Pointwise convergence problem of Ostrovsky equation with rough data and random data

Wei Yana, Qiaoqiao Zhanga, Jinqiao Duanb, Meihua Yangc*

aSchool of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, China

bDepartment of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA

cSchool of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Abstract. In this paper, we consider the pointwise convergence problem of free Ostrovsky equation with rough data and random data. Firstly, we show the almost everywhere pointwise convergence of free Ostrovsky equation in $H^s(\mathbb{R})$ with $s \geq \frac{1}{4}$ with rough data. Secondly, we present counterexamples showing that the maximal function estimate related to the free Ostrovsky equation can fail if $s < \frac{1}{4}$. Finally, for every $x \in \mathbb{R}$, we show the almost surely pointwise convergence of free Ostrovsky equation in $L^2(\mathbb{R})$ with random data. The main tools are the density theorem, high-low frequency idea, Wiener decomposition and Lemmas 2.1-2.6 as well as the probabilistic estimates of some random series which are just Lemmas 3.2-3.4 in this paper. The main difficulty is that zero is the singular point of the phase functions of free Ostrovsky equation. We use high-low frequency idea to conquer the difficulties.

Keywords: Pointwise convergence; Free Ostrovsky equation; Rough data; Random data

Corresponding Author: Meihua Yang

Email Address: yangmeih@hust.edu.cn

AMS Subject Classification: 42B25; 42B15; 35Q53
1. Introduction

Ostrovsky equation

\[u_t + \partial_x^3 u \pm \partial_x^{-1} u + uu_x = 0. \]

(1.1)

was proposed by Ostrovsky [27, 28, 59] as a model for weakly nonlinear long waves in a rotating liquid, by taking into account of the Coriolis force. It describes the propagation of surface waves in the ocean in a rotating frame of reference. Some people have investigated the Cauchy problem for the Ostrovsky equation [15, 29, 30, 32, 34–38, 45, 46, 64, 69, 70].

In this paper, we investigate the pointwise convergence problem of the free Ostrovsky equation

\[u_t + \partial_x^3 u \pm \partial_x^{-1} u = 0, \]

(1.2)

\[u(x, 0) = f(x). \]

(1.3)

The pointwise converge problem was initiated by Carleson [11], more precisely, Carleson showed pointwise convergence problem of the one dimensional Schrödinger equation in \(H^s(\mathbb{R}) \) with \(s \geq \frac{1}{4} \). Dahlberg and Kenig [19] showed that the pointwise convergence of the Schrödinger equation does not hold for \(s < \frac{1}{4} \) in any dimension. Dahlberg and Kenig [19] and Kenig et al. [39, 40] have proved that the pointwise convergence problem of KdV equation holds if and only if \(s \geq \frac{1}{4} \). The pointwise convergence problem of Schrödinger equations in higher dimension have been investigated by some authors, for example, see [4, 7, 14, 18, 20, 25, 26, 43, 47, 48, 52, 62, 63, 65, 66, 68, 71]. Bourgain [8] presented counterexamples showing that \(s < \frac{n}{2(n+1)}, n \geq 2 \) is the necessary condition for the pointwise convergence problem of \(n \) dimensional Schrödinger. Du et al. [23] proved that the pointwise convergence problem of two dimensional Schrödinger equation in \(H^s(\mathbb{R}^2) \) with \(s > \frac{1}{3} \). Du and Zhang [24] proved that the pointwise convergence problem of \(n \) dimensional Schrödinger equation in \(H^s(\mathbb{R}^n) \) with \(s > \frac{n}{2(n+1)}, n \geq 3 \). Thus, \(\frac{n}{2(n+1)}, n \geq 2 \) is optimal for the pointwise convergence problem of the Schrödinger equation.

Miao et al. [50, 51] studied the the maximal inequality for 2D fractional order Schrödinger operators and maximal estimates for Schrödinger equation with inverse-square potential. Lee [44] showed that the local Kato type smoothing estimates are essentially equivalent to the global Kato type smoothing estimates for some class of dispersive equations including the Schrödinger equation.
Very recently, Compaan et al. [16] applied randomized initial data to study pointwise convergence of the Schrödinger flow. The method of the suitably randomized initial data originated from Lebowitz-Rose-Speer [42] and Bourgain [5, 6] and Burq-Tzvetkov [9, 10]. Some authors applied the method to study nonlinear dispersive equations and hyperbolic equations in scaling super-critical regimes, for example, see [1–3, 12, 13, 17, 20, 21, 31, 33, 41, 49, 53–58, 61, 72, 73].

In this paper, motivated by [16, 22, 39, 40], we investigate the pointwise convergence problem of free Ostrovsky equation with rough data and random data. Firstly, we show the pointwise convergence problem of free Ostrovsky equation with data in \(H^s(\mathbb{R}) \) \((s \geq \frac{1}{4})\). Secondly, we present the counterexample showing that the maximal function estimate related to Ostrovsky equation does not hold if \(s < \frac{1}{4} \). Finally, for every \(x \in \mathbb{R} \), we show the almost surely pointwise convergence of free Ostrovsky equation in \(L^2(\mathbb{R}) \) with random data. Note that, the phase function of free Ostrovsky equation is \(\xi^3 \pm \frac{1}{\xi} \), hence, zero is the singular point of the phase functions of free Ostrovsky equation, which caused the main difficulty of this paper. We use high-low frequency idea to conquer the difficulties.

We present some notations before stating the main results. \(|E| \) denotes by the Lebesgue measure of set \(E \).

\[
\mathcal{F}_x f(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ix\xi} f(x) dx,
\]

\[
\mathcal{F}_x^{-1} f(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ix\xi} f(x) dx,
\]

\[
U(t) u_0 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ix\xi + it(\xi^3 \pm \frac{1}{\xi})} \mathcal{F}_x u_0(\xi) d\xi,
\]

\[
D_t^\alpha U(t) u_0 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left| \xi^\alpha \right| e^{i\xi^3 \pm i\xi} \mathcal{F}_x u_0(\xi) d\xi,
\]

\[
D_x^\alpha u_0 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left| \xi \right|^{\alpha} e^{i\xi^3} \mathcal{F}_x u_0(\xi) d\xi,
\]

\[
\| f \|_{L^q_x L^p_t} = \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x, t)|^p dt \right)^{\frac{q}{p}} dx \right)^{\frac{1}{q}},
\]

\[
H^s(\mathbb{R}) = \left\{ f \in H^s(\mathbb{R}) \mid f \in \mathcal{S}(\mathbb{R}) : \| f \|_{H^s(\mathbb{R})} = \| \langle \xi \rangle^s \mathcal{F}_x f \|_{L^2(\mathbb{R})} < \infty \right\}, \text{ where } \langle \xi \rangle^s = (1 + \xi^2)^{\frac{s}{2}} \text{ for any } \xi \in \mathbb{R}. \]

Let \(\phi \) be a smooth bump function such that \(\phi(\xi) = 1 \) for
\[\xi \leq 1 \text{ and } \phi(\xi) = 0 \text{ for } |\xi| > 2. \] Then, we define for every dyadic integer \(N \in 2\mathbb{Z} \),

\[
\mathcal{F}_x P_N f(\xi) = \left[\phi\left(\frac{\xi}{N}\right) - \phi\left(\frac{2\xi}{N}\right) \right] \mathcal{F}_x f(\xi),
\]

\[
\mathcal{F}_x P_{\leq N} f(\xi) = \phi\left(\frac{\xi}{N}\right) \mathcal{F}_x f(\xi),
\]

\[
\mathcal{F}_x P_{\geq N} f(\xi) = \left[1 - \phi\left(\frac{\xi}{N}\right) \right] \mathcal{F}_x f(\xi).
\]

Now we introduce the randomization procedure for the initial data, which can be seen in [1, 2, 46, 73]. Let \(\psi \in \mathcal{S}(\mathbb{R}) \) be an even, non-negative bump function with \(\text{supp}(\psi) \subseteq [0, 1] \) and such that

\[
\sum_{k \in \mathbb{Z}} \psi(\xi - k) = 1, \xi \in \mathbb{R}. \quad (1.4)
\]

For every \(k \in \mathbb{Z} \), we define the function \(\psi(D - k)f : \mathbb{R} \to \mathbb{C} \) by

\[
(\psi(D - k)f)(x) = \mathcal{F}^{-1}\left(\psi(\xi - k)\mathcal{F}f\right)(x), \ x \in \mathbb{R}.
\]

We will crucially exploit that these projections satisfy a unit-scale Bernstein inequality, namely that for all \(2 \leq p_1 \leq p_2 \leq \infty \), there exists \(C \equiv C(p_1, p_2) > 0 \) such that for all \(f \in L^2(\mathbb{R}) \) and for all \(k \in \mathbb{Z} \),

\[
\|\psi(D - k)f\|_{L^{p_2}(\mathbb{R})} \leq C \|\psi(D - k)f\|_{L^{p_1}(\mathbb{R})} \leq C \|\psi(D - k)f\|_{L^2(\mathbb{R})}. \quad (1.5)
\]

Let \(\{g_k\}_{k \in \mathbb{Z}} \) be a sequence of independent, zero-mean, complex-valued Gaussian random variables on a probability space \((\Omega, \mathcal{A}, \mathbb{P}) \), where the real and imaginary parts of \(g_k \) are independent and endowed with probability distributions \(\mu^1_k \) and \(\mu^2_k \) respectively. Assume that there exists \(c > 0 \) such that

\[
\left| \int_{-\infty}^{+\infty} e^{\gamma x} d\mu^j_k(x) \right| \leq e^{c\gamma^2}, \quad (1.6)
\]

for all \(\gamma \in \mathbb{R}, k \in \mathbb{Z}, j = 1, 2 \). Thereafter for a given \(f \in H^s(\mathbb{R}) \), we define its randomization by

\[
f^\omega := \sum_{k \in \mathbb{Z}} g_k(\omega)\psi(D - k)f. \quad (1.7)
\]

We define

\[
\|f\|_{L^p_\omega(\Omega)} = \left[\int_{\Omega} |f(\omega)|^p dP(\omega) \right]^{\frac{1}{p}}.
\]
Obviously, $\|f^\omega\|_{H^s} = \|f\|_{H^s}$. We will restrict ourselves to a subset $\sum \subset \Omega$ with $P(\sum) = 1$ such that $f^\omega \in H^s$ for every $\omega \in \Omega$. It is easy to see that, if $f \in H^s(\mathbb{R})$, then the randomized function f^ω is almost surely in $H^s(\mathbb{R})$, see Lemma 2.2 in [2]. This randomization improved the integrability of f, see Lemma 2.3 of [2]. Such results for random Fourier series are known as Paley-Zygmund’s theorem [60].

Theorem 1.1. Let $f \in H^s(\mathbb{R})$ with $s \geq \frac{1}{4}$. Then, we have

$$\lim_{t \to 0} U(t)f(x) = f(x)$$

almost everywhere.

Theorem 1.2. The inequality

$$\|U(t)f\|_{L^1L^\infty} \leq C\|f\|_{H^s(\mathbb{R})}$$

does not hold if $s < \frac{1}{4}$.

Theorem 1.3. Let $f \in L^2(\mathbb{R})$ and f^ω be a randomization of f as defined in (1.7). Then, for every $x \in \mathbb{R}$, we have

$$U(t)f^\omega(x) \longrightarrow f^\omega(x)$$

almost surely as $t \to 0$. More precisely, $\forall \epsilon > 0$, $f \in L^2(\mathbb{R})$, $\alpha = 2C\epsilon \left[\ln \frac{C_2}{\epsilon}\right]^\frac{1}{2}$, when $|t| < \delta\epsilon$, there exists a set $\omega \in E^c_\alpha \subset \Omega$ such that $\forall \omega \in E^c_\alpha$

$$|U(t)f^\omega - f^\omega| < 2C\epsilon \ln \left[\frac{C_2}{\epsilon}\right]^\frac{1}{2}. \quad (1.11)$$

Here,

$$E_\alpha = \{\omega \in \Omega : |U(t)f^\omega - f^\omega| > \alpha\}.$$ \quad (1.12)

and $\mathbb{P}(E^c_\alpha) \geq 1 - \epsilon$.

Remark 1. From Theorem 1.1-1.3, we know that $s = \frac{1}{4}$ is optimal for the pointwise convergence problem of Ostrovsky equation with rough data, and the pointwise convergence problem of Ostrovsky equation with random data requires less regularity of the initial data than the pointwise convergence problem of Ostrovsky equation with rough data. Obviously,

$$\lim_{\epsilon \to 0} \alpha = \lim_{\epsilon \to 0} 2C\epsilon \left[\ln \frac{C_2}{\epsilon}\right]^\frac{1}{2} = 0 \quad (1.13)$$
and $\alpha = o(\epsilon^4)$.

Remark 2. Firstly, we present the outline of the proof of Theorem 1.1. We use the high-low frequency idea to overcome the main difficult case by the phase function $\xi^3 \pm \frac{1}{\xi}$ of the Ostrovsky equation, which caused that zero is the singular point. More precisely, by density theorem which is just Lemma 2.2 in [22], for $f \in H^s(\mathbb{R})$ with $s \geq \frac{1}{4}$, we have $f = g + h$, where g is a rapidly decreasing function, $\|h\|_{H^s(\mathbb{R})} < \epsilon$. Then we need to prove

$$|U(t)g - g| \rightarrow 0, \quad (1.14)$$

and

$$|U(t)h - h| \rightarrow 0 \quad (1.15)$$

respectively, as t goes to zero.

However, due to the complicated structure of the phase function of the Ostrovsky equation, we can not completely follow the method of Lemma 2.3 in [22] to prove (1.14). We use high-low frequency idea to conquer the difficulties. More precisely, we prove

$$|U(t)P_{\geq 8g} - P_{\geq 8g}| \rightarrow 0$$

and

$$|U(t)P_{\leq 8g} - P_{\leq 8g}| \rightarrow 0$$

as t goes to zero since

$$U(t)g - g = U(t)P_{\geq 8g} - P_{\geq 8g} + U(t)P_{\leq 8g} - P_{\leq 8g}. \quad (1.16)$$

Following the method of Lemma 2.3 in [22], we prove

$$|U(t)P_{\geq 8g} - P_{\geq 8g}| \rightarrow 0$$

as t goes to zero since $|\xi^3 \pm \frac{1}{\xi}| \sim |\xi|^3$ for $|\xi| \geq 8$. For the detail of (1.16), we refer the readers to Lemma 2.3 in this paper.

And then, by using a delicate analysis, we establish

$$|U(t)P_{\leq 8g} - P_{\leq 8g}| \rightarrow 0 \quad (1.17)$$

as t goes to zero with the aid of Lemma 2.2 established in this paper. More precisely, $\forall \epsilon > 0$, there exists $\delta > 0$ such that

$$|U(t)P_{\leq 8g} - P_{\leq 8g}| \leq \epsilon + \frac{C|t|}{\delta}. \quad (1.18)$$
Similarly, due to the complicated structure of the Ostrovsky equation, we also can not completely follow the method of Lemma 2.3 in [39, 40] to prove (1.15).

Since we can prove
\[\|U(t)P_{\geq s}h\|_{L^4_tL^\infty_x} \leq C\|h\|_{H^4_t(R)}, \]
which is just Lemma 2.1 in this paper, following the method of Lemma 2.3 in [39, 40], we prove
\[|U(t)P_{\geq s}h - P_{\geq s}h| \to 0 \]
as \(t \) goes to zero.

By using Lemma 2.2 in this paper, we also can prove
\[|U(t)P_{\leq s}h - P_{\leq s}h| \leq \epsilon + \frac{C|t|\|h\|_{H^4_t(R)}}{\delta} \leq \epsilon + \frac{C|t|\epsilon}{\delta}. \]

From (1.17)-(1.21), as \(t \to 0 \), we have
\[U(t)f \to f. \]
This completes the proof of Theorem 1.1.

Secondly, for the proof of Theorem 1.2, by presenting particular initial data, we can prove that the maximal function inequality is invalid for \(s < \frac{1}{4} \).

Finally, we present the proof of Theorem 1.3. More precisely, for \(f \in L^2(R) \) and \(\forall \epsilon > 0 \), since rapidly decreasing functions are dense in \(L^2(R) \), we write \(f = g + h \), where \(g \) is a rapidly decreasing function and \(\|u\|_{L^2(R)} < \epsilon \). Obviously, \(f^\omega = g^\omega + h^\omega \), then we get
\[U(t)f^\omega \to f. \]

Here, \(f^\omega \) is defined as in (1.7). By using Lemma 3.1 and high-low frequency technique, since \(g \) is a rapidly decreasing function, we have
\[\mathbb{P}\left(\left\{ \omega \in \Omega : |U(t)g^\omega - g^\omega| > \frac{\alpha}{2} \right\} \right) \leq C_1 e^{-\left(\frac{\alpha}{C_C^2\|h\|_{L^2}}\right)^2}. \]

For the details of proof, we refer the readers to Lemma 3.2. By using Lemmas 3.1, 2.6, we have
\[\mathbb{P}\left(\left\{ \omega \in \Omega : |U(t)h^\omega| > \frac{\alpha}{4} \right\} \right) \leq C_1 e^{-\left(\frac{\alpha}{C_C\|h\|_{L^2}}\right)^2} \leq C_1 e^{-\left(\frac{\alpha}{C_C}\right)^2}. \]
For the details of proof, we refer the readers to Lemma 3.3. By using Lemmas 3.1, 2.5, we have
\[
P \left(\{ \omega \in \Omega : |h\omega| > \frac{\alpha}{4} \} \right) \leq C_1 e^{-\left(\frac{\alpha}{c|\xi|}x_2^2\right)} \leq C_1 e^{-\left(\frac{\alpha}{c\epsilon}\right)^2}. \tag{1.26}
\]
Thus, combining (1.23) with (1.24)-(1.26), when \(|t| < \delta\epsilon\), \(\alpha = 2Ce\epsilon \left[\ln\frac{3C_1}{\epsilon}\right]^\frac{1}{2}\), \(\forall x \in \mathbb{R}\), we have
\[
P \left(\{ \omega \in \Omega : |U(t)P_{\geq s}f - f\omega| > \alpha \} \right)
\leq P \left(\{ \omega \in \Omega : |U(t)g\omega - g\omega| > \frac{\alpha}{2} \} \right) + P \left(\{ \omega \in \Omega : |U(t)h\omega| > \frac{\alpha}{4} \} \right)
\leq C_1 e^{-\left(\frac{\alpha}{c|\xi|e}\right)^2} + 2C_1 e^{-\left(\frac{\alpha}{c\epsilon e}\right)^2}
\leq C_1 e^{-\left(\frac{\alpha}{c\epsilon e}\right)^2} + 2C_1 e^{-\left(\frac{\alpha}{c\epsilon e}\right)^2} \leq 3C_1 e^{-\left(\frac{\alpha}{c\epsilon e}\right)^2} \leq \epsilon. \tag{1.27}
\]
This completes the proof of Theorem 1.3.

2. Preliminaries

In this section, we present some preliminaries related to Ostrovsky equation. More precisely, Lemmas 2.1-2.3 are used to establish Theorem 1.1. Lemmas 2.4-2.6 are used to establish Theorem 1.3.

Lemma 2.1. (Strichartz estimate related to Ostrovsky equation) For \(f \in H^{\frac{1}{4}}(\mathbb{R})\), we have
\[
\|U(t)P_{\geq s}f\|_{L_t^4 L_x^\infty} \leq C \|f\|_{H^{\frac{1}{4}}(\mathbb{R})}. \tag{2.1}
\]
For the proof of Lemma 2.1, we refer the readers to (2.2) of [30].

Lemma 2.2. (Estimate related to Ostrovsky equation with low frequency) \(\forall \epsilon > 0\) and \(g \in L^2(\mathbb{R})\), there exists \(\delta > 0\) such that
\[
|U(t)P_{\leq s}g - P_{\leq s}g| \leq \epsilon + \frac{C|t|}{\delta} \|g\|_{L^2(\mathbb{R})}. \tag{2.2}
\]
Proof. \(\forall \epsilon > 0\), since \(g \in L^2(\mathbb{R})\), there exists \(\delta > 0(< \frac{1}{2})\) such that
\[
\left[\int_{|\xi| \leq \delta} |\mathcal{F}_x g(\xi)|^2 d\xi \right]^\frac{1}{2} \leq \epsilon. \tag{2.3}
\]
By using the Cauchy-Schwartz inequality and (2.3), we have
\[
\int_{|\xi| \leq \delta} |\mathcal{F}_x g(\xi)| d\xi = \left[\int_{|\xi| \leq \delta} |\mathcal{F}_x g(\xi)|^2 d\xi \right]^\frac{1}{2} (2\delta)^\frac{1}{2} \leq \epsilon. \tag{2.4}
\]
By using the Cauchy-Schwartz inequality, we have
\[
\int_{|\xi| \leq 8} |\mathcal{F}_x g(\xi)|d\xi \leq \left[\int_{|\xi| \leq 8} |\mathcal{F}_x g(\xi)|^2 d\xi \right]^{\frac{1}{2}} \left[\int_{|\xi| \leq 8} d\xi \right]^{\frac{1}{2}}.
\]
\[
\leq 3 \left[\int_{|\xi| \leq 8} |\mathcal{F}_x g(\xi)|^2 d\xi \right]^{\frac{1}{2}} \leq 3 \| g \|_{L^2(\mathbb{R})}. \tag{2.5}
\]

For \(\delta \leq |\xi| \leq 8 \), we have
\[
|e^{it(\xi^3 + \frac{1}{\xi})} - 1| \leq |t| \left| \xi^3 \pm \frac{1}{\xi} \right| \leq \frac{C|t|}{|\xi|} \leq \frac{C|t|}{\delta}. \tag{2.6}
\]

Thus, from (2.3)-(2.6), we have
\[
|U(t)P_{\leq 8g} - P_{\leq 8g}| = \left| \int_{|\xi| \leq 8} e^{ix\xi} \left[e^{it(\xi^3 + \frac{1}{\xi})} - 1 \right] \mathcal{F}_x g(\xi) d\xi \right|
\]
\[
\leq \left| \int_{|\xi| \leq \delta} e^{ix\xi} \left[e^{it(\xi^3 + \frac{1}{\xi})} - 1 \right] \mathcal{F}_x g(\xi) d\xi \right|
\]
\[
+ \left| \int_{\delta \leq |\xi| \leq 8} e^{ix\xi} \left[e^{it(\xi^3 + \frac{1}{\xi})} - 1 \right] \mathcal{F}_x g(\xi) d\xi \right|
\]
\[
\leq \int_{|\xi| \leq \delta} |\mathcal{F}_x g(\xi)| d\xi + C|t| \int_{\delta \leq |\xi| \leq 8} \frac{1}{|\xi|} |\mathcal{F}_x g(\xi)| d\xi
\]
\[
\leq \epsilon + \frac{C|t|}{\delta} \int_{|\xi| \leq 8} |\mathcal{F}_x g(\xi)| d\xi
\]
\[
\leq \epsilon + \frac{C|t|}{\delta} \| g \|_{L^2}. \tag{2.7}
\]

This completes the proof of Lemma 2.2.

Lemma 2.3. *(Estimate related to Ostrovsky equation with high frequency)* Let \(g \) be a rapidly decreasing function. Then, we have
\[
|U(t)P_{\geq 8g} - P_{\geq 8g}| \leq C|t|. \tag{2.8}
\]

Proof. Since \(g \) is a rapidly decreasing function, we have
\[
|U(t)P_{\geq 8g} - P_{\geq 8g}| = \left| \int_{|\xi| \geq 8} e^{ix\xi} \left[e^{it(\xi^3 + \frac{1}{\xi})} - 1 \right] \mathcal{F}_x g(\xi) d\xi \right|
\]
\[
\leq \left| \int_{|\xi| \geq 8} e^{ix\xi} \left[e^{it(\xi^3 + \frac{1}{\xi})} - 1 \right] \mathcal{F}_x g(\xi) d\xi \right|
\]
\[
\leq C|t| \int_{|\xi| \geq 8} \left| \xi^3 \pm \frac{1}{\xi} \right| |\mathcal{F}_x g(\xi)| d\xi
\]
\[
\leq C|t| \int_{|\xi| \geq 8} |\xi|^3 |\mathcal{F}_x g(\xi)| d\xi \leq C|t|. \tag{2.9}
\]

This completes the proof of Lemma 2.3.
Lemma 2.4. *(Estimates related to frequency-uniform decomposition)* \(\forall \epsilon > 0, \ |k| \leq 8 \) and let \(g \) be a rapidly decreasing function, there exists \(\delta > 0 (< \frac{1}{2}) \) such that
\[
|U(t)\psi(D - k)g - \psi(D - k)g| \leq \epsilon + \frac{C|t|}{\delta}.
\]

Proof. \(\forall \epsilon > 0 \), there exists \(\delta > 0 \) such that
\[
\left[\int_{|\xi| \leq \delta} |\xi|^{2\epsilon} |\mathcal{F}_x g(\xi)|^2 d\xi \right]^\frac{1}{2} \leq \frac{\epsilon}{2}.
\]

Thus, by using the Cauchy-Schwartz inequality, we have
\[
\int_{|\xi| \leq \delta} |\mathcal{F}_x g(\xi)| d\xi \leq \left[\int_{|\xi| \leq \delta} |\xi|^{2\epsilon} |\mathcal{F}_x g(\xi)|^2 d\xi \right]^\frac{1}{2} \leq \frac{\epsilon}{2}.
\]

For \(\delta \leq |\xi| \leq 1 \), we have
\[
|e^{it(\xi^3 \pm \frac{1}{\xi})} - 1| \leq |t| \left| \xi^3 \pm \frac{1}{\xi} \right| \leq \frac{C|t|}{|\xi|} \leq \frac{C|t|}{\delta}.
\]

Thus, from (2.12)-(2.13), we have
\[
|U(t)\psi(D - k)f - \psi(D - k)f| \leq \epsilon + \frac{C|t|}{\delta} \int_{\mathbb{R}} |\mathcal{F}_x g(\xi)| d\xi \leq \epsilon + \frac{C|t|}{\delta}.
\]

This completes the proof of Lemma 2.4.

Lemma 2.5. For \(f \in L^2(\mathbb{R}) \), we have
\[
\left[\sum_{k \in \mathbb{Z}} |\psi(D - k)f|^2 \right]^\frac{1}{2} \leq \|f\|_{L^2(\mathbb{R})}.
\]

Proof. To obtain (2.15), it suffices to prove
\[
\sum_{k \in \mathbb{Z}} |\psi(D - k)f|^2 \leq \|f\|_{L^2(\mathbb{R})}^2.
\]
By using the Cauchy-Schwarz inequality with respect to ξ, since $\text{supp} \psi \subset B(0,1)$ we have

\[
\sum_{k \in \mathbb{Z}} |\psi(D - k)f|^2 = \frac{1}{(2\pi)^n} \sum_{k \in \mathbb{Z}} \left| \int_{\mathbb{R}} e^{i \sum_{j=1}^{n} x_j \xi_j} \psi(\xi - k) \mathcal{F}_x f(\xi) d\xi \right|^2
\]

\[
= \frac{1}{(2\pi)^n} \sum_{k \in \mathbb{Z}} \left| \int_{|\xi - k| \leq 1} e^{i \sum_{j=1}^{n} x_j \xi_j} \psi(\xi - k) \mathcal{F}_x f(\xi) d\xi \right|^2
\]

\[
\leq \left[\sum_{k \in \mathbb{Z}} \int_{|\xi - k| \leq 1} |\psi(\xi - k) \mathcal{F}_x f(\xi)|^2 d\xi \right] \left[\int_{|\xi - k| \leq 1} d\xi \right]
\]

\[
\leq \left[\sum_{k \in \mathbb{Z}} \int_{|\xi - k| \leq 1} |\psi(\xi - k) \mathcal{F}_x f(\xi)|^2 d\xi \right]
\]

\[
= \sum_{k \in \mathbb{Z}} \|\psi(\xi - k) \mathcal{F}_x f(\xi)\|_{L^2}^2. \quad (2.17)
\]

From

\[
\mathcal{F}_x f(\xi) = \sum_{k \in \mathbb{Z}} \psi(\xi - k) \mathcal{F}_x f(\xi), \quad (2.18)
\]

by using the Plancherel identity and $\text{supp} \psi \subset B(0,1)$, we have

\[
\|f\|_{L^2}^2 = \|\mathcal{F}_x f(\xi)\|_{L^2}^2 = \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} \int_{\mathbb{R}} [\psi(\xi - k) \mathcal{F}_x f(\xi)] [\psi(\xi - l) \mathcal{F}_x f(\xi)] d\xi
\]

\[
= \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}} |\psi(\xi - k) \mathcal{F}_x f(\xi)|^2 d\xi. \quad (2.19)
\]

Combining (2.17) with (2.19), we derive (2.16).

This completes the proof of Lemma 2.5.

Lemma 2.6. For $f \in L^2(\mathbb{R})$, we have

\[
\left[\sum_{k \in \mathbb{Z}} |\psi(D - k)U(t)f|^2 \right]^\frac{1}{2} \leq \|f\|_{L^2(\mathbb{R})}. \quad (2.20)
\]

Proof. To obtain (2.20), it suffices to prove

\[
\sum_{k \in \mathbb{Z}} |\psi(D - k)U(t)f|^2 \leq \|f\|_{L^2(\mathbb{R})}^2. \quad (2.21)
\]
By using the Cauchy-Schwarz inequality with respect to\(\xi \), since\(\text{supp} \psi \subset [0, 1] \), we have

\[
\sum_{k \in \mathbb{Z}} |\psi(D - k)U(t)f|^2 = \frac{1}{(2\pi)^2} \sum_{k \in \mathbb{Z}} \left| \int_{\mathbb{R}} e^{ix\xi} e^{it(\xi^3 + k)} \psi(\xi - k) \mathcal{F}_x f(\xi) d\xi \right|^2
\]

\[
= \frac{1}{(2\pi)^2} \sum_{k \in \mathbb{Z}} \left| \int_{|\xi - k| \leq 1} e^{ix\xi} e^{it(\xi^3 + k)} \psi(\xi - k) \mathcal{F}_x f(\xi) d\xi \right|^2
\]

\[
\leq \left[\sum_{k \in \mathbb{Z}} \int_{|\xi - k| \leq 1} |\psi(\xi - k) \mathcal{F}_x f(\xi)|^2 d\xi \right] \left[\int_{|\xi - k| \leq 1} d\xi \right]
\]

\[
\leq \left[\sum_{k \in \mathbb{Z}} \int_{|\xi - k| \leq 1} |\psi(\xi - k) \mathcal{F}_x f(\xi)|^2 d\xi \right]
\]

\[
= \sum_{k \in \mathbb{Z}} \|\psi(\xi - k) \mathcal{F}_x f(\xi)\|_{L^2}^2 .
\]

(2.22)

Combining (2.19) with (2.22), we derive (2.21).

This completes the proof of Lemma 2.6.

3. Probabilistic estimates of some random series

In this section, we establish the probabilistic estimates of some random series. More precisely, we use Lemmas 2.2, 2.4, 2.5, 3.1 to establish the probabilistic estimates of some random series which are just Lemmas 3.2-3.4 in this paper which play crucial role in establishing Theorem 1.3.

Lemma 3.1. Assume (1.6). Then, there exists\(C > 0 \) such that

\[
\left\| \sum_{k \in \mathbb{Z}} g_k(\omega) c_k \right\|_{L^p(\Omega)} \leq C \sqrt{p} \|c_k\|_{l^2(\mathbb{Z})} .
\]

for all\(p \geq 2 \) and\{c_k\} \in l^2(\mathbb{Z})$.

For the proof of Lemma 3.1, we refer the readers to Lemma 3.1 of [9].

Lemma 3.2. Let\(g \) be is a rapidly decreasing function and we denote by\(g^\omega \) the randomization of\(g \) as defined in (1.7). Then,\(\forall \epsilon > 0 \), there exist\(C > 0, \delta > 0(< 10^{-8}) \) such that

\[
\mathbb{P}(\Omega_1^\epsilon) \leq C_1 e^{-\left(\frac{\alpha}{c\epsilon |\epsilon + \frac{1}{2}|} \right)^2}, \tag{3.1}
\]

where\(\Omega_1^\epsilon = \{ \omega \in \Omega : |U(t)g^\omega - g^\omega| > \alpha \} \).
Proof. Since \([P_{\geq 8} + P_{\leq 8}] f = f\), we have
\[
\|U(t)g^\omega - g^\omega\|_{L^p_\xi(\Omega)} \leq I_1 + I_2, \tag{3.2}
\]
where
\[
I_1 = \|U(t)P_{\geq 8}g^\omega - P_{\geq 8}g^\omega\|_{L^p_\xi(\Omega)}, \quad I_2 = \|U(t)P_{\leq 8}g^\omega - P_{\leq 8}g^\omega\|_{L^p_\xi(\Omega)}.
\tag{3.3}
\]
By using the Cauchy-Schwartz inequality with respect to \(\xi\), since \(g\) is a rapidly decreasing function, we have
\[
I_1 \leq \|U(t)P_{\geq 8}g^\omega - P_{\geq 8}g^\omega\|_{L^p_\xi(\Omega)}
\leq C\sqrt{p} \left[\sum_{k \in \mathbb{Z}} \left| \int_\mathbb{R} \left(e^{-it\xi^3 + \frac{1}{\xi}} - 1 \right) e^{ix\xi} \psi(\xi - k) F P_{\geq 8} g(\xi) d\xi \right|^2 \right]^{\frac{1}{2}}
\leq C|t|\sqrt{p} \left[\sum_{k \in \mathbb{Z}} \left| \int_{|\xi - k| \leq 1} \left| \xi^3 + \frac{1}{\xi} \right| \psi(\xi - k) F P_{\geq 8} g(\xi) d\xi \right|^2 \right]^{\frac{1}{2}}
\leq C|t|\sqrt{p} \left[\sum_{k \in \mathbb{Z}} \left| \int_{|\xi - k| \leq 1} \left| \xi^3 + \frac{1}{\xi} \right|^2 \psi(\xi - k) F P_{\geq 8} g(\xi) d\xi \right| \left| \int_{|\xi - k| \leq 1} d\xi \right| \right]^{\frac{1}{2}}
\leq C|t|\sqrt{p} \left[\sum_{k \in \mathbb{Z}} \left| \int_{|\xi - k| \leq 1} \left| \xi^6 \psi(\xi - k) F P_{\geq 8} g(\xi) \right|^2 d\xi \right| \right]^{\frac{1}{2}}
\leq C|t|\sqrt{p} \left[\sum_{k \in \mathbb{Z}} \left| \psi(D - k) P_{\geq 8} g(\xi) \right|_{H^3}^2 \right]^{\frac{1}{2}}
\leq C|t|\sqrt{p} \left\| P_{\geq 8} g \right\|_{H^3} \leq C|t|\sqrt{p}. \tag{3.4}
\]
From Lemma 2.4, we have
\[
I_2 \leq \|U(t)P_{\leq 8}g^\omega - P_{\leq 8}g^\omega\|_{L^p_\xi(\Omega)}
\leq C\sqrt{p} \left[\sum_{|k| \leq 10} \left| \int_\mathbb{R} \left(e^{-it\xi^3 + \frac{1}{\xi}} - 1 \right) e^{ix\xi} \psi(\xi - k) F P_{\leq 8} g(\xi) d\xi \right|^2 \right]^{\frac{1}{2}}
\leq C\sqrt{p} \left[\sum_{|k| \leq 10} \left| \varepsilon + \frac{|t|}{\delta} \right|^2 \right]^{\frac{1}{2}} \leq C\sqrt{p} \left[\varepsilon + \frac{|t|}{\delta} \right]. \tag{3.5}
\]
From (3.2)-(3.5), we have
\[
\|U(t)g^\omega - g^\omega\|_{L^p_\xi(\Omega)} \leq C\sqrt{p} \left[\varepsilon + \frac{|t|}{\delta} \right]. \tag{3.6}
\]
Thus, from (3.6), by using the Chebyshev inequality, we have
\[
P(\Omega_1^c) \leq \int_{\Omega_1} \left[C \sqrt{p} \left[\epsilon + \frac{|t|}{\frac{\delta}{2}} \right] \right] p \ dP(\omega) \leq \frac{\|U(t)g^\omega - g^\omega\|_{L^p}}{\alpha^p}.
\]
(3.7)

Take
\[
p = \left(\frac{\alpha}{Ce \left[\epsilon + \frac{|t|}{\frac{\delta}{2}} \right]} \right)^2.
\]
(3.8)

If \(p \geq 2 \), we have
\[
P(\Omega_1^c) \leq e^{-p} = e^{-\left(\frac{\alpha}{Ce \left[\epsilon + \frac{|t|}{\frac{\delta}{2}} \right]} \right)^2}.
\]
(3.9)

If \(p \leq 2 \), we have
\[
P(\Omega_1^c) \leq e^2e^{-2} = C_1 e^{-\left(\frac{\alpha}{Ce \|h\|_{L^2}} \right)^2}.
\]
(3.10)

Here \(C_1 = e^2 \).

This completes the proof of Lemma 3.2.

Lemma 3.3. Let \(h \in L^2(\mathbb{R}) \) and we denote by \(h^\omega \) the randomization of \(h \) as defined in (1.7). Then, \(\forall \epsilon > 0 \), there exist \(C > 0 \) and \(C_1 > 0 \) such that
\[
P(\Omega_2^c) \leq C_1 e^{-\left(\frac{\alpha}{Ce \|h\|_{L^2}} \right)^2},
\]
(3.11)

where
\[
\Omega_2^c = \{ \omega \in \Omega : |U(t)h^\omega| > \alpha \}.
\]
(3.12)

Proof. By using Lemmas 3.1, 2.6, we have
\[
\|U(t)h^\omega\|_{L^p(\Omega)} = \left\| \sum_{k \in \mathbb{Z}} g_k(\omega)U(t)\psi(D-k)h \right\|_{L^p(\Omega)}
\leq C \sqrt{p} \left[\sum_{k \in \mathbb{Z}} |U(t)\psi(D-k)h|^2 \right]^{\frac{1}{2}} \leq C \sqrt{p} \|h\|_{L^2}.
\]
(3.13)
Thus, by Chebyshev inequality, from (3.13), we have
\[
\mathbb{P}(\Omega_2^c) \leq \int_{\Omega_2^c} \left[\frac{|U(t)h^\omega|}{\alpha} \right]^p d\mathbb{P}(\omega) \leq \left(\frac{C\sqrt{p}\|h\|_{L^2}}{\alpha} \right)^p.
\] (3.14)

Take
\[
p = \left(\frac{\alpha}{Ce\|h\|_{L^2}} \right)^2.
\] (3.15)

If \(p \geq 2 \), we have
\[
\mathbb{P}(\Omega_2^c) \leq e^{-p} = e^{-\left(\frac{\alpha}{Ce\|h\|_{L^2}} \right)^2}.
\] (3.16)

If \(p \leq 2 \), we have
\[
\mathbb{P}(\Omega_2^c) \leq e^2e^{-2} = C_1e^{-\left(\frac{\alpha}{Ce\|h\|_{L^2}} \right)^2}.
\] (3.17)

Here \(C_1 = e^2 \).

This completes the proof of Lemma 3.3.

Lemma 3.4. Let \(h \in L^2(\mathbb{R}) \) and we denote by \(f^\omega \) the randomization of \(f \) as defined in (1.7). Then, there exist \(C > 0 \) and \(C_1 > 0 \) such that
\[
\mathbb{P}(\Omega_3^c) \leq C_1\exp \left[\left(\frac{\alpha}{Ce\|h\|_{L^2}} \right)^2 \right].
\] (3.18)

Here
\[
\Omega_3^c = \{ \omega \in \Omega : |h^\omega| > \alpha \}.
\]

Proof. By using the Lemmas 3.1, 2.5, we have
\[
\|h^\omega\|_{L^p(\Omega)} = \left\| \sum_{k \in \mathbb{Z}} g_k(\omega)\psi(D - k)h \right\|_{L^p(\Omega)} \leq C\sqrt{p} \left[\sum_{k \in \mathbb{Z}} |\psi(D - k)h|^2 \right]^{\frac{1}{2}} \leq C\sqrt{p}\|h\|_{L^2}.
\] (3.19)

Thus, by using the Chebyshev inequality, from (3.19), we have
\[
\mathbb{P}(\Omega_3^c) \leq \int_{\Omega_3^c} \left[\frac{|h^\omega|}{\alpha} \right]^p d\mathbb{P}(\omega) \leq \left(\frac{C\sqrt{p}\|h\|_{L^2}}{\alpha} \right)^p.
\] (3.20)

Take
\[
p = \left(\frac{\alpha}{Ce\|h\|_{L^2}} \right)^2.
\] (3.21)
If $p \geq 2$, we have
\[\mathbb{P}(\Omega_3^c) \leq e^{-p} = e^{-\left(\frac{\alpha}{C_1 \|h\|_{L_2}}\right)^2}. \] (3.22)

If $p \leq 2$, we have
\[\mathbb{P}(\Omega_3^c) \leq e^{2e^{-2}} = C_1 e^{-\left(\frac{\alpha}{C_2 \|h\|_{L_2}}\right)^2}. \] (3.23)

Here $C_1 = e^2$.

This completes the proof of Lemma 3.4.

4. Proof of Theorem 1.1

In this section, we apply the density theorem and Lemmas 2.1-2.3 to establish Theorem 1.1.

Proof of Theorem 1.1. We firstly prove that if f is rapidly decreasing function, $\forall \epsilon > 0$, there exists $\delta > 0$ such that
\[|U(t)f - f| \rightarrow 0 \] (4.1)
as $t \rightarrow 0$. From Lemmas 2.2, 2.3, we have
\[|U(t)f - f| \leq \epsilon + \frac{C|t|}{\delta}. \] (4.2)

When $C|t| < \delta \epsilon$, from (4.2), we have
\[|U(t)f - f| \leq 2\epsilon. \] (4.3)

From (4.3), we know that (4.1) is valid.

When $f \in H^s(\mathbb{R})(s \geq \frac{1}{4})$, by density theorem which can be seen in Lemma 2.2 of [22], there exists a rapidly decreasing function g such that $f = g + h$, where $\|h\|_{H^s(\mathbb{R})} < \epsilon(s \geq \frac{1}{4})$. Thus, we have
\[\lim_{t \rightarrow 0} |U(t)f - f| \leq \lim_{t \rightarrow 0} |U(t)g - g| + \lim_{t \rightarrow 0} |U(t)h - h|. \] (4.4)

We define
\[E_\alpha = \left\{x \in \mathbb{R} : \lim_{t \rightarrow 0} |U(t)f - f| > \alpha\right\}. \] (4.5)

Obviously, $E_\alpha \subset E_{1\alpha} \cup E_{2\alpha}$,

\[E_{1\alpha} = \left\{x \in \mathbb{R} : \lim_{t \rightarrow 0} |U(t)g - g| > \frac{\alpha}{2}\right\}, \] (4.6)

\[E_{2\alpha} = \left\{x \in \mathbb{R} : \lim_{t \rightarrow 0} |U(t)h - h| > \frac{\alpha}{2}\right\}. \] (4.7)
Obviously,

\[E_\alpha \subset E_{1\alpha} \cup E_{2\alpha}. \] (4.8)

From Lemmas 2.2, 2.3, we have

\[|E_{1\alpha}| = 0. \] (4.9)

Obviously,

\[E_{2\alpha} \subset E_{21\alpha} \cup E_{22\alpha}. \] (4.10)

where

\[E_{21\alpha} = \left\{ x \in \mathbb{R} : \sup_{t > 0} |U(t)P_{\geq 8h} - P_{\geq 8h}| > \frac{\alpha}{4} \right\}, \] (4.11)

\[E_{22\alpha} = \left\{ x \in \mathbb{R} : \lim_{t \to 0} |U(t)P_{\leq 8h} - P_{\leq 8h}| > \frac{\alpha}{4} \right\}. \] (4.12)

Thus, from Lemma 2.1, by using the Sobolev embeddings theorem \(W^{1,2}(\mathbb{R}) \hookrightarrow L^4(\mathbb{R}) \), we have

\[
|E_{21\alpha}| = \int_{E_{21\alpha}} dx \leq \int_{E_{21\alpha}} \left[\sup_{t > 0} |P_{\geq 8} U(t)h| \right]^4 dx + \int_{E_{21\alpha}} \frac{|h|^4}{\alpha^4} dx \\
\leq \frac{\|P_{\geq 8} U_1(t)h\|_{L^4,L^\infty}^4}{\alpha^4} + \frac{\|P_{\geq 8} h\|_{L^4}^4}{\alpha^4} \\
\leq C \frac{\|P_{\geq 8} h\|_{H^{\frac{1}{2}}}^4}{\alpha^4} + C \frac{\|D_{\frac{1}{2}} P_{\geq 8} h\|_{L^2}^4}{\alpha^4} \leq C \frac{\|P_{\geq 8} h\|_{H^{\frac{1}{2}}}^4}{\alpha^4} \leq C\epsilon^4 \frac{\alpha}{\alpha^4}. \] (4.13)

From Lemma 2.2, we have

\[|E_{22\alpha}| = 0. \] (4.14)

From (4.9), (4.13) and (4.14), we have

\[|E_\alpha| \leq |E_{1\alpha}| + |E_{2\alpha}| \leq |E_{1\alpha}| + |E_{21\alpha}| + |E_{22\alpha}| \leq C\epsilon^4 \frac{\alpha}{\alpha^4}. \] (4.15)

Thus, since \(\epsilon \) is arbitrary, from (4.15), we have

\[|E_\alpha| = 0. \] (4.16)

Thus, from (4.16), we have

\[U(t)f - f \rightarrow 0 \] (4.17)
almost everywhere as t goes to zero.

This completes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

In this section, we present the counterexamples showing that $s \geq \frac{1}{4}$ is the necessary condition for the maximal function estimate related to free Ostrovsky equation. More precisely, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. We choose $f = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ix\xi} 2^{-k(s+\frac{1}{2})} \chi_{2^k \leq |\xi| \leq 2^{k+1}}(\xi) d\xi$, obviously,

$$\|f\|_{H^s} \sim 1.$$ \(5.1\)

We choose $t \leq \frac{k}{100} 2^{-3k}$, where δ will be chosen later. For $|x| \leq 2^{-k}$ and sufficiently small δ, we have

$$\|U(t)f\|_{L^4_x L^\infty_t} \sim 2^{-k(s-\frac{1}{4})}.$$ \(5.2\)

From

$$\|U(t)f\|_{L^4_x L^\infty_t} \leq C\|f\|_{H^s(\mathbb{R})}$$ \(5.3\)

and (5.1)-(5.2), we have

$$2^{-k(s-\frac{1}{4})} \leq C.$$ \(5.4\)

We know that for sufficiently large k, when $s < \frac{1}{4}$, (5.4) is invalid.

This completes the proof of Theorem 1.2.

6. Proof of Theorem 1.3

In this section, we apply Lemmas 3.2-3.4 and the density theorem which can be seen in Lemma 2.2 of [22] to prove Theorem 1.3.

Proof of Theorem 1.3. We firstly prove that if f is rapidly decreasing function, then

$$U(t)f^\omega - f^\omega \to 0$$ \(6.1\)

almost surely as $t \to 0$. From Lemma 3.2, $\forall \epsilon > 0$, there exists $\delta > 0$ such that

$$\mathbb{P}(\{\omega \in \Omega : |U(t)f^\omega - f^\omega| > \alpha\}) \leq C_1 e^{-\left(\frac{\alpha}{C_0[\epsilon + \frac{\mu}{2}]^2}\right)}.$$ \(6.2\)
From (6.2), \(\forall \epsilon > 0 \), we know that when \(|t| \leq \delta \epsilon \), take \(\alpha = 2Ce \epsilon \left[\ln \frac{C_1}{\epsilon} \right]^\frac{1}{2} \) in (6.2), we have
\[
\mathbb{P} \left(\{ \omega \in \Omega : |U(t)f^\omega - f^\omega| > \alpha \} \right) \leq \epsilon. \tag{6.3}
\]

From (6.3), we know that \(\forall \epsilon > 0 \), when \(|t| \leq \delta \epsilon \), we have
\[
|U(t)f^\omega - f^\omega| \leq 2Ce \epsilon \left[\ln \frac{C_1}{\epsilon} \right]^\frac{1}{2}, \tag{6.4}
\]
\(\forall \omega \in \{ \omega \in \Omega : |U(t)f^\omega - f^\omega| \leq \alpha \} \). Here \(P \left(\{ \omega \in \Omega : |U(t)f^\omega - f^\omega| \leq \alpha \} \right) \geq 1 - \epsilon \).
Thus, we have proved (6.1).

When \(f \in L^2(\mathbb{R}) \), by density theorem which is Lemma 2.2 in [22], there exists a rapidly decreasing function \(g \) such that \(f = g + h \) which yields \(f^\omega = g^\omega + h^\omega \), where \(\| h \|_{L^2(\mathbb{R})} < \epsilon \).
Thus, we have
\[
|U(t)f^\omega - f^\omega| \leq |U(t)g^\omega - g^\omega| + |U(t)h^\omega - h^\omega|. \tag{6.5}
\]

From (6.5), we have
\[
\{ \omega \in \Omega : |U(t)f^\omega - f^\omega| > \alpha \}
\subseteq \left\{ \omega \in \Omega : |U(t)g^\omega - g^\omega| > \frac{\alpha}{2} \right\} \cup \left\{ \omega \in \Omega : |U(t)h^\omega - h^\omega| > \frac{\alpha}{2} \right\}. \tag{6.6}
\]

From Lemma 3.2, we have
\[
\mathbb{P} \left(\{ \omega \in \Omega : |U(t)g^\omega - g^\omega| > \frac{\alpha}{2} \} \right) \leq C_1 e^{-\left(\frac{\alpha}{C_1 \|h\|_{L^2}} \right)^2}. \tag{6.7}
\]

From Lemmas 3.3, 3.4, we have
\[
\mathbb{P} \left(\{ \omega \in \Omega : |U(t)h^\omega - h^\omega| > \frac{\alpha}{2} \} \right)
\leq \mathbb{P} \left(\{ \omega \in \Omega : |U(t)h^\omega| > \frac{\alpha}{4} \} \right) + \mathbb{P} \left(\{ \omega \in \Omega : |h^\omega| > \frac{\alpha}{4} \} \right)
\leq C_1 e^{-\left(\frac{\alpha}{C_1 \|h\|_{L^2}} \right)^2} + C_1 e^{-\left(\frac{\alpha}{C_1 \|h\|_{L^2}} \right)^2} = 2C_1 e^{-\left(\frac{\alpha}{C_1 \|h\|_{L^2}} \right)^2}. \tag{6.8}
\]

Combining (6.6), (6.7) with (6.8), we have
\[
\mathbb{P} \left(\{ \omega \in \Omega : |U(t)f^\omega - f^\omega| > \alpha \} \right)
\leq \mathbb{P} \left(\{ \omega \in \Omega : |U(t)g^\omega - g^\omega| > \alpha \} \right) + \mathbb{P} \left(\{ \omega \in \Omega : |U(t)h^\omega - h^\omega| > \alpha \} \right)
\leq C_1 e^{-\left(\frac{\alpha}{C_1 \|h\|_{L^2}} \right)^2} + 2C_1 e^{-\left(\frac{\alpha}{C_1 \|h\|_{L^2}} \right)^2} = 3C_1 e^{-\left(\frac{\alpha}{C_1 \|h\|_{L^2}} \right)^2}. \tag{6.9}
\]
\(\forall \epsilon > 0 \), take \(\alpha = Cee \left[\ln \frac{3C_1}{\epsilon} \right]^\frac{1}{2} \) in (6.9), when \(|t| < \delta \epsilon \), we have
\[
|U(t)f^\omega - f^\omega| \leq \alpha \tag{6.10}
\]
for \(\omega \in \{ \omega \in \Omega : |U(t)f^{\omega} - f^{\omega}| \leq \alpha \} \). Here \(\mathbb{P}(\{ \omega \in \Omega : |U(t)f^{\omega} - f^{\omega}| \leq \alpha \}) \geq 1 - \epsilon \).

This completes the proof of Theorem 1.3.

Acknowledgments

Wei Yan was supported by NSFC grants (No. 11771127) and the Young core Teachers program of Henan province under grant number 5201019430009, Jinqiao Duan was supported by the NSF grant (No. 1620449) and NSFC grants (No. 11531006, No. 11771449) and Meihua Yang was supported by NSFC grants (No. 11971184).

References

1. A. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \(\mathbb{R}^d, d \geq 3 \), *Trans. Amer. Math. Soc. Ser. B* 2(2015), 1-50.

2. A. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, in: Excursions in Harmonic Analysis, Vol. 4, Birkhäuser/Springer, Cham (2015), pp. 3-25.

3. A. Bényi, T. Oh and O. Pocovnicu, Higher order expansions for the probabilistic local cauchy theory of the cubic nonlinear schrödinger equation on \(\mathbb{R}^3 \), arXiv:1709.01910.

4. J. Bourgain, Some new estimates on oscillatory integrals, In: Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton, NJ 1991. Princeton Mathematical Series, vol. 42, pp. 83.112. Princeton University Press, New Jersey (1995).

5. J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, *Comm. Math. Phys.* 166(1994), 1-26.

6. J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, *Comm. Math. Phys.* 176(1996), 421-445.

7. J. Bourgain, On the Schrödinger maximal function in higher dimensions, *Proc. Steklov Inst. Math.* 280(2013), 46-60.

8. J. Bourgain, A note on the Schrödinger maximal function, *J. Anal. Math.* 130(2016), 393-396.
[9] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations, I. Local theory, *Invent. Math.* 173(2008), 449-475.

[10] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. II. A global existence result, *Invent. Math.* 173(2008), 477-496.

[11] L. Carleson, Some analytical problems related to statistical mechanics. Euclidean Harmonic Analysisi. Lecture Notes in Mathematics, vol. 779, pp. 5.45, Springer, Berlin, (1979).

[12] Y. Chen and H. Gao, The Cauchy problem for the Hartree equations under random influences, *J. Diff. Eqns.* 259(2015), Pages 5192-5219.

[13] M. J. Chen and S. Zhang, Random data Cauchy problem for the fourth order Schrödinger equation with the second order derivative nonlinearities, *Nonl. Anal.* 190(2020), 111608.

[14] C. Cho, S. Lee and A. Vargas, Problems on pointwise convergence of solutions to the Schrödinger equation, *J. Fourier Anal. Appl.* 18(2012), 972-994.

[15] G. Coclite and L. Ruvo, Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, *J. Diff. Eqns.* 256(2014), 3245-3277.

[16] E. Compaan, R. Lucá and G. Staffilani, pointwise convergence of the Schrödinger flow, arXiv:1907.11192v1 [math.AP] 25 Jul 2019.

[17] J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(T)$, *Duke Math. J.* 161(2012), 367-414.

[18] M. Cowling, Pointwise behavior of solutions to Schrödinger equations. In: Harmonic Analysis (Cortona, 1982). Lecture Notes in Mathematics, vol. 992, pp. 83.90. Springer, Berlin, (1983).

[19] B. E. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Proceedings of Italo-American Symposium in Harmonic Analysis, University of Minnesota. Lecture Notes in Mathematics, vol. 908, pp. 205.208. Springer, Berlin, (1982).

[20] C. Demeter and S. Guo, Schrödinger maximal function estimates via the pseudo-conformal transformation, arXiv: 1608.07640.

[21] C. Deng, S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on T^3, *J. Diff. Eqns.* 251(2011), 902-917.
[22] X. Du, A sharp Schrödinger maximal estimate in \mathbb{R}^2, Dissertation, 2017.

[23] X. Du, L. Guth and X. Li, A sharp Schrödinger maximal estimate in \mathbb{R}^2, Ann. Math. 188(2017), 607-640.

[24] X. Du and R. Zhang, Sharp L^2 estimates of the Schrödinger maximal function in higher dimensions, Ann. Math. 189(2019), 837-861.

[25] X. Du, L. Guth, X. Li and R. Zhang, Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates, Forum Math. Sigma 6(2018).

[26] G. Gigante and F. Soria, On the the boundedness in $H^{1/4}$ of the maximal square function associated with the Schrödinger equation, J. Lond. Math. Soc. 77(2008), 51-68.

[27] O. A. Gilman, R. Grimshaw and Y. A. Stepanyants, Approximate and numerical solutions of the stationary Ostrovsky equation, Stud. Appl. Math. 95(1995), 115-126.

[28] R. Grimshaw, Evolution equations for weakly nonlinear long internal waves in a rotating fluid, Stud. Appl. Math. 73(1985), 1-33.

[29] G. Gui and Y. Liu, On the Cauchy problem for the Ostrovsky equation with positive dispersion, Commun. Partial Diff. Eqns. 32(2007), 1895-1916.

[30] B. Guo and Z. Huo, The global attractor of the damped forced Ostrovsky equation, J. Math. Anal. Appl. 329(2007), 392-407.

[31] H. Hirayama and M. Okamoto, Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete Conti. Dyn. Sys. A 36(2016), 6943-6974.

[32] Z. Huo and Y. Jia, Low-regularity solutions for the Ostrovsky equation, Proc. Edinb. Math. Soc., 49(2006), 87-100.

[33] G. Hwang and C. Kwak, Probabilistic well-posedness of generalized KdV, Proc. Amer. Math. Soc. 146 (2018), 267-280.

[34] P. Isaza and J. Mejía, Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Diff. Eqns. 230(2006), 661-681.

[35] P. Isaza and J. Mejía, Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal. TMA. 67(2007), 1482-1503.

[36] P. Isazaa and J. Mejía, Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal. TMA. 70(2009), 2306-2316.
[37] P. Isaza and J. Mejía, On the support of solutions to the Ostrovsky equation with negative dispersion, *J. Diff. Eqns.* 247(2009), 1851-1865.

[38] P. Isaza and J. Mejía, On the support of solutions to the Ostrovsky equation with positive dispersion, *Nonlinear Anal. TMA.* 72(2010), 4016-4029.

[39] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, *India. Univ. Math. J.* 40(1991), 33-69.

[40] C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, *Comm. Pure Appl. Math.* XLVI(1993), 527-620.

[41] R. Killip, J. Murphy and M. Visan, Almost sure scattering for the energy-critical NLS with radial data below $H^1(\mathbb{R}^4)$, arXiv:1707.09051.

[42] J. Lebowitz, H. Rose and E. Speer, Statistical mechanics of the nonlinear Schrödinger equation, *J. Statist. Phys.* 50(1988), 657-687.

[43] S. Lee, On pointwise convergence of the solutions to Schrödinger equation in \mathbb{R}^2, *Int. Math. Res. Not.* (2006), 32597.

[44] J. Lee, Global Kato type smoothing estimates via local ones for dispersive equations, *J. Fourier Anal. Appl.* 26(2020), 1-16.

[45] Y. Li, J. Huang and W. Yan, The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity, *J. Diff. Eqns.* 259(2015), 1379-1408.

[46] F. Linares, A. Milanés, Local and global well-posedness for the Ostrovsky equation, *J. Diff. Eqns.* 222(2006), 325-340.

[47] R. Luca and M. Rogers, An improved neccessaary condition for Schrödinger maximal estimate, arXiv:1506.05325.

[48] R. Luca and M. Rogers, Coherence on fractals versus pointwise convergence for the Schrödinger equation, *Commun. Math. Phys.* 351(2017), 341-359.

[49] J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on \mathbb{R}^3, *Comm. Partial Diff. Eqns.* 39(2014), 2262-2283.

[50] C. Miao, J. Yang and J. Zheng, An improved maximal inequality for 2D fractional order Schrödinger operators, *Stud. Math.* 230(2015), 121-165.

[51] C. Miao, J. Zhang and J. Zheng, Maximal estimates for Schrödinger equation with inverse-square potential, *Pacific J. Math.* 273(2015), 1-19.
[52] A. Moyua, A. Vargas and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, *IMRN* 1996(1996), 793-815.

[53] J. Murphy, Random data final-state problem for the mass-subcritical NLS in L^2, *Proc. Amer. Math. Soc.* 147(2019), 339-350.

[54] A. Nahmod, T. Oh, L. Rey-Bellet and G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, *J. Eur. Math. Soc.* 14(2012), 1275-1330.

[55] A. Nahmod, N. Pavlovic and G. Staffilani, Almost sure existence of global weak solutions for supercritical Navier-Stokes equations, *SIAM J. Math. Anal.* 45(2013), 3431-3452.

[56] A. Nahmod and G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space, *J. Eur. Math. Soc.* 17(2015), 1687-1759.

[57] T. Oh, M. Okamoto and O. Pocovnicu, On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities, arXiv:1708.01568.

[58] T. Oh and O. Pocovnicu, Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on \mathbb{R}^d, *J. Math. Pures Appl.* 105(2016), 342-366.

[59] L. A. Ostrovskii, Nonlinear internal waves in a rotating ocean, *Okeanologiya*, 18(1978), 181-191.

[60] R. Paley, A. Zygmund, On some series of functions (1), (2), (3), *Proc. Camb. Philos. Soc.* 26(1930), 337-357, 458-474; 28(1932), 190-205.

[61] O. Pocovnicu, Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on \mathbb{R}^d, $d = 4$ and 5, *J. Eur. Math. Soc.* 19(2017), 2521-2575.

[62] S. Shao, On localization of the Schrödinger maximal operator, arXiv: 1006.2787v1.

[63] P. Sjölin, Regularity of solutions to the Schrödinger equation, *Duke Math. J.* 55(1987), 699-715.

[64] K. Tsugawa, Well-posedness and weak rotation limit for the Ostrovsky equation, *J. Diff. Eqns.* 247(2009), 3163-3180.
[65] T. Tao, A sharp bilinear restriction estimate for paraboids, *Geom. Funct. Anal.* 13(2003), 1359-1384.

[66] T. Tao and A. Vargas, A bilinear approach to cone multipliers, II. Appl.*Geom. Funct. Anal.* 10(2003), 216-258.

[67] N. Tzvetkov, Invariant measures for the defocusing nonlinear Schrödinger equation, *Ann. Inst. Fourier (Grenoble)* 58(2008), 2543-2604.

[68] L. Vega, Schrödinger equations: pointwise convergence to the initial data, *Proc. Am. Math. Soc.* 102(1988), 874-878.

[69] V. Varlamov and Y. Liu, Cauchy problem for the Ostrovsky equation, *Discrete Contin. Dyn. Syst.* 10(2004), 731-753.

[70] W. Yan, Y. Li, J. Huang and J. Duan, The Cauchy problem for the Ostrovsky equation with positive dispersion, *Nonli. Diff. Eqns. Appl.* 25(2018), no. 3, Art. 22, 37 pp.

[71] C. Zhang, Pointwise convergence of solutions to Schrödinger type equations, *Nonli. Anal. TMA* 109(2014), 180-186.

[72] T. Zhang and D. Fang, Random data Cauchy theory for the incompressible three dimensional Navier-Stokes equations, *Proc. Amer. Math. Soc.* 139(2011), 2827-2837.

[73] T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, *J. Math. Fluid Mech.* 14(2012), 311-324.