Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review Paper

Knowledge, attitudes, and practices of the general population about Coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis with policy recommendations

S. Saadatjoo, M. Miri, S. Hassanipour, H. Ameri, M. Arab-Zozani

Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilain University of Medical Sciences, Rasht, Iran
Health Policy and Management Research Center, Department of Health Services Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

Objectives: This study aimed to investigate and synthesize the current evidence on knowledge, attitudes, and practices (KAPs) of the general population regarding COVID-19.

Methods: We conducted a systematic search on PubMed/LitCovid, Scopus, and Web of Sciences databases for papers in the English language only, up to 1 January 2021. We used the Joanna Briggs Institute checklist developed for cross-sectional studies to appraise the quality of the included studies. All stages of the review conducted by two independent reviewers and potential discrepancies were solved with a consultation with a third reviewer. We reported the result as number and percentage. A meta-analysis conducted using a random effect model with a 95% confidence interval.

Results: Forty-eight studies encompassing 76,848 participants were included in this review. 56.53% of the participants were female. The mean age of the participants was 33.7 years. 85.42% of the included studies were scored as good quality, 12.50% as fair quality, and the remaining (2.08%) as low quality. About 87.5% examined all three components of the KAPs model. The knowledge component was reported as good and poor in 89.5% and 10.5% of the included studies, respectively. Of the studies that examined the attitude component, 100% reported a positive attitude. For the practice component, 93.2% reported satisfactory practice, and 6.8% poor practice. The result of the meta-analysis showed that the overall score of KAPs components about COVID-19 were 78.9, 79.8, and 74.1, respectively.

Conclusions: This systematic review and meta-analysis showed that the overall KAP components in the included studies were at an acceptable level. In general, knowledge was at a good level, the attitude was positive and practice was at a satisfactory level. Using an integrated international system can help better evaluate these components and compare them between countries.

PROSPERO registration code: (CRD42020186755).

Introduction

Coronavirus disease 2019 (COVID-19) was reported on 31st December 2019 from Wuhan, China, and announced by the World Health Organization (WHO) as a pandemic on 11th March 2020. To date (27 January 2021), it was estimated that about 100 million people were infected with COVID-19 worldwide, of which about two million have died. COVID-19 is characterized by several flu-like symptoms including fever, respiratory problems (dry cough, shortness of
breath or difficulty breathing, sore throat), chills, headache, and loss of taste. In addition, this disease is much more severe with men, higher age groups, and patients with other pre-existing conditions, such as cardiovascular disease, chronic respiratory disease, diabetes, and hypertension. Based on existing evidence, about 81% of COVID-19 cases are mild, 14% are severe, and 5% are critical. The median time from symptoms onset to clinical recovery is approximately two weeks for mild cases and three to six weeks for severe or critical cases. The incubation period for this disease was reported as 2–14 days based on WHO reports. The mortality rate for this disease is different among countries and was reported between 2% and 5%. The most important ways to prevent this disease are to use a mask and maintain social distance.

So far, there have been several cases of infection in the general public, especially doctors and medical staff, some of which have led to death.

Considering the extent and progress of COVID-19 disease and its major effects on economic, social, political, and cultural dimensions of all countries, people with COVID-19 must be motivated, informed, and engaged in all aspects of the disease. From the onset of the disease until now, various studies conducted worldwide have investigated this disease and some of these studies have examined the knowledge, attitudes, and practices (KAPs) of people with COVID-19. Having enough knowledge about a disease can always affect people's attitudes and practices, and on the other hand, negative attitudes and practices can increase the risk of disease and death. Therefore, understanding the general population' KAPs and knowing potential risk factors can help to achieve the outcomes of planned behavior.

Given the importance of the issue, conducting a review of studies that have examined the KAPs of individuals and summarizing the results can provide solid evidence for decision-makers in all countries to better manage the disease. Thus, this study aimed at conducting a systematic review to synthesize current evidence on KAPs of the general population with COVID-19 worldwide.

Materials and methods

Protocol and registration

We conducted a systematic review of the existing evidence related to KAPs of COVID-19 patients worldwide following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statements (Appendix Supplementary file 1). We also registered a protocol for this systematic review in the International Prospective Register of Systematic Reviews.

Eligibility criteria

We included all studies which met the following inclusion criteria: 1) cross-sectional survey; 2) investigate at least one component of the KAPs model regarding COVID-19 disease worldwide; 3) published or in-press original paper; 4) in English; 5) with a sample representative general population. No restrictions were applied to the setting, time, or quality of the study.

Information sources, search and study selection

We search the PubMed/LitCovid, Scopus, and Web of Sciences for papers in the English language only, up to 1 January 2021. We conducted a search in Google Scholar for retrieving studies that were not cited in the abovementioned databases. In addition, the reference lists of the final included articles were hand-searched. The keywords used in the search were attitude, knowledge, practice, awareness, perception, action, COVID-19, coronavirus disease, SARS-CoV-2, and severe acute respiratory syndrome coronavirus 2. The full search strategy for the PubMed database is provided in Supplementary file 2. When the search was complete, all records were transferred to the Endnote software (V. X8; Clarivate Analytics, Philadelphia, PA) and duplicates were removed. Then, studies based on the title, abstract, and full text were screened by two researchers independently by considering the prespecified eligibility criteria. Disagreements were solved through consultation with a third researcher.

Data collection process and data item

Two researchers independently engaged in the data collection process and extracted data including author, year, journal name, location, study design, data collection tools, sample size, focusing group, mean age or range, gender percent, and result related to KAPs model components. Potential disagreements were solved through consultation with a third researcher.

Quality appraisal

Included studies were critically appraised by two researchers independently. We used the Joanna Briggs Institute checklist developed for cross-sectional studies to appraise the quality of the included studies. This checklist contains eight simple and clear questions that cover topics such as inclusion criteria for sample; details about study subjects and setting; validity and reliability; criteria for measurement of the condition; confounding variables; and statistical analysis. The answer to each questions is yes, no, unclear, and not applicable. Potential discrepancies were resolved by consultation with a third researcher.

Synthesis of results

Descriptive analyses were carried out in most sections and the pooled data reported as a number or percentage for similar data items. We used Microsoft Excel software to design the charts. We categorized the result of each component based on the study by Bdair et al. They categorized each component in two categories as follows: knowledge: (good ≥50) or (poor <50), attitude: (positive ≥50) or (negative <50), and practice: (satisfactory ≥50) or (unsatisfactory <50). The Q-value was applied to discover between-study heterogeneity, and the I² statistic was calculated to assess statistical heterogeneity. Based on Cochrane criteria if the heterogeneity was ≥50, we used the random effect model. Although there was heterogeneity between the studies above, this was negligible due to differences in settings as well as the use of different questionnaires. However, we used subgroup analysis based on regions to reduce this heterogeneity. In addition, a meta-analysis using a random effect model with a 95% confidence interval (CI) was conducted via CMA software (Version 2) based on the percent reported for each component of the KAPs model of the included studies. Publication bias was assessed using Begg’s and Egger’s tests and visual inspection of the funnel plot.

Additional analysis

We contacted ten experts in the related field including health promotion, public health, health policy, epidemiology, and behavioral science via email and asked for their opinions on how to increase the levels of these components in the community. Comments were translated verbatim and then analyzed using content analysis. The results of this section are presented as policy recommendations.
Results

Study selection

A total of 15,742 records were retrieved from our database search. After removing duplicate, 8270 records were screened by title, abstract, and full text based on eligibility criteria, of which forty-eight studies were included in the final review.23,27 The PRISMA flow diagram for the complete study selection process is presented in Fig. 1.

Study characteristics

Forty-two studies encompassing 76,848 participants were included. In addition, 56.53% of the participants were female. The mean age of the participants was 33.7 years. Most studies were from Asia, Africa, and America, (Fig. 2A). The most important method of data collection was online questionnaires (Fig. 2B). Most studies examined all three components of the KAPs model, but some studies examined two components or one component. More details about the characteristics of included studies are presented in Table 1.

Quality appraisal

The overall mean quality score of the included studies was 5.70. Of the included studies, 41 studies (85.42%) were scored as good quality (score ≥6), 6 (12.50%) as fair quality (score 3–5), and remaining (2.08%) as low quality (score <3) (Fig. 3). The lowest and highest quality scores in the studies were two and six, respectively. None of the studies scored on questions 5 and 6, which were related to identification and deal with confounding variables in the studies (for more details about items see Appendix Supplementary file 3).

Synthesis of results

Among the included studies, 87.5% examined all three components of the KAPs model simultaneously. The most studied component in the studies was the knowledge component with about 100%, followed by attitude and practice with 95.8% and 91.6%, respectively (Table 2, Fig. 4).

Of the studies that examined the knowledge component, 89.5% reported good knowledge, and 10.5% poor knowledge. As well as, of the studies that examined the attitude component, 100% reported a positive attitude. For the practice component, 93.2% reported satisfactory practice, and 6.8% unsatisfactory practice (Table 2, Fig. 5).

Meta-analysis

Based on the meta-analysis, the pooled overall score of KAPs components were 78.9 (95% CI: 96.1, 86.2, P = 0.001), 79.8 (95% CI: 80.8, 88.4, P = 0.001), and 74.1 (95% CI: 56.0, 86.5, P = 0.011), respectively. The results of subgroup analysis based on different continents of Africa, America, and Asia were 74.1, 74, and 83.8% for knowledge, 78.7, 63.2, and 85% for attitude, and 59.6, 78.5, and 81.5.
for practice components, respectively. The Asia continent had the highest percentage in all three components. The America continent had the lowest percentage in terms of knowledge and attitude, and the Africa continent had the lowest percentage in terms of practice (Table 3). Visual inspection of the funnel plot and results of Begg’s (0.068) and Egger’s test (0.082) did not showed significant evidence of publication bias (Appendix Supplementary file 4).

Policy recommendations

In accordance with experts, the policy recommendations for promoting the KAP components were as follow: holding training courses through virtual mass media; increase the commitment of government officials and policymakers to help conduct training courses; providing appropriate and evidence-based training content to enhance the components of the KAP; designing an integrated international system for measuring cup levels and comparing it between countries.

Discussion

COVID-19 has had serious, long-term, and sometimes irreparable effects on all aspects of the daily lives of individuals and society. Getting informed from the knowledge, attitude, and practice of different general population can play a vital role in shaping the prevention behavior against COVID-19, so the study of these components in different communities and between different groups seems necessary.

Strength and weakness

One of the most important strengths of this study was that all stages of the study were conducted with two researchers and in all stages, in cases of disagreement, the third person and consensus were used. In addition, registering the protocol of this study and reviewing and modifying it in the PROSPERO platform is the strength of this study. A large number of the included studies did not report the validity and reliability of the questionnaires. The main reason for this is the rush to publish articles related to coronavirus disease. The included studies were from both high- and low-income countries and therefore generalization of results to all countries should be done with caution. On the other hand, owing to the high speed of publication of articles in this field, some other studies may be published at the time of writing the article and the review process, which has been missed. Of course, owing to the high speed of publishing articles, this limitation is inevitable.

Summary of study findings

We found that about 90% of the samples had good knowledge of COVID-19 (overall score: 78.9%). In addition, 100% of the samples were reported positive attitudes regarding COVID-19 (overall score:
Table 1
Summary characteristics of the included studies.

Reference (Author, Year)	Journal	Location	Study Design	Data Collection tool	Sample Size	Male (%)	Mean Age or range
Adesegun et al., 2020	American Journal of Tropical Medicine and Hygiene	Nigeria	Cross-sectional	Online questionnaire/Google Form	1015	45.9	26.6
Alahdal et al., 2020	Journal of Infection and Public Health	Saudi Arabia	Cross-sectional	Online questionnaire/Google Form	1767	25	18-60+
Al-Hanawi et al., 2020	Frontiers in Public Health Research	Saudi Arabia	Cross-sectional	Online questionnaire/Google Form	3388	41.9	18-60+
Alhazmi et al., 2020	Journal of Public Health Research	Saudi Arabia	Cross-sectional	Online questionnaire/Google Form	1513	45	18-60+
Alobua et al., 2020	Indian Journal of Medical Microbiology	USA	Cross-sectional	Google Form	1216	48	18-60+
Amalakanti et al., 2020	Bangladesh Journal of Medical Science	Malaysia	Cross-sectional	Online questionnaire/Google Form	1837	56.5	16-50+
Alobua et al., 2020	Bangladesh Journal of Medical Microbiology	Pakistan	Cross-sectional	Online questionnaire/Google Form	316	46.5	16-40+
Azlan et al., 2020	PLOS ONE	Saudi Arabia	Cross-sectional	Online questionnaire/Survey Monkey	4850	42.1	34
Baig et al., 2020	PLOS ONE	Colombia	Cross-sectional	Online questionnaire/Google Form	2117	52.5	18-61+
Bates et al., 2020	Journal of Communication in Healthcare in Healthcare	Saudi Arabia	Cross-sectional	Questionnaire	575	57.4	NR
Bdair et al., 2020	Asia Pacific Journal of Public Health	Lebanon	Cross-sectional	Online questionnaire/MTurk platform	1034	58.2	37.11
Clements, 2020	JMMIR public health and surveillance	USA	Cross-sectional	Online questionnaire/Google Form	410	42	18-65+
Domiati et al., 2020	Frontiers in Medicine	Jordan	Cross-sectional	Online questionnaire/Google Form	2104	24.6	18-55+
Elayeh et al., 2020	PLOS ONE	Iran	Cross-sectional	Online questionnaire	836	27.5	25-55+
Fallahi et al., 2020	Journal of Military Medicine	Bangladesh	Cross-sectional	Online questionnaire/Google form	2017	59.8	12-64
Ferdous et al., 2020	PLOS ONE	China	Cross-sectional	Online questionnaire/SurveyWenjuanxing platform	2136	21.9	33.1 ± 8.8
Gao et al., 2020	BMC Public Health	Iraq	Cross-sectional	Online questionnaire/Google Form	272	58.1	36.35 ± 7.86
Ghazi et al., 2020	Public Health Education and Training	Northern Ethiopia	Cross-sectional	Online questionnaire/Google Form	331	69.5	18-69
Haftom et al., 2020	BMC Public Health	Egypt, Nigeria	Cross-sectional	Online survey/Google Form	1437	52.5	18-59+
Hezima et al., 2020	Eastern Mediterranean Health Journal	Sudan	Cross-sectional	Online survey/Google Form	812	54.2	18+
Honarvar et al., 2020	International Journal of Public Health	Iran	Cross-sectional	Online survey/interview	1331	47.3	36 ± 13.9
Hossain et al., 2020	PLOS ONE	Bangladesh	Cross-sectional	Online/email.public groups on Facebook	2157	54.1	33.48 ± 14.65
Jadoo et al., 2020	Journal of Ideas in Health	Iraq	Cross-sectional	Online questionnaire/Google Form	877	41.7	all
Kakemam et al., 2020	Frontiers in Public Health	Iran	Cross-sectional	Online questionnaire/Porsline	1480	42.8	31.29
Kasemy et al., 2020	Journal of Epidemiology and Global Health	Egypt	Cross-sectional	Online questionnaire/Google Form	3712	47.8	23.31 ± 13.28
Lau et al., 2020	Journal of global health	Philippines	Cross-sectional	Online questionnaire/SurveyCTO platform	2224	7.3	41.3
Mousa et al., 2020	Sudan Journal of Medical Sciences	Sudan	Cross-sectional	Online questionnaire/WhatsApp, Telegram groups, Facebook, and Twitter	2336	39.3	17-51+
Ngwewondo et al., 2020	PLOS neglected tropical diseases	Cameroon	Cross-sectional	Online questionnaire/WhatsApp, email, websites accounts	1006	66.3	11.2
Nicholas et al., 2020	The Pan African Medical Journal	Cameroon	Cross-sectional	Online questionnaire/Google Form	545	56	18-50+
Pascawati et al., 2020	International Journal of Public Health	Indonesia	Cross-sectional	Online survey/WhatsApp	155	49.7	11-60+
Paul et al., 2020	PLoS ONE	Bangladesh	Cross-sectional	Online survey/Google Form	1589	60.5	18-45+
Roy et al., 2020	India	Cross-sectional	Online questionnaire/Google Form	662	48.6	29.9	

(continued on next page)
79.8%) and slightly more than 93% of samples performed satisfactory practices (overall score: 74.1%). The level of knowledge, attitudes, and practices is slightly high in the Asia continent. About 90% of the studies used an online questionnaire to collect data, and the most used platforms included Google form, SurveyMonkey, and Qualtrics. The most important social media through which the questionnaires were distributed were Facebook, WhatsApp, and Telegram. The most important sources for learning and staying up to date about COVID-19 mentioned in the studies were television, social media, the internet, radio, and friend and relatives.

Our result showed a high percentage of knowledge, attitudes, and practices in Asian countries. The probable reason for these higher percentages could be related to the factors such as the initial spread of the virus from this continent and the emergency acts that were taken earlier than other continents in this continent.78,79 However, owing to the lack of studies in developed countries and the change of some factors related to knowledge, attitude, and practice over the past year, the generalizability of these results is low.

The finding of our systematic review demonstrated good knowledge about COVID-19. In most studies, more than 80% of the participants had a good knowledge of issues such as causes, symptoms, ways of transmission, and ways of prevention. In addition, most participants had a high level of

Reference (Author, Year)	Journal	Location	Study Design	Data Collection tool	Sample Size	Male (%)	Mean Age or range
Rahman et al., 202058	Asian Journal of Psychiatry Bangladesh Medical Research Council Bulletin Bangladesh	Cross-sectional	Online questionnaire/Google Forms	Online/Facebook, WhatsApp, Viber self-administered and face to face interview	1549	58	18-60+
Rajeh, 202059	The Open Dentistry Journal	Saudi Arabia	Cross-sectional	Online survey/ Facebook, WhatsApp, and Twitter	521	31.7	36.24
Reuben et al., 202060	Journal of Community Health Nigeria.	Cross-sectional	Online survey/emails, WhatsApp and other social media	589	59.6	18–59	
Sari et al., 202061	Journal of Community Health Indonesia	Cross-sectional	Online questionnaire/Google Forms	201	46.3	35.5	
Sayedahmed et al., 202062	Scientific African Sudan	Cross-sectional	Online questionnaire/via Google	1718	38	12-50+	
Senghe et al., 202064	BMJ Open International Journal Of Research In Pharmaceutical Sciences India	Cross-sectional	Online questionnaire	1253	52	18-60+	
Susilkumar et al., 202065	Journal of Community Health Indonesia	Cross-sectional	Online questionnaire/Google Forms	1015	49.3	20-60+	
Tariq et al., 202067	Disaster Medicine and Public Health Pakistan	Cross-sectional	Online survey/social media and authors own network	2121	13.7	21.8 ± 4.13	
Tandon et al., 202066	Journal of Family Medicine and Primary Care India	Cross-sectional	Online questionnaire/online via mail and social media platforms	323	45.6	33.8	
Van Nhu et al., 202068	Journal of Community Health Vietnamese	Cross-sectional	Online survey	1999	21.7	18–59	
Xu et al., 202069	Journal Of Medical Internet Research China	Cross-sectional	Online survey/WhatsApp, Twitter	8158	37	18-60+	
Yang et al., 202070	Journal of Advanced Nursing China	Cross-sectional	Online questionnaire/WeChat, Sina Weibo, QQ	919	21.7	18+	
Yousaf et al., 202071	Social Work in Public Health India	Cross-sectional	Online questionnaire/WhatsApp, Facebook, and Instagram	516	32.6	16-45+	
Yue et al., 202072	Journal of Community Health China	Cross-sectional	Online questionnaire/WeChat, QQ	517	46.23	15–60	
Zhong et al., 202073	International Journal of Biological Sciences China	Cross-sectional	Online questionnaire	6910	34.3	16–50+	

*NR: not reported.
knowledge about symptoms such as high fever and dry cough, breathing difficulty and a small number had sufficient knowledge about other symptoms such as chills, headache, muscle pain, sore throat, and loss of taste or smell.\cite{23,31,32,34,40,45,50,53,60,69} More than 90% of the participants considered air droplets as a way to spread. This good level of knowledge can be due to widespread information through social media, and government announcements. In addition, various means such as public media (television and radio), institutions, such as what was about wearing a face mask at the beginning of the pandemic, and then it was recommended that responsible organization can help make better and faster decision-making in times of crisis.\cite{39,82}

In this review, participants showed a positive attitude regarding COVID-19. Almost all participants believed in the importance of handwashing, disinfecting surfaces, using masks to prevent the spread of infection, resting at home in the event of symptoms, and maintaining social distance and limited contact. Of course, in some cases, there was a negative belief that it could be due to differences in instructions and guidelines by different institutions, such as what was about wearing a face mask at the beginning of the pandemic, and then it was recommended that the whole population should use a mask.\cite{55,56,61} Such cases show the importance of integrated guidelines and the focus of decision-making in times of crisis.\cite{55,62,63} Although having a responsible organization can help make better and faster decisions.
decisions, in such cases, political pressure is exerted by governments that such organizations should put the health of the people at the top and not refuse to make the right decisions due to political pressures.11,31,86

In general, the level of practice of the participants in the studies was satisfactory. However, despite the good knowledge and positive attitude of the participants, the level of practice was still sometimes lower than expected. Numerous reasons for unsatisfactory practices have been cited in studies. Lack of availability (for example, masks and disinfectants), imposing financial costs on participants, ambiguity in instructions, not getting used to new conditions such as staying home and wearing a mask, exhaustion from existing conditions, and anxiety and stress of disease were among the causes mentioned in the studies.41,56,73,89 In this regard, some countries have imposed strict laws and penalties on people who do not follow the guidelines to improve their performance, but in many countries under study, such laws do not exist and have not been applied.38,50,61,92,93 Another factor that affects the performance of individuals was the presence of decision-makers in public and social media. Seeing a person without a mask at the height of a pandemic hurt a person’s good practices.

Given the diversity of settings and questionnaires, the authors of this article recommend that there be a need to design an integrated online system to assess the knowledge, attitudes, and practices of the population about health-related crises. Designing such an integrated system can help better compare countries because integrated items are used for comparison. On the other hand, designing such a system and disseminating its results can accelerate integrated decision-making and improve crisis management. On the other hand, the existence of such an integrated system can lead to an increase in solidarity, which was emphasized by the World Health Organization during the corona pandemic.94,95

Conclusion

This systematic review showed that the KAP components in the participants are at an acceptable level. In general, knowledge was at a good level, the attitude was positive and practice was at a satisfactory level. Providing accurate and up-to-date information in times of crisis and disseminating them through responsible institutions and the mass media and holding online training

Meta-analysis of the pooled overall score of KAP components.

Component	Location	Number of studies	Score (%)	95% CI	Z-value	P-value
Knowledge	Africa	11	74.1	63.5, 82.5	4.13	0.001
	America	3	74.0	52.6, 88.0	2.17	0.001
	Asia	33	83.8	79.5, 87.4	11.1	0.001
	Overall	47	78.9	96.1, 85.2	5.02	0.001
Attitude	Africa	10	78.7	68.7, 86.1	4.93	0.001
	America	2	63.2	35.1, 84.6	0.91	0.359
	Asia	31	85.0	80.8, 88.4	11.4	0.001
	Overall	43	79.8	96.1, 87.5	4.70	0.001
Practice	Africa	10	59.6	48.5, 69.9	1.69	0.090
	America	3	78.5	61.5, 89.3	3.06	0.002
	Asia	26	81.5	76.9, 85.4	10.3	0.001
	Overall	39	74.1	56.0, 86.5	2.55	0.011

CI, confidence interval; KAP, knowledge, attitudes, and practices.
courses can help increase people’s knowledge, attitudes, and practices.

Author statements

Acknowledgements

The authors thank the PROSPERO institute for accelerating the review process in the time of Coronavirus. They also thank Birjand University of Medical Sciences for approving our proposal and giving it a code of ethics (IR.BUMS.REC.1399.099).

Ethical approval

None sought.

Funding

Not applicable.

Competing interest

The authors have declared that no competing interests exist.

Author contributions

MA-Z contributed to conception and design. MM, SS, and SH contributed to screen the records, data extraction, and quality appraisal. MA-Z and HA contributed to data analysis. MA-Z contributed to draft manuscript. SH and HA contributed to critical review. All authors approved the final version of the manuscript for publication.

Data availability statement

All relevant data are with the article and the attached supplementary information.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.puhe.2021.03.005.

References

1. Cao Z, Li T, Liang L, Wang H, Wei F, Meng S, et al. Clinical characteristics of coronavirus disease 2019 patients in Beijing, China. PloS One 2020;15:e0234764.
2. Arab-Zozani M, Hassanipour S. Features and limitations of LitCovid hub for quick access to literature about COVID-19. Balkan Med J 2020;37:231.
3. https://www.worldometers.info/coronavirus/#countries.
4. Arab-Zozani M, Hassanipour S, Ghoddoosi-Nejad D. Favigiviravir for treating patients with novel coronavirus (COVID-19): protocol for a systematic review and meta-analysis of randomised clinical trials. BMJ Open 2020;10:e039730.
5. Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst Rev 2020;7.
6. Gaythorpe K, Imai N, Cuomo-Dannenburg G, Baguelin M, Hriott S, Boonyarit A, et al. Report 8: symptom progression of COVID-19. 2020.
7. Organisation WH. Novel Coronavirus (2019-ncov) situation report-7. 2020. URL https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200217-sitrep-7-2019-ncov-pdf. 2020.
8. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020;395:470–3.
9. Feng S, Shen C, Xia N, Song W, Fan M, Gowing BJ. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med 2020;8:434–6.
the outbreak: an online cross-sectional survey. J Community Health 2020;45:1158–67.

37. Carryoms JM. Knowledge and behaviors toward COVID-19 among US residents during the early days of the pandemic: cross-sectional online questionnaire. JMIK Public Health Surveill 2020;6:e19161.

38. Domrsti S, Itani M, Itani G. Knowledge, attitude, and practice of the Lebanese community toward COVID-19. Front Med (Lausanne) 2020;7:47.

39. Elayeh E, Aleidi SM, Ya’acoub H, Raddadan RN. Before and after case reporting: a comparison of the knowledge, attitude and practices of the Jordanian population toward COVID-19. PloS One 2015;10:e240780.

40. Fallahi A, Mahdavifar N, Ghorbani A, Mehrdadian P, Mehrdi A, Joveini H, et al. Knowledge, attitude and practice regarding COVID-19 in Bangladesh: an online-based cross-sectional study. PloS One 2015;e239254.

41. Ferdous MZ, Islam MS, Sikder MT, Mosaddek ASM, Zegarra-Valdivia JA, Gozal D. Knowledge, attitude, and practices of the Chinese public with respect to coronavirus disease (COVID-19): an online cross-sectional survey. BMJ Publ Health 2020;20:1–8.

42. Ghazi HF, Islam M, Nabil K, Alsalih AM, Khadra M, Mousa M, et al. Knowledge, attitude and practices of the Vietnamese as key factors in controlling COVID-19. J Community Health 2020;45:1263–9.

43. Hafrou M, Petruska P, Gmechku K, Mamo H, Tsegay T, Amane F, et al. Knowledge, attitudes, and practices toward COVID-19 pandemic among quarantined adults in Tigray region, Ethiopia. Infect Drug Resist 2020;13:727.

44. Hageh A, Edotokun IA, Bolarinwa O, Zainb A, Okechukwu O, Al-Mustapha A. Knowledge, attitude, and perceptions toward the 2019 coronavirus pandemic: a bi-national survey in Africa. PloS One 2015;10:e0236918.

45. Hezima A, Aljafari A, Aljafari A, Mohammad A, Adel I. Knowledge, attitudes, and practices of Sudanese residents toward COVID-19. East Mediterr Health J 2020;26:646–51.

46. Honarvar B, Lankarani KB, Kharramand A, Shayanji F, Zahedroozgar M, Rahmanian Haghighi MR, et al. Knowledge, attitudes, risk perceptions, and practices of adults toward COVID-19: a population and field-based study from Iran. Int J Publ Health 2020;65:731–9.

47. Hosssin MA, Jahid MIK, Hossain KMA, Walton LM, Uddin Z, Haque MO, et al. Knowledge of COVID-19 during the rapid rise period in Bangladesh. PloS One 2015;10:e239646.

48. Jadoon SAA, Alhuseiny AH, Yaseen SM, Al-Samarrai MAM, Al-Deaymi AK, Abed MW, et al. Knowledge, attitude, and practice toward COVID-19 among people in a web-based cross-sectional study. J Idees Health 2020;3:258–65.

49. Kamaleh E, Ghoddsi-Nejad D, Chegini Z, Salehiniya H, Hassanipour S, Ameri H, et al. Knowledge, attitudes, and practices among the general population around COVID-19 during the peak of the outbreak in Iran: a national cross-sectional survey. Front Public Health 2020;8:868.

50. Kasemy ZA, Bahbah WA, Zewain SK, Hagag MG, Alkalash SH, Zahran E, et al. Knowledge, attitude and practice toward COVID-19 among Egyptians. J Epidemiol Glob Health 2020;10:378.

51. Lau LL, Hung N, Go DJ, Ferma J, Choi M, Dodd W, et al. Knowledge, attitudes, and practices of COVID-19 among income-poor households in the Philippines: a cross-sectional study. J Glob Health 2020;10:010007.

52. Mousa KNA, Saad MY, Abdelghafar MBT. Knowledge, attitudes, and practices surrounding COVID-19 among Sudan citizens during the pandemic: an online cross-sectional study. Sudan J Med Sci 2020;15:32–45.

53. Ngwewondo A, Nkengazong L, Ambe LA, Ebogo JT, Mba FM, Goni HO, et al. Knowledge, attitudes, and practices of COVID-19 among urban and rural residents in Cameron: a cross-sectional study. Front Public Health 2020;8:286–91.

54. Xue Q, Xie X, Liu Q, Zhou Y, Zhu K, Wu H, et al. Knowledge, attitudes, and practices toward COVID-19 during the early days of the pandemic: cross-sectional online questionnaire. J Adv Med Res Pract 2020;20:011000.

55. Xue Q, Xie X, Liu Q, Zhou Y, Zhu K, Wu H, et al. Knowledge, attitudes, and practices toward COVID-19 among the general population of Jammu and Kashmir, India. Soc Work Publ Health 2020;35:569–78.

56. Yue S, Zhang J, Cao M, Chen B. Knowledge, attitudes, and practices of COVID-19 among urban and rural residents in China: a cross-sectional study. J Community Health 2020;46:16745.

57. Mull TMT, Edmonds KA, Scamoldo K, Richmond JR, Rose JP, Gratz KL. Psychological outcomes associated with stay-at-home orders and the perceived impact of COVID-19 on daily life. Psychiatr Res 2020;113098.

58. Hafeem A, Javid M, Vaishya R. Effects of COVID-19 pandemic in daily life. Curr Med Res Pract 2020;10:78–9.

59. Lee M, Kang BA, You M. Knowledge, attitudes, and practices (KAP) toward COVID-19: a cross-sectional study in South Korea. BMC Publ Health 2021;21:1–10.

60. Namikawa K, Kikuchi K, Kato S, Takizawa Y, Konta A, Iida T, et al. Knowledge, attitudes, and practices of Japanese travelers towards malaria prevention during overseas travel. Trav Med Infect Dis 2008;6:137–41.

61. Chuang P, Huang Z, Lo ESK, Hung KKC, Wong ELY, Wong SYS. Socio-demographic predictors of health risk perception, attitude and behavior practices associated with health-emergency disaster risk management for biological hazards: the case of COVID-19 pandemic in Hong Kong, SAR China. Int J Environ Res Public Health 2020;17:1–17.

62. Arab-Zozani M, Ghoddoosi-Nejad D. COVID-19 in Iran: the good, the bad, and the ugly strategies for preparedness—A report from the field. Disaster Med Public Health Prep 2020;1–3.

63. Okum R, Chekwech E, Khidr A, Kariuki N, Kera R, D.A.N. Bongomin F. Coronavirus disease-2019: knowledge, attitude, and practices of health care workers at Makerere University Teaching Hospitals, Uganda. Front Public Health 2020;8.

64. Ricc A, Mocco P, Gauceri G, Ranieri S, Bragazzi NL, Balzarini F, et al. Point-of-Care diagnostic of SARS-CoV-2: knowledge, attitudes, and perceptions (KAP) of medical workforce in Italy. Acta Biomed : Ateneo Parmense. 2020;91:57–67.

65. Hong KH, Lee SW, Kim TS, Huh HJ, Lee J, Kim SY, et al. Guidelines for laboratory diagnosis of coronavirus disease 2019 (COVID-19) in Korea. Ann Lab Med 2020;40:351–60.

66. Jin Y-H, Cai L, Cheng Z-S, Cheng H, Deng T, Fan Y-P, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020;7:4.

67. Almofada SK, Alherbish RJ, Almahjour NA, Albrahirh BA, Al Saffan A, et al. Knowledge, attitudes, and practices toward COVID-19 in a Saudi Arabian population: a cross-sectional study. Curr Res 2020;12:e8905.

68. Lusman IM, Sempuija F, Sbioubu R, Lennel AM, Archibong VB, Ayikouba ET, et al. Community drivers affecting adherence to WHO guidelines against COVID-19 amongst rural Ugandan market vendors. Front Public Health 2020;8:1340.

69. Flinders D. The politics of transparency: principles of transparency, trust, blame and understanding. Parliam Aff 2020;5:gsa013.

70. Davies S. The politics of staying behind the frontline of coronavirus. Wellcome Open Res 2020;5:131.
88. Lewin KM. Contingent reflections on coronavirus and priorities for educational planning and development. Prospects 2020;49:17–24.
89. Mitchell BG, Russo PL, Kiernan M, Cussey C. Nurses’ and midwives’ cleaning knowledge, attitudes and practices: an Australian study. Infect Dis Health 2020;25:55–62.
90. Paul E, Alzaydani Asiri IA, Al-Hakami A, Chandramoorthy HC, Alshehri S, Beynon CM, et al. Healthcare workers’ perspectives on healthcare-associated infections and infection control practices: a video-reflexive ethnography study in the Asir region of Saudi Arabia. Antimicrob Resist Infect Contr 2020;9:1–2.
91. Xu H, Gan Y, Zheng D, Wu B, Zhu X, Xu C, et al. Relationship between COVID-19 infection and risk perception, knowledge, attitude, and four nonpharmaceutical interventions during the late period of the COVID-19 epidemic in China: online cross-sectional survey of 8158 adults. J Med Internet Res 2020;22:e21372.
92. Parmet WE, Sinha MS. Covid-19—the law and limits of quarantine. N Engl J Med 2020;382:e28.
93. Griffith R. Using public health law to contain the spread of COVID-19. Br J Nurs 2020;29:326–7.
94. Arab-Zozani M, Hassanipour S. Sharing solidarity experiences to overcome COVID-19. Ann Glob Health 2020:86.
95. Arora G, Kroumpouzos G, Kassir M, Jafferany M, Lotti T, Sadoughifar R, et al. Solidarity and transparency against the COVID-19 pandemic. Dermatol Ther 2020. dth13359.