Exercise-induced biochemical changes and their potential influence on cancer: a scientific review

Robert James Thomas,1 Stacey A Kenfield,2 Alfonso Jimenez3

ABSTRACT

Aim To review and discuss the available international literature regarding the indirect and direct biochemical mechanisms that occur after exercise, which could positively, or negatively, influence oncogenic pathways.

Methods The PubMed, MEDLINE, Embase and Cochrane libraries were searched for papers up to July 2016 addressing biochemical changes after exercise with a particular reference to cancer. The three authors independently assessed their appropriateness for inclusion in this review based on their scientific quality and relevance.

Results 168 papers were selected and categorised into indirect and direct biochemical pathways. The indirect effects included changes in vitamin D, weight reduction, sunlight exposure and improved mood. The direct effects included insulin-like growth factor, epigenetic effects on gene expression and DNA repair, vasoactive intestinal peptide, oxidative stress and antioxidant pathways, heat shock proteins, testosterone, irisin, immunity, chronic inflammation and prostaglandins, energy metabolism and insulin resistance.

Summary Exercise is one of several lifestyle factors known to lower the risk of developing cancer and is associated with lower relapse rates and better survival. This review highlights the numerous biochemical processes, which explain these potential anticancer benefits.

INTRODUCTION

Exercise is one of several lifestyle factors known to lower the risk of developing cancer.1-8 Moreover, the benefits of exercise continue after diagnosis. There is increasingly convincing evidence that, especially within supervised programmes, exercise mitigates many of the adverse toxicities common among cancer survivors and improves overall quality of life.9-12 Observational cohort studies of patients diagnosed with cancer have also linked regular exercise, either at the work place or domestic physical activity, with a lower probability of relapse or cancer-specific death after initial radical treatments.11-19 As there is a deficiency of randomised data, some could argue that cohort studies are merely observing habit-forming linkages. People who exercise, for example, are less likely to smoke, have a healthier body mass index (BMI) and eat more vegetables.20 Although this remains a possibility, most analyses have adjusted for other lifestyle behaviours that may be associated with exercise and the outcome (potential confounders) using multivariate analysis, and the association of exercise with cancer outcomes in diverse patient populations shows high consistency.19 21-24

The lack of randomised control trials (RCT) data for clinical end points (ie, progression, death) is being addressed by ongoing studies such as the CHALLENGE study (Colon Health and Life-Long Exercise Change),25 the INTERVAL-MCRPC study (Intense Exercise for Survival among men with Metastatic Castrate-Resistant Prostate Cancer),26 and the PANTERA study (Exercise as Treatment for Men with Prostate Cancer) starting enrolment in 2016. The precise mechanisms elucidating the anticancer effects of exercise have not been fully established; biomarker analyses within these trials as well as additional preclinical experimental data will provide critical supporting evidence. In the mean time, this article summarises the available international literature and discusses the potential indirect and direct biochemical mechanisms of how physical activity (exercise) could positively, or negatively, influence oncogenic pathways.

METHODOLOGY

In this scientific review, we searched for published trials assessing the biological changes that occur after physical activity, which could influence cancer-promoting or progression pathways, via the following resources: Embase, MEDLINE, Cochrane and PubMed. The search terms used were physical activity, exercise, cancer and biological changes. We also scrutinised the references within the landmark papers published on this subject to ensure we did not miss any relevant papers. We found 222 unique clinical published papers and listed them according to the Preferred reporting items for systematic reviews and meta-analyses systemic review guidance.27 Three authors independently assessed their appropriateness for inclusion in this review according to guidelines suggested by Sanderson et al28 and excluded studies with inappropriate selection of participants; inappropriate measurement of variables and controls or where not written in English. In addition, we included the most relevant laboratory studies, which had the highest scientific relevance to this review which included 168 papers in total. For ease of explanation, these have been split into direct and indirect separate pathways but there is considerable overlap between them.

Direct antitumour pathways

An array of direct biological, epigenetic, metabolic and inflammatory changes occur in the body after exercise, acutely and over time.29 30 It is not yet, however, established which one, or combination of these, has the most significant influence on cancer pathways. The most notable candidate mechanisms are summarised here, in no particular order of importance.
Insulin-like growth factor (IGF-1) and its binding proteins, insulin-like growth factor-binding proteins (IGFBPs), have a central role in the regulation of cell growth. After binding to its receptor tyrosine kinase, IGF-1 activates several signalling pathways, leading to the inhibition of apoptosis, the promotion of cell growth and angiogenesis. Higher levels of IGF-1 would therefore be expected to increase tumour growth, and have been reported to be associated with a greater cancer risk. An inverse relationship is reported with IGFBP3 levels although this effect has not been confirmed in all studies. Exercise has been shown to increase the levels of IGFBP3 and lower IGF-1, and in a large prospective cohort study of 41,528 participants, this was associated with a 48% reduction of cancer-specific deaths. Decreased levels of IGF-1 in physically active patients have also been linked to an improved survival.

Epigenetic effects on gene expression, DNA repair and telomere length: Exercise can influence the phenotype expression of inherited genes via epigenetic biochemical alterations to chromosomes, such as histone modifications, DNA methylation, expression of microRNAs (miRNAs) and changes of the chromatin structure. Which of these epigenetic changes that have the most influence on cancer remains uncertain. A prospective pilot trial involving men with low-risk prostate cancer found a set of RAS family oncogenes (RAN, RAB14 and RAB8A) to be downregulated after a healthy exercise and lifestyle programme. In the prostate, RAN (ras-related nuclear protein) may function as an androgen receptor coactivator, and its expression is increased in tumour tissues. Another study involving men on active surveillance, showed that 184 genes were differentially expressed between individuals who engaged in vigorous activity compared with sedentary individuals. Genes particularly sensitive to exercise included those involved in signalling cell cycling and those supporting DNA repair including BRCA1 and BRCA2 via histone deacetylase and miRNA pathways. The same upregulation of BRCA expression following exercise has been demonstrated in the rat mammary gland and clinically in women who were BRCA1 or BRCA2 mutation carriers. Markers of an improved cellular repair process were also reported in a study, which showed that exercise upregulated the key regulator gene p53 and by doing so, encourages damaged cells to repair or if not possible, self-destruct.

Telomeres, the sequences of nucleotides at the end of the chromosomes that protect their integrity, are shortened with each cell division, so telomere length correlates with biological age. Exercise has epigenetic effects on the telomere as well, which help to prevent its deregulation by protecting it from transcription errors caused by transcription of non-coding RNA, which occur during cell division. In a clinical study involving men with early prostate cancer, those regularly exercising and eating healthily had longer telomeres and reduced prostate-specific antigen progression compared with sedentary controls with less healthy diets.

Vasoactive intestinal peptide (VIP) is a neuropeptide that increases proliferation, survival, androgen resistance and de-differentiation in human breast and prostate cancer cells lines. Serum VIP has been shown to transiently increase after acute exercise. For example, in an experiment involving 30 min of bicycle riding, increased levels were detected for ~20 min, although the rise was higher if the individual was sleep-deprived and lower if adequate glucose levels were maintained. This transient rise leads to the production of natural anti-VIP antibodies which explains the observation that individuals who regularly exercise have lower VIP titres. Patients with breast and prostate cancer have been found to have higher VIP titres compared with matched pairs in the general population without cancer.

Oxidative stress and antioxidant pathways: Exercise, particularly if strenuous, produces reactive oxidative species (ROS) that, if significant, increases oxidative stress on DNA, which could potentially contribute to the initiation and progression of cancer. In response to this transient increase in ROS, especially after regular training, an adaptive upregulation of antioxidant genes occurs which results in greater production of antioxidant enzymes such as superoxide dismutase, glutathione and catalase. In a pilot study at the University of California, men who participated in ≥3 hours/week of vigorous physical activity had greater expression of the nuclear factor erythroid 2-related factor 2 (Nrf2-2) in their normal prostate tissue compared with men who did less physical activity. The Nrf-2 protein stimulates the production of antioxidant enzymes and activation of other protective genes. Other studies have confirmed that trained individuals also have greater levels of antioxidant enzymes which would potentially increase their defence against environmental and ingested oxidising carcinogens. If nutritional deficiencies exist to impair the production of antioxidant enzymes or strenuous exercisers are elderly, where this adaptive process is known to be slower, there is a danger that strenuous exercise could do more harm than good. It is important, therefore, that attention is given to nutritionally healthy polyphenol-rich foods that enhance upregulation of antioxidant enzymes.

Heat shock proteins (HSPs) are produced in tissues, in response to a wide variety of physiological and environmental insults including infection, hypoxia, hyperthermia, dexamethasone and chemotherapy. They have cytoprotective functions including blocking apoptosis and allowing the cell to survive potentially lethal events; hence, they are substantially overexpressed following a myocardial infarction. They are also increased acutely following a bout of exercise. This acute rise in HSPs is significantly lower in trained athletes and is most pronounced after severe anaerobic exercise, especially if the participant is previously unfit. An increase in HSP is the hypothesised mechanism for exercise in protecting the heart in numerous animal studies and clinically in women with breast cancer receiving adjuvant anthracycline-based chemotherapy regimens who are physically active. An increase in HPS is also the suggested mechanism for exercise in reducing cognitive impairment during chemotherapy, by protecting the astrocytes and supportive cells within the brain.

There is a potential downside to this adaptive pathway, as cancer cells have learnt to harness the antiapoptotic properties of HSP, and hence HSP are markedly overexpressed in several cancer types. Some cancers have even become HSP-dependent for their survival, which makes them an interesting potential therapeutic target. Whether exercise increases HSP to a clinically meaningful level to protect cancers cells is not yet known, although the addition of very high levels of HSP to cell lines in one laboratory experiment did increase resistance to anthracyclines. As cancer cells produce their own HSP in high quantities, it is unlikely that the changes in serum HSP after exercise have any influence on intratumoural levels. This is supported by a recent experiment in mice that reported a better cancer response to adriamycin with concomitant exercise. Nevertheless, further research is needed in humans to confirm whether it is appropriate to advise patients, who are unaccustomed to rigorous activities, to perform anaerobic exercise just before or immediately after chemotherapy.
Testosterone: High levels of androgens are associated with a higher incidence of prostate cancer, but what happens to testosterone after exercise is complex and depends on the underlying level of fitness, exercise intensity and even mood at the time of training. It is widely stated that serum testosterone increases immediately after vigorous exercise, but this has not been confirmed in all studies. This effect also appears to be very short-lived, around 15 min to an hour after exercise of studies. It is also often quoted that resistance training increases testosterone levels in men and women in a number of studies. It is important to note that these studies report that testosterone-binding protein also rises with exercise so the free, biologically active, testosterone proportion changes little. Furthermore, this transient testosterone rise has not been reported in men over 55 years, when men are at increased risk of prostate cancer. More importantly, over time, regular moderate or intense exercise actually lowers testosterone as well as luteinising hormone and follicle-stimulating hormone due to a negative feedback mechanism and this can be a symptomatic issue for trained athletes. This effect has been observed clinically following 30-day, 12-week and 12-month programmes. There are some studies reporting that a healthy lifestyle, including exercise, delayed the natural age-related decline in testosterone but this was only linked to obesity, metabolic syndrome, diabetes and dyslipidaemia, which causes testosterone deficiency. Current studies are inconclusive as to whether exercise further lowers serum androgen levels in men already taking androgen deprivation therapy (ADT) although this is further complicated by inadequate methods for measuring testosterone levels in very low ranges.

Irisin: is a type I trans-membrane messenger protein, which is produced in muscle cells in response to exercise. One study reported that higher levels were linked to more favourable breast cancer prognostic risk at diagnosis. In laboratory studies, irisin significantly reduced cancer cell proliferation, migration and viability in malignant cancer cell lines, without affecting non-malignant cells. In another study, irisin enhanced the cytotoxic effect of the chemotherapy agent, doxorubicin, when added to malignant breast cells, which again was not observed in non-malignant cells. This reduction in malignant potential of irisin, however, was not observed with colon, thyroid and oesophageal cancer cell lines. Furthermore, reports questioned the existence of circulating human irisin as it was felt that human irisin antibodies used in commercial ELISA kits lacked required specificity. However, a recent experiment used tandem mass spectrometry to compare irisin levels between sedentary participants and those following aerobic interval training, so the antibody shortcomings were circumvented, and they found a significant difference.

Immunity: During exercise, increased levels of catecholamines stimulate the recruitment of leucocytes into the peripheral blood, resulting in increased concentrations of neutrophils, lymphocytes and monocytes, including natural killer (NK)-cells, CD4+ T cells and B cells, and potentially improve immune surveillance against cancer. On the other hand, if exercise is too strenuous for that individual, it is followed by decreased concentrations of lymphocytes and impaired cellular-mediated immunity. As a consequence, in another study there was an increase in risk of an infection in the weeks following a competitive ultra-endurance running event. Following moderate exercise regimes, however, particularly with regular training, most long-term studies suggest exercise improves immune function in all age groups. Its benefits are particularly clinically relevant in the elderly whose immune function is becoming less efficient, or obese individuals whose NK-cell numbers in blood and in solid organs, together with their cytotoxicity and cytokine secretion, are reduced. This also implies a benefit for individuals with impaired immunity after cancer treatments, but these studies have yet to be conducted.

Chronic inflammation and prostaglandins: Although an inflammatory response is an important part of a healthy immune system, persistent low-grade increased chronic inflammatory activity is associated with age-related diseases such as Alzheimer’s disease and atherosclerosis. Higher levels of inflammatory markers have also been found to be associated with cancer incidence, more advanced cancers at presentation and an increased risk of cancer-specific mortality. Markers of chronic inflammation are higher among individuals who are overweight, sedentary, those with poor diets, type II diabetes and the elderly. One reason for this stems from overcompensation of an ailing immune system trying to maintain immunosenescence. In these groups, poor interleukin (IL)-2 production leads to a decreased cytotoxic capacity of NK and T lymphocytes on a ‘per cell’ basis. To compensate for this, higher levels of inflammatory biomarkers such as C reactive protein, tumour necrosis factor (TNF), IL-6, cytokine antagonists and acute phase proteins are produced which increase concentrations of NK cells and T cells. Exercise is known to enhance NK cell activity and increase T-cell production reducing the need for the immune system to compensate by increasing circulating inflammatory biomarkers.

Another reported mechanism concerns a mediator in the inflammatory pathway called apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). ASC activates procase-1, which in turn activates the release of ILs and other inflammatory cytokines including TNF. The transcription status of the ASC gene is influenced by the epigenetic factors mentioned above, particularly methylation. Regular exercise upregulates the methylation of ASC, resulting in decreased activity of the gene in human monocytes.

Prostaglandins, which are biologically active lipids generated from arachidonic acid via the enzyme cyclo-oxygenase (COX), also have an influence on chronic inflammation and carcinogenesis. The COX-1 enzymes are present in normal tissues and upregulate in response to trauma, infection or chemical injury, increasing prostaglandins, which in turn triggers an appropriate inflammatory cascade as part of a healthy immune response. COX-2 is also induced by cytokine growth factors but has higher expression in many tumours. Chronically increased overproduction of prostaglandins, generated via COX-2, has been implicated in cancer progression, apoptosis, invasion, angiogenesis and metastases. Anti-inflammatory drugs and salicylates found in painkillers and fresh vegetables have been shown to reduce COX-2 activation of prostaglandins which could explain their reported anticancer properties. Moderate, regular and non-traumatic exercise also reduces serum prostaglandin levels. For example, a study involving biopsies of rectal mucosa showed that leisure-time physical activity was inversely associated with prostaglandin-2 concentration (PGE₂). Overweight individuals (BMI>25 kg/m²) also had increased mucosal concentrations. Most importantly, an increase in activity level from 5.2 to 27.7 MET-hours per week was associated with a 28% decrease in mucosal PGE₂ even before weight loss. This was confirmed in another study from Italy; subjects...
with type 2 diabetes and the metabolic syndrome, which showed that the anti-inflammatory effects of exercise were independent of achieving weight loss.115

Energy metabolism and insulin resistance has long been established that exercise reduces plasma insulin levels leading to increased insulin sensitivity in volunteers and athletes, but more recently this biochemical response has been reported in exercise intervention studies involving breast cancer survivors.116, 117 Likewise, a number of RCTs have shown that exercise improves insulin sensitivity and glucose metabolism even in men receiving ADT, who have a significant risk of metabolic syndrome,118, 119 including adiposity and increased lipids and sarcopenia.120, 121 Hyperglycaemia and hyperinsulinaemia secondary to insulin resistance are associated with an increased risk of cancer, poorer prognostic features at presentation, higher risk of relapse after initial treatments and more rapid progression in men with castration-resistant prostate cancer.32, 99, 117, 120, 122

In addition, high levels of C peptide, a marker of insulin secretion, are associated with a more than twofold increased risk of prostate cancer-specific mortality.36 One contributory factor for these worse outcomes may be resistin, also known as adipose tissue-secretory factor, which is a cysteine-rich adipose-derived peptide hormone that increases with insulin resistance through AMP kinase downregulation. Resistin is known to upregulate proinflammatory cytokines, which act via the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway to increase transcription of proteins involved in cell proliferation, inflammation and antiapoptosis.123, 124

Indirect anticancer pathways

Several non-direct factors contribute to anticancer biochemical benefits of exercise. As displayed in tables 1 and 2, there is an overlap between direct effects of exercise and indirect effects gained from weight reduction particularly via leptin, adiponectin oestrogen and inflammatory markers but for clarity they have also been included in this section along with improvements in serum lipids, sunlight exposure and elevated mood:

Obesity, oestrogen, leptin and the effects of weight reduction: The neuropeptide cytokine leptin and sex hormone oestrogen are generated in fat cells, so overweight, particularly postmenopausal women, have higher endogenous levels.125, 144 Leptin is known to promote breast cancer directly and independently, as well as through involvement with the oestrogen and insulin signalling pathways, via enhanced angiogenesis and cell proliferation,146 which explains the links between higher levels of leptin, adiposity and hormone-related cancers such as breast, prostate and ovary cancer.29, 70, 117, 126 Conversely, serum concentration of another adipokine cytokine, adiponectin, is inversely correlated with adiposity, breast and prostate cancer risk most likely because it has anti-inflammatory properties.129–131

Table 1 Mainly direct biochemical changes related to exercise

Class of effect	Effector molecule or gene	Effect of exercise on effector molecule or gene
Cell growth regulators	IGF-1	Decreased levels32–36
	IGFBP3	Increased levels35, 36
Proteins involved in DNA damage repair	BRCA1	Increased expression40–44
	BRCA2	Increased expression40–44
Androgen receptor coactivators	RAS family oncogenes	Suppressed activity40
Regulators of apoptosis and cell cycle arrest	PS3	Enhanced activity40, 41–45
	Heat shock proteins	Enhanced activity40, 41–45
Hormonal systems	Oestrogen	Reduced activity70–84
	Testosterone	Reduced activity70–84
	VIP	Reduced activity70–84
	Leptin	Reduced activity70–84
	Irisin	Reduced activity70–84
	Resistin	Reduced activity70–84
Immune system components	Natural killer cells	Enhanced activity40
	White cells	Enhanced activity40
Inflammation	C reactive protein, interleukin-6, TNFα	Reduced activity93
	Prostaglandins	Reduced activity102
	COX-2	Reduced activity102
Oxidative stress and antioxidant pathways	Glutathione, catalase and superoxide dismutase	Increased activity55 57 59 60

Table 2 Mainly indirect biological benefits of exercise

Associated activity	Effector molecule or pathway	Effect
Sunlight exposure	Vitamin D	Higher146–151
	Circadian rhythm	Improved152, 153
Weight loss	Oestrogen	Lower32, 33, 117, 125–143
	Leptin	Lower99, 117, 118, 119, 120
	Insulin resistance	Lower99, 117, 118, 119, 120
	Triglycerides/cholesterol	Lower99, 117, 118, 119, 120
	Adiponectin	Higher119–122
	Platelets	Reduced aggregation132, 133
Mood	Endorphins	Increased release152–165
	Monoamines	Higher levels162, 163
reduction in weight. Furthermore, there is evidence that even before weight reduction occurs, exercise directly lowers serum oestrogen and leptin levels and raises adiponectin levels independent of weight loss. In one clinical study, this was quantified as every 100 min of exercise giving a 3.6% lowering of serum oestrogen.

Exercise and dietary modification help weight control and lower serum triglycerides, total cholesterol, and improve the ratio of high density lipoprotein to low density lipoprotein. Epidemiological studies have suggested that high levels of cholesterol in the blood are associated with increased risk of cancer and progression of cancer.

Vitamin D levels and sunlight exposure: These are both higher among those who exercise outdoors regularly as UV-B radiation’s interaction with the skin produces most of the body’s required vitamin D. Excess sunlight, particularly associated with sunburn, is the main cause of epithelial skin damage, premature ageing and skin cancers and clearly should be avoided. On the other hand, regular sensible sun exposure has an anticancer property by maintaining adequate serum vitamin D levels. The mechanism by which vitamin D influences the incidence and progression of cancer is thought to be due to calcitriol’s effect on cellular proliferation, differentiation and apoptosis. The vitamin D receptor is highly expressed in epithelial cells known to be at risk of carcinogenesis, such as the breast, skin and prostate. Higher vitamin D levels are associated with lower colorectal, breast and prostate cancer mortality. Despite this, a direct causational link has not been established nor has any benefit of correcting vitamin D levels with supplementation; important limitations regarding the dose, adherence and induction period could explain these findings. Sunlight exposure, independent of vitamin D levels, has been linked to a lower incidence of prostate cancer. It has been postulated that the benefit of sunlight exposure may be mediated through vitamin D and other pathways and mechanisms such as modulation of the immune system and the circadian rhythm.

Psychological well-being: As well as being distressing, anxiety and depression have been linked to reduced survival following radical cancer treatments. Of note, a large prospective cohort study from California reported that 4.6% of 41,000 men, who were clinically depressed after prostate cancer diagnosis, had a 25% reduction in disease-specific survival compared with non-depressed men. Another trial involving individuals from Korea with head and neck cancer reported similar findings. Regular exercise, especially if in groups and combined with relaxation, mindfulness and healthy eating programmes have been shown to help alleviate mood, and reduce anxiety and fear of relapse. The mechanism by which exercise helps fight depression has not yet been firmly established but hypotheses include increased endorphin and monoamine release, mental distraction, rises in core temperatures and better compliance to medical interventions. In addition, light exposure, which increases with outdoor exercise, has been linked to a reduction in non-seasonal depressive disorders.

In conclusion, clinical studies suggest a significant benefit for regular exercise after cancer for improving well-being and disease outcomes. The most feasible biochemical pathways, supporting a direct and indirect anticancer mechanism of action, have been summarised in this article but there are likely to be others yet to be reported. It also remains unclear which of these mechanisms has the most important role, or whether they vary by person or by disease. Although they have been subclassified, for ease of explanation in this article, they are clearly inter-related, especially the inflammation, immunity and insulin resistance pathways. In the UK, despite these benefits, which are being highlighted by patient advocacy groups and charities, levels of exercise after cancer remain poor, while funding for a national exercise programme has been hampered by the shortage of RCTs. Given the magnitude of the potential benefits of exercise, more multicentre RCTs evaluating disease outcomes, combined with biochemical determinants, are clearly needed. The forthcoming INTERVAL and PANTERA studies and ongoing CHALLENGE study are most welcomed.

What are the findings?

- This is a comprehensive and up-to-date understanding of the biological effects of exercise which may affect cancer.
- This review highlights the shortfalls in knowledge and understanding of exercise biochemistry.
- An investigation of the biological processes which may affect cancer.

How might it impact on clinical practice in the near future?

- Provide a detailed understanding of cancer and exercise, essential for clinical trial development.
- A useful summary of the effects of exercise for exercise scientists and oncologists interested in cancer rehabilitation.
- This summary provides the biological evidence to help motivate patients into exercise programmes.
6 Kenfield S, Batista J, Jahn JL, et al. Development and application of a lifestyle score for prevention of lethal prostate cancer. J Natl Canc Inst 2016;108:djv329.
7 Tardon A, Lee WJ, Delgado-rodriguez M, et al. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev 2012;(8):CD008465.
8 Kenfield S, Vincent T, Schildkraut J, et al. Exercise improves quality of life in patients with cancer: a systematic review and meta-analysis of randomized controlled trials. Brit J Sport Med 2016;50:796–803.
9 Fong DYT, Ho JWT, Hui BPH, et al. Physical activity for cancer survivors: meta-analysis of randomized controlled trials. Br J Med 2012;344:e70.
10 Markes M, Brockvot T, Resch K. Exercise for women receiving adjuvant therapy for breast cancer. Cochrane Database Syst Rev 2006;(4):CD005011.
11 Spencer T, Huang R, Zhang D, et al. Expression of insulin-like growth factors and their receptors in adenocarcinoma of the colon. Gut 1999;44:704–8.
12 Sanderson S, Tatt ID, Higgins JP. Tools for assessing quality and susceptibility to bias in observational studies in epidemiology: a systematic review and annotated bibliography. Int J Epidemiol 2007;36:666–75.
13 Fiddian-Creel CM, Orenstein MR. Physical activity and cancer prevention: etiological evidence and biological mechanisms. J Nutr 2002;132:3456s–65s.
14 Mishra SI, Scherer RW, Snyder C, et al. Expression of the insulin-like growth factor family in cancer development and progression. J Natl Canc Inst 2000;92:1472–89.
15 Lubik AA, Gunter JH, Hollier BG, et al. Expression of insulin-like growth factor-1 receptor in local and metastatic prostate cancer. Urol Oncol 2007;25:134–40.
16 Veldheita A, Bajo AM, Fernández-Martinez AB, et al. Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer. Peptides 2010;31:2035–45.
17 Veldheita A. The role of oxidative stress in prostate cancer. Oncology Times UK 2012;9:10–12.
18 Wang M, Yu B, Westerling K, et al. Prepubertal physical activity up-regulates estrogen receptor beta, BRCA1 and p53 mRNA expression in the rat mammary gland. Breast Cancer Res Treat 2009;115:213–20.
19 Veldheita A. Free radicals and oxidative stress in cancer. Cancer Causes Control 2005;16:389–97.
20 Veldheita A, Scherer RW, Snyder C, et al. Expression of the insulin-like growth factor family in cancer development and progression. J Natl Canc Inst 1999;91:620–5.
21 Veldheita A. Inhibition of the insulin-like growth factor type 1 receptor. Endocr Relat Cancer 2013;20:173–86.
22 Veldheita A. The role of oxidative stress in prostate cancer. Cancer Causes Control 2005;16:389–97.
Scott JM. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer—current evidence and underlying mechanisms. *Circulation* 2011;124:642–50.

Calabrese V, Scapagnini G, Colombrita C, et al. Regulator of cell proliferation and malignant potential in breast cancer. *Future Med Chem* 2012;4:327–35.

Fuqua SAW, Oesterreich S, Hilsenbeck SG, et al. Heat shock proteins and drug resistance. *Breast Cancer Res Treat* 1994;32:67–71.

Sturgeon K, Schadler K, Muthukumanan G, et al. Concomitant low dose dihydrotestosterone and dietary approach in young men. *Amino Acids* 2003;25:41–44.

Haltén T, Tsaiy A, Najm A, et al. Heat shock proteins in cancer: targeting the ‘chaperones’. *Future Med Chem* 2012;4:327–35.

Provatopoulou X, Georgiou G, Kalogera E, et al. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. *Amino Acids* 2003;25:41–44.

Hoffman-Goetz L, Pedersen BK. Exercise and the immune system: a model of the stress response? *Immuno Today* 1994;15:382–7.

Pedersen BK, Bruunsgaard H. How physical exercise influences the establishment of infections. *Sports Med* 1995;19:393–400.

Rukavina D, Laskarin G, Rubesa G, et al. Age-related decline of perfusion in human cytoxic T lymphocytes and natural killer cells. *Blood* 1998;92:2410–20.

Franceschi C, Monti D, Sansoni P, et al. The immunology of exceptional individuals: the lesson of centenarians. *Immuno Today* 1995;16:12–16.

Lautenbach A, Breitmeier D, Kuhmann S, et al. Human obesity reduces the number of hepatic leptin receptor (Ob-R) expressing NK-cells. *Endocr Res* 2011;36:515–22.

Khanari N, Shbakla Y, Mahmoudi M, et al. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. *Recent Pat Inflamm Allergy Drug Discov* 2009;3:73–80.

Wolpin BM, Bao Y, Qian ZR. Hyperglycemia, insulin resistance, impaired pancreatic β-cell function, and risk of pancreatic cancer. *Nat Cancer Inst* 2012;105:1027–35.

Sturgeon K, Schadler K, Muthukumanan G, et al. Concomitant low dose dihydrotestosterone and dietary approach in young men. *Amino Acids* 2003;25:41–44.

Prangnell J, Hoinville LJ, Gwinn-Hardy K, et al. Exercise and breast cancer: randomised trial of aerobic exercise on inflammatory markers in breast cancer survivors: the Yale exercise and survivorship study. *Ann Oncol* 2010;21:1274–81.

Khanari N, Shbakla Y, Mahmoudi M, et al. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. *Recent Pat Inflamm Allergy Drug Discov* 2009;3:73–80.

Wolpin BM, Bao Y, Qian ZR. Hyperglycemia, insulin resistance, impaired pancreatic β-cell function, and risk of pancreatic cancer. *Nat Cancer Inst* 2012;105:1027–35.

Prangnell J, Hoinville LJ, Gwinn-Hardy K, et al. Exercise and breast cancer: randomised trial of aerobic exercise on inflammatory markers in breast cancer survivors: the Yale exercise and survivorship study. *Ann Oncol* 2010;21:1274–81.

BostrÖm P, Wu J, Jedrychowski MP, et al. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in men aged 55 years. *Int J Cancer* 2006;118:2042–8.

Hahleh Z, Tfayli A, Najm A, et al. Randomized controlled trial of endurance exercise training and vitamin D supplementation on serum IL-6 and TNF-α concentrations after strength and endurance exercise in well-trained men. *Int J Sports Med* 2011;32:561–65.

Jensen J, Oftebro B, Breigain B, et al. Comparison of changes in testosterone concentrations after strength and endurance exercise in well-trained men. *Eur J Appl Physiol Occup Physiol* 1991;63:467–71.

Sutton JR, Coleman MJ, Casey J, et al. Androgen response during physical exercise. *BMJ* 1973;1:520–2.

Hayes JD. Six weeks of conditioning exercise increases total, but not free testosterone in lifelong sedentary aging men. *Aging Male* 2015;18:195–200.

Niklas BJ, Ryan AJ, Treuth MM, et al. Serum levels of IL-6 and TNF-alpha correlate with morphological features and patient survival in patients with prostate cancer. *Br J Cancer* 2004;90:2312–16.

Hormone and testosterone levels in young and elderly subjects. *J Sports Med* 2011;22:734–7.

Jensen J, Oftebro B, Breigain B, et al. Comparison of changes in testosterone concentrations after strength and endurance exercise in well trained men. *Eur J Appl Physiol Occup Physiol* 1991;63:467–71.

BostrÖm P, Romanelli F, Fucili F, et al. Testosterone responses to standardized short-term sub-maximal 30 mins and maximal endurance exercises 60 mins: issues on the dynamic adaptive role of the hypothalamic-pituitary-testicular axis. *Curr Pharm Des* 2001;7:261–73.

Soy S, Romanelli F, Fucili F, et al. Testosterone responses to standardized short-term sub-maximal 30 mins and maximal endurance exercises 60 mins: issues on the dynamic adaptive role of the hypothalamic-pituitary-testicular axis. *Curr Pharm Des* 2001;7:261–73.

Enea C, Boisseau N, Ottavi M, et al. Effects of menstrual cycle, oral contraception and training on exercise-induced changes in circulating DHEA-sulphate and testosterone in young women. *Eur J Endocrinol* 2008;159:659–67.

Jensen J, Oftebro B, Breigain B, et al. Comparison of changes in testosterone concentrations after strength and endurance exercise in well-trained men. *Eur J Appl Physiol Occup Physiol* 1991;63:467–71.

Sutton JR, Coleman MJ, Casey J, et al. Androgen response during physical exercise. *BMJ* 1973;1:520–2.

Hayes JD. Six weeks of conditioning exercise increases total, but not free testosterone in lifelong sedentary aging men. *Aging Male* 2015;18:195–200.

McKelvie RJ, Angell JS, Finlayson I, et al. Bone mineral density and serum testosterone in chronically trained, high mileage 45–55-year-old male runners. *Br J Sports Med* 2000;34:273–8.

Hawkins VN, Foster-Schubert K, Chubuk I, et al. Effect of exercise on serum sex hormones in men: a 12-month randomized clinical trial. *Med Sci Sports Exerc* 2008;40:223–33.

Safarinejad MR, Azma K, Kolahi AA. The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamic-pituitary-testes axis and semen quality: a randomized controlled study. *J Endocrinol Investig* 2009;200:259–71.

Haring R, Ittermann T, Völkelz H, et al. Incidence, incidence and risk factors of testosterone deficiency in a population-based cohort of men: results from the study of health Pomerania. *Aging Male* 2010;13:247–57.

Zimmer P, Jäger E, Bloch W, et al. Influence of a six month endurance exercise program on the immune function of prostate cancer patients undergoing antiandrogen therapy or chemotherapy: design and rationale of the Prолнium study. *BMC cancer* 2013;13:272.

Matsumoto AM, Bremner WJ. Serum testosterone assays-accuracy matters. *J Clin Endocrinol Metab* 2004;89:250–4.

Bostrom P, Wu J, Yudchitsky MP, et al. Irinotecan induces brown fat of white adipose tissue in vivo and protects against diet-induced obesity and diabetes. *Nature* 2012;481:463–8.

Provatopoulou X, Georgiou G, Kalogera E, et al. Serum insulin levels are lower in patients with breast cancer: association with diagnosis and disease tumour characteristics. *Eur J Endocrinol* 2009;160:69–72.

Gannon NP, Vaughan RA, Garcia-Smith R, et al. Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. *Int J Cancer* 2015;135:136.

Moon HS, Mantzoros CS. Regulation of cell proliferation and malignant potential by irisin in endothelial, colon, thyroid and oesophageal cancer cell lines. *Metab Clin Exp* 2014;39:188–93.

Albrecht E, NDorheim F, Thiede B, et al. Irisin—a myth rather than an exercise-inducible myokine. *Sci Rep* 2015;5:8889.

Jedrychowski MP, Warrn CD, Paulo JA, et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. *Cell Metab* 2015;22:734–40.

Wang JS, Weng TP. Hypoxic exercise training promotes antitumoral cytotoxicity of natural killer cells in young men. *Clin Sci* 2011;121:343–53.

Radom-Azik S, Zaldivar FF, Haddad F, et al. Impact of brief exercise on peripheral blood NK-cell gene and microRNA expression in young adults. *J Appl Physiol* 1985 (2013 online);114:628–36.

Thomas RJ, et al. *Br J Sports Med* 2016;50:1–8. doi:10.1136/bjsports-2016-096343
Review

122 Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. *Int J Cancer* 2007;121:856–62.

123 Koerner A, Kratzsch J, Kiess W, et al. Adipokynesines: leptin—the classical, resistin—the controversial, adiponectin—the promising, and more to come. *Best Pract Res Clin Endocrinol Metab* 2005;19:525–46.

124 Zimmerlin L, Donenberg AG, Rubin JP, et al. Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. *Tissue Eng Part A* 2011;17:93–106.

125 Hoffmann-Goetz L, Agter D, Dermark-Wahlehre F, et al. Possible mechanisms mediating an association between physical activity and breast cancer. *Cancer* 1998;83(Suppl 3):562–8.

126 Wu AH, Yu MC. Tea, hormone-related cancers and endogenous hormone levels. *Mol Nutr Food Res* 2006;50:160–9.

127 Folkert E, Dowset M. Influence of sex hormones on cancer progression. *J Clin Oncol* 2010;28:4034–44.

128 Niu J, Jiang L, Guo W, et al. The association between leptin level and breast cancer: a meta-analysis. *PLoS ONE* 2013;8:e67349.

129 Li H, Stamper ML, Mucci L, et al. A 25-year prospective study of plasma adiponectin and leptin concentrations and prostate cancer risk and survival. *Clin Chim Acta* 2010;56:34–43.

130 Booth A, Magnuson A, Fouts J, et al. Dose–response effects of aerobic exercise on estrogen and progesterone levels in premenopausal women at high risk of breast cancer. *J Appl Physiol* 2011;111:1687–93.

131 Kang JH, Yu BY, Youn DS, et al. Contribution of platelets to tumour metastasis. *J Pathol* 2001;85:1504–12.

132 Lin X, Zhang X, Guo J, et al. Adipose tissue, obesity and adipokines: role of leptin in colorectal tumour metastasis. *Mol Nutr Food Res* 2007;51:525–36.

133 Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. *Nat Rev Cancer* 2011;11:123–34.

134 Ma J, Li H, Giovannucci E, et al. Prediagnostic body-mass index, plasma C-peptide concentration and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. *Lancet Oncol* 2008;9:1039–47.

135 Chlebowski RT, Aiello E, McTiernan A. Weight loss in breast cancer patients. *J Clin Oncol* 2002;20:1128–43.

136 Folkert E, Dowset M. Influence of sex hormones on cancer progression. *J Clin Oncol* 2010;28:4034–44.

137 Friedenreich CM, Woolcott CG, McTiernan A, et al. Alberta physical activity and postmenopausal breast cancer prevention trial: sex hormone changes. *J Clin Oncol* 2010;28:1458–66.

138 Foster-Schubert KE, Alfano CM, Duggan CR, et al. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese post-menopausal women. *Obesity (Silver Spring)* 2012;20:1628–38.

139 Abbenhart C, McTiernan A, Alfano CM, et al. Effects of individual and combined dietary weight loss and exercise interventions in postmenopausal women on adiponectin and leptin levels. *J Intern Med* 2013;274:163–75.

140 Lin X, Zhang X, Guo J, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. *J Am Heart Assoc* 2015;4:e002014.

141 Kossman DA, Williams NI, Domcheck SM, et al. Exercise lowers estrogen and progestrone levels in premenopausal women at high risk of breast cancer. *J Appl Physiol* 2011;111:1687–93.

142 Kraemer RR, Chu H, Castracane VD. Leptin and exercise. *Exp Biol Med* 2008;233:1693–1701.

143 Schmitz KH, Williams NI, Kontos D, et al. Dose–response effects of aerobic exercise on estrogen among women at high risk for breast cancer: a randomized controlled trial *Breast Cancer Res Treat*. 2015;154:309–18.

144 Surmace E. Obesity hormone leptin, a new target for breast cancer? *Breast Cancer Res* 2007;9:301.

145 Kim HJ, Lee Y, Won E, et al. Expression of resistin in the prostate and its stimulatory effect on prostate cancer cell proliferation. *BIU Int* 2011;108:E77–83.

146 Chomistek AK, Chiuve SE, Jensen MK, et al. Vigorous physical activity, mediating biomarkers, and risk of myocardial infarction. *Med Sci Sports Exerc* 2011;43:1884–90.

147 Laizeroni M, Serrano D, Pilz S, et al. Vitamin D supplementation and cancer: review of randomized controlled trials. *Anticancer Agents Med Chem* 2012;13:118–25.

148 Schwartz GG. Vitamin D, sunlight and the epidemiology of prostate cancer. *Anti-Cancer Agents Med Chem* 2013;13:45–57.

149 Chang KC, Chen TC. The anti-cancer actions of vitamin D. *Anticancer Agents Med Chem* 2013;13:126–39.

150 Zgaga L, Theodoratou E, Farnington S, et al. Plasma vitamin D concentration influences survival outcome after a diagnosis of colorectal cancer. *JCO* 2014;32:2430–9.

151 Ng K, Meyerhardt J, Wu K, et al. Circulating 25-hydroxyvitamin d levels and survival in patients with colorectal cancer. *J Clin Oncol* 2008;26:2984–91.

152 Lascombe CJ, French ME, Li S, et al. Prostate cancer risk: associations with ultraviolet radiation, tyrosinase and melanocortin-1 receptor genotypes. *Breast Cancer Res Treat* 2003;85:1504–9.

153 van der Rhee AM, Cezebergh HW and de Vries D. Is prevention of cancer by sun exposure more than just the effect of vitamin D? A systematic review of epidemiological studies. *Eur J Cancer* 2013;49:1422–36.

154 Stulb SC, Mcdonough JR, Greenberg BG, et al. The relationship of nutrient intake and exercise to serum cholesterol levels in white males in Evans County, Georgia. *Am J Clin Nutr* 1965;16:238–42.

155 Platz EA, Till C, Goodman PJ, et al. Men with low serum cholesterol have a lower risk of high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. *Cancer Epidemiol Biomarkers Prev* 2009;18:2807–13.

156 Platz EA, Clinton SK, Giovannucci E. Association between plasma cholesterol and prostate cancer in the PSA era. *Int J Cancer* 2008;123:1693–8.

157 Kadan-Lottick NS, Vanderwerker LC, Block SD, et al. Psychiatric disorders and mental health service use in patients with advanced cancer. *Cancer* 2005;104:2872–81.

158 Prasad SM, Eggener SE, Lipsitz SR, et al. Effect of depression on diagnosis, treatment, and mortality of men with clinically localized prostate cancer. *J Clin Oncol* 2014;32:2471–8.

159 Craft LL, Perna FM. The benefits of exercise for the clinically depressed prim care companion. *J Clin Psychiatry* 2009;70:1041–4.

160 Reid-Adams SA, Cox CR. Stress, coping and cognitive deficits in women after surgery for breast cancer. *J Clin Psychol Med Settings* 2012;19:127–37.

161 Pischke CR, Frenda S, Ornish D, et al. Lifestyle changes are related to reductions in depression in persons with elevated coronary risk factors. *Psychol Health* 2010;25:1077–100.

162 Rao M, Raghuram N, Nagendra H, et al. Anxiolytic effects of a yoga program in early breast cancer patients undergoing conventional treatment: a randomized controlled trial. *Complementary Thers Med* 2009;17:1–8.

163 Lam R, Levitt AJ, Levitt R, et al. Efficacy of bright light treatment, fluoxetine and the combination in patients with non-seasonal major depressive disorder: a randomized controlled trial. *JAMA Psychiatry* 2015;72:1021–8.

164 Schmidt S, Monk JM, Robinson LE, et al. The integrative role of leptin, oestrogen and the insulin family in obesity-associated breast cancer: potential effects of exercise. *Obes Rev* 2015;16:473–87.

165 Rose AA, Elser C, Emmis M, et al. Blood levels of vitamin D and early stage breast cancer prognosis: a systematic review and meta-analysis. *Br J Cancer* 2001;85:1504–9.

166 Mondul AM, Weinstein SJ, Moy KA, et al. Circulating 25-hydroxyvitamin d and breast cancer prognosis. *Cancer Epidemiol Biomarkers Prev* 2016;25:665–69.

167 Pilz S, Kieniec K, Tomaschitz A, et al. Vitamin D and cancer mortality: systematic review of prospective epidemiological studies. *Anti-Cancer Agent Me* 2013;13:107–17.

168 Giovannucci E. Epidemiology of vitamin d and colorectal cancer. *Anticancer Agents Med Chem* 2013;13:11–19.

169 Thomas R, Holm M, Bellamy P, et al. Lifestyle factors correlate with the risk of late pelvic symptoms after prostatic radiotherapy. *Clin Oncol* 2013;25:246–51.