Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation

Eun-Jin Bae1,2, Na Young Yang1,2,7, Cheolsoon Lee2,3, He-Jin Lee2,3, Seokjoong Kim4, Sergio Pablo Sardi5 and Seung-Jae Lee1,2,6

Lysosomal dysfunction is a common pathological feature of neurodegenerative diseases. GTP-binding protein type A1 (\textit{GBA1}) encodes β-glucocerebrosidase 1 (GCase 1), a lysosomal hydrolase. Homozygous mutations in \textit{GBA1} cause Gaucher disease, the most common lysosomal storage disease, while heterozygous mutations are strong risk factors for Parkinson’s disease. However, whether loss of GCase 1 activity is sufficient for lysosomal dysfunction has not been clearly determined. Here, we generated human neuroblastoma cell lines with nonsense mutations in the \textit{GBA1} gene using zinc-finger nucleases. Depending on the site of mutation, GCase 1 activity was lost or maintained. The cell line with GCase 1 deficiency showed indications of lysosomal dysfunction, such as accumulation of lysosomal substrates, reduced dextran degradation and accumulation of enlarged vacuolar structures. In contrast, the cell line with C-terminal truncation of GCase 1 but with intact GCase 1 activity showed normal lysosomal function. When α-synuclein was overexpressed, accumulation and secretion of insoluble aggregates increased in cells with GCase 1 deficiency but did not change in mutant cells with normal GCase 1 activity. These results demonstrate that loss of GCase 1 activity is sufficient to cause lysosomal dysfunction and accumulation of α-synuclein aggregates.

Experimental & Molecular Medicine (2015) 47, e153; doi:10.1038/emm.2014.128; published online 27 March 2015

INTRODUCTION

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, with clinical symptoms of resting tremor, increased muscle tone, bradykinesia and abnormal postural righting reflexes.1 Pathologically, PD is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta; deposition of α-synuclein, visualized in the form of Lewy bodies (LBs) and Lewy neurites and neuroinflammation, demonstrated by the activation of microglia.2 In addition to these features, neurons of patients with PD show signs of extensive lysosomal dysfunction, such as accumulation of autophagosomes, a characteristic also seen in other neurodegenerative diseases.3

Genetic studies of PD have identified several genes and loci in inherited cases.4 Recently, genome-wide association studies have identified several risk loci for PD, suggesting that susceptibility to PD (even sporadic PD) is determined by specific allelic combinations.5-8 Although some of these genes operate independently,9 there might be interactions among these genes in the pathogenesis of PD. Among the susceptibility loci, the ones most strongly and consistently associated with sporadic PD have been located in \textit{SNCA}, the gene encoding α-synuclein.6,7

Gaucher disease (GD), the most common lysosomal storage disease with recessive inheritance is mainly due to loss-of-function of the lysosomal enzyme, glucocerebrosidase (GCase).10 About 300 different mutations in GTP-binding protein type A1 (\textit{GBA1}) gene, encoding GCase1, are known to cause GD.11

Recent studies have suggested the association between mutations in \textit{GBA1} and parkinsonism. Genetic studies have shown that heterozygous carriers of mutations in \textit{GBA1} are at higher risk for PD than the general population.12 For example, patients with PD are approximately five times more likely to carry \textit{GBA1} mutations than healthy control subjects.13 Compared with control group, the incidence of parkinsonism is increased 6- to 17-folds in patient group with type1 GD.14 Brain samples from patients with PD and dementia with LBs with a heterozygous \textit{GBA1} mutation showed a mean of 75% (range, 32–90%) of LBs colocalized with GCase, whereas the

1Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea; 2Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea; 3Department of Anatomy, School of Medicine, Konkuk University, Seoul, Korea; 4ToolGen, Biotechnology Incubating Center, Seoul National University, Seoul, Korea; 5Genzyme, Framingham, MA, USA and 6College of Veterinary Medicine, Konkuk University, Seoul, Korea

7Current Address: Cook Medical Korea, Seoul 150-737, Korea

Correspondence: Professor S-J Lee, Department of Biomedical Science and Technology, Konkuk University, Room 706, Biomedical Research Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 143–701, Korea.

E-mail: sjlee@konkuk.ac.kr

Received 6 August 2014; revised 27 November 2014; accepted 4 December 2014
mean colocalization rate was 4% in patients with PD and dementia with LB without a GBA1 mutation. In addition, patients with GD and GD carriers with parkinsonism have LB pathology. These results suggest a strong and specific association between GBA1 mutations and LB diseases (LBDs).

Despite the strong association of GBA1 mutations with PD and other LBDs, the mechanism underlying the role of these mutations in PD is not clearly understood. Here, we generated human neuroblastoma cell lines harboring nonsense mutations in the GBA1 gene and analyzed the effects of these mutations on lysosomal function and α-synuclein aggregation.

MATERIALS AND METHODS

Materials

The following antibodies were used in this study: GCase monoclonal antibody 8E4 (from J Barranger, University of Pittsburgh; 1:1000), GCase polyclonal antibody (G4171, Sigma-Aldrich, St Louis, MO, USA; 1:1000), β-actin monoclonal antibody (Sigma-Aldrich; 1:10 000), p62 monoclonal antibody (c2384-0B, BD Transduction Laboratories, Swampscott, MA, USA; 1:1000), ubiquitin polyclonal antibodies (Dako, Glostrup, Denmark and Chemicon, Temecula, CA, USA; 1:1000), α-synuclein monoclonal antibody (610787, BD Biosciences; 1:1500), α-synuclein monoclonal antibody Ab274 (1:1500), α-synuclein monoclonal antibody Ab62 (1:1000), Horse radish peroxidase (HRP)-conjugated goat anti-mouse immunoglobulin G (IgG; H+L) (172–1011, Bio-Rad Laboratories, Hercules, CA, USA; 1:3000) and HRP-conjugated goat anti-rabbit IgG (H+L) (Bio-Rad Laboratories; 1:3000).

Fluorescein-conjugated dextran (10 000 molecular weight; D-1821), TO-PRO-3 iodide (T3605) and LysoTracker Red DND-99 (L-7528) were purchased from Invitrogen (Carlsbad, CA, USA).

Generation of GBA1 knockout cell lines

SH-SY5Y cells (CRL-2266, ATCC, Manassas, VA, USA) were transfected with plasmids encoding zinc-finger nuclease (ZFN) and a magnetic reporter (ToolGen, Seoul, Korea) by using electroporation. After incubation for 48 h, cells were enriched by magnetic separation. After trypsinization, cells were mixed with magnetic bead-conjugated antibody against H-2Kk (MACSelect Kk microbeads, Miltenyi Biotech, Gladbach, Germany), and the mixture was applied to a MACS LS column (Miltenyi Biotech). Single cells were isolated from the eluates and maintained until the clonal colonies were picked from the culture dish. Nonsense mutations in the GBA1 gene were confirmed by DNA sequencing. Four clones with nonsense mutations in exon 3 and six clones in exon 11 were generated. Among these clones, three clones with mutation in exon 3 and two clones with mutations in exon 11 were further analyzed.

Cell culture

SH-SY5Y human neuroblastoma cell lines were cultured as described previously. Cells were maintained every 2 days at 37 °C in humidified air with 5% CO2 in Dulbecco’s modified eagle’s medium (DMEM) (SH30243.01, HyClone, Logan, UT, USA) containing 10% fetal bovine serum (SH30396.03, HyClone), 100 U ml−1 penicillin and 100 U ml−1 streptomycin (15140-122, Gibco, Grand Island, NY, USA). To differentiate SH-SY5Y cells, cells were maintained in medium with 50 μM all-trans-retinoic acid (R2625, Sigma-Aldrich). For overexpression of human α-synuclein, differentiated SH-SY5Y

Figure 1 Generation of frame-shift mutations in GTP-binding protein type A1 (GBA1) by using zinc-finger nucleases (ZFNs). To generate nonsense mutations in two alleles of the GBA1 gene, SH-SY5Y cells were transfected with ZFNs targeting either exon 3 (a) or exon 11 (b). After clonal selection, the nonsense mutations were confirmed by DNA sequencing.
cells were infected with a recombinant adenoviral vector (serotype Ad5, cytomegalovirus promoter) containing human α-synuclein complementary DNA at a multiplicity of infection of 33.3.

GCase activity and glycosphingolipid assay

Cellular GCase activity was determined as described previously. Briefly, GCase activity was determined using a synthetic substrate, 10 mM 4-methylumbelliferyl-β-D-glucoside (Sigma, St Louis, MO, USA) in buffer containing 1% bovine serum albumin, at 37°C for 1 h. To stop the reaction, 0.5 volume of 1 M glycine buffer, pH 12.5, was added. Cleaved 4-methylumbelliferone was measured using a SpectraMax Gemini fluorometer (excitation at 365 nm, emission at 445 nm; Molecular Devices, Sunnyvale, CA, USA). All measurements were done without taurocholate, a detergent that activates GCase. GCase 1 and GCase 2 activity was determined in the presence of either a GCase 1 inhibitor, conduritol-B-epoxide (CBE) or a GCase 2 inhibitor, AMP-deoxynojirimycin. GCase 1 activity was obtained by subtracting the GCase 2 activity from the total GCase activity. Cellular glucocerebrosides (GL1) and galactocerebrosides (GalCer) levels were measured by mass spectrometry as previously described. Briefly, organic cellular extracts were injected into an Atlantis HILIC silica column (Waters, Milford, MA, USA), and the separated GL1 and GalCer were detected using an AB Sciex API-5000 mass spectrometer (AB Sciex, Framingham, MA, USA).

Preparation of cell extracts

Cells were washed twice with ice-cold phosphate-buffered saline (PBS) and then lysed in extraction buffer (1% Triton X-100 and 1% (v/v) protease inhibitor cocktail (Sigma) in PBS). Cell lysates were incubated on ice for 10 min and centrifuged at 16,000 g for 10 min. The Triton X-100 insoluble fraction was resuspended in 1× Laemmli sample buffer and sonicated briefly.

Western blotting

Western blotting was performed as previously described. Images were obtained and quantified using a Luminance Image Analyzer (Fuji Film, Tokyo, Japan) (LAS-3000) and MultiGauge version 3.0 software (Fujifilm).

Characterization of lysosomal dysfunction

To analyze the LysoTracker-positive compartments, SH-SY5Y cells were stained with 75 nM LysoTracker solution diluted in growth medium. After incubation for 1 h at 37°C in a CO2 incubator, cells were washed with ice-cold PBS and fixed in a 4% paraformaldehyde solution. To determine the degradation ratio of internalized dextran, cells were incubated with 20 µg ml-1 fluorescein isothiocyanate-labeled dextran (Invitrogen) for 2 h. After washing with DMEM, cells were incubated with fresh growth medium for 30 min and fixed with a 4% paraformaldehyde solution. The fluorescence intensity was measured using Olympus FV1000 software (Olympus, Tokyo, Japan). The extent of degradation of internalized dextran–fluorescein isothiocyanate was calculated using the equation

$$\frac{F_{\text{time0}} - F_{\text{time30}}}{F_{\text{time0}}}$$

where F_{time0} and F_{time30} are the integrated fluorescence intensities at 0 min and 30 min, respectively.

Electron microscopy

Cells were fixed with Karnovsky’s fixative solution (2% glutaraldehyde, 2% paraformaldehyde and 0.5% CaCl2). After immersion in 1% osmium tetroxide for 1.5 h, cells were dehydrated with 50, 60, 70, 80, 90, 95 and 100% absolute ethanol. Cells were infiltrated with propylene oxide and EPON mixture (EPON 812, MNA, DDSA, DMP30) for 10 min before being embedded in EPON mixture. After embedding, cells were sectioned with an EM UC-7 Ultramicrotome (Leica Microsystems, Vienna, Austria) and stained with 6% uranyl acetate and lead citrate. Grids were observed using a transmission electron microscope (JEM-1011, JEOL, Tokyo, Japan) and analyzed using MegaView III software (Soft Imaging System, Münster, Germany). For morphometric analysis, 20 cells were analyzed for each experiment.

Enzyme-linked immunosorbent assay

Enzyme-linked immunosorbent assay (ELISA) was performed as previously described. Briefly, 96-well ELISA plates (Nalge Nunc International, Rochester, NY, USA) were coated with 1 mg ml-1 capture antibody (Ab62) in 50 mM carbonate buffer (pH 9.6) at 4°C overnight. After washing with PBS with 0.05% Tween 20 (PBST), SuperBlock T20 (PBS) Blocking Buffer (Thermo Scientific, Rockford, IL, USA) was added for 1 h at room temperature with shaking. Plates were washed five times in PBST and samples and standards were incubated at room temperature for 2.5 h with shaking. After washing...
with PBST, 1 μg ml⁻¹ biotinylated Ab62 in blocking buffer was added and incubated at room temperature for 1.5 h. The plates were washed with PBST, and avidin-conjugated peroxidase (ExtrAvidin, Sigma) was added for 1 h at room temperature. After washing with PBST, 100 μl of 3,3',5,5'-tetramethylbenzidine solution (Sigma) was added to each well and incubated for 15 min with shaking. To stop the reaction, 50 μl of 2N H₂SO₄ was added to each well. The absorbance was measured at 450 nm.

Statistical analysis

Values shown in the figures are mean ± s.e.m. To analyze the statistical significance, P-values were calculated by mean of paired, two-tailed Student’s t-tests by using InStat version 3.05 software (GraphPad Software, San Diego, CA, USA).

RESULTS

To address the effects of loss-of-function of GCase1 activity on the lysosomal function and the metabolism of α-synuclein, we have generated SH-SY5Y human neuroblastoma cell lines with nonsense mutations in both copies of the GBA1 gene using engineered ZFNs. The GBA gene comprises 11 exons and 10 introns. The coding regions of enzymatic active site is located in exon 5–10. The ZFNs were designed to generate mutations at two different sites in the coding region of GBA1, one in exon

Figure 3 GTP-binding protein type A1 (GBA1) deficiency induces lysosomal dysfunction. (a, b) Levels of p62 (a) and polyubiquitinated proteins (b) in Triton-insoluble fractions (n=3; *P<0.05, #P<0.05 by paired, two-tailed Student’s t-test). For quantification of polyubiquitinated proteins, the quantified size range is indicated by the line to the right of the blot. (c) Degradation of internalized dextran–fluorescein isothiocyanate (n=3, 100 cells per experiment; *P<0.05, #P<0.05 by paired, two-tailed Student’s t-test). Scale bars, 20 μm. (d) Quantification of LysoTracker-positive compartments (n=3, 100 cells per experiment; *P<0.05, #P<0.05 by paired, two-tailed Student’s t-test). Scale bars, 20 μm. NS, not significant.
3 and the other in exon 11. Clonal cell lines with nonsense mutations at the intended sites were screened and selected by sequencing (Figure 1). We generated four clones with nonsense mutation in exon 3 and six clones with nonsense mutation in exon 11. To analyze the lysosomal activity, we selected three clones with mutations in exon 3 and two clones with mutations in exon 11. Results from the isogenic clones were identical. Western analysis showed that the translational stop codon in exon 3 caused a loss of GCase 1 expression (\(\text{GBA1}^{-/-}\)), whereas the translational termination signal in exon 11 resulted in a truncated form of GCase 1 (\(\text{GBA1}\Delta11\)) (Figure 2a). \(\text{GBA1}\Delta11\) contains all the regions necessary for catalytic activity.\(^{21,22}\) To address the effects of missense mutations in GBA1 on the GCase activity, we evaluated the catalytic activity of GCase 1 and 2 in the presence of either GCase 1 inhibitor, CBE, or GCase 2 inhibitor, AMP-deoxynojirimycin. AMP-deoxynojirimycin-sensitive GCase 2 activity was much lower than CBE-sensitive GCase 1 activity. About 90% of the total GCase activity was derived from GCase 1 and ~2% from GCase 2, the cytosolic form of GCase encoded by a separate gene \(\text{GBA2}.\) As expected, \(\text{GBA1}\Delta11\) cells and wild-type cells showed similar levels of GCase activity. In contrast, \(\text{GBA1}^{-/-}\) cells had a greatly reduced level of GCase activity (Figure 2b). The residual activity detected in \(\text{GBA1}^{-/-}\) cells was contributed by AMP-deoxynojirimycin-sensitive GCase 2 activity. As a result of reduced GCase activity, \(\text{GBA1}^{-/-}\) cells showed an increased GL1/GalCer ratio, whereas \(\text{GBA1}\Delta11\) cells had a GL1/GalCer ratio similar to that of wild-type cells (Figure 2c).

Figure 4 Vacuole accumulation due to GTP-binding protein type A1 (GBA1) deficiency. (a–c) Electron microscopy of wild-type (a), \(\text{GBA1}^{-/-}\) (b) and \(\text{GBA1}\Delta11\) cells (c). The boxed areas in the upper images are magnified in the lower panels. Scale bars, 2 μm. (d) Number of autophagic vesicles per cell (\(n=3, 100 \text{ cells per experiment; } *P<0.05, \#P<0.05 \text{ by paired, two-tailed Student’s } t\)-test). (e) Average diameter of autophagic vesicles (\(n=3, 100 \text{ cells per experiment; } *P<0.05, \#P<0.05 \text{ by paired, two-tailed Student’s } t\)-test). NS, not significant.
We next examined and compared the lysosomal functions of these cell lines. To assess lysosomal activity, we measured the levels of known lysosomal substrates (p62 and polyubiquitinated proteins) and the degradation rate of exogenously introduced dextran. As shown in Figures 3a and b, both p62 and polyubiquitinated proteins accumulated to significantly higher levels in GBA1−/− cells than in wild-type cells or GBA1Δ11 cells. Dextran degradation was much slower in GBA1−/− cells than in wild-type or GBA1Δ11 cells (Figure 3c). Cells with lysosomal dysfunction often show increased LysoTracker staining, probably because of both reduced breakdown of acidic organelles and increased biosynthesis of lysosomes in an effort to restore lysosomal function.24 GBA1−/− cells showed a significantly higher LysoTracker signal than wild-type or GBA1Δ11 cells (Figure 3d).

Morphological analysis using electron microscopy confirmed lysosomal dysfunction. Compared with wild-type or GBA1Δ11 cells, GBA1−/− cells had abnormal accumulation of enlarged autophagic vesicles and damaged cellular organelles (Figure 4). These morphological changes are akin to previous findings of vacuole accumulation as a hallmark of lysosomal storage diseases.25

Lysosomes have crucial roles in the degradation of α-synuclein through macroautophagy and chaperone-mediated autophagy.26,27 We examined accumulation of α-synuclein in cells with GBA1 mutations. Neither GBA1−/− nor GBA1Δ11 cells showed changes in the levels of monomeric α-synuclein compared with wild-type cells (Figures 5a and b). However, GBA1−/− cells accumulated SDS-stable α-synuclein oligomers in the Triton-insoluble fractions to a greater extent than did wild-type and GBA1Δ11 cells (Figures 5a and c).

Neuronal cells secrete monomeric and oligomeric α-synuclein,28 and the secretion of these proteins increases when cellular quality-control systems, such as the ubiquitin–proteasome system and autophagy, are compromised.29,30 Consistent with these findings, secretion of α-synuclein

![Figure 5](image-url)

Figure 5 Glucocerebrosidase (GCase) deficiency increases accumulation of α-synuclein aggregates. (a) Western blot analysis of α-synuclein in Triton-soluble and Triton-insoluble fractions. HM, detergent-insoluble, high-molecular-weight α-synuclein (the HM regions are quantified in c). Arrowhead: detergent-soluble, monomeric α-synuclein. (b, c) Quantification of α-synuclein in Triton-soluble (b) and Triton-insoluble fractions (c) (n=3; **P<0.01, ##P<0.01 by paired, two-tailed Student’s t-test). NS, not significant.

![Figure 6](image-url)

Figure 6 Secretion of α-synuclein aggregates. (a) Western blot analysis of α-synuclein in cell culture media. HM, high-molecular-weight α-synuclein (the HM regions are quantified in b). SGII, secretogranin II. (b) Quantification of high molecular weight α-synuclein aggregates in culture media (n=3, *P<0.05 by paired, two-tailed Student’s t-test). (c) The levels of secreted α-synuclein aggregates in cell culture media were measured using an enzyme-linked immunosorbent assay specific for aggregated forms of α-synuclein (n=4; *P<0.05, **P<0.01, #P<0.05, ##P<0.01 by paired, two-tailed Student’s t test). NS, not significant.
aggregates was significantly increased in GBA1^{–/–} cells compared with that in wild-type and GBA1Δ11 cells (Figure 6).

DISCUSSION

In the current study, we demonstrated that GBA1 deficiency caused by the targeted introduction of nonsense mutations leads to lysosomal substrate accumulation, global lysosomal dysfunction and α-synuclein aggregation. These cellular changes are associated with the loss of GCase activity; a nonsense mutation leading to the production of a C-terminal truncated form of GCase with intact enzyme activity resulted in none of the changes observed with the GCase-deficient mutant. In a previous study, lysosomal dysfunction and accumulation of α-synuclein and glucosylceramide, a substrate of GCase, were observed in GCase-deficient primary neurons and in induced pluripotent stem cells derived from fibroblasts of a patient with GD. More recently, neurons derived from induced pluripotent stem cells from patients with GBA1 mutations were shown to be defective in autophagy. Taken together, these results indicate that defects in lysosomal and lysosome-related functions may be an important underlying mechanism for human diseases associated with GBA1 mutations, such as PD and other LBDs.

Our study demonstrated that GBA1 deficiency can cause lysosomal dysfunction, while cells with a mutation in GBA1 that maintains GCase activity have normal lysosomal function. These results suggest that GCase activity is critical for maintaining normal lysosomal function. Consistent with our results, decreased GCase activity is associated with PD. The amount and activity of GCase were significantly reduced in several brain regions of PD patients carrying heterozygous GBA1 mutations and, more importantly, in brain regions of sporadic PD patients. Furthermore, reduction of GCase was associated with accumulation of α-synuclein in sporadic PD. These studies in patients and in our cell lines provide a rationale for therapeutic approaches involving enzyme replacement and chaperoning for GCase.

The mechanism by which GBA1 mutations cause lysosomal dysfunction and neuropathy is not clearly understood. A loss-of-function mechanism would predict substrate accumulation. In patients with GD, levels of glucosylsphingosine, one of the substrates of GCase, were drastically increased compared with levels of glucosylsphingosine in control subjects. In addition to affecting GCase substrates, GBA1 mutations may also cause global changes in cellular lipid composition. Our current study also showed substrate accumulation and lysosomal dysfunction in cells with GCase deficiency, supporting a loss-of-function mechanism. However, when it comes to neurodegeneration, a gain-of-function mechanism may also have a role, perhaps through accumulation of misfolded GCase in the endoplasmic reticulum. Both loss-of-function and gain-of-function mechanisms may contribute to the role of GBA1 mutations in increased risk of PD.

Neuropathological examinations of patients with dementia showed that those with LB-type pathology were more likely to carry GBA1 mutations than those with Alzheimer-type pathology, which showed no difference from control subjects. Furthermore, a decrease in GCase activity in the cerebrospinal fluid was observed in patients with PD and dementia with LB but not in patients with Alzheimer’s disease or frontotemporal dementia. These results may provide insights into the origin of disease specificity. For instance, different types of lysosomal dysfunction might lead to defects in metabolism of specific disease-linked proteins. Our study showed that GBA1 deficiency increased α-synuclein aggregation. Others have shown that mutations in GBA1 resulted in reduced α-synuclein degradation. One could postulate that the effects of GBA1 mutations on protein degradation are limited to a certain group of proteins that includes α-synuclein. This idea needs to be validated.

In conclusion, GBA1 deficiency is sufficient to cause lysosomal dysfunction and promote α-synuclein aggregation. These results suggest that GBA1 mutations exert pathogenic actions through a loss-of-function mechanism. Several potential mechanisms leading to α-synuclein aggregation have been proposed. Elucidation of the mechanism underlying the pathogenic actions of GBA1 mutations will help us identify rational therapeutic strategies for LBDs and GD.

ACKNOWLEDGEMENTS

This work was supported by a National Research Foundation grants funded by the Korean Government (2010-0015188 to S-JL, 2013R1A1A2062861 to E-JB) and the Korea Health Technology R&D Project, the Ministry of Health & Welfare, Korea (HI111C1184 to S-JL).

1. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967; 17: 427–442.
2. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003; 39: 889–909.
3. Bahr BA, Bendiske J. The neuropathogenic contributions of lysosomal dysfunction. J Neurochem 2002; 83: 481–489.
4. Trinh J, Furrer M. Advances in the genetics of Parkinson disease. Nat Rev Neuro 2013; 9: 445–454.
5. Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 2009; 124: 593–605.
6. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 2009; 41: 1303–1307.
7. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 2009; 41: 1308–1312.
8. Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 2010; 74: 97–109.
9. Daher JP, Pletnikova O, Biskup S, Musso A, Gellhaar S, Gallet D et al. Neurdegenerative phenotypes in an A53T alpha-synuclein transgenic mouse model are independent of LRRK2. Hum Mol Genet 2012; 21: 2420–2431.
10. Brady RO, Kanfer J, Shapiro D. The metabolism of glucocerebrosides. I. Purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem 1965; 240: 39–43.
11. Huska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 2008; 29: 567–583.
12. Yang NY, Lee YN, Lee HJ, Kim YS, Lee SJ. Glucocerebrosidase, a new player changing the old rules in Lewy body diseases. Biol Chem 2013; 394: 807–818.
Lysoosomal dysfunction induced by GBA1 knockout

E-J Bae et al.

13 Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM et al. Association of glucocerebrosidase mutations with dementia in Lewy body diseases. Acta Neuropathol 2010; 120: 641–649.

14 Clark LN, Kartasakis LA, Wolf Gilbert R, Dorado B, Atkins JN, Skepper JN. Formation and removal of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 2004; 24: 1888–1896.

15 Goker-Alpan O, Stubblefield BK, Giasson BI, Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM et al. Expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci USA 2011; 108: 12101–12106.

16 Lee H-J, Shin SY, Choi C, Lee YH, Lee S-J. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2002; 277: 5411–5417.

17 Lee HJ, Bae EJ, Jang A, Ho DH, Cho ED, Suk JE et al. Enzyme-linked immunosorbent assays for alpha-synuclein with species and multimeric state specificities. J Neurosci Methods 2011; 199: 249–257.

18 Lee H-J, Khoshaghideh F, Patel S, Lee S-J. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 2004; 24: 1888–1896.

19 Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM et al. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci USA 2011; 108: 12101–12106.

20 Lee H-J, Shin SY, Choi C, Lee YH, Lee S-J. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2002; 277: 5411–5417.

21 Atrian S, Lopez-Vinas E, Gomez-Puertas P, Chabas A, Vilageliu L, Clark LN, Kartsaklis LA, Wolf Gilbert R, Dorado B, Ross BM, Kisselev S.

22 Cabrera-Salazar MA, Bercury SD, Ziegler RJ, Marshall J, Hodges BL, Hein LK, Meikle PJ, Hopwood JJ, Fuller M. Secondary sphingolipid accumulation in a macrophase model of Gaucher disease. Mol Genet Metab 2007; 92: 336–345.

23 Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005; 14: 2387–2398.

24 Butler D, Nixon RA, Bahr BA. Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases. Autophagy 2006; 2: 234–237.

25 Meikle PJ, Brooks DA, Ravinscroft EM, Yen M, Williams RE, Jaunzemis AE et al. Diagnosis of lysosomal storage disorders: evaluation of lysosome-associated membrane protein LAMP-1 as a diagnostic marker. Clin Chem 1997; 43: 1325–1335.

26 Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztain DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 2003; 278: 25009–25013.

27 Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004; 305: 1292–1295.

28 Lee H-J, Patel S, Lee S-J. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 2005; 25: 6016–6024.

29 Jang A, Lee HJ, Suk JE, Jung JW, Kim KP, Lee SJ. Non-classical exocytosis of alpha-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 2010; 113: 1263–1274.

30 Lee HJ, Cho ED, Lee KW, Kim JH, Cho SG, Lee SJ. Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein. Exp Mol Med 2013; 45: e22.

31 Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011; 146: 37–52.

32 Schondorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 2014; 5: 4028.

33 Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM et al. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci USA 2011; 108: 12101–12106.

34 Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM et al. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci USA 2011; 108: 12101–12106.

35 Orvisky E, Park JK, LaMarca ME, Gwinn EI, Martin BM, Tayebi N et al. Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: correlation with phenotype and genotype. Mol Genet Metab 2002; 76: 262–270.

36 Hein LK, Meikle PJ, Hopwood JJ, Fuller M. Secondary sphingolipid accumulation in a macrophase model of Gaucher disease. Mol Genet Metab 2007; 92: 336–345.

37 Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005; 14: 2387–2398.

38 Bendikov-Bar I, Ron I, Filocamo M, Horowitz M. Characterization of the ERAD process of the L444P mutant glucocerebrosidase variant. Blood Cells Mol Dis 2011; 46: 4–10.

39 Tsuang D, Leverenz JB, Lopez OL, Hamilton RL, Bennett DA, Schneider JA et al. GBA mutations increase risk for Lewy body disease with and without Alzheimer disease pathology. Neurology 2012; 79: 1944–1950.

40 Balducci C, Piaugidei L, Persichetti E, Parnetti L, Sbaragli M, Tassi C et al. Lysosomal hydrolases in cerebrospinal fluid of subjects with Parkinson’s disease. Mov Disord 2007; 22: 1481–1484.

41 Parnetti L, Balducci C, Piaugidei L, De Carlo C, Peducci M, D’Amore C et al. Cerebrospinal fluid beta-glucocerebrosidase activity is reduced in Dementia with Lewy Bodies. Neurobiol Dis 2009; 34: 484–486.

42 Xu YH, Xu K, Sun Y, Liou B, Quinn B, Li RH et al. Multiple pathogenic protease 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/