Multiplex ligation-dependent probe amplification analysis of GATA4 gene copy number variations in patients with isolated congenital heart disease

Valentina Guidaa, Francesca Lepra, Raymon Vijzelaarb, Andrea De Zorzic, Paolo Versaccid, Maria Cristina Digilioc, Bruno Marinod, Alessandro De Lucaa,* and Bruno Dallapiccolac

aMendel Laboratory, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Rome, Italy
bMRC Holland, Amsterdam, The Netherlands
cBambino Gesù Children Hospital, IRCCS, Rome, Italy
dDivision of Pediatric Cardiology, Department of Pediatrics, “Sapienza” University, Rome, Italy

Abstract. GATA4 mutations are found in patients with different isolated congenital heart defects (CHDs), mostly cardiac septal defects and tetralogy of Fallot. In addition, GATA4 is supposed to be the responsible gene for the CHDs in the chromosomal 8p23 deletion syndrome, which is recognized as a malformation syndrome with clinical symptoms of facial anomalies, microcephaly, mental retardation, and congenital heart defects. Thus far, no study has been carried out to investigate the role of GATA4 copy number variations (CNVs) in non-syndromic CHDs. To explore the possible occurrence of GATA4 gene CNVs in isolated CHDs, we analyzed by multiplex ligation-dependent probe amplification (MLPA) a cohort of 161 non-syndromic patients with cardiac anomalies previously associated with GATA4 gene mutations. The patients were mutation-negative for GATA4, NKX2.5, and FOG2 genes after screening with denaturing high performance liquid chromatography. MLPA analysis revealed that normalized MLPA signals were all found within the normal range values for all exons in all patients, excluding a major contribution of GATA4 gene CNVs in CHD pathogenesis.

Keywords: CHD, MLPA, GATA4, CNV

1. Introduction

Congenital heart defects (CHDs) are the most common type of birth anomalies affecting nearly 1% of all live births [1]. Although CHDs may occur in association with other birth defects as part of a syndrome, they are often found as an isolated anomaly. Studies of animal models have demonstrated that genetic factors contribute significantly to the etiology of CHDs, but only a few genes involved in isolated human CHDs have been identified so far [2,3]. Mutations in the cardiac transcription factor GATA4 have been identified as a cause of isolated CHD in a subset of individuals. Most of GATA4 mutations have been found in patients with familial cardiac septal defects [4–9]. Nevertheless, mutations in the GATA4 gene have also been associated with other CHD phenotypes, such as atrioventricular canal defect (AVCD), tetralogy of Fallot (ToF), patent ductus arteriosus, pulmonary stenosis, and hypoplastic right ventricle [4,8–13]. Furthermore, somatic GATA4 mutations have been found in formalin-fixed heart tissues from CHD patients with septal defects and AVCD [14].
GATA4 gene encodes a zinc finger transcription factor that is involved in the regulation of a number of genes important in heart development [15]. Mice with targeted mutations in GATA4 suffer from defective ventral morphogenesis and heart tube formation [16,17]. Mouse embryos with hypomorphic GATA4 mutations present various cardiac malformations, including hypoplasia of the compact myocardium, AVCD, and doubly outlet right ventricle [18,19]. Accordingly, GATA4 is supposed to be the gene responsible for the cardiac anomalies in the chromosomal 8p23 deletion syndrome, which is recognized as a malformation disorder with facial dysmorphism, microcephaly, mental retardation, and CHDs, prevalently AVCD, ToF, doubly outlet right ventricle, and atrial septal defect (ASD) [20–23]. Recently, an atypical small interstitial deletion of 8p23 that includes the GATA4 gene was also described in two unrelated patients showing Ebstein anomaly associated with septal defects [24]. Furthermore, duplications of GATA4 gene have been observed in normal as well as in syndromic patients with and without heart defects, suggesting that GATA4 is a dosage-sensitive gene with variable penetrance [25–28].

A recent study predicted that at least 10% of sporadic non-syndromic cases of tetralogy of Fallot, one of the most common CHDs, result from de novo copy number variations (CNVs) [29]. To this date, no study has investigated the role of GATA4 gene CNVs in non-syndromic CHDs. Hence, to explore the possible occurrence of these GATA4 gene lesions in non-syndromic CHDs we developed a multiplex ligation-dependent probe amplification (MLPA) [30] for this gene. We used this new assay to analyze a cohort of non-syndromic patients with anatomic types of cardiac defects, suggesting that GATA4 is a dosage-sensitive gene with variable penetrance.

2. Materials and methods

The study cohort included 161 non-syndromic subjects, comprising 33 patients affected by ASD, 40 with AVCD, 80 with ToF and 8 with Ebstein anomaly. Patients had been recruited at the “Bambino Gesù” Hospital, and at the Pediatric Cardiology Unit of “Policlinico Umberto I” Hospital in Rome, during the years 1995–2004. Association with extracardiac anomalies was excluded in all subjects by complete physical evaluation for phenotypic anomalies, neuropsychological evaluation, anthropometric measurement, renal ultrasonography and radiological studies. Patients’ clinical assessment included family history evaluation. Cardiac assessment consisted in a preoperative chest X-ray film, 12-lead electrocardiograms, and 2-dimensional trans-thoracic echocardiography with color-flow Doppler. The study was conducted in accordance with the Declaration of Helsinki and blood samples were obtained after informed consent had been given. The protocol was approved by the Institutional Review Board of the participating Institutions.

Genomic DNA was isolated from peripheral blood leukocytes using standard procedures. Point mutations and other subtle lesions in GATA4, NKX2.5, and FOG2 genes had been previously excluded by denaturing high performance liquid chromatography. MLPA analysis was performed by using the newly designed SALSA P234-MLPA kit (MRC-Holland, Amsterdam, The Netherlands) according to the manufacturer’s recommendations. The P234 GATA4 kit contains probes for each of the 7 exons of GATA4. In addition, it contains several probes upstream and downstream of GATA4, including probes for BLK and FDTF1 genes, and probes for 5 of the exons of GATA3. MLPA products were analyzed using an ABI PRISM 3130 automated sequencer (Applied Biosystem, Foster City, CA). MLPA data were collected by using Gene Mapper software (Applied Biosystem) and subsequently analyzed by Coffalyzer software (MRC-Holland). Four unrelated control DNA samples were included as reference population together with the DNA of a patient hemizygous for an interstitial 4 Mb deletion at 8p23.1 encompassing the GATA4 gene, which was used as positive deletion control. Based on the results obtained on the control group, observed values falling within the range of 0.7–1.3 were considered to have two gene copies.

Confidence intervals for proportions of CNVs were calculated by means of VassarStats software (http://faculty.vassar.edu/lowry/prop1.html) using the Newcombe-Wilson method including continuity correction [35,36].

3. Results and discussion

MLPA analysis revealed that normalized MLPA signals were all found within the normal range values for all exons in all subjects (Newcombe–Wilson score method; k = 0, n = 161, proportion = 0/161, z = 1.960, 95% confidence interval = 0.000–0.029) [35,36], ex-
Study population	Nucleotide change	Amino acid substitution	Type of mutation	Phenotype	Study
Familial septal defects (2 families)	886G>A	G296S	Missense	ASD±VSD, AVCD, PS (1 familial case)	Garg et al. 2003 [4]
	1075delG	E359RfsX44	Deletion (out-of-frame)	ASD (1 familial case)	
Familial ASD (16 families)	1075delG	E359RfsX44	Deletion (out-of-frame)	ASD (1 familial case)	Hiyama-Yamada et al. 2005 [5]
	155C>T	S52F	Missense	ASD (1 familial case)	
Familial ASD (1 family)	1074delC	S358RfsX45	Deletion (out-of-frame)	ASD±PS (1 familial case)	Okubo et al. 2004 [6]
ASD (29 probands: 16 families; 13 sporadic cases)	886G>A	G296S	Missense	ASD±PS (2 familial cases)	Sarkozy et al. 2005 [7]
ASDCD (35 probands: 9 families; 26 sporadic cases)	None	None	–	–	Sarkozy et al. 2005 [39]
Largely sporadic CHDs (94 probands: 30 VSD, 18 PS, 15 PDA, 12 ASD, 8 TA, 6 TGA, and 5 CoA)	648C>G	E216D	Missense	ToF (2 sporadic cases)	Nemer et al. 2006 [10]
Largely sporadic CHD (99 probands: 36 VSD, 4 ASD, 11 ToF, AVCD 1, 47 other)	None	None	–	–	Zhang et al. 2006 [40]
Sporadic CHDs (31 sporadic cases)	N.a.	V267M	Missense	CHD (1 sporadic case)	Tang et al. 2006 [13]
Sporadic CHDs (135 probands: 24 septal defects, 39 LSD, 17 RSD, 19 CTD, 16 complex CHDs, 7 AVCD, 13 other), familial CHDs (22 probands: 8 septal defects, 6 LSD, 1 RSD, 1 ToF, 3 complex CHD, 3 other)	None	None	–	–	Schluterman et al. 2007 [41]
Largely sporadic CHDs (628 probands: 122 ASD, 137 VSD, 201 ToF, 76 TGA, 45 DORV, 20 TA, 11 IAA, 10 CCTGA, 6 other)	278G>C	G93A	Missense	ASD (1 sporadic case)	Tomita-Mitchell et al. 2007 [11]
	946C>G	Q316S	Missense	ASD/VSD (1 case with family history unknown)	
	1232C>T	A411V	Missense	VSD (1 sporadic case)	
	1273G>A	D423N	Missense	ASD (1 sporadic case)	
	487C>T	P163S	Missense	AVCD (1 sporadic case)	Ragajopal et al. 2007 [8]
	886G>T	G296C	Missense	ASD+PS (1 familial case)	
	1037C>T	A346V	Missense	AVCD (1 sporadic case)	
	1207C>A	L403M	Missense	Hypoplastic RV (1 sporadic case)	
Study population	Nucleotide change	Amino acid substitution	Type of mutation	Phenotype	Study
--	-------------------	-------------------------	------------------	---------------------------	---------------------
Largely sporadic CHDs (205 probands: 110 ASD, 95 CHDs)					Posch et al. 2007 [37]
	1232C>T	A411V	Missense	ASD/PAPVC (1 sporadic case)	
Largely sporadic CHDs (486 probands: 319 VSD, 37 ASD, 11 AVCD, 13 TGA, 7 PDA, 2 PA, 3 PS, 2 IAA, 2 DORV, 5 other)	17C>T	A6V	Missense	VSD (1 sporadic case)	Zhang et al. 2008 [9]
	136L,138delTCC	46delS	Deletion (in-frame)	VSD (1 sporadic case)	
	35L,55insGCC	11L,119insA	Insertion (in-frame)	ToF (1 sporadic case)	
	37L,375insTGCCGC	125L,126insAA	Insertion (in-frame)	VSD (1 sporadic case)	
	487C>T	P163S	Missense	VSD (1 sporadic case)	
	1075G>A	E359K	Missense	AVCD (1 sporadic case)	
	1220C>A	P407Q	Missense	VSD (2 cases in a family)	
	1286C>C	S429T	Missense	ToF (1 sporadic case)	
	1325C>T	A442V	Missense	VSD (1 sporadic case)	
CHDs patients (62 probands: 27 VSD, 14 ASD, 7 ToF, 2 TAPVC, 2 AVCD, 5 PDA, 3 PS, 1 TGA, 1 DORV)	1220C>A	P407Q	Missense	ToF (1 sporadic case)	Zhang et al. 2009 [12]
	1273G>A	D425N	Missense	VSD (1 sporadic case)	
Sporadic CHDs (104 probands: 76 ASD, 28 ToF)	34L,342insA	T114TfsX95	Insertion (out-of-frame)	ASD (1 sporadic case)	Hamanoue et al. 2009 [38]
Familial TGA (7 families)	None	None	–	–	De Luca et al. 2009 [42]

ASD, atrial septal defect; VSD, ventricular septal defect; AVCD, atrioventricular canal defect; PS, pulmonic stenosis; PDA, patent ductus arteriosus; TA, truncus arteriosus; TGA, transposition of the great arteries; CoA, coarctation of the aorta; DORV, double outlet right ventricle; ToF, tetralogy of Fallot; N.a., Not available; IAA, interrupted aortic arch; CCTGA, congenitally corrected transposition of the great arteries; DILV, double inlet left ventricle; RV, right ventricle; LVOTO, left ventricular outflow tract obstruction; LSD, left-sided defect; RSD, right-sided defect; CTD, conotruncal heart defect; PA, pulmonary atresia; PAPVC, partial anomalous pulmonary venous connection; TAPVC, total anomalous pulmonary venous connection.
cluding a major contribution of GATA4 gene CNVs in the pathogenesis of the investigated CHDs.

Table 1 summarizes the many mutation screening studies that have been performed relevant to GATA4 gene [4]. So far, 24 different GATA4 germline mutations including 18 missense mutations [4,5,7–13,37], 3 deletion mutations [4–6,9], and 3 insertion mutations [9,38] have been identified in different CHD patients. Among them, 6 mutations were associated with familial CHD [4–9]. Furthermore, 23 somatic GATA4 mutations were found in 68 formalin-fixed heart tissues from CHD patients [11] including one deletion and 22 missense mutations. Evidence from these studies supports a major role of GATA4 in human cardiac morphogenesis. Nevertheless, results from GATA4 gene analysis are difficult to interpret owing to the small percentage of CHDs due to GATA4 mutations. Tomita-Mitchell and Colleagues investigated GATA4 mutations in 628 patients with septal or conotruncal defects [11]. Four missense mutations were observed in 2 of 122 patients with ASD (1.6%), 2 of 137 patients with ventricular septal defect (VSD) (1.5%), and 1 of 201 patients with ToF (0.5%), with an overall prevalence rate of 0.8%. More recently, Zhang and Colleagues replicated this analysis in a cohort of 486 CHD Chinese patients, which included more VSD and less ASD cases compared to previous study. Six missense mutations, 2 small insertions, and 1 small deletion were found in 9 of 319 patients with VSD (2.8%), 2 of 64 patients with ToF (3.1%), and 1 of 11 patients with AVCD (9.1%), with an overall GATA4 mutation prevalence rate of 2.5%. Considering the overall prevalence of GATA4 mutations in CHDs, the existence of very rare CNVs of GATA4 gene in CHD patients cannot be excluded with certainty. In addition, none of our patients was affected by VSD. Thus, it is still possible that GATA4 germ-line CNVs may occur at a significant frequency among VSD cases or other specific subgroups of CHD phenotypes excluded from the present analysis. However, the absence of CNVs in GATA4 gene in more than 160 patients with cardiac anomalies previously associated with GATA4 gene mutations, who were also mutation-negative for GATA4, NKX2.5, and FOG2 genes, strongly suggests that GATA4 CNVs do not represent a common cause of CHD, at least in our cohort.

Acknowledgments

The authors wish to thank the patients who participated in this research. This research was supported by the Italian Ministry of Health grant RF2009 and RC2009, and Italy-USA Program on Rare Diseases (Istituto Superiore di Sanità).

References

[1] J.I. Hoffman and S. Kaplan, The incidence of congenital heart disease, Journal of the American College of Cardiology 39(12) (2002), 1890–1900.
[2] P.J. Gruber and J.A. Epstein, Development gone awry: congenital heart disease, Circulation Research 94(3) (2004), 273–283.
[3] E.N. Olson, A decade of discoveries in cardiac biology, Nature Medicine 10(5) (2004), 467–474.
[4] V. Garg, E.S. Kathariya, R. Barnes, M.K. Schluterman, I.N. King, C.A. Butler et al., GATA4 mutations cause human congenital heart defects and reveal an interaction with Tbx5, Nature 424(6947) (2003), 443–447.
[5] K. Hirayama-Yamada, M. Kamisago, K. Akimoto, H. Aotsuka, Y. Nakamura, H. Tomita et al., Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect, American Journal of Medical Genetics 135A (2005), 47–52.
[6] A. Okubo, O. Miyoshi, K. Baha, M. Takagi, K. Tsukamoto, A. Kinoshita et al., A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family, Journal of Medical Genetics 41(7) (2004), e97.
[7] A. Sarkozy, E. Conti, C. Neri, R. D’Agostino, M.C. Digilio, G. Esposito et al., Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors, Journal of Medical Genetics 42(2) (2005), e16.
[8] S.K. Rajagopal, Q. Ma, D. Obler, J. Shen, A. Manichaikul, A. Tomita-Mitchell et al., Spectrum of heart disease associated with murine and human GATA4 mutation, Journal of Molecular and Cellular Cardiology 43(6) (2007), 677–685.
[9] W. Zhang, X. Li, A. Shen, W. Jiao, X. Guan and Z. Li, GATA4 mutations in 486 Chinese patients with congenital heart disease, European Journal of medical genetics 51(6) (2008), 527–535.
[10] G. Nemer, F. Fadallah, J. Usta, M. Nemer, G. Dbaibo, M. Obeid et al., A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot, Human Mutation 27(3) (2006), 293–294.
[11] A. Tomita-Mitchell, C.L. Maslen, C.D. Morris, V. Garg and E. Goldmuntz, GATA4 sequence variants in patients with congenital heart disease, Journal of Medical Genetics 44(12) (2007), 779–783.
[12] W.M. Zhang, X.F. Li, Z.Y. Ma, J. Zhang, S.H. Zhou, T. Li et al., GATA4 and NKX2.5 gene analysis in Chinese Uygur patients with congenital heart disease, Chinese Medical Journal 122(4) (2009), 416–419.
[13] Z. H. Tang, L. Xia, W. Chang, H. Li, F. Shen, J.Y. Liu et al., Two novel missense mutations of GATA4 gene in Chinese patients with sporadic congenital heart defects, Zhonghua Yi Xue Yi Chuan Xue Za Zhi = Zhonghua Yi Xue Yi Chuan Xue Za Zhi = Chinese Journal of Medical Genetics 23(3) (2006), 134–137.
[14] S.M. Reamonn-Buettner and J. Borlak, GATA4 zinc finger mutations as a molecular rationale for septation defects of the human heart, Journal of Medical Genetics 42(5) (2005), e32.
[15] S. Pikkaranen, H. Tokola, R. Kerkela and H. Ruskoaho, GATA transcription factors in the developing and adult heart, Cardiovascular Research 63(2) (2004), 196–207.
[16] C.T. Kuo, E.E. Morrissey, R. Anandappa, K. Sigerist, M.M. Lu, M.S. Parmacek et al., GATA4 transcription factor is required for ventral morphogenesis and heart tube formation, Genes & Development 11(8) (1997), 1048–1060.

[17] J.D. Molkentin, Q. Lin, S.A. Duncan and E.N. Olson, Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis, Genes & Development 11(8) (1997), 1061–1072.

[18] W.T. Pu, T. Ishiwata, A.L. Juraszek, Q. Ma and S. Izumo, GATA-4 is a dosage-sensitive regulator of cardiac morphogenesis, Developmental Biology 275(1) (2004), 235–244.

[19] J.D. Crispino, M.B. Lodish, B.L. Thurberg, S.H. Litovsky, R. Hutchinson, M. Wilson and L. Voullaire, Distal 8p deletions of 8p23.1–pter: a common deletion? Journal of Medical Genetics 75(1) (2001), 839–844.

[20] M.C. Digilio, B. Marino, P. Guccione, A. Giannotti, R. Migarelli and B. Dallapiccola, Deletion 8p syndrome, Am J Med Genet 75(5) (1999), 534–536.

[21] R. Hutchinson, M. Wilson and L. Voullaire, Distal 8p deletions (8p23.1–pter): a common deletion? Genes & Development 15(7) (2001), 839–844.

[22] J.C. Barber, V. Maloney, E.J. Hollox, A. Stuke-Sontheimer, J.C. Barber, V.K. Maloney, S. Huang, D.J. Bunyan, L. Cresswell, E. Goldmuntz, NKX2.5 mutations in patients with tetralogy of fallot, Human Mutation 22(5) (2003), 372–377.

[23] R.G. Newcombe, Two-sided confidence intervals for the single proportion: comparison of seven methods, Statistics in Medicine 17(8) (1998), 857–872.

[24] M.K. Schluterman, A. Sarkozy, G. Esposito, E. Conti, M.C. Digilio, B. Marino, R. Calabro et al., CRELD1 and GATA4 gene analysis in patients with congenital heart disease, American Journal of Medical Genetics 146A(2) (2008), 251–253.

[25] A. Sarkozy, G. Esposito, E. Conti, M.C. Digilio, B. Marino, R. Calabro et al., CRELD1 and GATA4 gene analysis in patients with nonsyndromic atrioventricular canal defects, American Journal of Medical Genetics 139(3) (2005), 236–238.

[26] J.C. Barber, V.K. Maloney, S. Huang, D.J. Bunyan, L. Cresswell, E. Kinning et al., 8p23.1 duplication syndrome; a novel genomic condition with unexpected complexity revealed by array CGH, Eur Hum Genet 13(10) (2005), 1131–1136.

[27] J.C. Barber, V.K. Maloney, S. Huang, D.J. Bunyan, L. Cresswell, E. Kinning et al., Duplication and copy number variants of 8p23.1 are cytogenetically indistinguishable but distinct at the molecular level, Eur Hum Genet 13(10) (2005), 1131–1136.