Photospheric and chromospheric activity in V405 And
An M dwarf binary with components on the two sides of the full convection limit

K. Vida1,2, K. Oláh2, Zs. Kővári2, H. Korhonen3, J. Bartus4, Zs. Hurta1,2, and K. Posztobányi5

1 Eötvös Loránd University, Department of Astronomy, H-1518 Budapest, PO Box 32, Hungary
e-mail: vidakris@elte.hu
2 Konkoly Observatory of the Hungarian Academy of Sciences, 1525 Budapest, PO Box 67, Hungary
3 European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching bei München, Germany
4 Astrophysical Institute Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
5 AEKI, KFKI Atomic Energy Research Institute, Thermohydraulic Department, H1525 Budapest 114, PO Box 49, Hungary

ABSTRACT

We investigate the fast rotating ($P_{orb} = P_{rot} = 0.465d$) active dwarf binary V405 And (M0V+M5V) using photometric $BV(RI)_c$ and optical spectroscopic data. The light variation is caused by the combined effect of spottedness and binarity with a small eclipse. From the available light and radial velocity curves we estimate the system parameters. Three flare events happened during the observations: two were found in the spectroscopic data and one was observed photometrically in $BV(RI)_c$ colours. An interesting eruptive phenomenon emerged from the photometric measurements which can be interpreted as a series of post-flare eruptions lasting for at least 3 orbits (rotations) of the system, originating from trans-equatorial magnetic loops, which connect the active regions in the two hemispheres. The two components of V405 And have masses well over and below the theoretical limit of full convection. This rare property makes the binary an ideal target for observing and testing models for stellar dynamo action.

Key words. Stars: individual: V405 And – (Stars:) binaries: eclipsing – Stars: activity – Stars: chromospheres – (Stars:) starspots – Stars: fundamental parameters

1. Introduction

Low mass stars are in the focus of studying stellar structure: these kind of objects make up the majority of the Galaxy, yet, because of their low luminosity, it is not easy to study them in detail. Low mass stars with fast rotation show magnetic phenomena (spots, plages, flares, strong X-ray emission) due to some kind of magnetic dynamo in their interiors. Stars with radiative core and convection zone are thought to operate αΩ dynamos. The α-effect creates poloidal field from toroidal one by helical turbulence in the convection zone, whereas Ω-effect produce toroidal field from poloidal one by differential rotation. The place of the dynamo process is thought to be a thin layer between the core and convection zone, called tachocline, where the shear is the strongest. Below about ~0.32M⊙ stars are thought to be fully convective, yet show all known magnetic phenomena as well. The source of the magnetic field in these low mass stars could be α2 dynamo generating strong, long-lasting, axisymmetric magnetic fields by turbulence, or by some other mechanism involving differential rotation. However, the mass limit (or the spectral limit of M3.5) of the full convection is not well established, since strong magnetic fields may shift this boundary towards lower masses (Mullan & MacDonald [2001]; Chabrier et al.[2007]). For low mass ($M < 0.8$) active stars a significant discrepancy is found between models and observations of stellar radii, i.e., theory predicts ~10% lower radii, while temperatures are underestimated by about 5% (see e.g. Ribas [2006]).

An interesting approach is to study low mass stars above and below this hypothetical mass limit together in close binary systems. As to our knowledge, only two such systems are known.

2. Observations and data reduction

Photometric observations were carried out using the 1m RCC telescope of Konkoly Observatory at Pizkéstétő Mountain Station equipped with a Princeton Instruments 1300×1300 CCD.
and the 60cm telescope of Konkoly Observatory at Svábhgy, Budapest with a Wright Instruments 750 × 1100 CCD camera.

Observations were collected during 28 nights: 13 nights with the 60cm telescope (February 8 – October 1, 2007; 2454140–2454375 HJDs), and 18 nights with the RCC telescope (September 28, 2007 – November 18, 2008; 2454372–2454789 HJDs), on three nights both telescopes were used simultaneously.

After correcting for atmospheric extinction and transforming the data to standard photometric system, we matched the two data series by fine-tuning the telescope constants within their errors.

A finding chart is plotted on Fig. 1. V405 And is marked as Star 1 (using the numbering of CI97). Two of the comparison stars (Star 3, Star 6) used by CI97 turned out to be variable. Star 3 shows changes on a longer timescale of 20-30 days. Star 6, showing a period of ~ 0.658d, is possibly a W UMa type star. This effect would only cause small shifts, if any in CI97, since they used the average value of the five comparison stars.

In this work GSC 03298-00148 (Star 7) was used as a comparison star. Magnitudes of Star 7 were calculated using stars 2,3,4 and 5 separately and the results were compared. The differences were 0.03 magnitudes at maximum. According to the results, we chose finally Star 2 for defining the magnitudes of the comparison star.

As mentioned in CI97, there is a star near V405 And, at about 4.5 arc-seconds to the south-east, which is blended with the variable on most of the frames. We determined the magnitudes of the star near V405 And using frames taken on 2007 September 29, October 01 and October 02. IRAF PHOT routine of DAOPHOT package with small aperture, and NSTAR PSF-fitting routine were used. There was a systematic difference (order of 0.01 magnitudes) between aperture and PSF photometry (aperture photometry gave brighter magnitudes). Since the two stars are separated only by 12.6 pixels, V405 And extends into the aperture of the fainter star, so the result of the PSF photometry was accepted. The magnitudes of the faint star are 16.52 ± 0.06, 14.92 ± 0.05 (15.1 in CI97), 13.75 ± 0.03 and 12.13 ± 0.03 in B, V, R C and I C passbands, respectively. To test the correctness of these values, we compared PSF-magnitudes of V405 And with magnitudes from aperture photometry. We set an aperture large enough to contain both V405 And and the faint star, then subtracted the intensity of the faint star from the result. These magnitudes from aperture photometry and PSF-photometry match reassuringly within a few hundredths of magnitude.

Table 1. Average magnitudes of stars on V405 And field.

Star No.	V	B − V	V − R C	V − I C
1 (V405 And)	11.25	1.36	0.94	1.86
2	12.80	0.43	0.28	0.55
3	13.60	0.43	0.28	0.57
4	11.05	0.43	0.28	0.54
5	12.99	0.89		
6	11.67	0.68	0.45	0.83
7	10.67	0.76	0.47	0.87

* The star numbers are the same as in CI97. Star 7 is not in the field of view in CI97.
** Values in italics are from CI97.

Differential aperture photometry of V405 And was done using DAOPHOT routine. The aperture was chosen to contain the fainter star on all frames, since the two stars were not resolved on most frames. The intensities of this star were subtracted from the light curve after transforming to standard Johnson–Cousins photometric system. The resulting light curve is plotted in Fig. 2.

Interstellar extinction was checked for V405 And using NASA/IPAC Extragalactic Database (NED), giving a value of E(B−V) = 0.182 mag for total extinction. According to CI97, the distance of V405 And is 25–35 pc, so the effect of interstellar extinction would be only a few thousandth magnitude. This value is much smaller than the errors of the photometry (~0.01–0.02mag), so it can be neglected.

Altogether 97 high-resolution spectra was retrieved from the ELODIE archive at Observatoire de Haute-Provence (OHP) [Moultaka et al. 2004]. In 1994 38 spectra were observed: 27 between October 18–23, and 11 between December 12–16. Another 59 unpublished spectra were obtained between October 25–30, 1998. The spectra from the archive cover the wavelength range of 4000–6800Å with a resolution (λ/Δλ) of 42000.

3. Analysis

Results in Table 1 show that while the average magnitudes of our measurements agree quite well with those of CI97 in case of Stars 2 to 6, values for V405 And seem to differ significantly.

1 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
V405 And was 0.15 magnitude fainter during our observations in V band than in 1995. This, and the decrease of $V - R_C$ and $V - I_C$ indices indicate higher spottedness. In the same time, the bluer $B - V$ show the presence of more faculae. Thus, we conclude that the activity is enhanced compared to the 1995 level.

3.1. Spots: photometric modelling

For finding light curve solution we adopted the method described by Strassmeier et al. (2008). The method uses an iterative modelling for the binarity and spottedness separately. The binary model was computed using PHOEBE (Prsa & Zwitter 2005) simultaneously for our four-colour measurements and the radial velocity curve from CI97. The binary model light curve is removed from the observed one using the following equation:

$$F_{\text{spot}} = F_{\text{obs}} - F_{\text{model}} + F_{\text{unsp}},$$

where F_{spot} is the flux of the primary changing due to spottedness, F_{obs} is the observed light curve, F_{model} is the binary model constructed with PHOEBE, and F_{unsp} is the unspotted flux of the system (for model parameters see Table 2). F_{spot} is a light curve which contains only the changes caused by the spottedness, and is free from the effects of binarity (ellipse and changes by the distorted shape of the stars). The true spotted light curve was modelled with SmodL. (Ribárik et al. 2003), which uses the analytic approach with circular spots of Budding (1973). The circumpolar part of the spotted region accounts for the long-term, overall brightness change, whereas spotted parts outside this region cause the rotational modulation. The latitude of the spots is, at least partly, determined by the ratio of buoyancy and Coriolis-force. On fast rotating stars the Coriolis-force is dominant which moves the spots to high latitudes (Choudhuri & Gilman 1987). While spot models can determine spot longitudes quite reliably, photometric observations have very low information content on spot latitudes (see e.g. Kóvári & Bartus 1997). Assuming circular spots on the surface is an approximation with small number of parameters. Sunspots and active nests on the Sun give examples of circular active regions. Note, that as ‘spots’ we mean regions with dark spots and bright faculae, the (average) temperature of the region is made up from the cool and hot parts, relative to the photosphere.

We assumed two spotted regions on V405 And with average $T_{\text{spot}} = 33000 \text{K}$ on the high-latitude regions of the primary. Tests of Kóvári & Bartus (1997) showed that analytic models using two circular spots describe the observed spotted light curves satisfactorily within the precision of the photometric observations. Spot temperature was chosen by modelling a $V - I_C$ light curve, and the result was accepted for all passbands. For finding the best fitting spotted light curve, the size and position of the spots were searched. During our observations the star was more than 0.1 magnitudes fainter due to higher spottedness than the faintest observed value in CI97, thus we used the brightest part of the V and $B - V$ light curves of CI97 as the faintest possible unspotted B and V magnitudes. Unspotted R_C and I_C magnitudes were calculated from the color indices. The resulting spotted curve was then removed from the observed one, and these steps were repeated until we got a satisfactory fit for the spots and binarity (Fig. 3) separately, and for the observed light curve itself (Fig. 2).

Using this modelling method it is possible to determine the physical parameters of the binary (see Table 2). For initial values of surface temperatures we used the tables of Flower (1996) and Vandenberg & Clem (2003). The shape of the light curve is not very sensitive to the changes in the temperature, thus the fitting of these values is quite uncertain. Our result for the mass ratio is within 1σ from the value that was spectroscopically determined in CI97 ($q = 0.38 \pm 0.04$).

The spot configuration is relatively stable throughout the observations, positions and sizes of the spots change only slightly. According to the model, one spot is situated on the northern hemisphere, and another one on the southern hemisphere about 150° from each other in longitude. From the modelling results the longitudes of spots (i.e., phases) are accurate within a few degrees, but latitude results are just approximations. Using the supposed T_{spot} we find that about 25% of the stellar surface is covered with active regions. The stability of circular spot models are discussed in details in Kóvári & Bartus (1997). With the
help of this simple spot model we could satisfactorily separate the light variation originating from binarity and activity.

3.2. Hot regions in the chromosphere and photosphere

The chromospheric activity of V405 And was investigated using Hα line profiles. Equivalent widths (Fig. 4) were measured by fitting Gaussian profiles using SPLOT task in IRAF, after the continuum was fitted by polynomials and removed. The equivalent widths vary between 1–2Å showing a small rotational modulation. This variation seems to be fairly regular during the observations, except for the time of the flares in October 1994 and 1998 (see Section 3.3). The observed variation indicates permanent plage structure in the stellar atmosphere.

In September 29–30, 2007 an interesting phenomenon was observed (see $BV(RI)_C$ light curves in Fig. 5). During two consecutive nights, at the beginning of the observations the binary showed excess brightness in all bandpasses which gradually decreased to the unspotted flux. After about one third rotation the brightening started again (the system configuration during the event is plotted on Fig. 6). The excess brightness was stronger during the second night (between the two sets of observations was one full rotation). The ratios of the peak intensities in $BV(RI)_C$ filters at the beginning of the observations differ from that produced by a usual flare event at or near its peak intensity.

Assuming that the brightening is caused by hot regions on the star we can make a model of the surface using SpotModeL. Results show that two hot areas separated in longitude by ~ 90–
120° describe the observed changes well. Making use of two passbands, from $B-V$ and $V-I_c$ indices we get hot spot temperatures of $5130\pm270K$ and $5680\pm300K$, respectively, which means these regions are at least $1000K$ hotter than the surrounding area. At maximum of the brightness $B-V = 1.31$ yields $4300K$ for the temperature (Flower 1996), meaning that the whole visible stellar surface seemed hotter by $\sim 150K$, i.e.; about 10–12% of the visible surface of the star is covered with hot regions.

An explanation of the phenomenon could be a long-lasting (at least 1.5 days, or 3 rotations) flare event on V405 And. During the first night’s observations we see only the decreasing part of a giant flare that might have occurred during daytime, before the observations started. At the beginning of the second night we observe a peak which could then be a post-flare eruption. Two smaller eruptions happened later that night, the first was small, the second was more powerful and started to decrease still before the end of the night.

A similar long-lasting event has been observed on AU Mic. This event was described and modelled in Katsova et al. (1999). The authors, comparing their results with observed solar phenomena, supposed long-lasting giant post-flare loops with a size of 1–2 stellar radii, and energy balance through continuing connections.

Transquatorial magnetic loops are common features on the Sun. Harra et al. (2003) studied the energy mechanism of such a solar loop system and found brightenings and flare-like events during 2 days of observations. On V405 And photometric observations we suggest 1-1 dominant active region in both hemispheres of the primary separated by $\sim 150°$ in longitude. We could explain the observed phenomenon on September 29–30, 2007 with a transquatorial loop system which causes the brightenings and the flare-like events. As the star rotates, the emitting part of the loop system eventually turns in and out of view. This scenario would explain the turn-backs of the light curve seen, e.g., in B band at 0.3 phase (Fig. 5), and also the intensity ratios in different filters, which are comparable to the post-flare event of Fig. 6.

3.3.3.1. Spectroscopic events

The 1994 flare was visible in Hα, Hβ and He I $\lambda 5876$ lines. During the flare, the Hα equivalent widths increased (see Fig. 3), indicating stronger activity in the chromosphere. On the dynamic spectrum (Fig. 8, left panel) as well as on the individual spectra (Fig. 9, left panel) enhancement in the blue wing of the Hα line is observed since the beginning of the observations. The flare eruption started at phase 0.51, reached its maximum at phase 0.58 and lasted for more than 2.5 hours, at least until the end of the observations. At the time of the flare Hβ is also increased, and asymmetry is seen in the red wing at all phases (Fig. 9, middle panel). As the indicator of the explosive event He I $\lambda 5876$ appears as prominent emission line (Fig. 9, right panel) at phases 0.54–0.58. A very similar event is reported on LO Peg by Eibe et al. (1999).

The weaker flare from October 29, 1998 shows increased Hα emission, and the Hβ level is also higher, but only a marginal He I $\lambda 5876$ emission is seen (see Fig. 11 in the online version). This weaker flare was not accompanied by a (large) prominence, the Hα line is quite symmetric, except before and during the flare at phases 0.06–0.14 (Fig. 5 middle panel). The Hα line outside the small flare is the same as in the quiescent Hα state (Fig. 5 right panel). The Hβ line is again increased in the red wing at all phases.

The increase of the blue wing of the Hα line is probably the signature of prominence formation, i.e. emerging material in the magnetic loop with an upflow of ~ 40 km s$^{-1}$ (see Fig. 10 in the online version) which forms a prominence. After the flare the Hα line is again symmetric, since most of the material is heated up and leave the loops during the fast phase of the flare eruption. The red asymmetry of the Hβ line could originate from the downflow of cooling material along the flux loops.
Fig. 8. Dynamic Hα spectra from October 18 and 23, 1994, October 29 and 28, 1998 (from left to right). Crosses on the right show the time of observations, circles on the plot and stars mark the radial velocity curve of the primary and secondary, respectively. The first two images on the left show two flares, the third one is from a quiescent state of the binary. All plots show phases between 0.1–0.9. The left plot shows observations from October 18, 1994 except the last two points from October 23, 1994 after phase 0.75.

Fig. 9. Hα, Hβ and Na D lines around the time of the flare event in October 18, 1994 between phases 0.37–0.74. The flare occurred between phases \sim0.5–0.7 (see scale on the right). Note that the scale of the Hβ plot is different because of the higher noise in the blue part of the spectrum. Diamonds on the Hα spectra show the place of the secondary component calculated from the radial velocity curve.

The Hα line of the secondary star is much better visible on the spectra made at the quiescent state of the binary (Fig. 12 in the online version), which is partly due to the better signal-to-noise ratio of these spectra, but also the less active primary at this time does not wash out the weaker signal of the secondary. During the observations of the quiescent phase, in the beginning, some red asymmetry is seen again in the Hβ line, indicating that chromospheric flows are present on the star in most of the time.

3.3.2. Photometric flare

The light curve of the flare on February 2007 is plotted in Fig. 7. The system at the peak of the flare is 0.6 magnitudes brighter in B than the quiescent light, and the flare is well seen also in I_C filter, indicating a very strong outburst. The event could be observed for 3.72 hours, which is about one-third of the rotation. Using photometric data, unfortunately no details can be determined for the position of the flare. It is possible that the flare lasted longer than ~4 hours, but the flaring region moved out of view because of the rotation. Since both components are active, the flare could occur in either of the two components.

Assuming that the whole light curve of the flare was observed, we can make an estimation of the flare energies. The energy emitted by the flare in B, V, R_C and I_C bands are $1.43e+35$, $7.58e+34$, $1.34e+35$ and $1.31e+35$ ergs, assuming that the flare occurred on the primary.

If we suppose that the flare occurred on the much fainter secondary, we need to know its magnitudes for calculating flare
We compared the masses and radii of V405 And (Table 2) with the existing measured values of dwarf stars with masses below 0.8 M_\odot in Fig. 13. The theoretical curve for 5 Gyr from Baraffe et al. (1998) is also plotted using $T_{\text{eff,}} \approx 5780$ and $M_{\text{bol,}} \approx 4.72$. Note that at this part of the theoretical mass-radius diagram there is not much difference between isochrones belonging to different ages; low mass stars evolve slowly. It is well seen that stars less massive than $\sim 0.32 M_\odot$, which is suggested as limit of full convection, fit well the isochrones. Among these low-mass stars are the secondary components of the binary from NGC 1647 and of V405 And. However, with increasing mass the correlation gets looser. In Fig. 13 there are three systems in which the masses of the components are very different: T-Lyr1-17236, the binary from NGC 1647 (Hebb et al. 2006) and V405 And. T-Lyr1-17236 rotates rather slowly with a period of $P_{\text{rot}} \approx 8.4 d$, whereas the other two systems are very fast rotators (V405 And: $P_{\text{rot}} \approx 0.465 d$, star from NGC 1647: $P_{\text{rot}} \approx 0.619 d$). The radii of the primary components of the two fast rotating systems are well above the theoretically predicted radius values, especially V405 And is much larger than expected. On the other hand, both components of the slow rotator T-Lyr1-17236 fit rather well the isochrone.

Mullan & MacDonald (2001) found that the radii of low-mass M dwarfs, concerning stellar structure codes, are larger than expected, and that could be due to their strong magnetic fields, which may push the mass limit of full convection towards lower masses. Ribas (2006) compared theory with observation on masses and radii of low-mass stars (both binaries and single stars). From the high precision results of double lined eclipsing binaries he found that theory predicts smaller radii by about 10% (or higher temperatures by about 5%) for stars in the mass range between 0.4–0.8 M_\odot. Finally, Chabrier et al. (2007) carried out evolutionary calculations on low-mass stars taking into account magnetic activity, and demonstrated that magnetic fields alter the evolution, and that the spot coverage yields larger radii and smaller effective temperature. However, the radius of the primary component of V405 And is even larger comparing to the results of Chabrier et al. (2007). Future modellings with magnetic fields are necessary to map the area of M dwarfs in the mass-radius plane. An interesting question is, what would be the effect of the magnetic interaction between a very active, fully convective star with its close, also active component in a binary system, so that the radius of the more massive component becomes even larger than the recent theory predicts, while at the same time the radius of the fully convective star agrees with the prediction.

At present only two systems are known whose primaries are about 2.5 times more massive than the secondaries, and that one component is above while the other is below the limit of the full convection. The primary of V405 And deviates most from the expected radius of its mass from the known sample. On the other hand, the secondary of V405 And would be fully convective even in the presence of its strong magnetic field according to the calculations of Mullan & MacDonald (2001, Fig. 1). It would be a challenge to model evolution of such binaries whose components are on the two sides of the mass limit of full convection. Of the two known examples, V405 And is the one with its $V \approx 11$ mag. brightness which is well observable showing all the signatures of strong magnetic activity like spots and flares. We recommend this binary to the attention of future investigators.

Acknowledgements. Our sincere thanks are due to A. Prsa for his suggestions in binary modelling. An anonymous referee helped to improve the paper considerably. The financial support of OTKA grant T-068626 is acknowledged.
ZsK is a grantee of the Bolyai János Scholarship of the Hungarian Academy of Sciences. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

Attrill, G. D. R., Harra, L. K., van Driel-Gesztelyi, L., & Démoulin, P. 2007, ApJ, 656, L101
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403
Becker, A. C., Agol, E., Silvestri, N. M., et al. 2008, MNRAS, 386, 416
Blake, C. H., Torres, G., Bloom, J. S., & Gaudi, B. S. 2008, ApJ, 684, 635
Budding, E. 1977, Ap&SS, 48, 207
Chabrier, G., Gallardo, J., & Baraffe, I. 2007, A&A, 472, L17
Chevalier, C. & Ilovaisky, S. A. 1997, A&A, 326, 228
Choudhuri, A. R. & Gilman, P. A. 1987, ApJ, 316, 788
Devor, J., Charbonneau, D., Torres, G., et al. 2008, ApJ, 687, 1253
Eibe, M. T., Byrne, P. B., Jeffries, R. D., & Gunn, A. G. 1999, A&A, 341, 527
Flower, P. J. 1996, ApJ, 469, 355
Harra, L. K., Matthews, S. A., & van Driel-Gesztelyi, L. 2003, ApJ, 598, L59
Hebb, L., Wyse, R. F. G., Gilmore, G., & Holtzman, J. 2006, AJ, 131, 555
James, D. J., Jardine, M. M., Jeffries, R. D., et al. 2000, MNRAS, 318, 1217
Katzova, M. M., Drake, J. J., & Livshits, M. A. 1999, ApJ, 510, 986
Kazarovets, E. V., Samus, N. N., & Durlevich, O. V. 2000, Information Bulletin on Variable Stars, 4870, 1
Kövári, Z. & Bartus, J. 1997, A&A, 323, 801
Kövári, Z., Vilardell, F., Ribas, I., et al. 2007, Astronomische Nachrichten, 328, 904
Kozhevnikova, A. V., Alekseev, I. Y., Heckert, P. A., & Kozhevnikov, V. P. 2007, Astronomy Reports, 51, 932
López-Morales, M. 2007, ApJ, 660, 732
López-Morales, M., Orosz, J. A., Shaw, J. S., et al. 2006, ArXiv Astrophysics e-prints
Mitra-Kraev, U., Harra, L. K., Williams, D. R., & Kraev, E. 2005, A&A, 436, 1041
Moultaka, J., Ilovaisky, S. A., Prugniel, P., & Soubiran, C. 2004, PASP, 116, 693
Mullan, D. J. & MacDonald, J. 2001, ApJ, 559, 353
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, A&A, 397, 147
Prša, A. & Zwitter, T. 2005, ApJ, 628, 426
Ribárik, G., Oláh, K., & Strassmeier, K. G. 2003, Astronomische Nachrichten, 324, 202
Ribas, I. 2006, Ap&SS, 304, 89
Samus, N. N., Durlevich, O. V., & et al. 2009, VizieR Online Data Catalog, 1, 2025
Strassmeier, K. G., Bartus, J., Fekel, F. C., & Henry, G. W. 2008, A&A, 485, 233
VandenBerg, D. A. & Clem, J. L. 2003, AJ, 126, 778
Voges, W., Gruber, R., Haberl, F., et al. 1996, VizieR Online Data Catalog, 9011, 0
Fig. 10. Dynamic Hα spectrum with the flare from October 18, 1994 showing the excess emission compared to the average of all spectra. The spectra are shifted with their actual radial velocity.
Fig. 11. Hα, Hβ and Na D lines around the time of the flare event in October 29, 1998 between phases 0.56–0.30. The flare occurred between phases ~0.05–0.15 (see scale on the right). Scales and notation is the same as in Fig. 9.

Fig. 12. Hα, Hβ and Na D lines from the quiescent state of V405 And in October 28, 1998. The contribution of the secondary can be well seen around the Hα line. Scales and notation is the same as in Fig. 9.