TOPOLOGICAL RIGIDITY AND
\(H_1\)-NEGATIVE INVOLUTIONS ON TORI

FRANK CONNOLLY, JAMES F. DAVIS, AND QAYUM KHAN

Abstract. We show, for \(n \equiv 0, 1 \pmod{4}\) or \(n = 2, 3\), there is precisely one equivariant homeomorphism class of \(C_2\)-manifolds \((N^n, C_2)\) for which \(N^n\) is homotopy equivalent to the \(n\)-torus and \(C_2 = \{1, \sigma\}\) acts so that \(\sigma(x) = -x\) for all \(x \in H_1(N)\). If \(n \equiv 2, 3 \pmod{4}\) and \(n > 3\), we show there are infinitely many such \(C_2\)-manifolds. Each is smoothable with exactly \(2^n\) fixed points.

The key technical point is that we compute, for all \(n \geq 4\), the equivariant structure set \(\mathcal{S}TOP(\mathbb{R}^n, \Gamma_n)\) for the corresponding crystallographic group \(\Gamma_n\) in terms of the Cappell UNil-groups arising from its infinite dihedral subgroups.

1. Introduction

1.1. Statement of results. Our goal here is to analyze topological rigidity for a sequence of crystallographic groups containing 2-torsion. For each \(n\), we define the group: \(\Gamma_n = \mathbb{Z}_n \rtimes_{-1} C_2\), where \(C_2\) acts on \(\mathbb{Z}_n\) by negation: \(v \mapsto -v\).

We classify the proper actions of \(\Gamma_n\) on contractible \(n\)-manifolds.

The most powerful inspiration for our work is the remarkable rigidity theorem of Farrell and Jones concerning a discrete cocompact group of isometries of a simply connected non-positively curved manifold \((M, \Gamma)\). They classify the cocompact proper actions of such a \(\Gamma\) on a contractible manifold, if \(\Gamma\) is torsion-free.

The second major inspiration for our paper is the work of Cappell on UNil. If \(\Gamma\) as above has elements of order 2, then the nontrivial elements of UNil groups coming from virtually cyclic subgroups of \(\Gamma\) can provide examples of cocompact \(\Gamma\)-manifolds \((M', \Gamma)\) which are isovariantly homotopy equivalent to, but not homeomorphic to \((M, \Gamma)\). So how do we classify such actions?

The Topological Rigidity Conjecture stated below does this. We view it as a version of an old conjecture of Quinn, sharpened through the precision afforded by the work of [DL98]. We then prove this conjecture for \(\Gamma_n\) using [BL12, CD04].

We can cast our results in terms of an action of a group \(C_2 := \{1, \sigma\}\). We say an involution \(\sigma : N \to N\) is \(H_1\)-negative if \(\sigma(x) = -x\), for all \(x \in H_1(N)\). We prove:

Theorem 1.1. Let \(\sigma : N \to N\) be an \(H_1\)-negative involution on a closed manifold homotopy equivalent to the \(n\)-torus \(T^n\). Consider the \(C_2\)-manifold \((N, C_2)\).

1. The fixed set \(N^{C_2}\) is discrete and consists of exactly \(2^n\) points.
2. If \(n \equiv 0, 1 \pmod{4}\) or \(n = 2, 3\), then \((N^n, C_2)\) is equivariantly homeomorphic to the standard example, \((T^n, C_2)\).
3. If \(n \equiv 2, 3 \pmod{4}\) and \(n > 3\), there are infinitely many such \(C_2\)-manifolds, \((N^n, C_2)\). All are isovariantly homotopy equivalent to \((T^n, C_2)\), but no two are equivariantly homeomorphic. Each is smoothable hence locally linear.
By the standard example \((T^n, C_2)\) above, we mean the involution \(\sigma : T^n \to T^n\) given by \(\sigma([x]) = [-x]\), for all \([x] \in \mathbb{R}^n / \mathbb{Z}^n = T^n\). Recall that any \(n\)-manifold homotopy equivalent to the \(n\)-torus is homeomorphic to it (see [Wal99] [FQ90] [Am04]).

The construction of the exotic involutions mentioned in the theorem uses surgery theory, specifically the Wall Realization Theorem [Wal99] Thms. 5.8, 6.5. Write \(X := (T^n - (T^n)^\perp)/C_2\), an open \(n\)-manifold. Define \(\overline{X}\) as the obvious manifold compactification of \(X\) obtained by adding a copy of \(\mathbb{R}P^n\) at each end of \(X\). Note for all \(n > 2\) that \(\pi_1(\overline{X}) = \Gamma_n\) and that \(\overline{X}\) is orientable if and only if \(n\) is even. Let \(w_n : \Gamma_n \to \{\pm 1\}\) be the orientation character of \(\overline{X}\). Then, for \(n \geq 5\), an element \(\theta \in L_{n+1}(\Gamma_n, w_n)\) determines a compact smooth manifold \(\theta \cdot \overline{X}\), homotopy equivalent to \(\overline{X}\) relative to the boundary. Passing to the two-fold cover and gluing in \(2^n\) copies of \(D^n\) with the antipodal action, we get a smooth involution on the torus. All the exotic involutions in the above theorem arise in this way.

Observe that \(\Gamma_n\) is isomorphic to a rank \(n\) crystallographic group. This isometric action of \(\Gamma_n\) on \(\mathbb{R}^n\) is given by \(\mathbb{Z}^n\) acting by translation and \(C_2\) acting by reflection through the origin. We let \((\mathbb{R}^n, \Gamma_n)\) denote this \(\Gamma_n\)-manifold.

Let \(\mathcal{I}(\Gamma_n)\), be the set of equivariant homeomorphism classes of \(n\)-dimensional contractible manifolds equipped with a proper \(\Gamma_n\)-action. We compute \(\mathcal{I}(\Gamma_n)\).

To parametrize the set \(\mathcal{I}(\Gamma_n)\), we will need to use the unitary nilpotent groups of Cappell. For \(D_\infty\), these have been computed recently by Banagl, Connolly, Davis, Koźniewski, and Ranicki [CK95] [CD04] [CR05] [BR06], yielding:

\[
\text{UNil}_{m}(\mathbb{Z}; \mathbb{Z}, \mathbb{Z}) \cong \begin{cases}
0 & \text{if } m \equiv 0 \pmod{4} \\
0 & \text{if } m \equiv 1 \pmod{4} \\
(\mathbb{Z}/2\mathbb{Z})^\infty & \text{if } m \equiv 2 \pmod{4} \\
(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z})^\infty & \text{if } m \equiv 3 \pmod{4}.
\end{cases}
\]

Let mid(\(\Gamma_n\)) be the set of maximal infinite dihedral subgroups of \(\Gamma_n\). Let (mid)(\(\Gamma_n\)) be a subset of mid(\(\Gamma_n\)) chosen so that it contains exactly one maximal infinite dihedral subgroup from each conjugacy class. Let \(D\) be a maximal infinite dihedral subgroup of \(\Gamma_n\). For any integer \(n\), with \(\varepsilon = (-1)^n\), there is a map

\[\text{UNil}_{n+1}(\mathbb{Z}; \mathbb{Z}^\varepsilon, \mathbb{Z}^\varepsilon) \to L_{n+1}(\mathbb{Z}D, w_n) \to L_{n+1}(\mathbb{Z}^\varepsilon\Gamma_n, w_n)\]

If \(n\) is odd, then there is an isomorphism \(\text{UNil}_{n-1}(\mathbb{Z}; \mathbb{Z}, \mathbb{Z}) \cong \text{UNil}_{n+1}(\mathbb{Z}; \mathbb{Z}^- \mathbb{Z}, \mathbb{Z}^-)\).

Theorem 1.2. Suppose \(n \geq 4\). Write \(\varepsilon := (-1)^n\). The Wall realization map induces a pointed bijection of sets, mapping the zero element to the basepoint \([\mathbb{R}^n, \Gamma_n]::\)

\[\partial_\oplus : \bigoplus_{D \in \text{mid}(\Gamma_n)} \text{UNil}_{n+1}(\mathbb{Z}; \mathbb{Z}^\varepsilon, \mathbb{Z}^\varepsilon) \cong \mathcal{I}(\Gamma_n).\]

Consequently, \(\mathcal{I}(\Gamma_n)\) consists of a single element if \(n \equiv 0, 1 \pmod{4}\), and \(\mathcal{I}(\Gamma_n)\) is countably infinite if \(n \equiv 2, 3 \pmod{4}\).

We do not need to assume any conditions beyond continuity in order to obtain a full homeomorphism classification and to show all actions are smoothable. It turns out that Smith theory guarantees the fixed sets consist of isolated points (see Section 2). Also, local linearity is a consequence of our calculation (see Remark 4.3, which concludes that the forgetful map \(\mathcal{I}_{\text{TOP}}(\overline{X}, \partial X) \to \mathcal{I}_{\text{TOP}}(\partial X)\) is constant).

An action \(\Gamma \times X \to X\) of a discrete group \(\Gamma\) on a locally compact Hausdorff space \(X\) is proper if \(\{\gamma \in \Gamma \mid K \cap \gamma K \neq \emptyset\}\) is finite for each compact set \(K \subset X\).
Note that, given \((M, \Gamma_n) \in S(\Gamma_n)\), the quotient manifold \(M^n/\mathbb{Z}^n\) is homotopy equivalent to, and hence homeomorphic to the \(n\)-torus. Therefore the universal cover, \(M\), admits a homeomorphism to \(\mathbb{R}^n\).

Outline of the argument. In Section 2 we show that any \(H_1\)-negative involution on an \(n\)-manifold homotopy equivalent to the \(n\)-torus has exactly \(2^n\) fixed points. This allows one to deduce a correspondence between \(H_1\)-negative involutions on \(n\)-manifolds homotopy equivalent to the \(n\)-torus and contractible \(n\)-manifolds equipped with a proper \(\Gamma_n\)-action. In Section 2 we show that any compact \(C_2\)-manifold with finite fixed set has the \(C_2\)-homotopy type of a finite \(C_2\)-CW-complex. This allows one to conclude that any \(H_1\)-negative involution on a manifold homotopy equivalent to the \(n\)-torus is equivariantly homotopy equivalent to \((T^n, C_2)\) and that any contractible \(n\)-manifold equipped with a proper \(\Gamma_n\)-action is equivariantly homotopy equivalent to \((\mathbb{R}^n, \Gamma_n)\).

We prove Theorem 1.2 in Section 4 and then deduce Theorem 1.1 in Section 5.

For \(n \geq 4\), the six structure sets we use are introduced in Section 3. These are:

\[
\mathcal{S}(\Gamma_n) \quad \mathcal{S}_{\text{TOP}}(\mathbb{R}^n, \Gamma_n) \quad \mathcal{S}_{\text{ISO}}(\mathbb{R}^n, \Gamma_n)
\]

\[
\mathcal{S}_{\text{TOP}}(\mathbb{R}^n, \Gamma_n) \quad \mathcal{S}_{\text{TOP}}(T^n, C_2) \quad \mathcal{S}_{\text{ISO}}(T^n, C_2).
\]

For example, the isovariant structure set \(\mathcal{S}_{\text{ISO}}(\mathbb{R}^n, \Gamma_n)\) is the set of equivalence classes of proper \(\Gamma_n\)-manifolds \((M^n, \Gamma_n)\), together with an isovariant homotopy equivalence \(M \rightarrow \mathbb{R}^n\). We show all six structure sets are isomorphic, and compute the fourth one to prove Theorem 1.2. The isomorphisms between the first and second, between the second and fifth, and the third and sixth structure sets are formal and are shown in Section 3. The isomorphism between the fifth and sixth structure set requires a detailed discussion of equivariance versus isovariance and is discussed in Appendix A. The isomorphism between the fourth and fifth structure set requires the use of end theory, see Lemma 3.6. Finally, the computation of the classical surgery-theoretic structure set \(\mathcal{S}_{\text{TOP}}(\mathbb{R}^n, \Gamma_n)\) use the Farrell–Jones Conjecture and is presented at the end of Section 4. This computation also uses the main result of Appendix B which identifies the assembly map in surgery theory with a corresponding map in equivariant homology.

The final bit of the paper, Section 6, is independent of [BL12] and gives examples of non-standard structures on \((\mathbb{R}^n, \Gamma_n)\), hence of exotic \(H_1\)-negative involutions on tori. The intent is to show that Cappell’s work, for straightforward reasons, gives obstructions to isovariant rigidity of a \(\Gamma\)-space when \(\Gamma\) has elements of order two. Shmuel Weinberger pointed out these counterexamples to simple isovariant rigidity some time ago. Since the argument was never published, we include it here.

1.2. Equivariant Rigidity. This paper represents the start of a systematic attack on Quinn’s ICM conjecture and the closely related questions of equivariant, isovariant, and topological rigidity for a discrete group \(\Gamma\). We take some time to formulate these questions precisely. Recall that two closed aspherical manifolds with the same fundamental group \(\Gamma\) are homotopy equivalent and that the Borel Conjecture for \(\Gamma\) states that any such homotopy equivalence is homotopic to a homeomorphism.
For any discrete group Γ, a model, $E_{\text{fin}} \Gamma$, for the classifying space for Γ-CW-complexes with finite isotropy is a space which is Γ-homotopy equivalent to a Γ-CW-complex so that for all subgroups H of Γ

$$(E_{\text{fin}} \Gamma)^H = \begin{cases} \emptyset & \text{if } |H| = \infty \\ \cong \text{pt} & \text{if } |H| < \infty \end{cases}.$$

Given any Γ-CW-complex X with finite isotropy groups, there is an equivariant map $X \to E_{\text{fin}} \Gamma$, unique up to equivariant homotopy. It follows that any two models are Γ-homotopy equivalent. Furthermore, a model $E_{\text{fin}} \Gamma$ exists for any group Γ.

A cocompact manifold model for $E_{\text{fin}} \Gamma$ is a a model M for $E_{\text{fin}} \Gamma$ so that M/Γ is compact and so that M^F is a manifold for all finite subgroups F of Γ. A geometric example is given by a discrete cocompact group Γ of isometries of a simply connected complete nonpositively curved manifold M. Equivariant (respectively, isovariant) rigidity holds for Γ if any Γ-homotopy equivalence (respectively, isovariant homotopy equivalence) $M \to M'$ between cocompact manifold models for $E_{\text{fin}} \Gamma$ is Γ-homotopic (respectively, Γ-isovariantly homotopic) to a homeomorphism. With this terminology, our results can be restated as showing that every proper Γ-equivariant and isovariant rigidity fail for all other n. Previous results on equivariant and isovariant rigidity are found in: [Ros88], [CK90], [CK91], [Wei94, Section 4.2], [PS00], and [MP04]. In particular, [CK91] gives the first example of groups where isovariant rigidity fails; this proceeded via a version of Whitehead torsion. The Corollary below shows that the relevant Whitehead group vanishes for Γ_n. Thus we give the first counterexamples to simple isovariant rigidity in print.

Remark 1.3. A key algebraic property of Γ_n is that it admits a split epimorphism $\varepsilon : \Gamma_n \twoheadrightarrow \Gamma_1 = \mathbb{Z} \rtimes C_2 = C_2 \rtimes C_2$ to the infinite dihedral group. The last equality results from noting that $\Gamma_1 = \langle (0, \sigma), (1, \sigma) \rangle = C_2 \rtimes C_2$. The existence of ε follows from the fact that every epimorphism $f : \mathbb{Z}^n \to \mathbb{Z}$ gives a split epimorphism $f \circ \text{id} : \mathbb{Z}^n \rtimes C_2 \to \mathbb{Z} \rtimes C_2$. Thus Γ_n has an injective amalgated product decomposition:

$$\Gamma_n = \varepsilon^{-1}(C_2 \rtimes 1) \ast_{\varepsilon^{-1}(1 \rtimes C_2)} \varepsilon^{-1}(1 \rtimes C_2) \cong \Gamma_{n-1} \ast_{\mathbb{Z}^{n-1}} \Gamma_{n-1}.$$

Proposition 1.4. The group Γ_n is K-flat, that is, $\text{Wh}(\Gamma_n \times \mathbb{Z}^k) = 0$ for all $k \geq 0$. Suppose $n \geq 5$. Then $\text{Wh}^{\text{TOP}}(\mathbb{R}^n, \Gamma_n) = 0$. Therefore, if M and M' are cocompact $E_{\text{fin}} \Gamma_n$-manifolds that are Γ_n-h-cobordant, then they are Γ_n-homeomorphic.

Proof. We prove K-flatness by induction on n, as follows. First, note $\Gamma_0 = C_2$ and $\text{Wh}(C_2 \rtimes \mathbb{Z}^k) = 0$, by consideration of Rim’s cartesian square of rings [Mil71, §3] and vanishing of lower NK-groups [BHS64, Bas68, Ch. XII].

Next, by Remark 1.3 and Waldhausen’s sequence [Wal73], we obtain:

$$\text{Wh}(\Gamma_{m-1} \times \mathbb{Z}^k) \oplus \text{Wh}(\Gamma_{m-1} \times \mathbb{Z}^k) \to \text{Wh}(\Gamma_m \times \mathbb{Z}^k) \to \tilde{K}_0(\mathbb{Z}[\mathbb{Z}^{m-1+k}]) = 0.$$

This sequence is exact, since the ring $\mathbb{Z}[\mathbb{Z}^k]$ is regular coherent, which implies that the Nil term vanishes. Therefore, by induction, we are done proving Γ_n is K-flat.

Recall the exact sequence of Steinberger [Ste88, Thm. 3] (cf. [Wei94, p. 182]):

$$\text{Wh}(\Gamma_n) \to \text{Wh}^{\text{TOP}}(\mathbb{R}^n, \Gamma_n) \to \tilde{K}_0(\mathbb{Z}[\Gamma_n])_c.$$
We already have shown \(\text{Wh}(\Gamma_n) = 0 \). Note that the link of each singular point in \(\mathbb{R}^n/\Gamma_n \) has fundamental group \(C_2 \). Since \(\tilde{K}_0(\mathbb{Z}[C_2]) = 0 \), by a spectral sequence argument we conclude \(\tilde{K}_0(\mathbb{Z}[\Gamma_n]) = H^n_0(\mathbb{R}^n; K) = 0 \). The rest of the corollary follows from the equivariant \(h \)-cobordism theorem of Steinberger [Ste88]. □

1.3. The Topological Rigidity Conjecture. This section is motivated by the conjecture of F. Quinn at the 1986 ICM (see [Qui87]). It aims to say the same thing, but in a more explicit way, by employing the work of [DL98] and [BL12].

Our Topological Rigidity Conjecture concerns a discrete cocompact group \(\Gamma \) of isometries of a simply connected complete nonpositively curved manifold \(X^n \) (that is, a Hadamard manifold). It says, roughly, that any topologically simple isovariant homotopy equivalence \(f : M \to X \) should be isovariantly homotopic to a homeomorphism, except for the examples created by UNil-groups of virtually cyclic subgroups of \(\Gamma \). But it does so by parametrizing the set of such \(f \) in terms of a homology group. The coefficient spectrum of this homology group, \(L/L_{\text{fin}} \), is an \(\text{Or}(\Gamma) \)-spectrum in the sense of [DL98] (see Section 4). It only needs to be evaluated at virtually cyclic subgroups of \(\Gamma \) when calculating this homology group. For these virtually cyclic groups, the nonzero homotopy groups of the spectrum are just UNil-groups of amalgamated products of finite groups.

To formulate the conjecture, one must restrict to isovariant homotopy equivalences since there is no reason to expect equivariant homotopy equivalences to be well-behaved (see [Wei94, Section 14.2]). Furthermore, the proof of Theorem 1.1(2) shows that this conjecture cannot be extended to low dimensions (\(n = 2, 3 \)).

Conjecture 1.5. Let \(X^n \) be a Hadamard manifold of dimension \(n > 3 \). Let \(\Gamma \) be a discrete cocompact group of isometries of \(X \). Assume the fixed set \(X^K \) has codimension > 2 in \(X^n \) whenever \(K \subsetneq H \) are isotropy groups. There is a bijection

\[
\partial : H^n_{n+1}(E_{\text{vc}} \Gamma; L/L_{\text{fin}}) \xrightarrow{\cong} \mathcal{S}_{\text{iso}}^{\text{rel}}(X^n, \Gamma).
\]

The present paper proves this conjecture for \(\Gamma_n \). The definition of the map \(\partial \), appearing in Conjecture 1.5, for the group \(\Gamma_n \) can be found in Section 4.

The elements of \(\mathcal{S}_{\text{iso}}^{\text{rel}}(X, \Gamma) \) are equivalence classes of pairs \((M, f)\), where \(M \) is a cocompact topological \(\Gamma \)-manifold whose fixed sets are locally flat submanifolds in \(M \), and \(f : M \to X \) is a \(\Gamma \)-isovariant homotopy equivalence that restricts to a homeomorphism on the singular set. Shmuel Weinberger has been a long-time proponent of this “rel sing” structure set in a very similar conjecture ([CWY, §3]).

If \(\Gamma \) has no element of order 2, the conjecture implies each such \(f \) is isovariantly homotopic to a homeomorphism. The left hand side is defined in [DL98] [DQR11].

The formulation of the above conjecture takes account of the recent proof of the Farrell–Jones Conjecture, in the sense that while geometry and controlled topology would lead to \(E_{\text{at}} \Gamma \) in the domain of the above map, the formulated domain is much more computable (for example, in terms of UNil-groups).

Acknowledgment. The authors are grateful to Shmuel Weinberger for suggesting that the work of Connolly–Davis [CD04] be exploited to construct counterexamples to an equivariant version of the Borel Conjecture, as is done here. Years ago he mentioned the idea to the authors and has quietly encouraged the project. The second-named author thanks Mike Mandell for tutorials on the homotopy category.
The National Science Foundation supports each author (DMS-0601234, 0808659, 0904276). In addition this research has been facilitated by the support of the Hausdorff Institute, the Max Planck Institute, and the Humboldt Stiftung in Bonn.

2. Applications of Smith theory

Given a universal covering map $p : E \to B$ and an effective action of a group G on B, consider the group $D(p, G) := \{ h \in \text{Homeo}(E) \mid p \circ h = g \circ p \text{ for some } g \in G \}$.

There is an obvious exact sequence

$$(2.1) \quad 1 \longrightarrow D(p) \longrightarrow D(p, G) \longrightarrow G \longrightarrow 1$$

where $D(p)$ is the deck transformation group of p.

For the quotient map $q : \mathbb{R}^n \to T^n$ and the standard action (T^n, C_2), note $D(q, C_2) = \Gamma_n$.

Theorem 2.1. Let C_2 act on a manifold N^n homotopy equivalent to T^n so that $\sigma_\ast(\alpha) = -\alpha$ for all $\alpha \in H_1(N^n)$.

1. The fixed set N^{C_2} consists of 2^n points and $D(p, C_2) \cong \Gamma_n$, where p is the universal covering map of N^n. Moreover, if G is any non-trivial finite subgroup of $D(p, C_2)$, then \tilde{N}^G consists of one point.

2. Fix an isomorphism $D(p, C_2) \cong \Gamma_n$. There is a Γ_n-homotopy equivalence of the universal covers, $J : N^n \to \mathbb{R}^n$. Any two such Γ_n-homotopy equivalences are Γ_n-homotopic. \tilde{J} is the universal covering of a C_2-homotopy equivalence, $J : N^n \to T^n$.

To prove this theorem we use lemmas concerning involutions on \mathbb{R}^n and T^n. We state and prove these lemmas in their ultimate generality: actions of p-groups on contractible and aspherical manifolds.

Lemma 2.2. Let G be a finite p-group.

1. The fixed set of a G-action on a manifold is locally path-connected.

2. The fixed set of a G-action on a contractible manifold is mod p acyclic and path-connected.

3. If the fixed set of a G-action on a contractible manifold is compact, then the fixed set is a point.

The proof of this lemma involves Smith theory. Our primary reference is Borel’s Seminar on Transformation Groups [Bor60]. Borel et al. use Alexander–Spanier cohomology $\tilde{H}^*(X; R)$ with coefficients in a commutative ring R. This is, in turn, isomorphic to Čech cohomology $\check{H}^*(X; R)$ for X paracompact Hausdorff, hence also for X metrizable [Spa81, Corollary 6.8]. Of course, if X is a CW complex then Alexander–Spanier and Čech and singular cohomology coincide; but fixed sets of actions are far from CW complexes.

The proof of this lemma is inductive; any non-trivial p-group has a normal C_p subgroup, hence G/C_p acts on M^{C_p}. However the fixed set M^{C_p} is not necessarily a manifold, so we will have to work abstractly.

Proof of Lemma 2.2. (1) Consider the following four properties of a topological space: locally compact (lc), complete metrizable (cm), cohomology locally connected (clc$_p$), and cohomology finite dimensional (cfd$_p$). We show that a manifold
satisfies these four properties, that the fixed set of a C_p-action on a space which satisfies the four properties also satisfies the four properties, and that a space which satisfies the four properties is locally path-connected.

A space is complete metrizable if it admits a complete metric. A space X is cohomology locally connected with respect to \mathbb{F}_p (written clc$_p$) if each neighborhood U of each $x \in X$ contains a neighborhood V of x so that the restriction map from U to V is zero on reduced Čech cohomology with coefficients in \mathbb{F}_p. (See [Bor60 I.1.3] or [Bre97 II.17.1] for the definition.) A locally compact space X is cohomology finite dimensional (written cfd$_p$) if there is an integer $n \geq 0$ so that for all open sets U of X, the $(n+1)$-st Čech cohomology with compact supports vanishes: $\check{H}^n+1(U; \mathbb{F}_p) = 0$. (See [Bor60 I.1.2] or [Bre97 II.16] for the definition.)

Let M be topological n-manifold. Clearly it is locally compact. We claim that it is complete metrizable. Indeed by Urysohn’s Metrization Theorem it admits the structure of a metric space (M, d). Since M is locally compact and the union of a countable number of compact sets, it admits a proper map $f : M \to \mathbb{R}$. Then a complete metric on M is given by $D(x, y) := d(x, y) + |f(x) - f(y)|$. A manifold is clc$_p$ since it is locally contractible. A topological n-manifold is cfd$_p$; a reference is [Bre97 Corollary 16.28]; it also follows from Poincaré duality.

Thus it suffices to show that the fixed set of a C_p-action on a locally compact, locally path-connected, cohomology finite dimensional, complete metrizable space satisfies each of these properties. Note that the fixed set X^{C_p} is closed in X. It clearly follows that X^{C_p} is lc and cm, and it can be shown that any subspace of a cfd$_p$ metrizable space is cfd$_p$ (see [Bre97 Theorem 16.8]). Finally, the fixed set of a C_p-action on a lc, cfd$_p$, clc$_p$ space is clc$_p$ (see [Bor60 Proposition V.1.4], also [Bre97 Exercise II.44]). This is the one point where Smith theory is used.

Thus we conclude by induction on $|G|$ that the fixed set M^G of a finite p-group acting on a manifold is clc$_p$ and cm. By looking at Čech cohomology in degree zero, it is easy to see that a clc$_p$-space is locally connected (see [Bor60 page 6] and [Bre97 page 126]). A theorem of Moore–Menger–Mazurkiewicz [Kur68 page 254] shows that a locally connected complete metric space is locally path-connected.

2. By a mod p acyclic space, we mean a Hausdorff space X with $\check{H}^*(X; \mathbb{F}_p) \cong \check{H}^0(pt; \mathbb{F}_p)$. A standard result from global Smith theory is that, if a finite p-group G acts on a cohomology finite dimensional mod p acyclic space X, then its fixed set is also mod p acyclic; see for example [Bor60 Cor. III.4.6]. In particular $\check{H}^0(M^G; \mathbb{F}_p) \cong \mathbb{F}_p$, so M^G is connected. By Part (1), it is locally path-connected. Therefore M^G is path-connected.

3. Since M is a topological manifold and is contractible, M is an orientable mod p cohomology manifold (see [Bor60 Definition 3.3].) If G acts on an orientable mod p cohomology manifold M^n, then by Smith theory the fixed set M^G is an orientable mod p cohomology manifold ([Bor60 Theorem V.2.2]) of dimension $d \leq n$. Recall that M^G is connected and mod p acyclic. If M^G is compact, then there is a fundamental cohomology class in dimension d, so $\check{H}^d(M^G; \mathbb{F}_p) \cong \mathbb{F}_p$ (cf [Bor60 Theorem I.4.3(1)]). But M^G is mod p acyclic so $d = 0$. Also, for a connected compact mod p homology manifold X of dimension d, $\check{H}^{d}(A; \mathbb{F}_p) = 0$ for any closed proper subset A of X by [Bor60 Theorem I.4.3(1)]. Therefore M^G must consist of a single point.

□
In the literature, we have not seen the application of Smith theory to path-connectivity. The above lemma seems to be the first occurrence. We use path-connectivity in the covering space arguments below.

Lemma 2.3. Let G be a discrete group. Suppose $G \curvearrowright (M, x)$, that is, G acts effectively on a space M fixing the point $x \in M$. Let $p : (\tilde{M}, \tilde{x}) \to (M, x)$ be a universal cover.

1. There is a unique action $G \curvearrowright (\tilde{M}, \tilde{x})$ so that $p : \tilde{M} \to M$ is a G-map.
2. The action $G \curvearrowright (M, x)$ gives a homomorphism $G \to \text{Aut}(\pi_1(M, x))$ and the action $G \curvearrowright (\tilde{M}, \tilde{x})$ gives a splitting of the short exact sequence

$$1 \longrightarrow \mathcal{D}(p) \longrightarrow \mathcal{D}(p,G) \xrightarrow{\phi} G \longrightarrow 1.$$

The usual isomorphism $k : \pi_1(M, x) \to \mathcal{D}(p)$ is equivariant with respect to the G-action on the fundamental group and the G-action on $\mathcal{D}(p)$ given by conjugation. Thus k sends $\pi_1(M, x)^G$ to $\mathcal{D}(p)^G = \{h \in \mathcal{D}(p) \mid ghg^{-1} = h \in \mathcal{D}(p,G) \text{ for all } g \in G\}$.

3. $p^G : \tilde{M}^G \to p(\tilde{M}^G)$ is a regular $\mathcal{D}(p)^G$-cover.
4. If M^G_x is the path component of M^G containing x, then $M^G_x \subset p(\tilde{M}^G)$.
5. If M is an aspherical manifold and G is a finite p-group, then $p(\tilde{M}^G)$ is a connected component of M^G.
6. If M is a compact, aspherical manifold and G is a finite p-group, then $p(\tilde{M}^G)$ is compact.

Proof.

1. Any map $g : (M, x) \to (M, x)$ lifts to a unique map $\tilde{g} : (\tilde{M}, \tilde{x}) \to (\tilde{M}, \tilde{x})$ so that $p \circ \tilde{g} = g \circ p$. Uniqueness implies that $\tilde{g} \circ \tilde{h} = \tilde{g} \circ \tilde{h}$. Define the action $G \curvearrowright \tilde{M}$ by $g y := \tilde{g}(y)$.

2. Clearly the G-action on (M, x) gives a G-action on the fundamental group and the G-action on (\tilde{M}, \tilde{x}) gives a splitting of the short exact sequence. The isomorphism k is specified by $k[\alpha](\tilde{x}) = \tilde{\alpha}(1)$ where $\tilde{\alpha} : I \to \tilde{M}$ is the unique lift of $\alpha : I \to M$ so that $\tilde{\alpha}(0) = \tilde{x}$. One then checks that k is equivariant.

3. Abstracting a bit, if $\gamma : E \to B$ is a regular Γ-cover, if $E_0 \subset E$, and if Γ_0 is a subgroup of Γ so that $\Gamma_0 \cap E_0$, and if γE_0 and E_0 are disjoint whenever $\gamma \in \Gamma - \Gamma_0$, then $\pi_0 : E_0 \to \pi_0(E_0)$ is a regular Γ-cover. To check this in the case at hand, let $y \in \tilde{M}^G$. If $h \in \mathcal{D}(p)^G$, then for all $g \in G$, $ghy = hgy$, so $hy \in \tilde{M}^G$. Conversely, if $h \in \mathcal{D}(p) - \mathcal{D}(p)^G$, then for some $g \in G$, $gh \neq gh$, so $ghy \neq hgy$ by the freeness of the $\mathcal{D}(p)$-action, so $hy \notin \tilde{M}^G$.

4. Let $y \in M^G_x$ and $\alpha : I \to M^G$ be a path from x to y. Let $\tilde{\alpha} : I \to \tilde{M}$ be the unique lift of α with $\tilde{\alpha}(0) = \tilde{x}$. Then for any $g \in G$, $g \tilde{\alpha}$ is a lift starting at $g \tilde{x} = \tilde{x}$, so $g \tilde{\alpha} = \tilde{\alpha}$. Hence $\tilde{\alpha}(1) \in \tilde{M}^G$ and since $p(\tilde{\alpha}(1)) = y$ we have arrived at our conclusion.

5. By Lemma 2.2(i), $p(\tilde{M}^G)$ is path-connected and so by part 4, $M^G_x = p(\tilde{M}^G)$. On the other hand, by Lemma 2.2(ii), M^G is locally path-connected so path components are components.

6. The fixed set M^G is closed in M. Connected components are closed, so $p(\tilde{M}^G)$ is closed in M^G. Hence if M is compact so is $p(\tilde{M}^G)$. □
Proof of Theorem 2.7(1). Let \(\sigma \) be an involution on a manifold \(N^n \) homotopy equivalent to the \(n \)-torus such that \(\sigma \alpha = -\alpha \) for all \(\alpha \in H_1(N) \).

We first note that \(\sigma \) has a fixed point, because its Lefschetz number is \(2^n \neq 0 \). Indeed, \(L(\sigma) = \sum_{k=0}^n (-1)^k \text{Tr}(\sigma_k : H_k(N) \to H_k(N)) = \sum_{k=0}^n (-1)^k (-1)^k = 2^n \). Thus by Lemma 2.3(3), \(\mathcal{D}(p,C_2) \cong \Gamma \). Since \(\mathcal{D}(p) \cong \mathbb{Z}^n \) is torsion-free, all non-trivial finite subgroups of \(\Gamma \) have order two and map isomorphically to \(C_2 \) under the map \(\mathcal{D}(p,C_2) \to C_2 \).

Let \(G \) be a non-trivial finite subgroup of \(\mathcal{D}(p,C_2) \). We will show \(\tilde{N}^G \) is a point. By Lemma 2.2(2), \(N^G \) is non-empty. Since \(\mathcal{D}(p,C_2) \) is the trivial subgroup, by Lemma 2.3(3), \(N^G \) is isomorphic to \(p(\tilde{N}^G) \), which by Lemma 2.3(6) is compact. Hence by Lemma 2.2(3), \(\tilde{N}^G \) is a point.

Next we must show \(|N^{C_2}| = 2^n \). Each involution \(s \in \mathcal{D}(p,C_2) = \Gamma \) determines a point, \(p(\tilde{N}^s) \) in \(N^{C_2} \). Moreover, for involutions \(s \) and \(s' \), we have: \(p(\tilde{N}^s) = p(\tilde{N}^{s'}) \), iff for some deck transformation \(t \in \mathcal{D}(p) \), \(t(\tilde{N}^s) = \tilde{N}^{t^{-1}s} t = s \) for some \(t \in \mathcal{D}(p) \), iff \(s \) and \(s' \) are conjugate in \(\Gamma \) by an element \(t \in \mathbb{Z}^n \), iff \(s \) and \(s' \) are conjugate in \(\Gamma \) (because \(\Gamma = \mathbb{Z}^n \times C_2 \)). Therefore this rule \(s \mapsto p(\tilde{N}^s) \) induces a bijection between the set of conjugacy classes of involutions in \(\Gamma = \mathbb{Z}^n \times C_2 \) and \(N^{C_2} \). Since each such conjugacy class is represented uniquely by an element of \(\{(\varepsilon,\sigma) \mid \varepsilon \in \{0,1\}^n\} \), we obtain \(|N^{C_2}| = 2^n \). \qed

Much of the above proof could be recast in a homological light. The exact sequence (2.1) is split, since \(H^2(C_2;\mathcal{D}(p)) = 0 \), so \(\mathcal{D}(p,C_2) \cong \Gamma \). Then one shows, using the argument above, that for each non-trivial finite subgroup \(G \) of \(\mathcal{D}(p,C_2) \), \(\tilde{N}^G \) is a point. It follows that fixed points of \(N^{C_2} \) are in one-to-one correspondence with conjugacy classes of splittings of (2.1) which is in turn in one-to-one correspondence with \(H^1(C_2;\mathcal{D}(p)) \cong (C_2)^n \).

Jiang [Jia83] used fixed point theory to show that if \(\tilde{f} : \tilde{X} \to \tilde{X} \) is a lift of a self-map \(f : X \to X \) of a finite complex, then \(p(\text{Fix} \tilde{f}) \) is compact. This can be used to give an alternate proof that \(p(\tilde{N}^{C_2}) \), and hence \(\tilde{N}^{C_2} \), is compact.

Before proving Theorem 2.7(2), we need the following useful fact.

Lemma 2.4. Let \((N^n,C_2)\) be a compact \(C_2 \)-manifold with finite fixed set. If \(n \leq 5 \), assume \(\pi_1((N - N^{C_2})/C_2) \cong \Gamma \). Then \((N,C_2)\) has the equivariant homotopy type of a finite \(C_2 \)-CW complex.

Proof. This is implicit, certainly in Quinn [Qui88] but we will make it explicit here. First, the pair \((N/C_2,N^{C_2})\) is forward tame (tame in the sense of Quinn [Qui88]) by [Qui88] Proposition 2.6 and 3.6. Second, the pair is reverse tame (tame in the sense of Siebenmann [Sie65]) by [Qui88] Proposition 2.14. From this it follows from Siebenmann [Sie65], when \(n \geq 6 \), that \(N - N^{C_2} \) is the interior of a compact, free \(C_2 \) manifold, \(N \), with \(2^n \) boundary components and \(N \) is homeomorphic to \(N/\sim \), where \(\sim \) is the equivalence relation identifying each boundary component to a separate point. But \(N \) and each of its boundary components are homotopy equivalent to a finite free \(C_2 \) complex. It follows that \(N/\sim \) is homotopy equivalent to a finite \(C_2 \) complex with \(2^n \) fixed points.

Alternatively, in any dimension, we can instead argue that \((N - N^{C_2})/C_2\) and \(\text{Holink}(N/C_2,N^{C_2})\) are finitely dominated (see [Qui88] Proposition 2.15)). Since
the projective class groups vanish: \(\tilde{K}_0(\mathbb{Z}[C_2]) = 0 = \tilde{K}_0(\mathbb{Z}[\Gamma_n]) \), by Wall’s finiteness theorem \cite[Thm. F]{Wal65}, each is homotopy equivalent to a finite CW complex. So there is a finite \(C_2 \)-CW pair \((K, L)\), homotopy equivalent to the pair \((\text{Cyl}(e_1), \text{Holink}(N, N^C_2))\), where \(e_1 : \text{Holink}(N, N^C_2) \to N \rightarrow N^C_2 \) is the evaluation map at time 1. This map passes to a \(C_2 \)-homotopy equivalence of pairs:

\[
(K \cup_L \text{Cyl}(p), N^C_2) \to (\text{Cyl}(e_1) \cup_H \text{Cyl}(e_0), N^C_2)
\]

where \(H = \text{Holink}(N, N^C_2) \), and \(p : L \to N^C_2 \) is the composite \(C_2 \)-map, \(L \rightarrow H \xrightarrow{e_0} N^C_2 \). But, as noted in Quinn \cite{Qui88}, \(\text{Cyl}(e_1) \cup_H \text{Cyl}(e_0) \) is \(C_2 \)-homotopy equivalent to \(N \) and \(K \cup_L \text{Cyl}(p) \) is a finite \(C_2 \)-CW complex.

Proof of Theorem 2.4. For a discrete group \(\Gamma \), recall that a \(\Gamma \)-space \(E \) is a model for \(E_{\text{fin}} \Gamma \) if \(E^G \) is contractible for each finite subgroup \(G \subset \Gamma \), and \(E \) has the \(\Gamma \)-homotopy type of a \(\Gamma \)-CW complex, and the \(\Gamma \)-space \((E, \Gamma)\) is proper. Consider \(\mathbb{R}^n \) with its \(\Gamma_n \)-action. The action is obviously proper. The only non-trivial finite subgroups have the form \(\{1, \sigma\} \) for some involution \(\sigma \); for this subgroup the fixed set is a single point. Finally, \(\mathbb{R}^n \) admits the structure of a \(\Gamma_n \)-CW complex. For it is the universal covering of \((T^n, C_2)\), and \((T^n, C_2)\) is the \(n \)-fold cartesian product of \((S^1, C_2)\), (with the diagonal action), which is a \(C_2 \)-CW complex with exactly two (fixed) vertices.

Now let \((N, C_2)\) be as in the hypothesis of Theorem 2.1. After the choice of an isomorphism \(\mathcal{D}(p, C_2) \cong \Gamma_n \), \(\bar{N} \) is a proper \(\Gamma_n \)-manifold, and has the \(\Gamma_n \)-homotopy type of a \(\Gamma_n \)-CW complex by Lemma 2.3. For each finite subgroup \(G \) of \(\Gamma_n \), \(\bar{N}^G \) is contractible by Theorem 2.1(1). Therefore \(\bar{N} \) is also \(\Gamma_n \)-universal, and there is a unique \(\Gamma_n \)-homotopy class of \(\Gamma_n \)-maps \(g : \mathbb{R}^n \to \bar{N} \). By uniqueness, \(g \) and \(\bar{J} \) are mutually \(\Gamma_n \)-homotopy inverse. Therefore \(\bar{J} : \bar{N} \to T^n \) and its quotient, \(J : N \to T^n \) are \(C_2 \)-equivariant homotopy equivalences.

This paper focuses on actions of \(C_2 = \{1, \sigma\} \) on a torus \(N \) for which \(\sigma_* (x) = -x \) for all \(x \in H_1(N) \). But the following lemma (with Theorem 2.1) shows that this is equivalent to saying that the torus has at least one isolated fixed point:

Lemma 2.5. Suppose \(C_2 = \{1, \sigma\} \) acts on a torus \(N \) and there is at least one fixed point which is isolated in \(N^C_2 \). Then \(\sigma_* (x) = -x \) for all \(x \in H_1(N) \).

Proof. Lift the involution to an involution \(\tilde{\sigma} : \bar{N} \to \bar{N} \) with an isolated fixed point \(\tilde{x} \in \bar{N} \). The group \(G = \{1, \tilde{\sigma}\} \) fixes only \(\tilde{x} \) since the fixed set is mod 2 acyclic. But the centralizer, \(Z_{\mathcal{D}(p)}(G) \) acts freely on this fixed set \(\{\tilde{x}\} \), since the action is proper. So if \(t \in \mathcal{D}(p) \), and \(t \tilde{\sigma} = \tilde{\sigma} t \), then \(t = 1 \). Therefore, if \(x \in H_1(N) \cong \mathcal{D}(p) \), and \(\sigma_* (x) = x \), then \(x = 0 \). This implies that \(\sigma_* (x) = -x \) for all \(x \in H_1(N) \).

3. Equivariant and isovariant structures

Definition 3.1. The equivariant structure set \(\mathcal{X}_{\text{TOP}}(\mathbb{R}^n, \Gamma_n) \), is the set of equivalence classes of pairs \((M, \Gamma_n, f)\), where \((M, \Gamma_n)\) is a manifold with a cocompact proper \(\Gamma_n \)-action, and \(f : M \to \mathbb{R}^n \) is a \(\Gamma_n \)-equivariant homotopy equivalence. Often we write such pairs as \((M, f)\). Two such pairs \((M, f)\) and \((M', f')\) are equivalent if there is an equivariant homeomorphism \(h : M \to M' \) and an equivariant homotopy \(H \) from \(f \) to \(f' \circ h \). One defines the isovariant structure sets \(\mathcal{X}_{\text{TOP}}(\mathbb{R}^n, \Gamma_n) \) and \(\mathcal{X}_{\text{TOP}}(T^n, C_2) \) similarly, except one requires that \(f \) is an isovariant homotopy equivalence and that \(H \) is an isovariant homotopy.
Remark 3.2. We make no requirements on the fixed sets of subgroups in M and N above, because we have seen (in Section 2) that these fixed sets are discrete. A result of Quinn [Qui88, Prop. 2.6, Prop. 3.6] then guarantees that there are no local pathologies in such manifolds.

The universal covering of a C_2-homotopy equivalence, $f : N^n \to T^n$ is a Γ_n-homotopy equivalence $\tilde{f} : \tilde{N}^n \to \tilde{T}^n$. Moreover \tilde{f} is isovariant if f is isovariant. This gives obvious bijections:

\begin{align*}
(3.1) & \quad \mathcal{S}_\text{TOP} (T^n, C_2) \xrightarrow{\cong} \mathcal{S}_\text{TOP} (\mathbb{R}^n, \Gamma_n) \\
(3.2) & \quad \mathcal{S}_\text{TOP}^{iso} (T^n, C_2) \xrightarrow{\cong} \mathcal{S}_\text{TOP}^{iso} (\mathbb{R}^n, \Gamma_n).
\end{align*}

Consider the closed C_2-manifold $T := T^n$. Write $X := (T - T^{C_2})/C_2$, an open n-manifold. Define \hat{X} as the obvious manifold compactification of X obtained by adding a copy of \mathbb{R}^{n-1} at each end of X. Label the boundary components:

$$\partial \hat{X} = \bigsqcup_{i=1}^{2^n} \partial_i \hat{X}.$$

Definition 3.3. For $n \geq 5$, the structure set $\mathcal{S}_\text{TOP} (\hat{X}, \partial \hat{X})$ is the set of equivalence classes of triples $(\tilde{Y}, \tilde{h}, \partial \tilde{h})$, where \tilde{Y} is a compact n-manifold and $(\tilde{h}, \partial \tilde{h}) : (\tilde{Y}, \partial \tilde{Y}) \to (\hat{X}, \partial \hat{X})$ is a homotopy equivalence of pairs. Such triples $(\tilde{Y}, \tilde{h}, \partial \tilde{h})$ and $(\tilde{Y}', \tilde{h}', \partial \tilde{h}')$ are equivalent if there is a homeomorphism $\varphi : \tilde{Y} \to \tilde{Y}'$ such that $(\tilde{h}', \partial \tilde{h}') \circ \varphi$ is homotopic to $(\tilde{h}, \partial \tilde{h})$. Compare [Wal99, §10]; we used $\text{Wh}(\Gamma_n) = 0$.

For the four-dimensional case, some modifications are required.

Definition 3.4. For $n = 4$, the structure set $\mathcal{S}_\text{TOP} (\hat{X}, \partial \hat{X})$ is the set of equivalence classes of triples $(\tilde{Y}, \tilde{h}, \partial \tilde{h})$, where \tilde{Y} is a compact topological 4-manifold and $(\tilde{h}, \partial \tilde{h}) : (\tilde{Y}, \partial \tilde{Y}) \to (\hat{X}, \partial \hat{X})$ is a $\mathbb{Z}[\Gamma_4]$-homology equivalence of pairs. Such triples $(\tilde{Y}, \tilde{h}, \partial \tilde{h})$ and $(\tilde{Y}', \tilde{h}', \partial \tilde{h}')$ are equivalent if there is a $\mathbb{Z}[\Gamma_4]$-homology h-bordism $(W, Y^0, Y^1) : X \times (I; 0, 1)$ between them. Compare [FQ90, §11.3].

For our application, we give a more explicit form of this general notion.

Remark 3.5. Since $\text{Wh}(\Gamma_4) = 0$ and Γ_4 is “good” in the sense of [FQ90], we can simplify Definition 3.4. First, for a representative $(\tilde{Y}, \tilde{h}, \partial \tilde{h})$, by the manifold-theoretic plus-construction rel boundary [FQ90, §11.1], we can assume that $\tilde{h} : \partial \tilde{Y} \to \partial \hat{X}$ is a homotopy equivalence. Second, two triples $(\tilde{Y}, \tilde{h}, \partial \tilde{h})$ and $(\tilde{Y}', \tilde{h}', \partial \tilde{h}')$ are equivalent, by plus-construction on \hat{W}, if and only if there are:

- a non-orientable closed 3-manifold $P = \bigsqcup_{j=1}^{16} P_j$
- $\mathbb{Z}[\Gamma_4]$-homology h-cobordisms $(\tilde{Z}_j ; \partial \tilde{Z}_j, \partial P_j)$ for both $j = 0, 1$
- $\mathbb{Z}[\Gamma_4]$-homology equivalences $g_0^j : \tilde{Z}_j \to \partial \hat{X}$ extending $\partial \tilde{h}_j : \partial \tilde{Y}_j \to \partial \hat{X}$
- a homeomorphism $\varphi : \tilde{Y}^0 \cup_{\partial \tilde{Y}^0} \tilde{Z}_0 \to \tilde{Y}^1 \cup_{\partial \tilde{Y}^1} \tilde{Z}_1$ relative to P

such that $(\tilde{h}_0 \cup g_0^1) \circ \varphi$ is homotopic to $(\tilde{h}_0 \cup g_0^0)$ relative to P. See [FQ90, §11.1].

Lemma 3.6. Suppose $n \geq 4$. There is a bijection:

$$\Phi : \mathcal{S}_\text{TOP} (\hat{X}, \partial \hat{X}) \xrightarrow{\cong} \mathcal{S}_\text{TOP}^{iso} (\mathbb{R}^n, C_2).$$

Proof. First, suppose $n \geq 5$. Let $(\tilde{h}, \partial \tilde{h}) : (\tilde{Y}, \partial \tilde{Y}) \to (\hat{X}, \partial \hat{X})$ be a homotopy equivalence of pairs, where \tilde{Y} is a compact n-dimensional topological manifold. So $(\tilde{h}, \partial \tilde{h})$ is an element of $\mathcal{S}_\text{TOP} (\hat{X}, \partial \hat{X})$. Denote \tilde{X} and \tilde{Y} as the corresponding double
cover of \overline{X} and \overline{Y}. Passage to double covers induces a C_2-equivariant homotopy equivalence $(\hat{h}, \partial \hat{h}) : (\hat{Y}, \partial \hat{Y}) \to (\hat{X}, \partial \hat{X})$. Each component $\partial \hat{Y}$ of $\partial \hat{Y}$ is homotopy equivalent to, and therefore homeomorphic to the sphere S^{n-1} (see [Sma61, FQ90]). Hence the cone $c(\partial \hat{Y})$ is homeomorphic to the disc D^n. So $N := \hat{Y} \cup \bigcup_i c(\partial \hat{Y})$ is a topological C_2-manifold. Thus, by coning off each map $\partial_i \hat{h}$, we obtain a function

$$\Phi : \mathcal{S}_{\text{TOP}}(X, \partial X) \to \mathcal{S}_{\text{TOP}}(T, C_2) : (\hat{h}, \partial \hat{h}) \mapsto \hat{h} \cup \bigcup_i c(\partial_i \hat{h}).$$

Now we show that Φ is a bijection by exhibiting its inverse. Let $f : N \to T^n$ be a C_2-equivariant homotopy equivalence. This gives a proper homotopy equivalence:

$$f/C_2 : (N - N^{C_2})/C_2 \to (T - T^{C_2})/C_2.$$

Then, since all the ends of $(T - T^{C_2})/C_2$ are tame, the ends of $(N - N^{C_2})/C_2$ are also tame. Note $Wh(C_2) = K_0(\mathbb{Z}[C_2]) = 0$. Then, by a theorem of Siebenmann [Sie65] (or of Freedman if $n = 5$, see [FQ90]), we can fit a unique boundary, $\partial \overline{N}$ onto $(N - N^{C_2})/C_2$, thereby creating a compact manifold \overline{N}, unique up to homeomorphism. So we can extend f/C_2 to \overline{N}. (Here a small proper equivariant homotopy of f/C_2 may be needed before the extension.) This construction, $[N, f] \mapsto [\overline{N}, f]$ is clearly inverse to Φ. We conclude that Φ is both surjective and injective.

Finally, it remains to consider Φ for $n = 4$. Let $(\hat{h}, \partial \hat{h}) : (\hat{Y}, \partial \hat{Y}) \to (\hat{X}, \partial \hat{X})$ be a map of pairs such that $\overline{\hat{N}} : \overline{\hat{Y}} \to \overline{\hat{X}}$ is a homotopy equivalence of 4-manifolds and each $\partial_i \hat{h} : \partial_i \hat{Y} \to \partial_i \hat{X}$ is a $\mathbb{Z}[C_2]$-homotopy equivalence of 3-manifolds. Recall the notation $(\hat{)}$ for the double cover of $(\hat{)}$, used above for $n \geq 5$. For each i, by [FQ90, Proposition 11.1C], there is a compact contractible 4-manifold $c^*(\partial_i \hat{Y})$ with a C_2-action such that its C_2-equivariant boundary is the homology 3-sphere $\partial \hat{Y}$ and it has a single fixed point. It is unique up to C_2-homeomorphism. Using that isolated fixed point, one can construct a C_2-isovariant homotopy equivalence

$$c^*(\partial_i \hat{h}) : c^*(\partial_i \hat{Y}) \to c(\partial_i \hat{X}).$$

Suppose $\overline{(\hat{Y}^0, \overline{\hat{Y}^0}, \partial \overline{\hat{Y}^0})}$ is equivalent to $\overline{(\hat{Y}, \hat{Y}, \partial \hat{Y})}$, in the sense of Definition 3.4. In the setting of Remark 3.3 there is a C_2-homeomorphism $\hat{Y}^0 \cup \hat{Z}^0 \to \hat{Y}^1 \cup \hat{Z}^1$. For each $j = 0, 1$, by uniqueness in [FQ90, Prop. 11.1C], there are C_2-homeomorphisms $c^*(\partial_j \hat{Y}^j) : \hat{Z}^j \to c^*(\hat{P}_j)$.

Using the identity map on each $c^*(\hat{P}_j)$, these produce a C_2-homeomorphism $N^{0*} := \hat{Y}^0 \cup \bigcup_i c^*(\partial_i \hat{Y}^0) \to N^{1*} := \hat{Y}^1 \cup \bigcup_i c^*(\partial_i \hat{Y}^1)$.

Thus we may define Φ on equivalence classes similarly to the high-dimensional case, except we use the “homotopy cones” c^* instead of the “honest cones” c. The argument for showing that Φ is a bijection as in the high-dimensional case, except for surjectivity we invoke the Weak End Theorem [FQ90, Thm. 11.9B] and for injectivity we invoke the Classification of Weak Collars [FQ90, Thm. 11.9C(2)].

Lemma 3.7. Suppose $n \geq 4$. Consider the above-defined structure sets.

1. The following forgetful maps are bijections:

$$\Psi : \mathcal{S}_{\text{TOP}}(\mathbb{R}^n, \Gamma_n) \xrightarrow{\cong} \mathcal{S}_{\text{TOP}}(\mathbb{R}^n, \Gamma_n)$$

$$\psi : \mathcal{S}_{\text{TOP}}(T^n, C_2) \xrightarrow{\cong} \mathcal{S}_{\text{TOP}}(T^n, C_2).$$
(2) The following forgetful map is a bijection:
\[\chi : S_{\text{TOP}}(\mathbb{R}^n, \Gamma_n) \xrightarrow{\simeq} \mathcal{S}(\Gamma_n). \]

Proof. For Part (1), in view of the bijections \(u \) and \(u^{iso} \), it suffices to prove that \(\psi \) is a bijection. We do this in Appendix A.

For Part (2), it is immediate from Theorem [2.41(2)] that \(\chi \) is injective. We must prove it is surjective. Let \([M, \Gamma_n]\) be in \(\mathcal{S}(\Gamma_n) \). Let \(J : M \rightarrow \mathbb{R}^n \) be its classifying map. Since \(M/\mathbb{Z}^n \) is an Eilenberg–MacLane space of form \(K(\mathbb{Z}, 1) \simeq T^n \) and also an \(n \)-manifold, it follows that \(M/\mathbb{Z}^n \) is compact. So \(M/\Gamma_n \) is compact. The fixed set in \(M \) of each finite subgroup of \(\Gamma \) is contractible, so \(J \) is a homotopy equivalence. Therefore \([M, \Gamma_n] \), \(\tilde{J} \) \(\in S_{\text{TOP}}(\mathbb{R}^n, \Gamma_n) \) and so \(\chi \) is surjective. \(\square \)

Proposition 3.8. Suppose \(n \geq 4 \). The following map \(\alpha \) is a bijection:
\[\alpha := \chi \circ u \circ \psi \circ \Phi : S_{\text{TOP}}(X, \partial X) \xrightarrow{\simeq} \mathcal{S}(\Gamma_n) ; \quad [X, \text{id}] \mapsto [\mathbb{R}^n, \Gamma_n]. \]

Proof. This follows immediately from (3.1), Lemma 3.6 and Lemma 3.7. \(\square \)

4. Calculation of the isovariant structure set

Our ultimate goal here is to prove Theorem [1.1]. We also establish the Topological Rigidity Conjecture (of Section [1.3]) for the crystallographic group \(\Gamma \).

Throughout this section, we assume \(n \geq 4 \) and shall use the shorthand \(\Gamma := \Gamma_n \).

For each family \(\mathcal{F} \) of subgroups of \(\Gamma \), we write \(E_{\mathcal{F}} \Gamma \) for the classifying space for \(\Gamma \)-CW complexes whose isotropy groups are in \(\mathcal{F} \). We use the families \(\text{fin}, \text{vc}, \) and \(\text{all} \), consisting of finite, virtually cyclic and all subgroups respectively. For the remainder of this section, since the subgroups of \(\Gamma = \Gamma_n \) have trivial reduced lower \(K \)-theory, for ease of reading, we shall simply write \(L \) for the \(\text{Or}(\Gamma) \)-spectrum \(L^h \).

Recall the Wall realization map [Wal99 Thms. 5.8, 6.5], relative to the boundary:
\[\partial^\text{Wall} : L^h_{n+1}(\Gamma, w_n) \rightarrow S_{\text{TOP}}(X) \rightarrow S_{\text{TOP}}(X, \partial X). \]

Using Cappell’s map [Cap74b], define a composite homomorphism
\[\beta : \bigoplus_{D \in (\text{mid})(\Gamma)} \text{Unil}_{n+1}(\mathbb{Z}; \mathbb{Z}^\varepsilon, \mathbb{Z}^\varepsilon) \rightarrow \bigoplus_{D \in (\text{mid})(\Gamma)} L^h_{n+1}(D, w_n) \rightarrow L^h_{n+1}(\Gamma, w_n). \]

Now we can define the desired basepoint-preserving function
\[\partial_{\beta} := \alpha \circ \partial^\text{Wall} \circ \beta : \bigoplus_{D \in (\text{mid})(\Gamma)} \text{Unil}_{n+1}(\mathbb{Z}; \mathbb{Z}^\varepsilon, \mathbb{Z}^\varepsilon) \rightarrow \mathcal{S}(\Gamma). \]

It remains to show that \(\partial_{\beta} \) is a bijection of sets. This will span several lemmas.

4.1. Algebraic structure groups and equivariant homology. For cofibrant pairs \((A, B) \) of topological spaces, A. Ranicki [Ran79] defined the algebraic structure groups \(S(1)^h_s \) as the homotopy groups of the homotopy cofiber of an assembly map \(\alpha(1) \), so that there is a long exact sequence
\[\cdots \rightarrow H_s(A, B; L(1)) \xrightarrow{\alpha(1)} L^h_s(A, B) \rightarrow S(1)^h_s(A, B) \rightarrow H_{s-1}(A, B; L(1)) \xrightarrow{\alpha(1)} \cdots . \]

Here \(L(1) \) is the 1-connective cover of the 4-periodic surgery spectrum \(L \) algebraically defined in [Ran79]. (The homotopy invariant functor \(S(1)^h_s \) is a desuspended chain-complex analogue of the geometric structure groups \(\mathcal{S}^h \) originally defined by F. Quinn.) When a map \(i : B \rightarrow A \) is understood, we shall write \((A, B)\)
for the cofibrant pair (Cyl(i), B). The relative L-groups $L^h_k(A, B) = L^h_k(i : B \to A)$ were defined algebraically by Ranicki [Ran81], following C.T.C. Wall [Wal99].

For computational purposes, we employ the non-connective version S^h_k of $S(1)^h_k$. It is the homotopy groups of a homotopy cofiber of an assembly map α:

$$\cdots \to H_n(A, B; \mathbf{L}) \xrightarrow{\alpha} L^h_k(A, B) \to S^h_k(A, B) \to H_{n-1}(A, B; \mathbf{L}) \xrightarrow{\alpha} \cdots .$$

Remark 4.1. Suppose $B = \emptyset$ and that A is the quotient of a free Γ-action on a space \tilde{A} each of whose components is simply connected. Write $\Pi_0(\tilde{A})$ for the Γ-set of components of \tilde{A}; there is a canonical Γ-map $\tilde{A} \to \Pi_0(\tilde{A})$. By Theorem B.1 the Quinn–Ranicki assembly map can be naturally identified with the Davis–Lück assembly map, at the spectrum level. Then the cofibers of these assembly maps agree in a functorial manner. Specifically, Appendix B constructs an isomorphism in $\text{Hosc}(\Gamma, 1)\text{CW-Spectra}$, whose value on \tilde{A} after the application of homotopy groups gives an isomorphism:

$$H^\Gamma_0(\Pi_0(\tilde{A}), \tilde{A}; \mathbf{L}) \xrightarrow{\cong} S^h_k(A).$$

Write $\mathbb{R}^n_{\text{free}} := \{x \in \mathbb{R}^n \mid \Gamma_x \approx 1\}$ for those points with trivial isotropy group. Observe that $\mathbb{R}^n_{\text{free}}$ equivariantly deformation retracts to the universal cover of \tilde{X}. There is a canonical Γ-map from \mathbb{R}^n to its singleton $\{\mathbb{R}^n\}$ with trivial Γ-action.

Lemma 4.2. There is a commutative diagram with long exact rows:

$$
\begin{array}{cccc}
\cdots & \to & H^\Gamma_1(\mathbb{R}^n, \mathbb{R}^n_{\text{free}}; \mathbf{L}) & \to & H^\Gamma_1(\mathbb{R}^n, \mathbb{R}^n_{\text{free}}; \mathbf{L}) & \to & H^\Gamma_1(\mathbb{R}^n, \mathbb{R}^n_{\text{free}}; \mathbf{L}) & \to & \cdots \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\cdots & \to & s^h_k(\partial \tilde{X}) & \to & s^h_k(\tilde{X}) & \to & s^h_k(\tilde{X}, \partial \tilde{X}) & \to & s^h_{k-1}(\partial \tilde{X}).
\end{array}
$$

Furthermore, the vertical maps are isomorphisms of abelian groups.

Proof. The top row is the long exact sequence of the triple $((\mathbb{R}^n), \mathbb{R}^n, \mathbb{R}^n_{\text{free}})$ in Γ-equivariant \mathbf{L}-homology [DL98]. The bottom row is the long exact sequence of the pair $(\tilde{X}, \partial \tilde{X})$ in algebraic structure groups [Ran92]. The inner left vertical map is induced on homotopy groups from (4.1) for $A = \mathbb{R}^n_{\text{free}}$. Write $D(\mathbb{R}^n_{\text{sing}})$ for the Γ-subset of points in \mathbb{R}^n of distance ≤ 0.2 from $\mathbb{R}^n_{\text{sing}}$. Define $S(\mathbb{R}^n_{\text{sing}}) := \partial D(\mathbb{R}^n_{\text{sing}})$. The outer vertical maps are induced on homotopy groups from (4.1) for $A = S(\mathbb{R}^n_{\text{sing}})$, precompressed with the inverse of the induced excision map

$$H^\Gamma_0(D(\mathbb{R}^n_{\text{sing}}), S(\mathbb{R}^n_{\text{sing}}); \mathbf{L}) \to H^\Gamma_0(\mathbb{R}^n, \mathbb{R}^n_{\text{free}}; \mathbf{L}).$$

By functoriality of (4.1), the left square’s diagram of spectra homotopy-commutes. In particular, the left square itself commutes. Then the inner right map is induced from a well-defined homotopy class of map of spectra. So the middle square and right square are defined and commute. Therefore, since (4.1) implies the outer maps and inner left map are isomorphisms, by the Five Lemma, we conclude that the inner right map is an isomorphism also.

Remark 4.3. By the Isomorphism Conjecture [BL12] and Bartels' splitting theorem [Bar03] on the top row, we conclude that the connecting homomorphism $s^h_k(\partial \tilde{X}) \to S^h_{k-1}(\partial \tilde{X})$ is zero. Therefore, using Ranicki's natural bijection (see Remark 4.7 below), the forgetful map $\mathcal{S}_{\text{TOP}}(\tilde{X}, \partial \tilde{X}) \to \mathcal{S}_{\text{TOP}}(\partial \tilde{X})$ is constant.
We now calculate $H^1_\Gamma(E_{vc}\Gamma, E_{\text{fin}}\Gamma; L)$ by using a specific model for the spaces involved. Models of $E_{vc}G$ for crystallographic groups G are due to Connolly–Fehrman–Hartglass [CFH]. For any group G, Lück–Weiermann [LW12] built models of $E_{vc}G$ from $E_{\text{fin}}G$. However, the following lemma is shown directly for our Γ.

Let C be an infinite cyclic subgroup of Γ. Let \mathcal{P}_C denote the collection of all affine lines $\ell \subset \mathbb{R}^n$ which are stabilized by C. Endow \mathcal{P}_C with the affine structure and topology of a copy of \mathbb{R}^{n-1}. Since \mathcal{P}_C is a partition of \mathbb{R}^n, there is a continuous quotient map $\pi_C : \mathbb{R}^n \to \mathcal{P}_C$. Since C is normal in Γ, the Γ-action on \mathbb{R}^n extends to a Γ-action on the mapping cylinder, $\text{Cyl}(\pi_C)$.

Let $\text{mic}(\Gamma)$ denote the collection of maximal infinite cyclic subgroups of Γ.

Lemma 4.4. A model E for the classifying space $E_{vc}\Gamma$ (classifying Γ-CW complexes with virtually cyclic isotropy) is the union along \mathbb{R}^n of mapping cylinders:

$$E := \bigcup_{C \in \text{mic}(\Gamma)} \text{Cyl}(\pi_C : \mathbb{R}^n \to \mathcal{P}_C).$$

Proof. If H is a finite nontrivial subgroup of Γ, then E^H is a tree with one edge in $\text{Cyl}(\pi)^C$ for each $C \in \text{mic}(\Gamma)$. So E^H is contractible. If H is infinite cyclic or infinite dihedral, there is just one $C \in \text{mic}(\Gamma)$ for which $\text{Cyl}(\pi_C)^H$ is non-empty. For this C, observe that $\text{Cyl}(\pi_C)^H$ is a single point when H is dihedral and is all of $\text{Cyl}(\pi_C)$ when H is cyclic. Also $E = E^{(1)}$ is contractible, and E^H is empty if H is not virtually cyclic.

Finally, we must prove that E has the structure of a Γ-CW complex. We begin by assuming K is a Γ-CW structure on \mathbb{R}^n which is convex. By this we mean each closed cell is convex, and its boundary is a subcomplex. It suffices to show how to extend K to a Γ-CW structure over each mapping cylinder, $\text{Cyl}(\pi_C)$ in E.

So fix C and parametrize $\text{Cyl}(\pi_C)$ as

$$\text{Cyl}(\pi_C) = \mathbb{R}^n \times [-1, 1] \cup_{\pi_C} \mathcal{P}_C,$$

where $(x, 1) = \pi_C(x)$ for all $x \in \mathbb{R}^n$.

There are convex Γ-CW structures, L on \mathcal{P}_C, and \hat{L} on \mathbb{R}^n, so that each j-cell f of L has the form $\pi_C(f)$ for some $(j+1)$-cell \hat{f} of \hat{L}. This endows $\mathbb{R}^n \times [0, 1] \cup_{\pi_C} \mathcal{P}_C$ with the structure of a Γ-CW complex, K_+ so that $\mathbb{R}^n \times 0$ is the complex \hat{L}. Now \hat{L} and K have a common subdivision K', since each is convex. There is then a CW structure K_- on $\mathbb{R}^n \times [-1, 0]$ in which K_-, K', and \hat{L} are identified with $\mathbb{R}^n \times \{-1\}, \mathbb{R}^n \times \{-\frac{1}{2}\}$ and $\mathbb{R}^n \times \{0\}$ respectively as subcomplexes. (Also, $e \times [-1, -\frac{1}{2}]$ and $f \times [-\frac{1}{2}, 0]$ are cells of K_- if e and f are cells of K and \hat{L} respectively.) Then $K_+ \cup K_-$ is the required Γ-CW structure on $\text{Cyl}(\pi_C)$. \qed

Each infinite dihedral subgroup D of Γ contains a unique maximal infinite cyclic subgroup C. Moreover, D has a unique invariant line, $\ell_D \subset \mathbb{R}^n$. The image of ℓ_D in \mathcal{P}_C is a single point, which we denote by the singleton $\{\ell_D\} = \pi_C(\ell_D)$.

Lemma 4.5. The inclusion-induced map is an isomorphism of abelian groups:

$$\bigoplus_{D \in (\text{mid})(\Gamma)} H^1_\Gamma(\{\ell_D\}, \ell_D; L) \to H^1_\Gamma(E, \mathbb{R}^n; L).$$

Proof. Lemma 4.1 of [DQR11] allows one to translate between maps induced by Γ-maps of classifying spaces for actions with isotropy in a family to maps induced by maps of $\text{Or}(\Gamma)$-spectra. There is a homotopy cofiber sequence of $\text{Or}(\Gamma)$-spectra:

$$L_{\text{fin}} \to L \to L/L_{\text{fin}}.$$
By [DQR11] Lemma 4.1(ii), the following absolute homology group vanishes:
\[H^*_e(\mathbb{R}^n; \mathbb{L}/\mathbb{L}_{\text{fin}}) = 0. \]

Also, by [DQR11] Lemma 4.1(iii), the following relative homology group vanishes:
\[H^*_e(E, \mathbb{R}^n; \mathbb{L}/\mathbb{L}_{\text{fin}}) = 0. \]

So we obtain a composite isomorphism, informally first observed by Quinn:
\[(4.3) \quad H^*_e(E, \mathbb{R}^n; \mathbb{L}) \cong H^*_e(E, \mathbb{R}^n; \mathbb{L}/\mathbb{L}_{\text{fin}}) \cong H^*_e(E; \mathbb{L}/\mathbb{L}_{\text{fin}}). \]

Now, since \(N_\Gamma(C) = \Gamma \), by Lemma 4.4 and excision, we obtain:
\[(4.2) \quad \bigoplus_{C \in \text{mic}(\Gamma)} H^*_e(P_C; \mathbb{L}/\mathbb{L}_{\text{fin}}) \cong H^*_e(E; \mathbb{L}/\mathbb{L}_{\text{fin}}). \]

Fix \(C \in \text{mic}(\Gamma) \). Observe that the action of the group \(\Gamma/C \) on the parallel pencil \(P_C \) has a discrete singular set:
\[\text{sing} P_C := \{ \ell_D \in P_C | C \subset D \text{ for some } D \in \text{mid}(\Gamma) \}. \]

Let \(U \) be a \(\Gamma \)-tubular neighborhood of \(\text{sing} P_C \) in \(P_C \). Write \(V := P_C - \text{sing} P_C \). Recall, by a theorem of J. Shaneson [Sha69], that the following assembly map is a homotopy equivalence:
\[A_C : S^1_+ \wedge \mathbb{L}(1) \rightarrow \mathbb{L}(C). \]

That is, the spectrum \((\mathbb{L}/\mathbb{L}_{\text{fin}})(\Gamma/C)\) is contractible. So, since \(V \) has isotropy \(C \):
\[H^*_e(U \cap V; \mathbb{L}/\mathbb{L}_{\text{fin}}) = 0 = H^*_e(V; \mathbb{L}/\mathbb{L}_{\text{fin}}). \]

Since \(\text{sing} P_C \) is discrete, there is a \(\Gamma \)-homotopy equivalence:
\[\bigcup_{D \supset C \in \text{mid}(\Gamma)} \Gamma \times D \{ \ell_D \} \cong \text{sing} P_C \cong U. \]

So the homotopy and excision axioms of equivariant homology imply:
\[\bigoplus_{D \supset C \in \text{mid}(\Gamma)} H^*_e(\Gamma \times D \{ \ell_D \}; \mathbb{L}/\mathbb{L}_{\text{fin}}) \cong H^*_e(U; \mathbb{L}/\mathbb{L}_{\text{fin}}) \Rightarrow H^*_e(P_C; \mathbb{L}/\mathbb{L}_{\text{fin}}). \]

Thus (4.3) and the induction axiom of equivariant homology imply:
\[\bigoplus_{D \in \text{mid}(\Gamma)} H^D_*(\{ \ell_D \}; \mathbb{L}/\mathbb{L}_{\text{fin}}) \cong H^*_e(E; \mathbb{L}/\mathbb{L}_{\text{fin}}). \]

Finally, since \(\ell_D \) is a model for \(E_{\text{fin}}D \), by [DQR11] Lemma 4.1(ii) again, we obtain:
\[H^*_e(\{ \ell_D \}; \mathbb{L}) \cong H^D_*(\{ \ell_D \}; \mathbb{L}/\mathbb{L}_{\text{fin}}) \cong H^D_*(\{ \ell_D \}; \mathbb{L}/\mathbb{L}_{\text{fin}}). \]

This completes the proof. \(\square \)

Lemma 4.6. Recall \(\varepsilon = (-1)^n \). Let \(D \) be an infinite dihedral subgroup of \(\Gamma \). Then the following composite map is an isomorphism of abelian groups:
\[\text{UNil}_{n+1}(\mathbb{Z} \varepsilon, \mathbb{Z} \varepsilon) \rightarrow L_{n+1}(D, w_n) = H^D_{n+1}(\{ \ell_D \}; \mathbb{L}) \rightarrow H^D_{n+1}(\{ \ell_D \}, \ell_D; \mathbb{L}). \]
Proof. Denote the map under consideration by ϕ. Consider the maps

$$L_{n+1}(C_2, \varepsilon) \oplus L_{n+1}(C_2, \varepsilon) \xrightarrow{i} H^D_{n+1}(\ell_D; L) \xrightarrow{j} L_{n+1}(D, \nu_n)$$

and

$$L_n(1) \xrightarrow{k} L_n(C_2, \varepsilon) \oplus L_n(C_2, \varepsilon).$$

Observe that ϕ has a factorization given by the commutative diagram

Here, the map ∂_{alg} is a monomorphism induced from the connecting map in the Mayer–Vietoris sequence for D-equivariant L-homology. The map ∂_{top} is induced from the connecting map in Cappell’s exact sequence in L-theory. By [Cap74b, Theorem 2], the map c is injective. By [Cap74b, Theorem 5(ii)], the middle row is exact. By Bartels’ theorem [Bar03], the bottom horizontal map is an isomorphism. For general group-theoretic reasons, the middle column is exact and κ is surjective.

Note, by the calculation in [Wal99, Theorem 13A.1], that $\text{Ker}(k) = 0$ for all n. Then c is surjective and $\text{Cok}(i) = 0$. Therefore κ, hence ϕ, is an isomorphism. □

Remark 4.7. In the context of the surgery fibration sequence [Ran92, Thm. 18.5], Ranicki’s total surgery obstruction for homotopy equivalences is a bijection:

$$s : S_{\text{TOP}}(X, \partial X) \xrightarrow{\sim} S_{1}^{h1}(X, \partial X).$$

Indeed this holds for $n = 4$, since $\Gamma_4 = \mathbb{Z}^4 \rtimes_{-1} C_2$ satisfies the Null Disc Lemma [FQ90], and since we use homology equivalences on the 3-dimensional boundary. Since X is n-dimensional, by the Atiyah–Hirzebruch spectral sequence, we obtain:

$$H_m(X, \partial X; L/L(1)) = 0 \quad \text{for all } m > n.$$

Hence the following induced map is an isomorphism:

$$s^{h1}_{n+1}(X, \partial X) \xrightarrow{\sim} S^{h1}_{n+1}(X, \partial X).$$

Proposition 4.8. The composite $\partial_{Wall} \circ \beta$ is a bijection of pointed sets.

Proof. Consider the commutative diagram

The composition of the three maps in the top row is $\partial_{Wall} \circ \beta$. By Lemma 4.6, the leftmost vertical map is an isomorphism. By Lemma 4.3, the leftmost map of the bottom row is an isomorphism. By Lemma 4.4 and the Farrell–Jones Conjecture...
The three bijections hold as in the earlier diagram. Define a precursor map \(\tilde{\Phi} \), the middle map of the bottom row is an isomorphism. By Lemma 4.2, the rightmost map of the bottom row is an isomorphism. By Remark 4.7, the rightmost vertical map is an bijection. This completes the proof.

Proof of Theorem 1.2 This follows from Propositions 3.8 and 4.8 and (1.1).

4.2. Verification of the Topological Rigidity Conjecture

Lastly, we show that our precise conjecture is satisfied for our family of crystallographic examples.

Proof of Conjecture for \((X^n, \Gamma) = (\mathbb{R}^n, \Gamma_n)\). Consider the commutative diagram

\[
\begin{array}{ccc}
H^\Gamma_{n+1}(\mathbb{R}^n, L) & \xrightarrow{A_{\text{tvn}}^\Gamma} & H^\Gamma_{n+1}(E; L) \\
\downarrow & & \downarrow \\
H^\Gamma_{n+1}(E, \mathbb{R}^n, L) & \xrightarrow{\partial_{\text{wall}}} & H^\Gamma_{n+1}(\mathbb{R}^n, \mathbb{R}^n, L) \\
\end{array}
\]

The three bijections hold as in the earlier diagram. Define a precursor map \(\tilde{\partial} \) by

\[
\tilde{\partial} := u^{iso} \circ \Phi \circ \partial_{\text{wall}} \circ A_{\text{tv}}^{\Gamma} : H^\Gamma_{n+1}(E; L) \to \mathcal{J}_{\text{iso}}(\mathbb{R}^n, \Gamma).
\]

By a theorem of A. Bartels [Bar03], there is a short exact sequence

\[
0 \to H^\Gamma_{n+1}(\mathbb{R}^n; L) \xrightarrow{A_{\text{tvn}}^\Gamma} H^\Gamma_{n+1}(E; L) \to H^\Gamma_{n+1}(E, \mathbb{R}^n, L) \to 0.
\]

Then \(\tilde{\partial} \) induces a map \(\partial \) from \(\text{Cok}(A_{\text{tv}}^{\Gamma}) \). Using the identification (4.2), we obtain:

\[
\partial : H^\Gamma_{n+1}(E^{\Gamma}; L/L_{\text{fin}}) \to \mathcal{J}_{\text{iso}}(\mathbb{R}^n, \Gamma).
\]

Therefore, since \(u^{iso} \) and \(\Phi \) are bijections, this desired map \(\partial \) is also a bijection.

5. Classification of involutions on tori

The goal of this section is to prove Theorem 1.1.

Proof of Theorem 1.1. This is immediate from Theorem 2.1.

Proof of Theorem 1.1(2). The case \(n = 0 \) is trivial: \(T^0 = \mathbb{R}^0/\mathbb{Z}^0 = \text{pt} \).

Assume \(n = 1 \). Set \(D^1_+ := \{ z = x + iy \in S^1 \subset \mathbb{C} \mid \pm y \geq 0 \} \).

Write \(a, b \in N \) for the fixed points of \(\sigma \). Let \(f : D^1_+ \to N \) be a homeomorphism of \(D^1_+ \) onto either arc in \(N \) with endpoints \(a \) and \(b \). Extend \(f \) to a continuous map \(f : S^1 \to N \) by setting

\[
f(z) = \sigma f(\overline{z}) \quad \forall z \in D^1_+.
\]

Then \(f : (S^1, C_2) \to (N, C_2) \) is an equivariant homeomorphism.

Assume \(n = 2, 3 \). There is a homeomorphism \(f : N \to T^n \) (by work of Perelman [And04] for \(n = 3 \)). We want to show that each fixed point \(x \in N^{C_2} \) has an invariant neighborhood \(D \) such that \((D, C_2)\) is homeomorphic to \((D^n, C_2)\), the orthogonal action fixing only 0.

To see this, note the involution \(\sigma \) of \((N, x)\) lifts to an involution of the universal cover \((\tilde{N}, \tilde{x})\) (for any point \(\tilde{x} \) over \(x \)) whose one point compactification provides an involution \(\tilde{\sigma} \) with two fixed points on \(S^n \). If this involution is standard, this yields arbitrarily small standard disk neighborhoods of \(\tilde{x} \) and the required invariant standard disk neighborhood \((D, C_2)\) of \(x \) in \(N \).
But this involution on S^n is standard. For, when $n = 2$ this was proved by Kérekjartó, Brouwer, and Eilenberg (see [CK94]); when $n = 3$ it was proved by Hirsch–Smale and Livesay (see [Rub76]).

Around each fixed point remove the interior of such an invariant standard disk, to obtain a compact manifold with a free involution, (N^n, σ_0) whose boundary consists of 2^n copies of S^{n-1} with the antipodal involution. This manifold with free involution is smooth. This is by Moise [Moi54, Thm. 9.1] and Whitehead [Whi61] if $n = 3$, and by the classification of surfaces in $n = 2$. Gluing back the 2^n standard disks, we conclude N is smooth, and σ is smooth.

If $n = 3$, a theorem of Meeks–Scott [MS80] then proves there is a flat, invariant Riemannian metric on (N, C_2). So we may assume $N = T^3$ and C_2 acts by isometries, and the origin is an isolated fixed point. The group of all isometries fixing the origin is $O(3) \cap GL_3(\mathbb{Z})$. Only $-I$ acts with the origin as an isolated fixed point. This is the standard involution on T^3. This proves the theorem when $n = 3$.

If $n = 2$, we see by the Euler characteristic that N/C_2 must be S^2, and (N, C_2) must be the two-fold cover, branched at four points of S^2. This, again, is the standard involution on T^2. This proves the theorem when $n = 2$.

Assume $n \geq 4$ and $n \equiv 0, 1 \pmod{4}$. By Theorem 2.1(2), there is a C_2-homotopy equivalence $J : N \to T^n$. Recall, from Section 3 that there is a bijection $\nu : \mathcal{S}_{TOP}(T^n, C_2) \to \mathcal{S}_{TOP}(\mathbb{R}^n, \Gamma_n)$. By Lemma 3.7(2), there is a bijection $\chi : \mathcal{S}_{TOP}(\mathbb{R}^n, \Gamma_n) \to \mathcal{S}(\Gamma_n)$. By Theorem 1.2, $\mathcal{S}(\Gamma_n)$ is a singleton. Thus $\mathcal{S}_{TOP}(T^n, C_2)$ is also. Therefore J is C_2-homotopic to a homeomorphism. \square

The proof of Theorem 1.13 will take a little preliminary work. Let \mathcal{T}_n denote the set of equivariant homeomorphism classes of H_1-negative C_2-manifolds (N^n, C_2) for which N^n has the homotopy type of T^n. We must prove \mathcal{T}_n is infinite if $n \equiv 2, 3 \pmod{4}$ and $n \geq 6$. Write $\text{hAut}(T^n, C_2)$ for the group of C_2-homotopy classes of C_2-homotopy equivalences, $f : (T^n, C_2) \to (T^n, C_2)$. Note, by Theorem 2.1(2), that

$$\mathcal{T}_n \approx \frac{\mathcal{S}_{TOP}(T^n, C_2)}{\text{hAut}(T^n, C_2)}.$$ (5.1)

We begin by constructing a homomorphism $\text{Aut}(\Gamma_n) \to \text{hAut}(T^n, C_2)$.

Recall $\Gamma_n = \mathbb{Z}^n \rtimes_{-1} C_2$. To avoid notational confusion we will write A_n for the subgroup of translations and σ_0 for the reflection through 0:

$$A_n = \{(x, 1) \in \mathbb{Z}^n \rtimes_{-1} C_2 \mid x \in \mathbb{Z}^n\}. \quad \sigma_0 = (0, \sigma) \in \mathbb{Z}^n \rtimes_{-1} C_2$$

For each automorphism $a : \Gamma_n \to \Gamma_n$ choose an a-equivariant continuous map

$$\tilde{J}_a : \mathbb{R}^n \to \mathbb{R}^n.$$ (5.2)

Therefore: $\tilde{J}_a(\gamma \cdot v) = a(\gamma) \cdot \tilde{J}_a(v)$, $\forall (\gamma, v) \in \Gamma_n \times \mathbb{R}^n$.

Note \tilde{J}_a is unique up to a-equivariant homotopy. Since $a(A_n) = A_n$, we see \tilde{J}_a descends to a map, $J_a : (T^n, C_2) \to (T^n, C_2)$. So $[J_a] \in \text{hAut}(T^n, C_2)$. From (5.2) we see that for all $a, b \in \text{Aut}(\Gamma_n)$, \tilde{J}_{ab} and $J_a \tilde{J}_b$ are ab-equivariantly homotopic.

For each $x \in \Gamma_n$, we write $c(x)$ for the automorphism:

$$c(x) : \Gamma_n \to \Gamma_n ; \quad \gamma \mapsto x \gamma x^{-1}.$$ (5.3)

If $t \in A_n$ is any translation, a valid choice for $\tilde{J}_{c(t)}$ is:

$$\tilde{J}_{c(t)} : \mathbb{R}^n \to \mathbb{R}^n ; \quad v \mapsto t \cdot v$$

since (5.2) holds for this choice. So this construction specifies a homomorphism

$$J : \text{Aut}(\Gamma_n)/c(A_n) \to \text{hAut}(T^n, C_2) ; \quad [a] \mapsto [J_a].$$
Write $\text{Aut}(\Gamma_n)_{\sigma_0} := \{a \in \text{Aut}(\Gamma_n) \mid a(\sigma_0) = \sigma_0\}$. For $a \in \text{Aut}(\Gamma_n)_{\sigma_0}$, let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the unique linear isomorphism satisfying: $T(t \cdot 0) = a(t) \cdot 0, \forall t \in \mathbb{A}_n$. Then $T(\gamma \cdot x) = a(\gamma) \cdot x$ for all $x \in \mathbb{R}^n$, and therefore a valid choice for \tilde{J}_a is: $\tilde{J}_a = T$.

Proposition 5.1. J is an isomorphism.

Proof. Let $[a] \in \text{Ker}(J)$. We show $[a] = 1$. The isomorphism $k : A_n \cong H_1(T^n)$ and the fact that $(J_a)_* = id : H_1(T^n) \to H_1(T^n)$ together imply that $a(t) = t$ for all $t \in A_n$. Also J_a fixes the discrete set $(T^n)^{C_2}$, since $[J_a] = 1$. Therefore $\tilde{J}_a(0) \in \mathbb{Z}^n$. Replacing a with $a \cdot c(t)$ for a suitable $t \in A_n$, we conclude for our new representative a that $\tilde{J}_a(0) = 0$. So $a(\sigma_0) = \sigma_0$. But $\Gamma_n = \langle A_n, \sigma_0 \rangle$. So $a = id_{\Gamma_n}$ and J is injective.

Now we show J is surjective. Let $[f] \in h\text{Aut}(T^n, C_2)$. Here $f : T^n \to T^n$ is a C_2-map. Let $a' \in \text{Aut}(\Gamma_n)_{\sigma_0}$ satisfy: $a'(t) = k^{-1}f_{*}^{-1}(k(t)) \in A_n$ for all $t \in A_n$. Then $(J_a)_* : \tilde{J}_a(0) = id_{H_1(T^n)}$. Let $\tilde{f} : \mathbb{R}^n \to \mathbb{R}^n$ be a lift of f. Note $0 \in \mathbb{R}^n_{\text{sing}}$, and so $p := \tilde{J}_a' \tilde{f}(0) \in \mathbb{R}^n_{\text{sing}}$. There is an involution $\sigma_p \in \Gamma_n - A_n$ fixing p.

Let $\text{res} : \text{Aut}(\Gamma_n) \to \text{Aut}(A_n)$ be the restriction homomorphism. Observe $\text{Ker}(\text{res})$ acts transitively on $\Gamma_n - A_n$, since $\Gamma_n = \langle A_n, \sigma \rangle$ for any $\sigma \in \Gamma_n - A_n$, and each such σ is an involution. Therefore there exists $a' \in \text{Ker}(\text{res})$ such that $a'(\sigma_p) = \sigma_0$. So $0 = \tilde{J}_a' \tilde{f}(0) = \tilde{J}_a'' \tilde{f}(0)$. Note $\tilde{J}_a'' \tilde{f} : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ is A_n equivariant. But $J_a'' \tilde{f}$ is C_2-equivariant, so $J_a'' \tilde{f}$ is σ_0 equivariant. Therefore $J_a'' \tilde{f}$ is Γ_n-equivariant and so $J_a'' \tilde{f}$ is Γ_n-homotopic to $id_{\mathbb{R}^n}$. Therefore $[f] = [J_a]$, where $a = (a'a')^{-1}$. So J is surjective. \qed

Proof of Theorem 1.1. Assume $n \equiv 2,3 \pmod{4}$ and $n \geq 6$. For any group G, we are going to abbreviate

$$H^G := H_{n+1}(E_{ve}G;L/L((n)),$$

From Proposition 5.1 and Section 4.2 and (5.1), we see that $H^{\Gamma_n}/\text{Aut}(\Gamma_n) \approx \mathcal{T}_n$. So we must prove that this set $H^{\Gamma_n}/\text{Aut}(\Gamma_n)$ is infinite. The proof is based on the fact that, for any maximal infinite dihedral subgroup D, we have $H^D \cong \text{UNil}_{n+1}(\mathbb{Z}/2^\mathbb{Z})$ by Lemma 4.5 and so H^D is an infinite set by 1.1. We will produce an injective map from an infinite set:

$$H^D/\text{Aut}(D) \longrightarrow H^{\Gamma_n}/\text{Aut}(\Gamma_n),$$

and this will show that \mathcal{T}_n is an infinite set.

Take $D \in (\text{mid})(\Gamma_n)$, a maximal dihedral subgroup. The inclusion $i_D : D \to \Gamma_n$ induces a map, $i_{D*} : H^D \to H^{\Gamma_n}$. It is easy to see that each automorphism of D extends to an automorphism of Γ_n. For any $a \in \text{Aut}(\Gamma_n)$, we have

$$a_* \circ i_{D*} = i_{a|D)_*} \circ (a|D)_* : H^D \longrightarrow H^{\Gamma_n},$$

where $a|D : D \to a(D)$ denotes the restriction of a.

By Lemma 4.5 the induced map $i_{D*} : H^D \to H^{\Gamma_n}$ is a monomorphism, and $i_{D*}(H^D) \cap i_{a|D)_*}(H^D) = 0$ if $a(D)$ is not conjugate to D. But if $a(D) = c_\gamma(D)$ for some $\gamma \in \Gamma_n$, then the following diagram commutes:

$$\begin{array}{ccc} H^D & \xrightarrow{i_{D*}} & H^{\Gamma_n} \\ \downarrow (c_{\gamma-1} a|D)_* & & \downarrow (c_{\gamma-1})_* a_* \\ H^D & \xrightarrow{i_{D*}} & H^{\Gamma_n} \end{array}$$

(5.3)
By a theorem of Taylor [Tay73], for any \(\gamma \in D \), the map \(c_{\gamma *} : H^D \to H^D \) is just multiplication by \((-1)^k \), if \(w(\gamma) = (-1)^k \). Now if \(n \equiv 3 \pmod{4} \), then \(w(\gamma) = 1 \) for all \(\gamma \), and if \(n \equiv 2 \pmod{4} \), then \(2 \cdot H^D = 0 \), so, in all cases \(c_{\gamma *} = \text{id} \). For the same reason, if \(\gamma \in \Gamma \), then \(c_{\gamma *} = 1 : H^\Gamma_n \to H^\Gamma_n \).

This together with (6.3) proves, first, that the induced map

\[
(i_D)_* : H^D/\operatorname{Aut}(D) \to H^\Gamma_n/\operatorname{Aut}(\Gamma_n)
\]

is injective, and second that \(\operatorname{Im}(D) \) acts trivially on the infinite group \(H^D \). But \(\operatorname{Aut}(D)/\operatorname{Im}(D) \cong C_2 \), so \(H^D/\operatorname{Aut}(D) \) is an infinite set. Therefore \(H^\Gamma_n/\operatorname{Aut}(\Gamma_n) \) and \(\Gamma_n \) are also infinite sets, as required.

\[\Box\]

6. A NON-TRIVIAL ELEMENT OF \(\mathcal{S}(\Gamma_n) \)

In this section, which is independent of the rest of the paper, we give a classical argument for the existence of non-trivial elements of \(\mathcal{S}(\Gamma_n) \) for some \(n \). Indeed the argument for the case \(n \equiv 2 \pmod{4} \) could have been written in 1976. It was in fact pointed out by Weinberger to the first author many years ago.

Theorem 6.1. Suppose \(n \equiv 2 \) or \(3 \pmod{4} \) and \(n \geq 6 \). There exists a cocompact action of the group \(\Gamma_n \) on a manifold \(M^n \) such that \((M^n, \Gamma_n) \) is simply isovariantly homotopy equivalent to \((\mathbb{R}^n, \Gamma_n) \) but is not equivariantly homeomorphic to \((\mathbb{R}^n, \Gamma_n) \).

The proof depends only on an idea of Farrell [Far79] and Cappell’s Splitting Theorem ([Cap74a, Thm. 6], [Cap76]). It does not depend on [BL72].

Let \(w_n : \Gamma_n \to \mathbb{Z}^n \times C_2 \to \{\pm 1\} \) be the homomorphism such that \(\ker(w_n) = \mathbb{Z}^n \) if \(n \) is odd, and \(w_n(\Gamma_n) = \{1\} \) if \(n \) is even. By Remark 1.3, there is a group isomorphism \(\Gamma_{n-1} \cong \gamma_{n-1} \Gamma_{n-1} \to \Gamma_n \). By Cappell [Cap74b], this decomposition defines a split monomorphism

\[
\rho : \text{UNil}^h_{n+1}(R; \mathcal{B}, \mathcal{B'}) \to L^h_{n+1}(\mathbb{Z}[\Gamma_n], w_n) : R = \mathbb{Z}[\mathbb{Z}^{n-1}], \mathcal{B} = \mathcal{B}' = \mathbb{Z}[\Gamma_{n-1} \setminus \mathbb{Z}^{n-1}]\]

Here \(R \) is a ring with involution given by: \(\tau = a^{-1} \) for all \(a \in \mathbb{Z}^{n-1} \subseteq \Gamma_{n-1} \). Also \(\mathcal{B} \) and \(\mathcal{B}' \) are \(R \)-bimodules with involution: \(\overline{b} = (-1)^{n-1}b^{-1} \) for all \(b \in \Gamma_{n-1} \setminus \mathbb{Z}^{n-1} \).

Lemma 6.2 (Cappell). The action of the abelian group \(L^h_{n+1}(\mathbb{Z}[\Gamma_n], w_n) \) on the set \(\mathcal{S}_\text{TOP}(\overline{X}, \partial \overline{X}) \) restricts to a free action of \(\text{UNil}^h_{n+1}(R; \mathcal{B}, \mathcal{B'}) \) on \(\mathcal{S}_\text{TOP}(X, \partial X) \).

Proof. Cappell’s Splitting Theorem (see [Cap74a, Thm. 6], [Cap76]) applies only to a closed manifold \(X \) with \(\Gamma_n = \pi_1(X) \), if \(X \) admits a splitting \(X = X_1 \cup_Y X_2 \) consistent with the decomposition \(\Gamma_n \cong \Gamma_{n-1} \ast_{\mathbb{Z}^{n-1}} \Gamma_{n-1} \). As stated, it does not apply to \(X \), since \(\partial X \) is non-empty. But \(X \) does split along a closed submanifold:

\[
\overline{X} = X_1 \cup_Y X_2 \quad \text{where} \quad Y := \{[t_1, \ldots, t_n] \in T^n \mid t_1 = \pm \frac{1}{2} \}/C_2.
\]

Here \(X_1 \) (and \(X_2 \)) is defined similarly in \(\overline{X} \) but with \(t_1 \in [-\frac{1}{2}, \frac{1}{2}] \) (respectively, \(t_1 \in [\frac{1}{2}, \frac{3}{2}] \)). The fundamental groups of \(X_1, X_2, Y \) are the groups appearing in Remark 1.3 with \(f(a_1, \ldots, a_n) = a_1 \), So, by Theorem 6.3 we are done. Again, the key point is \(\partial Y = \emptyset \).

\[\Box\]

Lemma 6.3. \(\text{UNil}^h_n(\mathbb{Z}, \mathbb{Z}^r, \mathbb{Z}^r) \) is a summand of \(\text{UNil}^h_n(R; \mathcal{B}, \mathcal{B'}) \), if \(\varepsilon = (-1)^n \). Furthermore, the groups \(\text{UNil}_{4k+2}(\mathbb{Z}, \mathbb{Z}, \mathbb{Z}) \) and \(\text{UNil}_{4k+3}(\mathbb{Z}, \mathbb{Z}, \mathbb{Z}) \) are non-zero.
Proof. The first claim is immediate from the split epimorphism
\[\varepsilon : \Gamma_n \to \Gamma_1 = C_2 * C_2 \]
of Remark 1.3, which induces a split epimorphism
\[\text{UNil}_n(R; \mathcal{B}, \mathcal{B}') \to \text{UNil}_n(Z; \mathcal{Z}^\varepsilon, \mathcal{Z}^\varepsilon). \]
The second claim has been known for many years. See [Cap73] or [CK95]. But for the reader’s convenience, here is a very easy proof. Farrell (see [Far79]) extended Cappell’s homomorphism \(\rho \), mentioned above, to a homomorphism, \(\rho' : \text{UNil}_{2k}(R; R, R) \to L_{2k}(R) \) for any ring with involution \(R \). But the non-zero element of \(L_{2}(Z) \) is the class of the rank-two \((-1)\)-quadratic form with Arf invariant 1. This element is \(\rho'([\zeta]) \) where \([\zeta] \in \text{UNil}_{2}(Z; Z, Z) \) is the class of the unilform, \(\zeta = (P, \lambda, P', \lambda', \mu') \), where,
\[
P = Ze, \ P' = Zf, \ \lambda = 0, \ \lambda' = 0; \ \mu(e) = \mu'(f) = 1 \pmod{2}.
\]
Finally a quick proof that \(\text{UNil}_{4k+3}(Z; Z, Z) \) has an element of order 4 can be found in [CD04, Corollary 1.9]. It uses almost no machinery. □

Proof of Theorem 6.1. By Lemmas 6.3, 6.2 and 3.6, there is an element \([M,f] \neq [R^n, \text{id}]\) in \(S_{\text{iso}} \text{TOP}(R^n, \Gamma_n) \). By Lemma 3.7, we conclude that \((M, \Gamma_n) \) is not equivariantly homeomorphic to \((R^n, \Gamma_n) \). □

6.1. Free Action Of UNil On The Structure Set Of A Pair.
Our purpose here is to show that our Lemma 6.2 is a formal consequence of the \(L \)-theoretic exact sequence of Cappell, appearing in [Cap74b, Cap76].

Let \(X \) be a compact, connected topological manifold of dimension \(n \geq 6 \). Let \(Y \) a connected, separating, codimension-one submanifold of \(X \) without boundary (that is, \(\partial Y = \emptyset \)). Assume the induced map \(\pi_1(Y) \to \pi_1(X) \) of groups is injective. Furthermore, assume the induced map \(\pi_1(\partial X) \to \pi_1(X) \) of groupoids is injective.

Write \(X = X_1 \cup_Y X_2 \) for the induced decomposition of manifolds. Write \(G = G_1 *_{F} G_2 \) for the induced injective amalgam of fundamental groups, where \(F := \pi_1(Y) \). Finally, write \(H := \pi_1(\partial X) \) as the fundamental groupoid of the boundary.

For simplicity of notation, we shall suppress all the orientation characters. Furthermore, to avoid \(K \)-theoretic difficulties, we assume throughout this subsection that the projective class group for the codimension-one submanifold \(Y \) vanishes:
\[\widetilde{K}_0(Z[F]) = 0. \]

Theorem 6.4. On the structure set \(\mathcal{S}^{\partial}_n(X, \partial X) \) of the pair, Wall’s action of the group \(L^{h}_{n+1}(G) \) restricts to a free action of Cappell’s subgroup
\[\text{UNil}^h_{n+1} := \text{UNil}^h_{n+1}(Z[F]; Z[G_1 - F], Z[G_2 - F]). \]

Thus we slightly generalize the case of \(\partial X = \emptyset \) of Cappell [Cap74a, Thm. 2]. Our proof relies only on his algebraic results [Cap74b, Thm. 2, Thm. 5] [Cap76].

Theorem 6.5 (Cappell). There is a homomorphism
\[\iota : \text{UNil}^h_* \to L^h_*(G) \]
whose composite with a map of Wall (see [Wa99 Thm. 9.6]) is an isomorphism:

\[
\text{UNil}_s^h \xrightarrow{s} L^h_s(G) \xrightarrow{\Phi} L^h_s(G_1) \xrightarrow{1} \text{UNil}_s^h \oplus L^h_s(F) \xrightarrow{s'} \text{UNil}_s^h \oplus L^h_s(F) \xrightarrow{s'} \text{UNil}_s^h \oplus L^h_s(F) \xrightarrow{s'} \text{UNil}_s^h.
\]

Furthermore, there is an exact sequence

\[
\cdots \to \text{UNil}_s^h \oplus L^h_s(F) \to L^h_s(G_1) \oplus L^h_s(G_2) \to L^h_s(G) \xrightarrow{(\Phi)} \text{UNil}_s^h \oplus L^h_s(F) \to \cdots
\]

such that \(s_1 \circ t = \text{id} \). In particular, \(t \) is split injective with a preferred left-inverse. \(\square \)

Using the first part of Theorem 6.5 the first two authors formally identify UNil with relative equivariant homology \([CD]\). Write all as the family of all subgroups of \(G \). Write \(\text{fac} \) as the family of subgroups of \(G \) conjugate into either \(G_1 \) or \(G_2 \).

Theorem 6.6 (Connolly–Davis). The following composite is an isomorphism:

\[
\phi : \text{UNil}_s^h \xrightarrow{s} L^h_s(G) = H^G_\ast(E_{\text{at}1;G;L^h}) \xrightarrow{h} H^G_\ast(E_{\text{at}1;G;E_{\text{fac}};G;L^h}).
\]

This implies a relative version; recall \(H = \pi_1(\partial X) \). Consider the homomorphism

\[
j : L^h_s(G) \to L^h_s(G, H).
\]

Write the fundamental groupoid \(H = H_1 \sqcup \cdots \sqcup H_m \) as the disjoint union of its vertex groups \(H_i \). The associated \(G \)-set is defined by

\[
G/H := G/H_1 \sqcup \cdots \sqcup G/H_m.
\]

Observe, since \(Y \cap \partial X = \emptyset \), for each \(i \) that \(H_i \subset G_1 \) or \(H_i \subset G_2 \); hence \(H_i \in \text{fac} \). Therefore there is a canonical \(G \)-map \(G/H \to E_{\text{fac}}G \).

Corollary 6.7. There is a split short exact sequence

\[
0 \to H^G_\ast(E_{\text{fac}}G, G/H;L^h) \xrightarrow{A_{\text{fac}}} L^h_s(G, H) \xrightarrow{s'} \text{UNil}_s^h \to 0.
\]

The preferred right-inverse for \(s' \) is the composite \(j \circ t \).

Proof. There is a long exact sequence of the triple:

\[
\cdots \to H^G_\ast(E_{\text{fac}}G, G/H;L^h) \to H^G_\ast(E_{\text{at}1;G, G/H;L^h}) \xrightarrow{h} H^G_\ast(E_{\text{at}1;G, E_{\text{fac}};G;L^h}) \to \cdots.
\]

So, by Theorem 6.6 we may define a homomorphism

\[
s' : L^h_s(G, H) = H^G_\ast(E_{\text{at}1;G, G/H;L^h}) \xrightarrow{h} H^G_\ast(E_{\text{at}1;G, E_{\text{fac}};G;L^h}) \xrightarrow{\phi^{-1}} \text{UNil}_s^h.
\]

That is, \(s' := \phi^{-1} \circ k \). Note \(h = k \circ j \). Recall \(\phi = h \circ t \). Then

\[
s' \circ (j \circ t) = (\phi^{-1} \circ k) \circ (j \circ t) = \phi^{-1} \circ (h \circ t) = \phi^{-1} \circ \phi = \text{id}.
\]

Therefore, \(k \) has right-inverse \(j \circ t \circ \phi^{-1} \), and the above exact sequence splits. \(\square \)

Now we are ready to prove the main theorem of this subsection.
Proof of Theorem \[6.4\] Ranicki defined algebraic structure groups $S(1)_{h}^{n}(X, \partial X)$, a homomorphism $L_{\ast}^{h}(G, H) \rightarrow S(1)_{h}^{n}(X, \partial X)$, and a pointed bijection
\[\mathcal{S}_{\text{TOP}}^{h}(X, \partial X) \xrightarrow{\sim} S(1)_{n+1}^{h}(X, \partial X)\]
such that it is equivariant with respect to the actions of $L_{n+1}^{h}(G, H)$ \[\text{Ran92}\]. Also observe, from Remark \[6.7\] that there is an induced isomorphism
\[S(1)_{n+1}^{h}(X, \partial X) \xrightarrow{\sim} S_{n+1}^{h}(X, \partial X)\].

Write W as the composite homomorphism $L_{n+1}^{h}(G, H) \rightarrow S_{n+1}^{h}(X, \partial X)$, which is compatible with Wall’s action of $L_{n+1}^{h}(G, H)$ on the structure set $\mathcal{S}_{\text{TOP}}^{h}(X, \partial X)$. Thus it suffices to show that the following composite is a monomorphism:
\[\text{UNil}_{n+1}^{h} \xrightarrow{j} L_{n+1}^{h}(G) \xrightarrow{W} S_{n+1}^{h}(X, \partial X)\].

By definition of the algebraic structure groups, there is an exact sequence
\[H_{n+1}(X, \partial X; L) \xrightarrow{A} L_{n+1}^{h}(G, H) \xrightarrow{W} S_{n+1}^{h}(X, \partial X)\].

Also, using Theorem \[3.1\] there is a commutative diagram of assembly maps:
\[\begin{array}{ccc}
H_{n+1}^{G}(\tilde{X}, G \times H \partial X; L_{h}) & \rightarrow & H_{n+1}^{G}(E_{\text{fac}} G, G/H; L_{h}) \\
| & & | \\
H_{n+1}(X, \partial X; L) & \xrightarrow{A_{\text{fac}}} & L_{n+1}^{h}(G, H).
\end{array}\]

Then, by Corollary \[6.7\] note:
\[\text{Ker}(W) = \text{Im}(A) \subseteq \text{Im}(A_{\text{fac}}) = \text{Ker}(s') \quad \text{and} \quad \text{Im}(j \circ i) \cap \text{Ker}(s') = 0\].

So $W \circ j \circ i$ is a monomorphism. Therefore UNil_{n+1}^{h} acts freely on $\mathcal{S}_{\text{TOP}}^{h}(X, \partial X)$. □

APPENDIX A. FROM EQUIVARIANCE TO ISOVARIANCE

We want to prove that the forgetful map $\psi : \mathcal{S}_{\text{TOPO}}^{\text{iso}}(\mathbb{T}^{n}, C_{2}) \rightarrow \mathcal{S}_{\text{TOP}}^{h}(\mathbb{T}^{n}, C_{2})$ is bijective when $n \geq 4$. It seems best to approach this from a general study of isovariance. It shall be immediate from Theorem \[X.0\] below that ψ is bijective.

Note we do not use any end theorems, and the Strong Gap Hypothesis is satisfied.

Let G be a finite group. For any G-spaces X and Y, write $[X, Y]_{G}$ and $[X, Y]_{G}^{\text{iso}}$ for the set of G-equivariant and G-isovariant homotopy classes of maps, respectively.

Let X be a G-space with a fixed point p. The homotopy link of p in X, denoted $t^{p}X$, and the homotopy tangent space of X at p, denoted $t_{p}X$, are defined by:
\[t^{p}X : = \text{Holink}(X, p) = \{\sigma : [0, 1] \rightarrow X \mid \sigma^{-1}(p) = \{0\}\}\]
\[t_{p}X : = t^{p}X \cup \{\sigma_{p}\}\].

Here σ_{p} denotes the constant path at p, and $t_{p}X$ has the compact-open topology. This is the metric topology of uniform convergence if X is a metric space.

There is a G-subspace $X_{(p)} \subset X$ and isovariant evaluation map e_{1} defined by
\[X_{(p)} : = (X - X^{G}) \cup \{p\}, \quad e_{1} : t_{p}X_{(p)} \rightarrow X : \sigma \mapsto \sigma(1)\].
Let U be a neighborhood of p in X. If U is homeomorphic to \mathbb{R}^n, then
\begin{equation}
(A.1) \quad e_1 \text{ restricts to a homotopy equivalence, } t^pU \simeq \mathbb{R}^n - \{0\}.
\end{equation}
If U is G-invariant and p is an isolated fixed point, then the inclusion $i : t_pU \to t_pX$ is an isovariant homotopy equivalence.

Lemma A.1. Let X and Y be metric spaces on which G acts semifreely and isometrically. Assume q is an isolated fixed point of Y. The rule $f \mapsto f|_{X - Xq}$ gives a bijection between isovariant and equivariant homotopy classes,
\[
[X, t_qY]^\text{iso}_G \cong [X - Xq, t_qY]^G.
\]

Proof. Let $f : X - X^G \to t_qY$ be a G-map. We first show f is G-homotopic to an extendible map, f'. (Here f' is extendible, if $\lim_{x \to x_0} f'(x) = \sigma_q$ for any $x_0 \in X^G$.) This will prove that the restriction map is a surjection. We assume X and Y have metrics, d_X and d_Y, bounded by 1. Write d_t for the induced metric on t_qY.

For $x \in X - X^G$, set $||x|| := d_X(x, X^G)$. For $\sigma \in t_qY$, set $||\sigma|| := d_q(\sigma, \sigma_q)$. If, for all $x \in X - X^G$, $||f(x)|| \leq ||x||$, then f is obviously extendible. In $(X - X^G) \times I$, the subset $(X - X^G) \times 0$ is disjoint from the closed subset
\[
B := \{(x, t) \in (X - X^G) \times I \mid d_Y(f(x)(t), q) \geq ||x||\}.
\]
Consider the continuous map
\[
\phi : X - X^G \to (0, 1) ; \quad x \mapsto d_X((x, 0), B),
\]
where d_X denotes the product metric on $(X - X^G) \times I$. Observe
\[
\phi(x) = d_X((x, 0), (x, \phi(x))).
\]
If $0 \leq t < \phi(x)$ then $(x, t) \notin B$. Therefore $d_Y(f(x)(t), q) \leq ||x||$ for all $t \in [0, \phi(x)]$.

Define $f' : X - X^G \to t_qY$ as the map whose adjoint is
\[
A[f'] := A \circ \Phi : (X - X^G) \times I \to Y \quad \text{where} \quad \Phi(x, t) := (x, t \cdot \phi(x)).
\]
By construction, $||f'(x)|| \leq ||x||$ for all $x \in X - X^G$. So f' is extendible. But a G-homotopy, f_s, $0 \leq s \leq 1$, from f to f' is defined by
\[
A[f_s] := A \circ \Phi_s : (X - X^G) \times I \to Y \quad \text{where} \quad \Phi_s(x, t) := (x, t \cdot (s \cdot \phi(x) + (1 - s))).
\]
Note that if f is extendible, then each f_s is extendible too.

The same simple argument shows that if $f : (X - X^G) \times I \to t_qY$, is a homotopy between two extendible G-homotopy equivalences, then f' supplies an extendible homotopy. One merely changes the definition of B to
\[
B := \{(x, t) \in (X - X^G) \times I \mid d_Y(f(x)(s)(t), q) \geq ||x|| \text{ for some } s \in [0, 1]\}.
\]
This proves that $[X - X^G, t_qY]^G_G \cong [X, t_qY]^\text{iso}_G$, as required. \hfill \square

Because our argument employs a somewhat unusual form of Poincaré duality, namely Equation (A.2), we spend some space introducing it here.

Lemma A.2. Let (X, A) be a compact Hausdorff G-NDR pair. Assume $X - A$ is an m-dimensional manifold with boundary and the action of G on $X - A$ is free. For any left $\mathbb{Z}G$ module B, there is an isomorphism
\begin{equation}
(A.2) \quad H^G_\ast(X - A, \partial(X - A); B) \cong H^\text{iso}_{m-\ast}(X, A; B).
\end{equation}

Notation. For any G-pair (X, A), the groups $H^G_\ast(X, A; B)$ and $H^\text{iso}_\ast(X, A; B)$ denote the homology of the complexes $C(X, A) \otimes_{\mathbb{Z}G} B$ and $\text{Hom}_{\mathbb{Z}G}(C(X, A), B)$.
Proof of Lemma A.2. Since \((X,A)\) is a \(G\)-NDR pair, there exists a \(G\)-homotopy, \(h : (X,A) \times I \to (X,A)\) from \(id_{(X,A)}\) to a map \(f : (X,A) \to (X,A)\) for which \(N := f^{-1}(A)\) is a closed \(G\)-neighborhood of \(A\) in \(X\). Consider the collection
\[
\mathcal{U} := \{G\text{-open } U \text{ in } X \mid A \subset U \subset N\}.
\]
For each \(U \in \mathcal{U}\), write \(f_U : C(X,U) \to C(X,A)\) for the chain map induced by \(f\) and \(i_U : C(X,A) \to C(X,U)\) for the chain map induced by the inclusion \(A \subset U\).

Since \(X - A\) is a non-compact \(m\)-manifold with boundary, Poincaré duality takes the form of an isomorphism
\[
P : H^*_G(X - A, \partial(X - A); B) \to H^{G \cdot I}_m(X - A; B),
\]
where the right-hand group is the homology of the complex \(C^{G \cdot I}(X - A) \otimes_{ZG} B\).

We identify the complex \(C^{G \cdot I}(X - A)\) of locally finite chains with the inverse limit
\[
C^{G \cdot I}(X - A) = \lim_{U \in \mathcal{U}} C(X,U).
\]
The systems of maps given by \(f_U\) and \(i_U\) then define maps:
\[
C(X,A) \xrightarrow{i_U} \lim_{U \in \mathcal{U}} C(X,U) = C^{G \cdot I}(X - A) \xrightarrow{f_U} C(X,A).
\]
We will prove below that \(i_U\) and \(f_U\) are chain homotopy inverse over \(ZG\). Therefore the required isomorphism is the composite
\[
(i_U \otimes \text{id}_B)^{-1} \circ P : H^*_G(X - A, \partial(X - A); B) \to H^{G \cdot I}_m(X, A; B).
\]

We now show \(i_U\) and \(f_U\) are chain homotopy inverse to one another. First note that the map \(f_U \circ i_U : C(X,A) \to C(X,A)\) equals the chain map \(f\) induced by \(f\).

So the homotopy \(h\) induces a \(ZG\)-chain homotopy: \(id_{C(X,A)} \cong_G (f_U \circ i_U)\).

Finally, we show that there exists a \(ZG\)-chain homotopy \(id_{C^{G \cdot I}(X - A)} \cong_G (i_U \circ f_U)\). Choose a sequence \((n \to O_n)\) of open, \(G\)-invariant neighborhoods of \(A\) in \(X\) such that \(Cl_X(O_{n+1}) \subset O_n \subset N\) and \(A = \bigcap_{n=1}^\infty O_n\). Define an order preserving function, \(T : \mathcal{U} \to \mathcal{U}\) by setting \(T(U) = O_n\) where \(n\) is the first integer for which \(h(Cl_X(O_n) \times I) \subset U\). Write \(j_U : C(X,T(U)) \to C(X,U)\) for the map induced by the inclusion \(T(U) \subset U\). Then for each \(U\), the homotopy \(h\) induces a chain homotopy
\[
h_U : j_U \cong_G (i_U \circ f_{T(U)}) : C(X,T(U)) \to C(X,U).
\]

But note that:
\[
\lim_{U \in \mathcal{U}} j_U = \text{id}_{C^{G \cdot I}(X - A)} \quad \lim_{U \in \mathcal{U}} i_U = i_U \quad \lim_{U \in \mathcal{U}} f_{T(U)} = f_U.
\]
Therefore \(\lim_{U \in \mathcal{U}} h_U\) provides the desired chain homotopy.

Recall that a map \(f : (X,A) \to (Y,B)\) is strict if \(f^{-1}(B) = A\). A homotopy equivalence between the pairs \((X,A)\) and \((Y,B)\) is strict if there are corresponding homotopies \((X \times I, A \times I) \to (Y,B)\) and \((Y \times I, B \times I) \to (X,A)\) that are strict.

Definition A.3. Let \(X\) be a \(G\)-space, and let \(A\) a closed \(G\)-subset of \(X\). We call a pair \((U,h)\) a tamed neighborhood if it consists of a \(G\)-invariant neighborhood \(U\) of \(A\) in \(X\) and a strict \(G\)-map \(h : (U \times I, U \times \{0\} \cup A \times I) \to (X,A)\) that restricts on \(U \times \{1\} \cup A \times I\) to the projection. We say \(A\) is tame in \(X\), or \((X,A)\) is tame if \(A\) has a tamed neighborhood \((U,h)\) in \(X\). It follows that \((X,A)\) is a \(G\)-NDR pair.
Remark A.4. Note that if \(A = \{ p \} \) is an isolated fixed point with tamed neighborhood \((U, h) \), then \(U^G = \{ p \} \) and the adjoint of \(h : U \times I \to X \) is an isovariant map \(\lambda_p : U \to t_q X \). Furthermore, it follows from Quinn [Qui88, Prop. 3.6 or Prop. 2.6] that if \(X \) is assumed to be a \(G \)-manifold and \(V \) is any neighborhood of \(p \), then there exists a tamed neighborhood \((U, h) \) of \(p \) with \(U \subset V \).

Lemma A.5. Let \(U^m \) be a compact semifree \(G \)-manifold with \(G \)-collared boundary. Assume \(U^G \) is tame in \(U \). Let \(V^n \) be a \(G \)-manifold, and \(q \) an isolated fixed point of \(V \). Let \(f : U \to t_q V \) be a \(G \)-map such that \(f|_{\partial U} \) is isovariant. If \((U, U^G) \) is 1-connected and \(m \leq n + 1 \), then \(f \) is \(G \)-homotopic rel \(\partial U \) to an isovariant map.

Proof. There exists a \(G \)-map \(F : U - U^G \to t^g V \) extending the \(G \)-map \(f|_{\partial(U-U^G)} : \partial(U-U^G) \to t^g V \), since, using Lemma A.2, the obstructions lie in the groups

\[
H^G_{m-1} \left(U - U^G, \partial(U-U^G); \pi_{i-1}(t^g V) \right) \cong H^G_{m-1} \left(U, U^G; \pi_{i-1}(t^g V) \right).
\]

If \(i < n \) then the coefficient group is zero, by (A.1). If \(i \geq n \) then the homology group is zero, because \((U, U^G) \) is a 1-connected pair and \(m - i \leq m - n \leq 1 \). Therefore, by Lemma A.1, there is an isovariant map \(f' : U \to t_q V \) such that \(f'|_{\partial U} \) is isovariantly homotopic to \(f|_{\partial U} \). But since \(\partial U \) has a \(G \)-collar in \(U \), the \(G \)-homotopy extension property applies, and we can choose \(f' \) so that \(f'|_{\partial U} = f|_{\partial U} \).

Finally since \(t_q V \) is \(G \)-contractible, the maps \(f, f' : U \to t_q V \) are \(G \)-homotopic. \(\square \)

Let \(X \) be a \(G \)-manifold with boundary. Recall the singular set of \(X \) is

\[
X_{\text{sing}} := \{ x \in X \mid gx = x \text{ for some } g \neq 1 \in G \}.
\]

A neighborhood \(U \) of \(X_{\text{sing}} \) in \(X \) is a \(k \)-neighborhood if it is a \(G \)-invariant codimension zero submanifold with bicollared frontier in \(X \), such that the pair \((U, X_{\text{sing}}) \) is \(k \)-connected. We only use this concept for \(k = 0, 1 \).

Theorem A.6. Let \(X^n \) and \(Y^n \) be compact \(G \)-manifolds without boundary. Assume \(X_{\text{sing}} \) and \(Y_{\text{sing}} \) are finite sets, and assume \(n \geq 4 \). Let \(f : X \to Y \) be a \(G \)-map such that the restriction \(f_{\text{sing}} : X_{\text{sing}} \to Y_{\text{sing}} \) is bijective.

1. If \(f \) is 1-connected, then \(f \) is \(G \)-homotopic to an isovariant map.
2. Suppose \(f = f_0 \) is isovariant and 2-connected. If \(f_0 \) is \(G \)-homotopic to an isovariant map \(f_1 : X \to Y \), then \(f_0 \) is \(G \)-isovariantly homotopic to \(f_1 \).

Proof of Theorem A.6. We argue in two major steps.

Step 1: We find 0-neighborhoods \(U, V \) of \(X_{\text{sing}}, Y_{\text{sing}} \) such that \(U = f^{-1}(V) \).

It follows from Siebenmann’s thesis [Sie63] that each neighborhood of \(X_{\text{sing}} \) contains a 0-neighborhood if \(n = 4 \), and a 1-neighborhood if \(n \geq 5 \). By Remark A.4, we can choose a 0-neighborhood \(V \) of \(Y_{\text{sing}} \) in \(Y \), so small that for each \(q \in Y_{\text{sing}} \), the component \(V_q \) containing \(q \) admits the structure of a tamed neighborhood of \(q \), say \((V_q, h_q) \). By [PQ90] applied to \((f - f_{\text{sing}})/G \), we may assume \(f \) is transverse to \(\partial V \). Then \(N := f^{-1}(\partial V) \) is a bicollared codimension one \(G \)-submanifold of \(X \). It is the boundary and frontier of \(U := f^{-1}(V) \), a \(G \)-neighborhood of \(f^{-1}(Y_{\text{sing}}) \).

Our desire is that \(U \) be a 0-neighborhood. We plan to accomplish this by handle exchanges along \(N \) realized through a homotopy of \(f \).

Define the closures \(X_0 := \text{Cl}_X(X - U) \) and \(Y_0 := \text{Cl}_Y(Y - V) \). Note \(X_0 \) is a manifold with boundary \(N = \partial X_0 \). Also note \(X = U \cup_N X_0 \) and \(Y = V \cup_{\partial V} Y_0 \).

We now recall the aforementioned notion of handle exchange along \(N \).
Suppose we can find a map, \(i : (D^k, \partial D^k) \times \{0\} \to (X_0, N) \) (or alternatively, a map, \(i : (D^k, \partial D^k) \times \{0\} \to (U, N) \)), together with an extension of \(f \circ i \) to a map

\[
j : (D^k, \partial D^k) \times \{1\} \to (Y_0, \partial Y_0) \quad \text{(or to} (V, \partial V))\).
\]

If \(k < n/2 \), we can, after a homotopy, thicken \(i \) to an equivariant embedding and an equivariant extension still called \(i \); also, we can thicken \(j \) to a continuous \(G \)-map, still called \(j \):

\[
i : G \times (D^k, \partial D^k) \times D^{n-k} \to (X_0, N) \quad \text{(or to} (U - U^G, N))\).
\]

\[
j : G \times (D^k, \partial D^k) \times D^{n-k} \times \{1\} \to (Y_0, N) \quad \text{(or to} (V - V^G, \partial V))\).
\]

Now deform \(f \) by a \(G \)-homotopy, stationary off \(i(G \times \text{Int}(D^k \times D^{m-k})) \), to a map \(f' \) so that \(f' \) is still transverse to \(N \), but

\[
f'^{-1}(V) = U \cup i(G \times D^k \times 2D^{m-k})
\]

\[
\text{(or} f'^{-1}(Y_0) = X_0 \cup i(G \times D^k \times \frac{3}{2}D^{m-k}))\).
\]

Note this homotopy is rel \(\partial X \). If \(q \in Y_{s\text{ing}} \) set \(U_q := f^{-1}(V_q) \) and \(N_q := N \cap U_q \).

Assume \(k = 1 \). This handle exchange process decreases the number of components of \(N \) provided that \(i \) is chosen so that \(\text{Image}(i)/G \) meets two components of \(N/G \). After finitely many such handle exchanges then, we arrive at a map \(f' \) for which \(N_q \) is connected for each \(q \in Y_{s\text{ing}} \). Therefore \(U_q \) is connected too. So \(U \) is a \(0 \)-neighborhood of \(X^G \).

Step 2: In this step we find a \(G \)-homotopy from \(f \) to a \(G \)-isovariant map.

From Step 1, we have \(f^{-1}(Y_{s\text{ing}}) \subset U = f^{-1}(V) \). Now, we need only show how to deform \(f|_U \) rel \(\partial U \) equivariantly to a \(G \)-isovariant map, \(f' : U \to Y \).

But if \(q \in Y_{s\text{ing}} \) and \(g \in G \) and \(g q \neq q \), then we have \(U_q \cap U_{g q} = \emptyset \). Therefore, if we choose one point \(q \) from each \(G \)-orbit in \(Y_{s\text{ing}} \) it is sufficient to show how to deform \(f|_{U_q} \) rel \(\partial U_q \) to a \(G_q \)-isovariant map \(f'_q : U_q \to Y \). Here, \(G_q := \{ g \in G | g q = q \} \) denotes the isotropy group of \(q \).

Fix \(q \in Y_{s\text{ing}} \). Let \(Y_q := (Y - Y^G) \cup \{ q \} \). Recall \(f|_{U_q} = e_1 \circ \lambda_q \circ f|_{U_{g q}} \), where \(\lambda_q : V_q \to t_q Y_q \), and \(e_1 : t_q Y_q \to Y \) is equivariant. By Lemma A.6, there is a \(G_q \)-isovariant map \(F_q : U_q \to t_q Y_q \) for which \((\lambda_q \circ f|_{U_{g q}}) \simeq_{G_q} F_q \) rel \(\partial U_q \). Define \(f'_q := e_1 \circ F_q \). Then \(f'_q \) is \(G_q \)-isovariant and \(f|_{U_q} \simeq_{G_q} f'_q \), as required.

Proof of Theorem A.6(2): The argument is entirely similar to that for the proof of Theorem A.6(1). Realize the homotopy from \(f_0 \) to \(f_1 \) by a \(G \)-map

\[
(F, f_0 \sqcup f_1) : X \times (I, \partial I) \to Y \times (I, \partial I).
\]

Step 1: We find 1-neighborhoods \(U, V \) of \(Y^s \times I, Y^s \times I \) so that \(F^{-1}(V) = U \).

Choose a tamed neighborhood \((W, h)\) of \(Y^s \) in \(Y \). Let \(W_q \) be the component of \(W \) containing \(q \), for each \(q \in Y^s \). Since \(\text{dim}(Y \times I) \geq 5 \), by Siebenmann’s thesis [Sied], again, we can choose a 1-neighborhood \(V \) of \(Y^s \times I \) in \(W \times I \), such that \(V \cap (Y \times \partial I) \) is a \(0 \)-neighborhood of \(Y^s \times \partial I \) in \(Y \times \partial I \).

Let \(\partial_0 V \) be the frontier of \(V \) in \(Y \times I \). Then \(\partial_0 V \) is a codimension 0-submanifold of \(\partial V \), and \(\partial_0 V = \partial V \cap (Y \times \partial I) \).

Make \(F \) transverse to \(\partial_0 V \) after a homotopy which is isovariant on \(X \times \partial I \). Let \(U = F^{-1}(V) \) and let \(U_0 = F^{-1}(\partial_0 V) \), the frontier of \(U \) in \(X \times I \). Then \(\partial_0 U \) is a manifold with boundary and \(\partial_0 \partial_0 U \subset X \times \partial I \). Also \((\partial_0 U, \partial_0 \partial_0 U) \) is bicollared in \((X \times I, \partial(X \times I))\).
Proceed as in the proof of Theorem A.6(1) to make U a 0-neighborhood of $X_{\text{sing}} \times I$. As before let U_q be the component of U containing $(F^G)^{-1}(q \times I)$, and $\partial_0 U_q = \partial_0 U \cap U_q$.

We plan to make $\partial_0 U_q$ simply connected for each q. We repeat the “innermost circles” argument of Browder [Bro65] doing handle exchanges along ∂U_q using 2-handles to kill off the finitely many generators of each $\pi_1(\partial_0 U_q)$. We do one q at a time, choosing one q from each G orbit of Y_{sing}. In the end we get a new $F : X \times I \to Y \times I$ with its new U for which $\partial_0 U_q$ is 1-connected for each $q \in Y_{\text{sing}}$. This implies that $\pi_1(X \times I) = \pi_1(U_q) * \pi_1(X \times I - \text{Int}(U_q))$, and incl : $\pi_1(U_q) \to \pi_1(X \times I)$ is injective. But V_q is simply connected and therefore U_q is simply connected by the following commutative diagram:

\[
\begin{array}{ccc}
\pi_1(U_q) & \xrightarrow{(f_{|U_q})_*} & \pi_1(V_q) = \{1\} \\
\text{incl.} & & \text{incl.} \\
\pi_1(X \times I) & \xrightarrow{F_*} & \pi_1(Y \times I).
\end{array}
\]

Therefore U is a 1-neighborhood of $X_{\text{sing}} \times I$ in $X \times I$, and $U = F^{-1}(V)$.

Step 2: In this step we show f_0 is isovariantly homotopic to f_1.

Let $H = p_1 \circ F : X \times I \to Y$. Note H is a G-homotopy from f_0 to f_1, with

$$H^{-1}(Y^G) \subset U \subset H^{-1}(W); \quad H(U_q) \subset W_q \quad \forall q \in Y^G.$$

As in the proof of Theorem A.6(1), for each $q \in Y^G$, $\lambda_q \circ H|_{U_q} : U_q \to t_q Y(q)$ is homotopic rel ∂U_q to an isovariant map, by Lemma A.5. Therefore F is homotopic rel $X \times I - \text{Int}(U)$, to an isovariant map $H' : X \times I \to Y$, which serves as the required isovariant homotopy from f_0 to f_1. \qed

Appendix B. Quinn–Ranicki = Davis–Lück

Let $\text{Ho } \text{Spectra}$ be the homotopy category, given by formally inverting weak homotopy equivalences. There is a localization functor $\text{Ho} : \text{Spectra} \to \text{Ho Spectra}$ sending weak equivalences to isomorphisms, and this functor is initial with respect to all such functors from Spectra. The functor Ho is a bijection on objects. Homotopy groups $\pi_1 : \text{Spectra} \to \text{Ab}$ factor through the functor Ho. Let \mathcal{C} be a category. A \mathcal{C}-spectrum is a functor from \mathcal{C} to Spectra, a map of \mathcal{C}-spectra is a natural transformation, and a weak equivalence of \mathcal{C}-spectra is a map of \mathcal{C}-spectra $E \to F$ which induces a weak homotopy equivalence of spectra $E(c) \to F(c)$ for all objects c in \mathcal{C}. There is a localization functor $\text{Ho} : \mathcal{C} \text{-Spectra} \to \text{Ho } \mathcal{C} \text{-Spectra}$. A key property is that if E and F are \mathcal{C}-spectra which become isomorphic in $\text{Ho } \mathcal{C} \text{-Spectra}$, then there is a \mathcal{C}-spectrum G and weak equivalences $E \leftarrow G \to F$.

For a groupoid \mathcal{G}, let $L(\mathcal{G})$ be the corresponding L-spectrum, as in [DL 98, Section 2]. This is a functor from the category of groupoids to the category of spectra which satisfies the additional property that an equivalence $F : \mathcal{G} \to \mathcal{G}'$ of groupoids induces a weak equivalence $L(F) : L(\mathcal{G}) \to L(\mathcal{G}')$ of spectra.

Ranicki, motivated by earlier geometric work of Quinn, defined the assembly map [Ran 92, Chapter 14], a natural transformation of functors from Top to Spectra:

$$A(Z) : H(Z; L(1)) \to L(\Pi_1 Z)$$
where Π_1Z is the fundamental groupoid of Z. When Z is a point, the assembly map is a weak equivalence. The algebraic structure spectrum $S(Z)$ is defined to be the homotopy cofiber of $A(Z)$. Its homotopy groups $S_*(Z) := \pi_*(S(Z))$ are the algebraic structure groups used in Section 4; one can do this for pairs also.

Fix a group G. Consider the orbit category $\text{Or}(G)$ and the $\text{Or}(G)$-spectrum

$$L : \text{Or}(G) \rightarrow \text{Spectra} ; \ G/H \mapsto L(G/H)$$

where G/H is the groupoid associated to the G-set G/H. For a G-CW-complex X, consider the spectrum

$$H^G(X; L) := \text{map}_G(-, X)_+ \wedge_{\text{Or}(G)} L(-).$$

Then, by definition, $H^G(X; L) = \pi_0H^G(X; L)$.

Write $G\ast\mathbb{W}$ for the category whose objects are G-CW-complexes and whose morphisms are cellular G-maps. (Actually, for set-theoretic reasons we need to restrict our G-CW-complexes to a fixed universe; for our purposes it will suffice to assume that the underlying space of each CW-complex is embedded in \mathbb{R}^∞.) A (G, \mathcal{F})-CW-complex is a G-CW-complex with isotropy in a family \mathcal{F}. Let $(G, \mathcal{F})\ast\mathbb{W}$ be the full subcategory of $G\ast\mathbb{W}$ whose objects are (G, \mathcal{F})-CW-complexes. Let $\text{Or}(G, \mathcal{F})$ be the full subcategory of $(G, \mathcal{F})\ast\mathbb{W}$ whose objects are the discrete G-spaces G/H with $H \in \mathcal{F}$. The symbol 1 will denote both the trivial group and the family of subgroups of G consisting of the trivial group. Let $\text{sc}(G, 1)\ast\mathbb{W}$ be the full subcategory of $(G, 1)\ast\mathbb{W}$ whose objects are free G-CW-complexes all of whose components are simply connected.

Let Π_0X be the G-set of path components of X. Here is the main theorem of this appendix.

Theorem B.1. There is a commutative diagram in $\text{Ho}(G, 1)\ast\mathbb{W}$-Spectra:

$$\begin{array}{ccc}
H(X/G; L(1)) & \longrightarrow & L(\Pi_1(X/G)) \\
\downarrow & & \downarrow \\
H^G(X; L) & \longrightarrow & H^G(\Pi_0X; L).
\end{array}$$

(1) The top map is the assembly map $A(X/G)$ and is a map of $(G, 1)\ast\mathbb{W}$-Spectra.

(2) The bottom map is induced by the G-map $X \rightarrow \Pi_0X$ and is a map of $(G, 1)\ast\mathbb{W}$-Spectra.

(3) The right map is the composite of the formal inverse of the weak equivalence of $(G, 1)\ast\mathbb{W}$-spectra $L(\Pi_1(EG \times_G X)) \rightarrow L(\Pi_1(X/G))$ and the map of $(G, 1)\ast\mathbb{W}$-spectra $L(\Pi_1(EG \times_G X)) \rightarrow H^G(\Pi_0X; L)$ defined in Lemma B.3.

This map is a weak equivalence when restricted to $\text{sc}(G, 1)\ast\mathbb{W}$-Spectra.

(4) The left map is an isomorphism in $\text{Ho}(G, 1)\ast\mathbb{W}$-Spectra.

The proof of the theorem is quite formal and applies more generally. What is needed is a functor from groupoids to spectra which takes equivalences of groupoids to weak equivalences of spectra and an assembly map which is a weak equivalence when X is a point. So, for example, our theorem applies equally well to K-theory. See Remark B.3 below for the modifications necessary for the L-theory non-orientable case.

Let G be a discrete group. Let S be a G-set. Define the action groupoid \mathcal{F} as the category whose object set is S, and whose morphisms from s to t are triples
(t, g, s) such that \(t = gs \), and whose composition law is \((t, g, s) \circ (s, f, r) = (t, gf, r)\).

Define a functor
\[
L^G : (G, 1)\mathcal{CW} \to \text{Spectra} ; X \mapsto L(\Pi_1(EG \times_G X)).
\]

The next lemma relates \(L^G\) to the above functor \(L : \text{Or}(G) \to \text{Spectra}\).

Lemma B.2. Let \(G\) be a discrete group.

1. For a discrete \(G\)-set \(S\), there is a homeomorphism of spectra
\[
H^G(S; L) \cong L(S),
\]
natural in \(S\).

2. For a free \(G\)-CW-complex \(X\), there is a map of groupoids
\[
\Phi(X) : \Pi_1(EG \times_G X) \to \Pi_0X
\]
which is an equivalence of groupoids when all the components of \(X\) are simply connected. Furthermore, \(\Phi\) is natural in \(X\); that is, \(\Phi(_____)\) is a map of \((G,1)\mathcal{CW}\)-groupoids.

3. There is a map of \((G,1)\mathcal{CW}\)-spectra
\[
\Lambda(X) : L^G(X) \to H^G(\Pi_0X, L)
\]
whose restriction to \(\text{sc}(G,1)\mathcal{CW}\) is a weak equivalence.

Proof.

1. The homeomorphism is given by
\[
H^G(S; L) \to L(S) ; [(f,x) \in \text{map}_G(G/K, S)_+ \land L(G/K)_n] \mapsto L(S)_n(x) \in L(S)_n.
\]
If \(S\) is an orbit \(G/K\), then the inverse is given by \(x \in L(G/K)_n \mapsto [(\text{id},x) \in \text{map}_G(G/K, G/K)_+ \land L(G/K)_n]\). The case of a general \(G\)-set follows since both \(H^G(-, L)\) and \(L(-)\) convert disjoint unions to one-point unions of spectra.

2. We first need some notation. For a subset \(A\) of a topological space \(Y\), let \(\Pi_1(Y, A)\) be the full subcategory of the fundamental groupoid \(\Pi_1Y\) whose objects are points in \(A\). If \(\Pi_0A \to \Pi_0Y\) is onto, then there is an equivalence of groupoids \(\Pi_1Y \to \Pi_1(Y, A)\) whose definition depends on a choice of a path from \(y\) to a point in \(A\) for every \(y \in Y\).

Let \(p : EG \times X \to EG \times_G X\) be the quotient map. We will define \(\Phi(X)\) as a composite
\[
\Pi_1(EG \times_G X) \xrightarrow{\Theta(X)} \Pi_1(EG \times_G X, p(\{e_0\} \times X)) \xrightarrow{\Psi(X)} \Pi_0X.
\]

We first define \(\Theta(X)\) by making choices in the universal space \(EG\). Choose a point \(e_0 \in EG\). For each \(e \in EG\), choose a path \(\sigma_e : I \to EG\) from \(e\) to \(e_0\), choosing the paths so that, for all \(g \in G\) and \(t \in I\), \(g(\sigma_e(t)) = \sigma_{ge}(t)\). This can be accomplished by choosing a set-theoretic section \(s : BG \to EG\) of the covering map, and defining the remaining \(\sigma_e\) by equivariance. Then for \(p(e, x) \in EG \times_G X\), define the path \(\theta_{p(e, x)}(t) := p(\sigma_e(t), x)\). This path is independent of the choice of representative of \(p(e, x)\). These paths give the equivalence of groupoids \(\Theta(X)\), natural in \(X\).

We now define \(\Psi(X)\) using the fact that \(p\) is a covering map. On objects, define \(\Psi(X)(p(e_0, x)) := C(x) \in \Pi_0X\), where \(C(x)\) is the path component of \(x\) in \(X\). For a morphism represented by a path \(\alpha : I \to EG \times_G X\) with \(\alpha(0) = p(e_0, x)\) and \(\alpha(1) = p(e_0, y)\), let \(\tilde{\alpha} : I \to EG \times X\) be the lift of \(\alpha\) starting at \((e_0, x)\). Then \(\tilde{\alpha}(1) = (ge_0, g y)\) some \(g \in G\). Then define \(\Psi(X)[\alpha] := (C(x), g, C(y))\). We leave
the geometric details of verifying that this is a functor to the reader, but note that we follow that convention that a path \(\alpha \) determines a morphism from \(\alpha(1) \) to \(\alpha(0) \) in the fundamental groupoid.

Suppose all the components of \(X \) are simply connected. We now show that \(\Psi(X) \) is an equivalence of groupoids. Choose a base point for each component of \(X \). Define a functor \(\prod_0 X \rightarrow \pi_1(EG \times_G X, p(e_0) \times X) \) on objects by sending \(C(x) \) to \(p(e_0), x \), and on morphisms by sending \((C(x), g, C(y)) \) to \([p \circ \alpha] \) where \(\alpha : I \rightarrow EG \times X \) is a path from \((e_0, x) \) to \((ge_0, gy) \). This \(\alpha \) is unique up to homotopy rel endpoints since \(X \) is simply connected. This ends the proof of (2).

(3) Define \(\Lambda(X) \) as the composite of \(L(\Phi(X)) \) and the isomorphism from (1).

\[
\begin{align*}
\text{Remark B.3.} & \text{ We next recast the axiomatic approach of [DL98, Section 6]. Our} \\
& \text{terminology is self-consistent but does not precisely match that of [DL98]; in} \\
& \text{particular we drop the adverb “weakly.” A functor } E : (G, \mathcal{F})\text{-CW} \rightarrow \text{Spectra is} \\
& \text{homotopy invariant if any homotopy equivalence induces a weak equivalence of spectra.} \\
& \text{A functor } E : (G, \mathcal{F})\text{-CW} \rightarrow \text{Spectra is excisive if } E(-) \text{ and } H^G(-; E|_{Or(G, \mathcal{F})}) \text{ are} \\
& \text{isomorphic objects in } \text{Ho}(G, \mathcal{F})\text{-CW-Spectra. This is equivalent to the notion} \\
& \text{of weakly } \mathcal{F}\text{-excisive given in [DL98]. By [DL98, Theorem 6.3(2)], a map} \\
& T : E \rightarrow F \text{ of excisive } (G, \mathcal{F})\text{-CW-spectra is a weak equivalence if and only if} \\
& T(G/H) : E(G/H) \rightarrow F(G/H) \text{ is a weak equivalence of spectra for all } H \in \mathcal{F}. \text{ An} \\
& \text{excisive approximation of a homotopy invariant functor } E : (G, \mathcal{F})\text{-CW} \rightarrow \text{Spectra} \\
& \text{is a map } T : E' \rightarrow E \text{ of } (G, \mathcal{F})\text{-CW-spectra such that } E' \text{ is excisive and } T(G/H) \text{ is} \\
& \text{a weak equivalence for all } G/H \text{ with } H \in \mathcal{F}. \\
& \text{We next assert existence and uniqueness of excisive approximations. Theorem} \\
& 6.3(2) \text{ of [DL98] constructs a specific excisive approximation } E'' \rightarrow E \text{ which} \\
& \text{is functorial in } E. \text{ Excisive approximations are unique in the sense that, given any} \\
& \text{two excisive approximations } T' : E' \rightarrow E \text{ and } T'' : E'' \rightarrow E, \text{ there is an isomorphism} \\
& S : E' \rightarrow E'' \text{ in } \text{Ho}(G, \mathcal{F})\text{-CW-Spectra such that } T' = T'' \circ S. \text{ Indeed, to} \\
& \text{verify that } S \text{ exists, it suffices to compare any excisive approximation } T' : E' \rightarrow E \text{ is} \\
& \text{equivalent to the functorial excisive approximation } T' : E' \rightarrow E. \text{ Consider the} \\
& \text{commutative diagram in } (G, \mathcal{F})\text{-CW-Spectra:} \\
\end{align*}
\[
\begin{array}{ccc}
E'/\% & \longrightarrow & E' \\
\downarrow & & \downarrow \\
E'' & \longrightarrow & E. \\
\end{array}
\]

Since the left and top maps are both weak equivalences, we obtain an isomorphism in the homotopy category \(S := (E' \leftarrow E'' \rightarrow E') \) with \(T' = T'' \circ S \), as desired.

\textit{Proof of Theorem B.7.} The theorem will be proven by concatenating three commutative squares. The first is a commutative diagram in \(\text{Ho}(1, 1)\text{-CW-Spectra, which} \\
\text{is indeed [DL98, Theorem 6.3(1.3)] implies that if } E \text{ is weakly } \mathcal{F}\text{-excisive in the sense of [DL98],} \\
\text{then there is a } (G, \mathcal{F})\text{-spectrum } E' \% \text{ and weak equivalences } E \leftarrow E'' \rightarrow H^G(-; E|_{Or(G, \mathcal{F})}). \text{ Conversely, if } E(-) \text{ and } H^G(-; E|_{Or(G, \mathcal{F})}) \text{ are isomorphic objects in } \text{Ho}(G, \mathcal{F})\text{-CW-Spectra, then there are weak equivalences } E \leftarrow F \rightarrow H^G(-; E|_{Or(G, \mathcal{F})}) \text{ for some } (G, \mathcal{F})\text{-CW-spectrum } F. \text{ But [DL98} \\
\text{Theorem 6.3(1)] shows that } H^G(-; E|_{Or(G, \mathcal{F})}) \text{ is weakly } \mathcal{F}\text{-excisive, and hence so is any weakly equivalent } (G, \mathcal{F})\text{-CW-spectrum.}
we will apply below in the case $Z = X/G$.

$$\xymatrix{ H(Z; L(1)) \ar[r] \ar[d] & L(\Pi_1 Z) \ar[d] \ar[r] & (L^1)^\% (Z) \ar[r] & L^1 (Z) \ar[d] \ar[r] & }$$

The right map is the identity. The top map is the assembly map $A(Z)$. The left map exists in the homotopy category (see end of Remark B.3) and is an isomorphism since both horizontal maps are $(1, 1)$-excisive approximations of $L(\Pi_1 Z) = L^1(Z)$.

Next comes a commutative diagram in Ho $(G, 1)\mathrm{CW}-\text{Spectra}$.

$$\xymatrix{ (L^1)^\% (X/G) \ar[r] \ar[d] & L^1 (X/G) \ar[d] \ar[r] & L^G (X) \ar[d] \ar[r] & \ar[d] \ar[r] & }$$

The right map is induced by the homotopy equivalence $EG \times_G X \to X/G$, inducing an equivalence of fundamental groupoids, hence a weak equivalence of spectra. The left map exists and is an isomorphism, since the top map and the composite of the bottom and right maps are $(G, 1)$-excisive approximations of $L^G(X)$.

Our final commutative diagram is in Ho $(G, 1)\mathcal{E}W-\text{Spectra}$.

$$\xymatrix{ (L^G)^\% (X) \ar[r] \ar[d] & L^G (X) \ar[d] \ar[r] & H^G (X; L) \ar[d] \ar[r] & \ar[d] \ar[r] & }$$

The top map is the functorial excisive approximation of $L^G(X)$. The bottom map is induced by the G-map $X \to \Pi_0 X$ and is an excisive approximation of $H^G(\Pi_0 (-); L)$. The right map is defined in Lemma B.2 and is an isomorphism when restricted to $\text{Ho sc}(G, 1)\mathcal{E}W-\text{Spectra}$. Functoriality gives a map $(L^G)^\% (X) \to H^G(\Pi_0 (-); L)^\% (X)$ and the fact that the bottom map is an excisive approximation gives a map $H^G(\Pi_0 (-); L)^\% (X) \to H^G(X; L)$; define the left map as the composite. Since the left map is a map of excisive functors and is a homotopy equivalence when $X = G/1$, the left map is an isomorphism in $\text{Ho}(G, 1)\mathcal{E}W-\text{Spectra}$. \hfill \Box

Remark B.4. We next indicate the modifications needed for the statement and proof of Theorem B.1 in the non-orientable case. A groupoid with orientation character \mathcal{G}^w is a groupoid \mathcal{G} together with a functor $w : \mathcal{G} \to \{\pm 1\}$, where $\{\pm 1\}$ is the category with a single object and two morphisms $\{+1, -1\}$ where $-1 \circ -1 = +1$. A map of groupoids with orientation character is a map of groupoids which preserves the orientation character. Let GWOC denote the category of groupoids with orientation character. There is an L-theory functor $L : \text{GWOC} \to \text{Spectra}$. (The definition in [DL98] can be easily modified to cover this case, see also [BL10].)

Two maps $F_0, F_1 : \mathcal{G}^w \to \mathcal{G}^{w'}$ of groupoids with orientation character are equivalent
if there is a natural transformation which is orientation preserving in the sense that \(w'(F_0(x) = F_1(x)) = \pm 1\) for all objects \(x\) of \(\mathcal{G}\). A map \(F : \mathcal{G}^w \to \mathcal{G}^w'\) is an equivalence of groupoids with orientation characters if there is a map \(F' : \mathcal{G}^w' \to \mathcal{G}^w\) so that both composites \(F \circ F'\) and \(F' \circ F\) are equivalent to the respective identity. An equivalence of groupoids with orientation characters gives an weak equivalence of \(L\)-spectra.

Now suppose \(G\) is a group with orientation character \(w : G \to \{\pm 1\}\). Following forthcoming work of Davis and Lindenstrauss, we discuss two related groupoids with orientation character. First, if \(S\) is a \(G\)-set, give the action groupoid \(\overline{S}\) the orientation character \((t, g, s) \mapsto w(g)\). This gives a functor \(\text{Or}(G) \to \text{GWOC}\) defined on objects by \(G/H \mapsto (\overline{G/H})^w\) and hence a functor:

\[
\textbf{L} : \text{Or}(G) \to \text{Spectra} ; \; G/H \mapsto \textbf{L}(\overline{(G/H)}^w).
\]

Suppose \(\phi : \hat{Y} \to Y\) is a double cover. Define the fundamental groupoid with orientation character \(\Pi^w_1(Y)\), as follows. The objects are the points of \(\hat{Y}\). A morphism from \(\hat{y}\) to \(\hat{y}'\) is a path \(\alpha\) from \(w(\hat{y})\) to \(w(\hat{y}')\). A morphism is assigned +1 if the unique lift of \(\alpha\) starting at \(\hat{y}'\) ends at \(\hat{y}\); otherwise assign the morphism −1.

Recall \(G\) is a group with orientation character \(w\). Given a free \(G\)-CW-complex \(X\), let \(w : EG \times \text{Ker}(w) X \to EG \times_G X\) be the corresponding double cover. Thus, for a fixed \((G, w)\), there is a functor \(\textbf{L}^G\) defined by

\[
\textbf{L}^G : (G, 1)\text{CW} \to \text{Spectra} ; \; X \mapsto \textbf{L}(\Pi^w_1(EG \times_G X)).
\]

Then, after modifying \(\textbf{L}, \textbf{L}^G\) and \(\overline{S}\) as indicated above, the statement and proof of Lemma 3.3 remain valid. The same is true for Theorem 4.1 after accounting for Ranicki’s version of the assembly map in the non-orientable case [Ran92, App. A].

References

[And04] Michael T. Anderson. Geometrization of 3-manifolds via the Ricci flow. Notices Amer. Math. Soc., 51(2):184–193, 2004.
[Bar03] Arthur C. Bartels. On the domain of the assembly map in algebraic K-theory. Algebr. Geom. Topol., 3:1037–1050 (electronic), 2003.
[Bas68] Hyman Bass. Algebraic K-theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968.
[BHS64] H. Bass, A. Heller, and R. G. Swan. The Whitehead group of a polynomial extension. Inst. Hautes Études Sci. Publ. Math., (22):61–79, 1964.
[BL10] Arthur Bartels and Wolfgang Lück. On crossed product rings with twisted involutions, their module categories and L-theory. In Cohomology of groups and algebraic K-theory, volume 12 of Adv. Lect. Math. (ALM), pages 1–54. Int. Press, Somerville, MA, 2010.
[BL12] Arthur Bartels and Wolfgang Lück. The Borel Conjecture for hyperbolic and CAT(0)-groups. Ann. of Math. (2), 175(2):631–689, 2012.
[Bor60] Armand Borel. Seminar on transformation groups. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46. Princeton University Press, Princeton, N.J., 1960.
[BR06] Markus Banagl and Andrew Ranicki. Generalized Arf invariants in algebraic L-theory. Adv. Math., 199(2):542–668, 2006.
[Bre97] Glen E. Bredon. Sheaf theory, volume 170 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.
[Bro65] William Browder. Structures on \(M \times R\). Proc. Cambridge Philos. Soc., 61:337–345, 1965.
[Cap73] Sylvain E. Cappell. Splitting obstructions for Hermitian forms and manifolds with \(Z_2 \subset \pi_1\). Bull. Amer. Math. Soc., 79:909–913, 1973.
[Cap74a] Sylvain E. Cappell. Manifolds with fundamental group a generalized free product. I. Bull. Amer. Math. Soc., 80:1193–1198, 1974.
[Cap74b] Sylvain E. Cappell. Unitary nilpotent groups and Hermitian K-theory. I. Bull. Amer. Math. Soc., 80:1117–1122, 1974.

[Cap76] Sylvain E. Cappell. A splitting theorem for manifolds. Invent. Math., 33(2):69–170, 1976.

[CD] Frank Connolly and James F. Davis. The surgery obstruction groups of free products. In preparation.

[CD04] Francis X. Connolly and James F. Davis. The surgery obstruction groups of the infinite dihedral group. Geom. Topol., 8:1043–1078 (electronic), 2004.

[CFH] Frank Connolly, Benjamin Fehrman, and Michael Hartglass. On the dimension of the virtually cyclic classifying space of a crystallographic group. http://arXiv.org/abs/0610387.

[CK90] Frank Connolly and Tadeusz Kożniewski. Rigidity and crystallographic groups. I. Invent. Math., 99(1):25–48, 1990.

[CK91] Frank Connolly and Tadeusz Kożniewski. Examples of lack of rigidity in crystallographic groups. In Algebraic topology Poznań 1989, volume 1474 of Lecture Notes in Math., pages 139–145. Springer, Berlin, 1991.

[CK94] Adrian Constantin and Boris Kolev. The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere. Enseign. Math. (2), 40(3-4):193–204, 1994.

[CK95] Frank Connolly and Tadeusz Kożniewski. Nil groups in K-theory and surgery theory. Forum Math., 7(1):45–76, 1995.

[CR05] Frank Connolly and Andrew Ranicki. On the calculation of UNil. Adv. Math., 195(1):205–258, 2005.

[Far79] F. T. Farrell. The exponent of UNil. Topology, 18(4):305–312, 1979.

[FQ90] Michael H. Freedman and Frank Quinn. Topology of 4-manifolds, volume 39 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1990.

[Jia83] Bo Ju Jiang. Lectures on Nielsen fixed point theory, volume 14 of Contemporary Mathematics. American Mathematical Society, Providence, R.I., 1983.

[Kur68] K. Kuratowski. Topology. Vol. II. New edition, revised and augmented. Translated from the French by A. Kirkor. Academic Press, New York, 1968.

[LW12] Wolfgang Lück and Michael Weiermann. On the classifying space of the family of virtually cyclic subgroups. Pure Appl. Math. Q., 8(2):497–555, 2012.

[Mil71] John Milnor. Introduction to algebraic K-theory. Princeton University Press, Princeton, N.J., 1971. Annals of Mathematics Studies, No. 72.

[Moi54] Edwin E. Moise. Affine structures in 3-manifolds. VIII. Invariant of the knot-types; local tame imbedding. Ann. of Math. (2), 59:159–170, 1954.

[MS86] William H. Meeks, III and Peter Scott. Finite group actions on 3-manifolds. Invent. Math., 86(2):287–346, 1986.

[PS00] Stratos Prassidis and Barry Spieler. Rigidity of Coxeter groups. Trans. Amer. Math. Soc., 352(6):2619–2642, 2000.

[Qui87] Frank Quinn. Applications of topology with control. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 598–606, Providence, RI, 1987. Amer. Math. Soc.

[Qui88] Frank Quinn. Homotopically stratified sets. J. Amer. Math. Soc., 1(2):441–499, 1988.

[Ran79] Andrew Ranicki. The total surgery obstruction. In Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), volume 763 of Lecture Notes in Math., pages 275–316. Springer, Berlin, 1979.

[Ran81] Andrew Ranicki. Exact sequences in the algebraic theory of surgery, volume 26 of Mathematical Notes. Princeton University Press, Princeton, N.J., 1981.

[Ran92] A. A. Ranicki. Algebraic L-theory and topological manifolds, volume 102 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1992.
[Ros88] Ennis Rosas. Rigidity theorems for right angled reflection groups. *Trans. Amer. Math. Soc.*, 308(2):837–848, 1988.

[Rub76] J. H. Rubinstein. Heegaard splittings and a theorem of Livesay. *Proc. Amer. Math. Soc.*, 60:317–320 (1977), 1976.

[Sha69] Julius L. Shaneson. Wall’s surgery obstruction groups for $G \times \mathbb{Z}$. *Ann. of Math. (2)*, 90:296–334, 1969.

[Sie65] Laurence C. Siebenmann. The obstruction to finding a boundary for an open manifold of dimension greater than five. Princeton University, 1965. Ph.D. thesis.

[Sma61] Stephen Smale. Generalized Poincaré’s conjecture in dimensions greater than four. *Ann. of Math. (2)*, 74:391–406, 1961.

[Spa81] Edwin H. Spanier. *Algebraic topology*. Springer-Verlag, New York, 1981. Corrected reprint.

[Ste88] Mark Steinberger. The equivariant topological s-cobordism theorem. *Invent. Math.*, 91(1):61–104, 1988.

[Tay73] Laurence R. Taylor. Surgery groups and inner automorphisms. In *Algebraic K-theory, III: Hermitian K-theory and geometric applications* (Proc. Conf. Battelle Memorial Inst., Seattle, Wash., 1972), pages 471–477. Lecture Notes in Math., Vol. 343. Springer, Berlin, 1973.

[Wal65] C. T. C. Wall. Finiteness conditions for CW-complexes. *Ann. of Math. (2)*, 81:56–69, 1965.

[Wal73] Friedhelm Waldhausen. Whitehead groups of generalized free products. In *Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic* (Proc. Conf, Battelle Memorial Inst., Seattle, Wash., 1972), pages 155–179. Lecture Notes in Math., Vol. 342. Springer, Berlin, 1973.

[Wal99] C. T. C. Wall. Surgery on compact manifolds, volume 69 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, second edition, 1999. Edited and with a foreword by A. A. Ranicki.

[Wei94] Shmuel Weinberger. *The topological classification of stratified spaces*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1994.

[Whi61] J. H. C. Whitehead. Manifolds with transverse fields in euclidean space. *Ann. of Math. (2)*, 73:154–212, 1961.