EIGENVALUES AND LAMBDA CONSTANTS ON RIEMANNIAN SUBMERSIONS

LI MA, ANQIANG ZHU

Abstract. Given a Riemannian submersion, we study the relation between lambda constants introduced by G. Perelman on the base manifold and the total space of a Riemannian submersion. We also discuss the relationship between the first eigenvalues of Laplacians on the base manifold and that of the total space. The quantities on warped products are discussed in detail.

Keywords: Riemannian submersion, Eigenvalues, Scalar curvature.

Mathematics Subject Classification (2000): 53C44

1. INTRODUCTION

The aim of this paper is to study the relationship between Lambda constants, which will be defined below, the first eigenvalues of Laplacians on the base manifold and that of the total space of a Riemannian submersion. Even though these are classical objects in Differential Geometry and in Mathematical Analysis (see [CM04]), they are missed in literature.

Motivated by Physical background and the Gross Log-Sobolev inequality, G. Perelman [P02] introduced the F-functional

\[F(g, f) = \int_M e^{-f} (|\nabla f|^2 + R) dv_g, \]

where \(R \) is the scalar curvature of the Riemannian manifold \((M, g)\) (see [B87]) and \(dv_g \) is the volume element of the metric \(g \), with its infimum defined by

\[\lambda(g) = \inf \{ F(g, f) : f \in C_c^\infty(M), \int_M e^{-f} dv_g = 1 \}; \]

which will be called the lambda constant. It has been showed in [Le07] and [F07] that there is a closed relationship between the Yamabe constants and the lambda constants. Recall that the Yamabe constant \(Y(g) \) on \((M, g)\) is the infimum of the action functional

\[A(g) = \int_M R dv_g, \]

The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20060003002. The first named author would like to thank Prof. S. Donaldson for reminding him the relation between the Bochner formula and Perelman’s F-functional on spin manifolds.
which was introduced by D. Hilbert, among the conformal class \([g]\) with fixed unit volume.

Let us recall some basic notations and concepts about Riemannian submersions from [B87]. Let \(p : M \to B\) be a Riemannian submersion with compact fiber \(F\). Put \(F_b = p^{-1}(b)\) for \(b \in B\). Given a smooth function \(u^M\) on \(M\), we define a smooth function \(u^B\) on \(B\) by

\[
p_*(u^M dv_M) = u^B dv_B.
\]

In other words, we have

\[
u^B = \int_F u dv_F.
\]

Let \(N\) be the mean curvature vector field to the fibers \(F\). Let \(A\) be the curvature of the horizontal distribution and let \(T\) be the second fundamental form of the fibers \(F\). We denote by \(\nabla^M\) and \(\nabla^B\) the covariant derivatives on \(M\) and on \(B\) respectively. We always denote by \(G^M\), \(G^F\), and \(G^B\) the same kind of geometrical quantities on \(M\), on \(F\), and on \(B\) respectively.

For example, \(\Delta^M\) the Laplacian operator on \(M\). We denote by \(\nabla_{\text{hor}}\) the horizontal part of the covariant derivative on \(M\).

That is

\[
\nabla_{\text{hor}} u = \nabla_{e_\alpha} u e_\alpha
\]

where \(\{e_\alpha\}\) is an orthonormal basis of \(T_{\text{hor}} M\) at a point \(m\). We define

\[
\delta N(m) = - \sum \nabla_{e_\alpha} N, e_\alpha >.
\]

Then we have

\[
R^M = R^B + R^F - |A|^2 - |T|^2 - |N|^2 - 2\delta N
\]

and

\[
\Delta^M u = \nabla^2_{\text{hor}} u + \Delta^F u - < \nabla_{\text{hor}} u, N >.
\]

When \(M = B \times F\) with the warped metric \(g = g^B + e^{2f} g^F\), where \(f \in C^\infty(B)\), we have

\[
\Delta^M u = \Delta^B u + e^{-2f} \Delta^B g^F u + k < \nabla^B u, \nabla^B f >.
\]

where \(k = \text{dim}(F)\).

Let

\[
A_0 = \frac{1}{2} \text{inf}_M (- \sum \nabla_{e_\alpha} < N, e_\alpha >)
\]

and

\[
A_1 = \frac{1}{2} \text{sup}_M (- \sum \nabla_{e_\alpha} < N, e_\alpha >).
\]

For the comparison of first eigenvalues on the base and total space, we have the following result.

Theorem 1.1. Given a compact Riemannian submersion \((M, g)\). Then we have the following inequality

\[
\lambda_1^M \leq \lambda_1^B + \lambda_F + A_1.
\]
Here
\[\tilde{\lambda}_F = \sup_{b \in B} \lambda_F^B (b). \]
Furthermore, when \((M, g)\) is a warped product, we also have
\[\lambda_1^B + A_0 \leq \lambda_1^M. \]

Since the Euler-Lagrange operator of the F-functional \(F(g, f)\) is of the same type of the Laplace operator, we can derive the following result.

Theorem 1.2. Suppose \((M, g^M)\) is a warped product of \((B, \tilde{g})\) and \((F, g_0)\), \(g^M = \tilde{g} + f^2 g_0\), where \(f\) is a function on \(B\). If the scalar curvature \(\tilde{R}_0\) of the fiber \((F, g_0)\) is bounded from below such that \(\tilde{R}_0 \geq r_0\), then we have
\[\lambda_M^M \geq \lambda_B^B + c, \]
where \(c = \inf (2p \Delta_B f + p (7 - p) |df|^2 + \frac{1}{f^2} r_0). \)

One may ask if the similar result is true for W-functional. Recall the quantity in question is \(\mu(g, \tau)\), which is defined by
\[\mu(g, \tau) = \inf \{ W(g, f, \tau) | f \in C_\infty^c, \tau > 0, \frac{1}{(4\pi\tau)^{n/2}} \int_M e^{-f} dv_g = 1 \}, \]
where \(W(g, f, \tau)\) is Perelman’s W functional introduced in [P02]. We recall that W-functional is defined by
\[W(g, f, \tau) = (4\pi\tau)^{-n/2} \int_M [\tau (4|\nabla u|^2 + Ru^2) - 2u^2 \log u - nu^2] dv_g \]
with \(u = e^{-f/2}\), where
\[\frac{1}{(4\pi\tau)^{n/2}} \int_M e^{-f} dv_g = 1. \]
It seems to us that a similar result should be true, but we can not prove it yet.

On the spin manifold, we have the following result, which related the first eigenvalue of Dirac operator to Perelman’s lambda constant.

Theorem 1.3. Given a compact spin manifold with its Dirac operator \(D\). Let \(\lambda_1^D\) be the first eigenvalue of \(D\) in the sense that the absolute value of \(\lambda_1^D\) is the minimum of all eigenvalues of \(D\). Then we have
\[\lambda_1^{D^2} \geq \lambda(g). \]

Along the Ricci flow, L.Ma [Ma06] obtained a interesting monotonicity formula for eigenvalues of the Laplacian operators.

Here is the plan of the paper. In section two, we introduce some standard formulae. We prove Theorem 1.1 in section three. Theorem 1.2 is proved in section four and Theorem ?? is proved in section five. In the last section, we discuss the relation between the first eigenvalue of the Dirac operator and \(\lambda\) constant of the \(F(g, f)\) functional on spin manifolds.
2. PRELIMINARY

In this section we will discuss the relationship between the Laplace operator between the warped product space and its fibre. The material below is standard (see [Lo03]).

Lemma 2.1. Suppose that a Riemannian submersion $p : M \to B$ has compact fibre F. For a smooth function ϕ^M on M, we let $\phi^B = \int_F \phi^M dv^F$. Then we have the following identity

$$\Delta^B \phi^B = \int_F \nabla^2 \phi^M + [\delta N + |\nabla_{hor} \phi^M_M - N|^2 - |\nabla_{hor} \phi^M_M|^2] \phi^M dv^F$$

When the Riemannian submersion is a warped product $M = B \times_f F$, $g^M = g^B + f^2 g^B$, we have

$$\Delta^B \phi^B = \int_F \nabla^2_{hor} \phi^M dv^F + p[\frac{\Delta^B f}{f} + \frac{|df|^2}{f^2}] \phi^B - |N|^2 \phi^B - 2N \phi^B.$$

Proof. The first identity is from [Lo06]. Assume now that M is a warped product. From [BS7], we know that

$$N = \frac{p}{f} \nabla_{hor} f,$$

and

$$\tilde{\delta} N = p[\frac{\Delta^B f}{f} + \frac{|df|^2}{f^2}]$$

where $p = \text{dim} F$. Then,

$$\Delta^B \phi^B = \int_F \Delta^B \phi^M + [\delta N + |\nabla_{hor} \phi^M_M - N|^2 - |\nabla_{hor} \phi^M_M|^2] \phi^M dv^F$$

$$= \int_F \Delta^B \phi^M dv^F + \int_F \delta N \phi^M dv^F + \int_F |N|^2 \phi^M dv^F$$

$$- 2 \int_F < \nabla_{hor} \phi^M, N > dv^F$$

Since in the warped product space, δN, $|N|^2$ are constants on the fibre, we have

$$\Delta^B \phi^B = \int_F \Delta^B \phi^M dv^F + (\delta N + |N|^2) \phi^B - 2 \int_F < \nabla_{hor} \phi^M, N > dv^F$$

Since we know (see [Lo06]) that

$$N \phi^B = \int_F (< \nabla_{hor} \phi^M, N > - |N|^2 \phi^M) dv^F,$$

we have

$$\Delta^B \phi^B = \int_F \Delta^B \phi^M dv^F + (\delta N - |N|^2) \phi^B - 2N \phi^B$$

$$= \int_F \Delta^B \phi^M dv^F + (p \frac{\Delta^B f}{f} + p(1-p) \frac{|df|^2}{f^2}) \phi^B - 2N \phi^B.$$
3. Proof of Theorem 1.1

Let λ_1^M and ϕ^M be the first eigenvalue and the eigenfunction of the Laplacian on M respectively, i.e.,

$$\Delta^M \phi^M = -\lambda_1^M \phi^M .$$

Similarly, we define $\lambda_1^B, \phi^B, \lambda_1^F$, and ϕ^F respectively. Then for $u = \phi^B \phi^F$, we have

$$\Delta^M u = -\lambda_1^B u - \lambda_1^F u - \langle \nabla_{\text{hor}} u, N \rangle .$$

Recall that

$$\bar{\lambda}_F = \sup_{b \in B} \lambda_1^F (b).$$

By definition, we have

$$\lambda_1^M = \inf_{\{u \neq 0\}} \frac{\int_M -\Delta^M u, u}{\int_M u^2} .$$

Hence

$$\lambda_1^M \leq \lambda_1^B + \bar{\lambda}_F + \frac{\int_M < \nabla_{\text{hor}} u, N > u}{\int_M u^2} .$$

Define

$$A_1 = \frac{1}{2} \sup_M (\sum -\nabla_{e_\alpha} < N, e_\alpha >) .$$

Then we have

$$\lambda_1^M \leq \lambda_1^B + \bar{\lambda}_F + A_1 .$$

This is the upper bound for λ_1^M.

We now give a lower bound for λ_1^M. Note that

$$-\Delta^M \phi^M = \lambda_1^M \phi^M .$$

For simplicity, we let $u = \phi^M$. Then we have

$$-\lambda_1^M u = \nabla_{\text{hor}}^2 u + \Delta^F u - \langle \nabla_{\text{hor}} u, N \rangle .$$

Integrating over the fiber F, we have

$$-\lambda_1^M u^B = \int_F \nabla_{\text{hor}}^2 u - \int_F < \nabla_{\text{hor}} u, N > dv^F .$$

By Lemma 2.1, we have

$$-\lambda_1^M u^B = \Delta^B u^B - (p \frac{\Delta^B f}{f} + p \frac{|df|^2}{f^2}) \phi^B - N u^B .$$
Multiplying both sides of the equation above by u^B and taking integration on B, we get

$$
\lambda_1^M \int_B |u^B|^2 dv^B = \int_B (|\nabla_B u^B|^2 dv^B - \frac{1}{2} \int_B Nu^2_B dv^B \\
+ \int_B p\left[\frac{\Delta_B f}{f} + \frac{|df|^2}{f^2} \right] u_B^2 dv^B
= \int_B |\nabla_B u^B|^2 dv^B - \frac{1}{2} \int_B <\nabla_{hor} u_B^2, -\frac{B}{f} \nabla_{hor} f > dv^B \\
+ \int_B p\left[\frac{\Delta_B f}{f} + \frac{|df|^2}{f^2} \right] u_B^2 dv^B
= \int_B |\nabla_B u^B|^2 dv^B - \frac{p}{2} \int_B u_B^2 \left(\frac{\Delta_B f}{f} - \frac{|f|^2}{f^2} \right) \\
+ \int_B p\left[\frac{\Delta_B f}{f} + \frac{|df|^2}{f^2} \right] u_B^2 dv^B
= \int_B |\nabla_B u^B|^2 dv^B + \int_B \left(\frac{p}{2} \frac{\Delta_B f}{f} + \frac{3p}{2} \frac{|df|^2}{f^2} \right) u_B^2 dv^B.
$$

Let

$$
c = \inf f \left(\frac{p}{2} \frac{\Delta_B f}{f} + \frac{3p}{2} \frac{|df|^2}{f^2} \right)
$$

Then we have

$$
\lambda_1^M \geq \lambda_1^B + c.
$$

4. PROOF OF THEOREM 1.2

We shall use the same spirit of previous section to get bounds for lambda constants.

Proof. Suppose ϕ^M is the first eigenfunction of the F-functional $F(g, f)$. Then

$$
\lambda_1^M \phi^M = -4\Delta^M \phi^M + R^M \phi^M.
$$

Using the same procedure in last section, we first do integration in the fibre F.

$$
\lambda_1^M \phi^B = -4 \int_F \Delta^M \phi^M dv^F + \int_F R^M \phi^M dv^F
$$

where $\phi^B = \int_F \phi^F dv^F$. From [B87], we know

$$
R^M = R^F + R^B - p(p - 1) \frac{|df|^2}{f^2}.
$$
Since the eigenfunction is positive, we have
\[
\int_F R^M \phi^M dv^F = \int_F (R^F + R^B - p(p-1)\frac{|df|^2}{f^2})\phi^M dv^F
\]
\[
= (R^B - p(p-1)\frac{|df|^2}{f^2})\phi^B + \int_F R^F \phi^M dv^F
\]
\[
\geq (R^B - p(p-1)\frac{|df|^2}{f^2})\phi^B + \frac{1}{f^2}R_0\phi^B.
\]

Then, we multiply both sides by \(\phi^B\), and integrate the result on \(B\). Using the result of the last theorem, we have
\[
\lambda_1^B \int_B (\phi^B)^2 = -4 \int_B \phi^B \left(\int_F \Delta^M \phi^M dv^F \right) dv^B + \int_B \phi^B \int_F R^M \phi^M dv^F dv^B
\]
\[
= 4 \int_B |\nabla^B \phi^B|^2 dv^B + 4 \int_B \left(\frac{p}{2} \frac{\Delta^B f}{f} + \frac{3p}{2} \frac{|df|^2}{f^2} \right) \phi^B dv^B
\]
\[
+ \int_B \phi^B \int_F R^B + R^F - p(p-1)\frac{|df|^2}{f^2})\phi^M dv^F dv^B.
\]
\[
\geq \int_B (\phi^B)^2 dv^B + (c + \frac{1}{f^2}r_0) \int_B (\phi^B)^2 dv^B,
\]
where we have used the notation
\[
c = \inf \left(2p \frac{\Delta^B f}{f} + p(7-p)\frac{|df|^2}{f^2} \right).
\]

5. Related constants

In this section, we shall discuss the relation between the first eigenvalue of the Dirac functional and the lambda constants on spin manifolds.

We now prove Theorem 1.3.

Proof. We consider the Dirac functional
\[
I(u) = \int_M |Du|^2
\]
on the spin manifold \((M, g)\), where \(u\) is the spinor field on \(M\). Using the Lichnorowicz formula
\[
D^2 = \nabla^2 + \frac{R}{4},
\]
we have
\[I(u) = \int_M (|\nabla u|^2 + \frac{R}{4}|u|^2) \]
which is very similar to Perelman’s \(F \)-functional. In fact, using Kato’s inequality
\[|\nabla u| \geq |d|u||, \]
we have
\[I(u) \geq J(g, f) \geq \lambda(g) \]
for \(e^{-f} = |u|^2 \). Let \(\lambda_1^D \) be the first eigenvalue of Dirac operator \(D \), i.e.,
\[Du_D = \lambda_1^D u_D. \]
Then we have
\[\lambda_1^D = I(u_D) \geq \lambda(g). \]

By this inequality, we can get a nice lower bound for \(\lambda_1^D \) by studying \(\lambda(g) \). We believe that this kind of idea should be useful in the study of Dirac operators.

References

[B87] A.L.Besse, *Einstein Manifolds*, Springer-Verlag, Berlin, 1987.

[Cao04] Huai-dong Cao, Richard Hamilton, Tom Ilmanen, *Guassian densities and stability for some Ricci solitons*, http://arXiv.org/abs/math.DG/0404165v1, (7 Apr 2004).

[Chow04] B.Chow, Knopf, *the Ricci flow, an introduction*, AMS providence, Spring, 2004.

[CM04] T.Colding, Minicozzi, III, *Excursion on Geomatric analysis*, 2004.

[Cao07] Xiaodong Cao, *Eigenvalues of \(-\Delta + R/2\) on Manifolds with Nonnegative Curvature Operator*, To appear in Math. Ann., 2007.

[F07] F.Fang and Zhang, *Perelman’s lambda constants and Yamabe constants*, Preprint.

[Ma06] Li Ma, *Eigenvalue monotonicity for the Ricci-Hamilton flow*, Ann.Global.Anal.Geom., 29(2006), no. 3, 287–292.

[Le07] Kazuo Aukutagawa, Mashasi Ishida, C.Lebrun, *Perelman’s invariant Ricci flow and Yamabe invariant of smooth manifold*. Arch.Math, 88(2007),71-76

[Lo03] J.Lott, *Some geometric properties of the Bakry-Émery-Ricci tensor*, Comment.Math.Helv.,78(2003),865-883.

[Lo06] J.Lott, *Remark about scalar curvature and Riemannian submersions*, http://arXiv.org/abs/math.DG/0504421.

[P02] Grisha Perelman, *The entropy formula for the Ricci flow and its geometric applications*, [math.DG/0211159](http://arXiv.org/abs/math.DG/0211159).

[LW] Peter Li, Jiaping Wang, *Comparison theorems of Kähler manifold and positivity of spectrum*, J. Differential Geometry, 69(2005),43-74.

[Sch87] R.Schoen, *Variational theory for the total scalar curvature functional for Riemannian metrics and related topics*, lec.Notes.Math. 1365, 120-154, (1987).

[TP04] P.Topping, *lecture notes on the Ricci flow*, http://www.maths.warwick.ac.uk/topping/RFnotes.html

[W07] G.F.Wang, AGAG, 2006.
Li Ma, Department of Mathematical Sciences, Tsinghua University, Peking 100084, P. R. China

E-mail address: lma@math.tsinghua.edu.cn