On computational complexity of length embeddability of graphs

Mikhail Tikhomirov

Abstract

A graph G is embeddable in \mathbb{R}^d if vertices of G can be assigned with points of \mathbb{R}^d in such a way that all pairs of adjacent vertices are at the distance 1. We show that verifying embeddability of a given graph in \mathbb{R}^d is NP-hard in the case $d > 2$ for all reasonable notions of embeddability.

1 Introduction

The distance graph of $S \subset \mathbb{R}^d$ is defined as the graph $G = (V, E)$, where $V = S$ and E is the set of all pairs of points $x, y \in S$ such that x and y are at the distance 1. A graph is a distance graph in \mathbb{R}^d if it is isomorphic to the distance graph of some set $S \subset \mathbb{R}^d$. Some famous problems concerning distance graphs are the Erdős’ unit distance problem on the maximal number of unit distances between n points in \mathbb{R}^2 (see [1], [2], [3]), the Hadwiger–Nelson problem on the chromatic number of \mathbb{R}^2 (see [1], [4], [5]), etc.; surveys of various results about distance graphs can be found at [6], [7].

We also consider a similar notion of embeddability in \mathbb{R}^d (see, e.g., [8]). A graph $G = (V, E)$ is embeddable in \mathbb{R}^d if there exists a mapping $\varphi : V \to \mathbb{R}^d$ such that $||\varphi(u) - \varphi(v)||_{\mathbb{R}^d} = 1$ for all pairs $(u, v) \in E$. It is clear that any distance graph in \mathbb{R}^d is embeddable in \mathbb{R}^d but the converse does not always hold. These two notions differ in the following:

- Different vertices of an embeddable graph may be assigned with the same point in \mathbb{R}^d while all vertices of a distance graph should be assigned with pairwise distinct points.

- Non-adjacent vertices of an embeddable graph can be located at the distance 1 while non-adjacent vertices of a distance graph are forbidden to be placed at distance 1.

We will say that an embedding $\varphi : V \to \mathbb{R}^d$ is strict if $\forall u, v \in V (u, v) \in E \iff ||\varphi(u) - \varphi(v)||_{\mathbb{R}^d} = 1$; we will say that an embedding $\varphi : V \to \mathbb{R}^d$ is injective if $\forall u, v \in V v \neq u \Rightarrow \varphi(v) \neq \varphi(u)$. It is clear that a graph G is a distance graph in \mathbb{R}^d iff there exists a strict and injective embedding of G in \mathbb{R}^d. Thus we obtain four different notions of embeddability (strict/non-strict, injective/non-injective) which include two notions described above.
For each of the four notions of embeddability in \(\mathbb{R}^d \) we can pose the computational decision problem of determining embeddability of chosen type for the given graph; we shall call this problem \(\mathbb{R}^d \)-UNIT-DISTANCE-(STRICT)-(INJECTIVE)-EMBEDDABILITY depending on the embeddability type. The computational complexity of these problems is studied in [8], [9]. In [9] it is shown that \(\mathbb{R}^d \)-UNIT-DISTANCE-(STRICT)-(INJECTIVE)-EMBEDDABILITY is NP-hard for each type of embeddability and each value of \(d \geq 2 \). Unfortunately, the proof in [9] for the case \(d > 2 \) is false as it is based on the result [10] due to Lovász which states the upper bound \(d + 1 \) for the chromatic number of the \(d \)-dimensional sphere circumscribed about a regular simplex on \(d + 1 \) vertices with unit length edges. In [11], [12] Raigorodskii points out that this bound is wrong and proves an exponential lower bound of this value; thus a new proof is needed for the case \(d > 2 \), which is the point of this paper.

The main result is

Theorem 1. Computational problems \(\mathbb{R}^d \)-UNIT-DISTANCE-EMBEDDABILITY, \(\mathbb{R}^d \)-UNIT-DISTANCE-STRIC-EMBEDDABILITY, \(\mathbb{R}^d \)-UNIT-DISTANCE-INJECTIVE-EMBEDDABILITY, \(\mathbb{R}^d \)-UNIT-DISTANCE-STRIC-INJECTIVE-EMBEDDABILITY are NP-hard for each \(d > 2 \).

To prove this result we construct a reduction of the classic NP-complete problem of graph vertex 3-coloring (3-COLORING) (see [13]) to each of the four embeddability problems: for any given graph \(G \) we explicitly construct a graph \(H = 3 \)-COLORING-\(\mathbb{R}^d \)-UNIT-DISTANCE-EMBEDDABILITY-REDUCTION(\(G \)) such that the size of \(H \) is linear in the size of \(G \) (for every fixed \(d \)) and the following conditions hold:

- If no valid vertex 3-coloring of \(G \) exists, then there is no embedding of \(H \) in \(\mathbb{R}^d \);
- If a valid vertex 3-coloring of \(G \) exists, then there is a strict injective embedding of \(H \) in \(\mathbb{R}^d \).

The possibility of such construction implies NP-hardness of all four mentioned problems. It should be mentioned that the question whether the described problems lie in NP is open.

2 Notion of rod

Let us introduce some necessary definitions.

A *weighted graph* \(G = (V, E, w) \) is an ordered triple such that \((V, E) \) is a graph and \(w : E \to \mathbb{R}_+ \) is a function that assigns a positive number to each element of \(E \); for every edge \(e \in E \) we will say that \(w(e) \) is the *length* of the edge \(e \). If \(w \equiv 1 \), the weighted graph \(G \) is called a *unit distance graph*. A *length embedding* (or, more simply, an *embedding*) of the weighted graph \(G = (V, E, w) \) in \(\mathbb{R}^d \) is a map \(\varphi : V \to \mathbb{R}^d \) such that \(\forall u, v \in V \ (u, v) \in E \Rightarrow ||\varphi(u) - \varphi(v)||_{\mathbb{R}^d} = w((u, v)) \).

Remark: In the sequel, we will identify vertices of the graph with points of \(\mathbb{R}^d \) — their images under the embedding if that doesn’t cause confusion.

An embedding \(\varphi \) of the weighted graph \(G = (V, E, w) \) in \(\mathbb{R}^d \) is called *non-critical* if the following conditions hold:
Lemma 1. Let \(G = (V_G, E_G, w_G) \), \(H = (V_H, E_H, w_H) \) be weighted graphs. Suppose \(V_G \cap V_H = \{u, v\} \), \(e = (u, v) \in E(G) \), \(w_G(e) = l \), and \(H \) is a \((u, v)\)-rod of length \(l \). Let \(G' = (V_{G'}, E_{G'}, w_{G'}) \), where \(V_{G'} = V_G \cup V_H \), \(E_{G'} = (E_G \setminus \{e\}) \cup E_H \), \(w_{G'} = w_G(E_G \setminus \{e\}) + w_H(E_H) \) (informally, we replace the edge \(e \) in \(G \) by the subgraph \(H \) to obtain \(G' \)). Then:

- If there is no embedding of \(G \) in \(\mathbb{R}^d \), then there is no embedding of \(G' \) in \(\mathbb{R}^d \).
- If there exists a non-critical embedding of \(G \) in \(\mathbb{R}^d \), then there exists a non-critical embedding of \(G' \) in \(\mathbb{R}^d \).

Proof. In any embedding of \(G' \) the distance between vertices \(u \) and \(v \) is equal to \(l \). Suppose we have an embedding of \(G' \); we can erase all vertices outside \(V_G \) to obtain an embedding of \(G \). The first claim is thus proven.

Now consider a non-critical embedding \(\varphi_G \) of the weighted graph \(G \) in \(\mathbb{R}^d \). Construct an embedding \(\varphi_{G'} \) of \(G' \) as follows:

- Let \(\varphi_{G'}(x) = \varphi_G(x) \) for all \(x \in V_G \);
- Choose a non-critical embedding \(\varphi_H \) of the weighted graph \(H \) such that \(\varphi_H(u) = \varphi_G(u) \), \(\varphi_H(v) = \varphi_G(v) \) (such embedding exists since \(||\varphi_G(u) - \varphi_G(v)|| = l \) and \(H \) is a \((u, v)\)-rod of length \(l \); let \(\varphi_{G'}(y) = \varphi_H(y) \) for all \(y \in V_H \).
It is clear that this definition of $\varphi_{G'}$ is consistent. However, it is possible that $\varphi_{G'}$ is not a non-critical embedding. Note that no vertex of $V_{G'} \setminus \{u, v\}$ lies on the straight line uv since the embeddings φ_G and φ_H are non-critical.

Let S denote the set of all rotations of \mathbb{R}^d about the line uv. S is isomorphic to the $(d - 2)$-dimensional sphere (each rotation can be assigned with the image of some point which doesn’t lie on uv). For any $\psi \in S$ let $\psi \ast_H \varphi_{G'}$ denote the mapping from $V_{G'}$ in \mathbb{R}^d such that $\psi \ast_H \varphi_{G'}(x) = \varphi_{G'}(x)$ for every $x \in V_G$ and $\psi \ast_H \varphi_{G'}(y) = \psi(\varphi_{G'}(y))$ for every $y \in V_H$; clearly, this definition is consistent. It is also clear that for every rotation $\psi \in S$ the mapping $\psi \ast_H \varphi_{G'}$ is an embedding of G' in \mathbb{R}^d.

We now show that there exists a rotation $\psi \in S$ such that $\psi \ast_H \varphi_{G'}$ is a non-critical embedding of G' in \mathbb{R}^d. Consider all $\psi \in S$ such that the embedding $\psi \ast_H \varphi_{G'}$ is not non-critical for some reason. In that case, one of the following conditions must hold:

- The embedding $\psi \ast_H \varphi_{G'}$ places two vertices of G' (denote them x and y) at the same point. It follows from the non-criticality of φ_G and φ_H that x and y cannot lie both in V_G or both in V_H. Thus WLOG $x \in V_G \setminus \{u, v\}, y \in V_H \setminus \{u, v\}$.

 The vertex y does not lie on the line uv and no two rotations place y at the same point. Therefore for every pair of vertices x, y there is at most one rotation $\psi \in S$ that superposes x and $\psi(y)$, thus the set of all rotations ψ such that the embedding $\psi \ast_H \varphi_{G'}$ places some two vertices in the same point is finite and its spherical measure in S is zero.

- The embedding $\psi \ast_H \varphi_{G'}$ places two non-adjacent vertices of G' (denote them x and y once more) at the distance 1. Once again, $x, y \in V_G$ or $x, y \in V_H$ leads to a contradiction; thus WLOG $x \in V_G \setminus \{u, v\}, y \in V_H \setminus \{u, v\}$.

 Let P_y denote the $(d - 2)$-dimensional sphere — the locus of the point $\psi(y)$ for all $\psi \in S$; the radius of P_y is non-zero since y does not lie on the line uv. If $||x - \psi(y)||_{\mathbb{R}^d} = 1$, then $\psi(y)$ lies on the $(d - 1)$-dimensional sphere of radius 1 centered at x; denote it P_x. We assume that the intersection of P_x and P_y is not empty.

 If P_x contains P_y as a subset, then x must lie on the line uv; that would contradict the non-criticality of φ_G. Otherwise, the intersection of P_x and P_y is a $(d - 3)$-dimensional sphere (possibly, of zero radius).

 In any case, the set of rotations that place x and $\psi(y)$ at the distance 1 has zero measure in S. Thus the set of rotations that place some two non-adjacent vertices at the distance 1 has zero measure in S.

- The embedding $\psi \ast_H \varphi_{G'}$ places some three vertices on a straight line; denote these vertices x, y, z. Similarly to previous cases, if we assume $x, y, z \in V_G$ or V_H we arrive at a contradiction.

 WLOG, let $x, y \in V_G \setminus \{u, v\}, z \in V_H \setminus \{u, v\}$. Since the point z can not lie on the line uv, the sphere $\psi(z)$ for $\psi \in S$ has non-zero radius and the line xy passes through the point $\psi(z)$ for at most two values of ψ.

 Now let $x \in V_G \setminus \{u, v\}$ and $y, z \in V_H \setminus \{u, v\}$. The rotation $\psi \in S$ places the point x on the line $\psi(yz)$ iff the point $\psi^{-1}(x)$ lies on the line yz (here ψ^{-1} means
the inverse rotation of ψ), therefore in this case the line yz must cross the locus of $\psi^{-1}(x)$ for all $\psi \in S$. Clearly, the locus is a sphere of non-zero radius, thus line $\psi(yz)$ passes through the point x for at most two values of ψ.

It follows from the above that the set of rotations $\psi \in S$ such that $\psi \ast_H \varphi_{G'}$ places some three vertices on a straight line is finite.

To sum up, the set of rotations ψ such that the embedding $\psi \ast_H \varphi_{G'}$ is not non-critical has zero measure in the $(d-2)$-dimensional sphere of all possible rotations about the line uv. Therefore almost every rotation $\psi \in S$ yields a non-critical embedding $\psi \ast_H \varphi_{G'}$ of the graph G' in \mathbb{R}^d.

\[\square\]

3 Construction of rods

Let $h = \sqrt{\frac{d+1}{2d}}$ denote the altitude length of a regular d-dimensional simplex with the edge length 1; denote $D = 2h$. Clearly, $D > \sqrt{2}$.

Lemma 2. Let G and H be unit distance rods of length a and b respectively. Then there exists a unit distance rod of length ab.

Proof. It suffices to make lengths of all edges of G be equal to b and successively apply Lemma 1 to every edge of the resulting graph and the graph H. \[\square\]

Consider a graph M_d on a set of vertices $V_{M_d} = K_1 \cup K_2 \cup \{A, B, C\}$, $|K_1| = |K_2| = d$. Add the following edges of unit length to M_d:

- make cliques on K_1 and K_2;
- connect the vertices A and B with every vertex of K_1;
- connect the vertices A and C with every vertex of K_2;
- finally, connect the vertices B and C.

The graph M_d is called a d-dimensional Moser spindle (the figure 1 illustrates a 5-dimensional Moser spindle). Is it easy to see that M_d is a unit distance d-dimensional (A, B)-rod of length D. Repeatedly applying Lemma 2 to copies of M_d, we arrive at

Corollary 1. For every non-negative integer k there exists a unit distance d-dimensional rod of length D^k.

Lemma 3. For all numbers a, b such that $0 < a < b < 1$ there exists a number l satisfying $a < l < b$ and a graph G such that G is a unit-distance d-dimensional rod of length l.
Figure 1: 5-dimensional Moser spindle

Proof. Construct G as follows. Choose a set of vertices K of size $d - 1$ and connect its elements pairwise by unit length edges. Then, take a sequence of vertices v_1, \ldots, v_n (the exact number of vertices n will be determined later) and connect every vertex of the sequence v_i with every vertex of K by a unit length edge. If the location of vertices of K is fixed, then all vertices v_1, \ldots, v_n must lie on some circle centered at O, where O is the center of the regular simplex with vertices in K. The radius of the circle is equal to the altitude length of the $(d - 1)$-face of the regular d-simplex with the side length 1, i.e. $\sqrt{\frac{d}{2(d-1)}} = r$. Let π denote the plane containing this circle.

For each i from 1 to $n - 1$ connect the vertices v_i and v_{i+1} by an edge of length 1; also for each i from 1 to $n - 2$ connect the vertices v_i and v_{i+2} by an edge of length D. Now in every embedding of the graph G the angle $\angle v_i O v_{i+1}$ is equal to the dihedral angle of a regular d-simplex; denote this angle $\alpha = \arccos \frac{1}{d}$. Additionally, the least rotation of the plane π about the point O that moves the point v_i to v_{i+1} has the same direction for every i. It is clear that no three vertices of G lie on a straight line.

Let us introduce an angular coordinate system ψ on π centered at O such that $\psi(v_1) = 0$, $\psi(v_2) = \alpha$. Clearly, $\psi(v_i) = (i - 1)\alpha \mod 2\pi$ (by $\alpha \mod 2\pi$ we mean $\alpha + k \times 2\pi$ for an integer k such that $0 \leq \alpha + k \times 2\pi < 2\pi$). By Niven’s theorem (see [14], Corollary 3.12), $\alpha/2\pi$ can not be a rational number when $d \geq 3$, therefore the infinite sequence $x_i = (i - 1)\alpha \mod 2\pi$ is dense in $[0; 2\pi]$. Thus there exists a positive integer N such that $x_N \in (2 \arcsin \frac{a}{2R}; 2 \arcsin \frac{b}{2R})$ and $||v_1 - v_N|| \in (a; b)$.

It follows from the above that the graph G is a d-dimensional (v_1, v_N)-rod. Finally, successively apply Lemma 2 to each D-length edge of the graph G and the graph M_d; the resulting graph is a unit distance d-dimensional (v_1, v_N)-rod that satisfies all the conditions.

\[\square\]

Theorem 2. For all numbers a, b such that $0 < a < b$ there exists a number l satisfying $a < l < b$ and a graph G such that G is a unit-distance d-dimensional rod of length l.

Proof. Choose a non-negative integer k such that $D^k > b$ and denote G' the rod obtained by applying Lemma 3 for numbers $\frac{a}{D^k}$ and $\frac{b}{D^k}$. Now apply Lemma 2 to the graph G' and the rod of length D^k.

6
Let RodLength(a, b) denote the number l produced by Theorem 2 for given numbers a and b, and Rod(a, b) denote the rod of corresponding length.

4 The reduction setup

Consider a graph $G = (V_G, E_G)$ — the input of the 3-COLORING problem. We now construct a weighted graph $H = (V_H, E_H, w_H) = 3$-COLORING-\mathbb{R}^d-EMBEDDABILITY-REDUCTION(G) such that the embeddability of H in \mathbb{R}^d is equivalent to the existence of a solution to the 3-COLORING for the graph G. We shall identify the elements of V_G and the integers from 1 to $|V_G|$ for the sake of convenience.

To establish properties of the following setup we will need the following Lemma 4.

Let $0 \leq l < L \leq R < r$, $\delta = \min(L-l, r-R)$. Let also $G = (V_G, E_G, w_G)$, $H = (V_H, E_H, w_H)$ — weighted graphs, $v, u \in V_G$, $V_H = V_G \cup \{z\}$, $E_H = E_G \cup \{(v, z), (u, z)\}$, $w_H(e) = w_G(e)$ for all $e \in E_G$, $w_H((v, z)) = a \in \left[\frac{L+R}{2} - \frac{\delta}{3}; \frac{L+R}{2} + \frac{\delta}{3}\right)$, $w_H((u, z)) = b \in \left[\frac{R-L}{2} + \frac{\delta}{3}; \frac{R-L}{2} + \frac{\delta}{2}\right)$.

Then:

• In every embedding of the graph H the inequalities $l < \|v-u\| < r$ hold.

• If there exists a non-critical embedding of G such that $L \leq \|v-u\| \leq R$, then there exists a non-critical embedding of H.

Proof. First of all, let us show that $l < a - b < L \leq R < a + b < r$. Indeed,

\[a - b > \left(\frac{L + R}{2} - \frac{\delta}{3}\right) - \left(\frac{R - L}{2} + \frac{\delta}{2}\right) = L - \delta \geq l; \]

\[a - b < \left(\frac{L + R}{2} + \frac{\delta}{3}\right) - \left(\frac{R - L}{2} + \frac{\delta}{3}\right) = L; \]

\[a + b > \left(\frac{L + R}{2} - \frac{\delta}{3}\right) - \left(\frac{R - L}{2} + \frac{\delta}{3}\right) = R; \]

\[a + b < \left(\frac{L + R}{2} + \frac{\delta}{3}\right) + \left(\frac{R - L}{2} + \frac{\delta}{2}\right) = R + \delta \leq r. \]

Consider any embedding of the graph H. It follows from the triangle inequality applied to vertices v, z, u that $l < a - b \leq \|v-u\| \leq a + b < r$. The first claim is thus proven.

Now, consider a non-critical embedding of the graph G such that $\|u-v\| \in [L; R]$. It follows from $a - b < L \leq \|u-v\| \leq R < a + b$ that it is possible to place the vertex z in such a way that $\|v-z\| = a$, $\|u-z\| = b$ and z does not lie on the line vu. We have obtained an embedding of the graph H; it is possible to modify this embedding to obtain a non-critical embedding by choosing an appropriate rotation of z about the
line \(uu \); the proof of the existence of such rotation copies the similar proof from Lemma 1 almost entirely.

Denote \(r_0 = \sqrt{\frac{d}{2(d-1)}} \), \(\text{chord}(\alpha) = 2r_0 \sin \alpha/2 \) — the length of the chord which contracts an \(\alpha \)-measured arc of a circle of radius \(r_0, \varepsilon = \frac{\pi}{24} \).

Let us introduce additional notation as follows:
\[
\begin{align*}
\delta_{uu} & = \min(\text{chord}(2\pi/3) - \text{chord}(2\pi/3 - \varepsilon/2), \text{chord}(2\pi/3 + \varepsilon/2) - \text{chord}(2\pi/3)), \\
a_{uu} & = \text{RodLength}(\text{chord}(2\pi/3) - \delta_{uu}/3, \text{chord}(2\pi/3) + \delta_{uu}/3), \\
b_{uu} & = \text{RodLength}(\delta_{uu}/3, \delta_{uu}/2), \\
\delta_{uv} & = \text{chord}(\pi/3 - \varepsilon/2) - \text{chord}(\pi/3 - \varepsilon), \\
a_{uv} & = \text{RodLength}\left(\frac{2r_0 + \text{chord}(\pi/3 - \varepsilon/2)}{2} - \delta_{uv}/3, \frac{2r_0 + \text{chord}(\pi/3 - \varepsilon/2)}{2} + \delta_{uv}/3\right), \\
b_{uv} & = \text{RodLength}\left(\frac{2r_0 - \text{chord}(\pi/3 - \varepsilon/2)}{2} + \delta_{uv}/3, \frac{2r_0 - \text{chord}(\pi/3 - \varepsilon/2)}{2} + \delta_{uv}/2\right), \\
\delta_{vv} & = \text{chord}\left(\frac{2\pi}{3} - \varepsilon\right) - \text{chord}\left(\frac{5\pi}{6}\varepsilon\right), \\
a_{vv} & = \text{RodLength}\left(\frac{2r_0 + \text{chord}(2\pi/3 - \varepsilon)}{2} - \delta_{vv}/3, \frac{2r_0 + \text{chord}(2\pi/3 - \varepsilon)}{2} + \delta_{vv}/3\right), \\
b_{vv} & = \text{RodLength}\left(\frac{2r_0 - \text{chord}(2\pi/3 - \varepsilon)}{2} + \delta_{vv}/3, \frac{2r_0 - \text{chord}(2\pi/3 - \varepsilon)}{2} + \delta_{vv}/2\right).
\end{align*}
\]

Construct \(H = 3\text{-COLORING-R}^d\text{-EMBEDDABILITY-REDUCTION}(G) \) as follows:

\[
V_H = K \cup U \cup V \cup Aux, E_H = E_K \cup E_{KV} \cup E_U \cup E_{VU} \cup E_V.
\]

Here:

- \(Aux \) is the set of all auxiliary vertices used in the sequel of the description (\(aux \)...);
- \(K \) — the set of vertices of size \(d - 1 \);
- \(E_K \) — the set of edges connecting all pairs of vertices of \(K \);
- \(U = \{u_0, u_1, u_2\} \);
- \(E_{KV} \) — the set of edges connecting every vertex of \(U \) with every vertex of \(K \);
- \(\{u_0, aux_{u_0,u_1}, (aux_{u_0,u_1}, u_1), (u_0, aux_{u_0,u_2}), (aux_{u_0,u_2}, u_2), (u_1, aux_{u_1,u_2}), (aux_{u_1,u_2}, u_2)\};
- \(V = \{v_1, ..., v_{|V|}\} \);
- \(E_{KV} \) — the set of edges connecting every vertex of \(V \) with every vertex of \(K \);
- \(E_{U} = \bigcup_{v \in V} \bigcup_{u \in U} \{v, aux_{v,u}, (aux_{v,u}, u)\};
- \(E_{V} = \bigcup_{v_i, v_j \in E_{V}} \{v_i, aux_{v_i,v_j}, (aux_{v_i,v_j}, v_j)\}.$

The edge lengths are assigned as follows:

- \(e \in E_K \cup E_{KV} \cup E_{KV} \Rightarrow w_H(e) = 1; \)
- \(w_H(u_0, aux_{u_0,u_1}) = w_H(u_0, aux_{u_0,u_2}) = w_H(u_1, aux_{u_1,u_2}) = a_{uu}, \)
- \(w_H(aux_{u_0,u_1}, u_1) = w_H(aux_{u_0,u_2}, u_2) = w_H(aux_{u_1,u_2}, u_2) = b_{uu}; \)
Consider an embedding of the graph \(G \) of vertices of \(\text{REDUCTION} \). Let both vertices \(v \) points \(c \) arc between \(r \) some circle of radius \(r \) between \(\pi/3 \) and \(\pi/2 \); denote this circle \(\rho \) and its center \(O \).

Successively apply the first part of Lemma 4 with the following parameters.

Let \(v = u_0, u = u_1, z = aux_{u_0,u_1}, l = \text{chord}(2\pi/3 - \epsilon/2), L = R = \text{chord}(2\pi/3), r = \text{chord}(2\pi/3 + \epsilon/2). \)

We obtain that chord\((2\pi/3 - \epsilon/2) < ||u_0 - u_1|| > \text{chord}(2\pi/3 + \epsilon/2)\), which is equivalent to \(2\pi/3 - \epsilon/2 < \angle u_0Ou_1 < 2\pi/3 + \epsilon/2 \). We can establish similar inequalities for \(u_0, u_2 \) and \(u_1, u_2 \).

Let \(v \in V, u \in U, z = aux_{v,u}, l = \text{chord}(\pi/3 - \epsilon), L = \text{chord}(\pi/3 - \epsilon/2), R = 2r_0, r = \infty. \)

Then chord\((\pi/3 - \epsilon) < ||v - u||\), which is equivalent to \(\pi/3 - \epsilon < \angle vOu \).

Let \(v_i, v_j \in V, (i, j) \in E_G: v = v_i, u = v_j, z = aux_{v_i,v_j}, l = \text{chord}\left(\frac{\epsilon}{2}\right), L = \text{chord}(2\pi/3 - \epsilon), R = 2r_0, r = \infty. \)

Then chord\(\left(\frac{\epsilon}{2}\right) < ||v_i - v_j||\), which is equivalent to \(\frac{\epsilon}{2} < \angle v_iOv_j \).

Construct the coloring of vertices of \(G \) as follows: if the vertex \(v_i \) lies on the shortest arc between \(u_0 \) and \(u_1 \) in the embedding of \(H \), the vertex \(i \in V_G \) is assigned with the color \(c(i) = 2 \); if \(v_i \) lies on the shortest arc between \(u_0 \) and \(u_2 \), then \(c(i) = 1 \); otherwise, \(c(i) = 0 \). It is clear that this coloring is unambiguously defined for any embedding of \(H \). We now prove that this coloring of vertices of \(G \) is valid, that is, for every edge \((i, j) \in E(G) \) we have \(c(i) \neq c(j) \).

Let us show that for every edge \((i, j) \in E_G \) the shortest arc of \(\rho \) between the points \(v_i \) and \(v_j \) contains at least one vertex of \(U \). Assume the contrary, then WLOG both vertices \(v_i \) and \(v_j \) lie on the shortest arc between \(u_0 \) and \(u_1 \), and \(\angle u_0Ou_1 = \angle u_0Ov_i + \angle v_iOv_j + \angle v_jOu_1 > (\pi/3 - \epsilon) + \frac{5}{2} \epsilon + (\pi/3 - \epsilon) = 2\pi/3 + \epsilon/2 \). But that contradicts with \(\angle u_0Ou_1 < 2\pi/3 + \epsilon/2 \), thus at least one vertex of \(U \) must lie between \(v_i \) and \(v_j \). In that case the colors of \(i \) and \(j \) are different; therefore the coloring is valid.

The first part of Theorem 3 is thus proven.

Denote \(H' = (V_{H'}, E_{H'}, w_{H'}) \), where \(V_{H'} = K \cup U \cup V, \ E_{H'} = E_K \cup E_{KU} \cup E_{KV}, \ w_{H'} \equiv 1 \). Clearly, \(H' \) is a subgraph of \(H \).

Now consider a valid vertex 3-coloring of \(G \); let us construct a non-critical embedding of \(H \). First, construct a non-critical embedding of \(H' \) as follows:
• choose an arbitrary regular \((d - 2)\)-simplex with edge length 1 and identify its vertices with vertices of \(K\); let \(O\) denote the center of the simplex and \(\rho\) denote the locus of all points at the distance 1 from all vertices of the simplex; clearly, \(\rho\) is a circle of radius \(r_0\);

• choose an arbitrary equilateral triangle inscribed in \(\rho\); place the vertices \(u_0, u_1, u_2\) at the vertices of the triangle; denote \(\gamma_0\) the set of all points \(x \in \rho\) such that \(\angle u_0Ox > \pi - \varepsilon/2\); clearly, \(\gamma_0\) is an open arc of angular measure \(\varepsilon\); similarly define sets \(\gamma_1, \gamma_2\);

• suppose the vertex \(i \in V_G\) is assigned with color \(c(i) \in \{0, 1, 2\}\) in the given 3-coloring; place every vertex \(v_i \in V\) in such a way that \(v_i\) lies on the arc \(\gamma_{c(i)}\) for every \(i \in V_G\) and no two vertices of \(V\) are at the same point; since the arcs \(\gamma_0, \gamma_1, \gamma_2\) have non-zero angular measure, such arrangement of vertices of \(V\) is possible.

It can be easily verified that the arrangement of vertices of \(K \cup V \cup U\) described above yields a non-critical embedding of the graph \(H'\).

Now let us add vertices of the set \(Aux\) one by one and successively apply the second part of Lemma 4 to show the existence of a non-critical embedding for every new graph. When all vertices of \(Aux\) are added, we obtain a non-critical embedding of the graph \(H\) since every vertex of \(Aux\) is adjacent to exactly two vertices of \(V \cup U\).

Successively apply the second part of Lemma 4 with the following parameters.

• Let \(v = u_0, u = u_1, z = aux_{u_0,u_1}, l = \text{chord}(2\pi/3 - \varepsilon/2), L = R = \text{chord}(2\pi/3), r = \text{chord}(2\pi/3 + \varepsilon/2)\).

 The points \(u_0\) and \(u_1\) are at the vertices of an equilateral triangle inscribed in the circle \(\rho\), thus \(||u_0 - u_1|| = \text{chord}(2\pi/3)\) and the conditions of the lemma are satisfied.

 Apply the lemma in a similar way to \(u_0, u_2, aux_{u_0,u_2}\) and \(u_1, u_2, aux_{u_1,u_2}\).

• Let \(v \in V, u \in U, z = aux_{v,u}, l = \text{chord}(\pi/3 - \varepsilon), L = \text{chord}(\pi/3 - \varepsilon/2), R = 2r_0, r = \infty\).

 There is at least one vertex \(u_i \in U\) such that \(\angle vOu_i > \pi - \varepsilon/2\), thus \(\angle vOu \geq |\angle vOu_i - \angle u_iOu| > \pi/3 - \varepsilon/2\) and \(||v - u|| > \text{chord}(\pi/3 - \varepsilon/2)\); the conditions of the lemma are satisfied.

• Let \(v_i, v_j \in V, (i, j) \in E_G\): \(v = v_i, u = v_j, z = aux_{v_i,v_j}, l = \text{chord}(\frac{\varepsilon}{2}), L = \text{chord}(2\pi/3 - \varepsilon), R = 2r_0, r = \infty\).

 The points \(v_i\) and \(v_j\) lie on different arcs \(\gamma_{c(i)}, \gamma_{c(j)}\). Let \(u_k\) denote the vertex of \(U\) that lies on the shortest arc between \(v_i\) and \(v_j\). Then \(\angle v_iOv_j = \angle v_iOu_k + \angle u_kOv_j > 2(\pi/3 - \varepsilon/2) = 2\pi/3 - \varepsilon\), and \(||v_i - v_j|| > \text{chord}(2\pi/3 - \varepsilon)\); the conditions of the lemma are satisfied.

After all applications of Lemma 4 we obtain a non-critical embedding of the graph \(H\).

\(\square\)
The constructed graph H has $O(|V_G| + |E_G|)$ vertices and edges (we recall that the dimension d is a fixed constant), but it contains edges of non-unit length; however, for every such edge its length is equal to $\text{RodLength}(a, b)$ for some a, b; moreover, the set of possible pairs (a, b) is finite and independent on the input graph G. Thus, upon multiple applications of Lemma 2 each edge of non-unit length can be replaced by a subgraph that is isomorphic to $\text{Rod}(a, b)$ for some (a, b); the size of the graph will increase by at most K times, where K is the maximal size of $\text{Rod}(a, b)$ for all used pairs of (a, b); clearly, the value of K depends only on d. Therefore the resulting graph $H' = 3$-COLORING-\mathbb{R}^d-UNIT-DISTANCE-EMBEDDABILITY-REDUCTION(G) has $O(|V_G| + |E_G|)$ vertices and edges as well. Finally, we obtain

Theorem 4. Let the graph $H' = 3$-COLORING-\mathbb{R}^d-UNIT-DISTANCE-EMBEDDABILITY-REDUCTION(G) be constructed by a given graph $G = (V_G, E_G)$ as described above. Then:

- If there is no valid 3-coloring of vertices of G, then there is no embedding of H' in \mathbb{R}^d.

- If a valid 3-coloring of vertices of G exists, then there exists a non-critical embedding of H' in \mathbb{R}^d.

From Theorem 4, the linearity of the size of H', and the fact that the problem of vertex 3-coloring is NP-hard (see [13]) Theorem 1 eventually follows.
References

[1] P. Brass, W. O. Moser, and J. Pach, *Research problems in discrete geometry*, vol. 18. Springer, 2005.

[2] P. Erdős, “On sets of distances of \(n \) points,” *American Mathematical Monthly*, pp. 248–250, 1946.

[3] K. B. Chilakamarri, “The unit-distance graph problem: a brief survey and some new results,” *Bull. Inst. Combin. Appl*, vol. 8, no. 39, p. C60, 1993.

[4] N. De Bruijn and P. Erdős, “A colour problem for infinite graphs and a problem in the theory of relations,” *Indag. Math*, vol. 13, no. 5, pp. 371–373, 1951.

[5] A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” *Russian Mathematical Surveys*, vol. 56, no. 1, pp. 103–139, 2001.

[6] A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters,” in *Thirty Essays on Geometric Graph Theory*, pp. 429–460, Springer, 2013.

[7] A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters,” *Discrete Geometry and Algebraic Combinatorics*, vol. 625, pp. 93–110, 2014.

[8] J. B. Saxe, “Embeddability of weighted graphs in k-space is strongly np-hard,” in *Proc. 17th Allerton Conf. Commun. Control Comput*, pp. 480–489, 1979.

[9] B. Horvat, J. Kratochvíl, and T. Pisanski, “On the computational complexity of degenerate unit distance representations of graphs,” in *Combinatorial algorithms*, pp. 274–285, Springer, 2011.

[10] L. Lovász, “Self-dual polytopes and the chromatic number of distance graphs on the sphere,” *Acta Scientiarum Mathematicarum*, vol. 45, no. 1-4, pp. 317–323, 1983.

[11] A. Raigorodskii, “On the chromatic numbers of spheres in euclidean spaces,” in *Doklady Mathematics*, vol. 81, pp. 379–382, Springer, 2010.

[12] A. Raigorodskii, “On the chromatic numbers of spheres in \(\mathbb{R}^n \),” *Combinatorica*, vol. 32, no. 1, pp. 111–123, 2012.

[13] R. M. Karp, *Reducibility among combinatorial problems*. Springer, 1972.

[14] I. Niven, “Irrational numbers, carus math,” *Monographs, John Wiley and Sons Inc*, 1956.