An Elementary Proof of the Meromorphy of $\int f^z$ for real-analytic f

Michael Greenblatt
mg62@buffalo.edu

January 26, 2007

Suppose U is a domain in \mathbb{R}^n, f is a real-analytic function on U and M is an open semianalytic subset of U with $\text{cl}(M) \subset U$. For $\phi \in C_c(U)$, we define

$$F(z) = \int_M (f(x))^z \phi(x) \, dx \quad (1.1)$$

To be clear what (1.1) means when f takes on negative values, we fix some branch of the logarithm on the negative real axis and use it to define $f(x)^z$ when $f(x) < 0$. If $\text{Re}(z) > 0$, the integrand in (1.1) is integrable and standard methods show that F is analytic in a neighborhood of z with

$$F'(z) = \int_M \log(f(x))(f(x))^z \phi(x) \, dx \quad (1.2)$$

Here $\log(f(x))$ denotes the branch of the logarithm chosen above. It is natural to try to extend $F(z)$ to a meromorphic function of z on all of \mathbb{C} by doing appropriate integrations by parts, integrating $f(x)^z$ in some way. However, the zero set of an arbitrary real-analytic function can be quite complicated, so carrying this out may be rather involved. After Hironaka proved his monumental [H1] [H2], Gelfand suggested that by using these results one might be able to do the requisite analysis by reducing to the case where $f(x)$ is a monomial. This was done by Bernstein and Gelfand [BGe] when $f(x) = |P(x)|$ for a polynomial P and when $M = U = \mathbb{R}^n$. In addition, Atiyah [A] did it for general semianalytic M and general nonnegative real-analytic $f(x)$. Later, Bernstein [B] found an algebraic proof of the results in [BGe] not using resolution of singularities, by virtue of Bernstein-Sato polynomials, which allow one to integrate by parts directly in the original integral.

The purpose of this paper is to show that the elementary resolution of singularities algorithm of [G1] suffices to prove such results. In fact, we prove a very slightly more general result than that of [A] by removing the restriction that f is nonnegative (the version of resolution of singularities used in [A] actually does use that $f \geq 0$ on all of U, so one can’t simply resolve f^2 or add a condition like $f < 0$ to the definition of M). The main result of this paper is:

Theorem 1: The function $F(z)$ of (1.1) extends to a meromorphic function on \mathbb{C}. If K denotes any compact set containing $\text{supp}(\phi)$, then poles of the resulting function must be
at a point of the form $-\frac{1}{x}$, where N is a fixed positive integer depending on f, M, and K, where r is a positive integer. The order of any pole is at most the dimension n.

To prove Theorem 1, we use the following consequence of the Main Theorem of [G]:

Resolution of Singularities Theorem: Suppose f is real analytic on a neighborhood of the origin. Then there is an neighborhood V of the origin such that if $\phi(x) \in C_c(V)$ is nonnegative with $\phi(0) > 0$, then $\phi(x)$ can be written as $\phi(x) = \sum_{i=1}^p \phi_i(x)$, each $\phi_i(x)$ nonnegative, such that the following hold. Let $D_i = \{x : \phi_i(x) > 0\}$. There is a real-analytic diffeomorphism Ψ_i from an open bounded D'_i to D_i such that on a neighborhood of $cl(D'_i)$, $f \circ \Psi_i(x) = d_i(x)m_i(x)$, $m_i(x)$ a monomial and $d_i(x)$ nonvanishing.

One can resolve several functions simultaneously in this fashion by resolving their product.

The Main Theorem of [G] also stipulates that each $\phi_i \circ \Psi_i(x)$ is a ”quasibump function”:

Definition: Let $E = \{x : x_i > 0 \text{ for all } i\}$. If $h(x)$ is a bounded, nonnegative, compactly supported function on E, we say $h(x)$ is a quasibump function if $h(x)$ is of the following form:

$$h(x) = a(x) \prod_{k=1}^l b_k(c_k(x) \frac{p_k(x)}{q_k(x)})$$

(1.2)

Here $p_k(x), q_k(x)$ are monomials, $a(x) \in C^\infty(cl(E))$, the $c_k(x)$ are nonvanishing real-analytic functions defined on a neighborhood of $\text{supp}(h)$, and $b_k(x)$ are functions in $C^\infty(\mathbb{R})$ such that there are $c_1 > c_0 > 0$ with each $b_k(x) = 1$ for $x < c_0$ and $b_k(x) = 0$ for $x > c_1$.

The reason this explicit form for $h(x)$ is useful for our purposes is that we will be doing some integrations by parts in integrals with $\phi_i \circ \Psi_i(x)$ appearing in the integrands, and derivatives will be landing on such $\phi_i \circ \Psi_i(x)$. Since we know the $\phi_i \circ \Psi_i(x)$ are all quasibump functions, we can get explicit estimates on the size of the derivatives. In addition, since the $b_k(x)$ are constant on $x < c_0$ and on $x > c_1$, the support of a derivative of $\phi_i \circ \Psi_i(x)$ will be substantially smaller than that of $\phi_i \circ \Psi_i$. After an appropriate coordinate change, this will effectively allow us to reduce the dimension of the problem and induct on the dimension n.

Proof of Theorem 1: We can assume that M is of the form $\{x : g_k(x) > 0$ for $k = 1,...,p\}$, each g_k real-analytic, since up to a set of measure zero every semianalytic set can be written as the finite union of sets of this form. At each point x in $\text{supp}(\phi) \cap cl(M)$ one can find a neighborhood N_x of x such that the resolution of singularities theorem above applies to $f, g_1, ..., g_p$ simultaneously on N_x. Using a partition of unity, on $\text{supp}(\phi) \cap cl(M)$ one can write $\phi = \sum_{j} \alpha_j(x)$, where each α_j is in $C_c(N_x)$ for some x. Hence it suffices to prove Theorem 1 for an arbitrary α_j in place of ϕ; adding the results will give Theorem 1 for ϕ. Hence without loss of generality, we assume ϕ is one of these α_j. Thus we may apply the resolution of singularities theorem to $f, g_1, ..., g_p$, and we write $\phi = \sum \phi_i$ accordingly.
Define
\[F_i(z) = \int_M (f(x))^z \phi_i(x) \, dx \]
(1.3)

It suffices to show each \(F_i(z) \) satisfies the conclusions of Theorem 1. We change coordinates in (1.3) to the blown up coordinates, obtaining
\[F_i(z) = \int_E (f \circ \Psi_i(x))^z (\chi_M \circ \Psi_i(x))(\phi_i \circ \Psi_i(x)) \det \Psi_i(x) \, dx \]
(1.4)

In the new coordinates, we have \(f \circ \Psi_i(x) = d_i(x)m_i(x) \), where \(d_i(x) \) is nonvanishing on a neighborhood of \(\text{supp}(\phi_i \circ \Psi_i) \) and \(m_i(x) \) is some monomial \(\prod_{j=1}^n x_j^{a_{ij}} \). Hence we can rewrite (1.4) as
\[F_i(z) = \int_E \prod_{j=1}^n x_j^{a_{ij}} d_i(x)^z (\chi_M \circ \Psi_i(x))(\phi_i \circ \Psi_i(x)) \det \Psi_i(x) \, dx \]
(1.5)

In the case that \(d_i(x) \) assumes negative values, one defines \(d_i(x)^z \) using the branch of the logarithm one used to define \(f(x)^z \) in the original coordinates. Since each \(g_k \circ \Psi_i(x) \) is also of the form \(d(x)m(x) \), either each \(g_k \) is positive throughout the domain of integration of (1.5), or there is at least one \(k \) for which \(g_k \) is negative throughout the domain. In the first case, \(\chi_M \circ \Psi_i(x) \) is always 1, in the second case it is always zero. In the latter case \(F_i(z) = 0 \) and there is nothing to prove, so we assume we are in the first case and write
\[F_i(z) = \int_E \prod_{j=1}^n x_j^{a_{ij}} d_i(x)^z (\phi_i \circ \Psi_i(x)) \det \Psi_i(x) \, dx \]

We use the explicit form (1.2) of the quasibump function \(\phi_i \circ \Psi_i(x) \) and this becomes
\[F_i(z) = \int_E \prod_{j=1}^n x_j^{a_{ij}} d_i(x)^z a(x) \prod_{k=1}^l b_k(c_k(x) \frac{p_k(x)}{q_k(x)}) \det \Psi_i(x) \, dx \]

We combine the smooth \(a(x) \) and \(\det \Psi_i(x) \) factors by letting \(A_i(x) = a(x) \det \Psi_i(x) \), and the above becomes
\[F_i(z) = \int_E \prod_{j=1}^n x_j^{a_{ij}} d_i(x)^z A_i(x) \prod_{k=1}^l b_k(c_k(x) \frac{p_k(x)}{q_k(x)}) \, dx \]
(1.5')

The idea behind the analysis of (1.5') is quite simple. One wishes to repeatedly integrate by parts, integrating first \(x_1^{a_{i1}z} \), then \(x_2^{a_{i2}z} \), going up to \(x_n^{a_{in}z} \). Then one integrates \(x_1^{a_{i1}z+1} \), cycles through the \(x_j \) again, and repeats ad nauseum. (One may skip any \(x_j \) for which \(a_{ij} = 0 \). Since the exponents of the \(x_j \) will increase each time, the integral will be analytic over a larger and larger \(z \)-domain as the integrations by parts proceed. One obtains poles
since one gets factors of \(\frac{1}{a_{ij} z + k} \) showing up with each integration by parts. Each pole should have order at most \(n \), since a given factor appears at most once per variable.

To make these heuristics work, one has to ensure that the derivatives landing on the \(b_k(c_k(x) \frac{p_k(x)}{q_k(x)}) \) factors don’t mess things up. In [A] or [BGe] such issues don’t arise since they use the stronger result of Hironaka which doesn’t require one to subdivide a neighborhood of the origin into different parts each having a different set of coordinate changes; instead there is one sequence \(\Psi \) of blow ups and the resulting \(\phi \circ \Psi \) is smooth.

Theorem 1 will follow from the following lemma:

Lemma: \(F_i(z) \) extends to a meromorphic function on \(\mathbb{C} \). There is a positive integer \(N \), depending on the \(a_{ij} \) and the various monomials \(p_k(x) \) and \(q_k(x) \), such that each pole of \(F_i(z) \) is at \(-\frac{k}{\eta} \) for some nonnegative integer \(r \). Let \(\eta > 0 \) such that the integrand of (1.5') is supported on \((0, \eta)^n \). Then for any \(l \) and each compact subset \(K \) of \(\{ z : z > -\frac{l+1}{\eta} \} \), \(\sup_K \| \prod_{i=1}^{l} (z + \frac{x}{N}) F_i(z) \| \) can be bounded in terms of \(K, \eta \), the \(a_{ij} \), the monomials \(p_k(x) \) and \(q_k(x) \), and the \(C^m \) norms of the \(d_i(x) \), \(A_i(x) \), \(b_k(x) \), and \(c_k(x) \). Here \(m \) is some sufficiently large natural number.

Proof: We proceed by induction on \(n \). We do the \(n = 1 \) case at the same time as the \(n > 1 \). So we assume that either \(n = 1 \) or that \(n > 1 \) and we know the result for \(n-1 \). We perform an integration by parts in \(x_1 \) in (1.5'), turning the \(x_1^{-a_1 z} \) into an \(x_1^{-a_1 z - 1} \). If the derivative lands on \(d_i(x)^z \), we obtain another smooth function which does not interfere with future integrations by parts with respect to \(x_2, x_3, \) etc as described in the heuristics above. A similar situation occurs if the derivative lands on \(A_i(x) \). Things are more complicated when the derivative lands on one of the \(b_k(c_k(x) \frac{p_k(x)}{q_k(x)}) \). Let \(x_1^n \) denote the power of \(x_1 \) appearing in \(\frac{p_k(x)}{q_k(x)} \) (hence \(m \) could be positive, negative, or zero). Then we have

\[
\partial_{x_1} [b_k(c_k(x) \frac{p_k(x)}{q_k(x)})] = \frac{1}{x_1} (x_1 \partial_{x_1} [b_k(c_k(x) \frac{p_k(x)}{q_k(x)})] + m c_k(x)) \frac{p_k(x)}{q_k(x)}
\]

Then we write \(B_k(x) = x b_k'(x) \), we have

\[
\partial_{x_1} [b_k(c_k(x) \frac{p_k(x)}{q_k(x)})] = \frac{1}{x_1} (x_1 \partial_{x_1} [b_k(c_k(x) \frac{p_k(x)}{q_k(x)})] + m c_k(x)) \frac{p_k(x)}{q_k(x)}
\]

We consider \(\frac{x_1 \partial_{x_1} (\frac{p_k(x)}{q_k(x)}) + m c_k(x)}{c_k(x)} \) a smooth factor \(s_k(x) \), and thus we have

\[
\partial_{x_1} [b_k(c_k(x) \frac{p_k(x)}{q_k(x)})] = \frac{1}{x_1} s_k(x) B_k(c_k(x) \frac{p_k(x)}{q_k(x)})
\]

If we use the notation \(A_{ik}(x) = A_i(x)s_k(x) \), the integral corresponding to this term is given by

\[
\frac{1}{a_{i1} z + 1} \int_E \prod_j x_j^{a_{ij} z} d_i(x)^z [A_{ik}(x) B_k(c_k(x) \frac{p_k(x)}{q_k(x)}) \prod_{k \neq k} b_K(c_K(x) \frac{p_K(x)}{q_K(x)})] \, dx
\]
At first glance, (1.9) might appear to be little improved over (1.5'), since the exponents of the $a_{ij}z$ appearing are unchanged. However, there is a key difference. Namely, instead of having the quasibump function $\phi_i \circ \Psi_i(x)$ in the integrand, we have the bracketed expression in (1.9). Because $b_k(x)$ is constant for $0 < x < x_0$ and $x > x_1$, $B_k(x) = x b'_k(x)$ is supported on $[x_0, x_1]$. This means that the factor $B_k(c_k(x) p_k(x) / q_k(x))$ in the integrand is supported on the wedge $C_1 q_k(x) \leq p_k(x) \leq C_2 q_k(x)$ for some constants C_1 and C_2. After doing appropriate coordinate changes, we will be able to exploit this fact to reduce the problem to the $n - 1$ dimensional case. We break into three cases of increasing order of difficulty. We can assume $p_k(x)$ and $q_k(x)$ have no common factors.

Case 1): Either $p_k(x)$ or $q_k(x)$ is constant, and each x_j appears to a positive power in whichever of $p_k(x)$ or $q_k(x)$ is nonconstant. Note that whenever $n = 1$ we are in case 1. Replacing $B_k(x)$ by $B_k(1/x)$ if necessary, we may assume $p_k(x)$ is constant. Because $B_k(x)$ is zero for $x > x_0 > 0$ for some x_0 and the integrand of (1.9) is compactly supported, there is some constant C such that each $x_j > C$ when the integrand of (1.9) is nonzero. As a result, one can integrate by parts in (1.9) as many times as one likes; the integral is in fact an entire function.

Case 2): Either $p_k(x)$ or $q_k(x)$ is constant, but there is some x_j not appearing in the nonconstant function of $p_k(x)$ or $q_k(x)$. Like before we may replace $B_k(x)$ by $B_k(1/x)$ if necessary and assume $p_k(x)$ is constant. Let J be the set of j for which x_j appears in $q_k(x)$. Then in the integrand of (1.9), $x_j > C$ for all $j \in J$. Thus if in the integrand of (1.9) we freeze each x_j at a constant for $j \in J$, then the integrand becomes that of an expression (1.5') corresponding to the $n - |J|$ dimensional case; we treat $A_{ik}(x) B_k(c_k(x) p_k(x) / q_k(x))$ like a single smooth factor $A_i(x)$. Hence by induction hypothesis, the integral in these $n - |J|$ variables is a meromorphic function satisfying the conclusions of the lemma in dimension $n - |J|$. By the uniform bounds given by the lemma, we conclude that (1.9) satisfies the conclusions of the lemma as well, and we are done with case 2.

Case 3): Both $p_k(x)$ and $q_k(x)$ are nonconstant. In this case we will have to break up (1.9) into several pieces. Some coordinate changes are done on each piece to reduce it to Cases 1 or 2. We first do a coordinate change $(x_1, ..., x_m) \rightarrow (x_1^{M_1}, ..., x_n^{M_n})$ so that each x_j appearing in either $p_k(x)$ or $q_k(x)$ appears to the same power. We still get an expression of the form (1.9), after incorporating the determinant of this coordinate change into the $A_{ik}(x)$ factor. Suppose x_l appears in $p_k(x)$ and x_m appears in $q_k(x)$. Let $\alpha(x) \in C^\infty(0, \infty)$ be nonnegative such that $\alpha(y) + \alpha(1/y) = 1$ for all y, and such that $\alpha(y)$ is supported on $y < C$ for some C. In particular, in the integrand of (1.9) we have $\alpha(x_l / x_m) + \alpha(x_m / x_l) = 1$, and we correspondingly write the integral as $I_1(z) + I_2(z)$, where

\begin{align*}
I_1(z) &= \int_E \prod_j x_j^{a_{ij}z} d_i(x)^z [A_{ik}(x) B_k(c_k(x) p_k(x) / q_k(x))] \prod_{K \neq k} b_K(c_K(x) p_K(x) / q_K(x)) \alpha(x_l / x_m) dx \\
I_2(z) &= \int_E \prod_j x_j^{a_{ij}z} d_i(x)^z [A_{ik}(x) B_k(c_k(x) p_k(x) / q_k(x))] \prod_{K \neq k} b_K(c_K(x) p_K(x) / q_K(x)) \alpha(x_m / x_l) dx
\end{align*}
In (1.10) we do the variable change turning what was \(x_l \) into \(x_l x_m \), and in (1.11) we do the variable change turning what was \(x_m \) into \(x_m x_l \). The resulting integrals are still of the form (1.9). In addition, in the factor \(\frac{p_k(x)}{q_k(x)} \) of (1.10) the factor \(x_m \) dissapears, while in (1.11) the factor \(x_l \) dissappears.

If we iterate the above in (1.10) and (1.11), splitting into more and more terms, then eventually enough \(x_j \)'s will have dissappeared in \(\frac{p_k(x)}{q_k(x)} \) that we are in either case 1 or case 2. Thus (1.9) is the sum of finitely many terms that fall under case 1 or case 2, and thus we have the lemma in case 3 as well. This completes the proof of the lemma. We are also done with the proof of Theorem 1; as in the earlier heuristics we integrate by parts with respect to \(x_2, x_3 \), etc ad infinitum; one deals with these integrations by parts the way we dealt with the \(x_1 \) integration by parts above.

References:

[A] M. Atiyah, *Resolution of singularities and division of distributions*, Comm. Pure Appl. Math. 23 (1970), 145-150.

[BGe] I. N Bernstein and S. I. Gelfand, *Meromorphy of the function \(P^\lambda \)*, Funkcional. Anal. i Priložen. 3 (1969), no. 1, 84-85.

[B] I. N. Bernstein, *Analytic continuation of generalized functions with respect to a parameter*, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 26-40.

[G1] M. Greenblatt, *A Coordinate-Dependent Local Resolution of Singularities and Applications*, preprint.

[H1] H. Hironaka, *Resolution of singularities of an algebraic variety over a field of characteristic zero I*, Ann. of Math. (2) 79 (1964), 109-203;

[H2] H. Hironaka, *Resolution of singularities of an algebraic variety over a field of characteristic zero II*, Ann. of Math. (2) 79 (1964), 205-326.