Echocardiographic evaluation of diastolic heart failure

Queenie Lo¹ and Liza Thomas²,²

¹Liverpool Hospital, Department of Cardiology, Sydney, New South Wales 2170, Australia, ²The University of New South Wales, Sydney, New South Wales 2052, Australia.

Correspondence to Liza Thomas via ASUM. Email author@asum.com.au

The term “diastology” characterises left ventricular (LV) relaxation, filling dynamics and their integration into clinical practice. Recent advances in echocardiography have enabled the understanding of this complex process, particularly relevant in the setting of an aging population and rising prevalence of heart failure (HF) with preserved systolic function. Data from the Mayo Clinic and others indicate that diastolic heart failure (DHF) accounts for approximately 50% of all HF cases and carries a poor prognosis with survival being similar to those with a reduced ejection fraction, (5-year mortality ~ 50% in new onset symptomatic DHF). Additionally, the prevalence of asymptomatic diastolic dysfunction (DD) in the general community is ~ 25–30% in individuals ≥ 45 years.

Diastolic dysfunction (DD) is defined as “inability of the LV to fill during rest or exercise, to a normal end-diastolic volume without an abnormal increase in LV end diastolic pressure (LVEDP)”⁵. Diastolic function is frequently abnormal in patients with reduced LVEF and HF. Hence, the recent criteria of The European Society of Cardiology recommends the diagnosis of DHF or HF with normal Ejection Fraction (HFNEF) be based on the following: (i) signs or symptoms of HF; (ii) normal or mildly abnormal LV systolic function without LV dilatation (LVEF > 50%, LV end-diastolic volume index (LVEDVI) < 97 mL/m².) and (iii) evidence of LV DD.

Likely mechanisms for diastolic dysfunction

Predisposing conditions for the development of DD include hypertension, LV hypertrophy (LVH), older age, female gender, obesity, diabetes, chronic kidney disease and coronary artery disease (CAD). LV filling is impaired (abnormalities ofactive relaxation and passive stiffness of the myocardium) in combination with abnormal ventriculo-arterial coupling. However, with emerging technologies that question the accuracy of normal systolic function, the pathophysiology of HFNEF remains controversial.

The traditional concept of HFNEF is based on sophisticated catheter based conductance studies demonstrating haemodynamically that HFNEF patients exhibit an upward and leftward shift in end-diastolic pressure-volume relationship, whereas the end-systolic pressure-volume relationship (end-systolic elastance) is unaltered or even steeper than in subjects without HF. Zile et al. demonstrated that HFNEF patients have abnormalities of active LV relaxation (prolonged time constant of relaxation, Tau), and LV stiffness (increased LV passive stiffness constant (β)) with a resultant increase in left ventricular end-diastolic pressure (LVEDP) and pulmonary venous pressure even with small changes in LV end-diastolic volumes, resulting in exertional dyspnoea and even pulmonary oedema. Exercise intolerance in HFNEF patients is likely due to the failure to increase cardiac output during exercise, secondary to impaired LV filling and a failure of the Frank-Starling mechanism. Definitive evidence of abnormal LV relaxation and filling, acquired invasively by cardiac catheterisation includes τ > 48 ms, LVEDP > 16 mmHg or a mean pulmonary capillary wedge pressure (PCWP) > 12 mmHg. Concomitant abnormalities in arterial mechanics and disturbance in ventriculoarterial coupling play a major role in the pathophysiology of HFNEF. The effective arterial elastance, a global measure of arterial stiffness, determined as the ratio of LV end systolic pressure/stroke volume, is typically raised in HFNEF patients. Moreover, the exaggerated increase in systolic blood pressure after small increases in LVEDV or in arterial elastance, as well as limited systolic reserve due to high baseline end-systolic elastance, support the notion of combined ventricular-arterial stiffening.

Coronary artery disease (CAD) has been implicated in the pathogenesis of HFNEF; ischaemia prolongs τ, which is reversed after reduction of ischaemic burden by coronary bypass grafting. Mann et al. showed that in CAD, ischaemia provocation by rapid atrial pacing resulted in an upward shift of the diastolic pressure-volume curve. The value of LVEF as a measure of LV systolic function has been questioned, given among other limitations its load dependence. Using Tissue Doppler Imaging (TDI), several groups have described reduced systolic longitudinal myocardial velocities as well as reduced longitudinal and radial strain in HFNEF patients compared to controls. Similarly, systolic abnormalities have been observed in hypertensive subjects with LVH and in diabetics, both predisposing factors for HFNEF. Given various inter-related processes including the influence of systole on subsequent filling and the effect of passive ventricular properties on systolic function, it is difficult to separate cardiac cycle functionally into purely systolic and diastolic phases.

Echocardiography measures

Echocardiographic evaluation of DD requires comprehensive assessment and integration of all available information including two-dimensional left atrial (LA) volume, LV mass and systolic function that provides supportive evidence for DD. Concomitant valvular abnormalities, structural heart disease and pericardial disease are of particular relevance in the overall interpretation and are differential diagnoses of HFNEF. Traditional diastolic measures include mitral inflow velocity and pulmonary venous flow indices, Colour
Impaired relaxation, C = pseudonormal filling and D = restrictive filling.

Decreases, whereas DT and A velocity increase35. Other with increasing age, the mitral E velocity and E/A ratio profile. Age is an important consideration in interpretation; many physiological determinants affect the mitral inflow

LV relaxation, LV diastolic pressures following mitral valve

LA-LV pressure gradient and is affected by LV compliance and LA contractile function. E-wave DT is influenced by LV relaxation, LV diastolic pressures following mitral valve opening and LV compliance.

Apart from LV diastolic properties and filling pressures, many physiological determinants affect the mitral inflow profile. Age is an important consideration in interpretation; with increasing age, the mitral E velocity and E/A ratio decreases, whereas DT and A velocity increase39. Other determinants include loading conditions, heart rate and rhythm, PR interval, cardiac output, mitral annular size and LA function.

Based upon age-adjusted interpretation of the transmitral profile, diastolic function can be classified into normal, impaired LV relaxation, pseudonormal and restrictive LV filling (Fig. 1). These patterns represent progressively worsening diastolic function and increasing LV filling pressures. However, there is a non-linear relationship between these indices and severity of DD and filling patterns can coexist with alteration of loading conditions.

With normal diastolic function, E/A ratio is 0.75–1.5, DT is < 220 ms and IVRT 70–90 ms. In mild DD (Grade I, impaired relaxation), the E/A ratio is < 0.75 and A velocity increases due to increased LA contraction while DT and IVRT are prolonged as a result of relaxation abnormality. Moderate or Grade II DD (pseudonormal) is characterised by reduced LV compliance with increased LA pressure and hence the E/A ratio appears normal but reversal occurs with Valsalva manoeuvre. With progression to severe or Grade III DD (restrictive filling), there is a severely decreased compliance, causing further increase in LA pressure, resulting in a very elevated E wave and low A wave (E/A > 1.5) and a significantly reduced DT (< 150 ms) and IVRT (< 70 ms). When this pattern remains fixed with Valsalva, it is categorised as grade IV diastolic dysfunction (fixed restrictive filling). In assessing mitral inflow, apart from the above pattern, mid-diastolic flow ≥ 20 cm/s represents delayed LV relaxation and elevated filling pressures57, although low velocities can be seen in normal individuals.

A number of the mitral inflow parameters have prognostic value, the commonest being a short DT and a persistent restrictive filling pattern34,36. In the clinical setting of acute myocardial infarction, a pseudonormal or restrictive filling pattern portends increased HF, unfavourable LV remodelling and increased cardiovascular mortality irrespective of LVEF40,41. Likewise, a restrictive filling pattern with LA enlargement in a patient with normal EF (e.g. amyloidosis with restrictive cardiomyopathy42), is associated with a poor prognosis similar to that of a restrictive pattern in dilated cardiomyopathy43.

Pulmonary venous flow patterns

PW Doppler interrogation of pulmonary venous (PV) flow obtained from the apical four chamber view, comprises four variables; peak systolic flow velocity (S), peak diastolic flow velocity (D), peak atrial reversal (AR) flow velocity and AR duration (AR dur). Systolic forward flow is often biphasic with S1 related to atrial relaxation and LA pressure while S2 is related to stroke volume and propagation in the arterial tree46,47 (S2 is used to derive S/D ratio). D velocity is influenced by LV filling and compliance and changes parallel to mitral E velocity46. AR velocity and duration are affected by LV late diastolic pressures, atrial preload and LA contractility.

When LA pressure is normal, most flow occurs in systole, shifting to diastole with increasing LA pressure46. There is an age related effect on PV flow. In normal subjects < 40 years, D velocity is dominant reflecting its parallel relationship with mitral E wave with the S/D ratio increasing with age. The AR velocity is usually < 35 cm/s; higher AR velocity values suggest increased LVEDP48. With DD, a decrease in LA compliance and increase in LA pressure reduces the S velocity with an increase in D velocity, resulting in an S/D ratio < 1 and a systolic filling fraction (S VTI/ S VTI+ D VTI) < 40%-49. With increased LVEDP, AR velocity and duration increase, as does the difference between AR duration and mitral A-wave duration (AR-A duration)50,51.
incremental value in assessment of DD, a peak AR velocity > 35 cm/s correlates with elevated filling pressures\(^{55}\) and AR-A duration has been validated as a useful parameter\(^{54}\). AR-A duration is age-independent \(^{49}\) and a difference of > 30 ms indicates an elevated LVEDP\(^{65,66}\), thereby identifying patients with abnormal LV relaxation with an elevated LVEDP. Importantly, the AR-A duration remains accurate in patients with normal LVEF\(^{67}\). However, there is difficulty in the acquisition of accurate AR-A duration measurement from a transthoracic window.

Pulmonary venous flow parameters are complementary to mitral inflow pattern in the diagnosis of DD. The strength of a combined use of the two modalities was observed in studies\(^{57}\), when MV inflow parameters and PV flow Doppler were combined; 93% of patients suspected of HFNEF showed evidence of DD\(^{58}\). Unlike mitral inflow velocities, there have been limited studies in ascertaining the prognostic role of PV flow.

Flow propagation

Colour M-Mode provides high temporal and spatial resolution in the assessment of the early diastolic filling velocity as blood propagates through the mitral valve\(^{59}\). Flow propagation velocity (Vp) is obtained by measuring the slope of the isovelocity line demarcated by the colour wavefront, representing the pressure gradient between the LV base and apex. During myocardial ischemia or HF, there is slowing of the LV base to apical flow propagation\(^{60,61}\). A Vp > 50 cm/s in patients with normal LVEF\(^{62}\) while a value < 45 cm/s in patients > 30 years is consistent with DD\(^{61}\).

Vp characterises LV relaxation, and has been correlated with invasive measurements and shown to be relatively independent of loading conditions\(^{44}\). The ratio of E/Vp has been used to estimate LV filling pressure, with an E/Vp > 1.5 suggestive of a PCWP > 15 mm Hg\(^{60,66}\). Vp is influenced by LV systolic function, which may act to normalise Vp in the presence of impaired LV relaxation\(^{67-71}\). All in all, although E/Vp ratio correlates with PCWP in patients with reduced LVEF, its utility in patients with normal systolic function is limited\(^{69}\). Currently, this modality is seldomly utilised in clinical practice, given its limitations such as accuracy of measurements and interobserver variability.

TDI and E' velocity

Currently, the most sensitive echocardiographic technique for the assessment of DD is TDI\(^{70}\) which measures low velocity, high amplitude intrinsic myocardial tissue velocity with high spatial and temporal resolution, providing a relatively load independent measure of both systolic and diastolic function\(^{71}\). Whereas the E/A ratio from mitral inflow exhibits a U-shaped relationship with LVEDP, TDI E' velocity declines from normal to advanced LV DD. As a consequence, the E/E' ratio increases with advanced LV DD\(^{72}\). In addition to its diagnostic utility, TDI velocities provide incremental prognostic value.

Longitudinal myocardial velocity is measured by Pulsed wave (PW) TDI, placing a sample volume at the septal or lateral mitral annulus in the apical four chamber view\(^{72}\). Colour TDI (CTDI) is an alternative method that permits offline analysis. However PW TDI is the preferred technique for routine clinical assessment of diastolic function. Published normal ranges are available for both methods, with CTDI velocities being significantly lower\(^{67}\) as PW TDI measures peak whereas CTDI measures mean velocity\(^{73}\). Reference values must be adjusted for age given the normal age dependent reduction in diastolic function\(^{67,70}\).

Mitrail annular velocities can be regarded as an “aggregate” of segmental myocardial velocities and in the absence of regional LV dysfunction accurately reflect global longitudinal LV function\(^{77}\). The systolic velocity (S’) corresponds to ventricular ejection while the early (E’) and late (A’) diastolic velocities correspond to ventricular filling and atrial contraction respectively.

S’ velocity

The S’ velocity correlates with LVEF\(^{78}\), and an average S’ velocity > 7.5 cm/s had a sensitivity of 79% and specificity of 88% in predicting normal global LV function. S’ velocity is a sensitive marker of subclinical LV systolic dysfunction, even in those with apparently preserved LVEF such as DHE\(^{79}\), or in diabetic subjects without overt heart disease\(^{80}\). Reduced S’ velocities have been observed in carriers of hypertrophic cardiomyopathy mutations at a subclinical stage when LVH is not present\(^{80}\).

The prognostic significance of S’ velocity has been demonstrated in a follow up study of patients with cardiac disease; mortality was significantly higher when both S’ and E’ were < 3 cm/s, although E’ had a stronger impact in multivariate analysis\(^{81}\).

E’ velocity

E’ represents the early diastolic lengthening velocity of longitudinal LV fibers\(^{82}\) that declines with normal ageing\(^{83-84}\). E’ velocity is easily measured with low inter-observer variability\(^{85}\) and has important prognostic value\(^{85-86}\). Decreased E’ is one of the earliest markers for DD and is present in all stages of the condition\(^{87}\), typically lowest in patients...
with restrictive filling. In addition, close correlations have been observed between E’ and invasive indices such as τ (P < 0.001) and LV dP/dt (P < 0.001) over a wide range of filling pressures. Furthermore, compared to peak E, E’ is relatively preload independent as was evident in patients with DD with pseudonormalisation of E velocity in which E’ remained low during saline loading or after nitroglycerin. E’ also correlates closely with τ, even in atrial fibrillation, and with invasively measured LVEDP both at rest and during exercise.

In normal conditions, E’ occurs coincident with, or just before, the transmitral E wave, whereas in HF, there is a progressive delay in E’ with respect to E’. In terms of prognostic significance, in many studies E’ appears superior to S’. Low E’ velocity predicts mortality incremental to clinical and echocardiographic data as illustrated by Wang, et al., where E’ < 3 cm/s was the best prognostic marker on long-term follow-up, incremental to indexes of systolic or diastolic function, including a DT < 140 ms and E/E’ > 15. Similar results were found in a hypertensive population where an E’ value < 3.5 cm/s was implicated in the prognostic index.

A’ velocity
Peak velocity during atrial contraction, the A’ velocity, is an accurate marker of global atrial function correlating with LA fractional area and volume change and other traditional parameters of LA function (peak A velocity, atrial fraction, and atrial ejection force). The main determinants of A’ include LA systolic function and LVEDP; increased LA contractility increases A’ velocity whereas an increased LVEDP leads to a corresponding decrease. While there is an age related increase in A’ velocity in healthy subjects, the converse is observed with atrial dysfunction where A’ velocity is reduced. Although not as extensively studied as S’ and E’, A’ provides prognostic information and an A’ ≤ 5 cm/s in HF patients independently predicted worse prognosis with increased cardiac mortality or HF hospitalisation. A’ also predicts cardiac events and mortality in hypertension.

The major advantage of TDI is its feasibility, reproducibility, ease of application in the clinical setting and its relative independence of 2D image quality. It should be noted that lateral annulus early diastolic velocity (E’) is usually higher than septal annular E’; although there is no significant difference between such for peak A’ velocity. Recent evidence suggests that E’ velocity at the septal and lateral annulus are affected by different variables and are not interchangeable. Moreover, septal E’ velocity has been demonstrated to be preload dependent in patients with normal LV function, although this effect may decrease as LV relaxation becomes progressively impaired. Additionally, septal E’ velocity may be influenced by right ventricular diastolic function.

One major limitation of E’ velocity is the assumption that it reflects global LV relaxation. In subjects with segmental wall motion abnormality resulting in reduced annular velocity at the corresponding site, it leads to a spuriously low estimate of global LV relaxation. Therefore, it is recommended that an average E’ velocity be obtained from sampling multiple sites to improve accuracy.

E/E’ and T E-E’
E/E’ has been demonstrated to correlate with LV filling pressures and mean left atrial pressure and has been validated in various clinical settings. Published values of the E’ velocity and E/E’ ratio vary depending on the annular sampling site. Nagueh and colleagues demonstrated that E/E’ > 10 using lateral mitral annular velocity reliably predicts a PCWP > 12 mmHg. In comparison, using the septal E’ velocity, Ommen and colleagues found that PCWP is normal if E/E’ ratio is < 8 and likely elevated if > 15, while intermediate values were associated with a range of mean LV diastolic pressures. A number of recent studies have found that lateral E/E’ ratio is superior to septal E’ ratio for predicting PCWP when LVEF is > 50%, although an average of both values is more accurate in the presence of regional dysfunction.

E/E’ > 15 is a powerful prognosticator of adverse cardiac events and is an independent predictor of cardiac mortality and HF hospitalisation in patients with systolic dysfunction. Post myocardial infarction (MI), E/E’ is a powerful predictor of survival and E/E’ > 15 is superior as predictor of prognosis to other clinical or echocardiographic variables.

The close correlation between E/E’ and LV filling pressures has been confirmed in HF patients with depressed (< 50%) or preserved LV ejection fraction and in patients with impaired relaxation or pseudonormal filling patterns. All in all, E/E’ predicts HF events in a manner incremental to clinical factors and ejection fraction. It is important however to note that there are circumstances that spurious results could occur. E’ velocity is reduced in patients with significant annular calcification, surgical rings, mitral stenosis, and prosthetic mitral valves.

Information on LV filling pressures can be derived from the time interval between the onset of E and the onset of E’ (T E-E’). This is obtained by measuring the time interval between the QRS complex and the onset of E and subtracting that from the time interval between QRS complex and E’. With decreased LV relaxation, E’ velocity is reduced.
and delayed, while mitral E velocity occurs earlier and may precede the onset of E’ with pseudonormal or restrictive filling prolonging T_E-E’_'. Animal112 and human110 studies have shown that T_E-E’ is strongly dependent on the time constant of LV relaxation and LV minimal pressure113. T_E-E’ is particularly useful in subjects with normal cardiac function110, those with moderate to severe mitral regurgitation111 and when the E/E’ ratio is 8 to 15114. In particular, an IVRT/TE-E’ ratio < 2 has reasonable accuracy in identifying patients with increased LV filling pressures110.

LA size, volume and function

The left atrium (LA), being in continuum with the LV during diastole when the mitral valve is open, is constantly exposed

Parameter	Strengths	Limitations	How/where to
Transmitral flow PW Doppler	• Easy to obtain • Prognostic value – restrictive pattern and short DT • Monitoring of DD	• Age & load dependent • Affected by HR, rhythm, PR interval • Only reflects acuity of left sided filling pressures • Values influenced by PW sample volume placement	• PW sample volume size (1–3 mm) placed between the mitral leaflet tips on LV side in diastole from A 4 C view
PV flow patterns	• Complementary to mitral inflow • AR-A duration is the only age independent marker	• Technical difficulty in obtaining accurate and adequate signals • Affected by rhythm	• PW sample volume size (2–3 mm) placed 1 cm into right upper pulmonary vein posterior to LA from A4C view
Flow propagation	• High temporal and spatial resolution • Assess early diastolic filling	• Poor correlation with PCWP in patients with normal LVEF • Significant interobserver variability • Problems with reproducibility	• M-mode through mid axis of LV and MV with colour Doppler in A4C view
TDI	• High spatial and temporal resolution • Relatively load independent • Low interobserver variability • Prognostic value (S’, E’, A’) • E’ correlates with \(\tau \) and dP/dt, even in AF • Early marker of DD	• Assumes E’ reflects global LV relaxation– problematic in patients with wall motion abnormalities • Different E’ velocities between septal and lateral annulus • Affected by translational motion due to tethering by neighbouring myocardial segments	• PW sample volume size (5–10 mm) at fibrous mitral annulus (septal and/or lateral) from A4C view
E/E’	• Close correlation with LVEDP/PCWP • Prognostic marker • T_E-E’ useful in evaluation of increased LV filling pressures when E/E’ = 8–15	• Intermediate values between 8–15 non-diagnostic of DD • E’ value altered by significant annular calcification, surgical rings, mitral prosthesis, mitral stenosis	• See above sections for E and E’ measurements
LA volume	• Reflects chronicity of DD • Significant prognosticator for future CVS events • Change in phasic function reflects severity of DD	• Confounded by chronic volume overload (eg MR) and AF	• Bi-plane (A4C and A2C views) Simpsons method for volume calculation

Diastolic strain/strain rate

Strengths	Limitations	How/where to
Independent of translation due to tethering • Validated by sonomicrometry/MRI • Higher frame rate than MRI • Evaluates diastolic stiffness differentiating stunning vs infarction and fibrosis • GSR\textsubscript{LV} represents true global index and predicts LV filling pressure, esp if E/E’ inconclusive	• Technical aspects: TDI method angle dependent, subject to reverberation artefact, poor signal to noise ratio, problem of drift with respiration • Provides single plane estimation of deformation • Low reproducibility • Acquisition/analysis needs experience • Currently research tool • GSR\textsubscript{LV} dependent on quality of signals	• TDI and 2D speckle tracking of LV myocardium in longitudinal plane with offline analysis of strain parameters from A4C, A2C and apical long axis views

Torsion

Strengths	Limitations	How/where to
TDI and 2D speckle tracking methods both correlate with MRI assessment • Speckle tracking- angle independent and high reproducibility	• Precise selection of image plane required • Difficulty of speckle tracking at LV base; alter reproducible measurements • Research tool	• TDI and 2D speckle tracking of LV myocardial rotational motion in parasternal short axis LV views of basal and apical levels
to the LV loading pressure. In the setting of DD, the LA is subject to elevated filling pressures resulting in remodelling and changes in its volume and function. Left atrial size, expressed as a volume indexed to body surface area has been shown to be a robust biomarker of the severity and chronicity of DD and of cardiovascular disease risk. The published reference values for mean indexed LA volume based on groups of healthy individuals reported by Thomas, et al. and in population studies were 23 ± 6 mL/m² and 22 mL/m² respectively. In persons free of cardiovascular disease, indexed LA volume is independent of age; importantly, LA enlargement is a reflection of the pathophysiologic perturbations rather than a consequence of normal aging.

With DD whereby there is increased stiffness and non-compliance of the LV, the LA pressure rises to maintain LV filling and the increased atrial wall tension subsequently leads to chamber dilatation. As such, studies have demonstrated that LA volume increases with worsening severity and increasing duration of DD, and an indexed LA volume has the highest discriminative value in distinguishing between normal and pseudonormal transmitral filling patterns.

In a recent study of HFNEF patients, indexed LA volume was the strongest and most consistent multivariate predictor of N-terminal pro-brain natriuretic peptide level, a potent biomarker of heart failure. It was additionally shown that a LA volume > 26 mL/m² was a relatively load independent marker of LV filling pressures and of DD. Based on the recent consensus statement by the Heart Failure and Echocardiography Associations of the European Society of Cardiology, a LA volume index > 40 mL/m² provides sufficient evidence of LV DD when the E/E’ ratio is non-conclusive (i.e. 15 > E/E’ > 8) or when plasma natriuretic peptides are elevated. Similarly, a LA volume index < 29 mL/m² is proposed as a prerequisite to exclude HFNEF. LA volume index values of 29 and 40 mL/m² correspond, respectively, to the lower cut-off values of mildly abnormal and severely abnormal LA size in the recent recommendations for cardiac chamber quantification of the American Society and the European Association of Echocardiography.

LA volume has prognostic value for future adverse cardiovascular events including myocardial infarction, cerebrovascular events, atrial fibrillation, HF as well as cardiac and all-cause mortality. Tsang, et al. demonstrated that increasing LA volume stratified risks of developing such adverse events. Particular to the individual adverse outcomes, studies revealed an indexed LA volume ≥ 32 mL/m² to be associated with increased stroke risk independent of age and other clinical risk factors. An increased incidence of congestive HF was noted with increased LA volume, independent of age, MI, diabetes, hypertension, LVH and mitral inflow velocities.

Apart from its effect on LA size, DD also alters LA phasic functions. LA function is described by three phases: it functions as a “reservoir” in receiving blood from pulmonary veins, acts as a “conduit” for the passive transfer of blood into the LV from the pulmonary veins in diastasis and thirdly, it exerts its “contractile” function during atrial systole to augment the LV stroke volume by 20%. It has been demonstrated that the relative contribution of this pump function becomes more dominant with LV dysfunction. In normal subjects, the relative contribution of the reservoir, conduit and contractile function of the LA to the filling of the LV is approximately 40%, 35% and 25% respectively.

In the setting of abnormal relaxation, the relative contribution of the LA reservoir and contractile function increases and conduit function diminishes; while the LA functions primarily as a conduit as LV filling pressures increase with advancing DD.

Strain and strain rate in DHF

TDI derived strain rate (SR) and strain (S) measurements are quantitative indices of myocardial deformation, and are relatively independent of translational motion due to tethering by neighbouring myocardium in contrast to TDI myocardial velocities. S measures tissue deformation while SR measures the rate of tissue deformation. Mathematically, strain is the integral of SR, with shortening expressed as a negative and lengthening as a positive value. Depending on the direction of deformation, longitudinal, circumferential, and radial S and SR can be measured using TDI or two-dimensional speckle tracking. Both modalities have been validated against sonomicrometry and cardiac MRI.

Importantly, echocardiographic methods have higher frame rates than cardiac MR and are better suited to study temporal aspects of cardiac function.

Diastolic strain/strain rate

Recent studies suggest that myocardial S and SR may provide further information on diastolic function. Voigt, et al. demonstrated that the quantification of postsystolic myocardial S estimated post-systolic shortening in ischemic myocardium. Pislaru, et al. and Park, et al. showed that regional diastolic SR can evaluate diastolic stiffness during myocardial stunning and infarction, aiding in viability assessment. There is evidence in an animal model that segmental early diastolic SR correlates with the degree of interstitial fibrosis. Moreover, reduced early diastolic SR has been observed in patients with hypertension and DD and a significant relationship was observed between segmental global early diastolic SR and the degree of fibrosis.

Global longitudinal SR obtained during isovolumic relaxation time IVRT (GSR IVR) is a newly developed parameter measured from the apical 4, 2, and long-axis views by speckle tracking. GSR IVR has a number of advantages including its acquisition directly from LV myocardium, as opposed to indirect derivation from annulus and blood flow velocities. It is not affected by mitral annular or valvular disease and occurs when the valves are closed and therefore is not exposed to transmural pressure gradient. In a recent study that combined GSR IVR and transmitral flow velocities, the mitral E velocity/GSR IVR ratio predicted LV filling pressure in patients in whom the E/E’ ratio was inconclusive and was more accurate than E/E’ in patients with normal LVEF and those with regional dysfunction. Although promising, accurate measurements of GSR IVR are dependent on high-quality signals with good myocardial visualisation.

Limitations of S/SR imaging

Despite their utility, there are a number of pitfalls of S and SR imaging. The TDI-based method is angle dependent, subject to reverberation artefacts, poor signal to noise ratio, and
as well as the problem of drift when the strain curve demonstrates beat to beat variability due to minor angle changes as well as respiratory changes. In addition, measurements provide only a one dimensional estimation of myocardial deformation, and radial and circumferential axes can only be assessed in limited views. Combined with lower reproducibility, the widespread clinical use of this technology has not occurred. In contrast, speckle tracking is based on the recognition and tracking of speckles, which represent unique acoustic identification for each myocardial region. This method is not angle dependent, is more reproducible than TDI, and can determine circumferential strain, in addition to radial and longitudinal strain. However, speckle tracking has a lower frame rate than TDI and can therefore underestimate deformation rate.

Torsion/ twist mechanics

LV twist or torsion describes the wringing motion of the LV and occurs because of the helical arrangement of LV subendocardial and subepicardial fibers. Contraction of these oblique and spirally orientated fibres causes “torsion” such that when viewed from the apex, systolic contraction of the ventricle is characterised by the counterclockwise rotation of the apex and clockwise rotation of the base. During isovolumic contraction, brief apical clockwise rotation occurs that reverses rapidly becoming counterclockwise during LV ejection, followed by untwisting (clockwise rotation) during early diastole. In contrast, rotation of the base is lower in magnitude and opposite in direction.

Twist during ejection predominantly deforms the subendocardial fibres, with storage of potential energy. Subsequent elastic recoil of twist deformation during isovolumic relaxation releases restoring forces, contributing to LV relaxation and early diastolic filling. LV torsion is a function of LV contractility and varies linearly with EF, while diastolic untwisting contributes to LV filling through suction generation. Pertinent to the study of diastolic function is the change in E/E’ velocity with exercise is another index that has been reported to predict exercise capacity in patients with DD. In contrast, in patients with DD, the increase in E’ with exercise is much less than the mitral E velocity, such that the E/E’ ratio increases. In addition, mitral DT decreases slightly in normal individuals with exercise, but shortens > 50 ms in patients with markedly elevated filling pressures. The change in E’ velocity with exercise is another index that has been reported to predict exercise capacity in patients with DD. Diastolic stress echocardiography has also been performed with Dobutamine infusion in patients with ischaemic cardiomyopathy and restrictive filling provided prognostic information.

Tan, et al. combined traditional and newer echocardiographic parameters in their examination of patients at rest and during aerobic exercise. They proposed that in HFNEF, both systolic and diastolic abnormalities cause exercise limitation, particularly involving ventricular twist, delayed untwisting and deformation (strain). In HFNEF patients, resting systolic mitral annular velocity, apical rotation and deformation (longitudinal and radial strain) were all reduced and failed to increase with exercise. Apical untwisting was reduced and delayed, with reduced suction and increased end-diastolic pressure on exercise. The abnormalities of both systolic and diastolic function that become more apparent with exercise suggest that HFNEF is not an isolated diastolic disorder.

Possible therapies

In contrast to systolic HF, there is a paucity of large randomised placebo-controlled trials specifically addressing HFNEF treatment. In the absence of specific evidence based treatment, general principles and guidelines have been derived.
Blood pressure control is the cornerstone of treatment because systemic blood pressure is a direct measure of afterload and is related to end-diastolic pressure, the key determinant of the pressure-volume relationship172. Currently, the only Class I level A recommendation by the ACC/AHA Heart Failure Practice Guidelines172 is the control of systolic and diastolic hypertension for HFNEF patients. All other recommendations are evidence level C.

Given the high prevalence of diabetes and LVH, there is compelling indication for inhibitors of the renin-angiotensin-aldosterone system (RAAS) such as angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) for blood pressure control. Both human173 and animal180 studies have shown that RAAS blockade improves LV diastolic distensibility. However, trials evaluating ARB irbesartan (I-PRESERVED trial190) and Candesartan (CHARM-PRESERVED trial191) and the ACEI perindopril (PEP-CHF trial177) in HFNEF patients demonstrated no survival benefit compared with placebo, although symptomatic improvement was noted.

On the other hand, the VALIDD study176 (VAL sartan In Diastolic Dysfunction study) demonstrated that blood pressure lowering in patients with hypertension and LV DD, either with valsartan or a regimen including beta blockers (BB), calcium channel blockers (CCB), diuretics and α-blockers, elicited a similar reduction in blood pressure and improvement in diastolic relaxation.

Other general principles for the management of DD/DF of level C evidence include control of heart rate, fluid volume control and relief of myocardial ischaemia. Tachycardia is particularly deleterious in patients suffering from DHF because an increase in heart rate shortens diastolic filling187. Ventricular rate control can be achieved with BBs and nondihydropyridine CCBs, both of which have been shown to improve exercise parameters179. In AF with rapid ventricular response, rate control or restoration of sinus rhythm by pharmacological or electrical cardioversion may improve diastolic filling188. The Digitalis Investigation Group189, demonstrated reduction in hospitalisation for HF in patients with and without systolic dysfunction on Digoxin, the benefit perhaps due to its rate control effect. Fluid balance is achieved with the judicious use of diuretics. Treatment of exacerbating factors such as myocardial ischaemia need to be addressed and coronary revascularisation where appropriate should be considered177.

When LVH is a major component of DHF, effecting LVH regression may have particular benefit182. A recent subgroup analysis from the Cardiovascular Healthy Study identified LVH as a predictor for the future development of HF independent of age, sex, obesity, diabetes, and hypertension183. Additionally, interstitial collagen deposition and fibrosis may account for the development of DD in hypertension184. Neurohormonal modulation of the RAAS is currently the only therapy with some effect on the pathophysiological mechanisms responsible for the increase in vascular and ventricular stiffness185,186, ACEI187,188, ARB189, and aldosterone receptor antagonists190,191, independent of their hemodynamic effects, mediate potentially favourable effects of reduced smooth muscle cell growth, prevention of collagen deposition, reduced growth factor expression, and regression of myocardial fibrosis. Spironolactone, an aldosterone antagonist, has also been shown to reduce myocardial fibrosis and thus may aid in the treatment of DD192.

Conclusion
Diastolic function is a complex integration of cardiac physiology and haemodynamics; a disturbed balance between LV compliance and filling results in DD and subsequent HFNEF, the exact pathophysiology of which remains debatable. Evolving technologies and advances in echocardiographic techniques have lent further insights into understanding the aetiologies and mechanisms by which they occur. They have also enabled detailed assessment of diastolic function, providing early detection and monitoring of treatment progress.

References
1. Lester SJ, Tajik AJ, Nishimura RA, Oh JK, Khandheria BK, Seward JB. Unlocking the mystery of diastolic dysfunction: deciphering the Rosetta Stone 10 years later. J Am Coll Cardiol 2008; 51: 679–89.
2. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. Circulation 2006; 113: 251–9.
3. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol 2004; 43: 317–27.
4. Owan TE, Redfield MM. Epidemiology of diastolic heart failure. Prog Cardiovasc Dis 2005; 47: 320–3.
5. Elharrar VS, Lee DS, Austin PC, Fang J, Hauzi A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. JAMA 2006; 296: 255–60.
6. Vasan RS, Levy D. Defining DHF: a call for standardised diagnostic criteria. Circulation 2000; 101: 2186–91.
7. Abbaya Arata WP, Marwick TH, Smith WT, Becker NG. Characteristics of left ventricular diastolic dysfunction in the community: an echocardiographic survey. Heart 2006; 92: 1259–64.
8. Appleton CP, Firstenberg MS, Garcia MJ, Thomas JD. The echo-Doppler evaluation of left ventricular diastolic function – a current perspective. Cardiol Clin 2000; 18: 513–46.
9. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers PE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007; 28: 2421–3.
10. Fischer M, Baessler A, Hense HW, Hengstenberg C, Muscholl M, Holmer S, et al. Prevalence of left ventricular diastolic dysfunction in the community: results from a Doppler echocardiographic-based survey of a population sample. Eur J Heart Fail 2003; 5: 230–8.
11. Klapholz M, Maurer M, Lowe AM, Messineo F, Meinsner JS, Mitchell J, et al. New York Heart Failure Consortium. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol 2004; 43: 1432–8.
12. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction. Circulation 2003; 107; 714–20.
13. Vinereanu D, Nicolaides E, Boden L, Payne N, Jones CJ, Fraser AG. Conduit arterial stiffness is associated with impaired left ventricular subendocardial function. Heart 2003; 89: 449–50.
14. Sanderson JE. Heart Failure with a normal ejection fraction. Heart 2007; 93: 155–8.
15. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure-abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 2004; 350: 1953–9.
16. Zile MR, Gaasch WH, Carroll JD, Feldman MD, Aurigemma GP, Schauer GL, et al. Heart failure with a normal ejection fraction: is measurement of diastolic function necessary to make the diagnosis of diastolic heart failure? Circulation 2001; 104: 779–82.
17. Baicu CF, Zile MR, Aurigemma GP, Gaasch WH. Left ventricular systolic performance, function, and contractility in patients with dia-
stolic heart failure. *Circulation* 2005; 111: 2306–12.

18 Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular sys-
tolic and arterial stiffening in patients with heart failure and preserved
jection fraction: implications for systolic and diastolic reserve limita-
tions. *Circulation* 2003; 107: 714–20.

19 Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure-abnormalities
in active relaxation and passive stiffness of the left ventricle. *N Engl J Med*
2004; 350: 1953–9.

20 Aurigemma GP, Gaasch WH. Clinical practice. Diastolic heart failure.

21 Paulus WJ, Bronzwaer JGF, Felice H, Kishan N, Wellens F. Deficient
acceleration of left ventricular relaxation during exercise after heart
transplantation. *Circulation* 1992; 86: 1175–85.

22 Yamakado T, Takagi E, Okubo S, Imanaka-Yoshida K, Tarumi T,
Nakamura M, Nakano T. Effects of aging on left ventricular relax-
lation in humans. *Circulation* 1997; 95: 917–23.

23 Little WC, Downes TR. Clinical evaluation of left ventricular dia-
stolic performance. *Prog Cardiovasc Dis* 1990; 32: 273–90.

24 Borlaug BA, Kass DA. Ventricular-vascular interaction in heart fail-
ure. *Heart Failure Clin* 2008; 4: 23–36.

25 Frenneaux M, Williams L. Ventricular-arterial and ventricular inter-
actions and their relevance to diastolic filling. *Prog Cardiovasc Dis*
2007; 49: 252–62.

26 Mann T, Goldberg S, Mudge GH Jr, Grossman W. Factors contribut-
ing to altered left ventricular diastolic properties during angina pecto-
ris. *Circulation* 1979; 59: 14–20.

27 Bourdillon PD, Lorell BH, Mirsky I, Paulus WJ, Wynne J, Grossman
W. Increased regional myocardial stiffness of the left ventricle during
pacing-induced angina in man. *Circulation* 1983; 67: 316–23.

28 Carroll JD, Hess OM, Hirzel HO, Turina M, Kravenbeuch HP. Left
ventricular systolic and diastolic function in coronary artery disease:
effects of revascularization on exercise-induced ischemia. *Circulation*
1985; 72: 119–29.

29 Yip G, Wang M, Zhang Y, Fung JW, Ho PY, Sanderson JE. Left ven-
tricular long axis function in diastolic heart failure is reduced inboth
diastole and systole: time for a redefinition? *Heart* 2002; 87: 121–5.

30 Yu CM, Lin H, Yang H, Kong SL, Zhang Q, Lee SW. Progression of
systolic abnormalities in patients with “isolated” diastolic heart failure
and diastolic dysfunction. *Circulation* 2002; 105: 1195–201.

31 Wang J, Khoury DS, Yue Y, Torre-Amione G, Naguse SF. Preserved
left ventricular twist and circumferential deformation, but depressed
longitudinal and radial deformation in patients with diastolic heart
failure. *Eur Heart J* 2008; 29: 1283–9.

32 Wang M, Yip GW, Wang AJ, Zhang Y, Ho PY, Tse MK, et al. Tissue
Doppler imaging provides incremental prognostic value in patients
with systemic hypertension and left ventricular hypertrophy. *J Hyper-
ertries* 2005; 23: 183–91.

33 Fang ZY, Leano R, Marswick TH. Relationship between longitudinal
and radial contractility in subclinical diabetic heart disease. *Clin Sci*
(Lond) 2004; 106: 53–60.

34 Appleton CP, Hatle LK, Popp RL. Relation of transmural flow veloc-
ity patterns to left ventricular diastolic function: new insights from a
combined haemodynamic and Doppler echocardiographic study. *J Am Coll Cardiol*
1988; 12: 426–40.

35 Klein AL, Burstow DJ, Tajik AJ, Zachariah PK, Bailey KR, Seward
JB. Effects of age on left ventricular dimensions and filling dynamics
in 117 normal persons. *Mayo Clin Proc* 1994; 69: 212–24.

36 Naguse SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth
OA, et al. Recommendations for the evaluation of left ventricular dia-
stolic function by echocardiography. *J Am Soc of Echocardiog* 2009;
22: 107–133.

37 Ha JW, Oh JK, Redfield MM, Ujino K, Seward JB, Tajik AJ.
Triphasic mitral inflow velocity with middiastolic filling: clinical
implications and associated echocardiographic findings. *J Am Soc
Echocardiogr* 2004; 17: 428–31.

38 Xie GY, Berk MR, Smith MD, Garule JC, DeMaria AN. Prognostic
value of Doppler transmitral flow patterns in patients with congestive
heart failure. *J Am Coll Cardiol* 1994; 24: 132–9.

39 Pinamonti B, Zecchin M, Di Lenarda A, Gregori D, Sinagra G,
Camerini F. Persistence of restrictive left ventricular filling pattern
in dilated cardiomyopathy: an ominous prognostic sign. *J Am Coll Cardiol*
1997; 29: 604–12.

40 Nijland F, Kamp O, Karreman AJ, van Eeijng MJ, Visser CA.
Prognostic implications of restrictive left ventricular filling in acute
myocardial infarction: a serial Doppler echocardiographic study. *J Am Coll Cardiol*
1997; 30: 1618–24.

41 Somaratne JB, Whalley GA, Gamble GD, Doughty RN. Restrictive
filling pattern is a powerful predictor of heart failure events post acute
myocardial infarction and in established heart failure: a literature-
based meta-analysis. *J Card Fail* 2007; 13: 346–52.

42 Klein AL, Hatle LK, Taliercio CP, Oh JK, Kyle RA, Gertz MA, et al.
Prognostic significance of diastolic function in cardiac amyloidosis: A
Doppler echocardiographic study. *Circulation* 1991; 83: 808–16.

43 Pinamonti B, Di Lenarda A, Sinagra G, Camerini F. Heart Muscle
Disease Study Group. Restrictive left ventricular filling pattern in
dilated cardiomyopathy assessed by Doppler echocardiography: clini-
cal, echocardiographic and haemodynamic correlations and prognos-
tic implications. *J Am Coll Cardiol* 1993; 22: 808–15.

44 Appleton CP. Hemodynamic determinants of Doppler pulmonary
venous flow velocity components: new insights from studies in lightly
sedated normal dogs. *J Am Coll Cardiol* 1997; 30: 1562–74.

45 Smiseth OA, Thompson CR, Lohavanichbukkit K, Ling H, Abel JG,
Miyagishima RT, et al. The pulmonary venous systolic flow pulse—
it's origin and relationship to left atrial pressure. *J Am Coll Cardiol*
1999; 34: 802–9.

46 Nishimura RA, Abel MD, Hatle LK, Tajik AJ. Relation of pulmonary
vein to mitral flow velocities by transesophageal Doppler echocar-
diography. Effect of different loading conditions. *Circulation* 1990;
81: 1488–97.

47 Keren G, Bier A, Sherez J, Miura D, Keefe D, Lelenttel T. Atrial con-
traction is an important determinant of pulmonary venous flow. *J Am Coll Cardiol*
1986; 7: 693–5.

48 Chiennayi KM, Alexander D, Maddens M, McCullough PA.
Curriculum in cardiology: Integrated diagnosis and management of
diastolic heart failure. *Am Heart J* 2007; 153: 189–200.

49 Klein AL, Tajik AJ. Doppler assessment of pulmonary venous flow
in healthy subjects and in patients with heart disease. *J Am Soc Ec-
chocardiogr* 1991; 4: 379–92.

50 Kuecherer HF, Muhinedeen IA, Kasumoto FM, Lee E, Moulinier LE,
Cahanal MK, et al. Estimation of mean left atrial pressure from trans-
esophageal pulsed Doppler echocardiography of pulmonary venous
flow. *Circulation* 1990; 82: 1127–39.

51 Rosslov O, Hatle LK. Pulmonary venous flow velocities recorded by
transthoracic Doppler ultrasound: relation to left ventricular diastolic
pressures. *J Am Coll Cardiol* 1993; 21: 1678–96.

52 Appleton CP, Gallaway JM, Gonzalez MS, Gaballa M, Basnight MA.
Estimation of left ventricular filling pressures using two-dimensional
and Doppler echocardiography in adult patients with cardiac disease.
Additional value of analyzing left atrial size, left atrial ejection fraction
and the difference in duration of pulmonary venous and mitral flow
velocity at atrial contraction. *J Am Coll Cardiol* 1993; 22: 1972–82.

53 Rakowski H, Appleton C, Chan KL, Dumensil G, Honos G, Jue
J, et al. Canadian consensus recommendations for the measure-
ment and reporting of diastolic dysfunction by echocardiography:
from the Investigators of Consensus on Diastolic Dysfunction by
Echocardiography. *J Am Soc Echocardiogr* 1996; 9: 736–60.

54 Khouri SJ, Male GT, Suh DD, Walsh TE. A practical approach to the
echocardiographic evaluation of diastolic function. *J Am Soc Echocardiogr*
2004; 17: 290–7.

55 Rosslov O, Hatle LK. Pulmonary venous flow velocities recorded by
transthoracic Doppler ultrasound: relation to left ventricular diastolic
pressures. *J Am Coll Cardiol* 1993; 21: 1678–96.

56 Yamamoto K, Nishimura RA, Chalikhi HP, Appleton CP, Holmes
DR Jr, Redfield MM. Determination of left ventricular filling pressure by
Doppler echocardiography in patients with coronary artery disease:
critical role of left ventricular systolic function. *J Am Coll Cardiol*
1997; 30: 1819–26.
Echocardiographic evaluation of diastolic heart failure

57 Vasan RS, Benjamin EJ. Diastolic heart failure — no time to relax. N Engl J Med 2001; 344: 56–9.
58 Badano LP, Albanese De Biagio P, Rozbowski P, Miani D, Fresco C, Fioretti PM. Prevalence, clinical characteristics, quality of life, and prognosis of patients with congestive heart failure and isolated left ventricular diastolic dysfunction. J Am Soc Echocardiogr 2004; 17: 253–61.
59 Brun P, Tribouilloy C, Duval P, Ameur L, Meguira A, Pelle G, Dubois-Rande JL. Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analysis. J Am Coll Cardiol 1992; 20: 420–32.
60 Stugaard M, Smiseth OA, Risoe C, Ihlen H. Intraventricular early diastolic filling during acute myocardial ischemia. Assessment by multi-gated color M-mode Doppler echocardiography. Circulation 1993; 88: 2705–13.
61 Steine K, Stugaard M, Smiseth OA. Mechanisms of retarded apical filling in acute ischemic left ventricular failure. Circulation 1999; 100: 1048–54.
62 Takasuji H, Nakamura K, Urasawa K, Teranishi J, Onozuka H, Takagi Y. Firstenberg MS, Levine BD, Garcia MJ, Greenberg NL, Cardon L, et al. Spectral pulsed tissue Doppler imaging in diastole: a tool to increase our insight in and assessment of diastolic relaxation of the left ventricle. J Am Coll Cardiol 2001; 38: 1163–52.
63 Fung ZY, Leano R, Marwick TH. Relationship between longitudinal and radial contractility in subclinical diabetic heart disease. Clin Sci (Lond) 2004; 106: 53–60.
64 Sun JP, Bachinski LL, Meyer D, Hill R, Zoghi WA, Tam JW, et al. Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 2001; 104: 128–30.
65 Wang M, Yip GW, Wang AY, Zhang Y, Ho PY, Tsai MK, et al. Peak early diastolic mitral annulus velocity by tissue Doppler imaging adds independent and incremental prognostic value. J Am Coll Cardiol 2003; 41: 820–26.
66 Henein MY, Gibson DG. Normal long axis function. Heart 1999; 81: 111–3.
67 Sun JP, Popovic ZB, Greenberg NL, Xu XF, Asher CR, Stewart WJ, Thomas JD. Non-invasive quantification of regional myocardial function using Doppler-derived velocity, displacement, strain rate and strain in healthy volunteers: effects of aging. J Am Soc Echocardiogr 2004; 17: 132–8.
68 Hees PS, Fleg JL, Lakatta EG. Left ventricular remodelling with age in normal men versus women: novel insights using three dimensional magnetic resonance imaging. Am J Cardiol 2002; 90: 1231–36.
69 Fraser AG, Payne N, Midler CF, Janerot-Sjöberg B, Lind B, Grocott-Mason RM, et al. MYDISE Investigators. Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr 2003; 4: 43–53.
70 Wang M, Yip G, Yu CM, Zhang Q, Zhang Y, Tse D, Kong SL, Sanderson JE. Independent and incremental prognostic value of early mitral annulus velocity in patients with impaired left ventricular systolic function. J Am Coll Cardiol 2005; 41: 272–7.
71 Yu CM, Sanderson JE, Marwick TH, Oh JK. Tissue Doppler imaging – a new prognosticator for cardiac diseases. J Am Coll Cardiol 2007; 49: 1903–14.
72 Nagueh SF, Middleton KJ, Kopeles HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 1997; 30: 1527–33.
73 Sohn DW, Song JM, Zo JH, Chai IH, Kim HS, Chun HG, Kim HC. Mitral annulus velocity in the evaluation of left ventricular diastolic function in atrial fibrillation. J Am Soc Echocardiogr 1999; 12: 927–31.
74 Skaluba SJ, Litwin SE. Mechanisms of exercise intolerance. Insights from tissue Doppler imaging. Circulation 2004; 109: 972–7.
75 Burgess MI, Jenkins C, Sharram JE, Marwick TH. Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise. J Am Coll Cardiol 2006; 47: 1891–900.
76 Hasegawa H, Little WC, Ohno M, Brucks S, Morimoto A, Cheng HJ, Cheng CP. Diastolic mitral annular velocity during the development of heart failure. J Am Coll Cardiol 2003; 41: 1590–7.
77 Wang M, Yip G, Yu CM, Zhang Q, Zhang Y, Tse D, Kong SL, Sanderson JE. Independent and incremental prognostic value of early mitral annulus velocity in patients with impaired left ventricular systo...
Doppler estimation of left ventricular filling pressures in patients with mitral valve disease Circulation 2005; 111: 3281–9.
112 Hasegawa H, Little WC, Ohno M, Brucks S, Morimoto A, Cheng HJ, et al. Diastolic mitral annular velocity during the development of heart failure. J Am Coll Cardiol 2003; 41: 1590–7.
113 Oh JK, Tajik J. The return of cardiac time intervals: the Phoenix is rising. J Am Coll Cardiol 2003; 42: 1471–4.
114 Min PK, Ha JW, Jung JH, Choi EY, Choi D, Rim SJ, et al. Incremental value of measuring the time difference between onset of mitral inflow and onset of early diastolic mitral annulus velocity for the evaluation of left ventricular diastolic pressures in patients with normal systolic function and an indeterminate E/E'. J Am Cardiol 2007; 100: 326–30.
115 Douglas PS. The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J Am Coll Cardiol 2003; 42: 1206–7.
116 Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM. Diastolic dysfunction and left atrial volume: a population-based study. J Am Coll Cardiol 2005; 45: 87–92.
117 Pearlman JD, Triulzi MO, King ME, Abascal VM, Newell J, Weyman AE. Left atrial dimensions in growth and development: normal limits for two dimensional echocardiography. J Am Coll Cardiol 1990; 16: 1168–74.
118 Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphological expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 2002; 90: 1284–9.
119 Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM. Diastolic dysfunction and left atrial volume: a population-based study. J Am Coll Cardiol 2005; 45: 87–92.
120 Orsman E, Seward JB, Buschheinreither B, Bergler-Klein J, Heger M, Klaar U, et al. Diastolic function assessment in clinical practice: the value of 2-dimensional echocardiography. Am Heart J 2007; 154: 130–6.
121 Barberato SH, Pecois-Hillo R. Usefulness of left atrial volume for differentiation of normal from pseudonormal diastolic function pattern in patients on haemodialysis. J Am Soc Echocardiogr 2007; 20: 359–65.
122 Lim TK, Ashrafian H, Dwivedi G, Collinson PO, Senior R. Increased left atrial volume index is an independent predictor of raised setrum natriuretic peptide in patients with suspected heart failure but normal left ventricular ejection fraction: implication for diagnosis of diastolic heart failure. Eur J Heart Fail 2006; 8: 38–45.
123 Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiography 2006; 7: 90–108.
124 Takezoto Y, Barnes ME, Seward JB, Lester SJ, Appleton CA, Gersh BJ, et al. Usefulness of left atrial volume in predicting first congestive heart failure in patients ≥ 65 years of age with well-preserved left ventricular systolic function. Am J Cardiol 2005; 96: 832–6.
125 Tsang TS, Barnes ME, Gersh BJ, Takezoto Y, Rosales AG, Bailey KR, Seward JB. Prediction of risk for first age-related cardiovascular events in the elderly population: the incremental value of echocardiography. J Am Coll Cardiol 2003; 42: 1199–205.
126 Tsang TS, Gersh BJ, Appleton CP, Tajik AJ, Barnes ME, Bailey KR, et al. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J Am Coll Cardiol 2002; 40: 1636–44.
127 Ahbayaratna WP, Seward JB, Appleton CP, Douglas PS, Oh JK, Tajik AJ, Tsang TS. Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol 2006; 47: 2357–63.
128 Barnes ME, Miyasaka Y, Seward JB, Gersh BJ, Rosales AG, Bailey KR, et al. Left atrial volume in the prediction of first ischaemic stroke in an elderly cohort without atrial fibrillation. Mayo Clin Proc 2004; 79: 1008–14.
129 Pagel PS, Kef H, Gare M, Hettrick DA, Kersten JR, Warthier DC. Mechanical function of the left atrium: new insights based on analysis of pressure-volume relations and Doppler echocardiography. Anaesthesiology 2003; 98: 975–94.
130 Mitchell JH, Shapiro W. Atrial function and the haemodynamic
consequences of atrial fibrillation in man. Am J Cardiol 1969; 23: 556–67.

131 Prioli A, Marino P, Lanzoni L, Zardini P. Increasing degrees of left ventricular filling impairment modulate left atrial function in humans. Am J Cardiol 1998; 82: 756–61.

132 Edvardsen T, Gerber BL, Garot J, Bueermke DA, Lima JA, Smiseth OA. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against 3-dimensional tagged magnetic resonance imaging. Circulation 2002: 50–6.

133 Marwick TH. Measurement of strain and strain rate by echocardiography. J Am Coll Cardiol 2006; 1313–27.

134 Anderson B. Echocardiography: The normal examination and echocardiographic measurements 2nd edition. MGA Graphics. Oxford: Wiley-Blackwell; 2002. Pp 266–71.

135 Langeland S, D'Hooge J, Wouters PF, Leather HA, Claus P, Bijnens B, Sutherland GR. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation 2005; 112: 510–22.

136 Amundsen BH, Helle-Valle T, Torp H, Angelsen B, Smiseth OA. Quantitative assessment of intrinsic regional myocardial deformation by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 2005: 45: 2034–41.

137 Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003; 107: 2120–6.

138 Pislara C, Bruce CJ, Anagnostopoulos PC, Allen JL, Seward JB, Pellikka PA, et al. Ultrasound strain imaging of altered myocardial stiffness: stunned versus infarcted reperfused myocardium. Circulation 2004; 109: 2905–10.

139 Park TH, Nagueh SF, Khoury DS, Kopelen HA, Akrivakis S, Nasser K, et al. Impact of myocardial structure and function postinfarction on diastolic strain measurements: implications for assessment of myocardial viability. Am J Physiol Heart Circ Physiol 2006; 290: H724–31.

140 Pavlopoulos H, Nihoyannopoulos P. Abnormal segmental relaxation addressing tachycardia. J Am Coll Cardiol 2007; 50: 114–5.

141 Ashikaga H, Criscione JC, Omens JH, Covell JW, Ingels NB Jr. Transmural left ventricular mechanics underlying torsional recoil during relaxation. Am J Physiol Heart Circ Physiol 2004: 286: H640–647.

142 Dweck MS, Miller DC, et al. Long-term follow-up of patients with hypertrophic cardiomyopathy. Circulation 1998; 82: 756–61.

143 Buckberg GD. Basic science review: the helix and the heart. Eur Heart J 1989; 64: 915–27.

144 Talreja DR, Nishimura RA, Oh JK. Estimation of left ventricular filling pressure with exercise by Doppler echocardiography in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 1991; 17: 1065–72.

145 Sengupta P, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle. J Am Coll Cardiol 2007; 50: 1158–64.

146 Hosoda K, Ishikawa T, Tajik AJ, Oh JK. Early detection of diastolic dysfunction by two-dimensional speckle tracking echocardiography. Eur Heart J 2007; 28: 2756–62.

147 Hees PS, Fleg JL, Dong SJ, Shapiro EP. MRI and echocardiographic assessment of the diastolic dysfunction of normal aging: altered LV pressure decline or load? Am J Physiol Heart Circ Physiol 2004; 286: H782–H788.

148 Kim HK, Sohn DW, Lee SE, Choi SY, Park JS, Kim YJ, Oh BH, et al. Assessment of left ventricular rotation and torsion with two-dimensional speckle tracking echocardiography. J Am Soc Echocardiogr 2007; 20: 45–53.

149 Tatum DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ, et al. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol 1991; 17: 1065–72.

150 Wilson MM, Belden WB, Nakai H, Nishikage T, Kokumai M, Nagakura T, et al. Reduced and delayed untwisting of the left ventricle in patients with hypertension and left ventricular hypertrophy: a study using two dimensional speckle tracking imaging. Eur Heart J 2007; 28: 2756–62.

151 Kim HK, Sohn DW, Lee SE, Choi SY, Park JS, Kim YJ, Oh BH, et al. Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise. J Am Coll Cardiol 2006; 47: 1891–900.

152 Gregoire V, Tworkowski S, Bresson F, Dufieux C, et al. Measurement of ventricular torsion by two-dimensional speckle tracking echocardiography: a novel noninvasive diagnostic test for diastolic dysfunction using supine bicycle exercise Doppler echocardiography. J Am Soc Echocardiogr 2005; 18: 63–8.

153 Choi EY, Ha JW, Rim SJ, Kim SA, Yoon SJ, Shim CY, et al. Incremental value of left ventricular diastolic function reserve index for predicting exercise capacity in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 2008; 21: 487–92.

154 Ha JW, Lee HK, Kang ES, Ahn CM, Kim JM, Ahn JA, et al.
Abnormal left ventricular longitudinal functional reserve in patients with diabetes mellitus: implication for detecting subclinical myocardial dysfunction using exercise tissue Doppler echocardiography. *Heart* 2007; 93: 1571–6.

169. Duncan AM, Lim E, Gibson DG, Henein MY. Effect of dobutamine stress on left ventricular filling in ischemic dilated cardiomyopathy: pathophysiology and prognostic implications. *J Am Coll Cardiol* 2005; 46: 488–96.

170. Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, et al. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. *J Am Coll Cardiol* 2009; 54: 36–46.

171. Chinnaiyan KM, Alexander D, Maddens M, McCullough PA. Curriculum in cardiology: integrated diagnosis and management of diastolic heart failure. *Am Heart J* 2007; 153: 189–200.

172. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. (2005 Writing Committee Members) 2009 Focused Update Incorporated Into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in Collaboration With the International Society for Heart and Lung Transplantation. *Circulation* 2009; 119: e391–e479.

173. Friedrich SP, Lorell BH, Rousseau MF, Hayashida W, Hess OM, Douglas PS, et al. Intracardiac angiotensin-converting enzyme inhibition improves diastolic function in patients with left ventricular hypertrophy due to aortic stenosis. *Circulation* 1994; 90: 2761–71.

174. Schunkert H, Jackson B, Tang SS, Smits JF, Apstein CS, Lorell BH. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. *Circulation* 1993; 87: 1328–39.

175. de Simone G, Gottdiener JS, Chinali M, Maurer MS. Left ventricular mass predicts heart failure not related to previous myocardial infarction: the Cardiovascular Health study. *Eur Heart J* 2008; 29: 741–7.

176. Solomon SD, Carretero OA, Volaj N, Liao TD, Motivala A, Peterson EL, Brilla CG. Aldosterone and myocardial fibrosis in heart failure. *Am J Cardiol* 2006; 97: 282–9.

177. Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. *Circulation* 2002; 105: 2512–7.

178. Gold MR, Carson PE, McMurray JJ, et al. Preservation of left ventricular systolic and diastolic function during short lasting atrial fibrillation in patient s with an implantable atrial defibrillator: a tissue Doppler imaging study. *Pacing Clin Electrophysiol* 2001; 24: 979–88.

179. The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. *N Engl J Med* 1997; 36: 525–33.

180. Yu CM, Wang Q, Lau CP, Tse HF, Leung SK, Lee KL, et al. Reversible impairment of left and right ventricular systolic and diastolic function during short lasting atrial fibrillation in patient s with an implantable atrial defibrillator: a tissue Doppler imaging study. *Pacing Clin Electrophysiol* 2001; 24: 979–88.

181. The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. *N Engl J Med* 1997; 36: 525–33.

182. Ganiats TG, Queenie Lo and Liza Thomas. Optimizing treatment and outcomes in acute heart failure: beyond initial triage. *Congest Heart Fail* 2006; 12: 137–45.

183. Silver MA, Peacock WF, Diercks DB. Optimizing treatment and outcomes in acute heart failure: beyond initial triage. *Congest Heart Fail* 2006; 12: 137–45.

184. Silver MA, Peacock WF, Diercks DB. Optimizing treatment and outcomes in acute heart failure: beyond initial triage. *Congest Heart Fail* 2006; 12: 137–45.