Quantification of the mobility potential of antibiotic resistance genes through multiplexed ddPCR linkage analysis

Magali de la Cruz Barron, David Kneis, Alan Xavier Elena, Kenyum Bagra, Thomas U. Berendonk, Uli Klümper

1 Institute of Hydrobiology, Technische Universität Dresden, Dresden 01062, Zellescher Weg 40, Germany
2 Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
*Corresponding author. Institute of Hydrobiology, Technische Universität Dresden, 01062 Dresden, Zellescher Weg 40, Germany.
E-mail: Uli.Kluemper@tu-dresden.de, Magali.de_la_Cruz_Barron@tu-dresden.de

Abstract

There is a clear need for global monitoring initiatives to evaluate the risks of antibiotic resistance genes (ARGs) towards human health. Therefore, not only ARG abundances within a given environment, but also their potential mobility, hence their ability to spread to human pathogenic bacteria needs to be quantified. We developed a novel, sequencing-independent method for assessing the linkage of an ARG to a mobile genetic element by statistical analysis of multiplexed droplet digital PCR (ddPCR) carried out on environmental DNA sheared into defined, short fragments. This allows quantifying the physical linkage between specific ARGs and mobile genetic elements, here demonstrated for the sulfonamide ARG sul1 and the Class 1 integron integrase gene intI1. The method’s efficiency is demonstrated using mixtures of model DNA fragments with either linked and unlinked target genes: Linkage of the two target genes can be accurately quantified based on high correlation coefficients between observed and expected values (R^2) as well as low mean absolute errors (MAE) for both target genes, sul1 ($R^2 = 0.9997$, MAE = 0.71%, n = 24) and intI1 ($R^2 = 0.9991$, MAE = 1.14%, n = 24). Furthermore, we demonstrate that adjusting the fragmentation length of DNA during shearing allows controlling rates of false positives and false negative detection of linkage. The presented method allows rapidly obtaining reliable results in a labor- and cost-efficient manner.

Keywords: antibiotic resistance, droplet digital PCR, mobile genetic elements, mobility, risk assessment

Introduction

The rise in antibiotic resistance in bacterial pathogens over time represents one of the biggest challenges in treating bacterial infections (Laxminarayan et al. 2013). Horizontal gene transfer, facilitated by mobile genetic elements (MGEs), has contributed significantly to the spread of antibiotic resistance genes (ARGs) among different hosts, accelerating this global health problem (Berendonk et al. 2015, Klümper et al. 2015). Addressing the problems associated with antibiotic resistance, requires action across the human, animal and environmental spheres within a ‘One Health’ concept (Queenan et al. 2016). Within this context, there is a clear need for global monitoring and risk assessment initiatives to assess the large-scale dissemination of antibiotic resistant bacteria and their associated ARGs across human, animal, but also the environmental spheres (Hernando-Amado et al. 2019). In the latter, this proves especially difficult due to the high complexity of gene transfer and the diversity of non-culturabl e microbes (Smalla et al. 2018, Huijbers et al. 2019).

The occurrence and distribution of antimicrobial resistant bacteria (ARB), ARGs and MGEs in different environments has been extensively documented using diverse approaches ranging from selective cultivation, qPCR of ARGs and mobility related genes and metagenomic sequencing (Barrón et al. 2018, Cacace et al. 2019, Pärnänen et al. 2019, Kampouris et al. 2021). However, the usual report of absolute and relative abundance of ARGs is not enough to accurately assess the risks of these markers on human health, as ARGs can be found in a variety of different hosts and on diverse mobile genetic elements. The genetic and host context in which these genes appear can result in varying risk levels.

Therefore, the urgent need for a conclusive framework addressing this issue in environmental samples is beyond dispute (Berendonk et al. 2015, Smalla et al. 2018, Huijbers et al. 2019). Recently, Zhang et al. (2021) proposed four key indicators to evaluate the health risk of environmental ARGs: (i) Human accessibility: Is the ARG shared between human and environmental microbiomes?; (ii) Human pathogenicity: Has the ARG been found in human pathogens?; (iii) Clinical relevance: Has the presence of the ARG been associated to clinical complications/worsened clinical outcome?; (iv) Mobility: Is the ARG encoded on a MGE that is implicated with the potential of allowing ARG transfer among bacteria, hence increasing the risk of an ARG being transferred to a pathogen? The first three criteria are reasonably easy to assess with the currently available data and methods. However, evaluating the linkage of these ARGs to MGEs, hence their mobility in environmental communities, is crucial but remains a challenge. Consequently, methods for quantitatively assessing the potential mobility of ARGs that are easily applicable and of low costs are urgently needed to include them in future global, environmental...
AMR monitoring frameworks. Here, such a quantitative method has been developed by taking advantage of multiplexed droplet digital PCR (ddPCR) technology.

The ddPCR technology is a binary endpoint measurement based on the random distribution of nucleic acid molecules extracted from a sample partitioned into thousands of volumetrically defined droplets within a water–oil emulsion with PCR reactions taking place in each individual droplet (Hindson et al. 2011). Using a fluorescent probe based approach with different fluorochromes for different target genes allows multiplexing their detection within the entire sample, but also within individual droplets (Whale et al. 2016). Since individual DNA molecules are randomly encapsulated within the droplets based on the Poisson distribution (Regan et al. 2015), the physical linkage between a target ARG and a target MGE on this DNA molecule can be detected and estimated by ddPCR linkage analysis using multiplexed assays in combination with statistical analysis.

Here, we developed a new duplex ddPCR approach to quantify the mobility potential of an ARG. The mobility potential is hereby inferred as the percentage of this ARGs detected copies in direct physical linkage with a marker gene associated with MGEs. This is here presented for the sulfonamide resistance gene sul1 and its occurrence as a component of mobile Class 1 integron cassettes, assessed through its linkage with the integrase gene intI1. Although these two genes can occur individually in different environments and bacteria, they have been regularly described to co-occur in mobile integron cassettes in a wide variety of bacteria and environments (Gillings et al. 2015), and hence provide a perfect study system to demonstrate the validity of the proposed method.

To prove that multiplexed ddPCR can be used as a suitable, rapid, and less expensive approach to determine the linkage between ARGs and MGEs, model DNA mixtures with linkages ranging from 100% to 0% were analyzed. The validity of the linkage detection for each of the two genes was then assessed by comparing the linkage determined for each of the mixtures using the statistical evaluation of the duplex ddPCR assay with the theoretical, expected linkage percentage. To avoid a biased linkage detection when the two target genes occur individually (outside of an individual integron cassette) on the same chromosome, extracted DNA needs, prior to analysis, be sheared into short fragments. Based on the statistical probability evaluation of false positive detections, a shearing size of around 20,000 base pairs (20 kbp), approximately five to ten times the size of an average Class 1 integron cassette (Partridge et al. 2009), is suggested for optimal detection of the association of the ARG with Class 1 integrons. Using the presented multiplexed ddPCR approach we demonstrate its suitability by simultaneously assessing the abundance of the individual targets and their linkages in DNA from environmental samples from the influent and effluent of a wastewater treatment plant.

Material and methods
Linked and unlinked target DNA fragments
To prove the concept and optimize the methodology for determining the physical linkage between an ARG and a mobility marker using a ddPCR multiplexed protocol the sulfonamide resistance genes sul1 and the Class 1 integron integrase gene intI1 were selected. To analyze, if the linkage of these two genes can be correctly predicted using the ddPCR protocol, we used model DNA molecules on which either one of the two targets, or both targets linked on the same molecule, are present.

The pNORM plasmid (http://www.norman-network.net/) served as the linked control, as it contains a single copy of both target genes in close proximity of 250 bp (Cacace et al. 2019). Plasmid DNA was extracted from the E. coli host strain using the Monarch® Plasmid Miniprep Kit (NEB, Ipswich, MA, USA), linearized with restriction enzyme BamHI (Promega, Madison, WI, USA), and thereafter purified with the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany), according to the protocols supplied by the manufacturers.

Purified PCR products of the sul1 and intI1 gene were used as the no linkage controls. PCR was carried out individually for each gene using GoTaq® Green Master Mix (Promega), with primers listed in Table 1, and linearized pNORM DNA as the template. The PCR program was set as follows: 95 °C for 10 min followed by 35 cycles at 94 °C for 30 s, 60 °C for 30 s, 72 °C for 30 s, and a final elongation cycle at 72 °C for 10 min. Successful amplification and correct size of the sul1 and intI1 PCR products were confirmed by 1.5% agarose gel electrophoresis (40 min, 110 V) and PCR products were then purified with the QIAquick PCR Purification Kit (Qiagen) according to manufacturer’s instructions.

Linearized pNORM with both targets linked as well as a 1:1 mixture of the individual, unlinked PCR products were prepared in DNase free H2O (Qiagen) and adjusted to 1 ng μL−1. These two solutions were then used in mixtures of varying ratios to assess the detection of different linkage percentages (see below) using the ddPCR multiplex detection protocol.

ddPCR duplex detection protocol
To allow the simultaneous detection of two genes within one ddPCR assay, individual probe based PCR assays for each of the genes consisting of forward and reverse primer and a probe labeled with non-interfering fluorochromes are necessary. While for the intI1 gene such an assay already existed (Barraud et al. 2010), for sul1 an existing and well-validated qPCR primer set was used (Rocha et al. 2019). The matching fluorescent probe was designed for ddPCR detection of the sul1 gene (Table 1). No cross-reactivity between the assays was detected when multiplexing the assays with the intI1 probe labeled with HEX and the sul1 probe labeled with FAM reporter fluorophores.

To quantify the two target genes sul1 and intI1, we performed a duplexed ddPCR assays using the primers and probes listed in Table 1, and the QX200 Droplet Digital PCR System (Bio-Rad, Hercules, CA, USA). Reactions were prepared in 20 μL volume, containing: ddPCR Supermix for Probes (No dUTP, Bio-Rad), each of the four primers, and two probes (Table 1) at final concentrations of 900 nm for primers and 250 nM for probes, and 1 ng of DNA. This DNA could either be a mixture of the linked and non-linked targets created previously, or genomic DNA from sheared or non-sheared samples (see below).

Droplets were generated on a QX200 droplet generator (Bio-Rad), and transferred into a 96-well PCR plate (heat-sealed with a foil plate seal, Bio-Rad). PCR was carried out in a C1000 thermal cycler (Bio-Rad) using the following cycling conditions: 95 °C for 10 min followed by 45 cycles at 94 °C for 30 s, and 60 °C for 90 s, and a final cycle at 98 °C for 10 min. For higher fluorescence values of the positive droplets, resulting in a better droplet separation, 45 cycles were required and the ramp rate was set to 2.0 °C/s. The droplets were read using a QX200 droplet reader and data was analyzed using QuantaSoft Software v1.4.0.99 (Bio-Rad).
The validity of linkage detection for each gene was then assessed by comparing this theoretical linkage percentage with the value determined for each of the mixtures using the statistical evaluation of the duplex ddPCR assay.

Environmental samples

Environmental wastewater samples of the influent and effluent of the wastewater treatment plant in Dresden-Kaditz Germany (51.072 N, 13.678E) were collected in sterile flasks, and stored at 4°C until DNA extraction for a maximum of 12 h. Three replicate grab samples of 1 L each were taken for the influent and effluent on 24.03.2022. From each of the samples biomass was collected by filtration from a total volume of 130 ml for influent and 800 ml for effluent samples. Total environmental DNA was extracted from the filters using the DNeasy PowerWater kit (Qiagen) following the manufacturer’s instructions. DNA concentration and purity were estimated spectrophotometrically. All DNA was stored at −20°C until use for ddPCR analysis.
Figure 1. (A) Partitioning of PCR reaction into ca. 20000 droplets of uniform size and volume, containing target and background DNA. (B) Data output from multiplex ddPCR experiments. Droplets form four clusters arranged orthogonally to each other. In grey: Empty droplets, negative for both targets (−−); Blue: positive droplets only for target A (+−); Green: positive droplets only for target B (−+) and Orange: double-positive droplets (+++) due to chance (no linkage) or due to physical linkage.

Figure 2. Shearing of DNA into fragments of a specific sizes allows distinguishing between both targets (A and B) occurring on one and the same DNA fragment due to either linkage within an integron cassette or both genes appearing independently. Fragmentation size allows adjusting the rate of false positive and false negative detection of linkage.

DNA shearing

The two target genes can appear on one and the same DNA fragment, such as a bacterial chromosome, either linked in an individual integron cassette or independent of one another at random locations. To allow reliable analysis of their linkage within the same integron cassette, the DNA needs to be sheared into fragments of a specific size ahead of the analysis (Fig. 2).

The size of the fragments generated during the process of DNA shearing crucially affects the probabilities of false positive (\(P_{FP} \)) and false negative outcomes (\(P_{FN} \)). As a false positive outcome we regard cases where the two different target genes are detected on one and the same DNA fragment even though the targets are not linked (e.g. they are not part of a common mobile gene cassette). Conversely, false negative refers to the failure of detecting actual linkage between the targets (e.g. by being embedded on a common gene cassette) in response to the DNA fragmentation during the shearing process (Fig. 2).

As long as the target sequence is short in relation to the fragment length (\(L_f \)), \(P_{FP} \) can be approximated as the probability of jointly detecting the two unlinked targets in any DNA fragment obtained upon shearing of a genome. Thus, if the total length of the genome is denoted \(L_G \), \(P_{FP} \) can be approximated by Eq. 8.

\[
P_{FP} = \frac{L_F}{L_G} \tag{8}
\]

The probability of false negative results is not only a function of \(L_f \), but it also depends on the length of the hypothetical gene cassette (\(L_C \)) harboring the two targets and the actual position of the targets within the cassette. If we focus on cases where \(L_C < L_f \), i.e. a cassette can be sheared into no more than two fragments and the two targets are positioned in maximum distance within the cassette (representing the worst case scenario), \(P_{FN} \) can be approximated by Eq. 9.

\[
P_{FN} = \frac{L_C}{L_f} \tag{9}
\]
Table 2. Probabilities of false positive (PFP, Eq. 8) and false negative outcomes (PFN, Eq. 9) in relation to assumed fragment lengths (LF) resulting from DNA shearing. Reported numbers refer to a scenario where LC = 5 Mbp (total length of genome) and LC = 5 kbp (length of gene cassette). Note that the values reported for PFP represent worst-case estimates.

LF (kbp)	PFP	PFN
10	0.002	0.5
20	0.004	0.25
50	0.01	0.1
100	0.02	0.05

Worst-case estimates of PFP and PFN are reported for a range of assumed fragment lengths (Table 2). For these simulations, based on the literature, we assumed an average bacterial chromosome size LC of 5 Mbp (Land et al. 2015) and the maximal length of clinically relevant Class 1 integron cassettes for LC of 5 kbp (Partridge et al. 2009). This provides insights into the worst case scenario of the genes being linked but occurring in the same cassette at a maximal distance of 5 kbp. Since the two types of error show opposing dependencies on the fragment length, DNA shearing needs to target at intermediate values of LF such that PFP and PFN are in balance. Under the given scenario, reasonable target values of LF are in the range of 20–50 kbp.

Accordingly, a fragment length of 20 kbp was chosen for this proof of concept study to achieve a rate of false positive detection of less than 0.4% of the cases. The Covaris® g-TUBE (Covaris, Woburn, MA, USA) was used to shear the genomic DNA into the selected fragment sizes of around 20 kb, according to the protocol provided by the manufacturer. Success of the shearing process into fragments of the desired length was confirmed using gel electrophoresis.

Results

Reliable detection of different levels of linkage between the two target genes sul1 and intI1 from model samples

To determine if linkage between sul1 and intI1 is detectable using the statistical evaluation of the proposed multiplexed ddPCR method, initially the plasmid on which the two targets are linked and the unlinked PCR products of the two targets were used as templates. In the linked control sample, the plasmid DNA molecule hosting the linked copies of the two target genes was added at approximately 1500 copies mL⁻¹. The concentrations of the two target genes measured using the multiplexed ddPCR protocol was 1510.0 ± 26.9 (mean ± SD) copies mL⁻¹ for sul1 and 1448.0 ± 20.0 copies mL⁻¹ for intI1. This accounted for an acceptable average detection efficiency of 100.7% and 96.5% and further confirmed that both genes indeed appeared in a single copy on the used model plasmid.

Obtained linkage percentages were calculated from the distribution of droplets (Fig. 3A) after correcting for stochastic effects (see M&M for calculation) as 92.42 ± 0.62% (sul1) and 96.34 ± 0.19% (intI1). The significant difference from the expected linkage percentage of 100% (both P<0.05, two-tailed t-test, df = 5), can be explained by the above mentioned difference in detection efficiencies of the two target genes or due to separation of the two targets based on shearing through e.g. pipetting of the linked control plasmid, which ultimately results in a limited number of single positive droplets. The rate of false negatives, and hence the average underestimation of gene linkage of 7.58% and 3.66% for the two genes (rate of false negatives) falls still far below the worst case scenario calculated for the specific shearing fragment length of a maximal 25% (Table 2).

In the unlinked control, we still expect to see double-positive droplets due to chance in the ddPCR partitioning process. Here, 9.5% ± 0.13% of droplets that contained both targets were obtained in experiments with unlinked targets (Fig. 3B, orange cluster). Statistical evaluation of the results revealed, however, that these occurred indeed exclusively by chance with the obtained linkage percentages for the two target genes calculated as 0.31% ± 1.05% (sul1) and 0.26% ± 0.92% (intI1) (see M&M for calculation). These results were not significantly different from the expected linkage of 0% for either of the genes (P_{sul1} = 0.658, t_{sul1} = 0.515; P_{intI1} = 0.663, t_{intI1} = 0.506; two-tailed t-test, df = 5), hence demonstrating that if targets are not linked, no false positives for their potential association on the same DNA molecule can be detected.

When validating the method by using mixtures of linked and unlinked targets at defined linkage percentages the experimentally obtained values were very well correlated with the theoretically expected ones based on the correlation coefficient and the mean absolute error for the linkage of both target genes, sul1 (R² = 0.9997, MAE = 0.71%, n = 24) and intI1 (R² = 0.9991, MAE = 1.14%, n = 24) (Fig. 4). Further the method proved robust as the standard deviation of the technical replicate measurements at different linkage ratios was consistently low (0.18%–1.08%).

Consequently, the proposed method provides reliable values for the linkage between the target genes, with the level of false positive detection of linkage being negligible and the level of false negative detection of linkage at high linkage percentages being within the level expected due to methodological constraints based on the optimization of the shearing procedure. This allowed applying the method to more complex environmental samples to detect the linkage of the sul1 gene with Class 1 integrons.

Abundance of target genes in wastewater influent and effluent samples

The optimized protocol was applied to DNA extracted from environmental water samples obtained from the influent and effluent of a wastewater treatment plant to first determine the abundance of the target genes. The abundance of both target genes sul1 and intI1 was significantly higher in the influent compared to the effluent of the wastewater treatment plant (P_{sul1} < 0.0001, t_{sul1} = 36.72; P_{intI1} < 0.0001, t_{intI1} = 41.18; df = 10, two-tailed t-test). In the influent the abundance of sul1 was determined as 9.15 ± 0.60 × 10⁵ copies mL⁻¹ and the abundance of intI1 was 1.58 ± 0.09 × 10⁶ copies mL⁻¹, while in the effluent these numbers were reduced by 58-fold to 1.56 ± 0.22 × 10⁵ copies mL⁻¹ (sul1) and 64-fold to 2.49 ± 0.34 × 10⁴ copies mL⁻¹ (intI1) (Fig. 5A).

Linkage between the sul1 and intI1 target genes in unheated DNA of the environmental samples

Based on the statistical evaluation of the multiplexed ddPCR assay, the detected initial linkage when applying the unheated DNA, was also reduced when comparing the influent with the effluent. For sul1 the percentage of detected gene copies that were linked to intI1 was 24.83 ± 0.88% in the influent and significantly reduced to 21.25% ± 0.71% in the effluent (P = 0.0054, t = 5.47, df = 4, t-test, Fig. 5B). Equally for intI1 the percentage of gene copies linked to sul1 was significantly lowered during passage through
Figure 3. Data output from ddPCR experiments using the 100% (A) and 0% (B) linkage controls. N is the number of accepted droplets analyzed. Grey: Empty droplets (Nₐ), negative for both targets; Blue: droplets positive only for target A, here sul1 (Nₛₐ); Green: droplets positive only for target B, here intI1 (Nₐₕ); Orange: droplets double-positive for both targets including those due to physical linkage and due to chance (Nₐₐₕ).

Figure 4. Linear correlation between theoretical and experimentally calculated linkage percentage for the two target genes sul1 (A) and intI1 (B). Tested samples were prepared at eight defined volumetric mixtures of linked and unlinked targets and measured with three technical replicates by multiplexed ddPCR (n = 24). MAE, mean absolute error in percentage (%).

Figure 5. Abundance (A) and linkage (B) of the two target genes sul1 and intI1 in wastewater influent and effluent samples. Linkage was determined for unsheared as well as sheared DNA (average fragment size = 20 kbp).

the wastewater treatment plant from 14.21 ± 0.17 to 13.53% ± 0.30% (P = 0.0278, t = 3.38, df = 4, t-test, Fig. 5B). The significantly lower linkage of intI1 compared to sul1 in all samples is here due to the significantly higher abundance of intI1 in both sample types. However, the unsheared DNA does not account for the co-abundance of the two genes on longer DNA fragments irrespective of co-occurrence within the context of a Class 1 integron cassette (Fig. 2).
Shearing of DNA reveals the true linkage between the sul1 and intI1 target genes in environmental samples

DNA was subsequently sheared to the optimal fragment size of \(\sim 20 \text{kbp} \). Shearing did not have an effect on the detection of either of the two target genes as the ratio of sul1 to intI1 between the unsheared (Influent: 0.57 ± 0.02; Effluent: 0.64 ± 0.01) and sheared assays (Influent: 0.58 ± 0.00; Effluent: 0.61 ± 0.02) remained insignificantly affected \((P_{\text{eff}} = 0.4588, t_{\text{eff}} = 0.819, P_{\text{eff}} = 0.1516, t_{\text{eff}} = 1.769, df = 4, \text{two-tailed t-test})\). However, shearing had a significant effect in reducing the detected linkages of each of the genes for each sample type (Fig. 5B; all \(P = 0.0001-0.0017, df = 4, \text{two-tailed t-test})\). For sul1 the linkage to intI1 after shearing was reduced to 19.25% ± 0.62% in the influent and 16.87% ± 0.73% in the effluent. For intI1 the linkage after shearing was determined as 11.24% ± 0.43% in the influent and 10.36% ± 0.18% in the effluent.

Taking these new linkage values into account, the wastewater treatment process did not only reduce the gene abundance of the two target genes, but also significantly reduced their linkage \((P = 0.0125, t = 4.31, df = 4, \text{two-tailed t-test})\) (Fig. 5B). A lower linkage of sul1 with Class 1 integron cassettes indicates a lower potential of mobilization for this ARG as it appears less frequently in the vicinity of the MGE. However, the reduction in linkage of ~14% was only very slight compared to the 10- to 100-fold reduction in gene absolute abundance.

Overall, this demonstrates that the method can easily be applied for linkage analysis of ARGs with MGEs within environmental samples. Based on the results obtained without DNA shearing, the linkage between the two genes would have been overestimated by around 20% for each of the genes in each of the samples, due to independent occurrence of both targets (outside of the identical integron cassette) on the same DNA fragment. Thus, DNA fragmentation is an absolute necessity for an accurate detection of ARG linkage with integron cassettes that can appear chromosomally.

Discussion

We here present a novel, multiplexed ddPCR based approach to simultaneously assess the abundance of individual target genes and their linkage from complex environmental samples. This allows estimating the linkage of ARGs to specific MGEs, hence their potential to be mobile within a given sample. Such an assessment of the mobility potential is an important contributor to the risk an environmental ARG is posing towards human health as it describes the likelihood of an ARG being able to spread to a human pathogen (Zhang et al. 2021). This likelihood of ARG mobilization is however not guaranteed, but far increased when an ARG occurs in close proximity with an MGE indicator gene. The determination of this mobility potential is exemplarily shown for the sulfonamide resistance gene sul1 and its association with Class 1 integron cassettes based on the integron integrase gene intI1. Using model DNA target molecules with either each gene in isolation or both genes linked, we demonstrate that the theoretical linkage in mixtures of these targets can indeed be accurately quantified. Further, the applicability to assess such linkages in environmental samples is demonstrated based on wastewater influent and effluent samples.

For integron cassettes that can equally be part of chromosomes or MGEs (Zhang et al. 2018) we, through means of statistical modeling, demonstrate that the rates of false positive and false negative detections depend directly on the shearing fragment length of the sample DNA. In this proof of principle study, a conservative fragment length of 20 kbp for Class 1 integron cassettes of a maximal size of 5 kbp (Partridge et al. 2009) was chosen to keep the rates of false positives below 0.4% based on the mathematical assessment of the worst case scenario of both genes being on opposite sides of the integron cassette. This cutoff comes with a tradeoff of a relatively high 25% theoretical maximal false negative detection rate. In this context it is important to point out that while positive association with the tested MGE is an indicator of potential mobility, negative association does not imply no mobility, as the ARG in question could be associated with a different MGE than the one tested. As positive association has hence a higher degree of meaning, optimizing the method for a low rate of false positives rather than a low rate of false negatives became imperative. Furthermore, using our reference plasmid with linked targets in close proximity the experimentally detected rate of false negative detection of linkage was far below the theoretical maximum and ranged between 3% and 8%, hence indicating that optimizing fragment length for low rates of false positive detection should indeed be favored.

We further prove that DNA fragmentation is an absolute necessity for an accurate detection of ARG linkage with integron cassettes in environmental samples as the linkage between the two genes in the wastewater samples is overestimated by around 20% in the absence of the fragmentation process. Obviously when applying this method in the future, different fragment sizes for different combinations of targets lead to different tradeoffs between false positive and false negative detection and need to be carefully decided based on the task at hand.

Different approaches or combinations of molecular and culture-based methods have been used to link ARGs to MGEs in non-clinical environments (Rice et al. 2020): One of the most commonly applied methods is metagenomic assembly of genomes or contigs (Liu et al. 2019, Dai et al. 2022, Kneis et al. 2022). However, for this approach assembled contigs have to be long enough to simultaneously contain ARGs as well as the genetic indicators of the MGEs in question. Due to sequencing depth constraints, only the most common ARGs with a relative abundance of more than \(10^{-4}\) copies per 16S copy can be detected (Gweon et al. 2019). However, the relative abundance of ARGs and MGEs in most natural environments is low, which increases the requirements regarding sequencing depth and hence the costs (Klümper et al. 2022).

The most promising molecular approach currently available to assess ARG mobility is Inverse PCR of the ARG in question combined with long read sequencing of the amplified surrounding regions to identify clusters in which ARG are co-occurring with MGEs or MGEs (Pärnänen et al. 2016). Still this approach is also relying on sequencing. Furthermore, due to the PCR amplification steps involved, it does not allow for a quantitative analysis of mobility. If such associations with MGEs are common or rare, remains however crucial information needed in risk assessment. However, PCR based approaches, including Inverse PCR and the here presented ddPCR approach, have several orders of magnitude improved detection limits compared to metagenomics (Link-Lenczowska et al. 2018) making them also suitable for those ARGs that are rare in a given environment. For example, in the case of the here presented ddPCR method the detection limit is as low as 3 linked target copies per ddPCR reaction, which is derived from resolving the governing Poisson distribution as the minimum number of positive droplets needed to detect linkage with 95% confidence. Moreover, the limit of quantification was determined similarly as 9 linked target copies per reaction by considering the
A major advantage of the above discussed molecular approaches, including the here presented method, is that mobility is inferred from genetic information. For example, ARGs encoded within a Class 1 integron cassette are only transferable between bacterial cells if this mobile Class 1 integron is localized on a transferable plasmid, conjugative ICE or a transposon (Gillings et al. 2008). This limitation can exclusively be overcome by culture-based methods such as exogenously capturing MGEs through bi- or triparental matings from non-cultivated donor cells into defined recipient cells (Heuer et al. 2012, Shintani et al. 2020). Unlike the molecular approaches, here the phenotypic resistance as well as transferability, and the factual mobility of ARGs can be demonstrated. However, due to the cultivation steps these methods are rather labor intensive and slow. Furthermore, only a minor subset of plasmids within the given sample that can efficiently transfer to the recipient strain can be captured, hence not allowing for a quantitative assessment of the linkage of ARGs and MGEs. Yet, a combination of this quantitative ddPCR method with cultivation-based approaches to confirm transferability and phenotypes could provide significant ecological insights into the nature of mobile ARGs.

Despite their individual weaknesses, the existing methods can provide promising insights into ARG mobility potential in the environment. Still, the above mentioned alternative approaches are either technologically complicated and rely on sequencing analysis which is expensive, time consuming, and requires specialized bioinformatics knowledge for data analysis, or are mainly qualitative or semi-quantitative at best, which makes risk assessments based on ARG linkage with MGEs difficult.

A major advantage of the here presented ddPCR approach lies in the cheap, rapid and straightforward generation of quantitative results. While sequencing and subsequent sequence analysis take time, computing power and expert bioinformatics knowledge, the ddPCR approach allows the generation of results within hours and the evaluation can be automated using simple scripts for statistical analysis. In addition, the presented method has a high potential to be up-scaled to multiple targets. Currently, ddPCR machines are able to detect up to two fluorochromes simultaneously, with future developments expected to increase this number. Furthermore, it can straightforwardly be extended to other ARGs or genes of interests and different groups of MGEs. The only necessary means to achieve this is the design of appropriate sets of primers and probes that allow multiplexed ddPCR analysis for the respective targets. For example, the association of a given ARG with different groups of plasmids in an environmental sample can easily be tested. In that case the shearing process could even be omitted, as plasmids already provide separate DNA entities from chromosomes. Hence the rate of false positives would be dramatically reduced, which allows for the detection of ARG-plasmid associations directly from extracted environmental DNA. Here the presented method would benefit from a combination with Inverse PCR with long read sequencing (Pärnänen et al. 2016) which allows determining the most interesting ARG-MGE associations, which could subsequently be quantified using the multiplexed ddPCR approach with targeted primers. Different degenerate primers for different groups of plasmids even already exist from replicon- or MOB-typing of plasmids (Alvarado et al. 2012, Garcillán-Barcia et al. 2015, Villa and Carattoli 2020) and could be adapted for this approach. Detection of ARG-plasmid associations could hence be carried out for individual plasmid groups using different fluorophores. In addition the use of already existing degenerate primers (Garcillán-Barcia et al. 2015) or mixtures of primers targeting multiple plasmid groups that all use the identical fluorophores could provide a general percentage of ARG-plasmid linkage in a given sample. Such approaches could be especially valuable considering the possibility of combining them with microfluidic enrichment of ddPCR droplets based on positive fluorescence signals for either targeted sequencing of those plasmids that do contain environmentally relevant ARGs (Eastburn et al. 2015) or identification of MGE hosts by sequencing of the 16S rRNA encapsulated in single cell ddPCR droplets that score positive for the respective ARG. Such, currently lacking, MGE-host associations in a given environment would be a further step towards successful risk assessment endeavors.

In summary, the presented, multiplexed ddPCR approach proves to be a suitable and rapid, and cost-efficient approach to simultaneously assess the abundance of individual target genes and their linkage. With a straightforward protocol, high adaptability towards new targets and potential for extension through additional methods, it is hence a promising method for the assessment of ARG mobility. The suitability of ddPCR applications in environmental surveillance protocols has already been demonstrated as it has recently gained traction as a cost-efficient method included in global wastewater monitoring initiatives of the COVID-19 pandemic (Alygizakis et al. 2021, Dumke et al. 2021, Pillay et al. 2021). With ARG mobility as one of the main determinants for ARG risks towards human health (Zhang et al. 2021), this targeted approach might hence be a suitable addition to be considered for future, global environmental AMR monitoring frameworks to assess ARG mobility.

Author contributions

Magali de la Cruz Barron: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Writing—original draft; Writing—review and editing

David Kneis: Data curation; Formal analysis; Methodology; Visualization; Writing—review and editing

Alan Xavier Elena: Conceptualization; Writing—review and editing

Kenyum Bagra: Investigation; Writing—review and editing

Thomas U. Berendonk: Funding acquisition; Project administration; Resources; Supervision; Writing—review and editing

Uli Klümper: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Supervision; Validation; Visualization; Writing—original draft; Writing—review and editing

Acknowledgements

We would like to express our gratitude to Volker Kühn and Gerold Fritsche for access to the influent and effluent wastewater samples. We thank Christiane Zschornack for laboratory support.

Conflict of interests. The authors declare no conflict of interests.
Funding

This work was supported by the JPI AMR—EMBARK, the ANTIVERSA and the Explore-AMR project funded by the Bundesministerium für Bildung, und Forschung under grant numbers F01K1909A, 01LC1904A, and 01DD2002. MCB was supported through the Wastewater-CoV-2-Tracking project funded by SMWK—State Ministry of Science and Cultural Affairs of Saxony via Sachsische Aufbaubank (developmental bank Saxony, FKZ: 100535976). KB was supported through a DAAD scholarship in the program Research Grants—Bi-nationally Supervised Doctoral Degrees/Cotutelle, 2021/22 (57552338). Responsibility for the information and views expressed in the manuscript lies entirely with the authors.

References

Alvarado A, García-Barrón MP, de la Cruz F. A degenerate primer MOB typing (DPMT) method to classify gamma-proteobacterial plasmids in clinical and environmental settings. PLoS One 2012;7, doi: 10.1371/journal.pone.0040438.

Alygizakis N, Markou AN, Roussis NI et al. Analytical methodologies for the detection of SARS-CoV-2 in wastewater: protocols and future perspectives. TRAC Trends Anal Chem 2021, 134:116125.

Barraud O, Baclet MC, Denis F et al. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. J Antimicrob Chemother 2010, 65:1642–5.

Barrón MD la C, Merlin C, Guilloteau H et al. Suspended materials in river waters differentially enrich class 1 integron- and IncP-1 plasmid-carrying bacteria in sediments. Front Microbiol 2018;9:1443.

Berendonk TU, Manaia CM, Merlin C et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 2015;13:310–7.

Cacace D, Fatta-Kassinos D, Manaia CM et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: a pan-European survey of urban settings. Water Res 2019;162: 320–30.

Dai D, Brown C, Bürgmann H et al. Long-read metagenomic sequencing reveals shifts in associations of antibiotic resistance genes with mobile genetic elements from sewage to activated sludge. Microbiome 2020;12:1–16.

Dumke R, Barron M de la C, Oertel R et al. Evaluation of two methods to concentrate SARS-CoV-2 from untreated wastewater. Pathog 2021, Vol 10, Page 195 2021;10:195.

Eastburn DJ, Huang Y, Pellegrino M et al. Microfluidic droplet enrichment for targeted sequencing. Nucleic Acids Res 2015;43:e86–

Garcillán-Barcia MP, Ruiz del Castillo B, Alvarado A et al. Degenerate primer MOB typing of multiresistant clinical isolates of E. coli uncovers new plasmid backbones. Plasmid 2015;77:17–27.

Gillings M, Boucher Y, Labbate M et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol 2008;190:5095–100.

Gillings MR, Gaze WH, Pruden A et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 2015;9:1269–79.

Gweon HS, Shaw LP, Swann J et al. The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples. Environ Microbiomes 2019;14:7.

Hernando-Amado S, Coque TM, Baquero F et al. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol 2019;4:1432–42.

Heuer H, Bing CTT, Jechalke S et al. IncP-1 χ plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front Microbiol 2012;3:2.

Hindson BJ, Ness KD, Masquelier DA et al. High-throughput droplet digital PCR system for absolute quantification of DNA copy number. Anal Chem 2011;83:8604–10.

Huijbers PMC, Flach CF, Larsson DGJ. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ Int 2019;130:104880.

Kampouris IDID, Agrawal S, Orschler L et al. Antibiotic resistance gene load and irrigation intensity determine the impact of wastewater irrigation on antimicrobial resistance in the soil microbiome. Water Res 2021;193:116818.

Klümper U, Leonard AFC, Stanton IC et al. Towards developing an international environmental AMR surveillance strategy. JPI-AMR Rep 2022.

Klümper U, Riber L, Dechesne A et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J 2015;9:934–45.

Kneis D, Berendonk TU, Forslund SK et al. Antibiotic resistance genes in river biofilms: a metagenomic approach toward the identification of sources and candidate hosts. Environ Sci Technol 2022, doi: 10.1021/ACS.EST.2C00370/ASSET IMAGES/LARGE/ES2C00370_0006 JPEG.

Land M, Hauser L, Jun SR et al. Insights from 20 years of bacterial genome sequencing. Funkt Integr Genomics 2015;15:141.

Laxminarayan R, Duse A, Wattal C et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis 2013;13:1057–98.

Link-Lenczewska D, Palligaard N, Cordua S et al. A comparison of qPCR and ddPCR used for quantification of the JAK2 V617F allele burden in ph negative mmps. Ann Hemotol 2018;97:2299–308.

Liu Z, Klümper U, Liu Y et al. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environ Int 2019;129:208–20.

Pärnänen K, Karkman A, Tamminen M et al. Evaluating the mobility potential of antibiotic resistance genes in environmental resistomes without metagenomics. Sci Reports 2016 61 2016;6:1–9.

Pärnänen KMM, Narciso-Da-Rocha J, Kneis D et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv 2019;5:eaau9124.

Partridge SR, Tsafnat G, Coiera E et al. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 2009;33:757–84.

Pillay L, Amoah ID, Deepnarain N et al. Monitoring changes in COVID-19 infection using wastewater-based epidemiology: a South African perspective. Sci Total Environ 2021;786:147273.

Queenan K, Häslinger B, Rushton J. A one Health approach to antimicrobial resistance surveillance: is there a business case for it? Int J Antimicrob Agents 2016;48:422–7.

Regan JF, Kamitaki N, Legler T et al. Inactivation of SARS-CoV-2 in wastewater, recycled water, and tap water. Microb Ecol 2021;86:106001.

Rocha J, Fernandes T, Riquelme MV et al. COVID-19 infection using wastewater-based epidemiology: a one Health approach to antimi-
crobial resistance surveillance: is there a business case for it? Int J Antimicrob Agents 2016;48:422–7.

Shintani M, Nour E, Elsayed T et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 2015;9:1269–79.

Wang P, Smith AL et al. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ Sci Technol Lett 2020;7:282–91.

Wang P, Smith AL et al. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ Sci Technol Lett 2020;7:282–91.

Wang P, Smith AL et al. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ Sci Technol Lett 2020;7:282–91.
Smalla K, Cook K, Djordjevic SP et al. Environmental dimensions of antibiotic resistance: assessment of basic science gaps. FEMS Microbiol Ecol 2018,94, doi: 10.1093/femsec/fiy195.
Villa L, Carattoli A. Plasmid typing and classification. Methods Mol Biol 2020,2075:309–21.
Whale AS, Huggett JF, Tzenev S. Fundamentals of multiplexing with digital PCR. Biomol Detect Quantif 2016,10:15–23.

Zhang AN, Gaston JM, Dai CL et al. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat Commun 2021,12:1–11.
Zhang AN, Li LG, Ma L et al. Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome 2018,6:1–14.