This article discusses techniques that are appropriate when developing search strategies for systematic reviews of medical tests. This includes general advice for searching for systematic reviews and issues specific to systematic reviews of medical tests. Diagnostic search filters are currently not sufficiently developed for use when searching for systematic reviews. Instead, authors should construct a highly sensitive search strategy that uses both controlled vocabulary and text words. A comprehensive search should include multiple databases and sources of grey literature. A list of subject-specific databases is included in this article.

KEY WORDS: systematic reviews; bibliographic databases; information retrieval.

Locating all published studies relevant to the key questions is a goal of all systematic reviews. Inevitably, systematic reviewers encounter variation in whether or how a study is published and in how the elements of a study are reported in the literature or indexed by organizations such as the National Library of Medicine. A systematic search must attempt to overcome these issues in order to identify all relevant studies, taking into account the usual constraints on time and resources.

Although I have written this article to serve as guidance for Evidence-based Practice Centers (EPCs), I also intend for this to be a useful resource for other investigators interested in conducting systematic reviews on medical tests; in particular this provides guidance for the librarian or information specialist conducting the search. Searching for genetic tests and prognostic studies is covered in papers 11 and 12 of this series.

While this paper will discuss issues specific to systematic reviews of medical tests (screening, diagnostic and prognostic), it is important to remember that general guidance on searching for systematic reviews also applies. Literature searches will always be a balance between recall (how much of the relevant literature is located) and precision (how much of the retrieved literature is relevant). The optimal balance depends on context. Within the context of comparative effectiveness research, the goal is to have a comprehensive (if not exhaustive) search while still trying to minimize the resources necessary for review of the retrieved citations.

In general, bibliographic searches should always include MEDLINE and the Cochrane Central Register of Controlled Trials. Additional databases that are often useful to search include EMBASE, CINAHL and PsychINFO. When constructing the searches in these bibliographic databases, it is important to use both controlled and uncontrolled vocabulary and to tailor the search for each individual database. Limits such as age and language should not be used unless a specific case can be made for their use.

Working closely with the research team as well as the analytic framework and inclusion and exclusion criteria will help to develop the search strategy. Reading the references of all included studies is a useful technique to identify additional studies, as is using a citation database such as Scopus or Web of Science to find articles that have cited key articles. In addition to published literature, a comprehensive search will include looking for unpublished or “grey literature.” In the context of comparative effectiveness research regulatory information, clinical trial registries and conference proceedings/abstracts are the most useful sources for identifying data.

COMMON CHALLENGES

Systematic reviews of test strategies for a given condition require a search on each of the relevant test strategies under consideration. In conducting the search, systematic reviewers may use one of two approaches. The reviewers may search on all possible tests used to evaluate the given disease, which requires knowing all the possible test strategies available, or they may search on the disease or condition and then focus on medical test evaluation for that disease.

When a review focuses on specific named tests, searching is relatively straightforward. The names of the tests can be used to locate studies, and a specific search for the
Several search filters (sometimes called “hedges”), which are pre-prepared and tested searches that can be combined with searches on a particular disease or condition, have been developed to aid systematic reviewers evaluating medical tests. Most of these filters have been developed for MEDLINE® and EMBASE®. In particular, one filter is used in the PubMed® Clinical Queries for diagnosis (Table 1). Search filters have also been developed specifically for diagnostic imaging and for EMBASE®.

Unfortunately, although these search filters are useful for the casual searcher who simply needs some good articles on diagnosis, they are inappropriate for use in systematic reviews of clinical effectiveness. Several researchers have reported that using these filters for systematic reviews may result in relevant studies being missed. Vincent found that most of the available filters perform better when they are being evaluated than when they are used in the context of an actual systematic review; this finding is particularly true for studies published before 1990 because of non-standardized reporting and indexing of medical test studies.

In recent years, improved reporting and indexing of randomized controlled trials (RCTs) have made such trials much easier to find. There is reason to believe that reporting and indexing of medical test studies will similarly improve in the future. In fact, Kastner and colleagues recently reviewed 22 systematic reviews of diagnostic accuracy published in 2006 to determine whether the PubMed Clinical Queries Filter for diagnosis would be sufficient to locate all the primary studies that the 22 systematic reviews had identified through traditional search strategies. Using these filters in MEDLINE and EMBASE, the authors found 99 percent of the articles in the systematic reviews they examined, and they determined that the missed articles would not have altered the conclusions of the systematic reviews. The authors therefore concluded that filters may be appropriate when searching for systematic reviews of medical test accuracy. However, until more evidence of their effectiveness is found, we recommend that searchers not rely on them exclusively.

Principle 2: Do Not Rely On Controlled Vocabulary (Subject Headings) Alone

It is important to use all known variants of the test name such as abbreviations, generic and proprietary names as well as international terms and spellings, when searching, and these may not all be controlled vocabulary terms. Because reporting and indexing of studies of medical tests is so variable, one cannot rely on controlled vocabulary terms alone.

Using textwords for particular medical tests will help to identify medical test articles that have not yet been indexed or that have not been indexed properly. Filters may suggest the sort of textwords that may be appropriate. Michel discusses appropriate MeSH headings and other terminology useful for searching for medical tests.

Principle 3: Search in Multiple Locations

As always—but in particular with searches for studies of medical tests—we advise systematic reviewers to search more than one database and to tailor search strategies to each individual database. Because there can be little overlap between many databases, failure to search additional databases carries a risk of bias. For more information on potentially appropriate databases to use, see Table 2.

Until reporting and indexing are improved and standardized, a combination of highly sensitive searches and brute force article screening will remain the best approach for systematically searching the medical test literature. However, this approach is still likely to miss relevant articles; therefore, authors should search additional sources of information. Citation tracking, the reading of references of relevant articles as well as identifying articles that cite key studies, is an important sources of additional citations. Table 3 lists databases that are appropriate for tracking citations.

Category	Optimization	Sensitivity/specificity	PubMed search string
Diagnosis	Sensitivity/breadth	98%/74%	(sensitiv*[Title/Abstract] OR sensitivity and specificity[MeSH Terms] OR diagnosis*[Title/Abstract] OR diagnosis[MeSH:noexp] OR diagnostic* [MeSH:noexp] OR diagnosis,differential[MeSH:noexp])
	Specificity/narrowness	64%/98%	(specificity[Title/Abstract])
In addition to bibliographic databases and citation analysis, regulatory documents are another potential source of information for systematic reviews of medical reviews. The FDA regulates many medical tests as devices. The regulatory documents for diagnostic tests are available on the FDA's Device website: http://www.accessdata.fda.gov/scripts/cdrh/devicesatfda/index.cfm.

Illustration

As an example, in the AHRQ report, *Testing for BNP and NT-proBNP in the Diagnosis and Prognosis of Heart Failure,*25 the medical tests in question were known. Therefore, the search consisted of all possible variations on the names of these tests and did not need to include a

Free databases	Subscription databases	
Database	**URL**	**Topic coverage**
C2-SPECTR (Campbell Collaboration’s Social, Psychological, Educational and Criminology Trials Register)	http://geb9101.gse.upenn.edu	Trial Register for Social Sciences (similar to DARE)
ERIC (Education Resources Information Center)	http://www.eric.ed.gov	Education, including the education of health care professionals as well as educational interventions for patients
IBIDS (International Bibliographic Information on Dietary Supplements)	http://ids.od.nih.gov/Health_Information/IBIDS.aspx	Dietary supplements
ICL (Index to Chiropractic Literature)	http://www.chiroindex.org	Chiropractic
NAPS (new Abstracts and Papers in Sleep)	http://www.websciences.org/bibliosleep/naps/default.html	Sleep
OTseeker (Occupational Therapy Systematic Evaluation of Evidence)	http://www.otseeker.com	Occupational therapy
PEDRo (Physiotherpay Evidence Database)	http://www.pedro.org.au/	Physical therapy
PILOTS	http://www.ncbi.nlm.nih.gov/pubmed	PTSD and traumatic stress
PopLine	http://www.rdrb.utoronto.ca/about.php	Population, family planning and reproductive health
PubMed	http://www.ncbi.nlm.nih.gov/pubmed	Biology and health sciences
RDRB (Research and Development Resource Base)	http://www.rdrb.utoronto.ca/about.php	Medical education
RehabData	http://www.naric.com/research/rehab	Rehabilitation
Social Care Online	http://www.sci-e-socialcareonline.org.uk	Social care including: healthcare, social work and mental health
TOXNET	http://toxnet.nlm.nih.gov	Toxicology, environmental health, adverse effects
TRIS (Transportation Research Information Service)	http://ntlsearch.bts.gov/tris/index.do	Transportation research
WHO Global Health Library	http://www.who.int/ghl/medicus/en/	International biomedical topics. Global Index Medicus
Free databases	**Subscription databases**	**Topic coverage**
Database	**URL**	**Coverage**
CINAHL (Cumulative Index to Nursing and Allied Health)	http://www.cinahl.com	Nursing and allied health
CommunityWISE	http://www.oxmill.com/communitywise/	Community issues including community health
EMBASE	http://www.embase.com	Biomedical with and emphasizes on drugs and pharmaceuticals, more non-US coverage than MEDLINE
Ptsd Data	http://www.emcare.com	- PTSD ad traumatic stress
PsycINFO	http://www.apa.org/psycinfo/index.aspx	Psychological literature
Sociological Abstracts	http://www.csa.com/factsheets/ssa-set-c.php	Sociology including: health and medicine and the law, social psychology and substance abuse and addiction
Social Services Abstracts	http://www.csa.com/factsheets/ssa-set-c.php	Social services including: mental health services, gerontology and health policy
search string to capture the diagnostic testing concept. By contrast, in the AHRQ report, Effectiveness of Noninvasive Diagnostic Tests for Breast Abnormalities, all possible diagnostic tests were not known. For this reason, the search strategy included a search string meant to capture the diagnostic testing concept, and this relied heavily on textwords. The actual search strategy used in PubMed to capture the concept of diagnostic tests was as follows: diagnosis OR diagnost OR diagnostic OR di[sh] OR “gold standard” OR “ROC” OR “receiver operating characteristic” OR sensitivity and specificity[mh] OR likelihood OR “false positive” OR “false negative” OR “true positive” OR “true negative” OR “predictive value” OR accuracy OR precision.

SUMMARY

Key points are:

- Diagnostic search filters—or, more specifically, the reporting and indexing of medical test studies upon which these filters rely—are not sufficiently well developed to be depended upon exclusively for systematic reviews.
- If the full range of tests is known, one may not need to search for the concept of diagnostic testing; searching for the specific test using all possible variant names may be sufficient.
- Combining highly sensitive searches utilizing textwords with hand searching and acquisition and review of cited references in relevant papers is currently the best way to identify all or most relevant studies for a systematic review.
- Do not rely on controlled vocabulary alone.
- Check Devices@FDA.

Conflict of Interest: The author declares that he/she does not have a conflict of interest.

Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Table 3. Citation Tracking Databases

Database	URL	Subscription status
Google Scholar	http://scholar.google.com	Free
PubFocus	http://pubfocus.com	Free
PubReMIner	http://bioinfo.amc.uva.nl/human-genetics/pubreminer	Subscription required
Scopus	http://info.scopus.com	Subscription required
Web of Science	http://thomsonreuters.com/products_services/science/science_products/a-z/web_of_science	Subscription required

REFERENCES

1. Relevo, R. and H. Balshem. Finding evidence for comparing medical interventions: Agency for Healthcare Research and Quality (AHRQ) and the Effective Health Care program. J Clin Epidemiol, 2011. [pub before print]
2. Deville WL, Bezemner PD, Bouter LM. Publications on diagnostic test evaluation in family medicine journals: an optimal search strategy. J Clin Epidemiol. 2000;53(1):65–9.
3. van der Weijden T, et al. Identifying relevant diagnostic studies in MEDLINE. The diagnostic value of the erythrocyte sedimentation rate (ESR) and dipstick as an example. Fam Pract. 1997;14(3):204–8.
4. Bachmann LM, et al. Identifying diagnostic studies in MEDLINE: reducing the number needed to read. J Am Med Inform Assoc. 2002;9(6):653–8.
5. Hayes RB, Wilczynski NL. Developing optimal search strategies for detecting clinically sound studies in MEDLINE. J Am Med Inform Assoc. 1994;1(6):447–58.
6. Ritchie G, Glanville J, Lefebvre C. Do published search filters to identify diagnostic test accuracy studies perform adequately? Health Info Libr J. 2007;24(3):188–92.
7. Haynes RB, Wilczynski NL. Optimal search strategies for retrieving scientifically strong studies of diagnosis from Medline: analytical survey. BMJ. 2004;328(7447):1040.
8. Astin MP, et al. Developing a sensitive search strategy in MEDLINE to retrieve studies on assessment of the diagnostic performance of imaging techniques. Radiology. 2006;247(2):365–73.
9. Bachmann LM, et al. Identifying diagnostic accuracy studies in EMBASE. J Med Libr Assoc. 2003;91(3):341–6.
10. Wilczynski NL, Haynes RB. EMBASE search strategies for identifying methodologically sound diagnostic studies for use by clinicians and researchers. BMC Med. 2005;3:7.
11. Leeflang MM, et al. Use of methodological search filters to identify diagnostic accuracy studies can lead to the omission of relevant studies. J Clin Epidemiol. 2006;59(3):234–40.
12. Doust JA, et al. Identifying studies for systematic reviews of diagnostic tests was difficult due to the poor sensitivity and precision of methodologic filters and the lack of information in the abstract. J Clin Epidemiol. 2005;58(5):444–49.
13. Vincent S, Greenley S, Beaven O. Clinical Evidence diagnosis: Developing a sensitive search strategy to retrieve diagnostic studies on deep vein thrombosis: a pragmatic approach. Health Info Libr J. 2003;20(3):150–9.
14. Whiting P, et al. Inclusion of methodological filters in searches for diagnostic test accuracy studies misses relevant studies. J Clin Epidemiol. 2011;64(6):602–607.
15. Kastner, M., et al. Diagnostic test systematic reviews: Bibliographic search filters (‘clinical queries’) for diagnostic accuracy studies perform well. J Clin Epidemiol. 2009.
16. Michel P, Mouillet E, Salmi LR. Comparison of Medical Subject Headings and standard terminology regarding performance of diagnostic tests. J Med Libr Assoc. 2006;94(2):221–3.
17. Honest H, Bachmann LM, Khan K. Electronic searching of the literature for systematic reviews of screening and diagnostic tests for preterm birth. Eur J Obstet Gynecol Reprod Biol. 2003;107(1):19–23.
18. Conn VS, et al. Beyond MEDLINE for literature searches. J Nurs Scholarsh. 2003;35(2):177–82.
19. Suarez-Almazor ME, et al. Identifying clinical trials in the medical literature with electronic databases: MEDLINE alone is not enough. Control Clin Trials. 2000;21(6):476–487.
20. Betran AP, et al. Effectiveness of different databases in identifying studies for systematic reviews: experience from the WHO systematic review of maternal morbidity and mortality. BMC Med Res Methodol. 2005;5(1):6.
21. Sampson M, et al. Should meta-analysts search Embase in addition to Medline? [see comment]. J Clin Epidemiol. 2003;56(10):943–55.
22. Zheng MH, et al. Searching additional databases except PubMed are necessary for a systematic review. Stroke. 2008;39(8):e139. author reply e140.
23. Stevinson C, Lawlor DA. Searching multiple databases for systematic reviews: added value or diminishing returns? Comp Ther Med. 2004;12(4):228–32.
24. Whiting P, et al. Systematic reviews of test accuracy should search a range of databases to identify primary studies. J Clin Epidemiol. 2008;61(4):357–364.

25. Balion, C., et al. Testing for BNP and NT-proBNP in the Diagnosis and Prognosis of Heart Failure. Evidence Report/Technology Assessment No. 142. (Prepared by the McMaster University Evidence-based Practice Center under Contract No. 290-02-0020). AHRQ Publication No. 06-E014. Rockville, MD: Agency for Healthcare Research and Quality. September 2006. Available at: www.ahrq.gov/downloads/pub/evidence/pdf/bnp/bnp.pdf. Accessed August 7, 2011.

26. Bruening, W., et al. Effectiveness of Noninvasive Diagnostic Tests for Breast Abnormalities. Comparative Effectiveness Review No. 2. (Prepared by ECRI Evidence-based Practice Center under Contract No. 290-02-0019.) Rockville, MD: Agency for Healthcare Research and Quality. February 2006. Available at: http://effectivehealthcare.ahrq.gov/repFiles/BrCADx%20Final%20Report.pdf. Accessed August 7, 2011.