Design optimization of exhaust manifold’s length for Spark Ignition (SI) engine through CFD analysis on low-end rpm using Taguchi’s Method

R Murali1,2, A B Shahriman1,2, Z M Razlan1,2, W K W Ahmad2,3, A I Azizul5, M A Rojan1,2, M I N Ma’arof4, M A Radzuan1,2, M A S M Hassan1,2 and Z Ibrahim6

1 Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Kampus Tetap Pauh Putra, 02600, Arau, Perlis, Malaysia.
2 Motorsport Technology Research Unit (MOTECH), Universiti Malaysia Perlis, Kampus Tetap Pauh Putra, 02600, Arau, Perlis, Malaysia.
3 Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis, Kampus Tetap Pauh Putra, 02600, Arau, Perlis, Malaysia.
4 Department of Mechanical Engineering, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia.
5 Research and Development Division, Motosikal dan Enjin Nasional Sdn.Bhd (MODENAS), Gurun Industrial Area, 08300, Gurun, Kedah, Malaysia.
6 Department of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Tunku Highway, Gadong BE1410, Brunei Darussalam.

Corresponding author’s e-mail address: shahriman@unimap.edu.my

Abstract. The exhaust system especially the exhaust manifold is an important factor that affects the performance of any SI engine. The most influential boundary condition in the exhaust manifold is backpressure where it is defined as the difference between maximum pressure in the exhaust system and the atmospheric pressure. Higher backpressure was documented to reduce the overall performance of an IC engine and increases its fuel consumption based on previous studies. Even though backpressure could not be removed entirely from the exhaust system, it could be reduced the maximize the engine’s performance. This study aimed to reduce the backpressure in the exhaust manifold of the 115cc SI engine by optimizing its lengths (by taking consideration of the impact of bending angles) through Computational Fluid Dynamic (CFD) analysis and Taguchi’s method. From the results, it was found that the bending angles are more dominant in reducing the backpressure even after the lengths are optimized. It was found that the optimal length configuration reduces the backpressure by 13.56%. Therefore, the outcome of this study shows that the optimal length configuration offers lower backpressure which significantly reduces the harmful impacts on the engine’s performance.
1. Introduction
An exhaust system, especially an exhaust manifold, is essential to any Spark Ignition (SI) engine to discharge combustion product efficiently and limit the sound energy emitted to the environment, [1]. A good exhaust system always maximizes the engine’s performance, reduces fuel consumption, and reduces harmful emissions to the environment, [1], [2]. The critical boundary condition in an exhaust system that affects the engine’s performance is backpressure,[2]. Backpressure is defined as the difference between maximum pressure in the exhaust system and the atmospheric pressure and its existence does produce a resistance to the flow of exhaust gas,[1], [2]. Therefore, higher backpressure does cause the engine’s performance to experience a certain degree of losses as the engine has to do extra work to push the exhaust gas out of the combustion chamber by opposing the backpressure’s resistance, [1].

Exhaust manifold’s geometry does directly affect the backpressure that is produced. The length of the exhaust manifold apparent to be one of the influential parameters that affect the backpressure. Based on previous studies, it was found that a shorter exhaust manifold produces lower backpressure at higher engine speed while a longer exhaust manifold produces lower backpressure at lower engine speed, [3]. Designing a good exhaust manifold with optimal length gives a positive impact on the performance of the SI engine by reducing its backpressure.

This study aims to optimize the exhaust manifold’s length to reduce backpressure and elucidate the relationship between the length of the exhaust manifold and the backpressure produced to maximize the engine’s power in low-end rpm through Computational Fluid Dynamic (CFD) analysis. MODENAS CT115S engine was used as a platform to obtain boundary conditions for CFD analysis. Therefore, the optimized exhaust manifold’s length could improve the performance of the MODENAS CT115S engine by reducing its backpressure and reduce harmful emissions to the environment.

2. Taguchi’s Methodology
Taguchi’s method was used to obtain the design of the experiment (DOE) for this study in order to optimize the length of the exhaust manifold on reducing its backpressure. Taguchi’s analysis method is mainly used to optimize various manipulative parameters on specific experiments based on the obtained data (experiment results),[4]. Orthogonal array (OA) is used in analysis where it will reduce the number of samples required in the DOE where it directly reduces the time consumption to run the experiment, [4]. S/N ratio analysis is conducted together in the process of the analysis to find the optimal factors configuration based on the desired objective. Three different objectives are available when conducting S/N ratio analysis which are “smaller is better”, “nominal is best” and “larger is better”, [1]. “Smaller is better” objective was implemented in this study as smaller backpressure is required to maximize the engine’s performance.

3. Design of Experiment (DOE)
Figure 1 and figure 2 shows the existing exhaust manifold’s design of MODENAS CT115S where the lengths are labelled from L1 to L6. Based on table 1, point 1 and point 5 represent the coordinate of the manifold’s inlet and outlet, respectively. While point 2, point 3 and point 4 represent the coordinate of the bending point in between L1 and L2, between L2 and L3 and between L3 and L4, respectively. In this study, the positions of the exhaust port and muffler were not varied. Hence, point 1 (P1) and point 4 (P5) were fixed as they are attached to the exhaust port and muffler, respectively. When it comes to the practical approach, varying the length of the exhaust manifold by fixing the position (coordinate) of the inlet and outlet does affect the bending angle at each bend as well. Hence, when L1 is varied, P2 has to move, which affects L2 (assuming P3 and P4 is fixed when varying L1). The cycle continues when varying L2, L3. L4 was not selected in the scope of parameters as selecting it causes point 5 to move, which directly affects the
The position of the muffler. Only one point was moved at a time so that the impact of each length to the backpressure could be studied with minor interference with other factors.

Figure 1. The existing design of MODENAS CT115S’s exhaust manifold (Top view)

Figure 2. The existing design of MODENAS CT115S’s exhaust manifold (Front view)

Factor’s Name	Factor’s symbol	Level 1	Level 2	Level 3	Level 4	Level 5
Length 1 (Free moving P2)	L1P2	73.01225	76.855	80.90	84.945	89.19225
Length 2 (Free moving P3)	L2P3	149.2916	157.149	165.42	173.691	182.3756
Length 3 (Free moving P4)	L3P4	252.2488	265.525	279.5	293.475	308.1488
Length 5	L5	162.089	170.62	179.6	188.58	198.009
Length 6	L6	156.0024	164.213	172.8558	181.9535	191.53

L25 orthogonal array (OA) was selected in this study for six (6) design parameters with 5 levels (variation) for each factor. Based on the OA, 25 samples were designed based on the configuration obtained from the Taguchi’s DOE. The selected parameters and their level is shown in Table 1. The responses were defined from four backpressure values obtained at 1000 rpm (B1), 2000 rpm (B2), 3000 rpm (B3) and 4000 rpm (B5). RPM range in between 1000 to 4000 rpm was selected as low-end rpm is focused for this study.

Factor’s Name	Factor’s symbol	Level 1	Level 2	Level 3	Level 4	Level 5
Length 1	L1	73.01225	76.855	80.90	84.945	89.19225
Length 2	L2	149.2916	157.149	165.42	173.691	182.3756
Length 3	L3	252.2488	265.525	279.5	293.475	308.1488
Length 5	L5	162.089	170.62	179.6	188.58	198.009
Length 6	L6	156.0024	164.213	172.8558	181.9535	191.53

4. CFD Modelling Technique

This study focused on lowering the backpressure in the exhaust manifold by optimizing its length. The 3D model of the samples based on DOE were converted into a mesh file using ANSYS workbench. Tetrahedral mesh element was used with an element size of 0.001m. Inflation was switched on instead of allowing the program to control it and the smoothing option was set to be smooth to improve the quality of the mesh. The analysis set up and the boundary conditions used, [1], [5], [6], are tabulated in Table 2.
Table 2. CFD simulation set up and boundary conditions

Mesh Set up	Mesh element type	Tetrahedral
	Mesh size	0.001 m

Model Set up	Flow	Steady State
	Solver	Pressure based
	Energy	On
	Viscous Model	k-epsilon (Realizable)
	Near-Wall Treatment	Standard wall function

Boundary Conditions	Inlet	Mass flow rate
	Outlet	Pressure outlet (opened to atmosphere)

5. Results and Discussion

Figure 3 shows the pressure contour obtained from CFD analysis for the existing exhaust manifold design at 4000 rpm. It took an average of 145 iterations for the solution to converge for all 25 samples from DOE and 1 existing sample. From figure 3, it can be observed that the highest backpressure was produced at the first bending area as that is the first place where the flow of the exhaust gas is redirected and faces an obstruction. Based on the results obtained from CFD analysis, it was found that sample 1 from the DOE contributed for the lowest Signal to Noise (S/N) ratio and means of backpressure.

Table 3. Response Table for S/N Ratio (smaller is better)

Level	L1P2	L2P3	L4P5	L5	L6
1	-30.10	-29.92	-30.40	-29.99	-30.29
2	-30.73	-30.06	-30.27	-30.57	-30.72
3	-30.51	-30.49	-30.42	-30.35	-30.71
4	-30.30	-30.31	-30.67	-30.54	-30.32
5	-30.82	-31.68	-30.70	-31.01	-30.41
Delta	0.72	1.76	0.43	1.03	0.43
Rank	3	1	4	2	5
Table 3 shows the response table for the S/N ratio. From the tables, it can be observed that L2P3 has the highest rank (1) which shows that it influences the most on the backpressure that is produced. While L6 has the least impact on the backpressure inside the exhaust manifold.

Figure 4 shows the main effects plot for the S/N ratio of each parameter where the parameter values that map to the least S/N ratio on the y-axis are selected as the optimized values based on the “smaller is better” objective. Therefore, two different optimal parameter configurations are obtained from the DOE table (sample 1) and the main effects plot for the S/N ratio (figure above). The comparison of the S/N ratio and the mean backpressure of existing and the optimal configurations are shown in table 4 where CO1L is the optimal configuration based on the main effects plot for S/N ratio and S11L (Sample 1) is the optimal configuration obtained from DOE.

Sample	L1P2	L2P3	L4P4	L5	L6	S/N ratio	Means of BP
Existing	80.9	165.4	279.5	179.6	191.5	-30.2960	27.38
CO1L (Optimal)	73.01	149.3	265.5	162.1	156	-29.177	24.1
Percentage of difference	-9.75	-9.73	-5.0	-9.74	-18.54	-3.69	-12.01
S11L (Lowest BP based on DOE)	73.01	149.3	252.2	162.1	156	-28.9842	23.67
Percentage of difference	-9.75	-9.73	-9.77	-9.74	-18.54	-4.33	-13.56

From table 4, it can be observed that the configurations from S11L show the lowest S/N ratio and means of backpressure. Therefore, sample 1 from the DOE is chosen as the optimal parameter configuration for the least backpressure where the mean backpressure is reduced by 13.56%. It can also be observed that all optimal lengths from L1P1 to L6 are shorter than the existing ones. This result is contradicting the previous study where it was mentioned that a longer exhaust manifold will reduce the backpressure produced in low-
end rpm, [3]. However, in this study, the interference of bending angle could not be neglected as discussed earlier. The comparison of the bending angles of the selected optimal configurations and existing design is shown in the table below where θ_1 is the angle in between L1 and L2, θ_2 is the angle in between L2 and L3 and finally θ_3 is the angle in between L3 and L4.

Bending angle (θ)	θ_1	θ_2	θ_3
Existing	100.09	35.9	21.37
Optimal	96.6	40.44	18.22

From the table above, the overall bending angle decreases except for θ_2. Based on previous studies, it was found that a smaller bending angle reduces the backpressure that produced,[2]. Therefore, by comparing the results of this study from the previous research, it can be concluded that the impact of bending angle is dominant in reducing the backpressure compared to the length.

6. Conclusion
The outcome from this study is helpful in reducing the emission and fuel consumption by any SI engine in low-end rpm. This was achieved by optimizing the length of the exhaust manifold through backpressure reduction, which will directly improve the engine’s performance. However, the interference of bending angle could not be neglected as the position of the inlet and outlet of the exhaust manifold was fixed. This study shows that the bending angle is more dominant in reducing the backpressure in the exhaust manifold even though the lengths are optimized. A lower bending angle does reduce the backpressure in low-end rpm. The optimal lengths configuration was obtained using Taguchi’s analysis, and it was found that the optimized design does reduce the mean backpressure by 13.56%.

Acknowledgement
The author would like to acknowledge the support from the Fundamental Research Grant Scheme (FRGS) under a grant number of FRGS/1/2020/TK0/UNIMAP/02/97 from the Ministry of Higher Education Malaysia. Furthermore, the authors acknowledge the staff at the Center of Excellence Automotive and Motorsport and Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (Malaysia) and Modenas Sdn.Bhd (Malaysia) Research and Development Department for their productive discussions and input to the research. Contributions from everyone directly or indirectly to this study are highly appreciated.

7. References
[1] Murali R et al. 2021 Design optimization of exhaust manifold’s bending radius for spark ignition (SI) engine through CFD analysis on low-end RPM using Taguchi’s method AIP Conference Proceedings 2339
[2] Chaudhari S G, Borse P N, and Patil R Y 2017 Experimental and CFD Analysis of Exhaust Manifold to Improve Performance of IC Engine Int. Res. J. Eng. Technol. 4 p 1598–1602
[3] Mughal U N, Hassan S H, and Iqbal H M 2014 Designing and simulation of intake and exhaust manifold using sensor bridging CogInfoCom 2014 - Proc. p 407–412
[4] Titu A M, Sandu A V, Pop A B, Titu S and Ciungu T C 2018 The Taguchi Method Application to Improve the Quality of a Sustainable Process IOP Conf. Ser. Mater. Sci. Eng. 374
[5] Girase S B, Yadav R J, Patil C K, More K C, and Shisode S P 2017 Geometry optimization of exhaust manifold using CFD Int. J. Curr. Eng. Technol. 7 p 389–392, 2017
[6] Teja M A, Ayyappa K, Katam S, and Anusha P 2016 Analysis of Exhaust Manifold using Computational Fluid Dynamics Fluid Mech. 3 p 1–16