Chemical Composition and Biological Evaluation of *Typha domingensis* Pers. to Ameliorate Health Pathologies: *In Vitro* and *In Silico* Approaches

Rizwana Dilshad,1 Kashif-ur-Rehman Khan,1 Laiba Saeed,2 Asmaa E. Sherif,3,4 Saeed Ahmad,1 Chitchamai Ovatlarnporn,5 Jawad Nasim,6 Musaddique Hussain,7 Bilal Ahmad Ghalloo,1 Abdul Basit,8 and Imran Mukhtar9

1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
2Allama Iqbal Medical College, Lahore, Pakistan
3Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
4Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
5Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Thailand
6Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbruecken, Germany
7Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
8Quaid-e-Azam College of Pharmacy, Quaid-e-Azam Educational Complex, Sahiwal, Punjab, Pakistan
9Sir Sadiq Muhammad Khan Abbasi Post Graduate Medical College, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

Correspondence should be addressed to Kashif-ur-Rehman Khan; kashifur.rahman@iub.edu.pk

Received 24 May 2022; Accepted 23 June 2022; Published 14 July 2022

Human diseases are becoming more prevalent, necessitating the development of modalities to overcome the challenges of treating various disorders. In the current research, we analyzed the biomedicinal role of *Typha domingensis* which is an important medicinal plant. The species is traditionally used in the treatment of neurological disorders and skin malignancies. The chloroform (CFTD) and n-butanol fractions of *T. domingensis* (BFTD) were subjected to chemical profiling through the determination of total polyphenolic contents and GC-MS analysis. The oral toxicity test was applied to investigate the toxicity of the extracts. Antioxidant capacity was analyzed by four *in vitro* methods: DPPH, ABTS, FRAP, and CUPRAC. The pharmacological potential was evaluated through clinically significant enzyme inhibition assays, thrombolytic, and antimicrobial activities. *In silico* molecular docking approach was applied to confirm the role of *T. domingensis* against the enzymes. The polyphenolic quantification revealed that the BFTD was comparatively rich in total phenolic and flavonoid contents (97.14 milligrams gallic acid equivalent (mg GAE/g) and 362.5 milligrams quercetin equivalent per gram of dry extract (mg QE/g DE), respectively), as compared to the CFTD. The GC-MS analysis of the CFTD and BFTD resulted in the tentative identification of 67 and 29 compounds, respectively, with the major components of fatty acids and essential oil. The oral toxicity test revealed the safety and biocompatibility of CFTD and BFTD. Both the fractions showed promising antioxidant activity. Tyrosinase was found as the major enzyme inhibited by BFTD (78.67%) and CFTD (68.09%), whereas the standard kojic acid showed 85.58% inhibition. The inhibition results of acetylcholinesterase and butyrylcholinesterase by BFTD (71.65 and 60.79%, respectively) are higher than CFTD. Both the fractions were found active against various strains of bacteria. Furthermore, the molecular docking studies of the compounds showed a good docking score against all the docked enzymes among which deoxycaesaldekarin C was found with the highest binding affinities in comparison to the standard. The current study suggests that *T. domingensis* is nontoxic and can be a potential source of phytoconstituents with promising pharmacological potential.
1. Introduction

Nature has endowed humans with a tremendous vast collection of plants and herbs that have been utilized to ameliorate health pathologies [1]. The World Health Organization (WHO) also sees ethnopharmacological considerations as a profitable way to assess medicinal plants as a source of molecules for both conventional and modern medicines. It is estimated that 80% of the worldwide population uses herbal medicine, and in the case of developing countries, the rates may be as high as 95% [2]. Traditional and indigenous medical systems are safer, less expensive, and more easily accessible [3]. Therefore, in the current era, natural therapy is always interested in elucidating the biological potential and chemical composition of plants. As a consequence of these important characteristics, nearly 20,000 species of plants have been used for therapeutical purposes [4]. Although there are several natural and synthetic antibacterials available, on account of the increase in resistance, there is no antibacterial agent to cure infections caused by these resistant bacterial strains [5].

Phenolic compounds found in medicinal plants are used to treat a variety of human diseases and serve a vital part in healing [6]. Medicinal plants are used to study and analysis of the bioactive phytochemicals that are necessary for the production of new medicines [7]. On utilization of polyphenols, numerous effects likely antibacterial, antioxidants, and anticancer are observed [8]. It is concluded that the beneficial impact of polyphenols is often related to their antioxidant activity [9]. Antioxidants are compounds that can prevent or reduce cell damage initiated by free radicals, produced by the body in response to environmental and other stress. They are also known as “free-radical scavengers.” Antioxidants are obtained from both sources natural and synthetic [10]. Antioxidants are also being investigated as potential therapies for neurodegenerative illnesses such as Alzheimer’s and Parkinson’s disorders. Excessive oxidative damage to cells causes a variety of clinical problems including rheumatoid arthritis, cardiovascular diseases, leukemia, thalassemia, ischemic stroke, hemodialysis, schizophrenia, depression, ulcerogenic, and acquired immunodeficiency diseases, and antioxidants have been linked to improved outcomes in the treatment of these diseases/disorders [11].

Typha is a genus of monocotyledonous plants [12]. One genus and 10 to 15 species make up the Typhaceae family [13], and commonly, it is known as cattails, which refers to the genus’ distinctive inflorescence. Cattails are wetland plants found in moist soil, swamps, shallow fresh marshes, and brackish seas around the world [14]. The *Typha domingensis*, a most familiar wetland plant, is found in a variety of wetland ecosystems, including swamps, marshes, and lake-shores. This is spread in tropical and subtropical areas. The plant has a diverse morphology and is found in various countries throughout the world [15]. *Typha* species are unisexual and monococious plants with air-pollinated blooms that grow in dense spikes.

The female flowers of the *Typha* species are used externally to control bleeding, in addition to wound healing and burns in Turkish folk medicine [16]. The lower stem has diuretic and astringent properties, and the leaves have analgesic, antioxidant, and diuretic properties [17]. Pollens are stringent, desiccant, diuretic, hemostatic, and vulnerary [13]. It is used for nosebleeds, uterine bleeding, postpartum abdominal discomfort, and abscesses [13]. It is not recommended for pregnant women [18]. The roots have anti-inflammatory, antioxidant, astringent, cytotoxic, and diuretic properties [19]. The spasmolytic, bronchodilator, and vasodilating effect of hydroethanolic extract of *Typha domingensis* was reported earlier [20]. The DPPH and α-glucosidase inhibition activity of some solvent extracts/fractions of fruits only and the *in vivo* wound healing potential of female flowers of *T. domingensis* have been determined previously [21, 22]. The dichloromethane extract of *T. domingensis* and *T. latifolia* was subjected to the GC-MS for profiling and revealed the presence of alkyl coumarates and furulates [15]. It is earlier reported that the pollens of *Typha* are largely made up of sterols, terpenoids, flavones, and long-chain hydrocarbons [18]. In the pharmacological study, pollens have been related to several actions, including the induction of cyclic adenosine monophosphate (cAMP), cholesterol-lowering, immunosuppression, and anticoagulation [7]. All the data in the literature revealed the medicinal potential of *T. domingensis*.

The present investigation has been conducted for the screening of bioactive secondary metabolites, antioxidant capacity, *in vitro* biological evaluation, and *in silico* molecular docking of chloroform and *n*-butanol fractions of *T. domingensis* Pers. (Southern cattail). The screening of bioactive compounds was evaluated by qualitative preliminary phytochemical analysis, total polyphenol content determination, and GC-MS investigation. The antioxidant potential was determined by ABTS, FRAP, DPPH, and CUPRAC. The *in vitro* biological potential was analyzed by enzyme inhibition (tyrosinase, acetylcholinesterase, and butyrylcholinesterase), thrombolytic, and antibacterial assays. The major bioactive phytochemicals screened by GC-MS of CFTD and BFTD were further evaluated for molecular docking. All these studies were first time performed for these fractions of the whole parts of *T. domingensis*.

2. Materials and Methods

2.1. Sample Collection and Plant Identification. The harvest of mature plants was carried out in March 2019 from Mulltan, Pakistan; the collected plant was identified by the Botany Department, Faculty of Life sciences, the Islamia University of Bahawalpur, and the plant specimen was submitted in the herbarium with reference number 412.

2.2. Extract Preparation. The powdered plant material was macerated for 14 days at room temperature in 80% methanol with occasional stirring. Because of its efficiency in extracting phenolics and flavonoids, aqueous methyl alcohol was used as a solvent [23]. To acquire the fine yield, the soaked plant was first filtered through muslin cloth, followed by filtration with Whatman-1 filter paper. A rotary evaporator (Heidolph, Germany) was used to concentrate the filtrate.
under reduced pressure and further air-dried. The dried methanolic extract was mixed in deionized water to form a uniform solution for liquid-liquid fractionation by using two solvents: chloroform and n-butanol, in the order of increasing polarity. The two fractions chloroform fractions \textit{T. domingensis} (CFTD) and n-butanol of \textit{T. domingensis} (BFTD) fractions were obtained. These fractions were also evaporated with the rotary evaporator at 40°C, air-dried, and stored for further analysis [24].

2.3. Chemical Composition

2.3.1. Determination of Total Phenolic Contents (TPC). For TPC, 25 \(\mu L \) fractions of standard (gallic acid) solution was mixed with dilute Folin-Ciocalteu reagent (10 \(\mu L \), 1:9, v/v) and shaken vigorously. After 3 minutes at room temperature, 0.15 mL of 10% \(\text{AlCl}_3 \) was measured at 760 nm after 2 hours of incubation at 25°C with a BioTek microplate reader. The same procedure was repeated for negative control replacing fraction solution with methanol. Results were exhibited as milligrams of gallic acid equivalent per gram of dry extract (mg GAE/g extract) [25].

2.3.2. Estimation of Total Flavonoid Contents (TFC). Aluminum chloride was used to determine the TFC. The solution was made by mixing 0.5 mL of fraction solution (1 mg/mL) or standard (serial dilution of quercetin), 2 mL of distilled \(\text{H}_2\text{O} \), and 0.15 mL of 5% \(\text{NaNO}_3 \) in a test tube. After 5 minutes at room temperature, 0.15 mL of 10% \(\text{AlCl}_3 \) was added, and the solution was allowed for another 5 minutes. Following that, 1 mL of a 4% \(\text{NaOH} \) solution was added and diluted in 5 mL of pure water. The resultant solution was vortexed and incubated at room temperature for 15 minutes. A blank was made by mixing the sample solution (0.5 mL) with methanol (1 mL) but without \(\text{AlCl}_3 \). Results were exhibited as milligrams of quercetin equivalent per gram of dry extract (mg QE/g extract) [26].

2.3.3. Gas Chromatography-Mass Spectrometry Analysis (GC-MS). The CFTD and BFTD were analyzed by GC-MS. Blown barriers were removed on an HP-5MS column (30 m length × 250 \(\mu \text{m} \) diameter × 0.25 \(\mu \text{m} \) film thickness). GC-MS spectroscopy involves an electron ionization system that uses energy-intensive electricity (70 eV). Injection temperature was set 220°C, increased to 240°C, and oven temperature was automated from 60°C to 246°C at the rate of 3°C/min. Helium gas (99.999%) was used as carrier gas at 1.02 mL/min (at 210°C). The volume of 1.0 \(\mu L \) was injected of the reconstituted extract diluted with the appropriate solvent in separation mode at 250°C. The initial temperature was set between 50°C and 150°C, and the rate of rising was 3°C/min. Finally, the temperature was raised to 300°C for 10°C/min and held for 10 minutes. The identification was made using a standard scanning method ranging from 35 to 600 m/z (mostly bioactive compounds are low molecular mass compounds ranging from 35 to 600 m/z), and the bioactive compounds were tentatively identified by the NIST 2011 library [27].

Table 1: Preliminary phytochemical screening of \textit{T. domingensis}.

Sr. no.	Phytochemical	Test	CFTD	BFTD
1	Carbohydrates	Molisch test	+	+
2	Amino acid	Ninhydrin	-	-
3	Protein	Biuret	+	+
4	Tannins and phenols	(a) \(\text{FeCl}_3 \)	+	+
5		(b) Lead acetate	+	+
6	Saponin	Frothing	-	-
7	Alkaloids	(a) Dragendorf	-	-
8	Glycosides	Birthtrager	-	+
9	Terpenes and steroids	Salkowski	+	+
10	Resins	Acetic acid	+	-

CFTD: chloroform fraction of \textit{T. domingensis}; BFTD: n-butanol fraction of \textit{T. domingensis}; +: present; -: not present.

2.4. Oral Toxicity Test. The oral toxicity test of CFTD and BFTD was performed according to the guidelines of the Organization for Economic Co-operation and Development (OECD) for the testing of chemicals. Male albino rats were purchased from the Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, and kept at a controlled room temperature of 22 ± 1°C with a relative humidity of 60-70%. These rats were divided into six groups with six rats in each group. These groups were orally given the doses of CFTD and BFTD with concentrations 0.1, 0.25, 0.5, 1.0, 2.0, and 3.0 g/kg. The experimental animals were observed morbidity after 0.5 h, 1.0 h, and 2 h. The mortality was observed up to 24 h after dose administration. The animals during this period were observed for aggressiveness, convulsions, catalepsy, tail pinch, and spontaneous activity. The physical appearance in terms of skin change, fur, eyes, salivation, and sleep was also monitored [28].

2.5. Antioxidant Potential. Antioxidant activity was evaluated by two types of assays. Free radical scavenging activity was estimated by two methods, DPPH and ABTS. Reducing potency was estimated by FRAP and CUPRAC. The sample concentration used in these assays was 1 mg/mL. The outcomes were exhibited as mg of Trolox equivalent/g of the dry extract and calculated by the formula given below [29]:

\[
\text{TE} = \frac{C \times V}{M},
\]

where \(C \) is the concentration of sample, \(V \) is the volume used for sample extraction, and \(M \) is the mass of sample used for extraction.

2.5.1. Free Radical Scavenging (DPPH) Activity. In this method, 40 \(\mu L \) of 0.267 mM DPPH solution was mixed with 10 \(\mu L \) of the sample solution and then incubated for 30
minutes, and absorbance was finally noted at 517 nm with a BioTek microplate reader.

2.5.2. Radical Cation Scavenging (ABTS) Activity. The generation of ABTS + radical was achieved by reacting a 7 mM ABTS solution with 2.45 mM potassium persulfate. After 30 minutes of incubation, 1 mL of test liquid was combined with 2 mL of ABTS +, and the absorbance was measured at 734 nm with a BioTek microplate reader.

2.5.3. Cupric Ion Reducing (CUPRAC) Method. A 0.5 mL sample was mixed with a mixture containing 1 mL of 10 mM CuCl₂, 1 mL of 7.5 mM nectarine, and buffer NH₄Ac (1 mL, 1 M, pH 7) to accomplish this reaction. The absorbance was measured at 450 nm with a BioTek microplate reader after 30 minutes of incubation.

2.5.4. Ferric Reducing Antioxidant Power (FRAP) Method. In this process, 0.1 mL of sample solution was added to a 2 mL substrate in acetate buffer (0.3 M, pH 3.6), 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ) (10 mM) at 40 mM hydrochloric acid, and FeCl₃ (20 mM) in a ratio (v/v/v) of 10 : 1 : 1, and absorbance of resulting mixture was performed at 593 nm with BioTek microplate reader.

2.6. Enzyme Inhibition Activities

2.6.1. Tyrosinase Inhibition Activity of T. domingensis. The volume of 20 μL of 0.1 M potassium phosphate buffer (pH 6.8) and 40 μL fractions or standard (1 mg/mL) was mixed. Fungal tyrosinase enzyme 40 μL (200 units/mL) was mixed into the mixture and incubated for 15 minutes. The substrate L-DOPA 100 μL was added to the incubated solution, and this solution was further incubated for 20 minutes at 37°C. Absorbance was read at 450 nm with a BioTek microplate reader. The same procedure was adopted for negative control by adding 40 μL of buffer solution instead of fractions [30].

2.6.2. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) Inhibition Assay. The reaction mixture consisting of 75 μL sample solution (1 mg/mL), 175 μL 3 mM DTNB, and 50 μL enzyme solution (AChE 0.265 U/mL or BChE 0.026 U/mL) in hydrochloric acid buffer was incubated at 25°C for 15 minutes. To the reaction mixture, 50 μL substrates were added (15 mM acetylthiocholine iodide or butyrylthiocholine chloride). After 15 minutes, the absorbance of the final solution was measured at 405 nm. In the same way, a blank solution (without fractions) was made and examined using this method [31].

2.7. Thrombolytic Activity of T. domingensis. The thrombolytic activity of CFTD and BFTD was performed according to the previously described procedure in the literature [27]. The volume of 0.7 mL blood samples was added to previously weighed Eppendorf tubes. The blood was kept for clotting, and serum was removed after clot formation. 100 μL of fractions (1 mg/mL) or standard was added to these Eppendorf tubes and kept for 30 minutes. The liquid portion of the clot was removed and weighed finally. The difference in weight was calculated, and loss in weight was expressed as percentage lytic activity of fractions or standard. For negative control, water was used instead of fraction solution, and the same procedure was repeated. The results were expressed after subtracting the value of the negative control activity [32].

2.8. Antibacterial Activity. B. subtilis, M. luteus, S. epidermidis, B. pumilus, S. aureus (gram positive), E. coli, B. bronchiseptica, and P. aeruginosa (gram negative) bacterial strains were obtained from the DTL Bahawalpur (Punjab Pakistan).
Peak no.	RT (min)	Identified compounds	Molecular formula	Molecular weight	Area %	Kovats index in the literature
1	3.06	Ethylbenzene	C₈H₁₀	106.16	0.05	865
2	3.14	p-Xylene	C₈H₁₀	106.16	0.41	885
3	3.38	Benzene	C₆H₆	78.11	0.19	680
4	6.63	Dodecane	C₁₂H₂₆	170.33	0.05	1200
5	9.03	Tetradecane	C₁₄H₃₀I	198.39	0.20	1400
6	10.21	Pentadecane	C₁₅H₃₂	212.41	0.06	1500
7	10.42	Phenol	C₆H₁₀	94.11	0.40	945
8	10.79	Benzylethyl-m-toluidine	C₁₃H₁₉N	225.33	0.37	1800
9	11.29	2-Tetradecene	C₁₄H₂₈	196.37	0.05	1380
10	11.38	Hexadecane	C₁₆H₃₄	226.41	0.44	1600
11	12.08	2-Methylhexadecane	C₁₇H₃₈	240.5	0.06	1660
12	12.48	1,3,2-Oxazaborolidine	C₁₃H₁₆N₂O	270.89	0.13	ND
13	13.51	1-Octadecene	C₁₃H₃₆	252.5	0.11	1785
14	13.59	Octadecane	C₁₅H₃₈	226.41	0.58	1800
15	13.88	Pentadecanoic acid	C₁₅H₃₀O₂	242.4	0.04	1860
16	14.30	Nonadecane	C₁₉H₄₀	268.5	0.09	1900
17	14.74	Heptadecane	C₁₇H₃₆	240.5	0.04	1700
18	15.07	Hexadecanoic acid, methyl ester	C₁₅H₂₆O₂	270.5	0.50	1619
19	15.57	n-Hexadecanoic acid	C₁₆H₃₂O₂	256.4	0.82	1975
20	15.91	Hexadecanoic acid, ethyl ester	C₁₆H₃₂O₂	256.4	0.28	1921
21	15.99	Eicosane	C₂₀H₄₂	282.5	0.59	2000
22	17.10	5-Eicosene	C₂₀H₄₀	280.5	0.09	2285
23	17.27	8,11-Octadecadienoic acid	C₁₉H₃₄O₂	280.4	0.41	2196
24	17.36	9,12,15-Octadecatrienoic acid	C₁₉H₃₆O₂	278.43	0.48	2101
25	17.52	Phytol	C₂₀H₂₈O₂	296.5	0.15	2105
26	17.67	Octadecanoic acid	C₁₉H₃₂O₂	284.5	0.18	2172
27	17.82	9,12-Octadecadienoic acid	C₁₉H₃₄O₂	280.4	0.18	2098
28	17.90	Octadec-9-enoic acid	C₁₉H₃₄O₂	282.5	0.47	2152
29	18.22	3,5-Difluorobenzaldehyde	C₇H₄F₂O	142.10	0.74	ND
30	18.60	1-Nonadecene	C₁₉H₃₈	266.5	0.97	1894
31	18.68	Docosane	C₂₂H₄₆	310.6	0.77	2200
32	18.83	Stigmasta-3,5-dien-7-one	C₂₉H₅₀O	410.7	0.92	ND
33	19.46	Stigmasta-4,6,22-trien-3,alphा.-ol	C₂₉H₅₀O	410.7	2.25	ND
34	19.86	Methoxyacetic acid, 2-pentadecyl ester	C₁₉H₅₀O₃	300.5	2.30	ND
35	21.44	Cyclotetrasane	C₂₂H₄₈	336.6	0.25	2899
36	21.53	Tetrasane	C₂₂H₅₀	338.7	0.79	2661
37	22.91	Benzamide	C₂₃H₄₄NO	121.14	0.20	1288
38	23.04	1,2-Benzene dicarboxylic acid	C₂₄H₄₂O₄	166.13	0.15	1872
39	24.26	5-Acetyl-2-bromopyridine	C₂₅H₂₇BrNO	200.03	0.37	ND
40	24.32	9-Tricosene	C₂₃H₄₆	322.6	0.28	2274
41	25.25	1-Chloroheptacane	C₂₅H₃₀Cl	415.2	0.42	ND
42	25.49	Pyridine-3-carboxamide	C₂₅H₄₄O₂	122.12	0.29	ND
43	25.75	1-Bromo-11-iodoundecane	C₂₅H₂₈BrL	361.1	1.12	1668
44	26.11	Tetratriacontane	C₃₄H₇₀	478.9	0.83	3400
45	26.20	Hexacosane	C₂₆H₅₄	366.7	0.63	416
46	26.45	Cyclopropane	C₃₈H₈	42.08	0.50	367
47	27.14	9-Methylnonadecane	C₂₉H₄₂	282.5	0.89	1943
48	27.84	Cholestan-3-one, 4,4-dimethyl-	C₂₉H₅₀O	414.7	1.67	ND
Inoculums were made by combining a few colonies of each bacteria from 24-hour old cultures with a 10 mL sterile nutrient broth medium. The turbidity was set to 0.5 McFarland, which is comparable to 10^8 CFU/mL cell density. In an autoclave, Petri dishes and nutrient agar media were sterilized. Agar nutrient was placed into Petri dishes and allowed to solidify in a laminar flow hood. Bacterial cultures were streaked on the agar surface, followed by the development of four 6 mm diameter holes in each Petri dish. Using a micropipette, 60 μL of coamoxiclav (1 mg/mL) and fraction

Peak no.	RT (min)	Identified compounds	Molecular formula	Molecular weight	Area %	Kovats index in the literature
49	27.98	Heneicosane	C_{21}H_{44}	296.6	1.01	2100
50	28.23	Cyclotrieccontane	C_{20}H_{60}	420.8	0.39	
51	29.24	Cyclohexane	C_{6}H_{12}	84.16	3.72	670
52	29.82	Triacetone	C_{30}H_{62}	422.8	0.84	1397
53	30.15	Decyl nitrate	C_{10}H_{21}NO_{3}	203.28	1.45	1319
54	30.76	Hentriacontane	C_{31}H_{64}	436.8	1.83	3100
55	31.04	Stigmast-3,5,22-trien	C_{29}H_{46}	394.7	0.60	2990
56	31.37	Octadecane, 3-ethyl-5-(2-ethylbutyl)-	C_{29}H_{54}	366.7	0.75	2404
57	34.08	Preg-4-en-3-one, 17-hydroxy-	C_{21}H_{52}O_{2}	316.5	4.53	ND
58	34.14	Preg-4-en-3-one	C_{21}H_{32}O	300.5	2.33	ND
59	35.90	Gamma-sitosterol	C_{25}H_{32}O_{2}	432.7	0.58	3412

R.T.: retention time; ND.: not detected.

Table 2: Continued.

Peak no.	RT (min)	Identified compounds	Molecular formula	Molecular weight	Area %	Kovats index in the literature
49	27.98	Heneicosane	C_{21}H_{44}	296.6	1.01	2100
50	28.23	Cyclotrieccontane	C_{20}H_{60}	420.8	0.39	
51	29.24	Cyclohexane	C_{6}H_{12}	84.16	3.72	670
52	29.82	Triacetone	C_{30}H_{62}	422.8	0.84	1397
53	30.15	Decyl nitrate	C_{10}H_{21}NO_{3}	203.28	1.45	1319
54	30.76	Hentriacontane	C_{31}H_{64}	436.8	1.83	3100
55	31.04	Stigmast-3,5,22-trien	C_{29}H_{46}	394.7	0.60	2990
56	31.37	Octadecane, 3-ethyl-5-(2-ethylbutyl)-	C_{29}H_{54}	366.7	0.75	2404
57	34.08	Preg-4-en-3-one, 17-hydroxy-	C_{21}H_{52}O_{2}	316.5	4.53	ND
58	34.14	Preg-4-en-3-one	C_{21}H_{32}O	300.5	2.33	ND
59	35.90	Gamma-sitosterol	C_{25}H_{32}O_{2}	432.7	0.58	3412

R.T.: retention time (min); ND.: not detected.

Table 3: Compounds identified by GC-MS analysis of BFTD.

Peak no.	RT (min)	Identified compounds	Molecular formula	Molecular weight	Area %	Kovats index in the literature
49	27.98	Heneicosane	C_{21}H_{44}	296.6	1.01	2100
50	28.23	Cyclotrieccontane	C_{20}H_{60}	420.8	0.39	
51	29.24	Cyclohexane	C_{6}H_{12}	84.16	3.72	670
52	29.82	Triacetone	C_{30}H_{62}	422.8	0.84	1397
53	30.15	Decyl nitrate	C_{10}H_{21}NO_{3}	203.28	1.45	1319
54	30.76	Hentriacontane	C_{31}H_{64}	436.8	1.83	3100
55	31.04	Stigmast-3,5,22-trien	C_{29}H_{46}	394.7	0.60	2990
56	31.37	Octadecane, 3-ethyl-5-(2-ethylbutyl)-	C_{29}H_{54}	366.7	0.75	2404
57	34.08	Preg-4-en-3-one, 17-hydroxy-	C_{21}H_{52}O_{2}	316.5	4.53	ND
58	34.14	Preg-4-en-3-one	C_{21}H_{32}O	300.5	2.33	ND
59	35.90	Gamma-sitosterol	C_{25}H_{32}O_{2}	432.7	0.58	3412

R.T.: retention time (min); ND.: not detected.
solutions (40, 20, and 10 mg/mL) were added to wells by using a micropipette. All of these Petri plates were incubated for 18–24 hours at 37°C in an incubator. The zones of inhibition were evaluated after incubation to determine the antibacterial activity. The results were calculated by averaging three experiments [33].

2.9. Molecular Docking Studies. In silico molecular docking is a valuable method in the growth of molecular biology and computer-aided drug designing. For molecular docking evaluation, different tools may be used, likely AutoDock Vina, Discovery Studio, PyRx, and Open Babel. The molecular docking was performed according to the method given in the literature. The receptor molecule was downloaded from http://rcsb.org in pdb format. The preparation of the receptor was performed by Discovery Studio. The structures of ligands were downloaded from the PubChem in SDF format. These prepared receptors and ligands were uploaded in AutoDock Vina which was embedded in PyRx. These drugs provide ligand organization depending on their capacity to

Figure 2: GC-MS chromatogram of CFTD.

Figure 3: GC-MS chromatogram of BFTD.
interact with a certain target tyrosinase, acetylcholinesterase, and butyrylcholinesterase enzymes. The involvement of small molecules of protein in a target entails predefined sampling of the ligand’s capacity to fit into a specific target groove to generate an optimal complex shape. This may be accomplished by utilizing the program evaluation function. This provides an alternative approach for detecting target structure, which is the required point for in silico drug modeling. Finally, docking was performed with AutoDock Vina. The docked results were visualized with Discovery Studio [34].

2.10. Statistical Analysis. Each experiment was conducted in triplicate. All the readings and results were expressed as mean ± standard deviation (STD). One-way ANOVA, followed by post hoc Tukey’s multiple comparison test, was applied for the analysis of data. The software used was Prism GraphPad 8.1 version.

3. Results

3.1. Chemical Composition of T. domingensis

3.1.1. Preliminary Phytochemical Screening. The qualitative phytochemical screening of CFTD and BFTD was carried out for different chemical constituents. Table 1 reveals the presence of carbohydrates, proteins, saponins, glycosides,
steroids, terpenes, resins, tannins, and phenols while amino acids and alkaloids were absent.

3.1.2. Polyphenolic Quantification (TPC and TFC). The maximum phenolic contents of 97.14 mg GAE/g extract and the maximum flavonoid contents of 362.5 mg QE/g extract were in the BFTD, while in CFTD, total phenolic contents were determined 24.3 mg GAE/g extract and flavonoid contents were 84.71 mg QE/g extract (Figure 1).

3.1.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis. To obtain more detailed information about phytochemicals, GC-MS screening of the CFTD and BFTD was performed, resulting in the tentative identification of 69 and 27 different metabolites, respectively. The preliminary identification of the metabolites was accomplished with the help of the NIST library database. Tables 2 and 3 provide a list of these tentatively discovered secondary metabolites in the CFTD and BFTD. The GC-MS spectra for the CFTD and BFTD presented in Figures 2 and 3 revealed distinct peaks of tentatively identified phytochemicals. The majority of these component classes comprised a combination of benzenoids, hydrocarbons, fatty acids, organic compounds, natural product derivatives, lipid-like molecules, alkanes, and phenol, among others. In the both fractions, the major compounds identified include deoxycaesaldekarin C, stigmaslan-3,5,22-trien, cyclotetracosane, stigmasta-3,5-dien-7-one, cyclotriacontane, stigmasta-4,6,22-trien-3.alpha.-ol, benzenepropanoic acid, 3H-1,2,4-triazole-3-thione, phytol, p-xylene, tripentyl orthoformate, linolenic acid, phenol, dodecane, and 3,5-difluorobenzaldehyde.

3.2. Oral Toxicity Test. In the oral toxicity test, the CFTD and BFTD did not show any sign or symptom of morbidity or mortality for a period of 24 h after the oral dosing of the extracts at concentrations of 0.1–3.0 g/kg body weight. No toxicity-related signs such as convulsions, writhing, behavioral alterations, pain, and ataxia were observed during this period.

3.3. Antioxidant Potential of T. domingensis. The antioxidant activity for CFTD and BFTD (Figure 4) was determined by ABTS, FRAP, DPPH, and CUPRAC. The antioxidant potential determined by ABTS, FRAP, DPPH, and CUPRAC methods revealed that the BFTD exhibited maximum activity (52.15 + 1.24, 70.58 + 2.12, 163.91 +

Table 5: Antibacterial activity of T. domingensis.

| Strains | Conc. (mg/mL) | ZI (mm) of coamoxiclav (conc. 1 mg/mL) | ZI of CFTD (mm) | ZI of BFTD (mm) |
|--------------------|---------------|--|----------------|----------------|----------------|
| Gram positive | | | | |
| Bacillus subtilis | 10 | 4 | NA | NA |
| | 20 | 9 | 7 | |
| | 40 | 15 | 16 | |
| Micrococcus luteus | 20 | NA | 9 | |
| | 40 | NA | 17 | |
| | 10 | 5 | 5 | |
| Staphylococcus epidermidis | 18 | 20 | 11 | 8 |
| | 40 | 16 | 15 | |
| | 10 | NA | NA | |
| Bacillus pumilus | 20 | 10 | NA | NA |
| | 40 | 19 | NA | |
| | 10 | 4 | 4 | |
| Staphylococcus aureus | 21 | 20 | 12 | 9 |
| | 40 | 18 | 16 | |
| Gram negative | | | | |
| Escherichia coli | 24 | 20 | 14 | 8 |
| | 40 | 18 | 18 | |
| | 10 | NA | 7 | |
| Bordetella bronchiseptica | 25 | 20 | 8 | 11 |
| | 40 | 17 | 16 | |
| | 10 | NA | NA | |
| Pseudomonas aeruginosa | 6 | 20 | NA | NA |
| | 40 | 13 | NA | |

CFTD: chloroform fraction; BFTD: n-butanol fraction; ZI: zone of inhibition.

10.88, and 184.05 + 12.7 mg TE/g DE, respectively), while CFTD has the antioxidant potential of 35.29 + 0.79, 55.62 + 1.94, 119.49 + 5.83, and 140.98 + 6.39 mg TE/g DE, respectively, with all four methods. The results of antioxidant activities demonstrated that polyphenol content has a direct relationship with antioxidant potential, with the highest phenolic and flavonoid content fractions having a better antioxidant activity.

3.4. Enzyme Inhibition Potential of T. domingensis

3.4.1. Tyrosinase Inhibition Activity. The BFTD has the highest tyrosinase %age inhibition 78.67 ± 6.81 which is very similar to the %age inhibitory activity of kojic acid used as standard (85.58 ± 0.85), and the CFTD revealed 68.09 ± 5.79%age inhibition (Figure 5).

3.4.2. Acetylcholinesterase and Butyrylcholinesterase Inhibition Activity (%Age Inhibition). The BFTD resulted from maximum acetylcholinesterase and butyrylcholinesterase %age inhibition 71.65 ± 4.87 and 60.79 ± 2.78, respectively, as compared to %age inhibition of CFTD 63.47 ± 3.61 and 51.45 ± 1.14 (Figure 5).

3.5. Thrombolytic Activity. Five samples of blood were taken, and results were observed through thrombolytic activity by the use of streptokinase as a standard. The BFTD showed the highest (68.15 ± 0.55) thrombolytic activity, and the CFTD shows less (58.67 ± 1.18) thrombolytic activity (Table 4).

3.6. Antibacterial Potential of T. domingensis. By using standard coamoxiclav (amoxicillin-clavulanic acid), a total of eight bacterial strains (Bacillus subtilis, Micrococcus luteus, Staphylococcus epidermidis, Bacillus pumilus, Staphylococcus aureus, Escherichia coli, Bordetella bronchiseptica, Pseudomonas aeruginosa) were used to check the antibacterial potential of CFTD and BFTD. The CFTD and BFTD at conc. of 40 mg/mL showed the highest zone of inhibition (15 and

![Figure 6: Docking of compounds with acetylcholinesterase: (a) interaction of deoxycaesaldekarin C, (b) stigmastan-3,5,22-trien, (c) cyclotetracosane, and (d) galantamine.](image)
16 mm) against Bacillus subtilis, and the lowest zone of inhibition (4 mm) was shown by CFTD at conc. of 10 mg/mL against. Micrococcus luteus showed a maximum sensitivity (17 mm) against BFTD at conc. 40 mg/mL. Staphylococcus epidermidis showed maximum sensitivity (15 and 16 mm) against CFTD and BFTD at conc. 40 mg/mL, and the lowest sensitivity (5 mm) showed against both fractions at conc. of 10 mg/mL. Bacillus pumilus showed higher sensitivity (18 mm) against CFTD at conc. 40 mg/mL and lowest sensitivity (10 mm) at conc. of 20 mg/mL against same fraction. Staphylococcus aureus showed maximum sensitivity (18 and 16 mm) against CFTD and BFTD at conc. of 40 mg/mL, and the lowest sensitivity (4 mm) showed against BFTD at conc. of 10 mg/mL. Escherichia coli showed higher sensitivity (18 mm) against both fractions at conc. of 40 mg/mL and the lowest sensitivity (8 mm) against BFTD at conc. of 20 mg/mL. Bordetella bronchiseptica showed the highest sensitivity (17 and 16 mm) against CFTD and BFTD and at conc. of 40 mg/mL, and the lowest sensitivity (7 mm) showed against BFTD at conc. of 10 mg/mL. Pseudomonas aeruginosa showed the highest sensitivity (13 mm) against CFTD at conc. 40 mg/mL (Table 5).

All tested samples were sensitive to T. domingensis, the CFTD was the most effective. Overall, from all these results, we can conclude that antibacterial results were dose-dependent.

3.7. Molecular Docking Study. The molecular docking of secondary metabolites identified by GC-MS was performed to determine binding affinities and binding interactions. Details of the interacting amino acid residues and binding affinities are displayed (Figures 6–8 and Table 6). The best binding affinity with tyrosinase was revealed by deoxycaesaldekarin C -10.4 kcal/mol while the binding affinity for standard kojic acid was 5.4 kcal/mol.

The best docking scores for acetylcholinesterase and butyrylcholinesterase were revealed as deoxycaesaldekarin C -14.3 and -13.1 kcal/mol, respectively, while the docking scores for standard galantamine were -8.5 and -8.4 kcal/mol, respectively. The results of docking revealed strong interactions between the compound and the enzyme.

Figure 7: Docking of compounds with butyrylcholinesterase enzyme: (a) 2D interaction of deoxycaesaldekarin C, (b) stigmastan-3,5,22-trien, (c) cyclotetracosane, and (d) galantamine.
natural enzyme inhibitors from the GC-MS of CFTD and BFTD.

4. Discussion

The phytochemical screening of *T. domingensis* was carried out on both CFTD and BFTD, which revealed the presence of carbohydrates, proteins, terpenes, and steroids while amino acids and alkaloids were absent (Table 1). Preliminary phytochemical screening of *T. domingensis* rhizome aqueous extracts was determined previously [13]. The selection of appropriate solvents for extraction is the key factor in natural product research. In this study, the chloroform and *n*-butanol solvents were used due to previous evidence of the role of the solvents in extract preparation with a rich quantity of polyphenols [35].

The clinical application of herbal drugs without scientific evidence of their safety profile may lead to serious concerns regarding their toxicity. Therefore, various *in vivo* models are applied to investigate the toxicity of plant extracts [36]. In this study, the toxicity of CFTD and BFTD was investigated using *in vivo* oral toxicity test. The extracts were found safe and biocompatible at 3000 mg/kg in rats. Moreover, the species has also been used as food [37], which rectifies the safety profile of the species revealed in this study. These results suggest that the edible use of *T. domingensis* is safe and biocompatible.

The health beneficial effects of medicinal plants are due to phenolic compounds. Their utilization can cause a decrease in the risk of diseases such as cancer and cardiovascular diseases. The largest groups of phenolic compounds are flavonoids, and these play numerous roles in plants and the human diet. Flavonoids can be employed for different activities likely antibacterial, antifungal, anti-thrombotic, and anticancer. *Typha elephantine* have anti-thrombotic activity due to its effect on platelet aggregation [38]. The maximum phenolic contents of 97.86 mg GAE/g DE and the maximum flavonoid contents of 362.5 mg QE/g DE were found in the BFTD. While in CFTD, total phenolic contents were determined 24.3 mg GAE/g DE, and flavonoid contents were 84.71 mg QE/g DE extract (Figure 1). The literature review of fruits of *T. domingensis* revealed that these are very rich in polyphenols (401.46 ± 5.77 mg GAE/g) [39].

Tyrosinase is a copper-containing enzyme found in plant and animal tissues that catalyzes the oxidation of tyrosine to form melanin and other colors [40]. It is found within melanosomes, which are synthesized in human skin melanocytes [41]. Tyrosinase is the enzyme that catalyzes the rate-

Figure 8: Docking of compounds with tyrosinase: (a) 2D interaction of deoxycaesaldekarin C, (b) stigmastan-3,5,22-trien, (c) cyclotetracosane, and (d) kojic acid with an enzyme.
and butyrylcholinesterase %age inhibition of 71.65 ± 4.87 and 60.79 ± 2.78, respectively, by using standard galantamine (97.11 ± 1.26 and 72.88 ± 2.61) as compared to %age inhibition of CFTD (63.47 ± 3.61 and 51.45 ± 1.14) (Figure 5). TPC and TFC were found higher in the BFTD than in the CFTD which confirms maximum inhibition of acetylcholinesterase and butyrylcholinesterase with BFTD. These findings are likely due to the metabolites identified by the GC-MS profile, probably (deoxycaesaldekarin C, stigmasan-3,5,22-trien, cyclotetraicosane, stigmasta-4,6,22-trien-3.alpha.-ol, 2-(acetoxymethyl)-3-(methoxycarbonyl), cholestan-3-one, 4,4-dimethyl-, 2,3-diphenyl-5-methoxybenzo-1,4-dioxin, cyclotriacontane, octadecane, 3-ethyl-5-(2-ethylbutyl)-) with enzymes tyrosinase, acetylcholinesterase, and butyrylcholinesterase. Therefore, many cholinesterase naturally occurring polyphenols are widely used to treat and ameliorate the risk of a variety of geriatric neurological illnesses, such as macular degeneration and dementia [44]. Antioxidants are also being investigated as potential therapies for neurodegenerative illnesses such as Alzheimer’s and amyotrophic lateral sclerosis. According to research, phenolic/flavonoid-rich fractions have potent antiacetylcholinesterase properties [45]. The BFTD expressed maximum acetylcholinesterase and butyrylcholinesterase %age inhibition of 71.65 ± 4.87
T. domingensis used to halt bleeding, as well as burns and wound healing in Turkish traditional medicine [49]. Overall, we may infer that the antibacterial outcomes of CFTD and BFTD against selected strains were dose-dependent. Some compounds identified in the CFTD and BFTD by GC-MS comprise antibacterial activity like ethylbenzene [50], tetradecane [51], benzene [52], pentadecaenoic acid [53], heneicosane [54], octadec-9-enoic acid [55], and 3H-1,2,4-triazole-3-thione [56] which confirms the results of antibacterial *T. domingensis*. As the *T. domingensis* has been used traditionally as antitussive activity, it would be a good edition in the pharmaceutical field [57].

Docking is a molecular modeling technique used to estimate how proteins (enzymes) interact with small molecules (binders or ligands) [58]. For the estimation of binding affinities and binding interactions, the in silico molecular docking of all compounds identified by GC-MS was performed. Molecular docking gives the most thorough perspective of drug-receptor interaction and has produced a new logical method of drug design in which the structure of the drug is generated based on its fit to the three-dimensional structures of the receptor site. The results of docking revealed that the ligands identified in the GC-MS of these fractions gave better binding affinities than standards used in these assays, and it suggests that these fractions may be very strong inhibitors of enzymes.

T. domingensis can be used to treat some common diseases and ailments. For the therapeutic application of this plant, it is important to evaluate its maximum potential in the medical and pharmaceutical sciences. Conclusively, total phytochemical contents, GC-MS analysis, and in silico molecular docking evaluation findings confirm our findings of CFTD and BFTD in terms of antioxidant capacity, tyrosinate inhibition activity, antimicrobial assay, and thrombo-lytic potential.

5. Conclusions

The current comparative study was focused on secondary metabolites profiling and in vitro biological activities for CFTD and BFTD. The BFTD exhibited the maximum polyphenolic contents (TPC and TFC), antioxidant potential and tyrosinase, acetylcholinesterase, and butyrylcholinesterase inhibition activity. The GC-MS screening of the CFTD and BFTD resulted in the tentative identification of several secondary metabolites. The tyrosinase, acetylcholinesterase, and butyrylcholinesterase inhibition activity of *T. domingensis* was further confirmed by molecular docking studies of GC-MS identified ligands, deoxycaesaldekarin C, stigmastan-3,5,22-trien, andcyclotetrasacane, with these enzymes. The compounds tentatively identified in the GC-MS analysis of the CFTD and BFTD confirm their preliminary pharmacological efficacy, and the majority of compounds could be extremely beneficial in the pharmaceutical industry for the development of biomedicines. The BFTD revealed the highest thrombo-lytic activity than the chloroform fraction. CFTD and BFTD revealed very significant and dose-dependent antibacterial against the tested strains. CFTD and BFTD possessed antimicrobial and hemostatic properties as evidenced by inhibiting the growth of pathogenic bacteria. It has proven that *T. domingensis* can be used in neurological diseases and skin malignancies, and this study provides a rationale for biological activities. The phytochemical and biological potential of this plant highlighted its medicinal value for further isolation of bioactive compounds and preparation of nanoparticles loaded with these fractions, which is currently in progress.

Data Availability

There is no restriction on data.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] M.-m. Poo, D. Jiu-lin, N. Y. Ip, Z.-Q. Xiong, B. Xu, and T. Tan, “China Brain Project: basic neuroscience, brain diseases, and brain-inspired computing,” Neuron, vol. 92, no. 3, pp. 591–596, 2016.

[2] M. S. Khan and I. Ahmad, “Herbal medicine: current trends and future prospects,” in New Look to Phytomedicine, pp. 3–13, Elsevier, 2019.

[3] M. A. Dulebenets, J. Pasha, O. F. Abioye et al., “Exact and heuristic solution algorithms for efficient emergency evacuation in areas with vulnerable populations,” International journal of disaster risk reduction, vol. 39, 2019.

[4] A. J. Das, Biochemical and microbiological characterization of rice beer produced in Assam and therapeutic application of a novel ester synthesized from its components, Tezpur University, 2017.

[5] S. Bai-Ngew, T. Chuensun, S. Wangtueai et al., “Antimicrobial activity of a crude peptide extract from lablab bean (Dolichos lablab) for semi-dried rice noodles shelf-life,” Quality Assurance and Safety of Crops & Foods, vol. 13, no. 2, pp. 25–33, 2021.

[6] A. Wadood, M. Ghurfan, S. B. Jamal, M. Naeem, A. Khan, and R. Ghaffar, “Phytochemical analysis of medicinal plants occurring in local area of Mardan,” Biochemistry & Analytical Biochemistry, vol. 2, no. 4, pp. 1–4, 2013.

[7] M. Kumar, S. Prakash, N. Kumari et al., “Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health,” Antioxidants, vol. 10, no. 7, article 1061, 2021.

[8] L. Marin, E. M. Miguelez, C. J. Villar, and F. Lombó, “Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties,” BioMed research international, vol. 2015, Article ID 905215, 18 pages, 2015.

[9] K. Szewczyk, A. Bogucka-Kocka, N. Vorobets, A. Grzywa-Celinska, and S. Granica, “Phenolic composition of the leaves of Pyrola rotundifolia L. and their antioxidant and cytotoxic activity,” Molecules, vol. 25, no. 7, p. 1749, 2020.

[10] V. Lobo, A. Patil, A. Phatak, and N. Chandra, “Free radicals, antioxidants and functional foods: impact on human health,” Pharmacognosy Reviews, vol. 4, no. 8, pp. 118–126, 2010.

[11] M. Gautam, M. Agrawal, M. Gautam, P. Sharma, A. S. Gautam, and S. Gautam, “Role of antioxidants in generalised anxiety disorder and depression,” Indian journal of psychiatry, vol. 54, no. 3, pp. 244–247, 2012.
[12] Z. Xu and L. Chang, “Typhaceae,” in Identification and Control of Common Weeds: Volume 3, pp. 725–731, Springer, 2017.

[13] M. R. Rao, Y. Saranya, D. Divya, and A. C. Linn, “Preliminary phytochemical analysis of Typha domingensis rhizome aqueous extracts,” International Journal of Pharmaceutical Sciences Review and Research, vol. 37, no. 1, pp. 30–32, 2016.

[14] R. W. Long and O. Lakela, Flora of Tropical Florida, University of Miami Press, 1971.

[15] D. He, B. R. T. Simonet, B. Jara, and R. Jaffé, “Gas chromatography mass spectrometry based profiling of alkyl coumarates and ferulates in two species of cattail (Typha domingensis P., and Typha latifolia L.),” Phytochemistry Letters, vol. 13, pp. 91–98, 2015.

[16] E. Sezik, E. Yesilada, M. Tabata et al., “Traditional medicine in Turkey VIII. Folk medicine in East Anatolia; Erzurum, Erzincan, Ağrı, Kars, Iğdır provinces,” Economic Botany, vol. 51, no. 3, pp. 195–211, 1997.

[17] A. Lopes, M. J. Rodrigues, C. Pereira et al., “Natural products from extreme marine environments: searching for potential industrial uses within extremophile plants,” Industrial Crops and Products, vol. 94, pp. 299–307, 2016.

[18] E. J. Al-Kalifawi, Y. J. Al-Azzawi, K. Kat Al-Fartousi, and H. M. Islam, “Physicochemical, phytochemical profiling and biological activities of leaves extract of Bardy (Typha domingensis Pers.) from Al-Chibayish Marshes in Southern Iraq,” in Arts, humanities and natural sciences conferences, 2017.

[19] W. M. Bandaranayake, “Traditional and medicinal uses of mangroves,” Mangroves and Salt Marshes, vol. 2, no. 3, pp. 133–148, 1998.

[20] I. Imran, T. Javed, A. Jabeen et al., “Synthesis, characterization and docking studies of amide ligands as anti-leighmanial agents,” Pakistan Journal of Pharmaceutical Sciences, vol. 33, 1(Supplementary), pp. 385–392, 2020.

[21] E. K. Akkol, I. Sünart, H. Keles, and E. Yesilada, “The potential role of female flowers inflorescence of Typha domingensis Pers. in wound management,” Journal of ethnopharmacology, vol. 133, no. 3, pp. 1027–1032, 2011.

[22] T. Chai, M. Miroshha, H. Ong, and F. Wong, “Antioxidant, iron-chelating and anti-glucosidase activities of Typha domingensis Pers (Typhaceae),” Tropical Journal of Pharmaceutical Research, vol. 13, no. 1, pp. 67–72, 2014.

[23] D.-H. Truong, D. H. Nguyen, N. T. A. Ta, A. V. Bui, T. H. Do, and H. C. Nguyen, “Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia,” Journal of Food Quality, vol. 2019, Article ID 8178294, 9 pages, 2019.

[24] M. Aziz, S. Ahmad, M. N. Iqbal et al., “Phytochemical, pharmacological, and in-silico molecular docking studies of Strobilanthes glutinosus Nees: An unexplored source of bioactive compounds,” South African Journal of Botany, vol. 147, pp. 618–627, 2022.

[25] M. N. Shahzad, S. Ahmad, M. I. Tousif et al., “Profiling of phytochemicals from aerial parts of Terminalia neotaliala using LC-ESI-MS2 and determination of antioxidant and enzyme inhibition activities,” PloS one, vol. 17, no. 3, article e0266094, 2022.

[26] P. D. Choudhary and H. A. Pawar, “Recently investigated natural gums and mucilages as pharmaceutical excipients: an overview,” Journal of pharmaceuticals, vol. 2014, Article ID 204849, 9 pages, 2014.

[27] B. A. Ghalloo, K.-u.-R. Khan, S. Ahmad et al., “Phytochemical profiling, in vitro biological activities, and in silico molecular docking studies of Dracaena reflexa,” Molecules, vol. 27, no. 5, pp. 913, 2022.

[28] N. U. A. Nawaz, M. Saeed, K. Rauf et al., “Antinoceptive effectiveness of Tithonia tubaeflora in a vincrestine model of chemotherapy-induced painful neuropathy in mice,” BioMedicine & Pharmacotherapy, vol. 103, pp. 1043–1051, 2018.

[29] F. Tunnisa, D. N. Faridah, A. Afriyanti et al., “Antioxidant and anti-diabetic compounds identification in several Indonesian underutilized Zingiberaceae species using SPME-GC/MS-based volatilomics and in silico methods,” Food Chemistry, vol. 14, article 100285, 2022.

[30] E. Neagu, G. L. Radu, C. Albu, and G. Paun, “Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centaurea umbellata extracts,” Saudi Journal of Biological Sciences, vol. 25, no. 3, pp. 578–585, 2018.

[31] E. Bursal, A. Aras, Ö. Kılıç, P. Taşlimi, A. C. Gören, and İ. Gölçin, “Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, A-amylase, butyrylcholinesterase, and A-glycosidase enzymes,” Journal of food biochemistry, vol. 43, no. 3, article e12776, 2019.

[32] M. N. Islam, H. Tasnim, L. Arshad et al., “Steam extract of Albizia richardiana exhibits potent antioxidant, cytotoxic, antimicrobial, anti-inflammatory and thrombolytic effects through in vitro approach,” Clinical Phytoscience, vol. 6, no. 1, pp. 1–9, 2020.

[33] T. Kebede, E. Gadisa, and A. Tufa, “Antimicrobial activities evaluation and phytochemical screening of some medicinal plants: a possible alternative in the treatment of multidrug-resistant microbes,” PLoS One, vol. 16, no. 3, article e0249253, 2021.

[34] S. Tabassum, S. Ahmad, K. u. R. Khan et al., “Phytochemical profiling, antioxidant, anti-inflammatory, thrombolytic, hemolytic activity in vitro and in silico potential of Portulaca arfia,” Molecules, vol. 27, no. 8, pp. 2377, 2022.

[35] A. Deghima, N. Righi, N. Rosales-Conrado et al., “Anti-inflammatory activity of ethyl acetate and n -butanol extracts from Ranunculus macrophyllus Desf. and their phenolic profile,” Journal of Ethnopharmacology, vol. 265, article 113347, 2021.

[36] A. Basit, S. Ahmad, A. Naeem, M. Usman, I. Ahmed, and M. N. Shahzad, “Chemical profiling of Justicia vahlii Roth. (Acanthaceae) using UPLC-QTOF-MS and GC-MS analysis and evaluation of acute oral toxicity, antineuropathic and antioxidant activities,” Journal of Ethnopharmacology, vol. 287, article 114942, 2022.

[37] R. Sorourian, A. E. Khajehrahimi, M. Tadayoni, M. H. Azizi, and M. Hojjati, “Evaluation and Con- stitution of Pharmaceutical Research, vol. 14, no. 4, pp. 289–300, 2007.

[38] T.-T. Chai, M.-J. Chiam, C.-H. Lau et al., “Alpha-glucosidase inhibitory and antioxidant activity of solvent extracts and fractions of Typha domingensis (Typhaceae) fruit,” Tropical Journal of Pharmaceutical Research, vol. 14, no. 11, pp. 1983–1990, 2015.
