The natural product content of the selected Cabernet Franc wine samples originating from Serbia: a case study of phenolics

Boris Pejin\(^{at}\), Bojana Stanimirovic\(^{bt}\), Dragan Vujovic\(^{c}\), Jelena Popovic Djordjevic\(^{c}\), Milovan Velickovic\(^{c}\) and Vele Tesevic\(^{d}\)

\(^{a}\)Institute for Multidisciplinary Research – IMSI, University of Belgrade, Belgrade, Serbia; \(^{b}\) Institute MOL Ltd., Stara Pazova, Serbia; \(^{c}\) Faculty of Agriculture, University of Belgrade, Belgrade, Serbia; \(^{d}\) Faculty of Chemistry, University of Belgrade, Belgrade, Serbia

ABSTRACT
This work aimed to evaluate the content of selected phenolic natural products in the wine samples made of three new Serbian Cabernet Franc clones (Nos. 02, 010 and 012, respectively) and mother vine (used as the relevant standard) during the period 2008–2012. Compared with all other wine samples, the Cabernet Franc wine of the clone No. 010 was found to have the highest total content of polyphenolics (1.85 ± 0.02 g/L) and anthocyanins (178.55 ± 3.75 mg/L). In addition, its Folin–Ciocalteu index (36.86 ± 0.12) stood out among the examined samples. Finally, the same wine was enriched with ellagic and gallic acids (3.44 ± 0.29 and 27.46 ± 0.21 mg/L, respectively), catechin (135.16 ± 6.47 mg/L) and epicatechin (51.33 ± 2.33 mg/L), the natural products known to exert significant lipid-lowering effects. Taken all together, the clone No. 010 developed in Serbia may offer new Cabernet Franc wine with geographical indication.

1. Introduction
Viticulture and enology form an integral part of human society. Grape is actually the most important fruit crop grown in the world. It has many uses, such as fresh fruit, dried fruit, fresh...
glove juice, concentrated grape juice, wine, distilled liquors, grape seed oils, anthocyanin pigments and ethanol production. While the family Vitaceae include 11 genera (about 600 species), *Vitis* is the only food-bearing genus in the family. Among its European species, Cabernet Franc and Viognier are of particular importance (Kurtural 2015).

Till date no any recognised Cabernet Franc clone developed in Serbia does exist. This work aimed to determinate the content of selected phenolic natural products in the wines made of three new Serbian Cabernet Franc clones (Nos. 02, 010 and 012, respectively; long lasting clonal selection) and mother vine (used as the relevant standard) during the the period 2008–2012 (Danicic 1988; Lee et al. 2005; Vujovic et al. In press). The overall aim is to successfully make the first Cabernet Franc wine of Serbian origin (introduced variety) with geographical indication.

2. Results and discussion

In comparison with both the standard Cabernet Franc wine and the wines obtained from other two clones (Nos. 02 and 012, respectively), the Cabernet Franc wine of the clone No. 010 contained the highest content of the analysed phenolic acids (Table 1). This was especially true for ellagic and gallic acids (3.44 ± 0.29 and 27.46 ± 0.21 mg/L, respectively). The presence of significant amounts of gallic acid in red wines is to be expected since it is formed mainly through the hydrolysis of flavonoid gallate esters (Gris et al. 2013). Compared with Cabernet Franc wine samples originating from southern Brasil, the wine sample No. 010 has showed to be richer in ellagic acid (Gris et al. 2013).

The same trend was observed also for other screened phenolic natural products, with stress on the contents of anthocyanins (178.55 ± 3.75 mg/L), catechin (135.16 ± 6.47 mg/L) and epicatechin (51.33 ± 2.33 mg/L), respectively. Finally, its value of Folin-Ciocalteu (FC) index (36.86 ± 0.12) stood out among the examined wine samples (Tables 2 and 3).

Anthocyanins isolated from the red grape berries (*Vitis vinifera*) have the simplest chemical structure of all the anthocyanins found in higher plants. Their structural simplicity and long-lasting colour of red wine is known as ‘French Paradox II’ (Brouillard et al. 2003). They participate in both wine colour and organoleptic properties due to their complex interactions with other phenolic compounds, as well as with proteins and polysaccharides (Fournier-Level et al. 2011). The current findings suggest that the anthocyanin pattern of grapes is closely related to genetic characteristics assuming these compounds as chemical markers

Phenolic acids	Standard Cabernet Franc winea	Cabernet Franc 02 wineb	Cabernet Franc 010 wineb	Cabernet Franc 012 wineb
Gallic acid (mg/L)	26.69 ± 0.24	20.40 ± 0.19	27.46 ± 0.21	22.44 ± 0.25
Protocatechuic acid (mg/L)	3.51 ± 0.31	2.50 ± 0.21	3.64 ± 0.29	2.50 ± 0.27
Hydroxybenzoic acid (mg/L)	0.93 ± 0.01	0.79 ± 0.04	1.05 ± 0.02	0.80 ± 0.01
Vanillic acid (mg/L)	5.39 ± 0.40	4.32 ± 0.28	5.93 ± 0.16	4.87 ± 0.14
Ferulic acid (mg/L)	0.07 ± 0.00	0.07 ± 0.00	0.11 ± 0.00	0.10 ± 0.00
Ellagic acid (mg/L)	2.06 ± 0.19	1.82 ± 0.16	3.44 ± 0.29	2.51 ± 0.23

aMother wine.
bClone wine.
for differentiation of grape cultivars. Their concentration in wines varies highly according to the age of the wine and the variety (Revilla et al. 2013).

The improved content of polyphenolics in the wines of all three clones is likely to contribute to their medicinal properties (Bisson et al. 2002; Tenore & Ciampaglia 2013; Correia & Jordão 2015), in particular to lipid-lowering effects. Indeed, ellagic and gallic acids have been recently identified as bioactive components which lowers triglyceride and cholesterol levels, respectively (Ngamukote et al. 2011; Okla et al. 2015). Furthermore, catechins are also claimed to be safe and effective lipid-lowering therapeutic agents (Koo & Noh 2007).

3. Experimental

See supplementary material.

4. Conclusion

According to the obtained experimental data, the clone No. 010 may have a real potential to offer new Cabernet Franc wine with geographical indication (Barbera et al. 2013). The further research work will be focussed on the natural product chemistry of the grapes of all three aforementioned Cabernet Franc clones including the mother vine.

Table 2. Total content of selected natural products of the tested Cabernet Franc wines (2008–2012).

Organic compounds	Standard Cabernet Franc wine*	Cabernet Franc 02 wine**	Cabernet Franc 010 wine**	Cabernet Franc 012 wine**
$\bar{X} \pm sX$				
Total anthocyanins (mg/L)	167.97 ± 3.21c	167.45 ± 3.36c	178.55 ± 3.75a	173.20 ± 4.61b
Total polyphenolics (g/L)	1.63 ± 0.02c	1.74 ± 0.03b	1.85 ± 0.02a	1.73 ± 0.03b
Folin-Ciocalteu (FC) index	35.45 ± 0.12d	36.54 ± 0.08b	36.86 ± 0.12a	36.58 ± 0.07c

Note: Within the same row, indicated letters mean significant differences, $p < 0.05$ (ANOVA, Fisher’s LSD).

*Mother wine.
**Clone wine.

Table 3. Content of other phenolics of the tested Cabernet Franc wines (2008–2012).

Other phenolics	Standard Cabernet Franc wine*	Cabernet Franc 02 wine**	Cabernet Franc 010 wine**	Cabernet Franc 012 wine**
Catechin (mg/L)	97.65 ± 4.78	89.10 ± 4.27	135.16 ± 6.47	116.61 ± 5.68
Epicatechin (mg/L)	39.26 ± 1.76	31.17 ± 1.44	51.33 ± 2.33	35.15 ± 1.71
Syringaldehyde (mg/L)	1.63 ± 0.03	1.53 ± 0.03	1.73 ± 0.03	1.62 ± 0.03
Naringenin (mg/L)	0.28 ± 0.00	0.23 ± 0.00	0.34 ± 0.00	0.28 ± 0.00
trans-Resveratrol (mg/L)	4.52 ± 0.16	3.41 ± 0.12	4.68 ± 0.16	3.69 ± 0.13
2-Phenyl-1,4-benzopyrone (mg/L)	0.55 ± 0.01	0.51 ± 0.01	0.59 ± 0.01	0.52 ± 0.01

*Mother wine.
**Clone wine.
Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [grant number 172053].

References
Barbera D, Avellone G, Filizzola F, Monte LG, Catanzaro P, Agozzino P. 2013. Determination of terpene alcohols in Sicilian Muscat wines by HS-SPME-GC-MS. Nat Prod Res. 27:541–547.
Bisson LF, Waterhouse AL, Ebeler SE, Walker MA, Lapsley JT. 2002. The present and future of the international wine industry. Nature. 418:696–699.
Brouillard R, Chassaign S, Fougerousse A. 2003. Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long? Phytochemistry. 64:1179–1186.
Correia AC, Jordão AM. 2015. Antioxidant capacity, radical scavenger activity, lipid oxidation protection analysis and antimicrobial activity of red grape extracts from different varieties cultivated in Portugal. Nat Prod Res. 29:438–440.
Danicic M. 1988. Technology of wine – practicum. Belgrade: University of Belgrade, Faculty of Agriculture.
Fournier-Level A, Hugueney P, Verrière C, This P, Ageorges A. 2011. Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol. 11:179.
Gris EF, Mattivi F, Ferreira eA, Vrhovsek U, Filho DW, Pedrosa RC, Bordignon-Luiz MT. 2013. Phenolic profile and effect of regular consumption of Brazilian red wines on in vivo antioxidant activity. J Food Comp Anal. 31:31–40.
Koo SI, Noh SK. 2007. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem. 18:179–183.
Kurtural SK. 2015. A brief history of the grape and its uses. [Internet]. Lexington: University of Kentucky, College of Agriculture. [cited 2015 Oct 31]. Available from: http://www.uky.edu/Ag/CCD/history&uses.pdf
Lee J, Durst WR, Wrolstad RE. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int. 88:1269–1278.
Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S. 2011. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules. 16:5054–5061.
Okla M, Kang I, Kim DM, Gourineni V, Shay N, Gu L, Chung S. 2015. Ellagic acid modulates lipid accumulation in primary human adipocytes and human hepatoma Huh7 cells via discrete mechanisms. J Nutr Biochem. 26:82–90.
Revilla E, García-Beneytez E, López JF, Cabello F. 2013. Anthocyanin pattern of several red grape cultivars and single-cultivar young wines. Acta Aliment. 42:23–35.
Tenore GC, Clampaglia R. 2013. Antioxidant profile of selected Mediterranean red wines. Nat Prod Res. 27:855–861.
Vujovic D, Pejin B, Popovic Djordjevic J, Velickovic M, Tesevic V. In Press. Phenolic natural products of the wines obtained from three new Merlot clone candidates. Nat Prod Res. DOI: 10.1080/14786419.2015.1079191.