Diffuse Reflection Radius in a Simple Polygon

Eli Fox-Epstein∗ Csaba D. Tóth† Andrew Winslow‡

Abstract

It is shown that every simple polygon with \(n \) walls can be illuminated from a single point light source \(s \) after at most \(\lfloor (n - 2)/4 \rfloor \) diffuse reflections, and this bound is the best possible. A point \(s \) with this property can be computed in \(O(n \log n) \) time.

1 Introduction

When light diffusely reflects off of a surface, it scatters in all directions. This is in contrast to specular reflection, where the angle of incidence equals the angle of reflection. We are interested in the minimum number of diffuse reflections needed to illuminate all points in the interior of a simple polygon \(P \) with \(n \) vertices from a single light source \(s \) in the interior of \(P \). A diffuse reflection path is a polygonal path \(\gamma \) contained in \(P \) such that every interior vertex of \(\gamma \) lies in the relative interior of some edge of \(P \), and the relative interior of every edge of \(\gamma \) is in the interior of \(P \) (see Fig. 1 for an example). Our main result is the following.

Theorem 1. For every simple polygon \(P \) with \(n \geq 3 \) vertices, there is a point \(s \in \text{int}(P) \) such that for all \(t \in \text{int}(P) \), there is an \(s \)-to-\(t \) diffuse reflection path with at most \((n - 2)/4 \) internal vertices. This lower bound is the best possible. A point \(s \in \text{int}(P) \) with this property can be computed in \(O(n \log n) \) time.

Our main result is, in fact, a tight bound on the diffuse reflection radius (defined below) for simple polygons. Denote by \(V_k(s) \subseteq P \) the part of the polygon illuminated by a light source \(s \) after at most \(k \) diffuse reflections. Formally, \(V_k(s) \) is the set of points \(t \in P \) such that there is a diffuse reflection path from \(s \) to \(t \) with at most \(k \) interior vertices. Hence \(V_0(s) \) is the visibility polygon of point \(s \) within the polygon \(P \). The diffuse reflection depth of a point \(s \in \text{int}(P) \) is the minimum \(r \geq 0 \) such that \(\text{int}(P) \subseteq V_r(s) \). The diffuse reflection radius \(R(P) \) of a simple polygon \(P \) is the minimum diffuse reflection depth over all points \(s \in \text{int}(P) \). The set of points \(s \in \text{int}(P) \) that attain this minimum is the diffuse reflection center of \(P \). With this terminology, Theorem 1 implies that \(R(P) \leq (n - 2)/4 \) for every simple polygon \(P \) with \(n \geq 3 \) vertices. A family of zig-zag polygons (see such polygon in Fig. 1) shows that this bound is the best possible for all \(n \geq 3 \). The diffuse reflection diameter \(D(P) \) of \(P \) is the maximum diffuse reflection radius among all points in \(P \). For any point \(s \), the diffuse reflection depth is the number of reflections needed to illuminate \(s \) from \(s \) itself, and the diffuse reflection radius of \(P \) is the minimum diffuse reflection depth over all points in \(P \). The set of points \(s \in \text{int}(P) \) that attain this minimum is the diffuse reflection center of \(P \). With this terminology, Theorem 1 implies that \(R(P) \leq (n - 2)/4 \) for every simple polygon \(P \) with \(n \geq 3 \) vertices. A family of zig-zag polygons (see such polygon in Fig. 1) shows that this bound is the best possible for all \(n \geq 3 \). The diffuse reflection diameter \(D(P) \) of \(P \) is the maximum diffuse

∗Department of Computer Science, Brown University, Providence, RI. ef@cs.brown.edu
†Department of Mathematics, California State University, Northridge, Los Angeles, CA. cdtroth@acm.org
‡Department of Computer Science, Tufts University, Medford, MA. awinslow@cs.tufts.edu
reflection depth over all \(s \in \text{int}(P) \). Barequet et al. \cite{barequet12} recently proved, confirming a conjecture by Aanjaneya et al. \cite{aanjaneya12}, that \(D(P) \leq \lfloor n/2 \rfloor - 1 \) for all simple polygons with \(n \) vertices, and this bound is the best possible.

Proof Technique. The regions \(V_k(s) \) are notoriously difficult to handle. Brahma et al. \cite{brahma18} constructed examples where \(V_2(s) \) is not simply connected, and where \(V_3(s) \) has \(\Omega(n) \) holes. In general, the maximum complexity of \(V_k(s) \) is known to be between \(\Omega(n^2) \) and \(O(n^3) \) \cite{schulz01}. Instead of \(V_k(s) \), we rely on the simply connected regions \(R_k(s) \subseteq V_k(s) \) defined by Barequet et al. \cite{barequet12} and show that \(\text{int}(P) \subseteq \bigcup_{s \text{ s.t. } D(s) = k} (s) \) for some point \(s \in \text{int}(P) \). In Section 2 we establish a simple sufficient condition (Lemma 1) for a point \(s \) in terms of \(V_0(s) \) that can be verified in \(O(n) \) time. Except for two extremal cases that are resolved directly (Section 2.3), we prove that there exists a point satisfying these conditions in Section 3. The two main tools we use are a generalization of a kernel of a simple polygon (Section 3.1) and the weak visibility polygon for a line segment (Section 3.2). The existential proof is turned into an efficient algorithm: the generalized kernel can be computed in \(O(n \log n) \) time, and visibility for a point moving along a line segment can be tracked with a persistent data structure.

Motivation and Related Work. The diffuse reflection path is a special case of a link path, which has been studied extensively due to its applications in motion planning, robotics, and curve compression \cite{pollack00,bae10}. The link distance between two points, \(s \) and \(t \), in a simple polygon \(P \) is the minimum number of edges in a polygonal path between \(s \) and \(t \) that lies entirely in \(P \). In a polygon \(P \) with \(n \) vertices, the link distance between two points can be computed in \(O(n) \) time \cite{hershberger93}. The link diameter of \(P \), the maximum link distance between two points in \(P \), can be computed in \(O(n \log n) \) time \cite{bae10}. The link depth of a point \(s \) is the smallest number \(d \) such that all other points in \(P \) are within link distance \(d \) of \(s \). The link radius is the minimum over all link depths, and the link center is the set of points with minimum link depth. It is known that the link center is a convex region, and can be computed in \(O(n \log n) \) time \cite{hershberger93}.

The geodesic center of a simple polygon is a point inside the polygon which minimizes the maximum internal (geodesic) distance to any point in the polygon. Pollack et al. \cite{pollack00} show how to compute the geodesic center of a simple polygon with \(n \) vertices in \(O(n \log n) \) time. Hershberger and Suri \cite{hershberger93} give an \(O(n) \) time algorithm for computing the geodesic diameter. Schuierer \cite{schuierer90} gives \(O(n) \) time algorithms for the geodesic center and diameter under the \(L_1 \) metric in rectilinear polygons. Bae et al. \cite{bae10} show that the \(L_1 \)-geodesic diameter and center can be computed in \(O(n) \) time in every simple polygon with \(n \) vertices.

Note that the link distance, geodesic distance and the \(L_1 \)-geodesic distance are all metrics, while the minimum number of reflections on a diffuse reflection path between two points is not a metric (the triangle inequality fails). This partly explains the difficulty of handling diffuse reflections.

In contrast to link paths, the currently known algorithm for computing a minimum diffuse reflection path (one with the minimum number of reflections) between two points in a simple polygon with \(n \) vertices takes \(O(n^3) \) time \cite{bae10}; and no polynomial time algorithm is known for computing the diffuse reflection diameter or radius of a polygon.

2 Preliminaries

For a planar set \(U \subseteq \mathbb{R}^2 \), we denote the interior by \(\text{int}(U) \), the boundary by \(\partial U \), and the closure by \(\text{cl}(U) \). Let \(P \) be a simply connected closed polygonal domain (for short, simple polygon) with \(n \) vertices. A chord of \(P \) is a closed line segment \(ab \) such that \(a, b \in \partial P \), and the relative interior of \(ab \) is in \(\text{int}(P) \).

We assume that the vertices of \(P \) are in general position, and we only consider light sources \(s \in \text{int}(P) \) that do not lie on any line spanned by two vertices of \(P \). Recall that \(V_0(s) \) is the visibility polygon of the point \(s \) in \(P \). The pockets of \(V_0(s) \) are the connected components of \(P \setminus \text{cl}(V_0(s)) \). See Fig. 2 for examples. The common boundary of \(V_0(s) \) and a pocket is a chord \(ab \) of \(P \) (called a window) such that \(a \) is a reflex vertex of \(P \) that lies in the relative interior of \(ab \). We say that a pocket with a window \(ab \) is induced by the reflex vertex \(a \). Note that every reflex vertex induces at most one pocket of \(V_0(s) \). We define the size of a pocket as the number of vertices of \(P \) on the boundary of the pocket, and the sum of the sizes of the pockets is at most \(n \), the number of vertices of \(P \).

A pocket is a left (resp., right) pocket if it lies on the left (resp., right) side of the directed line \(\overrightarrow{ab} \). Two pockets of \(V_0(s) \) are dependent if some chord of \(P \) crosses the window of both pockets; otherwise they are independent. One pocket is called independent if it is independent of all other pockets.

Proposition 1. All left (resp., right) pockets of \(V_0(s) \) are pairwise independent.
Consider two left pockets of \(\ell \) two halfplanes is a wedge with the apex at \(s \) from \(V_0(s) \) in \([6]\). Pocket \(U_1 \) is saturated, and pockets \(U_2 \) and \(U_3 \) are unsaturated.

Proof. Consider two left pockets of \(V_0(s) \), lying on the left side of the windows \(\overrightarrow{a_1b_1} \) and \(\overrightarrow{a_2b_2} \), respectively (see Fig. 2(a)). Suppose, for contradiction, that some chord \(\ell \) of \(P \) intersects both windows. Let \(\ell' \subset \ell \) be the segment of \(\ell \) between \(a_1b_1 \) and \(a_2b_2 \). Segment \(\ell' \) lies in the right halfplane of both \(a_1b_1 \) and \(a_2b_2 \). The intersection of these two halfplanes is a wedge with the apex at \(s \), and either \(a_1b_1 \) or \(a_2b_2 \) is not incident to this wedge. This contradiction implies that no chord \(\ell \) can cross both windows \(a_1b_1 \) and \(a_2b_2 \).

The main result of this section is a sufficient condition (Lemma 1) for a point \(s \) to fully illuminate \(\text{int}(P) \) within \([(n-2)/4] \) diffuse reflections. The proof of the lemma is postponed to the end of Section 2. It relies on the techniques developed in \([6]\) and the bound \(D(P) \leq \lceil n/2 \rceil - 1 \) on the diffuse reflection diameter.

Lemma 1. We have \(\text{int}(P) \subseteq V_{(n-2)/4}(s) \) for a point \(s \in \text{int}(P) \) if the pockets of \(V_0(s) \) satisfy these conditions:

- **C1** every pocket has size at most \(\lceil n/2 \rceil - 1 \); and
- **C2** the sum of the sizes of any two dependent pockets is at most \(\lceil n/2 \rceil - 1 \).

2.1 Review of regions \(R_k \)

We briefly review the necessary tools from \([6]\). Let \(s \in \text{int}(P) \) be a point in general position. Recall that \(V_k(s) \), the set of points reachable from \(s \) with at most \(k \) diffuse reflections, is not necessarily simply connected when \(k \geq 1 \) \([7]\). Instead of tackling \(V_k(s) \) directly, Barequet et al. \([6]\) recursively define simply connected subsets \(R_k = R_k(s) \subseteq V_k(s) \) for all \(k \in \mathbb{N}_0 \), starting with \(R_0 = V_0(s) \). We review how \(R_{k+1} \) is constructed from \(R_k \). Each region \(R_k \) is bounded by chords of \(P \) and segments along the boundary \(\partial P \). The connected components of \(P \setminus \text{cl}(R_k) \) are the pockets of \(R_k \). Each pocket \(U_{ab} \) of \(R_k \) is bounded by a chord \(ab \) such that \(a \) is a reflex vertex of \(P \), \(b \) is an interior point of an edge of \(P \), and the two edges of \(P \) incident to \(a \) are on the same side of the line \(ab \) (these properties are maintained in the recursive definition). A pocket \(U_{ab} \) of \(R_k \) is saturated if every chord of \(P \) that crosses \(ab \) has one endpoint in \(R_k \) and the other endpoint in \(U_{ab} \). Otherwise, \(U_{ab} \) is unsaturated. Recall that for a point \(s' \in P \), \(V_0(s') \) is the set of points in \(P \) visible from \(s' \); and for a line segment \(pq \subseteq P \), \(V_0(pq) \) is the set of points in \(P \) visible from any point in \(pq \).

The regions \(R_k \) are defined as follows (refer to Fig. 2(b)). Let \(R_0 = V_0(s) \). If \(\text{int}(P) \subseteq R_k \), then let \(R_{k+1} = \text{cl}(R_k) = P \). If \(\text{int}(P) \not\subseteq R_k \), then \(R_k \) has at least one pocket. For each pocket \(U_{ab} \), define a set \(W_{ab} \subseteq U_{ab} \). If \(ab \) is unsaturated, then let \(W_{ab} = V_0(ab) \cap U_{ab} \). If \(ab \) is saturated, then let \(W_{ab} = V_0(ab) \cap U_{ab} \). If \(ab \) is unsaturated, then let \(p_{ab} \in R_k \cap \partial P \) be a point close to \(b \) such that no line determined by two vertices of \(P \) separates \(b \) and \(p_{ab} \); and then let \(W_{ab} = V_0(p_{ab}) \cap U_{ab} \). Let \(R_{k+1} \) be the union of \(\text{cl}(R_k) \) and the sets \(W_{ab} \) for all pockets \(U_{ab} \) of \(R_k \). Barequet et al. \([6]\) prove that \(R_k \subseteq V_k(s) \) for all \(k \in \mathbb{N}_0 \).

Remark 1. Note that when \(U_{ab} \) is unsaturated, then \(p_{ab} \) is an interior point of some edge \(e \) of \(P \). Since light does not propagate along the edge \(e \), the regions \(W_{ab} \) and \(R_{k+1} \) do not contain \(e \cap U_{ab} \). Consequently, there is a fine difference between independent and saturated pockets. Every saturated pocket of \(R_k \) is independent (by definition),
but an independent pocket of \(R_k \) is not necessarily saturated. In Fig. 3(a), \(U_1 \) and \(U_2 \) are dependent pockets of \(R_0 \); region \(R_1 \) covers the interior of \(U_2 \), but not its boundary, and it has a pocket \(U_5 \subset U_1 \). Even though \(U_5 \) is independent of all other pockets of \(R_1 \), it is unsaturated: a chord between \(U_5 \) and the uncovered part of \(U_2 \) crosses \(a_5b_5 \). Since \(s \) is in general position, this phenomenon does not occur for \(k = 0 \), and every independent pocket of \(V_0(s) \) is saturated.

![Figure 3](image-url)

Figure 3: (a) A polygon \(P \) where \(R_0 = V_0(s) \) has four unsaturated pockets: \(U_1, \ldots, U_4 \). (b) The white lines on the boundary of \(R_1 \) are not part of \(R_1 \). Consequently, pocket \(U_5 \) of \(R_1 \) is unsaturated, although it is independent of all other pockets. Pockets \(U_6 \) and \(U_7 \) of \(R_1 \) are independent and saturated.

We say that a region \(R_k \) weakly covers an edge of \(P \) if the boundary \(\partial R_k \) intersects the relative interior of that edge. On the boundary of every pocket \(U_{ab} \) of \(R_k \), there is an edge of \(P \) that \(R_k \) does not weakly cover, namely, the edge of \(P \) incident to \(a \). We call this edge the lead edge of \(U_{ab} \). The following observation follows from the way the regions \(R_k \) are constructed in [6].

Proposition 2 ([6]). For every pocket \(U \) of region \(R_k \), \(k \in \mathbb{N}_0 \), the lead edge of \(U \) is weakly covered by region \(R_{k+1} \) and is not weakly covered by \(R_k \).

Proposition 3. If a pocket \(U_{ab} \) of \(V_0(s) \) has size \(m \), then \(R_k \) weakly covers at least \(\min(k + 1, m) \) edges of \(P \) on the boundary of \(U \).

Proof. For every \(k \in \mathbb{N}_0 \), let \(\mu_k \) denote the number of edges of \(P \) on the boundary of \(U_{ab} \) that are weakly covered by \(R_k \). \(U_{ab} \) is bounded by a chord and \(m \) edges of \(P \). One of these edges (the edge that contains \(b \)) is weakly covered by \(V_0(s) \), hence \(\mu_0 \geq 1 \). Since \(R_k \subseteq R_{k+1} \) for all \(k \in \mathbb{N}_0 \), \(\mu_k \) is monotonically increasing, and every pocket of \(R_k \) that intersects \(U \) is contained in \(U_{ab} \). In each pocket of \(R_k \), by Proposition 2, region \(R_{k+1} \) weakly covers at least one new edge of \(P \). Consequently, we have \(\mu_{k+1} \geq \min(\mu_k + 1, m) \) for all \(k \in \mathbb{N}_0 \). Induction on \(k \in \mathbb{N}_0 \) yields \(\mu_k \geq \min(k + 1, m) \).

The following lemma is a direct consequence of Proposition 3. It will be used for unsaturated pockets of \(V_0(s) \).

Lemma 2. If \(U \) is a size-\(m \) pocket of \(V_0(s) \), then \(\text{int}(U) \subseteq R_{m-1} \).

Proof. By Proposition 3, \(R_{m-1} \) weakly covers all edges of \(P \) on the boundary of \(U \). Consequently, \(U \) cannot contain any pocket of \(R_{m-1} \) (otherwise \(U \cap R_m \) would weakly cover at least \(m + 1 \) edges by Proposition 2). Thus \(\text{int}(U) \subseteq R_{m-1} \), as claimed.

For saturated pockets, the diameter bound allows a significantly better result.

Lemma 3. If \(U \) is a size-\(m \) saturated pocket of \(R_k \), then \(\text{int}(U) \subseteq R_{k+\lfloor m/2 \rfloor} \).

Proof. Let \(ab \) be the window of \(U \). Since \(a \) is a reflex vertex of \(P \), it is a convex vertex of the pocket \(U \). Refer to Fig. 4. Since \(U_{ab} \) is saturated, every chord that crosses \(ab \) is part of a diffuse reflection path that starts at \(s \) and enters the interior of \(U_{ab} \) after at most \(k \) reflections.
We construct a polygon P' with $m + 2$ vertices and a point $s' \in \text{int}(P')$ such that U is a pocket of $V_0(s')$ in P', and every chord of P' that crosses ab is part of a diffuse reflection path that starts at s and enters the interior of U after one reflection in P'. The polygon P' is bounded by the common boundary $\partial P \cap U$ and a polygonal path (a, x, y, b), where x is in a small neighborhood of a such that x and U lie on the same side of line ab, and y lies on the edge of P that contains b in the exterior of U. Place $s' \in \text{int}(P')$ on the line ab such that a is in the relative interior of $s'b$.

Polygon P' has $m + 2$ vertices (since b lies in the interior of an edge of P). The diffuse reflection diameter of a polygon with $m + 2$ vertices is $\lceil (m + 2)/2 \rceil - 1 = \lceil m/2 \rceil$ from [6]. Consequently, every point $t \in \text{int}(U)$ can be reached from s' after at most $\lceil m/2 \rceil$ diffuse reflections in P'. Since a reflection path from s' to any point $t \in \text{int}(U)$ in P' corresponds to an s-to-t reflection path in the original polygon P with at most k more reflections, every $t \in \text{int}(U)$ can be reached from s after at most $k + \lceil m/2 \rceil$ diffuse reflections in P.

Combining Lemmas 2 and 3 yields the following for dependent pockets of $V_0(s)$.

Lemma 4. Let U be a pocket of $V_0(s)$ of size m. If each pocket dependent on U has size at most $m' < m$, then $\text{int}(U) \subseteq R_{1}(m+m')/2).

Proof. For every $k \in \mathbb{N}_0$, let μ_k denote the number of edges of P on the boundary of U that are weakly covered by R_k. We have $\mu_0 = 1$, and if $\mu_k = m$, then $\text{int}(U) \subseteq R_k$. By Proposition 3, $\mu_{m'} \geq m' + 1$ (i.e., at most $m - m' - 1$ more edges have to be weakly covered).

By Lemma 2, $R_{m'-1}$ contains the interior of all pockets of $V_0(s)$ that depend on U. Consequently, if $R_{m'-1}$ has only one pocket inside U, it must be independent (but not necessarily saturated, cf. Remark 1). By definition, $\text{cl}(R_{m'-1}) \subseteq R_{m'}$, and so $R_{m'}$ also contains the boundaries of all pockets of $V_0(s)$ that depend on U. Consequently, if $R_{m'}$ has exactly one pocket inside U, it must be saturated.

We distinguish between two possibilities. First assume that $\mu_{m'+k} \geq \min(m' + 2k + 1, m)$ for all $k \geq 1$ (that is, at least two more edges in U get weakly covered until all edges in U are exhausted). Then $\text{int}(U) \subseteq R_{m' + [(m-m'-1)/2]} = R_{1}(m+m')/2).

Otherwise, let $k \geq 1$ be the first index such that $\mu_{m'+k} = m' + 2k < m$. Since $\mu_{m'+k-1} \geq m' + 2(k-1) + 1 = m' + 2k - 1$ by assumption and $\mu_{m'+k} \geq \mu_{m'+k-1} + 1$ by Proposition 2, we have $\mu_{m'+k} = \mu_{m'+k-1} + 1$. This means that $R_{m'+k-1}$ has exactly one pocket in U, say $U_{ab} \subseteq U$, and $R_{m'+k+1}$ weakly covers only one new edge of U_{ab} (e.g., pocket $U_5 \subseteq U_1$ in Fig. 3). This is possible only if U_{ab} is unsaturated. Then the region $R_{m'+k}$ is extended by $W_{ab} = V_0(p_{ab})$ for a point p_{ab} point close to b. Since W_{ab} weakly covers only one new edge, the lead edge of U_{ab}, which incident to a. Therefore, W_{ab} is a triangle bounded by ab, the lead edge of U_{ab}, and the edge the contains b. It follows that $R_{m'+k}$ also has exactly one pocket in U, say $U_{a'b'}$, where the window $a'b'$ is collinear with the edge of P that contains b. Hence the pocket $U_{a'b'}$ is saturated: doe every chord that crosses $a'b'$, one endpoint is either in $W_{ab} \subseteq R_{m'+k+1}$ or in $\text{cl}(R_{m'+k}) \subseteq R_{m'+k+1}$. By Lemma 3 the interior of this pocket is contained in $R_{m'+k+[(m-m'-2k-1)/2]} = R_{1}(m+m')/2)$, as claimed.

\[\Box\]
2.2 Proof of Lemma 1

We prove a slightly more general statement than Lemma 1.

Lemma 5. We have \(\text{int}(P) \subseteq V_k(s) \) if the pockets of \(V_0(s) \) satisfy these conditions:

1. every pocket has size at most \(2k + 1 \); and
2. the sum of the sizes of any two dependent pockets is at most \(2k + 1 \).

Proof. Consider the pockets of \(V_0(s) \). By Lemma 2, the interior of every pocket of size at most \(k + 1 \) is contained in \(R_k \). It remains to consider the pockets \(U \) of size \(m \) for \(k + 2 \leq m \leq 2k + 1 \). We distinguish between two cases.

Case 1: a pocket \(U \) of size \(m \) is independent of all other pockets of \(V_0(s) \). Then \(U \) is saturated (cf. Remark 1). By Lemma 3, the interior of \(U \) is contained in \(R_{[m/2]} \subseteq R_k \subseteq V_k(s) \).

Case 2: a pocket \(U \) of size \(m \) is dependent on some other pockets of \(V_0(s) \). Any other pocket dependent on \(U \) has size at most \(m' = 2k + 1 - m \leq k - 1 < m \) by our assumption. Lemma 4 implies that the interior of \(U \) is contained in \(R_{[(m + (2k + 1 - m))/2]} \). \(\square \)

Proof of Lemma 7. Invoke Lemma 6 with \(k = [(n - 2)/4] \), and note that \(2k + 1 = 2[(n - 2)/4] + 1 \geq \lfloor n/2 \rfloor - 1 \). \(\square \)

2.3 Double Violators

Recall that the sum of sizes of the pockets of \(V_0(s) \) is at most \(n \), the number of vertices of \(P \). It is, therefore, possible that several pockets or dependent pairs of pockets violate conditions \(C_1 \) or \(C_2 \) in Lemma 1. We say that a point \(s \in \text{int}(P) \) is a double violator if \(V_0(s) \) has either (i) two disjoint pairs of dependent pockets, each pair with total size at least \(\lfloor n/2 \rfloor \), or (ii) a pair of dependent pockets of total size at least \(\lfloor n/2 \rfloor \) and an independent pocket of size at least \(\lfloor n/2 \rfloor \). (We do not worry about the possibility of two independent pockets, each of size at least \(\lfloor n/2 \rfloor \).) In this section, we show that if there is a double violator \(s \in \text{int}(P) \), then there is a point \(s' \in \text{int}(P) \) (possibly \(s' = s \)) for which \(\text{int}(P) \subseteq V_{[(n - 2)/4]} \) and such an \(s' \) can be found in \(O(n) \) time.

The key technical tool is the following variant of Lemma 4 for a pair of dependent pockets that are adjacent to a common edge (i.e., share an edge).

Lemma 6. Let \(U_{ab} \) and \(U_{a'b'} \) be two dependent pockets of \(V_0(s) \) such that neither is dependent on any other pocket, and points \(b \) and \(b' \) lie in the same edge of \(P \). Let the size of \(U_{ab} \) be \(m \) and \(U_{a'b'} \) be \(m' \). Then \(R_{[(m + m' - 1)/2]} \) contains the interior of both \(U_{ab} \) and \(U_{a'b'} \).

Proof. For every \(k \in \mathbb{N}_0 \), let \(\mu_k \) (resp., \(\mu_k' \)) denote the number of edges of \(P \) on the boundary of \(U_{ab} \) (resp., \(U_{a'b'} \)) that are weakly covered by \(R_k \). We have \(\mu_0 = 1 \) and \(\mu_0' = 1 \) (the edge containing \(b \) and \(b' \) is weakly covered by \(V_0(s) \)). Proposition 2 guarantees \(\mu_1 + \mu_1' \geq 4 \). If \(\mu_1 + \mu_1' \geq 5 \), then the proof of Lemma 4 readily implies that \(R_{[(m + m' - 1)/2]} \) contains the interior of both \(U_{ab} \) and \(U_{a'b'} \).

Assume now that \(\mu_1 + \mu_1' = 4 \). This means that \(R_1 \) covers one new edge from each of \(U_{ab} \) and \(U_{a'b'} \). Recall that \(U_{ab} \) and \(U_{a'b'} \) are unsaturated, and \(R_1 \) covers the part of \(U_{ab} \) (resp., \(U_{a'b'} \)) visible from a point near \(b \) (resp., \(b' \)). See Fig. 3(a). It follows that \(R_1 \) has exactly one pocket in each of \(U_{ab} \) and \(U_{a'b'} \), and both pockets are on the same side of the line \(bb' \). These pockets are saturated, and have size \(m - 1 \) and \(m' - 1 \), respectively. By Lemma 5, the interiors of both \(U_{ab} \) and \(U_{a'b'} \) are covered by \(R_{1 + \lfloor (m - 1, m' - 1)/2 \rfloor} = R_{\lfloor (\max(m, m') + 1)/2 \rfloor} \subseteq R_{[(m + m' - 1)/2]} \).

Lemma 7. Suppose that \(V_0(s) \) has two disjoint pairs of dependent pockets, each pair with total size \(\lfloor n/2 \rfloor \). Then there is a point \(s' \in \text{int}(P) \) such that \(\text{int}(P) \subseteq V_{[(n - 2)/4]}(s') \), and \(s' \) can be computed in \(O(n) \) time.

Proof. The sum of the sizes of these four pockets is at least \(2 \lfloor n/2 \rfloor \). If \(n \) is even, then the two dependent pairs each have size \(n/2 \), they use all \(n \) vertices of \(P \), and both dependent pairs share an edge. If \(n \) is odd, then either (i) the two dependent pairs have sizes \(\lfloor n/2 \rfloor \) and \(\lceil n/2 \rceil \), resp., using all \(n \) vertices of \(P \), and both dependent pairs share an edge; or (ii) the two dependent pairs each have size \(\lfloor n/2 \rfloor \), leaving one extra vertex, which may lie on the boundary between two independent pockets (Fig. 5(a)), or between two dependent pockets (Fig. 5(b)). In all cases, there is at least one dependent pair with joint size \(\lfloor n/2 \rfloor \) that share an edge.
If the two dependent pairs each have size \(\lfloor n/2 \rfloor \) and each share an edge (Fig. 5(a)), then by Lemma 6, their interior are covered by \(R_k \) for \(k = \lfloor (\lfloor n/2 \rfloor - 1)/2 \rfloor = \lfloor (n - 2)/4 \rfloor \).

Assume now that \(n \) is odd. Denote the four pockets by \(U_1, \ldots, U_4 \), induced by the reflex vertices \(a_1, \ldots, a_4 \) in counterclockwise order along \(\partial P \), such that \(U_1 \) and \(U_2 \) are dependent with joint size \(\lfloor n/2 \rfloor \) and share an edge; and \(U_3 \) and \(U_4 \) are dependent but either has joint size \(\lfloor n/2 \rfloor \) or do not share any edge. Refer to Fig. 5(b). Note that \(a_2a_3 \) and \(a_4a_1 \) are edges of \(P \). Let \(W \) be the wedge bounded by the rays \(a_1\tilde{s} \) and \(a_2\tilde{s} \) (and disjoint from both \(a_1 \) and \(a_2 \)). For every point \(s' \in \text{int}(P) \cap W \) in this wedge, \(a_1 \) and \(a_2 \) induce pockets \(U_1' \) and \(U_2' \), respectively, such that \(U_1' \cap U_2' \) and \(U_2 \cap U_4 \), and they also share an edge. Compute the intersection of region \(\text{int}(P) \cap W \) with the two lines containing the lead edges of \(U_3 \) and \(U_4 \). Let \(v \) be a closest point to \(s \) on these segments, and let \(s' \in \text{int}(P) \cap W \) be a point close to \(v \) in general position such that it can see all of the lead edge for \(U_3 \) or \(U_4 \). By construction, vertex \(a_3 \) or \(a_4 \) is not incident to any pocket of \(V_0(s') \). Consequently, the total size of all pockets of \(V_0(s') \) in \(U_3 \) and \(U_4 \) is at most \(\lfloor n/2 \rfloor - 1 \). By Lemmas 1(b) and 6, \(V_{\lfloor (n-2)/4 \rfloor} (s') \) contains the interiors of all pockets of \(V_0(s') \), as claimed.

Lemma 8. Suppose that \(V_0(s) \) has a pair of dependent pockets of total size \(\lfloor n/2 \rfloor \) and an independent pocket of size \(\lfloor n/2 \rfloor \). Then there is a point \(s' \in \text{int}(P) \) with \(\text{int}(P) \subseteq V_{\lfloor (n-2)/4 \rfloor} (s') \), and \(s' \) can be computed in \(O(n) \) time.

Proof. The sum of the sizes of these three pockets is at least \(2\lfloor n/2 \rfloor \). This implies that \(V_0(s) \) has no other pocket, and so the independent pocket is saturated. If \(n \) is even, then the two dependent pockets have total size \(n/2 \) and share an edge, and the independent pocket has size \(n/2 \). If \(n \) is odd, then either (i) the three pockets all \(n \) vertices of \(P \); and the dependent pockets share an edge; or (ii) the dependent pair and the independent pocket each have size \(\lfloor n/2 \rfloor \), leaving one extra vertex, which may lie on the boundary between two independent pockets, or between two dependent pockets (Fig. 5(b)). Denote the three pockets by \(U_1, U_2, U_3 \), induced by the reflex vertices \(a_1, a_2, a_3 \) in counterclockwise order along \(\partial P \), such that \(U_1 \) and \(U_2 \) are dependent; and \(U_3 \) is independent. By Proposition 1, \(U_1 \) and \(U_2 \) have opposite orientation, so we may assume w.l.o.g. that \(U_2 \) and \(U_3 \) have opposite orientation (say, left and right). Refer to Fig. 5(c).

First suppose that \(U_3 \) has size \(\lfloor n/2 \rfloor \). Then \(U_1 \) and \(U_2 \) have joint size \(\lfloor n/2 \rfloor \) and share an edge, and by Lemma 6, \(R_{\lfloor (n-2)/4 \rfloor} \) contains the interior of both \(U_1 \) and \(U_2 \). Since all \(n \) vertices are incident to pockets, \(a_2a_3 \) is an edge of \(P \); and \(a_1b_3 \) is contained in an edge of \(P \), say \(a_1b_3 \subseteq a_1v_3 \). Let \(s' \in \text{int}(U_3) \) be a point close to \(b_3 \) (in general position). Then \(a_1 \) and \(a_2 \) induce pockets \(U_1' \) and \(U_2' \), respectively, such that \(U_1 \subseteq U_1' \), \(U_2 \subseteq U_2' \), and they share an edge. Vertex \(a_3 \) is not incident to any pocket of \(V_0(s') \). Vertex \(v_3 \) is directly visible from \(s' \), so it is either not incident to any pocket of \(V_0(s') \), or it induces a left pocket. If the total size of pockets of \(V_0(s') \) inside \(U_3 \) is at most \(\lfloor n/2 \rfloor \), then \(V_{\lfloor (n-2)/4 \rfloor} (s') \) contains their interiors by Lemma 1. If, however, the total size of the pockets of \(V_0(s') \) inside \(U_3 \) is exactly \(\lfloor n/2 \rfloor - 1 \), then \(v_3 \) induces a left pocket of \(V_0(s') \) and it shares an edge with some right pocket inside \(U_3 \). In this case, \(V_{\lfloor (n-2)/4 \rfloor} (s') \) contains their interiors by Lemma 6.

Now suppose that \(n \) is odd and \(U_3 \) has size \(\lfloor n/2 \rfloor \). Denote the edge of \(P \) that contains \(b_3 \) by \(u_3v_3 \) such that \(v_3 \in \partial U_3 \) (and possibly \(a_1 = u_3 \)). Let \(s' \in \text{int}(P) \) be a point in a small neighborhood of \(u_3 \). Then \(s' \) directly sees \(v_3 \), and similarly to the previous case, \(V_{\lfloor (n-2)/4 \rfloor} (s') \) contains the interior of all pockets of \(V_0(s') \) inside \(U_3 \). If \(U_1 \) and \(U_2 \) jointly have size \(\lfloor n/2 \rfloor = \lfloor n/2 \rfloor + 1 \), then they share an edge \(u_3 = a_1 \). In this case, the total size of all pockets of
Let $(by \text{ Lemmas } 1, 7, \text{ and } 8)$. If U_1 and U_2 jointly have size $\lceil n/2 \rceil$, then P has one unaffiliated vertex (Fig. 3(c)). If $a_1 = a_1$, then the total size of all pockets of $V_0(s')$ inside U_1 and U_2 is at most $\lceil n/2 \rceil - 1$. If $a_1 \neq a_1$, then the total size of all pockets of $V_0(s')$ inside U_1 and U_2 is at most $\lceil n/2 \rceil$, and if it equals $\lceil n/2 \rceil - 1$, then two of those pockets are dependent and share an edge. By Lemmas 1 and 6, $\text{int}(P) \subseteq V_{\lceil (n-2)/4 \rceil}(s')$.

3 Finding a Witness Point

In Section 3.1, we show that in every simple polygon P, there is a point $s \in \text{int}(P)$ that satisfies condition C_1. In Section 3.2, we pick a point $s \in \text{int}(P)$ that satisfies condition C_1, and move it continuously until either (i) it satisfies both conditions C_1 and C_2, or (ii) it becomes a double violator. In both cases, we find a witness point for Theorem 1 (by Lemmas 1, 7, and 8).

3.1 Generalized Kernel

Let P be a simple polygon with n vertices. Recall that the set of points from which the entire polygon P is visible is the kernel, denoted $K(P)$, which is the intersection of all half-planes bounded by a supporting line of an edge of P and facing towards the interior of P. Lee and Preparata [18] designed an optimal $O(n)$ time algorithm for computing the kernel of simple polygon with n vertices. We now define a generalization of the kernel. For an integer $q \in \mathbb{N}_0$, let $K_q(P)$ denote the set of points $s \in P$ such that every pocket of $V_0(s)$ has size at most q. Clearly, $K(P) = K_0(P) = K_1(P)$, and $K_q(P) \subseteq K_{q+1}(P)$ for all $q \in \mathbb{N}_0$. The set of points that satisfy condition C_1 is $K_{\lceil n/2 \rceil}(P)$. For every reflex vertex v, we define two polygons $L_q(v) \subset P$ and $M_q(v) \subset P$: Let $L_q(v)$ (resp. $M_q(v)$) be the set of points $s \in P$ such that v does not induce a left (resp., right) pocket of size more than q in $V_0(s)$. We have

$$K_q(P) = \bigcap_{v \text{ reflex}} (L_q(v) \cap M_q(v)).$$

We show how to compute the polygons $L_q(v)$ and $M_q(v)$. Refer to Fig. 4. Denote the vertices of P by $(v_0, v_1, \ldots, v_{n-1})$, and use arithmetic modulo n on the indices. For a reflex vertex v_i, let $v_i a_i$ be the first edge of the shortest (geodesic) path from v_i to v_{i-q} in P. If the chord $v_i a_i$ and $v_{i+1} a_i$ meet at a reflex angle, then $v_i a_i$ is on the boundary of the smallest left pocket of size at least q induced by v_i (for any source $s \in P$). In this case, the ray $\overrightarrow{v_i a_i}$ enters the interior of P, and we denote by ℓ_i the first point hit on ∂P. The polygon $L_q(v_i)$ is the part of P lying on the left of the chord $\overrightarrow{v_i a_i}$. However, if the chord $v_i a_i$ and $v_{i+1} a_i$ meet at convex angle, then every left pocket induced by v_i has size less than q, and we have $L_q(v_i) = P$. Similarly, let $v_i b_i$ be the first edge of the shortest path from v_i to v_{i+q}. Vertex v_i can induce a right pocket of size more than q only if $b_i v_i$ and $v_i v_{i-1}$ make a reflex angle. In this case, $v_i b_i$ is the boundary of the largest right pocket of size at most q induced by v_i, the ray $\overrightarrow{v_i b_i}$ enters the interior of P, and hits ∂P at a point m_i, and $M_q(v_i)$ is the part of P lying on the right of the chord $\overrightarrow{v_i m_i}$; if $b_i v_i$ and $v_i v_{i-1}$ meet at a convex angle, then $M_q(v_i) = P$.
Note that every set \(L_q(v_i) \) (resp., \(M_q(v_i) \)) is \(P \)-convex (a.k.a. geodesically convex), that is, \(L_i(v_i) \) contains the shortest path between any two points in \(L_i(v_i) \) with respect to \(P \) [8] [11] [24]. Since the intersection of \(P \)-convex polygons is \(P \)-convex, \(K_q(P) \) is also \(P \)-convex for every \(q \in \mathbb{N}_0 \). There exists a point \(s \in \text{int}(P) \) satisfying condition \(C_1 \) iff \(K_{(n/2)}(P) \) is nonempty. We prove \(K_{(n/2)}(P) \neq \emptyset \) using a Helly-type result by Breen [8].

Theorem 2 ([8]). Let \(\mathcal{P} \) be a family of simple polygons in the plane. If every three (not necessarily distinct) members of \(\mathcal{P} \) have a simply connected union and every two members of \(\mathcal{P} \) have a nonempty intersection, then \(\bigcap \{ P : P \in \mathcal{P} \} \neq \emptyset \).

![Diagram](https://via.placeholder.com/150)

Figure 7: (a) A simple polygon \(P \) with \(n = 13 \) vertices, and the generalized kernel \(K_{(n/2)}(P) = K_6(P) \). (b) A schematic picture of a triangular hole in the union of three polygons in \(P \).

Lemma 9. For every simple polygon \(P \) with \(n \geq 3 \) vertices, \(K_{(n/2)}(P) \) is nonempty.

Proof. We apply Theorem 2 for the polygons \(L_{(n/2)}(v_i) \) and \(M_{(n/2)}(v_i) \) for all reflex vertices \(v_i \) of \(P \). By definition, \(L_{(n/2)}(v_i) \) (resp., \(M_{(n/2)}(v_i) \)) is incident to at least \(\lfloor n/2 \rfloor + 1 \) vertices of \(P \), namely \(v_{i-\lfloor n/2 \rfloor}, \ldots, v_i \) (resp., \(v_{i}, \ldots, v_{i+\lfloor n/2 \rfloor} \)). Hence the intersection of any two of sets is incident to at least at most \(2(\lfloor n/2 \rfloor + 1) - n > n \) vertices of \(P \). It remains to show that the union of any three of them is simply connected.

Suppose, to the contrary, that there are three sets whose union has a hole. Since each set is bounded by a chord of \(P \), the hole must be a triangle bounded by the three chords on the boundary of the three polygons. Each chord is is incident to a reflex vertex of \(P \) and is collinear with another chord of \(P \) that weakly separates the vertices \(\{v_i, v_{i+1}, \ldots, v_{i+\lfloor n/2 \rfloor}\} \) or \(\{v_i, v_{i-1}, \ldots, v_{i-\lfloor n/2 \rfloor}\} \) from the hole. Figure 7(b) shows a schematic image. The three chords together weakly separate disjoint sets of vertices of total size at least \(3 \lfloor n/2 \rfloor + 3 > n \) from the hole, contradicting the fact that \(P \) has \(n \) vertices altogether. \(\square \)

Since the vertices of \(P \) are assumed to be in general position, if \(K_{(n/2)}(P) \) is nonempty, then it has nonempty interior.

Lemma 10. For every \(q \in \mathbb{N}_0 \), \(K_q(P) \) can be computed in \(O(n \log n) \) time.

Proof. With a shortest path data structure [14] in a simple polygon \(P \), the first edge of the shortest path between any two query points can be computed in \(O(\log n) \) time after \(O(n) \) preprocessing. A ray shooting data structure [16] can answer ray shooting queries in \(O(\log n) \) time after \(O(n) \) preprocessing. Therefore, all chords \(v_i \ell_i \) and \(v_i \ell_i^{\prime} \) can be computed in \(O(\log n) \) time.

The generalized kernel \(K_q(P) = \bigcap \{ L_q(v_i) \cap M_q(v_i) \} \), can be constructed by incrementally maintaining the intersection \(K \) of the first \(x \) sets from \(\{ L_q(v_i), M_q(v_i) : v_i \text{ is reflex}\} \). In each step, we compute the intersection of \(K \) with \(L_q(v_i) \) or \(M_q(v_i) \). Recall that all these sets are \(P \)-convex (the intersection of \(P \)-convex sets is \(P \)-convex). A chord of \(P \) intersects the boundary of a \(P \)-convex polygon \(K \) in at most two points, and the intersection points can be computed in \(O(\log n) \) time using a ray-shooting query in \(P \) (shoot a ray along the chord) and binary search along the boundary of \(K \). Thus \(K \) can be updated in \(O(\log n) \) time. Altogether, we can compute \(K_q(P) \) in \(O(n \log n) \) time. \(\square \)
3.2 Finding a Witness

In this section, we present an algorithm that, given a simple polygon \(P \) with \(n \) vertices in general position, finds a witness \(s \in \text{int}(P) \) such that \(\text{int}(P) \subseteq V_{1\lceil n/2 \rceil}(s) \).

Let \(s_0 \) be an arbitrary point in \(\text{int}(K_{1\lceil n/2 \rceil}(P)) \). By Lemma 9, such a point exists. We can compute the visibility polygon \(V_0(s_0) \) and its pockets in \(O(n) \) time \([15]\). The definition of \(K_{1\lceil n/2 \rceil}(P) \) ensures that \(s_0 \) satisfies condition \(C_1 \) of Lemma 11. If it also satisfies \(C_2 \), then \(s = s_0 \) is a desired witness.

Assume that \(s_0 \) does not satisfy \(C_2 \), that is, \(V_0(s_0) \) has two dependent pockets of total size at least \(\lfloor n/2 \rfloor \), say a left pocket \(U_{ab} \) and (by Proposition 1) a right pocket \(U_{a'b'} \). We may assume that \(U_{ab} \) is at least as large as \(U_{a'b'} \), by applying a reflection if necessary, and so the size of \(U_{ab} \) is at least \(\lfloor n/4 \rfloor \). Refer to Fig. 8(a). Let \(c \in \partial P \) be a point sufficiently close to \(b \) such that segment \(bc \) is disjoint from all lines spanned by the vertices of \(P \), segment \(s_0c \) is disjoint from the intersection of any two lines spanned by the vertices of \(P \), and \(s_0c \subseteq P \). In Lemma 11 (below), we find a point on segment \(s_0c \) that is a witness, or double violator, or improves a parameter (spread) that we introduce now.

For a pair of dependent pockets, a left pocket \(U_{ab} \) and (by Proposition 1) a right pocket \(U_{a'b'} \), let \(\text{spread}(a, a') \) be the number of vertices on \(\partial P \) clockwise from \(a \) to \(a' \) (inclusive). Note that the spread is always at least the sum of the sizes of the two dependent pockets, as all vertices incident to the two pockets are counted. For a pair of pockets of total size at least \(\lfloor n/2 \rfloor \), we have \(\lfloor n/2 \rfloor \leq \text{spread}(a, a') \leq n \).

The visibility polygons of two points are combinatorially equivalent if there is a bijection between their pockets such that corresponding pockets are incident to the same sets of vertices of \(P \). The combinatorial changes incurred by a moving point \(s \) have been thoroughly analyzed in \([3, 4, 10]\). The set of points \(s \in P \) that induces combinatorially equivalent visibility polygons \(V_0(s) \) is a cells in the visibility decomposition \(VD(P) \) of polygon \(P \). It is known that each cell is convex and there are \(O(n^3) \) cells, but a line segment in \(P \) intersects only \(O(n) \) cells \([4, 9]\). A combinatorial change in \(V_0(s) \) occurs if \(s \) crosses a critical line spanned by two vertices of \(P \), and the circular order of the rays from \(s \) to the two vertices is reversed. The possible changes are: a pocket of size 2 appears or disappears; (2) the size of a pocket increases or decreases by one; (3) two pockets merge into one pocket or a pocket splits into two pockets. Importantly, the combinatorics of \(V_0(S) \) does not include the dependence between pockets: Proposition 1 will prove critical for tracking when two dependent pockets become independent.

Proposition 4. Let \(s_1s_2 \) be a line segment in \(\text{int}(P) \). Then

(i) Every left (resp., right) pocket of \(V_0(s_2) \) induced by a vertex on the left (right) of \(s_1s_2 \) is contained in a left (right) pocket of \(V_0(s_1) \).

(ii) Let \(U_{\text{left}} \) and \(U_{\text{right}} \) be independent pockets of \(V_0(s_1) \). Then every two pockets of \(V_0(s_2) \) contained in \(U_{\text{left}} \) and \(U_{\text{right}} \), respectively, are also independent.

Proof. (i) Let \(U_{ab} \) be a left pocket of \(V_0(s_2) \) induced by vertex \(a \) on the left of \(s_1s_2 \). If \(a \) is directly visible from \(s \) (i.e., \(s_1a \subseteq P \)), then \(U_{ab} \) is clearly contained in the left pocket of \(V_0(s_1) \) induced by \(a \). Otherwise, consider the geodesic path from \(s_1 \) to \(a \) in \(P \). It is homotopic to the path \((s_1, s_2, a) \subseteq P \), and so it contained in the triangle \(\Delta(s_1, s_2, a) \). The first internal vertex of this geodesic induces a left pocket of \(V_0(s_1) \) that contains \(U_{ab} \).

(ii) Since \(U_{\text{left}} \) and \(U_{\text{right}} \) are independent, no chord of \(P \) crosses the window of both pockets. Therefore no chord of \(P \) can cross the windows of two pockets lying in \(U_{\text{left}} \) and \(U_{\text{right}} \), respectively.

Lemma 11. There is a point \(s \in s_0c \) such that one of the following statements holds.

- \(s \) satisfies both \(C_1 \) and \(C_2 \);
- \(s \) is a double violator;
- \(s \) satisfies \(C_1 \) but violates \(C_2 \) due to two pockets of spread \(\leq \text{spread}(a, a') - \lfloor n/4 \rfloor \).

Proof. We move a point \(s \in s_0c \) from \(s_0 \) to \(c \) and trace the combinatorial changes of the pockets of \(V_0(s) \), and their dependencies. Initially, when \(s = s_0 \), all pockets have size at most \(\lfloor n/2 \rfloor - 1 \); and there are two dependent pockets, a left pocket \(U_{ab} \) on the left of \(s_0c \) and, by Proposition 1, a right pocket \(U_{a'b'} \) on the right of \(s_0c \), of total size at least \(\lfloor n/2 \rfloor \). When \(s = c \), every left pocket of \(V_0(s) \) on the left of \(s_0c \) is independent of any right pocket on the right of \(s_0c \).
Figure 8: (a) A polygon with \(n = 21 \) vertices where \(s_0 \) violates \(C_2 \) a pair of dependent pockets \(U_{ab} \) and \(U_{a'b'} \). (b) Point \(s_2 \in s_0c \) satisfies both \(C_1 \) and \(C_2 \). (c) A polygon with \(n = 21 \) vertices where \(s_0 \) violates \(C_2 \) with a pair of pockets \(U_{ab} \) and \(U_{a'b'} \) of spread \(19 \). (d) Point \(s_2 \) also violates \(C_2 \) with a pair of pockets of spread \(13 \).

Consequently, when \(s \) moves from \(s_0 \) to \(c \), there is a critical change from \(s = s_1 \) to \(s = s_2 \) such that \(V_0(s_1) \) still has two dependent pockets of size at least \(\lfloor n/2 \rfloor \) where the left (resp., right) pocket is on the left (right) of \(s_0c \); but \(V_0(s_2) \) has no such two pockets. (See Fig. 8 for examples.) Let \(U_{\text{left}} \) and \(U_{\text{right}} \) denote the two violator pockets of \(V_0(s_1) \). The critical point is either a combinatorial change (i.e., the size of one of these pockets drops), or the two pockets become independent. By Proposition 4 we have \(U_{\text{left}} \subset U_{ab} \) and \(U_{\text{right}} \subset P \setminus U_{ab} \), and the spread of \(U_{\text{left}} \) and \(U_{\text{right}} \) is at most \(\text{spread}(a,a') \). We show that one of the statements in Lemma 11 holds for \(s_1 \) or \(s_2 \).

If \(s_2 \) satisfies both \(C_1 \) and \(C_2 \), the our proof is complete (Fig. 8 (a-b)). If \(s_2 \) violates \(C_1 \), i.e., \(V_0(s_2) \) has a pocket of size \(\geq \lfloor n/2 \rfloor \), then \(V_0(s_1) \) also has a combinatorially equivalent pocket (which is independent of \(U_{\text{left}} \) and \(U_{\text{right}} \)), and so \(s_1 \) is a double violator. Finally, if \(s_2 \) violates \(C_2 \), i.e., \(V_0(s_2) \) has two dependent pockets of total size \(\lfloor n/2 \rfloor \), then we know that the left pocket of this pair is not contained in \(U_{ab} \). We have two subcases to consider: (i) If the right pocket of this new pair is contained in \(U_{\text{right}} \) (or it is \(U_{\text{right}} \)), then we know that their spread is at most \(\text{spread}(a,a') - \lfloor n/4 \rfloor \) (Fig. 8 (c-d)). (ii) If the right pocket of the new pair is disjoint from \(U_{\text{right}} \), then \(V_0(s_1) \) also has a combinatorially equivalent pair of pockets, which is different from \(U_{\text{left}} \) and \(U_{\text{right}} \), and so \(s_1 \) is a double violator.

Lemma 12. A point \(s \in s_0c \) described in Lemma 11 can be found in \(O(n \log n) \) time.

Proof. It is enough to show that the critical positions, \(s_1 \) and \(s_2 \), in the proof of Lemma 11 can be computed in \(O(n \log n) \) time. We use the persistent data structure developed by Chen and Daescu [9] for maintaining the combinatorial structure of \(V_0(s) \) as \(s \) moves along the line segment \(s_0c \). The pockets (and pocket sizes) change only at \(O(n) \) points along \(s_0c \), and each update can be computed in \(O(\log n) \) time.

However, the data structure in [9] does not track whether two pockets on opposite sides of \(s_0c \) are dependent or not. The main technical difficulty is that \(\Omega(n^2) \) dependent pairs might become independent as \(s \) moves along \(s_0s \) (even if we consider only pairs of total size at least \(\lfloor n/2 \rfloor \)), in contrast to only \(O(n) \) combinatorial changes. We reduce the number of relevant events by focusing on only the “large” pockets (pockets of size at least \(\lfloor n/4 \rfloor \)), and maintaining at most one pair that violates \(C_2 \) for each large pocket. (In a dependent pair of size \(\geq \lfloor n/2 \rfloor \), one of the pockets has size \(\geq \lfloor n/4 \rfloor \)).

We augment the persistent data structure in [9] as follows. We maintain the list of all left (resp., right) pockets of \(V_0(s) \) lying on the left (right) of \(s_0c \), sorted in counterclockwise order along \(\partial P \). We also maintain the set of large pockets of size at least \(\lfloor n/4 \rfloor \) from these two lists. There at most 4 large pockets for any \(s \in s_0c \). For a large pocket \(U_{\alpha,\beta} \) of \(s \in s_0c \), we maintain one possible other pocket \(U_{\alpha',\beta'} \) of \(V_0(s) \) such that they together violate \(C_2 \). If there are several such pockets \(U_{\alpha',\beta'} \), we maintain only the one where \(\alpha' \) (the reflex vertex that induces \(U_{\alpha,\beta} \)) is farthest from \(c \) along \(\partial P \). Thus, we maintain a set \(\mathcal{U}(s) \) of at most 4 pairs \((U_{\alpha,\beta},U_{\alpha',\beta'}) \). Finally, for each pair \((U_{\alpha,\beta},U_{\alpha',\beta'}) \in \mathcal{U} \), we maintain the positions \(s' = sc \cap \alpha \alpha' \) where the pair \((U_{\alpha,\beta},U_{\alpha',\beta'}) \) becomes independent assuming that neither \(U_{\alpha,\beta} \) nor \(U_{\alpha',\beta'} \) goes through combinatorially before \(s \) reaches \(s' \). We use [9] together with these supplemental structures, to find critical points \(s_1, s_2 \in s_0c \) such that \(\mathcal{U}(s_1) \neq \emptyset \) but \(\mathcal{U}(s_2) = \emptyset \).

We still need to show that \(\mathcal{U}(s) \) can be maintained in \(O(n \log n) \) time as \(s \) moves from \(s_0 \) to \(c \). A pair \((U_{\alpha,\beta},U_{\alpha',\beta'}) \)
has to be updated if $U_{\alpha\beta}$ or $U_{\alpha'\beta'}$ undergoes a combinatorial change, or if they become independent (i.e., $s \in \alpha\alpha'$). Each large pocket undergoes $O(n)$ combinatorial changes affect them by Proposition 4 and there are $O(n)$ reflex vertices along ∂P between s and a' (these are the candidates for α'). No update is necessary when β or β' changes but $U_{\alpha\beta}$ remains large and the total size of the pair is at least $\lceil n/2 \rceil$. If the size of $U_{\alpha\beta}$ drops below $\lceil n/4 \rceil$, we can permanently eliminate the pair from U. In all other cases, we search for a new vertex α', by testing the reflex vertices that induce pockets from the current α' towards c along ∂P until we either find a new pocket $U_{\alpha'\beta'}$ or determine that $U_{\alpha\beta}$ is not dependent of any other pocket with joint size $\geq \lceil n/2 \rceil$. We can test dependence between $U_{\alpha\beta}$ and a candidate for $U_{\alpha'\beta'}$ in $O(\log n)$ time (test $\alpha\alpha' \subset P$ by a ray shooting query). Each update of $(U_{\alpha\beta}, U_{\alpha'\beta'})$ decreases the size of the large pocket $U_{\alpha\beta}$ or moves the vertex α' closer to c. Therefore, we need to test dependence between only $O(n)$ candidate pairs of pockets. Overall, the updates to $U(s)$ take $O(n \log n)$ time.

We are now ready to prove Theorem 1.

Proof of Theorem 1

Let P be a simple polygon with $n \geq 3$ vertices. Compute the generalized kernel $K_{\lceil n/2 \rceil}(P)$, and pick an arbitrary point $s_0 \in \text{int}(K_{\lceil n/2 \rceil}(P))$, which satisfies C_1. If s_0 satisfies C_2, too, then $\text{int}(P) \subseteq V_{\lceil (n-2)/4 \rceil}(s_0)$ by Lemma 1. Otherwise, there is a pair of dependent pockets, U_{ab} and $U_{a'b'}$, of total size at least $\lceil n/2 \rceil$ and $\lceil n/2 \rceil \leq \text{spread}(a, a') \leq n$. Invoke Lemma 4 up to four times to find a point $s \in \text{int}(P)$ that either satisfies both C_1 and C_2, or is a double violator. If s satisfies C_1 and C_2 then Lemma 1 completes the proof. If s is a double violator, apply Lemma 7 or Lemma 8 as appropriate to complete the proof. The overall running time of the algorithm is $O(n \log n)$ from the combination of Lemmas 7, 8, 9, and 10.

For every $k \geq 1$, the diffuse reflection diameter of the zig-zag polygon (cf. Fig. 1) with $n = 4k + 2$ vertices is $k = \lceil (n - 2)/4 \rceil$. By introducing up to 3 dummy vertices on the boundary of a zig-zag polygon, we obtain n-vertex polygons P_n with $R(P_n) = \lceil (n - 2)/4 \rceil$ for all $n \geq 6$. Finally, every simple polygon with $n = 3, 4, \text{or} 5$ vertices is star-shaped, and so its diffuse reflection radius is 0.

References

[1] M. Aananjaya, A. Bishnu, and S. P. Pal, Directly visible pairs and illumination by reflections in orthogonal polygons, in Abstracts of 24th European Workshop on Comput. Geom., 2008, Nancy, pp. 241–244.

[2] B. Aronov, A. R. Davis, J. Iacono, and A. S. C. Yu, The complexity of diffuse reflections in a simple polygon, in Proc. 7th LATIN, LNCS 3887, Springer, 2006, pp. 93–104.

[3] B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang, Visibility queries and maintenance in simple polygons, Discrete Comput. Geom. 27 (4) (2002), 461–483.

[4] P. Bose, A. Lubiw, and J. I. Munro, Efficient visibility queries in simple polygons, Comput. Geometry Theory Appl. 23 (3) (2002), 313–335.

[5] S. W. Bae, M. Korman, Y. Okamoto, and H. Wang, Computing the L_1 Geodesic diameter and center of a simple polygon in linear time, in Proc. 11th LATIN, LNCS, Springer, 2014, to appear.

[6] G. Barequet, S. M. Cannon, E. Fox-Epstein, B. Hescott, D. L. Souvaine, C. D. Tóth, and A. Winslow, Diffuse reflections in simple polygons, arXiv:1302.2271v1, 2013. Preliminary version in Electronic Notes in Discrete Math. 44 (5) (2013), 345–350.

[7] S. Brahma, S. P. Pal, and D. Sarkar, A linear worst-case lower bound on the number of holes in regions visible due to multiple diffuse reflections, J. of Geometry 81 (1-2) (2004), 5–14.

[8] M. Breen, A Helly-type theorem for simple polygons, Geometriae Dedicata 60 (3) (1996), 283–288.

[9] D. Z. Chen and O. Daescu, Maintaining visibility of a polygon with a moving point of view, Information Processing Letters 65 (5) (1998), 269–275.
[10] D. Z. Chen and H. Wang, Weak visibility queries of line segments in simple polygons, in Proc. 23rd ISAAC, LNCS 7676, Springer, 2012, pp. 609–618. See also arXiv:1212.6039.

[11] E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono, S. Langerman, H. Meijer, M. Overmars, and S. Whitesides, Separating point sets in polygonal environments, Intern. J. Comput. Geom. Appl. 15 (4) (2005), 403–419.

[12] H. N. Djidjev, A. Lingas, and J.-R. Sack, An $O(n \log n)$ algorithm for computing the link center of a simple polygon, Discrete. Comput. Geom. 8 (1992), 131–152.

[13] S. K. Ghosh, Visibility algorithms in the plane, Chapter 7, Cambridge Univ. Press, 2007.

[14] L. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon, J. Comput. Syst. Sci. 39 (1989), 126–152.

[15] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons, Algorithmica 2 (1-4) (1987), 209–233.

[16] J. Hershberger and S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take a walk, J. Algorithms 18 (1995), 403–431.

[17] J. Hershberger and S. Suri, Matrix searching with the shortest path metric, SIAM J. Comput. 26 (6) (1997), 1612–1634.

[18] D. T. Lee and F. Preparata, An optimal algorithm for finding the kernel of a polygon, J. ACM 26 (1979), 415–421.

[19] A. Maheshwari, J. Sack, and H. N. Djidjev, Link distance problems, Chapter 12 in Handbook of Computational Geometry, Elsevier, 2000.

[20] R. Pollack, M. Sharir, and G. Rote, Computing the geodesic center of a simple polygon, Discrete Comput. Geom. 4 (1989), 611–626.

[21] S. Schuierer, Computing the L_1-diameter and center of a simple rectilinear polygon, in Proc. International Conference on Computing and Information (ICCI), 1994, pp. 214–229.

[22] S. Suri, A linear time algorithm for minimum link paths inside a simple polygon, Comput. Vision. Graph. Image Process. 35 (1986), 99–110.

[23] S. Suri, On some link distance problems in a simple polygon, IEEE Trans. Robot. Autom. 6 (1990), 108–113.

[24] G. T. Toussaint, An optimal algorithm for computing the relative convex hull of a set of points in a polygon, in Signal Processing III: Theories and Applications (EURASIP-86), Part 2, 1986, pp. 853–856.