A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria

Freda E.-C. Jen,* Karrera Y. Djoko,† Stephen J. Bent,‡ Christopher J. Day,* Alastair G. McEwan,† and Michael P. Jennings*,†

†Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia; †School of Chemistry Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia; and *Molecular and Biomedical Science, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia

ABSTRACT Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species.—Jen, F. E.-C., Djoko, K. Y., Bent, S. J., Day, C. J., McEwan, A. G., Jennings, M. P. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria. FASEB J. 29, 3828–3838 (2015). www.fasebj.org

Key Words: meningitis • gonorrhea • denitrification

Neisseria gonorrhoeae and Neisseria meningitidis are closely related pathogenic species that colonize only humans. N. meningitidis (meningococcus) can be carried asymptomatically, but can also cause rapidly progressing, life-threatening meningitis and sepsis when it crosses the epithelium and enters the blood. Vaccines are available to prevent invasive meningococcal disease. N. gonorrhoeae primarily colonizes the human genitourinary tract, causing the sexually transmitted disease, gonorrhea, a major public health concern. The emergence of gonococcal resistance toward antibiotics has recently become a significant public health problem (1). Development of a vaccine to prevent gonorrhea is the ideal solution to this emerging public health threat.

Anaerobically induced protein A [AniA (2); previously known as Pan1 (3)], is a nitrite reductase (NirK) that plays a key role in the biology of N. meningitidis and N. gonorrhoeae. These organisms cannot use nitrate, but can use nitrite as a terminal electron acceptor to grow anaerobically (4). AniA converts nitrite (NO$_2^-$) to nitric oxide (NO), which is then reduced to nitrous oxide (N$_2$O) by nitric oxide reductase (NorB) (Fig. 1A). The gene encoding nitrous oxide reductase, nosZ, is a pseudogene in pathogenic Neisseria, so the denitrification pathway terminates at N$_2$O, rather than at the dinitrogen gas N$_2$ (5). Both AniA and NorB are essential for N. gonorrhoeae biofilm formation on human cervical cells (6). The expression of AniA in N. meningitidis is up-regulated during the host infection in the bloodstream (7).

AniA is a copper (Cu)-containing NirK that has both type I and II Cu centers (8). The type II center catalyses nitrite reduction, whereas the plastocyanin-like type I center is involved in mediating electron transfer from an electron donor, which is usually a c-type cytochrome or a cupredoxin such as azurin (9). Most Gram-negative bacteria express NirK (usually called NirK) in the periplasm (10, 11). In contrast, AniA of pathogenic Neisseria has a long N-terminal sequence that directs its export to the outer surface of the outer membrane, where it is anchored as a lipoprotein (12). AniA of the pathogenic Neisseria also has a long, C-terminal extension that is glycosylated (13). The localization of AniA has led to investigations of this outer membrane glycoprotein as a vaccine candidate to prevent gonococcal infections (12). This unique outer membrane localization raises questions in relation to AniA folding, export, and Cu loading and about
the identity of its cognate electron donor on the outside of the outer membrane. The accessory proteins needed for these processes have not been defined. In this study, we used random-deletion mutagenesis and a novel screen for loss of NirK activity to identify the genes necessary for AniA function. This screen revealed a Cu chaperone that is essential for AniA activity named AniA Cu chaperone A (AccA).

Figure 1. A) Bacterial denitrification pathway. B) Serial dilutions of bacterial growth on the media, with or without nitrite (2 mM NaNO₂). C) Δ3 norB::tet genomic DNA and kan cassette were digested by the same set of restriction enzymes and ligated to have a mixture of random insertions of the kan cassette in NorB genomic DNA (mutagenesis library). Homologous recombination transformation of the mutagenesis library allowed the kan cassette to be randomly inserted into the NorB mutant. Over 150,000 kanamycin-resistant colonies were screened. Colonies grew on medium containing 2 mM NaNO₂ indicating loss of AniA function. Dii) All the kanamycin- and nitrite-resistant colonies were picked and patched on new kanamycin (100 µg/ml)/nitrite (2 mM NaNO₂) plates to confirm the phenotype. Diii) To eliminate the colonies that had these phenotypes due to the loss of AniA, PCR of the aniA gene and Western blot probing with anti-AniA were performed. Diiii) NirK activity assays of the screened mutant confirmed the loss of AniA activity, even when AniA protein was present. **P = 0.001.

MATERIALS AND METHODS

Bacterial strains and growth conditions

N. meningitidis strains Δ3 (14) and N. gonorhoeae 1291 (15) were used in this study. The N. meningitidis strains were grown on brain–heart infusion (BHI; Oxoid, Heidelberg West, VIC, Australia) 1% agar and 10% Levinthal’s Medium Base at 37°C with 5% CO₂.
with either kanamycin (100 μg/ml) or tetracycline (5 μg/ml), as required. *N. gonorrhoeae* strains were grown on GC agar (Oxoid) with 1% IsoVitaleX (BD Biosciences, North Ryde, NSW, Australia).

Generation of mutant strains

N. gonorrhoeae strain 1291 norB::tet and *N. meningitidis* strain 3norB::tet mutants were generated by a homologous recombination resulting in allelic replacement of the active gene with the inactive allele in the chromosome of these strains. The norB coding sequence (with 186 bp upstream and 494 bp downstream) was amplified from strain 1291 using primers NorBF for and NorBRev, and the resulting PCR product was cloned into pGEM-T Easy (Promega, Alexandria, NSW, Australia), to generate pGEM-T norB. The pGemT norB plasmid was digested with BsaI to remove most of the norB coding sequence (1239 bp) and was replaced by a *Hinc*II-digested tetM cassette from pGemTetM (16), to generate pGEM-T norB::tet. The construct pGemT norB::tet was linearized with NotI and transformed into the 1291 and c3 strains to generate the 1291 norB::tet and c3 norB::tet mutant strains. *N. gonorrhoeae* strain 1291 accA::kanamycin (kan) and *N. meningitidis* strain accA::kan mutants were generated by a similar process. The nmb1557 coding sequence was cloned into pGEM-T Easy to generate pGemT nmb1557. The pGemT nmb1557 plasmid was digested with BsaI to remove most of the nmb1557 coding sequence (1239 bp) and was replaced by a *Hinc*II-digested tetM cassette from pGemTetM (16), to generate pGemT nmb1557::tet. The construct pGemT nmb1557::tet was linearized with NotI and transformed into the 1291 and c3 strains to generate the 1291 nmb1557::tet and c3 nmb1557::tet mutant strains. *N. gonorrhoeae* strain 1291 accA::kanamycin (kan) and *N. meningitidis* strain accA::kan mutants were generated by a similar process.

Random mutagenesis

The random mutagenesis method used in this study was originally described by van der Ley et al. (19). Chromosomal DNA of strain 3norB::tet was isolated and digested with 1 of the 8 restriction enzymes: *PstI, EcoRI, BspHI, PvuI, SphI, NspI, SpeI, or XbaI. A set (pairs selected from the 8 restriction enzymes) of digested chromosomal DNA samples was subsequently mixed and ligated to the 1.2 kb kanamycin-resistance marker (kan cassette) digested with the same pair of restriction enzymes (see Fig. 1B). Strain 3norB::tet was then transformed with the ligation mix. Kanamycin resistance was used to select for random insertion of the kan cassette into the chromosome.

AccA expression and purification

The AccA protein (amino acid residues 20–157) was amplified from *N. meningitidis* strain c3 using primers 1557NSFor_NcoI and 1557HisRev_NdeI and cloned into pET15b (Novagen-EMD Biosciences, Madison, WI, USA) between the NcoI and NdeI sites, to create plasmid pET15bAccAHis. This plasmid was transformed into *Escherichia coli* BL21 (DE3) (NEB) for overexpression. AccA was overexpressed in Luria-Bertani (LB) broth at 25°C for 24 h after addition of 0.1 mM isopropyl-β-D-thiogalactopyranoside (IPTG). Bacteria were lysed in buffer A (50 mM Tris-HCl, 0.1 mg/ml DNaseI, and 1 mM MgCl2) via 3 passages through a French pressure cell (15,000 kPa). AccA was purified by using TALON Metal Affinity Resin (BD Biosciences). After the sample passed through the affinity resin column, the column was washed with 10 column volumes of buffer A and 2 column volumes of buffer A with 10 mM imidazole. The protein was eluted by collecting 1 ml fractions over 10 column volumes of buffer A with 150 mM imidazole. The His-tag was removed by cleavage with AcTEV Protease (Thermo Fisher Scientific, Waltham, MA, USA) prior to surface plasmon resonance (SPR) studies. The protease was removed after digestion using His-tag affinity chromatography. Removal of the His-tag from AccA was confirmed by the molecular weight shift in SDS-PAGE. After this process, the yield of AccA was sufficient for SPR analysis, but not for later Cu-binding studies.

To generate sufficient AccA protein for Cu-binding studies, we took a second approach to purifying AccA, by using its histidine-rich C terminus as a natural affinity tag. The accA gene was amplified from *N. meningitidis* strain c3 using primers accA-NdeI-F/accA-BamHI-R, cloned into vector pET-11b and then transformed into *E. coli* BL21 Star (DE3)pLysS (both from Novagen) for overexpression. AccA was expressed as described above and purified from crude lysates on an Ni(II)-NTA His-Trap affinity column (GE Healthcare, Brisbane, QLD, Australia). AccA (without the synthetic His-tag) bound efficiently to the resin and was eluted with a gradient of 0–250 mM imidazole in buffer B [50 mM Tris, 150 mM NaCl, and 5%
glycerol v/v, pH 8.2]. Fractions containing AccA were combined and treated with 5 mM EDTA. Subsequent elution on a Superdex75 size-exclusion column (GE Healthcare) in buffer C [50 mM HEPES and 150 mM NaCl, pH 7.6] yielded pure AccA protein in a monomeric and unmetallated afo form. The purity of AccA preparations was >99% as determined by SDS-PAGE. Final protein yields were ~200 mg/L culture. Electrospray ionization/mass spectrometry confirmed a final protein mass of 15,161 Da, indicating that the signal peptide was cleaved correctly between Ala[19] and Ala[20] by the E. coli host strain. This purified AccA protein was used in Cu-binding studies. AniA protein was expressed and purified as described in Shewell et al. (12). Protein concentrations were estimated using the solution absorbance at 280 nm (ε280–6500 M⁻¹·cm⁻¹).

Antibody production

Polyclonal antisera, α-AccA, were produced by inoculating mice with the peptide-conjugated keyhole limpet hemocyanin (KLH). Peptide KQDFLLGSSPVADVREVT51 of AccA was synthesized and conjugated to KLH by Mimotopes (Clayton, VIC, Australia).

SPR

SPR experiments were performed on a Biacore T100 system (GE Healthcare) at 25°C. Recombinant AniA protein was immobilized onto a CM5 series S sensor chip with an E. coli host strain. The purified AccA protein was used in Cu-binding studies. AniA protein was expressed and purified as described in Shewell et al. (12). Protein concentrations were estimated using the solution absorbance at 280 nm (ε280–6500 M⁻¹·cm⁻¹).

Superoxide dismutase activity stain

The superoxide dismutase (SOD) assay used in this study was originally described by Beauchamp and Fridovich (21). Cell-free extracts were prepared by resuspending cultures of N. meningitidis strains ε3, strain ε3 sodC::kan, and strain ε3 accA:: kan in PBS overnight and then lysing the cells by TissueLyserLT (Qiagen, Chadstone Centre, VIC, Australia). Unbroken cells and cell debris were removed by centrifugation, and the supernatant was passed through a 0.45 μm-pore membrane filter (Millipore, North Ryde, NSW, Australia) and collected. Protein concentration in cell extracts was determined by absorbance at 280 nm. Total proteins (~100 μg) from each sample was run on a Novex pH3–10 IEF protein gel (Life Technologies). After electrophoresis, the gel was soaked in solution A [0.025% (w/v) nitroblue tetrazolium (NBT; Sigma-Aldrich, Castle Hill, NSW, Australia) and 0.01% (w/v) riboflavin (Sigma-Aldrich) in MilliQ water (Millipore)] for 20 min and then in solution B [1% (w/v) tetramethylphenylenediamine (Sigma-Aldrich)] for 20 min. After the gel was exposed to a light source, the SOD activity appeared as a colorless band against a purple background.

Cytochrome cbb3 oxidase activity assay

N. gonorrhoeae strain 1291 and derivatives were grown in aerated BH cultures (50 ml) for 5 h. The bacteria were collected by centrifugation (4000 g, 5 min) and washed twice with ice-cold PBS containing magnesium chloride (10 mM). The final bacterial pellets were resuspended in the same buffer and kept on ice. Consumption of molecular oxygen was measured at 35°C in PBS (2 ml) in the presence of sodium ascorbate (1 mM) and N,N,N’,N’-tetramethylenediamine (0.2 mM) as a gratuitous electron donor to cytochrome cbb3 oxidase. Reactions were monitored with an S1/Mini Clark-type oxygen electrode (Hansatech Instruments, King’s Lynn, United Kingdom) in conjunction with an Oxytherm control unit. The rates of oxygen reduction (1 U = 1 nmol O₂/min) were plotted by using the Oxyscan Plus program (both from Hansatech), and the results were normalized to total protein content (in milligrams).

Phylogenetic distribution of AccA across the bacterial domains

The protein sequence of the accA gene from N. meningitidis strain ε3 was used as a blastn query against the Representative Genomes nucleotide database from the National Center for Biotechnology (NCBI; National Institutes of Health, Bethesda, MD, USA), using the BLAST+ command-line executable suite (22) and the BLOSUM45 matrix, with a custom output format of type 6 and the maximum target sequences set to 5000. The genomes from this database with AccA blastn E values less than 0.01 were termed positive, and the representation of positive taxa across the phylogenetic tree was used to identify groups containing positive taxa at the level of family, order, class, or phylum. To minimize any potential artifacts due to the arbitrary 0.01 E value cutoff, we also calculated the geometric mean of the positive E value scores within each group.

To provide a backbone for representation of the distribution of accA gene homologs in bacteria, a 16S rRNA phylogenetic tree was generated. One representative from each of 23 bacterial phyla was taken for which whole genome sequences are available, plus an additional 4 representatives from the Alpha-, Beta-, Delta-, and Gammaproteobacteria classes, to represent the groups containing clear homologs of accA. We generated a maximum-likelihood tree using the GTR+I+G substitution model in Mega6.06 (23) and indicated on the leaf nodes the proportion of accA-positive taxa with sequenced genomes and geometric mean E value from the AccA BLAST search.

RESULTS

Use of a novel genetic screen to identify an essential gene for NirK activity

It has been established that a norB mutant of Neisseria does not tolerate the presence of nitrite on the growth medium, presumably because the accumulation of NO leads to cell death (24). This lethal phenotype of the norB mutant can be suppressed by loss of AniA function (24) as shown in Fig. 1C. This observation allowed the development of a genetic screen in which norB mutant cells could survive only if they lost AniA activity. Construction of a kanamycin-resistant random deletion mutagenesis library in N. meningitidis strain ε3norB::tet, followed by selection for growth in the presence of 2 mM nitrite, resulted in selection of kanamycin-resistant, deletion mutants with an AniA-negative phenotype (Fig. 1C).

Over 150,000 kanamycin-resistant colonies were screened on the selective media, resulting in 197 colonies that showed growth on 2 mM nitrite. These mutants could be categorized into 2 distinct types (Fig. 1D, I): the first
type \((n = 184)\) had a deletion in the \(aniA\) gene, confirmed by loss of AniA expression in Western blot analysis (Fig. 1DII). In the second type \((n = 13)\), the AniA protein was expressed at wild-type levels, but this class of mutant lacked NirK activity (Fig. 1DIII). The chromosomal DNA from each of the second class of mutants (AniA expression+NirK activity) was isolated, digested with \(Hae\)II, and self-ligated. Inverse-PCR of these self-ligated DNA fragments using outward-facing primers, anchored in the kanamycin-resistance gene, all generated the same \(~2\) kbp PCR product. Sequence analysis of these PCR products revealed that the kanamycin-resistance cassette ligation event had deleted 2 genes: \(nmb1557\) and \(nmb1558\). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg/), NMB1558 encodes a diacylglycerol kinase (EC: 2.7.1.107). An NCBI blast search of the NMB1557 \((N. meningitidis)\) [or analogous \(N. gonorrhoeae\) open reading frame (orf); NGO1215] showed homology with a hypothetical protein found in many species that contains a class of orthologous groups (COG) domain, COG2847, which is found in Cu(I)-binding proteins. Signal P (http://www.cbs.dtu.dk/services/SignalP/, Center for Biological Sequencing Analysis, Technical University of Denmark, Lyngby, Denmark) analysis of the NMB1557 orf predicts that NMB1557 is a periplasmic protein with a N-terminal 19-amino-acid signal peptide.

Cu suppresses the loss of AniA activity in mutants lacking NMB1557 and NGO1215

Because AniA contains Cu centers types I and II (8), we hypothesized that NMB1557 (and NGO1215) is involved in the transfer of Cu to AniA. To investigate the role of NMB1557 (and NGO1215) in AniA function, knockout strains and the complemented versions of the knockout strains were constructed in \(\epsilon 3\) \((\epsilon 3 \text{accA::kan} ; \epsilon 3 \text{accA::kan-ComP})\) and 1291 \((1291 \text{accA::kan} ; 1291 \text{accA::kanComP})\). The phenotype of these mutants was examined by growing them in selective medium and by conducting NirK assays. In nitrite-containing growth medium (Fig. 2A), nitrite had no effect on the growth of \(\epsilon 3 \text{accA::kan}\) mutant, and the lethal phenotype of the \(\epsilon 3\text{nirB::tet}\) mutant was rescued by loss of NMB1557 function \((\epsilon 3\text{accA::kan})\). The NirK activity assay in Fig. 2B showed that the \(\epsilon 3\text{accA::kan}\) mutant had no NirK activity, but activity could then be restored by supplementing growth medium with excess Cu \((5 \mu M \text{CuSO}_4)\), suggesting that AniA is an apo-enzyme in the \(\epsilon 3\text{accA::kan}\) mutant strain. Some NirK activity was restored when the \(\epsilon 3\text{accA::kan}\) strain was grown in growth medium containing 2 mM NaNO₂ and 5 \(\mu M \text{CuSO}_4\), resulting in a lethal phenotype (Fig 2A). The double-knockout mutant strain, \(\epsilon 3\text{accA::kan/norB::tet}\) showed the same phenotype as the \(\epsilon 3\text{nirB::tet}\) strain in this growth medium.

Figure 2. A) Ten-fold serial dilutions of \(\epsilon 3\) and 1291 WT and mutant strains growing on the media with or without nitrite (2 mM NaNO₂) and with or without Cu (5 \(\mu M \text{CuSO}_4\)). B) NirK activity assays of \(\epsilon 3\) and 1291 WT and knockout mutants (AniA and AccA) strains. AccA mutant strain growing on Cu-supplemented media had a restored AniA activity. **P = 0.0013; ***P < 0.0001. The expressions of AniA and AccA were confirmed by Western blot analysis.
AccA has a direct interaction with AniA

It is clear that AniA requires AccA for NirK activity and that exogenous Cu can complement the absence of AccA in AniA function. To determine whether AccA can deliver Cu ions through a direct interaction with AniA, SPR was used. Recombinant AccA and AniA were expressed and purified. AniA protein was immobilized onto a series S sensor chip CM5. The binding affinity (K_d) of AccA (without Cu) to AniA from triplicate experiments was 3.00 ± 0.01 μM (Table 2). The sensogram in Fig. 3 shows that AccA without Cu (as shown in the blue curve) associated and dissociated slowly from AniA. The off rate of this interaction (the dissociation rate in inverse time, k_off) was 9.49 × 10^{-10} ± 4.1 × 10^{-10} (1/s). The proposed function of AccA is to deliver Cu to AniA. The red curve in the sensogram in Fig. 3 shows that in the present of Cu, the response unit dropped significantly after AccA and AniA association. With Cu, the K_d of AccA to AniA was 2.13 ± 1.2 μM, but it had a much faster on and off rate [k_on = 0.0005 (1/ms) and k_off = 0.004 (1/s); Table 2]. This result suggests that after AccA loading Cu to AniA, it rapidly dissociates from AniA. Other metals, Zn, Co, Fe, and Mn, were also tested, and none of them had effects similar to Cu in binding AccA to AniA (Table 2).

The role of AccA in SodC and cytochrome cbb3 oxidase function

Apart from AniA, both pathogenic Neisseria species possess a cytochrome cbb3 oxidase that contains a CuB center, but not a CuA center (25), whereas N. meningitidis possesses SodC, a periplasmic SOD protein that contains a type II Cu center (26). To examine whether AccA is also associated with the protein function of SodC, an SOD assay was performed (27). Strains N. meningitidis ε3, ε3accA::kan, and ε3SodC::kan were examined, and the results showed that SodC activity remained in ε3accA::kan (Fig. 4A). On the other hand, compared to the wild-type strain, the 129H accA::kan mutant displayed a small and reproducible decrease in the activity of cytochrome cbb3 oxidase (Fig. 4B). The activity of this oxidase in the complemented strain returned to wild-type levels. This result indicates that AccA is not essential, but it does have an effect on the assembly of the CuB center in this oxidase.

Homolog modeling predicts that AccA contains a Cu(I) center

The amino acid sequence of AccA was used as a template for homology modeling with Swiss-Model (http://swissmodel.expasy.org/, Swiss Institute of Bioinformatics, Basel, Switzerland) (28) to conduct a library search of experimental protein structures to identify suitable templates. Two structurally homologous proteins of AccA with known structures were found: TTHA1943 and DR1885. TTHA1943 from Thermus thermophilus, donates Cu(I) ions to subunit II of the cytochrome ba oxidase (Cox2) to generate a functional CuA center (29). DR1885 from Deinococcus radiodurans, is predicted to have a role in delivering Cu (I) to the CuA center of cytochrome c oxidase (30). The modeled structure, as shown in Fig. 5, revealed that AccA should contain a Cu(I) binding site through the conserved methionine and histidine motif HX10MX22HXM.

AccA is a Cu(I)- and Cu(II)-binding protein

The AccA protein was purified in its apo-form (see Materials and Methods), as determined by metal analyses using excess 4-(2-pyridylazo)resorcinol (PAR) as a colorimetric ligand for Cu(II), Co(II), Mn(II), Ni(II), and Zn(II) (λ_max, 450–550 nm), in denaturing conditions (8 M urea). Incubation of apo-AccA with 4 M equivalents of CuCl_2 in the presence of 100 equivalents of sodium ascorbate, followed by elution on a PD-10 desalting column, led to the isolation of a metallated form. Cu analyses using excess bathocuproine disulfonate (BCS) as a colorimetric ligand for Cu(I) (λ_max, 483 nm; ε_483, 13,000 M⁻¹·cm⁻¹) (31) in denaturing conditions detected 1.00 ± 0.06 equivalent of bound Cu(I) (Table 3). Addition of ascorbate to reduce any bound Cu(II) led to an increase in the Cu stoichiometry [Cu(I) + Cu(II)] to 2.0 ± 0.1. These results indicate that AccA possesses 2 binding sites, 1 for Cu(I) and 1 for Cu(II). apo-AccA was also metallated by Zn(II) (1 equivalent), Ni(II) (1 equivalent), Co(II) (0.5 equivalent), or Mn(II) (0.5 equivalent), as determined by metal analyses with PAR, against concentration standards (Table 4). However, these metal ions were unable to compete with

Binding to AniA ± metal	K_d (M)^a	k_off (1/s)^b
AccA	3.00 × 10^{-06} ± 6.1 × 10^{-07}	9.49 × 10^{-06} ± 4.1 × 10^{-10}
AccA + Cu	2.15 × 10^{-06} ± 1.2 × 10^{-06}	4.01 × 10^{-06} ± 1.4 × 10^{-05}
AccA + Co	9.87 × 10^{-06} ± 1.3 × 10^{-06}	1.21 × 10^{-06} ± 6.2 × 10^{-07}
AccA + Fe	6.27 × 10^{-05} ± 2.2 × 10^{-05}	ND
AccA + Zn	1.86 × 10^{-04} ± 2.4 × 10^{-05}	ND
AccA + Mn	No binding	—

^aAffinity of the interaction. ^bDisassociation rate in inverse time. ND, not determined [Biacore software (GE Healthcare) could not uniquely determine the off rate, because it was outside the range of detection (less than 1 × 10^{-15})].
and replace bound Cu(I) or Cu(II) in AccA, suggesting that AccA is a Cu-specific binding protein.

Phylogenetic distribution of AccA across the bacterial domain

At the phylum level, homologs for AccA were found across the Proteobacteria, and in Actinobacteria, Aquifaciaceae, Chlorobi, Chloroflexi, Deinococcus-Thermus, and Gemmatimonadetes. There were also patterns of representation at the family, class, and order levels within the Aquificae, Epsilonproteobacteria, Chloroflexi, and Gammaproteobacteria (Fig. 6A; Table 5), with Aquificaeaceae, Campylobacteraceae, non-Dehalococcoides (in Chloroflexi), and non-Enterobacteriaceae (in Gammaproteobacteria) containing all of the positive species in those phyla. In summary, some pathogenic bacteria such as Pseudomonas aeruginosa, Burkholderia pseudomallei, Bordetella parapertussis, and Bordetella pertussis contain AccA homologs; however, most strains containing AccA homologs are environmental bacteria, especially the diazotrophic bacteria, such as Azospirillum lipoferum, Rhizobium, and Azotobacter vinelandii.

AccA has a structural homology with TTHA1943 in T. thermophilus; however, it differs from this cytochrome c oxidase Cu chaperone, in that TTHA1943 does not have a C-terminal histidine rich Cu(II) binding site. A multiple alignment of AccA homologs is shown in Fig. 6B. All these homologs from different bacteria contain an N-terminal signal peptide (sequence underlined, predicted using Signal P), a conserved Cu(I)-binding site (red box) and a C-terminal Cu(II)-binding site (blue box). This alignment suggests that, apart from Neisseria, AccA is a common Cu chaperone found in a diverse range of bacteria. Furthermore, these predicted Cu chaperone homologs may have the same role as AccA.

DISCUSSION

Cu is a key redox center in enzymes involved in aerobic respiration, as well as a variety of reactions involving molecular oxygen (32). However, it is also a highly toxic metal ion that can exert its toxicity, either via promotion of oxidative stress or insertion into sites that normally would be occupied by other transition metal ions (33, 34). These biochemical properties have driven the evolution of complex pathways of Cu handling in both eukaryotic and prokaryotic cells, to avoid the toxic effects of this metal ion (35). These functions include the regulation of Cu movement across membranes via P-type ATPases and the control of Cu transfer between proteins via the use of Cu-binding proteins (chaperones) (35, 36). In prokaryotes, the focus of research has been the biogenesis of the Cu centers associated with respiratory enzymes of the heme-Cu oxidase superfamily (37) or on the Cu tolerance system (Cue) that protects the cell against excess Cu (38). In addition to its ability to catalyze reactions involving molecular oxygen, Cu is involved in reactions with nitrogen oxides, and 2 of the enzymes involved in denitrification are Cu enzymes: nitrous oxide reductase and NirK, the subject of the current study.

In this work, we identified a gene encoding a Cu chaperone, AccA, that is necessary for the biogenesis of functional NirK. From homology modeling, it appears that AccA has a Cu(I) center that is very similar to that described
in TTHA1943 from *T. thermophilus* (30) and DR1885 from *D. radiodurans* (30), in that the Cu(I)-coordinating amino acids found in DR1885 (2 Met, 2 His) are conserved in AccA. Banci et al. (30) have demonstrated biochemically that DR1885 from *D. radiodurans* donates Cu(I) to a water-soluble apo-CuA fragment of the CoxII protein of the cytochrome *ba* oxidase from the same bacterium leading to the assembly of a CuA center. For this reason, it was named the periplasmic CuA chaperone (PCuAC). However, our data show for the first time that a structural analog protein of PCuAC, AccA, has an essential role in the assembly of an active nitrite reductase in pathogenic *Neisseria*, suggesting that there may be more diverse functions for this family of Cu chaperones in the periplasm of Gram-negative bacteria. In the case of *N. gonorrhoeae*, we observed that mutation of accA led to a small but significant effect on cytochrome oxidase activity. Because *N. gonorrhoeae* contains only cytochrome *cbb*3, it can be concluded that AccA may also enhance the efficiency of the biogenesis of the heme-Cu center, but it is not essential. Pathogenic *Neisseria* lack cytochrome *aa*3 and do not express a functional nitrous oxide, and so it was not possible to determine whether AccA is involved in the assembly of the CuA center in this bacterium. Given the established role of PCuAC in CuA assembly in cytochrome oxidases that possess this redox center, it would be interesting to test its role in commensal *Neisseria* species that possess a functional nitrous oxide reductase.

AccA did not appear to be essential for assembly of SodC in *N. meningitidis*, although our assay would not allow us to determine whether there was a small effect on activity. The aniA[−] phenotype could be suppressed by addition of excess Cu, and similar observations have been made with regard to the biochemical suppression of mutations that affect the transfer of Cu to cytochrome oxidase in yeast (39). This finding suggests that a Cu chaperone is not obligatory for the biogenesis of Cu centers, but it is necessary in some cases at physiologically relevant Cu concentrations. The observation that mutation of PCuAC in *Bradyrhizobium* led to restricted

Table 3. Cu analyses of AccA

No.	Abs₂₈₀	AccA (µM)	asc	asc[−]	Cu^I (µM)	Cu^I + Cu^{II} (µM)	Cu^I/AccA	(Cu^I + Cu^{II})/(AccA)⁶
1	0.147	17.1	0.222	0.451	17.1	34.7	1.0	2.0
2	0.203	23.6	0.271	0.603	20.8	46.4	0.9	2.0
3	0.153	17.8	0.235	0.472	18.1	36.3	1.0	2.0
4	0.109	15.6	0.194	0.416	14.9	32.0	1.0	2.0
5	0.135	19.3	0.241	0.529	18.5	40.7	1.0	2.1
6	0.095	13.6	0.178	0.394	13.7	30.3	1.0	2.2
7	0.116	13.4	0.181	0.321	13.9	24.7	1.0	1.8
8	0.131	15.2	0.203	0.397	15.6	30.5	1.0	2.0
9	0.110	12.7	0.177	0.334	13.6	25.7	1.1	2.0

Apo-AccA was incubated with CuCl₂ (4 M equivalent) and sodium ascorbate (100 M equivalent) and desalted. Metal analyses were performed with BCS. asc, sodium ascorbate. Average Cu^{III}/AccA = 1.00 ± 0.06.

Figure 5. The structure of AccA, modeled by Swiss-Model. A) Secondary structure alignment with a known Cu(I) chaperone, TTHA1943, from *T. thermophilus*. Purple boxes: binding motif of Cu(I). B) Modeled AccA 3D structure (gray) aligns to the TTHA1943 Cu(I) chaperone. Yellow: Cu(I); purple: binding motif.
growth under conditions of Cu limitation is consistent with a role for this protein in efficient delivery of Cu to key respiratory oxidases (40).

Although there is a strong structural similarity between PCuAC and AccA, AccA also has a histidine-rich region at the C terminus, this additional histidine-rich region may explain why it is able to bind a Cu(II) ion in addition to a Cu(I) ion. It is interesting that periplasmic SodC, also possesses a histidine-rich region that may be involved in the capture of Cu for biogenesis of the type II Cu site (41). This observation leads us to suggest that the primary structural and biochemical differences between AccA and PCuAC indicate functional differences in their roles, with AccA having evolved to have a specific role in one or both of the Cu centers in NirK.

Production of reactive nitrogen species is one of the host defenses against pathogens. In *N. gonorrhoeae*, anaerobic metabolism of nitrite and NO is particularly important in colonization of the mucosal surface and may have led to the location of AniA at the bacterial surface. The unique location of AniA provides a challenge for the efficient distribution of Cu to this enzyme, and for this reason, it appears that there is a high dependence on AccA for AniA biogenesis. SPR revealed a direct and high-affinity protein-protein interaction between AccA and AniA in

M\(^{II}\)	No.	Abs\(_{280}^{a}\)	AccA (\(\mu\)M\(^{'}\))	Abs\(_{500}\)	M\(^{II}\) (\(\mu\)M\(^{'}\)) Each	Average
Zn	1	0.423	6.1	0.589	5.3	0.88
	2	0.529	7.6	0.699	6.3	0.83
	3	0.406	5.8	0.586	5.3	0.91
Co	1	0.425	6.1	0.181	2.2	0.56
	2	0.530	7.6	0.257	3.1	0.41
	3	0.400	5.7	0.189	2.3	0.40
Ni	1	0.415	5.9	0.578	5.9	0.99
	2	0.525	7.5	0.702	7.2	0.95
	3	0.409	5.9	0.551	5.6	0.96
Mn	1	0.416	6.0	0.067	3.3	0.55
	2	0.551	7.6	0.062	3.1	0.40
	3	0.411	5.9	0.063	3.1	0.53

\(Apo\)-AccA was incubated with various metal ions and desalted. Metal analyses were performed using PAR. \(a\)Metal ions (>2 M equivalent) were provided as the chloride or nitrate salts. \(b\)AccA were diluted 10 times for analyses. The absorbance values were of the original (concentrated) stock. \(c\)Concentrations of AccA (diluted). \(d\)Approximate metal concentrations from a standard curve.

Figure 6. A) A phylogenetic tree of 16S rRNA, with a representative from each of 23 bacterial phyla. The distribution of AccA across the bacterial domain is shown. B) A multiple alignment of AccA-like proteins from different bacteria. The N-terminal signal peptide is underlined. Red box: the conserved Cu (I) binding site; blue box: the C-terminal Cu (II) binding site.
patterns at the family, class, and order level were noted in Alphaproteobacteria, Epsilonproteobacteria, and Gammaproteobacteria. "Weak support for presence, such as when a single positive representative was found (Chlororobi, Deltaproteobacteria, and Gemmatimonadetes) and when the tblastn E value was weak (Deltaproteobacteria)."

REFERENCES

1. Unemo, M., and Shafer, W. M. (2011) Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. *Ann. N. Y. Acad. Sci.* 1230, E19–E28
2. Hoech, G. T., and Clark, V. L. (1992) Isolation and nucleotide sequence of the gene (aniA) encoding the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae. *Infect. Immun.* 60, 4690–4703
3. Clark, V. L., Campbell, L. A., Palermo, D. A., Evans, T. M., and Klumpel, K. W. (1987) Induction and repression of outer membrane proteins by anaerobic growth of Neisseria gonorrhoeae. *Infect. Immun.* 55, 1359–1364
4. Knapp, J. S., and Clark, V. L. (1984) Anaerobic growth of Neisseria gonorrhoeae coupled to nitrite reduction. *Infect. Immun.* 46, 176–181
5. Barth, K. R., Isabella, V. M., and Clark, V. L. (2009) Biochemical and genomic analysis of the denitrification pathway within the genus Neisseria. *Microbiol. 155, 4093–4103
6. Falsetta, M. L., Steichen, C. T., McEwan, A. G., Cho, C., Ketterer, M., Shao, J., Hunt, J., Jennings, M. P., and Apicella, M. A. (2011) The composition and metabolic phenotype of Neisseria gonorrhoeae biofilms. *Fluor. Microbiol.* 2, 75
7. Echenique-Rivera, H., Muzzi, A., Del Tordello, E., Seib, K. L., Francois, P., Rappuol, R., Pizza, M., and Serruto, D. (2011) Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival. *PLoS Pathog.* 7, e1002027
8. Boulanger, J. M., and Murphy, M. E. (2002) Crystal structure of the soluble domain of the major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: a new class of copper-containing nitrite reductases. *J. Mol. Biol.* 315, 1111–1127
9. Hopper, A. C., Li, Y., and Cole, J. A. (2013) A critical role for the cccA gene product, cytochrome c2, in diverting electrons from aerobic respiration to denitrification in Neisseria gonorrhoeae. *J. Bacteriol.* 195, 2518–2529
10. Berks, B. C., Richardson, D. J., Robinson, C., Reilly, A., Aplin, R. T., and Ferguson, S. J. (1994) Purification and characterization of the periplasmic nitrate reductase from Thiophaera pantotropha. *Eur. J. Biochem.* 220, 117–124
11. Gennis, R. B., Stewart, V. (1996) Respiration. In Escherichia coli and Salmonella: Cellular and Molecular Biology. (Neidhardt, F. C. III, R. C., Ingraham, J. L., Lin, E. C. C., Low, K. B., Magasanik, B., Reznikoff, W. S., Riley, M., Schaechter, M., and Unhanger, H. E., eds.), pp. 217–261, ASM Press, Washington, D.C.
12. Shewell, L. K., Ku, S. C., Schulz, B. L., Jen, F. E., Mubisa, T. D., Ketterer, M. R., Apicella, M. A., and Jennings, M. P. (2013) Recombinant truncated AniA of pathogenic Neisseria elicits a non-native immune response and functional blocking antibodies. *Biochem. Biophys. Res. Commun.* 431, 215–220
13. Ku, S. C., Schulz, B. L., Power, P. M., and Jennings, M. P. (2009) The pilin O-glycosylation pathway of pathogenic Neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductase. *Biochem. Biophys. Res. Commun.* 378, 84–89
14. Virji, M., Makepeace, K., Peak, I. R., Ferguson, D. J., Jennings, M. P., and Moxon, E. R. (1995) Opc- and piliation-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. *Mol. Microbiol.* 18, 741–754
15. Apicella, M. A., Breen, J. F., and Gagliardi, N. C. (1978) Degradation of the polysaccharide component of gonococcal lipopolysaccharide by gonococcal and meningococcal sonic extracts. *Infect. Immun.* 20, 228–234
16. Warren, M. J., Roddam, L. F., Power, P. M., Terry, T. D., and Jennings, M. P. (2004) Analysis of the role of pgII in pilin glycosylation of Neisseria meningitidis. *FEBS* *Immunol. Mol. Microbiol.* 41, 43–50
17. Ieva, R., Alaimo, C., Delany, I., Spohn, G., Rappuol, R., and Scarlato, V. (2005) CrgA is an inducible LysR-type regulator of Neisseria meningitidis, acting both as a repressor and as an activator of gene transcription. *J. Bacteriol.* 187, 3421–3430
18. Steichen, C. T., Shao, J. Q., Ketterer, M. R., and Apicella, M. A. (2008) Gonococcal c votedic: a role for biofilm in pathogenesis. *J. Infect. Dis.* 198, 1856–1861
19. Van der Ley, P., Kramer, M., Steeghs, L., Kuipers, B., Andersen, S. R., Jennings, M. P., Moxon, E. R., and Poolman, J. T. (1996) Identification of a locus involved in meningococcal lipopolysaccharide biosynthesis by deletion mutagenesis. *Mol. Microbiol.* 19, 1117–1125
20. DuMont, A. L., Yoong, P., Day, C. J., Alonzo III, F., McDonald, W. H., Jennings, M. P., and Torres, V. J. (2013) Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. *Proc. Natl. Acad. Sci. USA* 110, 10794–10799
21. Beauchamp, C., and Fridovich, I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. *Anal. Biochem.* 44, 276–287
22. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. (2009) BLAST+: architecture and applications. *BMC Bioinformatics* 10, 421
23. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol. Biol. Evol. 30, 2725–2729

TABLE 5. Patterns of AccA homolog present in phyla containing at least 1 positive sequenced species

Phylum	Frequency of accA	Geometric mean E value	Positive taxa	Positive taxa accA frequency
Actinobacteria	41/115	6E-8	Various	
Alphaproteobacteria	94/109	1E-12	Various	
Aquificae	3/6	3E-12	Aquificaeae	3/3
Betaproteobacteria	50/65	2E-20	Various	
Chlororobi	1/11	2E-10	f. Album	9/9
Chloroflexi	9/11	5E-12	Non-Dehalococoides	
Deinucoccus-Thermus	7/13	2E-7	Various	
Deltaoteproteobacteria	1/36	3E-13	Stigmatella aurantiaca	
Epsilonproteobacteria	5/21	2E-11	Campylobacteaceae	5/6
Gammaproteobacteria	68/153	3E-11	Non-Enterobacteriae	68/108
Gemmatimonadetes	1/11	1E-6	Gemmatimonas aurantiaca	

Patterns at the family, class, and order level were noted in Actinobacteria, Alphaproteobacteria, Chloroflexi, Chlororobi, Deinucoccus-Thermus, Epsilonproteobacteria, and Gammaproteobacteria. *Weak support for presence, such as when a single positive representative was found (Chlororobi, Deltaoteproteobacteria, and Gemmatimonadetes) and when the tblastn E value was weak (Deltaoteproteobacteria)."
24. Householder, T. C., Fozo, E. M., Cardinale, J. A., and Clark, V. L. (2000) Gonococcal nitric oxide reductase is encoded by a single gene, norB, which is required for anaerobic growth and is induced by nitric oxide. *Infect. Immun.* **68**, 5241–5246

25. Aspholm, M., Aas, F. E., Harrison, O. B., Quinn, D., Vik, A., Viburiene, R., Tønjum, T., Moir, J., Maiden, M. C., and Koomey, M. (2010) Structural alterations in a component of cytochrome c oxidase and molecular evolution of pathogenic Neisseria. *PLoS Pathog.* **6**, e1001055

26. Seib, K. L., Jennings, M. P., and McEwan, A. G. (2003) ASC homologue plays a role in defence against oxidative stress in pathogenic Neisseria. *FEBS Lett.* **546**, 411–415

27. Seib, K. L., Tseng, H. J., McEwan, A. G., Apicella, M. A., and Jennings, M. P. (2004) Defenses against oxidative stress in *Neisseria gonorrhoeae* and *Neisseria meningitidis*: distinctive systems for different lifestyles. *J. Infect. Dis.* **190**, 136–147

28. Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., and Schwede, T. (2009) Protein structure homology modeling using SWISS-MODEL workspace. *Nat. Protoc.* **4**, 1–13

29. Abriata, L. A., Banci, L., Bertini, I., Ciofi-Baffoni, S., Gkazonis, P., Spyroulias, G. A., Vila, A. J., and Wang, S. (2008) Mechanism of Cu (A) assembly. *Nat. Chem. Biol.* **4**, 599–601

30. Banci, L., Bertini, I., Ciofi-Baffoni, S., Katsari, E., Katsaros, N., Kubicek, K., and Mangani, S. (2005) A copper(1) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase. *Proc. Natl. Acad. Sci. USA* **102**, 3994–3999

31. Xiao, Z., and Wedd, A. G. (2010) The challenges of determining metal-protein affinities. *Nat. Prod. Rep.* **27**, 768–789

32. Robinson, N. J., and Winge, D. R. (2010) Copper metallochaperones. *Annu. Rev. Biochem.* **79**, 537–562

33. Teitzel, G. M., Geddie, A., De Long, S. K., Kirisits, M. J., Whiteley, M., and Parsek, M. R. (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed *Pseudomonas aeruginosa*. *J. Bacteriol.* **188**, 7242–7256

34. Rowland, J. L., and Niederweis, M. (2012) Resistance mechanisms of *Mycobacterium tuberculosis* against phagosomal copper overload. *Tuberculosis (Edinb.)* **92**, 202–210

35. Kim, B. E., Nevitt, T., and Thiele, D. J. (2008) Mechanisms for copper acquisition, distribution and regulation. *Nat. Chem. Biol.* **4**, 176–185

36. Mattle, D., Site1, O., Autzen, H. E., Meloni, G., Gourdon, P., and Nissen, P. (2013) On allosteric modulation of P-type Cu(+) -ATPases. *J. Mol. Biol.* **425**, 2299–2308

37. Ekici, S., Yang, H., Koch, H. G., and Daldal, F. (2012) Novel transporter required for biogenesis of cbb3-type cytochrome c oxidase in *Rhodobacter capsulatus*. *MBio* **3**, e00293-11

38. Djoko, K. Y., Franick, J. A., Edwards, J. L., Falsetta, M. L., Kidd, S. P., Potter, A. J., Chen, N. H., Apicella, M. A., Jennings, M. P., and McEwan, A. G. (2012) Phenotypic characterization of a copA mutant of *Neisseria gonorrhoeae* identifies a link between copper and nitrosative stress. *Infect. Immun.* **80**, 1065–1071

39. Heaton, D., Nittis, T., Sinivasan, C., and Winge, D. R. (2000) Mutational analysis of the mitochondrial copper metallochaperone Cox17. *J. Biol. Chem.* **275**, 37582–37587

40. Serventi, F., Youard, Z. A., Murset, V., Huwiler, S., Bühler, D., Richter, M., Luchsinger, R., Fischer, H. M., Brogli, R., Niederer, M., and Hennecke, H. (2012) Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum. *J. Biol. Chem.* **287**, 38812–38823

41. Battistoni, A., Pacello, F., Mazzetti, A. P., Capo, C., Kroll, J. S., Langford, P. R., Sansone, A., Donnarumma, G., Valenti, P., and Rotilio, G. (2001) A histidine-rich metal binding domain at the N terminus of Cu/Zn-superoxide dismutases from pathogenic bacteria: a novel strategy for metal chaperoning. *J. Biol. Chem.* **276**, 30315–30325

Received for publication February 6, 2015. Accepted for publication May 18, 2015.