Validation of a duplex qPCR for detection of Chlamydia trachomatis DNA in ocular samples and comparison with a direct immunofluorescence method using samples from endemic and non-endemic areas in Brazil

CURRENT STATUS: POSTED

Joana da Felicidade Ribeiro Favacho
Instituto Evandro Chagas

Keren Kariene Leite
Instituto de Biologia Molecular do Parana

Samara Tatielle Monteiro Gomes
Instituto Evandro Chagas

Gardene Dourado Mota
Instituto Evandro Chagas

Maria da Paz Menezes Mesquita
Instituto Evandro Chagas

Pedro Henrique de Caires Schluga
Instituto de Biologia Molecular do Parana

Wallyed Tassi
Instituto de Biologia Molecular do Parana

Thiago Jacomasso
Instituto de Biologia Molecular do Parana

Aline Burda Farias
Instituto de Biologia Molecular do Parana

Rita de Cássia Pontello Rampazzo
Instituto de Biologia Molecular do Parana

Charlotte A. Gaydos
Abstract
Trachoma, caused by the bacteria Chlamydia trachomatis, is the world leading infectious cause of blindness. The disease is associated with poor living conditions, especially in developing countries. In these countries, diagnosis is usually based on clinical evaluation, although laboratory confirmation is necessary. Serological-based tests for trachoma laboratory confirmation are cheaper than molecular-based tests, but the later are more sensitive and specific. Among the available molecular tests, qPCR has the best cost-benefit. With this in mind, the present study developed a new duplex qPCR reaction, which concomitantly detects C. trachomatis cryptic plasmid and the human 18S rRNA gene, as an internal reaction control. The new qPCR was validated using 50 previously qPCR-characterized samples for trachoma infection, and showed 95% specificity and 100% sensitivity, with an estimated LOD95 of 600 ag/µL. Next, 50 samples from an endemic area (Marajó, Pará) and 12 from a non-endemic area (Curitiba, Paraná) were investigated using direct immunofluorescence assay (DFA) or the new duplex qPCR. Among the 50 endemic samples, three were positive by clinical evaluation (6%), 18 by DFA (36%) and 48 by qPCR (96%). All samples positive by the clinic evaluation were also positive by qPCR. From the 18 DFA-positives, qPCR identified 16 as positives as well. On the other hand, 32 samples that were DFA-negative due to the low number of elementary bodies (<5 per slide) were positive by qPCR. The results show that the new duplex qPCR has sensitivity and specificity in similar levels to commercial qPCR tests available, and that qPCR indeed is more sensitive than clinical evaluation or DFA, thus allowing earlier treatment start. The ubiquitous presence of C. trachomatis DNA in samples from the endemic region confirms that constant monitoring is necessary. Additionally, effective measures for the elimination of trachoma and the detection of bacterial DNA in the active infection are of fundamental importance, and this newly developed duplex qPCR is an important tool towards this goal.

Background
Trachoma is a chronic and contagious disease caused by the bacteria C. trachomatis. It is considered the leading cause of preventable blindness in developing countries, being associated with poor infrastructure and hygiene conditions (www.trachomacoalition.org). In Brazil, trachoma is present in
most of the country, but especially where life quality conditions are low [1].

C. trachomatis can be found as 19 serovars with distinct characteristics, with trachoma being caused by serovars A, B, Ba, or C [2]. Clinical symptoms include acute inflammation of the conjunctiva and cornea, high mucus production, presence of follicles with retinal bleeding and reduced sight [3]. Depending on the intensity, the infection can evolve to a spontaneous cure or to produce tissue fibrosis after repeated infections [4, 5], resulting in trichiasis, damage to the cornea and, ultimately, blindness [4, 6]. In Brazil, trachoma diagnosis relies on direct clinical evaluation [1]. However, although a gold standard method has not yet been defined, some protocols allow for laboratory-based diagnostic confirmation of the infection.

Serological methods are more common than molecular-based methods, mainly for the easiness of use and cost, but each has its own set of advantages and disadvantages. Direct immunofluorescence assay (DFA) is the closest to a laboratory gold standard method for trachoma diagnosis, although qPCR has become more prevalent and has greater sensitivity. DFA uses fluorescent monoclonal antibodies to detect the presence of a *C. trachomatis* specific protein (MOMP) or polyclonal antibodies against lipopolysaccharide (LPS) [7]. However, despite displaying high specificity, DFA’s sensitivity is low [8–10], possibly because trachoma sampling is affected by several factors, such as previous recent use of eyewash by the patient, associated infections or even the stage of the infection. Micro immunofluorescence methods use serovars-specific monoclonal antibodies, which increases the sensitivity for *C. trachomatis* detection but is a laborious technique that requires a trained technician to analyze the data, thus limiting its use [11].

Molecular-based protocols are faster, more sensitive and more specific than serological-methods for detecting *C. trachomatis*, real time PCR (qPCR) being the most common. Several qPCR protocols have been published, mostly targeting urogenital infection [12–16]. However, fully or semi-automated commercial tests aiming the urogenital infection such as the GeneXpert CT/NG (Cepheid, USA), the Aptima Combo2 CT/NG assay (Hologic, USA) or the Amplicor CT/NG (Roche Molecular Systems, USA) have been shown to be very sensitive and specific for the diagnosis of trachoma [14, 17–21]. The Cepheid CT assay was also evaluated in field settings, and showed very robust results, confirming
that qPCR is a good tool for monitoring the incidence of trachoma in low-infrastructure laboratories [20].

The present study aimed to develop and validate a new research duplex qPCR reaction for concomitant detection of *C. trachomatis* cryptic plasmid and the human 18S rRNA gene in ocular swab samples. We also compared the performance of the new qPCR to DFA or clinical evaluation for the diagnosis of *C. trachomatis* infection and found that, as expected, qPCR is more sensitive and specific.

Methods

Samples. Different sets of samples were used. Commercial DNA: Commercial DNA for *Chlamydia trachomatis* serovar D or serovar J were purchased from ATTC (VR-885D and VR-886D, respectively). Lyophilized DNA was diluted in water to 10 ng/µL, aliquoted and stored at -80 °C until use. Trachoma-negative DNA was extracted from whole blood of non-endemic area volunteers using the High Pure PCR Template Preparation Kit (Roche Applied Sciences, Germany), aliquoted and stored at -80 °C until use. Each commercial DNA was 1:10 serially diluted in human trachoma-negative extracted DNA for the dynamic linear range investigation. Johns Hopkins University’s samples: Fifty samples were collected using dry swabs from trachoma patients in Tanzania [22, 23] and saved in the bio-repository at the Johns Hopkins University’s Chlamydia Research Laboratory (Baltimore, USA. Samples were characterized for the presence of *C. trachomatis* DNA using the Aptima Combo2 CT/NG assay (Hologis, USA). Instituto Evandro Chagas’ samples: Fifty samples were collected in an endemic area (Marajo Island, Brazil and Ananindeua, Brazil) and twelve were collected in a non-endemic area (Curitiba, Brazil). Each eyelid was analyzed by a nurse trained in the WHO simplified classification scheme, who collected samples of individuals irrespective of clinical signs of trachoma. Samples were placed in the specific collection tube, according to the manufacturer’s instructions (Digene "Sample Collection of Female Swabs” kit, Qiagen, Germany).

DNA extraction. Archived de-identified patient samples from Johns Hopkins University or Instituto Evandro Chagas were vortexed to homogenize the sample collection gel. Two hundred microliters of the gel were aliquoted into a clean tube for processing with QIAmp DNA Blood Mini kit (Qiagen,
Germany). Samples were also processed with the DNA extraction kit “High Pure PCR Template Preparation kit” (Roche Applied Sciences, Germany), showing indistinguishable results. Extracted DNA was aliquoted and stored in -80 °C freezer.

qPCR conditions. Detection of C. trachomatis cryptic plasmid DNA[24] was performed using the Multiplex PCR Mastermix (IBMP, Curitiba, Brazil) containing 9 mM Mg-acetate, 5 µL of extracted DNA, oligonucleotides cryp05F (0.2 µM, 5’ GGCCTCGTAGATAAGATATGG 3’), cryp06R (0.2 µM, 5’ CGATGATTTGAGCTGTGTA 3’), and cryp11P (0.1 µM, 5’ FAM-TCTCGGTTAATGTTGATGATGCTT-BHQ1 3’) in a reaction volume of 25 µL. Specific oligonucleotides were designed for concomitant detection of human 18S rRNA gene. Hence, the reaction also contained the oligonucleotides 18S2F (0.1 µM, 5’ GAAACTGCGAATGGCTCATTAAATCA 3’), 18S2R (0.1 µM, 5’ AGAGCTAATACATGCCGACGG 3’), and 18S2P (0.05 µM, 5’ HEX- TGGTTCTTTGGTGCTCGCTCC-BHQ1 3’). All six oligonucleotide sequences were tested for unspecific reaction against 55 common parasites and bacteria but no amplification was observed (a list of the organisms is shown in Supplemental Table 1). Reactions were performed on the ABI7500 Standard instrument (Thermo Fisher Scientific – Waltham, USA), with the following cycling conditions: 95°C/10 min, and 45 x [95°C/15 sec + 60°C/1 min]. Baseline was set from 3 to 15 for both targets. For C. trachomatis DNA, threshold was set to 0.1, and quantification cycle (Cq) values between 19 and 41.50 were considered positive detection. For human DNA, threshold was set to 0.1 and detection was considered positive and free of contaminants if Cq values were between 14 and 37.

Direct Immunofluorescence detection (DFA). Samples were methanol-fixed in glass slides, transported at 4-8 °C and stored at -20 °C until analyzed. DFA was performed according to the manufacturer’s instructions of the kit “Chlamydia T” (Biocientífica S.A., Buenos Aires, Argentina). Briefly, fixed samples were exposed to fluorescent-labelled monoclonal antibodies against anti-MOMP from C. trachomatis. Slides were analyzed in a fluorescence microscope, and were considered valid when containing a minimum of 100 cells and 5 clearly visible Chlamydia antigenic structures. Positive and negative controls were performed in all DFA assays.
Statistical analysis. All qPCR assays in the ABI7500 system were performed in technical triplicates, except for limit of detection (LOD) determination (8-12 replicates). Results are expressed as mean ± standard deviation of the quantification cycle (C\textsubscript{q}) values. Paired Student’s t-test (95% confidence level) were calculated using GraphPad Prism v5.0 software (Graph Pad Prism Inc, USA). The 95% limit of detection (LOD\textsubscript{95%}) for detection of the Chlamydia genomic target was calculated by Probit regression analysis[25]. Kappa coefficient was calculated between the results obtained with the new duplex qPCR and the results of the pre-characterization of the same samples by the commercial Aptima Combo2 CT/NG assay (taken as gold standard), as well as between the new duplex qPCR and the DFA assay or the clinical evaluation. The coefficient was used to test agreement between the diagnostic methods, and Kappa results were interpreted according to [26, 27]: 1.00–0.81 almost perfect, 0.80–0.61 substantial, 0.60–0.41 moderate, 0.40–0.21 fair and ≤0.20 poor agreement. STARD guidelines were followed in the course of this work.

Results
The performance of the new qPCR was evaluated using commercial genomic extracted DNA from two distinct C. trachomatis serovars, D and J. Figure 1 shows linear dynamic range for detection of the C. trachomatis genomic target in serovar J. Insert in Figure 1 shows representative traces of the reactions used to calculate the linear regression (red lines a-f) obtained with concomitant detection of the human 18S rRNA gene (green lines). Reaction parameters for C. trachomatis DNA detection were efficiency of 92% (slope –3.52), R2 of 98.6%, and Y-intercept of -32.79. Table I shows average ± SD of the quantification cycle (C\textsubscript{q}) for each DNA concentration used in Figure 1. Data show that the reaction is more sensitive towards the detection of serovar J, since the lowest concentration (100 ag/µL) was not detected for serovar D DNA.

Using data from Figure 1, a Probit analysis determined an LOD\textsubscript{95%} of 600 ag/µL when assessed with commercial genomic DNA serovar J. When a synthetic double strand DNA containing the same genomic sequence was used as template, LOD\textsubscript{95%} reached 1.61 copies/µL, which translates to 8 copies per reaction (Supplemental Figure S1).
Next step was to validate the new duplex qPCR with previously characterized samples. DNA from fifty samples previously characterized by the Aptima Combo2 assay was analyzed by the duplex qPCR described in Figure 1. Table II compares the results obtained with both protocols. Samples 1-30 were previously characterized as “Positive” and samples 31-50 were characterized as “Negative” for *C. trachomatis* DNA. Both assays yielded the same result for all samples except for one. “Negative” sample (#34) was classified as “Inconclusive” by the qPCR because the reaction failed to detect the human DNA marker, thus invalidating the results. This sample would have to be re-processed in a clinical setting because failure to detect the human DNA might be attributed to degraded DNA template. These data yield a true-positive rate (sensitivity) of 100% and a true-negative rate (specificity) of 85%, with no false-negatives or false-positive detections, and one inconclusive (Table III). Cohen’s kappa coefficient was calculated to be 0.657, which means that both assays have substantial agreement.

Next, we decided to compare the new duplex qPCR protocol to a DFA protocol that uses a monoclonal anti-MOMP antibody. Figure 2A shows the evaluation of 50 samples from a trachoma-endemic endemic region (Marajo Island, Brazil), while Figure 2B shows the evaluation of 12 samples from a non-endemic region (Curitiba, Brazil). Green lines represent the detection of the human 18S rRNA gene. Blues lines represent the detection of the *C. trachomatis* cryptic plasmid DNA. It can be observed that the specific bacterial DNA sequence can be found in most of the samples from the endemic area, while no detection was observed in the samples from the non-endemic area. *C. trachomatis* DNA could be identified in 48 of the 50 endemic-area samples, displaying 96% positivity. However, only three of these samples were clinically positive for *C. trachomatis* (Table IV), confirming an already known strong disparity between the two diagnostic techniques. Figure 2C shows the dispersion of the *C*_q for each sample detected in Figure 2A plotted over the linear regression of the detection of serially diluted *C. trachomatis* serovar J DNA. It can be observed that the samples have high *C*_q, highlighting the importance of the linear detection of 100 ag/μL (Table I) and non-linear detection of up to 10 ag/μL (Figure 2C).
Table IV shows that samples 1-50 (endemic region) were primarily negative for the clinical evaluation as well as for immunodetection of MOMP, whereas 48 of those were classified as “Positive” by qPCR. Samples 51-62 (non-endemic region) were classified as “Negative” for all three diagnostic techniques (clinical evaluation, DFA, or qPCR). There was no correlation between the clinical evaluation, the number of elementary bodies (EBs) as observed by DFA, or the results of the direct immunodetection protocol with the qPCR results. Indeed, Kappa coefficient analysis showed poor correlation between clinical evaluation and qPCR or between DFA and qPCR (less than 0.2 for both cases).

Discussion

The work presented here shows the development and validation of a new duplex qPCR test for detection of *C. trachomatis* DNA in ocular samples. To reach the necessary sensitivity, we chose a target in the cryptic plasmid, which can have up to ten copies per bacterial genome [24, 28].

The development of the new reaction was performed using commercial DNA from two serovars, D and J, which exhibited different LOD (Table I). However, for diagnostic purposes, the difference observed between the detection of the two serovar’s DNA is irrelevant since 1 genome of *C. trachomatis*, containing up to 10 copies of the targeted cryptic plasmid, is roughly equal to 1 fg DNA [28], which is detected for both serovars. Other PCR protocols, either nested, real time or digital, manual or semi-automated, have been published in the last years [12–15, 17, 18, 29, 30]. Although most were not developed for ocular samples, they have been validated for such use, with sensitivity and specificity similar to its original sample matrix (i.e., urovaginal fluids). This is a possible explanation for their limit of detection around 10 genomes of *C. trachomatis*, which is not the most suitable LOD for detection of these bacteria in ocular samples [28]. However, much like the reaction presented herein, some published tests do reach the necessary sensitivity of 1 genome of *C. trachomatis* to be able to detect its low abundance in ocular swab samples [13, 14, 29].

The new duplex qPCR was validated using ocular samples previously characterized for the presence of *C. trachomatis* DNA using the Aptima Combo2 CT/NG assay [23, 31]. The results reached substantial agreement as per the calculated kappa coefficient. However, when the qPCR results was compared to the clinical evaluations or DFA, the agreement was considered poor very likely because each
technique evaluates a different biological marker of the disease.

Examination and laboratory tests are frequently discordant, possibly due to infection kinetics [22] and age-dependent manifestations of infection [24]. The gold standard method for diagnostic of C. trachomatis still is, in many countries, clinical inspection of the patient’s inverted eyelid [32, 33], while some use DFA [9, 10]. Very few diagnostic facilities perform molecular tests for trachoma determination. Thus, given the distinct nature of each test, it is important to identify and differentiate each of their biological targets. Clinical inspection measures the number of lesions in the inverted eyelid of both eyes, which requires a skilled health practitioner. DFA uses antibodies to recognize the presence of C. trachomatis proteins in swab samples of the inverted eyelids. DFA requires a fluorescence microscope and it is prone to inconclusive results due to high levels of background fluorescence, thus also requiring a skilled professional for accurate readings. Moreover, the DFA test threshold for positivity of >5 EBs per analysis could be questioned, since the presence of EB is indicative of cellular adaptation for infection [34]. Molecular tests such as qPCR detects and amplifies sequences of the bacterial genome in a very specific pattern, thus being more reliable than DFA.

Therefore, despite recent advances, DFA still is less sensitive than qPCR [8–10, 31, 35–38]. Indeed, since the clinical signs of trachoma infection are not so unique [39], clinical evaluations correlate poorly with PCR detection levels in low prevalence areas or after mass antibiotic treatments [40]. Our results corroborate the differences between the all three techniques. When 62 uncharacterized samples were probed for the presence of C. trachomatis antigens (DFA) or for C. trachomatis DNA (qPCR), almost opposite results emerged (Table IV). Clinical evaluation or detection of EB by DFA showed very few positives amongst the endemic samples, while 96% were positive by qPCR (48 out of 50 samples). This means that, although the patients did not show clinical signs of active infections or scars from repetitive infections, they have been recently infected because the bacterial DNA was still present, possibly in tissue that was not yet removed by the body. Indeed, latent class analyses of clinical examination versus qPCR detection suggest that qPCR positivity is a better predictor for determining chlamydial infection than clinical inspections [41].

However, limitations of the qPCR technique must not be understated. Molecular assays for trachoma
diagnosis might present a false-negative rate as high as 20% [41], possibly because of the infection timing or poor DNA extraction efficiencies [42–45]. Second, the assay presented herein relies on the presence of the cryptic plasmid inside the bacteria, which could be missing [46]. Some authors have also suggested that other species of *Chlamydia* can also cause trachomatous inflammation [47]. Other limitations that were not evaluated in our study include differences between conjunctival and epithelial specimens, human conjunctival cell yield, DNA extraction efficiency, and thorough removal of molecular inhibitors that may also affect test performance [42–45].

Conclusions
This work shows the development and validation of a new duplex qPCR that concomitantly detects *C. trachomatis* cryptic plasmid DNA and a human endogenous control target. The newly developed reaction was validated against qPCR-pre-characterized samples, showing high sensitivity and specificity. It was also compared with traditional techniques for trachoma diagnosis such as clinical evaluation of the eyelid or direct immunofluorescence assay, showing greater overall performance. The presented qPCR may be an important research tool for monitoring patients and diagnosing trachoma in ocular samples in endemic regions as part of the effective measures for the elimination of the disease.

Abbreviations
qPCR – polymerase chain reaction
DFA – direct immunofluorescence assay
LOD – limit of detection
EB – elementary bodies
MOMP – major outer membrane porin

Declarations
a. Ethics approval and consent to participate

The Johns Hopkins University's Institutional Review Board approved the samples collection in Tanzania under the number IRB00096404, which were then stored at the bio-repository at the Chlamydia Research Laboratory (Baltimore, USA). The Ethics Committee of the Instituto Evandro Chagas, under the CAEE number 48053415.3.0000.0019, approved all samples collection in Brazil. All
participants from both collection sites consented to participate in the site’s respective research study.

b. Consent for publication

Not applicable.

c. Availability of data and material

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

d. Competing interests

Instituto de Biologia Molecular do Paraná (IBMP) produces the PCR mastermix and oligonucleotides used in the qPCR experiments. Several authors received grants or fellowships from the Brazilian funding agencies CNPq and CAPES. This work was partially funded by a grant from the Banco Nacional de Desenvolvimento Econômico e Social (BNDES), contract no. 15.2.0473.1 (Operation #4.816.864). However, IBMP, BNDES, CAPES or CNPq had no participation whatsoever in the present study’s design, data collection, analysis or interpretation, or writing of the report and decision to submit for publication.

e. Funding

This work was partially funded by the Banco Nacional de Desenvolvimento Econômico e Social (BNDES, contract no. 15.2.0473.1, operation #4.816.864). KKL, STMG, PHCS, WT, Tj, and ABF received a fellowship from BNDES via the Fundação de Desenvolvimento Científico e Tecnológico em Saúde (FIOTEC). BNDES, FIOTEC, CGDE/SVS/MS or PAHO had no participation in the study’s design, data collection, analysis, interpretation, or writing of the report, or decision to submit for publication.

f. Authors’ contributions

JFRF supervised all Brazilian samples collection procedures, analyzed the patients’ eyelids, performed the DFA experiments and wrote the first draft of the manuscript. KKL performed all DNA extractions of the Brazilian samples, performed and analyzed most of the qPCR experiments, performed the specificity tests, and wrote the first draft of the manuscript. STMG participated in the Brazilian samples collection and helped analyze the patients’ eyelid as well as the DFA results. GDM and MPMM participated in the Brazilian samples collection and analysis of the patients’ eyelids. PHCS and WT
designed the oligonucleotides and standardized the qPCR reaction. TJ performed qPCR experiments with the synthetic positive control and all statistical analyses. ABF performed the qPCR validation experiments using the Johns Hopkins University’s samples and helped analyze all qPCR results. RCPR participated in the DNA extraction of the Brazilian samples, in the standardization of the qPCR, and in the execution of the specificity tests. CAG and SW coordinated the samples collection in Tanzania, and were responsible for their integrity at the Chlamydia Research Laboratory. ADTC supervised the oligonucleotides design, the standardization and validation of the qPCR, all statistical analyses and wrote the final version of the manuscript. AJLAC oversaw the sample collection as well as the clinical evaluation and DIF analyses in Brazil, and helped to write the final version of the manuscript.

g. Acknowledgements
The authors would like to thank the Programa de Pós-graduação em Saúde Coletiva of the Instituto de Saúde Coletiva at the Federal University of Rio de Janeiro (UFRJ), Dr. Maria de Fátima Costa Lopes and Daniela Vaz Ferreira at the Coordenação Geral de Vigilância das Doenças em Eliminação (CGDE/SVS/MS) for the institutional support, and the Instituto Evandro Chagas for excellent technical assistance as well as for institutional financial support. The authors would like to express their gratitude for the invaluable assistance of Dr. Martha Saboya (PAHO) and Dr. Isabelle Roger (PAHO) in the logistics for obtaining the qPCR-validated samples. Finally, the authors would like to express their deepest gratitude for all patient subjects that participated in this work.

References
1. Brazil MDS. Guia prático para operacionalização da Campanha Nacional de Hanseníase, Verminoses, Tracoma e Esquistossomose. Ministério da Saúde. 2016.
2. Wright HR, Turner A, Taylor HR. Trachoma. Lancet. 2008;371:1945–54.
3. Stewart MW, Liesegang TJ, Schwam BL. Chlamydia Conjunctivitis and Central Retinal Vein Occlusion. Am J Ophthalmol. 2005;140:161–2.
4. Guzey M, Ozardali I, Basar E, Aslan G, Satici A, Karadede S. A survey of trachoma: the histopathology and the mechanism of progressive cicatration of eyelid tissues.
5. Lucena A, Akaishi PMS, Rodrigues M de LV, Cruz AAV e. Upper eyelid entropion and dry eye in cicatricial trachoma without trichiasis. Arq Bras Oftalmol. 2012;75:420-2.

6. Rajak SN, Habtamu E, Weiss HA, Bedri A, Gebre T, Bailey RL, et al. The clinical phenotype of trachomatous trichiasis in Ethiopia: not all trichiasis is due to entropion. Invest Ophthalmol Vis Sci. 2011;52:7974-80.

7. Seadi CF, Oravec R, Poser B von, Cantarelli V V., Rossetti ML. Diagnóstico laboratorial da infecção pela Chlamydia trachomatis: vantagens e desvantagens das técnicas. J Bras Patol e Med Lab. 2002;38:125-33.

8. Papp JR, Schachter J, Gaydos CA, Van Der Pol B. Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae--2014. MMWR Recomm reports Morb Mortal Wkly report Recomm reports. 2014;63 RR-02:1–19.

9. Nishiwaki-Dantas MC, de Abreu MT, de Melo CM, Romero IL, Neto RBM, Dantas PEC. Direct fluorescent antibody assay and polymerase chain reaction for the detection of Chlamydia trachomatis in patients with vernal keratoconjunctivitis. Clinics (Sao Paulo). 2011;66:2013–8.

10. Neinstein LS, Rabinovitz S. Detection of Chlamydia trachomatis. A study of the direct immunofluorescence technique and a review diagnostic limitations. J Adolesc Health Care. 1989;10:10–5.

11. Wang S. The Microimmunofluorescence Test for Chlamydia pneumoniae Infection: Technique and Interpretation. J Infect Dis. 2000;181:S421–5.

12. Bailey RL, Hampton TJ, Hayes LJ, Ward ME, Whittle HC, Mabey DC. Polymerase chain reaction for the detection of ocular chlamydial infection in trachoma-endemic communities. J Infect Dis. 1994;170:709-12.

13. Nakano S, Sugita S, Tomaru Y, Hono A, Nakamuro T, Kubota T, et al. Establishment of
multiplex solid-phase strip PCR test for detection of 24 ocular infectious disease pathogens. Invest Ophthalmol Vis Sci. 2017;58:1553–9.

14. Roberts C h., Last A, Molina-Gonzalez S, Cassama E, Butcher R, Nabicassa M, et al. Development and Evaluation of a Next-Generation Digital PCR Diagnostic Assay for Ocular Chlamydia trachomatis Infections. J Clin Microbiol. 2013;51:2195–203.

15. Wei H, Zou S, Yang X, Yang D, Chen X. Development of multiplex real-time quantitative PCR for simultaneous detection of Chlamydia trachomatis and Ureaplasma parvum. Clin Biochem. 2012;45:663–7.

16. Stevens MP, Twin J, Fairley CK, Donovan B, Tan SE, Yu J, et al. Development and evaluation of an ompA quantitative real-time PCR assay for Chlamydia trachomatis serovar determination. J Clin Microbiol. 2010;48:2060–5.

17. Yang JL, Hong KC, Schachter J, Moncada J, Lekew T, House JL, et al. Detection of Chlamydia trachomatis ocular infection in trachoma-endemic communities by rRNA amplification. Invest Ophthalmol Vis Sci. 2009;50:90–4.

18. Pickering H, Holland MJ, Last AR, Burton MJ, Burr SE. Evaluation of a Chlamydia trachomatis-specific, commercial, real-time PCR for use with ocular swabs. Parasites and Vectors. 2018;11:1-5.

19. Stare D, Harding-Esch E, Munoz B, Bailey R, Mabey D, Holland M, et al. Design and baseline data of a randomized trial to evaluate coverage and frequency of mass treatment with azithromycin: The partnership for rapid elimination of trachoma (PRET) in Tanzania and the Gambia. Ophthalmic Epidemiol. 2011;18:20-9.

20. Jenson A, Dize L, Mkocha H, Munoz B, Lee J, Gaydos C, et al. Field Evaluation of the Cepheid GeneXpert Chlamydia trachomatis Assay for Detection of Infection in a Trachoma Endemic Community in Tanzania. PLoS Negl Trop Dis. 2013;7:e2265.

21. Kowalski RP, Thompson PP, Kinchington PR, Gordon JY. Evaluation of the SmartCycler
IL System for Real-Time Detection of Viruses and Chlamydia From Ocular Specimens.
Arch Ophthalmol. 2006;124:1135-9.

22. Dize L, West S, Williams JA, Van Der Pol B, Quinn TC, Gaydos CA. Comparison of the Abbott m2000 RealTime CT Assay and the Cepheid GeneXpert CT/NG Assay to the Roche Amplicor CT Assay for Detection of Chlamydia trachomatis in Ocular Samples from Tanzania. J Clin Microbiol. 2013;51:1611-3.

23. Dize L, West S, Quinn TC, Gaydos CA. Pooling ocular swab specimens from Tanzania for testing by Roche Amplicor and Aptima Combo 2 assays for the detection of Chlamydia trachomatis: accuracy and cost-savings. Diagn Microbiol Infect Dis. 2013;77:289-91.

24. Bastidas RJ, Elwell C a., Engel JN, Valdivia RH. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med. 2013;3.

25. Burd EM. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev. 2010;23:550-76.

26. Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977;33:159.

27. McHugh ML. Interrater reliability: the kappa statistic. Biochem medica. 2012;22:276-82.

28. Stephens RS. Genome Sequence of an Obligate Intracellular Pathogen of Humans: Chlamydia trachomatis. Science (80-). 1998;282:754-9.

29. Butcher R, Houghton J, Derrick T, Ramadhani A, Herrera B, Last AR, et al. Reduced-cost Chlamydia trachomatis-specific multiplex real-time PCR diagnostic assay evaluated for ocular swabs and use by trachoma research programmes. J Microbiol Methods. 2017;139:95-102.

30. Huang QS, Mei QB, Shi JL, Xu F, Gong Y, Yang H, et al. Advances in paper-based
31. Gaydos C a., Quinn TC, Willis D, Weissfeld a., Hook EW, Martin DH, et al. Performance of the APTIMA Combo 2 assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in female urine and endocervical swab specimens. J Clin Microbiol. 2003;41:304–9.

32. Solomon AW, Peeling RW, Foster A, Mabey DCW. Diagnosis and Assessment of Trachoma. Clin Microbiol Rev. 2004;17:982–1011.

33. Ramadhani AM, Derrick T, Macleod D, Holland MJ, Burton MJ. The Relationship between Active Trachoma and Ocular Chlamydia trachomatis Infection before and after Mass Antibiotic Treatment. PLoS Negl Trop Dis. 2016;10:e0005080.

34. Skipp PJS, Hughes C, McKenna T, Edwards R, Langridge J, Thomson NR, et al. Quantitative Proteomics of the Infectious and Replicative Forms of Chlamydia trachomatis. PLoS One. 2016;11:e0149011.

35. Domeika M. Diagnosis of infections due to Chlamydia trachomatis. Acta Obstet Gynecol Scand Suppl. 1997;164:121–7.

36. Schachter J. Which test is best for chlamydia? Curr Opin Infect Dis. 1999;12:41–5.

37. Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm reports Morb Mortal Wkly report Recomm reports. 2015;64 RR-03:1–137.

38. Elnifro EM, Storey CC, Morris DJ, Tullo AB. Polymerase chain reaction for detection of Chlamydia trachomatis in conjunctival swabs. Br J Ophthalmol. 1997;81:497–500.

39. Burton MJ, Holland MJ, Faal N, Aryee EAN, Alexander NDE, Bah M, et al. Which members of a community need antibiotics to control trachoma? Conjunctival Chlamydia trachomatis infection load in Gambian villages. Invest Ophthalmol Vis Sci. 2003;44:4215–22.
40. Baral K, Osaki S, Shreshta B, Panta CR, Boulter A, Pang F, et al. Reliability of clinical diagnosis in identifying infectious trachoma in a low-prevalence area of Nepal. Bull World Health Organ. 1999;77:461–6.

41. See CW, Alemayehu W, Melese M, Zhou Z, Porco TC, Shiboski S, et al. How reliable are tests for trachoma?--a latent class approach. Invest Ophthalmol Vis Sci. 2011;52:6133–7.

42. Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reaction: A practical approach. J Clin Lab Anal. 2002;16:47–51.

43. de Barbeyrac B, Goldschmidt P, Malembic S, Raherison S, Clerc M, Bodaghi B, et al. Quality assessment of conjunctival specimens for detection of Chlamydia trachomatis by PCR in children with active trachoma. Clin Microbiol Infect. 2007;13:689–94.

44. Lorenz TC. Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies. J Vis Exp. 2012.

45. Arya M, Shergill IS, Williamson M, Gomersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5:209–19.

46. Stothard DR, Williams JA, Van Der Pol B, Jones RB. Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun. 1998;66:6010–3.

47. Dean D, Kandel RP, Adhikari HK, Hessel T. Multiple Chlamydiaceae Species in Trachoma: Implications for Disease Pathogenesis and Control. PLoS Med. 2008;5:e14.

48. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science. 1998;282:754–9.

Tables
Table I. Quantification cycle (C_q) for detection of different concentrations of C. trachomatis DNA, serovar J and serovar D. Data are shown as mean C_q ± SD were obtained with more than 5
independent experiments for each serovar. ND, not determined.

Concentration (per µL)	\(C_q\) (mean ± SD) for Serovar J	\(C_q\) (mean ± SD) for Serovar D
10 pg	18.54 ± 0.19	19.03 ± 0.62
1 pg	22.00 ± 0.29	22.77 ± 0.20
100 fg	25.99 ± 0.22	27.63 ± 0.89
10 fg	30.14 ± 0.04	31.53 ± 0.22
1 fg	34.32 ± 0.65	34.29 ± 0.33
100 ag	36.76 ± 0.91	ND

Table II. Validation of qPCR shown in Figure 1 with pre-characterized patient samples. Samples were pre-characterized by the Aptima Combo2 CT/NG assay (Hologic, USA). Extracted DNA was then analyzed by the NAT Trachoma kit described in the present paper.

Sample #	Pre-characterization by the CT/NG assay	Mean \(C_q\) ± SD for CRYP target	Detection of reaction internal control	Classification
1	POSITIVE	22,60	YES	
2	POSITIVE	30,36	YES	
3	POSITIVE	29,65	YES	
4	POSITIVE	25,75	YES	
5	POSITIVE	30,75	YES	
		POSITIVE		
---	-----	----------	-----	---
6		39,28		YES
7		38,99		YES
8		32,56		YES
9		27,45		YES
10		25,07		YES
11		28,10		YES
12		29,83		YES
13		37,59		YES
14		25,48		YES
15		27,43		YES
16		35,39		YES
17		29,26		YES
18		28,82		YES
19		37,21		YES
20		32,56		YES
		POSITIVE		YES
---	---	----------	---	-----
21		31,50		YES
22		40,08		YES
23		37,51		YES
24		26,01		YES
25		29,12		YES
26		26,88		YES
27		31,41		YES
28		30,85		YES
29		33,11		YES
30		27,99		YES
31		ND		YES
32		ND		YES
33		ND		YES
34		ND		NO
35		ND		YES
36		ND		YES
----	---	---	---	
37	NEGATIVE	ND	YES	
38	NEGATIVE	ND	YES	
39	NEGATIVE	ND	YES	
40	NEGATIVE	ND	YES	
41	NEGATIVE	ND	YES	
42	NEGATIVE	ND	YES	
43	NEGATIVE	ND	YES	
44	NEGATIVE	ND	YES	
45	NEGATIVE	ND	YES	
46	NEGATIVE	ND	YES	
47	NEGATIVE	ND	YES	
48	NEGATIVE	ND	YES	
49	NEGATIVE	ND	YES	
50	NEGATIVE	ND	YES	

Table III. Absolute numbers and percentage of detections: true-positive, true-negative, false-positive,
and false-negative rates. Results were calculated from data shown in Table II.

Category	Detections	Total	Rate (%)
Positive	30	30	100,0
Negative	19	20	95,00
Inconclusive	1	50	2,00
False-negative	0	30	0,00
False-positive	0	20	0,00

Table IV. Comparison of duplex qPCR results to the characterization of samples from endemic and non-endemic areas clinical evaluation (CE) or direct immunofluorescence (DFA). The number of elementary bodies (EBs) observed in each sample is shown.

Sample #	Clinical Evaluation (CE)	C_q (mean ± SD)	Duplex qPCR classification	Agreement CE x qPCR	EBs	DFA classification	Agreement DFA x qPCR		
1	NEGATIVE	36.59 ± 0.59	POSITIVE	NO	0	NEGATIVE	NO		
2	NEGATIVE	-	NEGATIVE	YES	8	POSITIVE	NO		
3	NEGATIVE	36.18 ± 0.54	POSITIVE	NO	0	NEGATIVE	NO		
4	NEGATIVE	41.62 ± 0.00	POSITIVE	NO	0	NEGATIVE	NO		
5	NEGATIVE	38.91 ± 3.36	POSITIVE	NO	0	NEGATIVE	NO		
6	NEGATIVE	35.93 ± 1.49	POSITIVE	NO	0	NEGATIVE	NO		
7	NEGATIVE	36.06 ± 1.73	POSITIVE	NO	5	POSITIVE	YES		
8	NEGATIVE	43.05 ± 1.78	POSITIVE	NO	2	NEGATIVE	NO		
---	---	---	---	---	---	---	---	---	---
9	NEGATIVE	39.12 ± 2.67	POSITIVE	NO	3	NEGATIVE	NO		
10	NEGATIVE	42.20 ± 4.22	POSITIVE	NO	0	NEGATIVE	NO		
11	POSITIVE	36.82 ± 0.91	POSITIVE	YES	7	POSITIVE	YES		
12	NEGATIVE	38.31 ± 0.00	POSITIVE	NO	2	NEGATIVE	NO		
13	NEGATIVE	37.89 ± 1.43	POSITIVE	NO	0	NEGATIVE	NO		
14	NEGATIVE	33.90 ± 0.49	POSITIVE	NO	1	NEGATIVE	NO		
15	POSITIVE	36.86 ± 1.49	POSITIVE	YES	6	POSITIVE	YES		
16	NEGATIVE	37.07 ± 2.49	POSITIVE	NO	0	NEGATIVE	NO		
17	NEGATIVE	37.83 ± 1.46	POSITIVE	NO	2	NEGATIVE	NO		
18	NEGATIVE	35.08 ± 0.00	POSITIVE	NO	6	POSITIVE	YES		
19	NEGATIVE	37.61 ± 2.79	POSITIVE	NO	2	NEGATIVE	NO		
20	NEGATIVE	37.53 ± 2.81	POSITIVE	NO	0	NEGATIVE	NO		
21	NEGATIVE	33.58 ± 0.89	POSITIVE	NO	2	NEGATIVE	NO		
22	NEGATIVE	34.55 ± 0.37	POSITIVE	NO	0	NEGATIVE	NO		
23	NEGATIVE	35.94 ± 0.21	POSITIVE	NO	4	NEGATIVE	NO		
24	NEGATIVE	34.83 ± 0.16	POSITIVE	NO	5	POSITIVE	YES		
25	NEGATIVE	37.07 ± 1.46	POSITIVE	NO	0	NEGATIVE	NO		
26	NEGATIVE	37.05 ± 1.51	POSITIVE	NO	6	POSITIVE	YES		
27	NEGATIVE	37.78 ± 0.37	POSITIVE	NO	3	NEGATIVE	NO		
28	NEGATIVE	33.10 ± 0.45	POSITIVE	NO	6	POSITIVE	YES		
---	---	---	---	---	---	---	---		
29	**NEGATIVE**	**36.73 ± 0.59**	**POSITIVE**	**NO**	**2**	**NEGATIVE**	**NO**		
30	**NEGATIVE**	**37.40 ± 1.19**	**POSITIVE**	**NO**	**5**	**POSITIVE**	**YES**		
31	**NEGATIVE**	**35.24 ± 0.30**	**POSITIVE**	**NO**	**6**	**POSITIVE**	**YES**		
32	**NEGATIVE**	**35.26 ± 1.04**	**POSITIVE**	**NO**	**7**	**POSITIVE**	**YES**		
33	**NEGATIVE**	**34.98 ± 0.76**	**POSITIVE**	**NO**	**5**	**POSITIVE**	**YES**		
34	**NEGATIVE**	**34.06 ± 0.00**	**POSITIVE**	**NO**	**6**	**POSITIVE**	**YES**		
35	**NEGATIVE**	**35.23 ± 1.08**	**POSITIVE**	**NO**	**8**	**POSITIVE**	**YES**		
36	**POSITIVE**	**38.28 ± 0.50**	**POSITIVE**	**YES**	**9**	**POSITIVE**	**YES**		
37	**NEGATIVE**	**34.23 ± 0.48**	**POSITIVE**	**NO**	**2**	**NEGATIVE**	**NO**		
38	**NEGATIVE**	**35.84 ± 0.84**	**POSITIVE**	**NO**	**2**	**NEGATIVE**	**NO**		
39	**NEGATIVE**	**36.93 ± 0.00**	**POSITIVE**	**NO**	**3**	**NEGATIVE**	**NO**		
40	**NEGATIVE**	**36.59 ± 0.75**	**POSITIVE**	**NO**	**2**	**NEGATIVE**	**NO**		
41	**NEGATIVE**	**-**	**NEGATIVE**	**YES**	**5**	**POSITIVE**	**YES**		
42	**NEGATIVE**	**35.12 ± 1.11**	**POSITIVE**	**NO**	**4**	**NEGATIVE**	**NO**		
43	**NEGATIVE**	**40.70 ± 0.00**	**POSITIVE**	**NO**	**5**	**POSITIVE**	**YES**		
44	**NEGATIVE**	**34.10 ± 0.77**	**POSITIVE**	**NO**	**7**	**POSITIVE**	**YES**		
45	**NEGATIVE**	**34.50 ± 0.36**	**POSITIVE**	**NO**	**3**	**NEGATIVE**	**NO**		
46	**NEGATIVE**	**35.23 ± 1.42**	**POSITIVE**	**NO**	**2**	**NEGATIVE**	**NO**		
47	**NEGATIVE**	**38.71 ± 1.58**	**POSITIVE**	**NO**	**0**	**NEGATIVE**	**NO**		
48	**NEGATIVE**	**33.72 ± 0.50**	**POSITIVE**	**NO**	**1**	**NEGATIVE**	**NO**		
---	-------	-------	-----	---	-------	-------			
49	NEGATIVE	34.53 ± 0.34	POSITIVE	NO	2	NEGATIVE	NO		
50	NEGATIVE	36.38 ± 0.00	POSITIVE	NO	1	NEGATIVE	NO		
51	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
52	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
53	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
54	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
55	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
56	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
57	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
58	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
59	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
60	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
61	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		
62	NEGATIVE	-	NEGATIVE	YES	0	NEGATIVE	YES		

Figures
Figure 1.
Linear dynamic range for detection of the C. trachomatis genomic target in serovar J DNA. C. trachomatis DNA was serially diluted in human DNA and evaluated using the new duplex qPCR. The reaction shows efficiency of 92% and R2 of 98.6%. Insert in Figure 1 shows representative traces of the reactions used to calculate the linear regression (red lines a-f), obtained with concomitant detection of the human 18S rRNA gene (green lines). Traces and linear regression are representative of more than 10 independent experiments with 3-12 replicates per run for each concentration.
Figure 2.

Detection of C. trachomatis DNA in human samples. Samples from an endemic and a non-
endemic region in Brazil were collected and their DNA extracted as described in Methods.

Panel A shows the detection of C. trachomatis DNA (blue lines) parallel to the detection of human DNA (green lines) in samples from the endemic area. Panel B shows the detection of human DNA (green lines) but no C. trachomatis DNA in samples from the non-endemic area.

Panel C shows the quantification of C. trachomatis DNA present in each of the positive samples (blue circles) based on the linear regression obtained with serial dilutions of C. trachomatis serovar J DNA (red circles).

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Supplemental Table S1.docx
Slide3.jpg