Case Report

Clinical Features of Miller-Fisher Syndrome in Pregnancy

Masanori Ono, 1 Hideki Sato, 2 Mayu Shirahashi, 1 Noriko Tomioka, 1 Julia Maeda, 1 Keiko Watanabe, 1 Tomoko Amagata, 1 Toshiyuki Ikeda, 1 Kazumi Yakubo, 1 and Tatsuro Fukuiya 1

1 Department of Obstetrics and Gynecology, Saitama City Hospital, Midori, Saitama 336-8522, Japan
2 Department of Neurology, Saitama City Hospital, Midori, Saitama 336-8522, Japan

Correspondence should be addressed to Masanori Ono; masaoriono@gmail.com

Received 26 August 2015; Accepted 19 October 2015

Academic Editor: Mehmet A. Ospanaoglu

Copyright © 2015 Masanori Ono et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Miller-Fisher syndrome (MFS) is recognized as a variant of Guillain-Barré syndrome (GBS). MFS is a rare disorder that is characterized by the acute onset of ophthalmoplegia, ataxia, and areflexia/hyporeflexia. The worldwide incidence of GBS is estimated at 1-2/100,000, and MFS represents a small fraction of that total. MFS has a higher incidence in Asia, where the incidence is estimated to be 18%-26% of GBS compared with 3%-5% in the West [1, 3-5]. The differential diagnosis of MFS includes Wernicke's encephalopathy (WE) which is characterized by a clinical triad (nystagmus and ophthalmoplegia, mental status changes, and ataxia), myasthenia gravis, and brainstem stroke. The association between MFS and pregnancy has not been reported previously. Here, we describe the clinical features of a pregnant woman in early pregnancy with MFS. This case highlights the fact that it is necessary to establish an accurate diagnosis based on the details from the patient's history on appropriate complementary testing in a pregnant patient with MFS.

1. Introduction

Miller-Fisher syndrome (MFS) came to be recognized as a variant of Guillain-Barré syndrome (GBS) nearly 60 years ago [1]. MFS is a rare disorder that is characterized by the acute onset of ophthalmoplegia, ataxia, and areflexia/hyporeflexia [2]. The worldwide incidence of GBS is estimated at 1-2/100,000, and MFS represents a small fraction of that total. MFS has a higher incidence in Asia, where the incidence is estimated to be 18%-26% of GBS compared with 3%-5% in the West [1, 3-5]. The differential diagnosis of MFS includes Wernicke's encephalopathy (WE) which is characterized by a clinical triad (nystagmus and ophthalmoplegia, mental status changes, and ataxia), myasthenia gravis, and brainstem stroke [6]. WE can complicate hyperemesis gravidarum because of the hypermetabolic state of pregnancy, increased fetal demand, and poor intake due to nausea and vomiting [7]. The association between MFS and pregnancy has not been reported previously. The present report describes the clinical features of a pregnant woman in early pregnancy with MFS, in whom WE was ruled out.

2. Case Report

A 26-year-old woman at 11 weeks of gestation presented to the emergency department for evaluation of severe nausea, dizziness, and double vision. The physician who evaluated her in the emergency room referred her to our department with a tentative diagnosis of WE based on the early gestation, nausea, and dizziness. She had hyperemesis gravidarum since 6 weeks of gestation. She first noted double vision 4 days prior to the emergency room visit. On questioning, she admitted that the gait difficulties secondary to dizziness worsened slightly each day. Her double vision was now continuous, and objects appeared skewed. She reported that she was nauseated and found it difficult to tolerate the double vision. She reported no definite weakness but had considerable difficulty walking without assistance. She reported no paresthesias or sensory loss in her limbs, trunk, or face. She had an unremarkable medical history and she had not been hospitalized. Her family history was significant for maternal IgA nephropathy. The obstetric examination at the time of admission revealed an 11-week gestation and
Case Reports in Obstetrics and Gynecology

3. Discussion

Classic MFS is defined by the acute onset of ophthalmoparesis, ataxia, and areflexia/hyporeflexia [1, 2]. The features of MFS may also be present with signs and symptoms indicative of more widespread neuropathy. Antibodies directed against the GQ1b ganglioside are often present in patients with classic MFS [8–10]. Ophthalmoparesis is an early finding, often leading to diplopia, which is a frequent presenting symptom in patients with MFS. The presence of ophthalmoparesis in MFS is highly associated with the presence of antibodies to GQ1b ganglioside. Nishimoto et al. reported that antibody testing to GQ1b ganglioside was superior to a cerebrospinal fluid examination in supporting a diagnosis of MFS during the first 3 weeks of illness [9]. Pupillary abnormalities, indicative of internal ophthalmoparesis, are common in MFS. Findings may include pupillary asymmetry and sluggish reactivity to light [11].

The ataxia in MFS is often very severe. Patients are unable to ambulate independently, despite normal strength. Ataxia is occasionally seen in isolation and, similar to isolated ophthalmoparesis, is associated with antibodies to GQ1b ganglioside [12]. There is evidence of both central and peripheral mechanisms of ataxia in MFS. Proprioception is severely impaired, and muscle spindle afferent fibers appear to be particularly involved [13]. MFS is not typically associated with any abnormalities on brain imaging. Many patients with MFS do undergo brain imaging, particularly if the triad of symptoms is not fully present, and the vast majority have normal brain MRI studies [14]. In contrast, MRI studies in our patient are thought to be critical in making a differential diagnosis for WE. Typical MRI of WE usually shows symmetric T2 signal intensity alterations in the medial thalami, mamillary bodies, tectal plate, and the periaqueductal area [15].

Electrodiagnostic studies (nerve conduction studies and EMG), which play a large role in confirming the diagnosis of AIDP and other forms of GBS, have a more limited role in MFS. In patients with MFS, routine studies may be normal. Mild abnormalities in sensory nerve conduction studies often occur. Electrodiagnostic studies in our patient revealed normal findings.

There is growing recognition that antibodies directed against gangliosides play a significant role in the pathogenesis of many acute autoimmune neuropathies. This is particularly true of MFS. Approximately 80%–90% of MFS patients have antibodies against GQ1b [16]. Our patient had highly elevated anti-GQ1b antibodies in serum; this result distinguished MFS and WE in our patient with an early pregnancy.

This case highlights the fact that it is necessary to establish an accurate diagnosis based on the details from the patient's history on appropriate complementary testing in a pregnant patient with MFS.

Conflict of Interests

The authors have no conflict of interests and received no financial support for this work.

Acknowledgment

The authors would like to thank Dr. Susumu Kusunoki for technical assistance.
References

[1] M. Fisher, "An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia)," *The New England Journal of Medicine*, vol. 255, no. 2, pp. 57–65, 1956.

[2] B. R. Wakerley, A. Uncini, and N. Yuki, "Guillain-Barré and Miller Fisher syndromes—new diagnostic classification," *Nature Reviews Neurology*, vol. 10, no. 9, pp. 537–544, 2014.

[3] G. Bogliun and E. Beghi, "Incidence and clinical features of acute inflammatory polyradiculoneuropathy in Lombardy, Italy, 1996," *Acta Neurologica Scandinavica*, vol. 110, no. 2, pp. 100–106, 2004.

[4] C.-L. Yuan, Y.-J. Wang, and C.-P. Tsai, "Miller Fisher syndrome: a hospital-based retrospective study," *European Neurology*, vol. 44, no. 2, pp. 79–85, 2000.

[5] Y. Mitsui, S. Kusunoki, K. Arimura et al., "A multicentre prospective study of Guillain-Barré Syndrome in Japan: a focus on the incidence of subtypes," *Journal of Neurology, Neurosurgery and Psychiatry*, vol. 86, no. 1, pp. 110–114, 2015.

[6] B. R. Wakerley and N. Yuki, "Mimics and chameleons in Guillain-Barre and Miller Fisher syndromes," *Practical Neurology*, vol. 15, no. 2, pp. 90–99, 2015.

[7] S. K. Ismail and L. Kenny, "Review on hyperemesis gravidarum," *Best Practice and Research in Clinical Gastroenterology*, vol. 21, no. 5, pp. 755–769, 2007.

[8] N. Yuki, K. Susuki, and K. Hirata, "Ataxic Guillain-Barre syndrome with anti-GQ1b antibody: relation to Miller Fisher syndrome," *Neurology*, vol. 54, no. 9, pp. 1851–1853, 2000.

[9] Y. Nishimoto, M. Odaka, K. Hirata, and N. Yuki, "Usefulness of anti-GQ1b IgG antibody testing in Fisher syndrome compared with cerebrospinal fluid examination," *Journal of Neuroimmunology*, vol. 148, no. 1-2, pp. 200–205, 2004.

[10] N. Yuki and H.-P. Hartung, "Guillain-Barré syndrome," *The New England Journal of Medicine*, vol. 366, no. 24, pp. 2294–2304, 2012.

[11] A. Sugita, T. Yanagisawa, T. Kamo, Y. Takahashi, and N. Yuki, "Internal ophthalmoplegia with anti-GQ1b IgG antibody," *Journal of Neurology*, vol. 249, no. 10, pp. 1475–1476, 2002.

[12] M. Odaka, N. Yuki, and K. Hirata, "Anti-GQ1b IgG antibody syndrome: clinical and immunological range," *Journal of Neurology Neurosurgery and Psychiatry*, vol. 70, no. 1, pp. 50–55, 2001.

[13] J. A. Weiss and J. C. White, "Correlation of IA afferent conduction with the ataxia of Fisher syndrome," *Muscle & Nerve*, vol. 9, no. 4, pp. 327–332, 1986.

[14] C. A. Garcia-Rivera, T. D. Rozen, D. Zhou et al., "Miller Fisher syndrome: MRI findings," *Neurology*, vol. 57, no. 10, p. 1755, 2001.

[15] G. Zuccoli, M. Gallucci, J. Capellades et al., "Wernicke encephalopathy. MR findings at clinical presentation in twenty-six alcoholic and nonalcoholic patients," *American Journal of Neuroradiology*, vol. 28, no. 7, pp. 1328–1331, 2007.

[16] M. Morì, S. Kuwabara, T. Fukutake, N. Yuki, and T. Hattori, "Clinical features and prognosis of Miller Fisher syndrome," *Neurology*, vol. 56, no. 8, pp. 1104–1106, 2001.
