Global Convergence Condition for a New Spectral Conjugate Gradient Method for Large-Scale Optimization

Ahmed Hussien Sheekoo, Ghada M. al-Naemi

Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq.
E-mail: drghadaalnaemi@uomosul.edu.iq

Abstract. The spectral conjugate gradient (SCG) method is an effective method to solve large-scale nonlinear unconstrained optimization problems. In this work, a new spectral conjugate gradient method is proposed with a strong Wolfe-Powell line search (SWP). The idea of the new one is using the β_{ZA} formula which is proposed by Baluch and et al., with suitable parameter φ denoted by (SCGBZA). Under the usual assumptions, the descent properties and overall global convergence of the proposed method (SCGBZA) are proved. The proposed method is numerically proven to be effective.

1. Introduction
Conjugate gradient (CG) and SCG methods are the most effective categories for solving large-scale nonlinear unconstrained optimization problems, this is because they have the advantage of fast convergence, low storage and simple iterations [1]. Now consider the nonlinear unconstrained optimization problems
\[\min f(x), \quad x \in \mathbb{R}^n, \]
where \(f: \mathbb{R}^n \to \mathbb{R} \) a smooth function, and its gradient vector is usually represented by \(g(x) = \nabla f(x) \). The initial point \(x_0 \in \mathbb{R}^n \) is usually calculated through iterative process. The new point calculated as follows:
\[x_{n+1} = x_n + \gamma_n d_n, \quad n = 0,1,2,3,... \] (2)
and the direction
\[d_{n+1} = \begin{cases} -g_{n+1}, & n = 0 \\ -g_{n+1} + \beta_n d_n, & n \geq 1 \end{cases} \] (3)
Where \(\beta_n \in \mathbb{R} \) is the parameter, and \(\gamma_n > 0 \) is the line search generated by inexact line search (ILS). In this work, we use (SWP) defined by:
\[f(x_n + \gamma_n d_n) \leq f(x_n) + \tau g_n^T d_n \] (4)
\[|g(x_n + \gamma_n d_n)^T d_n| \leq -\delta g_n^T d_n \] (5)
Generally, the above parameters τ and μ are required to satisfy $0 < \tau < 0.5 < \delta < 1$. In order to generate different (CG) methods, we have different choices for the parameter β_n. The most commonly used formula for parameters are Hestenes Stiefel method (HS) [2], Fletcher-Reeves method (FR) [3], Polak-Ribiere – Polyak method (PR) [4, 5], Conjugate – Descent method (CD) [6], Liu – Storey method (LS) [7] and Dai-Yuan method (DY) [8]. The parameters of these β_n are as follows:

\[
\begin{align*}
\beta_n^{HS} &= \frac{\theta_{n+1}}{\gamma_{n+1}}, \\
\beta_n^{FR} &= \frac{\|g_{n+1}\|^2}{\|g_n\|^2} - 1, \\
\beta_n^{PR} &= \frac{\theta_{n+1}}{\gamma_{n+1}}, \\
\beta_n^{CD} &= \frac{\|g_{n+1}\|^2}{\gamma_{n+1}}, \\
\beta_n^{LS} &= \frac{\theta_{n+1}}{\gamma_{n+1}} - \frac{1}{\gamma_n}, \\
\beta_n^{DY} &= \frac{\|g_{n+1}\|^2}{\gamma_{n+1}}.
\end{align*}
\]

Respectively, where $\| \cdot \|$ is the standard Euclidean norm and $\gamma_n = g_{n+1} - g_n$.

Another way to solve the CG problem (1) is the SCG method. The main difference between the spectral gradient method and the gradient method is the calculation of the search direction [9]. The search direction of the spectral gradient method is defined by the following formula:

\[
d_n = -\varphi_n g_{n+1} + \beta_n d_n
\]

Where φ_n is a parameter which is known as a spectral gradient. Observe that if $\varphi_n = 1$, then (6) reduced to (3).

SCG was first proposed by Barazilai and Borwein [10] in 1988. Further, Raydan [11] introduced the SCG method for potential large-scale unconstrained optimization. The main merit of this method is that only the gradient directions is used for each search, while the nonmonotone strategy can ensures global convergence. Birgin and Martines [12] concluded that their SCG method was globally convergent. However, there is actually no guarantee that the SCG method will generate descending direction. Therefore, Andrei [13] proposed a reduced proportion under the Wolfe line search. Based on the improved a CG algorithm which was proposed by Jiang et al., [14], an SCG method with sufficient descent feature based on the modified CG algorithm that proposed by Zhang et al. [15]. Many authors engaged in the development of the SCG methods, for more information, please refer to [16-21].

2. New algorithm and the descent property

The SCG method is obtained by combining the CG search direction and a scalar spectral parameter. Baluch et al. [22] in their paper, they constructed a modified three-term HS method in the following direction:

\[
d_{n+1} = -g_{n+1} + \beta_n^{BA} d_n - \varphi_n^{BA} \gamma_n
\]

Note that the suggested formula β_n^{BA} actually modifies the classic β^{HS} formula by adding $\mu \|g_{n+1}^T d_n\|$ in the denominator of HS, the proposed β formula formulated as:

\[
\beta_n^{BA} = \frac{\theta_{n+1}}{\gamma_{n+1}^T - \gamma_n} \frac{\|g_{n+1}^T d_n\|}{\|g_{n+1}^T + \mu \|g_{n+1}^T d_n\|}
\]

with $\mu = 2$, and the parameter φ formulated as:

\[
\varphi_n^{BA} = \frac{\theta_{n+1}^T d_n}{\gamma_{n+1}^T + \mu \|g_{n+1}^T d_n\|}
\]

If the line search is exact, then (8) reduce to the classical HS formula, and (7) reduce to (3).

In this work, we can summarize the direction defined as follows:

\[
d_{n+1} = \begin{cases}
-\frac{g_{n+1}}{\gamma_{n+1}}, & n = 0 \\
-\varphi_n^{BA} g_{n+1} + \beta_n^{BA} d_n, & n \geq 1
\end{cases}
\]

Where β_n^{BA} defined in (8), and φ_n^{BA} it defined as follows:

\[
\varphi_n^{BA} = 1 - \frac{\theta_{n+1}^T d_n}{\gamma_{n+1}^T + \mu \|g_{n+1}^T d_n\|}
\]

with $\mu = 0.5$. If the line search is exact, $\varphi_n = 1$, (10) reduce to (3). The process of our proposed SCG method is described in the following algorithm:
3. Algorithm of SCG

Step 1: Choose an initial point \(x_1 \in \mathbb{R}^n, \epsilon \geq 0, \epsilon = 10^{-6}, \mu = 0.5, \) set
\[d_1 = -g_1, \quad n=1. \]

Step 2: Check convergence, if \(\|g_n\| \leq \epsilon \), then stop; otherwise, continue.

Step 3: Use (4) and (5) to determine the step size \(y_n = 0 \).

Step 4: Calculate the new point \(x_{n+1} \) using (2), \(g_{n+1} = g(x_{n+1}), \)
if \(\|g_{n+1}\| \leq \epsilon \), then stop; otherwise, continue.

Step 5: Calculate the direction \(d_{n+1} \) given in (10), \(\beta_n^{RZA} \) and \(\phi_n^{MBZA} \) are given in (8) and (11) respectively.

Step 6: If the Powel restart criteria
\[\|g^T_{n+1} g_n\| \geq 0.2 \|g_{n+1}\|^2 \] (12)
is satisfied, set \(d_{n+1} = -g_{n+1} \) go to 3; otherwise, continue.

Step 7: Increase \(n \) and go to 3.

In order to ensure that the SCG algorithm proposed in (10) has sufficient descent property, which plays an important role in the global convergence analysis under the SWP in (4) and (5), we need the following assumptions:

4. Assumption (A).

1- \(f(x) \) is restricted from below on the level set \(\Psi = \{ x \in \mathbb{R}^n, f(x) \leq f(x_0) \} \), where \(x_0 \) is the starting point. i.e., there is a constant \(\eta > 0 \), which means \(\|x_n\| \leq \eta \ \forall x \in \Psi \) [23].

2- \(f(x) \) is continuously differentiable in a certain neighborhood \(N \) of \(\Psi \), and its gradient is Lipschitz continuous, i.e., there is a constant \(L > 0 \), such that
\[\|g(x) - g(y)\| \leq L\|x - y\|, \forall x, y \in N. \]

Now using Assumption (A), there exists a positive constant \((\tilde{\omega}, \tilde{\omega}, \tilde{\rho} \) and \(\rho \), such that:
\[0 < \tilde{\omega} \leq \|g_{n+1}\| \leq \omega, \quad \text{and} \quad 0 < \rho \leq \|g_n\| \leq \rho, \forall x \in \Psi \) [23].

Theorem (1): Suppose that assumption (A) holds. Assuming that the sequences \(\{g_n\} \) and \(\{d_n\} \) be generated by the algorithm SCG, and the step size \(y_n \) is obtained by SWP. Then, the proposed method has sufficient descent direction i.e.
\[g^T_{n+1} d_{n+1} \leq -\nu \|g_{n+1}\|^2 \] (14)

Proof: Multiplying the both sides of the direction defined in (10) by \(g^T_{n+1} \) and substituting \(\beta_n^{RZA} \) and \(\phi_n^{MBZA} \) in (8) and (11) respectively, we get
\[g^T_{n+1} d_{n+1} = -\left(1 - \frac{g^T_{n+1} d_n}{d_n y_{n+1} \|g_{n+1} \|^2} \right)\|g_{n+1}\|^2 + \frac{g^T_{n+1} d_n}{d_n y_{n+1} \|g_{n+1} \|^2} g^T_{n+1} d_{n+1} \] (15)

From (5), we have
\[d_n y_{n} = d_n y_{n+1} - d_n g_n \geq -\frac{g^T_{n+1} d_n}{d_n y_{n+1} \|g_{n+1} \|^2} g^T_{n+1} d_{n+1} \]
i.e.
\[d_n y_{n} \geq -(1 - \delta_1) g^T_{n+1} d_{n+1} . \] (17)

We have
\[g^T_{n+1} y_{n} = g^T_{n+1} (g_{n+1} - g_n) = \|g_{n+1}\|^2 - g^T_{n+1} g_n. \]

By the one side of Powell restart criteria (12), we obtain
\[g^T_{n+1} y_{n} \leq \|g_{n+1}\|^2 + 0.2 \|g_{n+1}\|^2 = 1.2 \|g_{n+1}\|^2. \] (18)

Using (16), (17) and (18) in (15), we get
\[g_{n+1}^T d_{n+1} \leq - \left(1 - \frac{-\delta_2 d_n^T g_n}{1 - \delta_1 d_n^T g_n - \mu \delta_1 d_n^T g_n} \| g_{n+1} \|^2 + \frac{1.2 \| g_{n+1} \|^2 \| g_n^T d_n \|}{(1 - \delta_1)(1 - d_n^T g_n) - \mu \delta_1 d_n^T g_n} \right) + \frac{1.2 \| g_{n+1} \|^2}{(1 - \delta_1)(1 - d_n^T g_n) - \mu \delta_1 d_n^T g_n} \| g_{n+1} \|^2 \]
\[= - \left(1 - \frac{1}{1 - (1+\mu)\delta_1} \| g_{n+1} \|^2 - \frac{1.2 \delta_2}{1 - (1+\mu)\delta_1} \| g_{n+1} \|^2 \right) \| g_{n+1} \|^2 \]
\[= - \left(1 - \frac{2.2 \delta_2}{1 - (1+\mu)\delta_1} \| g_{n+1} \|^2 \right). \]
\[\Rightarrow g_{n+1}^T d_{n+1} \leq -\nu \| g_{n+1} \|^2, \text{ with } \nu = \left(1 - \frac{1}{1 - (1+\mu)\delta_1} \right). \]

Therefore, the proposed algorithm satisfies the sufficient descent condition with SWP conditions.

5. The Global Convergence Property.

In this section, we will prove another important condition, called global convergence property. In the following lemma, we review the well-known Zoutendijk condition [24], which plays an important role in the proof of the global convergence analysis of SCG method.

Lemma [25]:
Let assumption (A) holds. Suppose any iteration method (2) and (3), and \(y_n \) is obtained by the SWP (4) and (5). If
\[\sum_{n \geq 1} \frac{1}{\| d_n \|^2} = \infty, \] (20)
Then
\[\lim_{n \to \infty} \inf \| g_n \| = 0. \] (21)

Theorem (2): Consider that assumption (A) is satisfied. The sequences \(\{ x_n \} \) and \(\{ d_n \} \) generated by the algorithm SCG, \(y_n \) is obtained by SWP and \(d_n \) is the descent direction. Then
\[\lim_{n \to \infty} \inf \| g_n \| = 0 \]

Proof: As
\[\beta_n^{BZA} = \frac{\delta_{n+1} (g_{n+1} - g_n)}{d_n y_n + \mu |g_{n+1}^T d_n|^2}. \]

The authors in [22] assumed that \(z = \left[(1 - \delta_1) y_n z_1 + \mu \delta_1 z_1 \right] \), and where \(0 < \delta_1 < 1, z_1 > 0 \) and \(\mu = 0.5 \), so \(z > 0 \). Therefore,
\[|\beta_n^{BZA}| \leq \frac{\ell \| g_{n+1} \|}{z_2 \| d_n \|^2} = \frac{\ell \| g_{n+1} \|}{z_2} \] (22)

Now,
\[|1 - \phi_n^{MBZA}| \leq \frac{1}{1 - \| g_{n+1} \|^2 \| d_n \|^2} \leq 1 + \frac{\ell \| g_{n+1} \|}{z_2 \| d_n \|^2} \]
\[\leq 1 + \frac{\ell \| g_{n+1} \|}{z_2 \| d_n \|^2} \]
\[\leq 1 + \frac{\ell \| g_{n+1} \|}{z_2 \| d_n \|^2} \]

Assume that \(A = \left(1 + \frac{\omega}{z_b} + \frac{\ell}{z_2} \right) \)

Now, combining (22) and (23) with (10), we get
\[\| d_{n+1} \| \leq \| 1 - \phi_n^{MBZA} \| \| g_{n+1} \| + |\beta_n^{BZA}| \| d_n \| \]
\[\leq 1 + \frac{\ell \| g_{n+1} \|}{z_2 \| d_n \|^2} \]
\[
\frac{1}{\|d_{n+1}\|^2} \geq \frac{1}{B^2} \sum_{n \geq 1} 1 = +\infty
\]

By taking the summation to the both sides of (24), we get

\[
\liminf_{n \to \infty} \|g_n\| = 0. \blacksquare
\]

The new proposed algorithm has achieved global convergence.

6. Results and Discussion
We will report the results of several test functions in this section. Some test functions are selected to analyze the new method. These functions are considered from CUTEr [26] and Andrei [27]. Using SWP line search, a comparison was made between the new SCG method and the classical BZACG method based on the number of iterations (NOI) and number of function evaluation (NOF). Set \(\tau = 0.01\) and \(\delta = 0.7\), the stopping criterion of this algorithm was \(\|g_{n+1}\| \leq 10^{-6}\). If the number of iterations exceeds 600, the method is considered to have failed. All codes are written in double-precision FORTRAN 77 language and compiled into Visual (Fortran 6.6) (default compiler settings). Under Table 1, we have compiled the names of test functions used and the numerical results between the BZACG algorithm and the SCG algorithm.

No.	Test Functions	N	Classical algorithm	The SCG algorithm		
		N	NOI	NOF	NOI	NOF
1	Wood	1000	33	73	29	66
		5000	34	75	29	66
		10000	37	81	32	72
		50000	38	83	32	72
		100000	41	93	33	73
		100000	14	44	14	44
		50000	14	44	14	44
2	Cubic	10000	14	44	14	44
		50000	14	44	14	44
		100000	14	44	14	44
		100000	60	163	51	161
		50000	60	163	51	161
3	Extended Hiebert	10000	60	163	51	161
		50000	60	163	51	161
		100000	60	163	51	161
		100000	60	163	51	161
		100000	600	1172	51	126
		50000	600	1174	49	121
		100000	600	1174	51	127
4	Helical	50000	600	1174	60	144
		100000	600	1174	75	176
5	Powell	10000	42	126	39	116
No.	Test Functions	N	Classical algorithm	The SCG algorithm		
-----	----------------	---	---------------------	-------------------		
			NOI	NOF	NOI	NOF
5000			42	126	39	116
10000			49	169	39	116
50000			57	190	45	135
100000			57	191	45	135
1000			30	78	27	74
5000			32	80	28	76
10000			36	92	29	78
100000			36	92	29	78
1000			19	99	18	97
5000			33	202	19	86
6	Rosen	10000	33	82	28	76
50000			36	92	29	78
100000			36	92	29	78
1000			19	99	18	97
5000			33	202	19	86
7	Summ	10000	40	356	34	240
50000			65	311	63	153
100000			72	377	69	286
1000			188	634	187	560
5000			387	1170	405	1292
8	OSP	10000	573	1790	567	1779
50000			580	2305	577	2002
100000			595	2287	580	2011
1000			9	21	9	21
5000			9	21	9	21
9	DENISCHNB (CUTE)	10000	9	21	9	21
50000			9	21	9	21
100000			9	21	9	21
1000			86	334	77	305
5000			93	376	84	346
10000			93	376	84	346
1000			93	376	84	346
1	Miele	50000	107	460	98	430
100000			107	460	98	430
1000			11	23	10	21
5000			11	23	10	21
10000			12	25	11	23
50000			12	25	11	23
100000			12	25	12	23
1000			60	121	50	104
5000			151	306	60	126
10000			142	288	161	334
10000			113	234	166	342
1000			86	334	77	305
5000			93	376	84	346
10000			93	376	84	346
1	Wolfe	50000	169	344	168	347
100000			113	234	166	342
1000			86	334	77	305
5000			93	376	84	346
10000			93	376	84	346
1	Miele	50000	107	460	98	430
100000			203	606	189	582
1000			256	756	151	452
N o.	Test Functions	N	Classical algorithm	The SCG algorithm		
------	-------------------	-----	---------------------	-------------------		
			NOI	NOF	NOI	NOF
1	DIXMAANI	5000	600	1780	319	956
2		10000	600	1780	438	1313
3		50000	600	1780	587	1643
4		100000	600	1780	530	1764
5	Ex-Freudenstein	1000	9	22	8	21
6		5000	600	120	8	21
7		1000	600	240	8	21
8		10000	600	321	8	21
9		5000	11	29	8	21
10		10000	600	321	8	21
11		1000	10	32	7	18
12		5000	6	18	6	18
13		10000	6	20	6	20
14		1000	3	7	3	7
15		5000	3	7	3	7
16		1000	3	7	3	7
17	Diagonal 4	50000	4	10	4	10
18		10000	4	9	4	9
19		1000	19	56	6	18
20		5000	22	65	6	18
21		10000	22	65	6	18
22	Recipe	50000	22	65	6	18
23		10000	22	65	6	18
24		1000	6	15	5	13
25		5000	6	15	5	13
26		10000	7	17	6	15
27		50000	7	17	6	15
28	DIXMAANA	10000	7	17	6	16
29		1000	12	29	10	25
30	Shallwo	5000	12	29	10	25
31		10000	13	31	11	27

7. Conclusion
In this work, we prove the sufficient descent property and the global convergence property of the newly proposed spectral conjugate gradient method through strong Wolfe–Powell line search. The numerical results show that SCG algorithm outperforms BZA conjugate gradient method in terms in the number of iterations and the number of function evaluations.

Acknowledgments
The author expresses their gratitude and thanks to the encouragement and support of the College of Computer Sciences and Mathematics, the University of Mosul.

References
[1] M Mamat, I M Sulaiman, M Maulana, Sukono, and Z A Zakaria 2020 An Efficient Spectral Conjugate Gradient Parameter with Descent Condition for Unconstrained Optimization *Journal of Advance Research in Dynamical & Control Systems* 12 pp 2487-2493

[2] M R Hestenes and E Stiefel 1952 Methods of conjugate gradients for solving linear systems *Journal of research of the National Bureau of Standards* 49 pp 409-436

[3] R Fletcher and C M Reeves 1964 Function minimization by conjugate gradients *The computer journal* 7 pp 149-154

[4] E Polak and G Ribiere Note sur la convergence de méthodes de directions conjuguées 1969 *ESAIM: Mathematical Modelling and Numerical Analysis-Méthodisation Mathématique et Analyse Numérique* 3 pp 35-43

[5] B T Polyak 1969 The conjugate gradient method in extreme problems *USSR Computational Mathematics and Mathematical Physics* 9 pp 94-112

[6] R Fletcher 1987 *Practical methods of optimization* John and Sons, Chichester

[7] Y Liu and C Storey 1991 Efficient generalized conjugate gradient algorithms, part 1: theory *Journal of optimization theory and applications* 69 pp 129-137

[8] Y H Dai and Y Yuan 1999 A nonlinear conjugate gradient method with a strong global convergence property *SIAM Journal on optimization* 10 pp 177-182

[9] M Malik, M Mamat, S S Abas, I M Sulaiman and Sukono 2020 A new spectral conjugate gradient method with descent condition and global convergence property for unconstrained optimization *Journal of Mathematics and Computer Science* 10 pp 2053-2069

[10] J Barazilai and J M Borwein 1988 Two-point step size gradient methods *IMA Journal of Numerical Analysis* 8 pp 141-148

[11] M Raydan 1997 The Barazilai and Borwein gradient method for the large scale unconstrained minimization problem *SLAM Journal on Optimization* 7 pp 26-33

[12] E Birgin and M J Martines 2001 A spectral conjugate gradient method for unconstrained optimization *Applied Mathematical Optimization* 43 pp 117-128

[13] N Andrei 2007 Scaled conjugate gradient algorithms for unconstrained optimization *Computational Optimization and Applications* 38 pp 401-416

[14] H Jiang, S Deng, X Zheng and Z Wan 2012 Global gradient method *Journal of Applied Mathematics*

[15] L Zhang, W Zhou and D Li 2006 A descent modified Polak-Ribiere-Polyak conjugate method and its global convergence *IMA Journal of Numerical Analysis* 26 pp 629-640

[16] M Dawahdeh, I M Sulaiman, M Rivaie and M Mamat 2020 A new spectral conjugate gradient method with strong Wolfe-Powell line search *International Journal of Emerging Trends in Engineering Research* 8 pp 391-397

[17] J Lie and Y Jiang 2012 Global convergence of a spectral conjugate gradient method for unconstrained optimization *Hindawi Publishing Corporation Abstract and Applied Analysis* 12 Article ID 758287

[18] J K Liu, X Du and K Wang 2012 A mixed spectral CD-DY conjugate gradient method *Journal of Applied Mathematics* Article ID 569795-1

[19] G M Al-Naemi 2018 A Global Convergence of Spectral Conjugate Gradient Method for Large Scale Optimization *Journal of Education and Science for Pure Science* 27 pp 143-162

[20] U A Yakubu, M Mamat M A Mohamed and M Rivaie 2018 Secant condition free of a spectral PRP conjugate gradient method *International Journal of Engineering and Technology* 7 pp 325-328

[21] U A Yakubu, A Igudab, A V Mandarac and S Murtadal 2019 Scalar Parameter of a Spectral PRP Conjugate Gradient Method for Unconstrained Optimization *Malaysian Journal of Computing and Applied Mathematics* 2 pp 34-41
[22] B Baluch, Z Salleh and A Alhawarat 2018 A new modified three-term Heatenes-Stiefel conjugate gradient method with sufficient descent property and its global convergence Hindawi Journal of Optimization 2018 pp 1-13

[23] G M Al-Naemi 2013 Modified Nonlinear Conjugate Gradient Algorithms with Application in Neural Networks LAP LAMBERT Academic Publishing

[24] G Zoutendijk 1970 Nonlinear programming, computational methods Integer and nonlinear programming 143 pp 37-86

[25] Y Dai and L Z Liao 2001 New conjugacy conditions and related nonlinear conjugate gradient methods Applied Mathematics and Optimization 43 pp 87-101 DOI: 10.1007/s10492-0001-0001

[26] I Bongartz, A R Conn, N Gould and P L Toint 1995 ACM Transactions on Mathematical Software 21 pp 123-160

[27] N Andrei 2008 Advance Modelling and Optimization 10 pp 147-161