Cloning and Sequencing of a 27.8-kb Nucleotide Sequence of the 79°–81° Region of the Bacillus subtilis Genome Containing the sspE Locus

Hiroki YAMAMOTO, Shigeki UCHIYAMA, and Junichi SEKIGUCHI*
Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386, Japan

(Received 15 May, 1996: revised June 7, 1996)

Abstract

The nucleotide sequence of a 27830-bp DNA segment in the 79°–81° region of the Bacillus subtilis genome has been determined. This region contains 29 complete ORFs including the sspE gene, which encodes a small acid-soluble spore protein gamma and locates on the one side terminal of our assigned region. A homology search for the products deduced from the 29 ORFs revealed that nine of them exhibit significant similarity to known proteins, e.g. proteins involved in an iron uptake system, a multidrug resistance protein, a chloramphenicol resistance protein, epoxide hydrolase, adenine glycosylase, and a glucose-1-dehydrogenase homolog.

Key words: Bacillus subtilis; genome sequencing; 79°–81° region; sspE locus

As part of the Bacillus subtilis genome cooperative project, we are now responsible for the sequencing of an approximately 142-kb chromosomal region between 69° (XEXT11) and 81° (sspE). In our first report of this project,1 we reported the nucleotide sequence and gene organization of a 12.4-kb region, from the Not I site of XEXT23, containing the deduced operons of the sugar phosphotransferase system and ABC transport system. In this report, we describe the nucleotide sequence and gene organization of a 27.8 kb region containing the sspE locus.3

1. Cloning and Sequencing of a 27.8-kb Region between 79° and 81° of the B. subtilis Genome

A 12.3-kb insert from the Not I site of the phage 4-1 containing a part of NEXT23 was sequenced as described previously, and a neighboring 9.4 kb region (AflII-inv) cloned by the inverse PCR method was also sequenced (submitted for publication). To amplify the next region, we produced primers AflII-F [38mer, 5'TGTAAAACGACGGCCAGTGGTTTAGTGTCATCAACCGC3'; the underlining indicates the M13 sequence; the 3' end of the primer corresponds to position 20 (base) in Fig. 1] and sspE-K [38mer, 5'CAGGAAACAGCTATGACCTTTGACTCATTCTG-3'; the underlining indicates the M13 sequence; the 3' end corresponds to position 27810]. The amplified fragment was partially digested with DXasel and then blunt-ended with T4 polymerase, and the fragments were separated by agarose (1.2%, w/v) gel electrophoresis to obtain 700 ~ 1500 bp fragments. The latter were ligated to Sma I-digested and alkaline phosphatase-treated pUC118 DNA. E. coli JM109 cells were transformed with the ligation mixture to obtain a randomly overlapping library for sequencing. The sequencing reaction was performed using Dye Primer Cycle Sequencing Kit (Applied Biosystems). DNA sequencer type 373A (Applied Biosystems) was used. We determined the sequences of both DNA strands. For gap-filling and confirmation of the species of uncertain bases, the dye terminator sequencing method was adopted. The DXA sequences obtained were assembled using an Inherit Auto Assembler software (Applied Biosystems). DNA sequencer type 373A (Applied Biosystems) was used. We determined the sequences of both DNA strands. For gap-filling and confirmation of the species of uncertain bases, the dye terminator sequencing method was adopted. The DNA sequences obtained were assembled using an Inherit Auto Assembler software (Applied Biosystems), and further analyzed for the location of possible open reading frames (ORFs) using Gene Works (IntelliGenetics, Inc.). The amino acid sequences of the putative products of identified ORFs were examined as to their similarity to sequences reported in a non-redundant protein sequence data bank using the FASTA e-mail server at the Human Genome Sequencing Center.
Figure 1. Physical map and gene organization of the 79°–81° region. A physical map of the sequenced 27.8-kb region from 79°–81° region of the *B. subtilis* chromosome. The *NotI* site of NEXT47 and the movement of the replication fork are indicated. The deduced 29 ORFs, and their transcriptional and translational directions are indicated by arrows and arrowheads. Furthermore, these ORFs are colored according to function: red, identified; blue, suggested; yellow, unknown but conserved in other organisms; white, unknown and unique (FASTA optimized score < 220). The deduced rho-independent terminators are denoted by asterisks before numbers: 1, ΔG = -27.5 kcal/mol; 2, -30.6 kcal/mol; 3, -24.6 kcal/mol; 4, -35.1 kcal/mol; 5, -21.2 kcal/mol; 6, -22.4 kcal/mol; 7, -28.0 kcal/mol; 8, -17.5 kcal/mol; 9, -22.6 kcal/mol; 10, -22.7 kcal/mol; 11, -32.8 kcal/mol. *S* and *E* indicate *SalI* and *EcoRI* sites, respectively.
Table 1. Putative ORFs in the 27.8-kb sequence at region between \(yfiQ \) and \(sspE \).

ORF	Endpoints (nucleotides)	Size of product (aa/kDa)	SD consensus sequence (upper case) and initiation codon (bold)
\(yfiQ \)	417/1502	362/41.0	AAAGGAGGagtctgtaatg
\(yfiR \)	2158/1544	205/23.7	AAGCAGGAGTatctg
\(yfiS \)	3377/2127	417/44.4	tcAGGAGGagacttcatg
\(yfiT \)	3501/4034	178/20.7	AAGGAGGacacagtcatg
\(yfiU \)	5590/4037	518/54.9	AAAGGAGGagacttcatg
\(yfiV \)	6183/5704	180/18.2	tgAGGAGGTGATgaatag
\(yfiW \)	6355/7128	258/29.0	AAGGAGGagacttcatg
\(yfiX \)	7094/8923	610/69.1	AAGGAGGagacttcatg
\(yfiY \)	9921/8047	326/36.3	ttgAGGAGGaaagatg
\(yfiZ \)	10052/11050	333/35.1	ctAGGAGGaagattgtcatg
\(yfhA \)	11050/12078	343/36.0	gAAAGGAGGagacattcatg
\(yfhB \)	12196/13074	293/32.1	AAGGAGGagacattcatg
\(yfhC \)	13165/13791	194/22.5	ttGAGGAGGaagattgtcatg
\(yfhD \)	13799/13791	63/7.3	ttGAGGAGGaagattgtcatg
\(yfhE \)	14156/14049	36/4.3	gAAAGGAGGagacattcatg
\(yfhF \)	15122/14214	303/33.9	tgAGGAGGagacattcatg
\(yfhG \)	15211/16002	264/31.0	AAGGAGGagacattcatg
\(yfhH \)	16007/16318	104/12.0	gAAAGGAGGagacattcatg
\(yfhI \)	16458/17654	399/41.7	AAGGAGGagacattcatg
\(yfhJ \)	17967/18233	89/10.5	AAGGAGGagacattcatg
\(yfhK \)	18381/18996	172/18.7	cAGGAGGagacattcatg
\(yfhL \)	18984/19313	110/12.0	AAGGAGGagacattcatg
\(yfhM \)	19303/20160	286/32.8	cAAAGGAGGagacattcatg
\(yfhN \)	20396/21382	329/37.7	cAAAGGAGGagacattcatg
\(yfhO \)	21582/24038	819/93.8	ggtGAGGagacattcatg
\(yfhP \)	25017/24037	327/37.1	cAAAGGAGGagacattcatg
\(yfhQ \)	25233/26339	369/42.0	ttGAGGAGGagacattcatg
\(yfhR \)	26056/27405	250/27.1	cAAAGGAGGagacattcatg
\(sspE \)	27477/27728	84/9.3	cgtGAGGAGGagacattcatg

\(\) indicates the transcriptional direction of the ORF.

Center, Institute of Medical Science, University of Tokyo.

2. Genes Found in the 79°–81° Region and their Features

As shown in Fig. 1, a computer analysis of the 27830-bp sequence revealed 29 complete ORFs. Among them, 26 start with ATG, 1 with GTG, and 2 with TTG (Table 1). Nine ORFs are transcribed and translated in the same orientation from 81° to 79°, and the other 20 in the opposite orientation, which are identical to that of the movement of the replication fork (Fig. 1).

3. Homology of the ORFs in the 79°–81° Region

The aa sequences of the putative products of the identified ORFs were examined as to their similarity to sequences in a non-redundant protein sequence data bank. The aa sequence of YfiY exhibits high similarity to those of the iron transport proteins of \(E. chrysanthemi \) (CbrB)\(^5\) and \(B. subtilis \) (FeuA and FeuB)\(^7,6\) (Table 2). The aa sequence of YfiZ exhibits high similarity to those of the iron transport proteins of \(E. chrysanthemi \) (CbrB)\(^5\) and \(B. subtilis \) (FeuB)\(^7,6\) (Table 2). The aa sequence of YfhA exhibits high similarity to those of the iron transport proteins of \(B. subtilis \) (FeuB)\(^7,6\) \(E. chrysanthemi \) (CbrC)\(^5\) and \(E. coli \) (FeC)\(^6\) (Table 2). These results suggest the putative products of three ORFs (\(yfiY \), \(yfiZ \) and \(yfhA \)) are included in the iron uptake system. In \(E. chrysanthemi \), the iron uptake system included the ABC transporter family consists of an iron binding protein (CbrA), two integral membrane proteins (CbrB and CbrC), and an ATP-binding protein (CbrD).\(^5\) Recently, \(fhuDBGC \) genes involved in an iron uptake system were reported in \(B. subtilis \)\(^7,6\) and these gene products may also belong to the ABC transporter family. However, in the case of YfiY, YfiZ and YfhA, there was no protein corresponding to the ATP-binding one such as CbrD or FhuC. The absence of a gene encoding the ATP-binding protein suggests that it may be located elsewhere on the \(B. subtilis \) genome or the YfiY-Z-YfhA system may transport an iron by using a different energy source.
Table 2. Similarity of predicted ORF products to known proteins.

Product	Similar protein in database	Identity observed	Fasta score
YfQ	Intercellular adhesion protein (icaC) of *Staphylococcus epidermidis* [gp:SEU43366.3, gi:1161382]	26.2% in 340 residues	457
YfS	Hypothetical protein of *Synechocystis* sp. [gp:SYCSRJG.42, gi:1001821]	25.8% in 356 residues	321
	Putative transporter of *Mycobacterium smegmatis* [gp:MSU46844.4, gi:1197634]	26.9% in 305 residues	282
	Nickel resistance protein (nreB) of *Alcaligenes xylosoxidans* [gp:APANREA.4, gi:468280]	21.7% in 391 residues	277
	Multidrug resistance protein 2 (bmrZ) of *B. subtilis* [sp:BMR2_BACSU]	22.2% in 400 residues	264
YfU	Hypothetical transport protein of *Streptomyces violaceoruber* [gp:STUI4299.4, gi:763513]	23.0% in 526 residues	500
	Tetracycline resistance protein homolog (act) of *Streptomyces coelicolor* [pir:B40046]	24.4% in 476 residues	498
	Tetracenomycin C resistance and export protein (tcmA) of *Streptomyces glaucescens* [sp:TCMA_STRGA]	22.9% in 503 residues	473
YfY	cbrA gene product of *Erwinia chrysanthemi* [pir:S54820]	31.3% in 268 residues	447
	Iron uptake system binding protein precursor (feuA) of *B. subtilis* [sp:FEUA_BACSU]	26.5% in 294 residues	314
	Ferrichrome binding protein precursor (fhuD) of *B. subtilis* [sp:FEUD_BACSU]	27.5% in 302 residues	244
YfZ	cbrB gene product of *Erwinia chrysanthemi* [pir:S54821]	49.6% in 280 residues	735
	fhuB gene product of *B. subtilis* [gp:BSHUBG.2, gi:1070013]	42.3% in 324 residues	702
	Iron uptake system protein (feuB) of *B. subtilis* [sp:FEUB_BACSU]	35.0% in 326 residues	635
YfhA	fhuG gene product of *B. subtilis* [gp:BSHUBG.3, gi:1070014]	40.0% in 335 residues	706
	cbrC gene product of *Erwinia chrysanthemi* [pir:S54822]	40.7% in 327 residues	653
YfhB	(fecD) dicitrate transport protein of *E. coli* [pir:QHECDZ]	37.3% in 330 residues	540
	phzF gene product of *Pseudomonas fluorescens* [sp:PHZFIA.8, gi:1045018]	26.8% in 287 residues	242
YfhC	Cell division inhibitor homolog (sulA) of *H. influenzae* [gp:HEAHI1208, gi:1007092]	30.1% in 302 residues	424
YfhF	Chloramphenicol resistance protein (cmlV) of *Streptomyces venezuelae* [sp:SVU09991.1, gi:498887]	32.7% in 395 residues	717
	Protein AraJ precursor of *E. coli* [sp:ARAJ_ECOLI]	29.5% in 366 residues	598
	Chloramphenicol resistance protein of *Rhodococcus fasciens* [pir:S25183]	27.9% in 366 residues	585
YfhN	Soluble epoxide hydrolase (AtsEH) of *Arabidopsis thaliana* [gp:ATHATSEH.1, gi:11099600]	33.5% in 206 residues	379
	Epoxide hydrolase of *Solanum tuberosum* [gp:STU0294.1, gi:407938]	31.8% in 195 residues	336
	Soluble epoxide hydrolase (seh) of *Rattus norvegicus* [sp:HYES_RAT]	32.8% in 192 residues	332
YfhO	Hypothetical protein of *Synechocystis* sp. [gp:SYCSRLLH.56, gi:1001347]	43.9% in 301 residues	745
YfhQ	A/G specific adenine glycosylase (mutY) of *H. influenzae* [sp: MUT_HAIN]	33.4% in 311 residues	607
	A/G specific adenine glycosylase (mutY) of *Salmonella typhimurium* [sp: MUT_SALTY]	37.7% in 268 residues	596
	A/G specific adenine glycosylase (mutY) of *E. coli* [sp: MUT_ECOLI]	38.0% in 271 residues	593
YfhR	Short-chain alcohol dehydrogenase of *Picea abies* [pir:S34678]	32.7% in 251 residues	364
	3-oxoacyl-[acyl-carrier protein] reductase of *Cuphea lanceolata* [sp:FABG_CUPLA]	29.8% in 242 residues	345
	Glucose 1-dehydrogenase II (gdhII) of *B. megaterium* [sp:DHG2_BACME]	28.7% in 247 residues	313
	Glucose 1-dehydrogenase A (gdhA) of *B. megaterium* [sp:DHG_A_BACME]	27.5% in 247 residues	305
SspE	Small acid-soluble spore protein (sspE) of *B. subtilis* [sp:SASG_BACSU]	100% in 84 residues	318

gi, gp, pir, and sp indicate the NCBI, GenBank Protein, PIR, and Swiss Prot databases, respectively.
The aa sequence of YfQ exhibits some similarity to that of the intercellular adhesion protein (IcaC) of *Staphylococcus epidermidis* (Table 2). The aa sequence of YfS exhibits some similarity to those of two hypothetical proteins of *Synechocystis* sp. and *Mycobacterium smegmatis*, and the nickel resistance protein (NreB) of *Alcaligenes xylosoxidans*, and the multidrug resistance protein 2 (Bmr2) of *B. subtilis* (Table 2). The product of yfU, about 0.7 kb upstream of yfS, exhibits some aa sequence similarity to the hypothetical transport protein of *Streptomyces violaceoruber*, the tetracycline resistance protein homolog (Act) of *Streptomyces coelicolor*, and the tetracyclomycin C resistance protein (TcmA) of *Streptomyces glaucescens* (Table 2). Moreover the product of yfhI, which is located approximately 11 kb upstream of yfU, exhibits high aa sequence similarity to the chloramphenicol resistance proteins of *Streptomyces venezuelae* (CmiIV) and *Rhodococcus fascians* (Cmrt), and to the AraJ of *E. coli* which is induced by arabinose and may be involved in either the transport or processing of arabinose polymers (Table 2). Since YfS, YfU and Yfh have multiple transmembrane regions (data not shown), they may be drug resistance exporters and use transmembrane electrochemical gradients as an energy source. The aa sequence of YfB exhibits some similarity to those of the *phzC* and *phzF* gene products which are related to the phenazine biosynthesis of *P. aureofaciens* and *P. fluorescens*, respectively (Table 2). The aa sequence of YfhF exhibits high similarity to that of the cell division inhibitor homolog (SulA) of *Haemophilus influenzae*, but not SulA of *E. coli* (Table 2). YfhF may not be the cell division inhibitor, since SulA of *H. influenzae* has low similarity to one of *E. coli*. The aa sequence of YfhM exhibits very high similarity to those of the soluble epoxide hydrolases of *Arabidopsis thaliana* (AtsEH), *Solanum tuberosum*, and *Rattus norvegicus* (Seh) (Table 2). The aa sequence of YfhN exhibits high similarity to that of the *sspE* gene product.

Therefore, both genes cloned in *B. subtilis*, while at least four isozymes have been cloned in *B. megaterium*. Judging from the genome structure, there seems to be no ρ-independent terminator sequence among yfhR and *sspE*. Therefore, both genes may form an operon (Fig. 1). However, it has been reported that *sspE* gene was monocistronically transcribed by E-ρ. We are very interested in the finding that yfhR is located just upstream of *sspE*, and further work is needed to determine the role of the yfhR gene product.

Among the 29 ORFs in the 27.8-kb region, 15 did not exhibit any significant aa sequence similarity to ones in the non-redundant protein sequence data bank. Therefore, our research is now directed toward the isolation of gene-disrupted mutants for functional analysis in a systematic way under the international cooperative project.

Acknowledgments: We would like to thank M. Itaya for providing the Not I linking clone, and Aji N. Fajar for his technical assistance. This research was supported by a Grant-in-Aid for Creative Research (Human Genome Project) from the Ministry of Education, Science and Culture of Japan.

References

1. Yamamoto, H., Uchiyama, S., Fajar, A. N., Ogasawara, N., and Sekiguchi, J. 1996, Determination of a 12 kb nucleotide sequence around the 76th region of the *Bacillus subtilis* chromosome, *Microbiol.*, 142, 1417–1421.

2. Itaya, M. and Tanaka, T. 1991, Complete physical map of the *Bacillus subtilis* 168 chromosome constructed by a gene-directed mutagenesis method, *J. Mol. Biol.*, 220, 631–648.

3. Hackett, R. H. and Setlow, P. 1987, Cloning, nucleotide sequencing, and genetic mapping of the gene for small, acid-soluble spore protein gamma of *Bacillus subtilis*, *J. Bacteriol.*, 169, 1985–1992.

4. Sekiguchi, J., Ezaki, B., Kodama, K., and Akamatsu, T. 1988, Molecular cloning of a gene affecting the autolysin level and flagellation in *Bacillus subtilis*, *J. Gen. Microbiol.*, 134, 1611–1621.

5. Mahe, B., Masclaux, C., Rauscher, L., Enard, C., and Expert, D. 1995, Differential expression of two siderophore-dependent iron-acquisition pathways in *Erwinia chrysanthemi* 3979: characterization of a novel ferri-siderophore permease of the ABC transporter family, *J. Mol. Microbiol.*, 18, 33–43.

6. Quirk, P. G., Guffanti, A. A., Clejan, S., Cheng, J., and Kruilwich, T. A. 1994, Isolation of *Tn917* insertional mutants of *Bacillus subtilis* that are resistant to the protonophore carbonyl cyanide m-chlorophenylhydrazone, *Biochim. Biophys. Acta.*, 1186, 27–34.

7. Schneider, R. and Hantke, K. 1993, Iron-hydroxamate uptake systems in *Bacillus subtilis*: identification of a lipoprotein as part of a binding protein-dependent transport system, *J. Mol. Microbiol.*, 8, 111–121.

8. Staudenmaier, H., Hove, B. V., Yaraghi, Z., and Braun, I linking clone, and Aji N. Fajar for providing the non-redundant protein sequence data bank. Therefore, our research is now directed toward the isolation of...
The 79°–81° Region of the \textit{B. subtilis} Genome [Vol. 3, V. 1989, Nucleotide sequences of the \textit{fecBCDE} genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrinate in \textit{Escherichia coli}, \textit{J. Bacteriol.}, 171, 2626–2633.

9. Kaneko, T., Tanaka, A., Sato, S. et al. 1995, Sequence analysis of the genome of the unicellular cyanobacterium \textit{Synechocystis} sp. strain PCC6803. I. Sequence features in the 1Mb region from map positions 64% to 92% of the genome, \textit{DNA Res.}, 2, 153–166.

10. Ahmed, M., Lyass, L., Taylor, P. N., Vazquez-Laslop, N., and Neyfakh, A. A. 1995, Two highly similar multidrug transporters of \textit{Bacillus subtilis} whose expression is differentially regulated, \textit{J. Bacteriol.}, 177, 3904–3910.

11. Fernandez-Moreno, M. A., Caballero, J. L., Hopwood, D. A., and Malpartida, P. 1991, The \textit{act} cluster contains regulatory and antibiotic export genes, direct targets for translational control by the \textit{bldA} tRNA gene of \textit{Streptomyces}, \textit{Cell}, 66, 769–780.

12. Guilfoile, P. G. and Hutchinson, C. R. 1992, Sequence and transcriptional analysis of the \textit{Streptomyces glaucescens tcmAR} tetracenomycin C resistance and repressor gene loci, \textit{J. Bacteriol.}, 174, 3651–3658.

13. Mosher, R. H., Camp, D. J., Yang, K., Brown, M. P., Shaw, W. V., and Vining, L. C. 1995, Inactivation of chloramphenicol by O-phosphorylation. A novel resistance mechanism in \textit{Streptomyces venezuelae} ISP3920, a chloramphenicol producer, \textit{J. Biol. Chem.}, 270, 27000–27006.

14. Desomer, J., Vereecke, D., Crespi, M., and Van Montagu, M. 1992, The plasmid-encoded chloramphenicol-resistance protein of \textit{Rhodococcus fascians} is homologous to the transmembrane tetracycline efflux proteins, \textit{Mol. Microbiol.}, 6, 2377–2385.

15. Reeder, T. and Schleif, R. 1991, Mapping, sequence, and apparent lack of function of \textit{araJ}, a gene of the \textit{Escherichia coli} arabinose regulon, \textit{J. Bacteriol.}, 173, 7765–7771.

16. Fleischmann, R. D., Adams, M. D., White, O. et al. 1995, Whole-genome random sequencing and assembly of \textit{Haemophilus influenzae} Rd, \textit{Science}, 269, 496–512.

17. Beck, E. and Bremer, E. 1980, Nucleotide sequence of the gene \textit{ompA} coding the outer membrane protein II of \textit{Escherichia coli} K-12, \textit{Nucleic Acids Res.}, 8, 3011–3027.

18. Kiyosue, T., Beetham, J. K., Pinot, F., Hammock, B. D., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1994, Characterization of an \textit{Arabidopsis} cDNA for a soluble epoxide hydrolase gene that is inducible by auxin and water stress, \textit{Plant J.}, 6, 259–269.

19. Stapleton, A., Beetham, J. K., Pinot, F. et al. 1994, Cloning and expression of soluble epoxide hydrolase from potato, \textit{Plant J.}, 6, 251–258.

20. Arand, M., Knehr, M., Thomas, H., Zeller, H. D., and Oesch, F. 1991, An impaired peroxisomal targeting sequence leading to an unusual bicompartamental distribution of cytosolic epoxide hydrolase, \textit{FEBS Lett.}, 294, 19–22.

21. Michaels, M. L., Pham, L., Nghiem, Y., Cruz, C., and Miller, J. H. 1990, MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III, \textit{Nucleic Acids Res.}, 18, 3841–3845.

22. Desiraju, V., Shanabruch, W. G., and Lu, A. L. 1991, Nucleotide sequence of the \textit{Salmonella typhimurium} mutB gene, the homolog of \textit{Escherichia coli} mutY, \textit{J. Bacteriol.}, 175, 541–543.

23. Klein, B., Pawlowski, K., Horicz-Grandpierre, C., Schell, J., and Topfer, R. 1992, Isolation and characterization of a cDNA from \textit{Cuphea lanceolata} encoding a beta-ketoacyl-ACP reductase, \textit{Mol. Gen. Genet.}, 233, 122–128.

24. Mitamura, T., Ebara, R. V., Nakai, T. et al. 1990, Structure of isozyme genes of glucose dehydrogenase from \textit{Bacillus megaterium} IAM1030, \textit{J. Ferment. Bioeng.}, 70, 363–369.

25. Heilmann, H. J., Magert, H. J., and Gassen, H. G. 1988, Identification and isolation of glucose dehydrogenase genes of \textit{Bacillus megaterium} M1286 and their expression in \textit{Escherichia coli}, \textit{Eur. J. Biochem.}, 174, 485–490.

26. Lampel, K. A., Uretani, B., Chaudhry, G. R., Ramaley, R. F., and Rudikoff, S. 1986, Characterization of the developmentally regulated \textit{Bacillus subtilis} glucose dehydrogenase gene, \textit{J. Bacteriol.}, 166, 238–243.