Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Table 9. The Mean Differences Between QTc Correction Equations Using ANOVA Comparison

Comparison	Mean	p Value	95% CI	LB	UB
QTcB vs QTcH	25.968	<0.001	17.622	34.314	
QTcB vs QTcFri	33.843	<0.001	25.457	42.289	
QTcB vs QTcFra	37.622	<0.001	28.776	45.468	
QTcH vs QTcFri	7.875	0.075	-0.047	16.221	
QTcH vs QTcFra	11.514	0.003	2.808	19.98	
QTcFri vs QTcFra	-3.279	0.743	-11.642	5.067	

Table 10. The Mean Differences Between QTc Correction Equations in Women Using ANOVA Comparison

Comparison	Mean	p Value	95% CI	LB	UB
QTcB vs QTcH	25.968	<0.001	14.001	37.932	
QTcB vs QTcFri	32.020	<0.001	20.065	43.996	
QTcB vs QTcFra	34.823	<0.001	22.858	46.788	
QTcH vs QTcFri	6.064	0.557	-5.901	18.030	
QTcH vs QTcFra	8.857	0.225	-3.109	20.822	
QTcFri vs QTcFra	-2.793	0.931	-14.758	9.173	

CONCLUSION It was notable that the longest QTc prolongation seen in this study was only 14.48 ms, using the Bazett formula. With other formulas, this prolongation was significantly smaller and so was the proportion of patients meeting QTc prolongation criteria. Not surprisingly, the Bazett formula again overestimated extent of QT prolongation. We can only speculate that the differences are perhaps related to the fact that our population was nearly exclusively African American. Common channels variation has been well documented to be a factor in QT prolongation, including drug-induced QT prolongation. In the African-American ethnic subgroup, Ser1103Tyr-SCN5A is seen in approximately 8% of population and can certainly explain our observation. In the African-American ethnic subgroup, Ser1103Tyr-SCN5A is seen in approximately 8% of population and can certainly explain our observation.

METHODS Four transcatheter-based solutions were explored in their potential uses for COVID-19 therapy: local drug delivery, energy-based and photodynamic therapy, and neuromodulation.

RESULTS First is local, catheter-directed delivery of therapeutics directly to the lungs. A localized delivery of therapeutics could increase the bioavailability of drug(s) at the site of action, in comparison to systemic delivery alone. A second approach is light-based therapy. Considering the antiviral, anti-inflammatory, antimicrobial, and vasculoprotective characteristics of visible light energy (380 to 750 nm), a localized, light-based catheter therapeutic approach could prove to be effective. Given the distinct features of COVID-19 disease progression and its attack on hemoglobin and porphyrins, we suggest the infusion of porphyrin-based photosensitizers (PS). COVID-19 has an affinity for PS and would attach to these molecules, which would reduce hypoxic symptoms and allow for their deactivated in the photosensitization of PS molecules. A third approach considers that several studies have demonstrated that viruses hold electrical charges. Neutralizing the charge of the virus within an electrical field is feasible to reduce the viral load using pacing wires and catheters placed near lungs. A final approach is the neuromodulation of the host inflammatory response. In a small preclinical study, the release of proinflammatory cytokines was reduced following transcatheter delivery of low intensity focused ultrasound treatment to the spleen.

CONCLUSION It was notable that the longest QTc prolongation seen in this study was only 14.48 ms, using the Bazett formula. With other formulas, this prolongation was significantly smaller and so was the proportion of patients meeting QTc prolongation criteria. Not surprisingly, the Bazett formula again overestimated extent of QT prolongation. We can only speculate that the differences are perhaps related to the fact that our population was nearly exclusively African American. Common channels variation has been well documented to be a factor in QT prolongation, including drug-induced QT prolongation. In the African-American ethnic subgroup, Ser1103Tyr-SCN5A is seen in approximately 8% of population and can certainly explain our observation. In the African-American ethnic subgroup, Ser1103Tyr-SCN5A is seen in approximately 8% of population and can certainly explain our observation.

BACKGROUND COVID-19 has been the catalyst for a quantum shift in our professional and personal lives, literally and figuratively within the blink of an eyelash. Healthcare workers (HCWs) have been profoundly impacted by this disruption at all levels, especially those working in high-stress specialties, such as cardiology, in resource-deprived and population-dense areas in developing countries, such as India. We studied the impact of COVID-19 on a cohort of HCWs working in a high-stress, high-turnover cardiac intensive care unit (CICU) of a tertiary care center in India. Questionnaires, results, and conclusions detailed in this presentation. Considering the fact that India has not even reached the peak of the pandemic, the negative psychosocial impact of COVID-19 on HCWs of the cardiovascular community is highly concerning and disheartening. Simplistic, sustainable, long-term action plans are the need of the hour. We must use the cataclysm wrought by COVID-19 to plug our broken healthcare systems. For that, our frontline warriors should be the best state of physical, mental, and emotional well-being to face up to this challenge. The time to take action is NOW!!

METHODS Evaluate the psychosocial impact of COVID-19 on HCWs working in a highly-stressed environment with high patient burden and turnover rates (45 bedded ICU including 15 step-down beds, average occupancy 90% to 100%). Understand perceived psychological burden and risk of post-traumatic stress disorder (PTSD) in these HCWs.

BACKGROUND Current strategies for COVID-19 therapy involve the systemic administration of drugs. While pharmaceutical treatments continue to be evaluated, device-based therapies have yet to be explored. We propose several transcatheter-based approaches for the treatment of COVID-19.