Japanese encephalitis in a 114-month-old cow: pathological investigation of the affected cow and genetic characterization of Japanese encephalitis virus isolate

Naomi Kako, Seiji Suzuki, Norie Sugie, Tomoko Kato, Tohru Yanase, Makoto Yamakawa and Hiroaki Shirafuji

Abstract

Background: Japanese encephalitis virus (JEV) is classified into the genus Flavivirus in the family Flaviviridae. JEV can cause febrile illness and encephalitis mainly in humans and horses, and occasionally in cattle.

Case presentation: In late September 2010, a 114-month-old cow showed neurological symptoms similar to the symptoms observed in previous bovine cases of Japanese encephalitis (JE); therefore, we conducted virological and pathological tests on the cow. As a result, JEV was isolated from the cerebrum of the affected cow. We determined the complete genome sequence of the JEV isolate, which we named JEV/Bo/Aichi/1/2010, including the envelope (E) gene region and 3’ untranslated region (3’UTR). Our phylogenetic analyses of the E region and complete genome showed that the isolate belongs to JEV genotype 1 (G1). The isolate, JEV/Bo/Aichi/1/2010, was most closely related to several JEV G1 isolates in Toyama Prefecture, Japan in 2007–2009 by the phylogenetic analysis of the E region. In addition, the nucleotide alignment revealed that the deletion in the 3’UTR was the same between JEV/Bo/Aichi/1/2010 and several other JEV G1 isolates identified in Toyama Prefecture in 2008–2009. A hemagglutination inhibition (HI) test was conducted for the detection of anti-JEV antibodies in the affected cow, and the test detected 2-mercaptoethanol (2-ME)-sensitive HI antibodies against JEV in the serum of the affected cow. The histopathological investigation revealed nonsuppurative encephalomyelitis in the affected cow, and the immunohistochemical assay detected JEV antigen in the cerebrum.

Conclusion: We diagnosed the case as JE of a cow based on the findings of nonsuppurative encephalomyelitis observed in the central nervous system, JEV antigen detected in the cerebrum, JEV isolated from the cerebrum, and 2-ME-sensitive HI antibodies against JEV detected in the serum. This is the first reported case of JE in a cow over 24 months old.

Keywords: Japanese encephalitis, Cow, Arthropod-borne virus, Viral encephalomyelitis
114-month-old cow in Aichi Prefecture, Japan showed clinical symptoms similar to those of the calf; we therefore conducted virological and pathological tests on the cow.

Case presentation

Sample collection

In late September 2010, a 114-month-old Japanese Black cow on a beef farm in Aichi Prefecture, Japan showed decreased appetite and fever. Four days after the onset of these symptoms, the cow showed astasia. Despite palliative treatments, no improvement was seen, and the cow then became recumbent and was euthanized. A serum sample was collected after the onset of the initial symptoms, and organs were collected at necropsy for virological and pathological investigations including the brain, spinal cord, heart, lung, kidney, spleen, rumen, reticulum, omasum, abomasum, intestines, right axillary lymph node, and right popliteal lymph node. Serum samples were collected from the other 14 cows on the farm for anti-JEV hemagglutination inhibition (HI) antibody.

Virological, serological and pathological investigations

Homogenate was prepared from the cerebrum of the affected cow, and RNA was extracted from the homogenate and the cow’s serum sample with a QIAamp Viral RNA Mini Kit (Qiagen, Valencia, CA, USA). The RNA was tested for the presence of JEV by reverse transcription-polymerase chain reaction (RT-PCR) [11]. For virus isolation, the homogenate was inoculated onto Vero cells [6], and the isolated virus was subjected to RT-PCR and direct sequencing using the products of RACE as sequencing templates [10]. All of the primers used in the present study are shown in Table 1. All of the serum samples were treated with 2-mercaptoethanol (2-ME) and then mixed with goose red blood cells. The HI antibody titers were determined with the use of JEV antigen prepared from the Nakayama strain (Kyoto Biken, Kyoto, Japan). JEV-positive swine serum was used as a positive control. We also treated the serum sample of the affected cow with 2-mercaptoethanol (2-ME) and then subjected it to the HI test, to test for anti-JEV immunoglobulin M antibodies.

We examined the affected cow for gross and histological lesions. The collected organs were fixed in 10% neutral buffered formalin. Fixed organs were then embedded in paraffin wax, sectioned at 3 μm, and stained with hematoxylin and eosin. An immunohistochemical (IHC) assay was performed using a Histofine Simple Stain MAX-PO (MULTI) Kit (Nichirei, Tokyo). Anti-JEV (AS-6 strain [15]) polyclonal rabbit serum was used as the primary antibody for the detection of JEV antigen.

Isolation and genetic characterization of JEV

The cerebrum of the affected cow tested positive for JEV, but the serum tested negative. We then subjected the cerebrum to virus isolation, and JEV was isolated after the second passage. From the JEV isolate, which we named JEV/Bo/Aichi/1/2010, cDNAs containing the E region and the 3’ UTR were successfully amplified and sequenced. Our phylogenetic analysis of the E region showed that the isolate clustered with other isolates belonging to JEV G1 (Figure 1), and it was most closely related to several isolates from Toyama Prefecture, Japan in 2007–2009 [16], including JEV/Sw/Toyama/08253c/2008, JEV/Sw/Toyama/08253c/2008, JEV/Sw/Toyama/07296c/2007 and JEV/Mo/Toyama/3140c/2009.

The newly identified JEV isolate, JEV/Bo/Aichi/1/2010, was found to contain 10,958 nucleotides, and our phylogenetic analysis of the complete genome also showed that the isolate was closely related with other isolates of JEV G1 (Figure 2). The nucleotide sequence of the 3’UTR was then compared between JEV/Bo/Aichi/1/2010 and other JEV isolates belonging to genotypes 1 – 5 available in GenBank. The nucleotide alignment revealed that JEV/Bo/Aichi/1/2010 has the same deletion in the 3’UTR as several other isolates of JEV G1 in Toyama Prefecture, such as JEV/Mo/Toyama/3140c/2009 and JEV/Mo/Toyama/08253c/2008, although their sequences were not completely identical (Figure 3). The affected cow was negative for BSE by the ELISA.

JEV seroprevalence

We conducted HI tests for the affected cow and the other healthy cows on the farm to determine the serological prevalence of JEV infection. All 15 of the cows tested positive for anti-JEV HI antibodies, and the titers were 1:160 in the affected cow and ranged from 1:160 to 1:2560 in the other cows (Table 2). In addition, the affected...
The cow had 2-ME sensitive HI antibody, and the titer was 1:20.

Pathological findings

The gross examination of the affected cow revealed hemorrhage and congestion of the brain, pulmonary emphysema, rough surface of the kidney, swelling of the right axillary and right popliteal lymph nodes, and a wound and muscle necrosis of the right upper limb. The histological examination revealed typical nonsuppurative encephalomyelitis. Perivascular infiltration of lymphocytes was widely distributed throughout the cerebrum.

Table 1 Oligonucleotide primers used for the cDNA amplification and sequencing of JEV/Bo/Aichi/1/2010

Primer	Sequence (S'-3')	Position	Purpose	References
JF1	TTACTCCAGCGCAAGTGAAGAGCGTCTCAAG	1440-1468	RT-PCR (E region)	Yeh et al. (2010)
JF2	TTACTCCAGCGCAAGTGAAGAGCGTCTCAAG	1440-1463		
JR1	ATGCCGTGCCTGGAGGGAGCG	1675-1655		
JR2	CAYGCTGTGCTCGAAGGGGAGCG	1675-1654		
JE955f	TGYTGGTCTGTCGGCTTTA	956-974	RT-PCR (E region)	Nerome et al. (2007)
JE2536r	AAGATCGCTGCCACAYCTC	2537-2517		
JE1014f	TGATATTTAGAGAAATAATGGATG	10141-10164	RT-PCR (3'UTR)	Nerome et al. (2007)
JE1096r	AGATCCTGTGTCTCTCTCTC	10965-10945		
JEV9-2193F	ATCTGTTGAAACTTTGCGGG	9-28	RT-PCR and sequencing	Katayama et al. (2013)
JEV9-2193R	TTACCCAGCTGCTCCTGACG	2193-2173		
JEV1850-3845F	TGAGCAAACTGCTGGAAGGG	1850-1871		
JEV1850-3845R	TTCTTTGCTGCAGCTCTGCG	3845-3824		
JEV3655-5606F	CTACTTGGTCTGATGGTCTTG	3655-3674		
JEV3655-5606R	ATGGGAGCTCTAATGGTGG	5606-5590		
JEV5409-7958F	CCATAGACTAATGGCAACAAAC	5409-5430		
JEV5409-7958R	AGATGCTGGGTAATGAGGGTGG	7958-7941		
JEV7543-9421F	GACAATTGAGCCACGATGG	7543-7559		
JEV7543-9421R	CCTGGACACACTTGTGCTGTG	9421-9402		
JEV9234-10965F	CATTCTGGACATAGACAGGAGG	9234-9254		
JEV9234-10965R	AGATCCTGTGCCTCTCACC	10965-10944		
JEV1108R	GGCATCTGATTGGTGTTTTG	1108-1089	5'RACE and sequencing	Katayama et al. (2013)
JEV1030R	CTCCACTGGTTCCTCTATG	1030-1011		
JEV157R	ATCCGGGTTCCAGCATATTGATGG	157-134		
JEV9568F	GTCATGCGACCCACACACCTTG	9568-9588	3'RACE and sequencing	Katayama et al. (2013)
JEV10757F	CCGTGGGAAACACATATGAGGGG	10757-10776		
JEV3305R	TCAAGGACATCCTGGCTCTC	3305-3286	Sequencing	Katayama et al. (2013)
JEV5124R	CTCTTGGACAGGCTCCGTTG	5124-5106		
JEV7367R	TCCAGCAAGCCCATCTCTCATAT	7367-7345		
JEV7819F	AACATATGGGAGGACATC	7819-7837		
JEV8993R	GCATGGACATCTCGACAGAC	8993-8973		
JEV10306R	CACTCACCAGTTGGTAATGCCG	10306-10286		
JEV970R	CTGGAGCCACACTACGCAAG	970-951	Sequencing	This study
JEV2240F	GTGACACAGGCCGTGGATCTC	2240-2259		
JEV3906F	AGTCCACCGAACTCGTGAATG	3906-3925		
JEV6041F	CCAACGATGAAATGACACAAAC	6041-6063		
JEV7539R	CAAGGTGACCAACACTCTCC	7539-7518		
JEV8099F	AGCTAGTGCACACCCTGTC	8090-8109		
JEV9249R	TATGTCACGAGGAGTGATTC	9249-9230		
Figure 1 Phylogenetic profile showing the relationships among JEV isolates based on a comparison of the E gene. The percentage bootstrap values calculated from 1,000 replications are indicated around the internal nodes. The scale represents 0.05% sequence divergence. G1–G5: genotypes 1–5.
(Figure 4), and neuronal necrosis, neuronophagia and glial nodules were observed in the cerebral cortex (Figures 4 and 5).

These histological lesions were also observed in the medulla oblongata and spinal cord, and neuronal necrosis was observed in the diencephalon. The lesions were most severe in the hippocampus and were also severe in the frontal lobe among the affected sites in the central nervous system (CNS). Histological findings in other organs included *Sarcocystis* spp. infection in the myocardium, mild abomasal ulceration, mild nonsuppurative interstitial nephritis, severe diffuse hemosiderosis in the
Table 2 Anti-JEV HI titers of serum samples collected from all the cows in the farm, located in Aichi Prefecture, Japan

Cow no.	Age (month)	HI titer
1	29	1:160
2	33	1:160
3	35	1:640
4	58	1:320
5	68	1:640
6	80	1:640
7	81	1:640
8	90	1:640
9	100	1:1280
10*	114	1:160
11	115	1:640
12	143	1:640
13	147	1:640
14	148	1:320
15	188	1:2560

*The affected cow.

Figure 3 Nucleotide sequence alignment of the 5′ distal region of the 3′ UTRs. The nucleotide sequences of the 3′ UTR were compared between the JEV isolate characterized in this study (JEV/Bo/Aichi/1/2010) and other isolates of genotypes 1–5 collected elsewhere, available from GenBank. The sequence of JEV/Bo/Aichi/1/2010 is shown in bold, and only differences from the sequence are indicated for other JEV isolates. Sequence gaps were introduced to optimize the alignment, and deletions are indicated by hyphens and open boxes.

Figure 4 Neuronal necrosis, a glial nodule and perivascular infiltration of lymphocytes in the cerebral cortex of the affected cow. Arrowheads point out the neuronal necrosis. Black arrows: the glial nodules; white arrows: the perivascular infiltration of lymphocytes. Hematoxylin and eosin (H&E) stain. Bar = 100 μm.
spleen, and infiltration of neutrophils in the right axillary and right popliteal lymph nodes. The IHC assay detected JEV antigens in the cerebrum. JEV-positive granules were observed in the cytoplasm of neurons and in the nerve fibers (Figure 6).

Discussion
We diagnosed the case as JE of a cow based on the following findings: nonsuppurative encephalomyelitis observed in the CNS, JEV antigen detected in the cerebrum, JEV isolated from the cerebrum and 2-ME sensitive HI antibodies against JEV in the serum. The histopathological findings observed in the CNS of the affected cow were similar to those observed in the 141-day-old calf in the previous JE case [10], including perivascular infiltration of lymphocytes, neuronal necrosis, neuronophagia and glial nodules.

However, two other lesions observed in the present case were not observed in the 141-day-old calf but were seen in other bovine JE cases: pulmonary emphysema was observed in a 24-month-old milking cow in 1950, and congestion of the brain was seen in an 18-month-old Japanese Black cow in 1996 [7,9]. It is possible that the pulmonary emphysema—as well as the mild abomasal ulceration and mild nonsuppurative interstitial nephritis—observed in the present study influenced the immune status of the affected cow, and contributed to the invasion of JEV into the CNS. The congestion of the brain may have been caused by the onset of encephalomyelitis, since similar gross lesions were observed in some human JE cases [17,18].

The affected cow's wound and muscle necrosis of the right upper limb seemed to have resulted from the onset of astasia and recumbency, and the infiltration of neutrophils in the right axillary and right popliteal lymph nodes may have been immune responses to wound infections. However, it is unclear whether the other pathological findings in the affected cow had relevance to the onset of JE, such as the severe diffuse hemosiderosis in the spleen and the infection of Sarcocystis spp. in the myocardium, although some species of Sarcocystis protozoan parasites are highly pathogenic to ruminants [19].

Our genetic analyses revealed that JEV/Bo/Aichi/1/2010 was most closely related to several other JEV G1 isolates in Toyama Prefecture, which is located approx. 100 miles away from Aichi Prefecture. The JEV isolate JEV/Bo/Aichi/1/2010 was most closely related to several JEV G1 isolates in Toyama Prefecture identified in 2007–2009 by phylogenetic analysis of the E region [16]. In addition, the deletion patterns in the 3’UTR were the same between JEV/Bo/Aichi/1/2010 and some of the JEV G1 isolates found in Toyama Prefecture in 2008–2009.

There were some differences in the phylogenetic characteristics between JEV/Bo/Aichi/1/2010 and another JEV isolate from an affected calf in Miyazaki Prefecture [10], which is located approx. 400 miles away from Aichi Prefecture. Our present findings suggest that JEV/Bo/Aichi/1/2010 may be a part of the JEVs overwintering in the Chubu region of Japan [16], a region that consists of Aichi, Toyama and several other prefectures.

In the bovine JE cases reported to date, the ages of onset were 141 days, 6 months, 18 months and 24 months [7-10]; the 114-month-old affected cow in the present study was the oldest cow affected by JEV infection. The advanced age may have influenced the immune status of the affected cow. In addition, heat stress may have triggered the onset of JE in the extraordinarily hot summer of 2011. However, none of the other cows (including a 188-month-old cow on the same farm) showed any neurological signs, even though the HI test provided
evidence of JEV infection in the herd. Therefore, advanced age seems not to be an important factor in the onset after JEV infection in cattle.

Conclusions

A 114-month-old cow showed several clinical signs including decreased appetite, fever, astasia and recumbency in the summer of 2010 in Aichi Prefecture, Japan. The histopathological investigation revealed nonsuppurative encephalomyelitis in the affected cow, and JEV antigen was observed in the lesions. We isolated JEV from the cerebrum, and we thus diagnosed the case as JE of a cow. Our genetic analyses revealed that the isolate was closely related to other JEV G1 isolates from pigs and mosquitoes in Toyama Prefecture, which is approx. 100 miles away from Aichi Prefecture. Although our data clearly indicated that the causative agent was JEV in the cow’s case, the causes of the onset are still unclear, since JEV infection usually results in an asymptomatic infection in cattle. Further study is needed to clarify the actual causes of the onset after JEV infection in cattle.

Additional information

Alignments and phylogenetic trees created in the present study are available from the Dryad Digital Repository (https://datadryad.org/resource/doi:10.5061/dryad.so3c4).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

NK and SS performed the pathological and virological investigations, respectively. NK, SS and NS made the diagnosis of the cow’s case, TK, TY, MY and HS performed the genetic and phylogenetic analyses of the JEV isolate. NK and HS wrote the manuscript, and all authors read and approved the final manuscript.

Acknowledgements

We thank Dr. Masanori Kubo (National Institute of Animal Health, National Agriculture and Food Research Organization) for providing technical advice. We thank Dr. Masanori Kubo (National Institute of Animal Health, National Agriculture and Food Research Organization, 2702 Chuzan, Kagoshima 891-0105, Japan) for providing technical advice. We thank Dr. Masanori Kubo (National Institute of Animal Health, National Agriculture and Food Research Organization, 2702 Chuzan, Kagoshima 891-0105, Japan) for providing technical advice.

Author details

1Aichi Chuo Livestock Hygiene Service Center, Aichi Prefectural Government, 1-306 Jizono, Maicho, Okaaki 444-0805, Japan. 2Subtropical Diseases Research Division, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan. 3Viral Disease and Epidemiology Research Division, NIAH, NARO, 3-1-5 Kannondai, Tsukuba 305-0856, Japan.

Received: 5 October 2013 Accepted: 18 February 2014 Published: 11 March 2014

References

1. Mackenzie JS, Gubler DJ, Petersen LR: Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 2004, 10(12 Suppl):S98–S100.
2. Gubler DJ, Kuno G, Markoff L: Flaviviruses. In Fields Virology. Edited by Knipe DM, Howley PM. Philadelphia: Lippinott Cott Williams & Wilkins; a Wolters Kluwer Business; 2007:1133–1252.
3. Endy TP, Nisalak A: Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol 2002, 267:11–48.
4. Shimizu T, Mochizuki H, Sugawa Y, Okazaki K, Matumoto M: Studies on Japanese encephalitis of cattle - 2. Experimental infection of calves with virus of Japanese encephalitis. Nat Inst Anim Hlth Quart 1951, 23:119–128.
5. Ilkal MA, Dhanda V, Rao BL, George S, Mishra AC, Prasanna Y, Gopalakrishna S, Pavri KM: Absence of viraemia in cattle after experimental infection with Japanese encephalitis virus. Trans R Soc Trap Med Hyg 1988, 82:628–631.
6. OIE: Japanese encephalitis. In OIE Terrestrial Manual 2010. Paris: Office International des Epizooties, 2010.
7. Katayama K, Ikeda A, Iwata K, Tsuchida M, Okamura M, Ito T: A case of Japanese encephalitis in a black Japanese Heifer. J Jpn Vet Med Assoc 2000, 53:293–296.
8. Yamanoto S, Tsuhahara H, Yoshida T, Harada K: First observation on case of Japanese B encephalitis of cattle. Bull Nat Inst Anim Hlth 1949, 22:197–203.
9. Shimizu T, Mochizuki H, Sugawa Y, Okazaki K, Matumoto M: Studies on Japanese encephalitis of cattle - 1. Bovine encephalitis caused by natural infection with Japanese encephalitis virus. Nat Inst Anim Hlth Quart 1951, 23:111–118.
10. Katayama T, Saito S, Horiuchi S, Maruta T, Kato T, Yanase T, Yamakawa M, Shirafuji H: Nonsuppurative encephalomyelititis in a calf in Japan and isolation of Japanese encephalitis virus genotype 1 from the affected calf. J Clin Microbiol 2013, 51:3494–3495.
11. Yeh JY, Lee JH, Seo HJ, Park JY, Moon JS, Cho IS, Lee JB, Park SY, Song CS, Choi IJ: Fast duplex one-step reverse transcriptase PCR for rapid differential detection of West Nile and Japanese encephalitis viruses. J Clin Microbiol 2010, 48:4010–4014.
12. Neron R, Tajima S, Takasaki T, Yoshida T, Kotaki L, Lim CK, Ito M, Sugiyama A, Yamauchi A, Yano T, Karneyama T, Morishita I, Kuwayama M, Ogawa T, Sahara K, Ikegaya A, Kanda M, Hosoya Y, Tozuki K, Onishi H, Chaya S, Yoshida T, Tabei Y, Katsuki K, Tabata K, Harada S, Kuriane I: Molecular epidemiological analyses of Japanese encephalitis virus isolates from swine in Japan from 2002 to 2004. J Gen Virol 2007, 88:2762–2768.
13. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4683–4689.
14. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731–2739.
15. Fujisaki Y, Mikura Y, Sugimori T, Murakami Y, Mikura K: Experimental studies on vertical infection of mice with Japanese encephalitis virus. IV. Effect of virus strain on placental and fetal infection. Nat Inst Anim Hlth Quart 1983, 23:21–26.
16. Obara M, Yamauchi T, Watanabe M, Hasegawa S, Ueda Y, Matsuoka K, Iwai M, Horimoto E, Kura T, Takizawa T, Karuha W, Takashima T: Continuity and change of Japanese encephalitis virus in Toyama Prefecture, Japan. Am J Trop Med Hyg 2011, 84:561–568.
17. Uren SK, Ruzek D, Chhatbar C, Mishra R, Johri MK, Singh SK: Japanese encephalitis virus: from genome to inocentence. Microbes Infect 2011, 13:312–321.
18. Totsuka S, Matsumoto Y, Katoh A: On the Subacute and Chronic Japanese B Encephalitis: Neuropathological Studies on the Nervous and Mental Diseases (1). Chiba Med J 1988, 312:25–34.
19. Tenter AM: Current research on Sarcocystis species of domestic animals. Int J Parasitol 1995, 25:1311–1330.

doi:10.1186/1746-6148-10-63

Cite this article as: Kako et al.: Japanese encephalitis in a 114-month-old cow: pathological investigation of the affected cow and genetic characterization of Japanese encephalitis virus isolate. BMC Veterinary Research 2014 10:63.