Dynamic modelling shows substantial contribution of ecosystem restoration to climate change mitigation

Emma W Littleton, Kate Dooley, Gordon Webb, Anna B Harper, Tom Powell, Zebedee Nicholls, Malte Meinshausen, and Timothy M Lenton

1 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QJ, United Kingdom
2 Global Systems Institute, University of Exeter, Exeter, EX4 4QJ, United Kingdom
3 School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville 3010, Australia
4 Climate & Energy College, University of Melbourne, Parkville 3010, Australia

E-mail: e.w.littleton@exeter.ac.uk

Keywords: nature based solutions, reforestation, agroforestry, DGVM, climate change

Abstract

Limiting global warming to a 1.5°C temperature rise requires drastic emissions reductions and removal of carbon-dioxide from the atmosphere. Most modelled pathways for 1.5°C assume substantial removals in the form of biomass energy with carbon capture and storage, which brings with it increasing risks to biodiversity and food security via extensive land-use change. Recently, multiple efforts to describe and quantify potential removals via ecosystem-based approaches have gained traction in the climate policy discourse. However, these options have yet to be evaluated in a systematic and scientifically robust way. We provide spatially explicit estimates of ecosystem restoration potential quantified with a Dynamic Global Vegetation Model. Simulations covering forest restoration, reforestation, reduced harvest, agroforestry and silvopasture were combined and found to sequester an additional 93 Gt C by 2100, reducing mean global temperature increase by ∼0.12°C (5%-95% range 0.06°C–0.21°C) relative to a baseline mitigation pathway. Ultimately, pathways to achieving the 1.5°C goal garner broader public support when they include land management options that can bring about multiple benefits, including ecosystem restoration, biodiversity protection, and resilient agricultural practices.

1. Introduction

Following the adoption of the Paris Agreement, with its overall objective to ‘balance sources and sinks’ of greenhouse gases to limit global warming to ‘well below 2°C’, international attention has turned to the possibilities for removing carbon dioxide from the atmosphere. Given a rapidly dwindling carbon budget, early deployment of carbon-dioxide removal is a key part of an ambitious mitigation strategy [1]. While prominent scenarios have relied on large-scale land conversion for bioenergy with carbon capture and storage to achieve the Paris goals [2], there is potential for negative social and environmental impacts [3], and additional land conversion could result in net losses of carbon from the land [4]. Hence approaches that restore nature, with significant benefits to biodiversity, ecosystem services and local communities are gaining widespread interest [5–7], but their quantitative potential is uncertain.

In recent years, policy and scientific debate has focused on the potential for restoration of natural ecosystems to remove carbon dioxide from the atmosphere at gigatonne scale, with potentially significant co-benefits. The potential to protect and restore ecosystems and to regenerate and more sustainably manage lands exists across all climatic biomes and country classifications.

A series of high-profile papers have built these expectations for large-scale sequestration and storage of carbon dioxide in terrestrial ecosystems [8, 9], although these studies rely on large reforestation areas (678 Mha and 900 Mha respectively). Critique of large-scale tree planting as a climate mitigation strategy ranges from afforestation of non-forest biomes, lack of accounting for soil carbon in the baseline...
What is the potential of ecosystem restoration pathways to sequester carbon? What contribution could ecosystem restoration make to an ambitious climate change mitigation strategy?
3. Methods

The methodology presented here extends the OECM [23] pathways by developing a global spatial dataset to identify suitable restoration areas and by modelling these to incorporate soil carbon flux, temperature feedbacks and bioclimatic effects in the overall carbon uptake results. The areas identified for ecosystem restoration were simulated in a community land surface model, the Joint UK Land Environment Simulator (JULES), which incorporates the dynamic global vegetation model TRIFFID to simulate vegetation and carbon cycle processes [32]. The additional CO₂ removal achieved in JULES through the targeted ecosystem restoration pathways was then combined with sectoral mitigation pathways for energy, industry, agriculture and land use from the OECM scenario and run through the simple climate model MAGICC to quantify the resulting temperature change over the century. Figure SI3.1 (available online at stacks.iop.org/ERL/16/124061/mmedia) illustrates the model inputs and outputs used for this study.

3.1. Spatial identification of restoration areas (targeting biodiversity and livelihood protection)

For each of the five pathways, spatial distribution was identified using global datasets. The ‘Global map of forest condition’ [33] was used for the forest pathways, and ESA-CCI Landcover maps [34] for the year 2000 were used to identify cropland and grazing lands for the agricultural restoration pathways. Each of these datasets was then overlaid with additional datasets reflecting precipitation values, biodiversity, and social constraints. These constraints reduced land area available for all pathways from the full potential identified in the primary datasets. Global land use distributions were modelled in JULES using a N96e global grid (cell size of 1.875° longitude by 1.25° latitude) with each cell containing the proportions of the initial land use classes for each pathway. Primary datasets of differing spatial resolutions were downsampled to a uniform resolution of 1% of the N96e cell size and then converted to cell percent values. Datasets and land area for each pathway are shown in table 1, and further explained in the SI.

Forest Restoration takes forest areas that are partially deforested or degraded [33] and uses a database identifying five critical conservation attributes as a Global Safety Net: Species Rarity, Distinct Species Assemblages, Rare Phenomena, Intactness, and Additional Climate Stabilisation Area [35] to target high priority areas for restoration (figure SI 1.3). Reforestation was limited to biomes that would naturally support forests by identifying previously forested land in close proximity (within 5 pixels (between 70 and 105 km) for tropical regions and within 1 pixel (between 11 and 18 km) for temperate regions) to intact or degraded natural forests [33], resulting in 274 Mha of land in proximity to intact forests in sub-tropical and tropical forest biomes, while 70 Mha were identified in temperate biomes. Reforestation in boreal biomes was excluded, due to albedo affecting accompanying changes from deforested to forested land types, specifically at high latitudes, which can potentially increase warming [37, 38].

Reduced Harvest describes a reduced harvest intensity in production forests in boreal and temperate biomes, based on evidence from different climatic regions suggesting that harvest reductions lead to significant increases in forest carbon stock compared to other forest management interventions [39–43]. In tropical and subtropical biomes, commercial timber extraction is halted given the lack of evidence that any form of reduced impact logging can lead to increased carbon stocks [44, 45]. These management interventions apply only to natural managed forests and not to plantations, resulting in reduced harvest and a doubling in rotation length in 706 Mha of managed forest in the temperate and boreal biome, and 340 Mha of tropical forest removed from harvest altogether (figure SI 3.3). Areas of shifting cultivation were excluded from consideration of reduced harvest, to avoid impacting communities dependent on subsistence agriculture [46].

To identify the spatial areas for agricultural lands, we relied on ESA-CCI Landcover data [34]. Temperate, subtropical and tropical cropland and grazing areas with mean annual precipitation in the range 400–1000 mm.a⁻¹ were targeted for restoration via Agroforestry and Silvopasture pathways to ensure both the potential for regrowth and additionality of regeneration measures. By 2040, approximately 40% of total cropland that was also within the defined precipitation band, was included in the Agroforestry pathway (figure SI 4.2) and 40% of low-latitude pasture were included in the Silvopasture pathway (increased tree/shrub balance and reduced fire management) (figure SI 5.1), noting that we are referring here to managed pasture rather than natural ranges [47]. The resulting global distribution of ecosystem restoration areas is shown in figure 1.

3.1.1. Limitations

A key limitation of the spatial identification of restoration areas is that the ‘global map of forest condition’ [33] used for forests dates to 2001, and is not as robust in identifying different forest cover types as more recent datasets. This dataset provides global maps of degraded forest area, deforested areas suitable for reforestation and natural forests under management and harvest regimes. While more recent datasets are available for forest cover and loss [48, 49], these do not distinguish between natural and planted forests, which was a key requirement for our land management pathways. Other recent datasets for degraded forests are focused on tropical regions [22]. The ‘global map of forest condition’ [33] used...
Table 1. Primary datasets and dataset overlays (constraints based on climate, biodiversity and social considerations) used to spatially identify restoration opportunities for five ecosystem restoration pathways.

Pathway	Primary dataset [source]	Full area extent (Mha)	Dataset overlays	Representation in JULES	Targeted area (Mha)
Forest Restoration	Degraded forests (Potapov et al [33] (values 8 and 9))	1151	Coincident with Global Safety Net areas [35]	50% reduced forest cover; allowed to fully regenerate	541
Reforestation	Deforested land, formerly closed forest [Potapov et al [33] (value 6)]	889	Close proximity to intact or degraded closed forests [33]	100% reduced forest cover; allowed to fully regenerate	344
Reduced Harvest	Closed managed forests (natural or planted) [Potapov et al [33] (value 14)]	1440	Exclude planted forests [36]	50% reduced forest cover; allowed to fully regenerate in tropics and sub-tropics; allowed to regenerate 50% in temperate and boreal	1047
Agroforestry	Mosaic and non-mosaic cropland [ESA-CCI [34]]	2146	With mean annual precipitation 400–1000 mm year$^{-1}$	Full cropland; trees planted on 20% of area during establishment	849
Silvopasture	Grassland and herbaceous cover [ESA-CCI [34]]	1521	With mean annual precipitation 400–1000 mm year$^{-1}$	Full pasture land; trees planted on 20% of area during establishment	478

Total area targeted for forest restoration and agricultural regeneration: 3259
Proportion of total area requiring land cover change (reforestation adjacent to existing forests): 344

Figure 1. Global distribution of proposed ecosystem restoration pathways (Mha).
here presents a single contiguous dataset containing three key forest classes we needed to identify: degraded forests, natural managed forests and intact forests. ESA-CCI Landcover [34] was used for pathways involving agricultural land, and for consistency with the forest map, datasets from 2000 were used. The total land areas for different land cover derived from these datasets (primary forest, secondary natural forest, cropland, grazing land) are close to the non-spatially explicit land areas given in FAO data. Given the relatively coarse spatial resolution of the DGVM (2–3 Mha per grid cell), any uncertainties in the global land area data used are not expected to impact the results. The lack of global spatially consistent datasets that delineate natural from planted and primary from secondary forests is a key research limitation in calculating the carbon sequestration potential from changes in land management.

3.2. Dynamic global vegetation modeling

Net primary productivity in JULES is calculated based on environmental conditions for each of a set of user-defined plant functional types (PFTs), which then compete with each other for space [50]. Soil carbon is increased by litter delivery from plants and decreased by degradation at each timestep, dependent on soil temperature and moisture. This study uses the JULES-BE branch of JULES vn5.1 [51], which allows for the additional land use class used here to represent agroforestry and includes functionality to automatically plant new agricultural areas with a user-defined selection of PFTs.

A spatial dataset on the extent of forest degradation and overharvesting was unavailable; as such, this study uses a standard assumption of 50% degradation globally for the Forest Restoration and Reduced Harvest pathways. Given that Forest Restoration occurs in degraded or partially cleared forests, only 50% of the targeted area was allowed to be reforested in JULES, to represent baseline (degraded) carbon stocks in the landscape. For Reforestation, forest regrowth in JULES was allowed to occur over 100% of the targeted area. Reduced Harvest was represented with forest regrowth occurring over 50% of the land area in tropical and sub-tropical biomes to represent a recovery of degraded forests when logging activities are ceased (carbon stocks in degraded forests have been found to be between 14% and 65% lower than intact forests [52, 53]); regrowth occurred over only 25% of land area in temperate and boreal biomes to represent only a partial recovery in forest carbon stocks as harvest is reduced but not ceased. Agroforestry and Silvopasture were both represented by planting 20% of the targeted area with a mix of broadleaf and needleleaf trees, to represent mixed use areas where trees and shrubs are integrated into cropping and grazing lands. 20% represents a progression from existing tree-cover in croplands [24].

JULES simulations were run using meteorological forcing output from UKESM1, covering the period 1880–2014 (historical) and 2015–2100 (SSP1-2.6) on a 3-hourly timestep at the N96e grid size. Baseline land use was taken from IMAGE output of crop and pasture area over the period 1880–2014 (historical; based on the HYDE land use dataset) and 2015–2020 (SSP1-2.6). During 2021–2030, the rate of conversion of natural land to crop and pastureland in each grid cell was decreased linearly until reaching a fixed level in 2030. From 2031 onwards, seven separate simulations were run: one with no further land cover transitions (control simulation); one simulation for each separate ecosystem restoration pathway described above; and one simulation incorporating all ecosystem restoration pathways at once. For each pathway, the area identified for ecosystem restoration is increased linearly over a decade, reaching its full extent (figure 1) by 2040. These areas are then held constant for the remainder of the simulation.

An extended run representing continued growth to 2150 was conducted for each simulation using meteorological data for 2091–2100, repeated on a loop five times to cover an additional 50 years (necessary because meteorological driving data was not available beyond 2100).

3.3. Temperature pathway

MAGICC is a reduced complexity climate model, widely used for assessing the climate implications of global emissions scenarios. The configuration used here is identical to the setup used in Nicholls et al [54] with the model’s underlying equations described in Meinshausen et al [55] alongside updates described in Meinshausen et al [56]. All temperature projections are reported relative to 1750.

The OECM 1.5 C scenarios used values from the OECM [9] for all greenhouse gas emissions other than CO2 from agriculture, forestry, other land use and land-use change (AFOLULUC). The (no removals) scenario represented CO2 AFOLULUC emissions using values from the SSP1 baseline scenario. To reduce the risk of double counting, we set CO2 AFOLULUC emissions to zero from 2050 onwards in our baseline scenario. For the OECM 1.5 C+ scenario, the same AFOLULUC emissions values were used to represent agriculture, forestry and land use, to which we added the additional land carbon system uptake from the ecosystem restoration measures, as quantified by the modelling performed with the JULES model (section 3.2). Consistently using the SSP1 baseline (as quantified by the IMAGE IAM) for AFOLULUC CO2 emissions allows the effect of the ecosystem restoration measures to be assessed independently of other changes to agricultural land use or greenhouse gas emissions. Net AFOLULUC CO2 emissions are lower in the OECM 1.5 C+ scenario than in the OECM 1.5 C (no
removals) scenario. Accordingly, global mean temperatures are also lower in the OECM 1.5 C+ scenario than in the (no removals) scenario.

4. Results and discussion

By spatially identifying target areas for ecosystem restoration, we quantified additional carbon uptake over the century of 93 Gt C. When combined with an ambitious renewable energy scenario, this additional carbon uptake reduced 2100 temperature by a further 0.12 °C (compared to the no removals scenario).

4.1. Enhanced terrestrial carbon stocks

Figure 2 shows the change in terrestrial carbon content over the study period, relative to a simulation in which no land use transitions occur after 2030. Together, the five pathways result in a cumulative terrestrial carbon increase of 93 Gt C by 2100 (115 Gt C by 2150). This is a lower estimate than the bookkeeping method originally used to study these pathways (152 Gt C by 2150) [30, 31], which may be attributed to the spatially explicit and climate-sensitive nature of the DGVM approach used here. Although only natural regeneration is used to represent biome restoration in the three forestry pathways (plantation of trees occurs on smaller areas in the Agroforestry and Silvopasture pathways), carbon uptake is immediate and rapid, declining in pace after the first few decades as forests reach maturity. The carbon flux into terrestrial vegetation reaches its peak in 2041 at 3.1 Gt C per year; after this the flux declines, averaging 1.1 Gt C per year over 2050–2100. The largest carbon gains resulted from the Reduced Harvest pathway (33 Gt C by 2100), followed by Reforestation (29 Gt C) and Forest Restoration (21 Gt C). Agroforestry and Silvopasture produced the smallest sequestration values at 5.2 and 1.6 Gt C respectively. Agroforestry and Silvopasture differ from the three forestry pathways in that they utilise the model feature in which the targeted areas are automatically planted with trees upon land conversion; this results in a faster increase in carbon followed by a decline as the tree fraction shrinks back to what the climate can support. This planting process is repeated in 2100 to restore the tree cover in Agroforestry and Silvopasture areas to 20%, resulting in the rapid but temporary increase in carbon stocks visible in figure 2.

Spatial carbon accumulation for all pathways is shown in figure 3, whereas figure 4 shows each pathway individually. The quantity shown is tonnes C per hectare of targeted area—i.e. it is normalized for size of targeted area (figure 1), but is still a combination of all pathways which each have different maximum densities (visible in figure 4). While environmental conditions affect the maximum density of forests, a large part of the spatial variance in figure 3 results from differences in distribution of the different pathway areas (discussed in section 4.2 below).

While the largest concentrations of carbon storage occur where humid tropical and warm temperate forests are allowed to regenerate (South America, China, Southeast Asia), figure 4 shows that Forest Restoration and Reduced Harvest can add significant carbon over a large area of Europe, Russia and North America; these regions are also most favourable for Agroforestry and Silvopasture compared to more mixed results in the seasonally dry tropical regions where trees frequently do not survive as well (un-irrigated, not specifically drought-tolerant.
Figure 3. Carbon storage in all ecosystem restoration pathways combined, expressed as tonnes of additional carbon per hectare of targeted area in 2100.

4.2. Characteristics of land management pathways

The land restoration pathways presented here are distributed across natural forests and more intensively managed lands (harvested forests and agricultural lands). Figure 3 shows that each individual restoration pathway occurs across all biomes (with the exception of reforestation, which does not occur in northern latitudes). This distribution of five spatially explicit land-use management pathways is notable for prioritising forest restoration based on ‘global safety net’ to prevent biodiversity loss, targeting reforestation adjacent to existing intact forests to extend conservation buffer zones, and increasing agricultural productivity through Agroforestry to regenerate permanent croplands and Silvopasture throughout dryland areas.

The Forest Restoration pathway distribution prioritises buffering and reconnection of primary forests and other carbon dense primary ecosystems, which increases resilience, stability and adaptive capacity [59, 60]. Some of the highest sequestration values (80–100 t C ha$^{-1}$) overlap with biodiversity and carbon ‘hotspots’ in the Amazon Basin and Southeast Asia [61]; carbon densities of 70–90 t C ha$^{-1}$ are also notable across China and northern Europe where a significant area of this pathway is represented (figure 1).

Reforestation occurs on recently deforested areas adjacent to intact forests. By prioritizing direct proximity to forested lands, reforested areas can form buffer zones and corridors between forested areas, increasing resilience and recovery in both intact forests and adjacent reforested land [62–64]. High Reforestation areas represented here in China, with carbon densities of 140–200 t C ha$^{-1}$, are consistent with national policies, although allowing reforestation to occur through natural succession when restoration areas are proximate to native vegetation is both more cost-effective and has a greater success rate than planting of new forests [15, 65, 66]. Reforestation is tree species). This representation of agroforestry in seasonally dry tropical regions likely underestimates their true potential for carbon storage. In these systems the co-benefits of integrating trees into farming systems are deeply linked with improving farmer livelihoods and increasing their resilience [57], and as such farmers are likely to be highly invested in selecting appropriate tree species and ensuring their survival.

Total carbon sequestered for all pathways is also given in table 2, broken down by world region and decade. Carbon sequestration in individual pathways is shown in table SI 2. The largest increases occur during the 10 years to 2050, largely from Reforestation and Reduced Harvest in China, Latin America and Southeast Asia (Rest of Asia), followed by Forest Restoration and Reduced Harvest in North America and Russia (Reforming Economies). Carbon accumulation is substantially slower after 2070 as the majority of these forests reach maturity, particularly those in humid tropical biomes.
Figure 4. Carbon storage in individual ecosystem restoration pathways, expressed as tonnes of additional carbon per hectare of targeted area in 2100.

Table 2. Gross regional carbon sequestration rates (Gt C per year, averaged over the preceding decade). The ten world regions used are as categorized for the RCP database [58].

Region	2020	2030	2040	2050	2060	2070	2080	2090	2100	Cumulative
Africa	0.00	−0.03	0.10	0.35	0.13	0.08	0.03	−0.01	−0.01	5.8
China +	0.00	−0.09	0.17	0.57	0.37	0.34	0.27	0.20	0.13	18.8
India +	0.00	0.00	0.04	0.13	0.08	0.06	0.05	0.04	0.03	4.0
Latin America	0.00	0.00	0.15	0.71	0.39	0.28	0.24	0.14	0.11	18.7
Middle East	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Northern America	0.00	0.02	0.23	0.55	0.25	0.16	0.11	0.08	0.05	12.1
Pacific OECD	0.00	0.00	0.05	0.13	0.05	0.04	0.02	0.02	0.02	2.8
Reforming economies	0.00	−0.04	0.31	0.67	0.24	0.15	0.09	0.05	0.05	12.7
Rest of Asia	0.00	0.00	0.11	0.57	0.31	0.23	0.16	0.10	0.05	14.3
Western Europe	0.00	−0.01	0.12	0.24	0.07	0.04	0.03	0.02	0.00	3.9
World Total	0.0	−0.2	1.3	3.9	1.9	1.4	1.0	0.7	0.4	93.0

also the only pathway used here that involves a land cover change, with 344 Mha converted from deforested to reforested land. While this represents a low land use change area compared to comparable studies [8, 9], it does not completely eliminate impacts on agricultural production. Converting land to forests and retaining those forests requires reduced pressure for agricultural land. This can be achieved through dietary changes, but also through more sustainable agricultural and livestock production [67–69].

The Reduced Harvest pathway is a changed management approach to forestry that shifts harvest from natural forests to planted forests without increasing plantation area, therefore requiring decreased harvest intensity in temperate and boreal biomes and a cessation of commercial timber extraction in tropical forests (resulting in the greatest carbon gains from this pathway in tropical regions, reaching 80–100 t C ha⁻¹ by 2100 in Southeast Asia and the Amazon basin). The economic impacts of reduced
harvest can be offset against a shift away from timber products and increased efficiency and recycling of wood-based products, but may require compensation to land managers [70–72]. There is some debate about the role of timber in substituting more carbon intensive products, i.e. in the construction industry, but research suggests only a small portion of harvested wood ends up in long-lived products, and that accumulation of carbon in standing forests provides the greatest climate benefit [73, 74]. When identifying suitable areas for Reduced Harvest, roughly 280 Mha of landscapes identified as shifting cultivation use were excluded from our pathway. When traditionally managed these areas can represent a carbon sink over longer timescales and are an important contributor to ecosystem services such as soil fertility and stabilisation, food and livelihood security, and land usage and access rights [75, 76].

In predominantly managed ecosystems, regeneration can occur through changed forestry practices and restoration of agricultural lands through increasing trees and shrubs in the landscape based on agroforestry and silvopasture approaches. Agroforestry provides significant water retention and productivity co-benefits along with enhanced carbon storage, and has wide geographic applicability [24, 77, 78]. Silvopasture requires a reduction in grazing intensity to allow regeneration of grasses and shrubs to occur, which increases carbon in above-ground biomass [79]. While carbon gains of 5–15 t C ha⁻¹ by 2100 are common across Europe and North America for Agroforestry, Silvopasture results in lower uptake, owing to higher initial soil carbon content in temperate pasture lands compared to croplands.

4.3. Temperature reduction from enhanced carbon uptake

When combining these ecosystem restoration pathways with an ambitious 100% renewable energy scenario (the OECM 1.5 C+ scenario [23]), median temperatures briefly reach 1.5°C in the late 2030s, before declining to 1.1°C by the end of the century as fossil fuel emissions are reduced to zero and atmospheric removals increase (figure 5). Achieving the 1.5°C temperature threshold relies on aggressive reductions in fossil fuel emissions, particularly between 2020 and 2030. In our scenario, fossil fuel emissions drop by approximately 8% per year between 2020 and 2055, to reach zero by 2055. This rate of decarbonisation is extremely ambitious; for comparison, the
coronavirus pandemic caused a global reduction in fossil fuel emissions of about 7% in 2020 [80].

The additional removals from the ecosystem restoration pathways reduce 2100 warming by a further 0.12°C (5%–95% range, 0.06°C–0.21°C) compared with the OECM scenario without large scale removals (figure SI.6.2). Given the linearity of the transient climate response to cumulative carbon emissions [81, 82], we would expect 93 Gt C of carbon removal to result in similar temperature reductions, irrespective of baseline scenario (although how the linear relationship between cumulative CO2 emissions and temperature may change under net negative scenarios including non-CO2 forcers is less certain [83–86]).

5. Conclusion

Our 1.5°C-compatible mitigation pathway includes 93 Gt of carbon sequestration via ecosystem restoration over 3259 Mha of land area, requiring only 344 Mha of land cover change (for reforestation). Restoration of degraded forests and regeneration of agricultural lands also provides multiple other ecosystem service and livelihood benefits in addition to carbon storage. However, achieving 1.5°C remains heavily dependent on an ambitious reduction in fossil fuel use—in the OECM 1.5 C scenario used here, energy and industry emissions decline by 8% per annum until 2055 (when energy and industrial CO2 emissions reach zero), with a transition to 100% renewable energy generation by 2050. Without a reduction of fossil fuel emissions to near zero by mid-century and strong action in the decade to 2030, the chance of limiting global-mean temperature rise to 1.5°C is effectively zero.

Significant CO2 removals can be achieved through ecosystem-based approaches, with removals consistent with the lower end of the range presented in 1.5°C pathways with no or little overshoot (in the order of 100–1000 Gt CO2 removal over the century) [87]. These pathways rely on respecting principles of ecosystem integrity to promote biodiversity and ecosystem resilience. In implementation, there is strong evidence that recognising indigenous and other forms of collective land management have demonstrated the greatest ability for land protection and stewardship. The ecosystem restoration pathways modelled here also overcome some of the drawbacks of previous work on this subject, for example by minimizing land-use change; targeting reforestation only as buffers to existing primary forests; prioritising co-benefits for agricultural activities rather than reclamation of land; and excluding arid and high-latitude zones.

While the benefits of such approaches are receiving increasing attention from policymakers, the removal pathways presented here are distinct in two ways. First, the design of these pathways is based on principles of ecological restoration and minimising land-use change. This is a very different approach to one that promotes large areas of tree-planting. Conserving and restoring existing forests provides more immediate and longer-lasting climate benefits than planting new trees, in addition to significant co-benefits. The second important conclusion relates to limitations to land-based mitigation—the rates and amounts of net carbon uptake are slow and low compared to the rates and amounts of carbon dioxide we release by fossil fuel combustion [37]. Hence, removal of carbon dioxide from the atmosphere does not compensate for the release of fossil fuel emissions but is needed in addition to reducing emissions to near-zero, in order to lower atmospheric concentrations of CO2. We stress that removing emissions is inherently riskier than avoiding emissions in the first place, and climate mitigation is not a zero-sum game—more mitigation in one sector does not reduce the need for mitigation effort in another sector—action must be as ambitious as possible across all sectors.

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This work was supported by a grant from One Earth Philanthropy. EWL, ABH, and TML also acknowledge support from the UK Natural Environment Research Council’s Greenhouse Gas Removal research programme (NE/P019951/1).

ORCID iDs

Emma W Littleton https://orcid.org/0000-0001-5576-5498
Kate Dooley https://orcid.org/0000-0001-5636-6691
Anna B Harper https://orcid.org/0000-0001-7294-6039
Tom Powell https://orcid.org/0000-0002-5240-0351
Zebedee Nicholls https://orcid.org/0000-0002-4767-2723
Malte Meinshausen https://orcid.org/0000-0003-4048-3521
Timothy M Lenton https://orcid.org/0000-0002-6725-7498

References

[1] Obersteiner M et al 2018 How to spend a dwindling greenhouse gas budget Nat. Clim. Change 8 7–10
[2] Rogelj J et al 2018 Scenarios towards limiting global mean temperature increase below 1.5°C SI Nat. Clim. Change 8 325–32
[3] Dooley K, Christoff P and Nicholas K A 2018 Co-producing climate policy and negative emissions: trade-offs for sustainable land-use Glob. Sustain. 1 E3
[4] Harper A B et al 2018 Land-use emissions play a critical role in land-based mitigation for Paris climate targets Nat. Commun. 9 2938
[5] Dinerstein E et al 2019 A global deal for nature: guiding principles, milestones, and targets Sci. Adv. 5 eaaw2869
[6] Dooley K and Kartha S 2018 Land-based negative emissions: risks for climate mitigation and impacts on sustainable development Int. Environ. Agreem. 18 79–98
[7] Seddon N, Turner B, Berry P, Chausson A and Girardin C A J 2019 Grounding nature-based climate solutions in sound biodiversity science Nat. Clim. Change 9 84–87
[8] Bastin J-F et al 2019 The global tree restoration potential Science 365 76–79
[9] Griscom B W et al 2017 Natural climate solutions Proc. Natl Acad. Sci. 114 11645–50
[10] Veldman J W et al 2019 Comment on "The global tree restoration potential" Science 366 eaay7976
[11] Friedleindtgen P, Allen M, Canadell J G, Peters G P and Seneviratne I S 2019 Comment on "The global tree restoration potential" Science 366 1–3
[12] Lewis S L, Mitchard E T A, Prentice C, Maslin M and Poulier B 2019 Comment on "The global tree restoration potential" Science 366 eaaz0388
[13] Luedeling E et al 2019 Forest restoration: overlooked constraints Science 366 315
[14] Lewis S, Wheeler C, Mitchard E and Alexander K 2019 Regenerate natural forests to store carbon Nature 568 25–28
[15] Chazdon R and Brancalion P 2019 Restoring forests as a means to ends Science 365 24–25
[16] Schleicher J et al 2019 Protecting half of the planet could directly affect over one billion people Nat. Sustain. 2 1094–6
[17] Mackey B et al 2013 Untangling the confusion around land carbon science and climate change mitigation policy Nat. Clim. Change 3 552–7
[18] Houghton R A and Nasikas A A 2018 Negative emissions from stopping deforestation and forest degradation, globally Glob. Change Biol. 24 550–9
[19] Arneth A et al 2017 Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed Nat. Geosci. 10 79–84
[20] Houghton R A and Nasikas A A 2017 Global and regional fluxes of carbon from land use and land cover change 1850–2015: carbon emissions from land use Glob. Biogeochem. Cycles 31 456–72
[21] Le Quéré C et al 2018 Global carbon budget 2018 Earth Syst. Sci. Data 10 2111–94
[22] Brancalion P H S et al 2019 Global restoration opportunities in tropical forest landscapes Sci. Adv. 5 eaav5323
[23] Teske S, Pregger T, Meinshausen M and Dooley K 2019 Achieving the Paris Climate Agreement Goals (Berlin: Springer)
[24] Zomer R J et al 2016 Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets Sci. Rep. 6 29987
[25] IPCC 2019 IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems full report
[26] Diaz S et al 2019 Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental science-policy platform on biodiversity and ecosystem services p 44
[27] Curtis P G, Slav C M, Harris N L, Tuikkavina A and Hansen M C 2018 Classifying drivers of global forest loss Science 361 1108–11
[28] Lamb W F et al 2021 A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018 Environ. Res. Lett. 16 073005
[29] Seddon N et al 2020 Understanding the value and limits of nature-based solutions to climate change and other global challenges Phil. Trans. R. Soc. B 375 20190120
[30] Teske S et al 2021 It is still possible to achieve the Paris climate agreement: regional, sectoral, and land-use pathways Energies 14 25
[31] Meinshausen M and Dooley K 2019 Mitigation Scenarios for Non-energy GHGs Achieving the Paris Climate Agreement Goals (Berlin: Teske (Cham: Springer International Publishing)) pp 79–91
[32] Clark D B et al 2011 The Joint UK Land Environment Simulator (JULES), model description—Part 2: carbon fluxes and vegetation dynamics Geosci. Model Dev. 4 701–22
[33] Potapov P, Laestadius L and Minnemeyer S 2021 Global Map of Forest Condition (available at: www.wri.org/forest-restoration-atlas)
[34] ESA 2017 ESA CCI land cover project
[35] Dinerstein E et al 2020 A "Global Safety Net" to reverse biodiversity loss and stabilize Earth's climate Sci. Adv. 6 eea2824
[36] Schulze K, Malek Z and Verburg P H 2019 Towards better mapping of forest management patterns: a global allocation approach For. Ecol. Manage. 432 776–85
[37] Baldocchi D and Penuelas J 2019 The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems Glob. Change Biol. 25 1191–7
[38] Windisch M, Humpenöder F and Popp A 2020 Adapting afforestation patterns considering their local biogeochemical induced cooling and warming EGU General Assembly 2020 EGU2020–9257 (4–8 May 2020 Online)
[39] Law B et al 2018 Land use strategies to mitigate climate change in carbon dense temperate forests Proc. Natl Acad. Sci. 115 3663–8
[40] Pingoud K, Ekelholm T, Sievänen R, Huuskonen S and Hynynen J 2018 Trade-offs between forest carbon stocks and harvests in a steady state—a multi-criteria analysis J. Environ. Manage. 210 96–103
[41] Roxburgh S H, Wood S W, Mackey B G, Woldendorp G and Gibbons P 2006 Assessing the carbon sequestration potential of managed forests: a case study from temperate Australia: carbon sequestration potential J. Appl. Ecol. 43 1149–59
[42] Smyth C et al 2014 Quantifying the biophysical climate change mitigation potential of Canada's forest sector Biogeosciences 11 3515–29
[43] Tyukavina A et al 2015 Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012 Environ. Res. Lett. 10 074002
[44] Lutz J A et al 2018 Global importance of large-diameter trees Glob. Ecol. Biogeogr. 27 849–64
[45] Layyaesart S et al 2008 Old–growth forests as global carbon sinks Nature 455 213–5
[46] Heinimann A et al 2017 A global view of shifting cultivation: recent, current, and future extent PLoS One 12 e0184479
[47] Silveira F A O et al 2020 Myth-busting tropical grassy biome restoration Restor. Ecol. 28 1067–73
[48] Hansen M C et al 2020 The fate of tropical forest fragments Sci. Adv. 6 eaaz2574
[49] Harris N L et al 2021 Global maps of twenty-first century forest carbon fluxes Nat. Clim. Change 11 234–40
[50] Harper A B et al 2016 Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant traitinformation Geosci. Model Dev. 9 2415–40
[51] Littleton E W et al 2020 JULES-BE: representation of bioenergy crops and harvesting in the Joint UK Land Environment Simulator v3.1 Geosci. Model Dev. 13 1123–36
[52] Mackey B et al 2020 Understanding the importance of primary tropical forest protection as a mitigation strategy Mitigation Adapt. Strategies Glob. Change 25 763–87
[53] Huang M and Asner G P 2010 Long-term carbon loss and recovery following selective logging in Amazon forests:
carbon dynamics following amazon logging Glob. Biogeochem. Cycles 24 GB3028

[54] Nicholls Z et al 2011 Reduced complexity model intercomparison project phase 2: synthesisising Earth system knowledge for probabilistic climate projections Earth’s Future 9 e2020EF001900

[55] Meinshausen M, Raper S C B and Wigley T M L 2011 Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC—part 1: model description and calibration Atmos. Chem. Phys. 11 1417–56

[56] Meinshausen M et al 2020 The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500 Geosci. Model Dev. 13 3571–605

[57] Mbou C, Smith P, Skole D, Dzuguma L and Bastamante M 2014 Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa Curr. Opin. Environ. Sustain. 6 9–14

[58] IIASA 2009 RCP Database (https://tntcat.iiasa.ac.at/RcpDb) (Accessed 22 May 2021)

[59] Martin T G and Watson J E M 2016 Intact ecosystems provide best defence against climate change Nat. Clim. Change 6 122–4

[60] Dellasala D A et al 2020 Primary forests are undervalued in the climate emergency BioScience 70 445

[61] Soto-Navarro C et al 2020 Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action Phil. Trans. R. Soc. B 375 20191028

[62] Schulze C H, Leidinger P, Paces B and P 2019 The importance of reforested and naturally regenerating young forest patches as secondary habitats for forest birds in the Biological Corridor La Gamba, Costa Rica Acta Zool Bot Austria 156 79–98

[63] Fagan M E, DeFries R S, Sesnie S E, Arroyo-Mora J P and Chazdon R L 2016 Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor Ecol. Appl. 26 1456–74

[64] García-Feced C, Saura S and Elena-Rosselló R 2011 Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation For. Ecol. Manage. 261 154–61

[65] Lamb D 2005 Restoration of degraded tropical forest landscapes Science 310 1628–32

[66] Chazdon R L 2014 Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Chicago, IL: The University of Chicago Press)

[67] Tirado R, Thompson K F, Miller K A and Johnston P 2018 Less is more: reducing meat and dairy for a healthier life and planet (available at: https://storage.googleapis.com/p4-production-content/international/wp-content/uploads/2018/03/69426-longer-scientific-background.pdf)

[68] DeLonge M S, Miles A and Carlisle L 2016 Investing in the transition to sustainable agriculture Environ. Sci. Policy 55 266–73

[69] Mottet A et al 2017 Livestock: on our plates or eating at our table? A new analysis of the feed/food debate Glob. Food Secur. 14 1–8

[70] Man C D, Lyons K C, Nelson J D and Bull G Q 2015 Cost to produce Carbon credits by reducing the harvest level in British Columbia, Canada For. Policy Econ. 52 9–17

[71] West T A P, Wilson C, Vrachili M and Grogan K A 2019 Carbon payments for extended rotations in forest plantations: conflicting insights from a theoretical model Ecol. Econ. 163 70–76

[72] Huang C-H and Konrad G D 2001 The cost of sequestering carbon on private forest lands Fer. Policy Econ. 2 133–42

[73] Lippke B et al 2011 Life-cycle impacts of forest management and wood utilization on carbon mitigation: knowns and unknowns Carbon Manage. 2 303–33

[74] Keith H, Lindenmayer D, Macintosh A and Mackey B 2015 Under what circumstances do wood products from native forests benefit climate change mitigation? PLoS One 10 e0139640

[75] van Vliet N et al 2012 Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment Glob. Environ. Change 22 418–29

[76] Ziegler A D et al 2012 Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD + policy implications Glob. Change Biol. 18 3087–99

[77] Torquebiau E F 2000 A renewed perspective on agroforestry concepts and classification Comptes Rendus de l’Académie des Sciences—Series III—Sciences de la Vie 325 1099–17

[78] Patel-Weynand T, Bentrup G and Schoneberger M M 2018 agroforestry; enhancing resiliency in U.S. agricultural landscapes under changing conditions: executive summary (available at: https://researchpubs.gwu.edu/trg/researchpapers/05/Spring2017/Spring2017_Papers/Spring2017_Papers_4-Spring2017_Papers_5.pdf)

[79] Jose S and Doolinger J 2019 Silvopasture: a sustainable livestock production system Agrofor. Syst. 93 1–9

[80] Friedlingstein P et al 2020 Global carbon budget 2020 Earth Syst. Sci. Data 12 3299–340

[81] MacDougall A H 2016 The transient response to cumulative CO2 emissions: a review Curr. Clim. Change Rep. 2 39–47

[82] Gillett N P, Arora V K, Matthews D and Allen M R 2013 Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 Simulations J. Clim. 26 6844–58

[83] Tachiri K, Hajima T and Kawamiya M 2019 Increase of the transient climate response to cumulative carbon emissions with decreasing CO2 concentration scenarios Environ. Res. Lett. 14 124067

[84] Tokarska K B, Gillett N P, Arora V K, Lee W G and Zickfeld K 2018 The influence of non-CO2 forcings on cumulative carbon budgets Environ. Res. Lett. 13 034039

[85] MacDougall A H et al 2020 Is there warming in the pipeline? A multi-model analysis of the zero emissions commitment 2 pathway (SSP) greenhouse gas concentrations and their description and calibration MAGICC6—part 1: model ensembles RCP Database (https://tntcat.iiasa.ac.at/RcpDb) (Accessed 22 May 2021)

[86] IPCC 2018 Summary for Policymakers Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty ed Masson-Delmotte V et al (Geneva: World Meteorological Organization) p 32