bz-rates: a web-tool to estimate mutation rates from fluctuation analysis
Alexandre Gillet-Markowska, Guillaume Louvel, Gilles Fischer

To cite this version:
Alexandre Gillet-Markowska, Guillaume Louvel, Gilles Fischer. bz-rates: a web-tool to estimate mutation rates from fluctuation analysis. G3, Genetics Society of America, 2015, 5 (11), pp.2323-2327. <10.1534/g3.115.019836>. <hal-01264305>

HAL Id: hal-01264305
https://hal.sorbonne-universite.fr/hal-01264305
Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
bz-rates: a web-tool to estimate mutation rates from fluctuation analysis

Alexandre Gillet-Markowska*, Guillaume Louvel* and Gilles Fischer*,†
*Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris-Seine UMR 7238, Biologie Computationnelle et Quantitative, F-75005, Paris, France, CNRS, Institut de Biologie Paris-Seine UMR7238, Biologie Computationnelle et Quantitative, F-75005, Paris, France

ABSTRACT Fluctuation analyses is the standard experimental method for measuring mutation rates in microorganisms. The appearance of mutants is classically described by a Luria-Delbrück distribution composed of two parameters: the number of mutations per culture (m) and the differential growth rate between mutant and wild-type cells (b). A precise estimation of these 2 parameters is a prerequisite to the calculation of the mutation rate. Here, we developed bz-rates, a web-tool to calculate mutation rates that provides three useful advances over existing web-tools. First, it allows taking into account b, the differential growth rate between mutant and wild-type cells, in the estimation of m with the Generating Function (GF). Secondly, bz-rates allows the user to take into account a deviation from the Luria-Delbrück distribution called z, the plating efficiency, in the estimation of m. Finally, the web-site provides a graphical visualization of the goodness-of-fit between the experimental data and the model. bz-rates is accessible at http://www.lcqb.upmc.fr/bzrates.

A classical approach to calculate mutation rates (µ) in microorganisms consists in performing fluctuation analyses through multiple cultures grown in parallel under identical conditions (Luria and Delbrück 1943). Each individual culture is started with a small inoculum such that the mutational events that occur during the culture are independent. Cultures are then plated on selective media to determine the number of mutants present in each culture. Estimating the mutation rate from these experimental data is of great interest for biologists and has been the object of many mathematical developments (for review see (Foster 2006)).

Calculating mutation rates requires to first estimate the the mean number of mutations per culture (m) under the assumptions of a Luria-Delbrück distribution model (Lea and Coulson 1949). Once a value of m has been calculated, the mutation rate µ can be easily inferred by dividing m by the total number of cells in the culture (although this can lead to an underestimation of the mutation rate (Ycart and Veziris 2014)). Most of the available estimators rely on the Maximum Likelihood (ML) method which was shown to be accurate for recovering m values (Zheng 2002; Stewart 1994; Jaeger and Sarkar 1995; Sarkar et al. 1992; Jones 1994; Gerrish 2008). However, ML estimators can become unstable for fluctuation assays involving cultures with large numbers of mutants. In such cases, the empirical probability GF remains robust and must be preferred over ML (Hamon and Ycart 2012).

One major parameter affecting the estimation of m is b, the differential fitness between mutant and wild type cells (i.e. the ratio between the mutant and the WT growth rates). In the case of differential growth rate, several estimators that jointly calculate m and b have long been made available (Koch 1982; Jones 1994; Jaeger and Sarkar 1995; Zheng 2002, 2005; Hamon and Ycart 2012). The code of these estimators is easily accessible but requires running command lines or installing third party tools.

In addition, the estimation of m can also be affected by another parameter: the plating efficiency, z. This criteria is defined as the fraction of the cultures that is plated on selective media. This parameter accounts for the fact that not all mutants are experimentally detected when only a fraction of the cultures is plated.

Here we propose a new integrated web-tool called bz-rates which provides three useful advances over the only web-tool available to estimate m (Hall et al. 2009). First, it allows taking into account b, the differential growth rate between mutant and wild-type cells, in the estimation of m with the GF. Note that bz-rates does not propose new mathematical developments but fully relies on the available GF estimator. Secondly, bz-rates allows the user to take into account the z deviation in the estimation of m by using the formulation suggested in (Foster 2006) and initially proposed by Stewart and collaborators (Stewart et al. 1990). Note that more...
Figure 1 Screen-shots of the bz-rates web-site. (A) The input form is composed of 1 choice-field (for the b parameter) and 2 boxes (for the z parameter and a 2-columned data box (N_{mutants} N_{cells})). If the user chooses to manually specify a value for b, a supplementary box appears below the choice field. The z parameter is the plating efficiency which represents the fraction of a culture plated. The N_{mutants} and N_{cells} box is intended to enter the number of plated mutants and plated cells in each culture, respectively. N_{mutants} and N_{cells} must be spaced by a single white-space or a tabulation. Here, the N_{mutants} and N_{cells} box is filled with the values from our experimental fluctuation assay described in the result section. (B to D) Each result section is composed of a numerical box (inside the plot) and a plot showing the cumulative distribution function fitted to the experimental data (B: results from our experimental fluctuation assay, (C) Results from a Luria and Delbrück fluctuation analysis of mutations conferring virus resistance in bacteria (corresponding to the pool of experiments number 1, 10, 11, 15 and 21 from table 2 in (Luria and Delbrück 1943)) (D) Results from a fluctuation experiment of mutations conferring nalidixic acid resistance in Escherichia Coli from Boe et al.
recent formal mathematical treatments to this problem are also available but were not implemented here (Stewart 1991; Jones 1993; Zheng 2008a). Finally, bz-rates computes the goodness-of-fit – as described in (Boe et al. 1994) – between the experimental data and the two-parameter Luria-Delbrück model and provides the user with a graphical visualization of the fit.

METHODS

bz-rates code

bz-rates was developed in Python with the Django v1.6 framework. It is a free web-tool distributed under the terms of the GNU General Public License. bz-rates is accessible at http://www.lcqb.upmc.fr/bzrates. The source code, available at https://github.com/gillet/bzrates, can be easily modified to implement other estimators and clones of the tool can be set up elsewhere.

Fluctuation assay

Fluctuation assays were performed using a BY4741 yeast strain (TRPIΔ1-362::natNT2, CYC1::TRPIΔ3(864-958)::hph, ura3, cbl5Δ::KanMX4) carrying 2 non-functional alleles of the TRPI gene involved in tryptophan biosynthesis on two different chromosomes. One copy is truncated in 3 and the other copy in 5 leaving a 400bp homology region repeated in the two alleles. A non allelic homologous recombination event between the 2 hetero-alleles generates a reciprocal translocation that restores tryptophan prototrophy. These mutant cells can therefore be easily selected by plating the cultures onto standard complete synthetic media depleted for tryptophan (CSM-TRP). Briefly, 30 parallel cultures (500 μL) were started by inoculating into rich media (Broth Yeast Extract-Peptone-Dextrose) ~100 cells per well in a 2mL deepwell plate. Cells were grown without agitation at 30°C until they reached an optical density of 0.85 (6.10⁶ cells/mL) and plates were incubated for 4 days at 30°C before counting the number of mutants per plate.

Growth rates

The growth rate of 3 independent mutants and wild type cells was measured by doing growth curve experiments in 100 μL of rich media with a Tecan Sunrise robot in triplicates.

RESULTS

Implementation

bz-rates uses the empirical probability GF estimator from (Hamon and Ycart 2012; Ycart 2013). This method allows a precise estimation of m across a larger range of parameter values than the ML method. The cellular division time model chosen in bz-rates is not the classical exponential model but a constant division time model (‘Dirac’). Although there is no universal cellular division time model as it depends on experimental conditions like the strain or the media, the ‘Dirac’ model is usually the most accurate for the estimation of b and as accurate as the exponential model for the estimation of m. Note that this division time model induces a positive bias in the estimation of large values of m (Ycart 2013).

When b is known, the value provided by the user is used to estimate m with the GF. However, when the mutant relative fitness b is not known, bz-rates estimates both m and b with the GF function.

The mcorr value that takes into consideration the plating efficiency z is calculated according to formula (41) in (Stewart et al. 1990): mcorr = m · (z − 1)/(z · ln(z)). μ is defined as m/Np and μcorr as mcorr/Nt where Np and Nt represent the mean number of cells per plate and per culture respectively. CLlower and CLupper provide the lower and upper confidence limits of μcorr (level of confidence = 95%). σNp provides the standard deviation of the number plated cells.

To test the goodness-of-fit of the data to the model, bz-rates performs a Pearson’s chi-squared test. The value of χ² gives the Pearson’s chi-squared goodness of fit and the χ² > pval its associated p-value. The null hypothesis is rejected in the case χ² > pval < 0.01 meaning that the cumulative distribution function does not fit with the experimental data (empirical cumulative distribution function). In this case, the user is warned that the estimation of the mutation rate is not reliable.

Interface

bz-rates is composed of a simple form (Fig. 1A). The first choice field provides the user with the possibility to indicate that b is known. In this case, the b field appears and the experimentally determined value of b can be filled in (0 < b < ∞). Otherwise b will be estimated computationally by the GF.

The second box allows to fill in the plating efficiency z (i.e. the proportion of cells from each culture that was plated, default value: z = 1).

The main field is the ‘Nmutant Ncells’ box that parses the fluctuation analysis counts. Nmutants and Ncells are the number of plated mutants and plated cells per culture, respectively. This field is ‘excel ready’ thus counts can be directly copy/pasted into this box without further formatting.

The bz-rates result section is composed of two parts: the numerical and the graphical boxes (Fig. 1). The numerical box on the left provides the following estimates:

- m: mean number of mutations per culture not corrected by the plating efficiency (z)
- μ: mutation rate per cell per division not corrected by the plating efficiency (z)
- mcorr: number of mutations per culture corrected by the plating efficiency (z)
- μcorr: mutation rate per cell per division corrected by the plating efficiency (z)
- CLlower: lower 95% confidence limit for mcorr
- CLupper: upper 95% confidence limit for mcorr
- b: mutant cells relative fitness predicted by the Generating Function (only output if b is left empty in the input field)
- blower: lower 95% confidence limit for b
- bupper: upper 95% confidence limit for b
- Nc: average number of plated cells per culture
- σNp: standard deviation of the number of plated cells
- χ²: Pearson’s chi-square value
- χ² − p: Pearson’s chi-square p-value

The graphical box plots the cumulative distribution function fitted to the experimental data. It allows the user to visually judge for the correctness of the hypothesized distribution. To quantify the quality of the fit, bz-rates performs a Pearson’s chi-squared goodness of fit as described in (Boe et al. 1994). If the null hypothesis is rejected (p-value<0.01), the user is advised by a red warning that the predicted and observed distributions are not in close agreement. In this case, the user should consider using another model that takes into consideration other deviations from the Luria Delbrück model such as, for instance, the post-plating growth (Lang and Murray 2008). To do so, the user should use an advanced mutation rate calculation packages to explore different models such as Salvador (Zheng 2008b).
Figure 2 Performance of the \textit{bz-rates} calculator on various simulated datasets. Each panel corresponds to simulated fluctuation datasets with either 16, 32, 48, 96, 192 or 384 independent cultures. In each panel, 200 simulations were performed for different values of \(m \) (1, 2, 4 and 8) and \(b \) (0.5, 1 and 2). The ellipses show the 95\% dispersion of \textit{bz-rates} estimations for the 200 simulations.

Experimental testing

A fluctuation assay was performed with a yeast strain carrying a genetic system that is designed to generate a functional copy of an auxotrophic gene when the cells undergo a specific chromosomal rearrangement (a reciprocal translocation, see methods). The resulting mutant cells have a strong growth defect relatively to wild type cells, probably as the result of the translocation, that was calculated in (Hamon and Ycart 2012) ([5.22-8.89] for \(m \) and [0.74-1.22] for \(b \)). We also tested one larger fluctuation dataset from (Boe et al. 1994) that is composed of 1102 cultures (Fig. 1 (D)). In this case, \textit{bz-rates} reports a \(m \) value of 0.705 which is close to the one calculated in (Hamon and Ycart 2012) ([0.65-0.77]) and the one calculated in (Zheng 2005) (0.71). The mutant differential growth rate value is 1.315 which is a bit higher than the one reported by (Zheng 2005) with a maximum likelihood approach (\(b=1.193 \)).

The performance of \textit{bz-rates} was also tested on simulated datasets. We generated simulated fluctuation assays for different couples of \(m \) and \(b \) with either 16, 32, 48, 96, 192 or 384 parallel cultures (Fig. 2). As expected, the precision of the estimator increases with increasing numbers of parallel cultures. The general trend that can be inferred from these plots is that the precision on the estimation of \(m \) (and by consequence the estimation of \(\mu \)) is higher for the smallest values of \(m \). Therefore, users should not outgrow the cultures in order to limit the number of mutants that grow on selective plates.

Note that the GF estimator has also been extensively tested elsewhere (Hamon and Ycart 2012; Ycart 2013) and the reader should refer to these papers for an extensive review of the performance of this estimator.

CONCLUSION

\textit{bz-rates} is a web-tool that does not require the installation of any third party tool or run any command line to estimate mutation rates. It has a minimalist design in order to provide biologists with a web-tool the most straightforward as possible. To our knowledge there was so far a single web-tool available for mutation rate calculation (Hall et al. 2009) but this tool does not allow to consider deviations from Luria Delbrück or to estimate the goodness of fit with the model. Therefore, \textit{bz-rates} provides useful advances such as accounting for 2 important deviations to Luria-Delbrück distributions (\(b \) and \(z \)) as well as giving an indication of the reliability of the estimated mutation rates. We hope that \textit{bz-rates} will reveal useful to a broad community of microbiologists and geneticists.

ACKNOWLEDGEMENT

We thank our colleagues from LCQB for fruitful discussions and particularly Nicolas Agier for invaluable tips and advice. This work was supported by a scholarship from "La Ligue contre le cancer" and by a Convergence grant (Memory) from Idex SUPER Sorbonne Universités 2014.

LITERATURE CITED

Boe, L., T. Tolkner-Nielsen, K. M. Eegholm, H. Spliid, and a. Vrang, 1994 Fluctuation analysis of mutations to nalidixic acid resistance in Escherichia coli. Journal of Bacteriology 176: 2781–2787. Foster, P. L., 2006 Methods for determining spontaneous mutation rates. Methods in enzymology 409: 195–213. Gerrish, P. J., 2008 A Simple Formula for Obtaining Markedly Improved Mutation Rate Estimates. Genetics 180: 1773–1778. Hall, B. M., C.-X. Ma, P. Liang, and K. K. Singh, 2009 Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbrück fluctuation analysis. Bioinformatics (Oxford, England) 25: 1564–5. Hamon, A. and B. Ycart, 2012 Statistics for the Luria-Delbrück distribution. Electronic Journal of Statistics 6: 1251–1272. Jaeger, G. and S. Sarkar, 1995 On the distribution of bacterial mutants: the effects of differential fitness of mutants and non-mutants. Genetica pp. 217–223.
Jones, M. E., 1993 Accounting for plating efficiency when estimating spontaneous mutation rates. Mutation Research/Environmental Mutagenesis and Related Subjects 292: 187–189.

Jones, M. E., 1994 LB Fluctuation Experiments: Accounting Simultaneously for Plating Efficiency and Differential Growth Rate. J. theor. Biol 166: 355–363.

Koch, A. L., 1982 Mutation and growth rates from Luria-Delbrück fluctuation tests. Mutation Research 95: 129–143.

Lang, G. I. and A. W. Murray, 2008 Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178: 67–82.

Lea, D. and C. A. Coulson, 1949 The distribution of the numbers of mutants in bacterial populations. Journal of genetics 49: 264–285.

Luria, E. and M. Delbrück, 1943 Mutations of bacteria from virus sensitivity to virus resistance'. Genetics 28: 491–511.

Sarkar, S., Ma, and Sandri, 1992 On fluctuation analysis: a new, simple and efficient method for computing the expected number of mutants. Genetica pp. 173–179.

Stewart, F. M., 1991 Fluctuation analysis: the effect of plating efficiency. Genetica 84: 51–55.

Stewart, F. M., 1994 Tests: How Reliable Are the Estimates of Mutation Rates? Genetics 1146: 1139–1146.

Stewart, F. M., D. M. Gordon, and B. R. Levin, 1990 Fluctuation Analysis: The Probability Distribution of the Number Mutants Under Different Conditions. Genetics 124: 175–185.

Ycart, B., 2013 Fluctuation analysis: can estimates be trusted? PloS one 8: e80958.

Zheng, Q., 2002 Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation. Mathematical Biosciences 176: 237–252.

Zheng, Q., 2005 New algorithms for Luria-Delbrück fluctuation analysis. Mathematical biosciences 196: 198–214.

Zheng, Q., 2008a A note on plating efficiency in fluctuation experiments. Mathematical Biosciences 216: 150–153.

Zheng, Q., 2008b SALVADOR 2.3: A tool for studying mutation rates.