Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability

Mikko Närhi, Benjamin Wetzel, Cyril Billet, Shanti Toenger, Thibaut Sylvestre, Jean-Marc Merolla, Roberto Morandotti, Frederic Dias, Goéry Genty & John M. Dudley

Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose-Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics.
Dynamical instabilities are seen in many areas of physics, and their study has major applications in physics, chemistry, biology and the social sciences. An especially important class of instability is the 'modulation instability' (MI) which describes how low-amplitude noise on an initial wave of constant intensity can grow exponentially and induce a wide range of nonlinear dynamical behaviour. Although first seen in deep-water wave propagation described by the cubic nonlinear Schrödinger equation (NLSE) (where it was referred to as the Benjamin–Feir instability), MI has attracted particularly widespread interest in optics and has been observed in a variety of nonlinear systems. The first observation of MI in optics was in optical fibre propagation described by the cubic NLSE but other classes of related instabilities have since been reported in laser resonators and optical cavities, spatio-temporal dynamics, pattern formation and waveguides.

Despite much research into more general manifestations of MI in optics, the cubic NLSE remains the canonical system of interest that illustrates the essential characteristics of the phenomenon. In addition, because the cubic NLSE describes pulse envelope propagation both in optical fibre and on the surface of deep water, there has been particular attention paid to the analogy between the instability growth dynamics in fibre optics and the formation of extreme rogue waves on the ocean. Indeed, although nonlinear noise amplification has been considered as a possible ocean rogue wave generation mechanism for some time, this possibility attracted renewed attention following experiments in optics where real-time measurements showed long-tailed statistics in the spectral intensity of an optical fibre supercontinuum. These experiments motivated significant wider interest in the statistical properties of random processes in optics, and subsequent studies have investigated long-tailed statistics in a variety of other optical systems, including those with only linear elements. It is important to stress, however, that the link between such ‘optical rogue waves’ and ocean waves remains an open question.

A significant feature of MI in the cubic NLSE arises from the fact that the low-amplitude noise on the initial conditions can be treated as a perturbation, allowing linear stability analysis to be used to derive the proper conditions for the excitation and growth of the instability. Moreover, beyond the initial phase of exponential instability growth, the MI dynamics lead to the generation of highly localized pulses that can be described in terms of analytic families of soliton on finite background or ‘breather’ solutions. In fact, although these analytic solutions were known since the 1980s, it is only very recently that advances in optical measurement technologies have actually permitted these solutions to be observed in experiments.

However, these previous experiments were carried out in the regime of ‘induced MI,’ where a low-amplitude narrowband stable modulation on a continuous wave was used to stimulate the instability dynamics from a coherent seed. Although highly significant from the perspective of confirming the analytic theory of breathers, these experiments do not, however, model the scenario of the ‘spontaneous’ MI where breather-like rogue waves emerge from low-amplitude broadband noise. Yet, many numerical studies have shown that the analytic breather solutions of the NLSE can in fact also describe the localized structures emerging from spontaneous MI arising from a noisy continuous wave as initial condition.

A number of experiments studying spontaneous MI in cubic-NLSE systems have been carried out, but studies of irregular water waves have focussed primarily on statistical measures, and have not considered wave envelope properties in detail. In optical fibre, the experiments have generally been limited to using only time-averaged autocorrelation to characterize the unstable field envelope, although real-time measurements of the spectral fluctuations have been possible using dispersive Fourier transformation. Important recent experiments have reported the use of optical sampling and a time-lens system to study the evolution that arises from the propagation of an irregular high-contrast pulse train seed in an optical fibre. From a dynamical perspective, the absence of a significant continuous wave component in the initial conditions leads to a very different propagation regime from MI. The higher energy associated with these initial conditions leads to random background-free nonlinear and higher-order soliton evolution whose intensity profile can reach locally extreme values, and where the central peak may be fitted with a Peregrine soliton (PS) structure. Although different from the regime of MI dynamics arising from low-amplitude broadband noise that we study here, this work shows how real-time optical techniques can be advantageously used to characterize the full field probability density and intensity profiles of background-free soliton time series.

In this paper, we report time-domain measurements of highly localized breathers generated from the spontaneous MI of a continuous wave (CW) field in a cubic NLSE optical fibre system. Using an integrated time-lens magnifier system, we capture in real time an extended series of transient high intensity breather pulses emerging from noise. The large data set allows quantitative comparison between measured statistics and those obtained from Monte Carlo NLSE simulations, and intensity envelope measurements confirm that the properties of the spontaneously generated breather profiles seen in experiment are in excellent agreement with analytic predictions. From a physical viewpoint, this agreement allows us to confirm experimentally that spontaneous MI can be interpreted in terms of breather solutions of the cubic NLSE, and by comparing peak-to-background ratios obtained from experiments with theory, we are also able to identify the most extreme events as corresponding to their collisions. Aside from representing a major advance in the experimental study of ultrafast MI, our results open up new possibilities for the study of other classes of nonlinear dynamical processes in optics.

Results

Numerical simulations of modulation instability dynamics. We first review the theory of MI and present numerical results showing the expected time-domain breather dynamics. The starting point is the cubic NLSE written in the notation of nonlinear fibre optics:

\[
i \frac{\partial A}{\partial z} - \frac{1}{2} \beta_2 \frac{\partial^2 A}{\partial T^2} + \gamma |A|^2 A = 0.
\]

Here \(A(z,T)\) is the pulse envelope in a co-moving frame (at the envelope group velocity) and \(\gamma (W^{-1} m^{-1})\) is the fibre nonlinear coefficient and group velocity dispersion respectively. The units of \(A(z,T)\) are \(W^{1/2}\), with \(|A(z,T)|^2\) yielding instantaneous power. Note that the NLSE is derived assuming a perturbative expansion of the material nonlinear response which is fully justified at the power levels used in our experiment.

Linear stability analysis assuming a low-amplitude modulation can be used to show that a constant-intensity wave of power \(P_0\) is unstable when \(\beta_2 < 0\), and the instability exhibits maximum gain at modulation frequency \(\Omega = (2 \pi P_0/|\beta_2|)^{1/2}\) (ref. 4). Figure 1 shows results from numerical simulations of the MI process with fibre parameters corresponding to our experiments at input wavelength of 1550.3 nm: \(\beta_2 = -2.14 \times 10^{-27} s^2 m^{-1}\) and \(\gamma = 1.3 \times 10^{-3} W^{-1} m^{-1}\). We simulate propagation in...
km-lengths of fibre of a noisy continuous wave input field with $P_0 = 0.7$ W. The input noise model includes the effect of amplified spontaneous emission (ASE) and phase modulation in the initial conditions, but no forcing noise source during propagation (for example, spontaneous Raman scattering) was included. With narrowband initial conditions and our parameters, the intensity contrast on the input continuous wave is <5% ensuring that we are in a low noise regime where the expected dynamics of cubic-NLSE MI can be clearly observed\(^4,40\). Note also that simulations were performed with higher-order dispersive and nonlinear terms, but these effects were found to be negligible (see ‘Methods’ section).

Figure 1a plots typical simulation results showing field temporal and spectral evolution for a single numerical realization. The temporal evolution plot clearly reveals the emergence of distinct breather pulses from the injected continuous wave background as a result of MI, and we stress that it is precisely the intensity profiles of these (randomly evolving) structures that have never been measured before. We also note that although our simulations include loss to facilitate quantitative comparison with experiments, the expected NLSE breather growth and decay dynamics are very clearly observed. The associated spectral evolution shows the initial stage of MI sideband generation at frequency $\Omega/2\pi = 46.4$ GHz (≈ 0.37 nm) for $P_0 = 0.7$ W.

Performing multiple simulations for different random noise seeds (see ‘Methods’ section) allows us to plot the evolution of the average spectrum as shown in Fig. 1b. Figure 1c compares the computed average spectra from simulations (black) with experimentally measured spectra (red) at three propagation distances. The superimposed grey curves also plot 50 individual realizations from the simulations to illustrate the degree of spectral fluctuation. For the chaotic temporal pulse train, we plot instantaneous pulse power normalized to background P_i/P, whilst spectral plots are normalized to the input spectral intensity at 1550.3 nm.

Real-time measurement of emerging localized structures. To characterize these breathers experimentally, we used the setup in Fig. 2. A continuous wave 1550.3 nm external cavity laser (ECL) was phase modulated (to suppress Brillouin scattering\(^{33,51}\)) and amplified to $P_0 = 0.7$ W before injection in standard single-mode fibre in which the MI develops (see ‘Methods’ section). The figure also illustrates schematically the fact that the instability develops from an injected continuous wave as initial condition. At this power, simulations indicate that the unstable pulses have expected durations in the range 2–12 ps which we measured using the time-lens system described below\(^{50}\).

When applied to a continuous wave field, the time-lens measurements yield distinct segments of the noisy pulse structure at a repetition rate of 100 MHz. After correcting for magnification, the physical (that is, demagnified) width of the measurement window was ≈ 50 ps. For peak detection and analysis, we consider a smaller region of 25 ps at the centre of the measurement window, from which it is straightforward to extract intensity profiles of individual breather pulses. The digital oscilloscope used to record the traces introduces a low level of noise spanning the complete bandwidth of our detection system (out to 40 GHz) with a constant level and, to improve signal fidelity, we apply a frequency-domain numerical filter which allows us to more clearly identify the maxima and determine the temporal widths of the signal peaks (see ‘Methods’ section). Three subplot in Fig. 2 show both unfiltered raw data (black traces) and filtered data (red curves) for representative signals obtained from our experiments, illustrating how the filtering procedure is effective at allowing us to identify peak maxima. Note that when the peak detection process over the central 25 ps region of the measurement window, only peaks that showed distinct maxima and subsidiary minima were included in the statistical
Figure 3 compares experiment and simulation characterizing MI at two different fibre lengths of (a) 11.7 km and (b) 17.3 km. For each case we show a time series of intensity fluctuations obtained from simulations (top, black), and a section of a corresponding intensity time series from experiments (bottom, red). Although the experimental measurements are sampled at the repetition rate of the time-lens pump (indicated by the broken time axis), we see nonetheless good visual agreement in the general characteristics of the observed intensity fluctuations.

These results complement those shown in the traces of Fig. 2 in illustrating the general features of a noisy MI field with random breathers. Note that while single isolated breathers can be observed in some instances, in many cases the pulse structure is more complex, but this is expected in the regime of spontaneous MI where breathers generated from noise will overlap and merge.

Note that these results plot $P / \langle P \rangle$, the measured signal normalized with respect to the measured average background CW power at the fibre output, which facilitates comparison with expected analytic solutions, and which provides an important measure that can be used to infer details of the underlying dynamics. In particular, in the regime of MI in the cubic NLSE, the peak-to-background ratio $P / \langle P \rangle$ can be used to distinguish elementary breathers from collision events between breathers, because it is well-known that the highest possible peak-to-background of an elementary (single) breather is $P / \langle P \rangle = 9$ corresponding to the PS of the NLSE. The only physical mechanism that can possibly yield a ratio $P / \langle P \rangle > 9$ is therefore a collision between elementary breathers. This criterion to distinguish elementary breathers

Figure 2 | Experimental setup. An external cavity laser (ECL) at 1550.3 nm is phase modulated (PM) and amplified in an erbium-doped fibre amplifier (EDFA) before injection in SMF-28 single-mode fibre. The input noisy continuous wave breaks up into a random breather train which is measured using an optical spectrum analyser (OSA) and a time-lens magnifier (PicoLuz UTM-1500). The time lens uses two dispersive propagation steps (D_1 and D_2), one on each side of an element that applies a quadratic temporal phase. In our experiments, the quadratic phase was applied from four wave mixing (FWM) with a linearly chirped pump pulse co-propagating in a silicon waveguide. The chirped pump pulses of duration ~ 90 ps are generated from a femtosecond pulse fibre laser at 100 MHz subsequently stretched through propagation in a fibre of dispersion D_p. Optimal fidelity in the time lens requires polarization control (PC) for the pump-signal FWM in the silicon waveguide. The wavelength-converted idler after FWM (with applied quadratic phase) is filtered before further propagation in segment D_2. The overall temporal magnification is 76.4 such that the stretched replica of the input at the output of D_2 can be resolved using a 30 GHz bandwidth detection system (photodiode and ultrafast oscilloscope). The output signal takes the form of a sequence of noisy breather peaks separated by 10 ns. Note that the figure plots results over a timespan of 50 ps, but peak detection used only a 25 ps region of the measurement window. We also show three representative signals obtained from experiment (at 17.3 km propagation) plotting both unfiltered raw data (black traces), and data after filtering (see ‘Methods’ section) to remove instrumental noise (red curves).
solutions from collision events has already been used in several works\(^{38,53}\).

Statistical analysis. The statistics of these results are characterized by computing histograms of the peak intensities of the pulses seen in the time series\(^{30}\). Figure 3 plots such histograms (equivalent probability density) comparing experiments (red) and simulations (black) for (c) 11.7 km and (d) 17.3 km propagation respectively. The inset plots use a semi-logarithmic axis. The histograms show clear qualitative differences with a broken axis between measurements. (\(z=11.7\) and 17.3 km respectively, comparing experiment (red) and simulation (black). The insets plots the histograms on semi-logarithmic axes. The calculated rogue wave intensity threshold \(I_{\text{RW}}\) is shown as a dashed blue line.

From the experimental data, very close to the value of \(I_{\text{RW}} = 9.1\) calculated from the simulation results. We also note that the fraction of events above \(I_{\text{RW}}\) can be readily calculated from experiment at \(\sim 0.3\%), a small fraction consistent with previous predictions for NLSE systems\(^{24,39}\).

Note that with measurements made at a fixed fibre distance, the MI breather profiles are not necessarily characterized at their point of maximum intensity, but rather at various points along their longitudinal evolution. However, although the associated statistics will differ from those obtained considering peaks in a two-dimensional NLSE field\(^{39}\), we can nonetheless draw an important conclusion about the physical nature of events that exceed the rogue wave threshold. In particular, since the calculated \(I_{\text{RW}}\) is very close to the limiting value of \(P/<P>/9\) above which peaks in the MI field must necessarily arise from breather collisions (see above\(^ {31}\)), this implies that the events classified as rogue waves in our data are associated with breather collisions. This is an important aspect of our study: the link between rogue wave events and breather collisions in the cubic NLSE has previously been made through numerical simulations\(^ {24,39,40}\), and our results allow us to confirm this experimentally.

Comparison with analytical breather theory. The time-lens measurements also permit quantitative comparison of the properties of the breather intensity profiles from experiments and those expected from theory. Firstly, for 30,000 distinct pulses in the time series, Fig. 4a plots the pulse duration (full-width at half-maximum(FWHM)) against the corresponding normalized peak power comparing experiment (top, red points) and simulation

Figure 3 | Time lens results and histograms. Experimental results at (a) 11.7 km and (b) 17.3 km showing intensity profiles from simulations (top, black) and experiments (bottom, red) as indicated. Plotted intensities \(P\) are normalized with respect to the average output background power \(<P>\) and plotted against time after rescaling to account for the effect of magnification. The experimental results are shown for sequential measurement windows (note the broken axis between measurements). (c,d) Histograms of the peak intensities (shown as normalized probability density) from the chaotic pulse trains at 11.7 and 17.3 km respectively, comparing experiment (red) and simulation (black). The insets plots the histograms on semi-logarithmic axes. The calculated rogue wave intensity threshold \(I_{\text{RW}}\) is shown as a dashed blue line.
excellent agreement with the PS profile due to its universal role in
and
P
events with maximal intensity
not only ideal PSs at their maxima, but also some breather collision
each case shows a higher-order breather fit.

These experimental results are important in confirming previous
suggestions that the analytic predictions of the NLSE provide a
natural basis with which to interpret the temporal structures in
MI, even when stimulated from noise
.

We can also compare the intensity profiles of the measured
breather pulses with simulation and theory, and these results are
presented in Fig. 4b,c. Firstly, from experimental and simulated
data, we select intensity profiles with
P
/ \langle P \rangle \approx 9
and a well-defined central peak with near 100% contrast (that is, zero intensity
on either side of the central maxima). Figure 4b shows 10 such
intensity profiles from experiment (top) and simulation (bottom).
Although both cases show large fluctuations in the pulse structure
in the wings (which is to be expected given that they emerge from
noise), the central peaks overlap very closely. In addition, in the
region of the central peak, the mean intensity profiles from
experiment and simulation (red lines) are in excellent agreement
with the analytic PS (black dashed lines) solution calculated for our
parameters (see ‘Methods’ section). Note that when we measure at
a fixed distance, the selection of peaks with
P
/ \langle P \rangle \approx 9
will include not only ideal PSs at their maxima, but also some breather collision
events with maximal intensity \approx 9.

For structures with intensities
P
/ \langle P \rangle > 9
arising from breather collisions, there is no simple analytic description. Nonetheless, it
is possible to construct the theoretical profile of a breather collision using the Darboux
transformation
. Two examples of experimentally measured collision profiles are shown in the grey
lines in Fig. 4c for a normalized power of
P
/ \langle P \rangle \approx 11.5
(top) and
P
/ \langle P \rangle \approx 13.5
(bottom). Note that these are single-shot
measurements and not averages over an ensemble. In both cases
we compare these results with theory by using the Darboux
transformation to analytically construct a second-order breather
solution (see ‘Methods’ section) and the construction is in
excellent agreement with experiment. It is important to bear in
mind that, in a noisy MI field, all the Fourier modes underneath
the MI gain bandwidth are simultaneously excited such that the
resulting evolution corresponds to the nonlinear superposition
of the structures associated with these Fourier modes. This
implies that the fit of a particular analytical breather (or collision
thereof) can generally be performed only locally to a limited
interval of the temporal field profile. To identify all the structures
that are present in the random MI field generated in an integrable
cubic NLSE system, a different approach consists in using the
inverse scattering transform to compute the eigenvalue spectrum
associated with a particular evolving field, allowing discrim-
ination between particular structures that can emerge along
propagation
.

Discussion
There are several important conclusions to be drawn from this
work. Firstly, our results show direct measurements of the
ultrafast intensity profiles of optical breather structures emerging
from noise-driven MI, and our measurements confirm analytical
predictions made decades ago but never previously quantified in
any physical system. We have been able to extract profiles of
pulses satisfying criteria as statistical rogue waves, and our results
have allowed us to associate these with collisions between
elementary NLSE breathers. Our combined time domain, spectral
and statistical characterization provides a comprehensive view of
the underlying dynamics of MI and nonlinear breather formation
that develop from the exponential amplification of broadband
random noise in a cubic NLSE system.

Furthermore, these results complement the recent experimen-
tal study of transient intense structures that can emerge from a
broadband input field corresponding to a random high-contrast
pulse train
, and whose evolution is naturally described in terms of
random (background-free) higher-order soliton dynamics
.
We anticipate that a detailed comparison between the long-term evolution and turbulence properties of these two regimes could provide additional insights into nonlinear propagation dynamics in optical fibres with noisy initial conditions.

Finally, we also note that our results highlight the intrinsic advantages of using advanced pulse metrology techniques in optics to continuously re-visit and retest different scenarios in nonlinear optics. Our successful use of the time-lens approach to measure MI opens up possibilities in characterizing other optical systems displaying instabilities such as lasers with nonlinearity and feedback56, or ultrafast lasers in which dissipative soliton nonlinear optics. Our successful use of the time-lens approach to interpret our results in terms of cubic NLSE dynamics. In fact, experimental performed with and without the higher-order nonlinear terms, confirming the interpretation of our results in terms of cubic NLSE dynamics. In fact, experimental evidence for the negligible influence of higher-order dispersion and higher-order nonlinear effects is also seen in the symmetrical spectral broadening and linear spectral profile (for a given input power) in experimentally. We also note in Fig. 2 that no significant effect of loss can be seen in simulations leading to a slight decrease in mean spectral bandwidth with propagation, but this has no effect on the qualitative growth and decay breather dynamics in the time domain. Initial conditions used a continuous wave field of power \(P_L = 0.7 \text{ W} \) modified by phase modulation and with ASE noise to model the contribution from the erbium-doped fibre amplifier. The phase modulation is applied to suppress Brillouin scattering when using continuous wave excitation, and we used a standard technique57 with a \(\sim 4 \text{ Gbit s}^{-1} \) pseudo-random bit sequence of \(\pm \pi \) phase swings which was included in the simulations. The ASE noise was included through a spectral background of \(-50 \text{ dB} \) relative to the pump with random spectral phase. The spectral background level corresponded to that measured experimentally. The statistics of the MI spectral and temporal properties were obtained by Monte Carlo simulations to generate an ensemble of simulations using different random number seeds. The numerical ensemble yielded typically \(\sim 5 \times 10^3 \) distinct peaks from which a large number of distinct random peaks and a corresponding intensity histogram could be readily obtained for comparison with experiment.

Experimental setup. An ECL (Agilent 81949A) at 1550.3 nm was first phase-modulated using an electro-optic phase modulator driven by a pseudo-random bit sequence pattern generator (Tektronix AWG7122C) before amplification in an EDFA (Keopsys C40-PB) and coupling into single-mode fibre SMF-28. We performed measurements over a wide power range \(0.3 \text{ to } 1.2 \text{ W} \) but the evolution and breather characteristics were found to be qualitatively similar, and the results we present here at \(P_L = 0.7 \text{ W} \) are typical. An optical circulator was used to monitor Brillouin backscattered light which was always \(<5\%\) of the input power. Spectral measurements used an OSA (Anritsu OSA MS9710B) with 0.07 nm resolution.

The time lens used was a commercial Picolux UTOM-1500 system, similar to that described in ref. 50. Total accumulated dispersion for the input and output propagation steps was: \(D_1 = 4.16 \text{ ps nm}^{-1} \left(5.32 \times 10^{-22} \text{ s} \right) \) and \(D_2 = 318 \text{ ps nm}^{-1} \left(4.06 \times 10^{-22} \text{ s} \right) \), respectively, with magnification \(M = D_1 / D_2 \). The temporal quadratic phase (to reproduce the effect of a thin lens) was imposed through four wave mixing from a pump pulse \(100 \text{ MHz}\) Menlo C-Fiber Sync and P100-EDFA) with linear chirp accumulated from propagation in a pre-chirping fibre segment \(D_p \). The imaging condition for magnification is \(2D_2 / D_1 = 1/2D_p \), so that the dispersion for the pump is around twice that of the signal input pulse. The time-lens output was detected with a 38 GHz photoreceiver (New Focus 1474-A) connected to a 30 GHz channel of a real-time oscilloscope (LeCroy 845 Zi-A 80 GS/s). Combining the electronic detection bandwidth with the optical parameters of the time-lens yields an overall intrinsic demagnified temporal resolution of \(<300 \text{ ps} \) (ref. 50).

The measurement window in magnified time was \(\pm 5 \text{ ns} \), and raw data traces are shown in Fig. 2 for a region of magnified time of 3.9 ns, corresponding to 50 ps in demagnified time. (Note that all results in Figs 3 and 4 are plotted against demagnified time.) For peak detection with improved signal-to-noise and to avoid any possibility of overlap between 50 ps temporal resolution only the central 25 ps region (in demagnified time) of the measurement window. These measurements were then normalized to the mean background intensity to yield a peak-to-background ratio \(P / \rho \) for comparison with simulations. The mean background for normalization was obtained by measuring the time-lens output with the same average power and same conditions as in Fig. 2. This measurement was also verified by taking the average over a large number of the random MI pulse samples in the MI regime.

The digital oscilloscope used to record the traces introduces a low level of background noise \((\sim \text{mV}) \) which can be seen on the unfiltered data (black trace). An example of such noise can be seen on the oscilloscope sampling interval of 12.5 ps extending up to a frequency of 2/12.5 ps = 40 GHz in a single sideband spectrum (limited by the sampling rate of the oscilloscope). This sampling noise was filtered in the Fourier domain with a sixth-order super-Gaussian low-pass filter with a 8 GHz FWHM bandwidth. After accounting for the effects of magnification, this yields an effective bandwidth of 610 GHz for resolving physical structures on the MI field. The appropriate bandwidth of the RF filter applied to reject unwanted noise was determined from the noise of the detection system both in the absence of any signal and when a broadband CW field was directly measured. We further checked that the filtering operation did not distort pulse shapes and that the output of fast the breather structures. The seeded breathers were generated from a modulated signal with various modulation periods leading to compressed structures with durations in the range 2–12 ps similar to those observed in the spontaneous MI experiments, and which could be compared with ideal analytical breather solutions.

The detailed analytic breather profiles that are compared with experiments in Fig. 4b,c are based on well-known theory of NLSE breathers57. Figure 4b plots an analytic result for the second-order solution for \(P / \rho > 9 \) corresponding to the in-phase collision between two elementary breathers constructed using the Darboux transformation technique57. Note that the theoretical curves plot duration against normalized power at the point of maximum temporal localization, but it is clear from Fig. 4 that the calculated centered points extracted from the random data are consistent with the theoretical curve. The intensity \(I_{\text{GW}} \) indicated on the histograms describes a threshold criterion used to distinguish the small number of high intensity rogue wave events from the general population of intensity peaks. This is calculated from the statistics of the intensity peaks to determine the ‘significant intensity’ \(I_{\text{gw}} \) which is the mean intensity of the highest third of events. The rogue wave intensity threshold is then defined as \(I_{\text{GW}} = 2I_{\text{gw}} \), a criterion that is generally accepted as it can be calculated for any underlying probability distribution58.

The detailed analytic breather profiles that are compared with experiments in Fig. 4b,c are based on well-known theory of NLSE breathers57. Figure 4b plots an analytic result for the second-order solution for \(P / \rho > 9 \) corresponding to the in-phase collision between two elementary breathers constructed using the Darboux transformation technique57. Note that the theoretical curves plot duration against normalized power at the point of maximum temporal localization, but it is clear from Fig. 4 that the calculated centered points extracted from the random data are consistent with the theoretical curve. The intensity \(I_{\text{GW}} \) indicated on the histograms describes a threshold criterion used to distinguish the small number of high intensity rogue wave events from the general population of intensity peaks. This is calculated from the statistics of the intensity peaks to determine the ‘significant intensity’ \(I_{\text{gw}} \) which is the mean intensity of the highest third of events. The rogue wave intensity threshold is then defined as \(I_{\text{GW}} = 2I_{\text{gw}} \), a criterion that is generally accepted as it can be calculated for any underlying probability distribution58. The detailed analytic breather profiles that are compared with experiments in Fig. 4b,c are based on well-known theory of NLSE breathers57. Figure 4b plots an analytic result for the second-order solution for \(P / \rho > 9 \) corresponding to the in-phase collision between two elementary breathers constructed using the Darboux transformation technique57. Note that the theoretical curves plot duration against normalized power at the point of maximum temporal localization, but it is clear from Fig. 4 that the calculated centered points extracted from the random data are consistent with the theoretical curve. The intensity \(I_{\text{GW}} \) indicated on the histograms describes a threshold criterion used to distinguish the small number of high intensity rogue wave events from the general population of intensity peaks. This is calculated from the statistics of the intensity peaks to determine the ‘significant intensity’ \(I_{\text{gw}} \) which is the mean intensity of the highest third of events. The rogue wave intensity threshold is then defined as \(I_{\text{GW}} = 2I_{\text{gw}} \), a criterion that is generally accepted as it can be calculated for any underlying probability distribution58.
solutions of the NLSE provide an appropriate basis for describing the nature of localized structures that emerge from a chaotic MI field and (ii) the structures with highest intensity arise from the collision of elementary breathers. We stress that there is a fundamental difference between elementary and high-order breathers. An elementary breather corresponds to the exponential growth and decay of a weakly modulated continuous background with a single modulation frequency. On the other hand, a collision of breathers arises when two different elementary breather structures are simultaneously excited and their relative phase is such that the distances at which they reach maximum intensity closely coincide. A collision can thus also be seen as the nonlinear superposition of elementary breather structures.

Data availability. The data that support the findings of this study are available from the corresponding author upon request.

References
1. Scott, A. C. The Nonlinear Universe: Chaos, Emergence, Life (Springer, 2007).
2. Benjamin, T. B. & Feir, J. E. The disintegration of wave trains on deep water. Part I. Theory. J. Fluid Mech. 27, 417–430 (1967).
3. Tai, K., Hasegawa, A. & Tomita, A. Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986).
4. Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2013).
5. Lugato, L. A. & Lefeber, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).
6. Tredicce, J. R. et al. Spatio-temporal instabilities in a CO2 laser. Phys. Rev. Lett. 62, 1274–1277 (1989).
7. Coates, A. B. et al. Dynamical transverse laser patterns. II. Experiments. Phys. Rev. A 49, 1452–1466 (1994).
8. Vaschenko, G. et al. Temporal dynamics of semiconductor lasers with optical feedback. Phys. Rev. Lett. 81, 5536–5539 (1998).
9. Bonauro, G. et al. Deterministic optical rogue waves. Phys. Rev. Lett. 107, 053901 (2011).
10. Kovalsky, M. G., Niloa, A. A. & Tredicce, J. R. Extreme events in the Tisapphire laser. Opt. Lett. 36, 4449–4451 (2011).
11. Arecchi, F. T., Giacomelli, G., Ramazza, P. L. & Residori, S. Experimental evidence of chaotic itinerary and spatiotemporal chaos in optics. Phys. Rev. Lett. 65, 2531–2534 (1990).
12. Huyet, G. & Tredicce, J. R. Spatio-temporal chaos in the transverse section of lasers. Physica D 96, 209–214 (1996).
13. Arecchi, F. T., Boccaccetti, S., Ramazza, P. L. & Residori, S. Transition from boundary- to bulk-controlled regimes in optical pattern formation. Phys. Rev. Lett. 70, 2277–2280 (1993).
14. Staliunas, K., Sêkys, G. & Weiss, C. O. Nonlinear pattern formation in active optical systems: shocks, domains of tilted waves, and cross-roll patterns. Phys. Rev. Lett. 79, 2658–2661 (1997).
15. Kip, D., Soljacic, M., Segev, M., Eugenieva, E. & Christodoulides, D. N. Modulation instability and pattern formation in spatially incoherent light beams. Science 290, 495–498 (2000).
16. Schwartz, T., Carmon, T., Buljan, H. & Segev, M. Spontaneous pattern formation with incoherent white light. Phys. Rev. Lett. 93, 223901 (2004).
17. Clerc, M. G., Gonzalez-Cortes, G. & Wilson, M. Extreme events induced by spatiotemporal chaos in experimental optical patterns. Opt. Lett. 41, 2711–2714 (2016).
18. Malendeveich, R., Jankovic, L., Stegeman, G. & Atchison, J. S. Spatial modulation instability in a Kerr slab waveguide. Opt. Lett. 26, 1879–1881 (2001).
19. Zakharenko, V. E. & Ostrovsky, L. A. Modulation instability: the beginning. Physica D 238, 540–548 (2009).
20. Dudley, J. M., Genty, G., Dias, F., Kühler, B. & Akhmediev, N. Modulation instability. Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009).
21. Solli, D., Herrink, G., Jalali, B. & Ropers, C. Filter popularities and correlations in modulation instability. Nat. Photonics 6, 463–468 (2012).
22. Dyste, K. B. & Trulsen, K. Note on breather type solutions of the NLS as models for freak waves. Phys. Scr. T82, 48–52 (1999).
23. Dyachenko, A. I. & Zakharov, V. E. Modulation instability of Stokes wave → freak wave. JETP Lett. 81, 255–259 (2005).
24. Akhmediev, N., Soto-Crespo, J. M. & Ankiewicz, A. Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009).
25. Kharif, C. & Pelinovsky, E. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B/Fluids 22, 603–634 (2003).
26. Osborne, A. Nonlinear Ocean Waves and the Inverse Scattering Transform Vol. 97 (Academic Press, 2010).
27. Solli, D., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1058 (2007).
28. Onorato, M., Residori, S., Bortolozzo, U., Montina, A. & Arecchi, F. T. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013).
M.N. acknowledges the support of the Kaute Foundation. G.G. acknowledges the support from the Academy of Finland (Grants 267576 and 298463). R.M. acknowledges the support from NSERC through the Discovery and Accelerator Programs.

Author contributions
M.N., B.W., C.B., J.M.D. and G.G. performed the experiments with assistance and independent checking from J.-M.M., S.T. and T.S. Numerical simulations were carried out by M.N., B.W., J.M.D., G.G. and S.T. All authors contributed to interpreting the results obtained and to the writing and review of the final manuscript, with overall project supervision by F.D. and J.M.D.

Additional information
Competing financial interests: The authors declare no competing financial interests.
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Närhi, M. et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun. 7, 13675 doi: 10.1038/ncomms13675 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2016

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/