Positivity of discrete information for CHL black holes

Suresh Govindarajana, Sutapa Samantab, P Shanmugapriyac, and Amitabh Virmanic

aDepartment of Physics, Indian Institute of Technology Madras, Chennai, India 600036

bDepartment of Physics and Astronomy, Western Washington University, 516 High Street, Bellingham, WA 98225

cChennai Mathematical Institute, H1 SIPCOT IT Park, Kelambakkam, Tamil Nadu, India 603103

suresh@physics.iitm.ac.in, samants2@wwu.edu, \{shanmugapriya, avirmani\}@cmi.ac.in

Abstract

Black holes carry more information about the microstates than just the total degeneracy. As a concrete example, the \mathbb{Z}_N-twined helicity trace indices for $\frac{1}{2}$-BPS black holes of the CHL models allow extracting information about the distribution of the \mathbb{Z}_N charges among the black hole microstates. The number of black hole microstates carrying a definite eigenvalue under the generator of the \mathbb{Z}_N twining group must be positive. This leads to a specific prediction for the signs of certain linear combinations of Fourier coefficients of Siegel modular forms. We explicitly test these predictions for low charges. In the D1-D5-P duality frame, we compute the appropriate hair removed partition functions and show the positivity of the appropriate Fourier coefficients for low charges. We present various consistency checks on our computations.
1 Introduction

We now have a fairly detailed understanding of the degeneracy of states that contribute to the entropy of $\frac{1}{4}$-BPS black holes in $\mathcal{N} = 4$ supersymmetric string theories [1, 2]. Specifically, the CHL models [3–6] in four dimensions provide a rich playground for studying the physics of BPS black holes [7–18]. Many detailed agreements between the microscopic and macroscopic sides have been established. In almost all these calculations, one computes an index rather than absolute degeneracy on the microscopic side. The index is defined so that it only receives contributions from the BPS states preserving the right amount of supersymmetry. The index so-defined is also protected; it does not change as we vary the moduli of the theory.

In four dimensions, the ideal indices that capture the protected information are the helicity trace indices [1, 2]. The helicity trace index relevant for $\frac{1}{4}$-BPS black holes in $\mathcal{N} = 4$ supersymmetric string
Theories is defined as
\[B_6 = \frac{1}{6!} \text{Tr} \left[(-1)^{2h} (2h)^6 \right], \tag{1.1} \]
where the trace is taken over all states carrying a given set of charges, and where \(h \) is the third component of the angular momentum of a state in the rest frame. For spherically symmetric four-dimensional supersymmetric black holes \((-1)^{2h} = 1\) [19]. As a result, the helicity trace index \(B_6 \) (1.1) is directly related to the absolute degeneracy.

If the theory admits an additional discrete symmetry, and if we further restrict ourselves to dyonic states with charges that are invariant under the action of the discrete symmetry, we can define twined helicity trace indices [20–22]. These indices capture more refined information about the black hole microstates.

Discrete information

The twined helicity trace index is defined as
\[B_{6}^{gN} = \frac{1}{6!} \text{Tr} \left[g_N (-1)^{2h} (2h)^6 \right], \tag{1.2} \]
where \(g_N \) is the generator of the discrete symmetry of order \(N \). We will be mostly concerned with \(B_{6}^{gN} \) for a class of type II CHL models. We choose \(g_N \) to be the generator of a geometric \(\mathbb{Z}_N \) acting on K3 or on one of its CHL orbifolds \(\text{K3}/\mathbb{Z}_M \); and require \(g_N \) to commute with all 16 unbroken supersymmetries of the \(\mathbb{Z}_M \) twisted CHL compactification. Such indices are often called twisted-twining indices.

It is now well understood [20–23] that such a twisted-twining index is given by the Fourier coefficients of the twisted-twining black hole partition function—the inverse of a Siegel modular form of a subgroup of \(\text{Sp}(2, \mathbb{Z}) \). Various properties of such twisted-twining partition functions from both the microscopic and macroscopic sides have been studied [24–27].

In this paper, our main interest is in the index
\[S_a = \frac{1}{6!} \text{Tr}_a \left[(-1)^{2h} (2h)^6 \right], \tag{1.3} \]
for states carrying a definite \(g_N \) eigenvalue \(e^{2\pi i a/N} \) with \(0 \leq a \leq N - 1 \). This index is closely related to \(B_{6}^{gN} \). To obtain \(S_a \) we first repeat the analysis of \(B_{6}^{gN} \) with \(g_N \) replaced by \((g_N)^b\) for any integer \(b \). The role of \(N \) is now played by the order of \((g_N)^b\). This allows us to compute \(S_a \) via the discrete Fourier transform,
\[S_a = \frac{1}{6!} \frac{1}{N} \sum_{b=0}^{N-1} e^{-2\pi i ab/N} \text{Tr} \left[(g_N)^b (-1)^{2h} (2h)^6 \right]. \tag{1.4} \]

We mentioned around (1.1) that the index \(B_6 \) is directly related to the absolute degeneracy. In a duality frame, where hair modes are only the fermion zero modes, the exact relation is [28],
\[-B_6 = d_{\text{hor}}. \tag{1.5} \]
All the elements that go into the argument that leads to (1.5) remain valid even with the g insertion [20]: it is for the same spherically symmetric attractor geometry that the indices B_6^g are being computed. Thus, B_6^g is simply negative of the absolute degeneracy weighted with g. Since a degeneracy must be a positive integer, this leads to a specific prediction for the signs of linear combinations (1.4) of the Fourier coefficients of the Siegel modular forms that capture the indices $B_N^{g_k}$. In this paper, we will be computing $B_N^{g_b}$ for $0 \leq b \leq N - 1$ for the various \mathbb{Z}_M CHL models with additional discrete \mathbb{Z}_N twining symmetry and study the positivity properties of S_a for $0 \leq a \leq N - 1$.

For example, for $N = 2$ we have the index S_0 for states with eigenvalue $+1$ under g_2 to be

$$S_0 = \frac{1}{2} (B_6 + B_6^{g_2}),$$

(1.6)

and the index S_1 for states with eigenvalue -1 under g_2 to be

$$S_1 = \frac{1}{2} (B_6 - B_6^{g_2}).$$

(1.7)

This implies, $B_6 = S_0 + S_1$ and $B_6^{g_2} = S_0 - S_1$. Upto an overall sign, B_6 simply counts the total number of states disregarding any information the state may carry about the \mathbb{Z}_2 charge. On the other hand, $B_6^{g_2}$ counts the number of states weighted with the \mathbb{Z}_2 charge. If the number of states with $+1$ eigenvalue and -1 eigenvalue are roughly the same, then we expect $S_0 \approx S_1$ and the twined indices $B_6^{g_2}$ to be smaller (positive or negative) numbers compared to B_6. Indeed, we will see this in later sections; and is also expected from the AdS$_2$/CFT$_1$ interpretation of the twined indices [21].

Similarly, for $N = 3$ we have the number of states S_0 (upto an overall sign) with $+1$ eigenvalue under g_3 to be

$$S_0 = \frac{1}{3} \left(B_6 + B_6^{g_3} + B_6^{g_3^2} \right),$$

(1.8)

and the number of states S_1 and S_2 with eigenvalues $\omega = e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively under g_3 to be

$$S_1 = \frac{1}{3} \left(B_6 + \omega^{-1} B_6^{g_3} + \omega^{-2} B_6^{g_3^2} \right),$$

(1.9)

$$S_2 = \frac{1}{3} \left(B_6 + \omega^{-2} B_6^{g_3} + \omega^{-1} B_6^{g_3^2} \right).$$

(1.10)

Hair removal

If two black holes have identical near-horizon geometries, they must have identical microscopic indices. There is, however, a well-studied apparent “counterexample” to this: the BMPV black hole in flat space [29] versus the BMPV black hole in Taub-NUT space [7, 30]. These black holes have identical near-horizon geometries but different microscopic indices. It is now well understood that the key to the resolution of this puzzle is the black hole hair modes [16, 17, 31, 32]: smooth,

\footnote{In the AdS$_2$/CFT$_1$ interpretation, the computation of the twisted-twining indices can be expressed as a path integral with a suitable AdS$_2$ asymptotics. Twining requires a g_N-twisted boundary condition on the fields in carrying out such a path integral. The saddle that contributes to the \mathbb{Z}_N twined partition function is a \mathbb{Z}_N orbifolds of $AdS_2 \times S^2$.}
normalisable, bosonic and fermionic degrees of freedom living outside the horizon. For the case of
K3 compactification of type IIB theory, Sen et al constructed hair modes as non-linear solutions
to the supergravity equations [17]. They showed that once the contributions of the hair modes are
removed, the 4d and 5d partition functions match. This analysis was recently extended to CHL
models [31,32]. Given these results, it is fairly clear that the twisted-twining hair removed partition
functions also match in 4d and 5d.

In this paper, we also study the construction of the 4d hair removed partition functions and
positivity properties of the corresponding Fourier coefficients. More precisely, we will construct the
analogs of S_a from the hair removed partition functions in the D1-D5 duality frame.

Organisation

The rest of the paper is organised as follows. In section 2, we consider twining black hole hair removal
for four-dimensional BMPV black hole. For different \mathbb{Z}_N twinnings, we construct the 4d hair partition
functions. In section 3, we study the positivity of the coefficients S_a defined in equation (1.4) for
\mathbb{Z}_N twinings $N = 2, 3, 4$. These three cases are representative of more general cases and capture the
essential ideas. We compute the appropriate Fourier coefficients from the full 4d partition functions
and also from the hair removed 4d partition functions. In the D1-D5 frame the hair removed partition
functions capture the horizon states. In a duality frame with no hair (other than the fermion zero
modes), the full 4d partition functions capture the horizon states.

In section 4, we consider twisted-twining black hole hair removal. For different $\mathbb{Z}_M \times \mathbb{Z}_N$
models, we construct the 4d hair partition functions. In section 5, we study the positivity of the
coefficients S_0 and S_1 for the $\mathbb{Z}_2 \times \mathbb{Z}_2$ CHL model. It turns out that multiple representations for
the twisted-twining partition function for this model have been proposed in the literature, but the
equivalence of these representations has not been formally established. We compute the coefficients
S_0 and S_1 using different representations and obtain identical results. In section 6, we study the
positivity of coefficients S_a for some other models. We close with a brief discussion in section 7.

Other studies

Positivity of the Fourier coefficients without twining for CHL models was first explored in [28]. A
proof of this positivity property for a special class of four and five dimensional black holes in the
unorbifolded model was presented in [33]. Positivity of the Fourier coefficients of the hair removed
partition functions without twining for CHL models was explored in [32,34,35].

2 Twining black hole hair removal

We begin by considering type IIB string theory compactified on $K3 \times S^1 \times \tilde{S}^1$. In a subspace of
the moduli space of this compactification, we identify g_N to be the generator of a specific geometric
\[Z_N \text{ symmetry of K3 that preserves all the covariantly constant spinors of K3 and leaves invariant some 2-cycles of K3. In such a compactification, we consider the D1-D5-P-KK system preserving 4 of the 16 supersymmetries as follows [1]: a single D5 brane wrapped on } K3 \times S^1, \text{ Q1 D1-branes wrapped on } S^1, \text{ a single KK monopole with negative charge associated with the circle } \tilde{S}^1, \text{ left moving momentum } -n \text{ along } S^1, \text{ and right moving momentum } J \text{ along } \tilde{S}^1. \text{ Since the D5 brane wraps K3, it also carries a negative D1 charge [36]. The net D1 charge is therefore, } Q_1 - 1. \text{ For such a set-up, T-duality invariant charge bilinears are}

\[Q^2 = 2n, \quad P^2 = 2(Q_1 - 1), \quad Q \cdot P = J. \tag{2.1} \]

We will write most of our formulae below in terms of the T-duality invariants \(Q^2, P^2, \) and \(Q \cdot P. \) However, with regard to the hair removal discussions, it is best to keep the above brane configuration in mind.

For this set-up, in the region of the moduli space where the type IIB string coupling is small, the result for the twined index \(B_{6}^{gN} \) is [20]

\[-B_{6}^{gN} = (-1)^Q P + g \left(\frac{1}{2} Q^2, \frac{1}{2} P^2, Q \cdot P \right), \tag{2.2} \]

where \(g(l,k,j) \) are the coefficients of Fourier expansion of the function \(1/\tilde{\Phi}(\tilde{\rho}, \tilde{\sigma}, \tilde{v}) : \]

\[\frac{1}{\tilde{\Phi}(\tilde{\rho}, \tilde{\sigma}, \tilde{v})} = \sum_{l,k,j} g(l,k,j) e^{2\pi i (l \tilde{\rho} + k \tilde{\sigma} + j \tilde{v})}. \tag{2.3} \]

The function \(2 \tilde{\Phi}(\tilde{\rho}, \tilde{\sigma}, \tilde{v}) \) is:

\[2 \tilde{\Phi}(\tilde{\rho}, \tilde{\sigma}, \tilde{v}) = e^{2\pi i (\tilde{\rho} + \tilde{\sigma} + \tilde{v})} \prod_{b=0}^{1} \prod_{r=0}^{N-1} \prod_{(k,l) \in \mathbb{Z}/(1,1) \mathbb{Z}/(2+b) \mathbb{Z}/(l,j)} \left\{ 1 - e^{2\pi i r/N} e^{2\pi i (k \tilde{\sigma} + l \tilde{\rho} + j \tilde{v})} \right\} \sum_{s=0}^{N-1} e^{-2\pi i s/N} c_b^{(r,s)} (4k - j^2), \tag{2.4} \]

where for \(r, s \in \mathbb{Z}, 0 \leq r, s \leq N - 1. \) The infinite product is such that \(k, l \) and \(j \) are all integers, \(k \geq 0, l \geq 0. \) When \(k \) and \(l \) are positive integers, \(j \) runs over all integers. When \(k \) or \(l \) equals 0, \(j \) runs over all integers. When both \(k \) and \(l \) equal 0, \(j \) takes only negative integer values. The coefficients \(c^{(r,s)} \) are determined from the functions

\[F^{(r,s)}(\tau, z) = \frac{1}{N} \text{Tr}_{RR: g_N^s} \left(g_N^s (-1)^{J_L + J_R} e^{2\pi i \tau J_L} e^{-2\pi i \tau J_R} e^{2\pi i J_L z} \right) \tag{2.5} \]

\[= \sum_{b=0}^{1} \sum_{j \in \mathbb{Z}/(4n - j^2) \mathbb{Z}/N} c_b^{(r,s)} (4n - j^2) e^{2\pi i n + 2\pi ij z}. \tag{2.6} \]

The widetilde notation on modular forms and on the coordinates of the Siegel upper half space is somewhat standard in the CHL literature [1].
In expression (2.5) Tr denotes trace over all the g^N twisted RR sector states in the (4,4) SCFT with K3 as its target space. L_0 and \bar{L}_0 are the left and right-moving Virasoro generators and $J_L/2$ and $J_R/2$ are the generators of the $U(1)_L \times U(1)_R$ subgroup of the $SU(2)_L \times SU(2)_R$ R-symmetry group of this SCFT. For various values of N explicit expressions for $F^{(r,s)}(\tau,z)$ can be found in [1]. We do not repeat the full expressions here.

For different Z_N twinings, our aim is to construct the 4d hair partition functions. In section 2.1 we briefly discuss the hair modes and in section 2.2 write the 4d hair partition functions. Finally, using these results we write the twined hair removed black hole partition functions.

2.1 Hair modes

In [31] a detailed analysis of possible bosonic and fermionic hair modes for the D1-D5 black holes in CHL models was given. The results from that paper can be readily adapted to twined indices.

A hair mode of a black hole is a smooth and normalisable deformation that lives entirely outside the horizon and preserves all the supersymmetries of the black hole. We concentrate on the four-dimensional BMPV black hole. The four-dimensional BMPV black hole is obtained by placing the five-dimensional BMPV black hole at the center of the Taub-NUT space. It is most convenient to describe the hair modes as six-dimensional configurations in the supergravity obtained by truncating IIB supergravity on K3. Let S^1 corresponds to x_5 and the \tilde{S}^1 to x_4. In [31], the Gibbons-Hawking coordinates (r,θ,ϕ,x_4) for the Taub-NUT space along with the null coordinates $u = x_5 - t$ and $v = x_5 + t$ are used to describe hair modes. The hair modes constructed in [31] are all characterised by periodic functions of v, i.e., they are all left moving. Three different types of hair modes were constructed for the 4d black holes.

Fermionic hair modes

The six-dimensional supergravity truncation is a $(2,0)$ theory with 16 supersymmetries. The black hole solutions preserve 4 of these supersymmetries and hence give rise to 12 fermionic zero modes. Out of these 12 zero modes, four are left moving and 8 are right moving. The 4 left moving modes are elevated to hair modes. These hair modes are characterised by arbitrary functions of v preserving the supersymmetry of the original solution. We construct these modes by solving the linearised equations of motion for the gravitino,

$$\Gamma^{MNP} D_N \Psi_\alpha^\beta - \tilde{H}^{kMNP} \Gamma_N \tilde{\Gamma}^k_{\alpha\beta} \Psi_\beta^\beta = 0,$$

(2.7)

and then showing that the solutions of the linearised equations continue to be solutions of the non-linear equations. In equation (2.7) \tilde{H}^{kMNP} is the self-dual part of the RR form field, Γ and $\tilde{\Gamma}$ represent the six-dimensional coordinate space gamma matrices and the Euclidean internal space gamma matrices respectively. For details see [16,17,31]. Using an ansatz for the gravitino Ψ_α^α, we find that the solution to this equation that corresponds to a hair is given by,

$$\Psi_v = \psi(r)^{-3/2} h(v) \eta(\theta,\phi).$$

(2.8)
The spinorial properties of the gravitino are completely captured by \(\tilde{\eta}(\theta, \phi) \). The number of independent components of the gravitino turn out to be four. Thus, we have four fermionic hair modes which contribute a factor of

\[
Z_{\text{fermion hair}}^{\text{fermion}} = \prod_{l=1}^{\infty} (1 - e^{2\pi i l \tilde{\rho}})^4
\]

(2.9)
to the hair partition function. We note that \(\tilde{\rho} \) is the fugacity conjugate to the momentum charge \(n \) along the \(S^1 \), cf. (2.1)–(2.3). All these modes are neutral under the \(g_N \) action. These modes also appear for the 5d black holes. In our discussion below it will be convenient to separate out the \(Z_{\text{fermion}}^{\text{fermion}} \) factor.

Garfinkle-Vachaspati modes

The Garfinkle-Vachaspati transform [37–40] is a solution generating technique that adds wave like deformations to a known solution of the bosonic sector equations. Given a metric that possesses a null, hypersurface orthogonal, Killing vector \(k^M \), this technique deforms the original solution as,

\[
G'_{MN} = G_{MN} + e^S \Psi k_M k_N,
\]

(2.10)
where \(S \) is a scalar that is determined from the hypersurface orthogonality condition and \(\Psi \) is a scalar (deformation) that satisfies a wave equation with respect to the undeformed metric \(G_{MN} \).

The four-dimensional BMPV black hole allows for a smooth deformation in the \(G_{vv} \) component alone and is of the form [17,31]

\[
g_i(v)y^i,
\]

(2.11)
where \(g_i(v) \) are three periodic scalar functions that represent three left moving bosonic hair modes and \(y^i \) are the coordinates of the three dimensional transverse space \(\mathbb{R}^3 \). These hair modes contribute the following to the hair partition function,

\[
Z_{\text{GV hair}}^{\text{GV}} = \prod_{l=1}^{\infty} \frac{1}{(1 - e^{2\pi i l \tilde{\rho}})^3}.
\]

(2.12)
All these modes are also neutral under the \(g_N \) action. These modes do not appear for the 5d black holes.

Form field hair modes

In the six-dimensional supergravity truncation, there are \(n_t \) tensor multiplets neutral under \(g_N \). In the original black hole solutions (both 4d and 5d) all these tensor multiplets are unexcited, i.e., set to zero. Using the harmonic 2-form \(\omega_{TN} \) of the Taub-NUT space these tensor multiplets can be turned on for the 4d black hole as [16,17,31],

\[
\delta H_{MNP}^s = h^s(v) dv \wedge \omega_{TN}, \quad 1 \leq s \leq n_t.
\]

(2.13)
With one deformation \(h^s(v) \) for each multiplet \(1 \leq s \leq n_t \), we have \(n_t \) such deformations. These deformations are smooth and normalisable and serve as black hole hair. These \(n_t \) anti-self-dual (asd) left moving modes contribute the following to the hair partition function,

\[
Z_{\text{hair}}^{(n_t)} = \prod_{l=1}^{\infty} \frac{1}{(1 - e^{2\pi i \tilde{\rho}})^{n_t}}. \tag{2.14}
\]

These modes do not appear for the 5d black holes. The other details of the hair configurations are not essential for the analysis in this paper.

2.2 Twining hair removal

The total contribution to the hair partition function of modes neutral under \(g_N \) is,

\[
Z^{(n_t)}_{\text{hair}}(\tilde{\rho}) = Z_{\text{fermion}}^{(n_t)} Z_{\text{GV}}^{(n_t)} Z_{\text{asd}}^{(n_t)} \tag{2.15}
\]

\[
= Z_{\text{hair}}^{(n_t)} \prod_{l=1}^{\infty} (1 - e^{2\pi i \tilde{\rho}})^{-n_t - 3} = \prod_{l=1}^{\infty} (1 - e^{2\pi i \tilde{\rho}})^{-n_t + 1}. \tag{2.16}
\]

For \(N \neq 1 \) this is not the end of the story. There are additional hair modes. They come from the tensor multiplets \emph{charged} under \(g_N \). A way to incorporate them in supergravity is to analyse the problem in ten-dimensions \([31]\). Let us schematically denote \(y \) to be the K3 directions and \(x \) to be the remaining six dimensions. Then, in ten-dimensions the RR four-form field schematically decomposes as \([41]\),

\[
C_4(x,y) \propto \sum_{\gamma} c_2^\gamma(x) \wedge \omega^\gamma(y), \tag{2.17}
\]

where \(\omega^\gamma(y) \) are the self-dual and anti-self-dual (asd) harmonic forms spanning the cohomology \(H^2(\text{K3}) \). On the elements on this cohomology, the abelian group of order \(N \) generated by \(g_N \) acts.

The number of anti-self-dual harmonic forms on K3 with eigenvalue \(\exp\{-2\pi is/N\} \) under \(g_N \) is denoted \(b_s \). The values of \(b_s \) for various twining order \(N \) are listed in table 1. These numbers are easily obtained from \([6]\); see also table 4 of \([31]\). These additional sectors contribute to the twined hair partition function as,

\[
Z_{\text{hair}}^{(n_t)} = \prod_{n=0}^{N-1} Z^{(n_t)}(\tilde{\rho}). \tag{2.18}
\]

where

\[
Z^{(n_t)}(\tilde{\rho}) = \prod_{l=1}^{\infty} (1 - e^{2\pi i n/N} e^{2\pi i \tilde{\rho}})^{-(b_n + 2\delta_{n,0})}, \quad n = 0, \ldots, N - 1. \tag{2.19}
\]

For various values of \(N \), the hair partition functions are as follows. We use the notation \(q = e^{2\pi i \tilde{\rho}} \).

For \(N = 1 \),

\[
Z^{(n_t)}_{4d:1A} = Z_{\text{hair}}^{(n_t)} Z_{\text{hair}}^{(0)} Z_{\text{fermion}}^{(0)} = \prod_{n=1}^{\infty} (1 - q^n)^{-20} = \frac{1}{\eta(\tilde{\rho})^{24}} e^{2\pi i \tilde{\rho}} Z_{\text{hair}}^{(n_t)}, \tag{2.20}
\]
Table 1: Possible geometric \mathbb{Z}_N action on K3 cohomology. The numbers b_s denote the number of anti-self-dual $(1,1)$ with eigenvalue $\exp\{-2\pi is/N\}$ under the g_N action. We note that the number of g_N invariant tensor multiplets in six-dimensional supergravity description is the number of g_N invariant anti-self-dual $(1,1)$ forms b_0 plus 2: $n_t = b_0 + 2$. Recall that the plus 2 comes from the self-dual and anti-self-dual decomposition of the RR and NS-NS 2-form fields.

where it is convenient to separate out the contribution of fermions given in (2.9). For $N = 2$,

$$Z_{\text{hair}}^{4\text{d}:2A} = Z_{\text{hair}}^{\text{GV}} Z_{\text{hair}}^{\text{fermion}} Z^{(0)} Z^{(1)} Z^{(2)}$$

$$= Z_{\text{hair}}^{\text{fermion}} \prod_{n=1}^{\infty} (1 - q^n)^{-16} (1 + q^n)^{-8}$$

$$= Z_{\text{hair}}^{\text{fermion}} \prod_{n=1}^{\infty} (1 - q^n)^{-8} (1 - q^n)(1 + q^n)^{-8}$$

$$= Z_{\text{hair}}^{\text{fermion}} \prod_{n=1}^{\infty} (1 - q^n)^{-8} (1 - q^{2n}) = \frac{1}{\eta(\rho)^8 \eta(2\rho)^8} e^{2\pi i \rho} Z_{\text{fermion}}^{\text{hair}}.$$ \hspace{1cm} (2.24)

For $N = 3$,

$$Z_{\text{hair}}^{4\text{d}:3A} = Z_{\text{hair}}^{\text{GV}} Z_{\text{hair}}^{\text{fermion}} Z^{(0)} Z^{(1)} Z^{(2)}$$

$$= Z_{\text{hair}}^{\text{fermion}} \prod_{n=1}^{\infty} (1 - q^n)^{-12} (1 - e^{2\pi i/3} q^n)^{-6} (1 - e^{4\pi i/3} q^n)^{-6}$$

$$= Z_{\text{hair}}^{\text{fermion}} \prod_{n=1}^{\infty} (1 - q^n)^{-6} (1 - q^n)(1 - e^{2\pi i/3} q^n)(1 - e^{4\pi i/3} q^n)^{-6}$$

$$= Z_{\text{hair}}^{\text{fermion}} \prod_{n=1}^{\infty} (1 - q^n)^{-6} (1 - q^{3n})^{-6} = \frac{1}{\eta(\rho)^6 \eta(3\rho)^6} e^{2\pi i \rho} Z_{\text{fermion}}^{\text{hair}}.$$ \hspace{1cm} (2.28)

Here, we have made use of the identity $(1 - q^n)(1 - \omega q^n)(1 - \omega^2 q^n) = (1 - q^{3n})$ with ω being the
third root of unity. We proceed similarly for \(N = 4, 5, 6, 7, 8 \). We only write the final answers,

\[
Z_{\text{hair}}^{4d:4B} = \frac{1}{\eta(\rho)^4 \eta(4\rho)^4} e^{2\pi i \tilde{\rho}} Z_{\text{fermion}}^{\text{hair}}, \\
Z_{\text{hair}}^{4d:5A} = \frac{1}{\eta(\rho)^4 \eta(5\rho)^4} e^{2\pi i \tilde{\rho}} Z_{\text{fermion}}^{\text{hair}}, \\
Z_{\text{hair}}^{4d:6A} = \frac{1}{\eta(\rho)^2 \eta(2\rho)^2 \eta(3\rho)^2 \eta(6\rho)^2} e^{2\pi i \tilde{\rho}} Z_{\text{fermion}}^{\text{hair}}, \\
Z_{\text{hair}}^{4d:7A} = \frac{1}{\eta(\rho)^3 \eta(\tilde{\rho})^3} e^{2\pi i \tilde{\rho}} Z_{\text{fermion}}^{\text{hair}}, \\
Z_{\text{hair}}^{4d:8A} = \frac{1}{\eta(\rho)^2 \eta(4\rho)^2 \eta(8\rho)^2} e^{2\pi i \tilde{\rho}} Z_{\text{fermion}}^{\text{hair}}.
\]

(2.29) \hspace{1cm} (2.30) \hspace{1cm} (2.31) \hspace{1cm} (2.32) \hspace{1cm} (2.33)

The eta-products appearing on the right hand side directly correspond to cycle shapes for certain conjugacy classes of the Mathieu group \(M_{24} \). It is now standard in the literature to use these conjugacy classes to label twined partition functions. Hence the notation \(Z_{\text{hair}}^{4d:1A}, Z_{\text{hair}}^{4d:4B} \), etc. Given the results of \([31, 32]\), it is clear that the hair removed 4d and 5d partition functions match. We also note that the 4d hair partition functions are closely related to the KK monopole partition functions. In fact, in all cases, the hair partition functions are the KK monopole partition functions with the additional factor \(e^{2\pi i \tilde{\rho}} Z_{\text{fermion}}^{\text{hair}} \). Finally, the hair removed twining partition functions are,

\[
\frac{1}{Z_{\text{4d}}^{\text{hair}}} \frac{1}{\Phi(\rho, \tilde{\rho}, \tilde{\sigma}, \tilde{v})}.
\]

(2.34)

3 Positivity of Fourier coefficients

In this section, we study the positivity of coefficients \(S_\alpha \) defined in equation (1.4) for the unorbifolded model. We focus on \(N = 2, 3, 4 \) twinings. These three cases are sufficiently non-trivial and capture the essential ideas we wish to convey. Extension to twinings with higher \(N \) is only computationally tedious. In section 3.1, we compute the appropriate Fourier coefficients from the full 4d partition functions. In a duality frame where there are no hair apart from the fermionic zero modes, the full 4d partition function captures the horizon states. In section 3.2, we compute the appropriate Fourier coefficients from the hair removed 4d partition functions in the D1-D5 frame. In this frame, the hair removed partition functions are expected\(^3\) to capture the horizon states.

3.1 Twined partition functions

The Fourier coefficients for the Siegel modular form can be extracted using the contour prescription used in \([28]\) where we first expand \(1/\bar{\Phi}(\rho, \tilde{\rho}, \tilde{\sigma}, \tilde{v}) \) in powers of \(e^{2\pi i \tilde{\rho}} \) and \(e^{2\pi i \tilde{\sigma}} \) and then expand each term in powers of \(e^{-2\pi i \tilde{v}} \). The contour together with the following conditions

\[
Q \cdot P \geq 0, \quad Q \cdot P \leq Q^2, \quad Q \cdot P \leq P^2, \quad Q^2, P^2, (Q^2 P^2 - (Q \cdot P)^2) > 0
\]

(3.1)

\(^3\text{We cannot rule out the existence of additional hair modes.}\)
ensure that the index counts microstates of a finite size single centered black hole.\footnote{The zeros of Φ responsible for wall crossing do not change with twining. Thus the constraints (3.1) do not change with twining N.}

For the untwisted model, with no twining our results are presented in table 2. This table is identical to table 1 of [28]. On a modern computer it takes less than a second to generate entries in table 2. We only give the results for $Q^2 \leq P^2$ for all the tables in this section, since the results are symmetric under $Q^2 \leftrightarrow P^2$.

$$
(Q^2, P^2) \quad Q \cdot P \quad -2 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4
$$

\begin{array}{ccccccc}
(2,2) & -209304 & 50064 & 25353 & 648 & 327 & 0 \\
(2,4) & -2023536 & 1127472 & 561576 & 50064 & 8376 & -648 \\
(4,4) & -16620544 & 32861184 & 18458000 & 3859456 & 561576 & 12800 \\
(2,6) & -15493728 & 16491600 & 8533821 & 1127472 & 130329 & -15600 \\
(4,6) & -53249700 & 632078672 & 392427528 & 110910300 & 18458000 & 1127472 \\
(6,6) & 2857656828 & 16193130552 & 11232685725 & 4173501828 & 920577636 & 110910300 \\
\end{array}

Table 2: Values of the degeneracy $-B_6$ for the untwisted, untwined model for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1). This table is identical to table 1 of [28].

\mathbb{Z}_2 twining

For the untwisted model, with \mathbb{Z}_2 twining our results for $-B_6^{\mathbb{Z}_2}$ are presented in table 3. By taking the sum and the difference of $-B_6$ and $-B_6^{\mathbb{Z}_2}$, we find $-S_0$ and $-S_1$ respectively. These values are presented in table 4 and 5 respectively.

\mathbb{Z}_3 twining

For the untwisted model, with \mathbb{Z}_3 twining our results for $-B_6^{\mathbb{Z}_3}$ are presented in table 6. We note that the values for $-B_6^{\mathbb{Z}_3}$ are the same as $-B_6^{\mathbb{Z}_2}$. Thus, using $-B_6$ and $-B_6^{\mathbb{Z}_3}$ we can easily compute $-S_0$, $-S_1$, and $-S_2$. We find $-S_1$ and $-S_2$ are identical. The values for $-S_0$, $-S_1$ are presented in table 7 and 8 respectively.

\mathbb{Z}_4 twining

For the untwisted model, with \mathbb{Z}_4 twining our results for $-B_6^{\mathbb{Z}_4}$ are presented in table 9. We note that the values for $-B_6^{\mathbb{Z}_4}$ are the same as $-B_6^{\mathbb{Z}_2}$, already presented in table 3. Furthermore, we note
Table 3: Values of $-B_6^{g_2}$ for \mathbb{Z}_2 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1).

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2,2)		5624	1328	505	-216	55	0
(2,4)		-27952	-7696	3128	-1328	488	-104
(4,4)		-138240	-44544	19120	-7168	3128	-1280
(2,6)		-124384	-33520	14781	-7696	3209	-848
(4,6)		-615780	-188528	86232	-41316	19120	-7696
(6,6)		-2761380	-723144	353853	-243612	126180	-41316

Table 4: Values of $-S_0$ with \mathbb{Z}_2 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers.

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2,2)		-107464	24368	12929	216	191	0
(2,4)		-1025744	559888	282352	24368	4432	-376
(4,4)		-8379392	16408320	9238560	1926144	282352	5760
(2,6)		-7809056	8229040	4274301	559888	66769	-8224
(4,6)		-26932740	315945072	196256880	55434492	9238560	559888
(6,6)		1427447724	8096203704	5616519789	2086629108	460351908	55434492

that the values for $-B_6^{g_3}$ are the same as $-B_6^{g_4}$. Thus, we can easily compute $-S_a$, $0 \leq a \leq 3$. We find $-S_1$ and $-S_3$ to be identical. The values for $-S_0$, $-S_1$, $-S_2$ are presented in table 10, table 11, and table 12 respectively.

Comment about the implementation

The above tables were constructed using Sen’s formula (2.4), and we verified that they match with the Cléry-Gritsenko formula [27, 42, 43]. Implementation of Cléry-Gritsenko formula is in fact easier in Mathematica and computation time is shorter, especially for the higher values of N. We do not
Table 5: Values of $-S_1$ with \mathbb{Z}_2 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers. We note that the number of states that contribute to the total degeneracy with eigenvalue $+1$ (table 4) and -1 (this table) are approximately the same.

Table 6: Values of $-B_{6}^{\mathbb{Z}_3} ≡ -B_{6}^{\mathbb{Z}_3^2}$ for \mathbb{Z}_3 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1).

3.2 Hair removed twined partition functions

The hair removed twining partition functions are,

$$Z_{\text{horizon}} = \frac{1}{Z_{4d}^{\text{hair}}} \frac{1}{\Phi(\tilde{\rho}, \tilde{\sigma}, \tilde{v})},$$

(3.2)
Table 7: Values of $-S_0$ with \mathbb{Z}_3 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints \eqref{eq:constraints}. Note that all the boldfaced entries are positive integers.

(Q^2, P^2)	$Q \cdot P$	−2	0	1	2	3	4
(2,2)		−70812	16296	8649	144	129	0
(2,4)		−678648	374196	188040	16296	2928	−252
(4,4)		−5556400	10947264	6156260	1284688	188040	3968
(2,6)		−5178840	5491224	2847939	374196	44127	−5424
(4,6)		−17805876	210669260	130822680	36962796	6156260	374196
(6,6)		952359936	5397625296	3744279381	1391139204	306874242	36962796

Table 8: Values of $-S_1 \equiv -S_2$ with \mathbb{Z}_3 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints \eqref{eq:constraints}. Note that all the boldfaced entries are positive integers. We also note that the number of states that contribute to the degeneracy with eigenvalue +1 (table 7) and eigenvalues $e^{2\pi i/3}$ or $e^{4\pi i/3}$ (this table) are approximately the same.

(Q^2, P^2)	$Q \cdot P$	−2	0	1	2	3	4
(2,2)		−69246	16884	8352	252	99	0
(2,4)		−672444	376638	186768	16884	2724	−198
(4,4)		−5532072	10956960	6150870	1287384	186768	4416
(2,6)		−5157444	5500188	2842941	376638	43101	−5088
(4,6)		−17721912	210704706	130802424	36973752	6150870	376638
(6,6)		952648446	5397752628	3744203172	1391181312	306851697	36973752

The Fourier coefficients $-B^g_{6\text{,horizon}}$ can be extracted from Z_{horizon} using the contour prescription mentioned above. These coefficients are computed in tables 13 (no twining), 14 (\mathbb{Z}_2 twining), 15 (\mathbb{Z}_3 twining), 16 (\mathbb{Z}_4 twining). Table 13 (no twining) is identical to table 4 of [32]. In this section we do not present tables for degeneracy of horizon states with definite g_N eigenvalues. These numbers can be easily constructed by taking the linear combinations of tables given. We have checked that positivity property holds as expected.
Table 9: Values of $-B_g^{a_i} \equiv -B_g^{a_i}$ for \mathbb{Z}_4 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1).

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2,2)		-560	-224	117	-48	19	0
(2,4)		-1760	-768	444	-224	84	-32
(4,4)		-5504	-2624	1608	-896	444	-160
(2,6)		-5312	-2400	1437	-768	373	-136
(4,6)		-16660	-8128	5148	-3028	1608	-768
(6,6)		-50156	-24712	16117	-9828	5652	-3028

Table 10: Values of $-S_0$ with \mathbb{Z}_4 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers.

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2,2)		-54012	12072	6523	84	105	0
(2,4)		-513752	279560	141398	12072	2258	-204
(4,4)		-4192448	8202848	4620084	962624	141398	2800
(2,6)		-3907184	4113320	2137869	279560	33571	-4180
(4,6)		-13474700	157968472	98131014	27715732	4620084	279560
(6,6)		713698784	4048089496	2808267953	1043309640	230178780	27715732

4 Twisted-twining hair removal

Having discussed a class of twined partition functions of K3 compactification, we now turn to the twined partition functions of the CHL models. The CHL orbifolds are often called twisted models. Accordingly, we call the twined partition functions for these models twisted-twining partition functions.

We consider type IIB string theory compactified on $K3 \times \tilde{S}^1 \times S^1$ and mod out this theory by a \mathbb{Z}_M symmetry generated by $1/M$ shift along the S^1 and an order M transformation g_M on K3. We take the radius of S^1 to be M and the radius of \tilde{S}^1 to be 1. Momentum along the S^1 circle is
Table 11: Values of $-S_1$ and $-S_3$ with \mathbb{Z}_4 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers.

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2,2)	-50920	12848	6212	216	68	0	
(2,4)	-498896	283792	139612	12848	1972	-136	
(4,4)	-4120576	8226432	4609720	966656	139612	3520	
(2,6)	-3842336	4131280	2129760	283792	31780	-3688	
(4,6)	-13158480	158066800	98085324	27737904	4609720	283792	
(6,6)	715104552	4048463424	2808082968	1043436360	230112864	27737904	

Table 12: Values of $-S_2$ for \mathbb{Z}_4 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers. We also note that the number of states that contribute to the degeneracy with eigenvalue +1 (table 10), eigenvalues $e^{\pi i/2}$ or $e^{3\pi i/2}$ (table 11), and eigenvalue −1 (this table) are approximately the same.

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2,2)	-53452	12296	6406	132	86	0	
(2,4)	-511992	280328	140954	12296	2174	-172	
(4,4)	-4186944	8205472	4618476	963520	140954	2960	
(2,6)	-3901872	4115720	2136432	280328	33198	-4044	
(4,6)	-13458040	157976600	98125866	27718760	4618476	280328	
(6,6)	713748940	4048114208	2808251836	1043319468	230173128	27718760	

quantised in units of $1/M$. We consider the D1-D5 system as described in detail in [1,31]. For such a set-up T-duality invariant charge bilinears are

$$Q^2 = 2n/M,$$ \hspace{1cm} $$P^2 = 2(Q_1 - 1),$$ \hspace{1cm} $$Q \cdot P = J.$$ \hspace{1cm} (4.1)

In a subspace of the moduli space of this compactification, we identify g_N to be the generator of a specific geometric \mathbb{Z}_N symmetry of K3 that preserves all the covariantly constant spinors of K3.
Table 13: Values of coefficients (the analog of $-B_6$) for the hair-removed partition function without twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1). This table is identical to table 4 of [32].

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2,2)	28944	28944	13863	1608	327	0	
(2,4)	761312	761312	406296	72424	6936	-648	
(4,4)	12980224	12980224	8595680	2665376	406296	25760	
(2,6)	12324920	12324920	6995541	1423152	96619	-13680	
(4,6)	333276712	333276712	235492308	85781820	16141380	1423152	
(6,6)	6227822652	6227822652	4771720755	2158667028	572268361	85781820	

Table 14: Values of coefficients (the analog of $-B^g_6$) for the hair-removed partition function with \mathbb{Z}_2 twining for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (3.1).

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2,2)	-1608	-368	199	-152	55	0	
(2,4)	-7960	-1952	1032	-792	392	-104	
(4,4)	-21728	-10240	4640	-1248	1032	-864	
(2,6)	-35528	-6664	3701	-4112	2411	-720	
(4,6)	-96484	-39448	18132	-6724	5332	-4112	
(6,6)	-301680	-4996	21523	-66060	38121	-6724	

and leaves invariant some 2-cycles of K3. A complete list of possible symmetries of this type can be found in [6,44]. From these papers we learn that there are a total of 7 cases to consider, they are listed in table 17.

For this set-up, in the region of the moduli space where the type IIB string coupling is small, the result for the twined index B^{gN}_6 is,

$$-B^{gN}_6 = (-1)^{Q \cdot P + 1} g \left(\frac{M}{2} Q^2, \frac{1}{2M} P^2, Q \cdot P \right),$$

where $g(l,k,j)$ are the coefficients of Fourier expansion of the function $1/\tilde{\Phi}(\tilde{\rho}, \tilde{\sigma}, \tilde{v})$. The function
Table 15: Values of coefficients (the analog of $-B_{6}^{z_{3}}$) for the hair-removed partition function with \(\mathbb{Z}_{3} \) twining for different values of \(Q^{2}, P^{2} \) and \(Q \cdot P \). The boldfaced entries are for charges that satisfy the constraints (3.1).

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
(Q^{2}, P^{2}) & Q \cdot P & -2 & 0 & 1 & 2 & 3 \\
\hline
(2,2) & \quad & -840 & -360 & 210 & -84 & 30 & 0 \\
(2,4) & \quad & -3352 & -1492 & 846 & -440 & 168 & -54 \\
(4,4) & \quad & -9752 & -4148 & 2570 & -1432 & 846 & -340 \\
(2,6) & \quad & -11574 & -5404 & 3261 & -1746 & 805 & -288 \\
(4,6) & \quad & -33720 & -14996 & 9108 & -5640 & 3210 & -1746 \\
(6,6) & \quad & -90432 & -43536 & 28440 & -16722 & 10372 & -5640 \\
\hline
\end{array}
\]

Table 16: Values of coefficients (the analog of $-B_{6}^{z_{4}}$) for the hair-removed partition function with \(\mathbb{Z}_{4} \) twining for different values of \(Q^{2}, P^{2} \) and \(Q \cdot P \). The boldfaced entries are for charges that satisfy the constraints (3.1).

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
(Q^{2}, P^{2}) & Q \cdot P & -2 & 0 & 1 & 2 & 3 \\
\hline
(2,2) & \quad & -496 & -208 & 111 & -48 & 19 & 0 \\
(2,4) & \quad & -1560 & -704 & 420 & -216 & 84 & -32 \\
(4,4) & \quad & -4672 & -2304 & 1440 & -832 & 420 & -160 \\
(2,6) & \quad & -4712 & -2200 & 1341 & -736 & 363 & -136 \\
(4,6) & \quad & -14116 & -7080 & 4596 & -2756 & 1512 & -736 \\
(6,6) & \quad & -38032 & -19412 & 13003 & -8212 & 4881 & -2756 \\
\hline
\end{array}
\]

\(\tilde{\Phi}(\tilde{\rho}, \tilde{\sigma}, \tilde{v}) \) is a modular form of a subgroup of \(\text{Sp}(2, \mathbb{Z}) \), given by [21],

\[
\begin{align*}
\tilde{\Phi}(\tilde{\rho}, \tilde{\sigma}, \tilde{v}) &= e^{2\pi i(\tilde{\alpha}\tilde{\rho}+\tilde{\gamma}\tilde{\sigma}+\tilde{\beta}\tilde{v})} \prod_{b=0}^{N-1} \prod_{r=0}^{M-1} \prod_{r'=0}^{M-1} \prod_{k,l \in \mathbb{Z}, j \in \mathbb{Z}} \prod_{i=1}^{a} \left[1 - e^{2\pi i/r/N} e^{2\pi i(k\tilde{\sigma}+l\tilde{\rho}+j\tilde{v})} \right]^a \\
&= \sum_{s=0}^{N-1} \sum_{s'=0}^{M-1} e^{-2\pi i/(s'M+rs/N)} c_{b}^{(0,s'r,s')} (4kl - j^2). \\
\end{align*}
\]

(4.3)

Here too, the infinite product is to be understood as before. The point of distinction is in the fact
Table 17: The list of $\mathbb{Z}_M \times \mathbb{Z}_N$ symmetries that can be geometrically realised in an appropriate subspace of the moduli space of K3.

| $\mathbb{Z}_2 \times \mathbb{Z}_2$ | $\mathbb{Z}_3 \times \mathbb{Z}_3$ | $\mathbb{Z}_2 \times \mathbb{Z}_4$ | $\mathbb{Z}_4 \times \mathbb{Z}_2$ | $\mathbb{Z}_2 \times \mathbb{Z}_6$ | $\mathbb{Z}_6 \times \mathbb{Z}_2$ |

that when $r' \neq 0$, k takes fractional values. The coefficients $c^{(r,s;r',s')}_{b}$ are defined via the equation:

$$F^{(r,s;r',s')}(r, z) = \frac{1}{MN} \text{Tr}_{\text{RR}:g'_{M}g'_{N}}(g'_{M}g'_{N}(-1)^{J_{L}+J_{R}}e^{2\pi i(rL_{0}-rL_{0})}e^{2\pi iJ_{L}z})$$

(4.4)

$$= \sum_{b=0}^{1} \sum_{n \in \mathbb{Z}/MN} c^{(r,s;r',s')}_{b}(4n-j^{2})e^{2\pi i(n\tau+jz)}. \quad (4.5)$$

In equation (4.4), the trace is over all the $g'_{M}g'_{N}$ twisted RR sector states in the (4,4) superconformal CFT with target space K3. The coefficients $\tilde{\alpha}$, $\tilde{\beta}$, $\tilde{\gamma}$ are given by

$$\tilde{\alpha} = \frac{1}{24M} Q_{0,0} - \frac{1}{2M} \sum_{s'=1}^{M-1} Q_{0,s'} \frac{e^{-2\pi is'/M}}{(1-e^{-2\pi is'/M})^{2}}, \quad (4.6)$$

$$\tilde{\beta} = 1, \quad (4.7)$$

$$\tilde{\gamma} = \frac{1}{24M} \chi(\text{K3}) = \frac{1}{24M} Q_{0,0}, \quad (4.8)$$

where

$$Q_{r',s'} = MN \left(c^{(0,0;r',s')}_{0}(0) + 2c^{(0,0;r',s')}_{1}(-1) \right), \quad (4.9)$$

and where the Euler number of K3, $\chi(\text{K3}) = 24$.

4.1 Hair modes for the $\mathbb{Z}_M \times \mathbb{Z}_N$ models

Now we wish to discuss the hair modes relevant for the twisted-twining partition functions. As in section 2, there are three types of hair modes to consider: fermionic, Garfinkle-Vachaspati, and modes from the tensor-multiplet sectors. The fermionic and Garfinkle-Vachaspati modes are all neutral under the $\mathbb{Z}_M \times \mathbb{Z}_N$ action. It is only the tensor-multiplet sector that requires a detailed consideration.

At this stage, it is instructive to quickly recall the hair partition functions for the twisted cases, with no twining [31,32]. For these cases, in addition to the untwisted hair partition function (2.16), there are contributions from the twisted sectors. To incorporate the contributions from the twisted sectors, it is convenient to analyse the problem in ten-dimensions. In ten-dimensions, the RR fourform field schematically decomposes as (2.17),

$$C_{4}(x, y) \propto \sum_{\gamma} c_{2}^{\gamma}(x) \wedge \omega^{\gamma}(y), \quad (4.10)$$

20
where $\omega^\gamma(y)$ are the self-dual and anti-self-dual harmonic forms spanning the cohomology $H^2(K3)$. On these harmonic forms, the abelian orbifold group of order M acts. Since $\omega^\gamma(y)$ are not all g_M invariant, the fields $c^\gamma_2(x)$ pick up the opposite phases under the CHL orbifold action. The combined effect ensures that the ten-dimensional $C_4(x,y)$ is g_M invariant.

Such modes contribute to the hair partition functions. In order to account for their contributions, we must know the number of tensor-multiplets transforming with eigenvalue $e^{2\pi im/M}$ for $0 \leq m \leq M - 1$ under g_M. This data is given in table 1. The contribution to the 4d hair partition function due to the such modes is of the form

$$Z_{(m)} = \prod_{l=1}^{\infty} (1 - e^{-2\pi i m \tilde{p}} e^{2\pi i M \tilde{l}})^{- (b_m + 2\delta_{m,0})}, \quad m = 0, 1, \ldots, M - 1,$$

with the full 4d hair partition function given by the product,

$$Z_{4d}^{\text{hair}} = Z_{\text{hair}}^{\text{GV}} Z_{\text{hair}}^{\text{fermion}} \prod_{m=0}^{M-1} Z_{(m)},$$

where

$$Z_{\text{hair}}^{\text{fermion}} = \prod_{l=1}^{\infty} (1 - e^{2\pi i M \tilde{l}})^{4},$$

and

$$Z_{\text{hair}}^{\text{GV}} = \prod_{l=1}^{\infty} (1 - e^{2\pi i M \tilde{l}})^{-3}.$$

Further details can be found in [31].

From the above discussion, it is clear that we need to know how many of the tensor multiplets are charged under $\mathbb{Z}_M \times \mathbb{Z}_N$ with eigenvalues $e^{2\pi in/M}$ and $e^{2\pi in/N}$ respectively for $0 \leq m \leq M - 1$ and $0 \leq n \leq N - 1$. To find these numbers, we need to diagonalise the action of $\mathbb{Z}_M \times \mathbb{Z}_N$ on the 19 anti-self-dual (1,1) forms of K3. Let p^m_n be the number of tensor-multiplets with eigenvalues $e^{2\pi im/M}$ with respect to \mathbb{Z}_M action and $e^{2\pi in/N}$ with respect to \mathbb{Z}_N action. From [6] we can work out these decompositions. The 19 anti-self-dual (1,1) forms decompose as:

$$\mathbb{Z}_2 \times \mathbb{Z}_2 : 19 = 7^0_0 + 4^1_0 + 4^0_1 + 4^1_1.$$

$$\mathbb{Z}_3 \times \mathbb{Z}_3 : 19 = 3^0_0 + 2^1_0 + 2^2_0 + 2^1_1 + 2^2_1 + 2^0_2 + 2^1_2 + 2^2_2.$$

$$\mathbb{Z}_2 \times \mathbb{Z}_4 : 19 = 3^0_0 + 2^1_0 + 2^2_0 + 2^1_1 + 2^2_1 + 2^3_1.$$

$$\mathbb{Z}_4 \times \mathbb{Z}_2 : 19 = 3^0_0 + 2^1_0 + 2^1_1 + 2^0_2 + 2^1_2 + 2^3_2 + 2^1_3 + 2^2_3.$$

$$\mathbb{Z}_4 \times \mathbb{Z}_4 : 19 = 1^0_0 + 1^1_0 + 2^2_0 + 1^3_0 + 1^0_1 + 1^1_1 + 1^2_1 + 1^1_3 + 2^0_2 + 2^0_2 + 2^2_2 + 2^2_2 + 1^0_3 + 1^1_3 + 1^2_3 + 1^3_3.$$

21
\[Z_2 \times Z_6 : 19 = 1^0_0 + 1^1_0 + 3^0_0 + 2^3_0 + 3^1_0 + 1^5_0 + 2_1 + 1^1_1 + 1^2_1 + 2^3_1 + 1^4_1 + 1^5_1. \]

\[Z_6 \times Z_2 : 19 = 1^0_0 + 2^1_0 + 1^0_1 + 1^1_1 + 3^0_2 + 1^2_2 + 2^3_3 + 2^1_3 + 3^0_4 + 1^1_4 + 1^0_5 + 1^1_5. \]

4.2 Hair removed twisted-twining partition functions

The following product of various factors give the twisted-twining 4d hair partition functions,

\[Z_{4d}^{\text{hair}} = Z_{\text{hair}}^{GV} Z_{\text{hair}}^{\text{fermion}} \prod_{n=0}^{N-1} \prod_{m=0}^{M-1} Z_m^n, \tag{4.15} \]

where

\[Z_m^n = \prod_{l=1}^{\infty} \left(1 - e^{2\sin \frac{\pi}{N} q^{Ml-m}} \right)^{-p_m^n - 2q_{m,n}^0}, \quad 0 \leq m \leq M - 1, \quad 0 \leq n \leq N - 1. \tag{4.16} \]

Here too, we use the standard notation \(q = e^{2\pi i \rho}. \) For the \(Z_2 \times Z_2 \) model, it takes the form

\[Z_{4d}^{\text{hair}} = \frac{Z_{\text{hair}}^{GV} Z_{\text{hair}}^{\text{fermion}} Z_0^1 Z_1^0 Z_1^1}{z(2 \rho)^{12}}. \tag{4.17} \]

\[= \frac{Z_{\text{hair}}^{\text{fermion}} \prod_{l=1}^{\infty} \left(1 - q^{2l} \right)^{-12} \left(1 + q^{2l} \right)^{-4} \left(1 - q^{2l-1} \right)^{-4} \left(1 + q^{2l-1} \right)^{-4}}{z(2 \rho)^{12}}. \tag{4.18} \]

\[= \frac{Z_{\text{hair}}^{\text{fermion}} \prod_{l=1}^{\infty} \left(1 - q^{2l} \right)^{-8} \left(1 + q^{l} \right)^{-4} \left(1 - q^{l} \right)^{-4}}{z(2 \rho)^{12}}. \tag{4.19} \]

\[= \frac{Z_{\text{hair}}^{\text{fermion}} \prod_{l=1}^{\infty} \left(1 - q^{2l} \right)^{-8} \left(1 - q^{2l} \right)^{-4}}{z(2 \rho)^{12}}. \tag{4.20} \]

\[= \frac{Z_{\text{hair}}^{\text{fermion}} e^{2\pi i \rho}}{z(2 \rho)^{12}}. \tag{4.21} \]

As before, the hair partition function is closely related to the KK monopole partition function for this model. Apart from the factor \(Z_{\text{hair}}^{\text{fermion}} e^{2\pi i \rho} \) it is the KK monopole partition function. There are multiple ways of confirming this. We show it here using the expression for the KK monopole partition function as given in [21],

\[Z_{\text{KK}} = e^{-2\pi i \tilde{\alpha}} \prod_{r=0}^{N-1} \prod_{l=1}^{\infty} \left(1 - e^{2\pi i r/N} e^{2\pi i \tilde{\alpha} r} \right)^{-2/M} e^{-2\pi i r s/N} e^{-2\pi i l s/M} \left(c_0^{(0,s,0,s')} (0) + c_1^{(0,s,0,s')} (-1) \right), \]

where \(c_1^{(0,s,0,s')} (-1) = 2/MN \) and the coefficients \(c_0^{(0,s,0,s')} (0) \) are to be found from the functions \(F^{(0,s,0,s')} \). The variable \(\tilde{\alpha} \) was introduced in (4.6).

The \(F^{(0,s,0,s')} \) functions for the \(Z_2 \times Z_2 \) model are as follows. The function \(F^{(0,0,0,0)} \) is

\[F^{(0,0,0,0)} (\tau, z) = 2A(\tau, z), \tag{4.23} \]
where \(A(\tau, z) \) is written in terms of the Jacobi theta functions \(\vartheta_i \) as,

\[
A(\tau, z) = \frac{\vartheta_2(\tau, z)^2}{\vartheta_2(\tau, 0)^2} + \frac{\vartheta_3(\tau, z)^2}{\vartheta_3(\tau, 0)^2} + \frac{\vartheta_4(\tau, z)^2}{\vartheta_4(\tau, 0)^2}.
\] (4.24)

For completeness, we recall that the four most common Jacobi theta functions are defined by

\[
\theta \left[\begin{array}{c} a \\ b \end{array} \right] (\tau, z) = \sum_{l \in \mathbb{Z}} \hat{q}^{\frac{l^2}{2} + l} e^{-\pi lb},
\] (4.25)

where \(a \cdot b = (0, 1) \mod 2 \). In this notation, \(\vartheta_1(\tau, z) \equiv \theta \left[\begin{array}{c} 1 \\ 0 \end{array} \right] (\tau, z), \vartheta_2(\tau, z) \equiv \theta \left[\begin{array}{c} 1 \\ 1 \end{array} \right] (\tau, z), \vartheta_3(\tau, z) \equiv \theta \left[\begin{array}{c} 0 \\ 0 \end{array} \right] (\tau, z) \) and \(\vartheta_4(\tau, z) \equiv \theta \left[\begin{array}{c} 0 \\ 1 \end{array} \right] (\tau, z) \) and where \(\hat{q} = e^{2\pi i \tau} \) and \(\hat{r} = e^{2\pi i z} \). Furthermore, \(2F^{(r,s,0,0)} = F^{(r,s)} = 2F^{(0,0;r',s')}, \) where the functions \(F^{(r,s)} \) were introduced in (2.5). These functions are well known for several models [10]. We have,

\[
F^{(0,0;0,1)}(\tau, z) = F^{(0,1;0,0)}(\tau, z) = \frac{1}{2} F^{(0,1)}(\tau, z) = \frac{2}{3} A(\tau, z) - \frac{1}{3} B(\tau, z) E_2(\tau).
\] (4.26)

Here, \(B(\tau, z) = \eta(\tau)^{-6} \vartheta_1(\tau, z)^2 \) and the Eisenstein series \(E_N(\tau) \) is defined as

\[
E_N(\tau) = \frac{12i}{\pi(N-1)} \partial_\tau [\ln \eta(\tau) - \ln \eta(N\tau)] = 1 + \frac{24}{N-1} \sum_{n_1,n_2 \geq 1 \atop n_1 \neq 0 \mod N} n_1 e^{2\pi i n_1 n_2 \tau}.
\] (4.27)

The action of the group element \(g_M g_N \) on the anti-self-dual \((1,1)\) forms allows us to identify \(F^{(0,1;0,1)} \) as an EOT Jacobi form. We find that \(F^{(0,1;0,1)} = F^{(0,0;0,1)} \). For the remaining functions, we rely on the \(\text{SL}(2, \mathbb{Z}) \) transformations acting on \(F^{(r,s;r',s')} \):

\[
F^{(r,s;r',s')}(\tau) = \left(\begin{array}{c} a \tau + b \\ c \tau + d \end{array} \right) \left(\begin{array}{c} z \\ c \tau + d \end{array} \right) = \exp \left(2\pi i \frac{c z^2}{c \tau + d} \right) F^{(c s + a r, d s + b r; c s' + a r', d s' + b r')}(\tau).
\] (4.28)

From these expressions we find that \(4c^{(0,0;0,0)}_0(0) = 20 \) and \(4c^{(0,s;0,s')}_0(0) = 4 \) for other values of \(s, s' \). We find \(\alpha = 1 \) from (4.6). Inserting these values in the above formula, after some calculation we get

\[
Z_{KK}(\vec{\rho}) = \frac{1}{\eta(2\vec{\rho})^{12}}.
\] (4.29)

All the other cases are dealt with similarly. Of course, the calculations become more and more tedious. A useful and often-times simpler way to figure out the functions \(F^{(0,s;0,s')} \) is as follows. We note from (4.5) that the trace is over untwisted RR sector with the insertion \(g_M^* g_N^* \). Since we know the action of \(g_M \) and \(g_N \) separately on the 24 dimensional cohomology of K3 we can easily work out the trace of \(g_M^* g_N^* \) over this 24 dimensional representation. The 24-dimensional trace and
the order of group element $g_M^s g_N^{s'}$ uniquely fixes the $F^{(0,s;0,s')}(\tau, z)$ as an Eguchi-Ooguri-Tachikawa (EOT) Jacobi form [45].

In all cases we find,

$$Z_{\text{hair}}^\text{4d} = Z_{\text{hair}}^{\text{fermion}} e^{2\pi i \tilde{\rho}} Z_{\text{KK}},$$

where Z_{KK} for various models are as follows:

$$Z_{\mathbb{Z}_3 \times \mathbb{Z}_3} = Z_{\mathbb{Z}_2 \times \mathbb{Z}_4} = Z_{\mathbb{Z}_4 \times \mathbb{Z}_2} = Z_{\mathbb{Z}_4 \times \mathbb{Z}_4} = 1 = \eta(4\tilde{\rho})^6,$$

$$Z_{\mathbb{Z}_2 \times \mathbb{Z}_6} = Z_{\mathbb{Z}_6 \times \mathbb{Z}_2} = \eta(2\tilde{\rho})^3 \eta(6\tilde{\rho})^3.$$

Finally, the hair removed twisted-twinning partition functions are,

$$1 = 1 = \Phi(\tilde{\rho}, \tilde{\sigma}, \tilde{v}).$$

5 Fourier coefficients for the $\mathbb{Z}_2 \times \mathbb{Z}_2$ model and positivity checks

Product representation (4.3) gives Siegel modular forms describing twisted-twinning partition functions for the $\mathbb{Z}_M \times \mathbb{Z}_N$ models. Although this formula has a clear physical interpretation, it is cumbersome to work with when it comes to extracting Fourier coefficients. The complexity lies in knowing the functions $F^{(r,s;r',s')}$ whose Fourier coefficients $c^{(r,s;r',s')}$ enter as exponents of the various factors. Fortunately, there are other representations available for some models, including a product representation involving genus-two theta functions [22] and a product formula using weak Jacobi forms [42,46]. These alternative representations allow for an easier extraction of the Fourier coefficients. In this section, we briefly describe these three different representations for the $\mathbb{Z}_2 \times \mathbb{Z}_2$ model and extract the Fourier coefficients and check the positivity properties. As an important consistency check, we confirm that all these formulae give the same answers. We also extract the Fourier coefficients for the hair removed twisted-twinning partition function in the D1-D5 duality frame and check the positivity properties.
5.1 Sen’s product representation

To work with the product representation (4.3), we need eight functions $F^{(0,s;r',s')}$ from which we get our $e^{(0,s;r',s')}$. We already noted in equation (4.23) that

$$F^{(0,0,0,0)}(\tau, z) = 2A(\tau, z), \quad (5.1)$$

where $A(\tau, z)$ is written in terms of the Jacobi theta functions ϑ_i (4.24). As noted in section 4.2, some of the other $F^{(r,s;r',s')}$ can be obtained using the property: $F^{(r,s;0,0)} = \frac{1}{2} F^{(r,s)} = F^{(0,0;r',s')}$, where the functions $F^{(r,s)}$ were introduced in (2.5). We have,

$$F^{(0,0;0,1)}(\tau, z) = F^{(0,1;0,0)}(\tau, z) = \frac{1}{2} F^{(1,1)}(\tau, z) = \frac{2}{3} A(\tau, z) - \frac{1}{3} B(\tau, z) E_2(\tau), \quad (5.2)$$

where the notations $B(\tau, z)$ and $E_2(\tau)$ are introduced around equation (4.27). Similarly, $F^{(0,0;1,0)}$ and $F^{(0,0;1,1)}$ can be obtained from the function $F^{(r,rk)}$ with $r = 1$ and $k = 0$ and 1, respectively,

$$F^{(0,0;1,0)}(\tau, z) = F^{(1,0)}(\tau, z) = \frac{1}{2} F^{(1,1)}(\tau, z) = \frac{2}{3} A(\tau, z) + \frac{1}{6} B(\tau, z) E_2\left(\frac{\tau}{2}\right), \quad (5.3)$$

$$F^{(0,0;1,1)}(\tau, z) = F^{(1,1)}(\tau, z) = \frac{1}{2} F^{(1,1)}(\tau, z) = \frac{2}{3} A(\tau, z) + \frac{1}{6} B(\tau, z) E_2\left(\frac{\tau + 1}{2}\right). \quad (5.4)$$

The action of the group element $g_M g_N$ on the anti-self-dual (1,1) forms allows us to identify $F^{(0,1,0,1)}$ as an EOT Jacobi form. We find that $F^{(0,1,0,1)} = F^{(0,0,1,1)}$. For the remaining two functions, we rely on the SL(2, \mathbb{Z}) transformations (4.28) of $F^{(r,s;r',s')}$. This gives $F^{(0,1;1,1)}(\tau, z) = (F^{(1,1;1,1)} | ST^{-1}ST^{-1}S)(\tau, z)$, where $S : \tau \to -\frac{1}{\tau}$ and $T : \tau \to \tau + 1$. Finally, from [23, 47] we infer that $F^{(0,1,1,0)}(\tau, z) = 0$. With these functions at hand, we have an explicit expression of the Siegel modular form, which can be programmed in Mathematica.

5.2 Product of genus two theta functions representation

Another representation of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ twisted-twining partition function is via a product of genus-two theta functions [22]. To introduce genus-two theta functions, we start by recalling that the Siegel upper half-space of genus 2, \mathbb{H}_2, is the set of 2×2 symmetric matrices over the complex numbers whose imaginary part is positive definite, i.e.,

$$Z = \begin{pmatrix} \tau & z \\ z & \sigma \end{pmatrix}, \quad (5.5)$$

with imaginary part of Z positive definite. Genus-two theta functions on \mathbb{H}_2 are defined as,

$$\theta \left[\begin{array}{c} a \\ b \end{array} \right] (Z) = \sum_{l_1, l_2 \in \mathbb{Z}} \hat{q}^{\frac{1}{2} (l_1 + \frac{a_1}{2})^2 + \frac{a_1}{2} l_1 + \frac{a_2}{2} l_2} \hat{r}^{\frac{1}{2} (l_2 + \frac{a_2}{2})^2 + \frac{a_2}{2} l_2} e^{i \pi (l_1 b_1 + l_2 b_2)}, \quad (5.6)$$

where $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, and where $\hat{q} = e^{2\pi i \tau}$, $\hat{r} = e^{2\pi i z}$, and $\hat{s} = e^{2\pi i \sigma}$.
By taking appropriate products of these functions, we can construct a class of Siegel modular forms. The twisted-twining partition function for the $\mathbb{Z}_2 \times \mathbb{Z}_2$ model can be written as the inverse of the Siegel modular form,

$$\widetilde{\Phi}(Z) = \left(\frac{1}{16} \theta \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] (Z) \theta \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] (Z) \theta \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] (Z) \right)^2. \quad (5.7)$$

These expressions allow us to extract the desired Fourier coefficients in Mathematica. The identification with Sen’s product representation notation is,

$$Z = \left(\tau \begin{array}{c} z \\ z \sigma \end{array} \right) = \left(\widetilde{\sigma} \begin{array}{c} \widetilde{v} \\ \widetilde{v} \widetilde{\rho} \end{array} \right). \quad (5.8)$$

For some other twisted-twining partition functions too, genus two theta function product representation is known. We will discuss one more example in section 6.

5.3 Borcherds product representation

The product representation described in [46, Theorem 2.1] gives another convenient representation for the twisted-twining partition function for the $\mathbb{Z}_2 \times \mathbb{Z}_2$ model. Let φ be a weak Jacobi form of weight 0 and index t with integral coefficients,

$$\varphi(\tau, z) = \sum_{n,l} c(n,l) q^n r^l, \quad (5.9)$$

where $\hat{q} = e^{2\pi i \tau}$ and $\hat{r} = e^{2\pi iz}$. Define

$$A = \frac{1}{24} \sum_l c(0,l), \quad B = \frac{1}{2} \sum_{l>0} l c(0,l), \quad C = \frac{1}{4} \sum_l l^2 c(0,l). \quad (5.10)$$

Then, the Jacobi form φ gives a Siegel modular form via the product5

$$\widetilde{\Phi}(\tilde{\rho}, \tilde{\sigma}, \tilde{v}) = q^A r^B s^C \prod_{(n,l,m)>0} (1 - q^{tn} r^l s^m)^{c(nm,l)}, \quad (5.11)$$

where now we again denote $q = e^{2\pi i \tilde{\rho}}$, $r = e^{2\pi i \tilde{\sigma}}$, and $s = e^{2\pi i \tilde{v}}$ with n,l,m all integers. The notation $(n,l,m) > 0$ means $(n > 0, m > 0, l \in \mathbb{Z}) \cup (n = 0, m > 0, l \in \mathbb{Z}) \cup (n > 0, m = 0, l \in \mathbb{Z}) \cup (n = m = 0, l < 0)$. The Jacobi forms φ for various twisted-twining partition functions of our interest were given in [22]. For a more recent and more complete discussion see [26].

The index 2 weight 0 Jacobi form that gives the twisted-twining partition function for the $\mathbb{Z}_2 \times \mathbb{Z}_2$ model is,

$$\varphi = 2\varphi_1^{(3)} = 4(f_2^2 f_3^2 + f_3^2 f_4^2 + f_4^2 f_2^2), \quad (5.12)$$

5We can call this formula the “Borcherds lift” or the “exponential-lift” following [46, section 2.1]. In the following sections, we refer to this formula as the Borcherds product formula or the Borcherds lift.
where the notation $\phi_1^{(3)}$ comes from [48], and where

$$f_i = \frac{\vartheta_i(\tau, z)}{\vartheta_i(\tau, 0)}, \quad i \in 2, 3, 4.$$

(5.13)

With the coefficients $c_{nm,l}$ in hand, the infinite products (5.11) takes the form

$$\Phi(\tau, \sigma, v) = \prod_{n,m,l,r,s > 0} \left(1 - q^{2n}r^l s^m\right)^{c_{nm,l}}.$$

(5.14)

We expand this infinite product to get the Fourier coefficients. We also note that while computing coefficients A, B and C, the contribution to $c(0, l)$ only comes from $l = 0, \pm 1$.

5.4 Fourier coefficients

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(1,2)	-5410	2164	360	-2	0	0	
(1,4)	-26464	18944	4352	160	0	0	
(2,4)	-124160	198144	67008	6912	64	0	
(1,6)	-114524	125860	36024	2164	52	0	
(2,6)	-473088	1580672	671744	101376	4352	-16	
(3,6)	-779104	15219528	7997655	1738664	149226	2164	

Table 18: Values of $-B_6$ for the \mathbb{Z}_2 CHL orbifold model for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (5.15). This table is identical to table 2 of [28].

In any of the above three representations of the same function, we can extract Fourier coefficients using the contour prescription discussed in section 3.1. Since the zeros of Φ responsible for wall crossing do not change with twining, the constraints on charges that ensure that the index counts single centre black hole microstates are the same as the \mathbb{Z}_2 CHL model [21]. These constraints are [28]:

$$Q \cdot P \geq 0, \quad Q \cdot P \leq 2Q^2, \quad Q \cdot P \leq P^2, \quad 3Q \cdot P \leq 2Q^2 + P^2, \quad Q^2, P^2, \{Q^2P^2 - (Q \cdot P)^2\} > 0.$$

(5.15)

Our results for the Fourier coefficients are summarised in tables 18 and 19. We only give the results for $2Q^2 \leq P^2$, as the indices have a symmetry under $P^2 \leftrightarrow 2Q^2$. For the hair removed partition functions our results are summarised in tables 20 and 21.

27
Table 19: Values of $-B_{6}^{2}$ for the \mathbb{Z}_2-twined partition function of the \mathbb{Z}_2 CHL model for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (5.15). All the boldfaced entries are very small compared to the corresponding entries in table 18. Thus, it is clear that the coefficients $-S_0$ and $-S_1$ satisfy the expected positivity property.

Table 20: Values of coefficients (the analog of $-B_6$) for the hair removed \mathbb{Z}_2 CHL orbifold partition function for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (5.15). This table is not identical to table 5 of [32]; although they are computing the same quantities. See footnote 6.

6 Positivity checks for other models

There are at least two other cases that can be dealt with as a straightforward extension of the techniques and results obtained so far. These are $\mathbb{Z}_2 \times \mathbb{Z}_4$ and $\mathbb{Z}_3 \times \mathbb{Z}_3$. We check the positivity properties for the indices for these models in sections 6.1 and 6.2 respectively. As noted earlier, the Sen’s product representation for the twisted-twining partition functions for these models is fairly
Table 21: Values of coefficients (the analog of $-B_6^g$) for the hair-removed \mathbb{Z}_2-twined partition function of the \mathbb{Z}_2 CHL model for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (5.15). All the boldfaced entries are very small compared to the corresponding entries in table 20. Thus, the hair removed analog of coefficients $-S_0$ and $-S_1$ satisfy the expected positivity property.

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(1,2)		-98	4	-8	-2	0	0
(1,4)		0	0	0	0	0	0
(2,4)		0	0	0	0	0	0
(1,6)		-732	180	-144	-12	12	0
(2,6)		0	0	0	0	0	0
(3,6)		-2736	1992	-1197	-216	282	-12

There are two other cases that can also be dealt with using our techniques straightforwardly, namely $\mathbb{Z}_4 \times \mathbb{Z}_2$ and $\mathbb{Z}_4 \times \mathbb{Z}_4$. However, to the best of our knowledge, the precise conditions on the charge vectors to describe the single centered black holes have not been worked out. Thus, although we can easily obtain the Fourier coefficients, the interpretation as indices of single center black holes is not fully clear. For this reason, we do not present results for these other models.

6.1 $\mathbb{Z}_2 \times \mathbb{Z}_4$

The twisted-twining partition function for $\mathbb{Z}_2 \times \mathbb{Z}_4$ model is $\tilde{\Phi}(Z)^{-1}$ where [22]

$$\tilde{\Phi}(Z) = \left(\frac{1}{4} \theta \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} (Z) \theta \begin{bmatrix} 1 \\ 1 \end{bmatrix} (Z) \right)^2.$$

(6.1)

This product can be programmed in Mathematica, where we recall the dictionary (5.8) between the genus two theta function notation and our previous notation. We find Fourier coefficients as listed in table 22. Together with previously obtained tables 18 and 19 for the \mathbb{Z}_2 CHL model, we can easily check that the positivity properties are satisfied for $-S_0, -S_1, -S_2, -S_3$. Although it is expected
on physical grounds, it is quite remarkable that various things conspire to give $-S_0, -S_1, -S_2, -S_3$ positive integers.

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(1,2)		-34	-12	8	-2	0	0
(1,4)		0	0	0	0	0	0
(2,4)		0	0	0	0	0	0
(1,6)		-156	-60	24	-12	4	0
(2,6)		0	0	0	0	0	0
(3,6)		-672	-184	87	-24	10	-12

Table 22: Values of $-B_6^{\Gamma_4}$ for the \mathbb{Z}_4-twined partition function of the \mathbb{Z}_2 CHL model for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints (5.15).

6.2 $\mathbb{Z}_3 \times \mathbb{Z}_3$

The $\mathbb{Z}_3 \times \mathbb{Z}_3$ model is another example that can be dealt with in a straightforward manner. Values of $-B_6$ for the \mathbb{Z}_3 CHL model (with no twining) for different values of Q^2, P^2 and $Q \cdot P$ are given in table 23. The Borcherds product formula (5.11) with the index 3 weight 0 Jacobi form,

$$\varphi = 2\varphi_4^{(4)} = 8f_2^2f_3^2f_4^2$$

(6.2)

gives the $\mathbb{Z}_3 \times \mathbb{Z}_3$ twisted-twinning partition function [26]. The exponents in (5.11) turn out to be $A = B = 1, C = 1/3$. This product can be programmed in Mathematica. We find Fourier coefficients as listed in table 24. Using tables 23 and 24 it is easy to check that the expected positivity properties are satisfied. Once again, it is quite remarkable (almost a miracle, if you wish) that $-S_0, -S_1, -S_2$ all turn out to be positive integers.

We end this section with a comment about the asymptotic growth of Fourier coefficients and the corresponding logarithmic correction to the black hole entropy. In [49], the authors identified a class of Siegel modular forms that could serve as “candidates for other types of black holes” by looking at the asymptotic growth of the Fourier coefficients of the various Siegel modular forms. Two of the examples they identified are the Borcherds lift (5.11) of index 2 and 3, weight 0 Jacobi forms, as discussed above. The CHL interpretation of these modular forms is known (though, not well appreciated) as the $\mathbb{Z}_2 \times \mathbb{Z}_2$ and $\mathbb{Z}_3 \times \mathbb{Z}_3$ twisted-twinning partition functions, respectively [22,26]. Logarithmic corrections for the corresponding black holes on the gravity side have not been studied. We do expect the logarithmic corrections coefficients to match with the analysis of [49]. A proof of
Table 23: Values of $-B_6$ for the \mathbb{Z}_3 CHL model for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints to ensure that the index counts microstates of a finite sized single centered black hole. The constraints are given in [28]. We only give the results for $3Q^2 \leq P^2$, since the index has a symmetry under $P^2 \leftrightarrow 3Q^2$. This table is identical to table 3 of [28].

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2/3,2)		-1458	540	27	0	0	0
(2/3,4)		-5616	3294	378	0	0	0
(4/3,4)		-21496	23008	4912	136	0	0
(2/3,6)		-18900	16200	2646	54	0	0
(4/3,6)		-70524	128706	37422	2484	6	0
(2,6)		-208584	820404	318267	37818	801	0

Table 24: Values of $-B_6^{\mathbb{Z}_3}$ for the \mathbb{Z}_3-twined partition function of the \mathbb{Z}_3 CHL model for different values of Q^2, P^2 and $Q \cdot P$. The boldfaced entries are for charges that satisfy the constraints to ensure that the index counts microstates of a finite size single centered black hole. We only give the results for $3Q^2 \leq P^2$, the index has a symmetry under $P^2 \leftrightarrow 3Q^2$.

(Q^2, P^2)	$Q \cdot P$	-2	0	1	2	3	4
(2/3,2)		0	0	0	0	0	0
(2/3,4)		0	0	0	0	0	0
(4/3,4)		-124	-8	-8	4	0	0
(2/3,6)		0	0	0	0	0	0
(4/3,6)		0	0	0	0	0	0
(2,6)		0	0	0	0	0	0

the equivalence of the various product representations of the twisted-twining partition functions for the $\mathbb{Z}_2 \times \mathbb{Z}_2$ and $\mathbb{Z}_3 \times \mathbb{Z}_3$ models has also not been written down.
7 Conclusions

In this paper, we have studied indices counting the number of black hole microstates with definite eigenvalue under the \mathbb{Z}_N twining generator for a class of \mathbb{Z}_M CHL models. Our study of course, forces the K3 moduli to lie in a subspace of the full moduli space, where such a symmetry is geometrically realised. The number of black hole microstates in a \mathbb{Z}_M CHL model with definite eigenvalue under a \mathbb{Z}_N twining generator must be positive. This leads to a specific prediction for the signs of certain linear combinations of Fourier coefficients of Siegel modular forms. We explicitly tested these predictions for low charges. We studied these indices in a possible duality frames where the black holes do not admit more hair other than the fermionic zero modes associated to broken supersymmetries. We also studied these indices for a sub-class of models in the D1-D5 duality frame. In the D1-D5 duality frame, we computed the appropriate hair removed partition functions and showed the positivity of the appropriate Fourier coefficients for low charges. We emphasise that ours is the first ever systematic study of the numerical computation of twined indices. Many of the subtle points that we have pointed out have not been appreciated in the literature, e.g., the nature of the attractor chamber constraints on the charges.

For large charges, the twining indices for the twining generator of order N are known to grow as \[\pm \exp \left[\frac{S_{BH}}{N} \right], \] where S_{BH} is the entropy of a black hole carrying the same set of charges. On the other hand the untwined indices grow as, \[+ \exp [S_{BH}]. \] Numbers (7.1) are exponentially small compared to (7.2). Clearly, the sum or difference of numbers (7.1) and (7.2), as in (1.4), will not change the positivity property of the large numbers (7.2). Thus, for large charges our results are nothing more than a consistency check. However, for low charges our results are fairly non-trivial. We have shown that in all the cases that we analysed, the positivity and integer property continues to hold. These results are expected from the black hole side, but are quite intriguing from the modular form side, as linear combinations of Siegel Modular forms of different $\text{Sp}(2,\mathbb{Z})$ weights are involved.

Our results offer several opportunities for future research. In a series of papers, Chattopadhyaya and David [32,34,35] have pointed out that the sign of the indices for T^4 models violates the positivity conjecture of [28]. In their most recent paper [32], they have proposed a “tentative resolution” of this puzzle. Their resolution is essentially based on the study of Fourier coefficients, where they argue that 4 of the fermion zero modes for the $\frac{1}{4}$-BPS black holes for T^4 models are not hair modes.\(^6\) A

\(^6\)There are some minor discrepancies in the \mathbb{Z}_2 and \mathbb{Z}_5 CHL tables in [32]. We thank A. Chattopadhyaya and J. David for confirming this.

\(^7\)We find this somewhat surprising. In the black hole hair removal program, the fermion zero modes are almost always taken to be hair modes. This is well-motivated, as shown in an earlier paper [50].
proper justification of this claim is still missing. Clearly, these models require further investigation.

It will be interesting to explore the positivity property of the twisted-twining indices for the T^4 models. At the very least, such a study will provide a more refined version of the puzzle.

We implemented Sen’s product representation (4.3) only for the $\mathbb{Z}_2 \times \mathbb{Z}_2$ twisted-twining partition function. This representation is perhaps physically the most transparent, though fairly cumbersome to implement when it comes to extracting the Fourier coefficients. We found it much easier to implement other representations, namely product of genus two theta functions, and the Borcherds lift (5.11). For other twisted-twining partition functions we only implemented the product of genus two theta functions representation and the Borcherds lift. It will be useful to confirm these results using Sen’s product representation (4.3). More broadly, it will be useful to work out proofs showing the equivalence of the various product representations of the twisted-twining partition functions. Some work in this direction has already been done in [23]. We note that, for twining partition functions (no twisting) these proofs have been recently completed [27, 43]. We hope to return to some of the above problems in our future work.

Acknowledgements

We thank Abhishek Chowdhury for collaboration at the very early stages of this project. We thank A. Chattopadhyaya, J. David, A. Sen, and R. Volpato for email correspondence. SS would like to thank IACS Kolkata for a fellowship and hospitality where part of this work was done. The work of AV and PS was supported in part by the Max Planck Partnergroup “Quantum Black Holes” between CMI Chennai and AEI Potsdam and by a grant to CMI from the Infosys Foundation.

References

[1] A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav. 40 (2008) 2249 [0708.1270].

[2] I. Mandal and A. Sen, Black Hole Microstate Counting and its Macroscopic Counterpart, Class. Quant. Grav. 27 (2010) 214003 [1008.3801].

[3] S. Chaudhuri, G. Hockney and J.D. Lykken, Maximally supersymmetric string theories in $D < 10$, Phys. Rev. Lett. 75 (1995) 2264 [hep-th/9505054].

[4] S. Chaudhuri and J. Polchinski, Moduli space of CHL strings, Phys. Rev. D 52 (1995) 7168 [hep-th/9506048].

[5] J.H. Schwarz and A. Sen, Type IIA dual of the six-dimensional CHL compactification, Phys. Lett. B 357 (1995) 323 [hep-th/9507027].

8 It will be useful to list $F(r,s;\tau,z)(r',s')$ functions explicitly for a class of twisted-twining models in the future. These functions can be used in (4.3) to provide additional consistency checks on our results.
[6] S. Chaudhuri and D.A. Lowe, *Type IIA heterotic duals with maximal supersymmetry*, Nucl. Phys. B 459 (1996) 113 [hep-th/9508144].

[7] D. Gaiotto, A. Strominger and X. Yin, *New connections between 4-D and 5-D black holes*, JHEP 02 (2006) 024 [hep-th/0503217].

[8] D. Shih, A. Strominger and X. Yin, *Recounting Dyons in N=4 string theory*, JHEP 10 (2006) 087 [hep-th/0505094].

[9] D.P. Jatkar and A. Sen, *Dyon spectrum in CHL models*, JHEP 04 (2006) 018 [hep-th/0510147].

[10] J.R. David, D.P. Jatkar and A. Sen, *Product representation of Dyon partition function in CHL models*, JHEP 06 (2006) 064 [hep-th/0602254].

[11] J.R. David and A. Sen, *CHL Dyons and Statistical Entropy Function from D1-D5 System*, JHEP 11 (2006) 072 [hep-th/0605210].

[12] J.R. David, D.P. Jatkar and A. Sen, *Dyon spectrum in generic N=4 supersymmetric \(\mathbb{Z}_N \) orbifolds*, JHEP 01 (2007) 016 [hep-th/0609109].

[13] A. Dabholkar, D. Gaiotto and S. Nampuri, *Comments on the spectrum of CHL dyons*, JHEP 01 (2008) 023 [hep-th/0702150].

[14] M.C.N. Cheng and E. Verlinde, *Dying Dyons Don’t Count*, JHEP 09 (2007) 070 [0706.2363].

[15] A. Dabholkar, J. Gomes and S. Murthy, *Counting all dyons in N =4 string theory*, JHEP 05 (2011) 059 [0803.2692].

[16] N. Banerjee, I. Mandal and A. Sen, *Black Hole Hair Removal*, JHEP 07 (2009) 091 [0901.0359].

[17] D.P. Jatkar, A. Sen and Y.K. Srivastava, *Black Hole Hair Removal: Non-linear Analysis*, JHEP 02 (2010) 038 [0907.0593].

[18] S. Govindarajan and K. Gopala Krishna, *BKM Lie superalgebras from dyon spectra in Z_N CHL orbifolds for composite N*, JHEP 05 (2010) 014 [0907.1410].

[19] A. Sen, *Arithmetic of Quantum Entropy Function*, JHEP 08 (2009) 068 [0903.1477].

[20] A. Sen, *A Twist in the Dyon Partition Function*, JHEP 05 (2010) 028 [0911.1563].

[21] A. Sen, *Discrete Information from CHL Black Holes*, JHEP 11 (2010) 138 [1002.3857].

[22] S. Govindarajan, *BKM Lie superalgebras from counting twisted CHL dyons*, JHEP 05 (2011) 089 [1006.3472].
[23] D. Persson and R. Volpato, Second Quantized Mathieu Moonshine,
Commun. Num. Theor. Phys. **08** (2014) 403 [1312.0622].

[24] M.C.N. Cheng, K3 Surfaces, N=4 Dyons, and the Mathieu Group M24,
Commun. Num. Theor. Phys. **4** (2010) 623 [1005.5415].

[25] A. Chowdhury, R.K. Gupta, S. Lal, M. Shyani and S. Thakur, Logarithmic Corrections to Twisted Indices from the Quantum Entropy Function, *JHEP* **11** (2014) 002 [1404.6363].

[26] S. Govindarajan and S. Samanta, BKM Lie superalgebras from counting twisted CHL dyons – II, *Nucl. Phys. B* **948** (2019) 114770 [1905.06083].

[27] S. Govindarajan and S. Samanta, Mathieu Moonshine and Siegel Modular Forms, *JHEP* **03** (2021) 050 [2011.07922].

[28] A. Sen, How Do Black Holes Predict the Sign of the Fourier Coefficients of Siegel Modular Forms?, *Gen. Rel. Grav.* **43** (2011) 2171 [1008.4209].

[29] J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, *Phys. Lett. B* **391** (1997) 93 [hep-th/9602065].

[30] J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five- dimensions, *Class. Quant. Grav.* **20** (2003) 4587 [hep-th/0209114].

[31] S. Chakrabarti, S. Govindarajan, P. Shanmugapriya, Y.K. Srivastava and A. Virmani, Black hole hair removal for N = 4 CHL models, *JHEP* **02** (2021) 125 [2010.02240].

[32] A. Chattopadhyaya and J.R. David, Horizon states and the sign of their index in $\mathcal{N} = 4$ dyons, *JHEP* **03** (2021) 106 [2010.08967].

[33] K. Bringmann and S. Murthy, On the positivity of black hole degeneracies in string theory, *Commun. Num. Theor Phys.* **07** (2013) 15 [1208.3476].

[34] A. Chattopadhyaya and J.R. David, Dyon degeneracies from Mathieu moonshine symmetry, *Phys. Rev. D* **96** (2017) 086020 [1704.00434].

[35] A. Chattopadhyaya and J.R. David, Properties of dyons in $\mathcal{N} = 4$ theories at small charges, *JHEP* **05** (2019) 005 [1810.12060].

[36] M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, *Nucl. Phys. B* **463** (1996) 420 [hep-th/9511222].

[37] D. Garfinkle and T. Vachaspati, Cosmic string traveling waves, *Phys. Rev. D* **42** (1990) 1960.
[38] N. Kaloper, R.C. Myers and H. Roussel, *Wavy strings: Black or bright?*, Phys. Rev. D **55** (1997) 7625 [hep-th/9612248].

[39] D. Mishra, Y.K. Srivastava and A. Virmani, *A generalised Garfinkle–Vachaspati transform*, Gen. Rel. Grav. **50** (2018) 155 [1808.04981].

[40] S. Chakrabarti, D. Mishra, Y.K. Srivastava and A. Virmani, *Generalised Garfinkle–Vachaspati transform with dilaton*, Class. Quant. Grav. **36** (2019) 125008 [1901.09048].

[41] M.J. Duff, J.T. Liu and R. Minasian, *Eleven-dimensional origin of string-string duality: A One loop test*, Nucl. Phys. B **452** (1995) 261 [hep-th/9506126].

[42] F. Cléry and V. Gritsenko, *Siegel modular forms of genus 2 with the simplest divisor*, Proceedings of the London Mathematical Society **102** (2011) 1024 [0812.3962].

[43] S. Govindarajan, *Unravelling Mathieu Moonshine*, Nucl. Phys. B **864** (2012) 823 [1106.5715].

[44] P.S. Aspinwall, *Some relationships between dualities in string theory*, Nucl. Phys. B Proc. Suppl. **46** (1996) 30 [hep-th/9508154].

[45] T. Eguchi, H. Ooguri and Y. Tachikawa, *Notes on the K3 Surface and the Mathieu group M24*, Exper. Math. **20** (2011) 91 [1004.0956].

[46] V.A. Gritsenko and V.V. Nikulin, *Automorphic forms and Lorentzian Kac-Moody algebras. Part 2*, alg-geom/9611028.

[47] M.R. Gaberdiel, D. Persson, H. Ronellenfitsch and R. Volpato, *Generalized Mathieu Moonshine*, Commun. Num. Theor Phys. **07** (2013) 145 [1211.7074].

[48] M.C.N. Cheng, J.F.R. Duncan and J.A. Harvey, *Umbral moonshine and the niemeier lattices*, Research in the Mathematical Sciences **1** (2014) 3 [1307.5793].

[49] A. Belin, A. Castro, J. Gomes and C.A. Keller, *Siegel Modular Forms and Black Hole Entropy*, JHEP **04** (2017) 057 [1611.04588].

[50] R. Brooks, R. Kallosh and T. Ortin, *Fermion zero modes and black hole hypermultiplet with rigid supersymmetry*, Phys. Rev. D **52** (1995) 5797 [hep-th/9505116].