Research Article

Piotr Bargiel, Norbert Czapla, Piotr Prowans, Daniel Kotrych*, Paweł Ziętek, Dariusz Lusina, Paweł Łęgosz, Jan Petriczko

Thermography in the diagnosis of carpal tunnel syndrome

https://doi.org/10.1515/med-2021-0007
received December 17, 2018; accepted October 7, 2020

Abstract

Introduction – Carpal tunnel syndrome (CTS) is a condition caused by chronic compression of the median nerve. The diagnosis is made mainly on the basis of clinical image and confirmed with electrodiagnostic testing (electromyography and nerve conduction study); however, these methods do not always aid in reaching the diagnosis of CTS. Moreover, they are invasive examinations, unpleasant for the patient and have to be performed by a qualified physician.

Aim – An evaluation of the usefulness of dynamic thermography in the diagnosis of CTS.

Material and methods – Forty patients were included in the study group. CTS was diagnosed based on clinical examination and electromyography. Forty healthy volunteers were included in the control group. Each of the participants was examined thrice with dynamic thermography. The patient’s hands were first cooled down and then a thermal camera measured their return to normal temperature. The measurement was repeated on the dorsal and volar aspects of each hand.

Results – The results obtained in the study show that a relief of symptoms after carpal tunnel release does not correlate with thermal image. Moreover, the return to normal hand temperature was faster in the control group. In patients with unilateral CTS, no difference was observed in thermographic images of the affected and healthy hands.

Conclusions –
1. Dynamic thermography can be useful in confirming CTS diagnosis.
2. Dynamic thermography does not allow for objective assessment of patient’s complaints in the postoperative period.
3. This method has currently limited clinical application. Due to complexity, it presently serves mainly scientific purposes.

Keywords: dynamic thermography, sympathetic system, carpal tunnel

1 Introduction

Carpal tunnel syndrome (CTS) is caused by chronic compression of the median nerve within the carpal tunnel. It is one of the most common peripheral mononeuropathies and the most common upper extremity neuropathy. Prevalence in general population is estimated at 0.1–1%.

Risk factors include female gender and physical labour. Ten percent of patients have bilateral CTS [1–3].

Clinical presentation is not always obvious. In some cases, one group of symptoms can dominate for years. There are patients with considerable motor deficits without pain or sensitivity impairment and patients with positive
electrophysiological results who, despite being in severe pain for years, have no muscle atrophy. This varying clinical image could be a result of overlap syndromes, multifocal compression on the median nerve (“double crush” syndrome) or substitution of lost median nerve functions by the ulnar nerve [8].

Electrodiagnostic testing plays a key role in diagnosing peripheral nerve disorders. Nerve conduction study (NCS) and electromyography (EMG) are mostly used when CTS is suspected. NCS directly measures the sensory and motor fibre conduction speed and amplitude, while with EMG it is possible to register and assess the function of thenar muscles (it has a lower sensitivity than NCS). Many clinicians consider these electrodiagnostic examinations as gold standard to diagnose CTS; however, it has been proved that approximately 18% of patients with clinical signs of median nerve compression have unimpaired nerve conduction in a classic NCS examination. Both NCS and EMG are invasive, unpleasant for the patient and a qualified physician must perform them. Moreover, according to many authors, they are not more sensitive than physical examination combined with medical history [8–11].

In search of new objective CTS diagnostic tests, researchers have recently taken interest in thermography. Infrared thermography (IRT, IR) records a map of surface temperature of an examined area. Skin temperature indirectly reflects blood supply to a given area, which changes in response to various stimuli. Such measurements are easy, non-invasive, inexpensive and quick. These features make IRT a promising diagnostic test [12–14] (Tables 1 and 2).

Few studies evaluating thermography in CTS have been published. Furthermore, no measurement standard is presently available [15].

2 Aim

An evaluation of the usefulness of dynamic thermography in the diagnosis of CTS.

3 Material and methods

3.1 Material

Out of 84 patients who underwent carpal tunnel release in our department in years 2014–2016, 40 were included in the study group – 32 females and 8 males aged 32 to 68 (mean age 54 years). Diagnosis was based on clinical examination and EMG. Symptoms had to present for a minimum of one year, mean duration was 21 months. Ten patients had bilateral CTS. Right hand was affected in 29 cases, left hand in 11 patients. Thirty-two patients were right-handed, 8 patients left-handed.

Control group consisted of 40 healthy volunteers: 25 women and 15 men aged 27 to 63, mean age was 49 years. The right hand was dominant in 34 people, the left hand in 6. No member of the control group complained on any hand, cervical or thoracic spine disorders.

3.2 Methods

Study protocol was approved by the Pomeranian Medical University Ethics Committee (KB-0012/94/13). Patients included in the study had no significant comorbidities. Smokers and patients with carpal release or carpal tunnel injections were excluded from the study. Each patient was examined with dynamic thermography thrice. First examination was performed one day prior to the surgery, second a day after surgery and the third one 2 weeks after surgery.

All measurements were taken in a room with a steady temperature of 22°C and 65% humidity. Patient’s hands were placed on a table 20 cm away from the camera and fan, which acted as a cooling device. Hands were cooled down for 20 s. A FLIR T335 camera was used to obtain thermal images after the fan was stopped. Measurements were sampled every 5 s for 3 min. The dorsal aspect was assessed first, then after re-cooling, the volar side. To analyse the thermographic images, FLIR Research IR programme was used. Temperature values were sampled from the fingertips (on the volar side) and nails (on the dorsal side) of fingers I–III. Capillary circulation efficiency was measured as area under curve in a graph that showed temperature change in time.

4 Results

Patients from the study group had undergone carpal tunnel release. At 24 h postoperatively, 37 patients reported spontaneous pain mitigation (which previously woke them up), while 3 patients did not report any improvement. At 14 days postoperatively, symptoms subsided in 39 patients, while one reported an exacerbation of pain.
Table 1: Skin temperature change in the study group (volar and dorsal side) on days −1, 1 and 14 after 3 min cold exposure expressed as area under the curve

Study group	Left (L)	Right (R)	Volar aspect (V)	Dorsal aspect (D)
Day −1 [cm²] Day 1 [cm²] Day 14 [cm²]	Day −1 [cm²] Day 1 [cm²] Day 14 [cm²]	Day −1 [cm²] Day 1 [cm²] Day 14 [cm²]		
Right (R)	Left (L)	Right (R)	Left (L)	
573.7871	7407.9383	5139.8895	5588.9585	
6696.8626	6618.3152	6134.609	6148.8008	
7077.037	6919.94	6981.5185	7094.2211	
7005.7044	7346.557	7493.6902	7381.5325	
709.701	7397.985	7515.416	7735.987	
6678.5851	7295.9813	6926.9649	6494.2285	
709.701	7397.985	7515.416	7735.987	
634.5163	7515.998	4194.0041	6437.497	
6590.219	6295.712	5788.669	6324.852	
7333.7067	6258.4961	5720.772	6524.31	
7333.7067	6258.4961	5720.772	6524.31	
7024.157	6579.372	5720.772	6524.31	
7438.845	6579.372	5720.772	6524.31	
7641.064	6579.372	5720.772	6524.31	
7636.349	6579.372	5720.772	6524.31	
7465.357	7229.305	7940.297	7451.362	
7536.542	7232.347	7385.472	7451.362	
7343.36	7578.313	7383.942	7451.362	
7358.729	7383.942	7383.942	7451.362	
7375.246	7352.746	7352.746	7451.362	
7634.632	5518.511	6959.144	6959.144	

Thermography in the diagnosis of carpal tunnel syndrome
During dynamic thermography, it was observed that after the cold stimulus had been withdrawn, temperature rose during the first 2 min and then stopped. Therefore, only data gathered during these first 2 min were included in the statistical analysis (Figure 1).

5 Discussion
In patients with median nerve compression, it appears natural that apart from motor and sensory fibre damage, autonomic nerve fibres can also be affected. Clinical examination and electrophysiological testing both measure the extent of motor and sensory function loss. Some patients, however, complain about symptoms resembling Raynaud’s phenomenon. Trophic changes to the skin are rare, although possible [16,17]. Literature data show that even as many as 50% of patients with CTS may suffer from sympathetic dysfunction [18]. In the study group, 75% of patients reported symptoms related to the sympathetic system: sweating, dryness, pallor, rubor, swelling, or cyanosis. Literature reveals many papers where the extent of sympathetic damage in CTS is evaluated by plethysmography, capillaroscopy, or Doppler ultrasound. Another method is sympathetic skin response (SSR), where the electric potential of the skin varies depending on surface temperature, which reflects the activity of sweat glands controlled by the sympathetic nervous system [19–24].

Table 1: Continued

Study group	Dorsal aspect (d)	Volar aspect (v)							
	Right (R)	Left (L)	Right (R)	Left (L)					
	Day −1 [cm²]	Day 1 [cm²]	Day 14 [cm²]	Day −1 [cm²]	Day 1 [cm²]	Day 14 [cm²]	Day −1 [cm²]	Day 1 [cm²]	Day 14 [cm²]
36	6926.741	7192.663	7193.323	6628.539	7448.668	7266.991	7091.038	7361.571	7425.18
37	6928.644	7192.663	7193.323	7028.173	7303.756	7498.523	7421.219	6441.04	7516.028
38	6607.199	6805.185	6896.199	5655.211	6185.663	6499.905	6386.031	7575.476	6100.129
39	5617.811	6222.673	6986.948	5754.189	5641.753	5198.507	5922.529	7862.005	6047.83
40	5505.797	5240.434	6184.999	5572.637	5892.825	5199.465	5368.412	7594.724	6065.676
Table 2: Skin temperature change in the control group (volar and dorsal side) on days −1, 1 and 14 after 3 min cold exposure expressed as area under the curve

No	Right (R)	Dorsal aspect (d)	Left (L)	Volar aspect (V)		
Day −1 [cm²]	Day 1 [cm²]	Day 14 [cm²]	Day −1 [cm²]	Day 1 [cm²]	Day 14 [cm²]	
1	7931.789	8018.725	7992.002	7944.69	8021.499	8001.998
2	7420.906	7807.555	7549.036	7517.381	7746.42	7730.55
3	7375.576	7242.062	7417.303	7285.791	7331.754	7442.08
4	7496.062	7470.305	7660.607	7506.423	7573.31	7666.501
5	7838.856	7801.766	7567.021	7282.60	7777.997	7605.85
6	7841.396	7797.629	7802.432	7831.478	7830.348	7830.986
7	7939.365	7956.175	8003.475	7902.297	7933.434	7974.1
8	7785.669	7395.189	5898.385	7814.308	7497.196	5924.191
9	7847.208	7481.591	6979.941	7851.236	7499.11	7029.309
10	8122.939	7690.557	7379.837	8006.076	7628.321	7241.683
11	5484.605	6107.246	5430.307	5578.629	6284.529	6148.846
12	7614.6	6932.045	6589.296	7349.413	6972.879	6887.417
13	5475.814	5996.919	5927.656	5434.092	6087.442	5353.354
14	7521.972	7581.084	7577.265	7556.966	7598.959	7548.54
15	7256.842	7289.844	0	7192.58	7216.869	6171.461
16	7938.222	8006.154	0	7936.055	8003.07	0
17	7347.619	7810.582	7524.392	7047.287	7680.187	7691.496
18	5426.226	6037.146	5431.891	5520.76	6188.335	6262.346
19	7484.808	7475.43	7519.076	7493.637	7551.137	7526.288
20	7809.787	7750.991	7578.268	7884.112	7692.559	7567.222
21	7838.235	7819.318	7817.969	7838.25	7809.712	7794.23
22	7933.339	7914.865	8006.161	7916.831	7931.969	7957.458
23	7791.83	7048.545	8635.373	7808.404	7457.39	5828.169
24	7836.506	7447.504	6963.893	7791.804	7434.288	6945.826
25	8127.872	7681.88	7438.169	8095.436	7627.691	7347.806
26	7424.791	6589.296	6703.144	7033.306	6652.372	6710.664
27	7334	7250.992	7461.055	7421.676	7362.357	7411.68
28	7836.506	7447.504	6963.893	7791.804	7434.288	6945.826
29	5452.463	5983.178	5907.96	5353.154	6054.229	5218.644
30	7542.093	4577.265	7523.255	7458.5	7567.339	7516.741
31	7290.9382	7252.433	6430.989	7513.462	7514.4	6097.15
32	7983.932	7998.098	7930.323	7789.432	8009.213	8013.3344
33	7400.433	7840.211	7398.321	7418.321	7534.432	7723.212
34	7349.234	7238.245	7381.23	7361.321	7382.234	6990.321
35	7564.423	7423.44	7790.21	7440.221	7543.133	7612.309
included into the study group, the sensitivity, however, was lowered. In our study, most patients were diagnosed with moderate CTS (stage II, according to NCS). Papez also observed during his study that the sensitivity of the examination was higher on the dorsal side of the hand. [25–27]. Similar conclusions were made by Zivcak et al. [28]. Some authors examined only the volar aspect of the hand [29–31]. In our study, both the volar and dorsal sides of the hand were evaluated, and the results show a significant difference in blood flow for both sides between the study and the control group.

Secondly, do thermographic images of the unaffected hand in CTS patients in three examinations (a day before the surgery, one day after the surgery and 14 days after the surgery) differ among each other? In unilateral CTS, thermographic images of the unaffected hands did not differ in consecutive examinations. Similarly, 3 examinations of control group volunteers did not show any differences. Such stable thermographic images confirm the reproducibility of the method.

Thirdly, does the relief of symptoms during the first day after surgical carpal tunnel release correlate with changes in thermographic images?

Immediate relief of nocturnal pain after carpal tunnel release is seen in most patients with CTS. In this study, a similar postoperative observation was made in nearly all patients. It did not, however, correlate with thermographic images captured in 24 hours and 14 days after the surgery. In literature, there is scarce information on changes in blood circulation in patients with CTS after surgical release. A similar study had been conducted by Z. Ming and J. Sivola in 2007. Static thermography had been used to evaluate capillary flow. The diagnosis of CTS was made purely on NCS, without taking the clinical image into consideration. The first thermographic image was captured prior to the surgery, the second 6 months after. In our study, carpal tunnel was diagnosed mainly on signs and symptoms with NCS results only to confirm the diagnosis. A lack of NCS result with a clear clinical image of CTS did not exclude a patient from the study. Ming et al. in their study showed that an improvement in circulation follows a carpal tunnel release within 6 months. Immediate relief of nocturnal symptoms is related to an increase of blood flow to the nerve itself, while full healing is achieved after 6 months due to reinnervation [29].

Lastly, does a thermal image of the affected and unaffected hand differ in the same patient with CTS?

A comparison of the affected and unaffected hand in the same patient with CTS did not reveal statistically significant differences in hand temperature. This may

No	Control group									
Day −1 (cm²)	Day 1 (cm²)	Day 14 (cm²)								
Right (R)	Left (L)	Right (R)	Left (L)	Right (R)	Left (L)					
38	7203.646	7319.735	7504.495	7539.907	7556.488	7570.203	7579.385	7817.696	7800.021	7817.696
37	5430.307	6068.343	5415.601	6294.398	5523.639	6948.864	5541.175	6688.674	6441.046	6745.145
36	7203.646	7319.735	7504.495	7539.907	7556.488	7570.203	7579.385	7817.696	7800.021	7817.696
be a result of many overlapping factors. CTS is diagnosed with clinical image. NCS is an additional examination to confirm the already suspected diagnosis and to evaluate the extent of nerve damage. Healthy limbs in patients with CTS were described as those showing no clinical symptoms, not ones with a negative NCS result. Out of 40 study group patients, as few as 12 people had a bilateral NCS, and in that group, only 2 patients had CTS excluded. Literature data estimate the prevalence of bilateral CTS at 50%. Not all symptoms of early CTS could be noticed by a patient. Thus, it may be possible that among 23 healthy limbs, some may be in an early stage of the disease. Most researchers compared hands with confirmed CTS with healthy limbs from the control group. Few authors focused on looking upon both hands of the same patient. The majority assessed the temperature difference of two corresponding points on the volar and dorsal aspect and then compared the results to the control group [25–28].

6 Results

Our research shows that:
1. Dynamic thermography can be useful in confirming CTS diagnosis.
2. Dynamic thermography does not allow for objective assessment of patient’s complaints in the postoperative period.
3. This method has currently limited clinical application. Due to complexity, it presently serves mainly scientific purposes.

Conflict of interest: The authors declare no conflicts of interest. This study has not been presented previously. This study was financed by authors’ own resources

References

[1] Mondelli M, Giannini F, Giacchi M. Carpal tunnel syndrome incidence in a general population. Neurology. 2002;58:289–94. doi: 10.1212/wnl.58.2.289.

[2] Ibrahim I, Khan WS, Goddard N, Smitham P. Carpal tunnel syndrome: A review of the recent literature. Open Orthop J. 2012;6:69–76. doi: 10.2174/1874325001206010069.

[3] Bagatur AE, Zorer G. The carpal tunnel syndrome is a bilateral disorder. J Bone Jt Surg Br. 2001;83:655–8. doi: 10.1036/0301-620x.83b5.11350.

[4] Franklin GM, Friedman AS. Work-related carpal tunnel syndrome: Diagnosis and treatment guideline. Phys Med Rehabil Clin N Am. 2015;26:523–37. doi: 10.1016/j.pmr.2015.04.003.

[5] Georgiew F. Testy prowokacyjne stosowane w diagnostyce zespołu cieśn wielu dezerzerk; 2007. p. 11.

[6] Evaluation of Boston questionnaire applied at late postoperative period of carpal tunnel syndrome operated with the pain retinaculatome through palmar port n.d. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-78522006000300002&lng=en&nrm=iso&tlng=en (accessed November 21, 2019).

[7] Hudak PL, Amadio PC, Bombardier C. Development of an upper extremity outcome measure: The DASH (disabilities of the arm, shoulder and hand) [corrected]. The upper extremity collaborative group (UECG). Am J Ind Med. 1996;29:602–8. doi: 10.1002/(SICI)1097-0274(199606)29:6<602::AID-AJIM4>3.0.CO;2-L.

[8] Sulewski A. Współczesne poglądy dotyczące leczenia neuropatii uciskowych w obrębie nerwów kończyny górnej n.d.:6.
[9] Georgiew F, Ofinowska E, Adamczyk T. Diagnostic tests used in diagnosis of the carpal tunnel syndrome. Rehabilitacja Medyczna. 2008;12:24–35.
[10] Kohara N. [Clinical and electrophysiological findings in carpal tunnel syndrome]. Brain Nerve. 2007;59:1229–38.
[11] Werner RA, Andary M. Carpal tunnel syndrome: Pathophysiology and clinical neurophysiology. Clin Neurophysiol. 2002;113:1373–81. doi: 10.1016/s1388-2457(02)00169-4.
[12] Blachnio J, Bogdan M. Podstawy termomewizji i jej zastosowanie w badaniach medycznych. Zesz Nauk Politechniki Białostockiej Budowa i Eksploatacja Masz. 2004;Z. 12:7–17.
[13] Bauer J, Drez E. Standaryzacja badań termograficznych w medycynie i fizykoterapii. Acta Bio-Optica et Informatica Medica Inżynieria Biomedyczna. vol. 20; 2014.
[14] Nowakowski A, Kaczmarek M, Ruminski J, Hryciuk M, Renkileksa A, Grudzinski J, et al. Medical applications of model based dynamic thermography. Proc SPIE. 2001;4360:492–503.
[15] Meyers S, Cross D, Sherry B, Vermeire P. Liquid crystal thermography: Quantitative studies of abnormalities in carpal tunnel syndrome. Neurology. 1989;39:1465–9. doi: 10.1212/wnl.39.11.1465.
[16] Chung MS, Gong HS, Baek GH. Raynaud’s phenomenon in idiopathic carpal tunnel syndrome: Postoperative alteration in its prevalence. J Bone Jt Surg Br. 2000;82:818–9. doi: 10.1302/0301-620x.82b6.10991.
[17] Keith MW, Masear V, Chung K, Maupin K, Andary M, Amadio PC, et al. Diagnosis of carpal tunnel syndrome. J Am Acad Orthop Surg. 2009;17:389–96. doi: 10.5435/00124635-200906000-00007.
[18] Gniadek M, Trybus M. Carpal tunnel syndrome-etiology and treatment. Prz Lek. 2016;73:520–4.
[19] Aminoff MJ, Involvement of peripheral vasomotor fibres in carpal tunnel syndrome. J Neurol Neurosurg Psychiatry. 1979;42:649–55. doi: 10.1136/jnnp.42.7.649.
[20] Verghese J, Galanopoulou AS, Herskovitz S. Autonomic dysfunction in idiopathic carpal tunnel syndrome. Muscle Nerve. 2000;23:1209–13. doi: 10.1002/1097-4598(200008)23:8<1209::aid-mus8>3.0.co;2-#.
[21] Kiylioglu N, Akyol A, Guney E, Bicerol B, Ozkul A, Erturk A. Sympathetic skin response in idiopathic and diabetic carpal tunnel syndrome. Clin Neurol Neurosurg. 2005;108:1–7. doi: 10.1016/j.clineuro.2004.12.003.
[22] Mondelli M, Vecchiarelli B, Reale F, Marsili T, Giannini F. Sympathetic skin response before and after surgical release of carpal tunnel syndrome. Muscle Nerve. 2001;24:130–3. doi: 10.1002/1097-4598(200101)24:1<130:aid-mus20>3.0.co;2-h.
[23] Kuwabara S, Tamura N, Yamanaka Y, Misawa S, Isose S, Bae JS, et al. Sympathetic sweat responses and skin vasomotor reflexes in carpal tunnel syndrome. Clin Neurol Neurosurg. 2008;110:691–5. doi: 10.1016/j.clineuro.2008.04.004.
[24] Wilder-Smith EPV, Fook-Chong S, Chew SE, Chow A, Guo Y. Vasomotor dysfunction in carpal tunnel syndrome. Muscle Nerve. 2003;28:582–6. doi: 10.1002/mus.10475.
[25] Papež BJ, Palfy M. EMG vs thermography in severe carpal tunnel syndrome. EMG Methods for Evaluating Muscle and Nerve Function; 2012. doi: 10.5772/26120.
[26] Jesensek Papez B, Palfy M, Turk Z. Infrared thermography based on artificial intelligence for carpal tunnel syndrome diagnosis. J Int Med Res. 2008;36:1363–70. doi: 10.1177/14732300803600625.
[27] Jesensek Papez B, Palfy M, Mertlik M, Turk Z. Infrared thermography based on artificial intelligence as a screening method for carpal tunnel syndrome diagnosis. J Int Med Res. 2009;37:779–90. doi: 10.1177/147323000903700321.
[28] Zivcak J, Hudak R, Tkáčová M, Švehlík J. A role of thermography in the diagnostics of carpal tunnel syndrome. Acta Mechanica Slov. 2010;14. doi: 10.2478/v10147-011-0017-9.
[29] Ming Z, Siivola J, Pietikainen S, Närsä H, Hänninen O. Postoperative relieve of abnormal vasoregulation in carpal tunnel syndrome. Clin Neurol Neurosurg. 2007;109:413–7. doi: 10.1016/j.clineuro.2007.02.014.
[30] Ming Z, Zaproudina N, Siivola J, Nousiainen U, Pietikainen S. Sympathetic pathology evidenced by hand thermal anomalies in carpal tunnel syndrome. Pathophysiology. 2005;12:137–41. doi: 10.1016/j.pathophys.2005.05.002.
[31] Hong YP, Ryu KS, Cho BM, Oh SM, Park SH. Evaluation of thermography in the diagnosis of carpal tunnel syndrome: Comparative study between patient and control groups. J Korean Neurosurg Soc. 2006;39:423.