Non-adiabatic corrections to fast dispersive multiqubit gates involving Z-control

L. S. Theis* and F. K. Wilhelm

Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany

(Date: March 10, 2022)

We review a time-dependent version of the Schrieffer-Wolff transformation that accounts for real-time control of system parameters, soon to be rendered possible on a broad basis due to technical progress. The dispersive regime of N multilevel systems coupled to a cavity via a Jaynes-Cummings interaction is extended to the most general case. As a concrete example we rigorously apply the technique to dispersive two-qubit gates in a superconducting architecture, showing that fidelities based on previous models are off by up to 10^{-2}, which is certainly relevant for high-fidelity gates compatible with fault-tolerant quantum information devices. A closed analytic form for the error depending on the target evolution closes our work.

I. INTRODUCTION

In many branches of physics and other natural sciences, analyzing dynamics of certain systems of interest can often be vastly simplified if it is possible to separate time scales, such as it is possible for a spinning top: it spins at a high frequency whereas its precession frequency is usually much lower. It is then often advantageous to apply frame transformations that separate the subspace of interest from the rest, such as separating a low-energy(frequency) subspace from a high-energy(frequency) subspace. A prominent and well-celebrated technique in quantum physics is the Schrieffer-Wolff transformation [1] which is named after the authors of a famous condensed matter paper [2] that relates the Anderson Hamiltonian to the Kondo Hamiltonian. In fact, the transformation has already been used multiple times many years before – for instance in order to study the dynamics of rotating molecules [3], which is why the method is also known as van Vleck perturbation theory. To our knowledge, the first application in quantum physics was about 15 years before Ref. [2] in Foldy’s and Wouthuysen’s work about the Dirac theory of spin 1/2 particles [4]. However, for convenience, we will refer to the technique as Schrieffer-Wolff transformation (SWT). A related method, so called adiabatic perturbation theory [5, 6], perturbatively extends the adiabatic approximation in order to solve the effective dynamics of Hamiltonians that feature such a separation of scales.

Currently, applications of the SWT are countless. Apart from the examples mentioned before, it is widely used in quantum many-body systems. The SWT can for instance be used to study electron gases [7] and the ground state of the Hubbard model [8], but it has also become an important tool in quantum information theory. For instance, it aids the understanding of the dispersive interaction in circuit quantum electrodynamics [9–11] within the framework of superconducting qubits [12] coupled through a resonator [13].

An important property of the SWT is that the eigenvalues of the derived effective Hamiltonian reproduce those of the full Hamiltonian (in the relevant subspace) to the required approximation. It may happen that the derived effective Hamiltonian has fewer degrees of freedom than the full Hamiltonian while featuring a more complex structure, which has eventually inspired the idea of perturbation gadgets [14, 15], where the SWT is used to analyze and construct high-energy simulator Hamiltonians with a low degree of complexity that are used to approximate complex low-energy dynamics of some target Hamiltonian [16].

With ongoing technical developments, real-time control of quantum systems has become an important tool in quantum information to assess new degrees of controllability. However, applications of real-time control are not only limited to quantum information processing [17]. Possible examples in the field of quantum information are quantum quenches in many-body systems, where a Hamiltonian is suddenly changed non-adiabatically [18], or fast tuning of qubit frequencies [19, 20]. Frequency-tuning of superconducting qubits is typically done by changing the magnetic flux penetrating the Josephson junctions [21]. This method is quite sensitive to flux noise, which is why fast real-time flux control has so far been a difficult task. Yet, recent development of a new qubit design [22], called the Gatemon, allows for fast frequency-tuning by manipulating voltage [23] instead of magnetic flux, so that fast frequency sweeps are easily possible.

In this work, we briefly review the idea of the SWT and present a general extension of the method incorporating time-dependent effects, which is inevitable given the imminent implementation of real-time controls. In Ref. [24] Goldin and Avishai have used a time-dependent analogue of the SWT to study time-dependent impurities in Anderson and Kondo models. We adapt the idea of constructing a time-dependent Schrieffer-Wolff transformation (TDSWT) and present the full hierarchy of the approximation. Performing a second order perturbation theory ultimately reveals that the TDSWT adiabatically eliminates terms in the Hamiltonian that originate in real-time control. A similar idea of frame transformations has been used to adiabatically eliminate leakage errors in anharmonic ladder systems [25], such as superconducting

* luk@lusi.uni-sb.de
qubits, but has – in a generalized version – for instance also proven promising to reduce errors in Rydberg gates [26]. By way of example we reconsider the dispersive transformation of a Jaynes-Cummings type Hamiltonian for arbitrarily many multilevel systems, taking into account that the energy levels as well as the couplings in general depend on external controls, such as e.g. magnetic flux for Transmon qubits [27].

We focus on a system that is relevant for the implementation of entangling gates with superconducting qubits. However, similar arguments hold for instance for a quantum dot architecture, where the couplings depend on the external laser controls [28]. To substantiate the importance of our work, we show that the difference in fidelities, based on previous models and our extended one, can be on the order of 10^{-4} and 10^{-2} for many relevant systems [29]. A second-order Magnus expansion [30, 31] provides a closed analytic form to accurately estimate the errors observed in numerically exact simulations.

II. THE SCHRIEFFER-WOLFF TRANSFORMATION

A. Review of the original idea

The essence of the original SWT [2] is to generate an effective Hamiltonian \tilde{H} from the Hamiltonian

$$H = H_0 + \epsilon \left(H_1 + H_2 \right)$$

using a perturbative expansion, so that \tilde{H} is block-diagonal up to a desired order in ϵ in the perturbing term H_1. It is advantageous to separate the perturbation into a block-diagonal term H_1 and a block-offdiagonal one H_2. The effective Hamiltonian is obtained via a unitary transformation e^S so that $\tilde{H} = e^{-S} He^S$. Here, S is an anti-hermitian operator (this also preserves the Lie structure of the problem [32]) and can be written as

$$\tilde{H} = e^{-S} He^S = \sum_{j=0}^{\infty} \frac{1}{j!} [H, S]_j,$$

(2)

whereby $[A, B]_n = [[A, B]_{n-1}, B]$ and $[A, B]_0 = A$. A typical, but not mandatory way to determine the sought transformation is to expand S in different orders of ϵ, i.e. $S = \sum_j S_j$, which ultimately allows one to remove the off-diagonal perturbation H_2 up to a desired order in ϵ. One obtains successive equations for the S_j from an order-by-order expansion in the perturbation ϵ, e.g. $[H_0, S_1] = -H_2$ removes the off-diagonal perturbation up to lowest order. More details are provided in the following section which extends the SWT to a generic time-dependent case.

B. Extension to time-dependent perturbations

The formalism of the previous section needs to be extended [24], as soon as the perturbing term is time-dependent. Then, the operator S in general is time-dependent so that the transformation in Eq.(2) needs to be extended to

$$\tilde{H} = e^{-S} He^S + i \partial_t (e^{-S}) e^S.$$

(3)

Analogously to before, Eq.(3) is expanded in terms of commutators so that the effective Hamiltonian can be written as

$$\tilde{H} = \sum_{j=0}^{\infty} \frac{1}{j!} [H, S]_j - i \sum_{j=0}^{\infty} \frac{1}{(j+1)!} \{ \dot{S}, S \}_j.$$

(4)

Due to the decomposition of Hamiltonian (1) we can separate the effective Hamiltonian \tilde{H} into off-diagonal (\tilde{H}_{od}) and diagonal (\tilde{H}_d) terms, which are given by

$$\tilde{H}_{od} = \sum_{j=0}^{\infty} \frac{1}{(2j+1)!} [H_0 + H_1, S]_{2j+1} + \sum_{j=0}^{\infty} \frac{1}{(2j)!} [H_2, S]_{2j} - i \sum_{j=0}^{\infty} \frac{1}{(2j+1)!} \{ \dot{S}, S \}_{2j}$$

(5a)

$$\tilde{H}_d = \sum_{j=0}^{\infty} \frac{1}{(2j)!} [H_0 + H_1, S]_{2j} + \sum_{j=0}^{\infty} \frac{1}{(2j+1)!} [H_2, S]_{2j+1} - i \sum_{j=0}^{\infty} \frac{1}{(2j+2)!} \{ \dot{S}, S \}_{2j+1}.$$

(5b)

An expansion of $S = \sum_j S_j$ as a power series in the perturbation yields equations that solve $\tilde{H}_{od} = 0$ up to the desired order in ϵ, and thereby block-diagonalize the Hamiltonian. As stated before, this choice for S is not mandatory, but the typical choice for a perturbative expansion. Consequently different ansätze for S lead to different block-diagonalizations. In order to compare orders of ϵ, we make the a priori assumption that S_j is of order $j+1$ of the perturbation. Hence, the first few equations that determine the transformation read
\[[H_0, S_1] = - H_2 \quad (6a) \]
\[[H_0, S_2] = - [H_1, S_1] + i \dot{S}_1 \quad (6b) \]
\[[H_0, S_3] = - [H_1, S_2] - \frac{1}{3} [H_2, S_1] + i \dot{S}_2 \quad (6c) \]
\[[H_0, S_4] = - [H_1, S_3] - \frac{1}{3} [H_2, S_1], S_2 \]
\[- \frac{1}{3} [H_2, S_2], S_1] + i \dot{S}_3. \quad (6d) \]

Successively solving Eqs. (6) will then cancel all perturbing terms up to the desired order so that the effective Hamiltonian \(\hat{H} \) is purely block-diagonal. We need to check the consistency of the solutions to Eqs. (6) under the a priori assumption on the derivative of \(\dot{S}_j \); from Eq. (6a) we see that \(S_1 \) inherits perturbation of order one from \(H_2 \). Similarly, it follows from Eq. (6b) that \(\dot{S}_1 \) and \(S_2 \) are of order two in the perturbation and so on. This verifies the consistency of the expansion. Finally, the block-diagonal terms in Eq. (5b) need to be calculated. Using Eqs. (6) the block-diagonal contributions can be simplified so that the first few remaining terms that constitute the effective Hamiltonian \(\hat{H} = \sum_j \hat{H}_j \) read

\[\hat{H}_0 = H_0 \quad (7a) \]
\[\hat{H}_1 = H_1 \quad (7b) \]
\[\hat{H}_2 = \frac{1}{2} [H_2, S_1] \quad (7c) \]
\[\hat{H}_3 = \frac{1}{2} [H_2, S_2] \quad (7d) \]
\[\hat{H}_4 = \frac{1}{2} [H_2, S_3] - \frac{1}{4} [H_2, S_1]^3 \quad (7e) \]

C. The dispersive transformation

A particular example of the SWT in the context of quantum information is the analysis of cavity-mediated residual interactions between multilevel systems. Under the assumption of weak coupling, the SWT can be used to derive an effective Hamiltonian which is free of interactions between multilevel systems and the cavity. Many fundamental concepts, such as readout [33] and gate synthesis [9], are based on this so-called dispersive frame. With the notation for the Hamiltonians adopted from the previous sections and the convention that \(\hbar = 1 \), we write the Jaynes-Cummings Hamiltonian [34] for \(N \) multilevel systems with energy levels \(\omega^{(m)}_j \) coupled to a cavity with coupling strengths \(g^{(m)}_{j,j+1} \) as

\[H_0 = \omega, a^\dagger a + \sum_{m=0}^{N} \sum_{j=0}^{\infty} \omega^{(m)}_j |j\rangle \langle j| \quad (8a) \]
\[H_1 = 0 \quad (8b) \]
\[H_2 = \sum_{m=1}^{N} \sum_{j=0}^{\infty} g^{(m)}_{j,j+1} \left(\sigma^{+(m)}_j a + \sigma^{-(m)}_j a^\dagger \right) \quad (8c) \]

where superscript \((j) \) labels the \(j \)th element in the total Hilbert space and \(\Pi^{(m)}_j = |j\rangle \langle j|^{(m)} \). For readability, we abstain from highlighting time-dependent parameters, but want to remind the reader that the \(\omega^{(m)}_j = \omega^{(m)}_j(t) \) and the couplings \(g^{(m)}_{j,j+1} = g^{(m)}_{j,j+1}(t) \) are in general time-dependent quantities. The raising and lowering operators of each multilevel system, \(\sigma^{+(m)}_j \) and \(\sigma^{-(m)}_j \), are defined as

\[\sigma^{+(m)}_j = |j+1\rangle \langle j|^{(m)} \quad (9a) \]
\[\sigma^{-(m)}_j = |j\rangle \langle j+1|^{(m)} \quad (9b) \]

We aim at removing all interactions between the cavity and the multilevel systems up to second order, so that the dynamics can be solely reduced to the multilevel systems. Therefore, we need to find the operators \(S_1 \) and \(S_2 \) that satisfy Eqs. (6a) and (6b) for the Hamiltonians given by Eqs. (8). Using

\[\left[\sum_{j=0}^{\infty} \left(\sigma^{-(m)}_j a^\dagger \pm \sigma^{+(m)}_j a \right), H_0 \right] \propto \sum_{j=0}^{\infty} \left(\sigma^{-(m)}_j a^\dagger \mp \sigma^{+(m)}_j a \right) \]

solutions to \(S_{1,2} \) are found. With the shorthand notation \(\Delta^{(m)}_j \equiv \omega^{(m)}_{j+1} - \omega^{(m)}_j \) and \(\Delta^{(m)}_j \equiv \omega^{(m)}_{j+1} - \omega^{(m)}_j \) we write the corresponding solutions as

\[S_1 = \sum_{m=1}^{N} \sum_{j=0}^{\infty} \frac{g^{(m)}_{j,j+1}}{\Delta^{(m)}_j} \left(\sigma^{-(m)}_j a^\dagger - \sigma^{+(m)}_j a \right), \quad (11a) \]

\[S_2 = - i \sum_{m=1}^{N} \sum_{j=0}^{\infty} \frac{1}{\Delta^{(m)}_j} \frac{d}{dt} \left(\frac{g^{(m)}_{j,j+1}}{\Delta^{(m)}_j} \right) \left(\sigma^{-(m)}_j a^\dagger + \sigma^{+(m)}_j a \right). \quad (11b) \]

The so called dispersive Hamiltonian up to second order then reads
\[H = \left\{ \omega_r + \sum_{m=1}^{N} \sum_{j=1}^{\infty} \left(\chi_{j-1,j}^{(m)} - \chi_{j,j+1}^{(m)} \right) \Pi_j^{(m)} - \sum_{m=1}^{N} \chi_0^{(m)} \Pi_0^{(m)} \right\} a^\dagger a + \sum_{m=1}^{N} \omega_0^{(m)} \Pi_0^{(m)} + \sum_{m=1}^{N} \sum_{j=1}^{\infty} \left(\omega_j^{(m)} + \chi_{j-1,j}^{(m)} \right) \Pi_j^{(m)} \]

Here we have denoted one of the expansion parameters as \(\lambda_j^{(m)} \equiv g_{j,j+1}^{(m)} / \Delta_j^{(m)} \), which we will refer to as the dispersive parameter, and introduced the dispersive shift

\[\chi_{j,j+1}^{(m)} = \frac{\left(g_{j,j+1}^{(m)} \right)^2}{\Delta^{(m)}}. \]

The contribution from \(S_2 \) adiabatically eliminates a time-dependent qubit interaction that would be apparent if the usual SWT was applied and the effective Hamiltonian is then extended by the summand \(i \hbar g_{1,2} (e^{-\delta \omega t}) e^\delta \), describing inertial forces when the new frame is interpreted as an accelerated reference frame. In fact, Hamiltonian (12) is almost identical to the commonly used dispersive Hamiltonian [35]: The multilevel systems are energy-shifted by the dispersive shifts and are dispersive coupled via \(\sigma^+ \sigma^- \) interactions to each other through the cavity, whereby the interaction strength scales as \(1 / \Delta \). Additionally, we observe the usual shift of the resonator frequency \(\omega_r \) by a value that depends on the state of the multilevel systems, which ultimately can be used for readout purposes [36]. However, the dispersive coupling in the Hamiltonian (12) obtained via TDSWT has an additional contribution (imaginary and different signs) that scales proportionally to \(\lambda_k^{(n)} \) — essentially the speed at which the parameters are modulated.

In order that our perturbative expansion which leads to Hamiltonian (12) is valid we need to limit the magnitude of the expansion parameters. They need to meet the conditions

\[\lambda_j^{(m)} \ll 1, \]

\[\lambda_j^{(m)} / \Delta_j^{(m)} \ll 1 \]

for all values of \(j \) and \(m \). Otherwise higher-order terms in Eqs.(7) need to be considered, which is straightforward and does not qualitatively change the results. Since Eq.(14b) basically limits the velocity at which \(\lambda \) may change, we refer to \(\lambda_j^{(m)} / \Delta_j^{(m)} \) as dispersive adiabaticity parameter.

III. EXAMPLE: TWO TRANSMON QUBITS

A. Implementation of entangling gates

As an example, we choose to work with two Transmon qubits [27] coupled to the same resonator \(\omega_r \). From Eq.(12) we see that the physical qubits dispersively couple to each other through the cavity. This interaction provides a common way to implement a controlled-phase gate: The avoided crossing between the \(|11 \rangle \) and \(|20 \rangle \) states can be used to control the phase of the \(|11 \rangle \) state [13]. Optimal control has sought fast pulses to produce high-fidelity gates based on this interaction using a geometric derivation [19] as well as a deeper analysis of the underlying Landau-Zener physics [20]. For convenience, we only work in the relevant \(\{ |11 \rangle , |20 \rangle \} \) subspace, where the reduced Hamiltonian \(\hat{H}_{\mathrm{red}} \) is given by

\[\hat{H}_{\mathrm{red}} = \left\{ \begin{array}{c}
\chi_r + i \Delta_1 \frac{\alpha^{(1)}_{1} - \alpha^{(2)}_{1}}{2} \\
-i \left(\frac{\alpha^{(1)}_{2} \alpha^{(2)}_{1}}{\Delta_0} - \frac{\alpha^{(1)}_{1} \alpha^{(2)}_{2}}{\Delta_1} \right) + g_{0,1} \alpha^{(1)}_{1} + g_{1,2} \alpha^{(2)}_{2} \\
\chi_r + i \Delta_2 \frac{\alpha^{(2)}_{2} - \alpha^{(1)}_{2}}{2}
\end{array} \right\}. \]

Here we denote the anharmonicity of the first Transmon as \(\alpha^{(1)} \) and use the definitions \(\delta \omega = \omega_r^{(2)} - \omega_r^{(1)} \) and \(\chi_r = \chi^{(1)}_0 + \chi^{(2)}_1 + \chi^{(1)}_2 \). In previous implementations of two-qubit gates [13], one qubit (Q1) is held at a constant frequency whereas the frequency of qubit two (Q2) changes in time: First being far detuned from Q1 and \(\omega_r \), it is tuned down to a constant frequency close to Q1 to generate a strong dispersive interaction, interacts for a certain time \(T \) and is tuned back from close-resonance again as soon as the interaction time \(T \) was long enough.
to implement the desired gate. However, gate generation can be tremendously sped up by real-time control of frequencies via modulating the applied magnetic flux Φ [19, 20]. The qubit frequencies ω_j as well as the couplings $g_{j,j+1}$ scale with the applied flux, which changes the Josephson energy E_j of the Josephson junctions, as [27]

$$E_j(\Phi) = E_j^2 \cos\left(\frac{\pi \Phi}{\Phi_0}\right) \sqrt{1 + d^2 \tan\left(\frac{\pi \Phi}{\Phi_0}\right)}$$ \hfill (16)

$$g_{j,j+1}(\Phi) \propto \sqrt{\frac{j+1}{2}} (E_j(\Phi))^{1/4}$$ \hfill (17)

$$\omega_j(\Phi) = j \sqrt{8E_cE_j(\Phi)} + \alpha_j,$$ \hfill (18)

whereby Φ_0 is the magnetic flux quantum, E_c the charging energy and d is the junction asymmetry. Without loss of generality we focus on symmetric junctions, i.e. $d = 0$. The anharmonicities α_j in case of a Duffing oscillator – which is a good approximation for Transmon qubits – are given by [37] the relation

$$\alpha_j = j(j-1)/2 \alpha_2.$$ \hfill (19)

B. Time-dependent effects

Since the qubit frequencies depend on time (flux control), so do the detunings Δ_j. Moreover, the coupling strengths $g_{j,j+1}$ also depend on the applied flux as given by Eq.(17). It is crucial to note that especially the flux-dependence of g is usually not considered, and the effective Hamiltonians are derived without taking into account the effect of real-time parameter control in the SWT [38]. However, we will show that it is inevitable to rigorously incorporate the effect of g and Δ changing with flux if one aims at high-fidelity gates, compatible with current error thresholds. Along these lines, it is also important to question the assumption of constant off-diagonal elements in the Hamiltonian (15), as for instance done in Refs. [19, 20].

The parameters we use to simulate the Transmon system yield moderate couplings $g/\pi \approx 25 - 30$ MHz and qubit frequencies on the order of 7 GHz around the bias points. We proceed to show that (i) the full TDSWT needs to be applied as soon as one aims at high-fidelity gates and (ii) that the assumption of constant off-diagonal elements severely deteriorates results. The exemplary waveforms we consider are smooth and slow sinusoidal (Φ_s) as well as tangential (Φ_t) controls (as were used in [20]), both with flux changes of $\Delta \Phi = 60 m\Phi_0$ at maximum, i.e.

$$\Phi_s(t) = \Phi_{bias} + A \cdot \sin(2\pi \nu t + \varphi)$$ \hfill (20a)

$$\Phi_t(t) = \Phi_{bias} + A \cdot \tan\left(B \cdot \text{Erf}\left(C \left(t - \frac{tg}{2}\right)\right)\right),$$ \hfill (20b)

where A, B, C, ν and φ are constants, Φ_{bias} is a static bias and Erf (x) is the Gauss error function. We evolve \tilde{H}_{red} with these controls and quantify the effects in question by considering the three units:

- U_1: Full simulation of \tilde{H}_{red}.
- U_2: Neglect terms proportional to λ in \tilde{H}_{red}.
- U_3: Neglect terms proportional to λ and approximate all instances of g, χ and Δ as their mean values in \tilde{H}_{red}.

To measure the error resulting from those three models, we use the common gate overlap fidelity

$$F(U) = \frac{1}{d^2} |\text{Tr} (U^\dagger U_{\text{ideal}})|^2$$ \hfill (21)

and choose a set of $N_s = 10000$ random unitaries U_{ideal} of dimension $d_Q = 2$, using the representation

$$U_{\text{ideal}} = U(\varphi_1, \varphi_2, \varphi_3) = \begin{pmatrix} e^{i\varphi_1 \cos(\theta)} & e^{i\varphi_2 \sin(\theta)} \\ -e^{-i\varphi_2 \sin(\theta)} & e^{-i\varphi_1 \cos(\theta)} \end{pmatrix}$$ \hfill (22)

for the arbitrary 2×2 unitaries. We evaluate the fidelity for each of the U_j with respect to the N_s different random target unitaries and compute the fidelity differences

$$\Delta F(U_m, U_n) = F(U_m) - F(U_n).$$ \hfill (23)

The corresponding normalized histograms are plotted in Fig. 1 for sinusoidal (a,c) and tangential (b,d) modulation for realistic gate times of 30 ns.

The top row of Fig. 1 reveals that even for smooth pulses without any fast modulation, an incorrect frame...
transformation (SWT vs. TDSWT) translates into errors in gate fidelities on the order of 10^{-3}. For models that assume constant off-diagonal components in the reduced Hamiltonian (15), as was done in earlier studies \cite{19, 20}, the error in gate fidelities is even on the order of 10^{-2} (bottom row, Fig. 1). To substantiate the importance of the results, we want to highlight that the pulses we used for simulations are significantly smoother (and free from fast oscillations) than usual optimal control shapes found through e.g. gradient-based optimization routines. Those pulses typically exhibit relatively fast changes, which in turn lead to increasing values for the velocities $\hat{\lambda}^{(m)}_i$ and thereby even higher discrepancies in gate fidelities.

\section{Error estimation}

A second order Magnus expansion \cite{30, 31} can be used to understand the error statistics depicted in Fig. 1. In general, the Magnus expansion is a way to analytically approximate the unitary at time t_g under dynamics of a time-dependent Hamiltonian H as

$$\bar{U} = \exp\left(-it_g \sum_{k=1}^{\infty} \hat{H}^{(k)}\right). \quad (24)$$

We truncate the series for the unitaries U_1 and U_2 at $k = 2$, so that only the first- and second order averaged Hamiltonians

$$\hat{H}^{(1)} = \frac{1}{t_g} \int_0^{t_g} dt H(t) \quad (25a)$$
$$\hat{H}^{(2)} = -\frac{i}{2t_g} \int_0^{t_g} dt_2 \int_0^{t_2} dt_1 [H(t_2), H(t_1)] \quad (25b)$$

are required. For convenience we introduce the following shorthand notation for Hamiltonian (15)

$$\omega = \langle 11 \bar{H}_{\text{red}} \rangle 11 \quad (26a)$$
$$g_r = \text{Re} \left\{ \langle 11 \bar{H}_{\text{red}} \rangle 20 \right\} \quad (26b)$$
$$g_i = -\text{Im} \left\{ \langle 11 \bar{H}_{\text{red}} \rangle 20 \right\} \quad (26c)$$

which after some standard matrix algebra leads to a closed analytic expression for the error ΔF, given by

$$\Delta F(\bar{U}_1, \bar{U}_2) = f(k_1, \bar{\omega} + \delta_{g,r,g,r}, \delta_{g,r,g}, \bar{g}, \delta_{g,r,g}, \bar{\varphi}) - f(k_2, \bar{\omega} + \delta_{g,r,g}, \bar{g}_r + \delta_{g,r,g}, \bar{\varphi}). \quad (27)$$

Here, we denote the time-averaged mean of some quantity $s(t)$ with a bar, i.e.

$$\bar{s} = \frac{1}{t_g} \int_0^{t_g} dt s(t). \quad (28)$$

Information about the unitary’s phases enters through the second order Magnus terms, which are determined with respect to the second order Magnus expansion, see Eq.(27). The statistics are based on a tangential pulse and reproduce those of Fig. 1a very well.

For models based on a tangential pulse and reproduce those of Fig. 1a very well. The mean error, independent of the rotation angles of unitaries \bar{U}_1 and \bar{U}_2 are set by the constants k_1 and k_2, respectively. They are given by

$$k_1 = \sqrt{(\bar{\omega} + \delta_{g,r,g})^2 + (\delta_{g,r,g} - \bar{g})^2 + (\bar{g}_r + \delta_{g,r,g})^2}, \quad (30a)$$
$$k_2 = \sqrt{\bar{\omega}^2 + \delta_{g,r,g}^2 + \bar{g}_r^2}, \quad (30b)$$

Unitary (22) is defined by the angles $\bar{\varphi} = (\varphi_1, \varphi_2, \theta)$. The function $f(k, a_1, a_2, a_3, \bar{\varphi})$ in Eq.(27) is defined as

$$f(k, a_1, a_2, a_3, \bar{\varphi}) = \frac{4}{k^2} \{k \cos(\varphi_1) \cos(k \cos(\theta)) - \sin(k) \{a_1 \cos(\theta) \sin(\varphi_1) + a_2 \cos(\varphi_2) \sin(\theta) + a_3 \sin(\varphi_2) \sin(\theta)\}\}^2. \quad (31)$$

Indeed, as shown in Fig. 2 for tangential pulses, Eq.(27) reproduces the statistics of a numerically exact simulation (Fig. 1a) very well. The mean error, independent of $\bar{\varphi}$, is obtained via averaging over $\varphi \in [0, 2\pi]^{3n}$ and yields a value of $\Delta F \sim 10^{-3.21}$ for the case considered in Fig. 2.
IV. CONCLUSIONS

We have given a detailed outline of the time-dependent Schrieffer-Wolff transformation and applied it to derive a general expression for the dispersive Hamiltonian of arbitrarily many multilevel systems coupled to a cavity via a Jaynes-Cummings type of interaction. The usual dispersive coupling between the multilevel systems is altered by terms that scale with the dispersive adiabaticity parameter.

As a specific example, we provide a simple but accurate model to implement dispersive entangling two-qubit gates using only Z-control of the qubits. Fidelities based on previous models are shown (numerically and analytically) to be off by up to 10^{-2} for control fields without fast modulation, which certainly influences high-fidelity gates compatible with scalable fault-tolerant architectures. In the case of high-frequency controls or pulses with fast flux sweeps, one needs to consider higher-order terms of the TDSWT, and gate fidelities based on previous models become even more erroneous.

As a final note, we want to highlight that the fundamental effects considered in this work are not only apparent in the dispersive frame: For instance the dependence of coupling strengths g on the applied magnetic flux do also impact simulations of the full Jaynes-Cummings Hamiltonian, and should be considered in order to provide accurate simulations of the real dynamics.

V. ACKNOWLEDGEMENTS

We thank Bruno G. Taketani for useful discussions. The authors acknowledge funding through the LogiQ program of the Intelligence Advanced Research Projects Activity (IARPA) under the grant number W911NF-16-1-0114.

[1] S. Bravyi, D. P. DiVincenzo, and D. Loss, Annals of Physics 326, 2793 (2011).
[2] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[3] J. H. V. Vleck, Phys. Rev. 33, 467 (1929).
[4] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
[5] S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics (Springer-Verlag Berlin Heidelberg, 2003).
[6] G. Rigolin, G. Ortiz, and V. H. Ponce, Phys. Rev. A 78, 052508 (2008).
[7] S. I. Erlingsson, J. C. Egues, and D. Loss, Phys. Rev. B 82, 155456 (2010).
[8] A. M. Oleś, Phys. Rev. B 41, 2562 (1990).
[9] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. A 75, 032329 (2007).
[10] L. C. G. Govia and F. K. Wilhelm, Phys. Rev. A 93, 012316 (2016).
[11] M. Khezri, E. Mlinar, J. Dressel, and A. N. Korotkov, Phys. Rev. A 94, 012347 (2016).
[12] J. Clarke and F. K. Wilhelm, Nature 453, 1031 (2008).
[13] G. de Lange, B. van Heck, A. Bruno, D. J. van Woerkom, A. Geresdi, S. R. Plissard, E. P. A. M. Bakkers, A. R. Akhmerov, and L. DiCarlo, Phys. Rev. Lett. 115, 127002 (2015).
[14] J. Casparis, T. W. Larsen, M. S. Olsen, F. Kuenmuth, P. Krogsstrup, J. Nygard, K. D. Petersson, and C. M. Marcus, Phys. Rev. Lett. 116, 150505 (2016).
[15] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[16] J. D. Strand, M. Ware, F. Beaudoin, T. A. Ohki, B. R. Johnson, A. Blais, and B. L. T. Plourde, Phys. Rev. B 87, 220505(R) (2013).
[17] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4213 (1999).
[18] S. J. Devitt, W. J. Munro, and K. Nemoto, Rep. Prog. Phys. 76, 076001 (2013).
[19] W. S. Warren, J. Chem. Phys. 81, 5437 (1984).
[20] S. Blanes, F. Casas, J. Oteo, and J. Ros, Physics Reports 470, 151 (2009).
[21] H. Primas, Rev. Mod. Phys. 35, 710 (1963).
[22] G. de Lange, B. van Heck, A. Bruno, D. J. van Woerkom, A. Geresdi, S. R. Plissard, E. P. A. M. Bakkers, A. R. Akhmerov, and L. DiCarlo, Phys. Rev. Lett. 115, 127002 (2015).
[23] L. Casparis, T. W. Larsen, M. S. Olsen, F. Kuenmuth, P. Krogsstrup, J. Nygard, K. D. Petersson, and C. M. Marcus, Phys. Rev. Lett. 116, 150505 (2016).
[24] J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 35, 1070 (2006).
[25] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).
[26] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).
[27] S. A. Wolfram, Rev. Mod. Phys. 35, 710 (1963).
[28] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).
[29] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
[30] M. Boissonneault, J. M. Gambetta, and A. Blais, Phys. Rev. A 79, 013819 (2009).
[31] G. de Lange, B. van Heck, A. Bruno, D. J. van Woerkom, A. Geresdi, S. R. Plissard, E. P. A. M. Bakkers, A. R. Akhmerov, and L. DiCarlo, Phys. Rev. Lett. 115, 127002 (2015).
[32] A. Blais, J. M., Motzoi, F., Merkel, S. T., Wilhelm, Phys. Rev. A 90, 022307 (2014).
[33] M. Khezri, E. Mlinar, J. Dressel, and A. N. Korotkov, Phys. Rev. A 94, 012347 (2016).
[34] J. Clarke and F. K. Wilhelm, Nature 453, 1031 (2008).
[35] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).
[36] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).
[37] G. Rigolin, G. Ortiz, and V. H. Ponce, Phys. Rev. A 78, 052508 (2008).
[38] J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 35, 1070 (2006).
[39] R. Oliveira and S. Kehrein, Phys. Rev. B 93, 104302 (2016).
[40] J. M. Martinis and M. R. Geller, Phys. Rev. A 90, 022307 (2014).
[41] T. Chasseur, L. S. Theis, Y. R. Sanders, D. J. Egger, and F. K. Wilhelm, Phys. Rev. A 91, 043421 (2015).
[38] D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M. Chow, and J. M. Gambetta, arXiv:1604.03076 (2016).