Ten genes and two topologies: an exploration of higher relationships in skipper butterflies (Hesperiidae)

Ranjit Kumar Sahoo Corresp. 1, Andrew D. Warren 2, Niklas Wahlberg 3,4, Andrew V. Z. Brower 5, Vladimir A Lukhtanov 6, Ullasa Kodandaramaiah 1

1 School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
2 McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, PO Box 112710, 3215 Hull Rd., UF Cultural Plaza, Gainesville, Florida 32611-2710, United States
3 Department of Biology, Lund University, Lund, Sweden
4 Department of Biology, University of Turku, Turku, Finland
5 Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States
6 Department of Insect Systematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab, St. Petersburg, Russia

Corresponding Author: Ranjit Kumar Sahoo
Email address: sahoork@iisertvm.ac.in

Despite multiple attempts to infer the higher level phylogenetic relationships of skipper butterflies (Family Hesperiidae), uncertainties in the deep clade relationships persist. The most recent phylogenetic analysis included fewer than 30% of known genera and data from three gene markers. We here reconstruct the higher-level relationships with a rich sampling of ten nuclear and mitochondrial markers (7726 base pairs) from 270 genera and find two distinct but equally plausible topologies among subfamilies at the base of the tree. In one set of analyses, the nuclear markers suggest two contrasting topologies, one of which is supported by the mitochondrial dataset. However, another set of analyses suggests mito-nuclear conflict as the reason for topological incongruence. Neither topology is strongly supported, and we conclude that there is insufficient phylogenetic evidence in the molecular dataset to resolve these relationships. Nevertheless, taking morphological characters into consideration, we suggest that one of the topologies is more likely.
Title: Ten genes and two topologies: an exploration of higher relationships in skipper butterflies (Hesperiidae).

Authors: Ranjit Kumar Sahoo1, Andrew D. Warren2, Niklas Wahlberg3,4, Andrew V. Z. Brower5, Vladimir A. Lukhtanov6, Ullasa Kodandaramaiah1

1School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695016, India.

2McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, PO Box 112710, 3215 Hull Rd., UF Cultural Plaza, Gainesville, FL 32611-2710 USA

3Department of Biology, University of Turku, 20014 Turku, Finland

4Department of Biology, Sölvegatan 37, Lund University, 223 62 Lund, Sweden

5Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37037 USA

6Department of Insect Systematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia

Corresponding Author:
Abstract:

Despite multiple attempts to infer the higher level phylogenetic relationships of skipper butterflies (Family Hesperiidae), uncertainties in the deep clade relationships persist. The most recent phylogenetic analysis included fewer than 30% of known genera and data from three gene markers. We here reconstruct the higher-level relationships with a rich sampling of ten nuclear and mitochondrial markers (7726 base pairs) from 270 genera and find two distinct but equally plausible topologies among subfamilies at the base of the tree. In one set of analyses, the nuclear markers suggest two contrasting topologies, one of which is supported by the mitochondrial dataset. However, another set of analyses suggests mito-nuclear conflict as the reason for topological incongruence. Neither topology is strongly supported, and we conclude that there is insufficient phylogenetic evidence in the molecular dataset to resolve these relationships. Nevertheless, taking morphological characters into consideration, we suggest that one of the topologies is more likely.
Introduction:

A robust phylogeny is the key to understanding historical macroevolutionary processes that have shaped extant diversity. For instance, a phylogenetic hypothesis is needed to address questions regarding patterns of morphological evolution, coevolution, and historical biogeography, as well as for a higher-level classification system. Among invertebrates, butterflies have been the most popular study systems in evolutionary biology (Boggs et al. 2003). Relationships among and within butterfly families have been largely studied by phylogenetic analyses of DNA sequence data (Campbell, Brower & Pierce, 2000; Caterino et al., 2001; Braby, Vila & Pierce, 2006; Nazari, Zakharov & Sperling, 2007; Wahlberg et al., 2009; Simonsen et al., 2011; Heikkila et al., 2012; Wahlberg et al., 2014; Espeland et al., 2015). Yet, the higher level relationships among skipper butterflies, with more than 4000 species in about 567 genera (Warren, Ogawa & Brower, 2008) and representing a fifth of the world's butterfly fauna (Hernández-Roldán, Bofill & Dapporto, 2014), are still unsatisfactorily resolved.

Until recently, the higher-level classification of the family that has been generally followed was that proposed by Evans (1949) based on morphological characters. However, a major problem with skipper systematics is the remarkable uniformity of morphological structure among skipper taxa, which makes phenotype-based grouping extremely challenging (Voss, 1952; Warren, Ogawa & Brower, 2008). Following multiple attempts over the last several decades (Voss, 1952; Ackery, 1984; Scott, 1985; Scott and Wright, 1990; Chou, 1994, 1999; Mielke, 2005), a recent study employing molecular data suggested a classification that included five subfamilies (Warren, Ogawa & Brower, 2008). This classification relied on analyses of one mitochondrial and two
nuclear markers, a dataset of 2085 bp (base pairs). A subsequent analysis that added morphological data (49 characters) to the same molecular data led to a revised classification that included seven subfamilies (Warren, Ogawa & Brower, 2009).

Warren and colleagues (Warren, Ogawa & Brower, 2008; Warren, Ogawa & Brower, 2009) used Maximum Parsimony analyses with nodal support estimated through Bremer Support values (Bremer, 1994). Despite some strongly supported monophyletic taxa being recovered, many putative higher clades were unresolved. Specifically, uncertainty remained about relationships among the major clades within the subfamily Pyrginae. Furthermore, support for relationships among the monophyletic subfamilies Heteropterinae, Trapezitinae and Hesperiinae was weak to moderate. The status of Euschemoninae as sister to rest of the family, except Coeliadinae, received very low nodal support (Bremer support = 1), although this placement is corroborated by the early developmental characters of Euschemoninae, which are similar to those of Coeliadinae and Eudaminae (Warren, Ogawa & Brower, 2009).

Yuan et al. (2015) investigated relationships among a small subset of hesperiid taxa - 23 genera from China - using 1458 bp of mitochondrial sequence data. Their Maximum Likelihood tree also indicated uncertainty in the position of Eudaminae and Pyrginae. Another study based on complete mitochondrial genomes of six skipper butterflies representing five subfamilies (sensu Warren, Ogawa & Brower, 2009) failed to support the monophyly of Pyrginae (Kim et al., 2014).

In summary, existing studies on the higher-level relationships within this speciose butterfly family have indicated significant conflicts (Warren, Ogawa & Brower, 2008; Warren, Ogawa & Brower, 2009; Kim et al., 2014; Yuan et al., 2015), and we currently lack a robust higher level phylogenetic hypothesis for evolutionary studies or a sub-family level classification. The reasons for conflicting topologies across studies and poor nodal support could be a) incongruence among gene trees due to incomplete lineage sorting (Pollard et al., 2006; Whitfield & Lockhart, 2007), b) ancestral introgression (Eckert & Carstens, 2008), c) differences in characteristics of the datasets used (Nabholz et al., 2011), d) poor taxon sampling, e) insufficient data to resolve deeper nodes (Wolf et al., 2002; Rokas et al., 2003) or, f) a near-hard polytomy due to a rapid-radiation (Kodandaramaiah et al., 2010).

In order to bring further understanding to the higher-level phylogeny of skipper butterflies, we assembled sequences of ten gene regions from 270 genera and analyzed a 7726 bp dataset using both parsimony and model-based tree reconstruction methods. We also compiled the complete
mitochondrial genome of 15 skipper species across five subfamilies from GenBank to compare
the tree from the mitochondrial genome with that of single mitochondrial and combined-nuclear
genes. Consistent with the existing conflict across studies (Warren, Ogawa & Brower, 2008;
Warren, Ogawa & Brower, 2009; Kim et al., 2014; Yuan et al., 2015), our analyses showed
conflicting topologies at the deeper nodes of the phylogeny. To understand the reasons for the
uncertainty in the phylogenetic estimation, we followed an integrative approach with systematic
data encoding and tree comparison.

Methods:

Taxon and gene sampling:
Our analyses were based on 311 ingroup specimens representing 270 hesperiid genera and 12
outgroup taxa (5 Papilionidae, 2 Hedyliidae and 5 Pieridae). This dataset builds on the previous
study by Warren, Ogawa & Brower (2009) that included sequences of three protein-coding genes
(mtDNA COI, EF1a and wingless). We sequenced an additional part of COI and seven more
genes (ArgKin, CAD, GAPDH, IDH, MDH, RpS2 and RpS5) using protocols and primers from
Wahlberg & Wheat (2008). A new primer-pair was designed (Table S1) to amplify the gene IDH
for certain taxa. We have also included 96 additional specimens representing 71 genera to the
present analyses. Our taxon sampling accounts for 60-70% of the genera of Coeliadinae (6
genera), Eudaminae (38 genera), Heteropterinae (7 genera), and Trapezitinae (11 genera); 40-50
% of Pyrginae (73 genera) and Hesperiinae (134 genera), and 100 % of Euschemoninae (1
genus). The sequences for outgroups were acquired from GenBank. We included the
morphological, behavioral and ecological data matrix used in Warren, Ogawa & Brower (2009)
in certain analyses. The sequences generated during this study were deposited in GenBank. The
molecular data matrix in our study comprised 7726 characters, more than three times that of the
previous dataset (Warren, Ogawa & Brower, 2008; Warren, Ogawa & Brower, 2009).

Dataset encoding:
Along with the analysis of the concatenated dataset (nt_123), we generated context specific
datasets from the concatenated gene matrix for various analyses designed to identify potential
sources of conflict and/or poor nodal support. In one analysis, accounting for the impact of
compositional heterogeneity, we assigned ambiguity to all the sites that potentially experience
synonymous change (degen_1) (Regier et al., 2010; Zwick et al., 2012). We also checked the
extent of substitution saturation in each gene matrix using DAMBE v6.4.20 (Xia, 2013), which
showed saturation in 3rd codon positions (Figure S1). To account for substitution saturation and
degeneracy, we removed the 3rd codon positions and the 1st codon positions coding for Arginine or Lysine (noLRall1+nt2) (Regier et al., 2008). In further analyses, we removed the 3rd coding positions from the concatenated dataset (nt_12) or only from the mitochondrial genes (nuclear_123+CO_12).

We also analyzed all the nuclear genes together (nuclear_123) and reconstructed multi-gene and single gene trees for comparison. In subsequent analyses, we also combined the morphological, ecological and behavioral characters from Warren, Ogawa & Brower (2009) with certain molecular datasets – nt_12 and nuclear_123. In addition, we analysed an assembly of all protein coding sequences (13 genes) from the mitochondrial genomes of 15 skipper butterflies acquired from GenBank.

Phylogenetic analyses:

We performed Maximum Parsimony analyses in TNT v.1.1 (Goloboff, Farris & Nixon, 2008) using ‘New Technology’ searches (Goloboff, 1999; Nixon, 1999) (consisting of tree fusion, sectorial search, ratchet and tree drift) with 1000 random addition replicates; nodal supports were derived from 1000 bootstrap replicates (Felsenstein, 1985). For Maximum Likelihood (ML) and Bayesian Inference (BI) analyses, we used RAxML v8 (Stamatakis, 2014) and MrBayes v3.2 (Ronquist et al., 2012) respectively, on the XSEDE web server through the CIPRES Science gateway (Miller, Pfeiffer & Schwartz, 2010). For ML analyses, we used the GTR model of substitution with gamma model of rate heterogeneity (GTR+G) and different partition schemes; either gene-based or based on rates of evolution calculated by the program TIGER (Cummins & McInerney, 2011). In gene-based partitions each gene was considered as a separate partition, while in TIGER-partitions, the characters were binned together based on their rate of evolution regardless of gene origin (used as a partitioning strategy in Rota & Wahlberg, 2012). TIGER-partitions for the dataset were derived from the program TIGER (Tree Independent Generation of Evolutionary Rates) that calculates relative rates of evolution of each site in an alignment (Cummins & McInerney, 2011). The data were then divided into seven partitions based on the relative rates using an algorithm developed by Tobias Malm (J. Rota, T. Malm & N Wahlberg, in prep.) such that the first partition consisted of the invariant and very slowly evolving sites and the last partition consisted of sites evolving very quickly. To check whether model selection had any impact on the tree reconstruction, we also performed the above ML analyses using the best fitted model from PartitionFinder v1.1.1 (Lanfear et al., 2012) (detail in Figure S2). For each ML analyses, the node supports were computed from 1000 bootstrap replicates. Single gene matrices were analyzed with GTR+G model and the node supports were derived from 500 bootstrap replicates. For single gene analyses, we dropped the taxa for which the corresponding gene sequence was not available. For the mitogenome analysis, we performed ML tree searches with
codon-based partitions and estimated the nodal support from 100 bootstraps.

The BI analysis of the concatenated dataset with TIGER-partitions was performed with a mixed model of substitution which samples all possible models in the GTR family in proportion to their posterior distributions (Huelsenbeck et al., 2004) as implemented in MrBayes 3.2 (Ronquist et al., 2012). We assigned the gamma model of rate heterogeneity to all the partitions; the first partition was additionally assigned a proportion of invariable sites. The program MrBayes was set to estimate the base frequencies and shape parameters from the data. Two independent runs with two chains per run were performed for ~30 million generations, sampling trees every 10000 generations. The convergence of independent runs was analyzed from the values of potential scale reduction factors (PSRF) (PSRF close to 1 determines convergence) (Gelman & Rubin, 1992); we also checked the plots of log-likelihoods and other parameters on Tracer v1.6 (Rambaut et al., 2014).

Tree comparison:

To investigate the differences among the trees from multiple analyses, we compared the trees (except single gene trees) for their topological incongruence with and without the likelihood scores. While the non-likelihood incongruence test reflects differences in branching patterns among the topologies, the likelihood-based comparison calculates the difference between competing hypotheses with distinct topologies for a given dataset (Planet, 2006). For the non-likelihood based tree comparison at the deep level divergences, we used a Lento plot to depict the conflict among different trees in a two-dimensional graph (Lento et al., 1995). We employed the approximate unbiased (AU) test (Shimodaira, 2002) for likelihood-based tree comparisons.

To check for incongruence among gene trees, we used partitioned bremer support (PBS) analysis that examines the contribution of each gene partition to the topological support of the consensus tree (Baker & DeSalle, 1997).

Results:

Multilocus tree estimation:

Trees from the concatenated dataset, irrespective of parsimony or ML analysis or the partition scheme used, showed identical relationships among the early branches representing the major clades (sensu Warren, Ogawa & Brower, 2009) (Figure 1A) – (i) Coeliadinae was sister to the rest of the family, (ii) Pyrginae was paraphyletic, (iii) Euschemoninae was sister to Eudaminae,
and (iv) Heteropterinae, Trapezitinae and Hesperiinae were all monophyletic. The topology remained unchanged even after the addition of morphological characters to the concatenated dataset.

However, the ML trees from the combined-nuclear dataset (nuclear_123) showed a contrasting topology (Figure 1B) to that of the concatenated dataset, irrespective of the partitioning scheme: Pyrginae was monophyletic and Euschemoninae was sister to rest of Hesperiidae except Coeliadinae. The topology remained unchanged with the addition of morphological characters to the dataset (nuclear_123+morph) as well as analyses of the subsets of the combined-nuclear matrix (7gene_123, 8gene_123).

These dataset specific variation in tree topologies were consistent across different evolutionary model and were also found in partitioning scheme from PartitionFinder (detail in Figure S2).

ML analyses of non-degenerated datasets (nt_12, degen_1, noLRall1+nt_2) resulted in unresolved tree topologies indicating insufficient phylogenetic signal in the 1st and 2nd codon positions of the dataset. (Figure 1C).

BI analysis of the concatenated dataset showed a topology similar to that of Figure 1B with a few changes (detail in Figure S3). Randomly sampled 100 trees from the MCMC generations, after discarding burnin, showed the presence of only one topology (as in Figure 1B); however, a very low proportion (6%) of an alternate topology (as in Figure 1A) was found in one of the runs.

Tree Comparison:

To test whether multiple tree topologies across ML analyses are equally likely given the datasets, we performed an approximate unbiased (AU) test (Shimodaira, 2002) for both the concatenated and combined-nuclear datasets independently. The AU test, without any partitioning scheme, rejected (p<0.0001) the tree topologies from the non-degenerate datasets (nt_12, degen, noLRall1+nt_2). Hence, we dropped the trees from non-degenerate data sets from further analyses of tree topological similarity at higher taxonomic levels. However, two distinct topologies (Figure 1A and 1B) were accepted as significant trees (P>0.05) for the combined-nuclear dataset, whereas only one topology (Figure 1A) was significant (P>0.05) for the
concatenated dataset.

A visual comparison of the two distinct tree topologies (Figure 1A and 1B) showed that all the subfamily clades (sensu Warren, Ogawa & Brower, 2009) except Pyrginae were monophyletic (BS >98). Pyrginae was recovered either as monophyletic (BS=7-60) or paraphyletic. Similarly, Euschemoninae and Eudaminae were either sisters (BS= 58-76) or non-sisters. However, due to the presence of low BS values (<76) in 6 out of 13 deep nodes across the analyses, we were uncertain whether there existed significant conflict among different tree topologies.

Mito-genomic analysis:

The ML tree from all 13 protein coding genes from complete mitochondrial genomes of 15 skipper butterflies had a tree-wide average BS of 80 (see Figure S4). Along with many well-supported nodes (BS>97), low support values (BS 30 – 60) were also obtained for 5 out of 14 internal nodes. The lowest BS (=32) was obtained for the node containing Eudaminae, the lineages of Pyrginae and the common ancestor of Heteropterinae and Hesperiinae. The node that placed Eudaminae as sister to one of the Pyrginae clades had BS=42.

We found that the tree topology from the mitogenomic analysis corroborated the deep splits found in the COI gene tree; Eudaminae nested within Pyrginae rendering the latter paraphyletic, which was also the case for the concatenated dataset.

Multiple plausible tree topologies:

The presence of multiple tree topologies was not limited to the dataset-specific analyses. Regardless of the partitioning scheme or the dataset (concatenated and combined-nuclear dataset) used, almost equal numbers of contrasting tree topologies were present among the ML-bootstrap trees across multiple analyses (see Figure S5); hence, it is likely that the topology of the best ML tree is one among two equally likely topologies.

To investigate this further, we extracted 105 model-optimized trees from each of the ML analyses of the concatenated (nt_123) and combined-nuclear (nuclear_123) data, separately from datasets with both partitioning schemes (gene-partitions and TIGER-partitions). The clades in the resulting trees were collapsed to the subfamily level except Pyrginae, which was collapsed to the level of tribes (sensu Warren, Ogawa & Brower, 2009), and were plotted on a Lento plot (Figure
2) to check for support and conflict for each split. We observed conflicting splits among the trees from the combined-nuclear dataset with TIGER-partitions, which indicated the presence of multiple topologies; however, trees from the concatenated dataset had no conflicting splits, indicating a single topology. But the case was different when gene-partitions were used – multiple topologies resulted from concatenated dataset and only one of these topologies was recovered from the combined-nuclear dataset. The AU test showed equal tree likelihoods (p > 0.05) for multiple topologies for both concatenated and combined-nuclear datasets given the respective partition schemes as explained above.

Thus, we found two contrasting tree topologies, respectively supporting (i) monophyly of Pyrginae and non-sister status of Eudaminae and Euschemoninae, and (ii) paraphyly of Pyrginae and sister status of Eudaminae and Euschemoninae. In addition, we noticed that the position of Eudaminae with respect to Pyrginae varied across these contrasting topologies. While Eudaminae was sister to all Hesperiidae except Coeliadinae and Euschemoninae in the former, the latter topology indicated that Eudaminae was sister to the clade containing Heteropterinae, Trapezitinae and Hesperiinae.

We observed that the contrasting topologies had short branch lengths at the fluctuating clades: the interrelationship among Eudaminae, the major clades of Pyrginae and the common ancestor of Heteropterinae, Trapezitinae and Hesperiinae. The association of very low BS (< 60) with these short branches suggests possible topological conflict among gene trees. To investigate this hypothesis, we examined the relationships among the conflicting clades in the individual gene trees. Because the single gene trees had very low BS values for most of the clades, we clustered gene markers based on their topological congruency for the deeper clades and reanalyzed, expecting an improvement of nodal support and consistency in signal. For example, we combined all those gene markers from which Pyrginae was recovered as monophyletic and expected an improved BS for the Pyrginae clade in the gene-cluster analysis. As expected, this gene-cluster recovered Pyrginae as monophyletic with higher node support (BS=80). However, none of the gene-clusters recovered the non-sister status of Eudaminae and Euschemoninae even though their sister status was poorly supported in all the gene-cluster analyses (Figure S6). This pattern of incongruence is not an artifact of missing data in our dataset, because sequential removal of taxa with 80-40% of missing data from the analyses changed neither the topology nor the support values at deeper nodes (Table S2); however, such sequential removal gradually reduced the proportion of alternate tree topologies in the tree set from best ML tree search (Figure S7). Hence, we could not accept the hypothesis that the two contrasting tree topologies are due to incongruence in gene histories; this is also evident from PBS analysis where no pattern of incongruence among gene trees were observed (Figure S8).
Discussion:

With a dataset of 7726 bp from 270 hesperiid genera, we present the most comprehensive phylogeny of this important group of butterflies. Our analyses suggested that there are two contrasting topologies for the higher-level skipper phylogeny. First, we reconstructed the phylogenetic trees using the concatenated and combined-nuclear datasets; the resulting trees were well-supported for higher-level relationships except at certain deep nodes. Tree comparisons revealed that there are multiple tree topologies for the relationships among major skipper lineages. We explicitly investigated gene-specific signals for the relationships among major clades, clustered them based on their topological congruence and reanalyzed to check for consistency.

Conflicting topologies?

Our analyses indicate the occurrence of two equally likely deep tree topologies (Figure 1A and 1B). Interestingly, the proximate reasons for the occurrence of these contrasting topologies appear to vary depending on the partitioning scheme used for the analysis. However, neither topology was strongly supported in any analysis and the results from our explorations of incongruence among gene histories were not conclusive. Gene-cluster analyses improved the nodal support for the monophyly of Pyrginae but were unable to recover the sister status of Eudaminae and Euschemoninae with good support. Similarly, from the PBS analysis, no pattern of incongruence in gene histories was observed. We conclude that there is insufficient information in the molecular dataset to resolve these relationships despite the extensive taxonomic sampling and large number of molecular characters.

The presence of conflicting topologies has also been reported from many other studies across plants (Soltis et al., 2002; Burleigh and Mathews 2004; Ruhfel et al., 2014) and animals (Rokas et al., 2003; Song et al., 2012). The possible reasons for topological incongruency are phylogenetic noise or conflict among gene trees (Smith et al., 2015). In case of the former, a concatenation approach is expected to give a better result (Rokas et al., 2003; Smith et al., 2015). In the latter case, where the conflict is presumed to be a result of gene flow across taxa or incomplete lineage sorting, coalescence based methods have been used for tree reconstruction (Jarvis et al., 2014; Xi et al., 2014; Smith et al., 2015). However, all there was very low node supports across gene trees, indicating that strong conflict across genes does not explain the patterns found here. We predict that a phylogenomic approach would provide a better outlook to
this conflicting scenario or resolve the phylogeny, as such an approach has proved instrumental in other studies (Dunn et al., 2008; Kocot et al., 2011; Smith et al., 2011; Johnson et al., 2013; Jarvis et al., 2014; Richart et al., 2016).

Systematic implications:

Our study confirmed that all the subfamilies, possibly except Pyrginae, are monophyletic and received high BS support across multiple analyses. We are uncertain about the monophyly of Pyrginae, as our study reveals homoplastic character distributions that could potentially be explained by the occurrence of ancestral introgression among its early lineages. Hence, when a certain combination of genes was used for phylogenetic construction, Pyrginae was recovered monophyletic (e.g., Figure 1B), as in the previous study (Warren, Ogawa & Brower, 2009). This result appears to be supported by morphology. Similarly, we remain uncertain about the true relationships among Eudaminae, Pyrginae and the clade containing Heteropterinae, Trapezitinae and Hesperinae, due to short branches that may be explained by their rapid divergence from each other and possibly an introgression between Eudaminae and Euschemoninae. However, the arrangement of Euschemoninae as sister to all Hesperiidae (except Coeliadinae), and Eudaminae as sister to Pyrginae, is generally supported by morphology. We suggest that the relationships shown in Figure 1B (also in Figure 3B) should be used as the preferred phylogenetic hypothesis until a better-resolved phylogeny is available.

In addition, we observed unexpected placement of a few taxa within Pyrginae. For instance, *Eracon*, which was previously classified under Pyrgini (Warren, Ogawa & Brower, 2009), was found herein to group with Achlyodini. Likewise, *Clito* grouped within either Pyrgini or Erynnini based on dataset specific analyses. Moreover, we note that both *Clito* and *Eracon* sequences in our dataset have >70% missing sites. Hence, it is likely that the presence of insufficient informative sites within these taxa might influence their true positions in the phylogeny (Wiens 2003; Wiens and Morrill, 2011). Therefore, for systematic implications, we pruned *Clito, Eracon* and three additional taxa with a large percentage of missing data from the dataset and reanalysed with gene partitions (Figure 3). We observed no change in tree topology or node support values as a result of pruning these taxa. Hence, although they may appear on the tree in unorthodox positions, it is unlikely that presence of these taxa has any impact on our interpretation of higher-level relationships in the dataset as a whole.

We observed that the genus *Cabirus*, previously included within Eudaminae, grouped within Achlyodini (subfamily Pyrginae). Further study of the morphology of *Cabirus* is needed to corroborate this placement, although its position outside of Eudaminae seems to be correct.
Three tribes within Hesperiinae – Aeromachini, Taractrocerini and Baorini – are monophyletic with high BS values. However, we are uncertain about the phylogenetic status of other proposed tribes within Hesperiinae due to prevalence of low BS values along the short internal branches. This indicates the possible occurrences of rapid ancestral radiation within Hesperiinae and needs further investigation.

Conclusions:

With a broad coverage of all known subfamilies, we present the higher level relationships among skipper butterflies. Our analyses suggest possible conflicting topologies with respect to (i) monophyly or paraphyly of Pyrginae and (ii) sister or non-sister status of Eudaminae and Euschemoninae. However none of the topologies resulting from our alternative analyses is strongly supported, and incongruences in signal among genes cannot satisfactorily resolve these differences. We surmise that there is insufficient phylogenetic information in the current dataset to resolve these relationships. It is unlikely that adding data from a few more genes will improve the results, but data from entire genomes may result in a better-resolved phylogeny. However, taking morphological characters into consideration, we suggest one of the topologies as most likely (Figs. 1B & 3B), and that this topology will aid in future studies on this group.

References:

Ackery PR. 1984. The Biology of Butterflies. (Eds. Vane-Wright, R. I. & Ackery, P. R.) 9–21 Academic Press.

Baker RH, DeSalle R. 1997. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology 46(4):654-673. DOI: 10.1093/sysbio/46.4.654.

Boggs CL, Watt WB, Ehrlich PR (Eds.) 2003. Butterflies: ecology and evolution taking flight. Chicago: University of Chicago Press. 739 pp.

Braby MF, Vila R, Pierce NE. 2006. Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zoological Journal of the Linnean Society. 147(2):239-275. DOI: 10.1111/j.1096-3642.2006.00218.x.

Bremer K. 1994. Branch support and tree Stability. Cladistics 10(3):295–304. DOI: 10.1111/j.1096-0031.1994.tb00179.x.
Burleigh JG, Mathews S. 2004. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plat tree of life. *Am. J. Bot.* 91(10): 1599-1613. DOI: 10.3732/ajb.91.10.1599.

Campbell DL, Brower AVZ, Pierce NE. 2000. Molecular evolution of the *wingless* gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: Papilionoidea). *Molecular Biology and Evolution* 17(5):684-696.

Caterino MS, Reed RD, Kuo MM, Sperling FA. 2001. A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). *Systematic Biology* 50(1):106–127. DOI: 10.1080/10635150119988.

Chou, I. 1994. *Monographia Rhopalocerorum Sinensium*. Henan Scientific and Technological Publishing House.

Chou, I. 1999. *Classification and identification of Chinese butterflies*. Henan Scientific and Technological Publishing House.

Cummins CA, McInerney JO. 2011. A method for inferring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases. *Systematic Biology* 60(6):833-844. DOI: 10.1093/sysbio/syr064.

Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. *Nature* 452(7188):745–9. doi:10.1038/nature06614.

Eckert AJ, Carstens BC. 2008. Does gene flow destroy phylogenetic signal? The performance of three methods for estimating species phylogenies in the presence of gene flow. *Molecular Phylogenetics and Evolution* 49(3): 832-842. DOI: 10.1016/j.ympev.2008.09.008.

Espeland M, Hall JP, DeVries PJ, Lees DC, Cornwall M, Hsu YF, Wu LW, Campbell DL, Talavera G, Vila R, Salzman S, Ruehr S, Lohman DJ, Pierce N. 2015. Ancient Neotropical origin and recent recolonisation: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). *Molecular Phylogenetics and Evolution* 93:296–306. DOI: 10.1016/j.ympev.2015.08.006.

Evans WH. 1949. A catalogue of the Hesperiidae from Europe, Asia, and Australia in the British Museum (Natural History). British Museum, London.

Felsenstein J. 1985. Phylogenies and the comparative method. *The American Naturalist* 125(1):1-15.
Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple
sequences. Statistical Science 7(4):457–472.

Goloboff PA. 1999. Analyzing large data sets in reasonable times: solutions for composite
optima. Cladistics 15(4):415–428. DOI: 10.1111/j.1096-0031.1999.tb00278.x.

Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis.
Cladistics 24(5):774-786. DOI: 10.1111/j.1096-0031.2008.00217.x.

Heikkila M, Kaila L, Mutanen M, Pena C, Wahlberg N. 2012. Cretaceous origin and repeated
tertiary diversification of the redefined butterflies. Proceedings of the Royal Society B:
Biological Sciences 279(1731):1093–1099. DOI: 10.1098/rspb.2011.1430.

Hernández-Roldán JL, Bofill R, Dapporto L, Munguira ML, Vila R. 2014. Morphological and
chemical analysis of male scent organs in the butterfly genus Pyrgus (Lepidoptera:
Hesperiidae). Organisms Diversity & Evolution 14(3):269-278. DOI: 10.1007/s13127-
014-0170-x.

Huelsenbeck JP, Larget B, Alfaro ME. 2004. Bayesian phylogenetic model selection using
reversible jump markov chain monte carlo. Mol. Biol. Evol. 21(6):1123-1133.

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, ... & Suh A. 2014. Whole-genome
analyses resolve early branches in the tree of life of modern birds. Science
346(6215):1320-31. DOI: 10.1126/science.1253451.

Johnson Johnson BR, Borowiec ML, Chiu JC, Lee EK, Atallah J, Ward PS. 2013.
Phylogenomics resolves evolutionary relationships among ants, bees, and wasps. Curr
Biol. 23:2058–062. doi:10.1016/j.cub.2013.08.050.

Kim MJ, Wang AR, Park JS, Kim I. 2014. Complete mitochondrial genomes of five skippers
(Lepidoptera: Hesperiidae) and phylogenetic reconstruction of Lepidoptera. Gene
549(1):97-112. DOI: 10.1016/j.gene.2014.07.052.

Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C,
Moroz LL, Lieb B, Halanych KM. 2011. Phylogenomics reveals deep molluscan
relationships. Nature 477:452–6. doi:10.1038/nature10382.

Kodandaramaiah U, Lees DC, Müller CJ, Torres E, Karanth KP, Wahlberg N. 2010.
Phylogenetics and biogeography of a spectacular Old World radiation of butterflies: the
subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrini). BMC Evolutionary Biology
10(1):172. DOI: 10.1186/1471-2148-10-172.

Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: Combined Selection
of Partitioningssdhjh Schemes and Substitution Models for Phylogenetic
Analyses. Molecular Biology and Evolution 29:1695–1701.
Lento GM, Hickson RE, Chambers GK, Penny D. 1995. Use of spectral analysis to test hypotheses on the origin of pinnipeds. Molecular biology and evolution 12(1):28–52. DOI: 10.1093/oxfordjournals.molbev.a040189.

Mielke OHH. 2005. Catalogue of the American Hesperioidea: Hesperiidae (Lepidoptera). Sociedade Brasileira de Zoologia, Parana, Brazil. 6 vols.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA: 1 - 8.

Nabholz B, Kunstner A, Wang R, Jarvis ED, Ellegren H. 2011. Dynamic evolution of base composition: causes and consequences in avian phylogenomics. Molecular Biology and Evolution 28(8):2197–2210. DOI: 10.1093/molbev/msr047.

Nazari V, Zakharov EV, Sperling FA. 2007. Phylogeny, historical biogeography and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Molecular Phylogenetics and Evolution 42(1):131–156. DOI: 10.1016/j.ympev.2006.06.022.

Nixon KC. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15(4):407-414. DOI: 10.1111/j.1096-0031.1999.tb00277.x.

Planet PJ. 2006. Tree disagreement: measuring and testing incongruence in phylogenies. Journal of Biomedical Informatics 39(1):86–102. DOI: 10.1016/j.jbi.2005.08.008.

Pollard DA, Iyer VN, Moses AM, Eisen MB. 2006. Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS Genet 2(10):e173. DOI: 10.1371/journal.pgen.0020173.

Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1.6. Available at http://beast.bio.ed.ac.uk/Tracer.

Regier JC, Shultz JW, Ganley AR, Hussey A, Shi D, Ball B, Zwick A, Stajich JE, Cummings MP, Martin JW, Cunningham CW. 2008. Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Systematic Biology 57(6):920–938. DOI: 10.1080/10635150802570791.

Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463(7284):1079–1083. DOI: 10.1038/nature08742.

Richart CH, Hayashi CY, Hedin M. 2016. Phylogenomic analyses resolve an ancient trichotomy at the base of Ischyropsalidoidea (Arachnida, Opiliones) despite high levels of gene tree
559 conflict and unequal minority resolution frequencies. Mol. Phyl. Evol. 95:171-182. DOI:
560 10.1016/j.ympev.2015.11.010.
561 Rokas A, King N, Finnerty J, Carroll SB. 2003. Conflicting phylogenetic signals at the base of
562 the metazoan tree. Evolution and Development 5(4):346-359. DOI: 10.1046/j.1525142-
563 X.2003.03042.x.
564 Rokas A, Williams BL, King N, Carroll SB. 2003. Genome-scale approaches to resolving
565 incongruence in molecular phylogenies. Nature 425(6960):798-804. DOI:
566 10.1038/nature02053.
567 Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
568 Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic
569 inference and model choice across a large model space. Systematic biology 61(3):539-42.
570 DOI: 10.1093/sysbio/sys029.
571 Rota, J. & Wahlberg, N. 2012. Exploration of data partitioning in an eight-gene dataset:
572 phylogeny of metalmark moths (Lepidoptera, Choreutidae). Zoologica Scripta 41:
573 536-546. doi:10.1111/j.1463-6409.2012.00551.x.
574 Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. 2014. From algae to
575 angiosperms - inferring the phylogeny of green plants (Viridiplantae) from 360 plastid
576 genomes. BMC Evol. Biol. 14:23. DOI: 10.1186/1471-2148-14-23.
577 Scott JA. 1985. The phylogeny of butterflies (Papilionoidea and Hesperioidea). J. Res.
578 Lepidoptera 23(4):241–281.
579 Scott JA & Wright DM. 1990. Butterflies of Europe (eds Kudrna, O.). Aula-Verlag.
580 Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic
581 Biology 51(3):492-508. DOI: 10.1080/10635150290069913.
582 Simonsen TJ, Zakharov EV, Djernaes M, Cotton AM, Vane-Wright RI, Sperling FA. 2011.
583 Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference
584 to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27(2):113–137. DOI:
585 10.1111/j.1096-0031.2010.00326.x.
586 Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SCS, Rouse GW, Giribet G, Dunn CW.
587 2011. Resolving the evolutionary relationships of molluscs with phylogenomic tools.
588 Nature 480:364–7. doi:10.1038/nature10526.
589 Smith SA, Moore MJ, Brown JW and Yang Y. 2015. Analysis of phylogenomic datasets reveals
590 conflict, concordance, and gene duplications with examples from animals and plants.
591 BMC Evol. Biol. 15:150. DOI: 10.1186/s12862-015-0423-0.
Soltis DE, Soltis PS, Zanis MJ. 2002. Phylogeny of seed plants based on evidence from eight genes. *Am. J. Bot.* 89(10): 1670-1681. DOI: 10.3732/ajb.89.10.1670.

Song S, Liu L, Edwards SV, Wu S. 2012. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. *Proc. Nat. Acad. Sci.* 109(37):14942-14947.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30:1312–1313. DOI: 10.1093/bioinformatics/btu033.

Voss EG. 1952. On the classification of the Hesperiidae. *Annals of the Entomological Society of America* 45(2):246–258. DOI: 10.1093/aesa/45.2.246.

Wahlberg N, Leneveu J, Kodandaramaiah U, Pena C, Nylin S, Freitas AVL, Brower AVZ. 2009. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. *Proceedings of the Royal Society B: Biological Sciences* 276:4295-4320. DOI: 10.1098/rspb.2009.1303.

Wahlberg N, Rota J, Braby MF, Pierce NE, Wheat CW. 2014. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. *Zoologica Scripta* 43(6):641–650. DOI: 10.1111/zsc.12075.

Wahlberg N, Wheat CW. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. *Systematic Biology* 57(2):231-242. DOI: 10.1080/10635150802033006.

Warren AD, Ogawa JR, Brower AVZ. 2008. Phylogenetic relationships of subfamilies and circumscription of tribes in the family Hesperiidae (Lepidoptera: Hesperioidea). *Cladistics* 24(5):642-676. DOI: 10.1111/j.1096-0031.2008.00218.x.

Warren AD, Ogawa JR, Brower AVZ. 2009. Revised classification of the family Hesperiidae (Lepidoptera: Hesperioidea) based on combined molecular and morphological data. *Systematic Entomology* 34(3):467–523. DOI: 10.1111/j.1365-3113.2008.00463.x.

Whitfield JB, Lockhart PJ. 2007. Deciphering ancient rapid radiations. *Trends in Ecology & Evolution* 22(5):258–265. DOI: 10.1016/j.tree.2007.01.012.

Wiens, JJ. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. *Systematic Biology* 52(4):528-538. DOI: 10.1080/10635150390218330.

Wiens, JJ and Morrill MC. 2011. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. *Systematic Biology* 60(5):719-731. DOI: 10.1093/sysbio/syr025.
Wolf YI, Rogozin IB, Grishin NV, Koonin EV. 2002. Genome trees and the tree of life. *Trends in Genetics* 18(9):472-479. DOI: 10.1016/S0168-9525(02)02744-0.

Xi Z, Liu L, Rest JS, Davis CC. 2014. Coalescent versus concatenation methods and the placement of amborella as sister to water lilies. *Systematic Biology* 63(6): 919-932. DOI: 10.1093/sysbio/syu055.

Xia X. 2013. DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. *Mol Biol Evol* 30(7): 1720-1728. DOI: 10.1093/molbev/mst064.

Yuan X, Gao K, Yuan F, Wang P, Zhang Y. 2015. Phylogenetic relationships of subfamilies in the family Hesperiidae (Lepidoptera: Hesperioidea) from China. *Scientific Reports* 5:11140. DOI: 10.1038/srep11140.

Zwick A, Reiger JC, Zwickl DJ. 2012. Resolving discrepancy between nucleotides and amino acids in deep-level arthropod phylogenomics: differentiating serine codons in 21-amino acid models. *PLoS ONE* 7(11):e47450. DOI: 10.1371/journal.pone.0047450.
Figure 1

Comparison of best ML trees across analyses.

The best ML trees from the concatenated dataset (A), combined-nuclear dataset (B) and degenerated dataset (degen_1) (C). The values at nodes in (A) and (B) represent support from 1000 bootstrap trees analyzed with TIGER-partitions / gene-partitions. In (C), the values at the nodes are the output from the analyses using TIGER-partitions only and the nodes without any value have bootstrap support < 20. The other degenerated datasets (nt_12, noLRall1+nt2) have similar or more fluctuating rearrangements for the nodes with BS<20.

Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.
Figure 2

Comparison of the supports/conflicts on the Lento plots.

The Lento plots were drawn from 105 ML trees recovered during best ML tree search across different datasets using two different partitioning schemes. The X-axis represents each non-trivial clade, with filled circles indicating the clade composition; the Y-axis shows relative support (values above zero) or conflict (values below zero). Splits are colour coded to aid comparison across analyses. The splits which are not coloured are found only in that particular analysis and not recovered from others.
Figure 3

The ML trees from a reduced dataset.

The ML trees from the analyses of (A) the concatenated dataset with gene partitions, and (B) the combined nuclear dataset with gene partitions. *Clito, Eracon* and three additional taxa were removed prior to the analyses (see text for detail). The size of the circle at the node corresponds to the bootstrap support that was derived from 1000 pseudo-replicates. All taxa are colour coded based on their subfamily status, except the taxa within subfamily Pyrginae which are coloured based on their tribe. Silhouette © PhyloPic.
