A Review-based Taxonomy for Secure Health Care Monitoring: Wireless Smart Cameras

Ravi Teja Batchu¹, Abeer Alsadoon*¹,²,³,⁴, P.W.C. Prasad¹,⁵, Rasha S. Ali⁶, Tarik A. Rashid⁷, Ghossoon Alsadoon⁸, Oday D. Jerew⁴

¹School of Computing and Mathematics, Charles Sturt University (CSU), Wagga Wagga, Australia
²School of Computer Data and Mathematical Sciences, University of Western Sydney (UWS), Sydney, Australia
³Kent Institute Australia, Information Technology Department, Sydney, Australia
⁴Asia Pacific International College (APIC), Information Technology Department, Sydney, Australia
⁵Australian Institute of Higher Education, Sydney, Australia
⁶Department of Computer Techniques Engineering, AL Nisour University College, Baghdad, Iraq
⁷Computer Science and Engineering, University of Kurdistan Hewler, Erbil, KRG, Iraq
⁸Business Informatics Department, AMA International University Bahrain (AMAIUB)

Abeer Alsadoon*
* Corresponding author. Dr. Abeer Alsadoon, School of Computing and Mathematics, Charles Sturt University (CSU), Wagga Wagga, Australia, Email: alsadoon.abeer@gmail.com, Phone +61413971627

Abstract

Health records data security is one of the main challenges in e-health systems. Authentication is one of the essential security services to support the stored data confidentiality, integrity, and availability. This research focuses on the secure storage of patient and medical records in the healthcare sector where data security and unauthorized access is an ongoing issue. A potential solution comes from biometrics, although their use may be time-consuming and can slow down data retrieval. This research aims to overcome these challenges and enhance data access control in the healthcare sector through the addition of biometrics in the form of fingerprints. The proposed model for application in the healthcare sector consists of Collection, Network communication, and Authentication (CNA) using biometrics, which replaces an existing password-based access control method. A sensor then collects data and by using a network (wireless or Zig-bee), a connection is established, after connectivity analytics and data management work which processes and aggregate the data. Subsequently, access is granted to authenticated users of the application. This IoT-based biometric authentication system facilitates effective recognition and ensures confidentiality, integrity, and reliability of patients’ records and other sensitive data. The proposed solution provides reliable access to healthcare data and enables secure access through the process of user and device authentication. The proposed model has been developed for access control to data through the authentication of users in healthcare to reduce data manipulation or theft.

Keywords: Healthcare sector, biometric technique, access control
Introduction

Data management in the medical domain is designed to secure and monitor healthcare data in the form of patient records as well as disease and treatment information. Presently, access to health data is protected through biometrics at different access levels. While this system provides some protection, frequently reported instances of data manipulation and theft indicate that there are still challenges, one of which is also an inability to authenticate large volumes of data [1]. The system proposed in this research adds Raspberry Pi with SlugCam and machine learning biometric authentication based on a wireless camera or a sensor network that will store large amounts of multidimensional data [2]. The current literature on biometrics was reviewed to identify authentication techniques to provide access control to health data with a focus on all-inclusive systems that can predict vulnerabilities and unauthorized access [3]. Component classification, therefore, was a significant aim of this review [4]. It was found that current systems cannot provide secure access to multi-dimensional data or detect unauthorized access to the system based on data and samples [5]. A model is, therefore, proposed to overcome these issues using a system built with a raspberry pi-based slug camera with machine learning [6]. Only current research that offers biometric access control techniques based on wireless networks is presented by Alsmirat et. [1]. However, it does provide high-level access control and authentication [7]. Component verification is based on accuracy, fit [8] and completeness [9] [10].

The work is divided as follows: Section 2 contains the literature review. In section 3, the state-of-the-art model is discussed along with components. In the fourth section, the proposed model is presented together with a detailed discussion of the solutions it offers to the limitations of the state-of-the-art model. In section 5, validation and evaluation are performed, and section 6 verifies the proposed technique, followed by sections 7 and 8 with discussion and conclusion.

Raspberry Pi with SlugCam and machine learning allows multi-dimensional records to be stored at high definition. It is effective in evaluating security and provides access control. The basis of the work is the inclusion of healthcare data, classifications, access control policies, feature extraction, and raspberry pi. The primary components of the system are collection, network communication, and authentication.
Biometric-based security techniques

Several papers were reviewed, each providing models or systems representing authentication techniques focused on at least one of the issues of importance in health care, namely security, access control and authenticity [11] [12]. A gap was identified in existing research in terms of biometric authentication techniques suitable for the healthcare sector, where the need for security and authentication is high [13]. None considered the aspect of healthcare monitoring and authorization prediction of users. Biometric healthcare system: Hamidi [14] designed an IoT-based biometric technique for the healthcare system that preserved data integrity and assured data availability, accessibility and security. The biometric technique identified physical characteristics embedded in a Smart system. The limitations of this system lie in its ambitious combination of biometrics. From a range of possible biometric feature choices, they identified fingerprinting and keystrokes as two that would need to be combined to provide the right level of security. However, the author acknowledged that such a system would incur cost probably beyond what even healthcare providers are willing to invest. The paper was, nevertheless, of interest due to the inclusion of a machine learning algorithm. Priority-based parallel algorithm: Shakil et al. introduced a biometric authentication technique in which the access hierarchy is defined. At the enrolment phase, a priority value is assigned [15]. If this is 4 on a scale of 1-4, then the security level assured by the system is the maximum. Biometric signatures ensure the authenticated access to e-healthcare data to manage secure access. This system is of interest as it provides an example of efficient biometric authentication although it does not address health care monitoring. Lightweight key agreement protocol with rekeying: Meena et al., used an algorithm for providing energy-efficient secure transmission of data used for security monitoring, basing their security regime on a DTLS handshake protocol. The limitations imposed by medical sensors were overcome by interposing an intermediary system for authentication of the sensor input[16]. This research is valuable because it offers an energy-efficient secure transmission that overcomes the sensor resource constraint. Pirbhulal et al. (2018) offered an energy-efficient fuzzy vault based biometric security approach that increases security and authenticity[17]. A biometrics-based security mechanism is said to lead to enhanced security and EFVSM reduces extensive energy usage through time-domain analysis using EI Fuzzy vault. This achieves data consistency and enhanced security. The limitation is that the research has not focused on securing communication which is also necessary for data consistency and secure transmission. Elliptic curve cryptography (ECC) based secure three-factor user authentication : Challa et al. have reduced communication and computation cost through performing a password and biometric update externally without the involvement of third parties. This enhances security aspects[18]. The limitation of this work is that security was not analyzed through an informal security analysis for verification [19]. Nevertheless, this research is valuable as security is enhanced through an ECC based three-factor authentication approach, a smart card, user biometrics and user passwords. An expansion of the model is planned for future work. Formal authentication techniques: Amin et al. contribute by preserving the anonymity of users and enhance the performance of the patient monitoring system by managing its authentication and security aspects[20]. The effectiveness of the patient monitoring system secures the authentication of users. However, energy optimization was not addressed, limiting this work, although the robustness of the patient monitoring system is of interest for the current work [14]. Furthermore, Qi et al. provided information about the existence of a crucial agreement protocol to secure communication between wearable sensors and medical professionals[21]. As per the study, the end-to-end authentication protocol prevents unauthorized access and never refuses access for any authenticated participant[22]. The pitfall is that the research focuses on authenticity and security, but the effectiveness of monitoring health was not addressed. Still, the work is valuable for protecting healthcare information and grants secure access to healthcare applications. Compressed sensing (CS)-based security mechanism: Nandhini et al. have focused on security aspects and also enabled effective resource utilization [23]. They have further reduced storage complexity by applying security keys to only the significant video frames without compromising the desired security level. However, this technology has an issue related to energy
consumption and storage requirements. A solution has come from Hussein et al., who addressed the problem associated with the use of different measurement matrices for security and compression [24]. Therefore, the advancement made was to reduce storage needs by 92% and energy consumption by 53%. The given solution will use a single measurement matrix for the compression as well as security. The limitation is that when the distance between the sensor node and destination node increases, recovering the lost packet is reduced. This work is, nevertheless, valuable for increasing security by preventing attackers from reconstructing the video[25].

Furthermore, Wang et al. enhanced the tracking quality and contributed to the reduction of the moving distance using wireless camera sensor networks [26]. There are issues with this solution in terms of sensing range and distance for tracking targets, which affect the security aspects. This negatively affects the consumption of energy of mobile devices used for the purpose of tracking. Quality tracking was also developed by Jiang et al. and future work on energy consumption of the mobile devices used while search will be investigated [27, 28]. Wireless sensing network: According to Zhu et al., the current solution is a secure monitoring system that monitors data transmission through controlling effective collection and communication of sensed data which in turn promotes real-time target identification[29]. For real-time object recognition and image detection wireless cameras are used. This approach is limited by its inability to handle more complex situations that involve multiple sensing of elements, although it is valuable for encouraging secure monitoring[30].

Meena et al., used an effective algorithm for providing energy-efficient secure transmission of data for secure monitoring [16]. They offered security in data transmission with less consumption of energy using an FLSO protocol. However, there is no indication of the cost of this solution which needs to be established through real-time implementation. The research of Wang et al is valuable for providing energy-efficient secure transmission of data [31]. For future work, more expansion and its implementation in the healthcare sector are performed. Password-based techniques: Wu has utilized smart card verification techniques and password-based authentication approaches to ensure the authentication of wireless sensor networks [32]. Password-based techniques and smart-card-based verification are used, which provide secure and authenticated access to the patient’s data. However, this research has not addressed usability aspects that are essential for the satisfaction of patients. Nevertheless, this work has contributed to the secure authentication and adequate verification of cryptographic protocols[33]. Genetic grey wolf optimizer (GGWO) algorithm: Sujatha et al. developed a reliable fusion scheme through effectively grouping decision-related visual data for all optimized features [34]. Their aim was multi-focus image fusion with the use of a noisy feature removal scheme. However, Poisson noise was not effectively eradicated from the images and, thus, the scheme is suitable only for the creation of an image with brief visual data. Energy-efficient Fuzzy Vault-based-Security (EFVSM): Pirbhudal et al. developed an energy-efficient fuzzy vault-based biometric security approach with the aim of increasing security and authenticity [17]. The biometric-based security mechanism enhances security and the EFVSM reduces energy usage through time-domain analysis using EI. This solution has not secured communication necessary for data consistency and secure transmission [35]. Wireless smart camera network: Abas et al. focused on energy- and cost-efficiency and real-time security of the SlugCam, a wireless camera network that facilitates efficient monitoring of videos and does not require regular maintenance [36]. There are issues with data management and storage which can be improved through cloud technology. The plan is to use the SlugCam within the cloud environment for efficient data storage and management[37]. A heuristic approach to network lifetime maximization: Singh et al. extended the lifetime of the wireless camera sensor networks through manipulation of sensing angle, viewing angle, and an increase in the number of sensors. The network lifetime in WCSNs is maximized. A limitation is a shortage of energy and storage for sensor data management [38]. Adame et al. used CUIDATS hybrid monitoring system for efficient tracking, allowing real-time health monitoring [39].
The State of The Art

The biometric technique was utilized in this research which analyses the security parameter which identifies the insecurity caused in the healthcare that results improve in authentication[40]. The work is classified based on fingerprint biometric authentication, face-based access control policies and using a digital chip card. These techniques can be identifying the authentication issue in healthcare applications quickly in a precise manner. However, in state-of-the-art technology, there is a limitation which is not authenticating the healthcare application effectively, and also, it cannot be guaranteed security there [14]. There are the various model is available which can provide the analysis research paper which contains the element that solves the limitation found in state of the art [41]. The above two systems which proposes that solve the limitation of state of the art is shown below in Fig. 1[42]

Fig. 1: State of the art model [42]

Several methods of biometric authentication-based access control were proposed by this group of researchers, but the work has not resulted in a unified approach required to enhance security, privacy, and control rate[43]. Medical professionals and patients are responsible for maintaining data records and running samples in many of the systems[44]. To overcome these limitations, multiple types of data are processed simultaneously, with details provided in Fig. 2[45].

The Slug cam is used in the healthcare monitoring application for the improvement of authentication using a biometric technique. It provides point-to-point communication in the monitoring application with the camera collecting the healthcare data from the environment and transferring it directly to the requesting medical professional. The Slug cam is a type of wireless sensor camera network that collects data from the healthcare environment data to facilitate monitoring and authentication by improving the communication of data point to point. A smart camera sensor network is used in the data collection process. The smart camera sensors are embedded in every activity of data collection. This is the first step of the proposed system
System components

CNA is based on access control security that facilitates authenticated access to healthcare monitoring applications [5]. With the help of domain specialists in both authenticity and health monitoring, the CNA has been refined to include all factors essential for implementation, identification, and validation [46].

The CAN taxonomy was developed based on a review of current relevant literature. 36 of the initial 208 publications met the following criteria for inclusion: The research described a complete authentication process for wireless camera sensor networks (WCSNs); used in healthcare monitoring applications even if the concentration was on one of the features only, on authenticity in WCSNs or access control security. Further, the publication described an access control security system that is utilized in the healthcare industry rather than smart homes [47]. 158 results were not included, out of which 23 results were rejected as these publications related to technologies other than those discussed above. Several papers only focused on the effectiveness of healthcare monitoring applications without using authentication-based access control security in WCSNs, and the remaining 8 publications were written in foreign languages [48].

On the basis of prior knowledge and information of the healthcare industry, for access control security in WCSNs to guarantee the authenticity of healthcare data, three essentials should be noted: 1) What is the available information that should be collected and identified, 2) how can secure network communication be guaranteed, and 3) how can secured access control and authenticity be guaranteed? A healthcare monitoring system related to authentication-based access control security must be based on 3 essential factors: collection, network communication, and authentication [49].

The first factor used in the CNA taxonomy is a collection that includes the collection of data from WCSNs and then making a comparison with existing needs; the collected data facilitates the identification of intrusion attacks [50]. The properties of its classes involve systems, analysis, processes, etc. [51].

Secondly, the process is network communication, which involves the security of network communication and secure transmission of information utilized for classification. Lastly, the classification is based on authentication, the final product that facilitates managing access control security for health monitoring applications. These three components, their sub-components, and the relationship among them are represented in Table 1 [52].

Fig. 2: Proposed model
Table 1: Main attributes and common instances of CNA taxonomy

Factor/Class	Main Attributes	General Instances
Collection	Process	Information gathering
Camera	Device	Raspberry Pi compatible camera module, Sparse camera network-based video surveillance system
Data pre-processing	Process	Wearable technology, ECG Signals, wireless sensors
Feature extraction	Acquisition sensors	Personal sensor networks (PSNs), Body sensor networks (BSNs), Multimedia devices (MDs), Template-based approach
Network Communication	Underlying Process	Secure data transmission
Line configuration	Services	Point to point, multi-point
Biometric	Implementation	SlugCam networking, SigQuality software
Connectivity	Connection Type	3G/4G, Wi-Fi, ZigBee, Wired
Authentication	System	The patient health monitoring system
Activity recognition	Underlying process	Context-aware healthcare services, Visual information analysis
Access control model	System	Biometric technology, surveillance algorithm, one/two/three-factor authentication scheme
Healthcare application monitoring	Analysis	Remote video monitoring, Efficient fuzzy vault-based security method (EFVSM)

Fig. 3: Three-factors of the authentication-based access control taxonomy

The three factors of the authentication-based access control taxonomy for healthcare applications are Collection, Network communication, and Authentication, represented in Fig. 3. Table 1 depicts the components and classes and their connection with one another.

The remaining segment involves the definition of three factors, collection, network communication, and authentication, as well as their subclasses. The justification for the inclusion of these factors is based on their function of effective data collection, secure network communication and restriction of access control to authorized users only; therefore, these are utilized for the purpose of classification[53]. Diagrams are provided of the classes and sub-classes which develop each of the factors[54]. The three most significant subclasses of Collection are a camera, data pre-processing, feature extraction [55]. The camera is the device that facilitates monitoring healthcare applications. It is responsible for gathering data with the help of acquisition sensors and processing information - represented in Fig. 4[56].
Network Communication: The subclasses of Network communication are line configuration, biometrics and connectivity[57]. They facilitate secure data transmission using different connectivity for transmitting the information to data centers where it can be accessed by authorized users - represented in Fig. 5[58].

Authentication: The subclasses of Authentication are activity recognition, access control and health monitoring[59]. They are used for ensuring the effective detection of intrusions through recognition of activity, access control security, and effective monitoring. They manage access control security of the healthcare application, which is represented in Fig. 6[11].
Collection of data is a significant part of the classification and is highlighted to stress the significance of the acquisition of data through the integration of camera sensors on the human body. It recognizes and characterizes intrusions that are also communicated to the end-user. Thus, the effective collection of data enhances the detection of intrusion attacks and manages the monitoring of health-related data[60]. The problem is how to safeguard the system from intrusion[61]. Unauthorized access by any individual is not desirable as insecure network communication can lead to the loss of data or reduce packet delivery ratio, which in turn creates difficulties in the of identification of intrusions[62]. Furthermore, the efficient aggregation, classification, and analysis of collected data is required for the effectiveness of the healthcare monitoring applications[63]. Therefore, it is significant to effectively analyze the collected data, secure the transmission of information via a network and emphasize access control security of the health monitoring application to enhance authenticity [64].

System classification

Existing systems for access control to healthcare data are the basis on which systems classification was carried out. Existing relevant literature was analyzed with the initial search returning 208 potential systems. Only 30 of these met the inclusion criteria [65]. These were currency (2017 onward [6] and publication in quality (Q1 or Q2)[66], and relevance in terms of access control security in the healthcare sector[67]and network communication and authentication in the healthcare sector[68]. Details of the selected systems are shown in Table 2, followed by analysis in Tables 3-5.

S.No.	Reference	Collection	Network communication	Authentication						
1.	(Abas, et al., 2018)	Raspberry Pi compatible camera module	Wearable technology	Not available	Context-aware healthcare services	Biometric technology	Remote video monitoring			
2.	(Hamidi, 2019)	Video camera	Not available	Not available	Wired	Context-aware healthcare services	Surveillance algorithm	Remote video monitoring		
3.	(Mshali, et al., 2018)	Network architecture for cloud-based WBANs	Not available	Haar wavelets	Wired	Context-aware healthcare services	one/two/three-factor authentication scheme	Remote video monitoring		
	(Chang, et al., 2018)	Video camera	Wearable technology	Template-based approach	Not available	Finger Geometry Recognition	Not available	Context-aware healthcare services	Biometric technology	Remote video monitoring
---	----------------------	--------------	---------------------	-------------------------	--------------	----------------------------	--------------	-----------------------------------	----------------------	------------------------
5	(Liu & Chang, 2017)	Network architecture for cloud-based WBANs	Not available	Haar wavelets.	Star topology	SlugCam networking	3G/4G	Context-aware healthcare services	Biometric technology	Not available
6	Shakil, et al., 2017	Video camera	wireless sensors	Multimodal devices (MDs),	Not available	SlugCam networking	Wired	Context-aware healthcare services	Biometric technology	Remote video monitoring
7	(Nandhini & Radha, 2017)	Video camera	Not available	Template-based approach	Point to point	Face Recognition	Not available	Context-aware healthcare services	one/two/three-factor authentication scheme	Remote video monitoring
8	(Challa, et al., 2018)	Raspberry Pi compatible camera module	Not available	Personal sensor networks (PSNs),	Not available	SigQuality software	3G/4G	Context-aware healthcare services	one/two/three-factor authentication scheme	Not available
9	(Jiang, 2018)	Video camera	Template-based approach	Star topology	SlugCam networking	Wired	Context-aware healthcare services	Biometric technology	Remote video monitoring	
10	(Wang, et al., 2018)	Network architecture for cloud-based WBANs	Wearable technology	Not available	Point to point	Finger Geometry Recognition	3G/4G	Context-aware healthcare services	one/two/three-factor authentication scheme	Remote video monitoring
11	(Wu, et al., 2018)	Video camera	Not available	Color histogram	Point to point	Face Recognition	Wired	Context-aware healthcare services	one/two/three-factor authentication scheme	Remote video monitoring
12	(Wu, et al., 2017)	Video camera	Not available	Personal sensor networks (PSNs),	Point to point	Finger Geometric Recognition	Not available	Context-aware healthcare services	Biometric technology	Remote video monitoring
13	(Zhu, et al., 2018)	Not available	Not available	Color histogram	multi-point	Face Recognition	Wi-Fi, ZigBee	Context-aware healthcare services	Biometric technology	Remote video monitoring
14	(Meena & Sharma, 2018)	Network architecture for cloud-based WBANs	wireless sensors	Haar wavelets.	multi-point	Face Recognition	Wired	Context-aware healthcare services	encryption	Remote video monitoring
15	(Amin, et al., 2018)	Video camera	Not available	Template-based approach	multi-point	SigQuality software	Not available	Context-aware healthcare services	key	Remote video monitoring
16	(Wazid, et al. 2018)	Not available	Not available	Haar wavelets.	Not available	Face Recognition	Wi-Fi, ZigBee	Visual information analysis	key	Not available
17	(Singh, et al. 2017)	Network architecture for cloud-based WBANs	Wearable technology	Body sensor networks (BSNs),	multi-point	Face Recognition	Wi-Fi, ZigBee	Visual information analysis	Biometric technology	Remote video monitoring
18	(Sujatha & Punithavatha ni, 2018)	Not available	ECG Signals	Haar wavelets.	Star topology	Not available	3G/4G	Not available	surveillance algorithm	Remote video monitoring
19	(Wang, et al. 2017)	Video camera	Not available	Haar wavelets.	multi-point	SigQuality	Wi-Fi, ZigBee	Visual information	Encryption	Efficient fuzzy vault-
No.	Authors, Year	System Component	Sensing Component	Software	On analysis	Security Method				
-----	--------------	------------------	-------------------	-----------	-------------	-----------------				
20.	(Wang et al., 2018)	Surveillance camera	ECG Signals	Software	On analysis	Based security method (EFVSM)				
21.	(Pirbhulal et al., 2018)	Not available	Wearable technology	Haar wavelets	Not available	Not available				
22.	(Jiang et al., 2017)	Network architecture for cloud-based WBANs	Wearable technology	Body sensor networks (BSNs)	Multi-point	Not available				
23.	(Hossain et al., 2018)	Surveillance camera	Not available	Haar wavelets	Star topology	3G/4G				
24.	(Punj and Kumar, 2018)	Network architecture for cloud-based WBANs	ECG Signals	Template-based approach	Multi-point	3G/4G				
25.	(Hamidi, 2019)	Raspberry Pi compatible camera module	Wireless sensors	Haar wavelets	Not available	3G/4G				
26.	(Das et al., 2018)	Not available	Not available	Body sensor networks (BSNs)	Multi-point	3G/4G				
27.	(Adame et al., 2018)	Sparse camera network-based video surveillance system	ECG Signals	Template-based approach	Star topology	Wi-Fi, ZigBee				
28.	(Dodangeh and Jahangir, 2018)	Not available	Wireless sensors	Multimed ia devices (MDs)	Not available	Wi-Fi, ZigBee				
29.	(Zhou et al., 2019)	Raspberry Pi compatible camera module	Wireless sensors	Template-based approach	Star topology	3G/4G				
30.	(Lwamo et al., 2019)	Sparse camera network-based video surveillance system	ECG Signals	Multimed ia devices (MDs)	Star topology	Not available				

Table 3 Classification of the research work on the basis of collection component attributes
S.No.	Reference	Collection	Camera	Data pre-processing	Feature extraction						
			Raspberry Pi compatible camera module	Sparse camera network-based video surveillance system	Wearable technology	ECG Signals	wireless sensors	Personal sensor networks (PSNs)	Body sensor networks (BSNs)	Multimedia devices (MDs)	Template based approach
1.	(Abas, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
2.	(Hamidi, 2019)	✓	✓	✓	✓	✓	✓	✓	✓		
3.	(Mshali, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
4.	(Chang, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
5.	(Liu & Chung, 2017)	✓	✓	✓	✓	✓	✓	✓	✓		
6.	Shakil, et al., 2017)	✓	✓	✓	✓	✓	✓	✓	✓		
7.	(Nandhini & Radha, 2017)	✓	✓	✓	✓	✓	✓	✓	✓		
8.	(Challa, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
9.	(Jiang, 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
10.	(Wang, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
11.	(Wu, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
12.	(Wu, et al., 2017)	✓	✓	✓	✓	✓	✓	✓	✓		
13.	(Zhu, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
14.	(Meena & Sharma, 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
15.	(Amin, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
16.	(Wazid, et al. 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
17.	(Singh, et al. 2017)	✓	✓	✓	✓	✓	✓	✓	✓		
18.	(Sujatha & Punithavathani, 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
19.	(Wang, et al. 2017)	✓	✓	✓	✓	✓	✓	✓	✓		
20.	(Wang, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
21.	(Pirbhulal, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
22.	(Jiang, et al., 2017)	✓	✓	✓	✓	✓	✓	✓	✓		
23.	(Hossain, et al., 2018)	✓	✓	✓	✓	✓	✓	✓	✓		
24.	(Punj &	✓	✓	✓	✓	✓	✓	✓	✓		
S.No.	Reference	Line configuration	Biometric	Connectivity	Implementation step						
------	-----------	--------------------	-----------	--------------	---------------------						
		Point to point	Multi point	SlugCam networking	SigQuality software	Wired	Wi-Fi	Zigbee	3G/4G	Intraoperative	
1.	(Abas, et al., 2018)	✓	✓	✓	✓	✓	Intraoperative				
2.	(Hamidi, 2019)	✓	✓	✓	✓	✓	Intraoperative				
3.	(Mshali, et al., 2018)	✓	✓	✓	✓	✓	Intraoperative				
4.	(Chang, et al., 2018)	✓	✓	✓	✓	✓	Intraoperative				
5.	(Liu & Chung, 2017)	✓	✓	✓	✓	✓	Intraoperative				
6.	Shakil, et al., 2017	✓	✓	✓	✓	✓	Intraoperative				
7.	(Nandhini & Radha, 2017)	✓	✓	✓	✓	✓	Intraoperative				
8.	(Challa, et al., 2018)	✓	✓	✓	✓	✓	Intraoperative				
9.	(Jiang, 2018)	✓	✓	✓	✓	✓	Intraoperative				
10.	(Wang, et al., 2018)	✓	✓	✓	✓	✓	Intraoperative				
11.	(Wu, et al., 2018)	✓	✓	✓	✓	✓	Intraoperative				
12.	(Wu, et al., 2017)	✓	✓	✓	✓	✓	Intraoperative				
13.	(Zhu, et al., 2018)	✓	✓	✓	✓	✓	Intraoperative				
14.	(Meena & Sharma, 2018)	✓	✓	✓	✓	✓	Intraoperative				
15.	(Amin, et al., 2018)	✓	✓	✓	✓	✓	Intraoperative				
16.	(Wazid, et al., 2018)	✓	✓	✓	✓	✓	Intraoperative				
17.	(Singh, et al., 2017)	✓	✓	✓	✓	✓	Intraoperative				
18.	(Sujatha & Punithavathani, 2018)	✓	✓	✓	✓	✓	Intraoperative				
19.	(Wang, et al., 2017)	✓	✓	✓	✓	✓	Intraoperative				
20.	(Wang, et al., 2019)	✓	✓	✓	✓	✓	Intraoperative				
	Reference	✓	✓	✓	✓	Intraoperative					
---	-----------	---	---	---	---	---------------					
21.	(Pirbhulal, et al., 2018)	✓	✓	✓	✓	Intraoperative					
22.	(Jiang, et al., 2017)	✓	✓	✓	✓	Intraoperative					
23.	(Hossain, et al., 2018)	✓	✓	✓	✓	Intraoperative					
24.	(Punj & Kumar, 2018)	✓	✓	✓	✓	Intraoperative					
25.	(Hamidi, 2019)	✓	✓	✓	✓	Intraoperative					
26.	(Das, et al., 2018)	✓	✓	✓	✓	Intraoperative					
27.	(Adame, et al., 2018)	✓	✓	✓	✓	Intraoperative					
28.	(Dodangeh & Jahangir, 2018)	✓	✓	✓	✓	Intraoperative					
29.	(Zhou, et al., 2019)	✓	✓	✓	✓	Intraoperative					
30.	(Lwamo, et al., 2019)	✓	✓	✓	✓	Intraoperative					
Table 5 Classification of the research work on the basis of authentication component attributes

S.No.	Reference	Authentication	Activity recognition	Access control model	Healthcare monitoring	application
1	(Hamidi, 2019)	✓	✓	✓		
2	(Das, et al., 2018)	✓	✓	✓		
3	(Adame, et al., 2018)	✓		✓		
4	(Dodangeh & Jahangir, 2018)	✓				
5	(Zhou, et al., 2019)	✓	✓	✓		
6	(Lwamo, et al., 2019)	✓		✓		
7	(Nandhini & Radha, 2017)	✓	✓	✓		
8	(Challa, et al., 2018)	✓	✓	✓		
9	(Jiang, 2018)	✓	✓	✓		
10	(Wang, et al., 2015)	✓	✓	✓		
11	(Wu, et al., 2018)	✓				
12	(Wu, et al., 2017)	✓				
13	(Zhu, et al., 2018)	✓				
14	(Meena & Sharma, 2018)	✓	✓	✓		
15	(Amin, et al., 2018)	✓		✓		
16	(Wazid, et al., 2018)	✓	✓			
17	(Abas, et al., 2018)	✓	✓			
18	(Hamidi, 2019)	✓	✓			
19	(Mshali, et al., 2018)	✓	✓	✓		
20	(Chang, et al., 2018)	✓	✓	✓		
21	(Liu & Chung, 2017)	✓	✓			
22	(Shakil, et al., 2017)	✓	✓			
23	(Singh, et al., 2017)	✓	✓			
24	(Sujatha, K., & Panithavathani, 2018)	✓	✓			
25	(Wang, et al., 2018)	✓	✓			
26	(Wang, et al., 2017)	✓	✓			
27	(Pirbhulal, et al., 2018)	✓				
28	(Jiang, et al., 2017)	✓	✓			
29	(Hossain, et al., 2018)	✓	✓			
Collection: All 30 systems (see above) use pre-processed data [69] collected through sensors and cameras [46] [48]. The camera is the primary tool for the collection of data, generally raspberry pi or sparse camera. In the research of Abas et al. [2], visual is processed using a raspberry pi device with slugcam, while multi-camera networks are used in healthcare for the identification of complex events [2].

Data pre-processing: The systems were developed for access control in healthcare through monitoring in which pre-processing plays an important role. In the research of Yao et al [71], a biometric technique is used for security enhancement through which physical characteristics are identified using pre-processing of the image. Zhou et al. [30] tracked real-time objects using a wireless camera for image detection and pre-processing [74].

Feature extraction: Feature extraction is another major sub-component. Shakil et al. [15] extracted features using SigQuality software, which checks signatures, while Sujatha et al. used a noisy feature removal scheme [34].

Network communication: Network communication is the second major component of the CNA taxonomy which facilitates the intraoperative environment of the system and all systems rely on a network.

Line configuration: This is connecting system components with each other for transmission and receiving purposes. In-line security configuration is the a key attribute of security. In the research of Jiang et al., a point-to-point authentication protocol is used for access authorization that will provide security for health data [76].

Biometrics: Biometrics have been a focus for some systems, as for Hamidi et al. [14] and Abas et al. ho used Slugcam networking [36].

Connectivity: Connectivity is a significant component of overall systems security, facilitating communication between a data center and an end-user. Zhu et al. [31] used Wi-Fi-based wireless transmission to detect real-time objects [29].

The primary goal of network communication is to enhance the security of a network using biometrics and line configuration. If the connection between users is secure, overall security is enhanced [8].

Authentication: Authentication is the third major component of the CCA taxonomy. It provides detection intrusion through the identification of activities and facilitates access control [27].

Activity recognition: Activity recognition is the approach in which the user will identify the activities that will occur in healthcare. In the research of the consistency is attained using the energy-efficient fuzzy vault-based security method [17]. A noisy feature removal scheme is also be used in the context-aware healthcare service, which provides the visual information analysis to the data [34].

Access control: Access control is commonly used in healthcare to secure sensitive data. It allows access by authorized users only. Surveillance algorithms provide a defensive barrier using k-coverage [35].

System Components Validation and Evaluation

Validation demonstrates that a system has added value. All 30 publications here reviewed, evaluated, and validated their proposed system to some extent. Thus, most papers focused on either accuracy of security-based authentication techniques using cameras or efficiency (Table 6).
Table 6: Validation and the evaluation of Healthcare monitoring applications based on WCSNs

S.No.	Authors	Area/Domain	Validated or evaluated components	Criteria of study	Evaluation and validation method	Output results
1.	(Abas, et al., 2018)	Outdoor video monitoring	SlugCam networking	Slugcam software implementation	SlugCam	The networking functionality, energy-efficiency, onboard processing capabilities, and open system made this an effective approach to be used in a health monitoring system for monitoring the videos of the patients.
2.	(Hamidi, 2019)	Smart Healthcare using IoT	Network server	Authentication process	Biometric technique	The appropriate investigation is done in this work and proper analysis of biometric security is provided.
3.	(Mshali, et al., 2018)	Smart homes for health monitoring	Data acquisition through sensing	Data acquisition through Sensing	Multimedia devices (MDs)	The data filtering methods and aggregation approaches could have employed for the security purpose.
4.	(Chang, et al., 2018)	IoT applications	BRA Approach implementation	Problem Finding	Maximum Disjoint Paths (MDP)	Maximum Disjoint Paths (MDP) mechanism is considered to be a centralized optimal solution and the control packets of BRA is slightly reduced.
5.	(Liu & Chung, 2017)	Healthcare sector	Login phase	Registration phase	Data transmission mechanism	The account credentials, passwords are same that depicts the authenticity of the users and then access is granted which is not adequate enough.
6.	(Shakil, et al., 2017)	Biometric authentication of e-healthcare data	Pre-processing of the feature dataset	Pre-processing of the feature dataset	e-healthcare	This solution facilitates in overcoming the shortcoming related to the forgetting passwords and token theft through enhancing the accuracy rate for secure e-healthcare data access.
7.	(Nandhini & Radha, 2017)	Ensuring video privacy in the healthcare industry	Block division	Extract frames	Background subtraction method, Block selection process	the advancement made for reducing the storage needs by 92% and energy consumption by 53%.
8.	(Challa, et al., 2018)	User authentication in the healthcare sector	User revocation and re-registration phase	The System set-up phase	Key agreement protocol	This research will enhance the level of security with the ECC-based secure three-way authentication method.
No.	Authors	Title	Methodology	Solutions	Contributions	
-----	---------	-------	-------------	-----------	---------------	
9.	Jiang, 2018	Electric industrial context	Integration of low-level features	Track correspondence modeling, Sparse camera network-based video surveillance system, Global automatic and comprehensive analysis	Ideal sparsity camera network monitoring system, The solutions are not able to analyze the visual cues in the network.	
10.	Wang, et al., 2018	Security through efficient target tracking in the healthcare industry	Reducing the moving distance	Identification of tracking problem, Reducing the moving distance, Managing the target tracking	Wireless camera sensors, The given solution concentrates on managing the sensing range, security and tracking quality.	
11.	Wu, et al., 2018	Authentication in wireless sensor networks	Smart-card-based verification	Password-based authentication, Smart-card-based verification	Password-based techniques, smart-card-based verification, Effective authentication and verification	
12.	Wu, et al., 2017	properties analysis of healthcare applications	Ordering the events	Verification of the cryptographic protocols, Security testing	Cryptographic protocols, This work performs analysis and testing for the attaining of goal and ensures the verification of the security properties of the cryptographic protocols.	
13.	Zhu, et al., 2018	Secure monitoring in the healthcare sector	Target identification and real-time object recognition	Collection, Communication, Target identification and real-time object recognition	Wireless sensing network, The system is efficient as it ensures accurate detection of images and identification of real-time objects which are used for the secure monitoring of the patients in the field of medical industry.	
14.	Meena & Sharma, 2018	Secure data transmission in wireless sensor networks	Clustering process	Clustering process, Enabling end-to-end encryption, Creation of routing table	Clustering process, Security features enhanced.	
15.	Amin, et al., 2018	Authentication in wireless medical sensor networks	Medical professional and patient registration	Setup, Medical professional and patient registration, Login and authentication, Password change	AVISPA Tool, BAN logic, The study used the cryptographic hash function for the security purpose that takes 0.004ms which is quite less than the 0.1303ms which are consumed by the AES (Asymmetric encryption algorithm).	
16.	Wazid, et al., 2018	Authentication in WBANs in the field of health monitoring	User-registration	user registration, login, authentication & key agreement, password & biometric update, dynamic body sensor addition, mobile device revocation	3-factor authentication, 3-factor authentication, secure communication, semantic security, and enhanced network performance.	
17.	Singh, et al., 2017	Maximizing network lifetime in Wireless camera sensor network	Random deployment of sensors	Random deployment of sensors, Classification of Wireless camera sensor networks (WCNNs)	Wireless camera sensor networks (WCNNs), The random sensor deployment that utilizes low energy in the inactive state and its battery lasts longer contributes as essential factors for lifetime.	
No.	Authors/Reference	Domain/Problem	Approach	Taxonomy/Keywords		
-----	----------------------------	----------------	----------	---		
18.	(Sujatha, K. & Punithavathani, 2018)	Health monitoring	Feature extraction	Analyzing network lifetime, Genetic grey wolf optimizer (GGWO) algorithm, visual data with high sharp areas and then combines the data for producing an image with improving quality and high-level definition.		
19.	(Wang, et al. 2017)	Effective surveillance using WSNs	Analysis of barrier coverage formation problem	Cluster-based directional barrier graph model, The use of greedy movement algorithm helps in dealing with the gap and optimal approach for deployment is selected.		
20.	(Wang, et al. 2017)	WSNs for coverage problem	Model Construction	Probabilistic and directional models, It establishes an idea of non-deterministic problems related to coverage with uncertain features.		
21.	(Pirbhulal, et al., 2018)	Data consistency in telehealth monitoring	Gathering of health information	Fuzzy vault based biometric approach, the consumption of energy, it is by 1.423J and processing time by 0.168ms with an efficient detection rate of 91.3%		
22.	(Jiang, et al., 2017)	Wearable health monitoring systems (WHMSs)	Login and authentication phase	Wearable sensors, key agreement protocol, The solution has prevented security vulnerabilities and enhances security and efficient authenticity.		
23.	(Hossain, et al., 2018)	Medical health records protection	Adoption of Attributed-based Access Control model	OpenID standard, The processing of data is improved and the medical sensors are delegated and the delegation approach facilitates in reducing the consumption of energy and provides more security.		
24.	(Punj & Kumar, 2018)	WBANs in health monitoring	Data analysis	Wireless body area networks (WBANs), The solution is reliable and it provides the secure transmission of data and cluster is formed that facilitates in local processing and communicate using wireless connections.		
25.	(Hamidi, 2019)	Smart Healthcare using IoT	Web application	Biometric registration, The appropriate investigation is done in this work and proper analysis of biometric security is provided.		
	Authors and Year	Description	Taxonomy	Web application	Provenance	
---	----------------------------------	---	--	---	---	
26.	(Das, et al., 2018)	Authentication in healthcare applications	User Authentication	User authentication	the healthcare data and facilitate in managing secure access through the	
				Device authentication	process of user authentication and device authentication.	
				single-factor authentication scheme		
27.	(Adame, et al., 2018)	Monitoring in the healthcare environment	WSN	CUIDATS Wristband	Location sensor	
				RFID (Radio-frequency identification)		
				WSN (Wireless server network)		
				RFID-WSN integration		
28.	(Dodangeh & Jahangir, 2018)	Access control security or authenticity in WBAN	Intra-WBAN Transmissions	biometric security scheme	It is an effective solution as it uses secure key exchange protocol and	
				Inter-WBAN modules	the access control security in WBAN is improved.	
29.	(Zhou, et al., 2019)	Authentication in wireless sensor networks	Password-based authentication	Password-based authentication	This work has resulted in reducing the computation time, monitoring	
				Smart-card-based verification	time and communication costs that in total contributed to the effectiveness	
					in continuous health monitoring of the patients.	
30.	(Lwamo, et al., 2019)	Healthcare sector	Login phase	Registration phase	Wireless Healthcare sensor network (WHSN)	
				Login phase		
				Authentication phase		

Verification of the proposed system

Qualitative and quantitative methods have been used for the evaluation of the proposed model. The validity of authentication has been achieved through several security techniques. System components were compared with existing taxonomies.

System acceptance: An overlap test was conducted for CNA systems components to ensure terms and instances also occur in the literature that was analyzed (Table 2). However, the test is to some extent, qualitative since linguistic relationships are primarily dependent on context. The terms which overlap between the CNA and the provided corpus are shown in Table 6.

Completeness: To ensure system completeness, essential components and the subcomponents of the state-of-the-art papers were analyzed. Twenty-one papers between 2017 and 2018 developed a system. However, they generally did not consider security. Fig. 7 analyses the use of components and the subcomponents.
Fig. 7: Existing literature Components and classes
Discussion

The frequency with which CNA components occur in the literature is analyzed in Table 7 below.

Term	Frequency	Term	Frequency	Term	Frequency
Data integration	56	Camera	65	Authentication	72
Data mining	58	Biometric	75	Connectivity	84
Feature extraction	25	Line configuration	25	Access control	37
Activity recognition	36	Data Collection	68	Monitoring	57

In above table 7, the 24 most re-occurring terms are listed with the frequency in the 30 publications used in the research work.

Collection (Data pre-processing): Existing systems primarily used cameras and feature extraction in their work. Cameras were used to capture data, and feature extraction was carried out to provide authentication of medical data. Data pre-processing was not included by many researchers, with few of these using the technique for authentication.

Network communication (Connectivity): Connectivity was generally not considered, neither for authentication nor privacy of patient data.

Authentication (Activity recognition): Few existing systems referred to activity recognition.

Collection (Wearable technology): Wearable technology was generally not considered in existing systems. Wireless sensors and ECG signals may have been considered to be more critical.

Network communication (Wired connectivity): Wired connectivity is one of the oldest and most reliable technologies for connecting devices and systems, although it may cause a delay in communication and a slow rate of data transmission. Wired connectivity was not found in the existing works, presumably for that reason.

Authentication (Visual information analysis): Visual information analysis is not described by the authors in the research work.

Collection (Wearable technology): None of the existing research mentioned wearable technology however, this research suggests that only with the addition of wearable technology can complete data sensing coverage be achieved.

Network communication (Wired connectivity): The discussion section in the research report has proven that the component of the wired connectivity in the transmission and the storage of the collected data is not considered. However, it is known that the inclusion of the wired connectivity into the network will increase the efficiency of the model for transmission of the information.

Authentication (visual information analysis): Visual data collected from patients were not considered in the research models.

Conclusion

This study aimed to provide monitoring and security and privacy of medical data, whereby a server stores the data and access authority lies with medical personnel or patients. Data consists of input from wireless sensors and wearable devices which are processed on the server. A medical professional analysis the data, and remote healthcare monitoring can be provided.

The study provided a comprehensive systematic review of the current approaches and methods used for healthcare monitoring through wireless camera. Additionally, the study identified the limitations of the existing models arise from slow response time due to wired connectivity and the fact that theoretical and experimental results were not consistent. Future work is needed to decrease transmission time, as well as improve data collection methods authentication processes.
References

[1] Alsmirat, M. A., Jararweh, Y., Obaidat, I., & Gupta, B. B. (2017). Internet of surveillance: a cloud supported large-scale wireless surveillance system. *The Journal of Supercomputing, 73*(3), 973-992.

[2] Abas, K., Obrazcka, K., & Miller, L. (2018). Solar-powered, wireless smart camera network: An IoT solution for outdoor video monitoring. *Computer Communications, 118*, 217-233.

[3] Hossain, M. S., Muhammad, G., Rahman, S. M. M., Abdul, W., Alelaiwi, A., & Alamri, A. (2016). Toward end-to-end biometrics-based security for IoT infrastructure. *IEEE Wireless Communications, 23*(5), 44-51.6.

[4] Bhattacharyya, T., Saeed, K., Chaki, N., & Chaki, R. (2014). Bio-authentication for layered remote health monitor framework. *Journal of Medical Informatics & Technologies, 23*.

[5] Khan, F. A., Ali, A., Abbas, H., & Haldar, N. A. H. (2014). A cloud-based healthcare framework for security and patients' data privacy using wireless body area networks. *Procedia Computer Science, 34*, 511-517.

[6] Ogbanufe, O., & Kim, D. J. (2018). Comparing fingerprint-based biometrics authentication versus traditional authentication methods for e-payment. *Decision Support Systems, 106*, 1-14.

[7] Hammoudeh, M., & Newman, R. (2015). Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance. *Information Fusion, 22*, 3-15.

[8] Das, A. K. (2016). A secure and effective biometric-based user authentication scheme for wireless sensor networks using smart card and fuzzy extractor. *International Journal of Communication Systems, 30*(1).

[9] Moosavi, S. R., Gia, T. N., Rahmani, A. M., Nigussie, E., Virtanen, S., Isoaho, J., & Tenhunen, H. (2015). SEA: a secure and efficient authentication and authorization architecture for IoT-based healthcare using smart gateways. *Procedia Computer Science, 52*, 452-459.

[10] Mortazavi, B., Pourhomayoun, M., Ghasemzadeh, H., Jafari, R., Roberts, C. K., & Sarrafzadeh, M. (2015). Context-aware data processing to enhance quality of measurements in wireless health systems: An application to met calculation of exergaming actions. *IEEE Internet of Things Journal, 2*(1), 84-93.

[11] Wu, F., Gui, Y., Wang, Z., Gao, X., & Chen, G. (2016). A survey on barrier coverage with sensors. *Frontiers of Computer Science, 10*(6), 968-984.

[12] Tong, L., Dai, F., Zhang, Y., Li, J., & Zhang, D. (2011, November). Compressive sensing based video scrambling for privacy protection. In *2011 Visual Communications and Image Processing (VCIP)* (pp. 1-4). IEEE.

[13] He, D., Kumar, N., Wang, H., Wang, L., Choo, K. K. R., & Vinel, A. (2018). A provably-secure cross-domain handshake scheme with symptoms-matching for mobile healthcare social network. *IEEE Transactions on Dependable and Secure Computing, 15*(4), 633-645.

[14] Hamidi, H. "An approach to developing smart health using the Internet of Things and authentication based on biometric technology," *Future Generation Computer Systems, 91*, pp. 434-449., 2019.

[15] Shakil, K. A., Zareen, F. J., Alam, M., & Jabin, S. (2017). BAMHealthCloud: A biometric authentication and data management system for healthcare data in cloud. *Journal of King Saud
[16] Meena, U., & Sharma, A. (2018). Secure Key Agreement with Rekeying Using FLSO Routing Protocol in Wireless Sensor Network. *Wireless Personal Communications, 101*, 1177-1199.

[17] Pirbhulal, S., Shang, P., Wu, W., Sangaiah, A. K., Samuel, O. W., & Li, G. (2018). Fuzzy vault-based biometric security method for tele-health monitoring systems. *Computers & Electrical Engineering, 71*, 546-557.

[18] Challa, S., Das, A. K., Odelu, V., Kumar, N., Kumari, S., Khan, M. K., & Vasilakos, A. V. (2018). An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks. *Computers & Electrical Engineering, 69*, 534-554.

[19] Das, A. K., Zeadally, S., & He, D. (2018). Taxonomy and analysis of security protocols for Internet of Things. *Future Generation Computer Systems, 89*, 110-125.

[20] Amin, R., Islam, S. H., Biswas, G. P., Khan, M. K., & Kumar, N. (2018). A robust and anonymous patient monitoring system using wireless medical sensor networks. *Future Generation Computer Systems, 80*, 483-495.

[21] Qi, J., Hu, X., Ma, Y., & Sun, Y. (2015). A hybrid security and compressive sensing-based sensor data gathering scheme. *IEEE Access, 3*, 718-724.

[22] Punj, R., & Kumar, R. (2019). Technological aspects of WBANs for health monitoring: A comprehensive review. *Wireless Networks, 25*(3), 1125-1157.

[23] Nandhini, S. A., & Radha, S. (2017). Efficient compressed sensing-based security approach for video surveillance application in wireless multimedia sensor networks. *Computers & Electrical Engineering, 60*, 175-192.

[24] Hussein, A. F., Burbano-Fernandez, M., Ramírez-González, G., Abdulhay, E., & De Albuquerque, V. H. C. (2018). An automated remote cloud-based heart rate variability monitoring system. *IEEE Access, 6*, 77055-77064.

[25] Dodangeh, P., & Jahangir, A. H. (2018). A biometric security scheme for wireless body area networks. *Journal of Information Security and Applications, 41*, 62-74.

[26] Wang, T., Zeng, J., Bhuiyan, M. Z. A., Chen, Y., Cai, Y., Tian, H., & Xie, M. (2018). Energy-efficient relay tracking with multiple mobile camera sensors. *Computer Networks, 133*, 130-140.

[27] Jiang, Q., Ma, J., Yang, C., Ma, X., Shen, J., & Chaudhry, S. A. (2017). Efficient end-to-end authentication protocol for wearable health monitoring systems. *Computers & Electrical Engineering, 63*, 182-195.

[28] Zhou, L., Li, X., Yeh, K. H., Su, C., & Chiu, W. (2019). Lightweight IoT-based authentication scheme in cloud computing circumstance. *Future Generation Computer Systems, 91*, 244-251.

[29] Zhu, X., Ding, B., Li, W., Gu, L., & Yang, Y. (2018). On development of security monitoring system via wireless sensing network. *EURASIP Journal on Wireless Communications and Networking, 2018*(1), 221.

[30] Mshali, H., Lemlouma, T., Moloney, M., & Magoni, D. (2018). A survey on health monitoring systems for health smart homes. *International Journal of Industrial Ergonomics, 66*, 26-56.
[31] Wang, Y., Wu, S., Chen, Z., Gao, X., & Chen, G. (2017). Coverage problem with uncertain properties in wireless sensor networks: A survey. *Computer Networks, 123*, 200-232.

[32] Wu, F., Li, X., Sangaiah, A. K., Xu, L., Kumari, S., Wu, L., & Shen, J. (2018). A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. *Future Generation Computer Systems, 82*, 727-737.

[33] Chang, C. Y., Hsiao, C. Y., & Chang, C. T. (2018). QoS guaranteed surveillance algorithms for directional wireless sensor networks. *Ad Hoc Networks, 81*, 71-85.

[34] Sujatha, K., & Punithavathani, D. S. (2018). Optimized ensemble decision-based multi-focus image fusion using binary genetic Grey-Wolf optimizer in camera sensor networks. *Multimedia Tools and Applications, 77*(2), 1735-1759.

[35] Jiang, Z. "Camera network analysis for visual surveillance in electric industrial context.," *Journal of Visual Communication and Image Representation, 56*, pp. 201-206., 2018.

[36] Abas, K., Porto, C., & Obraczka, K. (2014). Wireless smart camera networks for the surveillance of public spaces. *Computer, 47*(5), 37-44.

[37] Wazid, M., Das, A. K., & Vasilakos, A. V. (2018). Authenticated key management protocol for cloud-assisted body area sensor networks. *Journal of Network and Computer Applications, 123*, 112-126.

[38] Singh, A., Rossi, A., & Sevaux, M. (2017). Heuristics for lifetime maximization in camera sensor networks. *Information Sciences, 385*, 475-491.

[39] Adame, T., Bel, A., Carreras, A., Melià-Seguí, J., Oliver, M., & Pous, R. (2018). CUIDATS: An RFID–WSN hybrid monitoring system for smart health care environments. *Future Generation Computer Systems, 78*, 602-615.

[40] Long, Y., Zhu, F., Shao, L., & Han, J. (2018). Face recognition with a small occluded training set using spatial and statistical pooling. *Information Sciences, 430*, 634-644.

[41] Khatoun, R., & Zeadally, S. (2016). Smart cities: concepts, architectures, research opportunities.
Commun. Acm, 59(8), 46-57.

[47] Bhattacharjee, D., & Bera, R. (2014). DEVELOPMENT OF SMART DETACHABLE WIRELESS SENSING SYSTEM FOR ENVIRONMENTAL MONITORING. International Journal on Smart Sensing & Intelligent Systems, 7(3).

[48] Liu, X. J., Chen, X. G., Li, Z. M., Du, N., & Tang, L. T. (2017, May). Development of a Wireless Security Monitoring System for CCEL. In International Conference on Mechatronics and Intelligent Robotics (pp. 75-82). Springer, Cham.

[49] Tan, S., Li, X., & Dong, Q. (2016). A trust management system for securing data plane of ad-hoc networks. IEEE Transactions on Vehicular Technology, 65(9), 7579-7592.

[50] Li, X., Niu, J., Kumari, S., Liao, J., Liang, W., & Khan, M. K. (2016). A new authentication protocol for healthcare applications using wireless medical sensor networks with user anonymity. Security and Communication Networks, 9(15), 2643-2655.

[51] Wang, Y., & Cao, G. (2011, May). Barrier coverage in camera sensor networks. In Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc Networking and Computing (p. 12). ACM.

[52] Islam, S. H., & Biswas, G. P. (2015). Design of two-party authenticated key agreement protocol based on ECC and self-certified public keys. Wireless Personal Communications, 82(4), 2727-2750.

[53] Numerical solution of systems of second-order boundary value problems using a continuous genetic algorithm

[54] Ayatollahitafti, V., Ngadi, M. A., bin Mohamad Sharif, J., & Abdullahi, M. (2016). An efficient next hop selection algorithm for multi-hop body area networks. PloS one, 11(1), e0146464.

[55] Chaurasia, S. N., & Singh, A. (2014). A hybrid evolutionary approach to the registration area planning problem. Applied intelligence, 41(4), 1127-1149.

[56] Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., & Shamshirband, S. (2017). Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egyptian Informatics Journal, 18(2), 113-122.

[57] Zhi-she, W., Feng-bao, Y., Zhi-hao, P., Lei, C., & Li-e, J. (2015). Multi-sensor image enhanced fusion algorithm based on NSST and top-hat transformation. Optik, 126(23), 4184-4190.

[58] Li, Y., Jiang, Y., Gao, L., & Fan, Y. (2015). Fast mutual modulation fusion for multi-sensor images. ,,LNM, 126(1), 107-111.

[59] Shen, J., Wang, Z., & Wang, Z. (2015). Fault tolerant line-based barrier coverage formation in mobile wireless sensor networks. International Journal of Distributed Sensor Networks, 11(10), 930585

[60] Wang, Q., Ren, K., Yu, S., & Lou, W. (2011). Dependable and secure sensor data storage with dynamic integrity assurance. ACM Transactions on Sensor Networks (TOSN), 8(1), 9.

[61] Rodrigues, M. B., Da Nóbrega, R. V. M., Alves, S. S. A., Rebouças Filho, P. P., Duarte, J. B. F., Sangaiah, A. K., & De Albuquerque, V. H. C. (2018). Health of things algorithms for malignancy level classification of lung nodules. IEEE Access, 6, 18592-18601.
[62] Lai, Y. L., & Jiang, J. R. (2012, September). Barrier coverage with optimized quality for wireless sensor networks. In The 15th International Symposium on Wireless Personal Multimedia Communications (pp. 192-196). IEEE

[63] Hossain, M., Islam, S. R., Ali, F., Kwak, K. S., & Hasan, R. (2018). An Internet of Things-based health prescription assistant and its security system design. Future Generation Computer Systems, 82, 422-439.

[64] Fu, Z., Wu, X., Guan, C., Sun, X., & Ren, K. (2016). Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Transactions on Information Forensics and Security, 11(12), 2706-2716.

[65] Wang, D., He, D., Wang, P., & Chu, C. H. (2015). Anonymous two-factor authentication in distributed systems: certain goals are beyond attainment. IEEE Transactions on Dependable and Secure Computing, 12(4), 428-442.

[66] M. & S. D. Ambigavathi, "Priority-based AODV routing protocol for critical data in Wireless Body Area Network.," In Signal Processing, Communication and Networking (ICSCN), 2015 3rd International Conference on. IEEE.

[67] J. Elias, "Optimal design of energy-efficient and cost-effective wireless body area networks.," Ad Hoc Networks, 13, , pp. 560-574., 2014.

[68] , G., Preda, Ş., Stanciu, A., & Florian, V. (2017, June). A Cloud-IoT based sensing service for health monitoring. In 2017 E-Health and Bioengineering Conference (EHB) (pp. 53-56). IEEE.

[69] M. & S. R. Karuppiah, " A secure authentication scheme with user anonymity for roaming service in global mobility networks.," Wireless Personal Communications, 84(3), , pp. 2055-2078., 2015.

[70] Wazid, M., Das, A. K., Odelu, V., Kumar, N., & Susilo, W. (2017). Secure remote user authenticated key establishment protocol for smart home environment. IEEE Transactions on Dependable and Secure Computing.

[71] D. & W. T. Y. Tao, "A survey on barrier coverage problem in directional sensor networks.," IEEE sensors journal, 15(2), , pp. 876-885., 2015.

[72] Ji, W., Li, L., & Zhou, W. (2018). Design and Implementation of a RFID Reader/Router in RFID-WSN Hybrid System. Future Internet, 10(11), 106.

[73] Zhang, G. H., Poon, C. C., & Zhang, Y. T. (2010, August). A fast key generation method based on dynamic biometrics to secure wireless body sensor networks for p-health. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 2034-2036). IEEE.

[74] Nedelcu, A. V., Stoianovici, V. C., & Szekely, I. (2011). Energy-efficient integration of WSNs with active RFID systems. Bulletin of the Transilvania University of Brasov. Engineering Sciences. Series I, 4(1), 127.

[75] M. F. M. & B. B. A. Mana, "Trust Key Management Scheme for Wireless Body Area Networks.," IJ Network Security, 12(2), , pp. 75-83., 2011.

[76] Jiang, Q., Ma, J., Li, G., & Li, X. (2015). Improvement of robust smart-card-based password authentication scheme. International Journal of Communication Systems, 28(2), 383-393.

[77] Wu, T., Wu, F., Redouté, J. M., & Yuce, M. R. (2017). An autonomous wireless body area network.
implementation towards IoT connected healthcare applications. *Access, 5*, 11413-11422.

[78] Khan, M. K., & Kumari, S. (2014). An improved user authentication protocol for healthcare services via wireless medical sensor networks. *International Journal of Distributed Sensor Networks, 10*(4), 347169.

[79] F. X. L. K. S. &. L. X. Wu, "An improved and anonymous two-factor authentication protocol for health-care applications with wireless medical sensor networks.," *Multimedia Systems, 23*(2)., pp. 195-205., 2017.

[80] Mortazavi, B., Pourhomayoun, M., Ghasemzadeh, H., Jafari, R., Roberts, C. K., & Sarrafzadeh, M. (2015). Context-aware data processing to enhance quality of measurements in wireless health systems: An application to met calculation of exergaming actions. *IEEE Internet of Things Journal, 2*(1), 84-93.

[81] Tong, L., Dai, F., Zhang, Y., Li, J., & Zhang, D. (2011, November). Compressive sensing based video scrambling for privacy protection. In *2011 Visual Communications and Image Processing (VCIP)* (pp. 1-4). IEEE.
