Treadmill exercise improves memory and increases hippocampal BDNF in a rat model of Alzheimer's Disease

Rokhsareh Abshenas1,2, Tayebe Artimani1,2, Iraj Amiri1,2, Siamak Shahidi3, Sara Soleimani Asl1,2*

1. Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
2. Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
3. Physiology Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract
Introduction: Alzheimer’s disease is strongly correlated with learning and memory impairments. As exercise can enhance memory and learning, in this study, we have investigated the effects of treadmill exercise on memory impairment in amyloid β (Aβ) treated rats focusing on brain-derived neurotrophic factor (BDNF) expression.

Methods: Wistar male rats received intracerebroventricular (ICV) injection of Aβ and exercised on a treadmill for one month. Memory function was assessed using Morris water maze (MWM) and avoidance learning tasks. The level of BDNF was examined by the ELISA test.

Results: The results of MWM and avoidance learning tasks showed that treadmill exercise could improve Aβ-induced memory impairment significantly. Moreover, BDNF expression increased following exercise in the Aβ-treated rats.

Conclusion: The present results suggested that treadmill exercise may improve memory in Alzheimer’s disease by increasing BDNF level in the hippocampus.

http://dx.doi.org/10.32598/ppj.24.4.50

Introduction
Alzheimer’s disease (AD) the most common cognitive disorders of the elderly is characterized by senile plaques of amyloid β (Aβ) and neurofibrillary tangles (Selkoe, 1997). The deposition of fibrillary Aβ is strongly accepted as an agent in the pathogenesis of AD and associated with reduced cognition, increased reactive oxygen species and decreased cell count in the hippocampus (De Felice et al., 2007). It has been reported that up-regulation of BDNF leads to a decrease in Aβ-induced neurotoxicity (Doi et al., 2013). Cognition and memory functions are positively affected by brain-derived neurotrophic factor (BDNF) (Kim and Kim, 2013). BDNF is a member of the neurotrophin family of growth factors, which has been expressed in the highest level in the brain especially in the hippocampus and facilitates the release of glutamate and enhances the phosphorylation of the NR1 and NR2B subunits of the NMDA-receptor complex (Tyler and Pozzo-Miller, 2001). BDNF pathway is mediated by TrkB and p75 receptors that trigger the phosphatidylinositol 3 kinase,
phospholipase C gamma and intracellular signal–regulated kinase 1/2 signaling cascades (for more detail see a review by Bekinschtein et al.) (Bekinschtein et al., 2008).

Treadmill exercise has been accepted as a therapeutic strategy that induces protection in the brain of both human and rodents (Gharebaghi et al., 2017; Otsuka et al., 2016). Several studies suggest that exercise improves learning and memory function through an increase in the levels of BDNF (Jeon and Ha, 2017). Furthermore, treadmill exercise enhances neurogenesis and myelin repairment via the Wnt3/β catenin signaling pathway and induces an increase in the expression of BDNF and myelin basic protein (Cheng et al., 2020).

In the present study, we hypothesized that treadmill exercise might improve Aβ-induced memory impairment through an increase in BDNF in the hippocampus of rats.

**Materials and methods**

**Animals**

Thirty-five adult male Wistar rats (250-300g) were obtained from the animal facility of Hamadan University of Medical Sciences (HUMS) and maintained under standard laboratory condition (12 h light/dark cycle, 20±2°C and 50% relative humidity) with free access to food and water. All experiments approved by the Ethical committee of HUMS (No: IR.UMSHA.AC.REC.1396.99). The rats randomly classified into four groups (n=7 per each group): control, sham-operated, Aβ and Aβ+ exercise groups.

**Injection of Aβ**

To induce AD, we performed intracerebroventricular (ICV) injection of Aβ (1-42, Sigma-Aldrich, St Louis, MO, USA) according to the previously described method (Komaki et al., 2019). Briefly, anesthetized rats were placed in a stereotaxic frame and the skull drilled over the lateral ventricle using the following coordinate: AP: -0.9mm from the bregma; ML: 1.6mm from the midline; DV: 2.0 mm from the skull surface (Paxinos and Watson, 2006) and Aβ (5µg/5μl) was injected slowly. The sham-operated group went under surgery similarly to the Aβ group except for Aβ injection.

Aβ peptides (1-42) represent very different conformational states so that the residues 31-34 and 38-41 form a β-hairpin, which causes a reduction in the flexibility of C-terminal and the greater propensity of Aβ42 to form amyloids (Chen et al., 2017).

**Treadmill exercise protocol**

The day after the injection of Aβ, we used a motorized rodent treadmill instrument (Tajhiz Gostare Omide Iranian, Iran) to exercise according to a previously published protocol (Gharebaghi et al., 2017). The rats ran on the treadmill for one month (30min daily and five constitutive days/week). The exercise consisted of running at the speed of 25m/min with a 0.3mA stimulus current electric shock when the rats entered the rear of the test chamber.

**Morris water maze (MWM) task**

spatial memory was assessed (Gharebaghi et al., 2017) using water filled MWM (210×51cm), the day after the last day of ran on the treadmill. There was a hidden platform located at a fixed position in the pool. Four consecutive training days consisting of two-block with four trials were conducted. In each trial, the rats were allowed to swim in the pool for 60min at different points. There were 30s and 5min inter-trial and inter-block intervals, respectively. Escape latency and the distance to reach (traveled distance) the hidden platform were recorded as the parameter of acquisition memory.

**Inhibitory avoidance apparatus (Shuttle-box)**

The shuttle box apparatus consisted of two compartments (white and black) separated with a guillotine door. There was a stainless steel shock grid floor in the dark compartment. The day after the spatial memory assessment by MWM, the rats were placed in the white chamber and after 5s the guillotine door was opened and the rats entered the dark compartment. The door was closed and the rats received an electronic foot shock (50Hz and 1.5mA intensity) for 3s. After 24h, the time in the dark compartment (TDC) and step through latency (STL) were recorded to evaluate the avoidance learning memory. The latency was recorded a maximum of 300s.
Enzyme-linked immunosorbent assay (ELISA)
Three hippocampi from each group were mixed and sonicated in PBS. BDNF level was quantified using an ELISA kit (ZellBio, Ulm, Germany) according to the manufacturers recommendation. Assays were carried out in duplicate trials.

Statistical analysis
Statistical analysis was performed using SPSS 16. The repeated measure, one-way analysis of variance (ANOVA) and Tukey's multiple comparison tests were used to analyze the significance between the groups. P-value < 0.05 was considered significant.

Results
MWM performance
To assess acquisition memory, escape latency and traveled distance of four constitutive days were analyzed using two-way ANOVA test with treatment as one factor and training days as the second factor. The results of escape latency showed a significant effect for training days \[ F(3, 2049) = 81.85, P < 0.001 \] and treatment \[ F(4, 44.03) = 15.52, P < 0.001 \]. There was a significant interaction between training days and treatment \[ F(12, 538) = 7.14, P < 0.001 \]. Further analysis indicated that Aβ- treated rats took more time to reach the hidden platform than control and sham-operated groups (\( P < 0.01 \), Fig. 1A). According to the results, treadmill exercise for one month caused a significant reduction in escape latency in comparison to the Aβ group (\( P < 0.01 \)). The results of traveled distance showed a significant effect for training days \[ F(3, 5890) = 53.68, P < 0.001 \] and treatment \[ F(4, 3032) = 276.4, P < 0.001 \]. There was a significant interaction between treatment and training days \[ F(12, 7844) = 7.15, P < 0.001 \]. One-way ANOVA
analysis of training days revealed that Aβ-treated group swam further to reach the platform, which was significant when compared to the control and sham-operated groups \((P<0.001, \text{Fig. 1B})\). Treadmill exercise decreased traveled distance compared with Aβ group \((P<0.001)\).

In the probe trial session, we found a significant difference between Aβ-treated rats and the control group \((P<0.05, \text{Fig. 1C})\) and Aβ group spent less time in the target quadrant. Treadmill exercise caused an increase in the entrance to the target quadrant \((27.85\pm2.37)\) compared with Aβ-treated rats \((23.39\pm2.10)\) without any significant difference.

**Passive avoidance task**

Our results revealed a significant difference between control, sham and Aβ groups \((P<0.001, \text{Fig. 2A})\) in STL. Aβ-treated rats that exercised for one month showed a significant increase in STL concerning the Aβ group \((P<0.01)\). Furthermore, control and sham-operated groups spent less time in the dark compartment compared to the Aβ group \((P<0.001, \text{Fig. 2B})\). Treadmill exercise significantly attenuated TDC when compared to the Aβ group \((P<0.01)\).

**ELISA for BDNF**

As shown in Figure 3, the ICV injection of Aβ led to a significant reduction in the BDNF level in the hippocampus compared with the control and sham group \((P<0.001)\). We found a significant increase in BDNF level in rats undergoing exercise than Aβ-treated rats \((P<0.05)\).

**Discussion**

Learning and memory impairments are the important symptoms of AD and ICV injection of Aβ resulted in the structural and physiological alterations in the hippocampus, which contribute to cognitive deficit...
In another study, exercise induced the synaptic plasticity markers through a BDNF-mediated mechanism in the hippocampus (Vaynman et al., 2003). Previously we found that treadmill exercise for one month alleviated cognitive deficit most likely by an increase in the BDNF expression (Sajadi et al., 2017). BDNF regulates neurogenesis, axonal and dendritic branching, and remodeling, as well as functional maturation of excitatory and inhibitory synapse (Seil and Drake-Baumann, 2000; Vicario-Abejón et al., 1998). Several studies have established a positive correlation between BDNF expression and the memory function (Slipczuk et al., 2009). They showed over-expression of BDNF increased neurogenesis in the hippocampus and improved spatial memory (Rossi et al., 2006). We found a significant increase in BDNF expression following exercise that involved long-term plasticity and memory. Based on the combined findings of this study, it can be inferred that treadmill exercise protects against memory impairment in AD model through an increase in BDNF expression.

Conclusion
In this study, avoidance learning and spatial memory in the Aβ-injected rats that underwent exercise were much better than those in the AD model. Our study revealed that BDNF expression was enhanced following exercise in the hippocampus. Therefore, it was concluded that treadmill exercise could be an important clinical strategy for preventing failure of memory in those with neurodegenerative disease.

Acknowledgments
This study was supported by the Hamadan University of Medical Sciences grant (9603201344).

Conflict of interest
The authors report no conflict of interest.

References
Bekinschtein P, Cammarota M, Izquierdo I, Medina JH. BDNF and memory formation and storage. Neuroscientist 2008; 14: 147-56. https://doi.org/10.1177/1073858407305850
Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38: 1205-35. https://doi.org/10.1038/aps.2017.28
Cheng J, Shen W, Jin L, Pan J, Zhou Y, Pan G, et al.
Treadmill exercise promotes neurogenesis and myelin repair via upregulating Wnt/β-catenin signaling pathways in the juvenile brain following focal cerebral ischemia/reperfusion. Int J Mol Med 2020; 45: 1447-63. https://doi.org/10.3892/ijmm.2020.4515

Choi DH, Lee KH, Lee J. Effect of exercise-induced neurogenesis on cognitive function deficit in a rat model of vascular dementia. Mol Rep 2016; 13: 2981-90. https://doi.org/10.3892/mrr.2016.4891

De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 2007; 282: 11590-601. https://doi.org/10.1074/jbc.M607483200

Doi Y, Takeuchi H, Horiuchi H, Hanyu T, Kawanokuchi J, Jin S, et al. Fingolimod phosphate attenuates oligomeric amyloid β-Induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons. PLoS One 2013; 8: e61988. https://doi.org/10.1371/journal.pone.0061988

Gharebaghi A, Amiri I, Salehi I, Shahidi S, Komaki A, Mehdizadeh M, et al. Treadmill exercise attenuates 3,4-methylenedioxyamphetamine-induced memory impairment through a decrease apoptosis in male rat hippocampus. J Neurosci Res 2017; 95: 2448-55. https://doi.org/10.1002/jnr.24078

Jeon YK, Ha CH. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environ Health Prev Med 2017; 22: 1-6. https://doi.org/10.1186/s12199-017-0643-6

Kim G, Kim E. The effects of antecedent exercise on motor function recovery and brain-derived neurotrophic factor expression after focal cerebral ischemia in rats. J Phys Ther Sci 2013; 25: 553-6. https://doi.org/10.1589/jpts.25.5.553

Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, et al. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 2010; 45: 357-65. https://doi.org/10.1016/j.exger.2010.02.005

Komaki H, Faraji N, Komaki A, Shahidi S, Etteef F, Raoufi S, et al. Investigation of protective effects of coenzyme Q10 on impaired synaptic plasticity in a male rat model of Alzheimer’s disease. Brain Res Bull 2019; 147: 14-21. https://doi.org/10.1016/j.brainresbull.2019.01.025

Koo JH, Kang EB, Oh YS, Yang DS, Cho JY. Treadmill exercise decreases amyloid β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease. Exp Neurol 2017; 288: 142-52. https://doi.org/10.1016/j.expneurol.2016.11.014

Leuner K, Müller WE, Reichert AS. From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer’s disease. Mol Neurobiol 2012; 46: 186-93. https://doi.org/10.1007/s12035-012-8307-4

Molteni R, Ying Z, Gómez -Pinilla F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 2002; 16: 1107-16. https://doi.org/10.1046/j.1460-9586.2002.02158.x

Navarro A, Gomez C, López-Cepero JM, Boversi A. Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transport. Am J Physiol Regul Integr Comp Physiol 2004; 286: R505-11. https://doi.org/10.1152/ajpregu.00208.2003

Otsuka S, Sakakima H, Sumizono M, Takada S, Terashi T, Yoshida Y. The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats. Behav Brain Res 2016; 303: 9-18. https://doi.org/10.1016/j.bbr.2016.01.049

Pang PT, Lu B. Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF. Ageing Res Rev 2004; 3: 407-30. https://doi.org/10.1016/j.arr.2004.07.002

Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 1996; 16: 1137-45. https://doi.org/10.1016/S0896-6273(00)80140-3

Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover edition. Academic Press 2006.

Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 2006; 24: 1850-6. https://doi.org/10.1111/j.1460-9586.2006.05059.x

Sajadi A, Amiri I, Gharebaghi A, Komaki A, Asadbegi M, Shahidi S, et al. Treadmill exercise alters ecstasy-induced long-term potentiation disruption in the hippocampus of male rats. Metab Brain Dis 2017; 32: 1603-7. https://doi.org/10.1007/s11011-017-0046-9

Seil FJ, Drake-Baumann R. Neurotrophins and activity-dependent inhibitory synaptogenesis. Prog Brain Res 2000; 128: 219-229. https://doi.org/10.1016/S0079-6123(00)28019-9

Selkoe DJ. Alzheimer's disease: genotypes, phenotypes, and treatments. Science 1997; 275: 630-1. https://doi.org/10.1126/science.275.5300.630

Slipczuk L, Bekinschtein P, Katche C, Cammarota M, Izquierdo I, Medina JH. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS One 2009; 4: e6007. https://doi.org/10.1371/journal.pone.0006007

Sung YH. Effects of treadmill exercise on hippocampal neurogenesis in an MPTP/probenecid-induced Parkinson's disease mouse model. J Phys Ther Sci 2015; 27: 3203-6. https://doi.org/10.1589/jpts.27.3203

Tyler WJ, Pozzo-Miller LD. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 2001; 21: 4249-58.
van der Zee J, Sleeegers K, Van Broeckhoven C. Invited article: the Alzheimer disease-frontotemporal lobar degeneration spectrum. Neurology 2008; 71: 1191-7. https://doi.org/10.1212/01.wnl.0000327523.52537.86

Vaynman S, Ying Z, Gomez-Pinilla F. Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 2003; 122: 647-57. https://doi.org/10.1016/j.neuroscience.2003.08.001

Vicario-Abejón C, Collin C, McKay RD, Segal M. Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci 1998; 15; 18: 7256-71. https://doi.org/10.1523/JNEUROSCI.18-18-07256.1998