On a generalization of Jacobi's elliptic functions and the double sine-Gordon kink chain

Michael Pawellek

Citation: J. Math. Phys. 52, 113701 (2011); doi: 10.1063/1.3656873
View online: http://dx.doi.org/10.1063/1.3656873
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v52/i11
Published by the American Institute of Physics.

Related Articles
Constructive renormalization for Φ^4 theory with loop vertex expansion
J. Math. Phys. 53, 042302 (2012)
Holomorphic supercurves and supersymmetric sigma models
J. Math. Phys. 52, 123505 (2011)
Non-existence of non-topological solitons in some types of gauge field theories in Minkowski space
J. Math. Phys. 52, 102901 (2011)
Dynamics near the threshold for blowup in the one-dimensional focusing nonlinear Klein-Gordon equation
J. Math. Phys. 52, 103703 (2011)
Equivalence of domains for hyperbolic Hubbard-Stratonovich transformations
J. Math. Phys. 52, 053506 (2011)

Additional information on J. Math. Phys.
Journal Homepage: http://jmp.aip.org/
Journal Information: http://jmp.aip.org/about/about_the_journal
Top downloads: http://jmp.aip.org/features/most_downloaded
Information for Authors: http://jmp.aip.org/authors

ADVERTISEMENT

The most comprehensive support for physics in any mathematical software package
World-leading tools for performing calculations in theoretical physics

Maple 16
The Essential Tool for Mathematics and Modeling

www.maplesoft.com/physics

• Your work in Maple matches how you would write the problems and solutions by hand
• State-of-the-art environment for algebraic computations in physics
• The only system with the ability to handle a wide range of physics computations as well as pencil-and-paper style input and textbook-quality display of results
• Access to Maple's full mathematical power, programming language, visualization routines, and document creation tools

Downloaded 06 Nov 2012 to 131.188.201.33. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
On a generalization of Jacobi’s elliptic functions and the double sine-Gordon kink chain

Michael Pawellek
Institut für Theoretische Physik III, Universität Erlangen-Nürnberg, Staudtstr.7, D-91058 Erlangen, Germany

(Received 8 June 2011; accepted 28 September 2011; published online 4 November 2011)

A generalization of Jacobi’s elliptic functions is introduced as inversions of hyperelliptic integrals. We discuss the special properties of these functions, present addition theorems, and give a list of indefinite integrals. As a physical application, we show that periodic kink solutions (kink chains) of the double sine-Gordon model can be described in a canonical form in terms of generalized Jacobi functions.

© 2011 American Institute of Physics. [doi:10.1063/1.3656873]

I. INTRODUCTION

The inversion of the Abelian integral,

$$u = \int_{x_0}^x \frac{drR(t)}{\sqrt{P(t)}}$$

where $R(t)$ is a rational function and $P(t)$ is a polynomial of degree p, is a problem, which has attracted many mathematicians, e.g., Euler, Jacobi and, of course, Abel. So for $p = 2$ and $P(x) = (1 - x^2)$, the inversion of (1) gives the periodic trigonometric functions $x = \sin(u)$ and $x = \cos(u)$. For $p = 4$ and $P(x) = (1 - x^2)(1 - k^2x^2)$, (1) becomes an elliptic integral and its inversion leads to the doubly periodic Jacobi elliptic functions $x = \text{sn}(u)$, $x = \text{cn}(u)$, etc.

For $p > 4$, the integral (1) is hyperelliptic and as was shown by Jacobi and its inversion leads to infinite-valued functions with more than two independent periods. In order to overcome infinite-valued functions Jacobi invented his celebrated inversion theorem, where the inversion of a system of Abelian integrals leads to one-valued functions of multiple periodicity but depending on two or more independent variables. Therefore, the inversion of a single Abelian integral, especially the hyperelliptic ones was only rarely considered by mathematicians, although simply mechanical problems can lead to these integrals. The determination of the trajectory $x(t - t_0)$ of a point particle in a potential $V(x)$ given by a polynomial of degree greater than four needs the inversion of the integral.

$$t - t_0 = \int_{x_0}^x \frac{dx'}{\sqrt{2(E - V(x'))}}.$$ (2)

There are special cases for $p > 4$, where the inversion of one single Abelian integral leads to multi-valued functions, e.g., when one can reduce the hyperelliptic integral to an elliptic one.

In this work we will consider a set of functions $\{s(u), c(u), d_1(u), d_2(u)\}$, which are inversions of certain hyperelliptic integrals, where $P(x)$ are polynomials of degree 6. As we will show, they can be understood as generalizations of the Jacobi elliptic functions of the case $p = 4$. For example, the relation

$$\text{sn}'(u) = \text{cn}(u)\text{dn}(u),$$ (3)

a)Electronic mail: pawellek@kth.se.
II. DEFINITIONS

In this section we introduce the generalized Jacobi functions and clarify some of their properties, which were already used in Ref. 6.

Definition 2.1: Consider without loss of generality \(1 > k_1 > k_2 > 0 \) as moduli parameter.
(a) The generalized Jacobi elliptic function \(x = s(u, k_1, k_2) \) and their companion functions \(c(u, k_1, k_2), d_1(u, k_1, k_2), \) and \(d_2(u, k_1, k_2) \) are defined by the inversion of the hyperelliptic integrals,

\[
u(x, k_1, k_2) = \int_{x=s(u)}^{x=x(1)} \frac{dt}{\sqrt{(1 - t^2)(1 - k_1^2 t^2)(1 - k_2^2 t^2)}},
\]

\[
u(x, k_1, k_2) = \int_{x=c(u)}^{x=c(1)} \frac{dt}{\sqrt{(1 - t^2)(1 - k_1^2 t^2)(1 - k_2^2 t^2)}},
\]

\[
u(x, k_1, k_2) = k_1 \int_{x=d_1(u)}^{x=d_1(1)} \frac{dt}{\sqrt{(1 - t^2)(t^2 - k_1^2)(k_1^2 - k_2^2 + k_2^2)}}
\]

\[
u(x, k_1, k_2) = k_2 \int_{x=d_2(u)}^{x=d_2(1)} \frac{dt}{\sqrt{(1 - t^2)(t^2 - k_2^2)(k_2^2 - k_1^2 + k_1^2)}},
\]

respectively.

(b) The generalized amplitude function \(a(u, k_1, k_2) \) is then given by the inversion of

\[
u(a(u), k_1, k_2) = \int_{0}^{a(u)} \frac{d\psi}{\sqrt{(1 - k_1^2 \sin^2 \psi)(1 - k_2^2 \sin^2 \psi)}}.
\]

Without solving the integral (5) explicitly, one can derive certain properties of these functions.

Corollary 2.1: Given the generalized Jacobi elliptic functions \(s(u), c(u), d_1(u), \) and \(d_2(u) \) as defined by (5). Then

\[
c_i(u) = 1 - s^2(u), \quad d_i^2(u) = 1 - k_i^2 s^2(u), \quad d_i^2(u) = 1 - k_i^2 s^2(u),
\]

\[
d_i^2(u) - k_i^2 c_i^2(u) = 1 - k_i^2, \quad i = 1, 2; \quad k_1^2 d_1^2(u) - k_2^2 d_2^2(u) = k_1^2 - k_2^2.
\]

The first derivatives of these functions are given by

\[
s'(u) = c(u) d_1(u) d_2(u), \quad c'(u) = -s(u) d_1(u) d_2(u),
\]

\[
d_1'(u) = -k_1^2 s(u) c(u) d_2(u), \quad d_2'(u) = -k_2^2 s(u) c(u) d_1(u).
\]
Proof: By the substitutions,

\[x = \sqrt{1 - y^2}, \quad x = \sqrt{1 - k_1^2 y^2}, \quad x = \sqrt{1 - k_2^2 y^2} \]

in (5) one obtains the three other integrals where the relations (10) and (11) can be read off. Relation (12) follows from the differential versions of (5).

The functions \(s(u, k_1, k_2), c(u, k_1, k_2), d_1(u, k_1, k_2), \) and \(d_2(u, k_1, k_2) \) are the generalizations of the classic Jacobi elliptic functions \(\text{sn}(u, k), \text{cn}(u, k), \) and \(\text{dn}(u, k) \), respectively, and they reduce to them for \(k_2 \to 0 \) and \(k = k_1 \). For fixed \(k_i \), we will have the abbreviated notations \(s(u) \equiv s(u, k_1, k_2) \), etc.

So far we have only stated some formal relations between the inverted hyperelliptic integrals (5), provided these functions exist, which we have to show next. For this, we note that the differential of the hyperelliptic integral, which defines \(s(u) \) is an Abelian differential of the first kind,

\[d\eta = \frac{dx}{y} \]

with

\[y^2 = (1 - x^2)(1 - k_1^2 x^2)(1 - k_2^2 x^2). \]

It is holomorphic on the hyperelliptic curve \(C \), defined by

\[C = \{(y, x) \in \mathbb{C}^2 | y^2 = (1 - x^2)(1 - k_1^2 x^2)(1 - k_2^2 x^2)\}, \]

which can be modelled as a Riemann surface of genus 2. The important observation is that the hyperelliptic curve \(C \) is also a double cover \(C \to \mathbb{C} \) of the elliptic curve \(E \) defined by

\[E = \{(w, z) \in \mathbb{C}^2 | w^2 = z(1-z)(1-k_1^2 z)(1-k_2^2 z)\}, \]

with covering map \(\pi(y, x) \) given by

\[(w, z) = \pi(y, x) = (xy, x^2). \]

The differential (14) is therefore the pullback of the elliptic differential of the first kind,

\[d\eta = \frac{dz}{w}, \]

and the inversion of its integral gives a double-valued function, which can now be expressed in terms of elliptic functions.

Theorem 2.1: The generalized Jacobi elliptic functions exist and are given by

\[s(u, k_1, k_2) = \frac{\text{sn}(k_2' u, \kappa)}{\sqrt{k_2'^2 + k_1^2 \text{sn}^2(k_2' u, \kappa)}}, \quad c(u, k_1, k_2) = \frac{\text{cn}(k_2' u, \kappa)}{\sqrt{1 - k_2'^2 \text{cn}^2(k_2' u, \kappa)}}, \]

\[d_1(u, k_1, k_2) = \frac{\sqrt{k_1^2 - k_2'^2 \text{dn}(k_2' u, \kappa)}}{\sqrt{k_1^2 - k_2'^2 \text{dn}^2(k_2' u, \kappa)}}, \quad d_2(u, k_1, k_2) = \frac{\sqrt{k_1^2 - k_2'^2 \text{dn}(k_2' u, \kappa)}}{\sqrt{k_1^2 - k_2'^2 \text{dn}^2(k_2' u, \kappa)}}, \]

and the generalized amplitude function is

\[a(u, k_1, k_2) = \text{arctan}[k_2'^{-1} \text{sc}(k_2' u, \kappa)] = \text{arctan}[k_2'^{-1} \text{tan}(\text{am}(k_2' u, \kappa))] \]

with \(\kappa^2 = (k_1^2 - k_2'^2)/(1 - k_2'^2), \) \(k_2' = \sqrt{1 - k_2^2}, \) and \(0 \leq k_2 \leq k_1 \leq 1. \) They have branch cuts along \((u_1, u_2)\) and \((u_3, u_4)\) with

\[u_1 = i \frac{\text{cn}^{-1}(k_2, \kappa')}{k_2'}, \quad u_2 = -u_1 + 2i \frac{\text{K}(\kappa')}{k_2'}, \quad u_3 = u_1 + 2 \frac{\text{K}(\kappa)}{k_2'}, \quad u_4 = u_2 + 2 \frac{\text{K}(\kappa)}{k_2'}, \]

where \(\text{K}(k) \) is the complete elliptic integral of the first kind and \(\kappa' = \sqrt{1 - k^2} \).
Proof: From the discussion above follows that by substituting $t = \sqrt{\tau}$, the hyperelliptic integral (5) can be reduced to the following elliptic integral:

$$u(x, k_1, k_2) = \frac{1}{2} \int_0^{x^2} \frac{\text{d} \tau}{\sqrt{\tau(1 - \tau)(1 - k_1^2 \tau)(1 - k_2^2 \tau)}},$$

(23)

where the inverse function is given10 by the first expression of (20). The sign of the root in the denominator is chosen in such a way that for $k_2 \to 0$ one has $s(u, k_1, k_2) \to sn(u, k_1)$. The other three expressions are obtained by applying (10). The branch points are a result of the zeros of the denominators in (20).

Figures 1–4 show example plots of these functions for selected values of the moduli k_1 and k_2.

FIG. 1. $s(x, k_1, k_2)$ for $k_1 = 0.9$.

FIG. 2. $s(x, k_1, k_2)$ for $k_1 = 0.99$.
As the Jacobi representation (20) shows, the introduction of generalized Jacobi functions is mathematically redundant. Nevertheless, it would be not obvious in the Jacobi representation that among these four functions such elementary relations as (12) are fulfilled. It is therefore advantageous to use (10)–(12) when working with these functions and not representation (20). With this setup, algebraic manipulations become very simple and straightforward.

Further, the generalized Jacobi functions serve as prototype examples of meromorphic functions on a genus two Riemann surface. This can be seen as follows. Consider the two points \(u_1 = u\) and \(u_2 = u + 2K(\kappa) k_2\). There exist two different paths for analytic continuation to obtain the value of \(s(u_2)\) from \(s(u_1)\). Path \(a_1\) avoids the branch cut and path \(a_2\) goes through one cut, see Figure 5. After passing the cut \((u_1, u_2)\), one has to use the other branch of the square root. Let \((u, +)\) and \((u, -)\)
denote points lying in the two different branches of the square root. Then, one gets
\[
s((u, -)) = \frac{\text{sn}(k'_2 u)}{-\sqrt{k'_2^2 + k'_2^2 \text{sn}^2(k'_2 u)}} = \frac{\text{sn}(k'_2 u + 2K)}{\sqrt{k'_2^2 + k'_2^2 \text{sn}^2(k'_2 u) + 2K}} = s((u + 2K(\kappa) / k'_2, +)),
\]
where we have used the anti-periodicity of the sn-function. Thus by identifying the points \((u, -) \sim (u + 2K(\kappa) / k'_2, +)\) of the two branches, the path \(a_2\) enters the cut \((u_1, u_2)\) and appears at the other cut \((u_3, u_4)\). The branch cuts are short cuts and depending on the path of analytic continuation one gets,
\[
s(u + 4K(\kappa) / k'_2)_{a_1} = s(u), \quad s(u + 2K(\kappa) / k'_2)_{a_2} = s(u).
\]
Thus, the generalized Jacobi functions are realizations of functions with the two real periods \(2K(\kappa) / k'_2\) and \(4K(\kappa) / k'_2\), depending on the path of analytic continuation. The identification of the non-trivial cycles as in Figure 5 makes it clear that the generalized Jacobi functions are one-valued functions on the corresponding genus two Riemann surface. The cycles \(b_1\) and \(b_2\) in Figure 5 correspond to the imaginary period \(2iK(\kappa') / k'_2\). One can think of this surface as a torus with an additional handle attached connecting the branch cuts.

III. PROPERTIES

In this section, we present addition theorems, special values, and indefinite integrals of the generalized Jacobi elliptic functions.

A. Relation to classic Jacobi elliptic functions

From (20), we can state the following:

Corollary 3.1: The 12 classic Jacobi elliptic functions are given by the non-trivial quotients of the generalized Jacobi functions, e.g., one has
\[
\frac{s(u, k_1, k_2)}{d_2(u, k_1, k_2)} = k_2^{-1} \text{sn}(k'_2 u, \kappa), \quad \frac{c(u, k_1, k_2)}{d_2(u, k_1, k_2)} = \text{cn}(k'_2 u, \kappa), \quad \frac{d_1(u, k_1, k_2)}{d_2(u, k_1, k_2)} = \text{dn}(k'_2 u, \kappa),
\]
(26)
where the modulus of the resulting Jacobi elliptic functions is \(\kappa \). For the remaining nine quotients see Table I.

This looks very similar to the definition of the Jacobi functions by theta functions,\(^{11}\)

\[
\text{sn}(u) = \frac{\vartheta_3(u/\vartheta_2^2)}{\vartheta_2(u/\vartheta_2^2)}, \quad \text{cn}(u) = \frac{\vartheta_4(u/\vartheta_2^2)}{\vartheta_2(u/\vartheta_2^2)}, \quad \text{dn}(u) = \frac{\vartheta_6(u/\vartheta_2^2)}{\vartheta_2(u/\vartheta_2^2)},
\]

(27)

where \(\vartheta_j = \vartheta_j(0) \). More similarity with theta functions can be found, when one notice that from (12) especially follows the identity:

\[
\text{sn}'(0) = c(0)d_1(0)d_2(0),
\]

(28)

which is also very similar to the famous theta constant identity,\(^{11}\)

\[
\vartheta_1'(0) = \vartheta_2(0)\vartheta_3(0)\vartheta_4(0).
\]

(29)

Nevertheless, a similar relation as (12) does not hold for theta functions,

\[
\vartheta_1'(u) \neq \vartheta_2(u)\vartheta_3(u)\vartheta_4(u),
\]

(30)

which is a crucial difference to the generalized Jacobi functions.

B. Addition theorems

Theorem 3.1 (Addition theorem): The generalized Jacobi functions with moduli \(k_2 \) and \(k_2' \) fulfill the following addition theorems:

\[
s(u \pm v) = \frac{s(u)d_2(u)c(v)d_1(v) \pm s(v)d_2(v)c(u)d_1(u)}{\sqrt{[d_2^2(u)d_2^2(v) - \kappa^2 k_2^4 s^2(u)s^2(v)]^2 + k_2^2 [s(u)d_2(u)c(v)d_1(v) \pm s(v)d_2(v)c(u)d_1(u)]^2}},
\]

\[
c(u \pm v) = \frac{c(u)d_2(u)c(v)d_2(v) \mp k_2^2 s(u)d_1(u)s(v)d_1(v)}{\sqrt{[d_2^2(u)d_2^2(v) - \kappa^2 k_2^4 s^2(u)s^2(v)]^2 + k_2^2 [s(u)d_2(u)c(v)d_1(v) \pm s(v)d_2(v)c(u)d_1(u)]^2}},
\]

\[
d_1(u \pm v) = \frac{d_1(u)d_2(u)d_1(v)d_2(v) \mp \kappa^2 k_2^2 s(u)c(v)c(v)}{\sqrt{[d_2^2(u)d_2^2(v) - \kappa^2 k_2^4 s^2(u)s^2(v)]^2 + k_2^2 [s(u)d_2(u)c(v)d_1(v) \pm s(v)d_2(v)c(u)d_1(u)]^2}},
\]

\[
d_2(u \pm v) = \frac{d_2^2(u)d_2^2(v) - \kappa^2 k_2^4 s^2(u)s^2(v)}{\sqrt{[d_2^2(u)d_2^2(v) - \kappa^2 k_2^4 s^2(u)s^2(v)]^2 + k_2^2 [s(u)d_2(u)c(v)d_1(v) \pm s(v)d_2(v)c(u)d_1(u)]^2}}.
\]

Proof: Write the addition theorem for sn(u) with the help of (26) as

\[
\text{sn}(k_2'u \pm k_2'v, \kappa) = k_2'\frac{s(u)d_2(u)c(v)d_1(v) \pm s(v)d_2(v)c(u)d_1(u)}{d_2^2(u)d_2^2(v) - \kappa^2 k_2^4 s^2(u)s^2(v)}. \quad (31)
\]
The addition theorem for \(d_2(u) \) follows then immediately by using (31) in
\[
d_2^2(u \pm v) = \frac{k_2^2}{k_2^2 + k_2^2 \text{sn}^2(k_2 u \pm k_2' v, \kappa)}. \tag{32}
\]
Now, one can use the addition theorem for \(d_2(u) \) in order to get the corresponding theorem for \(s(u) \) from
\[
s(u \pm v) = k_2^{-1} \text{sn}(k_2 u \pm k_2' v, \kappa) d_2(u \pm v), \tag{33}
\]
and similar for \(c(u) \) and \(d_1(u) \).

A special case of the addition theorems is the following:

Corollary 3.2 (Half argument):
\[
s^2(u/2) = \frac{d_2(u) - c(u)}{d_2(u) - k_2^2 c(u) + k_2^2 d_1(u)}. \tag{34}
\]
\[
c^2(u/2) = k_2^2 \frac{c(u) + d_1(u)}{d_2(u) - k_2^2 c(u) + k_2^2 d_1(u)}. \tag{35}
\]
\[
d_1^2(u/2) = (k_1^2 - k_2^2) \frac{k_1 d_2(u) - k_2^2 d_1(u) + (k_1^2 - k_2^2) c(u)}{k_1^2 d_2(u) - k_2^2 d_1(u) + (k_1^2 - k_2^2) c(u)}. \tag{36}
\]
\[
d_2^2(u/2) = (k_1^2 - k_2^2) \frac{c(u) + d_2(u)}{k_1^2 d_2(u) - k_2^2 d_1(u) + (k_1^2 - k_2^2) c(u)}. \tag{37}
\]

C. Special values

Definition 3.1: The generalization of the complete elliptic integral of the first kind is
\[
\mathcal{K} := \mathcal{K}(k_1, k_2) = \frac{1}{k_2^2} \mathcal{K}(\kappa) = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k_1^2 t^2)(1-k_2^2 t^2)}}. \tag{38}
\]
Define also \(\mathcal{K}' = \mathcal{K}(\kappa') \) and \(\kappa'^2 = 1 - \kappa^2 = \frac{1 - k_1^2}{1 - k_2^2} \).

From the definition of the generalized Jacobi functions as follows:
\[
s(\mathcal{K}) = 1, \quad c(\mathcal{K}) = 0, \quad d_1(\mathcal{K}) = k_1', \quad d_2(\mathcal{K}) = k_2'. \tag{39}
\]
In Table II, we summarize analytic expressions for the generalized Jacobi functions evaluated at specific points. As an example we will demonstrate that \(s(\mathcal{K}/2) = (1 + k_1' k_2')^{-\frac{1}{2}} \). For this we choose \(u = v = \mathcal{K}/2 \) in the addition theorem for \(c(u + v) \). One gets
\[
c^2(\mathcal{K}/2) d_2^2(\mathcal{K}/2) - k_2^2 s^2(\mathcal{K}/2) d_1^2(\mathcal{K}/2) = 0. \tag{40}
\]
This can be written as
\[
(k_1^2 + k_1^2 k_2^2) s^4(\mathcal{K}/2) - 2 s^2(\mathcal{K}/2) + 1 = 0, \tag{41}
\]
with solution
\[
s(\mathcal{K}/2) = \pm \sqrt{\frac{1 \pm k_1' k_2'}{k_1^2 + k_1^2 k_2^2}}. \tag{42}
\]
Considering the limit \(k_2 \to 0 \) one has to obtain the result \(\text{sn}(\mathcal{K}/2) = (1 + k_1')^{-\frac{1}{2}} \), which fixes the signs such as
\[
s(\mathcal{K}/2) = + \frac{1 - k_1' k_2'}{k_2^2 + k_1^2 k_2^2}. \tag{43}
\]
TABLE II. Special values for generalized Jacobi functions.

\(u \)	\(s(u) \)	\(c(u) \)	\(d_1(u) \)	\(d_2(u) \)
\(u = K/2 \)	\((1 + k'_2 k_2^{-2})^{-1/2}\)	\((k'_2 k_2^{-2})^{1/2}(1 + k'_2 k_2^{-2})^{-1}\)	\(k'_2 (k'_2 + k_2^{-2})^{1/2}(1 + k'_2 k_2^{-2})^{-1}\)	\(k'_2 (k'_2 + k_2^{-2})^{1/2}(1 + k'_2 k_2^{-2})^{-1}\)
\(u = K \)	\(1\)	\(0\)	\(k'_2\)	\(k'_2\)
\(u = 3/2K \)	\((1 + k'_2 k_2^{-2})^{-1/2}\)	\(-k'_2 (k'_2 + k_2^{-2})^{1/2}(1 + k'_2 k_2^{-2})^{-1}\)	\(k'_2 (k'_2 + k_2^{-2})^{1/2}(1 + k'_2 k_2^{-2})^{-1}\)	\(k'_2 (k'_2 + k_2^{-2})^{1/2}(1 + k'_2 k_2^{-2})^{-1}\)
\(u = iK' /2 \)	\(i(\kappa k_2^2 - k_2^2)^{-1/2}\)	\(\sqrt{\frac{\kappa k_2^2 - k_2^2}{\kappa k_2^2 + k_2^2}}\)	\(\sqrt{\kappa(1 - \frac{k_2^2}{\kappa k_2^2})^{-1}}\)	\((1 - \frac{k_2^2}{\kappa k_2^2})^{-1/2}\)
\(u = iK' \)	\(k_2^{-1}\)	\(ik_2^{-1}(k_2^{-1} - k_2)\)	\(0\)	\(0\)
\(u = K/2 + iK' /2 \)	\(\sqrt{\frac{k_2^2 + k_2 k_2 k_2' k_2'}{k_2^2 - k_2 k_2 k_2' k_2'}}\)	\(\sqrt{\frac{-i k_2^2 - i k_2 k_2 k_2' k_2'}{k_2^2 + k_2 k_2 k_2' k_2'}}\)	\(\sqrt{\frac{k_2^2 (k_2^2 - k_2 k_2 k_2' k_2') - i k_2^2 - i k_2 k_2 k_2' k_2' k_2'}{k_2^2 - k_2 k_2 k_2' k_2'}}\)	\(\sqrt{\frac{k_2^2 (k_2^2 - k_2 k_2 k_2' k_2') + i k_2^2 - i k_2 k_2 k_2' k_2' k_2'}{k_2^2 + k_2 k_2 k_2' k_2'}}\)
\(u = K/2 + iK' \)	\((1 - k'_2 k_2^{-2})^{-1/2}\)	\(-i(k'_2 k_2^{-2})^{1/2}(1 - k'_2 k_2^{-2})^{-1}\)	\(-i k'_2 (k'_2 - k_2^{-2})^{1/2}(1 - k'_2 k_2^{-2})^{-1}\)	\(-i k'_2 (k'_2 - k_2^{-2})^{1/2}(1 - k'_2 k_2^{-2})^{-1}\)
\(u = K + iK' \)	\(k_1^{-1}\)	\(ik_1^{-1} k_1'\)	\(0\)	\(k_1^{-1} (k_1^{-1} - k_2^{-2})^{-1/2}\)
By writing the denominator as
\[k_1^2 + k_2^2 k_1^2 = 1 - k_2^2 + k_2^2 k_1^2 = 1 - k_1^2 k_2^2 = (1 + k_1^2 k_2)(1 - k_1^2 k_2), \]
the promised result \(s(K/2) = (1 + k_1^2 k_2)^{-1/2} \) is obtained.

The other values in Table II can be shown in similar ways using the addition theorems appropriately.

Together with the addition theorems one finds further,
\[
\begin{align*}
 s(u + K) &= \frac{c(u)}{\sqrt{d_1(u) - k_2^2 k_1^2 s^2(u)}}, \quad c(u + K) = -\frac{k_1' k_2 s(u)}{\sqrt{d_1(u) - k_2^2 k_1^2 s^2(u)}}, \\
 d_1(u + K) &= \frac{k_1' d_2(u)}{\sqrt{d_1(u) - k_2^2 k_1^2 s^2(u)}}, \quad d_2(u + K) = \frac{k_2' d_1(u)}{\sqrt{d_1(u) - k_2^2 k_1^2 s^2(u)}}.
\end{align*}
\]

D. The integrals of generalized Jacobi functions

It is easy to see that the integral of \(d_2^2(u) \) is closely related to the incomplete elliptic integral of the third kind,
\[
\int dud_2^2(u) = \int \frac{du}{1 + \frac{k_1^2}{k_2^2} \sin^2(k_2'u, \kappa)} = \frac{1}{k_2^2} \Pi \left(k_2'u, \frac{k_2^2}{k_2^2}, \kappa \right).
\]

Using (10) we get the corresponding integrals of \(s^2(u) \), \(c^2(u) \) and \(d_1^2(u) \), see Table III.

IV. GENERALIZED JACOBI FUNCTIONS AS DOUBLE SINE-GORDON KINKS

We are now able to discuss the (quasi-)periodic kink solutions of the DSG,
\[\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi), \]
where the potential is given by
\[V(\phi) = \frac{\mu}{\beta^2} \cos(\beta \phi) - \frac{\lambda}{\beta^2} \cos \left(\frac{\beta}{2} \phi \right) + C. \]
We will choose the constant C in order to set the minima of the potential to zero, which gives

\[C = \frac{\lambda - \mu}{\beta^2}, \quad (\mu, \lambda > 0 \text{ and } \frac{\lambda}{4\mu} > 1) \text{ or } \mu < 0, \lambda > 0, \tag{49} \]

\[C = \frac{1}{\beta^2} \left(\frac{\lambda^2}{8\mu} + \mu \right), \quad \mu > 0, \quad \frac{|\lambda|}{4\mu} < 1, \tag{50} \]

\[C = -\frac{\lambda + \mu}{\beta^2}, \quad \mu, \lambda < 0. \tag{51} \]

The signs of the different terms of (48) are chosen, so that for $\mu \to 0$ and $\lambda > 0$ the potential reduces to the sine-Gordon potential,

\[V(\phi) \xrightarrow{\mu \to 0} \frac{\lambda}{\beta^2} \left(1 - \cos \left(\frac{\beta}{2} \phi \right) \right). \tag{52} \]

The kinks are the solutions of the first order equation of motion,

\[\frac{1}{2} \left(\frac{d\phi}{dx} \right)^2 - V(\phi(x)) = A, \tag{53} \]

where A is some integration constant. This model possesses a rich phase structure depending on the parameters λ and μ,12,13 e.g., for $\lambda/4\mu > 1$ the only extrema of the potential are $\phi = \frac{2\pi n}{\beta}$ with in particular $\phi = 0$ as minimum and $\phi = \frac{2\pi}{\beta}$ as maximum.

We will show in this section that the kink solutions and corresponding energy densities get a unique canonical expression in terms of generalized Jacobi functions.

By shifting $\tilde{\phi}(x) = \beta \phi(x) - 2\pi$, the first order equation of motion for static kink configurations (53) can uniformly be brought to the form

\[\frac{d\tilde{\phi}}{\sqrt{(1 - k_1^2 \sin^2 \frac{\tilde{\phi}}{2})(1 - k_2^2 \sin^2 \frac{\tilde{\phi}}{2})}} = 2\sqrt{\mu} dx, \tag{54} \]

with solution

\[\phi(x) = \frac{2\pi}{\beta} + 4 \frac{\lambda}{\beta} a \left(\frac{\sqrt{\mu}}{k_1k_2}(x - x_0), k_1, k_2 \right), \tag{55} \]

which depends implicitly on the radius

\[R = \frac{2k_1k_2}{\sqrt{\mu}} K(k_1, k_2). \tag{56} \]

The corresponding energy density can be analytically expressed as

\[\mathcal{E}(x, k_1, k_2, A) = \frac{16\mu}{\beta^2 k_1^2 k_2^2} d_1^2 \left(\frac{\sqrt{\mu}}{k_1k_2} x, k_1, k_2 \right) d_2^2 \left(\frac{\sqrt{\mu}}{k_1k_2} x, k_1, k_2 \right) - A, \tag{57} \]

where $d_1(x)$ and $d_2(x)$ are the previous introduced generalized Jacobi functions. (55) and (57) are the unique solutions of the first order differential equation (54). The only thing one has to do, is to work out the explicit dependence of the moduli k_1, k_2 on the parameters μ, λ, β and the integration constant A of the potential (48) in the different sectors. The solution has the following (quasi-)periodic properties, depending on the integration constant A:

\[\phi(x + R) = \phi(x) + \frac{4\pi}{\beta}, \quad A > 0, \tag{58} \]

\[\phi(x + 2R) = \phi(x), \quad A < 0. \tag{59} \]

Depending on the physical situation these solutions can be used to describe kink chains on an infinite line or a kink solution on the compact circle with circumference R. Although (55) is in principle
valid for all values of \(k_1, k_2 \) we will give in addition for all cases an expression in textbook functions where the elliptic modulus \(\kappa \) lies in the fundamental interval between 0 and 1. This will establish the connection with previous obtained expressions for periodic solutions of the DSG model.7–9

A. Case: \(\lambda, \mu > 0 \) and \(\lambda > 4\mu \)

In this region of the parameter space the potential (48) has only one type of minima. The moduli are given by

\[
k_1^2 = \frac{1}{\beta^2 A + 2\lambda} \left[4\mu + \lambda \pm \sqrt{(\lambda - 4\mu)^2 - 8\mu\beta^2 A} \right],
\]

with following properties:

\[
\begin{align*}
k_1^2k_2^2 &= \frac{8\mu}{\beta^2 A + 2\lambda}, \quad k_1^2 + k_2^2 = \frac{8\mu + 2\lambda}{\beta^2 A + 2\lambda}, \quad k_1^2 + k_2^2 - k_1^2k_2^2 &= -\frac{2\lambda}{\beta^2 A + 2\lambda}, \quad k_1^2k_2^2 &= \frac{\beta^2 A + 2\lambda}{8\mu}.
\end{align*}
\]

1. \(0 < A < (\lambda - 4\mu)^2/(8\mu) \)

In this case \(0 < k_2^2 < k_1^2 < 1 \) and the solution can be written in terms of elementary functions as

\[
\phi(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[\left(\frac{k_2'}{k_1k_2} \right) \frac{\sqrt{\kappa}}{k_1} (x - x_0), \kappa \right].
\]

depending on the radius,

\[
R = \frac{2k_1k_2}{\sqrt{\kappa}} K(\kappa).
\]

This solution can be interpreted as an infinite kink chain on the line with distance \(R \), see Figure 7. The energy of this field configuration on \(S^1 \) is

\[
E(k_1, k_2) = \frac{16\sqrt{\pi}k_2'}{\beta^2 k_1k_2} \left[E(\kappa) - \left(\frac{k_1^2}{k_2^2} + 1 - k_1^2 \right) K(\kappa) + \left(\frac{1}{k_2^2} + \frac{k_1^2}{k_2^2} \right) \Pi \left(-\frac{k_2^2}{k_1^2}, \kappa \right) \right].
\]

With (60), the radius (56) and the energy (64) become functions of \(A, \beta, \mu, \) and \(\lambda \),

\[
R = R(A; \beta, \lambda, \mu), \quad E = E(A; \beta, \lambda, \mu),
\]

which can for given \(\beta, \lambda, \mu \) be plotted with parameter \(A \) (see Figure 6).

2. \(A = 0 \)

![Figure 6](http://jmp.aip.org/about/rights_and_permissions)

FIG. 6. Classical energy for \(\lambda = 4 \) and \(\mu = 0.01 \) (solid), \(\mu = 0.5 \) (dotted) and \(\mu = 0.99 \) (dashed).
This is the decompactification limit since from $k_1^2 = 1$ and $k_2^2 = 4\mu/\lambda$ and (56) follows $R \to \infty$. Then the kink solution reduces to a single DSG kink on the infinite line

$$\phi(x) \to \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[\sqrt{\frac{\lambda}{\lambda - 4\mu}} \sinh \left(\frac{\sqrt{\lambda}}{4} - \mu (x - x_0) \right) \right],$$

which is the solution found in Ref. 13. The corresponding topological charge $Q = \phi(\infty) - \phi(-\infty)$ is

$$Q = \frac{4\pi}{\beta}. \quad (67)$$

3. $A = (\lambda - 4\mu)^2/(8\mu)$

This is the trigonometric point, since the moduli are given by

$$k_1^2 = k_2^2 = k^2 = \frac{8\mu}{\lambda + 4\mu}, \quad (68)$$

and in the kink solution all elliptic functions degenerate to trigonometric functions:

$$\phi(x) \to \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[\frac{1}{k'} \tan \left(\frac{k'}{k^2} \sqrt{\mu} (x - x_0) \right) \right], \quad R \to \pi \frac{k^2}{\sqrt{\mu} k'}.$$

The energy is

$$E \to \frac{4\pi \sqrt{\mu}}{\beta^2} \left[2 - k_2^2 + \frac{2 - k_2^2}{k'} + 1 - k^2 \right]. \quad (70)$$

• $\mu = 0$

This is the sine-Gordon limit

From (60), one can see $k_2 \to 0$ and the quasi-periodic sine-Gordon soliton is obtain with

$$\phi(x) \to \frac{2\pi}{\beta} + \frac{4}{\beta} \operatorname{am} \left(\frac{\sqrt{\lambda/4}}{k_1} (x - x_0), k_1 \right), \quad (71)$$

and

$$R \to \frac{2k_1}{\sqrt{\lambda/4}} \mathbf{K}(k_1) \quad (72)$$

with mass parameter $m = \sqrt{\lambda/4}$. By using the limit,

$$\lim_{k_2 \to 0} \frac{k_1^2}{k_2^2} \left[\mathbf{E} \left(\frac{k_2^2}{k_1^2}, \kappa \right) - \mathbf{K}(\kappa) \right] = \mathbf{E}(k_1) - \mathbf{K}(k_1), \quad (73)$$

the energy becomes

$$E(k_1, k_2) \to \frac{16\sqrt{\lambda/4}}{\beta^2 k_1} \left[(k_1^2 - 1) \mathbf{K}(k_1) + 2\mathbf{E}(k_1) \right]. \quad (74)$$
4. $A > (\lambda - 4\mu)^2/(8\mu)$

Now, the moduli k_1^2 and k_2^2 are complex conjugated with

$$|k_1^2|^2 = |k_2^2|^2 = \frac{8\mu}{A + 2\mu}$$ \hspace{1cm} (75)

The explicit kink solution can be written as

$$\phi(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[\left(\frac{\sqrt{k_1'k_2'\sqrt{\mu}}}{k_1k_2} \right)^{1/2} \text{sc} \left(\frac{\sqrt{k_1'k_2'\sqrt{\mu}}}{k_1k_2}, \frac{i(k_1' - k_2')}{2\sqrt{k_1'k_2'}} \right) \right]$$ \hspace{1cm} (76)

where the radius is given by

$$R = \frac{2k_1k_2}{\sqrt{\mu}} \frac{1}{\sqrt{k_1'k_2'}} K(\kappa^{-1})$$ \hspace{1cm} (77)

This is again a kink chain as in Case A 1, only the mathematical representation has changed.

5. $-2\lambda < A < 0$

In this case $0 < k_2^2 < 1 < k_1^2 < \infty$ and the solution can be written as

$$\phi(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[\left(k_1^2 - k_2^2 \right)^{-1/2} \text{sd} \left(\frac{\sqrt{k_1^2 - k_2^2\sqrt{\mu}}}{k_1k_2}, \kappa^{-1} \right) \right]$$ \hspace{1cm} (78)

where the radius is given by

$$R = \frac{2k_1k_2}{\sqrt{\mu}} \frac{1}{\sqrt{k_1^2 - k_2^2}} K(\kappa^{-1})$$ \hspace{1cm} (79)

This solution can be interpreted as an infinite chain of kinks and anti-kinks on the line.

6. $A = -2\lambda$

This is the endpoint for real-valued solutions in the DSG model, where the moduli become

$$k_1^2 \to \infty, \quad k_2^2 = (1 - \lambda/4\mu)^{-1}$$ \hspace{1cm} (80)

and the kink solution reduces the constant field configuration

$$\phi(x) = \frac{2\pi}{\beta}$$ \hspace{1cm} (81)

with constant energy density

$$E(x) = \frac{2\lambda}{\beta^2}$$ \hspace{1cm} (82)

This happens at the critical value,

$$R_0 = \frac{2\pi}{\sqrt{4\mu + \lambda}}$$ \hspace{1cm} (83)

Thus, for $R < R_0$, no non-trivial real-valued periodic static field configuration exists in the DSG model.

B. Case: $|\lambda| < 4\mu$ and $\mu > 0$

The potential (48) has now two different maxima and additional minima.
The kink solution is again (55) with the moduli given by
\[
k_{1,2}^2 = \frac{1}{\beta^2 A + \frac{1}{8\mu}(\lambda + 4\mu)^2} \left[4\mu + \lambda \pm \sqrt{-8\mu\beta^2 A} \right].
\]
(84)

Since the DSG potential (48) has the symmetry,
\[
V(\phi, \lambda) = V \left(\phi + \frac{2\pi}{\beta}, -\lambda \right)
\]
(85)
the second solutions are given by
\[
\phi_{II}(x, \lambda, A) = \phi_I(x, -\lambda, A) - \frac{2\pi}{\beta}
\]
(86)

1. \(A > 0 \)
The moduli are complex conjugated with
\[
|k_1^2|^2 = |k_2^2|^2 = \frac{8\mu}{\beta^2 A + \frac{1}{8\mu}(\lambda + 4\mu)^2},
\]
(87)
and the kink solution is
\[
\phi_I(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[(k'_1 k'_2)^{-1/2} \frac{\sqrt{k_1 k_2}}{k_1 k_2} \frac{1}{\sqrt{4\mu + \lambda}} \tanh \left(\frac{i}{2\sqrt{4\mu + \lambda}} \right) \right],
\]
(88)
where the radius is given by
\[
R_I = \frac{2k_1 k_2}{\sqrt{4\mu + \lambda}} \frac{1}{\sqrt{k_1 k_2}} K \left(\frac{i}{2\sqrt{4\mu + \lambda}} \right).
\]
(89)
On \(S^1 \) this solution represents a quasi-periodic kink. On the infinite line this solution represents a chain composed of two different types of kinks, a large and a small one, where the large kink lies around \(x = 0 \). This can be seen on the energy density chart, see Figure 8. The second solution \(\phi_{II}(x) \) is equivalent to \(\phi_I(x) \), but now the small kink lies around \(x = 0 \).

2. \(A = 0 \)
The moduli are \(k_{1,2}^2 = \frac{8\mu}{4\mu + \lambda} \) and \(R \to \infty \). The solution \(I \) reduces for \(\lambda > 0 \) to the single large kink,
\[
\phi_I(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[\frac{4\mu + \lambda}{4\mu - \lambda} \tanh \left(\frac{\sqrt{\lambda}}{2\sqrt{4\mu}} \right) \right],
\]
(90)
\[\text{FIG. 8. The DSG potential } V(\phi) \text{ and energy density } \mathcal{E}(x) \text{ of a chain of large-kinks/small-kinks for } \lambda < 4\mu.\]
and for $\lambda < 0$ to the small kink. Solution II gives for $\lambda > 0$ the single small kink and for $\lambda < 0$ the single large kink,

$$\phi_{II}(x) = \frac{4}{\beta} \arctan \left(\frac{2\mu - \lambda}{2\mu + \lambda} \tanh \left(\sqrt{1 - \left(\frac{\lambda}{4\mu} \right)^2 \frac{\sqrt{\mu}}{2}} x \right) \right).$$

The corresponding topological charge is given by

$$Q_{I,II} = \frac{8}{\beta} \arctan \left(\frac{4\mu \pm \lambda}{4\mu \mp \lambda} \right).$$

The obvious relation $Q_I > Q_{II}$ for $\lambda > 0$ justifies the nomenclature of large/small kink.

3. $-(\lambda - 4\mu)^2/(8\mu) < A < 0$

The moduli are real with $1 < k_2^2 < k_1^2 < \infty$. Now there are two inequivalent solutions. The first one can now be written as

$$\phi_I(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left((k_1^2 - 1)^{-1/2} \text{sn} \left(\sqrt{\frac{k_1^2 - 1}{k_1^2}} x, \kappa^{-1} \right) \right),$$

$$R = \frac{2k_1k_2}{\sqrt{\mu} \sqrt{k_1^2 - k_2^2}} K(\kappa^{-1}).$$

The second one is

$$\phi_{II}(x, \lambda, A) = \phi_I(x, -\lambda, A) - \frac{2\pi}{\beta}.$$

Solution ϕ_I represents for $\lambda > 0$ a chain of kinks and anti-kinks of the large type with distance R and for $\lambda < 0$ a chain of kinks and anti-kinks of the small type with distance R.

4. $\lambda < 0$ and $A = -(\lambda - 4\mu)^2/(8\mu)$

This is the endpoint of the kink/anti-kink chain of the small type. For the moduli we have

$$k_1^2 \to \infty, \quad k_2^2 = \frac{4\mu}{\lambda + 4\mu},$$

and the kink reduces to the constant field configuration,

$$\phi(x) = \frac{2\pi}{\beta},$$

with energy density

$$E(x) = \frac{2\mu}{\beta^2} \left(1 + \frac{\lambda}{4\mu} \right)^2.$$

This happens at the critical value,

$$R_0 = \frac{2\pi}{\sqrt{-\lambda + 4\mu}}.$$

5. $\lambda > 0$ and $-2\mu(1 + \lambda/(4\mu))^2 < A < -(\lambda - 4\mu)^2/(8\mu) < 0$

In this case $0 < k_2^2 < 1 < k_1^2 < \infty$ and the solution can be written as

$$\phi(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left((k_1^2 - k_2^2)^{-1/2} \text{sd} \left(\sqrt{\frac{k_1^2 - k_2^2}{k_1k_2}} x, \kappa^{-1} \right) \right),$$

$$R = \frac{2k_1k_2}{\sqrt{\mu} \sqrt{k_1^2 - k_2^2}} K(\kappa^{-1}).$$
This is the kink/anti-kink chain of the large type.

6. \(\lambda > 0\) and \(A = -2\mu(1 + \lambda(4\mu))^2\)

This is the endpoint of the kink/anti-kink chain of the large type. For the moduli we have

\[k_1^2 \to \infty, \quad k_2^2 = \frac{4\mu}{\lambda + 4\mu}, \tag{100} \]

and the kink reduces to the constant field configuration,

\[\phi(x) = \frac{2\pi}{\beta}, \tag{101} \]

at the critical radius \(R_0\) given by (83).

C. Case: \(\lambda, \mu < 0\) and \(A > 0\)

The potential (48) has now two different minima. The kink is again (55) with the following moduli:

\[k_{1,2}^2 = \frac{1}{\beta^2 A} \left[4\mu + \lambda \pm \sqrt{(\lambda - 4\mu)^2 + 8\mu(2\lambda - \beta^2 A)} \right], \tag{102} \]

with

\[k_2^2 < -1 < 0 < k_1^2 < 1. \tag{103} \]

Therefore, an explicit representation of the kink in terms of text book functions is

\[\phi(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[k_2^{-1} \text{sc} \left(\frac{k_2^2 \sqrt{-\mu}}{k_1 \sqrt{-k_2^2}} (x - x_0), \kappa \right) \right], \quad R = \frac{2k_1 \sqrt{-k_2^2}}{k_2 \sqrt{-\mu}} \text{K}(\kappa). \tag{104} \]

On the infinite line one can interpret this as a chain of two small kinks bounded in a kind of molecule, see Figure 9.

D. Case: \(\mu < 0\) and \(\lambda > 0\)

The moduli are the same as for case \(A\):

\[k_{1,2}^2 = \frac{1}{\beta^2 A + 2\lambda} \left[4\mu + \lambda \pm \sqrt{(\lambda - 4\mu)^2 - 8\mu\beta^2 A} \right]. \tag{105} \]

1. \(A > 0\)
The moduli are $k_2^2 < 0 < k_1^2 < 1$. The kink solution is

$$\phi(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[k_2^{-1} \text{sc} \left(\frac{k_2 \sqrt{-\mu}}{k_1 \sqrt{k_2}} (x - x_0), \kappa \right) \right], \quad R = \frac{2k_1 \sqrt{-k_2^2}}{\sqrt{-\mu} k_2^1} K(\kappa).$$

(106)

2. $\lambda > 4|\mu|$ and $-2\lambda < A < 0$

The moduli are $k_2^2 < 0 < 1 < k_1^2$. The kink solution is

$$\phi(x) = \frac{2\pi}{\beta} + \frac{4}{\beta} \arctan \left[(k_1^2 - k_2^2)^{-1} \text{sd} \left(\frac{\sqrt{k_1^2 - k_2^2}}{k_1 \sqrt{-k_2^2}} \sqrt{-\mu}(x - x_0), \kappa^{-1} \right) \right],$$

$$R = \frac{2k_1 \sqrt{-k_2^2}}{\sqrt{-\mu}} \frac{1}{\sqrt{k_1^2 - k_2^2}} K(\kappa^{-1}).$$

(107)

This is a periodic bounce solution.

V. CONCLUSION

We introduced a generalization of Jacobi elliptic functions defined by the inversion of certain hyperelliptic integrals which are reducible to elliptic integrals.

As an example for their effectiveness in physics we have chosen the double sine-Gordon model. Its (quasi-)periodic kink solution and corresponding energy densities can be described uniformly by a single generalized Jacobi function. The qualitative characteristics of the kink chains depend only on the moduli parameter k_1 and k_2. Several solutions of the DSG model obtained in the past7-9 are just special cases of a unique generalized Jacobi function. We observed also a critical value R_0 for kink/anti-kink chains, where for $R < R_0$ no non-trivial static solution exists.

1. C. G. J. Jacobi, Crelle Jour. 13, 55 (1834).
2. H. F. Baker, *Abelian Functions* (Cambridge University Press, Cambridge, England, 1897).
3. B. von Ludwig, Crelle Jour. 155, 26 (1926).
4. W. Gröbner, Math. Z. 77, 101 (1961).
5. Y. N. Fedorov and D. Gomez-Ullate, *Physica D* 227, 120 (2007).
6. M. Pawellek, J. Phys. A 40, 7673 (2007).
7. S. Iwabuchi, Prog. Theor. Phys. 70, 941 (1983).
8. O. Hudak, Phys. Lett. A 82, 95 (1981).
9. M. Wang and X. Li, Chaos, Solitons, Fractals 27, 477 (2006).
10. P. F. Byrd and M. D. Friedman, *Handbook of Elliptic Integrals for Engineers and Physicists* (Springer-Verlag, Berlin, 1954).
11. E. T. Whittaker and G. N. Watson, *Modern Analysis* (Cambridge University Press, Cambridge, England, 1905).
12. C. A. Condat, R. A. Guyer, and M. D. Miller, Phys. Rev. B 27, 474 (1983).
13. J. Mussardo, V. Riva, and G. Sotkov, Nucl. Phys. B 687, 189 (2004).