Measurable cardinals and choiceless axioms
There is no elementary $j: V \rightarrow V$.

Reinhardt cardinal

Theorem: There is no $j: V \rightarrow V$.

Requires AC. Is a Reinhardt cardinal consistent if AC is dropped? $+$DC. Yes.

Q. Is NBG + Reinhardt consistency-wise stronger than ZFC + I_0?

$\jmath: L(V_{\aleph_1}) \rightarrow L(V_{\text{Rein}})$ \quad \text{crit}(\jmath) < \omega_1$

$
j: V_{\omega_1} \rightarrow V_{\omega_1}$ Σ_0

$
j: V_{\omega_1} \rightarrow V_{\omega_1}$ Σ_1

$
j: V_{\omega_1} \rightarrow V_{\omega_1}$ Σ_2
$\exists z$

T_0 is equivalent w/

for all $T \in V_{\text{HF}}$ master coder $j : (V_{j+1}, T) \rightarrow (V_{j+1}, T)$

(Kunen) There is no $j : V_{\text{HF}} \rightarrow V_{\text{HF}}$

(Schüttenberg) The following are equivalent:

1. ZFC + T_0
2. ZF + λ-DC + $j : V_{\text{HF}} \rightarrow V_{\text{HF}}$

$j : L(V_{\text{HF}}) \rightarrow L(V_{\text{HF}})$

$\text{crit}(j) < \lambda$

$L(V_{\text{HF}}) \models \Gamma \vdash V_{\text{HF}} \models L(V_{\text{HF}})$
\[L(Y_{\alpha+1}) \]

\[V/ \]

\[M = j: V_{\alpha+2} \rightarrow V_{\alpha+2} \]

Fact: \(L(Y_{\alpha+1}) \) is a forcing extension.

Q: \(L(C[R]) \) is not ??

\[\mathbf{AD} L(C[R]) \]

Jensen: Exactly one of the following holds:

1. \(V \) is close to \(L \): for all singular \(\aleph \)

 \[\aleph \text{ is singular in } L \text{ and } 2^{\aleph} = \aleph \]

2. \(V \) is far from \(L \): every cardinal is inaccessible in \(L \).

Wadham: If there is an extendible \(\kappa \)
one holds

(1) V is close to HOD; for all singular $\lambda \geq \kappa$

(2) λ is singular in HOD and $\lambda^{+} \cap HOD = \lambda^{+}$

(3) V is far from HOD; for all regular $\delta \geq \kappa$,

δ is measurable in HOD.

ω-strongly measurable

\[j : HOD(\kappa_{\omega}) \rightarrow HOD(\kappa_{\omega+1}) \]

HOD conjecture. Large cardinals imply

V is close to HOD.

Theorem (Woodin) If the HOD conjecture is true, then a Reinhardt cardinal

- proper class of κ-alliances is inconsistent.

Rank Berkeley cardinals.
Def. \(\lambda \) is rank Berkeley if for all \(\alpha < \lambda \leq \beta \), there is \(j: V^\beta \rightarrow V^\beta \) with \(\text{crit}(j) = \alpha \) (and \(\text{crit}(j) < \lambda \)).

Open: Is a Reinhardt equiconsistent w/ a rank Berkeley?

Theorem (Cutolo). If \(\lambda \) is a singular Berkeley limit of extendibles, then \(\lambda^+ \) is measurable.

Crit.: it is consistent w/ \(\text{ZF} \) that every uncountable cardinal is singular.

Q (fisher?): Is it consistent w/ \(\lambda \) being rank Berkeley that every cardinal above \(\lambda \) is singular?
Thus it is consistent w/ CF^{ω_1} that κ is a

Reinhardt

Theorem 1. If κ is a rank

then there is a proper class of

regular δ, for all suff

large δ, $\text{cf}^{\omega_1}(\delta) = \kappa$.

for all γ, for all suff

large regular δ, the club filter

on δ is γ-complete.

$\gamma \rightarrow \delta \rightarrow \omega$

(rank Reinhardt)

Theorem. For a club \mathcal{C} of

the club filter on δ or δ^+

is J-complete.

If F is a filter on X, a set A \subseteq X is a \textit{atom} of F if

\[\forall A: S \in F \]

is an ultrafilter.

(AD) \[F = \text{club filter on } \omega_1 \]

\[\{ \alpha < \omega_1 : cF(\alpha) = \omega_1 \} \] is an atom

\[\{ \alpha < \omega_1 : cF(\alpha) = \omega \} \] is an atom

A filter is \textit{atomic} if every positive set contains an atom.

Theorem: If there is a \textit{rant Berkeley},

\[\text{on large regular cardinals,} \]
for \mathfrak{c}, if there's a club Berkely, then there is a club of \mathfrak{c} such that \mathfrak{c} or \mathfrak{c}^+ is measurable.

Measurable cardinals,

Theorem. (R. Berkley) For a club class of cardinals \mathfrak{c}, every \mathfrak{c}-complete filter on an ordinal extends to a \mathfrak{c}-complete ultrafilter.

Theorem (Kunen) Under $AD + DC$, every ω_1-complete filter on ω_1 extends to an ω_1-complete ultrafilter.
Ketonen order.

If \(\alpha \) is an ordinal and \(\gamma \) is a set, \(\mathcal{B}_\gamma \) is \(\gamma \)-complete u.p.s on \(\gamma \).

Ketonen order is an order on u.p.s on ordinals.

Fix an ordinal \(\delta \).

A function \(f : \mathcal{P}(\delta) \to \mathcal{P}(\delta) \) is ketonen if

1. \(f \) is Lipschitz
 - if \(x \subseteq \delta \) and \(\alpha \subseteq \delta \),
 - \(f(x) \cap \alpha \) depends only on \(x \cap \alpha \).

2. If \(W \in \mathcal{B}_\delta(\delta) \), then \(f^{-1}[W] \in \mathcal{B}_\delta(\delta) \)

 \(x \in U \mapsto f(x) \in W \subseteq \mathcal{B}_\delta(\delta) \)
Ketenen reducibility: \(U \leq^k W \)
of \(f \) Ketenen \(f : P(\mathcal{A}) \rightarrow P(\mathcal{B}) \)
s.t. \(f^{-1}[W] = U \).

Provable wellfounded (DC)
(ZFC)
Ultrapower Axiom \(f \longrightarrow \) for all \(f \), \(\beta_\nu(\mathcal{E}) \) is linearly ordered by Ketenen reducibility.

Open Does TD imply linearity of semi-linearity?

Rank Berkeley corners imply "semi-linearity" of the Ketenen order.

Theorem: If \(R \) is rank Berkeley, then \(U \) for any \(\mathcal{A} \)
then for some \(\kappa \), the relief order on \(B_\kappa (G) \) is almost linear: every level has cardinality \(\leq \chi \) and every set of in comparables has size \(\leq \xi \).

Pseudo large cardinals

DEF: \(\kappa \) is \((\kappa, \infty)\)-supercompact if for all \(\lambda \geq \kappa \), there is \(\lambda < \kappa \) and \(\pi : \mathcal{V}_\lambda \rightarrow \mathcal{V}_\lambda \) s.t. \(\pi (\mathcal{V}) \).

\(\kappa \) is almost supercompact if it is \((\kappa, \infty)\)-supercompact for all \(\lambda < \kappa \).

P.2
Theorem. (Wellordered collection)
If \(\kappa \) is almost supercompact, then for all \(\gamma \), if \(\langle A_\alpha : \alpha < \gamma \rangle \) is a sequence of nonempty sets, then there is a set \(\xi \), s.t. \(\bigcup A_\alpha \neq \xi \) for all \(\alpha < \gamma \) and \(\xi \) is the surjective image of \(V_\kappa \).

Fact. If there is a rank Berkeley then there is a proper class of almost supercompacts.
Cor. If α is countable and $\gamma \geq \alpha$, then γ^+ has cofinality at least ξ.

Proof. Suppose not. Then take $\gamma < \xi$ and $(\gamma_\xi : \xi < \eta)$ converging to γ^+.

By wellordered collection, there is a set ξ that is the surjective image of ν and for each $\xi \in \xi$, there is a wellorder of γ in ξ of ordertype α_ξ^+.

\[
\sup(\alpha_\xi^+) = \sup \{ \text{rank}(\eta) : \xi \in \xi \}
\]

\[
f : \gamma \times \xi \rightarrow \gamma^+
\]

\[
f(\gamma, \xi) = \text{rank}_\xi(\alpha)
\]
\[\text{ran}(f) = \mathbb{R}^+ \]

Proof of wellordersed collection lemma.

Suppose for all \(B < \gamma \), the wellordered collection lemma holds.

Fix \(\langle A_\beta : \beta < \gamma \rangle \). For each \(\beta < \gamma \), let \(B_\beta = \{ \gamma : \text{dom}(g) = V_\beta \} \), \(\text{ran}(g) \cap A_\beta \) for all \(\gamma < \beta \)

Now let \(j : V_\lambda \rightarrow V_{\lambda + 1} \) be elementary \(\lambda < \alpha \) and \(j(\gamma) = \eta \). Consider \(\text{ran}(j) \) is cofinal in \(\gamma \), so for cofinally many \(\beta < \gamma \), there's some \(g \in B_\gamma \cap \text{ran}(j) \).

(if \(B_{\text{ran}(j)} \))
\[\text{ran}(j) \leq V_A < V_k \]

Let: \[\sigma = \{ \text{ran}(f) : f \in B_B \cap \text{ran}(j) \} \]

For any \(B \in \text{ran}(j) \), for all \(E' \subset B \), \(\sigma \cap A_{E'} \) is nonempty

Define \(h : V_k \times V_f \rightarrow \sigma \)

\[h(x, f) = j(f)(x) \]