Full Length Article

The vasorelaxant effect of *Canarium odontophyllum* Miq. (Dabai) extract in rat thoracic aorta

Dayang Fredalina Basri, Nur Sa’adah Abdul Rahman, Shafreena Shaukat Ali, Satirah Zainalabidin

Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

A R T I C L E I N F O

Article history:
Received 1 June 2017
Received in revised form 19 October 2017
Accepted 26 November 2017
Available online 6 December 2017

Keywords:
Canarium odontophyllum
Vasorelaxant
Calcium
Vascular reactivity

A B S T R A C T

Background/aim: *Canarium odontophyllum* (CO) (Miq.) (Burseraceae) has been traditionally consumed for its antioxidant benefit in maintaining longevity. However, there is no report concerning its pharmacological activity on blood vessels. This study was aimed to investigate the effects of CO aqueous leaf extract on isolated aortic rings.

Methods: Isolated thoracic aortic rings were suspended in a tissue bath and placed between 2 tungsten wires and connected to an isometric force transducer. The tension changes were recorded to a data acquisition system.

Results: The leaf aqueous extract (3–15 mg/ml) induced relaxation in endothelium-intact and endothelium-denuded aortic rings precontracted with PE. Incubation with nitric oxide enzyme inhibitor L-NAME, however, did not alter the CO-induced vasorelaxant on endothelium-intact aortic ring. The vasorelaxant effect of CO was endothelium-independent as it reduced the contraction induced by extracellular Ca$^{2+}$ in endothelium-denuded aortic ring precontracted by PE and KCl in Ca$^{2+}$-free Krebs solution. However, CO did not inhibit the release of intracellular Ca$^{2+}$ from sarcoplasmic reticulum.

Conclusion: This study suggests that the vasorelaxant effect of aqueous extract from CO leaves was endothelium-independent and was possibly mediated through the blockade of voltage-dependent calcium channel and receptor-operated calcium channel.

© 2017 Mansoura University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

According to World Health Organization (WHO), cardiovascular diseases such as coronary heart disease and ischemic heart disease are the leading cause of death worldwide in 2015 [1]. One of the risk factors of cardiovascular disease is arterial hypertension, which is also associated with other conditions such as myocardial infarction and stroke [2]. Besides that, arterial hypertension is also found in metabolic diseases such as diabetes mellitus and obesity and in addition, smoking also often lead to cardiovascular pathology complication that involves vascular remodeling [3,4]. The prevalence of hypertension in Malaysia aged 18 years and above was 32.7%, and for aged 30 years and above was 43.5% in 2011 [5].

With the increased risk of hypertension, researchers opt to seek for natural remedies from plant sources as they are a major source of phytochemical compounds with medicinal values. In the last 20 years, around 200 vasodilator compounds derived from plants have been identified such as resveratrol and quercetin [6,7], as well as alkaloids, terpenoids and flavonoids [8].

Canarium odontophyllum Miq. (CO) is a type of fruit that belongs to Burseraceae family which consists of 100 species well distributed throughout tropical Africa, Asia and Pacific Island [9]. This fruit is classified as an under-utilized fruit due to lack of promotion and its economic potential has not been fully explored yet. The tree is found in the tropical rainforest of Sarawak [10] and is locally known as ‘dabai’ or ‘Sibu olive’ in Sarawak and ‘kembayau’ in Sabah [11]. The leaves were found to contain appreciable amount of flavonoid and terpenoid [12] however, the type of terpenoid in the aqueous extract from *C. odontophyllum* leaves is still being investigated. It was suggested that among the many constituents of *Gingko biloba* leaves, terpenoid compounds contribute to the vasodilatory effect of *G. biloba* extract [13]. To date, the effect of CO leaves on the changes of the vascular tone has not been studied yet. Therefore, this study was aimed to investigate for the first time, the vascular mechanisms involved in the vasorelaxant effect of leaf aqueous extract of *Canarium odontophyllum* using rat thoracic aorta.

https://doi.org/10.1016/j.ejbas.2017.11.004
2314-808X/© 2017 Mansoura University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Materials and methods

2.1. Drugs and reagents

Phenylephrine hydrochloride, acetylcholine chloride, N⁶-
nitro-arginine methyl ester hydrochloride (L-NAME), potassium
chloride (KCl) and ethylene diamine tetraacetic acid (EDTA) were
bought from Sigma-Aldrich Inc., St. Louis, USA, while diltiazem
hydrochloride was purchased from EMD Millipore Corp., USA. All
the drugs were dissolved in distilled water.

2.2. Preparation of extract

The extraction method was based on previous study [12]. In
brief, fresh leaves of Canarium odontophyllum (CO) were collected
from Miri, Sarawak, Malaysia and was identified by Mr. Sani Miran
from the Herbarium of the Universiti Kebangsaan Malaysia (UKM),
Bangi, Malaysia, Selangor with voucher specimen number of UKM
40052. CO leaves were washed and dried overnight then grinded
using electrical blender. A total of 100 g of the leaves powder
was then added with 500 ml of distilled and shaken at 100 rpm for
24 h by using an orbital shaker. The mixture was centrifuged at
3000 rpm for 5 min. The supernatant was collected and the process
was repeated by adding 250 ml distilled water. The mixture was centrifuged at
3000 rpm for 5 min. The supernatant was collected and the process
was repeated by adding 250 ml distilled water into the remaining
residue. The supernatant was combined and freeze-dried at -50
°C under vacuum for 12 h to produce a fine crystal-like crude extract.

2.3. Animals

In this study, 31 male Wistar rats weighing between 250 and
350 g were obtained from UKM Animal House. The rats were housed in plastic cages in controlled environment with 12 h light-
dark cycle at 22 ± 5 °C and 40–60% humidity. The rats were fed with
standard rat pellets and distilled water ad libitum.

2.4. Preparation of isolated aortic rings

The rats were injected intraperitoneally with 1000 unit/ml/kg of heparin prior anaesthetised by using 1.5 g/kg urethane. Upon dis-
section, the descending thoracic aorta was isolated and placed in
ice-cold Krebs-Henseleit solution with the following composition:
NaCl (118 mM), NaHCO₃ (25 mM), KCl (4.7 mM), KH₂PO₄ (1.2 mM),
MgSO₄·7H₂O (1.2 mM), CaCl₂·2H₂O (2.5 mM) and glucose (11.7
mM) in 1 L of dH₂O. For Ca²⁺-free Krebs-Henseleit solution, the
solution was prepared by excluding CaCl₂·2H₂O and adding EDTA
(0.1 mM). The aorta was then cleared from any excess connective
tissue and fat with extra care to avoid any damage to the luminal
endothelium and then cut into small rings of 3–4 mm in length. For
endothelium-independent experiment, the endothelium was
removed mechanically by gently rubbing the luminal surface with
a thin stainless steel wire before immersing it in the tissue bath
chamber.

2.5. Vascular reactivity setup

The aortic rings were suspended between two stainless steel
wires in the tissue bath chamber containing 10 ml of oxygenated
Krebs solution (95% O₂; 5% CO₂) maintained at 37 °C. A passive tention
of ~1 g was applied to the rings and the change of tension in
the aortic rings was measured isometrically by force transducer
connected to PowerLab with Chart 5 software (ADInstrument,
Australia). The aortic rings were allowed to equilibrate 45 min
before addition of 120 mM of KCl to ensure the rings viability. Once
the contraction stabilized and the tension reached a plateau, the
aortic rings were precontracted with (0.1 µM) of phenylephrine
(PE), an α₁-adrenergic receptor agonist followed by (10 µM) acetyl-
choline (ACh), an endothelium-dependent vasorelaxant to assess
the smooth muscle and endothelial integrity, respectively. Endothelium was considered to be intact when ACh caused >60%
relaxation from the maximal contraction obtained in the aortic
rings precontracted with PE [14]. In endothelium-denuded rings, relaxation to acetylcholine was less than 10% [15].

2.6. Effect of CO extract on endothelium-intact and endothelium-
denuded aortic ring

An experiment was performed in both intact and denuded-
endothelium aortic rings to investigate the dependence of CO
vasorelaxation to the endothelium. The aortic rings were precon-
tracted with (0.1 µM) PE and once PE-induced contraction had
reached plateau, cumulative concentration of the extract ranging
from 3 to 15 mg/ml were added to evaluate its relaxation effect
on the aortic ring. The relaxant effect of the extract on the aortic
rings was calculated as a percentage of the contraction in response
to PE. The EC₅₀ of CO obtained from the cumulative dose response
curve would be used for further mechanistic investigation.

2.7. Involvement of nitric oxide synthesis pathway on CO vasorelaxation effect

Endothelium-intact aortic ring was preincubated with (100 µM)
L-NAME for 20 min before contracted by PE (0.1 µM). Then the extract from 3 to 15 mg/ml was then added cumulatively. The relaxation effect of the extract on the aortic rings was compared with the control (without L-NAME incubation) to investigate the role of NO in the vasorelaxant effect of CO in the endothelium-
intact aortic ring.

2.8. Involvement of extracellular Ca²⁺ on CO vasorelaxation effect

In order to determine whether the inhibition of extracellular Ca²⁺
influx was involved in extract-induced relaxation, the endothelium-denuded aortic ring contracted by 60 mM KCl (0.1 µM) PE after being incubated with the EC₅₀ of the extract. The aor-
tic ring was incubated in Ca²⁺-free Krebs solution in the presence of
0.1 M EDTA for 30 min to remove excess Ca²⁺ from the tissues. The control study was devoid of preincubation with the extract for 30
min. CaCl₂ solution was then added cumulatively to a concentra-
tion from 0.3–10.0 mM to obtain a concentration-response curve.
The contraction induced by KCl indicated that the influx of extra-
cellular Ca²⁺ was through the voltage-dependent calcium channel
(VDCC), whereas contraction induced by PE showed that the extra-
cellular influx Ca²⁺ was through the receptor-operated calcium channel (ROCC). Then the contractile responses induced by CaCl₂
in the presence and absence of extract were compared.

2.9. Involvement of intracellular Ca²⁺ release from sarcoplasmic reticulum on CO vasorelaxation effect

The endothelium-denuded aortic ring was preincubated with Ca²⁺
channel blocker, diltiazem, (1 µM 30 min) in normal Krebs
solution to determine whether the relaxation induced by the
extract was related to the inhibition of intracellular Ca²⁺ release.
Diltiazem was used in this study as it is known to exert a relaxant

effect on the rat and human vessels without a negative inotropic action on rat atria. Diltiazem has the advantage over other vasoselective Ca2+ channel blocker such as amlodipine as it does not activate the sympathetic nervous system and does not stimulate NO release from endothelial cells [16]. Subsequently, PE at (0.1 µM) was then added to the bath to induce a steady contraction followed by the EC\textsubscript{50} of CO extract.

2.10. Statistical analysis

All values were expressed as mean ± S.E.M and analysed with Two-way analysis of variance (ANOVA) using GraphPad Prism software version 6. Relaxant responses were normalized and expressed as percentage relaxation to maximal contraction induced by (0.1 µM) PE. Values of \(p < 0.05 \) were considered statistically significant.

3. Results

3.1. Vasorelaxation effect of CO extract

The result of Canarium odontophyllum (CO) leaf aqueous extract on PE-induced contraction in endothelium-intact and denuded aortic rings is presented in Fig. 1. The extract produced concentration-dependent relaxation in both aortic rings precontracted with (0.1 µM) PE. The maximal vasorelaxant effect for both treatment was normalized to 100%. The EC\textsubscript{50} of the extract in the endothelium-denuded aortic ring was 5.89 mg/ml whereas for the endothelium intact aortic ring, the EC\textsubscript{50} value was 8.36 mg/ml.

3.2. Vasorelaxant effect of CO extract was not mediated by nitric oxide synthesis pathway

Fig. 2 shows that the vasorelaxant activity of CO extract at the concentration above 9 mg/ml on the endothelium-intact aortic ring was not altered in the presence of L-NAME. This finding indicated that the relaxant response by the extract was not dependent on the nitric oxide released from the endothelium. There was no significant difference (\(p > 0.05 \)) between the relaxation response of the extract with and without L-NAME-incubated aortic ring. The maximal relaxant effect in endothelium-intact aortic ring in L-NAME and control was normalized to 100%.

3.3. Vasorelaxant effect of CO extract was not mediated by the extracellular Ca2+-induced contraction

The concentration of the extract used to determine its inhibitory effect on the contraction induced by extracellular Ca2+ in endothelium-denuded ring precontracted with KCl and PE in Ca2+ free Krebs solution was based on the preliminary study on EC\textsubscript{50} CO-induced relaxation in denuded preparation (5 mg/ml). As seen from Figs. 3(a) and 3(b) respectively, the vasocontraction responses to the cumulative concentration of Ca2+ showed no significant difference by the presence of CO in both KCl (Fig. 3(a)) and PE-precontracted (Fig. 3(b)) aortic rings compared to the control. The absence of attenuation of the contraction induced by the Ca2+ in the presence of CO incubation indicated that the extract mediated its vasorelaxation effect by mechanism not involving either VDCC (KCl-induced) and ROCC (PE-induced).

3.4. Vasorelaxant effect of CO extract was not mediated by intracellular Ca2+ release from sarcoplasmic reticulum

The result of CO extract on endothelium-denuded aortic rings incubated with diltiazem precontracted with PE shows that there was no significant difference (\(p > 0.05 \)) in the contraction induced by PE before and after adding the extract (Fig. 4). This finding shows that the extract did not inhibit or decrease the release of the intracellular Ca2+ from the sarcoplasmic reticulum as PE was still able to produce vasconstriction effect on the aortic ring despite adding the CO extract. However, since PE-induced contraction is not affected by the presence of Ca2+ in the normal Krebs solution, the result with diltiazem which showed no changes in the vasospasm level indicates that this phenomenon has been eliminated prior to considering addition of CO extract.

4. Discussion

The present study reports the vasorelaxant action of the C. odontophyllum (CO) leaves extract on the aortic rings at the concentration ranging from 3 mg/ml to 15 mg/ml. The extract was able to induce concentration-dependent relaxation. The vasodilatory effect of CO was still the same even in the absence of endothelium suggesting that its mechanism does not involve the presence
The effect of CO extract on the intracellular Ca2+ released by the sarcoplasmic reticulum. Endothelium-denuded aortic ring was incubated with diltiazem (1 \mu M) before addition of (0.1 \mu M) PE in Ca2+-free Krebs solution. Control group was not pre-incubated with CO. Values are expressed as mean ± S.E.M. where n = 4.

Fig. 4. The effect of CO extract on the intracellular Ca2+ released by the sarcoplasmic reticulum (SR) in the vasodilating effect of CO, endothelium-denuded aortic ring was incubated with diltiazem (1 \mu M) before addition of (0.1 \mu M) PE. The rings were then exposed to 4.95 mg/ml of CO extract. The tension produced by the ring was compared before and after the addition of the extract. Values are expressed as mean ± S.E.M. where n = 4.
activation of IP3 receptor [27] leading to vascular smooth muscle contraction. This result contradicts with the study on the seed extract of Nigella sativa that its hypotensive effect occurred via inhibitory action on the release of intracellular Ca2+ stores from SR [28].

As far as the role of calcium is concerned, inhibition of extracellular Ca2+ does not contribute to the mechanism of vasodilating action of aqueous extract from Canarium odontophyllum leaves by acting on both the VDCC and ROCC. Additionally, it also does not involve the inhibition of intracellular Ca2+ from the sarcoplasmic reticulum. It could be postulated that the terpenoid constituents in a mixture of CO leaves played a role in exerting the vasorelaxant effects. Recently, a considerable amount of natural compound high in flavanoid and terpenoid [12] have been shown to exert vasodilating effect, at least in part, by activating K+ channel [29,30]. Therefore, it can be suggested that these compounds that are contained in CO extract may contribute to vasorelaxant effect via modulation of K+ channel. Given the diversity of the bioactive compound derived from CO extract and various mechanism of action responsible for vasodilatory activity this warrant further investigation in searching for the mechanism involved in vasorelaxant by CO extract.

5. Conclusion

This data demonstrated for the first time that C. odontophyllum Miq. aqueous leaf extract is a vasorelaxant and its effect is not dependent on the nitric oxide released by the endothelium. The action was also not mediated via voltage-dependent Ca2+ channel (VDCC) and receptor-operated Ca2+ channel (ROCC), as the influx of extracellular Ca2+ through these channels into the smooth muscle cells was not inhibited. These findings may provide insight that involved other mechanism into the efficacy of the leaf extracts from Canarium odontophyllum as phytoalternative treatment for hypertension and other cardiovascular diseases.

Acknowledgement

This project was funded by Universiti Kebangsaan Malaysia under the Research University Grant Code Grant GUP-2014-059.

References

[1] World Health Organization (WHO). Geneva: Cardiovascular diseases (CVDs). Fact Sheet N°317. c2017 [cited 2016 Apr 28]. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/.

[2] Nguelefack TB, Dongmo AB, Dimo T, Kamanyi A. Phytopharmacology of some medicinal plants used in Cameroonian traditional medicine to handle cardiovascular diseases. In: Recent Developments in Medicinal Plants Research. Kerala: Research Signpost Publisher; 2007. p. 147–167.

[3] Zainalabidin S, Budin SB, Ramalingam A, Lim YC. Analysis of the mechanisms underlying the vasorelaxant action of Canarium odontophyllum (Miq.) leaves in vitro. IOSR J Pharm 2014;4:1–6.

[4]“Our results demonstrate…”

[5] Nishida S, Satoh H. Comparative vasodilating actions among terpenoids and flavonoids contained in Ginkgo biloba extract. Clin Chir Acta 2004;339:129–33.

[6] Furugott RF, Cherry PD, Zawadzki Jv, Jothianandan D. Endothelial cells as mediators of vasodilatation of arteries. J Cardiovasc Pharmacol 1984;6:336–43.

[7] Ajay M, Chai HJ, Mustafa AM, Gilani AH, Mustafa MR. Mechanisms of the anti-hypertensive effect of Hibiscus sabdariffa L. calyces. J Ethnopharmacol 2007;109:388–93.

[8] Motro M, Shemesh J, Grossman E. Coronary benefits of calcium antagonist therapy for patients with hypertension. Curr Opin Cardiol 2001;16:349–55.

[9] Rubanyi GM. The role of endothelin in cardiovascular homeostasis and disease. J Cardiovasc Pharmacol 1993;22:1–14.

[10] Stankevicius E, Kevelaitis E, Vainorius E, Simonses U. Role of nitric oxide and other endothelin-derived factors. Medicina (Kaunas) 2003;39:333–41.

[11] Andrade DM, Fatima Res C, Silva Castro PF, Borges LL, Anaral NO, Torres IMS, Rezende SG, Souza Gil E, Conceicao EC, Pedrinio GR, Rocha MI. Vasorelaxant and hypotensive effects of jactocitaba fruit (Myrciaria cauliflora) extract in rats. Evid Based Complement Alternat Med. 2015;3696135.

[12] Salahdeen HM, Idowu GO, Salami SA, Murtala BA, Alada AA. Mechanism of vasorelaxation induced by Tridax procumbens extract in rat thoracic aorta. J Intercult Ethnopharmacol 2016;5:174–9.

[13] Chen GP, Ye Y, Li L, Yang Y, Qian AB, Hu SJ. Endothelium-dependent and independent vasorelaxant effect of sodium ferulate on rat thoracic aorta. Life Sci. 2009;84:81–8.

[14] Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, et al. Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 1997;49:157–230.

[15] Karaki H, Urakawa N, Kursky P. Potassium-induced contraction in smooth muscle. J Smooth Muscle Res 1984;20:427–34.

[16] Hudgins PM, Weiss GB. Differential effects of calcium removal upon vascular smooth muscle contraction induced by norepinephrine, histamine and potassium. J Pharm Exp Ther 1968;159:91–7.

[17] McDadezan J, Gibson A. The developing relationship between receptor operated and store operated calcium channels in smooth muscle. J Smooth Muscle Res 2002;135:1–3.

[18] Kim B, Lee K, Chinannai KS, Ham I, Bu Y, Kim H, et al. Endothelium-independent vasorelaxant effect of Ligusticum jeholense root and rhizome on rat thoracic aorta. Molecules 2015;20:10721–33.

[19] Nizammand S, Fereidouni E, Mahmoudabad M, Mousavi SM. Endothelium-independent vasorelaxant effects of hydroalcoholic extract from Nigella sativa seed in rat aorta: the roles of Ca2+ and K+ channels. BioMed Res Int; 2014:247054.

[20] Zhi X-M, Fang L-H, Li Y-J, Du G-H. Endothelium-dependent and-independent relaxation induced by pinocembrin in rat aortic rings. Vascul Pharmacol 2007;46(3):160–5.

[21] Tispatel CR, Ambrosio SR, da Costa FB, Coutinho ST, de Oliveira DC, de Oliveira AM. Analysis of the mechanisms underlying the vasorelaxant action of kaurenic acid in the isolated rat aorta. Eur J Pharmacol 2004;492(2):233–41.