On ERT and MERT-Rings

Zubayda M. Ibraheem
zubaida almulla@yahoo.com
Dept. Of Mathematics,
College of Computer and Mathematical Sciences,
University of Mosul, Iraq

Received on: 26/06/2002 Accepted on: 01/09/2002

ABSTRACT

The main purpose of this paper is to study ERT and MERT rings, in order to study the connection between such rings and II-regular rings.

Keyword: MERT-Rings, ERT-Rings and \(\pi\)-Regular Rings

MERT و ERT حول الحلقات من النوع

زبيدة محمد إبراهيم
كلية علوم الحاسوب والرياضيات
جامعة الموصل

تاريخ استلام البحث: 26/06/2002 تاريخ قبول البحث: 01/09/2002

ملخص

الهدف الرئيس من البحث هو دراسة الحلقات من النوع ERT و MERT. لكي ندرس العلاقة بين هذه الحلقات والحلقات المنتظمة من النوع-II

الكلمات المفتاحية: حلقات من النوع ERT, حلقات من النوع MERT, حلقات من النوع \(\pi\)-من النظام.
1- Introduction:
Throughout this paper, R denotes an associative ring with identity, and all modules are unitary right R-module. Recall that:
1- An ideal I of the ring R is essential if I has a non-zero intersection with every non-zero ideal of R; 2- A ring R is said to be \Pi-regular if for every a in R there exist a positive integer n and b in R such that $a^n = a^n b a^n$ 3- A right R-module M is said to be GP- injective if, for any $0 \neq a \in R$, there exists a positive integer n such that $a^n \neq 0$ and any right R-homomorphism of $a^n R$ into M extends to one of R into M. 4- For any element a in R, $r(a), I(a)$ denote the right annihilator of a and the left annihilator of a, respectively.

2- ERT-RINGS:
Following [3J, a ring R is said to be ERT-ring if every essential right ideal of R is a two-sided ideal.

Definition 2-1:
A ring R is said to be right weakly regular if for all a in R, there exists b in RaR such that $a = ab$, or equivalently every right ideal of R is idempotent.

We begin this section with the following main result:

Theorem 2.2:
If R is ERT-ring with every essential right ideal is idempotent, then R is weakly regular.

Proof:
For any $a \in R$, if RaR not essential, then there exists an ideal I, such that $K = RaR \oplus I$ is essential then $K = K^2$.

In order to prove that R is weakly regular, we need to prove $RaR = (RaR)^2$.

For $a \in K$, we have $a \in K^2$, that is $a \in (RaR \oplus I)^2$;

Thus $a = (rar' + i)(ras' + i')$ for some $r, r', s, s' \in R$ and $i, i' \in I$. 29
This implies that \(a = (rar' + i)sas' + (rar' + i) i' \)
\[\begin{align*}
= rar'sas' + isas' + (rar^1 + i) i'
\end{align*} \]
but \(isas' \in I \cap RaR = 0 \), also we have \((rar' + i)i' \in RaR \cap I = 0 \). Therefore \(a = (rar')(sas') \in (RaR)^2 \), this implies that \(RaR \subseteq (RaR)^2 \). Thus \(RaR = (RaR)^2 \), this proves that \(R \) is weakly regular.

Following [2], the singular submodule of \(R \) is
\[Y(R) = \{ y \in R, \text{r}(y) \text{ is essential right ideal of R} \} \].

Theorem 2.3:
Let \(R \) be a semi-prime ERT right GP-injective ring. Then \(R \) is a right non singular.

Proof:
Let \(E \) be an essential right ideal of \(R \). Then \(E \) is a two-sided ideal, and hence \(l(E) \) is a two-sided ideal of \(R \).
Now \((l(E) \cap E)^2 \subseteq (E)E = 0 \).
Since \(R \) is semi-prime, then \(l(E) \cap E = 0 \), whence \(l(E) = 0 \). This proves that \(R \) is right non singular.

3- MERT-RINGS:
Following [3], a ring \(R \) is said to be MERT-ring if every maximal essential right ideal of \(R \) is a two-sided ideal.

Theorem 3.1:
Let \(R \) be an MERT-ring, if for any maximal right ideal \(A \) of \(R \), and for any \(b \in M \), \(bR/bM \) is GP-injective, then \(R \) is strongly Pi-regular ring.

Proof:
Let \(b \) be a non-zero element in \(R \), we claim that \(b^nr + r(b^n) = R \).
If \(b^nr + r(b^n) \neq R \), let \(M \) be a maximal right ideal containing \(b^nr + r(b^n) \). Then \(M \) is essential right ideal of \(R \).
If $bR = bM$, then $b = bc$, for some c in M, this implies $(1-c) \in r(b) \subset r(b^n) \subset M$, therefore $I \in M$, this contradics $M \not= R$.

Now, since $R/ M \cong bR/bM$. Then R / M is GP-injective.

Now, define $f : b^n R \rightarrow R / M$ by $f(b^n r) = r + M$, note that f is a well-defined R-homomorphism.

Since R/M is GP-injective, then there exists $c \in R$, such that: $1+M=f(b^n)=cb^n+M$ and so $(1-c b^n) \in M$, since $b^n \in M$, and R is MERT-ring, this implies that M is a two-sided ideal, and hence $\in c b^n \in M$.

Thus $I \in M$, a contradiction.

Therefore $b^n R + r(b^n) = R$.

In particular $l=b^n u+v; v \in r(b^n), u \in R$.

Thus $b^n = b^{2n} u$ and therefore R is strongly \prod-regular ring.

Theorem 3.2:

If R is MERT-ring with every simple singular right ideal is GP-injective, then $Y(R) = 0$.

Proof:

If $Y(R) \not= 0$, by Lemma (7) of [6], there exists $0 \not= y \in Y(R)$ with $y^2 = 0$. Let L be a maximal right ideal of R, set $L = y R + r(y)$, we claim that L is essential right ideal of R. Suppose this is not true, then there exists a non-zero ideal T of R such that $L \cap T = (0)$. Then $yRT \subseteq LT \subseteq L \cap T = 0$ implies $T \subseteq r(y) \subseteq L$, so $L \cap T = (0)$. This contradiction proves that L is an essential right ideal, that is R/L is simple singular and hence R/L is GP-injective.

Now; Let $f: yR \rightarrow R/L$ be defined by $f(yr) = r + L$, then f is a well-defined R-homomorphism.

Since R/L is GP-injective, so $\exists c \in R$, such that $l+L=f(y)=cy+L$.

Hence $l+L=cy+L$, implies that $1-cy \in L$.

31
Since R is MERT, then $\text{eye } L$ and thus $I \in L$, a contradiction. Therefore $Y(R)=[0]$.

Following [1], a ring R is zero insertive (briefly ZI) if for $a, b \in R, ab=0$ implies $aRb=0$.

Theorem 3.3:

Let R be a ZT ring. If every simple singular rights-modules is GP-injective which is left self-injective, then R is strongly H-regular ring.

Proof:

Since R is simple singular GP-injective, then R is semi-prime, by Lemma (4) of [5].

Thus for any left ideal I, $L(I) \cap I = 0$.

Since R is simple singular GP-injective and ZI, then R is reduced and hence $r(a)=l(a)$ for any element a in R.

Thus $l(r(a)) \cap l(a)=l(l(a)) \cap l(a)=0$.

Since R is left self-injective ring, then aR is a right annihilator, by Proposition (4) of [4].

Since $r(a) \subseteq r(a^n)$, then $a^nR = r(a^n)$.

Now, since $R= r(l(r(a))) + r(l(l(a)))$ then we have $R = r(l(r(a^n))) + r(l(l(a^n))) = r(a^n) + a^nR$

In particular, for some b in R, and d in $r(a^n)$.

Thus $a^n = a^n b$.

Therefore R is strongly Π-regular.
REFERENCES

[1] Kim. N.M., Nam. S.B. and Kim. J.Y. (1999); "On simple singular GP-Injective Modules"; Communication In Algebra, 27(5), 2087-2096.

[2] Kim. N.M., Nam. S.B. and Kim. J.Y. (1995); "On simple GP-injective Modules"; Communications In Algebra, 23(14), 5437-5444.

[3] Ming R.Y.C. (1980); "On V-Rings and Prime Rings"; Journal of Algebra, 62, 13-20.

[4] Ming R.Y.C. (1980); "On Von-Neumann regular ring"; Math. J.Okayama Univ. vol. 22. No. 2.

[5] Ming R.Y.C. (1976); "On annihilator ideals"; Math. J. Okayama Univ. 19, 51-53.

[6] Ming R.Y.C. (1983); "On quasi-injectlvy and Von-Neumann regularity", Montash, Math, 95, 25-32.