YouLighter: An Unsupervised Methodology to Unveil YouTube CDN Changes

Danilo Giordano
DET, Politecnico di Torino, Italy
danilo.giordano@polito.it

Stefano Traverso
DET, Politecnico di Torino, Italy
stefano.traverso@polito.it

Luigi Grimaudo
DAUIN, Politecnico di Torino, Italy
luigi.grimaudo@polito.it

Marco Mellia
DET, Politecnico di Torino, Italy
marco.mellia@polito.it

Elena Baralis
DAUIN, Politecnico di Torino, Italy
elena.baralis@polito.it

Alok Tongaonkar
Symantec, USA
alok_tongaonkar@symantec.com

Sabyasachi Saha
Symantec, USA
sabyasachi_saha@symantec.com

ABSTRACT

YouTube relies on a massively distributed Content Delivery Network (CDN) to stream the billions of videos in its catalogue. Unfortunately, very little information about the design of such CDN is available. This, combined with the pervasiveness of YouTube, poses a big challenge for Internet Service Providers (ISPs), which are compelled to optimize end-users’ Quality of Experience (QoE) while having no control on the CDN decisions.

This paper presents YouLighter, an unsupervised technique to identify changes in the YouTube CDN. YouLighter leverages only passive measurements to cluster co-located identical caches into edge-nodes. This automatically unveils the structure of YouTube’s CDN. Further, we propose a new metric, called Constellation Distance, that compares the clustering obtained from two different time snapshots, to pinpoint sudden changes. While several approaches allow comparison between the clustering results from the same dataset, no technique allows to measure the similarity of clusters from different datasets. Hence, we develop a novel methodology, based on the Constellation Distance, to solve this problem.

By running YouLighter over 10-month long traces obtained from two ISPs in different countries, we pinpoint both sudden changes in edge-node allocation, and small alterations to the cache allocation policies which actually impair the QoE that the end-users perceive.

1. INTRODUCTION

YouTube is one of the most popular and demanding Internet Video services. It accounts for 1 billion users distributed world-wide, who watch 6 billion hours of videos per month.1 Due to its popularity and the nature of the content that it distributes, it is very challenging for both Google to maintain the YouTube infrastructure, and for Internet Service Providers (ISPs) to manage the underlying network. They both have to optimize the video delivery to improve customers’ Quality of Experience (QoE).

YouTube leverages a massive, globally distributed Content Delivery Network (CDN), the Google CDN [1], to handle such a demanding load. Indeed, it consists of hundreds of edge-nodes scattered in the Internet. Each edge-node hosts hundreds of video servers, or caches, which can each potentially serve any video a user may request [2]. Once a user starts a video playback, the CDN load balancing algorithm directs the request to one of the caches. There is no known way to determine in advance which cache, or which edge-node will be used. And sadly, ISPs have no way to influence this choice [3, 4].

YouTube CDN is in continuous evolution, and its proprietary and never disclosed design makes it one of the most challenging CDNs to monitor and measure. Unsurprisingly, this spurred a lot of interest in the research community which investigated and disclosed some of the design secrets behind YouTube infrastructure – see Sec. 2 for details.

While understanding YouTube CDN internals is interesting, it is even more challenging to design a system that monitors and automatically identifies changes in the CDN that could ultimately affect the QoE that the users perceive. Changes may involve modification in the infrastructure, e.g., the activation of a new edge-node, or in the load balancing algorithm decision, e.g., a sudden switch of caches to serve requests.

1https://www.youtube.com/yt/press/statistics.html
In this paper, we present YouLighter, a novel methodology to automatically monitor and pinpoint changes in the YouTube CDN. YouLighter relies on an unsupervised learning approach that, as such, does not require any knowledge of the YouTube infrastructure. Instead, it only assumes that the ISP has deployed passive probes, which expose TCP flow level logs summarizing video requests from users. Considering a given observation window of, say one day, YouLighter aggregates these flow logs to constitute a snapshot of the traffic exchanged with YouTube servers. Based on DBSCAN [5] clustering, which is a well-established unsupervised machine learning algorithm, YouLighter is able to automatically group thousands of caches into less than 10 edge-nodes using simple features that characterize the network distance of caches from the vantage point.

YouLighter runs the clustering algorithm as soon as a new snapshot is available. The challenge then is to compare the two results obtained considering two consecutive snapshots, i.e., compare two different datasets with the ultimate goal of highlighting changes in the CDN. Unfortunately, no standard methodology is available to compare clusters obtained from different datasets. Hence, we propose a generic framework that solves this problem. We transform each snapshot into a constellation, and we compare two constellations using the notion of Constellation Distance. The bigger the distance between two snapshots, the more different the sets of caches YouTube uses to serve ISP customers during the two corresponding periods of time. YouLighter thus highlights changes in the edge-nodes used by YouTube to serve ISPs’ customers. Moreover, YouLighter can also pinpoint deviations from the typical behavior of the YouTube edge-nodes, e.g., due to congestion arising in the network which makes the same edge-nodes look different. Thus, YouLighter has the potential to unveil sudden changes caused by the YouTube CDN infrastructure and unveil possible QoE issues for ISP customers.

We validate our methodology over different datasets we collect from the different vantage points that we have deployed in two ISPs in two different countries for 10 months. First, we demonstrate that the clustering algorithm YouLighter adopts is effective at identifying and grouping YouTube caches belonging to different edge-nodes when considering a snapshot. Second, and more importantly, we run YouLighter over different collected snapshots considering the longitudinal dataset. We pinpoint several examples of sudden and previously undiscovered changes in the YouTube CDN policies. For some of them, we drill down showing the impact on the QoE of ISP customers, revealing the sudden drop of average video download throughput to less than 250 kb/s which hampers even the possibility of watching a video.

We believe indeed that YouLighter may serve as a promising tool for ISPs, network administrators, developers, and researchers to monitor the YouTube CDN and the traffic it generates. Moreover, thanks to its design, YouLighter allows to quickly pinpoint the edge-nodes involved in the changes, thus accelerating the troubleshooting procedures. For instance, ISPs may rely on YouLighter to quickly react when they observe changes in YouTube CDN which may impair the QoE of their customers, or to design traffic engineering algorithms to automatically adapt the network routing to the changes YouLighter points out.

While we engineer YouLighter to target YouTube CDN monitoring, we believe that the Constellation Distance notion we introduce in this paper constitutes a more general framework that has the potential to open the usage of unsupervised algorithms for anomaly detection problems in general.

The remainder of this paper is structured as follows: Sec. 2 discusses the related work. Sec. 3 describes the details of the datasets we use to validate YouLighter, and shows the dynamicity of YouTube cache selection policies. Sec. 4 presents our methodology and introduces the Constellation Distance. Sec. 5 presents our results: First, we evaluate the sensitivity of YouLighter’s parameters, and, second, we show how effective YouLighter is at pinpointing changes in YouTube CDN employing our traces. Finally, Sec. 7 concludes the paper.

2. RELATED WORK

YouTube had been the subject of study in many papers from different perspectives: from users’ behavior [6] to the social network [7], from video popularity dynamics [8] to protocols aspects [9, 10].

Considering the YouTube delivery infrastructure, a large body of work verified its evolution over time [1, 2, 3, 4, 11, 12]. They show a highly dynamic system which keeps changing over time due to continuous upgrades in the infrastructure [1, 2] or due to the dynamicity of the cache selection policies [3, 4, 11, 12]. Some of the findings are already outdated. For instance, the load-balancing policy based on HTTP redirections which is described in [3, 12] is no longer in place, and YouTube dismissed the naming scheme described in [2] at the end of 2011. In this work, we do not aim to offer an updated view of YouTube. We rather aim at offering a methodology that allows to automatically identify changes in both the infrastructure, e.g., the appearance of new edge-nodes, and in the day to day management of the infrastructure, e.g., a change in the load-balancing algorithm that may affect millions of customers.

In some sense, our contribution is in line with the body of works focusing on anomaly detection, for which [13, 14] offer good surveys. Most of the works in this area target anomalies in a security context, e.g., the design of intrusion detection systems. Most of them fall in the “supervised” category, i.e., given a baseline is built, the proposed methodologies highlight deviations from it. To the best of our knowledge, only [15] targets large scale anomaly detection in operational networks. However, it presents a supervised system, which relies on data from passive probes, topology information and routing tables to feed a classic forecasting system, which finally compares its predictions to the actual measurements to pinpoint deviations. YouLighter, on the other hand does not assume any knowledge of a baseline, and leverages unsupervised algorithms to automatically unveil changes. We specifically design it to target the YouTube CDN, for which the ground truth is a moving target that is very difficult to know.

The application of unsupervised learning techniques to get insights about the network traffic is not new. [16] is one of the first works in the context of traffic classification, while
[17, 18] compare the accuracy of different and standard unsupervised algorithms. [19] proposes a flow-based anomaly detection algorithm based on k-means, while [20] uses DBSCAN to identify anomalous clusters. In all the cases, clustering is used to study the same given dataset. To the best of our knowledge, no approaches have been proposed to identify anomalies by comparing the results of clustering applied to different data sources (e.g., different datasets, different time snapshots, etc.). Only [21] aims at measuring similarity between sets of overlapping clusters from complex networks, in which groups of nodes form tightly connected units that are linked to each other. Since points are not embedded in a metric space, they define ad-hoc distances. *YouLighter* operates in a geometric space where we can exploit the concepts of density and centroid of a cluster to simplify the comparison among two different datasets.

YouLighter differs also from techniques for the tracking of moving clusters and objects as [22, 23]. Indeed, their goal is to track the movements of the same clustered objects over time, e.g., a group of migrating animals. On the contrary, *YouLighter* has no insights about the CDN infrastructure and it cannot track single objects, which may disappear and reappear freely.

Finally, other approaches as [24] aim at measuring the distance among different time snapshots by considering the sample distributions obtained from them. However, directly relying on distributions to perform the comparison considerably complicates the detection of the edge-nodes behind the changes. Instead, *YouLighter* extracts and compares clustering patterns, which are simpler to process in an automatic manner, and allow to immediately pinpoint the edge-nodes (i.e., the clusters) responsible for possible deviations.

3. **DATASETS**

We assume the ISP has instrumented the network with passive probes, which collect statistics from flows carrying YouTube videos. In this work, we rely on passive probes running AcmeSniff[^2] that we install in Points-of-Presences (PoPs) of operational networks, as depicted in Fig.1. Clients are located in one PoP, and connect to the backbone via a router, where AcmeSniff monitors the traffic. AcmeSniff observes packets, rebuilds each TCP flow, tracks it, and at the end of flow, logs detailed statistics. AcmeSniff can classify TCP flows that carry YouTube videos. For each request, it logs i) the anonymized client IP address, ii) the server IP address, iii) the hostname of the server, iv) the TCP minimum Round Trip Time (RTT),[^3] v) the IP Time-To-Live (TTL) of packets received by the client in the PoP, vi) the amount of bytes the clients send and receive, vii) the average download throughput, and viii) the time at which the TCP connection starts. Note that AcmeSniff can compute all these metrics considering only TCP segments, and do not require access to application payload. This avoids any privacy issues.

Trace	Period	Volume	Videos	Caches
ISP1-A	01/04/2013 - 28/02/2014	138.7 TB	2,692,452	8,064
ISP1-B	01/04/2013 - 28/02/2014	152.9 TB	2,848,625	8,899
ISP1-C	01/04/2013 - 28/02/2014	134.8 TB	2,711,179	9,028
ISP2	01/03/2014 - 17/07/2014	148.3 TB	305,802	3,755

Table 1: Traces considered in this study.

We have been collecting traffic logs since April 2013 by monitoring the traffic users generate when accessing the Internet. We instrument four different PoPs. Three of them are located in PoPs of the same ISP and in two different cities of the same country. We install the fourth one in a PoP of a different ISP in a second country. Tab. 1 describes, for each trace (or dataset), the time period, the total downloaded volume, the number of unique videos and the number of videos served at the vantage point. For each TCP connection, minimum RTT is computed among all valid samples.

[^2]: http://AcmeSniff.org/AnonimizedURL

[^3]: The RTT is measured as the time between the client data segment and the corresponding server acknowledgment observed at the vantage point. For each TCP connection, the minimum RTT is computed among all valid samples.

[^4]: Starting from January 2013, YouTube obfuscates the IATA code using a simple substitution cipher that we were able to break. For instance, r7r-->fra07t16.c.youtube.com becomes r7r--sn-4g57kued.c.youtube.com. From October 2013, the youtube.com domain has been replaced by the googlevideo.com domain. This information can be used to identify YouTube flows even in presence of [25].
3.2 Characterization of the Load Balancing Policies

Every time a user starts a video playback, the player starts a progressive download of the video content from the specific cache the system provides in the HTML page. We are interested in seeing which are the policies governing the server allocation, such as (i) is there any “preferred” group of caches? or (ii) are those stable over time? Fig. 2 reports the rank of YouTube caches based on the number of flows they handle. We consider February 2014 from the ISP1-A dataset. First, notice that we observe more than 3,200 caches during one month. Second, the load each cache handles is very heterogeneous; few servers handle lots of requests, but there is a not negligible number of caches that serve a significant portion of flows. For instance, more than 400 caches serve more than 100 videos, and in order to observe 95% of requests, one should monitor about 330 caches.

We also notice that the rank is extremely dynamic over time. For instance, we pick the four most active caches during the 1st of February 2014 and we report in Fig. 3 the amount of traffic they generate over time for the following seven days. As shown, the amount of traffic a single cache handles changes widely over time, and none of the monitored caches keeps a constant leading position for a long period of time.

As one may expect this dynamicity to disappear when reducing the focus, we monitor a larger pool of caches as those in the rank in Fig. 2, and we recompute the same rank on a daily basis. Then, we represent it using different colors in Fig. 4. Each row represents the rank of the same cache for different days in February. In case the rank is stable, one would expect a row (a cache) to always assume the same color (rank). Fig. 4 shows exactly the opposite. Indeed the top daily cache (red square, highlighted by the white dot) randomly changes every day (white line). Sometimes, the most used cache in a day is not among the top-10 cache of the month (line jumps outside). The top-10 caches in the monthly rank drops below the 50th place during some days (gray color). Similarly, in the first 19 days of February, the top-10 caches are concentrated in the first 20 rankings; However, starting from February 20th they fall around the 30th position (notice the concentration of yellow and orange).

This shows that the server allocation policies adopted by YouTube spread the load over several hundreds of caches, and the choices are extremely dynamic over time if we observe with the fine grained granularity of a single cache.

Since caches inside the same edge-node are all equivalent, the intuition is to observe the system using the coarse granularity offered by edge-nodes. However, edge-nodes are unknown, they can change over time due to system upgrade or redesign, and information that could be available (e.g., the IATA code) may be not reliable, or may be removed by YouTube. In the following, we design an unsupervised clustering algorithm to automatically identify edge-nodes from just the observation of traffic flows.

4. METHODOLOGY

Intuitively, the path between two caches in the same edge-node and clients in the same PoP exhibits the same properties, e.g., same RTT. Conversely, the path between two caches in different edge-nodes should present different RTT. This intuition is corroborated in Fig. 5 which depicts the 5th, 20th, 50th, 80th, and 95th percentiles of the per-cache
RTT distribution. We identify caches with their IP address, and then we order and group them into edge-nodes using the IATA code as ground truth so that caches belonging to the same edge-node appear one close the other. Five edge-node are present, E-1 to E5. Each hosts a variable number of caches, with E-3 being the largest. As shown, the caches in the same edge-node exhibits very similar RTT percentiles, suggesting that we can identify clusters of caches by considering the RTT as a feature.

4.1 Multi-dimensional Clustering

We leverage above intuition to design a clustering algorithm to automatically find homogeneous groups of caches. We use some ingenuity to characterize the path from client to each cache, and then to cluster caches that exhibits similar paths. We can split the process of our methodology into the following steps:

Step 1 - Passive monitoring of YouTube video flows: As described in Sec. 3, a passive probe provides the continuous collection of YouTube traffic logs. We log each the metadata of each TCP connection, and we store logs in a database for further processing.

Step 2 - Measurement consolidation and filtering: To ease the monitoring procedure, we use a batch processing approach that considers time windows of size ΔT. Thus, every ΔT we generate a “snapshot”, and we aggregate and process measurements in it. In the following, we indicate the n-th snapshot as a superscript when needed, e.g., $a^{(n)}$ indicates the metric a at snapshot n.

We identify each cache x by its IP address. We then group all flows in the same snapshot with the same server IP address to obtain a table where columns correspond to the metric (e.g., RTT, TTL, transmitted packets, etc.), and each row corresponds to a sample, i.e., the tuple of measured values observed within a TCP flow.

Since we are interested in the active caches, we discard those with less than $\text{MinFlow} = 50$ samples. We define the whole measurement snapshot n as $X^{(n)}$.

Step 3 - Feature selection and data normalization: Next, we apply a feature selection driven by domain knowledge to select the set \mathcal{M} of metrics. In particular, as we are interested in grouping caches according to the path properties, we choose $\mathcal{M} = \{\text{RTT, TTL}\}$. Then, for each cache x in the snapshot X, and for each metric $m \in \mathcal{M}$, we generate an empirical distribution. From the distribution, we extract the vector $P_m(x) = (p_{m,1}(x), p_{m,2}(x), \ldots, p_{m,k}(x))$ containing k percentiles of m for cache x. We thus standardize percentiles following a simple normalization:

$$\min_m = \min \{p_{m,i}(x) \forall x \in X, \forall i = 1, \ldots, k\} \quad (1)$$

$$\max_m = \max \{p_{m,i}(x) \forall x \in X, \forall i = 1, \ldots, k\} \quad (2)$$

$$\bar{p}_{m,i}(x) = \frac{p_{m,i}(x) - \min_m}{\max_m - \min_m} \quad (3)$$

Intuitively, Eq. (3) normalizes the percentiles of metric m so that $\bar{p}_{m,i} \in [0,1]$.

At last, $\bar{P}_m(x) = (\bar{p}_{m,1}(x), \bar{p}_{m,2}(x), \ldots, \bar{p}_{m,k}(x))$ represents the standardized vector of features for the metric m for server x. Recalling that $\mathcal{M} = \{\text{RTT, TTL}\}$, we identify each cache $x \in X$ with a 2k-dimensional space of edge 1 by features:

$$\bar{x} = (\bar{P}_{\text{RTT}}, \bar{P}_{\text{TTL}})$$

and we transform the original set of caches X into a set of points $\bar{X} = \{\bar{x}\}$.

Step 4 - Clustering: We employ the density-based DBSCAN algorithm [5] to group together servers based on their multi-dimensional features. We choose DBSCAN because (i) it is able to handle clusters of arbitrary shapes and sizes; (ii) it is relatively resistant to noise and outliers; and (iii) it does not require the specification of the number of desired clusters. DBSCAN requires two parameters: ϵ and MinPts. ϵ determines the maximum allowed distance between any given point in a cluster and its closest neighbor belonging to the same cluster, and MinPts the minimum number of points required to form a cluster. Based on that, it classifies all points as being (i) core points, i.e., in the interior of a dense region; (ii) border points, i.e., on the edge of a dense region; or (iii) noise points, i.e., in a sparsely occupied region. Noise points do not form any cluster, while the algorithm puts in the same cluster any two core points that are within ϵ of each other. Similarly, any border point that is close enough to a core point is put in the same cluster as the core point. The result of this process is a collection \mathcal{C} of clusters $C_j \in \mathcal{C}$, also named as clustering:

$$\mathcal{C} = \{C_j\} = \text{DBSCAN}(\bar{X})$$

4.2 Highlighting Changes with the Constellation Distance

We are now interested in tracking the evolution of clusters over time, for which, as we discuss in Sec. 2, no known solution is present in the literature. Indeed, it is not obvious how to compare two clusterings C_1 and C_2 obtained considering two different datasets, i.e., snapshots in our case. For instance, (i) points that were present in C_1 may not be present in C_2, and vice versa; (ii) points clustered into the same cluster in C_1 can now belong to two or more clusters in C_2; and (iii) the same points that form a cluster in C_1 can still form the same cluster, but can be placed in another region in the clustering space in C_2. In our case, this corresponds to (i) popular caches at snapshot n that are not anymore used at snapshot $n+1$, or (ii) some caches at snapshot n that were part of the noise are instead clustered at snapshot $n+1$, or (iii) the path to caches suddenly changes at snapshot $n+1$, altering RTT and TTL.
To evaluate the difference among the clustering, we propose a novel methodology that is based on the notion of Constellation Distance.

4.2.1 Constellation

We first map each cluster into a single star that summarizes it. Given a cluster $C \in \mathcal{C}$, we consider the centroid, or geometric center, \hat{x} whose components $\hat{p}_{m,i}$ in the i percentile of feature m are:

$$\hat{p}_{m,i} = \frac{1}{|C|} \sum_{x \in C} \text{renorm}(p_{m,i}(x))$$

(6)

All stars then form a constellation $\hat{\mathcal{C}} = \{\hat{x}\}$. The renorm() function eventually considers the re-normalization of features that can be needed if points in \mathcal{C}_1 and \mathcal{C}_2 went through different standardization processes. In our case, assuming $\mathcal{C}_1 = \mathcal{C}^{(n)}$, $\mathcal{C}_2 = \mathcal{C}^{(n+1)}$, from Eq.(3) for each $m \in \mathcal{M}$ we have:

$$\text{Min}_m = \min\left(\text{min}_m^{(n)}, \text{min}_m^{(n+1)}\right)$$

(7)

$$\text{Max}_m = \max\left(\text{max}_m^{(n)}, \text{max}_m^{(n+1)}\right)$$

(8)

$$\text{renorm}_m(a) = \frac{a - \text{Min}_m}{\text{Max}_m - \text{Min}_m}$$

(9)

4.2.2 Astral Distance

Given a star \hat{x} and a constellation $\hat{\mathcal{C}}$, we define the Astral Distance (AD) as the distance between \hat{x} and its closest star in $\hat{\mathcal{C}}$. Specifically, we compute the closest star $\hat{y}^* \in \hat{\mathcal{C}}$ such that $d(\hat{x}, \hat{y}^*) \leq d(\hat{x}, \hat{y}) \forall \hat{y} \in \hat{\mathcal{C}}$. $d(x, y)$ can be any distance metric that is valid in the feature space. In this work, we use the classic Euclidean distance. Thus, the Astral Distance AD of the star \hat{x} from stars in $\hat{\mathcal{C}}$ is:

$$AD(\hat{x}, \hat{\mathcal{C}}) = \min_{\hat{y} \in \hat{\mathcal{C}}} d(\hat{x}, \hat{y})$$

(10)

Hence, the Astral Distance couples stars according to a nearest neighbor principle.

4.2.3 Constellation Distance

At last, we define the Constellation Distance - CD - as the sum of the Astral Distances among every star in the clusterings. Since the number of clusters in \mathcal{C}_1 and \mathcal{C}_2 may be different, we need to symmetrize the definition:

$$CD(\hat{\mathcal{C}}_1, \hat{\mathcal{C}}_2) = \sum_{\hat{x} \in \hat{\mathcal{C}}_1} AD(\hat{x}, \hat{\mathcal{C}}_2) + \sum_{\hat{x} \in \hat{\mathcal{C}}_2} AD(\hat{x}, \hat{\mathcal{C}}_1)$$

(11)

Fig. 6 depicts the Constellation Distance computation considering a 2-dimensional space. From left to right, DBSCAN first clusters the points (grey dots for the first snapshot, white for the second). Then, stars emerge to form the constellations, and we compute the Astral Distance for each star. Finally, the Constellation Distance is the sum of all Astral Distances.

In the following, we consider two subsequent snapshots n, and $n + 1$, compute the clustering $\mathcal{C}^{(n)}$ and $\mathcal{C}^{(n+1)}$, then extract the constellations $\hat{\mathcal{C}}^{(n)}$ and $\hat{\mathcal{C}}^{(n+1)}$, and finally compute their distance $CD\left(\hat{\mathcal{C}}^{(n)}, \hat{\mathcal{C}}^{(n+1)}\right)$.

As we discuss in Sec. 2, to the best of our knowledge we are the first to propose an approach to quantify the similarity among different clustering results. We note that we can base the Constellation Distance on other similarity metrics different from the Euclidean distance, e.g., the well known Cosine Similarity. However, as we show in Sec. 4.3 using the Euclidean distance lets the Constellation Distance to inherit linear properties, and therefore to vary proportionally with size of the changes. Observe also that the design of the Constellation Distance offers a nice property that is particularly desirable for troubleshooting purposes. In particular, the Constellation Distance, which is a simple sum of Euclidean distances, lets us immediately pinpoint the stars responsible for changes in the constellation. As we show in Sec. 6, this aspect is crucial, as it allows us to design an automatic procedure that i) captures changes in YouTube CDN infrastructure, and ii) highlights the edge-nodes involved in these changes.

4.3 Observations about the Constellation Distance

We run some numerical evaluation to gauge how the Constellation Distance changes with respect to changes in the input data. We consider two main sources of changes: i) stars that simply move from their position, and ii) the birth
of new star reflecting the generation of a new cluster in the data.

For the first scenario, we generate a random constellation \(\mathcal{C}_1 \) of \(N = |\mathcal{C}_1| \) stars. We randomly place stars in the unitary hypercube of edge 1 in \(\mathbb{R}^N \) according to a uniform distribution. Then, we generate constellation \(\mathcal{C}_2 \) by taking the centroids in \(\mathcal{C}_1 \), and repositioning them in a random sphere of radius \(e \) centered in the centroid original position. Finally, we compute \(CD(\mathcal{C}_1, \mathcal{C}_2) \). We repeat the experiment for 100 times, and average the obtained values. Fig. 7(a) reports the average Constellation Distance for increasing values of \(e \), and for different values of \(N \). As expected, curves pass through the origin, and linearly grow with \(e \). The larger is \(N \), the higher is the average Constellation Distance.

For the second case, we run the same experiment while also increasing the number of stars. Thus \(|\mathcal{C}_1| < |\mathcal{C}_2| \). Fig. 7(b) shows the results. Notice the nice property of the Constellation Distance for which the birth of new stars causes the Constellation Distance to grow by a factor that is proportional to the number of new stars. This is due to definition in Eq.(11) in which no normalization is present. This property is important, as it lets the Constellation Distance nicely highlight the sudden birth (or death) of stars.

5. RESULTS

In this section we first assess and tune the performance of DBSCAN in order to identify edge-nodes. We next run YouLighter over a longitudinal dataset to show its ability to highlight sudden changes in the YouTube CDN.

5.1 DBSCAN performance

5.1.1 Clustering Performance Metrics

We first evaluate the impact of the parameter settings on the DBSCAN clustering results. In particular, we aim to understand how good is the matching between the clustering DBSCAN returns and the edge-nodes we observe in the measurements. To perform this analysis, we consider the snapshot \(X \) from November 4th to November 10th, 2013, in trace ISP1-A. We manually inspect the dataset, and, guided by the IATA codes, we assign each cache a label corresponding to the edge-node in the YouTube CDN. We manually cross-check labels by inspecting server IP addresses and subnets, RTT and TTL distributions to verify the accuracy of the labels. The result is a ground truth label, GT-label, that we assign to each cache. In total we find \(|X| = 620 \) caches serving more than MinFlow = 50 flows, and belonging to 6 edge-nodes, each identified by a different GT-label. Hence, the number of GT-labels is \(N_{GT} = 6 \).

We then run DBSCAN as described in Sec. 4.1, obtaining the clustering \(\mathcal{C} \). Let \(N_{C} = |\mathcal{C}| \) be the number of clusters. We next use the GT-labels to assign a label to caches by using a majority-voting scheme: For each cluster \(C_j \in \mathcal{C} \), we assign all caches \(x \in C_j \) the most frequent GT-label observed in \(C_j \). Caches whose assigned label matches the GT-label are the so called True Positives (TP), whose number is \(N_{TP} \). Conversely, caches whose assigned label is different from their GT-label are False Positives (FP), whose number is \(N_{FP} \). \(|X| = N_{TP} + N_{FP} \). We compute the set of distinct labels assigned to clusters in \(\mathcal{C} \), whose number is \(N_L \leq N_{GT} \).

We do not assign any label to the caches which DBSCAN classifies as noise points.

To validate the clustering we obtain with DBSCAN, we compute the followings indices:

\[
TPR = \frac{N_{TP}}{|X|}, \quad \mu = \frac{N_{C}}{N_{L}}, \quad \phi = \frac{N_{L}}{N_{GT}}
\]

1. The True Positive Rate (\(TPR \leq 1 \)) is the ratio between TP and the number of samples in the experiment. \(TPR = 1 \) means that all labels are identical to the GT-label. \(TPR < 1 \) indicates the presence of i) mislabelled caches (or FP), or ii) noise points (unlabeled points). Leftmost sub-figure in Fig. 8 reports a simple example where the clustering algorithm mislabels a cache for both the GT-labels E-1 and E-2, thus leading to \(TPR < 1 \). Colors represent the GT-label.

2. The Fragmentation Index (\(\mu \geq 1 \)) captures the case when more clusters share the same GT-label. When \(\mu = 1 \), the number of clusters is identical to the number of GT-labels and DBSCAN assigns each cluster a different GT-label. When \(\mu > 1 \) instead, we have more clusters which share the same GT-label, i.e., DBSCAN splits an edge-node into two or more clusters. Second sub-figure in Fig. 8 reports an example where the clustering algorithm splits edge-node E-1 in two different clusters, C-1 and C-2, thus leading to \(\mu > 1 \).

3. Pureness Index (\(\phi \leq 1 \)) instead measures the ability to identify all edge-nodes. When \(\phi = 1 \), DBSCAN assigns each GT-label to at least one cluster, i.e., it correctly identifies all edge-nodes. \(\phi < 1 \) indicates that some edge-nodes disappear into other clusters (i.e., their GT-label is not the majority label for any cluster). Third sub-figure of Fig. 8 reports an example where the clustering algorithm groups together edge-nodes with GT-labels E-2 and E-3 in cluster C-2, thus leading to \(\phi < 1 \).

Rightmost sub-figure in Fig. 8 also depicts the ideal clustering result in which DBSCAN groups correctly the caches.
very close to 1. Smaller values of ϵ tend to create few, very large clusters, that aggregates increase the number of noise points; conversely, large values of ϵ will not be able to form dense areas, leading to the case in which all the clustering results, i.e., the inability of DBSCAN to group caches into edge-nodes.

Finally, we use also the number of noise points as an index of bad clustering results, i.e., the inability of DBSCAN to form a cluster (edge-node), leading to the case in which all the clustering performance indices, TPR, μ and ϕ, are equal to 1.

5.1.2 DBSCAN Performance and Parameter Sensitivity

We run experiments to evaluate the impact of DBSCAN parameters, i.e., the choice of the features, $MinPts$ and ϵ. For now, we set features as the 20th, 35th, 50th, 65th, 80th percentiles for both the RTT and TTL distributions. $MinPts$ is typically not critical since it defines the minimum number of caches in an edge-node DBSCAN needs to form a cluster. We set it to 5. Instead, we must choose ϵ carefully: If too small, a lot of fragmented clusters will emerge, or a large number of points will not be able to form dense areas, increasing the number of noise points; conversely, large values tend to create few, very large clusters, that aggregates caches from different edge-nodes.

Fig. 9(a) reports the clustering indices when varying $\epsilon \in [0.02 : 0.2]$. As shown, we achieve the best performance with values between 0.018 and 0.052 (in between the vertical solid lines). For such values, all the three indices are equal or very close to 1. Smaller values of ϵ increase the number of noise points and artificially fragment edge-nodes into multiple clusters. TPR decreases, while μ first increases, then decreases due to caches DBSCAN labels as noise (more than 300 caches fall in the noise for $\epsilon < 0.005$). For ϵ larger than 0.052 DBSCAN merges edge-nodes into too few clusters, and both ϕ and the TPR considerably decrease.

We repeat this analysis for other traces and for different snapshots. We find $\epsilon \in [0.02 : 0.045]$ to give consistent results. In the following we choose $\epsilon = 0.04$.

We also run a set of experiments to choose which features to use to capture the RTT and TTL distributions. We replace the vector of percentiles $P_n(x)$ in Eq.(3) with simple statistics, e.g., the mean and the standard deviation. The goal of this experiment is to verify whether we can replace the percentiles with some measure which does not require us to build an empirical distribution, a task which requires to collect a fairly large number of flows per cache.

Fig. 9(b) depicts results for varying ϵ. Unfortunately, DBSCAN shows a good clustering for a tiny interval of values of ϵ, e.g., $\epsilon = 0.035$. For $\epsilon > 0.035$, DBSCAN merges edge-nodes together, so that $\mu > 1$ and $\phi < 1$. By investigating further, we observe that the mean and standard deviation vary widely among caches in the same edge-node. This variability is due to the tails of the distributions which include outliers, e.g., very large RTT samples which bias the mean and standard deviation, but have little or no impact on the percentiles. Indeed, the percentiles of caches in the same edge-node are very similar, except those that gauge the tail (see the 95th percentiles in Fig.5). This suggests that the choice of the percentiles to populate the vector $P_n(x)$ is more robust with respect to other simpler statistics. We run other experiments with different percentile choices that we do not report for the sake of brevity. We observe no significant differences if we avoid considering percentiles in the tail. Similarly, we observe that using both RTT and TTL gives better results than considering RTT or TTL alone.

6. YOULIGHTER’S HIGHLIGHTING CAPABILITY

In this section we run YouLighter over the four traces in Tab. 1 to validate its capability of highlighting changes in the YouTube CDN. The rationale is to let the ISP observe macroscopic changes that may affect a large number of users, and which may last for moderate time periods. We consider $\Delta T = 7$ days, and we start a new snapshot at midnight of every day. Snapshots form a sliding window that moves forward every day, and aggregates statistics for the past seven days. $\Delta T = 7$ days guarantees to collect large enough number of samples for the large subset of the most used caches.

Fig. 10 shows the evolution of the Constellation Distance (red solid curve, left y-axes) over time. It also depicts the evolution of the noise after clustering (black dashed curve, right y-axes). From top to bottom, plots refer to ISP1-B, ISP1-A and ISP1-C. X-axes reports daily snapshots, starting from April 1st, 2013.\(^6\)

\(^6\)PoP referring to ISP1-C suffered an outage from mid July 2013 to the end of September.
Figure 10: Constellation Distance values and number of noise points for different traces from ISP1.

As shown, the Constellation Distance is very good at highlighting events. Indeed, according to Sec. 4.3, a $CD > 10$ suggests that the clustering at time (n) is very different to the one at time ($n+1$). Thanks to the data aggregation we obtain with the clustering, we can easily analyze the highlighted events, and quickly identify the edge-nodes involved in the changes. We investigate these events, and verify that they all correspond to sudden changes in the edge-nodes used by YouTube in serving ISP customers. In the following, we illustrate the most relevant ones, i.e., those with a $CD > 50$.

6.1 Large event, involving all ISP customers

We first investigate an event YouLighter highlights in three different datasets. It starts on May 2nd (snapshot 27), May 7th (snapshot 32), and May 13th (snapshot 38) for ISP1-B, ISP1-A and ISP1-C, respectively. Constellation Distance peaks above 60. Starting from then, both CD and the number of noise points are very large. This indicates an unstable behavior, with many caches that DBSCAN cannot successfully group together, and the clustering pattern that keeps changing day by day, for more than 40 days.

To give the intuition of what happened, Fig. 11 shows the per-cache percentiles of the RTT that we measure in ISP1-A before, during, and after the anomalous event. First, we notice that most of the edge-nodes suddenly change: E-1, E-4, E-5 and E-6 actually “disappear” from the clustering pattern, and during the event, many previously unseen caches in edge-node E-2 start serving lots of customers (observe the center plot). Second, and more surprisingly, the path properties to these new caches is by far different from paths to other caches in E-2: the RTT percentiles are much larger (95ms versus 15ms for the 50th percentile) and much more variable. Despite these caches share the same IATA code (E-2), the path to reach them is different from the path of other caches in E-2, with the former possibly being severely congested. Some of these caches form new clusters, but most of them become part of the noise: Indeed, their features do
We now analyze the impact of such change on the Quality of Experience the ISP customers perceive. We report in Fig. 12 the distributions of the download throughput obtained by video retrieved by caches in E-3, the best edge-node to ISP customers, Good-E-2 and Bad-E-2. The difference is striking: while videos served by E-3 and Good-E-2 have throughput that allows to enjoy YouTube with no major impact on the QoE (>1,000 kb/s in 63% of the cases), the throughput for Bad-E-2 caches is below 500 kb/s (250 kb/s) in 75% (40%) of the cases, clearly not enough to enjoy a video with a satisfiable QoE. Tab. 2 corroborates above observation reporting the fractions of video (and audio) formats seen in flows handled by both Good-E-2 and Bad-E-2. For this analysis we consider only DASH formats, as for these formats the cache delivering the video automatically adapts the quality of the video stream depending on the congestion it measures on the path to the client. As shown, Good-E-2 serves larger fractions of high-definition videos. Conversely, the share of videos encoded with low-definition (144p and 240p) increases for Bad-E-2. This confirms that Bad-E-2 experienced possible congestion during the monitored period, severely impairing the QoE of the users.

By double checking this event with the ISP network support team, we confirm the incident involved most of their customers, increasing dramatically the complaining at their customer support. This confirms the pervasiveness of this event upon ISP customers.

6.2 Other events for ISP1

We manually cross check other events, and find that some of those affected only part of the ISP customers. This shows that YouTube CDN allocates customers to edge-nodes using a fine grained granularity, i.e., the load-balancing allows to identify small groups of clients by using the client IP address (or network). For instance, on October 2nd (snapshot 180) and October 9th (snapshot 187) YouLighter highlights two sudden changes in the ISP1-A and ISP1-C, as the Constellation Distance peaks over 60. Inspecting the astral distances one by one, we observe that the changes are due to 3 edge-nodes (E-4, E-5 and E-6) out of 7 that suddenly “appear” in snapshot 180 and “disappear” in snapshot 187. The remaining four edge-nodes then serve the videos for customers in ISP1-A and ISP1-C. We analyze the impact of the presence of such caches on the QoE by measuring the aggregate download throughput before, during and after their permanence, but we do not appreciate any significant change. Also in this case we double check the event with the ISP support team and we confirm that the change had no influence on the QoE as the customer support did not receive any meaningful complaining in the considered period.

Finally, observe that for ISP1-B, we do not detect any change (CD = 0.12) in the same period, as YouTube’s CDN keeps serving customers with the same group of edge-nodes, and we do not notice any impact on the QoE for this event too.

6.3 Events in ISP2

As a last set of experiments, we run YouLighter on the ISP2 dataset, which we recall we collect in ISP2, a different ISP in a different country. We run YouLighter with the same parameters we tune for ISP1, i.e., without going through ϵ optimization. Indeed we aim to check whether if the edge-node model that DBSCAN creates is general and robust enough to work in a completely different scenario.

We repeat the experiment of Fig. 10 for ISP2 dataset, and we analyze the evolution of the Constellation Distance and...
number of noise points. We report the results in Fig. 13. To check if the clustering correctly identifies the edge-nodes, we select five different snapshots at random among the ones where YouLighter highlights no events. Again, we use the IATA codes as ground truth, and we manually check IP address subnets, RTTs and TTLs to see if some suspicious cache is present in a cluster. The clustering results in perfect match with the (possible) edge-nodes in the ground truth. This despite edge-nodes, path, and ISP in this dataset are completely different.

We then check two suspicious events. The first one occurs from March 7th to March 10th, 2014 (snapshots 1-4, $CD > 60$), and the second one happens on March 18th, 2014 (snapshot 12, $CD > 51$). We observe that the first anomaly is due to a change in the network path to reach a small group of caches in E-2. We observe that this deviation does not influence the QoE perceived by the users. For the second event, by comparing the clustering at snapshot 12 with the following snapshot, i.e., snapshot 13 (March 19th), we observe a notable change in the infrastructure of the YouTube CDN: as depicted in Fig. 14 which compares the per-cache RTT percentiles, all caches belonging to edge-node E-7 disappear. Also in this case, the change has no evident impact on users’ QoE, as the average download throughput does not vary. However, we notice that the edge-node E-7 represents a much more expensive route for the ISP2, since it is located in a remote ISP for which no peering agreements are in place.

![Figure 14: Per-cache RTT percentiles during the second ISP-wide anomaly in March 2014. Dataset ISP2.](image)

7. CONCLUSIONS

In this paper we proposed a novel system, named YouLighter, that leverages passive observation of network traffic and unsupervised machine learning techniques to automatically monitor and identify changes in the YouTube CDN. Based on the well known DBSCAN clustering algorithm, YouLighter is able to automatically group thousands of caches into few edge-nodes. To then compare the results of clustering obtained considering different snapshots collected in consecutive time intervals, we propose the Constellation Distance, a novel framework that, for the first time to the best of our knowledge, allows to easily pinpoint changes in clusters.

YouLighter is validated using a large dataset of traces reporting the activity of users regularly accessing YouTube. Our results are excellent: we show that after a short and simple tuning procedure to find the best setup for DBSCAN, YouLighter can detect anomalous events that happened in YouTube CDN. For instance, we could notice a large transformation in a crucial edge-node of YouTube CDN which notably impaired the QoE perceived by the monitored ISP customers for more than 40 days.

We believe that YouLighter may represent a promising opportunity for ISPs, network administrators, developers and researchers to monitor the traffic generated by YouTube CDN. ISPs, for instance, may employ YouLighter to design automatic traffic engineering policies or to promptly react when changes in YouTube CDN impair the QoE of their customers.

Our ongoing efforts are focused on three directions: First, we are working to automate the tuning of YouLighter’s parameters, and, thus, its whole operation process. Second, we are developing an online deployment of YouLighter, capable of detecting changes in YouTube CDN in real time. Third, we are adapting it to consider other use cases.

8. ADDITIONAL AUTHORS

9. REFERENCES

[1] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govindan. Mapping the expansion of google’s serving infrastructure. In ACM IMC, 2013.

[2] V. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting youtube: An active measurement study. In IEEE INFOCOM, 2012.

[3] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. Munafo, and S. Rao. Dissecting video server selection strategies in the youtube cdn. In IEEE ICDCS, 2011.

[4] P. Casas, P. Fiadino, and A. Bür. Understanding http traffic and cdn behavior from the eyes of a mobile isp. In PAM, 2014.

[5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In ACM KDD, 1996.

[6] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic characterization: A view from the edge. In ACM SIGCOMM, 2007.

[7] X. Cheng, C. Dale, and J. Liu. Statistics and social network of youtube videos. In IEEE IWQoS, 2008.

[8] F. Figueiredo, F. Benevenuto, and J. M. Almeida. The tube over time: Characterizing popularity growth of youtube videos. In ACM WSDM, 2011.

[9] S. Alcock and R. Nelson. Application flow control in youtube video streams. In SIGCOMM Computer Communication Review, volume 41, pages 24–30. ACM, 2011.

[10] D. Krishnappa, D. Bhat, and M. Zink. Dashing
[11] V. K. Adhikari, S. Jain, and Z.-L. Zhang. Youtube traffic dynamics and its interplay with a tier-1 isp: An isp perspective. In ACM SIGCOMM, 2010.

[12] T. Hossfeld, R. Schatz, E. Biersack, and L. Plissoumeau. Internet video delivery in youtube: From traffic measurements to quality of experience. In Data Traffic Monitoring and Analysis, volume 7754, pages 264–301. Springer, 2013.

[13] A. Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing solutions and latest technological trends. In Computer Networks, volume 51, pages 3448 – 3470. 2007.

[14] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. In Computing Surveys, volume 41, pages 1 – 58. ACM, 2009.

[15] H. Yan, A. Flavel, Z. Ge, A. Gerber, D. Massey, C. Papadopoulos, H. Shah, and J. Yates. Argus: End-to-end service anomaly detection and localization from an isp’s point of view. In IEEE INFOCOM, 2012.

[16] A. McGregor, M. Hall, P. Lorier, and J. Brunskill. Flow clustering using machine learning techniques. In Springer PAM, 2004.

[17] J. Erman, M. Arlitt, and A. Mahanti. Traffic classification using clustering algorithms. In ACM SIGCOMM, 2006.

[18] Y. Wang, Y. Xiang, and S.-Z. Yu. An automatic application signature construction system for unknown traffic. In Concurrency and Computation: Practice and Experience, volume 22, pages 1927 – 1944. Wiley Online Library, 2010.

[19] G. Münz, S. Li, and G. Carle. Traffic anomaly detection using k-means clustering. In GI/ITG Workshop MMBnet, 2007.

[20] R. D. Torres, M. Y. Hajjat, S. G. Rao, M. Mellia, and M. M. Munafo. Inferring undesirable behavior from p2p traffic analysis. In SIGMETRICS Performance Evaluation Review, volume 37, pages 25 – 36. ACM, 2009.

[21] M. K. Goldberg, M. Hayvanovych, and M. Magdon-Ismail. Measuring similarity between sets of overlapping clusters. In IEEE SocialCom, 2010.

[22] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-temporal data. In Advances in spatial and temporal databases, volume 37, pages 364 – 381. Springer, 2005.

[23] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters. In Proceedings of the VLDB Endowment, volume 3, pages 723–734. VLDB Endowment, 2010.

[24] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In ACM VLDB, 2004.

[25] I. N. Bermudez, M. Mellia, M. M. Munafo, R. Keralapura, and A. Nucci. Dns to the rescue: Discerning content and services in a tangled web. In ACM, editor, IMC, 2012.