Adhesion-driven patterns in a calcium-dependent model of cancer cell movement

Kaouri, K · Bitsouni, V · Buttenschön, A · Thul, R

Received: date / Accepted: date

Abstract Cancer cells exhibit increased motility and proliferation, which are instrumental in the formation of tumours and metastases. These pathological changes can be traced back to malfunctions of cellular signalling pathways, and calcium signalling plays a prominent role in these. We formulate a new model for cancer cell movement which for the first time explicitly accounts for the dependence of cell proliferation and cell-cell adhesion on calcium. At the heart of our work is a non-linear, integro-differential (non-local) equation for cancer cell movement, accounting for cell diffusion, advection and proliferation. We also employ an established model of cellular calcium signalling with a rich dynamical repertoire that includes experimentally observed periodic wave trains and solitary pulses. The cancer cell density exhibits travelling fronts and complex spatial patterns arising from an adhesion-driven instability (ADI). We show how the different calcium signals and variations in the strengths of cell-cell attraction and repulsion shape the emergent cellular aggregation patterns, which are a key component of the metastatic process. Performing a linear stability analysis, we identify parameter regions corresponding to ADI. These regions are confirmed by numerical simulations, which also reveal different types of aggregation patterns and these patterns are significantly affected by Ca^{2+}. Our study demonstrates that the maximal cell density decreases with calcium concentration, while the frequencies of the calcium oscillations and the cell density oscillations are approximately equal in many cases. Furthermore, as the calcium levels increase the speed of the travelling fronts increases, which is related to a higher cancer invasion potential. These novel insights provide a step forward in the design of new cancer treatments that may rely on controlling the dynamics of cellular calcium.

Keywords Cancer cells · Non-local model of cancer · Calcium · Cell-cell adhesion · Travelling wave · Aggregation patterns · Adhesion-driven instability · Oscillatory signalling pathway
Mathematics Subject Classification (2000) MSC 35B36 · MSC 35Q92 · MSC 35R09 · MSC 70K50 · MSC 92C15 · MSC 92C17 · MSC 92-08

1 Introduction

Cell-cell adhesion and cellular proliferation are fundamental features of multicellular organisms, along with cell division, migration and apoptosis. These processes are orchestrated and coordinated by a multitude of cellular signalling pathways (Alberts et al, 2000). When these signalling cascades are disturbed, numerous pathologies ensue, including cancer. Amongst the many molecular changes that characterise cancer, alterations of intracellular calcium (Ca2+) signalling have been identified as a crucial driver (Colomer and Means, 2007). In particular, Ca2+ has been reported as a key factor in cellular proliferation (Roderick and Cook, 2008; Shapovalov et al, 2013) and in cellular adhesion (Weinberg, 2013). Here, we formulate and analyse for the first time a model that describes the evolution of a cancer cell density incorporating the effects of Ca2+ in the adhesion and proliferation processes.

Rising levels of intracellular Ca2+ have been shown to increase the proliferation of cancer cells in various cancer types such as breast and prostate cancer, melanoma, hepatocellular and non-small-cell lung carcinoma (Prevarskaya et al, 2014, 2018). Experiments (Simpson and Arnold, 1986; Taylor and Simpson, 1992) have shown that increasing extracellular Ca2+ levels increased intracellular calcium Ca2+ levels, which increased the cell number and the DNA synthetic ability of cell lines.

Cellular adhesion is mediated through cadherins, which are transmembrane proteins and belong to the class of calcium-dependent cell adhesion molecules (CAMs) (Weinberg, 2013). As an example, consider epithelial cells, which bind to each other by linking the extracellular domains of E-cadherins (Morales et al, 2002). The cytosolic domain of E-cadherin binds to β-catenin, which in turn binds to the cytoskeleton. Changes in the function of β-catenin result in the loss of the ability of E-cadherin to sustain sufficient cell-cell adhesion (Makena and Rao, 2020; Wijnhoven et al, 2000), while alterations in any type of cadherin expression may affect cell adhesion and signal transduction (Cavallaro et al, 2002). Intracellular Ca2+ directly impacts on the dynamics of both cadherins and catenins (Ko et al, 2001). Moreover, Hills et al (2012) have shown that activation of extracellular Ca2+-sensing receptors leads to an increase in E-cadherin expression and an increase in the binding of β-catenin. In cancer, disrupted cell-cell adhesion due to abnormal expression of cadherins and their associated catenins has been linked to metastasis (Morales et al, 2002). For instance, Byers et al, 1995; Cavallaro and Christofori, 2004 have shown a reduced expression of cadherins in various cancer types, including melanoma, prostate, breast cancer, invasive carcinomas and carcinoma cell lines, and cancers of epithelial origin, when Ca2+ levels are increased. This results in a reduced force between cells and consequently to cell migration. These results are in line with findings that show that altering CAM function in metastatic cancer cells blocked their ability to invade healthy tissue and move to secondary sites (Kotteas et al, 2014; Naik et al, 2008; Slack-Davis et al, 2009; Zhu et al, 1992). Taken together, the combined changes in cell-cell adhesion and the increase in the proliferation rate and their dependence on Ca2+ are important mechanisms in cancer and enhance the formation of cancer cell clusters/aggregations that can migrate in a collective manner, a process critical for cancer progression (Friedl et al, 2004; Glimsky et al, 2003; Knútsdóttir et al, 2014).

Ca2+ signalling uses an extensive molecular repertoire of signalling components termed the Ca2+ signalling “toolkit” (Berridge et al, 2000). A key feature of Ca2+ signalling is Ca2+ release from the Endoplasmic Reticulum (ER) to the cytosol through inositol-1,4,5-trisphosphate (InsP\textsubscript{3}) receptors (InsP\textsubscript{3}Rs). Together with Ca2+ resequestration from the cytosol through sarco-endoplasmic Ca2+ ATPase (SERCA) pumps, a process known as calcium-induced-calcium release can give rise to intracellular Ca2+ oscillations (Berridge and Galione, 1988; Berridge et al, 2000; Parekh, 2011; Dupont and Combettes, 2016; Thul et al, 2008; Dupont et al, 2011a, 2016b; Schuster et al, 2002; Uhlén and Fritz, 2010; Powell et al, 2020; Sneyd et al, 2017). In addition, Ca2+ can spread across a population of cells, forming an intercellular Ca2+ wave (Bereiter-Hahn et al, 2007).
Mathematical models of intracellular Ca^{2+} oscillations vary substantially in their complexity, ranging from two coupled nonlinear ordinary differential equations (ODEs) to three-dimensional hybrid partial differential equations (PDEs) — see Dupont et al (2016a), Falcke et al (2018) for recent perspectives. In the present study, we employ the model developed in Atri et al (1993), which for simplicity we will call the ‘Atri model’. The Atri model is a so-called ‘minimal’ model consisting of only two ODEs that can generate non-linear relaxation oscillations at constant InsP_3 concentrations (Dupont et al, 2016b; Keener and Sneyd, 2009a,b). Importantly, the Atri model most consistently described hormone-induced Ca^{2+} oscillations in HeLa cells (an immortal cell line derived from cervical cancer cells), compared to seven other minimal models for intracellular Ca^{2+} oscillations (Estrada et al, 2016). In addition, the mathematical structure of the Atri model allows us to determine analytically the parameter range sustaining calcium oscillations and other bifurcations of the system — see Atri et al (1993), Kaouri et al (2019). Despite its simplicity, the Atri model generates prototypical Ca^{2+} signals such as Ca^{2+} oscillations and action potentials which correspond to periodic wave trains and solitary pulses, respectively, when Ca^{2+} diffusion is taken into account. The Atri model is, hence, sufficient for our modelling framework since our focus is on studying cancer cell movement with Ca^{2+} signals as input.

We base our model for the cancer cell density on previously published work (Armstrong et al (2006); Bitsouni et al (2017, 2018); Bitsouni and Eftimie (2018); Chaplain et al (2011); Dyson et al (2016); Domschke et al (2014); Eftimie et al (2017); Gerisch and Chaplain (2008); Gerisch and Painter (2010); Green et al (2010); Hillen and Buttenschön (2019); Painter et al (2015); Shuttleworth and Trucu (2019); Szymańska et al (2009)). These models include nonlinear PDEs with reaction terms for cell growth/proliferation and a non-local advection term, describing cell-cell adhesion. The latter is expressed as an integral term that describes how a cell at position \mathbf{x} adheres to other cells at position $\mathbf{x} \pm \mathbf{s}$, for some $\mathbf{s} > 0$ within the cell’s sensing radius (Armstrong et al, 2006). In the present work, both the rate of cell proliferation and the strength of adhesion are taken to be Ca^{2+}-dependent. It is worth noting that additional molecular components and processes could be included. For instance, integrins and TGF-β proteins are explicitly represented in (Bitsouni et al, 2018; Engwer et al, 2017) and (Bitsouni et al, 2017; Eftimie et al, 2017), respectively. Moreover, collagen-controlled cell-matrix adhesion, where Ca^{2+} is considered as constant, has been developed in (Shuttleworth and Trucu, 2019), while (Ramis-Conde et al, 2008, 2009) studied cadherin-dependent cellular adhesion in an individual-cell-based multiscale model. However, since our study explores the impact of intracellular Ca^{2+} on cancer cell movement, we focus on diffusion, cell-cell adhesion and proliferation, the core components of cancer cell behaviour.

The structure of the paper is as follows. In Section 2, we formulate a new model that captures the crucial role of Ca^{2+} signalling in cancer by incorporating Ca^{2+}-dependent adhesion and proliferation effects. In Section 3, we perform a linear stability analysis and show the ability of the model to generate ADIs and hence cell aggregations. In Section 4, we solve the model numerically. We present various types of aggregation patterns, as well as travelling wave patterns. Taken together, our work provides new insights into the connection between Ca^{2+} signalling and cancer cell movement, and suggests a mechanistic approach that can contribute to developing Ca^{2+}-transport-targeting tools for cancer diagnosis and treatment (Prevarskaya et al, 2013, 2014).
2 A non-local model for calcium signalling in cancer

We denote by \(u(x,t) \) the cancer cell density, by \(c(x,t) \) the cytosolic Ca\(^{2+}\) concentration and \(h(x,t) \) is the fraction of InsP\(_3\)Rs on the ER that have not been inactivated by Ca\(^{2+}\). Then the model takes the form

\[
\frac{\partial c}{\partial t} = D_c \frac{\partial^2 c}{\partial x^2} + J_{ER} - J_{pump}, \tag{2.1a}
\]

\[
\tau_p \frac{\partial h}{\partial t} = \frac{k_3^2}{k_3^2 + c^2} - h, \tag{2.1b}
\]

\[
\frac{\partial u}{\partial t} = D_u \frac{\partial^2 u}{\partial x^2} - \frac{\partial}{\partial x} \left(uF[c,u] + f(c,u) \right), \tag{2.1c}
\]

where

\[J_{ER} = kf\mu([\text{InsP}_3])h \frac{bk_1 + c}{k_1 + c} \quad \text{and} \quad J_{pump} = \frac{\gamma c}{k_\gamma + c}. \]

Equations (2.1a) and (2.1b) are the spatially extended Atri model for Ca\(^{2+}\) signalling. In equation (2.1a) the term \(J_{ER} \) is the flux of Ca\(^{2+}\) from the ER into the cytosol through InsP\(_3\)Rs, where the constant \(k_f \) is the calcium flux when all InsP\(_3\)Rs are open and activated, \(b \) is a basal current through the InsP\(_3\)Rs, and \(\mu([\text{InsP}_3]) = [\text{InsP}_3]/(k_\mu + [\text{InsP}_3]) \) is the fraction of the InsP\(_3\)Rs that have InsP\(_3\) bound and is an increasing function of [InsP\(_3\)]. In the spatially clamped Atri model relaxation oscillations can be sustained at constant [InsP\(_3\)], and \(\mu \) is a bifurcation parameter (see Atri et al. (1993); Kaouri et al. (2019) for representative bifurcation diagrams). \(J_{pump} \) is the Ca\(^{2+}\) flux through the SERCA pumps where \(\gamma \) is the maximal pump rate and \(k_\gamma \) is the Ca\(^{2+}\) concentration at which the pump rate is at half-maximum. In equation (2.1b) the time constant \(\tau_p > 1 \) represents the slower time-scale of the inactivation of the InsP\(_3\)R by Ca\(^{2+}\) compared to its activation (Atri et al. 1993, Dupont et al. 2016b). Equations (2.1c) is a non-local, non-linear PDE for the cell density that combines diffusion, cell-cell adhesion (advection) and proliferation (see Domschke et al. (2014) and references therein). All parameter values can be found in Tables 1 and 2.

2.1 Effect of Ca\(^{2+}\) on cell proliferation

The role of Ca\(^{2+}\) signals in the proliferation of cancer cells is cancer type specific due to differences in the behaviour of the Ca\(^{2+}\)-conducting channels and pumps (Monteith et al. 2017). Here, we assume that Ca\(^{2+}\) enhances the proliferation rate since it has been shown that InsP\(_3\)Rs are upregulated in cancer (Monteith et al. 2007, 2017), leading to an enhanced proliferation and survival in all types of cancer (Cárdenas et al. 2016; Prevarskaya et al. 2018; Rezuchova et al. 2019; Tsunoda et al. 2005). Moreover, assuming that cancer cells proliferate in a logistic manner (to describe the observed slow-down in tumour growth following the loss of nutrients (Laird 1964)), we choose the growth function \(f(c,u) \) as

\[
f(c,u) = r_1 \left(1 + g(c) \right) u \left(1 - \frac{u}{k_u} \right), \tag{2.2}
\]

where \(r_1 \) is the basal growth rate of \(u \) and \(k_u \) is the carrying capacity. The Ca\(^{2+}\)-dependent function \(g(c) \) describes the enhanced proliferation of cancer cells that is associated with a major re-arrangement of Ca\(^{2+}\) pumps, Na\(^+\)/Ca\(^{2+}\) exchangers and Ca\(^{2+}\) channels (Capio et al. 2007; Simpson and Arnold 1986, Taylor and Simpson 1992); we assume that it is given by

\[
g(c) = \frac{r_2 c^2}{r_3 + c^2}, \tag{2.3}
\]

i.e. it saturates as \(c \) increases and vanishes at \(c = 0 \).
2.2 Effect of Ca\(^{2+}\) on cell-cell adhesion

Cancer cells often show a decrease in cell-cell adhesion compared to healthy cells, which correlates with tumour invasion and metastasis (Cavallaro and Christofori, 2001; Makena and Rao, 2020). When adhesive bonds are formed and broken a cell-cell adhesion-mediated directed cancer cell migration occurs as a result of cellular attraction and repulsion. The cell-cell adhesion forces are created through the binding of adhesive molecules such as cadherins (Byers et al, 1995; Kim et al, 2011; Panorchan et al, 2006), see Section 1. Thus, we consider a calcium-dependent adhesion term in a bounded domain \(\Omega = [0, R_s] \) in the cell density equation (2.1c) where the non-local cell-cell interactions are described by a function that depends on cell density and Ca\(^{2+}\),

\[
F[c, u] = \frac{S(c(x,t))}{R_s} \int_0^{R_s} K_{int}(r) \left(u(x+r,t) - u(x-r,t) \right) dr,
\]

where \(K_{int} \in L^\infty(\Omega) \) is the interaction kernel between cancer cells, with \(\partial_r K_{int} \in L^\infty(\Omega) \), and \(S(c) \) the adhesion strength function, which depends on Ca\(^{2+}\), \(R_s > 0 \) is the cell sensing ‘radius’, i.e. the maximum range over which a cell can detect surrounding cells (Armstrong et al, 2006). Here, we assume that \(R_s \) equals five times the length of an average cell (Armstrong et al, 2006; Gerisch and Chaplain, 2008). Biologically this represents the extent of the cell’s protrusions, e.g. filopodia. We define an attraction-repulsion kernel (see Eftimie et al, 2007, 2017) as

\[
K_{int}(x) = q_a K_a(x) - q_r K_r(x),
\]

with \(q_a \) and \(q_r \) describing the magnitude of attractive and repulsive interactions, respectively, and \(K_a(x) \) and \(K_r(x) \) denoting the spatial range over which these interactions take place. We will take the kernel to be attractive at medium/long ranges (i.e. at the edges of the cell) ensuring cell cohesion, and repulsive at very short ranges (i.e. over the cell surface) to represent cell volume-exclusion effects and thus prevent unrealistically high cell densities (Palachanis et al, 2015). Throughout the rest of this study, we consider Gaussian attraction and repulsion kernel (Eftimie et al, 2007) so that

\[
K_{int}(x) = \frac{q_a}{\sqrt{2\pi m_a^2}} e^{-\frac{(x-s_a)^2}{2m_a^2}} - \frac{q_r}{\sqrt{2\pi m_r^2}} e^{-\frac{(x-s_r)^2}{2m_r^2}},
\]

where \(s_a \) and \(s_r \) represent the location of maximal attraction and repulsion, respectively, with \(s_r < s_a < R_s \). The constants \(m_j = s_j/8, j = a, r \), represent the widths of the interaction kernels, respectively. They are chosen such that the support of more than 98% of the mass of the kernels is inside the interval \([0, \infty)\).

As discussed in Section 1, expression of Ca\(^{2+}\)-dependent cell-cell adhesion molecules is reduced in several human cancer types when Ca\(^{2+}\) levels are increased (Byers et al, 1995; Cavallaro and Christofori, 2004), which leads to a decreased adhesive force between the cells. A biologically realistic choice for the adhesion strength function is thus

\[
S(c) = s^* \left(1 - \frac{a_1 c}{a_2 + c} \right)
\]

an inverse Hill function for \(c \) that tends to zero for large \(c \) values. We estimated the parameters \(a_1, a_2 \) and \(s^* \) so that the adhesive force exhibits a biologically sensible response to Ca\(^{2+}\) variations (for parameter values see Table 2).
2.3 Non-dimensionalized model

To non-dimensionalize the model (2.1), we define the following quantities:

\[
\tilde{t} = \frac{t}{\tau_h}, \quad \tilde{x} = \frac{x}{L_0}, \quad \tilde{c} = \frac{c}{k_1}, \quad \tilde{u} = \frac{u}{k_u}, \quad \tilde{R}_s = \frac{R_s}{L_0}, \quad \tilde{q}_a = k_u q_a, \quad \tilde{q}_r = k_u q_r,
\]

\[
\tilde{S}(\tilde{c}) = \frac{\tau_h}{\tau_m^2} S(k_1 \tilde{c}).
\]

The length scale, \(L_0 \), is defined as the typical cell size/diameter of an average cancer cell. Cancer cells can be smaller or bigger than healthy cells depending on several factors including the cancer type. HeLa cells, for example, are around 40 \(\mu \)m in diameter, while they measure 20 \(\mu \)m in their naturally compressed state (Boulter et al. 2006; Puck et al. 1956). Generally, the average cancer cell diameter is between 20 – 30 \(\mu \)m (Ha and Bhagavan. 2011). Here, we choose \(L_0 = 20 \mu m \), while we set the time scale as \(\tau_h = 2s \) (Kaouri et al. 2019).

In addition, we rescale the cell density with the cell carrying capacity, \(k_u \), taken to be \(6.7 \cdot 10^4 \) cell/volume (Gerisch and Chaplain 2008). We obtain the dimensionless parameters:

\[
\tilde{D}_c = \frac{D_c \tau_h}{L_0^2}, \quad K_1 = \frac{k_f \tau_h}{k_1}, \quad \Gamma = \frac{\gamma \tau_h}{k_1}, \quad K = \frac{k_r}{k_1}, \quad K_2 = \frac{k_r}{k_1},
\]

\[
\tilde{D}_a = \frac{D_a \tau_h}{L_0^2}, \quad \tilde{r}_1 = r_1 \tau_h, \quad \tilde{r}_3 = \frac{r_3}{k_1^2},
\]

We also briefly discuss the choice of the diffusion coefficients. It has been shown in (Allbritton et al. 1992) that the diffusion coefficient of free cytosolic Ca\(^{2+}\) is \(2.23 \cdot 10^{-6} \) cm\(^2\) s\(^{-1}\). The action of omnipresent Ca\(^{2+}\) buffers can be subsumed into an effective Ca\(^{2+}\) diffusion coefficient, which we here set to \(D_c = 0.2 \cdot 10^{-6} \) cm\(^2\) s\(^{-1}\). Assuming that the delay of Ca\(^{2+}\) propagation through gap junctions joining cells is negligible, we arrive at \(\tilde{D}_c = 0.1 \). The diffusion coefficient of cancer cells is in the range of \(10^{-11} - 10^{-9} \) cm\(^2\) s\(^{-1}\) (Bray 1992; Chaplain and Lolas 2006; Franssen et al. 2019). This corresponds to dimensionless values of \(\tilde{D}_a \) between \(5 \cdot 10^{-6} - 5 \cdot 10^{-3} \).

As in (Domschke et al. 2014), we introduce the dimensionless functions \(\tilde{K}_{a,r} (\tilde{r}) = L_0 K_{a,r} (L_0 \tilde{r}) = L_0 K_{a,r} (r) \) so that

\[
\tilde{K}_{\text{int}} (\tilde{r}) = L_0 k_u (q_a K_a (r) - q_r K_r (r)).
\]

Therefore, we have for the non-local term

\[
F [c, u] (x, t) =
\]

\[
= \frac{L_0}{\tau_h \tilde{R}_s} \tilde{S}(\tilde{c}) \tilde{q}_a \int_0^{\tilde{R}_s} \left(\tilde{K}_a (\tilde{r}) - \frac{\tilde{q}_r}{\tilde{q}_a} \tilde{K}_r (\tilde{r}) \right) (\tilde{u} (\tilde{x} + \tilde{r}, \tilde{t}) - \tilde{u} (\tilde{x} - \tilde{r}, \tilde{t})) \, d\tilde{r}
\]

\[
= \frac{L_0}{\tau_h \tilde{R}_s} \tilde{s}^* \tilde{q}_a \tilde{F} \tilde{F} [\tilde{c}, \tilde{u}] (\tilde{x}, \tilde{t}) = F_0 \tilde{F} \tilde{F} [\tilde{c}, \tilde{u}],
\]

where \(F_0 = L_0 \tilde{s}^* \tilde{q}_a / (\tau_h \tilde{R}_s) \) is the typical cancer cell speed.

Clark and Vignjevic (2015) showed that cancer cell speeds cannot exceed 10 \(\mu \)m/min. We consider the typical cancer cell speed, \(F_0 \), to vary between 1 \(\mu \)m/min and 10 \(\mu \)m/min to account for various cancer types which are characterised by slower or faster cells (e.g. for A375M2 human melanoma the speed ranges between 0.5 – 10 \(\mu \)m/min, and for MDA-MB-231 breast cancer it ranges between 0.4 – 4.2 \(\mu \)m/min). We find that the ratio \(\tau_h F_0 / L_0 \) is in the range

\[
0.0017 \leq \frac{\tau_h}{L_0} F_0 \leq 0.017,
\]

leading to

\[
0.008 \leq \tilde{s}^* \tilde{q}_a \leq 0.08. \tag{2.6}
\]
This provides bounds for the value of \(\tilde{s} \tilde{q} \) we are going to choose in Sections 3 and 4.

After dropping the tildes for notational convenience, we obtain the following non-dimensional system:

\[
\begin{align*}
\frac{\partial c}{\partial t} &= D_c \frac{\partial^2 c}{\partial x^2} + \mu K_1 h \frac{b + c}{1 + c} - \frac{\Gamma_c}{K + c}, \\
\frac{\partial h}{\partial t} &= 1 + \frac{c}{2} - h, \\
\frac{\partial u}{\partial t} &= D_u \frac{\partial^2 u}{\partial x^2} - \frac{\tau_c}{L_0} F_0 \left(\frac{\partial}{\partial x} (u(F[c, u])) + r_1 \left(1 + \frac{r_2 c^2}{r_3 + c^2} \right) u (1 - u) \right).
\end{align*}
\]

(2.7a) (2.7b) (2.7c)

Although \(D_u = 0.0025 \), which corresponds to a large diffusion value, the behaviour of cancer cells is still advection-dominated. This directed, advective movement of cancer cells results from the aforementioned cell-cell adhesion forces and from an elevated macrophage density near highly mutated cancer cells (Lin et al., 2006), which decreases the random movement of the cancer cells (Goswami et al., 2005; Hagemann et al., 2005).

Table 1: Model parameters, dimensional values, non-dimensional values and relevant references.

Param.	Description	Dim. value	Non-dim. value	Reference
\(D_c \)	Diffusion coefficient of Ca\(^{2+} \)	20\(\mu m^2 s^{-1} \)	0.1	Atri et al (1993); Höfer et al (2001); Wilkins and Sneyd (1998)
\(b \)	Fraction of activated InsP\(_3\)Rs receptors when \([Ca^{2+}] = 0 \)	-	0.111	Atri et al. (1993)
\(k_1 \)	\(K_m \) (Michaelis constant) for activation of InsP\(_3\)Rs receptors by Ca\(^{2+} \)	0.7\(\mu M \)	1	Atri et al. (1993); Kaouri et al (2019)
\(k_f \)	Ca\(^{2+} \) flux when all InsP\(_3\)Rs receptors are open and activated	16.2\(\mu M s^{-1} \)	\(K_1 = 324/7 \)	Atri et al. (1993); Kaouri et al (2019)
\(k_\mu \)	\(K_m \) (Michaelis constant) for binding of InsP\(_3\) to its receptor	0.7\(\mu M \)	1	Atri et al. (1993); Kaouri et al (2019)
\(\gamma \)	Maximum rate of pumping of ER Ca\(^{2+} \)	2\(\mu M s^{-1} \)	\(\Gamma = 40/7 \)	Atri et al. (1993)
\(k_\gamma \)	\([Ca^{2+}] \) at which the rate of Ca\(^{2+} \) pumping from the cytosol is at half-maximum	0.1\(\mu M \)	\(K = 1/7 \)	Atri et al. (1993); Kaouri et al (2019)
\(k_2 \)	\(K_m \) (Michaelis constant) for inactivation of InsP\(_3\) receptors by Ca\(^{2+} \)	0.7\(\mu M \)	\(K_2 = 1 \)	Atri et al. (1993); Kaouri et al (2019)
\(D_u \)	Diffusion coefficient of cancer cells	0.5\(\mu m^2 s^{-1} \)	0.0025	Bray (1992); Chaplain and Lolas (2006); Enderling et al. (2006); Franssen et al (2019)
\(R_s \)	Sensing radius	100\(\mu m \)	5	Armstrong et al (2006); Gerisch and Chaplain (2008)
Table 1 – *Continued from previous page*

Param.	Description	Dim. value	Non-dim. value	Reference
k_u	Carrying capacity of the cancer cell population	6.7×10^7 cells/cm3	1	Gerisch and Chaplain (2008)
r_1	Growth rate of the cancer cell population	7 days (doubling time)	0.1	Cunningham and You (2015); Morani et al (2014); Panetta et al (2000)

Table 2: Estimated model parameters, non-dimensional values and relevant references.

Param.	Description	Non-dim. value	Reference
q_a	Magnitude of attraction	$0 - 0.44$	Guided by linear stability analysis (Section 3.2) and the range [2.6], based on Clark and Vignjevic (2015)
q_r	Magnitude of repulsion	$0 - 0.44$	Guided by linear stability analysis (Section 3.2)
s_a	Attraction range	1	Bitsouni and Eftimie (2018)
s_r	Repulsion range	0.25	Bitsouni et al (2017, 2018); Bitsouni and Eftimie (2018)
m_a	Width of attraction kernel	$1/8$	Bitsouni and Eftimie (2018)
m_r	Width of repulsion kernel	$1/32$	Bitsouni et al (2017, 2018); Bitsouni and Eftimie (2018)
s^\star	Magnitude of cell-cell adhesion forces of the cancer cell population	1	Armstrong et al (2006); Bitsouni et al (2017, 2018); Gerisch and Chaplain (2008)
a_1	Lowest value of cell-cell strength due to increase in $[Ca^{2+}]$	0.5	Estimated
a_2	Half-minimum (K_m) $[Ca^{2+}]$	0.5	Estimated
r_2	Largest reaction value at saturating $[Ca^{2+}]$	1.6	Simpson and Arnold (1986); Taylor and Simpson (1992)
r_3	Half-maximal $[Ca^{2+}]$	4	Simpson and Arnold (1986); Taylor and Simpson (1992)
3 Analytical results

3.1 Existence of solution

The existence of a unique global-in-time classical solution of the model (2.1) can be proven using the theory of semigroups [Henry 1981], within the framework of ODEs. The proof of the theorem follows the same steps as [Bitsouni et al 2017; Chaplain et al 2011].

3.2 Linear stability analysis

In our model an instability of a spatially homogeneous state can arise when advection effects increase; we will call this an advection-driven instability (ADI). The loss of stability leads to spatial patterns, which biologically correspond to cell aggregations [Keller and Segel 1970].

In this section, we linearise the model (2.7) and investigate the conditions for ADIs. The spatially homogeneous steady states \((c^*, h^*, u^*)\) of the system (2.7) are given by

\[
\left(c^*, \frac{1}{1 + c^*}, 0 \right) \text{ and } \left(c^*, \frac{1}{1 + c^*}, 1 \right),
\]

with \(c^* \geq 0\) determined by the solution of the quartic equation

\[
c^*^4 + c^*^3 + \left(1 - \frac{K_1}{T} \right) c^*^2 + \left(1 - \frac{K_1}{T} \left(K + b \right) \right) c^* - \frac{K_1}{T} Kb = 0.
\]

We seek conditions for a steady state \((c^*, h^*, u^*)\) to become unstable due to ADI. We thus consider small perturbations to the steady state, \((\bar{c}, \bar{h}, \bar{u})\), such that

\[
c(x, t) = c^* + \bar{c}(x, t),\ h(x, t) = h^* + \bar{h}(x, t),\ u(x, t) = u^* + \bar{u}(x, t).
\]

Substituting these into (2.7), linearising around the spatially uniform steady state, and using the notation \(\bar{y} = (\bar{c}, \bar{h}, \bar{u})\), we obtain

\[
\frac{\partial \bar{y}}{\partial t} = D \frac{\partial^2 \bar{y}}{\partial x^2} - \frac{\partial J_a}{\partial x} + J_r \bar{y},
\]

where \(D\) is a diagonal matrix with entries \((D_c, 0, D_u)\) and \(J_a = (0, 0, \alpha)\), with

\[
\alpha = \frac{u^*}{R_s} S(c^*) \int_0^{R_s} K_{\text{int}}(r) (\bar{u}(x + r, t) - \bar{u}(x - r, t)) \, dr,
\]

and

\[
J_r = \begin{bmatrix}
J_2(c^*, h^*) & 0 & 0 \\
0 & 0 & 0 \\
(r_1 u^* (1 - u^*) - 2 r_2 c^* c^* r_3 + c^*^2) & r_1 (1 - 2 u^*) & \left(1 + \frac{r_2 c^*^2}{r_3 + c^*^2} \right)
\end{bmatrix},
\]

where

\[
J_2 = \begin{bmatrix}
\mu K_1 h \left(1 - \frac{b}{1 + c^*} \right) - \frac{\Gamma K}{(1 + c^*)^2} & \mu K_1 \left(\frac{b + c^*}{1 + c^*} \right) \\
\mu K_1 \left(\frac{b + c^*}{1 + c^*} \right) & \mu K_1 \left(\frac{b + c^*}{1 + c^*} \right) - 1
\end{bmatrix},
\]

is the Jacobian of the linearised Atri model. We seek solutions of the form \(\bar{y} = we^{i\xi x + \lambda t}\), where \(w = (A_c, A_h, A_u)\) with \(|A_c|, |A_h|, |A_u| \ll 1\). The wave number and frequency of the perturbations are denoted by \(\xi\) and \(\lambda\), respectively. We then find

\[
\lambda w = (J_d + J_r) w,
\]
regions for positive
models may achieve higher
model exhibits limit cycles and action potentials, respectively (see Fig. 4).
µ of which stable relaxation oscillations (limit cycles) exist. Action potentials also appear for a very small range
detail in (Atri et al, 1993; Kaouri et al, 2019). Hopf bifurcations occur at µ = 0.289 and µ = 0.495, between
which stable relaxation oscillations (limit cycles) exist. Action potentials also appear for a very small range
of µ. Including diffusion leads to the emergence of periodic wave trains and solitary pulses when the Atri
model exhibits limit cycles and action potentials, respectively (see Fig. 4).

with

\[J_d = \begin{bmatrix}
-D_u \xi^2 & 0 & 0 \\
0 & 0 & 0 \\
0 & -D_u \xi^2 + 2 \xi u^* \bar{K}_{\text{int}}(\xi) S(\xi^*) / R_s \\
\end{bmatrix} \]

where \(\bar{K}_{\text{int}}(\xi) = \int_0^{R_s} K_{\text{int}}(r) \sin(\xi r) \, dr \) is the Fourier sine transform of \(K_{\text{int}}(r) \).

Since the cell density equation (2.7e) is not coupled to the Atri equations (2.7a) and (2.7b), the matrix
\(M = J_d + J_r \) has a block structure and the eigenvalues of \(M \) are split into those of the (linearised) Atri model
and that of the (linearised) cancer cell density equation. Hence, to identify ADIs we only need to study the
linear stability of the cell density equation, i.e. the eigenvalue (dispersion relation)

\[\lambda_u (\xi, c^*) = -D_u \xi^2 + \frac{2 \xi u^*}{R} S(c^*) \bar{K}_{\text{int}}(\xi) + r_1 (1 - 2u^*) \left(1 + \frac{r_2 c^*}{r_3 + c^*} \right), \]

which for the Gaussian attraction and repulsion kernels given in (2.4) becomes

\[\lambda_u (\xi, c^*) = -D_u \xi^2 + \frac{2 \xi u^*}{R} S(c^*) \left(e^{- (\xi a^2)^2} \sin(\xi s_a) - \frac{q_r}{q_a} e^{- (\xi c^*)^2} \sin(\xi s_r) \right) + r_1 (1 - 2u^*) \left(1 + \frac{r_2 c^*}{r_3 + c^*} \right). \]

(3.2)

Solutions with \(\lambda_u > 0 \) are unstable and grow exponentially in time, corresponding to pattern formation and cell aggregation in the non-linear system (Murray 2003; Painter et al 2015). For \(u^* = 0 \) and \(\xi = 0 \), we obtain

\[\lambda_u^0 (0, c^*) = r_1 \left(1 + \frac{r_2 c^*}{r_3 + c^*} \right) > 0, \]

In contrast, for \(u^* = 1 \) and \(\xi = 0 \), we find

\[\lambda_u^1 (0, c^*) = -r_1 \left(1 + \frac{r_2 c^*}{r_3 + c^*} \right) < 0. \]

Here, we use the superscript to indicate the value of \(u^* \). Note that \(\lambda_u^0 (\xi, 0) \) and \(\lambda_u^1 (\xi, 0) \) are the eigenvalues of the linearised Fisher’s equation when \(q_a = q_r = 0 \). For positive \(q_a \) and \(q_r \) and no calcium, \(\lambda_u^1 (\xi, 0) \) becomes positive for some \(\xi > 0 \) when the advection strength increases sufficiently. To identify the threshold values of \(q_a \) and \(q_r \), we present the non-negative contour plots of \(\lambda_u^1 (\xi, 0) \) in Fig. 1, where negative values are mapped
to zero for better visualisation. In Figs. 1(a)–1(d) we set \(q_a = 0.14, q_a = 0.22, q_a = 0.33 \) and \(q_a = 0.44 \), respectively, while \(q_r \) varies from 0 to 0.44. We observe extended regions with \(\lambda_u^1 > 0 \), which indicate pattern formation in the nonlinear system via ADI. In Figs. 1(b)–1(d) we observe disjoint parameter regions, which grow larger as \(q_a \) increases. Note that we do not need to plot for larger values of \(\xi \) since \(\lambda_u^1 (\xi, 0) \) tends to \(-\infty \) as \(\xi \) tends to \(\infty \).

We next establish the effect of Ca\(^{2+}\) on ADI. In Fig. 2 we display contour plots corresponding to non-
negative values of \(\lambda_u^1 (\xi, c^*) \), for nine different combinations of \(q_a \) and \(q_r \): (0.14, 0.01), (0.16, 0.01), (0.22, 0.01), (0.33, 0.01), (0.01, 0.22), (0.14, 0.22), (0.22, 0.22), (0.33, 0.33) and (0.44, 0.44). We observe that the ADI regions vanish at sufficiently large values of \(c^* \) for all figures except Figs. 2(d)–2(h) and 2(i). Note that we choose \(0 \leq c^* \leq 2.3 \) since 2.3 is the maximum value of the steady state of the Atri model; other Ca\(^{2+}\) models may achieve higher \(c^* \) levels but we expect a qualitatively similar behaviour. Also, as \(c^* \) increases the range of \(\xi \) in the ADI regions decreases. In Figs. 2(c)–2(d) and 2(h) and 2(i) we observe disjoint parameter regions for positive \(\lambda_u^1 (\xi, c^*) \).

The stability of the spatially homogeneous Atri model (determined by the matrix \(J_2 \)) has been covered in
detail in (Atri et al 1993; Kaouri et al 2019). Hopf bifurcations occur at \(\mu = 0.289 \) and \(\mu = 0.495 \), between
which stable relaxation oscillations (limit cycles) exist. Action potentials also appear for a very small range
of \(\mu \). Including diffusion leads to the emergence of periodic wave trains and solitary pulses when the Atri
model exhibits limit cycles and action potentials, respectively (see Fig. 4).
Fig. 1: The contours of non-negative $\lambda_1^u(\xi, 0)$, dispersion relation of the linearised cell density equation, for $c^* = 0$, $u^* = 1$, which enclose parameter regions corresponding to adhesion-driven instabilities, for: (a) $q_a = 0.14$ (b) $q_a = 0.22$ (c) $q_a = 0.33$ (d) $q_a = 0.44$. In (a)–(d) q_r varies from 0 to 0.44, respectively. The remaining parameter values are given in Tables 1 and 2. Negative values of $\lambda_1^u(\xi, 0)$ have been set to zero for better visualisation.
Fig. 2: Contour plots of the dispersion relation $\lambda^*_1(\xi, c^*)$ as c^* varies for: (a) $q_a = 0.14$, $q_r = 0.01; (b) q_a = 0.16$, $q_r = 0.01; (c) q_a = 0.22$, $q_r = 0.01; (d) q_a = 0.33$, $q_r = 0.01; (e) q_a = 0.01$, $q_r = 0.22; (f) q_a = 0.14$, $q_r = 0.22; (g) q_a = 0.22$, $q_r = 0.22; (h) q_a = 0.33$, $q_r = 0.33; (i) q_a = 0.44$, $q_r = 0.44$. All other parameter values are given in Tables 1 and 2. Negative values of $\lambda^*_1(\xi, 0)$ have been set to zero for better visualisation.
4 Numerical simulations

In this section we numerically solve model (2.7) using a method-of-lines approach. The domain \([0, L]\) is discretized into a cell-centered grid with uniform length \(h = 1/N\), where \(N = 100\) is the number of grid cells per unit length. All simulations are performed with \(L = 120\) and with periodic boundary conditions. The diffusion terms are discretized using a second order centered difference scheme. The advection term is discretized using a third order upwind scheme, augmented with a flux-limiting scheme to ensure the solution’s positivity. The non-local term in equation (2.7c) presents challenges regarding its efficient and accurate evaluation. Here we employ the scheme based on the Fast Fourier Transform introduced in (Gerisch, 2010), using the trapezoidal rule to pre-compute the integration weights. The resulting system of ODEs is integrated using the ROWMAP integrator introduced in Weiner et al (1996). We use the implementation provided in (Weiner et al, 1996). The integrator (written in Fortran) was wrapped using f2py into a scipy integrate class (Virtanen et al, 2019). The spatial discretisation (right hand side of ODE) is implemented using NumPy. The integrator’s error tolerance is set to \(v_{tol} = 10^{-7}\). For the full details of the numerical methods we refer to (Gerisch, 2001; Hundsdorfer and Verwer, 2003).

4.1 Adhesion-driven instability, pattern formation and cell aggregations

Each term in the cancer cell density equation (2.7c) critically affects the behaviour of cancer cells. Thus, below we examine the effect of each term in turn and compare the results with those of the linear stability analysis in the absence of \(\text{Ca}^{2+}\), in Section 3.2. We explore a wide range of values for \(q_a\) (magnitude of attraction) and \(q_r\) (magnitude of repulsion), guided by Fig. 1. For \(q_a\) we also take into account the range of \(q_a\) reported in (2.6)), based on measurements of the speed of cancer cell movement. No experimental evidence was found for \(q_r\) and we consider the same range as for \(q_a\). We thus examine several possible scenarios and identify various types of patterns and aggregations.

In Fig. 3(a) we plot the cell density for non-zero diffusion and advection but zero proliferation; this represents cells with very slow doubling time. We take \(q_a = 0.22, q_r = 0.01\), i.e. attraction much larger than repulsion. We see that the cancer cells form a single stationary pulse. In Fig. 3(b), we add proliferation, but take zero adhesion (Fisher’s equation). The cancer cells exhibit a travelling front that propagates in opposite directions at a constant speed, as expected (Murray, 2003). In Fig. 3(c) we include diffusion, advection and proliferation, with \(q_a = 0.14\) and \(q_r = 0.01\). We still see a Fisher-like travelling front, consistently with Fig. 1(a) which predicts no ADI for these choices of \(q_a\) and \(q_r\).

In Fig. 3(d), we further increase the strength of attraction to \(q_a = 0.22\) while keeping \(q_r = 0.01\), and a pattern emerges behind the travelling front due to ADI, as predicted by Fig. 1(b). It is a “mixed” pattern, featuring merging and emerging peaks; some cancer cells form stationary pulses, while others organise into travelling pulses. This behaviour can be explained by the strong attractive forces that make cells form large aggregations. This type of pattern has been identified in previous work (see Andasari et al (2011); Bitsouni et al (2017); Hillen and Painter (2009); Loy and Preziosi (2019); Eftimie et al (2017); Wang and Hillen (2007)).

In Fig. 3(e), we lower attraction to \(q_a = 0.14\) and increase the magnitude of repulsion to \(q_r = 0.22\); the Fisher-like front persists and the pattern behind it now exhibits thin spikes. This can be explained by

1 http://www.mathematik.uni-halle.de/wissenschaftliches_rechnen/forschung/software/
Fig. 3: Cancer cell density, $u(x,t)$, for no Ca$^{2+}$ effect ($a_1 = a_2 = r_2 = r_3 = 0$), governed by equation (2.7c). The initial conditions are given in (4.1c). (a) $q_a = 0.22, q_r = 0.01$, no proliferation; (b) $q_a = 0, q_r = 0$; (c) $q_a = 0.14, q_r = 0.01$; (d) $q_a = 0.22, q_r = 0.01$; (e) $q_a = 0.14, q_r = 0.22$; (f) $q_a = 0.22, q_r = 0.22$. All other parameter values as in Tables 1 and 2.
the strong repulsive forces leading to a larger number of smaller aggregations than those in the case where attraction is larger than repulsion, as in Fig. 3(d). This behaviour again agrees with the linear stability analysis (see Fig. 1(b)). Finally, in Fig. 3(f) we take equal attraction and repulsion, $q_r = q_a = 0.22$. The pattern is similar to that in Fig. 3(e). Note: in order to see the more detailed features of the Figures the reader is encouraged to follow the electronic version of the paper.

4.2 Calcium Signals

Here, we investigate the behaviour of the spatially extended Atri model (2.7a) and (2.7b). The four panels in Fig. 4 display the behaviour of the Ca^{2+} concentration as we increase μ, which is equivalent to increasing the InsP$_3$ concentration. For $\mu = 0.1$, for which the spatially clamped Atri model possesses a linearly stable fixed point (Atri et al., 1993; Kaouri et al., 2019). Fig. 4(a) illustrates that the initial Gaussian condition decays to the steady state, setting the InsP$_3$ concentration as we increase μ. In Fig. 4(b), while a value of μ between the two Hopf bifurcations results in a periodic wave train (Keener and Sneyd, 2009a,b); in Fig. 4(c) we take, as an example, $\mu = 0.3$. Finally, for larger values of μ the Atri model is linearly stable again and we find a similar pattern to Fig. 4(a), in that the initial condition decays to this fixed point (Atri et al., 1993; Kaouri et al., 2019). Fig. 4(d) illustrates that the initial Gaussian condition decays to this fixed point. Setting $\mu = 0.288$ leads to a solitary travelling pulse (Fig. 4(b)), while a value of μ between the two Hopf bifurcations results in a periodic wave train (Keener and Sneyd, 2009a,b); in Fig. 4(c) we take, as an example, $\mu = 0.3$. Finally, for larger values of μ the Atri model is linearly stable again and we find a similar pattern to Fig. 4(a), in that the initial condition decays to the steady state, but in a periodic manner. In Fig. 4(d) we take $\mu = 0.6$ as an example of the latter case. These four types of Ca^{2+} signals emerge in almost all Ca^{2+} models. Here, we use them as input to the cancer cell density equation (2.7c).

4.3 The Effect of Ca^{2+} on the Cell Density

We now examine the effect of the Ca^{2+} signals on the cancer cell density. We fix the attraction and repulsion magnitudes, q_a and q_r, and vary μ. Fig. 5 (top panel) ($q_a = 0.14, q_r = 0.01$) shows a Fisher-like travelling front in all Figs. (a)–(d), irrespective of the InsP$_3$ and Ca^{2+} levels; this is consistent with the linear stability analysis that predicts no ADI. These results are in line with Fig. 2(a). In contrast, when we increase q_a to 0.22 in Fig. 5(bottom panel) small InsP$_3$ concentrations ($\mu = 0.1$ and $\mu = 0.3$, respectively) induce a pattern, due to ADI. As we increase the InsP$_3$ concentration, the pattern vanishes, as illustrated in Figs. 5(c’) and 5(d’) which are for $\mu = 0.45$ and $\mu = 0.6$, respectively. These results are in line with Fig. 2(c).

In Figs. 6 we see that for larger values of q_a ($q_a = 0.33, q_r = 0.01$) patterns emerge behind the Fisher-like front for all values of μ. This is consistent with the linear stability analysis — see Fig. 2(d). For small values of μ, $\mu = 0.1$ and $\mu = 0.3$ in Figs. 6(a) and 6(b), respectively, the cancer cells exhibit merging and emerging peaks; cells move towards each other forming new aggregations of new cells and of cells that broke off from existing aggregations and in the long-term dynamics stationary pulses are also formed. (Bitsouni et al., 2017). For larger values of μ, and consequently larger values of Ca^{2+} (see Figs. 6(c) and 6(d)) the patterns are thin stripes (stationary pulses).

In Figs. 5 and 6 attraction dominates over repulsion. In Fig. 7 we plot the cancer cell density when repulsion is stronger than attraction ($q_a = 0.14, q_r = 0.22$). For small values of the InsP$_3$ concentration ($\mu = 0.1, \mu = 0.3$), Figs. 7(a), (b) exhibit thin-stripe patterns via ADI (stationary pulses). As we increase μ, patterns vanish — see Figs. 7(c) and 7(d), respectively for $\mu = 0.45$ and $\mu = 0.6$. These results are consistent with Fig. 2(f). Finally, for large and equal values of q_a and q_r, Figs. 2(g) and 2(h) predict that ADI patterns exist for all Ca^{2+} concentrations within the physiological range of the Atri model. This is confirmed in Fig. 8 where we observe ADI patterns for any InsP$_3$ (and Ca^{2+}) level when $q_a = q_r = 0.33$.

Above, we have established the emergence and disappearance of patterns as Ca^{2+} varies. Furthermore, below we will summarise the effect of Ca^{2+} on three important characteristics of the solution: the wave speed of the Fisher-like front, and also the amplitude and frequency of the cancer cell density.
Fig. 4: Patterns of the Ca$^{2+}$ concentration, $c(x,t)$, generated by the Atri model (2.7a)-(2.7b) for (a) $\mu = 0.1$ ($c^* = 0.016$), (b) $\mu = 0.288$ ($c^* = 0.177$), (c) $\mu = 0.3$ and (d) $\mu = 0.5$ ($c^* = 1.332$). The initial conditions are given in (4.1a)-(4.1b). The remaining parameter values are given in Tables 1 and 2. Note that although we report c^* for all μ when Ca$^{2+}$ is oscillatory the steady state is linearly unstable.

Wave speed: In Figs. 5-8 we see that as μ increases (fixed q_a and q_r) the speed of the travelling front increases. This can be linked to a higher invasion and hence metastatic potential of the cancer cells. On the other hand, for fixed μ the wave speed does not change much as q_a and/or q_r vary.

Amplitude: Comparing Figs. 5 and 6 we see that the maximal cell density increases as q_a, the attraction magnitude, increases from 0.14 to 0.33. Also, comparing Figs. 6 and 8 we see a significant increase in the maximal cell density as q_r increases from 0.01 to 0.33 (and q_a fixed to 0.33). The same effect is observed when comparing Fig. 5, top panel with Fig. 7 where again q_r increases from 0.01 to 0.33 (while q_a is fixed to 0.14.). For fixed q_a and q_r as μ increases the maximal cell density decreases, as we can see in Figs. 5-8.

Frequency: Moreover, we investigate how Ca$^{2+}$ signalling affects the temporal frequency of cancer cell density oscillations. In Fig. 9 we fix $x = 55$ and plot $c(x,t)$ and $u(x,t)$ for two choices; at the top panel we have $q_a = 0.22$, $q_r = 0.01$ (attraction much larger than repulsion) and in the bottom panel we have $q_a = 0.14$, $q_r = 0.22$ (attraction comparable to repulsion). From the frequency bifurcation diagram of the Atri model...
Fig. 5: Cancer cell density, \(u(x,t) \), governed by equation (2.7c), as \(q_a \) increases (top panel for \(q_a = 0.14 \) and bottom panel for \(q_a = 0.22 \)); \(q_r = 0.01 \). The initial conditions are given by (4.1). For (a), (a') \(\mu = 0.1 \), \(c^* = 0.016 \) (non-oscillatory \(\text{Ca}^{2+} \); (b), (b') \(\mu = 0.3 \), \(c^* = 0.556 \), oscillatory \(\text{Ca}^{2+} \); (c), (c') \(\mu = 0.45 \), \(c^* = 1.195 \), oscillatory \(\text{Ca}^{2+} \); (d), (d') \(\mu = 0.6 \), \(c^* = 1.5712 \) (non-oscillatory \(\text{Ca}^{2+} \)). The rest of model parameters are given in Tables 1 and 2. As predicted from the linear stability analysis (see Fig. 2(b)), when \(q_a \) increases ADI emerges for small values of \(\mu \). Note that although we report \(c^* \) for all \(\mu \) when \(\text{Ca}^{2+} \) is oscillatory the steady state is linearly unstable.
Fig. 6: Cancer cell density, $u(x,t)$, governed by equation (2.7c), for $q_a = 0.33$, $q_r = 0.01$. The initial conditions are given by (4.1). (a) $\mu = 0.1$, $c^* = 0.016$ (non-oscillatory Ca$^{2+}$); (b) $\mu = 0.3$, $c^* = 0.556$ (oscillatory Ca$^{2+}$); (c) $\mu = 0.45$, $c^* = 1.105$ (oscillatory Ca$^{2+}$); (d) $\mu = 0.6$, $c^* = 1.5712$ (non-oscillatory Ca$^{2+}$). The rest of model parameters are given in Tables 1 and 2. Note that although we report c^* for all μ when Ca$^{2+}$ is oscillatory the steady state is linearly unstable (see Fig. 2 in Kaouri et al. (2019)) we choose four values of μ that sufficiently ‘sample’ the variation of the frequency as μ increases. We see that the frequency of Ca$^{2+}$ oscillations is approximately equal to the frequency of cell density oscillations, if the cell density is oscillatory. We have verified this observation by also computing the frequency spectra for $t \in (1900, 2000)$ (the time interval has been chosen to ensure that solutions converged to steady state). For other choices of q_a and q_r, the effect of Ca$^{2+}$ oscillations on the cell density is similar, and thus other figures are not included for brevity.

5 Summary, conclusions and further work

Since cell proliferation and cell-cell adhesion, which play a critical role in invasion and cancer metastasis, are Ca$^{2+}$-dependent, here we have developed and analysed a new model for Ca$^{2+}$ signalling in cancer. The Ca$^{2+}$ dynamics have been described by the spatially extended Atri model (Atri et al. 1993), which consists of a reaction-diffusion equation for the Ca$^{2+}$ concentration, coupled with an ODE for the fraction of InsP$_3$ receptors on the ER that have not been inactivated by Ca$^{2+}$. This model, although simple enough, generates
Mathematical model of cancer and calcium

Fig. 7: Cancer cell density, $u(x,t)$, governed by equation (2.7c), for $q_a = 0.14$ and $q_r = 0.22$. The initial conditions are given in (4.1). (a) $\mu = 0.1$, $c^* = 0.016$ (non-oscillatory Ca$^{2+}$); (b) $\mu = 0.3$, $c^* = 0.556$ (oscillatory Ca$^{2+}$); (c) $\mu = 0.45$, $c^* = 1.195$ (oscillatory Ca$^{2+}$); (d) $\mu = 0.6$, $c^* = 1.5712$ (non-oscillatory Ca$^{2+}$). The rest of model parameters are given in Tables 1 and 2.

Note that although we report c^* for all μ when Ca$^{2+}$ is oscillatory the steady state is linearly unstable.

four ‘prototypical’ Ca$^{2+}$ signals as many other excitable Ca$^{2+}$ models; periodic wavetrains (which correspond to limit cycles in the spatially clamped Atri model), solitary pulses (which correspond to action potentials), decaying wavetrains and solutions decreasing monotonically with time. The cancer cell density evolution is described by a non-local PDE that incorporates diffusion, cell-cell adhesion (advection) and proliferation. We have modelled the dependence of the adhesion and proliferation terms on the Ca$^{2+}$ dynamics, motivated by experimental evidence, and we have considered cancer types where the adhesion strength decreases with Ca$^{2+}$ [Byers et al. 1995, Cavallaro and Christofori 2004], while proliferation increases with Ca$^{2+}$ [Cárdenas et al. 2016, Prevarskaya et al. 2018, Rezuchova et al. 2019, Tsunoda et al. 2005]. The model, assumptions and parameter values are presented in Section 2. As much as possible, the model parameters were chosen from experimental studies (see Tables 1 and 2).

In Section 3 we linearised the model (2.7) and determined the parameter range for which an adhesion-driven instability (ADI) forms, while varying systematically the magnitudes of cell-cell attraction and repulsion, q_a and q_r, respectively. In the absence of Ca$^{2+}$ (Fig. 1) we showed that ADIs may arise for sufficiently large values of either q_a and q_r (or both). ADIs correspond to cell aggregations which are critical for cancer
invasion and metastasis. Then, in Fig. 2 we investigated the effect of Ca$^{2+}$ on the cell aggregations and found that they change qualitatively and eventually vanish as the Ca$^{2+}$ level increases.

In Section 4 we solved the full non-linear model (2.7) numerically and systematically investigated a range of attraction and repulsion magnitudes, guided by the linear stability analysis. Firstly, we validated numerically the results of the linear analysis in the absence of Ca$^{2+}$ (Fig. 3). We subsequently examined the effect of four types of Ca$^{2+}$ signals on the cancer cell density, paying special attention to the periodic wave trains (Figs. 5-8). We found that as Ca$^{2+}$ levels increase the maximal cell density decreases due to the decreased cell-cell adhesion strength preventing the formation of clusters of high density levels. Moreover, as Ca$^{2+}$ levels increase the speed of the travelling wave fronts increases which is linked to a faster spread of cancer. An other important result from our numerical investigations is that the frequency of Ca$^{2+}$ oscillations is approximately equal to the frequency of the cancer cell density oscillations, when the cell density is oscillatory. Moreover, cellular aggregations vanish for sufficiently large Ca$^{2+}$ levels, as it was predicted by the linear analysis. Our results demonstrate that accounting for the dependence of cell-cell adhesion and proliferation on Ca$^{2+}$ signalling we can reveal the conditions for which cancer cell aggregations appear as
Mathematical model of cancer and calcium

Fig. 9: Cancer cell density and Ca$^{2+}$ oscillations. Each plot shows a cross-section (i.e. $u(t) = u(55,t)$) of a solution of model (2.7) with initial conditions given in (4.1) for selected increasing values of μ. (Top) $q_a = 0$, $q_r = 0.22$. (Bottom) $q_a = 0.22$, $q_r = 0.01$. The rest of model parameters are given in Tables 1 and 2. The cell density $u(55,t)$ picks up the oscillations in the Ca$^{2+}$ concentration. Indeed the frequencies (computed using the Fourier transform) match.
Ca$^{2+}$ varies. This allows us to study the dependence of the cancer invasion potential on Ca$^{2+}$ and paves the ways for new therapies based on controlling Ca$^{2+}$.

Our model provides a general framework for cancer cell movement under the effect of any oscillatory signalling pathway dynamics and paves the way for treatments that are based on controlling these pathways, and in particular Ca$^{2+}$ signalling. It, however, has various limitations which outline avenues for future work. The assumption that the adhesion strength function is decreasing with Ca$^{2+}$ is not appropriate for all cancer types; an increase of cell-cell adhesion with Ca$^{2+}$ has been observed in some cancers. Additionally, the repulsion magnitude has been taken over a wide range since there is no experimental evidence supporting its value. New experiments could investigate this. Another limitation of the model is that it includes cell–cell interactions; it would be useful to incorporate the interaction of the cancer cells with the extracellular matrix (ECM) in future work as this would allow to study cancer invasion in more detail. Additionally, the way cell-ECM interactions are dependent on Ca$^{2+}$ could be also modelled. Finally, the delay of the Ca$^{2+}$ waves in the gap junctions between cells has been considered negligible; a cell-based model accounting for these gap junctions could be developed. Moreover, as we are now equipped with the insights generated by the one-dimensional geometry, we plan to develop the model to two and three dimensions.

A main focus of this study was to unravel the impact of the cellular Ca$^{2+}$ signalling on the behaviour of cancer cells. As such, a key component of our model is the description of the cellular Ca$^{2+}$ dynamics. We chose the Atri model as a typical representative for a minimal framework that captures essential features of the dynamics of the cellular Ca$^{2+}$ concentration such as Ca$^{2+}$ oscillations. This naturally raises the question about how robust our results are with respect to the Ca$^{2+}$ model that we employed. The answer to this question combines two main lines of argument: the specific model for the InsP$_3$R and whether Ca$^{2+}$ oscillations are deterministic or stochastic. For the first point, we note that there exist a substantial number of InsP$_3$R models, see e.g. Atri et al. [1993], De Young and Keizer [1992], Li et al. [1994], Li and Rinzel [1994b], Meyer and Stryer [1988], Sneyd and Dufour [2002], Siekmann et al. [2012], Sneyd and Falcke [2005], Shuai et al. [2007], Ullah et al. [2012]. While they differ in their complexity, the overall range of the Ca$^{2+}$ concentration and the frequency of the Ca$^{2+}$ oscillations are comparable amongst them. Consequentially, exchanging the Atri model for any of the other InsP$_3$R models will most probably not change our conclusions. A more contentious point is whether Ca$^{2+}$ oscillations should be described within a deterministic or stochastic framework. Both approaches have been used extensively to date as e.g. in [Dupont et al. 2011b], Falcke et al. [2018], Gaspers et al. [2014], Kummer et al. [2000], Li and Rinzel [1994a], Politi et al. [2006], Powell et al. [2020], Shuai and Jung [2002], Skupin et al. [2008], Sneyd et al. [2017], Sun et al. [2017], Tang et al. [1996], Thul et al. [2009], Thul and Falcke [2007, 2006, 2004a,b], Thurley et al. [2011], Tilnaaite et al. [2017], Thul [2014], Thurley et al. [2012, 2015], Tsaneva-Atanasova et al. [2005], Voorslujs et al. [2019], Weinberg and Smith [2014], Wieder et al. [2015] — see also the book by [Dupont et al. 2016b] for a detailed discussion. As this study is the first to explore the role of Ca$^{2+}$ in a mathematical model of cancer cell propagation, we opted for a deterministic approach. This provides us with a baseline against which we can test future models in which the Ca$^{2+}$ dynamics will be described stochastically.

Acknowledgements The authors would like to thank Dr. A. Athenodorou for his valuable technical support. VB acknowledges support from the European Union’s H2020 Research and Innovation Action under Grant Agreement No 741657 (SciShops.eu). AB was partially supported by an NSERC (Natural Sciences and Engineering Research Council) post-doctoral fellowship, and is grateful to the Pacific Institute for Mathematical Sciences for providing space and resources for AB’s postdoctoral research.

References

Alberts B, Lewis J, Bray D (2000) Molecular biology of the cell. Garland Science
Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1, 4, 5-trisphosphate. Science 258(5089):1812–1815
Mathematical model of cancer and calcium

Andasari V, Gerisch A, Lolas G, South AP, Chaplain MA (2011) Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141–171

Armstrong NJ, Painter KJ, Sherratt JA (2006) A continuum approach to modelling cell–cell adhesion. J Theor Biol 243(1):98–113

Atri A, Amundson J, Clapham D, Sneyd J (1993) A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J 65(4):1727–1739

Bereiter-Hahn J (2005) Mechanics of crawling cells. Med Eng Phys 27(9):743–753

Berridge MJ, Galione A (1988) Cytosolic Calcium Oscillators. The FASEB Journal 2(15):3074–3082

Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology 1(1):11–21

Bitsouni V, Eftimie R (2018) Non-local parabolic and hyperbolic models for cell polarisation in heterogeneous cancer cell populations. Bull Math Biol 80(10):2600–2632

Bitsouni V, Chaplain MA, Eftimie R (2017) Mathematical modelling of cancer invasion: the multiple roles of TGF-β pathway on tumour proliferation and cell adhesion. Math Mod Meth Appl S 27(10):1929–1962

Bitsouni V, Trucu D, Chaplain MA, Eftimie R (2018) Aggregation and travelling wave dynamics in a two-population model of cancer cell growth and invasion. Math Med Biol 35(4):541–577

Boulter E, Grall D, Cagnol S, Van Obbergen-Schilling E, Boulter E, Grall D, Cagnol S, Van Obbergen-Schilling E (2006) Regulation of cell-matrix adhesion dynamics and rac-1 by integrin linked kinase. Faseb J 20(9):1489–1491

Bray D (1992) Cell movements garland publishing. Inc, New York

Byers SW, Sommers CL, Hoeter B, Mercurio AM, Tozeren A (1995) Role of E-cadherin in the response of tumor cell aggregates to lymphatic, venous and arterial flow: measurement of cell-cell adhesion strength. J Cell Sci 108(5):2053–2064

Capiod T, Shuba Y, Skryma R, Prevarskaya N (2007) Calcium signalling and cancer cell growth. In: Calcium Signalling and Disease, Springer, pp 405–427

Cárdenas C, Müller M, McNeal A, Lovy A, Jaña F, Bustos G, Urfa F, Smith N, Molgó J, Diehl JA, et al (2016) Selective vulnerability of cancer cells by inhibition of Ca²⁺ transfer from endoplasmic reticulum to mitochondria. Cell Reports 14(10):2313–2324

Cavallaro U, Christofori G (2001) Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. BBA-Rev Cancer 1552(1):39–45

Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Canc 4(2):118

Cavallaro U, Schaffhauser B, Christofori G (2002) Cadherins and the tumour progression: is it all in a switch? Cancer Letters 176(2):123–128

Chaplain MA, Lolas G (2006) Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. NHM 1(3):399–439

Chaplain MA, Lachowicz M, Szymańska Z, Wrzosek D (2011) Mathematical modelling of cancer invasion: the importance of cell–cell adhesion and cell–matrix adhesion. Math Mod Meth Appl S 21(04):719–743

Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6(6):983–992

Charles AC, Naus C, Zhu D, Kidder GM, Dirksen ER, Sanderson MJ (1992) Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol 118(1):195–201

Charles AC, Dirksen ER, Merrill JE, Sanderson MJ (1993) Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin. Glia 7(2):134–145

Clark AG, Vignjevic DM (2015) Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 36:13–22

Colomer J, Means A (2007) Physiological roles of the Ca²⁺/CaM-dependent protein kinase cascade in health and disease. In: Calcium Signalling and Disease, Springer, pp 169–214
Cunningham D, You Z (2015) In vitro and in vivo model systems used in prostate cancer research. J Biol Meth 2(1)

De Young GW, Keizer J (1992) A single-pool inositol 1, 4, 5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca\(^{2+}\) concentration. Proc Natl Acad Sci Unit States Am 89(20):9895–9899

Deguchi R, Shirakawa H, Oda S, Mohri T, Miyazaki S (2000) Spatiotemporal analysis of Ca\(^{2+}\) waves in relation to the sperm entry site and animal–vegetal axis during Ca\(^{2+}\) oscillations in fertilized mouse eggs. Developmental biology 218(2):299–313

Domschke P, Trucu D, Gerisch A, Chaplain MA (2014) Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J Theor Biol 361:41–60

Dupont G, Combettes L (2016) Fine tuning of cytosolic Ca\(^{2+}\) oscillations. F1000Research 5(2036)

Dupont G, Combettes L, Bird GS, Putney JW (2011a) Calcium oscillations. Cold Spring Harbor Perspectives in Biology 3(3):pii: a004,226

Dupont G, Lokenye EFL, Challiss RAJ (2011b) A model for Ca\(^{2+}\) oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie 93(12):2132–2138

Dupont G, Falcke M, Kirk V, Sneyd J (2016a) Models of Calcium Signalling, Interdisciplinary Applied Mathematics, vol 43. Springer

Dupont G, Falcke M, Kirk V, Sneyd J (2016b) Models of calcium signalling, vol 43. Springer

Dyson R, Green J, Whiteley J, Byrne H (2016) An investigation of the influence of extracellular matrix anisotropy and cell–matrix interactions on tissue architecture. J Math Biol 72:1775–1809, DOI 10.1007/s00285-015-0927-7

Eftimie R, de Vries G, Lewis M, Lutscher F (2007) Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull Math Biol 69(5):1537–1565

Eftimie R, Perez M, Buono PL (2017) Pattern formation in a nonlocal mathematical model for the multiple roles of the TGF-\(\beta\) pathway in tumour dynamics. Math Biosci 289:96–115

Enderling H, Anderson AR, Chaplain MA, Munro AJ, Vaidya JS (2006) Mathematical modelling of radiotherapy strategies for early breast cancer. J Theor Biol 241(1):158–171

Engwer C, Stinner C, Surulescu C (2017) On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation. Mathematical Models and Methods in Applied Sciences 27(07):1355–1390

Estrada J, Andrew N, Gibson D, Chang F, Gnad F, Gunawardena J (2016) Cellular interrogation: exploiting cell-to-cell variability to discriminate regulatory mechanisms in oscillatory signalling. PLoS computational biology 12(7):e1004,995

Falcke M, Moein M, Tilhuinaite A, Thul R, Skupin A (2018) On the phase space structure of IP\(_3\) induced Ca\(^{2+}\) signalling and concepts for predictive modeling. Chaos 28(4):045,115

Franssen LC, Lorenzi T, Burgess AE, Chaplain MA (2019) A mathematical framework for modelling the metastatic spread of cancer. Bull Math Biol 81(6):1965–2010

Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. International Journal of Developmental Biology 48(5-6):441–449

Gaspers LD, Bartlett PJ, Politi A, Burnett P, Metzger W, Johnston J, Joseph SK, Höfer T, Thomas J (2014) Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations. Cell Reports 9(4):1209–1218

Gerisch A (2001) Numerical methods for the simulation of taxis–diffusion–reaction systems. PhD thesis, Ph. D. thesis, Martin-Luther-Universitat Halle-Wittenberg, Germany

Gerisch A (2010) On the approximation and efficient evaluation of integral terms in pde models of cell adhesion. IMA journal of numerical analysis 30(1):173–194

Gerisch A, Chaplain M (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4):684–704
Gerisch A, Painter KJ (2010) Mathematical modelling of cell adhesion and its applications to developmental biology and cancer invasion. Cell mechanics: from single scale-based models to multiscale modeling 2:319–350

Glinsky VV, Glinsky GV, Glinskii OV, Huxley VH, Turk JR, Mossine VV, Deutscher SL, Pienta KJ, Quinn TP (2003) Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer research 63(13):3805–3811

Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65(12):5278–5283

Green J, Waters S, Whiteley J, Edelstein-Keshet L, Shakesheff K, Byrne H (2010) Non-local models for the formation of hepatocyte-stellate cell aggregates. J Theor Biol 267(1):106–120

Ha CE, Bhagavan N (2011) Essentials of medical biochemistry: With clinical cases. Academic Press

Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, Klemm F, Pukrop T, Binder C, Balkwill FR (2005) Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK. J Immunol 175(2):1197–1205

Henry D (1981) Geometric theory of semilinear parabolic systems, vol 840. Springer-Verlag

Hillen T, Buttenschön A (2019) Nonlocal adhesion models for microorganisms on bounded domains. arXiv preprint arXiv:190306635

Hills CE, Younis MY, Bennett J, Siamantouras E, Liu KK, Squires PE (2012) Calcium-sensing receptor activation increases cell-cell adhesion and β-cell function. Cell Physiol Biochem 30(3):575–586

Höfer T, Politi A, Heinrich R (2001) Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study. Biophys J 80(1):75–87

Hundsdoerfer W, Verwer JG (2003) Numerical solution of time-dependent advection-diffusion-reaction equations, vol 33. Springer Science & Business Media

Kaouri K, Maini PK, Skourides P, Christodoulou N, Chapman SJ (2019) A simple mechanochemical model for calcium signalling in embryonic epithelial cells. J Math Biol 78(7):2059–2092

Keener J, Sneyd J (2009a) Mathematical physiology I: Cellular physiology, vol 2. Springer

Keener J, Sneyd J (2009b) Mathematical physiology II: Systems Physiologys, vol 2. Springer

Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26(3):399–415

Kim SA, Tai CY, Mok LP, Mosser EA, Schuman EM (2011) Calcium-dependent dynamics of cadherin interactions at cell-cell junctions. Proceedings of the National Academy of Sciences 108(24):9857–9862

Knútsdóttir H, Pálsson E, Edelstein-Keshet L (2014) Mathematical model of macrophage-facilitated breast cancer cells invasion. J Theor Biol 357:184–199

Ko KS, Arora PD, Bhide V, Chen A, McCulloch C (2001) Cell-cell adhesion in human fibroblasts requires calcium signaling. J Cell Sci 114(6):1155–1167

Kotteas EA, Boulos P, Gkiozos I, Tsagkouli S, Tsoukalas G, Syrigos KN (2014) The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis. Anticancer research 34(9):4665–4672

Kumler U, Olsen LF, Dixon CJ, Green AK, Bornberg-Bauer E, Baier G (2000) Switching from simple to complex oscillations in calcium signaling. Biophysical Journal 79(3):1188–1195

Laird AK (1964) Dynamics of tumour growth. Brit J Cancer 18(3):490

Li Y, Rinzel J (1994a) Equations for InsP\textsubscript{3} receptor-mediated [Ca2+] oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol 166(4):461–473

Li XY, Rinzel J (1994b) Equations for InsP3 receptor-mediated [Ca2+] oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. J Theor Biol 166(4):461–473

Li XY, Rinzel J, Keizer J, Stojilković SS (1994) Calcium oscillations in pituitary gonadotrophs: comparison of experiment and theory. Proc Natl Acad Sci Unit States Am 91(1):58–62
Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue Xn, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11,238–11,246

Loy N, Preziosi L (2019) Modelling physical limits of migration by a kinetic model with non-local sensing. arXiv preprint arXiv:190808325

Makena MR, Rao R (2020) Subtype specific targeting of calcium signaling in breast cancer. Cell Calcium 85:102,109

Meyer T, Stryer L (1988) Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci Unit States Am 85(14):5051–5055

Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca\(^{2+}\) transport. Nat Rev Canc 7(7):519

Murray JD (2003) Mathematical Biology II: Spatial models and biomedical applications

Naik MU, Naik TU, Suckow AT, Duncan MK, Naik UP (2008) Attenuation of junctional adhesion molecule-a is a contributing factor for breast cancer cell invasion. Cancer research 68(7):2194–2203

Narciso CE, Contento NM, Storey TJ, Hoelzle DJ, Zartman JJ (2017) Release of applied mechanical loading stimulates intercellular calcium waves in drosophila wing discs. Biophysical journal 113(2):491–501

Narciso CE, Contento NM, Storey TJ, Hoelzle DJ, Zartman JJ (2017) Release of applied mechanical loading stimulates intercellular calcium waves in drosophila wing discs. Biophysical journal 113(2):491–501

Prevarskaya N, Skryma R, Shuba Y (2013) Targeting Ca\(^{2+}\) transport in cancer: close reality or long perspective? Expert opinion on therapeutic targets 17(3):225–241

Prevarskaya N, Ouadir-Ahidouch H, Skryma R, Shuba Y (2014) Remodelling of Ca\(^{2+}\) transport in cancer: how it contributes to cancer hallmarks? Phil Trans R Soc B 369(1638):20130,097

Prevarskaya N, Skryma R, Shuba Y (2018) Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiol Rev 98(2):559–621

Puck TT, Marcus PI, Cieciura SJ (1956) Clonal growth of mammalian cells in vitro: growth characteristics of colonies from single hela cells with and without a' feeder" layer. Journal of Experimental Medicine 103(2):273–284

Ramis-Conde I, Drasdo D, Anderson AR, Chaplain MA (2008) Modeling the influence of the E-cadherin-β-catenin pathway in cancer cell invasion: a multiscale approach. Biophys J 95(1):155–165

Ramis-Conde I, Chaplain MA, Anderson AR, Drasdo D (2009) Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol 6(1):016,008
Rezuchova I, Hudecova S, Soltysova A, Matuskova M, Durinikova E, Chovancova B, Zuzcak M, Cihova M, Burikova M, Penesova A, et al (2019) Type 3 inositol 1, 4, 5-trisphosphate receptor has antiapoptotic and proliferative role in cancer cells. Cell Death & Disease 10(3):186

Roderick HL, Cook SJ (2008) Ca\(^{2+}\) signalling checkpoints in cancer: remodelling ca 2+ for cancer cell proliferation and survival. Nat Rev Canc 8(5):361

Sanderson M, Sleigh M (1981) Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. Journal of cell science 47(1):331–347

Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. European Journal of Biochemistry 269(5):1333–1355

Shapovalov G, Skryma R, Prevarskaya N (2013) Calcium channels and prostate cancer. Recent Pat Anti-Canc 8(1):18–26

Shuai J, Pearson JE, Foskett JK, Mak DOD, Parker I (2007) A kinetic model of single and clustered IP\(_3\) receptors in the absence of Ca\(^{2+}\) feedback. Biophysical Journal 93(4):1151–1162

Shuai JW, Jung P (2002) Stochastic properties of Ca\(^{2+}\) release of inositol 1,4,5-trisphosphate receptor clusters. Biophysical Journal 83(1):87–97

Shuttleworth R, Trucu D (2019) Multiscale modelling of fibres dynamics and cell adhesion within moving boundary cancer invasion. Bull Math Biol pp 1–44

Siekmann I, Wagner LE, Yule D, Crampin EJ, Sneyd J (2012) A Kinetic Model for type I and II IP3R accounting for mode changes. Biophysical Journal 103(4):658–668

Simpson RU, Arnold AJ (1986) Calcium antagonizes 1, 25-dihydroxyvitamin D3 inhibition of breast cancer cell proliferation. Endocrinology 119(5):2284–2289

Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey SC, Taylor CW, Falcke M (2008) How does intracellular Ca\(^{2+}\) oscillate: by chance or by the clock? Biophysical Journal 94(6):2404–2411

Slack-Davis JK, Atkins KA, Harrer C, Hershey ED, Conaway M (2009) Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer research 69(4):1469–1476

Sneyd J, Dufour JF (2002) A dynamic model of the type-2 inositol trisphosphate receptor. Proceedings of the National Academy of Sciences of the United States of America 99(4):2398–2403

Sneyd J, Falcke M (2005) Models of the inositol trisphosphate receptor. Progress in Biophysics and Molecular Biology 89(3):207–245

Sneyd J, Han JM, Wang L, Chen J, Yang X, Tanimura A, Sanderson MJ, Kirk V, Yule DI (2017) On the dynamical structure of calcium oscillations. Proceedings of the National Academy of Sciences of the United States of America 114(7):1456–1461

Sun CH, Wacquier B, Aguilar DI, Carayol N, Denis K, Boucherie S, Valencia Gallardo C, Simsek C, Erneux C, Lehman A, Eminga J, Arbibe L, Sansonetti P, Dupont G, Combettes L, Tran Van Nhieu G (2017) The Shigella type III effector IpgD recodes Ca\(^{2+}\) signals during invasion of epithelial cells. EMBO Journal 36(17):2567–2580

Szymańska Z, Rodrigo CM, Lachowicz M, Chaplain MAJ (2009) Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math Models Methods Appl Sci 19(02):257–281

Tang Y, Stephenson J, Othmer H (1996) Simplification and analysis of models of calcium dynamics based on IP\(_3\)-sensitive calcium channel kinetics. Biophysical Journal 70(1):246–263

Taylor J, Simpson R (1992) Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse. Cancer Res 52(9):2413–2418

Thul R (2014) Translating intracellular calcium signaling into models. Cold Spring Harbor protocols 2014(5)

Thul R, Falcke M (2004a) Release currents of IP\(_3\) receptor channel clusters and concentration profiles. Biophysical Journal 86(5):2660–2673

Thul R, Falcke M (2004b) Stability of membrane bound reactions. Physical Review Letters 93(18):188,103

Thul R, Falcke M (2006) Frequency of elemental events of intracellular Ca\(^{2+}\) dynamics. Physical Review E 73(6 Pt 1):061,923
Thul R, Falcke M (2007) Waiting time distributions for clusters of complex molecules. Europhysics Letters 79(3):38,003

Thul R, Bellamy TC, Roderick HL, Bootman MD, Coombes S (2008) Calcium oscillations. Advances in Experimental Medicine and Biology 641:1–27

Thul R, Thurley K, Falcke M (2009) Toward a predictive model of Ca\(^{2+}\) puffs. Chaos 19(3):037,108

Thurley K, Smith IF, Tovey SC, Taylor CW, Parker I, Falcke M (2011) Timescales of IP\(_3\)-evoked Ca\(^{2+}\) spikes emerge from Ca\(^{2+}\) puffs only at the cellular level. Biophysical Journal 101(11):2638–2644

Thurley K, Skupin A, Thul R, Falcke M (2012) Fundamental properties of Ca\(^{2+}\) signals. Biochimica et Biophysica Acta 1820(8):1185–1194

Tilmant A, Croft W, Russell N, Bellamy TC, Thul R (2017) A Bayesian approach to modelling heterogeneous calcium responses in cell populations. PLoS Computational Biology 13(10):e1005,794

Tsaneva-Atanasova K, Yule DI, Sneyd J (2005) Calcium oscillations in a triplet of pancreatic acinar cells. Biophysical Journal 88(3):1535–1551

Tsunoda T, Koga H, Yokomizo A, Tatsugami K, Eto M, Inokuchi J, Hirata A, Masuda K, Okumura K, Naito S (2005) Inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1) modulates the acquisition of cisplatin resistance in bladder cancer cell lines. Oncogene 24(8):1396

Uhlén P, Fritz N (2010) Biochemistry of calcium oscillations. Biochemical and Biophysical Research Communications 396(1):28–32

Ullah G, Parker I, Mak DOD, Pearson JE (2012) Multi-scale data-driven modeling and observation of calcium puffs. Cell Calcium 52(2):152–160

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al (2019) Scipy 1.0—fundamental algorithms for scientific computing in python. arXiv e-prints p arXiv:1907.10121

Voorsluijs V, Dawson SP, De Decker Y, Dupont G (2019) Deterministic Limit of Intracellular Calcium Spikes. Physical Review Letters 122(8):088,101

Wang Z, Hillen T (2007) Pattern formation for a chemotaxis model with volume filling effects. Chaos 17(3):037,108

Weinberg R (2013) The biology of cancer. Garland Science

Weinberg SH, Smith GD (2014) The Influence of Ca\(^{2+}\) Buffers on Free [Ca\(^{2+}\)] Fluctuations and the Effective Volume of Ca\(^{2+}\) Microdomains. Biophysical Journal 106(12):2693–2709

Weiner R, Schmitt B, Podhaisky H (1996) Rowmap-a row-code with krylov techniques for large stiff odes. report 39, fb mathematik und informatik universitat at halle, germany

Wieder N, Fink R, von Wegner F (2015) Exact Stochastic Simulation of a Calcium Microdomain Reveals the Impact of Ca\(^{2+}\) Fluctuations on IP\(_3\)R Gating. Biophysj 108(3):557–567

Wijnhoven B, Dinjens W, Pignatelli M (2000) E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 87(8):992–1005

Wilkins M, Sneyd J (1998) Intercellular spiral waves of calcium. J Theor Biol 191(3):299–308

Yang W, Chen JY, Zhou L (2009) Effects of shear stress on intracellular calcium change and histamine release in rat basophilic leukemia (RBL-2H3) cells. Journal of Environmental Pathology, Toxicology and Oncology 28(3)

Young S, Ennes H, McRoberts J, Chaban V, Dea S, Mayer E (1999) Calcium waves in colonic myocytes produced by mechanical and receptor-mediated stimulation. American Journal of Physiology-Gastrointestinal and Liver Physiology 276(5):G1204–G1212

Zhu D, Cheng CF, Pauli B (1992) Blocking of lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) inhibits murine melanoma lung metastasis. J Clin Invest 89(6):1718–1724