Chapter

Toxicity of Cadmium in Soil-Plant-Human Continuum and Its Bioremediation Techniques

Asik Dutta, Abhik Patra,
Hanuman Singh Jatav, Surendra Singh Jatav,
Satish Kumar Singh, Eetela Sathyanarayana,
Sudhanshu Verma and Pavan Singh

Abstract

Cadmium (Cd) toxicity is highly detrimental for the human and largely originated from faulty industrial and agricultural practices. Cadmium toxicity can be observed in minute concentration and highly mobile in the soil–plant system and availability in soil is mainly governed by various physio-chemical properties of the soil. Cereals and vegetables cultivated in peri-urban areas, former mining and industrial areas accumulate Cd in toxic limit as they receive Cd from multiple ways. In general, when the total cadmium (Cd) concentration in soil exceeds 8 mg kg$^{-1}$, or the bioavailable Cd concentration becomes >0.001 mg kg$^{-1}$, or the Cd concentration in plant tissue reaches 3–30 mg kg$^{-1}$ most plants exhibit visible Cd toxicity symptoms. The impacts of Cd toxicity are seed germination, growth, photosynthesis, stomata conductance, enzyme activities and alteration in mineral nutrition. The major source of Cd in human is food chain cycle and causes disorders like “itai-itai” disease, cancer, and nephrotoxicity. Cadmium harms kidney, liver, bone and reproductive body parts and may be fatal in serious condition. WHO recommended the tolerable monthly Cd intake are 25 μg kg$^{-1}$ body weights and in drinking water Cd concentration should not exceed 3 μg L$^{-1}$. It is hard to remove these potent and hazardous metals from the environment as they have long mean residence time but, can be converted into less toxic form through bioremediation. This chapter focuses on the effect of Cd toxicity in soil–plant-human continuum and its bioremediation techniques to mitigate the Cd- toxicity.

Keywords: bioremediation, cadmium, carcinogen, food safety, soil contamination

1. Introduction

Cadmium (Cd) is an element which is extremely toxic to humans and can cause adverse effects even in small doses. Cadmium is a non-essential trace metal, which plays no recognized role in human, plant and animal development and growth. Various Environmental Protection Agency classified Cd as one of the pollutant element and include it in the list of 126 priority pollutants [1]. Lithosphere, hydrosphere and atmosphere take part in the exchange of Cd in its bio-geo-chemical
Soil Contamination - Threats and Sustainable Solutions

The aggregate industrial emission of Cd is vast and significantly contributed to bio-geo-chemical cycles, resulting Cd deposition in many ecosystems and hastening buildup of Cd both in nature and human food chain. Therefore, a variety of detrimental health effects of Cd have been identified in various parts of the world and these symptoms are increases progressively. Cadmium (Cd), a hazardous heavy metal, falls into Group IIB of the periodic table and, its amounts ranging from 0.1 to 1 mg kg$^{-1}$ in environment. According to recent data collected in 2011, 7500, 2500 and 2000 t of Cd was emitted by China, Republic of Korea and Japan whereas globally it was 21,500 t yr$^{-1}$. After the industrial revolution, man-made activities have greatly intensified the CD level in environment. The produce and use of Cd containing batteries, dyes, electroplating, combustion of crude oil, paints (Cd use as stabilizer), phosphate fertilizer processing and waste water applications have added 3–10 folds higher Cd than natural methods to the ecology. The release of Cd into to the soil environment is responsible for some natural disasters, such as volcanic eruption, sea salt spray, wild fires, weathering of Cd containing minerals and rock, transportation and accumulation of Cd-polluted soil by water and wind. Cadmium, resulting from occupational and non-occupational contact, has detrimental impact on human health through build-up of Cd in human body. Occupational contamination is primarily observed by the extraction and smelting of non-ferrous metals, the manufacturing and handling of composite-containing CDs, and e-waste recycling activities. Non-occupational Cd contamination is mainly done by smoking, feeding behavior and atmospheric Cd particles. Cadmium is ingested into multiple organs within the human body.

Country	Adults N 19	Children	Adolescent 14–18 years	References
MAL/RDA*	5.0E–02b	—	—	[11]
RFd (oral reference dose)	1.0E–03	1.0E–03	—	[12]
Netherland	2.01E–02	4.10E–02	1.60E–02	[13]
USA	1.08E–05	2.21E–05	8.63E–06	[14]
Bangladesh	5.17E–05	1.06E–04	4.13E–05	[15]
Italy	1.54E–05 to 5.48E–05	3.16E–05 to 1.12E–04	1.23E–05 to 4.38E–05	[16]
Ethiopia	1.16E–04	2.37E–04	9.24E–05	[17]
Zimbabwe	8.87E–04	1.81E–03	7.09E–04	[18]
China	2.05E–04 to 2.805E–03	4.18E–04 to 5.72E–03	1.63E–04 to 2.23E–03	[19]
Sweden	6.95E–05	1.42E–04	5.55E–05	[14]
Uganda	8.22E–05	1.68E–04	6.56E–05	[11]
India	8.03E–04 to 4.92E–03	1.64E–03 to 1.00E–02	6.41E–04 to 3.93E–03	[13]
Pakistan	3.67E–05 to 8.10E–04	7.49E–05 to 1.66E–03	2.93E–05 to 6.47E–04	[17]
France	5.78E–03	1.18E–02	4.62E–03	[12]

*aMAL/RDA maximum allowable limit/recommended dietary allowance.
bE–02 represents 1×10^{-2}.

Table 1.
Daily dietary intake of Cd (mg kg$^{-1}$ day$^{-1}$) through consumption of Cd contaminated vegetables.
i.e., kidney, liver, lungs, thymus testes, heart, epididymis, prostate, and salivary glands, leading to malfunctioning of multi-organ and ultimately death [6, 7]. The Itai-Itai epidemic with 184 patients and 388 possible victims was a well-known environmental hazard associated with Cd infection. Faulty farming practices and the use of hazardous plant agro-chemicals allow Cd to invade the food chain of humans. Commonly, trace elements level is typically higher in the roots, however in certain leafy vegetables (e.g., lettuce and spinach), Cd is accumulated in plant leaves owing to its fast absorption and mobility within the plant system [8]. The estimation of quantities of Cd content in food materials indicates that vegetables and grains are the key factor of Cd in the food material, even though they are often present in animal products with a low quality. It is estimated that the everyday Cd ingestion by food material is 10.0–30.0 μg for adults in various countries [9, 10] (Table 1). Satarug et al. [20] reported that Cd level in vegetables varied from 0.001 to 0.124 mg kg⁻¹ and intake of vegetables accounts >70–90% Cd susceptibility to humans. Remediation measures like washing the matrix, excavation and burial, and filed mechanization techniques have been followed in both limited and commercial scale but, not economically viable. An alternative strategy to mitigate the harmful effects Cd on soil–plant could be the use of bioremediation using suitable plants and microbes. So, in this chapter in brief the importance of Cd as a toxic element, its dynamics in the soil and plant and environment friendly measures to eliminate Cd pollution is discussed.

2. Cadmium contamination in soil and water

Cadmium (Cd) is a hazardous trace element disseminated extensively in the environment and causes implacable impact on human health even in very minute content [21]. Cadmium in lithosphere, sedimentary rocks and soil content 0.2, 0.3 and 0.53 mg kg⁻¹ however in soil water and groundwater 5.0 and 1 μg L⁻¹, respectively [22, 23]. Cadmium contamination in soils and groundwater arises due to both natural and anthropogenic activities and cause harmful impact as its goes into human body through drinking water and foods [24]. Cadmium is mostly geogenic by origin whereas, majority comes from natural weathering and other sources are mining, casting and smelting, irrigation with sewage water, factories and vehicular discharges, and agrochemicals are major man-made causes of Cd pollution [25, 26]. Moreover, unmonitored and unsafe garbage dumping activities have intensely raised Cd levels in soil and water bodies. At end of 1980’s it was reported that geogenic and anthropogenic sources mobilizes Cd to the biosphere 24,000 and 4.5 t yr⁻¹, respectively which depicted the supremacy of man-made activity [27].

Among the natural sources windblown soil particles are the main reason for atmospheric Cd contamination followed by wildfires, sea spray, volcanic emissions, and meteoric dust. In California, Burke et al. [28] estimated that forest fire enhanced the average Cd level in water bodies by 2 folds. Pacyna and Pacyna [29] and Richardson et al. [30] reported that the Global average annual emission of natural Cd is about 1400 t however, from anthropogenic sources it was 2983 t. In nature, Cd is present ubiquitously in all areas and interestingly it’s presence can be seen in remote places like ice peak of the Himalaya and North and South poles [31]. In southern Germany mainly relies on agricultural activities has Cd concentration in soil deposition was upto 0.25 g (ha⁻¹a⁻¹) however, in industrial western Germany the Cd deposition was quite high upto 1.4 g (ha⁻¹a⁻¹) [32]. Thus, indicates that anthropogenic activities have greater potential in Cd pollution.

Cadmium content in the soil is positively correlated with the weathering of parent material but, unscientific practices have worsened the input, output balance
Soil Contamination - Threats and Sustainable Solutions

...input through atmospheric precipitation, factory or agricultural operations, minus its output through leaching, erosion and uptake by the crops [33]. The average Cd concentration in unpolluted soils in worldwide is 3.6%, while amounts which might be differ across continents, countries and type of soils. Cadmium in soil >30% is critically consider as Cd pollution limit, however, it was found that Cd level in soil reduces proportionately as the distance between manufacturing units and urban areas increases [34, 35]. In soil, the predominant source of Cd contamination is through weathering of various rocks and minerals present in the soil [25]. Maximum quantity of Cd was found in sedimentary rocks (0.1 to 26%) as compared to metamorphic and igneous rocks which contains Cd in the range of 1.1–10% and 0.7–2.5%, respectively [36, 37]. Similarly, Liu et al. [36] reported that in mudstone and siltstone has higher Cd content (46%) whereas, carbonate rocks has only 17% Cd content. He et al. [38] documented that soils generated from metamorphic rock like shales are highly prone to Cd toxicity. The Table 2 illustrated the various Cd containing rocks and minerals that may be recognize important for the incidence of Cd in the soil and water. Zinc (Zn) from sphalerite (ZnS) or smithsonite (ZnCO$_3$), and iron (Fe) from pyrite (FeS$_2$) and hydrous oxides of iron can be easily substituted by Cd [39]. Due to similarity in ionic radius Cd can able to replace several divalent cations (i.e., Ca, Fe, Zn, Pb, and Co) from their rocks [37]. Gnandi and Tobschall [40] stated that Ca in apatite mineral can be substituted by Cd therefore

Rock type	Average Cd content (%)	Mineral	Composition	Average Cd content (%)
Carbonate stone	0.1	Apatite	Ca$_5$(F,Cl)(PO$_4$)$_3$	1.4–1.5
Ultramafic rocks	0.2	Sphalerite	(Zn,Cd)S	2
Schists	0.2	Smithonite	ZnCO$_3$	< 2.35
Sandstone	0.3	Magnetite	Fe$_2$O$_4$	< 3.1
Red shales	0.3	Silicates	--	0.3–58
Gneisses	0.4	Arsenopyrite	FeAsS	< 50
Mafic rocks	1.1	Scorodite	FeAsO$_4$. 2H$_2$O	< 10–58
Granitic rocks	1.2	Otavite	CdCO$_3$	65.2
Basalt	2.2	Greenockite	CdS	778
Obsidian	2.5	Pyromorphite	Pb$_5$Cl$_2$(PO$_4$)$_3$	< 10–80
Organic sediment	5.0	Calcite	CaCO$_3$	< 10–230
Red clay	5.6	Marcasite	FeS$_2$	< 500
Bituminous shale	8.0	Chalcopyrite	CuFeS$_2$	< 1100
Limestone	10	Bindheimite	Pb$_5$Sb$_2$O$_6$(O,OH)	1000–10,000
Shale and claystone	10	Tetrahedrite	(Cu,Fe,Zn,Ag)$_2$SbAs$_3$S$_3$	800–20,000
Bentonite	14	Anglesite	PbSO$_4$	1200 to >10,000
Marlstone	26	Mn-oxides	MnO. nH$_2$O	< 10,000
Oceanic manganese oxides	80	Limonite	FeO(OH). nH$_2$O	< 10,000
Phosphorites	250	Galena	PbS	< 30,000

Table 2.
Cadmium contents in different rocks and minerals.
Source	Type of pollution	Country/Area	Maximum Cd level	Reference
Mining				
Pb mining and refinery	Atmospheric deposition	Příbram, Czech Republic	Soil: 48 mg kg\(^{-1}\)	[45]
Cu mining	Waste water	Canchaque, Peru	Soil: 499 mg kg\(^{-1}\)	[28]
Pb–Zn mining/refinery	Waste water	Coeur d’Alene basin, Idaho, USA	Groundwater: 77 μg L\(^{-1}\)	[46]
Fe–Ni–Co mining	Waste material	Several sites in Albania	Soil: 14 mg kg\(^{-1}\)	[47]
Au–Ag–Pb–Zn mining	Waste water	Chloride, Arizona USA	Groundwater: 19 μg L\(^{-1}\)	[48]
As refinery	Waste material	Reppel, Belgium	Soil: 79 mg kg\(^{-1}\)	[49]
Phosphorite mining	Mining waste, transport	Kpogamé, Hahotoé, Togo	Soil: 43 mg kg\(^{-1}\)	[50]
Zn smelter	Atmospheric deposition	Hezhang County, China	Soil: 74 mg kg\(^{-1}\)	[51]
Zn smelter	Waste material	Celje, Slovenia	Soil: 344 mg kg\(^{-1}\)	[52]
Pb–Zn mining/refinery	Atmospheric deposition and waste water	Jinding, China	Soil: 531 mg kg\(^{-1}\)	[53]
Mining activities	Waste water	BacKan province, North Vietnam	Soil: 4.26 mg kg\(^{-1}\)	[54]
Au–Cu mining	Waste water	Bolnisi, Georgia	Soil: 121.5 mg kg\(^{-1}\)	[55]
Coal mining	Mining waste and deposition	Anhui province, eastern China	Soil: 0.05–0.87 mg kg\(^{-1}\)	[56]
Cu, Mo and Ni mining	Mining waste and deposition	Yangjiazhangzh and Dexiong, China	Soil: 22.8 mg kg\(^{-1}\)	[57]
Coal mines	Atmospheric deposition and waste water	Singrauli, India	Groundwater: 108 ppb	
Industries				
Cement factory	Atmospheric deposition	Qadissiya, Jordan	Soil: 13 mg kg\(^{-1}\)	[59]
Various (e.g., textile, electroplating)	Waste water	Coimbatore, India	Soil: 12.8 mg kg\(^{-1}\)	[42]
Ceramic industry	Sewage sludge	Castellon, Spain	Soil: 72 mg kg\(^{-1}\)	[60]
Pigment manufacture	Atmospheric deposition	Staffordshire, UK	Soil: 16 mg kg\(^{-1}\)	[61]
Textile industry	Waste water	Haridwar, India	Soil: 8.36 mg kg\(^{-1}\)	
Metal industry	Atmospheric deposition	Unmao, India	Groundwater: 74 μg L\(^{-1}\)	[63]
Ceramic industry	Atmospheric deposition	Yixing, China	Soil: 5.9 mg kg\(^{-1}\)	[64]
Paper mill	Waste water	Morigaon, India	Soil: 31.01 mg kg\(^{-1}\)	[65]
Source	Type of pollution	Country/Area	Maximum Cd level	Reference
---	--	--------------------------------------	------------------	-----------
Power industry and industrial plants	Atmospheric deposition and waste water	Malopolska province, southern Poland	Soil: 16.9 mg kg\(^{-1}\)	[66]
Zinc-smelter plant	Irrigation through industrial effluents	Rajasthan, India	Soil: 96.8 mg kg\(^{-1}\)	[67]
Atlas Cycle factory	Irrigation through industrial effluents	Haryana, India	Soil: 9.81 mg kg\(^{-1}\)	[67]
Waste management				
Disposal facilities	Leachate	Great lakes region, USA	Soil: 32 mg kg\(^{-1}\)	[40]
Household wastes	Waste water	Ikare, Nigeria	Groundwater: 580 μg L\(^{-1}\)	
Landfill	Leachate	Taoyuan, Taiwan, Alexandria, Egypt	Soil: 378 mg kg\(^{-1}\)	[68]
Sewage and waste disposal	Waste water	Sekondi-Takoradi Metropolis, Ghana	Groundwater: 90 μg L\(^{-1}\)	
Sewage disposal	Waste water and physical mixing	Sundarban, India	Soil: 1.70 mg kg\(^{-1}\)	[70]
Brownfield	Waste water	Xiangjiang River, China	Groundwater: 474 μg L\(^{-1}\)	
Oil spill accident	Waste deposition and physical mixing	Sundarban, Bangladesh	Sediment: 0.82 mg kg\(^{-1}\)	[38]
Electronic waste recycling	Waste water	Krishna Vihar, India	Soil: 477 mg kg\(^{-1}\)	[72]
Agriculture				
Sewage sludge application	Irrigation	Several sites in Spain	Soil: 90 mg kg\(^{-1}\)	[73]
P fertilizer production	Atmospheric deposition	Rio Grande, Brazil	Soil: 9.3 mg kg\(^{-1}\)	[32]
P fertilizer application	Infiltration	Cauvery River basin, India	Groundwater: 60 μg L\(^{-1}\)	
Urban agriculture	Atmospheric pollution and soil contamination	Belo Horizonte, Brazil	Soil: 0.20 mg kg\(^{-1}\)	[75]
Sewage sludge application	Soil application	Jiangsu Province, China	Leachate: 0.14 mg kg\(^{-1}\)	
Urban areas				
Sewerage	Leakage	Rastatt, Germany	Groundwater: 5 μg L\(^{-1}\)	[1]
Road traffic	Infiltration	Celle, Germany	Groundwater: 2.34 μg L\(^{-1}\)	
Over populated, E-wastes and industrialized	Infiltration and physical mixing	Western Uttar Pradesh, India	Groundwater: 0.07 mg L\(^{-1}\)	

Table 3.
Various types of cadmium contamination in soil and waterbodies.
Cd may be a natural adulteration in phosphate (P) minerals and phosphorite rocks that are essential for the manufacture of phosphate fertilizers. Unlike Eastern Europe, there is considerably higher Cd in agricultural fields of Western European and one of the reasons for this is use of P fertilizer from distinct source [41]. The Cd bioavailability is governed by several factors such as: pH, moisture content, soil texture, clay content and type, cation exchange capacity, quantity and type of organic matter (OM), hydrous oxides, etc. [38]. Cadmium is easily mobilize in the soil due to its weaker bonding between soil exchange sites (i.e., OM, carbonate, and hydrous oxide) [42] and that is the key factor to increase bio-availability of Cd to plants, ground water as well as plant products.

Geogenic sources input only 10 percent Cd in the environment however, man-made emission input 90 percent Cd in the environment. Among the various man-made sources major contribution is from manufacturing and application of P fertilizers, petroleum oil burning, smelting and casting industries, effluents from cement factories, vehicular emission, sewage sludge, landfills, municipality solid wastes, and mining activities [43, 44]. The Table 3 explained various anthropogenic activities and their impact on Cd build-up in soil and groundwater. Cadmium is mainly used in stabilization of plastics, pigments manufacturing, solar panels, nickel-cadmium batteries, and rust resistant steel production, agri-chemicals, solders, engine oil, and rubber and fabric industries [78, 79]. Brown et al. [80] reported that in 2015, globally Cd manufacture was ~24,900 metric tons and it was increases in the coming years. Among the anthropogenic sources mining and metal industries are the main reason for environmental Cd pollution followed by textiles industries, nonmetallic mineral products, fertilizers and agro-chemicals production, and leathers industries [81]. Landfills and municipal solid waste deposition are the major causes of soil pollution with Cd and in European countries municipal solid waste contain Cd level up to 3 to 12% [62]. Leachates from various sources are the main cause of Cd pollution in groundwater and Belon et al. [35] estimated that leachate form FYM, atmospheric deposition, inorganic fertilizers and municipal solid waste ranges from 10 to 25, 15–50, 30–55 and 2–5%, respectively. Another important source of Cd pollution in soil through the use of P fertilizers and P fertilizer used in various countries like Eastern Mediterranean countries, European countries and Germany the Cd content is as high as 770, 360 and 600%, respectively [37, 82]. Cadmium discharge and emitted from multiple sources gradually enters into the soil and then eventually bio-accumulates in food grains which ultimately leads to human health hazard.

3. Mechanism of Cd accumulation in plants and consequences

Cadmium (Cd) is a potent pestilential metal which enters primarily via plant roots, get distributed and accumulated in plant parts in different proportions and concentrations, hampering crop yield and deteriorating the quality of produce. It ultimately makes it way to enter food chain thereby possessing serious threat to human and animal health. Cadmium ranks 7 among the top 20 toxins and it enter to arable land through various industrial processes and farming practices [83].

3.1 Accumulation of Cd in plants

Accumulation of Cd in plant is facilitated by its mobilization, uptake and transport/distribution in various plant parts. Unscientific agricultural practices and industrial effluents are the major contributor of Cd in soil [84]. Phosphaic fertilizer
and sewage-sludge contribute to Cd pollution in agricultural soil. Concentration of Cd in plants is also an indicative of its concentration in soil; however various other factors including soil pH, organic matter content, interaction with other ions and plant species govern its availability in plants [85–87]. Meta data analysis of 162 wheat and 215 barley grain samples by Adams and associates, [88] showed grain Cd concentration is positively correlated with soil total cd content and soil reaction (pH). They also highlighted the fact that higher microbial activity, nitrification and application of sewage sludge increased the chance of Cd toxicity but, reclaiming the soil with liming may abate the chance of toxicity. Sauvé et al. [89] found that organic matter had almost 30 times more sorption affinity for Cd when compared with mineral soil in Canada which indicates the importance of quality of organic matter in binding and accumulating Cd. It is assumed that lowering of pH will facilitate Cd availability to plants, but it might not hold true for soils with lower pH and high organic matter.

Before apprehending the mechanism of Cd accumulation in plants, one has to understand uptake and translocation of Cd inside plants. Ability of plants to take up Cd depends upon numerous factors like total Cd content in soil solution, soil reaction (pH), redox potential (Eh) and moisture content, soil organic carbon content, soil temperature, and last but not the least interaction among different elements. Primarily Cd enters plant through roots. Once in roots, Cd can get stored or exported to shoots through xylem. Cadmium is both xylem and phloem mobile [54, 74]. There are two possible mechanisms of Cd translocation into the plants and subsequently to the grains. These are: (i) Xylem mediated translocation to the sink i.e. grains (ii) Active transportation to various plant parts culm, rachis, flag leaves, external parts of the panicles and followed by phloem mediated mobilization to grains [90] and Schematic representation of Cd uptake and subsequent translocation in rice was shown in Figure 1. Root cell membrane located transporters take key role in Cd uptake in plants [91].

Cadmium uptake and accumulation in plants must undoubtedly be under control of multiple genes which contribute quantitatively in stage-specific, tissue-specific, environment-specific to Cd transport, accumulation and sequestration in plants [92]. In a study conducted by Hédiji et al. [72] on long term exposure of

Figure 1.
Schematic model of Cd uptake process from soil to grains in rice.
Cd on tomato (*Solanum lycopersicum* L.) concluded that, impact of Cd toxicity is highly dose specific and significantly correlated with soil nutrient status. Whereas, in higher dose severely affecting the plant growth and metabolism by altering the nutrient partitioning. Several genes are responsible to carry out these processes.

3.2 Consequences to plant health

The impact of Cd toxicity in plants is still a closed book thing but, recent advances in plant physiological studies helped the researchers to answer the questions. Clemens [54] reported that the major influence on Cd toxicity in plants is nutrient imbalance by regulating the normal work of transporters peculiarly in fruit plants. For instance, the concentration of K, Zn, and Fe in developing fruits falls off drastically at the expense of Ca and Mg. The antagonistic relationship between Cd and K is well documented like sub-optimal K concentration in the pericarp which disrupts the normal bio-chemical cycles like bio-synthesis of protein, enzymatic activity and membrane bound activities such as sustaining cellular turgidity [54].

4. Consequences to human health

According to International Agency for Research on Cancer, Cd is highly inimical and labeled as class-I carcinogenic compound to mammalian health. Cadmium may not be toxic to the plants that accumulate it, yet are toxic to animals and humans feeding upon it. Cadmium makes it entry to human body either from food, water or breath and a little amount enters through skin. Majority of Cd entering to human body is either breathed out or excreted in feces, whereas only one-quarter of it gets into human body through breath and one-twentieth from food. People working in industries that release Cd are more prone to get affected by Cd toxicity because they might breath, eat or drink Cd in air, food or water. Cadmium with biological half-life of 10–30 years, generally gets accumulated in kidneys and liver and slowly leaves human body through urine or feces [93, 94]. Researches around the world indicate that daily cadmium intake from all sources is very low in case of general population which range between 10 and 25 μg day⁻¹, however the tolerable daily intake established by WHO is 60 and 70 10–25 μg day⁻¹ respectively, for adult women and men.

5. Cadmium toxicity in humans

Human health due to Cd is an emerging issue and needs urgent attentions [52]. During the process, 10–50% of the cadmium dust is consumed according to the particle size. Digestion is higher for people that have an iron, calcium or zinc deficiency. The main source of human cadmium toxicity is considered to be tobacco smoking other than industrial exposures and food habit [95–98]. Cd toxicity is developing gradually in the human body and eventually causes different negative health effects, particularly bone loss and nephron toxicity.

5.1 Absorption and distribution

Cd is passed across the body after assimilation, usually linked with a bunch of sulfhydryl containing protein such as metallothionine. Typically 30% stores in liver and kidney; the remaining spread across the body, with an independence half-life about a quarter of a century [99]. Blood, hair and urine Cd levels are indicator of
potential toxicity but, to get the actual toxicity level urine stimulation test with the subjects body weight is highly important [100].

5.2 Mechanisms of toxicity

As previously mentioned, Cd induced epigenetic changes in DNA articulation by oxidative pressure, impediments or guidance for transport pathways particularly in the kidney [98] (Figure 2). Extreme impedance to the physiological function of Zn or Mg is introduced by other pathological mechanisms [99]. Restriction of the heme and the weakening of mitochondrial work which is likely to cause apoptosis [47]. Glutathione explosion has been found alongside the auxiliary protein contortion attributable to the official Cd in sulfhydryl bunches [100]. Cooperation with other hazardous metals, such as lead (Pb) and arsenis (As) hastens these impacts [101, 102].

6. Clinical toxicity

The major site of Cd toxicity is kidney where a fragment S1 of the proximal tubule is a majorly targeted and disruption in mitochondrial protein synthesis due reabsorption of glucose, bicarbonate and phosphate clinically known as Fanconi disorder [76, 103]. Cadmium can also inhibit the digestion of vitamin D in the kidneys with progressively rises of issues like osteomalacia, osteoporosis, renal-around broking and calcium malabsorption [103–105]. Cadmium has multiple deleterious effects on the cardiovascular framework like adverse impact on vascular endothelium consistency [95, 106]. Cd links to sudden coronary death marginal blood vessel dysfunction, increased intima media thickness and scattered myocardial necrosis [64, 107]. In comparison, low-recurrence listening was substantially decreased by people with elevated urinary Cd levels [108]. In comparison, high-urinary Cd rates
have decreased cognitive power. Cadmium is assumed to be the carcinogenic agent Class B1 by the United States Environmental Protection Agency [46]. Conflicting research links Cd adoption and denies bosom malignant development [88, 94, 109]. Cd was associated to pancreas and lymphoma cell disturbance [88]. Vegetables developed in Cd-defiled soils can possibly cause toxicological issues in people particularly in developing women [110]. A few different components like low admission of Ca, vitamin D, and minor components, for example, Cu and Zn can build this sum. Thus, daily entry of Cd by Cd is exceptional due to the fusion of Cd in diets and the human dietary propensities. The mean daily use of Cd (DICd) uses the following formula as a general basis:

\[
\text{DI}_{\text{Cd}} = \frac{(C_{\text{Cd}} \times \text{factor} \times D_{\text{food intake}})}{\text{BW}_{\text{average weight}}}
\]

\(\text{DI}_{\text{Cd}} \) symbolizes daily intake of Cd, \(C_{\text{Cd}} \)Coefactor, intake of \(D_{\text{food}} \) and \(W_{\text{average weight}} \) are Cd fixations in vegetables, transition factor (new weight to dry weight), and human consumption of vegetables every day and regular body weight respectively. Table 2 describes the \(\text{DI}_{\text{Cd}} \) figures given in different countries by the use of Cd-sullied vegetables. The number of inhabitants in the Netherlands unmistakably ingests the most notable Cd from the available information through defiled vegetables, followed by France and USA. The introduced data shows that the use of Cd contaminated nourishments is a significant implementation course. In these lines, in order to avoid harmful health consequences, the intake of infected vegetables should be reduced to the fullest degree possible. Different remediation steps can also be introduced in infected soil to carry the Cd concentration to a reasonable amount. In contrast, \(\text{DI}_{\text{Cd}} \)'s principles are based on a few experiments worldwide. To describe incidents and potential dangers more thoroughly, further studies are needed. Furthermore, day-to-day vegetable intake, eating patterns, general status and the overall body weight of a person should be taken into account. Cadmium (Cd) is a toxicity ia result of long term exposure and “itai-itai” infection in Japan during 1950’s is an eye opening instance. Arrangement of rules and rules has been created in numerous nations and worldwide associations to manage the examination on wellbeing impact of Cd contamination [111].

7. Bioremediation of cadmium

According to EPA, bioremediation can be defined as “technique which uses naturally occurring microorganisms to break down hazardous substances into less toxic or non-toxic substances [111].”

7.1 Techniques of bioremediation

a. In-situ Bioremediation: This technique follows on-site remediation of polluted soil using sustainable technologies [112, 113].

b. Ex-situ Bioremediation: This method based on cleaning contaminated site elsewhere i.e. not in the site of pollution.

7.2 Types

a. Phytoremediation: Phytoremediation is an eco-friendly option for rejuvenating contaminated site using plants and microbes. Plants suitable for
phytoremediation techniques must have important characters like high above ground biomass with vigorous growth, proliferated root system and metal accumulating characters [114].

b. **Phytoextraction**: Phytoextraction can be described as a metal extracting character by plant roots and subsequently plants are subjected to burial in some other place or incineration. Taxonomically plants species which are excellent metal extractor’s belongs to families like Scrophulariaceae, Lamiaeae, Asteraceae, Euphorbiaceae, and Brassicaceae. However, plant species like *Celosia argentea* L. [115], *Salix mucronata* L. [61], *Cassia alata* L. [116], *Solanum melonga*ena L., *Momordica charantia* L. [117], *Kummerowia striata* L. [118], and *Swietenia macrophylla* L. [65], may be used as potential plant choices to increase the process of Cd phytoextraction. Moreover, a sub-division of phytoextraction, known as chelate-assisted phytoextraction, is also used as a possible solution for metals that have no hyperaccumulator species using EDTA or citric acid [66, 119].

7.3 Microorganisms for bioremediation

Microbe’s works in both active and passive mode and microbial species like bacteria, fungi and alage can be used as a potential option for eco-friendly remediation techniques [93]. Bacteria’s are very effective for cleaning contaminated site due to its unique metabolic characters and tolerance to harsh conditions [120]. Several heavy metals have been tested using bacteria species like *Flavobacterium*, *Pseudomonas*, *Enterobacter*, *Bacillus*, and *Micrococcus* sp. Their great bio-sorption ability is due to high surface-to-volume ratios and the potential active chemosorption sites (teichoic acid) on the cell wall [121]. Abioye and his coworkers [122] reported successful use of bacterial species like *Bacillus subtilis* L., *B. megaterium* L., *Aspergillus niger* L., and *Penicillium* sp. for revive soils contaminated with lead (Pb) and cadmium (Cd). Fungal species like *Coprinopsis atramentaria* L. can bio accumulate more than 75% of Cd of the contaminated site by 1 mg L\(^{-1}\) [123]. Goher and his co-authors [68] reported cleaning of Cd- contaminated site using dead algal cells of *Chlorella vulgaris* L.

8. Conclusions

This present chapter summarizes the various sources of Cd in environment and its toxic effects on plant and human being as well as suggested some approaches of bioremediation to mitigate the Cd pollution from environment. Anthropogenic activities are the key pathway to contaminate the environment with Cd which ultimately accumulated in various leafy vegetables and food grains. Consumption of this high Cd containing food causes several toxic symptoms in human being and leads to malfunctioning of multiple human organs. To reduce the Cd accumulation in food grain various amelioration strategies has been adopted among them use of microbes to decrease Cd uptake by plants seems to have great prospective. Moreover, some microbes may increase amounts of Cd due to their biochemical processes, and their implementation may also worsen problems with soil pollution. Use It is also suggested to characterize the microbes and tested them in laboratory and field condition prior to their use in agricultural soils, thus maintaining soil quality and food safety.
Author details

Asik Dutta¹, Abhik Patra², Hanuman Singh Jatav³,⁴*, Surendra Singh Jatav²,
Satish Kumar Singh², Eetela Sathyanarayana⁴, Sudhanshu Verma⁵ and Pavan Singh²

1 Crop Production Division, ICAR-Indian Institute of Pulse Research, Kanpur, India
2 Department of Soil Science and Agricultural Chemistry, Institute of Agricultural
Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
3 Sri Karan Narendra Agriculture University, Jobner, Jaipur, Rajasthan, India
4 Professor Jayashankar Telangana State Agricultural University,
Hyderabad, Telangana, India
5 Department of Agriculture, Integral Institute of Agricultural Science and
Technology, Integral University, Lucknow, Uttar Pradesh, India

*Address all correspondence to: hanumaniasbhu@gmail.com;
hsjatav.soils@sknau.ac.in

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
References

[1] Jin T, Lu J, Nordberg M. Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology. 1998;19:529-36

[2] Luoma SN, Rainbow PS. Metal Contamination in Aquatic Environments. Science and Lateral Management. Cambridge University Press, New York, 2008, pp. 573

[3] Weis JS, Bergey L, Reichmuth J, Candelmo A. Living in a contaminated estuary: behavioral changes and ecological consequences for five species. BioScience. 2011;5:375-85.

[4] Stoepppler M. Metals and Their Compounds in the Environment. Occurrence, Analysis, and Biological Relevance. FW Jr (Ed.), VCH, Weinheim. 1991:803

[5] Schwartz GG, Reis IM. Is cadmium a cause of human pancreatic cancer?. Cancer Epidemiology and Prevention Biomarkers. 2000;9:139-45

[6] Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA. The toxicity of cadmium and resulting hazards for human health. Journal of occupational medicine and toxicology. 2006;1:1-6.

[7] Takamure Y, Shimada H, Kiyozumi M, Yasutake A, Imamura Y. A possible mechanism of resistance to cadmium toxicity in male Long–Evans rats. Environmental toxicology and pharmacology. 2006;26:231-4

[8] Peijnenburg WJ, Baerselman R, De Groot A, Jager T, Leenders D, Posthuma L, Van Veen R. Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. Archives of Environmental Contamination and Toxicology. 2000;39:420-30

[9] Joint FA, WHO Expert Committee on Food Additives, World Health Organization. Evaluation of certain food additives and contaminants: fifty-fifth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; 2001

[10] Sahmoun AE, Case LD, Jackson SA, Schwartz GG. Cadmium and prostate cancer: a critical epidemiologic analysis. Cancer investigation. 2005;23:256-63

[11] Affum AO, Osae SD, Nyarko BJ, Afful S, Fianko JR, Akiti TT, Adomako D, Acquaah SO, Dorleku M, Antoh E, Barnes F, Affum EA. Total coliforms, arsenic and cadmium exposure through drinking water in the Western Region of Ghana: application of multivariate statistical technique to groundwater quality. Environmental Monitoring and Assessment. 2015;187:1

[12] Avkopashvili G, Avkopashvili M, Gongadze A, Gakhokidze R. Eco-Monitoring of Georgia’s Contaminated Soil and Water with Heavy Metals. Carpathian Journal of Earth and Environmental Sciences. 2017;12:595-604

[13] Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Rut tens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research. 2009;16:765-794

[14] Kauppinen T, Pukkala E, A., Saalo A, and A. J. Sasco AJ. “Exposure to chemical carcinogens and risk of cancer among Finnish laboratory workers,” American Journal of Industrial Medicine, 2003; 44:343-350

[15] Rahman MM, Asaduzzaman M, Naidu R. Consumption of arsenic
Toxicity of Cadmium in Soil-Plant-Human Continuum and Its Bioremediation Techniques
DOI: http://dx.doi.org/10.5772/intechopen.94307

and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. Journal of Hazardous Material. 2014; 262:1056-1063

[16] Beccaloni E, Vanni F, Beccaloni M, Carere M. Concentrations of arsenic, cadmium, lead and zinc in homegrown vegetables and fruits: Estimated intake by population in an industrialized area of Sardinia, Italy. Microchemical Journal. 2013; 107:190-5

[17] Khan K, Lu Y, Khan H, Ishtiaq M, Khan S, Waqas M, Wei L, Wang T. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and chemical toxicology. 2013; 58:449-58

[18] Mapanda, F., Mangwayana, E.N., Nyamangara, J., Giller, K.E. Uptake of heavymetals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe. Physics and Chemistry of Earth, Parts A/B/C. 2007; 32, 1399-1405

[19] Li N, Kang Y, Pan W, Zeng L, Zhang Q, Luo J. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Science of the total environment. 2015; 521:144-51

[20] Satarug S, Haswell-Elkins MR, Moore MR. Safe levels of cadmium intake to prevent renal toxicity in human subjects.British Journal of Nutrition. 2000; 84:791-802

[21] Khan A, Khan S, Khan MA, Qamar Z, Waqas M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research. 2015;22:13772-13799

[22] Kabata-Pendias A, Pendias H. Trace Element in Soil and Plants. 3rd ed. CRC Press, Boca Raton, USA. 2001

[23] Naseem S, Hamza S, Nawaz-ul-Huda S, Bashir E. Geochemistry of Cd in groundwater of Winder, Balochistan and suspected health problems. Environmental Earth Sciences. 2014; 71:1683-1690

[24] Pan LB, Ma J, Wang XL, Hou H. Heavy metals in soils from a typical county in Shanxi Province, China: levels, sources and spatial distribution. Chemosphere. 2016; 148:248-254

[25] Liu Y, Xiao T, Ning Z, Li H, Tang J, Zhou G. High cadmium concentration in soil in the Three Gorges region: Geogenic source and potential bioavailability. Applied Geochemistry. 2013; 37:149-156

[26] Nawab J, Khan S, Aamir M, Shamshad I, Qamar Z, Din I, Huang Q. Organic amendments impact the availability of heavy metal (loid)s in mine-impacted soil and their phytoremediation by Penisitumamericanum and Sorghum bicolor. Environmental Science and Pollution Research. 2016; 23:2381-2390

[27] Nriagu JO. Global metal pollution: poisoning the biosphere?. Environment: Science and Policy for Sustainable Development. 1990; 32:7-33

[28] Burke MP, Hogue TS, Kinoshita AM, Barco J, Wessel C, Stein ED. Pre-and post-fire pollutant loads in an urban fringe watershed in Southern California. Environmental Monitoring and Assessment. 2013; 185:10131-10145

[29] Pacyna JM, Pacyna EG. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews. 2001; 9:269-298
Soil Contamination - Threats and Sustainable Solutions

[30] Richardson GM, Garrett R, Mitchell I, Mah-Poulson M, Hackbarth T. Critical review on natural global and regional emissions of six trace metals to the atmosphere. Prepared for the International Lead Zinc Research Organisation, the International Copper Association, and the Nickel Producers Environmental Research Association. 2001

[31] Lee K, Do Hur S, Hou S, Hong S, Qin X, Ren J, Liu Y, Rosman KJR, Barbante C, Boutron CF. Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Science of the Total Environment. 2008;404:171-181

[32] Ilyin I, Gusev A, Rozovskaya O, Strijkina I. Transboundary Pollution by Heavy Metals and Persistent Organic Pollutants in 2014– Germany. 2016;33

[33] Six L, Smolders E. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils. Science of the Total Environment. 2014;485:319-328

[34] Akbar KF, Hale WH, Headley AD, Athar M. Heavy metal contamination of roadside soils of Northern England. Soil Water Research. 2006;1:158-163

[35] Belon E, Boisson M, Deportes IZ, Eglin TK, Feix I, Bispo AO, Galsomies L, Leblond S, Guellier CR. An inventory of trace elements inputs to French agricultural soils. Science of the Total Environment. 2012;439:87-95

[36] Shah MT, Begum S, Khan S. pedo and biogeochemical studies of mafic and ultramafic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environmental Earth Sciences. 2010;60:1091-1102

[37] Smolders E, Mertens J. Cadmium. In: Alloway JB (Ed.) Heavy Metals in Soils – Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed. Springer, Dordrecht. 2013;283-299

[38] He ZL, Xu HP, Zhu YM, Yang XE, Chen GC. Adsorption-desorption characteristics of cadmium in variable charge soils. Journal of Environmental Science and Health. 2005;40:805-822

[39] Tabelin CB, Igarashi T, Villacorte-Tabelin M, Park I, Opiso EM, Ito M, Hiroyoshi N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of the Total Environment. 2018;645:1522-1553

[40] Gnandi K, Tobschall H. Heavy metals distribution of soils around mining sites of cadmium-rich marine sedimentary phosphorites of Kpogame and Hahotoe (southern Togo). Environmental Geology. 2002;41:593-600

[41] Tóth G, Hermann T, Da Silva MR, Montanarella L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International. 2016;88:299-309

[42] Eggleton J, Thomas KV. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International. 2004;30:973-980

[43] Bi X, Feng X, Yang Y, Qiu G, Li G. Quantitative assessment of cadmium emission from zinc smelting and its influences on the surface soils and mosses in Hezhang County, Southwestern China. Atmospheric Environment. 2006;40:4228-4233

[44] Sprynskyy M, Kowalkowski T, Tutu H, Cozmuta LM, Cukrowskaw EM, Buszewski B. The adsorption properties...
of agricultural and forest soils towards heavy metal ions (Ni, Cu, Zn, and Cd). Soil and Sediment Contamination. 2011;20:12-29

[45] Bui AT, Nguyen HT, Nguyen MN, Tran THT, Vu TV, Nguyen CH, Reynolds HL. Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in Northern Vietnam. Environmental Monitoring and Assessment. 2016;188:525

[46] Cadmium Compounds, Technology Transfer Network Air Toxics Web Site, Environmental Protection Agency, Washington, DC, USA, 2007

[47] Cannino G, Ferruggia E, Luparello C, Rinaldi AM. Cadmium and mitochondria. Mitochondrion. 2009;9:377-84

[48] Cappuyns V, Van Herreweghe S, Swennen R, Ottenburgs R, Deckers J. Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). Science of the Total Environment. 2002;295:217-240

[49] Chen X, Zhu G, Jin T, Zhou Z, Gu S, Qiu J, Xiao H. Cadmium stimulates the osteoclastic differentiation of RAW264.7 cells in presence of osteoblasts. Biological trace element research. 2012;146:349-53

[50] Beyer WN, Stafford C. Survey and evaluation of contaminants in earthworms and in soils derived from dredged material at confined disposal facilities in the Great Lakes Region. Environmental Monitoring and Assessment. 1993;24:151-165

[51] Borah P, Singh P, Rangan L, Karak T, Mitra S. Mobility, bioavailability and ecological risk assessment of cadmium and chromium in soils contaminated by paper mill wastes. Groundwater for Sustainable Development. 2018;6:189-199

[52] Chen X, Zhu GY, Jin TY. Progress of the study on toxic effects of cadmium on kidney and bone. Journal of Occupational and Environmental Medicine. 2008;25:412-5

[53] Cheng S, Liu G, Zhou C, Sun R. Chemical speciation and risk assessment of cadmium in soils around a typical coal mining area of China. Ecotoxicology and Environmental Safety. 2018;160: 67-74

[54] Clemens S, Aarts MGM, Thomine S, Verbruggen N. Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science.2013;18,92-99

[55] Clemens S. Evolution and function of phytochelatin synthase. Journal of Plant Physiology. 2006;163:319-332

[56] Czarnecki LA, Moberly AH, Turkel DJ, Rubinstein T, Pottackal J, RosenthalLMC, McCandlishEF, BuckleyB, McGann JP. Functional rehabilitation of cadmium-induced neurotoxicity despite persistent peripheral pathophysiology in the olfactory system. Toxicological Sciences. 2012;126:534-44

[57] Dala-Paula BM, Custódio FB, Knupp EA, Palmieri HE, Silva JBB, Glória MBA. Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environmental Pollution. 2018;242:383-389

[58] Deepali KK, Gangwar K. Metals concentration in textile and tannery effluents, associated soils and ground water. New York Science Journal. 2010;3:82-89

[59] Dwivedi AK, Vankar PS. Source identification study of heavy metal contamination in the industrial hub of Unnao, India. Environmental Monitoring and Assessment. 2014;186:3531-3539

[60] Eiswirth M, Hötzl H. The impact of leaking sewers on urban groundwater.
Groundwater in the urban environment. 1997;1:399-404

[61] El-Mahrouk ES, Eisa EA, Hegazi MA, Abdel-Gayed ME, Dewir YH, El-Mahrouk ME, Naidoo Y. Phytoremediation of cadmium-, copper-, and lead-contaminated soil by Salix mucronata (Synonym Salix safsaf). HortScience. 2019;54:1249-57

[62] EU. European Union Risk Assessment Report – Cadmium Oxide and Cadmium Metal. Part I – Environment Office for Official Publications of the European Communities, Luxembourg. 2007;608

[63] European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of European Union. 2006;24:364

[64] Everett CJ, Frithsen IL. Association of urinary cadmium and myocardial infarction. Environmental research. 2008;106:284-6

[65] Fan KC, Hsi HC, Chen CW, Lee HL, Hseu ZY. Cadmium accumulation and tolerance of mahogany (Swieteniamacrophylla) seedlings for phytoextraction applications. Journal of environmental management. 2011;92:2818-22

[66] Farid M, Ali S, Shakoor MB, Bharwana SA, Rizvi H, Ehsan S, Tauqeer HM, Iftikhar U, Hannan F. EDTA assisted phytoremediation of cadmium, lead and zinc. Internationa Journal of Agronomy and Plant Production. 2013;4:2833-46

[67] Gebrekidan A, Weldegebriel Y, Hadera A., Van der Bruggen B. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfelriver near Sheba Tannery, Tigray, Northern Ethiopia.

[68] Goher ME, AM AE, Abdel-Satar AM, Ali MH, Hussien AE, Napiórkowska-KrzebietkeA. Biosorption of some toxic metals from aqueous solution using non-living algal cells of Chlorella vulgaris. Journal of Elementology. 2016;21

[69] Golui D, Datta SP, Dwivedi BS, Meena MC, Trivedi VK, Jaggi S, Bandyopadhyay KK. Assessing Geoavailability of Zinc, copper, nickel, lead and cadmium in polluted soils using short sequential extraction scheme. Soil and Sediment Contamination: An International Journal. 2020;1-18

[70] Gupta N., Khan DK, Santra SC. Heavymetal accumulation in vegetables grown in a long-term wastewater-irrigated agricultural land of tropical India. Environmental Monitoring and Assessment. 2012;184:6673-6682

[71] Li F, Qiu Z, Zhang J, Liu W, Liu C, Zeng G. Investigation, pollution mapping and simulative leakage health risk assessment for heavy metals and metalloids in groundwater from a typical brownfield, middle China. International journal of environmental research and public health. 2017;14:768

[72] Hédijii H, Djebali W, Belkadi A, Cabasson C, Moing A, Rolin D, Chaibi W. Impact of long-term cadmium exposure on mineral content of Solanumlycopersicum plants: consequences on fruit production. South African Journal of Botany. 2015;97,176-181

[73] Idrees N, Tabassum B, Abd Allah EF, Hashem A, Sarah R, Hashim M. Groundwater contamination with cadmium concentrations in some West UP Regions, India. Saudi Journal of Biological Sciences. 2018;25:1365-1368
Toxicity of Cadmium in Soil-Plant-Human Continuum and Its Bioremediation Techniques
DOI: http://dx.doi.org/10.5772/intechopen.94307

[74] Irfan M, Hayat S, Ahmad A, Alyemeni MN. Soil cadmium enrichment: allocation and plant physiological manifestations. Saudi Journal of Biological Sciences. 2013; 20, 1-10

[75] Islam MA, Al-Mamun A, Hossain F, Quraishi SB, Naher K, Khan R, Das S, Tamim U, Hossain SM, Nahid F. Contamination and ecological risk assessment of trace elements in sediments of the rivers of Sundarban mangrove forest, Bangladesh. Marine Pollution Bulletin. 2017; 124: 356-366

[76] Järup L, Rogenfelt A, Elinder CG, Nogawa K, Kjellström T. Biological half-time of cadmium in the blood of workers after cessation of exposure. Scandinavian journal of work, environment and health. 1983: 327-31

[77] Jordán MM, Montero MA, Pina S, García-Sánchez E. Mineralogy and distribution of Cd, Ni, Cr, and Pb in biosolids-amended soils from Castellon Province (NE, Spain). Soil Science. 2009; 174: 14-20

[78] Tamaddon F, Hogland W. Review of cadmium in plastic waste in Sweden. Waste Management and Research. 1993; 11: 287-295

[79] Khan A, Khan S, Alam M, Khan MA, Aamir M, Qamar Z, Rehman ZU, Perveen S. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients. Chemosphere. 2016; 146: 121-8

[80] Brown TJ, Idoine NE, Raycraft ER, Shaw RA, Deady EA, Hobbs SF, Bide T. World mineral production 2011-15. British Geological Survey. 2017

[81] Kabir E, Ray S, Kim KH, Yoon HO, Jeon EC, Kim YS, Cho YS, Yun ST, Brown RJ. Current status of trace metal pollution in soils affected by industrial activities. The Scientific World Journal. 2012

[82] Azzi V, Kazpard V, Lartiges B, Kobeissi A, Kanso A, El Samrani AG. Trace metals in phosphate fertilizers used in Eastern Mediterranean countries. CLEAN–Soil, Air, Water. 2017; 45

[83] White PJ, and Brown PH. Plant nutrition for sustainable development and global health. Annals of botany, 2010; 105, 1073-1080

[84] Pan J, Plant JA, Vouloulis N, Oates CJ, Ihlenfeld C. Cadmium levels in Europe: Effects of soil factors, hyperaccumulation, and amendments. Geoderma. 2006; 137, 19-32.

[86] Phillips CJ, and Tudoreanu L. A model of cadmium accumulation in the liver and kidney of sheep derived from soil and dietary characteristics. Journal of the Science of Food and Agriculture. 2010; 91, 370-376

[87] Tudoreanu L, and Phillips CJC. Modeling cadmium uptake and accumulation in plants. Advances in Agronomy. 2004; 84, 121-157

[88] Adams SV, Passarelli MN, Newcomb PA. Cadmium exposure and cancer mortality in the Third National Health and Nutrition Examination Survey cohort. Occupational and environmental medicine. 2012; 69: 153-6

[89] Sauvé S, Manna S, Turmel M C, Roy AG, Courchesne F. Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environmental Science and Technology. 2003; 37: 5191-5196

[90] Uraguchi S, and Fujiwara T. Cadmium transport and tolerance in...
rice: perspectives for reducing grain cadmium accumulation. Rice, 2012; 5, 5

[91] Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany. 2002;53, 535-543.

[92] Lugon-Moulin N, Zhang M, Gadani F, Rossi L, Koller D, Krauss M, and Wagner G. Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Advances in agronomy. 2004;83,112-181

[93] Vesey DA. Transport pathways for cadmium in the intestine and kidney proximal tubule: focus on the interaction with essential metals. Toxicology letters. 2010;198:13-9

[94] M Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress, “Current Medicinal Chemistry. 2005;12:1161-1208

[95] Abernethy DR, DeStefano AJ, Cecil TL, Zaidi K, Williams RL, Panel UM. Metal impurities in food and drugs. Pharmaceutical research. 2010;27:750-5.

[96] Åkesson A, Lundh T, Vahter M, Bjellerup P, Lidfeldt J, Nerbrand C, Samsioe G, Strömberg U, Skerfving S. Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environmental health perspectives. 2005;113:1627-31

[97] Julin B, Wolk A, Johansson JE, Andersson SO, Andrén O, Åkesson A. Dietary cadmium exposure and prostate cancer incidence: a population-based prospective cohort study. British journal of cancer. 2012;107:895-900

[98] Nordberg GF, Nogawa K, Nordberg M, and Friberg L.

“Cadmium,” in Chapter 23 in Handbook of the Toxicology of Metals. F. Nordberg, B. F. Fowler, M. Nordberg, and L. Friberg, Eds., pp. 445-486, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2007

[99] Abdulla M, Chmielnicka J. New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals. Biological Trace Element Research. 1989;23:25-53

[100] R A Bernhoft. “Mercury toxicity and treatment: a review of the literature,” Journal of Environment and land Public Health. 2012

[101] Whittaker MH, Wang G, Chen XQ, Lipsky M, Smith D, Gwiazda R, Fowler BA. Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats. Toxicology and Applied Pharmacology. 2011;254:154-66

[102] Wang L, Gallagher EP. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish. Toxicology and applied pharmacology. 2013;266:177-86

[103] Kjellstrom T. “Mechanism and epidemiology of bone effects of cadmium,” IARC Scientific Publications.1992; 118:301-310

[104] Kido S, Fujihara M, Nomura K, Sasaki S, Shiozaki Y, Segawa H, Tatsumi S, Miyamoto KI. Fibroblast growth factor 23 mediates the phosphaturic actions of cadmium. Nihon eiseigakuzasshi. Japanese journal of hygiene. 2012;67:464-71

[105] Ogawa T, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nogawa K. “Relationship among prevalence of patients with Itai-itai
disease, prevalence of abnormal urinary findings, and cadmium concentrations in rice of individual hamlets in the Jinzu River basin, Toyama prefecture of Japan,” International Journal of Environmental Health Research. 2004; 14:243-252

[106] Bernhard D, Rossmann A, Henderson B, Kind M, Seubert A, Wick G. Increased serum cadmium and strontium levels in young smokers: effects on arterial endothelial cell gene transcription. Arteriosclerosis, thrombosis, and vascular biology. 2006; 26:833-8

[107] Pacini S, Fiore MG, Magherini S, Morucci G, Branca J, Gulisano M, Ruggiero M. Could cadmium be responsible for some of the neurological signs and symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Medical hypotheses. 2012; 79:403-7

[108] Shargorodsky J, Curhan SG, Henderson E, Eavey R, Curhan GC. Heavy metals exposure and hearing loss in US adolescents. Archives of Otolaryngology–Head & Neck Surgery. 2011; 137:1183-9

[109] Argonne National Laboratories, Cadmium, Human Health FactSheet, Argonne National Laboratories, Lemont, IL, USA, 2001.

[110] Paulson AJ. The transport and fate of Fe, Mn, Cu, Zn, Cd, Pb and SO4 in a groundwater plume and in downstream surface waters in the Coeur d’Alene Mining District, Idaho, USA. Applied Geochemistry. 1997; 12:447-464

[111] USEPA (US Environmental Protection Agency). Region 9, Preliminary Remediation Goals. 2012

[112] Vidali M: Bioremediation: An overview. (2001) Pure Applied Chemistry; 73:1163-172.

[113] Roy M, Giri AK, Dutta S, Mukherjee P. Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environment international. 2015;75:180-98

[114] Schlegel HG, Cosson JP, and Baker AJM. 1991. Nickel hyperaccumulating plants provide a niche for nickel resistant bacteria. Botanica Acta. 1991;104:18-25

[115] Yu G, Liu J, Long Y, Chen Z, Sunahara GI, Jiang P, You S, Lin H, Xiao H. Phytoextraction of cadmium-contaminated soils: Comparison of plant species and low molecular weight organic acids. International Journal of Phytoremediation. 2020; 22:383-391

[116] Silva JR, Fernandes AR, Junior MS, Santos CR, Lobato AK. Tolerance mechanisms in Cassia alata exposed to cadmium toxicity—potential use for phytoremediation. Photosynthetica. 2018;56:495-504

[117] Ali SY, Banerjee SN, Chaudhury S. Phytoextraction of cadmium and lead by three vegetable-crop plants. Plant Science Today. 2016 Aug 15;3:298-303

[118] Liu L, Li Y, Tang J, Hu L, Chen X. Plant coexistence can enhance phytoextraction of cadmium by tobacco (Nicotianatabacum L.) in contaminated soil. Journal of environmental Sciences. 2011;23:453-60

[119] Hassan MS, Dagari MS, Muazu AA, Sanusi KA. Effect of Citric Acid on Cadmium Ion Uptake and Morphological Parameters of Hydroponically Grown Jute Mallow (Corchorus olitorius). International Journal of Chemical, Material and Environmental Research. 2016;3:14-9

[120] Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin.
Environmental Science and Pollution Research. 2015;22:15386-415

[121] Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Frontiers in Plant Science. 2016;7:303

[122] Abioye OP, Oyewole OA, Oyeleke SB, Adeyemi MO, Orukotan AA. Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Brazilian Journal of Biological Sciences. 2018;5:25-32

[123] Lakkireddy K, Kües U. Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations. AMB Express. 2017;7:28