Supporting information

Preparation of boronic acid-functionalized cryogels using modular and clickable building blocks for bacteria separation

Hongwei Zheng, Solmaz Hajizadeh, Haiyue Gong, Hong Lin, Lei Ye*

International Collaboration

Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden

Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China

*Corresponding author: Lei Ye, E-mail address: lei.ye@tbiokem.lth.se
Figure S1. FT IR spectra of (a) poly(NIPAm-co-GMA) and (b) poly(NIPAm-co-GMA)@N$_3$.
Figure S2. GPC trace of poly(NIPAm-co-GMA)@N₃.

$M_n = 21000; \frac{M_w}{M_n} = 1.9$
Figure S3. SEM images of AG-N₃ cryogel (A, B), AG-alkyne cryogel (C, D), AG-alkyne@polymer-N₃ cryogel (E, F). The scale bars are 10 μm in (A), (C), (E), and 1 μm in (B), (D), (F).
Figure S4. Calibration plots for quantification of (A) *E. coli* and (B) *S. epidermidis*.
Figure S5. SEM images of AG-alkyne@polymer-pBA cryogel loaded with S. epidermidis, after elution using 0.5 M fructose (in 20 mM PBS, pH 9.0, containing 0.5 M NaCl). The scale bars are 10 μm in (A) and 1 μm in (B).
Figure S6. Eluted *E. coli* and *S. epidermidis* before (A) and after (B) cultivation in LB medium at 37 °C for 16 h. The bacteria suspension (0.5 mL) eluted by 0.5 M fructose-PBS buffer was transferred into 8 mL of fresh LB medium for cultivation.
Figure S7. Chromatograms of bacteria separation tested with (A) *E. coli* and (B) *S. epidermidis* on different cryogels: (—) AG-alkyne@polymer-pBA, (--) AG-B-A. The arrows indicate: (a) loading of 10 mM PBS (pH 8.0), (b) loading of *E. coli* or *S. epidermidis* suspensions (OD$_{600} \approx 1$) in 10 mM PBS (pH 8.0), (c) elution with 0.5 M fructose in 20 mM phosphate buffer (pH 9.0, containing 0.5 M NaCl), (d) washing with 100 mM HAC.
Table S1. Physical properties of AG and AG-alkyne@polymer-pBA cryogel

Temperature	Cryogel samples	Swelling Degree (g H$_2$O/g Cryogel)	Macroporosity (Volume %)		
25°C	AG cryogel	15.13 ± 0.07	72.42 ± 0.01		
	AG-alkyne@polymer-pBA cryogel	13.38 ± 0.06	69.05 ± 0.01		
40°C	AG cryogel	14.84 ± 0.06	-		
	AG-alkyne@polymer-pBA cryogel	11.95 ± 0.11	-		
Adsorbent	Ligands	Targets	Sample	Binding Capacity	Ref.
-----------	---------	---------	--------	------------------	-----
AG@epoxy@PEI-DFFPBA	boronic acid	*Salmonella* spp., *S. aureus*	25% cow milk; water	*Salmonella* spp.: (906.60 ± 15.73) × 10^7 CFU/g	[1]
				S. aureus: (582.59 ± 13.19) × 10^7 CFU/g	
N-methylimidazolium functionalized magnetic particles	N-methylimidazolium	*Listeria monocytogenes*	mineral water and tap water	6.22 × 10^8 CFU/mg	[2]
AGe-Si@brush-pBA	boronic acid	yeast cell	-	6 mg/g	[3]
PDA@Fe_3O_4 nanoparticles	ion-exchange	*S. aureus*	tap water	1.2 × 10^8 CFU/mg	[4]
Si@poly(NIPA-co-GMA)@PCAPBA	boronic acid	*E. coli*, *S. epidermids*	water, 25% milk	*E. coli*: 13.4 × 10^7 CFU/mg	[5]
				S. epidermids: 3.36×10^9 CFU/g	
Vancomycin modified PEGylated-magnetic nanoparticles	vancomycin	*Listeria monocytogenes*	lettuce	~ 2.4 × 10^7 CFU/mg	[6]
AG-alkyne@polymer-pBA cryogel	boronic acid	*E. coli*, *S. epidermids*	water, 25% milk	*E. coli*: 2.15×10^9 CFU/g	This work
Table S3. Comparison of different composite cryogel for chromatographic separation

Cryogels	Ligands	Targets	Advantages / Disadvantages	Ref.
Organic-inorganic cryogel composite	boronic acid	nucleosides	Synthesis under mild conditions; high surface area; simple synthesis conditions	[7]
Tyrosine-imprinted cryogel	molecularly imprinted polymer	tyrosine	High selectivity and good reusability	[8]
Poly(Hydroxyethyl Methacrylate) cryogel	antibody	human immunoglobulin M	High specificity and biocompatibility. High-cost	[9]
PolyAdenine	adenine methacrylate	RNA	Sing-step synthesis; high RNA binding capacities; simple operation procedures	[10]
AGe-Si@brush-pBA	boronic acid	yeast cell; haemoglobin	High surface area and multiple affinity ligands. Complicated synthesis procedures	[3]
poly(HEMA-co-MAAc) cryogel	ion-exchange	cisplatin	High hydrophilicity and binding capacities. Selectivity limited	[11]
AG-alkyne@polymer-pBA cryogel	boronic acid	*E. coli*, *S. epidermidis*	High ligand density, high binding capacity for bacteria, simple and modular synthesis	This work
Reference

[1] Zheng, H.; Han, F.; Lin, H.; Cao, L.; Pavase, T.; Sui, J. Preparation of a novel polyethyleneimine functionalized sepharose-boronate affinity material and its application in selective enrichment of food borne pathogenic bacteria. Food Chem. 2019, 294, 468-476.

[2] Wang, Y.; Deng, M.; Jia, L. N-methylimidazolium functionalized magnetic particles as adsorbents for rapid and efficient capture of bacteria. Microchim Acta 2014, 181, 1275–1283.

[3] Hajizadeh, S.; Ye, L. Hierarchical macroporous material with dual responsive copolymer brushes and phenylboronic acid ligands for bioseparation of proteins and living cells. Sep. Purif. Technol. 2019, 224, 95-105.

[4] Gao, X.; Yao, X.; Zhong, Z.; Jia, L. Rapid and sensitive detection of Staphylococcus aureus assisted by polydopamine modified magnetic nanoparticles. Talanta, 2018, 186, 147-153.

[5] Zheng, H.; Gong, H.; Cao, L.; Lin, H.; Ye, L. Photoconjugation of Temperature-and pH-Responsive Polymer with Silica Nanoparticles for Separation and Enrichment of Bacteria. Colloid. Surface. B 2020, 111433.

[6] Meng, X.; Li, F.; Li, F.; Xiong, Y.; Xu, H. Vancomycin modified PEGylated-magnetic nanoparticles combined with PCR for efficient enrichment and detection of Listeria monocytogenes. Sensor. Actuat. B-Chem. 2017, 247, 546-555.

[7] Zhao, S.; Zou, Y.; Wang, Y.; Zhang, H.; Liu, X. Organized cryogel composites with 3D hierarchical porosity as an extraction adsorbent for nucleosides. J. Sep. Sci. 2019, 42, 2140-2147.
[8] Bakhshpour, M.; Göktürk, I.; Bereli, N.; Denizli, A. Molecularly imprinted cryogel cartridges for the selective recognition of tyrosine. Biotechnol. Progr. 2020, 36, e3006.

[9] Bakhshpour, M.; Topcu, A.; Bereli, N.; Alkan, H.; Denizli, A. Poly(Hydroxyethyl Methacrylate) Immunoaffinity Cryogel Column for the Purification of Human Immunoglobulin M. Gels, 2020, 6, 4.

[10] Köse, K.; Erol, K.; Özgür, E.; Uzun, L.; Denizli, A. PolyAdenine cryogels for fast and effective RNA purification. Colloid. Surface. B 2016, 146, 678-686.

[11] Farías, T.; Hajizadeh, S.; Ye, L. Cryogels with high cisplatin adsorption capacity: Towards removal of cytotoxic drugs from wastewater. Sep. Purif. Technol. 2020, 235, 116203.