The multimodal concept of hemodynamic stabilization

Krisztián Táneczos, Márton Németh and Zsolt Molnár*
Department of Anaesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary

INTRODUCTION
Development of multiorgan disorders is often the result of hypoperfusion, which severely affects outcome of medical and surgical patients alike and substantially increases the utilization of resources and costs (1). Therefore, the use of early and efficient therapeutic strategies able to detect tissue hypoperfusion and to treat the imbalance between oxygen consumption and delivery is of particular importance (2). Traditional endpoints such as heart rate, blood pressure, mental status, and urine output can be useful in the initial identification of inadequate perfusion, but are limited in their ability to identify ongoing, compensated shock (3). Therefore, more detailed assessment of global macrohemodynamic indices such as cardiac output (CO) and derived variables and measures of oxygen delivery and uptake, may be necessary to guide treatment (4, 5). Furthermore, after the optimization of these parameters, indicators of tissue perfusion should also be assessed to verify the effectiveness of therapy (6).

PHYSIOLOGICAL ISSUES
The primary goal of the cardiorespiratory system is to deliver adequate oxygen to the tissues to meet their metabolic requirements. The adequacy of tissue oxygenation is determined by the balance between the rate of oxygen transport to the tissues (oxygen delivery, DO$_2$) and the rate at which the oxygen is used by the tissues (oxygen consumption, VO$_2$) (7). The standard formulas to determine oxygen delivery and oxygen consumption is shown in Figure 1.

In the critically ill and in the perioperative period, there is often an imbalance between delivery and consumption. Oxygen delivery can be inadequate if arterial oxygen content (CaO$_2$) and/or CO is reduced (8, 9). The circulation can compensate to some extent, and VO$_2$ is usually independent in a wide range of DO$_2$. However, beyond a critical point any further drop in DO$_2$ will inevitably result in a decrease in VO$_2$. In other words, after exhausting compensatory resources VO$_2$ becomes dependent on DO$_2$ and aerobic metabolism will have to be switched to anaerobic metabolism, leading to metabolic acidosis and oxygen debt (10).

The principle task of acute care is to avoid or correct oxygen debt by optimization of the oxygen supply and consumption. Furthermore, it is just as important to recognize that DO$_2$ and tissue perfusion has normalized, therefore any further measures to increase DO$_2$ may do harm by unnecessary over resuscitation.

There is also mounting evidence that conventional parameters such as blood pressure, central venous pressure, heart rate are poor indicators of cardiac index or oxygen delivery (11, 12), and there is also increasing evidence that, for example, in high-risk surgery perioperative care algorithms based on advanced hemodynamic monitoring are beneficial (13, 14).

GOAL-DIRECTED CONCEPT IN HEMODYNAMIC MONITORING
The multimodal concept in hemodynamic monitoring can be translated into the individualized use of target endpoints for hemodynamic stabilization instead of treating “normal” values, and can help to reach adequate oxygen supply and tissue oxygenation in order to avoid under or over resuscitation, which are equally harmful. It is important to note, that so-called “normal” values may be true for a population, but may be false for an individual patient.

CARDIAC OUTPUT AND DO$_2$ AS RESUSCITATION ENDPOINTS
Several clinical investigations were performed on CO and derived variables based goals directed hemodynamic support in high-risk surgery. In two recent meta-analyses, it was found that cardiac index and DO$_2$ guided treatment resulted in reduced mortality as compared to high-risk surgical patients receiving standard therapy (13, 14).
Another easily obtainable blood flow related blood gas parameter is the central venous to arterial carbon dioxide gap (dCO\textsubscript{2}). Several authors have reported increased dCO\textsubscript{2} in different low flow states (21–23). In oxygen debt caused anaerobic metabolism, hydrogen ions are generated in two ways: (1) hydrolysis of adenosine triphosphate to adenosine diphosphate and (2) increased production of lactic acid (24). Hydrogen ions are buffered by bicarbonate presented in the cells, and this process will generate CO\textsubscript{2} production (25). While arterial PaCO\textsubscript{2} is variable and dependent on pulmonary gas exchange, central venous PvCO\textsubscript{2} is dependent on the capability of the flow (i.e., CO) to wash out carbon dioxide from the tissues. The Fick principle adapted to carbon dioxide demonstrates the inverse relationship between the CO and dCO\textsubscript{2} (26). This postulate that increased dCO\textsubscript{2} reflects decreased flow was confirmed in several critically ill conditions such as severe sepsis, heart failure, and severe hypovolemia (27, 28). Furthermore, adding the dCO\textsubscript{2} to ScvO\textsubscript{2} for identifying VO\textsubscript{2}/DO\textsubscript{2} >30%, there was an improvement in specificity, positive predictive, and negative predictive values (29).

In cases like severe sepsis, when oxygen uptake is insufficient due to microcirculatory and/or mitochondrial defects, ScvO\textsubscript{2} may be elevated (i.e., false negative). Previous studies have suggested that under such circumstances the increased value of dCO\textsubscript{2} (>5 mmHg), may help the clinician in detecting inadequate DO\textsubscript{2} to tissues, hence the complementary use of ScvO\textsubscript{2} and dCO\textsubscript{2} is recommended (30–32).

MEASURES OF OXYGEN DELIVERY AND EXTRACTION

Perhaps the most commonly used methods to assess global VO\textsubscript{2}/DO\textsubscript{2} are mixed venous oxygen saturation (SvO\textsubscript{2}) and its surrogate ScvO\textsubscript{2}. Central venous oxygen saturation is an easily obtained parameter via a central venous catheter already in situ in most critically ill patients and it is often used as a marker of the balance between oxygen delivery and consumption. Because of the different positions of the pulmonary artery and central venous catheters (entire body in the case of SvO\textsubscript{2} versus brain and the upper part of the body in the case of ScvO\textsubscript{2}) there has been a considerable debate on the interpretation of ScvO\textsubscript{2} values as compared to SvO\textsubscript{2}. Most of the studies that have analyzed the relationship between ScvO\textsubscript{2} and SvO\textsubscript{2} have shown that ScvO\textsubscript{2} is on an average 5% higher than SvO\textsubscript{2} and is considered as a reasonable surrogate marker in the clinical setting (33–35).

The main factors, which influence ScvO\textsubscript{2}, are hemoglobin, arterial oxygen saturation of hemoglobin, CO, and oxygen consumption. Theoretically if three of these factors are kept constant, the value of ScvO\textsubscript{2} reflects the changes of the latter. There are multiple physiologic, pathologic, and therapeutic factors, which influence venous oxygen saturation, such as anemia, hypovolemia, contractility, bleeding, sedation, fever, pain, etc. (38).

One of the important features of venous saturation is that it can be pathologic both when it is high and when it is low. In a recent large cohort of septic patients in the emergency department, it
was found that mortality was 40% in patients admitted with an ScvO\(_2\) <70% but in patients with an initial ScvO\(_2\) of >90%, it was almost as high 34%. The latter was probably due to impaired oxygen utilization (39). High ScvO\(_2\) values may thus represent an inability of the cells to extract oxygen or microcirculatory shunting in sepsis (40). Therefore, additional measures are necessary to help evaluating high ScvO\(_2\) values, such as for example lactate, central venous to arterial \(\text{dCO}_2\), and by applying advanced invasive hemodynamic monitoring.

Lactate, the end product on anaerobic metabolism, has been thoroughly investigated over the last decades in critical care. It has good prognostic value in several clinical scenarios such as trauma, sepsis, and high-risk surgical patients (41). Not just the absolute value, but its change over time (kinetics; determined by production and clearance) seems an even better marker of adequate resuscitation and outcome (42). A lactate decrease by 20% or more per 2 h in the initial resuscitation of critically ill patients resulted shorter length of stay in the intensive care unit and a lower mortality rate when adjusted to predefined risk factors (43). However, if lactate kinetics is assessed every 2–6 h, which can be regarded as far too long considering that acute resuscitation should be corrected as soon as possible, it seems that lactate kinetics rather than absolute values should be followed as resuscitation endpoints. In cases, when lactate production or elimination is impaired, the evaluation of lactate clearance is difficult to interpret. These pathological circumstances can be liver failure (44) or seizures (45).

PPV, \(\text{dCO}_2\), AND STROKE VOLUME GUIDED FLUID RESUSCITATION

In a recent animal experiment, we tested the effect of stroke volume guided hemorrhage and fluid resuscitation (46). After baseline measurements (\(T_{\text{bsl}}\)), animals were bled until stroke volume index dropped by 50%, then measurements were repeated (\(T_0\)). Thereafter animals were resuscitated with lactated Ringer’s solution until baseline SVI values were reached, then final measurements were recorded (\(T_{\text{end}}\)). After bleeding, the SVI decreased by the planned 50% at \(T_0\) and returned to its initial value by \(T_{\text{end}}\) (Table 1). The CI also decreased after bleeding and reached a higher value by \(T_{\text{end}}\) as compared to \(T_{\text{bsl}}\). Pulse contour analysis driven SVV and PPV increased from \(T_{\text{bsl}}\) to \(T_0\) and normalized by \(T_{\text{end}}\). ScvO\(_2\) decreased from \(T_{\text{bsl}}\) to \(T_0\) and although increased by \(T_{\text{end}}\), it remained lower, with a mean difference of 5% as compared to \(T_{\text{bsl}}\).

In these experiments, ScvO\(_2\) and \(\text{dCO}_2\) correlated well with changes in stroke volume. If the hemodynamic instability is corrected, stroke volume, PPV, SVV, and \(\text{dCO}_2\) are in the physiological range, the low ScvO\(_2\) can indicate a low hemoglobin level due to low oxygen delivery. These data also confirm that more parameters should be taken into account during resuscitation.

CONCLUSION

Early and adequate hemodynamic stabilization of the critically ill has a significant effect on outcome. Rather than following certain numbers in protocols or algorithms, a multimodal approach, of assessing hemodynamic variables together with the balance between oxygen delivery and consumption, may help to get a detailed picture about the hemodynamic status of our patients and also gives a chance for individualized treatment. The latter means that the evidence, which proved beneficial for a population in clinical studies gives the frame what we fine tune for the patient's individual needs reflected by changes in this complex picture of physiology. Despite that this multimodal approach follows simple logic, it has currently not been completely proven, which renders the need for further clinical trials.

REFERENCES

1. Shoemaker WC, Appel PL, Kram HB. Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients. Chest (1992) 102:208–15. doi:10.1378/chest.102.1.208
2. Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as determinant of lethal and nonlethal postoperative organ failure. Crit Care Med (1988) 16:1117–20. doi:10.1097/00003246-198810000-00007
3. Goodrich C. Endpoints of resuscitation: what should we be monitoring? AACN Adv Crit Care (2006) 17:306–16. doi:10.1097/01.CCR.0000138558.198811000-00007
4. Donati A, Pelaia P, Pietropaoli P, Preiser JC. Do use ScvO2 and O2ER as therapeutical goals. Minerva Anestesiol (2011) 77:483–4.
5. Marik PE, Desai H. Goal directed fluid therapy. Curr Pharm Des (2012) 18:6215–24. doi:10.2174/138161212803832399
6. Benes J, Pradl R, Chyrta I. Perioperative hemodynamic optimization: a way to individual goals. In: Vincent JL, editor. Annual Update in Intensive Care and Emergency Medicine 2012. New York: Springer; (2012). p. 357–67.
7. Vallet B, Tavernier B, Lund N. Assessment of tissue oxygenation in the critically ill. Eur J Anaesthesiol (2000) 17:221–9. doi:10.1097/00000543-200004000-00003
8. Perner A. Diagnosing hypovolemia in the critically ill. Chest (2004) 126:2767–5. doi:10.1378/chest.126.5.1825
9. Sakr Y, Dubois MF, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med (2004) 32(9):1485–31. doi:10.1097/0000318858.16257.3F

Table 1 | Hemodynamic and blood gas changes during stroke volume based fluid resuscitation.

Parameter	\(T_{\text{bsl}}\)	\(T_0\)	\(T_{\text{end}}\)
Stroke volume index (mL/m²)	26.8 ± 4.7	13.4 ± 2.3*	26.6 ± 4.1*
Cardiac index (L/min/m²)	2.6 ± 0.4	1.8 ± 0.3*	2.9 ± 0.5*
Stroke volume variation (%)	13.6 ± 4.3	22.6 ± 5.6*	12.2 ± 4.3*
Pulse pressure variation (%)	13.0 ± 4.5	24.5 ± 7.6*	13 ± 4.2*
Venous to arterial carbon dioxide gap (mmHg)	5.3 ± 2	9.6 ± 2.3*	5.1 ± 2.6*
Central venous oxygen saturation (%)	78 ± 7	61 ± 5*	73 ± 9*
Hemoglobin (g/dL)	12.05 ± 1.37	11.22 ± 1.39*	8.45 ± 1.1*

*Data are expressed as mean ± SD; *p < 0.05 significantly different from \(T_{\text{bsl}}\); **p < 0.05 significantly different from \(T_0\).

\(T_{\text{bsl}}\) baseline measurements; \(T_0\) measurements following the hemorrhage; \(T_{\text{end}}\) measurements after the resuscitation. Data are presented as mean ± SD, statistically significant difference was considered p < 0.05.

*Significantly different from \(T_{\text{bsl}}\).

Significantly different from \(T_0\).
Tánczos et al. The multimodal concept of hemodynamic stabilization

30. Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous oxygen saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care (2010) 14:R193. doi:10.1186/cc9310

31. Vallet B, Lebuffe G. How to titrate vasopressors against fluid loading in septic shock. Adv Sepsis (2007) 6:34–40.

32. Chawla LS, Zia H, Gutiérrez G, Katz NM, Sennig EF, Shah M. Lack of equivalence between central and mixed venous oxygen saturation. Chest (2004) 126:1891–6. doi:10.1378/chest.126.6.1891

33. Chawla LS, Zia H, Gutiérrez G, Katz NM, Sennig EF, Shah M. Lack of equivalence between central and mixed venous oxygen saturation. Chest (2004) 126:1891–6. doi:10.1378/chest.126.6.1891

34. Reinhardt K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med (2004) 30:1572–8. doi:10.1007/s00134-004-2337-y

35. Varpula M, Karlsson S, Ruokonen E, Pettola V. Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med (2006) 32:1336–43. doi:10.1007/s00134-006-0270-y

36. van Beest PA, van Ingen J, Boerma EC, Holman ND, Groen H, Koopmans M, et al. No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care (2010) 2010:14:R219. doi:10.1186/cr0348

37. Rivers E. Mixed versus central venous oxygen saturation may be not numerically equal but both are still clinically useful. Chest (2006) 129:507–8. doi:10.1378/chest.129.3.507

38. van Beest PA, Wietasch G, Scheeren T. Clinical review: use of oxygen saturation as a goal – a yet unfinished puzzle. Crit Care (2011) 15:232. doi:10.1186/cc10351

39. Pope JV, Jones AE, Gaiers DF, Arnold RC, Trzeciak S, Shapiro NJ, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med (2004) 32:1637–42. doi:10.1097/01.CCM.0000132904.35713.A7

40. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Frontiers in Public Health (2019) 7:169–77. doi:10.3389/fpubh.2019.00031

41. Meraglioli A, Oliveira RP, Friedman G. Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care (2004) 8:R69–5. doi:10.1186/cc2527

42. Nguyen HB, Rivers EP, Knoblich BP, Jacobson G, Muzzin A, Ressler JA, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med (2004) 32:1637–42. doi:10.1097/01.CCM.0000132904.35713.A7

43. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med (2010) 182:752–61. doi:10.1164/rccm.200912-1918OC

44. Kruse JA, Zaidi SA, Carlson RW. Significance of blood lactate levels in critically ill patients with liver disease. Am J Med (1987) 83:77–82. doi:10.1016/0002-9343(87)90506-6

45. Orringer CE, Eustace JC, Wunsch CD, Gardner LB. Natural history of lactic acidosis after grand-mal seizures. A model for the study of an anion gap acidosis not associated with hyperkalemia. N Engl J Med (1977) 297:796. doi:10.1056/NEJM197710193011503

46. Nemeth M, Tanczos K, Kötter G, Ercés D, Kaszaki J, Mikóra A, et al. Central venous oxygen saturation and carbon dioxide gap as resuscitation targets in a hemorrhagic shock. Acta Anaesthesiol Scand (2014). doi:10.1111/aas.12312

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 29 January 2014; accepted: 01 April 2014; published online: 30 April 2014. Citation: Tánczos K, Németh M and Molnár Z (2014) The multimodal concept of hemodynamic stabilization. Front. Public Health 2:34. doi:10.3389/fpubh.2014.00034 This article was submitted to Infectious Diseases, a section of the journal Frontiers in Public Health. Copyright © 2014 Tánczos, Németh and Molnár. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.