Protective Factors Against Vaping and Other Tobacco Use

Nicholas Szoko, MD,a Maya I. Ragavan, MD, MS, MPH,b,c Susheel K. Khetarpal, BS,b Kar-Hai Chu, PhD,d Alison J. Culyba, MD, PhD, MPHb,e

BACKGROUND AND OBJECTIVES: Vaping has gained popularity among adolescents despite negative health consequences. Few studies have focused on factors that may protect against vaping. We sought to determine if future orientation, parental monitoring, school connectedness, and social support are associated with decreased risk of vaping and other forms of tobacco use.

METHODS: Data were obtained via anonymous school-based health behavior surveys among ninth- through 12th-graders in Pittsburgh, PA (n = 2487). Protective factors were assessed through validated Likert scale instruments. The primary outcome was recent (past 30-day) vaping. Additional outcomes included other forms of tobacco use and intention to quit tobacco products. Poisson regression models examined associations between protective factors and vaping and tobacco use outcomes.

RESULTS: Mean age was 15.7 years, 1446 (58.1%) respondents were female, and 671 youth (27.0%) reported recent vaping. Positive future orientation and high parental monitoring were associated with significantly lower prevalence of recent vaping (adjusted prevalence ratio: 0.84 [95% confidence interval: 0.73–0.97] and adjusted prevalence ratio: 0.73 [95% confidence interval: 0.62–0.85], respectively). There were no significant relationships between social support or school connectedness and vaping. All 4 protective factors were inversely associated with other forms of tobacco use. No factors were significantly associated with intent to quit tobacco products.

CONCLUSIONS: Findings reveal significant inverse associations between future orientation, parental monitoring, and vaping but no relationship between protective factors and intent to quit tobacco products. Developing interventions to foster protective factors in youth and their parental supports may inform primary prevention efforts to reduce vaping and other tobacco use.

WHAT’S KNOWN ON THIS SUBJECT: Vaping has gained increasing popularity among adolescents despite numerous negative health consequences. Associated risk factors and substance use co-occurrence patterns have been identified, yet few studies have focused on factors that may protect against vaping.

WHAT THIS STUDY ADDS: Inverse associations observed between protective factors and multiple forms of tobacco use, including vaping, suggest that strengths-based interventions to foster these assets in young people and their parental supports may help prevent use of vaping products.
Vaping, or electronic cigarette (e-cigarette) use, has emerged as a major public health concern over the past decade. Approximately 25% to 40% of youth endorse use of vaping products in their lifetime.1,3 Higher reported prevalence among male individuals, non-Hispanic white individuals, and sexual and gender minorities may reflect the influence of existing social and structural systems on substance-use patterns.4–6 Among youth, vaping has been shown to increase the likelihood of initiating traditional tobacco products7–9 and other illicit substances10 as well as engaging in multiple high-risk behaviors.11 Despite their potential for harm, the prevalence of vaping remains at epidemic levels, even with a modest decrease in use in 2020.12–14 Definitive risk factors for vaping include use of vaping products in the home, peer vaping, and concurrent use of other substances.15–17 Vaping generates additional concern among youth because of their susceptibility to marketing18 and relative ease of access to vaping products.19 Compared with cigarettes, vaping has higher perceived safety among youth20,21 and disparate regulation practices,22–24 which compound existing risks for poor health outcomes. Understanding the complex factors that influence use of vaping products is key for informing prevention efforts.

Although patterns of use vary with age,25 the impact of individual, family, and school characteristics on youth alcohol, cigarette, and illicit drug use is well-studied.26–28 Recent analyses have been centered on identifying individual and relational protective factors that mitigate the risk of substance use. For example, positive future orientation, conceptualized as an individual’s attitudes, beliefs, and goals related to the future, has been inversely associated with use of cigarettes, alcohol, and other illicit drugs, including marijuana, cocaine, heroin, amphetamines, hallucinogens.29–31 Similar trends have been observed with nonmedical use of prescription medications.32 Parental monitoring, a dynamic and bidirectional construct encompassing open parent–child communication and parental rule-setting, has also been linked to lower likelihood of youth engagement in cigarette, alcohol, and marijuana use.33,34 Other prosocial influences, such as social support,35,36 school connectedness,36,37 and community cohesion,38 appear to exert a similar effect. Recognition of these protective factors has informed a variety of evidence-based prevention strategies, particularly in the context of alcohol and cigarette use.39–41

The utility of these existing substance-use prevention frameworks in vaping is unknown, because vaping implicates different usage demographics, attitudes regarding safety and acceptability, and mechanisms of access.42,43 Studies examining protective factors in relation to both vaping and other tobacco product use are limited. In 1 study, researchers compared risk profiles among Hawaiian high school students with dual cigarette and e-cigarette use, single product use, and no cigarette or e-cigarette use and included multiple social-cognitive protective factors. Authors identified that parental support, parental monitoring, academic involvement, and behavioral and emotional self-control differed significantly among these groups.14 Additional studies are needed to consider how other asset-based measures in youth, such as future orientation, social support, and school connectedness, may impact use of vaping products and how these associations correlate with protective effects observed with other tobacco products.

Given the relatively high prevalence of vaping in youth, understanding which factors drive cessation behaviors is equally important. There are several social and environmental features that impact intent to quit smoking cigarettes among adolescents, including peer and parent use of tobacco; individual factors, such as age at initiation and level of nicotine dependence, also contribute.45,46 Certain characteristics, including comorbid mental health conditions, low socioeconomic status, and other illicit drug use, may act as additional barriers to successful cessation attempts.47,48 However, little work has examined the differential role of protective factors in initiation versus cessation of tobacco products.49 In addition, because researchers in most studies have evaluated outcomes related to alcohol, cigarettes, and marijuana, the role these factors play in the context of vaping and other tobacco products remains poorly understood.

With growing recognition of the benefits of strengths-based health promotion interventions among youth,50,51 understanding which protective factors decrease risk of both vaping and other tobacco product use among adolescents may offer insight into more effective prevention strategies.52 In the current study, our objectives were to (1) examine associations between future orientation, parental monitoring, social support, school connectedness, and vaping; (2) compare these associations with those observed with other forms of tobacco use; and (3) examine whether protective factors were linked with intent to quit tobacco products.

METHODS

Survey Administration

Cross-sectional, anonymous school-based surveys of health risk and
protective behaviors were administered to 4207 ninth- through 12th-graders across Pittsburgh, PA, in 2018 in partnership with Pittsburgh Public Schools and the Allegheny County Health Department. Surveys were processed by the Allegheny County Health Department, and data were analyzed by our team. The current analysis includes participants with data for lifetime vaping who answered at least 1 protective factor item (n = 2487; 59% of all respondents). The Pittsburgh Public Schools School Board approved this assessment, and the University of Pittsburgh Institutional Review Board deemed this secondary analysis exempt from review. Consent was obtained via informational letters sent to parent(s) and/or guardian(s), who had the option to opt out of their child’s participation in the survey.

Protective Factors

Positive future orientation was defined as answering affirmatively to 2 items adapted from existing measures (eg “I am excited about my future” and “If I set goals, I can take action to reach them”). Parental monitoring was measured with the child disclosure scale (eg “You usually want to tell your parents about school,” 5-point Likert scale, a = 0.75) from Statin and Kerr. Social support and school connectedness were measured with modified versions of the 3-item Brief Measure of Social Support from Sarason et al (eg “someone you really count on to be dependable when you need help,” 5-point Likert scale, a = 0.89) and 5-item School Connectedness Scale from Resnick et al (eg “I feel part of my school,” 5-point Likert scale, a = 0.82), respectively. Means were calculated across multi-item constructs and operationalized to binary variables (≥4 = high).

Outcome Measures

Participants answered 2 separate items about lifetime vaping and cigarette smoking by answering “yes” or “no.” All youth also answered a single item assessing for the frequency of recent (past 30-day) vaping (eg e-cigarettes, electronic cigars, vape pipes, vape pens): 0 days, 1–2 days, 3–5 days, 6–9 days, 10–19 days, 20–29 days, all 30 days. Separate items assessed for multiple types of tobacco product use, including cigarettes (1 item), cigars and cigarillos (1 item), and smokeless tobacco products (eg chewing, snuff, dip, snus, dissolvable; 1 item). Recent use was operationalized as any or none in analyses. Intent to quit tobacco products among all participants was assessed with a “yes” or “no” response to the following item: “During the past 12 months, did you ever try to quit using all tobacco products, including cigarettes, cigars, smokeless tobacco, shisha or hookah tobacco, and electronic vapor products?” Individuals responding “I did not use any tobacco products in the last 12 months” (n = 1434) were not included in this item’s analysis.

Statistical Analysis

Descriptive statistics summarized the participant sample. Two-tailed t tests and χ² tests examined demographics and recent vaping. Poisson (log-link) regression were used separately to examine associations between each protective factor and each vaping and tobacco use outcome as well as intent to quit tobacco products. The results are reported as prevalence ratios; robust SEs were used to compute 95% confidence intervals (CI). All multivariable models adjusted for age (continuous), self-identified race and ethnicity (non-Hispanic white; non-Hispanic Black; Hispanic, multiracial, other), sex assigned at birth (male or female), self-identification as a sexual and/or gender minority, and other lifetime substance use (alcohol or marijuana). Race and/or ethnicity was selected for inclusion as a covariate because of previously reported sociodemographic differences in substance-use patterns. Race operates as a social construct, and intersectional systems of power and privilege may influence substance use. Individuals with complete data for substance-use outcomes, protective factors, and covariates were included in logistic models. Models were evaluated for multicollinearity, and all variance inflation factors were <2. Sensitivity analyses examined associations between each protective factor as a continuous measure and vaping and tobacco product use. All analyses were conducted by using R version 3.6.3 (2020-02-29).

RESULTS

A total of 2487 participants were included in the analysis. Mean age was 15.7 ± 1.2 years. A total of 1446 (58.1%) respondents were assigned female sex at birth (Table 1). Most young people had high future orientation (n = 1832; 73.7%). A smaller proportion of youth reported high levels of parental monitoring (n = 733; 29.5%). Approximately half (n = 1356; 54.5%) of respondents endorsed high social support, and only 26.8% (n = 667) of youth had high school connectedness.

In total, 1126 youth (45.3%) reported any history of vaping in their lifetime, and 671 youth (27.0%) reported recent (past 30 days) vaping. Prevalence of recent vaping was higher among non-Hispanic white students (n = 394; 34.2%) compared with non-Hispanic Black students (n = 101; 16.3% [P < .001]) and students of other races (n = 166; 24.7% [P < .001]). The 30-day
vaping prevalence was similar between young people assigned male and female sex at birth (n = 266; 25.9% and n = 400; 27.7%, respectively [P = .47]) (Table 1). Compared with youth with no recent vaping, youth who reported use of vaping products in the last 30 days had higher recent use of cigarettes (16.4% vs 1.5% [P < .001]), smokeless tobacco products (5.7% vs 0.6% [P < .001]), and cigars and cigarillos (15.1% vs 1.7% [P < .001]) (Table 1). Overall, 207 youth (8.3%) endorsed any quit attempt in the last 12 months (Table 1).

Positive future orientation was associated with significantly lower prevalence of recent and lifetime vaping (recent: adjusted prevalence ratio [aPR] 0.84 [95% CI: 0.73–0.97]; lifetime: aPR: 0.90 [95% CI: 0.81–0.99]), adjusting for covariates. Parental monitoring was significantly inversely associated with recent and lifetime vaping (recent: aPR: 0.73 [95% CI: 0.62–0.85]; lifetime: aPR: 0.82 [95% CI: 0.74–0.90]). There were no significant relationships between social support or school connectedness and recent or lifetime vaping in adjusted models. All 4 protective factors studied revealed significant inverse relationships with recent and lifetime smoking and recent use of other tobacco products, with the exception of school connectedness, which did not show a significant association with recent cigar and cigarillo use (Table 2).

There were no significant associations between future orientation, parental monitoring, social support, or school connectedness and intent to quit tobacco products (Table 2). Sensitivity analyses using continuous rather than binary measures of each protective factor were generally consistent; in adjusted models, a statistically significant inverse association was observed between the mean school

Demographic Characteristic	Total Sample, n = 2487	None (n = 1716)	Any (n = 671)	P
Age, mean (SD), y	15.7 (1.2)	15.6 (1.2)	15.9 (1.2)	<.001
Race, No. (%)				<.001
American Indian or Alaskan native	30 (1.2)	15 (0.9)	10 (1.5)	
Asian American	111 (4.5)	92 (5.4)	15 (2.2)	
Black or African American	664 (26.7)	524 (30.5)	110 (16.4)	
Native Hawaiian or other Pacific Islander	11 (0.4)	6 (0.3)	4 (0.6)	
White	1218 (49.0)	767 (44.7)	411 (61.3)	
Multiracial or other	430 (17.3)	286 (17.2)	114 (17.0)	
Ethnicity, No. (%)				.23
Hispanic	210 (8.4)	147 (8.6)	47 (7.0)	
Non-Hispanic	2224 (89.4)	1550 (89.2)	612 (91.2)	
Sex assigned at birth, No. (%)				.47
Male	1027 (41.3)	712 (41.5)	266 (39.6)	
Female	1446 (58.1)	986 (58.0)	400 (59.6)	
Self-identification as sexual or gender minority, No. (%)				.76
No	1750 (70.8)	1219 (71.0)	482 (71.8)	
Yes	641 (25.8)	431 (25.1)	177 (26.4)	
Other tobacco use (past 30 d), No. (%)				<.001
Cigarettes	148 (6.0)	26 (1.5)	110 (16.4)	
Smokeless tobacco	59 (2.4)	11 (0.6)	38 (5.7)	
Cigars and cigarillos	148 (6.0)	29 (1.7)	101 (15.1)	
Intent to quit tobacco product use (past 12 months), No. (%)				.73
No	288 (10.8)	81 (4.7)	199 (25.2)	
Yes	207 (8.3)	58 (3.4)	133 (19.8)	
Other substance use (lifetime), No. (%)				<.001
Alcohol	1401 (56.3)	789 (46.0)	557 (83.0)	
Marijuana	1120 (45.0)	519 (30.2)	537 (80.0)	
None	742 (29.8)	715 (41.7)	21 (3.1)	

*Percentages represent proportion of column-wise totals.

*Percentages may not total 100% because of nonresponses.

*P value obtained from two-tailed t test (continuous) or χ² test for independence (categorical).

*Self-identification as gay or lesbian, bisexual, queer, asexual, trans girl, trans boy, genderqueer, nonbinary, another identity, or gender identity different from sex assigned at birth.

Smokeless tobacco products included chewing tobacco, snuff, dip, snus, or dissolvable tobacco products, such as Redman, Levi Garrett, Beechnut, Skoal, Skoal Bandits, Copenhagen, Camel Snus, Marlboro Snus, General Snus, Ariva, Stonewall, or Camel Orbs.

Cigars, cigarillos, or little cigars.

Individuals responding “I did not use any tobacco products in the last 12 months” were not included in this item’s analysis.
TABLE 2 PRs and aPRs for Substance-Use Outcomes and Protective Factors

Future Orientation	Parental Monitoring	Social Support	School Connectedness				
Vaping							
Recent vaping (past 30 d)	0.88 (0.85–0.90)	0.94 (0.82–1.08)	0.97 (0.90–1.02)	0.94 (0.82–1.08)	0.38		
Lifetime vaping	0.81 (0.73–0.90)	0.90 (0.81–0.98)	0.93 (0.85–1.02)	0.98 (0.88–1.04)	0.27		
Other tobacco use							
Recent cigarette smoking (past 30 d)	0.37 (0.27–0.52)	0.48 (0.34–0.68)	0.54 (0.45–0.64)	0.73 (0.62–0.85)	<0.001		
Smokeless tobacco (past 30 d)	0.30 (0.16–0.53)	0.46 (0.24–0.90)	0.64 (0.58–0.72)	0.82 (0.74–0.90)	<0.001		
Cigars or cigarillos (past 30 d)	0.37 (0.26–0.53)	0.46 (0.32–0.88)	0.58 (0.44–0.87)	0.85 (0.69–1.03)	0.002		
Lifetime cigarette smoking	0.63 (0.33–0.75)	0.73 (0.62–0.87)	0.97 (0.75–1.25)	1.00 (0.81–1.40)	0.80 (0.75–1.21)	<0.001	
Intentions to quit							
Quit tobacco product use (past 12 mo)	0.95 (0.75–1.21)	0.97 (0.75–1.25)	1.06 (0.81–1.40)	1.10 (0.83–1.46)	0.93 (0.75–1.15)	0.89 (0.69–1.16)	0.55

PR, prevalence ratio.

a Poisson regression models adjusted for age, sex assigned at birth, race and ethnicity, identification as sexual or gender minority, and other substance use. Results are reported as prevalence ratios; robust SEs were used to compute 95% CIs.

b Electronic vapor products included e-cigarettes, electronic cigars, electronic pipes, vape pipes, vaping pens, electronic hookahs, and hookah pens (examples: Blu, NJoy, Vuse, MarkTen, Logic, Vapin Plus, eGo, and Halo).

c Individuals responding “I did not use any tobacco products in the last 12 months” were not included in this item’s analysis.

DISCUSSION

Among a school-based sample of 9th- to 12th-grade students, we observed significant inverse associations between future orientation and parental monitoring and recent and lifetime vaping. Moreover, findings offer a novel insight into associations between future orientation, parental monitoring, and multiple forms of substance use, including vaping. Consistent with their role in other outcome domains, parental monitoring demonstrated its association with multiple negative health outcomes, including multiple tobacco products, including vaping and between mean school connectedness score and cigar and smokeless tobacco use.
resiliency model of adolescence, strengthening these protective factors may engender youth with adaptive mitigation strategies when encountering various health risks, especially peer-influenced behaviors like substance use.

Interestingly, the protective factors examined in this study were not significantly associated with intent to quit tobacco products, a relationship that has not been broadly examined. Although this finding may be partially due to the smaller number of participants in our sample who reported intention to quit in the last 12 months (n = 207, 8.3%), understanding whether protective factors promote behavior change among adolescents already engaged in health risk behaviors is important for informing related public health interventions. Indeed, primary versus secondary prevention frameworks for youth substance use may necessitate different socio-behavioral approaches. Because we saw consistent inverse associations for recent and lifetime vaping, future orientation and parental monitoring may be strongest as primary prevention strategies. Vaping products have been widely marketed as tools for smoking cessation, and many young people identify vaping as an appropriate means to quit other tobacco products, despite considerable controversy regarding this indication. The observed lack of association between protective factors and intent to quit tobacco products may not fully assess for these dynamic factors. That said, vaping acts as an avenue through which youth may develop other forms of substance use, so identifying which protective factors impact vaping cessation remains an important focus for future work in this area.

Social support and school connectedness did not have a significant correlation with recent or lifetime vaping, despite showing inverse relationships with other forms of tobacco use in this sample. This may be due in part to the perceived safety of vaping products among youth compared with other substances, where the presence or absence of a functional peer network may play a greater role. Furthermore, vaping shows higher prevalence than other tobacco products, which may drive normative attitudes that buffer the impact of school contextual variables. Vaping has come to occupy a favorable social media sphere, including promotion of "vape tricks," highlighting the unique social dynamics that contribute to pervasive use. Despite these challenges, growing work suggests the potential utility of peer-led interventions to decrease vaping among youth, a model that has shown benefit in the context of other substances.

Our sample is limited by geographic sampling in a single midsized city. Given the cross-sectional nature of this study, direct causation cannot be inferred. Many respondents had missing data for protective factors, which were located toward the end of the survey, and limited the effective sample size for this secondary analysis. Although this survey assessed multiple forms of tobacco use (vaping, cigarettes, smokeless tobacco, and cigars and cigarillos), new tobacco products emerge frequently, some of which may not be represented in our study. School-based surveys such as this one may not sample highest-risk youth, including those with chronic absenteeism, which could limit generalizability of our findings. However, the observed prevalence of vaping in our study was similar to that observed in other samples, with comparable demographic patterns. The role of protective factors in substance use may also depend on age, so the impact of these constructs on youth in other developmental or educational stages remains unknown; examining these dynamic constructs longitudinally may offer greater insight into their potential impact on vaping. Our work was unique in incorporating multiple asset-based measures, which are not standard items on current school-based national surveys, such as the Youth Risk Behavior Survey.

By demonstrating the role of protective factors in the context of vaping, our work underscores the importance of strengths-based programming to foster individual assets like future orientation, which may mitigate against an array of maladaptive health risk behaviors. In addition, our work calls for continued attention to interventions incorporating parental rule-setting and effective parent-child communication, because these constructs may provide psychosocial benefit for young people throughout adolescence. Given the unique social dynamics that drive youth vaping, novel health promotion strategies, such as peer-led mentoring and education, may have added value. Although we observed significant relationships between protective factors and multiple forms of tobacco use, these measures did not correlate with intent to quit, suggesting that a primary prevention framework may be particularly important.

CONCLUSIONS

We demonstrated associations of several protective factors with vaping and other tobacco product use in adolescents. In particular, future orientation and parental monitoring were identified as inverse correlates of youth vaping.
The differential association of protective factors across tobacco products highlights the unique social and relational features of vaping. The absence of apparent relationships with intent to quit elevates the need for continued strengths-based interventions for primary prevention of youth substance use, particularly those targeting cross-cutting protective factors that span multiple health risk behavior domains.

ACKNOWLEDGMENTS

The data collection was supported by the Heinz Endowments and the Grable Foundation. We thank the Allegheny County Health Department for their role in data collection and for the use of these data. We are grateful to Pittsburgh Public School Board Leadership for their collaboration.

ABBREVIATIONS

aPR: adjusted prevalence ratio
CI: confidence interval
e-cigarette: electronic cigarette

REFERENCES

1. Miech R, Johnston L, O’Malley PM, Bachman JG, Patrick ME. Adolescent vaping and nicotine use in 2017–2018 - U.S. national estimates. *N Engl J Med*. 2019;380(2):192–193

2. Wang TW, Gentzke AS, Creamer MR, et al. Tobacco product use and associated factors among middle and high school students - United States, 2019. *MMWR Surveill Summ*. 2019;68(12):1–22

3. Wang TW, Gentzke A, Sharapova S, Cullen KA, Ambrose BK, Jamal A. Tobacco Product Use Among Middle and High School Students - United States, 2011-2017. *MMWR Morb Mortal Wkly Rep*. 2018;67(22):629–633

4. Mayer M, Reyes-Guzman C, Grana R, Choi K, Freedman ND. Demographic characteristics, cigarette smoking, and e-cigarette use among US adults. *JAMA Netw Open*. 2020;3(10):e2020694

5. Vallone DM, Cuccia AF, Briggs J, Xiao H, Schillo BA, Hair EC. Electronic cigarette and Juul use among adolescents and young adults. *JAMA Pediatr*. 2020;174(3):277–286

6. Dutra LM, Glantz SA. Electronic cigarettes and conventional cigarette use among U.S. adolescents: a cross-sectional study. *JAMA Pediatr*. 2014;168(7):610–617

7. Soneji S, Barrington-Trimmer JL, Wills TA, et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: a systematic review and meta-analysis. *JAMA Pediatr*. 2017;171(8):788–797

8. Watkins SL, Glantz SA, Chaffee BW. Association of noncigarette tobacco product use with future cigarette smoking among youth in the population assessment of tobacco and health (PATH) study, 2013-2015. *JAMA Pediatr*. 2018;172(2):181–187

9. Owotomo O, Stritzel H, McCabe SE, Boyd CJ, Maslowsky J. Smoking intention and progression from e-cigarette use to cigarette smoking. *Pediatrics*. 2020;146(6):e2020002881

10. Kristjansson AL, Mann MJ, Sigfusdottir ID. Licit and illicit substance use by adolescent e-cigarette users compared with conventional cigarette smokers, dual users, and nonusers. *J Adolesc Health*. 2015;57(5):562–564

11. Demissie Z, Everett Jones S, Clayton HB, King BA. Adolescent risk behaviors and use of electronic vapor products and cigarettes. *Pediatrics*. 2017;139(2):e20162921

12. Miech R, Johnston L, O’Malley PM, Bachman JG, Patrick ME. Trends in adolescent vaping, 2017–2019. *N Engl J Med*. 2019;381(15):1490–1491

13. Hammond D, Reid JL, Rynard VL, et al. Prevalence of vaping and smoking among adolescents in Canada, England, and the United States: repeat national cross sectional surveys. *BMJ*. 2019;365:l2219

14. Wang TW, Neff LJ, Park-Lee E, Ren C, Cullen KA, King BA. E-cigarette Use Among Middle and High School Students - United States, 2020. *MMWR Morb Mortal Wkly Rep*. 2020;69(37):1310–1312

15. Brikmanis K, Petersen A, Doran N. E-cigarette use, perceptions, and cigarette smoking intentions in a community sample of young adult nondaily cigarette smokers. *Psychol Addict Behav*. 2017;31(3):336–342

16. Kwon E, Seo DC, Lin HC, Chen Z. Predictors of youth e-cigarette use susceptibility in a U.S. nationally
representative sample. Addict Behav. 2018;82:79–85

17. Barrington-Trimis JL, Berhane K, Unger JB, et al. Psychosocial factors associated with adolescent electronic cigarette and cigarette use. Pediatrics. 2015;136(2):308–317

18. Hammond D, Reid JL, Burkhalter R, Rynard VL. E-cigarette marketing regulations and youth vaping: cross-sectional surveys, 2017–2019. Pediatrics. 2020;146(1):e20194020

19. Williams RS, Derrick J, Ribisl KM. Electronic cigarette sales to minors via the internet. JAMA Pediatr. 2015;169(3):e1563

20. Amrock SM, Lee L, Weitzman M. Perceptions of e-cigarettes and non-cigarette tobacco products among US youth. Pediatrics. 2018;138(5):e20145306

21. Gorukanti A, Delucchi K, Ling P, Fisher-Travis R, Halpern-Felsher B. Adolescents’ attitudes towards e-cigarette ingredients, safety, addictive properties, social norms, and regulation. Prev Med. 2017;94:65–71

22. Zhu SH, Sun JY, Bonnevie E, et al. Four hundred and sixty brands of e-cigarettes and counting: implications for product regulation. Tob Control. 2014;23(Suppl 3):iii3–iii9

23. Valley SC, Wilson KM, Winicoff JP, Groner J. A public health crisis: electronic cigarettes, vape, and JUUL. Pediatrics. 2019;143(6):e20182741

24. Chadi N, Hadland SE, Harris SK. Understanding the implications of the “vaping epidemic” among adolescents and young adults: a call for action. Subst Abus. 2019;40(1):7–10

25. Chen P, Jacobson KC. Developmental trajectories of substance use from early adolescence to young adulthood: gender and racial/ethnic differences. J Adolesc Health. 2012;50(2):154–163

26. Resnick MD, Bearman PS, Blum RW, et al. Protecting adolescents from harm. Findings from the National Longitudinal Study on Adolescent Health. JAMA. 1997;278(10):825–832

27. Kilpatrick DG, Acierno R, Saunders B, Resnick HS, Best CL, Schnurr PP. Risk factors for adolescent substance abuse and dependence: data from a national sample. J Consult Clin Psychol. 2000;68(1):19–30

28. Stone AL, Becker LG, Huber AM, Catalano RF. Review of risk and protective factors of substance use and problem use in emerging adulthood. Addict Behav. 2012;37(7):747–775

29. Bolland JM. Hopelessness and risk behaviour among adolescents living in high-poverty inner-city neighbourhoods. J Adolesc. 2005;26(2):145–158

30. Borowsky IW, Ireland M, Resnick MD. Health status and behavioral outcomes for youth who anticipate a high likelihood of early death. Pediatrics. 2009;124(1):e81–e88

31. Brooks M, Miller E, Abebe K, Mulvey E. The observed longitudinal relationship between future orientation and substance use among a cohort of youth with serious criminal offenses. Subst Use Misuse. 2018;53(12):1925–1936

32. Steiger RM, Stoddard SA, Pierce J. Adolescents’ future orientation and nonmedical use of prescription drugs. Addict Behav. 2017;65:269–274

33. DiClemente RJ, Wingood GM, Crosby R, et al. Parental monitoring: association with adolescents’ risk behaviors. Pediatrics. 2001;107(6):1363–1388

34. Tobler AL, Komro KA. Trajectories or combinations and cycling: implications for adolescents’ electronic cigarette and noncigarette tobacco use. Pediatrics. 2015;136(2):308–317

35. Wills TA, Vaughan R. Social support and substance use in early adolescence. J Behav Med. 1989;12(4):321–339

36. Bond L, Butler H, Thomas L, et al. Social and school connectedness in early secondary school as predictors of late teenage substance use, mental health, and academic outcomes. J Adolesc Health. 2007;40(4):357.e9–357.e18

37. Weathersworth KA, O’Neill M, Lau EY, Qian W, Leatherdale ST, Faulkner GEJ. The Protective Effects of School Connectedness on Substance Use and Physical Activity. J Adolesc Health. 2018;63(6):724–731

38. Cleveland MJ, Feinberg ME, Bontempo DE, Greenberg MT. The role of risk and protective factors in substance use across adolescence. J Adolesc Health. 2008;43(2):157–164

39. Petrie J, Bunn F, Byrne G. Parenting programs for preventing tobacco, alcohol or drugs misuse in children <18: a systematic review. Health Educ Res. 2002;17(2):177–191

40. Foxcroft DR, Tsertsvadze A. Universal school-based prevention programs for alcohol misuse in young people. Evid Based Child Health. 2012;7(2):450–575

41. Owens DK, Davidson KW, Krist AH, et al; US Preventive Services Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. JAMA. 2020;323(16):1590–1598

42. Osman A, Kowitt SD, Ranney LM, Heck C, Goldstein AO. Risk factors for multiple tobacco product use among high school youth. Addict Behav. 2019;99:100088

43. Ebrahimi Kalan M, McKelvey K, Ibrahimou B, Trucco EM, Ben Taleb Z. The road to vaping: e-cigarette susceptibility and curiosity among U.S. adolescents susceptible and nonsusceptible to cigarette smoking. Health Educ Behav. 2020;47(5):696–705

44. Wills TA, Knight R, Williams RJ, Pagano I, Sargent JD. Risk factors for exclusive e-cigarette use and dual e-cigarette use and tobacco use in adolescents. Pediatrics. 2015;135(1):e43–e51

45. Cengelli S, O’Looughlin J, Lauzon B, Cornuz J. A systematic review of longitudinal population-based studies on the predictors of smoking cessation in adolescent and young adult smokers. Tob Control. 2012;21(3):355–362

46. Klein EG, Forster JL, Erickson DJ. Longitudinal predictors of stopping smoking in young adulthood. J Adolesc Health. 2015;53(3):365–367

47. Agrawal A, Sartor C, Pergadia ML, Huizink AC, Lynskey MT. Correlates of smoking cessation in a nationally representative sample of U.S. adults. Addict Behav. 2008;33(9):1223–1226

48. Tucker JS, Elickson PL, Orlando M, Klein DJ. Predictors of attempted quitting and cessation among young adult smokers. Prev Med. 2005;41(2):554–561

49. Chang FC, Lee CM, Lai HR, Chiang JT, Lee PH, Chen WJ. Social influences and self-efficacy as predictors of youth smoking initiation and cessation: a 3-year longitudinal study of vocational
high school students in Taiwan. *Addiction.* 2006;101(11):1645–1655

50. Zimmerman MA. Resiliency theory: a strengths-based approach to research and practice for adolescent health. *Health Educ Behav.* 2013;40(4):381–383

51. Ginsburg KR, McClain ZB, eds. *Reaching Teens: Strength-Based, Trauma-Sensitive, Resilience-Building Communication Strategies Rooted in Positive Youth Development,* 2nd ed. Itaska, IL: American Academy of Pediatrics; 2020

52. Liu J, Gaiha SM, Halpern-Felsher B. A breath of knowledge: overview of current adolescent e-cigarette prevention and cessation programs. *Curr Addict Rep.* 2020;1:1–13

53. Lippman LH, Anderson Moore K, Guzman L, et al. *Flourishing Children.* Dordrecht, Netherlands: Springer; 2014

54. Stattin H, Kerr M. Parental monitoring: a reinterpretation. *Child Dev.* 2000;71(4):1072–1085

55. Sarason IG, Sarason BR, Shearin EN, Pierce GR. A brief measure of social support: practical and theoretical implications. *J Soc Pers Relat.* 1987;4(4):497–510

56. Li X, Feigelman S, Stanton B. Perceived parental monitoring and health risk behaviors among urban low-income African-American children and adolescents. *J Adolesc Health.* 2000;27(1):43–48

57. Borawski EA, Levers-Landis CE, Lovegreen LD, Trapl ES. Parental monitoring, negotiated unsupervised time, and parental trust: the role of perceived parenting practices in adolescent health risk behaviors. *J Adolesc Health.* 2003;33(2):60–70

58. Dittus PJ, Michael SL, Becasen JS, Glop- pen KM, McCarthy K, Guilamo-Ramos V. Parental monitoring and its associations with adolescent sexual risk behavior: a meta-analysis. *Pediatrics.* 2015;136(6):e1587–e1599

59. Clinkinbeard SS. What lies ahead: an exploration of future orientation, self-control, and delinquency. *Crim Justice Rev.* 2014;39(1):19–36

60. Jackman DM, MacPhee D. Self-esteem and future orientation predict adolescents’ risk engagement. *J Early Adolesc.* 2017;37(3):339–366

61. Schmidt CJ, Pierce J, Stoddard SA. The mediating effect of future expectations on the relationship between neighborhood context and adolescent bullying perpetration. *J Community Psychol.* 2016;44(2):232–248

62. So S, Voisin DR, Burnside A, Gaylord-Harden NK. Future orientation and health-related factors among African American adolescents. *Child Youth Serv Rev.* 2016;61:15–21

63. Richardson GE, Neiger BL, Jensen S, Kumpfer KL. The resiliency model. *Health Educ.* 1990;21(6):33–39

64. Lippert AM, Corsi DJ, Venechuk GE. Schools influence adolescent e-cigarette use, but when? examining the interdependent association between school context and teen vaping over time. *J Youth Adolesc.* 2019;48(10):1899–1911

65. Colditz JB, Welling J, Smith NA, James AE, Primack BA. World vaping day: contextualizing vaping culture in online social media using a mixed methods approach. *J Mixed Methods Res.* 2019;15(2):196–215

66. Chu KH, Allem JP, Cruz TB, Unger JB. Vaping on Instagram: cloud chasing, hand checks and product placement. *Tab Control.* 2016;26(5):575–578

67. Pepper JK, Lee YD, Watson KA, Kim AE, Nonnemaker JM, Farrelly MC. Risk factors for youth e-cigarette “Vape Trick” behavior. *J Adolesc Health.* 2017;61(5):599–605

68. Wyman PA, Rulison K, Pisani AR, et al. Above the influence of vaping: peer leader influence and diffusion of a network-informed preventive intervention. *Addict Behav.* 2021;113:106693

69. Georgie J M, Sean H, Deborah M C, Matthew H, Rona C. Peer-led interventions to prevent tobacco, alcohol and/or drug use among young people aged 11–21 years: a systematic review and meta-analysis. *Addiction.* 2016;111(3):391–407

70. Centers for Disease Control and Prevention. [2021] Youth Risk Behavior Survey Questionnaire. Available at: www.cdc.gov/yrbs. Accessed June 21, 2021

71. Chu KH, Sidani J, Matheny S, et al. Implementation of a cluster randomized controlled trial: Identifying student peer leaders to lead e-cigarette interventions. *Addict Behav.* 2021;114:106726