Human p53 Is Phosphorylated on Serines 6 and 9 in Response to DNA Damage-inducing Agents*

Received for publication, March 29, 2000
Published, JBC Papers in Press, May 1, 2000, DOI 10.1074/jbc.M002674200

Yuichiro Higashimoto‡, Shin’ichi Saito‡, Xiao-He Tong§, Anita Hong§, Kazuyasu Sakaguchi¶, Ettore Appella** and Carl W. Anderson***

From the 2NCI, National Institutes of Health, Bethesda, Maryland 20892, §AnaSpec Inc, San Jose, California 95131, the ¶Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan, and the **Biological Department, Brookhaven National Laboratory, Upton, New York 11973

To characterize the sites in human p53 that become phosphorylated in response to DNA damage, we have developed polyclonal antibodies that recognize p53 only when it is phosphorylated at specific sites. Several attempts to generate an antibody to p53 phosphorylated at Ser6 using a phosphoserine-containing peptide as an immunogen were unsuccessful; however, phosphorylation-specific antibodies were produced by using the phosphoserine mimetic, L-2-amino-4-phosphono-4,4-difluorobutanoic acid (F2Pab), in place of phosphoserine. Fmoc-F2Pab was prepared by an improved synthesis and chemically incorporated using solid phase peptide synthesis. Affinity-purified antibodies elicited by immunizing rabbits with a F2Pab peptide coupled to keyhole limpet hemocyanin recognized a p53(1–39) peptide phosphorylated only at Ser6 but not the unphosphorylated peptide or the same peptide phosphorylated at Ser9, Ser15, Ser20, Ser33, or Ser37. Untreated A549 cells exhibited a background of constitutive phosphorylation at Ser6 that increased approximately 10-fold upon exposure to either ionizing radiation or UV light. Similar results were obtained for Ser9 using antibodies raised against a conventional phosphopeptide. Ser6 was phosphorylated by casein kinase 1 in vitro in a phosphoserine 6-dependent manner. Our data identify two additional DNA damage-induced phosphorylations in human p53 and show that F2Pab-derivatized peptides can be used to develop phosphorylation site-specific polyclonal antibodies.

Both stabilization of the p53 protein and activation of its sequence-specific DNA binding ability are widely believed to be mediated, at least in part, by posttranslational modifications (3, 4). p53 is phosphorylated at several sites in its N-terminal transactivation domain as well as at several sites in the C-terminal tetramerization/regulatory domain, and recent studies have shown that serines 15, 20, 33, and 37 become phosphorylated after cells are exposed either to ionizing radiation (IR) or to UV light, and threonine 18 becomes phosphorylated in response to ionizing radiation (5–12).

The serines at positions 4, 6, and 9 with respect to the N terminus of murine p53 are reported to be phosphorylated in vivo and in vitro by casein kinase 1 (CK1) or a CK1-like enzyme (13). CK1-δ is a homolog of the budding yeast kinase Hrr25, a nuclear Ser/Thr protein kinase that was isolated in a screen for mutants sensitive to double-stranded breaks (14–16). In human p53, serine 4 is replaced by proline, but the serines at positions 6 and 9 are conserved in most species for which sequence information is available (17). To determine whether these residues in human p53 become phosphorylated in response to DNA damage, we attempted to produce antibodies that recognize human p53 only when it is phosphorylated at these residues. Although hyperimmunization of a rabbit with a p53 peptide phosphorylated at the Ser6 position yielded antibodies that recognized p53 peptides phosphorylated at Ser6, repeated attempts to produce antibodies that reacted with phosphorylated Ser8 by immunizing with a similar phosphopeptide failed. One possible reason for this failure is that the immunizing peptide becomes rapidly dephosphorylated. To circumvent dephosphorylation of the immunogen, we chemically incorporated a stable serine phosphate mimetic, F2Pab, in place of serine phosphate in the p53 peptide used for immunization. The resulting affinity-purified antibodies, we report here that human p53 becomes phosphorylated in response to DNA damage, we attempted to produce antibodies that recognize human p53 only when it is phosphorylated at these residues. Although hyperimmunization of a rabbit with a p53 peptide phosphorylated at the Ser6 position yielded antibodies that recognized p53 peptides phosphorylated at Ser6, repeated attempts to produce antibodies that reacted with phosphorylated Ser6 by immunizing with a similar phosphopeptide failed. One possible reason for this failure is that the immunizing peptide becomes rapidly dephosphorylated. To circumvent dephosphorylation of the immunogen, we chemically incorporated a stable serine phosphate mimetic, F2Pab, in place of serine phosphate in the p53 peptide used for immunizations (Fig. 1). In contrast to the natural phosphopeptide, immunization with the F2Pab-mimetic peptide produced antibodies that reacted strongly and specifically with a p53 peptide phosphorylated at Ser6. Using the resulting affinity purified antibodies, we report here that human p53 becomes rapidly and strongly phosphorylated at Ser6 as well as at Ser9 in response to exposing cells to either ionizing radiation or UV light.

EXPERIMENTAL PROCEDURES

Preparation of Fmoc-F2Pab—The intermediate, t-butyloxycarbonyl-L-F2Pab(OEt)2-OH, was prepared in 24% yield by our improved procedure in five steps, based on the methods of Berkowitz et al. (18) and Otaka et al.
Damage-induced Phosphorylation of p53 Ser⁶ and Ser⁹

Antibody Preparation—Rabbit polyclonal antibody to p53 phosphorylated at Ser⁶ was raised against the human p53 sequence Ac-1–12(6P)Cys (i.e. Ac-MEEPQ(F₂Pab)DPSVEPC) conjugated through a added C-terminal cysteine to keyhole limpet hemocyanin (KLH). Sera from an immunized rabbit were affinity purified by use of the natural phosphopeptide Ac-1–12(6P)Cys (i.e. Ac-MEEPQ(F₂Pab)DPSVEPC) coupled to Sulfolink (Pierce). The purified antibodies then were passed through a column coupled with the unphosphorylated peptide p53(1–12(6P))Cys (i.e. Ac-MEEPQ(SDPSVEPC) to deplete antibodies that react with unphosphorylated p53. Antibody specific for p53 phosphorylated at Ser⁶ were prepared as described (7). Rabbits were immunized with Ac-4–15(9P)Cys (i.e. Ac-PQSDPS(VEPPLSC)) coupled to KLH. Phosphoserine 9-specific antibodies were purified with the use of the corresponding Sulfolinked phospho- and unphosphorylated peptides. The specificity of each antibody was confirmed by ELISA and immunoblot assays. Dot blots were prepared by spotting 1 µl of a 1 mg/ml solution of each peptide onto a nitrocellulose membrane. Membranes were blocked with 4% bovine serum albumin, 0.05% Tween 20 in phosphate-buffered saline at room temperature for 2 h, washed in phosphate-buffered saline with 0.05% Tween 20, and then processed as for Western blot analysis.

RESULTS

For preparation of phosphorylation-specific antibodies for p53 Ser⁶ and Ser⁹, we first attempted to prepare phosphorylation site-specific antibodies that recognize phosphorylated Ser⁶ or Ser⁹ of human p53 by immunizing rabbits with chemically synthesized p53 phosphopeptides conjugated to KLH (see Fig. 2). In the case of a rabbit immunized with p53(4–15(9P))C-KLH, purified antibodies were readily obtained from serum taken 6 weeks after the start of immunization. No phosphorylation-specific antibody was obtained from any of four rabbits immunized with p53(1–39) and analogs phosphorylated at the sites indicated.

*Fig. 2. Specificity of affinity-purified PABSer(P)6 and PABSer(P)9 antibodies. Affinity-purified rabbit polyclonal antibodies specific for p53 phosphorylated at Ser⁶ and Ser⁹ were prepared as described under “Experimental Procedures,” and the antibodies were evaluated for specificity with a dot blot assay using synthetically prepared p53-Ser⁶ (the Ser was replaced with phosphoserine, and the Ser⁹ was replaced with phosphoserine) and analogs phosphorylated at the sites indicated.**
p53(Ac-1–12(6F2Pab)C)-KLH, containing the phosphoserine mimic, L-2-amino-4-phosphono-4,4-difluorobutanoic acid (F2Pab) (19), in place of phosphoserine at residue 6. Immunization with this peptide yielded antibodies that recognized both an unphosphorylated p53 N-terminal peptide and an N-terminal peptide phosphorylated at Ser6. Indeed, the titer of antibodies in each of the initial four bleedings was higher for the phosphorylated peptide compared with the unphosphorylated peptide (Fig. 3B). Furthermore, antibodies affinity purified from serum obtained 8 weeks after the initial immunization were highly reactive and specific for p53(1–39)(6P) (Fig. 2).

To further characterize both phospho-specific antibodies, we performed quantitative ELISA assays using the purified antibodies and selected unphosphorylated and phosphorylated peptides (Fig. 4). As expected, the purified PAbSer(P)9 reacted with p53(Ac-1–12) phosphorylated at Ser6 but not with the unphosphorylated peptide (Fig. 4, right panel). These antibodies also reacted well with p53(Ac-1–12) phosphorylated at both Ser6 and Ser9, indicating that phosphorylation at Ser6 will not significantly affect the ability of the purified PAbSer(P)9 antibodies to recognize p53 phosphorylated at both residues. Previous studies by us and others have shown that phosphorylation at closely spaced sites can interfere with recognition by phosphorylation-specific antibodies (8). Likewise, antibodies raised against p53(Ac-1–12(6F2Pab)) and affinity purified with the natural phospho-Ser6 peptide (PAbSer(P)6 antibodies) recognized well p53(Ac-1–12) phosphorylated at Ser6 or at Ser9 and did not recognize the unphosphorylated peptide (Fig. 4, left panel). Surprisingly, however, these antibodies hardly recognized the p53(Ac-1–12(6F2Pab)) peptide (solid squares). Therefore, we also purified antibodies from PAbSer(P)6 crude serum, i.e. from a rabbit immunized with p53(Ac-1–12(6F2Pab))C-KLH, on Sulfolinked p53(Ac-1–12(6F2Pab))C instead of the natural phospho-Ser-containing peptide (Fig. 4, middle panel). These antibodies behaved in the opposite manner; they recognized p53(Ac-1–12(6F2Pab)) well but barely recognized the natural phospho-Ser6 peptide. These data indicate that although F2Pab functioned as a phosphoserine mimic to induce the production of phosphoserine-specific antibodies, there appear to be significant differences in the structure of phosphoserine and F2Pab or of the resulting peptides such that most antibodies that recognize phosphoserine cannot also recognize peptidyl-F2Pab.

To determine whether human p53 is phosphorylated at Ser6 and Ser9 after exposure to DNA damage-inducing agents, we exposed A549 cells, a human lung carcinoma cell line with wild-type p53, to 8 Gy of ionizing radiation, to 25 J/m2 of UV-C light, or to 0.2 \(\mu \)g/ml of adriamycin. As a control, cells also were treated with ALLN, a proteasome inhibitor that blocks Mdm2-mediated p53 degradation and induces the accumulation of p53 to about the same extent as DNA damage-inducing agents. Cell extracts were prepared at different times after exposure, the p53 was immunoprecipitated with a p53 antibody mixture attached to agarose beads, and the resulting immunoprecipitates...
were fractionated by SDS-polyacrylamide gel electrophoresis. The proteins were then electrophoretically transferred to a polyvinylidene difluoride membrane, and the membrane was probed either with phosphorylation site-specific antibody preparations or with DO-1, a monoclonal antibody that recognizes an epitope in the p53 transactivation domain; ALLN is an inhibitor of proteasome-mediated degradation and stabilizes p53 to about the same extent as DNA damage.

FIG. 5. Phosphorylation of p53 at Ser^6 and Ser^9 in response to IR and UV. A549 cells were treated with 20 \(\mu \)M ALLN (control), irradiated with 8 Gy, or exposed to 25 J/m^2 of UV light, and cell extracts were prepared at the indicated times. After precipitation with PAb1801- and DO-1-agarose beads, p53 was analyzed by Western immunoblotting with the antibodies indicated at the left. DO-1 recognizes an epitope in the p53 transactivation domain; ALLN is an inhibitor of proteasome-mediated degradation and stabilizes p53 to about the same extent as DNA damage.

The similarity of the time course of phosphorylation at Ser^6 and Ser^9 suggested that phosphorylation of Ser^9 might be coupled to phosphorylation of Ser^6. Recently, we showed that Thr^18 of human p53 is phosphorylated by a casein kinase 1-like enzyme in response to DNA damage (8). The specificity of CK1, a ubiquitously expressed protein kinase, is directed to specific serines and threonines by phosphorylation at the N-terminal sites that resemble CK1 (4, 13). Ser^6 and Ser^9 are conserved in most (e.g. human, monkey, mouse, rat, and hamster) but not in all (e.g. cow, sheep, and cat) mammalian species.

Murine p53 is phosphorylated at residues homologous to Ser^6 and Ser^9, as well as at Ser^14, which is not present in human p53, by a DNA damage-induced or activated protein kinase that resembles CK1 (4, 13). In vitro, recombinant CK1-δ does not phosphorylate (8), or at best phosphorylates poorly, the N-terminal human p53 peptides p53(Ac-1–12) or p53(Ac-1–12(6P)) were incubated with CK1-δ and \(^32\)P-labeled ATP, and the products were separated by thin layer chromatography as described (8). The autoradiogram shows that the p53(Ac-1–12(6P)) peptide became phosphorylated (arrow) after incubation with recombinant CK1-δ but that the unphosphorylated was not significantly labeled (label at origin is in ATP).

FIG. 6. CK1-δ phosphorylates p53 Ser^6 in vitro. The N-terminal human p53 peptides p53(Ac-1–12) or p53(Ac-1–12(6P)) were incubated with CK1-δ and \(^32\)P-labeled ATP, and the products were separated by thin layer chromatography as described (8). The autoradiogram shows that the p53(Ac-1–12(6P)) peptide became phosphorylated (arrow) after incubation with recombinant CK1-δ but that the unphosphorylated was not significantly labeled (label at origin is in ATP).

DISCUSSION

The response of mammalian cells to DNA damage is complex (reviewed in Refs. 24–26). Cell cycle progression is controlled by several checkpoints that are activated by DNA damage, by other stresses, and by mechanisms that ensure the orderly progression of cell cycle events. One of the most important mammalian cell cycle checkpoint proteins is the tumor suppressor p53. The p53 gene is inactivated in the majority of human cancers (27). Studies over the last 20 years have shown that human p53 is a 393-amino acid, nuclear phosphoprotein that functions in part as an activator of transcription (reviewed in Refs. 1 and 2). In normal, undamaged cells p53 is rapidly degraded. Treating cells with a variety of DNA damage-inducing agents induces a transient accumulation of p53 protein and activates it as a transcription factor. Human p53 has been shown to be phosphorylated at several N-terminal and C-terminal sites that in vitro affect site-specific DNA binding and interactions with other cellular and viral proteins (3, 4).

Here we demonstrate that p53 becomes phosphorylated at two previously undescribed sites, Ser^6 and Ser^9, in response to exposing cells to ionizing radiation or adriamycin, both of which produce DNA strand breaks, and after exposure to UV light, which produces bulky lesions in DNA. Although detection of phosphorylations by Western immunoblot analysis with phosphorylation-specific antibodies is a qualitative technique, Ser^6 appears to be one of the most strongly phosphorylated sites in response to DNA damage, and this site, together with Ser^9, is one of the earliest DNA damage-induced posttranslational modifications to p53 that has been detected. Ser^9 appears to be less strongly phosphorylated, but the time course of its phosphorylation closely paralleled that of Ser^6, suggesting that phosphorylation of the two sites might be linked (see below). Studies with phosphorylated peptides suggest that phosphorylation at Ser^9 should not interfere with the detection of phosphorylation at Ser^6 and vice versa (Fig. 4). Serines 6 and 9 are conserved in most (e.g. human, monkey, mouse, rat, and hamster) but not in all (e.g. cow, sheep, and cat) mammalian species.

Murine p53 is phosphorylated at residues homologous to Ser^6 and Ser^9, as well as at Ser^14, which is not present in human p53, by a DNA damage-induced or activated protein kinase that resembles CK1 (4, 13). In vitro, recombinant CK1-δ does not phosphorylate (8), or at best phosphorylates poorly, the N-terminal human p53 peptides p53(Ac-1–12) or p53(Ac-1–12(6P)) were incubated with CK1-δ and \(^32\)P-labeled ATP, and the products were separated by thin layer chromatography as described (8). The autoradiogram shows that the p53(Ac-1–12(6P)) peptide became phosphorylated (arrow) after incubation with recombinant CK1-δ but that the unphosphorylated was not significantly labeled (label at origin is in ATP).
terminus of unmodified human p53 or unmodified N-terminal p53 peptides, but we recently showed that CK1-δ will phosphorylate human p53 at Thr18 in vitro if it is targeted to this site by prior phosphorylation of Ser15. Ser9, like Thr18, is located by CK1-like enzyme in a cascade-like manner that depends on the damage-dependent phosphorylation of the upstream −3 residue may serve as a mechanism for amplifying the biochemical effect of the initial phosphorylation. In contrast to the reported situation with murine p53, however, Ser9 of human p53 in N-terminal peptides was not phosphorylated by CK1-δ in vitro. The rapid and strong phosphorylation of this site in vitro suggests that it is recognized by an as yet unknown DNA damage-activated protein kinase.

A significant problem in the study of p53 and its response to DNA damage has been that such studies have required labeling cells with large amounts of radioactive precursors, which themselves cause DNA damage and modification of p53 (28, 29). Antisera that specifically recognize peptide-phosphoryrosine have been available for several years, but antisera that specifically recognize peptide phosphoserine or phosphothreonine became available only recently (30). It was immediately apparent that if antibodies could be produced that recognize specific phosphorylation sites in p53, then phosphorylation at these sites could be monitored without the complication of exposing cell to high levels of DNA damaging radiation. However, producing antisera that recognized specific sites in proteins only when phosphorylated is not a trivial task, and one potentially limiting factor is dephosphorylation of the immunizing peptide by cellular phosphatasas after injection of the phosphopeptide conjugates.

To circumvent the dephosphorylation problem, we explored the use of a fluorine analog of phosphoserine, F$_2$Pab, which can be chemically incorporated into peptides as the Fmoc-derivative at the desired site (19, 31). The F$_2$Pab-phosphoserine mimic is resistant to hydrolysis by the phosphatasas in cells that remove phosphates from proteins and peptides, and, in contrast to methylene derivatives, the second ionization constant of the phosphate (pK$_a$2) is close to that of phosphate (32). Thus, F$_2$Pab-derivatized peptides appear to be stable, effective mimics of protein phosphorylation sites. Recently we showed that antibody raised to the peptide p53(13−19(F$_2$Pab))A13−19(F$_2$Pab)AC coupled to KLH, i.e. to PL(F$_2$Pab)/QETFAPL/F$_2$Pab/QETFAC-KLH, was capable of specifically recognizing p53 phosphorylated at Ser15 (8). However, we and others had previously shown that site-specific antibodies could be raised to this site using conventional phosphopeptides. In the case of Ser9, multiple attempts to produce a phosphopeptide-specific antibody were unsuccessful even though antibodies that recognized the N-terminal segment of p53 were produced. In contrast, with the substitution of F$_2$Pab for the natural phosphoserine, antibodies that specifically recognized phosphorylated Ser9 can be readily obtained.

A surprising finding is the observation that antibodies raised by immunizing with peptide-F$_2$Pab and purified using a natural phosphopeptide reacted only poorly with the immunizing peptidyl-F$_2$Pab peptide. Conversely, antibodies from the same breeding that were purified using peptidyl-F$_2$Pab reacted only poorly with the homologous, natural phosphoserine peptide. This result suggests that F$_2$Pab may adopt two or more conformations, only one of which truly mimics phosphoserine. Antibodies are elicited that recognize both conformations, but these antibody populations cross-react with the alternate conformation(s) poorly. However, because we have not measured antibody recovery, there may be a third population of elicited antibodies that recognize both conformations but that were not recovered by our purification procedures. Thus, although further studies will be required to understand the nature of the immunogenic response to F$_2$Pab-containing peptides, our initial successes strongly suggest that the use of the F$_2$Pab as a mimetic for phosphoserine can provide a functional approach to developing phosphorylation-specific antisera that may even extend to developing monoclonal producing hybridomas.

REFERENCES

1. Giaccia, A. J., and Kastan, M. B. (1998) Genes Dev. 12, 2973–2983
2. Prives, C., and Hall, P. A. (1999) J. Pathol. 187, 112–126
3. Appella, E., and Anderson, C. W. (2000) Pathol. Biol., in press
4. Meek, D. W. (1998) Cell Signal. 10, 159–166
5. Siliciano, J. D., Cannan, C. E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M. B. (1997) Genes Dev. 11, 3471–3481
6. Shieh, S.-Y., Ibeda, M., Taya, Y., and Prives, C. (1997) Cell 91, 325–334
7. Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassiliev, A., Anderson, C. W., and Appella, E. (1998) Genes Dev. 12, 2831–2841
8. Sakaguchi, K., Saito, S., Higashimoto, Y., Roy, S., Anderson, C. W., and Appella, E. (2000) J. Biol. Chem. 275, 9278–9283
9. Shieh, S.-Y., Ahn, J., Tamma, K., Taya, Y., and Prives, C. (2000) Genes Dev. 14, 289–300
10. Craig, A. L., Burch, L., Vojtesek, B., Mikutowska, J., Thompson, A., and Hupp, T. R. (1999) Biochem. J. 342, 133–141
11. Banin, S., Moyal, L., Shieh, S.-Y., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reisz, Y., Shilo, Y., and Ziv, Y. (1998) Science 281, 1674–1677
12. Cannan, C. E., Lim, D.-S., Cimprich, K. A., Taya, Y., Tamma, K., Sakaguchi, K., Appella, E., Kastan, M. B., and Siliciano, J. D. (1998) Science 281, 1677–1679
13. Karpischek, U., Müller, D. M., Campbell, L. E., DeMaggio, A. J., Christenson, J., Hoekstra, M. F., and Meek, D. W. (1997) Oncogene 15, 1727–1736
14. Graves, P. R., Haas, D. W., Hagedorn, C. H., DePaoli-Roach, A. A., and Roach, P. J. (1993) J. Biol. Chem. 268, 6394–6401
15. Fish, K. J., Cegelska, A., Getman, M. E., Landes, G. M., and Virshup, D. M. (1995) J. Biol. Chem. 270, 14875–14883
16. Christenson, J. E., DeMaggio, A. J., and Hoekstra, M. F. (1997) Recent Results Cancer Res. 143, 263–274
17. Sousai, T., and May, P. J. (1996) J. Mol. Biol. 260, 623–637
18. Berkowitz, D. B., Eggen, M., Shen, Q., and Shoemaker, R. K. (1996) J. Org. Chem. 61, 4666–4675
19. Otaka, A., Miyoshi, K. T., Burke, J., Roller, P. P., Kubota, H., Tamamura, H., and Fujii, N. (1995) Tetrahedron Lett. 36, 927–930
20. Moshou, D., Steinberg, S. M., Nau, M. M., Carbone, D., Reisz, Y., Bodner, S., Oie, H. K., Linnola, R. I., Multshine, J. L., Minna, J. D., and et al. (1992) Oncogene 7, 171–180
21. Flotow, H., Graves, P. R., Wang, A., Fiol, C. J., Roeseke, R. W., and Roach, P. J. (1999) J. Biol. Chem. 265, 14264–14269
22. Longenecker, K. L., Roach, P. J., and Hurley, T. D. (1996) J. Mol. Biol. 257, 618–631
23. Songyang, Z., Lu, K. P., Kwon, Y. T., Tsai, L.-H., Filhol, O., Cochet, C., Bricker, D. A., Soderling, T. R., Bartleson, C., Graves, D. J., DeMaggio, A. J., Hoekstra, M. F., Blenis, J., Hunter, T., and Cantley, L. C. (1996) Mol. Cell. Biol. 16, 6486–6493
24. Anderson, C. W. (1994) Semin. Cell Biol. 5, 427–436
25. Carr, A. M., and Hoekstra, M. F. (1995) Trends Cell Biol. 5, 32–40
26. Herrlich, P., Blattner, C., Knebel, A., Bender, K., and Rahmsdorf, H. J. (1997) J. Biol. Chem. 272, 1217–1229
27. Holstein, M., Moeckel, G., Hergenhahn, M., Spiegelhalder, B., Keil, M., Werle, Schneider, G., Bartsch, H., and Brickmann, J. (1998) Mutat Res. 405, 145–154
28. Dover, R., Jayaram, Y., Patel, K., and Chinery, R. (1994) J. Cell Sci. 107, 1181–1184
29. Yeargin, J., and Haas, M. (1995) Curr. Biol. 5, 423–431
30. Ginty, D. D., Kornhauser, J. M., Thompson, M. A., Rodin, H., Maye, K. E., Takahashi, J. S., and Greenberg, M. E. (1993) Science 260, 238–241
31. Miyoshi, K., Otaka, A., Kanez, M., Tamamura, H., and Fujii, N. (1995) Peptide Chemistry 32, 25–28
32. Chen, L., Wu, L., Otaka, A., Smyth, M. S., Roller, P. P., Burke, T. R., Jr., den Hertog, J., and Zhang, Z. Y. (1995) Biochem. Biophys. Res. Commun. 216, 976–984