Duration of the first steps of the human rRNA processing

Alexey Popov,1,3 Evgeny Smirnov,1 Lubomír Kováčik,1 Otakar Raška,1,3 Guy Hagen,1 Lenka Stivová1 and Ivan Raška1,*

1First Faculty of Medicine, Institute of Cellular Biology and Pathology, Charles University in Prague, Czech Republic; 2Third Faculty of Medicine, Department of Normal, Pathological and Clinical Medicine, Charles University in Prague, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic

*Current affiliation: Third Faculty of Medicine, Department of Pathology, Charles University in Prague, Prague, Czech Republic

Keywords: rRNA processing, cleavage, half-life time, primary transcript, human, mouse

Abbreviations: pol I, RNA polymerase I; ActD, actinomycin D; ETS, external transcribed spacer; ITS, internal transcribed spacer

Introduction

The RNA polymerase I (pol I) generates the largest fraction of all newly synthesized RNAs in growing eukaryotic cells by producing a single large rRNA precursor. This primary transcript (47S in mammalian species) undergoes processing into a single large rRNA (rRNA) precursor. This primary transcript occurs in the position +650, then 3'ETS and removal of 3'ETS. The resulting 45S rRNA may be cleaved either at the 5' end of 18S RNA gene (the main pathway) or within ITS1 or at the additional cleavage site A0 which is situated within the 5'ETS region. We measured the levels of pre-rRNA and the processing products. This work of Lazdins et al., 16 inhibition of transcription with actinomycin D (ActD) and S1 nuclease analysis were used to estimate the pre-rRNA half-life time in rodent cells. But for the human cells, even the life-span of pre-rRNA remains unknown.

In the present study, we employed real-time qPCR to measure levels of pre-rRNA and the processing products. This method is extremely powerful and can generate reliable, reproducible and biologically meaningful results; wherefore, in many cases qPCR is superseding other approaches, such as northern blotting and RNase protection essays.17,18 Using primers within 5'ETS region, we measured the levels of pre-rRNA and the processing products. This method is extremely powerful and can generate reliable, reproducible and biologically meaningful results; wherefore, in many cases qPCR is superseding other approaches, such as northern blotting and RNase protection essays.17,18 Using primers within 5'ETS region, we measured the levels of pre-rRNA and the processing products.

Most experiments demonstrated the existence of the so-called external transcribed spacer (ETS). The spacer sequences vary greatly in composition and length in different organisms, though the core elements in the mature rRNAs are highly conserved (reviewed in ref. 9). In human cells, the order of the processing events was established, but little is yet known about the dynamics of this process, especially the dynamics of its early stages. In the present study, we used real-time PCR to measure levels of pre-rRNA after inhibition of transcription with actinomycin D. Thus we could estimate the half-life time of rRNA transcripts in two human-derived cell lines, HeLa and LEP (human embryonic fibroblasts), as well as in mouse NIH 3T3 cells. The primary transcripts seemed to be more stable in the human than in the murine cells. Remarkably, the graphs in all cases showed more or less pronounced lag phase, which may reflect preparatory events preceding the first cleavage of the pre-rRNA. Additionally, we followed the dynamics of the decay of the 5'ETS fragment which is degraded only after the formation of 41S rRNA. According to our estimates, the corresponding three (or four) steps of the processing in human cells take five to eight minutes.

Much less is known about the dynamics of the rRNA processing. Pulse-chase analysis with L-methyl 3H methionine so far allowed to investigate only later steps of the processing.19,20 In the work of Lazdins et al., 16 inhibition of transcription with actinomycin D (ActD) and S1 nuclease analysis were used to estimate the pre-rRNA half-life time in rodent cells. But for the human cells, even the life-span of pre-rRNA remains unknown.

In the present study, we employed real-time qPCR to measure levels of pre-rRNA and the processing products. This method is extremely powerful and can generate reliable, reproducible and biologically meaningful results; wherefore, in many cases qPCR is superseding other approaches, such as northern blotting and RNase protection essays.17,18 Using primers within 5'ETS region, we measured the levels of pre-rRNA and the processing products. This work of Lazdins et al., 16 inhibition of transcription with actinomycin D (ActD) and S1 nuclease analysis were used to estimate the pre-rRNA half-life time in rodent cells. But for the human cells, even the life-span of pre-rRNA remains unknown.

In the present study, we employed real-time qPCR to measure levels of pre-rRNA and the processing products. This method is extremely powerful and can generate reliable, reproducible and biologically meaningful results; wherefore, in many cases qPCR is superseding other approaches, such as northern blotting and RNase protection essays.17,18 Using primers within 5'ETS region, we measured the levels of pre-rRNA and the processing products. This work of Lazdins et al., 16 inhibition of transcription with actinomycin D (ActD) and S1 nuclease analysis were used to estimate the pre-rRNA half-life time in rodent cells. But for the human cells, even the life-span of pre-rRNA remains unknown.

In the present study, we employed real-time qPCR to measure levels of pre-rRNA and the processing products. This method is extremely powerful and can generate reliable, reproducible and biologically meaningful results; wherefore, in many cases qPCR is superseding other approaches, such as northern blotting and RNase protection essays.17,18 Using primers within 5'ETS region, we measured the levels of pre-rRNA and the processing products. This work of Lazdins et al., 16 inhibition of transcription with actinomycin D (ActD) and S1 nuclease analysis were used to estimate the pre-rRNA half-life time in rodent cells. But for the human cells, even the life-span of pre-rRNA remains unknown.

In the present study, we employed real-time qPCR to measure levels of pre-rRNA and the processing products. This method is extremely powerful and can generate reliable, reproducible and biologically meaningful results; wherefore, in many cases qPCR is superseding other approaches, such as northern blotting and RNase protection essays.17,18 Using primers within 5'ETS region, we measured the levels of pre-rRNA and the processing products. This work of Lazdins et al., 16 inhibition of transcription with actinomycin D (ActD) and S1 nuclease analysis were used to estimate the pre-rRNA half-life time in rodent cells. But for the human cells, even the life-span of pre-rRNA remains unknown.
Estimation of the half-life of the human and murine pre-rRNA.

Since in human cells the primary transcript is cleaved inside 5'ETS at position +414,11,19 reviewed in ref. 10, we estimated the pre-rRNA half-life time in HeLa, LEP by amplification of the 246 bp long (from +302 to +548) 5'ETS fragment (ETS-1, Fig. 1), after inhibition of rRNA transcription with 20 μg/ml actinomycin D (ActD) for 1, 2, 5, 10, 15 and 20 min. ActD is known to inhibit rDNA transcription with 20 μg/ml for 0.5 min, without changing the cultivating medium, there was again no transcription signal in the nucleoli. From these results we inferred that the activity of pol I was efficiently arrested by ActD within half a lag period, as early as one minute after introduction of ActD. Thus we established that more than one minute is required for the effective incorporation of FU by the cells, but 1.5 min is sufficient for that. When, after incubation of the cells with FU for one minute, we added Act D in concentration 20 μg/ml for 0.5 min, without changing the cultivating medium, there was again no transcription signal in the nucleoli. From these results we inferred that the activity of pol I was efficiently arrested by ActD within half a minute. In other experiments we found that at lower concentrations of this inhibitor (0.05 μg/ml and 1 μg/ml) rRNA synthesis in the nucleoli continued for a long period (Fig. 3A–E). In such conditions, the levels of ETS-1 would not give us reliable data on the dynamic of processing. Therefore, for the estimation of the half-life time of pre-rRNA, we used the high concentration of ActD. The same concentration of the drug was used in the work of Lazzini et al.9

In such conditions, the possibility of side-effects, even after a short period of treatment, cannot be excluded. But we found no significant changes in the fibrillarin labeling pattern of the nucleoli after 10 min of the ActD treatment. After 20 min, the structure of nucleoli was altered; after 30 min, nucleoli were disrupted and their contents largely spread over the nucleoplasm (Fig. 4A–L). Since fibrillarin is a most important component of the nucleolus structure and, being a component of U3 snRNP, plays a key role in rRNA processing,10,12-24 our data indicate that rRNA processing was not significantly affected during the short period of treatment.

By means of real time PCR, we measured the fold changes of corresponding rRNA in relation to the control without ActD treatment in HeLa, LEP and 3T3 cells. As the internal control, we selected human, respectively murine, β actin gene. Expression of this gene did not change significantly during the incubation with ActD in the conditions of our experiments (data not shown). The results of the RT PCR measurements are presented in Figure 5A–C. After 11 min of ActD treatment in HeLa cells, after eight minutes in LEP cells and after seven minutes in 3T3 cells, the expression fell below 5% of the original level. In case of the LEP cell line, we observed no correlation of the results with the number of passages when the latter varied from 26 to 29.

After exponential fitting of the experimental curves, we obtained the following results for the half-life of the primary transcripts (mean value ± standard deviation): 2.29 ± 0.53 min in HeLa cells (Fig. 5A), 1.05 ± 0.16 min in LEP cells (Fig. 5B) and 1.29 ± 0.19 min in 3T3 cells (Fig. 5C). Additionally, we perceived that each experimental curve had an initial lag phase (Fig. 5). As a measure of the corresponding lag periods we used the offset values of the model exponents: 0.84 min for HeLa cells, 1.05 for LEP cells and 0.36 min for 3T3 cells (shown in the bottom graphs of Fig. 5). It should be observed that these values in the human cells exceeded the time required for the arrest of rDNA transcription with ActD. Moreover, the lag period for 3T3 cells (derived from the murine fibroblasts) was shorter than for LEP cells (derived from the human fibroblasts). These circumstances suggest that the observed lag phase is a regular feature of the RNA processing dynamics, rather than a consequence of still continuing transcription. Apparently, these relatively short lag periods can be detected only if measurements of the ETS-1 begin as early as one minute after introduction of ActD.

Results
decays after the formation of 41S rRNA, i.e., after the second processing cleavage (or the fourth in case of a relatively rare alternative pathway) (Fig. 1). Upon arresting the rRNA transcription with ActD, as in the above described experiments, we found that the level of ETS-2 expression was reduced to a half of its original value after 8.1 ± 1.9 min in HeLa cells (Fig. 5A) and after 6.1 ± 1 one minute in LEP cells (Fig. 3B). Comparing these data with the results for ETS-1, we may roughly estimate the period between the first and third (or fourth) cleavage events as five minutes in HeLa cells and three minutes in LEP cells.

Levels of ETS-1 and ETS-2 in human cells after treatment with low doses of ActD. In mammalian cells, ActD in concentration of 0.05 μg/ml inhibits pol I, but largely spares the activity of RNA polymerase II.25,26 Here we examined the effects of this low ActD concentration on the expression levels of ETS-1 and ETS-2. HeLa and LEP cells were incubated with 0.05 μg/ml ActD for 10, 30, 50, 70, 90 and 120 min. In these experiments, the level of ETS-1 expression was decreased to one half of its original value in HeLa cells after 16 min (Fig. 6A) and in LEP cells after 8 min (Fig. 6B). Surprisingly, we observed the same dynamics in the expression of ETS-1 and ETS-2 (Fig. 6A and B), though the ETS-2 RNA persists longer than the ETS-1 RNA at the higher dose of ActD. To assess the efficiency of pol I inhibition in our experiments, we visualized the transcription signal in the nucleoli of HeLa cells after two minute incubation with FU. In the absence of ActD, all interphase cells showed intensive transcription signal in both nucleoli and nucleoplasm (Fig. 3A). After two minutes of the incubation with low dose ActD, the cells appeared as in the control; after five minutes of the treatment, the intensity of labeling was significantly decreased (Fig. 3B); after 10 min, the transcription signal disappeared from the nucleoli, though it was still intensive in the nucleoplasm (Fig. 3C). Thus the pol I was completely inactivated only after 10 min of the low dose ActD treatment. Accordingly, the peculiar results of our RT PCR measurements may be attributed to accumulation of aborted transcripts at low concentration of ActD.27,28 The remarkable coincidence of the expression curves for ETS-1 and ETS-2 at low doses of ActD (compare Figs. 5A, B and 6) suggests that these curves reflect the degradation of the incomplete transcripts rather than the processing itself. This may account for the absence of the lag phase on the graphs (Fig. 6).

Discussion

The results of our work show that RT PCR may be used for the study of early stages of rRNA processing. One particular
The presence of a lag phase on all the curves depicting the expression of ETS-1 (Fig. 5) indicates that the early processing of the 47S rRNA may be divided into two periods. We suppose that the first of them, lasting for about one minute in the human-derived HeLa and LEP cells, is required for the preparatory events (such as recognition of the specific rRNA targets, base modification, formation of various secondary structures, etc.) which precede the first cleavage of the transcript. Then the second period, corresponding to the exponential decay, is probably occupied by the cleavage alone. In conformity with our advantage of this approach, as compared with the hybridization methods,[16-18] is the possibility of detecting regions with precisely defined 5’ and 3’ ends by selection of the proper couples of primers. Thus, we do not need to presume an immediate degradation of the removed spacers, but focus on the concrete cleavage events.

In this work we show that treatment of the human and murine cells with ActD in high concentration (20 μg/ml) efficiently inhibits rDNA transcription in less than half a minute. This finding allowed us to study the early dynamics of the rRNA processing in different cell lines by RT PCR.

Figure 3. Effect of actinomycin D on rDNA transcription in HeLa cells. Transcription signal was visualized after incubation with FU for 2 min. Arrows show the transcription signal in the nucleoli. (A) Control. Intensive transcription signal in the nucleoli and dot-like signals in the nucleoplasm of the cells. (B) 0.05 μg/ml ActD, 5 min. (C) 0.05 μg/ml ActD, 10 min. (D) 1 μg/ml ActD, one minute. (E) 1 μg/ml ActD, 2 min. (F) 20 μg/ml ActD, one minute. In contrast to (F), a reduced FU signal is still observed within the nucleoli in (B, D and E). Scale bar: 10 μm. (G) Integral intensities of the transcription (FU) signal in the nucleoli after ActD treatment.
hypothesis, we can obtain new estimates for the half-life time of the primary transcript by adding the values of lag periods to the values of the half-life calculated from the exponents (Fig. 5). In this way, we find the “complete” half-life of pre-rRNA for HeLa cells: 2.29 + 0.84 = 3.1 ± 0.8 min; for LEP cells: 1.64 + 1.05 = 2.7 ± 0.9 min. In the case of the murine 3T3 cells, the lag period is much shorter, and we cannot confirm that it equals the time required for the inhibitory action of ActD upon the pol I activity. Nevertheless, if we make similar calculation of the “complete” half-life time for these cells, i.e., 1.29 + 0.36 = 1.7 ± 0.5 min, the result will coincide with the data obtained earlier by other authors for the murine Ltk and hamster CHO cells.14 The human primary transcript appears to be more stable (with the half-life about 3 min) than those of rodents. This supposition agrees with the data of earlier works 25,29,30 indicating that the first processing steps are more rapid in murine cells than in human cells.

Following the expression of ETS-2 in the absence of transcription, we could shed some more light on the temporal course of the early steps of rRNA processing in human cells. The curves (Fig. 5A and B) show that the first cleavage of the primary transcript and the final degradation of the 5′ETS are spaced by three to five minutes. This period slightly exceeds the half-life of the primary transcript.

To summarize, our data suggest that in mammalian cells there is a preparatory period (about one minute in human cells) between the formation of primary transcript (47S rRNA) and its first cleavage. Considering this, we have the following rough estimates for the “complete” half-life times of the primary rRNA transcript in human-derived HeLa and LEP cells, about two minutes. Additionally, according to our results, the formation of 45S rRNA (the third or fourth step of the processing) from the primary human transcript takes five to eight minutes.

Materials and Methods

Cell culture and drug treatment. HeLa and primary LEP (human embryonic fibroblast, Sevapharm, Czech Republic) cells were cultivated at 37°C in Dulbecco modified Eagle’s medium (DMEM, Sigma, #D5546) containing 10% fetal calf serum, 1% penicillin/streptomycin. Sub-confluent cells (in 60 mm dish) were cultivated at 37°C in Dulbecco modified Eagle’s medium supplemented with 5% CO2. Mouse NIH 3T3 cells were maintained in DMEM supplemented with 5% CO2. All cell lines were maintained in normal conditions: initial DNA denaturation—94°C for 3 min followed by 40 cycles including denaturation at 94°C for 45 sec, annealing at 58°C for 30 sec, DNA synthesis at 72°C for 30 sec. Mouse mETS is situated between the formation of primary transcript (41S rRNA) and the final degradation of the 5′ETS which is to be degraded after the cleavage at the 5′ end of the 18S segment. The murine mETS is situated between +414 and +683 (249 bp) and its first cleavage site is expected at position +650. Fragments of human β-actin (253 bp) and mouse β-actin (258 bp) were used as the internal control for normalization of the different quantification results, respectively, in human and murine cells.

To summarize, our data suggest that in mammalian cells there is a preparatory period (about one minute in human cells) between the formation of primary transcript (47S rRNA) and its first cleavage. Considering this, we have the following rough estimates for the “complete” half-life times of the primary rRNA transcript in human-derived HeLa and LEP cells, about two minutes. Additionally, according to our results, the formation of 45S rRNA (the third or fourth step of the processing) from the primary human transcript takes five to eight minutes.

Materials and Methods

Cell culture and drug treatment. HeLa and primary LEP (human embryonic fibroblast, Sevapharm, Czech Republic) cells were cultivated at 37°C in Dulbecco modified Eagle’s medium (DMEM, Sigma, #D5546) containing 10% fetal calf serum, 1% penicillin/streptomycin. Sub-confluent cells (in 60 mm dish) were incubated with 0.05, 1.0 and 20 μg/ml actinomycin D in normal conditions: initial DNA denaturation—94°C for 3 min followed by 40 cycles including denaturation at 94°C for 45 sec, annealing at 58°C for 30 sec, DNA synthesis at 72°C for 30 sec.

Real-time PCR. Two different fragments of human 5ETS (ETS-1 and ETS-2, Fig. 1) and one fragment of murine 5ETS (mETS) were amplified after transcription inhibition with ActD. ETS-1 is positioned between +302 and +548 (246 bp). This fragment includes the first processing cleavage site at +414, so it was used for estimation of the pre-rRNA half-life time. ETS-2, positioned between +1317 and +1497 (180 bp), was selected for the evaluation of 5ETS life span, because it is contained within that part of 5ETS which is to be degraded after the cleavage at the 5′ end of the 18S segment. The murine mETS is situated between +414 and +683 (249 bp) and its first cleavage site is expected at position +650. Fragments of human β-actin (253 bp) and mouse β-actin (258 bp) were used as the internal control for normalization of the different quantification results, respectively, in human and murine cells.

These fragments were amplified using BioRad CFX 1000 real-time PCR system and IQ SYBR Green Supermix (BioRad, #170–8880). The reaction mix volume (25 μl) included 10 μM of each primer and 2 μl of cDNA diluted 1:10. All samples had duplicates. Calibration curves based on five serial cDNA dilutions (1, 10−1, 10−2, 10−3 and 10−4) were used for calculation of the reactions efficiencies. Primers were designed with freely available Primer3 software (http://biotools.umassmed.edu/biapps/primer3_www.cgi). The following primer sequences were used:

For ETS-1: 5′-cct tcc cca ggc gtc cct cg-3′ and 5′-ggc agc gct acc ata acg ga-3′.

For ETS-2: 5′-cct cca ggc gcc cct cg-5′ and 5′-ggc agc gct acc ata acg ga-3′.

For mETS: 5′-tgg tgg ggt ggt gga gag gc-3′ and 5′-aga gac gag gac-3′.

For murine β-actin: 5′-ctc cca ggc gcc cct cg-5′ and 5′-gct gcc ctc cag acc-3′.

For human β-actin: 5′-tgg tgc tgg acc acc acc ge-5′ and 5′-gcc tgg cac cag cag cag-3′.

RNA isolation and reverse transcription. Total RNA was extracted from human HeLa, LEP and mouse 3T3 cells with TRisol reagent (Invitrogen, #10296–028), dried and reusupended in diethyl pyrocarbonate-treated sterile water. Contaminating DNA was removed from the RNA samples by incubation for 45 min with RNase-free DNase I (Fermentas, # EN0525) according to manufacturer’s instructions.

Reverse transcription was performed using RevertAid Reverse Transcriptase (Fermentas, #EP0441). The cDNA was prepared from 2 μg DNA-free RNA in a 20 μl reaction mixture containing: reaction buffer [50 mM TRIS-HCl (pH 8.3 at 25°C), 50 mM KCl, 4 mM MgCl2, and 50 mM DTT], 1 mM each of dATP, dGTP, dCTP, dTTP, 20 U RNasin ribonuclease inhibitor, 100 U Moloney murine leukemia virus reverse transcriptase (M-MuLV RT); and 100 pmol of random hexamer primer. The reactions were incubated initially at 25°C (10 min) and then at 42°C for one hour. To stop the reaction, the mixture was heated at 65°C for 10 min.

Amplification of ETS-1 was performed at the following thermal conditions: initial DNA denaturation—94°C for 3 min followed by 40 cycles including denaturation at 94°C for 45 sec, annealing at 58°C for 30 sec, DNA synthesis at 72°C for 30 sec.
The amplification program for ETS-2 was: 94°C for 3 min followed by 40 cycles including denaturation at 94°C for 45 sec, annealing at 62°C for 30 sec and 72°C for 30 sec. Fragment of human βactin was successfully amplified with both of these programs. For the murine primers, the amplification program was: 94°C for 3 min followed by 40 cycles including denaturation at 94°C for 45 sec, annealing at 62°C for 30 sec and 72°C for 30 sec. Fragment of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 1995; 27:320-7. PMID:7557999; http://dx.doi.org/10.1006/geno.1995.1049.

For visualization of fibrillarin in the nucleoli, we used primary monoclonal antibody against mouse fibrillarin (clone 17C12), kindly donated by Kenneth M. Pollard (Scripps Research Institute). Nucleolin was stained with rabbit anti-nucleolin antibody (abcam, #ab22758).

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The work was supported by the grants: P302/12/G157 and P302/12/1885 from the Czech Grant Foundation, Prvouk/1LF/1, Prvouk/SLF P34 and UNCE204022 from the Charles University in Prague and OPVK CZ.1.07/2.3.00/30.0030 from the Ministry of Education, Youth and Sport of the Czech Republic.

No potential conflicts of interest were disclosed.

References
1. Krennmaier R, Usanov Y, Moths E, Meunier M. Organization of ribosomal RNA gene regions of the mouse. Nucleic Acid Res 1991; 19:2116-33. PMID:2060978; http://dx.doi.org/10.1093/nar/19.11.2116.
2. Gorodetski IY, Syntenov JE. Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 1995; 27:320-7. PMID:7557999; http://dx.doi.org/10.1006/geno.1995.1049.
3. Fisher DC, Craig NS. Decoding of eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol 1994; 49:195-239. PMID:7834507; http://dx.doi.org/10.1016/S0079-6603(08)60051-3.
4. Fatica A, Tellevi D. Making ribosomes. Curr Opin Cell Biol 2002; 14:313-8. PMID:12087653; http://dx.doi.org/10.1016/S0955-0674(02)00336-8.
5. Groth JA, Buregius JV. Pre-Ribosomal RNA Processing in Multicellular Organisms. In: Olson MOJ, ed. The Nucleolus: Springer, 2004:170-98.
6. Giorgetti G, Basso V. Coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing. Curr Opin Cell Biol 2005; 17:28-34. PMID:15501488; http://dx.doi.org/10.1016/j.ceb.2004.08.801.
7. Radic I, Sko PE, Gasperlin D. Nucleolin: insights into nucleolar architecture and activity. Biochimie 2006; 88:177-85. PMID:17173607; http://dx.doi.org/10.1016/j.biochi.2005.04.006.
8. Hansz AK, Sooder J, Gisler M, Lobrano S, Caioneau Fettor M, Mengle A, et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Curr Med Res Opin 2008; 24:2536-51. PMID:18408888; http://dx.doi.org/10.1111/j.1476-5288.2008.00827.x.
9. Nair KN. Ribosomal RNA processing and ribosome biogenesis in eukaryotes. IUBMB Life 2006; 58:457-65. PMID:15645225; http://dx.doi.org/10.1080/155372006004801847.
10. McInnes ST, Lofunes IM. Mapping the change sites on mammalian pre-rRNAs when do we stand? Biochimie 2012; 94:151-32. http://dx.doi.org/10.1016/j.biochi.2011.10.001.
11. Kao S, Craig NS, Salinas-Which B. Primary processing of mammalian rRNA involves two adjacent changes and is not specific. Mol Cell Biol 1987; 7:2895-8. PMID:3672198.
12. Strinoza Z, Penten DG, Lax LF. Functional inactivation of the mouse nucleolar protein Beryl inhibits multiple steps in pre-rRNA processing and blocks cell-cycle progression. J Biol Chem 2002; 277:2967-75; PMID:11860810, http://dx.doi.org/10.1074/jbc.M203803200.
13. Kors T, Lepik TR, Penten DG. The Y terminal mir-967 spacer in mouse chromosomal RNA contains two cleavage sites. RNA 2009; 15:14-26; PMID:19185911, http://dx.doi.org/10.1093/nar/gkn4750.
14. Banco M, Gires M, Hamaire-Aubert C, Kim T, Caizergues-Ferrer M, Henry Y, et al. Mammalian H3K77 acetylation is required for both chromosome synapsis and centriole duplication. Nucleic Acids Res 2011; 39:4657-68; PMID:22346808, http://dx.doi.org/10.1093/nar/gkr493.
15. Gires M, Banco M, Caizergues-Ferrer M, Henry Y. Mammalian ARK Evolutionarily conserved function of BREF in early changes of the pre-rRNA and production of the 48S chromosomal subunit. Mol Cell Biol 2010; 30:1130-44; PMID:20300750, http://dx.doi.org/10.1128/MCB.00919-09.
16. Lasczuk DB, Delamore M, Sellin-Webb B. Analysis of nuclear transcription and processing domains and pre-rRNA movements by in situ hybridization. Chromosoma 1997; 106:493-503; PMID:9234240, http://dx.doi.org/10.1007/BF00360433.
17. Buvin M, Nolin T. Preferential transription of multiple source transcription polylmerase I data reaction. J Biochem. 2004; 135:155-66; PMID:15335581.
18. Vantzard HS, Vare K, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Trends Biotechnol. 2008; 26:135-26; PMID:18474506, http://dx.doi.org/10.1016/j.teb.2008.01.007.
19. Hadjikosova NV, Nicolle M, Mazan S, Hadjikos AA, Bachellerie JP. Alternative pre-rRNA processing pathways in human cells and their alteration by cytochalasin inhibitors of protein synthesis. Eur J Biochem. 1992; 212:213-5; PMID:14444556, http://dx.doi.org/10.1111/j.1432-1328.1991.tb29573.x.
20. Penten-Djidjev F, Manet S, Nicolle M, Pichard E, Bachellerie JP. Penten-Djidjev A. Identification of transcription initiation region and comparison of three mammalian genomes. Proc Natl Acad Sci U S A. 1982; 79:3092-6; PMID:6734506, http://dx.doi.org/10.1073/pnas.79.10.3092.
21. Penten-Djidjev F, Penten S, Bachellerie JP. Early-stages of pre-rDNA formation within the nuclear ultrastructure of mouse cells studied by in situ hybridization with a VETS leader probe. Chromosoma 1997; 106:493-503; PMID:9234240, http://dx.doi.org/10.1007/BF00360433.
22. Kors S, Too S, Siau JA, Sellin-Webb B. The U3 small nuclear ribonucleoprotein functions in the first step of pre-rRNA processing. Cell. 1999; 98:997-1008; PMID:2566295, http://dx.doi.org/10.1016/S0092-8674(99)80089-1.
23. Feki D, Huet EC. The role of small nuclear ribonucleoproteins in ribosome synthesis. Mol Biol Rep. 1999; 26:103-6; PMID:12034768, http://dx.doi.org/10.1007/BF03250766.
24. Rechler MI, Hamani T, Forre ARM, Vareys G. The structure and function of small nuclear ribonucleoproteins. Nucleic Acids Res. 1993; 21:1452-66; PMID:7284496, http://dx.doi.org/10.1098/rsc.a-190/f0043339.
25. Tateoka KA, Bond U. Analysis of pre-rDNA in heat-shocked Hela cells allows identification of the two primary transcription units of human ribosomal RNA. J Cell Biol. 1986; 103:309-12; PMID:3715357.
26. Perry KK, Kelley DE. Nucleosum synthesis of SS RNA after production of 28S and 18S chromosomal RNA is inhibited by low doses of actinomycin D. J Cell Biol. 1989; 105:496-505; PMID:9211977, http://dx.doi.org/10.1083/jcb.105.2.496.
27. Hadjikosova NV, Hadjikos AA, Bachellerie JP. Antisense oligodeoxynucleotides to the transcription of hDNA transgenes targeted into mouse cells. Implications for the in vivo hypersensitivity of hDNA gene transcription. Eur J Biochem. 1991; 202:665-73; PMID:1757754, http://dx.doi.org/10.1111/j.1432-1033.1991.1452-1033.95016xu.
28. Shcherbik N, Wang M, Lepik TR, Sinistras I, Penten DG. Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Rep. 2010; 11:466-70; PMID:20482885, http://dx.doi.org/10.1038/embor.2009.271.
29. Miller RC, Sellin-Webb B. Transcription of mouse iRNA gene by RNA polymerase I in vitro and in vivo initiation and processing sites. Cell. 1990; 61:75-74; PMID:2156625, http://dx.doi.org/10.1016/0092-8674(83)90379-0.
30. Fumagalli J, Minnmakki K, Miltinis Y, Minnmakki M. Human chromosomal RNA gene nucleotide sequence of the transcription initiation region and comparison of three mammalian genes. Proc Natl Acad Sci U S A. 1982; 79:3092-6; PMID:6734506, http://dx.doi.org/10.1073/pnas.79.10.3092.
31. Kobetsa K, Malínský J, Plšt A, Mašata M, Vysetínská J, Fulhak M, et al. Ribosomal genes in leukaemic cell lines from AML patients labeled with donor, bone marrow transplanted tissues. Leuk Res. 1990; 14:107-16; PMID:229672.
32. Balaša M, Lővőhelyi S. Solution of nucleolar lectin squares. MathWorks. MATLAB Central, File Exchange, Id=17534. 2008. [Online, http://www.mathworks.com/matlabcentral/fileexchange/17534, of 12.11.2012].

www.landesbioscience.com
Nucleus
141

Figure 6. Expression levels ofETS-1 and ETS-2 in HeLa (A) and LEP (B) cells after incubation with 0.05 μg/ml ActD. In both human-derived cell lines the levels of ETS-1 and of ETS-2 showed a very similar dynamic (compare with Fig. 5A and B). Each curve presents the data of three independent experiments.