Metal Centers as Nucleophiles: Oxymoron of Halogen Bond-Involving Crystal Engineering

Daniil M. Ivanov,*[a] Nadezhda A. Bokach,*[a] Vadim Yu. Kukushkin,*[a, b] and Antonio Frontera*[c]
Abstract: This review highlights recent studies discovering unconventional halogen bonding (HaB) that involves positively charged metal centers. These centers provide their filled d-orbitals for HaB, and thus behave as nucleophilic components toward the noncovalent interaction. This role of some electron-rich transition metal centers can be considered an oxymoron in the sense that the metal is, in most cases, formally cationic; consequently, its electron donor function is unexpected. The importance of Ha···d-[M] (Ha = halogen; M is Group 9 (Rh, Ir), 10 (Ni, Pd, Pt), or 11 (Cu, Au)) interactions in crystal engineering is emphasized by showing remarkable examples (reported and uncovered by our processing of the Cambridge Structural Database), where this Ha···d-[M] directional interaction guides the formation of solid supramolecular assemblies of different dimensionalities.

1. Introduction

Halogen bonding (HaB) is a representative (and likely the most actively studied) α-hole interaction. The rapidly expanding body of literature on the subject, including reviews and book chapters, reflects a growing interest in HaB within the broad scientific community. A number of theoretical investigations have been instrumental for understanding the halogen bond’s directionality and strength. This type of noncovalent interaction finds applications in supramolecular chemistry, catalysis, synthetic coordination and organometallic chemistry, polymer chemistry, and drug discovery. Importantly, HaB functions in human physiology, and its role has been uncovered in reviews on this subject.

HaB is probably best known for its extensive use in crystal engineering because HaB is more directional than the more common hydrogen bonding, allowing for designs of solid-state architectures with different dimensionality. Most studies of HaB use heavier halogens Br and I as α-hole donors, exhibiting substantial polarizabilities and bond directionality. Commonly used HaB acceptors (electron donors) are lone pair (LP)-bearing atoms, such as halogens and lighter chalcogens and pnictogens. Furthermore, electron-rich C atoms (for example, in carbenes R₂C≡C[36] isocyanides RNC[37] carbon monoxide OC[38] and anionic species such as alkyl carbanions C(sp³)²[39] and π-systems (for example, 1,3,5-C≡C–C≡C–arene)[40–42] have also been recognized as good HaB acceptors.

In contrast, HaB-based crystal engineering involving the utilization of a filled d-orbital in a positively charged metal center functioning as a HaB acceptor remains uncommon; the nucleophilicity of positively charged metal centers is likely to be perceived as an oxymoron by most chemists. However, it has been proven that a metal can act as an electron donor if it contains at least one sterically available lone pair that can interact with the empty σ*-orbital (R–Ha) of the halogen (see Scheme 1). In recent years, only a small number of studies have utilized such unconventional HaBs in crystal engineering.

This highlight primarily focuses on this metal-involving type of HaB, emphasizing its relevance in solid-state, Group 9 (Rh, Ir), 10 (Ni, Pd, Pt), or 11 (Cu, Au) metal-based cocrystals with typical HaB donors (see Scheme 1). In addition to the description and discussion of the geometric features of the Ha···d-[M] HaBs in the solid-state, further rationalization of the interactions using molecular electrostatic potential surfaces and a QTAIM/NCIplot combined analysis is also provided. These computational tools provide a convenient confirmation of the HaB nature of the interaction and the nucleophilicity of the metal centers.

![Scheme 1](image-url)

Scheme 1. An unconventional metal-involving α-(Ha)-hole–d-[M] halogen bonding. Groups 9–10 (left panel) and Group 11 (right panel) metal centers.
2. α-Hole–M Interactions

First, we performed a Cambridge Structural Database (CSD) search for structures featuring short X–M (X = Cl, Br, I; M = any metal) contacts whose parameters do not contradict the IUPAC criteria of HaB;[45] the obtained results for > 100 structures are gathered in Table S1 (see Supporting Information). For a significant number of structures, these contacts were not reported in corresponding publications and, for another large, massive structure, these contacts were only mentioned; their nature and characteristics were not analyzed. Only in some rare instances, predominantly in the recent works by our group, were the X–M contacts verified by experimental physicochemical methods and additionally supported by theoretical calculations.

As follows from the inspection of the data of Table S1, metal centers are mainly presented by late transition metals with d10 (RuI, NiI, PdI, and PtI) and d9 (Ag, Au) electron configurations. Within the same group of elements, as a common trend, heavier transition metals demonstrate a greater tendency to form X–M contacts than lighter metals, for example, Cu and Pt versus Ni. In some instances, for cocrys- tals including I2 as a HaB donor, halogen–halogen interactions that are intermediate between noncovalent and covalent were observed (Entries 1 and 54–56).

Apart from single-crystal X-ray diffractometry (XRD), some other methods – namely, NMR, UV-vis, photoluminescence spectroscopies, cyclic voltammetry and conductance measurements – have been used for the indirect identification of X–M HaBs (Table S2).

Along with experimental studies, a significant number of theoretical studies have focused on metal-involving HaB (Table S3). Most of these reports used single-point “quasi-solid-state” DFT calculations,[46,47] while examples of Kohn-Sham calculations with periodic boundary conditions are still quite rare.[48] Many studies exclusively use the QTAIM method for revealing HaB,[46,48] as recommended in the IUPAC definition of HaB. However, recently the QTAIM approach has been combined with other approaches, such as the NCIPlot analysis.[46,49] Predominantly, XRD structure coordinates were employed for subsequent theoretical studies,[46,48,50] while in some instances the theoretical approaches used only model complexes, for example, I–Co(I) and I–Au(–1).[51–53]

In the following subsections, we inspected the appropriate geometrical parameters and computationally analyzed the XRD structures involving structure-directing α-hole–d(M) interactions for the occurrence of HaBs and highlighted applications of these interactions for HaB-involving crystal engineering.

2.1. α-Hole–d9(M)

Sterically accessible potentially nucleophilic metal centers can have a d8-subshell in linear complexes and a d8-subshell in square-planar complexes. In the case of d8-gold(I) and d8-copper(I) in linear complexes, dxy and dz2,2z2-orbitals are sterically
Comprehensive theoretical studies have demonstrated that gold in the +1 oxidation state (for example, formally positively charged) can still function as a Lewis base and, particularly, as an excellent HaB acceptor.\textsuperscript{\cite{46,53,54}} Depending on the nature of the ligands, the strength of HaB, involving I\textsubscript{2} as a σ-hole donor, ranges from −46.3 kcal/mol to −5.9 kcal/mol for the anionic \((n = −1)\) or cationic \((n = + 1)\) \([\{Y−Au−Y\}−,\text{I}\] 2 adduct.

Although predominantly unnoticed by the original authors, we found examples of solid-state structures that demonstrate I−Au[53] and Cl−Au[54] contacts.\textsuperscript{\cite{55}} These gold-involving interactions with halogens were not attributed to HaBs, most likely because the Au center is formally positively charged; hence, it was considered a Lewis acid. Expectedly, no appropriate theoretical calculations were performed. In this review, we provide our computational data confirming the availability of \(X−Au\) interactions and uncovering their nature.

In Figure 1(a), we show the XRD structure of a selected example, where the \([AuI(PPr\textsubscript{3})\] \textsubscript{2} \) entities are interconnected by \(I_{2}\) forming 1D assemblies. The I atom of \(I_{2}\) points to approximately the middle of the Au−I bonds, thus establishing bifurcated I−I\textsubscript{2} \([Au\] HaB interactions. Interestingly, the I−Au distance is shorter than the I−I distance. An analysis of the MEP surface plot (Figure 1b) confirms that the Au center is nucleophilic rather than electrophilic (−12 kcal/mol) and reveals that the MEP minimum is located at the I atom (−31 kcal/mol). The QTAIM analysis of a dimer extracted from the XRD structure, the dimer with the shortest I−Au distance, revealed the I−Au contact. The latter is characterized by a bond critical point (CP) and a bond path connecting I to the Au atom. Curiously, there is no bond CP interconnecting both I atoms. The NCIplot index analysis evidences the attractive nature of the interaction (blue isosurface) and demonstrates the existence of an I−I contact characterized by a green isosurface located between both atoms. The comparison of the NCIplot colors at the I−Au and I−I contacts shows that Au−I is stronger. The location of the interacting I atom of \(I_{2}\) is also affected by the presence of two ancillary H-bonds involving the H atoms of the Pr’ groups (Figure 1c). Therefore, the H-bonds and the I−Au HaB compete with the more electrostatically-favored I−I interaction. The interaction energy of the dimer is moderately strong (−11.3 kcal/mol) in line with the NCI plot analysis and the cooperative participation of several interactions.

Further indirect evidence favoring I−Au HaBs has been reported in the literature: (i) iodoperfluorobenzenes and gold nanoparticles form HaB in water solutions\textsuperscript{\cite{57–60}} and (ii) iodine-terminated alkanes with Au tips form I−Au, as verified by scanning tunneling microscopy break junction (STM-BJ) and single molecular conductance measurements (Figure 2).\textsuperscript{\cite{66,67}}

In the end of this section, we would like to emphasize that I−Ag[62,63] Br−Ag[64] and Cl−Ag[65] short contacts can also be regarded as \(d^0\)-metal-involving HaB on consideration of their almost linear R−X−Ag angles (for details see Table S1). However, appropriate theoretical calculations are required to support this hypothesis.

The ability of nickel(II) square-planar complexes to interact with iodine derivatives has been studied in terms of electrophilic-nucleophilic dualism.\textsuperscript{\cite{44,50}} Actually, there is no type of I−Ni contacts have been verified upon the examination of XRD structures in the CSD, namely, (i) Ni−I semicoordination of the electrophilic nickel(II) center with an electron belt of I, (ii) metal-involving HaB between iodine and the nucleophilic nickel(II)−X\textsubscript{2} center,\textsuperscript{\cite{44,50}} and (iii) the boundary case, where it is difficult to differentiate between the semicoordination bond and HaB due to the directionality of the C−I−Ni interaction. One example of a
metal-involving HaB is further described herein. Figure 3(a) shows the XRD structure of a (nitrosoguanidinate)Ni complex that establishes symmetrically related I–Ni interactions with co-crystallized 1,3,5-triiodotrifluorobenzene (FIB). The distance is significantly shorter than the sum of the Bondi van der Waals radii ($\Sigma_{vdW} \text{Ni} + I = 3.61 \text{ Å}$). The $\angle C$–I–Ni angle is far from linear (142.5°) and far from the ideal orientation expected for a semicoordination bond (~90°). The MEP surface plot (Figure 3b) shows that the MEP is negative over the central Ni atom and that the minimum is found in the molecular plane between the N and O atoms of nitrosoguanidinate. The existence and attractive nature of the I–Ni contact is corroborated by the QTAIM/NCIplot analysis shown in Figure 3(c), which reveals a bond CP interconnecting the I and Ni atoms and a bluish isosurface between them. Moreover, the dimerization energy is -4.5 kcal/mol that is in the range of recent reports on σ-hole–$d_{z^2}[\text{M}]$ HaBs. The value of MEP at Ni indicates that this interaction has a predominant HaB nature. This was further supported by a recent study which has evidenced that the σ-hole at the I-atom in FIB embraces a large region and can be involved in HaBs with C–I–A angles up to 105°.

Figure 4 shows an additional example of a directional HaB interaction involving the Ni0 atom as an electron donor/HaB acceptor. In the XRD structure of Fe(2-iodopyrazine)(H$_2$O) Ni(CN)$_6$, the I–Ni distance is quite short (3.470 Å; $\Sigma_{vdW} = 3.61 \text{ Å}$), and the $\angle (C$–I–Ni) angle (177.8°) is very close to linearity, thus evidencing that the σ-hole is pointing to the $d_{z^2}[\text{Ni}]$ orbital. A push-pull effect was proposed in AMIJAJ, where the N atom of pyrazine donates electron charges to nickel(II), polarizing the d_{z^2} orbital toward the I atom and providing a synergetic pull effect on this orbital (Figure 4). This effect is synergetic for both metal-involving HaB and the semicoordination in AMUIR (structurally similar Pd complex) and AMIJEN (structurally similar Pt complex).

Two other structures, namely, AMUIR with Pd4 and AMIJEN with Pt4 are isostructural to the nickel(III)-based structure AMIJAJ depicted in Figure 4, and the former two structures display highly directional HaB interactions with the positively charged Pd or Pt centers, acting as d_{z^2} electron donors. The I–M distances are comparable (Pd: 3.498, Pt: 3.467 Å) to the I–Ni separation, and the $\angle (C$–I–Pd) angles (177.6 and 177.1°, respectively) provide evidence that the σ-hole is directed toward the $d_{z^2}[\text{M}]$ orbital.

2.2.2. Rhodium(I)

Until very recently, short contacts between an Rh$^+$ center and an iodine atom were identified and attributed to the category of coordinative bonding. A CSD inspection reveals a unique structure (CSD refcode: NOCNOL) showing directional C–I–$d_{z^2}[\text{Rh}]$ contacts that were out of scope of the corresponding papers. This compound (Figure 5) forms self-assembled dimers in the solid-state featuring two symmetrically equivalent C–I–$d_{z^2}[\text{Rh}]$ interactions. The I–Rh distance is significantly shorter than the sum of vdW radii (4.00 Å), considering the crystallographic Batsanov radius (2.00 Å) for Rh. The directionality of the interaction ($\angle (C$–I–Rh) = 169.0°) along with the electron withdrawing nature of the arene indicate that this interaction can be defined as a HaB.

We recently reported that the two rhodium(I) complexes [RhX(COD)]$_2$ (X = Cl, Br; COD = 1,5-cyclooctadiene) form co-

Figure 3. (a) Partial view of the XRD structure of CSD refcode MEBXID showing the supramolecular assembly governed by I–$d_{z^2}[\text{Ni}]$ interactions; (b) MEP surface of (nitrosoguanidinate)Ni0 complex using the 0.001 a.u. gradient cutoff; (c) combined QTAIM distribution of CPs (bond CPs in red and ring CPs in yellow) and bond paths with the NCIplot surfaces (isosurface between them. Moreover, the dimerization energy is -4.5 kcal/mol that is in the range of recent reports on σ-hole–$d_{z^2}[\text{M}]$ HaBs. The value of MEP at Ni indicates that this interaction has a predominant HaB nature. This was further supported by a recent study which has evidenced that the σ-hole at the I-atom in FIB embraces a large region and can be involved in HaBs with C–I–A angles up to 105°.

Figure 4. Partial view of the XRD structure of CSD refcode AMIJAJ (top panel) and explanatory scheme illustrating the push-pull effect (bottom panel).
crystals with several σ-hole iodine(I)-based donors. XRD studies, in combination with extensive theoretical considerations, revealed that the d_{z^2} orbitals of two positively charged rhodium(I) centers provide sufficient nucleophilicity to form three-center HaB with σ-(X)-hole donors. The two metal centers function as an integrated HaB acceptor, providing assembly via Rh-I-involving HaB to give, in particular, 1D supramolecular arrays. In the [RhCl(COD)]$_2$·(C$_6$F$_4$I$_2$) structure (Figure 6a), two iodine σ-hole donors interact with the Rh$_2$Cl$_2$ core of the complex above and below the Rh$_2$Cl$_2$ plane (the core is perfectly planar). In contrast, the crystal structure of the cocrystal [RhBr(COD)]$_2$·(C$_6$F$_4$I$_2$) (Figure 6b) shows a distortion of the Rh$_2$Br$_2$ entity, where the Rh centers are tilted toward the σ-(I)-hole, facilitating the formation of two C···d$_{z^2}$[Rh$^+$] interactions.

The MEP surfaces represented in Figure 7 (top panel) confirm the nucleophilicity of the Rh$_2$Cl$_2$ and Rh$_2$Br$_2$ cores (−20 and −13 kcal/mol). The combined QTAIM/NCIplot analysis of [RhCl(COD)]$_2$·(C$_6$F$_4$I$_2$) (Figure 7c) reveals an intriguing feature that is a unique tetrafurcated ArF(μ_2-I)···[Rh$_2$Cl$_2$] short interaction, where the iodine σ-hole interacts with all four atoms of the Rh$_2$Cl$_2$ moiety (four bond CPs connect the I-atom to the core). This unprecedented interaction, also confirmed by the NCIplot isosurface, is responsible for the propagation of the 1D-chain −[Rh$_2$Cl$_2$]···I(C$_6$F$_4$I$_2$)···[Rh$_2$Cl$_2$]− shown in Figure 6(a).

The QTAIM analysis of the cocrystal [RhBr(COD)]$_2$·(C$_6$F$_4$I$_2$) (Figure 7d) revealed that the I atom is connected to both Rh atoms, thus establishing bifurcated, instead of tetrafurcated, ArF(μ_2-I)···[Rh,Rh] short contacts, thus resulting in discrete 2:1 supramolecular clusters (Figure 6b).

The interaction energies are moderately strong, ranging from −8.0 kcal/mol in X = Cl to −9.8 kcal/mol in X = Br, disclosing that the bifurcated binding mode is more favorable than the tetrafurcated one.
2.2.3. Palladium(II)

It has been reported that square-planar palladium(II) complexes with chloride as ligands have an interesting ability to form bifurcated HaBs \(\text{Br}/\text{I} \cdots d_{z^2}[\text{Pd}] \) that simultaneously involve the halide and a Pd\(^{II}\) center functioning as an integrated HaB acceptor.\(^{[50,71–78]}\) In particular, the crystal structures of trans-\([\text{MCl}_2(\text{NCNMe}_2)_2] \cdot 2\text{CHX}_3 (\text{M} = \text{Pd}, \text{Pt}; X = \text{Br}, \text{I})\) were analyzed; two of which are shown in Figure 8(a, b). It is clear that the C–Br (LIHMAT) and C–I (LIHMEX) bonds point to the positively charged palladium(II) center. These contacts were attributed to HaBs by inspecting both the experimental data and the theoretical calculation data. In fact, the MEP surface shown in Figure 8(c) shows that the MEP value above and below the Pd\(^{II}\) center is negative (−25 kcal/mol) and thus could function as an \(\sigma \)-hole acceptor.

Moreover, the QTAIM analysis of trans-\([\text{PdCl}_2(\text{NCNMe}_2)_2] \cdot 2\text{CHBr}_3\) (Figure 8d) shows a bond CP and a bond path connecting the Br atoms to the Pd center, thus confirming the existence of this contact. The attractive nature of the interaction is evidenced by the NCIplot isosurface, which shows that the isosurface extends toward the ligands, suggesting that the Pd-bonded atoms from the ligands also participate in the binding mechanism. The interaction energy of the trimer is −9.6 kcal/mol, suggesting that each Br–\(d_{z^2}[\text{Pd}] \) is −4.8 kcal/mol, very similar to the I–\(d_{z^2}[\text{Ni}] \) halogen bond commented above (Figure 3).

To further illustrate the importance of HaB involving \(d_{z^2}[\text{Pd}] \) acting as an electron donor, two additional XRD structures are shown in Figure 9. The dinuclear palladacyclic compound RAPQOQ\(^{(79)}\) forms self-assembled dimers in the solid-state, where two symmetrically equivalent C–Br–\(d_{z^2}[\text{Pd}] \) HaB interactions were identified. The short Pd–Pd distance (3.012 Å) likely increases the nucleophilicity of the outer orbitals, thus facilitating the formation of HaBs with \(\sigma \)-hole Br donors (Figure 9a).

The second structure (AMIJIR\(^{(66)}\)) is isostuctural to that commented above for nickel(II)-based structure CSD refcode AMIJA (Figure 4) and shows a highly directional HaB interaction involving the Pd atom functioning as an HaB acceptor. The I–Pd distance is slightly longer (3.498 Å) than the I–Ni separation, and the \(\angle (\text{C–I–Pd}) \) angle (177.6°) shows that the \(\sigma \)-hole points to the \(d_{z^2}[\text{Pd}] \) orbital. The push-pull mechanism in AMIJA and AMIJIR structures (Section 2.2.1.), where the N atom of pyrazine donates an electron charge to nickel(II), polarizing the \(d_{z^2} \) orbital toward the I atom, is conceptually equivalent to
the effect of the $d^2_{\pi}[Pd] - d^2_{\pi}[Pt]$ interaction in RAPQOQ polarizing the outer part of the d^2_{π} orbital.

2.2.4. Platinum(II)

Several examples of PtII-involved HaBs have been found and discussed in the literature, thus demonstrating the ability of platinum(II) square-planar complexes to participate in this type of metal-involving unconventional HaB.$^{[44,47,49,50,71,80-85]}$ Figure 10 shows the XRD structures of trans-[PtCl$_4$(NCNMe)$_2$]-2CH$_3$I (LIHMIB, $X = Br$ and UKEKIG, $X = I$), which are almost equivalent to the palladium(II) assemblies shown in Figure 8. However, some subtle differences are worth commenting on. First, the Br···Pt and I···Pt distances are shorter than the Br···Pd and I···Pd contacts, suggesting that the Pt$^+$ center is a better HaB d^2 acceptor. Agreeably, the MEP surface represented in Figure 10(c) demonstrates that the MEP value above and below the platinum(II) center is larger in its absolute value than that at the palladium(II) atom (Figure 8c), and thus it is more suitable as an acceptor for the occurrence of σ-hole interactions.

The QTAIM analysis of trans-[PtCl$_4$(NCNMe)$_2$]-2CH$_3$I (Figure 10d) shows the corresponding bond CPs and bond paths connecting the I atoms to the Pt center, thus confirming the existence of this contact. The attractive nature of the interaction is evidenced by the NCIplot bluish isosurfaces located between the Pt$^+$ and I-centers. The NCI plot also demonstrates that the isosurface extends toward the NCNMe$_2$ ligands, suggesting that the Pt-bonded triple bond is also involved in the binding. The formation energy of the trimer (-15.1 kcal/mol) is larger (in absolute value) than that found for the LIHMAT structure (Figure 8), in good agreement with the MEP surface analysis (showing that Pt is more nucleophilic than Pd). Moreover, the I-atom (UKEKIG) is better HaB donor than the Br-atom (LIHMAT).

Another interesting structure$^{[81]}$ is shown in Figure 11, which was obtained by the original authors to exclusively validate a mechanistic proposal; consequently, its solid-state structure was not described. Remarkably, C···I2[Pt$^+$] interactions propagate the structure into 1D-supramolecular polymers (Figure 11a).

The I···Pt distance is longer than that observed in UKEKIG$^{[81]}$ (Figure 10b), and the directionality is slightly worse, indirectly indicating a weaker interaction. The MEP surface of monomeric JUPZEB$^{[86]}$ (Figure 11b) corroborates this fact, since the MEP value over the Pt atom is quite small, which is likely due to the effect of the H atoms of the cyclooctadiene ligand. The combined QTAIM/NCIPlot analysis verifies the existence of the C···I2[Pt$^+$] short contact, which is characterized by a bond CP, a bond path and a green (attractive) NCIPlot isosurface. In addition to the C···I2[Pt$^+$] contact, the QTAIM also reveals the existence of ancillary C···F and C···I$^-$H interactions, which also contribute to the occurrence of the assembly. The dimerization energy is -6.0 kcal/mol, thus further supporting the higher ability of Pt compared to Ni or Pd to establish stronger σ-hole--$d^2_{\pi}[M]^{-}$ interactions.
Half-lantern dinuclear Pt$_2^+$ complexes\(^{(27)}\) incorporating bridging (thio)aza-heterocyclic ligands to provide rigidity to the system have recently been used to stimulate repulsive metal-metal interactions between d_z^2 orbitals of metal centers.\(^{(43)}\) This repulsion increases the nucleophilicity of the outer orbitals and consequently their ability to participate in HaB interactions. Figure 12(a) shows the XRD structure of one of the designed half-lantern dinuclear platinum(II) complexes co-crystallized with FIB (CSD refcode: XUVXOE).\(^{(43)}\) forming three component assemblies in the solid-state, where the FIB molecule establishes with FIB (CSD refcode: XUVXOE), half-lantern dinuclear platinum(II) complexes co-crystallized consequently their ability to participate in HaB interactions.

This likely explains the short distance (3.174 versus 3.73 Å) and expressed directionality of the HaBs (174°) in the trimer. The QTAIM/NCI plot analysis shown in Figure 12(c) favors the enhanced ability of this type of system as an electron donor, revealing the blue color of the NCI plot isosurface in line with the strong interaction energy (−12.2 kcal/mol) that further supports the enhanced nucleophilicity of Pt$^+$ with respect to other metal centers.

3. Conclusion

In this highlight, we critically analyzed our works focused on metal-involving HaB. We also added several examples of HaB with metals that we revealed by searching and processing the Cambridge Structural Database; these examples were subject to theoretical calculations conducted in the framework of this minireview. Many examples of σ-hole–d_z^2[M] HaB interactions considered herein were unnoticed by the original authors, probably because this type of noncovalent bonding is counter-intuitive and the nucleophilicity of positively charged metal centers was perceived as an oxymoron.

To date, few studies have purposefully utilized this interaction to design and construct supramolecular assemblies, where Rh$^+$, NiII, Pd$^+$, and Pt$^+$ complexes have been predominantly employed, and the maximum number of examples is listed for palladium- and platinum-based systems. One can distinguish several types of interactions that lead to the metal-involving HaBs: (i) binding of one (Figure 13a; full color HaB donor) or two (13a; full color plus semitone HaB donors) σ-(Ha)-hole donor(s) to metal orbital in the square-planar surrounding (ii) binding of one (Figure 13b; full color HaB donor) or four (13b; full color plus semitone HaB donors) σ-(Ha)-hole donor(s) to metal orbital of linear complexes; (iii) binding of one (Figure 13c; full color HaB donor) or two (13c; full color plus semitone HaB donors) σ-(Ha)-hole donor(s) to metal- orbit of half-lantern Pt$_2^+$ species; and (iv) σ-hole–d_z^2[M] interactions supported by the simultaneous push (iodine σ-hole) and pull (electron donating center) nature of two noncovalent interacting partners (Figure 13d).

Notably, in the context of this consideration, the nucleophilic metal center could function alone or as an integrated two-center Rh^+X-Rh^+ (X = Cl, Br,\(^{(46)}\) Pt$^+$–X (X = Cl\(^{(47,81)}\) or Br\(^{(81,86)}\), Pd$^+$–C\(^{(90–91)}\) (Figure 14; bold dotted lines) or even as a four-center $\text{Rh}^+_1\text{Cl}^-\text{C}^-\text{Pd}^+\text{Cl}^-\text{Rh}^+_1$ nucleophile\(^{(46)}\) (bold plus dashed lines). In these instances, HaB with a σ-hole donor is simultaneously formed with those centers.

The perspectives of this minireview can be at least threefold. First, the occurrence of I–I–I–Pt$^+$ HaB has been proposed as the initial stage of the oxidative addition of molecular iodine to a platinum(II) center.\(^{(80,82,83,89–91)}\) It is rather likely that the formation of similar C–X–Pd (X = Br, I) HaBs can be a key step in oxidative addition in C–C cross-coupling reactions (Ref. [50,71] and the references therein). Thus, studies focused on metal-involving HaBs can be significant for clarifying the fine mechanism of oxidative addition processes, including those of practical importance.

Second, apart from the metal-involving HaB listed and verified in this highlight, positively charged metal centers can

Figure 12. (a) Partial view of the XRD structure of CSD refcode XUVXOE.\(^{(43)}\) (b) MEP surface of the half-lantern Pt$_2^+$ complex using the 0.001 a.u. The MEP values at selected points of the surface are indicated. (c) Combined QTAIM distribution of CPs (bond CPs in red and ring CPs in yellow) and bond paths with the NCIplot surfaces (isosurface = 0.5 a.u., gradient cutoff = 0.4 a.u., color scale: −0.03 a.u. ≤ sign($\Delta\rho$) ≤ 0.03 a.u.). The formation energy of the dimer is also indicated.
also function as nucleophiles toward other σ-hole donating centers. In particular, we recently reported on chalcogen bond between Se or Te centers, functioning as σ-hole donors, and PtII-based d_z^2-nucleophiles.[92] The latter report is relevant to Lin and Gabbaï studies, in which the intramolecular interactions between PdII and telluronium centers[93] and between AuI and Te in telluroxide[94] were identified. Another fraction of reports[95–97] focused on intramolecular pnictogen-metal interactions. In modern terminology, all of these interactions could be attributed to metal-involving chalcogen[98] or pnictogen[4] bonding. It is also noteworthy that metal-involving HaB, uncovered in this minireview, is relevant to the well-docu-

Third, our recent studies[98–99] revealed d^8-metal nucleophilic toward π-holes of electron-deficient aromatic systems; for reviews comparing σ- and π-donors of noncovalent interactions, see Ref. [103–107].

All facts listed in this section and their analysis indicate that the nucleophilic properties of d^8- and d^{10}-centers as partners of noncovalent interactions may be common, regardless of the identity of electrophilic components. At this stage, metal-involving HaB has been reliably established for 9–11 group metals, but we cannot not exclude that other electron reach metal centers (in particular, low-oxidation state metal centers) of other periods can also function as nucleophilic components of HaB. We assume that these interactions will be increasingly used, and this minireview will stimulate additional interest in the diversity of chemistry fields that utilize metal-involving noncovalent interactions.

Acknowledgements

We are much obliged to the Russian Fund for Basic Research supporting our studies focused on noncovalent interactions in organometallics and crystal engineering (RFBR grants 20-03-00073, 18-29-04006, respectively); the common ground of these two diverse projects has been integrated in this review. D.M.I. acknowledges the Russian Science Foundation for supporting his project focused on noncovalent interactions involving iodide platinum group metal species (project 19-73-10016). A.F. thanks the MICIU/AEI from Spain for financial support of his theoretical studies (Project PID2020-115637GB-I00, Feder funds).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: halogen bonding · noncovalent interactions · nucleophilic metal centers · σ-hole interactions · theoretical calculations

[1] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Primagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478–2601.
[2] P. Politzer, J. S. Murray, Crystals 2019, 9.
[3] G. Berger, P. Frangville, F. Meyer, Chem. Commun. 2020, 56, 4970–4981.
[4] L. Brammer, Faraday Discuss. 2017, 203, 485–507.
[5] B. Li, S. Q. Zang, L. Y. Wang, T. C. W. Mak, Coord. Chem. Rev. 2016, 308, 1–21.
[89] D. Hopgood, R. A. Jenkins, J. Am. Chem. Soc. 1973, 95, 4461–4463.
[90] P. M. Cook, L. F. Dahl, D. Hopgood, R. A. Jenkins, J. Chem. Soc. Dalton Trans. 1973, 294–301.
[91] L. S. von Chrzanowski, M. Lutz, A. L. Spek, B. M. J. M. Suijkerbuijk, R. J. M. Klein Gebbink, Acta Crystallogr. Sect. E 2007, 63, m1223–m1225.
[92] A. V. Rozhkov, E. A. Katlenok, M. V. Zhmykhova, A. Y. Ivanov, M. L. Kuznetsova, N. A. Bokach, V. Y. Kukushkin, J. Am. Chem. Soc. 2021, 143, 15701–15710.
[93] T.-P. Lin, F. P. Gabbaïi, Angew. Chem. Int. Ed. 2013, 52, 3864–3868.
[94] H. Yang, T.-P. Lin, F. P. Gabbaï, Organometallics 2014, 33, 4368–4373.
[95] A. V. Rozhkov, M. A. Krykova, D. M. Ivanov, A. S. Novikov, A. A. Sinelshchikova, M. V. Volostrykh, M. A. Konovalov, M. S. Grigoriev, Y. G. Gorbunova, V. Y. Kukushkin, Angew. Chem. Int. Ed. 2019, 58, 4164–4168.
[96] A. V. Rozhkov, I. V. Ananyev, V. Y. Kukushkin, Inorg. Chem. 2020, 59, 9308–9314.
[97] C. B. Aakeroy, D. L. Bryce, G. R. Desiraju, A. Frontera, A. C. Legon, F. Nicotra, K. Rissanen, S. Scheiner, G. Terraneo, P. Metrangolo, G. Resnati, Pure Appl. Chem. 2019, 91, 1889–1892.
[98] H. G. Raubenheimer, L. Dobrzanska, Coord. Chem. Rev. 2020, 402, 213052.

Manuscript received: September 1, 2021
Accepted manuscript online: October 8, 2021
Version of record online: October 29, 2021