A Comparative Analysis on Algebraic Questions in Chinese and Indonesian textbook

Yuxian Huang1, Ying Zhou1*, Tommy Tanu Wijaya2, Kai Kuang1, Mingli Zhao1

1Department Mathematics and Statistics, Guangxi Normal University, China.
2School of Mathematical Sciences, Beijing Normal University, China.

*zhouying66@mailbox.gxnu.edu.cn

Abstract. Textbook has a significant impact on students’ mathematical ability. This research aims to analyse algebraic questions in Chinese and Indonesian junior high school textbooks. This research was done at Guangxi Normal University, China from November to December 2020. The textbook analysis was done using a quantitative method on three aspects, which were presentation, context, and type of answer. Other aspects considered were proportional of algebra chapter in the textbook and how questions were presented. Chinese textbooks gave more contextual questions but there were a lot more of open-ended questions in the Indonesian textbook. From this research, we can conclude that both Indonesian and Chinese textbooks have their own advantages that can be adopted in both countries. Future research can talk about how class activity and teacher teaching method can affect students’ mathematical ability on algebra.

Keywords: Algebra, junior high school, textbook

1. Introduction

Textbook plays an important role since it serves as a learning media used by teachers to teach students and it has a huge impact on learning quality [1], [2]. Purnama et al. [3] showed that most mathematics teachers use textbook as their main source of information. Textbooks also affect how teachers teach, practice question difficulties and teaching-learning activity in class [4], [5].

Every book has its own characteristic and different teaching approach [6]. Every country has its own curriculum which can affect the form of questions and teaching methods given in the book. A comparison of books between countries is very interesting and worth doing. There has been some research on book comparison in these past few years. Jinfa Cai [7] analysed the problem-posing task in Chinese and American textbooks. He found that the problem-posing task in the two countries is still low and should be improved. Hak Ping Tam and Ou Yung Chih [8] also analysed the statistical contents covered in China, Singapore and Taiwan. They found that Chinese textbooks have better statistical content, which can serve as a reference for the Singapore and Taiwan textbooks when they make the next version. Lianghuo Fan et al. [2] also analysed proving geometry in Chinese, Indonesian and Saudi Arabia textbooks and found that Chinese textbooks have better and more detailed proving geometry contents compared to other textbooks. Based on the results of the previous studies, it can be concluded that Chinese textbooks are generally better than other mathematical textbooks from other countries [9].

The results of Program for International Student Assessment (PISA) 2018 showed that the mathematical ability of students in China was the best of all countries while the mathematical ability of students in Indonesia was on the 7th rank from the bottom [10]. In International Mathematics Olympiad (IMO),
Chinese students always show excellent performance in solving complex mathematical problems using higher order thinking skills [11]. Based on this initial analysis, the researchers wanted to compare Chinese and Indonesian mathematics textbooks.

The function of exercise questions in textbooks is to develop students’ mathematical ability and evaluate students’ ability towards a mathematics topic [12]. When students do practice questions, their mathematical ability will naturally improve. That is why practicing questions in the textbook is an important teaching component. The better the presentation of questions, students’ mathematical ability will be better. Based on this analysis, the researchers are interested in comparing practice questions and analysing questions in mathematics textbooks of two different countries.

Algebra is an important topic in mathematics [13, 14]. Algebra is taught at every level of education with different difficulty levels. Algebra can also improve students’ thinking ability [15]. Many studies analysed mathematics textbooks, especially on the topic of algebra. Siew and Tin [16] examined how algebra concepts are presented in Singapore textbooks. They found that both books had good questions to improve algebraic reasoning. Davis et al. [17] examined student tasks in algebra and explained the importance of questions to improve reasoning and proving abilities. Zhang and Qi conducted the same research on reasoning and proof of algebra in China [18]. They explained that textbook analysis is very important, and further research could further explore the many aspects of mathematics textbook. From some of these studies, it can be concluded that textbook analysis is fundamental to improve the quality of teaching and learning, evaluate materials, and student learning outcomes.

Based on the explanation above, this research aims to compare algebra that is taught in Chinese and Indonesian mathematics textbooks. This research result can be used by both countries to improve their education quality, especially in Indonesia.

2. Method
This research used a mixed method to analyse the practice questions by examining the content of practice questions in Chinese and Indonesian mathematics textbooks. The study was conducted in Guangxi Normal University for the period of two months, from November 2020 to December 2020.

The sample textbooks of the study can be seen in figure 1 and the detail description of each sample is displayed in table 1.

![Figure 1. Sample of (a) Chinese and (b) Indonesian mathematics textbook](image-url)
In the Chinese textbook, algebra is divided into two parts which are taught in 7th grade and 8th grade. Wherein the same topics are taught in 7th grade of 1st semester in the Indonesian textbook.

For data analysis, a Charalambous approach [12] was used to analyse the practice questions in this research. Using this approach, the researchers compared the textbooks on three aspects: presentation, context, and type of answer. Firstly, the researchers analysed in which chapter algebra was placed in the book and the proportion of algebra in the textbooks was counted. Then, the researchers continued analysing practice questions given in the Indonesian and Chinese textbooks. Here, the textbook was analysed based on three aspects: presentation, context, and type of answer. The detail of the aspects can be seen in table 2, and examples of questions according to different aspects can be seen in figure 2, figure 3 and figure 4 respectively.

Aspects	Category	Explanation
Presentation	Pure mathematics	The practice question is pure mathematics without any story or pictures
	Verbal	Practice questions are in the form of word problem
	Visual	Practice questions are in the form of tables, graphics, pictures, maps that can be visually presented
	Combination	The practice question is a combination of two or three categories above
Context	Applicable	Practice questions can be applied to students’ daily life
	Non-applicable	Practice question cannot be applied to students’ daily life
Type of answer	Open-ended	Practice question has various solutions
	Close-ended	Practice question has only one solution

Table 1. Description of sample textbook

| Country | Textbook Series | Abbreviation | Publisher |
|---------|--|---------------|----------------|----------------|
| China | Seventh-grade mathematics textbooks published by People’s Education Press (2012) | PEP | People’s Education Press |
| | Eighth-grade mathematics textbooks published by People’s Education Press (2012) | | |
| Indonesia | Matematika SMP/MTs Kelas VII Semester 1 Revisi 2017 | MSK | BSE |

Table 2. An analytical framework of algebraic problems in textbooks
Example

Sederhanakan bentuk aljabar $9a^2 + 3ab - 7b^2 - 12a^2 + 6ab + 2b^2$.

Di antara ketiga gambar berikut, manakah yang memiliki keliling terpanjang? Jelaskan.

Perusahaan X mengemas kelereng-kelereng ke dalam kotak-kotak, yaitu kotak merah dan kotak putih.

Wafi memiliki 15 kotak merah dan 9 kotak putih. Kotak-kotak tersebut berisi kelereng. Jika banyak kelereng di kotak merah dinyatakan dengan x dan banyaknya kelereng di kotak putih dinyatakan dengan y, maka banyak kelereng di kedua kotak dinyatakan dengan $15x + 9y$.

Perusahaan X mengemas kelereng-kelereng ke dalam kotak-kotak, yaitu kotak merah dan kotak putih.

Wafi memiliki 15 kotak merah dan 9 kotak putih. Kotak-kotak tersebut berisi kelereng. Jika banyak kelereng di kotak merah dinyatakan dengan x dan banyaknya kelereng di kotak putih dinyatakan dengan y, maka banyak kelereng di kedua kotak dinyatakan dengan $15x + 9y$.

Perusahaan X mengemas kelereng-kelereng ke dalam kotak-kotak, yaitu kotak merah dan kotak putih.

Wafi memiliki 15 kotak merah dan 9 kotak putih. Kotak-kotak tersebut berisi kelereng. Jika banyak kelereng di kotak merah dinyatakan dengan x dan banyaknya kelereng di kotak putih dinyatakan dengan y, maka banyak kelereng di kedua kotak dinyatakan dengan $15x + 9y$.

Perusahaan X mengemas kelereng-kelereng ke dalam kotak-kotak, yaitu kotak merah dan kotak putih.

Wafi memiliki 15 kotak merah dan 9 kotak putih. Kotak-kotak tersebut berisi kelereng. Jika banyak kelereng di kotak merah dinyatakan dengan x dan banyaknya kelereng di kotak putih dinyatakan dengan y, maka banyak kelereng di kedua kotak dinyatakan dengan $15x + 9y$.

Perusahaan X mengemas kelereng-kelereng ke dalam kotak-kotak, yaitu kotak merah dan kotak putih.

Wafi memiliki 15 kotak merah dan 9 kotak putih. Kotak-kotak tersebut berisi kelereng. Jika banyak kelereng di kotak merah dinyatakan dengan x dan banyaknya kelereng di kotak putih dinyatakan dengan y, maka banyak kelereng di kedua kotak dinyatakan dengan $15x + 9y$.

Perusahaan X mengemas kelereng-kelereng ke dalam kotak-kotak, yaitu kotak merah dan kotak putih.

Wafi memiliki 15 kotak merah dan 9 kotak putih. Kotak-kotak tersebut berisi kelereng. Jika banyak kelereng di kotak merah dinyatakan dengan x dan banyaknya kelereng di kotak putih dinyatakan dengan y, maka banyak kelereng di kedua kotak dinyatakan dengan $15x + 9y$.

Perusahaan X mengemas kelereng-kelereng ke dalam kotak-kotak, yaitu kotak merah dan kotak putih.

Wafi memiliki 15 kotak merah dan 9 kotak putih. Kotak-kotak tersebut berisi kelereng. Jika banyak kelereng di kotak merah dinyatakan dengan x dan banyaknya kelereng di kotak putih dinyatakan dengan y, maka banyak kelereng di kedua kotak dinyatakan dengan $15x + 9y$.
Berdasarkan hasil pengamatan kalian, buatlah pertanyaan yang berkaitan dengan perkalian bentuk aljabar, mungkin kalian bertanya dua hal berikut.
1. Bagaimana cara mengalikan suku-suku bentuk aljabar?
2. Adakah cara singkat untuk mengalikan dua suku bentuk aljabar?
Sekarang cobalah buat pertanyaan yang serupa atau memuat kata “perkalian” dan “dua suku”.

Sederhanakan hasil kali bentuk aljabar dari
a. \(4(3a + 2)\)

b. \((x + 3)(x - 2)\)

c. \((2x - 1)(x + 2y - 3)\)

Figure 4. Example of questions based on type of answer

Results and discussion

Based on table 3, the Chinese textbook had 310 pages and 78 of them contained algebra while Indonesian textbooks had 290 pages and 44 of them contained algebra. From this, we can see that Chinese textbooks had a bigger algebra proportion compared to Indonesian textbooks. We can conclude that the Chinese textbook was more focused on algebra than other topics.

Table 3. Algebra proportion in the textbooks

Textbook	Total number of pages	Number of pages allocated to algebra	Proportion of algebra over whole textbook
Chinese	310	78	25.16%
Indonesian	290	44	15.17%

Table 4 presents the findings obtained for practice questions in terms of presentation aspect, contextual feature and type of answer for both China and Indonesia textbooks.

Table 4. Statistics on the presentation forms of practice questions in mathematics textbooks

Aspect	Category	China	Indonesia
	\(n\) \(\%\)	\(n\) \(\%\)	
Presentation form	Pure mathematics form	110 62.50%	68 59.65%
	Verbal form	40 22.73%	28 24.56%
	Visual form	3 1.70%	11 9.65%
	Combined form	23 13.07%	6 5.26%
	Total	176 100.00%	114 100.00%
Contextual Feature	Applicable problems	41 23.30%	16 14.04%
	Non-applicable problems	135 76.70%	98 85.96%
	Total	176 100%	114 100%
Type of answers	Open-ended problem	8 4.55%	16 14.04%
	Close-ended problem	168 95.45%	98 85.96%
	Total	176 100.00%	114 100.00%

In terms of presentation aspect, we can see that practice questions in the form of pure mathematics had the biggest proportion in the two countries' textbooks (figure 5). The visual form of practice question had the smallest proportion in the Chinese textbook, while the combined form had the smallest proportion in the Indonesian textbook. Overall, the Chinese textbook had more practice questions on algebra compared to the Indonesian textbook.
A good practice question can improve students’ mathematical ability. The verbal, visual and combined form of practice questions need mathematical connection and communication ability. When students are given a visual type of question, they should convert and interpret the pictures into mathematical forms. When students are given verbal questions, they should take important information in the word problem and convert them into mathematical form.

Mathematics learning aims to solve daily life problems [19], [20]. That is why it would be better if questions are given in a contextual form or connected to daily life problems. Based on the analysis that can be seen in figure 6, both countries have more practice questions that are non-applicable. The result shows that the percentage of applicable problems in Chinese textbooks is higher compared to Indonesian textbook. The amount of contextual questions in the Chinese textbook can serve as a reference to the Indonesian textbook so that they would be able to add more contextual questions.

Figure 6. Comparison of the contextual feature of practice questions in mathematics textbooks

An open-ended question is a type of question that has many solving methods and answers [21], [22]. When students are given an open-ended question, it can improve students’ mathematical reasoning ability, problem solving ability and other mathematical ability [23], [24]. With this, we can conclude that an open-ended question is better than a fixed type of question. Based on figure 7, both countries of China and Indonesia have a relatively low percentage of open-ended questions type in the textbook.
From the analysis above, we can see that both countries have their own strengths in giving practice questions. The analysis result shows that Chinese textbook tends to have more practice questions and contextual problems to train and evaluate students’ mathematical ability towards algebra. While the Indonesian textbook tends to have more open-ended questions than fixed problems, it can improve students’ mathematical ability.

An example of good practice questions is in the form of open-ended problems. The study conducted by Wijaya showed that open-ended problems could improve students’ creative thinking skills [25]. Open-ended problems also help students to form mind-sets and improve students’ problem solving abilities [26]. Therefore, it is better to develop practice questions in the form of open-ended problems than closed-ended problems. If there are very few open-ended problems in mathematics textbooks, the teacher can give additional open-ended problems to students.

4. Conclusion
The comparative analysis result of practice questions on algebra in this research shows that the Chinese textbook has a bigger proportion (25.16%) of algebra in the number of pages than the Indonesian textbook. The Chinese textbook has more practice questions on algebra than Indonesian textbooks, and the percentage of contextual questions in the Chinese textbook is bigger than that in the Indonesian textbook. The percentage of the open-ended question in the Indonesian textbook is better than that in Chinese textbook.

This study only investigated a Chinese and an Indonesian textbook among many more textbooks in Indonesia and China with different practice questions. Practice question in textbooks are only of the factors that can affect students’ mathematical ability. There are still a lot more factors that can affect students’ mathematical ability. Future research can discuss about the difference of teaching method on algebra in the two countries.

Acknowledgments
I would like to thank Guangxi Normal University. Research on the consistency between the mathematics test and the curriculum standard of the college entrance examination under the core literacy perspective (Innovation Project of Guangxi Graduate Education 2021, NO.YCSW20211102). This research is also a collaboration between researchers from China and Indonesia in which the analysis result can be trusted.
References

[1] Fan L and S G K 2000 The influence of textbooks on teaching strategies: An empirical study Mid-Western Educ. Res. 13
[2] Fan L, Mailizar M, Alafaleq M and Wang Y 2018 A Comparative Study on the Presentation of Geometric Proof in Secondary Mathematics Textbooks in China, Indonesia, and Saudi Arabia Res. Math. Textb. Teach. Resour pp 53–65
[3] Aditya P Wijaya T T Dewi S N and Zulfah Z 2020 Analisis Buku Siswa Matematika Sma Dari Indonesia Dan China Pada Materi Peluang Dan Statistik J. Cendekia J. Pendidik. Mat. 4 pp 813–822
[4] Cai J Ding M and Wang T 2014 How do exemplary Chinese and U.S. mathematics teachers view instructional coherence? Educ. Stud. Math. 85 pp 265–280
[5] Randahl M 2012 Fir-st-year engineering students’ use of their mathematics textbook—opportunities and constraints Math. Educ. Res. J. 24
[6] Khan N and Ali A 2010 Improving the speaking ability in English: The students’ perspective Procedia - Soc. Behav. Sci. 2 pp 3575–3579
[7] Cai J and Jiang C, 2017 An Analysis of Problem-Posing Tasks in Chinese and US Elementary Mathematics Textbooks Int. J. Sci. Math. Educ. 15, 8 pp 1521–1540
[8] Tam H P and Chih O Y 2015 The teaching and learning of statistics: International perspectives Teach. Learn. Stat. Int. Perspect pp 1–334
[9] Cao Y Wu L and Dong L 2017 Comparing the Difficulty Level of Junior Secondary School Mathematics Textbooks in Five Nations What Matters? Res. Trends Int. Comp. Stud. Math. Educ
[10] Ma Y and Qin X 2021 Measurement invariance of information, communication and technology (ICT) engagement and its relationship with student academic literacy: Evidence from PISA 2018 Stud. Educ. Eval. 68 January p 100982
[11] Gowers W T 2011 How do IMO Problems Compare with Research Problems? An Invit. to Math. pp 55–69
[12] Zhang D and Qi C 2019 Reasoning and proof in eighth-grade mathematics textbooks in China Int. J. Educ. Res. 98 July pp 77–90
[13] Duval R 2014 Commentary: Linking epistemology and semio-cognitive modeling in visualization ZDM - Int. J. Math. Educ. 46 pp 159–170
[14] Son A L Darhim and Fatimah S 2019 An analysis to student error of algebraic problem solving based on polya and newman theory J. Phys. Conf. Ser. 1315
[15] Juandi D and Jupri A 2013 Developing Mathematical Communication and Representation of Students Grade Vii: A Design Research J. Pengajaran Mat. dan Ilmu Pengetah Alam 18 p 135
[16] Ho S Y and Toh T L 2019 Representation of Algebra Concepts in Singapore Secondary Mathematics in School Mathematics Curricula.
[17] Davis J D Smith D O Roy A R and Bilgic Y K 2014 Reasoning-and-proving in algebra : The case of two reform-oriented U. S . textbooks Int. J. Educ. Res. 64 pp 92–106.
[18] Zhang D and Qi C 2019 Reasoning and proof in eighth-grade mathematics textbooks in China Int. J. Educ. Res. 98 September pp 77–90.
[19] Kulsum S I Hidayat W Wijaya T T and Kumala J 2019 Analysis on high school students’ mathematical creative thinking skills on the topic of sets J. Cendekia J. Pendidik. Mat. 3 pp 431–436.
[20] Surya Y F Zulfah Astuti Marta R and Wijaya T T 2020 The Development of Open-Ended Math Questions on Grade v Students of Elementary School in Journal of Physics: Conference Series 1613
[21] Zulfah Astuti Surya Y F Marta R and Wijaya T T 2020 Measurement of mathematics problems solving ability using problem based mathematics question in Journal of Physics: Conference Series 1613
[22] Rosaini Budiyono and Pratiwi H 2019 How does HOTS based problem posing model improve students’ attitudes toward mathematics? IOP Conf. Ser. Earth Environ. Sci. 243
[23] Desania F Sinaga B Lubis A and Syahputra E 2020 Analysis of students’ critical thinking skills through problem-based learning approach using HOTS questions in SMA N 13 medan Int. J. Sci. Technol. Res. 9 pp 131–137

[24] Lam T C 2006 Group problem-solving among teachers: A case study of how to improve a colleague’s teaching Soc. Psychol. Educ. 9 pp 273–299

[25] Wijaya A 2018 How do open-ended problems promote mathematical creativity? A reflection of bare mathematics problem and contextual problem J. Phys. Conf. Ser. 983

[26] Padliadi Marwan and Zubainur C M 2020 The thinking process of quitter students in solving open-ended mathematical problems J. Phys. Conf. Ser. 1460