Financial and Management Tools to Identify Realistic Factors Affecting Production Output

M Chaplygina¹, L Fomicheva²
¹Federal state budgetary educational institution of higher education «The Southwest State University (SWSU)», ul. 50 let Oktyabrya., 94, 305040, Kursk, Russia
²Federal state budgetary educational institution of higher education Moscow Polytechnic University, ul Bolshaya Semenovskaya 38, Moscow, Russia

E-mail: chaplyginam@mail.ru, liliya.fomichewa@yandex.ru

Abstract. Correlation and regression analysis can be used to establish casual relationships between variables. In practice, these tools help to find out the variable value and determine its impact on the change of the dependent variable.

The purpose of the article is to study the factors affecting the change in the production output, in particular, stock inventories, their turnover as well as contractors and buyers of finished products. Even if the values are expressed in different units of measurement, i.e. the production output and inventories - in rubles and inventory turnover - in turns, contractors - in the number of men, the economic and mathematical models presented enable us to make a comparison. Therefore, the article demonstrates a practical approach to find the dependency between specific and above factors (variables) and their cause-and-effect associations.

In practice, it is necessary to find out the values of the variable and determine its impact on the change of the dependent variable. In this particular case, the production output is taken as a dependent value. Its value is influenced by variables (stocks of raw materials and supplies, their turnover, number of consumers formed for a certain type of finished product of a given production), and therefore they change proportionally. The calculation of values for one variable on the basis of another one will be shown using regression equation with known initial numbers. Consequently, a practical approach presented demonstrates how correlation analysis, mathematical function, regression equation and trend line can be applied allowing practitioners to identify not only cause-and-effect but also regression relationships between variables. The proposed regression analysis allows to identify changes in the microeconomic production policy and to trace their impact on the economic activity of the entity over time.

1. Introduction
Economic and mathematical methods of analysis provide practitioners with an opportunity to identify causal relationships between variables and explain their regression relationships.

2. Problem statement
In practice, the analytics do not use economic and mathematical methods of research as they fear they will be unable to accomplish it and will fail to see the result of hard work allowing to establish a link between casual relations and factors affecting the financial results of economic activity.
3. Research questions
Determine the strength and direction of the relationship between selected variables using correlation and regression analysis and embedded Microsoft Excel functions.

4. Purpose of the study
Assess the dependence factors explaining the change in production output and financial results of economic activity with the help of regression equation.

5. Research method
Economic and mathematical modeling, correlation and regression analysis, calculation of regression equation, generation of a trend line, embedded functions of MS Excel.

6. Main section
The economic entity under study belongs to the production sphere. Its main part of the assets is represented by raw materials and supplies as a required condition for ensuring the continuity of production process. Their inventory should be sufficient to ensure uninterrupted production of a wide range of finished products.

For the purposes of selecting parameters for the economic and mathematical model, it should be noted that the range of finished products and their sales, the availability of raw materials and their turnover at the production process actually affect the enterprise volume of activity [6,8].

To present a realistic view of close link between the factors and activity volume, the source data provided in Table 1 (average cost of inventory and contractors-buyers of the given finished products in the economic supply chain of the enterprise) are logged in the embedded function of MS Excel, which allows to establish a relationship between the selected factors (values) [1,3] by means of correlation and regression analysis for the causal relationship between the variables.

Finished product No.	Production output for 2018, RUB	Inventory cost (raw materials and supplies)	Contractors, men
No. 1	9359000	420915	968
No. 2	4860900	695840	1563
No. 3	3303700	246261	334
No. 4	13763900	1664891	765
No. 5	3216400	450732	291
No. 6	4400500	621486	309
No. 7	1677000	161024	105
No. 8	5174600	692684	299
No. 9	5043500	787734	478
No. 10	2973000	376916	219
No. 11	1752400	138245	119
No. 12	2020700	369579	175
No. 13	2602200	444016	721
No. 14	2135300	225653	301
No. 15	3063800	397611	271
No. 16	4367500	621102	782
No. 17	2923800	687766	367
No. 18	5449100	518341	429
No. 19	2052500	261568	366
No. 20	675700	123462	243
No. 21	5177200	591126	307
The tabular correlation data determined the strength and direction of the relationship between the sample variables as provided in Table 2.

Table 2. The obtained data of correlation between the factors.

First Section	First Section	First Section	First Section
Production output	1	0.791233	0.271435
Inventory cost	0.791233	1	-0.0349181
Contractors-buyers	0.271435	-0.0349181	1

The analysis package (regression string) and linear regression equation $\hat{y} = \alpha + \beta x$ in MS Excel allowed to obtain the results reflected in Figure 1 and Table 3.

Figure 1. The relationship between the production output and availability of raw materials and supplies at the enterprise (inventory).

The results obtained (Fig. 1) make it possible to note a direct and close correlation between the production output (effective) and inventory (factor), which is confirmed by the multiple R coefficient ($R = 0.791233 \approx 0.8$). The multiple R coefficient, showing the dependency between production output and the number of contractors-buyers, is low since it has a small actual value ($R = 0.271435 \approx 0.3$), but the causal relationship between the inventory cost and the population is not small at all, since the correlation coefficient has developed a negative value ($R = -0.0349181$).
Table 3. Linear regression parameters as obtained using the analysis package and linear regression equation.

Finished product No.	Production output for 2018, RUB	Inventory cost	Contractors-buyers	Average production output \bar{T}_3	Effective use of inventory ratio
No. 1	9752400	999846	456	8321024	1.17
No. 2	9359000	420915	968	3965126	2.36
No. 3	4860900	695840	1563	6033672	0.81
No. 4	3303700	246261	334	2651023	1.25
No. 5	13762900	1664891	765	13324847	1.03
No. 6	3216400	450732	291	4189471	0.77
No. 7	4400500	621486	309	5474230	0.80
No. 8	1677000	161024	105	2009697	0.83
No. 9	5174600	692684	299	6009926	0.86
No. 10	5043500	787734	478	6725086	0.75
No. 11	2973000	376916	219	3634076	0.82
No. 12	1752400	138245	119	1838307	0.95
No. 13	2020700	369579	175	3578872	0.56
No. 14	2602200	444016	721	4138939	0.63
No. 15	2135300	225653	301	2495968	0.86
No. 16	3063800	397611	271	3789786	0.81
No. 17	4675000	621102	782	5471341	0.80
No. 18	2923800	687766	367	5972923	0.49
No. 19	5449100	518341	429	4698163	1.16
No. 20	2052500	261568	366	2766194	0.74
No. 21	6757000	123462	243	1727079	0.39
No. 22	5177200	591126	307	5245800	0.99
No. 23	1076200	138407	185	1839526	0.59
No. 24	7531800	651096	492	5697017	1.32
No. 25	8066300	437120	523	4087053	1.97
No. 26	1732700	274316	608	2862110	0.61
Total	114152100	12997737	11676	x	x

At the next stage, the economic and mathematical modeling uses MS Excel function to construct a trend line (a linear trend), showing the equation and the value of the approximation reliability (R^2) provided in Figure 2.

The results in Figure 2 show that $a = 7.8184$ and $b = 481958$, so the linear regression equation takes the following form: $\hat{y} = 7.8184x + 481958$. The calculated slope $a = + 7.8184$ means that as the variable x (inventory) increases by one, whereas the average value of the variable y (production output) increases by 7.8184.
Consequently, the growth of inventory leads to an increase in production, namely the calculated shift \(b = +481958 \) (RUB). This value is the average variable \(y \) at \(x = 0 \). It should be taken into account, however, that the shift of the variable \(y \) is beyond the range of the variable \(x \). Therefore, we should be careful when interpreting parameter \(b \) [7].

If we take a close look at the location of points in relation to the trend line (Fig. 2), we can see that some points are in a relatively remote distance from the trend line thus indicating another factor that strongly affects the production output [2].

Once the trend line indicates the availability of another factor, we need to look for another causal relationship of factors affecting both the inventory amount and production output. This causal factor is an economic factor of inventory turnover or stock turnover [4].

Inventory Turnover is a circulation rate of finished products and an indicator of economic activity (Table 4) measured in days or turns (Formula 1, 2) [5].

\[
\text{Volume Turnover Ratio} = \frac{\text{Production Output}}{\text{Average Inventory at Cost}}; \quad (1)
\]

If the volume turnover is to be computed in days, than the following formula is used:

\[
\text{Volume Turnover} = \frac{365}{\text{Volume Turnover Ratio}}; \quad (2)
\]

Table 4. Causal factor calculation (turnover of raw materials).

Finished product No.	Production output for 2018, RUB	Average production output \(\bar{T}_{\text{inv. Rub}} \)	Turnover, days	Effective use of inventory ratio
No. 1	9752400	999846	37	1.17
No. 2	9359000	420915	16	2.36
No. 3	4860900	695840	52	0.81
No. 4	3303700	246261	27	1.25
No. 5	13763900	1664891	44	1.03
No. 6	3216400	450732	51	0.77
No. 7	4400500	621486	52	0.80
No. 8	1677000	161024	35	0.83
No. 9	5174600	692684	49	0.86
No. 10	5043500	787734	57	0.75
No. 11	2973000	376916	46	0.82
No. 12	1752400	138245	29	0.95
No. 13	2020700	369579	67	0.56
No. 14	2602200	444016	62	0.63
No. 15	2135300	225653	39	0.86
No. 16	3063800	397611	47	0.81
No. 17	4367500	621102	52	0.80
No. 18	2923800	687766	86	0.49
For example, the most effective use of stock inventory is observed in the range of finished products No.2 where the turnover ratio is equal to 2.36, whereas the turnover (days) is equal to 16. On the contrary, the most ineffective use of stock inventory is under No. 18 where the turnover is 86 days and the circulation rate is 0.49 times, i.e. a slow turnover is observed.

It means that the faster the inventory turnover rate, the higher the inventory efficiency ratio, and vice versa - the slower the inventory turnover rate, the lower the inventory efficiency ratio [7].

To facilitate management decisions, it is necessary to take appropriate measures to accelerate the inventory turnover (Figure 3) [7].

No.	Stock No.	Stock	Turnover (Ratio)	
19	5449100	518341	35	1.16
20	2052500	261568	47	0.74
21	675700	123462	67	0.39
22	5177200	591126	42	0.99
23	1076200	138407	47	0.59
24	7531800	651096	32	1.32
25	8066300	437120	20	1.97
26	1732700	274316	58	0.61
Total	114152100	12997737	42	x

Measures to promote the efficient use of inventory

- develop effective logistics of supplies, if applicable, in order to limit overstocking which can cause the slowdown in turnover;

- study the needs of the contractor-buyer assigned to this type of finished products in order to implement the effective application for stocks;

- expand purchase of raw materials on preferential terms (making delay payments, making sure that raw materials will be needed in the production process);

- analyze the range of finished products through a survey of contractors-buyers to identify customer interest;

- timely utilize stale industrial stocks, if applicable, since they contribute to slowdown of turnover and bigger payment of the property tax.

Figure 3. Actions contributing to inventory turnover acceleration.

The proposed actions will contribute to production growth and reduction of inventories. The forecast calculation data are presented in Table 5.
Table 5. Efficiency forecast for use of inventories production stocks.

Year	Actual as of 2018	Forecast 2019	Forecast 2020	Forecast 2021
Production output,	114152100	119859705	125852690	132145339
Rub.				
Average cost of inventories, Rub.	12997737	12347850	11730457	11143934
Turnover, Day	42	37	34	30

Forecast data makes it possible to emphasize that accelerating the turnover of finished products in days reduces material inventories for manufacturing enterprises in order to prevent overstocking and to achieve an increase in sales, which gives workers the opportunity to reduce labor-intensive work in inventories and business efficiency.

7. References

[1] Arefev N G, Kuznetsov S A, Ponomarev K A 2015 From Correlation to Causation: Econometric versus Computer Science Approaches Economic Journal of Higher School of Economics vol 19 3 457-496

[2] Bogdanova A L 2018 Leading indicators as an instrument of economic forecasting Economic science of modern Russia 2 35-55

[3] Havel O Y 2018 Methodological approaches to evaluation and monitoring of efficiency of innovative development management of economic subjects Ekonomika. Biznes. Banki 1(22) 105-126

[4] Yershov E B 2008 Rival regressions: criteria and selection procedures Economic Journal of Higher School of Economics vol 12 4 488–511

[5] Lesik I A, Carriers A G 2016 Determination of optimal production volumes and sales prices in the linear model of a multi-product monopoly Economics and mathematical methods vol 52 1 132-140

[6] Stavchikov A I, Pleshchinsky A S, Zhdanov D A, Danilin V I 2018 Economic-mathematical modeling in the enterprise management system Economics and mathematical methods vol 54 3 122-131

[7] Chaplygina M A, Polskaya G A, Zubkova T A 2016 Acceleration of inventory turnover as the most important reserve for reducing turnover costs Bulletin of BIST (Bashkir Institute of social technologies) 2 1-2(30) 103-108

[8] Fomicheva L M, Chaplygina M A 2015 Improvement of analytical work in the practice of economic entities aimed at establishment of conditions for self-sufficiency and self-financing Bulletin of the Kursk State Agricultural Academy 2 8 52-55