Dynamics and Co-movements Between the COVID-19 Outbreak and the Stock Market in Latin American Countries: An Evaluation Based on the Wavelet-Partial Wavelet Coherence Model

Faik Bilgili¹, Emrah Koçak¹, and Sevda Kuşkaya²

Abstract
The COVID-19 outbreak and the global uncertainty it causes produce an apparent panic in stock markets. Efforts to explain the economic spillover effects of COVID-19 can guide authorities to design a control policy against the financial impacts of pandemics. The paper examines the effects of the COVID-19 cases on the stock markets in the emerging Latin American countries of Argentina, Brazil, Chile, Colombia, Mexico, and Peru. The paper employs a continuous partial wavelet methodology to observe lead-lag relations between the daily variables of new COVID-19 cases and the stock market index for each Latin American country. Brazilian new COVID-19

¹Faculty of Economics and Administrative Sciences, Department of Economics, Erciyes University, Melikgazi-Kayseri, Turkey
²Justice Vocational College, Erciyes University, Kayseri, Turkey

Corresponding Author:
Emrah Koçak, Faculty of Economics and Administrative Sciences, Department of Economics, Erciyes University, Melikgazi-Kayseri 38039, Turkey; School of Hospitality and Tourism Management, University of South Florida, 8350 N. Tamiami Trail, FL, 34243, Sarasota, USA. Email: emrahkocak@erciyes.edu.tr
cases led the Bovespa (BVSP) index to decline during the whole period, except February and June 2020, at one month-two month-frequency band. The wavelet and phase difference analyses indicate that, except for Brazil, COVID-19 cases did not affect the stock market indexes adversely during the whole sample period but did affect the stock exchange markets negatively during some sub-sample periods of the entire sample of each country. Dynamics of Latin American stock exchange markets in the short and long run can be explained by some other parameters of real and financial sectors and COVID-19 cases.

Keywords
new COVID-19 cases, stock market, new COVID-19 deaths, exchange rates, SP500, emerging Latin American countries

JEL Codes
G1, G17, C40

Introduction
The new type of Coronavirus (COVID-19) outbreak, which started in Wuhan, China in December 2019, spread rapidly to Asian economies, then to America, Europe, and the whole World (Ghanbari, 2020). Due to the global contagion effect and increasing cases, the World Health Organization (WHO) declared the COVID-19 outbreak an official pandemic on March 11, 2020 (Chowdhury et al., 2022; Zhang et al., 2020). Since the first case, there have been 475,768,643 confirmed cases and 6,104,405 deaths worldwide (Johns Hopkins Coronavirus Resource Center, 2022). As the pandemic continues, there is unprecedented uncertainty around the World about the lethality impact of the disease, whether there will be a vaccine, and how long it will take to reach people if it occurs (Ashraf, 2020; Shahzad et al., 2022). The COVID-19 outbreak and its uncertainty undoubtedly led to severe disruptions in everyday life and economies (Lazzerini & Putoto, 2020). The uncertainty can affect the dynamics of the economy adversely. The increasing number of cases and deaths in various parts of the world every day caused panic and chaos in the real economy and financial markets on a global scale (Salisu & Akanni, 2020). As the first response to the outbreak, many goods and services sectors contracted, international supply chains were directly affected, consumer-producer confidence indices fell, and global trade volume shrunk (Hale et al., 2020). However, the economic area most affected by the COVID-19 outbreak is the stock markets (Koçak, Dogru, et al., 2022; Topcu & Gulal, 2020; Zhang et al., 2020). An important indicator of this situation is the
emergence of unprecedented volatility in the US stock markets at the end of March 2020. Also, the rise of the VIX volatility index, known as the global fear index, to levels above the 2007–2008 crisis is another evidence of the initial effects of COVID-19 on the stock market (Ciner, 2020). Although there is a preliminary indicator such as volatility in stock markets, information on the effects of the COVID-19 outbreak on financial markets and stock returns is currently very limited and short-run (Arias, 2020; Cepoi, 2020); therefore, explaining the dynamic effects of the COVID-19 outbreak, and the number of cases and deaths on financial markets will make an essential contribution to the literature. Some papers declare that the impact of COVID-19 on financial markets may be more significant than the 2007–2008 Global crisis (Ciner, 2020; Shehzad et al., 2020). Goodell (2020) reveals that a pandemic may have devastating effects on financial markets. On the other hand, this situation is also an opportunity for researchers to investigate the pandemic-finance relationship. Globally, there is tremendous fear about the possible impact of the COVID-19 outbreak on financial markets and the economy (Goodell, 2020). In many countries, governments try to control the pandemic with health measures and restrictive policies. Governments also aim to reduce the negative impact of the epidemic on the economy and financial markets with various financial and economic incentives. Explaining the dynamics and co-movements between COVID-19 and financial markets can guide the authorities in developing policies for financial markets.

With COVID-19, much research has been undertaken on the relationship between the pandemic and stock markets. In the current literature, some studies focus on developed markets, while others examine emerging markets, especially Asian ones. Some studies analyze the relationships between COVID-19, the global fear index, economic policy uncertainty, and stock returns. Other papers focus on the spillover effects between COVID-19 and the stock market. The effects of COVID-19 on sectoral stocks such as industry, technology, transportation, tourism, and defense industry are also examined. The findings are summarized as follows when the available literature is reviewed.

He et al. (2020b) examine the direct effects and spreads of COVID-19 on the stock markets for the stock markets of China, Italy, South Korea, France, Spain, Germany, Japan, and the United States. The findings show that COVID-19 has a negative but short-term impact on the stock markets of the affected countries and that the impact of COVID-19 on the stock markets has bidirectional spillover effects between Asian countries and Europe. Topcu and Gulal (2020) examine the impact of COVID-19 on the stock markets of emerging market economies. Empirical results show that the highest impact is in Asia and the lowest is in European emerging markets. The paper also underlines that the official response time and the size of the stimulus package provided by governments are essential in balancing the effects of the
pandemic. Narayan et al. (2020) investigate the relationship between the Japanese yen and the stock market during the pandemic. The research reveals that the yen’s depreciation against the US dollar increased in Japanese stock returns. Mazur et al. (2021) discuss the relationship between COVID-19 and the US stock market return and volatility within the S&P 1500. According to the findings, natural gas, food, health, and software stocks have high positive returns, while oil, real estate, entertainment, and accommodation stock’s yields decrease. Okorie and Lin (2021) analyze the fractal contagion effects of COVID-19 on stock markets in 32 countries. The research reveals significant fractal contagion effects on the return and volatility of stock markets. Li et al. (2021) examine the relationship between pandemic fear and stock market returns for developed country stock markets. The findings reveal that stock trading depends on the case index, the death index, and the global fear index.

Remarkably, it is observed that there is low interest in the literature about the response of the stock markets of Latin American countries to the pandemic, and there is a research gap. Latin American stock markets show the characteristics of an emerging market economy, and there is a need for research on the pandemic-stock market nexus. Based on this imperative, we aim to investigate the influence of the COVID-19 pandemic on the stock markets in Latin American Emerging countries using a wavelet approach. With the employment of Latin American Emerging countries data, this work follows the wavelet transform to investigate the co-movements of the variables throughout the sub-samples and whole sample periods associated with low and high-frequency bands. The contribution of this paper to the literature is in three-folds: (1) One of the regions where the pandemic is most affecting is Latin America. As of March 2022, Argentina, Brazil, Colombia, Chile, and Mexico have the highest number of confirmed cases of COVID-19. According to other essential statistics, Brazil, Mexico, Argentina, Peru, and Colombia are among the countries where deaths from COVID-19 are most common (Johns Hopkins Coronavirus Resource Center, 2022). It is a remarkable region to learn about the economic and financial implications of COVID-19. Moreover, there exists a research gap regarding the co-movement and dynamic effects of the impact of COVID-19 on stock markets in the Latin American region. Therefore, we expect the outputs of this article to contribute to the literature by revealing added information.

(2) There are arguments in the literature that COVID-19 may cause a fractal contagion effect between stock markets (Okorie & Lin, 2020). For this reason, we also investigate how Latin American financial markets respond to the change in global stock markets, along with the COVID-19 case and death numbers. We consider the SP500 or the Standard and Poor’s 500 indexes to represent the change in the global stock market. The SP500 is an index that considers the market capitalization weight of the 500 largest US companies publicly traded. The index is considered the best indicator of the wide range of
US stocks and represents the global stock market. The estimation findings will reveal how the stock exchange in each Latin American country reacted to changes in the SP500 during the COVID-19 outbreak and whether there was a spillover effect on financial markets.

(3) Recently, the novel coronavirus and its impact on financial markets have attracted significant interest from many researchers. Various estimators are used to deepening understanding and insight of valuable inferences through mathematical and statistical modeling. Mathematical and statistical modeling is a critical tool for analyzing the spread and knowledge of the manageability level and impact of the prevention and control mechanisms applied to the pandemic (Boukanjime et al., 2020). The susceptible exposed infectious recovered (SEIR) model is often used to describe the dynamics of the pandemic based on the progression of COVID-19 and quarantine response measures (Annas et al., 2020; Hou et al., 2020). Computable general equilibrium models are used to explain the behavior of COVID-19 and its effects on prices and the overall economy (Aydin & Ari, 2020; Keogh-Brown et al., 2020). Time series analysis and various panel data methods are followed to explain the dynamic effects of the pandemic on the real economy and financial markets (Al-Awadhi et al., 2020; P He et al., 2020; Liew, 2020; Lobão et al., 2022; Okorie & Lin, 2020). This paper analyzes the dynamic effects of COVID-19 on the financial market, with a wavelet and partial wavelet consistency. It thus provides information about the wavelength where (a) significant co-movements between variables can be observed and (b) lead-lag correlations of the variables are seen. Therefore, our estimation model is an ideal way to learn the impact of the COVID-19 outbreak on stock price movements and volatility.

The rest of the research is organized as follows. After the introduction, the second section explains the materials and method. Section three sets out the data and forecast findings. Section four, the conclusion section, provides the research results and offers recommendations to politicians and future research.

Materials and Method

Wavelet Analysis

Wavelet analysis technique has been applied intensively by researchers, especially in recent years (Bilgili, 2015; Bilgili et al., 2019, 2020, 2021a, 2021b, 2022; Kassouri et al., 2022; Kuşkaya, 2022; Kuşkaya et al., 2022; Kuşkaya & Bilgili, 2020; Magazzino & Mutascu, 2019; Magazzino et al., 2021; Magazzino & Giolli, 2021; Mutascu et al., 2022; Shehzad et al., 2021). Wavelet transform is one of the most followed frequency analysis methods to analyze non-stationary time series (Cohen, 2019). Wavelet can simultaneously localize signals in the time and frequency domain. As the best technique for
the non-stationary time series, the wavelet transform is filtered into different frequency bands divided into segments in the time domain (Zhao et al., 2004). Wavelet analysis can discrete the data of the fluctuations into various frequency components by considering the time and scale domain simultaneously (Crowley, 2005). The wavelet function $W_{(s,n)}(t)$ is defined as (Matalgah et al., 1997)

$$W_{(s,n)}(t) = \frac{1}{\sqrt{n}} \int_{-\infty}^{\infty} x(t) b^* \left(\frac{t - s}{n}\right) dt$$ \hspace{1cm} (1)

The n is the scaling parameter and s is the shifting parameter. The term $x(t)$ is called analyzing wavelet. In equation (1), the term $1/\sqrt{n}$ used to ensure energy conservation. Also, b^* is the complex conjugate of the mother wavelet function $b(t)$ which provides the balance between both domains. Morlet wavelet transform, one of the wavelet types, is a transformation that includes two parts; imaginary and real. Morlet wavelet transform is defined by Torrence et al. (1998) as below

$$b^w(t) = pi^{-1/4}e^{i6t}e^{-\left(\frac{t^2}{2}\right)}$$ \hspace{1cm} (2)

Cross-wavelet transform (CWT) is utilized to reveal time-frequency analysis information between two non-stationary time series and to determine their power and phase difference in time-frequency domains (Firouzi & Wang, 2019). The CWT can be defined as equation (3)

$$W^{x,y}(s,n) = W^x(s,n)W^y*(s,n)$$ \hspace{1cm} (3)

Cross-wavelet power determines the areas where the correlation between the {X} and {Y} has high common power (Grinsted et al., 2004). Wavelet coherence of two time series of $W^x(s,n)$ and $W^y(s,n)$ can be defined in equation (4) as is depicted by Aguiar-Conraria et al. (2013)

$$\mathcal{N}^{xy}(s,n) = \left(\frac{|S(w^{xy}(s,n))|}{\sqrt{|S(w^x(s,n))|S(w^y(s,n))}}\right)$$ \hspace{1cm} (4)

where \mathcal{N}^{xy} indicates the correlation, this parameter ranging from 0 to 1. S denotes the smoothing operator.

The partial wavelet (PW) coherence is a technique similar to the partial correlation that helps find the resulting wavelet coherence between {Y} and {X1} after eliminating the influence of the {X2} (Mihanović et al., 2009). The partial wavelet coherence squared is defined as

$$\left(PW_{(x1,x2)}\right)^2 = \frac{|W_{yx1} - W_{yx2}.W_{x2x1}|^2}{\left(1 - (W_{yx2})^2\right)\left(1 - (W_{x2x1})^2\right)}$$ \hspace{1cm} (5)
\[
\left(PW_{xyx} \right)^2 = \frac{\left| W_{yx2} - W_{yx1} \cdot W_{x2}^* \right|^2}{(1 - W_{yx1}^2)(1 - (W_{x2})^2)}
\]

One can define the complex wavelet coherency as follows (in analogy with the concept of coherency used in Fourier analysis), given two-time series \(x(t)\) and \(y(t)\), as is explained in Aguiar-Conraria et al. (2013)

\[
\varphi_{xy} = \frac{S(W_{xy})}{\left[S(|W_x|^2) S(|W_y|^2) \right]^{1/2}}
\]

(6)

where \(\varphi_{xy}\), \(W_x\), \(W_y\) and \(W_{xy}\) are complex wavelet coherency, the wavelet transforms of \(x\) and \(y\), and the cross wavelet transforms of \(x\) and \(y\), respectively. The parameter \(S\) depicts a smoothing operator in both time and scale. The \(S\) is required; otherwise, the coherency would be identically one at all scales and times. One can define the wavelet coherency by taking the absolute value of the complex wavelet coherency denoted by \(\mathcal{S}_{xy}(\hat{s}, \hat{f})\)

\[
\mathcal{S}_{xy}(\hat{s}, \hat{f}) = \frac{|S(W_{xy})|}{\left[S(|W_x|^2) S(|W_y|^2) \right]^{1/2}}
\]

(7)

In the model, phase difference analysis is used to detect phase coherences between variables. The phase difference \(^1 (\beta_{x,y} \in [-\pi, \pi])\) among \(\{X\}\) and \(\{Y\}\) can be described as follows

\[
\beta_{x,y} = \arctan \left[\frac{\text{Im}(w_{xy}(s,n))}{\text{Re}(w_{xy}(s,n))} \right]
\]

(8)

In equation (8), \(\text{Im}(w_{xy})\) and \(\text{Re}(w_{xy})\) demonstrate imaginary and real parts of the smooth power spectrum, respectively. Phase angles \(\beta_{x,y} \in \left(0, \frac{\pi}{2}\right)\) demonstrate that the series move in-phase and the second variable \(y\) is lagging. Phase angles \(\beta_{x,y} \in \left(0, -\frac{\pi}{2}\right)\) demonstrate that the series move again in phase then the first variable \(x\) is lagging.

By following Aguiar-Conraria and Soares (2014), we can define complex partial wavelet coherency and partial phase difference. In the three-variable case, we depict the complex partial wavelet coherency by equation (9) as follows

\[
\partial_{12,3} = \frac{\partial_{12} - \partial_{13} \partial_{23}}{(1 - R_{13}^2)(1 - R_{23}^2)}
\]

(9)
We denote the complex partial wavelet coherency between \(x(t) \) and \(y(t) \) after controlling \(z(t) \) as follows

\[
\partial_{xy,z} = \frac{\partial_{xy} - \partial_{iz}\partial_{jz}}{\left(1 - R_{ix}^2\right)\left(1 - R_{yz}^2\right)}^{1/2}
\]

(10)

By defining the complex partial wavelet coherency, \(\partial_{1j,qj} \), between series \(x_1 \) and \(x_j \) after controlling the remaining variables, we can define the partial phase difference of \(x_1 \) over \(x_j \), \(\vartheta_{1j,qj} \), as the angle of \(\partial_{1j,qj} \), as follows

\[
\vartheta_{1j,qj} = \tan^{-1}\left(\frac{\Im\left(\partial_{1j,qj}\right)}{\Re\left(\partial_{1j,qj}\right)}\right)
\]

(11)

Data

This paper employs the methodology of the Morlet wavelet transform model to analyze the co-movements between COVID-19 cases and the stock markets of Argentina, Brazil, Chile, Colombia, Mexico, and Peru. The paper also adds the variables of COVID-19 deaths, exchange rates, and SP500 of each country into the wavelet models as control variables. Data, source, and period for each country are given in Table 1.

Estimation Outputs

The outputs of partial wavelet coherency estimations are given in Figures 1–6. In the figures, the thick black lines represent the cone of influence, indicating the region influenced by edge effects. The color code for power varies from blue to red. The red and blue colors denote the strong association (power) and the weak association, respectively. The higher frequency (1 week–1 month) band outputs of phase difference analyses are shown in Figures 1(a)–6(a). The lower frequency (1 month–2 months) band outputs of phase difference analyses are exhibited in Figures 1(b)–6(b).

Figure 1 gives the findings of partial wavelet coherency between Argentina’s new COVID-19 cases and Merval (Argentina’s stock market index) with the control variables of Argentina’s new COVID-19 deaths, USD_ARS (exchange rate), and SP500 (the US stock market index).

Figure 1 yields lead-lag relations of the variables at a 1 week-1 month frequency band. Figure 1(a) exhibits the lead-lag relations of the variables at 1 month-2 months frequency band. Following the outputs from partial wavelet and phase difference analyses, one might reach the below wavelet coherency results for Argentina:
A negative association exists between new COVID-19 cases and Merval during the second half of April and the first half of May 2020. During this period, this finding reveals the negative impact of new COVID-19 cases on Merval. The new COVID-19 cases lead the Merval index (and, the Merval

Country	Variable	Source	Date of Access
Argentina	New COVID-19 cases	European Centre for Disease Prevention and Control	October 14, 2020
(March 13, 2020-October 8, 2020)	New COVID-19 deaths	Investing database	October 14, 2020
Brazil	New COVID-19 cases	European Centre for Disease Prevention and Control	October 14, 2020
(February 26, 2020-October 8, 2020)	New COVID-19 deaths	Investing database	October 14, 2020
Chile	New COVID-19 cases	European Centre for Disease Prevention and Control	October 14, 2020
(March 4, 2020-October 8, 2020)	New COVID-19 deaths	Investing database	October 14, 2020
Colombia	New COVID-19 cases	European Centre for Disease Prevention and Control	October 14, 2020
(March 16, 2020-October 8, 2020)	New COVID-19 deaths	Investing database	October 14, 2020
Mexico	New COVID-19 cases	European Centre for Disease Prevention and Control	October 14, 2020
(January 14, 2020-October 8, 2020)	New COVID-19 deaths	Investing database	October 14, 2020
Peru	New COVID-19 cases	European Centre for Disease Prevention and Control	October 14, 2020
(March 9, 2020-October 8, 2020)	New COVID-19 deaths	Investing database	October 14, 2020
All countries	SP500	Investing database	October 14, 2020

(i) A negative association exists between new COVID-19 cases and Merval during the second half of April and the first half of May 2020. During this period, this finding reveals the negative impact of new COVID-19 cases on Merval. The new COVID-19 cases lead the Merval index (and, the Merval
(ii) There also exists a negative correlation between new COVID-19 cases and Merval from the second half of August to October 8, 2020 (the end of the sample). During this period, this finding shows the negative impact of Merval on new COVID-19 cases in Argentina. The Merval leads the new COVID-19 cases (and the new COVID-19 cases are lagging).

Figure 2 reveals the outputs of partial wavelet coherency analyses between Brazilian new COVID-19 cases and Bovespa (BVSP) (Brazilian stock market) with the control variables of Brazilian new COVID-19 deaths, and Brazilian exchange rate (USD_BRL), and SP500 for the period February 26, 2020–October 8, 2020. Figure 2(a) yields lead-lag relations of the variables at a short-term cycle (at 1 week–1 month frequency). Figure 2(b) exhibits the lead-lag relations of the variables at a longer-term cycle (at 1 month–2 months frequency). The outputs from partial wavelet and phase difference analyses give the following wavelet coherency results for Brazil:
There is a negative association between new COVID-19 cases and Bovespa (BVSP) from mid-March 2020 to October 8, 2020, except in June 2020 at 1 month–2 months-frequency band. Partial wavelet coherency computations indicate no co-movement between the variables during June 2020 in the month–2 months-frequency band. Figure 3 reveals the outputs of partial wavelet coherency analyses for Chile for the variables of new COVID-19 cases and CLX_IPSA (stock market) with the control variables of new COVID-19 deaths, USD_CLP, and SP500 for the period March 4, 2020–October 8, 2020. Figures 3(a) and (b) show the lead-lag relations of the variables at a higher frequency and lower frequency, respectively. The findings of partial wavelet and phase difference analyses for Chile are:

(i) There is no negative association between the variables during both 1 week–1 month frequency band and 1 month–2 months-frequency band. (ii) There are primarily positive co-movements between the variables at both high and low-frequency bands.

Figure 2. (a) Partial Wavelet Coherency: Brazil New COVID-19 Cases/Brazil Stock Market || New Deaths; USD_BRL; SP500. (b) A week–A month Frequency Band, (c) 1 month–2 months Frequency Band.

Figure 3 reveals the outputs of partial wavelet coherency analyses for Chile for the variables of new COVID-19 cases and CLX_IPSA (stock market) with the control variables of new COVID-19 deaths, USD_CLP, and SP500 for the period March 4, 2020–October 8, 2020. Figures 3(a) and (b) show the lead-lag relations of the variables at a higher frequency and lower frequency, respectively. The findings of partial wavelet and phase difference analyses for Chile are:

(i) There is no negative association between the variables during both 1 week–1 month frequency band and 1 month–2 months-frequency band. (ii) There are primarily positive co-movements between the variables at both high and low-frequency bands.
Figure 4 yields the partial wavelet coherency analysis results for Colombia between new COVID-19 cases and the Colombian stock market (COL_CAP) with the control variables of new COVID-19 deaths, USD_COP, and SP500 from March 16, 2020, to October 8, 2020. Figures 4(a) and (b) plot the lead-lag relations of the variables at a shorter and longer regime, respectively, during the same period. The results are as follows:

(i) There is a negative lead-lag relation between new COVID-19 cases and COL_CAP during September and October 2020 at a longer cycle. The COVID cases are leading COL_CAP at this period. (ii) There is also a negative lead-lag relation between new COVID-19 cases and COL_CAP during June (second half), July, and August (first half). The COVID cases are lagging behind the COL_CAP during this period.

Figure 5 shows the partial wavelet coherency computations’ results for Mexico. The analyses observe the coherency between new COVID-19 cases and the Mexican stock market (BMV_IPC) with control variables new deaths
due to the COVID-19 pandemic, USD_MXN, and SP500 for the period January 14, 2020–October 8, 2020. Figures 5(a) and (b) refer to the lead-lag associations between the variables at a higher frequency and lower frequency, respectively. The outputs of the analyses indicate a negative association between new COVID-19 cases and BMV_IPC and COVID-19 cases lead to BMV_IPC during August, September, and October 2020.

The partial wavelet coherency estimations’ results for Peru are given in Figure 6. The analyses observe the possible strong or weak coherency between the new COVID-19 cases in Peru and the Peru stock market (Lima_General) through the control variables of new COVID-19 deaths, USD_PEN, and SP500 for the period March 9–October 8, 2020. Figures 6(a) and (b) yield the phase difference analyses at short and long regime, respectively. Throughout the analyses, one might state that;

(i) There appears to be negative coherency between the variables and new COVID-19 cases in Peru, leading Lima_General during September and August 2020. (ii) There is a negative correlation between the variables, and
new COVID-19 cases of Peru lag behind Lima_General during March, April, and May 2020.

The wavelet and phase difference analyses indicate that, except for Brazil, COVID-19 cases did not affect the stock market indexes adversely during the whole sample period but did affect the stock exchange markets negatively during some sub-sample periods of the whole sample of each country. These outputs agree with the following papers in the literature (Arias, 2020; Cepoi, 2020; Shehzad et al., 2020; Topcu & Gulal, 2020). Brazilian new COVID-19 cases lead the Bovespa (BVSP) index to decline during the whole period, except February and June 2020, at 1 month–2 month-frequency band. Hence, the outputs reveal as well that the dynamics of Latin stock exchange markets in the short run and long run can be explained by some other parameters of real and financial sectors as well as COVID-19 cases, and support the findings of the following papers (Bahloul

![Figure 5. (a) Partial Wavelet Coherency: Mexico New COVID-19 Cases/Mexico Stock Market BMV_IPC || New COVID-19 Deaths; USD_MXN; SP50. (b) A week–A month Frequency Band. (c) 1 month–2 months Frequency Band.](image-url)
Conclusion

The wavelet and phase difference analyses yield that, except for Brazil, COVID-19 pandemic cases did not adversely affect the stock market indices for the whole sample period but affected the stock markets negatively during some sub-sample periods of the entire sample of each Latin American country. The country-specific outputs of wavelet computations are as follows:

(a) The new COVID-19 cases in Argentina negatively affected the stock market in Argentina during just the period April 15–May 15, 2020. (b) Brazilian new COVID-19 cases led the Bovespa (BVSP) index to decline during the whole period except February and June 2020 at 1 month–2 month-frequency band. (c) There exist positive co-movements between the variables

Figure 6. (a) Partial Wavelet Coherency: Peru New COVID-19 Cases/Peru Stock Market Lima General || New COVID-19 Deaths; USD_PEN; SP500. (a) A week–A month Frequency Band, (c) 1 month–2 months Frequency Band.
in Chile. New COVID-19 cases in Chile lead to CLX_IPSA in May, June, and October 2020. (d) The COVID-19 cases lead COL_CAP to decline in Colombia during the last two months of the sample period. (e) The new COVID-19 cases lead BMV_IPC to decrease in Mexico during August, September, and October 2020. (f) New COVID-19 cases in Peru lead Lima_General to decline during September and August 2020.

The results also indicate that the dynamics of Latin American stock exchange markets in the short-regime and long-regime periods might be explained by some other relevant current and expected future parameters of commodity, financial, and health sectors as well as new (daily) COVID-19 cases such as expectations on the availability of COVID vaccine and/or herd immunity, among others. The emergence and rapid spread of the COVID-19 outbreak have witnessed a significant research challenge for various scientific fields around the world to slow or halt the growing trends of the spread of this disease (Zeroual et al., 2020). Another group of scientific research focuses on the social, financial, and economic impacts of COVID-19 (Bao & Zhang, 2020; Mnif et al., 2020; Williams, 2020). All these efforts will contribute to policymaking against possible global pandemics that may occur in the present and future. This research aims to contribute to the literature by examining the effect of COVID-19 on the stock market for rising Latin American countries.

Wavelet analysis used in the analysis has some limitations. (i) First, all the variables used in the analysis must have a high frequency. (ii) Scale selection in wavelet analysis is a highly complex process. (iii) An evident weakness of wavelet analysis in the zonal space is the inability to explicitly analyze waves at zonal wavenumber 0. (iv) Assessment of the statistical significance of the power peaks is complex and requires the specification of a background noise spectrum in the wavenumber frequency domain (Wong, 2009). Also, research has some limitations: (1) The current literature has dealt with larger stock markets such as China, Germany, the UK, and the USA. New research could explore the pandemic in other developing countries’ financial markets. (2) Future papers can address the impact of pandemics on the stock market at a sectoral level. Because some sectors may react positively to the pandemic, while others may respond negatively. (3) More mathematical, statistical, and econometric modeling methods must be used to explain the pandemic in all its aspects. Therefore, future research can follow structural break, time-varying linear and nonlinear time series analysis, and panel data methods. Mathematical and behavioral models such as partial equilibrium, general equilibrium, strategic decision-making, and game theory can be used. All these efforts will enrich the literature on pandemics’ social, economic, and financial impacts.
Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Data Availability
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

ORCID ID
Emrah Kocak https://orcid.org/0000-0002-5889-3126

Note
1. The \tan^{-1} is used in the equation (8) to indicate the following extension of the general main component of the \tan^{-1} function ranges from $180\left(\frac{\pi}{2}\right)$ to $-180\left(-\frac{\pi}{2}\right)$ (Aguiar-Conraria & Soares, 2010):

$$
\tan^{-1}\left(\frac{m}{n}\right) = \begin{cases}
 \tan^{-1}\left(\frac{m}{n}\right) & n > 0, \\
 \tan^{-1}\left(\frac{m}{n}\right) + \pi & n < 0, \quad m \geq 0, \\
 \tan^{-1}\left(\frac{m}{n}\right) - \pi & n < 0, \quad m < 0, \\
 \pi/2 & n = 0, \quad m \geq 0, \\
 -\pi/2 & n = 0 \quad m < 0,
\end{cases}
$$

Since the imaginary part is constantly zero in real-valued wavelet functions, the phase is undefined.

References
Aguiar-Conraria, L., Magalhães, P. C., & Soares, M. J. (2013). The nationalization of electoral cycles in the United States: A wavelet analysis. Public Choice, 156(3–4), 387–408. https://doi.org/10.1007/s11127-012-0052-8. Springer US.

Aguiar-Conraria, L., & Soares, M. J. (2010). “The continuous wavelet transform: A primer”, Documentos de Trabalho Working Paper Series, NIPE WP 23/2010.

Aguiar-Conraria, L., & Soares, M. J. (2014). The continuous wavelet transform: Moving beyond uni-and bivariate analysis. Journal of Economics Survey, 28(2), 344–375. https://doi.org/10.1111/joes.12012
Al-Awadhi, A. M., Alsaifi, K., Al-Awadhi, A., & Alhammadi, S. (2020). Death and contagious infectious diseases: Impact of the COVID-19 virus on stock market returns. *Journal of Behavioral and Experimental Finance, 27*(1), 100326. https://doi.org/10.1016/j.jbef.2020.100326. Elsevier BV.

Annas, S., Isbar Pratama, M., Rifandi, M., Sanusi, W., & Side, S. (2020). Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. *Chaos, Solitons and Fractals, 139*(3), 110072. https://doi.org/10.1016/j.chaos.2020.110072. Elsevier Ltd.

Arias, J. (2020). COVID-19 effect on herding behaviour in European Capital Markets. *Finance Research Letters, 38*, 101787. https://doi.org/10.1016/j.frl.2020.101787. Elsevier BV.

Ashraf, B. N. (2020). Economic impact of government interventions during the COVID-19 pandemic: International evidence from financial markets. *Journal of Behavioral and Experimental Finance, 27*, 100371. https://doi.org/10.1016/j.jbef.2020.100371. Elsevier BV.

Aydın, L., & Ari, I. (2020). The impact of Covid-19 on Turkey’s non-recoverable economic sectors compensating with falling crude oil prices: A computable general equilibrium analysis energy exploration & exploitation. *SAGE Publications Inc, 38*(5), 18101830. https://doi.org/10.1177/0144598720934007

Bahloul, S., & Ben Amor, N. (2021). A quantile regression approach to evaluate the relative impact of global and local factors on the MENA stock markets. *International Journal of Emerging Markets*. Ahead-of-print(ahead-of-print). https://doi.org/10.1108/IJOEM-03-2020-0251/FULL/XML. Emerald Group Holdings Ltd.

Bao, R., & Zhang, A. (2020). Does lockdown reduce air pollution? Evidence from 44 cities in northern China. *Science of the Total Environment, 731*, 139052. https://doi.org/10.1016/j.scitotenv.2020.139052. Elsevier.

Bilgili, F. (2015). Business cycle Co-movements between renewables consumption and industrial production: A continuous wavelet coherence approach. *Renewable & Sustainable Energy Reviews, 52*, 325–332. https://doi.org/10.1016/j.rser.2015.07.116

Bilgili, F., Balsalobre-Lorente, D., Kuşkaya, S., Ünlü, F., Gençoğlu, P., & Rosha, P. (2021b). The role of hydropower energy in the level of CO2 emissions: An application of continuous wavelet transform. *Renewable Energy, 178*(2), 283–294. https://doi.org/10.1016/j.renene.2021.06.015

Bilgili, F., Koçak, E., Kuşkaya, S., & Bulut, Ü. (2020). Estimation of the co-movements between biofuel production and food prices: A wavelet-based analysis. *Energy, 213*, 118777. https://doi.org/10.1016/j.energy.2020.118777

Bilgili, F., Kuşkaya, S., Gençoğlu, P., Kassouri, Y., & Majok Garang, A. P. (2021a). The co-movements between geothermal energy usage and CO2 emissions through high and low frequency- cycles. *Environmental Science and Pollution Research, 28*(45), 63723–63738. https://doi.org/10.1007/s11356-020-11000-x

Bilgili, F., Kuşkaya, S., Toguç, N., Muğaloğlu, E., Koçak, E., Bulut, Ü., & Bağilhaş, H. H. (2019). A revisited renewable consumption-growth nexus: A continuous
wavelet approach through disaggregated data. *Renewable & Sustainable Energy Reviews, 107*(19), 1–19. https://doi.org/10.1016/j.rser.2019.02.017

Bilgili, F., Ozturk, I., Kocak, E., Kuskaya, S., & Cingoz, A. (2022). The nexus between access to electricity and CO2 damage in Asian Countries: The evidence from quantile regression models. *Energy and Buildings, 256*(2), 111761. https://doi.org/10.1016/j.enbuild.2021.111761

Boukanjime, B., Caraballo, T., El Fatini, M., & Khalifi, M. E. (2020). Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching. *Chaos, Solitons and Fractals, 141*(1), 110361. https://doi.org/10.1016/j.chaos.2020.110361. Elsevier Ltd.

Cepoi, C. O. (2020). Asymmetric dependence between stock market returns and news during COVID-19 financial turmoil. *Finance Research Letters, 36*(June), 101658. https://doi.org/10.1016/j.frl.2020.101658. Elsevier.

Chowdhury, T. I., Hoque, R., Wanke, P., Raihan, M. Z., & Azad, M. A. K. (2022). Antecedents of perceived service quality of online education during a pandemic: Configuration analysis based on fuzzy-set qualitative comparative analysis. *Evaluation Review, 46*(3), 235–265. https://doi.org/10.1177/0193841X221084860. SAGE PublicationsSage CA: Los Angeles, CA.

Ciner, C. (2020). Stock return predictability in the time of COVID-19. *Finance Research Letters, 38*(476), 101705. https://doi.org/10.1016/j.frl.2020.101705. Elsevier BV.

Cohen, M. X. (2019). A better way to define and describe Morlet wavelets for time-frequency analysis. *NeuroImage, 199*, 81–86. https://doi.org/10.1016/j.neuroimage.2019.05.048. Academic Press Inc.

COVID-19 Map - Johns Hopkins Coronavirus Resource Center (n.d.). Accessed 17 November 2020https://coronavirus.jhu.edu/map.html

Crowley, P. M. M. (2005). An intuitive guide to wavelets for economists. *SSRN Electronic Journal*. Advance online publication. https://doi.org/10.2139/ssrn.787564

Firouzi, S., & Wang, X. (2019). A comparative study of exchange rates and order flow based on wavelet transform coherence and cross wavelet transform. *Economic Modelling, 82*(2), 42–56. https://doi.org/10.1016/j.econmod.2019.09.006. Elsevier B.V.

Ghanbari, B. (2020). On forecasting the spread of the COVID-19 in Iran: The second wave. *Chaos, Solitons and Fractals, 140*, 110176. https://doi.org/10.1016/j.chaos.2020.110176. Elsevier Ltd.

Goodell, J. W. (2020). COVID-19 and finance: Agendas for future research. *Finance Research Letters, 35*(3), 101512. https://doi.org/10.1016/j.frl.2020.101512. Elsevier Ltd.

Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). *Application of the cross wavelet transform and wavelet coherence to geophysical time series* nonlinear processes in geophysics Application of the cross wavelet transform and wavelet coherence to geophysical time series. European Geosciences Union (EGU). Accessed November 18, 2020: http://www.pol.ac.uk/home/research/waveletcoherence/
Hale, T., Angrist, N., & Cameron-Blake, E. (2020). Variation in government responses to COVID-19. Accessed October 23, 2020. www.bsg.ox.ac.uk/covidtracker

He, P., Sun, Y., Zhang, Y., & Tao, L. (2020). COVID–19’s impact on stock prices across different sectors—an event study based on the Chinese stock market. Emerging Markets Finance and Trade, 56(10), 2198–2212. https://doi.org/10.1080/1540496X.2020.1785865. Routledge.

He, Q., Liu, J., Wang, S., & Yu, J. (2020). The impact of COVID-19 on stock markets. Economic and Political Studies, 8(3), 275–288. https://doi.org/10.1080/20954816.2020.1785865. Routledge.

Hou, C., Chen, J., Zhou, Y., Hua, L., Yuan, J., He, S., Guo, Y., Zhang, S., Jia, Q., Zhao, C., Zhang, J., Xu, G., & Jia, E. (2020). The effectiveness of quarantine of wuhan city against the corona virus disease 2019 (COVID-19): A well-mixed SEIR model analysis. Journal of Medical Virology, 92(7), 841–848. https://doi.org/10.1002/jmv.25827. John Wiley and Sons Inc.

Hussain, S. M., & Ben Omrane, W. (2021). The effect of US macroeconomic news announcements on the Canadian stock market: Evidence using high-frequency data. Finance Research Letters, 38(3), 101450. https://doi.org/10.1016/J.FRL.2020.101450. Elsevier.

Kassouri, Y., Bilgili, F., & Kuşkaya, S. (2022). A wavelet-based model of world oil shocks interaction with CO2 emissions in the US. Environmental Science & Policy, 127(8282), 280–292. https://doi.org/10.1016/j.envsci.2021.10.020

Keogh-Brown, M. R., Jensen, H. T., Edmunds, W. J., & Smith, R. D. (2020). The impact of Covid-19, associated behaviours and policies on the UK economy: A computable general equilibrium model. SSM - Population Health, 12, 100651. https://doi.org/10.1016/j.ssmph.2020.100651. Elsevier BV.

Koçak, E., Bulut, U., & Menegaki, A. N. (2022). The resilience of green firms in the twirl of COVID-19: Evidence from S&P500 Carbon Efficiency Index with a Fourier approach. Business Strategy and the Environment, 31(1), 32–45. https://doi.org/10.1002/BSE.2872. John Wiley & Sons.

Koçak, E., Dogru, T., Shehzad, K., & Bulut, U. (2022). The economic implications of the COVID-19 outbreak on tourism industry: Empirical evidence from Turkey. Tourism Economics. Advance online publication. https://doi.org/10.1177/13548166211067188. SAGE PublicationsSage UK: London, England.

Kuşkaya, S. (2022). Residential solar energy consumption and greenhouse gas nexus: Evidence from Morlet wavelet transforms. Renewable Energy, 192(1), 793–804. https://doi.org/10.1016/j.renene.2022.04.107

Kuşkaya, S., & Bilgili, F. (2020). The wind energy-greenhouse gas nexus: The wavelet-partial wavelet coherence model approach. Journal of Cleaner Production, 245(3), 118872. https://doi.org/10.1016/j.jclepro.2019.118872

Kuşkaya, S., Toğuç, N., & Bilgili, F. (2022). Wavelet coherence analysis and exchange rate movements. Qual Quant. Advance online publication. https://doi.org/10.1007/s11135-022-01327-7
Lazzerini, M., & Putoto, G. (2020). COVID-19 in Italy: Momentous decisions and many uncertainties. *The Lancet Global Health, 8*(5), e641–e642. https://doi.org/10.1016/S2214-109X(20)30110-8. Elsevier Ltd.

Li, W., Chien, F., Kamran, H. W., Al-Deehani, T. M., Sadiq, M., Nguyen, V. C., & Taghizadeh-Hesary, F. (2021). The nexus between COVID-19 fear and stock market volatility. *Economic Research-Ekonomska Istraživanja, 35*(1), 1765–1785. https://doi.org/10.1080/1331677X.2021.1914125. Routledge.

Liew, V. K.-S. (2020). The effect of novel coronavirus pandemic on tourism share prices. *Journal of Tourism Futures, 8*(1), 109–124. https://doi.org/10.1108/JTF-03-2020-0045. Emerald Group Publishing Ltd.

Lobão, J., Piedade, P., & Nippani, S. (2022). Does stock trading volume signal future dividends? Evidence from iiberian firms. *Portuguese Economic Journal, 21*(1), 53–66. https://doi.org/10.1007/S10258-020-00191-3/TABLES/4. Springer Science and Business Media Deutschland GmbH.

Magazzino, C., & Giolli, L. (2021). The relationship among railway networks, energy consumption, and real added value in Italy. Evidence form ARDL and Wavelet analysis. *Research in Transportation Economics, 90*, 101126. https://doi.org/10.1016/j.retrec.2021.101126

Magazzino, C., & Mutascu, M. (2019). A wavelet analysis of Italian fiscal sustainability. *Economic Structures, 8*(1), 19. https://doi.org/10.1186/s40008-019-0151-5

Magazzino, C., Mutascu, M., Mele, M., & Sarkodie, S. A. (2021). Energy consumption and economic growth in Italy: A wavelet analysis. *Energy Reports, 7*, 1520–1528. https://doi.org/10.1016/j.egyr.2021.03.005

Matalgah, M., Knopp, J., & Mawagdeh, S. (1997). Iterative processing method using gabor wavelets and the wavelet transform for the analysis of phonocardiogram signals. In *Time frequency and wavelets in biomedical signal processing* (pp. 271–304). Wiley-IEEE Press. https://doi.org/10.1109/9780470546697.ch10

Mazur, M., Dang, M., & Vega, M. (2021). COVID-19 and the march 2020 stock market crash. Evidence from S&P1500. *Finance Research Letters, 38*(1), 101690. https://doi.org/10.1016/J.FRL.2020.101690. Elsevier.

Mihanović, H., Orlić, M., & Zoran, P. (2009). Diurnal thermocline oscillations driven by tidal flow around an island in the Middle Adriatic. *Journal of Marine Systems, 78*(C7), 157–168. https://doi.org/10.1016/j.jmarsys.2009.01.021

Mnif, E., Jarboui, A., & Mouakhar, K. (2020). How the cryptocurrency market has performed during COVID 19? A multifractal analysis. *Finance Research Letters, 36*(May), 101647. https://doi.org/10.1016/j.frl.2020.101647. Elsevier.

Mutascu, M. I., Albulescu, C. T., Apergis, N., & Magazzino, C. (2022). Do gasoline and diesel prices co-move? Evidence from the time–frequency domain. *Environ Sci Pollut Res, 29*(45), 68776–68795. https://doi.org/10.1007/s11356-022-20517-2

Narayan, P. K., Devpura, N., & Wang, H. (2020). Japanese currency and stock market—what happened during the COVID-19 pandemic? *Economic Analysis and Policy, 68*, 191–198. https://doi.org/10.1016/J.EAP.2020.09.014. Elsevier.
Nguyen, T., Chaiechi, T., Eagle, L., & Low, D. (2020). Dynamic impacts of SME stock market development and innovation on macroeconomic indicators: A post-Keynesian approach. *Economic Analysis and Policy, 68*, 327–347. https://doi.org/10.1016/J.EAP.2020.10.002. Elsevier.

Okorie, D. I., & Lin, B. (2020). Stock markets and the COVID-19 fractal contagion effects. *Finance Research Letters, 38*, 101640. https://doi.org/10.1016/j.frl.2020.101640. Elsevier Ltd.

Okorie, D. I., & Lin, B. (2021). Stock markets and the COVID-19 fractal contagion effects. *Finance Research Letters, 38*(4), 101640. https://doi.org/10.1016/J.FRL.2020.101640. Elsevier.

Salisu, A. A., & Akanni, L. O. (2020). Constructing a global fear index for the COVID-19 pandemic. *Emerging Markets Finance and Trade, 56*(10), 2310–2331. https://doi.org/10.1080/1540496X.2020.1785424

Shahzad, U., Ramzan, M., Ibrahim Shah, M., Dogan, B., & Ajmi, A. N. (2022). Analyzing the nexus between geopolitical risk, policy uncertainty, and tourist arrivals: Evidence from the United States. *Evaluation Review, 46*(3), 266–295. https://doi.org/10.1177/0193841X221085355. SAGE PublicationsSage CA: Los Angeles, CA.

Shehzad, K., Bilgili, F., Zaman, U., Koçak, E., & Kuskaya, S. (2021). Is gold favourable than bitcoin during the COVID-19 outbreak? Comparative analysis through wavelet approach. *Resources Policy, 73*, 102163. https://doi.org/10.1016/j.resspol.2021.102163

Shehzad, K., Xiaoxing, L., & Kazouz, H. (2020). COVID-19’s disasters are perilous than global financial crisis: A rumor or fact? *Finance Research Letters, 36*, 101669. https://doi.org/10.1016/j.frl.2020.101669. Elsevier Inc.

Topcu, M., & Gulal, O. S. (2020). The impact of COVID-19 on emerging stock markets. *Finance Research Letters, 36*, 101691. https://doi.org/10.1016/j.frl.2020.101691. Elsevier Ltd.

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. *Bulletin of the American Meteorological Society, 79*(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. American Meteorological Society.

Wei, Y., Qin, S., Li, X., Zhu, S., & Wei, G. (2019). Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis. *Finance Research Letters, 30*(1), 23–29. https://doi.org/10.1016/J.FRL.2019.03.028. Elsevier.

Williams, C. C. (2020). Impacts of the coronavirus pandemic on Europe’s tourism industry: Addressing tourism enterprises and workers in the undeclared economy. *International Journal of Tourism Research, 23*(1), 79–88. jtr.2395. https://doi.org/10.1002/jtr.2395. John Wiley and Sons Ltd.

Wong, M. L. M. (2009). Wavelet analysis of the convectively coupled equatorial waves in the wavenumber–frequency domain. *Journal of the Atmospheric Sciences, 66*(1), 209–212. https://doi.org/10.1175/2008jas2839.1
Zeroual, A., Harrou, F., Dairi, A., & Sun, Y. (2020). Deep learning methods for forecasting COVID-19 time-series data: A comparative study. *Chaos, Solitons and Fractals, 140*(50), 110121. https://doi.org/10.1016/j.chaos.2020.110121. Elsevier Ltd.

Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. *Finance Research Letters, 36*, 101528. https://doi.org/10.1016/j.frl.2020.101528. Elsevier Ltd.

Zhao, G., Jiang, D., Diao, J., & Qian, L. (2004, October). Application of wavelet time-frequency analysis on fault diagnosis for steam turbine. In 5th International Conference of Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques, France, CETIM.