Do Combination Antiretroviral Therapy Regimens for HIV Infection Feature Diverse T-Cell Phenotypes and Inflammatory Profiles?

Camilla Tincati, Debora Mondatore, Francesca Bai, Antonella d’Arminio Monforte, and Giulia Marchetti

Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy

Immune abnormalities featuring HIV infection persist despite the use of effective combination antiretroviral therapy (cART) and may be linked to the development of noninfectious comorbidities. The aim of the present narrative, nonsystematic literature review is to understand whether cART regimens account for qualitative differences in immune reconstitution. Many studies have reported differences in T-cell homeostasis, inflammation, coagulation, and microbial translocation parameters across cART classes and in the course of triple vs dual regimens, yet such evidence is conflicting and not consistent. Possible reasons for discrepant results in the literature are the paucity of randomized controlled clinical trials, the relatively short follow-up of observational studies, the lack of clinical validation of the numerous inflammatory biomarkers utilized, and the absence of research on the effects of cART in tissues. We are currently thus unable to establish if cART classes and regimens are truly accountable for the differences observed in immune/inflammation parameters in different clinical settings. Questions still remain as to whether an early introduction of cART, specifically in the acute stage of disease, or newer drugs and novel dual drug regimens are able to significantly impact the quality of immune reconstitution and the risk of disease progression in HIV-infected subjects.

Keywords. combination antiretroviral therapy (cART); immune recovery; T-cell phenotypes; inflammation.

Randomized controlled trials (RCTs) and observational cohort studies enrolling HIV-infected subjects with sustained viral suppression have shown that CD4+ T-cell counts remain stable for >10 years in most individuals; <9% of subjects have reductions in CD4+ counts, and this drop is transient in >90% of cases [1]. These data have supported the World Health Organization’s suggestion to reduce the frequency of routine CD4+ T-cell monitoring in adults once CD4+ counts are >200 cells/mm3 and viral load is undetectable [2].

Questions nonetheless remain as to whether the CD4+ T-cell count is the most appropriate marker of combination antiretroviral therapy (cART)–induced immune reconstitution to monitor the immune status of treated HIV-infected individuals. Indeed, despite long-term antiretroviral therapy with constant viral suppression and significant CD4+ T-cell gain, individuals fail to normalize the levels of immune activation/inflammation and hypercoagulation [3–9]. This persistent alteration of the immune system has a clinical impact, given data in the literature to support its association with the development of noninfectious comorbidities, increased mortality, and impaired immune reconstitution in the setting of treated HIV infection [10].

In particular, inflammation markers do not predict clinical events in cART-naïve subjects [11], yet they are independently associated with clinical outcome in treated individuals [12, 13]. These findings strongly suggest that clinical events in HIV infection are driven by differential mechanisms, that is, by the replicating virus in the former and by residual inflammation (which is not solely virus-related) in the latter.

A plethora of antiretroviral compounds that are equally effective in abating the HIV load are available in clinical practice; however, drugs and their combinations may have a diverse result on the immune and inflammatory perturbations that feature HIV infection—hence the risk of developing noninfectious comorbidities for cART-treated individuals. Several studies have investigated the effects of antiretroviral drugs in areas other than suppression of HIV replication, focusing on peripheral markers of inflammation, immune activation, and immuno-senescence [14–25].

The scope of the present work is to review, in a narrative and nonsystematic manner, evidence in favor of or against qualitative differences in immune recovery according to antiretroviral classes/regimens in antiretroviral-naïve and cART-experienced patients.
DIFFERENCES IN IMMUNE RECOVERY ACCORDING TO CART REGIMEN?

Immune Recovery in Antiretroviral-Naive HIV-Infected Patients Starting cART

In terms of the cART backbone used in this setting, a few subtle differences exist when comparing subjects treated with abacavir (ABC)- and tenofovir (TDF)-containing regimens, with demonstrated transient decreases of high-sensitivity C-reactive protein (hsCRP) in the former and interleukin (IL)-6 in the latter [26]. Another study described a minor reduction of residual inflammation and endothelial activation markers in individuals receiving an ABC-based regimen vs a non-ABC-containing regimen [27]. In contrast, ABC and TDF resulted in comparable expression of inflammatory, oxidative, and apoptotic stress genes in coronary endothelial cells without differently affecting endothelial activation and inflammation [28, 29]. Taken together, these findings may explain the conflicting reports on atherosclerotic risk in individuals treated with ABC [30–41]. In this respect, the recent introduction of tenofovir alafenamide (TAF) has rekindled new hopes of less toxic antiretroviral regimens: Although linked to the improvement of bone and kidney function [42–48], TAF has been shown to be equivalent to TDF regarding immune activation and inflammation [49].

Literature studies have also assessed differences in cART-induced immune reconstitution according to the third drug used in triple combination regimens.

Earlier studies compared protease inhibitor (PI)- with non-nucleoside reverse transcriptase inhibitor (NNRTI)-containing regimens. A prospective, single-center observational study enrolling naive subjects sequentially treated with PI (indinavir [IDV] or lopinavir [LPV]) and NNRTI (efavirenz [EFV]) found a greater reduction in fibrinogen levels in the course of the latter, despite similar improvements in inflammation and coagulation parameters [7]. Similarly, in the A5224s study, cystatin C, a renal function marker known to correlate with other inflammatory biomarkers, and hs-CRP were lower in subjects treated with EFV than those treated with atazanavir (ATV) [26, 50]. On the other hand, PIs have also been associated with increased HIV antigen- and mitogen-stimulated T lymphocyte proliferation [26], albeit transitory in nature [24]. Further, contrasting data exist on the effect of the third drug on peripheral T-cell phenotype, with some studies pointing to a greater reduction of immune activation parameters (CD4+/DRII+, CD8+/ DRI+, CD4+/CD25+, CD4+/CD25+) in PI-treated individuals [26] and others demonstrating greater reduction of immune activation parameters in NNRTI-treated subjects [51], as well as evidence of impaired CD8+ T-cell maturation (reduced CD8+/28-/CD45RA+ levels) in patients receiving PI- rather than in NNRTI-based cART [52].

More recently, studies have focused on the potential benefits of integrase strand transfer inhibitors (INSTIs) on immune restoration.

A post hoc analysis of the STARTMRK study of raltegravir (RAL) vs EFV, each in combination with TDF/FTC, demonstrated that INSTI use was associated with higher rates of CD4/CD8 normalization [53]. Several studies have also shown that first-line RAL-based regimens normalized monocyte homeostasis [54] and contained T-cell activation, coagulation, and inflammation [6] as well as microbial translocation [55], whereas non-RAL-including cART did not. Similarly, another RCT demonstrated that elvitegravir/cobicistat (EVG/c) was associated with lower levels of monocyte activation and systemic inflammation than EFV, given the greater reduction of sCD14 and hs-CRP in subjects treated with the INSTI-based regimen [56]. In line with the possible beneficial immune effects linked to first-line INSTI use, a cohort study demonstrated an association between INSTI treatment and normalization of the CD4/CD8 T-cell ratio in naive subjects following 1 year of therapy [57]. In antithesis, a post hoc analysis of the SINGLE study (which nonetheless was not controlled for the backbone regimen) showed that NNRTIs performed better than INSTIs, leading to a higher increase in the CD4+/CD8+ ratio as well as several T-cell recovery markers in subjects randomized to receive EFV/TDF/FTC instead of DGT/ABC/3TC [58].

Despite the above-mentioned findings of possible differences in immune parameters between INSTIs and other third-drug classes, findings from the A5260 study failed to detect a differential effect of a first-line cART with RAL or with a PI (ATV/r or DRV/r), in terms of T-cell senescence (CD28-CD57+) and exhaustion (PD-1 expression) [59, 60].

Regarding the quality of immune recovery following the introduction of HIV entry inhibitors, a pilot RCT reported that quadruple therapy was associated with better duodenal immune reconstitution, greater reduction of cell-associated HIV-DNA in the duodenum, and higher decline in systemic levels of inflammatory markers in patients starting cART with TDF/FTC + maraviroc (MVC) + RAL rather than with TDF/FTC + MVC or TDF/FTC + EFV, possibly due to increased higher mucosal gut penetration of MVC [61]. In contrast, a post hoc analysis of the MERIT trial, comparing MVC and EFV in combination with AZT/3TC, showed a higher rate of CD4/CD8 normalization in the NNRTI arm, driven by a greater CD8+ T-cell decline [62].

On the Opposite Sides of the Spectrum: Immune Recovery in Antiretroviral-Naive HIV-Infected Patients Starting cART in Acute and Late Stages of Infection

Antiretroviral-naive subjects introducing cART in the acute phase of HIV infection represent an intriguing clinical scenario in terms of immune recovery. Indeed, the literature has shown a possible method of controlling reported damage to the immune system if cART is started in the earliest stages of disease, with timely immune reconstitution (CD4+ T-cell count >500 cells/mm³, CD4% >30%, and CD4/CD8 ratio >1), a decrease in T-cell activation/inflammation, and a lower risk of non-AIDS comorbidities [3, 63–69].
Standard triple regimens are currently recommended by European and American guidelines [70–72] for the treatment of acute HIV infection and have shown the ability to reduce immune activation in this setting [73]. Nonetheless, 4-drug regimens have also been studied, aiming to hinder the establishment of the viral reservoir: a prospective RCT demonstrated that starting TDF/FTC + RAL + MVC, compared with TDF/FTC + RAL, promoted a faster reduction of 2-LTR circles and a recovery of CD4+ T cells with a partial decrease in the total reservoir size [74]. Quadruple cART with AZT + 3TC + ABC + fosamprenavir (APV) in acutely infected patients was also associated with a more rapid decline in viremia and CD8+ T-lymphocyte activation reaching normalization at 48 weeks [75]. While RCT and prospective studies are currently evaluating the impact of different regimens (EFV- vs RAL-based cART, cART plus telmisartan [76]; EVG/c/TDF/FTC [77]; ABC/3TC + dolutegravir [DGV] [78, 79]; bictegravir + TAF [80]) in the setting of acute infection, data on the use of MVC have shown that this drug does not lead to significant improvements in the levels of inflammation, endothelial activation, and coagulation [81], probably reflecting the scarce effects of MVC intensification on residual viremia in acutely HIV-infected individuals [82].

Another factor known to play a key role in the quality of cART-mediated immune reconstitution is the CD4+ T-cell nadir [23, 25, 83]. Indeed, antiretroviral-naive patients starting LPV/r- [23] and EFV-based cART [25] with a baseline CD4+ count >200/mmc present better immunological improvement than patients starting with a lower CD4+ count. In contrast with these findings, however, subjects starting EFV-based cART with CD4+ T cells <300/mmc experienced not only a better immune reconstitution, but also a greater reduction of systemic inflammation markers compared with individuals starting with CD4+ >300/mmc [83]. In the context of advanced presentation, an RCT showed that the addition of MVC did not reduce monocyte/macrophage activation to a greater extent than standard triple cART [84].

Immune Recovery in cART-Treated HIV-Infected Patients Switching to Other Regimens

Conflicting results on the different effects of second-line NNRTI- and PI-based cART on inflammation and HIV persistence stem from early observational studies assessing a wide range of biomarkers that are not validated as surrogate markers of clinical events [17, 18, 85–91].

More recently, an RCT showed that switching from a PI/r- to an RAL-containing regimen resulted in a reduction of markers proven to be linked to cardiovascular disease (hs-CRP, IL-6, D-dimer) [92]. In addition, a further RCT on overweight women randomized to an immediate or 24-week delayed switch from an NNRTI- or PI-based cART to an RAL-based regimen demonstrated a significant decline in sCD14 following cART change [93]. RAL also appears to have positive effects on the gastrointestinal tract, a major site of HIV pathogenesis: a partial normalization of the gut microbiota composition, as well as markers of microbial translocation and inflammation, was observed in subjects receiving RAL and not a PI- or NNRTI-based regimen [94]. In addition to the reduction of systemic inflammation, as demonstrated by reduced D-dimer [95] and T-cell activation [96], different RCTs showed that intensification of current cART with RAL decreased low-level viral replication [95] yet did not affect measures of HIV persistence [96].

Other potential beneficial effects of INSTIs have been described following treatment with EVG that resulted in immune activation and partially restored T-cell function [97].

With respect to MVC, a meta-analysis of clinical trials in treatment-experienced patients showed that this compound was associated with a significant increase in CD4+ T-cell count regardless of virologic suppression [98]. Even if adding MVC alone [99] or MVC + RAL to the current cART had no effect on the size of the latent HIV reservoir, intensification of a PI-regimen with MVC + RAL was associated with a reduction of cell-associated HIV-DNA, T-cell CD8+ activation, and rectal proviral HIV-DNA [100]. Evidence from the literature also favors the use of MVC in selected clinical settings given its immune-modulating and anti-inflammatory effects. A recent study showed improved responsiveness to HBV vaccination in MVC-treated subjects, possibly due to reduced CD4+ T-cell activation and proliferation [101]. Another report demonstrated lower levels of monocyte activation in individuals receiving MVC compared with those on MVC-free regimes [102], supporting in vitro evidence on the possible role of CCR5 inhibitors in hindering atherosclerotic plaque formation [103–105].

In contrast to the reported findings of possible differences in immune restoration parameters in subjects undergoing a therapeutic switch, other studies have failed to demonstrate variations of biomarkers in this context. An RCT conducted in patients randomized to switch from AZT/3TC- to either ABC/3TC- or TDF/FTC-based cART did not highlight differences in biomarkers of coagulation and inflammation (d-dimer, IL-6, or hs-CRP) [106]. Similarly, a large cohort study showed comparable monocyte activation (sCD14) in NVP- and EFV-treated individuals [107]. No differences were detected in T-cell activation and homeostasis when adding either MVC or DRV/r to RAL and ETV in patients experiencing viral failure [108]. Parameters of viral persistence (total HIV-DNA and 2-LTR circle levels) were also unchanged in subjects enrolled in an RCT switching from enfurvitide (T20) to RAL [109]. Of note, an RCT on cART intensification with RAL in suppressed individuals failed to detect any difference in gut and blood proviral DNA [110].

Immune Recovery in the Course of cART Intensification Strategies for HIV-Infected Individuals Lacking CD4+ T-Cell Gain

Despite stable viral suppression, ~20%–30% of cART-treated subjects fail to obtain adequate CD4+ T-cell recovery. The literature has failed to demonstrate that changing cART regimen may favor...
CD4+ gain in this setting [1], yet several intensification studies have shown the possible role of antiretroviral drugs in lowering markers of immune activation and exhaustion, microbial translocation, and inflammation in the peripheral blood and tissues, which feature subjects with persistently low CD4+ T-cell counts [111–115].

The addition of MVC to ongoing cART did not lead to increases in the CD4+ T-cell count [116–118]; however, it reduced immune activation and apoptosis [116, 118] and increased the frequencies of CD8+ T cells [117]. In addition, MVC-intensified subjects displayed, compared with placebo, a significant increase in T-cell activation in rectal tissue and peripheral blood and redistribution of CD8+ T cells from the gut to peripheral blood [119]; however, in another study, MVC had no effect on CD4+ T-cell counts, CD4+/CD8+ ratio, microbial translocation, immune activation, or immune exhaustion parameters measured in the peripheral blood and gut [120].

Intensification strategies in immunological nonresponders (INRs) using RAL have not been shown to account for CD4+ T-cell recovery, but have shown reduced CD8+ T-cell activation [121] and inflammation [122] compared with PI-based cART [123]. In contrast, other studies failed to demonstrate RAL-induced CD4+ T-cell recovery or reduction of T-cell/monocyte activation as well as microbial translocation [124, 125].

IMMUNE RECOVERY IN CART-TREATED HIV-INFECTED PATIENTS WITH FEWER DRUG REGIMENS

Clinicians are currently facing an exciting new era of significant changes in the management of antiretroviral therapy for HIV infection, featuring dual regimens with excellent viro-immunological properties in both naive and experienced subjects [126–130], as well as fewer drug-related toxicities compared with standard triple cART [131]. Nonetheless, whether such novel therapeutic strategies are also able to limit inflammation in the course of HIV infection is currently under investigation. Fewer drug regimens may, on the one hand, account for the loss of control over enduring inflammation given the reduced pharmacologic pressure on residual viral replication [132]; on the other hand, they may result in less drug-induced oxidative stress, contributing to the containment of inflammation and immune activation [133].

A large observational cohort study showed an increase in the absolute number of CD8+ T cells in patients on stable triple cART who were switched to dual regimens containing NRTI or to NRTI-sparing dual therapies, compared with subjects who were switched to a new triple regimen [132]. A similar increase in CD8+ lymphocytes was confirmed in another cohort study including patients switching from a TDF/ABC-based triple regimen to a dual therapy, but only for subjects interrupting TDF and not ABC [134].

The first RCT on dual regimens was conducted in subjects undergoing simplification to PI-containing cART. Findings from the ATLAS study showed that ATV/r plus 2 NRTIs and ATV/r plus 3TC resulted in similar levels of peripheral inflammation [135] and a comparable reduction of the viral reservoir [136].

More recently, the immune effects of dual INSTI-based treatment strategies from a well-powered RCT were published in the literature.

The findings of the SWORD-1 and SWORD-2 RCT showed diverging results: On the one hand, a significantly greater sCD14 increase from baseline to week 48 was reported in subjects receiving standard triple cART than those switching to DTG + RLP [137]; on the other, while a greater decrease in IFABP levels was found in the latter, no significant changes from baseline to week 48 were detected for IL-6, sCD163, sVCAM-1, and D-dimer between groups [137]. Given the lack of a consistent pattern in the kinetics of these biomarkers, the authors did not claim that increased inflammation features participants on the 3-drug regimen compared to those receiving the dual–drug regimen [138]. Results from the TANGO study, in which virologically suppressed subjects were randomized to either receive a DTG/3TC dual regimen or continue a TAF-based 3- or 4-drug regimen, also showed uncertain effects on the same inflammation biomarkers (D-dimer, sCRP, IL-6, sCD14), given their reported differing directions in the 2 study groups [130]. The findings of an NEAT001/ANRS143 substudy that randomized cART-naive subjects to DRV/r in combination with TAF/FTC or RAL demonstrated a significantly higher gain in blood telomere length in the former, pointing to amelioration of HIV-associated immune-senescence [139]. In contrast, sCD14 levels decreased significantly in a retrospective crossover study on suppressed patients on a 3TC + PI/r dual therapy switching to 3TC + DTG, suggesting decreased monocyte activation in individuals treated with INSTI-based, and not PI-based, dual cART [140].

Taken together, these results highlight the need for longer follow-up, which may reveal the true inflammatory consequences of switching to dual regimens and imply a word of caution on the interpretation of heterogeneous findings related to biomarker changes in this clinical setting [141].

Finally, few studies have comparatively investigated immune activation and systemic inflammation in mono vs triple CART regimens. Despite maintaining undetectable viremia, in the MONARK study, the monotherapy arm with LPV/r showed comparable parameters of immune recovery and residual viremia to those observed in the standard triple regimen (AZT/3TC + LPV/r regimen) [142]. Similarly, immune activation, inflammation, and HIV-DNA did not improve with ATV monotherapy in the MODAT trial [143]. In a retrospective study, higher T-cell activation and microbial translocation were found in patients switching to monotherapy with LPV/r compared with triple cART [144].

CONCLUSIONS

While extraordinarily effective in suppressing viral load and reconstituting the CD4+ T-cell compartment, cART fails to
normalize the effects of chronic inflammation in HIV infection [3]. To date, no therapeutic approach has effectively abated inflammation and immune activation in aviremic individuals. Indeed, chronic inflammation persists despite the introduction of novel, effective, and well-tolerated antiretroviral drugs and is known to drive morbidity and mortality in HIV-infected patients [4, 5, 10].

The present nonsystematic review, albeit lacking evidence synthesis, was conducted to offer breadth of literature coverage on the topic of cART-related differences in immune reconstitution parameters.

Overall, evidence points to possible differences in qualitative immune recovery during suppressive treatment for HIV, yet a limited number of studies are randomized, adequately powered, and have a sufficient follow-up to detect robust changes linked to cART classes and regimens (Tables 1 and 2). Further, many biomarkers were assessed over the years and were independently associated with clinical outcome in the setting of HIV.

Table 1. Overview of the Major Studies Evaluating the Quality of Immune Reconstitution Under Antiretroviral Therapy—Randomized Controlled Trials

Author, Reference	Study Population	cART Regimen	Evaluation of Immune Recovery	Study Design	Main Results
McComsey et al. [26]	244 pts	Blinded ABC/3TC + open-label EFV or ATV/r vs blinded TDF/FTC + open-label EFV or ATV/r	Peripheral blood Inflammation: hsCRP, IL6, TNFα, sTNFR-I, -II Vascular inflammation: sVCAM-1 and sICAM-1	RCT substudy	No differences in sTNF-R and adhesion molecule decrease by regimens. Higher decrease in hsCRP in ABC/3TC vs TDF/FTC and in EFV vs ATV/r. Greater IL6 reduction in TDF/FTC than in ABC/3TC
Serrano-Villar et al. [53]	563 pts	TDF/FTC + RAL vs TDF/FTC + EFV	Peripheral blood Immunologic activation: CD4/CD8 T-cell ratio	RCT (post hoc analysis of STARTMRK study)	Higher rates of CD4/CD8 ratio normalization in the RAL arm
Blanco et al. [58]	833 pts	DTG/ABC/3TC vs EFV/TDF/TFC	Peripheral blood Immunologic activation: CD4/CD8 T-cell ratio, CD4 T-cell count (absolute and percentage values)	RCT (post hoc analysis of SINGLE study)	Greater increase in CD4/CD8 ratio or multiple T-cell marker recovery (MTMR: CD4+ T cells >500/mm3 and CD4% >29% and CD4/CD8 ratio >1) in EFV/TDF/FTC than in DTG/ABC/3TC
Kelesidis et al. [59, 60]	328 pts	TDF/FTC + ATV/r vs TDF/FTC + DRV/r vs TDF/FTC + RAL	Peripheral blood and PBMCs Markers of CD4+ T-cell senescence: CD28– CD57– Markers of CD4a, and CD8a T-cell exhaustion: PD-1+ Inflammation and immune activation: HLA-DR+ CD38+ expression; sCD163 Inflammation and coagulation: hsCRP, IL6, sCD14, D-dimer Macrophage and T-cell activation: %CD38+ HLA-DR+ on CD4+ and CD8+ T cells, sIL2r, sCD14, sCD163, intermediate CD14+ CD16+ monocytes, inflammatory CD14+ CD16+	RCT (AS260) substudy	Decrease of CD4+ T-cell senescence and exhaustion after ART. No changes in CD6+ T-cell senescence after ART and no differential changes in all markers in ART groups. No consistent differences in immune activation and reduction of inflammation between PI and RAL-based cART
Serrano-Villar et al. [62]	721 pts	AZT/3TC + MVC vs AZT/3TC + EFV	Peripheral blood Immunologic activation: CD4/CD8 T-cell ratio, CD8+ T-cell count	RCT (post hoc analysis of MERIT study)	Higher rate of CD4/CD8 ratio normalization sustained by a greater CD8+ T-cell decline in the EFV arm than in the MVC arm
Hileman et al. [56]	200 pts	EVG/TDF/FTC vs EFV/TDF/TFC	Peripheral blood and PBMCs Inflammation: hs-CRP, IL6, TNFα Vascular inflammation: Lp-PLA2 Monocyte activation: sCD14, sCD163	RCT (Gilead 102)	EVG/TDF/FTC showed higher reduction in inflammation and MT, compared with EFV/TDF/TFC
Funderburg et al. [49]	194 pts	E/C/F/TAF vs E/C/F/TDF	Peripheral blood Monocyte activation: sCD14, sCD163 Systemic inflammation: IL6, hsCRP, sTNFR-I, and D-dimer Vascular inflammation: Lp-PLA2	RCT	Equivalent declines in monocyte activation and systemic inflammation with TAF or TDF for 48 weeks, suggesting that TAF and TDF have equivalent impact on immune activation and inflammation
Pallikkuth et al. [56]	30 patients	RAL vs non-RAL cART	Peripheral blood and PBMCs Immunologic activation: HLA-DR/CD38 in CD4+ CD8 T cells Immune exhaustion: PD1 in CD4/CD8 T cells T-cell subsets, cytokine production: HIV gag-specific IL2, IFNγ, CD107a responses in CD4/CD8 T cells MT LPS and sCD14	RCT substudy	RAL in first-line treatment regimens results in rapid immune reconstitution with residual low-level MT. The week 48 immune profile was more favorable in patients taking RAL-cART than in pts treated with non-RAL-cART
Author, Reference	Study Population	cART Regimen	Evaluation of Immune Recovery	Study Design	Main Results
-------------------	------------------	--------------	-------------------------------	-------------	--------------
Serrano-Vilari et al. [61]	32 HIV+ pts, 12 HIV- pts	TDF/FTC + EFV vs TDF/FTC + MVC vs TDF/FTC + MVC + RAL	Peripheral blood and PBMCs: levels of HIV DNA and cell-free RNA; deep sequencing of C2-V3 env, gag, and pol	Pilot RCT	Quadruple regimen resulted in higher CD8+ cell density decline, greater normalization of mucosal CCR5+ CD4+ cells, and increase in naive/memory CD8+ cells ratio, greater decline in sCD14 and duodenal HIV-DNA. MVC had the highest gut concentrations, which negatively correlated with percentages of activated CD8+ in duodenum. MVC use was associated with activation of mucosal naive CD8+ cells, improvement in distribution of CD8+ cell maturational subset and higher zonulin-1 expression
Chaillon et al.	65 pts	TDF/FTC/EFV ofid	Rectal and duodenal biopsies, immune phenotypes on CD4a/CD8a T cells T-cell density in gut Plasma and tissue antiretroviral drug concentrations Inflammation: plasma IL6, LTA MT: sCD14 Gut permeability: zonulin-1 Total cell-associated HIV DNA in PBMCs, rectal and duodenal mononuclear cells	Double-blind placebo-controlled RCT 1:1	There was no difference in CD4+ T cells between groups. There was a longitudinal decay of HIV-DNA after initiation of ART with no difference between MVC intensification groups.
Patro et al. [84]	30 pts	TDF/FTC+RAL + MVC vs placebo	Peripheral blood and PBMCs: levels of HIV DNA and cell-free RNA; deep sequencing of C2-V3 env, gag, and pol	RCT (Maravi-Boost study)	Intensification with MVC results in faster reduction of 2-LTR newly infected cells, recovery of CD4+ counts, and a modest reduction in total reservoir size after 48 weeks. MVC also was associated with a slower decrease in plasma viremia and immune activation
Llibre et al. [96]	31 pts	Standard ART vs standard ART + RAL	Peripheral blood and PBMCs: levels of HIV DNA and cell-free RNA; deep sequencing of C2-V3 env, gag, and pol	RCT (CADI/RIS substudy)	MVC did not affect biomarkers of monocyte and macrophage activation, but resulted in higher percentages of CCR5-positive monocytes in PBMCs
Lake et al. [93]	24 pts	RAL vs placebo	Peripheral blood and PBMCs: levels of HIV DNA and cell-free RNA; deep sequencing of C2-V3 env, gag, and pol	Double-blind placebo-controlled RCT 1:1	There was no difference in CD4+ T cells between groups. There was a longitudinal decay of HIV-DNA after initiation of ART with no difference between MVC intensification groups.
Matze et al. [92]	128 pts	PI/r vs RAL	Peripheral blood and PBMCs: levels of HIV DNA and cell-free RNA; deep sequencing of C2-V3 env, gag, and pol	Pilot RCT	Quadruple regimen resulted in higher CD8+ cell density decline, greater normalization of mucosal CCR5+ CD4+ cells, and increase in naive/memory CD8+ cells ratio, greater decline in sCD14 and duodenal HIV-DNA. MVC had the highest gut concentrations, which negatively correlated with percentages of activated CD8+ in duodenum. MVC use was associated with activation of mucosal naive CD8+ cells, improvement in distribution of CD8+ cell maturational subset and higher zonulin-1 expression
Delaugerre et al. [109]	60 pts	T20 vs RAL	Peripheral blood and PBMCs: levels of HIV DNA and 2-LTR circle levels	RCT (EASIER-ANRS 138, substudy)	No differences in measures of viral persistence between groups
Abbreviations
- 3TC: lamivudine
- ABC: abacavir
- ART: antiretroviral therapy
- ATV: atazanavir
- AZT: zidovudine
- c: cobicistat
- CCR: C-C chemokine receptor
- CD: (soluble) CD
- cART: combination antiretroviral therapy
- DRV: darunavir
- FTC: emtricitabine
- HLA: human leukocyte antigen
- hs: high-sensitivity
- IL: interleukin
- IFN: interferon
- IFN: interleukin
- LTR: long terminal repeat
- LPS: lipopolysaccharide
- LTA: lipoteichoic acid
- MVC: maraviroc
- NNRTI: non-nucleoside reverse transcriptase inhibitor
- PBMCs: peripheral blood mononuclear cells
- PD: programmed death
- PI: protease inhibitor
- RAL: raltegravir
- RCT: randomized controlled trial
- RV: ritonavir
- sCD: soluble CD
- sVCAM: soluble vascular cell adhesion molecule
- TAF: tenofovir alafenamide
- TDF: tenofovir disoproxil fumarate
- TNF: tumor necrosis factor
- TL: telomere length
- TTR: terminal repeat
- V(D)J: variable (D) diversity (J) recombination
- VFA: viral fitness assessment
- VLR: variable light chain
- WBC: white blood cells
- Y: year
- ZDV: zidovudine

Table 1: Continued

Author, Reference	Study Population	cART Regimen	Evaluation of Immune Recovery	Study Design	Main Results
Rusconi et al. [117]	97 pts	ART vs ART + MVC	Peripheral blood and PBMCs: T-cell subsets	Multicentric, parallel open-label, phase 4 superiority RCT	MVC intensification was associated with a significant rise in IL7 by week 48 and a trend in temporary reduction in activated HLA-DR+ CD38+ CD4+ by week 12 that was not maintained at week 48
Massanella et al. [121]	44 pts	ART vs ART + RAL	Peripheral blood and PBMCs: CD4 T-cell compartment: total, activated, and memory T cells	RCT	No differences between groups in biomarker levels, except for lower T-cell activation in the RAL intensification arm
Negredo et al. [125]	44 pts	ART vs ART + RAL	Peripheral blood and PBMCs: CD4 T-cell counts, total and episomal HIV DNA in PBMCs	RCT	No differences between groups, except for a rapid yet limited CD4+ T-cell gain in the RAL intensification arm
Hunt et al. [119]	45 pts	ART + MVC vs ART + placebo	Peripheral blood, PBMCs: rectal mucosa	RCT	In the MVC arm: rectal tissue and peripheral blood in PBMCs; CD4 T-cell count increase in the peripheral blood and decrease in rectal tissue; increase in peripheral MIP-1b, monocyte/macrophage activation markers (sCD14 and sCD163), and peripheral blood and rectal tissue neutrophil count
Lombardi et al. [136]	201 pts	Triple ART-based ART vs ART plus 3TC	Peripheral blood and PBMCs, HIV-1 reservoir: total HIV-1 DNA levels in whole blood and PBMCs	RCT (ATLAS M substudy)	Dual therapy resulted in a similar decline in HIV-1 DNA levels
Aboud et al. [137]	1024 pts	ART vs DTG + RPV	Peripheral blood: inflammation: sCD14, IFNAP, IL6, sCD163, sVCAM, D-dimer	RCT (SWORD 1–2)	Greater sCD14 increase from baseline to week 48 in subjects receiving standard triple ART than those switching to DTG+RAL. Greater IFNAP decrease in DTG+RAL. No significant changes from baseline to week 48 were detected for IL6, sCD163, sVCAM-1, or D-dimer between groups
Van Wyk et al. [130]	743 pts	TAF-based ART vs DTG/TDF	Peripheral blood: inflammation: sCD14, IL6, sCD163, D-dimer, hs CRP	RCT (TANGO)	No clear-cut differences between groups
Stella-Ascariz et al. [139]	201 pts	DRV/R + RAL vs DRV/R + TDF/TFC	Peripheral blood: telomere length	RCT	Significantly higher gain in blood telomere length in TDF/TFC + DRV/R than DRV/R + RAL
Merlini et al. [143]	40 pts	ATV + 2NRTI vs ATV	Peripheral blood and PBMCs: HIV reservoir: total HIV-DNA: T-cell immune phenotype: activated: HLA-DR+ CD38+; senescent: CD57+; apoptotic: CD95+; exhausted: PD-1+	RCT (MODAt substudy)	Comparable activation in an inflammation biomarkers

Abbreviations: 3TC, lamivudine; ABC, abacavir; c(ART), combination antiretroviral therapy; ATV, atazanavir; AZT, zidovudine; c, cobicistat; CCR, C-C chemokine receptor; sCD, soluble cluster of differentiation; DNA, deoxyribonucleic acid; DRV, darunavir; DTG, dolutegravir; E, eltegravir; IFN, interferon; IL, interleukin; LPA-L2, lipoprotein-associated phospholipase A2; LPS, lipopolysaccharide; LTA, lipoteichoic acid; LTR, long terminal repeat; MCP, monocyte chemoattractant protein; MIP, macrophage inflammatory protein; MO, myeloperoxidase; MT, microbial translocation; MTMR, multiple T-cell marker recovery; MVC, maraviroc; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; PBMCs, peripheral blood mononuclear cells; PD, programmed death; PI, protease inhibitor; r, ritonavir; RAL, raltegravir; RCT, randomized controlled trials; RNA, ribonucleic acid; sIL2, soluble IL2 receptor; sTNF, soluble tumor necrosis factor receptor; sVCAM, vascular cell adhesion molecule.

Downloaded from https://academic.oup.com/ofid/article/7/9/ofaa340/5892268 by Uni Milano user on 22 March 2021
Author, Reference	Study Population	cART Regimen	Evaluation of Immune Recovery	Study Design	Main Results
Funderburg et al. [6]	39 HIV+ pts 21 HIV- pts	TDF/FTC + RAL	Peripheral blood and PBMCs	Prospective, open-label, multicenter, pilot study (AS248)	RA-based ART reduced CD4+/CD8+ activation, cell cycle entry, and markers of coagulation and inflammation, without reaching HIV-uninfected levels.
De Salvador-Guillouët et al. [57]	567 patients	PI-based cART vs NNRTI-based cART vs INSTI-based cART	Peripheral blood	Retrospective INSTI-based regimens associated with a CD4/CD8 ratio normalization 1 year from cART introduction.	
McCauley et al. [54]	29 HIV+ pts, 15 HIV- pts	TDF/FTC + RAL	Peripheral blood and PBMCs	Prospective, open-label, multicenter, pilot single-arm study (AS248)	RA-based ART reduces monocyte activation and increases expression of chemokine receptors CCR2 and CXCR1 on inflammatory and patrolling monocytes.
Tincati et al. [24]	34 pts	DRV/r or EFV as third drugs of standard anti-retroviral regimens	Peripheral blood and PBMCs	Retrospective, ex vivo study	No differences in Tcell maturation, activation, and function. Patients on DRV/r show a transitory recovery of HIV-specific IL2+ IFN-γ production by CD4/CD8 cells.
Marchetti et al. [23]	40 pts	TDF/FTC + LPV/r	Peripheral blood and PBMCs	Prospective	No differences in Tcell activation decline between groups. Subjects starting ART with "moderate immune depression" (CD4 > 200-350/μL) had a greater control over microbial translocation than those with "severe immune depression" (CD4 < 100/μL).
Soria et al. [25]	24 pts	TDF/FTC + EFV	Peripheral blood and PBMCs	Pilot clinical trial (IMMUNEF)	EFV-based ART reduces the percentages of apoptotic and proliferating T cells at 24 weeks.
Villanueva-Millán et al. [94]	45 CART HIV+ pts 5 untreated HIV+ pts 21 HIV- pts	Pts vs NNRTIs vs INSTIs	Peripheral blood and fresh stool samples	Cross-sectional study	INSTIs were associated with levels of systemic inflammation and microbial diversity similar to that of uninfected controls. NNRTIs + PIs presented the highest reduction in bacterial species compared with other antiretrovirals and naive subjects.
Merfani et al. [97]	30 pts	Switch from TDF/FTC to DRV/r or ATV/r to EVG/c/FTC/TFD	Peripheral blood and PBMCs	Observational cohort study	Switch to EVG/c/FTC/TDF, decreased Tcell activation, increased CD4+ and CD8+ effector memory IFN-γ/IL2 release, and reduced CDB+ terminally differentiated cytokine expression following SEB stimulation.
Cossarin et al. [108]	41 pts	RAL, ETR, and MVC vs DRV/r	Peripheral blood and PBMCs	DRV/r, RAL, ETR, and MVC Expanded Access Programs	Similar decrease in activated CD4+ and CD8+ T cells. A greater loss of naive CD4+ T cells and a reduction in cells expressing CXCR4 were observed with RAL, ETR, and MVC, while DRV/r showed a greater loss of cells expressing CCR5.
Lichtenstein et al. [122]	30 pts	RAL	Peripheral blood and PBMCs	Pilot study	The addition of RAL resulted in the reduction of several pro-inflammatory biomarkers.
Mussini et al. [132]	1241 pts	Triple ART vs mono/dual ART	Peripheral blood Tcell subsets: CD4 and CD8 counts and their ratio	Retrospective study (ICONA Cohort)	An increase in CD8 T cells in dual regimens was reported. Pts on mono-therapy did not show significant differences.

Abbreviations: cART, (combination) antiRetroviralTherapy; ATV, atazanavir; c, cobicistat; CCR, C-C chemokine receptor; cCD, soluble cluster of differentiation; CMV, cytomegalovirus; CXCR, CXC, chemokine Receptor; DNA, deoxyribonucleic acid; DRV, darunavir; EFV, efavirenz; ETV, etravirine; EVG, elvitegravir; FTC, emtricitabine; HIV, human immunodeficiency virus; IFN, interferon; IL, interleukin; LBP, lipopolysaccharide binding protein; LPS, lipopolysaccharide; MT, microbial translocation; MVC, maraviroc; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; PBMCs, peripheral blood mononuclear cells; PI, protease inhibitor; r, ritonavir; RAL, raltegravir; RNA, ribonucleic acid; SEB, Staphylococcus Enterotoxin B; TDF, tenofovir disoproxil fumarate; TNF, tumor necrosis factor; TNF-β, tumor necrosis factor receptor; Treg, Regulatory T cells; sVCAM, vascular cell adhesion molecule.

Table 2. Overview of the Major Studies Evaluating Quality of Immune Reconstitution Under Antiretroviral Therapy—Non–Randomized Controlled Trials
infection in only a few cases. Finally, most research was conducted in the peripheral blood and not tissues: given that drug penetration [145], viral replication [146], and immune restoration differ widely among anatomical compartments [68], the study of the systemic circulation may have overlooked possible significant variations in inflammation, activation, and HIV persistence biomarkers linked to the use of specific antiretroviral classes and/or regimens. In addition, recent studies have also shown that other factors, that is, the microbiota, may influence the degree and quality of immune recovery [147–149]. For these reasons, the reported findings are often contradictory and not consistent across studies and do not allow us to conclude that cART class and regimen account for true differences in immune restoration parameters.

While we await results on the use of more recent antiretroviral classes and drugs, clinicians should recall that unequivocal evidence demonstrates that immune recovery is linked to an immediate start of cART rather than to the properties of specific antiretroviral drugs [73–75].

Acknowledgments

Financial support. The present work was funded in part by the Italian Ministry of Health, Ricerca Finalizzata, Programma di Rete (NET 2013-02355333; grant recipient: Giulia Marchetti).

Potential conflicts of interest. All authors: no reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Author contributions. C.T., D.M., and F.B. reviewed literature evidence; C.T., D.M., and F.B. wrote the manuscript; G.M. and A.D.M. edited the manuscript; G.M. supervised all of the work.

Patient consent. Patient written consent and approval of a research ethics committee were not necessary as the study reviewed only publicly available articles.

References

1. Ford N, Meinjes G, Pomiza A, et al. The future role of CD4 cell count for monitoring antiretroviral therapy. Lancet Infect Dis 2015; 15:241–7.
2. World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection. Recommendations for a Public Health Approach, 2nd ed. Geneva: World Health Organization; 2016.
3. Sereti I, Krebs SJ, Panushak N, et al; RV243/SEARCH 010, RV304/SEARCH 013, and SEARCH 011 protocol teams. Persistent, albeit reduced, chronic inflammation in persons starting antiretroviral therapy in acute HIV infection. Clin Infect Dis 2017; 64:124–31.
4. French MA, King MS, Tschampa JM, et al. Serum immune activation markers are not consistent across studies and do not allow us to conclude that cART class and regimen account for true differences in immune restoration parameters.
5. Heather JM, Best K, Oakes T, et al. Dynamic perturbations of the T-cell receptor repertoire in chronic HIV infection and following antiretroviral therapy. Front Immunol 2015; 6:644.
6. Funderburk NT, Andrade A, Chan ES, et al. Dynamics of immune reconstitution and activation markers in HIV+ treatment-naïve patients treated with raltegravir, tenofovir disoproxil fumarate and entecavir. PLoS One 2013; 8:e83514.
7. Ardilèn H, Sørensen KE, Ingerslev JM, et al. Endothelial dysfunction, increased inflammation, and activated coagulation in HIV-infected patients improve after initiation of highly active antiretroviral therapy. HIV Med 2013; 14:1–9.
8. Cassol E, Malfeild S, Mahasha P, et al. Impaired CD4+ T-cell restoration in the small versus large intestine of HIV-1-positive South Africans receiving combination antiretroviral therapy. J Infect Dis 2013; 208:1113–22.
9. McComsey GA, Kitch D, Sax PE, et al. Associations of inflammatory markers with AIDS and non-AIDS clinical events after initiation of antiretroviral therapy: AIDS Clinical Trials Group A5224s, a substudy of ACTG A5202. J Acquir Immune Defic Syndr 2014; 65:167–74.
10. Kuller LH, Tracy R, Belloso W, et al; INSIGHT SMART Study Group. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 2008; 5:e203.
11. Marchetti G, Cozzi-Lepri A, Merlino E, et al. Pre-cART pro-inflammatory milieu, microbial translocation (MT) and risk of disease progression in HIV-infected patients starting their first cART: data from the Iona Foundation Cohort. Paper presented at: European AIDS Clinical Society (EACS) 2015; October 21-24, 2015; Barcelona, Spain.
12. Hunt PW, Sinclair E, Rodriguez B, et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis 2014; 210:1228–38.
13. Tenorio AR, Zheng Y, Bosch RJ, et al. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbidity events during suppressive antiretroviral treatment. J Infect Dis 2014; 210:1248–59.
14. Hileman CO, Funderburg NT. Inflammation, immune activation, and antiretroviral therapy in HIV. Curr HIV/AIDS Rep 2017; 14:93–100.
15. Moreno S, Serrano-Villar S. Beyond undetectable viral load: effect of nucleotides on inflammation. ElBioMedicine 2016; 13:31–2.
16. Franzese O, Barbaccia ML, Bonmassar E, Graziani G. Beneficial and detrimental effects of antiretroviral therapy on HIV-associated immunosenescence. Chemotherapy 2018; 63:64–75.
17. Boccarda F, Lang S, Meuleman C, et al. HIV and coronary heart disease: time for a better understanding. J Am Coll Cardiol 2013; 61:511–23.
18. de Gaetano Donati K, Rabagliti R, Iacovelli I, Cauda R. HIV infection, HAART, and endothelial adhesion molecules: current perspectives. Lancet Infect Dis 2004; 4:213–22.
19. Coughlan R, Cameron S. Key data from the 17th International Workshop on co-morbidities and adverse drug reactions in HIV. Antivir Ther 2016; 21:75–89.
20. Pinto-Cardoso S, Klat NR, Reyes-Terán G. Impact of antiretroviral drugs on the microbiome: unknown answers to important questions. Curr Opin HIV AIDS 2018; 13:53–60.
21. George MD, Ashmuth DM. Mucosal immunity in HIV: what can be done to restore gastrointestinal-associated lymphoid tissue function? Curr Opin Infect Dis 2014; 27:275–81.
22. Costiniuk CT, Angel JB. Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity? Mucosal Immunol 2012; 5:596–604.
23. Marchetti G, Merlino E, Sinigaglia E, et al. Immune reconstitution in HIV+ subjects on lopinavir/ritonavir-based HAART according to the severity of pre-therapy CD4+. Curr HIV Res 2012; 10:597–605.
24. Tincati C, Savoldi A, Cannizzo ES, et al. T-cell phenotype and function following a first cART regimen containing either a protease inhibitor or a non-nucleoside reverse transcriptase inhibitor in HIV-infected late presenters: results from a retrospective, ex vivo study. Antivir Ther 2016; 21:133–42.
25. Soria A, Trabattoni D, Squillace N, et al. Prospective immune dynamics during the first 24 weeks of efavirenz-based antiretroviral therapy in HIV-infected subjects, according to CD4+ T-cell counts at presentation: the IMMUNEF clinical trial. PLoS One 2015; 10:e0117118.
26. McComsey GA, Kitch D, Daar ES, et al. Inflammation markers after randomization to abacavir/lamivudine or tenofovir/emtricitabine with efavirenz or tenofovir/efavirenz. AIDS 2012; 26:1371–85.
27. Hileman CO, Wohl DA, Tisch DJ, et al. Short communication: initiation of an abacavir-containing regimen in HIV-infected adults is associated with a smaller decrease in inflammation and endothelial activation markers compared to non-abacavir-containing regimens. AIDS Res Hum Retroviruses 2012; 28:1561–4.
28. Kim C, Gupta SK, Green L, et al. Abacavir, didanosine and tenofovir do not induce inflammatory, apoptotic or oxidative stress genes in coronary endothelial cells. Antivir Ther 2011; 16:1335–9.
29. Palella FJ Jr, Gange SJ, Benning L, et al. Inflammatory biomarkers and abacavir use in the Women's Intergroup HIV Study and the Multicenter AIDS Cohort Study. AIDS 2010; 24:1657–65.
30. Sabin CA, Worm SW, Weber R, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet 2008; 371:1417–26.
31. Worm SW, Sabin CA, Weber R, et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study. J Infect Dis 2010; 201:318–30.
32. Therapy/INSIGHT SMOA-R, Groups DS. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients. AIDS 2008; 22:F17–24.

Quality of Immune Recovery on cART • OFID • 9
56. Hileman CO, Kinley B, Scharen-Guivel V, et al. Differential reduction in monocyte activation after switching from protease inhibitors to integrase inhibitors. J Acquir Immune Defic Syndr 2010; 55:22–6.

57. DeSalvo-Guilhouët F, Sakarovitch C, Durant J, et al. Antiretroviral regimens and CD4/CD8 ratio normalization in HIV-infected patients during the initial year of treatment: a cohort study. PLoS One 2015; 10:e0144531.

58. Blanco JR, Alejos B, Moreno S. Impact of delavirdine and efavirenz on immune recovery markers: results from a randomized clinical trial. Clin Microbiol Infect 2016; 22:1000–06.

59. Kelesidis T, Moser C, Stein JH, et al. Changes in markers of T-cell senescence and exhaustion with atazanavir-, raltegravir-, and darunavir-based initial antiviral therapy: ACTG 5260s. J Infect Dis 2016; 214:748–52.

60. Kelesidis T, Tran TT, Stein JH, et al. Changes in inflammation and immune activation with atazanavir-, raltegravir-, darunavir-based initial antiviral therapy: ACTG 5260s. Clin Infect Dis 2015; 61:651–60.

61. Serrano-Villar S, Sainz T, Ma ZM, et al. Effects of combined CCR5/TEGR inhibitors-based regimen on mucosal immunity in HIV-infected patients naïve to antiretroviral therapy: a pilot randomized trial. PLoS Pathog 2016; 12:e1005381.

62. Serrano-Villar S, Caruana G, Zlotnik A, et al. Effects of maraviroc versus efavirenz in combination with tenofovir-lamivudine on the CD4/CD8 ratio in treatment-naive HIV-infected individuals. Antimicrob Agents Chemother 2017; 61.

63. de Paula HHS, Ferreira ACG, Caetano DG, et al. Reduction of inflammation and T cell activation after 6 months of cART initiation during acute, but not in early chronic HIV-1 infection. Retrovirology 2018; 15:76.

64. Davy-Mendez T, Nzapuks S, Zakhara O, et al. Acute HIV infection and CD4/CD8 ratio normalization after antiretroviral therapy initiation. J Acquir Immune Defic Syndr 2018; 79:510–8.

65. Robb ML, Ananworanich J. Lessons from acute HIV infection. Curr Opin HIV AIDS 2016; 11:555–60.

66. Crowell TA, Fletcher JL, Sereti I, et al; RV254/SEARCH010 Study Group. Initiation of antiretroviral therapy before detection of colonization by HIV reduces viral reservoirs, inflammation and immune activation. J Int AIDS Soc 2016; 19:21163.

67. Buazon MJ, Martin-Gayo E, Perea F, et al. Long-term antiretroviral therapy initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J Virol 2014; 88:10056–65.

68. Schuett A, Delege S, Sereti I, et al; RV254/SEARCH 010 and RV204/SEARCH 013 Study Groups. Initiation of ART during early acute HIV infection preserves mucosal Th17 function and reverses HIV-related immune activation. PLoS Pathog 2014; 10:e1004543.

69. Ananworanich J, Chomont N, Fletcher JL, et al. Markers of HIV reservoir size and immune activation after treatment in acute HIV infection with and without raltegravir and maraviroc intensification. J Virol Erad 2015; 1:116–22.

70. Ryom L, Boesecke G, Bracchi M, et al. Highlights of the 2017 European AIDS Clinical Society (EACS) guidelines for the treatment of adult HIV-positive persons version 9.0. HIV Med 2018; 19:309–15.

71. EACS. Guidelines for treatment of HIV-positive persons in Europe, version 9.1. 2019. Available at: https://www.eacsociety.org/guidelines/eacs-guidelines/eacs-guidelines.html

72. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. Department of Health and Human Services. Available at: http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf

73. Gay CL, Willis SJ, Cope AB, et al; Duke-UNC Acute HIV Infection Consortium. Fixed-dose combination emtricitabine/tenofovir/efavirenz initiated during acute HIV infection; 96-week efficacy and durability. AIDS 2016; 30:2815–22.

74. Puertas MC, Massanella M, Libbre JM, et al; MaraviBoost Collaborative Group. Interruption of a raltegravir-based regimen with maraviroc in early HIV-1 infection. J Acquir Immune Defic Syndr 2014; 68:325–34.

75. Tilling R, Kinloch S, Goh LE, et al; Quest Study Group. Parallel decline of CD8+ and CD38+ T cells and viruria in response to quadruple highly active antiretroviral therapy in primary HIV infection. AIDS 2002; 16:589–96.

76. Spudich S. Analysis of telimsarin administrated with antiretroviral therapy (ART) in patients with acute HIV infection (SEARCH018) NCT02170246.
colostrum in HIV-infected patients with suboptimal CD4+ T-cell response: a randomized controlled trial. J Infect Dis 2011; 204:1532–40.

125. Aboud M, Orkin C, Podzamczer D, et al. Efficacy and safety of dolutegravir-raltegravir for maintenance of virological suppression in adults with HIV-1: phase 3, randomised, non-inferiority SWORD-1 and SWORD-2 studies. Lancet 2018; 391:839–49.

126. Nyaku AN, Zheng L, Gulick RM, et al; ACTG A5353 Study Team. Dolutegravir plus lamivudine in initial treatment of HIV-1-infected participants with HIV-1 RNA <50000 copies/mL: week 48 outcomes from ACTG 5353. J Antimicrob Chemother 2017; 72:1436–40.

127. Lorenceau J, Raffi F, Prazuck T, et al; MONCAY study group. Dolutegravir plus tenofovir for the maintenance of virological suppression in adults with HIV-1: phase 3, randomised, non-inferiority SWORD-1 and SWORD-2 studies. Lancet 2018; 391:839–49.

128. Nyaku AN, Zheng L, Gulick RM, et al; ACTG A5353 Study Team. Dolutegravir plus lamivudine for initial treatment of HIV-1-infected participants with HIV-1 RNA <50000 copies/mL: week 48 outcomes from ACTG 5353. J Antimicrob Chemother 2017; 72:1436–40.

129. Llibre JM, Hung CC, Brinson C, et al. Efficacy, safety, and tolerability of dolutegravir-tenofovir disoproxil fumarate and emtricitabine in antiretroviral-naive adults with HIV-1 infection (GEMINI-1 and GEMINI-2): week 48 results from two multicentre, double-blind, randomised, non-inferiority, phase 3 trials. Lancet 2019; 393:143–55.

130. van Wyk J, Hung CC, Brinson C, et al. Early but limited effects of raltegravir plus lamivudine for virologically suppressed people living with chronic human immunodeficiency virus infection: the randomized noninferiority MONotherapy of TiviCAY Trial. Clin Infect Dis 2019; 69:1498–505.

131. Achhra AC, Mwasakifwa G, Amin J, Boyd MA. Efficacy and safety of contemporaneous dual- and monotherapy in HIV-infected patients. J Infect Dis 2020; 221:864–71.

132. Mussini C, Lorenzini P, Cozzi-Lepri A, et al; Icona Foundation Study Group. Switching to dual/monotherapy determines an increase in CD8+ in HIV-infected individuals: an observational cohort study. BMC Med 2018; 16:79.

133. Ivanov AV, Valuev-Elliston VT, Ivanova ON, et al. Oxidative stress during systemic inflammation markers after simplification to atazanavir/ritonavir plus lamivudine in virologically suppressed HIV-1-infected patients: ATLAS-M substudy. J Antimicrob Chemother 2018; 73:1949–54.

134. Lombardi F, Belmondi S, Quiros-Roldan E, et al; AtLaS-M Study Group. Evolution of blood-associated HIV-1 DNA levels after 48 weeks of switching to atazanavir/ritonavir plus lamivudine dual therapy versus continuing triple therapy in the randomised AtLaS-M trial. J Antimicrob Chemother 2017; 72:2055–9.

135. Aboud M, Orkin C, Podzamczer D, et al. Efficacy and safety of dolutegravir-raltegravir for maintenance of virological suppression in adults with HIV-1: 100-week data from the randomised, open-label, phase 3 SWORD-1 and SWORD-2 studies. Lancet HIV 2019; 6:e576–87.

136. Kahl LP. Changes in inflammatory biomarkers in SWORD-1 and SWORD-2 studies - authors’ reply. Lancet HIV 2020; 7:e158–9.

137. Stella-Ascariz N, Montejano R, Rodriguez-Centeno J, et al; NEAT 001/ ANRS 143 Study Group. Blood telomere length changes after ritonavir-boosted darunavir combined with raltegravir or tenofovir-emtricitabine in antiretroviral-naive adults infected with HIV-1. J Infect Dis 2018; 218:1523–30.

138. Lombardi F, Belmondi S, Borghetti A, et al. Reduced soluble CD14 levels after switching from a dual regimen with lamivudine plus boosted protease inhibitors to lamivudine plus dolutegravir in virologically suppressed HIV-infected patients. HIV Res Clin Pract. In press.

139. Merlini E, Galli L, Tincati C, et al; MODAt study group. Immune activation, inflammation and HIV DNA after 96 weeks of ATV/r monotherapy: a MODAt substudy. Antivir Ther 2018; 23:633–7.

140. Lu W, Feng Y, Jing F, et al. Association between gut microbiota and CD4 recovery in children with HIV infection: mechanisms and consequences. Oxid Med Cell Longev 2016; 2016:8910396.

141. Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with suboptimal immune recovery in HIV-infected individuals. Sci Rep 2016; 6:35100.

142. Lorenzo-Redondo R, Fryer HR, Bedford T, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A 2015; 112:e0185128.

143. Serrano-Villar S, Moreno S. Changes in inflammatory biomarkers in SWORD-1 and SWORD-2 studies. Lancet HIV 2020; 7:e158.

144. Tran TA, Ghosh J, Avettand-Fenel V, et al. Residual HIV-1 replication may impact immune recovery in patients on first-line lopinavir/ritonavir monotherapy. J Antimicrob Chemother 2015; 70:2627–31.

145. Fei C, Chua LL, Yap SH, et al. Enrichment of gut-derived Fusobacterium nucleatum is associated with suboptimal immune recovery in HIV-infected individuals. Sci Rep 2018; 8:14277.

146. Lee SC, Chua LL, Yap SH, et al. Enrichment of gut-derived Fusobacterium nucleatum is associated with suboptimal immune recovery in HIV-infected individuals. Sci Rep 2018; 8:14277.