Vα14 NKT cell–triggered IFN-γ production by Gr-1⁺CD11b⁺ cells mediates early graft loss of syngeneic transplanted islets

Yohichi Yasunami,1 Satoshi Kojo,3 Hiroshi Kitamura,4 Atsushi Toyofuku,1,5 Masayuki Satoh,1 Masahiko Nakano,1 Kentaroh Nabeyama,1 Yoshiichiro Nakamura,1 Nobuhide Matsuoka,1 Seiyo Ikeda,1 Masao Tanaka,5 Junko Ono,2 Naoki Nagata,6 Osamu Ohara,4 and Masaru Taniguchi3

Pancreatic islet transplantation is a highly promising approach for the treatment of insulin-dependent diabetes mellitus. However, the procedure remains experimental for several reasons, including its low efficiency caused by the early graft loss of transplanted islets. We demonstrate that Gr-1⁺CD11b⁺ cells generated by transplantation and their IFN-γ production triggered by Vα14 NKT cells are an essential component and a major cause of early graft loss of pancreatic islet transplants. Gr-1⁺CD11b⁺ cells from Vα14 NKT cell–deficient (Jα281⁻/⁻) mice failed to produce IFN-γ, resulting in efficient islet graft acceptance. Early graft loss was successfully prevented through the repeated administration of α-galactosylceramide, a specific ligand for Vα14 NKT cells, resulting in dramatically reduced IFN-γ production by Gr-1⁺CD11b⁺ cells, as well as Vα14 NKT cells. Our study elucidates, for the first time, the crucial role of Gr-1⁺CD11b⁺ cells and the IFN-γ they produce in islet graft rejection and suggests a novel approach to improving transplantation efficiency through the modulation of Vα14 NKT cell function.
Because Vα14 NKT cells are relatively abundant in the liver, the site of choice for islet transplantation, and because IFN-γ is believed to be an important factor in the destruction of islet β cells, we hypothesized that Vα14 NKT cells in the liver might be involved in islet graft failure. We demonstrate that, in mice, IFN-γ–producing Gr-1+CD11b+ cells and Vα14 NKT cells are major components of the early graft loss of transplanted islets and the low efficiency of pancreatic islet transplants. Our findings provide an approach to improve transplant efficiency through the modulation of Vα14 NKT cell function.

RESULTS AND DISCUSSION

Vα14 NKT cells are responsible for early islet graft loss

To test the possibility that Vα14 NKT cells are involved in islet graft failure, we attempted to establish an experimental system of islet transplantation. We first examined the minimum number of donor islets required to ameliorate hyperglycemia in streptozotocin (STZ)–induced diabetic mice. C57BL/6 mice became hyperglycemic and diabetic soon after the i.v. injection of STZ (Fig. 1 A). In STZ–induced diabetic mice, 400 syngeneic islets transplanted into the liver were found to be sufficient to achieve normoglycemia (Fig. 1 B, left), whereas normoglycemia could not be achieved by the transplantation of 200 syngeneic islets, the number of islets that can be isolated from a single mouse pancreas (Fig. 1 C, left). In agreement with biochemical data, intact islets with well-granulated β cells were histologically seen in mice receiving 400 islets, whereas damaged islets with degranulated β cells were observed in mice receiving 200 islets (Fig. 1 D, right).

We then investigated whether Vα14 NKT cells are involved in early islet graft loss. All diabetic Jx281−/− mice became normoglycemic by day 11 after transplantation of 200 or even 100 islets (Fig. 1, D and E, left). Histological examination also clearly demonstrated the existence of intact islet grafts with well-granulated β cells (Fig. 1 D, right), suggesting that Vα14 NKT cells are responsible for graft rejection of transplanted islets.

To prove the deleterious effects of Vα14 NKT cells on grafted islets, 5 × 10^6 liver mononuclear cells isolated from naive WT, Jx281−/−, or IFN–γ–deficient mice were injected at the time of transplantation into the portal vein of diabetic Jx281−/− mice receiving 200 syngeneic islets. Diabetic Jx281−/− mice injected with cells from WT mice remained hyperglycemic 60 d after transplantation (Fig. 1 F, left), whereas those with cells from Jx281−/− or IFN–γ–deficient mice became normoglycemic (Fig. 1, G and H, left). Histological examination also proved the existence of intact islets in the recipients of cells from Jx281−/− or IFN–γ–deficient mice, but not from WT mice (Fig. 1, F–H, right). The results suggest that Vα14 NKT cells and IFN–γ are essential components of early graft failure.

Gr-1+CD11b+ cells induced by transplantation are effector cells for early graft loss

To elucidate cellular changes associated with islet graft failure, hepatic mononuclear cells were isolated periodically after islet transplantation and examined by FACS using α-galactosylceramide (α-GalCer)–loaded CD1d (α-GalCer–CD1d) tetramers. FACS analysis showed that the percentage of α-GalCer–CD1d tetramer+ Vα14 NKT cells initially decreased from 10.3% at 0 h to ~5% at 6 h but then surged to 19.2% at 24 h after islet transplantation (Fig. 2 A, left). The findings indicate the activation of Vα14 NKT cells that down-regulate their receptor expression, resulting in the failure to detect Vα14 NKT cells by α-GalCer–CD1d tetramers, as reported previously (10–12). Furthermore, Vα14...
Figure 2. INF-γ–producing Gr-1+CD11b+ cells generated after syngeneic islet transplantation. (A) Requirement of Vα14 NKT cells for induction of INF-γ–producing cells. Liver mononuclear cells isolated from WT or Jα281−/− mice 2, 6, and 24 h after the transplantation of 200 syngenic islets (bottom) were further gated (left) and analyzed for Gr-1 (PerCP) and CD11b (FITC) expression in relation to INF-γ–production. INF-γ–producing cells were CD11c−, CD86−, MHC class II−, F4/80−/−, and CD68−/− (Fig. 2 C) and were neutrophils in morphology (Fig. 2 D), indicating that these cells are neutrophils. The neutrophils that infiltrated the transplanted islet (Fig. 2 D) are likely to be the effector cells, because the injection of antibodies against Gr-1 or CD11b prevented the rejection of islet transplants (Fig. 3).

In marked contrast to WT mice, the increase in INF-γ–producing Gr-1+CD11b+ cells was not seen in Jα281−/− mice (Fig. 2 A, left), suggesting that the activation of Vα14 NKT cells after islet transplantation triggers the induction of INF-γ production by Gr-1+CD11b+ cells. Note that no increase in IL-4–producing cells was observed regardless of the presence or absence of Vα14 NKT cells (Fig. 2 A, right).

It is well known that soon after activation with α-GalCer or IL-12, Vα14 NKT cells produce INF-γ, which, in turn, stimulates INF-γ secretion by other cells, such as NK cells or CD8+ T cells (9, 13, 14). In fact, a single injection of α-GalCer dramatically augmented INF-γ production in Gr-1+CD11b+ cells (see Fig. 5 D), suggesting that Vα14 NKT cells indeed activate Gr-1+CD11b+ cells to produce INF-γ. It is thus likely that increased INF-γ production by Gr-1+CD11b+ cells is a direct consequence of Vα14 NKT cell activation triggered by islet transplantation, although molecules responsible for the activation of Vα14 NKT cells remain to be determined.

Similar to INF-γ–producing Gr-1+CD11b+ cells, IL-4–producing Gr-1+CD11b+ cells induced by aluminum hydroxide (anti–IL-4 [right], Gated CD3+α-GalCer–CD1d tetramer− cells (solid line)) were also investigated for their INF-γ production compared with the negative control (dotted line). (B) INF-γ–producing Gr-1+CD11b+ cells. α-GalCer–CD1d tetramer− cells from the livers of naive mice (top) and mice 6 h after the transplantation of 200 syngenic islets (bottom) were further gated (left) and analyzed for Gr-1 (PerCP) and CD11b (FITC) expression in relation to INF-γ production by intracytoplasmic staining (middle and right). (C) Surface phenotypes of Gr-1+CD11b+ cells. α-GalCer–CD1d tetramer− cells in B were further analyzed by FACS. Their surface expression (solid line) was compared with the control (dotted line). The numbers in B represent the percentages of cells in the corresponding areas. Representative data from two to three experiments are shown. (D) Histological findings of Gr-1+CD11b+ cells isolated from the liver 6 h after transplantation. (I) May-Grunwald-Giemsa staining. Original magnification = 500. (ii–iv) Immunohistochemical staining on insulin. (ii) Gr-1 (iii), and F4/80 (iv). The arrowheads indicate infiltrated Gr-1+ cells into the transplanted islet. Original magnification = 400.
droxide, when antigens precipitated by aluminum hydroxide are used for immunization, play an important role in B cell activation (15). Despite the similarities in antigen independence and importance in the immune responses of these two populations, several apparent differences are noted, such as the fact that IL-4–producing Gr-1+CD11b+ cells are evident 6 d after immunization, whereas IFN-γ–producing Gr-1+CD11b+ cells appear soon (6 h) after transplantation. The findings suggest functional diversity, although it is unclear whether the two populations are the same or different cells producing different cytokines at different time points.

Prevention of early graft loss by modulation of Vα14 NKT cell function

In agreement with previously reported data (16), Vα14 NKT cells secreted large amounts of IFN-γ immediately after stimulation with α-GalCer but stopped producing IFN-γ after repeated α-GalCer stimulation (Fig. 4 A). Therefore, we hypothesized that repeated α-GalCer injections would modify IFN-γ production by Vα14 NKT cells and thus affect graft survival. To test this possibility, STZ-induced diabetic WT mice that had received 400 islets were treated once with vehicle at the time of transplantation; all mice became normoglycemic (Fig. 4 B). When diabetic WT mice that had received 400 islets were treated with a single 100-μg/kg α-GalCer or vehicle were cultured with 100 ng/ml α-GalCer or 104 vehicle-pulsed DCs/well and measured for their cytokines by ELISA. Values represent mean ± SD. (B and C) Rejection of islet graft by single α-GalCer stimulation. 400 syngenic islets were grafted into STZ-induced diabetic C57BL/6 mice treated with a single i.p. injection of vehicle (B) or 100 μg/kg α-GalCer (C) at the time of islet transplantation. (D and E) Protection of islet graft failure by repeated α-GalCer stimulation. Mice transplanted with 200 syngenic islets were treated three times with vehicle (D) or 100 μg/kg α-GalCer (E) on days 15, 11, and 7 before being injected with STZ 3 d before the transplantation. Individual lines represent the nonfasting plasma glucose levels of each animal. The asterisk indicates that the animal died because of severe diabetes.

![Figure 4. Prevention of syngeneic islet graft failure by repeated α-GalCer treatment.](image)

IFN-γ production by Gr1+CD11b+ cells that were triggered by Vα14 NKT cells

We investigated the effect of α-GalCer on the production of IFN-γ by Gr1+CD11b+ cells. FACS analysis revealed that Gr1+CD11b+ cells expanded rapidly after islet transplantation (Fig. 5 B) compared with nontransplanted controls (Fig. 5 A). The influx of Gr1+CD11b+ cells is independent of Vα14 NKT cells because increased numbers of Gr1+CD11b+ cells were detected in Jα281−/− mice after islet transplantation (Fig. 5 C), suggesting that Gr1+CD11b+ cells are generated by transplantation. However, IFN-γ production by Gr1+CD11b+ cells was dramatically augmented by a single injec-

![Figure 3. Prevention of diabetes with transplantation of 200 syngeneic islets and anti-Gr-1 or anti-CD11b antibody treatment.](image)
Concluding remarks

Our results obtained in a mouse model have important clinical implications. Similar to Vα14 NKT cells in mice, human Vα24 NKT cells also release large quantities of IFN-γ on activation (20), suggesting that the early graft loss of islets in humans is similarly mediated by Vα24 NKT cells. If this assumption is correct, treatment regimens aimed at the downregulation of IFN-γ production by human Vα24 NKT cells might help to prevent the early loss of islet grafts in clinical settings, even though Vα24 NKT cells are less frequent in the human liver (21), and, thus, might help to increase the efficiency of pancreatic islet transplants.

MATERIALS AND METHODS

Animals. C57BL/6 mice were purchased from Charles River Laboratories and C57BL/6 Jax281 mice (10–15 wk old) raised in our facility were used (9). C57BL/6 IFN-γ-deficient mice were provided by Y. Iwakura (University of Tokyo, Tokyo, Japan) (22). Experimental plans were approved by the committee on institutional animal care and use at Fukuoka University and RIKEN.

Diabetes induction. Diabetes was induced by an i.v. injection of 180 mg/kg STZ (Sigma-Aldrich) (23).

Islet isolation. Islets isolated by collagenase digestion were centrifuged in Ficoll-Conray gradients (24, 25) and transplanted via the portal vein into the liver of STZ-treated mice (26).

α-GalCer treatment. α-GalCer was synthesized in our laboratory (27). Mice were injected i.p. one or three times with 100 µg/kg α-GalCer or 0.025% vehicle (wt/vol) before islet transplantation.

Flow cytometry and staining. The following Abs were used: anti-mouse FcγR II/III (2.4G2), FITC-conjugated anti–CD3ε (145-2C11), FITC- or PE-conjugated anti–CD11b (M1/70), allophycocyanin-conjugated anti–IFN-γ (XMG1.2), allophycocyanin-conjugated anti–IL-4 (11B11), PerCP-conjugated anti–Gr-1 (RB6-8C5), PerCP-Cy5.5–anti–Gr-1 (RB6-8C5), FITC–anti–CD11c (HL3), FITC–anti–CD86 (GL-1), FITC–anti–IFN-γ (145-2C11), FITC–anti–CD11b (M1/70), FITC–anti–IL-4 (11B11), FITC–anti–CD11c (HL3), FITC–anti–CD86 (GL-1), FITC–anti–IFN-γ (145-2C11), and controls (BD Biosciences). FITC–anti–F4/80 (A3-1) and FITC–anti–CD68 (FA-11) were obtained from SEROTEC. PE–α–GalCer–CD11c tetramers were prepared as previously described (28). For intracellular staining, cells were incubated with anti–FcyRIII/II and neutralavidin (Invitrogen), surface stained, fixed, permeabilized, stained with mAbs, and analyzed on a flow cytometer (FACS Calibur; Becton Dickinson). 10,000 viable cells were analyzed.

Cell sorting and transfer. Hepatic mononuclear cells were prepared as previously described (25). Gr-1+CD11b+ cells and Vα14 NKT cells were sorted by MoFlo (DakoCytomation) with purity ≥99 and ≥98%, respectively. Splenic DC3 were purified by MACS with anti–CD11c–coupled magnetic beads (Miltenyi Biotec) with purity ≥99%.

Antibody treatment. mAbs (10 µg/mouse) against Gr-1 or CD11b were i.p. injected into STZ-diabetic mice receiving 200 islets at the time of transplantation.

Histology. The liver and pancreas from transplant recipients were fixed in Bouin’s solution, processed, and embedded in paraffin. Sections were stained with hematoxylin and eosin and aldehyde fuchsin. Immunohistochemistry was performed by a streptavidin–biotin–peroxidase complex method (29).

This work was supported by a grant (02110001) from the Central Research Institute of Fukuoka University (to Y. Yasunami); a Health Science Research Grant from the University of Tokyo, Tokyo, Japan (22). Experimental plans were approved by the committee on institutional animal care and use at Fukuoka University and RIKEN.
The authors have no conflicting financial interests.

Submitted: 28 February 2005
Accepted: 15 August 2005

REFERENCES

1. Ricordi, C., and T.B. Strom. 2004. Clinical islet transplantation: advances and immunological challenges. Nat. Rev. Immunol. 4:259–268.

2. Shapiro, A.M., J.R. Lakey, E.A. Ryan, G.S. Korbutt, E. Toth, G.L. Warnock, N.M. Kneteman, and R.V. Rajotte. 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343:230–238.

3. Ryan, E.A., J.R. Lakey, B.W. Patsy, S. Imes, G.S. Korbutt, N.M. Kneteman, D. Bigam, R.V. Rajotte, and A.M. Shapiro. 2002. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes. 51:2148–2157.

4. Rahimovitch, A. 1993. Roles of cytokines in IDDMM pathogenesis and islet β-cell destruction. Diabetics Res. 1:215–240.

5. Brigl, M., L. Bray, S.C. Kent, J.E. Gumperz, and M.D. Brenner. 1993. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4:1230–1237.

6. Taniguchi, M., M. Harada, S. Kojo, T. Nakayama, and H. Wakao. 2003. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21:483–513.

7. Taniguchi, M., K. Seino, and T. Nakayama. 2003. The NKT cell system: bridging innate and acquired immunity. Nat. Immunol. 4:1164–1165.

8. Wilson, S.B., and T.L. Celovitch. 2003. Janus-like role of regulatory iNKT cells in autoimmune disease and tumor immunity. Nat. Rev. Immunol. 3:211–222.

9. Cui, J., T. Shin, T. Kawano, H. Sato, E. Kondo, I. Toura, Y. Kaneko, H. Koseki, M. Kanno, and M. Taniguchi. 1997. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science. 278:1623–1626.

10. Harada, M., K. Seino, H. Wakao, S. Sakata, Y. Ishizuka, T. Ito, S. Kojo, T. Nakayama, and M. Taniguchi. 2004. Down-regulation of invariant Vα14 antigen receptor in NKT cells upon activation. Int. Immunol. 16:241–247.

11. Wilson, M.T., C. Johanson, D. Olivares-Villagomez, A.K. Singh, A.K. Stanie, C.R. Wang, S. Joyce, M.J. Wick, and L. Van Kaeber. 2003. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl. Acad. Sci. USA. 100:10913–10918.

12. Crowe, N.Y., A.P. Ulrich, K. Kypanisouid, K.J. Hammond, Y. Hayakawa, S. Sidobre, R. Keating, M. Kronenberg, M.J. Smyth, and D.I. Godfrey. 2003. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J. Immunol. 171:4020–4027.

13. Smyth, M.J., N.Y. Crowe, D.G. Pellicci, K. Kypanisouid, J.M. Kelly, K. Takeda, H. Yagata, and D.I. Godfrey. 2002. Sequential production of interferon-γamma by NK1.1+ T cells and natural killer cells is essential for the antemetastatic effect of α-galactosylceramide. Blood. 99:1259–1266.

14. Fuji, S.-i., K. Shinzui, C. Smith, L. Bonfaz, and R.M. Steinman. 2003. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 190:267–279.

15. Jordan, M.B., D.M. Mills, J. Kupper, P. Marrack, and J.C. Cambier. 2004. Promotion of B cell immune responses via an alun-induced myeloid cell population. Science. 304:1808–1810.

16. Burdin, N., L. Brosay, and M. Kronenberg. 1999. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur. J. Immunol. 29:2014–2025.

17. Sharif, S., and A. Arreaza, P. Zucker, Q.S. Mi, S. Sugden, O.V. Naidenko, M. Kronenberg, Y. Koezuka, T.L. Delovitch, J.M. Gombert, et al. 2001. Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat. Med. 7:1057–1062.

18. von Herrath, M.G., and M.B. Oldstone. 1997. Interferon-γ is essential for destruction of β cells and development of insulin-dependent diabetes mellitus. J. Exp. Med. 185:531–539.

19. Thomas, H.E., R. Darwiche, J.A. Corbett, and T.W. Kay. 2002. Interleukin-1 plus γ-interferon–induced pancreatic β-cell dysfunction is mediated by β-cell nitric oxide production. Diabetes. 51:311–316.

20. Exley, M., J. Garcia, S.P. Balk, and S. Porcelli. 1997. Requirement for CD1d recognition by human invariant Vα24+CD4+CD8− T cells. J. Exp. Med. 186:109–120.

21. Kenna, T., L. Golden-Mason, S.A. Porcelli, Y. Koezuka, J.E. Hegarty, C. O’Farrell, and D.G. Doherty. 2003. NK T cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J. Immunol. 171:1775–1779.

22. Tagawa, Y., K. Sekikawa, and Y. Ikawa. 1997. Suppression of concanavalin A-induced hepatitis in IFN-γ−/− mice, but not in TNF-α−/− mice: role for IFN-γ in activating apoptosis of hepatocytes. J. Immunol. 159:1418–1428.

23. Schein, P.S., and R.W. Bates. 1968. Plasma glucose levels in normal and adenalecetomed mice treated with streptozotocin and nicotinamide. Diabetes. 17:760–765.

24. Sutton, R., M. Peters, P. McShane, D.W. Gray, and P.J. Morris. 1986. Isolation of rat pancreatic islets by ductal injection of collagenase. Transplantation. 42:689–691.

25. Ohnaka, K., Y. Yasunami, Y. Ikehara, T. Nagai, M. Kodama, T. Maki, A. Tomita, T. Abe, and S. Ikeda. 1997. Expansion of intermediate T cell receptor cells expressing IL-2Rα+ β, CD3εα− β+, and lymphocyte function-associated antigen-1 in the liver in association with intrahepatic islet xenograft rejection from rat to mouse: prevention of rejection with anti-IL-2B monoclonal antibody treatment. Transplantation. 64:633–639.

26. Kemp, C.B., M.J. Knight, D.W. Scharp, P.E. Lacy, and W.F. Ballinger. 1973. Transplantation of isolated pancreatic islets into the portal vein of diabetic rats. N. Engl. J. Med. 244:447.

27. Kuwano, T., J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H. Ueno, R. Nakagawa, H. Sato, E. Kondo, et al. 2001. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycolipid amides. Science. 298:1626–1629.

28. Matsuda, J.L., O.V. Naidenko, L. Gapin, T. Nakayama, M. Taniguchi, C.-R. Wang, Y. Koezuka, and M. Kronenberg. 2000. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192:741–754.

29. Shibao, K., H. Takano, Y. Nakayama, K. Okazaki, N. Nagata, H. Izumi, T. Uchiumi, M. Kuwano, K. Kohno, and H. Itoh. 1999. Enhanced cooperation of YB-1 and DNA topoisomerase Ilia genes in human colorectal carcinomas. Int. J. Cancer. 83:732–737.