Research Article

Characterization of Multidrug Resistant ESBL-Producing Escherichia coli Isolates from Hospitals in Malaysia

King-Ting Lim,1 Rohani Yasin,2 Chew-Chieng Yeo,3 Savithri Puthucheary,4 and Kwai-Lin Thong1

1 Microbiology Division, Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2 Specialized Diagnostic Centre, Institute of Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
3 Faculty of Agriculture and Biotechnology, Darul Iman University, Malaysia, 20400 Kuala Terengganu, Malaysia
4 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence should be addressed to Kwai-Lin Thong, thongkl@um.edu.my

Received 11 February 2009; Accepted 11 June 2009

The emergence of Escherichia coli that produce extended spectrum β-lactamases (ESBLs) and are multidrug resistant (MDR) poses antibiotic management problems. Forty-seven E. coli isolates from various public hospitals in Malaysia were studied. All isolates were sensitive to imipenem whereas 36 were MDR (resistant to 2 or more classes of antibiotics). PCR detection using gene-specific primers showed that 87.5% of the ESBL-producing E. coli harbored the blaTEM gene. Other ESBL-encoding genes detected were blaOXA, blaSHV, and blaCTX-M. Integron-encoded integrases were detected in 55.3% of isolates, with class 1 integron-encoded intI1 integrase being the majority. Amplification and sequence analysis of the 5′CS region of the integrons showed known antibiotic resistance-encoding gene cassettes of various sizes that were inserted within the respective integrons. Conjugation and transformation experiments indicated that some of the antibiotic resistance genes were likely plasmid-encoded and transmissible. All 47 isolates were subtyped by PFGE and PCR-based fingerprinting using random amplified polymorphic DNA (RAPD), repetitive extragenic palindromes (REPs), and enterobacterial repetitive intergenic consensus (ERIC). These isolates were very diverse and heterogeneous. PFGE, ERIC, and REP-PCR methods were more discriminative than RAPD in subtyping the E. coli isolates.

Copyright © 2009 King-Ting Lim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Escherichia coli are one of the main bacterial pathogens responsible for nosocomial infections especially in immunocompromised patients [1]. Extended-spectrum β-lactamases (ESBLs) are enzymes produced by Gram-negative bacilli that mediate resistance to penicillin, cephalosporins, and monobactams and are commonly recognized in Enterobacteriaceae and Pseudomonas aeruginosa [2]. Although most ESBLs are mutants of TEM and SHV enzymes, the CTX-M type β-lactamases which have become important, originated from β-lactamases found in environmental species of the genus Kluyvera, and this enzyme hydrolyzes cefotaxime and ceftriaxone but is weakly active against ceftazidime [3, 4]. These enzymes are present worldwide with more than 50 variants [4]. The emergence of ESBL-producers along with multiple resistant isolates poses a serious problem in the hospital setting. The widespread uses of antibiotics coupled with the transmissibility of resistance determinants mediated by plasmids, transposons, and gene cassettes in integrons are factors that contribute to the increase in antibiotic resistance in bacterial pathogens [1].

Rapid and discriminative subtyping methods are essential for determining the epidemiology of isolates in order to design rational control methods. Available subtyping methods for E. coli include PFGE, plasmid profiling, ribotyping and PCR-based typing methods such as arbitrary-primed PCR, repetitive extragenic palindromes (REPs), and enterobacterial repetitive intergenic consensus (ERIC) [5].

A study from Malaysia reported the presence of the ampC gene and SHV-5 ESBL in clinical isolates of E. coli [6].
However, the genotypic characterization of other resistant isolates has not been reported so far. The objectives of this study were to determine the antimicrobial resistance and ESBL profiles of *E. coli* isolated from 5 public Malaysian hospitals and to determine their genetic diversity using PCR-based fingerprinting techniques and PFGE. The presence of resistance genes and integrons was also determined via PCR, and their transferability was determined by conjugation and transformation.

2. Materials and Methods

2.1. Bacterial Strains. In this retrospective study, 47 non-repeating *E. coli* isolates were collected in 2004 from 47 different patients selected randomly from intensive care units of 5 public hospitals located in different parts of Malaysia. The participating hospitals were Kota Bharu Hospital (n = 10), Sultanah Aminah Hospital (n = 23), Kuala Lumpur Hospital (n = 10), Ipoh Hospital (n = 2), and Queen Elizabeth Hospital (n = 2). The isolates were from tracheal aspirates (n = 18), urine (n = 6), body fluids (n = 1), blood (n = 7), pus (n = 6), bile (n = 1), catheter tips (n = 6), and unknown (n = 2). They were identified by standard laboratory methods in the respective hospitals. They were stored in cryovials containing Luria-Bertani broth with 50% glycerol (Invitrogen, USA) at −20°C and −85°C.

2.2. Genotyping by RAPD, REP, and ERIC. Crude DNA from the *E. coli* obtained by direct cell lysis was used for random amplified polymorphic DNA (RAPD) analysis using primers OPAB04 [7] and OPB17 [8] with cycling conditions as previously described (Table 1).

Enterobacterial repetitive intergenic consensus (ERIC) analysis was performed using primer ERIC-1R (Operon Biotechnologies GmbH, Germany) while repetitive extragenic palindromic (REP) analysis was carried out using REP oligonucleotides (Operon Biotechnologies GmbH, Germany) as primers previously reported [9] (Table 1).

Each PCR reaction was carried out in a 25 μL volume using 1.5 U of Taq DNA polymerase (Promega, Madison, Wis, USA) in the reaction buffer provided by the manufacturer containing 2.5 mM MgCl₂, 50 μM of each deoxynucleoside triphosphate, 0.3 μM of the selected primer and 5 μL of DNA template. Aliquots (10 μL) of each PCR product were subjected to electrophoresis on 1.5% agarose gel.

2.3. Genotyping by PFGE. PFGE was performed according to previously described protocols [20] with minor variations. Equal volumes of 1% Seakem Gold agarose (Cambrex Bio Science, Rockland, USA) and standardized cell suspension (OD610 = 1.4; approximately 1 × 10⁸ cfu/mL) were mixed to form agarose plugs, and the bacteria lysed within the plugs with cell lysis buffer (50 mM Tris; 50 mM EDTA (pH 8.0), 1% Sarcosine, 1 mg/mL proteinase K) and incubated at 54°C for 3 hours. Plugs were then washed with sterile deionised water (twice) and TE buffer (4 times), then digested with 12 U of XbaI (Promega, Madison, Wis, USA), and incubated overnight at 37°C. The XbaI-digested DNA was separated on a CHEF-DRIII (BioRad, Hercules, CA, USA) with pulse times of 2.2–54.2 seconds at 200 V for 24 hours, and gels were photographed under UV light after staining with 0.5 μg/mL ethidium bromide.

2.4. Fingerprint Pattern Analysis. The banding patterns generated by RAPD, ERIC-PCR, REP-PCR, and PFGE were analyzed using GelCompar II, version 2.5 (Applied Maths, Kortrijk, Belgium). PCR fingerprints and PFGE profiles were assigned arbitrary designation and analyzed by defining a similarity (Dice) coefficient F [21]. Cluster analysis based on the unweighted pair group method with arithmetic averages (UPGMA) with a position tolerance of 0.15 was done using the GelCompar II software.

2.5. Antimicrobial Susceptibility Testing and Screening for ESBL. Eighteen antimicrobial agents were tested by the disk diffusion method in accordance with CLSI guidelines [22]: ampicillin 10 μg, piperacillin 100 μg, amoxicillin-clavulanic acid 20 μg/10 μg, ceftriaxone 30 μg, ceftazidime 30 μg, cefepine 30 μg, cefoperazone 75 μg, aztreonam 30 μg, imipenem 10 μg, amikacin 30 μg, streptomycin 10 μg, gentamicin 30 μg, kanamycin 30 μg, tetracycline 30 μg, chloramphenicol 30 μg, ciprofloxacin 5 μg, trimethoprim-sulfamethoxazole 75 μg, and nalidixic acid 30 μg (Oxoid Ltd., Basingtoke, Hampshire, England). Isolates were screened for ESBL production by the CLSI disk diffusion method using ceftriaxone 30 μg, ceftazidime 30 μg, and aztreonam 30 μg [22]. The double-disc synergy test was performed according to established protocols and results interpreted as described previously [23].

Phenotypic confirmatory test was performed with 30 μg ceftazidime, 30/10 μg ceftazidime-clavulanic acid (Becton, Dickson & Company, Maryland, USA), 30 μg cefotaxime and 30/10 μg cefotaxime-clavulanic acid (Becton, Dickson & Company, Maryland, USA) disks on Mueller-Hinton agar. The results were interpreted as described [22]. *E. coli* isolates ATCC 25922 and ATCC 35218, *Klebsiella pneumoniae* ATCC 700603, and *P. aeruginosa* ATCC 27853 were used as controls.

2.6. Detection of ESBL Genes. β-lactamase genes (blaTEM, blashV, blaCTX-M, blaOXA, blaPER, blaMHA) were detected by PCR using reverse and forward primer pairs listed in Table 1. Boiled suspension of bacterial cells was used as DNA template, and cycling parameters were as previously described [10–13] with minor modifications (Table 1). Primers 1R, 1, 8F, 8R, 2F, 2R, 9E, and 9R [15] were used for further subgrouping of the *blaCTX-M* gene into CTX-M groups 1, 2, 8/25, and 9. All amplified products obtained were sequenced to validate their identities.

Two ESBL-producing isolates (EC19 and EC31) were further tested by using primers specific for *blaACT*, *blaGES*, *blavIM*, *blaPER*, and *blaFOX* genes using conditions as listed in Table 1. Clinical isolates of *E. coli* were used as the positive controls for *blaTEM*, *blashV*, *blaCTX-M*, and *blaOXA* genes. No positive controls were available for detection of *blaPER*,
Table 1: Primer sequences and PCR conditions.

Primers	Oligonucleotide sequence (5′ to 3′)	PCR conditions	Reference	Expected size (bp)
TEM-F	ATGAGTATTCAACATTTCCG	1 cycle of 5 min at 96°C; 35 cycles of 1 min at 96°C, 1 min at 58°C, 1 min at 72°C; 1 cycle of 10 min at 72°C	[10]	867
TEM-R	CGACAGTTCACAAATGCTTA			
SHV-F	GGTTATGGTTATATTCGCC	1 cycle of 5 min at 96°C; 35 cycles of 1 min at 96°C, 1 min at 60°C, 1 min at 72°C; 1 cycle of 10 min at 72°C	[10]	867
SHV-R	TTAGGTTGACAGCTTGC			
OXA-F	ACACAACTATACATACCAACTTGTCG	1 cycle of 5 min at 96°C; 35 cycles of 1 min at 96°C, 1 min at 60°C, 2 min at 72°C; 1 cycle of 10 min at 72°C	[10]	885
OXA-R	ATGAGTATTCAACATTTCCG			
CTX-MU1	ATGTGCAAGACACATTTTGTC	1 cycle of 5 min at 94°C; 35 cycles of 1 min at 94°C, 30 sec at 94°C, 1 min at 72°C; 1 cycle of 5 min at 72°C	[11]	593
CTX-MU2	TGGGTTGACACATTTTGTC			
DHA-1U	CACACGGATATGCGACAAAAAGGT	1 cycle of 5 min at 94°C; 35 cycles of 1 min at 94°C, 45 sec at 50°C, 1 min at 72°C; 1 cycle of 8 min at 72°C	[12]	970
DHA-1L	GATACGCACATTTTGTC			
VEB-1A	CGACAGTACATCGTC	1 cycle of 5 min at 96°C; 30 cycles of 1 min at 96°C, 1 min at 55°C, 2 min at 72°C; 1 cycle of 10 min at 72°C	[13]	1014
VEB-1B	GACAGTACATCGTC			
Intl1-F	GGTCAAGGATATGCGACAAAAAGGT	1 cycle of 12 min at 94°C; 35 cycles of 1 min at 94°C, 1 min at 57°C, 2 min at 72°C; 1 cycle of 10 min at 72°C	[14]	500
Intl1-R	GATACGCACATTTTGTC			
5′CS	GGCATCGCAAGACACAGAAG	1 cycle of 10 min at 94°C; 35 cycles of 1 min at 94°C, 1 min at 54°C, 2 min at 72°C; 1 cycle of 8 min at 72°C	[14]	—
3′CS	AAGCAGACTTTGCACTCTGA			
Intl2-F	CACCGGATATGCGACAAAAAGGT	Same as for intr1	[14]	740
Intl2-R	GTGCAACAGACTTTGCACTCTGA			
attl2-F	GACGGCATGCAGACTTTGTA	1 cycle of 12 min at 94°C; 35 cycles of 1 min at 94°C, 1 min at 59.5°C, 3.5 min at 72°C; 1 cycle of 10 min at 72°C	[14]	2000
orfX-R	GATGGGCATTGCTGACCAAGACAGAG			
Intl3-F	AGTGATCGGCAAGACACAGTGGTG	1 cycle of 12 min at 94°C; 30 cycles of 30 sec at 94°C, 30 sec at 60°C, 1 min at 72°C; 1 cycle of 8 min at 72°C	[14]	600
Intl3-R	TGTCTGATACTGCGAGACCCG			
1, 8F 1R	GCSATGTGCAAGACACAGTAA	1 cycle of 5 min at 95°C; 30 cycles of 1 min at 95°C, 45 sec at 55°C, 1 min at 72°C; 1 cycle of 8 min at 72°C	[16]	827
2F 2R	CTTAATGCGCCATTTCAAGG			
8R 1,8F 9F 9R	GCSATGTGCAAGACACAGTGA			
NHAmpCF	ATTCGTATGCTGGATCTCCGAGGCGAGC	Same as GES-A	[18]	396
NHAmpR	CATGACCCGTAGTTGCAGGCTTGA			
PER-A	GGGCAGCCTTACATGATGTCAGTC	Same as GES-A	[17]	225
PER-B	GGGYSGCTTAGATGATGTCAGTCA			
OPAB04	GCAGCGGTTCGAGACACAGTAA	1 cycle of 2 min 30 sec at 94°C; 35 cycles of 30 sec at 94°C, 1 min at 47°C, and 1 min at 72°C; 4 min at 72°C	[7]	—
GES-A	CTCTACATGCAGCTTACTAC	1 cycle of 5 min at 95°C; 30 cycles of 1 min at 95°C, 45 sec at 55°C, 1 min at 72°C; 1 cycle of 8 min at 72°C	[16]	827
GES-B	TAACTTTACAGGCGACAGAG			
VIM-F	AGTGGATGATCTCCGAGCAG	Same as GES-A	[17]	
VIM-R	ATGGAAAGTACGGTGAGACC			
FOXU1F	CACCAAGGAATAACCC	Same as GES-A	[18]	1184
FOXU1R	GATGGATTACGGCTGACG			
NHAmCF	ATTCGTATGCTGGATCTCCGACCGACAG	Same as GES-A	[18]	396
NHAmR	CATGACCCGTAGTTGCAGGCTTGA			
PER-A	GGGCAGCCTTACATGATGTCAGTC	Same as GES-A	[17]	225
PER-B	GGGYSGCTTAGATGATGTCAGTCA			
OPAB04	GCAGCGGTTCGAGACACAGTAA	1 cycle of 2 min 30 sec at 94°C; 35 cycles of 30 sec at 94°C, 1 min at 47°C, and 1 min at 72°C; 4 min at 72°C	[7]	—
Plasmid DNA was extracted from ESBL-producing strains that had identical ERIC-PCR, REP-PCR and RAPD profiles. Isolates EC4 and EC9 were indistinguishable by RAPD using the OPB04 primer whereas isolates EC4 and EC20 were indistinguishable by RAPD using the OPB17 primer. However, isolates EC4 and EC9 were in the same cluster (92% similarity) based on their ERIC-PCR profiles.

2.7. Detection of Class 1, 2, and 3 Integrons. Class 1, 2, and 3 integrons were detected by PCR using established primers and conditions as listed in Table 1. Selected amplified products were sequenced to corroborate their identities.

2.8. Transfer of Antibiotic Resistance Determinants. Transfer of resistance genes was attempted in broth using nalidixic resistant recipient E. coli JM109 (endA1, recA1, gyrA96, thi, hsdR17 (rk−, mK+), RELA1, SUP44, λ−, Δ(lac-proAB), (F−, traD36, proAB, lacI9ΔZΔM15). Transconjugants were selected on Luria-Bertani agar supplemented with ampicillin (100 μg/mL) plus nalidixic acid (100 μg/mL) (Sigma Aldrich, USA).

Transformation experiments were carried out for isolates in which conjugation failed to produce positive results. Plasmid DNA was extracted from ESBL-producing E. coli using the QIaprep Spin Miniprep Kit (QIAGEN, Hilden, Germany) and was transformed by electroporation into electrocompetent E. coli DH10B (F−, mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZ, blaX74 recA1 endA1 araD139 Δ (ara, leu)7697 galU galK Δ (rpsL, mupG) tonA). Transforms were selected on Luria-Bertani agar plates containing 100 μg/mL ampicillin (Sigma Aldrich, USA).

Size determination of the plasmids from transconjugants and transformants was carried out by digestion with EcoRI or SpI I (Promega, Madison, Wis, USA), and the products separated in 0.8% agarose gels at 70 V for 4 hours.

3. Results

3.1. PCR-Based Fingerprinting. Three PCR-based DNA fingerprinting methods were used to subtype the 47 E. coli isolates. ERIC-PCR analysis differentiated the 47 isolates into 45 unique profiles (F = 0.54–1.0) whereas RAPD using the OPAB04 and OPB17 primers generated 44 and 43 profiles, respectively, (F = 0.41–1.0 for the OPAB04 primer and F = 0.36–1.0 for the OPB17 primer, see Figures 1(a) and 1(b)). REP-PCR differentiated the 47 isolates into 45 distinct profiles (F = 0.53–1.0, see Figure 1(c)). All three PCR-based methods were reproducible as identical profiles were obtained in separate experiments using the same set of isolates.

Two isolates, EC14 and EC34, from the same hospital but from different wards, yielded identical profiles by all the 3 methods. Two other blood isolates, EC12 and EC24, from 2 different patients in the same ward, were also indistinguishable by their ERIC, REP, and RAPD profiles. ESBL-producing isolates EC4, EC9, and EC20 were clonally related by both RAPD and REP-PCR. Isolates EC4 and EC9 were indistinguishable by RAPD using the OPAB04 primer whereas isolates EC4 and EC20 were indistinguishable by RAPD using the OPB17 primer. However, isolates EC4 and EC9 were in the same cluster (92% similarity) based on their ERIC-PCR profiles.

3.2. PFGE with Xbal-Digested Genomic DNA. Xbal-digested genomic DNA of the 47 E. coli isolates resulted in 44 distinct pulsed-field profiles (PFPs) comprising 12–26 restriction fragments. The 2 E. coli strains that had identical ERIC-PCR, REP-PCR and RAPD profiles (i.e., EC12 and EC24) were similarly indistinguishable by their PFPs with both sharing all 14 restriction fragments.

Two other isolates, EC1 and EC4 which were indistinguishable by PFGE but were distinguishable in their ERIC, RAPD and REP-PCR profiles, had 39%–68% similarities. Similarly, ERIC, RAPD, and REP-PCR differentiated isolates EC37 and EC39 that displayed identical PFPs. Both EC37 and EC39 were isolated from the same hospital. On the other hand, isolates EC14 and EC34 that displayed identical PFPs with both sharing 14 restriction fragments.

3.3. Combined Analysis. A dendrogram based on the combined fingerprints generated by ERIC-PCR, RAPD, REP-PCR, and PFGE was constructed (Figure 2). All the 47 isolates were differentiated into 46 combined subtypes (Table 2). Two isolates, EC12 and EC24, with the combined profile E12R12A11B12X111 were identical in their ERIC, RAPD, REP, and PFGE profiles. Three other isolates (EC4, EC9, and EC20) were grouped within the same cluster and were clonally related (more than 85% similarity). Isolates EC14 and EC34 were also grouped together within the same cluster and were clonally related (more than 94% similarity).

3.4. Antimicrobial Susceptibility. The antibiotic resistant rates for the E. coli isolates were as follows: ampicillin...
77%, piperacillin 64%, tetracycline 53%, trimethoprim-sulfamethoxazole 43%, cefoperazone and kanamycin 30% each, nalidixic acid 28%, chloramphenicol 26%, ciprofloxacin 23%, gentamicin 21%, amoxicillin-clavulanic acid 17%, ceftriaxone ceftazidime and aztreonam 11% each, and amikacin 2%. All 47 isolates were sensitive to imipenem. Majority of the isolates were sensitive to cefepime except EC28, EC34, and EC37 that showed intermediate susceptibility. Among them, 36 isolates (76.5%) were multidrug-resistant. The cephalosporin resistant isolates were also resistant to ampicillin and 71% of them resistant to tetracycline. A large number of isolates that were resistant to aminoglycosides (72%) were also resistant to tetracycline.

Thirty-six (76.5%) isolates were presumptive ESBL producers based on initial screening. Using the double-disk synergy test, only 3 ESBL producing isolates were detected. However, based on the phenotypic confirmatory test, 10 isolates were found to be ESBL producers. All isolates that tested positive for ESBL were also multidrug-resistant.

3.5. Detection of Genes Encoding ESBLs. Established primers were used on the genomic and plasmid DNA of the 47 E. coli isolates for the following ESBL-encoding genes: \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{SHV}}, \text{bla}_{\text{OXA}}, \text{bla}_{\text{CTX-M}}, \text{bla}_{\text{DHA}}, \text{and} \ \text{bla}_{\text{VEB}}. \) The \(\text{bla}_{\text{TEM}-1} \) gene was detected in 35 (74.5%) whereas \(\text{bla}_{\text{SHV}}, \text{bla}_{\text{CTX-M}} \), and \(\text{bla}_{\text{OXA}} \)-specific amplicons were detected in only 3, 8, and 2 isolates, respectively. Of the 35 \(\text{bla}_{\text{TEM}} \) isolates, 7 also harbored \(\text{bla}_{\text{CTX-M}} \) and 1 had \(\text{bla}_{\text{SHV}}. \) Three ESBL genes were detected in E. coli isolate EC7: \(\text{bla}_{\text{SHV}}, \text{bla}_{\text{OXA}}, \text{and} \ \text{bla}_{\text{CTX-M}}. \) \(\text{bla}_{\text{DHA}}, \text{and} \ \text{bla}_{\text{VEB}} \) were not detected in any of the isolates. All \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{SHV}}, \text{and} \ \text{bla}_{\text{OXA}} \) genes were carried on plasmids whereas 6 of the 8 \(\text{bla}_{\text{CTX-M}} \) genes were plasmid-borne. No
ERIC E. coli + rapd opab04 + rapd opab17 + rep + PFGE combined

Combined profiles

55 60 65 70 75 80 85 90 95

EC34 E14R14A13B14X32
EC14 E14R14A13B14X13
EC30 E29R29A28B28X28
EC27 E26R26A25B25X25
EC41 E39R39A38B38X38
EC22 E22R22A21B21X21
EC46 E44R44A43B42X43
EC18 E18R18A17B18X17
EC23 E23R23A22B22X22
EC36 E34R34A33B33X34
EC21 E21R21A20B20X20
EC45 E43R43A42B41X42
EC14 E05R05A05B05X04
EC44 E42R42A41B40X41
EC40 E38R38A37B37X37
EC29 E28R28A27B27X27
EC24 E12R12A11B12X11
EC12 E12R12A11B11X11
EC28 E27R27A26B26X26
EC8 E08R08A08B08X07
EC43 E41R41A40B40X40
EC26 E25R25A24B24X24
EC7 E07R07A07B07X06
EC13 E13R13A12B13X12
EC2 E01R02A02B02X02
EC32 E31R31A30B30X30
EC42 E40R40A39B39X39
EC15 E15R15A14B15X14
EC35 E33R33A32B32X33
EC4 E04R04A03B03X03
EC20 E20R20A19B04X19
EC9 E09R09A04B09X08
EC1 E01R01A01B01X01
EC16 E16R16A15B16X15
EC11 E11R11A10B11X10
EC33 E32R32A31B31X11
EC47 E45R45A44B43X44
EC17 E17R17A16B17X16
EC6 E06R06A06B06X05
EC37 E33R33A32B32X33
EC31 E30R30A29B29X29
EC39 E37R37A36B36X35
EC10 E10R10A09B10X09
EC38 E36R36A35B35X36
EC25 E23R24A23B23X23
EC19 E19R19A18B19X18
EC3 E03R03A02B03X03

Figure 2: Dendrogram generated using UPGMA based on Dice coefficients of similarity for the clustering of the E. coli combined profile. The dotted blue vertical line indicates 80% similarity level.

ESBL-encoding gene was detected in 2 presumptive ESBL-producers, EC19 and EC31. Sequencing of the amplified products indicated complete identity with the respective gene sequences (i.e., \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{SHV}}, \text{bla}_{\text{OXA}}, \) and \(\text{bla}_{\text{CTX-M}} \)) in the NCBI database. Further analysis of the \(\text{bla}_{\text{TEM}} \) sequences indicated that the E. coli isolates harbored the TEM-1 subgroup whereas for \(\text{bla}_{\text{OXA}} \), the subgroup found in the isolates was OXA-1. In the case of the \(\text{bla}_{\text{CTX-M}} \) gene, DNA sequences analysis indicated that 3 of the 8 isolates detected belonged either to subgroup CTX-M-15 or to subgroup CTX-M-28. However, it was not possible to further subgroup the remaining 5 \(\text{bla}_{\text{CTX-M}} \) genes, as the primers used did not amplify the entire \(\text{bla}_{\text{CTX-M}} \) reading frame. The subsequent use of primers 1R, 1, 8F, 2F, 2R, 8R, 9F, and 9R [15] to further subgroup the 5 \(\text{bla}_{\text{CTX-M}} \) genes could only indicate that they did not belong to subgroups 1, 2, 8/25, and 9. Similarly, we were unable to subgroup the \(\text{bla}_{\text{SHV}} \) genes as the primers used only amplified a portion of the gene and not the entire reading frame.
Table 2: Antimicrobial resistance, size of plasmids and ESBL genes detected in the selected donor E. coli isolates, and their respective transconjugants and transformants.

No.	Resistance profile	ESBL-encoding gene detected by PCR	Plasmid donor (kb)	Plasmid transconjugant/transformant (kb)	Resistance profile of transformant/transconjugant	ESBL-encoding gene transferred	Mode of transfer
EC7	AMP, PIP, TET, CRO, FEP, NAL, SXT, CHL, CFP, CAZ, KAN, ATM	*bla*_{OXA}, *bla*_{SHV}, *bla*_{CTX-M}	135	55	AMP, PIP, TET, CRO, FEP, NAL, SXT, CFP, KAN, ATM	*bla*_{OXA}, *bla*_{SHV}, *bla*_{CTX-M}	Transformation
EC10	AMP, PIP, TET, NAL, SXT, CHL, CAZ, KAN, CIP, STR, GEN	*bla*_{TEM}	310	310	AMP, PIP, TET, NAL, SXT, CHL, CIP, STR, GEN	*bla*_{TEM}	Transformation
EC12	AMP, PIP, TET, NAL, SXT, CHL, KAN, STR	*bla*_{TEM}	50	50	AMP, PIP, TET, SXT, KAN, STR	*bla*_{TEM}	Transformation
EC18	AMP, PIP, TET, SXT, STR, CRO	*bla*_{TEM}	190	190	AMP	*bla*_{TEM}	Conjugation
EC24	AMP, PIP, TET, NAL, SXT, CHL, KAN, CIP, GEN	*bla*_{TEM}, *bla*_{CTX-M}	60	60	AMP, PIP, TET, NAL, SXT, CHL, CIP, GEN	*bla*_{TEM}, *bla*_{CTX-M}	Transformation
EC31	AMP, PIP, TET, SXT, CHL, CFP, KAN, CRO, STR	ND	90	40	AMP, PIP, SXT, CFP	ND	Conjugation
EC36	AMP, PIP, TET, SXT, CFP, CIP, STR, KAN, GEN, NAL, CHL, SXT	*bla*_{TEM}	300	300	AMP, PIP, TET, SXT, CIP, STR, GEN, CHL, NAL	*bla*_{TEM}	Transformation
EC46	AMP, PIP, STR	*bla*_{TEM}	50	50	AMP, PIP, STR	*bla*_{TEM}	Conjugation

3.6. Class 1, 2, and 3 Integrons. Forty-seven E. coli isolates were screened for the presence of integrases encoded on class 1, 2, and 3 integrons. The class 1 integron-encoded intI1 integrase gene was detected in 25 isolates while 4 isolates tested positive for class 2-encoded intI2 integrase. One isolate, EC24, was found to harbor both intI1 and intI2. No class 3 integron was detected. Majority of the integrons were found to be plasmid-encoded (16 of the 25 intI1-positive isolates and sequencing indicated the presence of 5 different types of known gene cassettes: *aadA5*-dfra17, dfra7, *aadA1-aadB-cmlA6, dfra12-aadA2-orfF* and *aadA1*. Using the attI2/orfX primer pair for intI2-positive isolates resulted in a 2 kb amplified product which, when sequenced, contained the dfra1-aadA1-sat2 gene cassette. The *aadA2, aadA5,* and *aadB genes encode resistance to aminoglycosides whereas sat2 encode resistance to streptomycin. Both dfra12 and dfra17 encode resistance to trimethoprim and cmlA6 to 5′ CS/3′ CS for class 1 integrons and primer pair orfx/attI2 for class 2 integrons. Amplified products of different sizes were obtained from 17 of the 25 intI1-positive isolates and sequencing indicated the presence of 5 different types of known gene cassettes: *aadA5*-dfra17, dfra7, *aadA1-aadB-cmlA6, dfra12-aadA2-orfF* and *aadA1*. Using the attI2/orfX primer pair for intI2-positive isolates resulted in a 2 kb amplified product which, when sequenced, contained the dfra1-aadA1-sat2 gene cassette. The *aadA2, aadA5,* and *aadB genes encode resistance to aminoglycosides whereas sat2 encode resistance to streptomycin. Both dfra12 and dfra17 encode resistance to trimethoprim and cmlA6 to
chloramphenicol. Although trimethoprim and streptomycin were not used in our study, the presence of gene cassettes encoding resistance to aminoglycosides and chloramphenicol coincided with the resistance profiles of the respective isolates. The majority of the integron-positive isolates (24 of 27) were multidrug-resistant.

3.7. Transfer of Resistance Determinants. Conjugation experiments were carried out for 7 randomly-selected ESBL-producers and transfer of this phenotype to the recipient nalidixic acid-resistant E. coli JM109 was successful in only 3 of the 7 isolates (38%). However, it should be noted that only broth matings were carried out in this study and not filter matings and thus the transmissibility potential for the other 4 isolates could not be fully ascertained. All transconjugants were resistant to ampicillin and piperacillin except for the EC18 which remained susceptible to piperacillin. Streptomycin resistance was cotransferred in the EC46 transconjugant whereas for the EC31 transconjugant, trimethoprim-sulfamethoxazole and cefoperazone resistances were also transferred (Table 2).

Identical EcoRI and SphI restriction profiles were obtained from plasmids extracted from the donor E. coli and their respective transconjugants except for EC31. In this case, based on the restriction profiles obtained, the plasmid extracted from the transconjugant was smaller than the plasmid obtained from the donor EC31 strain (approximately 40 kb from the transconjugant as compared to ~90 kb from the donor) although they shared a number of common restriction bands (Table 2). Plasmids extracted from the transconjugants were used to transform electrocompetent E. coli DH10B cells. Plasmids extracted from the resulting ampicillin resistant DH10B transformants showed identical EcoRI restriction profiles with those from their respective transconjugants. The DH10B transformants also displayed identical antibiotic resistance profiles as their respective transconjugants, strongly implying that these antibiotic resistance determinants were plasmid-borne.

Both blaTEM and intI1 were detected on the plasmids extracted from the EC18 and EC46 donor, transconjugants as well as their subsequent transformants indicating that these 2 genes were likely present on the plasmid that was transferred. None of the common ESBL-encoding genes were detected in EC31 although this isolate harbored class 1 integron-encoded intI that was detected from the plasmid in the EC31 transconjugant and transformant suggesting that the transferred plasmid harbored a class 1 integron.

Transformation was carried out for the 4 isolates in which conjugation was not successful and another ESBL-positive randomly chose isolate. Plasmids were extracted from these 5 isolates and electroporated into recipient E. coli DH10B cells. All transformants obtained were resistant to ampicillin, piperacillin, tetracycline, and trimethoprim-sulfamethoxazole. Plasmids extracted from the transformants showed identical EcoRI restriction profiles when compared to their respective donor plasmids except for isolate EC7 in which the plasmid isolated from the transformant was smaller (~55 kb) when compared to the hospital isolate (~135 kb) (Table 2). Both blaTEM and intI1 genes were also detected from the plasmids isolated from the donor isolates as well as the transformants except for isolate EC7 and its transformant.

4. Discussion

Genotyping by PCR-based methods and PFGE showed the 47 E. coli clinical isolates to be genetically diverse and heterogeneous. This is expected as the isolates were randomly selected from different hospitals and sources. Similar observations were reported by Mugnaioli et al. [24] and Woodford et al. [16]. We found that ERIC and REP-PCR yielded practically identical results and able to differentiate strains which were indistinguishable by RAPD. Although PCR-based fingerprinting is rapid, it is more susceptible to technical variations than PFGE especially reproducibility. Thus PFGE is considered the better method for subtyping of E. coli, even though it is relatively laborious and time-consuming compared to PCR-based methods.

Isolates EC12 and EC24 were indistinguishable by both PFGE and PCR fingerprints. These two blood isolates were from different patients in the same ward, strongly suggesting a possible nosocomial spread. Interestingly, both isolates harbored plasmids of different sizes with EC12 harboring a plasmid of ~50 kb whereas EC24 contained a plasmid of ~60 kb. On the other hand, there were isolates that were identical in their PCR fingerprints but were differentiated by their PFGE profiles (e.g., isolates EC14 and EC34) and conversely, isolates that were indistinguishable by PFGE were differentiated by PCR (isolates EC1 and EC4, and EC37 and EC39). This shows that these methods are complementary and a combined analysis would give a finer perspective bearing in mind the drawbacks of each of these methods.

All 47 E. coli isolates analyzed in this study were susceptible to imipenem. This finding is similar to previous reports [16, 25]. Cefepime was equally sensitive at 98% which is a rate higher than the 80% sensitivity reported in Colombia [25] and 70% in China [26].

The resistance rates of chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, gentamicin, kanamycin, ciprofloxacin and nalidixic acid were 7% to 69% lower compared to a report by Alhaj et al. [27].

The resistance rates of E. coli isolates to ceftazidime (11%) and amoxicillin-clavulanic acid (17%) were lower when compared to that from China—28% for ceftazidime and 84% for amoxicillin-clavulanic acid [26]. E. coli resistance to amikacin in Malaysia (2% in this study) was still relatively low compared to 27% in Colombia [25] or 22.4% in Israel [28].

Forty E. coli isolates were classified as ESBL producers based on phenotypic or genotypic detection of ESBL: 38 isolates were classified as ESBL producers based on the genotypic detection of ESBL-encoding genes, and 2 others were categorized as ESBL producers based on the double-disk synergy and phenotypic confirmatory tests. However, these two isolates, EC7 and EC31, did not harbor any of the tested ESBL-encoding genes and may instead harbor other
genes such as \textit{bla}_{TEM}, \textit{bla}_{IMP}, and \textit{bla}_{CMY} \cite{1, 29} that were not included in our test. Although the double-disk synergy test had been reported to be reliable and easy-to-use, its major disadvantage is that the distance of disk placement for optimal sensitivity has not been standardized \cite{20, 29}.

Analysis of the ESBL-encoding genes indicated that the majority of the ESBL-positive isolates harbored TEM-1 (88%) followed by CTX-M (20%), SHV (8%), and finally, OXA (5%). TEM-1 has been reported to be responsible for 90% of ampicillin resistance in \textit{E. coli} \cite{30}. The \textit{bla}_{CTX-M} gene is considered the most prevalent ESBL-encoding gene worldwide and is replacing TEM and SHV types as the predominant ESBL in many European countries \cite{31}. The presence of the \textit{bla}_{SHV\text{-}5} gene in 11 ceftazidime resistant \textit{E. coli} isolates from one Malaysian teaching hospital has been reported \cite{6}. The specific SHV subtypes could not be confirmed in this study as the primers used only amplified a portion of the \textit{bla}_{SHV\text{-}5} reading frame.

Analysis of integron-encoded integrases indicated that class 1 integron was the principal integron class in the Malaysian strains. Class 2 integron was in the minority, and no class 3 integron-encoded integrases were detected, a trend that has previously been reported \cite{14, 32}. Four different gene cassettes, namely, the \textit{aadA1}, \textit{dfra17-aadA5}, \textit{dfra12-offF-aadA2}, and \textit{aadA1-aadB-cmlA6} were found in the class 1 integron-positive isolates, and these have been previously described in \textit{E. coli} as well as in other \textit{Enterobacteriaceae} \cite{15}. All 4 isolates positive for class 2 integron-encoded \textit{intI2} harbored the \textit{dfra1-A1-sat2-aadA1} gene cassette which has been reported \cite{1, 33}. Conjugation and transformation experiments indicated that the majority of the integrons and some of the ESBL-encoding genes (in particular \textit{bla}_{TEM}) were plasmid-encoded and transmissible. Plasmids that were isolated from the \textit{E. coli} hospital isolates were estimated to be larger than 50 kb in agreement with the sizes reported previously \cite{34, 35}. In 2 of the 3 successful conjugation experiments, plasmids with identical restriction profiles were isolated from the donor and the transconjugants. In the remaining case, based on the restriction profiles obtained, the plasmid that was isolated from the transconjugant was about 50 kb smaller than the donor EC31 strain (~90 kb), indicating either that the donor strain harbored more than a single type of plasmid and that only the plasmid of about 40 kb was transferred, or that only a ~40 kb portion of the original plasmid was successfully transferred by conjugation. The latter appeared to be a stronger possibility as separation of undigested plasmid DNA extracted from the parental EC31 strain seemed to indicate the presence of a single plasmid. Similar observations were also noted for the transformation experiments. Further characterization of these plasmids is clearly needed and is the subject of our on-going investigations. Nevertheless, our results indicate that most of the ESBL-encoding genes especially \textit{bla}_{TEM} are carried on plasmids which are transmissible suggesting that the spread of ESBL and other antibiotic resistance determinants is likely to be plasmid-mediated in agreement with the conclusions made by other reports \cite{36, 37} that plasmids are one of the main vehicles for spread of antibiotic resistance genes. This may have led to the high prevalence of ESBL-producers and multidrug resistance among \textit{E. coli} hospital isolates in Malaysia.

Acknowledgments

This work was funded by grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), the Malaysian Toray Science Foundation, and University of Malaya. The authors thank MOSTI for providing an NSF scholarship to LKT. They thank Ms. Nurahan Maning, Zubaida Abdul Wahab, Noraini Ismail, Eng Am Tan, and Dr. Ganeswrie Balan for providing the clinical isolates. Part of this study was presented as a poster at the 6th ISAAR, Raffles City, Singapore, in 2007.

References

\begin{enumerate}
\item H. Y. Kang, Y. S. Jeong, J. Y. Oh, et al., “Characterization of antimicrobial resistance and class 1 integrons found in \textit{Escherichia coli} isolates from humans and animals in Korea,” Journal of Antimicrobial Chemotherapy, vol. 55, no. 5, pp. 639–644, 2005.
\item F. C. Tenover, P. M. Raney, P. P. Williams, et al., “Evaluation of the NCCLS extended-spectrum β-lactamase confirmation methods for \textit{Escherichia coli} with isolates collected during Project ICARE,” Journal of Clinical Microbiology, vol. 41, no. 7, pp. 3142–3146, 2003.
\item R. Bonnet, “Growing group of extended-spectrum β-lactamas: the CTX-M enzymes,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 1, pp. 1–14, 2004.
\item F. Perez, A. Endimiani, K. M. Hujer, and R. A. Bonomo, “The continuing challenge of ESBLs,” Current Opinion in Pharmacology, vol. 7, no. 5, pp. 459–469, 2007.
\item L. G. Dos Anjos Borges, V. D. Vechia, and G. Corcao, “Characterisation and genetic diversity via REP-PCR of \textit{Escherichia coli} isolates from polluted waters in southern Brazil,” FEMS Microbiology Ecology, vol. 45, no. 2, pp. 173–180, 2003.
\item G. Subramaniam, S. Palasubramaniam, and P. Navaratnam, “SHV-5 extended-spectrum β-lactamases in clinical isolates of \textit{Escherichia coli} in Malaysia,” Indian Journal of Medical Microbiology, vol. 24, no. 3, pp. 205–207, 2006.
\item R. Latha, T. S. Suryanarayanan, and M. S. Swaminathan, “Genetic diversity in \textit{Acremonium endophytes} isolated from warm-season grasses as revealed by RAPD markers,” Journal of Plant Biochemistry and Biotechnology, vol. 13, no. 1, pp. 39–42, 2004.
\item S. Chatellier, M. Gottschalk, R. Higgins, R. Brousseau, and J. Harel, “Relatedness of \textit{Streptococcus suis} serotype 2 isolates from different geographic origins as evaluated by molecular fingerprinting and phenotyping,” Journal of Clinical Microbiology, vol. 37, no. 2, pp. 362–366, 1999.
\item M. M. Navia, L. Capitano, J. Ruiz, et al., “Typing and characterization of mechanisms of resistance of \textit{Shigella} spp. isolated from fevers of children under 5 years of age from Ifakara, Tanzania,” Journal of Clinical Microbiology, vol. 37, no. 10, pp. 3113–3117, 1999.
\item A. Oliver, L. M. Weigel, J. K. Rasheed, J. E. McGowan Jr., P. Raney, and F. C. Tenover, “Mechanisms of decreased susceptibility to cefpodoxime in \textit{Escherichia coli},” Antimicrobial Agents and Chemotherapy, vol. 46, no. 12, pp. 3829–3836, 2002.
\item L. Pagani, E. Dell’Amico, R. Migliavacca, et al., “Multiple CTX-M-type extended-spectrum β-lactamas in nosocomial
\end{enumerate}
isolates of Enterobacteriaceae from a hospital in Northern Italy," Journal of Clinical Microbiology, vol. 41, no. 9, pp. 4264–4269, 2003.

[12] H. Pai, C.-I. Kang, J.-H. Byeon, et al., "Epidemiology and clinical features of bloodstream infections caused by AmpC-type-β-lactamase-producing Klebsiella pneumoniae," Antimicrobial Agents and Chemotherapy, vol. 48, no. 10, pp. 3720–3728, 2004.

[13] X. Jiang, Z. Zhang, M. Li, D. Zhou, F. Ruan, and Y. Lu, "Detection of extended-spectrum β-lactamases in clinical isolates of Pseudomonas aeruginosa," Antimicrobial Agents and Chemotherapy, vol. 50, no. 9, pp. 2990–2995, 2006.

[14] E. Machado, R. Càntón, F. Baquero, et al., "Integron content of extended-spectrum-β-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain," Antimicrobial Agents and Chemotherapy, vol. 49, no. 5, pp. 1823–1829, 2005.

[15] V. M. Ensor, D. M. Livermore, and P. M. Hawkey, "A novel reverse-line hybridization assay for identifying genotypes of CTX-M-type extended-spectrum β-lactamases," Journal of Antimicrobial Chemotherapy, vol. 59, no. 3, pp. 387–395, 2007.

[16] N. Woodford, M. E. Ward, M. E. Kaufmann, et al., "Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK," Journal of Antimicrobial Chemotherapy, vol. 54, no. 4, pp. 735–743, 2004.

[17] P. Giakkoupis, A. Xanthaki, M. Kanellopoulos, et al., "VIM-1 metallo-β-lactamase-producing Klebsiella pneumoniae strains in Greek hospitals," Journal of Clinical Microbiology, vol. 41, no. 8, pp. 3893–3896, 2003.

[18] P. E. Coudron, N. D. Hanson, and M. W. Climo, "Occurrence of extended-spectrum and AmpC beta-lactamas in bloodstream isolates of Klebsiella pneumoniae isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC beta-lactamases," Journal of Clinical Microbiology, vol. 41, no. 2, pp. 772–777, 2003.

[19] F. J. De Brujin, "Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria," Applied and Environmental Microbiology, vol. 58, no. 7, pp. 2180–2187, 1992.

[20] S. Tofteland, B. Haldorsen, K. H. Dahl, et al., "Effects of phenotype and genotype on methods for detection of extended-spectrum-β-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway," Journal of Clinical Microbiology, vol. 45, no. 1, pp. 199–205, 2007.

[21] K. L. Thong, S. S. Lai, S. D. Puthucheary, Y. T. Koh, N. Ahmad, and R. M. Yassin, "Subtyping of Salmonella enterica serovar Muenchen by pulsed-field gel electrophoresis, plasmid profiling and antimicrobial susceptibility testing," Malaysian Journal of Science, vol. 26, no. 2, pp. 1–13, 2007.

[22] Clinical and Laboratory Standards Institute, "Performance standards for antimicrobial susceptibility testing," Fifteenth informational supplement. Approved standard MS100-516. Wayne, PA: CLSI; 2006.

[23] V. Jarlier, M. H. Nicolas, G. Fourmir, and A. Phillipan, "Extended broad-spectrum beta-lactamas conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns," Reviews of Infectious Diseases, vol. 10, no. 4, pp. 867–878, 1988.

[24] C. Mugaïoli, F. Luziari, E. De Luca, et al., "CTX-M-type extended-spectrum β-lactamases in Italy: molecular epidemiology of an emerging countrywide problem," Antimicrobial Agents and Chemotherapy, vol. 50, no. 8, pp. 2700–2706, 2006.

[25] M. V. Villegas, A. Correa, F. Perez, M. C. Miranda, T. Zuluaga, and J. P. Quinn, "Prevalence and characterization of extended-spectrum β-lactamases in Klebsiella pneumoniae and Escherichia coli isolates from Colombian hospitals," Diagnostic Microbiology and Infectious Disease, vol. 49, no. 3, pp. 217–222, 2004.

[26] Y. Yu, S. Ji, Y. Chen, et al., "Resistance of strains producing extended-spectrum β-lactamases and genotype distribution in China," Journal of Infection, vol. 54, no. 1, pp. 53–57, 2007.

[27] N. Alhaj, N. S. Mariana, A. R. Raha, and Z. Ishak, "Prevalence of antibiotic resistance among Escherichia coli from different sources in Malaysia," Research Journal of Pharmacology, vol. 1, pp. 44–49, 2007.

[28] R. Colodner, Z. Samra, N. Keller, et al., "First national surveillance of susceptibility of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella spp. to antimicrobials in Israel," Diagnostic Microbiology and Infectious Disease, vol. 57, no. 2, pp. 201–205, 2007.

[29] P. A. Bradford, "Extended-spectrum β-lactamases in the 21st century: characteristics, epidemiology, and detection of this important resistance threat," Clinical Microbiology Reviews, vol. 14, no. 4, pp. 933–951, 2001.

[30] D. M. Livermore, "β-lactamases in laboratory and clinical resistance," Clinical Microbiology Reviews, vol. 8, no. 4, pp. 557–584, 1995.

[31] D. M. Livermore, R. Canton, M. Gniadkowski, et al., "CTX-M: changing the face of ESBLs in Europe," Journal of Antimicrobial Chemotherapy, vol. 59, no. 2, pp. 165–174, 2007.

[32] A. van Essen-Zandbergen, H. Smith, K. Veldman, and D. Mevius, "Occurrence and characteristics of class 1, 2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in the Netherlands," Journal of Antimicrobial Chemotherapy, vol. 59, no. 4, pp. 746–750, 2007.

[33] I. S. Henriques, F. Fonseca, A. Alves, M. J. Saavedra, and A. Correia, "Occurrence and diversity of integrons and β-lactamase genes among ampicillin-resistant isolates from estuarine waters," Research in Microbiology, vol. 157, no. 10, pp. 938–947, 2006.

[34] C. Eckert, V. Gautier, M. Saladin-Allard, et al., "Dissemination of CTX-M-type β-lactamases among clinical isolates of Enterobacteriaceae in Paris, France," Antimicrobial Agents and Chemotherapy, vol. 48, no. 4, pp. 1249–1255, 2004.

[35] S. Lavilla, J. J. Gonzalez-Lopez, M. Sabaté, et al., "Prevalence of qnr genes among extended-spectrum β-lactamase-producing enterobacterial isolates in Barcelona, Spain," Journal of Antimicrobial Chemotherapy, vol. 61, no. 2, pp. 291–295, 2008.

[36] C.-R. Li, Y. Li, and P.-A. Zhang, "Dissemination and spread of CTX-M extended-spectrum β-lactamases among clinical isolates of Klebsiella pneumoniae in central China," International Journal of Antimicrobial Agents, vol. 22, no. 5, pp. 521–525, 2003.

[37] D. Sompolinsky, Y. Nitzan, S. Tetry, et al., "Integron-mediated ESBL resistance in rare serotypes of Escherichia coli causing infections in an elderly population of Israel," Journal of Antimicrobial Chemotherapy, vol. 55, no. 1, pp. 119–122, 2005.