Radon concentration measurement in a groundwater in Al-Tuz, Salah Al-Din Governorate using nuclear track detector CN-85

Asia H. Al-Mashhadani¹, Huda Saddi Ali², Rana M.Yas¹ and KararSameen Ali²
¹Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq
²Department of Physics, College of Science, University of Tikrt, Salah Alden, Iraq
E-mail: assia19662006@yahoo.com

Abstract. This work aims to determine the radon concentration in different samples of groundwater in Al-Tuz, Salah Alden. The concentrations of radon were studied in 52 samples for different regions using CN-85 nuclear track detector. The results show that the concentration of radon gas in groundwater were ranged between the lowest value (0.727 Bq/L) in the modern morning well sample (w44) and the highest value (4.001 Bq/L) in the west of the district of Tuz well sample (w47) with an average (1.747). The results were found to be below the allowed limit of radon concentrations ²²²Rn (11.1 Bq/L). The mean annual dose of drinking water was ranged between the lowest value (2.619 μ Sv/y) in sample W44 and the highest value (14.45 μ Sv/y) in the sample W47 with an average (6.292 μ Sv/y). All annual doses of drinking water values in this work were lower than the allowed limit (22.024 μ Sv/y).

Keywords: Radon concentration, water, groundwater, mean annual dose, CN-85 detector.

Introduction

Radiation is generally either natural or man-made for different applications, and human exposure to different levels of radiation [1]. The impact of radiation on the environment in recent years, which can affect the genetic structure of humans and animals, causing genetic defects on the next generations, and that is why the radioactive contamination should have an impact on water and soil can be transmitted through the food chain to humans and animals [2]. The food chain is considered to be the most critical route in the rapid transmission of radioactive contaminants, as the contamination of aggregates in the food chain is polluted and the proportion of radioactive materials such as plants and animals and their products increases. The human body can be contaminated with radioactive materials by eating plants or animal meat that feed on plants that contain radioactive material originating from the main soil [3]. The plant absorbs these materials with other natural materials and is classified in construction as well as drinking water. And fluids where water contains a low dose, air breathing, which is the main source of natural radioactive dose that reaches within the human body and the main source of radon in the Earth's atmosphere resulting from the automatic decomposition of uranium [4]. The aim of this study to measure the concentration of radon (Rn-222), in the groundwater samples in Al-Tuz using the nuclear track detector CN-85.

1. Theoretical concepts

The measurement of radon concentration is based on identifying the constant K, which is basically related to the geometry of the chamber used in irradiation process. The constant K can be related to the number of tracks formed in the detector using the following equation [5].

\[\rho = KCT \]

(1)
where \(\rho \) is the track density (Tr/cm\(^2\)), \(K \) is the diffusion constant measured by length unit (cm), \(C \) is the concentration of radon in the air space of the irradiation chamber, in (Bq/cm\(^3\)), \(T \) is the irradiation time in (s) and \(D \) is the track density rate (Tr.cm\(^{-2}\).s\(^{-1}\)) which could be given by the following equation [6].

\[
D = \frac{\rho}{T} = KC
\]

(2)

for the cylindrical chamber of U- shape, \(K \) can be given by [5]

\[
K = \frac{1}{4} r (2 \cos \theta_c - r/R) \quad (3)
\]

where \(r \) is the half of the cylindrical tube of 2.4 cm diameter. \(\theta_c \) critical angle of CN-85 detector for particle occurrence. The critical angle of CN-85 is about 25\(^\circ\). \(R_\alpha \) is the range of alpha particles emitted into the air, which is equal to 4.15 cm[5]. Consequently, replace the values above with the parameters in eqn. (3), the constant propagation (\(K \)) of the cylindrical tube used to be (0.454 cm) was found using the CN-85 reagent. Consider Eqs. (2) and (3), and the intensity of the path the track density rate (Tr.cm\(^{-2}\).s\(^{-1}\)) is:

\[
D_{Rn} = \frac{1}{4} C r (2 \cos \theta_c - r/R_\alpha)
\]

(4)

By which the concentration of radon in the air space of the cylindrical chamber C (Bq.m\(^{-3}\)) can be estimated. Finally the concentration of radon content within the samples (Cs) can also be calculated using the following equation [6]:

\[
C_s = \lambda_{Rn} C h \frac{t}{L}
\]

(5)

where \(\lambda_{Rn} \) is radon decay constant \(\frac{\ln 2}{T_{1/2}} = 0.1814 \text{ d}^{-1} \), \(h \) the distance between the sample surface and the exposed surface of the detector = 9.5 cm, \(L \) sample thickness in the irradiation chamber = 1.5 cm and \(t \) the exposure time (60 d).

Annual Effective Dose for radon in the water samples(AED\(_W\)) [7]

\[
AED_W \left(\frac{Sv}{y} \right) = C_s C_{Rw} D_{Cw}
\]

(6)

where \(C_s \) (Bq/L) is the radon concentration in a groundwater, \(D_{Rw} \) the annual consumption rate of water is equal(720L/y)[7], and \(D_{Cw} \) the conversion factor is equal to(5x10\(^{-6}\)Sv/Bq).

2. Method and materials

Detector CN-85 of thickness 200\(\mu \)m and dimension 1\(\times \)1 cm\(^2\) is exposed to groundwater samples for 60 days. The nuclear track detector CN-85, considering long term measurement technique, has been used to investigate the tracks of alpha particles emitted by radon gas released from the sample.

2.1 Samples collection

A total of 52 samples of groundwater were collected for different areas in Al-TuzKhurmatu, Salah –Al-Din Governorate (geographic coordinates between 34º53N 44º38E) and presented in table 1 and showed in Fig.1. Each sample size was 1L and then (5 g) of each sample was put in a detection process. Place granular samples in U-shaped cylindrical irradiation chambers with an opening diameter of 2.38 cm. The rooms were tightly closed and left for 22 days to obtain an earthly balance of up to 98% between
radon and radium decomposed from the contents of the sample. After 22 days, in order to prevent the decomposing radon from the room area, the room covers were quickly replaced. The CN-85 reagents were sealed under tightly closed covers, while the distance between the detectors was maintained at about 9.5 cm to prevent access to the detector. Therefore, the irradiation process was continued for 60 days, and then detectors pieces were raised from the irradiation chambers and chemically etched to reveal the alpha tracks released by radon content within the samples. Then the set of detectors were etched by aqueous NaOH solution of(2.5 N) at 60±1C. The number and density of the tracks were accounted using an optical microscope. The radiation background is measured for the same duration time that of (60 days) using same irradiation chamber with no sample.

Table 1. The most important information about the wells and their locations between 34^º53N and 44^º38E geographic coordinates.

No.	Well location	Depth of well (m)	History of drilling well	Uses
1	Near the southern control of Tuz	105	2004	The gravel and sand factory
2	Near the village of Yekja	110	2014	Animal Husbandry
3	East of Yenjka village	120	2008	The gravel and sand factory
4	Between the village of Jaragli and the village of Yenjka	120	2006	The gravel and sand factory
5	Between the district of Tuz and the village of Gardagli	100	2015	Animal husbandry and agriculture
6	North of Gardagli village	100	1990	Agriculture
7	South of Gardagli village	72	2009	Agriculture
8	Downtown Gardagli Village Village	70	2009	Drink
9	West of Gardagli village	70	2008	Animal husbandry and agriculture
10	North of Bustamli village	100	2010	Agriculture
11	West of Qarnaz village	40	2013	Agriculture
12	South of Karnaz village	100	1970	Drink
13	North of the village of Albu Hassan	91	2011	Agriculture
14	Between Amri and Qarnaz villages	87	2011	Animal husbandry and agriculture
15	The middle of an old man's hand	80	2011	Agriculture
16	Near the village of Shukr	145	2002	Agriculture
17	Near the village of Wadi	88	1988	Agriculture
18	Near the hand of my husband	120	2007	Animal Husbandry
19	Al - Tayyar District	85	2009	Agriculture
20	Inside Brougli Village	155	1973	Drink
21	North of Braugli village	155	1999	Animal husbandry and agriculture
22	Imam Ahmed Tuz neighborhood	65	2009	Firefighting
23	Imam Ahmed neighborhood	90	2012	Cultivation and drinking
24	The Shrine of the Imam Ahmed A.	95	2000	Wash
25	West of Tuz			Block Factory
26	Cox Village	71	2004	Drink
27	North of Cox	90	2012	Drink
28	Khadasarhi Village	55	2016	Agriculture
29	North Solomon Peck	83	2013	Block Factory
30	Near Solomon Beck	112	2009	Block Factory
31	Central Solomon Beck	105	2013	Block Factory
32	West Solomon Bek	100	2015	Agriculture
33	North of the district of Tuz	144	2012	Agriculture
34	East of the district of Tuz	138	2013	Animal husbandry and agriculture
35	West of the district of Tuz	125	2010	Drink
36	West of the district of Tuz	120	2010	Drink
3. Results and discussion

One of the sources that forms large risk on the human being life and it is so important to determine it is the radon gas inhalation from different types of materials into the human body. Table 2 shows the intensity of the tracks (ρ) using Equation 2 in ground water samples and the radon concentration in both the space air of irradiation chamber using Equation (3) and within the groundwater samples used Equation (4). It is shown that the radon concentration values ranged between the lowest value (0.72 Bq/L) in the sample (W44) and the highest value (4.00 Bq/L) in the sample (W47) with the average (1.74784), its less than the value of the global limit of radon concentrations Rn-222 (11.1 Bq/L)[8]. The mean annual dose of drinking water(AEDw) were calculated using equation (6). Fig.3 shows the lowest AEDw value (2.62 μSv/y) in sample (W44) and the highest value (14.41 μSv/y) in the sample (W47) with the average (6.29 μSv/y), results of AEDw were lower than the allowed value 1 mSv/year[9]. The spatial variations in radon concentration in wells water could be a function of the geological structure of

![Figure 1: The locations of studied samples](image_url)
the area, depth of the water in the well and also differences in the climate, geo-
hydrological processes that occur in the area and the age of well.

Table 2: The intensity of the effects and concentration of the radon in the sample and the concentration of radon in the aerobic space as well as the annual effective dose of radon

Sample ID	Intensity of effects (track/mm²)	Radon concentration in the sample (Bq/L)	Concentration of radon in aerobic space (Bq/L)	AEDw (µ Sv/y)
1	10964.29	2.94	0.26	10.58
2	4642.86	1.24	0.11	4.48
3	4428.57	1.19	0.10	4.27
4	3285.71	0.88	0.08	3.17
5	6142.86	1.65	0.14	5.93
6	6000.00	1.61	0.14	5.79
7	5607.14	1.50	0.13	5.41
8	8892.86	2.38	0.21	8.58
9	3142.86	0.84	0.07	3.03
10	5500.00	1.47	0.13	5.31
11	3785.71	1.01	0.09	3.61
12	6071.43	1.63	0.14	5.86
13	4464.29	1.20	0.11	4.31
14	3535.71	0.95	0.08	3.41
15	3107.14	0.83	0.07	3.00
16	4821.43	1.29	0.11	4.65
17	9892.86	2.65	0.23	9.55
18	6035.71	1.62	0.14	5.82
19	5892.86	1.58	0.14	5.69
20	7678.57	2.06	0.18	7.41
21	6642.86	1.78	0.16	6.41
22	6607.14	1.77	0.16	6.38
23	5678.57	1.52	0.13	5.48
24	4571.43	1.23	0.11	4.41
25	3000.00	0.80	0.07	2.89
26	7071.43	1.90	0.17	6.82
27	4607.14	1.23	0.11	4.45
28	5357.14	1.44	0.13	5.17
29	9107.14	2.44	0.21	8.79
30	5285.71	1.42	0.12	5.10
31	5142.86	1.38	0.12	4.96
32	6642.86	1.78	0.16	6.41
33	4678.57	1.25	0.11	4.51
34	3892.86	1.04	0.09	3.76
35	8107.14	2.17	0.19	7.82
36	3821.43	1.02	0.09	3.69
37	12250.00	3.28	0.29	11.82
38	10107.14	2.71	0.24	9.75
39	5214.29	1.40	0.12	5.03
40	4857.14	1.30	0.11	4.69
41	7964.29	2.13	0.19	7.69
42	6857.14	1.84	0.16	6.62
43	6964.29	1.87	0.16	6.72
44	2714.29	0.73	0.06	2.62
45	11571.43	3.10	0.27	11.17
46	7464.29	2.00	0.18	7.20
47	14928.57	4.00	0.35	14.41
48	13000.00	3.48	0.31	12.54
49	9428.57	2.53	0.22	9.10
50	7000.00	1.88	0.17	6.75
51	6928.57	1.86	0.16	6.69
52	7714.29	2.07	0.18	7.44
Average Value	6520.6	1.74	0.15	6.29
Figure 2: The concentration of radon in the samples

Figure 3: The annual effective dose.

4. Conclusions

One of the most important conclusions of this work is that the concentrations of radon are increasing in the old wells and with increasing depth. The results of the present study show that the average concentration of radon 222Rnin the ground waters of the city of Tuz Khurmatu city in Salah Al-Din is lower than the values of the allowed values (11 Bq/L) and the mean annual dose of drinking water lower than the allowed value (1 mSv/year) [9].

References

[1] Al-Mazuri, N. S. M., 2000 M. Sc. Thesis, Coll. of Engineering, Univ. of Baghdad.

[2] Colmenero Sujo, L., Montero Cabrera, M. E., 2004 *Journal of Environmental Radioactivity* **77** 205-219.
[3] Berlin, M. and Rudell, B., 1986 Uranium. In: Handbook on the toxicology of metals. 2nd edition.Elsevier Science Publishers, Amsterdam.623-637.

[4] IAEA International Atomic Energy Agency ,1990 Environment behaviors of radium technical reports 1 310 192.

[5]Ahmed, M. O., 2009 Proceedings of the First Scientific Conference of College of Science, University of Tikrit, Salahuddin, Iraq.

[6] ICRP, 1993 protection against Rn-222 at home and at work, ICRP Publication 65, Annuals of ICRP 23.

[7] Ridha, A. A.,Karim, M. S. andKadhim, N. F., 2014 Civil and Environmental Research 624-30.

[8]Abu-Murad, K.M., Diabat, A.E. and Gharaiba, S.H., 2003Abhath Al-Yarmouk, Basic Sci. & Eng.12 221.

[9] UNSCEAR. 2000 Sources, effects and risks of ionizing radiation United Nations, New York, 1-35.