Schistosomiasis: Life Cycle, Diagnosis, and Control

Martin L. Nelwan, PhD*

Department of Animal Science, Nelwan Institution for Human Resource Development, Palu, Indonesia

ABSTRACT

Background: Human schistosomiasis is a parasitic disease caused by blood-worms that infect multiple organs, including the liver, intestine, bladder, and urethra. This disease may be eliminated with Praziquantel, vaccines, and gene therapy.

Aims: In this review, the author describes the progress in a study of schistosomiasis that focused on the life cycle, diagnosis, and control.

Methodology: The author searched the PubMed Database at NCBI for articles on schistosomiasis published between 2014 and 2018. All articles were open access and in English.

Results: The life cycle of this parasites involve two hosts: snails and mammals. Manifestations of schistosomiasis can be acute or chronic. Clinical manifestations of acute schistosomiasis can include fever and headache. Symptoms of chronic infections can include dysuria and hyperplasia. Infection can occur in several sites including the bile ducts, intestine, and bladder. The different sites of infection and symptoms seen are related to which of the species involved. Five species can infect humans. The three most common are S. haematobium, S. japonicum, and S. mansoni. Detection tools for people with schistosomiasis can include the Kato-Katz and PCR. Praziquantel is present only the effective treatment of this disease. In the future, vaccination or gene therapy may be used.

Conclusion: Kato-Katz and PCR are tools for detecting schistosomiasis on humans. Praziquantel, diagnosis, vaccines, and gene therapy are useful methods for eliminating schistosomiasis.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.

ARTICLE INFO

Article history:
Received 7 November 2018
Accepted 6 June 2019

Key words:
Praziquantel
Schistosome
Schistosomula
Schistosomiasis

Background

Schistosomiasis is caused by infection with blood flukes of the genus Schistosoma. At least 5 trematode species are known to infect humans. These are S. haematobium, S. intercalatum, S. japonicum, S. mansoni, and S. mekongi. Schistosomiasis infects more than 230 to 250 million people annually and 779 million people are at risk of infection. This disease causes 280,000 deaths annually and a worldwide burden of 3.3 million disability-adjusted life years. Human schistosomiasis is among the most prevalent human parasitic infections. The disease ranks second beneath malaria on the list of parasitic diseases and exists in 75 to 76 countries. Schistosomes exist in many developing countries in Africa, Asia, South America, and several Caribbean islands. Schistosomiasis can also occur in nonendemic areas. It can be spread through water-based development projects and immigration.

Two methods are available to control schistosomiasis: prevention and treatment. Eliminating snail hosts and improving sanitation are important methods to prevent schistosomiasis. To date, vaccines for schistosomiasis are unavailable. In the future, vaccines will have an important role in controlling this disease. Potential vaccines have been available, such as Schistosoma mansoni Chaptesin B1 (SmCB1) and S. japonicum insulin receptor 1 (rSjLD1). Praziquantel is a drug used to treat schistosomiasis at present. Moreover, this disease can also be prevented with snail control and vaccinations. Other drugs and genetic manipulations may also be beneficial.

In this review, the author describes the progress in a study of schistosomiasis that focused on the life cycle, diagnosis, and control. The life cycle of schistosomes includes asexual reproduction in snails and sexual reproduction in mammals, and diagnosis could include Kato-Katz and miracidium hatching test (MHT). Finally, control of schistosomiasis is composed of the development of vaccines and drugs, as well as genetic manipulation techniques.
Adult worms in humans exist in various locations specific to each species. *S. haematobium* exists in the bladder6,14 and ureters, but it can also exist in the rectal venules. *S. japonicum* exists more frequently in the small intestine.9 *S. mansoni* worms can exist in either large or small intestine6,14 and they are able to transfer between those sites.9 Water containing cercariae can cause human schistosomiasis.7,9

Clinical manifestations of schistosomiasis consist of acute (Katayama syndrome) and chronic manifestations. The incubation period of Katayama syndrome is about 14 to 84 days. Katayama syndrome’s symptoms may include fever, headache, myalgia, rash, and respiratory symptoms. For *S. haematobium*, clinical manifestations of the chronic disease can cause dysuria and hematuria. It can also lead to injury of the genital tract and susceptibility to other infections. Chronic infections can cause bladder cancer. Clinical manifestations of the chronic disease are blood in the stool, constipation, and diarrhea. These clinical manifestations occur in patients with *S. japonicum* and *S. mansoni* schistosomiasis. Chronic inflammation also occurs in patients with *S. japonicum* and *S. mansoni* schistosomiasis. It can cause bowel wall ulceration, fibrosis, hyperplasia, polyposis, and portal hypertension.15

Schistosomiasis Transmission

Dam and irrigation projects are potential sites for outbreaks of schistosomiasis. Movements of populations with schistosomiasis, for example from rural to urban areas, can cause the spread of schistosomiasis. Seasonal migrations of employees can also lead to outbreaks of schistosomiasis infections, and refugees can also contribute to the outbreaks of this disease.4

A clean water supply, sanitation, vector control, and health education can interrupt the spread of schistosomiasis.5 Furthermore, Braun et al7 indicated that water treatment could help to reduce schistosomiasis. Five water treatment processes are available: storage, heating, chlorination, filtration, and ultraviolet light. Unfortunately, reliable design guidelines for water treatment to control schistosomiasis do not exist.7 This suggests that research is still required to find an effective water treatment technique.

It is possible to use sanitation and water treatment to help control schistosomiasis. Governments in endemic areas should control schistosomiasis at provincial, district, and national levels. Nonendemic countries should also test and treat people from endemic countries for schistosomiasis in particular.

Diagnosis

Examination of excrement is a key method used to diagnose suspected schistosomiasis infections (Table 1). For examination purposes, several diagnostic techniques are available: the Kato-Katz, miracidium hatching test (MHT), formol-ether concentration technique (FECT), circulating cathodic antigen (CCA), point of care test (POCT), and polymerase chain reaction (PCR)-based technique. Alemu et al2 showed that the FECT is time-consuming and requires several materials. Moreover, the sensitivity and specificity of the FECT are almost similar to the Kato-Katz technique. The Kato-Katz technique is fast, easy to perform, and requires minimal training. This technique has an 87.5% sensitivity rate and 100% specificity rate. For research purposes, Kato-Katz and FECT could be used.3 Traditional methods cannot detect schistosomiasis in low-intensity levels.

MHT, Kato-Katz, and FECT

Many strategies are available to detect schistosomiasis. These include MHT, Kato-Katz, and FECT. MHT involves analyzing the
Table 1
Scistosomiasis, habitat, and diagnosis.

Schistosoma	Habitat	Diagnosis
S. haematobium	Africa, Middle East	Kato-Katz, wet-mount, FECT, POCT, PCR
S. japonicum	East Asia, Southeast Asia	Kato-Katz, MHT, wet-mount, FECT, Schistosoma japonicum thioredoxin peroxidase (SjTPx), PCR
S. mansoni	Africa, South America, Caribbean islands	Kato-Katz, Wet-mount, FECT, POCT, PCR
S. margrebowiei	Africa, Middle East	Kato-Katz, MHT, wet-mount, FECT, POCT, PCR
S. mekongi	Asia, Southeast Asia	Kato-Katz, MHT, wet-mount, FECT, SjTPx, PCR

FECT = formal-ether concentration technique; MHT = miracidium hatching test; PCR = polymerase chain reaction; POCT = point of care test; SjTPx = Schistosoma japonicum thioredoxin peroxidase.

concentration of eggs in stool samples. Samples come in nylon tissue bags and are suspended in distilled water in flasks. The presence of miracidia hatching from ova could be a sign of infection. Flask examination occurs at 4, 6, 8, and 24 hours. Kato-Katz stool sample examinations need 3 slides and use a light microscope. The investigator takes about 42 mg stool sample and places it in a 200 μm Kato-Katz screen mesh. The stool is transferred into a 6 millimeters hole of a template on the microscopic slide. A glycerol-soaked cellophane strip covers the stool. The investigator then examines the stool for schistosome eggs. After that, eggs per gram of stool can be counted. For FECT, stool sample examinations use a centrifuge tool. The preparation contains about 500 mg stool sample. It is combined with 10 mL normal saline. Then, 2.5 mL 10% formaldehyde and 1 mL diethyl ether are added to this preparation. This preparation is placed in gauze within a funnel. The centrifugation was at 1000 g force for 3 minutes. Then, the investigator covers the supernatant with a glass cover to inspect it.

Some techniques are available for detecting schistosomiasis in low-intensity levels. Naush et al. suggested a rapid diagnostic test for the POCT diagnosis of S. haematobium and S. mansoni. POCTs include the CCA test and cercariae transformation fluid (Sm-CTF). The CCA was found to be sensitive for S. mansoni but less so for S. haematobium. A rapid diagnostic test Sm-CTF could detect both anti-S. haematobium and anti-S. mansoni antibodies. Sm-CTF was comparable to schistosome soluble egg antigens in ELISA. This technique was used for the diagnosis and treatment of schistosomiasis in travelers. It was also useful in schistosome-endemic areas. Rapid diagnostic test is more sensitive than Kato-Katz for the diagnosis of S. mansoni infections. CCA is not suitable for Asian schistosomiasis infections. To address this, MacAlanda et al. found the Schistosoma japonicum thioredoxin peroxidase 1 (SjTPx-1) as a technique to detect S. japonicum schistosomiasis. Although this technique is a potential method for detecting S. japonicum infection, the standard methods are the sole necessary tests for diagnosing S. japonicum schistosomiasis.

Xu et al. discovered the Schistosoma japonicum secreted protein 13 (SjSP-13) gene as a diagnostic tool for detecting schistosome infections. All the alleles of the gene were clustered into two clades (Clade A and B). Escherichia coli produced Schistosoma japonicum secreted protein 13.6 (SjSP-13.6) and Schistosoma japonicum secreted protein 13.25 (SjSP-13.25). SjSP-13.6 and SjSP-13.25 represented alleles of Clade A and B. SjSP-13.6 and SjSP-13.25 both had 96.7% specificity. However, they had different sensitivity. The sensitivity of SjSP-13.6 was 90.4% and SjSP-13.25 was 85.2%. Furthermore, the immunogenicity of Clade A was higher. Xu et al. stated that it was not necessary to combine Clade A and B for diagnostics of schistosomiasis.

PCR method

For low-intensity levels, PCR can be beneficial. PCR has sufficient sensitivity and specificity for detection of schistosome eggs in mammals. PCR will be useful for diagnosing schistosomiasis in the future.

Control of Schistosomiasis

S. haematobium exists in Africa (ie, Kenya, Nigeria, and Tanzania) and the Middle East (ie, Algeria, Egypt, and Libya). S. japonicum exists in East Asia (China) and Southeast Asia (Indonesia and the Philippines). S. mansoni exists in Africa (ie, Djibouti, Eritrea, and Ethiopia), South America (ie, Brazil, Venezuela, and Suriname), and the Caribbean. S. intercalatum exists in Africa (ie, Cameroon, Congo, and Guinea). Japan and Tunisia have managed to control schistosomiasis. Morocco and some Caribbean islands have made significant progress in eradicating the disease. Brazil, China, and Egypt are also taking action to the eradication of schistosomiasis.

Schistosomiasis infections mainly originate from S. haematobium, S. japonicum, and S. mansoni (Table 1). Also, S. bovis and S. margrebowiei may infect humans.

Treatment

Schistosomiasis eradication attempts commonly concentrate on controlling the infection through preventive chemotherapy. Praziquantel is cost-effective for treating schistosomiasis. The World Health Organization recommends a single dose of 40 mg/kg for all species and ages. However, this recommendation has a limitation: praziquantel does not kill immature worms present in the body at the time of treatment. Thus, treatment needs to be repeated after 2 to 4 weeks to increase effectiveness. This disease continues to be among the most alarming diseases in humans.

Snail management is helpful because it reduces the number of intermediate snail hosts. It is often achieved through molluscciding. However, with this technique, environmental destruction will occur. To avoid this, Yang et al. suggested linalool Cinnamomum camphora (L.) extracts to kill Oncocentaria hupensis snails. Linalool could also be used to treat S. japonicum infection. Snails treated with linalool showed gill destruction and cell degeneration. Additionally, the hepatopancreas of snails treated with linalool shrank and separated from the connective parenchyma. These snails had much smaller tubular lumen and less oval dark granules compared with snails without linalool. Hepatopancreas is the combined hepatic and pancreatic tissue. The results showed that gill damage and hepatopancreas could be the main causes of death. This shows that linalool extracts are useful for treating schistosomiasis in snails. Moreover, linalool extracts do not have environmental risks.

Jatsa et al. showed that Sidapisota Retz aqueous (SpAE) extract could treat S. mansoni. SpAE reduced granuloma numbers in the liver by 52% and the small intestine by 52.79%. SpAE also reduced granuloma volumes in the liver by 48.76%. The thickness of the small intestine’s muscular layer was reduced by 10.52%. Thus, SpAE might be used for the development of medication against S. mansoni infection. Jatsa et al. also reported other groups had successfully reduced granuloma number and/or size on blood-worms. Those authors used zingiber officinale rhizome berberine and selenium nanoparticles.

Sundaranee et al. discovered polypropydrulthenium (II) complexes to treat schistosomiasis in mammals. These complexes were effective against stages of schistosomes, schistosomula, and eggs.
The authors concluded that Rubb32-tri and Rubb7-tnl were able to reduce worm burdens. Both had an effect on the viability of parasite eggs in vivo. Sundaraneedi et al. stated that ruthenium compounds were able to reduce parasite eggs in vitro. They could also kill adult worms and praziquantel-refractory juvenile worms in vitro. It seems therefore that ruthenium compounds have potential for treating schistosomiasis.

Vaccine Development

A schistosomiasis vaccine could create a long-term decrease in illness spectrum and transmission. It could protect up to 600 to 700 million people. To date, schistosomiasis vaccines are unavailable. However, experiments in animals are underway (Table 2). Tallima et al. found that a cysteine peptidase-based vaccination could protect against *S. haematobium* schistosomiasis. A mixture of *Schistosoma mansoni* Chaptesin B1 (SmCB1) and Fasciola hepatica L1 reduced worms by 70%. The mixture also reduced eggs by 60% (Table 3).

You et al. discovered that the *S. japonicum* acetylcholinesterase (SjAChE) inhibited parasite growth and development. The authors used ribonuclease acid interference to kill parasites in vitro. You et al. found that immunization of mice with the recombinant SjAChE reduced male worm numbers (33%) as well as liver tumor density (41%), and decreased numbers of enteric eggs (73%). In addition, You et al. suggested a vaccination with rSjLD1 and 2. The authors stated that rSjLD1 and 2 would be safe for immunizing bovines and humans. The rSjLD1 vaccine reduced the number of female worms (30%–44%), fecal eggs (61%–68%), liver eggs (44%–56%), intestinal eggs (46%–48%), and mature intestinal eggs (58%–63%). These studies confirm the potential of SjAChE and rSjLD1 as vaccine/drug candidates.

Moreover, to control *S. Mansoni* schistosomiasis, Ricciardi et al. discovered *Schistosoma mansoni* Chaptesin B (SmCB) as a vaccine candidate. The authors performed in vitro killing assays in schistosomula stage parasites targets for lung-derived leukocytes and serum obtained from mice vaccinated with SmCB adjuvant with either Montanide ISA 720 VG (SEPPIC Inc., Fairfield, NJ, USA) or cystosine-guanine in the linear sequence (Cpg or CG oligodeoxynucleotides) (Cpg) and from mice not vaccinated. The SmCB + Montanide 720 VG (SEPPIC Inc., Fairfield, NJ, USA) resulted in the highest death rate (63%). The SmCB + Cpg vaccinated animals experienced a significant death rate (53%). Also, the Sma cathepsin alone had a substantial success rate (41%).

Genetic Manipulation

Genetic manipulation techniques can be beneficial to control schistosomiasis. These techniques include the adeno-associated virus (AAV), clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system, and end-joining homology techniques (EJHTs). EJHTs can include homology-mediated end joining (HMEJ) and homology-independent targeted integration (HITI).

For example, He et al. suggested that rAAV8-mediated miR-203-3p could become a drug for human diseases. The authors showed that rAAV8-mediated miR-203-3p protected mice from schistosome infection and alleviated hepatic pathology. He et al. showed that rAAV8-mediated miR-203-3p managed the enlargement of hepatic lymphoid cells. It also reduced the production of hepatic lymphoid cells throughout infection. This study shows that rAAV8-mediated miR-203-3p is a potential method for treatment of schistosomiasis.

CRISPR/Cas9 system and EJHTs can edit incorrect genes. Thus, these techniques are potential tools for eliminating schistosomiasis. However, there are currently no studies analyzing the utility of these 2 tools for schistosomiasis treatment. Thus, CRISPR/Cas9 system, HMEJ, and HITI could become new treatment methods for schistosomiasis.

Conclusions

Schistosomiasis is a blood-worm disease that exists in either the intestine or urethra in humans. Three main species can infect humans. These are *S. haematobium*, *S. japonicum*, and *S. mansoni*. The schistosomiasis life cycle has 2 hosts: snails and mammals. Asexual reproduction occurs in snails and sexual reproduction occurs in mammals. To control schistosomiasis, diagnosis has an important role. Diagnosis techniques include MHT, Kato-Katz, FECT, POC-CCA, SmCFT, and PCR. Currently, praziquantel is the only drug treatment

Table 2

Vaccine candidate	Target	Reference
SmCB	*Schistosoma haematobium*	Ricciardi et al.25
SmCB + Cpg	*S. mansoni*	Tallima et al.26
SmCB + Montanide	*S. mansoni*	Ricciardi et al.25
720 VG	*S haematobium*	Ricciardi et al.25
SmCB1	*S. haematobium*	Tallima et al.26
FhCl1	*S. haematobium*	Tallima et al.26
Sh28GST	*S. haematobium*	Tebeje et al.27
Biltvax	*S. haematobium*	Tebeje et al.27
SjAChE	*S. japonicum*	You et al.28
rSjLD1	*S. japonicum*	You et al.29

Table 3

Vaccine development for schistosomiasis.
Agent

SmCB + Montanide
SmCB + Cpg
SmCB1
SjAChE
rSjLD1

Cpg = cysteine-guanine in the linear sequence (Cpg or CG oligodeoxynucleotides); rSjLD1 = *Schistosoma japonicum* insulin receptor 1; SjAChE = *Schistosoma japonicum* acetylcholinesterase; SmCB1 = *Schistosoma mansoni* chaptesin B1; SmCB = *Schistosoma mansoni* chaptesin B1; VG = vegetable-grade. Montanide ISA 720 VG: SEPPIC Inc., Fairfield, NJ, USA (adjuvant dedicated to human therapeutic vaccine).
available for schistosomiasis. Several drug candidates have been studied, including linalool, SpAE, Rubb₁–tn1, and Rubb₂–tri. No vaccines are available for this disease at present. However, vaccine candidates, such as SmCB1, SjACHÉ, and SmCB, have been studied. Furthermore, genetic manipulation techniques are potential tools to control schistosomiasis in the future. These tools may include rAAV8-mediated miR-203-3p, CHIRISPR/Cas9 system, and the EJHTs HMEJ and HITI.

Acknowledgments

Research and manuscript development were performed exclusively by M. Nelwan.

Conflicts of Interest

The author has indicated that he has no conflicts of interest regarding the content of this article.

References

1. Viana M, Faust CL, Haydon DT, Webster JP, Lamberton PHL. The effects of sub-curate praziquantel treatment on life-history traits and trade-offs in drug-resistant Schistosoma mansoni. Evolutionary Applications. 2018 Aug;11:488–500. doi:10.1111/eva.12558.
2. Sundaraneedi MK, Tedla BA, Eichenberger RM, Becker L, Pickering D, Smout MJ, et al. Polypolyridurhenium (II) complexes exert anti-schistosome activity and inhibit parasite acetylcholinesterases. PLoS Negl Trop Dis. 2017 Dec;11(12). doi:10.1371/journal.pntd.0006734.
3. Alemu M, Ziga E, Derbie A. Under diagnosis of intestinal schistosomiasis in a referral hospital, North Ethiopia. BMC Res Notes. 2018 Apr;11:245. doi:10.1186/s13104-018-3355-0.
4. Mohamed J, Kinunghi S, Mwini PNM, Onkanga IO, Andioge K, Muchiri G, et al. Diet and hygiene practices influence morbidity in schoolchildren living in Schistosomiasis endemic areas along Lake Victoria in Kenya and Tanzania—A cross-sectional study. PLoS Negl Trop Dis. 2018 Mar;12(3). doi:10.1371/journal.pntd.0006374.
5. Wei Y, Huang N, Chen S, Chen D, Li X, Xu J, et al. The diagnosis and treatment introspection of the first imported case of atypical cerebral schistosomiasis in Guangzhou city. PLoS Negl Trop Dis. 2018 Mar;12(3):e0006171. doi:10.1371/journal.pntd.0006171.
6. Chala B, Torben W. An Epidemiological trend of urogenital schistosomiasis in Ethiopia. Front Public Health. 2018 March;6:60. doi:10.3389/fpubh.2018.00060.
7. Braun I, Grimes JET, Templeton MR. The effectiveness of water treatment processes against schistosomiasis cercariae: A systematic review. PLoS Negl Trop Dis. 2018 Apr;12(4). doi:10.1371/journal.pntd.0006364.
8. Mouhaid G, Rognon A, de Carvalho Augusto R, Diriguez P, Geyer K, Karinshak S, et al. Transplantation of schistosomospirocalyces between host snails: A video guide. Wellcome Open Res. 2018 Jan;3(5). doi:10.12688/wellcomeopenres.13488.1.
9. Biology: parasites–schistosomiasis. https://www.cdc.gov/parasites/schistosomiasis/biology.html; Accessed June 23, 2019.
10. Shuja 1007066. Roquis 06373. al. The Transplantation B, L, endemic of Public doi:Al........
11. You H, Gorden CA, Williams GM, Li Y, Wang Y, Hu J, et al. Real-time PCR diagnosis of Schistosoma japonicum in low transmission areas of China. Infectious Diseases of Poverty. 2018 March;7:29. doi:10.1186/s13071-018-0400-z.
12. Resources for health professionals: parasites–schistosomiasis. https://www.cdc.gov/parasites/schistosomiasis/index.html#tx. Accessed June 23, 2019.
13. Gurarie D, Lo NC, Ndeefo-Mbah ML, Durham DP, King CH. The human snail transmission environment shapes long term schistosomiasis control outcomes: Implications for improving the accuracy of predictive modeling. PLoS Negl Trop Dis. 2018 May;12(5). doi:10.1371/journal.pntd.0006514.
14. Abe EM, Guan W, Guo Y-H, Kassegne K, Qin Z-Q, Xu J, et al. Differentiating snail intermediate hosts of Schistosoma spp. using molecular approaches: fundamental to successful integrated control mechanism in Africa. Infectious Diseases of Poverty. 2018 March;7:29. doi:10.1186/s40249-018-0400-z.