Loss of Smell in Allergic Rhinitis and Related Disorders

Joaquim Mullol1,2,3, Cristóbal Langdon1,2,3, Meritxell Valls1,4, Franklin Mariño3,5, Isam Alobid1,2,3, Concepció Marin2,3

1Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic, Universitat de Barcelona. Barcelona, Catalonia, Spain
2Clinical and Experimental Respiratory Immunology,
 Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain
3Center of Biomedical Research in Respiratory Diseases (CIBERES). Barcelona, Catalonia, Spain
4Hospital Son Espases. Palma de Mallorca, Illes Balears, Spain
5Rhinology and Skull Base Surgery Unit, ENT Department, Ramon y Cajal University Hospital. Madrid, Spain

(Received: February 4, 2020. Accepted: February 18, 2020)

Introduction

Although smell disorders have a great impact on patient’s burden and quality of life, they have been scarcely studied in our environment. In recent years, the study of smell has become relevant because several studies have suggested that olfactory dysfunction is a marker of health deterioration and disease severity2,5.

Anosmia and hyposmia are the result of olfactory system dysfunction at different pathway levels. The ability to detect/recognize/identify all odours is named normosmia, while the partial or total loss of smell is named hyposmia or anosmia, respectively. Olfactory detection is related to the most peripheral part of the olfactory system, while the identification and recognition involve cognitive tasks of central structures, such as the orbitofrontal region and other areas of the limbic system1,2.

Etiology

Several epidemiological studies have focused on the prevalence (from 1 to 20%) of olfactory disorders in the general population while investigating the influence of certain factors on olfactory function. Mullol et al. carried out the OLFACAT survey in the population of Catalonia3. By means of epidemiological and health-status questionnaires and 4-odorant olfactory assessment, they found a general prevalence of olfactory dysfunction of 19.4% (19.1% of hyposmia and 0.3% of anosmia).

Several etiological factors1-7 of olfactory disorders have been described such as common cold or acute rhinosinusitis6, posttraumatic hyposmia7, and inflammatory sinonasal diseases such as allergic rhinitis1-8 and chronic rhinosinusitis, with or without nasal polyps9-10. Among others, neurodegenerative disorders such as Alzheimer and Parkinson diseases11 also produce smell dysfunction.

Diagnosis

A differential diagnosis among the most frequent causes of loss of smell should be done in most of the patients12 by using four steps in the diagnosis (Figure 1). In addition to the identification of loss of smell as a symptom by discontinuous or continuous (visual analogue scale or VAS) scales, several screening and smell identification tests have been validated in different countries worldwide. As a summary the following are briefly described:

1. Smell Identification Tests in Adults
 - University of Pennsylvania Smell Identification Test (UPSIT): 40 odorants (US)13.
 - Connecticut Chemosensory Clinical Research Center (CCCRC): 8 odorants (US)14.
 - Smell Diskettes: 8 odorants (Switzerland)15.
1. Sniffin’ Sticks: 16 odorants (Germany)
2. Barcelona Smell Test-24 (BAST-24): 24 odorants, includes gustometry (Catalonia, Spain)

2. Smell Identification Tests in Children
 - Sniffin’ kids: 14 odorants, derived from Sniffin’ Sticks (Germany)
 - Smell Wheel: 11 odorants (US)
 - U-Sniff test: 12 odorants (universal, 19 countries worldwide including Japan, US, and Spain)
 - Paediatric Barcelona Olfactory Test (pBOT-6): 6 odorants, includes gustometry (Catalonia, Spain)

3. Screening Smell Tests
 - 12-item Cross-Cultural Smell Identification Test (CC-SIT): 12 odorants, derived from the UPSIT (US).
 - Pocket Smell test: 3 odorants, derived from the UPSIT (US).
 - Japanese Odor Stick Identification Test: 13 odorants (Japan).
 - Scandinavian Odor Identification Test (SOIT): 16 odorants (Sweden).

Treatment

Improvement on the loss of smell can only be obtained...
by treating the causative disease. In allergic rhinitis, anti-
histamines, intranasal corticosteroids, and MP-AzeFlu (the
intranasal formulation of fluticasone propionate and azelastine)
have shown improvement on the loss of smell. In chronic
rhinosinusitis several treatments such as antileukotrienes,
aspirin desensitization, and initial endoscopic sinus surgeries
have proven some efficacy. Intranasal corticosteroids, short
courses of oral steroids and, more recently, biological therapy
such as Dupilumab have proved a stronger and more main-
tained effect on the sense of smell. The loss of smell and its
improvement have been recently adapted by an EUFOREA
(Education, Innovation and Research in Allergy and Airway
Diseases) international consensus as a criteria for both the
indication of biologics and its response to treatment in severe
chronic rhinosinusitis. In addition, olfactory training has also
proved efficacy on improving loss of smell from postviral
and post-traumatic origin.

Conclusions and Key Messages

- The sense of smell subsides with age in both genders, im-
 pairong good nutrition and often producing considerable
disability with poor quality of life.
- Smell dysfunction is a challenging condition of significant
prevalence that has a major impact on individual’s safety
and QoL.
- Smell loss related to upper airway inflammatory diseases
(allergic rhinitis and acute or chronic rhinosinusitis, with
or without nasal polyps) are the most common causes of
gradual/progressive olfactory dysfunction. This loss of
smell is always correlated to the disease severity and can
be used as a clinical marker of severity.
- Loss of smell must be systematically assessed with a com-
 plete medical history and nasal examination, including
smell testing, to find out the original cause and then offer
to the patient the best available treatment.
- Validated olfactory tests are useful tools to objectify the
olfactory loss and to quantify its degree of severity.
- Management of olfactory dysfunction is mainly based on
diagnosing and treating the cause, upper airway inflam-
matory diseases being among the most successfully treated
forms of smell loss by using anti-inflammatory drugs
(antihistamines, antileukotrienes, aspirin desensitization,
corticosteroids, and biological therapies in the most severe
cases) or even initial surgery.
- Patient’s education, prevention, and olfactory training are
also strongly recommended in all causes of olfactory dys-
function.

References

1) Enríquez K, Lehrer E, Mullol J: The optimal evalu-
 ation and management of patients with gradual onset
of olfactory loss. Curr Opin Otolaryngol Head Neck
Surg 2014 ; 22(1) : 34–41.
2) Hummel T, Whitcroft K, Andrews P, et al : Position
paper on olfactory dysfunction. Rhinology 2017 ;
54(Suppl 26) : 1–30.
3) Mullol J, Alobid I, Mariño-Sánchez F, et al : Further-
ing the understanding of olfaction, prevalence of loss of smell and risk factors: A population-
based survey (OLFACAT study). BMJ Open 2012 ;
2(6) : e001256.
4) Jaume F, Quintó L, Alobid I, et al : Overuse of
diagnostic tools and medications in acute rhinos-
inusitis in Spain: A population-based study (the
PROSINUS study). BMJ Open 2018 ; 8(1) : e018788.
5) Langdon C, Alobid I, Quinto L, et al : Self-perception
of olfactory dysfunction is associated with history of Traumatic Brain Injury: Post-hoc
analysis from the OLFACAT survey. Rhinology
2019 ; 57(6) : 460–468.
6) Guilemany JM, García-Piñero A, Alobid I, et al : Per-
sistent allergic rhinitis has a moderate impact
on the sense of smell, depending on both nasal
congestion and inflammation. Laryngoscope 2009 ;
119(2) : 233–238.
7) Stuck BA, Hummel T: Olfaction in allergic rhinitis:
A systematic review. J Allergy Clin Immunol 2015 ;
136(6) : 1460–1470.
8) Langdon C, Guilemany JM, Valls M, et al : Allergic
rhinitis causes loss of smell in children: The
OLFAPEDRICAL study. Pediatr Allergy Immunol
2016 ; 27(8) : 867–870.
9) Mariño-Sanchez F, Valls-Mateus M, Haag O, et al :
Smell loss is associated with severe and uncontrolled
disease in children and adolescents with persistent
allergic rhinitis. J Allergy Clin Immunol Pract 2018 ;
6(5) : 1752–5.e3.
10) Guilemany JM, Mariño-Sánchez FS, Angrill J, et al :
The importance of smell in patients with bronchi-
ectasis. Respir Med 2011 ; 105(1) : 44–49.
11) Mullol J, del Cuvillo A, Lockey R: Rhinitis phenotypes. J Allergy Clin Immunol Pract 2020 [Epub ahead of print].
12) Mullol J, Mariño-Sánchez F, Valls M, et al: The sense of smell in chronic rhinosinusitis. J Allergy Clin Immunol 2020; 145: 773–776.
13) Marin C, Vilas D, Langdon C, et al: Olfactory dysfunction in neurodegenerative diseases. Curr Allergy Asthma Rep 2018; 18(8): 42.
14) Obando A, Aloibid I, Gastón F, et al: Should postviral anosmia be further investigated? Allergy 2009; 64(10): 1556–1557.
15) Doty RL, Shaman P, Dann M: Development of the University of Pennsylvania Smell Identification test: A standardized microencapsulated test of olfactory function. Physiol Behav 1984; 32: 489–502.
16) Cain WS, Gent J, Catalanotto FA, et al: Clinical evaluation of olfaction. Am J Otolaryngol 1983; 4(4): 252–256.
17) Briner HR, Simmen D: Smell diskettes as screening test of olfaction. Rhinology 1999; 37: 143–148.
18) Kobal G, Hummel T, Sekinger B, et al: “Sniffin’ sticks”: Screening of olfactory performance. Rhinology 1996; 34: 222–226.
19) Cardesin A, Aloibid I, Benítez P, et al: Barcelona Smell Test-24 (BAST-24): Validation and smell characteristics in the healthy Spanish population. Rhinology 2006; 44: 83–89.
20) Schriefer VA, Mori E, Petters W, et al: The “Sniffin’ Kids” test - a 14-item odor identification test for children. PLoS One 2014; 9: e101086.
21) Cameron EL, Doty RL: Odor identification testing in children and young adults using the smell wheel. Int J Pediatr Otorhinolaryngol 2013; 77: 346–350.
22) Schriefer VA, Agosin E, Altundag A, et al: Development of an International Odor Identification Test for Children: The Universal Sniff Test. J Pediatr 2018; 198: 265–272.
23) Mariño-Sánchez F, Valls-Mateus M, Fragola C, et al: Paediatric Barcelona Olfactory Test-6 (pBOT-6): Validation of a Combined Oudor Identification and Threshold Screening Test in Healthy Spanish Children and Adolescents. J Investig Allergol Clin Immunol 2020 [Epub ahead of print].
24) Doty RL, Marcus A, Lee WW: Development of the 12-item Cross-Cultural Smell Identification Test (CC-SIT). Laryngoscope 1996; 106: 353–356.
25) Solomon GS, Petrie WM, Hart JR, et al: Olfactory dysfunction discriminates Alzheimer’s dementia from major depression. J Neuropsychiatry Clin Neurosci 1998; 10: 64–67.
26) Hashimoto Y, Fukazawa K, Fujii M, et al: Usefulness of the odor stick identification test for Japanese patients with olfactory dysfunction. Chem Senses 2004; 29: 565–571.
27) Nordin S, Bränersson A, Lidén E, et al: The Scandinavian Odor-Identification Test: Development, reliability, validity and normative data. Acta Otolaryngol 1998; 118: 226–234.
28) Guilemany JM, García-Piñero A, Aloibid I, et al: The loss of smell in persistent allergic rhinitis is improved by levocetirizine due to reduction of nasal inflammation but not nasal congestion (the CIRANO study). Int Arch Allergy Immunol 2012; 158(2): 184–190.
29) Klimmek L, Poletti SC, Sperl A, et al: Olfaction in patients with allergic rhinitis: An indicator of successful MP-AzeFlu therapy. Int Forum Allergy Rhinol 2017; 7(3): 287–292.
30) Haxel BR: Recovery of olfaction after sinus surgery for chronic rhinosinusitis: A review. Laryngoscope 2019; 129(5): 1053–1059.
31) Aloibid I, Benítez P, Cardelús S, et al: Oral plus nasal corticosteroids improve smell, nasal congestion, and inflammation in sinonasal polyposis. Laryngoscope 2014; 124(1): 50–56.
32) Bachert C, Han JK, Desrosiers M, et al: Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): Results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 2019; 394(10209): 1638–1650.
33) Fokkens WJ, Lund V, Bachert C, et al: EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy 2019; 74(12): 2312–2319.
34) Langdon C, Lehrer E, Berenguier J, et al: Olfactory training in post-traumatic smell impairment: Mild improvement in threshold performances: Results from a randomized controlled trial. J Neurotrauma
35) Marin C, Laxe S, Langdon C, et al: Olfactory training prevents olfactory dysfunction induced by bulbar excitotoxic lesions: Role of neurogenesis and dopaminergic interneurons. Mol Neurobiol 2018; 35(22): 2641–2652.

36) Fokkens W, Lund V, Hopkins C, et al: EPOS2020: European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 2020; 58(Suppl S29): 1–464.