In immunocompetent hosts, developing neoplasms are shaped by a dynamic evolutionary process coined “immunoediting” that involves changes in the tumor, local microenvironment and the immune system. The “immunoediting” model is heavily based on elegant mouse studies of chemically induced neoplasms and consists of three stages: elimination, equilibrium and escape. Newly transformed cells are susceptible to immune-mediated clearance, (i.e., elimination) owing to the presentation of altered or overexpressed self antigens, or through mechanisms mediated by innate immunity. Under this control, neoplastic cells undergo prominent antigenic and biological changes (i.e., in the equilibrium phase), which eventually allow them to grow unrestrained by the immune system (i.e., escape).

The processes leading to permissive growth of naturally arising human tumors is poorly understood, but is linked to elevated levels of regulatory T cells (Tregs), which suppress productive antigen-specific antitumor effector responses. Tregs are expanded in non-small cell lung carcinoma, ovarian cancer, breast, pancreatic and colon cancer in response to tumor-associated antigens. Myelodysplastic syndromes (MDS) are genetically and morphologically diverse hematopoietic neoplasms that may be subjected to a process of immunoediting during development. Evidence is mounting that the heterogeneity of MDS and leukemia progression is driven through inflammation and immune suppression. Consistent with an effector phase, it is clear that key immunologic molecules function as extrinsic tumor suppressors in some patients affected by this disease. These molecules are not only toxic to developing leukemic blasts, but also destroy normal hematopoietic progenitors through antigen cross-reactivity or through indirect mechanisms of cytokine-mediated suppression (Fig. 1). The production of interferon γ—which has the ability to kill bone marrow progenitors, tumor necrosis factor, FAS ligand and TRAIL—is elevated within the bone marrow of MDS patient subes. Features of an “effector” disease state in MDS are pancytopenia, low blast counts, dysplasia and T-cell responses to leukemia-associated antigens. Years of clinical evidence have shown that immunosuppressive therapy (IST) based on agents such as cyclosporine or anti-thymocyte globulin (ATG) can effectively improve hematopoiesis in this highly selected subgroup of patients. Mechanistic evidence of an equilibrium phase is less clear in MDS, but variable periods of dormancy prior to disease progression are well documented.

Tregs are known to play a prominent immunosuppressive role in patients with de novo AML, and recent studies have confirmed the presence of increased numbers of Tregs in patients with high-risk MDS. Blast expansion in MDS occurs through the progressive accumulation of genetic mutations accompanied by immune suppression, but the mechanism(s) contributing to this pivotal switch in pathophysiology is unknown. In a study by Mailloux, et al., the authors hypothesized that phenotypic features associated with conventional effector cell activation may also be linked to Treg activation and/or expansion during the progression of MDS to leukemia. In a retrospective study, these authors investigated the phenotypic features of Treg subsets including naive, central memory and effector memory cells, in association with disease progression. They found that the majority of peripheral Tregs in healthy individuals display a central memory...
phenotype (Treg\(^{CM}\): CD3\(^{+}\)CD4\(^{+}\)FOXP3\(^{+}\)CD25\(^{+}\)CD127\(^{dim}\)CD27\(^{-}\)CD45RA\(^{-}\)), while a subset of MDS patients display a significant shift toward an effector memory phenotype (Treg\(^{EM}\): CD3\(^{+}\)CD4\(^{+}\)FOXP3\(^{+}\)CD25\(^{+}\)CD127\(^{dim}\)CD27\(^{-}\)CD45RA\(^{-}\)). Patients with increased percentage and absolute number of Treg\(^{EM}\) cells had a higher percentage of abnormal bone marrow myeloblasts compared with patients with normal Treg profiles, or to patients with high numbers of other Treg subtypes. If they were analogous to conventional T cells, Treg\(^{CM}\) cells may represent an inactive, long-term memory population, while Treg\(^{EM}\) cells are likely to constitute a currently or more recently activated population. In support of this notion, isolated Treg\(^{EM}\) cells were shown to be significantly more suppressive than Treg\(^{CM}\) cells in vitro. Importantly, Treg\(^{EM}\) cells were seen in many patients without an increased number of total Tregs, suggesting that a transition to the Treg\(^{EM}\) phenotype, possibly through antigen exposure, may precede expansion of the entire Treg compartment.

It was then hypothesized that the presence of Treg\(^{EM}\) cells may serve as a prognostic indicator. There are several well-defined prognostic models to estimate survival and risk for leukemia progression of MDS patients. The most widely used models include the International Prognostic Scoring System (IPSS), which is based on newly-diagnosed cases, and the MD Anderson Risk Assessment Model (MDAS) with improved prognostic potential in patients with established disease.\(^7\) Overall survival was examined using univariate and multivariate analyses based on patients grouped by Treg status (normal, high Treg\(^{CM}\), high Treg\(^{EM}\) and high overall Treg numbers). The presence of high Treg\(^{EM}\) cells was associated with significantly reduced overall survival in this patient population. Moreover, the presence of such highly suppressive Treg\(^{EM}\) cells was shown to be independent from that of other Treg subtypes as well as from established MDS risk factors in multivariate models.\(^10\)

While future studies of isolated Treg subpopulations are needed to determine if Treg\(^{EM}\) cells are recently activated in response to tumor-associated antigens, monitoring their induction may serve as a surrogate marker denoting immune escape and disease progression (Fig. 1). If fully validated, the analysis of the Treg\(^{EM}\) phenotype using flow cytometry may be a simple and useful tool to predict an early immune escape in MDS patients. Beyond MDS, this could have utility in other pre-malignant diseases such as cervical dysplasia, pre-malignant head and neck cancer, colorectal polyps or inflammatory bowel disease, in which the transition to tumor-induced immunosuppression may have prognostic importance for covert malignant transformation.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.
References

1. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21:137-48; PMID:15308095; http://dx.doi.org/10.1016/j.immuni.2004.07.017.

2. Zhou G, Drake CG, Levinsky HJ. Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 2006; 107:628-36; PMID:16179369; http://dx.doi.org/10.1182/blood-2005-07-2797.

3. Epling-Burnette PK, List AF. Advancements in the molecular pathogenesis of myelodysplastic syndrome. Curr Opin Hematol 2009; 16:70-6; PMID:19468267; http://dx.doi.org/10.1097/MOH.0b013e32832357a7.

4. Calado RT. Immunologic aspects of hypoplastic myelodysplastic syndrome. Semin Oncol 2011; 38:667-72; PMID:21943673; http://dx.doi.org/10.1053/j.semincancer.2011.04.006.

5. Sloand EM, Barrett AJ. Immunosuppression for myelodysplastic syndrome: how bench to bedside to bench research led to success. Hematol Oncol Clin North Am 2010; 24:331-41; PMID:20359629; http://dx.doi.org/10.1016/j.hoc.2010.02.009.

6. Sloand EM, Meelenhorst JJ, Tucker ZC, Pfannes L, Brenchley JM, Yang A, et al. T-cell immune responses to Wilms tumor 1 protein in myelodysplasia responsive to immunosuppressive therapy. Blood 2011; 117:2691-9; PMID:21097671; http://dx.doi.org/10.1182/blood-2010-04-277921.

7. Kantarjian H, O’Brien S, Ravandi F, Cortes J, Shan J, Bennett JM, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer 2008; 113:1351-61; PMID:18618511; http://dx.doi.org/10.1002/cncr.23697.

8. Uzun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood 2011; 118:5084-95; PMID:21881045; http://dx.doi.org/10.1182/blood-2011-07-365817.

9. Koendati SY, Ingram W, Hayden J, Darling D, Barber L, Afzali B, et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 2007; 110:847-50; PMID:17412885; http://dx.doi.org/10.1182/blood-2007-01-067546.

10. Mailisoglu AW, Sugimoto C, Komrokji RS, Yang L, Maciejewski JP, Sekeres MA, et al. Expansion of effector memory regulatory T cells represents a novel prognostic factor in lower risk myelodysplastic syndrome. J Immunol 2012; 189:3198-208; PMID:22875800; http://dx.doi.org/10.4049/jimmunol.1200602.