from *Centella asiatica* cultivated in Sri Lanka [J]. Chem Pharm Bull 49(10) (2001) 1368-1371.

[12] Noverita, S. V., Luthfi M. Siregar and J.A. Napitupulu. Morphology of leaves and content of secondary metabolites asiaticoside in some accession of Pegagan (*Centella asiatica* l. Urban) in North Sumatera. Proceedings The 2nd Annual International Conference In conjunction with The 8th IMT-GT UNINET Biosciences Conference, Life Sciences Chapter, ISSN : 2089 – 208X (2012) 200-205.

[13] Noverita, S. V. dan Marlne Nainggolan. Kandungan Asiatikosida dan Uji Fitokimia Daun Pegagan. Prosiding Seminar Nasional Farmasi (2012). Peranan Farmasi dalam Pembangunan Kesehatan. ISBN: 978-602-8892-72-8.

[14] Vickery, Margaret L. and Brian Vickery. 1981. Secondary Plant Metabolism. University Park Press, Baltimore. Tim Kimia Organik. 2007. Penuntun Praktikum Kimia Organik II. FMIPA UNP, Padang.