Investigations on hoop conjecture for horizonless spherical charged stars

Yan Peng1,2*

1 School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China and
2 Center for Gravitation and Cosmology, College of Physical Science and Technology,
Yangzhou University, Yangzhou 225009, China

Abstract

For horizonless spherical stars with uniform charge density, the hoop conjecture was tested based on the interior solution. In this work, we are interested in more general horizonless spherical charged stars. We test hoop conjecture using the exterior solution since all types of interior solutions correspond to the same exterior Reissner-Nordström solution. Our analysis shows that the hoop conjecture is violated for very compact stars if we express the conjecture with the total ADM mass. And the hoop conjecture holds if we express the conjecture using the mass in the sphere.

PACS numbers: 11.25.Tq, 04.70.Bw, 74.20.-z

* yanpengphy@163.com
I. INTRODUCTION

The famous hoop conjecture introduced almost five decades ago asserts that the existence of black hole horizons is characterized by the mass and circumference relation $\frac{C}{4\pi M} \leq 1$ [1, 2]. Here C is the circumference of the smallest ring that can engulf the black hole in all azimuthal directions and M is usually interpreted as the asymptotically measured total ADM mass [3]-[31].

For horizonless curved spacetimes, the hoop conjecture should be characterized by the opposite inequality $\frac{C}{4\pi M} > 1$ [1, 2]. Then it is a question whether the mass in the ratio can still be interpreted as the ADM mass. For a specific interior solution of horizonless charged star with uniform charge density, however, if M is interpreted as the ADM mass, the relation $\frac{C}{4\pi M} > 1$ can be violated for certain set of parameters and this relation holds if M is the mass contained in the engulfing sphere [32–35]. In contrast, black holes can violate the hoop relation if the mass term is interpreted as the mass in the sphere [36]. Considering the different appearances of hoop conjecture in black holes and horizonless stars with uniform charge density, it is interesting to test hoop conjecture in the background of more general horizonless compact stars. In particular, it is meaningful to examine the case of horizonless stars compact nearly to form horizons.

We extend the discussion in [32–35] by considering the exterior solution since all types of interior solutions correspond to the same exterior Reissner-Nordström solution. For general horizonless spherical charged stars, our analysis shows that the hoop relation is violated if the mass term is interpreted as the ADM mass and the hoop relation holds if we use the gravitating mass within the sphere.

II. STUDIES OF THE MASS IN HOOP CONJECTURE

We are interested in general horizonless spherical charged stars. And the spacetime reads [32–35]

$$ds^2 = -e^\nu dt^2 + e^\lambda dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2).$$

The metric functions ν and λ only depend on the radial coordinate r. The sphere surface radius is located at r_0. In the exterior region $r \geq r_0$, the background is the Reissner-Nordström solution

$$e^\nu = e^{-\lambda} = 1 - \frac{2M}{r} + \frac{Q^2}{r^2},$$

where M is the ADM mass of the spacetime and Q is the star charge. In this work, we pay attention to the case of $M \geq Q$. The would be horizon position is at $r_h = M + \sqrt{M^2 - Q^2}$. Since we are interested in
horizonless stars, there is the relation $r_0 > r_h$. We can simply set the surface radius as $r_0 = (1 + \varepsilon)r_h$, where ε is a small positive parameter.

The circumference C is given by

$$C = 2\pi r_0 = 2\pi(1 + \varepsilon)(M + \sqrt{M^2 - Q^2}).$$

(3)

For horizonless curved spacetimes, the hoop conjecture should be characterized by $[1, 2]$

$$\frac{C}{4\pi \mathcal{M}} > 1.$$

(4)

If we interpret the mass \mathcal{M} as the ADM mass M. The mass to circumference ratio is

$$\frac{C}{4\pi \mathcal{M}} = \frac{2\pi(1 + \varepsilon)(M + \sqrt{M^2 - Q^2})}{4\pi M} = \frac{(1 + \varepsilon)(M + \sqrt{M^2 - Q^2})}{2M}.$$

(5)

For parameters satisfying $\varepsilon \leq \frac{M - \sqrt{M^2 - Q^2}}{M + \sqrt{M^2 - Q^2}}$, the relation (5) yields that

$$\frac{C}{4\pi \mathcal{M}} \leq 1.$$

(6)

So for very compact stars with $\varepsilon \leq \frac{M - \sqrt{M^2 - Q^2}}{M + \sqrt{M^2 - Q^2}}$, the hoop conjecture is violated if \mathcal{M} is the ADM mass.

If we interpret \mathcal{M} as the mass in the engulfing sphere, the mass is

$$\mathcal{M} = M - \frac{Q^2}{2r_0}.$$

(7)

The hoop conjecture is expressed by the mass to circumference ratio

$$\frac{C}{4\pi \mathcal{M}} = \frac{2\pi r_0}{4\pi(M - \frac{Q^2}{2r_0})} \left(\frac{1 + \varepsilon}{2M(1 + \varepsilon)r_h - Q^2} \right) \left(\frac{r_h^2 + 2\varepsilon r_h^2 + \varepsilon^2 r_h^2}{2Mr_h - Q^2 + 2M\varepsilon r_h} \right) > \frac{r_h^2 + 2\varepsilon r_h^2}{2Mr_h - Q^2 + 2M\varepsilon r_h}.$$

(8)

Since r_h is the horizon satisfying $1 - \frac{2M}{r_h} + \frac{Q^2}{r_h^2} = 0$, there is the relation

$$r_h^2 = 2Mr_h - Q^2.$$

(9)

Considering $r_h = M + \sqrt{M^2 - Q^2} \geq M$, we get

$$2\varepsilon r_h^2 \geq 2\varepsilon Mr_h.$$

(10)

The relations (8), (9) and (10) imply that

$$\frac{C}{4\pi \mathcal{M}} > 1.$$

(11)
It means the hoop conjecture holds for horizonless stars if we use the mass within the engulfing sphere. Since we consider the exterior solution, our conclusion holds in the exterior region of various horizonless stars. Here we analytically show that for exterior solutions of compact stars, Thorne hoop conjecture may generally hold if the mass term is interpreted as mass contained within the engulfing sphere.

III. CONCLUSIONS

The famous hoop conjecture is expressed by the mass to circumference ratio. For horizonless spherical stars with uniform charge density, the hoop conjecture was tested based on the interior solution in [32–35]. We investigated hoop conjecture in the exterior region of more general spherical horizonless compact stars. We tested hoop conjecture using the exterior solution since all types of interior solutions correspond to the same exterior Reissner-Nordsrøm solution. Our analysis showed that the hoop conjecture cannot hold for very compact stars if the mass is interpreted as the ADM mass in the total spacetime. And the hoop conjecture holds if we interpret the mass as the gravitating mass contained within the engulfing sphere.

Acknowledgments

This work was supported by the Shandong Provincial Natural Science Foundation of China under Grant No. ZR2018QA008. This work was also supported by a grant from Qufu Normal University of China under Grant No. xkjjc201906.

[1] K.S. Thorne, in Magic Without Magic: John Archibald Wheeler, ed. by J. Klauder (Freeman, San Francisco, 1972).
[2] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973).
[3] I.H. Redmount, Phys. Rev. D 27, 699 (1983).
[4] A.M. Abrahams, K.R. Heiderich, S.L. Shapiro, S.A. Teukolsky, Phys. Rev. D 46, 2452 (1992).
[5] S. Hod, Phys. Lett. B 751, 241 (2015).
[6] P. Bizon, E. Malec, and N. ó Murchadha, Trapped surfaces in spherical stars, Phys. Rev. Lett. 61, 1147 (1988).
[7] P. Bizon, E. Malec, and N. ó Murchadha, Class. Quantum Grav. 6, 961 (1989).
[8] D. Eardley, Gravitational collapse of vacuum gravitational field configurations, J. Math. Phys. 36, 3004 (1995).
[9] J. Guven and N. ó Murchadha, Sufficient conditions for apparent horizons in spherically symmetric initial data, Phys. Rev. D 56, 7658 (1997).
[10] J. Guven and N. ó Murchadha, Necessary conditions for apparent horizons and singularities in spherically symmetric initial data, Phys. Rev. D 56, 7666 (1997).
[11] E. Malec, Event horizons and apparent horizons in spherically symmetric geometries, Phys. Rev. D 49, 6475 (1994).
[12] E. Malec and ó Murchadha, The Jang equation, apparent horizons, and the Penrose inequality, Class. Quantum Grav. 21, 5777 (2004).
[13] T. Zannias, Phys. Rev. D 45, 2998 (1992).
[14] T. Zannias, Phys. Rev. D 47, 1448 (1993).
[15] E. Malec, Isoperimetric inequalities in the physics of black holes, Acta Phys. Pol. B 22, 829 (1991).
[16] M. Khurri, The Hoop Conjecture in Spherically Symmetric Spacetimes, Phys. Rev. D 80, 124025 (2009).
[17] H. Bray and M. Khurri, Asian J. Math. 15, 557 (2011).
[18] R. Schoen and S.-T. Yau, Commun. Math. Phys. 90, 575(1983).
[19] Anshul Saini, Dejan Stojkovic, Modified hoop conjecture in expanding spacetimes and primordial black hole production in FRW universe, JCAP 05(2018)071.
[20] K.S. Virbhadra, Naked singularities and Seifert’s conjecture, Phys. Rev. D 60(1999)104041.
[21] Takeshi Chiba, Takashi Nakamura, Ken-ichi Nakao, Misao Sasaki, Hoop conjecture for apparent horizon formation, Class. Quant. Grav. 11(1994)431-441.
[22] Takeshi Chiba, Apparent horizon formation and hoop concept in nonaxisymmetric space, Phys. Rev. D 60(1999)044003.
[23] Ken-ichi Nakao, Kouji Nakamura, Takashi Mishima, Hoop conjecture and cosmic censorship in the brane world, Phys. Lett. B 564(2003)143-148.
[24] G.W. Gibbons, Birkhoff’s invariant and Thorne’s Hoop Conjecture, arXiv:0903.1580[gr-qc].
[25] M. Cvetic, G.W. Gibbons, C.N. Pope, More about Birkhoff’s Invariant and Thorne’s Hoop Conjecture for Horizons, Class. Quant. Grav. 28(2011)195001.
[26] John D. Barrow, G.W. Gibbons, Maximum Tension: with and without a cosmological constant, Mon. Not. Roy. Astron. Soc. 446(2014)3874-3877.
[27] John D. Barrow, G.W. Gibbons, A maximum magnetic moment to angular momentum conjecture, Phys. Rev. D 95(2017)064040.
[28] Edward Malec, Naqing Xie, Brown-York mass and the hoop conjecture in nonspherical massive systems, Phys. Rev. D 91(2015)no.8,081501.
[29] Fabio Anzà, Goffredo Chirco, Fate of the Hoop Conjecture in Quantum Gravity, Phys. Rev. Lett. 119(2017)no.23,231301.
[30] Shahar Hod, Bekenstein’s generalized second law of thermodynamics: The role of the hoop conjecture, Phys. Lett. B 751(2015)241-245.
[31] Shahar Hod, The gravitational two-body system: The role of the Thorne hoop conjecture, Eur. Phys. J. Plus 134(2019)no.3,106.
[32] J.P. de León, Gen. Relativ. Grav. 19, 289 (1987).
[33] W.B. Bonnor, Phys. Lett. A 99, 424 (1983).
[34] Shahar Hod, On the status of the hoop conjecture in charged curved spacetimes, Eur. Phys. J. C (2018)78:1013.
[35] Yan Peng, Analytical studies on the hoop conjecture in charged curved spacetimes, Eur. Phys. J. C 79(2019)11,943.
[36] Shahar Hod, Further evidence for the non-existence of a unified hoop conjecture, Eur. Phys. J. C (2020)80:982.