CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans

Anne G. Kasmar, Ildiko van Rhijn, Tan-Yun Cheng, Marie Turner, Chetan Seshadri, Andre Schiefner, Ravi C. Kalathur, John W. Annand, Annemieke de Jong, John Shires, Luis Leon, Michael Brenner, Ian A. Wilson, John D. Altman, and D. Branch Moody

1Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
2Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, Netherlands
3Tuberculosis Treatment Unit, Lemuel Shattuck Hospital, Jamaica Plain, MA 02130
4Department of Molecular Biology and Skaggs Institute for Chemical Biology, the Scripps Research Institute, La Jolla, CA 92037
5Emory Vaccine Center, Atlanta, GA 30329

Microbial lipids activate T cells by binding directly to CD1 and T cell receptors (TCRs) or by indirect effects on antigen-presenting cells involving induction of lipid autoantigens, CD1 transcription, or cytokine release. To distinguish among direct and indirect mechanisms, we developed fluorescent human CD1b tetramers and measured T cell staining. CD1b tetramer staining of T cells requires glucose monomycolate (GMM) antigens, is specific for TCR structure, and is blocked by a recombinant clonotypic TCR comprised of TRAV17 and TRBV4-1, proving that CD1b–glycolipid complexes bind the TCR. GMM-loaded tetramers brightly stain a small subpopulation of blood-derived cells from humans infected with Mycobacterium tuberculosis, providing direct detection of a CD1b-reactive T cell repertoire. Polyclonal T cells from patients sorted with tetramers are activated by GMM antigens presented by CD1b. Whereas prior studies emphasized CD8+ and CD4−CD1b-restricted clones, CD1b tetramer-based studies show that nearly all cells express the CD4 co-receptor. These findings prove a cognate mechanism whereby CD1b–glycolipid complexes bind to TCRs. CD1b tetramers detect a natural CD1b-restricted T cell repertoire ex vivo with unexpected features, opening a new investigative path to study the human CD1 system.

© 2011 Kasmar et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike All rights reserved license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
Ulrichs et al., 2003; Gilleron et al., 2004; Layre et al., 2009; Montamat-Sicotte et al., 2011). However, existing experimental models for study of group 1 CD1 function rely on activation assays that destroy the responding cells or focus on a limited number of in vitro–derived human T cell clones, which may not accurately reflect the in vivo phenotype. Consequently, information about the precise frequencies, effector functions, and possible host-protective effects of group 1 CD1-restricted T cells remain unknown. In contrast, the biological functions of CD1d and NKT cells have been broadly studied through mice deficient in CD1d or invariant Vα14 or Jα18 T cell receptors, as well as CD1d tetramers (Benlagha et al., 2000; Matsuda et al., 2000; Karadimitris et al., 2001; Gumperz et al., 2002). Tetramers take advantage of multimerization to generate high avidity fluorescent staining reagents that bind to individual clonotypic TCRs and selectively track antigen–specific T cells within much larger T cell populations (Altman et al., 1996). Tetramers can identify even rare antigen-specific T cells (Moon et al., 2007) for functional analysis, and CD1d tetramers have allowed single-cell analysis of NKT cells during infection, autoimmunity, and cancer (Benlagha et al., 2000; Matsuda et al., 2000; Karadimitris et al., 2001; Gumperz et al., 2002; Lee et al., 2002; Jahng et al., 2004; Arrenberg et al., 2010). Germline deletion of group 1 proteins is not currently feasible, so development of CD1 tetramers represents a promising method to study fresh antigen-specific T cells at the population level.

The basic principle of tetramer staining requires that TCRs bind to the antigen-presenting molecule and that this physical interaction is mediated by a groove-bound cognate antigen that physically ligates CD1 to the TCR. For CD1d, lipids like synthetic α-galactosylceramides mediate the trimolecular complex of CD1d–antigen–TCR (Borg et al., 2007), so an analogous function of glycolipids in mediating TCR contact with group 1 CD1 proteins is a leading model. However, recent studies have emphasized three alternate mechanisms whereby TCRs bind to CD1 or activate T cells but do not physically ligate CD1 and TCR. Lipopolysaccharide stimulates iNKT cell activation, not as a CD1d-bound lipid antigen but by triggering release of cytokines such as IL-12, which augments CD1d-self-antigen-mediated reactivity (Brigl et al., 2003, 2011). Phosphatidylinositol mannoside might activate T cells indirectly by up-regulating CD1b surface expression (Roura-Mir et al., 2005b), and bacterial lipids induce more stimulatory self-ligands for CD1 proteins (De Libero et al., 2005; Paget et al., 2007). In each of the three scenarios, microbial glycolipids and CD1 proteins are both needed to activate T cells through indirect mechanisms in which the foreign glycolipid does not physically link CD1 to TCR. Therefore, tetramers represent both a test of cognate antigen recognition by CD1b and a potential tool to physically isolate and characterize a foreign glycolipid-reactive T cell repertoire for the first time. In this paper, we show that human CD1b tetramers loaded with a mycobacterial glycolipid antigen, GMM, selectively bind to GMM-specific TCRs and directly isolate a natural CD1b and glycolipid-reactive T cell repertoire in humans.

Figure 1. CD1b tetramers stain human αβ T cells. (a) Bacterial GMM is formed by glucose linked at the 6-position to a mycolyl unit that contains two chiral centers, which are in the R configuration at positions 2 and 3 (2R,3R). (b) Tetramerizable CD1b monomers were used in plate-bound antigen presentation experiments to measure IL-2 release by the CD1b-restricted human T cell line LDN5 in response to C32 GMM loaded overnight at 37°C (mean + SEM). (c) CD1b was loaded with GMMs that are naturally formed with R configuration at C2 and C3 (R, R) or synthetic GMM prepared with an S configuration at C2 or C3 (2R,3S,5S) and complexed to streptavidin-labeled APC (tetramer–APC) and tested for staining LDN5 T cells. (d) CD1b tetramers were then loaded with GMMs of the indicated average chain length (C32, C54, or C80) and tested for staining LDN5. MFI is mean fluorescence intensity. Data are representative of three or more experiments.

RESULTS AND DISCUSSION

Design of tetramerizable CD1b proteins

We produced a tetramerizable biotinylated CD1b monomer building on prior designs for MHC and CD1d tetramers (Altman et al., 1996; Gumperz et al., 2002). The extracellular domain of the human CD1b heavy chain was modified with a leucine zipper for binding to β-2 microglobulin and a Bir A sequence for biotinylation and complexed with streptavidin-allophycocyanin (CD1b tetramer–APC). CD1b tetramers were loaded with glucose–6-monomycolate, a natural mycobacterial glycolipid antigen comprised of glucose in 6-linkage with mycolyl groups that exist in an alkane series (Fig. 1 a). Three GMM preparations with an average mycolyl unit of C32, C54, or C80 (C32 GMM, C54 GMM, and C80 GMM) were separately loaded onto CD1b tetramers and used to stain the GMM-reactive CD1b-restricted T cell line LDN5.
However, initial attempts to stain were unsuccessful, even after confirming monomer purity, biotinylation, and multi­merization of CD1b proteins, as well as successful staining of NKT cells with control CD1d tetramers (Fig. S1 a and Fig. S2). Tetramer staining requires that key aspects of the cellular loading mechanism, which is particularly stringent for CD1b, be replicated in vitro. Therefore, we tested the sufficiency of in vitro conditions for antigen loading. In particular, the absence of cellular loading cofactors like saposin C (Winau et al., 2004) and the lack of essential cellular processing might alter structures in ways that are required for binding. After optimizing the time, pH, and chain length of the antigen, we were able to see high-level T cell activation with a plate bound CD1b monomer loaded with a C32 GMM antigen. This result confirmed that cellular processing and loading cofactors are not absolutely required and proved proper CD1b folding (Fig. 1 b).

CD1b tetramers bind to T cells

Using optimized conditions for loading CD1b with C32 GMM (Fig. S1 b), we observed CD1b tetramer staining of LDN5 (Fig. 1 c). Although CD1d tetramers bound to the synthetic superagonist α-galactosylceramide brightly stain CD1d-restricted T cells, self-antigens such as isogloboside 3 or sulfatide result in absent or moderate tetramer staining (Jahng et al., 2004; Zhou et al., 2004; Arrenberg et al., 2010). Therefore, it is notable that GMM, a natural foreign antigen, gives bright staining, such that the mean fluorescence intensity increases 10–100-fold after loading in optimized conditions (Fig. 1 c). To determine whether staining is specific for the structure of the antigen or is a result of nonspecific hydrophobic interactions resulting from the presence of lipids, we exposed CD1b to natural and synthetic antigens that recapitulate certain aspects of the C23 GMM structure. Whereas natural bacterial C32 GMM contains two chiral centers in the R conformation at the C2 and C3 positions of the mero­myoclate chain GMM (2R, 3R), synthetic C32 GMM di­ stereomers containing an S configuration at either position GMM (2R, 3S + 2S, 3R; Fig. 1 a) are nonantigenic (Moody et al., 2000a). Only C32 GMM (2R, 3R) mediated tetramer staining, indicating that chiral carbons, which determine the orientation of the glucose head group and β-hydroxyl unit relative to the TCR, are required for staining (Fig. 1 c).

In contrast, three preparations of natural bacterial GMMs containing a mean chain length of 32, 54, or 80 carbons and having 2R,3R configuration mediate bright staining (Fig. 1 d). Thus, C48 differences in overall lipid length can be tolerated, leading to high avidity binding. Whereas the length and con­formation of the alkane chain hidden within the CD1d groove can significantly influence NKT cell activation (McCarthy et al., 2007), our results strongly suggest that CD1b-restricted TCR binding depends critically on head group positioning but can tolerate very large differences in lipid chain length. These results support and extend prior work suggesting that C80 lipids fill the entire groove, whereas shorter lipids partially fill the groove, allowing smaller spacer lipids to fill in the remaining volume (Gadola et al., 2002; Batsuwangala et al., 2004; Garcia-Alles et al., 2006).

CD1b tetramers bind the TCR-αβ complex

The cognate model predicts that the surface target of tetramer binding is the heterodimer of rearranged TCR-α and −β chains normally expressed on the LDN5 T cell clone, TRAV 17, and TRBV4-1. However, a physical interaction of TCRs with any group 1 CD1 protein has not been previously observed. In addition to any alternate surface ligands on T cells that are unknown and might bind to CD1b, NK receptors (Carbone et al., 2000) and immunoglobulin-like pro­teins (ILT; Li et al., 2009) have been implicated in binding CD1 proteins. Therefore, we designed experiments to test the presence and specificity of a proposed interaction between CD1b with the clonotopic αβ TCR. CD1d tetramers made from the same type of construct failed to stain LDN5 but did stain the CD1d-restricted T cell clone J3N.5, implicating CD1i isofrom–specific sequences in tetramer staining (Fig. S2). Preincubation with anti-CD1b or anti-TRBV4-1 blocked tetramer staining to background (Fig. 2 a and Fig. S3 a). These
CD1b tetramers detect GMM-specific T cells during TB infection

Development of tetramers for study of patient blood in the setting of an infectious disease requires low background among all types of cells present in PBMCs. To evaluate tetramer specificity, we mixed LDN5 T cells with CD1d-restricted NKT cells and found that GMM-loaded CD1b tetramers selectively stained the TRBV4-1+ clonotypic T cells, with no detectable staining over background of T cells with another TCR (Fig. S3 c). Also, titration of GMM-specific LDN5 T cells into fresh PBMC at known frequencies demonstrated that clonotypic T cells could be sensitively detected at the level of 0.01% of CD3+ cells. A discrete population of brightly staining cells was detected at frequencies near to their actual abundance when titrated into PBMC, so tetramers were not binding to T cells with diverse TCRs (Fig. S3 d). The potential problem of low but detectable background staining on
Despite limited numbers in the peripheral circulation, lipid-specific T cells have been proposed to act locally near the site as helper cells whose function is magnified by downstream responses of dendritic cells or other T cells (Vincent et al., 2002; Roura-Mir et al., 2005a,b). Sorting of blood-derived cells with CD1b tetramers can address core issues of CD1b-restricted T cell phenotype and function previously addressed in T cell clones which can now be studied ex vivo.

Distinct features of the CD1b–GMM repertoire

The first and subsequent studies of group 1 CD1-restricted clones show expression of either γδ or αβ TCRs (Porcelli et al., 1992; Spada et al., 2000) in combination with CD4, CD8, or neither co-receptor. We found that CD1b tetramer\(^{\text{high}}\) T cells uniformly stain with antibody against invariant components of αβ TCRs in all four patients tested (Fig. 4 a). CD4 and CD8 represent key subset markers for NKT cell and MHC-restricted T cells because they strongly influence thymic selection and, thereby, determine effector functions. CD1b-restricted T cell clones can express CD4 or CD8 or neither co-receptor (Porcelli et al., 1992; Moody et al., 1997; Stenger et al., 1998), but any general view of co-receptor expression is limited by the small number of clones studied and the possibility of selective outgrowth in vitro. Given the large number of CD4-CD8- and CD8+ clones isolated in early work on CD1b, it was unexpected to observe that CD4 single-positive cells dominate the population of tetramer\(^{\text{high}}\) T cell populations cells in all four patients studied (Fig. 4 b). The absence of CD4 positivity in early clone-based studies likely resulted from methods that depleted CD4 T cells in cultures to reduce MHC class II alloreactivity during cloning procedures. This was a key intervention that allowed the discovery of CD1b-restricted T cells, but unbiased study of the CD1b and GMM repertoire now suggests that the CD4+ population dominates.

Identification of the CD1b and GMM reactive repertoire as TCR-αβ+CD4+ provides basic information about the CD1b-restricted T cell subset, which raises new questions about potential infection of these cells by HIV as well as a possible role of CD4 in development and effector function of this T cell subset. Furthermore, these results illustrate how any phenotypic question can be approached without confounders relating to in vitro growth or contaminating peptide antigens. Whereas NKT cells can be studied in CD1d- or Jα18-altered mice with human or mouse tetramers, there is no widely used small animal model for CD1b. Therefore, CD1b tetramers open a broad window for detailed study of the immunobiology of these cells. In contrast to highly polymorphic MHC proteins, which require haplotype matching for donors, the low rates of CD1 polymorphism in human populations allow one CD1b sequence in tetramer form to be readily applied to almost any human donor in ways that facilitate population studies. Prior clinical studies indicate that group 1 CD1 T cell responses are frequent in human tuberculosis patients (Moody et al., 2000a; Ulrichs et al., 2003; Gilleron et al., 2004; Layre et al., 2009; Montamat-Sicotte et al., 2011), so CD1 tetramers might be developed as a means of immunodiagnosis. Future studies will take advantage of this technology to determine whether the CD4+ T cell populations described in this

Figure 4. CD1b-restricted T cell populations express the αβ TCR and CD4. PBMCs from four subjects infected with *Mycobacterium tuberculosis* were subjected to multicolor FACS analysis. Cells were stained with CD3, violet viability dye, CD14 and CD19-PercP-Cy5.5, loaded CD1b tetramers, and anti-TCR-αβ (a) and CD4 (b).
paper may be expanded in the blood and tissues of tuberculous patients and express effector functions that contribute to control of mycobacterial infection, like interferon-γ, TNF-α, and granulysin (Stenger et al., 1998), or instead have unexpected roles in immunosuppression or immunopathology.

MATERIALS AND METHODS

Generation of soluble CD1b proteins. Soluble biotinylated CD1b monomers were produced in lentivirus-transduced HEK293 T cells by the National Institutes of Health Tetramer Core Facility (Emory University, Atlanta, GA) and tetramerized with fluorescently labeled streptavidin. In brief, human β-2-microglobulin and the extracellular domain of CD1b were cloned into the expression vector pCMJ4 (gift from J. Jacob, Emory University, Atlanta, GA). Lentiviral particles were made in a second generation packaging system (Naldini et al., 1996). The light and heavy chains are expressed under control of the CMV promoter and are separated by the 2A-T2V peptide to generate two separate proteins from a single mRNA. The chains are followed by a C-terminal acidic or basic leucine zipper which stabilizes the complex and is used for affinity purification using the 2H11 monoclonal antibody (E. Reinherz, Harvard, Boston, MA). Purified monomers were enzymatically biotinylated at the BirA site at the C terminus of the heavy chain. Monomer purity and composition were confirmed by PAGE, and biotinylated at the BirA site followed by an acidic zipper and Strep-tag II (IBA), followed by gel filtration chromatography.

Loading CD1b monomers with GMM. CD1b monomers were multimerized using fluorescently labeled streptavidin. The pooled protein was concentrated to 1 mg/ml in 20 mM Tris-HCl and 100 mM NaCl, pH 8.0, confirmed for purity by gel electrophoresis, and then fixed in 2% formaldehyde before FACS analysis. Cells from patient 1 were stained in 12 experiments; cells from patients 2, 3, and 4 were each stained four times. For functional assays, unfixed tetramer-positive cells were sorted using a FACSara flow cytometer and tested for antigen specificity using untransfected or CD1b-transfected K562 cells as antigen presenting cells in ELISPot assays (de Jong et al., 2010). T tetramer-positive cells were stained with TCR-αβ FITC (BD) or CD4-PE (BD).

Online supplemental material. Fig. S1 shows optimization of tetramer staining of the T cell clone LDN5. Fig. S2 shows a comparison of CD1b and CD1d tetramer staining. Fig. S3 shows tetramers staining clonotypic T cell receptors. Fig. S4 shows FACS gating strategies and tetramer staining of healthy controls. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20110665/DC1.

This work was supported by grants from the Howard Hughes Medical Institute KwaZulu-Natal Research Institute for Tuberculosis and HIV, the Harvard University Initiative for Global Health, the Burroughs Wellcome Fund program in Translational Research, and the National Institutes of Health (T–32 AI 007306-22, T-32 AR 000061) and the Harvard Committee on Microbiologic Safety (08–184). The authors have no conflicting financial interests.

Submitted: 4 April 2011
Accepted: 8 July 2011

REFERENCES

Altman, J.D., P.A. Moss, P.J. Goulder, D.H. Barouch, M.G. McHeyzer-Williams, J.I. Bell, A.J. McMichael, and M.M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes. Science. 274:94–96. doi:10.1126/science.274.5284.94

Arrenberg, A.B., H. Doherty, Y. Dai, T. Ma, and V. Kumar. 2010. Oligosaccharide and innate-like features in the TCR repertoire of type II NKT cells active to a β-linked self-glycolipid. Proc Natl Acad Sci USA. 107:10984–10989. doi:10.1073/pnas.1006576107

Batuwangala, T., D. Shepherd, S.D. Gadola, K.J. Gibson, N.R. Zaccar, A.R. Fersht, G.S. Besra, V. Cerundolo, and E.Y. Jones. 2004. The crystal structure of human CD1b with a bound bacterial glycolipid. J Immunol. 172:2382–2388.

Benlagha, K., A. Weis, A. Beavis, L. Teyton, and A. Bendelac. 2000. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med. 191:1895–1903. doi:10.1084/jem.191.11.1895

Borg, N.A., K.S. Wun, L. Kjer-Nielsen, M.C. Wilce, D.G. Pellicci, R. Koh, G.S. Besra, M. Bharudwaj, D.I. Godfrey, J. McCluskey, and J. Rossjohn. 2007. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature. 448:44–49. doi:10.1038/nature05907

CD1b tetramers detect human αβ T cells | Kasmar et al.
Brigl, M., L. Bry, S.C. Kent, J.E. Gumperz, and M.B. Brenner. 2003. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4:1230–1237. doi:10.1038/ni1010

Brigl, M., R.V. Taittur, G.F.M. Watts, V. Bhowruth, E.A. Leadbetter, N. Barton, N.R. Cohen, F.-F. Hsu, G.S. Besra, and M.B. Brenner. 2011. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 208:1163–1177. doi:10.1084/jem.20102535

Carbone, E., G. Terrazzano, A. Melián, D. Zanini, L. Moretta, S. Porcelli, K. Kärre, and S. Zappacosta. 2000. Inhibition of human NK cell-mediated killing by CD1 molecules. J. Immunol. 164:6130–6137.

de Jong, A., V. Peña-Cruz, T.-Y. Cheng, R.A. Clark, I. van Rhijn, and D.B. Moody. 2010. CD1d-autoactive T cells are a natural component of the human β2 T cell repertoire. Nat. Immunol. 11:1102–1109. doi:10.1038/ni.1956

De Libero, G., and L. Mori. 2005. Recognition of lipid antigens by T cells. Nat. Rev. Immunol. 5:485–496. doi:10.1038/nri1631

De Libero, G., A.P. Moran, H.J. Gober, E. Rossy, A. Shamshiev, O. Chernikova, Z. Mazaroff, S.Vendetti, A. Sacchi, M.M. Prendergast, et al. 2005. Bacterial infections promote T cell recognition of self-glycolipids. Immunity. 22:763–772. doi:10.1016/j.immuni.2005.04.013

Gadola, S.D., N.R. Zaccar, K. Harlos, D. Shephard, J.C. Castro-Palomino, G. Ritter, R.R. Schmidt, E.Y. Jones, and V. Cerundolo. 2002. Structure of human CD1b with bound lipids at 2.3 Å, a maze for alkyl chains. J. Exp. Med. 204:1131–1144. doi:10.1084/jem.20062342

Gilleron, M., S. Stenger, G. De Libero, G. Puzo, and M. Gilleron. 2009. Mycolic acids control T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J. Exp. Med. 192:965–976. doi:10.1084/jem.2007.1965

Gillary, V., and M.B. Brenner. 2003. Mechanism of CD1d-restricted T cell activation during microbial infection. J. Clin. Invest. 121:2493–2503. doi:10.1172/JCI14261

Moody, D.B., B.B. Reinhold, M.R. Guy, E.M. Beckman, D.E. Frederique, S.T. Furlong, S.Ye, V.N. Reinhold, P.A. Sieling, R.L. Modlin, et al. 1997. Structural requirements for glycolipid antigen recognition by CD1d-restricted T cells. Science. 278:283–286. doi:10.1126/science.278.5336.283

Moody, D.B., M.R. Guy, E. Grant, T.-Y. Cheng, M.B. Brenner, G.S. Besra, and S.A. Porcelli. 2006a. CD1d-restricted T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J. Exp. Med. 192:965–976. doi:10.1084/jem.2007.1965

Montamat-Sackette, D.J., K.A. Millington, C.R. Wilcox, S. Hingley-Wilson, S. Hackforth, I. Innes, O.M. Kon, D.A. Lammas, D.E. Mimmink, G.S. Besra, et al. 2011. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J. Clin. Invest. 121:2493–2503. doi:10.1172/JCI14261

Moody, D.B., D.E. Mimmink, G.S. Besra, and M.B. Brenner. 2001. CD1-restricted T cell activation during microbial infection with Mycobacterium tuberculosis. Infect. Immun. 69:3076–3087. doi:10.1128/IAI.69.10.3076-3087.2001

Nalini, L., U. Blömer, P. Galaty, D. Ory, R. Mulligan, E.H. Gage, I.M. Verma, and D. Trono. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 272:263–267. doi:10.1126/science.272.5259.263

Pugert, J., T. Mallevaey, A.O. Speak, D. Torres, J. Fontaine, K.C.F. Sheehan, M. Capron, B. Ryffel, C. Faveeuw, M. Leite de Moraes, et al. 2007. Activation of nondividing cells by a lentiviral vector. Science. 315:593–597. doi:10.1126/science.11404498

Porcelli, S., C.T. Morita, and M.B. Brenner. 1992. CD1b restricts the response of human CD4+ T lymphocytes to a microbial antigen. Nature. 360:593–597. doi:10.1038/360593a0

Porcelli, S., C.T. Morita, and M.B. Brenner. 1992. CD1b restricts the response of human CD4+ T lymphocytes to a microbial antigen. Nature. 360:593–597. doi:10.1038/360593a0

Roura-Mir, C., M. Carálfamo, T.-Y. Cheng, E. Marquée, G.S. Besra, D. Jaraquemada, and D.B. Moody. 2005a. CD1a and CD1c activate intra-thyroidal T cells during Graves’ disease and Hashimoto’s thyroiditis. J. Exp. Med. 174:3773–3780.

Roura-Mir, C., I. van Rhijn, and D.B. Moody. 2009. The evolved functions of CD1d during infection. Curr. Opin. Immunol. 21:397–403. doi:10.1016/j.coi.2009.05.022

Sicotte, D.J., K.A. Millington, C.R. Wilcox, S. Hingley-Wilson, S. Hackforth, I. Innes, O.M. Kon, D.A. Lammas, D.E. Mimmink, G.S. Besra, et al. 2011. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J. Clin. Invest. 121:2493–2503. doi:10.1172/JCI14261

Stenger, S.A. Porcelli. 2000a. CD1b- and CD1c-restricted T cell recognition of self-glycolipids. Immunity. 12:639–648. doi:10.1016/S1074-7613(00)80139-9

Stenger, S.A. Porcelli, V. Brinkmann, M. Sugita, K. Sandhoff, et al. 2004. Saposin C promotes T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J. Exp. Med. 192:965–976. doi:10.1084/jem.2007.1965

Stenger, S.A. Porcelli, V. Brinkmann, M. Sugita, K. Sandhoff, et al. 2004. Saposin C promotes T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J. Exp. Med. 192:965–976. doi:10.1084/jem.2007.1965

Winau, F., S.V. Lockwood, R.L. Modlin, C.R. Sekaly, V. Brinkmann, M. Sugita, K. Sandhoff, et al. 2004. Saposin C is required for lipid presentation by human CD1b. Nat. Immunol. 5:169–174. doi:10.1038/ni1035

Zhou, D., J. Mattner, C. Cantu III, N. Schrantz, N. Yin, Y. Gao, Y. Sagiv, K. Hudspeth, Y.P. Wu, T. Yamashita, et al. 2004. Lysosomal glycosphingolipid recognition by NKT cells. Science. 306:1786–1789. doi:10.1126/science.1103440

Referee Report