First measurement of charm production in its fixed-target configuration at the LHC
LHCb Collaboration

DOI:
10.1103/PhysRevLett.122.132002

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
LHCb Collaboration 2019, 'First measurement of charm production in its fixed-target configuration at the LHC', Physical Review Letters, vol. 122, no. 13, 132002. https://doi.org/10.1103/PhysRevLett.122.132002

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 18/07/2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?).
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
First Measurement of Charm Production in its Fixed-Target Configuration at the LHC

R. Aaij et al.*
(LHCb Collaboration)

(Received 19 October 2018; revised manuscript received 1 February 2019; published 2 April 2019)

The first measurement of heavy-flavor production by the LHCb experiment in its fixed-target mode is presented. The production of J/ψ and D^0 mesons is studied with beams of protons of different energies colliding with gaseous targets of helium and argon with nucleon-nucleon center-of-mass energies of $\sqrt{s_{NN}} = 86.6$ and 110.4 GeV, respectively. The J/ψ and D^0 production cross sections in pHe collisions in the rapidity range $[2, 4.6]$ are found to be $\sigma_{J/\psi} = 652 \pm 33({\text{stat}}) \pm 42({\text{syst}}) \text{nb/nucleon}$ and $\sigma_{D^0} = 80.8 \pm 2.4({\text{stat}}) \pm 6.3({\text{syst}}) \mu\text{b/nucleon}$, where the first uncertainty is statistical and the second is systematic. No evidence for a substantial intrinsic charm content of the nucleon is observed in the large Bjorken-\textit{x} region.

DOI: 10.1103/PhysRevLett.122.132002

In the high-density and high-temperature regime of quantum chromodynamics (QCD), the production of heavy quarks in nucleus-nucleus interactions is well suited to study the transition between ordinary hadronic matter and the hot and dense quark-gluon plasma (QGP). Heavy quarks are produced only in the early stages of the interaction, because their masses are significantly higher than the QGP critical temperature, $T_c \sim 156$ MeV [1]. Lattice QCD predictions imply that, at sufficiently high temperature, the production of heavy quark-antiquark bound states decreases due to the modification of their binding mechanism[2].

The interpretation of the charmonium $c\bar{c}$ bound states suppression, observed in nucleus-nucleus collisions at various energies[3], can be significantly sharpened by measuring charmonium yields together with the overall charm quark production[4]. The production of D^0 mesons, made of a c and a \bar{u} quark, reflects a large fraction of the overall charm quark production. The study of charmonium production in proton-nucleus collisions on various nuclear targets, where no QGP is formed, is needed to establish the charmonium suppression patterns observed in heavy-ion collisions and to understand the mechanisms underlying charmonium production [5,6].

Several effects can be studied in proton-nucleus collisions, such as the interaction of $c\bar{c}$ pairs with the target nucleons leading to a breakup of the charmonium states [7], parton shadowing (or antishadowing) in the target nucleus [8,9] that modifies charmonium production, saturation effects [10], and parton energy loss [11–13].

In this Letter, the first measurement of heavy-flavor production in a fixed-target mode at the LHC is presented. The production of J/ψ and D^0 mesons is studied in collisions of protons with energies of 4 and 6.5 TeV incident on helium and argon nuclei at rest at center-of-mass energies of $\sqrt{s_{NN}} = 86.6$ GeV and $\sqrt{s_{NN}} = 110.4$ GeV, respectively.

The LHCb detector [14,15] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing c or b quarks. The detector elements that are particularly relevant to this analysis are the VELO surrounding the $p\ p$ interaction region that allows c and b hadrons to be identified from their characteristic flight distance, a tracking system that provides a measurement of the momentum of charged particles, two ring-imaging Cherenkov detectors that are able to discriminate between different species of charged hadrons, a calorimeter system consisting of scintillating-pad and preshower detectors, electromagnetic and hadronic calorimeters, and a muon detector composed of alternating layers of iron and multiwire proportional chambers. The system for measuring overlap with gas (SMOG) device [16] enables the injection of gases with pressure of $\mathcal{O}(10^{-7})$ mbar in the beam pipe section crossing the silicon-strip vertex locator (VELO), allowing LHCb to operate as a fixed-target experiment. SMOG allows the injection of noble gases and therefore gives the unique opportunity to study nucleus-nucleus and proton-nucleus collisions on various targets. Thanks to the boost induced by the high-energy proton beam, the LHCb acceptance covers the backward rapidity hemisphere in the center-of-mass system of the reaction from a very negative center-of-mass rapidity $y^* \sim -2.5$ to $y^* \sim 0$. Therefore, the SMOG fixed-target program offers many new opportunities of physics studies [17], including the study of heavy-quark production in the large Bjorken-\textit{x} region, with x the fraction of the nucleon momentum carried by the target.
The events are triggered by the two-stage trigger system of the experiment [20]. The first level is implemented in hardware and uses information provided by the calorimeters and the muon detectors, while the second is a software trigger. The hardware trigger requires at least one identified muon for the selection of the $J/\psi \rightarrow \mu^+ \mu^-$ candidates, and a minimal activity in the calorimeter for the D^0 selection. The software trigger requires two well-reconstructed muons forming an invariant mass larger than 2700 MeV/c^2 for the J/ψ selection. For the D^0 selection, it requires a well-reconstructed vertex formed by well-identified kaon and pion tracks, both of which are required to have a transverse momentum larger than 500 MeV/c and an invariant mass between 1715 and 2015 MeV/c^2.

The data samples have been collected under particular beam conditions where proton bunches moving towards the detector do not cross any bunch moving in the opposite direction at the nominal pp interaction point. Events with J/ψ or D^0 candidates must have a reconstructed primary vertex within the fiducial region $-200 \text{mm} < z_{PV} < 200 \text{mm}$, where high reconstruction efficiencies are achieved and calibration samples available. In order to suppress residual pp collisions, events with activity in the backward region are vetoed, based on the number of hits in VELO stations upstream of the interaction region.

The offline selection of J/ψ and D^0 candidates is similar to that used in Refs. [21,22]. Specifically, events with at least one primary vertex are selected where the primary vertex is reconstructed from at least four tracks in the VELO detector. The J/ψ candidates are obtained from two oppositely signed muons forming a good-quality vertex. The well-identified muons have a transverse momentum, p_T, larger than 700 MeV/c and are required to be consistent with originating from the primary interaction point. The kaon and pion from the D^0 decay are required to be of good quality and to come from a common displaced vertex. Tight requirements are set on the kaon and pion particle identification criteria. The D^0 candidates are selected to have a decay time larger than 0.5 ps. The measurements are performed in the range of J/ψ and D^0 transverse momentum $p_T < 8 \text{ GeV}/c$ and rapidity $2.0 < y < 4.6$.

Acceptance and reconstruction efficiencies are determined using simulated $p\text{He}$ and $p\text{Ar}$ events.

In the simulation, J/ψ and D^0 mesons are generated using Pythia 8 [23,24] with a specific LHCb configuration [25] and with colliding-proton beam momenta being equal to the momenta per nucleon of the beam and target in the center-of-mass frame. The decays are described by EVTGEN [26], in which final-state radiation is generated using PHOTOS [27]. The four-momenta of the J/ψ and D^0 daughters are then extracted and embedded into $p\text{Ar}$ or $p\text{He}$ minimum bias events that are generated with the EPOS event generator [28] using beam parameters obtained from the data. Decays of hadronic particles generated with EPOS are also described by EVTGEN. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [29,30] as described in Ref. [31].

The J/ψ detection efficiency is dependent on its polarization. Since no polarization measurement has yet been made for data collected at $\sqrt{s_{NN}}$ close to 100 GeV, the polarization is assumed to be zero and no corresponding systematic uncertainty is quoted on the cross-section results. A small longitudinal polarization, described by the parameter λ_0, has been found at different energies close to $\lambda_0 = -0.1$ [32–34]. Using data from Ref. [35] and assuming a value $\lambda_0 = -0.1$, the measured J/ψ cross section would decrease by about 1% to 2.3% depending on the $J/\psi (p_T, y)$ bin [36].

The prompt J/ψ and D^0 signal yields are obtained from extended unbinned maximum-likelihood fits to their mass distributions. The fit functions are given by the sum of a crystal ball function [37] describing the J/ψ signal, and an exponential function for the background. The D^0 signal is fitted by the sum of two Gaussian functions, and an exponential function for the background. Figure 1 shows...
TABLE I. Systematic and statistical uncertainties on the J/ψ and D^0 yields in %. Systematic uncertainties correlated between bins affect all measurements by the same relative amount. Ranges denote the minimum and the maximum values among the y or p_T bins.

Source	J/ψ	D^0
Correlated between bins		
Signal selection efficiency	pAr 1.4%	pAr 1.4%
	pHe 1.1%	pHe 1.1%
Tracking efficiency	pAr 1.9%	pHe 3.5%
	pHe 1.1%	pHe 3.2%
Particle identification efficiency	pAr (1.8–1.9)%	pAr (4.3–5.4)%
	pHe (0.9–1.0)%	pHe (1.1–2.6)%
Uncorrelated between bins		
Signal determination	pAr (0–0.9)%	(1.6–2.6)%
	pHe (0–0.9)%	(1.6–2.5)%
Tracking efficiency	pAr (0.1–1.9)%	(0.2–2.6)%
	pHe (0.2–1.8)%	(0.3–2.7)%
Simulation sample	pAr (1.8–2.0)%	(2.4–2.5)%
	pHe (1.7–3.4)%	(2.5–2.8)%
Particle identification efficiency	pAr (0–1.9)%	(0–5.6)%
	pHe (0–0.8)%	(0–3.7)%
Statistical uncertainties	pAr (7.8–12.7)%	(2.8–5.8)%
	pHe (7.9–11.3)%	(4.2–10.1)%

Another source of uncertainty is associated with the accuracy of the simulation used to compute the acceptances and efficiencies. This systematic uncertainty includes the statistical uncertainty due to the finite size of the simulation sample and the differences in the distributions of the transverse momentum and rapidity between data and simulation. This systematic uncertainty is computed in each y and p_T bin. Systematic uncertainties in tracking and particle identification efficiencies are mainly related to the differences between the track multiplicity in pAr, pHe, and $p p$ collisions. The tracking systematic uncertainty also takes into account the difference in tracking efficiency between the data and the simulation.

The cross-section measurement is made for the pHe sample only, for which the luminosity determination is available. The luminosity is determined from the yield of electrons elastically scattering off the target He atoms [39] to be $\mathcal{L}_{\text{coll}} = 7.58 \pm 0.47 \text{ nb}^{-1}$. The measured J/ψ and D^0 cross sections per target nucleon within $y \in [2, 4, 6]$, after correction for the branching fractions $J/\psi \to \mu^+\mu^-$ and $D^0 \to K^+\pi^-$, are

$$\sigma_{J/\psi} = 652 \pm 33(\text{stat}) \pm 42(\text{syst}) \text{ nb/nucleon},$$

$$\sigma_{D^0} = 80.8 \pm 2.4(\text{stat}) \pm 6.3(\text{syst}) \text{ mb/nucleon},$$

In order to compare to previous experimental results at different energies, both J/ψ and D^0 cross sections are extrapolated to the full phase-space using PYTHIA 8 with a specific LHCb tuning and with the CT09MCS PDF set [40]. The extrapolation factor is $2f$, where $f = 0.940$ for the J/ψ and $f = 0.965$ for the D^0, and describes the extrapolation from $y' \in [-2.53, 0.07]$ to the full backward (negative) rapidity hemisphere, assuming forward-backward symmetry. The full phase-space cross sections are

$$\sigma_{J/\psi} = 1225.6 \pm 100.7 \text{ nb/nucleon},$$

$$\sigma_{D^0} = 156.0 \pm 13.1 \text{ mb/nucleon},$$

where statistical and systematic uncertainties have been added quadratically and no systematic uncertainties due to the extrapolation are included. In addition, the D^0 cross section is scaled with the global fragmentation factor $f(c \to D^0) = 0.542 \pm 0.024$ [41], in order to obtain the $c\bar{c}$ production cross section $\sigma_{c\bar{c}} = 288 \pm 24.2 \pm 6.9 \text{ mb/nucleon}$. The last uncertainty reflects the limited knowledge of the fragmentation factor. An overview of J/ψ and $c\bar{c}$ cross-section measurements at different center-of-mass energies by different experiments are shown in Fig. 2 including this measurement. The J/ψ cross section is compared to a fit based on NLO NRQCD calculations [42] and the $c\bar{c}$ cross section to NLO pQCD calculations [43,44]. The $c\bar{c}$ cross section shows a small tension with respect to theoretical calculations as already observed at 200 GeV, while the J/ψ cross-section measurement is in
good agreement with the fit based on NLO pQCD predictions [45–47], for \(pp\) (CT14NLO PDF set [48]) and \(p\text{He}\) (CT14NLO + nCTEQ15 PDF [49] sets) collisions. The predictions underestimate the measured total cross section. The HELAC-ONIA predictions are rescaled by a factor 1.78 in Fig. 3 to compare the shape of the distributions.

FIG. 2. Left: \(J/\psi\) cross-section measurements as a function of the center-of-mass energy. Experimental data, represented by black points, are taken from Ref. [42]. The band corresponds to a fit based on NLO NRQCD calculations [42]. Right: \(c\bar{c}\) cross-section measurements as a function of the center-of-mass energy. Experimental data, represented by black points, are taken from Ref. [43]. The yellow band corresponds to NLO pQCD calculations [44]. Red points correspond to the \(p\text{He}\) results from the present analysis.

FIG. 3. Differential \(J/\psi\) production cross sections for (top) \(p\text{He}\) and differential \(J/\psi\) yields for (bottom) \(p\text{Ar}\) collisions, as a function of (left) center-of-mass rapidity \(y^*\) and (right) transverse momentum \(p_T\). The data points mark the bin centers. The quadratic sum of statistical and uncorrelated systematic uncertainties are indicated by the vertical black lines. The correlated systematic uncertainties are indicated by the grey area. Theoretical predictions are described in the text. The lower panel of each plot shows the ratio of data to HELAC-ONIA \(pp\) predictions.
FIG. 4. Differential D^0 production cross sections for (top) pHe and differential D^0 yields for (bottom) pAr collisions, as a function of (left) center-of-mass rapidity y^* and (right) transverse momentum p_T. The data points mark the bin centers. The quadratic sum of statistical and uncorrelated systematic uncertainties are indicated by the vertical black lines. The correlated systematic uncertainties are indicated by the gray area. Theoretical predictions are described in the text. The lower panel of each plot shows the ratio of data to HELAC-ONIA pp predictions.

Data are also compared with phenomenological parametrizations, interpolated to the present data energies, based on Refs. [12,50]. Solid and dashed red lines are obtained with linear and logarithmic interpolations, respectively, between the results from the E789 (pAu, $\sqrt{s_{NN}} = 38.7$ GeV) [51], HERA-B (pC, $\sqrt{s_{NN}} = 41.5$ GeV) [52], and PHENIX (pp, $\sqrt{s} = 200$ GeV) [53] experiments. The differential yields of J/ψ as functions of y^* and p_T, obtained from pAr data, are also shown in Fig. 3. Since the luminosity measurement is not available, only differential distributions with arbitrary normalization are shown.

The D^0 differential cross sections per target nucleon obtained for the pHe dataset, as functions of y^* and p_T, are shown in Fig. 4 and given in Ref. [36]. The HELAC-ONIA predictions underestimate the measured total cross section. The HELAC-ONIA predictions are rescaled by a factor 1.44 in Fig. 4 to compare the shape of the distributions. Differential yields, with arbitrary normalization, of D^0 as functions of y^* and p_T obtained from pAr data are also shown.

In fixed-target configuration, the LHCb acceptance gives access to the large Bjorken-x region of the target nucleon (up to $x \sim 0.37$ for D^0 mesons). In this region, because of the small number of nucleons in the helium nucleus, nuclear effects affecting $c\bar{c}$ pairs are expected to be small. On the other hand, as suggested in Refs. [18,19], the intrinsic charm contribution, based on a valencelike parton distribution, can be substantial at large Bjorken-x. Using the approximation for x, the fraction of the nucleon momentum carried by the target parton,

$$x \approx \frac{2m_c}{\sqrt{s_{NN}}} \exp(-y^*),$$

where $m_c = 1.28$ GeV/c^2 is the mass of the c quark [54], the Bjorken-x range $x \in [0.17, 0.37]$ is obtained for the most backward bin. In this range any substantial intrinsic charm contribution should be seen in the pHe results. As shown in Figs. 3 and 4, no strong differences are observed between pHe data and the theoretical predictions which do not include any intrinsic charm contribution. Therefore, within uncertainties, no evidence of substantial intrinsic charm content of the nucleon is observed in the data. Future measurements with larger samples and more accurate theoretical predictions will permit us to perform more quantitative studies, including the double-differential $[y^*, p_T]$ production cross section.

In summary, we report the first measurement of heavy flavor production in fixed-target configuration at the LHC.
The J/ψ and D^0 production cross sections, measured in pHe collisions at $\sqrt{s_{\text{NN}}} = 86.6$ GeV in the rapidity range $[2, 4.6]$, are found to be $\sigma_{J/\psi} = 652\pm 33 \text{(stat)} \pm 42 \text{(syst)} \text{nb}$ per nucleon and $\sigma_{D^0} = 80.8\pm 2.4 \text{(stat)} \pm 6.3 \text{(syst)} \mu\text{b}$ per nucleon. No evidence for a substantial intrinsic charm content of the nucleon is found.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); ANR, Labex P2IO and OCEVU, and EPLANET, Marie Skłodowska-Curie Actions and ERC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), ININF (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages we depend on. Individual groups or members have contributed behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (USA).

[1] A. Bazavov, Chiral crossover in QCD at zero and non-zero chemical potentials, arXiv:1812.08235.
[2] S. Digal, O. Kaczmarek, F. Karsch, and H. Satz, Heavy quark interactions in finite temperature QCD, Eur. Phys. J. C 43, 71 (2005).
[3] L. Klumberg and H. Satz, Color deconfinement and charm production in nuclear collisions, arXiv:0901.3831.
[4] H. Satz and K. Sridhar, Charm production versus open charm in nuclear collisions, Phys. Rev. D 50, 3557 (1994).
[5] Z. Conesa del Valle et al., Quarkonium production in high energy proton-proton and proton-nucleus collisions, Nucl. Phys. B, Proc. Suppl. 214, 3 (2011).
[6] E. G. Ferreiro, F. Fleuret, J. P. Lansberg, and A. Rakotobafindraje, Cold nuclear matter effects on J/ψ production: Intrinsic and extrinsic transverse momentum effects, Phys. Lett. B 680, 50 (2009).
[7] C. Lourenço, R. Vogt, and H. Wöhr, Energy dependence of J/ψ absorption in proton-nucleus collisions, J. High Energy Phys. 02 (2009) 014.
[8] D. de Florian and R. Sassot, Nuclear parton distributions at next to leading order, Phys. Rev. D 69, 074028 (2004).
[9] K. J. Eskola, H. Paukkunen, and C. A. Salgado, EPS09: A new generation of NLO and LO nuclear parton distribution functions, J. High Energy Phys. 04 (2009) 065.
[10] J. L. Albacete and C. Marquet, Gluon saturation and initial conditions for relativistic heavy ion collisions, Prog. Part. Nucl. Phys. 76, 1 (2014).
[11] F. Arleo and S. Peigné, J/ψ Suppression in p-A Collisions from Parton Energy Loss in Cold QCD Matter, Phys. Rev. Lett. 109, 122301 (2012).
[12] F. Arleo, R. Kolevatov, S. Peigné, and M. Rostamova, Centrality and p_T dependence of J/ψ suppression in proton-nucleus collisions from parton energy loss, J. High Energy Phys. 05 (2013) 155.
[13] F. Arleo, S. Peigné, and T. Sami, Revisiting scaling properties of medium-induced gluon radiation, Phys. Rev. D 83, 114036 (2011).
[14] A. A. Alves, Jr. et al. (LHCb Collaboration), The LHCb detector at the LHC, J. Instrum. 3, S08005 (2008).
[15] R. Aaij et al. (LHCb Collaboration), LHCb detector performance, Int. J. Mod. Phys. A 30, 1530022 (2015).
[16] R. Aaij et al. (LHCb Collaboration), Precision luminosity measurements at LHCb, J. Instrum. 9, P12005 (2014).
[17] S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, Physics opportunities of a fixed-target experiment using LHC beams, Phys. Rep. 522, 239 (2013).
[18] J. Pumplin, H. L. Lai, and W. K. Tung, Charm parton content of the nucleon, Phys. Rev. D 75, 054029 (2007).
[19] S. Dulat, T.-J. Hou, J. Gao, J. Huston, J. Pumplin, C. Schmidt, D. Stump, and C.-P. Yuan, Intrinsic charm parton distribution functions from CTEQ-TEA global analysis, Phys. Rev. D 89, 073004 (2014).
[20] R. Aaij et al. (LHCb Collaboration), The LHCb trigger and its performance in 2011, J. Instrum. 8, P04022 (2013).
[21] R. Aaij et al. (LHCb Collaboration), Study of J/ψ production and cold nuclear matter effects in pPb collisions at $\sqrt{s_{\text{NN}}} = 5$ TeV, J. High Energy Phys. 02 (2014) 072.
[22] LHCb Collaboration, Study of cold nuclear matter effects using prompt D^0 meson production in pPb collisions at LHCb, Report No. LHCb-CONF-2016-003, http://cds.cern.ch/record/2138946.
[23] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008).
[24] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026.
[25] I. Belyaev et al. (LHCb Collaboration), Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331, 032047 (2011).
[26] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[27] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45, 97 (2006).
[28] P. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, EPOS LHC. Test of collective hadronization with...
data measured at the CERN Large Hadron Collider, Phys. Rev. C 92, 034906 (2015).
PHYSICAL REVIEW LETTERS 122, 132002 (2019)

X. Yuan,61 O. Yushchenko,39 K. A. Zarebski,47 M. Zavertyaev,11,6 D. Zhang,65 L. Zhang,3 W. C. Zhang,3,2 Y. Zhang,7 A. Zhelezov,12 Y. Zheng,63 X. Zhu,3 V. Zhukov,9,35 J. B. Zonneveld,52 and S. Zucchelli15

(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
7LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
8LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
9I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
10Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
11Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
12Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
13School of Physics, University College Dublin, Dublin, Ireland
14INFN Sezione di Bari, Bari, Italy
15INFN Sezione di Bologna, Bologna, Italy
16INFN Sezione di Ferrara, Ferrara, Italy
17INFN Sezione di Firenze, Firenze, Italy
18INFN Laboratori Nazionali di Frascati, Frascati, Italy
19INFN Sezione di Genova, Genova, Italy
20INFN Sezione di Milano-Bicocca, Milano, Italy
21INFN Sezione di Milano, Milano, Italy
22INFN Sezione di Padova, Padova, Italy
23INFN Sezione di Pisa, Pisa, Italy
24INFN Sezione di Roma Tor Vergata, Roma, Italy
25INFN Sezione di Roma La Sapienza, Roma, Italy
26INFN Sezione di Torino, Turin, Italy
27Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
28Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
29Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
30AGH—University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
31National Center for Nuclear Research (NCBJ), Warsaw, Poland
32Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
33Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
34Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
35Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
36Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
37Yandex School of Data Analysis, Moscow, Russia
38Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
39Institute for High Energy Physics (IHEP), Protvino, Russia
40ICCCUB, Universitat de Barcelona, Barcelona, Spain
41Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
42European Organization for Nuclear Research (CERN), Geneva, Switzerland
43Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
44Physik-Institut, Universität Zürich, Zürich, Switzerland
45NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
46Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
47University of Birmingham, Birmingham, United Kingdom
48H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
49Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
50Department of Physics, University of Warwick, Coventry, United Kingdom
51STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
52School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
53School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

132002-10
\(^5\) Also at Sezione INFN di Trieste, Trieste, Italy.
\(^7\) Also at Escuela Agrícola Panamericana, San Antonio de Oriente, Honduras.
\(^8\) Also at School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China.
\(^a\) Also at Physics and Micro Electronic College, Hunan University, Changsha City, China.
\(^ab\) Also at National Research University Higher School of Economics, Moscow, Russia.