Artificial Intelligence based Temporal Material Identification for Improving Quality of Service in Communication

Shashi Shekhar
Department of Computer Engineering and Applications, GLA University, Mathura, India
shashi.shekhar@gla.ac.in

Abstract. The artificial intelligence based learning model helps in identifying temporal material by processing linguistic terms that express time duration in code mixed data. The data available on social media contents are written in mixed script format and from this content temporal material content identification is a challenging task. The retrieval of temporal information and its corresponding time duration expression terms can be identified using artificial intelligence technique based neural learning model. The temporal retrieval and its time duration representation are widely used to present the opinions over the social media. The work described in the paper gives the comparative view of different techniques used in the area of transliteration. The rule framed approach is presented which accepts the roman form text as input and as per the defined rules the system is developed to give the temporal details words available in the sentence. The evaluation measures used here to validate the hypothesis is based on statistical measures along with HLSTM learning model. Further the result is validated using the voting technique that can choose appropriate Temporal label which are not identifies by the learning model. The applied neural learning approach increases the precision value.

Keywords: Material, Temporal, Time, Neural, AI, Mixing

1 Introduction

Temporal expressions now days are frequently used in social media. Temporal information processing is a challenging task in transliterated information retrieval. The temporal helps in answering the time category expressions by identifying the words based on its context meaning. Also it helps in summarizing the things in terms of time duration. Many researches has been undertaken to produce temporal annotation of text in several languages. But very few works has been done in Indian language transliteration considering the part of time dimension. The paper explores this area in retrieving temporal information in transliterated Roman Hindi domain. Here the classification related to humor expressions in Roman Hindi is analyzed. The paper presents a voting based approach based on crafted rules for classifying temporal humor data in internet domain.

The rules are modeled subject to regular expression matching. When the matching is done, it checks for temporal data and the words are tagged as temporal expression. The labeling parameters consisting of temporal dimension are checked against the rule and label that word as temporal expression. Here in this work, we first analyze the structures of words in sentence to identify the time duration in code-mixed text and classify them as temporal or non-temporal. The language identification task is used here as we are concern only about the transliterated Hindi words that are checked in context to the entire sentence for identifying the temporal words. For context identification technique of H-LSTM based framework has been designed using CBOW technique that targets majority of the temporal words. Word and language identification in user-generated text is tedious task, where the language is unknown. Now a day, it is a challenging task where the text is available in code–mixed format. This type of data is very common in social media. The main challenge here is due to availability of many...
transliteration variants for a given word. Lastly we test our approach on a dataset of Amul advertisements in India [1] and the proposed framework is able to recover temporal words. The available identification systems are not equipped to deal with temporal data. This paper describes the use of temporal data to identify the language as well as the dimensions of the humor context in which it has been used in the expression. This identification is necessary for the languages which are linguistically much related with each other. A special technique is needed to differentiate the words which are syntactically similar in both the languages. Natural language is one of the medium for communication in India. The processing of this by the machine requires specialized skill to extract meaningful information based on time dimension. It is an emerging area of research for extracting intent of the user for using temporal expression for expressing opinions. With the huge use of social media platforms for information exchange, it is likely to have natural language data that needs to be processed by the machine to get information. These platforms are widely used by Indians to discuss any issue especially using their own native languages. Previously we were using mainly English language for such communication but in present scenario peoples are using mixed script contents for information exchange. Now a day’s in Indian scenario, people are mixing more than one language for expressions to be posted on social media. These scenarios are leading to the field of code-mixing. To better understand the scenario of code-mixing an example has been illustrated from the advertisement of Amul, which describes the exploration of temporal expression in present time. Transliterated Hindi-English code-mixed is described in the following sentence:

\[\text{Sentence 1: Is mahine hum log evening mein cricket khelenge} \]

\[
\begin{array}{cccccc}
\text{E/A} & \text{H/T} & \text{H} & \text{E} & \text{E} & \text{H} & \text{H}
\end{array}
\]

Here, words in Roman Hindi are labeled as H, English as E, English ambiguous as E/A, temporal as H/T. The temporal words describe the time expression in roman Hindi in the sentence. In sentence 1 the word \textit{mahine} is marked as H/T, it illustrates that word denotes the Temporal expression. The proposal describes an architecture that represents context level information for presenting the temporal tag associated with context dimension words used in the sentence, especially to those words which are marked as Hindi word.

The rest part of this paper is structured as follows: section 2 illustrates the state of art in temporal retrieval. The methodology description is available in section 3. The description of dataset and its corresponding evaluation is being contained in section. The section 5 provides the summarization and conclusion with future path of work.

2 Related Work

This section provides the literature review in recent techniques regarding temporal information in transliterated domain.

Code-mixing is an emerging area of research in the field of language classification. Identifying the language is the major task for any linguistic processing applications. Presently several type of research is going on in the field of code-mixing. The proposal of King etal.[2] utilizes supervised mechanism for language identification. The paper [3] implements CRF model for identifying the language. The proposal of given in [4] uses logistic regression, in code-switching environment. The paper [5] proposed the use of dictionary along with the concept of edit distance to find word origin in regard to word context.

The task conducted on Mixed Script Information Retrieval (MSIR), where language identification for Indian languages combined with other languages have been scheduled [6] focusing on the use of transliteration. The task of MSIR was evaluated using SVM attaining an accuracy of greater than 75% [7]. The proposal of [8] uses supervised learning for English-Hindi word identification. The use of
Naive Bayes classifier [9] was proposed for Hindi-English data. The paper [10] proposed embedding technique as a feature for entity extraction.

A mixed script based language identification task was conducted for Indian Languages [11]. Here the use of machine learning techniques using SVM classifier [12] was proposed. The technique of classification and its related machine learning techniques for English-Hindi [10][11] languages were taken care. This task gives the opportunity for the emerging researched to enhance their learning and understanding the domain area covered under transliteration field [13]. Various emotion identification models have been described based on learning-approach [13] for language mining [14].

The work consisting of ambiguity removal in code mixed text needs to be handled [15] with the help of learning models mostly in native language domain for finding effective context meaning. The following section of proposed methodology tries to model the ambiguity problem available in code mixed data using embedding technique [16]. The embedding model is more concerned for those words which are commonly used in both the languages. As it the most common research issue [19] in multilingual dataset [17] used in case of NER [18] extraction in transliterated domain.

The paper [14] suggests the work related to NER in multilingual environment based on learning model and correspondingly provides a research issue in the field of retrieving phrases having temporal opportunity in transliteration.

3 Proposed Framework

The temporal expression identification in mixed-script is inspired by the latest work [20][21] undertaken in the field of language pairs that have different lexicons representing different context meanings when combined with other words. The research is underway based on the neural learning architecture to understand Temporal in finding humor with the help of pre-trained embedding technique for building RNN based transliteration model. The proposal presented in this paper is based on related research findings in the area of code-mixing. The intricacy to identify the language of the temporal expression words in code mixed data is presented in work. The code mixed data includes more than one script. Due to this mixing, complication in processing is bound to arise. Language classification with accuracy is the foremost problem identified in this case. The problem of identifying language in these domains is more complex as the text contents are written in different languages and it is difficult to identify humor temporal information in such cases. The following section describes the temporal architecture based on HLSTM model for extracting humor sense from the data.

![Figure 1: HLSTM Temporal Classification Framework](image)
The figure 1 describes the proposed HLSTM system for temporal data retrieval from code-mixed domain. The proposed model is trained at the word level using the hierarchical LSTM on the basis of features selected for identifying temporal words in code mixed data. The system takes code mixed input. The data is tokenized as embedding process is based on word embedding and character embedding. There exist many probable temporal classes for Hindi roman words. Character embedding is done for Hindi roman words as per the defined classes presented in table 1 to find temporal expression. The token matching is done on the basis of words and parts of speech available in input text for predicting temporal expression based on HLSTM model. The features for words which can be used in roman Hindi using temporal classes are given as training sample.

Table 1: Temporal expression classes

Temporal categorization class	Temporal Examples
Time duration class	Saari raat (whole night)
Temporal expression class	11 baje we will go (11° clock)
Temporal Frequency expression	Har roz (Each day)
Short temporal expression--Past, present and future	Aane wale saal (coming Year), isi mahine (this month), agle din (next day)
Temporal Quantifiers	Bahut kam (very less), bahut jyada (more), thora-sa (little bit)

The table1 provides the details considering the temporal categorization classes to which the input word belongs to. Here forward and backward, LSTMs are used in the embedding layers. Finally in output layer softmax function is applied on the character vectors for labeling the token based on temporal expression words. The model HLSTM considers the neighboring words to the pivot word for suggesting the tag through context analysis features. The embedding technique used by the learning model which takes word and character embedding features for temporal analysis.

3.1 Temporal Context Retrieval

The objective behind finding temporal words available in mixed script text is summarized below.

- Temporal words retrieval in mixed text.
- Labeling the temporal words against the defined temporal categorization classes.
- Intent retrieval for using temporal words.

The consideration of the terms that exist prior to pivot term and next to pivot word forming the things as (i+1) term and (j+1) term, are used as word features for context finding. The ICON-2016 containing monolingual format sentences are used to frame the linguistic learning model for context tracing. The constraint applied for context tracing is that the temporal words must be accompanied by the terms available in the left and right of that word should belong to other languages. The concept of intersection needs to be computed to find whether the word has been used in Hindi or English context. This modeling helps in finding the similarity which further helps in finding appropriate temporal words.
The evaluation measure for context identification for finding the ambiguity is measured with the left and right context in regard to the used pivot word. The evaluation explores the base of the data discussed in for starting the self-learning approach. The condition used here in this case is that the left and right words to the pivot word must belong to two different languages. The set theory intersection concept is applied for tagging. The context word is retrieved on the basis of WX notation. Thus considering this scenario the roman Hindi words describing different context has been pointed out in figure 2.

A. Embedding model

The next step is to process input data against the embedding model. Word embedding is the weighted vectors of terms. The words can be represented in different dimensions and every term contains different weights in context to different dimensions. The meaning of word used as Temporal can easily be understood by the technique of embedding. This embedding technique of CBOW and Skip-gram technique will help to understand the context meaning of the word in connection with other word. Thus this technique helps in identifying the temporal word used in the data set which has been used for evaluating the framework. CBOW technique is illustrated in figure 3.

4 Experimental Results

This section describes the evaluation scheme undertaken for the proposed model depicted in figure 1. The result description is presented by illustrating the use of dataset and its inference in this section. The dataset of code-mixed data used here is taken from the work of ICON-2016. It is Hindi-English text containing data of three social media texts describing time dimension information. The data description is illustrated in table 2. The data of these media texts has been labeled for HLSTM learning on four dimensions considering temporal expression as base for classification. The four labeling parameters are HT for Hindi words, ET for English words, and O for words belonging to other than Hindi and English. The labeling parameters and its corresponding description along with percentage are depicted in table 3.
Figure 4 provides the result analysis obtained for labeling accuracy on table 3 parameters. The four labels depicted in table 3 are evaluated on the data available in table 2. The labeling accuracy as per the f-score obtained is higher in case of Hindi words as compared to available English words. The figure 3 depicts the F-score obtained on the dataset.

Code-mixed text	No. of words
ICON-2016	13792

Table 3 Labeling parameters

Tag	Depiction	Temporal Hindi-English (Mixing) %
HT	Temporal terms (Hindi)	69.4
ET	Temporal terms (English)	24.14
O	Other language words	6.46

Figure 5 provides a result description of the model in regard to embedding technique used for context lookup. The figure describes the accuracy percentage of embedding model trained for character and words. The proposed HLSTM gives a clear separation for the different Temporal classes parameters, depicted in table 3. The result is compared with five different standard classification methods.
mechanisms based on Temporal temporal expression words. The accuracy of developed HLSTM provides enhanced accuracy when compared with standard measures.

Figure 5: classifier accuracy comparison

The Figure 6 pointed below provides the detailing of occurrences of context words which has been selected for evaluation. These words are categorized as temporal expression terms belonging to the defined data sample. These words exhibit Temporal features and are highly used for expressing opinions. Their contextual meaning can be different when correlated against the other terms available in the sentence.

Figure 6: Temporal expression words and their frequency

The figure 7 depicts the framework accuracy when compared against the standard models like SVM, BLSTM, HLSTM. The developed voting technique provides greater accuracy when compared with the CRF, DT, SVM standard models. The figure 8 provides the parametric classification of confusion matrix for computing accuracy.
5 Conclusions

The paper shows that temporal expression retrieval is one of the prominent areas in information retrieval, where one can understand the context by identifying temporal expressions. The learning strategy based on pre-defined temporal classes improves the labeling performance. This is one of the issues in language identification where temporal expression or words need to be identified correctly in multilingual environment. The multiple language use in code switching and code mixing environment is based on certain defined parameters like source of data, unstructured nature of data, switching and mixing percentages along with semantic relationship among the languages used for expression. We conclude that the temporal expression words are often used on social media and advertisements according to the experiments conducted. It can be an interesting domain to investigate the patterns of words used to exhibit multiple contexts. The experiments were mainly on two language
pairs based on bilingual learning approach. A HLSTM based learning approach has been proposed for classifying temporal information in code-mixed text which gives better results.

References

1. Weischedel, Ralph, et al. "White paper on natural language processing." Proceedings of the workshop on Speech and Natural Language. Association for Computational Linguistics, 1989.
2. King, Ben, and Steven Abney. "Labeling the languages of words in mixed-language documents using weakly supervised methods." Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2013..
3. Nguyen, Dong, and A. Seza Doğruöz. "Word level language identification in online multilingual communication." Proceedings of the 2013 conference on empirical methods in natural language processing. 2013.
4. Vyas, Yogarshi, et al. "Pos tagging of english-hindi code-mixed social media content." Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.
5. Das, Amitava, and Björn Gambäck. "Identifying languages at the word level in code-mixed indian social media text." Proceedings of the 11th International Conference on Natural Language Processing. 2014.
6. Sequiera, Royal, et al. "Overview of FIRE-2015 Shared Task on Mixed Script Information Retrieval." FIRE Workshops. Vol. 1587. 2015..
7. Rao, Pattabhi RK, and Sobha Lalitha Devi. "CMEE-IL: Code Mix Entity Extraction in Indian Languages from Social Media Text@ FIRE 2016-An Overview." FIRE (Working Notes). 2016.
8. Shekhar, Shashi, Dilip Kumar Sharma, and MM Sufyan Beg. "Hindi Roman Linguistic Framework for Retrieving Transliteration Variants using Bootstrapping." Procedia Computer Science 125,2018.
9. Ethiraj, Rampreeth, et al. "NELIS-Named Entity and Language Identification System: Shared Task System Description." FIRE Workshops. 2015.
10. Alekseev, Anton, and Sergey Nikolenko. "Word embeddings for user profiling in online social networks." Computación y Sistemas 21.2,203-226.2017.
11. Mandal, Soumil, and Anil Kumar Singh. "Language Identification in Code-Mixed Data using Multichannel Neural Networks and Context Capture." arXiv preprint arXiv:1808.07118,2018.
12. Aina, Laura, Kristina Gulordava, and Gemma Boleda. "Putting words in context: LSTM language models and lexical ambiguity." arXiv preprint arXiv:1906.05149,2019.
13. Bhattacharya, Paheli, Pawan Goyal, and Sudeshna Sarkar. "Using Communities of Words Derived from Multilingual Word Vectors for Cross-Language Information Retrieval in Indian Languages." ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 18.1,2019.
14. Le, Ngoc Tan, et al. "Low-Resource Machine Transliteration Using Recurrent Neural Networks." ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP),2019.
15. Murthy, Rudra, Mitesh M. Khapra, and Pushpak Bhattacharyya. "Improving NER Tagging Performance in Low-Resource Languages via Multilingual Learning." ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP),2018.
16. Shekhar, Shashi, Dilip Kumar Sharma, and MM Sufyan Beg. "Linguistic structural framework for encoding transliteration variants for word origin detection using bilingual lexicon." 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). IEEE, 2017.
17. Gella S, Bali K, Choudhury M. "ye word kis lang ka hai bhai?" Testing the Limits of Word level Language Identification. InProceedings of the 11th International Conference on Natural Language Processing 2014 Dec (pp. 368-377).
18. Shekhar S, Sharma DK, Sufyan Beg MM. An effective cybernated word embedding system for analysis and language identification in code-mixed social media text. International Journal of Knowledge-based and Intelligent Engineering Systems. 2019 Jan 1;23(3):167-79.

19. Shekhar, Shashi, Dilip Kumar Sharma, and MM Sufyan Beg. "Computational linguistic retrieval framework using negative bootstrapping for retrieving transliteration variants." International Journal of Computational Vision and Robotics 10, no. 1 (2020): 79-101.

20. Ramrakhiyani, Nitin, and Prasenjit Majumder. "Approaches to temporal expression recognition in Hindi." ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 14, no. 1 (2015): 1-22.

21. Shekhar, Shashi, Dilip Kumar Sharma, and MM Sufyan Beg. "Language identification framework in code-mixed social media text based on quantum LSTM—the word belongs to which language?." Modern Physics Letters B (2020): 2050086.