Large magnetocaloric effect of NdGa compound due to successive magnetic transitions

X. Q. Zheng, J. W. Xu, S. H. Shao, H. Zhang, J. Y. Zhang, S. G. Wang, Z. Y. Xu, L. C. Wang, J. Chen, and B. G. Shen

Citation: AIP Advances 8, 056425 (2018); doi: 10.1063/1.5006506
View online: https://doi.org/10.1063/1.5006506
View Table of Contents: http://aip.scitation.org/toc/adv/8/5
Published by the American Institute of Physics

Articles you may be interested in

Magnetic properties and magnetocaloric effect of HoCo$_3$B$_2$ compound
AIP Advances 8, 056432 (2018); 10.1063/1.5006505

Magnetic properties and magnetocaloric effects of RNiSi$_2$ (R= Gd, Dy, Ho, Er, Tm) compounds
AIP Advances 8, 056423 (2018); 10.1063/1.5007018

Complex magnetic properties and large magnetocaloric effects in RCoGe (R=Tb, Dy) compounds
AIP Advances 8, 056418 (2018); 10.1063/1.5007114

Anisotropic magnetocaloric effect in HoAlGa polycrystalline compound
AIP Advances 8, 056427 (2018); 10.1063/1.5007130

Magnetocaloric effect from indirect measurements: Magnetization and heat capacity
Journal of Applied Physics 86, 565 (1999); 10.1063/1.370767

Hydrostatic pressure-tuned magnetostructural transition and magnetocaloric effect in Mn-Co-Ge-In compounds
AIP Advances 8, 056417 (2018); 10.1063/1.5006688
Large magnetocaloric effect of NdGa compound due to successive magnetic transitions

X. Q. Zheng, J. W. Xu, S. H. Shao, H. Zhang, J. Y. Zhang, S. G. Wang, Z. Y. Xu, L. C. Wang, J. Chen, and B. G. Shen

1School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
2National Institute of Metrology, Beijing 100029, P. R. China
3Department of Physics, Capital Normal University, Beijing 100048, P. R. China
4Beijing Institute of Aerospace Testing Technology, China Aerospace Science and Technology Corporation, Beijing 100074, P. R. China
5State key laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100190, P. R. China

(Received 25 September 2017; accepted 17 November 2017; published online 4 January 2018)

The magnetic behavior and MCE property of NdGa compound were studied in detail. According to the temperature dependence of magnetization (M-T) curve at 0.01 T, two sharp changes were observed at 20 K (T_{SR}) and 42 K (T_{C}), respectively, corresponding to spin reorientation and FM-PM transition. Isothermal magnetization curves up to 5 T at different temperatures were measured and magnetic entropy change (\(\Delta S_M\)) was calculated based on M-H data. Temperature dependences of \(-\Delta S_M\) for a field change of 0-2 T and 0-5 T show that there are two peaks on the curves corresponding to T_{SR} and T_{C}, respectively. The value of the two peaks is 6.4 J/kg K and 15.5 J/kg K for the field change of 0-5 T. Since the two peaks are close, the value of \(-\Delta S_M\) in the temperature range between T_{SR} and T_{C} keeps a large value. The excellent MCE performance of NdGa compound benefits from the existence of two successive magnetic transitions. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5006506

I. INTRODUCTION

Magnetic refrigeration, which is based on magnetocaloric effect (MCE), is expected to be a promising alternative to the conventional gas compression refrigeration because of its higher energy efficiency and friendly environment. To improve the application of this cooling technology, many efforts have been made to explore advanced MCE materials. The performance of MCE materials is usually evaluated by magnetic entropy change (\(\Delta S_M\)), refrigeration temperature width (\(\delta T_{FWHM}\)) and refrigeration capacity (RC). Lots of MCE materials with large value of \(\Delta S_M\) have been obtained and studied in room temperature range. In recent years, lots of attention have also been paid on the magnetic materials with low transition temperatures, for this kind of MCE materials can be used for liquefaction, such as TmZn, RNi (R=Ho, Er), R_{12}Co_{7} (R=Ho, Er) and HoCoSi. Especially the magnetic compounds with successive transitions show advantage on \(\delta T_{FWHM}\) and RC and thus researchers are inclined to explore MCE materials in those with several magnetic transitions.

Binary RGa (R=rare-earth) intermetallic compounds show interesting magnetic properties according to the investigation of the magnetic structures by employing Mossbauer spectroscopy experiment and Neutron diffraction experiment. It was observed that the R Ga (R=Gd, Nd, Sm, Ho and Er) compounds exhibit spin-reorientation (SR) transition below T_{C}. Thereafter people

aAuthor to whom correspondence should be addressed. sgwang@ustb.edu.cn; shenbg@iphy.ac.cn
studied the magnetic and MCE properties of RGa ($R=$Gd, Tb, Dy, Ho, Er) compounds.29–32 Furthermore, the δT_{FWHM} of ErGa compound was extended successfully by spin optimization.33 In addition, interesting magnetic properties, transport properties and MCEs were also found in TmGa and PrGa compounds.34–37 In this paper, we investigate the magnetic properties and MCEs of NdGa compound. The correlations between MCE and magnetic transitions will be discussed.

II. EXPERIMENT

The NdGa ingots were prepared in a purified Ar atmosphere by arc-melting of the stoichiometric amounts of the high purity (>99.9 wt. %) constituent elements on a water cooled copper hearth. To achieve compositional homogeneity, the obtained ingot was wrapped in a molybdenum foil, sealed in a high-vacuum quartz tube, annealed at 800°C for 7 days and then quenched into liquid nitrogen. The phase structure and the crystal lattice parameters were examined by the Rietveld refinement of the room-temperature x-ray powder diffraction (XRD) data collected using the Cu $K\alpha$ radiation. Magnetization measurements were carried out as functions of temperature and magnetic field by using a superconducting quantum interference device (SQUID) magnetometer.

III. RESULTS AND DISCUSSION

The XRD pattern of NdGa compound was obtained at room temperature and then the pattern was fitted by Rietveld analysis method. Results show that the prepared compound is of single phase, crystallizing in the orthorhombic CrB-type structure (space group Cmcm) in agreement with the previous reports.25,38–40 The structure can be described as the stacking of triangular prims with rare-earth atoms at the corners and the gallium atoms nearly at the center. R atoms and Ga atoms occupy two different 4c (0, y, 1/4) equivalent sites.40 The lattice parameter was compared with other RGa (R=Pr, Gd, Tb, Dy, Ho, Er and Tm) compounds. Lattice parameters decrease continuously with the R atom sweeping from Pr to Tm due to the constriction of radius for R atoms.

Both temperature dependences of zero-field-cooling (ZFC) and field-cooling (FC) curves under a magnetic field of 0.01 T for NdGa compound, which are shown in Fig. 1. As temperature increases, NdGa compound undergoes two abrupt changes, which are corresponding to spin-reorientation (SR) transition and ferromagnetic (FM) to paramagnetic (PM) transition, respectively. The SR transition temperature (T_{SR}) and Curie temperature (T_C) are determined to be 20 K and 42 K, respectively, according to the derivative curve of FC. The values of transition temperatures observed here are in good agreement with the previous results.25 As temperature decreases, the magnetization shows a decrease when it scans over 20 K. The ZFC curve show a characteristic similar to compensation effect in ferrimagnetic materials. All the above information indicates complex magnetic structure may exist and complex magnetic transition occurs. No thermal hysteresis is observed at the temperatures above T_C according to the ZFC and FC curves. However, obvious thermal irreversibility is observed in the
temperature range below T_C as observed in ErGa compound29 and it is likely due to a domain wall pinning effect.

In order to study the magnetic properties of NdGa compound, magnetization isotherms were measured from 5 K to 74 K under an applied fields up to 5 T. The M-H curves at different temperatures are shown in Fig. 2(a) and the enlarged view of M-H curves at low temperatures are shown in Fig. 2(b). It is observed that the magnetization goes up with magnetic field increasing and reaches saturation value when the field is large enough. When the M-H curves at low temperatures are shown in an enlarged view, it is found that the magnetization firstly increases slowly with field, and then it goes up quickly when magnetic field exceeds critical value. The linear relationship between M and H in low field range means the existence of antiferromagnetic (AFM) ground state. The sharp increase of magnetization indicates that metamagnetic transition from AFM to FM occurs. As temperature increases, the critical field is getting smaller and smaller. When temperature goes up over 21 K, the M-H curves show typical FM characteristic. That is to say, the magnetic transition at 20 K in M-T curve is corresponding to AFM to FM type spin reorientation. NdGa compound still shows FM characteristic at the temperatures above T_C indicating the existence of short range FM order as has been observed ErGa compound.29

The ΔS_M of NdGa compound was calculated on basis of isothermal magnetization data by using the Maxwell relation $\Delta S_M = \int H (\partial M/\partial T) dH$. The temperature dependences of ΔS_M are shown in Fig. 3. There are two sharp peaks on the ΔS_M--T curves around T_{SR} and T_C, respectively. It indicates that there are large variations of magnetic order in the process of AFM to FM transition and FM to PM transition. That is to say, both types of magnetic transitions contribute to MCE, which has been observed in other RGa (R=Gd, Tb, Dy, Ho, Er) compounds.26,29,30,32,33 Analysis of Mössbauer spectra has shown that the rotation of the magnetic moments occurs in the ac-plane at low temperatures due to the competition between the exchange interaction and the interaction of the crystalline electric field in NdGa compound.25,29 For polycrystalline NdGa compound, the applying of magnetic field will destroy the balance mentioned above. It is the most dramatic temperature zone that the magnetic order changes around T_{SR}, thus noticeable magnetic entropy changes were observed around T_{SR}.
FIG. 3. Magnetic entropy change (ΔS_M) as a function of temperature for NdGa compound under field changes of 0-1 T, 0-2 T, 0-3 T, 0-4 T and 0-5 T, respectively. The maximal values of ΔS_M are 6.4 and 15.5 J/kg K at T_{SR} and T_C for a field change of 0–5 T, respectively. The values of ΔS_M is smaller than that of ErGa and HoGa compounds, but that is larger than TbGa and DyGa. In addition, it is noted that the ΔS_M is negative at 7.5 K, which is the typical result of AFM ground state as has been observed in other AFM materials. Since there are two peaks on the ΔS_M curves and one overlaps the other, the ΔS_M almost keeps a constant value in a wide range of temperatures. Although the value of ΔS_M at low temperatures is only one third of the peak value around T_C, a plateau is obtained on the ΔS_M curve of NdGa compound. The RC of NdGa compound was estimated based on the ΔS_M–T curves by using the approach suggested by Gschneidner et al. The RC value is defined as $\text{RC} = \int_{T_1}^{T_2} |\Delta S_M| \, dT$, where T_1 and T_2 are the temperatures corresponding to both sides of the half-maximum value of ΔS_M peak, respectively. And the refrigerant temperature width (δT_{FWHM}) is determined as $T_2 - T_1$. It is important to note that T_1 is corresponding to the peak around T_{SR} and T_2 is corresponding to the peak around T_C for NdGa compound. The value of RC is calculated to be 96.5 J/kg and 249.8 J/kg for a field change of 0-2 T and 0-5 T, respectively. The value of δT_{FWHM} is calculated to be 31.4 K and 36.3 K for a field change of 0-2 T and 0-5 T, respectively. Though the ΔS_M is smaller than ErGa compound, the refrigerant capacity is larger than ErGa compound (22.6 K for 0-2 T, 30.9 K for 0-5 T). The large δT_{FWHM} of NdGa originates from the combined contribution from SR and FM-PM transitions.

IV. CONCLUSIONS

NdGa compound undergoes an SR magnetic transition at 20 K and an FM-PM transition at 42 K with temperature increasing. The SR in NdGa compound is AFM-FM type magnetic transition. Good thermal reversibility is observed in the temperature range above T_C, where short range FM order also exists. Two peaks are observed on the $-\Delta S_M$ curves corresponding to T_{SR} and T_C, respectively. The maximal values are 6.4 and 15.5 J/kg K for a field change of 0–5 T at the transition temperatures respectively. The excellent MCE performance makes NdGa compound competitive refrigerant material used in low temperature zone.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Development Program of China (2017YFB0702701), the National Natural Science Foundation of China (51501005, 51625101, 11674008 and 51431009), the China Postdoctoral Science Foundation Funded project (2016M591071 and 2017T100037) and the Fundamental Research Funds for the Central Universities (FRF-TP-15-010A1).

1. O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).
2. J. Glanz, Science 279, 2045 (1998).
3. X. Q. Zheng, J. Shen, F. X. Hu, J. R. Sun, and B. G. Shen, Acta Phys. Sin. 65, 217502 (2016).
4. N. A. de Oliveira and P. J. von Ranke, Physics Reports 489, 89 (2010).
5 M. Bali, S. Jandl, P. Fournier, and A. Kedous-Lebouc, Appl. Phys. Rev. 4, 021305 (2017).
6 V. K. Pecharsky and K. A. Gschneider, Phys. Rev. Lett. 78, 4494 (1997).
7 S. Y. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneider, Phys. Rev. B 57, 3478 (1998).
8 F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao, and X. X. Zhang, Appl. Phys. Lett. 78, 3675 (2001).
9 V. K. Pecharsky, K. A. Gschneider, A. O. Pecharsky, and A. M. Tishin, Phys. Rev. B 64, 144406 (2001).
10 H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001).
11 B. G. Shen, F. X. Hu, Q. Y. Dong, and J. R. Sun, Chin. Phys. B 22, 017502 (2013).
12 J. Lyubina, J. Phys. D Appl. Phys. 50, 053002 (2017).
13 K. A. Gschneider Jr., V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).
14 H. Zhang and B. G. Shen, Chin. Phys. B 24, 127504 (2015).
15 X. Q. Zheng and B. G. Shen, Chin. Phys. B 26, 027501 (2017).
16 J. Chen, B. G. Shen, Q. Y. Dong, and J. R. Sun, Solid State Commun. 150, 157 (2010).
17 J. Chen, B. G. Shen, Q. Y. Dong, and J. R. Sun, Solid State Commun. 150, 157 (2010).
18 Z. J. Mo, J. Shen, L. Q. Yan, C. C. Tang, J. Lin, J. F. Wu, J. R. Sun, and B. G. Shen, Appl. Phys. Lett. 100, 052409 (2013).
19 X. Q. Zheng, H. Wu, J. Chen, B. Zhang, Y. Q. Li, F. X. Hu, J. R. Sun, Q. Z. Huang, and B. G. Shen, Sci. Rep. 5, 14970 (2015).
20 H. Fuji, N. Shohata, S. Okamoto, and E. Tatsumoto, J. Phys. Soc. Jpn. 31, 1592 (1971).
21 B. Barbara, N. Van Nhun, and E. Staud, Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Serie B (Sciences Physiques) 274, 1053 (1972).
22 N. Shohata, J. Phys. Soc. Jpn. 42, 1873 (1977).
23 T. Samanta, I. Das, and S. Banerjee, Appl. Phys. Lett. 91, 152506 (2007).
24 J. Shen, J. L. Zhao, F. X. Hu, G. H. Rao, G. Y. Liu, J. F. Wu, Y. X. Li, J. R. Sun, and B. G. Shen, Appl. Phys. A 99, 853 (2010).
25 K. A. Gschneider Jr., V. K. Pecharsky, A. O. Pecharsky, and C. B. Zimm, Mater. Sci. Forum 315-317, 69 (1999).