Exosite Interactions Impact Matrix Metalloproteinase Collagen Specificity

Received for publication, June 17, 2011, and in revised form, September 1, 2011 Published, JBC Papers in Press, September 6, 2011, DOI 10.1074/jbc.M111.273391

Trista K. Robichaud‡ §, Bjorn Steffensen‡ §, and Gregg B. Fields¶ §

From the Departments of 1 Periodontics and 6 Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229 and 6 Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987

Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. However, the substrate structural determinants that facilitate interaction with specific MMPs are not well defined. We hypothesized that type I–III collagen sequences located N- or C-terminal to the physiological cleavage site mediate substrate selectivity among MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/membrane-type 1 (MT1)-MMP. The enzyme kinetics for hydrolysis of three fluorogenic triple-helical peptides (fTHPs) was evaluated herein. The first fTHP contained consensus residues 769–783 from type I–III collagens, the second inserted α1(II) collagen residues 763–768 N-terminal to the consensus sequence, and the third inserted α1(II) collagen residues 784–792 C-terminal to the consensus sequence. Our analyses showed that insertion of the C-terminal residues significantly increased kcat/Km and kcat for MMP-1. MMP-13 showed the opposite behavior with a decreased kcat/Km and kcat and a greatly improved Km in response to the C-terminal residues. Insertion of the N-terminal residues enhanced kcat/Km and kcat for MMP-8 and MT1-MMP. For MMP-2, the C-terminal residues enhanced Km and dramatically decreased kcat, resulting in a decrease in the overall activity. These changes in activities and kinetic parameters represented the collagen preferences of MMP-8, MMP-13, and MT1-MMP well. Thus, interactions with secondary binding sites (exosites) helped direct the specificity of these enzymes. However, MMP-1 collagen preferences were not recapitulated by the fTHP studies. The preference of MMP-1 for type III collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II. Further characterization of exosite determinants that govern interactions of MMPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs.

Collagen is a scaffold and support network for cells in tissues. Normal collagen turnover facilitates growth, morphogenesis, angiogenesis, and wound healing. Altered collagen remodeling is involved in disease states such as arthritis, periodontitis, atherosclerosis, and tumor metastasis (1–4). Of the 29 known collagens, types I–III are the most abundant (5, 6). Although these interstitial fibrillar collagens possess a similar length supersecondary triple-helical structure, differences in sequence, tissue distribution, and glycosylation patterns have been well documented (5, 7).

Triple-helical structures are resistant to most proteases. However, several members of the matrix metalloproteinase (MMP)2 subfamily of zinc-dependent endopeptidases catalyze the hydrolysis of triple helices (5). Although highly homologous, MMPs have distinct preferences among collagenous substrates (5, 8). MMP-1, MMP-8, MMP-13, and MMP-14/membrane-type 1 MMP (MT1-MMP) are collagenases that hydrolyze the triple helix of fibrillar type I–III collagens with varying efficiencies at a single Gly–Ile/Leu site. Although not a classic “collagenase,” MMP-2 cleaves type I collagen (9). Type III collagen is the preferred collagen substrate for MMP-1, whereas MMP-8 and MT1-MMP preferentially cleave type I collagen (10, 11). MMP-13 is more selective for type II collagen (11). Although mechanistic reasons for collagen preferences have been postulated (8), collagen selectivity determinants among MMPs are not well understood.

The major structural domains shared among MMPs include the prodomain, the catalytic (CAT) domain, a flexible hinge region, and the C-terminal hemopexin-like (HPX) domain (5, 7). For the aforementioned collagenases, efficient catalytic activities toward collagens require both the CAT and HPX domains (11–17). Taking into account the importance of the CAT and HPX domains, the collagenolytic process has been proposed to involve discrete, sequential steps (17). First, an MMP binds a triple helix utilizing secondary binding sites (exosites) with prominent exosites identified in the HPX domain (18). Second, the MMP orients its other domains (such as the CAT domain) into the active configuration. Third, the MMP unwinds or destabilizes the collagen triple helix, moving a single collagen strand into the CAT domain active site. Fourth, there is rapid sequential cleavage of each strand.

Despite significant clinical interest, it has proven difficult to achieve selective inhibition of MMPs due to identical active site chemistry and flexible peptide binding sites among the MMP family members (19, 20). Small molecule hydroxamic acid-based inhibitors are highly effective in inhibiting the catalytically active zinc at low substrate concentration but have traditionally exhibited poor selectivity between MMPs (4, 21–23). Hydroxamic acid-based inhibitors failed in clinical trials par-

1 To whom correspondence should be addressed: Torrey Pines Inst. for Molecular Studies, 11350 S. W. Village Parkway, Port St. Lucie, FL 34987. Tel.: 772-345-4724; Fax: 772-345-3647; E-mail: gfields@tpims.org.

© 2011 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.
Matrix Metalloproteinase Exosites

Matrix Metalloproteinase Exosites quantitatively due to high incidences of confounding and uncomfortable patient side effects (1, 19, 23–26). It is not uncommon for imbalances in the expression or activity of a single MMP to result in human disease; successful targeted MMP inhibition is attractive in drug development. Understanding the association of collagens with MMPs may provide insight into binding site selectivity within the MMP family. High throughput approaches have been utilized for designing single-stranded peptide inhibitors against the MMP catalytic sites but as yet have not produced inhibitors that sufficiently distinguish between target and "antitarget" MMPs (27). To evaluate substrate selectivity, an alternative and novel approach is to examine how MMPs interact with customized triple-helical peptides (THPs) through secondary binding sites (exosites)/allosteric sites (28).

THP substrates have been powerful tools for elucidating MMP kinetic behavior and substrate cleavage selectivity (17, 18, 29, 30). In a prior study, we recently have found that by varying the composition of collagen model sequences within THPs we can explore unique binding interactions in the CAT and HPX domains of MMP-1 (18). Therefore, in the present study, we hypothesized that probing the CAT and HPX domains of collagenolytic MMPs via THPs with varying contents of collagen model sequences will reveal different binding site interactions. To test this hypothesis, we utilized three fluorogenic THP substrates (Table 1). The first (fluorogenic triple-helical peptide (fTHP)-15) incorporated a consensus sequence from the MMP hydrolysis sites in type I–III collagens. The second (fTHP-16) had a Gly-Pro-Hyp-Gly-Pro-Ser-Gly-Ala-Glu sequence inserted N-terminal to the consensus sequence, whereas the third (fTHP-17) had a Gly-Leu-Hyp-Gly-Gln-Gly-Glu-Arg sequence inserted C-terminal to the consensus sequence. Biophysical properties of the fTHPs were determined, and modeling of their structures was undertaken. Overall activities and individual kinetic parameters were quantified for MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14 catalysis of each substrate.

MATERIALS AND METHODS

All chemicals were molecular biology or peptide synthesis grade and purchased from Fisher. The Knight single-stranded peptide (Mca-Lys-Pro-Leu-Gly-Leu-Lys(Dnp)-Ala-Arg-NH₂) was synthesized by methods described previously (31, 32). MMP-1 overexpressed in Escherichia coli was refolded from 8 M urea-dissolved inclusion bodies as described (33). Purified pro-MMP-2 was isolated from human uterine cervical fibroblasts (34). Recombinant, full-length MMP-8, MMP-13, and MMP-14 (ectodomain only; no transmembrane domain) were purchased from Millipore (Danvers, MA).

Metalloproteinase Activation

All MMPs were activated (34) by mixing equal volumes of stock and activator to a final concentration of 1 mM p-amino-mercuric acetate, incubated for 45 min in a 37 °C water bath, and diluted to 20–100 nM in ice-cold TSB*Zn buffer (50 mM Tris, 150 mM NaCl, 0.02% NaN₃, 0.01% Brij-35, 10 mM CaCl₂, 1 μM ZnCl₂, pH 7.5) to prevent autoproteolysis. Enzyme aliquots were kept on wet ice and used the same day. MMP activity was initially evaluated using the Knight single-stranded peptide and compared with prior data (17, 18). In this way, Knight single-stranded peptide activity was used as an indicator of enzyme integrity rather than tissue inhibitor of metalloproteinase titration as performed previously (8).

Triple-helical Substrates

All fTHPs were based on a consensus sequence derived from the collagenolytic MMP cleavage sites in human type I–III collagens (35). fTHP-15, fTHP-16, and fTHP-17 (see Table 1 for sequences) were synthesized by Fmoc (N-(9-fluorenyl)me-thoxy carbonyl) solid-phase chemistry as described previously (8, 17, 18, 30). Peptide synthesis was carried out on a Protein Technologies PS3 peptide synthesizer (Tucson, AZ). Peptides were cleaved from the resin using thioanisole-water-TFA (1:1:18), precipitated in methyl-tert-butyl ether, and sedimented at 4 °C. The solvent phase was decanted. Dry pellets were dissolved in water, frozen, and lyophilized under vacuum.

Peptide purity was evaluated using an Agilent 1200 series analytical HPLC (Santa Clara, CA) equipped with a 150 × 4.6-mm Vydac C₁₈ column. Solvent A was 0.1% TFA, H₂O; solvent B was 0.1% TFA, acetonitrile; the gradient was 0–70% over 14 min; and the flow rate was 1 ml/min. Analytical results were used to determine the optimal preparatory gradient where 4 ml of water-dissolved peptide was injected into a Vydac C₁₈ column (218TP152022) on a Varian ProStar HPLC (Agilent, Santa Clara CA). Peak fractions were analyzed via analytical HPLC and reflectance MALDI-TOF mass spectra (Applied Biosystems Voyager DE-PRO Biospectrometry work station, Carlsbad, CA). Pure fractions were pooled, frozen, lyophilized, and stored at −20 °C in amber vials until use. MALDI-TOF analysis confirmed masses of 4593.1 Da for fTHP-15 (theoretical, 4589.0 Da), 5087.7 Da for fTHP-16 (theoretical, 5087.1 Da), and 5022.6 Da for fTHP-17 (theoretical, 5021.4 Da).

Circular Dichroism Spectroscopy

Fluorogenic peptides were dissolved in TSB and equilibrated at 4 °C (8 h) to facilitate triple-helix formation. Peptide concentrations were determined using a Thermo Scientific NanoDrop 1000 (Waltham, MA) via wavelength scan at λ = 363 nm, ε₁₀₀₀ = 15,900 M⁻¹ cm⁻¹. Tripe-helical structure was evaluated by near-UV circular dichroism (CD) spectroscopy using a Jasco J-810 spectropolarimeter (Easton, MD) with a path length of 1 mm.

Peptide Kinetic Testing

Enzyme kinetics were determined in a BioTek Synergy 4 plate reader (Winooski, VT) running Gen5 1.07 software as described previously (17, 36). In brief, a range of peptide concentrations was created by diluting a 100 μM stock solution of peptide 1:1 12 times. A 76-μl volume of sample was loaded, the plate was read, and 4 μl of 20× enzyme stock solution (100 nm) was added. The kinetic protocol at 27 °C had 30 s of shaking followed by reading each well every 8 s (for 600 s) to determine initial reaction rates. Plates were stored at ambient temperature (>24 h) before a final reading. The 25 μM peptide concentration was analyzed by HPLC to determine the percentage of reaction completeness with 100% cleavage RFU = ([24-h
Matrix Metalloproteinase Exosites

RESULTS

Three fTHPs were utilized in the present study (Fig. 1 and Table 1). fTHP-15 incorporates a consensus sequence from type I–III collagens (Table 2) and provides for convenient monitoring of triple-helical peptidase activity by collagenolytic MMP family members. To examine the subtleties of individual MMP family members. To examine the subtleties of individual MMP family members.

The consensus cleavage site is in bold, whereas the inserted sequences are italicized.

TABLE 1

Peptide	Sequence	θ_{222}	$^\circ$C	T_m °C
fTHP-15	(Gly-Pro-Hyp)$_{17}$	10.4	55	
fTHP-16	(Gly-Pro-Hyp)$_{20}$	13.3	49	
fTHP-17	(Gly-Pro-Hyp)$_{17}$	16.6	51	

Ala–Glu sequence inserted N-terminal to the consensus sequence in fTHP-15 where the insertion exactly matches residues 763–768 from the $\alpha 1$(II) chain (Table 2). fTHP-17 has a Gly-Leu-Hyp-Gly-Gln-Arg-Gly-Glu-Arg sequence inserted C-terminal to the consensus sequence in fTHP-15 where the insertion exactly matches residues 784–792 from the $\alpha 1$(I) and $\alpha 1$(II) chains (Table 2). Two Gly-Pro-Hyp repeats, one from each end, were omitted in fTHP-17 compared with fTHP-15. Based on our prior studies with MMP-1 and MMP-9 (17, 18), we can presume that the inserted N-terminal sequence will interact with the MMP CAT domain, whereas the inserted C-terminal sequence will interact with either the HPX domain (for MMP-1, MMP-8, MMP-13, and MMP-14) or the fibronectin type II inserts (for MMP-2). Overall, the insertions offered significant residue diversification (Fig. 1). For example, the N-terminal insertion replaced two Hyp residues with Glu and Ser, whereas the C-terminal insertion replaced one Pro with Gln, one Pro with Glu, one Pro with Leu, and two Hyp residues with Arg residues (Table 2). The Gly-Pro-Hyp sequences may be modeled as a smooth triple helix in three dimensions (Fig. 1).
Sequence alterations introduce more varied surfaces for enzyme-substrate interaction (compare Fig. 1 and Table 1). In addition, fTHP-17 includes Leu in subsite P10/H11032, which has been suggested to contribute to MMP-1 recognition of collagen (39, 40).3

All three fTHPs exhibited CD spectra characteristic of triple-helical structures with positive molar ellipticities ([θ]/H225 nm) and strongly negative [θ] values at λ = 195 nm (data not shown). Monitoring of [θ] as a function of temperature resulted in sigmoidal melting curves for all fTHPs (Fig. 2A), indicative of transitions from triple helices to monomeric species. The melting points (Tm values) for fTHP-15, fTHP-16, and fTHP-17 were 55, 49, and 51 °C, respectively (Fig. 2B). These melting temperatures indicate fTHP thermal stabilities suitable for MMP kinetic analyses. The three fTHPs had similar stabilities, an important consideration as prior studies have shown that MMP hydrolytic activity toward both THPs and collagens can vary greatly due to differences in substrate thermal stability (35, 41). The close similarity of thermal stability among the three fTHPs warranted our continued analysis of the effects of sequence variations. Although the maintenance of similar thermal stabilities resulted in slightly different sequence lengths (45, 51, and 48 residues for fTHP-15, fTHP-16, and fTHP-17, respectively), this is not deemed to significantly confound the results as the present study investigated the relative effects of altered substrate sequences for a particular MMP. Moreover, prior studies using THPs of differing lengths (28–32 residues) indicated that peptide length per se was not a determining factor in relative activity (42–44).

Five MMPs were examined in the present study: MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/MT1-MMP. The hydrolysis of fTHP-15 by each of these MMPs has been reported previously (8, 17, 18, 35, 45) and occurs at the Gly/Leu bond. Thus, fTHP-15 served as a well established point of reference. For each MMP, kcat/Km values were determined for fTHP-15, fTHP-16, and fTHP-17 (Table 3). Relative activities were compared with fTHP-15 for each enzyme; and thus, fTHP-15 served to calibrate enzyme triple-helical peptidase activity.

Significant changes were observed in kcat/Km values in response to the sequence insertion. Interestingly, these effects differed for the individual MMPs. For example, when the N-terminal sequence was inserted in fTHP-16, kcat/Km values were similar to fTHP-15 for MMP-1 and MMP-2 and increased to 170–230% for MMP-8, MMP-13, and MMP-14 (Table 3). The C-terminal sequence insertion in fTHP-17 resulted in even more diverse effects. The kcat/Km values for MMP-8 and MMP-14 showed little change compared with fTHP-15, MMP-2 exhibited a 73% reduction in activity, MMP-13 exhib-

3 L. H. Arnold, L. Butt, S. H. Prior, C. Read, G. B. Fields, and A. R. Pickford, manuscript submitted for publication.
MMP-1 resulted in a modest 6.5-fold increase in k_{cat}/K_m. Individual kinetic parameters (k_{cat} and K_m) were also examined to determine the origins of effects on overall MMP activities (Table 3). Compared with fTHP-15, fTHP-16 hydrolysis by MMP-1 resulted in a modest 6.5-fold increase in k_{cat}. In contrast, comparison of fTHP-15 and fTHP-17 hydrolysis by MMP-1 indicated a significant increase in k_{cat} from 0.0071 to 0.105 s$^{-1}$. MMP-2 showed similar k_{cat} values for hydrolysis of fTHP-15 and fTHP-16. fTHP-17 showed a slight decrease in k_{cat} compared with fTHP-15. For MMP-8 processing of fTHP-17, an approximate 3-fold increase in k_{cat} was seen compared with fTHP-15. fTHP-17 had a 2-fold decrease in k_{cat} (0.017 s$^{-1}$) compared with fTHP-15. Overall, the N-terminal inserted sequence increased k_{cat} for MMP-1, MMP-8, and MMP-14 and decreased k_{cat} for MMP-13, whereas the C-terminal inserted sequence enhanced k_{cat} for MMP-1 and MMP-8 and decreased k_{cat} for MMP-2, MMP-13, and MMP-14.

The magnitudes of k_{cat} (based on the present study) and enzyme-substrate off-rate ($k_0/2K_m$) (based on a prior study of MMP-1 binding to a THP) (43) are of a similar order. Considering the proposed collagenolysis pathway (41), K_m cannot be approximated here as K_m and thus K_m values are not independent of k_{cat}. However, one can still examine the relatedness of K_m to k_{cat} as an examination of exosite effects for a particular MMP and also use that relatedness to evaluate the relative strength of interaction between enzyme and substrate.

fTHP-15 hydrolysis by MMP-1 resulted in a K_m value of 1.8 μM. K_m increased to 13 μM for MMP-1 hydrolysis of fTHP-16 and slightly increased (2.9 μM) for hydrolysis of fTHP-17. For MMP-2, hydrolysis of fTHP-15 and fTHP-16 resulted in similar K_m values (5.9 and 5.2 μM, respectively), whereas hydrolysis of fTHP-17 had a significantly decreased K_m value (0.73 μM). For MMP-8, hydrolysis of fTHP-15 and fTHP-16 resulted in similar K_m values (9.2 and 11 μM, respectively), whereas hydrolysis of fTHP-17 had a significantly increased K_m value (29 μM). MMP-13 exhibited a slightly improved K_m value for hydrolysis of fTHP-16 compared with fTHP-15 (25 versus 67 μM, respectively) that then decreased significantly for hydrolysis of fTHP-17 ($K_m = 0.15$ μM). For MMP-14, hydrolysis of fTHP-15

TABLE 3

Kinetic parameters for hydrolysis of triple-helical substrates by MMPs

Substrate	k_{cat}/K_m	K_m	k_{cat}	Relative activity (compared with fTHP-15)
	$s^{-1} \mu$M	μM	s^{-1}	%
MMP-1				
fTHP-15	4.100 ± 800	1.8 ± 0.30	0.0071 ± 0.0011	100
fTHP-16	3.500 ± 580	13 ± 2.2	0.046 ± 0.0093	86
fTHP-17	37.000 ± 4.700	2.9 ± 0.077	0.105 ± 0.0046	900
MMP-2				
fTHP-15	210,000 ± 17,000	5.9 ± 0.57	1.2 ± 0.12	100
fTHP-16	230,000 ± 43,000	5.2 ± 0.84	1.2 ± 0.05	110
fTHP-17	57,000 ± 12,000	0.73 ± 0.062	0.042 ± 0.0022	27
MMP-8				
fTHP-15	9,600 ± 1,200	9.2 ± 2.1	0.088 ± 0.012	100
fTHP-16	22,000 ± 1,800	11 ± 0.44	0.24 ± 0.009	230
fTHP-17	10,000 ± 900	29 ± 2.4	0.30 ± 0.035	107
MMP-13				
fTHP-15	63,000 ± 1,200	67 ± 3.9	4.2 ± 0.25	100
fTHP-16	107,000 ± 6,400	25 ± 2.7	2.7 ± 0.12	170
fTHP-17	39,000 ± 12,000	0.15 ± 0.022	0.0058 ± 0.00054	60
MMP-14				
fTHP-15	3,000 ± 120	11 ± 1.9	0.034 ± 0.0036	100
fTHP-16	5,200 ± 120	20 ± 5.8	0.102 ± 0.011	170
fTHP-17	3,300 ± 510	5.2 ± 0.58	0.017 ± 0.00037	110
and fTHP-16 resulted in similar K_m values (11 and 20 μM, respectively), whereas hydrolysis of fTHP-17 had a decreased K_m value (5.2 μM). Overall, the N-terminal inserted sequence worsened K_m for MMP-1 and improved K_m for MMP-13, whereas the C-terminal extended sequence enhanced K_m for MMP-2, MMP-13, and MMP-14 and worsened K_m for MMP-8.

The relatedness of k_{cat} and K_m values was examined by plotting a comparison of the individual kinetic parameters for each substrate and enzyme (Fig. 3). In cases where hydrolysis of one substrate compared with another substrate resulted in no change in kinetic parameters, superimposable points would be observed. Such a result would indicate a lack of additional exosite interactions for one substrate compared with the other. Alternatively, data points far apart for two substrates would indicate significant differences in exosite interactions. Therefore, an examination of k_{cat} versus K_m served as a diagnostic for potential exosite interactions conferred by substrates of different collagen model sequences. MMP-13 hydrolysis of fTHP-17 resulted in a k_{cat} versus K_m value that was considerably shifted from the k_{cat} versus K_m values for hydrolysis of fTHP-15 and fTHP-16 (Fig. 3). Thus, fTHP-17 was subject to additional exosite interactions with MMP-13 compared with the other two fTHPs. In contrast, relatively modest differences in k_{cat} versus K_m values were observed for hydrolysis of the three fTHPs by MMP-8 (Fig. 3). Prominent exosite interactions did not occur with MMP-8 and fTHP-16 or fTHP-17 compared with fTHP-15. The overall susceptibility to modified exosite interactions among the analyzed MMPs was MMP-13 > MMP-1 > MMP-2 > MMP-14 > MMP-8 (Fig. 3).

DISCUSSION

Exosite Regulation of MMP Activity—Collagenase action is a complex, carefully regulated, multistep process. Prior studies from this and other laboratories have found MMP secondary binding sites (exosites) in both the CAT and HPX domains that contribute to collagenolysis. For example, the 202–210 region in the CAT domain of MMP-1 participates in efficient collagen catabolism (33). MMP-1 residue 210 (and the corresponding residue in MMP-8) facilitates collagenolytic and triple-helical peptidase activities (8, 46). When studying macrophage elastase (MMP-12) interactions with triple-helical substrates by NMR spectroscopy, several CAT domain exosites were identified and localized (47, 48). For example, analyzing MMP-12 alone or in complex with the α1(V)436–450 THP showed interactions located far from the catalytic cleft; more than 30 residues total were altered from the uncomplexed enzyme, especially Asp-124, Asp-164, and Phe-197 (47). Kinetic analyses of triple-helical peptidase activity in combination with site-directed mutagenesis found that Ile-290 and Arg-291 in the HPX domain of MMP-1 were important exosites for collagenolysis (18).

It is interesting that MMPs would exploit transient exosite binding event(s) to refine selectivity of collagen targets. These interactions are possibly brief and occur with low affinity by nature although in combination with subsequent events may exert significant effects. Such observations encouraged the present analyses to look beyond “conventional” MMP active sites and peptide sequences to identify specificity elements. fTHP-16 could access exosites in the MMP CAT domain, whereas fTHP-17 could access exosites in the MMP HPX domain (except for MMP-2).

Comparison of fTHP and Collagen Selectivities—MMP-1 has greater catalytic activity on type III collagen as a substrate. At 25 °C, MMP-1 cleaves type I, II, and III collagens with k_{cat}/K_m values of 18,500, 130, and 112,000 s⁻¹ M⁻¹, respectively (10). MMP-1 collagen preferences are manifested in k_{cat} not K_m values (49). The N-terminal region of fTHP-15 has more sequence similarity to type III collagen than fTHP-16 (Table 2), fTHP-17 could be a better substrate for MMP-1 than fTHP-15 even though the sequence extension is closer to type II than type III collagen. Other than repeating Gly residues, type II and III collagens share only a Leu at position 785. This Leu residue may be sufficient to confer the observed dramatic k_{cat} increase by interactions with an MMP-1 HPX domain exosite. MMP-1 may also utilize C-terminal regions for initial collagen binding and orientation prior to cleavage. However, this does not explain the preference of MMP-1 for type III collagen. That preference may originate from the relative stabilities of the triple helices surrounding the cleavage sites as type III collagen is known to have greater susceptibility to general proteolysis than type I or III collagen and thus a more flexible (less thermally stable) cleavage site (8, 50, 51).

MMP-8 preferentially cleaves type I collagen over type II and III collagens at 25 ºC ($k_{\text{cat}}/K_m = 2,570, 590$, and $130 \text{ s}^{-1} \text{ M}^{-1}$, respectively) (10). As with MMP-1, MMP-8 collagen preferences are based on k_{cat} values. The α1(I) collagen chain (763–792) is ~90% similar to the α1(II) chain (Table 2). The C-terminal insertion from fTHP-15 to fTHP-17 increases the sequence similarity (+4 amino acids; +56% similarity) compared with α1(I) but also results in fTHP-17 being only a slightly better substrate for MMP-8 than fTHP-15. Adding α1(I)-like sequence (+4 amino acids; +66% similarity) to the region N-terminal of the cleavage site more than doubled k_{cat}/K_m for MMP-8 hydrolysis of fTHP-16 compared with...
fTHP-15 (Table 3). These effects argue that MMP-8 interacts with type I collagen at N-terminal regions adjacent to the active site and that residues inserted N-terminal to the catalytic site are critical for substrate orientation prior to catalysis. These results are consistent with MMP-8 having a preference for type I collagen.

MMP-13 cleaves type II collagen 5 and 6 times faster than type I and type III collagens, respectively, at 25 °C (52). Overall, fTHP hydrolysis by MMP-13 was enhanced by the N-terminal insertion and decreased by the C-terminal insertion, a pattern that differs from MMP-8 (see above) and MMP-14 (see below). Examining individual kinetic parameters showed that the insertion of an α1(II)-like sequence either N- or C-terminal to the cleavage site enhanced K_m and decreased k_{cat} (Table 3). The improved K_m values for both insertions would be expected for an enzyme that prefers type II collagen. Perhaps most significant is that altering the C-terminal substrate sequence by 5 amino acids caused an almost 350% enhancement in K_m and 625% decrease in k_{cat}. These data suggest that substrate sequence C-terminal to the cleavage site plays a dominant role in substrate binding and orientation for MMP-13.

MMP-14 prefers type I collagen as activity against type I collagen and 6.5 times that of type III collagen (11). The better MMP-14 k_{cat}/K_m value with fTHP-16 compared with fTHP-15 and fTHP-17 (Table 3) is caused mainly by an increase in k_{cat} in a fashion similar to MMP-8 and consistent with the preference of MMP-14 for type I collagen. In comparison, integrating a C-terminal sequence that was more native collagen-like decreased K_m and k_{cat}. These data suggest that the region C-terminal of the catalytic site affects substrate affinity, whereas the N-terminal region influences turnover.

MMP-2 has been found to cleave type I collagen at 25 °C with a k_{cat}/K_m of 530 s$^{-1}$ M$^{-1}$ (53). Comparisons of hydrolysis rates for type II and III collagens have not been made previously. Although the N-terminal sequence extension failed to show significant change in k_{cat}/K_m, K_m or k_{cat} for MMP-2, the insertion of C-terminal residues corresponding to type II collagen (as seen in fTHP-17) decreased k_{cat}/K_m through an improved K_m and substantially decreased k_{cat}. In this regard, the behavior of MMP-2 is quite distinct from the other collagenolytic MMPs studied here. MMP-2 has been observed previously to utilize its fibronectin-like repeats rather than its HPX domain for efficient collagenolysis (8, 54, 55). Of particular importance to the present study is that the origin of interactions for the C-terminal extension is within the MMP-2 fibronectin-like repeats rather than the HPX domain (17).

Summarizing Individual MMP Trends—Each MMP was distinct when considering the behaviors of N-terminal and C-terminal sequence insertions. For example, the inserted N-terminal residues increased K_m and increased k_{cat} for MMP-1, whereas inserted C-terminal residues significantly increased k_{cat} for this enzyme. The exact opposite trends were observed for MMP-13; although additionally, the inserted C-terminal residues enhanced K_m. The N-terminal insertion had no notable effect on MMP-2, whereas the C-terminal insertion enhanced K_m and decreased k_{cat} for this enzyme. MMP-8 K_m was increased by inserted C-terminal residues, but k_{cat} for this enzyme was enhanced by both the N- and C-terminal insertions. MMP-14 K_m was decreased by inserted C-terminal residues, whereas k_{cat} for this enzyme was enhanced by the N-terminal and decreased by the C-terminal insertions. These differences could be exploited for the future design of selective, triple-helical peptide substrates and inhibitors (17, 18, 56, 57).

Acknowledgments—We thank Janelle Lauer for technical assistance and data discussions and Dorota Tokmina-Roszyk for peptide purification training and assistance.

REFERENCES

1. Overall, C. M., and López-Ortín, C. (2002) *Nat. Rev. Cancer* 2, 657–672
2. Egeland, M., and Werb, Z. (2002) *Nat. Rev. Cancer* 2, 161–174
3. Song, F., Wisiththrom, K., Zhou, J., and Windsor, L. J. (2006) *Front. Biosci.* 11, 3100–3120
4. Fingleton, B. (2007) *Curr. Pharm. Des.* 13, 333–346
5. Woessner, J. F., and Nagase, H. (2000) *Matrix Metalloproteinases and TIMPs*, Oxford University Press, Oxford
6. Gordon, M. K., and Hahn, R. A. (2010) *Cell Tissue Res.* 339, 247–257
7. Piek, K. L., and Reddi, A. H. (1984) *Extracellular Matrix Biochemistry*, Elsevier, New York
8. Minond, D., Lauer-Fields, J. L, Cudic, M., Overall, C. M., Pei, D., Brew, K., Visse, R., Nagase, H., and Fields, G. B. (2006) *J. Biol. Chem.* 281, 38302–38313
9. Aimes, R. T., French, D. L., and Quigley, J. P. (1994) *Biochem. J.* 300, 729–736
10. Hasty, K. A., Jeffrey, J. J., Hibbs, M. S., and Weglus, H. G. (1987) *J. Biol. Chem.* 262, 10048–10052
11. Ohuchi, E., Imai, K., Fuji, Y., Sato, H., Seki, M., and Okada, Y. (1997) *J. Biol. Chem.* 272, 2446–2451
12. Clark, I. M., and Caviston, T. E. (1989) *Biochem. J.* 263, 201–206
13. Murphy, G., Allan, J. A., Willenbrock, F., Cockett, M. I., O’Connell, J. P., and Docherty, A. J. (1992) *J. Biol. Chem.* 267, 9612–9618
14. Knauper, V., Osthues, A., DeClerck, Y. A., Langle, K. E., Bläser, J., and Tschesche, H. (1993) *Biochem. J.* 291, 847–854
15. Knauper, V., Covoll, S., Smith, B., López-Ortín, C., O’Shea, M., Morris, H., Zardi, L., and Murphy, G. (1997) *J. Biol. Chem.* 272, 7608–7616
16. Sang, Q. X., Jin, Y., Newcomer, R. G., Monroe, S. C., Fang, X., Hurst, R. D., Lee, S., Cao, Q., and Schwartz, M. A. (2006) *Curr. Top. Med. Chem.* 6, 289–316
17. Lauer-Fields, J. L, Whitehead, J. K., Li, S., Hammer, R. P., Brew, K., and Fields, G. B. (2008) *J. Biol. Chem.* 283, 20087–20095
18. Lauer-Fields, J. L., Chalmers, M. J., Busby, S. A., Minond, D., Griffin, P. R., and Fields, G. B. (2009) *J. Biol. Chem.* 284, 24017–24024
19. Overall, C. M., and Kleifeld, O. (2006) *Br. J. Cancer* 94, 941–946
20. Morrison, C. I., Butler, G. S., Rodríguez, D., and Overall, C. M. (2009) *Curr. Opin. Cell Biol.* 21, 645–653
21. Whittaker, M., Floyd, C. D., Brown, P., and Gearing, A. J. (1999) *Chem. Rev.* 99, 2735–2776
22. Fisher, J. F., and Mobashery, S. (2006) *Cancer Metastasis Rev.* 25, 115–136
23. Jacobsen, J. A., Major Jourden, J. L., Miller, M. T., and Cohen, S. M. (2010) *Biochim. Biophys. Acta* 1803, 72–94
24. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M., and Cravatt, B. F. (2004) *Proc. Natl. Acad. Sci. U.S.A.* 101, 10000–10005
25. Rao, B. G. (2005) *Curr. Pharm. Des.* 11, 295–322
26. Overall, C. M., and Kleifeld, O. (2006) *Nat. Rev. Cancer* 6, 227–239
27. Ummachandani, M., Wang, J., Li, J., Hu, M., Sun, H., Chen, K. Y., Liu, K., and Yao, S. Q. (2007) *J. Am. Chem. Soc.* 129, 7848–7858
28. Sela-Passwell, N., Rosenblum, G., Shoham, T., and Sagi, I. (2010) *Biochim. Biophys. Acta* 1803, 29–38
29. Lauer-Fields, J. L., Tuzinski, K. A., Shimokawa, K., Nagase, H., and Fields, G. B. (2000) *J. Biol. Chem.* 275, 13282–13290
30. Lauer-Fields, J. L., Broder, T., Sritharan, T., Chung, L., Nagase, H., and Fields, G. B. (2001) *Biochemistry* 40, 5795–5803
Matrix Metalloproteinase Exosites

31. Nagase, H., Fields, C. G., and Fields, G. B. (1994) J. Biol. Chem. 269, 20952–20957
32. Neumann, U., Kubota, H., Frei, K., Ganu, V., and Leppert, D. (2004) Anal. Biochem. 328, 166–173
33. Chung, L., Shimokawa, K., Dinakarpandian, D., Grams, F., Fields, G. B., and Nagase, H. (2000) J. Biol. Chem. 275, 29610–29617
34. Itoh, Y., Binner, S., and Nagase, H. (1995) Biochem. J. 308, 645–651
35. Minond, D., Lauer-Fields, J. L., Nagase, H., and Fields, G. B. (2004) Biochemistry 43, 11474–11481
36. Palmier, M. O., and Van Doren, S. R. (2007) Anal. Biochem. 371, 43–51
37. Ingvarsen, S., Madsen, D. H., Hillig, T., Lund, L. R., Holmbeck, K., Behrendt, N., and Engelholm, L. H. (2008) Biol. Chem. 389, 943–953
38. Tochowicz, A., Goettig, P., Evans, R., Visse, R., Shitomi, Y., Palmisano, R., Ito, N., Richter, K., Maskos, K., Franke, D., Svergun, D., Nagase, H., Bode, W., and Itoh, Y. (2011) J. Biol. Chem. 286, 7587–7600
39. Fields, G. B. (1991) J. Theor. Biol. 153, 585–602
40. Leikina, E., Mertts, M. V., Kuznetsova, N., and Leikin, S. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 1314–1318
41. Han, S., Makareeva, E., Kuznetsova, N. V., DeRidder, A. M., Sutter, M. B., Losert, W., Phillips, C. L., Visse, R., Nagase, H., and Leikin, S. (2010) J. Biol. Chem. 285, 22276–22281
42. Ottl, J., Battistuta, R., Pieper, M., Tschesche, H., Bode, W., Kühn, K., and Moroder, L. (1996) FEBS Lett. 398, 31–36
43. Ottl, J., Gabriel, D., Murphy, G., Knäuper, V., Tominaga, Y., Nagase, H., Kröger, M., Tschesche, H., Bode, W., and Moroder, L. (2000) Chem. Biol. 7, 119–132
44. Müller, J. C., Ottl, J., and Moroder, L. (2000) Biochemistry 39, 5111–5116
45. Minond, D., Lauer-Fields, J. L., Cudic, M., Overall, C. M., Pei, D., Brew, K., Moss, M. L., and Fields, G. B. (2007) Biochemistry 46, 3724–3733
46. Pelman, G. R., Morrison, C. J., and Overall, C. M. (2005) J. Biol. Chem. 280, 2370–2377
47. Bhaskaran, R., Palmier, M. O., Lauer-Fields, J. L., Fields, G. B., and Van Doren, S. R. (2008) J. Biol. Chem. 283, 21779–21788
48. Palmier, M. O., Fulcher, Y. G., Bhaskaran, R., Duong, V. Q., Fields, G. B., and Van Doren, S. R. (2010) J. Biol. Chem. 285, 30918–30930
49. Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z. (1981) J. Biol. Chem. 256, 9511–9515
50. Welgus, H. G., Burgeson, R. E., Wootton, J. A., Minor, R. R., Fliszar, C., and Jeffrey, J. J. (1985) J. Biol. Chem. 260, 1052–1059
51. Williams, K. E., and Olsen, D. R. (2009) Matrix Biol. 28, 373–379
52. Knäuper, V., López-Otin, C., Smith, B., Knight, G., and Murphy, G. (1996) J. Biol. Chem. 271, 1544–1550
53. Aimes, R. T., and Quigley, J. P. (1995) J. Biol. Chem. 270, 5872–5876
54. Tam, E. M., Moore, T. R., Butler, G. S., and Overall, C. M. (2004) J. Biol. Chem. 279, 43336–43344
55. Gioia, M., Monaco, S., Fascielpion, G. F., Coletti, A., Modesti, A., Marini, S., and Coletta, M. (2007) J. Mol. Biol. 368, 1101–1113
56. Lauer-Fields, J. L., Srinivasan, T., Stack, M. S., Nagase, H., and Fields, G. B. (2003) J. Biol. Chem. 278, 18140–18145
57. Lauer-Fields, J., Brew, K., Whitehead, J. K., Li, S., Hammer, R. P., and Fields, G. B. (2007) J. Am. Chem. Soc. 129, 10408–10417