User-Modelled Ambient Feedback for Self-regulated Learning

Citation for published version (APA):
Tabuenca, B., Börner, D., Kalz, M., & Specht, M. (2015). User-Modelled Ambient Feedback for Self-regulated Learning. In G. Conole, T. Klobučar, J. Konert, É. Lavoué, & C. Rensing (Eds.), Design for Teaching and Learning in a Networked World: 10th European Conference on Technology Enhanced Learning, EC-TEL 2015, Toledo, Spain, September 15-18 September, 2015 Proceedings (pp. 535-539). Springer. Advance online publication. https://doi.org/10.1007/978-3-319-24258-3_54

DOI:
10.1007/978-3-319-24258-3_54

Document status and date:
Published: 01/01/2015

Document Version:
Peer reviewed version

Document license:
CC BY-SA

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:
pure-support@ou.nl
providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 14 Sep. 2023
User-modelled Ambient Feedback for Self-regulated Learning

Bernardo Tabuenca; Dirk Börner; Marco Kalz; Marcus Specht

Open University of the Netherlands,
Valkenburgerweg 177, 6401 DL Heerlen, The Netherlands
{bernardo.tabuenca, dirk.boerner, marco.kalz, marcus.specht}@ou.nl

Abstract. A fundamental objective of human-computer interaction research is to make systems that are seamlessly integrated into daily life activities. Hence, the challenge is not only to make information available to people at any time, at any place, and in any form, but specifically to say the right thing at the right time in the right way. On the other hand, the proliferation of sensor technology is facilitating the scaffolding and customization of smart learning environments. This manuscript presents an ecology of resources comprising NFC, BLE and Arduino technology, orchestrated in the context of a learning environment to provide smoothly integrated feedback via ambient displays. This ecology is proposed as a suitable solution for self-regulated learning, providing support for setting goals, setting aside time to learn, tracking study time and monitoring the progress. Hereby, the ecology is described and intriguing research questions are introduced.

Keywords. Feedback, Near-Field-Communication, BLE-Beacons, Arduino, Time-management, Learning analytics, Ambient display

1 Introduction

Providing in-context support and feedback is key to identify the best learning moments and self-organize the learning day. Lifelong learning implies setting aside regular time for learning during the day as well as combining learning activities with daily life activities (i.e. family, work, leisure). Nevertheless, daily contingencies and their varying priorities make specially challenging to provide technological support for lifelong learners in the task to set realistic goals, set aside daily time to learn, track the time devoted to learn, and monitor learning progress. In previous research, we investigated different ways to provide feedback services fostering the competence of learning to learn, using SMSs [1] and mobile chart visualizations [2] as channels to provide guidance from the teacher. The differentiation among external and internal feedback is crucial if one investigates the effects of feedback on the basis of recent instructional models viewing the process of knowledge acquisition as a self-regulated learning process [3]. Hence, hereby we present a smart learning ecology in which lifelong learners are able to customize internal feedback based on their own occasional learning priorities and contingencies.
2 Smart Ecology of Resources for Time Management

Candy [4] summarized four components of self-directed lifelong learning: self-monitoring, self-awareness, self-management and meta-learning. The challenge in an information-rich world is not only to make information available at any time, at any place, and in any form, but specifically to say the right thing at the right time in the right way [5]. This ecology provides self-regulated support for lifelong learners tracking time devoted to learn, orchestrating sensor technology, and modelling ambient feedback.

The NFC-LearnTracker [6] is an open source mobile application developed for NFC-enabled devices that features learning analytics of time devoted to learn based on the timestamps recorded every time the user starts check-in and stops check-out a self-defined learning goal. The evaluation of the NFC-LearnTracker [7] concluded that it is a useful tool to set and adjust mini-goals, to foster awareness on preferred learning environments, and to integrate learning in daily activities.

The NFC-LearnTracker interprets the information provided by the following sensors:

- **NFC tags** (Fig. 2 See blue squared). As illustrated in Fig. 3, an overall learning goal (i.e. learn Dutch) comprises a set of sub-goals (watch videos; write texts; read news) that are assigned a coloured tag (blue; orange; green), an estimated daily time in minutes (50; 20; 10), and a deadline date to accomplish each sub-goal.

- **Bluetooth Low Energy (BLE) beacons** (Fig 1a. See green hexagon). BLE-beacons are being novelty used to provide proximity-adapted feedback in the field of shopping\(^1\), access control, and home entertainment. Hereby, we use BLE-beacons to monitor student’s progress when he approaches or moves away from the beacon.

The Feedback Cube [8] (Fig. 1) is an ambient learning display [9] built on an Arduino microcontroller that provides visual and audio feedback (Fig. 3). The used LEDs are

1 Estimote Beacons. https://www.youtube.com/watch?v=sULqjPnXv (Last accessed 29/06/2015)

2 Feedback Cube effects in video: https://sites.google.com/site/lifelonglearninghubproject/home/feedback-cube (Last accessed
capable of displaying the full RGB colour space with 16777216 colours at 256 brightness levels (Fig. 5). All 16 RGB LEDs on the ring can be controlled individually, which allows programming various visual patterns (i.e. Fig. 6 matches pie chart in Fig. 3) and effects, such as fading, blinking, or colour transitions. The used mini speaker can reproduce programmatically created audio patterns and effects, such as playing single tones, complex melodies, or even encoded audio files.

![Fig. 4. Visual and audio effects](image)
![Fig. 5. Rainbow effect](image)
![Fig. 6. Piechart effect](image)

3 Mapping Events and Feedback

The NFC-LearnTracker lets the user configure which feedback signal fits better each one of the events listed below. Hereby we present the events supported and their default set-up:

Event	Action	Feedback
On approach	The user moves closer to the BLE beacon	Summarize! The cube lights a pie chart indicating the distribution of time for pending tasks (Fig. 6)
On check-in	The user taps on the NFC tag every time an activity is started.	Start! The cube lights the blue colour (Fig. 1) to indicate you are working on the blue learning goal
On check-out	The user taps on the NFC tag to stop a learning activity.	Stop! The cube switches off the existing light
X minutes before expiring the estimated time for a goal in a day	X minutes before time expires	Time to wrap up! The cube slowly fades X times to gently advice that time will expire in X minutes.
On expiry estimated time for a goal in a day	Time expired	Time just expired! The cube beeps once providing a more intrusive notification

2 Feedback Cube effects in video: https://sites.google.com/site/lifelonglearninghubproject/home/feedback-cube . (Last accessed 29/06/2015)
Y minutes after expiring the estimated time for a goal in a day | Y minutes after expiring | Overworking! The cube fades faster Y’ times warning that you exceeded Y minutes your scheduled time.

On accomplishment of all goals in a day | On check-out the last goal | All daily goals accomplished! The cube lights a rainbow to congratulate the user

On accomplishment of one-goal deadline date | Scheduled date to finish one goal | Learning goal accomplished! The cube plays a melody indicating the goal is finished

On accomplishment of all-goals deadline date | Scheduled date to finish the last goal | All goals accomplished! The cube lights a rotating rainbow to congratulate the user

On move away | The user moves away from the BLE beacon | Summarize! The cube beeps Z’ times summarizing pending study time (e.g. 30 minutes pending beeps 3 times)

| 4 Future Work |

In further research, the quality of the learning analytics via mobile visualizations (Fig. 3) and displays (Figs. 4-6) will be contrasted and evaluated [10]. Additionally, we will explore whether internal feedback services might improve self-regulated learning.

References

1. Tabuenca, B., Kalz, M., Ternier, S., Specht, M.: Stop and Think: Exploring Mobile Notifications to Foster Reflective Practice on Meta-Learning. IEEE Trans. Learn. Technol. 8, 124–135 (2015).
2. Tabuenca, B., Kalz, M., Specht, M.: Time Will Tell: The role of mobile learning analytics in self-regulation. Press. (2015).
3. Narciss, S.: Feedback strategies for interactive learning tasks. Handb. Res. Educ. Commun. Technol. 3, 125–144 (2008).
4. Candy, P., Brookfield, S.: Self-direction for lifelong learning: A comprehensive guide to theory and practice. , San Francisco, USA (1991).
5. Fischer, G.: User Modeling in Human. Computer Interaction. User Model. User-adapt. Interact. 11, 65–86 (2001).
6. Tabuenca, B., Kalz, M., Specht, M.: Lifelong Learning Hub: A seamless tracking tool for mobile learning. EC-TEL ’14 Proceedings of the 9th European Conference on Technology Enhanced Learning. pp. 1–4. Springer International Publishing, Graz, Austria (2014).
7. Tabuenca, B., Kalz, M., Specht, M.: NFC LearnTracker: Seamless support for learning with mobile and sensor technology. In: Ebner, M., Erenli, K., Malaka, R., Pirker, J., and Walsh, A. (eds.) Communications in Computer and Information Science. Springer, Wien (2015).
8. Börner, D., Tabuenca, B., Storm, J., Happe, S., Specht, M.: Tangible Interactive Ambient Display Prototypes to Support Learning Scenarios. In: ACM (ed.) Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 721–726. ACM New York, NY, USA, New York (2015).
9. Börner, D., Kalz, M., Specht, M.: Beyond the channel: A literature review on ambient displays for learning. Comput. Educ. 60, 426–435 (2013).
10. Scheffel, M., Drachsler, H., Stoyanov, S., Specht, M.: Quality Indicators for Learning Analytics. J. Educ. Technol. Soc. 17, 117–132 (2014).