Ethanolic Sisyrinchium palmifolium L. Extract as Natural Preservative for Indonesian Tofu Preparation

Ekstrak Etanol Sisyrinchium palmifolium L. sebagai Pengawet Alami untuk Olahan Tahu Indonesia

Sophi Damayanti1*, Vanya Maharani1, Marlia Simgih1, Benny Permana1, Andhika B. Mahardhika1, Defri Rizaldi2, Rika Hartati2, Indra Wibowo3

1Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa 10, Bandung 40132, Indonesia.
2Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa 10, Bandung 40132, Indonesia.
3Department of Physiology, Animal Development and Biomedical Sciences, School of Life Sciences dan Technology, Bandung Institute of Technology, Jl. Ganesa 10, Bandung 40132, Indonesia.

*Corresponding author email: sophi.damayanti@fa.itb.ac.id

Received 29-09-2020 Accepted 25-02-2022 Available online 31-07-2022

ABSTRACT

Tofu is a food product that is easily contaminated by microbial due to its water content. Some bacteria that usually grow in tofu are Escherichia coli, Bacillus cereus, or Staphylococcus aureus. Preservatives are added to solve the common storage problem. However, some manufacturers use hazardous substances, such as formalin or other chemical substances, as a preservative. Tiwai onion (Sisyrinchium palmifolium L.) is a plant that grows in Borneo and has a broad range of antibacterial activity. This study aimed to examine the activity and effectiveness of Sisyrinchium palmifolium extract as a preservative in tofu. Sisyrinchium palmifolium was extracted using the maceration method with ethanol three times. The concentrated ethanol extract has a 5% water content and was used for the next step. According to the Clinical and Laboratory Standard Institute (CLSI method), the test was done with agar diffusion and broth microdilution methods. The test solution was diluted using DMSO 5% as the solvent, and tetracycline HCl solution as a positive control was diluted using NaCl 0.9%. Agar diffusion method was done with Sisyrinchium palmifolium ethanol extract 10000 μg/mL and tetracycline HCl 50 μg/mL. The microdilution method was done with Sisyrinchium palmifolium ethanol extract with an initial concentration of 40000 μg/mL and tetracycline HCl 2000 μg/mL. The results showed that Sisyrinchium palmifolium ethanolic extract has antibacterial activity with the minimum inhibitory concentration value of 5000 μg/mL. Then, the effectivity of concentrated ethanol extract of Sisyrinchium palmifolium as a preservative in tofu was tested by determining Total Plate Count at an incubation temperature of 37, 25, and 4 °C in comparison to potassium
sorbate as control. Furthermore, organoleptic evaluation was observed at 25 and 4 °C. The results showed that *Sisyrinchium palmifolium* ethanolic extract was effective as an alternative preservative for tofu at a concentration of 5000 μg/mL. In conclusion, ethanolic extract of *Sisyrinchium palmifolium* could serve as a novel candidate and effective preservative in tofu.

Keywords: Antimicrobial, *Sisyrinchium palmifolium* (Mill.) Urb., extract, preservative, tofu

ABSTRAK

Tahu merupakan produk pangan yang mudah tercemar mikroba karena kandungan airnya yang tinggi. Beberapa bakteri yang biasanya tumbuh pada tahu adalah *Escherichia coli*, *Bacillus cereus*, atau *Staphylococcus aureus*. Pengawet ditambahkan untuk mengatasi masalah penyimpanan yang umum. Namun, beberapa produsen menggunakan bahan berbahaya seperti formalin atau bahan kimia lain sebagai pengawet. Bawang tiwai (*Sisyrinchium palmifolium* L.) merupakan tanaman yang tumbuh di Kalimantan dan telah dilaporkan memiliki aktivitas antibakteri yang luas.

Tujuan penelitian ini adalah untuk mengetahui aktivitas dan efektivitas ekstrak bawang tiwai sebagai pengawet tahu. Ekstraksi bawang tiwai menggunakan metode maser dengan pelarut etanol sebanyak 3 kali. Ekstrak etanol pekat memiliki kadar air 5% dan digunakan untuk tahap selanjutnya. Menurut Clinical and Laboratory Standard Institute (metode CLSI), pengujian dilakukan dengan metode difusi agar dan metode mikrodilusi kuld. Larutan uji diceringkan menggunakan DMSO 5% sebagai pelarut dan larutan tetrasiklin HCl sebagai kontrol positif digunakan NaCl 0,9%. Metode difusi agar dilakukan dengan ekstrak etanol bawang tiwai 10000 μg/mL dan tetrasiklin HCl 50 μg/mL. Metode mikrodilusi dilakukan dengan ekstrak etanol bawang tiwai dengan konsentrasi awal 40000 μg/mL dan tetrasiklin HCl 2000 μg/mL. Hasil penelitian menunjukkan bahwa ekstrak etanol bawang tiwai memiliki aktivitas antibakteri dengan nilai konsentrasi hambat minimal 5000 μg/mL. Kemudian, efektifitas ekstrak etanol pekat bawang tiwai sebagai pengawet tahu diuji dengan menentukan Total Plate Count pada suhu inkubasi 37, 25, dan 4 ° C dibandingkan dengan kalium sorbat sebagai kontrol. Kemudian dilakukan evaluasi organoleptic pada suhu 4 dan 25 ° C. Hasil penelitian menunjukkan bahwa ekstrak etanol bawang tiwai efektif sebagai pengawet alternatif tahu pada konsentrasi 5000 μg/mL. Kesimpulannya, ekstrak etanol bawang tiwai dapat menjadi kandidat pengawet yang baru dan efektif pada tahu.

Kata kunci: Antimikroba, ekstrak, *Sisyrinchium palmifolium* L., pengawet, tahu.

Introduction

Tofu is one of food product which is easily spoilage and contaminated and susceptible to cause foodborne disease due to its high-water content (Rekha dan Vijayalaksmic, 2013). A variety of microorganisms may cause this spoilage for example *Escherichia coli*, *Staphylococcus aureus*, as well as *Bacillus cereus* (Kadariya et al., 2014;
Rossi et al., 2016; Quinland, 2013). The use of preservative to enhance tofu shelf-life is great interest for food industry, in which mostly chemical-preservative material. A solution of formaldehyde (Formalin; CH₂O) was widely used for tofu handling and processing.

Though its effectiveness as preservative, it has been showed that exposure to formaldehyde may cause adverse human health effect such as skin irritation, allergy, pneumonia, and cancer (Norliana et al, 2009). Another preservation method widely used for tofu handling and processing are immersion of tofu in solution containing salt such as potassium sorbate or sodium chloride, or immersion of tofu in traditional mixture such as turmeric and lime solution or lime and kitchen salt solution (Jubayer and Faruque, 2013).

Tiwai onion (Sisyrinchium palmifolium L.) is a herbal plant whose traditionally used as natural product to prevent and cure hypertension, diabetic, and acnes (Febrinda et al, 2014). It has been reported the extract of Sisyrinchium palmifolium showed inhibitory activity against Staphylococcus aureus (Ifesan and Voravuthikunchai 2009; Ifesan et al, 2009) and other bacteria such as Shigella boydii (Panda et al, 2016). There was no reported research up to now regarding the use of the Sisyrinchium palmifolium as preservative and additive in tofu processing and preparation. We carried out this study to examine the ability of Sisyrinchium palmifolium extract as preservative in tofu.

Research Method

Chemical and Reagents

Sisyrinchium palmifolium bulb was obtained freshly from Bandung, Indonesia, cleaned and characterized and dried prior to use. Tofu was freshly obtained from Yun Yi Industry, Escherichia coli (ATCC 8739), Bacillus cereus (ATCC 1178) were obtained from American Type Culture Collection. Nutrient Agar (NA), Nutrient Broth (NB), Mueller Hinton Agar (MHA), Mueller Hinton Broth (MHB), tryptone, yeast extract was used as medium for bacterial culture, tetracycline as standard material, sodium hydroxide, potassium sorbate, DMSO and all commercially available reagents were analytical grade and used as purchased (Merck, Sigma-Aldrich).

Characterization of Sisyrinchium palmifolium Bulb

The collected dried Sisyrinchium palmifolium bulb was done through general phytochemical screening test (alkaloid, flavonoid, saponin, tannin, quinone, steroid/triterpenoid) according to protocols in Indonesian Herbal Pharmacopoeia (MOH, 2008).

Preparation of Ethanolic Sisyrinchium palmifolium Extract

The powdered and dried Sisyrinchium palmifolium bulb was extracted using maceration method using three times of ethanol (1:5). The
extract was filtered using filter paper and the filtrates were evaporated under reduced pressure in a rotary evaporator. The extract was dissolved in 5% DMSO (in 0.9% NaCl) before use. The end concentration of extract is 40000 μg/mL and 10000 μg/mL.

Preparation of Suspended Microbe

The preparation of suspended microbe was adapted from CLSI (CLSI, 2012). There are two microbes used in this study, Eschericia coli and Bacillus cereus. The microbes grown on the surface of agar plate was slowly taken and suspended in nutrient agar media and incubated at 37°C. The suspended microbe was made by selected the microbe of interest and suspended in nutrient broth media (1.8% in water). Dilution was made using NaCl solution (0.9% in water) until it reaches the 0.5 McFarland value or the UV-Vis spectrophotometer absorbance range between 0.08-0.13 at 625 nm. The total colony forming unit was measured before the antimicrobial activity determination.

Antimicrobial Activity of Ethanolic Extract Determination

1. Agar diffusion method

Antimicrobial activity was evaluated using paper disc agar diffusion. Ethanolic Sisyrinchium palmifolium extract 40000 μg/mL was diluted in 5% DMSO until the final concentration of the test solution are 50, 100 and 200 μg/mL, respectively. Tetracycline HCl (50 μg/ml in 0.9% NaCl) was used as a negative control meanwhile 0.9% NaCl was used as positive control. Ten microliters of the test solution (extracts, tetracycline HCl and 0.9% NaCl) were then added to sterile filter paper disc and placed on the dishes containing microbe of interest. The dishes were incubated for 18-24 hours at 37°C. The means of the diameter of the inhibition zone were calculated.

2. Microdilution method

The minimal inhibitory concentration (MIC) of ethanolic extract was determined using microdilution (96 round-bottomed-microwell plate) method according to Clinical and Laboratory Standards Institute (CLSI) (CLSI, 2012; CLSI, 2016).

Ethanolic Sisyrinchium palmifolium extract was diluted in 5% DMSO. Ten microliters of each bacterial strains (diluted 1:20 with nutrient broth) was added to 100 μL MHB media, supplemented with ethanolic extract (2-fold dilution) at concentration from 20000, 10000, 5000, 2500, 1250, 625, 312, 156, 78, 39 μg/mL. Control with tetracycline HCl 2000 μg/ml and without the extracts were carried out under similar condition. The plate was then incubated for 16-20 hours at 37°C. Minimal inhibitory concentrations were observed as the lowest concentration of the extracts that produce a complete inhibition of colony growth. The experiment was
conducted in three independent measurements.

Determination of Antimicrobial Activity of Ethanolic Extract in Tofu

Total plate count was used to determine the antimicrobial activity of the extract. Potassium sorbate (1% in sterile water solution) was used as control. The tofu was immersed in water, after several hours, the water was carefully taken and used as samples for determining the antimicrobial activity. Ethanolic *Sisyrinchium palmifolium* extract which produce activity on the previous assay was used as test substance. Plate count agar (PCA) was used for total plate count. Test substance and the control were added in comparison of 15:1:1. All the plates were incubated at different condition to mimic the storage of tofu, 18-24 hours (37°C), 72 hours (25°C), 168 hours or 7 days (4°C). Organoleptic evaluation was carried out every single day of the assay for storage in 25°C and 4°C.

Results and Discussion

Sisyrinchium palmifolium bulb is herbal plant that may be produced and cultivated under different condition. Characterization and phytochemical screening were applied to convince standardize bulb was used in this study. Characterization and phytochemical screening of dried *Sisyrinchium palmifolium* bulb is given in Table 1 and Table 2. The phytochemical screening showed *Sisyrinchium palmifolium* bulb contains flavonoid, polyphenol, saponin, quinone and steroid/triterpenoid.

Ifesan and colleague reported antimicrobial activity of *Eleutherine americana* on *Staphylococcus aureus* from food (Ifesan and Voravuthikunchai 2009; Ifesan et al, 2009). Our study confirms that ethanolic *Sisyrinchium palmifolium* extract had antibacterial activity towards *Escherichia coli* and *Bacillus cereus*. It was found that at the concentration of 10000 µg/mL was optimum concentration for the inhibition for both E. coli and B. cereus (Table 3).

Phytochemical group	Result
Alkaloid	-
Flavonoid	+
Polyphenol	+
Saponin	+
Quinone	+
Tannin	-
Steroid/Triterpenoid	+

+ = Presence of the phytochemical group, - = absence of phytochemical group

Table 1. Phytochemical screening results of dried *Sisyrinchium palmifolium* bulb

Parameter (unit)	Result (%)
Water content	5.0
Total ash	0.768
Acid insoluble ash	0.675
Water extractable matter	4.924
Ethanol extractable matter	5.591

Encouraged by these results, our next effort was to determine the MIC value of the ethanolic *Sisyrinchium palmifolium* extract on both *Escherichia*...
coli and Bacillus cereus. Broth microdilution method was selected in determining the MIC value. The results of microdilution methods were shown in Table 4 for Escherichia coli and Table 5 for Bacillus cereus. It was showed that ethanolic Sisyrinchium palmifolium extract has MIC value of 5000 µg/mL for Escherichia coli and 10000 µg/mL for Bacillus cereus. We then conclude to use 5000 µg/mL as the minimum concentration for antimicrobial activity evaluation on tofu products.

Total plate count (TPC) was used to evaluate the effectiveness of the extract as preservative because the reliability and the reproducibility of the method (Table 6-8). Result showed that the addition of extract decreases the number of total colonies. Three temperatures used in the experiment to count the TPC of tofu (37, 25, and 4°C). The results showed that Sisyrinchium palmifolium extract was able to suppress the growth of microbial in tofu either in reduced temperature as well as in room temperature. Tofu stored in reduced temperature showed lower total colony count compared to tofu stored in room temperature during observation time. However, there is a limitation storage time for treated tofu in refrigerator. The Sisyrinchium palmifolium extract showed good activity on tofu compared to potassium sorbate.

Table 3. Inhibition diameter for each tested bacterium. The absence of bacteria is denoted with minus (-). (n=2)

Sample	Inhibition diameter (mm) against	
	Escherichia coli	Bacillus cereus
Sisyrinchium palmifolium extract (10000 µg/mL)	10±2	12.5±1.5
	12±1	13.5±2
Tetracycline HCl (50 µg/mL)	14±3	18±1
	15±1.5	21.5±2.5
0.9% NaCl	-	-

Table 4. Broth microdilution result of Sisyrinchium palmifolium extract on Escherichia coli

Extract	(-)	(+)	1	2	3	4	5	6	7	8	9	10
+	-	-	-	-	+	+	+	+	+	+	+	+
+	-	-	-	-	-	+	+	+	+	+	+	+
+	-	-	-	-	-	-	+	+	+	+	+	+

Note: (-) = negative control, (+) = positive control 50 µg/mL, - = no bacteria suspension observed, + = bacteria suspension observed, i.e., 1 = 20000 µg/mL, 2 = 10000 µg/mL, 3 = 5000 µg/mL, 4 = 2500 µg/mL, 5 = 1250 µg/mL, 6 = 625 µg/mL, 7 = 312 µg/mL, 8 = 156 µg/mL, 9 = 78 µg/mL, 10 = 39 µg/mL
Table 5. Broth microdilution result of *Sisyri*nchium palmifolium* extract on *Bacillus cereus*

Extract	(-)	(+)	1	2	3	4	5	6	7	8	9	10
	+	-	-	-	+	+	+	+	+	+	+	+
	+	-	-	-	+	+	+	+	+	+	+	+

Note: (-) = negative control, (+) = positive control µg/mL, - = no bacteria suspension observed, + = bacteria suspension observed, i.e., 1 = 20000 µg/mL, 2 = 10000 µg/mL, 3 = 5000 µg/mL, 4 = 2500 µg/mL, 5 = 1250 µg/mL, 6 = 625 µg/mL, 7 = 312 µg/mL, 8 = 156 µg/mL, 9 = 78 µg/mL, 10 = 39 µg/mL.

Table 6. TPC results of sample for 18-24 hours at 37°C

Sample	Total colony count (10⁵ CFU/mL) at	
	18 hours	24 hours
Tofu	>200	>200
Tofu + Potassium sorbate 1%	41	42
Tofu + *Sisyri*nchium palmifolium* extract	42	45

Table 7. TPC results of sample in 3 days at 25°C

Sample	Total colony count (10⁵ CFU/mL) at		
	24 hours	48 hours	72 hours
Tofu	2	5	15
Tofu + Potassium sorbate 1%	1	3	4
Tofu + *Sisyri*nchium palmifolium* extract	0	2	2

Table 8. TPC results of sample in 7 days at 4°C

Sample	Total colony count (10⁵ CFU/mL) at				
	24 hours	48 hours	72 hours	96 hours	168 hours
Tofu	0	4	7	10	11
Tofu + Potassium sorbate 1%	0	3	3	3	3
Tofu + *Sisyri*nchium palmifolium* extract	0	0	0	0	1

Total plate count (TPC) was used to evaluate the effectiveness of the extract as preservative because the reliability and the reproducibility of the method (Table 6-8). Result showed that the addition of extract decreases the number of total colonies. Three temperatures used in the experiment to count the TPC of tofu (37, 25 and 4 °C). The results showed that *Sisyri*nchium palmifolium* extract was able to suppress the growth of microbial in tofu either in reduced temperature as well as in room temperature. Tofu stored in reduced temperature showed lower total colony count compared to tofu stored in room temperature during observation time. However, there is a limitation storage time for treated tofu in refrigerator. The *Sisyri*nchium palmifolium* extract showed good activity on tofu compared to potassium sorbate.
To obtain deeper insight into the acceptability of tofu as food products, the organoleptic evaluation was conducted for storage in 25 and 4 °C (Table 9-10). It showed that the *Sisyrinchium palmifolium* extract capable to maintain the texture and odor of tofu during the storage and therefore may increasing the self-life of tofu.

Table 9. Organoleptic evaluation on tofu products at 25°C

Sample	Organoleptic evaluation at definite time		
	24 hours	48 hours	72 hours
Tofu	Untainted in odor and texture	Tainted in odor and texture	Tainted in odor and texture, black spot
Tofu + Potassium sorbate 1%	Untainted in odor and texture	Untainted in odor and bit texture	Untainted in odor and bit in texture
Tofu + *Sisyrinchium palmifolium* extract	Bit of rancid odor and untainted in texture	Bit of rancid odor and tainted in texture	Bit of rancid odor and tainted in texture

Table 10. Organoleptic evaluation on tofu products at 4°C

Sample	Organoleptic evaluation at definite time				
	24 hours	48 hours	72 hours	96 hours	168 hours
Tofu	Untainted in odor and texture	Untainted in odor and texture	Untainted in odor and texture	Rancid odor, untainted in texture	Tainted in odor and texture
Tofu + Potassium sorbate 1%	Untainted in odor and texture	Untainted in odor and textue	Untainted in odor and texture	Rancid odor, untainted in texture	Rancid odor, untainted in texture
Tofu + *Sisyrinchium palmifolium* extract	Untainted in odor and texture	Untainted in odor and texture	Untainted in odor and texture	Untainted in odor and texture	Untainted in odor and texture

To obtain deeper insight into the acceptability of tofu as food products, the organoleptic evaluation was conducted for storage in 25 and 4 °C (Table 9-10). It showed that the *Sisyrinchium palmifolium* extract capable to maintain the texture and odor of tofu during the storage and therefore may increasing the self-life of tofu.

Conclusion

In summary, *Sisyrinchium palmifolium* extract was found to be a good candidate as substitution of chemical preservative in tofu processing and preparation.

Acknowledgment

The authors acknowledge the financial support received from Ministry of Research and Education, for their support and encouragement in carrying out this study.

Reference

Clinical and Laboratory Standards Institute. 2006. Performance Standards for Antimicrobial Disk Susceptibility Tests, CLSI document M2-A9. Clinical and Laboratory Standards Institute, Wayne.

Clinical and Laboratory Standards Institute. 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, CLSI document M07-A9.
Clinical and Laboratory Standards Institute, Wayne.

Febrinda AE, Yuliana ND, Ridwan E, Wresdiyati T, Astwan M. 2014. Hyperglycemic control and diabetes complication preventive activities of Bawang Dayak (*Eleutherine palmifolia* L. Merr.) bulbs extracts in alloxan-diabetic rats. International Food Research Journal. 21(4): 1405-1411

Ifesan BO, Joycharat N, Voravuthikunchai SP. 2009. The mode of antistaphylococcal action of *Eleutherine americana*. FEMS Immunology and Medical Microbiology. 57(2):193-201. DOI: 10.1111/j.1574-695X.2009.00599.x.

Ifesan BO. Voravuthikunchai SP. 2009. Effect of *Eleutherine americana* Merr. extract on enzymatic activity and enterotoxin production of *Staphylococcus aureus* in broth and cooked pork. Foodborne Pathogens and Disease. 6:699-704. DOI: 10.1089/fpd.2009.0279.

Jubayer MF, Uddin MB, Faruque MO. 2013. Standardization parameters for production of tofu using WSD-Y-1 machine. Journal of the Bangladesh Agricultural University. 11(2): 307–312., DOI: 10.3329/jbau.v11i2.19930.

Kadariya J, Smith TC, Thapaliya D. 2014. *Staphylococcus aureus* and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Research International. 2014: 827965. DOI: 10.1155/2014/827965.

Ministry of Health Indonesia. 2008. Farmakope Herbal Indonesia (Indonesian Herbal Pharmacopeia). Ministry of Health Indonesia, Jakarta.

Norliana S, Abdulamir AS, Abu Bakar F, Salleh AB. 2009. The health risk of formaldehyde to human beings. American Journal of Pharmacology and Toxicology. 4(3): 98-106. DOI: 10.3844/ajptsp.2009.98.106

Panda SK, Mohanta YK, Padhi L, Park YH, Mohanta TK, Bae H. 2016. Large scale screening of ethnomedicinal plants for identification of potential antibacterial compounds. Molecules. 21(3): 293. DOI: 10.3390/molecules21030293

Quinland JJ. 2013. Foodborne illness incidence rates and food safety risks for populations of low socioeconomic status and minority race/ethnicity: A review of the literature. International Journal of Environmental Research and Public Health. 10: 3634-3652. DOI: 0.3390/ijerph10083634

Rekha CR. Vijayalakshmic G. 2013. Influence of processing parameters on the quality of soycurd (tofu). Journal of Food Science and Technology. 50(1): 176-180. DOI:10.1007/s13197-011-0245-z.

Rossi F, Felis GE, Martinelli A, Calcavechia B, Torrani S. 2016. Microbiological characteristics of fresh tofu produced in small industrial scale and identification of specific spoiling microorganisms. LWT - Food Science and Technology. 70: 280-285. DOI: 10.1016/j.lwt.2016.02.05