Metabolic Syndrome, Malnutrition, and its Associations with Cardiovascular and All-cause Mortality in Hemodialysis Patients: Follow-Up for Three Years

Zohra El Ati1,2, Hanene Machfar3, Hamza Boussafa4, Nidhal Ati5, Olfa Ben Omrane Sioud3, Baha Zantour1,6, Hassen Bouzidi3, Mohamed Elati7

1Department of Hemodialysis, Tahar Sfar Hospital, Mahdia, 2Faculty of Medicine, Monastir University, Monastir, 3Department of Biochemistry, Tahar Sfar Hospital, Mahdia, 4Faculty of Medicine, Tunis, Departments of 5Urology and 6Endocrinology, Tahar Sfar Hospital, Mahdia, Tunisia, 7Université Lille, INSERM U908, Cell Plasticity and Cancer, Lille, France

ABSTRACT. Metabolic disorder contributes to the increase in the mortality rate of patients on hemodialysis (HD). The aim of this study was to estimate the prevalence of metabolic syndrome (MS) and malnutrition in patients on maintenance HD and to evaluate their influence on cardiovascular and all-cause mortality during the follow-up. We carried out a prospective cross-sectional study in which we enrolled 100 patients from a single center who had been followed up for three years. Collected data included demographic characteristics, detailed medical history, clinical variables, MS variables, nutritional status, and laboratory findings. The outcomes were the occurrence of a cardiovascular event and cardiovascular or all-cause mortality during the follow-up period. The Statistical Package for the Social Sciences software was used for statistical analysis. Whereas 50% of patients had MS, 23% showed evidence of malnutrition. Patients with MS were older and had more preexisting cardiovascular diseases (CVDs). All patients were followed for 36 months. During this time, 19 patients with MS and 14 patients without MS died (38% vs. 28%; P = 0.19), most frequently of CVD. Mean survival time was 71.52 ± 42.1 months for MS group versus 92.06 ± 65 months for non-MS group, but the difference was not significant. MS was related with a higher cardiovascular mortality, while malnutrition was significantly associated with all-cause mortality. Our data showed that MS was not related to cardiovascular or all-cause mortality in HD patients and did not influence survival. The independent risk factors for all-cause mortality were older age, preexisting CVD, and malnutrition.

Introduction

Despite the advent of maintenance hemodialysis (HD) therapy for end-stage chronic renal failure, the mortality among patients on HD remains high.1,2 Cardiovascular disease
(CVD) is the main cause of morbidity and causes more than 50% of the deaths in chronic HD patients. Metabolic syndrome (MS) is considered as an interconnected clinical, biochemical, and metabolic disorder which manifests by increased blood pressure, large waist circumference, high triglyceride level, reduced high-density lipoproteins (HDLs) cholesterol, and elevated fasting blood glucose. The prevalence of MS depends on many factors, such as the definition of MS used, country of origin, and urban or rural environment. It has been reported to range from 30% to 84% in various studies worldwide and is associated with higher mortality and morbidity in the general population.

However, some risk factors for CVD in the general population have not been associated with a poor prognosis among patients on HD. Different studies suggest an association between nutrition and clinical outcome in (HD patients assuming that malnutrition may contribute to mortality. However, few scientific reports are focusing on the prevalence and incidence of MS and malnutrition in HD patients during the follow-up. The purpose of our study is to estimate the prevalence of MS and malnutrition among HD patients in the first place and then, to evaluate the relationship between the MS, malnutrition, and mortality (cardiovascular and all-cause) in HD patients during a follow-up of three years.

Patients and Methods

Study design
This was a prospective cross-sectional study.

Patients
Of a series of 210 filed HD cases studied from January 2013 to December 2016, we included in this study all patients on HD for more than three months.

All patients required regular HD sessions for 4 h, three times a week. Blood flow was generally 300 mL/min with a dialysate flow of 500 mL/min. Patients were dialyzed with high-flux polysulfone membranes with bicarbonate-buffered dialysate. All patients received regular doses of standard heparin before an HD session.

Exclusion criteria were nonregular dialysis patients, patients with acute or chronic hepatic failure, acute infections, and clinical instabilities.

Variables
Collected data included detailed medical history and clinical variables [age, sex, body mass index (BMI), waist circumference, predialysis systolic blood pressure, etiology of end-stage renal disease, preexisting CVD, presence or not of diabetes, high blood pressure and ischemic cardiopathy, seniority on dialysis, and erythropoietin stimulating agent treatment].

MS was defined using the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criteria. It was defined by three or more of the following: fasting plasma glucose of at least 110 mg/dL (6.1 mmol/L), serum triglycerides of at least 150 mg/dL (1.7 mmol/L), serum HDL cholesterol <40 mg/dL (1.04 mmol/L), blood pressure of at least 130/85 mm Hg or use of antihypertensive drugs and waist circumference >102 cm in men and >88 cm in women.

Each patient nutritional status was assessed by subjective global assessment (SGA) methods (A = normal nutrition, B = mild malnutrition, C = severe malnutrition). The SGA includes six subjective assessments, three based on the patient’s history of weight loss, incidence of anorexia and incidence of vomiting, and three based on the physical findings of muscle wasting, presence of edema, and loss of subcutaneous fat. Laboratory findings including HDL cholesterol, triglycerides, low-density lipoprotein (LDL) cholesterol, total cholesterol, phosphorus, calcium, parathyroid hormone, hemoglobin, and nutritional and inflammatory markers such as serum albumin and C-reactive protein were measured in all patients using standard methodologies at the biochemistry department. Urea reduction ratio was used to evaluate the adequacy of HD treatment.

Follow-up
Patients were classified based on the presence or absence of MS and were prospec-
tively followed for 36 months or until the patient died or had a renal transplant if this event occurred before. In case of patient death, the primary cause of death was recorded.

Statistical Analyses

Statistical analysis was performed using the IBM SPSS Statistics for Windows version 21.0 (IBM Corp., Armonk, NY, USA) for Windows. Data were expressed as percentage, mean and standard deviation. Different comparisons between groups of HD patients with MS and without MS and groups of survivors and dead patients were performed using Student’s t-test and Chi-square test, according to statistical significance at $P <0.05$. A Cox regression model was performed to determine risk factors for mortality. The Kaplan–Meier test was used for the analysis of survival.

Results

Clinical and laboratory characteristics of the study population

One hundred HD patients were recruited and followed for 36 months. The mean age was 62 ± 11 years and 60% of patients were men. Fifty patients (50%) had MS according to NCEP criteria. Demographic, clinical, and laboratory characteristics of the study population are shown in Table 1. In the MS versus the non-MS group, significant differences in sex and prevalence of preexisting CVD were observed. Patients with MS were older and had significantly higher BMI. There were fewer patients with malnutrition (by SGA) in MS group but the difference was not significant (Table 1).

All-cause mortality, cardiovascular mortality, and metabolic syndrome

All patients were followed for 36 months. During this time, 19 patients with MS and 14 patients without MS died (38% vs. 28%; $P = 0.19$), most frequently of CVD (Table 2).

Kaplan–Meier analysis of survival

Patients with MS developed more CVD than those without MS. The all-cause mortality rate was higher in patients with MS than in patients without MS, but the difference was not significant (Figures 1 and 2).

Comparison between survivors and non-survivors

To study more the risk factors for mortality, the 100 patients were reclassified according to survival and death, and the clinical and laboratory characteristics were compared between these two groups (Table 3). Compared to surviving patients, there were more patients

Table 1. Demographic, clinical, and laboratory characteristics of the study population.

	All patients (n=100)	MS (n=50)	Without MS (n=50)	P
Age (years)	53.5±17.09	59.7±13.38	47.3±18.24	<0.0001
Female	60	24 (48)	36 (72)	0.014
Preexisting CVD	44	28(56)	16 (32)	0.016
Seniority on dialysis (months)	50.67±53.94	41.54±40.45	59.8±63.84	0.09
BMI (kg/m²)	24.93±4.99	27.11±4.77	22.7±4.23	<0.001
Malnutrition (B, assessed by SGA)	23	8 (16)	15 (30)	0.09
Hemoglobin (g/dL)	8.16±2.01	7.8±1.8	8.5±2.16	0.08
Serum albumin (g/L)	36.25±7.32	35.78±6.56	36.68±8.01	0.55
Total cholesterol (mmol/L)	3.91±1.14	3.91±1.21	3.91±1.07	0.99
PTH (pg/mL)	368.91±252.38	358.34±194.01	375.69±292.92	0.75
URR (%)	71.13±11.69	68.88±12.27	73.33±10.81	0.1
CRP (mg/L)	9.35±9.88	8.52±8.13	10.23±11.5	0.46

Data are mean ± standard deviation or number (%). MS: Metabolic syndrome, CVD: Cardiovascular disease, SGA: Subjective global assessment, BMI: Body mass index, PTH: Parathyroid hormone, URR: Urea reduction ratio, CRP: C-reactive protein.
Table 2. Comparison of causes of death between metabolic syndrome and nonmetabolic syndrome groups

	All patients (n=100)	MS (n=50)	Non-MS (n=50)	P
All-cause mortality, n (percentage of total)	33	19 (38)	14 (28)	0.19
Cause of death, n (percentage of deaths)				
CVD	17 (51.51)	10 (52.63)	7 (28)	0.42
Malnutrition	4 (12.12)	2 (10.52)	2 (14.28)	0.69
Other causes	12 (36.36)	7 (36.84)	5 (35.71)	0.38
Total survival time (months), mean±SD	81.79±55.37	71.52±42.1	92.06±64.84	0.064

MS: Metabolic syndrome, CVD: Cardiovascular disease, SD: Standard deviation.

Figure 1. Kaplan–Meier analysis of cardiovascular disease occurs in patients with and without metabolic syndrome.

Figure 2. Kaplan–Meier survival analysis of all-cause mortality in patients with and without metabolic syndrome P = 0.19.
with malnutrition (B, assessed by SGA) in the dead patient group (Table 3). However, the percentage of patients with MS was higher among the dead patients group, but the difference was not significant.

Factors associated with all-cause and cardiovascular mortality using multivariate Cox regression analysis

Variables that were significantly associated with all-cause and cardiovascular mortality were included in the multivariate regression model. Age and malnutrition were significantly and independently associated with all-cause mortality. The presence of preexisting CVD and low HDL was significantly and independently associated with cardiovascular mortality (Table 4).

Discussion

CVDs are the major cause of morbidity and mortality of HD patients. In the general population, MS is associated with a higher risk of CVD. Overall, the relationship between MS and cardiovascular or all-cause mortality in HD patients has not been determined. The present study demonstrates that MS defined according to the NCEP-ATPIII criteria was present in more than 50% of our patients, which is consistent with many studies. In the present work as well as in many studies, the lipid profile of HD patients was unique and classically characterized by the predominance of hypertriglyceridemia, low HDL cholesterol, and high LDL cholesterol. However, when we classified the patients

Table 3. Comparison of clinical and laboratory characteristics between surviving and dead patients.

	Survived (n=67)	Dead (n=33)	P
Diabetes	13 (19.40)	11 (33.33)	0.1
SBP	132.69±19.64	133.33±22.45	0.88
Waist circumference (cm)	93.66±14.63	96.21±13.89	0.85
Malnutrition	8 (11.94)	15 (45.45)	<0.0001
Serum albumin (g/L)	36.73±7.41	35.21±7.15	0.35
Triglycerides (mmol/L)	1.95±1.00	1.66±0.68	0.13
HDL-C (mmol/L)	1.01±0.34	0.93±0.26	0.25
MS	31 (46.26)	19 (57.57)	0.19

Data are mean ± standard deviation or number (%). MS: Metabolic syndrome, CVD: Cardiovascular disease, SBP: Systolic blood pressure, BMI: Body mass index, HDL-C: High-density lipoprotein cholesterol, CRP: C-reactive protein.

Table 4. Factors associated with all-cause, cardiovascular mortality, and cardiovascular events.

Variable	All-cause mortality	Cardiovascular mortality	Cardiovascular events		
	OR (CI=95%)	P	OR (CI=95%)	P	
Malnutrition	8.01 (2.61–24.61)	<0.0001	-	-	
Age	1.05 (1.01–1.08)	0.03	-	-	
Preexisting CVD	-	4.34 (1.37–13.71)	0.01	-	
Components of MS					
Low HDL-C	-	12.35 (1.47–103.21)	0.02	-	
Obesity	-	-	-	3.83 (1.21–12.1)	0.022
HBP	-	-	-	10.74 (1.32–87.09)	0.026

OR: Odds ratio, CI: Confidence interval, MS: Metabolic syndrome, CVD: Cardiovascular disease, HDL-C: High-density lipoprotein cholesterol, HBP: High blood pressure.
into groups based on the NCEP/ATP III criteria and performed a prospective study focusing on the relationship between MS and cardiovascular or all-cause mortality in HD patients, we found that MS did not increase the mortality risk in HD patients which is concordant with others studies.19

Some reasons could explain the nonsignificant influence of MS on CVD and all-cause mortality among our HD patients. First, our follow-up time was relatively short and our sample size, coming from a single-center, was relatively small. Second, the preexisting CVD, which was powerfully associated with cardiovascular and all-cause mortality, might affect patients’ survival over the short-term whereas MS might influence patients’ survival in the long time. The assessment of nutritional status was generally based on the measurement of serum albumin levels,9,20 but in a few studies, nutritional status was evaluated with SGA or total body nitrogen.10,21 In our study, the nutritional status was evaluated with both SGA and the serum albumin levels. The prevalence of malnutrition in our HD patients was 23%. In the literature reports, the prevalence of malnutrition in HD patients was very different; it ranged from 23% to 73%.22 Differences depend specifically on the country, urban or rural environment, and the composition of the study population (sex and age). The role of nutrition as a mortality factor has not been obviously established. In our study, there were more patients with malnutrition in the dead patient group than in the surviving group. It is consistent with Stolic et al who reported that malnutrition increased the risk of mortality in HD patients compared with MS.23,24

Conclusion

Unlike malnutrition, MS was not linked to cardiovascular or all-cause mortality in our HD patients and did not influence survival rate. The independent risk factors for mortality were older age, preexisting CVD, and malnutrition.

Conflict of interest: None declared.

References

1. Brunner FP, Selwood NH. Profile of patients on RRT in Europe and death rates due to major causes of death groups. The EDTA registration committee. Kidney Int Suppl 1992;38:S4-15.
2. USRDS: Excerpt from the United States Renal Data System 1999 Annual Data Report. Patient mortality and survival in ESRD. Am J Kidney Dis 1999;34 Suppl 1:S74-86.
3. Maoujoud O, Ahid S, Asseraji M, et al. Prevalence of metabolic syndrome in chronic haemodialysis patients in Morocco. East Mediterr Health J 2011;17:56-61.
4. Pérez de José A, Verdalles-Guzmán Ú, Abad S, et al. Metabolic syndrome is associated with cardiovascular events in haemodialysis. Nefrologia 2014;34:69-75.
5. Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. Metabolic syndrome and kidney disease: A systematic review and meta-analysis. Clin J Am Soc Nephrol 2011;6:2364-73.
6. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014;2014:943162.
7. Delarue J, Allain G, Guillerm S. The metabolic syndrome. Nutr Clin Metab 2006;20:114-7.
8. Leavey SF, Strawderman RL, Jones CA, Port FK, Held PJ. Simple nutritional indicators as independent predictors of mortality in hemodialysis patients. Am J Kidney Dis 1998;31:997-1006.
9. Lowrie EG, Lew NL. Death risk in hemodialysis patients: The predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 1990;15:458-82.
10. Pollock CA, Ibels LS, Allen BJ, Ayass W, Caterson R, Waugh DA, et al. Total body nitrogen as a prognostic marker in maintenance dialysis. J Am Soc Nephrol 1995;6:82-8.
11. Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am J Med 2006;119:812-9.
12. Gami AS, Witt BJ, Howard DE, et al. Metabolic syndrome and risk of incident cardiovascular events and death: A systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol 2007;49:403-14.
13. Bach N, Fumiko F. Survival rates and causes of death in Vietnamese chronic hemodialysis patients. Ren Replace Ther 2017;3:22-0.
14. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001;24:683-9.

15. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002;288:2709-16.

16. Benkacimi N, Fedala S, Mokhtar M, Hamida F, Boufia M. Le syndrome métabolique en hémodialyse chronique. Ann Endocrinol 2013;74:451-0.

17. Alakkas Z, Alswat KA, Otaibi MA, et al. The prevalence and the clinical characteristics of metabolic syndrome patients admitted to the cardiac care unit. J Saudi Heart Assoc 2016;28:136-43.

18. Ayako H, Fumiko K, Mio U, Yoshiko T, Kosaku KK. Triglyceride to high-density lipoprotein cholesterol ratio predicts cardiovascular events in maintenance hemodialysis patients. Ren Replace Ther 2016;2:60-0.

19. Yang SY, Chiang CK, Hsu SP, et al. Metabolic syndrome predicts hospitalization in hemodialysis patients: A prospective Asian cohort study. Blood Purif 2007;25:252-9.

20. Iseki K, Kawazoe N, Fukiyma K. Serum albumin is a strong predictor of death in chronic dialysis patients. Kidney Int 1993;44:115-9.

21. Marckmann P. Nutritional status and mortality of patients in regular dialysis therapy. J Intern Med 1989;226:429-32.

22. Qureshi AR, Alvestrand A, Danielsson A, et al. Factors predicting malnutrition in hemodialysis patients: A cross-sectional study. Kidney Int 1998;53:773-82.

23. Stolic RV, Trajkovic GZ, Peric VM, et al. Impact of metabolic syndrome and malnutrition on mortality in chronic hemodialysis patients. J Ren Nutr 2010;20:38-43.

24. Xie Q, Zhang AH, Chen SY, et al. Metabolic syndrome is associated with better nutritional status, but not with cardiovascular disease or all-cause mortality in patients on hemodialysis. ArchCardiovasc Dis 2012;105:211-7.

Date of manuscript receipt: 29 August 2018.
Date of revised copy receipt: 5 November 2018.
Date of final acceptance: 5 November 2018.