Clinical and Translational Research

Do different bariatric surgical procedures influence plasma levels of matrix metalloproteinase-2, -7, and -9 among patients with type 2 diabetes mellitus?

Wen-Chi Wu, Wei-Jei Lee, Tzong-His Lee, Shu-Chun Chen, Chih-Yen Chen

ORCID number: Wen-Chi Wu (0000-0003-1383-0460); Wei-Jei Lee (0000-0001-7091-3006); Tzong-His Lee (0000000225003844); Shu-Chun Chen (0000-0002-4129-0277); Chih-Yen Chen (0000-0003-0937-0596).

Author contributions: Wu WC and Lee TH contributed equally to this work and should be regarded as co-first authors. Chen CY conceived and designed the study and did data-analysis and patient data collection; Lee WJ performed bariatric surgery and collected the data of the patients; Wu WC reviewed the literature and wrote the original draft of the manuscript; Chen CY, Lee WJ, Lee TH, Chen SC, and Wu WC made critical revisions and approved the final version of the manuscript.

Supported by grants from Min-Sheng General Hospital, Taoyuan, and Far Eastern Memorial Hospital-National Yang-Ming University Joint Research Program, No. 105DN15, No. 106DN15, and No. 107DN14 to Lee TH and Chen CY.

Institutional review board statement: The study was reviewed and approved by the Institutional Review Board of National Yang-Ming University.

Clinical trial registration statement: This is a clinical observation, not a clinical trial.

Informed consent statement: All study participants or their legal guardian provided informed consent.

Abstract

BACKGROUND

Bariatric surgery is an efficient strategy for body weight and type 2 diabetes mellitus (T2DM) management. Abnormal lipid deposition in visceral organs, especially the pancreas and liver, might cause beta-cell dysfunction and insulin resistance. Extracellular matrix (ECM) remodeling allows adipose expansion, and matrix metalloproteinases (MMPs) play essential roles in ECM construction. MMP-2 and MMP-9 are the substrates of MMP-7. Different studies have reported that MMP-2, -7, and -9 increase in patients with obesity and metabolic syndromes or T2DM and are considered biomarkers in obesity and hyperglycemia patients.

AIM

Wen-Chi Wu, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan

Wei-Jei Lee, Department of Surgery, Min-Sheng General Hospital, Taoyuan 330, Taiwan

Wei-Jei Lee, Taiwan Society for Metabolic and Bariatric Surgery, Taipei 11031, Taiwan

Tzong-His Lee, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan

Shu-Chun Chen, Department of Nursing, Chang-Gung Institute of Technology, Guishan, Taoyuan 333, Taiwan

Chih-Yen Chen, Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan

Chih-Yen Chen, Faculty of Medicine and Institute of Emergency and Critical Medicine, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan

Chih-Yen Chen, Association for the Study of Small Intestinal Diseases, Guishan, Taoyuan 33305, Taiwan

Chih-Yen Chen, Chinese Taipei Society for the Study of Obesity, Taipei 110, Taiwan

Corresponding author: Chih-Yen Chen, AGAF, MD, PhD, Attending Doctor, Professor, Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan. chency@vghtpe.gov.tw
INTRODUCTION

Type 2 diabetes mellitus (T2DM) and obesity raise concerns among global health issues[1-3]. Bariatric surgical procedures, including gastric bypass (GB) and sleeve gastrectomy (SG), have been generally acknowledged as some of the most effective methods to manage body weight and glycemic control in obese patients[4-6]. Matrix metalloproteinases (MMPs) are calcium-dependent and zinc-containing proteases involved in extracellular matrix (ECM) synthesis, basement membrane degradation, and growth factor stimulation[7-9], which further affect adipogenesis and adipose tissue growth[10]. MMPs are classified into six groups based on their substrate and tissue growth[11]. MMPs are classified into six groups based on their substrate and tissue growth[11].}

To prospectively investigate whether MMP-2, MMP-7, and MMP-9 differ after two bariatric surgeries: Gastric bypass (GB) and sleeve gastrectomy (SG).

METHODS

We performed GB in 23 and SG in 19 obese patients with T2DM. We measured body weight, waist circumference, body mass index (BMI), and serum concentrations of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, fasting blood sugar (FBS), hemoglobin A1c (HbA1c), C-peptide, homeostasis model assessments of insulin resistance, and MMP-2, MMP-7, and MMP-9 levels at baseline and at 3, 12, and 24 mo post-operation.

RESULTS

Twenty-three patients aged 44.7 ± 9.7 years underwent GB, and 19 patients aged 40.1 ± 9.1 years underwent SG. In the GB group, BMI decreased from 30.3 ± 3.4 to 24.4 ± 2.4 kg/m², HbA1c decreased from 9.2% ± 1.5% to 6.7% ± 1.4%, and FBS decreased from 171.6 ± 65.0 mg/dL to 117.7 ± 37.5 mg/dL 2 years post-operation (P < 0.001). However, the MMP-2, MMP-7, and MMP-9 levels pre- and post-GB were similar even 2 years post-operation (P = 0.107, 0.258, and 0.466, respectively). The SG group revealed similar results: BMI decreased from 36.2 ± 5.1 to 26.9 ± 4.7 kg/m², HbA1c decreased from 7.9% ± 1.7% to 5.8% ± 0.6%, and FBS decreased from 138.3 ± 55.6 mg/dL to 95.1 ± 3.1 mg/dL (P < 0.001). The serum MMP-2, -7, and -9 levels pre- and post-SG were not different (P = 0.083, 0.869, and 0.1, respectively).

CONCLUSION

Improvements in obesity and T2DM induced by bariatric surgery might be the result of MMP-2, -7, or -9 independent pathways.

Key words: Matrix metalloproteinases; Extracellular matrix; Obesity; Type 2 diabetes mellitus; Gastric bypass; Sleeve gastrectomy

©TheAuthor(s)2020. Published by BaishidengPublishingGroupInc.Allrightssreserved.

Citation: WuWC,LeeWJ,LeeTH,ChenSC,ChenCY.Do different bariatric surgical procedures influence plasma levels of matrix metalloproteinase-2,-7,- and -9 among patients with type 2 diabetes mellitus? World J Diabetes 2020;11(6):252-260
URL:https://www.wjgnet.com/1948-9358/full/v11/i6/252.htm
DOI:https://dx.doi.org/10.4239/wjd.v11.i6.252
membrane type MMPs; and other MMPs[22]. In 2001, Bouloumié \textit{et al}[13] first reported that human adipocytes and pre-adipocytes secrete MMP-2 and MMP-9, and in turn, these two MMPs serve as potential essential regulators in adipocyte differentiation.

MMPs have been recognized as biomarkers of several disorders such as coronary artery diseases and heart failure. Plasma levels of MMPs have been reported to be significantly higher in obesity and T2DM patients[11]. MMP-2 and MMP-9 have both been reported to promote inflammation in high coronary risk events and plaque instability[14,15]. Both have also been reported to increase in obese patients, those with metabolic syndromes, and even patients with diabetes[16,17]. MMP-7 targets various substrates for ECM function, including MMP-2 and MMP-9[12,18]. Elevated MMP-7 levels in obese patients were reported to facilitate adipocyte differentiation[19]. Some authors considered MMP-7 as a marker for obesity, fat cell diameters, and obesity-related metabolic traits[20,21]. We hypothesized that having bariatric surgery would result in a decrease of plasma levels of MMP-2, -7, and -9. If correct, then these MMPs might represent biomarkers of the efficacy of bariatric surgeries. Furthermore, bariatric surgery might improve glycemic control through MMP-2, -7, or -9 independent pathways, and those MMPs could be novel therapeutic targets and prognostic biomarkers for obese patients with T2DM.

MATERIALS AND METHODS

We conducted a prospective observational study using a hospital-based design. Overweight or obese patients with T2DM receiving either GB or SG surgery were enrolled in the study. The study was conducted in accordance with the Declaration of Helsinki. The protocol was approved by the Institutional Review Board (IRB approval number: MSIRB2016006).

Eligible patients had been diagnosed with T2DM for more than 6 mo previously with a hemoglobin A1c (HbA1c) level > 8% and were receiving regular medical treatment, including therapeutic nutritional therapy, oral anti-diabetic agents, or insulin. The body mass index (BMI) in these patients ranged from 27.5-35 kg/m2, and these patients were willing to undergo additional treatment with lifestyle modifications, accepted follow-up visits, and provided written informed consent documents.

Patients with cancer within the last 5 years, human immunodeficiency virus infection, active pulmonary tuberculosis, cardiovascular instability within the previous 6 mo, pulmonary embolisms, serum creatinine levels > 2.0 mg/dL, chronic hepatitis B or C, liver cirrhosis, inflammatory bowel disease, acromegaly, organ transplantation, history of another bariatric surgery, alcoholic disorders, or drug abuse, or those who were uncooperative were excluded from the study.

Clinical anthropometry and routine laboratory assessments were performed on the day before surgery as baseline (M0) and at 3 mo (M3), 12 mo (M12), and 24 mo (M24) postoperatively. The participants were required to fast overnight prior to each blood sample collection. The samples were taken from the median cubital vein between 8 and 11 o’clock in the morning. Laboratory assessments included serum levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, fasting blood sugar (FBS), hemoglobin A1c (HbA1c), C-peptide, homeostasis model assessments of insulin resistance, and MMPs-2, -7, and -9. Anthropometry measurements included body weight, waist circumference (WC), and BMI. The homeostasis model assessments of insulin resistance was calculated as plasma glucose (mmol/L) × insulin (μU/mL)[22].

Overall, there were 23 patients who received GB, and 19 patients who underwent SG in this study. There were 6 men and 17 women aged 44.7 ± 9.7 years in the GB group. There were 14 men and 5 women aged 40.1 ± 9.1 years in the SG group. The duration of T2DM was 4.0 ± 2.7 and 2.6 ± 2.8 years in the GB and SG groups, respectively (Table 1).

The blood samples were promptly injected into aprotinin-containing tubes (500 U/mL) once taken. After standardized centrifugation at 300 g and storage at ~20 °C, the plasma was aliquoted into polypropylene tubes. Validated enzyme immunoassays for MMPs-2, -7, and -9 (QuickZyme Biosciences B.V., CK Leiden, The Netherlands) performed in a single batch and in a blinded fashion was used to measure the concentrations of MMP-2, -7, and -9.

The comparison of baseline and postoperative variables was conducted using the Wilcoxon signed-rank test. Friedman’s one-way repeated measures analysis of variance on ranks and a post-hoc test were performed to analyze the difference in plasma levels of MMP-2, -7, and -9 at M0, M3, M12, and M24. Spearman’s correlation...
Table 1 Baseline characteristics of the two groups

Baseline characteristics	Gastric bypass	Sleeve gastrectomy
Patient numbers	23	19
Male	6	14
Female	17	5
Age (yr)	44.7 ± 9.7	40.1 ± 9.1
Duration of type 2 diabetes mellitus (yr)	4.0 ± 2.7	2.6 ± 2.8

Analysis was used to test the correlations between two parameters. The statistical package for Social Science, version 12.0 (SPSS, Inc., Chicago, Illinois, IL, United States) was used for all analyses.

RESULTS

In the GB group, WC, BMI, HbA1c, and FBS were significantly decreased at 2 years postoperatively. WC decreased from 103.2 ± 10.3 to 84.2 ± 7.1 cm; BMI decreased from 30.3 ± 3.39 to 24.4 ± 2.4 kg/m2; HbA1c decreased from 9.2% ± 1.5% to 6.7% ± 1.4%; and FBS decreased from 171.6 ± 65.0 to 117.7 ± 37.5 mg/dL; and all were statistically significant ($P < 0.001$). However, the MMP-2, MMP-7, and MMP-9 levels were similar before and after GB even 2 years postoperatively ($P = 0.107, 0.258, \text{ and } 0.466$, respectively) (Table 2).

The SG group revealed similar results. WC decreased from 109.4 ± 10.5 to 87.7 ± 11.3 cm; BMI decreased from 36.2 ± 5.1 to 26.9 ± 4.7 kg/m2; HbA1c decreased from 7.9% ± 1.7% to 5.8% ± 0.6%; and FBS decreased from 138.3 ± 55.6 mg/dL to 95.1 ± 3.1 mg/dL; and all were statistically significant ($P < 0.001$), although serum MMP-2, -7, and -9 levels before and after SG were not statistically significant ($P = 0.083, 0.869, \text{ and } 0.1$, respectively) (Table 3). The serum MMP-2, MMP-7, and MMP-9 concentration trends of GB and SG are shown in Figure 1.

DISCUSSION

Obesity results from more lipid storage in adipose tissues causing further ECM accumulation[23]. ECM remodeling and reshaping are necessary to allow for new adipose tissue to grow[24]. In obesity, oxidative stress such as hypoxia and inflammation leads to pathological expansion of the ECM, macrophage aggregation, and collagen expression. Collagen accumulation might further induce lipid deposition[25]. Excessive ECM in white adipose tissue causes necrosis and apoptosis, cell death, accumulation of macrophages, and, consequently, insulin resistance[26]. Ectopic lipid deposition in the liver and pancreas might further result in beta-cell dysfunction and additional insulin resistance[27,28]. ECM changes in adipose tissue are considered to be related to T2DM[29].

Molecules other than MMPs such as integrins, collagens, a disintegrin and metalloproteinase domain-containing proteins, osteopontin, and tissue inhibitors of metalloproteinases are crucial players in ECM remodeling and adipose tissue rearrangement[30]. Integrins are the major adhesion receptors of the ECM, which transduce signals across the cell membrane and influence intracellular signaling[31]. Rodent studies have demonstrated that integrins might modulate glucose transporter 4 in adipose tissue, impair skeletal muscle glucose uptake, and aggravate insulin resistance[32,33]. Integrins take part in mechanical stimulation of insulin signaling, membrane insulin receptor localization, and insulin sensitivity[34]. Integrin subgroup $\beta 2$ impacts glucose balance under high fat consumption by activating the immune system, increasing neutrophil growth, and allowing infiltration of leukocytes into the tissue, which improves insulin resistance[35]. This mechanism was corroborated in a study by Roumans et al[36] who demonstrated changes in integrin gene activity and ECM remodeling in obesity patients whose therapy was diet-control.

Collagens affect cell adhesion, migration, and differentiation in adipose tissue[37], and their accumulation results in the formation of adipose tissue and insulin resistance[38]. In patients with obesity, collagen V1 was suppressed in adipose tissue and surgery-induced weight loss increased collagen VI in subcutaneous tissue[39]. Other authors found that plasma osteopontin was significantly elevated in T2DM patients. They also concluded that osteopontin might serve a key role in insulin
Table 2 Body mass index, hemoglobin A1c, fasting blood sugar, matrix metalloproteinas-2, -7, and -9 levels at baseline, 3 mo, 12 mo, and 24 mo after gastric bypass

	Mean (SD)					
BMI (kg/m²)	30.3 (3.4)	26.0 (2.8)	24.2 (2.2)	24.4 (2.4)	P < 0.001	< 0.0011
Waist circumference (cm)	103.2 (10.3)	90.4 (8.0)	82.3 (5.3)	84.2 (7.1)	< 0.0011	< 0.0011
HbA1c (%)	9.2 (1.5)	7.1 (1.6)	6.5 (1.2)	6.7 (1.4)	< 0.0011	< 0.0011
FBS (mg/dL)	171.6 (65.0)	127.0 (46.7)	114.1 (31.1)	117.7 (37.5)	< 0.0011	0.107
MMP-2 (ng/mL)	9.22 (1.9)	9.28 (2.0)	10.65 (4.3)	10.59 (3.5)	3.5 (1.5)	2.5 (1.2)
MMP-7 (ng/mL)	1.2 (1.2)	1.1 (1.1)	4.3 (2.5)	5.1 (1.5)	1.5 (1.2)	2.1 (1.1)
MMP-9 (ng/mL)	21.7 (22.3)	18.8 (12.8)	20.6 (16.2)	19.1 (22.4)	19.1 (22.4)	19.1 (22.4)

SD: Standard deviation; BMI: Body mass index; HbA1c: Hemoglobin A1c; FBS: Fasting blood sugar; MMP: Matrix metalloproteinases; M0: The baseline prior to surgery; M3: 3 mo postoperatively; M12: 12 mo postoperatively; M24: 24 mo postoperatively.

1Statistically significant.

Metabolically unhealthy people with normal body weight are susceptible to cardiovascular diseases and DM due to hyperinsulinemia, insulin resistance, and hypertriglyceridemia [23,48]. Therefore, the mechanism of how bariatric surgery improves DM might not be related to its ability to control weight. Furthermore, a previous study also demonstrated that while long-term aerobic training attenuated MMP-2 levels, it also increased MMP-9 levels [12]. The interactions and associations among MMP-2, MMP-7, MMP-9, and weight management are still ambiguous and require additional research.

Our study has some limitations. First, the study population was relatively small. Second, more women received GB than men and more men received SG than women. Third, a type-2 statistical error might occur due to the selected study populations. Furthermore, neither the MMP levels in adipose tissue nor their activities in plasma or adipose tissue were measured. Lastly, the study was conducted in a single-center and was open-labeled.

In the present study we investigated the effects of two bariatric surgeries, GB and SG, on MMP-2, -7, and -9 plasma concentrations. The plasma levels of the three MMPs did not differ before and after the two surgeries. We suggested that bariatric surgery helps improve glucose in obese patients with T2DM via the MMP-2, -7, and -9 independent pathways, and that it might be the adipose tissue, rather than the plasma concentrations of MMP-2, -7, and -9, or the plasma and adipose tissue MMP activities, that influences T2DM. Our results augment the current evidence of how bariatric surgery affects glycemic control in obesity and T2DM patients. Further trials determining whether MMPs could be potential markers for the efficacy of bariatric surgeries and how bariatric surgeries can affect diabetic control in obese patients are warranted.
Table 3 Body mass index, hemoglobin A1c, fasting blood sugar, matrix metalloproteinases-2, -7, and -9 levels at baseline, 3 mo, 12 mo, and 24 mo after sleeve gastrectomy

	BMI (kg/m²)	Waist circumference (cm)	HbA1c (%)	FBS (mg/dL)	MMP-2 (pg/mL)	MMP-7 (pg/mL)	MMP-9 (pg/mL)	
	mean	SD	mean	SD	mean	SD	mean	SD
M0	36.2	5.1	109.4	10.5	7.9	1.7	138.3	55.6
M3	30.6	4.6	92.5	9.9	5.9	0.5	91.0	2.2
M12	26.8	4.4	87.1	12.7	5.7	0.5	90.6	3.5
M24	26.9	4.7	87.7	11.3	5.8	0.6	95.1	3.1
P	< 0.001	< 0.001	< 0.001	< 0.001	0.083	0.869	0.100	

Statistically significant. SD: Standard deviation; BMI: Body mass index; HbA1c: Hemoglobin A1c; FBS: Fasting blood sugar; MMP: Matrix metalloproteinases; M0: The baseline prior to surgery; M3: 3 mo postoperatively; M12: 12 mo postoperatively; M24: 24 mo postoperatively.

Figure 1 Matrix metalloproteinases-2, -7, and -9 plasma levels at the baseline, 3 mo, 12 mo, and 24 mo after gastric bypass and sleeve gastrectomy.

A: Matrix metalloproteinase (MMP)-2 levels in GB (gastric bypass) group; B: MMP-2 levels in SG (sleeve gastrectomy) group; C: MMP-7 levels in GB group; D: MMP-7 levels in SG group; E: MMP-9 levels of GB; F: MMP-9 levels of SG. M0: The baseline prior to surgery; M3: 3 mo postoperatively; M12: 12 mo postoperatively; M24: 24 mo postoperatively; GB: Gastric bypass; SG: Sleeve gastrectomy.
ARTICLE HIGHLIGHTS

Research background
Bariatric surgeries, including gastric bypass and sleeve gastrectomy, are generally accepted to be effective in controlling body weight and blood glucose in obese patients. Researchers have found matrix metalloproteinases (MMPs) as biomarkers in many disorders. The levels of MMPs were reported to be increased in obese and type 2 diabetes mellitus (T2DM) patients.

Research motivation
Previous research reported decreased MMPs, along with reduced body weight, in the exercise group rather than the control group. We hypothesized that the MMP-2, -7, -9 levels would decrease in patients who underwent bariatric surgeries and further explained the mechanism of body weight loss and blood sugar control caused by bariatric surgeries.

Research objectives
The results disclosed that the MMP-2, -7, and -9 levels did not differ before or after bariatric surgery. Bariatric surgeries are helpful for weight loss and blood sugar control without significantly affecting MMP-2, -7, and -9 levels. How bariatric surgeries regulate body weight and blood sugar in obese T2DM patients needs further investigation. Whether MMPs other than MMP-2, -7, and -9 play roles demands further study.

Research methods
Overall, 6 men and 17 women who received gastric bypass (GB), and 14 men and 5 women who received sleeve gastrectomy (SG) were included. All of the above subjects had a hemoglobin A1c (HbA1c) level > 8% under regular medication by endocrinologists and a body mass index (BMI) ranging from 27.5-35 kg/m². We measured their clinical anthropometry and serum levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, fasting blood sugar, HbA1c, C-peptide, homeostasis model assessments of insulin resistance, and MMPs-2, -7, and -9 on the day before surgery as the baseline (M0) and at 3 mo (M3), 12 mo (M12), and 24 mo (M24) postoperatively. We use the validated enzyme immunoassays (QuickZyme Biosciences B.V., CK Leiden, The Netherlands) for the concentration of MMPs-2, -7, and -9. The procedure was performed in a blinded manner. For data analyses, the statistical package for Social Science, version 12.0 (SPSS, Inc., Chicago, Illinois, IL, United States) was used. The statistical methods included the Wilcoxon signed-rank test, Friedman’s one-way repeated measures analysis of variance on ranks followed by a post-hoc test, and Spearman’s correlation analysis.

Research results
In both the GB and SG groups, waist circumference, BMI, HbA1c, and fasting blood sugar were significantly decreased 2 years postoperatively. However, serum MMP-2, -7, and -9 levels did not significantly change after both surgeries. Our study added on the knowledge about the relationship between the biomarkers MMP-2, -7, and -9 and GB and SG surgeries.

Research conclusions
Our study demonstrated that the MMP-2, -7, and -9 levels did not differ before or after the bariatric surgeries, which indicated that bariatric surgeries might be helpful for body weight and glucose management without altering MMP-2, -7, and -9 levels. The mechanism of weight loss and glucose management by bariatric surgeries in obese T2DM patients needs more exploration.

Research perspectives
The study population was relatively small, and there were more women than men who received GB, and more men than women who received SG. Also, neither of the MMP levels nor their activities in adipose tissue were measured. In future studies, the sex ratio should be kept balanced in both groups. Furthermore, the MMP levels and activities in adipose tissue should be taken into consideration.

REFERENCES

1 GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M, Naghavi M, Salama JS, Yos T, Abate KH, Abbafati C, Ahmed MB, Ali-Aly Z, Alkert J, Al-Raddadi R, Amare AT, Amberbir A, Amegah AK, Amini E, Amro D, Anjum NA, Arinyolivia J, Asayesh H, Banerjee A, Barac A, Baye E, Bennett DA, Beyene AS, Biadgilign S, Biryuovk S, Bjertness E, Boneya DJ, Campos-Novato I, Carrero JJ, Cecilio P, Cercy K, Ciobanu LG, Cornaby L, Darwicewa SA, Dandona L, Dandona R, Dharmanarine SD, Duncan BB, Esfrati B, Esteghamati A, Feigin VL, Fernandes JC, Fistein T, Gebrehiwot TT, Gold A, Gona PN, Goto A, Habtezabel TD, Hadush KT, Hafezi-Nejad N, Hay SI, Horimoto M, Islam F, Kamal R, Kasaanin A, Katikireddi SV, Kengne AP, Kesavachandran CN, Khader YS, Khang YH, Khubchandani J, Kim D, Kim YJ, Kimu K, Kosen S, Ku T, Defo BK, Kumar GA, Larson HJ, Leinsalu M, Liang X, Lim SS, Liu P, Lopez AD, Lozano R, Majeed A, Malekzadeh R, Malta DC, Mazidi M, McAlindren C, McIver ST, Mengistu DT, Mensah GA, Mensink GBM, Mezghenie HB, Mirzakhahine SM, Mueller UO, Noubian JH, Ombmeyer CM, Ogbo FA, Owolabi MO, Patton GC, Pourmalek F, Qorbani M, Raat A, Rai RK, Ranabhat CL, Reinig N, Safiri S, Salomon JA, Sanabria JR, Santos IS, Sartorius B, Sawhney M, Schmidthuber J, Schutte AE, Schmidt MI, Sezanlou SG, Shamizadeh M, Shiekhhbahihi S, Shin MJ, Shiri R, Shiu I, Roba HS, Silva DAS, Silverberg HJ, Singh JA, Strangues S, Swaminathan S, Tafzis-Seisdedos R, Tades F, Telia BA, Tegege BS, Terkawi AS,
Thakur JS, Tonelli M, Topor-Madry R, Tyrovoulos S, Ukwaja KN, Ulhman OA, Vaeghchasmn M, Vasankari T, Vlassov VV, Volset SE, Weidępass E, Werdecker A, Wesana J, Westerman R, Yano Y, Yonemoto N, Yonga G, Zaidi Z, Zenebe ZM, Zipkin B, Murray C. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 2017; 377: 13-27 [PMID: 28604169 DOI: 10.1056/NEJMoa1614362]

2 Unnikrishnan R, Pradeepa R, Joshi SR, Mohan V. Type 2 Diabetes: Demystifying the Global Epidemic. Diabetes 2017; 66: 1432-1442 [PMID: 28533294 DOI: 10.23736/s616-0766]

3 Morris MJ. Cardiovascular and metabolic effects of obesity. Clin Exp Pharmacol Physiol 2008; 35: 416-419 [PMID: 18307732 DOI: 10.1111/j.1440-1681.2008.04912.x]

4 Bhatt L, Addepalli V. Matrix metalloproteinases in diabetes. Diabetes 2015; 1: 18-20 [DOI: 10.1556/diabetes.2015.13]

5 Kang JH, Le QA. Effectiveness of bariatric surgical procedures: A systematic review and network meta-analysis of randomized controlled trials. Medicine (Baltimore) 2017; 96: e6302 [PMID: 29145284 DOI: 10.1097/md.0000000000006272]

6 Kollaki C, Liatis S, le Roux CW, Kokkinos A. The role of bariatric surgery to treat diabetes: current challenges and perspectives. BMC Endocr Disord 2017; 17: 50 [PMID: 28797248 DOI: 10.1186/s12902-017-0202-6]

7 Wang W, Fann CSl, Yang SH, Chen HH, Chen CY. Weight loss and metabolic improvements in obese patients undergoing gastric banding and gastric banding plication: A comparison. Nutrition 2019; 57: 290-299 [PMID: 30219866 DOI: 10.1016/j.nut.2018.05.024]

8 Huang HH, Lee WJ, Chen SC, Chen TF, Lee SD, Chen CY. Bile Acid and Fibroblast Growth Factor 19 Regulation in Obese Diabetics, and Non-Alcoholic Fatty Liver Disease after Sleeve Gastrectomy. J Clin Med 2019; 8: pii: E815 [PMID: 3118164 DOI: 10.3390/jcm8060815]

9 Medeiros N, Gomes JAS, Fiuza JA, Sousa GR, Almeida EF, Novaes RO, Rocha VLS, Chaves AT, Dutra WO, Rocha MOC, Correa-Oliveira R. MMP-2 and MMP-9 plasma levels are potential biomarkers for indeterminate and cardiac clinical forms progression in chronic Chagas disease. Sci Rep 2019; 9: 14470 [PMID: 31758449 DOI: 10.1038/s41598-019-50791-z]

10 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92: 827-839 [PMID: 12730128 DOI: 10.1161/01.RES.0000070117.80711.3D]

11 Derosa G, Ferrari I, D’Angelo A, Tinelli C, Salvadoro SA, Ciccarelli L, Piccinini MN, Gravina A, Ramondetti F, Maffioli P, Cicero AF. Matrix metalloproteinase-2 and -9 levels in obese patients. Endothelium 2008; 15: 219-224 [PMID: 18662562 DOI: 10.1080/1535370200229015]

12 Jauso J, Koh Y. Matrix metalloproteinases in exercise and obesity. Vasc Health Risk Manag 2016; 12: 287-295 [PMID: 27471391 DOI: 10.2147/VHRM.S103877]

13 Bouloumié A, Sengenès C, Portolán G, Galizty J, Lafontan M. Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 2001; 50: 2080-2086 [PMID: 11522674 DOI: 10.2337/diabetes.50.9.2080]

14 Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493-2503 [PMID: 7899608 DOI: 10.1172/JCI117619]

15 Thorp EB. Contrasting Inflammation Resolution during Atherosclerosis and Post Myocardial Infarction at the Level of Monocyte/Macrophage Phagocytic Clearance. Front Immunol 2012; 3: 39 [PMID: 22566922 DOI: 10.3389/fimmu.2012.00039]

16 Hoppes E, Lo Presti R, Montana M, Noto D, Averna MR, Caimi G. Gelatinases and their tissue inhibitors in a group of subjects with metabolic syndrome. J Investig Med 2013; 61: 978-983 [PMID: 23661104 DOI: 10.2310/0173.2013.002237]

17 Kosmala W, Plåske R, Przewlocka-Kosmala M, Kulikczkowska-Plåske J, Bednarek-Tupikowska G, Mazurek W. Matrix metalloproteinases 2 and 9 and their tissue inhibitors 1 and 2 in premenopausal obese women: relationship to cardiac function. Int J Obes (Lond) 2008; 32: 763-771 [PMID: 18197181 DOI: 10.1038/jiob.2008.794]

18 Il M, Yamamoto H, Adachi Y, Manuyama Y, Shimomura Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 2006; 231: 20-27 [PMID: 1630641 DOI: 10.1177/1535370206023100103]

19ress C, Tschoner A, Ciardi C, Laimer MW, Engl JW, Le QA. Matrix metalloproteinases in obesity and their tissue inhibitors 1 and 2 in premenopausal obese women: relationship to cardiac function. Int J Obes (Lond) 2008; 32: 763-771 [PMID: 18197181 DOI: 10.1038/jiob.2008.794]

20 Maquoi E, Munau C, Colige A, Collen D, Lijnen HR. Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 2002; 51: 1093-1101 [PMID: 11916931 DOI: 10.2337/db01-1676]

21 Yang PJ, Ser KH, Lin MT, Nien HC, Chen CN, Yang WS, Lee WJ. Diabetes Associated Markers After Bariatric Surgery: Fetuin-A, but Not Matrix Metalloproteinase-7, Is Reduced. Obes Surg 2015; 25: 2328-2334 [PMID: 25933632 DOI: 10.1007/s11695-015-1688-5]

22 Lee WJ, Chen CY, Chong K, Lee YC, Chen SC, Lee SD. Changes in postprandial gut hormones after bariatric surgery: a comparison of gastric bypass and sleeve gastrectomy. Surg Obes Relat Dis 2017; 13: 683-690 [PMID: 21966600 DOI: 10.1016/j.soard.2011.07.009]

23 Ruiz-Ojeda FJ, Méndez-Gutiérrez A, Aguileria CM, Plaza-Díaz J. Extracellular Matrix Remodeling of Adipose Tissue in Obesity and Metabolic Diseases. Int J Mol Sci 2019; 20: pii: E4888 [PMID: 31581657 DOI: 10.3390/ijms20194888]

24 Schoett T, Fischer IP, Usar S. Heterogeneity of adipose tissue in development and metabolic function. J Exp Biol 2018; 221: pii: jeb16295 [PMID: 29514879 DOI: 10.1242/jeb.162958]

25 Hammarslettd A, Gogg S, Hedzajzar S, Nerstedt A, Smith U. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol Rev 2018; 98: 1911-1941 [PMID: 30067159 DOI: 10.1152/physrev.00034.2017]

26 Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW 2nd, DeFaria J, Zick J, Greenberg AS, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007; 56: 2910-2918 [PMID: 17846264 DOI: 10.2337/db07-0767]

27 Bobulescu IA, Lotan Y, Zhang J, Rosenthal TR, Rogers JT, Adams-Huet B, Sakhaee K, Moe OW. Triglycerides in the human kidney cortex: relationship with body size. PLoS One 2014; 9: e101285 [PMID: 25170827 DOI: 10.1371/journal.pone.0101285]

28 Catanzaro R, Cuffari B, Italia A, Marotta F. Exploring the metabolic syndrome: Nonalcoholic fatty
Wu WC et al. Does bariatric surgery influence plasma MMP-2, -7, and -9?

pancreas disease. *World J Gastroenterol* 2016; 22: 7660-7675 [PMID: 27678349 DOI: 10.3748/wjg.v22.i34.7660]

29 Wang B, Wood IS, Traylorum P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. *Pflugers Arch* 2007; 455: 479-492 [PMID: 17669976 DOI: 10.1007/s00424-007-0301-8]

30 Lin, Chun TH, Kang L. Adipose extracellular matrix modelling in obesity and insulin resistance. *Biochem Pharmacol* 2016; 119: 8-16 [PMID: 27179976 DOI: 10.1016/j.bcp.2016.05.005]

31 Hynes RO. Integrins: bidirectional, allosteric signaling machines. *Cell* 2002; 110: 673-687 [PMID: 12297032 DOI: 10.1016/S0092-8674(02)00977-1]

32 Zong H, Bastie CC, Xu J, Fassler R, Campbell KP, Kurland IU, Pessin JE. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice. *J Biol Chem* 2009; 284: 4679-4688 [PMID: 19064993 DOI: 10.1074/jbc.M807408200]

33 Kang L, Ayala JE, Lee-Young RS, Zhang Z, James FD, Neuffer PD, Pozzi A, Zutter MM, Wasserman DH. Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin alpha2beta1 in mice. *Diabetes* 2011; 60: 416-426 [PMID: 21270523 DOI: 10.2337/db10-1116]

34 Kim J, Bilder D, Neufeld TP. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization. *Genes Dev* 2018; 32: 156-164 [PMID: 29440263 DOI: 10.1101/gad.305870.117]

35 Meakin PJ, Morrison VL, Sneddon CC, Savinko T, Uotila L, Jalicly SM, Gabriel JL, Kang L, Ashford ML, Fagerholm SM. Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation. *PLoS One* 2015; 10: e0138872 [PMID: 26450763 DOI: 10.1371/journal.pone.0138872]

36 Roumans NJ, Vink RG, Fazelzadah P, van Baak MA, Mariman EC. A role for leukocyte integrins and extracellular matrix modeling of adipose tissue in the risk of weight regain after weight loss. *Am J Clin Nutr* 2017; 105: 1054-1062 [PMID: 28293395 DOI: 10.3945/ajcn.116.148874]

37 Mariman EC, Wang P. Adipocyte extracellular matrix composition, dynamics and role in obesity. *Cell Med Life Sci* 2010; 67: 1277-1292 [PMID: 20107860 DOI: 10.1007/s00018-010-0263-4]

38 Buechler C, Krauthauser S, Eisinger K. Adipose tissue fibrosis. *World J Diabetes* 2015; 6: 548-553 [PMID: 25987952 DOI: 10.4239/wjd.v6i6.548]

39 McCulloch LJ, Rawling TJ, Sjöholm K, Franck N, Dankel SN, Price EJ, Knight B, Liversedge NH, Melgren G, Nyström F, Carlson LM, Koss K. COL6A3 is regulated by leptin in human adipose tissue and reduced in obesity. *Endocrinology* 2015; 156: 134-146 [PMID: 25537653 DOI: 10.1210/en.2014-1042]

40 Zhang Q, Wang C, Tang Y, Zhu Q, Li Y, Chen H, Bao Y, Xue S, Sun L, Tang W, Chen X, Shi Y, Qu L, Lu B, Zheng J. High glucose upregulates osteopontin expression by FoxO1 activation in macrophages. *J Endocrinol* 2019; 242: 51-64 [PMID: 31096186 DOI: 10.1530/JOE-18-0954]

41 Barchetta I, Cecconi V, Cimini FA, Bertoccini L, Fraioli A, Alessandri C, Lenzi A, Baroni MG, Cavallo MG. Impaired bone matrix glycoprotein pattern is associated with increased cardio-metabolic risk profile in patients with type 2 diabetes mellitus. *J Endocrinol Invest* 2019; 42: 513-520 [PMID: 30132286 DOI: 10.1007/s40618-018-0941-x]

42 Carbonne F, Adami G, Liberale L, Bonaventura A, Bertolotto M, Andraghetti G, Scopinaro N, Camerini GB, Papadia FS, Cordeira R, Dallegri F, Montecucco F. Serum levels of osteopontin predict diabetes remission after bariatric surgery. *Diabetes Metab* 2019; 45: 356-362 [PMID: 30268840 DOI: 10.1016/j.diabet.2018.09.007]

43 Papazafiropoulou A, Perrea D, Moysakis I, Kokkinos A, Katsilambros N, Tentolouris N. Plasma levels of MMP-2, MMP-9 and TIMP-1 are not associated with arterial stiffness in subjects with type 2 diabetes mellitus. *J Diabetes Complications* 2010; 24: 20-27 [PMID: 19062310 DOI: 10.1016/j.jdiacomp.2008.10.004]

44 Milsztowicz V, Morales C, Zago V, Friedman S, Schreier L, Berg G. Effect of insulin-resistance on circulating and adipose tissue MMP-2 and MMP-9 activity in rats fed a sucrose-rich diet. *Nutr Metab Cardiovasc Dis* 2014; 24: 294-306 [PMID: 24418386 DOI: 10.1016/j.numecd.2013.08.007]

45 Berg G, Barchuk M, Milsztowicz V. Behavior of Metalloproteinas in Adipose Tissue, Liver and Arterial Wall: An Update of Extracellular Matrix Remodeling. *Cells* 2019; 8: pii: E158 [PMID: 30789640 DOI: 10.3390/cells8020158]

46 Garcia-Prieto CF, Gil-Ortega M, Vega-Martin E, Ramiro-Cortijo D, Martin-Ramos M, Bordiù E, Sanchez-Pernante A, Torres A, Arangüez I, Fernández-Alfonso M, Rubio MA, Somoza B. Beneficial Effect of Bariatric Surgery on Abnormal MMP-9 and AMPK Activities: Potential Markers of Obesity-Related CV Risk. *Front Physiol* 2019; 10: 553 [PMID: 31333882 DOI: 10.3389/fphys.2019.00553]

47 Bonnizla S, Behir S, Ben Nasr H, Abbasi A, Jacob MP, Norrel X, Tabka Z, Chahed K. Role of MMP-1 (-519A/G, -1607G/2G), MMP-3 (Lys45Glu), MMP-7 (-181A/G), and MMP-12 (-82A/G) Variants and Plasma MMP Levels on Obesity-Related Phenotypes and Microvascular Reactivity in a Tunisian Population. *Dis Markers* 2017; 2017: 6198526 [PMID: 29317790 DOI: 10.1155/2017/6198526]

48 Mathew H, Farr OM, Mantzoros CS. Metabolic health and weight: Understanding metabolically unhealthy normal weight or metabolically healthy obese patients. *Metabolism* 2016; 65: 73-80 [PMID: 26683798 DOI: 10.1016/j.metabol.2015.10.019]
