The potency of actinomycetes extracts isolated from Pramuka Island, Jakarta, Indonesia as antimicrobial agents

SETIAWATI SETIAWATI1,2*, TITIK NURYASTUTI3,4**, ETI NURWENING SHOLIKHAKH4, PUSPITA LISDIYANTI5, SYILVA UTAMI TUNJUNG PRATWI6, TRI RATNA SULISTIYANI7, SHANTI RATNAKOMALA7, JUMINA8, MUSTOFA3

1Pharmacology Laboratory, Faculty of Medicine, Universitas Jenderal Soedirman. Jl. Gumbreg No. 1, Purwokerto Timur, Banyumas 53112, Indonesia. Tel.:+62-281-622022. *email: setiawati@mail.ugm.ac.id
2Doctoral Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada. Jl. Farmako, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia
3Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada. Jl. Farmako, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia. Tel./fax.: +62-274-580297, **email: t.nuryastuti@ugm.ac.id
4Department of Pharmacology and Therapeutic, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada. Jl. Farmako, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia
5Research Centre for Biotechnology, Indonesian Institute of Sciences. Jl. Raya Jakarta-Bogor Km 46, Cibinong, Bogor 16911, West Java, Indonesia
6Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada. Jl. Sekip Utara, Sleman 55281, Yogyakarta, Indonesia
7Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada. Jl. Sekip Utara, Sleman 55281, Yogyakarta, Indonesia

Manuscript received: 5 May 2020. Revision accepted: 31 January 2021.

Abstract. Setiawati S, Nuryastuti T, Sholikakh EN, Lisdiyanti P, Pratwi SUT, Suliystiani TR, Ratnakomala S, Jumina, Mustofa. 2021. The potency of actinomycetes extracts isolated from Pramuka Island, Jakarta, Indonesia as antimicrobial agents. Biodiversitas 22: 1104-1111. Actinomycetes are one of the Gram-positive bacteria which are widely distributed and produce many secondary metabolites including those known as antibiotics, antifungals, anticancer, and antimalarial agents. The secondary metabolites of actinomycetes are abundant, which include many active compounds that have been identified because of the large diversity in the actinomycetes phylum. This study aimed to identify and screen collected by Indonesian Culture Collection (InaCC) from Bojong Gede and Pramuka Island, Jakarta, Indonesia as antibacterial and antifungal agents. Primary screening was done on 16 actinomycetes isolates by well-agar diffusion method. Antimicrobial activity was tested by using micro broth dilution methods to determine minimum inhibitory concentration (MIC). Molecular identification into level genera and species was determined by 16S rRNA gene sequencing. Out of 16 actinomycetes isolates used, 4 isolates have activity against Candida albicans ATCC 10231, Staphylococcus aureus ATCC 6538, Bacillus subtilis BTCC B-612, and Escherichia coli BTCC B-614, specifically InaCC A758, InaCC A759, InaCC A760 and InaCC A765 isolates. InaCC A758 have highest antimicrobial activity against mentioned microbial with MIC value at 50 μg/mL, 6.25 μg/mL, 31.25 μg/mL, and 3.125 μg/mL, respectively. Three genera were found from the samples: i.e. Streptomyces (80%), Microbyspora (13%) and Nocardia (6%). Based on 16S rRNA gene identification, the active isolates of actinomycetes InaCC A758, InaCC A759, InaCC A760 and InaCC A765 were similar to Streptomyces badius, Streptomyces olivaceus, Streptomyces sanyensis, and Nocardia oititiscaviarum, respectively. The secondary metabolites of actinomycetes extracts from Pramuka Island can be potentially developed as antifungal and antibacterial agents.

Keywords: 16S rRNA gene, actinomycetes, antibacterial, antifungal

INTRODUCTION

Actinomycetes are one of the Gram-positive bacteria that is widespread in various habitats and has been known to have many benefits as a source of drugs such as antibiotics, antifungal, antiviral, and anticancer agents (Ambavane et al. 2014; Balachandran et al. 2015; Barka et al. 2016). Secondary metabolites of actinomycetes are needed to protect themselves from pathogens in the environment. The production of secondary metabolites of actinomycetes is related to their life cycle and apoptosis process (Barka et al. 2016). Recently, most of the antibiotics known are produced by the genus Streptomyces.

Antimicrobial resistance has become a major global issue and will continue to have serious impact, especially increasing mortality and morbidity (Akova 2016). Many antifungal and anti-bacterial drugs were reported to be no longer effective because of developing resistance of pathogen. The emergence of azole resistance to Candida and Aspergillus species is a challenge in the treatment of systemic mycosis. The resistance rate of fluconazole to Candida species is diverse. Candida krusei has the highest global resistance rate compared to other species, which is 78.3% followed by Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida albicans (15.7%, 4.1%, 3.6% and 1.4%, respectively) (Sanguinetti et al. 2015). In several countries, the resistance rate of antifungal is various. In US, the resistance rate of C. glabrata to fluconazole reached 36% (Pham et al. 2014) and 14% in Kuwait (Sanglard 2016). The resistance rate of C. albicans to fluconazole in Mexico is very high up to 94.9% (Monroy-Pérez et al. 2016) followed in India (56.5%)
(Zaidi et al. 2018), Nepal 17.9%) (Khadka et al. 2017) and China (10.29%) (Maria et al. 2006). The resistance rate of *A. fumigatus* to azole was 27% in UK and 8 % in Netherlands (Sangl 2016). In most of these cases, echinocandin was the only new class of antifungal drug used successfully in the last decade (Cui et al. 2015).

The management of infections related to methicillin-resistant *S. aureus* (MRSA) is still an extremely complicated problem. Multi-drug resistant (MDR) microbes found in hospital isolates are usually associated with methicillin resistance. Methicillin resistance rate in the US has gone up to 90% followed by levofloxacin (78.6%), ciprofloxacin (68%) and clindamycin (48.5%) (Akova 2016). *Escherichia coli* is a Gram-negative bacterium that produces extended-spectrum β-lactamases (ESBLs) which mostly cause bacteremia. ESBLs production is the main mechanism of *E. coli* resistance to penicillin and cephalosporins (Akova 2016). The resistance rate of *E. coli* to third-generation cephalosporins was 38.1% in Bulgaria and 11.9% in Europe (Hogberg et al. 2015). ESBL-producing *E. coli* are also resistant to non-β-lactamases (aminoglycosides and quinolone) (Kara et al. 2015). However, conventional antimicrobials are not useful against multiderug-resistance caused by Gram-positive and Gram-negative bacteria (Frieri et al. 2017). New strategies to find novel antifungal and antibacterial Candicates that are safe, non-toxic, and more effective are direly needed.

Actinomycetes are found abundantly in the environment and have a large diversity of genera (Lisdiyanti et al. 2012; Widyastuti et al. 2012; Ratnakomala et al. 2016; Sulistyani et al. 2014). One of the actinomycetes habitats is the marine environment. At present, many researchers are focusing on the isolation of active compounds from marine actinomycetes. The secondary metabolites produced by actinomycetes include a wide range, i.e. polyene (Ambavane et al. 2014; Vartak et al. 2014), terpenoids (El-Sayed and Awad, 2013), phenolic (Belghit et al. 2016), polyketide (Oja et al. 2015; Asnani et al. 2016; Abdelmohsen et al. 2017), fenazin (Abdelmohsen et al. 2014), piperezin (Abdelmohsen et al. 2017), and non-polyene (Augustine et al. 2005). Many actinomycetes showing antimicrobial activities were found in marine habitats (Fenical and Jensen, 2006). They can be isolated from river flow, marine microbes associated with sponges, lake mud, river sediments, beach sands, marine sediments and mangrove forests (Eccleston 2008; Sunaryanto et al. 2012; Fadhilah et al. 2018).

Kepulauan Seribu has unique and specific ecosystem characteristics because it consists of sea waters with small islands around it. The area of Kepulauan Seribu is dominated by coral reef ecosystems, seagrass beds and mainland coral islands which were important habitats for various types of marine life. Pramuka Island, which is part of the Kepulauan Seribu, relatively has clear seawater and has marine life diversity (Sachoemar 2008). Fadhilah et al. (2018) had isolated 38 actinomycetes isolates from the mangrove ecosystem of Pramuka Island and found that 50% had antibacterial activities. Alfiisyahri et al. (2018) also isolated 22 isolates of actinomycetes from sediment on the Pramuka Island. The results of screening for antibacterial activity showed that 13 isolates were able to inhibit *S. aureus* NBRC 100910 and 5 isolates were able to inhibit *C. albicans*. Based on the characteristic of the Pramuka Island, it is possible to find various species of actinomycetes that have active secondary metabolites. In this study, we identified the species of actinomycetes isolated from Bojong Gede and Kepulauan Seribu, Indonesia and investigated their secondary metabolites as antibacterial and antifungal agents.

MATERIALS AND METHODS

Sample site of actinomycetes isolation

Actinomycetes isolates used in this study were from the Indonesian Culture Collection (InaCC), Indonesian Institute of Science (LIPI) collections. Sixteen actinomycetes isolates were obtained from Bojong Gede, Bogor, West Java and Pramuka Island, Kepulauan Seribu, Jakarta, Indonesia. Eight isolates were collected from rhizomes of *Curcuma zedoaria*, four isolates from rhizospheres soil, two isolates from sediments in Pramuka Island and 2 isolates from sand beach in Pramuka Island.

Sixteen actinomycetes isolates were used in this study, i.e. InaCC A619, InaCC A621, InaCC A622, InaCC A623, InaCC A627, InaCC A633, InaCC A626, InaCC A641, InaCC A753, InaCC A75, InaCC A759, InaCC A760, InaCC A761, InaCC A765, InaCC A766 and InaCC A767. Actinomycetes isolates were grown in starch yeast pepton (SYP) agar medium and incubated at 30°C for 2-3 weeks (Lisdiyanti et al. 2011).

Secondary metabolites extraction of actinomycetes

Actinomycetes isolates were precultured in 10 mL SYP (starch 1%; yeast extract 0.4%; peptone 0.2%) liquid medium and incubated in a rotary shaker incubation (130 r/min) at 30°C for 3 days. The precultures were transferred into Erlenmeyer baffle flask (Choi et al. 2009) containing 90 mL SYP liquid medium (1.9) and incubated in a rotary shaker (130 r/min) at 30°C for 3 days.

One hundred milliliters of actinomycetes culture that had reached optimal growth in the SYP liquid medium were centrifuged at 3000 rpm for 15 min then the supernatant was added with 100 mL of ethyl acetate (1:1) and incubated for 12 h in a shaker at 130 rpm. Then the solution was transferred into a separating funnel and the water phase (the bottom) was removed. The organic phase (upper phase) was transferred to the clean Corning tube and evaporated using a rotary evaporator at a pressure of 40 mPa at 40°C. The resulting dry extract (5 mg) was then dissolved into 5 mL DMSO 5% and used for bioassay.

Screening of antimicrobial activity

Sixteen fermented liquid samples of actinomycetes were tested against *C. albicans* ATCC 10231, *S. aureus* ATCC 6538, *Bacillus subtilis* BTCC B6-12, *P. aeruginosa* ATCC 27853, and *E. coli* BTCC B6-14 by well-agar diffusion method (Valgas et al. 2007). The bacterial inoculum was spread using sterile cotton swab on Muller Hinton (MH) agar and fungal inoculum was spread on...
sabouraud dextrose agar (SDA). Fifty microliters of actinomycetes fermented liquid were added to each of the wells (7 mm diameter holes). The plates were inverted and incubated at 35°C for 24 hr. The antimicrobial activity was determined as clear inhibition zone around the wells. Inhibition of the microbial growth was measured in mm. The power of activity was classified based on inhibition zone diameters as strong (≥ 15.0 mm), moderate (10.0 to 14.5 mm) and weak (<10 mm) (Ahmad et al. 2005). Tests were performed in duplicate with three replicates.

Determination of minimum inhibitory concentration (MIC)

The MICs were determined using the microbroth dilution method described in the guidelines of the Clinical and Laboratory Standards Institute (CLSI) 2015 (CLSI, 2015). Briefly, serial two-fold dilutions were prepared in microplate 96-wells. One hundred microliters of bacterial cell suspension (~1x10^8 CFU/mL) or yeast cells suspension (~1x10^6 CFU/mL) which have been cultured for 24 h was added to each well. Negative (yeast or bacteria only) and positive (fluconazole or gentamycin) controls were included. The concentration of fluconazole and gentamycin was used at 50-0.196 μg/mL. The plates were incubated at 35°C for 24 h and the MIC values were determined by visual observation. Hazen (1998) defined that the MIC was the lowest concentration of drug that resulted in complete inhibition of growth of the fungi by visual observation. The growth inhibition of planktonic cells was determined by measuring the optical density at 595 nm. The percentage of growth inhibition of planktonic cells was determined by measuring the optical density at 595 nm. The percentage of inhibition was calculated using the following formula:

\[
\text{Inhibition} = \left(\frac{\text{Control OD}_{595} - \text{Test OD}_{595}}{\text{Control OD}_{595}}\right) \times 100
\]

Inhibition percentages of actinomycetes extract against the targets were 28, 20 and 24 mm, respectively. Three replicates were performed each experiment (Setiawati et al. 2017).

16S rRNA gene sequencing

Actinomycetes isolates were cultivated in Tryptic Soy Broth (TSB) (Oxoid, Britain) medium (5 mL) and incubated in a shaker incubator (120 rpm) overnight. The pellets were collected for extracting the genomic DNA using extraction buffer (200 mM Tris-HCl pH 8, 250 mM NaCl, 25 mM EDTA and 0.5% SDS) (Saito and Miura 1963). The polymerase chain reaction (PCR) primers were 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-TACGGTTACCTTGTAGACT-3') (Sulistyani et al. 2014). The PCR amplification used PCR Master Mix (Go Taq Green, Promega M7122) with total volume of 50 μL, consisting of 2 μL of each primer (20 pmol), 25 μL of master mix (Go Taq) PCR, 1 μL DNA template, and 20 μL dH2O. PCR conditions were 96°C for 5 min to preheating, then followed by 30 cycles at 96°C for 30 seconds for denaturation, 55°C for 30 seconds for annealing, 72°C for 1 min for elongation, 72°C for 7 min for primer extension (Sulistyani et al. 2014). After the cycle was complete, products continued cooling at 4°C for 30 min. PCR reaction was conducted using a GeneAmp PCR System 9700 (Applied Biosystem Inc., Foster, California). The PCR products were examined by electrophoresis on agarose gel 1% to confirm that the target DNA had been amplified. The band formed could be expressed as a positive (+) result and compared with a marker to determine the target DNA band size of 1500 bp.

The purified PCR products were sequenced on an ABI 3730xl (Applied Biosystem Inc., Foster, California) DNA Sequencer with the BigDye Terminator version 3.1 cycle sequencing kit chemistry. The sequencing primer used 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-TACGGTTACCTTGTAGACT-3') (Sulistyani et al. 2014).

The 16S rRNA gene sequences were trimmed and assembled with BioEdit program. The nucleotide sequences’ data of the isolates were compared with reference strains in the 16S rRNA gene database using BLAST (https://www.ezbiocloud.net/identify) and chosen based on a high similarity rank.

RESULTS AND DISCUSSION

Screening of antimicrobial activity of actinomycetes

To investigate antimicrobials potency, primary screening was performed by using fermented liquid of actinomycetes. The results of antifungal and antibacterial activity by well-agar diffusion method are shown in Table 1.

Among 16 actinomycetes tested, four isolates (InaCC A758, InaCC A759, InaCCA760, and InaCC A765) were active against S. aureus ATCC 6538, B. subtilis BTCC B-612, and E. coli BTCC B-614. None of the isolates was active against P. aeruginosa ATCC 27853 and C. albicans ATCC 10231. InaCC A758 isolates had the highest activity as antimicrobial against S. aureus ATCC 6538, B. subtilis BTCC B-612 and E. coli BTCC B-614 with the zones of inhibition were 28, 20 and 24 mm, respectively. Three active actinomycetes (InaCC A758, InaCC A759 and InaCC A760) were isolated from Rhizospheres soil and the others were isolated from sand beach in Pramuka Island, Kepulauan Seribu, Jakarta, Indonesia.

Minimum inhibitory concentration (MIC)

The MIC values from ethyl acetate extracts produced by potential actinomycetes were observed (Table 2). Four of 16 extracts of actinomycetes had antifungal antibacterial activity (Table 1). InaCC A758 extracts inhibited fungus and all of bacteria tested, i.e C. albicans ATCC 10231, S. aureus ATCC 6538, B. subtilis ATCC B-612, P. aeruginosa ATCC 27853 and E. coli BTCC B-614 with the MIC values were 50, 6.25, 31.25, 500 and 3.125 μg/mL, respectively.

Inhibition percentages of actinomycetes extract against C. albicans ATCC 10231, S. aureus ATCC 6538 and E.
coli BTCC B–614 are shown in Figure 1. A758 crude extracts could inhibit C. albicans ATCC 10231, S. aureus ATCC 6538 and E. coli BTCC B 614 up to 80% at concentration 50 µg/mL, 6.3 µg/mL and 3.1 µg/mL, respectively. A 765 crude extracts could inhibit C. albicans ATCC 10231, S. aureus ATCC 6538 and E. coli BTCC B 614 up to 80% at concentration 50 µg/mL, 100 µg/mL and 100 µg/mL, respectively.

Figure 1. Inhibition percentage of actinomycetes extract against C. albicans ATCC 10231 (CA), S. aureus ATCC 6538 (SA), and E. coli (EC). A. Actinomycetes extract of InaCC A758 isolate; B. Actinomycetes extract of InaCC A765 isolate; C. Actinomycetes extract of InaCC A760 isolate.

Table 1. Antimicrobial activities of secondary metabolites produced by actinomycetes

Isolates	Geographical location	Sampling area	Zones of inhibition (mm)
InaCC A 619	Bojong Gede, Bogor	Rhizome of Curcuma zedoria	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 621	Bojong Gede, Bogor	Rhizome of Curcuma zedoria	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 622	Bojong Gede, Bogor	Rhizome of Curcuma zedoria	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 623	Bojong Gede, Bogor	Rhizome of Curcuma zedoria	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 627	Bojong Gede, Bogor	Rhizome of Curcuma zedoria	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 633	Bojong Gede, Bogor	Rhizome of Curcuma zedoria	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 626	Bojong Gede, Bogor	Rhizome of Curcuma zedoria	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 641	Bojong Gede, Bogor	Stem of Curcuma zedoria	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 753	Pramuka Island	Sediment	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 758	Pramuka Island	Rhizosphere soil	CA: 28; SA: 20; BS: -; PA: 24; EC: -
InaCC A 759	Pramuka Island	Rhizosphere soil	CA: 6; SA: 13; BS: -; PA: 14; EC: -
InaCC A 760	Pramuka Island	Rhizosphere soil	CA: 12; SA: 13; BS: -; PA: 10; EC: -
InaCC A 761	Pramuka Island	Rhizosphere soil	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 765	Pramuka Island	Sand beach	CA: -; SA: 20; BS: 22; PA: 12; EC: 14
InaCC A 766	Pramuka Island	Sand beach	CA: -; SA: -; BS: -; PA: -; EC: -
InaCC A 767	Pramuka Island	Sand beach	CA: -; SA: -; BS: -; PA: -; EC: -
GEN*			CA: 20; SA: 22; BS: 12; PA: 14; EC: -

Note: CA: C. albicans; SA: S. aureus; BS: B. subtilis; PA: P. aeruginosa; EC: E. coli; GEN* = gentamycin (10 µg/mL)

Table 2. The MIC values of ethyl acetate extracts of actinomycetes against fungi and bacteria

Extracts	C. albicans (µg/mL)	S. aureus (µg/mL)	B. subtilis (µg/mL)	P. aeruginosa (µg/mL)	E. coli (µg/mL)
InaCC A758	50	6.25	31.25	500	3.125
InaCC A759	250	500	250	-	125
InaCC A760	50	100	-	-	100
InaCC A765	50	3.125	31.25	-	3.125
Fluconazole	1.56	-	-	-	-
Gentamycin	-	0.39	1.56	3.125	3.125
Identification of actinomycetes isolates based on 16S rRNA

The visualization of PCR using electrophoresis showed a band in the range of 1,500 bp for all actinomycetes isolates. This finding indicated that all isolates had a 16S rRNA gene marker. The results from BLAST analysis are shown in Table 3.

Three genera were found based on the phylogenetic tree (Figure 2) of 16 actinomycetes isolates, i.e. Streptomyces (81%), Microbispora (13%) and Nocardia (16%). Based on 16S rRNA gene identification, the active isolates of InaCC A758, InaCC A759, InaCC A760 and InaCC A765 isolates are similar to Streptomyces badius, Streptomyces olivaceus, Streptomyces sanyensis and Nocardia oitidiscaviarium, respectively.

In this study, we used well-agar diffusion for screening of antimicrobial activity because this method has a good correlation to microdilution method, easy to reproduce, simple, inexpensive and easy to read (Magaldi et al. 2004). The antimicrobial screening by well-agar diffusion method showed that the extracts of actinomycetes had activity against the C. albicans ATCC 10231 (Table 1) and surprisingly, it was contrary when tested by microbroth dilution method. There were 4 extracts that had activity against C. albicans ATCC 10231 (Table 2). In well-agar diffusion method, even fluconazole did not exhibit inhibitory activity against C. albicans ATCC 10231 (Table 1). We assumed that the medium SDA that we used altered the diffusion process in agar medium. This finding linear with Magaldi et al. (2004) that reported the same result whereas the clear zone inhibition of fluconazole in well-agar diffusion method was diffused so it was difficult to observe and determine it. The Mueller-Hinton agar with 2% glucose and methylene blue was recommended in agar diffusion method as the clear zone can be seen clearly and the zone of inhibition can be determined easily (Magaldi et al. 2004).

In our study, there were 25% of actinomycetes extracts that demonstrated activity against C. albicans ATCC 10231 and broad-spectrum bacteria i.e. S. aureus ATCC 6538, E. coli BTCC B 614 and B. subtilis BTCC B 612 with moderate and strong activities. This results linear with Ryandin et al. (2018) that reported the broad-spectrum antibacterial activity of crude extracts of actinomycetes isolated from Segara Anakan, Indonesia. They also used agar diffusion method and determined the zone of inhibition from these crude extracts against E. coli, S. aureus, P. aeruginosa and Enterococcus (12.5 mm; 21.5 mm; 10 mm; and 8 mm, respectively). Moreover, Arumugam et al. (2017) reported the activity of crude extracts of actinomycetes isolated from soil samples of a mangrove forest, India exhibited fungal, Gram-positive and Gram-negative bacteria. On the contrary, Alifisyahri et al. (2018) reported that crude extracts isolated from sediment in Pramuka Island, Indonesia detected no activity against Gram-negative bacteria. These differences in antimicrobial activity of actinomycetes can be altered the diversity of chemical structure, disintegration during the extraction process and environmental factors i.e. temperature and pH (Mohamed et al. 2017).

Streptomyces InaCC A758, InaCC A759, InaCC A760 and InaCC A765 are actinomycetes isolated from marine habitats on Pramuka Island. Marine actinomycetes are known to have secondary metabolites that demonstrated potential to be antibacterial and antifungal agents. Mondol and Shin (Mondol and Shin 2014) isolated macroactin compounds from marine sediments which inhibited Gram-positive bacteria (B. subtilis and S. aureus) and Gram-negative bacteria (E. coli and P. aeruginosa) with MIC values in the range of 0.015-0.125 μg/mL. El-Sayed and Awad (2013) succeeded in isolating new compounds of bicyclic sesquiterpenoid derivatives from marine Streptomyces which have strong activity against Gram-positive bacteria, i.e. B. Subtilis ATCC 6633, S. aureus ATCC 6538 and S. aureus MRSA with MIC values 0.5, 1.5 and 1.3 μg/mL, respectively.

Table 3. The results of BLAST analysis using EzBioCloud database

Name of isolates	BLAST results	Length of 16S rRNA genes (bp)	Similarity (%)	Acc. no.
InaCC A619	Streptomyces albioticus strain NRRL B-3981 16S ribosomal RNA gene, partial sequence	1,405	99.36	MN826176
InaCC A621	Streptomyces neoeptieinii strain KNF 2047 ribosomal RNA gene, partial sequence	1,413	98.92	MN826177
InaCC A622	Streptomyces endophiticus strain YIM 65642 16S ribosomal RNA gene, partial sequence	1,421	99.58	MN826178
InaCC A623	Streptomyces griseorubiginosa strain DSM 40469 16S ribosomal RNA gene, partial sequence	1,424	99.79	MN826179
InaCC A626	Streptomyces griseorubiginosa strain DSM 40469 16S ribosomal RNA gene, partial sequence	1,412	99.79	MN826180
InaCC A627	Microbispora hainanensis strain 211020 16S ribosomal RNA gene, partial sequence	1,357	98.44	MN826181
InaCC A633	Streptomyces lauensis strain TA4-8 16S ribosomal RNA gene, partial sequence	1,405	99.86	MN826182
InaCC A641	Microbispora rosea subsp. rosea strain ATCC 12950 16S ribosomal RNA gene, partial sequence	1,380	100	MN826183
InaCC A753	Streptomyces paras strain NBRC 3388 16S ribosomal RNA gene, partial sequence	1,385	99.93	MN826184
InaCC A758	Streptomyces badius strain NRRL B-2567 16S ribosomal RNA gene, partial sequence	1,354	99.85	MN826185
InaCC A759	Streptomyces olivaceus strain B-3009 16S ribosomal RNA gene, partial sequence	1,407	99.93	MN826186
InaCC A760	Streptomyces sanyensis strain 219820 16S ribosomal RNA gene, partial sequence	1,414	99.58	MN826187
InaCC A761	Streptomyces drozdzowiczii strain NBRC 101007 16S ribosomal RNA gene, partial sequence	1,411	99.50	MN826188
InaCC A765	Nocardia oitidiscaviarium strain NBRC 14405 16S ribosomal RNA gene, partial sequence	1,375	96.06	MN826189
InaCC A766	Streptomyces zhihenigii strain YIM T102 16S ribosomal RNA gene, partial sequence	1,406	98.79	MN826190
InaCC A767	Streptomyces takyus strain NRRL ISP 5482 16S ribosomal RNA gene, partial sequence	1,418	99.08	MN826191
Figure 2

Phylogenetic tree of actinomycetes isolates based on partial sequences of 16S rRNA. The tree was constructed using the neighbor-joining method.
Streptomyces are the predominant genus found in this study (80%). Seventy-five percent of active actinomycetes isolates in this study also come from Streptomyces species. This is not surprising because the genus Streptomyces is mostly found, especially in soil and produces the most secondary metabolites that are useful as antibacterial (50-55%) (Alharbi 2016). Saurav and Kannabiran (2012) also reported that the genus Streptomyces was the mostly genus discovered from soil samples in Uttarakhand, India. One of the active actinomycetes found in this study was identified as Streptomyces badius with a similarity of about 99.85%. Mohamed et al (2017) also reported that one of active actinomycetes isolated from Saharan soil in Algeria was identified as S. badius and had broad-spectrum antimicrobial activity. Streptomyces strain sourced from a different location will produce different secondary metabolites profile even though identification with 16S rRNA has similarities (Sottorff et al. 2019). Differences in the surrounding environment and competition for life over a long period of time cause the Streptomyces strain to acquire new abilities to produce different secondary metabolites. Sottorf et al (2019) examined two Streptomyces strains that had similarities based on 16S rRNA gene sequences but were isolated from different locations. The results showed that both Streptomyces strains had similarities in cell morphology although there were microscopical differences in pigmentation, air hyphae distribution and colony morphology, but both strains had a unique set of secondary metabolites for each isolate. Thus, there are still many opportunities to develop active compounds obtained from Streptomyces.

In our study, we also found active rare actinomycetes, i.e Nocardia otitidiscaviarum. Rare actinomycetes are usually found in less explored environments such as lake sediments, deep-sea, mangrove sediments, and marine sedimentation (Ramabhai and Mani-Jayaprakashavel 2019). Rare actinomycetes produce secondary metabolites which are believed to be able to provide promising results in the field of new drug discovery. Twenty-six percent of 10,000 metabolites isolated from actinomycetes actually were derived from rare actinomycetes (Bérdy 2005). Secondary metabolites produced by rare actinomycetes are very diverse and unique so they have very good bioactivity with low toxicity (Bérdy 2005).

The Streptomyces that was identified in this study has good activity as antifungal and broad-spectrum antibacterial. The limitation of this study is the small number of samples tested (16 isolates). Even though, it is has good potency to be developed as new drug candidate. Of course, it requires further study such as the activity against resistant microbial or against biofilm-forming microbial. It is also necessary to identify the active compound, mechanism of action and toxicity test of these Streptomyces. The purification and isolation of pure compound also needed for discovering the compound as drug Candidates.

ACKNOWLEDGEMENTS

The experiment was performed in the Research Centre for Biotechnology, Indonesian Institute of Sciences (LIPI), Bogor, Indonesia and the Microbiology Department, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia. We would like to give thanks to the Department for all facilities and to the superior basic research universities (PDUPT) grant from The Ministry of Research, Technology and Higher Education of the Republic of Indonesia for funding this research. The authors declare that there are no competing interests.

REFERENCES

Abdelmohsen UR, Bayer K, Hentschel U. 2014. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat Prod Rep 31 (3): 381-399.

Abdelmohsen UR, Balasubramanian S, Oelschlaeger TA, et al. 2017. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. The Lancet Infectious Dis 17 (2): e30-e41.

Ahmad R, Manaf A, Israf DA, et al. 2005.Antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of some Hedysotis species. Life Sci 76: 1953-1964.

Akova M. 2016. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence 7 (3): 252-266.

Alftisyahi R, Santoso I, Yasman Y. 2018. Isolation and screening antimicrobial activity of actinomycetes from sediment’s coastal Pramuka Island, Kepulauan Seribu, Jakarta, Indonesia. AIP Conf Proc 2023: 020126. DOI: 10.1063/1.5064123.

Alharbi NS. 2016. Novel bioactive molecules from marine actinomycetes. Biosci Biotechnol Res Asia 13 (4): 1905-1927.

Ambavane V, Tokdar P, Parab R, et al. 2014. Caerulomycin A—an antifungal compound isolated from marine actinomycetes. Adv in Microbiol 4 (9): 567-578.

Arumugam T, Kumar PS, Kameshwar R, Prapanchana K. 2017. Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India Microbial Pathogenesis Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India. Microb Pathog 107: 225-233.

Aswani A, Ryandini D, Suwandri. 2016. Screening of marine actinomycetes from Segara Anakan for natural products of marine sponge. Biosci Biotechnol Res Asia 13 (4): 1927.

Augustine SK, Bhavsar SP, Kapadnis BP. 2005. A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23. J Biosci 30 (2): 201-211.

Balachandran C, Durapandiyavan V, Eni N, et al. 2015. Antimicrobial and cytotoxic properties of Streptomyces sp. (ERINLG-51) isolated from Southern Western Ghats, South Indian J Biol 1 (1): 7-14.

Barki EA, Vatsa P, Sanchez L, et al. 2016. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80 (1): 1-43.

Belghit S, Driche EH, Belgacem S, et al. 2016. Activity of 2,4-Di-tert-butylyphenol produced by a strain of Streptomyces metabolis isolated from a Saharan soil against Candida albicans and other pathogenic fungi. J Mycol Med 26 (2): 160-169.

Bérdy J. 2005. Bioactive microbial metabolites: A personal view. J Antibiot 58 (1): 1-26.

Choi SH, Son MJ, Kim SH, et al. 2009. Isolation and medium development of the actinomycetes, Streptomyces griseofuscus CNU- A91231, inhabiting phytopathogenic fungi. Korean J Microbiol Biotechnol 37 (4): 322-332.

Clinical and Laboratory Standards Institute. 2015. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.
Approved Standard, 10th ed. CLSI document M07-A10. Clinical and Laboratory Standards Institute, Annapolis Junction, MD.

Cui J, Ren B, Tong Y, et al. 2015. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 6 (4): 362-371.

Ecleiston GP. 2008. The occurrence of bioactive micromonospora in aquatic habitats of the sunshine coast in Australia. Mar Drugs 6 (2): 243-261.

El-Sayed MH, Awad HM. 2013. Isolation and structure elucidation of Halomycetin-1, a new antitumor antibiotic produced by a new marine bacterium Streptomyces sp. Strain HuGü-11. J Appl Sci Res 9 (3): 1831-1844.

Fadhlhal QG, Santoso I, Yasmin Y. 2018. Isolation and screening antibacterial activity of actinomycetes from mangrove ecosystem, Pramuka Island, Kepulauan Seribu, Jakarta, Indonesia. AIP Conf Proc 2023: 020119. DOI: 10.1063/1.5064116.

Fenical W, Jensen PR. 2006. Developing a new resource for drug discovery: Marine actinomycete bacteria. Nat Chem Biol 2 (12): 666-673.

Frieri M, Kumar K, Boutin A. 2017. Antibiotic resistance. J Infect Public Health 10 (4): 369-378.

Hazem KC. 1995. Fungicidal versus fungistatic activity of terbinfine and itraconazole: an in vitro comparison. J Amer Acad Dermatol 38: S37-S41.

Hogberg LD, Weist K, Suetens C, et al. 2015. Annual epidemiological report 2014. Antimicrobial resistance and healthcare-associated infections. European Centre for Disease Prevention and Control, Stockholm.

Kara Ö, Zarakola P, Açıciólu S, et al. 2015. Epidemiology and emerging resistance in bacterial bloodstream infections in patients with hematologic malignancies. Infect Dis 47 (10): 686-695.

Khadka S, Sherchan JB, Pokhrel BM, Parajuli K, Mishra SK. 2017. Isolation, speciation and antifungal susceptibility testing of Candida isolates from various clinical specimens at a tertiary care hospital, Nepal. BMC Res Notes 10 (1): 218. DOI: 10.1186/s13104-017-2547-3.

Lisdiyanti P, Ratnakomala S, Ridwan R, et al. 2011. Ecological study of rare-actinomycetes in soils and leaf-litters. Annales Bogorienses 15 (2): 31-36.

Lisdiyanti P, Tamura T, Ratnakomala S, et al. 2012. Diversity of actinomycetes from soil samples collected from Lombok Island, Indonesia. Annales Bogorienses 16 (1): 35-40.

Magaldi S, Mata-essayag S, Captiles CH De, Perez C, Colella MT, Olaizola C, Ontiveros Y. 2004. Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8 (1): 39-45.

Maria A, Kibbler C, Pernan J, Bernhardt H, Klingspor L, Grillot R. 2006. Candidaemia in Europe: epidemiology and resistance. Intl J Antimicrob Agents 27: 359-366.

Mohamed H, Miloud B, Zohra F, García-Arenzana JM, Veloso A, Rodríguez-Couto S. 2017. Isolation and characterization of actinobacteria from Algerian Saharan soils with antifungal Activities. Intl J Mol Cell Med 6: 109-120.

Mondol MAM, Shin HJ. 2014. Antibacterial and antiyeast compounds from marine-derived bacteria. Mar Drugs 12 (5): 2913-2921.

Monroy-Pérez E, Paniagua-conteras GL, Rodríguez-purata P, Vaca-pianiagua F, Vázquez-villaseñor M, Díaz-velásquez C, Uribe-garcía A, Vaca S. 2016. High virulence and antifungal resistance in clinical strains of Candida albicans. Can J Infect Dis Med Microbiol 2016: 5930489. DOI: 10.1155/2016/5930489.

Oja T, Galindo PSM, Taguchi T, et al. 2015. Effective antibiofilm polyketides against Staphylococcus aureus from the pyranonaphthoquinone biosynthetic pathways of Streptomyces species. Antimicrob Agents Chemother 59 (10): 6046-6052.

Ratnakomala S, Lisdiyanti P, Prayitno NR, et al. 2016. Diversity of actinomycetes from Eka Karya Botanical Garden, Bali. Biotropia 23 (1): 10-20.

Sachamor SI. 2008. Karakteristik lingkungan perairan Kepulauan Seribu. Jurnal Air Indonesia 4 (2): 109-114. [Indonesian]

Saito H, Miura KL. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72 (1963): 619-629.

Saitou N, Narii M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evo 4 (4): 406-425.

Sanguinetti M, Pistoraro B, Lass-Flott C. 2015. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycosystems 58 (S2): 1-13.

Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, Farley MM, Schaffner W, Beldavs ZG, Chiller TM, Park BJ, Cleveland AA, Lockhart R. 2014. Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother 58 (8): 4690-4696. DOI: 10.1128/aac.03555-14.

Ryanid D, Hendro P, Sukanto. 2018. Antibacterial activity of Streptomyces SAE4034 isolated from Segara Anakan mangrove rhizosphere against antibiotic-resistant bacteria. Bioscientifica 10: 117-124.

Sanglard D. 2016. Emerging threats in antifungal-resistant fungal pathogens. Front Med (Lausanne) 3: 11. DOI: 10.3389/fmed.2016.00011.

Saurav K, Kannabiran K. 2012. In vitro activity of 5-(2,4-dimethylbenzyl) pyrrolidin-2-one extracted from marine Streptomyces VISVS5 spp. against fungal and bacterial human pathogens. Rev Iberoam Micol 29: 29-33.

Zadi KU, Mani A, Parmar R, Thawani V. 2018. Antifungal susceptibility pattern of Candida albicans in human infections. Open Biol Sci J 4: 1-6.

Setiawan S, Nuryastuti N, Nartadi J, et al. 2017. In vitro antifungal activity of (1)-N-2-methoxynbenzyl-11,10-phenanthrolinem bromide against Candida albicans and its effects on membrane integrity. Mycobiology 45 (1): 25-30.

Sottriff I, Wiese J, Lipfert M, et al. 2019. Different secondary metabolite profiles of phylogenetically almost identical Streptomyces griseus strains originating from geographically remote locations. Microorganisms 7 (6): 166.

Sulistyani TR, Lisdiyanti P, Lestari Y. 2014. Population and diversity of endophytic bacteria associated with medicinal plant Curcuma zedoaria. Microbiology 8 (2): 65-72.

Sunarjanto R. 2012. Diversity and bioactivity of marine actinomycetes from South Coast of Yogyakarta. JPB Perikanan 7 (1): 31-38. [Indonesian]

Ramabhai V, Jayaprakashel V. 2019. Prospects of rare actinomycetes for the production of newer antibiotics. Oceanogr Fish Open Acc J 6 (5): 2016-2018.

Valgas C, Souza SM, Smáns EFA, et al. 2007. Screening methods to determine antibacterial activity of natural products. Brazilian J Microbiol 38: 369-380.

Vartak A, Mutalik V, Parab RR, et al. 2014. Isolation of a new broad-spectrum antifungal polypeptide from Streptomyces sp. MTCC 5680. Lett Appl Microbiol 58 (6): 591-596.

Wang J, Nong XH, Zhang XY, et al. 2017. Screening of anti-biofilm compounds from marine-derived fungi and the effects of secalonic acid D on Staphylococcus aureus biofilm. J Microbiol Biotechnol 27 (6): 1078-1089.

Widyastuti Y, Lisdiyanti P, Ratnakomala S, et al. 2012. Genus diversity of actinomycetes in Cibinong Science Center, West Java, Indonesia. Microbiol Indonesia 6 (4): 165-172.