Small molecule biomarkers in Alzheimer’s disease

Min Kim1,2 and Cristina Legido-Quigley1,2,*

1 Institute of Pharmaceutical Science, King’s College London, London, UK
2 Steno Diabetes Center Copenhagen, Gentofte, Denmark

Received 6 February 2018 – Accepted 3 April 2018

Abstract – Alzheimer’s disease (AD) is a progressive neurodegenerative disease which affects a growing number of people as the population ages worldwide. Alzheimer’s Disease International estimated that more than 100 million people will be living with dementia by 2050. At present there are no disease-modifying therapies and research has expanded to the –omic sciences with scientists aiming to get a holistic view of the disease using systems medicine. Metabolomics and Lipidomics give a snap-shot of the metabolism. As analyzing the brain in vivo is difficult, the metabolic information of the periphery has potential to unravel mechanisms that have not been considered, such as those that link the brain to the liver and the gut or other organs. With that in mind we have produced a mini-review, to record a number of studies in the field and the molecular pathways that have been flagged in animal and human models of AD. Human studies deal with cohorts in the order of the hundreds due to the difficulty of organizing AD studies, however it is possible that these first pilots point towards important mechanisms. The trend in these small studies is the involvement of many organs and pathways. Some findings, that have been reproduced, are ceramides being increased, phospholipids and neurotransmitters depleted and sterols being found depleted too. Initial findings point to an important role to lipid homeostasis in AD, this is not surprising as the brain’s main constituents are water and lipids.

Keywords: Alzheimer’s disease / metabolomics / lipidomics / biomarker

Résumé – Biomarqueurs à petites molécules dans la maladie d’Alzheimer. La maladie d’Alzheimer est une maladie neurodégénérative progressive qui affecte un nombre croissant de personnes en raison du vieillissement de la population observé dans le monde entier. La fédération internationale d’associations Alzheimer’s disease International estime que plus de 100 millions de personnes vivront avec cette démence d’ici à 2050. Il n’existe actuellement aucun traitement de la maladie et la recherche s’est élargie aux sciences -omiques avec l’objectif scientifique d’obtenir une approche globale de la maladie en utilisant une médecine des systèmes. La métabolomique et la lipidomique donnent un aperçu du métabolisme. L’analyse du cerveau in vivo s’avérant difficile, l’information métabolique de la périphérie possède le potentiel de démêler des mécanismes qui n’ont pas été pris en compte, tels que ceux reliant le cerveau au foie et à l’intestin ou à d’autres organes. Dans cet esprit, nous proposons une mini-revue, afin de lister un certain nombre d’études relevant de ce champ et les voies moléculaires qui ont été signalées chez les modèles animaux et humains de la maladie d’Alzheimer. Les études humaines traitent des cohortes de quelque centaines d’individus en raison de la difficulté à organiser des études sur cette pathologie, mais il est possible que ces premiers pilotes pointent vers des mécanismes importants. La tendance dans ces petites études est l’implication de nombreux organes et voies. Certaines conclusions, qui ont été reproduites, indiquent que les céramides sont augmentées, les phospholipides et les neurotransmetteurs appauvris et les stérols également épuisés. Les premiers résultats indiquent un important rôle de l’homéostasie des lipides dans la maladie d’Alzheimer, ce qui ne semble guère surprenant puisque les principaux constituants du cerveau sont l’eau et les lipides.

Mots clés : maladie d’Alzheimer / métabolomique / lipidomique / biomarqueur

*Correspondence: cristina.legido.quigley@regionh.dk
1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized with memory impairment and personality behavior changes, caused by gradual brain cell apoptosis. It is the most common form of dementia accounting for 50% to 70% of cases. Other dementias include Lewy body disease (LBD), frontotemporal dementia (FTD), vascular dementia (VAD) and Parkinson’s’ disease (PD). In some cases, patients can be diagnosed with a combination of two or more dementias.

AD can present in two forms, early-onset AD (EOAD) and late-onset AD (LOAD). This report will mainly focus on LOAD. Incidence of LOAD normally occurs in people of 65 or older, it has no clear familial pattern and it is considered sporadic (sporadic AD). EOAD occurs before the age of 65 (mean age of 46 years old, but can appear as early as 30s) (Ryman et al., 2014) and it accounts for less than 1% of all AD cases. EOAD is largely hereditary and genetic mutation is the biggest risk factor. EOAD has association with these deterministic variations and it can be called autosomal dominant AD (ADAD, also termed familial AD).

Currently AD is the 6th leading cause of death and the 3rd leading cause of death among people aged 65 or older in the United States (US) (James et al., 2014). Despite this, there is currently no treatment for the disease. The estimated incidence of AD is only likely to increase due to the rapid increase in number of elders. Current estimates suggest AD incidence will increase from 5.4 million (2016) to 13.7 million (2050) in the US (Hebert et al., 2013; Alzheimer’s, 2015).

The progress of AD is relatively slow; people often live on average 4 to 6 years after diagnosis and some can live as long as 20 years. People with AD require partial or full assistance and patients lose ability to take care of their other chronic health problems, such as diabetes or heart disease. All of these factors contribute in making AD an expensive disease. In the US, the disease was reported to cost $226 billion in 2012, and this cost is predicted to increase to $1.2 trillion by 2050 (Alzheimer’s, 2015).

Despite these facts (summarized in Fig. 1), the reality is that the disease mechanism is not comprehensively understood; definite AD diagnosis can only be made on post-mortem brains, and there is no AD prevention or treatment therapies. Currently, just a few drugs are available for AD patients and they are only able to slow the progression of symptoms. Therefore, it is vitally important to determine the biochemistry behind AD, and develop tools for AD diagnosis, treatment and prevention.

2 Current markers of AD

The AD diagnosis criteria was set up by NINDS-ADRA in 1984 and was reported to have average sensitivity and specificity of 81% and 70% respectively (Knothman et al., 2001). This meant that some individuals were identified to having AD when in fact they were non-AD dementia. A recent guideline set up by NIA-AA in 2011 recommended measurements of Aβ and tau (brain and CSF) as diagnostic adjuncts to achieve better AD diagnostic accuracy. These criteria also defined individuals in pre-clinical AD and/or MCI stages (McKhan et al., 2011). As the result, the following tests can be employed to aid AD diagnosis (Tab. 1) and are often termed AD biomarkers.

A biomarker is defined by the U.S. National Institutes of Health Biomarkers Definitions Working Group as “a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic process, or pharmacologic responses to a therapeutic intervention” (Atkinson et al., 2001). Biomarkers allow clinicians to evaluate the state of an individual’s health; confirm disease onset and progression; or gauge whether a treatment is working or not. They must display high sensitivity and specificity, while ease-of-use is also an important factor to be defined as biomarkers. (Desai and Grossberg, 2005; Hampel
et al., 2010; Humpel, 2011). Examples include body temperature for fever, blood pressure for the risk of stroke, cholesterol values for coronaary and vascular diseases, and C-reactive protein (CRP) for inflammation.

As shown in Table 1, AD biomarkers are mainly based on measurements of Aβ and tau and allow relatively high AD diagnosis accuracy (Harris et al., 2015). In particular, CSF Aβ42, total- and phosphor- tau measurements can detect individuals in preclinical stage of AD, and therefore have an ability of predicting the risk of progression to AD. However, these markers are the subject of debate for a number of reasons. PET imaging is expensive while lumbar puncture for CSF collection is invasive. Most importantly, DMT drugs directed toward attenuating the Aβ and tau pathways have all failed to show positive results during clinical trials (Cummings et al., 2016). As a result, focus in AD research has shifted towards early intervention and prevention of AD. Also, the scientific community believe that pathology other than amyloid and tau needs to be targeted (Dong et al., 2012; Reitz, 2012) as well as a need to discover new biomarkers which would recognise individuals in the asymptomatic (preclinical) stage.

A test with biomarkers would benefit AD patients in a number of ways, it would distinguish AD from other types of dementia and allow more accurate treatment to be initiated (Humpel, 2011). It can potentially identify novel mechanistic pathways of the disease and consequently set the path for the discovery of a disease-modifying drug. Conversely, biomarkers would allow the correct selection of people in a preclinical stage of AD for clinical trials and help with prevention therapies (Fiandaca et al., 2014).

Finding biomarkers of Alzheimer’s disease is a priority in the medical research field, especially biomarkers for the preclinical and clinical stages of AD. This has involved assays of blood (Hye et al., 2014; Mapstone et al., 2014), skin (Khan and Alkon, 2010), urine (Ghanbari et al., 1998), hair (Son et al., 2016), odour (Kimball et al., 2016a), and olfactory deficits (Tabert et al., 2005) with candidates being proteins, genes, clinical symptoms or small metabolites. Of these, peripheral blood has been the most extensively interrogated, as it is accessible by minimally invasive means and offers a relatively inexpensive substrate for analysis. Also crucially, blood is comprised of a liquid component (plasma or serum) and a wide variety of cells (mononuclear leukocytes, erythrocytes and platelets). The liquid component is often used for proteins or small molecules profiling; Ribonucleic Acid (RNA) assay can be obtained from cells (and serum and plasma exosomes). This particular nature of blood therefore represents a unique opportunity for biomarker discovery and development.

For discovery of novel blood-based biomarkers of AD, a wide array of technological platforms have been applied in recent years. For example, application of Polymerase Chain Reaction (PCR) has proposed circulating microRNAs (Kumar et al., 2013; Tan et al., 2014); the most promising result showed a panel of 12 microRNAs which differentiated AD from controls with accuracy of 93% (Leidinger et al., 2013). Transcriptomic tests have also been applied on blood; a signature consisting of 170 probe sets has been identified to discriminate AD from controls with sensitivity and specificity of 81.3% and 67.1% respectively (Fehlbaum-Beurdeley et al., 2012).

A wide number of studies have also focused on blood-based proteomic biomarkers of AD, Aβ being the initial focus. Cross-sectional studies comparing levels of blood Aβ in AD have not shown consistent results; negative (Blennow et al., 2010; Toledo et al., 2013; Snyder et al., 2014; Janelidze et al., 2016) as well as positive (Lopez et al., 2008; Mayeux et al., 2003; Lambert et al., 2009) test results have been reported. Several other proteins have also been proposed; Ray et al. described a panel of 18 proteins being able to predict AD from controls with 90% accuracy (Ray et al., 2007a) while glycan signatures have shown to discriminate with a sensitivity and specificity of 89.3% and 79.1% respectively (Lundstrom et al., 2014). Recently, O’Bryant et al. (2016) established a 21 protein panel as an AD discriminator in n=1329 study; the sensitivity and specificity were 63% and 98% respectively. Other groups have also looked at potential preclinical AD biomarkers. A panel of 25 proteins was found to predict conversion of AD from controls with sensitivity of 80% and specificity of 91% (O’Bryant et al., 2010) while 10 plasma proteins were found to predict progression to AD from MCI (accuracy 87%) (Hye et al., 2014). Another promising cross-sectional study showed 18 proteins being able to predict conversion from symptomatic MCI to AD with accuracy of 91% (Ray et al., 2007b); successive validation studies failed to replicate (Soares et al., 2009; Marksteiner et al., 2011).

| Table 1. Classification of biomarkers used in the differential diagnosis of AD. These markers are recommended by NIA-AA. |
|-------------------|-------------------|
| Biomarkers for AD | Pathophysiological correlate |
| Neuropsychological | Hippocampal amnesia due to AD |
| Tests for episodic memory/delayed recall | |
| Cerebrospinal fluid | Neuronal Aβ plaque accumulation |
| Aβ42 | |
| Total-tau | Neuronal degeneration |
| Phosphorylated tau | Intra neuronal NFT |
| Amyloid Imaging | Neuronal Aβ plaque accumulation |
| Aβ PET | |
| Structural neuroimaging | |
| Magnetic resonance imaging (MRI) | Neuronal injury marker |
| Computed tomography (CT) | Neuronal injury marker |
| Functional neuroimaging | |
| FDG-PET | Glucose hypometabolism |

3 Lipidomics and metabolomics

The last decades have seen much advancement in analytical technologies such as nuclear magnetic resonance (NMR) and high-resolution tandem mass spectrometry (MS). One of the many applications of this technology is the accurate detection and fingerprinting or profiling of small molecule metabolites (<1500 Da). The field where as many small
molecules are measured is often termed as ‘metabolomics’ or sometimes ‘metabonomics’. Metabolomics involves a comprehensive and simultaneous systematic profiling of metabolite concentrations and their fluctuation that reflects in response of living systems to pathophysiological stimuli and/or genetic modifications and the surrounding environment (Beckonert et al., 2007; Want et al., 2010; Wilson, 2011). Metabonomics is another term often used interchangeably with metabolomics as the analytical and modeling procedures are the same. Metabolomics can be categorized into two distinct approaches, classically it is non-targeted (or untargeted), but it is also possible to analyse a chosen panel of metabolites and call it targeted metabolomics. The non-targeted approach involves quantification/relative-quantification of as many as possible metabolites in a biological system. Targeted approach is where chemically characterized and biochemically annotated metabolites are quantified using specific methodologies designed with a target in mind (Roberts et al., 2012).

Metabolomics has a number of inherent advantages compared to the use of other profiling techniques such as genomics and proteomics. Since metabolites are the terminal downstream product of the genome, monitoring the perturbations in a pool of metabolites could reflect underlying disease pathology and further, disease prognosis and diagnosis (Fig. 2). Also, metabolomics can react very fast to stimuli or to change, therefore it is capable of viewing the most current view of the system’s biology. Through evolution, metabolic pathways have been conserved, which means metabolic pathways are similar in rodent and humans. Therefore, metabolic signatures identified in mechanistic and therapeutic studies for animal models can in theory be translated into human studies (Holmes and Nicholson, 2007). Moreover, metabolomics is relatively inexpensive and time efficient when compared to genomics or proteomics, and can be applied to variety of easily accessible biofluids such as plasma, CSF, urine, and peripheral tissues, thus highlighting the clinical utility of the approach (Nicholson et al., 2007).

The overall size of the metabolome remains elusive in metabolomics field, but it is estimated to range from a few thousands to hundreds of thousands of small molecules (Wishart et al., 2009; Psychogios et al., 2011). Recent advancements in analytical technologies have allowed measurements of dynamic changes in many molecules in biological samples simultaneously. These technologies include high-resolution NMR and MS coupled with chromatographic techniques. However, no analytical techniques is available for the analysis of the entire metabolome content. Often a range of criteria such as speed, cost, properties of the analytes, sensitivity and the choice of biofluid needs to be considered.

4 Lipid metabolism

Implication of altered lipid metabolism in AD pathogenesis was first suggested by Alois Alzheimer (Sparks et al., 1994; Foley, 2010), but this hypothesis has been gaining acceptability only in recent years (Proitsi et al., 2014; Djelti et al., 2015), after the discovery of ε4 allele of the apolipoprotein E (ApoE) gene being the strongest LOAD genetic risk factor (Corder et al., 1993; Bertram and Tanzi, 2008). Implication of lipids in AD is perhaps logical considering all enzymes involved in amyloidogenic pathway (APP, β-secretase and γ-secretase) are transmembrane proteins. A perturbed lipid bilayer composition and organization will impact on trafficking and/or proteolytic activity of these transmembrane proteins, and thus APP processing and Aβ production (Hartmann et al., 2007).

Of all lipid classes, high cholesterol levels in brain (cholesterol homeostasis) has been implicated with AD the most. Cholesterol has an essential role in the brain, helping to maintain neuronal functions such as neurotransmitter release and synaptic plasticity (Koudinov and Koudinova, 2001; Linetti et al., 2010). However, when cholesterol is in excess in the brain (de novo), it is esterified into cholesteryl esters by acyl-cholesterol-acyltransferase-1 (ACAT1), and accumulation of this intracellular cholesteryl ester can enhance Aβ release (Puglielli et al., 2001; Di Paolo and Kim, 2011). Supporting this hypothesis, pharmacological inhibition of ACAT1 has been found to reduce both Aβ production and cholesteryl esters (Bhattacharyya and Kovacs, 2010; Hutter-Paier et al., 2010). Additionally, cholesterol is known to modulate β-secretase and γ-secretase activities directly, with a rich environment of cholesterol having been found to accelerate Aβ deposition (Simons et al., 1998; Wahrle et al., 2002; Vetrivel and Thinakaran, 2010).
Supporting these biochemical studies are case-control studies where statins, cholesterol-lowering drugs, have been found associating with lower risk of AD development (Jick et al., 2000; Wolozin et al., 2007). Statin has also shown to promote ectodomain (domain of a membrane protein that extends into extracellular space) shedding of APP through the α-secretase pathway (non-amyloidogenic pathway), inhibiting Aβ production in a cholesterol-independent manner (Pedrini et al., 2005). However, retrospective clinical trials involving a prospective cohort have shown conflicting results, Wolozin et al. (2007) reported lower incidence of the dementia while Arvanitakis et al. (2008) showed no relationship between statin medication and AD incidence, cognitive decline and AD pathologies. Additionally, epidemiological studies testing associations between low-density lipoprotein (LDL) cholesterol (often referred as ‘bad’ cholesterol) and AD have also produced mixed results. While increased levels of total cholesterol levels have been found in post-mortem AD brains (Kuo et al., 1998) and associated with higher AD risk (Kivipelto et al., 2002; Whitter et al., 2005), no relationship (Tan et al., 2003) or the opposite relationship (Reitz et al., 2004; Mielke et al., 2005; Snowden et al., 2017) have also been reported.

In brain, ApoE is the predominant apolipoprotein (Liu et al., 2013). Interestingly, ApoE is also involved in Aβ clearance (Kim et al., 2009). The activity of ApoE is greatly dependent on its lipidation level, regulated by adenosine triphosphate binding cassette A1 (ABCA1). Immunochemical studies have demonstrated that the lack of ABCA1 results in deficient lipidation of ApoE and consequently leads to accumulation of amyloid plaques burden, indicating poorly lipidated ApoE to be associated with amyloidogenic pathway (Hirsch-Reinshagen et al., 2005; Koldamova et al., 2005; Wahrle et al., 2005). Additionally, the effect of ApoE seems to be isoform-dependent; ε4 allele of ApoE results in the highest Aβ deposition (ε4 > ε3 > ε2) (Sepehrnia et al., 1989; Farrer et al., 1997; Kok et al., 2009). However, the mechanism by which ApoE alleles differentially modulate the amyloidogenic pathway is less clear.

In addition to cholesterol, sphingolipids have been found to play a role in Aβ production. Sphingolipids include ceramide, sphingomyeline and glycosphingolipids, and are believed to play important roles in signal transmission and cell recognition (Ohanian and Ohanian, 2001; Hannun and Obeid, 2002). Ceramide, a central component in sphingolipid metabolism, has been suggested to facilitate the regulation of BACE-mediated processing of APP by prolonging the half-life of BACE (Puglielli et al., 2003). Furthermore, these lipid species have been found to mediate oxidative stress-induced neuronal apoptosis, independently of its role in BACE activity regulation (Spiegel and Milstien, 1995; Spiegel and Milstien, 2002; Cutler et al., 2004; He et al., 2010). They have been shown to activate enzymes involved in cell apoptosis ranging from protein kinase (Lozano et al., 1994), cathepsin D (Heinrich et al., 1999) and serine/threonine protein phosphatase (Dobrowsky et al., 1993). These findings are supported by retrospective epidemiologic studies where high ceramide levels have been found in AD blood (Han XL et al., 2011), CSF (Satoi et al., 2005) and brain (Filippov et al., 2012), while higher serum ceramide levels have also been associated with AD incidence (Mielke et al., 2012). These findings suggest potential of ceramide-based therapeutic treatments for delaying AD development. Inhibition of sphingomyelinase (SMase), a catalyst involved in sphingomyeline to ceramide conversion, has been suggested as a therapeutic agent. In addition, neutral SMase (N-SMase) knockout mice has shown lower activation of pro-inflammatory enzymes and subsequently greater protection of neurons (Jana and Pahan, 2010). Dinkins et al. (2014) have also demonstrated that by inhibiting N-SMase activity they observed lower brain ceramide levels and Aβ burden.

Phospholipids are another family of lipid species to be associated with AD along with enzymes involved in phospholipid metabolism. A number of case-control studies have reported abnormal phospholipids levels in AD individuals, namely, lower levels for phosphorylidencylositol (PI) (Prasad et al., 1998; Stokes and Hawthorne, 1987; Pettegrew et al., 2001), for phosphatidylethanolamine (PE) (Nitsch et al., 1992; Guan et al., 1999; Prasad et al., 1998) and for phosphatidylcholine (PC) (Nitsch et al., 1992; Wells et al., 1995; Prasad et al., 1998; Guan et al., 1999) in AD brain and in AD blood (Mapstone et al., 2014; Whiley et al., 2014) while they were found increased in AD CSF (Mulder et al., 2003; Walter et al., 2004). Phospholipids are a major component of the cell membrane and play important roles in cellular functions, such as extracellular receptor signalling, intercellular second messengers and cellular pressure regulation (Lutjohann et al., 2012).

5 Applications of lipidomics/metabolomics in AD

Although metabolomics is a relatively young ‘omic’ field, in recent years, an extensive number of studies have applied this approach to establish differences in metabolite levels between cognitively normal (CN) individuals and AD patients. Various biological matrices have been investigated; CSF is very useful due to its composition reflecting in part brain metabolic production. Non-invasive samples such as blood (serum or plasma), urine and saliva have also been analysed with the aim to identify more accessible biomarkers translatable to the clinical practice. Brain is also another source but the focus mainly has been the in situ characterization of neuropathology. Animal model and human AD studies utilizing metabolomics will be discussed in the following section.

5.1 Animal models of AD

Metabolomic techniques have been utilized in animal models of AD. With regards to the animal models, it is important to note that the commonly employed transgenic (Tg) animal models are based on over-expression of APP (APPP671/717) and CRND8 transgenic lines. Some models also co-express the mutated human presenilin1 (PSEN1) or presenilin2 (PSEN2) allowing accelerated amyloid deposition (APP × PS1 or APP × PS2 double transgenic models respectively). TASTPM is another double transgenic mouse model carrying two mutations associated with APP and PSEN1. SAMP8 is another model which has
been frequently used as this model displays a phenotype of accelerated aging and thus age-associated increase in hippocampal Aβ and age-associated behavioural impairments. These animal models are more closely associated with familial form of AD rather than LOAD, but they can still offer an opportunity to investigate the early pathological disease mechanisms.

The earliest studies on animal models were approached by Magnetic Resonance Spectroscopy (MRS) and investigated neurochemical profiles in cerebrum samples. Examination on cerebral cortex (Dedeoglu et al., 2004), cortex and hippocampus (Marjanska et al., 2005), and frontal cortex (von Kienlin et al., 2005) showed a decrease in the levels of N-acetylaspartate (NAA) and glutamate in the brains where amyloid toxicity was widespread. In addition, these metabolites have been found to correlate (negatively) with brain amyloid burden (von Kienlin et al., 2005). Studies utilizing different analytical platforms have also reported decreased NAA and glutamate levels; these include studies utilizing NMR on APP transgenic mouse hippocampus, cortex, frontal cortex, midbrain and cerebellum (Salek et al., 2010), and GC-MS metabolomics on PS1 transgenic hippocampus (Trushina et al., 2012). Glutamate is a primary excitatory neurotransmitter and its decreased levels may reflect a loss of glutamatergic neurons or decreased glutamate activity (Lin et al., 2003). Biological function of NAA in the brain is not well understood, but it is commonly regarded as a marker of neuronal density and integrity (Schuff et al., 1997). A diagnostic test based on the decreased levels of NAA and glutamate in APP × PS2 mice brains was able to classify ‘AD like’ mice from normal mice with 92% sensitivity and 82% specificity (von Kienlin et al., 2005). In addition to decreased levels of NAA and glutamate, these studies have also reported myo-inositol (m-In) content elevated in APP and PS1 mouse cerebrums (Marjanska et al., 2005; Woo et al., 2010; Forster et al., 2012). M-In is predominantly expressed in glial cells compared to neurons; its levels are considered to be indicative of osmotic stress and astroglosis (Castillo et al., 2000). However, other mouse model studies have shown contradicting results (Salek et al., 2010; Trushina et al., 2012).

Assays using NMR on plasma and liver samples from APP × PS1 transgenic mice showed significant changes in levels of lipids, nucleotides and energy-related metabolites, suggesting occurrence of oxidative stress and impaired energy metabolism (Wu et al., 2016). The impaired energy metabolism was also visible when serum samples were subjected to NMR, glucose, citrate, 3-hydroxybutyrate, pyruvate were found to be decreased (Liang et al., 2008). Moreover, analysis on urine samples from APP mice revealed significant metabolic alterations (increased levels of 3-hydroxykynurenine, homogentisate and allantoin) indicative of oxidative stress (Fukuhara et al., 2013).

While NMR or MRS platforms are ideal for detecting highly abundant metabolites (particularly those involved in energy metabolism), MS based metabolomics allows to look at a wider range of the metabolome network. Direct MS analysis on APP transgenic mouse cortex and cerebellum showed lower sulfatide levels (Cheng et al., 2010), while perturbations in homeostasis of lipids, energy management, and metabolism of amino acids and nucleotides were visible on APPxPS1 hippocampus and cortex (Gonzalez-Dominguez et al., 2015b). Employing ultra high resolution MS instruments, Lin et al., (2013) were able to observe over-production of eicosanoids indicating neuroinflammation on hippocampal tissues (Lin et al., 2013), and enhanced biosynthesis of amino acid and amino acid derivatives in cerebellum (Lin et al., 2014). Blood metabolomics using MS has identified numerous disturbed pathways in serum samples from APPxPS1 mouse, including perturbed phospholipid homeostasis, energy-related failures, hyperammonemia, inflammation (increased eicosanoids), among others (Gonzalez-Dominguez et al., 2015c). Peripheral organs from APPxPS1 Tg mouse models have included liver, kidneys, spleen and thymus (Gonzalez-Dominguez et al., 2015e). The findings demonstrated significant impairments in energy metabolism, lipid homeostasis, oxidative stress and amino acids metabolism. These findings were largely consistent with those found from Tg mouse brain tissue samples (Lin et al., 2014; Lin et al., 2013; Gonzalez-Dominguez et al., 2015h). These findings highlighted the systemic nature of AD as metabolite dysregulation was seen in multi-organs, not just the brain.

Utilizing MS coupled with chromatography allows detection of a broader network of metabolic pathways when compared to NMR or direct MS approaches. Whole brain metabolic profile from APPxPS1 revealed perturbations related to amino acid metabolism and steroid biosynthesis (Hu et al., 2012). Impairment in sterol metabolic pathway has also been visible in terms of increased cholesterol and cholesterol ester levels on whole brain (Sharman et al., 2010; Tajima et al., 2013) and hippocampal tissues (Wang HL et al., 2014). Lipid analysis on APPxPS1 Tg mouse whole brain samples showed elevated levels of lysophosphatidylcholines (LysoPC), free fatty acids, monoacylglycerols and phosphatidic acids (Piro et al., 2012). The study was also able to identify significant perturbations in brain eicosanoids (Piro et al., 2012), in line with another study (Lin et al., 2013). Further inactivation of monoacylglycerol lipase has been found to reverse the perturbed metabolism of eicosanoids and reduce neuro-inflammation (Piro et al., 2012). LC-MS techniques have also been applied for analysing hydrophilic metabolites in urine samples from CRND8 transgenic mice. Significant changes were observed in urinary levels of multiple families of metabolites; these included amino acids, fatty acids and neurotransmitter conjugates (Peng et al., 2014; Tang et al., 2016). Altered levels of these metabolites have been identified in brain and blood samples as well (Dedeoglu et al., 2004; Liang et al., 2008; Salek et al., 2010; Lin et al., 2013), suggesting whole body response to AD.

Gonzalez-Dominguez et al. has employed a combination of GC-/LC- MS platforms and using the APPxPS1 mouse model has shown numerous alterations in the homeostasis of lipids, amino acids, nucleotides, energy-related metabolites and some other compounds in the whole organism, including in serum (Gonzalez-Dominguez et al., 2015d), liver and kidney (Gonzalez-Dominguez et al., 2015b), spleen and thymus (Gonzalez-Dominguez et al., 2015i), and various regions of the brain (Gonzalez-Dominguez et al., 2014d). Many of these impairments could also be detected in APP mouse hippocampus when the same methodology was applied (Trushina et al., 2012).

Summary of metabolomics studies conducted in animal models of AD can be seen in Table 2.
Table 2. Summary of metabolomics studies conducted in animal models of AD.

Animal model	Sample	Platform	Findings	Ref.
APP_{Tg2576}(n = 9) WT(n = 10)	Frontal cortex	NMR	↑Taurine; ↓N-acetyl-aspartate, glutamate, glutathione	(Dedeoglu et al., 2004)
APPxPS1(n = 7–8) WT(n = 5–9)	Whole brain	NMR	↑Myo-inositol, choline, glycerophosphocholine; ↓succinate	(Forster et al., 2012)
CRND8 (n = 5/5 young/old) WT(n = 4/8 young/old)	Cortex, frontal cortex, cerebellum, hippocampus, striatum, pons, midbrain, olfactory bulb	NMR	↑Lactate, aspartate, glycine, alanine, leucine, isoleucine, valine, free fatty acids; ↓N-acetyl-aspartate, glutamate, glutamine, taurine, γ-aminobutyric acid, choline, phosphocholine, creatine, phosphocreatine, succinate	(Salek et al., 2010)
APP × PS1(n = 10) WT(n = 10)	Cortex(frontal, occipital, parietal, temporal), thalamus, hippocampus	NMR	↑Myo-inositol, scyllo-inositol; ↓N-acetyl-aspartate	(Woo et al., 2010)
APP_{Tg2576}(n = 39) WT(n = 44)	Frontal cortex, rhinal cortex, hippocampus, cerebellum, midbrain	NMR	↑Creatine, taurine; ↓glutamate, N-acetyl-aspartate, myo-inositol, phosphocholine, γ-aminobutyric acid	(Lalande et al., 2014)
APP × PS1(n = 6) WT(n = 6)	Whole brain	NMR	↓N-acetyl-aspartata, γ-aminobutyric acid, creatine, ascorbic acid	(Graham et al., 2013b)
APP × PS1(n = 6) WT(n = 6)	Plasma	NMR	↓Glutamate, glutamine, methionine, acetate, citrate	(Graham et al., 2013b)
APP × PS1(n = 27) WT(n = 33)	Plasma	NMR	↑Lipoproteins, triglycerides	(Wu et al., 2016)
APP × PS1(n = 27) WT(n = 33)	Liver	NMR	↑Unsaturated fatty acids, 3-hydroxybutyrate, aspartate, glutamine, uridine diphosphate, uridine monophosphate, adenosine monophosphate; ↓alanine, lactate, betaine	(Wu et al., 2016)
SAMP8(n = 5) SAMR1(n = 5)	Serum	NMR	↑Lactate, saturated fatty acids, alanine, methionine, glutamine, VLDL; ↓inosine, glucose, polyunsaturated fatty acids, choline, phosphocholine, HDL, LDL, 3-hydroxy-buturate, citrate, pyruvate	(Liang et al., 2008)
APP_{Tg2576}(n = 3–5) WT(n = 3–5)	Urine	NMR	↑3-hydroxykynurenine, homogentisate, allantoin, acetate, trans-aconitate, tyrosine, hippurate, citrate, urea; ↓trigonelline, 2-oxoglutarate, dimethylamine, trimethylamine, threonine, 1-methylnicotinamide	(Fukuhara et al., 2013)
APP_{V71T}F, APP_{V71T}F × APOE APP_{sw} APP_{sw} × APOE WT	Cortex, cerebellum	MS	↑Sulfatides	(Cheng et al., 2010)
APP × PS1(n = 30) WT(n = 30)	Serum	MS	↑SFA-PLs, eicosanoids, triglycerides, diglycerides, choline, GPE, inosine; ↓PUFA-PLs, LPLs, cholesteryl esters, free fatty acids, urea, serine, valine, threonine, pyroglutamate, creatine, phosphoethanolamine, histidine, carnitine, glucose, tyrosine, tryptophan	(Gonzalez-Dominguez et al., 2015c)
Animal model	Sample	Platform	Findings	Ref.
------------------	---------------------------------	----------	---	--
APP × PS1(n = 30)	Hippocampus, cortex, cerebellum	MS	↑LPLs, PL(18:0/20:4), 22:5PLs, 22:4-PLs, propionyl-carnitine, free fatty acids, eicosanoids, uracil, hypoxanthine, xanthine, FAPy-adenine, adenosine, inosine, acetate, propionate, pyruvate, alanine, choline, valine, G3P, phosphocholine, N-acetyl-spermidine, GPC, GPI; ↓PUFA-PLs, acyl-carnitines, steroids, adenosine, UMP, AMP, urea, aspartate, dopamine, tyrosine, homocarnosine	(Gonzalez-Dominguez et al., 2015h)
APP × PS1(n = 30)	Liver, kidney, spleen, thymus	MS	Alterations in the metabolism of phospholipids, fatty acids, acyl-carnitines, eicosanoids, acyl-glycerols, steroids, amino acids, nucleotides, energy-related metabolites(changes depending on the tissue)	(Gonzalez-Dominguez et al., 2015e)
APP × PS1 × IL4 (n = 7)	Serum	MS	↑Urea, histamine, threonine, aspartate, urocanic acid, dopamine, citrulline, tyrosine; ↓1-methyl-histamine, eicosanoids	(Gonzalez-Dominguez et al., 2015g)
APP × PS1(n = 7)	Hippocampus	MS	Alterations in the homeostasis of arachidonic acid, glucose metabolism and fatty acid β-oxidation	(Lin et al., 2013)
CRND8(n = 6)	Cerebellum	MS	↑Eicosanoids, amino acids and derivatives, xanthosine, xanthine, urate; ↓inosine, guanosine	(Lin et al., 2014)
SAMP8 n = 5 (2 months) n = 6 (7 months) n = 7 (12 months)	Hippocampus	GC-MS	↑Cholesterol, oleic acid, phosphoglyceride, N-acetyl-aspartate; ↓alanine, serine, glycine, aspartate, glutamate, γ-aminobutyric acid, malic acid, butanedioic acid, fumaric acid, citric acid, pyroglytamic acid, urea, lactic acid	(Wang HL et al., 2014)
TASTPM(n = 16)	Whole brain	GC-MS	↑D-fructose, valine, serine, threonine; ↑zymosterol	(Hu et al., 2012)
TASTPM(n = 16)	Plasma	GC-MS	↑D-glucose, d-galactose, linoleic acid, arachidonic acid, palmitic acid, gluconic acid	(Hu et al., 2012)
APP_{Tg2576}(n = 15)	Urine	GC-MS	↑Phenylacetone; ↑3-methylcyclopentanone, 4-methyl-6-hepten-3-one, 6-hydroxy-6-methyl-3-heptanone	(Kimball et al., 2016b)
CRND8(n = 12)	Urine	RP-MS	↑Methionine, desaminotyrosine, phenylacetylglucine, dihydrouracil, ureidopropionic acid, thiocysteine; ↓choline, taurine, N1-acetyl-spermidine, 5-hydroxy-indoleacetic acid, hydroxypyrophylglycine	(Peng et al., 2014)
CRND8(n = 12)	Urine	HILIC-MS	Fifty-five differential metabolites involved in the homeostasis of amino acids(e.g. tryptophan, tyrosine, phenylalanine, lysine), fatty acids, purines and pyrimidines, ascorbate, and others	(Tang et al., 2016)
Table 2. (continued).

Animal model	Sample	Platform	Findings	Ref.
APP × PS1(n = 30) WT(n = 30)	Serum	RP-MS/ GC-MS	Alterations in the metabolism of phospholipids, sphingolipids, fatty acids, cholesterol and bile acids, energy-related metabolites and amino acids	(Gonzalez-Dominguez et al., 2015d)
APP × PS1(n = 30) WT(n = 30)	Hippocampus, cortex, striatum, cerebellum, olfactory bulb	RP-MS/ GC-MS	Alterations in the metabolism of phospholipids, sphingolipids, energy-related metabolites, amino acids and nucleotides	(Gonzalez-Dominguez et al., 2014d)
APP × PS1(n = 30) WT(n = 30)	Liver, kidney	RP-MS/ GC-MS	Alterations in the metabolism of phospholipids, sphingolipids, fatty acids, acyl-carnitines, cholesterol and bile acids, energy-related metabolites and amino acids	(Gonzalez-Dominguez et al., 2015f)
APP × PS1(n = 30) WT(n = 30)	Spleen, thymus	RP-MS/ GC-MS	Alterations in the metabolism of phospholipids, sphingolipids, fatty acids, acyl-carnitines, energy-related metabolites, amino acids and purines	(Gonzalez-Dominguez et al., 2015i)
APP₄₂₅₇₆(n = 3) PS1(n = 3)	Hippocampus	RP-MS/ GC-MS	Alterations in nucleotide, TCA cycle, energy transfer, carbohydrate, neurotransmitter and amino acid metabolic pathways	(Trushina et al., 2012)

5.2 Metabolomics in AD patients

While animal models represent at best familial AD, not sporadic forms such as LOAD which have multifactorial origins, human studies can also be challenging because of multifactorial issues, such as disease severity and comorbidities, together with the difficulty of organizing big cohorts to correct appropriately for this variation.

5.2.1 Brain

The earliest metabolomics studies on AD focused on post-mortem brain samples, utilizing MRS as an analytical platform. In vitro analyses were performed in order to quantify the content of some important neurochemicals in different brain regions. These studies commonly identified reduced levels of N-acetyl-asparate, glutamate and glutamine, together with increased myo-inositol content (Klunk et al., 1992; Miller et al., 1993; Mohanakrishnan et al., 1995; Shonk et al., 1995; Mohanakrishnan et al., 1997). Shonk et al., (1995) evaluated these metabolites as putative neuronal markers, and found that the ratio of myo-inositol and N-acetyl-aspartate was able to distinguish AD from normality with 83% specificity and 98% specificity. It is interesting to note that these changes were also identified in the brains of adult AD-like mouse in the presence of amyloid burden (Dedeoglu et al., 2004; Marjanska et al., 2005; von Kienlin et al., 2005; Salek et al., 2010) as well as in the brains of young APPxPS1 Tg mouse in the absence of amyloid plaques (Wengenack et al., 2000; Marjanska et al., 2005).

More recently, non-targeted approaches utilizing NMR technique have been employed. Graham et al., (2014) were able to identify increased alanine and taurine levels in the neocortex region of AD brains; ratio of these two metabolites was found to discriminate AD from controls with Receiver Operation Characteristic (ROC) area under curve (AUC) value of 76%. Further when cortical profiles between AD and amyotrophic lateral sclerosis (ALS) were compared using the same methodology, alanine, glutamate and glutamine levels were found to be increased in AD, highlighting these abnormalities to be AD specific (Botosoa et al., 2012).

Numerous studies have applied DIMS due to its high-throughput capability. In 2001, Han et al., (2001) reported a decrease in plasmalogen content in cerebellar white matter at a very mild stage of ADs, a trend which was also later seen in AD grey matter (Wood et al., 2015). In the following year, Han et al., (2002) attempted to reproduce the finding of decreased plasmalogen levels in AD brain, but was unable to observe the change at a significant level. Instead the group observed depletion in sulfatide levels in white matter and grey matter regions (Han et al., 2002), a finding that was later seen in a mouse model study (Cheng et al., 2010). Sulfatide is known to mediate diverse biological processes including myelination, signal transduction, neuronal plasticity and cell morphogenesis (Vos et al., 1994; Merrill et al., 1997), suggesting sulfatide loss may lead to neuronal dysfunction and AD pathogenesis (Han et al., 2002). Interestingly, depletion of brain sulfatide level was also observed in pre-clinical AD (Cheng et al., 2010) and mild AD (Wood et al., 2015), suggesting that sulfatide deficiency is possibly among the early events of AD development.

More hydrophilic brain metabolites have also been found to be associated to AD pathology. Recently, Xu et al., (2016) employed GC-MS to compare profiles of 9 AD brains to 9 control brains, in 9 different brain regions. The group detected 55 metabolites differentiating the two cohorts; these 55 metabolites were mainly amino acid and nucleoside, highlighting presence of widespread metabolic perturbations in AD brain (Xu et al., 2016). Utilizing the same analytical technique on 43 brain samples, Snowden et al., (2017) showed...
dysregulation in unsaturated fatty acid metabolism in the brains for patients with varying degrees of AD pathology. LC-MS has also been employed to compare metabolic profiles of AD brains to those of control brains, a recent study has found a significant increases in the levels of spermine and spermidine were identified in AD brains, suggesting involvement of an abnormal brain expression of the polyamine pathway in AD pathogenesis (Inoue et al., 2013). More recently, a targeted metabolomics approach has been utilized where glucose level was measured from 14 control, 14 AD and 15 asymptomatic AD brains (An et al., 2017). The study showed higher brain glucose levels associating with AD pathology and the expression of AD symptoms, further highlighting glucose hypometabolism in AD brain (An et al., 2017).

5.2.2 CSF

CSF is an ideal matrix because of its direct contact with the extracellular space in the brain, thus directly reflecting the brain’s metabolic production. Kaddurah-Daouk et al., (2011) examined levels of metabolites involved in key neurotransmitter pathways and oxidative stress using 30 post-mortem ventricular CSF samples (15 AD vs 15 CN). For this purpose, a metabolic platform based on LCECA with pentane sulfonic acid as ion-pairing agent was employed. The study observed depletion of norepinephrine, methionine, α-tocopherol and 3-methoxytyramine levels and increased levels of 5-hydroxytryptophan in AD (Kaddurah-Daouk et al., 2011). However, it is important to note that this study utilized post-mortem CSF samples (Kaddurah-Daouk et al., 2011). Along with brain samples discussed in the earlier section, post-mortem samples generally imply the severe-phase of AD at the time of collection. Additionally, metabolite levels in post-mortem tissue/biofluid samples may be impacted by the death process (as well as post-mortem intervals) (Trushina and Mielke, 2014).

NMR-based metabolomics to CSF samples have demonstrated great utility in differentiating AD from CN (Jukarainen et al., 2008; Kork et al., 2009; Laakso et al., 2015). One of these studies quantified 31 metabolites from 76 AD vs 45CN CSF samples and found that these metabolites were able to classify the samples correctly with an accuracy of 85.5% (Laakso et al., 2015). LCECA has also been employed; Kaddurah-Daouk et al., (2013) looked into metabolic profiles of 50 AD, 36 MCI and 15CN CSF samples and was able to reveal elevated levels of methionine and 5-hydroxyindoleacetic acid in AD and MCI compared to CN samples. These metabolites were also found to be related to CSF Aβ42, indicating the perturbations in pathways involving methionine and 5-hydroxyindoleacetic acid could be associated with amyloidogenic pathway (Kaddurah-Daouk et al., 2013).

Multi-platforms based on the combination of complementary chromatographic science prior to MS detection have also been employed (Czech et al., 2012; Ibanez et al., 2013; Trushina et al., 2013a). Utilizing RP and HILIC, Trushina et al., (2013a) analysed 15 AD, 15 MCI and 15CN CSF samples, and found approximately 30% of the metabolic pathways altered in MCI compared to CN, and 60% in AD compared to CN. This finding showed that the number of affected pathways increases with disease severity.

Another multiplatform available for CSF metabolic profiling is the combination of GC-MS and LC-MS methodology. Using this technique, Czech et al., (2002) were able to establish differences in catecholamines and steroids in the CSF samples from 51CN, 53 mild AD and 26 moderate AD participants. The group also found increased cortisol levels associating with the AD progression, while combination of cysteine and various amino acids provided predictive models with sensitivity and specificity above 80% (Czech et al., 2012).

A recent study employed CE-MS to monitor perturbations in the polar metabolome associated with AD progression by analysing CSF from subjects with different cognitive status, AD, MCI that progressed to AD within 2 years, MCI that remained stable after 2 years, and subjective cognitive impairment (Ibanez et al., 2012). Initially, ten metabolites including choline, valine, arginine, suberylglycerin, carnitine, creatine, serine and histidine were identified from 73 samples with classification accuracy of 90.1% for the four groups. The group then tested the classification model into 12 test samples, initially blinded to diagnosis, and 83% of the samples were correctly classified, indicating these polar CSF metabolites could potentially be utilized as a diagnostic tool (Ibanez et al., 2012). The same group employed the combination of orthogonal RP-MS and HILIC-MS on the same sample cohorts (Ibanez et al., 2013). From statistical modelling, 17 metabolites were identified showing strong association with cognitive status related to AD, and classification model based on these 17 metabolites was able to predict the development of AD with an accuracy of 98.7%, and sensitivity and specificity values above 95%. The model included altered level of histidine (Ibanez et al., 2013), which was also present their previous work (Ibanez et al., 2012).

5.2.3 Blood

Blood biomarkers would be ideal for their implementation in the clinical practice. CSF metabolites may be more reflective of brain changes but CSF collection is invasive, making it unsuitable for screening purposes. As a result, it is no surprise that most of the metabolic profiling studies have focused on blood-based biomarkers. González-Domínguez et al., (2014b, 2014c, 2014e, 2015a) studied serum lipid profiles by utilizing various lipid extraction and DI-MS, each technique focusing on different classes of blood metabolites. The group has been able to detect abnormal overproduction of several molecular species:

- glycerides indicating membrane breakdown;
- prostaglandins, imidazole and histidine indicating oxidative stress;
- glutamine, glutamate and dopamine indicating impaired neurotransmission systems.

Other groups also employed DIMS for profiling of blood metabolites and found altered levels of long-chain sphingomyelins and ceramides (Han X et al., 2011), plasmalogens and diglycerides (Wood et al., 2016), and phospholipids (Klavins et al., 2015).

Focusing on lipid profiles, Sato et al., (2012) was able to find a considerable reduction in circulating demoesterol levels in AD plasma, both in untargeted and targeted analyses. Other plasma lipids classes reported to have close relationships with AD included bile acids (Greenberg et al., 2009), LysoPCs and...
Sample Size	Sample Source	Platform	Findings	Ref.
AD(n = 22)	Serum	DIMS	↓PUFA-PCs; ↑SFA-PCs	(Gonzalez-Dominguez et al., 2012)
CN(n = 18)	Serum	DIMS	↓PUFA-PLs, valine, glutamine, N-acetyl-glutamate, glutathione, histidine, arginine, dopamine, carntine, creatine; ↑SFA-PLs, free fatty acids, eicosanoids, triglycerides, choline, glycerophosphocholine, glucose	(Gonzalez-Dominguez et al., 2014e)
AD(n = 22)	Serum	DIMS	↓PUFA-PLs, oleamide, histidine, arginine, imidazole, taurine, guanidine, putrescine; ↑eicosanoids, diglycerides, kynurenine	(Gonzalez-Dominguez et al., 2014c)
AD(n = 22)	Serum	DIMS	↓PUFA-PLs, LPLs, plasmalogens; ↑SFA-PLs	(Gonzalez-Dominguez et al., 2014b)
CN(n = 17)	Serum	DIMS	↓Plasmalogens; ↑diglycerides	(Gonzalez-Dominguez et al., 2015a)
AD(n = 26)	Plasma	DIMS	↓Long-chain sphingomyelins; ↑ceramides	(Han XL et al., 2011)
CN(n = 26)	Serum	DIMS	↑Lysophospholipid (18:1)	(Sato et al., 2010)
AD(n = 10)	Plasma	RP-MS	↑Lexophospholipid (18:1)	(Sato et al., 2010)
MCI(n = 10)	Serum	GC-MS	↑Glutamate	(Orešić et al., 2018)
AD(n = 16)	Plasma	RP-MS	↑Demosterol	(Sato et al., 2012)
MCI(n = 12)	Plasma	RP-MS	↑1-(9E-hexadecenoyl)-sn-glycero-3-phosphocholine, d-glucosaminide, glycocholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid, glycodeoxycholic acid, glycophosphatidylcholines, tryptophan, phytosphingosine, dihydrosphingosine, hexadecasphinganine	(Greenberg et al., 2009)
AD(n = 20)	Plasma	RP-MS	↑Lysophosphatidylcholines, tryptophan, phytosphingosine, dihydrosphingosine, hexadecasphinganine	(Li et al., 2010a)
AD(n = 36)	Plasma	RP-MS	↑Long chain cholesteryl esters	(Proitsi et al., 2015)
MCI(n = 48)	Plasma	RP-MS	↑Phosphatidylcholines	(Kim et al., 2016)
AD(n = 52)	Plasma	RP-MS	↑Ceramide	(Whiley et al., 2014)
Sample Size	Sample Source	Platform	Findings	Ref.
-------------	--------------	----------	----------	------
AD/MCI (n = 35) Converters (n = 18) CN(n = 53)	Plasma	RP-MS	↓Phosphatidylcholines, lyso-phospholipids, serotonin, phenylalanine, proline, lysine, taurine, acyl-carnitines, malate; ↑glycoursodeoxycholic acid, proline-asparagine	(Mapstone et al., 2014)
AD(n = 75) MCI(n = 17) CN(n = 45)	Serum	RP-MS	↓PUFA-PLs, PUFA-SMs, sulfatides, monoglycerides, oleamide, histidine pregnenolone sulfate; ↑SFA-PLs, SFA-SMs, ceramides, acyl-carnitines, phenyl-acetyl-glutamine	(Raúl et al., 2016)
AD(n = 148) CN(n = 152)	Plasma	RP-MS	↓Cholesteryl esters, triglycerides; ↑phosphatidylcholine	(Proitsi et al., 2017)
AD(n = 175) MCI(n = 356) CN(n = 189)	Serum	RP-MS	↓Acyl-carnitines, phosphatidylcholines, sphingomyelins; ↑valine, α-aminoacidic acid	(Toledo et al., 2017)
AD(n = 660) MCI(n = 583) CN(n = 189)	Serum	RP-MS	↓Cholesteryl esters, triglycerides; ↑phosphatidylcholine	(Proitsi et al., 2017)
AD(n = 46) CN(n = 37)	Serum	RP-MS	↑Sphinganine-1-phosphate, 7-ketocholesterol, 3-methoxytyrosine, p-phenyllactic acid, lyso-phosphatidylcholine; ↓phenylalanine, ornithine, glutamate	(Liang et al., 2016b)
AD_MCI (n = 19) MCI(n = 16) CN(n = 37)	Plasma	HILIC-MS	↓14-amino-butanal, γ-aminoobutyric acid, ornithine, N-acetyl-putrescine; ↑creatine, arginine, methylthioadenosine, N-acetyl-spermidine, N-diacyl-spermine, putrescine, spermidine, spermine	(Graham et al., 2015)
AD(n = 42) MCI(n = 14) CN(n = 37)	Serum	CE-MS	↓Creatine, asparagine, methionine, histidine, carnitine, N-acetyl-spermidine, valeryl-carnitine; ↑choline, creatinine, dimethylarginine, homocysteinyly-cysteine, acyl-carnitines, peptides	(Gonzalez-Dominguez et al., 2014a)
AD(n = 47) MCI(n = 143) CN(n = 46)	Serum	RP-MS/GC-MS	Baseline: ↓plasmalogens, phosphatidylcholines, sphingomyelins, sterols; ↑histamine Progression: ↓2, 4-dihydroxybutanoic acid	(Orešić et al., 2011)
AD(n = 57) MCI(n = 58) CN(n = 57)	Plasma	RP-MS/GC-MS	↓Fatty acids, dimethylglycine, glutamate, uridine, glyceraldehyde, butanediolic acid, 2-butenedioic acid, 5-oxoproline, taurine, hypotaurine, malate; ↑glutamine, 2-aminoacidic acid, proline, cysteine, cystidine, thymine, hypoxanthine, carbohydrates, citrate	(Wang G et al., 2014)
AD(n = 30) MCI(n = 30) CN(n = 30)	Plasma	RP-MS/HILIC-MS	↓Sphingomyelins	(Armirotti et al., 2014)
Sample Size	Sample Source	Platform	Findings	Ref.
-------------	---------------	----------	----------	------
AD (n = 15)	Plasma	RP-MS/	Changes in more than 150 metabolites (amino acids, energy-related metabolites, lipids, neurotransmitters)	(Trushina et al., 2013b)
MCI (n = 15)	HILIC-MS			
CN (n = 15)				
AD (n = 3)	Serum	CE-MS	↑β-alanine, creatinine, hydroxyproline, glutamine, isocitrate, cytidine	(Tsuuraoka et al., 2013)
FTD (n = 4)				
LBD (n = 3)				
CN (n = 9)				
AD (n = 12)	Whole brain	MRS	↓N-acetyl-aspartate, γ-aminobutyric acid; ↑glutamate	(Klunk et al., 1992)
CN (n = 5)				
AD (n = 13)	Temporoparietal cortex	MRS	↓N-acetyl-aspartate, creatine, γ-aminobutyric acid	(Mohanakrishnan et al., 1995)
CN (n = 4)				
AD (n = 13)	Hippocampus, cerebellum	MRS	↓N-acetyl-aspartate, γ-aminobutyric acid	(Mohanakrishnan et al., 1997)
CN (n = 4)				
AD (n = 8)	Frontal cortex	NMR	↑Alanine, acetate, glutamate, glutamine; ↓lactate, creatine	(Botosoa et al., 2012)
ALS (n = 11)	Neocortex	NMR	↑Alanine, taurine	(Graham et al., 2014)
AD (n = 15)	Superior frontal cortex, superior temporal cortex, inferior parietal cortex, cerebellum	DIMS	↓Plasmalogens	(Han et al., 2001)
CN (n = 6)				
AD (n = 17)	Middle frontal gyrus, superior temporal gyrus, inferior parietal lobule, hippocampus, subiculum, entorhinal cortex	DIMS	↓Sulfatides; ↑ceramides	(Han et al., 2002)
CN (n = 5)				
AD (n = 6)	Superior frontal gyrus	DIMS	↓Sulfatides	(Cheng et al., 2013)
CN (n = 8)				
AD (n = 34)	Frontal cortex grey matter, frontal cortex white matter	DIMS	↓Plasmalogens, phosphatidylethanolamines, docosahexaenoic acid, phosphatidylethanolamines, sulfatides; ↑monoglycerides, diglycerides; ↑ceramides, VLCFA 26:0	(Wood et al., 2015)
MCI (n = 19)				
CN (n = 28)				
AD (n = 9)	Hippocampus, entorhinal cortex, middle-temporal gyrus, sensory cortex, motor cortex, cingulate gyrus, cerebellum	GC-MS	Changes in 55 metabolites, including energy related metabolites (glucose metabolism, TCA), amino acids, nucleosides, and others	(Xu et al., 2016)
CN (n = 9)				
AD (n = 10)	Frontal lobe, parietal lobe, occipital lobe	RP-MS	↑Spermidine, spermine, N-acetyl-spermidine, N-acetyl-spermine, putrescine	(Inoue et al., 2013)
CN (n = 10)				
ADI–II (n = 7)	Entorhinal cortex	RP-MS	↓DGMP, glycine, xanthosine, inosine diphosphate, deoxyguanosine; ↑guanine	(Ansoleaga et al., 2015)
ADIII–IV (n = 4)				
ADV–VI (n = 5)				
CN (n = 4)				
AD (n = 15)	Neocortex	HILIC-MS	Seventy-six unidentified discriminant signals	(Graham et al., 2013a)
CN (n = 15)				
AD (n = 21)	Frontal cortex	RP-MS/	Alterations in the metabolism of phospholipids and six metabolic pathways of the central metabolism: Alanine, Aspartate, and Glutamate Metabolism; Arginine and Proline Metabolism; Cysteine and Methionine Metabolism; Glycine, Serine, and Threonine Metabolism; Purine Metabolism; Pantothenate and CoA Biosynthesis	(Paglia et al., 2016)
CN (n = 19)	HILIC-MS			
AD (n = 14)	Middle frontal gyrus	RP-MS	↓Glucose	(An et al., 2017)
asyAD (n = 15)	Inferior temporal gyrus			
CN (n = 14)	Cerebellum			
Sample Size	Sample Source	Platform	Findings	Ref.
-------------	---------------	----------	----------	------
AD(n = 14)	Middle frontal gyrus	GC-MS	↑Cholesterol, docosahexaenoic acid, carboxyl acid, hexanedioic acid, ascorbate, gluconic acid, cysteine, L-DOPA, allantoin, coumaric acid, adenine, deoxyflurouridin, arginine, GABA; ↓cholesterol, linoleic acid, methyl-heptadecadiynoic acid, oleic acid, palmitic acid, dimethylglycin, guanidobutanoate, amnonobutanol, aspartate, fumaric acid, linolenic acid, indoleacetic acid, eicosapentaenoic acid, hypoxanthine, oxaarginine, methyl-stearate, octadecanal	(Snowden et al., 2017)
AD(n = 15)	Inferior temporal Gyrus	LCECA	↓Norepinephrine, α-tocopherols, 3-methoxytyramine, ascorbate; ↑5-hydroxytryptophan, methoxy-hydroxyphenyl glycol	(Kaddurah-Daouk et al., 2011)
CN(n = 14)	Cerebellum	MS	CSF: ↑docosahexaenoic	
AD(n = 15)	Post-mortem CSF	NMR	Specific resonances in AD (unidentified)	(Kork et al., 2009)
CN(n = 15)	Post-mortem CSF	NMR	↑Creatinine	(Jukarainen et al., 2008)
AD(n = 34)	CSF	NMR	Phenylalanine, glutamate, lactate, acetate, α-hydroxyisovalerate, α-hydroxybutyrate	(Laakso et al., 2015)
MCI(n = 19)	CSF	NMR	Specific resonances in AD (unidentified)	(Kork et al., 2009)
CN(n = 28)	CSF	NMR	↑Creatinine	(Jukarainen et al., 2008)
AD(n = 20)	CSF	NMR	Phenylalanine, glutamate, lactate, acetate, α-hydroxyisovalerate, α-hydroxybutyrate	(Laakso et al., 2015)
CN(n = 27)	Post-mortem CSF	NMR	Specific resonances in AD (unidentified)	(Kork et al., 2009)
AD(n = 10)	CSF	NMR	↑Creatinine	(Jukarainen et al., 2008)
CN(n = 34)	CSF	NMR	Phenylalanine, glutamate, lactate, acetate, α-hydroxyisovalerate, α-hydroxybutyrate	(Laakso et al., 2015)
AD(n = 15)	CSF	DIMS	↑Sphingomyelins, phosphatidylcholines	(Koal et al., 2015)
AD(n = 50)	CSF	RP-MS	Fifty-three unidentified discriminant signals	(Myint et al., 2009)
CN(n = 50)	CSF	RP-MS	↑Methionine, 5-hydroxyindoleacetic acid, vanillylmandelic acid, xanthosine, glutathione, hypoxanthine	(Kaddurah-Daouk et al., 2013)
AD(n = 40)	CSF	RP-MS	↑Methionine, 5-hydroxyindoleacetic acid, vanillylmandelic acid, xanthosine, glutathione, hypoxanthine	(Kaddurah-Daouk et al., 2013)
MCI(n = 36)	CSF	CE-MS	↑Arginine, suberylglycine, carnitine, histidine; ↑choline, valine, tripeptide, dimethylarginine, creatine, serine	(Ibanez et al., 2012)
CN(n = 38)	CSF	RP-MS/	Uridine; ↑cysteine, tyrosine, phenylalanine, methionine, serine, pyruvate, taurine, creatinine, cortisol, dopamine	(Czech et al., 2012)
AD_MCI(n = 9)	CSF	GC-MS	Two unidentified discriminant signals	(Motsinger-Reif et al., 2013)
sMCI(n = 22)	CSF	GC-MS	Changes in levels of uracil, xanthine, uridine, tyrosyl-serine, methylsalolinos, nonanoxyglycine, dopamine-quinone, caproic acid, vanlyglycol, histidine, piceolic acid, hydroxyphophhydrol-piruvate, creatinine, taurine, C16-sphingosine-1-phospho, tryptophan, 5′-methylthioadenosine	(Ibanez et al., 2013)
phytosphingosine (sphingolipid precursors) (Li et al., 2010b), among others (Mapstone et al., 2014). Utilizing in-vial dual extraction protocol (Whiley et al., 2012; Godzien et al., 2013), abnormal levels of long chain cholesteryl esters/triglycerides (Proitsi et al., 2015; Proitsi et al., 2017) and omega-3 containing PC molecules (Whiley et al., 2014; Kim et al., 2016) have been shown in two separate study cohorts. Additionally, increased plasma levels of phosphorylethanolamine (PE) and PC species have been found to associate with brain amyloid burden (V oyle et al., 2016).

Focusing on more hydrophilic blood metabolites, a study involving 75 AD, 17 MCI and 45 CN serum samples revealed accumulation of acylcarnitine in relation to mitochondrial dysfunction, and lower levels of oleamide and monoglycerides caused by impaired endocannabionoid system (Gonzalez-Dominguez et al., 2016). A study involving much bigger cohorts of 660 AD and 583 MCI serum samples found increased levels of sphinganine-1-phosphate and 7-ketocholesterol; the combination of these metabolites predicting AD conversion with accuracy value of 95% (Liang et al., 2016b). These two metabolites have also been found to be strong AD discriminators from MCI and CN in saliva samples (Liang et al., 2015, 2016a).

HILIC-MS has shown disturbance in 22 biochemical pathways, including homeostasis of polyamines and arginine metabolism (Graham et al., 2015), while CE-MS revealed the presence of oxidative stress and defects in energy metabolism (Tsuruoka et al., 2013; Gonzalez-Dominguez et al., 2014a). Utilizing a RP-MS/HILIC-MS multi-platform, Trushina et al., (2013b) identified 154 metabolites with significant changes in AD vs CN subjects (Trushina et al., 2013) while Armirotti et al., (2014) has employed RP-MS/HILIC-MS multi-platform to find abnormally high levels of sphingomyelins in AD blood. Wang G et al., (2014) looked at profiles of 57 AD, 58 MCI and 57CN plasma samples in 2014 and identified a panel of 6 metabolites discriminating AD from CN with ROC AUC of 1, and a panel of 5 metabolites discriminating MCI from CN with ROC AUC of 0.998. In a prospective study with aim to determine serum metabolomic profiles associating with progression and diagnosis of

Sample Size	Sample Source	Platform	Findings	Ref.
AD(n = 15)	CSF	RP-MS/HILIC-MS	Changes in more than 150 metabolites (amino acids, energy-related metabolites, lipids, neurotransmitters)	(Trushina et al., 2013a)
MCI(n = 15)				
CN(n = 15)				
AD(n = 256)	Saliva	RP-MS	↓Inosine, 3-dehydrocarcinine, hypoxanthine; ↑sphinganine-1-phosphate, ornithine, p-phenyllactic acid	(Liang et al., 2015)
CN(n = 218)				
AD(n = 660)	Saliva	RP-MS	↓Inosine, 3-dehydrocarcinine, hypoxanthine; ↑cytidine, sphinganine-1-phosphate, ornithine, p-phenyllactic acid, pyroglutamate, glutamate, tryptophan	(Liang et al., 2016a)
MCI(n = 583)				
MCI(n = 20)	Saliva	RP-MS	↓Taurine, peptides, 1, 8-diazacyclotetradecane-2, 9-dione, 4-(hydroxylamino)-N, N-dimethylaniline; ↑2-amino-heptanoic acid/l-alanine-n-butyl ester/N-methyl-isoleucine	(Zheng et al., 2012)
CN(n = 20)				
AD(n = 3)	Saliva	CE-MS	↓Arginine, tyrosine	(Tsuruoka et al., 2013)
FTD(n = 4)		RP-MS	↓Acetyl-carnitine, estra-1, 3, 5(10), 7-tetraene-3, 17α-diol, p-cresol glucuronide, etiocholanolone glucuronide; ↑N-acryloylglycine, argininosuccinic acid, dethiobiotin, isobutyryl-l-carnitine, 2-hydroxy-N-(2-hydroxyethyl)-N, N-dimethyl-l-dodecanaminium, l-asparty-4-phosphate, l-glutamine, 5-l-glutamylglycine, azelaic acid, aminopterin, cytidine	(Cui et al., 2014)
LBD(n = 3)		CE-MS		
CN(n = 9)		GC-MS	↑7β-hydroxycholesterol	(Son et al., 2016)
AD(n = 46)	Urine	RP-MS		
CN(n = 37)				
AD(n = 31)	Hair	GC-MS		
MCI(n = 15)				
CN(n = 36)				
AD, Oresič et al., (2011) has utilized GC-MS/RP-MS to compare blood metabolic profiles of stable MCIs and converting MCIs. A panel of 3 metabolites (lower levels of one PC, one carboxylic acid and 2,4-dihydroxybutanoic acid molecules) was identified to be associated with progressive MCI; its AD conversion predictive value (ROC AUC) was 0.77 (Oresič et al., 2011).

Most recently, Toledo et al. employed a targeted approach and quantified 187 serum metabolites from 199 CN, 356 MCI and 175 AD participants. (Toledo et al., 2017). The study was able to reveal abnormal changes in sphingomyelins and PC levels related to early stages of AD, as well as abnormal changes in acylcarnitines and several amines levels related to later symptomatic stages of AD. The group hypothesized that dysregulation in lipid metabolism during early stages of AD leads to breakdown in lipid membranes which consequently results in disruption in energy metabolism seen during later stages of AD. In another study where targeted approach was employed, a comparison between 38 AD and 46 control serum metabolic profiles showed an increase glutamate levels in AD (Oresič et al., 2018).

5.2.4 Saliva, urine and hair

Saliva, urine and hair metabolites have been studied due to their ease-to-collect. Tsuruoka et al., (2013) analysed saliva metabolic profiles to complement serum metabolic profiles by employing CE-MS. Abnormal levels of arginine and tyrosine in AD saliva samples were found when compared to CN samples as well as FTD and LBD samples, highlighting the abnormal levels of arginine and tyrosine as specific to AD (Tsuruoka et al., 2013). In a study involving urine samples, Cui et al., (2014) employed RP-MS and discovered impaired metabolic pathways involving L-glutamine and 5-L-glutamylglycine in AD. The study then utilized these two metabolites to test their AD predictive abilities, and the corresponding ROC AUC values were 0.709 and 0.700 respectively (Cui et al., 2014).

In more recent years, sterol profiles of hair have been exploited as a possible source of AD markers due to hair being able to reflect biochemical stress at the local or at systemic levels (Slominski and Wortsman, 2000; Slominski et al., 2012). Son et al., (2016) analysed 31 AD, 15 MCI and 36 CN hair samples by employing GC-MS and discovered an increased amount of 7β-hydroxycholesterol as a possible AD predictive biomarker. Ratio of 7β-hydroxycholesterol to cholesterol was found to be able to discriminate MCI vs CN and AD vs CN with ROC AUC values of 0.750 and 0.729 respectively (Son et al., 2016).

Summary of metabolomics studies conducted on samples from AD participants can be seen in Table 3.

6 Conclusion

Overall, an extensive number of studies have applied metabolomics in order to identify:

- perturbations in metabolic pathways that reflect changes associated with AD pathology;
- a panel of metabolites which would potentially be used as an AD diagnostic tool.

Taking together the findings, it seems clear that multiple metabolic alterations could be occurring during progression to AD. These include lipids, metabolites involved in neurotransmitter systems and energy metabolism.

Acknowledgements. Cristina Legido-Quigley is partially supported from the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement No. 115372, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in-kind contribution.

References

Alzheimer’s A. 2015. Alzheimer’s disease facts and figures. Alzheimers Dement 11(3), 332–384. DOI: 10.1016/j.jalz.2015.02.003.

An Y, Varma VR, Varma S, et al. 2017. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. DOI: 10.1016/j.jalz.2017.09.011.

Ansoleaga B, Jove M, Schluter A, et al. 2015. Deregulation of purine metabolism in Alzheimer’s disease. Neurobiol Aging 36(1): 68–80. DOI: 10.1016/j.neurobiaging.2014.08.004.

Armirotti A, Basit A, Realini N, et al. 2014. Sample preparation and orthogonal chromatography for broad polarity range plasma metabolomics: application to human subjects with neurodegenerative dementia. Anal Biochem 455: 48–54.

Arvanitakis Z, Schneider JA, Wilson RS, et al. 2008. Statins, incident Alzheimer disease, change in cognitive function, and neuropathology. Neurology 70(19): 1795–1802.

Atkinson AJ, Colburn WA, DeGruttola VG, et al. 2001. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3): 89–95.

Beckonert O, Keun HC, Ebbels TMD, et al. 2007. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11): 2692–2703.

Bertram L, Tanzi RE. 2008. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10): 768–778. DOI: 10.1038/nrn2494.

Bhattacharyya R, Kovacs DM. 2010. ACAT inhibition and amyloid beta reduction. Irbm 31(7): 1188–1196.

Blennow K, Hampel H, Weiner M, Zetterberg H. 2010. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3): 131–144.

Botosoa EP, Zhu M, Marbeuf-Gueye C, et al. 2012. NMR metabolomic of frontal cortex extracts: first study comparing two neurodegenerative diseases, Alzheimer disease and amyotrophic lateral sclerosis. J Neurochem 1196.

Botschas N, Smith JK, Kwock L. 2000. Correlation of myo-inositol levels and grading of cerebral astrocytomas. Am J Neuroradiol 21(9): 1645–1649.

Cheng H, Zhou YH, Holtzman DM, Han XL. 2010. Apolipoprotein E mediates sulfatide depletion in animal models of Alzheimer’s disease. Neurobiol Aging 31(7): 1188–1196.

Cheng H, Wang M, Li JL, Cairns NJ, Han XL. 2013. Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: an early event in disease pathogenesis. J Neurochem 127(6): 733–738.

Corder EH, Saunders AM, Strittmatter WJ, et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123): 921–923.
Cui Y, Liu XQ, Wang MQ, et al. 2014. Lyso phosphatidylcholine and amide as metabolites for detecting Alzheimer disease using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabolomics. J Neuropath Exp Neurol 73(10): 954–963.

Cummings J, Aisen PS, DuBois B, et al. 2016. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther 8: 39. DOI: 10.1186/s13195-016-0207-9.

Cutler RG, Kelly J, Storie K, et al. 2004. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101(7): 2070–2075.

Czech C, Berndt P, Busch K, et al. 2012. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. Plos One 7(2).

Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG. 2004. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101(7): 2070–2075.

Godzien J, Ciborowski M, Whiley L, Legido-Quigley C, Ruperez FJ, Babbars C. 2013. In-vial dual extraction liquid chromatography coupled to mass spectrometry applied to streptozotocin-treated diabetic rats. Tips and pitfalls of the method. J Chromatogr A 1304: 52–60. DOI: 10.1016/j.chroma.2013.07.029.

Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Arizila JL. 2012. Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry. Chem Papers 66(9): 829–835. DOI: 10.2478/ s11696-012-0184-9.

Gonzalez-Dominguez R, Garcia A, Garcia-Barrera T, Babars C, Gomez-Arizila JL. 2014a. Metabolomic profiling of serum in the progression of Alzheimer’s disease by capillary electrophoresis-mass spectrometry. Electrophoresis 35(23): 3321–3330.

Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Arizila JL. 2014b. Combination of metabolomic and phospholipid-profiling approaches for the study of Alzheimer’s disease. J Proteomics 104: 37–47. DOI: 10.1016/j.jprot.2014.01.014.

Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Arizila JL. 2014c. Metabolomic study of lipids in serum for biomarker discovery in Alzheimer’s disease using direct infusion mass spectrometry. J Pharm Biomed Anal 98: 321–326. DOI: 10.1016/j.jpb.2014.05.023.

Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Arizila JL. 2014d. Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of Alzheimer’s disease. Bba-Mol Basis Dis 1842(12): 2395–2402.

Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Arizila JL. 2014e. Using direct infusion mass spectrometry for serum metabolomics in Alzheimer’s disease. Anal Bioanal Chem 406(28): 7137–7148. DOI: 10.1007/s00216-014-8102-3.

Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Arizila JL. 2015a. Application of a novel metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer’s disease. Talanta 131: 480–489. DOI: 10.1016/j.talanta.2014.07.075.

Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Arizila JL. 2015b. Metabolite profiling for the identification of altered metabolic pathways in Alzheimer’s disease. J Pharmaceut Biomed Anal 107: 75–81.

Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Arizila JL. 2015c. Application of metabolomics based on direct mass spectrometry analysis for the elucidation of altered metabolic pathways in serum from the APP/PS1 transgenic model of Alzheimer’s disease. J Pharmaceut Biomed Anal 107: 378–385.

Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Arizila JL. 2015d. Deciphering metabolic abnormalities associated with Alzheimer’s disease in the APP/PS1 mouse model using integrated metabolomic approaches. Biochimie 110: 119–128.

Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Arizila JL. 2015e. High throughput multiorgan metabolomics in the APP/PS1 mouse model of Alzheimer’s disease. Electrophoresis 36 (18): 2237–2249.

Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Arizila JL. 2015f. Metabolomic investigation of systemic manifestations associated with Alzheimer’s disease in the APP/PS1 transgenic mouse model. Mol Biosyst 11(9): 2429–2440.

Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Arizila JL. 2015g. Metabolomic research on the role of interleukin-4 in Alzheimer’s disease. Metabolomics 11(5): 1175–1183.
Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Arizu JL. 2015h. Metabolomic screening of regional brain alterations in the APP/PS1 transgenic model of Alzheimer’s disease by direct infusion mass spectrometry. J Pharmaceut Biomed 102: 425–435.

Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Arizu JL. 2015i. Metabolomics reveals significant impairments in the immune system of the APP/PS1 transgenic mice of Alzheimer’s disease. Electrophoresis 36(4): 577–587.

Gonzalez-Dominguez R, Ruperez FJ, Garcia-Barrera T, Barbas C, Gomez-Arizu JL. 2016. Metabolomic-driven elucidation of serum disturbances associated with Alzheimer’s disease and mild cognitive impairment. Curr Alzheimer Res 13(6): 641–653.

Graham SF, Chevallier OP, Roberts D, Holscher C, Elliott CT, Green BD. 2013a. Investigation of the human brain metabolome to identify potential markers for early diagnosis and therapeutic targets of Alzheimer’s disease. Anal Chem 85(3): 1803–1811. DOI: 10.1021/ac303163f.

Graham SF, Holscher C, McClean P, Elliott CT, Green BD. 2013b. H-1 NMR metabolomics investigation of an Alzheimer’s disease (AD) mouse model pinpoints important biochemical disturbances in brain and plasma. Metabolomics 9(5): 974–983.

Greenberg N, Grassano A, Thambisetty M, Lovestone S, Legido-Quigley C. 2009. A proposed metabolic strategy for monitoring affected Polyamine and L-Arginine metabolism in mild cognitive impairment. Metabolomics 10(4): 744–753.

Hartmann T, Kuchenbecker J, Grimm MOW. 2007. Alzheimer’s disease: the lipid connection. J Neurochem 103: 159–170. DOI: 10.1111/j.1471-4159.2007.04715.x.

He XX, Huang Y, Li B, Gong CX, Schuchman EH. 2010. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31(3): 398–408.

Hebert LE, Weuve J, Scherr PA, Evans DA. 2013. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19): 1778–1783. DOI: 10.1212/WNL.0b013e31828726f5.

Heinrich M, Wickel M, Schneider-Brachert W, et al. 1999. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. Embo J 18(19): 5252–5263.

Hirsch-Reinshagen V, Maia LF, Burgess BL, et al. 2005. The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J Biol Chem 280(52): 43243–43256.

Holtzman DM, McKeel DW. 2013. Metabolomics in early Alzheimer’s disease: the lipid connection. J Alzheimers Dement 9(4): 1235–1239.

Han XX, Huang Y, Li B, Gong CX, Schuchman EH. 2010. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31(3): 398–408.

Hirsch-Reinshagen V, Maia LF, Burgess BL, et al. 2005. The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J Biol Chem 280(52): 43243–43256.

Holtzman DM, McKeel DW. 2013. Metabolomics in early Alzheimer’s disease: the lipid connection. J Alzheimers Dement 9(4): 1235–1239.
Kaddurah-Daouk R, Zhu H, Sharma S, et al. 2013. Alterations in metabolic pathways and networks in Alzheimer’s disease. *Transl Psychiatry* 3, DOI: 10.1038/tp.2013.18.

Khan TK, Alkon DL. 2010. Early diagnostic accuracy and pathophysiologic relevance of an autopsy-confirmed Alzheimer’s disease peripheral biomarker. *Neurobiol Aging* 31(6): 889–900. DOI: 10.1016/j.neurobiolaging.2008.07.010.

Kim J, Castellano JM, Jiang H, et al. 2016. Association between plasma ceramides and phosphatidylethanolamines and hippocampal brain volume in late onset Alzheimer’s disease. *J Alzheimers Dis*. DOI: 10.3233/JAD-160645.

Kimball BA, Wilson DA, Wesson DW. 2016a. Alterations of the beta 1-42 levels. *Alzheimer Res Ther* 8(7). DOI: 10.1038/tp.2013.18.

Kimball BA, Wilson DA, Wesson DW. 2016b. Alterations of the metabolic pathways and networks in Alzheimer’s disease. *Topical Issue*.
Lutjohann D, Meichsner S, Pettersson H. 2012. Lipids in Alzheimer’s
disease and their potential for therapy. *Clin Lipidol* 7(1): 65–78.

Mapstone M, Cheema AK, Fiandaca MS, et al. 2014a. Plasma
phospholipids identify antecedent memory impairment in older
adults. *Nat Med* 20(4): 415–418. DOI: 10.1038/nm.3466.

Marjanska M, Curran GL, Wengenack TM, et al. 2005. Monitoring
disease progression in transgenic mouse models of Alzheimer’s
disease with proton magnetic resonance spectroscopy. *Proc Natl
Acad Sci USA* 102(33): 11906–11910.

Markstein J, Kemmler G, Weiss EM, et al. 2011. Five out of 16
plasma signaling proteins are enhanced in plasma of patients with
mild cognitive impairment and Alzheimer’s disease. *Neurobiol Aging*
32(3): 539–540. DOI: 10.1016/j.neurobiolag.2009.03.011.

Mayeux R, Honig LS, Tang MX, et al. 2003. Plasma A beta 40 and A
beta 42 and Alzheimer’s disease – Relation to age, mortality, and
risk. *Neurology* 61(9): 1185–1190.

McKhan GM, Knopman DS, Chertkow H, et al. 2011. The diagnosis
dementia due to Alzheimer’s disease: recommendations from the
National Institute on Aging-Alzheimer’s Association work-
groups on diagnostic guidelines for Alzheimer’s disease.

Alzheimers Dement 7(3): 263–269.

Merrill AH Jr, Schmelz EM, Dillehay DL, et al. 1997. Sphingo-
lipids – The enigmatic lipid class: biochemistry, physiology, and
pathophysiology. *Toxicol Appl Pharmacol* 142(1): 208–225. DOI:
10.1006/tapp.1996.8029.

Mielke MM, Zandi PP, Sjogren M, Mohanakrishnan P, Fowler AH, Vonsattel JP,
et al. 2011. Five out of 16 plasma signaling proteins are enhanced in plasma of patients with
mild cognitive impairment and Alzheimer’s disease. *Neurobiol Aging*
32(3): 539–540. DOI: 10.1016/j.neurobiolag.2009.03.011.

Paglia G, Stocchero M, Cacciatoro S, et al. 2016. Unbiased
metabolomic investigation of Alzheimer’s disease brain points
to dysregulation of mitochondrial aspartate metabolism. *J Proteome Res*
15(2): 608–618. DOI: 10.1021/acs.jproteome.5b01020.

Pan XB, Bin Nasaruddin M, Elliott CT, et al. 2016. Alzheimer’s
disease-like pathology has transient effects on the brain and blood
metabolome. *Neurobiol Aging* 38: 151–163.

Pedrini S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME,
Gandy S. 2005. Modulation of statin-activated shedding of
Alzheimer APP ectodomain by ROCK. *Plos Med* 2(1): 69–78.

Peng J, Guo K, Xia JG, et al. 2014. Development of Isotope labeling
liquid chromatography mass spectrometry for mouse urine
metabolomics: quantitative metabolomic study of transgenic
mice related to Alzheimer’s disease. *J Proteome Res* 13(10):
4457–4469.

Pettegrew JW, Panchalasingam K, Hamilton RL, McClure RJ. 2001.
Brain membrane phospholipid alterations in Alzheimer’s disease.
Neurochem Res 26(7): 771–782.

Piro JR, Benjamin DI, Duerr JM, et al. 2012. A dysregulated
endocannabinoid-eicosanoid network supports pathogenesis in a
mouse model of Alzheimer’s disease. *Cell Rep* 1(6): 617–623.

Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR. 1998.
Regional membrane phospholipid alterations in Alzheimer’s
disease. *Neurochem Res* 23(1): 81–88.

Proitsi P, Lupton MK, Velayudhan L, et al. 2014. Genetic
predisposition to increased blood cholesterol and triglyceride
levels and risk of Alzheimer disease: a Mendelian randomization
analysis. *Plos Med* 11(9): e1001713. DOI:
10.1371/journal.pmed.1001713.

Proitsi P, Kim M, Whiley L, et al. 2015. Plasma lipidomics analysis
finds long chain cholesteryl esters to be associated with
Alzheimer’s disease. *Transl Psychiat* 5: e494. DOI: 10.1038/
 tp.2014.127.

Proitsi P, Kim M, Whiley L, et al. 2017. Association of blood
lipids with Alzheimer’s disease: A comprehensive lipidomics analysis.
Alzheimers Dement 13(2): 140–151. DOI: 10.1016/j.
jalz.2016.08.003.

Psychogios N, Hau DD, Peng J, et al. 2011. The human serum
metabolome. *Plos One* 6(2): e16957. DOI: 10.1371/journal.
 pone.0016957.

Puglielli L, Konopka G, Pack-Chung E, et al. 2001. Acyl-coenzyme
A: cholesterol acyltransferase modulates the generation of the
amylid beta-peptide. *Nat Cell Biol* 3(10): 905–912.

Puglielli L, Ellis BC, Saunders AJ, Kovacs DM. 2003. Ceramide
stabilizes beta-site amyloid precursor protein-cleaving enzyme 1
and promotes amyloid beta-peptide biogenesis. *J Biol Chem*
278(22): 19777–19783.
Raúl G-D, Francisco Javier R, Tamara G-B, Coral B, José Luis G-A. 2016. Metabolomic-driven elucidation of serum disturbances associated with Alzheimer’s disease and mild cognitive impairment. *Curr Alzheimer Res* 13(6): 641–653. DOI: 10.2174/156720513666610129095138.

Ray S, Britschgi M, Herbert C, et al. 2007a. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. *Nat Med* 13(11): 1359–1362.

Ray S, Britschgi M, Herbert C, et al. 2007b. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. *Nat Med* 13(11): 1359–1362. DOI: 10.1038/nm1653.

Reitz C. 2012. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. *Int J Alzheimer’s Dis* 2012: 369808. DOI: 10.1155/2012/369808.

Reitz C, Tang MX, Luchsinger J, Mayeux R. 2004. Relation of plasma lipids to Alzheimer disease and vascular dementia. *Arch Neurol-Chicago* 61(5): 705–714.

Roberts LD, Souza AL, Gerszten RE, Clish CB. 2012. Targeted metabolism. *Curr Protoc Mol Biol* Chapter 30, Unit 30): 1–24. DOI: 10.1002/0471142272.mb3002s98.

Ryman DC, Acosta-Baena N, Aisen PS, et al. 2014. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. *Neurology* 83(3): 253–260.

Salek RM, Xia J, Innes A, et al. 2010. A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. *Neurochem Int* 56(8): 937–947.

Sato Y, Nakamura T, Aoshima K, Oda Y. 2010. Quantitative and wide-ranging profiling of phospholipids in human plasma by two-dimensional liquid chromatography/mass spectrometry. *Anal Chem* 82(23): 9858–9864.

Sato Y, Suzuki I, Nakamura T, Bernier F, Aoshima K, Oda Y. 2012. Identification of a new plasma biomarker of Alzheimer’s disease using metabolomics technology. *J Lipid Res* 53(3): 567–576. DOI: 10.1194/jlr.M022376.

Sato H, Tomimoto H, Ohtani R, et al. 2005. Astrogial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. *Neuroscience* 130(3): 657–666.

Schuff N, Amend D, Ezeelki F, et al. 1997. Changes of hippocampal N-acetyl aspartyl aspartate and volume in Alzheimer’s disease – A proton MR spectroscopic imaging and MRI study. *Neurology* 49(6): 1513–1521.

Sepehrnia B, Kambho MI, Adamscampbell LL, et al. 1989. Genetic-studies of human apolipoproteins.10. The effect of the apolipoprotein-E polymorphism on quantitative levels of lipoproteins in Nigerian blacks. *Am J Hum Genet* 45(4): 586–591.

Sharmin MJ, Shui GH, Fernandis AZ, et al. 2010. Profiling brain and plasma lipids in human APOE epsilon 2, epsilon 3, and epsilon 4 knock-out mice using electrospray ionization mass spectrometry. *J Alzheimers Dis* 20(1): 105–111.

Shonk TK, Moats RA, Gifford P, et al. 1995. Probable Alzheimer disease – Diagnosis with proton Mr spectroscopy. *Radiology* 195 (1): 65–72.

Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. 1998. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. *Proc Natl Acad Sci USA* 95(11): 6460–6464.

Slominski A, Wortsman J. 2000. Neuroendocrinology of the skin. *Endocr Rev* 21(5): 457–487. DOI: 10.1210/edrv.21.5.0410.

Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Stetekia JD. 2012. Sensing the environment: regulation of local and global homeostasis by the skin neuroendocrine system. *Adv Anat Embryol Cell Biol* 212: v–115.

Snowden SG, Ebshiana AA, Hye A, et al. 2017. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study. *PLOS Med* 14(3): e1002266. DOI: 10.1371/journal.pmed.1002266.

Snyder HM, Carrillo MC, Grodstein F, et al. 2014. Developing novel blood-based biomarkers for Alzheimer’s disease. *Alzheimers Dement* 10(1): 109–114.

Soares HD, Chen Y, Sabbagh M, Roher A, Schrijvers E, Bretemler M. 2009. Identifying early markers of Alzheimer’s disease using quantitative multiplex proteomic immunoassay panels. *Ann N Y Acad Sci* 1180: 56–67. DOI: 10.1111/j.1749-6632.2009.05066.x.

Son HH, Lee DY, Seo HS, et al. 2016. Hair sterol signatures coupled to multivariate data analysis reveal an increased 7beta-hydroxycholesterol production in cognitive impairment. *J Steroid Biochem Mol Biol* 155(Pt A): 9–17. DOI: 10.1016/j.jsbmb.2015.09.024.

Sparks DL, Scheff SW, Hunsaker JC 3rd, Liu H, Landers T, Gross DR. 1994. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. *Exp Neurol* 126(1): 88–94. DOI: 10.1006/exnr.1994.1044.

Spiegel S, Milstien S 1995. Sphingolipid metabolites – Members of a new class of lipid 2nd-messengers. *J Membrane Biol* 146(3): 225–237.

Spiegel S, Milstien S 2002. Sphingosine 1-phosphate, a key cell signaling molecule. *J Biol Chem* 277(29): 25851–25854.

Stokes CE, Hawthorne JN. 1987. Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains. *J Neurochem* 48(4): 1018–1021.

Tabert MH, Liu X, Doty RL, et al. 2005. A 10-item smell identification scale related to risk for Alzheimer’s disease. *Ann Neurol* 58(1): 155–160. DOI: 10.1002/ana.20533.

Tajima Y, Ishikawa M, Maekawa K, et al. 2013. Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer’s disease. *Lipids Health Dis* 12.

Tan L, Yu JT, Liu QY, et al. 2014. Circulating miR-125b as a biomarker of Alzheimer’s disease. *J Neuro Sci* 336(1–2): 52–56.

Tan ZS, Seshadri S, Beiser A, et al. 2003. Plasma total cholesterol level as a risk factor for Alzheimer disease – The Framingham study. *Arch Intern Med* 163(9): 1053.

Tang Z, Liu LF, Li YL, et al. 2016. Urinary metabolomics reveals alterations of aromatic amino acid metabolism of Alzheimer’s disease in the transgenic CRND8 mice. *Curr Alzheimer Res* 13(7): 764–776.

Thies W, Bleier L, Assoc As. 2013 Alzheimer’s disease facts and figures Alzheimer’s Association. *Alzheimers Dement* 9(2): 208–245. DOI: 10.1016/j.jalz.2013.02.003.

Toledo JB, Shaw LM, Trojanowski JQ. 2013. Plasma amyloid beta measurements – A desired but elusive Alzheimer’s disease biomarker. *Alzheimers Res Ther* 5(2).

Toledo JB, Arnold M, Kastenmuller G, et al. 2017. Metabolic network failures in Alzheimer’s disease – A biochemical road map. *Alzheimers Dement*. DOI: 10.1016/j.jalz.2017.01.020.

Trushina E, Nemutlu E, Zhang S, et al. 2012. Defects in mitochondrial dynamics and metabolic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. *Plos One* 7(2).

Trushina E, Dutta T, Persson XM, Mielke MM, Petersen RC. 2013a. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using
metabolomics. *Plos One* 8(5): e63644. DOI: 10.1371/journal.pone.0063644.

Trushina E, Dutta T, Persson XMT, Mielke MM, Petersen RC. 2013b. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. *Plos One* 8(6).

Trushina E, Mielke MM. 2014. Recent advances in the application of metabolomics to Alzheimer’s disease. *Biochim Biophys Acta* 1842(8): 1232–1239. DOI: 10.1016/j.bbadis.2013.06.014.

Tsuruoka M, Haraj H, Hirayama A, et al. 2013. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. *Electrophoresis* 34(19): 2865–2872.

Vetrivel KS, Thinakaran G. 2010. Membrane rafts in Alzheimer’s disease beta-amyloid production. *Bba-Mol Cell Biol* 1801(8): 860–867.

von Kienlin M, Kunene B, Metzger F, et al. 2005. Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. *Neurobiol Dis* 18(1): 32–39.

Vos JP, Lopes-Cardozo M, Gadella BM. 1994. Metabolic and functional aspects of sulfogalactolipids. *Biochim Biophys Acta* 1211(2): 125–149.

Voyle N, Kim M, Prought P, et al. 2016. Blood metabolite markers of neocortical amyloid-beta burden: discovery and enrichment using candidate proteins. *Transl Psychiatry* 6: e719. DOI: 10.1038/tp.2015.205.

Wahrle S, Das P, Nyborg AC, et al. 2002. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. *Neurobiol Dis* 9(1): 11–23.

Wahrle SE, Jiang H, Parsadanian M, et al. 2005. Deletion of Abca1 increases A beta deposition in the PDAPP transgenic mouse model of Alzheimer disease. *J Biol Chem* 280(52): 43236–43242.

Walter A, Korth U, Hilgert M, et al. 2004. Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. *Neurobiol Aging* 25(10): 1299–1303.

Wang G, Zhou Y, Huang FJ, et al. 2014. Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. *J Proteome Res* 13(5): 2649–2658.

Wang HL, Lian KQ, Han B, et al. 2014. Age-related alterations in the metabolic profile in the hippocampus of the senescence-accelerated mouse prone 8: a spontaneous Alzheimer’s disease mouse model. *J Alzheimers Dis* 39(4): 841–848.

Wang J, Wilson ID, Gika H, et al. 2017. Global metabolic profiling procedures for urine using UPLC-MS. *Nat Protoc* 5(6): 1005–1018.

Wells K, Farooqui AA, Liss L, Horrocks LA. 1995. Neural membrane phospholipids in Alzheimer disease. *Neurochem Res* 20(11): 1329–1333.

Wengenack TM, Whelan S, Curran GL, Duff KE, Poduslo JF. 2000. Quantitative histological analysis of amyloid deposition in Alzheimer’s double transgenic mouse brain. *Neuroscience* 101(4): 939–944.

Whiley L, Godzien J, Ruperez FJ, Legido-Quigley C, Barbas C. 2012. *In-vial* dual extraction for direct LC-MS analysis of plasma for comprehensive and highly reproducible metabolic fingerprinting. *Anal Chem* 84(14): 5992–5999. DOI: 10.1021/ac300716u.

Whiley L, Sen A, Heaton J, et al. 2014. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. *Neurobiol Aging* 35(2): 271–278.

Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K. 2005. Midlife cardiovascular risk factors and risk of dementia in late life. *Neurology* 64(2): 277–281.

Wilson I. 2011. Global metabolic profiling (metabonomics/metabolomics) using dried blood spots: advantages and pitfalls. *Bioanalysis* 3(20): 2255–2257.

Wishart DS, Knox C, Guo AC, et al. 2009. HMDB: a knowledgebase for the human metabolome. *Nucleic Acids Res* 37(Database issue): D603–D610. DOI: 10.1093/nar/gkn810.

Wolozin B, Wang SW, Li NC, Lee A, Lee TA, Kazis LE. 2007. Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. *Bmc Med* 5.

Woo DC, Lee SH, Lee DW, et al. 2010. Regional metabolic alteration of Alzheimer’s disease in mouse brain expressing mutant human APP-PS1 by H-1 HR-MAS. *Behav Brain Res* 211(1): 125–131.

Wood PL, Barnette BL, Kaye JA, Quinn JF, Woltjer RL. 2015. Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer’s disease subjects. *Acta Neuropsychiatr* 27(5): 270–278.

Wood PL, Locke VA, Herling P, et al. 2016. Targeted lipidomics distinguishes patient subgroups in mild cognitive impairment (MCI) and late onset Alzheimer’s disease (LOAD). *BBA Clinical* 5: 25–28. DOI: 10.1016/j.bbagen.2015.11.004.

Wu JF, Fu B, Lei HH, Tang HR, Wang YL. 2016. Gender differences of peripheral plasma and liver metabolic profiling in App/Ps1 transgenic ad mice. *Neuroscience* 332: 160–169.

Xu JS, Begley P, Church SJ, et al. 2016. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: snapshot of a pervasive metabolic disorder. *Bba-Mol Basis Dis* 1862(6): 1084–1092.

Zheng JM, Dixon RA, Li L. 2012. Development of Isotope labeling LC-MS for human salivary metabolomics and application to profiling metabolome changes associated with mild cognitive impairment. *Anal Chem* 84(24): 10802–10811.

Cite this article as: Kim M, Legido-Quigley C. 2018. Small molecule biomarkers in Alzheimer’s disease. *OCL* 25(4): D404.