Aneurysms in childhood: literature review and cases description

Daniel Gregório Gonsalves¹, Manuela Guedes Pereira¹, Pedro Henrique Simm Pires de Aguiar², Fernanda Lopes Rocha Cobucci³, Marcelo Ughini Crusius⁴,⁵; Roberto Alexandre Dezena⁶; Paulo Henrique Pires de Aguiar⁷,⁸,⁹

¹ 1 Faculty of Medicine of Catanduva, Department of Medicine, Catanduva, São Paulo, Brazil
² Pontifical Catholic University of São Paulo School of Medical and Health Sciences, Department of Medicine, Sorocaba, Brazil. ³ Faculty of Medicine of ABC, Department of Medicine, Santo André, São Paulo, Brazil.
⁴ Institute of Neurology, Hospital São Vicente de Paulo, Passo Fundo, Rio Grande do Sul, Brazil
⁵ Department of Neurology, School of Medicine of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
⁶ Division of Neurosurgery, Universidade Federal Do Triangulo Mineiro, Uberaba, MG, Brazil
⁷ Department of Neurology, Hospital São Paulo, Hospital, São Paulo, Brazil.
⁸ Department of Research and Innovation, Laboratory of Cellular and Molecular Biology, Faculty of Medicine of ABC, Santo André, São Paulo, Brazil;
⁹ Department of Neurology, School of Medicine of Pontifical Catholic University of São Paulo, Sorocaba, São Paulo, Brazil;

To whom correspondence should be addressed: Daniel Gregório Gonsalves Gonsalves, MD
e-mail: danielgregoriog@icloud.com

Available at:
http://www.archpedneurosurg.com.br/

INTRODUCTION

Cerebral aneurysms in children are not the majority diagnosis of this disease, representing 1.6 to 7% of all intracranial aneurysms [1,3,12,16,17]. It is estimated that there are approximately 1 to 3 cases of a childhood aneurysm per 1 million population [1]. One of the first documented cases in children was a 15-year-old boy, as reported by the German pathologist Eppinger in 1871 [4].

Introduction: In the aneurysm disease, children aneurysms do not represent a majority of the diagnosis. Associated conditions should be monitored, including aortic coarctation, polycystic kidney disease, fibromuscular dysplasia, tuberous sclerosis, Ehlers-Danlos syndrome, and Marfan syndrome. They can present as congenital, infectious, or traumatic.

Case report: We describe a series of five cases of aneurysms in patients ranging from 15 to 17 years of age whose aneurysms were found on examination. In most cases, patients were asymptomatic and did not have predisposing syndromes. Surgery was the treatment of choice in all cases. No patient had a recurrence in the following years of radiographic follow-up.

Methodology: This is a literature review and case series analysis with a narrative-descriptive approach. The database for the search was PubMed®, which were used to search for articles with the subject descriptors brain, aneurysms, pediatric and child. Between the descriptors, the boolean operator and was used.

Results: Aneurysms can be classified by their size and morphology, as well as having a predilection for anterior circulation. The most common symptom observed in our pediatric series of 5 patients was migraine or chronic headache (60%), followed by asymptomatic patients (40%). Three of five patients (60%) in this study were previously hypertensive without other comorbidity, while 40% of the cases were totally healthy.

Discussion: Pediatric intracranial aneurysms are relatively rare diseases. They require accurate and detailed diagnosis, which need to be assessed and managed in a multidisciplinary team.

Keywords: aneurysm, cerebral, child

The diagnosis was made on the basis of an autopsy, which revealed a constriction of the aortic isthmus and an unusual finding of free blood at the base of the brain, blood resulting from the rupture of a sacular aneurysm of the right anterior cerebral artery. The first alive case was reported by Edvard Bull of a 17-year-old girl who presented a severe headache and oculomotor nerve paralysis, being diagnosed with a ruptured posterior communicating artery aneurysm, confirmed by the autopsy posteriorly [1,4]. Ruptured infantile aneurysms account for a mortality rate between 10-23% [2]. An important, but not only, causal conditional of
Aneurysms in childhood: literature review and cases description

Aneurysms are endothelial injury and transmural vascular dissection that weakens the adventitial and muscular layer, and because it is a rare pediatric condition, associated conditions must be monitored, including aortic coarctation, polycystic kidney disease, fibromuscular dysplasia, tuberous sclerosis, Ehlers-Danlos syndrome, Marfan syndrome, immunodeficiencies, and autoimmune diseases [1,2].

Although in the adult population several risk factors may contribute to aneurysm formation, they are unlikely to contribute to aneurysm formation in the pediatric population [3]. A number of authors have postulated a greater role for congenital factors [1,2,3] in the development of childhood aneurysms, in addition to traumatic and infectious factors [1,4]. Their clinical presentation includes blurred or double vision, confusion, nausea and vomiting, seizures, severe headache, loss of consciousness, droopy eyelid, and stiff neck.

Aneurysm should be a differential diagnosis in patients with this presentation, and when suspected, the patient should be promptly evaluated by a physician and undergo computed tomography (CT) or magnetic resonance angiography (MRA), and a gold standard four-vessel cerebral digital subtraction angiography (DSA).

The anatomical and topographical characteristics of childhood aneurysms differ from those of adults, have a male predilection, mostly single presentation, and become symptomatic from birth to 6 years of age and from 8 years to adolescence, but their clinical manifestations and complications, such as aneurysmal subarachnoid hemorrhage (aSAH) are relatively poorly understood.

We present a case series of 5 patients who attended our services and were diagnosed with aneurysm and treated accordingly, as well as review the most recent literature.

CASE REPORT

Case 1

Male, 16 years old, with symptoms of chronic headache. During the investigation, an anterior communicating artery aneurysm was found, measuring about 3mm (show in fig. 1). The patient had no predisposing personal history, was previously healthy, without comorbidities, without Ehler-Danlos, Marfan and polycystic kidney. As surgical methods, we used a pterional craniotomy with high surgery, without postoperative and/or disclosed signs. There was no recurrence of aneurysms in a 10-year follow-up.

Case 2

Female, 15 years old, reporting only a migraine complaint. During the investigation, a posterior communicating artery aneurysm was identified. Patient presented digital clubbing, indicating a marfanoid profile. In the immediate postoperative period, the patient has no neurological deficits. Patient remains unchanged 8 years after surgery (show in fig. 2).
Aneurysms in childhood: literature review and cases description

Case 3

Female, 17 years old, previously hypertensive. Examination findings revealed aneurysm in the choroidal artery and in the right middle cerebral artery (show in fig. 3). The surgery was performed with evoked potential and indocyanine, without major bleeding and complications. Postoperatively without deficits, the patient remained without deficits during the 7 years of follow-up.

Case 4

Male patient, 16 years old, precisely hypertensive and using chemotherapy to treat chronic myeloid leukemia. In an investigation of chronic headache, a giant aneurysm was found in the carotid bifurcation (show in fig. 4). Clipping of the right aneurysm was uneventful. The patient evolved with left hemiparesis in the postoperative period, fully recovering after 6 months of the surgical procedure. Patient remains without deficits after 5 years of follow-up.

Case 5

Female patient, 17 years old, previously hypertensive. Two aneurysms of the choroid artery and of the right middle cerebral artery were found on examination (show in fig. 5). Surgery performed with evoked potential, without intraoperative bleeding. The patient evolved well, without major complications in the immediate postoperative period.
Aneurysms in childhood: literature review and cases description

METHODS

This is a literature review and case series analysis with a narrative-descriptive approach. The database for research was PubMed®, which used the subject descriptors cerebral, aneurysms, pediatric and child to search for articles. Between the descriptors, the boolean operator and was used.

The time interval was 5 years. The search was performed in January 2022, in free full text quality.

Only reviews and systematic reviews that covered the selected subject descriptors, were written in English, and whose journals were classified as qualis A or B according to CAPES were selected. Qualis C or unrated articles were excluded.

Finally, the articles were read to verify their consistency with the theme developed for the literature review.

The search in the data platform resulted in a total of 31 articles, of which 29 were classified as reviews and 2 as systematic reviews. After reading the articles to evaluate the link between descriptors, excluding the casual encounter of the searched terms, there were 17 reviews and 1 systematic review, with a total value of 18 articles used [Table 1].

Table 1- General data of the articles included in this review

	Reviews	Systematic Reviews	Overall
Found	29	2	31
Selected	17	1	18

DISCUSSION

Aneurysms can be classified by their size, being small (<5mm), large (6-24mm) or giant (> 25mm), morphology, divided into sacular, fusiform or dissecting [1,2,3], and also if they're presented single or multiple (only in 10% of the cases 2). Table 2 presents specific data of recent largest series of pediatric aneurysms' cases.

Aneurysms are preferably located in the anterior circulation (75% of cases), with the internal carotid artery, middle cerebral artery and anterior cerebral artery being the most frequent locations, and posterior circulation in 25%, more often in the basilar artery [2,3]. Location and size are not similar in pediatric and adult patients. A recent study conducted by Chen, R. et al (2021) showed that 24.5% of pediatric aneurysms are giant; this data corroborates robust other literatures that links 20 to 45% of childhood aneurysms as giant, unlike adult cases that have the giant ones as representative in less than 5%.

If the intracranial aneurysms ruptures, fatal conditions in clinical settings such as subarachnoid hemorrhage (SAH) or intracerebral hemorrhage (ICH) could occur, with 1-year mortality rates up to 65% [11,12].

According to Chen, R. et al (2021), cited before, the most common symptom observed in the pediatric series of 94 patients was headache (58.5%), followed by vomiting (48.9%), seizure (34%) and loss of consciousness (14.9%). In comparison to our series, 60% of the cases had chronic headache or migraine, while 40% were asymptomatic and the aneurysm was an examination finding.

Our number of cases may not be as expressive as other comparative studies in order that these patient samples correspond to an adult hospital service, not specialized or referenced in child/pediatric treatment. Also, comparing to the most representative recent series, our patients are in second childhood (15 to 17 years old), however, Matson’s landmark series of pediatric aneurysms [19] contained no patients younger than 16 years of age, which did not underestimate the value of his literature.

Pediatric and adult intracranial aneurysms differ from several characteristics, such as lifestyle risks (smoking, alcohol consumption) and previous health conditions (hypertension, diabetes mellitus, migraine and hypercholesterolemia). Children are far less exposed to lifestyle risks as adults [14] and, moreover, those with previous health conditions are significantly lower than in adults [15].

Though, among pediatric cases, the risk factors for rupture are divided in different groups: age below 5 years old and aneurysms located in the distal arterial region (DAR) increases the risk of rupture, while wide neck aneurysms could be a protective factor in the pediatric age group, all factors independently [13].

They require accurate and detailed diagnosis, as they may arise from a variety of different underlying pathological mechanisms, which need to be assessed and managed in a multidisciplinary team [1,2,4] to institute the correct treatment strategy.
Table 2- Largest recent series of pediatric aneurysms

	Hetts et al, 2009 [20]	Koroknay-Pál et al, 2012 [21]	Mehrotra et al, 2012 [22]	Chen et al, 2021 [23]
PATIENTS (N)	77	114	57	94
NUMBER OF ANEURYSMS	103	130	73	-
AGE (RANGE)	12 y (3 mo-18y)	14.5 y (3 mo-18y)	12.7 y (4y-18y)	10.6 y (21d-17y10m)
SEX	F/M 1.1:1	M/F 3:2	M/F 1:1.2	M/F 2.4:1
MORPHOLOGY				
FUSIFORM (%)	31	10	2.7	-
SACULAR (%)	46	78	78	-
INFECTIOUS (%)	12	0	2.7	-
TRAUMATIC (%)	14	7.6	8	-
GIANT (>25MM) (%)	11	12	19	24.5
MULTIPLE (%)	16	11	11	2.1
ANTERIOR CIRCULATION (%)	78	89	71.3	87.2
POSTERIOR CIRCULATION (%)	22	11	28.7	12.8
SAH (%)	32	78.1	88.7	60.6
MASS EFFECT (%)	-	6.1	7	-
MORTALITY (%)	1.3	7.7	8.7	-

Treatment options for aneurysm include endovascular or surgical approach. Each has its own advantages and disadvantages, but there’s no available literature that demonstrates superiority on either one of the approaches on long term clinical outcomes when children are treated, including ruptured or unruptured aneurysms. Though, the assistant physician may access either modality based on its expert clinical judgment, considering patient preference, local expertise and aneurysm characteristics [18]. In our service, the preferred modality is aneurysm clipping as in the cases presented before. New prospective studies are valuable to establish benefits of either definitive treatment for aneurysms in the pediatric population.

CONCLUSION

Pediatric intracranial aneurysms are relatively rare diseases. They require accurate and detailed diagnosis and the correct approach is to be managed by a multidisciplinary team. Available literature shows that there was no statistically demonstrable difference between endovascular and surgical treatment. The present article consists of a case...
Aneurysms in childhood: literature review and cases description

series (corresponding to an adult hospital service), taking into consideration reviews already published; however, even the available literature lacks information when compared to adults.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the local Ethics Committee

Consent to participate

The patient gave consent to use his information and images for research proposes.

Consent for publication

The patient gave consent to use his information and images for publication.

Conflict of interest

The authors declare no conflicts of interest with respect to the content, authorship, and/or publication of this article.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors

REFERENCES

1. Levy ML, Levy DM, Manna B. Pediatric Cerebral Aneurysm. 2021 Aug 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 30725770.

2. Heredia-Gutiérrez A, Carbarín-Carbarín ME. Cerebral aneurysms in pediatrics: a case report and review of the literature. Bol Med Hosp Infant Mex. 2021;78(6):636-641. English. doi: 10.24875/BMHIM.20000406. PMID: 34934213.

3. Bhogal P, Pérez MA, Wendl C, Bäzner H, Ganslandt O, Henkes H. Paediatric aneurysms - Review of endovascular treatment strategies. J Clin Neurosci. 2017 Nov;45:54-59. doi: 10.1016/j.jocn.2017.08.009. Epub 2017 Sep 5. PMID: 28887074.

4. Sychev AA, Pilipenko YV, Birg TM, Savin IA, Tabasaranisky TF, Sokolova EY, Kurdyumova NV, Savchenko YV, Baranich AI, Konovalov AN. Blagopriyatnyi iskhood khirurgicheskogo lechenia i intensivnol terapii u rebenka, postupivshego v tiazhelom sostoianii na fone anevrizmaticheskogo subarakhnoidal'nogo krovozliiania (klinicheskeo nabludienie i obzor literatury) [A favorable outcome of surgical treatment and intensive care in a child admitted in a severe condition in the setting of aneurysmal subarachnoid hemorrhage (a clinical case and literature review)]. Zh Vopr Neirokhir Im N N Burdenko. 2018;82(3):66-72. Russian. doi: 10.17116/neiro201882366. PMID: 29927427.

5. Donahue MJ, Dlamin N, Bhatia A, Jordan LC. Neuroimaging Advances in Pediatric Stroke. Stroke. 2019 Feb;50(2):240-248. doi: 10.1161/STROKEAHA.118.020478. PMID: 30661496; PMCID: PMC6450544.

6. Varvari I, Bos EM, Dinkelaar W, van Es AC, Can A, Hunfeld M, Du R, Dammers R, Volosci V. Fatal Subarachnoid Hemorrhage from an Aneurysm of a Persistent Primitive Hypoglossal Artery: Case Series and Literature Overview. World Neurosurg. 2018 Sep;117:285-291. doi: 10.1016/j.wneu.2018.06.119. Epub 2018 Jun 22. PMID: 29940384.

7. Murai Y, Shirokane K, Kitamura T, Tateyama K, Matano F, Mizunari T, Morita A. Petrous Internal Carotid Artery Aneurysm: A Systematic Review. J Nippon Med Sch. 2020 Sep;97(4):172-183. doi: 10.1272/jnms.JNMS.2020_87-407. Epub 2020 Mar 31. PMID: 32238731.

8. Issa R, Barakat A, Salman R, Naffa L. Vein of Galen Malformation, a cause of Intracranial Calcification: Case Report and Review of Literature. J Radiol Case Rep. 2019 Mar 31;13(3):13-18. doi: 10.3941/jrcr.v13i3.3456. PMID: 3165173; PMCID: PMC6743855.

9. Gopalan V, Rennie A, Robertson F, Kanagarajah L, Toolis C, Bhate S, Ganesan V. Presentation, course, and outcome of postneonatal presentations of vein of Galen malformation: a large, single-institution case series. Dev Med Child Neurol. 2018 Apr;60(4):424-429. doi: 10.1111/dmcn.13676. Epub 2018 Jan 23. PMID: 29359331.

10. Nucera M, Meuli L, Janka H, Schindewolf M, Schmidli J, Makaloski V. Comprehensive review with pooled analysis on external and internal jugular vein aneurysm. J Vasc Surg Venous Lymphat Disord. 2021 Oct 9:S2213-333X(21)00502-3. doi: 10.1016/j.jvsv.2021.09.009. Epub ahead of print. PMID: 34634519.

11. Korja M, Kivisaari R, Rezai Jahromi B, Lehto H (2017) Natural history of ruptured but untreated intracranial aneurysms. Stroke 48:1081–1084. https://doi.org/10.1161/STROKEAHA. 116.015933

12. Chen R, Zhang S, You C, Guo R, Ma L (2018) Pediatric intracranial aneurysms: changes from previous studies. Childs Nerv Syst 34:1697–1704.

13. Chen, R., Zhang, S., Xiao, A., Guo, R., & Ma, J. (2021). Risk factors for intracranial aneurysm rupture in pediatric patients. Acta neurochirurgica, 10.1007/s00701-021-
Aneurysms in childhood: literature review and cases description

14. Bauman KE, Ennett ST, Foshee VA, Pemberton M, King TS, Koch GG (2002) Influence of a family program on adolescent smoking and drinking prevalence. Prev Sci 3:35–42. https://doi.org/10.1023/a:1014619325968

15. Falkner B (2010) Hypertension in children and adolescents: epidemiology and natural history. Pediatr Nephrol 25:1219–1224. https://doi.org/10.1007/s00467-009-1200-3

16. Slator N, Talibi SS, Mundil N, Thomas A, Lamin S, Walsh R, Rodrigues D, Solanki GA (2019) Paediatric intracranial aneurysms: a British institutional review. Childs Nerv Syst 35:1197–1205. https://doi.org/10.1007/s00381-019-04159-3

17. Strickland BA, Attenello F, Russin JJ (2016) Extracranial to intracranial bypass for the treatment of cerebral aneurysms in the pediatric population. J Clin Neurosci 34:6–10. https://doi.org/10.1016/j.jocn.2016.05.009

18. Yasin JT, Wallace AN, Madaelil TP, Osbun JW, Moran CJ, Cross DT, Limbrick DD, Zipfel GJ, Dacey RG, Kansagra AP. Treatment of pediatric intracranial aneurysms: case series and meta-analysis. J Neurointerv Surg. 2019 Mar;11(3):257-264. doi: 10.1136/neurintsurg-2018-014001. Epub 2018 Aug 12. PMID: 30100557.

19. Matson DD. Intracranial arterial aneurysms in childhood. J Neurosurg. 1965 Dec;23(6):578-83. doi: 10.3171/jns.1965.23.6.0578. PMID: 5898554.

20. Hetts SW, Narvid J, Sanai N, Lawton MT, Gupta N, Fullerton HJ, Dowd CF, Higashida RT, Halbach VV. Intracranial aneurysms in childhood: 27-year single-institution experience. AJNR Am J Neuroradiol. 2009 Aug;30(7):1315-24. doi: 10.3174/ajnr.A1587. Epub 2009 Apr 8. PMID: 19357386; PMCID: PMC7051567.

21. Koroknay-Pál P, Lehto H, Niemelä M, Kivisaari R, Hernesniemi J. Long-term outcome of 114 children with cerebral aneurysms. J Neurosurg Pediatr. 2012 Jun;9(6):636-45. doi: 10.3171/2012.2.PEDS11491.

22. Mehrotra A, Nair AP, Das KK, Srivastava A, Sahu RN, Kumar R. Clinical and radiological profiles and outcomes in pediatric patients with intracranial aneurysms. J Neurosurg Pediatr. 2012 Oct;10(4):340-6. doi: 10.3171/2012.7.PEDS11455. Epub 2012 Aug 24.

23. Chen R, Zhang S, Xiao A, Guo R, Ma J. Risk factors for intracranial aneurysm rupture in pediatric patients. Acta Neurochir (Wien). 2022 Apr;164(4):1145-1152. doi: 10.1007/s00701-021-04957-2