Non-Monotonic Sequential Text Generation

Joint work with:
Sean Welleck, Kyunghyun Cho and Hal Daumé III
Sequential Text Generation

Word Descrambling: How are you?
Sequential Text Generation

Word Descrambling:

Source: you How ? are

Target: How are you?

```
you  how  ?  are  <eos>
```

\[
f(\cdot | X) \quad f(\cdot | X, \text{how}) \quad f(\cdot | X, \text{how,are}) \quad f(\cdot | X, \text{how,are,you}) \quad f(\cdot | X, \text{how,are,you,?})
\]

\[
\begin{array}{cccccc}
\text{How} \ (w_1) & \text{are} \ (w_2) & \text{you} \ (w_3) & ? \ (w_4) & <\text{eos}> \ (w_5)
\end{array}
\]

\[
\begin{array}{ccccccc}
s_1 & \rightarrow & s_2 & \rightarrow & s_3 & \rightarrow & s_4 & \rightarrow & s_5
\end{array}
\]
Sequential Text Generation

Word Descrambling:

Target: How are you?

Assume: Sentence order - $w_1 \ w_2 \ w_3 \ w_4 \ w_5$

generation order - $s_1 \ s_2 \ s_3 \ s_4 \ s_5$ **Monotonic**

Question: Can we do sequential text generation using a non-monotonic generation order? (i.e. sentence order and generation order is different)

Imitation Learning

(Structured Prediction)

Target: How are you?

Goal: Train π to mimic π^* using a loss function

States: $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4$ **Monotonic**

Actions: you good ? bad orange other green words test are hi things How

Transition: $P(s'|s, \cdot)$ **Fixed**

Policy: $\pi(\cdot | s)$

Oracle policy: $\pi^*(\cdot | s)$ **Optimal Sequence of**

Loss: $D_{KL}(\pi(\cdot, s) \mid \mid \pi^*(\cdot, s))$
Imitation Learning

(Change State Space)

Binary Tree State Space

\[s_1 \]

\[s_5 \rightarrow s_6 \rightarrow s_7 \]

\[s_2 \rightarrow \ldots \rightarrow s_3 \rightarrow s_4 \]
Oracle Polices:

Binary Tree State Space

\[\pi^*_{Uniform} = \begin{cases}
1, & \text{if } a = \text{<end>} \text{ and } Y_t = <> \\
\frac{1}{n}, & \text{n is the number of unique words in } Y_t \\
0, & \text{otherwise}
\end{cases} \]
Oracle Polices:

States: Not Monotonic
Transition: Not Fixed
Oracle policy: Optimal actions

Binary Tree State Space

\[\pi^*_{\text{Uniform}} = \begin{cases}
1, & \text{if } a = \langle \text{end} \rangle \text{ and } Y_t = <> \\
\frac{1}{n}, & \text{if } n \text{ is the number of unique words in } Y_t \\
0, & \text{otherwise}
\end{cases} \]
Oracle Polices:

\[\pi^*_{\text{Uniform}} = \begin{cases}
1, & \text{if } a = \langle \text{end} \rangle \text{ and } Y_t = <> \\
\frac{1}{n}, & \text{n is the number of unique words in } Y_t \\
0, & \text{otherwise}
\end{cases} \]
Oracle Polices:

\[\pi^*_{\text{Uniform}} = \begin{cases}
1, & \text{if } a = \text{<end>} \text{ and } Y_t = \langle \rangle \\
\frac{1}{n}, & \text{n is the number of unique words in } Y_t \\
0, & \text{otherwise}
\end{cases} \]

\[\pi^*_{\text{coaching}}(\cdot \mid a) \propto \pi^*_{\text{uniform}}(\cdot \mid a) \pi(\cdot \mid a) \]

\[\pi^*_{\text{anneal}}(\cdot \mid a) = \beta \pi^*_{\text{Uniform}}(\cdot \mid s) + (1 - \beta) \pi^*_{\text{coaching}} \]
Unconditional Generation
(Language Model)
Conditional Generation

(Descrambling)

π* Samples

- hey there, i should be!
- not much fun. what are you doing?
- not. not sure if you.
- i love to always get my nails done.
- sure, i can see your eye underwater while riding a footwork.

left-right

- i just got off work.
- yes but believe any karma, it is.
- i bet you are. i read most of good tvs on that horror out. cool.
- sometimes, for only time i practice professional baseball.
- i am rich, but i am a policeman.

uniform

- i do, though. do you?
- i like iguanas. i have a snake. i wish i could win. you?
- i am a homebody.
- i care sometimes. i also snowboard.
- i am doing okay. just relaxing, and you?
Conditional Generation
(Neural Machine Translation)

Oracle	BLEU (BP)	Validation	Test					
		Meteor	YiSi	Ribes	Meteor	YiSi	Ribes	
left-right	29.47 (0.97)	29.66	52.03	82.55	26.23 (1.00)	27.87	47.58	79.85
uniform	14.97 (0.63)	21.76	41.62	77.70	13.17 (0.64)	19.87	36.48	75.36
+ (end)-tuning	18.79 (0.89)	25.30	46.23	78.49	17.68 (0.96)	24.53	42.46	74.12
annealed	19.50 (0.71)	26.57	48.00	81.48	16.94 (0.72)	23.15	42.39	78.99
+ (end)-tuning	21.95 (0.90)	26.74	49.01	81.77	19.19 (0.91)	25.24	43.98	79.24