TO NUMERICAL MODELING WITH STRONG ORDERS 1.5 AND 2.0 OF CONVERGENCE FOR MULTIDIMENSIONAL DYNAMICAL SYSTEMS WITH RANDOM DISTURBANCES

DMITRIY F. KUZNETSOV

Abstract. The article is devoted to numerical methods with strong orders 1.5 and 2.0 of convergence for multidimensional dynamical systems with random disturbances. We consider explicit one-step numerical methods for Itô stochastic differential equations. For numerical modeling of multiple Itô stochastic integrals we using the method of multiple Fourier-Legendre series, converging in the mean in the space $L_2([t, T]^k); k = 1, \ldots , 4$. The article is addressed to engineers who use numerical modeling in stochastic control and for solving the non-linear filtering problem.

1. Введение

Как известно, стохастические дифференциальные уравнения (СДУ) Ито являются адекватными математическими моделями динамических систем различной физической природы, находящихся под воздействием случайных возмущений [1] – [3]. Необходимость численного интегрирования, исходя из сильного критерия сходимости [1], СДУ Ито возникает, в частности, при решении задачи стохастического оптимального управления (в том числе по неполным данным) [1], [4], задачи фильтрации сигнала на фоне случайной помехи в различных постановках [1], [4], задачи оценивания параметров стохастических систем [1] и ряде других задач.

Известно [1], [5] – [7], что одним из перспективных подходов к численному интегрированию СДУ Ито, является подход, основанный на стохастических аналогах формулы Тейлора (так называемых разложений Тейлора-Ито и Тейлора-Стратоновича) [8] – [11] для решений данных уравнений. Этот подход использует конечную дискретизацию временной переменной и предполагает численное моделирование решения СДУ Ито в дискретные моменты времени с помощью стохастических аналогов формулы Тейлора, полученных путем итеративного применения формулы Ито.

Пусть задано вероятностное пространство (Ω, F, P), неубывающая совокупность σ-алгебр $\{F_t, t \in [0, T]\}$ на нем и F_t-измеримый при всех $t \in [0, T]$ m-мерный стандартный винеровский процесс f_t с независимыми компонентами $f^{(i)}_t; i = 1, \ldots , m$.

Рассмотрим СДУ Ито в интегральной форме:

$$x_t = x_0 + \int_0^t a(x_\tau, \tau) d\tau + \int_0^t B(x_\tau, \tau) df_\tau, \quad x_0 = x(0, \omega),$$

где $x_t \in \mathbb{R}^n$ — случайный процесс, являющийся сильным решением уравнения (1); второй интеграл в правой части (1) понимается как стохастический интеграл Ито; $a : \mathbb{R}^n \times [0, T] \to \mathbb{R}^n$,

Mathematics Subject Classification: 60H05, 60H10, 42B05, 42C10.

Keywords: Multiple Itô stochastic integral, Multiple Fourier-Legendre series, Numerical method, Strong convergence, Numerical modeling, Mean-square convergence.
B : \mathbb{R}^m \times [0, T] \to \mathbb{R}^{n \times m} — функция, для которых существует правая часть \(1 \) и которые удовлетворяют стандартным условиям существования и единственности сильного решения уравнения \(1 \) [12]; \(x_0 \) и \(f_r - f_0 \) (\(\tau > 0 \)) предполагаются независимыми, причем \(x_0 \in \mathbb{R}^n — F_0 \)-измеримая случайная величина, для которой \(M\{|x_0|^2\} < \infty; M — оператор математического ожидания.

Важнейшей отличительной особенностью стохастических аналогов формулы Тейлора [1], [5], [8 — 11] для решений СДУ Ито вида \(1 \) является присутствие в них, так называемых, повторных стохастических интегралов в форме Ито или Стратоновича, которые являются функционалами сложной структуры относительно компонент векторного винеровского процесса.

В одной из наиболее общиx форм записи в данной работе указанные интегралы Ито и Стратоновича имеют соответственно следующий вид:

\[
J[\psi^{(k)}]_{t,T} = \int_t^T \psi_k(t_k) \ldots \int_t^{t_2} \psi_1(t_1) dw^{(i_1)}_{t_1} \ldots dw^{(i_k)}_{t_k},
\]

\[
J^*[\psi^{(k)}]_{t,T} = \int_t^{s_2} \psi_k(t_k) \ldots \int_t^{s_1} \psi_1(t_1) dw^{(i_1)}_{t_1} \ldots dw^{(i_k)}_{t_k},
\]

где \(\psi_1(\tau), \ldots, \psi_k(\tau) — непрерывные на промежутке \([t, T] \) функции; \(w_r — случайный вектор с m + 1 компонентой вида: \(w_r^{(i)} = f_r^{(i)} \) при \(i = 1, \ldots, m \) и \(w_r^{(0)} = \tau; \) величины \(i_1, \ldots, i_k \) принимают значения \(0, 1, \ldots, m \); \(f_r^{(i)} (i = 1, \ldots, m) — независимые стандартные винеровские процессы; k — кратность повторного стохастического интеграла.

Таким образом, системы стохастических интегралов вида \(2 \), \(3 \) играют важную роль при решении проблемы численного интегрирования СДУ Ито \(1 \). Проблема эффективного совместного численного моделирования (исходя из среднеквадратического критерия сходимости) совокупностей стохастических интегралов вида \(2 \), \(3 \) (случай многомерного винеровского процесса) помимо своей важности является еще и достаточно непростой как с теоретической, так и с вычислительной точки зрения.

Заметим, что отмеченная проблема не возникает при использовании метода Эйлера для СДУ Ито \(1 \). Однако, несмотря на свою простоту, метод Эйлера при стандартных условиях \(1 \), [5] на коэффициенты СДУ Ито \(1 \) имеет порядок среднеквадратической сходимости равный 0.5 [1], [5] и его точности оказывается недостаточно при решении ряда практических задач. Это обстоятельство является мотивацией для построения численных методов для СДУ Ито \(1 \), имеющих более высокие порядки сильной сходимости.

На первый взгляд может показаться, что стохастические интегралы из семейств \(2 \), \(3 \) можно аппроксимировать повторными интегральными суммами, однако, это ведет к дроблению промежутка интегрирования \([t, T] \) повторного стохастического интеграла (он и без того является малой величиной, поскольку представляет собой шаг интегрирования в численных методах для СДУ Ито) и, как показывают численные эксперименты [13], приводит к неприменимо большим вычислительным затратам.

Построению эффективных методов (не требующих дробления указанного промежутка интегрирования \([t, T] \) и сходящихся в среднеквадратическом смысле) численного моделирования семейств стохастических интегралов вида \(2 \), \(3 \) посвящен ряд работ. В [9], предложено использовать сходящиеся в среднеквадратическом смысле тригонометрические разложения Фурье для винеровских процессов по которым строится повторный стохастический интеграл. В [5] данным методом получены среднеквадратические аппроксимации простейших интегралов вида \(2 \) 1 и 2 кратности \((k = 2; \psi_1(s), \psi_2(s) \equiv 1; i_1, i_2 = 0, 1, \ldots, m) \). С помощью указанных аппроксимаций в [8] построен числительный метод для СДУ Ито \(1 \), который при определенных условиях \(5 \), имеет порядок среднеквадратической сходимости 1.0 и носит название метода Мильштейна.
В работе [11] предложен более общий метод среднеквадратической аппроксимации стохастических интегралов вида (3), основанный на повторных рядах Фурье, который позволяет использовать полные ортонормированные в пространстве $L_2([t,T])$ системы полиномов Лежандра и тригонометрических функций (метод [9], в силу своих особенностей, допускает применение только тригонометрических базисных функций).

В [11, 15] предпринята попытка развития метода [5] для стохастических интегралов вида (3) при $k = 3$; $\psi_1(s), \ldots, \psi_3(s) \equiv 1$; $i_1, \ldots, i_3 = 0, 1, \ldots, m$.

Отметим, что методы Фурье из [11, 3, 14, 15] приводят к повторным рядам из стандартных гауссовских случайных величин (операция предельного перехода выполняется повторно), в противоположность кратным рядам (операция предельного перехода выполняется один раз). Это обстоятельство является существенным и накладывает ряд ограничений, связанных со способом суммирования указанных рядов, на применение методов [11, 3, 12, 15] к стохастическим интегралам вида (2), (3) кратности 3 и выше (в этом случае ввиду не менее, чем трехкратное интегрирование по винеровскому процессу). Кроме того, отмеченные методы, в силу своих особенностей, не позволяют (за исключением простейших повторных стохастических интегралов 2 кратности) вычислить точно среднеквадратическую погрешность аппроксимации. Это означает, что на стадии реализации численных методов для СДУ Ито возможно при условии учитывать избыточные члены разложений повторных стохастических интегралов, что увеличивает вычислительные затраты и снижает эффективность численных методов.

Отметим [1, 5], что для построения численных методов для СДУ Ито [11], имеющих порядки сильной сходимости 1.5 и 2.0 необходимо аппроксимировать (исходя из среднеквадратического критерия сходимости) стохастические интегралы не только 1 и 2, но и 3 и 4 кратности из семейств (2), (3). Ряд работ [1, 6 – 7] содержит упомянутые численные схемы с порядками сильной сходимости 1.5 и 2.0, однако без эффективных процедур среднеквадратической аппроксимации, входящих в них, повторных стохастических интегралов для случая многомерного винеровского процесса, что соответствует $i_1, \ldots, i_4 = 0, 1, \ldots, m$ в (2), (3). Часть работ [1, 5] содержит справедливые с вероятностью 1 (далее с в. 1) представления стохастических интегралов 3 и 4 кратности вида (2), (3) при $\psi_1(s), \ldots, \psi_4(s) \equiv 1$; $i_1 = \ldots = i_4$ (случай скалярного винеровского процесса), основанные на многочленах Эрмита. В некоторых работах [5, 9] используются и другие упрощающие предположения относительно СДУ Ито [11], например, вводится предположение об аддитивности "стochasticного" возмущения или его малости, что соответствует $B(x, t) \equiv \hat{B}(t)$ или $B(x, t) \equiv \varepsilon B(x, t)$ соответственно. Здесь $\varepsilon > 0$ — фиксированное малое число, и $B : \mathbb{R}^n \times [0, T] \to \mathbb{R}^{n \times m}$, $\hat{B} : [0, T] \to \mathbb{R}^{n \times m}$. В данном случае проблема эффективного совместного численного моделирования повторных стохастических интегралов из семейств (2), (3) несколько упрощается (из-за отсутствия некоторых членов, входящих в выражения численных методов, или возможности пренебрежения некоторыми из упомянутых членов). Также можно вместить [10] среднеквадратические аппроксимации стохастических интегралов 1 – 3 кратности из семейств (2), (3) при $\psi_1(s), \psi_2(s), \psi_3(s) \equiv 1$; $i_1, i_2, i_3 = 1, \ldots, m$, основанные на дроблении промежутка интегрирования $[t, T]$ повторных стохастических интегралов и использовании разного рода интегральных сумм (о недостатках такого подхода говорилось выше).

Настоящая статья посвящена разработке эффективных процедур, основанных на кратных (не повторных) обобщенных рядах Фурье сходящихся в среднем в пространстве $L_2([t,T])$, совместном численного моделирования повторных стохастических интегралов из семейств (2), (3) (исходя из среднеквадратического критерия сходимости) без каких-либо существенных упрощающих предположений, т.е. винеровский процесс, входящий в СДУ Ито (1), предполагается векторным (это соответствует условию $i_1, \ldots, i_k = 0, 1, \ldots, m$ в [3, 3]), а стохастическое возмущение — неаддитивным (упрощающие предположения на функцию $B : \mathbb{R}^n \times [0, T] \to \mathbb{R}^{n \times m}$, входящую в (1), не вводятся). Кроме того, функции $\psi_1(s), \ldots, \psi_k(s)$ в (2), (3), вообще говоря, предполагаются различными.
2. Численные схемы с порядками сильной сходимости 1.5 и 2.0

Рассмотрим разбиение \(\{\tau_j\}_{j=0}^N \) промежутка \([0, T]\) с рангом дискретизации \(\Delta_N \) такое, что \(0 = \tau_0 < \tau_1 < \ldots < \tau_N = T \). Через \(y_{\tau_j} \equiv y_j; j = 0, 1, \ldots, N \) обозначим дискретную аппроксимацию процесса \(x_t; t \in [0, T] \) (решение СДУ Ито (1)), соответствующую максимальному шагу дискретизации \(\Delta_N \).

Определение 1. Будем говорить, что дискретная аппроксимация (численный метод) \(y_j; j = 0, 1, \ldots, N \), соответствующая максимальному шагу дискретизации \(\Delta_N \), сходится с порядком \(\gamma > 0 \) в момент времени \(T \) к процессу \(x_t; t \in [0, T] \), если существуют постоянные \(C, \delta \), такие, что
\[
M\{|x_T - y_T|\} \leq C(\Delta_N)^\gamma
\]
все \(\Delta_N \in (0, \delta) \).

Отметим, что в ряде работ [5], [6] авторы предпочитают рассматривать вместо сильной сходимости среднеквадратическую сходимость.

Определение 2. Будем говорить, что численный метод \(y_j; j = 0, 1, \ldots, N \), сходится в среднеквадратическом смысле с порядком \(\gamma > 0 \) к процессу \(x_t; t \in [0, T] \), если существуют постоянные \(C, \delta \), такие, что \(M\{|x_T - y_T|^2\} \leq C(\Delta_N)^\gamma \) везде \(\Delta_N \in (0, \delta) \).

Здесь \(x_{\tau_j} \equiv x_j; j = 0, 1, \ldots, N \).

Отметим [1], [2], что иногда условие \(M\{|x_T - y_T|\} \leq C(\Delta_N)^\gamma \) в определении 1 заменяется условием \(M\{|x_T - y_T|^2\} \leq C(\Delta_N)^\gamma \) \(j = 0, 1, \ldots, N \). При этом постоянная \(C \) не должна зависеть от \(\Delta_N \).

Очевидно, что в силу неравенства Ляпунова, из среднеквадратической сходимости следует сильная сходимость.

В дальнейшем мы будем опираться на определение 1 сильной сходимости.

В качестве примера дискретной аппроксимации, соответствующей постоянному шагу дискретизации \(\Delta = T/N \) \((\tau_p = p\Delta; p = 0, 1, \ldots, N) \), рассмотрим следующий явный одношаговый численный метод:
\[
y_{p+1} = y_p + \sum_{i=1}^m B_i \hat{f}^{(i)}_{(0)}(\tau_{p+1}, \tau_p) + \Delta a + \sum_{i,j=1}^m G_{ij} B_i \hat{f}^{(ij)}_{(00)}(\tau_{p+1}, \tau_p) +
\]
\[
+ \sum_{i=1}^m \left[G_{ia} \left(\Delta \hat{f}^{(i)}_{(0)}(\tau_{p+1}, \tau_p) + \hat{v}^{(i)}_{(1)}(\tau_{p+1}, \tau_p) \right) - LB_i \hat{v}^{(i)}_{(1)}(\tau_{p+1}, \tau_p) \right] +
\]
\[
+ \sum_{i,j,l=1}^m G_{lj} G_{ij} \hat{f}^{(lj)}_{(000)}(\tau_{p+1}, \tau_p) + \frac{\Delta^2}{2} La,
\]
(4)

где введены следующие обозначения: \(\hat{v}^{(i1\ldots is)}_{(l_1\ldots l_s)} \) — аппроксимация повторного стохастического интеграла Ито вида:
\[
I^{(i_1\ldots i_s)}_{(l_1\ldots l_s),t} = \int_t^{t_1} \ldots \int_t^{t_2} \int_t^{t_3} \ldots \int_t^{t_N} \frac{\partial}{\partial t} \left(a_i(x,t) \frac{\partial}{\partial x_i} + \frac{1}{2} \sum_{j=1}^m \sum_{i=1}^m B_{ij}(x,t) B_{ij}(x,t) \frac{\partial^2}{\partial x_i \partial x_i} \right)
\]
(5)

Данный подход позволяет получать численные схемы с порядком сходимости 1.5 и 2.0, которые могут быть использованы для решения различных стохастических уравнений.
\[l_1, \ldots, l_k = 0, 1, 2, \ldots; i_1, \ldots, i_k = 1, \ldots, m; k = 1, 2, \ldots; B_i \text{ и } B_{ij} \text{ — } i-\text{й столбец и } ij-\text{й элемент матричной функции } B \text{ соответственно; } a_i \text{ и } x_i \text{ — } i-\text{е компоненты векторной функции } a \text{ и столбца } x \text{ соответственно; столбцы } B_i, a, G_j B_i, G_i a, LB_i, G_i G_j B_i, L a \text{ вычислены в точке } (y_p, p). \]

Численную схему [4] в несколько иной форме можно найти, например, в [1, 3]. Отличие, в данном случае, связано с тем, что мы применили в [4] следующее соотношение

\[\Delta f^{(i)}_{(0)\tau_{p+1}, \tau_p} + f^{(i)}_{(1)\tau_{p+1}, \tau_p} = \int_{\tau_p}^{\tau_{p+1}} \int_{\tau_p}^{\tau} df^{(i)}_s d\tau \]

которое с в. 1 вытекает из формулы Ито и позволяет сократить на единицу количество повторных стохастических интегралов Ито, которые подлежат аппроксимации. Это связано с тем, что стохастический интеграл Ито в правой части [6] выражен линейно через стохастические интегралы Ито \(f^{(i)}_{(0)\tau_{p+1}, \tau_p} \) и \(f^{(i)}_{(1)\tau_{p+1}, \tau_p} \), аппроксимации которых уже входят в правую часть [4].

Хорошо известно, что при определенных условиях [1] дискретная аппроксимация (числительный метод) [4] имеет порядок сильной сходимости 1.5. Среди указанных условий отмечим лишь условие, которому должны удовлетворить аппроксимации повторных стохастических интегралов Ито, входящие в [4]:

\[M \left\{ \left(f^{(i)}_{(0)\tau_{p+1}, \tau_p} - \hat{f}^{(i)}_{(1)\tau_{p+1}, \tau_p} \right)^2 \right\} \leq C \Delta^r, \]

где \(r = 4, a \) постоянная \(C \) не зависит от \(\Delta \), поскольку данная работа, главным образом, посвящена аппроксимации указанных стохастических интегралов.

В [6] приводится несколько иных условий, несущих в [1], при которых численный метод [4] имеет порядок среднеквадратической сходимости 1.5.

Рассмотрим явный одношаговый численный метод с порядком сильной сходимости 2.0 вида:

\[y_{p+1} = u_p + \sum_{i,j=1}^{m} \left[c_{(i)}^{(j)} \left(LB_i \left(f^{(j)}_{(00)\tau_{p+1}, \tau_p} + \Delta f^{(j)}_{(01)\tau_{p+1}, \tau_p} \right) - LG_i B_i \hat{f}^{(j)}_{(10)\tau_{p+1}, \tau_p} +
ight) + G_j a \left(\hat{f}^{(j)}_{(01)\tau_{p+1}, \tau_p} + \Delta \hat{f}^{(j)}_{(00)\tau_{p+1}, \tau_p} \right) \right] + \sum_{i,j,l,r=1}^{m} G_r G_j G_i B_i \hat{f}^{(l)j}_{(0000)\tau_{p+1}, \tau_p}, \]

где \(u_p \) — правая часть [4], а смысл остальных обозначений соответствует обозначениям формулы [4].

Численную схему [8] можно найти в другом представлении, например, в [1, 4, 7]. Отличия, в данном случае, связаны с тем, что мы применили в [8] наряду с формулой [9] следующие равенства:

\[f^{(j)}_{(01)\tau_{p+1}, \tau_p} + \Delta f^{(j)}_{(00)\tau_{p+1}, \tau_p} = \int_{\tau_p}^{\tau_{p+1}} \int_{\tau_p}^{\tau} df^{(j)}_s d\tau d\theta \]

\[f^{(j)}_{(10)\tau_{p+1}, \tau_p} - f^{(j)}_{(01)\tau_{p+1}, \tau_p} = \int_{\tau_p}^{\tau_{p+1}} \int_{\tau_p}^{\tau} df^{(j)}_s d\tau d\theta \]

которые с в. 1 вытекают из формулы Ито и позволяют сократить еще на одну единицу количество повторных стохастических интегралов Ито, которые подлежат аппроксимации. Это связано с тем, что стохастические интегралы Ито в правых частях [9] и [10] выражены линейно через стохастические интегралы Ито \(f^{(j)}_{(01)\tau_{p+1}, \tau_p} \) и \(f^{(j)}_{(00)\tau_{p+1}, \tau_p} \), аппроксимации которых уже входят в правую часть [8].
Отметим, что при определенных условиях [1] численный метод [3] имеет порядок сильной сходимости 2.0. Среди указанных условий отметим лишь условие на аппроксимацию повторных стохастических интегралов Ито, входящие в [3] — это условие (7) при \(r = 5 \).

Заметим, что в [1], [3], [5], [13] построен ряд модификаций численных методов (4) и (8), среди которых их конечно-разностные аналоги типа Рунге-Кутта, а также неявные и двухшаговые аналоги. Однако, во всех перечисленных методах встает необходимость эффективной совместной среднеквадратической аппроксимации повторных стохастических интегралов Ито, набор которых, входящих в указанные численные методы, такой же как и для численных методов (4) и (8).

3. Разложение повторных стохастических интегралов Ито

В [13] предложен метод среднеквадратической аппроксимации повторных стохастических интегралов Ито вида (2), основанный на кратных (в отличие от повторных, как в [1], [3], [14], [15]) рядах Фурье по различным полным ортонормированным системам базисных функций в пространстве \(L_2([t, T]) \). В результате, в указанном методе операция предельного перехода выполняется только один раз, что ведет к корректному выбору длин последовательностей стандартных гауссовских случайных величин, необходимых для построения аппроксимаций повторных стохастических интегралов.

Пусть \(\{\phi_j(x)\}_{j=0}^{\infty} \) — полная ортонормированная система функций в пространстве \(L_2([t, T]) \), а \(\psi_1(\tau), \ldots, \psi_k(\tau) \) — непрерывные на промежутке \([t, T]\) функции.

Введем в рассмотрение следующую функцию

(11) \[K(t_1, \ldots, t_k) = \psi_1(t_1) \cdots \psi_k(t_k) 1_{\{t_1 < \ldots < t_k\}}; \quad t_1, \ldots, t_k \in [t, T], \]

где \(1_{\{X\}} = 1 \), если условие \(A \) выполнено и \(1_{\{X\}} = 0 \) в противном случае.

Функция \(K(t_1, \ldots, t_k) \) кусочно-непрерывна в гиперкубе \([t, T]^k\), поэтому кратный ряд Фурье функции \(K(t_1, \ldots, t_k) \in L_2([t, T]^k) \) в гиперкубе \([t, T]^k\) сходится в смысле среднего квадратического, т.е.:

(12) \[\lim_{q_1, \ldots, q_k \to \infty} \left\| K(t_1, \ldots, t_k) - \sum_{j_1=0}^{q_1} \cdots \sum_{j_k=0}^{q_k} C_{j_k} \cdots j_1 \prod_{l=1}^{k} \phi_{j_l}(t_l) \right\| = 0, \]

где

\[\| f \| = \left(\int_{[t, T]^k} f^2(t_1, \ldots, t_k) dt_1 \ldots dt_k \right)^{1/2}, \]

\[C_{j_k} \cdots j_1 = \int_{[t, T]^k} K(t_1, \ldots, t_k) \prod_{l=1}^{k} \phi_{j_l}(t_l) dt_1 \ldots dt_k \]

и имеет место равенство Парсеваля:

\[\int_{[t, T]^k} K^2(t_1, \ldots, t_k) dt_1 \ldots dt_k = \lim_{p_1, \ldots, p_k \to \infty} \sum_{j_1=0}^{p_1} \cdots \sum_{j_k=0}^{p_k} C_{j_k}^2 \cdots j_1. \]

Рассмотрим разбиение \(\{\tau_j\}_{j=0}^{N} \) промежутка \([t, T]\) такое, что

(13) \[t = \tau_0 < \ldots < \tau_N = T, \quad \Delta_N = \max_{0 \leq j \leq N-1} \Delta \tau_j \to 0 \text{ при } N \to \infty, \quad \Delta \tau_j = \tau_{j+1} - \tau_j. \]

Теорема 1. [13], [17] Пусть выполнены следующие условия:

1. \(\psi_i(\tau); \quad i = 1, 2, \ldots, k \) — непрерывные на промежутке \([t, T]\) функции,
2. \{\phi_j(x)\}_{j=0}^{\infty} — полная ортогональная система непрерывных функций в пространстве \(L_2([t,T])\).

Тогда повторный стохастический интеграл Ито \(J[\psi^{(k)}]_{T,t}\) вида (2) разлагается в сходящийся в средневквадратическом смысле кратный ряд

\[
J[\psi^{(k)}]_{T,t} = 1.\text{i.m.}_{q_1,\ldots,q_k \to \infty} \sum_{j_1=0}^{q_1} \ldots \sum_{j_k=0}^{q_k} C_{j_k \ldots j_1} \left(\prod_{l=1}^{k} \zeta^{(i_l)}_{j_l} \right)
\]

\[
- \text{l.i.m.}_{N \to \infty} \sum_{(l_1,\ldots,l_k) \in G_k} \phi_{j_1}(\tau_{l_1}) \Delta w^{(i_1)}_{l_1} \ldots \phi_{j_k}(\tau_{l_k}) \Delta w^{(i_k)}_{l_k}
\]

где l.i.m. — предел в средневквадратическом смысле,

\[
G_k = H_k \setminus L_k, \quad H_k = \{(l_1,\ldots,l_k) : l_1,\ldots,l_k = 0, 1,\ldots,N-1\},
\]

\[
L_k = \left\{ (l_1,\ldots,l_k) : l_1,\ldots,l_k = 0, 1,\ldots,N-1; l_g \neq l_r \ (g \neq r); \ g, r = 1,\ldots,k \right\}
\]

\[
\zeta^{(i_j)}_{j_l} = \int_{t}^{T} \phi_{j_l}(s) d w^{(i_j)}
\]

— независимые стандартные гауссовские случайные величины при различных \(i\) или \(j\) (если \(i \neq 0\)), \(\Delta w^{(i_j)}_{l_r} = w^{(i_j)}_{l_{r+1}} - w^{(i_j)}_{l_r}\) (\(i = 0, 1,\ldots,m\)), \(\{\tau_{j}_j \}_{j=0}^{N-1}\) — разбиение промежутка \([t,T]\), удовлетворяющее условию (13).

Выпишем в несколько преобразованной форме частные случаи теоремы 1 для \(k = 1,\ldots,4\):

\[
J[\psi^{(1)}]_{T,t} = \text{l.i.m.}_{q_1 \to \infty} \sum_{j_1=0}^{q_1} C_{j_1} \zeta^{(i_1)}_{j_1},
\]

\[
J[\psi^{(2)}]_{T,t} = \text{l.i.m.}_{q_1, q_2 \to \infty} \sum_{j_1=0}^{q_1} \sum_{j_2=0}^{q_2} C_{j_2, j_1} \left(\zeta^{(i_1)}_{j_1} \zeta^{(i_2)}_{j_2} - 1_{\{i_1 = i_2 \neq 0\}} \{j_1 = j_2\} \right),
\]

\[
J[\psi^{(3)}]_{T,t} = \text{l.i.m.}_{q_1, q_2, q_3 \to \infty} \sum_{j_1=0}^{q_1} \ldots \sum_{j_3=0}^{q_3} C_{j_3, j_2, j_1} \left(\zeta^{(i_1)}_{j_1} \zeta^{(i_2)}_{j_2} \zeta^{(i_3)}_{j_3} - 1_{\{i_1 = i_2 = i_3 \neq 0\}} \{j_1 = j_2, j_3\} \right),
\]

\[
J[\psi^{(4)}]_{T,t} = \text{l.i.m.}_{q_1, q_2, q_3, q_4 \to \infty} \sum_{j_1=0}^{q_1} \ldots \sum_{j_4=0}^{q_4} C_{j_4, \ldots, j_1} \left(\zeta^{(i_1)}_{j_1} \zeta^{(i_2)}_{j_2} \zeta^{(i_3)}_{j_3} \zeta^{(i_4)}_{j_4} - 1_{\{i_1 = i_2 \neq 0\}} \{j_1 = j_2\} \zeta^{(i_3)}_{j_3} \zeta^{(i_4)}_{j_4} - 1_{\{i_1 = i_4 \neq 0\}} \{j_1 = j_4\} \zeta^{(i_2)}_{j_2} \zeta^{(i_3)}_{j_3} \zeta^{(i_4)}_{j_4} - 1_{\{i_2 = i_4 \neq 0\}} \{j_2 = j_4\} \zeta^{(i_1)}_{j_1} \zeta^{(i_3)}_{j_3} \zeta^{(i_4)}_{j_4} - 1_{\{i_2 = i_3 = i_4 \neq 0\}} \{j_2, j_3 = j_4\} \right) + \{i_1 = i_2 \neq 0\} \{j_1 = j_2\} \{i_3 = i_4 \neq 0\} \{j_3 = j_4\} + 1_{\{i_1 = i_3 \neq 0\}} \{j_1 = j_3\} \{i_2 = i_4 \neq 0\} \{j_2 = j_4\} + 1_{\{i_1 = i_4 \neq 0\}} \{j_1 = j_4\} \{i_2 = i_3 \neq 0\} \{j_2 = j_3\} \right).
\]
4. Разложения повторных стохастических интегралов Стратоновича

Как оказалось [18], при адаптации теоремы 1 для повторных стохастических интегралов Стратоновича \(J^*[\psi_1(k)]_{t,t} \) вида (3), разложения последних получаются существенно проще, нежели разложения интегралов Ито \(J[\psi_1(k)]_{t,t} \) вида (2). В частности, справедлива следующая теорема.

Теорема 2. Предположим, что выполнены следующие условия:
1. \(\{\phi_j(x)\}_{j=0}^\infty \) — полная ортонормированная система полиномов Лежандра или система тригонометрических функций в пространстве \(L_2([t,T]) \);
2. Функция \(\psi_2(s) \) — непрерывно дифференцируема на промежутке \([t,T]\), а функции \(\psi_1(s) \), \(\psi_3(s) \) — дважды непрерывно дифференцируемы на промежутке \([t,T]\) (в формулах (19) и (22)).

Тогда, повторные стохастические интегралы Стратоновича 2 — 4-кратности вида (4) разлагаются в сходящиеся в субстандартном смысле кратные ряды

\[
J^*[\psi_1(2)]_{t,t} = \lim_{q_1,q_2 \to \infty} \sum_{j_1=0}^{q_1} \sum_{j_2=0}^{q_2} C_{j_2j_1} \zeta_{j_1}^{(i_1)} \zeta_{j_2}^{(i_2)},
\]

(19)

\[
J^*[\psi_1(3)]_{t,t} = \lim_{q_1,q_2,q_3 \to \infty} \sum_{j_1=0}^{q_1} \sum_{j_2=0}^{q_2} \sum_{j_3=0}^{q_3} C_{j_3j_2j_1} \zeta_{j_1}^{(i_1)} \zeta_{j_2}^{(i_2)} \zeta_{j_3}^{(i_3)},
\]

(20)

\[
J^*[\psi_1(3)]_{t,t} = \lim_{q \to \infty} \sum_{j_1,j_2,j_3=0}^{q} C_{j_3j_2j_1} \zeta_{j_1}^{(i_1)} \zeta_{j_2}^{(i_2)} \zeta_{j_3}^{(i_3)},
\]

(21)

\[
J^*[\psi_1(4)]_{t,t} = \lim_{p \to \infty} \sum_{j_1,j_2,j_3,j_4=0}^{p} C_{j_3j_2j_1} \zeta_{j_1}^{(i_1)} \zeta_{j_2}^{(i_2)} \zeta_{j_3}^{(i_3)} \zeta_{j_4}^{(i_4)},
\]

(22)

где в (19) — (21) полагаем \(i_1, i_2, i_3 = 1, \ldots, m \), а в (22) — \(i_1, \ldots, i_4 = 0, 1, \ldots, m \). Кроме того, в (20) и (22) полагаем \(\psi_1(s), \ldots, \psi_4(s) \equiv 1 \), а смысл остальных обозначений, соответствует обозначениям теоремы 1.

5. Аппроксимация повторных стохастических интегралов Ито и Стратоновича, используемых в приложениях, с помощью полиномов Лежандра

Заметим, что совокупность повторных стохастических интегралов Ито, входящих в численные методы [3], [8] имеет вид:

\[
\int_{(0)T,t}^{(i_1)} I_{(1)T,t}, \int_{(00)T,t}^{(i_1i_2)} I_{(01)T,t}, \int_{(000)T,t}^{(i_1i_2i_3)} I_{(10)T,t}, \int_{(0000)T,t}^{(i_1i_2i_3i_4)} I_{(100)T,t},
\]

(23)

где \(i_1, \ldots, i_4 = 1, \ldots, m \).

Функции \(K(t_1, \ldots, t_k) \) вида (11) для семейств интегралов (24) имеют соответственно следующий вид: \(K_0(t_1) \equiv 1, K_1(t_1) = t-t_1, K_{00}(t_1,t_2) = 1_{\{t_1<t_2\}}, K_{000}(t_1,t_2,t_3) = 1_{\{t_1<t_2<t_3\}}, K_{01}(t_1,t_2) = (t-t_2)1_{\{t_1<t_2\}}, K_{10}(t_1,t_2) = (t-t_1)1_{\{t_1<t_2\}}, K_{0000}(t_1, \ldots, t_4) = 1_{\{t_1<\ldots<t_4\}}, \) где \(t_1, \ldots, t_4 \in [t,T] \).

Очевидно, что наиболее простым (имеющим конечное число слагаемых) разложением в ряд Фурье по полной ортонормированной в пространстве \(L_2([t,T]) \) системе функций для полинома конечной степени будет его разложение по системе полиномов Лежандра. Полиномиальные функции входят в функции \(K_1(t_1), K_{01}(t_1,t_2), K_{10}(t_1,t_2) \) как их составные части, поэтому логично ожидать, что наиболее простыми разложениями в кратные ряды Фурье этих функций будут их разложения в кратные ряды Фурье—Лежандра.

Следующий пример достаточно хорошо иллюстрирует отмеченную закономерность.
Рассмотрим аппроксимацию $I^{(i_1)q}_{(1)T,t}$ стохастического интеграла $I^{(i_1)}_{(1)T,t}$, основанную на разложении в ряд Фурье со случайными коэффициентами [9]:

$$I^{(i_1)q}_{(1)T,t} = -\frac{(T-t)^{3/2}}{2} \left(\zeta^{(i_1)}_0 - \sqrt{\frac{q}{\pi}} \sum_{r=1}^{q} \frac{1}{r^2} \zeta^{(i_1)}_{2r-1} + \sqrt{\frac{q}{3}} \zeta^{(i_1)}_{q} \right),$$

где

$$\zeta^{(i)}_{q} = \frac{1}{\sqrt{\alpha_q}} \sum_{r=q+1}^{\infty} \frac{1}{r} \zeta^{(i)}_{2r-1}, \ \alpha_q = \frac{\pi^2}{6} - \sum_{r=1}^{q} \frac{1}{r^2},$$

причем $\zeta^{(i)}_{0}, \zeta^{(i)}_{2r-1}, \zeta^{(i)}_{q}; r = 1, \ldots, q; \ i = 1, \ldots, m$ — независимые в совокупности стандартные гауссовские случайные величины; $i_1 = 1, \ldots, m$.

С другой стороны можно получить следующее, справедливое с в. 1 равенство:

$$I^{(i_1)}_{(1)T,t} = -\frac{(T-t)^{3/2}}{2} \left(\zeta^{(i_1)}_0 + \frac{1}{\sqrt{3}} \zeta^{(i_1)}_1 \right),$$

основанное на разложении в ряд Фурье-Лежандра функции $t - t_1$ на интервале $[t, T]$ (данное разложение содержит всего 2 слагаемых).

Приведенный пример показывает преимущество полиномов Лежандра перед тригонометрическими функциями в контексте рассматриваемого вопроса.

Отметим, что в [13] установлено, что в методе Фурье (теорема 1) возможно также использование систем функций Хаара и Радемахера-Уолша. Однако в [13] на примере повторных стохастических интегралов Ито 1 и 2 кратности вида (2) показано, что разложения, полученные в системах функций Хаара и Радемахера-Уолша оказывались чрезвычайно сложными в сравнении с их аналогами, полученными на основе полиномов Лежандра или тригонометрических функций. В связи с этим применение указанных разложений на практике затруднено.

Рассмотрим аппроксимацию оставшихся интегралов из семейства (23), полученные с помощью теорем 1, 2 и полной ортонормированной системы полиномов Лежандра в пространстве $L_2([t, T])$. Сначала рассмотрим аппроксимацию стохастических интегралов 1 и 2 кратности:

$$I^{(i_1)}_{(0)T,t} = \sqrt{T-t} \zeta^{(i_1)}_0,$$

$$I^{(i_1)q}_{(0)T,t} = I^{(i_1)q}_{(0)T,t} - \frac{1}{2} \sum_{i_1=i_2} (T-t),$$

$$I^{(i_1)q}_{(00)T,t} = I^{(i_1)q}_{(00)T,t} - \frac{1}{4} \sum_{i_1=i_2} (T-t)^2,$$

$$I^{(i_1)q}_{(01)T,t} = I^{(i_1)q}_{(01)T,t} - \frac{1}{4} \sum_{i_1=i_2} (T-t)^2.$$

$$I^{(i_1)q}_{(01)T,t} = \frac{1}{2} \sum_{i_1=i_2} (T-t)^2,$$

$$I^{(i_1)q}_{(00)T,t} = \frac{1}{4} \sum_{i_1=i_2} (T-t)^2,$$

$$I^{(i_1)q}_{(01)T,t} = \frac{1}{4} \sum_{i_1=i_2} (T-t)^2.$$
где здесь и далее \(I^{s(i_1...i_k)}_{(t_1...t_k)s,t} \) и \(I^{s(i_1...i_k)}_{(t_1...t_k)s,t} \) — аппроксимации повторных стохастических интегралов Стратоновича и Ито вида:

\[
I^{s(i_1...i_k)}_{(t_1...t_k)s,t} = \int_{t}^{s} (t - \tau)^{i_1} \ldots \int_{t}^{\tau_2} (t - \tau_1)^{i_1} df_{I_{i_1}}^{(i_1)} \ldots df_{I_{i_k}}^{(i_k)}
\]

и вида (30) соответственно; \(\zeta^{(i)} \) — независимые при различных \(i \) или \(j \) стандартные гауссовские случайные величины; \(j = 0, 1, \ldots, p + 2; i = 1, \ldots, m. \)

Вычислим среднедвадратические погрешности аппроксимаций (27) — (30).

В (13) получена следующая точная формула для попарно различных \(i_1, \ldots, i_k = 1, \ldots, m: \)

\[
M \left\{ J^{(k)}_{T,t} - J^{(k)}_{T,t} \right\}^2 = \int_{[t,T]^2} K^2(t_1, \ldots, t_k)dt_1 \ldots dt_k - \sum_{j_1, j_2 = 0}^{p} C^2_{j_1, j_2}
\]

где правая часть (32) (в силу равенства Парсеваля) стремится к нулю при \(q \to \infty; J^{(k)}_{T,t} \) имеет вид (24), а \(J^{(k)}_{T,t} \) — аппроксимация \(J^{(k)}_{T,t} \), определяемая как допредельное выражение в (13) при \(q_1 = \ldots = q_k = q \) (см. также допредельные выражения в (15) — (18)); смысл остальных обозначений такой же, как в теореме 1.

В (17) также получена следующая формула:

\[
M \left\{ J^{(2)}_{T,t} - J^{(2)}_{T,t} \right\}^2 = \int_{[t,T]^2} K^2(t_1, t_2)dt_1dt_2 - \sum_{j_1, j_2 = 0}^{q} C^2_{j_1, j_2} - \sum_{j_1, j_2 = 0}^{q} C_{j_1, j_2} C_{j_2, j_1} (i_1 = i_2),
\]

где сохранен смысл обозначений формулы (32).

С помощью (32) и (33) получим:

\[
M \left\{ J^{(i_1i_2)}_{(00)T,t} - J^{(i_1i_2)}_{(00)T,t} \right\}^2 = \frac{(T - t)^2}{2} \left(\frac{1}{2} - \sum_{i=1}^{q} \frac{1}{4i^2 - 1} \right) (i_1 \neq i_2),
\]

\[
M \left\{ J^{(i_1i_2)}_{(10)T,t} - J^{(i_1i_2)}_{(10)T,t} \right\}^2 = M \left\{ J^{(i_1i_2)}_{(01)T,t} - J^{(i_1i_2)}_{(01)T,t} \right\}^2 = \frac{(T - t)^4}{16} \times \left(\frac{5}{9} - 2 \sum_{i=2}^{p} \frac{1}{4i^2 - 1} - \sum_{i=1}^{q} \frac{1}{(2i - 1)(2i + 3)^2} - \sum_{i=0}^{q} \frac{(i + 2)^2 + (i + 1)^2}{(2i + 1)(2i + 5)(2i + 3)^2} \right)
\]

при \(i_1 \neq i_2 \) и

\[
M \left\{ J^{(i_1i_1)}_{(10)T,t} - J^{(i_1i_1)}_{(10)T,t} \right\}^2 = M \left\{ J^{(i_1i_1)}_{(01)T,t} - J^{(i_1i_1)}_{(01)T,t} \right\}^2 = \frac{(T - t)^4}{16} \left(\frac{1}{9} - \sum_{i=0}^{q} \frac{1}{(2i + 1)(2i + 5)(2i + 3)^2} - 2 \sum_{i=1}^{p} \frac{1}{(2i - 1)^2(2i + 3)^2} \right).
\]

Перейдем к рассмотрению численного моделирования повторного стохастического интеграла Ито 3 кратности \(I^{(i_1i_2i_3)}_{(000)T,t} \). Воспользуемся теоремой 1 при \(k = 3 \) (см. (17)):

\[
I^{(i_1i_2i_3)}_{(000)T,t} = \sum_{j_1, j_2, j_3 = 0}^{q} C_{j_1, j_2, j_3} \left(\zeta_{j_1}^{(i_1)} \zeta_{j_2}^{(i_2)} \zeta_{j_3}^{(i_3)} - 1_{(i_1 = i_2)} 1_{(j_1 = j_2)} \zeta_{j_3}^{(i_3)} \right)
\]
где \(i_1, i_2, i_3 = 1, \ldots, m \) и

\[
C_{j_3j_2j_1} = \int_0^T \phi_{j_1}(z) \int_0^z \phi_{j_2}(y) \int_0^y \phi_{j_3}(x) dx dy dz = \frac{\sqrt{(2j_1+1)(2j_2+1)(2j_3+1)}}{8} (T-t)^{3/2} \tilde{C}_{j_3j_2j_1},
\]

а \(P_t(x); \ i = 0, 1, 2, \ldots \) — полиномы Лежандра.

Для случая \(i_1 = i_2 = i_3 \) можно воспользоваться справедливым с в. 1 известным равенством, которое следует из формулы Ито [1], [5]:

\[
(37) \quad -1 \{i_2 = i_3\} (38) - 1 \{i_1 = i_3\} (39).
\]

Процедура численного моделирования стохастического интеграла Ито \(f^{(i_1i_2i_3)}_{(000)T,t} \) может осуществляться по формулам (37) — (40), причем коэффициенты \(C_{j_3j_2j_1} \) вида (39) могут быть вычислены точно для заданного числа \(q \) с помощью компьютерных пакетов символьных преобразований таких, как, например, DERIVE. Контроль среднеквадратической погрешности осуществляется по формуле (52) при \(k = 3 \), следующим, полученным в [17], формулам:

\[
(40) \quad I^{(i_1i_2i_3)}_{(000)T,t} \frac{1}{6} (T-t)^{3/2} \left(C^{(i_1)}_{\theta_0} - 3C^{(i_1)}_{\theta_0} \right).
\]

\[
(41) \quad M \left\{ \left(J^{(3)}_{\psi(T)}[T,t] - J^{(3)}_{\psi(T)}[T,t] \right)^2 \right\} = \int_{[t,T]} K^2(t_1, t_2, t_3) dt_1 dt_2 dt_3 - \sum_{j_3, j_2, j_1 = 0}^q \left(C_{j_3j_2j_1}^2 - \sum_{j_3, j_2, j_1 = 0}^p C_{j_3j_1j_2} C_{j_3j_2j_1} \right) (i_1 = i_2 \neq i_3),
\]

\[
(42) \quad M \left\{ \left(J^{(3)}_{\psi(T)}[T,t] - J^{(3)}_{\psi(T)}[T,t] \right)^2 \right\} = \int_{[t,T]} K^2(t_1, t_2, t_3) dt_1 dt_2 dt_3 - \sum_{j_3, j_2, j_1 = 0}^q \left(C_{j_3j_2j_1}^2 - \sum_{j_3, j_2, j_1 = 0}^q C_{j_2j_3j_1} C_{j_3j_2j_1} \right) (i_1 \neq i_2 = i_3),
\]

\[
(43) \quad M \left\{ \left(J^{(3)}_{\psi(T)}[T,t] - J^{(3)}_{\psi(T)}[T,t] \right)^2 \right\} = \int_{[t,T]} K^2(t_1, t_2, t_3) dt_1 dt_2 dt_3 - \sum_{j_3, j_2, j_1 = 0}^q \left(C_{j_3j_2j_1}^2 - \sum_{j_3, j_2, j_1 = 0}^q C_{j_3j_2j_1} C_{j_1j_2j_3} \right) (i_1 = i_3 \neq i_2)
\]

или с помощью, выведенной в [19] оценки (при \(k = 3 \):
где $i_1, \ldots, i_k = 1, \ldots, m$ или $i_1, \ldots, i_k = 0, 1, \ldots, m$ и $T - t < 1$.

В частности, из (32) при попарно различных $i_1, i_2, i_3 = 1, \ldots, m$ и $p = 6$ получаем:

$$M \left\{ \left(I_{(0000)T,t}^{(i_1i_2i_3i_4)} - I_{(000)T,t}^{(i_1i_2i_3)} \right)^2 \right\} \approx 0.01956(T - t)^3.$$

Учитывая, что величина $T - t$ играет роль шага интегрирования численного метода для СДУ Ито (11) и является, в силу этого, достаточно малой величиной, получим, что уже при $p = 6$ среднеквадратическая погрешность аппроксимации стохастического интеграла $I_{(000)T,t}^{(i_1i_2i_3)}$ достаточно мала (см. (13)).

Рассмотрим теперь стохастический интеграл Ито 4 кратности $I_{(000)T,t}^{(i_1i_2i_3i_4)}$. По теореме 1 при $k = 4$ (см. (13)):

$$I_{(0000)T,t}^{(i_1i_2i_3i_4)} = \sum_{j_1, j_2, j_3, j_4 = 0}^q C_{j_1j_2j_3j_4} \left(\zeta_{j_1} \zeta_{j_2} \zeta_{j_3} \zeta_{j_4} - \right.$$

$$\left. -1_{i_1=i_2}(1_{i_1=i_3}) \zeta_{j_3} \zeta_{j_4} - 1_{i_2=i_4} \zeta_{j_1} \zeta_{j_2} \zeta_{j_4} - 1_{i_1=i_3} \zeta_{j_1} \zeta_{j_2} \zeta_{j_4} - \right.$$

$$\left. -1_{i_2=i_4} \zeta_{j_1} \zeta_{j_2} \zeta_{j_3} \zeta_{j_4} + 1_{i_1=i_2} \zeta_{j_1} \zeta_{j_2} \zeta_{j_3} \zeta_{j_4} + 1_{i_1=i_3} \zeta_{j_1} \zeta_{j_2} \zeta_{j_3} \zeta_{j_4} + \right.$$

$$+ 1_{i_2=i_4} \zeta_{j_1} \zeta_{j_2} \zeta_{j_3} \zeta_{j_4} \right),$$

где $i_1, i_2, i_3, i_4 = 1, \ldots, m$ и

$$C_{j_1j_2j_3j_4} = \int_{0}^{T} \int_{0}^{u} \int_{0}^{z} \int_{0}^{y} \phi_{j_1}(u) \phi_{j_2}(z) \phi_{j_3}(y) \phi_{j_4}(x) dx dy dz du =$$

$$= \frac{\sqrt{(2j_1 + 1)(2j_2 + 1)(2j_3 + 1)(2j_4 + 1)}}{16} \Delta^2 C_{j_1j_2j_3j_4},$$

$$\bar{C}_{j_1j_2j_3j_4} = \int_{-1}^{1} \int_{-1}^{u} \int_{-1}^{z} \int_{-1}^{y} P_{j_1}(u) P_{j_2}(z) P_{j_3}(y) P_{j_4}(x) dx dy dz du,$$

где $P_{j}(x); \quad i = 0, 1, 2, \ldots$ — полиномы Лежандра.

Для точного вычисления коэффициентов Фурье $C_{j_1j_2j_3j_4}$ можно воспользоваться данными ранее рекомендациями, а контроль среднеквадратической погрешности аппроксимации повторного стохастического интеграла Ито $I_{(0000)T,t}^{(i_1i_2i_3i_4)}$ осуществить, например, с помощью оценки (44) при $k = 4$.

$$M \left\{ \left(I_{(000)T,t}^{(i_1i_2i_3)} - I_{(000)T,t}^{(i_1i_2)} \right)^2 \right\} \leq$$

$$\leq k! \left(\int_{t}^{T} K^2(t_1, \ldots, t_k) dt_1 \ldots dt_k - \sum_{j_1, \ldots, j_k = 0}^q C_{j_k}^2 \right)$$

(44)
В частности, при попарно различных \(i_1, \ldots, i_4 = 1, \ldots, m \) уже при \(p = 2 \) по формуле (32) получаем (с учетом малости \(T - t \)) достаточно хорошую точность среднеквадратической аппроксимации:

\[
M \left\{ \left(\int_{(000)}^{t} I(t_{i_1,i_2,i_3,i_4}) \right)^2 \right\} \approx 0.0236084(T - t)^4.
\]

Отметим, что при получении формул (15) и (17) коэффициенты \(\tilde{C}_{j_3,j_2,j_1} \) и \(\tilde{C}_{j_4,j_3,j_2,j_1} \) вычислялись точно с помощью программы DERIVE.

Следует отметить, что формулы (19)–(22) проще формул (16)–(18), однако вычисление среднеквадратической погрешности аппроксимации для интегралов из семейства (3) оказывается существенно сложнее, чем для интегралов из семейства (2).

6. Алгоритмы численного моделирования с порядками сильной сходимости 1.5 и 2.0

Сформулируем сначала в виде алгоритма, приведенные формулы и рекомендации, касающиеся численного метода с порядком сильной сходимости 1.5.

Будем считать, что необходимые коэффициенты Фурье \(\tilde{C}_{j_3,j_2,j_1}, \tilde{C}_{j_4,j_3,j_2,j_1} \) уже вычислены. В частности, в [13] приведены таблицы точно вычисленных с помощью компьютерной программы DERIVE коэффициентов \(\tilde{C}_{j_3,j_2,j_1}, \tilde{C}_{j_4,j_3,j_2,j_1} \).

Алгоритм 1.

Шаг 1. Задаются исходные параметры задачи: промежуток интегрирования \([0, T]\), шаг интегрирования \(\Delta \) (например постоянный \(\Delta = T/N \); \(N \geq 1 \)), хотя допускается выбор переменного шага интегрирования), начальное условие \(y_0 \), постоянная \(C \), входящая в условие (7).

Шаг 2. Полагаем \(p = 0 \).

Шаг 3. Выбор минимальных чисел \(q, q_1 (q < q_1) \), обеспечивающего необходимую точность аппроксимации стохастических интегралов \(I_{(i_1,i_2)}(00), I_{(i_1,i_2)}(00)T_{p+1}, \tau_p \) (\(\tau_p = p \Delta \)) и удовлетворяющего условиям:

\[
M \left\{ \int_{(00)}^{t} I_{(i_1,i_2)}(00)T_{p+1}, \tau_p \right\} = \frac{\Delta^2}{2} \left(1 - \frac{1}{4} \right) \leq C \Delta^4,
\]

\[
M \left\{ \int_{(00)}^{t} I_{(i_1,i_2)}(00)T_{p+1}, \tau_p \right\} \leq 6 \left(\frac{\Delta^3}{6} - \sum_{j_3,j_2,j_1=0}^{q} C_{j_3,j_2,j_1}^2 \right) \leq C \Delta^4.
\]

Замечание 1. Если требуется осуществлять контроль точности моделирования интеграла \(I_{(i_1,i_2)}(00)T_{p+1}, \tau_p \) не с помощью оценки (49) (см. (41)), а по точным формулам (32), (41)–(43), то вместо условия (49) необходимо взять следующие условия:

\[
E_{p,q,\Delta}^{(i_1,i_2)} = \frac{\Delta^3}{6} - \sum_{j_3,j_2,j_1=0}^{q} C_{j_3,j_2,j_1}^2 \leq C \Delta^4,
\]

\[
E_{p,q,\Delta}^{(i_1,i_2)} = \frac{\Delta^3}{6} - \sum_{j_3,j_2,j_1=0}^{q} C_{j_3,j_2,j_1}^2 - \sum_{j_3,j_2,j_1=0}^{q} C_{j_3,j_2,j_1} C_{j_3,j_2,j_1} \leq C \Delta^4,
\]

\[
E_{p,q,\Delta}^{(i_1,i_2)} = \frac{\Delta^3}{6} - \sum_{j_3,j_2,j_1=0}^{q} C_{j_3,j_2,j_1}^2 - \sum_{j_3,j_2,j_1=0}^{q} C_{j_3,j_2,j_1} C_{j_3,j_2,j_1} \leq C \Delta^4.
\]
Шаг 4. Моделирование последовательности независимых стандартных гауссовских случайных величин \(Z_i^{(l)} \) (где \(l = 0, 1, \ldots, q; i = 1, \ldots, m \)).

Шаг 5. Моделирование стохастических интегралов Ито по формулам

\[
I_{(0)}^{(i)}(\tau_{p+1}, \tau_p) = \sqrt{T - I_{(0)}^{(i)}}(0, 0),
\]

\[
I_{(1)}^{(i)}(\tau_{p+1}, \tau_p) = \frac{(T - t)^{3/2}}{2} \left(\frac{\xi^{(i)}(0)}{\sqrt{3}} + 1 \right),
\]

\[
I_{(000)}^{(i, j, k)}(\tau_{p+1}, \tau_p) = \frac{T - t}{2} \left(\xi^{(i)}(0) + \xi^{(j)}(0) + \xi^{(k)}(0) \right) + \sum_{i=1}^{q_1} \frac{1}{2} \left(\xi^{(i)}(0) - \xi^{(i)}(1) \right) - \xi^{(i)}(1),
\]

где \(i_1, i_2, i_3 = 1, \ldots, m \).

Замечание 2. Моделирование стохастического интеграла \(I_{(000)}^{(i, j, k)}(\tau_{p+1}, \tau_p) \) в случае \(i_1 = i_2 = i_3 \) целесообразно осуществлять по формуле [40], в которой необходимо положить \(T - t = \Delta \).

Шаг 6. Производим выборку \(X_{p+1} \) по формуле [4].

Шаг 7. Если \(p < N - 1 \), то полагаем \(p = p + 1 \) и переходим к шагу 4. В противном случае переходим к шагу 8.

Шаг 8. Конец работы алгоритма.

Кратко отметим, как необходимо модифицировать алгоритм 1, чтобы он позволял осуществлять численное моделирование с порядком сходимости 2.0.

На шаге 3 алгоритма 1 необходимо вместо величины \(C \Delta^4 \) в (52), (53) взять величину \(C \Delta^5 \) и, кроме того, добавить к рассматриваемым стохастическим интеграм следующие три стохастических интегралы: \(I_{(0)}^{(i, i, i)}(\tau_{p+1}, \tau_p) \), \(I_{(01)}^{(i, i, i)}(\tau_{p+1}, \tau_p) \), аппроксимации которых определяются по формулам (25) – (30), (46). При этом для контроля точности моделирования указанных интегралов можно воспользоваться оценкой (41) при \(k = 4 \) и формулами (55), (56). В результате получим следующие условия:

\[
M \left\{ \left(I_{(0)}^{(i, i, i)}(\tau_{p+1}, \tau_p) - I_{(01)}^{(i, i, i)}(\tau_{p+1}, \tau_p) \right)^2 \right\} = M \left\{ \left(I_{(0)}^{(i, i, i)}(\tau_{p+1}, \tau_p) - I_{(01)}^{(i, i, i)}(\tau_{p+1}, \tau_p) \right)^2 \right\} = \frac{\Delta^4}{16} \times
\]

\[
x \left(\frac{5}{9} - 2 \sum_{i=2}^{q_2} \frac{1}{4i^2 - 1} - \sum_{i=1}^{q_2} \frac{(2i - 1)^2(2i + 3)^2}{2(i + 1)(2i + 5)(2i + 3)^2} \right) \leq C \Delta^5
\]

при \(i_1 \neq i_2 \) и

\[
M \left\{ \left(I_{(0)}^{(i, i, i)}(\tau_{p+1}, \tau_p) - I_{(01)}^{(i, i, i)}(\tau_{p+1}, \tau_p) \right)^2 \right\} = M \left\{ \left(I_{(0)}^{(i, i, i)}(\tau_{p+1}, \tau_p) - I_{(01)}^{(i, i, i)}(\tau_{p+1}, \tau_p) \right)^2 \right\} =
\]
\[
= \frac{\Delta^4}{16} \left(\frac{1}{9} - \sum_{i=0}^{q_1} \frac{1}{(2i+1)(2i+5)(2i+3)^2} - 2 \sum_{i=1}^{q_3} \frac{1}{(2i-1)^2(2i+3)^2} \right) \leq C\Delta^5
\]

при \(i_1 = i_2; \)

\[
M \left\{ \left(f_{(i_1i_2i_3i_4)}^{(11)}(0000)_{\tau_{p+1},\tau_p} - f_{(i_1i_2i_3i_4)}^{(10)}(0000)_{\tau_{p+1},\tau_p} \right)^2 \right\} \leq 24 \left(\frac{\Delta^4}{24} - \sum_{j_1,j_2,j_3,j_4=0}^{q_4} C_{j_4j_3j_2j_1}^2 \right) \leq C\Delta^5,
\]

где \(i_1, i_2, i_3, i_4 = 1, \ldots, m; q_2, q_3, q_4 < q < q_1. \)

Шаг 5 алгоритма 1 необходимо осуществить с учетом стохастических интегралов

\[
= \frac{\Delta^4}{16} \left(\frac{1}{9} - \sum_{i=0}^{q_1} \frac{1}{(2i+1)(2i+5)(2i+3)^2} - 2 \sum_{i=1}^{q_3} \frac{1}{(2i-1)^2(2i+3)^2} \right) \leq C\Delta^5
\]

а на шаге 6 алгоритма 1 произвести вычисление \(y_{p+1} \) по формуле [5].

7. Заключение

В работе получены эффективные процедуры среднеквадратической аппроксимации повторных стохастических интегралов Ито и Стратоновича 1–4 кратности, основанные на кратных рядах Фурье-Лежандра. Данные результаты могут быть использованы для реализации численных методов с порядками сильной сходимости 1.5 и 2.0 для стохастических дифференциальных уравнений Ито при численном решении задач оптимального стохастического управления и фильтрации сигналов на фоне случайных помех в различных постановках.

REFERENCES

[1] Kloeden P.E., Platen E. Numerical solution of stochastic differential equations. Berlin: Springer, 1992.
[2] Arato M. Linear stochastic systems with constant coefficients. A statistical approach. Berlin, Heidelberg, N.Y.: Springer, 1982.
[3] Shiriaev A.N. Foundations of Financial Mathematics, Fazis, Moscow, 1998. [In Russian]
[4] Liptser R.Sh., Shiriaev A.N. Statistics of Stochastic Processes: Nonlinear Filtering and Related Problems. Nauka, Moscow, 1974. [In Russian]
[5] Milstein G.N. Numerical Integration of Stochastic Differential Equations. Ural University Press, Sverdlovsk, 1988. [In Russian]
[6] Milstein G.N., Tretyakov M.V. Stochastic numerics for mathematical physics. Berlin: Springer, 2004.
[7] Kloeden P.E., Platen E., Schurz H. Numerical solution of SDE through computer experiments. Berlin: Springer, 1994.
[8] Platen E., Wagner W. On a Taylor formula for a class of Ito processes. // Probab. Math. Statist. 1982. N3. P. 37-51.
[9] Kloeden P.E., Platen E. The Stratonovich and Ito-Taylor expansions. // Math. Nachr. 1991. V. 151. P. 33-50.
[10] Kulchitskiy O.Yu., Kuznetsov D.F. The unified Taylor-Ito expansion. Journal of Mathematical Sciences (N. Y.) 2000;99(2):1130-1140.
[11] Kuznetsov D.F. New representations of the Taylor-Stratonovich expansions. Journal of Mathematical Sciences (N. Y.) 2003;118(6):5586-5596.
[12] Gichman I.I., Skorochod A.V. Stochastic Differential Equations and its Applications. Naukova Dumka, Kiev, 1982. [In Russian]
[13] Kuznetsov D.F. Numerical Integration of Stochastic Differential Equations. 2. [In Russian]. Politechnical University Publishing House: St.-Petersburg, 2006, 764 pp. (DOI: 10.18720/SPBPU/2/a17-227). Available at: http://www.sde-kuznetsov.spb.ru/downloads/kuz_2006.pdf
[14] Kuznetsov D.F. New representations of explicit one-step numerical methods for stochastic differential equations with a jump component. Computational Mathematics and Mathematical Physics. 2001; 41 (6):874-888.
[15] Kloeden P.E., Platen E., Wright I.W. The approximation of multiple stochastic integrals. Stoch. Anal. Appl. 1992 V. 10. N4, P. 431-441.
[16] Allen E. Approximation of triple stochastic integrals through region subdivision. Communicat. in Appl. Anal. Special Tribute Issue to Prof. V. Lakshmikantham. 2013. V. 17. P. 355-366.
Kuznetsov D.F. Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MatLab programs. 1st Ed. [In Russian]. Polytechnical University Publishing House: St.-Petersburg, 2007, 778 pp. (DOI: 10.18720/SPBPU/2/s17-228). Available at: http://www.sde-kuznetsov.spb.ru/downloads/1_ed_kuz.pdf

[18] Dmitriy F. Kuznetsov. Strong Approximation of Multiple Ito and Stratonovich Stochastic Integrals: Multiple Fourier Series Approach. 2nd Ed. [In English]. Polytechnical University Publishing House, St.-Petersburg, 2011, 284 pp. (DOI: 10.18720/SPBPU/2/s17-233). Available at: http://www.sde-kuznetsov.spb.ru/downloads/kuz_2011_2_ed.pdf

[19] Dmitriy F. Kuznetsov. Multiple Ito and Stratonovich Stochastic Integrals: Fourier-Legendre and Trigonometric Expansions, Approximations, Formulas. [In English]. Electronic Journal Differential Equations and Control Processes, no. 1, 2017, 385 (A.1 - A.385) pp. (DOI: 10.18720/SPBPU/2/x17-3). Available at: http://www.math.spbu.ru/diffjournal/pdf/kuznetsov_book2.pdf

[20] Kuznetsov D.F. Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MatLab programs. 5th Ed. [In Russian]. Electronic Journal Differential Equations and Control Processes, no. 2, 2017, 1000 (A.1 - A.1000) pp. (DOI: 10.18720/SPBPU/2/x17-4). Available at: http://www.math.spbu.ru/diffjournal/pdf/kuznetsov_book3.pdf

[21] Dmitriy F. Kuznetsov. Expansion of Multiple Stratonovich Stochastic Integrals of Fifth Multiplicity, Based on Generalized Multiple Fourier Series. arXiv:1802.00643 [math.PR]. 2018, 21 pp. [in English].

[22] Kuznetsov D.F. Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MatLab programs. 2nd Ed. [In Russian]. Polytechnical University Publishing House: St.-Petersburg, 2007, XXXII+770 pp. (DOI: 10.18720/SPBPU/2/s17-229). Available at: http://www.sde-kuznetsov.spb.ru/downloads/2_ed_kuz.pdf

[23] Kuznetsov D.F. Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MatLab programs. 3rd Ed. [In Russian]. Polytechnical University Publishing House: St.-Petersburg, 2009, XXXIV+768 pp. (DOI: 10.18720/SPBPU/2/s17-230). Available at: http://www.sde-kuznetsov.spb.ru/downloads/3_ed_kuz.pdf

[24] Kuznetsov D.F. Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MatLab programs. 4th Ed. [In Russian]. Polytechnical University Publishing House: St.-Petersburg, 2010, XXX+786 pp. (DOI: 10.18720/SPBPU/2/s17-231). Available at: http://www.sde-kuznetsov.spb.ru/downloads/4_ed_kuz.pdf

[25] Dmitriy F. Kuznetsov. Multiple Ito and Stratonovich Stochastic Integrals and Multiple Fourier Series. [In Russian]. Electronic Journal Differerntial Equations and Control Processes, no. 3, 2010, 257 (A.1 - A.257) pp. (DOI: 10.18720/SPBPU/2/z17-7). Available at: http://www.math.spbu.ru/diffjournal/pdf/kuznetsov_book.pdf

[26] Dmitriy F. Kuznetsov. Multiple Ito and Stratonovich Stochastic Integrals and Multiple Fourier Series. [In English]. Polytechnical University Publishing House, St.-Petersburg, 2013, 382 pp. (DOI: 10.18720/SPBPU/2/s17-234). Available at: http://www.sde-kuznetsov.spb.ru/downloads/kuz_2013.pdf

[27] Dmitriy F. Kuznetsov. Expansion of Multiple Ito Stochastic Integrals of Arbitrary Multiplicity, Based on Generalized Multiple Fourier Series, Converging in the Mean. arXiv:1712.09746 [math.PR]. 2017, 22 pp. [in English].

[28] Dmitriy F. Kuznetsov. Exact Calculation of Mean-Square Error of Approximation of Multiple Ito Stochastic integrals for the Method, Based on the Multiple Fourier Series. arXiv:1801.01079 [math.PR]. 2018, 19 pp. [in English].

[29] Dmitriy F. Kuznetsov. Mean-Square Approximation of Multiple Ito and Stratonovich Stochastic Integrals from the Taylor-Ito and Taylor-Stratonovich Expansions, Using Legendre Polynomials. arXiv:1801.00231 [math.PR]. 2017, 26 pp. [in English].

[30] Dmitriy F. Kuznetsov. The Hypothesis About Expansion of Multiple Stratonovich Stochastic Integrals of Arbitrary Multiplicity. arXiv:1801.03195 [math.PR]. 2018, 14 pp. [in English].

[31] Dmitriy F. Kuznetsov. Expansion of Multiple Stratonovich Stochastic Integrals, Based on Generalized Multiple Fourier Series. arXiv:1712.09516 [math.PR]. 2017, 25 pp. [in English].

[32] Dmitriy F. Kuznetsov. Expansion of Multiple Stratonovich Stochastic Integrals, Based on Generalized Multiple Fourier Series, Converging in the Mean: General Case of Series Summation. arXiv:1801.01564 [math.PR]. 2018, 26 pp. [in English].

[33] Dmitriy F. Kuznetsov. Explicit One-Step Strong Numerical Methods of Order 2.5 for Ito Stochastic Differential Equations, Based on the Unified Taylor-Ito and Taylor-Stratonovich Expansions. arXiv:1802.04844 [math.PR]. 2018, 23 pp. [in English].

[34] Dmitriy F. Kuznetsov. Numerical Simulation of 2.5-Set of Multiple Ito Stochastic Integrals of Multiplicities 1 to 5. arXiv:1805.12527 [math.PR]. 2018, 16 pp. [in Russian].
Dmitriy Feliksovich Kuznetsov
Peter the Great Saint-Petersburg Polytechnic University,
Polytechnicheskaya ul., 29,
195251, Saint-Petersburg, Russia
E-mail address: sde_kuznetsov@inbox.ru