Abstract: Exogenous cannabinoids or receptor antagonists may influence many cellular and systemic host responses. The anti-inflammatory activity of cannabinoids may compromise host inflammatory responses to acute viral infections, but may be beneficial in persistent infections. In neurons, where innate antiviral/pro-resolution responses include the activation of NOS-1, inhibition of Ca\(^{2+}\) activity by cannabinoids, increased viral replication and disease. This review examines the effect(s) of cannabinoids and their antagonists in viral infections.

Keywords: pathogens; virus infection; immunomodulation; inflammation

1. Introduction

Both endogenous and exogenous cannabinoids can influence the course of infections *in vitro* and *in vivo*. This review will focus on viral infections of mammals, but will also describe what is known about other infections. Readers are directed to the excellent accompanying reviews in this issue which expertly discuss the clinical trials, cell biology, mechanisms of action, impact on inflammation, clinical applications, and so forth.

Cannabinoids may act either through the CB\(_1\) or the CB\(_2\) receptor, which are found on distinct cell types. The CB\(_1\) receptor is found on neurons as well as some astrocytes and skeletal muscle cells; neurons are frequently the target of viral infection. Engagement of the CB\(_1\) receptor by its endogenous or exogenous agonists may inhibit the release of Ca\(^{2+}\) from intracellular or extracellular stores. Since many important intracellular proteins are Ca\(^{2+}\)-dependent for activation, signal transduction through the CB\(_1\) receptor may impair these secondary pathways and have a profound influence on the ability of viruses to replicate in neurons.
In contrast, the response of cells expressing the CB$_2$ receptor may influence not only the responses in that cell, but may alter the course of the host innate and adaptive immune response to the pathogen, suppressing inflammation and the development of virus-specific cellular and humoral responses. The outcome on the viral infection will depend on whether inflammation is beneficial or pathogenic in the specific case.

2. Discussion

When a host is infected with a virus, there is a dynamic competition between the ability of the host to first marshal innate (hours to days) and then adaptive immunity (>7 days post infection) vs. the replication and spread of the virus first within the host and then to additional susceptible individuals. When a virus is able to out-pace the containment efforts, the host may succumb. Pathology may result from damage to tissues by viral-induced cellular apoptosis or necrosis, or alternatively, host immune responses may result in immunopathology or the perceived symptoms of the infection. If, however, innate and adaptive immunity successfully suppress viral replication, specific life-long immunity may result.

In order to understand the influences on the host response which may be the result of cannabinoids, it is important to examine some of the cellular pathways which are dependent on Ca$_{2+}$-dependent enzymes. Table 1 indicates some of the well characterized pathways involved and their potential impact on viral infections.

The common recurring impact of Ca$_{2+}$-dependent enzymes is a role in inflammation. This ranges from regulation of many signal transduction pathways, production of pro-inflammatory and pro-resolving lipid mediators downstream of arachidonic acid, to activation of Nitric Oxide Synthase and the production of reactive nitrogen intermediates, to proteolytic enzymes which remodel the cytoskeleton or extracellular matrix, and apoptosis.

Inflammation is essential for recruitment of both innate and adaptive immune cells to the site of infection to control virus production and limit spread, and then to promote recovery. Inflammation is comprised not only of non-specific cells (sequentially these are polymorphonuclear leukocytes, natural killer cells, macrophages) and then pathogen-specific T lymphocytes recruited from circulation, and activation of antibody-secreting B lymphocytes, but also induction of production and secretion of cytokines, chemokines, interferons, complement components, acute phase reactants, reactive oxygen and nitrogen intermediates, and other mediators [24–26]. Readers are referred to the accompanying review by Bani, Mannaioni, Passani, and Masini [27]. Thus, many of these critical pathways may be impaired or compromised when endogenous or exogenous cannabinoids are present during an infection [28].

Cannabinoids have been used both recreationally by groups of people who have viral infections, and experimentally by scientists investigating their impact in vitro or in animal models. Table 2 presents what has been published about these populations in peer reviewed journals. In most of the infections studied (Table 2), it is apparent that cannabinoid treatment, whether in vitro or in vivo, had profound impact on the virus-host (cell) interactions. For HSV-2, HIV-1, KSHV, influenza and VSV viral replication, or surrogate measures of infection, were found to be substantially increased upon cannabinoid treatment [30,34,39,50,52,63]. In HIV-1 infection, syncytia formation was enhanced, and
monocytes were stickier on endothelial cells [57,58]. In one study, KHSV was more likely to exit latency and enter lytic infection when transformed cells were treated with THC [39], however, another study found the opposite result in several herpesvirus infections [38].

Table 1. Some Ca^{2+}-dependent enzymes which may be inhibited by Cannabinoids and speculated role in host responses relevant for viral infections.

Enzyme primary/secondary	Pathways	Ref.	Role(s) in viral infection-host responses
cPhospholipase A2	Arachidonic acid metabolites (prostaglandins, leukotrienes, lipoxins, resolvins) and inflammation	[1,2]	Inflammation and its resolution
Phospholipase C - Receptor-mediated tyrosine kinase	Production of Inositol 1,4,5-triphosphate from phosphotidylinositol	[3]	Signal transduction
Phospholipase D1	Exocytosis in neuroendocrine cells	[4]	Neurotransmission
Calcineurin	Activation of NFAT—gene expression	[5,6]	Signal transduction
Ca^{2+}-Calmodulin - Nitric oxide synthase-1 - Nitric oxide synthase-3	Conversion of arginine to NO in neurons and endothelial cells; production of ONOO-, SNO, R-NO2 Inhibition of viral infection	[7–12]	Anti-viral; NO2-decoration of viral proteins; capillary dilation; inflammation
Ca^{2+}-Calmodulin dependent protein kinases - CREB - CaMKK activation of AMPK	Wnt-2-dependent dendrite growth & cardiomyogenesis Energy, epithelial cell polarity T cell activation	[13–17]	Adaptive immune responses; inflammation
Calpains [Ca^{2+}-dependent proteases]	Neutral proteases [many tissues] Cell membrane fusion, synaptic remodeling, activating PKC, remodeling cytoskeleton, transcription factors	[18–20]	Cytoskeletal plasticity, cell migration, inflammation
Matrix metalloproteinases	Extracellular matrix remodeling, inflammation	[21]	Inflammation
Calpastatin	Cell fusion in fertilization	[22]	Formation of heterokaryons /giant cells
Transglutaminases	Cross-linking/deamination of proteins –wound healing, tissue repair, apoptosis, cell cycle control, inflammation and fibrosis	[23]	Inflammation, fibrosis, cell cycle and programmed cell death
Table 2. Cannabinoids and Viral Infections.

Viral pathogen	In vivo	In vitro	Agonist / Antagonist	Titer change	Pathogenesis	Inflammation Immunoregulation	Comments	Ref.	
HSV-2, L. monocytogenes	In vivo		Δ9-THC		decreased resistance to LD₅₀	systemic infection	[29]		
HSV-2	In vivo		Δ9-THC	increased shedding	increased severity of lesions & mortality	delayed onset of DTH response	vaginal model B6C3H F₁ mouse	[30]	
HSV-2	In vivo		Δ9-THC		decreased Type I IFN response	i.v. infection	[31]		
HSV-1,2	In vitro		Δ9-THC	failed to replicate		antiviral effect in human & monkey cells	[33]		
HSV-2	In vitro		Δ9-THC	100-fold increase in released virus		Vero cells, increased CPE	[34]		
HSV-2	both		Δ9-THC		decreased T cell proliferation	B6C3H F₁ mice immunized then T cells cultured	[35]		
HSV	In vitro		Δ9-THC	decreased infectivity in TC		virus incubated with THC	[36]		
HSV-1	both		Δ9-THC		decreased CD8 CTL activity	C3H mice immunized, L929 targets	[37]		
EBV, KSHV, HVS, HSV-1, MHV-68	In vivo		Δ9-THC	Immediate early ORF promoter activity inhibited	reactivation from latency inhibited	latently infected B cells in tissue culture	[38]		
KSHV	In vivo		Δ9-THC	increased viral load	increased efficiency of infection, activation of lytic switch	increased transformation of endothelial cells	primary human dermal microvascular cells	[39]	
Viral pathogen	In vivo/In vitro	Agonist / Antagonist	Titer change	Pathogenesis	Inflammation Immunoregulation	Comments	Ref.		
----------------	-----------------	----------------------	--------------	--------------	-------------------------------	----------	------		
Cowpox	In vivo	Marijuana cigarettes	generalized infection	weak Ab production, no neutralizing Abs	Case report	[40]			
TMEV	In vitro	Anandamide	decreased release of NO2- and TNF-α	NO is antiviral for TMEV		[41,42]			
TMEV	In vitro	Anandamide	increased IL-6 production	astrocyte culture B6 and SJL mice		[43]			
TMEV	In vivo	WIN-55,212	ameliorates progression of autoimmune disease TMEV-IDD	decreased DTH, decreased IL-1, IL-6, IFN-γ , TNF-α,	TMEV-IDD a mouse model of MS	[44]			
TMEV	In vivo	OMDM1, OMDM2	ameliorated motor symptoms	decreased MHC II, inhibited NOS-2, reduced proinflammatory cytokines	TMEV-IDD proposed MS therapy with cannabinoids	[45]			
TMEV	In vitro	JWH-133 SR144558	role of CB2 receptors in anti-inflammatory actions	reduced IL-12p40, reduced ERK1/2 signaling		[46]			
TMEV	In vitro	WIN-55,212	CB2-dependent COX-2 induction increased vs. TMEV-alone	role of PI3 kinase pathway in CB2 but MAPK for TMEV signaling	proposed role on blood-flow and immune activity	[47]			
TMEV	In vivo	Palmitoyl-ethanolamine	reduction in motor disability in TMEV-IDD	anti-inflammatory effect	TMEV-IDD	[48]			
TMEV	both	WIN-55,212	inhibited ICAM & VCAM on endothelium; role for PPAR-γ receptors in mechanism	reduced inflammation	TMEV-IDD	[49]			
Viral pathogen	In vivo	In vitro	Agonist / Antagonist	Titer change	Pathogenesis	Inflammation Immunoregulation	Comments	Ref.	
----------------	---------	----------	----------------------	--------------	--------------	-------------------------------	-----------	------	
Influenza	In vivo		Δ9-THC	HA mRNA increased	inflammation, metaplasia of mucous cell	decreased CD4, CD8, and macrophage recruitment		[50]	
Influenza	In vivo		HA mRNA decreased in CB₁/CB₂KO mice	THC-mediated airway pathology +/- CB₁/CB₂	KO mice had increased CD4 and IFN-γ recruitment	CB₁/CB₂KO mice		[51]	
VSV	In vitro	WIN-55,212	increased viral titers	CB₁-dependent; decreased NOS-1 activity	antagonized IFN-γ-mediated antiviral pathway	suggested disease progression likely in neurons/viral encephalitis		[52]	
BDV	In vivo		WIN-55,212	protected BrdU-positive neural progenitor cells in striatum	suppressed microglial activation	suggested treatment of encephalitis with microglial inflammation and neuro-degeneration		[53]	
HCV	In vivo	Marijuana cigarettes		progression of liver fibrosis		epidemiological study		[54]	
HCV	In vivo	Oral cannabinoids		improved weight	no viral markers or immune markers studied	7 week clinical trial for anorexia and nausea		[55]	
HCV	In vivo	Marijuana cigarettes		progression of liver fibrosis; increased disease severity		clinical pathological survey of 204 HCV patients		[56]	
HIV-1	In vitro	Δ9-THC, CP-55,940, WIN-55,212	increased syncytia formation MT-2 cells (CB₁ & CB₂⁺)		speculate cannabinoids enhance HIV-1 infection			[57]	
HIV-1	In vitro	anandamide	increased adherence for monocytes	uncoupled NO release, inhibited NO		human saphenous vein or internal thoracic artery; speculate higher titers in vivo			[58]
HIV-1 Tat	In vitro	WIN-55,212	reduced tat-induced cytotoxicity	inhibited NOS-2 activity		C6 rat glioma cell line			[59]
HIV-1	In vivo	Marijuana cigarettes	increased appetite	insufficient numbers of individuals		3 week trial			[60]
Table 2. Cont.

Viral pathogen	In vivo In vitro	Agonist / Antagonist	Titer change	Pathogenesis	Inflammation Immunoregulation	Comments	Ref.
HIV-1	In vivo	Marijuana cigarettes	mRNA unchanged	CD4+ and CD8+ cells unchanged	3 week trial, placebo-controlled	[61]	
HIV-1		WIN-55,212	inhibited expression	CD4 and microglial cultures	scid-Hu mouse model	[62]	
HIV-1	In vivo	THC	increased viral replication 50-fold	decreased CD4 IFN-γ-producing cells, increased co-receptor expression		[63]	
HIV-1 Gp120	In vitro	2-AG, CP55940	inhibited Ca\(^{2+}\)-flux-induced substance P, decreased permeability	model of BBB, coculture of Human brain microvascular endothelial cells and astrocytes		[64]	
HIV-1	In vivo	WIN-55,212	dose-related hypothermia in mouse pre-optic anterior hypothalamus infusion	WIN-55,212 is antagonist for SDF-1a/ CXCL12/ CXCR4 [HIV-1 coReceptor] pathway	mouse model for HIV-thermoregulation by direct injection of WIN-55,212 to brain POAH center	[65]	
HIV-1 Tat	In vitro	CP55940, Δ9-THC	CB\(_2\)-dependent inhibition of U937 migration to Tat	possible anti-inflammatory mechanism	U937 cells in culture	[66]	

Legend: BDV, Borna disease virus; EBV, Epstein-Barr virus; HCV, Hepatitis C virus; HIV, Human immunodeficiency virus; HSV, Herpes simplex virus; HVS, Herpes virus samirii; KO, knock-out mice; KSHV, Kaposi's sarcoma herpes virus; L. monocytogenes, Listeria monocytogenes; MHV-68, Murine herpes virus-68; TMEV, Theiler's murine encephalomyelitis virus; VSV, Vesicular stomatitis virus.

Disease was more severe in HSV-2-infected guinea pigs which were treated with THC [29,30,32]. In HCV infections, clinical studies have shown a profound co-morbidity of recreational cannabinoid use, for disease progression [54,56]. One case report of Cowpox infection, a very rare human pathogen, indicated that recreational use of cannabinoids was associated with generalized infection and very poor immune responses to the virus [40].

In contrast, in those infections where host inflammatory responses are often associated with pathology, and not with clearance and recovery, cannabinoid treatment of hosts was beneficial. These included one mouse model of multiple sclerosis, the Theiler's murine encephalomyelocardiitis virus (TMEV)-induced demyelinating disease (IDD), where progression towards the paralysis and disability were ameliorated [44,45,48] and in Borna disease virus (BDV) where neural progenitors were protected from proinflammatory cytokine-mediated damage [53] infections. TMEV-IDD is...
characterized by microglial activation in the spinal cord of mice and a T cell-mediated autoimmune demyelinating disease, triggered by the viral infection [42,67–69]. Persistent BDV infection of the central nervous system is associated with immunopathology associate with inflammation and production of pro-inflammatory cytokines, induction of NOS-2 in microglia, and breakdown of the blood-brain barrier [70–73]. In both BVD and TMEV-IDD, the targets for the anti-inflammatory effects of the cannabinoid treatment are lymphocytes and mononuclear cells.

Two excellent reviews of the impact of cannabinoids on bacterial, yeast, and protozoan infections were published in the same issue of *Journal of Neuroimmunology* [26,74]. These infections included *Treponema pallidum* (Syphilis), *Legionella pneumophila* (Legionnaires’ disease), *Staphylococci aureus* and *S. albus*, *Listeria monocytogenes*, *Candida albicans* (Thrush), and *Naegleria fowleri*. Both reviews concluded that THC significantly reduced host resistance to infection of experimental animals, and speculated that similar host compromise would be found in man. In the more than 12 years since those reviews were published, additional findings have extended the serious consequences of cannabinoids on host responses to pathogens and opportunistic infections. Marijuana use is a risk factor for *Mycobacterium tuberculosis* (TB) infections [75–77]; this author speculates the suppression of host innate immune responses by THC contributes to the increased severity of TB in users. Similarly, more serious exacerbations central nervous system infection by *Acanthamoeba* among HIV-infected patients has been attributed to marijuana consumption [78], possibly by inhibiting macrophage chemotaxis [79]. However, the antiinflammatory effects of cannabinoids have been found to be beneficial in attenuating fever induced by bacterial endotoxin [65,80], inhibiting cytokine responses to *Corynebacterium parvum* endotoxin [81]. These drugs may also offer therapeutic efficacy in meningitis caused by *Streptococcus pneumoniae* [82] and in irritable bowel syndrome [83,84].

Cannabinoids may relieve pain and may induce hyperphagia, which could be beneficial in cancer [85,86]. However, these physiological characteristics are not relevant to most viral, bacterial fungal or parasitic infections, where the regulation of inflammation is central to controlling pathogen replication and immunopathology. However, the same anti-inflammatory properties of cannabinoids just described are detrimental to the host in handling the other infections. In most cases, a rapid and robust inflammatory response, associated with production of proinflammatory cytokines and effect T lymphocytes capable of eliminating infected cells is essential to recovery and survival.

3. Conclusions

Cannabinoids are profoundly anti-inflammatory and impair many Ca$^{2+}$-dependent enzyme systems which are central to inflammatory and cell-autonomous antiviral responses. When viral-induced host responses lead to immunopathology, as is seen in a rodent model of multiple sclerosis, TMEV-IDD, or in a persistent infection of the central nervous system caused by a non-lytic virus, BDV, cannabinoid treatment was beneficial.

In all other virus infections, both *in vitro* and *in vivo*, cannabinoid treatment led to disease progression, increased pathology, and sometimes to host death. Therefore, in many clinical settings, including latent infections caused by HIV-1 or HSV-1, and persistent infection of the liver caused by HCV, cannabinoids lead to worsened disease outcome.
Acknowledgements

The generous support of the U.S. National Institutes of Health, both grants DC039746 and NS039746, enabled my lab to perform these studies, and to summarize the work of many other labs. Two former students, Ramon Antonio Herrera and Joseph H. Oved, contributed published [52] and unpublished data, provided stimulating discussions and critically read this manuscript.

References

1. Bannenberg, G.L.; Chiang, N.; Ariel, A.; Arita, M.; Tjonahen, E.; Gotlinger, K.H.; Hong, S.; Serhan, C.N. Molecular circuits of resolution: Formation and actions of resolvins and protectins. *J. Immunol.* 2005, 174, 4345–4355.

2. Machado, F.S.; Johndrow, J.E.; Esper, L.; Dias, A.; Bafica, A.; Serhan, C.N.; Aliberti, J. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. *Nat. Med.* 2006, 12, 330–334.

3. Morita, M.; Yoshiki, F.; Nakane, A.; Okubo, Y.; Kudo, Y. Receptor- and calcium-dependent induced inositol 1,4,5-trisphosphate increases in PC12h cells as shown by fluorescence resonance energy transfer imaging. *FEBS J.* 2007, 274, 5147–5157.

4. Vitale, N. Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells. *Biochem. Soc. Trans.* 2010, 38, 167–171.

5. Oh-hora, M.; Rao, A. The calcium/NFAT pathway: Role in development and function of regulatory T cells. *Microbes Infect.* 2009, 11, 612–619.

6. Rao, A. Signaling to gene expression: Calcium, calcineurin and NFAT. *Nat. Immunol.* 2009, 10, 3–5.

7. Knowles, R.G.; Moncada, S. Nitric oxide synthases in mammals. *Biochem. J.* 1994, 298, 249–258.

8. Lopez-Jaramillo, P.; Teran, E.; Moncada, S. Calcium supplementation prevents pregnancy-induced hypertension by increasing the production of vascular nitric oxide. *Med. Hypotheses* 1995, 45, 68–72.

9. Edelstein, C.L.; Yaqoob, M.M.; Schrier, R.W. The role of the calcium-dependent enzymes nitric oxide synthase and calpain in hypoxia-induced proximal tubule injury. *Ren Fail.* 1996, 18, 501–511.

10. Reiss, C.S.; Komatsu, T. Does nitric oxide play a critical role in viral infections? *J. Virol.* 1998, 72, 4547–4551.

11. Akaike, T.; Maeda, H. Nitric oxide and virus infection. *Immunology* 2000, 101, 300–308.

12. Akuta, T.; Zaki, M.H.; Yoshitake, J.; Okamoto, T.; Akaike, T. Nitrative stress through formation of 8-nitroguanosine: Insights into microbial pathogenesis. *Nitric. Oxide.* 2006, 14, 101–108.

13. Alvania, R.S.; Chen, X.; Ginty, D.D. Calcium signals control Wnt-dependent dendrite growth. *Neuron* 2006, 50, 813–815.
14. Wayman, G.A.; Impey, S.; Marks, D.; Saneyoshi, T.; Grant, W.F.; Derkach, V.; Soderling, T.R. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. *Neuron* **2006**, *50*, 897–909.

15. Flaherty, M.P.; Dawn, B. Noncanonical Wnt11 signaling and cardiomyogenic differentiation. *Trends Cardiovasc. Med.* **2008**, *18*, 260–268.

16. Caplan, M.J.; Seo-Mayer, P.; Zhang, L. Epithelial junctions and polarity: Complexes and kinases. *Curr. Opin. Nephrol. Hypertens.* **2008**, *17*, 506–512.

17. Liu, J.O. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. *Immunol. Rev.* **2009**, *228*, 184–198.

18. Pontremoli, S.; Melloni, E. Extralysosomal protein degradation. *Annu. Rev Biochem.* **1986**, *55*, 455–481.

19. Mellgren, R.L. Calcium-dependent proteases: An enzyme system active at cellular membranes? *FASEB J.* **1987**, *1*, 110–115.

20. Dargelos, E.; Poussard, S.; Brule, C.; Daury, L.; Cottin, P. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. *Biochimie* **2008**, *90*, 359–368.

21. Consolo, M.; Amoroso, A.; Spandidos, D.A.; Mazzarino, M.C. Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease (Review). *Int. J. Mol. Med.* **2009**, *24*, 143–152.

22. Rojas, F.J.; Brush, M.; Moretti-Rojas, I. Calpain-calpastatin: A novel, complete calcium-dependent protease system in human spermatozoa. *Mol. Hum. Reprod.* **1999**, *5*, 520–526.

23. Elli, L.; Bergamini, C.M.; Bardella, M.T.; Schuppan, D. Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver. *Dig. Liver Dis.* **2009**, *41*, 541–550.

24. Reiss, C.S. Innate immunity in viral encephalitis. In *Neurotropic Virus Infections*. Cambridge University Press: Cambridge, UK, 2008, pp. 265–291.

25. Reiss, C.S. VSV infection elicits distinct host responses in the periphery and the brain. In *RNA Viruses: Host Gene Responses to Infection*; Yang, D., ed. World Scientific Publishing: Hackensack, NJ, USA, 2009; pp. 229–246.

26. Klein, T.W.; Friedman, H.; Specter, S. Marijuana, immunity and infection. *J. Neuroimmunol.* **1998**, *83*, 102–115.

27. Bani, D.; Mannaioni, G.; Passani, M.B.; Masini, E. Role of cannaboboids in the modulation of inflammatory processes. *Pharmaceuticals* **2010**, submitted.

28. Klein, T.W.; Cabral, G.A. Cannabinoid-induced immune suppression and modulation of antigen-presenting cells. *J. Neuroimmune. Pharmacol.* **2006**, *1*, 50–64.

29. Morahan, P.S.; Klykken, P.C.; Smith, S.H.; Harris, L.S.; Munson, A.E. Effects of cannabinoids on host resistance to Listeria monocytogenes and herpes simplex virus. *Infect. Immun.* **1979**, *23*, 670–674.

30. Mishkin, E.M.; Cabral, G.A. Delta-9-Tetrahydrocannabinol decreases host resistance to herpes simplex virus type 2 vaginal infection in the B6C3F1 mouse. *J. Gen. Virol.* **1985**, *66*, 2539–2549.

31. Cabral, G.A.; Lockmuller, J.C.; Mishkin, E.M. Delta 9-tetrahydrocannabinol decreases alpha/beta interferon response to herpes simplex virus type 2 in the B6C3F1 mouse. *Proc. Soc. Exp. Biol. Med.* **1986**, *181*, 305–311.
32. Cabral, G.A.; Mishkin, E.M.; Marciano-Cabral, F.; Coleman, P.; Harris, L.; Munson, A.E. Effect of delta 9-tetrahydrocannabinol on herpes simplex virus type 2 vaginal infection in the guinea pig. *Proc. Soc. Exp. Biol. Med.* **1986**, *182*, 181–186.

33. Blevins, R.D.; Dumic, M.P. The effect of delta-9-tetrahydrocannabinol on herpes simplex virus replication. *J. Gen. Virol.* **1980**, *49*, 427–431.

34. Cabral, G.A.; McNerney, P.J.; Mishkin, E.M. Delta-9-tetrahydrocannabinol enhances release of herpes simplex virus type 2. *J. Gen. Virol.* **1986**, *67*, 2017–2022.

35. Cabral, G.A.; McNerney, P.J.; Mishkin, E.M. Delta-9-tetrahydrocannabinol inhibits the splenocyte proliferative response to herpes simplex virus type 2. *Immunopharmacol. Immunotoxicol.* **1987**, *9*, 361–370.

36. Lancz, G.; Specter, S.; Brown, H.K. Suppressive effect of delta-9-tetrahydrocannabinol on herpes simplex virus infectivity *in vitro*. *Proc. Soc. Exp. Biol. Med.* **1991**, *196*, 401–404.

37. Fischer-Stenger, K.; Updegrove, A.W.; Cabral, G.A. Delta 9-tetrahydrocannabinol decreases cytotoxic T lymphocyte activity to herpes simplex virus type 1-infected cells. *Proc. Soc. Exp. Biol. Med.* **1992**, *200*, 422–430.

38. Medveczky, M.M.; Sherwood, T.A.; Klein, T.W.; Friedman, H.; Medveczky, P.G. Delta-9 tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses *in vitro*. *BMC. Med.* **2004**, *2*, 34.

39. Zhang, X.; Wang, J.F.; Kunos, G.; Groopman, J.E. Cannabinoid modulation of Kaposi's sarcoma-associated herpesvirus infection and transformation. *Cancer Res.* **2007**, *67*, 7230–7237.

40. Huemer, H.P.; Himmelreich, A.; Honlinger, B.; Pavlic, M.; Eisendle, K.; Hopfl, R.; Rabl, W.; Czerny, C.P. "Recreational" drug abuse associated with failure to mount a proper antibody response after a generalised orthopoxvirus infection. *Infection* **2007**, *35*, 469–473.

41. Molina-Holgado, F.; Lledo, A.; Guaza, C. Anandamide suppresses nitric oxide and TNF-alpha responses to Thelier's virus or endotoxin in astrocytes. *Neuroreport* **1997**, *8*, 1929–1933.

42. Oleszak, E.L.; Katsetos, C.D.; Kuzmak, J.; Varadhachary, A. Inducible nitric oxide synthase in Thelier's murine encephalomyelitis virus infection. *J. Virol.* **1997**, *71*, 3228–3235.

43. Molina-Holgado, F.; Molina-Holgado, E.; Guaza, C. The endogenous cannabinoid anandamide potentiates interleukin-6 production by astrocytes infected with Thelier's murine encephalomyelitis virus by a receptor-mediated pathway. *FEBS Lett.* **1998**, *433*, 139–142.

44. Croxford, J.L.; Miller, S.D. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)-WIN55,212. *J. Clin. Invest.* **2003**, *111*, 1231–1240.

45. Mestre, L.; Correa, F.; Arevalo-Martin, A.; Molina-Holgado, E.; Valenti, M.; Ortar, G.; Di Marzo, V.; Guaza, C. Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. *J. Neurochem.* **2005**, *92*, 1327–1339.

46. Correa, F.; Mestre, L.; Docagne, F.; Guaza, C. Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: Role of IL-10 and ERK1/2 kinase signaling. *Br. J. Pharmacol.* **2005**, *145*, 441–448.

47. Mestre, L.; Correa, F.; Docagne, F.; Clemente, D.; Guaza, C. The synthetic cannabinoid WIN 55,212-2 increases COX-2 expression and PGE2 release in murine brain-derived endothelial cells following Thelier's virus infection. *Biochem. Pharmacol.* **2006**, *72*, 869–880.
48. Loria, F.; Petrosino, S.; Mestre, L.; Spagnolo, A.; Correa, F.; Hernangomez, M.; Guaza, C.; Di Marzo, V.; Docagne, F. Study of the regulation of the endocannabinoid system in a virus model of multiple sclerosis reveals a therapeutic effect of palmitoylethanolamide. *Eur. J. Neurosci* 2008, 28, 633–641.

49. Mestre, L.; Docagne, F.; Correa, F.; Loria, F.; Hernangomez, M.; Borrell, J.; Guaza, C. A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. *Mol. Cell. Neurosci.* 2009, 40, 258–266.

50. Buchweitz, J.P.; Karmaus, P.W.; Harkema, J.R.; Williams, K.J.; Kaminski, N.E. Modulation of airway responses to influenza A/PR/8/34 by Delta9-tetrahydrocannabinol in C57BL/6 mice. *J. Pharmacol. Exp. Ther.* 2007, 323, 675–683.

51. Buchweitz, J.P.; Karmaus, P.W.; Williams, K.J.; Harkema, J.R.; Kaminski, N.E. Targeted deletion of cannabinoid receptors CB1 and CB2 produced enhanced inflammatory responses to influenza A/PR/8/34 in the absence and presence of Delta9-tetrahydrocannabinol. *J. Leukoc. Biol.* 2008, 83, 785–796.

52. Herrera, R.A.; Oved, J.H.; Reiss, C.S. Disruption of the IFN-g-mediated antiviral activity in neurons: The role of Cannabinoids. *Viral Immunol.* 2008, 21, 141–152.

53. Solbrig, M.V.; Hermanowicz, N. Cannabinoid rescue of striatal progenitor cells in chronic Borna disease viral encephalitis in rats. *J. Neurovirol.* 2008, 14, 252–260.

54. Hezode, C.; Roudot-Thoraval, F.; Nguyen, S.; Grenard, P.; Julien, B.; Zafrani, E.S.; Pawlotsky, J.M.; Dhumeaux, D.; Lotersztajn, S.; Mallat, A. Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C. *Hepatology* 2005, 42, 63–71.

55. Costiniuk, C.T.; Mills, E.; Cooper, C.L. Evaluation of oral cannabinoid-containing medications for the management of interferon and ribavirin-induced anorexia, nausea and weight loss in patients treated for chronic hepatitis C virus. *Can. J. Gastroenterol.* 2008, 22, 376–380.

56. Ishida, J.H.; Peters, M.G.; Jin, C.; Louie, K.; Tan, V.; Bacchetti, P.; Terrault, N.A. Influence of cannabis use on severity of hepatitis C disease. *Clin Gastroenterol. Hepatol.* 2008, 6, 69–75.

57. Noe, S.N.; Nyland, S.B.; Ugen, K.; Friedman, H.; Klein, T.W. Cannabinoid receptor agonists enhance syncytia formation in MT-2 cells infected with cell free HIV-1MN. *Adv. Exp. Med. Biol.* 1998, 437, 223–229.

58. Stefano, G.B.; Salzet, M.; Bilfinger, T.V. Long-term exposure of human blood vessels to HIV gp120, morphine, and anandamide increases endothelial adhesion of monocytes: Uncoupling of nitric oxide release. *J. Cardiovasc. Pharmacol.* 1998, 31, 862–868.

59. Esposito, G.; Ligresti, A.; Izzo, A.A.; Bisogno, T.; Ruvo, M.; Di Rosa, M.; Di Marzo, V.; Iuvone, T. The endocannabinoid system protects rat glioma cells against HIV-1 Tat protein-induced cytotoxicity: Mechanism and regulation. *J. Biol. Chem.* 2002, 277, 50348–50354.

60. Breit, B.M.; Higuera-Alhino, D.; Shade, S.B.; Hebert, S.J.; McCune, J.M.; Abrams, D.I. Short-term effects of cannabinoids on immune phenotype and function in HIV-1-infected patients. *J. Clin. Pharmacol.* 2002, 42, 82S–89S.

61. Abrams, D.I.; Hilton, J.F.; Leiser, R.J.; Shade, S.B.; Elbeik, T.A.; Aweeka, F.T.; Benowitz, N.L.; Breit, B.M.; Kosel, B.; Aberg, J.A.; et al. Short-term effects of cannabinoids in patients with HIV-1 infection: A randomized, placebo-controlled clinical trial. *Ann. Intern. Med.* 2003, 139, 258–266.
62. Peterson, P.K.; Gekker, G.; Hu, S.; Cabral, G.; Lokensgard, J.R. Cannabinoids and morphine differentially affect HIV-1 expression in CD4(+) lymphocyte and microglial cell cultures. *J. Neuroimmunol.* **2004**, *147*, 123–126.

63. Roth, M.D.; Tashkin, D.P.; Whittaker, K.M.; Choi, R.; Baldwin, G.C. Tetrahydrocannabinol suppresses immune function and enhances HIV replication in the huPBL-SCID mouse. *Life Sci.* **2005**, *77*, 1711–1722.

64. Lu, T.S.; Avraham, H.K.; Seng, S.; Tachado, S.D.; Koziel, H.; Makriyannis, A.; Avraham, S. Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells. *J. Immunol.* **2008**, *181*, 6406–6416.

65. Benamar, K.; Yondorf, M.; Meissler, J.J.; Geller, E.B.; Tallarida, R.J.; Eisenstein, T.K.; Adler, M.W. A novel role of cannabinoids: Implication in the fever induced by bacterial lipopolysaccharide. *J. Pharmacol. Exp. Ther.* **2007**, *320*, 1127–1133.

66. Raborn, E.S.; Cabral, G.A. Cannabinoid inhibition of macrophage migration to the TAT protein of HIV-1 is linked to the CB2 cannabinoid receptor. *J. Pharmacol. Exp. Ther.* **2010**, [doi: 10.1124/jpet.109.163055].

67. Jakob, J.; Roos, R.P. Molecular determinants of Theiler's murine encephalomyelitis-induced disease. *J. Neurovirol.* **1996**, *2*, 70–77.

68. Olson, J.K.; Miller, S.D. The innate immune response affects the development of the autoimmune response in Theiler's virus-induced demyelinating disease. *J. Immunol.* **2009**, *182*, 5712–5722.

69. Villarreal, D.; Young, C.R.; Storts, R.; Ting, J.W.; Welsh, C.J. A comparison of the neurotropism of Theiler's virus and poliovirus in CBA mice. *Microb. Pathog.* **2006**, *41*, 149–156.

70. Dietzschold, B.; Morimoto, K. Signaling pathways in virus-induced CNS inflammation. *J. Neurovirol.* **1997**, *3* (Suppl. 1), S58–S59.

71. Gosztonyi, G.; Ludwig, H. Borna disease--neuropathology and pathogenesis. *Curr. Top. Microbiol. Immunol.* **1995**, *190*, 39–73.

72. Hooper, D.C.; Kean, R.B.; Scott, G.S.; Spitsin, S.V.; Mikheeva, T.; Morimoto, K.; Bette, M.; Rohrenbeck, A.M.; Dietzschold, B.; Weihe, E. The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent. *J. Immunol.* **2001**, *167*, 3470–3477.

73. Rohrenbeck, A.M.; Bette, M.; Hooper, D.C.; Nyberg, F.; Eiden, L.E.; Dietzschold, B.; Weihe, E. Upregulation of COX-2 and CGRP expression in resident cells of the Borna disease virus-infected brain is dependent upon inflammation. *Neurobiol. Dis.* **1999**, *6*, 15–34.

74. Cabral, G.A.; Dove Pettit, D.A. Drugs and immunity: Cannabinoids and their role in decreased resistance to infectious disease. *J. Neuroimmunol.* **1998**, *83*, 116–123.

75. Munckhof, W.J.; Konstantinos, A.; Wamsley, M.; Mortlock, M.; Gilpin, C. A cluster of tuberculosis associated with use of a marijuana water pipe. *Int. J Tuberc. Lung Dis.* **2003**, *7*, 860–865.

76. Han, B.; Gfroerer, J.C.; Colliver, J.D. Associations between duration of illicit drug use and health conditions: Results from the 2005–2007 national surveys on drug use and health. *Ann. Epidemiol.* **2010**, *20*, 289–297.

77. Holtz, T.H.; Lancaster, J.; Laserson, K.F.; Wells, C.D.; Thorpe, L.; Weyer, K. Risk factors associated with default from multidrug-resistant tuberculosis treatment, South Africa, 1999–2001. *Int. J Tuberc. Lung Dis.* **2006**, *10*, 649–655.
78. Cabral, G.A.; Marciano-Cabral, F. Cannabinoid-mediated exacerbation of brain infection by opportunistic amebae. *J. Neuroimmunol.* **2004**, *147*, 127–130.

79. Marciano-Cabral, F.; Raborn, E.S.; Martin, B.R.; Cabral, G.A. Delta-9-tetrahydrocannabinol, the major psychoactive component in marijuana, inhibits macrophage chemotaxis to Acanthamoeba. *J. Eukaryot. Microbiol.* **2006**, *53* (Suppl. 1), S15–S17.

80. Benamar, K.; Yondorf, M.; Geller, E.B.; Eisenstein, T.K.; Adler, M.W. Physiological evidence for interaction between the HIV-1 co-receptor CXCR4 and the cannabinoid system in the brain. *Br. J. Pharmacol.* **2009**, *157*, 1225–1231.

81. Smith, S.R.; Terminelli, C.; Denhardt, G. Modulation of cytokine responses in Corynebacterium parvum-primed endotoxemic mice by centrally administered cannabinoid ligands. *Eur. J. Pharmacol.* **2001**, *425*, 73–83.

82. Bass, R.; Engelhard, D.; Trembovler, V.; Shohami, E. A novel nonpsychotropic cannabinoid, HU-211, in the treatment of experimental pneumococcal meningitis. *J. Infect. Dis.* **1996**, *173*, 735–738.

83. Storr, M.A.; Yuce, B.; Andrews, C.N.; Sharkey, K.A. The role of the endocannabinoid system in the pathophysiology and treatment of irritable bowel syndrome. *Neurogastroenterol. Motil.* **2008**, *20*, 857–868.

84. Storr, M.A.; Keenan, C.M.; Emmerdinger, D.; Zhang, H.; Yuce, B.; Sibaev, A.; Massa, F.; Buckley, N.E.; Lutz, B.; Goke, B.; *et al.* Targeting endocannabinoid degradation protects against experimental colitis in mice: Involvement of CB1 and CB2 receptors. *J. Mol. Med.* **2008**, *86*, 925–936.

85. Elikkottil, J.; Gupta, P.; Gupta, K. The analgesic potential of cannabinoids. *J. Opioid. Manag.* **2009**, *5*, 341–357.

86. Aggarwal, S.K.; Carter, G.T.; Sullivan, M.D.; ZumBrunnen, C.; Morrill, R.; Mayer, J.D. Medicinal use of cannabis in the United States: Historical perspectives, current trends, and future directions. *J. Opioid. Manag.* **2009**, *5*, 153–168.

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).