The q-Log-convexity of the Generating Functions of the Squares of Binomial Coefficients

William Y. C. Chen1, Robert L. Tang2,
Larry X. W. Wang3 and Arthur L. B. Yang4

Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P. R. China
1chen@nankai.edu.cn, 2tangling@cfc.nankai.edu.cn,
$^3wxw@cfc.nankai.edu.cn, 4yang@nankai.edu.cn

Abstract. We prove a conjecture of Liu and Wang on the q-log-convexity of the polynomial sequence $\{\sum_{k=0}^{n} \binom{n}{k}^2 q^k\}_{n \geq 0}$. By using Pieri’s rule and the Jacobi-Trudi identity for Schur functions, we obtain an expansion of a sum of products of elementary symmetric functions in terms of Schur functions with nonnegative coefficients. Then the principal specialization leads to the q-log-convexity. We also prove that a technical condition of Liu and Wang holds for the squares of the binomial coefficients. Hence we deduce that the linear transformation with respect to the triangular array $\{(\binom{n}{k})^2\}_{0 \leq k \leq n}$ is log-convexity preserving.

Keywords: q-log-convexity, Schur positivity, Pieri’s rule, the Jacobi-Trudi identity, principal specialization.

AMS Classification: 05E05, 05E10

1 Introduction

The objective of this paper is to prove a conjecture of Liu and Wang [15] on the q-log-convexity of the following polynomials

$$W_n(q) = \sum_{k=0}^{n} \binom{n}{k}^2 q^k.$$ (1.1)

The polynomial $W_n(q)$ has appeared as the rank generating function of the lattice of noncrossing partitions of type B on $[n]$, see Reiner [10]. For the type A case, the rank generating function of the lattice of noncrossing partitions on $[n]$ is equal to the Narayana polynomial

$$N_n(q) = \sum_{k=0}^{n} \frac{1}{1} \binom{n}{k} \binom{n}{k+1} q^k.$$ (1.2)
Liu and Wang [15] also conjectured that $N_n(q)$ are q-log-convex. Subsequently, this conjecture was proved by Chen, Wang and Yang [5].

The polynomials $W_n(q)$ also arise in the theory of growth series of the root lattice. Recall that the classical root lattice A_n is generated by $\mathcal{M} = \{e_i - e_j : 0 \leq i, j \leq n + 1 \text{ with } i \neq j\}$. Then the growth series is defined to be the generating function

$$G(q) = \sum_{k \geq 0} S(k)q^k,$$

where $S(k)$ is the number of elements $u \in A_n$ with length k. It is known that $G(q)$ is a rational function of the form

$$G(q) = \frac{h(q)}{(1 - q)^d},$$

where d is the rank of A_n and $h(q)$ is a polynomial of degree less than or equal to d. The polynomial $h(q)$ is defined to be the coordinator polynomial of the growth series, see [2]. Recently, Ardila et al. [1] have shown that the above coordinator polynomial $h(q)$ of A_n equals the polynomial $W_n(q)$.

Recall that a sequence $\{a_k\}_{k \geq 0}$ of nonnegative numbers is log-convex if $a_{k-1}a_{k+1} \geq a_k^2$ for any $k \geq 1$. The q-log-convexity is a property defined in [15] for sequences of polynomials over the field of real numbers, similar to the concept of q-log-concavity introduced by Stanley and subsequently studied by Butler [4], Krattenthaler [8], Leroux [9] and Sagan [11]. Given a sequence $\{f_n(q)\}_{n \geq 0}$, we say that it is q-log-convex if for any $k \geq 1$ the difference

$$f_{k+1}(q)f_{k-1}(q) - f_k(q)^2$$

has nonnegative coefficients as a polynomial of q. It has been shown that many combinatorial polynomials are q-log-convex, such as the Bell polynomials, the Eulerian polynomials, the Bessel polynomials, the Ramanujan polynomials and the Dowling polynomials, see Liu and Wang [15], and Chen, Wang and Yang [6].

Clearly, if the sequence $\{f_n(q)\}_{n \geq 0}$ is q-log-convex, then for each fixed positive number q the sequence $\{f_n(q)\}_{n \geq 0}$ is log-convex. It can be easily verified that the sequence of the central binomial coefficients $\{b_n\}_{n \geq 0}$ is log-convex, where

$$b_n = \binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2.$$

Došlić and Veljan [7] obtained the log-convexity of the sequence of the central Delannoy numbers $\{d_n\}_{n \geq 0}$, where

$$d_n = \sum_{k=0}^{n} \binom{n}{k}^2 2^k.$$
These two examples lead to the conjecture of the q-log-convexity of $W_n(q)$, see [15, Conjecture 5.3]. The first result of this paper is to give an affirmative answer to this conjecture.

Theorem 1.1 The polynomials $W_n(q)$ form a q-log-convex sequence.

By using the principal specialization, the q-log-convexity of $W_n(q)$ follows from the Schur positivity of a sum of products of elementary symmetric functions. This Schur positivity is based on an identity on symmetric functions, which is proved by showing that both sides satisfy the same recurrence relations. To establish the required recurrence relation, we employ the Jacobi-Trudi identity and Pieri’s rule for Schur functions. We would like to note that in general the polynomials

$$
\sum_{k=0}^{n} \binom{n}{k}^m q^k, \quad n \geq 0
$$

are not q-log-convex for $m \geq 3$.

The second result of this paper is concerned with the condition on linear transformations that preserve log-convexity. Let $\{a(n, k)\}_{0 \leq k \leq n}$ be a triangular array of numbers. The linear transformation on a sequence $\{x_k\}_{k \geq 0}$ with respect to a triangular array $\{a(n, k)\}_{0 \leq k \leq n}$ is defined by

$$
y_n = \sum_{k=0}^{n} a(n, k)x_k.
$$

Such a transformation is called log-convexity preserving if $\{y_n\}_{n \geq 0}$ is log-convex whenever $\{x_k\}_{k \geq 0}$ is log-convex. Liu and Wang [15] obtained a sufficient condition under which the transformation with respect to a given triangular array is log-convexity preserving.

Given a triangular array $\{a(n, k)\}_{0 \leq k \leq n}$, define $\alpha(n, r, k)$ by

$$
\alpha(n, r, k) = a(n+1, k)a(n-1, r-k) + a(n+1, r-k)a(n-1, k) - 2a(n, r-k)a(n, k),
$$

where $n \geq 1$, $0 \leq r \leq 2n$ and $0 \leq k \leq \left\lfloor \frac{r}{2} \right\rfloor$. The sufficient condition of Liu and Wang is stated as follows.

Theorem 1.2 ([15, Theorem 4.8]) Assume that the polynomials

$$
A_n(q) = \sum_{k=0}^{n} a(n, k)q^k
$$

form a q-log-convex sequence. For any given n and r, if there exists an integer $k' = k'(n, r)$ such that $\alpha(n, r, k) \geq 0$ for $k \leq k'$ and $\alpha(n, r, k) \leq 0$ for $k > k'$, then the linear transformation with respect to the triangular array $\{a(n, k)\}_{0 \leq k \leq n}$ is log-convexity preserving.
Liu and Wang conjectured that the above sufficient condition holds for the coefficients of $W_n(q)$. We will also prove this conjecture. So we deduce the following conclusion.

Theorem 1.3 The linear transformation with respect to the triangular array $\binom{n^2}{k}$ for $0 \leq k \leq n$ is log-convexity preserving.

This paper is organized as follows. We recall some definitions and known results on symmetric functions in Section 2. In Section 3, we will give an induction proof of the identity which implies the desired Schur positivity, though a little more complicated. In Section 4, we will give the proofs of Theorem 1.1 and Theorem 1.3.

2 Background on symmetric functions

Throughout this paper we will adopt notation and terminology on partitions and symmetric functions in Stanley [13]. Recall that a partition λ of a nonnegative integer n is a weakly decreasing sequence $(\lambda_1, \lambda_2, \ldots)$ of non-negative integers satisfying $\sum \lambda_i = n$, denoted $\lambda \vdash n$. We usually omit the parts $\lambda_i = 0$. We also denote a partition $\lambda \vdash n$ by $(n^{m_n}, \ldots, 2^{m_2}, 1^{m_1})$ if λ has m_i i’s for $1 \leq i \leq n$. Let $\text{Par}(n)$ denote the set of all partitions of n.

If $\lambda \vdash n$, we draw a left-justified array of n squares with λ_i squares in the i-th row. This array is called the *Young diagram* of λ. By transposing the diagram of λ, we get the *conjugate partition* of λ, denoted λ'. We use $\mu \subseteq \lambda$ to denote that the Young diagram of μ is contained in the diagram of λ.

A semistandard Young tableau of shape λ is an array $T = (T_{ij})$ of positive integers of shape λ such that it is weakly increasing in each row and strictly increasing in each column. The type of T is defined as the composition $\alpha = (\alpha_1, \alpha_2, \ldots)$, where α_i is the number of i's in T. Let x denote the variables $\{x_1, x_2, \ldots\}$. If $\text{type}(T) = \alpha$, then we write

$$x^T = x_1^{\alpha_1} x_2^{\alpha_2} \cdots.$$

The *Schur function* $s_\lambda(x)$ is defined as the generating function

$$s_\lambda(x) = \sum_T x^T,$$

summed over all semistandard Young tableaux T of shape λ. When $\lambda = \emptyset$, we set $s_\emptyset(x) = 1$.

2
It is well known that Schur functions \(s_\lambda(x) \) form a basis for the ring of symmetric functions. A symmetric function \(f(x) \) is called \textit{Schur positive} if the coefficients \(a_\lambda \) are all nonnegative in the Schur expansion \(f(x) = \sum_\lambda a_\lambda s_\lambda(x) \).

When \(\lambda = (1^k) \) for \(k \geq 1 \), the Schur function \(s_\lambda(x) \) becomes the \(k \)-th elementary symmetric function \(e_k(x) \), i.e.,
\[
 s_{(1^k)}(x) = e_k(x) = \sum_{1 \leq i_1 < \cdots < i_k} x_{i_1} \cdots x_{i_k}. \tag{2.3}
\]

The dual Jacobi-Trudi identity gives an expression of the Schur function \(s_\lambda(x) \) in terms of elementary symmetric functions.

\textbf{Theorem 2.1 ([13, Corollary 7.16.2])} Let \(\lambda \) be a partition with the largest part \(\leq n \) and \(\lambda' \) its conjugate. Then

\[
 s_\lambda(x) = \det(e_{\lambda',-i+j}(x))_{i,j=1}^n,
\]

where \(e_0 = 1 \) and \(e_k = 0 \) for \(k < 0 \).

Given any symmetric function \(f(x) \), we may omit the variable set \(x \) if no confusion arises in the context. Now let us review the definition of the principal specialization \(ps_n^1 \) of a symmetric function. For any symmetric function \(f \), the action of \(ps_n^1 \) is defined as

\[
 ps_n^1(f) = f(1, \ldots, 1, 0, 0, \ldots). \tag{2.3}
\]

In particular, by (2.3), we have \(ps_n^1(e_k) = \binom{n}{k} \) and

\[
 ps_n^1(e_k) = ps_{n-1}^1(e_k + e_{k-1}), \tag{2.4}
\]

which is a restatement of the relation

\[
 \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}. \]

We will also need the dual version of Pieri’s rule which expresses the product of a Schur function \(s_\mu \) and an elementary symmetric function \(e_k \) in terms of Schur functions.

\textbf{Theorem 2.2 ([13])} We have

\[
 s_\mu e_k = \sum_\lambda s_\lambda,
\]

summed over all partitions \(\lambda \) such that \(\mu \subseteq \lambda \) and the difference of the Young diagrams of \(\lambda \) and \(\mu \) contains no two squares in the same row.
3 A Schur Positivity Identity

The objective of this section is to establish the following Schur positivity theorem which will be used to prove the q-log-convexity of $W_n(q)$.

Theorem 3.1 For any $r \geq 1$, we have

\[
\sum_{k=0}^{r} (e_{k-1}e_{k-1}e_{r-k}e_{r-k} + e_{k-2}e_{k}e_{r-k}e_{r-k} - 2e_{k-1}e_{k}e_{r-k}e_{r-k}) = \sum_{\lambda} s_{\lambda},
\]

where λ sums over all partitions of $2r-2$ of the form $(4^{i_4}, 3^{2i_3}, 2^{2i_2}, 1^{2i_1})$ with i_1, i_2, i_3, i_4 being nonnegative integers.

Before proving the above theorem, it is informative to give examples for $r = 3, 4, 5$. By using the Maple package ACE [16], or SF [14], we find that

\[
\begin{align*}
\sum_{k=0}^{3} & (e_{k-1}e_{k-1}e_{3-k}e_{3-k} + e_{k-2}e_{k}e_{3-k}e_{3-k} - 2e_{k-1}e_{k}e_{3-k}e_{3-k}) \\
& = s_{(1^4)} + s_{(2^2)} + s_{(4)}, \\
\sum_{k=0}^{4} & (e_{k-1}e_{k-1}e_{4-k}e_{4-k} + e_{k-2}e_{k}e_{4-k}e_{4-k} - 2e_{k-1}e_{k}e_{4-k}e_{4-k}) \\
& = s_{(1^6)} + s_{(2^2,1^2)} + s_{(4,1^2)} + s_{(3^2)}, \\
\sum_{k=0}^{5} & (e_{k-1}e_{k-1}e_{5-k}e_{5-k} + e_{k-2}e_{k}e_{5-k}e_{5-k} - 2e_{k-1}e_{k}e_{5-k}e_{5-k}) \\
& = s_{(4,2^2)} + s_{(2^4)} + s_{(1^8)} + s_{(2^2,1^4)} + s_{(2^4)} + s_{(4,1^4)} + s_{(3^2,1^2)}.
\end{align*}
\]

Let $L(r)$ and $R(r)$ denote the left-hand side and the right-hand side of (3.5), respectively. The key idea of the proof of Theorem 3.1 is to show that $L(r)$ and $R(r)$ satisfy the same recurrence relations. It is easy to find the recurrence relation of $R(r)$. To derive the recurrence relation of $L(r)$, we will give several lemmas. For the sake of presentation, we will use the following notation. For $t \geq 0$, let

\[
\begin{align*}
A_1(t, k, i, j) &= e_{k}s_{(3^{t}, 2^{k-i+j}, 1^{4t-3k-2j-3})}, \\
A_2(t, k, i, j) &= e_{k}s_{(3^{t}, 2^{k-i+j}, 1^{4t-3k-2j-2})}, \\
A_3(t, k, i, j) &= e_{k-1}s_{(3^{t+1}, 2^{k-i+j}, 1^{4t+1-3k-2j-3})}, \\
A_4(t, k, i, j) &= e_{k}s_{(3^{t}, 2^{k-i+j-1}, 1^{4t-3k-2j-3})}, \\
B_1(t, k, i, j) &= e_{k}s_{(3^{t}, 2^{k-i+j}, 1^{4t-3k-2j-3})},
\end{align*}
\]
\[B_2(t, k, i, j) = e_k s(3^i 2^k - i + j, 1^{4t - 3k - 2j - i - 2}), \]
\[B_3(t, k, i, j) = e_{k-1} s(3^i 2^k - i + j, 1^{4t - 3k - 2j - i - 1}), \]
\[B_4(t, k, i, j) = e_k s(3^i 2^k - i + j - 1, 1^{4t - 3k - 2j - i - 1}), \]

and let

\[A_1(t) = \sum_{k=0}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} A_1(t, k, i, j), \]
\[A_2(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} A_2(t, k, i, j), \]
\[A_3(t) = \sum_{k=1}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} A_3(t, k, i, j), \]
\[A_4(t) = \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k+1} A_4(t, k, i, j), \]
\[B_1(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} B_1(t, k, i, j), \]
\[B_2(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-2} B_2(t, k, i, j), \]
\[B_3(t) = \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} B_3(t, k, i, j), \]
\[B_4(t) = \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} B_4(t, k, i, j). \]

The following lemma gives explicit expressions for \(L(r) \) according to the parity of \(r \).

Lemma 3.2 For \(t \geq 0 \) we have

\[
L(2t + 1) = A_1(t) + A_2(t) - A_3(t) - A_4(t),
\]

\[
L(2t) = B_1(t) + B_2(t) - B_3(t) - B_4(t).
\]

Proof. For any \(r \geq 0 \), we have

\[
L(r) = \sum_{k=0}^{r} \left(e_{k-1} e_{k-1} e_{r-k} e_{r-k} + e_{k-2} e_k e_{r-k} e_{r-k} - 2e_{k-1} e_k e_{r-k-1} e_{r-k} \right)
\]
By the dual Jacobi-Trudi identity, we obtain that

\[= \sum_{k=0}^{r} (e_{k-1} e_{k-1} e_{r-k} e_{r-k} - e_{k-1} e_{k} e_{r-k} e_{r-k}) \]

\[+ \sum_{k=0}^{r} (e_{k-2} e_{k} e_{r-k} e_{r-k} - e_{k-1} e_{k-1} e_{r-k} e_{r-k}) \]

\[= \sum_{k=0}^{r} e_{k-1} e_{r-k} \det \begin{pmatrix} e_{k-1} & e_{k} \\ e_{r-k} & e_{r-k} \end{pmatrix} \]

\[+ \sum_{k=0}^{r} e_{k} e_{r-k} \det \begin{pmatrix} e_{k-2} & e_{k-1} \\ e_{r-k} & e_{r-k} \end{pmatrix}. \]

By the dual Jacobi-Trudi identity, we obtain that

\[L(r) = \sum_{k=0}^{r} e_{k-1} e_{r-k} s_{(2r-k, 1^{2k-r-1})} - \sum_{k=0}^{r} e_{k-1} e_{r-k} s_{(2k, 1^{r-2k-1})} \]

\[+ \sum_{k=0}^{r} e_{k} e_{r-k} s_{(2r-k, 1^{2k-r-2})} - \sum_{k=0}^{r} e_{k} e_{r-k} s_{(2k-1, 1^{r-2k})}. \]

Applying the dual version of Pieri’s rule to the products \(e_{k-1} s_{(2r-k, 1^{2k-r-1})} \), \(e_{r-k} s_{(2k, 1^{r-2k-1})} \), \(e_{k-1} s_{(2r-k, 1^{2k-r-2})} \) and \(e_{r-k} s_{(2k-1, 1^{r-2k})} \), we get

\[L(r) = \sum_{k=0}^{r} \sum_{i=0}^{r-k} \sum_{j=0}^{2k-r-1} e_{r-k} s_{(3r, 2^{r-k-i+j}, 1^{2k-r-2-j+k-i-j})} \]

\[- \sum_{k=0}^{r} \sum_{i=0}^{r-k} \sum_{j=0}^{r-2k-1} e_{k-1} s_{(3^i, 2^{r-k-i+j}, 1^{r-2k-j+r-k-i-j})} \]

\[+ \sum_{k=0}^{r} \sum_{i=0}^{r-k} \sum_{j=0}^{2k-r-2} e_{r-k} s_{(3^i, 2^{r-k-i+j}, 1^{2k-r-2-j+k-i-j})} \]

\[- \sum_{k=0}^{r} \sum_{i=0}^{r-k} \sum_{j=0}^{k-1} e_{r-k} s_{(3^i, 2^{r-k-i+j}, 1^{r-2k-j+r-k-i-j})}. \]

Setting \(r = 2t \) or \(r = 2t + 1 \), we get the required relations.

To find a recurrence relation of \(L(r) \), let us recall an operator \(\Delta^\mu \) associated with a partition \(\mu \), which acts on symmetric functions. This operator was introduced by Chen, Wang and Yang [5]. Given two partitions \(\lambda \) and \(\mu \), let \(\lambda \cup \mu \) be the partition whose parts are obtained by taking the union of the parts of \(\lambda \) and \(\mu \). For a symmetric function \(f \) with the expansion

\[f = \sum_{\lambda} a_{\lambda} s_{\lambda}, \]

\[= \sum_{k=0}^{r} (f - e_{r-k} s_{(2r-k, 1^{2k-r-1})}) + \sum_{k=0}^{r} (f - e_{r-k} s_{(2k, 1^{r-2k-1})}) \]

\[+ \sum_{k=0}^{r} (f - e_{r-k} s_{(2r-k, 1^{2k-r-2})}) - \sum_{k=0}^{r} (f - e_{r-k} s_{(2k-1, 1^{r-2k})}). \]

\[= \sum_{k=0}^{r} e_{k-1} e_{r-k} \Delta^\mu \]
the action of Δ^μ on f is defined by

$$\Delta^\mu(f) = \sum_\lambda a_\lambda s_\lambda \cup \mu.$$

In order to compute the difference $L(2t + 1) - \Delta^{(1,1)}L(2t)$, we need to evaluate $A_m(t, k, i, j) - \Delta^{(1,1)}(B_m(t, k, i, j))$ for $1 \leq m \leq 4$. In fact, we will be able to express these differences as double sums of Schur functions. For $t \geq 0$, let

$$T_1(t, i, j, k) = \sum_{a=0}^{\beta_1+1} \sum_{b=0}^{\min(\beta_2, \beta_3+1)} P(t, k + 1, i, j - 1, a, b),$$

$$T_2(t, i, j, k) = \sum_{a=0}^{\beta_1} \sum_{b=0}^{\min(\beta_2, \beta_3)} P(t, k, i, j, a, b),$$

$$T_3(t, i, j, k) = \sum_{a=0}^{\beta_1+1} \sum_{b=0}^{\min(\beta_2, \beta_3+1)} P(t, k + 1, i, j - 1, a, b),$$

$$T_4(t, i, j, k) = \sum_{a=0}^{\beta_1} \sum_{b=0}^{\min(\beta_2, \beta_3)} P(t, k, i, j, a, b),$$

$$T_5(t, i, j, k) = \sum_{a=0}^{\beta_1-1} \sum_{b=0}^{\min(\beta_2, \beta_3-1)} P(t, k, i, j, a, b),$$

$$T_6(t, i, j, k) = \sum_{a=0}^{\beta_1-2} \sum_{b=0}^{\min(\beta_2, \beta_3-2)} P(t, k - 1, i, j + 1, a, b),$$

$$T_7(t, i, j, k) = \sum_{a=0}^{\beta_1-1} \sum_{b=0}^{\min(\beta_2-1, \beta_3-1)} P(t, k, i, j, a, b),$$

$$T_8(t, i, j, k) = \sum_{a=0}^{\beta_1-2} \sum_{b=0}^{\min(\beta_2-1, \beta_3-2)} P(t, k - 1, i, j + 1, a, b),$$

where

$$P(t, k, i, j, a, b) = s_{(4k+i+2j-2k-i-j-b, 24k+i+2j-a-b-4t)},$$

$$\beta_1 = 4k + i + 2j - 4t,$$

$$\beta_2 = k - i + j,$$

$$\beta_3 = 4k + i + 2j - a - 4t.$$

Then we have the following result.
Lemma 3.3 Suppose that \(t \geq 0 \).

(i) If \(0 \leq k \leq t - 1, 0 \leq i \leq k, 0 \leq j \leq 2t - 2k - 1 \), then
\[
A_1(t, k, i, j) - \Delta^{(1,1)}(B_1(t, k, i, j)) = T_1(t, i, j, k) + T_2(t, i, j, k).
\]

(ii) If \(0 \leq k \leq t - 1, 0 \leq i \leq k, 0 \leq j \leq 2t - 2k - 2 \), then
\[
A_2(t, k, i, j) - \Delta^{(1,1)}(B_2(t, k, i, j)) = T_3(t, i, j, k) + T_4(t, i, j, k).
\]

(iii) If \(1 \leq k \leq t - 1, 0 \leq i \leq k, 0 \leq j \leq 2t - 2k - 1 \), then
\[
A_3(t, k, i, j) - \Delta^{(1,1)}(B_3(t, k, i, j)) = T_5(t, i, j, k) + T_6(t, i, j, k).
\]

(iv) If \(1 \leq k \leq t, 0 \leq i \leq k - 1, 0 \leq j \leq 2t - 2k \), then
\[
A_4(t, k, i, j) - \Delta^{(1,1)}(B_4(t, k, i, j)) = T_7(t, i, j, k) + T_8(t, i, j, k).
\]

Proof. We only give the proof of (i). The proofs of (ii),(iii) and (iv) are analogous to that of (i) and are omitted. Recall that
\[
A_1(t, k, i, j) = e_{ks_i^t (3^k, 2k-i+j, 1^t-3k-2j-i)}, B_1(t, k, i, j) = e_{ks_i^t (3^k, 2k-i+j, 1^t-3k-2j-i-2)}.
\]

Using the dual version of Pieri’s rule, we obtain that
\[
A_1(t, k, i, j) = \sum_{(a,b,c,d)} s_i^{(4^a, 3^i-a+b, 2k-i+j-b+c, 1^t-3k-2j-i-c+d)},
\]

summed over all nonnegative integer sequences \((a,b,c,d)\) satisfying
\[
a + b + c + d = k, a \leq i, b \leq k - i + j, c \leq 4t - 3k - 2j - i.
\]

Note that the shape \((4^a, 3^i-a+b, 2k-i+j-b+c, 1^t-3k-2j-i-c+d)\) is obtained from the Young diagram of \((3^i, 2k-i+j, 1^t-3k-2j-i)\) by adding \(a\) squares in the fourth column, \(b\) squares in the third column, \(c\) squares in the second column, and \(d\) squares in the first column. Similarly, we see that
\[
B_1(t, k, i, j) = \sum_{(a,b,c,d)} s_i^{(4^a, 3^i-a+b, 2k-i+j-b+c, 1^t-3k-2j-i-2-c+d)},
\]

summed over all nonnegative integer sequences \((a,b,c,d)\) satisfying
\[
a + b + c + d = k, a \leq i, b \leq k - i + j, c \leq 4t - 3k - 2j - i - 2.
\]

Therefore,
\[
A_1(t, k, i, j) - \Delta^{(1,1)}(B_1(t, k, i, j))
\]
\[
= \sum_{(a, b, c, d) \in \mathbb{Z}^4} \sum_{c=4t-3k-1}^{t-1} S(4^a 3^{t-a+b} 2^{k-i+j-b+c} 1^{4t-3k-2j-i-c+d}) \\
+ \sum_{(a, b, c, d) \in \mathbb{Z}^4} \sum_{c=4t-3k-1}^{t-1} S(4^a 3^{t-a+b} 2^{k-i+j-b+c} 1^{4t-3k-2j-i-c+d}),
\]
where both sums range over nonnegative integers \(a, b, d\) satisfying \(a \leq i, b \leq k-i+j, a + b + c + d = k\).

Since \(0 \leq j \leq 2t-2k-1\), we have
\[
k - (4t-3k-2j-i) = 4k + 2j + i - 4t \\
\leq 4k + 2(2t-2k-1) + i - 4t \leq i,
\]
and
\[
k - (4t-3k-2j-i-1) = 4k + 2j + i - 4t + 1 \\
\leq 4k + 2(2t-2k-1) + i - 4t + 1 \leq i.
\]
Thus
\[
A_1(t, k, i, j) - \Delta^{(1,1)}(B_1(t, k, i, j)) = T_1(i, j, k) + T_2(i, j, k).
\]
This completes the proof of (i).

In light of the above lemma, we will show that \(L(2t+1) - \Delta^{(1,1)}L(2t)\) can be expressed in terms of ten parts \(T_1(t), T_2(t), \ldots, T_{10}(t)\), as defined below,

\[
T_1(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} T_1(t, i, j, k), \quad T_2(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} T_2(t, i, j, k),
\]
\[
T_3(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-2} T_3(t, i, j, k), \quad T_4(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-2} T_4(t, i, j, k),
\]
\[
T_5(t) = \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} T_5(t, i, j, k), \quad T_6(t) = \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} T_6(t, i, j, k),
\]
\[
T_7(t) = \sum_{k=1}^{t-1} \sum_{i=0}^{k-1} \sum_{j=0}^{2t-2k} T_7(t, i, j, k), \quad T_8(t) = \sum_{k=1}^{t-1} \sum_{i=0}^{k-1} \sum_{j=0}^{2t-2k} T_8(t, i, j, k),
\]
\[
T_9(t) = \sum_{k=0}^{t} e_k s_{3^k, 2t-2k}, \quad T_{10}(t) = \sum_{k=0}^{t-1} e_k s_{3^{k+1}, 2t-2k-1}.
\]

Lemma 3.4 For \(t \geq 0\), we have
\[
L(2t+1) - \Delta^{(1,1)}L(2t) = (T_1(t) + T_2(t) + T_3(t) + T_4(t)) - (T_5(t) + T_6(t) + T_7(t) + T_8(t)) + (T_9(t) - T_{10}(t)).
\]
Proof. By Lemma 3.2, \(L(2t + 1) - \Delta^{(1,1)}L(2t)\) equals
\[
(A_1(t) - \Delta^{(1,1)}B_1(t)) + (A_2(t) - \Delta^{(1,1)}B_2(t))
- (A_3(t) - \Delta^{(1,1)}B_3(t)) - (A_4(t) - \Delta^{(1,1)}B_4(t))
\]
\[
= \left(\sum_{k=0}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} A_1(t, k, i, j) - \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} \Delta^{(1,1)}(B_1(t, k, i, j)) \right)
\]
\[
+ \left(\sum_{k=1}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2t-k} A_2(t, k, i, j) - \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-k-1} \Delta^{(1,1)}(B_2(t, k, i, j)) \right)
\]
\[
- \left(\sum_{k=1}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k+1} A_3(t, k, i, j) - \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} \Delta^{(1,1)}(B_3(t, k, i, j)) \right)
\]
\[
- \left(\sum_{k=1}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k+1} A_4(t, k, i, j) - \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} \Delta^{(1,1)}(B_4(t, k, i, j)) \right)
\]
\[
= \sum_{k=0}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} A_1(t, k, i, j) + \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} \Delta^{(1,1)}(B_1(t, k, i, j))
\]
\[
+ \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} A_2(t, k, i, j) + \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} \Delta^{(1,1)}(B_2(t, k, i, j))
\]
\[
- \sum_{k=1}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k+1} A_3(t, k, i, j) - \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} \Delta^{(1,1)}(B_3(t, k, i, j))
\]
\[
- \sum_{k=1}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k+1} A_4(t, k, i, j) - \sum_{k=1}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k} \Delta^{(1,1)}(B_4(t, k, i, j))
\] .

Applying Lemma 3.3, we get the desired relation. ■

Although Lemma 3.4 gives an expression of \(L(2t + 1) - \Delta^{(1,1)}L(2t)\), it is difficult to derive a recurrence relation of \(L(r)\) since each \(T_i(t)\) is a quintuple sum for \(1 \leq i \leq 8\). We still need to compute
\[
(L(2(t + 1) + 1) - \Delta^{(1,1)}L(2(t + 1))) - \Delta^{(2,2)}(L(2t + 1) - \Delta^{(1,1)}L(2t)).
\]
By Lemma 3.4, the above expression equals

\[
\sum_{i=1}^{4} (T_i(t+1) - \Delta^{(2,2)}T_i(t)) - \sum_{i=5}^{8} (T_i(t+1) - \Delta^{(2,2)}T_i(t)) + (T_9(t+1) - \Delta^{(2,2)}T_9(t)) + (T_{10}(t+1) - \Delta^{(2,2)}T_{10}(t)).
\] (3.6)

For notational convenience, let

\[
Q_1(t, k, i, j, a, b) = s_{(4^2, 3k-a+b+1, 2t-4k-j-b-1, 15k+2j-a-b-4t+3)},
\]

\[
Q_2(t, k, i, j, a, b) = s_{(4^2, 3k-a+j+1, 2t-3k-i-2j, 13k+2i+j-a-4t+1)},
\]

\[
\gamma_1 = 5k + 2j + 2 - 4t,
\]

\[
\gamma_2 = 5k + 2j - a + 2 - 4t,
\]

\[
\gamma_3 = 3k + 2i + j - 4t,
\]

and let

\[
T_{11}(t) = T_{21}(t) = \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{\gamma_1} \sum_{b=0}^{\min(j, \gamma_2)} Q_1(t, k, i, j, a, b),
\]

\[
T_{12}(t) = T_{22}(t) = \sum_{k=0}^{t} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{\gamma_2} \sum_{b=0}^{\gamma_3} Q_2(t, k, i, j, a, b),
\]

\[
T_{31}(t) = \sum_{k=0}^{t} \sum_{j=0}^{2t-2k-2} \sum_{a=0}^{\gamma_1} \sum_{b=0}^{\min(j, \gamma_2)} Q_1(t, k, i, j, a, b),
\]

\[
T_{32}(t) = \sum_{k=0}^{t} \sum_{j=0}^{2t-2k-2} \sum_{a=0}^{\gamma_2} \sum_{b=0}^{\gamma_3} Q_2(t, k, i, j, a, b),
\]

\[
T_{41}(t) = \sum_{k=0}^{t-1} \sum_{j=-1}^{2t-2k-3} \sum_{a=0}^{\gamma_1+1} \sum_{b=0}^{\min(j+1, \gamma_2+1)} Q_1(t, k, i, j, a, b),
\]

\[
T_{42}(t) = \sum_{k=0}^{t-1} \sum_{j=-1}^{2t-2k-2} \sum_{a=0}^{\gamma_2+1} \sum_{b=0}^{\gamma_3+1} Q_2(t, k, i, j, a, b),
\]

\[
T_{51}(t) = \sum_{k=0}^{t-1} \sum_{j=-1}^{2t-2k-2} \sum_{a=0}^{\gamma_1} \sum_{b=0}^{\min(j+1, \gamma_2)} Q_1(t, k, i, j, a, b),
\]

\[
T_{52}(t) = \sum_{k=0}^{t-1} \sum_{j=-1}^{2t-2k-1} \sum_{a=0}^{\gamma_3} \sum_{b=0}^{\gamma_2} Q_2(t, k, i, j, a, b),
\]

\[\text{13}\]
Lemma 3.5

We will give only the proof of the identity for \(T_1(t) \), since the other cases can be verified by the same argument. Observe that

\[
T_1(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2k-1} \sum_{a=0}^{4k+i+2j-4t+1} \sum_{b=0}^{\min(k-i+j,4k+i+2j-a-4t+1)} Q_1(t, k, i, j, a, b),
\]

\[
T_{61}(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{a=0}^{4k+i+2j-4t+1} \sum_{b=0}^{\min(k-i+j,4k+i+2j-a-4t+1)} Q_1(t, k, i, j, a, b),
\]

\[
T_{62}(t) = \sum_{k=0}^{t-3} \sum_{i=0}^{k+2} \sum_{j=2}^{2t-2k-3} \sum_{a=0}^{\gamma_3+1} Q_2(t, k, i, j, a, b),
\]

\[
T_{71}(t) = \sum_{k=0}^{t} \sum_{i=0}^{k} \sum_{a=0}^{4k+i+2j-4t+1} \sum_{b=0}^{\min(k-i+j,4k+i+2j-a-4t+1)} Q_1(t, k, i, j, a, b),
\]

\[
T_{72}(t) = \sum_{k=0}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2k-1} \sum_{a=0}^{\gamma_3} Q_2(t, k, i, j, a, b),
\]

\[
T_{81}(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2k-1} \sum_{a=0}^{\gamma_3} Q_2(t, k, i, j, a, b),
\]

\[
T_{82}(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-2} \sum_{a=0}^{\gamma_3+1} Q_2(t, k, i, j, a, b).
\]

The following lemma shows that each \(T_i(t+1) - \Delta^{(2,2)} T_i(t) \) can be divided into two parts for \(1 \leq i \leq 8 \), with each part being a quadruple sum of Schur functions.

Lemma 3.5 For \(t \geq 0 \) and \(1 \leq i \leq 8 \), we have

\[
T_i(t+1) - \Delta^{(2,2)} T_i(t) = T_{i1}(t) + T_{i2}(t).
\]

Proof. We will give only the proof of the identity for \(T_1(t) \), since the other cases can be verified by the same argument. Observe that

\[
T_1(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2k-1} \sum_{a=0}^{4k+i+2j-4t+1} \sum_{b=0}^{\min(k-i+j,4k+i+2j-a-4t+1)} (S_{(4a,3i-a+b,2k-2i-j+b-1,14k+i+2j-a-b-4t+2)}).
\]

It follows that

\[
T_1(t+1) = \sum_{k=0}^{t} \sum_{i=0}^{k} \sum_{j=0}^{2k+1} \sum_{a=0}^{4k+i+2j-4t-3} \sum_{b=0}^{\min(k-i+j,4k+i+2j-a-4t-3)} (S_{(4a,3i-a+b,2k-2i-j+b+3,14k+i+2j-a-b-4t-2)}).
\]
where the last equality holds because the upper bound \(4k + i + 2j - 4t + 1\) of \(a\) is negative for \(k = -1\). Hence we deduce that

\[
T_1(t + 1) - \Delta^{(2,2)} T_1(t)
\]

\[
= \sum_{k=0}^{t-1} \sum_{i=k+1}^{k+1} 2t-2k-1 4k+i+2j-4t+1 \min(k-i+j+1,4k+i+2j-a-4t+1) \sum_{a=0}^{\min(k-i+j+1,4k+i+2j-a-4t+1)} \sum_{b=0}^{\min(k-i+j+1,4k+i+2j-a-4t+1)}
\]

\[
\left(S_{4a,3i-a+b,24t-2k-2i-j-b+1,14k+i+2j-a-b-4t+2}\right)
\]

\[
+ \sum_{k=0}^{t-1} \sum_{i=0}^{k+1} 2t-2k-1 4k+i+2j-4t+1 \min(k-i+j+1,4k+i+2j-a-4t+1) \sum_{a=0}^{\min(k-i+j+1,4k+i+2j-a-4t+1)} \sum_{b=0}^{\min(k-i+j+1,4k+i+2j-a-4t+1)}
\]

\[
\left(S_{4a,3i-a+b,24t-2k-2i-j-b+1,14k+i+2j-a-b-4t+2}\right)
\]

\[
- \sum_{k=0}^{t-1} \sum_{i=0}^{k+1} 2t-2k-1 4k+i+2j-4t+1 \min(k-i+j,4k+i+2j-a-4t+1) \sum_{a=0}^{\min(k-i+j,4k+i+2j-a-4t+1)} \sum_{b=0}^{\min(k-i+j,4k+i+2j-a-4t+1)}
\]

\[
\left(S_{4a,3i-a+b,24t-2k-2i-j-b+1,14k+i+2j-a-b-4t+2}\right)
\]

\[
= \sum_{k=0}^{t-1} \sum_{i=k+1}^{k+1} 2t-2k-1 4k+i+2j-4t+1 \min(k-i+j+1,4k+i+2j-a-4t+1) \sum_{a=0}^{\min(k-i+j+1,4k+i+2j-a-4t+1)} \sum_{b=0}^{\min(k-i+j+1,4k+i+2j-a-4t+1)}
\]

\[
\left(S_{4a,3i-a+b,24t-2k-2i-j-b+1,14k+i+2j-a-b-4t+2}\right)
\]

\[
+ \sum_{k=0}^{t-1} \sum_{i=0}^{k+1} 2t-2k-1 4k+i+2j-4t+1 \min(k-i+j+1,4k+i+2j-a-4t+1) \sum_{a=0}^{\min(k-i+j+1,4k+i+2j-a-4t+1)} \sum_{b=0}^{\min(k-i+j+1,4k+i+2j-a-4t+1)}
\]

\[
\left(S_{4a,3i-a+b,24t-2k-2i-j-b+1,14k+i+2j-a-b-4t+2}\right)
\]
\[- \sum_{k=0}^{t-1} \sum_{i=0}^{k-1} \sum_{j=0}^{2t-2k-1} \sum_{\substack{a=0 \leq 4k+i+2j-a-4t+1 \leq b \leq 0}} \sum_{ \substack{b=0 \leq 4k+i+2j-a-4t+1 \leq b \leq 0}} \left(S_{(4^t,3^{i-a+b},2^{4t-2k-2i-j-b+1},1^{4k+i+2j-a-b-4t+2})} \right) \]

\[= \sum_{k=0}^{t-1} \sum_{i=0}^{k} \sum_{j=0}^{2t-2k-1} \sum_{\substack{a=0 \leq 4k+i+2j-a-4t+1 \leq b \leq 0}} \sum_{ \substack{b=0 \leq 4k+i+2j-a-4t+1 \leq b \leq 0}} \left(S_{(4^t,3^{i-a+b},2^{4t-2k-2i-j-b+1},1^{4k+i+2j-a-b-4t+2})} \right) \]

as desired. This completes the proof.

To compute (3.6), it is necessary to simplify

\[\sum_{i=1}^{4} (T_i(t+1) - \Delta T_i(t)) - \sum_{i=5}^{8} (T_i(t+1) - \Delta T_i(t)),\]

by the above lemma, which equals

\[\sum_{i=1}^{4} (T_{i1}(t) + T_{i2}(t)) - \sum_{i=5}^{8} (T_{i1}(t) + T_{i2}(t)).\]

Moreover, we need to group the terms to reduce the relevant quadruple sums to triple sums, and then to double sums. For \(t \geq 0\), let

\[N_1(t) = \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{5k+j-4t-1} S_{(4^t,3^{k-a+j+1},2^{4t-2k-2j+1},1^{5k+j-1-4t-a})},\]
Lemma 3.6

For $t \geq 0$, we have

$$T_{41}(t) - T_{61}(t) = -N_1(t),$$

where

$$N_2(t) = \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-2} \sum_{a=0}^{5k+4t+2} S_{(4^t, 3^{k-a+j+1}, 2^{4t-2j-1}, 1_{5^{k+j+3-4t-a}})},$$

$$N_3(t) = \sum_{k=0}^{t-1} \sum_{a=0}^{k \min(2t-2k-2, k-a)} \sum_{b=0}^{a+1} S_{(4^t, 3^{k-a+b+1}, 2^{2t-2k-b}, 1_{b-a+1})},$$

$$N_4(t) = \sum_{k=0}^{t-1} \sum_{a=0}^{k \min(2t-2k-1, k-a)} \sum_{b=0}^{a+1} S_{(4^t, 3^{k+1-a+b}, 2^{2t-2k-b}, 1_{k+1-a-b})},$$

$$N_5(t) = \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-2} \sum_{a=0}^{5k+2j-4t+3} \sum_{b=0}^{a+1} S_{(4^t, 3^{6k-4t+2j-2a+4}, 28t-9k-j+a-4)},$$

$$N_6(t) = \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{5k+2j-4t+1} \sum_{b=0}^{a+1} S_{(4^t, 3^{6k-4t+2j-2a+2}, 28t-9k-j+a-1)},$$

$$M_1(t) = \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-2} \sum_{a=0}^{5k+j+2-4t} S_{(4^t, 3^{k+1-a+j}, 2^{4t-2j-1-4k}, 1_{5^{k+j-4t+3-a})}},$$

$$M_2(t) = \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-2} \sum_{a=0}^{5k+j-4t-1} S_{(4^t, 3^{k+1-a+j}, 2^{4t+1-4k-2j}, 1_{5^{k+j-4t-1-a})}},$$

$$M_3(t) = \sum_{k=0}^{t-1} \sum_{i=1}^{k} \sum_{a=0}^{3k+j+2i-4t-3} S_{(4^t, 3^{2t-k-a}, 2^{k+4i-1}, 1_{2k+2i-2t-4-a})},$$

$$M_4(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{k+2i-2t-1} \sum_{a=0}^{2k-i+2} S_{(4^t, 3^{2t-a-k}, 2^{k+2i-2t-a})},$$

$$M_5(t) = \sum_{k=0}^{t-1} \sum_{i=0}^{2t-2k-2} \sum_{j=0}^{3k+j+2i-4t+1} \sum_{a=0}^{\max(0, 3k+j+2i-4t+1)} S_{(4^t, 3^{k+1-a+j}, 2^{4t-2j-i-3k})},$$

$$M_6(t) = \sum_{k=1}^{t-1} \sum_{i=0}^{2k-2k-1} \sum_{j=0}^{3k+j+2i-4t-1} \sum_{a=0}^{\max(0, 3k+j+2i-4t-1)} S_{(4^t, 3^{k+1-a+j}, 2^{4t-2j-i-3k+1})}.$$
\[T_{31}(t) - T_{71}(t) = N_2(t) - N_3(t), \]
\[T_{11}(t) - T_{81}(t) = N_4(t) - N_5(t), \]
\[T_{21}(t) - T_{51}(t) = N_6(t), \]
\[T_{32}(t) - T_{72}(t) = -M_1(t) \]
\[T_{42}(t) - T_{62}(t) = M_2(t) - M_3(t), \]
\[T_{12}(t) - T_{82}(t) = M_4(t) - M_5(t), \]
\[T_{22}(t) - T_{52}(t) = M_6(t). \]

Proof. We will prove the first identity, since the others can be proved analogously. Using the notation \(Q_1(t, k, i, j, a, b) \), \(\gamma_1 \) and \(\gamma_2 \), as given in (3.10), we find

\[
T_{41}(t) - T_{61}(t) = \sum_{k=0}^{t-1} 2t-2k-3 \sum_{a=0}^{\gamma_1+1} \sum_{j=-2}^{\min(j+1, \gamma_2+1)} \sum_{b=0}^{Q_1(t, k, i, j, a, b)} \]
\[
- \sum_{k=0}^{t-1} 2t-2k-3 \sum_{a=0}^{\gamma_1+1} \sum_{j=-2}^{\min(j+1, \gamma_2+1)} \sum_{b=0}^{Q_1(t, k, i, j, a, b)} \]
\[
= \sum_{k=0}^{t-1} 2t-2k-3 \sum_{a=0}^{\gamma_1+1} \sum_{j=-2}^{\gamma_2+1} \sum_{b=0}^{Q_1(t, k, i, j, a, b)} \]
\[
- \sum_{k=0}^{t-1} 2t-2k-3 \sum_{a=0}^{\gamma_1+1} \sum_{j=-2}^{\gamma_2+1} \sum_{b=0}^{Q_1(t, k, i, j, a, b)} \]
\[
= - \sum_{k=0}^{t-1} 2t-2k-3 \sum_{a=0}^{\gamma_1+1} \sum_{j=0}^{\gamma_2+1} \sum_{b=j+1}^{Q_1(t, k, i, j, a, b)} \]
\[
= - \sum_{k=0}^{t-1} 2t-2k-3 \sum_{a=0}^{5k+4t+1} \sum_{j=0}^{5k+4t+1} \sum_{b=j+2}^{Q_1(t, k, i, j, a, b)} \]
\[
= - \sum_{k=0}^{t-1} 2t-2k-3 \sum_{a=0}^{5k+4t+1} \sum_{j=0}^{5k-4t-2} \sum_{b=j+2}^{Q_1(t, k, i, j, a, j + 2)}. \]

Substituting \(j \) by \(j - 2 \) in the last summation, we are led to the required relation. This completes the proof.

For \(t \geq 0 \), let

\[
C_1(t) = \sum_{k=1}^{t} 5k-4t-3 \sum_{a=0}^{t} S(4a, 3k-a, 24t-4k+3, 5k-4t-a-2), \]

18
\[
C_2(t) = \sum_{k=1}^{t-1} \sum_{j=0}^{2t-2k-1} \sum_{a=\max(0,5k+j-4t-1)}^{5k+j-4t-1} S(4^a,3^{k-a+j+1},2^{4t-4k-2j+1}),
\]
\[
C_3(t) = \sum_{k=0}^{t-1} \sum_{a=0}^{3k-2t+1} S(4^a,3^{2t-k-a},2^{13k-2t-a+2}),
\]
\[
C_4(t) = \sum_{k=0}^{t-1} \sum_{a=\max(0,5k-4t+1)}^{5k-4t+1} S(4^a,3^{k+1-a},2^{4t-4k}),
\]
\[
C_5(t) = \sum_{k=0}^{t-2} \sum_{j=0}^{2t-2k-2} \sum_{a=\max(0,5k+j-4t+2)}^{5k+j-4t+2} S(4^a,3^{k+j-a+2},2^{4t-4k-2j-2}),
\]
\[
D_1(t) = \sum_{k=0}^{t-3} \sum_{j=1}^{5k+j-4t+3} \sum_{a=\max(0,5k+j-4t+3)}^{5k+j-4t+3} S(4^a,3^{k+1-a+j},2^{4t-2j-4k-1}),
\]
\[
D_2(t) = \sum_{a=0}^{t-1} S(4^a,3^{t-a},2^{3,1}t-a-2),
\]
\[
D_3(t) = \sum_{k=0}^{t-2} \sum_{a=0}^{5k-4t+2} S(4^a,3^{k+1-a},2^{4t-4k-1},15k-4t-a+3),
\]
\[
D_4(t) = \sum_{k=0}^{t-2} \sum_{a=0}^{3k-2t} S(4^a,3^{2t-k-a-1},2^{3,1}3k-2t-a+1),
\]
\[
D_5(t) = \sum_{k=0}^{t-1} \sum_{a=0}^{3k-2t-1} S(4^a,3^{2t-k-a-1},2^{2,1}3k-2t-a),
\]
\[
D_6(t) = \sum_{k=0}^{t-1} \sum_{a=0}^{3k-2t-3} S(4^a,3^{2t-k-a-1},2^{3,1}3k-2t-a-2),
\]
\[
D_7(t) = \sum_{k=0}^{t-1} \sum_{j=0}^{k+2i-2t} \sum_{a=\max(0,k+2i-2t)}^{k+2i-2t} S(4^a,3^{2t-k-a},2^{k-i+2}),
\]
\[
D_8(t) = \sum_{k=1}^{t-1} \sum_{i=0}^{k-2t+2i} \sum_{a=\max(0,k-2t+2i)}^{k-2t+2i} S(4^a,3^{2t-a-k},2^{k-i+2}),
\]
\[
D_9(t) = \sum_{k=1}^{t-1} \sum_{j=0}^{2t-2k-2} \sum_{a=\max(0,5k+j-4t+1)}^{5k+j-4t+1} S(4^a,3^{k+1-a+j},2^{4t-4k-2j}).
\]

19
The following lemma shows that one can group the terms of $N_i(t)$ and $M_i(t)$ to reduce the involved triple sums to double sums.

Lemma 3.7 For any $t \geq 0$, we have

\[
N_2(t) - N_1(t) = C_1(t) - C_2(t),
\]

\[
N_4(t) - N_3(t) = C_3(t),
\]

\[
N_6(t) - N_5(t) = C_4(t) + C_5(t),
\]

\[
M_2(t) - M_1(t) = D_1(t) - D_2(t) - D_3(t) - D_4(t),
\]

\[
M_4(t) - M_3(t) = D_5(t) + D_6(t) - D_7(t),
\]

\[
M_6(t) - M_5(t) = D_8(t) - D_9(t).
\]

Proof. We have

\[
N_2(t) - N_1(t) = \sum_{k=0}^{t-1} \sum_{j=0}^{t-2k-1} \sum_{a=0}^{5k+j-4t+2} S\left(4^a, 3^{2k-a+j+1}, 2^{4t-4k-2j-1}, 1^{5k+j+3-4t-a}\right)
\]

\[
- \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{5k+j-4t-1} S\left(4^a, 3^{2k-a+j+1}, 2^{4t-4k-2j-1}, 1^{5k+j+3-4t-a}\right)
\]

\[
= \sum_{k=1}^{t} \sum_{j=0}^{2t-2k} \sum_{a=0}^{5k+j-4t-3} S\left(4^a, 3^{2k-a+j+1}, 2^{4t-4k-2j+1}, 1^{5k+j-1-4t-a}\right)
\]

\[
- \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{5k+j-4t-1} S\left(4^a, 3^{2k-a+j+1}, 2^{4t-4k-2j+1}, 1^{5k+j-1-4t-a}\right)
\]

\[
= \sum_{k=1}^{t} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{5k+j-4t-2} S\left(4^a, 3^{2k-a+j+1}, 2^{4t-4k-2j+1}, 1^{5k+j-1-4t-a}\right)
\]

\[
- \sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{5k+j-4t-1} S\left(4^a, 3^{2k-a+j+1}, 2^{4t-4k-2j+1}, 1^{5k+j-1-4t-a}\right)
\]

\[
= \sum_{k=1}^{t} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{5k+j-4t-2} S\left(4^a, 3^{2k-a+j+1}, 2^{4t-4k-2j+1}, 1^{5k+j-1-4t-a}\right)
\]

\[
+ \sum_{k=1}^{t} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{5k+j-4t-2} S\left(4^a, 3^{2k-a+j+1}, 2^{4t-4k-2j+1}, 1^{5k+j-1-4t-a}\right)
\]
\[-\sum_{k=0}^{t-1} \sum_{j=0}^{2t-2k-1} \sum_{a=0}^{5k+j-4t-1} S(4a, 3k-a+j+1, 24t-4k-2j+1, 15k+j-1-4t-a)\, .\]

It follows that

\[N_2(t) - N_1(t) = C_1(t) - C_2(t)\, .\]

Similarly, one can prove the other identities. This completes the proof.

It is still necessary to compute \(T_9(t + 1) - \Delta^{(2,2)}T_9(t)\) and \(T_{10}(t + 1) - \Delta^{(2,2)}T_{10}(t)\). Let

\[E_1(t) = \sum_{a=0}^{t+1} S(4a, 3t+1-a, 1t+1-a),\]

\[E_2(t) = \sum_{k=0}^{t} \sum_{a=0}^{3k-2t-1} S(4a, 3t-2t-k-a+1, 2, 13k-2t-1-a),\]

\[E_3(t) = \sum_{k=0}^{t} \sum_{a=0}^{3k-2t-2} S(4a, 3t-2t-k-a+2, 1, 13k-2t-2-a),\]

\[E_4(t) = \sum_{a=0}^{t} S(4a, 3t+1-a, 1t+1-a),\]

\[E_5(t) = \sum_{a=0}^{t-1} S(4a, 3t+1-a, 2, 1t-1-a),\]

\[E_6(t) = \sum_{k=0}^{t-1} \sum_{a=0}^{3k-2t+1} S(4a, 3t-2t-k-a, 2, 13k+2-2t-a),\]

\[E_7(t) = \sum_{k=0}^{t-1} \sum_{a=0}^{3k-2t} S(4a, 3t+1-k-a, 1, 13k+1-2t-a),\]

\[E_8(t) = \sum_{k=0}^{t-1} \sum_{a=0}^{3k-2t} S(4a, 3t-2t-k-a, 2, 13k+1-2t-a),\]

\[E_9(t) = \sum_{k=0}^{t-1} \sum_{a=0}^{3k-2t-1} S(4a, 3t+1-k-a, 2, 13k-1-2t-a).\]

The following lemma gives the Schur expansions of \(T_9(t + 1) - \Delta^{(2,2)}T_9(t)\) and \(T_{10}(t + 1) - \Delta^{(2,2)}T_{10}(t)\).

Lemma 3.8 For any \(t \geq 0\), we have

\[T_9(t + 1) - \Delta^{(2,2)}T_9(t) = E_1(t) + E_2(t) + E_3(t),\]

(3.12)
\[T_{10}(t + 1) - \Delta^{(2,2)}T_{10}(t) = E_4(t) + E_5(t) + E_6(t) + E_7(t) + E_8(t) + E_9(t). \] (3.13)

Proof. We will present the proof of the identity (3.13), because it is easier to prove (3.12) also by using Pieri’s rule. Recall that

\[T_{10}(t) = \sum_{k=0}^{t-1} \epsilon_k s_{3(k+1, 2^{2t-2k-2}, 1)}. \]

We have

\[
T_{10}(t + 1) - \Delta^{(2,2)}T_{10}(t) = \sum_{k=0}^{t} \epsilon_k s_{3(k+1, 2^{2t-2k}, 1)} - \Delta^{(2,2)} \left(\sum_{k=0}^{t-1} \epsilon_k s_{3(k+1, 2^{2t-2k-2}, 1)} \right)
\]

\[= \epsilon_t s_{3(k+1, 1)} + \sum_{k=0}^{t-1} \epsilon_k s_{3(k+1, 2^{2t-2k}, 1)} - \sum_{k=0}^{t-1} \Delta^{(2,2)} \left(\epsilon_k s_{3(k+1, 2^{2t-2k-2}, 1)} \right). \]

Using the dual version of Pieri’s rule, we obtain that

\[\epsilon_t s_{3(k+1, 1)} = \sum_{a=0}^{t} s_{4^a, 3^{t+1-a}, 1^{t+1-a}} + \sum_{a=0}^{t-1} s_{4^a, 3^{t+1-a}, 2^{t-1-a}}, \]

and, for \(0 \leq k \leq t - 1 \),

\[\epsilon_k s_{3(k+1, 2^{2t-2k-2}, 1)} = \sum_{a,b,c,d} s_{4^a, 3^{k+1-a+b}, 2^{2t-2k-2-b+c}, 1^{c+d}}, \]

where

\[0 \leq a \leq k + 1, \ 0 \leq b \leq 2t - 2k - 2, \ 0 \leq c \leq 1, \ d \geq 0, \ a + b + c + d = k. \]

Therefore,

\[\epsilon_k s_{3(k+1, 2^{2t-2k}, 1)} - \Delta^{(2,2)} \left(\epsilon_k s_{3(k+1, 2^{2t-2k-2}, 1)} \right) = \sum_{a,b,c,d} s_{4^a, 3^{k+1-a+b}, 2^{2t-2k-2-b+c}, 1^{c+d}}, \]

where

\[0 \leq a \leq k + 1, \ 2t - 2k - 1 \leq b \leq 2t - 2k, \ 0 \leq c \leq 1, \ d \geq 0, \ a + b + c + d = k. \]

In view of the ranges of \(b \) and \(c \), the above sum is divided into four parts:

\[
\sum_{a=0}^{3k-2t-1} s_{4^a, 3^{2t-k-a}, 2, 1^{3k+2-2t-a}} + \sum_{a=0}^{3k-2t} s_{4^a, 3^{2t+1-k-a}, 1^{3k+1-2t-a}}
\]

\[+ \sum_{a=0}^{3k-2t} s_{4^a, 3^{2t-k-a}, 2, 1^{3k-2t-a}} + \sum_{a=0}^{3k-2t} s_{4^a, 3^{2t+1-k-a}, 2, 1^{3k-1-2t-a}}, \]

\[22 \]
This completes the proof.

We are now in a position to give a recurrence relation for $L(r)$ by using the above lemmas. Note that it is easy to establish a recurrence relation for $R(r)$. For $t \geq 0$, let

\[
R_{o,1}(t) = R(2t + 1) - \Delta^{(1,1)} R(2t),
\]
\[
R_{e,1}(t) = R(2t + 2) - \Delta^{(1,1)} R(2t + 1),
\]
\[
L_{o,1}(t) = L(2t + 1) - \Delta^{(1,1)} L(2t),
\]
\[
L_{e,1}(t) = L(2t + 2) - \Delta^{(1,1)} L(2t + 1),
\]

and

\[
R_{o,2}(t) = R_{o,1}(t + 1) - \Delta^{(2,2)} R_{o,1}(t),
\]
\[
R_{e,2}(t) = R_{e,1}(t + 1) - \Delta^{(2,2)} R_{e,1}(t),
\]
\[
L_{o,2}(t) = L_{o,1}(t + 1) - \Delta^{(2,2)} L_{o,1}(t),
\]
\[
L_{e,2}(t) = L_{e,1}(t + 1) - \Delta^{(2,2)} L_{e,1}(t).
\]

The following lemma gives the recurrence relations of $L(r)$ and $R(r)$.

Lemma 3.9 Let $\text{Par}_{(3,4)}(n)$ denote the set of partitions of n whose parts belong to $\{3, 4\}$. Then for any $t \geq 0$ we have

\begin{align*}
R_{o,2}(t) &= \sum_{\lambda \in \text{Par}_{(3,4)}(4r+4)} s_{\lambda}, \quad R_{e,2}(t) = \sum_{\lambda \in \text{Par}_{(3,4)}(4r+6)} s_{\lambda}, \quad (3.14) \\
L_{o,2}(t) &= \sum_{\lambda \in \text{Par}_{(3,4)}(4r+4)} s_{\lambda}, \quad L_{e,2}(t) = \sum_{\lambda \in \text{Par}_{(3,4)}(4r+6)} s_{\lambda}. \quad (3.15)
\end{align*}

Proof. It is easy to verify the identities in (3.15). It remains to prove the identities in (3.14). Here we will consider only the identity concerning $L_{o,2}(t)$, since the identity for $L_{e,2}(t)$ can be justified by the same argument.

Note that by Lemma 3.4 we obtain

\[
L_{o,2}(t) = \sum_{m=1}^{4} (T_m(t+1) - \Delta^{(2,2)} T_m(t)) - \sum_{m=5}^{8} (T_m(t+1) - \Delta^{(2,2)} T_m(t)) \\
+ (T_9(t+1) - \Delta^{(2,2)} T_9(t)) - (T_{10}(t+1) - \Delta^{(2,2)} T_{10}(t)).
\]

By Lemma 3.5, we find

\[
L_{o,2}(t) = (T_{41}(t) - T_{61}(t)) + (T_{31}(t) - T_{71}(t)) + (T_{11}(t) - T_{81}(t)) \\
+ (T_{21}(t) - T_{51}(t)) + (T_{32} - T_{72}(t)) + (T_{42}(t) - T_{62}(t))
\]

23
Applying Lemmas 3.6-3.8, we obtain

\[L_{o,2}(t) = (N_2(t) - N_1(t)) + (N_4(t) - N_3(t)) + (N_0(t) - N_5(t)) \]
\[+ (M_2(t) - M_1(t)) + (M_4(t) - M_3(t)) + (M_6(t) - M_5(t)) \]
\[+ (E_1(t) + E_2(t) + E_3(t)) \]
\[- (E_4(t) + E_5(t) + E_6(t) + E_7(t) + E_8(t) + E_9(t)) \]
\[= (C_1(t) - C_2(t) + C_3(t) + C_4(t) + C_5(t)) \]
\[+ (D_1(t) - D_2(t) - D_3(t) - D_4(t) + D_5(t)) \]
\[+ D_6(t) - D_7(t) + D_8(t) - D_9(t) \]
\[+ (E_1(t) + E_2(t) + E_3(t) - E_4(t) - E_5(t)) \]
\[- E_6(t) - E_7(t) - E_8(t) - E_9(t) \]
\[= [(C_3(t) - E_9(t)) + (E_2(t) - E_6(t)) - E_5(t)] \]
\[+ [(C_5(t) - D_9(t)) + (D_5(t) - E_8(t)) + C_4(t)] \]
\[+ [(D_6(t) - D_4(t)) + (C_1(t) - D_5(t)) - D_2(t)] \]
\[+ [(D_8(t) - D_7(t)) + (D_1(t) - C_2(t))] \]
\[+ [(E_1(t) - E_4(t)) + (E_3(t) - E_7(t))] \]
\[= 0 + 0 + 0 + 0 + \sum_{k=1}^{t+1} S(4^k - 2t - 2, 34t - 4k + 4), \]

where the last equality comes from the following relations:

\[C_3(t) - E_9(t) = \sum_{a=0}^{t-2} S(4^a, 3t - a + 1, 2, 1^t - a - 1) \]
\[- \sum_{k=0}^{t-2} S_{(4^{k-2t+2}, 3k-2t+2)} S(4^a, 3k - 2t + 2), \]

\[C_5(t) - D_9(t) = \sum_{k=1}^{t-1} S_{(4^{k-2t}, 3k - 2t - k - a, 2)} \]
\[- \sum_{k=1}^{t-1} S_{(4^{5k-4t+1}, 3k - 2t - k - a, 2^t - 4k)} S(4^a, 3k+1 - a, 2^t - 4k), \]
\[
C_1(t) - D_3(t) = \sum_{a=0}^{t-3} s(4^a,3^{t-a-2}),
\]
\[
D_5(t) - E_8(t) = - \sum_{k=0}^{t-1} \sum_{a=\max(0,3k-2t)}^{3k-2t} s(4^a,3^{2t-k-a}),
\]
\[
D_6(t) - D_1(t) = 0,
\]
\[
D_8(t) - D_7(t) = \sum_{k=1}^{t-1} \sum_{a=\max(0,3k-2t-2)}^{3k-2t-2} s(4^a,3^{2t-k-1}),
\]
\[
D_1(t) - C_2(t) = - \sum_{k=0}^{t-2} \sum_{a=\max(0,3k-2t+1)}^{3k-2t+1} s(4^a,3^{2t-k-1}),
\]
\[
E_1(t) - E_4(t) = s(4^{t+1}),
\]
\[
E_2(t) - E_6(t) = \sum_{k=1}^{t} \sum_{a=\max(0,3k-2t-1)}^{3k-2t-1} s(4^a,3^{2t-k+a+1}),
\]
\[
E_3(t) - E_7(t) = \sum_{k=1}^{t} \sum_{a=\max(0,3k-2t-2)}^{3k-2t-2} s(4^a,3^{2t-k+a+2}).
\]

So we have obtained the desired Schur expansion of \(L_{o,2}(t)\). This completes the proof.

Based on the above lemma, we obtain the following relations.

Lemma 3.10 For \(t \geq 0\), we have
\[
L_{o,1}(t) = R_{o,1}(t), \quad L_{e,1}(t) = R_{e,1}(t).
\]

Proof. We conduct induction on \(t\). We first consider that relation \(L_{o,1}(t) = R_{o,1}(t)\). Clearly, the equality holds for \(t = 0\) and \(t = 1\). Assume that \(L_{o,1}(t-1) = R_{o,1}(t-1)\). Note that
\[
L_{o,1}(t) = L_{o,2}(t-1) + \Delta^{(2,2)}L_{o,1}(t-1),
\]
\[
R_{o,1}(t) = R_{o,2}(t-1) + \Delta^{(2,2)}R_{o,1}(t-1).
\]
It follows from Lemma [3.9] that \(L_{o,2}(t-1) = R_{o,2}(t-1)\). Hence by induction we have \(L_{o,1}(t) = R_{o,1}(t)\). Similarly, it can be shown that \(L_{e,1}(t) = R_{e,1}(t)\).

We have established the recurrence relations for \(L(r)\) and \(R(r)\). We now proceed to prove Theorem 3.1 based on these recurrence relations.
Proof of Theorem 3.1. We conduct induction on r. It is easy to verify that the identity holds for $r = 1$. Assume that $L(r) = R(r)$. We proceed to prove that $L(r + 1) = R(r + 1)$. If $r = 2t$, then

$$
L(r + 1) = L(2t + 1) = \Delta^{(1,1)}L(2t) + L_{o,1}(t),
$$
$$
R(r + 1) = R(2t + 1) = \Delta^{(1,1)}R(2t) + R_{o,1}(t).
$$

From Lemma 3.10 it follows that $L(r + 1) = R(r + 1)$. If $r = 2t + 1$, then

$$
L(r + 1) = L(2t + 2) = \Delta^{(1,1)}L(2t + 1) + L_{e,1}(t),
$$
$$
R(r + 1) = R(2t + 2) = \Delta^{(1,1)}R(2t + 1) + R_{e,1}(t).
$$

We also have $L(r + 1) = R(r + 1)$ by Lemma 3.10. This completes the proof.

4 \quad q\text{-log-convexity}

In this section, we aim to prove Theorem 1.1 and Theorem 1.3. The proof of Theorem 1.1 is based on the identity (3.5) in the previous section.

Proof of Theorem 1.1. For any $n \geq 1$, we have $p_n^1(e_k) = \binom{n}{k}$. So we see that

$$
W_n(q) = \sum_{k=0}^{n} \binom{n}{k}^2 q^k = \sum_{k=0}^{n} (p_n^1(e_k))^2 q^k.
$$

Thus, for any $r \geq 0$, the coefficient of q^r in $W_{n-1}(q)W_{n+1}(q) - (W_n(q))^2$ is given by

$$
\sum_{k=0}^{r} p_{n-1}^1(e_k)^2 p_{n+1}^1(e_{r-k})^2 - p_n^1(e_k)^2 p_n^1(e_{r-k})^2.
$$

By (2.4), the above sum equals

$$
p_{n-1}^1 \left(\sum_{k=0}^{r} e_k^2 (e_{r-k} + 2e_{r-k-1} + e_{r-k-2})^2 - (e_k + e_{k-1})^2 (e_{r-k} + e_{r-k-1})^2 \right).
$$

To evaluate the above sum, we first expand the squares, and then apply the following relations

$$
\sum_{k=0}^{r} e_k^2 e_{r-k}^2 = \sum_{k=0}^{r} e_{k-1}^2 e_{r-k-1},
$$
$$
\sum_{k=0}^{r} e_{k-1}^2 e_{r-k} = \sum_{k=0}^{r} e_k^2 e_{r-k-1}.
$$

26
\[
\sum_{k=0}^{r} e_k^2 e_{r-k} e_{r-k-1} = \sum_{k=0}^{r} e_{r-k}^2 e_k e_{k-1};
\]
\[
\sum_{k=0}^{r} e_k^2 e_{r-k} e_{r-k-2} = \sum_{k=0}^{r} e_{r-k}^2 e_k e_{k-2};
\]
\[
\sum_{k=0}^{r} e_{k-1}^2 e_{r-k} e_{r-k-1} = \sum_{k=0}^{r} e_{r-k-1}^2 e_k e_{k-1} = \sum_{k=0}^{r} e_k^2 e_{r-k-1} e_{r-k-2}.
\]

After simplification we arrive at the following expression
\[
2 p_{n-1}^1 \left(\sum_{k=0}^{r} e_k^2 e_{r-k} + e_{k-2} e_k e_{r-k} - 2 e_{k-1} e_k e_{r-k-1} e_{r-k} \right).
\]

By (3.5), we see that the sum in the above expression is Schur positive. This implies that the polynomials \(W_n(q)\) form a \(q\)-log-convex sequence, completing the proof.

To prove Theorem 1.3, we first introduce the following polynomials. For any \(n \geq 1\) and \(0 \leq r \leq 2n\), define
\[
f_1(x) = (n + 1)^2(n - x + 1)^2(n - x)^2,
\]
\[
f_2(x) = (n + 1)^2(n - (r - x) + 1)^2(n - (r - x))^2,
\]
\[
f_3(x) = n^2(n - x + 1)^2(n - (r - x) + 1)^2.
\]

Let
\[
f(x) = f_1(x) + f_2(x) - 2f_3(x).
\]

Proof of Theorem 1.3. It suffices to prove that the polynomials \(W_n(q)\) satisfy the conditions in Theorem 1.2. Clearly, for any \(n\) and \(r\), if \(k \leq r - n - 1\), then \(n \leq (r - k) - 1\) and \(\alpha(n, r, k) = 0\). We only need to determine the sign of \(\alpha(n, r, k)\) for \(r - n - 1 < k \leq \left\lfloor \frac{r}{2} \right\rfloor\). It is easy to see that \(\alpha(n, r, k)\) can be rewritten as
\[
\alpha(n, r, k) = \frac{1}{n^2(n - k + 1)^2(n - r + k + 1)^2} \binom{n}{k}^2 \left(\frac{n}{r - k} \right)^2 f(k). \tag{4.16}
\]

Let us consider the value of \(f(k)\) for a given \(r\). Taking the derivative of \(f(x)\) with respect to \(x\), we obtain that
\[
f'(x) = 2(2x - r)g(x),
\]
where
\[
g(x) = 2x^2 + 4nx^2 - 4nr x - 2rx + 4n^2 - 17n^2 r + 2n^2 r^2 - 12nr
\]

27
Differentiating with respect to x, we find that
\[g'(x) = 2(2x - r)(1 + 2n). \]
This yields that $g'(x) \leq 0$ for $x \leq \frac{r}{2}$. Thus $g(x)$ is decreasing on the interval $(-\infty, \frac{r}{2}]$. Since $g(x) \to +\infty$ when $x \to -\infty$, the polynomial $g(x)$ has at most one real root, say x_0 if it exists, on the interval $(-\infty, \frac{r}{2}]$. Hence, either $f'(x)$ has a unique root $\frac{r}{2}$ on the interval $(-\infty, \frac{r}{2}]$, or it has two real roots x_0 and $\frac{r}{2}$. In the former case, $f(x)$ is decreasing on the interval $(-\infty, \frac{r}{2}]$. In the latter case, $f(x)$ is decreasing on the interval $(-\infty, x_0]$ and increasing on the interval $[x_0, \frac{r}{2}]$. Combining the two cases, it suffices to show that $f(r/2) \leq 0$.

Observe that
\[
\begin{align*}
f(r/2) &= 2(n+1)^2(n - r/2 + 1)^2(n - r/2)^2 - 2n^2(n - r/2 + 1)^4 \\
&= -\frac{r(2n(2n-r) + (2n-r) + 2n)(2 + 2n-r)^2}{8},
\end{align*}
\]
which is nonpositive for $0 \leq r \leq 2n$. By (4.16), there exists an integer $k' = k'(n, r)$ such that $\alpha(n, r, k) \geq 0$ for $k \leq k'$ and $\alpha(n, r, k) \leq 0$ for $k > k'$. Therefore, by Theorem [14] and the conditions of Liu and Wang, we deduce that the linear transformation defined by the triangular array $\{\binom{n}{k}\}_{0 \leq k \leq n}$ preserves q-log-convexity. This completes the proof.

Acknowledgments. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, the Ministry of Science and Technology, and the National Science Foundation of China.

References

[1] F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:Math.CO/0809.5123v1.

[2] M. Benson, Growth series of finite extensions of \mathbb{Z}^n are rational, Invent. Math. 73 (1983), 251–269.

[3] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update, Contemp. Math. 178 (1994), 71–89.

[4] L.M. Butler, The q-log-concavity of q-binomial coefficients, J. Combin. Theory Ser. A 54 (1990), 54–63.
[5] W.Y.C. Chen, L.X.W. Wang and A.L.B. Yang, Schur Positivity and the q-Log-convexity of the Narayana Polynomials, arXiv:math.CO/0806.1561.

[6] W.Y.C. Chen, L.X.W. Wang and A.L.B. Yang, Recurrence relations for strongly q-log-convex polynomials, Canad. Math. Bull., to appear.

[7] T. Došlić and D. Veljan, Calculus proofs of some combinatorial inequalities, Math. Inequal. Appl. 6 (2003), 197–209.

[8] C. Krattenthaler, On the q-log-concavity of Gaussian binomial coefficients, Monatsh. Math. 107 (1989), 333–339.

[9] P. Leroux, Reduced matrices and q-log-concavity properties of q-Stirling numbers, J. Combin. Theory Ser. A 54 (1990), 64–84.

[10] V. Reiner, Noncrossing partitions for classical reflection groups, Discrete Math. 177 (1992), 195–222.

[11] B. E. Sagan, Inductive proofs of q-log concavity, Discrete Math. 99 (1992), 298–306.

[12] R.P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci. 576 (1989), 500–534.

[13] R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, New York/Cambridge, 1999.

[14] J. R. Stembridge, A Maple package for symmetric functions, J. Symbolic Comput. 20 (1995), 755–768.

[15] L.L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. Appl. Math. 39 (2007), 453–476.

[16] S. Veigneau, ACE, an Algebraic Combinatorics Environment for the computer algebra system MAPLE, User’s Reference Manual, Version 3.0, IGM 98–11, Université de Marne-la-Vallée, 1998.