Supplementary material

A new coumarin from *Murraya alata* activates TRPV1 channel

Hai-Ning Lyua,c,1, Ning-Ning Weia,b,1, Peng-Fei Tua, KeWei Wangb,*, Yong Jianga,*

a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

b Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China

c State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China

Abstract

One new coumarin, muralatin R, was isolated from the leaves of *Murraya alata* Drake (Rutaceae). Its structure was elucidated by extensive analysis of the NMR and MS data, along with the specific rotation comparison. Muralatin R was found to be capable of activating the transient receptor potential vanilloid 1 (TRPV1) channel through desensitization mechanism. The results supply reference for clarification of the therapeutic basis and mechanism of action of *Murraya* plants for treating psychogenic pain or somatoform pain disorders.

1 These authors contributed equally to this work.

* Corresponding authors.

E-mail addresses: wangkw@bjmu.edu.cn (K.W. Wang), yongjiang@bjmu.edu.cn (Y. Jiang)
Content

Table S1. The NMR data for muralatin R (in CDCl$_3$, δ in ppm)

Figure S1. HRESIMS spectrum for muralatin R.

Figure S2. Elemental composition report for muralatin R.

Figure S3. 1H NMR spectrum for muralatin R in CDCl$_3$.

Figure S4. 13C NMR spectrum for muralatin R in CDCl$_3$.

Figure S5. HSQC spectrum for muralatin R in CDCl$_3$.

Figure S6. HMBC spectrum for muralatin R in CDCl$_3$.

Figure S7. IR spectrum for muralatin R.

Figure S8. UV spectrum for muralatin R.
Position	Muralatin R	δ_H (J in Hz)	δ_C, type
2		160.8, C	
3	6.22, d (9.7)	113.4, CH	
4	7.89, d (9.7)	138.6, CH	
5		148.3, C	
6		141.7, C	
7		155.9, C	
8		115.1, C	
9		149.0, C	
10		109.3, C	
1'	3.20, dd (13.4, 11.0); 2.98, brd (13.4)	23.3, CH₂	
2'	5.14, brd (11.0)	78.4, CH	
3'		72.2, C	
4'	1.27, s	25.3, CH₃	
5'	1.31, s	26.2, CH₃	
1''		172.3, C	
2''	2.00, dd (14.8, 6.7); 1.86, dd (14.8, 7.4)	43.0, CH₂	
3''	1.78, m	25.1, CH	
4''	0.62, d (6.5)	22.0, CH₃	
5''	0.69, d (6.5)	22.0, CH₃	
5-OCH₃	3.94, s	61.7, CH₃	
6-OCH₃	3.81, s	60.8, CH₃	
7-OCH₃	3.98, s	61.1, CH₃	
Figure S1. HRESIMS spectrum for muralatin R.
Figure S2. Elemental composition report for muralatin R.
Figure S3. 1H NMR spectrum for muralatin R in CDCl$_3$.

Figure S4. 13C NMR spectrum for muralatin R in CDCl$_3$.
Figure S5. HSQC spectrum for muralatin R in CDCl₃.

Figure S6. HMBC spectrum for muralatin R in CDCl₃.
Figure S7. IR spectrum for muralatin R.

Figure S8. UV spectrum for muralatin R.