Fighting the Bite during Pandemics: Florida Mosquito Control District Capabilities during the COVID-19 crisis

Imelda K Moise (moise@miami.edu)
University of Miami https://orcid.org/0000-0003-0222-780X

Lola R. Whittingham
University of Miami

Marah Clark
Florida Department of Agriculture and Consumer Services

Vincent Omachonu
University of Miami

Rui-De Xue
Anastasia Mosquito Control District

Research article

Keywords: Fight the bite, arbovirus, United States, survey, Culex, Zika, Aedes

DOI: https://doi.org/10.21203/rs.3.rs-48111/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

The national wide lockdown order imposed in early April 2020 due to the COVID-19 outbreak has complicated mosquito control activities across the United States (US), and Florida is no exception. Mosquito control districts and public health programs are the first line of defense against mosquito-borne pathogens in the state of Florida. The purpose of study is to understand how the COVID-19 outbreak has impact the capabilities of mosquito programs to implement key mosquito measures to mitigate emergence and/or re-emergence of arthropod-borne arboviral diseases.

Methods

In a self-administered online survey, we examined capabilities of all Florida mosquito control programs during the COVID-19 outbreak (both state-approved mosquito districts (N = 63) and public health programs (N = 27). Descriptive statistics were used to summarize information about characteristics of responding mosquito control districts and programs, implemented mosquito control and surveillance activities. We used Bivariate analysis to compare the characteristics of responding mosquito control districts and programs and the self-reported mosquito measures.

Results

Of the recruited programs, 77 completed the survey (85.6% response rate; 77/90). Of the responding programs, 57.5% (n = 42) were Board of County Commissioners (BOCC) programs, 21.9% (n = 16) were independent tax districts, 13.7% (n = 10) were municipal programs, and only 6.8% (n = 5) were either health or emergency departments. Except for arbovirus surveillance, most programs either fully or partially performed larval (61.8%) and adult (78.9%) surveillance; and for *Aedes aegypti (71.9%, n = 46), Aedes albopictus (85.9%, n = 55), Culex quinquefasciatus (88.2%, n = 60), and Culex nigripalpus (90.5%, n = 57).

Conclusions

Findings underscore the importance of ongoing mosquito control activities and suggests that Florida mosquito control programs are vigilant and have significant capability to handle potential mosquito-borne disease threats, but arbovirus surveillance systems – laboratory testing of mosquito pools and testing of human and nonhuman specimens for arboviruses are needed during pandemics as well.

Background
There is no questions that mosquito-borne diseases pose a special challenge to public health practitioners and mosquito control districts [1–3], owing to their complex nature (biological transmission complexity) [4], and potential to transmit infectious agents that can lead to mosquito-borne diseases, such as malaria, dengue fever, chikungunya, Zika fever, and West Nile fever [5]. In Florida, *Aedes* and *Culex* continue to be major vector genera [6–8], with the State of Florida having been ground-zero for local transmission of Zika and Dengue viruses [9], and is in close proximity to Latin American where viruses such as Zika and dengue viruses are endemic [2, 10]. Surveillance is a key aspect of effective mosquito control and prevention [2, 11, 12], and is particularly important in economically depressed subtropical areas of the United States (US) that institutionally struggle to sustain mosquito-control efforts [13].

Now the national wide lockdown order imposed in early April 2020 due to the COVID-19 outbreak has complicated mosquito control activities [14], and questioned how we should manage mosquito control programs in the wake of pandemics. The Centers for Disease Control and Prevention (CDC) underscore the importance of initiating or continuing the delivery of mosquito control and public health organization services during public health emergencies and responses to natural disasters” [15] to reduce the risk of mosquito-borne disease. Yet, the National Association of County and City Health Officials (NACCHO) reported COVID-19 impacts on mosquito programs that operate under the auspices of local health departments [21], despite the importance of mosquito control as a basic public health function.

This, coupled with major funding and capacity gaps, may put pressure on some already struggling programs, and may exacerbate timely and effective response to (re)emergent arboviral diseases in the future [16]. Therefore, to understand the challenges inherent in implementing mosquito activities during a pandemic, we assessed the capabilities of Florida state-approved mosquito control districts and open programs to carry out mosquito control activities at a time when Florida was still under heightened awareness of and lockdown over the COVID-19 crisis. Our findings will shed light on Florida mosquito control districts and program, the first line of defense against mosquitoes-borne pathogens in the state’s capabilities as well as challenges in carrying out mosquito control activities during a pandemic.

Method

Study design

In June 2020, a cross-sectional survey was conducted using an anonymous electronic self-administered survey distributed to all Florida state-approved mosquito districts (n=63) and open programs (n=27) for a total of 90 programs. A team from the University of Miami conducted the survey, at a time when the state was in a COVID-19 “full phase 1 re-opening plan”[17], and on a 2-3 month postponement of the arbovirus surveillance program as the state virus laboratory in Tampa was redirected for COVID-19 response.

Survey Instrument

The survey instrument was refined from previous similar studies to address the study objectives [16, 18-20] (Supplemental File 1). The survey was pilot tested with four mosquito districts and distributed using
the online survey software Qualtrics. We obtained a list of agency contact information from the Florida Department of Agriculture and Consumer Services (FDACS).

The questionnaire consisted of 45 questions divided into six sections: mosquito district characteristics (8 questions); staffing levels (4 questions); mosquito program capabilities and challenges (19 questions); program budgets (4 questions); COVID-19 communication (1 question); participant demographics and partnership needs (9 questions). Almost all but 10 questions consisted of closed-ended questions, which allowed respondents the opportunity to provide further detail if the ‘other, please specify’ option was selected from the multiple choices. The closed-ended questions were multiple choice, categorical, dichotomous and Likert-type questions with five-point rating scales.

Study population

We recruited all Florida mosquito control districts (n=63) and mosquito programs (n=27) via email. Representatives of mosquito control districts and programs were contacted directly and were asked to complete the survey by July 6. We sent follow-up reminders weekly during the first two weeks in June, and every three days during the third and fourth week. Follow-ups constituted of both email and telephone calls. The survey closed on July 6, 2020. Program respondent anonymity was maintained and the researchers blinded by using the web-based survey tool (Qualtrics) for collection and collation of data.

Data analysis

Survey responses were analyzed using IBM SPSS Statistics, version 26.0 [21]. We used descriptive statistics to summarize information about characteristics of responding mosquito control districts and programs, implemented mosquito control and surveillance activities. Bivariate analysis was used to compare the characteristics of responding mosquito control districts and programs and the self-reported mosquito measures performed. Characteristics including respondents’ mosquito program capabilities such as arbovirus, population, environmental surveillance and routine control of domestic mosquitoes including challenges were analyzed using the χ² test. Ordinal data collapsed into groups and analyzed as dichotomous groups, a conservative approach when using non-parametric tests.

CC, the nature of self-reported changes to practice and characteristics of the respondents.

Results

Mosquito district/program characteristics

Of the recruited programs, 77 completed the survey (85.6% response rate; 77/90). Five state-approved programs did not respond to the survey: one was due to a death of the mosquito director; one had the person responsible for mosquito activities reassigned to COVID-19 response, one did not have a person responsible for mosquito activities at the time of the survey and two did not respond. The excluded
totaled four programs, including two that indicated not having a mosquito program (Baker and Lafayette Counties), and two with missing information on relevant measures. The final sample was 73 programs (58 state-approved mosquito control districts and 15 open programs (Fig. 1).

Of the responding programs, 57.5% (n = 42) were Board of County Commissioners (BOCC) programs, 21.9% (n = 16) were independent tax districts, 13.7% (n = 10) were municipal programs, and only 6.8% (n = 5) were either health or emergency departments (Table 1).
Table 1
Characteristics of responding mosquito control districts during the COVID-19 outbreak, Florida, USA, June 2020

Organizational Structure	n	%	95% CI
Board of County Commissioners (BOCC)	42	57.5	(46.6–69.9)
Municipal	10	13.7	(6.8–21.9)
Independent Tax District	16	21.9	(12.3–31.5)
Health Department or other department	5	6.8	(1.4–13.7)

Program Type			
State-approved program	58	79.5	(69.9–89.0)
Open programs	15	20.5	(11.0–30.1)

Did you operate during the outbreak?			
Yes, fully open and operating	44	60.3	(49.3–72.6)
Partially operating with limited activities	27	37.0	(24.7–47.9)
No, closed operation until further notice	2	2.7	(0.0–6.8)

To what extent has COVID-19 affected your mosquito activities?			
High	4	7.5	(1.9–15.1)
Medium	12	22.6	(11.3–34.0)
Low	37	69.8	(56.6–81.1)

Did you carry out non-chemical control activities?			
Yes	37	54.4	(42.6–67.6)
No	29	42.6	(30.9–55.9)
Not sure	2	2.9	(0.0–7.4)

Did you conduct pesticide resistance testing?			
Yes, full capacity	11	16.2	(7.4–25.0)
No, we did not	51	75.0	(64.7–85.3)
Yes, limited capacity	4	5.9	(1.5–11.8)
Do not have a program or not applicable	2	2.9	(0.0–7.4)

| Will the outbreak affect your FY2020-2021 budget? | |
|---|---|---|
| Note: Excluded are four programs with missing data and those that do not have mosquito programs (e.g., Barker and Lafferty County). Health department includes emergency management programs. |
Nearly all responding programs (97.3%, n = 71) indicated performing mosquito control activities either fully or partially during the COVID-19 outbreak, and only 7.5% (n = 4) reported being highly impacted by COVID-19. Three quarters of respondents (75.0%, n = 51) did not perform arboviral surveillance (send mosquito pools for testing). It seems possible that these results are due to the redirection of the state health laboratory in Tampa to COVID-19 response, and similarities of testing supplies needed for COVID-19 and mosquito pool testing.

Mosquito program capabilities for arbovirus, population, environmental surveillance

When asked whether the COVID-19 outbreak will affect their fiscal year (FY) 2020/2021 budgets, 82.9% (n = 58) indicated no or that they were not sure. There is also large variation in the levels of main vector surveillance and control activities performed (Table 2). For example, while most programs did not perform arbovirus surveillance using flocks of sentinel chickens (80.8%, n = 59) or mosquito pooling (78.1%, n = 57), the majority maintained larval and adult surveillance during the COVID-19 outbreak (61.8%, n = 68 vs 78.9%, n = 56). Except for health departments, more than half of the responding programs (53.7%, n = 36) used tidal surveillance $p < 0.041$, while 35 (49.3%) of programs monitored temperature, wind and daylight, with 19 (29.2%) using rain gauges for surveillance, $p < 0.041$. Prior studies have noted the importance of climatic factors such as temperature, humidity, and rain in influencing mosquito abundance and transmission [13, 22, 23].
Table 2
Arbovirus surveillance activities conducted during the COVID-19 outbreak, Florida, USA, June 2020

Did you conduct arbovirus surveillance during COVID-19?	Yes, full capacity n (%)	No, we did not (%)	Yes, limited capacity n (%)	\(\chi^2 \)	P-value
Using flocks of sentinel chickens					
Board of County Commissioners (BOCC)	3 (7.1)	34 (81.0)	5 (11.9)	5.999	0.423
Independent Tax District	1 (6.7)	14 (93.3)	0 (0.0)		
Municipal	0 (0.0)	8 (100.0)	0 (0.0)		
Health Department or other department	1 (25.0)	3 (75.0)	0 (0.0)		
Using mosquito pooling					
BOCC	7 (17.1)	32 (78.0)	2 (4.9)	4.171	0.654
Independent Tax District	1 (7.1)	12 (85.7)	1 (7.1)		
Municipal	0 (0.0)	9 (100.0)	0 (0.0)		
Health Department or other department	0 (0.0)	4 (100.0)	0 (0.0)		
Larval surveillance					
BOCC	20 (47.6)	16 (38.1)	6 (14.3)	6.515	0.368
Independent Tax District	9 (69.2)	2 (15.4)	2 (15.4)		
Municipal	2 (25.0)	5 (62.5)	1 (12.5)		
Health Department or other department	2 (40.0)	3 (60.0)	0 (0.0)		
Adult surveillance					
BOCC	27 (64.3)	6 (14.3)	9 (21.4)	11.096	0.085
Independent Tax District	9 (60.0)	2 (13.3)	4 (26.7)		
Municipal	5 (55.6)	4 (44.4)	0 (0.0)		
Health Department or other department	2 (40.0)	3 (60.0)	0 (0.0)		
With rain gauges					
BOCC	14 (35.0)	23 (57.5)	3 (7.5)	13.140	0.041
Independent Tax District	11 (73.3)	1 (6.7)	3 (20.0)		
Did you conduct arbovirus surveillance during COVID-19?	Yes, full capacity	No, we did not (%)	Yes, limited capacity	χ²	P-value
--	---------------------	--------------------	-----------------------	----	---------
	n (%)	n (%)			
Municipal	3 (37.5)	4 (50.0)	1 (12.5)		
Health Department or other department	1 (25.0)	3 (75.0)	0 (0.0)		
Tidal surveillance					
BOCC	8 (20.5)	30 (76.9)	1 (2.6)	13.376	0.037
Independent Tax District	9 (64.3)	5 (35.7)	0 (0.0)		
Municipal	1 (12.5)	7 (87.5)	0 (0.0)		
Health Department or other department	0 (0.0)	4 (100.0)	0 (0.0)		
Temperature, wind and daylight was monitored					
BOCC	18 (42.9)	18 (42.9)	6 (14.3)	7.147	0.307
Independent Tax District	6 (40.0)	7 (46.7)	2 (13.3)		
Municipal	3 (30.0)	7 (70.0)	0 (0.0)		
Health Department or other department	0 (0.0)	4 (100.0)	0 (0.0)		

Mosquito program capabilities for routine control of domestic mosquitoes

Despite the wide variation in performed mosquito activities, both state-approved and open programs either fully or with limited capacity performed control activities for *Aedes aegypti* (71.9%, n = 46), *Aedes albopictus* (85.9%, n = 55), *Culex quinquefasciatus* (88.2%, n = 60), and *Culex nigripalpus* (90.5%, n = 57). In some areas, *Aedes aegypti* has not been identified hence no control measures for this species were performed (eight BOCC programs, on independent tax district and one health or other department program). Likewise, one independent tax district reported the same for *Aedes albopictus* and *Culex nigripalpus*. Except for rain gauge and tidal surveillance, a chi-square test of independence showed no statistically significant difference in the proportion of programs who performed mosquito measures by organizational structure (Table 3).
Table 3
Arbovirus control activities conducted during COVID-19 outbreak, Florida, USA, June 2020

	Yes, full capacity n (%)	No, we did not n (%)	Yes, limited capacity n (%)	Species not identified in the area n (%)	χ^2	P-value
Aedes aegypti						
BOCC	20 (51.3)	3 (7.7)	8 (20.5)	8 (20.5)	11.613	0.236
Independent Tax District	9 (60.0)	2 (13.3)	3 (20.0)	1 (6.7)		
Municipal	4 (57.1)	3 (42.9)	0 (0.0)	0 (0.0)		
Health Department	2 (66.7)	0 (0.0)	0 (0.0)	1 (33.3)		
Aedes albopictus						
BOCC	23 (60.5)	4 (10.5)	11 (28.9)	0 (0.0)	5.638	0.776
Independent Tax District	8 (53.3)	2 (13.3)	4 (26.7)	1 (6.7)		
Municipal	5 (62.5)	2 (25.0)	1 (12.5)	0 (0.0)		
Health Department	2 (66.7)	0 (0.0)	1 (33.3)	0 (0.0)		
Culex quinquefasciatus						
BOCC	25 (65.8)	3 (7.9)	10 (26.3)	~	6.222	0.399
Independent Tax District	12 (80.0)	0 (0.0)	3 (20.0)	~		
Municipal	4 (57.1)	3 (7.9)	10 (26.3)	~		
Health Department	2 (66.7)	0 (0.0)	1 (33.3)	~		
Culex nigripalpus						
BOCC	25 (65.8)	3 (7.9)	10 (26.3)	0 (0.0)	10.034	0.348
Independent Tax District	12 (80.0)	0 (0.0)	2 (13.3)	1 (6.7)		
Municipal	4 (57.1)	2 (28.6)	1 (14.3)	0 (0.0)		
Health Department	2 (66.7)	0 (0.0)	1 (33.3)	0 (0.0)		
Discussion

Although the risk of arboviral diseases in Florida is high, mosquito control programs in the state are vigilant and have significant capability to control potential mosquito-borne disease threats as evidenced by their surveillance and control efforts that were carried out during the COVID-19 outbreak. We observed a relatively impressive first line of defense against the effects of mosquito-borne disease arboviruses – mosquito control, so much that there is some form of state-approved mosquito control district and/or program within each of Florida’s counties whose mandate is to fight pest mosquitoes and species of mosquitoes that have potential to transmit mosquito-borne pathogens [24, 25].

While we observed marked differences in the level of performed mosquito control activities, most programs (97.3%, 71 of 73), (including state-approved mosquito control districts and open mosquito programs) performed mosquito control activities either fully or partially particularly larval and adult surveillance during a time when the world is facing great challenges due to the COVID-19 outbreak. The majority of programs also engaged in routine control of domestic mosquitoes such as *Aedes* species of mosquitoes that can cause *Aedes*-borne arboviruses like dengue virus (DENV), chikungunya virus (CHIKV), yellow fever virus (YFV), and Zika virus (ZIKV) including *Culex* species of mosquitoes that can cause *Culex*-arboviruses like SLEV and WNV. In addition, mosquito surveillance is enhanced by the existence of ongoing meteorological, climatological, and water table monitoring [29]. This demonstrates that although Florida mosquito programs have a long history and experience with the *Culex*-arbovirus systems, these programs have the capability to provide mosquito control against *Culex* species as well, and as evidenced by the quick mitigation of the 2016 ZIKV outbreak [26].

Florida’s mosquito control capabilities maybe attributed to the very nature of the ongoing mosquito control programs with permanent personnel, including several research projects that have been implemented over the years on mosquitoes and mosquito-borne diseases, which combined may have enhanced mosquito control capabilities as it relates to effective, efficient, and environmentally good mosquito control [27]. However, the lack of arbovirus surveillance for serology and pool testing observed during the COVID-19 crisis limits the generation of evidence about when to anticipate a surge in arbovirus infection and in programs’ ability to detect or monitor arbovirus presence. This finding was also reported by Hadler et al. in their “assessment of arbovirus surveillance 13 years after the introduction of WNV in the US [28]. It is critically important to improve arbovirus surveillance, build the captivity of mosquito control districts and programs laboratories capacity to allow programs to investigate the circulating strains of arboviruses and to establish viral genomic databases as a reference for current and future research.

Conclusion

Our findings suggest that despite the imposed COVID-19 lockdown, the vast majority of responding programs in Florida did not cease mosquito control operations. Those that remained open were mostly BOCC, municipal and independent tax district programs. However, the impact of COVID-19 testing was
evident on arboviral surveillance (serology and pool testing) due to the redirected state laboratory in Tampa. This study highlights the importance of ongoing mosquito control activities and suggests that Florida mosquito control programs are vigilant and have significant capability to handle potential mosquito-borne disease threats as evidenced by their continued surveillance and control efforts during the COVID-19 outbreak, and mitigation of the 2016 Zika disease outbreak. Findings have implications for local and state mosquito programs including national associations as they work towards mitigating the impacts that COVID-19 has had particularly on health department programs.

Abbreviations

FL, Florida; WNV, West Nile virus; BOCC, Board of County Commissioners; FDACS, Florida Department of Agriculture and Consumer Services; IRB, Institutional Review Board; CDC, Centers for Diseases Control and Prevention.

Declarations

Ethics approval and consent to participate

The Institutional Review Board (IRB) at the University of Miami determined that this study did not require IRB review since it posed the lowest amount of risk to potential subjects, was exempt from IRB approval and informed consent was not obtained from study participants.

Availability of data and materials

The datasets supporting the conclusions of this article are available upon reasonable request to the first author.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was supported in part by the CDC (https://www.cdc.gov/) Grant 1U01CK000510-03): Southeastern Regional Center of Excellence in Vector-Borne Diseases: The Gateway Program. The funder
(CDC) had no role in the design of the study, the collection, analysis, and interpretation of data, or in writing the manuscript.

Authors’ contributions

MIK was responsible for study design, developed the research questions and objectives for this study and performed analysis as well as wrote the manuscript. WRL, RX and CM led the data cleaning and data exploratory. OV was responsible for reviewing the manuscript for important intellectual content. All authors read and approved the final manuscript.

Acknowledgements

We thank participating local mosquito control districts and open programs, and the 4 directors who reviewed and pilot tested the survey.

References

[1] M. Ajelli et al., "Host Outdoor Exposure Variability Affects the Transmission and Spread of Zika Virus: Insights for Epidemic Control," *PLOS Neglected Tropical Diseases*, vol. 11, no. 9, 2017, doi: e000585.

[2] I. Moise, L. Zulu, D. Fuller, and J. Beier, "Persistent Barriers to Implementing Efficacious Mosquito Control Activities in the Continental United States: Insights from Vector Control Experts," in *Current Topics in Neglected Tropical Diseases*, 2018.

[3] G. Benelli, "Research in mosquito control: current challenges for a brighter future," (in eng), *Parasitol Res*, vol. 114, no. 8, pp. 2801-5, Aug 2015, doi: 10.1007/s00436-015-4586-9.

[4] H. Zeller, L. Marrama, B. Sudre, W. V. Bortel, and E. Warns-Petit, "Mosquito-borne disease surveillance by the European Centre for Disease Prevention and Control," *Clinical Microbiology and Infection*, vol. 19, no. 8, pp. 693-698, 2013/08/01/ 2013, doi: https://doi.org/10.1111/1469-0691.12230.

[5] A. G. Tokash-Peters, I. W. Tokash, A. J. Campos, and D. C. Woodhams, "Developing Effective Mosquito Control Strategies by Utilizing Vector Mosquito Life Histories and Ecology," *Case Studies in the Environment*, vol. 3, no. 1, pp. 1-12, 2019, doi: 10.1525/cse.2018.001743.

[6] J. F. Day and G. A. Curtis, "Blood feeding and oviposition by Culex nigripalpus (Diptera: Culicidae) before, during, and after a widespread St. Louis encephalitis virus epidemic in Florida," (in eng), *J Med Entomol*, vol. 36, no. 2, pp. 176-81, Mar 1999, doi: 10.1093/jmedent/36.2.176.

[7] J. F. Day and G. A. Curtis, "When It Rains, They Soar—and That Makes Culex Nigripalpus a Dangerous Mosquito," *American Entomologist*, vol. 40, no. 3, pp. 162-167, 1994, doi: 10.1093/ae/40.3.162.
[8] P. T. Leisnham, S. L. LaDeau, and S. A. Juliano, "Spatial and temporal habitat segregation of mosquitoes in urban Florida," (in eng), *PLoS One*, vol. 9, no. 3, p. e91655, 2014, doi: 10.1371/journal.pone.0091655.

[9] C. Philip, C. G. Novick, and L. F. Novick, "Local Transmission of Zika Virus in Miami-Dade County: The Florida Department of Health Rises to the Challenge," *Journal of Public Health Management and Practice*, vol. 25, no. 3, 2019.

[10] R. K. Borchering *et al.*, "Impacts of Zika emergence in Latin America on endemic dengue transmission," *Nature Communications*, vol. 10, no. 1, p. 5730, 2019/12/16 2019, doi: 10.1038/s41467-019-13628-x.

[11] B. F. Eldridge, "Strategies for surveillance, prevention, and control of arbovirus diseases in western North America," (in eng), *Am J Trop Med Hyg*, vol. 37, no. 3 Suppl, pp. 77S-86S, Nov 1987, doi: 10.4269/ajtmh.1987.37.77s.

[12] J. N. Fernandes, I. K. Moise, G. L. Maranto, and J. C. Beier, "Revamping Mosquito-borne Disease Control to Tackle Future Threats," *Trends in Parasitology*, 2018, doi: 10.1016/j.pt.2018.01.005.

[13] I. K. Moise, C. Riegel, and E. J. Muturi, "Environmental and social-demographic predictors of the southern house mosquito Culex quinquefasciatus in New Orleans, Louisiana," *Parasites & Vectors*, vol. 11, no. 1, p. 249, 2018/04/17 2018, doi: 10.1186/s13071-018-2833-5.

[14] V. Marshall and J. Winchester. "Fighting mosquitoes during a pandemic." https://www.myendnoteweb.com/EndNoteWeb.html?func=new& (accessed July 10, 2020).

[15] C. R. Connelly *et al.*, "Continuation of Mosquito Surveillance and Control During Public Health Emergencies and Natural Disasters," *MMWR Morb Mortal Wkly Rep*, vol. 69, pp. 938-940, 2020.

[16] I. K. Moise, R.-D. Xue, L. C. Zulu, and J. C. Beier, "A survey of program capacity and skills of Florida mosquito control districts to conduct arbovirus surveillance and control," *Journal of American Mosquito Control Association*, In press.

[17] S. M. Colombo, K. Doud, R. Forrest, N. Johnson, and C. L. Little. "Reopening Florida: The Step-by-Step Plan for Florida’s Recovery." https://www.jdsupra.com/legalnews/reopening-florida-the-step-by-step-plan-72214/ (accessed July 10, 2020).

[18] I. K. Moise, J. Kangmennaang, T. C. S. G. Hutchings, I. M. Sheskin, and D. O. Fuller, "Perceptions of Zika Virus Risk during 2016 Outbreak, Miami-Dade County, Florida, USA," (in eng), *Emerg Infect Dis*, vol. 24, no. 7, pp. 1379-1381, 07 2018, doi: 10.3201/eid2407.171650.

[19] S. S. C. Rund, I. K. Moise, J. C. Beier, and M. E. Martinez, "Rescuing Troves of Hidden Ecological Data to Tackle Emerging Mosquito-Borne Diseases," *Journal of the American Mosquito Control Association*, vol. 35, no. 1, pp. 75-83, 2019/03/01 2019, doi: 10.2987/18-6781.1.
[20] (2017). Mosquito Control Capabilities in the US. [Online] Available: https://www.naccho.org/blog/articles/naccho-report-shifting-our-approach-to-mosquito-control-capabilities-in-the-u-s

[21] IBM Corp. IBM SPSS Statistics for Windows, Version 22.0.

[22] I. K. Moise, S. Sen Roy, D. Nkengurutse, and J. Ndikubagenzi, "Seasonal and Geographic Variation of Pediatric Malaria in Burundi: 2011 to 2012," (in eng), Int J Environ Res Public Health, vol. 13, no. 4, p. 425, Apr 2016, doi: 10.3390/ijerph13040425.

[23] D. A. da Cruz Ferreira et al., "Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika," (in eng), Parasit Vectors, vol. 10, no. 1, p. 78, Feb 13 2017, doi: 10.1186/s13071-017-2025-8.

[24] H. L.J, "Influence and impact of mosquito-borne diseases on the history of Florida, USA," Life Excit. Biol, vol. 1, pp. 53–58, 2013, doi: doi: 10.9784/LEB1(1)Hribar.04.

[25] G. M. Patterson, The mosquito wars : a history of mosquito control in Florida. Gainesville: University Press of Florida (in English), 2004.

[26] J. C. McAllister et al., "Mosquito Control Activities during Local Transmission of Zika Virus, Miami-Dade County, Florida, USA, 2016," (in eng), Emerg Infect Dis, vol. 26, no. 5, pp. 881-890, May 2020, doi: 10.3201/eid2605.191606.

[27] W. J. Tabachnick, "Research Contributing to Improvements in Controlling Florida's Mosquitoes and Mosquito-borne Diseases," (in eng), Insects, vol. 7, no. 4, p. 50, 2016, doi: 10.3390/insects7040050.

[28] J. L. Hadler et al., "Assessment of Arbovirus Surveillance 13 Years after Introduction of West Nile Virus, United States," (in eng), Emerg Infect Dis, vol. 21, no. 7, pp. 1159-66, Jul 2015, doi: 10.3201/eid2107.140858.

[29] J. K. Davis, G. Vincent, M. B. Hildreth, L. Kightlinger, C. Carlson, and M. C. Wimberly, "Integrating Environmental Monitoring and Mosquito Surveillance to Predict Vector-borne Disease: Prospective Forecasts of a West Nile Virus Outbreak," (in eng), PLoS currents, vol. 9, p. ecURRENTS.OUTBREAKS.90E80717C4E67E1A830F17FEEAAF85DE, 2017, doi: 10.1371/currents.outbreaks.90e80717c4e67e1a830f17f6eaa85de.

Figures
Figure 1

Florida Mosquito Control Districts that responded to the survey conducted in June 2020 by program type

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SuplementalFile1.docx