RSC Advances

PAPER

Check for updates

Cite this: RSC Adv., 2018, 8, 23585

Received 9th February 2018
Accepted 18th June 2018
DOI: 10.1039/c8ra01257a
rsc.li/rsc-advances

Conductance of ‘bare-bones’ tripodal molecular wires†

Ross J. Davidson,*a David C. Milan,b Oday A. Al-Owaedi,cd Ali K. Ismael,ce
Richard J. Nichols,*b Simon J. Higgins,cd Colin J. Lambert,dc Dmitry S. Yufit*a
and Andrew Beeby*a

Controlling the orientation of molecular conductors on the electrode surfaces is a critical factor in the
development of single-molecule conductors. In the current study, we used the scanning tunnelling
microscopy-based break junction (STM-BJ) technique to explore ‘bare-bones’ tripodal molecular wires,
employing different anchor groups (AGs) at the ‘top’ and ‘bottom’ of the tripod. The triarylphosphine
tris(4-[(methylthio)phenyl]phosphine and its corresponding phosphine sulfide showed only a single high
conductance feature in the resulting 1- and 2-dimensional conductance histograms, whereas analogous
molecules with fewer than three thiomethyl AGs did not show clear conductance features. Thus, by
systematic molecular modifications and with the aid of supporting DFT calculations, the binding
geometry, with respect to the surface, was elucidated.

Introduction

The field of single molecule conductance has almost exclusively
involved the study of one-dimensional molecular wires, with
one anchor group (AG), e.g. pyridine, thiol or amine, attached at
each end.1,2 This motif has been favoured as it provides the
least-complicated example for examining structure-property
relationships and conductance mechanisms. However, to
afford greater spatial control relative to the substrate it is
necessary to increase the number of AGs to give tripodal
conductors. Increasing the number of AGs significantly
enhances the strength of attachment of the molecule to the
surface(s), thereby increasing the mechanical stability of the
metal|molecule|metal junction.3,4 Recent studies demonstrated the
use of tripodal molecules consisting of three monodentate
AGs (e.g., pyridine, thiophene) attached to a central carbon or
silicon atom, bridged by a conductor such as phenylene or
phenylene ethynylene, to give conductance values of 2 $\times 10^{-5}$
and 5 $\pm 1 \times 10^{-4}$ G_0 respectively.3,5 However, in each reported
example, two or more AGs were attached to the central conju-
gated unit via sp3 hybridised carbon or silicon atoms (by the use
of a carbon atom, spirofluorene, or adamantane motif4),7,8
reducing the degree of conjugation between each of the AGs.

To examine the electrical conductance of a tripodal molecu-
lar wire in its simplest form, we examined a ‘bare-bones’
structure consisting a triaryl phosphate with AGs on each of the
aryl groups. Ragaini demonstrated that 4,4',4''-phosphanetriyl-
tribenzenethiol can simultaneously coordinate to metal
complexes such as Ni(CO)$_3$, via the phosphate, and chemisorb
to a gold surface via the thiols to give a trigonal pyramidal struc-
ture on the surface.10

Parameswaran et al. has previously demonstrated that
diphenylphosphine moieties can function as mechanically and
chemically stable AGs with a tendency to bind to under-
coordinated gold atoms on the surface.11 In addition to
enhanced stability compared with corresponding dia-
lkylphosphines, diphenylphosphines couple well to the σ-
system of alkanes resulting in relatively high conductances for
Ph$_2$P(CH$_2$)$_n$PPh$_3$ junctions. Additionally, phosphines can also
be readily oxidised by sulfur to give the corresponding phos-
phine sulfide. Fukazara demonstrated that dibenzophosphole-
sulfides act as strong AGs and when bridged by 1,4-phenylene
and biphenyl-4,4'-diyl groups, give conductance values of 5×10^{-4}
and 5×10^{-5} G_0 respectively and favour conductance via
the LUMO.12

Here we report conductance measurements and calculations
on ‘bare-bones’ tripodal molecular wires based on triaryl-
phosphines, -phosphine sulfides, -phosphine oxides and -sele-
nides using scanning tunnelling microscopy (STM)-based

† Electronic supplementary information (ESI) available. CCDC 1578844–1578846.
For ESI and crystallographic data in CIF or other electronic format see DOI:
10.1039/c8ra01257a

aDepartment of Chemistry, Durham University, South Rd, Durham, DH1 3LE, UK.
E-mail: ross.davidson@durham.ac.uk; andrew.beeby@durham.ac.uk
bDepartment of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, UK.
cDepartment of Physics, College of Education for Pure Science, Tikrit University, Tikrit,
Iraq
dDepartment of Physics, University of Lancaster, Lancaster LA1 4YB, UK
eDepartment of Physics, Women Faculty of Science, Babylon University, Hilla,
Iraq
fDepartment of Laser Physics, Women Faculty of Science, Babylon University, Hilla,
Iraq
gDepartment of Physics, College of Education for Pure Science, Tikrit University, Tikrit,
Iraq

This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 23585–23590 | 23585
the number of available AGs in the tripods making contact with the single apex terminal group. The triarylphosphines and their \(\text{P(\text{v})} \) derivatives are a good test case for this due to their simplicity and the fact that they can be easily modified in a modular fashion.

Experimental methods

Synthetic work

Compound 3 was prepared by the literature methods,\(^\text{10}\) the synthesis of compounds 1, 2, 1–3=\(\text{S} \), 1–3=\(\text{Se} \), 2=\(\text{O} \), 3=\(\text{O} \), and \(\text{[3-Me]}^* \) are given in the ESI.\(^\dagger\)

Molecular conductance

The single-molecule conductances of tripod compounds were determined using the STM-BJ method.\(^\text{27}\) Conductance values and break-off distances (95th percentile) are summarized in Table 1. Conductance histograms for the compounds (2, 3, 3=\(\text{S} \), and 3=\(\text{O} \)) are shown in Fig. 1. Representative conductance traces with current plateaus, two-dimensional (2D) histograms; conductance values and break-off distances (95th percentile) are shown in the ESI.\(^\dagger\)

Each of the three phosphine selenide compounds (1=\(\text{Se} \)-3=\(\text{Se} \)) showed a complete absence of molecular conductance peaks. In addition, in experiments with the phosphine selenides, the \(G_0 \) peaks in the histograms were significantly altered, with much-diminished peak heights, indicating that the gold surface had been chemically altered. The most likely cause of this alteration is ‘selenium poisoning’ resulting from the surface-induced decomposition of the phosphine selenide. In fact, in the present study, we examined the stability of these compounds by a \(^1\)H and \(^31\)P NMR study in CDCl\(_3\); see ESI.\(^\dagger\) This analysis shows that the compounds decayed over a number of hours, primarily to the corresponding phosphine oxide liberating the selenium.

In contrast, the 3 and 3=\(\text{S} \) compounds showed single, well-defined conductance peaks, at \(10^{-2.36} \) and \(10^{-2.91} \) \(G_0 \) respectively, similar in value to \(1,4\)-bis(methylthio)benzene (\(10^{-2.15} \) \(G_0 \)).\(^\text{18}\) However, replacement of a single thiomethyl group with a hydrogen resulted in two conductance peaks being observed for compound 2 (\(10^{-3.23} \) and \(10^{-4.45} \) \(G_0 \)), and no conductance peaks being observed for compound 2–\(\text{S} \).

Further replacement of the thiomethyl groups with hydrogens (\(\text{i.e.}, 1 \) and 1=\(\text{S} \)) resulted in no molecular conductance peak being observed, suggesting that the conductance path is not simply that between one single thiomethyl group and the central donor group (either phosphorus or phosphorus sulfide). To further elucidate the nature of the central atom involvement in junction formation, we performed STM-BJ studies on the corresponding phosphine oxides (compounds 2=\(\text{O} \) and 3=\(\text{O} \)) and on the methylphosphonium iodide compound \(\text{[3-Me]}^* \).

Compound 3=\(\text{O} \) displayed conductance peaks at \(10^{-2.96} \) and \(10^{-4.35} \), while compound 2=\(\text{O} \) displayed no conductance peak, as for the sulfide 2=\(\text{S} \). The presence of a second peak for 3=\(\text{O} \) suggests that the phosphine oxide does not bind to the surface as strongly as the sulfide, allowing the formation of other contact geometries, possibly consisting of a thiomethyl-molecule-thiomethyl contacted arrangement based on the increased break-off distance for the low conductance band.
Finally, [3-Me]+ showed no detectable conductance peak, which suggests that junction formation via thiomethyl groups at each contact does not contribute significantly to the conductance peaks in these molecules. Rather, for the highest conductance mode to be reached, the central atom (P or P=S) must be able to act as a contact for one electrode, and all three thiomethyl groups must be available to make contact with the surface, giving the tripodal shape of the molecule. Indeed, previous work by Ragani demonstrated that on a similar compound (4,4′,4″-phosphanetriyltribenzenethiol), contact occurs via the aryl thiols leaving the central donor phosphorus atom available to act as a binding site able to coordinate to metal carbonyls.

To account for the low conductance mode that occurs when only two thiomethyl groups are attached, we propose a model in which one P–C₆H₄–SMe lies flat on the gold surface, allowing the lone pair in conjunction with the π-orbitals of the thioanisole to make contact with the surface. This arrangement would leave a single thioanisole raised perpendicular to the surface, providing a contact for the second electrode. In fact, similar behaviour has been observed by Su et al., whereby the 1,1-bis(4-(methylthio)phenyl)siletane system displayed two conductance peaks, which were an order of magnitude different. The low conductance peak corresponded to the end-to-end thiomethyl–thiomethyl contact mode, while the high

Molecule	Conductance [G₀]	Break-off distance (nm)
1	No peak	
2	3.46 × 10⁻⁵	0.76
3	5.88 × 10⁻⁴	0.94
1=S	No peak	
2=S	No peak	
3=S	1.23 × 10⁻³	0.87
3=O	4.68 × 10⁻⁵	0.91
2=O	No peak	
[3-Me]+	No peak	

Fig. 1 Conductance histograms for the compounds 2, 3, 3=S and 3=O.
conduction peak corresponded to attachment formed between the thiomethyl group at one gold contact and the central silicon at the other gold contact.

Theoretical calculations

Using the density functional code SIESTA\(^4\) the optimum geometries of the isolated molecules were obtained by relaxing the molecules until all forces on the atoms were less than 0.05 eV Å\(^{-1}\). A double-zeta plus polarization orbital basis set,\(^{20,21}\) norm-conserving pseudopotentials, an energy cut-off of 250 Rydbergs defined the real space grid. Transmission functions were computed using the local density approximation (LDA),\(^{22}\) a generalized gradient approximations (GGA),\(^{23}\) and using a van der Waals\(^{24}\) functional and were found to be qualitatively similar in all cases,\(^{25}\) (see Fig. S45 in the ESI\(^\dagger\)).

The use of DFT to compute the ground state energy of various molecular junctions permits us to calculate binding energies to gold electrodes and optimal geometries. To avoid basis set superposition errors (BSSE)\(^{26}\) we use the counterpoise correction\(^{27}\) in which the binding energy of a molecule denoted a to an electrode b is expressed as:

\[
\Delta E(ab) = E_{ab}^{a} - E_{a}^{a} - E_{b}^{b}
\]

In this expression, the total energy of the combined a and b system is \(E_{ab}^{a}\), while the total energies of isolated systems a and b are \(E_{a}^{a}\) and \(E_{b}^{b}\) respectively, maintaining identical basis sets (a,b) for the three energies.

The DFT calculations predicted three possible geometries for the system involving two thiomethyl AGs (compound 2). Based on the binding energy calculations shown in Table 2, the most probable geometry was shown to be 2-C (Fig. 2), since the order

System	\(\Delta E(ab)\) (eV) GGA	\(\Delta E(ab)\) (eV) vDW
2-A	-0.57	-0.61
2-B	-0.76	-0.79
2-C	-0.82	-0.85
3	-0.94	-1.02

Fig. 2 The relaxed geometries of all possible structures for 2, 3, 3=S and 3=O; where atoms are indicated by grey (carbon), white (hydrogen), yellow (sulfur), red (oxygen) and orange (phosphorus).
of binding energies between the molecule and gold electrode follows the trend $|E_{2,c}| > |E_{2,b}| > |E_{2,a}|$. For the structures with three thiomethyl anchor groups, our model shows one possible geometry for compounds 3, 3=S and 3=O (Fig. 3). The highest binding energy value is presented by compound 3 ($\Delta E = -1.02$ eV).

To further explain the conductance behaviour we employed DFT-based transport code GOLLUM28 to compute the transmission coefficient $T(E)$ for each relaxed junction geometry (see Fig. 3). This was achieved by first obtaining the corresponding Hamiltonian and overlap matrices with SIESTA, using a double-zeta polarized basis set. The optimized junction geometries as shown in Fig. 3 confirm well that the thiomethyl-contacted compounds are not oriented normal to the electrode surface within the molecular junction. Rather, they are tilted within molecular junctions to accommodate the directionality of the lone pairs of electrons on the sulfur atoms that bind to the gold electrodes.3,4 From $T(E)$, the electrical conductance G was obtained using the Landauer formula.

Fig. 4 indicates that in all cases the Fermi level lies near the centre of the HOMO–LUMO gap, but shifted slightly towards the LUMO resonance, and therefore a LUMO-mediated electron tunnelling mechanism is anticipated. These results are consistent with our previous studies.3,2 The order of the calculated conductances is $G_3 > G_{3=S} > G_{3=O}$ (Table 3).

Table 3 The experimental (Exp. G/G_0) and calculated conductance values (Th. G/G_0) at $E_F - E_F^{DFT} = 0$ eV. Z^* is the experimental break-off distance. The calculated electrode separation in relaxed junctions (Z); $Z = d_{Au-Au} - 0.25$ nm, where 0.25 nm is the calculated centre-to-centre distance of the apex atoms of the two opposing gold electrodes when conductance G_0 in the absence of a molecule. d_{Au-Au} is the calculated centre-to-centre distance of the apex atoms of the two opposing gold electrodes in relaxed junctions.

Molecule	Exp. G/G_0	Th. G/G_0	Z^* (nm)	Z (nm)	d_{Au-Au} (nm)
3	4.36×10^{-3}	5.5×10^{-3}	0.76	0.27	0.52
3=S	1.23×10^{-3}	2.8×10^{-3}	0.87	0.39	0.64
3=O	1.09×10^{-3}	2.5×10^{-3}	0.76	0.26	0.51

Conclusions

In conclusion we have investigated the molecular conductance of a ‘bare-bones’ tripodal structure, consisting of either tris(4-(methylthio)phenyl)phosphine (3) or phosphine sulfide (3=S), and with both the thiomethyl and phosphorus/phosphine sulfide acting as surface binding groups. Using STM-BJ, we determined that both 3 and 3=S are highly conductive, with only a single conductance peak.

Through the systematic substitution of thiomethyl groups with hydrogens, it was determined that three thiomethyl groups were required to achieve the single conductance mode, inferring that molecules bind to the surface via the thiomethyl groups, leaving the phosphorus (3) or phosphine sulfide (3=S) available to act as a ‘top’ contact for the molecular bridge. This was supported by DFT calculations, which showed that this geometry was the only stable geometry for the 3, 3=S and 3=O. The calculations also indicate the Fermi-energy level lies in the vicinity of the middle of the HOMO–LUMO gap slightly closer to the LUMO.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

A. B. and R. J. D. also gratefully acknowledge the EPSRC (EP/K007785/1; EP/K007548/1) for funding this work. D. C. M., R.

Fig. 3 The relaxed geometries of all molecular junctions; where atoms are indicated by grey (carbon), white (hydrogen), yellow (sulfur), red (oxygen) and orange (phosphorus).

Fig. 4 The calculated conductance as a function of Fermi energy for all molecular junctions, with molecules bound to Au (111) surfaces, obtained using a van der Waals functional.20,21
References

1 W. Hong, D. Z. Manrique, P. Moreno-García, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce and T. Wandlowski, J. Am. Chem. Soc., 2012, 134, 2292–2304.

2 V. Kaliginedi, A. V. Rudnev, P. Moreno-García, M. Baghernejad, C. Huang, W. Hong and T. Wandlowski, Phys. Chem. Chem. Phys., 2014, 16, 23529–23539.

3 M. A. Karimi, S. G. Bahoosh, M. Valasek, M. Burkle, M. Mayor, F. Pauly and E. Scheer, Nanoscale, 2016, 8, 10582–10590.

4 M. Valašek, M. Lindner and M. Mayor, Beilstein J. Nanotechnol., 2016, 7, 374–405.

5 Y. Ie, T. Hirose, H. Nakamura, M. Kiguchi, N. Takagi, M. Kawai and Y. Aso, J. Am. Chem. Soc., 2011, 133, 3014–3022.

6 L. Gerhard, K. Edelmann, J. Homberg, M. Valašek, S. G. Bahoosh, M. Lukas, F. Pauly, M. Mayor and W. Wulfhekel, Nat. Commun., 2017, 8, 14672.

7 M. Valašek and M. Mayor, Chem.–Eur. J., 2017, 23, 1.

8 Y. Ie, K. Tanaka, A. Tashiro, S. K. Lee, H. R. Testai, R. Yamada, H. Tada and Y. Aso, J. Phys. Chem. Lett., 2015, 6, 3754–3759.

9 M. Lindner, M. Valašek, J. Homberg, K. Edelmann, L. Gerhard, W. Wulfhekel, O. Fuhr, T. Wächter, M. Zharminkov, V. Kolivoška, L. Pospíšil, G. Mészáros, M. Hromadová and M. Mayor, Chem.–Eur. J., 2016, 22, 13218–13235.

10 F. Ragaini, L. Lunardi, D. Tomasoni and V. Guglielmi, J. Organomet. Chem., 2004, 689, 3621–3630.

11 R. Parameswaran, J. R. Widawsky, H. Vázquez, Y. S. Park, B. M. Boardman, C. Nuckolls, M. L. Steigerwald, M. S. Hybertsen and L. Venkataraman, J. Phys. Chem. Lett., 2010, 1, 2114–2119.

12 A. Fukazawa, M. Kiguchi, S. Tange, Y. Ichihashi, Q. Zhao, T. Takahashi, T. Konishi, K. Murakoshi, Y. Tsuji, A. Staykov, K. Yoshizawa and S. Yamaguchi, Chem. Lett., 2011, 40, 174–176.

13 R. J. Brooke, C. Jin, D. S. Szumski, R. J. Nichols, B.-W. Mao, K. S. Thygesen and W. Schwarzacher, Nano Lett., 2015, 15, 275–280.

14 W. Haiss, D. Lackey, J. K. Sass and K. H. Besocke, J. Chem. Phys., 1991, 95, 2193–2196.

15 Y. S. Park, A. C. Whalley, M. Kamenetska, M. L. Steigerwald, M. S. Hybertsen, C. Nuckolls and L. Venkataraman, J. Am. Chem. Soc., 2007, 129, 15768–15769.

16 O. Fuhr, A. Meredith and D. Fenske, Dalton Trans., 2002, 22, 4091–4094.

17 B. Xu and N. J. Tao, Science, 2003, 301, 1221–1223.

18 Y. S. Park, J. R. Widawsky, M. Kamenetska, M. L. Steigerwald, M. S. Hybertsen, C. Nuckolls and L. Venkataraman, J. Am. Chem. Soc., 2009, 131, 10820–10821.

19 T. A. Su, J. R. Widawsky, H. Li, R. S. Klausen, J. L. Leighton, M. L. Steigerwald, L. Venkataraman and C. Nuckolls, J. Am. Chem. Soc., 2013, 135, 18331–18334.

20 W. Haiss, H. van Zalinge, S. J. Higgins, D. Bethell, H. Höbenreich, D. J. Schiffrin and R. J. Nichols, J. Am. Chem. Soc., 2003, 125, 15294–15295.

21 J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon and D. Sanchez-Portal, J. Phys.: Condens. Matter, 2002, 14, 2745–2779.

22 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133–A1138.

23 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.

24 M. Dion, H. Rydberg, E. Schröder, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett., 2004, 92, 246401.

25 A. K. Ismael, K. Wang, A. Vezzoli, M. K. Al-Khaykanee, H. E. Gallagher, I. M. Grace, C. J. Lambert, B. Xu, R. J. Nichols and S. J. Higgins, Angew. Chem., Int. Ed., 2017, 56, 15378–15382.

26 H. B. Jansen and P. Ros, Chem. Phys. Lett., 1969, 3, 140–143.

27 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 533–566.

28 J. Ferrer, C. J. Lambert, V. M. García-Suárez, D. Z. Manrique, D. Visontai, L. Oroszlayn, R. Rodríguez-Ferradás, I. Grace, S. W. D. Bailey, K. Gillemot, S. Hafet and L. A. Algharagholy, New J. Phys., 2014, 16, 093029.