WILLMORE SPACELIKE SUBMANIFOLDS IN AN INDEFINITE SPACE FORM $N_q^{n+p}(c)$

Shichang Shu and Junfeng Chen

Abstract. Let $N_q^{n+p}(c)$ be an $(n+p)$-dimensional connected indefinite space form of index q ($1 \leq q \leq p$) and of constant curvature c. Denote by $\varphi : M \to N_q^{n+p}(c)$ the n-dimensional spacelike submanifold in $N_q^{n+p}(c)$; $\varphi : M \to N_q^{n+p}(c)$ is called a Willmore spacelike submanifold in $N_q^{n+p}(c)$ if it is a critical submanifold to the Willmore functional $W(\varphi) = \int_M \rho^2 \, dv = \int_M (S - nH^2) \frac{2}{3} \, dv$, where S and H denote the norm square of the second fundamental form and the mean curvature of M and $\rho^2 = S - nH^2$. If $q = p$, in [14], we proved some integral inequalities of Simons’ type and rigidity theorems for n-dimensional Willmore spacelike submanifolds in a Lorentzian space form $N_p^{n+p}(c)$. In this paper, we continue to study this topic and prove some integral inequalities of Simons’ type and rigidity theorems for n-dimensional Willmore spacelike submanifolds in an indefinite space form $N_q^{n+p}(c)$ ($1 \leq q < p$).

1. Introduction

Let $N_q^{n+p}(c)$ be an $(n+p)$-dimensional connected indefinite space form of index q ($1 \leq q \leq p$) and of constant curvature c. If $c > 0$, $c = 0$ or $c < 0$, it is denoted by $S_q^{n+p}(c)$, R_q^{n+p} or $H_q^{n+p}(c)$. A submanifold M in $N_q^{n+p}(c)$ is said to be spacelike if the induced metric on M from that of the ambient space is positive definite. Let $\varphi : M \to N_q^{n+p}(c)$ be an n-dimensional spacelike submanifold in $N_q^{n+p}(c)$. If $q = p$ and M is a complete maximal spacelike submanifold in $N_p^{n+p}(c)$, from [6], we know that M is totally geodesic for $c \geq 0$, thus the class of all such submanifolds are very small. If $0 \leq q < p$, from [1] and [4], we know that if M is a complete minimal submanifold in sphere $S^m(c)$ $m > n$, which is embeded in $S_q^{n+q}(c)$ as a totally geodesic spacelike submanifold such that $m - n + q = p$, then M is a complete maximal spacelike submanifold in $S_q^{n+p}(c)$, thus, we see...
that the class of complete maximal spacelike submanifold in $S^{n+p}_{q}(c)$ is very large. Therefore, if $0 \leq q < p$, the topic of studying spacelike submanifold in $S^{n+p}_{q}(c)$ is also interesting and important. But as far as we know, the results of this topic are less well established. In [1], Alias and Romero studied compact maximal spacelike submanifold M in $S^{n+p}_{q}(c)$ and proved that if the Ricci curvature of M satisfying $Ric(M) \geq (n-1)c$, then M is totally geodesic. Cheng-Ishikawa [4] also studied compact maximal spacelike submanifold in $S^{n+p}_{q}(c)$ and obtained some important results in terms of the pinching conditions on scalar curvature, sectional curvature and Ricci curvature, respectively.

Denote by h_{ij}, S, \vec{H} and H the second fundamental form, the norm square of the second fundamental form, the mean curvature vector and the mean curvature of M and denote by ρ^{2} the nonnegative function $\rho^{2} = S - nH^{2}$, we define the Willmore functional (see [2, 8, 11]):

$$W(\varphi) = \int_{M} \rho^{2} dv = \int_{M} (S - nH^{2})\bar{\varphi} dv,$$

which vanishes if and only if M is a totally umbilical spacelike submanifold. It was shown in [9] that this functional is an invariant under the conformal transformations of a conformal space. The points of M are called the critical points of Willmore functional $W(\varphi)$ if $W'(\varphi) = 0$. If the critical points of $W(\varphi)$ are submanifolds in $N^{n+p}_{q}(c)$, we call them Willmore spacelike submanifolds. Obviously, we notice that the totally umbilical spacelike submanifold is Willmore spacelike submanifold, but, conversely, it is not true.

Since any minimal submanifold in a unit sphere $S^{n+p}_{q}(c)$ is not necessarily Willmore submanifold, due to their backgrounds in mathematics, we know that Willmore submanifolds in a unit sphere have been extensively studied in recent years (see [8] and [13]). In indefinite or Lorentzian geometry, we also see that any maximal spacelike submanifold in $N^{n+p}_{q}(c)$ ($1 \leq q \leq p$) is not necessarily Willmore spacelike submanifold, thus the study of Willmore spacelike submanifold in $N^{n+p}_{q}(c)$ ($1 \leq q \leq p$) is also interesting and important. In [14], if $q = p$, we proved some integral inequalities of Simons’ type and rigidity theorems for n-dimensional Willmore spacelike submanifolds in a Lorentzian space form $N^{n+p}_{p}(c)$. In this paper, we shall continue to study this topic and prove some integral inequalities of Simons’ type and rigidity theorems for n-dimensional Willmore spacelike submanifolds in an indefinite space form $N^{n+p}_{q}(c)$ ($1 \leq q < p$).

Denote by K and Q the functions which assign to each point of M the infimum of the sectional curvature and the Ricci curvature at the point, we obtain the following:

Theorem 1.1. Let $\varphi : M \to N^{n+p}_{q}(c)$ be an $n(n \geq 2)$-dimensional compact Willmore spacelike submanifold in the indefinite space form $N^{n+p}_{q}(c)$, $c > 0$ and $1 \leq q < p$.

(1) If $p - q = 1$, then

(1.1) $$\int_{M} \rho^{p} \{n(c - H^{2}) - \left(2 - \frac{1}{p}\right)\rho^{2}\} dv \leq 0.$$
In particular, if
\[\rho^2 \leq \frac{n}{2 - \frac{1}{p}}(c - H^2), \]
then \(M \) is totally umbilical or \(M \) lies in the totally geodesic spacelike submanifold \(S^{n+1}(c) \) of \(S_q^{n+q+1}(c) \) and is isometric to the Clifford torus \(S^k(\frac{1}{\sqrt{2}}c) \times S^k(\frac{1}{\sqrt{2}}c) \);

(2) If \(p - q > 1 \), then
\[\int M \rho^n \left\{ n(c - H^2) - \frac{3}{2} \rho^2 \right\} dv \leq 0. \]
In particular, if
\[\rho^2 \leq \frac{2n}{3}(c - H^2), \]
then \(M \) is totally umbilical or \(M \) lies in the totally geodesic spacelike submanifold \(S^4(c) \) of \(S_q^{4+q}(c) \) and is isometric to the Veronese surface.

Theorem 1.2. Let \(\varphi : M \rightarrow N_q^{n+p}(c) \) be an \(n(n \geq 2) \)-dimensional compact Willmore spacelike submanifold in the indefinite space form \(N_q^{n+p}(c) \) (\(1 \leq q < p \)). Then the following integral inequality holds
\[\int_M \rho^n \left\{ K - \frac{n-2}{\sqrt{n(n-1)}} H \rho - \frac{1}{n} \left(1 - \frac{1}{p-q} \right) \rho^2 \right\} dv \leq 0. \]
In particular, if
\[K \geq \frac{n-2}{\sqrt{n(n-1)}} H \rho + \frac{1}{n} \left(1 - \frac{1}{p-q} \right) \rho^2, \]
then \(M \) is totally umbilical or \(M \) is a maximal spacelike submanifold in \(N_q^{n+p}(c) \) with parallel second fundamental form.

Theorem 1.3. Let \(\varphi : M \rightarrow N_q^{n+p}(c) \) be an \(n(n \geq 2) \)-dimensional compact Willmore spacelike submanifold in the indefinite space form \(N_q^{n+p}(c) \) (\(1 \leq q < p \)). Then the following integral inequality holds
\[\int_M \rho^n \left\{ Q - (n-2)c - nH^2 - \frac{1}{n} \left(3 - \frac{p+q}{(p-q)q} \right) \rho^2 \right\} dv \leq 0. \]
In particular, if
\[Q \geq (n-2)c + nH^2 + \frac{1}{n} \left(3 - \frac{p+q}{(p-q)q} \right) \rho^2, \]
then \(M \) is totally umbilical or \(M \) is a maximal spacelike submanifold in \(N_q^{n+p}(c) \) with parallel second fundamental form.
2. Preliminaries

Let \(N^{n+p}_q(c) \) be an \((n+p)\)-dimensional indefinite space form with index \(q(1 \leq q \leq p) \). Let \(M \) be an \(n \)-dimensional connected spacelike submanifold immersed in \(N^{n+p}_q(c) \). We choose a local field of semi-Riemannian orthonormal frames \(e_1, \ldots, e_{n+p} \) in \(N^{n+p}_q(c) \) such that at each point of \(M \), \(e_1, \ldots, e_n \) span the tangent space of \(M \) and form an orthonormal frame there. We use the following convention on the range of indices:

\[1 \leq A, B, C, \ldots \leq n + p, \quad 1 \leq i, j, k, \ldots \leq n, \quad n + 1 \leq \alpha, \beta, \gamma, \ldots \leq n + p. \]

Let \(\omega_1, \ldots, \omega_{n+p} \) be its dual frame field so that the semi-Riemannian metric of \(N^{n+p}_q(c) \) is given by \(ds^2 = \sum_A \varepsilon_A \omega_A^2 \), where \(\varepsilon_A = 1 \) for \(1 \leq A \leq n \) and \(\varepsilon_A = -1 \) for \(n + p - q + 1 \leq A \leq n + p \). Then the structure equations of \(N^{n+p}_q(c) \) are given by

\[
(2.1) \quad d\omega_A = -\sum_B \varepsilon_B \omega_{AB} \wedge \omega_B, \quad \omega_{AB} + \omega_{BA} = 0,
\]

\[
(2.2) \quad d\omega_{AB} = -\sum_C \varepsilon_C \omega_{AC} \wedge \omega_{CB} - \frac{1}{2} \sum_{C,D} \varepsilon_C \varepsilon_D K_{ABCD} \omega_C \wedge \omega_D,
\]

\[
(2.3) \quad K_{ABCD} = \varepsilon_A \varepsilon_B (\delta_{AD} \delta_{BC} - \delta_{AC} \delta_{BD}).
\]

If we restrict these form to \(M \), then \(\omega_\alpha = 0, n + 1 \leq \alpha \leq n + p \) and

\[
(2.4) \quad \omega_\alpha = \sum_j h_{ij}^\alpha \omega_j, \quad h_{ij}^\alpha = h_{ji}^\alpha.
\]

The second fundamental form \(II \), the mean curvature vector \(\vec{H} \) of \(M \) are defined by

\[
(2.5) \quad II = \sum_{\alpha,i,j} \varepsilon_\alpha h_{ij}^\alpha \omega_j \varepsilon_\alpha, \quad \vec{H} = \sum_{\alpha} \varepsilon_\alpha H^\alpha e_\alpha, \quad H^\alpha = \frac{1}{n} \sum_{\kappa} h_{\kappa \kappa}^\alpha.
\]

The norm square of the second fundamental form and the mean curvature of \(M \) are defined by

\[
(2.6) \quad S = |II|^2 = \sum_{i,j,\alpha} (\varepsilon_\alpha h_{ij}^\alpha)^2 = \sum_{i,j,\alpha} (h_{ij}^\alpha)^2, \quad H = |\vec{H}| = \frac{1}{n} \sqrt{\sum_{\alpha} \left(\sum_{\kappa} h_{\kappa \kappa}^\alpha \right)^2}.
\]

The Gauss equations are

\[
(2.7) \quad R_{ijkl} = c(\delta_{il} \delta_{jk} - \delta_{ik} \delta_{jl}) + \sum_\alpha \varepsilon_\alpha (h_{il}^\alpha h_{jk}^\alpha - h_{ik}^\alpha h_{jl}^\alpha),
\]

\[
(2.8) \quad R_{jk} = (n - 1) c \delta_{jk} + \sum_\alpha \varepsilon_\alpha \left(\sum_i h_{ii}^\alpha h_{ij}^\alpha - \sum_i h_{ik}^\alpha h_{ji}^\alpha \right).
\]
Defining the first and the second covariant derivatives of \(h^\alpha_{ij} \), say \(h^\alpha_{ijk} \) and \(h^\alpha_{ijkl} \) by
\[
\sum_k h^\alpha_{ijk\omega k} = dh^\alpha_{ij} - \sum_k h^\alpha_{ik\omega kj} - \sum_k h^\alpha_{jk\omega ki} - \sum_\beta \varepsilon_\beta h^\alpha_{ij\omega \beta \alpha},
\]
\[
\sum_l h^\alpha_{ijkl\omega l} = dh^\alpha_{ijlk} - \sum_m h^\alpha_{im\omega m\omega j} - \sum_m h^\alpha_{jm\omega mj} - \sum_m h^\alpha_{ijm\omega mk} - \sum_\beta \varepsilon_\beta h^\alpha_{ijkl\omega \beta \alpha},
\]
we have the Codazzi equations and the Ricci identities
\[
h^\alpha_{ijk} = h^\alpha_{ikj},
\]
\[
h^\alpha_{ijkl} - h^\alpha_{ijlk} = - \sum_m h^\alpha_{imR_{mjkl}} - \sum_m h^\alpha_{jmR_{mikl}} - \sum_\beta \varepsilon_\beta h^\alpha_{ijklR_{\beta kl}}.
\]
The Ricci equations are
\[
R_{\alpha\beta ij} = - \sum_m (h^\alpha_{im} h^\beta_{mj} - h^\alpha_{jm} h^\beta_{mi}).
\]
The Laplacian of \(h^\alpha_{ij} \) is defined by \(\Delta h^\alpha_{ij} = \sum_k h^\alpha_{ijkk} \). From (2.12), we obtain for any \(\alpha, n+1 \leq \alpha \leq n+p \),
\[
\Delta h^\alpha_{ij} = \sum_k h^\alpha_{kki\delta ij} - \sum_{k,m} h^\alpha_{kmR_{mjkl}} - \sum_{k,m} h^\alpha_{jmR_{mikl}} - \sum_\beta \varepsilon_\beta h^\alpha_{ijklR_{\beta kl}}.
\]
For the fix index \(\alpha(n+1 \leq \alpha \leq n+p) \), we introduce an operator \(\Box^\alpha \) due to Cheng-Yau [3] by
\[
\Box^\alpha f = \sum_{i,j} (nH^\alpha_{\delta ij} - h^\alpha_{ij}) f_{i,j}.
\]
Since \(M \) is compact, the operator \(\Box^\alpha \) is self-adjoint (see [3]) if and only if
\[
\int_M (\Box^\alpha f) gdv = \int_M f(\Box^\alpha g) dv,
\]
where \(f \) and \(g \) are any smooth functions on \(M \). We need the following Lemma (see [12]):

Lemma 2.1. Let \(A, B \) be symmetric \(n \times n \) matrices satisfying \(AB = BA \) and \(\text{tr}A = \text{tr}B = 0 \). Then
\[
|\text{tr}A^2B| \leq \frac{n-2}{\sqrt{n(n-1)}} (\text{tr}A^2)(\text{tr}B^2)^{1/2},
\]
and the equality holds if and only if \((n-1) \) of the eigenvalues \(x_i \) of \(B \) and the corresponding eigenvalues \(y_i \) of \(A \) satisfy \(|x_i| = (\text{tr}B^2)^{1/2}/\sqrt{n(n-1)} \), \(x_i x_j \geq 0 \), \(y_i = (\text{tr}A^2)^{1/2}/\sqrt{n(n-1)} \).

By the same method as in the proof of Lemma 4.2 in [8], we also have the following:
Lemma 2.2. Let $\varphi : M \to N_q^{n+p}(c)$ be an n-dimensional ($n \geq 2$) spacelike submanifold in $N_q^{n+p}(c)(1 \leq q \leq p)$. Then we have

$$(2.18) \Rightarrow |\nabla h|^2 \geq \frac{3n^2}{n+2}|\nabla^\perp \vec{H}|^2,$$

where $|\nabla h|^2 = \sum_{i,j,k,\alpha} (h_{i,j,k}^\alpha)^2$, $|\nabla^\perp \vec{H}|^2 = \sum_{i,\alpha} (H_i^\alpha)^2$.

3. Euler-Lagrange equation of Willmore spacelike submanifolds

From Theorem 4.1 of [9], we know that the Euler-Lagrange equation of Willmore spacelike submanifolds in terms of invariants of conformal metric g is stated as following: a spacelike submanifold is a Willmore spacelike submanifold if and only if

$$(3.1) \sum_{i,j,k,l,\alpha} g_{ij} g^{kl} g^{\alpha \beta} \left(B_i^\beta_{kj} + A_{ij} B_{k\beta}^{\gamma} + \sum_{r,q,\tau,\nu} g_{r\tau} g_{q\nu} B_{ij}^r B_{ij}^q B_{ij}^\tau B_{ij}^\nu \right) = 0, \quad \forall \alpha,$$

where $1 \leq i, j, k, l, r, q \leq n$, $n + 1 \leq \alpha, \beta, \gamma, \nu \leq n + p$, $(g_{ij}) = (I_n)$, $(g_{ij}) = (I_{p-q} \oplus (-I_q))$, $(g_{ij}) = (g_{ij})^{-1}$ and $(g_{ij}) = (g_{ij})^{1-1}$ (see [9]). From (3.23) in [9], we have $(1-n)C_i^\alpha = \sum_k B_{ik}^\alpha$. Thus, by a simply calculation, we may rewrite (3.1) as

$$(3.2) \quad (1-n) \sum_i C_{i,i}^\alpha + \sum_{i,j} A_{ij} B_{ij}^\alpha + \sum_{\beta} \sum_{i,j,k} \varepsilon_{\beta} B_{ik}^\beta B_{ij}^\beta = 0, \quad \forall \alpha,$$

where $\varepsilon_{\beta} = g_{\beta\beta}$ and $\varepsilon_{\beta} = 1$ for $n+1 \leq \beta \leq n+p-q$ and $\varepsilon_{\beta} = -1$ for $n+p-q+1 \leq \beta \leq n + p$.

From [9] or [10], we have the following relations of the connections of the conformal metric $e^{2\tau} du \cdot du$ and induced metric $du \cdot du$

$$(3.3) \quad \omega = e^\tau \theta, \quad \omega_{ij} = \theta_{ij} + \tau_i \theta_j - \tau_j \theta_i, \quad \omega_{\alpha\beta} = \theta_{\alpha\beta},$$

where $e^{2\tau} = \frac{n}{n+1} (S - nH^2)$. We know that the relations of the conformal invariants and the induced invariants are

$$(3.4) \quad e^{2\tau} C_i = H^\alpha \tau_i - H_i^\alpha - \sum_j h_{ij}^\alpha \tau_j,$$

$$(3.5) \quad e^{2\tau} A_{ij} = \tau_i \tau_j - \tau_{ij} - \sum_{\alpha} H^\alpha h_{ij}^\alpha - \frac{1}{2} \left(\sum_k \tau_k \tau_k - H^2 - c \right) I_{ij},$$

$$(3.6) \quad e^{2\tau} B_{ij}^\alpha = h_{ij}^\alpha - H^\alpha I_{ij},$$

where τ_{ij} is Hessian of τ with respect to the first fundamental form I, $\tau_i = \sum_j I^{ij} \tau_j$, $(I^{ij}) = (I_{ij})^{-1}$, $H_i^\alpha = e_{i}(H^\alpha)$ and $c = 0$ for $R_q^{n+p}(c)$, $c > 0$ for $S_q^{n+p}(c)$ and $c < 0$ for $H_q^{n+p}(c)$ (see [10])
From (3.3) and (3.4), by a similar calculation of Li [8], we have
\[\sum_j e^\tau C_i^\alpha \theta_j = \sum_j C_i^{\alpha \omega_j} = dC_i^\alpha + \sum_j C_j^\alpha \omega_{ji} + \sum_\beta C_i^\beta \omega_{\beta \alpha} \]
\[= dC_i^\alpha + \sum_j C_j^\alpha \theta_{ji} + \sum_j C_j^\alpha (\tau_j \theta_i - \tau_i \theta_j) + \sum_\beta C_i^\beta \theta_{\beta \alpha}, \]
therefore, we have
\[
(3.7) \quad e^\tau C_i^\alpha = e^{-2\tau} \left(-2H^\alpha \tau_i \tau_j + 2\tau_j \sum_k h_{ik}^\alpha \tau_k + 2\tau_j H_i^\alpha \tau_i + H_j^\alpha \tau_i \right)
- \sum_k h_{ik}^\alpha \tau_k - \sum_k h_{ik}^\alpha \tau_{k,j} - H_{ij}^\alpha \right) + \sum_k C_k^\alpha \tau_k \delta_{ij} - \tau_i C_j^\alpha.
\]
From (3.7), we see that
\[
(3.8) \quad e^\tau \sum_i C_i^\alpha = (n - 3) \left(|H^\alpha| \nabla^2 \tau^2 - \sum_{i,k} h_{ik}^\alpha \tau_k \tau_i \right)
- 2(n - 2) \sum_i H_i^\alpha \tau_i + H^\alpha \Delta \tau - \sum_{i,k} h_{ik}^\alpha \tau_{k,i} - \Delta^\perp H^\alpha.
\]
From (3.5) and (3.6), we have
\[
(3.9) \quad e^{3\tau} \left(\sum_{i,j} A_{ij} B_{ij}^\alpha + \sum_\beta \sum_{i,j,k} \varepsilon_\beta B_{ik}^\beta B_{kj}^\beta B_{ij}^\beta \right)
= \sum_{i,j} \left[\tau_i \tau_j - \tau_{i,j} - \sum_\beta H_{ij}^\beta I_j \right] \left(h_{ij}^\alpha - H^\alpha I_{ij} \right)
+ \sum_\beta \sum_{i,j,k} \varepsilon_\beta \left(h_{ik}^\beta - H_{ik}^\beta \right) \left(h_{kj}^\beta - H_{kj}^\beta \right) \left(h_{ij}^\beta - H_{ij}^\beta I_{ij} \right)
= \sum_{i,j} h_{ij}^\beta \left(\tau_i \tau_j - \tau_{i,j} \right) + H^\alpha \left(\Delta \tau - |\nabla \tau|^2 + n \sum_\beta (1 + 2 \varepsilon_\beta) (H^\beta)^2 \right)
+ \sum_\beta \sum_{i,j,k} \varepsilon_\beta h_{ik}^\beta h_{kj}^\beta h_{ij}^\alpha - \sum_{\beta, i,j} \sum_\beta (1 + 2 \varepsilon_\beta) H^\beta h_{ij}^\beta h_{ij}^\alpha - H^\alpha \sum_{\beta, i,j} \varepsilon_\beta (h_{ij}^\beta)^2.
\]
From (3.2), (3.8) and (3.9), we see that
\[
(3.10) \quad (n - 2) \left(\sum_{i,j} h_{ij}^\alpha \tau_i \tau_j - H^\alpha |\nabla \tau|^2 \right) + 2(n - 1)(n - 2) \sum_i H_i^\alpha \tau_i
+ (n - 2) \left(\sum_{i,j} h_{ij}^\alpha \tau_{i,j} - H^\alpha \Delta \tau \right) + (n - 1) \Delta^\perp H^\alpha
- H^\alpha \sum_{\beta, i,j} \sum_\beta (1 + 2 \varepsilon_\beta) H^\beta h_{ij}^\beta h_{ij}^\alpha
+ n H^\alpha \sum_{\beta} (1 + 2 \varepsilon_\beta) (H^\beta)^2 + \sum_{\beta, i,j,k} \varepsilon_\beta h_{ik}^\beta h_{kj}^\beta h_{ij}^\beta = 0.
\]
Putting $\rho^2 = S - nH^2$, we have $e^{2\tau} = \frac{n}{n-1}(S - nH^2) = \frac{n}{n-1}\rho^2$. Thus $e^\tau = \sqrt{\frac{n}{n-1}\rho}$ and $\tau = \ln(\sqrt{\frac{n}{n-1}\rho})$. From (3.10), we see that

$$
\frac{\rho^{n-2}}{n-1}\left\{ -H^\alpha \sum_{\beta,i,j} \varepsilon_\beta (h^\beta_{ij})^2 - \sum_{\beta,i,j} (1 + 2\varepsilon_\beta)H^\beta h^\beta_{ij} h^\beta_{ij} \\
+ \sum_{\beta} \sum_{i,j,k} \varepsilon_\beta h^{\alpha}_{ik} h^\beta_{kj} h^{\alpha}_{ij} + nH^\alpha \sum_{\beta} (1 + 2\varepsilon_\beta)(H^\beta)^2 \right\} \\
+ \frac{\rho^{n-2}}{n-1} \Delta H^\alpha + \frac{n-2}{n-1} \rho^{n-2} \sum_{i,j} (\ln \rho)_{i,j} \left(h^{\alpha}_{ij} - H^\alpha \delta_{ij} \right) \\
+ 2(n-2)\rho^{n-2} \sum_{i} (\ln \rho)_{i} H^\alpha_{i} \\
+ \frac{(n-2)^2}{n-1} \rho^{n-2} \sum_{i,j} (\ln \rho)_{i}(\ln \rho)_{j} \left(h^{\alpha}_{ij} - H^\alpha \delta_{ij} \right) = 0.
$$

It can be easily checked that

$$
\frac{\rho^{n-2}}{n-1} \Delta H^\alpha + \frac{n-2}{n-1} \rho^{n-2} \sum_{i,j} (\ln \rho)_{i,j} \left(h^{\alpha}_{ij} - H^\alpha \delta_{ij} \right) + 2(n-2)\rho^{n-2} \sum_{i} (\ln \rho)_{i} H^\alpha_{i} \\
+ \frac{(n-2)^2}{n-1} \rho^{n-2} \sum_{i,j} (\ln \rho)_{i}(\ln \rho)_{j} \left(h^{\alpha}_{ij} - H^\alpha \delta_{ij} \right) \\
= - \frac{1}{n-1} \sum_{i,j} (\rho^{n-2})_{i,j} \left(nH^\alpha \delta_{ij} - h^{\alpha}_{ij} \right) + \rho^{n-2} \Delta H^\alpha \\
+ 2 \sum_{i} (\rho^{n-2})_{i} H^\alpha_{i} + H^\alpha \Delta(\rho^{n-2}).
$$

From (3.11) and (3.12), we may obtain the Euler-Lagrange equation of Willmore spacelike submanifolds in $N^{n+p}(c)$ in terms of the induced invariants:

Theorem 3.1. Let $\varphi: M \to N^{n+p}(c)$ be an n-dimensional spacelike submanifold in $N^{n+p}(c)$. Then M is an n-dimensional Willmore spacelike submanifold if and only if for $n+1 \leq \alpha, \beta \leq n+p$,

$$
\rho^{n-2}\left\{ -H^\alpha \sum_{\beta,i,j} \varepsilon_\beta (h^\beta_{ij})^2 - \sum_{\beta,i,j} (1 + 2\varepsilon_\beta)H^\beta h^\beta_{ij} h^\beta_{ij} \\
+ \sum_{\beta} \sum_{i,j,k} \varepsilon_\beta h^{\alpha}_{ik} h^\beta_{kj} h^{\alpha}_{ij} + nH^\alpha \sum_{\beta} (1 + 2\varepsilon_\beta)(H^\beta)^2 \right\} \\
+ (n-1)\rho^{n-2} \Delta H^\alpha + 2(n-1) \sum_{i} (\rho^{n-2})_{i} H^\alpha_{i} \\
+ (n-1)H^\alpha \Delta(\rho^{n-2}) - \Box^\alpha(\rho^{n-2}) = 0.
$$
In the proof of (3.13), since we denote every maximal spacelike surface
\[\sum_{i,j}(\rho^{n-2})_{i,j}, \Box^{\alpha}(\rho^{n-2}) = \sum_{i,j}(nH^{\alpha} \delta_{ij} - h_{ij}^{\alpha}) \]
and \((\rho^{n-2})_{i,j}\) is the Hessian of \(\rho^{n-2}\) with respect to the induced metric.

Remark 3.1. In the proof of (3.13), since we denote \(e^{2\sigma} = \frac{n}{n-1}(S - nH^{2}) = \frac{n}{n-1}\rho^{2}\), it follows that \(\rho^{2} \neq 0\), that is, (3.13) holds only for \(\rho^{2} \neq 0\). But, if \(\rho^{2} = 0\), we should notice that (3.13) also holds. Thus, in the following discussion, we agree that the Euler-Lagrange equation of Willmore spacelike submanifolds (3.13) holds for all \(\rho^{2}\). But, if \(n = 3\) and \(n = 5\), we need assume that \(M\) has no umbilical points to guarantee \((\rho^{n-2})_{i,j}\) is continuous on \(M\).

Proposition 3.1. Every maximal spacelike surface \(\varphi : M \rightarrow N_{q}^{2+p}(c)\) in \(N_{q}^{2+p}(c)\) is Willmore spacelike surface.

In fact, if \(n = 2\), since \(H = 0\), from (2.5), we see that \(H^{\alpha} = 0\) and \(\sum_{k}h_{kk}^{\alpha} = 0\). On the other hand, since \(R_{ij} = \frac{R}{2}\delta_{ij}\), from Gauss equation (2.8), we have
\[\sum_{\beta,j}i\beta h_{i}^{\beta}h_{i}^{\beta} = c\delta_{ik} + \sum_{\beta,j}i\beta h_{i}^{\beta}h_{i}^{\beta} - R_{ik}, \]
which is embeded in \(\sum_{i,k}h_{ik}^{\alpha} = 0\). But, if \(n = 2\) and \(n = 5\), we need assume that \(M\) has no umbilical points to guarantee \((\rho^{n-2})_{i,j}\) is continuous on \(M\).

Example 3.1. If \(0 \leq q < p = q + 1\), since we know that the Clifford torus \(S^{k}(\sqrt{\frac{k}{n}}c) \times S^{n-k}(\sqrt{\frac{n-k}{n}}c)\) is a complete minimal hypersurface in sphere \(S^{n+1}(c)\) which is embeded in \(S_{q}^{n+q}(c)\) as a totally geodesic spacelike submanifold such that \(1 + q = p\), then \(S^{k}(\sqrt{\frac{k}{n}}c) \times S^{n-k}(\sqrt{\frac{n-k}{n}}c)\) is a complete maximal spacelike submanifold in \(S_{q}^{n+q}(c)\), where \(1 \leq k \leq n - 1\). Since \(S^{k}(\sqrt{\frac{k}{n}}c) \times S^{n-k}(\sqrt{\frac{n-k}{n}}c)\) lies in the totally geodesic spacelike submanifold \(S^{n+1}(c)\) of \(S_{q}^{n+q}(c)\), we know that \(h_{ij}^{\alpha} = 0\) for \(\alpha = n + 2, \ldots, n + q + 1\). Thus, if and only if \(n = 2k\) then
\[\sum_{\beta,i,j,k}i\beta h_{ik}^{\alpha}h_{j}^{\beta}h_{i}^{\beta} = \sum_{i,j,k}h_{ik}^{n+1}h_{j}^{n+1}h_{ij}^{n+1} = \sum_{i,k}\lambda_{i}^{3}, \]
where \(h_{ij}^{n+1} = \lambda_{ij}^{3}\), \(\sqrt{\frac{n-k}{n}}c\) and \(-\sqrt{\frac{k}{n-k}}c\) are the two distinct principal curvatures of \(S^{k}(\sqrt{\frac{k}{n}}c) \times S^{n-k}(\sqrt{\frac{n-k}{n}}c) \subset S^{n+1}(c)\) with multiplicities \(k\) and \(n-k\), respectively. We also see that \(\rho^{2} = S - nH^{2} = \sum_{i}\lambda_{i}^{2} = nc\) is constant. Thus, (3.13) holds if and only if \(n = 2k\), that is the Clifford torus \(S^{k}(\sqrt{\frac{k}{n}}c) \times S^{k}(\sqrt{\frac{1}{n-k}}c), 1 \leq k \leq n - 1\), is a maximal Willmore spacelike submanifold in \(S_{q}^{n+q+1}(c)\).
Example 3.2. From [5] and [1], we know that the Veronese surface is a minimal surface in $S^4(c)$ which is embedded in $S_4^{2+q}(c)$ as a totally geodesic spacelike submanifold such that $2 + q = p$, then the Veronese surface is a maximal spacelike surface in $S^{2+q}_q(c)$, where $p = 2 + q$. From Proposition 3.1, we know that it is a Willmore spacelike surface in $S^{2+q}_q(c)$.

4. Basic integral equalities

Define tensors

\begin{equation}
\tilde{h}^\alpha_{ij} = h^\alpha_{ij} - H^\alpha \delta_{ij},
\end{equation}

\begin{equation}
\tilde{\sigma}_{\alpha\beta} = \sum_{i,j} \tilde{h}^\alpha_{ij} \tilde{h}^\beta_{ij}, \quad \sigma_{\alpha\beta} = \sum_{i,j} h^\alpha_{ij} h^\beta_{ij}.
\end{equation}

Then the $(p \times p)$-matrix $(\tilde{\sigma}_{\alpha\beta})$ is symmetric and can be assumed to be diagonalized for a suitable choice of e_{n+1}, \cdots, e_{n+p}. We set

\begin{equation}
\tilde{\sigma}_{\alpha\beta} = \tilde{\sigma}_{\alpha\beta}.
\end{equation}

By a direct calculation, we have

\begin{equation}
\sum_k \tilde{h}^\alpha_{kk} = 0, \quad \tilde{\sigma}_{\alpha\beta} = \sigma_{\alpha\beta} - n H^\alpha H^\beta, \quad \rho^2 = \sum_{\alpha} \tilde{\sigma}_{\alpha} = S - n H^2,
\end{equation}

\begin{equation}
-H^\alpha \sum_{\beta, i, j} \varepsilon_{\beta}(h^\beta_{ij})^2 - \sum_{\beta, i, j} (1 + 2 \varepsilon_{\beta}) H^\beta h^\beta_{ij} h^\alpha_{ij}
+ \sum_{\beta} \sum_{i, j, k} \varepsilon_{\beta} h^\alpha_{ik} h^\beta_{kj} \tilde{h}^\alpha_{ij} + n H^\alpha \sum_{\beta} (1 + 2 \varepsilon_{\beta})(H^\beta)^2
= \sum_{\beta} \sum_{i, j, k} \varepsilon_{\beta} \tilde{h}^\alpha_{ik} \tilde{h}^\beta_{kj} \tilde{h}^\alpha_{ij} - \sum_{i, j, \beta} H^\beta \tilde{h}^\beta_{ij} \tilde{h}^\alpha_{ij}.
\end{equation}

From (4.1),(4.4) and (4.5), the Euler-Lagrange equation (3.13) can be rewritten as

Proposition 4.1. Let $\varphi : M \to N^{n+p}_q(c)$ be an n-dimensional spacelike submanifold in $N^{n+p}_q(c)$. Then M is a Willmore spacelike submanifold if and only if for $n + 1 \leq \alpha \leq n + p$

\begin{equation}
\Box^\alpha (\rho^{n-2}) = (n - 1) \rho^{n-2} \Delta^\perp H^\alpha + 2(n - 1) \sum_i (\rho^{n-2})_{1i} H^\alpha_{1i}
+ (n - 1) H^\alpha \Delta (\rho^{n-2}) + \rho^{n-2} \left(\sum_{\beta} \sum_{i, j, k} \varepsilon_{\beta} \tilde{h}^\alpha_{ik} \tilde{h}^\beta_{kj} \tilde{h}^\alpha_{ij} - \sum_{i, j, \beta} H^\beta \tilde{h}^\beta_{ij} \tilde{h}^\alpha_{ij} \right).
\end{equation}

Setting $f = n H^\alpha$ in (2.15), we have

\begin{equation}
\Box^\alpha (n H^\alpha) = \sum_{i, j} (n H^\alpha \delta_{ij} - h^\alpha_{ij})(n H^\alpha)_{i,j}
= \sum_{i, j} (n H^\alpha)(n H^\alpha)_{i,j} - \sum_{i, j} h^\alpha_{ij}(n H^\alpha)_{i,j}.
\end{equation}
We also have
\[
\frac{1}{2} \Delta (nH)^2 = \frac{1}{2} \sum_\alpha (nH^\alpha)^2 = \frac{1}{2} \sum_\alpha \Delta (nH^\alpha)^2 \\
= \frac{1}{2} \sum_\alpha [(nH^\alpha)^2]_{i,i} = \sum_\alpha [(nH^\alpha)_i]^2 + \sum_\alpha (nH^\alpha)(nH^\alpha)_i,i \\
= n^2 |\nabla^i \vec{H}|^2 + \sum_\alpha (nH^\alpha)(nH^\alpha)_i,i.
\]

Therefore, from (4.7), (4.8), we get
\[
\sum_\alpha \Box (nH^\alpha) = \frac{1}{2} \Delta (nH)^2 - n^2 |\nabla^i \vec{H}|^2 = \sum_\alpha h^\alpha_{ij}(nH^\alpha)_{i,j} \\
= \frac{1}{2} \Delta [n(n-1)H^2 - \rho^2 + S] - n^2 |\nabla^i \vec{H}|^2 - \sum_\alpha h^\alpha_{ij}(nH^\alpha)_{i,j} \\
= \frac{1}{2} \Delta S + \frac{1}{2} n(n-1)\Delta H^2 - \frac{1}{2} \Delta \rho^2 - n^2 |\nabla^i \vec{H}|^2 - \sum_\alpha h^\alpha_{ij}(nH^\alpha)_{i,j}.
\]

From (2.11) and (2.12), we have
\[
\frac{1}{2} \Delta S = \sum_{i,j,k,\alpha} (h^\alpha_{ijk})^2 + \sum_{i,j,\alpha} h^\alpha_{ij} \Delta h^\alpha_{ij} \\
= |\nabla h|^2 + \sum_{i,j,\alpha} h^\alpha_{ij} (nH^\alpha)_{i,j} - \sum_{\alpha} \sum_{i,j,k,l} h^\alpha_{ij} h_{k\ell} R_{ij\ell k} \\
- \sum_{\alpha} \sum_{i,j,k,l} h^\alpha_{ij} h_{k\ell} R_{ij\ell k} - \sum_{\alpha,\beta} \sum_{i,j,k} \varepsilon h^\alpha_{ij} h^\beta_{k\ell} R_{ij\ell k}.
\]

Putting (4.10) into (4.9), we have
\[
\sum_\alpha \Box (nH^\alpha) = |\nabla h|^2 - n^2 |\nabla^i \vec{H}|^2 + \frac{1}{2} n(n-1)\Delta H^2 - \frac{1}{2} \Delta \rho^2 \\
- \sum_{\alpha} \sum_{i,j,k,l} h^\alpha_{ij} (h^\alpha_{k\ell} R_{ij\ell k} + h^\alpha_{ij} R_{ij\ell k}) - \sum_{\alpha,\beta} \sum_{i,j,k} \varepsilon h^\alpha_{ij} h^\beta_{k\ell} R_{ij\ell k}.
\]

Multiplying (4.11) by ρ^{n-2} and taking integration, using (2.16), we have
\[
\sum_\alpha \int_M (nH^\alpha) \Box (\rho^{n-2}) dv = \int_M \rho^{n-2} |\nabla h|^2 - n^2 |\nabla^i \vec{H}|^2 dv \\
+ \frac{1}{2} n(n-1) \int_M \rho^{n-2} \Delta H^2 dv - \frac{1}{2} \int_M \rho^{n-2} \Delta \rho^2 dv \\
- \int_M \rho^{n-2} \sum_{\alpha} \sum_{i,j,k,l} h^\alpha_{ij} (h^\alpha_{k\ell} R_{ij\ell k} + h^\alpha_{ij} R_{ij\ell k}) dv.
\]
\[-\int_M \rho^{n-2} \sum_{\alpha, \beta} \sum_{i,j,k} \varepsilon_{\beta} h_{ij}^\alpha h_{k}^\beta R_{\alpha \beta i,j,k} dv.\]

Taking the Willmore equation (4.6) into (4.12) and making use of the following:

\[
\int_M \rho^{n-2} \sum_{\alpha} H^\alpha \triangle H^\alpha dv = \frac{1}{2} \int_M \rho^{n-2} \sum_{\alpha} \Delta H^\alpha dv - \int_M \rho^{n-2} \sum_{i,\alpha} (H^\alpha_i)^2 dv
\]

\[
= \frac{1}{2} \int_M \rho^{n-2} \Delta H^2 dv - \int_M \rho^{n-2} |\nabla H|^2 dv,
\]

\[
\int_M H^2 \Delta (\rho^{n-2}) dv = \int_M \sum_{\alpha} (H^\alpha)^2 \sum_i (\rho^{n-2})_{i,i} dv
\]

\[
= \sum_{\alpha,i} \int_M (H^\alpha)^2 (\rho^{n-2})_{i,i} dv = -\sum_{\alpha,i} \int_M (\rho^{n-2})_{i,i} ((H^\alpha)^2)_{i,i} dv
\]

\[
= -2 \int_M \sum_{\alpha} H^\alpha \sum_i (\rho^{n-2})_{i,i} H^\alpha_{i,i} dv,
\]

\[-\frac{1}{2} \int_M \rho^{n-2} \Delta \rho^2 dv = -\frac{1}{2} \sum_i \int_M \rho^{n-2} (\rho^2)_{i,i} dv
\]

\[
= \frac{1}{2} \sum_i \int_M (\rho^2)_{i,i} (\rho^{n-2})_{i,i} dv = (n-2) \int_M \rho^{n-2} |\nabla \rho|^2 dv,
\]

we have, by a direct calculation, the following:

Proposition 4.2. Let \(\varphi : M \to N^{n+p}(c) \) be an \(n \)-dimensional spacelike submanifold in \(N^{n+p}(c) \). Then

\[
(4.13) \quad \int_M \rho^{n-2} (|\nabla h|^2 - n|\nabla h_{ij}^\alpha|^2) dv + (n-2) \int_M \rho^{n-2} |\nabla \rho|^2 dv
\]

\[-\int_M \rho^{n-2} \sum_{\alpha, \beta} \sum_{i,j,k} \varepsilon_{\beta} h_{ij}^\alpha h_{k}^\beta (\tilde{h}_{ij}^\alpha \tilde{h}_{k}^\beta - H^\beta_{\alpha \beta i,j,k}) dv
\]

\[-\int_M \rho^{n-2} \sum_{\alpha} \sum_{i,j,k,l} h_{ij}^\alpha (h_{kl}^\alpha R_{ij,k} + h_{kl}^\alpha R_{ik,j}) dv
\]

\[-\int_M \rho^{n-2} \sum_{\alpha, \beta} \sum_{i,j,k,l} \varepsilon_{\beta} h_{ij}^\alpha h_{k}^\beta R_{\alpha \beta i,j,k} dv = 0.
\]

In general, for a matrix \(A = (a_{ij}) \) we denote by \(N(A) \) the square of the norm of \(A \), that is, \(N(A) = \text{trace}(A \cdot A^t) = \sum_{i,j} (a_{ij})^2 \). Clearly, \(N(A) = N(T^t AT) \) for any orthogonal matrix \(T \). From (2.13), we have

\[
(4.14) \quad -\sum_{\alpha, \beta} \sum_{i,j,k} \varepsilon_{\beta} h_{ij}^\alpha h_{k}^\beta R_{\alpha \beta i,j,k} = -\sum_{\alpha, \beta} \sum_{i,j,k,l} \varepsilon_{\beta} h_{ij}^\alpha h_{k}^\beta (h_{kl}^\alpha h_{ij}^\alpha - h_{ij}^\beta h_{kl}^\alpha)
\]
\[
\begin{align*}
\sum_{\alpha,\beta,j,k} \epsilon_{\beta} \left(\sum_{l} h_{klj}^{\alpha} - \sum_{l} h_{klji}^{\beta} \right)^{2} \\
= -\frac{1}{2} \sum_{\alpha,\beta,j,k} \epsilon_{\beta} \left(\sum_{l} h_{klj}^{\alpha} - \sum_{l} h_{klji}^{\beta} \right)^{2} \\
= -\frac{1}{2} \sum_{\alpha,\beta,j,k} \epsilon_{\beta} \left(\sum_{l} h_{klj}^{\alpha} - \sum_{l} h_{klji}^{\beta} \right)^{2} \\
= -\frac{1}{2} \sum_{\alpha,\beta} \epsilon_{\beta} N(\tilde{A}_{\alpha} \tilde{A}_{\beta} - \tilde{A}_{\beta} \tilde{A}_{\alpha}),
\end{align*}
\]

where \(\tilde{A}_{\alpha} := (h_{ij}^{\alpha}) = (h_{ij}^{\alpha} - H^{\alpha} \delta_{ij}) \).

By use of (2.7), (2.13), (4.1), (4.2), (4.4) and (4.14), we conclude that

(4.15)
\[
\sum_{\alpha,\beta,j,k,l} h_{ij}^{\alpha} (h_{klj}^{\alpha} R_{lijk} + h_{lj}^{\alpha} R_{lkij})
\]
\[
= n \rho^{2} - \sum_{\alpha,\beta} \epsilon_{\beta} \bar{\sigma}_{\alpha \beta}^{2} + n \sum_{\alpha,\beta} \sum_{i,j,k} \epsilon_{\beta} H^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} - \sum_{\alpha,\beta,i,j,k} \epsilon_{\beta} h_{ij}^{\alpha} h_{ik}^{\beta} R_{\beta \alpha jk}
\]
\[
= n \rho^{2} - \sum_{\alpha,\beta} \epsilon_{\beta} \bar{\sigma}_{\alpha \beta}^{2} - 2n \sum_{\alpha,\beta} \sum_{i,j,k} \epsilon_{\beta} H^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} - n^{2} \sum_{\alpha} (H^{\alpha})^{2} \sum_{\beta} \epsilon_{\beta} H^{\beta} - n^{2} \sum_{\alpha} (H^{\alpha})^{2} \sum_{\beta} \epsilon_{\beta} H^{\beta}
\]
\[
+ n \sum_{\alpha,\beta} \sum_{i,j,k} \epsilon_{\beta} H^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} + n \rho^{2} \sum_{\beta} \epsilon_{\beta} (H^{\beta})^{2} + 2n \sum_{\alpha,\beta} \sum_{i,j} \epsilon_{\beta} H^{\alpha} H^{\beta} h_{ij}^{\alpha} h_{ij}^{\beta}
\]
\[
+ n^{2} \sum_{\alpha} (H^{\alpha})^{2} \sum_{\beta} \epsilon_{\beta} (H^{\beta})^{2} - \frac{1}{2} \sum_{\alpha,\beta} \epsilon_{\beta} N(\tilde{A}_{\alpha} \tilde{A}_{\beta} - \tilde{A}_{\beta} \tilde{A}_{\alpha})
\]
\[
= n \rho^{2} - \sum_{\alpha,\beta} \epsilon_{\beta} \bar{\sigma}_{\alpha \beta}^{2} + n \rho^{2} \sum_{\beta} \epsilon_{\beta} (H^{\beta})^{2} + n \sum_{\alpha,\beta} \sum_{i,j,k} \epsilon_{\beta} H^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha}
\]
\[
- \frac{1}{2} \sum_{\alpha,\beta} \epsilon_{\beta} N(\tilde{A}_{\alpha} \tilde{A}_{\beta} - \tilde{A}_{\beta} \tilde{A}_{\alpha}).
\]

Putting (4.14) and (4.15) into (4.13), we have the following:

Proposition 4.3. Let \(\varphi : M \to N_{q+p}^{n+c} \) be an \(n \)-dimensional spacelike submanifold in \(N_{q+p}^{n+c} \). Then

(4.16)
\[
\int_{M} \rho^{n-2} (|\nabla h|^{2} - n|\nabla^{\perp} \tilde{H}|^{2}) dv + (n-2) \int_{M} \rho^{n-2} |\nabla \rho|^{2} dv
\]
\[
+ n \int_{M} \rho^{n-2} \left(\sum_{\alpha,\beta} H^{\alpha} H^{\beta} \bar{\sigma}_{\alpha \beta} + \rho^{2} \sum_{\beta} \epsilon_{\beta} (H^{\beta})^{2} \right) dv + nc \int_{M} \rho^{n} dv
\]
\[
- \int_{M} \rho^{n-2} \left(\sum_{\alpha,\beta} \epsilon_{\beta} N(\tilde{A}_{\alpha} \tilde{A}_{\beta} - \tilde{A}_{\beta} \tilde{A}_{\alpha}) + \sum_{\alpha,\beta} \epsilon_{\beta} \bar{\sigma}_{\alpha \beta}^{2} \right) dv = 0.
\]
5. Proofs of Theorems

Proof of Theorem 1.1. (1) If \(p - q = 1 \), from Lemma 2.2 and (4.16), we have

\[
0 = \int_M \rho^{n-2}(|\nabla h|^2 - \frac{3n^2}{n+2}|\nabla^\perp \vec{H}|^2)dv + \int_M \rho^{n-2}(\frac{3n^2}{n+2} - n)|\nabla^\perp \vec{H}|^2dv
\]

\[
+ (n-2) \int_M \rho^{n-2}|
abla \rho|^2 dv
\]

\[
+ n \int_M \rho^{n-2}\left\{ \sum_{\alpha,\beta} H^\alpha H^\beta \tilde{\sigma}_{\alpha\beta} + 2\rho^2 (H^{n+1})^2 - H^2 \rho^2 \right\} dv
\]

\[
+ nc \int_M \rho^n dv + \int_M \rho^{n-2}\left\{ \sum_{\alpha=n+2}^{n+p} \sum_{\beta=n+2}^{n+p} N(\tilde{A}_\alpha \tilde{A}_\beta - \tilde{A}_\beta \tilde{A}_\alpha) - 2\tilde{\sigma}_{n+1}dv
\]

\[
+ \sum_{\alpha=n+1}^{n+p} \sum_{\beta=n+1}^{n+p} \tilde{\sigma}_{\alpha\beta} \right\} dv
\]

\[
\geq - n \int_M \rho^{n-2}H^2\tilde{\rho}^2 dv + nc \int_M \rho^n dv - 2 \int_M \rho^{n-2}\rho^4 dv + \int_M \rho^{n-2}\frac{1}{p}\rho^4 dv
\]

\[
= \int_M \rho^n \left\{ n(c - H^2) - \left(2 - \frac{1}{p} \right) \rho^2 \right\} dv,
\]

where the inequality \(N(\tilde{A}_\alpha \tilde{A}_\beta - \tilde{A}_\beta \tilde{A}_\alpha) \geq 0 \) for any \(\alpha, \beta, \tilde{\sigma}_{n+1} \leq \rho^4 \) and \(\sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta} = \sum_{\alpha} \tilde{\sigma}_{\alpha} \geq \frac{1}{\rho^4} \left(\sum_{\alpha} \tilde{\sigma}_{\alpha} \right)^2 = \frac{1}{p} \rho^4 \) is used.

In particular, if \(\rho^2 \leq \frac{n}{2} \frac{1}{p} (c - H^2) \), from (5.1), we see that \(\rho^2 = 0 \) and \(M \) is totally umbilical or \(\rho^2 = \frac{n}{2} \frac{1}{p} (c - H^2) \). In the latter case, we have from (5.1) that

\[
\int_M \rho^{n-2} \sum_{\alpha,\beta} H^\alpha H^\beta \tilde{\sigma}_{\alpha\beta} dv = 0,
\]

that is

\[
\int_M \rho^{n-2} \sum_{\alpha} (H^\alpha)^2 \tilde{\sigma}_{\alpha} dv = 0.
\]

If \(\rho^2 = 0 \), that is \(M \) is totally umbilical, otherwise, if \(\rho^2 \neq 0 \), it follows from (5.2) that \(\sum_{\alpha} (H^\alpha)^2 \tilde{\sigma}_{\alpha} = 0 \), thus \((H^\alpha)^2 \tilde{\sigma}_{\alpha} = 0 \) for all \(\alpha \). Therefore, we see that \(\tilde{\sigma}_{\alpha} = 0 \) for all \(\alpha \) (contradicts to \(\rho^2 \neq 0 \)), or \(H^\alpha = 0 \) for all \(\alpha \). Thus, we have \(H = 0 \), that is, \(M \) is a compact maximal spacelike submanifold in \(S^{n+p}_q(c) \), by the Theorem 1 in Cheng and Ishikawa [4] and Example 3.1, we know that \(M \) lies in the totally geodesic spacelike submanifold \(S^{n+1}_q(c) \) of \(S^{n+p}_q(c) \) and is isometric to the Clifford torus \(S^k(\frac{1}{\sqrt{2}}c) \times S^k(\frac{1}{\sqrt{2}}c) \).

(2) If \(p - q > 1 \), from Lemma 2.2 and (4.16), we have

\[
0 = \int_M \rho^{n-2}(|\nabla h|^2 - \frac{3n^2}{n+2}|\nabla^\perp \vec{H}|^2)dv + \int_M \rho^{n-2}(\frac{3n^2}{n+2} - n)|\nabla^\perp \vec{H}|^2dv
\]

\[
+ (n-2) \int_M \rho^{n-2}|
abla \rho|^2 dv + n \int_M \rho^{n-2}\left\{ \sum_{\alpha,\beta} H^\alpha H^\beta \tilde{\sigma}_{\alpha\beta} \right\} dv
\]
\[+ 2\rho^2 \sum_{\beta=n+1}^{n+p-q} (H^2 - H^2 \rho^2) \, dv + n c \int_M \rho^n \, dv\]
\[+ \int_M \rho^{n-2} \left\{ -\sum_{\alpha,\beta} N(\tilde{A}_\alpha \tilde{A}_\beta - \tilde{A}_\beta \tilde{A}_\alpha) - \sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta}^2\right\} \, dv\]
\[+ 2 \sum_{\alpha} \sum_{\beta=n+1}^{n+p-q+1} N(\tilde{A}_\alpha \tilde{A}_\beta - \tilde{A}_\beta \tilde{A}_\alpha) + 2 \sum_{\alpha} \sum_{\beta=n+1}^{n+p-q+1} \tilde{\sigma}_{\alpha\beta}^2 \right\} \, dv\]
\[\geq - n \int_M \rho^{n-2} H^2 \rho^2 \, dv + n c \int_M \rho^n \, dv + \int_M \rho^{n-2} \left\{ -\frac{3}{2} \rho^2 \right\} \, dv\]
\[= \int_M \rho^n \left\{ n(c - H^2) - \frac{3}{2} \rho^2 \right\} \, dv,\]
where the inequality (see Li–Li [7])
\[-\sum_{\alpha,\beta} N(\tilde{A}_\alpha \tilde{A}_\beta - \tilde{A}_\beta \tilde{A}_\alpha) - \sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta}^2 \geq - \frac{3}{2} \rho^2,\]
is used.

In particular, if \(\rho^2 \leq \frac{2n}{6}(c - H^2)\), from (5.3), we see that \(\rho^2 = 0\) and \(M\) is totally umbilical or \(\rho^2 = \frac{2n}{6}(c - H^2)\). In the latter case, from (5.3), we also see that (5.2) holds. If \(\rho^2 = 0\), that is \(M\) is totally umbilical, otherwise, if \(\rho^2 \neq 0\), it follows from (5.2) that \(\sum_\alpha (H^2 \tilde{\sigma}_\alpha = 0). By the same argument as above, we see that \(H^2 = 0\) and \(H = 0\), that is, \(M\) is a compact maximal spacelike submanifold in \(S^{n+p}(c)\), by the Theorem 1 in Cheng and Ishikawa [4] and Example 3.2, we know that \(M\) lies in the totally geodesic spacelike submanifold \(S^{n+p}(c)\) of \(S^{n+p}(c)\) and is isometric to the Veronese surface. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. For a fixed \(\alpha, n + 1 \leq \alpha \leq n + p\), we can take a local orthonormal frame field \(\{e_1, \ldots, e_n\}\) such that \(h^\alpha_{ij} = \lambda^\alpha_i \delta_{ij}\), then \(\tilde{h}^\alpha_{ij} = \mu^\alpha_i \delta_{ij}\) with \(\mu^\alpha_i = \lambda^\alpha_i - H^\alpha_i, \sum_i \mu^\alpha_i = 0\). Thus

\[(5.4) \quad - \sum_{\alpha, i, j, k, l} h^\alpha_{ij}(\tilde{h}^\alpha_{ik}R_{kjk} - h^\alpha_{ik}R_{ikj}) = \frac{1}{2} \sum_{\alpha, i, k} (\lambda^\alpha_i - \lambda^\alpha_k)^2 R_{kikk}\]
\[= \frac{1}{2} \sum_{\alpha, i, k} (\mu^\alpha_i - \mu^\alpha_k)^2 R_{kikk} \geq nK \rho^2,\]

where \(K\) denotes the infimum of the sectional curvature of \(M\) and the equality in (5.4) holds if and only if \(R_{kikk} = K\) for any \(i \neq k\).

Let \(\sum_i (\tilde{h}^\beta_{ii})^2 = \tau_{\beta}\). Then \(\tau_{\beta} \leq \sum_i (\tilde{h}^\beta_{ij})^2 = \tilde{\sigma}_{\beta}\). Since \(\sum_i \tilde{h}^\beta_{ii} = 0, \sum_i \mu^\alpha_i = 0\) and \(\sum_i (\mu^\alpha_i)^2 = \tilde{\sigma}_{\alpha}\). We have from Lemma 2.1 that

\[(5.5) \quad - \sum_{\alpha, \beta, i, j, k} H^\alpha \varepsilon_{\beta} \tilde{h}^\alpha_{ik} \tilde{h}^\beta_{kj} \tilde{h}^\beta_{ij} = - \sum_{\alpha, i, j, k} \sum_{\beta=n+1}^{\alpha+p-q} H^\alpha \tilde{h}^\alpha_{ik} \tilde{h}^\beta_{kj} \tilde{h}^\beta_{ij},\]
\[+ \sum_{\alpha,n,j,k}^{n+p} H^\alpha h_{ik} \bar{h}_{kj} h_{ij} \]

\[= - \sum_{\alpha,\beta}^{n+p} H^\alpha \bar{h}_{ij} (\mu^\beta_i)^2 + \sum_{\alpha,\beta}^{n+p} H^\alpha \bar{h}_{ij} (\mu^\beta_i)^2 \]

\[\geq - \frac{n-2}{\sqrt{n(n-1)}} \sum_{\alpha= \beta=n+1}^{n+p} |H^\alpha| \sqrt{\tau^\alpha} \]

\[= - \frac{n-2}{\sqrt{n(n-1)}} \sum_{\alpha= \beta=n+p+q+1}^{n+p} |H^\alpha| \sqrt{\tau^\alpha} \]

\[\geq - \frac{\sqrt{n(n-1)}}{\sqrt{n(n-1)}} \left(\sum_{\alpha} (H^\alpha)^2 \sum_{\alpha} \tau^\alpha \right) \rho^2 \geq - \frac{n-2}{\sqrt{n(n-1)}} H^3. \]

From Lemma 1 in Chen–Do Carmo–Kobayashi [5], we see that

\[(5.6) \quad \frac{1}{2} \sum_{\alpha,\beta}^{n+p} \varepsilon_{\beta N(\bar{A}_\alpha \bar{A}_\beta - \bar{A}_\beta \bar{A}_\alpha) \]

\[= - \frac{1}{2} \sum_{\alpha}^{n+p} N(\bar{A}_\alpha \bar{A}_\beta - \bar{A}_\beta \bar{A}_\alpha) + \frac{1}{2} \sum_{\alpha,\beta}^{n+p} N(\bar{A}_\alpha \bar{A}_\beta - \bar{A}_\beta \bar{A}_\alpha) \]

\[= - \frac{1}{2} \sum_{\alpha=n+1}^{n+p} \sum_{\beta=n+p+q+1}^{n+p} N(\bar{A}_\alpha \bar{A}_\beta - \bar{A}_\beta \bar{A}_\alpha) \]

\[+ \frac{1}{2} \sum_{\alpha=n+p-1}^{n+p} \sum_{\beta=n-p+1}^{n+p} N(\bar{A}_\alpha \bar{A}_\beta - \bar{A}_\beta \bar{A}_\alpha) \]

\[\geq - \frac{1}{2} \sum_{\alpha=n+1}^{n+p} \sum_{\beta=n+1}^{n+p} N(\bar{A}_\alpha \bar{A}_\beta - \bar{A}_\beta \bar{A}_\alpha) \geq - \sum_{\alpha \neq \beta} \bar{\sigma}_\alpha \bar{\sigma}_\beta \]

\[= - \left(\sum_{\alpha=n+1}^{n+p} \bar{\sigma}_\alpha \right)^2 = - \left(\sum_{\alpha=n+p}^{n+p} \bar{\sigma}_\alpha \right)^2 \geq - \left(\frac{1}{p-q} \left(\sum_{\alpha=n+1}^{n+p} \bar{\sigma}_\alpha \right) \right)^2 \]

\[= \left(1 - \frac{1}{p-q} \right) \left(\sum_{\alpha=n+1}^{n+p} \bar{\sigma}_\alpha \right)^2 \geq \left(1 - \frac{1}{p-q} \right) \rho^4. \]

Thus, from (4.13), (4.14), (5.4), (5.5), (5.6) and Lemma 2.2, we have

\[(5.7) \quad 0 \geq \int_M \rho^{n-2} (|\nabla h|^2 - \frac{3n^2}{n+2} |\nabla \bar{H}|^2) dv + \int_M \rho^{n-2} \left(\frac{3n^2}{n+2} - n \right) \nabla^\perp H^2 dv \]
\[+ (n - 2) \int_M \rho^{n-2} |\nabla \rho|^2 dv - \int_M \rho^{n-2} \frac{n(n-2)}{\sqrt{n(n-1)}} H \rho^2 dv \\
+ \int_M \rho^{n-2} \sum_{\alpha, \beta} n H^\alpha H^\beta \tilde{\sigma}_{\alpha \beta} + \int_M \rho^{n-2} nK \rho^2 dv - \frac{1}{2} \sum_{\alpha, \beta} \epsilon_{\alpha \beta} N(\tilde{A}_\alpha \tilde{A}_\beta - \tilde{A}_\beta \tilde{A}_\alpha) \\
\geq \int_M \rho^n \left\{ nK - \frac{n(n-2)}{\sqrt{n(n-1)}} H \rho - \left(1 - \frac{1}{p-q} \right) \rho^2 \right\} dv. \]

In particular, if

\[K \geq \frac{n-2}{\sqrt{n(n-1)}} H \rho + \frac{1}{n} \left(1 - \frac{1}{p-q} \right) \rho^2, \]

from (5.7), we see that \(\rho^2 = 0 \) and \(M \) is totally umbilical or \(K = \frac{n+2}{n(n-1)} H \rho + \frac{1}{n} \left(1 - \frac{1}{p-q} \right) \rho^2 \). In the latter case, from (5.7), we know that (5.2) holds. If \(\rho^2 \neq 0 \), that is \(M \) is totally umbilical, otherwise, if \(\rho^2 = 0 \), it follows from (5.2) that \(\sum_{\alpha} (H^\alpha)^2 \tilde{\sigma}_{\alpha} = 0 \). By the same argument as in the proof of Theorem 1.1, we see that \(H^\alpha = 0 \) and \(H = 0 \). It also follows from (5.7) that \(|\nabla h|^2 = \frac{3n^2}{n+2} |\nabla^2 \tilde{H}|^2 = 0 \), that is, the second fundamental form of \(M \) is parallel. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. From (2.8) and (4.1), we have

\[R_{kk} = (n-1)c + \sum_{\alpha} \epsilon_{\alpha} H^\alpha \tilde{h}_{kk}^\alpha + (n-1) \sum_{\alpha=n+1}^{n+p-q} (H^\alpha)^2 \]

\[- (n-1) \sum_{\alpha=n+p+q+1}^{n+p} (H^\alpha)^2 - \sum_{i, \alpha=n+1}^{n+p-q} (\tilde{h}_{ik}^\alpha)^2 + \sum_{i, \alpha=n+p+q+1}^{n+p} (\tilde{h}_{ik}^\alpha)^2 \]

\[\leq (n-1)c + \sum_{\alpha} \epsilon_{\alpha} H^\alpha \tilde{h}_{kk}^\alpha + (n-1)H^2 \]

\[= \sum_{i, \alpha=n+1}^{n+p-q} (\tilde{h}_{ik}^\alpha)^2 + \sum_{i, \alpha=n+p+q+1}^{n+p} (\tilde{h}_{ik}^\alpha)^2. \]

Thus

\[nQ \leq \sum_k R_{kk} = n(n-1)c + n(n-1)H^2 - \sum_{i,k, \alpha=n+1}^{n+p-q} (\tilde{h}_{ik}^\alpha)^2 - \sum_{i,k, \alpha=n+p+q+1}^{n+p} (\tilde{h}_{ik}^\alpha)^2. \]

From (4.2) and (4.3), we have

\[(5.8) \]

\[- \sum_{\alpha=n+1}^{n+p-q} \tilde{\sigma}_{\alpha} + \sum_{\alpha=n+p+q+1}^{n+p} \tilde{\sigma}_{\alpha} \geq nQ - n(n-1)c - n(n-1)H^2. \]
From (5.8), we see that

\begin{equation}
-\left(\sum_{\alpha=n+1}^{n+p-q}\tilde{\sigma}_{\alpha}\right)^2 + \frac{1}{q}\left(\sum_{\alpha=n+1}^{n+p-q}\tilde{\sigma}_{\alpha}\right)^2
\end{equation}

\begin{align*}
\geq & \left(-\sum_{\alpha=n+1}^{n+p-q}\tilde{\sigma}_{\alpha} + \sum_{\alpha=n+1}^{n+p-q}\tilde{\sigma}_{\alpha}\right)\left(\sum_{\alpha=n+1}^{n+p-q}\tilde{\sigma}_{\alpha} + \sum_{\alpha=n+1+p-q+1}^{n+p}\tilde{\sigma}_{\alpha}\right) - \left(1 - \frac{1}{q}\right)\rho^4 \\
\geq & \left(nQ - n(n-1)c - n(n-1)H^2\right)\rho^2 - \left(1 - \frac{1}{q}\right)\rho^4.
\end{align*}

By Lemma 1 in Chen–Do Carmo–Kobayashi [5], we also see that

\begin{equation}
-\sum_{\alpha=n+1}^{n+p-q} \sum_{\beta=n+1}^{n+p-q} N(\tilde{A}_\alpha \tilde{A}_\beta - \tilde{A}_\beta \tilde{A}_\alpha) \geq -2\left(1 - \frac{1}{p-q}\right)\rho^4.
\end{equation}

From Lemma 2.2, (4.3), (4.16), (5.9) and (5.10), we have

\begin{equation}
0 = \int_M \rho^{n-2}(|\nabla h|^2 - \frac{3n^2}{n+2}|\nabla^\perp \vec{H}|^2)dv + \int_M \rho^{n-2}\left(\frac{3n^2}{n+2} - n\right)|\nabla^\perp \vec{H}|^2dv \\
+ (n-2)\int_M \rho^{n-2}|\nabla \rho|^2dv + n\int_M \rho^{n-2}\left\{ \sum_{\alpha,\beta} H^{\alpha} H^{\beta} \tilde{\sigma}_{\alpha\beta} \\
+ 2\rho^2 \sum_{\beta=n+1}^{n+p-q} (H^{\beta})^2 - H^2 \rho^2 \right\}dv + nc\int_M \rho^ndv \\
+ \int_M \rho^{n-2}\left\{ - \sum_{\alpha=n+1}^{n+p-q} \sum_{\beta=n+1}^{n+p-q} N(\tilde{A}_\alpha \tilde{A}_\beta - \tilde{A}_\beta \tilde{A}_\alpha) - \sum_{\alpha=n+1}^{n+p-q} \tilde{\sigma}_{\alpha}^2 + \sum_{\alpha=n+1+p-q+1}^{n+p} \tilde{\sigma}_{\alpha}^2 \right\}dv \\
\geq & -n\int_M \rho^{n-2}H^2 \rho^2 dv + nc\int_M \rho^ndv + \int_M \rho^{n-2}\left\{ -2\left(1 - \frac{1}{p-q}\right)\rho^4 \right\}dv \\
+ \int_M \rho^{n-2}\left\{ - \left(\sum_{\alpha=n+1}^{n+p-q} \tilde{\sigma}_{\alpha}\right)^2 + \frac{1}{q}\left(\sum_{\alpha=n+1+p-q+1}^{n+p} \tilde{\sigma}_{\alpha}\right)^2 \right\}dv \\
\geq & -n\int_M \rho^{n-2}H^2 \rho^2 dv + nc\int_M \rho^ndv + \int_M \rho^{n-2}\left\{ -2\left(1 - \frac{1}{p-q}\right)\rho^4 \right\}dv \\
+ \int_M \rho^{n-2}\left\{ \left(nQ - n(n-1)c - n(n-1)H^2\right)\rho^2 - \left(1 - \frac{1}{q}\right)\rho^4 \right\}dv \\
= & \int_M n\rho^3\left\{ Q - (n-2)c - nH^2 - \frac{1}{n}\left(3 - \frac{p+q}{(p-q)q}\right)\rho^2 \right\}dv.
In particular, if
\[Q > (n - 2)c + nH^2 + \frac{1}{n}\left(3 - \frac{p+q}{(p-q)q}\right)\rho^2, \]
from (5.11), we see that \(\rho^2 = 0 \) and \(M \) is totally umbilical or \(Q = (n - 2)c + nH^2 + \left(3 - \frac{p+q}{(p-q)q}\right)\rho^2 \). In the latter case, from (5.11), we know that (5.2) holds. If \(\rho^2 = 0 \), that is \(M \) is totally umbilical, otherwise, if \(\rho^2 \neq 0 \), it follows from (5.2) that \(\sum_\alpha (H^\alpha)^2 \sigma_\alpha = 0 \). By the same argument as in the proof of Theorem 1.1, we see that \(H^\alpha = 0 \) and \(H = 0 \). It also follows from (5.11) that \(|\nabla h|^2 = \frac{3n^2}{n+1} |\nabla H|^2 = 0 \), that is, the second fundamental form of \(M \) is parallel. This completes the proof of Theorem 1.3. \(\square \)

References

1. L.J. Alias, A. Romero, Integral formulas for compact spacelike \(n \)-submanifolds in de Sitter spaces. Applications to the parallel mean curvature vector case, Manuscripta math. 87 (1995), 405–416.
2. B.Y. Chen, Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital. 10 (1974), 380–385.
3. S.Y. Cheng and S.T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195–204.
4. Q-M. Cheng and S. Ishikawa, Complete maximal spacelike \(n \)-submanifolds, Kodai Math. Jour. 20 (1997), 208–217.
5. S.S. Chern, M.Do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in Functional Analysis and Related Fields (F. Brower, ed.), Springer-Verlag, Berlin, (1970), 59–75.
6. T. Ishihara, Maximal space-like submanifolds of a pseudo-Riemannian space form of constant curvature, Michigan Math. J. 35 (1988) 345–352.
7. A.M. Li and J.M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math. 58 (1992), 582–594.
8. H. Li, Willmore submanifolds in a sphere, Math. Res. Letters 9 (2002), 771–790.
9. C.X. Nie and C.X. Wu, Regular submanifolds in conformal spaces \(Q^p \), Chin. Ann. Math. 33 B(5) (2012), 695–714.
10. C.X. Nie, Conformal geometry of hypersurfaces and surfaces in Lorentzian space forms (in Chinese), Dissertation for the Doctoral Degree, Beijing, Peking University, 2006.
11. F.J. Pedit and T. J. Willmore, Conformal geometry, Atti Sem. Mat. Fis, Univ Modena XXXVI(1988), 237–245.
12. W. Santos, Submanifolds with parallel mean curvature vector in sphere, Tôhoku Math. J. 46 (1994), 403–415.
13. S.C. Shu, Curvature and rigidity of Willmore submanifolds, Tsukuba J. Math. 31 (2007), 175–196.
14. S.C. Shu and J.F. Chen, Willmore spacelike submanifolds in a Lorentzian space form \(N^{p+1}(-c) \), Math. Commun. 19 (2014), 301–319.

School of Mathematics and Information Science
Xi’anyang Normal University
Xi’anyang
P.R. China
shushichang@126.com
mailjunfeng@163.com

(Received 10 09 2015)
(Revised 12 07 2016)