PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/88531

Please be advised that this information was generated on 2020-03-10 and may be subject to change.
Genetic Variants in Toll-Like Receptors Are Not Associated with Rheumatoid Arthritis Susceptibility or Anti-Tumour Necrosis Factor Treatment Outcome

Marieke J. H. Coenen1,*, Christian Enevold2, Pilar Barrera3, Mascha M. V. A. P. Schijvenaars1, Erik J. M. Toonen1, Hans Scheffer1, Leonid Padyukov4, Alf Kastbom5, Lars Klæreskog4, Anne Barton6, Wietske Kievit2, Maarten J. Rood4, Tim L. Jansen8, Dorine Swinkels9, Piet L. C. M. van Riel5, Barbara Franke1, Klaus Bendtzen2, Timothy R. D. J. Radstake3

1Department of Human Genetics, Radboud University Nijmegen Medical Centre, Institute for Genetic and Metabolic Disease (IGMD), Nijmegen, The Netherlands, 2Department of Rheumatology, Institute for Inflammation Research, Nihs hospitalet, University Hospital of Copenhagen, Copenhagen, Denmark, 3Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 4Rheumatology Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden, 5Division of Rheumatology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden, 6Arthritis Research Campaign Epidemiology Unit, The University of Manchester, Manchester, United Kingdom, 7Department of Rheumatology, Ziekenhuis Geldersse Vallei, Ede, The Netherlands, 8Department of Rheumatology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands, 9Laboratory of Clinical Chemistry, Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Abstract

Background: Several studies point to a role of Toll-like receptors (TLRs) in the development of rheumatoid arthritis (RA). We investigated if genetic variants in TLR genes are associated with RA and response to tumour necrosis factor blocking (anti-TNF) medication.

Methodology and Principal Findings: 22 single nucleotide polymorphisms (SNPs) in seven TLR genes were genotyped in a Dutch cohort consisting of 378 RA patients and 294 controls. Significantly associated variants were investigated in replication cohorts from The Netherlands, United Kingdom and Sweden (2877 RA patients and 2025 controls). 182 of the Dutch patients were treated with anti-TNF medication. Using these patients and a replication cohort (269 Swedish patients) we analysed if genetic variants in TLR genes were associated with anti-TNF outcome. In the discovery phase of the study we found a significant association of SNPs rs2072493 in TLR5 and rs3853839 in TLR7 with RA disease susceptibility. Meta-analysis of discovery and replication cohorts did not confirm these findings. SNP rs2072493 in TLR5 was associated with anti-TNF outcome in the Dutch but not in the Swedish population.

Conclusion: We conclude that genetic variants in TLRs do not play a major role in susceptibility for developing RA nor in anti-TNF treatment outcome in a Caucasian population.

Introduction

Rheumatoid arthritis (RA) is a severe chronic inflammatory disorder leading to joint damage. The causes of RA are largely unknown, however, the role of genetic factors is evident, with the MHC region as the major contributor [1]. To date, more than 20 non-MHC regions explaining approximately one third of the genetic contribution to RA have been identified [2].

The role of Toll-like receptors (TLRs) in the development of RA is supported by several studies. Synovial fibroblasts of RA patients constitutively express TLR 1-6, and it has been demonstrated that TLR 2, 3, 4 and 7 are up-regulated in RA synovial tissue compared to that of osteoarthritis patients and healthy controls [3]. Furthermore, the ligands for TLRs have been detected in synovium of RA patients [4],[5]. Since TLRs are potent activators of pro-inflammatory cytokines, including tumour necrosis factor (TNF)
alpha, this also makes them interesting candidates for treatment outcome prediction, especially for TNF-neutralizing therapy [6].

Several groups explored the contribution of genetic variants in TLR genes to the development of RA. A Korean study showed an association of a dinucleotide repeat in TLR2 with RA [7]. One other study focusing on two SNPs in TLR2 resulting in amino acid substitutions (Arg677Trp and Arg753Gln) could not detect an association between these rare variants and RA [8]. Although conflicting results have been reported on the functional variant Asp299Gly (rs4986790) in TLR4 most studies showed no association of this variant with RA susceptibility [8]–[13]. A French group investigated 10 SNPs in TLR1, 2, 4, 6 and 9 in 100 families but did not find evidence for an association of variants in these genes with RA, autoantibody production or erosions [13]. A Turkish study, investigating variants in TLR3, 9 and 10 in 100 patients showed an association between a variant in TLR9 and RA susceptibility [14]. So far, only one small pharmacogenetic study on TLRs has been published [15]. The authors did not demonstrate an association between the Asp299Gly variant in TLR4 and the response to disease modifying anti-rheumatic drugs (DMARDs).

Although most studies performed to date point to a lack of association between genetic variants in genes coding for TLRs and RA disease susceptibility or treatment response, these have either been very small or did not comprehensively test potentially functional SNPs in the genes. Therefore we performed an association study of TLRs testing involvement in RA pathogenesis and anti-TNF treatment response including seven TLR genes, three of which (TLR5, 7 and 8) have not been investigated in connection with RA before. The twenty-two SNPs investigated were selected for potential effects on gene function or regulation.

Results

Case control analysis

In the discovery phase of our study we included 378 RA patients and 294 controls and genotyped 22 SNPs in seven TLR genes. Genotyping failed for 51 samples (22 cases and 26 controls). Six SNPs were excluded from the analysis, based on a low MAF (Table 1).

gene	chromosome	SNP	BP	functional effect	major allele	minor allele	MAF cases	MAF controls	chi-square	p-value	OR	95% CI interval
TLR2	4	rs1898830	154827903	Promoter (~15607)	A G 0.34 0.33 0.05 0.83 1.03 0.81–1.30							
		rs743704	154845401	Pro631His	C A 0.04 0.05 n.a. n.a. n.a. n.a.							
		rs743708	154845767	Arg753Gln	G A 0.04 0.04 n.a. n.a. n.a. n.a.							
TLR3	4	rs3775291	187241068	Leu142Pro	C T 0.30 0.30 0.01 0.92 1.01 0.79–1.29							
TLR4	9	rs4986790	19515123	Asp299Gly	A G 0.05 0.05 0.003 0.96 0.99 0.60–1.63							
		rs4986791	19515423	Thr399Ile	C T 0.05 0.05 0.003 0.96 0.99 0.60–1.63							
		rs7873784	19518757	3’ UTR	G C 0.18 0.16 0.54 0.46 1.12 0.83–1.51							
TLR5	1	rs5744176	221350916	Asp694Gly	A G 0.0 0 0 n.a. n.a. n.a. n.a.							
		rs5744174	221351151	Phe614Leu	T C 0.47 0.46 0.12 0.73 1.04 0.83–1.30							
	rs2072493	221351222	Asn592Ser	A G 0.10 0.15 6.35 0.01 0.64 0.46–0.91								
	rs744168	221351823	Arg392STOP	C T 0.08 0.07 0.74 0.39 1.21 0.78–1.88								
	rs764535	221352752	Thr228Leu	G A 0.02 0.01 n.a. n.a. n.a. n.a.								
TLR7	X	rs2302267	12795499	Exon/intron boundary	T G 0.05 0.04 n.a. n.a. n.a. n.a.							
	rs179008	12813580	Gln11Leu	A T 0.21 0.24 0.94 0.33 0.86 0.63–1.17								
	rs5743781	12814891	Ala448Val	C T 0 0.0003 n.a. n.a. n.a. n.a.								
	rs3853839	12817579	3’ UTR	C G 0.13 0.21 8.95 0.003 0.59 0.42–0.84								
TLR8	X	rs741883	12834142	Promoter (~605)	C T 0.24 0.22 0.69 0.41 1.14 0.84–1.55							
	rs3764879	12834618	Promoter (~129)	C G 0.22 0.26 2.07 0.15 0.80 0.59–1.08								
	rs3764880	12834747	Exon (~3679)	A G 0.22 0.26 1.87 0.17 0.81 0.60–1.10								
	rs5440888	12850485	3’ UTR	G C 0.16 0.13 1.49 0.22 1.26 0.87–1.82								
TLR9	3	rs5743836	52235822	Promoter (~1237)	A G 0.16 0.18 1.21 0.27 0.85 0.63–1.14							
	rs187084	52236071	Promoter (~1486)	A G 0.41 0.43 0.49 0.48 0.92 0.73–1.16								

MAF: minor allele frequency.
OR: odds ratio.
CI: confidence interval.
n.a.: not analysed.
doi:10.1371/journal.pone.0014326.t001
showed no association of the SNPs in TLR5 and TLR7 with RA aetiology either in the separate cohorts or in a meta-analysis (Figure 1).

Anti-TNF treatment response

A subsample of the Dutch patients were treated with anti-TNF medication and had EULAR response information available at 3 months (n = 182, Table 2). Results of the association analysis are shown in Table 3. TLR5 rs2072493 showed a significant association with anti-TNF treatment outcome (p = 0.003). In total, 182 patients were included in the analysis. The EULAR response criteria were used to assess association of a genotype with anti-TNF response. The test statistic and p-value were from Fisher’s Exact Test for most SNPs, those indicated with * were based on Pearson Chi-square and p-value. A medication specific analysis showed that none of the investigated SNPs was associated with a specific anti-TNF (Table S1). Validation of association found with TLR5 in 269 RA patients treated with anti-TNF from Sweden did not confirm our initial findings (Fisher’s exact test p = 0.63).

The differences observed between the Dutch and Swedish cohort were not related to the anti-TNF used (Fisher’s exact test Swedish cohort for infliximab (p = 0.75) and etanercept (p = 0.49)).

Discussion

We found no evidence for association between 22 SNPs in TLR genes and RA disease susceptibility or anti-TNF treatment response, in keeping with the majority of the other candidate gene studies investigating TLRs in RA patients [7]–[13]. Furthermore, genome-wide association studies (GWAS) do not report associations between TLR genes and RA disease susceptibility (www.genome.gov/gwastudies). Accessed December 31th 2009), suggesting that genetic variants in these genes are not a major contributor to disease development [16]. However, some TLR genes were poorly covered in the initial GWAS (e.g. no SNPs in TLR5 and 9 were included in these studies) [17],[18]. The TLR genes remain strong candidates for susceptibility genes in RA given their crucial role in mediating inflammatory signalling. One
Table 2. Patient characteristics of RA patients treated with anti-TNF medication.

Cohort	The Netherlands	Sweden
Number of patients (N (%))	182 (100)	269 (100)
Gender (female)	122 (67.0)	211 (78.4)
RF factor positive	141 (77.5)⁵	169 (88.9)⁵
MTX co-medication	105 (61.0)***	185 (68.8)
Anti-TNF medication		
Adalimumab	61 (33.5)	0 (0)
Infliximab	118 (64.8)	156 (58.0)
Etanercept	3 (1.6)	113 (42.0)
Good response*	45 (24.7)	76 (28.3)
Moderate response*	92 (50.5)	137 (50.9)
No response*	45 (24.7)	56 (20.8)
DAS28 baseline (mean ± SD)	5.72±1.16	5.84±1.13
DAS28 3 months after treatment initiation (mean ± SD)	4.12±1.36	3.89±1.30

*Response based on EULAR response criteria. Data available for ⁴, ⁵, ¹⁹ and ²² patients.

doi:10.1371/journal.pone.0014326.t002

possibility is that these genes might harbour rare variants with large effect sizes, which would not be well tagged with the common SNPs selected for investigation in the current study. With the introduction of next generation sequencing technologies it should become possible to analyse the genes in a thorough manner but much larger sample sizes will be required to ensure power to detect association with rare variants, even if effect sizes are larger.

We could not identify an association of the investigated SNPs with anti-TNF response. We were unable to replicate the initial finding in the Dutch cohort. Differences in ethnicity, gender, RF and co-medication might influence the observed discrepancies. Besides the study has low power to detect an association due to the small patient population. Despite this the function of TLRs makes them likely candidate genes, since they directly modulate TNF expression [6]. In addition, De Rijke and colleagues showed that anti-TNF treatment in spondylarthropathy results in a reduced expression of TLR2 and TLR4 [19]. The TLR pathway should therefore be investigated in more detail before drawing definite conclusions about the contribution of these genes to anti-TNF treatment outcome.

In conclusion, our study does not support an association between genetic variants in TLR genes and RA disease susceptibility or anti-TNF treatment response.

Materials and Methods

Ethics Statement

The study was approved by the ethics committees of the participating institutions. For the Dutch samples the “Commissie Mensgebonden Onderzoek (CMO) Regio Arnhem Nijmegen” of the Radboud University Nijmegen Medical Centre approved the study (CMO number 2004/014). All Dutch patients and controls gave written informed consent prior to participation in the study. Verbal consent was received from all patients participating in the EIRA study and it was registered at clinical journals according to Swedish law. Written consent was received from healthy control individuals. The ethics committee of Karolinska Institutet approved the study. All UK patients and controls were recruited with ethical approval and provided written informed consent (North-West Multi-Centre Research Ethics Committee [MREC 99/8/04] and the University of Manchester Committee on the Ethics of Research on Human Beings).

Patients and controls

All patients in this study fulfilled the American College of Rheumatology (ACR) criteria. In the discovery phase 378 Dutch RA patient participating in the Nijmegen inception cohort and 294 anonymous blood donors were included [20]. Cohorts from The Netherlands, Sweden and England were included in the replication phase. The Dutch replication cohort consisted of 313 RA patients participating in the Dutch Rheumatoid Arthritis Monitoring (DREAM) registry [21]. The Dutch controls (n = 527) were part of the Nijmegen Biomedical Study [22]. The Swedish patients (n = 2158) and controls (sex, age and residence area matched, n = 1068) were part of the Epidemiological Investigation of Rheumatoid arthritis (EIRA) study. The UK patients (n = 406) were recruited as part of the Arthritis Research Campaign National Repository of patients and families with one patient from each family selected for genotyping. UK controls without a history of inflammatory arthritis (n = 430) were recruited from General Practitioner records or from blood donors.

Anti-TNF treatment outcome

Patients participating in the DREAM registry were included in the study of anti-TNF treatment response. The registry includes patients with RA who start with anti-TNF treatment, according to the Dutch recommendations (Disease Activity Score (DAS28) >3.2 and previous failure on at least two disease-modifying antirheumatic drugs (DMARDs), one of which has to be methotrexate (MTX) [21]. The DAS28 at treatment start and after 3 months of treatment were used to calculate the clinical response according to the EULAR criteria [23]. Association analysis was performed for the total patient group and a subgroup analysis for the patients treated with infliximab and adalimumab. Nominally significant findings [p<0.01] were validated in 269 anti-TNF treated RA patients from Sweden [23].

SNP genotyping

Twenty-two SNPs located in TLR2, 3, 4, 5, 7, 8 and 9 were genotyped in all Dutch patients and Dutch anonymous blood donors (Table 1). SNP selection criteria are described previously [24]. SNPs were genotyped using two multiplexed bead-based assays on a Lumimex 100IS flow cytometer (Lumimex Corporation, Austin, TX, USA). The tests were based on procedures previously described, with some modifications [24]–[26]. Replication studies were performed using TaqMan® SNP genotyping assays for SNPs rs2072493 in TLR5 (assay ID C__22273027_10) and rs3853839 in TLR7 (assay ID C__22595753_10).

Statistical analysis

For quality control reasons we excluded SNPs that had a minor allele frequency (MAF) <0.05. Hardy-Weinberg Equilibrium (HWE) was tested using the controls (only females were used for X-chromosomal SNPs), no deviations were observed. The whole genome association analysis toolset (PLINK) was used for association analysis at the allelic level [27]. A stratified analysis was performed for RF positive and negative as well as shared epitope positive and negative patients. SNPs with a nominal p-value ≤0.01 in the discovery sample were included in the
Table 3. Results of the association analysis for anti-TNF treatment outcome after three months of treatment initiation.

Gene	chromosome	SNP	Gender	Test statistic	p-value
TLR2	4	rs1898830		11.188*	0.024*
		rs5743704	n.a.		
		rs5743708	n.a.		
TLR3	4	rs3775291		7.74	0.096
TLR4	9	rs4986790		5.32	0.19
		rs4986791		5.32	0.19
		rs7873784		1.28	0.886
TLR5	1	rs5744176	n.a.		
		rs5744174		5.77	0.22
		rs2072493		13.52	0.003
		rs5744168		2.15	0.72
		rs764535	n.a.		
TLR7	X	rs2302267	n.a.		
		rs179008	males	2.97*	0.24*
		rs179008	females		
		rs5743781	n.a.		
		rs3853839	males	4.69	0.089
		rs3853839	females	4.61	0.27
TLR8	X	rs5741883	males	0.67	0.75
		rs5741883	females	3.34	0.51
		rs3764879	males	1.41	0.48
		rs3764879	females	1.76	0.85
TLR9	3	rs5743836	males	0.63	0.80
		rs187084	females	3.20	0.50

In total, 182 patients were included in the analysis. The EULAR response criteria were used to assess association of a genotype with anti-TNF response. The test statistic and p-value were from Fisher’s Exact Test for most SNPs, those indicated with * were based on Pearson Chi-square and p-value. SNPs located on the X-chromosome were analyzed for males and females separately.

doi:10.1371/journal.pone.0014326.t003

Supporting Information

Table S1 Results of the association analysis for anti-TNF treatment outcome after three months of treatment initiation.
References

1. Coenen MJ, Gregersen PK (2009) Rheumatoid arthritis: a view of the current genetic landscape. Genes Immun 10: 101–111.

2. Raychaudhuri S, Thomson BP, Remmers EF, Eyre S, Hinks A, et al. (2009) Genetic variants at CD206, PDCD1, and CD20/CD58 are associated with rheumatoid arthritis risk. Nat Genet 41: 1313–1318.

3. Ospelt C, Brentano F, Rengel Y, Stanton J, Kolling C, et al. (2008) Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum 58: 3984–3992.

4. Roedlo FJ, Josten LA, de Rooij AM, de Rooij JB, Sprong T, et al. (2005) The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum 52: 2513–2522.

5. van der Heijden I, Wilbrink B, Tchetcherikov I, Schrijver IA, Schouls LM, et al. (2008) Polymorphism in intron II of human Toll-like receptor 2 gene and susceptibility to rheumatoid arthritis. Arthritis Res Ther 11: R5.

6. Lee EY, Yim JJ, Lee HS, Lee YJ, Lee EB, et al. (2006) Dinucleotide repeat polymorphism in relation to response to infliximab and adalimumab treatment and disease severity in rheumatoid arthritis. Ann Rheum Dis 65: 1199–1202.

7. Sanchez E, Ourooz G, Lopez-Nevot MA, Jimenez-Alonso J, Martin J (2004) Polymorphisms of toll-like receptor 2 gene in arthritic human synovial tissue and systemic lupus erythematosus. Tissue Antigens 63: 54–57.

8. Radstake TR, Franko B, Hansen S, Neto MG, Welting P, et al. (2004) The Toll-like receptor 4 Asp299Gly functional variant is associated with decreased rheumatoid arthritis disease susceptibility but does not influence disease severity or prognosis. Arthritis Rheum 50: 999–1001.

9. Sheth EJ, Martinou I, O’Neill LA, Wilson AG (2008) The Maif/TIRAP SNP and TLR4 G299D polymorphisms are not associated with susceptibility to, or severity of, rheumatoid arthritis. Arthritis Res 67: 1329–1331.

10. Kang FS, Lee J (2007) Genotypic analysis of Asp299Gly and Thr399Ile Polymorphism of Toll-like receptor 4 in systemic autoimmune diseases of Korean population. Rheumatol Int 27: 887–897.

11. Kilding R, Akil M, Till S, Amos R, Winfield J, et al. (2003) A biologically important single nucleotide polymorphism within the toll-like receptor-4 gene is not associated with rheumatoid arthritis. Clin Exp Rheumatol 21: 349–352.

12. Jaen O, Petit-Teixeira E, Kirsten H, Ahnert P, Semerano L, et al. (2009) Polymorphism at position +986 of the toll-like receptor 4 gene interferes with rapid response to treatment in rheumatoid arthritis. Ann Rheum Dis 68: 1241–1243.

13. Hindorff LA, Sethupathy P, Junkins HA, Ramoo EM, Melina JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.

14. Kuuliala K, Orpana A, Leirisalo-Repo M, Kautiainen H, Hurme M, et al. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 4,000 shared controls. Nature 447: 661–667.

15. Hindorff LA, Sethupathy P, Junkins HA, Ramoo EM, Melina JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.

16. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) Genome-wide association studies and common disease: do we need more variants? Nat Rev Genet 8: 41–51.

17. Hindorff LA, Sethupathy P, Junkins HA, Ramoo EM, Melina JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.

18. Plenge RM, Stelldadian M, Padyukov L, Lee AT, Remmers EF, et al. (2007) TRAF1-C5 as a risk locus for rheumatoid arthritis—a genome-wide study. N Engl J Med 357: 1199–1209.

19. De Rycke L, Vandoooren B, Kieft I, De Keyser F, Vees EM, et al. (2005) Tumor necrosis factor alpha blockade treatment down-modulates the increased systemic and local expression of Toll-like receptor 2 and Toll-like receptor 4 in spondyloarthropathy. Arthritis Rheum 52: 2146–2150.

20. Toonen EJ, Coenen MJ, Kiewit W, Franken J, Eibhouw AM, et al. (2008) The tumor necrosis factor receptor superfamily member 1b 676T>G polymorphism in relation to response to infliximab and adalimumab treatment and disease severity in rheumatoid arthritis. Ann Rheum Dis 67: 1174–1177.

21. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 4,000 shared controls. Nature 447: 661–667.

22. Hoogendoorn EH, Hennos AR, de VF, Ross HA, Verboek AL, et al. (2006) Thyroid function and prevalence of anti-thyroid peroxidase antibodies in a population with borderline sufficient iodine intake: influences of age and sex. Clin Chem 52: 104–111.

23. Kantos A, Bratt J, Kersma S, Lamp J, Padyukov L, et al. (2007) Fcgamma receptor type IIIa genosace and response to tumor necrosis factor alpha-blocking agents in patients with rheumatoid arthritis. Arthritis Rheum 56: 440–452.

24. Enevold C, Radstake TR, Coenen MJ, Fransen J, Toonen EJ, et al. (2016) Multiplex screening of 22 single-nucleotide polymorphisms in 7 Toll-like receptors: an association study in rheumatoid arthritis. J Rheumatol 57: 905–910.

25. Taylor JD, Blythe D, Nguyen Q, Long K, Iannone MA, et al. (2001) Flow cytometric platform for high-throughput single nucleotide polymorphism analysis. Biotechniques 30: 661–669.

26. Ye C, Li MS, Taylor JD, Nguyen Q, Colton HM, et al. (2001) Flow cytometric platform for high-throughput single nucleotide polymorphism analysis. Biotechniques 30: 661–669.

27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575.