The effects of plant type, AMF inoculation and water regime on rhizosphere microbial communities

Nikolaos Monokrousos1,2,3 | Efimia M. Papatheodorou1,3 | Michael Orfanoudakis4 | Dylan-Gwynn Jones5 | John Scullion5 | George P. Stamou3

1Department of Ecology, School of Biology, Aristotle University, Thessaloniki, Greece
2Department of Soil Science of Athens, Institute of Soil and Water Resources, Hellenic Agricultural Organization-Demeter, Lykovrisi, Greece
3School of Economics, Business Administration & Legal Studies, International Hellenic University, Thessaloniki, Greece
4Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece
5School of Economics, Business Administration & Legal Studies, Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion, UK

Correspondence
Efimia M. Papatheodorou, Department of Ecology, Biology School, Aristotle University, Thessaloniki, Greece.
Email: papatheo@bio.auth.gr

Funding information
Research Committee, Aristotle University of Thessaloniki, Grant/Award Number: 50141; Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network for Low Carbon, Energy, and Environment and BBSRC

Abstract
Different plant species, water regimes and microbes in the rhizosphere might shape rhizosphere microbial communities due to their effects on root exudation patterns and interactions. In this study, we investigated whether rhizosphere microbial communities have distinct structures according to plant type (Festuca pratensis, Dactylis glomerata or a mixture of both species), water regime (dry and wet pots) and inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis (AMF). Following a 60-day pot experiment we assessed the rhizosphere microbial population structure via phospholipid fatty acids (PLFAs) and soil processes via the activity of N-acetyl-glucosaminidase (NAG), acid phosphatase and urease, and inorganic nitrogen (N) and phosphorus (P). Higher AMF colonization was recorded in F. pratensis, although its root and shoot biomass was lower than in D. glomerata. Although growth differed between the plant types, this exerted no influence on rhizosphere microbial biomass. Low water content decreased the biomass of all microbial groups, whereas inoculation with AMF decreased the biomass of fungi and increased that of bacteria. For enzyme activities only urease showed a response to treatments. Arbuscular mycorrhizal fungi inoculation increased available P and shifted mineral N content from nitrate to ammonium. The water regime had a dominant effect on the structure of the microbial communities, suggesting a direct effect of water on microbes. In wet soils, the structure of the microbial communities was modulated mainly by inoculation; AMF-inoculated D. glomerata soils showed distinct communities. In dry soils, plant type exerted a profound effect on rhizosphere communities; the communities of all three plant types differed, probably due to limitations in the diffusion of nutrients or via reduced root exudation. We concluded that the relative importance of factors shaping rhizosphere microbial communities varies depending on soil moisture regime.

Highlights
- Microbial communities were studied in relation to water regime, plant species and AMF inoculation
- In wet soils, the microbial communities of AMF-inoculated D. glomerata plants differed from other communities
- In dry soils, the microbial communities of D. glomerata and mixtures differed
1 | INTRODUCTION

Soil microbial communities are modulated by their current abiotic (e.g., temperature, humidity, pH) and biotic environment (e.g., vegetation, microbial burden, diversity of soil organisms). Changes in these conditions exert strong pressures on soil resources. The effects on soil functioning can be direct, exerted on the relative abundance and function of soil communities, or indirect through above–below ground interactions (Classen et al., 2015).

Plant type can impact directly the structure of the belowground microbial communities (Ushio, Wagai, Balser, & Kitayama, 2008). Soil microbes are carbon (C) limited (Hobbie & Hobbie, 2013); plant root exudates are the dominant source of bioavailable C. Therefore, the dynamics and structure of rhizosphere microbial communities depend on the type and quality of the decaying root materials and the composition of root exudates, ranging from simple sugars to complex aromatic compounds (Kos, Tuijl, De Roo, Mulder, & Bezemer, 2015). Moreover, the quantity of resource inputs is related to root morphology (the more lateral the roots the higher the exudation; Prikryl and Vancura (1980)) and plants could also affect microbial communities in soil via their influence on habitat properties (Eisenhauer et al., 2010; Veresoglou, Sen, Mamolos, & Veresoglou, 2011). For instance, a plant with a branched or a deep root system is likely to increase oxygen (O₂) concentration in soil through its effect on soil penetration and aeration (Jin, White, Whalley, Shen, & Shi, 2017).

Soil moisture level has a significant impact on the biomass and structure of soil microbial communities and their contribution to nutrient cycling (e.g., Manzoni, Schimel, & Porporato, 2012; Schimel, 2018). Specifically, in Mediterranean soils, microbial communities experience strong seasonal changes in water regime (Papatheodorou, 2008), including extreme desiccation during summer. Microbes have numerous strategic adaptations to deal with summer drought and these determine the structure and the stage of their community dynamics (Barnard, Osborne, & Firestone, 2013). Zhao et al. (2016) attributed an increased fungal to bacterial ratio in soils receiving less precipitation to the ability of fungi to obtain water resources from micropores more easily than bacteria. Also, distinct changes in the ratio of Gram-negative bacteria:Gram-positive bacteria between the wet-cold and the dry-warm seasons were recorded by Papatheodorou et al. (2012). Thus, water regime has a profound effect on the structure of the soil microbial community, because of differences in the physiology and the resource exploitation strategies between microbes. Moreover, soil moisture could have an indirect effect on microbial communities by affecting plant growth and consequently the quality and quantity of resources available to microorganisms.

Among biotic factors, the symbiosis between arbuscular mycorrhizal fungi (AMF) and roots has an important influence on microbial communities. Arbuscular mycorrhizal fungi enable plants to increase the absorption of nutrients by increasing the soil volume being exploited (Koide & Mosse, 2004), potentially having a negative effect on other soil microbes. Modifications in host plant metabolism induced by inoculation result in changes in the root exudation profile, with specific bioactive effects on organisms around the root (Sood, 2003). Furthermore, AMF inoculation alleviates water stress impacts on plants (Wu, Srivastava, & Zou, 2013). Accordingly, it is likely that the root colonization by AMF will interact with moisture regime and plant species, resulting in further modifications in the microbial communities. Sayer et al. (2017) provided evidence that changes in climatic variables could affect microbial communities indirectly via changes in plants’ inputs, whereas Hawkins and Crawford (2018) proved that the microbe–plant interactions change in relation to water availability.

Apart from the effects of water regime, plant type and AMF colonization on the structural attributes of the microbial communities, a crucial question concerns the consequences for soil processes. For example, Balser and Firestone (2005) found that cyclopropyl fatty acids indicative of Gram-negative bacteria were associated with nitrous oxide (N₂O) production and nitrification potential, whereas the branched fatty acids indicative of Gram-positive bacteria were associated with nitrate concentration. In this study, as indices of soil processes, we used the activity of N-acetyl-glucosaminidase, urease and acid phosphatase. These enzymes are involved in the transformations of C, nitrogen (N) and phosphorus (P) substrates, are mainly of microbial origin and are some of the most common indices used to assess soil functions (Ai, Liang, Sun, Wang, & Zhou, 2012; Stamou et al., 2017).

In the current study, we established an experiment including two grass species, Dactylis glomerata and Festuca
6% K2O) fertilisers, each at a rate of 1 kg m−2. We investigated the biomass and the structure of the rhizosphere microbial communities in relation to plant type (F. pratensis, D. glomerata), water regime (dry and wet) and inoculation (Rhizophagus irregularis) status. In a 60-day pot experiment with an artificial soil mixture, microbial biomass and structure, soil enzymatic activities and the concentration of available P and N forms in the soil were assessed. Assuming that each plant species modulates its rhizosphere habitat properties and resources via rhizodeposition (Eisenhauer et al., 2010; Veresoglou et al., 2011), we hypothesized that each plant type would create a structurally unique microbial community in its rhizosphere and this community would be further mediated by soil moisture (abiotic factor) and AMF inoculation (biotic factor). Further, we tested whether this tripartite interaction influenced selected microbially mediated enzyme activities and nutrient availability.

2 MATERIALS AND METHODS

2.1 Experimental description

The experimental design included three plant-type combinations (D. glomerata monoculture, F. pratensis monoculture and D. glomerata–F. pratensis mixture) × two AMF treatments (inoculated and non-inoculated) × two moisture regimes (wet and dry), with four replicates per treatment, giving a total of 48 pots (12.5 cm width × 20 cm height) arranged in a randomized block design. Plastic pots (2.5 L, surface sterilized with ethanol followed by 0.1% mercuric chloride) were filled with a mixture of 1:1 v/v quartz sand (Stroumboulis, Piraeus, Greece) and an amended peat product (the medium was approximately 90% sand by mass). This mix is subsequently referred to as “soil”. The amended peat product (AM Solvika, Miesto Kolonijos, Lithuania) was described as peat moss amended with mineral (14% N, 16% P2O5 and 18% K2O) and organic (7% N, 6% P2O5 and 6% K2O) fertilisers, each at a rate of 1 kg m−2. Its pH was 6.5. At the beginning of the experiment the concentration of organic C in the sand/peat mix was 0.05 g g−1 dry weight, whereas available N (ammonium and nitrate) and P (phosphate) concentrations were 159 and 167 μg g−1 dry weight, respectively. The pH of the sand/peat mixture was 6.3.

This artificial soil was used to remove any nutrient limitation on plant growth and to avoid any potential for bias due to soil type selection. The sand/peat mixture was previously sterilized by autoclaving (4 hr at 120°C), to eradicate any indigenous AMF and other biota (Trevors, 1996). Seeds of D. glomerata and F. pratensis were surface sterilized with sodium hypochlorite 10% (v/v) for 20 min and then washed repeatedly with deionized water. The sterilized seeds were germinated in Petri dishes with water agar in the dark at 28°C for 7 days and then transplanted into the plastic pots. Each pot contained 10 seedlings, either as monocultures or five of each species in mixed cultures.

The AM fungal inoculum consisted of spores and hyphal fragments of R. irregularis (BEG 141, 1,000 propagules/g - TERI (The Energy and Resources Institute, Delhi, India)). The viability of the inoculum was tested prior to the application in five mixed pot cultures of Plantago lanceolata, D. glomerata and Trifolium repens following the trap test procedures of Oehl et al. (2010). In all plant roots examined, the mycorrhizal colonization was >80%, confirming the inoculum’s viability. Immediately after planting, the root system of the 7-day-old D. glomerata and F. pratensis plants was inoculated with R. irregularis in half of the pots (20 g of the inoculum powder were added to each pot individually with water at a ratio 1:5 w/v) via a syringe to the base of plants to optimize colonization rates; the roots of the controls received the same treatment but using autoclaved inoculum powder. Care was taken to ensure no contamination of the control plants by AMF.

During the first 10 days of plant growth in the pots, the soil in each pot was watered daily at 40% water holding capacity (WHC) to enable plant establishment. Then daily watering was used to maintain pots at 80% of WHC (wet soil; gravimetric soil water content varied from 13 to 15%), or twice weekly watering maintained the rest at 25% WHC (dry soil; water content varied from 4 to 4.5%). Pots were weighed prior to each watering and the amount of added water required was estimated. Soil water content was measured twice weekly in additional pots kept under the same conditions. For the determination of soil water content, 5 g of fresh soil was dried at 105°C for 48 hr and the water loss was estimated.

Ten days after root inoculation, a slurry was prepared using a sandy soil (65% sand, 26% silt, 9% clay; organic C 2.8%; N. Monokrousos, personal communication) where D. glomerata and F. pratensis coexisted in a semi-natural grassland located in the Prefecture of Kilkis, 70 km north of Thessaloniki (40°56'N, 22°53'E). Soil suspension inoculants were prepared by vigorous shaking of batches consisting of 30 g of fresh soil and 200 ml of sterile deionized water. The slurry was vacuum filtered through a 10-μm Milipore (Merck Millipore, Burlington, MA), in a stericup filter (50 ml), to exclude fungal spores or hyphae. Each pot received 10 ml of this filtered suspension applied across the soil surface. The 10-day interval between inoculation and addition of microbial community is common practice
(Maya & Matsubara, 2013) because soil microbiota often reduce the extent of AMF root colonization.

The experiment was conducted in a glasshouse, under natural light conditions for a 60-day period (from transplanting the seedlings to harvest; mid-June to mid-August), at the Aristotle University of Thessaloniki, Greece; day temperature ranged from 28 to 37°C and the night temperature from 17 to 26°C.

A destructive harvest was conducted 60 days after the planting of seedlings. In each pot, roots were separated from the soil gently by hand on a sterilized surface; rhizosphere soil was taken as that attached to roots and bulked for each individual pot. Fresh rhizosphere soil samples were sieved through a 1-mm mesh to remove small roots and stored at 4°C until analysis (within a week). Samples were analyzed for microbial communities, extracellular enzyme activity and nutrient concentration. Roots were washed, dried (65°C for 48 hr) and weighed. Shoots were dried (65°C for 48 hr) and weighed. In monocultures, the total shoot and root biomass per pot was divided by the number of plants present because distinguishing between the root systems of the two plant species was not possible.

2.2 | Arbuscular mycorrhizal fungi (AMF) analysis

Root samples were weighed then cleaned and stained according to Koske and Gemma (1989), modified by Orfanoudakis, Wheeler, and Hooker (2010). The stained samples were examined under a compound microscope and AMF root colonization was evaluated according to Trouvelot et al. (Trouvelot, Kough, & Gianinazzi-Pearson, 1986). The percentage of mycorrhizal colonization and arbuscules in the root system were calculated with the MycoCalc programme (http://www.dijon.inra.fr/mychintec/Mycocalc-prg/download.html).

2.3 | Enzyme activity assays

N-acetyl-glucosaminidase (NAG) and acid phosphatase (AP) activities were determined according to Allison and Jastrow (2006), modified for 96-well microplates. Approximately 1–2 g fresh rhizosphere soil (equivalent to 0.5 g dry weight) were added to 60 ml of 50 mM sodium acetate buffer, at pH 5, and homogenized in a blender for 1 min. Then, 50 μl of homogenized soil slurry were combined with 150 μl substrate solution and incubated for 3 hr (NAG) or 1 hr (acid phosphatase) at 21°C under constant shaking. Substrate solutions were 2 mM p-nitrophenyl-β-N-acetylglucosaminide for NAG and 5 mM p-nitrophenyl-phosphate for phosphatase, all in acetate buffer. After incubation, 100 ml of the slurry-substrate supernatant (without soil particles) were carefully transferred to another microplate for colorimetric determination of product concentrations. The p-nitrophenol (pNP) reaction product from the phosphatase and NAG assays was measured at 405 nm, after addition of sodium hydroxide. In each case, appropriate controls estimated the background absorbance of the substrate and homogenate. The activity of the two enzymes was expressed as μmol pNP/g d.w./h.

For the estimation of urease activity, the method of Sinsabaugh, Reynolds, and Long (2000) was used. The microplate configuration was similar to that described for the NAG assay. The concentration of urea in the assay wells was 20 mM. The plates were incubated at 20°C for approximately 18 hr. Ammonium released by the reaction was quantified using colorimetric salicylate and cyanurate reagent packages from Hach (Loveland, Colorado). Urease activity was measured spectrophotometrically at 610 nm. Activity is expressed as μmol NH₄⁺/g d.w./h.

2.4 | Chemical analyses

Ammonium-N (NH₄⁺-N) and NO₃⁻-N were determined in 2 M KCl extracts (1:10 soil dry weight solution) from rhizosphere soils by distillation and subsequent titration (Allen, 1974). For extractable P, we used the method of Olsen, Cole, Watanabe, and Dean (1954) as specified by Allen (1974).

2.5 | Phospholipid fatty acid analysis

Extraction and analysis of phospholipid fatty acids (PLFAs) was performed within 1 week of harvesting. Briefly, this involved: (a) extraction of lipids, (b) separation of phospholipids by column chromatography, (c) methylation of esterified fatty acids in the phospholipid fraction, and (d) chromatographic separation and identification of the main components on a Trace GC Ultra gas chromatograph (GC) (Thermo-Finnigan, San Jose, CA, USA) coupled with a Trace ISQ mass spectrometry detector, a split-splitless injector and an Xcalibur MS platform. Quantification of each fatty acid (in nmol g⁻¹) was achieved by one-point calibration against the GC response of the internal standard 19:0 methyl ester. Under the above conditions the GC response to 19:0 methyl ester is linear in the range of 25–200 μg ml⁻¹, with acceptable recoveries (Spyrou, Karpouzas, & Menkissoglou-Spiroudi, 2009).

Overall, 22 fatty acid methyl esters were consistently present in rhizosphere samples and were considered as biomarkers for specific groups of soil microorganisms in all further analyses (Table S3). According to various studies (Findlay, 2004; Kourtev, Ehrenfeld, & Häggblom, 2003;
MASTROGIANNI, PAPATEODOROU, MONOKROUSOS, MENKISSOGLU-SPIROUDI, & STAMOU, 2014; MYERS, ZAK, WHITE, & PEACOCK, 2001; VESTAL & WHITE, 1989), these biomarker PLFAs were assigned to functional groups as follows: \(i15:0, a15:0, 15:0, i16:0, 16:0, i17:0, 17:0\) (Gram-positive bacteria), \(30H12:0, 30H14:0, 2OH16:0, 16:1o9c\) (Gram-negative bacteria); \(10Me16:0, 10Me17:0, 10Me18:0\) (Actinobacteria). All of the above fatty acids were considered to be of bacterial origin only and their totals were chosen to represent bacterial biomass. \(18:2o9,12\) and \(18:3o6c\) fatty acids were used as indicators of fungal biomass, \(20:0, 21:0, 22:0\) and \(24:0\) were used as indicators of microeukaryotes (algae, protozoa, nematodes; SMITH et al., 1986), whereas the PLFAs \(14:0\) and \(18:0\) are mainly of general microbial origin. The sum of all PLFAs was taken to indicate the total microbial biomass.

The ratios of PLFA biomarkers for Gram-positive bacteria:Gram-negative bacteria (G\(^+/\)G\(^-\)) and fungi/bacteria (F/B) ratios were calculated as broad indicators of community structure. Iso/anteiso (Iso/Ant) and saturated/un-saturated (Sat/Unsat) PLFAs were estimated as microbial stress indicators, higher values for example indicating nutrient limitation (BACH, BAER, MEYER, & SIX, 2010). Iso-branched fatty acid biomass was equal to the sum of \(i15:0, i16:0\) and \(i17:0\), whereas anteiso fatty acids were represented by \(a15:0\). The degree of saturation was indicated by a number separated from the chain length number by a colon (Zelles, 1999). Thus, the biomass of saturated PLFAs was the sum of \(i15:0, a15:0, 15:0, i16:0, 16:0, i17:0, 17:0, 14:0, 18:0, 20:0, 22:0, 23:0, 24:0, 10Me16:0, 10Me17:0\) and \(10Me18:0\), whereas the total of unsaturated PLFAs was assumed to be those remaining.

2.6 Statistical analyses

Differences in the means of dependent variables across treatments were investigated by two-way analysis of variance (ANOVA). We expected that the different plant types would affect differently the soil variables, causing a background variation that might override the outputs of the experimental treatments (water regime and AMF inoculation). In order to enhance the sensitivity of the ANOVA and to explore the effects of treatments as opposed to the background biological variability that the individuals of each plant type exhibit, we treated plant type as blocking variable (WEBSTER & LARK, 2018). Therefore, a randomized complete block experiment with three blocks and two treatment types was set up and replicated four times. Specifically, the rhizosphere of the three plant types constituted three different blocks, whereas inoculation by AMF (Yes-No) and water regime (Wet-Dry) were the treatment variables. Four treatments were arranged randomly in each block, so there were 48 pots (4 treatments \(\times 3\) blocks \(\times 4\) replicates per block). The normality of the residuals, homogeneity of variances and independence of samples (ANOVA assumptions) were considered during the data analysis. In the case of deviation from ANOVA assumptions, data were transformed as appropriate. Statistical analyses were carried out with the Statistica 7 package Statsoft (www.statsoft.com). The full ANOVA results are presented in File S1, Supporting Information (docx file).

To seek for correlations between the variation in the individual PLFAs (Table Y; response matrix) and tables X and W of categorical and continuous explanatory variables (predictors), respectively, an RDA model was fitted to data. Plant type (\(D.\ glomerata\) and \(F.\ pratensis\) monocultures and mixtures), AMF inoculation (Yes, No) and water regime (wet, dry) were entered as discontinuous explanatory variables in table X, the root and shoot biomasses were included in table W of the continuous predictor variables, whereas table Y stands for the structure of the microbial community in terms of individual PLFAs. Initially, the \(Y=X+W\) model was fitted to the complete dataset and then the model was separately fitted to data from the wet and dry soils. The significance of the RDA model fitting was tested by a Monte Carlo test. Further, to associate the three vegetation types with specific PLFAs we based these on the IndVal (Indicator Value, in the sense of Dufrene and Legendre (1997)), which depics the membership and preference of each PLFA based on its relative occurrence and abundance. Graphically, the results were plotted on a scatter biplot where the scores of the explained data were divided by each standard deviation (adjusted response variables). Summary statistics of RDA analysis are presented in File S2, Supporting Information (docx file).

Then, to partition the variation in the response table Y among the two tables of the explanatory datasets X and Y, we employed the variation partitioning technique as described by TER BRAAK & SMILAUER (TER BRAAK & SMILAUER, 2018). In brief, the variation in table Y containing the 22 individual PLFAs \((n=48)\) was partitioned into four fractions, \((a),(b),(c)\) and \((d)\): (a) represents the unique contribution of the categorical variables (plant type, AMF inoculation and water regime in the case of the complete dataset, plant type and AMF inoculation in the case of dry or wet soils) to the variation in the response variables \((Y;\ \text{individual PLFAs})\), (b) stands for the unique contribution of the continuous variables (root and shoot biomasses) to the variation in \(Y\), (c) is the overlap in the explanatory power of both the categorical and continuous predictor variables, and (d) is the unexplained variation.

3 RESULTS

The percentage of AMF colonization was affected by plant type \((p < .05)\), inoculation \((p < .001)\) and water regime \((p < .001)\) (Table S1.1 in File S1). Higher colonization percentages were recorded in \(F.\ pratensis\) and in plants growing...
in dry soils, whether in monoculture or mixture. The mean colonization rate in dry soils was 23.8%, compared to 15.4% recorded in wet ones. In the 96% of the non-inoculated pots there were no signs of colonization, whereas in the rest (4%), the colonization rate was negligible (<0.33%).

Shoot biomass and root biomass were affected by plant type (Tables S1.2-S1.3 in File S1; \(p < .001 \) for both variables); both were higher for *D. glomerata* (Figure 1) and water. In wet soils, the plants had larger shoot biomass (Table S1.2 in File S1; \(p < .001 \); Figure 1a), whereas in dry soils the plants had larger root biomass (Table S1.3 in File S1; \(p < .05 \); Figure 1b). Increased abundances of PLFAs indicating fungi, bacteria and Actinobacteria were recorded in wet soils (Tables S1.4-S1.6 in File S1; Figure 2). Moreover, fungal PLFAs were in higher abundance in non-inoculated rhizosphere soils, whereas bacterial PLFAs were in higher abundance in inoculated ones (Figure 2a). The F/B ratios were affected by inoculation (Table S1.8 in File S1; \(p < .001 \)), water regime (\(p < .001 \)) and their combination (\(p < .05 \)). Inoculation decreased the F/B ratio but it was increased at higher soil moisture contents (Figure 2c). The Sat/Unsat ratio was affected by an inoculation \(\times \) water status interaction (Table S1.7 in File S1; \(p = .02 \)). Lower values of this ratio were found in non-inoculated soils, an effect particularly pronounced in wet soils (Figure 2d).

Initially, the RDA model was applied to the complete dataset. As shown by the Monte Carlo test, the fitting of the entire model was highly significant (\(p < .01 \); Table S2.1 in File S2). The amount of variation explained by both tables, X and W (a + b + c), is 56.8%, whereas 43.2% remained unexplained (Table 1). For the most part, the variation is accounted for by the first canonical axis (54.9%), whereas the second axis added a further 5.5% (Table S2.1 in File S2). Water regime had the highest correlation (0.86; Table S2.2 in File S2) with the first axis, which accounts for most of the model variation. The variation in table Y was portioned as indicated in Table 1. Both the variation explained by the whole model, (a + b + c), and the portion explained by the table X of categorical variables (water regime, plant type and inoculation (a)) had a highly significant unique effect on the variation of the PLFAs. The negative value of (b) indicated no unique effect of the W table (root and shoot biomass). The water regime exerted a dominant effect on the structure of microbial communities and masked the effects of the other variables.

In order to study the effect of predictors other than the water regime on the microbial community, RDA analysis was applied separately on data from wet and dry soils. As shown by the Monte Carlo test (Table S2.1 in File S2), the fitting of both models was significant and the amount of variation explained by the first two canonical axes was 30.1 and 33.9% in the wet and dry soils, respectively. In particular, in wet pots the categorical and continuous variables explained 21.4 and 10.3% of the total variation in the response variables (Table 2). As shown in Table 2, the unique contribution of the vegetation and inoculation to variation in PLFAs was two-fold higher (0.214) than that of the biomass variables (0.103). However, the mean squares on a per-variable ground show that the categorical and the biomass predictors were almost equally stronger predictors (0.098 and 0.078, respectively). The contributions of both the categorical (\(p < .05 \)) and the continuous (\(p < .05 \)) variables were significant.

Analysis applied to the data from wet soils revealed that AMF inoculation was correlated with the first canonical axis (0.49; Table S2.2 in File S2), whereas *D. glomerata*, AMF inoculation and root biomass were correlated with the second axis, 0.48, 0.46 and 0.41, respectively (Table S2.2 in File S2). The samples planted with *D. glomerata* were clearly separated from the remaining samples towards the upper part of the biplot (Figure 3a). By contrast, no
FIGURE 2 Biomass of fungi, bacteria (a) and Actinobacteria (b) and the ratios F/B (fungi/bacteria) (c) and Sat/Unsat (saturated/unsaturated) (d) recorded in inoculated (+M) and non-inoculated (−M), wet (W) and dry (D) D. glomerata and F. pratensis monoculture and mixture soils (n = 4, mean ± standard error)

TABLE 1 Variation partitioning results yielded by an RDA model fitted to the complete dataset. Two data tables of predictors, X (plant type, AMF inoculation, water regime) and W (root and shoot biomasses), were tested for conditional effects on the table of response variables Y. (a) The unique contribution of table X to the variation in the response variables Y, (b) the unique contribution of table W to the variation in Y and (c) the intersection in the explanatory power of both predictor tables X and W

Fraction	Variation (adj)	% of explained	% of all	df	Mean square per variable
(a)	0.193	33.9	19.3	4	0.055
(b)	−0.002	−0.4	−0.2	2	0.008
(c)	0.377	66.5	37.7	—	—
Total explained	0.568	100.0	56.8	6	0.104
All variation	1	—	100.0	47	—
(a + b + c)	11.3	0.002		0.002	
(a)	6.0	0.002		0.486	
separation of samples from *F. pratensis* and mixture pots was observed. Most biomarkers indicated increased colonization of the rhizosphere of *F. pratensis* in inoculated pots, as indicated by the IndVal, where the optima of the distribution of the PLFA biomarkers for Gram-negative bacteria (3OH12:0 and 3OH14:0), Gram-positive bacteria (15:0), Actinobacteria (10Me18:0) and eukaryotes (20:0, 21:0, 22:0, 24:0) were recorded, whereas the fungal markers (18:2ω9,12 and 18:3ω6) were in larger abundance in the rhizosphere of *F. pratensis* in the non-inoculated pots (Table S2.3 in File S2). Most of these biomarkers exhibited noticeable abundance for grass species mixtures, so that no distinguished ordination of the respecting samples was achieved. There were larger abundances of some biomarkers in the rhizosphere of inoculated *D. glomerata* plants, namely 2OH16:0, i17:0 and 10Me17:0, and almost all the corresponding samples were separately loaded towards the upper part of the second canonical axis.

The partition of variance analysis applied to the data from dry soils revealed that the unique contribution of the categorical and continuous variables to the explanation of the total variation of PLFAs was 22 and 4%, respectively, whereas the per-variable explanatory power of the categorical variables was six-fold higher (Table 3). Only the contribution of the categorical variables was highly significant (\(p < .01 \)), whereas the negative value of (b) indicates a negligible unique effect of the W table (root and shoot biomass) on the response variables.

Plant type was correlated with both canonical axes (*D. glomerata* with the first axis, *F. pratensis* with the second one, and mixtures with both axes; Table S2.2 in File S2).

Fraction	Variation (adj)	% of explained	% of all	df	Mean square per variable
(a)	0.214	90.3	21.4	3	0.098
(b)	0.103	43.2	10.3	2	0.078
(c)	−0.079	−33.5	−7.9		—
Total explained	0.237	100.0	23.7	5	0.081
All variation	1	—	100.0	23	—

\[F \quad p \]

\[
\begin{array}{lcc}
(a + b + c) & 2.4 & 0.008 \\
(a) & 3.0 & 0.01 \\
(b) & 2.3 & 0.042 \\
\end{array}
\]

FIGURE 3 The ordination of the response variables (individual PLFAs) and samples (coloured dots) from wet (a) and dry (b) soils is depicted on an RDA biplot. Dots of the same colour represent samples covered by similar vegetation type. The colour of PLFAs indicates preference for the vegetation type of the same colour, whereas PLFAs in black exhibit equal preference for all three vegetation types.
S2), whereas inoculation was correlated with the second axis. The separation of the samples along the first axis was clear (Figure 3b). Samples from the mixtures were ordinated towards the left end point of the first axis, whereas samples for *D. glomerata* soils occupied positions towards the right end point of this axis. In relation to second axis, *F. pratensis* samples occupied the bottom part and mixture samples the upper part. According to the IndVal there were 11 bio-markers (3OH14:0, 2OH16:0, 16:0, 14:0, 10Me17:0, 16:1ω9, 18:3ω6ω, 18:0, 21:0, 22:0, 24:0) that were present in larger abundance in the rhizosphere of *D. glomerata* plants, whereas the rhizosphere in mixtures was characterized by 10 biomarkers (3OH12:0, i15:0, a15:0, 15:0, i16:0, i17:0, 10Me16:0, 10Me18:0, 18:2ω9,12:0 and 20:0; Table S2.3 in File S2).

Overall, nutrient concentrations were greatly reduced compared with initial levels and these concentrations were affected by inoculation status (Tables S1.10-S1.12 in File S1; *p* < .001 for available P, NH₄⁺ and NO₃⁻). Phosphorus and NO₃⁻ concentrations were larger in non-inoculated rhizosphere soils, whereas NH₄⁺ increased in inoculated ones (Figure 4). Also, higher concentrations of P and NO₃⁻ were recorded in *D. glomerata* soils. A significant effect of soil moisture was recorded for NH₄⁺ Table S1.11 in (File S1; *p* < .001), which was higher in wet soils. The activity of NAG and AP was not affected by treatments (Tables S1.13-S1.14 in File S1). In contrast, the activity of urease was affected by plant (Table S1.15 in File S1; *p* < .001), inoculation (*p* < .001), water (*p* < .001) and the inoculation × water interaction (*p* < .001). It was greater for mixtures versus monocultures and for inoculated-wet compared to non-inoculated-dry soils (Figure 5).

DISCUSSION

Water regime affected the shoot:root ratios similarly in the three plant types investigated. In wet soils, plants promote greater relative C allocation to root than to shoot growth, resulting in a higher root to shoot ratio and greater capacity to absorb water (Kozlowski & Pallardy, 2002). Silva, Kane, and Beeson (2012) reported a reduction in shoot biomass by 28% under conditions of intermittent water limitations compared with well-irrigated conditions. The reduction in shoot biomass is related to reduced rates of C assimilation, which in turn may result in lower amounts of released exudates by roots; although plant exudation responses to stress can vary, a reduction in exudation is consistent with evidence of lower microbial biomass in dry compared to wet soils. This hypothesis could explain the fact that, in this study, the biomass of microbial groups was affected by water regime, whereas plant type *per se* had no effect on rhizosphere microbial biomass. However, plant type affected root colonization rates by the AM fungus. Overall, these rates were somewhat low, although not untypical of grasses in the nutrient regime followed. The colonization of *F. pratensis* roots by AMF was higher than that of *D. glomerata* although its root biomass was lower. An inverse relationship between root biomass and AMF colonization rate was recorded by Cavagnaro, Langley, Jackson, Smukler, and Koch (2008) for two different genotypes and was explained in terms of C allocation. According to them, the allocation of C to AMF may be approximately equal to the difference in root biomass C that was observed between the genotypes. Although the rhizosphere microbial biomass was unaffected by plant type, the biomass of roots was larger for *D. glomerata*. This is contrary to Helal & Saurbeck (Helal & Sauerbeck, 1986), who reported that plant roots induced a 197% increase in
microbial biomass, and Eisenhauer et al. (2017), who mentioned that the increase in root and shoot biomass was followed by increase in the amounts of exudates and the biomasses of fungi and bacteria. The relation between root biomass and rhizosphere microbial biomass was not analogous in this study, implying that other factors than root biomass control microbial biomass; for instance, the relation between root biomass and the exudate composition reported by Herz et al. (2018).

Dry conditions exerted a pronounced negative effect on both bacterial and fungal biomass (Figure 1a), despite their different sensitivity to moisture stress due to differences in their physiology (Waring, Averill, Hawkes, & Holyoak, 2013). However, a reduction of the F/B ratio was recorded in dry soils. It seems that the reduction of fungal PLFAs was more pronounced compared to bacterial ones. Soil fungi that inhabit the outer surface of soil aggregates are more susceptible to drying, whereas bacteria occupying positions in the aggregates are more tolerant of dryness (Gordon, Haygarth, & Bardgett, 2008). This is one of the mechanisms influencing the susceptibility of fungi and bacteria to soil dryness. Moreover, low moisture would limit nutrient diffusion, limiting access mainly to bacteria that have no ability to move, and low levels of soil moisture strongly inhibit extraradical hyphal density (Staddon et al., 2003).

Effects of inoculation were found mainly on ratios of microbial groups. The small F/B ratio in inoculated soils resulted from a decrease in fungi and an increase of bacteria biomass, reflecting a shift in the community structure. The unexpected decrease of fungi with inoculation may be attributed to a number of factors. For example, pathogenic fungi such as Fusarium and Rhizoctonia (Pozo, Jung, Lopez-Raez, & Azcón-Aguilar, 2010) are suppressed by AMF due to their competition for binding sites on the root system. The literature on bacterial biomass responses to AMF is inconclusive. In the context of this particular experiment, possible explanations for the increase in biomass may be that assemblages were introduced on the walls of inoculum fungal spores, acting as an early inoculum (Toljander, Artursson, Paul, Jansson, & Finlay, 2006), or that there was reduced competition for bacteria because of partial fungi suppression.

FIGURE 4 Concentration of soil available P (a), NH₄⁺ (b) and NO₃⁻ (c) recorded in the soil of inoculated (+M) and non-inoculated (−M), wet (W) and dry (D), D. glomerata and F. pratensis monoculture and mixture soils (n = 4, mean ± standard error)

FIGURE 5 Activity of urease recorded in inoculated (+M) and non-inoculated (−M), wet (W) and dry (D) D. glomerata and F. pratensis monoculture and mixture soils (n = 4, mean ± standard error)
F. pratensis soils and non-inoculated mixtures, were clearly different. We concluded that both factors jointly shaped the structure of the rhizosphere microbial communities, whereas their relative importance differed in relation to water regime. Arbuscular mycorrhizal fungus inoculation was of primary importance in wet soils, whereas plant type was more important in dry soils. In wet soils the release of exudates from fungal extraradical structures can be transferred via water over longer distances, which has a profound effect on rhizosphere communities, whereas in dry soils the communities are shaped mainly by root exudates due to limited transfer of solutes (Schimel, 2018; Schimel & Schaeffer, 2012). Our findings are in accordance with the results of Veresoglou et al. (2011), who discussed the differences between microbial communities associated with different plant species in relation to levels of nutrient input and support the idea of Hawkins and Crawford (2018) that the plant–microbe interactions are context specific. Further reasons for the divergent communities in dry soils could be related to differences in plant drought tolerance (Brunner et al., 2015) or the disproportionate response of the different bacterial guilds to drought (Chodak, Gołębiewski, Morawska-Ploskonka, Kuduk, & Niklińska, 2015).

Finally, despite the differentiation in rhizosphere communities in relation to the three experimental factors, the activity of NAG and AP showed no response to treatments. Different mechanisms could be proposed as possible explanations: (a) due to the increased amounts of available N and P there was no need for increased enzyme activity, (b) each microbial population produces a relatively wide range of enzymes and different microbes may produce similar enzymes (Stamou et al., 2017), and (c) the activity of extracellular enzymes stabilized in soil colloids contributes to estimated activity, but is not related to current microbial activity (Nannipieri, Giagnoni, Landi, & Renella, 2011).

5 | CONCLUSIONS

Our findings did not support our initial hypothesis that plant species is the dominant factor affecting the structure of rhizosphere microbial communities. On the contrary, this study showed that the dominant factor was soil moisture. Soil moisture not only directly affects microbial community but also modulates the relative importance of the influence of the plant type and AMF inoculation; under sufficient water conditions AMF inoculation had the major impact, whereas under water deficit plant type was more important. Accordingly, we suggest that discussions focusing on the factors that shape the rhizosphere microbial communities must take place within a water-specific context.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

ACKNOWLEDGEMENTS
This work was supported by the Research Committee of Aristotle University of Thessaloniki (No. project 50141). We would like to thank the Laboratory of Plant Pathology of the Agriculture School, AUT University and especially Professor U. Menkissoglou-Spiroudi for her help with PLFA identification. We also thank the Editor in Chief (Margaret Oliver) for her constructive criticism. Dylan Gwyn-Jones and John Scullion acknowledge the financial support provided by the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network for Low Carbon, Energy, and Environment and the BBSRC for supporting IBERS research.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Efmia M. Papatheodorou https://orcid.org/0000-0003-1776-9126

REFERENCES

Ai, C., Liang, G., Sun, J., Wang, X., & Zhou, W. (2012). Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. *Geoderma*, 173, 330–338.

Allen, E. (1974). *Chemical analysis of ecological materials*. Oxford, England: Blackwell Scientific Publishing.

Allison, S. D., & Jastrow, J. D. (2006). Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. *Soil Biology & Biochemistry*, 38, 3245–3256.

Asiloglu, R., & Murase, J. (2016). Active community structure of microeukaryotes in a rice (*Oryza sativa* L.) rhizosphere revealed by RNA-based PCR-DGGE. *Soil Science and Plant Nutrition*, 62, 440–446.

Atul-Nayyar, A., Hamel, C., Hanson, K., & Germida, J. (2009). The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. *Mycorrhiza*, 19, 239–246.

Bach, E. M., Baer, S. G., Meyer, C. K., & Six, J. (2010). Soil texture affects soil microbial and structural recovery during grassland restoration. *Soil Biology & Biochemistry*, 42, 2182–2191.

Balser, T. C., & Firestone, M. K. (2005). Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. *Biogeochemistry*, 73, 395–415.

Barnard, R. L., Osborne, C. A., & Firestone, M. K. (2013). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. *The ISME Journal*, 7, 2229–2241.

Brunner, L., Herzog, C., Dawes, M. A., Arend, M., & Sperisen, C. (2015). How tree roots respond to drought. *Frontiers in Plant Science*, 6, article 547. https://doi.org/10.3389/fpls.2015.00547

Cavagnero, T. R., Langley, A. J., Jackson, L. E., Smukler, S. M., & Koch, G. W. (2008). Growth, nutrition, and soil respiration of a mycorrhiza-defective tomato mutant and its mycorrhizal wild-type progenitor. *Functional Plant Biology*, 35, 228–235.

Chodak, M., Gołębiewski, M., Morawska-Plonskonka, J., Kuduk, K., & Niklinska, N. (2015). Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. *Annals of Microbiology*, 65, 1627–1637.

Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A. L., … Patterson, C. M. (2015). Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What is ahead? *Ecosphere*, 6, 130.

Délano-Frier, J. P., & Tejeda-Sartorius, M. (2008). Unraveling the network work. *Plant Signaling & Behavior*, 3(11), 936–944.

Dufrene, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. *Ecological Monographs*, 67, 345–366.

Eisenhauer, N., Béßler, H., Engels, C., Gleixner, G., Habekost, M., Milcu, A., … Scheu, S. (2010). Plant diversity effects on soil microorganisms support the singular hypothesis. *Ecology*, 91, 485–496.

Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M. P., & Mommer, L. (2017). Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. *Scientific Reports*, 7, 44641.

Engel, E. C., & Weltzin, J. F. (2008). Can community composition be predicted from pairwise species interactions? *Plant Ecology*, 195, 77–85.

Fierer, N., Schimel, J. P., & Holden, P. A. (2003). Variations in microbial community composition through two soil depth profiles. *Soil Biology & Biochemistry*, 35, 167–176.

Findlay, R. H. (2004). Determination of microbial community structure using phospholipid fatty acid profiles. In G. A. Kowalchuk, F. J. De Bruijn, I. M. Head, A. D. L. Akkermans, & J. D. Van Elsas (Eds.), *Molecular microbial ecology manual* (Second ed., pp. 983–1004). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Gordon, H., Haygarth, P. M., & Bardgett, R. D. (2008). Drying and rewetting effects on soil microbial community composition and nutrient leaching. *Soil Biology & Biochemistry*, 40, 302–311.

Hawkins, A. P., & Crawford, K. M. (2018). Interactions between plants and soil microbes may alter the relative importance of intraspecific and interspecific plant competition in a changing climate. *AoB PLANTS*, 10, ply039.

Helal, H. M., & Sauerbeck, D. (1986). Effect of plant roots on carbon metabolism of soil microbial biomass. *Zeitschrift für Pflanzenernährung und Bodenkunde*, 149, 181–188.

Herz, K., Dietz, S., Gorzolka, K., Haider, S., Jandt, U., Scheel, D., & Brulheide, H. (2018). Linking root exudates to functional plant traits. *PLoS ONE*, 13(10), e0204128. https://doi.org/10.1371/journal.pone.0204128

Hobbie, J. E., & Hobbie, E. A. (2013). Microbes in nature are limited by carbon and energy: The starving survival lifestyle in soils and consequences for estimating microbial rates. *Frontiers in Microbiology*, 4 article 324. https://doi.org/10.3389/fmicb.2013.00324
Hodge, A., & Fitter, A. H. (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. *Proceedings of the National Academy of Science USA*, 107, 13754–13759.

Jin, K., White, P. J., Whalley, W. R., Shen, J., & Shi, L. (2017). Shaping an optimal soil by root–soil interaction. *Trends in Plant Science*, 22, 823–829.

Kavamura, V. N., Taketani, R. G., Lançon, M. D., Andreote, F. D., Mendes, R., & de Melo, I. S. (2013). Water regimes influence bulk soil and rhizosphere of *Cereus jamacaru* bacterial communities in the Brazilian Caatinga biome. *PLoS One*, 8, e73606.

Koide, R. T., & Mosse, B. (2004). A history of research on arbuscular mycorrhiza. *Mycorrhiza*, 14, 145–163.

Kos, M., Tuji, M. A. B., De Roo, J., Mulder, P. P. J., & Bezemert, T. M. (2015). Plant-soil feedback effects on plant quality and performance of an aboveground herbivore interact with fertilisation. *Oikos*, 124, 658–667.

Koske, R. E., & Gemma, J. N. (1989). A modified procedure for staining roots to detect VA mycorrhizas. *Mycorrhizal Research*, 92, 486–488.

Koutrèv, P. S., Ehrenfeld, J. G., & Häggblom, M. (2003). Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. *Soil Biology & Biochemistry*, 35, 895–905.

Kozlowski, T. T., & Pallardy, S. G. (2002). Acclimation and adaptive responses of woody plants to environmental stresses. *The Botanical Review*, 68, 270–334.

Li, Y., Liu, Y., Wang, Y., Niu, L., Xu, X., & Tian, Y. (2014). Interactive effects of soil temperature and moisture on soil N mineralization in a *Stipa krylovii* grassland in Inner Mongolia, China. *Journal of Arid Land*, 6, 571–580.

Manzioni, S., Schimel, J. P., & Porporato, A. (2012). Responses of soil microbial communities to water stress: Results from a meta-analysis. *Ecology*, 93, 930–938. https://doi.org/10.1890/11-0026.1

Maya, M. A., & Matsubara, Y. (2013). Tolerance to Fusarium wilt and anthracnose diseases and changes of antioxidative activity in mycorrhizal cyclamen. *Crop Protection*, 47, 41–48.

Mastrogianni, A., Papatheodorou, E. M., Monokrousos, N., Menkissoglou-Spiroudi, U., & Stamou, G. P. (2014). Reclamation of soil and rhizosphere of *Ligustrum japonicum* Thunb. *HortScience*, 47, 1634–1640.

Mouhamadou, B., Puissant, J., Personeni, E., Declos-Theyenviau, M., Kastl, E. M., Schlöter, M., ... Lavorel, S. (2013). Effects of two grass species on the composition of soil fungal communities. *Biologia & Fertility of Soils*, 49, 1131–1139.

Myers, R. T., Zak, D. R., White, D. C., & Peacock, A. (2001). Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. *Soil Science Society of America Journal*, 65, 359.

Nannipieri, P., Giagnoni, L., Landi, L., & Renella, G. (2011). Role of phosphatase enzymes in soil. In E. K. Bünemann, A. Oberson, & E. Frossard (Eds.), *Phosphorus in action* (pp. 215–243). Berlin Heidelberg, Germany: Springer.

Oehl, F., Laczko, E., Bogenrieder, A., Stahr, K., Bösch, R., van der Heijden, M., & Sieverding, E. (2010). Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. *Soil Biology & Biochemistry*, 42, 724–738.

Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). *Estimation of available phosphorus in soils by extraction with sodium bicarbonate* (p. 19). Washington, DC: United States Department of Agriculture Circular no. 939.

Orfanoudakis, M., Wheeler, C. T., & Hooker, J. E. (2010). Both the arbuscular mycorrhizal fungus *Gigaspora rosea* and Frankia increase root system branching and reduce root hair frequency in *Alnus glutinosa*. *Mycorrhiza*, 20, 117–126.

Papatheodorou, E. M. (2008). Responses of soil microbial communities to climatic and human impacts in Mediterranean regions. In T-X. Liu (Ed.), *Soil ecology research developments* (pp. 63–87). New York, NY: Nova Science Publishers.

Papatheodorou, E. M., Kordatos, H., Kouseras, T., Monokrousos, N., Menkissoglou-Spiroudi, U., Diamantopoulos, J., ... Argyropoulou, M. D. (2012). Differential responses of structural and functional aspects of soil microbes and nematodes to abiotic and biotic modifications of the soil environment. *Applied Soil Ecology*, 61, 26–33.

Pennanen, T., Liski, J., Bäath, E., Kitunen, V., Uotila, J., Westman, C. J., & Friıze, H. (1999). Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage. *Microbial Ecology*, 38, 168–179.

Pozo, M. J., Jung, S. C., Lopez-Raez, J. A., & Azcón-Aguilar, C. (2010). Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: The role of plant defence mechanisms. In H. Koltai & Y. Kapulnik (Eds.), *Arbuscular Mycorrhizas: Physiology and function* (pp. 193–207). Springer Netherlands: Springer Science+Business Media B.V.

Prikrýl, Z., & Vancura, V. (1980). Root exudates of plants. VI. Wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. *Plant and Soil*, 57, 69–83.

Sayer, E. J., Oliver, A. E., Fridley, J. D., Askew, A. P., Mills, R. T. E., & Grime, J. P. (2017). Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change. *Ecology & Evolution*, 7, 855–862.

Schimel, J. P. (2018). Life in dry soils: Effects of drought on soil microbial communities and processes. *Annual Review in Ecology & Evolution Systematics*, 49, 409–432.

Schimel, J. P., & Schaeffer, S. M. (2012). Microbial control over carbon cycling in soil. *Frontiers in Microbiology*, 3 article 348. https://doi.org/10.3389/fmicb.2012.00348

Silva, D. D., Kane, M. E., & Beeson, J. R. C. (2012). Changes in root and shoot growth and biomass partition resulting from different irrigation intervals for *Ligustrum japonicum* Thunb. *HortScience*, 47, 1634–1640.

Sinsabaugh, R. L., Reynolds, H., & Long, T. M. (2000). Rapid assay for amidohydrolase (urease) activity in environmental samples. *Soil Biology & Biochemistry*, 32, 2095–2097.

Smith, G. A., Nickels, J. S., Kerger, B. D., Davis, J. D., Collins, S. P., Wilson, J. T., ... White, D. C. (1986). Quantitative characterization of microbial biomass and community structure in subsurface materials: A prokaryotic consortium responsive to organic contamination. *Canadian Journal of Microbiology*, 32, 104–111.

Sood, S. G. (2003). Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. *FEMS Microbiology Ecology*, 45, 219–227.

Spyrou, I. M., Karpouzas, D. G., & Menkissoglou-Spiroudi, U. (2009). Do botanical pesticides alter the structure of the soil microbial community? *Microbial Ecology*, 58, 715–727.
Staddon, P. L., Thompson, K., Jakobsen, I., Grime, J. P., Askew, A. P., & Fitter, A. H. (2003). Mycorrhizal fungal abundance is affected by long term climatic manipulations in the field. *Global Change Biology*, 9, 186–194.

Stamou, G. P., Konstadiniou, S., Monokrousos, N., Mastrogianni, A., Orfanoudakis, M., Hassiotis, C., … Papatheodorou, E. M. (2017). The effects of arbuscular mycorrhizal fungi and essential oil on soil microbial community and N-related enzymes during the fungal early colonization phase. *AIMS Microbiology*, 3, 915–936.

Ter Braak, C. J. F., & Smilauer, P. (2018). *Canoco reference manual and user’s guide: Software for ordination (version 5.10)* (p. 496). Ithaca, NY, USA: Microcomputer Power.

Toljander, J. F., Artursson, V., Paul, L. R., Jansson, J. K., & Finlay, R. D. (2006). Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. *FEMS Microbiology Letters*, 254, 34–40.

Trabelsi, D., & Mhamdi, R. (2013). Microbial inoculants and their impact on soil microbial communities: A review. *Biomed Research International*, 2013, Article ID 863240, 11. https://doi.org/10.1155/2013/863240

Trevors, J. T. (1996). Sterilization and inhibition of microbial activity in soil. *Journal of Microbiological Methods*, 26, 53–59.

Trouvelot, A., Kough, J. L., & Gianinazzi-Pearson, V. (1986). Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In V. Gianinazzi-Pearson & S. Gianinazzi (Eds.), *Physiological and Genetical Aspects of Mycorrhizae*. Proceedings of the 1st European Symposium on mycorrhizae (pp. 217–221). Paris: Institut National de la Recherche Agronomique.

Ushio, M., Wagai, R., Balser, T. C., & Kitayama, K. (2008). Variations in the soil microbial community composition of a tropical montane forest ecosystem: Does tree species matter? *Soil Biology & Biochemistry*, 40, 2699–2702.

Veresoglou, S. D., Sen, R., Mamolos, A. P., & Veresoglou, D. S. (2011). Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. *Journal of Ecology*, 99, 1339–1349.

Vestal, J. R., & White, D. C. (1989). Lipid analysis in microbial ecology. *Bioscience*, 39, 535–541.

Waring, B. G., Averill, C., Hawkes, C. V., & Holyoak, M. (2013). Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models. *Ecology Letters*, 16, 887–894.

Webster, R., & Lark, R. M. (2018). Analysis of variance in soil research: Let the analysis fit the design. *European Journal of Soil Science*, 69, 126–139.

Wu, Q.-S., Srivastava, A. K., & Zou, Y.-N. (2013). AMF-induced tolerance to drought stress in citrus: A review. *Scientia Horticulturae*, 164, 77–87.

Zelles, L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: A review. *Biology and Fertility of Soils*, 29, 111–129.

Zhao, C., Miao, Y., Yu, C., Zhu, L., Wang, F., Jiang, L., … Wan, S. (2016). Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. *Scientific Reports*, 6 article 24317. https://doi.org/10.1038/srep24317

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Monokrousos N, Papatheodorou EM, Orfanoudakis M, Jones D-G, Scullion J, Stamou GP. The effects of plant type, AMF inoculation and water regime on rhizosphere microbial communities. *Eur J Soil Sci*. 2020;71: 265–278. https://doi.org/10.1111/ejss.12882