An Architecture of Deterministic Quantum Central Processing Unit

Fei Xuea, Zeng-Bing Chena Mingjun Shia Xianyi Zhoua Jiangfeng Dua Rongdian Hana

aDepartment of Modern Physics, University of Science and Technology of China, Hefei, 230027, People’s Republic China

Abstract

We present an architecture of QCPU (Quantum Central Processing Unit) which is based on the discrete quantum gate set. QCPU can be programmed to approximate any n-qubit computation in a deterministic fashion. It can be built efficiently to implement computations with any required accuracy. QCPU makes it possible to implement universal quantum computation with a fixed, general purpose hardware.

\textit{Key words:} Programmable gates; Discrete gate set; Deterministic
\textit{PACS:} 03.67.Lx

1 Introduction

Quantum information processing offers great advantages both for quantum communication and quantum computation [1,2]. The latter is implemented by unitary operations on a set of two-level systems known as qubits. These unitary operations are usually decomposed as quantum gate arrays. Depending on what unitary operation is desired, different gate arrays are used [3]. By contrast, a classical computer can be implemented as a fixed classical gate array–CPU (Central Processing Unit), into which is input a program, and data. The program specifies the operations to be performed on the data. CPU can be programmed to perform any possible function on the input data. Implementing different operations with different software (program) rather than different hardware (circuit of gates) is preferable because we could verify whether it has been prepared correctly or not before using the software, and we can

Email address: Feixue@mail.ustc.edu.cn (Fei Xue).

Preprint submitted to Physics Letters A Apr. 22, 2003
discard or repair it with little cost if it is found to be faulty. In contrast, if hardware fails badly during the execution of a computation, for example some gates in the circuit are found be set wrong or failed, it might be necessary to build a whole new hardware.

The possibility to build analogous QCPU (Quantum Central Processing Unit) was first studied by Nielsen and Chuang [4]. The problem was originally formulated in term of a programmable array of quantum gates, which can be described as a fixed unitary operator G, that acts on both the program and the data. The initial state, P_U, of the program register stores information about the unitary operation U that is going to be performed on a data register initially prepared in a state D. The total dynamics of the programmable quantum gate array is given by

$$G(|P_U\rangle \otimes |D\rangle) = |P'_U\rangle \otimes U|D\rangle.$$

(1)

Nielsen and Chuang demonstrated that there does not exist deterministic universal quantum gate array which can be programmed to perform any unitary operation. Recently Vidal et al. [5] and Kim et al. [6] respectively proposed schemes to store arbitrary one-qubit unitary operations in quantum states and to retrieve them with the probability $p = 1 - \frac{1}{2^m}$, where m is the number of qubits used to encode the unitary operation on one qubit. Hillery et al. presented a probabilistic quantum processor for qudits on a single qudit of dimension N [7]. The above schemes are alike in storing unitary operations and retrieving them from program register precisely, but all of them are in a probabilistic fashion. Thus for these schemes if N gates are used in total computation the overall success probability is p^N, which tends to fail exponentially with N. And it is not clear how to implement universal quantum computations by a fixed hardware.

Either model for classical computer or for quantum computer is to be realized by physical system finally. However real numbers require infinite information (and therefore infinite energy) for their representation. Since there appears to be bounds on the energy of any physical system (the universe included), we can only approximate real numbers in computers [8]. So any model of computer that is realized by physical system only needs to represent finite accurate things and to perform computation with finite accuracy, or in other words discrete model of computer is sufficient.

Nielsen and Chuang’s results do not exclude the possibility of building a gate array which can be programmed to perform an subset of unitary operations [4]. In this paper, we presented an architecture of QCPU–circuit of gate array that can implement different quantum operations that are discrete on the n–qubit data register according to the IS(Instruction Sequence) input into the program register in a deterministic fashion. Using these discrete quantum gates one can approximate any unitary operation on data register. It is shown
that for any given computation accuracy ε QCPU can be built efficiently.

2 Architecture of Deterministic and discrete Quantum Central Processing Unit

The circuit of gate array for QCPU with n qubits in data register and $1 + m + 2(n - 1)$ qubits in program register is illustrated in Fig. 1. The functions of element gates in QCPU are explained in Fig. 2, where I_4 and I_8 are four and eight dimension identity matrix respectively, $R_x(k) = e^{2^{k-1}\xi_1\sigma_x}$, $R_z(k) = e^{2^{k-1}\xi_2\sigma_z}$.

Fig. 1. Architecture of QCPU. The operation implemented by the gate array in the dot line box corresponds to the G operation in Eq. (1). $|P_U\rangle$ is the program register, $|D\rangle$ is the data register.

Fig. 2. Functions of element gates in QCPU.
\(e^{2k-1}\xi i\sigma_z\), \(\xi = \frac{2m}{2^m}\), and \(C_1\) and \(C_2\) correspond to CNOT operations,

\[
C_1 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{pmatrix},
C_2 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\end{pmatrix}.
\]

The controlling qubit \(|r\rangle\) indicates along which axis the rotation is implemented. When \(|r\rangle\) is in the state \(|0\rangle\) the rotation is along x-axis, and when \(|r\rangle\) is in the state \(|1\rangle\) the rotation is along z-axis. The qubit \(|a_k\rangle\) indicates whether the operation is implemented on the qubit \(|d_1\rangle\) or not. When \(|a_k\rangle\) is in the state \(|0\rangle\) the operation is not implemented, and when \(|a_k\rangle\) is in the state \(|1\rangle\) the operation is implemented. The qubit \(|p_k\rangle\) indicates which control qubit for the CNOT gate on \(|d_{k-1}\rangle|d_k\rangle\). When \(|p_k\rangle\) is in the state \(|0\rangle\) qubit \(|d_{k-1}\rangle\) is the control qubit, and when \(|p_k\rangle\) is in the state \(|1\rangle\) qubit \(|d_k\rangle\) is the control qubit. The qubit \(|b_k\rangle\) indicates whether the CNOT gate is implemented or not. When \(|b_k\rangle\) is in the state \(|0\rangle\) the operation is not implemented, and when \(|b_k\rangle\) is in the state \(|1\rangle\) the operation is implemented.

We call the list

\[|b_n\rangle|p_n\rangle...|b_3\rangle|p_3\rangle|b_2\rangle|p_2\rangle|a_m\rangle...|a_2\rangle|a_1\rangle|r\rangle\]

as Instruction, and the sequence of Instruction as IS(Instruction Sequence). \(|b_n\rangle|p_n\rangle...|b_3\rangle|p_3\rangle|b_2\rangle|p_2\rangle\) indicates where and which CNOT gate is to be implemented on the data register. \(|a_m\rangle...|a_2\rangle|a_1\rangle\) indicates the angle that is to rotate. \(|r\rangle\) indicates which axis the rotation is along. By inputting corresponding Instruction into the program register, CNOTs on the data register and rotation along x-axis or z-axis on \(|d_1\rangle\) can be implemented by QCPU in a deterministic way. Thus any unitary operation on data register can be approximated by QCPU with the designed IS.

3 How does the QCPU work

Let us explain how the QCPU works. Quantum states are dominated by quantum laws, such as non-clone principle and measuring collapse. It is impossible to reset information of a qubit in an unknown state\([9,10]\). So it is not straightforward for the basic operations such as inputting Instructions to program register. We will describe two working modes of the QCPU, which are illustrated in Fig. 3 and Fig. 4.
Fig. 3. Working mode one, expanding computation in the time sequence. The decoder drives the program register to the special state according to the IS.

Fig. 4. Working mode two, expanding computation in the space sequence.

Table 1
Steps of serial processing of QCPU in time sequence.

Step	t_0	t_1	t_2	t_3	t_4	t_5	...
$	P\rangle$	$	0\rangle$	$	P_0\rangle$	$	P_0\rangle$
$	D\rangle$	$	0\rangle$	$	0\rangle$	$U_{P_0}	0\rangle$

Decoder - U_{P_0} - $U_{P_1}U_{P_0}^{-1}$ - $U_{P_2}U_{P_1}^{-1}$...
QCPU - - → - → - ...

The first working mode expands computation in the time sequence, and needs only one QCPU, and no measuring is needed during the computation. In this working mode we need to initialize program register to some known state, such as $|00\ldots0\rangle$, and to design IS(programs) before implement the computation. Steps of serial processing of QCPU are illustrated in Table 3. We use the notation $|S\rangle$ to stand for program register or data register, if S is in capital form, or to indicate the state of it, if S is in capital form with subscript of number.

To make it more clear on how the operations are encoded in IS, here we give some examples of IS: specifically we suppose that data register have 2 qubits, and $m = 3(\xi = \frac{\pi}{4})$, then program register have 6 qubits $|b_2\rangle|p_2\rangle|a_3\rangle|a_2\rangle|a_1\rangle|r\rangle$.

operations Instruction or IS

$R_x(\frac{3\pi}{2}) : 001100$ (4)

$R_z(\frac{5\pi}{4}) : 001011$ (5)

Swap(d_1, d_2) : 100000, 110000, 100000. (6)
The angle \(\theta \) of rotation is calculated as

\[
\theta = (\alpha_1 2^0 + \alpha_2 2^1 + \ldots + \alpha_m 2^{m-1}) \frac{2\pi}{2^m},
\] (7)

where \(\alpha_i = 0, 1, (i = 1, 2, \ldots, m) \).

The second working mode expands computation in the space sequence, so many QCPUs are needed according to the number of Instructions used in IS. The advantage of this working mode is that it can accept the Instruction by teleportation that is unknown to user.

In both working modes non-unitary operations can be implemented by performing measurement right after operating QCPU. QCPU can implement superposed unitary operations by having the program register in superposition state, and implement entangled unitary operations by having the program register in entangled state. Suppose \(|P\rangle\) is in state \(|P_0\rangle + |P_1\rangle\), then

\[
G(|P_0\rangle + |P_1\rangle) \otimes |D\rangle = G(|P_0\rangle \otimes |D\rangle + |P_1\rangle \otimes |D\rangle) = G(|P_0\rangle \otimes |D\rangle) + G(|P_1\rangle \otimes |D\rangle) = |P_0\rangle \otimes U_{P_0}|D\rangle + |P_1\rangle \otimes U_{P_1}|D\rangle \] (8)

One simplest example is that the operation \(G \) is the CNOT gate. When the control-qubit is in superposition such as \(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \), the unitary operations that implemented by the CNOT gate are superposed: NOT operation and identity operation are performed in a superposed way on the controlled-qubit. This makes the QCPU very different from the classical CPU.

If we do not plan to utilize the benefits brought by the quantumness of the program register, than we may built hybrid QCPU which has the data register in qubits and the program register in classical bits. This hybrid QCPU is also capable of implementing any quantum computation on n-qubit data register, but only need \(n \) qubits and \(1 + m + 2(n - 1) \) classical bits.

4 The QCPU Can Be Built Efficiently To Approximate Arbitrary Unitary Operations To Any Given Precision

Now let us explain why arbitrary unitary operation on the data register can be approximated by QCPU. It was explained above that QCPU can implement CNOTs on the data register, and can approximate rotations on \(|d_i\rangle\) along x-axis and z-axis with accuracy \(\xi = \frac{2\pi}{2^m} \). Then based on the fact that any
single qubit operation can be expressed as at most three rotations about two non-parallel axes. QCPU is capable of approximating arbitrary single qubit operation on $|d_1\rangle$. With the help of the swap gate which can be accomplished by three CNOTs, QCPU can approximate any single qubit operation on any qubit of the data register. We have known that CNOTs and arbitrary single qubit operations together can complete universal quantum computation [3]. Therefore QCPU proposed above can approximate arbitrary unitary operation on the data register.

The error caused by approximate rotation rather than precision rotation is estimated below. Angles denoted by Eq.(7) symmetrically distribute between $[0, 2\pi]$, and are implemented by QCPU precisely. So the error that QCPU approximates an arbitrary angle is less than $\frac{2\pi}{2m}$. All computation gives outputs at last. The approximation of the unitary transformations will lead to errors in the resultant output states. The errors of the outputs, which are from the errors of θ, are calculated below.

Rotation along a-axis can be expressed as $U_a(\theta) = e^{i\theta \sigma_a}$, where σ_a is a Pauli matrix, $a = x, y, z$. Then

$$\delta U_a(\theta) = i\sigma_a e^{i\theta \sigma_a} \delta \theta.$$

The variation of the output state $U_a(\theta)|\psi\rangle$ reads

$$\delta(U_a(\theta)|\psi\rangle) = \delta U_a(\theta)|\psi\rangle.$$

The variation of the probability $|\langle\varphi|U_a(\theta)|\psi\rangle|^2$ of projecting $U_a(\theta)|\psi\rangle$ onto a state $|\varphi\rangle$ reads

$$\delta P = \langle\varphi|\delta U_a(\theta)|\psi\rangle\langle\psi| U_a^\dagger(\theta)|\varphi\rangle$$

$$+ \langle\varphi|U_a(\theta)|\psi\rangle\langle\psi|\delta U_a^\dagger(\theta)|\varphi\rangle,$$

So we have $|\delta P| \leq 2|\delta \theta|$.

It is shown that when the output state $U_a(\theta)|\psi\rangle$ are projected on the state $|\varphi\rangle$, the error caused the approximate rotation is linear with the accuracy of θ. When there are N such unitary transformations $U = U(\theta_1)U(\theta_2)...U(\theta_N)$ before the measurement, we have

$$|\delta P| \leq 2(|\delta \theta_1| + |\delta \theta_2| + ... + |\delta \theta_N|)$$

Thus in order to approximate a computation that is implemented by N approximate operations to an overall accuracy ε, each operation only needs to be accurate to ε/N [11].
The number of qubits, which is needed in the program register to approximate any computation on n-qubit data register to accuracy ε, is calculated below. We know that any $2^n \times 2^n$ unitary operation can be implemented by $O(n^34^n)$ CNOTs and single qubit operations [3]. Each CNOT or single qubit operation can be implement by at most $3n$ Instructions in QCPU. So the number of Instructions needed to implement arbitrary operation on n qubits is $O(n^44^n)$. If the overall computation precision is ε then each Instruction need to be accurate to $o(\varepsilon/(n^44^n))$. Rotation implemented by single Instruction in QCPU is accurate to about $1/2\pi$. So

$$m = O(\log_2 \frac{n^44^n}{\varepsilon})$$
$$= O(4\log_2 n + 2n - \ln \varepsilon)$$

The number of qubits needed in program register is $1 + O(4\log_2 n + 2n - \ln \varepsilon) + 2(n-1) = O(n) - \ln \varepsilon$. It is linear with the number of data qubits and $\ln \varepsilon$, therefore QCPU can be built efficiently to approximate universal quantum computation on any number of qubits to any given computation accuracy ε.

QCPU enables one to realize quantum computations with different software rather than different hardware (circuit of gates). A quantum software is a sequence of particular programmed IS that makes a QCPU to perform a specific task. The notation of quantum software was first used by Preskill [12]. He used it in a little different way. But the virtue of quantum software itself is alike. Realizing quantum computation with software rather than hardware is preferable for a lot of reasons. If the IS are in quantum states, QCPU in working mode two is capable of implementing quantum remote control introduced by Huelga et al. in [13,14]. One important virtue of quantum software will be to ensure that quantum computers function reliably. Because quantum states are very fragile, the quantum-computing hardware needs to meet very demanding specifications. Quantum computer can achieve acceptable reliability by applying principles of quantum-error correction [15,16]. Quantum-error correction schemes would be most conveniently implemented with quantum software. Some time in the future the fault-tolerant quantum computer, which could possibly be dominated by quantum software, may achieve processing speeds far surpassing the classical computers.

5 Conclusion

To summarize, we have presented an architecture of QCPU which operates on a n-qubit data register and is capable of completing any unitary operation with accuracy ε in a deterministic way. It contains $O(n) - \ln \varepsilon$ three-qubit gates.
and $(n-1)$ four-qubit gates and needs $O(n) - \ln \varepsilon$ qubits as its input. Therefore it can be built efficiently. Each gate only concerns at most four qubits, this may be appreciated in real implementations of the quantum computer. We have described two working modes of QCPU. QCPU have the ability to implement superposed and entangled unitary operations on the data register, which is shown by Eq.(8). This ability could help us to implement more efficient algorithm—the number of IS needed to implemented a algorithm might be much smaller than the upper bounds $O(n^4\varepsilon^n)$. One noteworthy quality of our architecture is that it can approximate n-qubit universal quantum computation with only n qubit plus $O(n) - \ln \varepsilon$ classical bits as its input. So with sufficiently sophisticated hardware QCPU could run on classical software but implement the quantum computation.

QCPU made it possible to put the solution of the problem into software rather than hardware. This is an important step to the general quantum computer because it is impracticable to build a special hardware for each problem. In the hardware of quantum computer qubits must preserve coherence during operations. Thus the scale(the number of qubits in quantum hardware) and the the operating time of quantum computer have a lot of limitations. When the space complexity(scale) or time complexity(time) is beyond the capability of the hardware, programming technique in software may help us to make the balance of space complexity and time complexity. This possibly enlarges our computation ability under specific hardware technique. Then like the art of programming in classical computer, the art of programming in quantum computer will settle various kinds of problem with a fixed and general purpose hardware, and the art of programming in quantum computer will also improve the efficiency of algorithms by just refining the program(IS).

We thank Prof. Y.D. Zhang for useful comments. This work was supported by the National Nature Science Foundation of China (Grants No. 10075041, No. 10075044 and No. 10104014), and the National Fundamental Research Program(Grant No. 2001CB309300).

References

[1] The Physics of Quantum information, Edited by D. Bouwmeester, A. Ekert, and A. Zeilinger (Springer-Verlag, Berlin, 2000).

[2] C. H. Bennett and D. P. DiVincenzo, Nature (London) 404, 247 (2000).

[3] A. Barenco et al., Phys. Rev. A 52, 3457 (1995).

[4] M. A. Nielsen and Isaac L. Chuang, Phys. Rev. Lett. 79, 321 (1997).

[5] G. Vidal, L. Masanes and J. I. Cirac, Phys. Rev. Lett. 88, 047905 (2002)
[6] J. Kim, Y. Cheong, J. S. Lee and S. Lee, Phys. Rev. A 65, 012302 (2002)
[7] M. Hillery, V. Bužek, and M. Ziman, Phys. Rev. A 65, 022301 (2002)
[8] S. Lloyd, Nature (London) 406, 1047 (2000)
[9] W. H. Zurek, Nature (London) 404, 130 (2000).
[10] A. K. Pati and S. L. Braunstein, Nature (London) 404, 164 (2000)
[11] E. Bernstein and U. Vazirani, SIAM J. Comput. 26, 1411 (1997)
[12] J. Preskill, Nature (London) 402, 357 (1999)
[13] S. F. Huelga, J. A. Vaccaro, A. Chefles, and M. B. Plenio Phys. Rev. A 63, 042303 (2001).
[14] S. F. Huelga, M. B. Plenio, and J. A. Vaccaro Phys. Rev. A 65, 042316 (2002).
[15] A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).
[16] A. M. Steane, Nature (London) 399, 124, (1999)