The Possible Shapes of Numerical Ranges

J. William Helton
I. M. Spitkovsky
William & Mary, imspitkovsky@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation
Helton, J. W., & Spitkovsky, I. M. (2011). The possible shapes of numerical ranges. arXiv preprint arXiv:1104.4587.

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
THE POSSIBLE SHAPES OF NUMERICAL RANGES

J. WILLIAM HELTON AND I. M. SPITKOVSKY

Abstract. Which convex subsets of \(\mathbb{C} \) are the numerical range \(W(A) \) of some matrix \(A \)? This paper gives a precise characterization of these sets. In addition to this we show that for any \(A \) there exists a symmetric \(B \) of the same size such that \(W(A) = W(B) \) thereby settling an open question from [2].

Mathematics subject classification (2010): Primary 47A12.

Keywords and phrases: Numerical range, linear matrix inequalities.

REFERENCES

[1] A. BEN-TAL AND A. NEMIROVSKI, Lectures on modern convex optimization, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001, Analysis, algorithms, and engineering applications.
[2] W.-S. CHEUNG, X. LIU, AND T.-Y. TAM, Multiplicities, boundary points, and joint numerical ranges, Operators and Matrices 5, 1 (2011), 41–52.
[3] K. E. GUSTAFSON AND D. K. M. RAO, Numerical range. The field of values of linear operators and matrices, Springer, New York, 1997.
[4] J. W. HELTON AND V. VINNIKOV, Linear matrix inequality representation of sets, Comm. Pure Appl. Math. 60, 5 (2007), 654–674.
[5] D. HENRION, Semidefinite geometry of the numerical range, Electron. J. Linear Algebra 20 (2010), 322–332.
[6] R. A. HORN AND C. R. JOHNSON, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
[7] R. KIPPENHAIN, Über den Wertevorrat einer Matrix, Math. Nachr. 6 (1951), 193–228.
[8] R. KIPPENHAIN, On the numerical range of a matrix, Linear Multilinear Algebra 56, 1–2 (2008), 185–225; Translated from the German by Paul F. Zachlin and Michiel E. Hochstenbach [MR0059242].
[9] R. T. ROCKAFELLAR, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997, Reprint of the 1970 original, Princeton Paperbacks.
[10] P. ROSTLASKI AND B. STURMFELS, Dualities in convex algebraic geometry, Rendiconti di Matematica, Serie VII 30 (2010), 285–327.