The prevalence of type 2 diabetes in Afghanistan: a systematic review and meta-analysis

Sohail Akhtar (s.akhtar@gcu.edu.pk)  
Government College University Lahore Faculty of Science and Technology  
https://orcid.org/0000-0001-8293-6328

Jamal Abdul Nasir  
Government College University Lahore

Amara Javed  
Minhaj University

Mariyam Saleem  
Government College University Lahore

Sundas Sajjad  
Government College University Lahore

Momna Khan  
Government College University Lahore

Abdul wadood  
University of Malakand

Research article

Keywords: Prevalence, diabetes, Afghanistan, meta-analysis and systematic review

DOI: https://doi.org/10.21203/rs.3.rs-30152/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

The aim of this paper is to investigate the prevalence of diabetes and its associated risk factors in Afghanistan through a systematic review and meta-analysis.

Methods

A comprehensive literature search was conducted using EMBASE, PubMed, Web of Sciences, Google Scholar and the Cochrane library, carried out from inception to April 31 2020, without language restriction. Meta-analysis was performed using DerSimonian and Laird random-effects models with inverse variance weighting. The existence of publication bias was initially assessed by visual inspection of a funnel plot and then tested by the Egger regression test. Subgroup analyses and meta-regression were used to explore potential sources of heterogeneity. This systematic review was reported by following the PRISMA guidelines and the methodological quality of each included study was evaluated using the STROBE guidelines.

Results

Out of 64 potentially relevant studies, only 10 studies fulfilled the inclusion criteria and were considered for meta-analysis. The pooled prevalence of diabetes in the general population based on population-based studies were 12.14% (95% CI: 10.06–14.39%), based on a pooled sample of 11,699 individuals. Results of univariate meta-regression analysis revealed that the prevalence of diabetes increased with mean age, hypertension and obesity. There was no significant association between sex (male vs female), smoking, the methodological quality of included articles or education (illiterate vs literate) and the prevalence of diabetes.

Conclusions

This meta-analysis reports a relatively high prevalence of diabetes in Afghanistan, with the highest prevalence in Kandahar and the lowest in Balkh province. The main risk factors include increasing age, obesity and hypertension. Community-based care and preventive training programmes are recommended.

Trial registration:

This review was registered on PROSPERO (registration number CRD42020172624).

Background

Diabetes is a major public health problem and its frequency is drastically increasing all over the world [1]. The prevalence of type-2 diabetes is rising worldwide as a result of ageing of the population [2], rising levels
of overweight and obesity in youth and young adults [3], increasing levels of physical inactivity and poor diet [4]. Globally, it is projected that the diabetes prevalence will increase from 451 million people in the year 2017 to 693 million people by the end of 2045 [5], with 79% of all diabetes cases occurring in low and middle income countries [6]. Worldwide, diabetes prevalence was estimated to be 9% in 2014 among the adult population older than 18 years [1]. It was also reported that 49.7% of individuals living with diabetes are still undiagnosed [7]. The life expectancy of individuals with type-2 diabetes is reduced by approximately 10 years compared with those without the condition, and 80% of type-2 diabetes patients die from cardiovascular complications [7]. More than 60% of the world diabetic population reside in Asian countries, and Asians are more likely to develop diabetes at earlier ages, and with a lower body mass index, than Europeans [8].

Afghanistan is one of the Asian developing countries and facing a growth in the prevalence of diabetes. According to the World Diabetes Foundation estimates, around one million people are living with diabetes in Afghanistan and between one and two million diabetes cases are undiagnosed [9]. According to the human development index of the United Nations, Afghanistan stands at 168th position out of 189 countries and territories [10]. With limited health care facilities for diabetics, Afghanistan is ill-equipped to cope with this epidemic. Unfortunately, there has been no official nationwide survey to estimate the prevalence of diabetes in Afghanistan. However, a few research studies have been published which report the prevalence of diabetes and its risk factors in different regions of the country. This prevalence in the general population varies among the published studies. The main purpose of this systematic review and meta-analysis is to identify, summarize and estimate the pooled prevalence of diabetes in Afghanistan based on published studies. In addition, we also investigate the associated risk factors of diabetes.

To the best of our knowledge, this is the first systematic review and meta-analysis to estimate the pooled prevalence of diabetes in Afghanistan.

**Methods**

**Design**

The results were defined using the Preferred Reporting Items for Systematic and Meta-analyses (PRISMA) guidelines [11]. The PRISMA 2009 checklist is attached in supplementary file S1. The protocol of this study was registered with the International Prospective Register of Systematic Reviews (PROSPERO), with protocol registration number CRD42020172624.

**Literature search**

A comprehensive literature search was conducted to identify potential articles published on the prevalence of diabetes in Afghanistan. The search was carried out systematically using the following electronic websites: PubMed, Medline, EMBASE, Google Scholar and the Cochrane Library. We considered studies published from inception to April 2020. Using MeSH headings, the terms “Type-2 diabetes”, “Type-II diabetes”, “T2D”, “prevalence”, “Impaired glucose tolerance (IGT)”, “risk factors”, “risk factor”, “glucose
intolerance”, “glucose abnormalities”, “non-communicable diseases”, “Afghanistan”, and “Afghan” as well as variations thereof were searched for. Additionally, articles were also searched from reference lists in previously included studies.

Inclusion and exclusion criteria

The criteria for studies to be included were as follows: (i) articles were published in peer-reviewed journals and reported the prevalence of diabetes; (ii) articles reported population-based or community-based surveys; (iii) articles were published in either English or Pashto.

The criteria used to exclude studies were: (i) irrelevant to diabetes; (ii) not providing clear data; (iii) being reviewed articles, case series, or case reports; (vi) relating to the Afghan community living outside of Afghanistan; (v) Articles reported duplicated data (for data published in more than one article) the more up-to-date version was considered and the other articles excluded.

Data extraction

After selecting the relevant articles, two investigators independently screened the titles and abstracts to consider articles for full text review. The investigators then extracted all the necessary data using a standardized data extraction format in Microsoft Office Excel 2013. Any disagreement between the two investigators was resolved by the third investigator whose decision was regarded as final. The extracted information was: first author surname, year of publication, sex ratio (male/female), age, sample size, the prevalence rate of diabetes, the prevalence of smoking, sampling method, study design and the province in which the study was performed. An extract of these collected data is presented in Table 1, using the Preferred Reporting Items for Systematic and Meta-analyses (PRISMA) guidelines [11].
Table 1
Characteristics of 10 studies included in the analysis.

| Author                      | Design | Year | Sampling Method   | Location         | Female % | Males % | Overweight % | Obesity % | Hypertension % | Illiteracy % | Mouth snuff users % | Physical activity | Smoking diagnosis |
|------------------------------|--------|------|-------------------|------------------|----------|---------|--------------|-----------|-----------------|--------------|---------------------|-------------------|--------------------|
| Saeed et al. [19]           | S C    | 2012 | Random sampling   | Kabul            | 66.5     | 33.5    | 38           | 31        | 33              | 57           | 11                  | 31              | .5                 | 13                | N                  | Good               |
| Saeed et al. [20]           | S C    | 2013 | Random sampling   | Kabul            | 66.34    | 39      | 34           | 34        | 46              | 20           | 11                  | 10              | 48                 | 5                | N                  | Good               |
| Saeed et al. [21]           | S C    | 2013 | Random sampling   | Nangarhar        | 60.9     | 39      | 32           | 27        | 30              | 71           | 10                  | 59              | 38                 | 6                | N                  | Good               |
| Saeed et al. [22]           | S C    | 2015 | Random sampling   | Kabul            | 52.6     | 47      | 47           | 32        | 68              | 28           | 8                  | 38             | 8.1                | 10               | 58                 | Fair               |
| Saeed et al. [23]           | S C    | 2015 | Random sampling   | Nangarhar        | 61.39    | 32      | 24           | 24        | 66              | 13           | 57                 | 39             | 13                 | 1                | N                  | Good               |
| Author of publication | Method | Setting | Province | Female | Males | Overweight | Obesity | Hypertension | % | Illiteracy | mouth snuff users | Physical activity | Age | Smoking diagnosis |
|------------------------|--------|---------|----------|--------|-------|------------|--------|--------------|----|------------|-------------------|-----------------|-----|------------------|
| Saeed [24]             | Random sampling | Urban | Kandahar | 51 | .2 | 48 | .8 | 34 | .3 | 16 | .3 | 32 | .3 | 16 | .3 | 21 | .3 | 38 | .3 | 9 | .7 | 3 | Good |
| Saeed [25]             | Random sampling | Urban | Nangarhar | 60 | 40 | 30 | 23 | 24 | .4 | 66 | .9 | 13 | 81 | .2 | 39 | NA | NA | 6 | Good |
| Saeed [26]             | Random sampling | Urban | Nangarhar | 57 | .3 | 42 | .7 | 34 | .4 | 24 | .7 | NA | 71 | .5 | 11 | % | 34 | .8 | 38 | .8 | 6 | NA | 3 | Good |
| Saeed [26]             | Random sampling | Urban | Balkh | 53 | .9 | 46 | .1 | 48 | .5 | 58 | .9 | 30 | 8. | 59 | .3 | 28 | .2 | 40 | .5 | 9 | 2 | 3 | Fair |
| Saeed [27]             | Random sampling | Urban | Herat | 52 | .6 | 47 | .4 | 48 | .3 | 52 | N | NA | 54 | N | NA | 41 | N | 3 | Good |

**Methodological quality of included studies**

Two authors independently assessed the methodological quality of each of included studies by using Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines [12]. We
categorized the quality of each included study as Good (G) if it scored at least 70% of the points, Fair (F) if it scored 50-69% of the points, and Poor (P) if its points score was less than 50%.

**Statistical analysis**

Meta-analysis was performed using the statistical software R version 3.6.1. [13] for Microsoft Windows, using two packages ("meta" and "metafor"). Random effects meta-analysis models were used to investigate the pooled prevalence of diabetes using DerSimonian and Laird's approach with 95% confidence intervals (CIs) [14]. The inverse of the Freeman-Tukey double arcsine transformation was used to stabilize the variance of each study [15]. A forest plot was used to assess visually the prevalence estimates and corresponding 95% confidence intervals (CIs) across included studies. For the evaluation of statistical heterogeneity across studies, the \( I^2 \)-statistic was used [16]. Heterogeneity was considered as high, moderate, low with \( I^2 \) values of 75%, 50% and 25% respectively. To identify potential sources of heterogeneity, meta-regression and subgroup analyses were conducted by age, year of publication, hypertension, sex, province, literacy rate, obesity and the methodological quality of the included studies. Publication bias was initially assessed by visual inspection of the funnel plot and then tested by the Egger regression test [17, 18].

**Results**

**Literature search**

Initially, a total of 64 potential articles was retrieved. Out of these, 36 duplicate articles were removed. After careful review of the titles and abstracts, 12 articles were found irrelevant and then excluded from the process. As the result, only 16 studies were considered for full text reading. Later, six studies were excluded after full text reading because they provided no quantitative measure of the prevalence diabetes; overlapped data set; or they were not based in Afghanistan. In the end, only 10 studies were met the inclusion criteria and data were extracted accordingly for the analysis. The flow chart of study selection process is presented in Figure 1, using the PRISMA flow diagram [11].

**Characteristics of the included studies**

The main characteristics of selected studies are summarized in Table 1 [19-28]. All studies used cross-sectional designs and a random sampling procedure. The included studies were published between 2012 and 2017 while the period to which the data relate was from December 2011 to November 2015. The number of subjects per study ranged from 1,070 to 1,231, for a total of 11,699 subjects across studies. Six studies reported the prevalence of diabetes as an outcome of interest, and four studies reported the incidence of a composite outcome (non-communicable diseases, obesity, etc.). The existence of diabetes was tested with biological measures in all studies. Considering cut-point definitions of diabetes, eight studies used a fasting glucose level of 126 mg/dL or higher and two studies did not explicitly state the criteria that they used. Data were collected from five provinces of Afghanistan. Three studies were conducted in Kabul province [19, 20, 22], four studies in Nangarhar province [21, 23, 25, 26], and one each in
Herat [27], Kandahar [24] and Balkh [28] provinces. The female proportion varied from 51.2% [24] to 66.50% [19]. The average age of participants varied from 38.3 to 49.5 years. The percentage with hypertension ranged from 24.4% [25] to 33.14% [19], based on seven studies. The percentage of obese people varied from 16% [24] to 58.9% [28] (nine studies). The percentage of illiterate people ranged from 20.60% to 73.2% (10 studies). The percentage of smokers ranged from 5.1% to 13.7%. The percentage of overweight people ranged from 30.0% to 48.5% (nine studies).

**Pooled meta-analysis**

Statistical analysis of the prevalence of diabetes is described in Table 2. The pooled prevalence of diabetes was 12.14% (95% CI: 10.06–14.39, $I^2 = 99.3\%$, based on 10 studies) in a total sample of 11,699 individuals. The forest plot of the prevalence estimates and their respective 95% confidence intervals (CIs) is presented in Figure 2. The funnel plot (Figure 3) showed almost no publication bias which is confirmed by the Egger regression test ($p = 0.824$). Furthermore, the no publication bias was confirmed by ‘Trim and Fill’ sensitivity analysis—as we did not find any hypothetical missing study. The prevalence of undiagnosed diabetes was 9.70% (95% CI: 4.99–15.74, $I^2 = 97.5\%$, based on four studies) with a total sample size of 4,697 participants.
Table 2
Prevalence of diabetes and its risk factors in the adult population of Afghanistan

| Characteristic | Studies | Sample | Cases | Prevalence, % (95%CI) | $I^2$, % | Heterogeneity | P-Egger test |
|----------------|---------|--------|-------|------------------------|---------|---------------|-------------|
| Diabetes       | 10      | 11,699 | 1441  | 12.14 (10.06–14.39)    | 0.925   | < 0.001       | 0.824       |
| Undiagnosed    | 4       | 4697   | 478   | 9.70 (4.99–15.74)      | 0.975   | < 0.001       | 0.1267      |
| By Sex         |         |        |       |                        |         | 0.0278        |             |
| Male           | 6       | 3951   | 379   | 12.07 (8.98–15.55)     | 0.877   | < 0.0001      |             |
| Female         | 6       | 3095   | 508   | 12.56 (8.48–17.29)     | 0.945   | < 0.0001      |             |
| By Age         |         |        |       |                        |         | 0.2263        |             |
| 25–34          | 4       | 1922   | 179   | 8.45 (3.65–14.97)      | 0.952   | < 0.0001      | 0.0359      |
| 35–44          | 4       | 1179   | 164   | 13.02 (7.54–19.70)     | 0.902   | < 0.001       |             |
| 45–54          | 4       | 800    | 140   | 17.12 (9.42–26.51)     | 0.907   | < 0.001       |             |
| 55+            | 4       | 679    | 131   | 19.23 (16.20–22.44)    | 0.078   | 0.354         |             |
| By Province    |         |        |       |                        |         | 0.9841        |             |
| Nangarhar      | 4       | 4650   | 536   | 11.53 (10.62–12.46)    | 0       | < 0.001       |             |
| Kabul          | 3       | 3524   | 419   | 11.81 (9.18–14.73)     | 0.998   | < 0.001       |             |
| Balkh          | 1       | 1231   | 113   | 9.18(–)                | -       | -             |             |
| Herat          | 1       | 1129   | 112   | 9.92(–)                | -       | -             |             |
| Kandahar       | 1       | 1165   | 261   | 22.40(–)               | -       | -             |             |
**Heterogeneity and subgroup analysis**

The pooled prevalence among females was 12.56% (95% CI: 8.48-17.29), while for males, it was 12.0% (95% CI: 8.98-15.55). When stratified by age, the pooled prevalence in age groups 25–34 years, 35–44 years, 45–54 years and 55 years and over was 8.45% (95% CI: 3.65–14.97), 13.02% (95% CI: 7.54–19.70), 17.12% (95% CI: 9.42–26.51), and 19.23% (95% CI: 16.20–22.44), respectively. The pooled prevalence in the 55 years and over age group was the highest of the four age groups, which shows that the prevalence of diabetes increases with age (Table 2).

When stratified by province, the prevalence of diabetes was highest (22.40%) in Kandahar, compared with 11.81% (95% CI: 9.18–14.73) in Kabul, 11.53% (95% CI: 10.62–12.46) in Nangahar, 9.92% in Herat, and 9.18% in Balkh. The difference in the pooled prevalence of diabetes between males and females was insignificant. There was no significant publication bias in all subgroup analyses.

The result of the univariate meta-regression analysis showed that the prevalence of diabetes increased with a mean age ($\beta = 0.55\%$, 95% CI: 0.15–0.95, $p=0.0074$, $R^2 = 30.64\%$), hypertension ($\beta = 0.12\%$, 95% CI: 0.0288–0.2068, $p=0.0095$, $R^2=38.83\%$) and obesity ($\beta = 0.794\%$, 95% CI: 0.0094–0.1493, $p=0.030$, $R^2=38.27\%$). There was no significant difference by sex (male vs female), sample size, year of publication, smoking, education (illiterate versus literate) or the methodological quality of included studies.

**Discussion**

The purpose of this systematic review was to compile all available data reporting the prevalence of diabetes and related risk factors among the adult population of Afghanistan between 2000 and 2019. The information provided in this systematic review and meta-analysis may contribute to improve public health interventions in the country and therefore contribute to reduce the incidence of diabetes. The results showed that the pooled prevalence of diabetes based on 10 population-based cross-sectional studies was 12.14%, with a total sample of 11,699 individuals. Compared with neighbouring countries sharing a similar lifestyle and culture, the pooled prevalence of diabetes in Afghanistan is higher than in Bangladesh (7.7%) [29] and Nepal (8.4%) [30], while lower than in India [31] and Pakistan (14.7%) [32].

Pashto is one of the official spoken languages in Afghanistan [33] and the Pukhtoon community living both sides of the border of Afghanistan and Pakistan. A population-based survey was performed to explore the prevalence of type-2 diabetes in the Pashto-speaking district of Lower Dir [34] (Khyber Pukhtoonkhuwa, a province of Pakistan). The prevalence of type-2 diabetes in Lower Dir was 11.1%, close to the average prevalence in Afghanistan found in the present analysis.

By comparing age groups, the prevalence of diabetes in 25–34 year age group was lowest (8.45%) while the highest prevalence was found in the age group 55 years and above (19.23%). People aged 55 years and over are more than twice more likely to have type-2 than those aged 25–34 years.
By stratifying regionally, the subgroup analysis showed that the prevalence of diabetes in Nangarhar (11.53%) and Kabul (11.81%) provinces was similar, and also very similar to the nearby Pakistani province of Lower Dir. Diabetes is affecting the whole of Afghanistan with the highest prevalence seen in the Kandahar province (22%) and the lowest in Balkh province (9.12%).

This study has several strengths as well as some limitations. To the best of our knowledge, it is the first systematic review and meta-analysis to estimate the pooled prevalence of diabetes in Afghanistan. We used a rigorous search strategy to explore eligible articles and tried to increase the comparability and quality of included articles by using robust eligibility criteria. No publication bias was found in our analysis which suggests that we did not miss any potential articles that could change the findings of this meta-analysis. The methodological quality of all included articles had a low risk bias (seven were of Good quality and three of Fair quality).

This systematic review and meta-analysis has some limitations. As expected, the meta-analyses revealed high heterogeneity in the estimated pooled prevalence. However, to deal with the problem of high heterogeneity, subgroup analyses and meta-regression were used by adding covariates to the bivariate model. Due to high heterogeneity, the results of this meta-analysis should be interpreted with caution.

Another limitation of this review is that type-1 and type-2 diabetes could not distinguishable in the selected articles. Therefore, we assumed that all reported cases of diabetes were type-2, because it accounts for 90–95% of all diabetes cases [35].

Furthermore, this meta-analysis is based on a limited number of articles (only 10) as well as only 5 out of the 34 provinces of Afghanistan. Due to the limited number of studies in this review, only univariate meta-regression analysis is used to test the significance of each covariate instead of a multivariate meta-regression model.

**Conclusions**

The results of this systematic review and meta-analysis suggest that diabetes prevalence in Afghanistan is around 12%, similar to that in neighbouring populations with similar culture and lifestyle. There are variations within the country by province and age, with those aged over 55 years having more than double the prevalence of those aged 25–34 years. There is no significant difference between males and females. Information about the prevalence of diabetes in Afghanistan is limited to 5 of the 34 provinces. Hence, more data are required about other parts of the country, with community-based diabetes testing strategies recommended to diagnose all individuals living with diabetes.

**Abbreviations**

CI  
95% confidence interval  
mg/dL  
milligrams per deciliter
Declarations

Ethics approval and consent to participate:
Not applicable here, as this is systematic review and meta-analysis

Consent for publication:
Not applicable

Availability of data and materials:
All relevant data is included within the manuscript file.

Competing interests:
The authors declare that they have no competing interests

Funding:
No funding was received for this study

Authors' contributions:
All authors equally contributed in the article. The authors read and approved the final manuscript.

Acknowledgements:
Thanks Dr. Andy Hinde for the initial comments on the paper and for editing the final draft.

References

1. WHO. IDF. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. WHO, IDF; 2006.
2. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.
3. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.

4. Schmidt MI, Duncan BB, Ishitani L, da Conceiciao Franco G, de Abreu DM, Lana GC, Franca E. Trends in mortality due to diabetes in Brazil, 1996–2011. Diabetol Metab Syndr. 2015;7:109.

5. Cho NH1, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW. and B. Malanda. "IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.

6. Nanditha A, Ma RC, Ramachandran A, Snehalatha C, Chan JC, Chia KS, Shaw JE, Zimmet PZ. Diabetes in Asia and the Pacific: implications for the global epidemic. Diabetes care. 2016 Mar 1;39(3):472 – 85.

7. Armstrong D. "Oxidative Stress in Applied Basic Research and Clinical Practice." (2010).

8. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 2011;34(6):1249–57.

9. World Diabetes Foundation. https://www.worlddiabetesfoundation.org/projects/afghanistan-wdf15-1206, Assessed 26th Nov. 2019.

10. United Nations Development Program. Human Development Report. http://hdr.undp.org/en/composite/HDI Assessed 26th Nov. 2019.

11. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine. 2009 Aug 18;151(4):264–9.

12. R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2008). ISBN 3-900051-07-0.

13. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67(11):974–8. doi:10.1136/jech-2013-203104.

14. Cochran GW. The Combination of Estimates from Different Experiments. Biometrics. 1954;10:101–29.

15. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58. doi:https://doi.org/10.1002/sim.1186.

16. 10.1136/bmj. 315.7109.629

17. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315:629 – 34. doi: 10.1136/bmj. 315.7109.629.

18. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.

19. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Annals of internal medicine. 2007 Oct 16;147(8):573–7.

20. Saeed KM. Prevalence of risk factors for non-communicable diseases in the adult population of urban areas in Kabul City, Afghanistan. Central Asian journal of global health. 2013;2(2).
21. Islam M, Khwaja S. Prevalence and predictors of diabetes mellitus in Jalalabad City, Afghanistan-2013. Mar 15;6(1):1–8.

22. Saeed KM. Prevalence of hypertension and associated factors in Jalalabad City, Nangarhar Province, Afghanistan. Central Asian journal of global health. 2015;4(1).

23. Saeed KM. Prevalence and associated risk factors for obesity in Jalalabad city—Afghanistan. Alexandria Journal of Medicine. 2015;51(4):347–52.

24. Khwaja Mir Islam S. Risk Factors and Prevalence of Diabetes: A Cross Sectional Study in Kabul, Afghanistan 2015. Iranian Journal of Diabetes and Obesity. 2016 Mar 10;8(2):67–76.

25. Saeed KM, Rasooly MH, Alkozai A. Prevalence of risk factors for noncommunicable diseases in Jalalabad city, Afghanistan, evaluated using the WHO STEPwise approach. East Mediterr Health J. 2016 Feb 1;21(11):783 – 90.

26. Saeed KM. Prevalence of Diabetes and its Risk Factors in Urban Setting of Kandahar City, Afghanistan-2015. IOSR Journal of Pharmacy. 2016;6(11):53–60.

27. Saeed KM. Diabetes Mellitus Among Adults in Herat, Afghanistan: A Cross-Sectional Study. Central Asian journal of global health. 2017;6(1).

28. Saeed KM. Prevalence of obesity and some associated factors among adult residents of Mazar-e-Sharif city, Afghanistan. Prevalence. 2016 Nov 2;6(11Version):97–104.

29. Saquib N, Saquib J, Ahmed T, Khanam MA, Cullen MR. Cardiovascular diseases and type 2 diabetes in Bangladesh: a systematic review and meta-analysis of studies between 1995 and 2010. BMC public health. 2012 Dec;12(1):434.

30. Gyawali B, Sharma R, Neupane D, Mishra SR, van Teijlingen E, Kallestrup P. Prevalence of type 2 diabetes in Nepal: a systematic review and meta-analysis from 2000 to 2014. Global health action. 2015 Dec 1;8(1):29088.

31. Akhtar S, Nasir JA, Abbas T, Sarwar A. Diabetes in Pakistan: A systematic review and meta-analysis. Pak J Med Sci. 2019;35(4):1173–8.

32. Rahman T. The Pashto language and identity-formation in Pakistan. Contemporary South Asia. 1995 Jul 1;4(2):151–70.

33. Akhtar S, Khan Z, Rafiq M, Khan A. Prevalence of type II diabetes in District Dir Lower in Pakistan. Pakistan journal of medical sciences. 2016 May;32(3):622.

34. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2010 Jan 1;33 (Supplement 1):S62-9.

Figures
Flow diagram explaining the number of included and excluded articles in the meta-analysis on diabetes in Afghanistan, considered from the PRISMA 2009 guideline [11].
Figure 2

Forest plot of prevalence of diabetes of adult population of

Figure 3

Funnel plot of the prevalence of diabetes in Afghanistan
**Supplementary Files**

This is a list of supplementary files associated with this preprint. Click to download.

- PRISMA2009checklistPrevalenceofDiabetesinAfghanistan.doc