Supplementary Material to
Landmarking 2.0: Bridging the gap between joint models and landmarking

Hein Putter, Hans C. van Houwelingen

December 30, 2021

Model	Time (seconds)
Landmarking	0.08
Landmarking 1.5	15.4
Landmarking 2.0	166
Joint model	2975

Table S1: Average computation time per replication in the base scenario; model fitting on training data with $n = 500$ and calculating prediction probabilities for six combinations of landmark time s and prediction horizon t for all subjects in the landmark data sets (approximately $N = 5000$ for first landmark time, $N = 3750$ for second landmark time and $N = 2500$ for third landmark time).
Figure S1: Marginal survival function of the event times in the base scenario.
Figure S2: Generated biomarker processes (solid lines, black before event, grey after event) and observed biomarker values (open circles); event (or censoring at $t = 10$) time is indicated by dashed vertical line.
Figure S3: Individual survival functions of the first four subjects in the validation set for the base scenario; biomarker processes in Figure S2.
Figure S4: Reduction in mean squared error (with respect to NULL) of predicted probabilities in the base scenario.
Figure S5: Mean squared error of predicted probabilities in the scenario with $n = 1000$.
Method	Percent_reduction											
	LM1.0	LM1.5	LM2.0	JM	LM1.0	LM1.5	LM2.0	JM	LM1.0	LM1.5	LM2.0	JM
12												
13												
14												
23												
24												
34												

Figure S6: Reduction in mean squared error (with respect to NULL) of predicted probabilities in the scenario with $n = 1000$.
Figure S7: Mean squared error of predicted probabilities in the scenario with $\rho = 0.5$.
Figure S8: Reduction in mean squared error (with respect to NULL) of predicted probabilities in the scenario with $\rho = 0.5$.
Figure S9: Mean squared error of predicted probabilities in the scenario with $\theta = 2$.
Figure S10: Reduction in mean squared error (with respect to NULL) of predicted probabilities in the scenario with $\theta = 2$.
Figure S11: Mean squared error of predicted probabilities in the scenario with $\sigma_{\text{tot}}^2 = 1.5$.
Figure S12: Reduction in mean squared error (with respect to NULL) of predicted probabilities in the scenario with $\sigma_{\text{tot}}^2 = 1.5$.
Figure S13: Mean squared error of predicted probabilities in the scenario with $\beta = 1$.
Figure S14: Reduction in mean squared error (with respect to NULL) of predicted probabilities in the scenario with $\beta = 1$.

15
Figure S15: Mean squared error of predicted probabilities in the scenario with $\tau = 0.4$.
Figure S16: Reduction in mean squared error (with respect to NULL) of predicted probabilities in the scenario with \(\tau = 0.4 \).