Intestinal Permeability, Vitamin A Absorption and Serum Alpha-Tocopherol in Gastrointestinal Stromal Tumor Patients Treated with Imatinib

Bohuslav Melichar1,4, Markéta Kašparová2,5, Hana Kalábová3, Josef Dvořák3, Radomír Hýšpler4, Alena Tichá, Lenka Křmíková2,5, Jiří Plíšek2,5, Petra Holečková4 and Dagmar Solichová2

1 Department of Oncology, Palacký University Medical School and Teaching Hospital, I. P. Pavlova 6, 775 20 Olomouc, Czech Republic
2 Department of Gerontology and Metabolic Care, 1 Department of Oncology and Radiotherapy, and 4 Institute of Experimental Neurosurgery, Charles University Medical School and Teaching Hospital, Hradec Králové, Czech Republic
3 Department of Analytical Chemistry, Charles University School of Pharmacy, Hradec Králové, Czech Republic

(Received June 17, 2010)

Summary Administration of imatinib is the therapy of choice in patients with advanced (inoperable) or metastatic gastrointestinal stromal tumors (GIST). Gastrointestinal toxicity is one of the most common side effects of anticancer therapy, including imatinib. Measurement of intestinal permeability represents a method of noninvasive laboratory assessment of gastrointestinal toxicity. We have measured intestinal permeability (by determining absorption of lactulose, mannitol and xylose), vitamin A absorption and serum alpha-tocopherol in 16 patients with advanced/metastatic GIST treated with imatinib. Lactulose/mannitol and lactulose/xylose ratios as well as parameters of vitamin A absorption did not change significantly during the treatment, but a significant decrease of alpha-tocopherol was observed. We conclude that, in contrast to most other anticancer agents studied so far, imatinib does not have an effect on intestinal permeability. No effect on vitamin A absorption was observed, but serum alpha-tocopherol decreased significantly during the treatment.

Key Words alpha-tocopherol, gastrointestinal stromal tumor, imatinib, intestinal permeability, vitamin A

Gastrointestinal stromal tumors (GIST) are rare tumors characterized by activating mutations of c-kit, or, in the minority of cases, of platelet-derived growth factor receptor-alpha (1). Radical surgery is the only curative therapy in GIST, but up to more than 50% of patients may eventually relapse (2). Before the advent of targeted therapy the prognosis of patients with metastatic GIST was dismal. Based on the results of prospective trials demonstrating objective response in more than 50% of the patients (3, 4), imatinib, a tyrosine kinase inhibitor, became rapidly the therapy of choice in patients with metastatic inoperable GIST. It is increasingly evident that the introduction of imatinib has changed the natural history of metastatic GIST (5). Spectacular effect (6), even pathological complete response (7), has been observed in individual patients.

Gastrointestinal toxicity is one of the most common side effects of anticancer drugs, including imatinib (8). In general, any part of the gastrointestinal tract from the oral cavity to the anus may be damaged by anticancer agents. Depending on the part of gastrointestinal tract affected, gastrointestinal toxicity may manifest as sore mouth, dysphagia, dyspepsia, diarrhea, abdominal cramping, or rectal bleeding. In the case of imatinib, the most common gastrointestinal side effect is diarrhea, suggesting dysfunction of intestinal mucosa induced by the drug, but little is known about the mechanisms of intestinal toxicity of imatinib.

Mucosal damage can be easily assessed by direct inspection only in the oral cavity. The mucosal damage in other parts of the gastrointestinal tract can be evaluated directly by endoscopic methods, but, for obvious reasons, endoscopy is difficult to practice in cancer patients experiencing acute gastrointestinal toxicity, and the diagnosis and the assessment of severity of intestinal mucosal damage are therefore still based on anamnestic data. Methods for objective assessment of gastrointestinal toxicity are needed. Measurement of intestinal permeability is used to study the disorders of gut mucosa in benign disorders, including inflammatory bowel disease and gluten enteropathy (9, 10). The term intestinal permeability reflects the barrier function of bowel mucosa separating the internal milieu from the outside environment both in an immunologic and a metabolic sense (11). The disorders of this barrier function are defined by altered permeability to different substances. A variety of molecules have been used to assess intestinal permeability, including radiopharmaceuti-
cals, macromolecules or non-metabolizable sugars (9, 10). This approach was also tested in patients treated by cytotoxic agents, and aberrations of intestinal permeability similar to those found in patients with benign intestinal disorders have been found (12), but little is known about alterations of intestinal permeability in cancer patients treated with targeted agents.

Along with intestinal permeability, the absorptive function of the bowel is also disturbed in patients treated with chemotherapy or radiation. Recently, we have demonstrated that alterations of intestinal permeability in patients with chemotherapy-induced diarrhea are accompanied by a decrease in postprandial concentrations of retinyl esters (13). The method used for the determination of vitamin A metabolites also measures alpha-tocopherol in a single run (14, 15). The processing in the gastrointestinal tract of vitamins A and E is similar, but the absorption of vitamin E is less efficient compared to vitamin A (16). Because of this less efficient absorption, vitamin E absorption may be more sensitive to disturbances of gut function, and a decrease of alpha-tocopherol could manifest itself even if vitamin A absorption is within the normal range.

In the present study, we have evaluated intestinal permeability (using the lactulose/mannitol test), vitamin A absorption and serum alpha-tocopherol in GIST patients during the treatment with imatinib.

PATIENTS AND METHODS

Sixteen patients, 12 males and 4 females, aged (mean±SD) 63±12 (range 42–82) y, with histologically verified metastatic or advanced inoperable gastrointestinal stromal tumor treated with imatinib (Glivec, Novartis, Basel, Switzerland; 400 mg daily) were included in the present study. The protocol of the present study was approved by the institutional ethical committee, and the patients gave signed informed consent.

Intestinal permeability was studied by measuring urinary lactulose, xylose and mannitol after oral challenge as described earlier (17). Briefly, after an overnight fast, patients ingested 100 mL of the test solution containing 2 g of mannitol, 2 g of xylose, 10 g of lactulose, and 11 g of glucose in water. The patients then continued fasting for 2 h, and urine was collected for 5 h. Lactulose, xylose and mannitol were determined by capillary gas chromatography, and urinary excretion was expressed as the ratio of lactulose/mannitol and lactulose/xylose (17).

The vitamin A absorption test was performed in 9 patients as described (18). Samples of peripheral blood were drawn after a 12-h overnight fast and they were marked as sample one. These samples were centrifuged (1,600 ×g, 10 min, 16°C) and the serum was separated and stored at −25°C. Subsequently, a single oral dose of vitamin A (Slovakofarma, Holovec, Slovakia; 360,000 IU) was administered to the patients. The second blood sample was collected 5 h after administration of vitamin A and processed by the same procedure. The sample (500 μL) was de-proteinized by cool ethanol denatured with 5% methanol (500 μL, 5 min, 4°C) and then extracted with 2,500 μL n-hexane: toluene: ethanol 8:2 (v/v) mixture for 5 min in a shaker. After centrifugation (1,600 ×g, 10 min, 0°C), the aliquot (2,000 μL) of the extract was separated. Another 2,000 μL of n-hexane: toluene: ethanol 8:2 (v/v) mixture was added to the rest of serum sample for a repetition of the extraction procedure. The extract was then evaporated using a vacuum concentrator. The residue was subsequently dissolved in 400 μL of methanol, and 20 μL of the sample was injected onto the chromatographic column. The analyses were performed using the Perkin Elmer high-performance liquid chromatography set (Norwalk, CT, USA) comprising an LC 200 pump, an LC 200 autosampler, LC Column Oven 101 thermostat and LC 235C Diode Array Detector (DAD) attached to the Perkin Elmer Turbochrom Chromatography Workstation version 4.1. Separation of retinyl palmitate and retinyl stearate was performed using the Chromolith Performance RP-18e, 100×4.6 mm monolithic column (Merck, Darmstadt, Germany). The gradient elution was used at the flow rate 3 mL/min; mobile phase methanol : water 95:5 (v/v) in 0–2.1 min and methanol : 2-propanol 60:40 (v/v) in 2.1–4.9 min. The total time of analysis was 6.0 min. The block heater LC Oven 101 (Perkin Elmer) was utilized to keep the analytical column temperature at 25°C. The injection volume was 20 μL. The DAD detection of retinyl palmitate and retinyl stearate was carried out at 330 nm. Serum alpha-tocopherol was determined on the Perkin Elmer high-performance liquid chromatography set as described (14). Serum total protein and albumin were determined on a MODULAR analyzer (Hoffmann-La Roche, Basel, Switzerland) using commercially available kits.

The laboratory parameters investigated before and during the treatment were compared by the Wilcoxon signed rank test. The decision on statistical significance was based on p=0.05 level. The analyses were performed using NCSS 2001 software (Number Cruncher Statistical Systems, Kaysville, UT, USA).

RESULTS

Intestinal permeability, vitamin A absorption and serum alpha-tocopherol were investigated immediately before the start of therapy and on subsequent visits during imatinib administration. No significant changes in the lactulose/mannitol or lactulose/xylose ratios (Table 1) or vitamin A absorption (Table 2) were observed during the treatment. In contrast, serum alpha-tocopherol decreased significantly during the therapy (Table 3). A significant decrease in serum total protein concentrations was observed during the course of imatinib therapy, but the decrease in serum albumin reached statistical significance only at visit 3 (Table 3). At specific time points, measurements were not obtained in one or two patients for technical reasons.

DISCUSSION

Present data indicate a lack of effect of imatinib on...
intestinal permeability and vitamin A absorption. Although the number of patients studied was limited, in earlier reports alterations of intestinal permeability were evident after anticancer therapy in cohorts of patients of similar size. It may therefore be concluded that, in contrast to cytotoxic agents, imatinib has limited effect on intestinal permeability and vitamin A absorption. Increased intestinal permeability has been observed in lymphoma patients treated by standard regimens that included alkylating agents and vincristine (19), breast cancer patients treated by anthracyclines (20), or patients with gastrointestinal tumors treated by 5-fluorouracil-based regimens (21, 22). More recently, increased intestinal permeability has also been described after therapy with geltinib, a targeted drug (18). It has been demonstrated in experimental animals that the morphological changes induced by cytotoxic drugs, including flattening of the villi, necrosis, and inflammatory infiltrate in the submucosa, are accompanied by an increase in intestinal permeability (23, 24). These morphological changes result in increased exposure of the crypts and increased permeability of the intestinal mucosa to disaccharides or other larger molecules. Different methods have been used to assess the intestinal permeability in cancer patients treated by cytotoxic agents or radiation therapy, but most papers report the results of differential urinary excretion of a disaccharide and a monosaccharide.

No significant changes in vitamin A absorption were noted in the present group of patients treated with imatinib. This is consistent with the negative finding regarding intestinal permeability. Vitamin A absorption

Table 1. Intestinal permeability during the treatment with imatinib.
Visit
Time from the start of therapy (d)
Lactulose/mannitol ratio
(n=16)
Lactulose/xylose ratio
(n=16)

Shown is the mean±SE of the mean (range).

Table 2. Vitamin A absorption during the therapy with imatinib.
Visit
Time from the start of therapy (d)
Retinyl palmitate pre-test (μmol/L)
(n=9)
Retinyl stearate pre-test (μmol/L)
(n=9)
Retinyl palmitate post-test (μmol/L)
(n=9)
Retinyl stearate post-test (μmol/L)
(n=9)

Shown is the mean±SE of the mean (range).

Table 3. Alpha-tocopherol during the therapy with imatinib.
Visit
Time from the start of therapy (d)
(n=16)
Albumin (g/L)
(13.7–52.7)
Total protein (g/L)
(n=16)
Alpha-tocopherol (μmol/L)
(n=16)

Shown is the mean±SE of the mean (range).

*p<0.05 compared to baseline; **p<0.01 compared to baseline.
is a multi-step process that involves the hydrolysis of ingested retinyl esters by pancreatic and intestinal brush border lipases, uptake and re-esterification of free retinol by enterocytes, incorporation of retinyl esters into chylomicrons, and the release into circulation (25). As a result, only a relatively minor increase of retinol concentrations is evident after oral administration while serum concentrations of retinyl esters rise markedly. It has been demonstrated that the absorption of vitamin A is impaired in patients with benign disorders of small bowel mucosa, and the rise of serum concentrations of retinyl esters is impaired in these patients (26), but less is known about the changes of vitamin A absorption in cancer patients during systemic chemotherapy or radiation. In the present study, the number of patients was limited and the range of postprandial retinyl ester concentrations was quite wide, making a definitive interpretation of the negative results more difficult.

In contrast to the absence of significant changes of intestinal permeability or vitamin A absorption, administration of imatinib was associated with a significant decrease of serum alpha-tocopherol. This decrease may be caused by decreased absorption or oxidative stress. Vitamins A and E are processed similarly in the gastrointestinal tract, but the absorption of vitamin E is less efficient (16). Moreover, the transport of alpha-tocopherol, but not retinol, is mediated by Niemann-Pick C1-like 1 (NPC1L1) (27). Consequently, a decrease of alpha-tocopherol could manifest even if vitamin A absorption is not altered. Alpha-tocopherol is a major serum antioxidant (28). Serum alpha-tocopherol concentrations are decreased in patients with advanced cancer (29–31). In general, serum alpha-tocopherol decreases during cytotoxic therapy (32–35), and a decrease has also been described in association with targeted therapy (18). There are currently no data on the effect of imatinib on NPC1L1 activity. The decrease of serum alpha-tocopherol was accompanied by decreased serum total protein and albumin concentrations. Vitamin E is a crucial component in the protection against lipid peroxidation. In the present study, serum cholesterol concentrations were not determined simultaneously to alpha-tocopherol, but changes in alpha-tocopherol/cholesterol ratio during imatinib treatment should also be studied in future investigations.

Because imatinib therapy is frequently accompanied by edema (3), weight measurement is not reliable for assessment of nutritional status in this patient population. A decrease in nutritional intake is reflected in lower serum albumin concentrations. The association between serum albumin and alpha-tocopherol that reflects the nutritional status is well characterized (36), and could be invoked as one of the factors responsible for the decrease of alpha-tocopherol observed in this study. However, while a significant decrease in total protein concentrations was evident throughout the course of imatinib therapy, the decrease of serum albumin was less pronounced, and it is unlikely that nutritional factors are solely responsible for the decrease of alpha-tocopherol. Moreover, edema may also affect serum protein concentrations due to dilutional phenomena.

With the median survival in patients with metastatic GIST treated with imatinib currently being around 5 y (37), competing causes of mortality may be important in this patient population. Complications of atherosclerosis are the most common competing cause of death in cancer patients. Atherogenic potential of serum lipids depends on lipid oxidation (38) and is affected by liposoluble antioxidants (39). The administration of antioxidants, including alpha-tocopherol, may delay atherosclerosis (40). The observation of decreased alpha-tocopherol in patients treated with imatinib could be of significance for the long-term health in cancer survivors and warrants further study.

In conclusion, no alteration of intestinal permeability or vitamin A absorption was observed during the treatment with imatinib, but serum alpha-tocopherol decreased significantly during the therapy. The long-term significance of decreased alpha-tocopherol in patients with advanced/metastatic GIST treated with imatinib requires further study.

Acknowledgments

Supported by the grant of the Internal Grant Agency of the Czech Republic NR9096-4, Research Projects MZO 00179906 and MSM 6198959216.

REFERENCES

1) Rubin BP, Heinrich MC, Corless CL. 2007. Gastrointestinal stromal tumour. Lancet 369: 1731–1741.
2) Crosby JA, Cutton CN, Davis A, Couture J, O’Sullivan B, Kandel R, Swallow C J. 2001. Malignant gastrointestinal stromal tumors of the small intestine: a review of 50 cases from a prospective database. Ann Surg Oncol 8: 50–59.
3) Demetri GD, von Mehren M, Blanke CD, van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silbermann SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, Fletcher CDM, Joensuu H. 2002. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347: 472–480.
4) van Oosterom AT, Judson I, Verweij J, Stroobants S, di Paola ED, Dimitrijevic S, Martens M, Webb A, Sciot R, Van Glabbeke M, Silbermann S, Nielsen OS. 2001. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358: 1421–1423.
5) Fiorentini G, Bernardeschi P, De Simone M, Rossi S, Denti P, Biancalani M, Scuderi S, Vaira M, Palomba A. 2003. Efficacy of imatinib mesylate in patients with liver metastases from gastrointestinal stromal tumor failing intra-arterial hepatic chemotherapy with epirubicin. J Exp Clin Cancer Res 22 (Suppl): 13–16.
6) Joensuu H, Roberts PJ, Sarlomo-Rikala M, Anderson LC, Tervahartiala P, Tuveson D, Silbermann SL, Capdeville R, Dimitrijevic S, Druker B, Demetri GD. 2001. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med
Intestinal Permeability and Imatinib

7. Melichar B, Voboril Z, Nozicka J, Ryska A, Urminska H, Vanecek T, Michal M. 2005. Pathological complete response in advanced gastrointestinal stromal tumor after imatinib therapy. *Intern Med* **44**: 1163–1168.

8. Van Glabbeke M, Verweij J, Casali PG, Simes J, Ce Ses L, Rechardt P, Issels R, Judson IR, Van Oosterom AT, Blay JY. 2006. Predicting toxicities for patients with advanced gastrointestinal stromal tumours treated with imatinib: a study of the European organisation for research and treatment of cancer, the Italian sarcoma group, and the Australasian Gastro-Intestinal Trials Group (EORTC-MSG-AITG). *Eur J Cancer* **42**: 2277–2285.

9. Bjarnason I, Macpherson A, Hollander D. 1995. Intestinal permeability: an overview. *Gastroenterology* **1995**: 1566–1581.

10. Uli J, van Elburg RM, van Overbeck FM, Mulder CJ, van Berge-Henegouwen GP, Heymans HSA. 1997. Clinical implications of the sugar absorption test: intestinal permeability test to assess mucosal barrier function. *Scand J Gastroenterol* **32**: 70–78.

11. DeMeo MT, Mutlu EA, Keshavarzian A, Tobin MC. 2002. Intestinal permeation and gastrointestinal disease. *J Clin Gastroenterol* **34**: 385–396.

12. Melichar B, Dvorak J, Hyspler R, Zadak Z. 2005. Intestinal permeability in the assessment of intestinal toxicity of cytotoxic agents. *Chemotherapy* **51**: 336–338.

13. Melichar B, Dvorak J, Krcmova L, Hyspler R, Urbaneck L, Solichova D. 2008. Intestinal permeability and vitamin A absorption in patients with chemotherapy-induced diarrhea. *Am J Clin Oncol* **31**: 580–584.

14. Urbanek L, Solichova D, Melichar B, Dvorak J, Svobodova I, Solich P. 2006. Optimization and validation of a high performance liquid chromatography method for the simultaneous determination of vitamins A and E human serum using monolithic column and diode array detection. *Anal Chim Acta* **573-574**: 267–272.

15. Urbanek L, Krcmova L, Solichova D, Melichar B, Opletalova V, Solich P. 2006. Development and validation of a liquid chromatography method for the simultaneous determination of alpha-tocopherol, retinol and retinyl esters in human serum using a monolithic column for the monitoring of anticancer therapy side effects. *J Sep Sci* **29**: 2485–2493.

16. Borel P, Pasquier B, Armand M, Tyssandier V, Grollier P, Alexandre-Gouabau MC, Andre M, Senf M, Peyrot J, Jaussan V, Lairon D, Azais-Braesco V. 2001. Processing of vitamin A and E in the human gastrointestinal tract. *Am J Physiol Gastrointest Liver Physiol* **280**: C95–G103.

17. Melichar B, Urbanek L, Krcmova L, Kalabova H, Svo- bodova I, Dragounova E, Vesely P, Hyspler R, Solichova D. 2006. Urinary neopterin in patients with ovarian cancer. *Pteridines* **17**: 145–153.

18. Melichar B, Dvorak J, Kalabova H, Hyspler R, Krcmova L, Kasparova M, Urbanek L, Solichova D. 2010. Intestinal permeability, vitamin A absorption and serum alpha-tocopherol during therapy with gefitinib. *Scand J Clin Lab Invest* **70**: 180–187.

19. Parrilli G, Iaiafioli RV, Cupuano G, Budillon G, Bianco AR. 1982. Changes in intestinal permeability to lactulose by cytotoxic chemotherapy. *Cancer Treat Rep* **66**: 1435–1436.

20. Parrilli G, Iaiafioli RV, Martorano M, Cuomo R, Tafuto S, Zumpino MG, Budillon G, Bianco AR. 1989. Effects of anthracycline therapy on intestinal absorption in patients with advanced breast cancer. *Cancer Res* **49**: 3689–3691.

21. Kohout P, Cerman J, Bratova M, Zadak Z. 1999. Small bowel permeability in patients with cytostatic therapy. *Nutrition* **15**: 546–549.

22. Daniele B, Secondulo M, De Vivo R, Pignata S, De Magistris L, Delrio P, Paliau R, Barletta E, Tambaro R, Carratu R. 2001. Effect of chemotherapy with 5-fluorouracil on intestinal permeability and absorption in patients with advanced colorectal cancer. *J Clin Gastroenterol* **32**: 228–230.

23. Carneiro-Filho BA, Lima JF, Araujo DH, Cavalcante MC, Carvalho GHP, Brito GAC, Lima V, Monteiro SMN, Santors FN, Ribeiro RA, Lima AAM. 2004. Intestinal barrier function and secretion in methotrexate-induced rat intestinal mucositis. *Digest Dis Sci* **49**: 65–72.

24. Yanex JA, Teng XW, Roupe KA, Fariss MW, Davies NM. 2003. Chemotherapy induced gastrointestinal toxicity in rats: involvement of mitochondrial DNA, gastrointestinal permeability and cyclooxygenase-2. *J Pharm Pharmacol* **6**: 308–314.

25. Harrison EH, Hussain MM. 2001. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A. *J Nutr* **131**: 1405–1408.

26. Johnson EJ, Krasinski SD, Howard LJ, Alger SA, Dutta SK, Russell RM. 1992. Evaluation of vitamin A absorption by using oil-soluble and water-miscible vitamin A preparations in normal adults and in patients with gastrointestinal disease. *Am J Clin Nutr* **55**: 857–864.

27. Narushima K, Kakada T, Yamanashi Y, Suzuki H. 2008. Niemann-Pick C1-like 1 mediates α-tocopherol transport. *Mol Pharmacol* **74**: 42–49.

28. Debier C, Larondelle Y. 2005. Vitamins A and E: metabolism, roles and transfer to offspring. *Br J Nutr* **93**: 153–174.

29. McMillan DC, Talwar D, Sattar N, Underwood M, O’Reilly D SJ, McArdle C. 2002. The relationship between reduced vitamin antioxidant concentrations and the systemic inflammatory response in patients with common solid tumours. *Clin Nutr* **21**: 161–164.

30. Mayland C, Allen KR, Degg TJ, Bennet M. 2004. Micronutrient concentrations in patients with malignant disease: effect of the inflammatory response. *Ann Clin Biochem* **41**: 138–141.

31. McMillan DC, Sattar N, Talwar D, O’Reilly J L, McArdle CS. 2000. Changes in micronutrient concentrations following anti-inflammatory treatment in patients with gastrointestinal cancer. *Nutrition* **16**: 425–428.

32. Faure H, Couraud C, Mousseau M, Ducros V, Douki T, Bianchini F, Cadet J, Favier A. 1996. 5-Hydroxymethyluracil excretion, plasma TBARS and plasma antioxidant vitamins in adriamycin-treated patients. *Free Radic Biol Med* **20**: 979–983.

33. Jonas RC, Puckett AB, Jones DE, Griffith DF, Szaszekyi EE, Bergman GF, Furr CE, Tyre C, Carlson JL, Galloway JR, Blumberg JB, Ziegler TR. 2000. Plasma antioxidant status after high-dose chemotherapy: a randomized trial of parenteral nutrition in bone marrow transplantation patients. *Am J Clin Nutr* **72**: 181–189.

34. High KP, Legault C, Sinclair JA, Cruz J, Hill K, Hurd DD. 2002. Low plasma concentrations of retinol and alphatocopherol in hematopoietic stem cell transplant recipients: the effect of mucositis and the risk of infection. *Am J Clin Nutr* **76**: 1358–1366.
35) Faber M, Coudray C, Hida H, Mousseau M, Favier A. 1995. Lipid peroxidation products, and vitamin and trace element status in patients with cancer before and after chemotherapy, including adriamycin. A preliminary study. *Biol Trace Elem Res* 47: 117–123.

36) Vorster HH, Kruger A, Margetts BM, Venter CS, Kruger HS, Veldman FJ, MacIntyre UE. 2004. The nutritional status of asymptomatic HIV-infected Africans: directions for dietary intervention? *Public Health Nutr* 7: 1055–1064.

37) Blanke CD, Demetri GD, von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, Corless CL, Fletcher CDM, Roberts PJ, Heinz D, Wehre E, Nikolova Z, Joensuu H. 2008. Long-term results from a randomized phase II trial of standard-versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. *J Clin Oncol* 26: 620–625.

38) Steinberg D. 1997. Oxidative modification of LDL, atherogenesis. *Circulation* 95: 1062–1071.

39) Keaney JF, Guo Y, Cunningham D, Swaery GT, Xu A, Vito JA. 1996. Vascular incorporation of alpha-tocopherol prevents endothelial dysfunction due to oxidized LDL by inhibiting protein kinase C stimulation. *J Clin Invest* 98: 386–394.

40) Salonen JT, Nyysonen K, Salonen R, Lakka H-M, Kalkkonen J, Porkkala-Saratuho E, Voutilainen S, Lakka TA, Rissanen T, Leskinen L, Tuomainen T-P, Valkonen V-P, Ristonmaa U, Poulsen HE. 2000. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. *J Intern Med* 248: 377–386.