Exosomal DLX6-AS1 from hepatocellular carcinoma cells induces M2 macrophage polarization to promote migration and invasion in hepatocellular carcinoma through microRNA-15a-5p/CXCL17 axis

Lin-pei Wang,† Jing Lin,† Xiao-qiu Ma, Dong-yao Xu, Chun-feng Shi, Wei Wang and Xiao-jie Jiang

Abstract

Background: Hepatocellular carcinoma (HCC) cells-secreted exosomes (exo) could stimulate M2 macrophage polarization and promote HCC progression, but the related mechanism of long non-coding RNA distal-less homeobox 6 antisense 1 (DLX6-AS1) with HCC-exo-mediated M2 macrophage polarization is largely ambiguous. Thereafter, this research was started to unearth the role of DLX6-AS1 in HCC-exo in HCC through M2 macrophage polarization and microRNA (miR)-15a-5p/C-X-C motif chemokine ligand 17 (CXCL17) axis.

Methods: DLX6-AS1, miR-15a-5p and CXCL17 expression in HCC tissues and cells were tested. Exosomes were isolated from HCC cells with overexpressed DLX6-AS1 and co-cultured with M2 macrophages. MiR-15a-5p/CXCL17 down-regulation assays were performed in macrophages. The treated M2 macrophages were co-cultured with HCC cells, after which cell migration, invasion and epithelial mesenchymal transition were examined. The targeting relationships between DLX6-AS1 and miR-15a-5p, and between miR-15a-5p and CXCL17 were explored. In vivo experiment was conducted to detect the effect of exosomal DLX6-AS1-induced M2 macrophage polarization on HCC metastasis.
Results: Promoted DLX6-AS1 and CXCL17 and reduced miR-15a-5p exhibited in HCC. HCC-exo induced M2 macrophage polarization to accelerate migration, invasion and epithelial mesenchymal transition in HCC, which was further enhanced by up-regulated DLX6-AS1 but impaired by silenced DLX6-AS1. Inhibition of miR-15a-5p promoted metastasis in the lung by inducing M2 macrophage polarization in vivo.

Conclusion: DLX6-AS1 from HCC-exo regulates CXCL17 by competitively binding to miR-15a-5p to induce M2 macrophage polarization, thus promoting HCC migration, invasion and EMT.

Keywords: Hepatocellular carcinoma, Hepatocellular carcinoma cell-secreted exosomes, M2 macrophages, Long non-coding RNA distal-less homeobox 6 antisense 1, microRNA-15a-5p, C-X-C motif chemokine ligand 17

Background

Liver cancer is a morphologically heterogeneous tumor with variable structural growth patterns and different histological subtypes [1]. Continued increases of hepatocellular carcinoma (HCC) mortality until 2030 has been predicted [2]. Miserably, early diagnosis for liver cancer is rare due to the vague symptoms and the lack of effective identification and screening [3]. Liver transplantation, local ablation, surgical resection, systemic therapy with tyrosine kinase inhibitors and transarterial chemembolization have been introduced to liver cancer treatment [3]. However, there are still concerns in managing liver cancer, such as unexpected progression-free survival, drug resistance and relapse [4]. In such a predicament, exploring effective agents to treat liver cancer is the prior task.

Macrophage polarization is related to tumorigenesis and M2 macrophages support tumor growth [5]. Tumor-associated macrophages (TAMs) have been established to act as a driving factor for M2 macrophages, leading to tumor growth, invasion and metastasis [6]. Tumor-derived exosomes can be ingested by macrophages in the tumor microenvironment and ultimately promote tumor progression and metastasis [7]. HCC-derived exosomes (HCC-exo) have been noted to induce M2 macrophages [8, 9]. Long non-coding RNA (lncRNA) TUC339 derived from HCC-exo has been implied to regulate macrophage activation and polarization [10], suggesting the interaction of tumor exosomal lncRNAs and macrophage polarization in cancer development. lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) is a prognostic biomarker in liver cancer [11], whose down-regulation impairs the stemness of cancer cells [12]. Moreover, silenced DLX6-AS1 serves satisfactorily for suppressing the biological functions of HCC cells [13]. MicroRNAs (miRNAs) are also of great importance in liver cancer such as miR-15a-5p. Actually, enhanced level of miR-15a-5p could block liver cancer cell proliferative activity, as well as other protumorigenic activities [14, 15]. miR-15a-5p has been testified to target C-X-C motif chemokine ligand 10 (CXCL10) to suppress metastasis in chronic myeloid leukemia [16], implying the potential mechanism of miR-15a-5p with CXCL in cancers. Belonging to CXCL family, CXCL17 has also been implicated to link with prognosis and immune infiltration in HCC [17]. It has been witnessed that highly expressed CXCL17 elicits the malignant phenotypes of liver cancer cells [18]. In our study case, we aimed to figure out whether tumor cells-secreted exosomal DLX6-AS1 could interact with miR-15a-5p/CXCL17 axis in HCC metastasis through polarizing M2 macrophages.

Methods

Ethics statement

All patients signed an informed consent form. The study was approved by the Ethics Committee of Affiliated Putian Hospital of Putian College. All animal experiments were approved by the Institutional Animal Care and Use Committee.

Experimental subjects

Cancer tissues and normal tissues (76 pairs) were collected. Normal tissues were resected at least 3 cm from the tumor. None of the patients received chemotherapy or radiotherapy before surgery. All tissues were immediately frozen in liquid nitrogen and preserved at −80 °C [19].

Immunohistochemical staining

HCC tissue samples were fixed with 4% neutral paraformaldehyde buffer (p1110, Solarbio, Beijing, China), embedded in paraffin and sectioned continuously with a thickness of 4 μm. The slices were baked at 60 °C for 1 h, dewaxed and hydrated in xylene I and xylene II, dehydrated with gradient alcohol, and soaked in 3% hydrogen peroxide for 20 min to eliminate the activity of endogenous peroxidase. Then, the slices were washed with phosphate buffer (PBS), sealed with 10% goat serum for 15 min and incubated with primary antibody CD68 (1: 150,
ab201973, Abcam, MA, USA) overnight at 4 °C, and then were washed with PBS for three times, incubated with biotinylated goat anti-rabbit immunoglobulin G (IgG, ab97051, 1: 2000, Abcam) second antibody working solution for 40 min and developed by diaminobenzidine (DAB, da1010, Solarbio) for 10 min. Subsequently, the slices were counterstained with hematoxylin (h8070, Solarbio) for 1 min, washed with running water, dehydrated with gradient ethanol, permeabilized using xylene and sealed with neutral gum. PBS was used as negative control (NC) instead of primary antibody. Finally, five high-power fields were randomly selected under the light microscope (cx41-12c02, Olympus, Tokyo, Japan) and the results were scored using double-blind method. The brown yellow particles in the cells were regarded as the positive cells, which were calculated according to the percentage of the total cells.

Cell culture

Human HCC cell lines (SMMC-7721 and HepG2), human normal hepatocytes HLF-7702, and monocyte cell line THP-1 (American Type Culture Collection, VA, USA) were kept in Dulbecco’s Modified Eagle Medium (DMEM) plus 10% fetal bovine serum (both from Thermo Fisher Scientific, MA, USA). THP-1 cells (1 × 10⁶) were induced by 100 ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich, SF, USA) for 48 h [19].

Isolation and identification of exosomes

SMMC-7721 cells were cultivated to 80–90% confluence and 3 d later, the culture medium (30 mL) was centrifuged (300 g, 2000 g, 10,000 g and 100,000 g) to collect the pellet which was then resuspended in 50–100 μL PBS [20]. As previously described [1], Exoquick-TC™ kits (EXOTC50A-1, Sigma-Aldrich, CA, USA) were used to isolate the exosomes through precipitation method. In brief, the resuspended cell was incubated with Exoquick reagent (5:1) for more than 1 h, centrifuged at 1500 g, resuspended in PBS (100 μL) and placed at −80 °C. In addition, serum exosomes were isolated by total exosome separation reagent (Magen, NY, USA). The serum (1 mL) was mixed with the exosomes separation reagent, centrifuged at 2000 g and 10,000 g and resuspended in 200 μL PBS. Exosomes were suspended in glutaraldehyde-dropped into a carbon-coated copper grid, stained with 2% uranyl acetate and examined by transmission electron microscopy.

Exosome labeling

The purified exosomes isolated from the culture medium were labeled with PKH67 fluorescence (Sigma), resuspended and added to macrophages. The exosomes were suspended in 1 mL Diluent C solution, which was added with 4 μL PKH26 ethanol dye solution to prepare 4 × 10⁻⁶ M dye solution. The exosome suspension (1 mL) was mixed with dye solution for 5 min and the staining was stopped through the 1-min incubation with 2 mL 1% exosome-depleted fetal bovine serum (FBS). The labeled exosomes were ultracentrifuged at 100,000×g for 1 h to enrich the exosomes in the range of 1.13–1.19 g/ml sucrose density [22]. Then, the labeled exosome sediment was resuspended and added into the unstained macrophages for the exosome uptake experiment. Cells were incubated for 30 min, 2 h or 12 h, and then were observed under a fluorescence microscope [21].

Cell transfection

Lentiviral vector construction and cell transfection were performed as previously described [19]. Briefly, cDNA encoding DLX6-AS1 was amplified by Pfu Ultra II Fusion HS DNA polymerase (Stratagene, Agilent Technologies, CA, USA) and cloned into pSin-ÉF2-Sox2-Pur (Addgene, MA, USA). Oligonucleotides and corresponding negative controls (NCs) that overexpressed or lowly expressed DLX6-AS1 (RiboBio, Guangzhou, China) were cloned into the lentiviral expression vector pLKO.1-Pur (Addgene). According to the manufacturer’s protocol, 293 T cells were incubated with the mentioned vectors for 24 h, and the supernatant containing lentivirus was filtered using a 0.22 μm polyvinylidene fluoride (PVDF) and added onto the plates to transfect the SMMC-7721 and HepG2 cells. The cells were screened with 10 μg/mL puromycin for 4 w and the transfection efficiency was verified using RT-qPCR [19].

Macrophages were performed with transient transfection. The small interfering RNA (si)-CXCL17, miR-15a-5p inhibitor and the relative NCs were purchased from Genechem Co., Ltd. (Shanghai, China). The macrophages were seeded onto the 6-well plates at a density of 4 × 10⁵ cells/mL and cultured, and when the cell confluence reached 80%, the cells were transfection based on instructions of the lipofectamine 2000 reagent (11668–019, Invitrogen, CA, USA). After the transfection, cells were cultured for 48 h and used for the subsequent experiments.

Flow cytometry

The macrophages were washed with cold PBS and separated with 5 mM ethylene diamine tetraacetic acid. Then, the macrophages (0.5 × 10⁶) were resuspended in 1 mL PBS, added with fluorescein isothiocyanate, phycoerythrin and allophycocyanin conjugated Abs anti-human CD206 (BD Pharmingen, USA). FACScalibur (Beckman Coulter, USA) was used for flow cytometry analysis.
RNA immunoprecipitation (RIP) assay
Magna RNA-binding protein immunoprecipitation kit (Millipore, MA, USA) was used for detection according to the instructions. In brief, RIP buffer containing magnetic beads conjugated with human anti-Ago2 antibody or NC mouse IgG were added into the cell lysate and incubated with proteinase K. Then, the immunoprecipitated RNA was isolated, with the concentration (a spectrophotometer [Thermo Scientific, MA, USA]) and quality (a bio-analyzer [Agilent]) was evaluated. Finally, RNA was extracted and the purified RNA was detected using RT-qPCR to identify the existence of binding targets [23].

RNA pull-down assay
Macrophages were transfected with biotinylated wild type (WT) and mutant type (MUT) DLX6-AS1 (50 nm each) for 48 h, and then the cells were collected and incubated with specific cell lysates (Ambion, Texas, USA) for 10 min. After that, 50 mL cell lysate sample was subpackaged and the residual lysates were incubated with M-280 streptavidin magnetic beads (Sigma) precoated with Rnase-free and yeast tRNA (Sigma). Incubated at 4 °C for 3 h, the beads were then washed twice with cold lysate, three times with low salt buffer, and once with high salt buffer. RNA was extracted and detected by RT-qPCR [24, 25].

Table 1 Primer sequences

Genes	Primer sequences
DLX6-AS1	F: 5'-AGTTCTCTCTAGATTGCCTT-3'
	R: 5'-AGTTGAGATCTGCAGGATTT-3'
miR-15a-5p	F: 5'-UUCUCCGAACGUGACGUTT-3'
	R: 5'-ACGUGACACGUUCAGAGATT-3'
CXCL17	F: 5'-ACCGAGCCAGGCTCCTC-3'
	R: 5'-GGTCTTCAGGAACCAATCTCT-3'
U6	F: 5'-ATTGGAGACAGATGAGAATT-3'
	R: 5'-GGGAACCTTCAGGAGAATT-3'
GAPDH	F: 5'-ACCGAGATTCGAACTCCGA-3'
	R: 5'-GCGGGCTCTACATTGATAC-3'
CD206	F: 5'-GGTCTCTGTGTTGCCGATTT-3'
CD163	F: 5'-GAGATGATCAGATCAGACATTG-3'
	R: 5'-CTTCTCTCTGAAGACATCCTCTCTT-3'
CCL17	F: 5'-GGGAAATGTGTGAAGCTGTA-3'
	R: 5'-CAGGTGATCATGTTGCAATTTGG-3'
CCL18	F: 5'-TGGCAGATCCAAAGACTGTA-3'
	R: 5'-GGAGATACCGGGCTTGGG-3'

DLX6-AS1 long non-coding RNA distal-less homeobox 6 antisense 1, miR-15a-5p microRNA-15a-5p, CXCL17 C-X-C motif chemokine ligand 17, GAPDH glyceraldehyde-3-phosphate dehydrogenase, CCL C-C motif chemokine ligand 17.

Fig. 1 HCC-exo induce macrophage M2 polarization. a. Electron microscope observation of the morphology of SMMC-7721 cells-derived exosomes; b. Western blot analysis of antigens (CD63, Alix and TSG101) in SMMC-7721 cells-derived exosomes; c. Microscopic observation of THP1 cells before and after PMA induction; d. PKH26 labeling of exosomes; e. RT-qPCR detection of M2 macrophages markers (CD206, CD163, CCL17 and CCL18) after co-culture with HCC-exo; f. RT-qPCR detection of M1 macrophages markers (TNF-α, IL-6 and TGF-β) after co-culture with HCC-exo; data were expressed as mean ± standard deviation (repetition = 3) and evaluated by One-way ANOVA and Tukey’s test. *P < 0.05 compared with the PBS group.
Transwell assay
Transwell chamber (Corning USA) contained 24 wells with membrane (8.0 μm). Cells (1 × 10^5 cells/well) in serum-free medium (100 μL) in the upper chamber were chemo-attracted by the complete medium (600 μL) in the lower chamber. Followed by 24-h incubation, cells in the upper chamber were removed and those in the lower chamber were fixed with 4% paraformaldehyde, stained with 0.1% crystal violet solution and photographed by an inverted fluorescence microscope. A total of 100 μL Matrigel (BD, USA) that diluted with DMEM at 1:8 was included in invasion assay [26].

RT-qPCR
Total RNA Miniprep kit (Axygen, CA, USA) was employed in total RNA extraction from cells and the ReverTra Ace system (Toyobo, Tokyo, Japan) was used in complementary DNA synthesis from RNA (1 μg). Amplification was carried out by Applied Bioscience 7500 system. Table 1 listed the primers.

Fig. 2 HCC-exo promote migration, invasion and EMT via inducing M2 macrophage polarization in HCC. a. Transwell assay tested the invasion and migration of SMMC-7721 cells after co-culture with HCC-exo-treated macrophages; b. Transwell assay tested the invasion and migration of HepG2 cells after co-culture with HCC-exo-treated macrophages; c. RT-qPCR analysis of E-cadherin, N-cadherin, vimentin and MMP7 mRNA expression in SMMC-7721 and HepG2 cells after co-culture with HCC-exo-treated macrophages; data were expressed as mean ± standard deviation (repetition = 3) and evaluated by One-way ANOVA and Tukey’s test. * P < 0.05 compared with the SMMC-7721 + M group; ^ P < 0.05 compared with the HepG2 + M group.
Western blot assay
Radio-immunoprecipitation assay buffer (SenBeijia Biological Technology Co., Ltd., Nanjing, China) was applied to collect total protein from tissues and cells. The protein concentration was measured bicinchoninic acid protein assay kit (Beyotime, China). About 40 μg of protein was separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis, electroblotted onto PVDF membrane (Millipore, USA) and blocked with 5% skimmed milk. Antibodies were showed as follows: anti-CXCL17 (AF4207, 1:1000) from R&D Systems (MN, USA), CD63 (sc-5275, 1:1000) and TSG101 (sc-7964, 1:1000) from Santa Cruz Biotechnology (CA, USA), Alix (2171, 1:1000) from Cell Signaling Technology (MA, USA), and horseradish peroxidase-conjugated secondary antibody (1:10,000). The protein expression was detected by Quantity-one software (Bio-Rad Laboratories, USA) with enhanced chemiluminescence kit [26].

In vivo tumor metastasis assay
Male BALB/c nude mice (4 weeks old; Institute of Zoology, Chinese Academy of Sciences, Beijing, China) were kept in a pathogen-free environment. Mice (n = 24/4) were injected with SMMC-7721 cells, as well as HCC-exo-induced macrophages, or macrophages induced by HCC-exo that had been transfected with overexpression (oe)-NC/oe-DLX6-AS1 [21]. SMMC-7721 cells (1 × 10⁶ in 10 μL PBS and macrophages were injected into the right liver lobe in situ. After 3 w, the mice were
Fig. 4 DLX6-AS1 in HCC-exo stimulates M2 macrophage polarization to accelerate migration, invasion and EMT in HCC. a. RT-qPCR detection of DLX6-AS1 expression in serum of HCC patients and healthy controls; b. Detection of CD68 expression in clinical samples through immunohistochemical staining; c. Correlation between expression of DLX6-AS1 and CD68 was analyzed using Pearson test; d. RT-qPCR detection of DLX6-AS1 expression in HCC-exo delivering oe-DLX6-AS1; e. RT-qPCR detection of DLX6-AS1 expression in macrophages after co-culture with HCC-exo delivering oe-DLX6-AS1; f. RT-qPCR detection of M2 macrophages markers (CD206, CD163, CCL17 and CCL18) after co-culture with HCC-exo carrying oe-DLX6-AS1; g. RT-qPCR detection of M1 macrophages markers (TNF-α, IL-6 and TGF-β) after co-culture with HCC-exo carrying oe-DLX6-AS1; h. Transwell assay tested the migration and invasion of SMMC-7721 cells after co-culture with M2 macrophages induced by HCC-exo carrying oe-DLX6-AS1; i. Transwell assay tested the migration and invasion of HepG2 cells after co-culture with M2 macrophages induced by HCC-exo carrying oe-DLX6-AS1; j. RT-qPCR of E-cadherin, N-cadherin, vimentin and MMP7 mRNA expression in SMMC-7721 and HepG2 cells after co-culture with M2 macrophages induced by HCC-exo delivering oe-DLX6-AS1; data were expressed as mean ± standard deviation (repetition = 3) and evaluated by One-way AVONA and Tukey's test. * P < 0.05 compared with the oe-NC group; # P < 0.05 compared with the PBS group; & P < 0.05 compared with the oe-NC-exo group; ^ P < 0.05 compared with the oe-NC-exo + M group.
euthanized, the lungs were collected and fixed with Bouin’s solution to count the number of metastatic lung nodules, and then the lungs were embedded in paraffin for H&E staining.

Statistical analysis
SPSS13.0 (SPSS, USA) was implicated for data analysis. The data were expressed as mean ± standard deviation. The comparison between two groups was subjected to independent sample t test, while that among multiple groups to One-Way analysis of variance (ANOVA) and Tukey’s multiple comparisons test. \(P < 0.05 \) was defined as a significant difference.

Results
HCC-exo induce M2 macrophage polarization
Exosomes were isolated from SMMC-7721 cells by centrifugation. Observed by electron microscopy, HCC-exo were round with a diameter of about 40–140 nm (Fig. 1a). The HCC-exo markers [27, 28] CD63, Alix and TSG101 (Fig. 1b) were identified using Western blotting, indicating the successful isolation of HCC-exo. Subsequently, THP-1 cells were differentiated into macrophages through PMA, and PMA-induced macrophages grew from a single round suspended cells into adherence, with transparent cytoplasm and strong refractive index (Fig. 1c). Next, the effect of HCC-exo on the polarization of macrophages was discovered. HCC-exo
were labeled by PKH26 and internalized by macrophages (Fig. 1d). M2 macrophage markers [29–31] CD206, CD163, CCL17 and CCL18 were investigated to increase while M1 macrophage markers tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and transforming growth factor β (TGF-β) did not change after co-culture with HCC-exo (Fig. 1e,f). Flow cytometry found that CD206, a marker on the surface of M2 macrophages increased (Supplementary Figure), indicating that HCC-exo induced the polarization of M2 macrophages.

HCC-exo promote migration, invasion and epithelial mesenchymal transition (EMT) via inducing M2 macrophage polarization in HCC

M2 macrophages could promote tumor growth [32]. The effect of HCC-exo-treated M2 macrophages on HCC cell migration, invasion and EMT was determined. HCC-exo-treated M2 macrophages were co-cultured with SMMC-7721 and HepG2 cells, after which cell migration and invasion abilities were enhanced (Fig. 2a,b). Meanwhile, EMT after the co-culture of HCC cells and M2 macrophages was monitored. As analyzed using RT-qPCR, epithelial cell marker E-cadherin expression was decreased, and mesenchymal cell markers (N-cadherin, vimentin, and MMP7 expression) were increased in cells (Figs. 2c). In summary, HCC-exo-treated M2 macrophages promoted migration, invasion and EMT in HCC.

DLX6-AS1 is overexpressed in HCC and triggers migration, invasion and EMT in HCC

Highly expressed DLX6-AS1 in HCC could promote tumor growth [33]. When investigating the mechanism of DLX6-AS1 in migration, invasion and EMT, DLX6-AS1 expression was firstly tested in cancer tissues and cell lines. It turned out that DLX6-AS1 was up-regulated in cancer tissues and SMMC-7721 and HepG2 cells.
HepG2 cells (Fig. 3a). Subsequently, overexpressed DLX6-AS1 was introduced to SMMC-7721 and HepG2 cells (Fig. 3b). In response to DLX6-AS1 overexpression, SMMC-7721 and HepG2 cells migrated and invaded aggressively (Fig. 3c,d) and EMT [34, 35] was accelerated (Fig. 3e). It was hinted that overexpressed DLX6-AS1 promoted migration, invasion and EMT in HCC.

DLX6-AS1 from HCC-exo stimulates M2 macrophage polarization to accelerate migration, invasion and EMT in HCC

Next, to inspect whether DLX6-AS1 was involved in the process of HCC-exo-induced M2 polarization in HCC, DLX6-AS1 expression was examined in exosomes isolated from the serum of HCC patients and healthy controls. As revealed, DLX6-AS1 level was elevated in serum exosome from HCC patients (Fig. 4a). Meanwhile, we detected the distribution of macrophages in HCC tumor microenvironment and analyzed the expression of macrophage marker CD68 in human HCC tissues using immunohistochemical staining. We found that the density of TAMs in cancer tissues was higher than that in adjacent tissues, and it was positively correlated with the expression of exosomal DLX6-AS1 from serum of HCC patients (Fig. 4b, c). Subsequently, DLX6-AS1 level in HCC-exo that had been treated with oe-DLX6-AS1, sh-DLX6-AS1 or the NC was measured. As expected, its expression raised in HCC-exo carrying oe-DLX6-AS1 or decreased in HCC-exo carrying sh-DLX6-AS1 (Fig. 4d, 5a). Next, HCC-exo delivering oe-DLX6-AS1 or sh-DLX6-AS1 was co-cultured with macrophages and the results disclosed that DLX6-AS1 level was increased or decreased in macrophages in a time-dependent manner (Fig. 4a), confirming that HCC-exo could deliver DLX6-AS1 to macrophages. Next, the role of HCC-exo-delivered DLX6-AS1 in the polarization of M1 macrophages was clarified. After co-culture with HCC-exo-delivered oe-DLX6-AS1 or sh-DLX6-AS1, M2 macrophages markers CD206, CD163, CCL17 and CCL18 were all increased or decreased while no change was observed in M1 markers TNF-α, IL-6 and TGF-β (Fig. 4f, g; 5c, d; Supplementary Figure). Moreover, M2 macrophages treated with HCC-exo transferring oe-DLX6-AS1 were co-cultured with SMMC-7721 and HepG2 cells and then functioned to stimulate cell migration, invasion and EMT. On the contrary, M2 macrophages treated with HCC-exo transferring sh-DLX6-AS1 showed no significant effect on cell migration and invasion. Finally, the role of HCC-exo-delivered DLX6-AS1 in the polarization of M2 macrophages was clarified. After co-culture with HCC-exo-delivered oe-DLX6-AS1 or sh-DLX6-AS1, M2 macrophages markers CD206, CD163, CCL17 and CCL18 were all increased or decreased while no change was observed in M1 markers TNF-α, IL-6 and TGF-β (Fig. 4f, g; 5c, d; Supplementary Figure). Moreover, M2 macrophages treated with HCC-exo transferring oe-DLX6-AS1 were co-cultured with SMMC-7721 and HepG2 cells and then functioned to stimulate cell migration, invasion and EMT. On the contrary, M2 macrophages treated with HCC-exo transferring sh-DLX6-AS1 showed no significant effect on cell migration and invasion.
sh-DLX6-AS1 caused the opposite effect on SMMC-7721 and HepG2 cells (Figs. 4h-j; 5e-h).

DLX6-AS1 interacts with miR-15a-5p

Then, the potential mechanism of HCC-exo DLX6-AS1 in M2 macrophage polarization, cancer cell invasion, metastasis and EMT was further explored. miR-15a-5p was a new cancer marker that was down-regulated in many cancers and could inhibit HCC development [14, 36]. miR-15a-5p level was detected to be down-regulated in cancer tissues and cell lines (Fig. 6a, b). After that, miR-15a-5p expression was suppressed in macrophages co-cultured with HCC-exo carrying oe-DLX6-AS1 (Fig. 6c). Therefore, a targeting relation between DLX6-AS1 and miR-15a-5p was speculated. Importantly, informatics tools (miRNA.org-Targets and Expression software) searched out the potential binding sites between DLX6-AS1 and miR-15a-5p (Fig. 6d) and dual luciferase reporter test further verified their targeting relation, as evidenced by the experiment, cells co-transfected with DLX6-AS1-WT and miR-15a-5p mimic had weakened luciferase activity (Fig. 6e). RIP assay was performed to further confirm the endogenous binding of miR-15a-5p and DLX6-AS1. It was found that in the miR-15a-5p up-regulation model, the immunoprecipitation containing anti-Ago2 antibody indicated that there was a strong binding between DLX6-AS1 and miR-15a-5p (Fig. 6f). Additionally, this binding relationship was further confirmed using RNA pull-down assay (Fig. 6g). Next, miR-15a-5p inhibition was reduced in macrophages (Fig.7a). More importantly, inhibiting miR15a-5p facilitated M2 polarization (Fig. 7b, c; Supplementary

Fig. 8 DLX6-AS1 mediates miR-15a-5p to target CXCL17 to drive migration, invasion and EMT in HCC. a. RT-qPCR analysis of CXCL17 expression in clinical tissues; b. RT-qPCR and Western blot analysis of CXCL17 expression in cancer cells and normal liver cells; c. RT-qPCR and Western blot analysis of CXCL17 expression in macrophages after down-regulating miR-15a-5p; d. Prediction of the potential binding site of miR-15a-5p and CXCL17 through bioinformatics websites; e. Verification of the targeting relationship between miR-15a-5p and CXCL17 through dual luciferase reporter experiment; data were expressed as mean ± standard deviation (repetition = 3) and evaluated by One-way AVONA and Tukey’s test. $P < 0.05$ compared with HL-7702 cells; & $P < 0.05$ compared with the NC-inhibitor group.
DLX6-AS1 mediates miR-15a-5p to target CXCL17 to drive migration, invasion and EMT in HCC

Figure), thereby promoting migration, invasion and EMT of SMMC-7721 and HepG2 cells (Fig. 7d-f).

DLX6-AS1 mediates miR-15a-5p to target CXCL17 to drive migration, invasion and EMT in HCC

CXCL17, an overexpressed gene in HCC is associated with poor prognosis [17]. The same trend of CXCL17 was found in clinical cancer tissues (Fig. 8a) and in SMMC-7721 and HepG2 cell lines (Fig. 8b). In addition, inhibiting miR-15a-5p could elevate CXCL17 level in macrophages (Fig. 8c). Moreover, the potential binding sites between CXCL17 and miR-15a-5p were found through the informatics tools (microRNA.org-Targets and Expression software) (Fig. 8d) and the luciferase reporter gene assay displayed that co-transfection of CXCL17-WT and miR-15a-5p mimic repressed cell luciferase activity (Fig. 8e). Given the fact that CXCL17 triggered the polarization of monocytes into M2 macrophages [26], it was speculated to take part in DLX6-AS1/miR-15a-5p axis-mediated polarization of M2 macrophages in HCC metastasis. Next, in response to CXCL17 silencing in macrophages (Fig. 9a), M2 macrophages were polarized (Fig. 9b, c; Supplementary figure). After co-culturing with CXCL17-silenced macrophages, the migration and invasion abilities of HCC cells were weakened (Fig. 9d, e). EMT was also suppressed by CXCL17-silenced macrophages (Fig. 9f). Subsequently, we co-cultured CXCL17-silencing macrophages with HCC-exo carrying oe-DLX6-AS1, and tested the transfection efficiency by RT-qPCR (Fig. 10a). We found that after the co-culture, the polarization of M2 macrophages was inhibited (Fig. 10b, c, Supplementary Figure) and the migration and invasion and EMT abilities of SMMC-7721 and HepG2 cells (Fig. 10d-g). These results concluded that CXCL17, as a target gene of miR-15a-5p, was involved in the process of DLX6-AS1-mediated migration, invasion and EMT in HCC.

Figure 9 DLX6-AS1 mediates miR-15a-5p to target CXCL17 to drive migration, invasion and EMT in HCC. a. RT-qPCR and Western blot analysis of CXCL17 expression in macrophages after silencing CXCL17; b. RT-qPCR detection of M2 macrophages markers (CD206, CD163, CCL17 and CCL18) after silencing CXCL17; c. RT-qPCR detection of M1 macrophages markers (TNF-α, IL-6 and TGF-β) after silencing CXCL17; d. Transwell assay tested the migration and invasion of SMMC-7721 cells after co-culture with macrophages inhibiting CXCL17; e. Transwell assay tested the migration and invasion of HepG2 cells after co-culture with macrophages inhibiting CXCL17; f. E-cadherin, N-cadherin, vimentin and MMP7 mRNA expression in SMMC-7721 and HepG2 cells after co-culture with macrophages inhibiting CXCL17; data were expressed as mean ± standard deviation (repetition = 3) and evaluated by One-way ANOVA and Tukey’s test; % $P < 0.05$ compared with the si-NC group; + $P < 0.05$ compared with the si-NC + M group.
AS1/miR-15a-5p axis-induced polarization of M2 macrophages to promote HCC migration, invasion and EMT.

DLX6-AS1 from HCC-exo promotes lung metastasis by inducing M2 macrophage polarization in mice with HCC. Next, we further explored whether HCC-exo DLX6-AS1 could also induce M2 macrophage polarization to promote HCC metastasis in vivo. The macrophages were treated with PBS or co-cultured with HCC-exo transfected with oe-NC/DLX6-AS1. Subsequently, the treated macrophages, together with SMMC-7721 cells were in situ injected into the right liver lobe. After 3 weeks, the mice were euthanized and the lungs were collected. After HE staining, metastases were mostly distributed in the peripheral lungs, mainly micrometastases in the

![Fig. 10 DLX6-AS1 mediates miR-15a-5p to target CXCL17 to drive migration, invasion and EMT in HCC.](image)

a. RT-qPCR analysis of CXCL17 expression in macrophages; **b.** RT-qPCR detection of M2 macrophages markers (CD206, CD163, CCL17 and CCL18); **c.** RT-qPCR detection of M1 macrophages markers (TNF-α, IL-6 and TGF-β); **d.** Transwell assay tested the migration and invasion of SMMC-7721 cells; **e.** Transwell assay tested the migration and invasion of HepG2 cells; **f/g.** E-cadherin, N-cadherin, vimentin and MMP7 mRNA expression in SMMC-7721 and HepG2 cells; data were expressed as mean ± standard deviation (repetition = 3) and evaluated by One-way AVONA and Tukey’s test. ^P < 0.05 compared with the oe-DLX6-AS1-exo + si-NC group; +P < 0.05 compared with the oe-DLX6-AS1-exo + si-NC + M group

Fig. 11 DLX6-AS1 from HCC-exo promotes lung metastasis by inducing M2 macrophages in mice with HCC. **a.** H&E-stained tumor tissues (200 ×); **b.** Number of metastatic hepatic nodules; data were as the mean ± standard deviation (mice = 6/group) and evaluated by One-way AVONA and Tukey’s test

![Fig. 11 DLX6-AS1 from HCC-exo promotes lung metastasis by inducing M2 macrophages in mice with HCC.](image)
interstitial and parenchyma; some intravascular tumor thrombi can be seen, and micrometastases were mostly composed of dozens of cancer cells; inflammatory cells were gathered, with lightly stained nucleus and less cytoplasm (Fig. 11a). The number of tumor lung metastases was calculated, and showed to increase after HCC-exo treatment while further enhanced by restored DLX6-AS1 from HCC-exo (Fig. 11b) In summary, HCC-exo DLX6-AS1 induced M2 macrophage polarization in vivo to promote lung metastasis of HCC cells.

Discussion
Liver cancer is a non-communicable disease that requires coordinated global action to control [37]. In this research, we testified the actual actions of DLX6-AS1 from HCC-exo in the process of HCC cell invasion, migration and EMT. Through statistical analysis, HCC-exo were discovered to induce M2 macrophage polarization, thereafter to activate the metastatic activities of HCC cells. Then, DLX6-AS1 was examined to be overexpressed in HCC and then triggered cells to migrate and invade and accelerated EMT. In combination, HCC-exo could deliver DLX6-AS1 to promote lung metastasis in vivo through stimulating M2 macrophage polarization. Finally, DLX6-AS1 could interact with miR-15a-5p to target CXCL17, and then regulate migration, invasion and EMT in HCC.

Some reports have investigated the functions of HCC-exo in human cancers. For instance, promote migration, invasion and EMT, as well as reduced E-cadherin and elevated Vimentin levels are detected in HCC cells that have been co-cultured with HCC-exo and in vivo lung metastasis is enhanced by HCC-exo treatment [38]. Another research summarizes intriguingly that exosomes from high-metastatic HCC cells are aggressive to promote HCC cell migration and can even convert the low-metastatic potential of HCC cells to a high level [39]. Also, invasive HCC-exo have been studied to eliminate drug efficacy and then facilitate HCC cellular growth [40]. Exosomes secreted by high-metastatic HCC cells are the driving actor for the migratory and invasive behaviors of low metastatic HCC cells, as well for EMT process (increased vimentin and reduced E-cadherin) [51]. Statistical analysis by a late study has profiled that HCC-exo could induce M2 macrophage polarization to push forward the process of HCC [9]. M2 macrophages are multifunctional to incur HCC cell migration and metastasis [42]. Exactly, extracellular ubiquitin-induced M2 macrophage polarization has been known to provoke lung metastasis of HCC cells [43]. Also, tumor cells-derived Wnt ligands-stimulated M2 macrophage polarization acts as an indirect actor for the migration and metastasis of HCC cells [44].

LncRNAs have been extensively discussed to modify M1/M2 macrophage polarization and to mediate metastatic behaviors of liver cancer cells [45, 46]. Though the regulatory effect of DLX6-AS1 on M1/M2 macrophage polarization has not been discussed yet, its actions in cancer progression has been explored in reported studies. As mentioned before, DLX6-AS1 is overexpressed in HCC and its depletion would depress the stemness of liver cancer stem cells [12]. DLX6-AS1 silencing in HCC cells could disrupt the cellular migration and invasion [13, 33]. Therefore, DLX6-AS1 is further supported as the pro-tumor actor in HCC.

LncRNAs often function in diseases through modulating miRNAs. At present, the discrete actions of miR-15a-5p in liver cancer have been argued. For instance, reduced miR-15a-5p has been measured in HCC which is related to cellular growth [14, 15], and miR-15a-5p inhibition in HCC is the stimuli for the metastasis of malignant cells [47]. Also, the elevated level of miR-15a-5p blockades the way of EMT in prostate cancer [48], as well as the migration and invasion of lung cancer cells [49]. It is noted that the elevated miR-15a-5p in chronic myeloid leukemia exert to repress cell metastasis via targeting CXCL10 [16]. In our study, CXCL17 was confirmed as a target of miR-15a-5p which was involved in HCC process. As reported previously, CXCL17 is the exact up-regulated actor in HCC, whose restoration enhances invasion and migration of HCC cells while its reduction causes the opposite reactions [18]. In fact, enhanced level of CXCL17 is connected with disease progression in lung/hepatic cancer [50] and it is also the inducer of lung adenocarcinoma spine metastasis [51].

Conclusion
Collectively, it was drawn from this research that HCC-exo delivered DLX6-AS1 to macrophages to stimulate M2 macrophage polarization, thus to irritate the invasion, migration and EMT of HCC cells in vitro and lung metastasis in vivo, which was related to the regulation of miR-15a-5p/CXCL17 axis. A novel pathway has been paved for understanding the molecular mechanism in HCC. Scientific confirmation and development are required for this research in the future in a larger cohort.

Abbreviations
HCC: Hepatocellular carcinoma; HCC-exo: Hepatocellular carcinoma cells-secreted exosomes; CXCL17: C-X-C motif chemokine ligand 17; lncRNA: Long non-coding RNA; miRNAs: MicroRNAs; CXCL10: C-X-C motif chemokine ligand 10; ANOVA: Analysis of variance; TNF-α: Tumor necrosis factor-α; IL: Interleukin; TGF-β: Transforming growth factor β

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13046-021-01973-z.
Acknowledgements

We would like to acknowledge the reviewers for their helpful comments on this paper.

Authors’ contributions

Wen Wang, Xiao-jiie Jiang finished study design, Lin-pei Wang, Xiao-qi Ma finished experimental studies, Jing Lin, Dong-yao Xu, Chun-feng Shi finished data analysis, Lin-pei Wang, Jing Lin finished manuscript editing. All authors read and approved the final manuscript.

Funding

The work is funded by Natural Science Foundation of Fujian Province, China (2017 J01345, 2020 J01208 and 2020 J01234) and Putian Science and Technology Project (201935F006).

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

This study was approved and supervised by the animal ethics committee of Affiliated Putian Hospital of Putian College. The treatment of animals in all experiments conforms to the ethical standards of experimental animals.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflicts of interest.

Author details

1 Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China. 2 Department of Pathology, Affiliated Putian Hospital of Putian College, Putian 363100, Fujian, China. 3 Department of Internal Medicine, Fujian Medical University, Quanzhou 362000, Fujian, China. 4 Department of Hepatobiliary Surgery, Affiliated Putian Hospital of Putian College, Putian 363100, Fujian, China.

Received: 2 December 2020 Accepted: 5 May 2021

Published online: 26 May 2021

References

1. Vyas M, Zang X. Hepatocellular carcinoma: role of pathology in the era of precision medicine. Clin Liver Dis. 2020;24(4):591–610. https://doi.org/10.1016/j.cld.2020.101.
2. Bodurtha L, Wrees K, Demir M, Schneible M, Tacke F. The role of the innate immune system in the development and treatment of hepatocellular carcinoma. Hepat Oncol. 2020;7(1):HEP17. https://doi.org/10.2217/hep-2019-0007.
3. de Jesus Franca de Lima L, et al. The use of minimally invasive biomarkers for the diagnosis and prognosis of hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188451.
4. Feng M, et al. Therapy of Primary Liver Cancer. Innovation (N Y). 2020;12:100032.
5. Lopez-Janeiro A, et al. Prognostic value of macrophage polarization markers in epithelial neoplasms and melanoma. A systematic review and meta-analysis. Mod Pathol. 2020;33(8):1458–65. https://doi.org/10.1038/s41379-020-0534-z.
6. Zhou D, et al. Tumor-associated macrophages in hepatocellular carcinoma: friend or foe? Gut Liver. 2020.
7. Shen M, Shen Y, Fan X, Men R, Ye T, Yang L. Roles of macrophages and Exosomes in liver diseases. Front Med (Lausanne). 2020;7:583691. https://doi.org/10.3389/fmed.2020.583691.
8. Han Q, et al. HCC-Derived Exosomes: Critical Player and Target for Cancer Immune Escape. Cells. 2019;8(6):558.
9. Yin C, Han Q, Xu D, Zheng B, Zhao X, Zhang J. SALL4-mediated upregulation of exosomal miR-146a-5p drives T-cell exhaustion by M2 tumor-associated macrophages in HCC. Oncotarget. 2019;10(7):1601479. https://doi.org/10.1080/2162402X.2019.1601479.
10. Li X, et al. Regulation of Macrophage Activation and Polarization by HCC-Derived Exosomal IncRNA TUC339. Int J Mol Sci. 2018;19(10):1917.
11. Long J, Bai Y, Yang X, Lin J, Yang X, Wang D, et al. Construction and comprehensive analysis of a ceRNA network to reveal potential diagnostic biomarkers for hepatocellular carcinoma. Cancer Cell Int. 2019;19(1):
12. Wu DM, Zheng ZH, Zhang YB, Fan SH, Zhang ZL, Wang WD. Down-regulated IncRNA DLX6-AS1 inhibits tumor migration through STAT3 suppression pathway by suppressing CADM1 promoter methylation in liver cancer stem cells. J Exp Clin Cancer Res. 2019;38(1):237. https://doi.org/10.1186/s13046-019-1294-3.
13. Zhang L, He X, Jin T, Gang L, Jin Z, Long J. MicroRNA-146a-5p inhibits hepatocellular carcinoma through inducing differentiation modulating miR-203a/MMP-2 pathway. Biomed Pharmacother. 2017;96:884–91. https://doi.org/10.1016/j.biopha.2017.03.006.
14. Li Y, Lin Q, Chang S, Zhang G, Huang J. Vitamin D3 mediates miR-15a-5p inhibition of liver cancer cell proliferation via targeting E2F3. Oncol Lett. 2020;20(1):292–8. https://doi.org/10.3892/ol.2020.11572.
15. Long J, Jiang CQ, Fan SH, Kang M. MicroRNA-15a-5p suppresses cancer proliferation and invasion in hepatocellular carcinoma by targeting BDNF. Tumour Biol. 2016;37(8):10865–71. https://doi.org/10.1007/s13277-015-4427-6.
16. Chen DJ, Shao KS, Huang J, Guo Y. MR1-15a-5p negatively regulates cell proliferation and metastasis by targeting CXCL10 in chronic myeloid leukemia. J Transl Med. 2017;15(9):408–16.
17. Li J, Yan J, Li, Liu Q, Zhen ZJ, Chen HW, et al. CXCL17 expression predicts poor prognosis and correlates with adverse immune infiltration in hepatocellular carcinoma. PLOS One. 2014;9(10):e110064. https://doi.org/10.1371/journal.pone.0110064.
18. Wang L, Li H, Zhen Z, Ma X, Yu W, Zeng H, et al. CXCL17 promotes cell metastasis and inhibits autophagy via the LKB1-AMPK pathway in hepatocellular carcinoma. Gene. 2019;690:129–36. https://doi.org/10.1016/j.
gene.2018.12.043.
19. Liang ZX, Liu HS, Wang FW, Xiong L, Zhou C, Hu T, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis. 2019;10(11):829. https://doi.org/10.1038/s41419-019-2077-0.
20. Theye C, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006: Chapter 3: Unit:322.
21. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic tumor-derived Exosomal miR-30a mediates M2 macrophage polarization via PTEN/PIK3gamma to promote pancreatic cancer metastasis. Cancer Res. 2018;78(16):4586–98. https://doi.org/10.1158/0008-5472.CAN-17-3841.
22. Puzar Dominkus P, et al. PKH26 labeling of extracellular vesicles: characterization and cellular internalization of PKH26 nanoparticles. Biochim Biophys Acta Biomembr. 2018;1860(1):1350–61. https://doi.org/10.1016/j.bbamem.2018.03.013.
23. Yang D, Liu K, Fan L, Liang W, Xu T, Jiang W, et al. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-like polarization of tumor-associated macrophages of CPE84. Cancer Lett. 2020;473:33–49. https://doi.org/10.1016/j.canlet.2020.12.041.
24. Lal A, Thomas MP, Altschuler G, Navarro F, O’Day E, Li XL, et al. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet. 2011;7(11):e1002363. https://doi.org/10.1371/journal.pgen.1002363.
25. Wang H, Luo X, Yang XR, He J, Cheng L, Wang N, et al. STAT3-mediated upregulation of IncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer. 2017;16(1):136. https://doi.org/10.1186/s12943-017-0680-1.
26. Li J, Guo Y, Duan L, Hu X, Zhang X, Hu J, et al. AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling. Oncotarget. 2017;8(20):33694–703. https://doi.org/10.18632/oncotarget.16624.
27. Lovall J, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014(3):1–9. 26913. https://doi.org/10.3402/jev.v3.26913.

Additional file 1: Supplementary Figure. Flow cytometry detection of M2 macrophage surface marker CD206. Data were expressed as mean ± standard deviation (mice = 6/group) and evaluated by One-way AVDNA and Tukey’s test. * P < 0.05.
28. Theyn C, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):35570.https://doi.org/10.1080/20013078.2018.153570.

29. Ahmad I, Valverde A, Naeqi RA, Naqvi AR. Long non-coding RNAs RN7SK and GASS regulate macrophage polarization and innate immune responses. Front Immunol. 2020;11:604981. https://doi.org/10.3389/fimmu.2020.604981.

30. Tanita K, Fujiyama T, Sato Y, Lyu C, Alba S. Minocycline decreases TH2 chemokines from M2 macrophages: possible mechanisms for the suppression of bullous pemphigoid by traditional bullous disease drugs. Exp Dermatol. 2018;27(11):1268–72. https://doi.org/10.1111/exd.13779.

31. Atri C, Guerfali FZ, Laouini D. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int. J. Mol. Sci. 2018;19(6):1801.

32. Yamaguchi T, Fushida S, Yamamoto Y, Tsukada T, Kinoshita J, Oyama K, et al. Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer. 2016;19(4):1052–65. https://doi.org/10.1007/s10120-015-0579-8.

33. Li D, Tang X, Li M, Zheng Y. Long noncoding RNA DLX6-AS1 promotes liver cancer by increasing the expression of WEE1 via targeting miR-424-5p. J Cell Biochem. 2019;120(8):12580–9. https://doi.org/10.1002/jcb.29493.

34. Lin J, Lin W, Ye Y, Wang L, Chen X, Zang S, et al. Kindlin-2 promotes hepatocellular carcinoma invasion and metastasis by increasing Wnt/beta-catenin signaling. J Exp Clin Cancer Res. 2017;36(1):134. https://doi.org/10.1186/s13046-017-0603-4.

35. Chen Q, Yang W, Wang X, Li X, Qi S, Zhang Y, et al. TGF-beta1 induces EMT in bovine mammary epithelial cells through the TGFbeta1/Smad signaling pathway. Cell Physiol Biochem. 2017;43(1):82–93. https://doi.org/10.1159/000480321.

36. Kontos CK, Tsianikas P, Averis M, Papadopoulos IN, Scorilas A. miR-15a-5p, a novel prognostic biomarker, predicting recurrent colorectal adenocarcinoma. Mol Diagn Ther. 2017;21(4):453–64. https://doi.org/10.1007/s40291-017-0270-3.

37. Shi JF, et al. Is it possible to halve the incidence of liver cancer in China by 2050? Int J Cancer. 2020;148(5):1051–65.

38. Qu Z, Feng J, Pan H, Jiang Y, Duan Y, Fa Z. Exosomes derived from HCC cells with different invasion characteristics mediated EMT through the TGF-beta1/Smad signaling pathway. Onco Targets Ther. 2019;12:6897–905. https://doi.org/10.2147/OTT.S209413.

39. Yang B, Feng X, Liu H, Tong R, Wu J, Li C, et al. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogenesis. 2020;9(42):8529–43. https://doi.org/10.1038/s41388-020-01450-5.

40. Qu Z, Wu J, Wu J, Luo D, Jiang C, Ding Y. Exosomes isolated from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res. 2016;35(1):305. https://doi.org/10.1186/s13046-016-0430-z.

41. Chen L, Guo P, He Y, Chen Z, Guo L, Luo J, et al. HCC-derived exosomes elicit HCC progression and induce epithelial-mesenchymal transition through MAPK/ERK signalling pathway. Cell Death Dis. 2018;9(5):513. https://doi.org/10.1038/s41419-018-0533-z.

42. Dong N, Shi J, Wang J, Gao Y, Huang Z, Xie Q, et al. Macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Cancer. 2019;121(1):22–33. https://doi.org/10.1002/cncr.32054.

43. Ge J, Zhang R, Qian X, Li J, Qi Q, Sun R, et al. Extracellular ubiquitin promotes hepatic metastasis by mediating M2 macrophage polarization via the activation of the CXCR4/CXCR2 signaling pathway. Ann Transl Med. 2019;7(19):392. https://doi.org/10.21037/atm-20-1054.

44. Yang Y, Ye YC, Chen Y, Zhao J, Gao CC, Han H, et al. Crosstalk between hepatic tumor cells and macrophages via Wnt/beta-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 2018;9(8):873. https://doi.org/10.1038/s41419-018-0818-0.

45. Tian X, Wu Y, Yang Y, Wang J, Niu M, Gao S, et al. Long noncoding RNA LINCC0662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/beta-catenin signaling. Mol Oncol. 2020;14(2):462–83. https://doi.org/10.1016/j.molonc.2019.12.006.

46. Ye Y, Xu Y, Lai Y, He W, Li Y, Wang R, et al. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatic carcinoma by altering M1/M2 macrophage polarization. J Cell Biochem. 2018;119(3):2951–63. https://doi.org/10.1002/jcb.26509.

47. He Y, Huang H, Jin L, Zhang F, Zeng M, Wei L, et al. CircZNF609 enhances hepatocellular carcinoma cell proliferation, metastasis, and stemness by activating the hedgehog pathway through the regulation of miR-15a-5p/15b-5p and Gli2 expressions. Cell Death Dis. 2020;11(5):358. https://doi.org/10.1038/s41419-020-2441-2.

48. Wu H, Tian X, Zhu C. Knockdown of IncRNA PVT1 inhibits prostate cancer progression in vitro and in vivo by the suppression of KIF23 through stimulating miR-15a-5p. Cancer Cell Int. 2020;20:283. https://doi.org/10.1186/s12935-020-01363-z.

49. Ni Y, Yang Y, Ran J, Zhang L, Yao M, Liu Z, et al. miR-15a-5p inhibits liver metastasis and lipid metabolism by suppressing histone acetylation of lung cancer. Free Radic Biol Med. 2020;161:150–62. https://doi.org/10.1016/j.freeradbiomed.2020.10.009.

50. Choreno-Parra JA, et al. The protective and pathogenic roles of CXCL17 in human health and disease: potential in respiratory medicine. Online Growth Factor Rev. 2020;53:53–62. https://doi.org/10.1016/j.oftgyf.2020.04.004.

51. Liu W, Xie X, Wu J. Mechanism of lung adenocarcinoma spine metastasis induced by CXCL17. Cell Oncol (Dordr). 2020;43(2):283. https://doi.org/10.1007/s10120-019-00491-7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
• fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions