Original Research Article

A study on clinical correlation of EEG in neonates with perinatal asphyxia

Rajendra Shinde1, Kiran Haridas2, Madhavi Shelke3, L. S. Deshmukh3, P. S. Patil3

1Department of Pediatrics, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
2Department of Pediatrics, NRHM, Kalaburagi, Karnataka, India
3Department of Pediatrics, Government Medical College, Aurangabad, Maharashtra, India

Received: 12 February 2019
Accepted: 16 February 2019

*Correspondence:
Dr. Kiran Haridas,
E-mail: kkiranharidas@gmail.com

ABSTRACT

Background: Perinatal asphyxia is the most common and important cause of preventable cerebral injury occurring in the neonatal period. The WHO has estimated that 4 million babies die during the neonatal period every year. According to WHO, perinatal asphyxia is defined as the failure to initiate and sustain breathing at birth. The objective is to study the electroencephalographic changes and correlation between severity of Perinatal asphyxia with EEG changes.

Methods: It is prospective observational study, which includes 40 term neonates admitted in NICU with perinatal asphyxia in GMCH Aurangabad. EEG analysis focused on background activity and classified into four categories.

Results: The EEG was normal in 45%, mild abnormal in 25%, intermediate in 15%, and severely abnormal in 15%. Outcome at discharge was normal in 19(47.5%) and abnormal in 21(52.5%) including 1 death. Abnormal outcome was seen in 27% of newborns with normal EEG and 72% of abnormal EEG.

Conclusions: Severity of perinatal asphyxia correlated well with abnormality of EEG. EEG changes and severity showed good correlation with immediate outcome of newborn in terms of duration of hospitalization and normal neurological examination.

Keywords: EEG, Neonates, Outcome, Perinatal asphyxia

INTRODUCTION

Perinatal asphyxia is the most common and important cause of preventable cerebral injury occurring in the neonatal period. Perinatal asphyxia (PA) is an insult to the fetus or newborn due to a lack of oxygen(hypoxia) and/or a lack of perfusion (ischemia) to various organs.1 The WHO has estimated that 4 million babies die during the neonatal period every year and 99% of these deaths occur in low-income and middle income countries. Three major causes account for over three quarters of these deaths, serious infection (28%) complication of preterm birth (26%) and Perinatal asphyxia (23%). These estimations imply that birth asphyxia is the cause of around one million neonatal deaths each year. One of the present challenges is the lack of a gold standard for accurately defining perinatal asphyxia. Because of same reason the incidence of Perinatal asphyxia is difficult to quantify.2

Damage to the brain tissue is a serious complication of low oxygen that can cause seizures and other
neurological problems. It is better to use term perinatal asphyxia since asphyxia may occur in utero, at birth or in postnatal period.

To initiate neuroprotective intervention, early and accurate identification of those at risk of developing hypoxic-ischemic injury (HIE) and subsequent poor neurodevelopment outcome is crucial. An accurate prediction of the prognosis of individual infants is important for clinicians and parents. In some cases, the prediction of an adverse outcome may lead to withdrawal of intensive care, in other cases the prediction of an adverse outcome will lead to early supportive care, such as physiotherapy and speech therapy.

EEG can detect subclinical seizures. Electroencephalographic (EEG) abnormalities can be used to aid outcome prediction for infants with HIE.

Many characteristics of EEG recordings have been examined for their ability to predict outcomes, and several different grading systems exist. EEG abnormalities, particularly background abnormalities correlate more with the adverse neurodevelopment outcome. Most studies agree that mild abnormalities predict a normal neurologic outcome in 90%. studies of Neonatal EEG in term infants with perinatal asphyxia shown that background activity is an important prognostic indicator.

METHODS

A hospital based prospective study was done in government medical college and hospital, Aurangabad from May 2009 to April 2012 for a period of 3 years. A total of 40 term neonates with perinatal asphyxia which were admitted in the NICU ward of the hospital were included in the study.

Inclusion criteria

- Term neonates with perinatal asphyxia admitted in NICU.

Exclusion criteria

- Preterm neonates
- Neonates with congenital anomalies
- CNS infections.

WHO definition of perinatal asphyxia like failure to initiate and sustain breathing at birth was considered for study.

Details of obstetric history recorded, including parity, antenatal registration, antenatal complication. Postpartum details like, resuscitation details. APGAR score at 1 min and 5 min recorded. Perinatal asphyxia severity graded based on Apgar score at 1 min.

EEG

EEG performed after cardio respiratory stabilization of neonates. Infant preparation. No sedation is used for procedure.

As cry activity, excessive movements interfere with recording and interpretation of EEG, the procedure was performed after half an hour of feeding so that baby will be sleeping.

EEG Of neonates recorded in medicine neurostation. RMS digital EEG machine is used.

Electrode placement

The international 10-20 system of electrode placement (Jasper, 1958) has been modified for recording neonates (Kellaway and Crawley,1964). This is to accommodate the neonate’s immature frontal lobes that do not extend as anteriorly relatively skull compared to older children and adult. typically nine scalp positions are used (F1, F2, C3,C4,Cz, T3, T4, O1, O2)In addition electrodes placed at A1 and A2, ground electrode placed either at mid fore head or on a mastoid region and reference electrode in non cephalic region

After head measurements the scalp electrodes are placed using conductive gel and ball of cotton is applied to secure the electrodes. Each electrode site is labelled with a letter and a number. The letter refers to the area of brain underlying the electrode e.g. F-frontal lobe and T-temporal lobe. Even numbers denote the right side of the head and odd numbers the left side of the head.

EEG analysis focused on the background activity and was classified into four categories:

1. Normal:continuous activity with physiological EEG patterns for behavioral state
2. Mildly abnormal: isolated temporal spikes, mild asynergy
3. Intermediate: predominant or transient discontinuous activity;
4. Severely abnormal: inactive (background activity <5μV) or permanent discontinuous activity (“suppression-burst” or “permanent discontinuous activity plus theta activity”).

Statistical analysis

Statistical analysis was performed using chi square test (χ^2) test. The results are considered significant if P value of <0.05.

RESULTS

A total of 40 term neonates with perinatal asphyxia were included and analyzed in the study.
In present study nearly 60% of the study subjects were delivered to primi parous women with nearly 90% of them were delivered by normal labor. Majority of them were males (80%). Nearly 37.5% of them had meconium stained liquor with average gestational age of 38 weeks (Table 1).

Table 1: Clinical details of the study subjects.

Parity	Frequency
Primipara	24 (60%)
Multipara	16 (40%)
Mode of delivery	Frequency
Preterm	36 (90%)
LOSC	4 (10%)
Gender	Frequency
Male	32 (80%)
Female	8 (20%)
Liquor stains	Frequency
Meconium stained	15 (37.5%)
Unstained	25 (62.5%)
Average gestational age	38 weeks
Average birth weight	2.85kg

Risk for perinatal asphyxia was present in 50% of patients amongst which PIH present in 7.5%, PROM present in 5% and meconium stained liquor present in 37.5%. In present study 30% patients had mild PA ,65% moderate and 5% severe PA (Table 2).

Table 2: Clinical profile of perinatal asphyxia.

Clinical profile	Frequency	Percentage
Risk factors		
No risk factors	20	50
PIH	3	7.5
PROM	2	5
Meconium stained	15	37.5
Severity of perinatal asphyxia	Frequency	
Mild PA	12	30
Moderate PA	26	65
Severe PA	2	5

EEG was normal in 45%, abnormal in remaining 55%. showed mild abnormality in 25%, intermediate abnormality in 15%, severe in 15% of patients. On an Average of 4.4 day after the delivery the EEG was recorded, and average duration of EEG was 40 minutes (Table 3).

Table 3: EEG Characteristics in perinatal asphyxia.

EEG changes	Frequency
Normal	18 (45%)
Mildly abnormal	10 (25%)
Intermediate	6 (15%)
Severe	6 (15%)
Average day on which EEG recorded	4.4 day
Average duration of EEG recorded	40 min

The association between the EEG and perinatal asphyxia was found to be statistically significant (Table 4).

Table 4: Association of EEG changes with perinatal asphyxia severity.

EEG changes	Normal	Moderate	Severe	Total
Normal	11	7	0	18
Mild	0	10	0	10
Intermediate	1	4	1	6
Severe	0	5	1	6
Total	12	26	2	40

Chi square=19.76 p=0.0031*

The association between the EEG changes and outcome was also found to be statistically significant. Outcome at discharge was normal in 19 (47.5%), abnormal in 21 (52.5%) which include death in one of the study subjects (Table 5).

Table 5: Association of EEG changes with outcome.

EEG changes	Normal	Abnormal	Total
Normal	13	5	18
Mild	2	8	10
Intermediate	4	2	6
Severe	0	6	6
Total	19	21	40

Chi square=13.76 p=0.0032*

DISCUSSION

Perinatal asphyxia is an important cause of neonatal mortality and long term morbidity. Various parameters are postulated as useful in early prediction of long term outcome. In present study the incidence of perinatal asphyxia in primipara is 60% as compared to multipara (40%), similar finding was described in the study done by Ong LC et al. In present study mean maternal age is 23 years. Very young mother tends to be less educated and probably higher risk of prolonged or obstructed labor in younger mother is responsible for high incidence of perinatal asphyxia in primi.

In present study sex ratio for male: female was 4:1. The High incidence of perinatal asphyxia was found among male in present study. Similar findings were also reported by the study done El-Auoty M et al and other studies.11-13 In present study the average gestational age is 40 weeks which is similar to studies reported by El-Auoty M et al and various other studies.11,12,14 In study reported Allemand F et al the average gestational age is 35 weeks the difference is because they also included preterm neonates in their study.15 In present study the incidence of meconium stained liquor in perinatal asphyxia was 37.5% which is comparable to Leijser LM et al study where the incidence of meconium stained liquor is 34%.12

In present study authors could do EEG on average 4.4 day of life. In studies reported by El Auoty M et al the
EEG was performed in less than 72 hours.11,13,14 The difference is because of unavailability of portable EEG machine; we could do EEG after cardiopulmonary stabilization of neonates. In studies reported by, El Auoty M et al the percentage of normal EEG is less when compared to present study findings which is due to difference in study inclusion criteria as in their study most of patients had severe perinatal asphyxia.11,13,14

In present study the classification of perinatal asphyxia is based on APGAR score. 30% mild,65% moderate and 5% had severe perinatal asphyxia. The clinical profile of perinatal asphyxia in the study done by Haidary MH et al 35(18.3%) were mild PA, 40 moderate (20.94%), and severe 116 (60%).10 The recovery rate in mild asphyxia 100%.in moderate 32 (92%) and in severe cases 86 (74.13%). In present study outcome at discharge was normal in 45% and abnormal in 55% patients including a single death. In studies reported by Leijser LM et al the percentage of abnormal outcome is more, this is due to difference in time of follow up period for examination and inclusion criteria.12 In present study authors could do follow up examination at discharge. The abnormal EEG predicted poor outcome at short term, neurological examination. similar finding was reported by El-Auoty M et al.11

CONCLUSION
Severity of perinatal asphyxia correlated well with abnormality of EEG. EEG changes and severity showed good correlation with immediate outcome of newborn in terms of duration of hospitalization and normal neurological examination.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES
1. Mizrahi EM, Hrachovy RA, Kellaway P. Techniques of recording the neonatal electroencephalogram in atlas of neonatal encephalography. 3rd ed. Philadelphia USA: Lippincott Williams and Wilkins; 2004.
2. Dongol S, Singh J, Shrestha S, Shakya A. clinical profile of birth asphyxia in Dhulikhel hospital: a retrospective study. J Nep Paedtr Soc. 2010;30(3):141-6.
3. Stanley FJ, Blair E. Why have we failed to reduce the frequency of cerebral palsy? Med J Aust. 1991;154(9):623-6.
4. Agarwal R, Jain A, Deorari A, Paul V. Post-resuscitation management of asphyxiated neonate’s Indian J Pediatr. 2008;75(2):175-80.
5. Mc Intosh N, Stenson B. The newborn in Forfar textbook of pediatrics. 5th ed. New Delhi: Elsevier, a division of Reed Elsevier India private limited; 2008:191-366.
6. World Health organization. Basic Newborn Resuscitation; A Practical Guide. World Health Organization: Geneva 1997. Available at: http://www.who.int/reproductive health/publication/MSM 98/introduction.en.html
7. Levene M, Evans D. Hypoxic-ischemic brain injury in Roberterts Textbook of Neonatology. 4th ed. Elsevier publication; 2005:1128-1148.
8. Takeuchi T, Watanabe K. The EEG evolution and neurological prognosis of neonates with perinatal hypoxia. Brain Dev. 1989;11(2):115-20.
9. Ong LC, Kanahewari Y, Chandran V, Rohana J, Yong SC, Boo NY. The usefulness of early ultrasonography, electroencephalography and clinical parameters in predicting adverse outcomes in asphyxiated term infants. Singapore Med J. 2009;50(7):705-9.
10. Park K. Preventive medicine in obstetrics, paediatrics and geriatrics in parks textbook of preventive and social medicine. 21st ed. Jabalpur: Banarasidas Bhanot Publishers; 2011:481-560.
11. El-Ayouty M, Abdel-Hady H, El-Mogy S, Zaghlol H, El-Beltagy M, Aly H. Prognosis of term infants with hypoxic ischemic encephalopathy a clinical EEG and MRI study. Int J Ch Neuropsychiatry. 2005;2(1):15-21.
12. Leijser LM, Vein AA, Liauw T, Strauss T, Veen S, Wezel-Meijler G. Prediction of short-term neurological outcome in full-term neonates with -hypoxic-schaemicencephalopathy based on combined use of electroence-phaologram and neuro-imaging. Neuropediatri. 2007;38(5):219-27.
13. Nagy E, Orvos H, Bakki J, Pal A. Sex-differences in Apgar scores for full-term neonates Acta Paediatri. 2009;98(5):898-900.
14. Doménech Martínez E, Castro Conde JR, Lorenzo CR, Méndez Pérez A, González-Azpeitia G. Prognostic value of the electroencephalogram in hypoxic ischemic encephalopathy. An Esp Pediatr. 1993;38(6):517-23.
15. Allemand F, Reale F, Sposato M, Allemand A. Perinatal hypoxic-ischemic encephalopathy: epileptic and paretic outcome at one year of age. Ital J Pediatr. 2009;35(1):14.
16. Haidary M, Hussain A, Ahmed S, Kasem A. Clinical profile of birth asphyxia in Rajshahi Medical College Hospital. J Teachers Assoc Bangladesh. 2005;18(2):106-8.