Antifungal Evaluation of Brazil nut (*Bertholletia excelsa*) Oil on the Growth of *A. parasiticus*

Thaiana Marinha de Almeida Sousa¹, *, Luís Roberto Batista¹, Fabiana Reinis Franca Passamani², Nathasha de Azevedo Lira², Raul Antônio Viana Madeira¹, Sirlei Cristina de Souza², Maria das Graças Cardoso³, Peter Bitencourt Faria¹, Angela de Alencar e Silva⁴

¹Department of Food Science, Federal University of Lavras (UFLA), Lavras - MG, Brazil, Caixa Postal 3037, CEP 37200-000
²Department of Biology, Federal University of Lavras (UFLA), Lavras - MG, Brazil, Caixa Postal 3037, CEP 37200-000.
³Department of Chemistry, Federal University of Lavras (UFLA), Lavras - MG, Brazil, Caixa Postal 3037, CEP 37200-000
⁴Department of Veterinary Medicine, Federal University of Lavras (UFLA), Lavras - MG, Brazil, Caixa Postal 3037, CEP 37200-000

Corresponding author: Thaiana Marinha de Almeida Sousa, ¹Department of Food Science, Federal University of Lavras (UFLA), Lavras - MG, Brazil, Caixa Postal 3037, CEP; Tel: (11) 98622-6604; E-mail: thaianasousa@hotmail.com

Received Date: January 07, 2017; Accepted Date: February 27, 2018; Published Date: March 02, 2018

Citation: Thaiana Marinha de Almeida Sousa (2018) OAntifungal Evaluation of Brazil nut (*Bertholletia excelsa*) Oil on the Growth of *a. parasiticus*. J Food Nutr 4: 1-7.

Abstract

Aspergillus parasiticus is a specie incident in Brazil nut, and the ability to produce mycotoxins in food is a concern and a barrier to export. Samples of 5 different Brazil nut genotypes were collected at the Arapuã farm in the state of Amazonas. The fixed oils of each genotype were extracted in the Department of Chemistry of UFLA by a reflux system and then the fatty acids of the samples were characterized by gas chromatography.

The antimicrobial activity of Brazil nut oils (*Bertholletia excelsa*) was studied on the growth of *Aspergillus parasiticus* using the Minimum Inhibitory Concentration (MIC) method. Oils 1, 3 and 5 presented similar profiles and Oils 2 and 4 presented profiles different from the others. The oil concentration influences on the ability of growth inhibit of *Aspergillus parasiticus*. The fatty acids obtained through the 5 different oils were efficient in the antifungal activity and the oil concentration interfered in the growth.

Keywords: Brazil Nuts; Antifungal; CG; Fix oil
Introduction

Brazil is considered the second country in the export of Brazil nut (Bertholletia excelsa), and its production is concentrated in the northern region, especially in the state of Amazonas [1]. The Brazil nut concentrates a high content of proteins, carbohydrates, lipids, vitamins and essential minerals [2,3].

Due to the growing demand for Brazil nut export, hygienic-sanitary aspects are increasingly demanded. The contamination process can occur from the collection, production, processing, storage, packaging, transportation, preparation, maintenance and consumption, both via toxic substances and microorganisms [4]. Mycotoxins are toxic secondary metabolites produced by some filamentous fungi and can prolifically affect global agriculture as the mycotoxins may be virtually ubiquitous at some low concentration in the human diet [5].

These substances are produced by species of the genus Aspergillus, and have highly toxicogenic potential. There are a number of species within the Flavi section that have aflatoxicogenic activity, but the major contaminants in nuts are A. flavus, A. parasiticus, A. nomius [6]. A. flavus has a higher capacity to produce aflatoxins B1 (AFB1) and B2 (AFB2), while A. parasiticus and A. nomius produce aflatoxins G1 (AFG1) and G2 (AFG2), as well as AFB1 and AFB2 [7].

Aflatoxin B1, and its metabolite precursor Sterigmatocystin, have been identified as carcinogenic by the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC) [8], and considered a potent initiator of hepatocellular carcinomas [9]. These substances are produced by species of the genus Aspergillus, and have highly toxicogenic potential. There are a number of species within the Flavi section that have aflatoxicogenic activity, but the major contaminants in nuts are A. flavus, A. parasiticus, A. nomius [6]. A. flavus has a higher capacity to produce aflatoxins B1 (AFB1) and B2 (AFB2), while A. parasiticus and A. nomius produce aflatoxins G1 (AFG1) and G2 (AFG2), as well as AFB1 and AFB2 [7].

Mycotoxins are toxic secondary metabolites produced by some filamentous fungi and can prolifically affect global agriculture as the mycotoxins may be virtually ubiquitous at some low concentration in the human diet [5].

These substances are produced by species of the genus Aspergillus, and have highly toxicogenic potential. There are a number of species within the Flavi section that have aflatoxicogenic activity, but the major contaminants in nuts are A. flavus, A. parasiticus, A. nomius [6]. A. flavus has a higher capacity to produce aflatoxins B1 (AFB1) and B2 (AFB2), while A. parasiticus and A. nomius produce aflatoxins G1 (AFG1) and G2 (AFG2), as well as AFB1 and AFB2 [7].

Aflatoxin B1, and its metabolite precursor Sterigmatocystin, have been identified as carcinogenic by the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC) [8], and considered a potent initiator of hepatocellular carcinomas [9].

The sample collection and preparation

The samples were collected at the Arapuã farm in the state of Amazonas. 1 kg of 5 different Brazil nut genotypes were collected in May 2015, being named A1606, A2609, A3Manoel Pedro I, A4 Manoel Pedro II and A5 Santa Fé. The Brazil nut samples were processed in the Bromatology Laboratory of the Department of Food Science (DCA), Federal University of Lavras (UFLA). The processing consisted of previous weighing of the samples and oven drying at 60°C for 7 days until reaching constant weight.

Material and Methods

Sample collection and preparation

The samples were collected at the Arapuã farm in the state of Amazonas. 1 kg of 5 different Brazil nut genotypes were collected in May 2015, being named A1606, A2609, A3Manoel Pedro I, A4 Manoel Pedro II and A5 Santa Fé. The Brazil nut samples were processed in the Bromatology Laboratory of the Department of Food Science (DCA), Federal University of Lavras (UFLA). The processing consisted of previous weighing of the samples and oven drying at 60°C for 7 days until reaching constant weight.

Extraction of fixed oil

The extraction of the oils was carried out in the laboratory of Organic Chemistry of the Department of Chemistry (DQ) at UFLA. The method used was the reflux system [13], which was coupled to a 250 mL volumetric flask. Into this flask were placed, separately, 50g of macerated sample, along with 100 mL of hexane. The extraction time was 6 hours, from the moment of boiling. Flask contents were subjected to vacuum filtration and then rotoevaporated under 500 mmHg and 37°C. The filtrate was then stored in a sterile container, protected from light and wrapped in parafilm with small holes for total evaporation of the solvent. After complete evaporation of the solvent the oils were stored at -80°C.

Esterification of fatty acids and samples preparation

The esterification of oils to determine the fatty acid composition was conducted at the Department of Veterinary Medicine (DMV) at UFLA. Esterification was performed by saponification with sodium hydroxide solution in 0.5 M methanol, followed by methylation with ammonium chloride, methanol and sulfuric acid, according to methodology of [14]. After methylation the samples were submitted to gas chromatography.

Identification and quantification of fixed oil components

Analysis of the fatty acids was performed by gas chromatography on a Shimadzu GC 2010 chromatograph (Agilent Technologies Inc., Palo Alto, CA, USA), equipped with a flame ionization detector, separation injection at a rate of 1:50 and Supelco SPTM-2560 capillary column, 100m x 0.25mm x 0.20m (Supelco Inc., Bellefonte, PA, USA). Chromatographic conditions were: initial column temperature 140°C/5 minutes; increasing 4°C/minute to 240°C and held for 30 minutes, for a total of 60 minutes. The injector and detector temperature was 260°C and helium gas was used as transport. Fatty acids were identified by comparison with the retention times presented by the Supelco TM37 FAME standard mixture (Supelco Inc., Bellefonte, PA, USA) and expressed as a percentage (%) of the total fatty acids identified.

Antifungal activity

The evaluation of the antifungal activity of the fixed oils from Brazil nut (Bertholletia excelsa), was carried out in the Mycotoxin and Mycology Laboratory, DCA, UFLA. The fungal specie used in this experiment was isolated in a higher frequency of Brazil nuts in a previous study and this specie is deposited in the Culture Collection of Microorganisms of the Departament of Food Science (Aspergillus parasiticus CCD-CA-10445).

The sensitivity of the fungus to the fixed oils was determined using the disc diffusion test, after activation of the isolate in Malt Extract Agar culture medium (MEA, Sigma-Aldrich, USA). To evaluate the inhibitory effect on filamentous fungi, the disc diffusion test, accepted by the US Food and Drug Administration (FDA) and established by the National Clinical Laboratory Standards Committee [15], was used. A suspension of the spores in sterile distilled water containing 0.5% Tween 80 was prepared.
A Neubauer counting chamber was used to determine the final spore concentration (10⁶ mL⁻¹) [16,17]. This inoculum was transferred to a dish containing Malt Extract Yeast Agar (MEA, Sigma-Aldrich, USA), using the surface dispersion technique. Filter paper discs 6 mm in diameter were placed at equidistant points in the culture medium and were soaked with 10 μL of essential oils or standards diluted in DMSO at concentrations of 500, 250, 125, 62.5, 31.25, 15.63, 7.81, and 3.91 mL • mL⁻¹. As a positive control, 10 μL of 2% hypochlorite (1 g • L⁻¹), was used, whereas the same amount of DMSO was used as a negative control. The plates were incubated in BOD at 25°C for 72 hours and then the minimum inhibitory concentration (MIC) was defined as the lowest concentration of fixed oil at which the presence of an inhibition halo can be identified [18]. The analyzes were performed in three replicates.

Statistical analysis
Analysis of the principal components to group the genotypes with respect to the detected compounds and antimicrobial activity of the oils in various concentrations was tested by a negative binomial and chi-squared followed by the identification of possible differences among the microbial activity of the oils by means of the Tukey test (p < 0.05).

Results and Discussion

The results of the profile of the fatty acids found in each genotype are demonstrate in Table 1. A similarity can be observed in the composition of Nut oils 1, 3 and 5, which present similar amounts of eicosanoic acid, linolenic acid and heneocosainoic acid. However, linolealaidic acid was found in Brazil nut oil 1 and 4, and linoleic acid in nut oils 3 and 5. Brazil nut oil 2 presented the highest amount of different fatty acids and was the only one where tridecanoic acid was found. In the characterization of Oil 4, linoleic acid was determined with a higher percentage than the other oils, and it was the only one that presented traces of palmitic acid in its composition. In a study of the in vitro activity of Brazil nut oil on aflatoxigenic strains of Aspergillus parasiticus conducted by [10], linolenic, linoleic, oleic, palmitic and stearic acids were determined in the composition of the Brazil nut oil [19,10,20]. However, there are few studies that evaluate the antifungal activity of the oils found in nuts in the control of aflatoxigenic fungi. In Figure 1 presents the results found in the Principal Component Analysis of the fatty acids profile characterized from the Brazil nut oil samples. The biplot presented explains 98.73% of the effects. Principal Component 2 (PC2) explaining 4.93% and Principal Component 1 (PC1) 93.80%. Therefore, it is possible to verify the formation of 3 different groups. The first formed by the Brazil nut oil 2, which concentrates the highest proportion of tridecanoic acid and this dispersed it to the others. Brazil nut oils 3 and 5 form the second group. They present a similar fatty acid profile, with emphasis on the concentration of the heneocosainoic and linoleic oils. On the other group, the Brazil nut oils 1 and 4, showing a similar profile, emphasizing the linolenic and linolealaidic oils. In Figure 2 presents the groupings via dendogram. It corroborates effects clearly observed in Figure 1, where the Brazil nut oils 1 and 4 and 3 and 5 was grouped by similarity, and finally Brazil nut oil 2 was separated. The difference in fatty acid profile found in this study may be related to the different genotypes of the evaluated nuts and these genotypes were classified in relation to the number of fruits and mass of the fruit seeds. The age of the plants can explain the differences between the production and the composition of the fruits of native populations [21,22].

The in vitro activity of Brazil nut oil, as a function of the concentrations evaluated, are shown in Figure 3. There was no interaction between concentration and genotype. Thus, it can be said that all Brazil nut oils had an inhibitory effect on the growth of Aspergillus parasiticus. A significant difference was observed among the concentrations studied, with the 1:1 concentration presenting the smallest inhibition halo and the 0.02 concentration obtaining the largest inhibition halo diameters. However, the 0.02 concentration did not differ from the 0.01; 0.03; 0.25 and 0.5 concentrations regarding microbial activity inhibition. Considering this it is possible to observe that Aspergillus parasiticus is sensitive to Brazil nut oil, especially in low concentrations. The result so obtained [10] showed that the effect of Brazil nut oil on the growth of the Aspergillus parasiticus was time and concentration dependent. The fatty acids, in general, have possible antimicrobial activity [23]. Palmitic, linoleic, oleic, linolenic and stearic acids are known for antifungal potential [24]. The ability of fatty acids to act on bacterial activity is associated with the ability to cause cell lysis [10]. According to [25], the lipoprotein structure of the fungal membrane is an effective barrier to many types of molecules, which cross by active diffusion or transport. The lipid component of the fungus called ergosterol, apolar sterol. Chemically classified as highly lipophilic and can trigger an imbalance in the fluidity of the fungal plasma membrane, leading to changes in intracellular homeostasis [26]. Its absence can cause alterations in plasma permeability and growth inhibition and this process can be favored by the nature of the constituents of the oil used. Thus, the presence of a polar constituents favor the interaction of the oil with the fungal membrane [27]. The hydrophobicity of the oil sand their constituents, has the capacity to interact with the lipid layer of the cell membranes, which can generate alterations in its structures, and may cause extravasation of cellular content [28], preventing fungal growth.

In a study using ginger extract, the increase in inhibition halo occurred in proportion to the product concentration. As the product concentration increased, there was an increase in the inhibition halo [29]. Many essential oils, fixed oils, plant extract sand their compounds present biological activity on them on diverse microorganisms, but little is known about their action mechanisms [30,31].
Fatty Acids	Oils	1	2	3	4	5
Myristic	0.050	-	0.032	0.055	-	
Stearic	0.058	0.001	-	0.183	-	
Oleic	0.289	0.003	0.340	0.434	0.192	
Linolelaicic	14.841	-	-	13.103	-	
Arachidic	0.292	0.003	-	1.026	0.603	
Y-linolenic	0.085	0.005	-	-	-	
Eicosanoic	11.329	0.096	9.956	10.344	11.907	
Linolenic	34.667	0.308	35.675	48.066	33.508	
Henecosanoic	38.111	0.388	39.692	26.474	38.240	
cis, 11 eicosanoic	0.182	-	-	-	-	
cis 11,14,17 - eicosa-trienoic	0.096	0.001	-	0.303	0.113	
Tridecanoic	-	99.058	-	-	-	
Linoleic	-	0.136	14.305	-	15.350	
cis 11, 14, eicosanoic	-	0.001	-	-	-	
Palmitic	-	-	-	0.012	-	
Behenic	-	-	-	-	0.052	
Eurucic	-	-	-	-	0.034	

Table 1: Characterization fatty acids in Brazil nut oil

Figure 1. Principal component analysis of the lipid profile of Brazil nut oils.
Figure 2: Grouping of Brazil nut oils according to their lipid profile

Figure 3. Diameter of inhibition halos under Brazil nut oil concentrations
*Averages followed by the same letter do not differ from one another by the Tukey test (p<0.05).
Conclusion

There is difference among the genotypes with respect to the fatty acid profile of each sample evaluated. All oil sex tracted from different genotypes have the ability to inhibit the growth of A. parasiticus. Further studies are needed with other fungi species, fungio-static and fungicidal effects to determine the pisticpoten-
tial of brazilinutoil.

References

1) Baquio AC, Lopes EL, Corrêa B (2016) Molecular andmyco-
toxigenicbiodiversity of AspergillusflavusisolatedfromBrazilinut.Old Research International 89:266–271.
2) USDA (2008) USDA National Nutriente Database for santandard Reference, Food Group: 12 Nut and seed Products (Publication. Re-
tried 15th October, 2010 from USDA).
3) Kluczkovski AM, Martins M, Mundin SM, et al. (2015) Properties of Brazil nut: A Review. African Journal of Biotechnology 14:642-
648.
4) Nunes LP, Filho S, Costa CC, Muratori APR, MCS (2015) Moni-
toramento of fungos micotóxicos in peixes cultivados na agua e substrato de viveiros em fazendas. Acta Veterinaria Brasileira 9:199-
204.
5) Ruyck K, Boevre M, Huybrechts I, Saeger S (2015) Dietetarymy-
cotoxins, co-exposure, and carcinogenesis in humans: short review. MutationResearch: Reviews in Mutation Research, Ghent, Belgium 766:32–41.
6) Midorikawa GEOUSOA, Sousa MLM, Silva OF, Dias JSD, et al. (2014) Characterization of Aspergillus species on Brazil nut from the Brazilian Amazonian region and development of a PCR assay for identification at the genus level. BMC microbiology 14:138.
7) Smith JE, Ross IC (2001) The toxigenic Aspergillus. In: London, My-
cotoxins and animal foods. London: CRC Press 1991 31-61.
8) Teixeira AR, Pedrozo CAP, Costa EKL, Batista KD, Tomini H, Pessoni LA (2015) Correlações e divergência fenotípica entre genótipos cultivados de castanha-do-Brasil. Sci. For., Piracicaba Vol. 43:523-531.
9) IARC, International Agency of Research on Cancer (1997) Evalu-
ation of carcinogenic risks to humans: some naturally occurring sub-
components of brazilinut. IARC Monographs. Lyon 56: 245–395.
10) Nalesnik MA, Tseng G, Ding Y, Xiang GS, Zheng Zl, Yu Y, et al. (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmac 85:231-235.
11) Barry AL, Thornberry C (1991) Testes de sustetibilidade: pro-
cedimentos de teste de difusão. Em: Balows A, Hausler Jr WJ, Hermann KL et al. (eds) Manual de Microbiologia Clínica. Sociedade Americana de Microbiologia, Washington 1117-1125.
12) Baquião AC, Lopes EL, Corrêa B (2016) Molecular andmyco-
toxigenicbiodiversity of AspergillusflavusisolatedfromBrazilinut.Old Research International 89:266–271.
13) Chattotadhyay D, Arunachalam G, Mandal AB, Sur TK, Man-
dal, SC, Bhattacharya SK (2002) Antimicrobialandanti-inflammato-
ry activity offolklore: Mallotuspetalatus leafextract. J Ethnopharmac 82:229–237.
14) Nelson DL (2012) Activity of Essential Oils from Myristicafragran-
sHout and Salvia microphylla H.B.K, “ Journal of the American Oil
hemists Society 89:523–528.
15) Lima RK, Cardoso MG, Andrade MA, Guimarães PL, Batista LR,
Nelson DL (2012) Activity of Essential Oils from Myristicafragran-
sHout and Salvia microphyllahH.B.K,” Journal of the American Oil
hemists Society 89:523–528.
Submit your manuscript to a JScholar journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Better discount for your subsequent articles

Submit your manuscript at http://www.jscholaronline.org/submit-manuscript.php