REVIEW

Bio-production of gaseous alkenes: ethylene, isoprene, isobutene

James Wilson, Sarah Gering, Jessica Pinard, Ryan Lucas and Brandon R. Briggs*

Abstract

To reduce emissions from petrochemical refinement, bio-production has been heralded as a way to create economically valuable compounds with fewer harmful effects. For example, gaseous alkenes are precursor molecules that can be polymerized into a variety of industrially significant compounds and have biological production pathways. Production levels, however, remain low, thus enhancing bio-production of gaseous petrochemicals for chemical precursors is critical. This review covers the metabolic pathways and production levels of the gaseous alkenes ethylene, isoprene, and isobutene. Techniques needed to drive production to higher levels are also discussed.

Background

In today’s world, the impact of fossil fuels is inescapable. In addition to energy, fossil fuel products are used to create high-value industrial chemicals and polymers that permeate our society. Currently, petrochemicals are produced via steam cracking of crude petroleum products, which requires high temperature and pressure, and anoxic conditions (Fig. 1). This process is energetically demanding, requiring ~14% of the total energy industry [1]. In addition, the molten salt used to reduce coke formation in the refinement process leads to additional requirements for contaminant disposal [2]. Producing petrochemicals in this fashion emits massive quantities of greenhouse gases (GHG) and potential environmental contaminants that have a myriad of effects on our environment, economies, and species as a whole. One avenue of research that is potentially more carbon neutral and less polluting is the bio-production of chemicals. While switching production of petrochemicals from steam-cracking crude oil, to a renewable production method would not alleviate all emissions, it would redress one of the major sources [3].

Much of the effort to date has been in production of liquid biofuels or biodiesels [4]. Ethanol production from corn using yeast is a prime example of this process [5]. However, many industrially significant chemicals are gaseous in nature and are processed into higher order petrochemicals such as polyethylene (the thin plastic used in grocery bags and packaging film) detergents, fuel additives, anti-knocking agents for combustion engines, synthetic rubbers for the tire industry, adhesives, and perfumes (Table 1). The predominant hydrocarbons that are used as precursor molecules are gaseous alkenes—ethylene, isobutene, and isoprene. These chemicals can be produced naturally through various microbial processes; however, they are yet to readily reach the market in part due to inefficient pathways, or the need for expensive feedstocks [3]. Due to this hurdle, much of the current research in gaseous bio-products focuses on optimization of production organisms through genetic engineering and careful manipulation of growth conditions. This review will concentrate on genetic engineering of key microbial pathways, and enzymes to increase production levels of gaseous precursor alkenes (ethylene, isobutene, and isoprene). This will provide a picture of the current state of bio-production for these precursor molecules.

Overview of metabolic pathways

Ethylene

Three pathways for biological ethylene production have been identified (1) S-adenosyl-methionine (SAM) pathway, (2) 4-(methylsulfanyl)-2-oxobutanoate (KMBAl pathway, and (3) 2-oxoglutarate pathway [6, 7]. Plants

[Reference to Table 1 regarding hydrocarbons used as precursors]
naturally produce ethylene as a hormone that modulates growth and development using the SAM pathway. The SAM pathway is a two-step reaction that first converts SAM into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase. ACC oxidase then catalyzes the release of ethylene and cyanide. Plants then detoxify the cyanide by converting it to β-cyanoalanine. Utilization of this pathway in microorganisms for biotechnological applications might require additional engineering as not all host strains contain natural cyanide mitigation pathways [8].

In addition to plants, a variety of bacteria and fungi also naturally produce ethylene using the KMBA pathway. KMBA is produced through a NADH:Fe(III)EDTA oxidoreductase-mitigated reaction with methionine. The pathway produces ethylene in trace amounts, but has been observed to be enhanced under ammonia limitations [9]. It is hypothesized that the formation of KMBA is a way to recover amino nitrogen from methionine that spontaneously leads to the formation of ethylene [9]. Only trace amounts of ethylene are produced through this pathway, thus it has not been as extensively studied.

The 2-oxoglutarate pathway is used by several microbes within the *Pseudomonas* and *Penicillium* genus. Ethylene is produced from 2-oxoglutarate using ethylene-forming enzyme (EFE) (Reaction 1) (Fig. 2). However, stoichiometry of cell-free extracts indicates a “dual-circuit” reaction that uses 2-oxoglutarate but does not produce ethylene (Reaction 2) [10, 11]. Further work has confirmed the dual-circuit nature of this enzyme, but indicated that these two reactions can be separated because L-arginine analogs still produce ethylene without hydroxylation of the analog [11]. Additionally, X-ray crystallography of EFE from *P. syringae* in complex with manganese as well as 2-oxoglutarate has shown that L-arginine induces a conformational twist of several amino acid residues (Glu84, and Tyr192) into the active site [12, 13]. Future work on separating these two reactions may lead to more carbon-efficient production. Nevertheless, this pathway is the most biotechnologically promising pathway because it has the highest rates of ethylene production, only one additional enzyme is needed, and 2-oxoglutarate is a common substrate produced by many organisms through the tricarboxylic acid (TCA) cycle. This makes it possible to engineer into many different organisms [14, 15]. Thus, most research has focused on understanding and enhancing the 2-oxoglutarate pathway for production of ethylene.

\[
2\text{-oxoglutarate} + O_2 \rightarrow \text{ethylene} + H_2O + 3\text{CO}_2
\]

(1)

\[
2\text{-oxoglutarate} + O_2 + \text{L-arg} \rightarrow \text{succinate} + \text{CO}_2 + H_2O + \text{guanidine} + 1\text{-pyrroline-5-carboxylate}
\]

(2)

Isoprenoid pathways

The two main isoprenoid pathways that can lead to isobutene are the methlyerythritol-phosphate (MEP) pathway and mevalonate (MVA) pathway (Fig. 2). Both pathways produce isoprenoid precursors of dimethylallyl diphosphate (DMAPP) and isopentenyl pyrophosphate (IPP). Most bacteria use the MEP pathway, whereas the MVA pathway is present in eukaryotes and archaea [16]. The primary feedstock molecule for the MEP pathway

Table 1 Products produced from alkenes

Ethylene	**Isobutene**	**Isoprene**
Food packaging	Stretch film	Synthetic rubber
Shrink wrap	Detergents	Baby bottle nipples
Containers	Alcohols	Adhesives
Pipes	Paints	Tires
Garbage bags	Paper coatings	Elastic films
Polyester fiber (textiles)	Industrial ethanol	
Bottles	Surfactants	Adhesives
Antifreeze	Personal care products	Paints and coatings
Shampoo	Construction industry	
Kitchen cleaners	Synthetic rubber	
Solvents		
Fuels		

Isobutene

- Insecticides
- Latex
- Balloons
- Medical devices
- Waterproof material

Isoprene

- Synthetic rubber
- Baby bottle nipples
- Toys
- Shoe soles
- Adhesives
- Paints and coatings
- Tires
- Elastic films

is pyruvate. 1-deoxy-d-xylulose-5-phosphate (DXP) is made through a condensation reaction with pyruvate and glyceraldehyde-3-phosphate. This is eventually converted to hydroxy-2-methyl-2-butenyl-4-diphosphate (HMBPP), which is the precursor for IPP and DMAPP. An IPP isomerase (IDI) catalyzes the reversible reaction of IPP to DMAPP. In this pathway, 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), and IDI have been identified as the rate-limiting enzymes [17].

The MVA pathway starts with two molecules of acetyl-CoA to form 3-hydroxy-3-methylglutaryl CoA (HMG-CoA). The rate-limiting step in this pathway is the reduction of HMG-CoA to mevalonate by the HMG-CoA reductase [18]. Mevalonate is then phosphorylated twice to form mevalonate-5-diphosphate. This is decarboxylated by mevalonate-5-diphosphate decarboxylase (MVD) to form IPP. Isoprene can be produced from either pathway from DMAPP using isoprene synthase (ISPS). The MEP pathway is energetically balanced and theoretically more carbon efficient than the MVA pathway (30.2% vs. 25.2% mass yield on glucose) [16]. However, the MVA pathway is well characterized and is amenable to metabolic pathway engineering [19]. Furthermore, current engineering efforts have had higher success using the MVA pathway [20–22].

Isobutene pathways

Isobutene can be produced from three different intermediates—isobutanol, isovalerate, and 3-hydroxyisovalerate (Fig. 2). There are a few natural producers of isobutanol such as *Saccharomyces cerevisiae* and *Lactococcus lactis* [23]. There are also engineered production strains of *E. coli* that produce isobutanol via acetolactate and 2-oxoisovalerate [24] (Fig. 2). The dehydration of isobutanol to isobutene is catalyzed by
an oleate hydratase [25]. The reaction mechanism for this has not been elucidated, but the natural reaction of an oleate hydratase is the conversion of oleic acid to (R)-10-hydroxystearate with narrow substrate specificity. A patent by Marliere searched 165 homologs of oleate hydratase and found several that can produce isobutene [25]. No information has been given about the reaction kinetics or production rates.

Natural production of isobutene was first mentioned by Fukuda et al. [26]. Of the 178 tested organisms, 33 fungi, 31 yeasts, and 6 bacteria produced trace amounts of isobutene. The highest natural production value was found in the yeast *Rhodotorula minuta* with a rate of 0.45 mg L$^{-1}$ h$^{-1}$ and 41 μg g$^{-1}$ h$^{-1}$ [27]. It was later found that *R. minuta* produces isobutene by the decarboxylation of isovalerate using a microsomal cytochrome P450 (Fig. 2). The pathway from glucose to 2-oxoisocaproate is generally used for leucine biosynthesis. In the subsequent steps, two CO$_2$ equivalents are removed. This pathway requires 2 mol of pyruvate and 2 mol of acetyl-CoA, which gives a low theoretical maximum yield of isobutene per mol of glucose. Furthermore, the cytochrome P450 requires a heme moiety, which is not well suited for recombinant expression in bacteria.

Isobutene production via 3-hydroxyisovalerate is a derivative of the MVA pathway. HMG-CoA is produced through the MVA pathway but instead of reducing it to methionine, HMG-CoA is dehydrated to 3-methylglutaconoyl-CoA, which is subsequently converted to 3-hydroxyisovalerate. The initial steps in the MVA pathway require acetyl-CoA and acetacetyl-CoA for the production HMG-CoA. This leads to a requirement of 3 mol of pyruvate for 1 mol of isobutene. There is a patent that produces 3-hydroxyisovalerate from acetyl-CoA and acetone, but that still has the same requirement of 3 mol of pyruvate per mol of isobutene [28]. The last enzyme in this pathway is MVD, which has the ability to decarboxylate 3-hydroxyisovalerate (3-HIV) to isobutene as a side reaction (Reaction 3). Recently, an enzyme in the MVA pathway of *Picrophilus torridus* has been identified as a malonate-3-kinase (M3K) [29]. This newly discovered enzyme has the highest recorded rate of isobutene formation (507 pmol min$^{-1}$ g$^{-1}$ cells$^{-1}$) and acts through catalyzing the phosphorylation of 3-HIV into an unstable 3-phosphate intermediate that undergoes spontaneous decarboxylation to form isobutene (Reaction 4).

\[
\text{C}_3\text{H}_7\text{O}_3 + \text{ATP} \rightarrow \text{C}_4\text{H}_8 + \text{CO}_2 + \text{P}_1 \quad (3)
\]

\[
\text{C}_3\text{H}_7\text{O}_3 + \text{ATP} \rightarrow \text{C}_5\text{H}_8\text{O}_3\text{P} \rightarrow \text{C}_4\text{H}_8 + \text{CO}_2 + \text{P}_1 \quad (4)
\]

Genetic engineering

Ethylene

Only one enzyme is needed for ethylene production from common metabolites. As such, depending on the organism heterologous expression of the *efe* gene can produce ethylene from various forms of carbon (Table 2). For example, ethylene was synthesized from carbon dioxide when *efe* was expressed in *Synechocystis* [30–32]. Additionally, ethylene is produced from cellulose material or corn stover and manure when the *efe* gene was engineered into *Trichoderma reesei* or *Escherichia coli*, respectively [33–35]. Heterologous expression of the *efe* gene has also occurred in *Azotobacter vinelandii*, *Rhodospirillum rubrum*, *Pseudomonas syringae*, and *Saccharomyces cerevisiae* [36–39] (Table 2).

Efforts to produce a stable and efficient ethylene producing strain have included protein engineering of EFE, increasing the copy number of the *efe* gene, altering promoter control, modifying ribosomal binding sites, and modifying metabolic pathways (Table 2). Protein engineering of EFE has included codon optimization for the host and site-directed mutagenesis [30, 32, 36]. These efforts along with homology modeling and X-ray crystallography have identified key amino acids in EFE required for ethylene production [13, 36]. This paves the way for directed protein engineering to further enhance ethylene production [40].

In *Pseudomonas putida*, production of ethylene reached 64 mL h$^{-1}$ g$^{-1}$ of dry weight when EFE was expressed from 5 of the 176 16S rRNA sites [41]. One of the higher producing strains of *Synechocystis* has been engineered to express EFE under the PcpcB promoter. The TCA cycle was also modified by blocking 2-oxoglutarate decarboxylase and succinic semialdehyde dehydrogenase, EFE was overexpressed, and 2-oxoglutarate permease from *E. coli* was introduced to increase the supply of 2-oxoglutarate [32]. The production of this strain was further enhanced by a partial deletion of the transcription factor nitrogen control A (NtcA), and four copies of the *efe* gene were introduced [42]. The peak production rate for this strain of *Synechocystis* was pushed to 2.463 mL L$^{-1}$ h$^{-1}$ A$_{680}^{-1}$. Transgenic expression of a fused soybean ACC synthase with a tomato ACC oxidase in *E. coli* was used to isolate and purify a novel fusion protein for ethylene production. Using this partially purified protein with S-$\text{adenosyl-l-methionine}$ as substrate, researchers demonstrated a production rate of 6.0 nmol h$^{-1}$ mg$^{-1}$ [43].

Isoprene

A variety of organisms naturally produce isoprene, such as humans, plants, yeast, and bacteria [44, 45]. So far, the best microbial producer of isoprene was found to be *Bacillus subtilis* with a production rate of 12.78 nmol g$^{-1}$ h$^{-1}$ [44]. However, the enzymatic pathway
for this production has yet to be determined. Of all the organisms, plants produce the highest amount of isoprene, an estimated 600 million tonnes per year [46]. Isoprene is synthesized in the chloroplast in a process that seems to be induced by heat stress [47]. Unfortunately, it is difficult to harvest from leafy canopies. Nevertheless, plant enzymes that produce isoprene have been determined and represent a source of exogenous pathways to engineer into microbes for production [16].

Isoprene synthase has been characterized in several plants, mainly in the rosids clade such as *Populus alba* (poplar), *Quercus petraea* (oak), *Eucalyptus globulus* (eucalyptus), *Salix discolor* (willow), and *Pueraria montana* (kudzu vine) [48–50]. Biochemical studies of these ISPS proteins have shown that these enzymes are strongly temperature dependent with an optimal temperature of 40–50 °C and have high Michaelis constants (*K_m*) [49, 51, 52]. The *K_m* values from DMAPP range from 18.3 to 0.03 mM with *Eucalyptus globulus* having the lowest value [16]. This requires high-substrate (DMAPP) concentrations for the ISPS to perform and is not biotechnologically advantageous. Therefore, genetic engineering studies have attempted to enhance the ISPS performance (Table 3). For example, researchers have codon-optimized *ispS* for expression in *Synechocystis* sp. PCC6803 [53], removed the chloroplast targeting peptide [48, 54], site mutagenesis [55], and performed directed evolution [56]. Additionally, to overcome the low substrate affinity of ISPS for DMAPP, a fusion protein of overexpression of *S. cerevisiae* ID1 and *P. alba* ISPS was generated. Mutants expressing this fusion protein were shown to have higher production, up to 4.6 mg h⁻¹ L⁻¹, of isoprene than in mutant strains overexpression either of the two enzymes [57]. A recent study has suggested that there may be other more favorable ISPS proteins for biotechnological advancement [58]. Ilmen et al. found a novel *ispS* gene in the *Ipomoea batata*, a member of the asterids clade. Compared to the most similar ISPS protein (Quercus petraea), the *I. batata* ISPS protein is only 55% similar. Ilmen et al. went further and compared the isoprene production rates of ISPS proteins from different plants that were cloned into *E. coli*, thus allowing for a direct comparison of the unmodified proteins. The highest isoprene production rate was 40 μg L⁻¹ h⁻¹ by the *I. batata* ISPS. This was two times more than the second highest production rate produced by the poplar ISPS. Other studies that have expressed ISPS from kudzu and poplar in *E. coli* without further optimization found slightly higher production values than found in Ilmen et al. but the highest was 33 μg L⁻¹ h⁻¹ [22, 59]. While the *K_m* of the *I. batata* ISPS has not been determined, the faster rates of isoprene production warrant further

Table 2 Metabolic engineering of microorganisms for ethylene production

Organism Description	Production	References				
1 mL h⁻¹ g⁻¹ dcw [39]	1 mL h⁻¹ g⁻¹ dcw [39]					
0.000106 mL h⁻¹ g⁻¹ dcw	0.72 mL h⁻¹ g⁻¹ A730	[31]				
0.451 mL h⁻¹ g⁻¹ A730	0.19 mL h⁻¹ g⁻¹ A730	[89]				
0.2 mL h⁻¹ g⁻¹ A730	0.34 mL h⁻¹ g⁻¹ A730	[39]				
0.03 mL h⁻¹ g⁻¹ A730	0.23 mL h⁻¹ g⁻¹ A730	[88]				
0.72 mL h⁻¹ g⁻¹ A730	0.2 mL h⁻¹ g⁻¹ A730	[15]				
0.44 mL h⁻¹ g⁻¹ A730	0.4 mL h⁻¹ g⁻¹ A730	[31]				
0.25 mL h⁻¹ g⁻¹ A730	0.19 mL h⁻¹ g⁻¹ A730	[89]				
0.34 mL h⁻¹ g⁻¹ A730	0.34 mL h⁻¹ g⁻¹ A730	[39]				
0.03 mL h⁻¹ g⁻¹ A730	0.023 mL h⁻¹ g⁻¹ A730	[88]				
0.0041 mL h⁻¹ g⁻¹ A730	0.00106 mL h⁻¹ g⁻¹ dcw	[92]				
5.65 mL h⁻¹ g⁻¹ A730	5.65 mL h⁻¹ g⁻¹ A730	[30]				
0.23 mL h⁻¹ g⁻¹ A730	0.23 mL h⁻¹ g⁻¹ A730	[88]				
0.19 mL h⁻¹ g⁻¹ A730	0.19 mL h⁻¹ g⁻¹ A730	[89]				
0.2 mL h⁻¹ g⁻¹ A730	0.2 mL h⁻¹ g⁻¹ A730	[15]				
0.34 mL h⁻¹ g⁻¹ A730	0.34 mL h⁻¹ g⁻¹ A730	[39]				
0.03 mL h⁻¹ g⁻¹ A730	0.03 mL h⁻¹ g⁻¹ A730	[90]				
0.000106 mL h⁻¹ g⁻¹ dcw	0.000106 mL h⁻¹ g⁻¹ dcw	[92]				
0.000106 mL h⁻¹ g⁻¹ dcw	0.000106 mL h⁻¹ g⁻¹ dcw	[92]				
0.0041 mL h⁻¹ g⁻¹ A730	0.0041 mL h⁻¹ g⁻¹ A730	[33]				
8 mL h⁻¹ g⁻¹ A730	8 mL h⁻¹ g⁻¹ A730	[33]				
0.23 mL h⁻¹ g⁻¹ A730	0.23 mL h⁻¹ g⁻¹ A730	[88]				
0.2 mL h⁻¹ g⁻¹ A730	0.2 mL h⁻¹ g⁻¹ A730	[15]				
0.34 mL h⁻¹ g⁻¹ A730	0.34 mL h⁻¹ g⁻¹ A730	[39]				
0.03 mL h⁻¹ g⁻¹ A730	0.03 mL h⁻¹ g⁻¹ A730	[90]				
0.00106 mL h⁻¹ g⁻¹ dcw	0.00106 mL h⁻¹ g⁻¹ dcw	[92]				
0.0041 mL h⁻¹ g⁻¹ A730	0.0041 mL h⁻¹ g⁻¹ A730	[33]				
8 mL h⁻¹ g⁻¹ A730	8 mL h⁻¹ g⁻¹ A730	[33]				
0.000106 mL h⁻¹ g⁻¹ dcw	0.000106 mL h⁻¹ g⁻¹ dcw	[92]				
0.0041 mL h⁻¹ g⁻¹ A730	0.0041 mL h⁻¹ g⁻¹ A730	[33]				
8 mL h⁻¹ g⁻¹ A730	8 mL h⁻¹ g⁻¹ A730	[33]				
0.000106 mL h⁻¹ g⁻¹ dcw	0.000106 mL h⁻¹ g⁻¹ dcw	[92]				
Organism	Description	Productivity	Yield (mg g⁻¹ dcw)	Titer (g L⁻¹)	Reference	
----------	-------------	--------------	-------------------	---------------	-----------	
Escherichia coli BL21	ispS from *P. batatas*	40 µg L⁻¹ h⁻¹			[58]	
Escherichia coli BL21	Engineered with *P. alba* ispS and *S. cerevisiae* MVA pathway	11,083 µg L⁻¹ h⁻¹	0.532		[94]	
Escherichia coli BL21	DXS, DXR, and IDI from *S. pneumoniae* were overexpressed, ispA was weakened, *P. alba* ispS	829 µg L⁻¹ h⁻¹	0.0199		[95]	
Escherichia coli BL21	Two component system (1) *E. coli* optimized for mevalonate production from sugar was used as a feedstock for (2) *E. coli* engineered with MVA and ispS	230,000 µg L⁻¹ h⁻¹	11.0		[96]	
Escherichia coli BL21	ispS from *P. alba*, +mvaE, mvaS from *E. faecalis*, +mvk, PMK, MVD, IDI from *S. cerevisiae*, +mvk from *M. mazei*, +pgl from *E. coli*	2,000,000 µg L⁻¹ h⁻¹	850	60	[97]	
Escherichia coli BL21	ispS from *P. nigra*, +DXS, DXR from *E. coli*		0.16		[59]	
Escherichia coli BL21	ispS from *P. nigra*, +DXS, DXR from *B. subtilis*		0.31		[59]	
Escherichia coli BL21	ispS from *P. montana*, +DXS, ispG, ispH, ispE, DXR, ispD, ispF from *E. coli*, selection of translation initiation regions and adjustment of gene order in the superoperon	277 µg L⁻¹ h⁻¹	0.005		[22]	
Escherichia coli BL21	ispS from *P. montana*, +hmgS, hmgR from *E. faecalis*, +atg8 from *E. coli*, +frl, pmk, pmd, pgf, selected from *S. pneumoniae*, selection of translation initiation regions	17,778 µg L⁻¹ h⁻¹	0.32		[22]	
Escherichia coli BL21	2 mvaE, mvaS from *E. faecalis*, +ERG12, ERG8, ERG19, IDI from *S. cerevisiae*, codon-optimized ispS from *P. alba*, mvaS gene mutation		6.3		[98]	
Escherichia coli BL21	Codon-adapted ispS from *P. alba*, +DXS, DXR, IDI from *E. coli*, adjustment of gene order in the polycistron	2727 µg g⁻¹ dcw h⁻¹			[17]	
Escherichia coli BL21	Truncated ispS from *P. alba*, +DXS, DXR, IDI, pgl, fda, ispG from *E. coli*, +ispH from *Anabaena*, +ispG system from *T. elongatus*		8.4		[99]	
Escherichia coli BL21	Enhanced MEP pathway and combined with MVA pathway		52,500 µg L⁻¹ h⁻¹			[100]
Escherichia coli MG1655	Codon-optimized ispS from *P. trichocarpa*, augmented MVA pathway, and deleted genes involved in acetate-CoA byproduct formation		1.832		[101]	
Synechococcus elongatus	Fused ISPs from *P. alba* with IDI from *S. cerevisiae*	4600 µg L⁻¹ h⁻¹	5.4		[57]	
Synechocystis sp. PCC 6803	Fused ISPs with CPCB (phyocyanin) to increase production				[102]	
Synechocystis sp. PCC 6803	codon-optimized ispS from *P. montana*	2.08 µg g⁻¹ dcw h⁻¹			[103]	
Synechocystis sp. PCC 6803	Codon-optimized ispS from *P. montana*	40 µg L⁻¹ h⁻¹	0.12	3.2	[104]	
Synechocystis sp. PCC 6803	Engineered psbA2 promoter-driven ispS and codon optimized from *P. montana*	2 µg L⁻¹ h⁻¹			[105]	
Synechocystis sp. PCC 6803	Codon-optimized *P. montana* ispS	63 µg L⁻¹ h⁻¹			[20]	
Synechocystis sp. PCC 6803	Codon-optimized kudzu ispS under rbcL promoter	1.16 µg L⁻¹ h⁻¹ A₆₇₅,₀⁻¹	1e⁻⁶		[53]	
Bacillus subtilis	Engineered DXS, DXR			1e⁻⁶		[106]
Saccharomyces cerevisiae	Multiple copies of codon-optimized ispS from *P. montana*	7 µg L⁻¹ h⁻¹	5e⁻⁴		[107]	
Saccharomyces cerevisiae	2 copies of codon-optimized ispS from *P. alba*, +hmg1, IDI, ACS2, ERG10 from *S. cerevisiae*, downregulation of ERG20 by promoter replacement	25	0.037		[108]	
Saccharomyces cerevisiae	Enhanced Gal4p supply and directed evolution of ispS	51,388 µg L⁻¹ h⁻¹	3.7		[56]	
investigation. Furthermore, a comparative analysis may identify further residues for site mutagenesis.

In addition to identifying alternative isoprene synthases, research has been performed to optimize pathways that produce isoprene. For example, pathways that produce DMAPP can be optimized through gene overexpression, different promoters, and alternate control methods [56, 60, 61]. One recent study by Wang et al. used S. cerevisiae, that was previously engineered to have increased precursor supply, performed a combinatorial approach that included overexpression and deletion of competing promoters, increased the transcriptional activator Gal4p, performed directed evolution of ispS, while growing in a fed-batch fermentation system with dextrose as the carbon source [56]. The approach taken by Wang et al. increased the production values to 1.23 g L\(^{-1}\) h\(^{-1}\), which is the highest reported values thus far. However, production levels could be pushed with continued combinatorial approaches that further removed competing pathways or in new organisms that have higher efficiencies. For example, a methanogen has been genetically engineered to produce isoprene increasing efficiency by alleviating the need for oxygen [62]. Identification of isoprene synthase enzymes in bacteria or archaea and the natural pathways in these organisms would reduce the reliance on exogenous plant enzymes. Furthermore, since it is postulated that isoprene deals with thermal stress in plants it may be beneficial to look for these novel enzymes in thermophiles.

Isobutene
There have only been a few attempts at genetic engineering to increase isobutene production and these have focused on the MVD protein and more recently the M3K protein. Both the MVD and M3K genes have been independently engineered into E. coli using plasmid-based systems [29, 63]. Gogerty et al. engineered the MVD from S. cerevisiae into E. coli. When they used error prone PCR on the MVD, one of the variants increased the production rates by 38-fold (Table 4). Rossoni et al. engineered the M3K gene into E. coli. Using whole cells grown in LB media expressing M3K under IPTG expression, isobutene production rates reached up to 507 pmol min\(^{-1}\) g cells\(^{-1}\) in E. coli [29]. It has been proposed that engineering an organism to express both M3K and MVD might raise titers, since they have alternative modes of action on 3-HIV [29]. In cell-free extracts with the M3K enzyme isobutene production reached 34 mg L\(^{-1}\) h\(^{-1}\) [29]. To be considered economically viable, the production rate of isobutene from a biological source must be around 2–4 g L\(^{-1}\) h\(^{-1}\) [63]. There is still much improvement needed before the bio-production of isobutene can be considered economically significant.

Future directions
Significant hurdles remain in the bio-production of these gaseous alkenes to become a consistently viable alternative to current refinement methods. Development of production strains has included (1) protein engineering or directed evolution, (2) pathway construction, and (3) regulation of key enzymes or transcription factors. Each of these have helped to enhance production values, but, in general, it is the combination of multiple steps that have seen the greatest advancement in production values. Moving forward, bioinformatics will be integral to combining each of these steps to enhance production levels [64]. Advances in sequencing technology have allowed researchers to uncover more about novel enzymes and pathways [65]. Pipelines are also being produced to model metabolic networks that allows for a flux analysis and can be interrogated to determine ways to increase efficiency before the much more time-consuming steps of genetic engineering [66–68]. For example, programs and algorithms such as Cytoscape [69], k-Opt-Force [70], or Ecocyc [71] have been developed to help visualize changes in cellular flux networks. These programs take annotated genomes and model biochemical reactions with systems of differential equations. These are transformed to systems of linear equations and solved, generating vectors in a cone representing metabolic flux. Adding in transcriptomic data with changes in gene expression will then shift the flux through reactions, changing the output, allowing researchers to see where the cell directs its energy and carbon [72, 73]. Visually processing effects of changes in gene regulation allow for simplifying of metabolic engineering efforts. Techniques

Table 4 Metabolic engineering of microorganisms for isobutene production

Organism	Description	Fermentation type	Productivity (pmol min\(^{-1}\) g\(^{-1}\) cells)	References
Escherichia coli BL21	Engineered M3K from Picrophilus torridus	Sealed vials	507	[29]
Escherichia coli BL21	Engineered MVD from S. cerevisiae	Sealed vials	2.5	[63]
Escherichia coli BL21	Variant of MVD using error prone PCR	Sealed vials	98.1	[63]
like these are what will provide the next set of enzymatic tools for genetic engineers to implement to push biofuel production to higher levels.

A variety of organisms have been used for bio-production of gaseous alkenes [74–76], but many display issues due to inefficient pathways or when scaling up to industrial levels. One organism is not ideal for producing the many petrochemicals needed from varying feedstocks, but there are a suite of characteristics that should be intrinsic to any organism under consideration for use as a cell factory. Ideal characteristics would be rapid growth rate, the ability to consume wide varieties of carbon sources, non-pathogenic, carbon and energy efficient pathways, and tolerance to wide ranges of temperature, pH, and solvent concentrations [77]. *E. coli* has been the typical model organism for ethylene, isoprene, and isobutene production [3, 78]. In part, because there are attenuated strains, it replicates rapidly, and its genome is well mapped and thus well suited for engineering [79]. However, *E. coli* is not appropriate for all feedstocks and the majority of microbes are uncultured or ‘biological dark matter’ and may hold clues for faster and more efficient production strains. As our knowledge of microbial genomes grows incorporating more of the typically “non-model” organisms will become more feasible. In addition, if these non-model organisms are extremophiles, it opens up the gate for wider industrial conditions to be used.

Not all hurdles for bio-production are biological. One of the hurdles in bringing biofuels to market is effectively scaling up the process from benchtop, to industrial scale bioreactors. This is due in large part to the large differences in reaction conditions common for benchtop biogas production monitoring vs industrial production, i.e., sealed headspace vessels vs. bioreactors. To our knowledge, there have not been any reports on attempts to scale-up production for any of these gaseous alkenes. It is outside the scope of this review to detail all the types of bioreactors and the modes of operation, for more detailed information see [80–82]; however, some extra considerations are discussed that must be taken regarding recovery of gaseous end products compared to liquid-phase products. The primary method for gas harvesting from bioreactors is headspace capture [29, 83], followed by either pressure concentration and/or membrane adsorption [84]. This simplifies the process of product harvesting and mitigates problems from feedback inhibition compared to liquid biofuel processes. However, safety issues with flammability must be considered when the alkenes are concentrated to high enough concentrations. Many of the pathways to produce the gaseous alkenes are aerobic and require sparging fresh air through the reactor media to replenish the collected headspace or through oxygenic microbes. For example, oxygen can be supplied by using bioreactors growing a consortium of algae and bacteria. Combinations of algae and bacteria have been used to treat wastewater with the algae providing the dissolved oxygen requirements for aerobic digestion and nitrification processes carried out by the bacteria [85]. Engineers working with biologist will be needed to design optimal bioreactors.

A multifaceted approach is needed to overcome these barriers. The ability to rapidly create optimized production strains will require further genetic engineering as well as advances in bioreactor design, bioinformatics pipelines, and identification of novel microbes and enzymes combined with the ability to accurately integrate novel pathways into both model and non-model organisms. Optimization of every stage of the process must occur, which will require multidisciplinary teams. For example, teams of engineers, modelers, and synthetic biologists can work together to design a complete optimized system from the bioreactor, to streamlining genetic engineering through deriving mathematical models of metabolic networks to predict energetic favorability [73]. Powerful new tools such as these will help drive gaseous bio-products to higher levels.

Authors’ contributions

JW was a contributor to writing the overall manuscript and figure designs. SG, JP, and RL performed the literature search and analysis of production rates. BRB was a major contributor to writing and editing the manuscript as well as figure designs. All authors read and approved the final manuscript.

Acknowledgements

The authors gratefully thank the anonymous reviewers for significantly improving the manuscript.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study. All gaseous production values have been cited from the primary literature.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

Funding was provided by the Department of Biological Sciences at the University of Alaska Anchorage.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References

1. Ceniz G, Quadrelli EA, Parathoner S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci. 2013;6(6):1711–31.

2. Schietekat CM, Van Cauwenberge DJ, Van Geem KM, Mullins KA, MacLean HL, Griffin WM, et al. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Curr Opin Biotechnol. 2016;38:63–70.

3. De Paepe A, Van Der Staeten D. Ethylene biosynthesis and signaling: an overview. Vitam Horm. 2005;72:399–430.

4. Guo M, Song W, Buhain J. Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev. 2013;42:712–25.

5. Gerbrandt K, Chu PL, Simmonds A, Mullins KA, MacLean HL, Griffin WM, et al. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Curr Opin Biotechnol. 2016;38:63–70.

6. De Paepe A, Van Der Staeten D. Ethylene biosynthesis and signaling: an overview. Vitam Horm. 2005;72:399–430.

7. Fukuda H, Ogawa T, Tanase S. Ethylene production by micro-organisms. Adv Microb Physiol. 1993;35:275–306.

8. Kumar R, Saha S, Dhaka S, Kurade MB, Kang CU, Baek SH, et al. Reme- diation of cyanide-contaminated environments through microbes and plants: a review of current knowledge and future perspectives. Geosys Geos. 2016;20(1):28–40.

9. Shipston N, Bunch AW. The physiology of S-methionine catabolism to the secondary metabolite ethylene by Escherichia coli. J Gen Microbiol. 1989;135(6):1489–97.

10. Fukuda H, Ogawa T, Tanase S. Ethylene production by micro-organisms. Adv Microb Physiol. 1993;35:275–306.

11. Martinez S, Hausinger RP. Biochemical and spectroscopic charac- terization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Biochim Biophys Acta. 1992;111(18):4667–72.

12. Zhang Z, Smart TJ, Choi H, Hardy F, Lohans CT, Aboud MI, et al. Structural and stereo-electronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate. Proc Natl Acad Sci. 2017;114(18):11980–8.

13. Martinez S, Fellerer M, Herr CQ, Ritchie A, Hu J, Hausinger RP. Structures and mechanisms of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme: substrate binding creates a twist. J Am Chem Soc. 2017;139(59):11980–8.

14. Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, et al. Ethylene-forming enzyme and bioethylen production. Biotechnol Biofuels. 2014;7(1):33.

15. Guerrero F, Carabellin V, Cossu M, Corredu D, Jones PR. Ethylene synthesis and regulated expression of recombinant protein in Syn- echocystis sp. PCC 6803. PLoS ONE. 2012;7(11):e50470.

16. Ye L, Lu X, Yu H. Engineering microbes for isoprene production. Metab Eng. 2016;38:125–38.

17. Lv X, Hu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes DXS, DXR, and IDI in Escherichia coli. Appl Microbiol Biotechnol. 2013;97(6):2357–65.

18. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;346(6257):425–30.

19. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD. Optimization of the mevalonate-based isoprenoid biosynthesis pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng. 2009;11(13):9–13.

20. Chaves JE, Kirt H, Melis A. Isoprene production in Synchrocystis under alkaline and saline growth conditions. J Appl Physiol. 2012;113(5):1089–97.

21. Meskheidze N, Sabolis A, Reed R, Kamyszowski D. Quantifying environmental stress-induced emissions of algal isoprene and monoterpenes using laboratory measurements. Biogeochemistry. 2015;123(3):637–51.

22. Zurbiggen A, Kirt H, Melis A. Isoprene production via the meva- lonic acid pathway in Escherichia coli (Bacteria). Bioenergy Res. 2012;5(4):814–28.

23. van Leeuwen BN, van der Wulp AM, Duijntjee J, van Maris AJ, Straathof AJ. Fermentative production of isobutene. Appl Microbiol Biotechnol. 2012;93(4):1377–87.

24. Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for syn- thesis of branched-chain higher alcohols as biofuels. Nature. 2008;451(7174):86–9.

25. Marliere P. Method for producing an alkene comprising step of convert- ing an alcohol by an enzymatic dehydration step. 2011.

26. Fukuda H, Fuji T, Ogawa T. Microbial production of C3- and C4-hydro- carbons under aerobic conditions. Agric Biol Chem. 1984;48:1679–82.

27. Fuji T, Ogawa T, Fukuda H. Isobutene production by Rhodotorula minuta. Appl Microbiol Biotechnol. 1987;25:430–3.

28. Marliere P. Method for the enzymatic production of 3-hydroxy-3-methylbutyric acid from acetone and acetyl-CoA. 2011.

29. Rossoni L, Hall SJ, Eastham G, Licence P, Stephens G. The putative mevalonate diphosphate decarboxylase from Pichia stipitis toruloides in reality a mevalonate-3 kinase with high potential for bioproduction of isobutene. Appl Environ Microbiol. 2015;81(7):2625–34.

30. Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C, Yu J. Sustained phos- tosynthetic conversion of CO2 to ethylene in recombinant cyanobacte- rium Synechocystis 6803. Energy Environ Sci. 2012;5(10):8998.

31. Xiong W, Morgan JA, Ungerer J, Wang B, Maness P-C, Yu J. The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethyl- ene. Nature Plants. 2015;1(15):1053.

32. Zhu T, Xie X, Li Z, Tan X, Lu X. Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp. PCC 6803. Green Chem. 2015;17(1):421–34.

33. Chen X, Liang Y, Hua J, Tao L, Qin W, Chen S. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhances the production of ethylene. Int J Biol Sci. 2010;6(1):96–106.

34. Fukuda H, Ogawa T, Tazaki M, Nagahama K, Fuji T, Tanase S, et al. Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseu- domonas syringae pv. phaseolicola PK2. Biochim Biophys Res Commun. 1992;188(2):826–32.

35. Gerich M. Ethylene production from E. coli, in Chemical Engineering. Texas A&M University, Texas. 2012. p. 24.

36. Johnson N, Persson KO, Larsson C, Norbeck J. Comparative sequence analysis and mutagenesis of ethylene forming enzyme (EFE) 2-oxo- glutarate(FeII)-dependent dioxygenase homologs. BMC Biochem. 2014;15(22):1–8.

37. North JA, Miller AR, Wildenthal JA, Young SJ, Tabita FR. Microbial pathway for anaerobic 3′-methylthioadenosine metabolism coupled to ethylene formation. Proc Natl Acad Sci. 2011;108(24):E10455–64.

38. Rebeklin JG, Lee CC, Hu Y, Ribbe MW. The in vivo hydrocarbon forma- tion by vanadium nitrogense follows a secondary metabolic pathway. Nat Commun. 2016;7:13641.

39. Pirkov I, Albers E, Norbeck J, Larsson C. Ethylene production by meta- bolic engineering of the yeast Saccharomyces cerevisiae. Metab Eng. 2008;10(4):276–80.

40. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488(7411):320–8.

41. Wang JP, Wu LX, Xu F, Lu J, Jin HJ, Chen SF. Metabolic engineering for the production of advanced biofuels. Nature. 2012;488(7411):320–8.

42. Wang JP, Wu LX, Xu F, Lu J, Jin HJ, Chen SF. Metabolic engineering for the production of advanced biofuels. Nature. 2012;488(7411):320–8.

43. Wang JP, Wu LX, Xu F, Lu J, Jin HJ, Chen SF. Metabolic engineering for the production of advanced biofuels. Nature. 2012;488(7411):320–8.

44. Wujis T, Lohans CT, Abboud MI, et al. Method for producing an alkene comprising step of converting an alcohol by an enzymatic dehydration step. 2011.
45. Loreto F, Fineschi S. Reconciling functions and evolution of isoprene emission in higher plants. New Phytol. 2015;206(2):578–82.

46. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer P, Geron C. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys. 2006;6:107–73.

47. Sharkey TD, Wiberley AE, Donohue AR. Isoprene emission from plants: why and how. Ann Bot. 2008;101(1):5–18.

48. Miller B, Oschinski C, Zimmer W. First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Plant Cell. 2001;13(3):483–7.

49. Sasaki K, Ohara K, Yazaki K. Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett. 2005;579(11):2514–8.

50. Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE. Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol. 2005;137(2):700–12.

51. Schnitzler JP, Zimmer I, Bachl A, Arend M, Fromm J, Fischbach RJ. Biotechnol Biofuels. 2018;11:234.

52. Wildermuth MC, Fall R. Light-dependent isoprene emission (characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts). Plant Physiol. 1996;112(1):171–82.

53. Pade N, Erdmann S, Enke H, Dethloff F, Duhring U, Georg J, et al. Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803. Biotechnol Biofuels. 2016;9:89.

54. Miller B, Oschinski C, Zimmer W. First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Plant Cell. 2001;13(3):483–7.

55. Vickers CE, Possell M, Laothawornkitkul J, Ryan AC, Hewitt CN, Mullineaux PM. Isoprene synthase in plants: lessons from a transgenic tobacco model. Plant Cell Environ. 2011;34(6):1043–53.

56. Bott RR, Cervin MA, Kellis JT Jr, McAuliffe JC, Miasnikov A, Peres CM et al. Isoprene synthase variants for improved microbial production of isoprene. Google Patents. 2014.

57. Gogerty DS, Bobik TA. Formation of isobutene from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase. Appl Environ Microbiol. 2010;76(24):8004–10.

58. Wang F, Lu X, Xie W, Zhou P, Zhu Y, Yao Z, et al. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Biotechnol Bioeng. 2017;139:257–66.

59. Gao X, Gao F, Liu D, Zheng H, Nie XQ, Yang C. Engineering the methylenetetrol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci. 2016;9(4):1400–11.

60. Ilmen M, Oja M, Huuskonen A, Lee S, Wuohonen L, Jung S. Identification of novel isoprene synthases through genome mining and expression in Escherichia coli. Metab Eng. 2015;31:153–62.

61. Zhao Y, Yang J, Qiu B, Li Y, Sun Y, Su J, et al. Biosynthesis of isoprene in Escherichia coli via methylenetetrol phosphate (MEP) pathway. Appl Microbiol Biotechnol. 2011;86(6):1915–22.

62. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng. 2014;111(4):803–15.

63. Buermans HP, den Dunnen JT. Next generation sequencing bases with systems biology. Nucleic Acids Res. 2013;41(Database issue):D605–12.

64. Kallio P, Aymal L, Tualbania L, Rubia A, Beasley JF, Planes F. Advances in network-based metabolic pathway analysis and gene expression data integration. Brief Bioinform. 2015;16(2):265–79.

65. Yang S, Fei Q, Zhang Y, Contreras LM, Uytturk SM, Brown SD, et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol. 2016;9(6):699–717.

66. McCloskey D, Gangotti JA, King ZA, Navaux PK, Barshop BA, Paasch BO, et al. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng. 2011;114(3):803–15.

67. Bassolo MC, Garst AD, Halweg-Edwards AL, Grau WC, Domaille DW, Mutalik VK, et al. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth Biol. 2016;5(7):561–8.

68. Gupta PI, Lee SM, Chio HJ. A mini review: photobioconverters for large scale algal cultivation. World J Microbiol Biotechnol. 2015;31(9):1409–17.

69. Nogués C, Gómez-Pereño F, Tonyán K, Lisén RT, Hervás J. Photosynthetic microalgae as a source of biofuels: a review. Bioresour Technol. 2013;122:18–26.

70. Markov I, Markov D, Markov O, Markov M, Markov T. Algal photoconversion: a review of pathways and applications. Biotechnol Adv. 2016;34(1):233–50.

71. Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martinez C, et al. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 2013;41(Database issue):D605–12.

72. McCloskey D, Gangotti JA, King ZA, Navaux PK, Barshop BA, Paasch BO, et al. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng. 2014;111(4):803–15.

73. Bassolo MC, Garst AD, Halweg-Edwards AL, Grau WC, Domaille DW, Mutalik VK, et al. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth Biol. 2016;5(7):561–8.

74. Zhang Y, Fei Q, Zhang Y, Contreras LM, Uytturk SM, Brown SD, et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol. 2016;9(6):699–717.

75. Li Q, Wu K, Cheng Y, Lu L, Xiao E, Zhang Y, et al. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab Eng. 2015;28:82–90.

76. Murphy JD, Browne J, Allen E, Gallagher C. The resource of biomanufactured, produced via biological, thermal and electrical routes, as a transport biofuel. Renew Energy. 2013;35:474–9.

77. Wang M, Keeley R, Zalivina N, Halfhide T, Scott K, Zhang Q, et al. Advances in algal-prokaryotic wastewater treatment: a review of nitrogen transformations, reactor configurations and molecular tools. J Environ Manag. 2018;217:845–57.

78. Ishihara K, Matsuoka M, Inoue Y, Tanase S, Ogawa T, Fukuda H. Overexpression and in vitro reconstitution of the ethylene-forming enzyme from Pseudomonas syringae. J Ferment Bioeng. 1995;79:205–12.

79. Veetil VP, Angermayr SA, Hellwingwerf KJ. Ethylene production with engineered Synechocystis sp. PCC 6803 strains. Microb Cell Fact. 2017;16(1):34.

80. Johansson N, Persson KO, Norbeck J, Larsson C. Expression of NADH-oxidases enhances ethylene productivity in Synechocystis cerevisiae expressing the bacterial EFE. Biotech Bioprocess Eng. 2017;22(2):195–9.

81. Johansson N, Quehl P, Norbeck J, Larsson C. Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Synechocystis cerevisiae. Microb Cell Fact. 2013;12(89):1–7.

82. Sakai H, Takeoka S, Park SI, Kose T, Izumi Y, et al. Surface modification of hemoglobin vesicles with polyethylene glycol and its effects on aggregation, viscosity, and blood flow during 90% exchange transfusion in anesthetized rats. Biocomb Chem. 1997;8(1):23–30.
91. Takahama K, Matsuoka M, Nagahama K, Ogawa T. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbA1 locus. J Biosci Bioeng. 2003;95(3):302–5.
92. Tao L, Dong HJ, Chen X, Chen SF, Wang TH. Expression of ethylene-forming enzyme (EFE) of Pseudomonas syringae pv. glycinea in Trichoderma viride. Appl Microbiol Biotechnol. 2008;80(4):573–8.
93. Ishihara H, Matsuoka M, Ogawa T, Fukuda H. Ethylene production using a broad-host-range plasmid in Pseudomonas syringae and Pseudomonas putida. J Ferment Bioeng. 1996;82:509–11.
94. Yang J, Zhao G, Sun Y, Zheng Y, Jiang X, Liu W, et al. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli. Bioprocess Technol. 2012;104:642–7.
95. Liu C-L, Fan L-H, Liu L, Tan T-W. Combinational biosynthesis of isoprene by engineering the MEP pathway in Escherichia coli. Process Biochem. 2014;49(12):2078–85.
96. Liu H, Cheng T, Zou H, Zhang H, Xu X, Sun C, et al. High titer mevalonate fermentation and its feeding as a building block for isoprenoids (iso-pinene and sabine) production in engineered Escherichia coli. Process Biochem. 2017;62(Supplement C):1–9.
97. Whitmed GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, et al. Development of a gas-phase bioprocess for isoprene monomer production using metabolic pathway engineering. Ind Biotechnol. 2010;6:152–63.
98. Yang J, Xian M, Su S, Zhao G, Nie Q, Jiang X, et al. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in Escherichia coli. PLoS ONE. 2012;7(4):e33509.
99. Muir RE, Weyler W. Compositions and methods for improved isoprene production using two types of isoprene synthase enzymes. 2014.
100. Yang C, Gao X, Jiang Y, Sun B, Gao F, Yang S. Synergy between methylenediythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng. 2016;37:79–91.
101. Kim JH, Wang C, Jang HJ, Cha MS, Park JH, Jo SY, et al. Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation by-products. Microb Cell Fact. 2016;15(1):214.
102. Chaves JE, Rueda-Romero P, Kast H, Melis A. Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth Biol. 2017;6:2281–92.
103. Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng. 2010;12(1):70–9.
104. Melis A, Lindberg P. Isoprene hydrocarbon production using genetically engineered cyanobacteria. 2014.
105. Bentley FK, Melis A. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobio-reactors by photosynthetic microorganisms. Biotechnol Bioeng. 2012;109(1):100–9.
106. Xue J, Ahling BK. Enhancing isoprene production by genetic modification of the 1-deoxy-D-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol. 2011;77(7):2399–405.
107. Hong SY, Zurbriggen AS, Melis A. Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J Appl Microbiol. 2012;113(1):52–65.
108. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, et al. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push–pull–restrain strategy. J Biotechnol. 2014;186:126–36.