Side-Channel Attack Analysis on In-Memory Computing Architectures

Ziyu Wang, Member, IEEE, Fan-Hsuan Meng, Yongmo Park, Graduate Student Member, IEEE, Jason K. Eshraghian, Member, IEEE, and Wei D. Lu, Fellow, IEEE

Abstract—In-memory computing (IMC) systems have great potential for accelerating data-intensive tasks such as deep neural networks (DNNs). As DNN models are generally highly proprietary, the neural network architectures become valuable targets for attacks. In IMC systems, since the whole model is mapped on chip and weight memory read can be restricted, the pre-mapped DNN model acts as a “black box” for users. However, the localized and stationary weight and data patterns may subject IMC systems to other attacks. In this article, we propose a side-channel attack methodology on IMC architectures. We show that it is possible to extract model architectural information from power trace measurements without any prior knowledge of the neural network. We first developed a simulation framework that can emulate the dynamic power traces of the IMC macros. We then performed side-channel leakage analysis to reverse engineer model information such as the stored layer type, layer sequence, output channel/feature size and convolution kernel size from power traces of the IMC macros. Based on the extracted information, full networks can potentially be reconstructed without any knowledge of the neural network. Finally, we discuss potential countermeasures for building IMC systems that offer resistance to these model extraction attacks.

Index Terms—Side-channel attack, power analysis, in-memory computing, neural networks, deep learning security.

I. INTRODUCTION

In-memory computing (IMC) architectures can circumvent von Neumann’s bottleneck when accelerating communication-limited tasks, such as deep learning workloads [1]–[3]. However, the security vulnerabilities of analog IMC architectures are yet to be evaluated, and this becomes of paramount importance when the target market of low-power IMC accelerators are in ubiquitous, edge-based computing [4], [5]. In theory, side-channel attack can be used to extract and infer information pertaining to the on-chip deep neural network (DNN) model deployed during inference [6], as shown in Figure 1.

When IMC is coupled together with mixed-signal computation, as with Resistive Random-Access Memory (RRAM) crossbar hard macros, it is thought that analog computation via bit line current summation or charge accumulation offers a further layer of obfuscation. Co-locating memory and processing in a tiled architecture eliminates data movement between memory and processor [3], [7], as shown in Figure 2(a). Since the weights are stationary, weight memory access can be further limited. Hence, it is more challenging for malicious users to compromise the security of these hardware accelerators. Conventional DNN accelerators, such as GPUs, use single-instruction-multiple-threads/data (SIMT/SIMD) execution and must therefore time multiplex operations that take place across different DNN layers, as depicted in Figure 2(b). Rich data-dependent information, such as read/write volume, memory address track, and execution latency, can be obtained from a bus-snoop attack or side-channel attack [8].
While IMC macros reduce the number of possible attack vectors, the risk of side-channel attack remains a looming threat, as information leaks may still occur via power profiling and electromagnetic emanations. Timing analysis of thread-level execution may also offer an unintended window into architectural insights. Particularly, since different layers of the network are mapped in different IMC macros on chip with fixed data patterns, side-channel attack on the IMC macros may reveal architectural information of the DNN models. The adversary can then counterfeit the intellectual property of the DNN design, or otherwise boost the success rate when conducting multiple attacks to strike the system, such as adversarial attacks [9] or adversarial patches [10].

In this paper, we demonstrate the complete network architecture for DNN models stored inside the isolated memory blocks in an IMC system may be extracted from the power trace of each tile, without prior knowledge of the model. Our side-channel attack was performed by simulating the dynamic power trace of the mixed-signal RRAM IMC macros. By analyzing the power trace of the different IMC macros, the layer type and sequence, output channel/feature size of convolutional/fully connected layers as well as kernel size of convolutional layers, can be inferred. As an example, we demonstrate how we are able to reverse engineer the full LeNet [11] architecture from a mixed-signal RRAM accelerator by side-channel analysis, without prior additional knowledge of the NN model in use. We also propose several countermeasures that can potentially make the IMC systems resistant to such side-channel attacks, which should be considered during hardware and compiler design.

II. BACKGROUND AND MOTIVATION

A. Analog IMC Architecture

Analog IMC architectures offer significant advantages in throughput and power efficiency by minimizing data movement [3], [7], and offer a high degree of parallelism at run time [2], [12], [13] with respect to multiply-and-accumulate (MAC) operations. Figure 3 shows a detailed schematic of an analog RRAM-based IMC architecture. An RRAM array can perform vector-matrix multiplication (VMM) directly in a single step based on current summation: Ohm’s law is used for multiplication and Kirchhoff’s current law is for accumulation. More specifically, the input vectors are encoded as voltage pulses and the entries of matrices are mapped as RRAM device conductances. The outputs of the VMM are returned as bit line currents, subsequently sampled by peripheral read-out circuitry, and converted to binary digital values using analog-to-digital converters (ADC) for further downstream communication and processing. As the weight precision is often higher than the device precision, typically a single weight value is mapped across multiple RRAM cells, and the VMM result is reconstructed using digital shifter and adder circuits.

Non-ideal effects such as device variation and IR drop from wire resistance limit the number of rows and columns in an array to typically 128 × 128 to perform these analog operations [14], [15]. Generally, the DNN weight matrices are much larger than the practical analog RRAM IMC macro sizes, and need to be mapped to multiple IMC macros in a tiled architecture through digital interfaces, as shown in Figure 2(a).

B. IMC Simulators

Modern IMC applications such as DNNs for machine learning may require a large number of such IMC tiles, making it impractical to perform analog SPICE simulations that can account for all parasitics [16]. Instead, the hardware performance is often estimated through simulators that integrate simplified device and circuit models to produce inference accuracy, hardware power and area, with rapid iteration times.

Architecture-level simulators such as MNSIM [17] and NeuroSim [18] provide a flexible interface for a wide range of design options, and can effectively simulate hardware performance (e.g., power, area, and latency) based on simulator-embedded circuit-level models. However, these works, amongst other simulators [19]–[23], mainly focus on inference accuracy and global hardware performance. Time dependent data, e.g., dynamic power traces, are less explored. As we will demonstrate, dynamic power and other related time-varying information that is available from read-out ports of RRAM macros can prove to be useful in performing side-channel attack, and thus expose an underexplored vulnerability in mixed-signal IMC accelerators. Furthermore, dynamic power information is also helpful for thermal aware optimization [24], [25].

C. Related Work and Motivation

DNN accelerators are increasingly susceptible to malicious model extraction attacks, which expose the network architectural information. Several initial studies on model extraction attacks have been proposed on GPU, CPU and other DNN accelerator platforms [6], [8], [26]–[29]. DeepSniffer [8] and
ReverseCNN [26] extract DNN models from GPUs and general DNN accelerators. However, their attack model heavily relies on data movement in the memory bus, and cannot be generalized over to IMC architecture. Model extraction attacks with power or electromagnetic side-channel attack have also been reported on ARM cortex-based systems and FPGAs [6], [28], [29]. However, to the best of our knowledge, model extraction attacks have not been reported on analog IMC-based DNN accelerators.

The ability to extract pre-mapped DNN models from IMC chips as discussed in this study highlights a critical vulnerability issue of IMC architectures, and identifying how model information can be reverse-engineered from measurable electrical parameters can provide a guideline for designing more secure and trustworthy IMC accelerators.

III. SIMULATION FRAMEWORK

A. Overview

To analyze the dynamic power information of IMC systems, we first developed a mixed-signal power simulator. The overall simulator framework is shown in Figure 4. The simulator offers two interfaces: i) one during configuration that allows users to define hardware-level properties (system configurations), and perform mapping of a pre-trained NN model through a PyTorch [30] interface, and ii) another during runtime simulation, which takes a dataset as an input. The pre-trained weights are mapped to RRAM conductance values based on weight and device precision, as well as the permissible device conductance range, following standard approaches [1], [31]. Each feature (or pixel) of the input data samples, e.g., images, is scaled and converted to a bit-serial input, across a given number of clock cycles determined by the specified input precision.

The high-level hardware architecture of our simulator is similar to other work mentioned in the previous section, e.g., NeuroSim [18], [32], [33]. Different from prior efforts that aimed to simulate the hardware performance as a whole, or the performance of each component at runtime, we target the time dependent power data that can be used to reverse engineer the tasks being performed in the IMC systems. The simulator is designed to provide reliable dynamic power information based on the input and memory data patterns, while enabling rapid experimental iterations. In particular, the dynamic switching power is calculated at each clock cycle, since the transition power is data dependent and will be critical for power trace analysis [34]. To provide reliable power simulations, we synthesized the deployed digital components (e.g., adder, register) and custom-designed analog components (e.g., ADC, MUX) using a TSMC 28 nm technology. Complex digital circuit components were modeled by sub-dividing them into basic units that can process 1 bit data, where high-to-low and low-to-high transition powers are extracted based on the technology database. For analog components such as the comparator in the ADC, the dynamic power of each input voltage is recorded at 100 mV intervals. The recorded power data is used to generate a built-in lookup table (LUT). The circuit modules subsequently refer to the LUT and generate their power transition states. For simpler resistive and capacitive circuits, such as RRAM and CDAC in successive approximation registers (SAR) ADC, we developed a built-in power simulator to compute their power traces. Each circuit component will generate its own power trace which is subsequently merged as the full trace for a given tile.

B. RRAM Array and ADC

Schematic and timing details of the RRAM array model are provided in Figure 3. During the inference phase, the word line drivers turn on the select transistors in the 1T1R structure. The input data are converted into voltage pulses in bit-serial fashion, and applied to each source line. The currents through the RRAM devices are accumulated along the vertical bit lines. We include the effect of the parasitic capacitance seen from the bit line which introduces a propagation delay during the inference phase. To account for positive and negative weights, we implement a current mirror-based subtractor circuit, which subtracts the output current from the positive and negative weight columns. The subtracted current will charge or discharge a sampling capacitor, which has been pre-charged to VDD/2. The capacitor will hold the analog voltage for the ADC, before the outputs are digitized.

Figure 5(a) shows the schematic of a synthesized 8-bit charge redistribution SAR ADC design in the simulation, and Figure 5(c) depicts its timing diagram. During the sampling phase,
the switch S is closed and all capacitors are connected to V_{in}. Next, the switch S is opened and all capacitors are grounded via their bottom terminals, raising the voltage at the positive input terminal of the comparator to $-V_{in}$. During the conversion phase, SAR logic controls the switches to V_{ref} one by one to perform a binary search. The conversion takes 8 cycles and the energy consumption of the n-th step can be calculated from the change in V_x, and the capacitance connected to V_{ref} using (1).

$$E = \begin{cases} C_1 V_{ref} (\Delta V_x - V_{ref}), & n = 1 \\ V_{ref} (\Delta V_x \sum_{i=1}^{n-1} C_i D_i + C_n (\Delta V_x - V_{ref})), & n \neq 1 \end{cases}$$

(1)

where D_i is the i-th MSB output code. When $D_1 = 1$, the i-th switch connects to V_{ref}, otherwise, it connects to ground.

The dynamic power from the transitions in the DAC is the dominant contribution to the total power consumed by the SAR ADC [35], [36]. Figure 5(b) shows the switching energy with respect to the output code, and it has a clear data pattern dependency. In our simulator setup, the unit capacitor in the DAC array is set as 1 fF, and each capacitor can be charged and settled within a worst-case interval of 20 ps.

C. Digital Components

The digital components of an IMC system include input and output registers, shifters and adders within a tile, as well as inter layer logic functions such as ReLU activations, pooling operators, and routing circuits. As mentioned above, the transition power of digital components is based on a built-in LUT which stores the extracted transition power data of the basic digital units from the TSMC 28 nm technology process. To fully simulate the data flow in the hardware, all data movement between circuit modules in our simulator are performed in a binary, time-multiplexed fashion. Hence, the total dynamic power of each switching event from all digital components can be calculated based on each input bit of data.

D. Model Mapping

For inference tasks, the pre-trained weights are mapped across tiled RRAM arrays, and remain stationary during operations. To benefit from inference efficiency, the weights and input activations are quantized to 8 bits. It has been demonstrated that 8-bit weight precision does not incur a significant accuracy degradation, especially when coupled with quantization-aware training techniques [37], [38]. However, RRAM cells do not have sufficient internal precision to support 8-bit weights, which requires reliable programming of 256 conductance levels. As a result, it is often more practical to map a given weight across multiple cells, e.g., using 2 cells each offering 4 bits. Figure 6(a) shows the mapping approach used in our simulation for the convolution kernels. Other mapping strategies can be employed similarly through the configuration interface shown in Figure 4. Each kernel is flattened to a 1D vector, followed by splitting positive and negative values across columns. Next, each weight is quantized to 8 bits, mapped between the 4 MSBs and 4 LSBs separately. For an IMC system with 8-bit weight precision and 4-bit device precision, the total column number is thus 4 times that of the output channel size (2 for positive and negative weights, and 2 for splitting the 8-bit weights into 2 cells), and the number of mapped rows is the flattened kernel size K^2C_{in}, where K is a single kernel dimension and C_{in} is the input channel size.

The output of the convolutional layer is computed by sliding the input activation across the kernels, as illustrated in Figure 6(b). The input to each kernel is flattened to match the kernel, and outputs from all kernels are computed simultaneously through the IMC module outputs. For each 8-bit input, we employ bit-serial representation and it takes 8 consecutive steps to compute 1 input.

The weights and inputs to a fully connected layer can be quantized and mapped directly without any reshaping. Similarly, vector outputs of the fully connected layer can be acquired simultaneously through the IMC outputs.

IV. EXPERIMENT AND ANALYSIS

A. Experimental Setup

After model mapping, we simulate the DNN inference in the IMC system at the circuit-level, and use the extracted power traces to analyze the feasibility of model extraction attacks.
through the side-channel leakage. Side-channel attack analysis is based on physical phenomena during execution, as well as mathematical analysis. By carefully measuring and analyzing the power dissipation of the chip, attackers may be able to reverse engineer sensitive data or architectural information [39]. A general assumption for the proposed attack is that the attacker already knows hardware parameters of the IMC tiles, i.e., the RRAM array size, the ADC type and the number of ADCs per tile, but has no knowledge about the mapped NN. This is a realistic assumption since memory access to the stored weights in IMC systems can be restricted and physically separated from other programs the attacker may gain access to. The attacker, as a user, however has access to the input and output ports of the chip, i.e., can control the input data supplied to the IMC system during runtime. For example, most of inference tasks of RRAM-based IMC system are pipelined during processing to improve the throughput [3], [31], [40], i.e., starting to process the second input as the first input passes through the first layer. This will blur valuable power and timing information of a single runtime. However, as the attacker has the full control of the input and output data ports, she/he can halt the next input to the system until the previous inference completion to gain more accurate power measurements.

Side-channel attack can be classified into invasive and non-invasive attacks [41], [42], based on whether decapsulation of the chip is used. Carefully designed invasive attacks make it possible to measure the power trace of each single RRAM tile on chip. In our experiment, the assumption is the attacker can only measure the power traces of each tile as a whole.

Figure 7. Overview of side-channel attack flow for DNN model extraction.

B. Power Traces

We test the side-channel attack on the IMC system that has an unknown NN already mapped on chip. Based on the power traces extracted from the simulator, it is found that 23 IMC tiles are utilized to store the pre-trained model. Figure 8 displays the power traces of 4 of those tiles during an inference. Examining the power traces, we can first identify when a bit-serial input is applied to the RRAM array. As can be seen in Figure 8, processing a 1-bit input in the IMC module is accompanied by the characteristically transient IR power draw from the array, followed by a stable period during data passing the RRAM cells, and a switching-dense period for data conversion in the ADC along with the execution of other digital components. By inspecting the power traces, the following hardware hints can be extracted.

- **Start time**: corresponding to when a tile starts execution. Tiles with identical start times are expected to belong to the same NN layer (e.g., Figure 8(c) and (d)). Grouping tiles with the same start time will provide information on the layer size and the number of layers that perform VMMs.
- **Execution time**: corresponding to how many bit-serial inputs are executed at the layer for a given inference. The number of input bits sent to a module can be inferred by identifying the arrival of a new input bit, which has the distinguishing feature of the transient IR power draw followed by a stable period of a few nanoseconds corresponding to data passing through the RRAM cells. Figure 8(a) illustrates this by including labels for the bit-serial inputs of the first data sample. The execution time of convolutional (Conv) layers are typically much longer than that of fully connected (FC) layers due to the larger number of computational cycles required in convolutions.

- **ADC execution time**: corresponding to how long it takes for the ADC to convert all analog outputs from the RRAM
array. ADC execution time can be extracted by inspecting the dynamic power consumption of the ADC after data has passed the RRAM cells. During ADC conversion, the successive approximation steps lead to decrementing voltage changes, and the overall tendency of ADC transition power during a single conversion is also decreasing. The ADC execution time indicates how many columns are being utilized in an array.

- **Average Power**: \(\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} P(t) \, dt \). For arrays with the same number of utilized columns, the ratio of average power is statistically proportional to the number utilized RRAM rows.

Using these features, we will show how to extract the full NN architecture in the following section.

V. NEURAL NETWORK EXTRACTION

A. Layer Property Extraction

The number of NN layers that perform VMM operations and their corresponding layer types can be identified first, based on the start time and execution duration. The extraction process of these layer properties is summarized in Algorithm 1. The algorithm first extracts the start time and execution time of each tile. Whether a tile belongs to a Conv layer or a FC layer can then be identified based on how many VMM operations are executed.

```
Algorithm 1: Layer Property Extraction.

Data: Power traces of all tiles
Result: A list of NN layers that perform VMM operations

1. for i = 1 to TileNum do
2.   Tile[i].StartTime ← StartTimeExtract(trace[i]);
3.   Tile[i].VMMEtime ← ExTimeExtract(trace[i]);
4.   if Tile[i].VMMEtime == 1 then
5.     Tile[i].Type = fc;
6.   else
7.     Tile[i].Type = conv;
8. end
9. end
10. LayerSequence = GroupNSortTiles(Tile);
```

The number of VMM operations for a Conv layer corresponds to the output feature map size, but is fixed at ‘1’ for a FC layer. Finally, tiles with the same start time are grouped, and the layer sequence is generated by sorting the start time of these grouped tiles.

In our experimental test case, using this approach, the 23 tiles utilized in the network inference were found to belong to 2 Conv layers and 3 FC layers.
B. Output Channel Size Extraction

Based on the mapping approach in Section III D, we know that the output channel size of a given Conv layer and the output feature size of a FC layer are directly related to the number of the utilized RRAM columns in the IMC modules. The number of utilized columns in each module can be extracted from the ADC execution time. In the system design we analyzed, each tile has 128 columns and generates 64 output currents, where the subtraction of positive and negative bit line currents is performed in the analog domain. Each tile also has 4 ADCs. Hence, each of the 4 ADCs will execute 16 times to convert the 64 outputs for a fully mapped array. In a partially mapped tile, shorter ADC execution time will be observed, so the ADC execution time can be utilized to estimate the output channel size. The process is summarized in Algorithm 2. We first extract the ADC execution time from the power traces. If the ADC execution time is smaller than the maximum execution time, which is 16 in our case, it will be labeled as a column-wise partially mapped tile (i.e., the array is not fully utilized). The number of partially mapped tiles and fully mapped tiles are counted, which then allows us to calculate how many columns are mapped and the output channel size for the given layer.

As an example, Figure 9 plots the extracted utilization and power traces identified from the first FC layer in the unknown NN model. From Algorithm 2, we can conclude there are 4 column-wise partially mapped tiles. The mapping information of the 16 tiles used to map the FC layer is shown in Figure 9(a). Figure 9(b) and (c) display the ADC execution time traces for the two tiles marked in (a) for a given input. From inspection, the ADCs in the tile marked by the red line executed 16 times, indicating it is fully mapped and utilized. The ADCs from the tile marked by the blue line only executed 12 times, indicating 96 columns are mapped. By analyzing the power traces from the 16 tiles, we can calculate the output feature size to be \((3 \times 128 + 96)/4 = 120 \).

Using the same approach, the output channel sizes of the first two identified Conv layers can be uncovered and found to be 6 and 16 from power traces in Figure 8(a) and (b). The output feature size of the second identified FC layer is 84. The output feature of the third identified FC layer corresponds to the number of classification classes, and is 10 for the CIFAR10 dataset.

\[W_{out} = \frac{W_{in} - K + 2P}{S} + 1, \]
\(W_{out} \) and \(W_{in} \) are the output and input widths (equal to the heights), \(K \) is the kernel size, \(P \) and \(S \) are for padding and striding.

The first identified Conv layer was fully mapped within an array. Since the total row number is \(K^2C_{in} < 128 \), where \(C_{in} \) is 3 for RGB images, and \(K^2 \) must be a square number, only a few kernel sizes are possible. Thus, we can uncover the kernel size of the first Conv layer by testing the range of possible kernel sizes iteratively using (2). Most kernels use odd-numbered dimensions which further narrows the search space to \(K = 1, 3, 5 \). By testing all cases and comparing with the output shape, we found the kernel size is 5 \(\times \) 5. This approach is also helpful when analyzing the pooling layer, which will be discussed in further detail in the next subsection.

In most cases beyond the first Conv layer, the input activation includes many channels, and the kernel must be mapped across multiple tiles. Figure 10(a) shows how the identified second Conv layer utilizes 2 RRAM tiles. For deeper kernels, the kernel size can be extracted by analyzing the average power consumption of all tiles in the Conv layer, with extraction steps...
summarized in Algorithm 3. We first extract the average RRAM array power of each tile from the obtained power traces. Next, if the columns are mapped across multiple tiles like in Figure 9, the average power of each tile is summed. The reference power is generated by calculating the average power of row-wise fully mapped tiles. The number of utilized rows is obtained from the ratio of the average power of row-wise partially and fully mapped tiles. With this approach, it is not feasible to extract exactly how many rows are mapped. However, as discussed earlier, the total row number is K^2C_{in}, and C_{in} has been extracted by Algorithm 2 from the previous layer while K^2 must be a square number. Hence, we only need to find the nearest possible square number that matches the row number estimated from Algorithm 3. Figure 10(b) shows the average array power of two tiles in the identified second Conv layer with respect to the input image number. While the average power varies among different inputs, the algorithm always predicts the correct kernel size due to the limited number of permissible kernel sizes.

Using the same approach, the input feature size of the first FC layer can be extracted from the input data dimension which takes the form N^2C_{out}, where C_{out} is the number of output channels in the previous Conv layer and has been extracted by Algorithm 2.

D. Pooling Layer Analysis

A 2D pooling layer is typically square-shaped, and placed between two Conv layers, or between a Conv and a FC layer.

For the latter case, the pooling layer can be easily extracted since the output shape from the Conv layer and the input shape for the FC layer are both known. The ratio of these two indicates how the shape shrinks after the pooling layer and the size of the pooling operation.

However, the information of the pooling layer between two Conv layers cannot be trivially extracted as the input shape of the Conv layer is unknown. Therefore, we propose an iterative search approach summarized in Algorithm 4. With the output kernel size of the second Conv layer, we can reconstruct a series of input shapes with different padding and stride properties. As the output shape of the first Conv layer is known, we can estimate the output shape of the pooling layer based on different pooling shapes, which is then compared with the reconstructed input shape for the second Conv layer. Table I summarizes possible input shapes. Among all of them, only dimensions 14×14 and 28×28 can be supported with 2×2 pooling or without pooling, respectively. The pooling layer is implemented in digital logic, and will incur a delay in the execution start time of the next Conv layer. Hence, based on the above analysis and the delay observed in the start times, we can speculate that a 2×2 pooling layer exists between two Conv layers.

E. Discussion

Figure 11 shows the extracted NN architecture based on the analysis above. The colored labels indicate the architectural information that has been extracted from which proposed algorithm. The extracted NN architecture matches the ground
TABLE II

Platform	Attacking Target	Leaked Data	Data Acquisition	Extraction result	
DAC ‘18 [26]	FPGA accelerator + off-chip memory	DNN model	Memory and timing	Number and type of layers, input/output sizes of each layer, size of filters, weights	
ACSAC ‘18 [44]	FPGA accelerator	First layer of CNN and input image	Power	Oscilloscope measurement	Binary input images
USENIX Security ’19 [28]	ARM Cortex-M3 microcontroller	DNN model	electromagnetic emanation and timing	Electromagnetic probe measurement	Number and type of layers, input/output sizes of each layer, activation functions, weights
ASPLOS ’20 [8]	GPU	DNN model	Memory access volume and timing	Monitoring PCIe and GDDR memory bus	DNN architecture type, parameter sparsity
TCSII [6]	Raspberry Pi	DNN model	Power	External power data acquisition card	
TIFS [29]	FPGA accelerator	DNN model	Power	Ring Oscillator Power sensor	Number and type of layers, input/output sizes of each layer, size of filters, activation functions
This Work	RRAM-based analog IMC accelerator	DNN model	Power and timing	Simulation	Number and type of layers, input/output sizes of each layer, size of filters

Figure 11. Extracted complete NN architecture for the unknown model. The colors label the algorithm used to obtain the architecture information.

Figure 11. Extracted complete NN architecture for the unknown model. The colors label the algorithm used to obtain the architecture information.

We discuss potential data acquisition solutions, sampling rate requirements and circuit noise effects when attacking a real IMC system using the proposed theoretical methodology.

Two measurement techniques can be considered for these data dependent signals. One technique is using electromagnetic probes. As RRAM tiles with different weights are spatially located on the chip, electromagnetic probes with sufficient spatial resolution can measure the side-channel leakage of individual tiles. Tile areas of RRAM-based IMC prototype chips vary due to different array sizes and peripheral circuit designs, but most demonstrated tile areas are on the millimeter scale [45]–[48]. For example, the reported overall area of a tile with 128 \times 128 array size, same as our system configuration, is 0.5 \times 0.5 mm^2 [46]. The spatial resolution of electromagnetic probes can achieve sub-millimeter [49]–[51], to make it possible to measure the leakage signal of a tile with no overlapping of adjacent tiles. The second technique is measuring the signal through the power lines of each tile directly. Such techniques have been experimentally used to attack a spin-transfer torque MRAM system for Advanced Encryption Standard (AES) executions [5], [52]. Like MRAM systems, RRAM devices are fabricated in the back-end-of-line so etching away the passivation layers can potentially provide immediate access to top-level metal lines for probing. Off-the-shelf oscilloscopes can offer 256 GSa/s sampling rate and noise floor of hundreds of microvolts [53]. Such equipment can be used to extract the power data.

VI. FEASIBILITY ANALYSIS

The above-mentioned side-channel attack methodology is proven capable to reverse engineer the unknown neural network architecture from the power traces. To validate our approach, real-world constraints need to be considered. In this section,
We further analyzed the proposed attacking scheme after considering real-world artifacts, sampling rate and electrical noise. Algorithm 1 is based on extracting the total execution time of each tile. The execution can be easily distinguished from the idle state, and the convolution execution is much longer than the fully connected layer execution. Hence, we expect this timing analysis is robust even with artifacts. Algorithm 4 is an analysis of other extracted results without new physical signal measurements, so signal disturbance will not affect it. However, Algorithms 2 and 3, which are based on timing and power analysis, may be affected by the artifacts. Low sampling rate and high noise level may make it difficult to distinguish the ADC execution period from the analog computation period of the crossbar array. Timing analysis in Algorithm 2 will fail in this scenario. These conditions will also lead to an unreliable average power estimate, which may affect the power analysis in Algorithm 3.

To test the robustness of the proposed side-channel attack approach in real-world scenarios, we simulated power traces with different sampling rates and noise levels. In our initial simulation power traces without artifact injection are sampled at a rate of 10 GSa/s, and the analog operation and ADC execution periods exhibit significant differences, as shown in Figure 9(b) and (c). In Figure 12, the power traces of the same tile for convolution execution with different sampling rates and noise levels are displayed. Thanks to the time required to achieve a stable read output in the analog operation, the analog operation can still be identified even with these artifacts considered, as indicated by the red arrows. The ADC execution time can then be calculated from the intervals of these analog operations to execute Algorithm 2. We noticed that at low sampling rate rates or high noise levels, the ADC and analog operation power signatures can become indistinguishable, as shown in Figure 12(d). In Table III, we summarized the failure/success of Algorithm 2 at different artifact levels. We found the attack is more likely to fail at fully connected layers where VMMs are only executed once compared to repeated executions in convolution layers. Hence, there are fewer opportunities to identify the correct analog array execution period at fully connected layers. The success of Algorithm 2 is the prerequisite for Algorithm 3, since we need to identify the analog operation region before extracting its average power, as illustrated in the red regions of Figure 13(a). We performed kernel size extraction tasks following Algorithm 3, in the presence of artifacts injection. Even at noise levels of 2 mW standard deviation, the correct kernel size can still be extracted at sampling rates from 500 MSa/s to 10 GSa/s, as shown in Figure 13(b). The failure/success of Algorithm 3 at different sampling rates and noise levels are summarized in Table IV. An interesting result is when the sampling rate is reduced to 500 MSa/s, where it becomes difficult to identify the analog operation period, as shown in Figure 12(d). However, if assuming the average power can still be calculated, the correct kernel size can still be obtained (Figure 13(b)). These results prove the kernel size extraction method is robust against artifacts, likely due to the fact that effect of white noise can be effectively averaged out across multiple convolution executions.

In summary, the timing and power side-channel attack methods are robust after considering real-world non-idealities, such as low sampling rate, high noise level, and other artifacts.
as sampling rate and electrical noise. Tables III and IV summarize the required sampling rate for the proposed approaches to work well at different noise levels. The required specs can be offered by off-the-shelf measurement equipment [53]. The required sampling rate can be further relaxed if the attacker can control the clock frequency of the system or effectively filter out noise from the measured signals.

VII. COUNTERMEASURES

Techniques for preventing side-channel attack can be based on eliminating the correlation between the leaked information and the secret information [54], which is the DNN model in our case. For the proposed attacking algorithms, the countermeasures fall into three categories.

The first approach is to eliminate sensitive information leaked from timing analysis. For instance, scrambling the start time of the tiles or invoking dummy tiles with random delay times can obfuscate the layer sequence analysis. If the execution time of tiles are scrambled, we may find all tiles has the same start/end time and execution duration. This will make it impossible to differentiate the layer sequence and layer type. Inserting dummy input bits can increase the Conv layer execution latency. Dummy inputs can make it impractical to retrieve the output feature size from the execution time analysis, and make the iterative algorithm that searches the padding size ineffective. However, the above-mentioned techniques add penalties to both power consumption and latency of the system.

The second approach is to eliminate sensitive information leaked from ADC execution. The ADC execution time is directly related to the number of mapped columns in a tile and used to extract the layer size. Thus, one can add fake inputs to the ADCs in the partially mapped tile to match the ADC execution time as fully mapped tiles. Tiles will all have the same ADC execution time and the attack method based on ADC execution latency will fail. This approach will increase latency and the ADC power consumption.

The final approach is to mask the crossbar power consumption differences among tiles used in the same DNN layer, which will make the kernel size extraction algorithm ineffective. A potential technique is to add dummy conductance values to devices in unused columns. However, this method does not work if all tiles are column-wise fully mapped. Another approach is to devise other mapping schemes to balance and equalize the power consumption at analog computing. For example, thermal-aware weight mapping methods discussed in [24] shows potential in balancing and reducing power consumption. Equalization techniques reduce the power leakage information by creating a consistent power side-channel profile. Equalization has been proved reliable to enhance the resistance of AES engines to power side-channel attacks [55]–[57]. One can apply different weight mapping methods to different tiles to conceal the correlation between power consumption and mapped rows. However, this will introduce more workload in data pre-processing.

VIII. CONCLUSION

While mixed-signal IMC architectures may potentially assist with the obfuscation of sensitive data by reducing the degree of data movement and limit memory access, we demonstrate how measurable electrical characteristics can still pose a security vulnerability. To perform reliable power trace analysis, we developed a dynamic power simulator based on a TSMC 28 nm process. We scrutinized the security vulnerability of analog IMC systems for DNN inference acceleration by proposing a series of side-channel attack analysis algorithms. Our analysis showed it is possible to uncover the complete model architecture information without any prior knowledge of the NN model. Using the proposed techniques, we were able to systematically uncover all layers in the example model and successfully reconstruct the full NN model. The proposed approach showed it is feasible to probe an IMC inference engine using algorithms that can work with other convolutional and dense DNN architectures. This study highlights the nature of security patches that may be required at the hardware abstraction, such as scrambling the timing information, adding dummy cycles to the ADC, and masking crossbar power using different weight mapping methods.
REFERENCES

[1] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of accelerator architectures for deep neural networks,” Engineering, vol. 6, no. 3, pp. 264–274, 2020.

[2] X. Wang, Y. Wu, and W. D. Lu, “RRAM-enabled AI accelerator architecture,” in Proc. IEEE Int. Electron Devices Meeting, 2021, pp. 12.2.1–12.2.4.

[3] P. Chi et al., “PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory,” ACM SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 27–39, 2016.

[4] M. T. Arabin and Z. Lu, “Security challenges of processing-in-memory systems,” in Proc. Great Lakes Symp. VLSI, 2020, pp. 229–234.

[5] M. N. I. Khan, S. Bhasin, B. Liu, A. Yuan, A. Chattopadhyay, and S. Ghosh, “Comprehensive study of side-channel attack on emerging non-volatile memories,” J. Low Power Electron. Appl., vol. 11, no. 4, 2021, Art. no. 38.

[6] Y. Xiang et al., “Open DNN box by power side-channel attack,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 11, pp. 2717–2721, Nov. 2020.

[7] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics based on memristive systems,” Nature Electron., vol. 1, no. 1, pp. 22–29, 2018.

[8] X. Hu et al., “DeepFilter: A DNN model compression framework based on learning architectural hints,” in Proc. 25th Int. Conf. Architectural Support Program. Lang. Operating Syst., 2020, pp. 385–399.

[9] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to adversarial examples,” 2014, arXiv:1412.5068.

[10] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial training of neural networks,” 2017, arXiv:1712.09665.

[11] Y. LeCun et al., “Backpropagation applied to handwritten zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[12] M. Prezioso, F. Merrikh-Bayat, B. Hoksins, G. C. Adam, K. K. Likharev, and J. M. Correll, “An 8-bit 20.7 TOPS/W multi-level cell ReRAM-based compute engine,” in Proc. IEEE Symp. VLSI Technol. Circuits Systems Meeting, 2019, pp. 41–45.

[13] B. Jacob et al., “Quantization and training of neural networks for efficient integer-arithmetic-only inference,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2704–2713.

[14] J. K. Eshraghian, C. Lammie, M. R. Azghadi, and W. D. Lu, “Navigating local minima in quantized spiking neural networks,” 2022, arXiv:2202.07221.

[15] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems,” in Proc. Annul. Int. Cryptol. Conf., Springer, 1996, pp. 104–113.

[16] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM-based accelerator for deep learning,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), 2017, pp. 541–552.

[17] J. Fan, X. Guo, E. De Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede, “State-of-the-art of secure ECC implementations: A survey on known side-channel attacks and countermeasures,” in Proc. IEEE Int. Symp. Hardware-Oriented Secure Trust, 2010, pp. 76–87.

[18] M. Hurtle and M. Kammerster, “Resilience against physical attacks,” in Smart Grid Security. Amsterdam, The Netherlands: Elsevier, 2015, pp. 79–112.

[19] A. Krizhevsky et al., “Learning multiple layers of features from tiny images,” master thesis., Univ. Toronto, 2009.

[20] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you see: Power side-channel attack on convolutional neural network accelerators,” in Proc. 34th Annul. Comput. Secur. Appl. Conf., 2018, pp. 393–406.

[21] W. Yan et al., “A compute-in-memory chip based on resistive random-access memory,” Nature, vol. 560, no. 7723, pp. 504–512, 2022.

[22] W. Li, J. Read, H. Jiang, and S. Yu, “40nm RRAM compute-in-memory macro with parallelism-preserving ECC for ISA-accurate voltage-scaling,” in Proc. IEEE 48th Eur. Solid State Circuits Conf., 2022, pp. 101–104.

[23] J. M. Correll et al., “An 8-bit 20.7 TOPS/W multi-level cell ReRAM-based compute engine,” in Proc. IEEE Symp. VLSI Technol. Circuits, 2022, pp. 264–265.

[24] S.-I. Yi, J. D. Kendall, R. S. Williams, and S. Kumar, “Activity-difference training of deep neural networks using memristor crossbars,” Nature Electron., vol. 6, pp. 45–51, 2023.

[25] M. V. Beigi and G. Memik, “Thermal-aware optimizations of ReRAM-based neuromorphic computing systems,” in Proc. 55th Annul. Des. Automat. Conf., 2018, pp. 1–6.

[26] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional neural networks through side-channel information leaks,” in Proc. IEEE/ACM/EDSA 55th Des. Automat. Conf., 2018, pp. 1–6.

[27] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging shared resource attacks to learn DNN architectures,” in Proc. 29th USENIX Secur. Symp., 2020, pp. 2003–2020.

[28] L. Batina, S. Bhasin, D. Jap, and S. Picek, ”CSI NN: Reverse engineering of neural networks through electromagnetic side channel,” in Proc. 28th USENIX Secur. Symp., 2019, pp. 515–532.

[29] Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. Al Faruque, “Stealing neural network structure through remote FPGA side-channel analysis,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 4377–4388, 2021.

[30] A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019, Art. no. 721.

[31] Q. Wang, X. Wang, S. H. Lee, F.-H. Meng, and W. D. Lu, “A deep neural network accelerator based on tiled RRAM architecture,” in Proc. IEEE Int. Electron Devices Meeting, 2019, pp. 14–4.

[32] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures,” in Proc. IEEE Int. Electron Devices Meeting, 2017, pp. 6–1.

[33] A. Lu, X. Peng, W. Li, H. Jiang, and S. Yu, “NeuroSim simulator for compute-in-memory hardware accelerator: Validation and benchmark,” Front. Artif. Intell., vol. 4, 2021, Art. no. 70.

[34] D. Lorenz, P. A. Hartmann, K. Grüttrner, and W. Nebel, “Non-invasive power simulation at system-level with SystemC,” in Proc. Int. Workshop Power Timing Model. Optim. Simul., Springer, 2012, pp. 21–31.

[35] B. Jacob et al., “Quantization and training of neural networks for efficient integer-arithmetic-only inference,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2704–2713.

[36] J. K. Eshraghian, C. Lammie, M. R. Azghadi, and W. D. Lu, “Navigating local minima in quantized spiking neural networks,” 2022, arXiv:2202.07221.

[37] J. M. Correll et al., “An 8-bit 20.7 TOPS/W multi-level cell ReRAM-based compute engine,” in Proc. IEEE Symp. VLSI Technol. Circuits, 2022, pp. 264–265.

[38] S.-I. Yi, J. D. Kendall, R. S. Williams, and S. Kumar, “Activity-difference training of deep neural networks using memristor crossbars,” Nature Electron., vol. 6, pp. 45–51, 2023.

[39] H. Funato and T. Suga, “Magnetic near-field probe for GHz band and spatial resolution improvement technique,” in Proc. IEEE 17th Int. Zurich Symp. Electron. Compt., 2006, pp. 284–287.
Y.-T. Chou and H.-C. Lu, “Space difference magnetic near-field probe with spatial resolution improvement,” *IEEE Trans. Microw. Theory Techn.*, vol. 61, no. 12, pp. 4233–4244, Dec. 2013.

Z. Peng, X. Li, and J. Mao, “A pair of parallel differential magnetic-field probes with high spatial resolution and wide frequency bandwidth,” in *Proc. IEEE MTT-S Int. Wireless Symp.*, 2019, pp. 1–3.

M. N. I. Khan, S. Bhasin, A. Yuan, A. Chattopadhyay, and S. Ghosh, “Side-channel attack on STTRAM based cache for cryptographic application,” in *Proc. IEEE Int. Conf. Comput. Des.*, 2017, pp. 33–40.

Keysight, “Infiniium UXR-series oscilloscopes data sheet.” [Online]. Available: https://www.keysight.com/zz/en/assets/7018--06242/
data-sheets/5992-3132.pdf

P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in *Proc. Annu. Int. Cryptol. Conf.*, Springer, 1999, pp. 388–397.

C. Wang, M. Yan, Y. Cai, Q. Zhou, and J. Yang, “Power profile equalizer: A lightweight countermeasure against side-channel attack,” in *Proc. IEEE Int. Conf. Comput. Des.*, 2017, pp. 305–312.

S.-H. Cheng, M.-H. Lee, B.-C. Wu, and T.-T. Liu, “A lightweight power side-channel attack protection technique with minimized overheads using on-demand current equalizer,” *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 69, no. 10, pp. 4008–4012, Oct. 2022.

C. Tokunaga and D. Blaauw, “Securing encryption systems with a switched capacitor current equalizer,” *IEEE J. Solid-State Circuits*, vol. 45, no. 1, pp. 23–31, Jan. 2010.

Ziyu Wang (Member, IEEE) received the BE degree from Tsinghua University, Beijing, China, in 2019, and the MS degree in electrical and computer engineering from the University of Michigan, Ann Arbor, MI, USA, in 2021. He is currently working toward the PhD degree with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. His research interests focus on vulnerability analysis of emerging analog in-memory computing accelerator for deep neural network, as well as designing secure and reliable in-memory computing systems.

Fan-Hsuan Meng received the BS degree in electrical engineering and the MS degree in electronics engineering from National Tsing Hua University, Hsinchu City, Republic of China, in 2014 and 2016, respectively. She is currently working toward the PhD degree with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. She worked as a process integration engineer for 7 nm FinFET devices in TSMC, Hsinchu City, Republic of China, from 2016 to 2017. Her research interests include memristive devices, and its application for neuromorphic computing. She is currently working on system level optimization for in-memory computing based neural network accelerators.

Yongmo Park (Graduate Student Member, IEEE) received the BS degree in electrical and electronic engineering from Yonsei University, Seoul, South Korea, in 2019. He is currently working toward the PhD degree with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. His research interests include resistive-random access memory (RRAM) and analog compute-in-memory (CIM) systems for data intensive computations including deep neural networks. He works. He was a recipient of the 2022 IBM PhD Fellowship Award Program.

Jason K. Eshraghian (Member, IEEE) received the bachelor of engineering (electrical and electronic) and bachelor of laws degrees from the University of Western Australia, WA, Australia, in 2017, and the PhD degree from the University of Western Australia, in 2019. From 2019 to 2022, he was a post-doctoral research fellow with the University of Michigan, MI, USA. He is currently an assistant professor with the Department of Electrical and Computer Engineering, University of California, Santa Cruz. His current research interests include neuromorphic computing, resistive random access memory (RRAM) circuits, and spiking neural networks. He was awarded the 2019 IEEE Very Large Scale Integration Systems Best Paper Award, the Best Paper Award at the 2019 IEEE Artificial Intelligence Circuits and Systems Conference, and the Best Live Demonstration Award at the 2020 IEEE International Conference on Electronics, Circuits and Systems.

Wei D. Lu (Fellow, IEEE) received the BS degree in physics from Tsinghua University, Beijing, China, in 1996, and the PhD degree in physics from Rice University, Houston, TX, USA, in 2003. From 2003 to 2005, he was a postdoctoral research fellow with Harvard University, Cambridge, MA, USA. He joined the faculty of the University of Michigan in 2005. He is currently a professor with the Electrical Engineering and Computer Science Department, University of Michigan. His research interests include resistive-random access memory (RRAM), memristor-based logic circuits, neuromorphic computing systems, aggressively scaled transistor devices, and electrical transport in low-dimensional systems. He was a recipient of the NSF CAREER Award.