Could cattle ranching and soybean cultivation be sustainable? A systematic review and a meta-analysis for the Amazon

Rafael da Silveira Bueno (1), Livia Marchetti (2), Claudia Cocozza (2), Marco Marchetti (3), Fabio Salbitano (2)

Introduction

Tropical forests harbor most of global terrestrial biodiversity and provide essential ecosystem services (ES), such as carbon sequestration (Sullivan et al. 2017), flood and drought control (Marengo 2006), influence on pluviometric regime (FAO/CIFOR 2019) with resulting effects on climate at the global level (Lovejoy & Nobre 2019). Currently, the major pressure on native global forests burdens the tropical region, mainly in the Amazon biome (Marchetti 2005), where high rates of forest losses are often related to two main indirect factors: urban growth (rural-urban migration, urban food market) within countries (DeFries et al. 2010) and growth of agricultural exports to other countries (Henders et al. 2015, Pettegrew et al. 2020). Changes in dietary preferences of the growing global population and the consequent increasing food demand determine an unprecedented need for agricultural products, which, in turn, drives deforestation, land degradation and overall loss of biodiversity (Kehoe et al. 2017, FAO/UNEP 2020). This is even more evident when crop and livestock management is not sustainable and when the expansion of the agriculture frontier causes conflicts with detrimental effects on natural forests. The production of two commodities is pinpointed as the main driver of Amazon deforestation: beef cattle (Barona et al. 2010) and soybean cultivation (Fearnside 2001, Domingues & Bermaun 2012, Gollnow et al. 2018, Celdonio et al. 2019). Sustainable agricultural practices are posited as the main alternative to counteract land degradation and deforestation while...
producing food resources. These practices in the Amazon include different types of agro-silvopastoral systems, agroforestry, cattle rotation and pasture improvement (Cerri et al. 2005, Murguetio et al. 2011, Martorano et al. 2016, Soares et al. 2020). This paper has the overall objective to review the available literature on the adoption of sustainable practices (SP) in cattle ranching and soybean cultivation in the Amazon region. Initially, this will paint a broad picture of the diversity, typologies and geographical distribution of such practices, and then a meta-analysis will be performed to calculate the effects of such practices on the ES. The aim is to increase the awareness of people and the scientific community about the existence of alternatives to the conventional and often unsustainable agricultural model, as developed in the last decades in the Amazon region, as well as to encourage the subsidizing of SP by public policies and initiatives. The above-mentioned need emerges as a response to climate change and biodiversity crises and, in parallel, the application of new pathways in agriculture and food systems are a stronger concern in the post Covid-19 scenario, where preventive sustainable approaches are expected to contribute to reducing the risk of new epidemic diseases (Dobson et al. 2020, Galimberti et al. 2020).

Materials and methods
This paper has been based on an extensive literature review followed by (i) a review analysis and (ii) a meta-analysis. The literature search was performed on indexed documents within the Scopus® platform based on a progressive combination of keywords in the string “Title, abstract and keywords”, then refined by “Keywords”, on 3 and 4 September 2020. The search included research articles, reviews, conference papers and book chapters published in English, French, Portuguese and Spanish from 1989 to 2020, that were focused on the Amazon region. The following keywords have been used and combined with the keyword “Amazon” or “Amazon region”: “sustainable cattle breeding”, “sustainable livestock farming”, “sustainable livestock”, “sustainable beef”, “integrated livestock”，“sustainable intensification”, “silvopastoral systems”, “sustainable soy”, “sustainable soybean”, “soybean sustainability”, “soy zero deforestation”.

The results of the first phase of literature search consisted of a large number of papers, so the second step of selection was done by filtering the papers according to the inclusion criteria of SP (sustainable management, silvopastoral systems and agroforestry) and sectoral policies (commodity chains and certification systems). The final database included 274 papers: 167 for cattle and 107 for soybean. We checked the full text of 88% of the available papers. The documents without available full text (the remaining 12%) were classified by using the abstracts so as to annotate full reference, year of publication, research location, and self-reported keywords (SRK from here on). The review analysis was performed through three subsequent steps:

1. Qualitative evaluation to discriminate the general characteristics of papers and their contents. The papers were grouped in 4 “topic” categories (TAA: Title As- signed by the Authors): sustainable practices, sustainable management, certification policies, supply chain initiatives. We define as “sustainable practices” the cases that mention experiments reported by the papers, while “sustainable management” refers to papers addressing general topics oriented to identify processes and procedures of managing more than the specific actions undertaken.

2. SRK were extracted and those addressing the same concept were grouped to obtain a major conceptual understanding and to avoid excessive dispersion of terminologies. We set a threshold of 6 keywords with converging meaning to generate a SRK group.

3. The content of papers addressing SP for both drivers has been analyzed, with both quantitative and qualitative approach, in order to check the data suitability towards performing a meta-analysis.

The first search step for papers suitable for the meta-analysis resulted in 144 papers referring to the following topics: “Integrate crop-livestock-forestry systems” (cattle), “livestock sustainable management” (cattle) and “integrated production systems” (soybean). The papers referring to the other topic categories (policies, supply chain initiatives) were excluded because the data reported were not consistent to apply the meta-analytic process. Afterward, we selected all papers related to the Amazon region (93 papers). The next selection excluded papers not including quantitative primary data (i.e., authors direct measurements in the field) so reducing the database to 40 papers. Later on, papers reporting extractable quantitative data suitable for performing the meta-analysis (mean values, standard deviation and sample size) were selected. The final selection consisted of 13 papers, comprising 6 SP (agrosystem, agrosilvicultural, agrosilvo-crop rotation, pasture improvement and silvopastoral – see Tab. S1 in Supplementary material), whose ES were compared against conventional systems, defined and identified exclusively based on the information present in analyzed papers, with data usually shown as a specific column in a table. The studies usually refer to monoculture (e.g., soybean) or pastureland without trees or crop rotation as a conventional system. Due to a high heterogeneity of the ES variables assessed in these studies, we reclassified the reported data according to 6 categories so as to allow a more robust comparison: animal productivity, herbage biomass, soil organic carbon (SOC), soil fertility, woody biomass and crop yield. Most studies compared more than one ES and more than one SP type. Furthermore, the timing of sampling (e.g., different years), the type of indicators, and the different depths in soil sampling are variables expressed by the datasets reported in the papers. We considered each comparison (i.e., a specific ES variable in a specific type of conventional system against a specific type of SP) inside the same study as an independent observation.

With regards to cattle ranching, 167 papers have been collected. Most of them were directly related to the Amazon region.
Could cattle ranching and soybean cultivation be sustainable?

(70.7%), with a different distribution between countries (Fig. 1).

The other papers considered valid for the analysis (39.3%) regarded Latin American countries outside the Amazon basin and a global view about commodity chains and international policies and trade.

With regards to soybean, 107 papers have been collected. Most of them were directly related to the Amazon region (63.5%), predominantly in Brazil and to a lesser extent in Bolivia (Fig. 2).

The other papers considered valid for the analysis (36.5%) regarded the Amazon region in a broader sense, mainly related to commodity chains and international policies and trade, and some examples of SP carried out in other Latin American regions, outside the Amazon basin.

In the selected studies about cattle ranching, the TAA with the highest number of studies was “livestock sustainable management” (46%), which includes a general approach to sustainability in the cattle sector, including the so called “sustainable intensification” (SI), followed by the topic “integrated crop-livestock-forestry systems” (28%), concerning mainly silvopastoral systems. Differently from cattle, the predominant categories of TAA for soybean regard papers related to policies (48%) and supply chain initiatives (39%). Papers dealing with sustainable agricultural practices represent only the 13% of the total, and mainly refer to crop rotation.

Regarding the most abundant SRK (N > 6) for cattle ranching, deforestation, silvopastoral systems and sustainability were the most cited, indicating that both the negative and positive aspects of cattle ranching and soybean cultivation were assessed in the studies (Fig. 3). For soybean, SRK referring to deforestation and land use change are largely predominant, and a lack of SRK addressing SP was noticed (Fig. 3).
In Tab. 1, a summary of SP for cattle ranching extracted from the reviewed papers, and their self-reported contributions to ES improvements are presented. The table is divided in two parts. The first part includes agroforestry, agrosilvopastoral and silvopastoral systems, which comprise a variety of combinations between shrubs and trees, forage plants (grasses and leguminous herbs) and livestock. All of these practices are represented by the authors as strategies to achieve a more sustainable livestock production and to limit its pressure on tropical forests. The second part reports on the SI approach, intended as the implementation of practices oriented to increase crop and fodder production per area thanks to a more efficient use of inputs, so as to reduce pressure and impacts on land.

Proposed practice	Ecosystem services improvements* / environmental positive effects (self-reported)	References
Eucalyptus + soybean/corn intercropped with pasture in the interrow	S: increase of SOM; increased soil fertility and porosity; P: improved forage and meat yield; R: mitigation of tropical heat; C: alternatives to increase property revenues	Domiciano et al. (2020), Magalhães et al. (2019), Borges et al. (2019), Moreira et al. (2018)
Eucalyptus, pine, teak, balsa + crops + livestock grazing	S: increase of soil porosity	Oliveira et al. (2017)
Trees, maize, grass, forage legumes and kudzu + natural forest regeneration + livestock grazing	S: enhanced species diversity; complete use of resources; pest protection; nutrients recycling; maintenance of soil structure; P: production diversification; C: adaptability for smallholders	Loker (1994)
Trees (for timber, firewood and fruit) + forages + livestock grazing	S: diversity of tree species and forage species; multiple purpose of trees	Pizarro et al. (2020)
Eucalyptus + livestock grazing (palisadegrass)	P: improved forage-based system; greater herbage accumulation; R: enhanced microclimate (mitigation); mitigation of cattle enteric emissions; increased soil C sequestration	Gomes et al. (2020), Domiciano et al. (2020), De Carvalho et al. (2019), De Oliveira Resende et al. (2019), Oliveira et al. (2018)
African mahogany, eucalyptus and paricá (native species) + livestock grazing	P: satisfactory tree performances; production diversification; C: alternatives to increase property revenues	Silva & Schwartz (2019)
African mahogany and cumaru + livestock grazing	P: production diversification; R: increased soil C sequestration	Silva et al. (2018)
Teak + livestock grazing	P: high quality products; production diversification; C: credits; R: mitigation of erosion and desertification	Ansolín et al. (2020)
ISPSs (Intensive Silvopastoral Systems) - high-density cultivation of fodder shrubs with improved tropical grasses and trees	S: enhanced biodiversity; soil conservation; P: production diversification; improved tree cover; R: climate change mitigation; increased soil C sequestration; water regulation; C: suitable for all farm scales, landscape restoration	Murgueitio et al. (2013), Calle et al. (2012), Murgueitio et al. (2011)
Leucaena leucocephala + livestock grazing	S: enhanced biodiversity; N fixation (soil improvement); P: improved fodder resources; R: soil C sequestration; climate change mitigation	Chará et al. (2019), Murgueitio et al. (2011)
Mixed forage bank from different tree species	R: climate change mitigation; increased soil C sequestration; C: improved socio-economic conditions of farmers	Amézquita et al. (2005)
Different tree species in rows + improved pasture with fodder bank	R: GHG emissions reduction; increased soil C sequestration	Landholm et al. (2019)
Native trees and shrubs + rotational grazing systems	S: biodiversity conservation; R: water regulation, improved C stocks	Murgueitio et al. (2011), Lerner et al. (2015)
Crop-livestock integration: crop rotation (soybean/corn/cotton) + livestock grazing	S: soil conservation and improvement; P: higher annual net present value; R: C sequestration; reduction of soil greenhouse gases; lower GHG emissions; mitigation of climate change;	Soares et al. (2020), Dos Reis et al. (2019), Carvalho et al. (2018), Gil et al. (2018), Carvalho et al. (2014)
Rotational grazing	R: recovery of degraded pasture; low energy and water use; C: alternatives to increase property revenues	Pedrosa et al. (2019), zu Ermgassen et al. (2018), Gil et al. (2018)
Pasture improvement (fertilization, irrigation, re-seeding)	S: increased pasture productivity; P: use of forage legumes; R: recovery of degraded pasture; C: low cost per ha	Pedrosa et al. (2019), Latawiec et al. (2014)
Introduction of forage legumes	S: soil conservation; soil properties improvement; functional biodiversity; R: water balance; mitigation of global warming and of groundwater contamination; rehabilitation of degraded land; C: saving of fossil energy	Schultzte-Kraft (2018), zu Ermgassen et al. (2018), Duboux-Junior et al. (2017), Hohnwald et al. (2006)
Feodoit based intensification	R: decrease of on-property deforestation	Vale et al. (2019)
Could cattle ranching and soybean cultivation be sustainable?

Dataset	Moderator (Q, P)	Ecosystem service	Effect size	SE	Z	p	95% CI lower	95% CI upper	N
SP1	Overall RE model	-	-0.025	0.017	-1.429	ns	-0.058	0.009	171
	Ecosystem service (82.61; <0.001)	Crop yield	-0.192	0.028	-6.958	***	-0.246	-0.138	35
		Herbage biomass	-0.152	0.03	-5.101	***	-0.211	-0.094	29
		Livestock productivity	0.194	0.096	2.027	*	0.006	0.381	9
		SOC	0.084	0.028	2.971	**	0.029	0.14	49
		Soil fertility	0.029	0.032	0.922	ns	-0.033	0.091	28
		Woody biomass	0.103	0.044	2.319	*	0.016	0.19	21
SP type (21.24; <0.001)	Agropastoral	-0.088	0.048	-1.822	ns	-0.183	0.007	14	
		Agrosilvicultural	-0.235	0.064	-3.639	***	-0.361	-0.108	13
		Agrosilvopastoral	-0.085	0.046	-1.855	ns	-0.175	0.005	30
		Crop rotation	0.066	0.066	1.006	ns	-0.063	0.195	9
		Pasture improvement	0.063	0.037	1.72	ns	-0.009	0.135	32
		Silvopastoral	-0.017	0.024	-0.684	ns	-0.064	0.031	73
SP2	Overall RE model	-	0.008	0.022	0.369	ns	-0.036	0.052	89
	Ecosystem service (2.39; 0.495)	Herbage biomass	0.019	0.025	0.086	ns	-0.421	0.46	5
		SOC	0.011	0.036	0.318	ns	-0.058	0.081	49
		Soil fertility	0.049	0.027	1.784	ns	-0.005	0.102	20
		Woody biomass	-0.058	0.02	-2.954	**	-0.096	-0.019	15
SP type (0.75; 0.685)	Crop rotation	-0.046	0.04	-1.144	ns	-0.124	0.033	9	
		Pasture improvement	0.014	0.052	0.272	ns	-0.088	0.116	32
		Silvopastoral	0.013	0.022	0.587	ns	-0.03	0.056	48

Dataset	Sustainable practice	Ecosystem service	Effect size	SE	Z	p	95% CI lower	95% CI upper	N
SP1	Agropastoral	Crop yield	-0.166	0.054	-3.078	**	-0.271	-0.06	8
		Herbage biomass	0.076	0.042	1.791	ns	-0.007	0.159	3
		Livestock productivity	0.112	0.166	0.67	ns	-0.215	0.438	3
	Agrosilvicultural	Crop yield	-0.233	0.065	-3.563	***	-0.361	-0.105	9
		Soil fertility	-0.313	0.498	-0.629	ns	-1.288	0.662	4
	Agrosilvopastoral	Crop yield	-0.178	0.035	-5.063	***	-0.247	-0.109	18
		Herbage biomass	-0.031	0.039	-0.778	ns	-0.108	0.047	3
		Livestock productivity	0.271	0.178	1.523	ns	-0.078	0.619	3
		Woody biomass	0.14	0.148	0.945	ns	-0.15	0.43	6
	Crop rotation	SOC	0.153	0.053	2.879	**	0.049	0.257	6
		Soil fertility	-0.105	0.129	-0.815	ns	-0.357	0.147	3
	Pasture improvement	SOC	0.063	0.037	1.72	ns	-0.009	0.135	32
	Silvopastoral	Herbage biomass	-0.195	0.029	-6.643	***	-0.253	-0.138	23
		Livestock productivity	0.206	0.154	1.334	ns	-0.097	0.508	3
		SOC	0.134	0.049	2.769	**	0.039	0.23	11
		Soil fertility	0.055	0.029	1.903	ns	-0.002	0.111	21
		Woody biomass	0.1	0.03	3.359	***	0.041	0.158	15
SP2	Crop rotation	SOC	-0.104	0.04	-2.612	**	-0.182	-0.026	6
		Soil fertility	0.067	0.041	1.629	ns	-0.014	0.147	3
	Pasture improvement	SOC	0.014	0.052	0.272	ns	-0.088	0.116	32
	Silvopastoral	Herbage biomass	0.019	0.225	0.086	ns	-0.421	0.46	5
		SOC	0.066	0.039	1.698	ns	-0.01	0.142	11
		Soil fertility	0.047	0.032	1.448	ns	-0.017	0.11	17
		Woody biomass	-0.058	0.02	-2.954	**	-0.096	-0.019	15
From our initial database, only 13 publications comparing 6 types of SP against crop-land and pasturelands met the requirements to be included in the meta-analysis, representing a total of 171 comparisons of ES variables between conventional systems and sustainable practices derived from the papers (hereafter SP1 dataset – Tab. 2). Although a minimum of 2 studies are recommended for a meta-analysis (Valentine et al. 2010), we decided to include crop yield (only one study) due to its economical relevance in the Amazon, and also because it was evaluated in 3 different SP systems for a total of 35 comparisons. Six of the 13 publications also compared the SP against natural vegetation, for a total of 89 comparisons (hereafter SP2 dataset). In both SP1 and SP2 datasets most comparisons were made against silvopastoral systems (42.9% and 53.6%, respectively), and soil organic carbon (SOC) was the most representative variable assessed (28.6% and 55.1% of the comparisons, respectively).

The random effect model including all studies in the SP1 dataset indicated a slightly negative, albeit non-significant, mean response ratio (RR) of the ES in the areas adopting SP (mean effect size = -0.024, p = 0.153 – Tab. 2, Fig. 4). However, highly variable outcomes were found, as indicated by the significant het-

Fig. 5 - Mean effect size and confidence interval of SP compared to natural vegetation and cropland/pastureland. Mean effect size (dots) and 95% confidence interval (lines) of SP on the ES categories in comparison with conventional cropland and pastureland. 95% CI lines that do not overlap the dashed lines are significant.
erogeneity index ($Q = 9132, p < 0.001$), although the fail safe analysis results showed no bias in the study ($N = 26136$). The overall random effect model in the SP2 dataset indicated a slightly positive, albeit non-significant, mean response ratio (RR) of the ES in the areas adopting SP (mean effect size $= 0.008, p = 0.73$ – Tab. 2, Fig. 4), also with high and significant heterogeneity ($Q = 909, p < 0.001$) but no sign of study bias (fail safe $N = 1133$).

Despite a positive trend, we found a marginal significant relationship between effect size and average annual rainfall ($F = 3.50, p = 0.062$) but no relationship with temperature ($F = 0.33, p = 0.56$; see Fig. S1 and Fig. S2 in the Supplementary material).

Comparison of ES and SP types
In the SP1 dataset, the mean effect size of the random effect models for the ES was positive (0.018), with SOC, livestock productivity and woody biomass positively affected by SP, while herbage biomass and crop yield were negatively influenced. The coefficient for soil fertility was also positive, although no significant differences were detected (Tab. 2, Fig. 4). In the SP2 dataset, woody biomass was negatively affected by SP, while no significant differences were found for the other variables (Tab. 2, Fig. 4). In the overall random effect models of the SP1 for each SP, only the agro-silvicultural model was significant, with negative effect sizes on the ES (Tab. 2, Fig. 4).

Comparison of ES by SP types
In the SP1 dataset random effect models testing the influences of SP on each ecosystem service, 7 combinations were significant. Among the significant combinations, crop yield was the only service negatively affected in all comparisons, while livestock productivity, SOC and woody biomass were positively affected in all comparisons (Tab. 3, Fig. 5).

Herbage biomass and soil fertility in turn were both positively and negatively affected. Regarding the SP types, only agrosilvicultural systems presented negative effects on the ES evaluated (crop yield and soil fertility). In the SP2 dataset, only 2 combinations were significant, SOC on crop rotation and woody biomass on silvopastoral systems, both with negative effect sizes. The other variables present in more than one SP presented both positive and negative effects (Tab. 3, Fig. 6).

Discussion
The review highlights that studies addressing SP in cattle ranching and soybean cultivation in the Amazon region are by far prevailing in Brazil (78.8% of total papers for cattle and 92.6% for soybean, respectively). This is firstly explained by the fact that almost 60% of the entire Amazon forest is located in Brazil. Secondly, the recent upturn in Amazon deforestation (Amigo 2020) has dramatically drawn attention again to the impact of permanent land cover changes and environmental degradation in the Brazilian Amazon. A third key factor is that Brazil is by far the largest soybean and livestock producer and trader among countries within the Amazon region (Chung et al. 2020, Voora et al. 2020). Furthermore, as shown in Fig. 1 and Fig. 2, the geographical distribution of studies reflects quite well how the two drivers are actually spread within the region. The only exception regards cattle ranching in Venezuela: according to FAOSTAT (Fig. 1), it has the third livestock number among Amazon countries, but, regrettably, no studies about this country were found in the literature.

Concerning the geographical distribution of SP, Brazil dominates, confirming trends. An interesting outcome of SP-country relations is that studies found in Brazil show a clear pattern in proposing practices which apply to the large-scale/industrial model, that characterize the Brazilian territory. In fact, Eucalyptus spp. or timber rentable species are dominant as tree species in agroforestry and silvopastoral systems, while the enhancement of species diversity appears rare in the proposed systems. This is in contrast with SP proposed for the other Amazonian countries. For Colombia, Peru, and Ecuador the proposed SP regarding diversified and complex silvopasture practices, which can be applied also at the small-scale, include native tree species and nitrogen-fixing plants, and consider a natural succession-based approach. Interestingly, self-reported ES do not differ so much between countries and type of SP. This suggests to take into consideration trade-offs among such diverse practices (e.g., the frequently cited C sequestration is often not correlated with biodiversity conservation).

SP in cattle ranching and soybean cultivation
The transformation of primary/secondary forest for agriculture, industrial legal/illegal logging, and pasture has been and is the main direct driver of tropical deforestation (Armenteras et al. 2019). Furthermore, a relevant part (the 50% of total pastures in Brazil, according to Dias-Filho 2015) of Amazon pasturelands is classified as “degraded” and, consequently, shows a substantial decrease in productivity. SP for cattle ranching should address primarily the restoration of the productive potential of already existing degraded pastures (Cerri et al. 2005, Montagnini 2008, Murgueitio et al. 2011, Calle et al. 2012, Montagnini et al. 2013, Hohnwald et al. 2015, Landholm et al. 2019, Carvalho et al. 2020). In this perspective, Strassburg et al. (2014) and Brandão et al. (2020) estimated that increasing efficiency and productivity of Brazil’s grasslands and pasturelands could cover the current production of meat, crops, wood products and biofuels until 2040, without further conversion of natural ecosystems. As indicated by our review, different types of SP are available to contribute to pasture improvement and restoration. The SI approach (Tab. 1) aims to achieve a best performing use of land in the livestock sector while reducing unproductive and degraded pastures. A first set of techniques includes rotational grazing (Gil et al. 2018, zu Ermgassen et al. 2018, Pedroza et al. 2019), improved pasture diversification using forage legumes (Hohnwald et al. 2006, Dubeux-Junior et al. 2017, Schultz-Kraft et al. 2018, zu Ermgassen et al. 2018),
and crop rotation and crop-livestock integration (Gil et al. 2015, Dos Reis et al. 2019, Soares et al. 2020). A second SI approach includes pastures improvement through fertilization, irrigation and/or re-seeding, cattle nutritional feed supplements, improved animal breeding, and feed-lot based intensification with confinement. The review revealed contradictions and trade-offs in SI application. The idea of SI proposes to produce more on increasingly smaller land. This could slow deforestation and free space for other food crops. However, contrary to this expected outcome, a risk of “rebound effects”, related to intensification in agricultural frontiers, which can itself induce agricultural expansion by making the activity more rentable and attractive (Latawiec et al. 2014, zu Ermgassen et al. 2018) (ii) the connection between intensification and infrastructure development (road construction, slaughterhouses, etc.) which can increase deforestation (Latawiec et al. 2014, Müller-Hansen et al. 2019); (iii) the negative effects of confinement and feedlots on animal welfare and environment (Vale et al. 2019); (iv) the environmental trade-offs between intensified and extensive cattle production; (v) increasing demand for water associated with a growing cattle herd and additional resources for feed in feedlot finishing (Latha-wiec et al. 2014). Moreover, several practices behind SI can be capital intensive or require high use of resources and investment capacity, thus creating barriers and a possible divide between farmers, increasing leakage effects.

On the other hand, agroforestry, agrosilvo-pastoral and silvopastoral systems (Tab. 1) benefit from the functional and biological synergies of Soil-Plant-Animal-Airmosphere Metabolic Interactions (Stöhr, Magdoff 2011) well reported in the large mosaic of agrosilvopastoral solutions (Carvalho et al. 2018). Loker (1994) proposed a model of a low external input agrosilvopastoral system for the tropics. This model includes well-adapted grass-legume pastures, rotational grazing and the management of natural forest regeneration. Hohnwald et al. (2015) tested this model in practice and found that it represents a promising and ecologically sustainable alternative for smallholders. De facto, the importance of diversified farming systems incorporating farmer preferences and knowledge are currently increasing (Marchetti et al. 2020). Amézquita et al. (2005), comparing different silvopastoral systems with native forest and degraded pasture, reported higher levels of SOC and concluded that they can constitute a viable economic alternative to farmers. Also, intensive silvopastoral systems, characterized by the high-density cultivation of fodder shrubs and trees combined with livestock grazing, are reported as successful alternatives for tropical countries (Murgueitio et al. 2013). This approach proposes a “natural intensification” strategy (Calle et al. 2012), contributing to deconstruct the dichotomy between agricultural intensification and land sparing. The introduction of Leucaena leucocephala is referred as a useful practice (Chará et al. 2019). The inclusion of commercial timber species can constitute an interesting perspective for farmer income integration (Silva et al. 2018, Ansolín et al. 2020, Pizarro et al. 2020). The use of Eucalyptus spp. has a notable importance, mainly in recent papers referring to silvopastoral experimental practices in large properties (De Carvalho et al. 2019, Magalhães et al. 2019, Eri et al. 2020). Often, the use of Eucalyptus is related to the limitation of GHG emission intensity of cattle production (Havlík et al. 2014, De Figueiredo et al. 2017, De Oliveira Silva et al. 2018, Landholm et al. 2019, Eri et al. 2020), one of the reported benefits of silvopastoral systems.

Regarding SP and their adoption, though, cattle ranchers in the Amazon region generally show scarce interest. This lack of interest can be explained by the so-called “Amazonian cattle culture” (Hoelle 2014). Landowners choose to adopt more SP only when the marginal return of extensive ranching is lower than the intensifying one, and/or land becomes a scarce resource (Latawiec et al. 2014). Additionally, land speculation, which determines directly unproductive profit-seeking mechanisms, influences the low adoption of SP since the real objective is to maintain control over large areas while awaiting infrastructure development and higher land prices (Garrett et al. 2017, Sauer 2018). Other reasons that limit the adoption of SP include the lack of validation regarding economic viability (Oliveira et al. 2017), high implementation costs (Latawiec et al. 2017, Lerner et al. 2017, zu Ermgassen et al. 2018) – in a sector in which no-one is really willing to pay for improvements –, difficulties to access credits (Cortner et al. 2019) and lack of incentives from public policies (zu Ermgassen et al. 2018). However, the very limited adoption of sustainable agricultural practices is slowly changing, mainly because of the expected improvements in productivity and profitability, while the environmental concern is not a priority for cattle ranchers (Latawiec et al. 2017).

With regard to SP in soybean production, the overview differs from the performed analysis about cattle ranching. In fact, we have found a limited number of papers (13% – see Fig. 5) addressing sustainable soybean productive systems. Soybean is a large scale open-field crop, and this could explain the lower suitability in adopting integrated agriculture and/or agroforestry practices, perceived as small-scale practices. Consequently, some proposed options in this direction resulting from our review are: double-cropping systems (Hampf et al. 2020); planting of soybean in crop-livestock integrated systems (Gil et al. 2016); and/or inclusion of tree species in integrated systems (Martorano et al. 2016).

These systems appear economically more sustainable (Dos Reis et al. 2019), can contribute to mitigate GHG emissions (Carvalho et al. 2014) and to increase soil carbon stocks (Soares et al. 2020). Nevertheless, their success largely depends on successfully applied good management practices and technical support, and are still far from a broad application (Gil et al. 2016, Oliveira et al. 2018). Furthermore, a reported factor of sustainability in soybean cultivation in the Amazon region is its establishment on previously cleared and/or abandoned pastures, addressing the potential restoration of degraded land. However, a strong side effect is the consequent displacement of cattle ranching to the forest frontier (Barona et al. 2010, Domingues & Bermann 2012, Gollnow & Lakes 2014, Maranhão et al. 2019, Picoli et al. 2020). In conclusion, as evidenced from the reviewed papers, it appears that the actual sustainability of soy refers essentially to public policies and supply chain initiatives that are supposed to reduce deforestation and mitigate soy negative impacts.

Meta-analysis of the effects of SP on ES

The first relevant finding of our meta-analysis was the low number of studies fitting the inclusion criteria, revealing a critical gap in the scientific knowledge of the use of SP in the Amazon. In a meta-analysis on the effects of agroforestry systems on biodiversity and ES in Europe (Torralba et al. 2016), 53 studies were assessed, but with a clear geographical concentration, indicating that also in Europe there is an overall lack of empirical information.

Despite the relative low number of studies, the performed meta-analysis indicates that SP promoted an increase in four on six ES, as compared to conventional cropland and pastures and only woody biomass was lower as compared to natural vegetation. In the SP dataset, the two services that were negatively affected were crop yield and herbage biomass. Crop yield was negatively affected in all SP, and was responsible for the negative coefficient of the overall model. Such negative effect could be attributable to the shading effect of trees, and it was much higher in the corn crop (a C4 plant) than in soybeans (a C3 plant), the latter being significant only after the fourth year of SP implementation (Magalhães et al. 2019). The negative effects of SP on herbage biomass were somehow expected due to two major reasons: firstly, this variable was not measured in the pasture improvement studies; furthermore, as for crop yield, shading is known to reduce the productivity of grasses (C3 plants). However, studies indicating a negative effect on herbage biomass detected a positive and significant effect on livestock productivity. This result suggests that herbage biomass is not always a good predictor, as for example the thermal comfort (shade) provided by trees, or food production provided by woody species, may be relevant.
for livestock productivity (Júnior et al. 2019). A similar trend was found in the European meta-analysis, with a negative relationship detected for biomass production, while food production was positively affected by agroforestry (Torralba et al. 2016).

Soil organic carbon (SOC) was higher in all SP as compared to conventional cropland and pastures. In the silvopasture systems, the presence of trees directly improved the carbon translocation from the sub-soil, both as foliage decay and as deposited leaf litter (e.g., branches). Additionally, trees increase soil humidity and protection from erosion, as well as enhance the abundance and diversity of soil organisms (fungi, bacteria, micro-arthropods), facilitate decomposition and, consequently, carbon accumulation (Cruz et al. 2017, Petter et al. 2017). Crop rotation and pasture improvement also enhanced the SOC content, indicating that even in the absence of trees these practices are beneficial for soil quality (Mosquera et al. 2012). In accordance with our findings, a meta-analysis of the effects of agroforestry on SOC stocks found positive effects for agroforestry systems in relation to conventional croplands, pasturelands and uncultivated areas in various soil horizons and depths (De Stefano & Jacobson 2018). Nevertheless, these authors found that the conversion of forests to agroforestry decreased SOC amount, while in our case there was a positive, though non-significant, relationship. Such a result was an outcome of the comparison against pasture improvement systems, once well-managed pasturelands are known to present high levels of SOC, although a relevant fraction was accumulated by the pre-existing forest before the pasture establishment (Mosquera et al. 2012, Rittl et al. 2017).

Soil fertility was positively affected by crop rotation, agrosilvicultural and silvo-pastoral practices in both SP1 and SP2 datasets. Due to a higher input of organic matter and a higher protection against environmental agents (rain, wind, sunlight), such practices enhance the accumulation and transformation of most nutrients (Hohnwald et al. 2015, Silva et al. 2018). The improvement of soil fertility and nutrient cycling in agroforestry systems has also been observed in Europe (Torralba et al. 2016). In addition to the chemical components (nitrogen, phosphorus and sulfur), our results indicated that SP practices also enhanced soil microbial and macro fauna abundance and diversity, a very important though often overlooked indicator of soil fertility (Barros et al. 2003, Cruz et al. 2019). Additionally, SP practices also reduced the potential of nitrification, a critical process in many agricultural fields (Cuillas et al. 2016).

As expected, woody biomass was higher in the silvopastoral and agrosilvopastoral systems evaluated. Besides producing important ES and improving biodiversity, woody biomass is an important source of income diversification (Ansolin et al. 2020, Dominicano et al. 2020, Silva & Schwartz 2019), counterbalancing the reduction of crop yield and herbage biomass found in our results, although such direct comparisons are surprisingly poorly quantified in the literature (Torralba et al. 2016).

Limitations of the meta-analysis

For a correct interpretation of our results, some considerations must be taken into account. The first limitation of our meta-analysis is the reduced number of studies meeting the selection criteria (only 13 out of 144). The studies were discarded because they lack primary quantitative data, comparisons against a reference system or required information (means, standard deviations and sample sizes), strongly reducing the spectrum of ES provided by SP in the Amazon. Such narrow filtering, however, is a common issue in meta-analysis, particularly those targeting complex agricultural practices such as agroforestry and variables related to ES or biodiversity (Plieninger et al. 2014, Torralba et al. 2016, De Stefano & Jacobson 2018). Another constraint for interpretation is the lack of standardization of the sampling protocols, as well as the high heterogeneity of the variables assessed, as mentioned in other meta-analysis (De Stefano & Jacobson 2018).

Public policies and supply chain initiatives

The promotion of public policies, civil society actions and/or private arrangements on the meat and soy supply chain result as strategic assessments to mitigate the cattle and soybean sector’s negative impacts and to foster their sustainability. These initiatives include, on one side, government conservation interventions, such as incentive-based regulations, establishment of protected areas and expansion of indigenous lands, land regulations, and police operations against environmental crimes (Müller et al. 2013, Le Polain De Waroux et al. 2019, Picoli et al. 2020). On the other hand, interventions in the supply chain include the non-state market-driven governance systems (Buckley et al. 2019), that should consider compulsory public-driven initiatives, policies and regulations and combine private sector, civil society and government interventions. They include roundtables, steering councils, zero deforestation agreements and other multi-stakeholder initiatives based on voluntary certification and market exclusion mechanisms, to create sustainable production standards (De Souza et al. 2017).

With regards to cattle ranching, the TTA “certification policies” and “supply chain initiatives” were addressed by 26% of the papers reviewed (Fig. 2). Early measures to combat deforestation determined by cattle ranching (started in the early 2000s) were represented by public policies, primarily based on command-and-control instruments. Later on, pressure on the main meat distribution chains has increased, and this has determined the implementation of different initiatives. Representative examples, in the case of Brazil, are the TAC (literally: Term of Adjustment of Conduct) and the “zero-deforestation agreement”, signed in 2009. In both cases, meatpacking companies have committed to block acquisition from farms performing any deforestation after the agreement date (Gibbs et al. 2016, Guéneau 2018). Furthermore, the Brazilian Roundtable on Sustainable Beef (GTPS) has been developed on a system of multi-stakeholder governance and claiming for a global/local large partnership, declares the commitment to zero deforestation, with the creation of the conditions and forms of compensation to make it viable (De Souza et al. 2017). The stated goal of GTPS is to drive the transition towards the sustainability of the sector, thanks to certification standards, verifying that producers comply with established criteria and supporting firms to purchase certified products (Buckley et al. 2019). A reported limit of these approaches is that they are hardly able to be widely applied, and generally they include only large-scale farms/companies (Silva & Lima 2018), reinforcing the cattle (and soybean) typical “productive exclusion” of small farmers (McKay & Colque 2015). In fact, large farmers connected to global agribusinesses are considered key players due to their scale of production; while in contrast, diversified systems of family farmers could have greater potential for sustainable development (Medina & Dos Santos 2017), but are hardly considered. Other limits reported are related to the fact that cattle are often raised on multiple properties prior to slaughter, fattened on noncompliant ranches, and then moved to a compliant property before sale to the slaughterhouses (so-called “laundering”), or even moved to regions not yet monitored by the agreements (so-called “leakage” – Gibbs et al. 2016, Brandão et al. 2020). This is mainly due to inadequate monitoring approaches and large segments of the cattle supply chain that are not tracked, meaning that such agreements do not necessarily translate into effective changes in sustainability (Buckley et al. 2019).

Regarding soybean, many specific efforts to control deforestation emerged from the government, the private sector and the civil society. These topics are addressed by 87% of the collected papers (Fig. 5). In fact, at the global level, there is a growing recognition and awareness of the remote environmental damages driven by global food consumption, which encouraged many private- and public-sector commitments to reduce impacts (Green et al. 2019). Besides the well-established effectiveness at reducing deforestation rates, the success of these interventions suffers numerous shortcomings. As an example, the Soy Moratorium, highly promoted in
the last 15 years, represents the first large scale, voluntary zero-deforestation agreement created in collaboration between civil society, agribusiness industry and the Brazilian government, first signed in 2006 and extended to date. It is widely reported by the literature that, just after launching the moratorium, deforestation linked to soybean plantation in the Brazilian Amazon experienced a consistent decline (Rudorff et al. 2011, Nepstad et al. 2014, Azevedo et al. 2015, Gibbs et al. 2015, Kastens et al. 2017).

Nevertheless, the reduction of direct pressures of soybean expansion on Amazon forests indirectly displaced other activities, mainly cattle ranching, impacting again on the forest frontier (Maranhão et al. 2019, Nepstad et al. 2019, Picoli et al. 2020). Furthermore, such reduction in the Amazon determined a displacement of soybean environmental pressure to other biomes, such as the Brazilian Cerrado (the current major soybean expansion frontier), concretely limiting the effectiveness of the moratorium (Dou et al. 2018, Gollnow et al. 2018, Rausch et al. 2019, zu Ermgassen et al. 2020). Finally, most of the actual soy production is not monitored by the moratorium, making monitoring and cross checking impossible (Lima et al. 2019).

Soterroni et al. (2019) and Nepstad et al. (2019) have proposed to expand the Soy Moratorium to the Brazilian Cerrado, taking into account that the Brazilian legislation is much less restrictive in terms of permitted clearings in this biome, compared to the norms applied in the Amazon. Another example of multi-stakeholder voluntary governance mechanism is the Roundtable on Responsible Soy, which creates certification standards to verify that producers comply with established criteria and to support firms purchasing certified products. Nevertheless, its actual extremely low adoption rate and the small area of application compared to global soy area is a limitation to its effectiveness (Garrett et al. 2016). Furthermore, the soybean supply chain suffers from limited traceability. Leakage and laundering, processes through which soy grown on recently deforested area is included into the supply chain using tangled loopholes (Silva & Lima 2018, zu Ermgassen et al. 2020), and noncompliance with legal requirements have been detected in properties that were “respecting” the moratorium criterion (Azevedo et al. 2015).

Conclusions

The results of the present review highlights a wide concordance around the impacts of soybean crops and cattle ranching on the expansion of the agricultural frontier in the Amazon rainforest. The implementation of SP in their production chains is crucial. Nevertheless, research activities on indicators quantifying the benefits of applying SP need to be implemented, as highlighted by the meta-analysis. For example, despite the importance of crops in the Amazon region, also as deforestation drivers, crop-yield comparisons were found in only one study. This fact represents a very considerable gap and reflects a critical research weakness.

As a general conclusion, we should state that most of the papers are based on process- and discourses-oriented analysis more than deepening the robustness of claimed solutions. They draw a vivid picture of problems and statements, driving to governance approaches, but data on the effectiveness of SP, their comparability and replicability in research programs, are still very scarce.

Nevertheless, some possible solutions stand out from our analysis. Regarding cattle ranching, it should be necessary to improve: the study and implementation of best practices; the incentive for increased productivity through technical assistance; and the decentralization of livestock keeping, instead of reinforcing the current trend toward larger and less accountable livestock holdings. However, with regards to soybean cultivation, it seems that limited sustainable solutions, both for practices and policies, are available.

There remains an open question about how cattle ranching and soybean cultivation in the Amazon will become environmentally and socially sustainable in the long term. First of all, forests should no longer be recommissioned to agricultural use. The reduction of soybean and cattle farming in the Amazon and the application of SP to increase efficiency and production of already existing productions appears to be crucial. The restoration and ecological improvement of degraded pastures, the use of agroforestry and silvopastoral systems should be supported, rather than industrial SI, whose numerous shortcomings have been demonstrated.

Profound changes in consumer behavior and diet are crucial, too: global reduction of meat consumption; fostering of food traceability; inclusion of the environmental costs of agricultural production in the price of food, to build a growing awareness among consumers; eating quality, not quantity. A comprehensive approach to achieving sustainability through a combination of solutions should be performed, to achieve social, economic and environmental objectives. In fact, the current focuses tend to ignore the negative externalities related to biodiversity conservation, social equality, land rights and climate change.

Furthermore, the pressure of deforestation in the Amazon might stimulate policies and their assessment should take into account the increasing coupling between production sectors and geographic locations and, at the same time, must be thoroughly grounded in an understanding of the region’s agriculture and social processes, including the land tenure issue. A possible input for further research should be the broadening of research focus to other biomes under risk caused by the two drivers investigated in this study. In Latin America, this may be the case for the Chaco, a cross-country area (Argentina, Brazil, Bolivia and Paraguay) seriously threatened by degradation dynamics, or for the Brazilian Cerrado, highly endangered by soybean and cattle ranching expansion.

Acknowledgments

We gratefully thank the two anonymous reviewers for the complete and grounded comments and suggestions, which were very helpful to better define concepts and improve the robustness of our research. We also thank Andy Speak for his contribution to the English language revision.

References

Amézquita MC, Ibrahim M, Landler T, Buurman P, Amézquita E (2005). Carbon sequestration in pastures, silvopastoral systems and forests in four regions of the Latin American Tropics. Journal of Sustainable Forestry 21 (3): 31-49. - doi: 10.1080/10549813.2001.10549813

Amigo I (2020). The Amazon’s fragile future. Nature 578: 505-507. - doi: 10.1038/d41586-020-0005-8

Ansolin RD, Timoféyczuk Junior R, Da Silva JCG, Michetti M, Kamo MYT, Dos Reis JC (2020). Strategic diagnosis of livestock-forest integration systems in Northern Mato Grosso. Floresta 50 (1): 1001-1010. - doi: 10.5380/fv.v50i1.60528

Armenteras D, Murcia U, González TM, Bárdon OJ, Arias JE (2019). Scenarios of land use and land cover change for NW Amazonia: impact on forest intactness. Global Ecology and Conservation 17: e00567. - doi: 10.1016/j.gecco.2019.e00567

Azevedo AA, Stabile MCC, Reis TNP (2015). Commodity production in Brazil: combining zero deforestation and zero illegality. Elementa 3: e000076. - doi: 10.1525/journal.elementa.000076

Barona E, Ramankutty N, Hyman G, Coomes OT (2010). The role of pasture and soybean in deforestation of the Brazilian Amazon. Environmental Research Letters 5: 024002. - doi: 10.1088/1748-9326/5/2/024002

Barros E, Neves A, Blanchart E, Fernandes ECM, Wandelli E, Lavelle P (2003). Development of pastures, silvopastoral systems and forests in Amazonia. Pedobiologia 47 (3): 273-280. - doi: 10.1016/S0031-4056(02)00190-2

Brandão A, Rausch L, Durán AF, Costa C,Spawn SA, Gibbs HK (2020). Estimating the potential for conservation and farming in the Amazon and Cerrado under four policy scenarios. Sustainability 12 (3): 1277. - doi: 10.3390/su12031277

Borges WLB, Calonego JC, Rosolem CA (2019). Impact of crop-livestock-forest integration on soil quality. Agroforestry Systems 93 (3): 211-216. - doi: 10.1007/s10457-018-0329-0

Buckley KJ, Newton P, Gibbs HK, McConnel I, Erhman J (2019). Pursuing sustainability through multi-stakeholder collaboration: a description of the governance, actions, and perceived impacts of the roundtables for sustainable beef. World Development 121: 203-217. - doi: 10.1016/j.worlddev.2018.07.019
Could cattle ranching and soybean cultivation be sustainable?

De Carvalho P, Domiciano LF, Mombach MA, Do Nascimento HL, Da Silva Cabral L, Sollenberger LE, Pereira DH, Pedreira BC (2019). Forage and animal production on integrated grass pastures growing in monoculture or as a component of integrated crop-livestock-forestry systems. Grass and Forage Science 74 (4): 650-660. - doi: 10.1111/gfs.1744

Dias-Filho MB (2015). Estratégias de recuperação e intensificação em pastagens degradadas no estado de Minas Gerais. Dissertation, Federal University of Viçosa, Brazil.

De Souza DM, Petre R, Jackson F, Hadarits M, Pogue S, Carlyle CN, Bork E, McAllister T (2017). Intensive silvopastoral systems with trees: a strategy to reduce soil greenhouse gas emissions in the Brazilian Cerrado. Agriculture, Ecosystem and Environment 210: 154-168. - doi: 10.1016/j.agee.2015.12.003

Gil JDB, Garrett R, Berger T (2016). Determinants of recent soybean expansion in Mato Grosso, Brazil. International Food and Agriculture Management Review 22 (2): 173-191. - doi: 10.24244/IFARMR2018.0072

Cortner O, Garrett RD, Valentin JF, Ferreira J, Niles MT, Reis J, Gil J (2019). Perceptions of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agricul ture Policy 82: 843-853. - doi: 10.1016/j.janduse.2019.01.006

Cruz LG, Bastidas ATC, Suárez LA, Salazar JCS (2019). Microbial properties of soil in different coverages in the Colombian Amazon. Floresta e Ambiente 26 (4): 33. - doi: 10.5015/bjagr.2019.2016

Cubillos AM, Vallejo VE, Arbel Z, Teran W, Dick RP, Molina CH, Molina E, Roldán F (2016). Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. European Journal of Soil Biology 72: 42-50. - doi: 10.1016/j.ejsoil.2015.12.003

De Fries RS, Rudel T, Uriarte M, Hansen M (2010). Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geoscience 3: 178-181. - doi: 10.1038/ngeo756

De Oliveira Silva R, Barioni LG, Pellegrino GO, Moran D (2018). The role of agricultural intensification in Brazil’s nationally determined contribution on emissions mitigation. Agricultural Systems 161: 102-112. - doi: 10.1016/j.agsy.2018.01.003

Díaz-Illo MB (2015). Estrategias de recuperación de pastizales degradados en la Amazonía brasileña [Strategies for degraded pastures recuperation in the Brazilian Amazon]. Embrapa Ama zónia Oriental, Belém, Brazil, pp. 12-13. [in Portuguese]

Dobson AP, Pimm SL, Hannah L, Kaufman L, Ahumada JA, Ando AW, Bernstein A, Busch J, Daszak P, Engelmann J, Kinnaird MF, Li BV, L'Agli M, Sangiovanni E, Belingheri M, Riva MA, Casagrandi M, Labra M (2010). Rethinking urban and food policies to improve citizens safety after COVID-19 pandemic. Frontiers in Nutrition 7: 569542. - doi: 10.3389/tnut.2020.569542

Garrett RD, Carlson KM, Rueda X, Noojipady P (2016). Assessing the potential additability of certification by the roundtable on responsible soybeans and the roundtable on sustainable palm oil. Environmental Research Letters 11 (4): 045003. - doi: 10.1088/1748-9326/11/4/045003

Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P, Soares-Filho B, Barreto P, Melo L, Walker NF (2015). Brazil’s Soy Moratorium: supply-chain governance is needed to avoid deforestation. Science 347 (6220): 377-378. - doi: 10.1126/science.aaa0181

Domingues MS, Berman CC (2012). O arco de desflorestamento na Amazônia: da pecuária à soja. [The arc of deforestation in the Amazon: from livestock to soybeans]. Ambiente e Sociedade 15 (2): 122. [in Portuguese]

Dou Y, Da Silva RFB, Hongbo Y, Jinguo L (2018). Spillover effect offsets the conservation effort in the Amazon. Journal of Geographical Sciences 28 (11): 1715-1732. - doi: 10.1007/s11442-018-1359-0

Dubeux-Junior JC, Muir JP, Apolinário XVO, Nair PKR, Lira MA, Sollenberger LE (2017). Tree legumes: an underexploited resource in warm-climate silvopastures. Revista Brasileira de Zootecnia 46 (8): 687-703. - doi: 10.1590/s0100-6929.2017000000010

Eri M, Da Silva Jr CA, Lima M, La Scala Jr N, De Oliveira-Junior JC, Teodoro PE, Capristo-Silva GP (2016). From livestock to soybean [in Portuguese]. In: De Oliveira-Junior JC, Teodoro PE, Capristo-Silva GP (eds) Capitalizing on opportunities provided by pasture sudden death to enhance livestock sustainable management in Brazilian Amazonia. Environmental Development 33 (6): 100449. - doi: 10.1016/j.envdev.2016.10.004

FAO (2019). Framework methodology for climate change vulnerability assessments of forests and forest dependent people. FAO, Rome, Italy, pp. 82-88.

FAO/UNEP (2020). The State of World’s Forests 2020. Forests, biodiversity and people. FAO, Rome, Italy, pp. 82-88.

Fearnside PM (2001). Soybean cultivation as a threat to the environment in Brazil. Environmental Conservation 28 (1): 23-28. - doi: 10.5075/eb.uni-chem.de/2020.100499

Caldeira M, Cencia H, Campone L, Ferri E, Del-l’Agli M, Sangiovanni E, Belingheri M, Riva MA, Casagrandi M, Labra M (2010). Rethinking urban and food policies to improve citizens safety after COVID-19 pandemic. Frontiers in Nutrition 7: 569542. - doi: 10.3389/tnut.2020.569542

Garrett RD, Carlson KM, Rueda X, Noojipady P. (2016). Assessing the potential additability of certification by the roundtable on responsible soybeans and the roundtable on sustainable palm oil. Environmental Research Letters 11 (4): 045003. - doi: 10.1088/1748-9326/11/4/045003

Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P, Soares-Filho B, Barreto P, Mielol C, Walker NF (2015). Brazil’s Soy Moratorium: supply-chain governance is needed to avoid deforestation. Science 347 (6220): 377-378. - doi: 10.1126/science.aaa0181

Gil JDB, Garrett RD, Rueda X, Noojipady P (2016). Did ranchers and slaughtersheds respond to zero-deforestation agreements in the Brazilian Amazon? Conservation Letters 9 (1): 32-42. - doi: 10.1111/conl.12179

Gil JDB, Siebold M, Berger T (2015). Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agriculture, Ecosystem and Environment 199: 394-406. - doi: 10.1016/j.agee.2014.10.008

Gil JDB, Garrett RD, Berger T (2016). Determinants of crop-livestock integration in Brazil: evidence from the household and regional levels. Land Use Policy 53: 557-568. - doi: 10.1016/j.landuse.2016.09.022

Gil JDB, Garrett RD, Rueda X, Noojipady P (2016). Assessing the potential additability of certification by the roundtable on responsible soybeans and the roundtable on sustainable palm oil. Environmental Research Letters 11 (4): 045003. - doi: 10.1088/1748-9326/11/4/045003

Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P, Soares-Filho B, Barreto P, Mellor L, Walker NF (2015). Brazil’s Soy Moratorium: supply-chain governance is needed to avoid deforestation. Science 347 (6220): 377-378. - doi: 10.1126/science.aaa0181

Gil JDB, Munger J, L’Roe E, Barreto P, Pereira Christie M, Amaral T, Walker NF (2016). Did ranchers and slaughtersheds respond to zero-deforestation agreements in the Brazilian Amazon? Conservation Letters 9 (1): 32-42. - doi: 10.1111/conl.12179

Gil JDB, Siebold M, Berger T (2015). Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agriculture, Ecosystem and Environment 199: 394-406. - doi: 10.1016/j.agee.2014.10.008

Gil JDB, Garrett RD, Berger T (2016). Determinants of crop-livestock integration in Brazil: evidence from the household and regional levels. Land Use Policy 53: 557-568. - doi: 10.1016/j.landuse.2016.09.022
J, Pires GF, Costa MH, Lopes L, Reis JC (2018). Tradeoffs in the quest for climate smart agricultural intensification in Mato Grosso, Brazil. Environmental Research Letters 13 (6): 064025. - doi:10.1088/1748-9326/aac4ad
Gollnow F, Lakes T (2014). Policy change, land use, and agriculture: the case of soy production and cattle ranching in Brazil, 2001-2012. Applied Geography 55: 203-211. - doi:10.1016/j.apgeog.2014.09.003
Gollnow F, De Barros Viana Hissa L, Rufin P, Lakes T (2018). Property-level direct and indirect deforestation for soybean production in the state of Mato Grosso, Brazil. Land Use Policy 78: 377-385. -doi:10.1016/j.landusepol.2018.07.010
Gomes JF, Pedreira BC, Santos PM, Bosi C, Lulu J, Pedreira CGS (2020). Micrometeorological effects on canopy characteristics of shaded palisadegrass pastures in a silvopastoral system in the Amazon biome of central Brazil. European Journal of Agronomy 115: 126039. - doi:10.1016/j.eja.2020.103655
Green JMH, Croft SA, Balmford AP, persson UM, Kastner T (2015). Transitions embodied in production and exports of tropical forest-risk commodities. Environmental Research Letters 10 (1): 014025. - doi:10.1088/1748-9326/10/1/014025
Havlík P, Valin H, Herrero M, Obersteiner M, Green JMH, Croft SA, Durán AP, Balmford AP, Lathuillière MJ, Solvik K, Macedo MN, Graesser C, Virah-Sawmy M, Young LE, West CD (2019). Integrating cattle into the slash-and-burn cane-crop production systems in Mato Grosso, Brazil. Agricultural Systems 89 (5): 813-828. -doi:10.1016/j.agsy.2019.102707
Kastens JH, Brown JC, Coutinho AC, Bishop CR, Esquerdo JCDM (2017). Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS One 12 (4): e0176688. - doi:10.1371/journal.pone.0176688
Kehoe L, Romero-Muñoz A, Polaina E, Estes L, Kreft H, Kuemmerle T (2017). Biodiversity at risk under future cropland expansion and intensification. Nature Ecology and Evolution 1 (8): 1219-1235. - doi:10.1038/s41559-017-0234-3
Landholm DM, Pradhan P, Wegmann P, Romero Sánchez MA, Sáuña Salazar JC, Kropp JP (2019). Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Central Wetlands. Environmental Research Letters 14 (11): 114007. - doi:10.1088/1748-9326/ab3db6
Latawiec AE, Strassburg BBN, Valentim JF, Ramos F, Alves-Pinto HN (2014). Intensification of cattle ranching production systems: socioeconomic and environmental synergies and risks in Brazil. Animal 8 (8): 1255-1263. - doi:10.1017/S175173111400668X
Latawiec AE, Strassburg BBN, Silva D, Alves-Pinto HN, Feltan-Barbier R, Castro A, Iribarrem A, Rangel MC, Kalib KAB, Gardiner T, Beduschi F (2017). Improving land management in Brazil: a perspective from producers. Agriculture, Ecosystem and Environment 240: 276-286. - doi:10.1016/j.agee.2017.01.043
Lathuillère MJ, Solvik K, Macedo MN, Graesser J, Miranda EJ, Couto EG, Johnson MS (2019). Cattle production in Southern Amazonia: implications for land and water management. Environmental Research Letters 14 (11): 114025. - [Online] URL: http://iopscience.iop.org/article/10.1088/1748-9326/ab30a7/meta
Le Polain De Waroux Y, Garrett RD, Graesser J, Lathuilliere MJ, Solvik K, Macedo MN, Graesser C, Virah-Sawmy M, Young LE, West CD (2019). Where’s the beef? Incorporating the spontaneous emergence of silvopastoral landscapes in the Brazilian Amazon. Agroforestry Systems 25 (3): 227-241. - doi:10.1007/978-0-7074762
Lovejoy TE, Nobre C (2019). Amazon tipping point: last chance for action. Science Advances 5: eaaz3449. - doi:10.1126/sciadv.aaz3449
Magalhães CAS, Pedreira BC, Tonini H, Farias Neto AL (2019). Crop, livestock and forestry performance assessment under different production systems in the north of Mato Grosso, Brazil. Agroforestry Systems 93 (6): 2085-2096. - doi:10.1007/s10457-018-0311-x
Magoff F (2011). Ecological civilization. Monthly Review 62 (8): 1-25. - doi:10.14452/MR-062-08-2011.01
Manfredo RA, De Carvalho Junior OA, Hermuch PM, Gomes RAT, Pimentel CMM, Guimães RF (2019). The spatiotemporal dynamics of soybean and cattle production in Brazil. Sustainability 11 (7): 2150. - doi:10.3390/su10072150
Marchetti M (2005). Sulla questione della distruzione delle foreste tropicali, riflessioni dopo un viaggio nell’Amazzonia brasiliana [About tropical forests destruction, considerations after a journey in the Brazilian Amazon]. In: “Foreste Ricerca Cultura” (Corona P, Iovino F, Maetzke F, Marchetti M, Menguzzato G, No- centini S, Portoghesi L eds). Coppini Editore, Accademia Italiana di Scienze Forestali, Firenze, Italy, pp. 361-380.
Marchetti M, Cattivelli V, Coccozza C, Salbitano F, Marchetti M (2020). Beyond sustainability in food systems: perspectives from agroecology and social innovation. Sustainability 12 (18): 7554. - doi:10.3390/su12187554
Marengo JA (2006). On the hydrological cycle of the Amazon basin: a historical review and current state-of-the-art. Revista Brasileira de Meteorologia 21 (3): 1-9. [Online] URL: http://clivar.org/sites/default/files/documents/vamos/LBA00-2006_JAMarengo.pdf
Maríngoa L, Siviero MA,Tourne DCM, Vieira SB, Fitzjarrald DR, Vettorazzi CA, Brielza JN, Yeared JAG, Meyering E, Lisboa LSS (2016). Agriculture and forest: a sustainable strategy in the Brazilian Amazon. Australian Journal of Crop Science 10 (8): 1136-1143. - doi:10.21475/ajcs.2016.10.8.777
McCay B, Colque G (2015). Bolivia’s soy complex: the development of “productive exclusion”. The Journal of Peasant Studies 43 (2): 583-610. - doi:10.3390/su12187524
Marchetti M (2005). Sulla questione della distruzione delle foreste tropicali, riflessioni dopo un viaggio nell’Amazzonia brasiliana [About tropical forests destruction, considerations after a journey in the Brazilian Amazon]. In: “Foreste Ricerca Cultura” (Corona P, Iovino F, Maetzke F, Marchetti M, Menguzzato G, No- centini S, Portoghesi L eds). Coppini Editore, Accademia Italiana di Scienze Forestali, Firenze, Italy, pp. 361-380.
Marchetti M, Cattivelli V, Coccozza C, Salbitano F, Marchetti M (2020). Beyond sustainability in food systems: perspectives from agroecology and social innovation. Sustainability 12 (18): 7554. - doi:10.3390/su12187554
Marengo JA (2006). On the hydrological cycle of the Amazon basin: a historical review and current state-of-the-art. Revista Brasileira de Meteorologia 21 (3): 1-9. [Online] URL: http://clivar.org/sites/default/files/documents/vamos/LBA00-2006_JAMarengo.pdf
Martorano LG, Siviero MA, Tourne DCM, Vieira SB, Fitzjarrald DR, Vettorazzi CA, Brielza JN, Yeared JAG, Meyering E, Lisboa LSS (2016). Agriculture and forest: a sustainable strategy in the Brazilian Amazon. Australian Journal of Crop Science 10 (8): 1136-1143. - doi:10.21475/ajcs.2016.10.8.777
McCay B, Colque G (2015). Bolivia’s soy complex: the development of “productive exclusion”. The Journal of Peasant Studies 43 (2): 583-610. - doi:10.3390/su12187524
MEAs (2005). Ecosystems and human well-being. A framework for assessment. Millennium Ecosystem Assessment, Island Press, Washington, DC, USA, pp. 53-60.
Medina G, Dos Santos AP (2017). Curbing enthusiasm for Brazilian agribusiness: the use of actorspecific assessments to transform sustainable development on the ground. Applied Geography 85: 100-112. - doi:10.1016/j.apgeog.2017.06.003
Montagnini F (2008). Management for sustainability and restoration of degraded pastures in the neotropics. In: “Post-Agricultural Succession in the Neotropics”. Springer, New York, USA, pp. 265-295.- doi:10.1007/978-0-387-33642-8_13
Montagnini F, Ibrahim M, Murquejto Restrepo E (2013). Silvopastoral systems and climate change mitigation in Latin America. Bois et Forets des Tropiques 67 (316): 3-16. - doi:10.1919/2013-316.202528

296 iForest 14: 285-298

Da Silveira Bueno R et al. - iForest 14: 285-298
Vale P, Gibbs H, Vale R, Christie M, Florence E, Munger J, Sabaini D (2019). The expansion of intensive beef farming to the Brazilian Amazon. Global Environmental Change 57 (6): 101922. - doi: 10.1016/j.gloenvcha.2019.05.006

Valentine JC, Pigott TD, Rothstein HR (2010). How many studies do you need? A primer on statistical power for meta-analysis. Journal of Educational and Behavioral Statistics 35 (2): 215-247. - doi: 10.3102/1076998609346961

Voora V, Larrea C, Bermudez S (2020). Global market report: soybean. Sustainable Commodities Marketplace Series 2019, The International Institute for Sustainable Development - IISD, Winnipeg, Manitoba, Canada, pp. 20. [online] URL: http://www.iisd.org/system/files/2020-10/ssi-global-market-report-soybean.pdf

zu Ermgassen EKHJ, De Alcantara MP, Balmford A, Barioni L, Beduschi Neto F, Bettarello MMF, De Brito G, Carrero GC, Florence EAS, García E, Gonçalves ET, Da Luz CS, Mallman GM, Strassburg BBN, Valentim JF, Latawiec A (2018). Results from on-the-ground efforts to promote sustainable cattle ranching in the Brazilian Amazon. Sustainability 10 (4): 1301. - doi: 10.31220/osf.io/axyjkk

zu Ermgassen EK, Ayre B, Godar J, Bastos Lima MG, Bauch S, Garrett R, Green J, Lathuilière MJ, Löfgren P, Macfarquhar C, Meyfroidt P, Suavet C, West C, Gardner T (2020). Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environmental Research Letters 15 (3): 035003. - doi: 10.1088/1748-9326/ab6497

Supplementary Material

Tab. S1 - References used in the meta-analysis, average annual precipitation and temperatures of the study sites and references that compared the results also against native forest.

Fig. S1 - Linear relationship between the effect sizes and annual average precipitation found in the 13 studies used in the meta-analysis.

Fig. S2 - Linear relationship between the effect sizes and annual average temperature found in the 13 studies used in the meta-analysis.

Link: Bueno_3779@suppl001.pdf