A posteriori error estimates based on superconvergence of FEM for fractional evolution equations

https://doi.org/10.1515/math-2021-0099
received January 31, 2021; accepted September 5, 2021

Abstract: In this paper, we consider an approximation scheme for fractional evolution equation with variable coefficient. The space derivative is approximated by triangular finite element and the time fractional derivative is evaluated by the L_1 approximation. The main aim of this work is to provide convergence and superconvergence analysis and derive a posteriori error estimates. Some numerical examples are presented to demonstrate our theoretical results.

Keywords: a posteriori error estimates, convergence and superconvergence, finite element method, fractional evolution equations

MSC 2020: 65M30, 35R11

1 Introduction

Since the remarkable hereditary and memory properties, fractional partial differential equations (FPDEs) play a very important role in wave propagation, finance, physics, engineering and so on [1]. Since the exact solutions of most FPDEs are very difficult to obtain, numerical methods of FPDEs have been an active research area, such as finite difference methods [2–6], finite element methods (FEMs) [7–11], mixed FEMs [12,13], finite volume methods [14], spectral methods [15–17] and so on.

It is well known that there has been extensive research on the superconvergence of FEMs for partial differential equations (PDEs). A systematic introduction can be found in [18–23]. Generally speaking, there are three types of superconvergence. The first is pointwise superconvergence, namely in certain sampling points the values in derivatives of error have a higher convergent order than elsewhere [24]. The second is global superconvergence, namely the gradient in L^2-norm of error between the numerical solution and the projection of exact solution have a greater accuracy than the optimal order of convergence. The third is superconvergence based on post-processing technique, namely reconstruct an improved accuracy gradient. Representative post-processing techniques are developed by interpolation [25], extrapolation [26] and gradient recovery, which include superconvergent patch recovery [27], polynomial preserving recovery [28,29] and supercovergent cluster recovery [30]. In recent years, there has been some research on superconvergence analysis of FEMs for FPDEs. Superconvergence of FEMs and mixed FEMs for FPDEs is inves-
tigated in [31–33] and [34], respectively. In [35,36], superconvergence of nonconforming FEMs for fractional PDEs is established.

Adaptive FEMs are among the most important means to improve the accuracy and efficiency of finite element discretization. The pioneering work was carried out by Babuška and Rheinboldt in [37]. One of the key concepts in adaptive FEMs is a posteriori error estimates, which are computable quantities in terms of the discrete solution and can measure the actual discrete errors without the knowledge of exact solution. A posteriori error estimates of FEMs for elliptic problems are well-developed [38–40]. There are substantial research on a posteriori error estimates of FEMs for integer-order PDEs based on explicit residual [41], local problems [42,43], recovery [27,29,44,45], hierarchical basis [46–49] and equilibrated error [50,51]. However, to the best of our knowledge, a posteriori error estimates of FEMs for evolution equations are less developed, and only a few results can be found in [52–54].

The purpose of this work is to provide a fully discrete finite element approximation for fractional evolution equations and analyze its convergence and superconvergence. Then, we derive a posteriori error estimates based on the superconvergence results and construct an adaptive FEM algorithm for fractional evolution equations with variable coefficients.

We are interested in the following fractional evolution equation:

\[
\begin{align*}
\partial_t^\alpha y(t, x) - \text{div}(A(x)\nabla y(t, x)) &= f(t, x), \quad t \in J, \; x \in \Omega, \\
y(t, x) &= 0, \quad t \in J, \; x \in \partial\Omega, \\
y(0, x) &= y_0(x), \quad x \in \Omega.
\end{align*}
\]

(1)

Here \(J = [0, T] \) \((0 < T < +\infty)\) and \(\Omega \) be a bounded open domain of \(\mathbb{R}^d \) \((1 \leq d \leq 3)\) with smooth boundary \(\partial\Omega \) and \(A(x) = (a_{ij}(x))_{d \times d} \in W^{1,\infty}(\hat{\Omega})^{d \times d} \) is a positive definite matrix, \(f(t, x) \) and \(y_0(x) \) are given smooth functions. \(\partial_t^\alpha \) \((0 < \alpha < 1)\) denotes the \(\alpha \)-order left Caputo derivative defined by

\[
\partial_t^\alpha y(t, x) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{1}{(t-\tau)^\alpha} \frac{\partial y(\tau, x)}{\partial \tau} \, d\tau.
\]

Throughout the paper, \(L^s(J; W^{m,q}(\Omega)) \) denotes all \(L^s \) integrable functions from \(J \) into \(W^{m,q}(\Omega) \) with norm \(\|v\|_{L^s(J; W^{m,q}(\Omega))} = \left(\int_0^T \|v(t)\|_{W^{m,q}(\Omega)}^s \, dt \right)^{1/s} \) for \(s \in [1, \infty) \) and the standard modification for \(s = \infty \), where \(W^{m,q}(\Omega) \) is Sobolev spaces on \(\Omega \). Similarly, one can define \(H^s(J; W^{m,q}(\Omega)) \) and \(C^s(J; W^{m,q}(\Omega)) \) (see e.g. [55]). In addition, \(c \) or \(C \) is a generic positive constant.

The rest of this paper is organized as follows. In Section 2, we give a fully discrete approximation scheme of (1). Convergence analysis results are presented in Section 3. In Section 4, we derive the superconvergence between the numerical solutions and the elliptic projection of exact solutions. In Section 5, we construct a posteriori error estimates based on the superconvergence results. Some numerical experiments are presented to support our theoretical results in Section 6.

2 Fully discrete finite element approximation

In this section, we present a fully discrete approximation scheme of (1). To begin with, we introduce triangular FEMs for the spatial discretization. For brevity, we denote \(W^{m\cdot}(\Omega) \) by \(H^m(\Omega) \) and drop \(\Omega \) or \(J \) whenever possible, i.e.,

\[
\begin{align*}
\|\cdot\|_{W^{m,2}\Omega} &= \|\cdot\|_{W^{m,2}}, \\
\|\cdot\|_{L^p(J; W^{m,q}(\Omega))} &= \|\cdot\|_{L^p(W^{m,q})}, \\
\|\cdot\|_{L^p(J; W^{m,q}(\Omega))} &= \|\cdot\|_{L^p(W^{m,q})}.
\end{align*}
\]
Moreover, we set $H_0^1(\Omega) \equiv \{ v \in H^1(\Omega) : v|_{\partial\Omega} = 0 \}$, $W = H_0^1(\Omega)$, $U = L^2(\Omega)$. In addition,

$$a(v, w) = \int_{\Omega} (Av) \cdot \nabla w, \quad \forall v, w \in W,$$

$$(f_1, f_2) = \int_{\Omega} f_1 \cdot f_2, \quad \forall f_1, f_2 \in U.$$

From the assumption of coefficient matrix $A(x)$, we have

$$a(v, v) \geq c\|v\|_1^2, \quad |a(v, w)| \leq C\|v\|_1\|w\|_1, \quad \forall v, w \in W.$$

We recast (1) as the following weak formulation:

$$\begin{cases}
\partial \cdot \nabla v + a(v, w) = (f, w), & \forall w \in W, \ t \in J, \\
y(0, x) = y_0(x), & x \in \Omega.
\end{cases} \tag{2}$$

Let T^h be a family of quasi-uniform triangulations of Ω, such that $\bar{\Omega} = \bigcup_{\tau \in T^h} \bar{\tau}$ and $h = \max_{\tau \in T^h} h$, where h is the diameter of the element τ. Furthermore, we set

$$V_h = \{ v_h \in C(\bar{\Omega}) : v_h|_{\partial\Omega} \in \mathbb{P}_1, \ \forall \tau \in T^h \},$$

where \mathbb{P}_1 represents the space of all polynomials whose degree at most 1, and $W_h = V_h \cap H_0^1(\Omega)$.

Then a semi-discrete approximation scheme of (2) reads as

$$\begin{cases}
\partial \cdot \nabla y_h + a(y_h, w_h) = (f, w_h), & \forall w_h \in W_h, \ t \in J, \\
y^0_h(x) = y^0_0(x),
\end{cases} \tag{3}$$

where $y^0_h(x) \in W_h$ is a suitable approximation of $y^0_0(x)$.

In the second, we will consider the L^1 scheme for the time discretization.

Let $0 = t_0 < t_1 < \cdots < t_N = T$ be a uniform partition of J with time step $\tau = \frac{T}{N}$ and $t_n = n\tau$, $n = 0, 1, \ldots, N$.

We set $\varphi^n = \varphi(t_n, x)$ and $d_t y^n = \frac{y^n - y^{n-1}}{\tau}$. The time fractional derivative can be approximated as follows:

$$\partial_t^\alpha y^n = \frac{1}{\Gamma(1-\alpha)} \int_0^{t_n} \frac{\partial y(s, x)}{\partial s} \, ds$$

$$= \frac{1}{\Gamma(1-\alpha)} \sum_{k=0}^{n-1} \int_{t_k}^{t_{k+1}} \frac{1}{(t_n - s)^\alpha} \frac{\partial y(s, x)}{\partial s} \, ds$$

$$= \frac{1}{\Gamma(1-\alpha)} \sum_{k=0}^{n-1} d_t y^{k+1} \int_{t_k}^{t_{k+1}} \frac{1}{(t_n - s)^\alpha} \, ds + r^n_T$$

$$= \frac{1}{\tau^{\alpha-1}\Gamma(2-\alpha)} \sum_{k=0}^{n-1} b^k d_t y^{n-k} + r^n_T,$$

$$= L^n_T y^n + r^n_T,$$

where $b_k = (k + 1)^{-\alpha} - k^{-\alpha}$, $b_0^n = (n - 1)^{-\alpha} - n^{-\alpha}$, $b_0^n = 1$, $b_k^n = b_{n-k} - b_{n-k-1}$ and r_T^n is the truncation error.

It follows from [25] for $y \in W^{2, \infty}(L^2)$ that

$$|r_T^n| = |\partial_t^\alpha y^n - L^n_T y^n| \leq C\tau^{2-\alpha}. \tag{5}$$
Then a fully discrete approximation scheme of (2) is as follows:
\[
\begin{aligned}
\begin{cases}
(L_t^n u^n_t, w_h) + a(y^n_h, w_h) = (f^n, w_h), & \forall w_h \in W_h, \quad n = 1, 2, \ldots, N, \\
y^n_h = y^n_0(x).
\end{cases}
\end{aligned}
\]
(6)

Usually, we set \(y^n_0(x) = P_h(y_0(x))\), where \(P_h\) will be specified later.

3 Convergence analysis

We will derive the convergence of the numerical scheme (6). Let \(P_h : W \to W_h\) be the elliptic projection operator, for any \(v \in W\) defined by

\[
a(v - P_h v, w_h) = 0, \quad \forall w_h \in W_h.
\]

It has the following approximation properties (see [8]):

\[
|v - P_h v| + h|\nabla(v - P_h v)| \leq Ch^2|v|_2.
\]
(7)

The following conclusions will be used in the following error analysis.

Lemma 3.1. [13] Let \(\{\xi^n\}_n \) be a sequence of functions on \(\Omega\). Then

\[
\left\{ \xi^n, \sum_{k=0}^{n} b^n_k \xi^k \right\} = \frac{1}{2}\left(\|\xi^n\|^2 + \sum_{k=0}^{n-1} b_k^n \|\xi^k\|^2 - \sum_{k=0}^{n-1} b_k^n \|\xi^k - \xi^n\|^2 \right).
\]

Lemma 3.2. [33] Let \(e^k \geq 0, k = 1, 2, \ldots, L\), satisfy \(e^n \leq \sum_{k=1}^{n-1} (b_{k-1} - b_k) e^{n-k} + y\) with \(y > 0\). Then

\[
e^n \leq C r^{-a} y, \quad n = 1, 2, \ldots, L.
\]

Theorem 3.1. Let \(y\) and \(y_h\) be the solutions of (2) and (6), respectively. Suppose that \(y \in W^{2,\infty}(L^2) \cap W^{1,\infty}(H^2)\). Then, for any integer \(1 \leq n \leq N\), we have

\[
|y^n - y^n_h| \leq C(h^2 + \tau^2 - a),
\]
(8)

\[
|y^n - y^n_h|_{H^1} \leq C(h + \tau^2 - a).
\]
(9)

Proof. From (4) and the definition of \(P_h\), we can rewrite (2) at \(t_n\) as

\[
(L_t^n u^n_t, w_h) + a(y^n_h, w_h) = (f^n, w_h), \quad \forall w_h \in W_h.
\]
(10)

Setting \(\theta^n = y^n_h - P_h y^n\) and subtracting (10) from (6), we get

\[
(L_t^n \theta^n, w_h) + a(\theta^n, w_h) = (r^n_t, w_h) + (L_t^n(y^n - P_h y^n), w_h), \quad \forall w_h \in W_h.
\]
(11)

Taking \(w_h = \theta^n\) in (11), we have

\[
(L_t^n \theta^n, \theta^n) + a(\theta^n, \theta^n) = (r^n_t, \theta^n) + (L_t^n(y^n - P_h y^n), \theta^n).
\]
(12)

Note that \(a(\theta^n, \theta^n) \geq 0\), from (5), (7) and (12), we can obtain

\[
\|\theta^n\|^2 \leq -\sum_{k=0}^{n-1} b^n_k \|\theta^k\|^2 + \sum_{k=0}^{n-1} b^n_k \|\theta^k - \theta^n\|^2 + 2r^n t \|\theta^n\|^2 + \|L_t^n(y^n - P_h y^n)\| \|\theta^n\|
\]
\[
\leq -\sum_{k=0}^{n-1} b^n_k \|\theta^k\|^2 + C2r^n t (2 - a) (\tau^2 - a + h^2) \|\theta^n\|.
\]
(13)

Hence, (8) follows from (7), (13) and triangle inequality.
Setting \(w_h = L^a_\theta^n \) in (11), we get
\[
(L^a_\theta^n \theta^n, L^a_\theta^n \theta^n) + a(\theta^n, L^a_\theta^n \theta^n) = (r^n, L^a_\theta^n \theta^n) + (L^a_\theta^n (y^n - P_h y^n), L^a_\theta^n \theta^n). \tag{14}
\]
Similarly, from Hölder’s inequality (5), (7) and (14), we derive
\[
c\|\theta^n\|_1 \|L^a_\theta^n \theta^n\|_1 \leq (\|r_\tau^n\|_1 + \|L^a_\theta^n (y^n - P_h y^n)\|_1) \|L^a_\theta^n \theta^n\|_1 \leq C (\tau^{2-a} + h^2) \|L^a_\theta^n \theta^n\|_1. \tag{15}
\]
Thus, (9) follows from (7), (15) and triangle inequality. \(\square\)

4 Superconvergence analysis

In this section, we will derive the global superconvergence results between the finite element solution and the elliptic projection of exact solution.

Theorem 4.1. Let \(y \) and \(y_h \) be the solutions of (2) and (6), respectively. Assume all the conditions in Theorem 3.1 are valid. Then, for any integer \(1 \leq n \leq N \), we have
\[
\|P_h y^n - y_h^n\|_{H^1} \leq C(h^2 + \tau^{2-a}). \tag{16}
\]

Proof. Set \(y^n - y_h^n = y^n - P_h y^n + P_h y^n - y_h^n = \eta^n + \zeta^n \). Choosing \(v = w_h \) in (2) and subtracting (2) from (6), we obtain the following error equation:
\[
(L^a_\theta^n (y^n - y_h^n), w_h) + a(y^n - y_h^n, w_h) + (r^n, w_h) = 0. \tag{17}
\]
By using the definition of \(P_h \) and (17), we have
\[
(L^a_\theta^n \zeta^n, w_h) + a(\zeta^n, w_h) = -(L^a_\theta^n \eta^n, w_h) - (r^n, w_h). \tag{18}
\]
Let \(w_h = L^a_\theta \zeta^n \). Using Lemma 3.1, we get
\[
(L^a_\theta \zeta^n, L^a_\theta \zeta^n) + a(\zeta^n, L^a_\theta \zeta^n) \geq (L^a_\theta \zeta^n, L^a_\theta \zeta^n) + c(\nabla \zeta^n, \nabla (L^a_\theta \zeta^n)) = \|L^a_\theta \zeta^n\|^2 + \frac{c}{2\tau^a \Gamma(2-a)} \left(\|\nabla \zeta^n\|^2 + \sum_{k=0}^{n-1} b_k \sum_{i=0}^{n-k} \|\nabla (\zeta^i)\|^2 \right). \tag{19}
\]
According to \(y \in W^{1,\infty}(H^2) \) and (4), there holds
\[
\|L^a_\theta \eta^n\| = \left\| \frac{1}{\Gamma(2-a)} \sum_{k=0}^{n-1} b_k \partial_i \eta^n - k \right\|
\leq \frac{1}{\Gamma(2-a)} \sum_{k=0}^{n-1} b_k \|\partial_i \eta^n - k\|
\leq \frac{1}{\Gamma(2-a)} \sum_{k=0}^{n-1} b_k \int_{t_{n-k-1}}^{t_n} \|\eta\| \, dt
\leq Ch \|y\|_{L^\infty(H^2)}.
\]
Then, by applying Hölder’s inequality, Young’s inequality and (7), we arrive at
\[
(L^a_\theta \eta^n, L^a_\theta \zeta^n) \leq \|L^a_\theta \eta^n\| \|L^a_\theta \zeta^n\| \leq \frac{1}{2} \|L^a_\theta \zeta^n\|^2 + \frac{C}{2} h^4. \tag{21}
\]
Likewise
\[
(r^n, L^a_\theta \zeta^n) \leq \|r^n\| \|L^a_\theta \zeta^n\| \leq \frac{1}{2} \|L^a_\theta \zeta^n\|^2 + \frac{C}{2} \tau^{4-2a}. \tag{22}
\]
Combining (18)–(22) and noting that \(b_k^n < 0 \) \((0 \leq k < n)\), we obtain
\[
\|\nabla \zeta^n\|_2^2 \leq - \sum_{k=0}^{n-1} b_k^n \|\nabla \zeta^n\|_2^2 + C \tau^n (h^2 + \tau^{2-a})^2.
\] (23)

It follows from (23), Lemma 3.2 and Poincaré’s inequality that
\[
\|\zeta^n\| \leq C (h^2 + \tau^{2-a})\] (24)

Hence, we complete the proof of Theorem 4.1.

5 A posteriori error estimates

We introduce recovery operators \(R_h \) and \(G_h \). Similar to the Z–Z patch recovery in [27], \(R_{h^2 v} \) be a continuous piecewise linear function (without zero boundary constraint), the value of \(R_{h^2 v} \) on the nodes is defined by least-squares argument on element patches surrounding the nodes. Then the gradient recovery operator \(G_h = (R_{h_1}, R_{h_2}) \). The details can be found in [56].

Theorem 5.1. Let \(y \) and \(y_h \) be the solutions of (2) and (6), respectively. Suppose that \(y \in W^{2,\infty}(L^2) \cap W^{1,\infty}(H^2) \). Then for any integer \(1 \leq n \leq N \), we have
\[
\|G_{h^2} y_h^n - \nabla y^n\|_{L^2} \leq C (h^2 + \tau^{2-a}).
\] (25)

Proof. Let \(y_i^n \) be the piecewise linear Lagrange interpolation of \(y^n \). According to Theorem 2.1.1 in [20], we have
\[
\|P_{h^2} y^n - y_i^n\|_{H^1} \leq Ch^2 \|y^n\|_{H^1}.
\] (26)

From the interpolation error estimate [18], we get
\[
\|G_{h^2} y_h^n - \nabla y^n\| \leq C h \|y^n\|_{H^2}.
\] (27)

From triangle inequality, (16) and (26)–(27), we obtain
\[
\|G_{h^2} y_h^n - \nabla y^n\|_{L^2} \leq \|G_{h^2} y_h^n - G_h P_{h^2} y^n\|_{L^2} + \|G_h P_{h^2} y^n - G_h y_h^n\|_{L^2} + \|G_h y_h^n - \nabla y^n\|_{L^2} \\
\leq C \|y_h^n - P_{h^2} y^n\|_{H^2} + C \|P_{h^2} y^n - y_i^n\|_{H^2} + \|G_h y_h^n - \nabla y^n\|_{L^2} \leq C (h^2 + \tau^{2-a}).
\] (28)

Hence, we complete the proof of (25).

Combining the previous results, we obtain the following a posteriori error estimates of fully discrete finite element approximation for fractional evolution equations.

Theorem 5.2. Assume that all the conditions in Theorem 4.1 and Theorem 5.1 are valid. Then
\[
\eta^n = \|G_{h^2} y_h^n - \nabla y_h^n\|_{L^2} = \|\nabla (y_h^n - y^n)\|_{L^2} + O(h^2 + \tau^{2-a}).
\] (29)

Proof. According to (25) and triangle inequality, it is easy to get (29).

6 Numerical experiments

In this section, we present some different numerical examples to illustrate the correctness of the convergence and superconvergence results and the reliable and efficient a posteriori error estimates.
For an acceptable iteration error Tol, we present an uniformly refined FEM algorithm for the discrete problem (6) of fractional evolution equations.

Algorithm 6.1. FEM algorithm

1. Set $i = 1$, initialize mesh T^h_i and $y^0_{h,i}$.
2. Solve the following discrete equations:
 $$(L^a_i y^a_{h,i}, w_h) + a(y^a_{h,i}, w_h) = (f^a, w_h), \quad \forall w_h \in W_h, \ n = 1, 2, \ldots, N.$$
3. Uniformly refine the meshes obtain new meshes T^h_{i+1}.
4. Calculate the iterative error: $E_i = \|y^a_{h,i} - y^a_{h,i-1}\|_{L^\infty(U^2)}$;
5. If $E_i > Tol$, $i = i + 1$, go to Step 2; else stop.

For an acceptable iteration error Tol, by selecting η^n in (29) as mesh refinement indicators, we construct the following adaptive FEM algorithm for the discrete problem (6):

Algorithm 6.2. Adaptive FEM algorithm

1. Set $i = 1$, initialize mesh T^h_i and $y^0_{h,i}$.
2. Solve the following discretized problems:
 $$(L^a_i y^a_{h,i}, w_h) + a(y^a_{h,i}, w_h) = (f^a, w_h), \quad \forall w_h \in W_h, \ n = 1, 2, \ldots, N.$$
3. Obtain numerical solution $y^n_{h,i}(n = 1, 2, \ldots, N)$ on the current meshes T^h_i and calculate the error estimators η^n_i;
4. Adjust the meshes by using the estimators η^n_i obtain new meshes T^h_{i+1};
5. Calculate the iterative error: $E_i = \|y^a_{h,i} - y^a_{h,i-1}\|_{L^\infty(U^2)}$;
6. If $E_i > Tol$, $i = i + 1$, go to Step 2; else stop.

The following examples were dealt numerically with codes developed based on AFEPack, which is freely available and the details can be found in [56]. The discretization was described in Section 2. We denote $\|\cdot\|_{L^\infty(U^t)}$ and $\|\cdot\|_{L^\infty(U^2)}$ by $\|\cdot\|_{H^0}$ and $\|\cdot\|_{L^\infty}$, respectively. The convergence order rate is computed by the following formula:

$$\text{Rate} = \frac{\ln(e_{i+1}) - \ln(e_i)}{\ln(h_{i+1}) - \ln(h_i)},$$

where $e_i (e_{i+1})$ denotes the error when the spatial partition size is $h_i (h_{i+1})$. E is the 2-by-2 identity matrix.

Example 6.1. This is a 1D example. The data are as follows:

$$\Omega = (0, 1), \quad T = 1, \quad A(x) = 1, \quad y(t, x) = t \sin(2\pi x), \quad f(t, x) = \left(\frac{1}{t^a(2 - a)} + 4\pi^2\right)y(t, x).$$

This example is solved by Algorithm 6.1. For different α values, the errors on a sequence of uniformly refined meshes’ size h and time step size τ are shown in Tables 1–3. It is easy to see $\|y - y_h\|_{L^\infty} = O(h^2 + \tau^{2-\alpha})$, $\|y - y_h\|_{H^0} = O(h + \tau^{2-\alpha})$ and $\|P_h y - y_h\|_{L^\infty} = O(h^2 + \tau^{2-\alpha})$. In Figure 1, we show the numerical solution y_h with $\alpha = 0.5$ when $h = \frac{1}{40}$ and $\tau = \frac{1}{90}$.
Table 1: Numerical results with $\alpha = 0.5$, Example 6.1

| h | τ | $\|y - y_h\|_{L^\infty}$ | Rate | $\|y - y_h\|_{L^1}$ | Rate | $|Py - y_h|_{L^\infty}$ | Rate |
|-----|--------|---------------------------|------|----------------------|------|--------------------------|------|
| $1/10$ | $1/10$ | 1.524550×10^{-3} | — | 7.84280×10^{-1} | — | 5.24997×10^{-2} | — |
| $1/20$ | $1/20$ | 4.069121×10^{-4} | 1.9056 | 4.01217×10^{-1} | 0.9670 | 1.47561×10^{-2} | 1.8310 |
| $1/40$ | $1/40$ | 1.021949×10^{-4} | 1.9934 | 2.01314×10^{-1} | 0.9949 | 3.90295×10^{-3} | 1.9187 |
| $1/80$ | $1/80$ | 2.560060×10^{-5} | 1.9971 | 1.00716×10^{-1} | 0.9992 | 1.00212×10^{-3} | 1.9615 |

Table 2: Numerical results with $\alpha = 0.5$, Example 6.1

| h | τ | $\|y - y_h\|_{L^\infty}$ | Rate | $\|y - y_h\|_{L^1}$ | Rate | $|Py - y_h|_{L^\infty}$ | Rate |
|-----|--------|---------------------------|------|----------------------|------|--------------------------|------|
| $1/10$ | $1/10$ | 2.14883×10^{-3} | — | 7.84300×10^{-1} | — | 5.02080×10^{-2} | — |
| $1/20$ | $1/20$ | 5.56062×10^{-4} | 1.9502 | 4.01220×10^{-1} | 0.9670 | 1.41640×10^{-2} | 1.8257 |
| $1/40$ | $1/40$ | 1.35887×10^{-4} | 2.0328 | 2.01314×10^{-1} | 0.9949 | 3.76104×10^{-3} | 1.9130 |
| $1/80$ | $1/80$ | 3.32722×10^{-5} | 2.0300 | 1.00716×10^{-1} | 0.9992 | 9.68909×10^{-4} | 1.9567 |

Table 3: Numerical results with $\alpha = 0.95$, Example 6.1

| h | τ | $\|y - y_h\|_{L^\infty}$ | Rate | $\|y - y_h\|_{L^1}$ | Rate | $|Py - y_h|_{L^\infty}$ | Rate |
|-----|--------|---------------------------|------|----------------------|------|--------------------------|------|
| $1/10$ | $1/10$ | 4.06759×10^{-3} | — | 7.84402×10^{-1} | — | 4.31645×10^{-2} | — |
| $1/20$ | $1/20$ | 1.05515×10^{-3} | 1.9467 | 4.01235×10^{-1} | 0.9671 | 1.21829×10^{-2} | 1.8250 |
| $1/40$ | $1/40$ | 2.56966×10^{-4} | 2.0378 | 2.01316×10^{-1} | 0.9950 | 3.25106×10^{-3} | 1.9059 |
| $1/80$ | $1/80$ | 6.24374×10^{-5} | 2.0411 | 1.00717×10^{-1} | 0.9992 | 8.42640×10^{-4} | 1.9479 |

Figure 1: The numerical solution y_h when $h = 1/40$, $\tau = 1/90$, $\alpha = 0.5$, Example 6.1.
Example 6.2. This is a 2D example. The data are as follows:

\[
\begin{align*}
\Omega &= (0, 1) \times (0, 1), \ T = 1.0, \ A(x) = E, \\
y(t, x) &= t^3 \sin(2\pi x) \sin(2\pi y), \\
f(t, x) &= \left(\frac{6}{t^4} + 8\pi^2\right) y(t, x).
\end{align*}
\]

This example is solved by Algorithm 6.1. In Tables 4–6, the errors \(\|y - y_h\|_{0,\infty}^\alpha, \|y - y_h\|_{1,\infty}^\alpha\) and \(\|P_h y - y_h\|_{1,\infty}^\alpha\) based on different \(a\) values and a sequence of uniformly refined meshes’ size \(h\) and time step size \(\tau\) are shown. It is easy to see that \(\|y - y_h\|_{0,\infty}^\alpha\) and \(\|P_h y - y_h\|_{1,\infty}^\alpha\) are the second-order convergent while \(\|y - y_h\|_{1,\infty}^\alpha\) is the first-order convergent. We plot the profile of the numerical solution \(y_h\) with \(t = 0.5\) and \(\alpha = 0.5\), where \(h = \frac{1}{40}\) and \(\tau = \frac{1}{90}\) in Figure 2.

Table 4: Numerical results with \(\alpha = 0.05\), Example 6.2

\(h\)	\(\tau\)	\(\|y - y_h\|_{0,\infty}^\alpha\)	Rate	\(\|y - y_h\|_{1,\infty}^\alpha\)	Rate	\(\|P_h y - y_h\|_{1,\infty}^\alpha\)	Rate
\(\frac{1}{10}\)	\(\frac{1}{10}\)	5.45891 \times 10^{-2}	—	1.35785	—	6.88961 \times 10^{-3}	—
\(\frac{1}{20}\)	\(\frac{1}{20}\)	1.42607 \times 10^{-2}	1.9366	6.93043 \times 10^{-1}	0.9703	1.75476 \times 10^{-3}	1.9731
\(\frac{1}{40}\)	\(\frac{1}{40}\)	3.60530 \times 10^{-3}	1.9839	3.48335 \times 10^{-1}	0.9925	4.41402 \times 10^{-4}	1.9911
\(\frac{1}{80}\)	\(\frac{1}{80}\)	9.03851 \times 10^{-4}	1.9960	1.74395 \times 10^{-2}	0.9981	1.0657 \times 10^{-4}	1.9960

Table 5: Numerical results with \(\alpha = 0.5\), Example 6.2

\(h\)	\(\tau\)	\(\|y - y_h\|_{0,\infty}^\alpha\)	Rate	\(\|y - y_h\|_{1,\infty}^\alpha\)	Rate	\(\|P_h y - y_h\|_{1,\infty}^\alpha\)	Rate
\(\frac{1}{10}\)	\(\frac{1}{10}\)	5.39968 \times 10^{-2}	—	1.35788	—	1.25360 \times 10^{-2}	—
\(\frac{1}{20}\)	\(\frac{1}{20}\)	1.40961 \times 10^{-2}	1.9376	6.93048 \times 10^{-1}	0.9703	3.24284 \times 10^{-3}	1.9507
\(\frac{1}{40}\)	\(\frac{1}{40}\)	3.56467 \times 10^{-3}	1.9835	3.48335 \times 10^{-1}	0.9925	8.03542 \times 10^{-4}	2.0128
\(\frac{1}{80}\)	\(\frac{1}{80}\)	8.94056 \times 10^{-4}	1.9953	1.74395 \times 10^{-2}	0.9981	1.97545 \times 10^{-4}	2.0242

Table 6: Numerical results with \(\alpha = 0.95\), Example 6.2

\(h\)	\(\tau\)	\(\|y - y_h\|_{0,\infty}^\alpha\)	Rate	\(\|y - y_h\|_{1,\infty}^\alpha\)	Rate	\(\|P_h y - y_h\|_{1,\infty}^\alpha\)	Rate
\(\frac{1}{10}\)	\(\frac{1}{10}\)	5.25616 \times 10^{-2}	—	1.35809	—	2.71477 \times 10^{-2}	—
\(\frac{1}{20}\)	\(\frac{1}{20}\)	1.36714 \times 10^{-2}	1.9428	6.93079 \times 10^{-1}	0.9705	7.29615 \times 10^{-3}	1.8956
\(\frac{1}{40}\)	\(\frac{1}{40}\)	3.45608 \times 10^{-3}	1.9840	3.48339 \times 10^{-1}	0.9925	1.8208 \times 10^{-3}	2.0026
\(\frac{1}{80}\)	\(\frac{1}{80}\)	8.88086 \times 10^{-4}	1.9604	1.74396 \times 10^{-2}	0.9981	4.52293 \times 10^{-4}	2.0092
Example 6.3. This is a 2D example. The data are as follows:

$$\Omega = (0, 1) \times [0, 1], \quad T = 1.0,$$

$$A(x) = \begin{cases} 4E, & x_1 + x_2 \leq 1, \\ E, & x_1 + x_2 > 1, \end{cases}$$

$$y(t, x) = \begin{cases} t^2 \sin(\pi x_1) \sin(\pi x_2), & x_1 + x_2 \leq 1, \\ t^2 \sin(2\pi x_1) \sin(2\pi x_2), & x_1 + x_2 > 1, \end{cases}$$

$$f(t, x) = \left(\frac{2}{t^6} + 8\pi^2\right)y(t, x).$$

We take $\tau = 10^{-2}$ and solve this example by using Algorithms 6.1 and 6.2. Numerical results based on a sequence of uniformly refined meshes and adaptive meshes are listed in Tables 7 and 8, respectively. It is clear that the adaptive meshes generated via the error estimators η^n are able to save substantial computational work. We plot the profile of the numerical solution y_h at $t = 0.5$, where adaptive mesh nodes = 1,241 in Figure 3.

Table 7: Numerical results for Example 6.3 on uniform meshes

Uniform meshes	1	2	3	4
Nodes of y_h^n	121	441	1,681	6,561
$\|\nabla y - \nabla y_h^0,\|_{L^\infty}$	3.85733×10^{-1}	3.72531×10^{-1}	3.65088×10^{-1}	3.60944×10^{-1}
$\|\nabla y_h - \nabla y_h^0,\|_{L^\infty}$	3.91964×10^{-1}	2.22143×10^{-1}	1.62862×10^{-1}	1.17960×10^{-1}

Table 8: Numerical results for Example 6.3 on adaptive meshes

Adaptive meshes	1	2	3	4
Nodes of y_h^n	121	383	817	1,241
$\|\nabla y - \nabla y_h^0,\|_{L^\infty}$	3.85733×10^{-1}	3.70120×10^{-1}	3.67693×10^{-1}	3.58027×10^{-1}
$\|\nabla y_h - \nabla y_h^0,\|_{L^\infty}$	3.91964×10^{-1}	2.12143×10^{-1}	1.52864×10^{-1}	1.15966×10^{-1}
7 Conclusion

Although there has been extensive research on FEMs for FPDEs, mostly focused on convergence analysis [7–11]. While there is little work on a posteriori error estimates of FEM for FPDEs. Hence, our results on a posteriori error estimates and adaptive FEM for fractional evolution equations are new.

Funding information: Yuelong Tang is supported by the National Natural Science Foundation of China (11401201), the Natural Science Foundation of Hunan Province (2020JJ4323), the Scientific Research Project of Hunan Provincial Department of Education (20A211), the construct program of applied characteristic discipline in Hunan University of Science and Engineering. Yuchun Hua is supported by the Scientific Research Project of Hunan Provincial Department of Education (20C0854), the scientific research program in Hunan University of Science and Engineering (20XY059).

Conflict of interest: Authors state no conflict of interest.

References

[1] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[2] M. Ammi and A. Taakili, Finite difference method for the time-fractional thermistor problem, Int. J. Diff. Equ. 8 (2013), no. 1, 77–97.
[3] M. Dehghan, M. Abbaszadeh, and W. Deng, Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett. 73 (2017), 120–127.
[4] G. Gao and Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys. 230 (2011), 586–595.
[5] Y. Lin and C. Xu, Finite difference/spectral approximation for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), 1533–1552.
[6] Y. Zhang, Z. Sun, and H. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys. 265 (2014), 195–210.
[7] L. Chen, R. Nochetto, E. Otárola, and A. Salgado, Multilevel methods for nonuniformly elliptic operators and fractional diffusion, Math. Comput. 85 (2016), no. 302, 2583–2607.
[8] B. Jin, R. Lazarov, J. Pasciak, and Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA J. Numer. Anal. 35 (2015), no. 2, 561–582.

[9] C. Li, Z. Zhao, and Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl. 62 (2011), 855–875.

[10] R. Nochetto, E. Otárola, and A. Salgado, A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal. 54 (2016), no. 2, 848–873.

[11] F. Zeng, C. Li, F. Liu, and I. Turner, Numerical algorithms for time fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput. 37 (2015), no. 1, A55–A78.

[12] Z. G. Shi, Y. Zhao, F. Liu, Y. Tang, F. Wang, and Y. H. Shi, High accuracy analysis of an \(\mathcal{H}^1 \)-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations, Comput. Math. Appl. 74 (2017), 1903–1914.

[13] Y. Zhao, P. Chen, W. Bu, X. Liu, and Y. Tang, Two mixed finite element methods for time-fractional diffusion equations, J. Sci. Comput. 70 (2017), no. 1, 407–428.

[14] F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model. 38 (2014), no. 15–16, 3871–3878.

[15] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), 2108–2131.

[16] Z. Mao and J. Shen, Hermite spectral methods for fractional PDEs in unbounded domains, SIAM J. Sci. Comput. 39 (2017), no. 5, A1928–A1950.

[17] M. Zheng, F. Liu, V. Anh, and I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Model. 40 (2016), 4970–4985.

[18] C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods, Hunan Science Press, Hunan, China, 1995. (in Chinese)

[19] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006. (in Chinese)

[20] Q. Lin and Q. Zhu, The Preprocessing and Postprocessing for the Finite Element Method, Shanghai Scientific and Technical Publishers, Shanghai, 1994. (in Chinese)

[21] L. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Springer, Berlin, 1995.

[22] J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimates for mildly structured grids, Math. Comput. 73 (2003), 1139–1152.

[23] M. Zlámal, Superconvergence and reduced integration in the finite element method, Math. Comp. 32 (1978), 663–685.

[24] J. Barlow, Optimal stress location in finite element method, Int. J. Numer. Meth. Eng. 10 (1976), 243–251.

[25] Q. Lin and J. Xu, Linear finite element with high accuracy, J. Comput. Math. 3 (1985), 115–133.

[26] Q. Lin, T. Lu, and S. Shen, Maximum norm estimate extrapolation and optimal point of stress for finite element methods on strongly regular triangulation, J. Comput. Math. 1 (1983), 376–383.

[27] O. Zienkiewicz and J. Zhu, The superconvergence patch recovery (SPR) and adaptive finite element refinement, Comput. Meth. Appl. Mech. 101 (1992), 207–224.

[28] A. Naga and Z. Zhang, A posteriori error estimates based on polynomial preserving recovery, SIAM J. Numer. Anal. 42 (2004), no. 4, 1780–1800.

[29] Z. Zhang and A. Naga, A new finite element gradient recovery method: superconvergence property, SIAM J. Sci. Comput. 26 (2005), no. 4, 1192–1213.

[30] Y. Huang and N. Yi, The superconvergent cluster recovery method, J. Sci. Comput. 44 (2010), 301–322.

[31] C. Huang and M. Stynes, Superconvergence of a finite element method for the multi-term time-fractional diffusion problem, J. Sci. Comput. 82 (2020), 10, DOI: https://doi.org/10.1007/s10915-019-01115-w.

[32] M. Li, D. Shi, and L. Pei, Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation, Appl. Numer. Math. 151 (2020), 141–160.

[33] D. Shi and H. Yang, A new approach of superconvergence analysis for two-dimensional time fractional diffusion equation, Comput. Math. Appl. 75 (2018), no. 8, 3012–3023.

[34] D. Shi, F. Yan, and J. Wang, Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation, Appl. Math. Comput. 274 (2016), no. 1, 182–194.

[35] Y. Wei, Y. Zhao, F. Wang, Y. Tang, and J. Yang, Superconvergence analysis of anisotropic FEMs for time fractional variable coefficient diffusion equations, Bull. Malays. Math. Sci. Soc. 43 (2020), 4411–4429.

[36] Y. Zhao, Y. Zhang, D. Shi, F. Liu, and I. Turner, Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations, Appl. Math. Lett. 59 (2016), 38–47.

[37] I. Babuška and C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736–754.

[38] M. Ainsworth and J. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley Interscience, New York, 2000.

[39] I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Oxford University Press, New York, 2001.

[40] L. Demkowicz, Computing with HP-adaptive Finite Elements, Chapman and Hall/CRC, New York, 2007.

[41] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, Oxford, 2013.

[42] C. Carstensen and S. Funken, Fully reliable localized error control in the FEM, SIAM J. Sci. Comput. 21 (1999), no. 4, 1465–1484.
[43] P. Morin, R. Nochetto, and K. Siebert, *Local problems on stars: a posteriori error estimators, convergence, and performance*, Math. Comp. 72 (2003), no. 243, 1067–1097.

[44] R. Bank and J. Xu, *Asymptotically exact a posteriori error estimators. I. Grids with superconvergence*, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294–2312.

[45] R. Bank and J. Xu, *Asymptotically exact a posteriori error estimators. II. General unstructured grids*, SIAM J. Numer. Anal. 41 (2003), no. 6, 2313–2332.

[46] R. Bank and R. Smith, *A posteriori error estimates based on hierarchical bases*, SIAM J. Numer. Anal. 30 (1993), no. 4, 921–935.

[47] H. Hakula, M. Neilan, and J. Ovall, *A posteriori estimates using auxiliary subspace techniques*, J. Sci. Comput. 72 (2017), no. 1, 97–127.

[48] H. Li and J. Ovall, *A posteriori error estimation of hierarchical type for the Schrödinger operator with inverse square potential*, Numer. Math. 128 (2014), no. 4, 707–740.

[49] Y. Li and L. Zikatanov, *A posteriori error estimates of finite element methods by preconditioning*, Comput. Math. Appl. 91 (2020), 192–210.

[50] R. Luce and B. Wohlmuth, *A local a posteriori error estimator based on equilibrated fluxes*, SIAM J. Numer. Anal. 42 (2004), no. 4, 1394–1414.

[51] D. Braess and J. Schöberl, *Equilibrated residual error estimator for edge elements*, Math. Comp. 77 (2008), no. 262, 651–672.

[52] R. Nochetto, G. Savare, and C. Verdi, *A posteriori error estimates for variable time step discretizations of nonlinear evolution equations*, Comm. Pure Appl. Math. 53 (2000), 525–589.

[53] R. Verfürth, *A posteriori error estimates for nonlinear problem: $l'(0, T; L^p(B))$-error estimates for finite element discretization of parabolic equations*, Math. Comput. 67 (1998), 1335–1360.

[54] T. Zhang and J. Zhao, *A posteriori error estimates of finite element method for the time-dependent Oseen equations*, Appl. Anal. 95 (2016), no. 5, 1144–1163.

[55] J. Lions and E. Magenes, *Non Homogeneous Boundary Value Problems and Applications*, Springer-verlag, Berlin, 1972.

[56] R. Li, W. Liu, and N. Yan, *A posteriori error estimates of recovery type for distributed convex optimal control problems*, J. Sci. Comput. 33 (2007), 155–182.