Research Article

Yan-Kui Song*

Absolutely strongly star-Hurewicz spaces

Abstract: A space X is absolutely strongly star-Hurewicz if for each sequence $(U_n : n \in \mathbb{N})$ of open covers of X and each dense subset D of X, there exists a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of D such that for each $x \in X$, $x \in \text{St}(F_n, U_n)$ for all but finitely many n. In this paper, we investigate the relationships between absolutely strongly star-Hurewicz spaces and related spaces, and also study topological properties of absolutely strongly star-Hurewicz spaces.

Keywords: Selection principles, Starcompact, acc, Strongly star-Menger, Absolutely strongly star-Menger, Strongly star-Hurewicz, Absolutely strongly star-Hurewicz, Alexandroff duplicate

MSC: 54D20, 54C10

DOI 10.1515/math-2015-0004

Received November 2, 2013; accepted July 13, 2014.

1 Introduction

By a space we mean a topological space. Let us recall that a space X is countably compact if every countable open cover of X has a finite subcover. Fleischman [9] defined a space X to be starcompact if for every open cover U of X, there exists a finite subset F of X such that $\text{St}(F, U) = X$, where $\text{St}(F, U) = \bigcup\{U \in U : U \cap F \neq \emptyset\}$. He proved that every countably compact space is starcompact. van Douwen et al. in [6] showed that every T_2 starcompact space is countably compact, but this does not hold for T_1-spaces (see [15, Example 2.5]). Matveev [14] defined a space X to be absolutely countably compact (=acc) if for each open cover U of X and each dense subset D of X, there exists a finite subset F of D such that $\text{St}(F, U) = X$. It is clear that every T_2 absolutely countably compact space is countably compact.

In [6], a starcompact space is called strongly starcompact.

Kočinac [11, 12] defined a space X to be strongly star-Menger if for each sequence $(U_n : n \in \mathbb{N})$ of open covers of X, there exists a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of X such that $\{\text{St}(F_n, U_n) : n \in \mathbb{N}\}$ is an open cover of X.

Bonanzinga et al. in [2] (see also [3]) defined a space X to be strongly star-Hurewicz if for each sequence $(U_n : n \in \mathbb{N})$ of open covers of X, there exists a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of X such that for each $x \in X$, $x \in \text{St}(F_n, U_n)$ for all but finitely many n. It is clear that every strongly star-Hurewicz space is strongly star-Menger.

Caserta, Di Maio and Kočinac [5] gave the selective version of the notion of acc spaces and introduced the classes of the following spaces (as special cases of a more general definition).

Definition 1.1 ([5]). A space X is said to be absolutely strongly star-Menger if for each sequence $(U_n : n \in \mathbb{N})$ of open covers of X and each dense subset D of X, there exists a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of D such that $\{\text{St}(F_n, U_n) : n \in \mathbb{N}\}$ is an open cover of X.
Definition 1.2 ([5]). A space X is said to be absolutely strongly star-Hurewicz if for each sequence $(U_n : n \in \mathbb{N})$ of open covers of X and each dense subset D of X, there exists a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of D such that for each $x \in X$, $x \in \text{St}(F_n, U_n)$ for all but finitely many n.

From the above definitions, we have the following diagram.

\[
\begin{array}{ccc}
\text{acc} & \downarrow & \\
\text{absolutely strongly star-Hure} & \longrightarrow & \text{absolutely strongly Meng}
\end{array}
\]

\[
\begin{array}{ccc}
\text{starcompact} & \longrightarrow & \text{strongly star-Hure} \\
\downarrow & & \downarrow \\
\text{strongly star-Meng}
\end{array}
\]

The purpose of this paper is to investigate the relationships between absolutely strongly star-Hurewicz spaces and related spaces, and study topological properties of absolutely strongly star-Hurewicz spaces.

Throughout this paper, the *extent* $e(X)$ of a space X is the smallest cardinal number κ such that the cardinality of every discrete closed subset of X is not greater than κ. Let ω denote the first infinite cardinal, ω_1 the first uncountable cardinal, κ the cardinality of the set of real numbers. For each ordinals α, β with $\alpha < \beta$, we write $[\alpha, \beta) = \{\gamma : \alpha \leq \gamma < \beta\}$, $[\alpha, \beta] = \{\gamma : \alpha \leq \gamma \leq \beta\}$ and $[\alpha, \beta) = \{\gamma : \alpha < \gamma \leq \beta\}$. As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often viewed as a space with the usual order topology. Other terms and symbols that we do not define follow [8].

2 On absolutely strongly star-Hurewicz spaces

In this section, first we give some examples showing relationships between absolutely strongly star-Hurewicz spaces and related spaces. The results and examples extend and improve some results from [16].

Example 2.1. There exists a Tychonoff absolutely strongly star-Hurewicz space X which is not acc.

Proof. Let $X = ([0, \omega] \times [0, \omega]) \setminus \{(0, \omega)\}$ be the subspace of the product space $[0, \omega] \times [0, \omega]$. Clearly, X is a Tychonoff space. But it is not countably compact, since $\{(\omega, n) : n \in \omega\}$ is a countable discrete closed subset of X. Hence X is not acc.

Now we show that X is absolutely strongly star-Hurewicz. To this end, let $\{U_n : n \in \mathbb{N}\}$ be a sequence of open covers of X. Let

$$D = [0, \omega) \times [0, \omega).$$

Then D is a dense subspace of X and every dense subset of X includes D, since every point of D is isolated. Thus it suffices to show that there exists a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of D such that for each $x \in X$, $x \in \text{St}(F_n, U_n)$ for all but finitely many n. For each $n \in \mathbb{N}$, let

$$K_n = ([0, \omega] \times [0, n-1]) \cup ([0, n-1] \times [0, \omega]).$$

Then K_n is the union of finitely many compact subsets. For each $n \in \mathbb{N}$, we can find a finite subset F_n of D such that $K_n \subseteq \text{St}(F_n, U_n)$. Thus the sequence $(F_n : n \in \mathbb{N})$ witnesses for $(U_n : n \in \mathbb{N})$ that X is absolutely strongly star-Hurewicz. In fact, $\bigcup_{n \in \mathbb{N}} K_n = X$. For any $x \in X$, there exists $n_0 \in \mathbb{N}$ such that $x \in K_{n_0}$, thus $x \in \text{St}(F_n, U_n)$ for each $n > n_0$, which shows that X is absolutely strongly star-Hurewicz.

Example 2.2. There exists a Tychonoff countably compact (hence strongly star-Hurewicz) space X which is not absolutely strongly star-Hurewicz.
Proof. Let \(X = [0, \omega_1) \times [0, \omega_1) \) be the product space of \([0, \omega_1) \) and \([0, \omega_1) \). Clearly, \(X \) is countably compact, hence strongly star-Hurewicz.

We show that \(X \) is not absolutely strongly star-Hurewicz. For each \(\alpha < \omega_1 \), let

\[
U_\alpha = [0, \alpha) \times (\alpha, \omega_1] \quad \text{and} \quad D = [0, \omega_1) \times [0, \omega_1),
\]

For each \(n \in \mathbb{N} \), let

\[
U_n = \{ U_\alpha : \alpha < \omega_1 \} \cup \{ D \}.
\]

Let us consider the sequence \((U_n : n \in \mathbb{N}) \) of open covers of \(X \) and the dense subset \(D \) of \(X \). Let \((F_n : n \in \mathbb{N}) \) be any sequence of finite subsets of \(D \). We only show that there exists a point \(x \in X \) such that \(x \notin St(F_n, U_n) \) for all \(n \in \mathbb{N} \). For each \(n \in \mathbb{N} \), let \(\alpha_n = \sup \{ \alpha : \alpha \in \pi(F_n) \} \), where \(\pi : [0, \omega_1) \times [0, \omega_1) \rightarrow [0, \omega_1) \) is the projection. Then \(\alpha_n < \omega_1 \), since \(F_n \) is finite. Let \(\beta = \sup \{ \alpha_n : n \in \mathbb{N} \} \). Then \(\beta < \omega_1 \). If we pick \(\alpha' > \beta \), then \(\langle \alpha', \omega_1 \rangle \notin St(F_n, U_n) \) for all \(n \in \mathbb{N} \), since, for every \(U_\beta \in U_n \), if \(\langle \alpha', \omega_1 \rangle \in U_\beta \), then \(\beta > \alpha' \); for each \(\beta > \alpha' \), \(U_\beta \cap F_n = \emptyset \), which shows that \(X \) is not absolutely strongly star-Hurewicz.

Next we give an example of a Tychonoff absolutely strongly star-Menger space which is not absolutely strongly star-Hurewicz by using the following result from [4]. Recall that a family of sets is almost disjoint (a.d., for short) if the intersection of any two distinct elements of the family is finite. Let \(\mathcal{A} \) be an a.d. family of infinite subsets of \(\omega \). Put \(\Psi(\mathcal{A}) = \mathcal{A} \cup \omega \) and topologize \(\Psi(\mathcal{A}) \) as follows: the points of \(\omega \) are isolated and a basic neighborhood of a point \(a \in \mathcal{A} \) takes the form \(\{ a \} \cup (a \setminus F) \), where \(F \) is a finite set of \(\omega \). \(\Psi(\mathcal{A}) \) is called a \(\mathcal{A} \)-space (see [8, 10]). It is well known that \(\mathcal{A} \) is a maximal almost disjoint family (m.a.d. family, for short) iff \(\Psi(\mathcal{A}) \) is pseudocompact.

We make use of two of the cardinals defined in [7]. Define \(\omega_1^\omega_0 \omega \) as the set of all functions from \(\omega \) to itself. For all \(f, g \in \omega_1^\omega_0 \omega \), we say \(f \preceq^* g \) if and only if \(f(n) \leq g(n) \) for all but finitely many \(n \). The unbounding number, denoted by \(b \), is the smallest cardinality of an unbounded subset of \((\omega_1^\omega_0 \omega, \preceq^*) \). The dominating number, denoted by \(d \), is the smallest cardinality of a cofinal subset of \((\omega_1^\omega_0 \omega, \preceq^*) \). It is not difficult to show that \(\omega_1 \leq b \leq d \leq \omega \) and it is known that \(\omega_1 < b = c \), \(\omega_1 < d = c \) and \(\omega_1 \leq b < d = \omega \) are all consistent with the axioms of ZFC (see [7] for details).

Lemma 2.3 ([4, Proposition 2]). The following conditions are equivalent:

1. \(\Psi(\mathcal{A}) \) is strongly star-Menger;
2. \(|\mathcal{A}| < d \).

Remark 2.4. From the proof of Proposition 2 in [4], it is not difficult to see that the above conditions are equivalent to (3) \(\Psi(\mathcal{A}) \) is absolutely strongly star-Menger.

Lemma 2.5 ([4, Proposition 3]). The following conditions are equivalent:

1. \(\Psi(\mathcal{A}) \) is strongly star-Hurewicz;
2. \(|\mathcal{A}| < b \).

Remark 2.6. From the proof of Proposition 3 in [4], it is not difficult to see that the above conditions are equivalent to (3) \(\Psi(\mathcal{A}) \) is absolutely strongly star-Hurewicz.

Example 2.7. There exists a Tychonoff absolutely strongly star-Menger space \(X \) which is not absolutely strongly star-Hurewicz.

Proof. Let \(X = \Psi(\mathcal{A}) = \omega \cup \mathcal{A} \) be the Isbell-Mrówka space, where \(\mathcal{A} \) is the almost disjoint family of infinite subsets of \(\omega \) with \(|\mathcal{A}| = b \). Then \(X \) is absolutely strongly star-Menger by Lemma 2.3 and Remark 2.4 above. However \(X \) is not absolutely strongly star-Hurewicz by Lemma 2.5 and Remark 2.6 above. Thus we complete the proof.

Remark 2.8. Assuming \(\omega_1 < b = c \), the space \(X = \Psi(\mathcal{A}) \) with \(|\mathcal{A}| = \omega_1 \) is absolutely strongly star-Hurewicz by Lemma 2.5 and Remark 2.6 above. This space shows that there exists a Tychonoff absolutely strongly star-Hurewicz space \(X \) such that \(\epsilon(X) = \omega_1 \), since \(\mathcal{A} \) is a discrete closed subset of \(X \) with \(|\mathcal{A}| = \omega_1 \). However the author does not know if there exists an example in ZFC showing that there exists a Tychonoff absolutely strongly star-Hurewicz space \(X \) such that \(\epsilon(X) \geq c \). Quite recently, M. Sakai proved that the answer to this question in negative.
In the following, we study topological properties of absolutely strongly star-Hurewicz spaces. Assuming $\omega_1 < b = c$, the space $X = \Psi(A)$ with $|A| = \omega_1$ is absolutely strongly star-Hurewicz. This space shows that a closed subspace of a Tychonoff absolutely strongly star-Hurewicz space X need not be absolutely strongly star-Hurewicz, since A is a discrete closed subset of X with $|A| = \omega_1$. Next we give a stronger example.

Example 2.9. There exists a Tychonoff absolutely strongly star-Hurewicz space having a regular-closed G_δ-subspace which is not absolutely strongly star-Hurewicz.

Proof. Let $S_1 = [0, \omega_1) \times [0, \omega_1]$ be the product of $[0, \omega_1)$ and $[0, \omega]$. Since $[0, \omega_1)$ is acc by Theorem 1.8 in [14], then S_1 is acc by Theorem 2.3 in [14], hence S_1 is absolutely strongly star-Hurewicz.

Let $S_2 = [0, \omega_1) \times [0, \omega_1]$ be the space X of Example 2.2. Then S_2 is not absolutely strongly star-Hurewicz.

Let $\pi : [0, \omega_1) \times \{ \omega \} \to [0, \omega_1) \times \{ \omega_1 \}$ be a map defined by $\pi((\alpha, \omega)) = (\alpha, \omega_1)$ for each $\alpha \in \omega_1$, and let X be the quotient image of the disjoint sum $S_1 \oplus S_2$ by identifying (α, ω) of S_1 with $\pi((\alpha, \omega))$ of S_2 for every $\alpha < \omega_1$.

Let $\varphi : S_1 \oplus S_2 \to X$ be the quotient map. Then $\varphi(S_2)$ is a regular-closed subspace of X. For each $n \in \omega$, let

$$U_n = \varphi([0, \omega_1) \times [0, \omega_1]) \cup ([0, \omega_1) \times (n, \omega_1)).$$

Then U_n is open in X and $\varphi(S_2) = \bigcap_{n \in \omega} U_n$. Thus $\varphi(S_2)$ is a regular-closed G_δ-subspace of X. However $\varphi(S_2)$ is not absolutely strongly star-Hurewicz, since it is homeomorphic to S_2.

To show that X is absolutely strongly star-Hurewicz, we show that X is acc, since every acc space is absolutely strongly star-Hurewicz. To this end, let U be an open cover of X. Let S be the set of all isolated points of $[0, \omega_1)$ and let

$$D = \varphi((S \times [0, \omega)) \cup (S \times S)).$$

Then D is a dense subset of X and every dense subset of X includes D. Thus it is sufficient to show that there exists a finite subset F of D such that $St(F, U) = X$. Since $\varphi(S_1)$ is homeomorphic to S_1 and consequently $\varphi(S_1)$ is acc, there exists a finite subset F_1 of $\varphi((S \times [0, \omega))$ such that

$$\varphi(S_1) \subseteq St(F_1, U).$$

On the other hand, since $[0, \omega_1) \times [0, \omega_1)$ is countably compact and thus it is acc by Theorem 1.2 in [1]. Hence $\varphi([0, \omega_1) \times [0, \omega_1))$ is acc, since $\varphi([0, \omega_1) \times [0, \omega_1))$ is homeomorphic to $[0, \omega_1) \times [0, \omega_1)$. Thus there exists a finite subset F_2 of $\varphi(S \times S)$ such that

$$\varphi([0, \omega_1) \times [0, \omega_1)) \subseteq St(F_2, U).$$

If we put $F = F_1 \cup F_2$. Then F is a finite subset of D such that $St(F, U) = X$, which shows that X is acc, and thus absolutely strongly star-Hurewicz.

Recall the Alexandorff duplicate $A(X)$ of a space X. The underlying set $A(X)$ is $X \times \{0, 1\}$; each point of $X \times \{1\}$ is isolated and a basic neighborhood of $(x, 0) \in X \times \{0\}$ is a set of the form $(U \times \{0\}) \cup ((U \times \{1\}) \setminus \{(x, 1)\})$, where U is a neighborhood of x in X. It is well known that a T_2 space X is countably compact iff $A(X)$ is acc (see [17, 18]). In the following, we give two examples to show that the result can not be generalized to the absolutely strongly star-Hurewicz.

Example 2.10. Assuming $\omega_1 < b = c$, there exists a Tychonoff absolutely strongly star-Hurewicz space X such that $A(X)$ is not absolutely strongly star-Hurewicz.

Proof. Assuming $\omega_1 < b = c$, let $X = \omega \cup A$ be the Isbell-Mrówka space with $|A| = \omega_1$. Then X is absolutely strongly star-Hurewicz by Lemma 2.5 and Remark 2.6. However $A(X)$ is not absolutely strongly star-Hurewicz. In fact, the set $A \times \{1\}$ is an open and closed subset of $A(X)$ with $|A \times \{1\}| = \omega_1$, and for each $a \in A$, the point $(a, 1)$ is isolated in $A(X)$. Hence $A(X)$ is not absolutely strongly star-Hurewicz, since every open and closed subset of an absolutely strongly star-Hurewicz space is absolutely strongly star-Hurewicz, and $A \times \{1\}$ is not absolutely strongly star-Hurewicz.
Example 2.11. There exists a Tychonoff strongly star-Hurewicz space X such that X is not absolutely strongly star-Hurewicz, but $A(X)$ is absolutely strongly star-Hurewicz.

Proof. Let $X = [0, \omega_1] \times [0, \omega_1]$ be the space X of Example 2.2. Then X is not absolutely strongly star-Hurewicz. But X is strongly star-Hurewicz being starcompact. Since X is countably compact, then $A(X)$ is acc (see [17, 18]), hence $A(X)$ is absolutely strongly star-Hurewicz. Thus we complete the proof.

Theorem 2.12. If X is a T_1-space and $A(X)$ is an absolutely star-Hurewicz space, then $e(X) < \omega_1$.

Proof. Suppose that $e(X) \geq \omega_1$. Then there exists a discrete closed subset B of X such that $|B| \geq \omega_1$. Hence $B \times \{1\}$ is an open and closed subset of $A(X)$ and every point of $B \times \{1\}$ is an isolated point. Thus $A(X)$ is not absolutely strongly star-Hurewicz, since every open and closed subset of an absolutely strongly star-Hurewicz space is absolutely star-Hurewicz and $B \times \{1\}$ is not absolutely strongly star-Hurewicz.

Question 1. Is the space $A(X)$ of an absolutely star-Hurewicz space X with $e(X) < \omega_1$ also absolutely star-Hurewicz?

The following example shows that the continuous image of an absolutely strongly star-Hurewicz space need not be absolutely strongly star-Hurewicz.

Example 2.13. There exists a continuous mapping $f : X \to Y$ such that X is absolutely strongly star-Hurewicz, but Y is not absolutely strongly star-Hurewicz.

Proof. We have already noticed that the space $[0, \omega_1] \times [0, \omega_1]$ is acc. The space $X = ([0, \omega_1] \times [0, \omega_1]) \oplus [0, \omega_1]$ is acc as the discrete sum of two acc spaces. Hence X is absolutely strongly star-Hurewicz.

Let $Y = [0, \omega_1] \times [0, \omega_1]$ be the space X of Example 2.2. Then Y is not absolutely strongly star-Hurewicz.

Let $f : X \to Y$ be a mapping defined by

$$f((\alpha, \beta)) = (\alpha, \beta)$$

for each $(\alpha, \beta) \in [0, \omega_1] \times [0, \omega_1)$

and

$$f(\alpha) = (\alpha, \omega_1)$$

for each $\alpha \in [0, \omega_1)$.

Then f is a continuous one-to-one mapping, which completes the proof.

Recall from [13] or [14] that a continuous mapping $f : X \to Y$ is varpseudoopen provided $\text{int}_Y f(U) \neq \emptyset$ for every nonempty open set U of X. In [14], it was proved that a continuous varpseudoopen image of an acc space is acc. Similarly, we may show the following result.

Theorem 2.14. A continuous varpseudoopen image of an absolutely strongly star-Hurewicz space is absolutely strongly star-Hurewicz.

Proof. Suppose that X is an absolutely strongly star-Hurewicz space and $f : X \to Y$ is a continuous varpseudoopen onto map. Let $(U_n : n \in \mathbb{N})$ be a sequence of open covers of Y and D a dense subset of Y. For each $n \in \mathbb{N}$, let $V_n = \{f^{-1}(U) : U \in U_n\}$. Then $(V_n : n \in \mathbb{N})$ is a sequence of open covers of X, and $f^{-1}(D)$ a dense subset of X, since f is varpseudoopen. Hence there exists a sequence $(E_n : n \in \mathbb{N})$ of finite subsets of $f^{-1}(D)$ such that for each $x \in X$, $x \in \text{St}(E_n, V_n)$ for all but finitely many n. For each $n \in \mathbb{N}$, let $F_n = f(E_n)$. Then $(F_n : n \in \mathbb{N})$ is a sequence of finite subsets of D such that for each $y \in Y$, $y \in \text{St}(F_n, U_n)$ for all but finitely many n, which shows that Y is absolutely strongly star-Hurewicz.

Question 2. Find an inner characterization of those spaces X for which $f(X)$ is absolutely strongly star-Hurewicz for each continuous mapping f.

Since an open map is varpseudoopen, we have the following result by Theorem 2.14.
Theorem 2.15. Let X and Y be two spaces. If $X \times Y$ is absolutely strongly star-Hurewicz, then X and Y are absolutely strongly star-Hurewicz.

The following remark shows that the converse of Theorem 2.15 need not be true even if the product of an absolutely strongly star-Hurewicz space and a compact space.

Remark 2.16. The product of an absolutely strongly star-Hurewicz space and a compact space need not be absolutely strongly star-Hurewicz. In fact, the space $X = [0, \omega_1] \times [0, \omega_1]$ of Example 2.2 is not absolutely strongly star-Hurewicz. The first factor is acc by [14, Theorem 1.8], hence it is absolutely strongly star-Hurewicz, and the second is compact. Matveev showed that the product of a T_2 acc space with a first countable compact space is acc (see [14, Theorem 2.3]). However, the author does not know if the product of an absolutely strongly star-Hurewicz space and a first countable compact space is absolutely strongly star-Hurewicz.

Next we turn to consider preimages. We show that the preimage of an absolutely strongly star-Hurewicz space under a closed 2-to-1 continuous map need not be absolutely strongly star-Hurewicz.

Example 2.17. Assuming $\omega_1 < b = c$, there exists a closed 2-to-1 continuous map $f : X \to Y$ such that Y is an absolutely strongly star-Hurewicz space, but X is not absolutely strongly star-Hurewicz.

Proof. Let $Y = \Psi(A) = \omega \cup A$ be the space X of Example 2.10. Then Y is absolutely strongly star-Hurewicz.

Let X be the space $A(Y)$ of Example 2.10. Then X is not absolutely strongly star-Hurewicz.

Let $f : X \to Y$ be the projection. Then f is a closed 2-to-1 continuous map, which completes the proof.

Remark 2.18. The space $[0, \omega_1] \times [0, \omega_1]$ in Remark 2.16 also shows that the preimage of an absolutely strongly star-Hurewicz space under an open perfect map need not be absolutely strongly star-Hurewicz.

Acknowledgement: The author would like to thank Prof. R.Li for his kind help and valuable suggestions. He would like to thank the referee for his careful reading of the paper and a number of valuable suggestions which led to improvements on several places.

The author acknowledges the support from the National Natural Science Foundation (grant 112710-36) of China. A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

[1] Bonanzinga M., Preservation and reflection of properties acc and hacc, Comment. Math. Univ. Carolinae., 1996, 37(1), 147–153
[2] Bonanzinga M., Cammaroto F., Kočinac Lj.D.R., Star-Hurewicz and related spaces, Applied General Topology., 2004, 5, 79–89
[3] Bonanzinga M., Cammaroto F., Kočinac Lj.D.R., Matveev M.V., On weaker forms of Menger, Rothberger and Hurewicz properties, Mat. Vesnik., 2009, 61, 13–23
[4] Bonanzinga M., Matveev M.V., Some covering properties for Ψ-spaces, Mat. Vesnik., 2009, 61, 3–11
[5] Caserta A., Maio G. Di., Kočinac Lj.D.R., Versions of properties (a) and (pp), Topology Appl., 2011, 158, 1630–1638
[6] van Douwen E.K., Reed G.K., Roscoe A.W., Tree I.J., Star covering properties, Topology Appl., 1991, 39, 71–103
[7] van Douwen E.K., The integers and topology, in: Handbook of Set-theoretic Topology, Ed: K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984, 111–167
[8] Engelking E., General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989,
[9] Fleischman W.M., A new extension of countable compactness, Fund. Math., 1971, 67, 1–7
[10] Gillman L., Jerison M., Rings of Continuous Functions, Van Nostrand, New York, 1960
[11] Kočinac Lj.D.R., Star-Menger and related spaces, Publ. Math. Debrecen., 1999, 55, 421–431
[12] Kočinac Lj.D.R., Star-Menger and related spaces II, Filomat (Niš), 1999, 13, 129–140
[13] Matveev M.V., A survey on star-covering properties, Topology Atlas, preprint No 330, 1998
[14] Matveev M.V., Absolutely countably compact spaces, Topology Appl., 1994, 59, 61–92
[15] Song Y.-K., On countable star-covering properties, Applied General Topology., 2007, 8(2), 249–258
[16] Song Y.-K., Absolutely strongly star-Menger spaces, Topology Appl., 2013, 160, 475–481
[17] Shi W.-X., Song Y.-K., Gao Y.-Z., Spaces embeddable as regular closed subsets into acc spaces and (a)-spaces, Topology Appl., 2005, 150, 19–31

[18] Vaughan J.E., Absolutely countably compactness and property (a), Talk at 1996 Praha Symposium on General Topology