Age and diabetes control in an HIV-endemic country: is there an association?

RR Chetty* and S Pillayb,c*

aAddington Hospital, Durban, South Africa
bDepartment of Internal Medicine, King Edward VIII Hospital, Durban, South Africa
cDepartment of Internal Medicine, NRMSCM University of KwaZulu-Natal (UKZN), Durban, South Africa
*Correspondence: drspillay@iafrica.com; rushern.r.chetty@gmail.com

Keywords: age, diabetes mellitus, glycaemic control, HbA1c, HIV

Introduction

Globally, 79% of adult patients living with diabetes mellitus (PLWD) are from low- and middle-income countries (LMIC), with approximately 1 in 5 of these PLWD being older than 65 years.1 In 2019, there were approximately 463 million PLWD and 4.2 million deaths that were related to diabetes mellitus (DM).2 These numbers are expected to rise to 700 million by 2045.3 In South Africa (SA), a country classified as a LMIC, the prevalence of DM is 12.80%.4 SA also has the highest prevalence of HIV infection globally (13%).5 Results from both developed and developing countries suggest that younger age is associated with poorer glycaemic control.6-8 This finding was contrasted by Roerink et al., who determined that older PLWD had poorer glycaemic control in a study conducted in the Netherlands,9 while Zuniga et al. found that there were no statistically significant differences in HbA1c values between older and younger adults.10 Additionally, a South African study showed that PLWD who were HIV-infected (PLWDH) were younger and had a lower mean HbA1c level.6 This 2018 study by Khosa et al., conducted at the Chris Hani Baragwanath Academic Hospital DM Clinic, Soweto, SA, described ‘The effect of HIV infection on glycaemia and renal function in type 2 diabetic patients’.6 In another South African study, Werfalli et al. determined that older PLWD have a poorer quality of life and greater disability.9 This is likely attributed to older PLWD being at increased risk of both acute and chronic microvascular and cardiovascular complications related to the disease.10

With the effective rollout of antiretroviral treatment (ART), HIV-infected patients can be expected to have a normal lifespan.11 Kalra et al. highlighted the association between age and an HIV infection in PLWD and mentioned that DM can develop as a result of the normal course of ageing, metabolic factors related to the HIV-infection or due to ART.12 As these patients can now live to an older age with co-morbidities, strategies need to be implemented to provide effective care to patients as they age.

Chetty et al. conducted a scoping review in 2021 describing the relationship between ‘age’ and ‘glycaemic control’ in PLWD in the context of HIV infection. Results of this scoping review demonstrated that data varied significantly on the associations between glycaemic control and age in PLWD.13 They recommended that additional studies be conducted in LMIC countries where there is a high prevalence of coexistent HIV and DM.13

Methods

A retrospective, analytical cohort study was performed using data collected from patients who attend a specialised diabetes clinic at Edendale Hospital (EDH), Pietermaritzburg, KwaZulu-Natal. Clinicians used a standardised, comprehensive clinic sheet for all patients consulted in this clinic, which has been approved by the University of KwaZulu-Natal Biomedical...
Research and Ethics Committee (BREC)—BCA 194/15. The data for this study included patients of all ages who attended the diabetes clinic at EDH between January 1, 2019 and December 31, 2019.

Patient demographics, age, mean HbA1c, random blood glucose, HIV status and type of DM were recorded in additional to other variables from the datasheet. Missing or incomplete or incorrectly completed data were not considered.

Age was divided into the following groups: 13–17 years; 18–30 years; 31–45 years; 46–60 years; 61–75 years and ≥ 76 years old.

Good glycaemic control was defined as a glycated haemoglobin (HbA1c) value ≤ 7% while poor glycaemic control was defined as HbA1c > 7%. The Bio-Rad D-10 machine (Bio-Rad, Hercules, CA, USA) was used for analysing the HbA1c values at the laboratory. Both the laboratory and the machines are NGSP (National Glycohemoglobin Standardization Program) accredited to maintain standardisation of HbA1c results while the random glucose measurement (mmol/L) was determined using an Accu-Chek® glucometer (Roche, Basel, Switzerland).

Statistical analysis
Statistical analysis was conducted with numerical data using analysis of variance (ANOVA) whilst categorical data relationships were determined using either chi-square or Fisher’s exact tests. A p-value < 0.05 was used as indicator of significance. Data were analysed by Statistical Package for Social Science (SPSS) version 25 for Windows (IBM Corp, Armonk, NY, USA).

Results
Epidemiology
Data of 957 PLWD were used for this study: T2DM (822, 86.20%) and T1DM (132, 13.80%) with 3 unknown. Approximately one-sixth of the cohort had an HIV infection (146, 15.30%). Of this HIV-infected cohort with DM, 84 (57.50%) were on a fixed-dose combination (FDC) of ART, while the other patients were either not yet initiated or were on alternative ART regimens. The majority of patients were between 46 and 60 years in both the PLWD and the PLWDH cohorts (see Table 1).

Age and HbA1c
The mean HbA1c had a weak negative correlation with age (R = -0.108; p = 0.001) (Figure 1). There was a statistically significant difference noted between the mean HbA1c value in the 13–17 years category compared with the ≥ 76 year category (10.36 vs 9.12, respectively, p = 0.04). All patients in the youngest and oldest age categories were HIV-uninfected. In addition to this, a statistically significant difference in HbA1c was observed between the 46–60-year and the 61–75-year age categories (9.73 vs. 9.16, respectively, p = 0.002). After adjusting for GFR, there was a stronger inverse correlation noted between age and HbA1c (r = −0.141, p < 0.001) while HIV-infected patients had lower mean HbA1c levels than their HIV-uninfected counterparts. This association was highlighted in the 46–60-year age category (9.08 vs. 9.90, respectively, p = 0.004). There were significant differences noted in the mean HbA1c values between the age groups when considering all the patients together (p = 0.024), within the HIV-uninfected group only (p = 0.026), and within the HIV-infected group only (p = 0.039) (see Table 1).

Type of diabetes
There were significantly more patients with T2DM vs. T1DM (822 vs. 132, respectively, p < 0.001). Patients living with type 2 diabetes mellitus (PLWT2DM) were significantly older than PLWT1DM (p < 0.001).

In PLWT1DM, younger patients had poorer glycaemic control (HbA1c > 7.00%); however, this was not statistically significant (28.85 years vs. 34.54 years, respectively, p = 0.07). The mean age was also non-significant in PLWT2DM between those with good vs. poor glycaemic control (57.50 years vs. 57.41 years, respectively, p = 0.942). The poorer glycaemic control in PLWT1DM compared with PLWT2DM across the age categories is illustrated in Figure 2.

HIV infection
A comparison between mean HbA1c > 7.00% vs. HbA1c ≤ 7.00% cohorts in PLWDH revealed that higher mean HbA1c values were associated with younger patients (47.38 years vs. 52.77 years, respectively, p = 0.013). In those without an HIV infection, there was no statistically significant difference between age and glycaemic control. PLWDH were younger than PLWD without an HIV infection in the cohort with HbA1c > 7.00% (47.38 years vs. 54.18 years, respectively, p < 0.001). Those with lower cluster of differentiation (CD4) counts were typically younger patients; however, this was not significant (p = 0.075). The poorer glycaemic control in older HIV-uninfected PLWD is highlighted in Figure 3.

Duration of DM
Overall, PLWD with good glycaemic control had a shorter duration of DM compared with those with sub-optimal control (7.24 years vs. 10.68 years, respectively, p < 0.001).

Age categories (years)	All patients	HIV-uninfected	HIV-infected	p-values (HIV-uninfected vs. infected)				
	Count	Mean HbA1c (%) (±SD)						
13–17	15	10.36 (1.90)	15	10.36 (1.90)	0	–	–	–
18–30	81	10.02 (2.24)	75	9.97 (2.27)	6	10.60 (1.93)	0.511	–
31–45	167	9.46 (2.19)	120	9.49 (2.17)	47	9.38 (2.28)	0.772	–
46–60	369	9.73 (2.22)	291	9.90 (2.18)	78	9.08 (2.25)	0.004	–
61–75	273	9.16 (2.30)	258	9.24 (2.30)	15	7.97 (1.87)	0.037	–
≥ 76	52	9.12 (2.04)	52	9.12 (2.04)	0	–	–	–
p-values	0.024	0.026	0.039	–	–	–	–	–
A significant finding was also observed in the HIV-uninfected group (7.07 years vs. 11.30 years, respectively, \(p < 0.001 \)). However, this did not occur in the HIV-infected group (7.92 years vs. 7.00 years, respectively, \(p = 0.513 \)). In addition to this, those with poor glycaemic control had a significantly longer duration of DM if they were HIV-uninfected (11.30 years vs. 7.00 years, respectively, \(p < 0.001 \)) (see Table 2).

Blood pressure

PLWD with elevated blood pressure (systolic blood pressure [SBP] \(\geq 140 \) mmHg) were significantly older than those with SBP < 140 mmHg (58.27 years vs. 50.25 years, respectively, \(p < 0.001 \)). This finding was present in both the HIV-infected and HIV-uninfected patients \((p < 0.001) \). HIV-uninfected patients with SBP \(\geq 140 \) mmHg were significantly older than HIV-infected patients (59.08 years vs. 52.33 years, respectively, \(p = 0.001 \)).

Patients with elevated diastolic blood pressure (DBP) \(\geq 90 \) mmHg were significantly older than those with DBP < 90 mmHg (50.36 years vs. 54.26 years, respectively, \(p = 0.002 \)). There was no significance noted in patients with DBP \(\geq 90 \) mmHg between the HIV-infected and HIV-uninfected cohorts \((p = 0.457) \). Older patients had a significant positive correlation with mean SBP \((r = 0.298, p < 0.001) \) while this association was not present with DBP \((p > 0.05) \) (see Table 3 and Figure 4). Patients with hypertension were significantly older than those without \((p < 0.001) \). Furthermore, those patients with GFR < 60 ml/minute were significantly older than those with GFR \(\geq 60 \) ml/minute in both the hypertensive and non-hypertensive groups \((p < 0.001 \) vs. \(p = 0.015 \), respectively) (see Table 4).

Dyslipidaemia

Elevated triglycerides levels \(\geq 1.7 \) mmol/l were associated with older age (55.72 years vs. 51.91 years, respectively, \(p < 0.001 \)). Decreased high-density lipoproteins (HDL cholesterol) levels in males were also significantly associated with older age (52.64 years vs. 47.78 years, respectively, \(p = 0.032 \)) (see Table 5).

Gender

There were no statistically significant differences documented between mean HbA1C and gender in the different age categories.

Family history of DM (FHD)

Patients with a positive FHD and poor glycaemic control were significantly younger than those with good glycaemic control (51.57 years vs. 55.58 years, respectively, \(p = 0.045 \)). Furthermore, PLWD with HbA1c \(\leq 7\% \) were usually younger if a positive FHD was present (51.57 years vs. 55.14 years, respectively, \(p = 0.002 \)) (Table 6).

Renal involvement

Patients with elevated creatinine \(\geq 104 \) umol/l were significantly older than those with levels < 104 umol/l (62.01 years vs. 49.91 years, respectively, \(p < 0.001 \)). This association occurred in both PLWDH as well as in the HIV-uninfected patients \((p < 0.001) \) (see Table 7). Glomerular filtration rate (GFR) declined with age. Those with a GFR < 60 ml/minute were significantly older than those with GFR \(\geq 60 \) ml/minute (62.59 years vs. 48.30 years, respectively, \(p < 0.001 \)) (Table 8). When factoring in for co-morbidities, PLWD with co-morbid hypertension and an HIV infection had a significantly lower age than PLWD without hypertension or an HIV infection (45.10 years vs. 54.02 years, respectively, \(p = 0.013 \)).
Body mass index (BMI)
Patients with a BMI ≥ 30 kg/m² were typically older than those who had a BMI < 30 kg/m² (55.92 years vs. 48.12 years, respectively, p < 0.001). This association of increased BMI and older age was also seen in the HIV-uninfected patients (57.17 years vs. 48.08 years, respectively, p < 0.001) but did not occur in HIV-infected patients (p = 0.775) (see Table 9). There was a significant positive correlation noted between age and BMI in PLWD (r = 0.246, p < 0.001) (see Figure 5).

Discussion
Globally, results of studies have varied with regard to the relationship between age and glycaemic control. Results from both developed and developing countries suggest that younger age is associated with poorer glycaemic control.4,5 This finding was contrasted by Roerink et al. (Netherlands study) who determined that older PLWDH had poorer glycaemic control6 while Zuninga et al. found that there were no statistically significant differences in HbA1c between older and younger adults.7 In contrast to these, an Iraqi study found that younger patients were associated with poorer glycaemic control.15 Our study yielded results that were similar to this Iraqi study. A South African study conducted by Khoza et al. showed that PLWDH were younger and had a lower mean HbA1c level.8 Renal impairment decreases the clearance of insulin, thereby prolonging the half-life of the circulating insulin, resulting in decreased insulin requirements in PLWD.16 After adjusting for GFR, older patients still had improved glycaemic control, becoming more significant after the adjustment. We postulate that older patients, who often have other co-morbidities, might be more compliant with therapy and with clinic dates. Results of our study illustrate that we need to target improved glycaemic control in younger PLWD in order to prevent long-term complications.
The reason for younger patients with poorer glycaemic control is multi-factorial. Teenagers and younger adult patients often have T1DM where there is an absolute insulin deficiency. Lack of adherence to insulin in PLWT1DM is frequent with estimates of adherence issues occurring in 23–77% of patients with higher values predicted in LMIC. Riaz et al. listed factors associated with non-adherence including: the educational level of the patients’ parents, frequency of visiting DM clinics, knowledge regarding DM, lack of family support and the fear of hypoglycaemia. Fu et al. suggested that non-adherence often resulted from a fear of needles or injections in patients while Patton described how PLWT1DM have issues relating to their diets, which is a cause of poor glycaemic control. It is thus essential to have good support with managing DM especially in the early stages of the disease, as failure to adequately manage this condition can lead to poorer glycaemic control and resultant complications. In older patients, there is improved glycaemic control compared with younger patients; however, glycaemic control is still not always optimal. In our study the older working group (46–60-year-olds) had poorer glycaemia than the retirement group (61–75-year-olds). We postulate that this is due to having poor eating patterns and consumption of unhealthy foods in the work environment. Work has been identified as a factor that leads to non-adherence due to a busy schedule. Other factors that relate to poorer adherence include patient-related factors (e.g. forgetfulness or intentionally not taking medication) or drug-related factors (cost of medication or side effects). A South African study determined the cost of eating healthier foods was between 30% and 110% more expensive (on average 69% or more) than eating a non-healthy diet. This would favour the purchase of non-healthy food which has adverse effects on glycaemic control and health in general. This highlights the social challenges faced in managing DM (and other medical conditions) in all ages, especially in a LMIC.

Our study demonstrated that there was an increased prevalence of renal complications (defined by significantly increased creatinine and lower GFR levels) in older patients. In a developing country (such as SA), limited resources result in fewer patients having access to these scarce life-saving treatment modalities. In 2017, the incidence of initiation of renal replacement therapy (RRT) in SA was 25 per million population (pmp), which was significantly lower than countries with greater resources such as the United States of America (370 pmp) or the United Kingdom (121 pmp). Furthermore, Maphumulo and Bhengu described how the long waiting times for medical intervention in SA may lead to patients developing complications or succumbing to the disease process as a result of not receiving timely intervention. These findings emphasise the need for early implementation of effective management strategies in the younger PLWD to prevent or retard disease progression in order to decrease the burden on limited resources and treatment modalities.

It is well established that there is an association between hypertension and cardiovascular disease (CVD), commonly resulting in increased mortality. PLWD have a 200–400% risk of dying from CVD while some estimate that it can be as high as 10 times the risk of the general population. In patients with
hypertension and DM, the CVD risk increases by a further 75%. In our study, systolic hypertension was positively associated with age. This is similar to what has been shown in other studies globally. An American study conducted by Ostchega et al. highlighted the increased prevalence of hypertension with age. In contrast to this, our study found that the mean age of patients with increased DBP ≥ 90 mmHg was younger than those with a DBP < 90 mmHg. According to Li et al., DBP is an important risk factor for coronary disease in younger patients. It has also been shown to be a risk factor for formation of an abdominal aortic aneurysm. Clinicians should be aware of this risk factor and pay special attention to diastolic blood pressures just as much in the younger PLWD as they do for older patients. In SA, Steyn et al. highlighted that the care of patients with DM and hypertension is suboptimal. Strained healthcare systems are a major challenge, especially in Africa, with only 2% of patients having good control of hypertension. It is therefore important to implement effective early interventions to manage non-communicable diseases such as DM and HPT, especially when they coexist.

Our study also demonstrated that elevated triglycerides and lower HDL values (in males) were present in older patients in the overall patient population. This is commonly found in T2DM and is associated with insulin resistance, obesity and metabolic syndrome phenotype. This is worrying as it increases the risk of developing cardiovascular disease and increases the risk of all-cause mortality. Feingold found that approximately 60–70% of patients in the general population with obesity have dyslipidaemia. Bekele et al. assessed this association of obesity and dyslipidaemia in PLWD and determined a similar finding. In our study we found that older age is associated with increasing BMI. We postulate that the dyslipidaemia in older patients could be attributed to the increasing BMI values rather than due to glycaemic control.

As expected, we found that poorly controlled HbA1c was associated with a longer duration of DM. Mamo et al. also found that a duration of DM greater than seven years led to poorer glycaemic control. This is likely due to progressive damage to insulin β-cell secretion with time and an increase in insulin resistance. Worsening glycaemic control with increased duration of DM plus advancing age increases the risk of cardiovascular morbidity and mortality. In our study, younger patients had significantly higher mean HbA1c levels than their older counterparts. Ramanathan highlighted that a long duration of DM with poor glycaemic control increases the microvascular complications of DM. Petitti et al. recommended that poorly controlled glycaemia in younger patients warrants an urgent need for effective strategies to improve the metabolic status of patients. This was confirmed by Toh et al., who found that younger patients had poorer glycaemic control than older patients and should receive targeted interventions to achieve ‘optimal’ glycaemic control.

The combination of HIV infection and DM remains a major concern for LMIC. We showed that those with an HIV infection were younger than their HIV-uninfected counterparts, implying longer future disease duration. Our study found that the younger PLWDH had poorer glycaemic control. This, coupled with increased disease duration secondary to young age and availability of ART, increases the risk of development of diabetes-related complications. Overall, HbA1c was lower in HIV-infected patients when compared with PLWD without an HIV infection. Our results contrasted that of a study conducted in the Netherlands, which found that PLWDH had higher glucose levels and were older. This is a significant finding in our study and we postulate that this improved glycaemic control in HIV-infected patients could be attributed to either the quality of a specialised diabetes clinic that offers co-monitoring of the HIV infection and DM or could be a result of HIV-infected patients being more compliant with their medication, resulting in them taking both their ART and DM medication.

Within the PLWDH cohort, renal disease occurred at a younger age. Although no histological diagnosis of HIV-associated nephropathy (HIVAN) was obtained in these patients, we suspect that this could be a result of an HIV infection as all patients in the cohort were PLWD. This is important, as the development of renal disease at a younger age will result in more patients requiring renal replacement therapy, placing an increasing burden on the state and its limited resources.

In addition to this, those with elevated blood pressures were younger among HIV-infected patients compared with HIV-uninfected patients. A study conducted by Olaiya et al. found out that younger patients with undiagnosed and untreated hypertension had a longer duration of disease, during which they developed complications from hypertension. This suggests that, regardless of the co-morbidity, undiagnosed and

Table 8: Association between GFR and age

Factor (ml/minute)	Count	Mean age in years (±SD)
GFR ≥ 60	500	48.30 (14.42)
GFR < 60	329	62.59 (11.14)

Table 9: Association between obesity and age in the context of an HIV infection

Factor	All patients	HIV-uninfected	HIV-infected				
	Count	Mean age in years (±SD)	Count	Mean age in years (±SD)	Count	Mean age in years (±SD)	p-values (HIV-uninfected vs. infected)
BMI (kg/m²)							
< 30	343	48.12 (17.21)	280	48.08 (18.39)	63	48.29 (10.63)	0.930
≥ 30	532	55.92 (13.57)	461	57.17 (13.80)	71	47.82 (8.35)	< 0.001
p-values	<0.001		<0.001		0.775		
untreated disease in youth can have complications later in life. This emphasises the challenges that arise when HIV infection and non-communicable diseases interact.

Limitations
- Not all patients had all results filled in on their datasheets.
- As this was a retrospective study, no causal relationships could be determined; rather, associations were defined.

Conclusion
Younger PLWD have poorer glycaemic control and are likely to develop diabetes-related complications later in life. Notably, younger PLWDH also had poorer glycaemic control, which places them at increased risk from sequelae of both HIV and DM. This study has served to highlight that more emphasis in places them at increased risk from sequelae of both HIV and non-communicable diseases interact.

Acknowledgements – Mr D. Singh is thanked for his help in generating statistical analyses for the study. Sister Lunghi Ndaba and her nursing team at the Edendale Hospital diabetes clinic are also thanked.

Disclosure statement – No potential conflict of interest was reported by the authors.

Funding – The author(s) reported there is no funding associated with the work featured in this article.

ORCID
Rr Chetty http://orcid.org/0000-0001-5822-0872
S Pillay http://orcid.org/0000-0002-5604-645X

References
1. International Diabetes Federation. About diabetes. [cited 2021 January 25]. Available from: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.
2. International Diabetes Federation. IDF Africa members [cited 2021 April 19]. Available from: https://idf.org/our-network/regions-members/africa/members/25-south-africa.html.
3. Statistics South Africa. (2020). Mid-year population estimates [cited 2021 January 26]. Available from: http://www.statssa.gov.za/?p=13453.
4. Quah JHM, Liu PY, Luo N, et al. Younger adult type 2 diabetic patients have poorer glycaemic control: a cross-sectional study in a primary care setting in Singapore. BMC Endocr Disord. 2013;13:18. Available from: http://www.biomedcentral.com/1472-6823/13/18.
5. Unnikrishnan R, Anjana RM, Deepa M, et al. Glycemic control among individuals with self-reported diabetes in India—the ICMR-INDIAB Study. Diabetes Technol Ther. 2014;16(9):596–603. https://doi.org/10.1089/dia.2014.0018.
6. Roerink ME, Meijering R, Bosch M, et al. Diabetes in patients with HIV: patient characteristics, management and screening. Neth J Med. 2015;73:7.
7. Zuniga JA, Garcia AA, Lee J, et al. Retention In care In aging adults with a dual diagnosis of HIV infection and type 2 diabetes mellitus: a longitudinal retrospective cross-sectional study. AIDS Res Ther. 2020;17:29. https://doi.org/10.1186/s12981-020-00286-.
8. Khoza SP, Crowther NJ, Bhana S. The effect of HIV infection on glycemia and renal function in type 2 diabetic patients. PLoS ONE. 2018;13(6):e0199946. https://doi.org/10.1371/journal.pone.0199946.
9. Werfalli M, Kassanjee R, Kalula S, et al. Diabetes in South African older adults: prevalence and impact on quality of life and functional disability – as assessed using SAGE Wave 1 data. Glob Health Action. 2018;11(1):1449924. https://doi.org/10.1086/1549716.2018.1449924.
10. Kirkman MS, Briscoe VJ, Clark N, et al. Diabetes in older adults. Diabetes Care. 2012;35(2):260–64.
11. AIDSmap.com. Life expectancy for people living with HIV [cited 2021 April 25]. Available from: https://www.aidsmap.com/about-hiv/life-expectancy-people-living-hiv.
12. Kalra S, Kalra B, Agrawal N, et al. Understanding diabetes in patients with HIV/AIDS. Diabetol Metab Syndr. 2011;3(2). https://doi.org/10.1186/1758-5996-3-2.
13. Chetty RR, Pillay S. The relationship between age and glycaemic control in patients living with diabetes mellitus in the context of HIV infection: a scoping review. JEMDSA. 2021;22:1–7. https://doi.org/10.1080/18089677.2021.1945767.
14. SEMDSA 2017 Guidelines for the management of Type 2 diabetes mellitus SEMDSA Type 2 diabetes guidelines expert committee. JEMDSA. 2017;22(1):Supplement 1):S1–S196.
15. Mansour AA, Alibrahim NTY, Alidrisi HA, et al. Prevalence and correlation of glycemic control achievement in patients with type 2 diabetes in Iraq: a retrospective analysis of a tertiary care database over a 9-year period. Diabetes Metab Syndr. 2020;14(3):265–72.
16. Rabkin R, Ryan MP, Duckworth WC. The renal metabolism of insulin. Diabetologia. 1984;27(3):351–7. https://doi.org/10.1007/BF00304849. PMID: 6389240.
17. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009;32(Suppl 1):S562–67. https://doi.org/10.2337/dc09-S062.
18. Almeda-Valdes P, Palacio Riofrío J, Coronado Z, et al. Factors associated with insulin nonadherence in Type 1 diabetes mellitus patients in Mexico. Int J Diabetess Metab. 2015;73:7. https://doi.org/10.1159/000502903.
19. Riaz M, Basit A, Fawwad A, et al. Factors associated with non-adherence to insulin in patients with type 1 diabetes. Pak J Med Sci. 2014;30(2):233–39.
20. Fu Z, Qiu Y, Radican L. Impact of fear of insulin or fear of injection on treatment outcomes of patients with diabetes. Curr Med Res Opin. 2009;25(6):1413–20. https://doi.org/10.1185/03007990902905724.
21. Patton SR. Adherence to diet in youth with type 1 diabetes. J Am Diet Assoc. 2011;111(4):550–55. https://doi.org/10.1016/j.jada.2011.01.016.
22. Gelaw BK, Mohammed A, Tegegne GT, et al. Nonadherence and contributing factors among ambulatory patients with antidiabetic medications in Addis Adama Referral Hospital. J Diabetes Res. 2014. https://doi.org/10.1155/2014/617041.
23. Human Sciences Research Council. Cost of a healthy diet most South Africans cannot afford to eat well. [cited 2021 June 16]. Available from: http://www.hsrc.ac.za/en/review/March-2011/cost-of-healthy-diet.
24. Jardine T, Wong E, Steenkamp R, et al. Survival of South African patients on renal replacement therapy. Clin Kidney J. 2020;13(5):782–90. https://doi.org/10.1093/ckj/sfaa012.
25. Maphumulo WT, Bhengu BR. Challenges of quality improvement in the healthcare of South Africa post-apartheid: a critical review. Curationis. 2019;42(1):1–9. Published 2019 May 29. https://doi.org/10.4102/curationis.v42i1.1901.

26. Hanratty R, Chonchol M, Havranek EP, et al. Relationship between blood pressure and incident chronic kidney disease in hypertensive patients. Clin J Am Soc Nephrol. 2011;6(11):2605–611. https://doi.org/10.2215/CJN.02250311.

27. Ronnback M, Isomaa B, Fagerudd J, et al. Complex relationship between blood pressure and mortality in type 2 diabetic patients. Hypertension. 2006;47:168–73.

28. Hartz JC, de Ferranti S, Gidding S. Hypertriglyceridemia in diabetes mellitus: implications for pediatric care. J Endocr Soc. 2018;2(6):497–512. Published 2018 May 1. https://doi.org/10.1210/js.2018-00079.

29. Govindarajan G, Sowers JR, Stump CS. Hypertension and diabetes mellitus. Eur Cardiovasc Dis. 2006;2(1):1–7. https://doi.org/10.15420/ecr.2006.1.1a.

30. Ostchega Y, Fryar CD, Nwankwo T, et al. Hypertension prevalence among adults aged 18 and over: United States, 2017–2018. NCHS Data Brief, April 2020; 364.

31. Li Y, Wei FF, Wang S, et al. Cardiovascular risks associated with diastolic blood pressure and isolated diastolic hypertension. Curr Hypertens Rep. 2014;16(11):489. https://doi.org/10.1007/s11906-014-0489-x. PMID: 25182161.

32. Rapsomaniki E, Timmis A, George J, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. 2014;383(9932):1899–911. https://doi.org/10.1016/S0140-6736(14)60685-1.

33. Steyn K, Levitt NS, Patel M. Hypertension and diabetes: poor care for patients at community health centres. S Afr Med J. 2008; 96.

34. Salem K, Kinsara AJ. Hypertension in low and middle-income countries: challenges, gaps and limited resources specific strategies. World J Hypertens. 2017;7(1):9–23. https://doi.org/10.5494/wjh.v7i1.19.

35. Hermans MP, Valensi P. Elevated triglycerides and low high-density lipoprotein cholesterol level as marker of very high risk in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes. 2018;25(2):118–29. https://doi.org/10.1097/MED.0000000000000398. PMID: 29493554.

36. Kaur J. A Comprehensive review on metabolic syndrome. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014:21. https://doi.org/10.1155/2014/943162.

37. Feingold KR. Obesity and dyslipidemia. endotext [internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.

38. Bekele S, Yohannes T, Mohammed AE. Dyslipidemia and associated factors among diabetic patients attending Durame General Hospital in Southern Nations, Nationalities, and People’s Region. Diabetes Metab Syndr Obes. 2017;10:265–71. https://doi.org/10.2147/DMSO.S135064.

39. Mamo Y, Bekele F, Nigussie T, et al. Determinants of poor glycemic control among adult patients with type 2 diabetes mellitus in Jimma University Medical Center, Jimma zone, south west Ethiopia: a case control study. BMC Endocr Disord. 2019;19(91). https://doi.org/10.1186/s12902-019-0421-0.

40. Ramanathan RS. Correlation of duration, hypertension and glycemic control with microvascular complications of diabetes mellitus at a tertiary care hospital. Integr Mol Med. 2017;4. https://doi.org/10.15761/IMM.1000272.

41. Petitti DB, Klingensmith GJ, Bell RA, et al. Glycemic control in youth with diabetes: the SEARCH for diabetes in Youth Study. J Pediatr. 2009;155(5):668–672.e3. https://doi.org/10.1016/j.jpeds.2009.05.025.

42. Toh M, Wu C, Leong H, et al. Association of younger age with poor glycemic and cholesterol control in asian with type 2 diabetes mellitus in Singapore. J Endocrinol Metab North America. 2011;1:27–37.

43. Olaya O, Weiser J, Zhou W, et al. Hypertension among persons living with HIV in Medical Care in the United States—Medical Monitoring Project, 2013–2014. Open Forum Infect Dis. 2018;3:5. https://doi.org/10.1093/ofid/ofy028.

Received: 24-08-2021 Accepted: 22-10-2021