JohnnyVon: Self-Replicating Automata in Continuous Two-Dimensional Space

Arnold Smith, National Research Council Canada
Peter Turney, National Research Council Canada
Robert Ewaschuk, University of Waterloo

August 29, 2002

Note: This report originally contained colour figures. If you have a black-and-white copy of the report, you are missing important information.

© Copyright 2002 by National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report, provided that the source of such materials is fully acknowledged.
Table of Contents

Abstract ... 3
1 Introduction ... 3
2 Related Work .. 4
 2.1 Self-Replicating Cellular Automata ... 4
 2.2 Mobile Automata .. 5
 2.3 Physical Models of Self-Replication ... 5
3 JohnnyVon .. 5
 3.1 Informal Description ... 6
 3.2 Definitions .. 6
 3.3 Fields ... 7
 3.4 Physics .. 9
 3.4.1 Brownian Motion .. 10
 3.4.2 Viscosity .. 10
 3.4.3 Attractive Force ... 10
 3.4.4 Repulsive Force ... 10
 3.4.5 Straightening Force .. 11
 3.4.6 Spring Dampening ... 11
 3.5 Splitting .. 11
 3.6 States .. 12
 3.7 Time .. 13
 3.8 Implementation .. 14
4 Experiments .. 14
 4.1 Seeded Replication .. 14
 4.2 Spontaneous Replication ... 21
5 Interpretation of Experiments ... 22
6 Limitations and Future Work .. 23
7 Applications ... 24
8 Conclusion .. 24
References ... 25
Abstract
JohnnyVon is an implementation of self-replicating automata in continuous two-dimensional space. Two types of particles drift about in a virtual liquid. The particles are automata with discrete internal states but continuous external relationships. Their internal states are governed by finite state machines but their external relationships are governed by a simulated physics that includes brownian motion, viscosity, and spring-like attractive and repulsive forces. The particles can be assembled into patterns that can encode arbitrary strings of bits. We demonstrate that, if an arbitrary “seed” pattern is put in a “soup” of separate individual particles, the pattern will replicate by assembling the individual particles into copies of itself. We also show that, given sufficient time, a soup of separate individual particles will eventually spontaneously form self-replicating patterns. We discuss the implications of JohnnyVon for research in nanotechnology, theoretical biology, and artificial life.

1 Introduction
John von Neumann is well known for his work on self-replicating cellular automata [10]. His ultimate goal, however, was to design self-replicating physical machines, and cellular automata were simply the first step towards the goal. Before his untimely death, he had sketched some of the other steps. One step was to move away from the discrete space of cellular automata to the continuous space of classical physics (pages 91-99 of [10]). Following the path sketched by von Neumann, we have developed JohnnyVon, an implementation of self-replicating automata in continuous two-dimensional space.

JohnnyVon consists of a virtual “soup” of two types of particles that drift about in a simulated liquid. The particles are automata with discrete internal states that are regulated by finite state machines. Although the particles are internally discrete, the external relationships among the particles are continuous. Force fields mediate the interactions among the particles, enabling them to form and break bonds with one another. A pattern encoding an arbitrary string of bits can be assembled from these two types of particles, by bonding them into a chain. When a soup of separate individual particles is “seeded” with an assembled pattern, the pattern will replicate itself by assembling the separate particles into a new chain.¹

The design of JohnnyVon was inspired by DNA and RNA. The individual automata are intended to be like codons and the assembled patterns are like strands of DNA or RNA. The simulated physics in JohnnyVon corresponds (very roughly) to the physics inside cells. The design was also influenced by our interest in nanotechnology. The automata in JohnnyVon can be seen as tiny nanobots, floating in a liquid vat, assembling structures in a manufacturing plant. Another source of guidance in our design was, of course, the research on self-replicating cellular automata, which has thrived and matured greatly since von Neumann’s pioneering work. In particular, although the broad outline of JohnnyVon is derived from physics and biology, the detailed design of the system borrows much from automata theory. The basic entities in JohnnyVon are

¹ The copies are mirror images; however, that is not a problem. This point is discussed in Section 5.
essentially finite automata, although they move in a continuous space and are affected by smoothly-varying force fields.

We discuss related work in Section 2. JohnnyVon is most closely related to research on self-replicating cellular automata. A significant difference is that the automata in JohnnyVon are mobile. There is some related work on mobile automata that move in a two-dimensional space, but this work does not investigate self-replication and does not involve a continuous space. In many respects, JohnnyVon is most similar to the work of Lionel and Roger Penrose, who created self-replicating machines using pieces of plywood [4].

JohnnyVon is described in detail in Section 3. The motion of the automata is determined by a simulated physics that includes brownian motion, viscosity, and spring-like attractive and repulsive forces. The behaviours and interactions of the automata are determined by a small number of internal states and state transition rules.

We present two experiments in Section 4. First, we show that an arbitrary seed structure can assemble copies of itself, using individual automata as building blocks. Second, we show that a soup of separate individual automata can spontaneously form self-replicating structures, although we have deliberately designed JohnnyVon so that this is a relatively rare event.

Section 5 is our interpretation of the experiments. Section 6 is concerned with limitations of JohnnyVon and future work. Some potential applications of this line of research are given in Section 7 and we conclude in Section 8.

2 Related Work

JohnnyVon is related to research in self-replicating automata, mobile automata, and physical models of self-replication.

2.1 Self-Replicating Cellular Automata

Since von Neumann’s pioneering work [10], after a hiatus, research in self-replicating cellular automata is now flourishing [2], [5], [7], [8], [9]. Most of this work has involved two-dimensional cellular automata. A two-dimensional grid of cells forms a discrete space, which is infinite and unbounded in the abstract, but is necessarily finite in a computer implementation. The cells are (usually identical) finite state machines, in which a cell’s state depends on the states of its neighbours, according to a set of (deterministic) state transition rules. The system begins with each cell in an initial state (chosen by the user) and the states change synchronously in discrete time steps. With carefully selected transition rules, it is possible to create self-replicating patterns. The initial states of the cells are “seeded” with a certain pattern (usually the pattern is a small loop). Over time, the pattern spreads from the seed to nearby cells, eventually filling the available space.

Although this work has influenced and guided us, JohnnyVon is different in several ways. The automata in JohnnyVon are (essentially) finite state machines, but they are mobile, rather than being locked in a grid. The automata move in a continuous two-dimensional space, rather than a discrete space (but time in JohnnyVon is still discrete). The states of the automata are mainly discrete and finite, but each automaton has a position and a velocity, and the force fields around the tips of each particle have smooth
gradients, all of which are represented with floating point numbers. The movements of the automata are governed by a simple simulated physics. We claim that these differences from self-replicating cellular automata make JohnnyVon more realistic, and thus more suitable for guiding work on self-replicating nanotechnology and research on the origins of life and related issues in theoretical biology. Aside from the increased realism, JohnnyVon is interesting simply because it is significantly different from cellular automata.

2.2 Mobile Automata
There has been other research on mobile automata (e.g., bio-machines [3] and generalized mobile automata [11]), combining Turing machines with cellular automata. Turing machines move from cell to cell in an N-dimensional grid space, changing the states of the cells and possibly interacting with each other. However, unlike JohnnyVon, this work has used a discrete space. As far as we know, JohnnyVon is the first system that demonstrates self-replication with mobile automata in a continuous space.

2.3 Physical Models of Self-Replication
Lionel Penrose, with the help of his son, Roger, made actual physical models of self-replicating machines, using pieces of plywood [4]. His models are similar to JohnnyVon in several ways. Both involve simple units that can be assembled into self-replicating patterns. In both, the units move in a continuous space. Another shared element is the harnessing of random motion for replication. JohnnyVon uses simulated brownian motion and Penrose required the plywood units to be placed in a box that was then shaken back and forth. Penrose described both one-dimensional and two-dimensional models, in which motion is restricted to a line or to a plane.

An obvious difference between the Penrose models and JohnnyVon is that the former are physical whereas the latter is computational. One advantage of a computational model is that experiments are perfectly repeatable, given the same initial conditions and the same random number seed. Another advantage is the ability to rapidly modify the computational model, to explore alternative models.

A limitation of the Penrose models is that the basic units are all identical, so they cannot use binary encoding. They could encode information by length (the number of units in an assembled pattern), but the mechanism for ensuring that length is replicated faithfully is built in to the physical structure of the units. Thus altering the length involves building new units. On the other hand, JohnnyVon can encode an arbitrary binary string without making any changes to the basic units.

3 JohnnyVon
We begin the description of JohnnyVon with an informal discussion of the model. We then define some terminology, followed with an outline of the attractive and repulsive fields that govern the interactions among the automata. The fourth subsection sketches the simulated physics and the fifth subsection explains how the automata decide when

2 We discuss in Section 3.5 the extent to which the automata in JohnnyVon are finite state machines.
to split apart. The sixth subsection considers the states of the automata and the seventh subsection discusses the treatment of time in JohnnyVon. The final subsection is concerned with the implementation of JohnnyVon.

3.1 Informal Description

The design of JohnnyVon was based on the idea that strings (chains) of particles, of arbitrary length, should be capable of forming spontaneously, and once formed, they should be relatively stable. Each particle is a T-shaped structure. Particles form strings by bonding together at the tips of the horizontal arms of the T structures. Strings replicate by attracting randomly floating particles to the tips of the vertical arms of the T structures and holding them in place until they join together to form a replica of the original string.

Bonds between particles in a string can be broken apart by brownian motion (due to random collisions with virtual molecules of the containing fluid) and by jostling from other particles. Particles can also bond to form a string by chance, without a seed string, if two T structures meet under suitable conditions. Strings that are randomly broken or formed can be viewed as mutations. We intentionally designed JohnnyVon so that mutations are relatively rare, although they are possible. Faithful replication is intended to be much more common than mutation.

The attractive fields around particles have limited ranges, which can shrink or expand. This is one of the mechanisms that we use to ensure faithful replication. The fields shrink when we want to discourage bonding that could cause mutations and the fields expand when we want to encourage bonding that should lead to faithful replication.

A mechanism is needed to recognize when a string has attracted and assembled a full copy of itself. Without this, each seed string would attract a single copy, but the seed and its copy would remain bonded together forever. Therefore the automata send signals to their neighbours in the string, to determine whether a full copy has been assembled. When the right signal is received, a particle releases the bond on the vertical arm of the T structure and pushes its corresponding particle away.

3.2 Definitions

The following definitions will facilitate our subsequent discussion. To better understand these definitions, it may be helpful to look ahead to Table 1 and the figures in Section 4.

Codon: a T-shaped object that can encode one bit of information. There are two types of codons, type 0 codons and type 1 codons.

Container: the space that contains the codons. Codons move about in a two-dimensional continuous space, bounded by a grey box. The centers of the codons are confined to the interior of the grey box.

Liquid: a virtual liquid that fills the container. The trajectory of a codon is determined by brownian motion (random drift due to the liquid) and by interaction with other codons and the walls of the container. The liquid has a viscosity that dampens the momentum of the codons.

Soup: liquid with codons in it.

Field: an attractive or repulsive area associated with a codon. The range of a field is indicated by a coloured circle. In addition to attracting or repelling, a field can also exert
a straightening force, which twists the codons to align their arms linearly. The fields behave somewhat like springs.

Arm: a black line in a codon that begins in the middle of the codon and ends in the center of a coloured field.

Tip: the outer end of an arm, where the red, blue, green, and purple fields are centered.

Middle: the inner ends of the arms, where the three arms join together. This is not the geometrical center of the codon, but it is treated as the center of mass in the physical simulation.

Red (blue, purple, green) arm: an arm that ends in a red (blue, purple, green) field.

Bond: two codons can bond together when the field of one codon intersects the field of another. Not all fields can bond. This is described in detail later.

Red (blue, purple, green) neighbour: the codon that is bonded to the red (blue, purple, green) arm of a given codon.

Single strand: a chain of codons that are red and blue neighbours of each other.

Double strand: two single strands that are purple and green neighbours of each other.

Small (large) field: a field may be in one of two possible states, small or large. These terms refer to the radius of the circle that delimits the range of the field.

Free codon: a codon with no bonds.

Time: the number of steps that have been executed since the initialization of JohnnyVon. The initial configuration is called step 0 (or time 0).

3.3 Fields

The codons have attractive and repulsive fields, as shown in Table 1. These fields determine how codons interact with each other to form strands. There are five types of fields, which we have named according to the colours that we use to display the codons in JohnnyVon’s user interface (purple, green, blue, red, yellow). All five fields have two possible states, called *large* and *small*, according to the radius of the circle that delimits the range of the field. All fields in a free codon are small.

Table 2 gives the state transition rules for the field states. Fields switch between small and large as bonds are formed and broken.

The interactions among the fields are listed in Table 3. Fields can pull codons together, push them apart, or twist them to align their arms.
Table 1. The two types of codons and their field states. The fields of a free codon are always small. The fields become large only when codons bond together, as described in the next table. A codon’s fields may be in a mixture of states (one field may be small and another large). Note that the circles are not drawn to scale, since the small fields would be invisibly small at this scale.

Type 0 codons (purple codons)	Type 1 codons (green codons)
All fields in their small states	![Type 0 codons](image1) ![Type 1 codons](image2)
![All fields in their large states](image3)	![All fields in their large states](image4)

Table 2. State transitions in fields. Fields can change from small to large or vice versa, but they never change colour.

Current field state	Next field state	Transition rules
small red	large red	If a small blue field touches a small red field and the arms of their respective codons are aligned linearly to within $\pm \pi/256$ radians, then both fields switch to their large states and their codons are designated as being bonded together. As long as the two fields continue to intersect, at any angle, they remain in the bonded state, and any third field that intersects with the two fields will be ignored.
small blue	large blue	If jostling causes a large red field to lose contact with its bonded large blue field, then both fields switch to their small states and their codons are no longer designated as being bonded.
large red	small red	If a codon’s red or blue fields are bonded, then its green or purple field switches to its large state.
large blue	small blue	If neither of a codon’s red or blue fields are bonded, then its green or purple field becomes small.
small green	large green	If a double strand is ready to split, then the yellow fields of all of the codons in the double strand become large (this is described in more detail later).
small purple	large purple	If a yellow field has been large for 150 time units, then it returns to its small state.
large green	small green	
large purple	small purple	
small yellow	large yellow	
large yellow	small yellow	
Table 3. The behaviour of the fields. Fields have no effect on each other unless their circles intersect. If the behaviour of a pair of fields is not listed in this table, it means that pair of fields has no interaction (they ignore each other). The designations “Field 1” and “Field 2” in this table are arbitrary, since the relationships between the fields are symmetrical.

Field 1	Field 2	Interaction between fields
small red	small blue	If a small blue field touches a small red field and the arms of their respective codons are aligned linearly to within $\pm \pi/256$ radians, then both fields switch to their large states and their codons are designated as being bonded together. As long as the two fields continue to intersect, at any angle, they remain bonded, and any third field that intersects with the two fields will be ignored.
large red	large blue	When a large red field is designated as bonded with a large blue field, an attractive force pulls the tip of the red arm towards the tip of the blue arm and a straightening force twists the codons to align their arms linearly.
small purple	small green	When a purple field touches a green field and the arms of their respective codons are aligned linearly to within $\pm \pi/3$ radians, they are designated as being bonded. As long as the two fields continue to intersect, at any angle, they remain bonded, and any third field that intersects with the two fields will be ignored. An attractive force pulls the tip of the purple arm towards the tip of the green arm and a straightening force twists the codons to align their arms linearly.
small purple	large green	A large purple field and a large green field cannot initiate a new bond; they can only maintain an existing bond. If they do not have an existing bond, carried over from before they became large, then they ignore each other. Otherwise, as long as the two fields continue to intersect, at any angle, they remain bonded, and any third field that intersects with the two fields will be ignored. An attractive force pulls the tip of the purple arm towards the tip of the green arm and a straightening force twists the codons to align their arms linearly.
large purple	large green	When two large yellow fields intersect, a repulsive force pushes them apart. The repulsive force stops acting when the fields no longer intersect or when the fields switch to their small states. However, when the repulsive force stops acting, the codons will continue to move apart, until their momentum has been dissipated by the viscosity of the liquid. For yellow fields, unlike the other fields, there is nothing that corresponds to designated bonded pairs. Thus, if there are three or more intersecting large yellow fields, they will all repel each other.

3.4 Physics
JohnnyVon runs in a sequence of discrete time steps. Each codon has a position (x-axis location, y-axis location, and angle) and a velocity (x-axis velocity, y-axis velocity, and angular velocity) in two-dimensional space. Although time is measured in whole
numbers, position and velocity are represented with floating point numbers. (We discuss
time in more detail in Section 3.7.) Each codon has one unit of mass.

The internal state changes of a codon are triggered by the presence and state of
neighbouring codons. One codon “senses” another when it comes within range of one of
its force fields. It could be said that the force fields are also sensing fields, and when one
of these fields expands, its sensing ability expands equally.

We think of the container as holding a thin layer of liquid, so although the space is two-
dimensional, codons are allowed to slide over one another (it could be called a 2.5D
space). This simplifies computation, since we do not need to be concerned with
detecting collisions between codons. It also facilitates replication, since free codons can
move anywhere in the container, so it is not possible for them to get trapped behind a
wall of strands.

It is interesting to note that strands are emergent structures that depend only on the local
interactions of individual codons. There is no data structure that represents strands;
each codon is treated separately and interacts only with its immediate neighbours.

3.4.1 Brownian Motion
Codons move in a virtual liquid. Brownian motion is simulated by applying a random
change to each codon’s (linear and angular) velocity at each time step. This random
velocity change may be thought of as the result of a collision with a molecule of the
liquid, but we do not explicitly model the liquid's molecules in JohnnyVon.

3.4.2 Viscosity
We implement a simple model of viscosity in the virtual liquid. With each time step, a
codon’s velocity is adjusted towards zero by multiplying the velocity by a fractional
factor. One factor is applied for x-axis and y-axis velocity (linear viscosity) and another
factor is applied for angular velocity (angular viscosity).

3.4.3 Attractive Force
When two codons are bonded, an attractive force pulls their bonded arms together. This
force acts like a spring joining the tips of the bonded arms. The strength of the spring
force increases linearly with the distance between the tips, until the distance is greater
than the sum of the radii of the fields, at which point the bond is broken. The spring force
modifies both the linear and angular velocities of the bonded codons. (The angular
velocity is modified because the force acts on the codon tip, rather than on the center of
mass.)

3.4.4 Repulsive Force
The repulsive force also acts like a spring, joining the centers of the yellow fields,
pushing the codons apart. The strength of the spring force decreases linearly with the
distance between the centers of the yellow fields, until the distance is greater than the
sum of the radii of the fields, at which point the force ceases. The spring force modifies
both the linear and angular velocities of the bonded codons.
3.4.5 Straightening Force
When two codons are bonded, a straightening force twists them to align their bonded arms linearly. This force is purely rotational; it has no linear component. The two bonded codons rotate about their middles, so that their bonded arms lie along the line that joins their middles. The straightening force for a given codon is linearly proportional to the angle between the bonded arm of the given codon and the line joining the middle of the given codon to the middle of the other codon.

3.4.6 Spring Dampening
The motion due to the attractive and straightening forces is dampened, in a way that is similar to the viscosity that is applied to brownian motion. The dampening prevents unlimited oscillation. No dampening is applied to the repulsive force, since oscillation is not a problem with repulsion. The linear velocities of a bonded pair of codons are dampened towards the average of their linear velocities, by a fractional factor (linear dampening). The angular velocities of a bonded pair of codons are dampened towards zero, by another fractional factor (angular dampening).

3.5 Splitting
When a complete double strand forms, the yellow fields switch to their large states and split the double strand into two single strands. The decision to split is controlled by a purely local process. Each codon has an internal state that is determined by the states of its neighbours. When a codon enters a certain internal state, its yellow field switches to the large state. The splitting is determined by a combination of two state variables, the \texttt{strand_location_state} and the \texttt{splitting_state}.

The \texttt{strand_location_state} has three possible values:

- \texttt{0} = Initial state: I do not think I am at the end of a (possibly incomplete) double strand.
- \texttt{1} = I think I might be located at the end of a (possibly incomplete) double strand.
- \texttt{2} = My green or purple neighbour also thinks it might be at the end of a (possibly incomplete) double strand.

An incomplete double strand occurs when a single strand has partially replicated. On one side, there is the original single strand, and, attached to it, there are one or more single codons or shorter single strands. The state transition rules for \texttt{strand_location_state} are designed so that a codon can only be in state 2 when it is at one of the two extreme ends of a (complete or incomplete) double strand.

The \texttt{splitting_state} also has three possible values:

- \texttt{x} = Initial state: I am not ready to split.
- \texttt{y} = I am ready to split.
- \texttt{z} = I am now splitting.

A codon’s yellow field switches to the large yellow state when \texttt{splitting_state} becomes \texttt{z}.

The following tables give the rules for state transitions. Table 4 lists the rules for \texttt{strand_location_state} and Table 5 provides the rules for \texttt{splitting_state}.
Table 4. Transition rules for \textit{strand_location_state}. When \textit{strand_location_state} is 2, the given codon must actually be at one end of a (possibly incomplete) double strand. During the replication process, if a strand has not yet fully replicated, there will be gaps in the strand, and the codons situated at the edges of these gaps will be stuck in state 1 until the gaps are filled, at which time they will switch to state 0.

Current state	Next state	Transition rules for \textit{strand_location_state}
0	1	If (I have exactly one red or blue neighbour) and (I have a purple or green neighbour), then I switch from state 0 to state 1.
1	0	If (I do not have exactly one red or blue neighbour) or (I do not have a green or purple neighbour), then I switch from state 1 to state 0.
1	2	If (I have exactly one red or blue neighbour) and (I have a green or purple neighbour) and (my green or purple neighbour is in state 1 or 2), then I switch from state 1 to state 2.
2	0	If (I do not have exactly one red or blue neighbour) or (I do not have a green or purple neighbour) or (my green or purple neighbour is in state 0), then I switch from state 2 to state 0.

Table 5. Transition rules for \textit{splitting_state}. A strand begins with all codons in the \textit{x} state. When the strand is complete, one end of the strand (the end with no red neighbour) enters the \textit{y} state, and the \textit{y} state then spreads down the strand to the other end (the end with no blue neighbour). If the double strand is incomplete, the codons next to the gap will have their \textit{strand_location_state} set to 1, which will block the spread of the \textit{y} state. When the \textit{y} state spreads all the way to the other end, in either of the two single strands, the double strand must be complete. Therefore, when the \textit{y} state reaches the other end (the end with no blue neighbour), the end codon enters the \textit{z} state, and the \textit{z} state spreads back down to the first end (the end with no red neighbour).

Current state	Next state	Transition rules for \textit{splitting_state}
\textit{x}	\textit{y}	If \[(\text{my } \textit{strand_location_state} \text{ is } 2) \text{ and } (\text{my green or purple neighbour\'s } \textit{strand_location_state} \text{ is } 2) \text{ and } (\text{I have no red neighbour})\] or \[(\text{my } \textit{strand_location_state} \text{ is not } 1) \text{ and } (\text{my green or purple neighbour\'s } \textit{strand_location_state} \text{ is not } 1) \text{ and } (\text{my red neighbour\'s } \textit{splitting_state} \text{ is } \textit{y})\], then I switch from state \textit{x} to state \textit{y}.
\textit{y}	\textit{z}	If \[(\text{my } \textit{strand_location_state} \text{ is } 2) \text{ and } (\text{my green or purple neighbour\'s } \textit{strand_location_state} \text{ is } 2) \text{ and } (\text{I have no blue neighbour})\] or \[(\text{my } \textit{strand_location_state} \text{ is not } 1) \text{ and } (\text{my green or purple neighbour\'s } \textit{strand_location_state} \text{ is not } 1) \text{ and } (\text{my blue neighbour\'s } \textit{splitting_state} \text{ is } \textit{z})\], then I switch from state \textit{y} to state \textit{z}.
\textit{z}	\textit{x}	If \[([\text{I have no red neighbour}] \text{ or } (\text{I have been in state } \textit{z} \text{ for } 150 \text{ time units}) \text{ or } (\text{my red neighbour is in state } \textit{x})\], then I switch from state \textit{z} to state \textit{x}.

3.6 States

The state of a codon in JohnnyVon is represented by a vector, rather than a scalar. The state vector of a codon has 16 elements:

- 3 floating point variables for position (x-axis location, y-axis location, angle)
- 3 floating point variables for velocity (x-axis velocity, y-axis velocity, angular velocity)
• 5 binary variables for field size (blue, red, green, purple, and yellow field size)
• 3 whole-number-valued variables (one for each arm of the codon) for “pointers” that identify the codon to which a given arm is bonded (if any)
• 1 three-valued variable for strand_location_state
• 1 three-valued variable for splitting_state

The seven-dimensional finite-valued sub-vector, consisting of the five binary variables and the two three-valued variables, is the part of each codon that corresponds to the traditional notion of a finite state machine. This seven-dimensional sub-vector has a total of $2^5 \times 3^2 = 288$ possible states.\(^3\)

Chou and Reggia demonstrated the emergence of self-replicating structures in two-dimensional cellular automata, using 256 states per cell [1]. The state values were divided into “data fields”, which were treated separately. In other words, Chou and Reggia used state vectors, like JohnnyVon, rather than state scalars. We agree with Chou and Reggia that state vectors facilitate the design of state machines.

The remaining nine variables in the state vector (position, velocity, bond pointers) represent information about external relationships among codons, rather than the internal states of the codons. For example, the absolute position of a codon is not important; the interactions of the codons are determined by their relative positions. These nine variables are analogous to the grid in cellular automata. As far as internal states alone are concerned, the codons are finite state machines. It is their external relationships that make the codons significantly different from cellular automata.

3.7 Time

For the discrete elements in the state vector, there is a natural relation between changes in state and increments of time, when each unit of time is one step in the execution of JohnnyVon. For the continuous elements in the state vector (position and velocity), the time scale is somewhat arbitrary. The physical rules that are used to update the position and velocity are continuous functions of continuous time. In a computational simulation of a continuous process, it is necessary to sample the process at a succession of discrete intervals. In JohnnyVon, the parameter timestep_duration determines the temporal resolution of the simulation. The parameter may be seen as determining how finely continuous time is sliced into discrete intervals, or, equivalently, it may be seen as determining how much action takes place from one step of the simulation to the next. Changing the value of the parameter is equivalent to rescaling the magnitudes of the forces.

A small value for timestep_duration yields a fine temporal resolution (i.e., a small amount of action between steps) and a large value yields a coarse temporal resolution. If the value is too small, the simulation will be computationally inefficient; many CPU cycles will be wasted on making the simulation unnecessarily precise. On the other hand, if the value is too large, the simulation may become unstable; the behaviour of the objects in the simulation may be a very poor approximation to the intended continuous physical dynamics.

\(^3\) Some combinations of states are not actually possible. See Tables 2 to 5.
The actual value that we use for \textit{timestep_duration} has no meaning outside of the context of the (arbitrary) values that we chose for the magnitudes of the various physical parameters (force field strengths, viscosity, brownian motion, etc.). We set \textit{timestep_duration} by adjusting it until it seemed that we had found a good balance between computational efficiency and physical accuracy.

When comparing different runs of JohnnyVon, with different values for \textit{timestep_duration}, we found it useful to normalize time by multiplying the number of steps by \textit{timestep_duration}. For example, if you halve the value of \textit{timestep_duration}, then half as much action takes place from one time step to the next, so it takes twice as many time steps for a certain amount of action to occur. Therefore, as JohnnyVon runs, it reports both the number of time steps and the normalized time (the product of the step number and \textit{timestep_duration}). However, in the following experiments, we only report the number of steps, since the normalized time has no meaning when taken out of context.

3.8 Implementation

JohnnyVon is implemented in Java. The source code is available under the GNU General Public License (GPL) at http://extractor.iit.nrc.ca/johnnyvon/.

We originally implemented JohnnyVon in C++. The current version is in Java because we found it difficult to make the C++ version portable across different operating systems. Informal testing suggests that the Java version runs at about 75\% of the speed of the C++ version. We believe that the slight loss of speed in the Java version is easily offset by the gain in portability and maintainability.

4 Experiments

In our first experiment, we seed a soup of free codons with a pattern and show that the pattern is replicated. In the second experiment, we show that a soup of free codons, given sufficient time, will spontaneously generate self-replicating patterns.

4.1 Seeded Replication

Figures 1 to 7 show a typical run of JohnnyVon with a seed strand of eight codons and a soup of 80 free codons. Over many runs, with different random number seeds, we have observed that the seed strand reliably replicates.
Figure 1. Step 250. This screenshot shows JohnnyVon near the start of a run, after 250 steps have passed. A soup of free codons (randomly located) has been seeded with a single strand of eight codons (placed near the center). The strand of eight codons encodes the binary string “00011001” (0 is purple, 1 is green). In the strand, the red fields are covering the corresponding blue fields of the red neighbours.
Figure 2. Step 6,325. Six codons have bonded with the seed strand, but they have not yet formed any red-blue bonds.
Figure 3. Step 18,400. Eight codons have bonded with the seed strand, but these eight codons have not yet formed a complete strand. One red-blue bond is missing. These bonds can only form when the red and blue arms meet linearly to within $\pm \pi/256$ radians. This happens very rarely when the codons are drifting freely, but it happens dependably when the codons are held in position by the purple-green bonds.
Figure 4. Step 22,000. The eight codons formed their red-blue bonds, making a complete strand of eight codons. This caused the yellow fields in the double strand to switch to their large states, breaking the bonds between the two single strands and pushing them apart. In this screenshot, the yellow fields are still large. After a few more time units have passed, they will return to their small states. Note that the seed strand encodes “00011001”, but the daughter strand encodes “01100111”. This is discussed in Section 5.
Figure 5. Step 25,950. We now have two single strands, and they have started to form bonds with the free codons.
Figure 6. Step 30,850. The daughter strand has replicated itself, producing a granddaughter. The original seed strand and the granddaughter encode the same bit string.
4.2 Spontaneous Replication

JohnnyVon was intentionally designed so that life (self-replicating patterns) can arise from non-life (free codons without a seed), but only rarely. It is difficult for red-blue bonds to form, due to the narrow angle at which the arms must meet ($\pm \pi/256$ radians – see Table 2). These bonds are very unlikely to form unless the codons are held in position by green-purple bonds. However, given sufficient time, two free codons will eventually
come into contact in such a way that a red-blue bond is formed and a self-replicating strand of length two is created. Figure 8 shows an example.

Figure 8. Step 164,450. A strand of length two has spontaneously formed from a soup of 88 free codons. Very shortly after forming, it replicated. The elapsed real-time from step 0 to step 164,450 was about 15 minutes. This is less real-time per step than the previous experiment because there are fewer calculations when there are no bonds between the codons.

5 Interpretation of Experiments
The first experiment shows that a pattern containing arbitrary information can replicate itself. Note that all codon interactions in JohnnyVon are local; no global control system is needed. (This is also true of the various implementations of self-replicating cellular automata.)
It is apparent in Figure 7 that (approximately) half of the single strands are mirror images of the original seed strand (in Figure 1). More precisely, let \(X \) be an arbitrary sequence of 0s and 1s that we want to encode. Let \(r(X) \) be the string that results when every 0 in \(X \) is replaced with 1 and every 1 in \(X \) is replaced with 0. Let \(r(X) \) be the string that results when the order of the characters in \(X \) is reversed. When a strand with the pattern \(X \) replicates, the resulting new strand will have the pattern \(r(n(X)) \). Therefore, if we seed a soup of free codons with a pattern \(X \), then the final result will consist of about 50% strands with the pattern \(X \) and 50% with the pattern \(r(n(X)) \).

Penrose anticipated this problem [4]. He suggested it could be avoided by making the pattern symmetrical. Let \(c(X, Y) \) be the string that results when the string \(Y \) is concatenated to the end of string \(X \). Let \(g(X) \) be \(c(X, r(n(X))) \). Note that \(g(X) \) is equal to its negative mirror image, \(r(n(g(X))) \). That is, if \(g(X) \) replicates, the resulting string is exactly \(g(X) \) itself. The function \(g(X) \) enables us to encode any arbitrary string \(X \) in such a way that replication will not alter the pattern. 100% of the final strands will be copies of \(g(X) \).

The second experiment shows that self-replicating patterns can spontaneously arise. The strands in this case are of length two, but it is possible in principle for mutations to extend the length of the strands (although we have not observed this).

Strands of length two have an evolutionary advantage over longer strands, since they can replicate faster. On rare occasions, when running JohnnyVon with a seed of length eight (as in Section 4.1), a strand of length two has spontaneously appeared. The length-two strand quickly out-replicates the length-eight strand and soon predominates.

We have intentionally designed JohnnyVon so that its most likely behaviour is to faithfully replicate a given seed strand. However, we have allowed a small possibility of red-blue bonds forming without a seed pattern, which allows both spontaneous generation of life and mutation of existing strands. (The probability of mutation can be increased or decreased by adjusting the red-blue bonding angle above or below its current value of \(\pm \pi/256 \) radians.) Since there is selection (for rapid replication), JohnnyVon fully supports evolution: there is inheritance, mutation, and selection.

Cellular automata can also support self-replication [2], [5], [8], [10], evolution [6], and spontaneous generation of life from non-life [1]. The novelty in JohnnyVon is that these three features appear in a computer simulation that includes continuous space and virtual physics. We believe that this is an important step towards building physical machines with these features.

6 Limitations and Future Work

One area we intend to look at is the degree to which the internal codon states can be simplified while still exhibiting the basic features of stability and self-replication. We make no claim that we have found the simplest codon structure that will exhibit the intended behaviours.

JohnnyVon contains only genotypes (genetic code) with no phenotypes (bodies). The only evolutionary selection that JohnnyVon currently supports is selection for shorter strands, since they can replicate faster than longer strands. In order to support more interesting selection, we would like to introduce phenotypes. In natural life, DNA can be read in two different ways. During reproduction, DNA is copied verbatim, but during growth, DNA is read as instructions for building proteins. We would like to introduce this
same distinction into a future version of JohnnyVon. One approach would be to add new “protein” particles to complement the existing codon particles. Free protein particles would bond to a strand of codons, which would act as a template for assembling the proteins. Once a string of proteins has been assembled, it would separate from the codon strand and then it would fold into a shape, analogous to the way that real proteins fold. To achieve interesting evolution, the environment could be structured so that certain protein shapes have an evolutionary advantage, which somehow results in increased replication for the corresponding codon strands.

Another limitation of JohnnyVon is the simplistic virtual physics. Many of our simplifications were designed to make the computation tractable. For example, electrostatic attraction and repulsion in the real world have an infinite range, but all of the fields in JohnnyVon have quite limited ranges (relative to the size of the container). Our codons can only interact when their fields are in contact with one another, so it is not necessary to calculate the forces between every pair of codons. This significantly reduces the computation, especially when there are many free codons. The trajectory of a free codon is determined solely by brownian motion and viscosity.

However, it is likely possible to significantly increase the realism of JohnnyVon without sacrificing speed. This is another area for future work. It may be that the direction taken will depend on the application. The changes that would make JohnnyVon more realistic for a biologist, for example, may be different from the changes that would be appropriate for a nanotechnologist.

Finally, it may be worthwhile to develop a 3D version of JohnnyVon. The current 2.5D space might be insufficiently realistic for some applications.

7 Applications

JohnnyVon was designed with nanotechnology in mind. We hope that it may some day be possible to implement the codons in JohnnyVon (or some distant descendant of JohnnyVon) as nanomachines. We imagine that the two types of codons could be mass produced by some kind of macroscopic manufacturing process, and then sprinkled in to a vat of liquid. A seed strand could be dropped in the vat, and the nanomachines would quickly replicate the seed. This imaginary scenario might never become reality, but the success of the experiments in Section 4 lends some plausibility to this project.

JohnnyVon may also contribute to theoretical biology, by increasing our understanding of natural life. As Penrose mentioned, models of this kind may help us to understand the origins of life on Earth [4]. JohnnyVon was designed to allow life to arise from non-life (as we saw in Section 4.2). Of course, we have no idea whether this model is anything like the actual origin of life on Earth, but it seems possible.

Finally, we should not overlook the entertainment value of JohnnyVon. We believe it would make a great screen saver.

8 Conclusion

JohnnyVon includes the following features:

- automatata that move in a continuous 2.5D space
- self-replication of seed patterns
- spontaneous generation of life (self-replication) from non-life (free codons)
Johnny Von: Self-Replicating Automata in Continuous 2D Space

- evolution (inheritance, mutation, and selection)
- virtual physics (brownian motion, viscosity, attraction, repulsion, dampening)
- the ability to encode arbitrary bit strings in self-replicating patterns
- local interactions (no global control structures)

Johnny Von is the first computational simulation to combine all of these features.

Von Neumann sketched a path that begins with self-replicating cellular automata and ends with self-replicating physical machines. We agree with von Neumann that, at some point along this path, it is necessary to move away from discrete space models, towards continuous space models. Johnny Von is such a step.

References

[1] Chou, H.-H., and Reggia, J.A. (1997). Emergence of self-replicating structures in a cellular automata space. *Physica D*, 110, 252-276.

[2] Langton, C.G. (1984). Self-reproduction in cellular automata. *Physica D*, 10, 134-144.

[3] Lerena, P., and Courant, M. (1996). Bio-machines. In *Proceedings of Artificial Life V* (Poster), Nara, Japan.

[4] Penrose, L.S. (1959). Self-reproducing machines. *Scientific American*, 200 (6), 105-114.

[5] Reggia, J.A., Lohn, J.D., and Chou, H.-H. (1998). Self-replicating structures: Evolution, emergence and computation. *Artificial Life*, 4 (3), 283-302.

[6] Sayama, H. (1998). *Constructing Evolutionary Systems on a Simple Deterministic Cellular Automata Space*. Ph.D. Dissertation, Department of Information Science, Graduate School of Science, University of Tokyo.

[7] Sayama, H. (1998). Introduction of structural dissolution into Langton's self-reproducing loop. In C. Adami, R.K. Belew, H. Kitano, and C.E. Taylor, eds., *Artificial Life VI: Proceedings of the Sixth International Conference on Artificial Life*, 114-122. Los Angeles, California: MIT Press.

[8] Sipper, M. (1998). Fifty years of research on self-replication: An overview. *Artificial Life*, 4 (3), 237-257.

[9] Tempesti, G., Mange, D., and Stauffer, A. (1998). Self-replicating and self-repairing multicellular automata. *Artificial Life*, 4 (3), 259-282.
[10] von Neumann, J. (1966). *Theory of Self-Reproducing Automata*. Edited and completed by A.W. Burks. Urbana, IL: University of Illinois Press.

[11] Wolfram, S. (2002). *A New Kind of Science*. Champaign, IL: Wolfram Media.