Note on Archimedean property in ordered vector spaces

Eduard Yu. Emelyanov*

Abstract: It is shown that an ordered vector space X is Archimedean if and only if $\inf_{\tau \in \{\tau\}, y \in L} (x_\tau - y) = 0$ for any bounded decreasing net $x_\tau \downarrow$ in X, where L is the collection of all lower bounds of $\{x_\tau\}_\tau$. We give also a characterization of the almost Archimedean property of X in terms of existence of a linear extension of an additive mapping $T: Y_+ \rightarrow X_+$ of the positive cone Y_+ of an ordered vector space Y into X_+.

MSC: 06F20, 46A40

Keywords: Ordered vector space, Archimedean, almost Archimedean.

1 Introduction

In this note we deal with vector spaces over reals. A subset K of a vector space X is called a cone if it satisfies

$$K \cap (-K) = \{0\}, \quad K + K \subseteq K \quad \text{and} \quad rK \subseteq K$$

for all $r \geq 0$. A cone K is said to be generating if $K - K = X$. Given a cone X_+ in X, we say that (X, X_+)

*Middle East Technical University, Ankara, Turkey
is an ordered vector space. The partial ordering \leq on X is defined by

$$x \leq y \text{ if } y - x \in X_+.$$

The space (X, X_+) is also denoted by (X, \leq) or simply by X if \leq is well understood.

In what follows, we denote by X an ordered vector space. For every $x, y \in X$, the (possibly empty if $x \not\leq y$) set

$$[x, y] = \{z : x \leq z \leq y\}$$

is called order interval. A subset $A \subseteq X$ is said to be order convex if for all $a, b \in A$, we have $[a, b] \subseteq A$. Given $B \subseteq X$, the smallest order convex subset $[B]$ of X containing B is called the order convex hull of B. It is immediate to see that

$$[B] = (B + X_+) \cap (B - X_+) = \bigcup_{a,b \in B} [a, b].$$

Any order convex vector subspace of X is called an order ideal. In the case when $Y \subseteq X$ is an order ideal, the quotient space X/Y is partially ordered by:

$$[0] \leq [f] \text{ if } \exists q \in Y \text{ with } 0 \leq f + q .$$

The order convexity of Y is needed for the property:

$$[f] \leq [g] \leq [f] \Rightarrow [f] = [g].$$
which guarantees that the canonical image X_+ is a cone in X/Y. Indeed if $[f] \leq [g] \leq [f]$, then

$$q_1 \leq g - f \quad \text{and} \quad -q_2 \leq f - g$$

for some $q_1, q_2 \in Y$. Thus, $q_1 \leq g - f \leq q_2$. Since Y is order convex, then $g - f \in [q_1, q_2] \subseteq Y$ and $[g] = [f]$.

Let (x_n) be a sequence in X and $u \in X_+$. The sequence (x_n) is said to be **uniformly convergent** to a vector $x \in X$, in symbols $x_n \overset{(u)}{\rightarrow} x$, if

$$x_n - x \in [-\varepsilon_n u, \varepsilon_n u]$$

for some sequence (ε_n) of reals such that $\varepsilon_n \downarrow 0$. A subset $A \subseteq X$ is said to be **uniformly closed** in X if it contains all limits of all u-uniformly convergent sequences $(x_n) \subseteq A$ for all $u \in X_+$.

An ordered vector space X is said to be **Archimedean** (we say also that X_+ has the **Archimedean property**) if

$$[(\forall n \geq 1) \ n y \leq x \in X_+] \Rightarrow [y \leq 0].$$

(1)

It is easy to see that in (1) a vector $x \in X_+$ can be replaced by any $x \in X$. Any subspace of an Archimedean ordered vector space is Archimedean. It is well known that X is Archimedean iff $\inf_{n \geq 1} \frac{1}{n} y = 0$ for every $y \in X_+$. It is worth to remark that if X admits a linear topology τ for which its cone X_+ is closed, then X is Archimedean.
Indeed, assume $ny \leq x$ for all $n \geq 1$ and some $x, y \in X$. Then
\[\frac{1}{n}x - y \in X_+ \quad \text{and} \quad \frac{1}{n}x - y \to -y \]
imply $-y \in X_+$ or $y \leq 0$.

X is called **almost Archimedean** if
\[((\forall n \in \mathbb{Z}) \ ny \leq x \in X_+) \Rightarrow [y = 0], \]
for every $x \in X_+$. Clearly, X is almost Archimedean iff
\[\bigcap_{n \geq 1} \left[-\frac{1}{n}x, \frac{1}{n}x \right] = \{0\}, \]
for every $x \in X_+$. It follows immediately, that any subcone of an almost Archimedean cone is almost Archimedean. A standard example of an ordered vector space which is not almost Archimedean is $(\mathbb{R}^2, \leq_{lex})$, the Euclidean plain with the lexicographic ordering. If $Y \subseteq X$ is an order ideal such that X/Y is almost Archimedean, then Y is uniformly closed. Indeed, let $y_n \xrightarrow{u} x$ for some $(y_n) \subseteq Y$, $u \in X_+$, and $x \in X$. We may assume that
\[y_n - x \in \left[-\frac{1}{n}u, \frac{1}{n}u \right] \quad (\forall n \geq 1). \]
Hence
\[[-x] = [y_n - x] \in \left[-\frac{1}{n}[u], \frac{1}{n}[u] \right] \quad (\forall n \geq 1). \]
Since X/Y is almost Archimedean, then $[-x] = [0]$, and thus $x \in Y$. If $Y = \{0\}$, the converse is obviously true. Thus X is almost Archimedean iff $\{0\}$ is uniformly
closed. In general, the question whether or not X/Y is almost Archimedean assuming an order ideal Y to be uniformly closed is rather nontrivial (it has a positive answer, for example in vector lattice setting (cf. [3, Thm.60.2])). Any Archimedean ordered vector space is clearly almost Archimedean. The converse is not true even when $\dim(X) = 2$.

Example 1. Let Γ a set containing at least two elements and let Y be the space of all bounded real functions on Γ, partially ordered by:

$$f \leq g \text{ if either } f = g \text{ or } \inf_{t \in \Gamma} [g(t) - f(t)] > 0.$$

The space (Y, \leq) is almost Archimedean but not Archimedean. Indeed, it can be seen easily that $\inf_{n \geq 1} \frac{1}{n} f$ does not exist for any $0 \neq f \in Y_+$.

An ordered vector space X is said to be a **vector lattice** (or a **Riesz space**) if every nonempty finite subset of X has a least upper bound. X_+ is said to be **minihedral** if X is a vector lattice. Any almost Archimedean vector lattice is Archimedean, indeed

$$\left[(\forall n \geq 1)(ny \leq x \in X_+) \right] \Rightarrow$$

$$\left[(\forall n \geq 1) [-x \leq n \sup(y, 0) \leq \sup(x, 0) = x] \right] \Rightarrow$$

$$\left[\sup(y, 0) = 0 \right] \Rightarrow \left[y \leq 0 \right].$$

For further details on ordered vector spaces we refer to the book [1].
2 A characterization of Archimedean ordered vector spaces

The following characterization of the Archimedean property is well known in the vector lattice case (see, for example, [3, Thm.22.5]). In the general setting of ordered vector spaces, it has been published recently [2, Prop.2] as an auxiliary fact with an incorrect proof of the implication \((b) \Rightarrow (a)\). Below, we fill the gap in the proof.

Theorem 1. For an ordered vector space \(X\), the following are equivalent:

(a) \(X\) is Archimedean.

(b) For any decreasing net \(x_\tau \downarrow \geq d\) in \(X\),

\[
\inf_{\tau \in \{\tau\}, y \in L} (x_\tau - y) = 0,
\]

where \(L = \{y \in X : (\forall \tau \in \{\tau\})[y \leq x_\tau]\}\) is the collection of all lower bounds of \(\{x_\tau\}_\tau\).

Proof: \((a) \Rightarrow (b)\): Let \(X\) be Archimedean, \(x_\tau \downarrow \geq d\). Assume \(z \in X\) satisfies \(z \leq x_\tau - y\) for all indexes \(\tau\) and for all \(y \in L\). Since \(0 \leq x_\tau - y\) for all \(\tau\), to complete the proof of the implication, it is enough to show that \(z \leq 0\).

As \(y + z \leq x_\tau\) for all \(\tau\) and all \(y \in L\), we obtain that \(y + z \in L\) for every \(y \in L\). It follows by the induction,

\[y + nz \in L \quad (\forall y \in L)(\forall n \in \mathbb{N}).\]

In particular, \(d + nz \leq x_{\tau_0}\) (and hence, \(nz \leq x_{\tau_0} - d\)) for
some \(\tau_0 \in \{ \tau \} \) and all \(n \in \mathbb{N} \). By the condition
\[
nz \leq x_{\tau_0} - d \quad (\forall n \in \mathbb{N}) ,
\]
the Archimedean property of \(X_+ \) implies \(z \leq 0 \), what is required.

(b) \(\Rightarrow \) (a): Let \(x \in X_+ \), \(ny \leq x \) for all \(n \in \mathbb{N} \). We have to show that \(y \leq 0 \). Denote
\[
L = \left\{ w \in X : (\forall n \geq 1) \ w \leq \frac{1}{n} x \right\} .
\]
Clearly, \(y \in L \). Given \(u \in L \), then \(0 \leq \frac{1}{n} x - u \) for all \(n \geq 1 \). By the hypothesis applied to the decreasing sequence \(\frac{1}{n} x \downarrow y \), the following infima exist, and
\[
\inf_{n \geq 1, u \in L} \left(\frac{2}{n} x - u \right) = \inf_{n \geq 1, u \in L} \left(\frac{1}{n} x - u \right) = 0 .
\]
Hence,
\[
\inf_{n \geq 1, u \in L} \left[\left(\frac{2}{n} x - u \right) - y \right] = -y + \inf_{n \geq 1, u \in L} \left(\frac{2}{n} x - u \right) = -y .
\]
Since
\[
0 \leq \left(\frac{1}{n} x - u \right) + \left(\frac{1}{n} x - y \right) = \left(\frac{2}{n} x - u \right) - y
\]
for all \(n \geq 1 \), then
\[
0 \leq \inf_{n \geq 1, u \in L} \left[\left(\frac{2}{n} x - u \right) - y \right] = -y .
\]
Then, \(y \leq 0 \) and hence \(X \) is Archimedean. ■
3 A characterization of almost Archimedean ordered vector spaces

Here we present a characterization of the almost Archimedean property of X_+ in terms of existence of an extension of an additive mapping $T : Y_+ \to X_+$ of the positive cone Y_+ of an ordered vector space Y into X_+ to a linear operator from Y into X. The existence of such an extension is well known in the Archimedean setting (see, for example, [1, Lem.1.26], [4, Lem.83.1]).

Theorem 2. For an ordered vector space X, the following statements are equivalent:

(i) X is almost Archimedean.

(ii) For any ordered vector space Y and any additive mapping $T : Y_+ \to X_+$, there is an extension of T to a linear operator from Y to X.

(iii) For any additive mapping $T : \mathbb{R}_+ \to X_+$, there is an extension of T to a linear mapping from \mathbb{R} to X.

Proof: $(i) \Rightarrow (ii)$: Since on an algebraic complement Y_0 of $Y_+ - Y_+$ in Y, an extension of T, say S, can be chosen as any linear operator, we only need to obtain an extension of an additive mapping $Y_+ \xrightarrow{T} X_+$ to a linear operator $(Y_+ - Y_+) \xrightarrow{S} X$.

For each $y \in (Y_+ - Y_+)$ pick $y_1, y_2 \in Y_+$ with $y = y_1 - y_2$ and put

$$Sy = T(y_1) - T(y_2).$$
It is routine to see that S is well defined and additive. The additivity of $(Y_+ - Y_+) \xrightarrow{S} X$ implies that S is \mathbb{Q}-homogeneous. To complete the proof, it is enough to show that S is \mathbb{R}_+-homogeneous on Y_+, where it coincides with T. Thus we need to show that $T : Y_+ \to X_+$ is \mathbb{R}_+-homogeneous. We shall use the following elementary remark:

\begin{align*}
[x, y \in [q, p]] &\Rightarrow [x - q, y - q \in [0, p - q]] \\
[x - y = (x - q) - (y - q) \in [-(p - q), p - q]]. & \quad (2)
\end{align*}

Let $\mathbb{Q}_+ \ni r_n \uparrow a \in \mathbb{R}$, $\mathbb{Q}_+ \ni r'_n \downarrow a$, $u \in Y_+$. Then

$$r_n T(u) = T(r_n u) \leq T(au) \leq T(r'_n u) = r'_n T(u).$$

But also:

$$r_n T(u) \leq aT(u) \leq r'_n T(u).$$

That is

$$T(au), aT(u) \in [r_n T(u), r'_n T(u)]. \quad (3)$$

Applying (2) in (3), we obtain

$$T(au) - aT(u) \in [-(r'_n - r_n)Tu, (r'_n - r_n)Tu] \quad (\forall n \in \mathbb{N}).$$

Since X is almost Archimedean and $r'_n - r_n \downarrow 0$, we get

$$T(au) - aT(u) = 0,$$

what is required.

$(ii) \Rightarrow (iii)$: It is trivial.

$(iii) \Rightarrow (i)$: Let $x \in X_+$, $y \in X$ be such that

$$-\frac{1}{n} x \leq y \leq \frac{1}{n} x \quad (\forall n \geq 1). \quad (4)$$
Take a function $f : \mathbb{R} \to \mathbb{R}$ which is \mathbb{Q}-linear but not \mathbb{R}-linear and define an additive mapping $T : \mathbb{R}_+ \to X$ by

$$T(a) = ax + f(a)y \quad (a \in \mathbb{R}_+).$$

Then T maps \mathbb{R}_+ into X_+. Indeed, $T(0) = 0$ and if $0 < a$ then $0 \leq a - \frac{|f(a)|}{n_0}$ for some large enough n_0. It follows from (4) that $-\frac{|f(a)|}{n}x \leq \pm f(a)y \leq \frac{|f(a)|}{n}x$ for all $n \geq 1$. In particular, $-\frac{|f(a)|}{n_0}x \leq f(a)y$, and therefore

$$0 \leq \left(a - \frac{|f(a)|}{n_0}\right)x \leq ax + f(a)y = T(a)$$

Take a linear extension S of T to all of \mathbb{R}. Then S (and hence T) must be \mathbb{R}_+-homogeneous on \mathbb{R}_+ which is only possible if $y = 0$. ■

References

[1] Aliprantis, C. D., Tourky, R., *Cones and duality*, Graduate Studies in Mathematics, Vol. 84, American Mathematical Society, (2007).

[2] Emel’yanov, E. Yu., *Infinitesimals in ordered vector spaces*, Vladikavkaz. Mat. Zh., Vol. 15. no. 1, 19-24, (2013).

[3] Luxemburg, W. A. J., Zaanen, A. C., *Riesz Spaces, I*, North-Holland, Amsterdam, (1971).

[4] Zaanen, A. C., *Riesz Spaces, II*, North-Holland, Amsterdam, (1983).