Research Article

The role of organic acids in the uptake and storage of nickel in hyperaccumulator plant, *Brackenridgea palustris* ssp. *foxworthyi* (Elm.) P.O. Karis

Maria Ellenita G. De Castro¹, Marissa A. Noel², Jose Santos R. Carandang VI³

¹ Department of Forest Biological Sciences, College of Forestry and Natural Resources, The University of the Philippines-Los Baños, College, 4031, Laguna, Philippines
² Chemistry Department, College of Science, De La Salle University Taft Avenue 2401, Manila, Philippines
³ Biology Department, College of Science, De La Salle University Taft Avenue 2401, Manila, Philippines

*corresponding author: mgdecastro1@up.edu.ph

Received 26 June 2020, Accepted 31 July 2020

Abstract: The role of low molecular weight organic acids (LMWOAs) in the Philippine nickel (Ni) hyperaccumulating plant, *Brackenridgea palustris* ssp. *foxworthyi* (Elm.) P.O. Karis is not yet fully understood. Using High Performance Liquid Chromatography (HPLC), the presence of organic acids such as oxalic, citric and malic acids were determined. Average nickel concentration in the plant tissues followed the ascending order: roots>stem>leaves with values of 7,294.73 µg/g, 7,412.30 µg/g and 9,866.46 µg/g, respectively. Among the organic acids analyzed, only oxalic acid was detected in all the plant tissues at considerable concentration. Linear correlation between oxalic acid and Ni concentrations in 0.025 M HCl plant extracts generated a positive r-value of 0.0437 indicating that as Ni content increases, oxalic acid also increases. This paper suggests that oxalic acid can be synthesized by *B.palustris* ssp. *foxworthyi*, therefore, it may acts as a ligand that chelates Ni and other metals to the aboveground tissues were it gets compartmentalized. To our knowledge, this will be the first report on the presence of organic acids in the Philippine endemic Ni hyperaccumulator plant, *B. palustris* ssp. *foxworthyi* whose potential was discovered more than thirty (30) years ago.

Keywords: chelator, compartmentalize, hyperaccumulator, molar ratio, organic acids

To cite this article: De Castro, M.E.G., Noel, M.A. and Carandang VI, J.S.R. 2020. The role of organic acids in the uptake and storage of nickel in hyperaccumulating plant, *Brackenridgea palustris* ssp. *foxworthyi* (Elm.) P.O. Karis. J. Degrade. Min. Land Manage. 8(1): 2411-2417, DOI: 10.15243/jdmlm. 2020.081.2411.

Introduction

Hyperaccumulators are plants with unique ability to absorb and detoxify metals in their aboveground tissues without developing any physical and physiological abnormalities (Baker and Walker, 1990; Reeves, 2003; van der Ent et al., 2012). Plants belonging to this group usually thrive in substrate enriched with siderophilic elements such as magnesium (Mg), iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni) and copper (Cu) (Baker, 1981; Proctor 2003). The ability to hyperaccumulate metal is believed to be species-specific and not a trait to be expected from the members of certain plant family hence, it is possible that unrelated species will exhibit the same capacity (Proctor, 2003; van der Ent et al., 2013). Among the known hyperaccumulators, however, the majority is associated with Ni (van der Ent et al., 2012; Reeves et al., 2017). One plausible reason for this is the availability of a field test kit that can readily detect the presence of Ni in the foliar tissues using a piece of filter paper impregnated with 1% dimethylglyoxime (DMG) dissolved in 95% ethanol. High concentration of Ni is indicated by the formation of pink or (magenta) red stain in the filter paper after rubbing a piece of the foliar tissue (Reeves, 2003; Fernando et al., 2013). To date, more than 500 plant species belonging to Brassicaceae, Euphorbiaceae,
Phyllanthaceae, Asteraceae, Flacourtiaeae (now mostly Salicaceae), Buxaceae and Rubiaceae are now classified as Ni hyperaccumulators (van der Ent et al., 2013; Reeves et al., 2017) but this is expected to increase in the near future. The interest received by hyperaccumulators is associated to their unique potential for the clean up of heavy metals in the areas left behind by mining activities and for phytomining (Reeves 2006; Claveria et al., 2010; van der Ent et al., 2013). However, to successfully utilize these plant resources, the basic molecular, biochemical and physiological mechanisms involved in hyperaccumulation must be fully understood and explored (Anjum et al., 2015; Pence et al., 2000).

Mechanism of metal-tolerance and detoxification in plants can be categorized into two ways: external exclusion and internal tolerance (Baker, 1981; Hall, 2002). The former involves the formation of stable metal-ligand complexes to change the mobility and bioavailability of metals thereby preventing the entry of the metals inside the plant roots while the latter involves the chelation of metal in the cytosol, where ions can be compartmentalized and transformed into less toxic form (Clemens, 2001; Hall, 2002; Dresler et al., 2014). It has been observed that most of the trace elements naturally form complex with ligands containing oxygen- nitrogen-, and sulphur as part of their tolerance mechanism (Frausto da Silva and Williams, 1991; Centofanti et al., 2013).

Chelation is usually accomplished by thiol-compounds such as glutathione (GSH), phytochelatins (PC) and metallothioneins (MT) but the synthesis of non-thiol compounds (also known as low molecular weight ligands) like organic and amino acids was also proven beneficial to the plants (Anjum et al., 2015). By forming a complex with a particular ligand, movement of metals from the roots to the shoot is facilitated (Clemens, 2019). It should be noted, however, that the ability of a ligand to lower the activity of the free metal ion is highly dependent on pH of the substrate (Bhatia et al., 2005; Clemens, 2019). Specifically for organic acids, it usually forms a complex with plant metals growing in an acidic environment to either reach the vacuole in the epidermis of leaf tissues where it will be compartmentalized or stabilize in the apoplast of the root system thereby preventing its upward movement (Brooks, 2000; Hall 2002; Clemens, 2019).

Organic acids (OAs) are weak acid compounds with at least one carboxyl group, thus termed as oxygen-donor metal ligands (Anjum et al., 2015). These metabolites are expected to potentially perform multiple functions in the rhizosphere where it is easily produced either as plant exudates, synthesized by microorganisms or formed during organic matter degradation (Sposito, 1989; Li et al., 2006). In general, organic acid concentration in the soil varies from 10^2 to 5 mM which is relatively higher than any the trace elements present (Sposito, 1989). Within the plant, such metabolites are usually produced during the process of Krebs cycle and glyoxylate pathway as well as form part in the carbon fixation among C4 and Crassulacean Acid Metabolism (CAM) plants (Igamberdiev and Eprintsev, 2016; Osmolovskaya et al., 2018). Organic acids are associated in several biochemical activities particularly those that involved in energy production and synthesis of amino acid precursor that eventually led to the modulation of plants’ adaptive mechanism to the surrounding environment (Lopez-Bucio et al., 2000; Osmolovskaya et al., 2018).

The involvement of organic acids as chelators among hyperaccumulator plants has already been proven experimentally (Homer, 1991; Brooks, 2000; Bhatia et al., 2005; Centofanti et al., 2013, Clemens, 2019). However, among the identified Philippine Ni hyperaccumulators, this aspect has not yet been fully explored and very little is known on their role in the uptake and detoxification process. Brackenridgea palustris Bartell ssp. foxworthyi (Elm.) P.O. Karis is a Ni hyperaccumulator plant whose potential was discovered in 1986 in the island of Palawan, Philippines. Detailed laboratory analysis confirmed that the species has the capacity to concentrate Ni in the foliar tissue with values ranging from 6,000-8,000 µg/g, on a dry weight basis (Baker et al., 1992). Apparently, no subsequent work was done to fully understand its unique uptake mechanism including the ligands that chelate Ni in the aboveground tissues, hence this study. This present work was done to identify the specific organic acid(s) synthesized by B. palustris ssp. foxworthyi (Elm.) P.O. Karis that are likely responsible for the chelation and detoxification of Ni. It is expected that the information generated from this study will add to the limited body of knowledge known about the Philippine Ni hyperaccumulator plants necessary to promote its potential for future phytoremediation activities.

Materials and Methods

Collection of plant materials

Wildings of B. palustris ssp. foxworthyi (Elm.) P.O. Karis collected in an ultramafic formation of Sitio Magarwak, Brgy. Sta. Lourdes, Puerto Princesa City, Palawan was used in the study. These wildings were harvested within the 1– meter circumference of the ten (10) selected individuals
in the study site. The mean height of the collected wildings is 19.6 cm with the tallest reaching to 28 cm and the shortest at 14 cm. Taxonomic identity of the wildlings was verified using Merril’s Enumeration of Philippine Flowering Plants (1923) and Flora Malesiana Series (1995-2012). Prior to sample extraction, wildlings were thoroughly washed with distilled water to ensure that no soil and small particulates adhere to the epidermal layer. Also, plant samples were collected for Ni concentration analysis.

Tissue extraction

Extraction of different plant tissues was done following the modified procedure of Bhatia et al. (2005) and Kachenko (2008). In particular, plant tissues (roots, stem, leaves) were severed from each other, cut into smaller pieces, approximately <1 cm, freeze-dried at -90°C for 100 h and grounded using mortar and pestle. About 50 mg of each sample was placed in a sterile Eppendorf vial and diluted with 1.5 ml of 0.025 M HCl, sonicated for 10 minutes, vortex for a minute and centrifuged at x 3,000 g for 15 minutes. The procedure was repeated twice to extract a sufficient amount of samples (5 ml) and pooled in a volumetric flask. The supernatant was transferred in sterile Eppendorf tube and stored at -20°C prior to analysis.

Organic acid analysis

Determination of the organic acid present in the supernatant was done using High Performance Liquid Chromatography (HPLC) available at the Chemistry Department, De La Salle University. The HPLC system (Agilent 1200) is equipped with an auto-injector, a column oven and a Water 486 ChemStation data system software (Digital Solutions). The mobile phase was 26 minutes. Presence and amount of the organic acids in the sample were compared based on the retention time and peak areas of the standard used. For the Ni concentration, Atomic Absorption Spectrophotometer (AAS) was used and results were correlated to the organic acid identified.

Results and Discussion

Nickel concentration in plant tissues

The average Ni concentration in the roots, stem and leaves of *B. palustris ssp. foxworthyi* range from 7,294.73 µg/g, 7,412.30 µg/g to 9,866.46 µg/g, respectively (Figure 1). The data shows that Ni is highly concentrated in the leaves compared to other plant tissues, thereby confirming the earlier report on its Ni hyperaccumulation potential. Statistical analysis, however, showed that there exists no significant difference in the concentration of Ni across plant tissues implying that Ni present in the entire plant is relatively the same (*P=0.71*). Assessment of the Transfer Factor (TF) also proved the efficient movement and compartmentalization of Ni to the aboveground tissue with a generated value of 1.35 (>1 indicate efficient movement of Ni to the aboveground tissue with a generated value of 1.35) with significant movement and compartmentalization of Ni to the aboveground tissue with a generated value of 1.35 (>1 indicate efficient movement from root to shoot).

Organic acids present

The potential role of low molecular weight organic acids (LMOAs) in the uptake and compartmentalization of Ni in *B. palustris ssp. foxworthyi* (Elm.) P.O. Karis was assessed in this study. A comparison of the chromatogram of the different plant extracts with the standards showed that oxalic acid was the only organic acid visible above the detection limit indicating its possible participation in the chelation of Ni and other metals to the aboveground tissues (Figure 2). The molar ratio of Ni to oxalic acid which ranges from 5.5:1 (roots), 3.7:1 (leaves) and 2.8:1 (stem) further showed that oxalic acid is likely accountable for more than half of the accumulated Ni by the plant. In addition, there is also a linear correlation observed between oxalic acid and Ni concentration.

Organic acids	Limit of detection (mg/L)
Citric	2.5
Malic	2.0
Oxalic	2.0

Table 1. Limit of detection of organic acids used (Kachenko, 2008).
The role of organic acids in the uptake and storage of nickel in hyperaccumulating plant

in the 0.025 M HCl plant tissue extracts with an r-value of 0.0437 (P<0.05). Citric and malic acids, on the other hand, were detected but only in trace amounts as indicated by lower peaks of chromatograms. The results of our study support the idea that organic acids may perform a significant role in the detoxification process and homeostasis (Anjum et al., 2015; Osmolovskaya et al., 2018; Clemens, 2019; Chen et al., 2020). The presence of oxalate in plant tissues is considered significant as it facilitates the efficient movement of metals to the aerial plant part by forming a stable complex with Ni and other mobile trace elements in the soil (Anjum et al., 2015; Osmolovskaya et al., 2018). Oxalate or C2 dicarboxylic acid anion is a constituent of the plant tissue that is present in a relatively small amount compared to citrate (Anjum et al., 2015). However, since they share similar chemical structures, it is possible that they perform similar functions in the chelation process and metal uptake (Li et al., 2006). In addition, oxalic acid also known to aids in metal tolerance, transport through xylem sap and detoxification process (Rauser, 1999). Evidences also showed that oxalate plays a significant role in both Al and Cd toxicity (Watanabe et al., 2005; Li et al., 2006; Chaffai et al., 2006; Yang et al., 2008). Similarly, ability of root secreted-oxalate was also noted to reduce the bioavailability and phytotoxicity of Pb in rice cultivars (Yang et al., 2000). This organic acid either reduce the number of ionized bioavailable forms of metals in the rhizosphere or convert it to less bioavailable complex thereby increasing the overall tolerance of plants to unwanted metals (Hall, 2002; Dong et al., 2007; Clemens, 2019).

Another potential role of oxalate was documented in the vacuolar sequestration as well as its transport of Cadmium in the shoot tissues of Spartina alterniflora of (Chai et al., 2012). It is therefore clear that oxalate significantly plays multiple roles in the intracellular detoxification of heavy metals which is central to heavy metal homeostasis (Kochian et al., 2015; Osmolovskaya et al., 2018). Among known hyperaccumulator plants, the significant role of organic acids acting as a potential ligand was also reported (Bhatia et al., 2005; Kachenko, 2008; Reeves et al., 2017). Among Philippine Ni hyperaccumulator plants, Dichapetalum geloniodes ssp. tuberculatum that was detected for the presence of citrate and malate that may potentially act as chelator (Homer et al., 1999). Oxalate was not reported in that work suggesting that its quantity might too small to be detected. It is also highly probable that the concentration of organic acids is tissue-specific to ensure a more efficient uptake and detoxification process (Li et al., 2006). Using Al hyperaccumulator plant, Melastoma malabathricum, it was determined that citrate which predominantly exists in the root tissue is responsible only for root to shoot translocation of the metal while oxalate which is relatively higher in concentration is a ligand for Al accumulation in both root and shoot tissues (Watanabe et al., 2005). This is also likely possible to our test plant but this warrant further study using a larger sample size. But regardless of the form, it is clear that organic acids perform critical role in the detoxification and sequestration process of trace elements.

Figure 1. Ni concentration in roots, stem and leaf tissues of Brackenridgea palustris ssp. Foxworthyi.
Conclusion

The results of the present work proved the ability of *B. palustris* ssp. *foxworthyi* (Elm.) P.O. Karis to naturally synthesize organic acids in its plant tissues. In particular, oxalic acid was detected suggesting its potential as a chelator of Ni and other trace elements. This possibility, however, necessitates additional works in the future. Likewise, the involvement of other low molecular weight ligands like amino acids and thiol compounds in the chelation process must also be verified among Philippine Ni hyperaccumulator plants.

Acknowledgements

The authors would like to thank Mr. Mike Ajero and Dr. Carmen Tan of De La Salle University for all their technical assistance in the laboratory analysis.

References

Anjum, N.A., Hasanuzzaman, M., Hossain, M.A., Thangavel, P., Roychoudhury, A., Gill, S.S., Rodrigo, M.A.M., Adam, V., Fujita, M., Kizek, R., Duarte, A.C., Pereir, E. and Ahmad, I. 2015. Jacks of metal/metalloid chelation trade in plants- an overview. *Frontiers in Plant Science* 6:192, doi: 10.3389/fpls.2015.00192.
The role of organic acids in the uptake and storage of nickel in hyperaccumulating plant

Baker, A.J.M. 1981. Accumulators and excluders - strategies in the response of plants to heavy metals. *Journal of Plant Nutrition* 3: 643-654.

Baker, A.J.M. and Walker, P.L. 1990. Ecophysiology of metal uptake by tolerant plants. In: *Heavy Metal Tolerance in Plants: Evolutionary Aspects*. A.J. Shaw (Ed). CRC Press: Boca Raton, FL, USA.

Baker, A.J.M., Proctor, J., van Balgooy, M.M.J. and Reeves, R.D., 1992. Hyperaccumulation of nickel by the ultramafic flora of Palawan, Republic of the Philippines. In: Baker, A.J.M., Proctor, J. and Reeves, R.D. (eds), *The Vegetation of Ultramafic (Serpentine) Soils: Proceedings of the First International Conference on Serpentine Ecology*, University of California, Davis, 19-22 June 1991. Intercept Ltd., Andover, U.K.

Bhatia, N.P., Walsh, K.B. and Baker, A.J.M. 2005. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator *Stackhousia tryonii* Bailey. *Journal of Experimental Botany* 56:1343–1349.

Brooks, R.R. 2000. Phytochemistry of hyperaccumulators In: *Plants that Hyperaccumulate Heavy Metals* (their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining). CAB International. Oxon & New York.

Centofanti, T., Sayers, Z., Cabello-Conejo, M.I., Kidd, P., Nishizawa, N.K., Kakei, Y., Davis, A.P., Sicher, R.C. and Chaney, R.I. 2013. Xylem exudate composition and root-to-shoot nickel translocation in *Alyssum* species. *Plant and Soil* 373: 59–75, doi: 10.1007/s11104-13-1782-1.

Chaffai, R., Tekitek, A. and El Ferjani, E. 2006. A comparative study on the organic content and exudation in maize (*Zea mays*) seeds under conditions of copper and cadmium stress. *Asian Journal of Plant Science* 5(4):598-606, doi: 10.3923/ajps.2006.598.606.

Chai, M.W., Li, R.L., Shi, F.C., Liu, F.C., Pan, X., Cao, D. and Wen, X. 2012. Effects of cadmium stress on growth, metal accumulation and organic acids of *Sparrtina alterniflora* Loisel. *African Journal of Biotechnology* 11(22):6091-6099, doi: 10.5897/AJB11.2804.

Chen H.C., Zhang, S.L., Wu, K.J., Li, R., He, X.R. and He, D.N. 2020. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of *Salix variegata* Franch. under Cd stress. *Ecotoxicology and Environmental Safety*. 187:109790.

Claveria, R.R., De Los Santos, C.Y., Teodoro, K.B., Rellosa, M.A. and Valera, N.S. 2010. The identification of metallophytes in the Fe and Cu enriched environments of Brookes Point, Palawan and Mankayan, Benguet and their implications to phytoremediation. *Science Diliman* 21(2):1-12.

Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. *Planta* 212: 475–486.

Clemens, S. 2019. Metal ligands in micronutrient acquisition and homeostasis. *Plant Cell & Environment* 42: 2902-2912, doi.org /10.1111/pcp.13627: 10.1111/pcp.13627.

Dong, J., Mao, W.H., Zhang, G.P., Wu, F.B. and Cai, Y. 2007. Root excretion and plant tolerance to cadmium toxicity - a review. *Plant, Soil and Environment* 53(5):193-200, doi: 10.17221/2205-PSE.

Dresler, S., Hanaka, A., Bednarek, W. and Maksymiec, W. 2014. Accumulation of low-molecular-weight organic acids in roots and leaf segments of *Zea mays* plants treated with cadmium and copper. *Acta Physiologiae Plantarum* 36: 1565-1575, doi: 10.1007/s11738-014-1532-x.

Fernando, E.S., Quimado, M.O., Trinidad, L.C. and Doronila, A. I. 2013. The potential use of indigenous nickel hyperaccumulator for small-scale mining in the Philippines. *Journal of Degraded and Mining Lands Management* 1:21-26, doi: 10.15243/jdmlm.2013.011.021.

Flora Malesiana Series. 1995-2012. Foundation Flora Malesiana, The Netherlands.

Frausto da Silva J.J.R. and Williams, R.J.P. 1991. The biological chemistry of the elements: the inorganic chemistry of life. Clarendon Press, Oxford.

Hall, J.L. 2002. Celluar mechanisms for heavy detoxification and tolerance. *Journal of Experimental Botany* 53(366):1-11, doi: 10.1093/jexbot/53.366.1.

Homer, F.A., Reeves, R.D., Brooks, R.R. and Baker A.J.M. 1991. Characterization of the nickel-rich extract from the nickel hyperaccumulator *Dichapetalum gelonoides*. *Phytochemistry* 30(7): 2141-2145.

Igamberdiev, A.U. and Eprintsev, A.T. 2016. Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. *Frontiers in Plant Science* 7:1042, doi: 10.3389/fpls.2016.01042.

Kachenko, A.G. 2008. Ecophysiology and Phytoremediation Potential of Heavy Metal(loid) Accumulating Plants. Unpublished Dissertation. The University of Sydney, New South Wales, Australia. 228p.

Kochian, L.V., Pineros, M.A., Liu, J. and Magalhes, J.V. 2015. Plant adaptation to acid soils: the molecular basis for crop aluminium to resistance. *Annual Review of Plant Biology* 66:571-598.

Li, J., Xu, R., Tiwari, D. and Ji, G. 2006. Effects of low-molecular-weight organic acids on the distribution of mobilized Al between soil solution and solid phase. *Applied Geochemistry* 21:1750-1759.

Lopez-Bucio, J., Neito-Jacobo, M.F., Ramirez-Rodriguez, V. and Herrera-Estrella, L. 2000. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. *Plant Science* 160(1):1-13.

Merrill, E.D. 1923. An Enumeration of Philippine Flowering Plants. Vol. I. Bureau of Printing, Manila, Philippines.

Osmolovskaya, N., Dung, V.V. and Kucharev, L. 2018. The role of organic acids in heavy metal tolerance in plants. *Biological Communications* 63:1, doi: 10.21638/ spbu03.2018.103.

Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Lasat, M.M., Garvin, D.F., Eide, D. and Kochian, L.V. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator *Thlaspi caerulescens*. *Proceedings of the National Academy*
The role of organic acids in the uptake and storage of nickel in hyperaccumulating plant

of Sciences of the United States of America 97: 4956 - 4960.
Proctor, J. 2003. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics 6:105-124.
Rauser, W.E. 1999. Structure and function of metal chelators produced by plants: the case of organic acids, amino acids, phytin, and metallothioneins. Cell Biochemistry and Biophysics 31:19-48.
Reeves, R.D., Baker, A.J.M., Jaffre T., Erskine, P.D., Echevarria, G. and van der Ent, A. 2017. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist 218: 407-411, doi: 10.1111/nph.14907.
Reeves, R.D. 2003. Tropical hyperaccumulators of metal and their potential for phytoextraction. Plant and Soil 249:57-65.
Reeves, R.D. 2006. Hyperaccumulation of trace elements by plants. In: Phytoremediation of Metal Contaminated Soils. NATO Science, 68: 25-52.
Sposito, G. 1989. The Chemistry of Soil. Oxford University Press, Oxford, New York, 65p.
van der Ent, A., Baker, A.J.M., Reeves, R.D., Pollard, A.J. and Schat, H. 2012. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil 362: 319-334, doi:10.1007/s11104-012-1287.
van der Ent, A., Mulligan, D. and Erskine, P.D. 2013. Discovery of nickel hyperaccumulators from Kinabalu Park, Sabah (Malaysia) for potential utilization in phytomining. In: Enviromine 2013, Santiago, Chile, 4–6 December 2013. pp. 213–221.
Watanabe, T., Misawa, S. and Osaki, M. 2005. Aluminum accumulation in the roots of Melostoma malabathricum, an aluminum-accumulating plant. Canadian Journal of Botany 83:1518-1522, doi: 10.1139/b05-111.
Yang, J.L., Zhang, L. and Zheng, S.J. 2008. Aluminium-activated oxalate secretion does not associate with internal content among some oxalate accumulators. Journal of Integrative Plant Biology 50(9):1103-1107.
Yang, Y.Y., Jung, J.Y., Song, W.Y., Suh, H.S. and Lee, Y. 2000. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiology 124(3):1019-1026, doi.org/10.1104/pp.124.31019.