Model-Agnostic Graph Regularization for Few-Shot Learning

Ethan Shen
Department of Computer Science
Stanford University
ezshen@cs.stanford.edu

Maria Brbić
Department of Computer Science
Stanford University
mbrbic@cs.stanford.edu

Nicholas Monath
College of Information and Computer Sciences
University of Massachusetts Amherst
nmonath@cs.umass.edu

Jiaqi Zhai
Google Research
jiaqi@jiaqizhai.com

Manzil Zaheer
Google Research
manzilzaheer@google.com

Jure Leskovec
Department of Computer Science
Stanford University
jure@cs.stanford.edu

Abstract

In many domains, relationships between categories are encoded in the knowledge graph. Recently, promising results have been achieved by incorporating knowledge graph as side information in hard classification tasks with severely limited data. However, prior models consist of highly complex architectures with many sub-components that all seem to impact performance. In this paper, we present a comprehensive empirical study on graph embedded few-shot learning. We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels. Our proposed regularization is widely applicable and model-agnostic, and boosts the performance of any few-shot learning model, including fine-tuning, metric-based and optimization-based meta-learning. Our approach improves performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS, outperforming state-of-the-art graph embedded methods. Additional analyses reveal that graph regularizing models results in a lower loss for more difficult tasks, such as those with fewer shots and less informative support examples.

1 Introduction

Few-shot learning refers to the task of generalizing from a very few examples, an ability that humans have but machines lack. Recently, major breakthroughs have been achieved with meta-learning, which leverages prior experience from many related tasks to effectively learn to adapt to unseen tasks [2, 30]. At a high level, meta-learning has been divided into metric-based approaches that learn a transferable metric across tasks [31, 32, 36], and optimization-based approaches that learn initializations for fast adaptation on new tasks [7, 28]. Beyond meta-learning, transfer learning by pretraining and fine-tuning on novel tasks has achieved surprisingly competitive performance on few-shot tasks [4, 6, 38].

In many domains, external knowledge about the class labels can be used. For example, this information is crucial in the zero-shot learning paradigm, which seeks to generalize to novel classes without
We incorporate graph information using the random walk-based node2vec objective [10]. Random walk methods for graph embedding [24] are fit by maximizing the probability of predicting the labels in the form of a graph G. Supervised learning problem, while episodic training approaches match the conditions on which the model is trained and evaluated by sampling episodes from C_{train}. More details on the problem setup can be found in Appendix A. Additionally, we assume that there exists side information about the labels in the form of a graph $G(\mathcal{Y}, E)$ where \mathcal{Y} is the set of all nodes in the label graph, and E is the set of edges.

2 Model-Agnostic Graph Regularization

Our approach is a model-agnostic graph regularization objective based on the idea that the graph structure of class labels can guide learning of model parameters. The graph regularization objective ensures labels in the same graph neighborhood have similar parameters. The regularization is combined with a classification loss to form the overall objective. The classification loss is flexible and ensures labels in the same graph neighborhood have similar parameters. The regularization is combined with a classification loss to form the overall objective. The classification loss is flexible and ensures labels in the same graph neighborhood have similar parameters.

2.1 Problem Setup

We assume that we are given a dataset defined as a pair of examples $X \subseteq \mathcal{X}$ with corresponding labels $Y \subseteq \mathcal{Y}$. We say that point $x_i \in X$ has the label $y_i \in Y$. For each episode, we learn from a support set $D_s = \{(x_1, y_1), (x_2, y_2), ..., (x_K, y_K)\}$ and evaluate on a held-out query set $D_q = \{(x'_1, y'_1), (x'_2, y'_2), ..., (x'_q, y'_q)\}$. For each dataset, we split all classes into C_{train} and C_{test}. $C_{train} \cap C_{test} = \emptyset$. During evaluation, we sample the N classes from a larger set of classes C_{test}, and sample K examples from each class. During training, we use a disjoint set of classes C_{train} to train the model. Non-episodic training approaches treat C_{train} as a standard supervised learning problem, while episodic training approaches match the conditions on which the model is trained and evaluated by sampling episodes from C_{train}. More details on the problem setup can be found in Appendix A. Additionally, we assume that there exists side information about the labels in the form of a graph $G(\mathcal{Y}, E)$ where \mathcal{Y} is the set of all nodes in the label graph, and E is the set of edges.

2.2 Regularization

We incorporate graph information using the random walk-based node2vec objective [10]. Random walk methods for graph embedding [24] are fit by maximizing the probability of predicting the
neighborhoods for each target node in the graph. Node2Vec performs biased random walks by introducing hyperparameters to balance between breadth-first search (BFS) and depth-first search (DFS) to capture local structures and global communities. We formulate the node2vec loss below:

$$L_{\text{graph}}(G, \theta) = -\sum_{y \in \mathcal{Y}} \left[-\log Z_y + \sum_{n \in N(y)} \frac{1}{T} \text{sim} (\theta_n, \theta_y) \right],$$

where \(\theta\) are node representations, \(\text{sim}\) is a similarity function between the nodes, \(N(y)\) is the set of neighbor nodes of node \(y\), \(T\) is the temperature hyperparameter, and \(Z_y\) is partition function defined as \(Z_y = \sum_{n \in \mathcal{Y}} \exp\left(\frac{-1}{T} \text{sim} (\theta_n, \theta_y)\right)\). The partition function is approximated using negative sampling [22]. We obtain the neighborhood \(N(y)\) by performing a random walk starting from a source node \(y\). The similarity function \(\text{sim}\) depends on the base learner, which we outline in Section 2.3.

2.3 Augmentation Strategies

Our graph-regularization framework is model-agnostic and intuitively applicable to a wide variety of few-shot approaches. Here, we describe augmentation strategies for high-performing learners from metric-based meta-learning, optimization-based meta-learning and fine-tuning by formulating each as a joint learning objective.

2.3.1 Augmenting Metric-Based Models

Metric-based approaches learn an embedding function to compare query set examples. Prototypical networks are a high-performing learner of this class, especially when controlling for model complexity [4, 35]. Prototypical networks construct a prototype \(p_j\) of the \(j^{th}\) class by taking the mean of support set examples, and comparing query examples using Euclidean distance. We regularize these prototypes so they respect class similarities and get the joint objective:

$$\sum_{(x_i, y_i) \in \mathcal{D}_s} \left[||x_i - p_{y_i}||_2^2 + \sum_{y' \in \mathcal{Y}} \exp\left(-||x_i - p_{y'}||_2^2\right) \right] + \lambda L_{\text{graph}}(G, \theta).$$

We set the graph similarity function to negative Euclidean distance, \(\text{sim}(p_i, p_j) = -||p_i - p_j||_2^2\). Note that our approach can easily be extended to other metric-based learners, for example regularizing the output of the relation module for Relation Networks [32].

2.3.2 Augmenting Optimization-Based Models

Optimization-based meta-learners such as MAML [7] and LEO [28] consist of two optimization loops: the outer loop updates the neural network parameters to an initialization that enables fast adaptation, while the inner loop performs a few gradient updates over the support set to adapt to the new task. Graph regularization enforces class similarities among parameters during inner-loop adaptation.

Specifically for LEO, we pass support set examples through an encoder to produce latent class encodings \(z\), which are decoded to generate classifier parameters \(\theta\). Given instantiated model parameters learned from the outer loop, gradient steps are taken in the latent space to get \(z'\) while freezing all other parameters to produce final adapted parameters \(\theta'\). For more details, please refer to [28]. Concretely, we obtain the joint regularized objective below for the inner-loop adaptations:

$$\sum_{(x_i, y_i) \in \mathcal{D}_s} \left[-z_T^y x_i + \sum_{y' \in \mathcal{Y}} \exp(z_T^y x_i) \right] + \lambda L_{\text{graph}}(G, z).$$

We set the graph similarity function to the inner product, \(\text{sim}(z_i, z_j) = z_i^T z_j\), though in practice cosine similarity, \(\text{sim}(z_i, z_j) = \frac{z_i^T z_j}{||z_i|| ||z_j||}\) results in more stable learning.

2.3.3 Augmenting Fine-tuning Models

Recent approaches such as Baseline++ [4] and S2M2R [21] have demonstrated remarkable performance by pre-training a model on the training set, and fine-tuning the classifier parameters \(\theta\) on the
support set of each task. We follow [4] and freeze the feature embedding model during fine-tuning, though the model can be fine-tuned as well [6]. We perform graph regularization on the classifiers in the last layer of the network, which are learned for novel classes during fine-tuning. This results in the objective below:

$$
\sum_{(x_i, y_i) \in D_s} \left[-\frac{x_i^T \theta_{y_i}}{||x_i||} \right] + \sum_{y' \in Y} \exp \left(\frac{x_i^T \theta_{y_i}}{||x_i||} \right) \right] + \lambda \mathcal{L}_{graph}(G, \theta).
$$

We set the graph similarity to cosine similarity, $sim(\theta_i, \theta_j) = \frac{\theta_i^T \theta_j}{||\theta_i|| ||\theta_j||}$.

3 Experimental Results

For all ImageNet experiments, we use the associated WordNet [23] category hierarchy to define graph relationships between classes. Details of the experimental setup are given in Appendix B. On the synthetic dataset, we analyze the effect of graph regularizing few-shot methods.

3.1 Mini-ImageNet Experiments

We compare performance to few-shot baselines and graph embedded approach KGTN [3] on the Mini-ImageNet experiment. We enhance S2M2$_R$ [21], a strong baseline fine-tuning model. Table 1 shows graph regularization results on Mini-ImageNet compared to results of the state-of-the-art models. We find that S2M2$_R$ enhanced with the proposed graph regularization outperforms all other methods on both 1- and 5-shot tasks.

As an additional baseline, we consider KGTN which also utilizes the WordNet hierarchy for better generalization. To ensure that our improvements are not caused by the embedding function, we pretrain KGTN feature extractor using S2M2$_R$. Even when controlling for improvements in the feature extractor, we find that our simple graph regularization method outperforms complex graph-embedded models.

Table 1: Results on 1-shot and 5-shot classification on the Mini-ImageNet dataset. We report average accuracy over 600 randomly sampled episodes. We show graph-based models in the bottom section.

Model	Backbone	1-shot	5-shot
Qiao [25]	WRN 28-10	59.60 ± 0.41	73.74 ± 0.19
Baseline++ [4]	WRN 28-10	59.62 ± 0.81	78.80 ± 0.61
LEO (train+val) [28]	WRN 28-10	61.76 ± 0.08	77.59 ± 0.12
ProtoNet [31]	WRN 28-10	62.60 ± 0.20	79.97 ± 0.14
MatchingNet [36]	WRN 28-10	64.93 ± 0.18	83.18 ± 0.11
S2M2$_R$ [21]	WRN 28-10	66.93 ± 0.65	83.35 ± 0.53
KGTN [3]	WRN 28-10	65.71 ± 0.75	81.07 ± 0.50
S2M2$_R$ + Graph (Ours)	WRN 28-10	66.93 ± 0.65	83.35 ± 0.53

3.2 Graph Regularization is Model-Agnostic

We augment ProtoNet [31], LEO [28], and S2M2$_R$ [21] approaches with graph regularization and evaluate effectiveness of our approach on the Mini-ImageNet dataset. These few-shot learning models are fundamentally different and vary in both optimization and training procedures. For example, ProtoNet and LEO are both trained episodically, while S2M2$_R$ is trained non-episodically. However, the flexibility of our graph regularization loss allows us to easily extend each method. Table 2 shows the results of graph enhanced few-shot baselines. The results demonstrate that graph regularization consistently improves performance of few-shot baselines with larger gains in the 1-shot setup.
Table 2: Performance of graph-regularized few-shot baselines on the Mini-ImageNet dataset. We report average accuracy over 600 randomly sampled episodes.

Model	Backbone	1-shot	5-shot
ProtoNet [31]	ResNet-18	54.16 ± 0.82	73.68 ± 0.65
ProtoNet + Graph (Ours)	ResNet-18	**55.47 ± 0.73**	**74.56 ± 0.49**
LEO (train) [28]	WRN 28-10	58.22 ± 0.09	74.46 ± 0.19
LEO + Graph (Ours)	WRN 28-10	**60.93 ± 0.19**	**76.33 ± 0.17**
S2M2_R [21]	WRN 28-10	64.93 ± 0.18	83.18 ± 0.11
S2M2_R + Graph (Ours)	WRN 28-10	**66.93 ± 0.65**	**83.35 ± 0.53**

3.3 Large-Scale Few-Shot Classification

We next evaluate our graph regularization approach on the large-scale ImageNet-FS dataset, which includes 1000 classes. Notably, this task is more challenging because it requires choosing among all novel classes, an arguably more realistic evaluation procedure. We sample K images per category, repeat the experiments 5 times, and report mean accuracy with 95% confidence intervals. Results demonstrate that our graph regularization method boosts performance of the SGM baseline [12] by as much as 6.7%. Remarkably, augmenting SGM with graph regularization outperforms all few-shot baselines, as well as models that benefit from class semantic information and label hierarchy such as KTCH [20] and KGTN [3]. We include further experimental details in Appendix B, and explore further ablations to justify design choices in Appendix C.

Table 3: Top-5 accuracy on the novel categories for the Imagenet-FS dataset. KTCH and KGTN are graph-based models. We report 95% confidence intervals where provided. The 95% confidence intervals for [12, 31, 36, 39] are on the order of 0.2%.

Model	Backbone	1-shot	2-shot	5-shot
SGM [12]	ResNet-50	54.3	67.0	77.4
MatchingNet [36]	ResNet-50	53.5	63.5	72.7
ProtoNet [31]	ResNet-50	49.6	64.0	74.4
PMN [39]	ResNet-50	53.3	65.2	75.9
KTCH [20]	ResNet-50	58.1	67.3	77.6
KGTN [3]	ResNet-50	60.1	69.4	78.1
SGM + Graph (Ours)	ResNet-50	**61.09 ± 0.37**	**70.35 ± 0.17**	**78.61 ± 0.19**

3.4 Experiments on Synthetic Dataset

To analyze the benefits of graph regularization, we devise a few-shot classification problem on a synthetic dataset. We first embed a balanced binary tree of height h in d-dimensions using node2vec [10]. We set all leaf nodes as classes, and assign half as base and half as novel. For each task, we sample k support and q query examples from a Gaussian with mean centered at each class embedding and standard deviation σ. Given k support examples, the task is to predict the correct class for query examples among novel classes. In these experiments, we set $d = 4$, $h \in \{4, 5, 6, 7\}$, $k \in \{1, 2, \ldots, 10\}$, $q = 50$, and $\sigma \in \{0.1, 0.2, 0.4\}$. The baseline model is a linear classifier layer with cross-entropy loss, and we apply graph regularization to this baseline. We learn using SGD with learning rate 0.1 for 100 iterations.

We first visualize the learned decision boundaries on identical tasks with and without graph regularization in Figure 1. In this task, the sampled support examples are far away from the query examples, particularly for the purple and green classes. The baseline model learns poor decision boundaries, resulting in many misclassified query examples. In contrast, much fewer query examples are misclassified when graph regularization is applied. Intuitively, graph regularization helps more when the support set is further away from the sampled data points, and thus generalization is harder.
To measure the relationship between few-shot task difficulty and performance, we adopt the hardness metric proposed in [6]. Intuitively, few-shot task hardness depends on the relative location of labeled and unlabeled examples. If labeled examples are close to the unlabeled examples of the same class, then learned classifiers will result in good decision boundaries and consequently accuracy will be high. Given a support set D_s and query set D_q, the hardness Ω_ϕ is defined as the average log-odds of a query example being classified incorrectly:

$$\Omega_\phi(D_q; D_s) = \frac{1}{N_q} \sum_{(x,y) \in D_q} \log \frac{1 - p(y|x)}{p(y|x)}$$

where $p(\cdot|x_i)$ is a softmax distribution over $\text{sim}(x_i, p_j) = -||x_i - p_j||_2^2$, the similarity scores between query examples x_i and the means of the support examples p_j from the j^{th} class in D_s.

We show average loss with shaded 95% confidence intervals across shots in Figure 2 (left), confirming our observations in real-world datasets that graph regularization improves the baseline model the most for tasks with lower shots. Furthermore, using our synthetic dataset, we artificially create more difficult few-shot tasks by increasing h, tree heights, and increasing σ, the spread of sampled examples. We plot loss with respect to the proposed hardness metric of each task in Figure 2 (right). The results demonstrate that graph regularization achieves higher performance gains on more difficult tasks.

Figure 2: Quantified results of classification loss across shots (left) and task hardness metric (right). Each point is a sampled task. Red color denotes graph regularized method and gray method without graph regularization.
4 Conclusion

We have introduced a graph regularization method for incorporating label graph side-information into few-shot learning. Our approach is simple and effective, model-agnostic and boosts performance of a wide range of few-shot learners. We further showed that introduced graph regularization outperforms more complex state-of-the-art graph embedded models.

Acknowledgments and Disclosure of Funding

We thank Yueming Wang and Eli Pugh for discussions and providing feedback on our manuscript. We also gratefully acknowledge the support of DARPA under Nos. FA865018C7880 (ASED), N660011924033 (MCS); ARO under Nos. W911NF-16-1-0342 (MURI), W911NF-16-1-0171 (DURIP); NSF under Nos. OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940 (Expeditions), IIS-2030477 (RAPID); Stanford Data Science Initiative, Wu Tsai Neurosciences Institute, Chan Zuckerberg Biohub, Amazon, Boeing, JPMorgan Chase, Docomo, Hitachi, JD.com, KDDI, NVIDIA, Dell. J. L. is a Chan Zuckerberg Biohub investigator.

References

[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matrese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1):25–29, 2000.

[2] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei. On the optimization of a synaptic learning rule. In Preprints Conf. Optimality in Artificial and Biological Neural Networks, volume 2, 1992.

[3] R. Chen, T. Chen, X. Hui, H. Wu, G. Li, and L. Lin. Knowledge graph transfer network for few-shot recognition. AAAI Conference on Artificial Intelligence, 34(07):10575–10582, Apr 2020.

[4] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. Wang, and J.-B. Huang. A closer look at few-shot classification. In International Conference on Learning Representations, 2019.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[6] G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto. A baseline for few-shot image classification. In International Conference on Learning Representations, 2020.

[7] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In International Conference on Machine Learning, volume 70, pages 1126–1135, 2017.

[8] V. Garcia and J. Bruna. Few-shot learning with graph neural networks. In International Conference on Learning Representations, 2018.

[9] S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In IEEE Conference on Computer Vision and Pattern Recognition, pages 4367–4375, 2018.

[10] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 855–864, 2016.

[11] D. Hallac, J. Leskovec, and S. Boyd. Network lasso: Clustering and optimization in large graphs. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 387–396, 2015.

[12] B. Hariharan and R. Girshick. Low-shot visual recognition by shrinking and hallucinating features. In IEEE International Conference on Computer Vision, pages 3018–3027, 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.
[14] P. Kankuekul, A. Kawewong, S. Tangruamsub, and O. Hasegawa. Online incremental attribute-based zero-shot learning. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3657–3664, 2012.

[15] D. Koller and M. Sahami. Hierarchically classifying documents using very few words. Technical report, Stanford InfoLab, 1997.

[16] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3):453–465, 2013.

[17] A. Li, T. Luo, Z. Lu, T. Xiang, and L. Wang. Large-scale few-shot learning: Knowledge transfer with class hierarchy. In IEEE Conference on Computer Vision and Pattern Recognition, pages 7212–7220, 2019.

[18] L. Liu, T. Zhou, G. Long, J. Jiang, L. Yao, and C. Zhang. Prototype propagation networks (PPN) for weakly-supervised few-shot learning on category graph. In International Joint Conference on Artificial Intelligence, 2019.

[19] L. Liu, T. Zhou, G. Long, J. Jiang, and C. Zhang. Learning to propagate for graph meta-learning. In Advances in Neural Information Processing Systems, pages 1039–1050, 2019.

[20] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu. Large-scale long-tailed recognition in an open world. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2537–2546, 2019.

[21] P. Mangla, N. Kumari, A. Sinha, M. Singh, B. Krishnamurthy, and V. N. Balasubramanian. Charting the right maniflod: Manifold mixup for few-shot learning. In IEEE Winter Conference on Applications of Computer Vision, pages 2218–2227, 2020.

[22] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, pages 3111–3119, 2013.

[23] G. A. Miller. WordNet: a lexical database for English. Communications of the ACM, 38(11):39–41, 1995.

[24] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 701–710, 2014.

[25] S. Qiao, C. Liu, W. Shen, and A. L. Yuille. Few-shot image recognition by predicting parameters from activations. In IEEE Conference on Computer Vision and Pattern Recognition, pages 7229–7238, 2018.

[26] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. Rapid learning or feature reuse? towards understanding the effectiveness of maml. In International Conference on Learning Representations, 2020.

[27] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In International Conference on Learning Representations, 2016.

[28] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-learning with latent embedding optimization. In International Conference on Learning Representations, 2019.

[29] R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning to share visual appearance for multiclass object detection. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1481–1488, 2011.

[30] J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[31] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Advances in Neural Information Processing Systems, pages 4077–4087, 2017.
[32] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare: Relation network for few-shot learning. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 1199–1208, 2018.

[33] Q. Suo, J. Chou, W. Zhong, and A. Zhang. Tadanet: Task-adaptive network for graph-enriched meta-learning. In *ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1789–1799, 2020.

[34] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. Rethinking few-shot image classification: a good embedding is all you need? *arXiv preprint arXiv:2003.11539*, 2020.

[35] E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, K. Xu, R. Goroshin, C. Gelada, K. Swersky, P.-A. Manzagol, and H. Larochelle. Meta-dataset: A dataset of datasets for learning to learn from few examples. In *International Conference on Learning Representations*, 2019.

[36] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In *Advances in Neural Information Processing Systems*, pages 3630–3638, 2016.

[37] X. Wang, Y. Ye, and A. Gupta. Zero-shot recognition via semantic embeddings and knowledge graphs. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 6857–6866, 2018.

[38] Y. Wang, W.-L. Chao, K. Q. Weinberger, and L. van der Maaten. SimpleShot: Revisiting nearest-neighbor classification for few-shot learning. *arXiv preprint arXiv:1911.04623*, 2019.

[39] Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan. Low-shot learning from imaginary data. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 7278–7286, 2018.

[40] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(9):2251–2265, 2018.

[41] S. Zagoruyko and N. Komodakis. Wide residual networks. *Proceedings of the British Machine Vision Conference 2016*, 2016. doi: 10.5244/c.30.87. URL http://dx.doi.org/10.5244/C.30.87.
Appendix A Problem Statement and Related Work

Episodic Training A common approach is to learn a few-shot model on \(C_{train} \) in an episodic manner, so that training and evaluation conditions are matched [35]. Note that training on support set examples during episode evaluation is distinct from training on \(C_{train} \). Many metric based meta-learners and optimization based meta-learners use this training method, including Matching Networks [36], Prototypical Networks [31], Relation Networks [32], and MAML [7].

Non-episodic Baselines Inspired by the transfer learning paradigm of pre-training and fine-tuning, a natural non-episodic approach is to train a classifier on all examples in \(C_{train} \) at once. After training, the final classification layer is removed, and this neural network is used as an embedding function \(f \) that maps images \(x_i \) to \(x_i \in \mathbb{R} \) feature representations, including those from novel classes. It then fine-tunes the final classifier layer using support set examples from the novel classes. The models are a function of the parameters of a softmax layer, \(\theta \in \mathbb{R}^d \). The softmax layer is formulated as the similarity between image feature embeddings and the classifier parameters where \(\theta_j \) is the parameters for the \(j^{th} \) class, \(\text{sim} \) is the cosine similarity function.

\[
p(y_i|x_i; \theta) = \frac{\exp(sim(x_i, \theta_{y_i}))}{\sum_{y' \in \mathcal{Y}} \exp(sim(x_i, \theta_{y'}))} \quad (6)
\]

A.1 Related work

Few-Shot Learning Canonical approaches to few-shot learning include memory-based [9, 12, 25], metric learning [27, 31, 32, 36], and optimization-based methods [7, 28]. However, recent studies have shown that simple baseline learning techniques (i.e., simply training a backbone, then fine-tuning the output layer on a few labeled examples) outperform or match performance of many meta-learning methods [4, 6], prompting a closer look at the tasks [35] and contexts in which meta-learning is helpful for few-shot learning [26, 34].

Few-Shot Learning with Graphs Beyond the canonical few-shot literature, studies have explored learning GNNs over episodes as partially observed graphical models [8] and using GCNs to transfer knowledge of semantic labels and categorical relationships to unseen classes in zero-shot learning [37]. Recently, Chen et al. presented a knowledge graph transfer network (KGTN), which uses a Gated Graph Neural Network (GGNN) to propagate information from base categories to novel categories for few-shot learning [3]. Other works use domain knowledge graphs to provide task specific customization [33], and propagate prototypes [18, 19]. However, these models have highly complex architectures and consist of multiple sub-modules that all seem to impact performance.

Appendix B Experimental Setup

B.1 Mini-ImageNet

Dataset The Mini-ImageNet dataset is a subset of ILSVRC-2012 [5]. The classes are randomly split into 64, 16 and 20 classes for meta-training, meta-validation, and meta-testing respectively. Each class contains 600 images. We use the commonly-used split proposed in [36].

Training details We pre-train the feature extractor on \(C_{train} \) using the method proposed by [21]. Activations in the penultimate layer are pre-computed and saved as feature embeddings of 640 dimensions to simplify the fine-tuning process. For an \(N \)-way \(K \)-shot problem, we sample \(N \) novel classes per episode, sample \(K \) support examples from those classes, and sample 15 query examples. During pre-training and meta-training stages, input images are normalized using the mean and standard-deviation computed on ILSVRC-2012. We apply standard data augmentation including random crop, left-right flip, and color jitter in both the training or meta-training stage. We use ResNet-18, ResNet-50 [13], and WRN-28-10 [41] for our backbone architectures. For pre-training WRN-28-10, we follow the original hyperparameters and training procedures for S2M2 [21]. For meta-training ResNet-18, we follow the hyperparameters from [4]. At evaluation time, we choose hyperparameters based on performance on the meta-validation set. Some implementation details are adjusted for each method. Specifically, for ProtoNet and LEO, we include base examples during an additional adaptation step per class. We show that these alterations have a minimal contribution to performance in Appendix C.
B.2 ImageNet-FS

Dataset In the ImageNet-FS benchmark task, the 1000 ILSVRC-2012 categories are split into 389 base categories and 611 novel categories. From these, 193 of the base categories and 300 of the novel categories are used during cross-validation and the remaining 196 base categories and 311 novel categories are used for the final evaluation. Each base category has around 1,280 training images and 50 test images.

Training details We follow the procedure by [12] to pre-train the ResNet-50 feature extractor, and adopt the Square Gradient Magnitude loss to regularize representation learning, which we scale by 0.005. The model is trained using the SGD algorithm with a batch size of 256, momentum of 0.9 and weight decay of 0.0005. The learning rate is initialized as 0.1 and is divided by 10 for every 30 epochs. During fine-tuning, we train for 10,000 iterations using the SGD algorithm with a batch size of 256, momentum of 0.9, weight decay of 0.005, and learning rate of 0.01.

B.3 Label Graph

WordNet ontology ImageNet comprises of 82,115 synsets, which are based on the WordNet ontology. For both the Mini-ImageNet and ImageNet-FS experiments, we first choose the synsets corresponding to the output classes of each task – 100 for Mini-ImageNet and 1000 for ImageNet-FS. ImageNet provides IS-A relationships over the synsets, defining a DAG over the classes. We only consider the sub-graph consisting of the chosen classes and their ancestors. The classes are all leaves of the DAG.

Training details The hyperparameter settings used for the node2vec-based graph regularization objective are in line with values published in [10]. For all experiments, we set $p = 1$, $q = 1$ and temperature $T = 2$. We set the batch size to 128 for Mini-ImageNet and 256 for ImageNet-FS. Empirically, we find that setting the regularization λ scaling higher for lower shots results in better performance, and set $\lambda = 5, 3, 1$ for 1-, 2-, and 5-shot tasks respectively.

Appendix C Ablations

C.1 Mini-ImageNet Ablations

C.1.1 Model re-implementations with adaptation

For episodically-evaluated few-shot models, it is common practice to disregard base classes during evaluation. To implement graph regularization, we include both base and novel classes during test time and perform a further adaptation step per task. We show that the boost in performance is not due to these modifications.

Model	Backbone	1-shot	5-shot
ProtoNet	ResNet-18	54.16 ± 0.82	73.68 ± 0.65
ProtoNet (adaptation)	ResNet-18	54.86 ± 0.73	74.14 ± 0.50
ProtoNet (adaptation) + Graph (Ours)	ResNet-18	**55.47 ± 0.73**	**74.56 ± 0.49**
LEO†	WRN 28-10	58.22 ± 0.09	74.46 ± 0.19
LEO (adaptation)	WRN 28-10	57.85 ± 0.20	74.25 ± 0.17
LEO (adaptation) + Graph (Ours)	WRN 28-10	**60.93 ± 0.19**	**76.33 ± 0.17**

C.1.2 Finding good parameter initializations for novel classes

Recent works have shown that good parameter initialization is important for few-shot adaptations [26]. For example, Dhillion et al. [6] showed that initializing novel classifiers with the mean of the support set improves few-shot performance.
Here, we explore various methods of incorporating graph relations to improve parameter initialization for novel classes. We compare our proposed method with simpler methods to show that our graph regularization method is boosting performance in a non-trivial manner. For each method, we keep the adaptation procedure the same, namely, the fine-tuning procedure described by Baseline++ [4].

We then vary parameter initialization using the following methods: (A) random initialization, (B) initializing novel classes with the weights of the closest training class in graph distance in the knowledge graph, (C) our method.

Table 5: Mini-Imagenet with different parameter initialization methods (in % measured over 600 evaluation iterations).

Model	Backbone	1-shot	5-shot
S2M2_R + Init A [21]	WRN 28-10	64.93 ± 0.18	83.18 ± 0.11
S2M2_R + Init B	WRN 28-10	65.50 ± 0.81	83.32 ± 0.57
S2M2_R + Init C	WRN 28-10	**66.93 ± 0.65**	**83.35 ± 0.53**

C.2 ImageNet-FS Ablations

Here, we justify our model design decisions by considering alternatives. We first probe the benefits of using random walk neighborhoods by defining $N(y)$ as only nodes that have direct edges with y ("child-parent loss"). We try separately learning label graph embeddings, and passing the information to the classifier layer via "soft target" classification loss ("Independent graph w/ soft targets"). Results show that computing the graph loss directly on the classifier parameters is important for performance. Finally, we show that the quality of the label graph affects performance by removing layers of internal nodes of the WordNet hierarchy, starting from the bottom-most nodes ("Remove last 5, 10 layers").

Table 6: Imagenet-FS ablations. Experiment setups, in order from the top: our proposed method, using only child-parent edges, independently learning graph embeddings, removing 5 layers of the ImageNet hierarchy, and removing 10 layers of the ImageNet hierarchy.

Ablation	1-shot
Ours	61.09
Child-parent loss	56.78
Independent graph w/ soft targets	56.22
Remove last 5 layers	57.80
Remove last 10 layers	54.86