Adenosine A_{2A} Receptors as Biomarkers of Brain Diseases

Ana Moreira-de-Sá1†, Vanessa S. Lourenço1†, Paula M. Canas1 and Rodrigo A. Cunha1,2*

1 CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal, 2 Faculty of Medicine, University of Coimbra, Coimbra, Portugal

Extracellular adenosine is produced with increased metabolic activity or stress, acting as a paracrine signal of cellular effort. Adenosine receptors are most abundant in the brain, where adenosine acts through inhibitory A_1 receptors to decrease activity/noise and through facilitatory A_{2A} receptors ($A_{2A}R$) to promote plastic changes in physiological conditions. By bolstering glutamate excitotoxicity and neuroinflammation, $A_{2A}R$ also contribute to synaptic and neuronal damage, as heralded by the neuroprotection afforded by the genetic or pharmacological blockade of $A_{2A}R$ in animal models of ischemia, traumatic brain injury, convulsions/epilepsy, repeated stress or Alzheimer’s or Parkinson’s diseases. $A_{2A}R$ overfunction is not only necessary for the expression of brain damage but is actually sufficient to trigger brain dysfunction in the absence of brain insults or other disease triggers. Furthermore, $A_{2A}R$ overfunction seems to be an early event in the demise of brain diseases, which involves an increased formation of ATP-derived adenosine and an up-regulation of $A_{2A}R$. This prompts the novel hypothesis that the evaluation of $A_{2A}R$ density in afflicted brain circuits may become an important biomarker of susceptibility and evolution of brain diseases once faithful PET ligands are optimized. Additional relevant biomarkers would be measuring the extracellular ATP and/or adenosine levels with selective dyes, to identify stressed regions in the brain. $A_{2A}R$ display several polymorphisms in humans and preliminary studies have associated different $A_{2A}R$ polymorphisms with altered morphofunctional brain endpoints associated with neuropsychiatric diseases. This further prompts the interest in exploiting $A_{2A}R$ polymorphic analysis as an ancillary biomarker of susceptibility/evolution of brain diseases.

Keywords: adenosine A_{2A} receptors, central nervous system, antagonism, caffeine, biomarkers, polymorphisms

INTRODUCTION

The increased use of intracellular ATP, either because of increased workload or need to cope with stressful conditions, is a main source of increased extracellular levels of adenosine, which generally acts as a paracrine allostatic regulator by locally decreasing metabolism through inhibitory A_1 receptors (A_1R) and increasing metabolic supply through $A_{2A}R$ (Agostinho et al., 2020). Adenosine receptors are most abundant in the brain, where adenosine fulfills a role as neuromodulator apart from its general paracrine allostatic role: post-synaptic as well as astrocytic integrative activity are major contributors of an adenosine tone acting through inhibitory A_1 receptors to decrease activity/noise in excitatory synapses; ATP release, characteristic of increased firing rate conditions associated with synaptic plasticity, is the major source of a second pool of synaptic extracellular adenosine selectively activating facilitatory A_{2A} receptors ($A_{2A}R$) to promote synaptic plastic
changes in physiological conditions (Cunha, 2016). However, ATP is also a general danger signal in the brain (Rodrigues et al., 2015), acting through a variety of ATP/ADP-activated P2 receptors to re-shape the function of astrocytes and microglia to cope with potential threats (Agostinho et al., 2020). Such threats also require adaptive plastic changes in neuronal circuits, which may explain the increased extracellular formation of ATP-derived adenosine by ecto-nucleotidases, with a burst of its rate-limiting step—ecto-5′-nucleotidase or CD73 (Cunha, 2001)—under noxious brain conditions to sustain an overfunction of A2A R that contributes to synaptotoxicity and neurotoxicity in different brain diseases (Cunha, 2016).

ADENOSINE A2A RECEPTORS IN BRAIN DISEASES

Upon acute brain injury, probably best exemplified by an ischemic brain stroke, concurrent pharmacological and genetic evidence show that A2A R blockade affords a robust neuroprotection (reviewed in Chen and Pedata, 2008). In parallel, ischemia is accompanied by ATP release (Melani et al., 2005) and up-regulation of CD73 (Braun et al., 1997), thus increasing the formation of extracellular ATP-derived adenosine (Koos et al., 1997; Chu et al., 2014). Likewise, seizure-like activity characteristic of epileptic conditions triggers a neurodegeneration that is critically controlled by pharmacological or genetic A2A R blockade (Canas et al., 2018). Seizure activity also increases ATP release (Wieraszko and Seyfried, 1989) and up-regulates CD73 (e.g., Schoen et al., 1999; Rebola et al., 2003), increasing the contribution of extracellular ATP-derived adenosine formation to overactivate A2A R (reviewed in Tescarollo et al., 2020). A2A R blockade also attenuates brain damage following traumatic brain injury (TBI) (e.g., Li et al., 2009); TBI also bolsters the release of ATP (Faroqi et al., 2021) and CD73 levels (Zheng et al., 2020), although the contribution of extracellular ATP-derived adenosine has not yet been tested in TBI.

Overall, this evidence is compatible with an increase of extracellular adenosine, namely extracellular ATP-derived adenosine, leading to an overactivation of A2A R that contributes for brain dysfunction upon acute brain injury. A similar scenario seems to occur in chronic brain conditions. Thus, the pharmacological or genetic blockade of A2A R affords a consistent neuroprotection in animal models of Alzheimer’s disease (AD) (e.g., Canas et al., 2009; Laurent et al., 2016; Viana da Silva et al., 2016), Parkinson’s disease (PD) (reviewed in Schwarzschild et al., 2006)—where A2A R antagonists were approved by the US-FDA as novel anti-Parkinsoinian drugs (Chen and Cunha, 2020), repeated stress/depression (Batalla et al., 2013; Kaster et al., 2015; Padilla et al., 2018), Machado-Joseph disease (Gonçalves et al., 2013), amyotrophic lateral sclerosis (ALS) (Ng et al., 2015; Rei et al., 2020; Seven et al., 2020), Angelman syndrome (Moreira-de-Sá et al., 2020, 2021), or glaucoma-like disorders (Madeira et al., 2015). Most of these chronic neuropsychiatric conditions are also associated with increased release of ATP, as occurs in animal models of AD (Gonçalves et al., 2019), PD (Carmo et al., 2019; Meng et al., 2019) or as concluded by the anti-depressant effects of P2 receptor antagonists (Ribeiro et al., 2019; but see Cao et al., 2013). Moreover, there is an increased contribution of extracellular ATP-derived adenosine for A2A R overactivation in chronic brain diseases, as best heralded by the observation that CD73 knockout mice phenocopy A2A R knockout mice (Augusto et al., 2013; Carmo et al., 2019; Gonçalves et al., 2019).

A2A R overactivation is not only necessary, but actually sufficient to trigger brain dysfunction, as concluded from the observation that the pharmacological overactivation of A2A R (Pagnussat et al., 2015), the optogenetic activation of A2A R transducing system (Li et al., 2015) or the over-expression of A2A R in the hippocampus (Coelho et al., 2014; Carvalho et al., 2019; Temido-Ferreira et al., 2020) are sufficient to trigger or aggravate brain dysfunction. Notably, A2A R overfunction seems to be an early event in different brain disorders (reviewed in Cunha, 2016), although A2A R antagonists seem to maintain their neuroprotective profile after the establishment of symptoms (e.g., Kaster et al., 2015; Faivre et al., 2018; Orr et al., 2018; Silva et al., 2018).

The tight association between increased release of ATP and its extracellular catabolism to overactivate A2A R as part of the expression of neuronal dysfunction at the onset and throughout the evolution of several brain diseases prompts exploiting this danger signaling pathway as new biomarkers to identify dysfunctional brain circuits in brain diseases. Although the tools are yet to developed, it may be promising to devise soluble sensors to detect altered levels of extracellular ATP to allow an *in vivo* estimate of brain circuits undergoing a particular purinergic pressure and, consequently, are at risk of undergoing dysfunction. An alternative could be the development of PET ligands (not yet available) to assess the density of CD73, which is paramount to link ATP upsurge with the selective overactivation of A2A R; CD73 seems to be consistently up-regulated upon brain stressful conditions and may be a selective biomarker of glia and synapses undergoing adaptive processes (Schoen and Kreutzberg, 1997).

UP-REGULATION OF ADENOSINE A2A RECEPTORS IN BRAIN DISEASES

The A2A R overactivation associated with brain dysfunction and disease is not only sustained by an increased bioavailability of the trigger of A2A R—ATP-derived extracellular adenosine—but also involves an up-regulation of A2A R in the afflicted brain areas (reviewed in Cunha, 2016). Indeed, an increased density of cortical A2A R has been reported in animal models of epilepsy (Rebola et al., 2005; Cognato et al., 2010; Canas et al., 2018; Crespo et al., 2018), Rasmussen’s encephalopathy (He et al., 2020), TBI (Zhao et al., 2017), AD (Espinosa et al., 2013; Viana da Silva et al., 2016; Silva et al., 2018), Lyme neuroborreliosis (Smith et al., 2014), ALS (Seven et al., 2020), or chronic stress/depression (Kaster et al., 2015; Machado et al., 2017), as well as in the diseased human brain (Albasanz et al., 2008; Temido-Ferreira et al., 2020). Likewise, A2A R levels are also increased in the cerebellum of Machado-Joseph’s ataxic mice (Gonçalves et al., 2013) and in the
amygdala or fear-conditioned mice (Simões et al., 2016). A2AR up-regulation is in fact an upsurge since it occurs shortly (within hours) after abnormal neuronal function (i.e., convulsions; Canas et al., 2018), but it gradually increases with aggravation of brain dysfunction (Temido-Ferreira et al., 2020). A2AR up-regulation mostly occurs in synapses, in accordance with the involvement of synaptic alterations at the onset of most brain diseases (e.g., Rebola et al., 2005; Kaster et al., 2015; Viana da Silva et al., 2016; Canas et al., 2018), but is also observed in glia cells in the progression of chronic brain diseases (Matos et al., 2012; Orr et al., 2015; Barros-Barbosa et al., 2016; Patodia et al., 2020). It is still unclear if this A2AR up-regulation only involves an increased readout of A2AR mRNAs (Canas et al., 2018) or also involves an overexpression of A2AR mRNA, which has been reported in the dysfunctional or diseased brain (e.g., Costenla et al., 2011; Espinosa et al., 2013; Hu et al., 2016; Dias et al., 2021). In fact, the triggers and mechanisms of this A2AR up-regulation in the diseased brain are essentially unknown. The A2AR gene in both.

Table 1
Summary of the reported associations between known polymorphic variants of the human adenosine A2A receptor gene (ADORA2A) and different response susceptibility to either pathological threats (A) or distinct physiological responses to external stimuli (B).

(A) SNP	Type/Position	Risk allele/Genotype	Associated CNS Disorder	References
rs5751876	Exon 2	TT	Huntington's disease (significant variability in age of onset)	Taherzadeh-Fard et al., 2010
		T	Susceptibility locus for Panic Disorder and Agoraphobia	Deckert et al., 1998; Hamilton et al., 2004; Domschke et al., 2012
rs2298383	5' UTR	T	Prevalent in Gilles de la Tourette syndrome (GTS) patients	Jank et al., 2015
rs2236624	Intron 4	CC	Greater risk for CE patients to develop comorbid neurologic disorders	Freitag et al., 2010
rs5996696	Promoter variant region	C	Inverse association with the likelihood to develop Parkinson's disease (~49%)	Popat et al., 2011
rs2298383, rs571876, rs35320474, and rs4822492	5' UTR, Exon 2, Exon 4, and 3' UTR	C, T, deletion and C, respectively, (Haplotype A)	Predisposition of children to develop Acute Encephalopathy with biphasic seizures and late reduced diffusion (AEDS)	Shinohara et al., 2013

(B) SNP	Type/Position	Risk allele/Genotype	Physiological Response to Stimuli	References
rs5751876	Exon 2	TT	Significant enhancement of caffeine-induced anxiety	Alsene et al., 2003; Childs et al., 2008
		TT	Associated with an overall lower caffeine intake and a prospective lesser vulnerability to caffeine dependence	Cornelis et al., 2007
		TT	Highest startle magnitudes upon caffeine administration in response to unpleasant pictures (maladaptive emotional processing)	Domschke et al., 2012
		TT	Associated with an ergogenic beneficial effect upon caffeine consumption	Loy et al., 2015
		TT	Higher anxiogenic response susceptibility to caffeine ingestion in usual non-consumers or low consumers (<40 mg per day), but no significant correlation with habitual caffeine intake	Rogers et al., 2010
		C	Sleep disturbances (and insomnia) triggered by caffeine intake, higher β-activity in non-REM sleep	Rétey et al., 2007
		T	Lower total sleep time in habitual low caffeine consumers	Erblang et al., 2019
		T	Increased sleep latency associated with caffeine consumption, lower percentage of N3 sleep stage	Nunes et al., 2017
rs2298383	5' UTR	CC	Significant enhancement of caffeine-induced anxiety	Childs et al., 2008
		C	Lower total sleep time in habitual low caffeine consumers	Erblang et al., 2019
rs4822492	3' UTR	CC	Significant enhancement of caffeine-induced anxiety	Childs et al., 2008
		CC	Lower total sleep time in habitual low caffeine consumers	Erblang et al., 2019
rs3761422	5' UTR	TT	Greater increase in anxiety upon caffeine ingestion in habitual non-consumers or low consumers (<-40 mg per day)	Rogers et al., 2010
		T	Lower total sleep time in habitual low caffeine consumers	Erblang et al., 2019
rodents and humans has a complex promoter region and can give rise to multiple transcripts (Peterfreund et al., 1996; Lee et al., 2003a; Yu et al., 2004; Kreth et al., 2008; Huin et al., 2019). Although multiple controllers of the A2A receptor (Adenosine A2A receptors) polymorphisms have been proposed, such as methylation patterns of the promoter (Falconi et al., 2019; Micioni Di Bonaventura et al., 2019), transcription factors ZBP-89 and Yin Yang-1 (Buira et al., 2010), microRNAs (e.g., Heyn et al., 2012; Villar-Menéndez et al., 2014; Zhao et al., 2015; Tian et al., 2016), NFK-B (Morello et al., 2006), cAMP-response element-binding protein (Chiang et al., 2005), hypoxia inducible factor-2α (Ahmad et al., 2009; Brown et al., 2011), AP1 transcription factor (Kobayashi and Millhorn, 1999; Lee et al., 2014), or nuclear factor 1 (Lee et al., 2003b), the regulation of the relative expression of these transcripts is largely unknown (Yu et al., 2004; Huin et al., 2019) and little is also known about the relative stability of the different mRNA transcripts. This is certainly an area of research that might open new avenues to design neuroprotective strategies linked to A2A receptor.

The association of A2A receptor overfunction with brain diseases offers another promising opportunity to develop informative biomarkers of the susceptibility and/or evolution of different brain diseases once PET ligands are optimized to detect extra-striatal A2A receptors. In fact, A2A receptors throughout the brain are most abundant in the striatum (reviewed in Svenningsson et al., 1999) and the available PET ligands have been optimized to detect striatal A2A receptors (e.g., Mishina et al., 2011; Ishibashi et al., 2018); however, this population of A2A receptors has a different pharmacology (Orrú et al., 2011; Cunha, 2016), a different adaptive profile (Cunha et al., 1995) and a different role in most brain conditions (Shen et al., 2008, 2013; Yu et al., 2008; Wei et al., 2014). Thus, it is likely that the currently available PET ligands might not be useful to assess modifications of extra-striatal A2A receptors. New cortical A2A receptor-directed PET ligands need to be designed based on the particular properties and interacting partners of cortical A2A receptors (reviewed in Franco et al., 2020) to allow an in vivo detection of A2A receptor upsurge as potential general biomarkers of brain dysfunction (Sun et al., 2020).

A2A receptors are not only located in the brain, but are also present in several peripheral tissues, namely in different blood cells such as leukocytes and platelets (reviewed in Gessi et al., 2000). Based on the association of brain diseases with A2A receptor up-regulation in afflicted brain regions, several studies explored if A2A receptors in blood cells could be biomarkers of brain diseases, such as AD (Arosio et al., 2010, 2016; Merighi et al., 2021), PD (Falconi et al., 2019), or ALS (Vincenzi et al., 2013). However, only the understanding of the mechanisms underlying A2A receptor up-regulation in brain diseases will allow providing a rationale (or lack of thereof) to consider alterations of the density of peripheral A2A receptors as valid readouts of altered A2A receptor density that occurs selectively in afflicted brain circuits in the diseased brain.

DISCUSSION

A2A receptor overfunction is necessary and actually sufficient for the expression of neuronal dysfunction upon brain diseases. In particular, A2A receptor overfunction associated with aberrant synaptic plasticity and synaptotoxicity seems to be associated with the onset of symptoms of brain diseases. However, some of these symptoms are comorbidities of other brain diseases, associated with their aggravation, which often involves a spreading of neuroinflammation, also known to be controlled by A2A receptors. Thus, it is also likely that A2A receptor overfunction might be also associated with the evolution of brain diseases. These neuropathological roles of A2A receptors prompts considering the exploitation of this system as candidate biomarkers of the susceptibility and evolution of brain diseases. The development of PET ligands with adequate signal-to-noise ratio and selectivity to detect the relevant extra-striatal A2A receptors may allow a minimally invasive assessment of A2A receptors in different brain regions. This may be complemented by the definition of A2A receptor polymorphisms as an ancillary biomarker for the susceptibility and evolution of brain diseases, which still requires a firm establishment of structural-functional relationships between A2A receptor polymorphisms and brain dysfunction. Finally, the future development of PET-based sensors of extracellular ATP and/or adenosine may well be of additional interest as a biomarker of the status of brain diseases to be used in complement of other available methods.

AUTHOR CONTRIBUTIONS

All authors contribute to the organization and writing of the review.

FUNDING

This study was supported by La Caixa Foundation (LCF/PR/17/HP17/52190001), Centro 2020 (CENTRO-01-0145-FEDER-000068:BrainHealth 2020 and CENTRO-01-0246-FEDER-000010), and FCT (POCI-01-0145-FEDER-03127 and UIDB/04539/2020).
REFERENCES

Agostinho, P., Madeira, D., Dias, L., Simões, A. P., Cunha, R. A., and Canas, P. M. (2020). Purineergic signaling orchestrating neuron-glia communication. Pharmacol. Res. 162, 105253. doi: 10.1016/j.phrs.2020.105253

Ahmad, A., Ahmad, S., Glover, L., Miller, S. M., Shannon, J. M., Guo, X., et al. (2009). Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc. Natl. Acad. Sci. USA 106, 10684–10689. doi: 10.1073/pnas.0903126106

Albasanz, J. L., Perez, S., Barrachina, M., Ferrer, I., and Martín, M. (2008). Up-regulation of adenosine receptors in the frontal cortex in Alzheimer's disease. Brain Pathol. 18, 211–219. doi: 10.1111/j.1750-3639.2007.00112.x

Arosio, B., Casati, M., Gussago, C., Ferri, E., Abbate, C., Scortichini, V., et al. (2016). Adenosine type A2A receptor in peripheral cell from patients with Alzheimer's disease, vascular dementia, and idiopathic normal pressure hydrocephalus: a new/old potential target. J. Alzheimers Dis. 54, 417–425. doi: 10.3233/JAD-160324

Arosio, B., Viazzoli, C., Mastronardi, L., Bilotta, C., Vergani, C., and Cao, X., Li, L. P., Wang, Q., Wu, Q., Hu, H. H., Zhang, M., et al. (2013). Astrocyte-adenosine A2A receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Mol. Psychiatry 18, 320–331. doi: 10.1038/mp.2012.8

Batalha, V. L., Pego, J. M., Fontinha, B. M., Costenla, A. R., Valadas, J. S., Rodrigues, R. J., Nogueira, C., Chen, J., and Cunha, R. A. (2020). The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson's disease. Br. J. Pharmacol. 176, 3666–3680. doi: 10.1111/bph.14771

Carvalho, K., Fairev, E., Pietrowski, M. J., Marques, X., Gomez-Murcia, V., Deleau, A., et al. (2019). Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. Brain 142, 3636–3654. doi: 10.1093/brain/awz288

Chen, J. F., and Pedata, F. (2008). Modulation of ischemic brain injury and neuroinflammation by adenosine A2A receptor. Curr. Pharm. Des. 14, 1490–1499. doi: 10.2174/13816120878480126

Chen, J., and Cunha, R. A. (2020). The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson's disease. Front. Pharmacol. 11, 167–174. doi: 10.3389/fphar.2020.00969-2

Chiang, M. C., Lee, Y. C., Huang, C. L., and Chen, Y. (2005). cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntington with expanded polyglutamine residues. J. Biol. Chem. 280, 14331–14340. doi: 10.1074/jbc.M413279200

Chils, E., Hohoff, C., Deckert, J., Xu, K., Badner, J., and de Wit, H. (2008). Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 33, 2791–2800. doi: 10.1038/npp.2008.17

Chu, S., Xiong, W., and Parkinson, F. E. (2014). Effect of ecto-5'-nucleotidase (eN) in astrocytes on adenosine and inosine formation. Purinergic Signal. 10, 663–609. doi: 10.1073/pnas.0901326106

Coelho, I. E., Alves, P., Canas, P. M., Valadas, J. S., Saldanha, L. Y., and Batalha, V. L., et al. (2014). Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front. Psychiatry 5:67. doi: 10.3389/fpsyt.2014.00067

Cognato, G. P., Agostinho, P. M., Hockemeyer, J., Müller, C. E., Souza, D. O., and Cunha, R. A. (2010). Caffeine and an adenosine A2A receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J. Neurochem. 112, 453–462. doi: 10.1111/j.1471-4159.2009.06465.x

Cornelis, M. C., El-Sohemy, A., and Campos, H. (2007). Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am. J. Clin. Nutr. 86, 240–244. doi: 10.1093/ajcn/86.1.240

Costenla, A. R., Diógenes, M. J., Canas, P. M., Rodrigues, R. J., Nogueira, C., Maroco, J., et al. (2011). Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur. J. Neurosci. 34, 12–21. doi: 10.1111/j.1460-9568.2011.07719.x

Crespo, M., León-Navarro, D. A., and Martin, M. (2018). Early-life hyperthermic seizures upregulate adenosine A2A receptors in the cortex and promote depressive-like behavior in adult rats. Epilepsy Behav. 86, 173–178. doi: 10.1016/j.yebeh.2018.06.048

Cunha, R. A. (2001). Regulation of the ecto-nucleotidase pathway in rat hippocampal nerve terminals. Neurochem. Res. 26, 979–991. doi: 10.1023/a:1012392719601

Cunha, R. A. (2016). How does adenosine control neuronal dysfunction and neurodegeneration? J. Neurochem. 139, 1019–1055. doi: 10.1111/jnc.13724

Cunha, R. A., Constantino, M. C., Sebastião, A. M., and Ribeiro, J. A. (1995). Modification of A1 and A2A adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. Neuroreport 6, 1583–1588. doi: 10.1097/00001576-199507310-00029

Deckert, J., Nothen, M. M., Franke, P., Delmo, C., Fritze, J., Knapp, M., et al. (1998). Systematic mutation screening and association study of the A1 and A2A adenosine receptor genes in panic disorder suggest a contribution of the A2A gene to the development of disease. Mol. Psychiatry 3, 81–85. doi: 10.1038/mp.4000345

Dias, L., Lopes, C. R., Gonçalves, F. Q., Nunes, A., Pochmann, D., Machado, N. J., et al. (2021). Crossstalk between ATP-P2X7 and adenosine A2A receptors controlling neuroinflammation in rats subject to repeated restraint stress. Front. Cell. Neurosci. 15:639322. doi: 10.3389/fncel.2021.639322

Domschke, K., Gajewska, A., Winter, B., Herrmann, M. J., Warrings, B., Domes, F. V., et al. (2019). Enhanced ATP release and CD73-mediated adenosine receptor functions. J. Neurosci. 39, 139, 1019–1055. doi: 10.1172.1411741-10689-2

Erbland, M., Drogou, C., Gomez-Merino, D., Metlaine, A., Boland, A., Deleuze, J. F., et al. (2019). The impact of genetic variations in ADORA2A in the association between caffeine consumption and sleep. Genes 10:102. doi: 10.3390/genes10123927

Espinosa, J., Rocha, A., Nunes, F., Costa, M. S., Schein, V., Kazlauskas, V., et al. (2013). Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia. J. Alzheimers Dis. 34, 509–518. doi: 10.3233/JAD-11982
Fan, X., Chen, Y., Li, W., Xia, H., Liu, B., Guo, H., et al. (2020). Genetic polymorphism of ADORA2A is associated with the risk of epilepsy and predisposition to neurologic comorbidity in Chinese southern children. *Front. Neurosci.* 14:590605. doi: 10.3389/fnins.2020.590605

Faroqi, A. H., Lim, M. J., Kee, E. C., Lee, J. H., Burgess, J. D., Chen, R., et al. (2021). *In vivo* detection of extracellular adenosine triphosphate in a mouse model of traumatic brain injury. *J. Neurotrauma* 38, 655–664. doi: 10.1089/neu.2020.7226

Franco, R., Rivas-Santisteban, R., Reyes-Resina, I., and Navarro, G. (2020). The old and new visions of biased agonism through the prism of adenosine receptor signaling and receptor/receptor and receptor/protein interactions. *Front. Pharmacol.* 11:628601. doi: 10.3389/fphar.2020.628601

Freitag, C. M., Agelopoulos, K., Huy, E., Rothermundt, M., Krakowitzky, P., Meyer, J., et al. (2010). Adenosine A2A receptor gene ADORA2A variants may increase autistic symptoms and anxiety in autism spectrum disorder. *Eur. Child Adolesc. Psychiatry* 19, 67–74. doi: 10.1007/s00787-009-0043-6

Gessi, S., Varani, K., Merighi, S., Ongini, E., and Borea, P. A. (2000). A2A adenosine receptors in human peripheral blood cells. *Br. J. Pharmacol.* 129, 2–11. doi: 10.1038/sj.bjp.0703045

Gonçalves, F. Q., Lopes, J. P., Silva, H. B., Lemos, C., Silva, A. C., Gonçalves, N., et al. (2019). Synaptic and memory dysfunction in a beta-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. *Neurobiol. Dis.* 132:104570. doi: 10.1016/j.nbd.2019.104570

Gonçalves, N., Simões, A. T., Cunha, R. A., and de Almeida, L. P. (2013). Caffeine and adenosine A2A receptor inactivation decrease striatal neuropathology in a lentiviral-based model of Machado-Joseph disease. *Ann. Neurol.* 73, 655–666. doi: 10.1002/ana.23866

Hamilton, S. P., Slager, S. L., De Leon, A. B., Heiman, G. A., Klein, D. F., Hodge, S. E., et al. (2004). Evidence for genetic linkage between a polymorphism in the adenosine A2A receptor and panic disorder. *Neuropsychopharmacology* 29, 558–565. doi: 10.1038/sj.npp.1300311

He, X., Chen, F., Zhang, Y., Gao, Q., Guan, Y., Wang, J., et al. (2020). Upregulation of adenosine A2A receptor and downregulation of GLT1 is associated with neuronal cell death in Rasmussen’s encephalitis. *Brain Pathol.* 30, 246–260. doi: 10.1111/bpa.12770

Henri, J., Ledderose, C., Hinske, L. C., Limbeck, E., Mohnle, P., Lindner, H. A., et al. (2012). Adenosine A2A receptor upregulation in human PMNs is controlled by miRNA-214, miRNA-15, and miRNA-16. *Shock* 37, 156–163. doi: 10.1097/SHK.0b013e3182f31fbc

Hu, Q., Ren, X., Liu, Y., Li, Z., Zhang, L., Chen, X., et al. (2016). aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy. *Exp. Neurol.* 283, 213–223. doi: 10.1016/j.expneurol.2016.05.040

Huin, V., Dhaeneus, C.-M., Homa, M., Carvalho, K., Buée, L., and Sablonnière, B. (2019). Neurogenetics of the human adenosine receptor genes: genetic structures and involvement in brain diseases. *J. Caffeine Adenosine Res.* 09.012

Ishibashi, K., Miura, Y., Wagatsuma, K., Toyohara, J., Ishiwha, K., and Ishii, K. (2018). Occupancy of adenosine A2A receptors by istedafirine in patients with Parkinson’s disease using 11C-prelabeled PET. *Neuropsychopharmacology* 143, 106–112. doi: 10.1002/nuph.201809.036

Janik, P., Berdnycki, M., Safarow, K., and Zekanowski, C. (2015). Association of ADORA1 rs2228079 and ADORA2A rs751876 polymorphisms with Gilles de la Tourette syndrome in the Polish population. *PLoS One* 10:e0136754. doi: 10.1371/journal.pone.0136754

Kaster, M. P., Machado, N. J., Silva, H. B., Nunes, A., Ardais, A. P., Santana, M., et al. (2015). Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. *Proc. Natl. Acad. Sci. USA* 112, 7833–7838. doi: 10.1073/pnas.1420388112
gene expression in a model of eating in the amygdaloid complex of female rats. J. Psychopharmacol. 33, 1550–1561. doi: 10.1177/026988119845798

Mishina, M., Ishiwata, K., Nagana, M., Kimura, Y., Kitamura, S., Suzuki, M., et al. (2011). Adenosine A2A receptors measured with [3H]CTMKX PET in the striatum of Parkinson’s disease patients. PLoS One 6:e17338. doi: 10.1371/journal.pone.0017338

Moreira-de-Sá, A., Gonçalves, F. Q., Lopes, J. P., Silva, H. B., Tomé, A. M., Cunha, R. A., et al. (2020). Adenosine A2A receptors format long-term depression and memory strategies in a mouse model of Angelman syndrome. Neurobiol. Dis. 146:105317. doi: 10.1016/j.nbd.2020.105317

Moreira-de-Sá, A., Ishiwata, K., Naganawa, M., Koyama, K., Tanihata, K., Suzuki, M., et al. (2016). Motor deficits coupled to cerebellar and striatal alterations in Ube3a^{-/-} mice modelling Angelman syndrome are attenuated by adenosine A2A receptor blockade. Mol. Neurobiol. 58, 2543–2557. doi: 10.1007/s12052-020-02275-9

Morelló, S., Ito, K., Yamamura, S., Lee, K. Y., Jazrawi, E., Desouza, P., et al. (2006). IL-1 beta and TNF-alpha regulation of the adenosine receptor A2A expression: differential requirement for NF-kappa B binding to the proximal promoter. J. Immunol. 177, 7173–7183. doi: 10.4049/jimmunol.177.10.7173

Ng, S. K., Higashimori, H., Tolman, M., and Yang, Y. (2015). Suppression of adenosine A2A receptor (A2A-R)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 267, 115–122. doi: 10.1016/j.expneurol.2015.03.004

Nunes, R. A., Mazzotti, D. R., Hirotsu, C., Andersen, M. L., Tufik, S., and Moreira-de-Sá, A., Gonçalves, F. Q., Lopes, J. P., Silva, H. B., Tomé, A. R., Cunha, R. A., et al. (2021). Motor deficits coupled to cerebellar and striatal alterations in striata of Parkinson’s disease patients. J. Psychopharmacol. 35, 1973–1983. doi: 10.1038/s41388-020-00148-w

Schoen, S. W., and Kreutzberg, G. W. (1997). 5'-nucleotidase enzyme cytochemistry as a tool for revealing activated glial cells and malleable synapses in CNS development and regeneration. Brain Res. Brain Res. Protoc. 1, 33–43. doi: 10.1016/s1385-299x(96)00006-2

Shen, H. Y., Canas, P. M., Garcia-Sanz, P., Lan, J. Q., Boison, D., Mortallita, R., et al. (2013). Adenosine A2A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation. PLoS One 8:e8902. doi: 10.1371/journal.pone.008902

Simões, A. T., Machado, N. J., Silva, A. C., Lemos, C., Gonçalves, F. Q., Pliássova, A. V., Machado, N. J., Silva, M., et al. (2013). ADORA2A polymorphism predisposes children to encephalopathy for different populations of postsynaptic adenosine A2A receptors in the rat striatum. Neuropharmacology 61, 967–974. doi: 10.1016/j.neuropharm.2011.06.025

Patodia, S., Paradiso, B., Garcia, M., Ellis, M., Diehl, B., Thom, M., et al. (2020). Adenosine kinase and adenosine receptor A1 and A2A in temporal lobe epilepsy and hippocampal sclerosis and association with risk factors for SUDEP. Epilepsia 61, 787–797. doi: 10.1111/epi.16487

Bittencourt, L. (2017). The association between caffeine consumption and A2A receptors in the rat cerebral cortex. Epilepsia 58, 2543–2557. doi: 10.1111/epi.13353

Rei, N., Romo, D. M., Ferreira, M. F., Baqi, Y., Müller, C. E., Ribeiro, J. A., et al. (2020). Hippocampal synaptic dysfunction in the SOD1(G93A) mouse model of Amyotrophic Lateral Sclerosis: Reversal by adenosine A2A,R blockade. Neuropsychopharmacology 171, 108106. doi: 10.1016/j.neuropharm.2020.108106

Rodrigues, R. J., Tomé, A. R., and Cunha, R. A. (2015). ATP as a multi-target danger signal in the brain. Front. Neurosci. 9:148. doi: 10.3389/fnins.2015.00148

Schoen, S., Rombo, D. M., Ferreira, M. F., Baqi, Y., Müller, C. E., Ribeiro, J. A., et al. (2020). A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin. Pharmacol. Ther. 81, 692–698. doi: 10.1002/cpt.16100102

Ribeiro, D. E., Roncalho, A. L., Glaser, T., Ulrich, H., Wegener, G., and Joca, S. (2019). P2X7 receptor signaling in stress and depression. Int. J. Mol. Sci. 20:2778. doi: 10.3390/ijms20112778

Shen, H. Y., Canas, P. M., Garcia-Sanz, P., Lan, J. Q., Boison, D., Mortallita, R., et al. (2013). Adenosine A2A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation. PLoS One 8:e8902. doi: 10.1371/journal.pone.008902

Shen, H. Y., Coelho, J. E., Ohtsuka, N., Canas, P. M., Day, Y. J., Huang, Q. Y., et al. (2008). A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J. Neurosci. 28, 2970–2975. doi: 10.1523/JNEUROSCI.3231-06.2007

Shihomara, M., Saitoh, M., Nishizawa, D., Ikeda, K., Hirose, S., Takahashi, J., et al. (2013). ADORA2A polymorphism predisposes children toencephalopathy with growth failure and epilepsy. Neurology 80, 1571–1576. doi: 10.1212/WNL.0b013e3182801d8

Silva, A. C., Lemos, C., Gonçalves, F. Q., Pliássova, A. V., Machado, N. J., Silva, H. B., et al. (2018). Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 117, 72–81. doi: 10.1016/j.nbd.2018.05.024

Smith, M. D., Bhatt, D. P., Geiger, J. D., and Rosenberger, T. A. (2014). Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A2A receptor levels in rats subjected to neuroinflammation. J. Neuroinflammation 11:99. doi: 10.1186/1742-2094-11-99

Sun, M. J., Liu, F., Zhao, Y. F., and Wu, X. A. (2020). In vivo positron emission tomography imaging of adenosine A2A receptors. Front. Pharmacol. 11:599857. doi: 10.3389/fphar.2020.599857

Svenningsson, P., Le Moine, C., Fisone, G., and Fredholm, B. B. (1999). Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog. Neurobiol. 59, 355–396. doi: 10.1016/s0301-0082(99)00111-8

Taherzadeh-Fard, E., Saif, C., Wieczorek, S., Epplein, J. T., and Arning, L. (2010). Age at onset in Huntington’s disease: replication study on the associations of ADORA2A, HAPI and OGG1. Neurogenetics 11, 435–439. doi: 10.1007/s10048-010-0248-3
Moreira-de-Sá et al. Adenosine A2A Receptors as Biomarkers

Temido-Ferreira, M., Ferreira, D. G., Batalha, V. L., Marques-Morgado, I., Coelho, J. E., Pereira, P., et al. (2020). Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. *Mol. Psychiatry* 25, 1876–1900. doi: 10.1038/s41380-018-0110-9

Tescarollo, F. C., Rombo, D. M., Deliberto, L. K., Fedele, D. E., Alharfoush, E., Torne, A. R., et al. (2020). Role of adenosine in epilepsy and seizures. *J. Caffeine Adenosine Res.* 10, 45–60. doi: 10.1089/caff.2019.0022

Tian, T., Zhou, Y., Feng, X., Ye, S., Wang, H., Wu, W., et al. (2016). MicroRNA-16 is putatively involved in the NF-kappaB pathway regulation in ulcerative colitis through adenosine A2A receptor (A2AR) mRNA targeting. *Sci. Rep.* 6:30824. doi: 10.1038/srep30824

Viana da Silva, S., Haberl, M. G., Zhang, P., Bethge, P., Lemos, C., Gonçalves, N., et al. (2016). Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors. *Nat. Commun.* 7:11915. doi: 10.1038/ncomms11915

Villar-Menéndez, I., Porta, S., Buiria, S. P., Pereira-Veiga, T., Díaz-Sánchez, S., Albasanz, J. L., et al. (2014). Increased striatal adenosine A2A receptor levels is an early event in Parkinson's disease-related pathology and it is potentially regulated by miR-34b. *Neurobiol. Dis.* 69, 206–214.

Vincenzi, F., Corciulo, C., Targa, M., Casetta, I., Gentile, M., Granieri, E., et al. (2013). A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients. *Amyotroph. Lateral Scler. Frontotemporal Degener.* 14, 406–413. doi: 10.3109/21678421.2013.793358

Wei, C., Augusto, E., Gomes, C. A., Singer, P., Wang, Y., Boison, D., et al. (2014). Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain. *Biol. Psychiatry* 75, 855–863. doi: 10.1016/j.biopsych.2013.05.003

Yu, L., Frith, M. C., Suzuki, Y., Peterfreund, R. A., Gearan, T., Sugano, S., et al. (2004). Characterization of genomic organization of the adenosine A2A receptor gene by molecular and bioinformatics analyses. *Brain Res.* 1000, 156–173. doi: 10.1016/j.brainres.2003.11.072

Yu, L., Shen, H. Y., Coelho, J. E., Araújo, I. M., Huang, Q. Y., Day, Y. J., et al. (2008). Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. *Ann. Neurol.* 63, 338–346. doi: 10.1002/ana.21313

Zhao, L., Liu, Y. W., Yang, T., Gan, L., Yang, N., Dai, S. S., et al. (2015). The mutual regulation between miR-214 and A2A signaling plays an important role in inflammatory response. *Cell Signal.* 27, 2026–2034. doi: 10.1016/j.cellsig.2015.07.007

Zhao, Z. A., Li, P., Ye, S. Y., Ning, Y. L., Wang, H., Peng, Y., et al. (2017). Perivascular AQP4 dysregulation in the hippocampal CA1 area after traumatic brain injury is alleviated by adenosine A2A receptor inactivation. *Sci. Rep.* 7:2254. doi: 10.1038/s41598-017-02505-6

Zheng, F., Zhou, Y. T., Feng, D. D., Li, P. F., Tang, T., Luo, J. K., et al. (2020). Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. *Brain Behav.* 10:e01520. doi: 10.1002/brb3.1520

Conflict of Interest: RC is a scientific consultant for the Institute for Scientific Information on Coffee.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Moreira-de-Sá, Lourenço, Canas and Cunha. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.