Gravitino Dark Matter
and General Neutralino NLSP

Jasper Hasenkamp (DESY & Hamburg U.)
at DESY Theory Workshop 2009

DESY

University of Hamburg

Based on arXiv:0908.3399 (with Laura Covi, Stefan Pokorski and Jonathan Roberts)
and DESY-THESIS-2009-016

1st October 2009
Conflict between SUGRA and BBN

- supergravity* (SUGRA) = supersymmetry (SUSY) + general relativity
 - minimal particle content is MSSM + graviton + gravitino $\Psi_{3/2}$
 - $\Psi_{3/2}$ is unique and inevitable prediction of any supersymmetric theory containing gravity!
 - $\Psi_{3/2}$ can be produced in the early universe and has typically long lifetimes $\tau_{3/2} \gg 1$ s (i.e. $\tau_{3/2} \propto M_{pl}^2/m_{3/2}^3$)

- Big Bang Nucleosynthesis (BBN) predicts successfully the light element abundances in the universe
 - Maintaining this success reveals bounds on energy (had/em) emitted by particle decays during or after BBN (i.e. for $t \gtrsim t_{BBN} \approx 1$ s)

Decaying gravitinos may spoil the success of BBN

*We assume that SUGRA is an appropriate low-energy approximation of a more fundamental theory.

‡[Pagels & Primack, 1982 and Ellis, Kim & Nanopoulos, 1984]
Gravitino Dark Matter

1) $\Psi_{3/2}$ is superweakly interacting massive particle (sWIMP)
 ⇒ if $\Psi_{3/2}$ is the lightest supersymmetric particle (LSP), it can be dark matter (DM)

2) If R-parity is conserved, it is stable ⇒ no dangerous $\Psi_{3/2}$ decays

3) **But** next-to-LSP (NLSP) becomes long-lived $\tau_{NLSP} \propto M_{pl}^2 m_{3/2}^2/m_{NLSP}^5$
 ⇒ may in turn spoil BBN

4) large $m_{3/2} \gtrsim 100$ GeV preferable to allow high reheating temperature T_{RH}, while $\Omega_{3/2} \lesssim \Omega_{DM} \sim$ high T_{RH} needed for thermal leptogenesis to produce baryon asymmetry

[Fukugita & Yanagida, 1986 and Buchmüller, Bari, Plumacher, 2005]

⇒ Problem is softened*, but investigation is needed to determine lower bounds on m_{NLSP} and upper bounds on $m_{3/2}$

Bounds on m_{NLSP} and $m_{3/2}$

* $\tau_{NLSP}/\tau_{3/2} \propto m_{3/2}^5/m_{NLSP}^5 \ll 1$, if $\Psi_{3/2}$ is LSP.
Neutralino NLSP

1) neutralino χ is one of the lightest particles within MSSM and thus good NLSP candidate (often χ NLSP $\sim \tilde{B}$)

2) χ is superposition of bino \tilde{B}, wino \tilde{W} and Higgsinos \tilde{H}_u, \tilde{H}_d

3) compute relic density $\Omega_\chi h^2 = \frac{\rho_\chi}{\rho_\text{cr}} h^2$ after freeze-out with micrOMEGAs

4) compute all neutralino decay channels $\chi \rightarrow \Psi_{3/2} + \text{SM particles}$
 to determine τ_χ and branching ratios $B_{\text{had/em}}$

5) m_{NLSP} in TeV range preferred

\implies Find mass bounds and in particular how these are relaxed for different compositions

Bounds on m_χ and $m_{3/2}$ depend on the χ composition

earlier work: [Feng, Su & Takayama, 2004], (cmssm) [Ellis, Olive, Santoso & Spanos, 2004 and Bailly, Choi, Jedamzik & Roszkowski, 2009], (charged slepton) [Steffen, 2006] and many more...
Example branching ratios

left: branching ratio of $\tilde{B} \rightarrow \Psi_{3/2} q\bar{q}$

right: B_{had} for \tilde{B}, \tilde{W}, the maximally mixed case and $\tilde{\gamma}$

- below Z threshold decay dominated by off-shell γ and light quarks preferred due to IR logarithmic enhancement
- B_{had} after Z threshold increased for any state except $\tilde{\gamma}$
1) \(\tilde{W} \) and \(\tilde{H} \) with lower number densities \(\Rightarrow \) larger allowed \(m_{3/2} \)

2) at \(m_\chi \sim 100 \) GeV low \(B_{had} \) for \(\tilde{W} \) and \(\tilde{H} \) could allow \(m_{3/2} \sim \) few GeV

BBN bounds taken from [Jedamzik, 2006]
Results

3) resonant Higgs annihilation $(m_{3/2})_{\text{max, res}} \sim 70 \text{ GeV} \left(\frac{m_\chi}{1.15 \text{ TeV}} \right)^{5/2}$

4) $\chi = \tilde{\gamma}$ does not relax the hadronic constraints

5) sfermion coannihilation is order of magnitude effect for \tilde{B} and small effect for \tilde{W}, \tilde{H}

6) changing $\tan \beta$ has small effect

general χ NLSP extends allowed $m_{3/2}$ by about one order of magnitude
substantial hierarchy remains necessary
thermal leptogenesis and $\Psi_{3/2}$ DM stay hardly reconcilable Higgs resonance region with lowered $m_\tilde{g} \sim m_\chi$, $m_{3/2} \sim 70$ GeV \tilde{W} NLSP just above LEP bound with small $m_\tilde{g}$, $m_{3/2}$ of a few GeV

possibilty of producing $\Omega_{3/2}$ by χ NLSP decays* is excluded for LHC region

light χ (except \tilde{W} with degenerate chargino) would be difficult to reconcile with $\Psi_{3/2}$ DM and thermal leptogenesis with conserved R-parity

* [Feng, Rajarama & Takayama, 2003]
Motivation

Gravitino Dark Matter and Neutralino NLSP

and LHC?

- gluino mass parameter should be smaller than 2 TeV
 -> main observable E_{miss} in cascade decays as with χ_{DM}
- resonant annihilation region needs precise measurements of m_A and m_{χ}
- \tilde{W}, \tilde{H} NLSP easier to identify due to nearly degenerate charginos
 -> difficult to proof $\Omega_{\chi} \ll \Omega_{\text{DM}}$ with LHC alone

\Rightarrow hard to disentangle χ_{LSP} and DM from $\Psi_{3/2}$ DM with χ NLSP

Results and LHC

large m_{χ} and enhanced NLSP annihilation (like Higgs resonance) may be first phenomenological signal for $\Psi_{3/2}$ DM at colliders