INTRODUCTION

According to the WHO statistics, about 80% of African populations use traditional medicine for their primary health care. In recent years, there has been a remarkable rise of medicinal plant’s use, probably due to their local abundance, cultural significance and inexpensive procurement [1]. An urgent need to develop national pharmacopoeia, monographs of medicinal plants, and national standards and guidelines has been emphasized [2]. It has been reported that of 121 anticancer drugs used today, 90 are derived from plants. In addition, 60% of new drugs introduced between 1981 and 2002 are plants derived [3]. Although, the development of new active natural drugs requires integration of several sciences such as botany, chemistry and pharmacology, recording how a plant is used in folk medicine by an ethnic group is the major common strategy [4]. In addition, ethnobotanical studies play an important role for the conservation and valorization of biological resources [5].

Medicinal plants have been used in Algeria for centuries to treat different ailments. Although Algeria is one of the richest Arab countries with 3164 plant species [6], few ethnobotanical studies have been carried out in the country [7,8]. In South of Algeria, the Sahara, one of the world-largest deserts, local populations still relay on traditional healers for their health care. Thus, the aim of this study was to document and analyze the local knowledge of medicinal plants’ use by traditional healers in South-west Algeria.

MATERIALS AND METHODS

Study Area

Sahara, the world’s largest non-polar desert covers 84% of the total Algerian area (2.381.741 km²). The ethnobotanical survey was conducted in two Saharian regions of South-west of Algeria: Adrar and Bechar. In total, 22 local traditional healers were interviewed using semi-structured questionnaire and open questions. Use value (UV), fidelity level (FL), and informant consensus factor (FIC) were used to analyze the obtained data. Results: Our results showed that 83 medicinal plants species belonging to 38 families are used by traditional healers from South-west of Algeria to treat several ailments. Lamiaceae, Asteraceae, Apiaceae, and Fabaceae were the most dominant families with 13, 8, 6, and 4 species, respectively. Leaves were the plant parts mostly used (36%), followed by seeds (18%), aerial parts (17%) and roots (12%). Furthermore, a decoction was the major mode of preparation (49%), and oral administration was the most preferred (80%). Thymus vulgaris L. (UV = 1.045), Zingiber officinale Roscoe (UV = 0.863), Trigonella foenum-graecum L. (UV=0.590), Rosmarinus officinalis L. (UV = 0.545), and Ruta chalepensis L. (UV = 0.5) were the most frequently species used by local healers. A great informant consensus has been demonstrated for kidney (0.727), cancer (0.687), digestive (0.603), and respiratory diseases. Conclusion: This study revealed rich ethnomedicinal knowledge in South-west Algeria. The reported species with high UV, FL, and FIC could be of great interest for further pharmacological studies.

KEY WORDS: Algeria, ethnobotanical, medicinal plants, phytotherapy, traditional healers, use-value
practicing in the study area, after obtaining their consent. Semi-structured questionnaire and open questions were used to record the use of medicinal plants (vernacular names, ailments treated, parts used, modes of preparation/administration, and ingredients). Local names were given in Arabic and/or in Amazigh or Tergui languages. Botanical identification and authentication were done by Dr. Kada Righi (Department of Agriculture, Faculty of Nature and Life sciences, Mascara University, Algeria). The voucher specimens were prepared and submitted to the LRSBG herbarium (Department of Biology, Faculty of Nature and Life Sciences, Mascara University, Algeria). All the informants were men and their age was 37 ± 11 years.

The ailments reported to be treated using the cited species were grouped into 12 categories [Table 1]. Each citation of a particular part of a particular plant was recorded as one use report. If one informant used a plant to treat more than one disease in the same category, it was considered as a single use-report [11].

Quantitative Analysis

Use-value (UV), fidelity level (FL), and informant consensus factor (FIC) were calculated using the following standard formulas [12]:

Use-value: $UV = \Sigma U/n$

U: Number of use reports cited by each informant for a given plant species,

n: Total number of informants interviewed for a given plant.

Fidelity level (FL): $FL(\%) = (Np/N)*100$

Np: Number of use reports for a given species reported to be used for a particular ailment category,

N: Total number of use reports cited for any given species.

Informant Consensus Factor: $FIC = (Nur–Nt)/(Nur–1)$

Nur: Number of use citations in each category,

Nt: Number of species reported in each category.

RESULTS

Botanical Data, Used Parts, Mode of Preparation, Routes of Administration and Ailments Treated

In this study, 83 medicinal plants species belonging to 38 families [Figure 2] were reported to be used by traditional healers from South-west of Algeria to treat several ailments [Table 2]. In consistence with most of ethnobotanical studies around the world, leaves were the plant parts mostly used (36%) by local healers in South-west of Algeria. In addition, seeds (18%), aerial parts (17%), and roots (12%) were also the most used parts [Figure 3]. We found that a decoction was the major mode of preparation (49%). In addition, different medicinal plants are used as raw (32%), infused (16%), or macerated (3%) [Figure 4]. Oral, topical, inhalation, and nasal routes were the reported ways of administration in the study area. As shown in Figure 5, most herbal remedies in South-west Algeria were...
Table 1: Ailments grouped by different ailment categories

Category	Ailments/disorders	Abbreviation
Kidneys diseases	Stone, infections	KD
Gastro-intestinal diseases	Hemorrhoids, stomach ulcer, stomach-ache, dysentery, colic, gases, constipation, colitis, parasites, hydatic cyst, liver problems, hepatitis, biliary problems, anemia, diarrhoea, toothache	Gisd
Skin diseases	Skin diseases, fungal infections, burns	SD
Cancer	Tumors, cancers, metastases	Can
Endocrine system diseases	Diabetes, goitre, weight loss	ESD
Respiratory tract diseases	Cold, cough, asthma, bronchitis, flu, allergy	RTD
Skeleto-muscular system disorder	Rheumatism, arthritis, inflammation, body pain	SMD
Cardiovascular system diseases	Cholesterol, arthritis, inflammation, body pain, heart problems	CSD
General health	Blood purification, body pain, tonic, psychopathic disorders, systemic healing, systemic problems	Gh
Hair care	Hair loss, hair growth	HC
Nervous system	Depression, anxiety, vertigo, migraine, dementia, depression	NS
Sexual-reproductive problems	Menstrual cramps, infertility, sexual impotence, genycological problems	SRP

Table 2: List of medicinal plants used by traditional healers in South west-Algeria

Botanical name	Part used	Ailment category: N of use reports	Preparation method	Administration	UV
Acacia gummifera Willd. Mimosaceae	Roots	RTSD: 6 (cough, bronchitis)	Infusion	Oral	0.318
Ajuga iva (L.) Schreb. Lamiaceae	Aerial parts	Gisd: 2 (digestive disorders)	Raw	Oral	0.136
Amoides pusilla (Brot.) Breistr. Apiaceae	Fruit	CSD: 1 (hypertension)	Decoction	Oral	0.227
Anacyclus pyrethrum (L.) Lag. Asteraceae/Compositae	Roots	SRP: 2 (female sterility)	Decoction	Oral	0.136
Artemisia absinthium L. Asteraceae	Aerial parts	GISD: 2 (intestines problems)	Raw	Decoction	0.136
Artemisia campestris L. Asteraceae	Aerial parts	RTD: 2 (bronchitis)	Infusion	Oral	0.139
Artemisia herba-alba Asso Asteraceae	Aerial parts	GISD: 7 (stomachache, ulcer)	Decoction	Oral	0.454
Atriplex halimus L. Chenopodiaceae	Seeds	CSD: 2 (hypertension)	Decoction	Oral	0.454
Berberis vulgaris L. Berberidaceae	Roots	CSD: 2 (hypercholesterolemia)	Decoction	Oral	0.318
Borago officinalis L. Boraginaceae	Aerial parts	GISD: 2 (stomachache)	Decoction	Oral	0.136
Carex arenaria L. Cyperaceae	Roots	RTD: 1 (cold)	Infusion	Oral	0.090
Carum carvi L. Apiaceae	Seeds	GISD: 1 (digestive disorders)	Raw	Oral	0.272
Cassia angustifolia VahlFabaceae	Leaves	GISD: 7 (stomachache, constipation, gases)	Infusion	Oral	0.363
Cinnamomum camphora (L.) J.Presl Lauraceae	Leaves	GISD: 2 (hemorrhoids)	Raw	Topical	0.136
Cinnamomum cassia (L.) J.Presl Lauraceae	Bark	RTD: 1 (cough)	Infusion	Oral	0.136

(Contd...)
Botanical name	Part used	Ailment category: N of use reports	Preparation method	Administration	UV
Citrullus colocynthis (L.) Schrad.	Fruits	GISD: 1 (haemorrhoids)	Raw	Topical	0.045
Cucurbitaceae					
Cotula cinerea Delile	Whole	RTD: 1 (pharyngitis)	Raw	Oral	0.181
Asteraceae		GH: 1 (systemic healing)			
		NS: 3 (migraine)			
Cucurbita maxima Duchesne	Seeds	GISD: 1 (stomachache)	Decoction	Oral	0.045
Cucurbitaceae		NS: 1 (migraine)	Raw	Vapor	
Cuminum cyminum L. Apiaceae	Seeds	GISD: 4 (stomachache, gases,	Decoction	Oral	0.272
		constipation)	Raw		
		RTD: 1 (kids cough)	Decoction		
		SRP: 1 (menstrual pain)	Decoction		
Cupressus sempervirens L. Cupressaceae	Aerial	GISD: 2 (bad digestion, intestine	Maceration	Oral	0.090
	parts	disorders)			
Curcuma longa L. Zingiberaceae	Rizhomes	GISD: 1 (liver diseases)	Decoction	Oral	0.067
Cyperus esculentus L. Cyperaceae	Tuber	GISD: 1 (kids appetite)	Raw	Oral	0.045
Daphne gnidium L. Thymelaeaceae	Leaves	HC: 1 (hair loss)	Raw	Topical	0.046
Eucalyptus globulus Labill. Myrtaceae	Leaves	RTD: 3 (flu, cough)	Vapor	Inhalation	0.136
Ferula communis L. Umbelileria/Apicalae	Aerial	SMSD: 1 (fractures)	Decoction	Topical	0.045
Foeniculum vulgare Mill. Umbelileria/Apicalae	Seeds	GISD: 5 (stomachache, colitis, gases)	Infusion	Oral	0.363
Fraxinus angustifolia Vahl Oleaceae	Leaves	CSD: 2 (hypertension)	Raw		
		RTD: 1 (cough)	Decoction		
Globularia alypum L. Globulariaceae	Leaves	GF: 1 (appetite)	Infusion	Oral	0.181
Glycyrrhiza glabra L. Papilionaceae/Fabaceae	Roots	RTD: 10 (laryngitis, bronchitis, cough)	Infusion	Oral	0.500
Haloxylon salicornicum (Moq.) Bunge ex Boiss. Chenopodiaceae	Aerial parts	SMSD: 1 (fractures)	Decoction	Topical	0.045
Hibiscus sabdariffa L. Malvaceae	Aerial parts	GH: 1 (body purification)	Raw	Topical	0.181
Hyoscyamus niger L. Solanaceae	Leaves	SD: 1 (eczema)	Raw	Oral	0.045
Juglans regia L. Juglandaceae	Fruits	GISD: 1 (obesity)	Infusion	Oral	0.045
Juniperus phoenicea L. Cupressaceae	Leaves	GISD: 9 (stomach pain, gases)	Decoction	Oral	0.500
Laurus nobilis L. Lauraceae	Leaves	CSD: 1 (heart disease)	Raw		
		RTD: 1 (apnoea)	Decoction		
Lavandula latifolia Medik. Lamiaceae	Flowers	CSD: 2 (hypertension)	Decoction	Oral	0.045
		SRP: 3 (female sterility, lactogene)	Raw	Oral	0.272
Lavandula stoechas L. Lamiaceae	Leaves	RTD: 2 (kids cough)	Decoction	Oral	0.090
Lawsonia inermis L. Lythraceae	Leaves	GISD: 1 (gases)	Infusion	Oral	0.272
Lepidium sativum L. Cruciferace/Brassicaceae	Seeds	ESD: 1 (diabetes)	Infusion	Oral	0.363
		RSD: 2 (bronchitis)	Raw	Oral	
		ESD: 1 (diabetes)	Raw	Oral	
		CSD: 1 (hypertension)	Decoction	Topical	
(Contd...)		SMSD: 1 (rheumatism)			
Botanical name	Part used	Ailment category: N of use reports	Preparation method	Administration	UV
-------------------------------	-----------	-----------------------------------	--------------------	---------------	-----
Linum usitatissimum L. Linaceae	Seeds	GISD: 3 (digestive disorders)	Raw	Oral	0.363
		CSD: 2 (hypertension)			
		RTD: 2 (allergy)			
		ESD: 1 (diabetes)			
Lippia citriodora (Palau) Kunth Verbenaceae	Leaves	GISD: 1 (colitis)	Infusion	Oral	0.045
		CSD: 2 (hypertension)			
		RTD: 2 (allergy)			
		ESD: 1 (diabetes)			
Lupinus albus L. Fabaceae/Leguminoseae	Seeds	ESD: 4 (diabetes)	Raw	Oral	0.181
Marrubium vulgare L. Lamiaceae	Aerial parts	SMSD: 1 (arthritis)	Decoction	Topical	0.045
		RTD: 1 (cold)			
Matricaria discoidea DC. Asteraceae/compositae	Aerial parts	RTD: 3 (cough, Flu)	Infusion	Oral	0.227
		GISD: 1 (appetite)	Decoction	Oral	
		CSD: 1 (cardiac diseases)			
Myrtus communis L.Myrtaceae	Seeds	GISD: 4 (gases, parasites)	Decoction	Oral	0.227
		RTD: 1 (flu)			
Nerium oleander L.Apocynaceae	Leaves	SD: 1 (furuncle)	Raw	Topical	0.045
Nigella sativa L. Ranunculaceae	Seeds	RTD: 4 (cough, bronchitis)	Raw	Oral	0.181
		GH: 2 (systemic healing)			
Ocimum basilicum L. Lamiaceae	Leaves	RTD: 4 (allergy, cough)	Decoction	Oral	0.318
		NS: 2 (sedative)			
		ESD: 1 (goitre)			
Origanum majorana L. Lamiaceae	Leaves	NS: 3 (sedative, migraine)	Decoction	Oral	0.363
		RTD: 2 (allergy, cough, flu)			
		GISD: 2 (obesity)			
Ormenis nobilis (L.) J.Gay ex Coss. & Germ. Asteraceae	Flowers	SD: 3 (wounds)	Decoction	Oral	0227
Parietaria officinalis L. Urticaceae	Leaves	SMDS: 2 (rheumatism)	Decoction/ Oral		0.181
Peganum harmala L. Zygophyllaceae	Roots	NS: 2 (dementia, depression)	Vapor/ Inhalation		0.136
Pimpinella anisum L. Apiaceae	Seeds	GISD: 1 (parasites)	Decoction	Oral	0.410
	Seeds	GISD: 4 (gases, colitis)	Raw	Oral	
		RTD: 3 (kids bronchitis, cough)	Decoction	Oral	
		CSD: 2 (hypertension)	Raw	Oral	
Pinus halepensis Mill. Pinaceae	Leaves	GISD: 2 (stomachache)	Decoction	Oral	0.093
		CSD: 1 (hypertension)	Decoction	Oral	
		RTD: 1 (flu)	Raw	Inhalation	0.046
Pinus martima Mill. Pinaceae	Leaves	GISD: 5 (stomachache, colitis)	Raw/ decocction	Oral	0.363
Pistacia lentiscus L.Anacardiaceae	Leaves	SD: 2 (skin diseases)	Raw/ Infusion/ Oral		0.227
		RTD: 1 (bronchitis)	Decoction	Oral	
Prunus persica (L.) Batsch Rosaceae	Leaves	Can: 4 (cancers)	Raw/ decocction	Oral	
Quercus infectoria G.OlivierFagaceae	Aerial parts	GISD: 1 (colon)	Decoction	Oral	0.181
Rhamnus alaternus L.Rhamnaceae	Leaves	GISD: 3 (hepatitis)	Maceration/ Topical		0.136
Rhamnus purshiana DC. Rhamnaceae	Barks	RTD: 2 (pharyngitis)	Decoction/ Oral		0.093
Rosa canina L.Rosaceae	Flowers	RTD: 1 (cough)	Decoction	Oral	0.045
Rosmarinus officinalis L.Lamiaceae	Leaves	SRP: 5 (menstrual problems)	Decoction	Oral	0.545
		CSD: 3 (hypertension)	Infusion	Oral	
		NS: 2 (memory)			
Rubia tinctoria Salisb.Rubiaceae	Roots	GISD: 1 (Anaemia)	Decoction	Oral	0.045

(Contd...)
Botanical name	Part used	Ailment category: N of use reports	Preparation method	Administration	UV
Ruta chalepensis L. Rutaceae	Leaves	GISD: 4 (intestine disorders, liver problems) NS: 2 (vertigo) ESD: 2 (diabetes) SMISD: 1 (gout)	Infusion	Oral	0.409
Salvia officinalis L. Lamiaceae	Flowers	GISD: 3 (digestive disorders) SRP: 2 (ovary inflammation, menstrual problems) CSD: 1 (hypertension)	Decoction	Oral	0.272
Satureja calamintha (L.) Scheele Lamiaceae	Leaves	Fev: 1 (fever)	Maceration	Oral	0.090
Sesamum indicum L. Pedaliaceae	Seeds	GISD: 1 (stomachache)	Decoction	Oral	0.045
Stipa tenacissima L. Poaceae/ Graminaceae	Whole	NS: 1 (memory strength) GID: 1 (weight loss) ESD: 1 (diabetes)	Raw	Oral	0.045
Teucrium polium L. Lamiaceae	Leaves	GID: 1 (gases) SRP: 2 (female sterility)	Decoction	Oral	0.045
Thymus vulgaris L. Lamiaceae	Whole	RTD: 16 (bronchitis, laryngitis, allergy, flu, cough) GID: 4 (colon disorders, diarrhoea) CSD: 2 (hypertension) ESD: 1 (diabetes)	Decoction	Oral	1.045
Thypha angustifolia L. Typhaceae	Seeds	GID: 2 (haemorrhoids) Fev: 1 (fever)	Decoction	Oral	0.136
Trigonella foenum-graecum L. Fabaceae/Leguminoseae	Seeds	GID: 5 (appetite, hepatitis) GH: 4 (tonic) ESD: 2 (diabetes) CSD: 1 (increasing immunity) IS: 1 (increasing immunity)	Raw	Oral	0.590
Triticum durum Desf. Poaceae/ Graminaceae	Seeds	GID: 1 (colon)	Raw	Oral	0.045
Triticum repens L. Poaceae/ Graminaceae	Roots	KD: 3 (diuretic)	Decoction	Oral	0.318
Urtica dioica L. Urticaceae	Aerial parts	RTD: 1 (cough) GID: 3 (weight gain, anemia) CSD: 2 (diabetes)	Decoction	Oral	0.045
Viscum album L. Loranthaceae	Leaves	SRP: 2 (breast milk secretion) SMISD: 2 (fractures)	Raw	Oral	0.181
Vitex agnus-castus L. Lamiaceae	Leaves	SRP: 2 (internal uterine cold)	Raw	Oral	0.090
Zingiber officinale Roscoe Zingiberaceae	Roots	RTD: 9 (cough, flu, allergies) GH: 4 (systemic problems) GID: 2 (digestive disorders, liver diseases) CSD: 2 (cardiac diseases) SRP: 2 (aphrodisiac)	Infusion/ Macceration	Oral	0.863
Ziziphus lotus (L.) Lam. Rhamnaceae	Roots	ESD: 1 (diabetes)	Infusion	Oral	0.318
Zygophyllum cornutum Coss. Zygophylaceae	Leaves	SRP: 1 (infections) GID: 1 (stomachache) ESD: 1 (diabetes)	Decoction	Oral	0.090

KD: Kidney diseases, GISD: Gastrointestinal system diseases, SD: Skin diseases, ESD: Endocrine system diseases, RTD: Respiratory tract diseases, SMISD: Skeleto-muscular system disorders, CSD: Cardiovascular system diseases, GH: General health, HC: Health care, NS: Nervous system, SRP: Sexual-reproductive problems
administered orally (80%). Furthermore, as shown in Table 3, out of the 83 cited plants, 45 species are administered with other ingredients such as other plants (66%) or non-plant-adjuvants (34%) such as olive oil, honey, milk, sugar, yogurt, or eggs. Honey is the adjuvant most added to different herbal remedies in South-west of Algeria (53%). Regarding the treated ailments, 35 species are reported to be used to treat more than one disease. According to our results, gastrointestinal disorders were the most commonly treated ailments with medicinal plants in south-west Algeria (33.6%), they were followed by respiratory diseases (23%) and cardiovascular diseases (9%).

Quantitative Analysis

UV of cited plants ranged from 0.045 to 1.045. The most commonly used species were Thymus vulgaris L. (UV = 1.045), Zingiber officinale Roscoe (UV = 0.865), Trigonella foenum-graecum L. (UV = 0.590), Rosmarinus officinalis L. (UV = 0.545), Ruta chalepensis L. (UV = 0.5), Glycyrrhiza glabra L. (UV = 0.5), A. herba-alba Asso (UV = 0.545), Atriplex halimus L. (UV = 0.545), and Pimpinella anisum L. (UV = 0.41).

The FIC reflects homogeneity of information provided by different informants regarding medicinal species used to treat a category of ailments. High FIC is correlated to species could be efficient in treating particular ailment [13]. Therefore, species with high FIC are to be prioritized for further pharmacological and phytochemical studies. As shown in Table 4, the highest FIC were found for kidney (0.727), cancer (0.687), digestive (0.605) and respiratory diseases (0.627). Four species are used to treat kidney diseases (KD) by local healers in South-west Algeria: Lawsonia inermis L. (topical use of leaves to treat cystitis), Parietaria officinalis L. (decoction of leaves is taken orally to treat kidney stones), Triticum repens L. (decoction of roots is used orally as diuretic) and Ziziphus lotus (L.) Lam. (fruits taken orally).

Cancer is ranked second regarding the FIC, demonstrating that local pharmacopeia could provide species with promising anticancer activities. Six species are used to treat different cancers: Roots of Anacyclus pyrethrum (L.) Lag., T. repens L. and Berberis vulgaris L., the whole Lepidium sativum L., seeds of A. halimus L. and leaves of Prunus persica (L.) Batsch.

To determine the most frequent species used for each ailment category, we calculated the FL. According to our results [Table 5], four species had the highest FL of 100%: Eucalyptus globulus Labill. (leave’s vapor is inhaled for a cough and
Table 3: Ingredients added for the preparation of herbal medicines by the local traditional healers

Botanical name	Other plants added in medicinal preparation	Other ingredients added
Cuminum cyminum	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Schrad.		
Citrullus colocynthis J.Presl	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Ammoides pusilla (Brot.) Breistr.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Anacyclus pyrethrum (L.) Lag.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Aristolochia longa L.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Berberis vulgaris L.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Carex arenaria L.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Carum carvi L.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Cinnamomum camphora (L.) J.Presl	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Cinnamomum cassia (L.) J.Presl	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Citrus limon (L.) Osbeck	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Linum usitatissimum L.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Prunus persica (L.) Batsch	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Pimpinella anisum L.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Siccardia floribunda Willd.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Thymus vulgaris Bunge ex Boiss.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey
Viscum album L.	Anacyclus pyrethrum (L.) Lag. Glycyrrhiza glabra L. Lepidium sativum L. Nigella sativa L. Vitex agnus-castus L. Zingiber officinale Roscoe	Honey

Table 3: (Continued)

Botanical name	Other plants added in medicinal preparation	Other ingredients added
Linum usitatissimum L.	Lawsonia inermis L. Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Lupinus albus L.	Lawsonia inermis L. Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Marrubium vulgare L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Mentha pulegium L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Nigella sativa L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Origanum majorana L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Parietaria officinalis L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Pimpinella anisum L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Pimpinella anisum L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Pistacia lentiscus L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Prunus persica (L.) Batsch	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Quercus infectoria G.Olivier	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Rhamnus alaternus L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Rosa canina L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Rubia tinctoria Salisb.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Ruta chalepensis L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Satureja calamintha (L.) Scheele	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Sesamum indicum L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Thymus vulgaris L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Trigonella foenum-graecum L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Viscum album L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Vitex agnus-castus L.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey
Ziziphus lotus (L.) Lam.	Linum usitatissimum L. Zingiber officinale Roscoe	Honey

(Contd...)
results, seeds of *L. albus* L. are commonly used (as raw) to treat diabetes.

DISCUSSION

In this study, we report the use of 85 medicinal species belonging to 38 families. These findings are in line with those we published recently [7]. Local healers in both North-west and South-West of Algeria reflect that ancestral knowledge is very important with regard to the use of medicinal plants as complementary or alternative medicine. Our results showed that the most predominant families were Lamiaceae, Asteraceae, Apiaceae, and Fabaceae. Same results were reported in oriental Morocco, a region sharing with the study area most of climatic, demographic and geographical characteristics [14]. Furthermore, the predominance of Lamiaceae and Asteraceae is well documented in most of the ethnobotanical studies carried out in North African regions such as Algeria [15,16], Morocco [17], or Egypt [18]. Recently, Ramdane et al. [8] found that Lamiaceae followed by Asteraceae were the most predominant families of medicinal species used by the *Touareg* called “blue men of the Sahara” in extreme South of Algeria. Furthermore, leaves were the most frequent used plant parts. Recently, Benderradji et al. [19] demonstrated that in South-east of Algeria, leaves were the most commonly used parts in the treatment of different ailments. The predominance of leaves in herbal therapies may be attributed to their abundance in the region, and their richness in secondary metabolites produced by photosynthesis. On the other hand, a collection of leaves would be much easier and sustainable than that of roots or flowers [20].

According to our results, the decoction was found to be the major mode of preparation of the reported medicinal species. Similar findings were recently reported in South-east of Algeria (region of Ouargla) [21]. Decoction and infusion are highly valued and often preferred by local healers in Africa [22].

Table 4: FIC for commonly used medicinal plants

Ailment	Nur	Nt	FIC
KD	12	4	0.727
Cancer	17	6	0.687
RTD	87	33	0.627
GISD	127	51	0.603
SRP	24	12	0.521
SD	11	6	0.5
NS	15	9	0.428
GH	20	12	0.421
HC	6	4	0.4
CSD	34	21	0.393
ESD	19	13	0.333
SMSD	6	5	0.2

KD: Kidney diseases, GISD: Gastro-intestinal system diseases, SD: Skin diseases, ESD: Endocrine system diseases, RTD: Respiratory tract diseases, SMSD: Skeleto-muscular system disorders, CSD: Cardiovascular system diseases, GH: General health, HC: Health care, NS: Nervous system, SRP: Sexual-reproductive problems.
formulations. The predominance of oral administration of the different medicinal plants in South-west Algeria is in total agreement with most of the carried out ethnobotanical studies in the country [25,26]. The predominance of oral administration may be explained by a high incidence of internal ailments in the region [5]. On the other hand, it’s thought that oral route is the most acceptable for the patient. 45 species are administered with other plants - (66%) or nonplants-adjuvants. Honey was added in 53% of herbal formulations. Indeed, honey is considered sacred to Muslims and occupies an important place in Islamic medicine [27]. Furthermore, honey is considered as an instant energy source and is often used in Algeria to improve the acceptability of plants having a bitter taste unbearable [7]. In addition, we found that digestive and respiratory diseases were the most commonly treated ailments with medicinal plants. Our results corroborate those reported by Meddour et al. [28] showing that digestive and respiratory diseases were the predominant ailments treated by local populations using medicinal plants of Kabylia (North-west of Algeria). Similar findings were reported in Beni-Souf (Egypt) [29].

Our quantitative analysis showed that T. vulgaris L., Z. officinale Roscoe, T. foenum-graecum L., and R. officinalis L. were the most commonly used species with the highest UVs. T. vulgaris L., Z. officinale Roscoe, and T. foenum-graecum L. were found to be the most used species in North-west Algeria [7]. Our results demonstrate that both North and South regions of West Algeria present high level of similarities regarding the ethnomedicinal knowledge. The two regions share some social and environmental characteristics. Indeed, most of the local healers working in North-west Algeria are from the South-west. Recently, Mikou et al. found that T. vulgaris L., R. officinalis L., and Artemisia herba-alba Asso were the species most commonly used by local populations in Fes (Morocco) [30]. In the current study, the decoction of T. vulgaris L. is reported to be mainly (70%) used in the treatment of respiratory diseases such as bronchitis, laryngitis, allergy, flu, and cough. The plant is considered one of the most important antitussive herbal treatments in North Algeria [31]. The pharmacological properties of the plant have been attributed to a variety of active metabolites such as apigenin, luteolin, p-cymene, borneol, carvacrol, cinmol, linalool, thymol, and triterpenic acids [32].

The high UV of Z. officinale Roscoe was reported in most of the ethnobotanical studies in muslim communities and may be explained by the influence of Islamic traditional medicine since the plant is mentioned in Holy Quran [33].

According to the calculated FIC, cancer is ranked second and is reported to be treated using six species: A. pyrethrum (L.) Lag., T. repens L., Berberis vulgaris L., L. sativum L., A. halimus L., and P. persica (L.) Batsch. Increasing incidence of different cancers in Algeria is well documented [34]. We have recently demonstrated that about 50% of Algerian cancer patients use different medicinal plants to treat and/or manage their illness [25,35].

FL is a useful indicator for identifying the informants’ most preferred species in use for treating different disorders [36]. E. globulus Labill., L. albus L., P. officinalis L., and R. alaternus L. had the highest FL values of 100%. In line with our results, E. globulus Labill. has been reported to possess higher FL for respiratory diseases [37,38]. Furthermore, seeds of L. albus L. are used to treat diabetes.

Indeed, Knecht et al. demonstrated that extracts of the whole seeds resulted in a significant increasing of tolerance to an oral glucose bolus. Furthermore, the extract exhibited a marked antihyperglycemic activity [39]. The antidiabetic effect of the plant may be attributed to the presence of an active protein: Conglutin-γ. The latter has shown in vitro insulin-mimetic effects [40,41].

CONCLUSION

In total, 83 medicinal plants species belonging to 38 families were reported to be used by traditional healers from South-west of Algeria. Our results showed important similarities with findings we previously reported from North-west of Algeria. Plants with high UV could be a promising source of active compounds against several ailments. Similarly, the plants with highest FL were identified and should be further studied regarding their phytochemicals and their biological activities. Furthermore, local healers from South-west Algeria demonstrated high consensus regarding treatment of KD and cancer.

ACKNOWLEDGMENT

The author is grateful to Adrar and Bechar departments’ local healers for sharing their ancestral knowledge throughout the present study.

REFERENCES

1. Thomford NE, Dzobo K, Chopera D, Wonkam A, Skelton M, Blackhurst D, et al. Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceutica1s (Basel) 2015;8:637-63.
2. Chege IN, Okalebo FA, Guantai AN, Karanja S, Derese S. Herbal product processing practices of traditional medicine practitioners in Kenya-key informant interviews. J Health Med Nurs 2015;16:11-23.
3. Prasad S, Tyagi AK. Traditional medicine: The goldmine for modern drugs. Adv Tech Biol Med 2015;3:1-2.
4. Rates SM. Plants as source of drugs. Toxicon 2001;39:603-13.
5. Polat R, Satil F. An ethnobotanical survey of medicinal plants in Edremit Gulf (Balikesir-Turkey). J Ethnopharmacol 2012;139:626-41.
6. Vasisht K, Kumar V. Compendium of Medicinal and Aromatic Plants. Vol. 1. Africa: ICS-UNIDO, Trieste; 2004. p. 23-56.
7. Benarba B, Belabid L, Righi K, Bekkar AA, Eloussi M, Khaldi A, et al. Study of medicinal plants used by traditional healers in Mascara (North West of Algeria). J Ethnopharmacol 2015;175:626-37.
8. Ramdane F, Hadj Mahammed M, Didi Ould Hadj M, Chanai A, Hammoudi R, Hillali N, et al. Ethnobotanical study of some medicinal plants from Hoggar, Algeria. J Med Plants Res 2015;9:820-7.
9. Azzi R, Djazi R, Lahf M, Sekkal FZ, Bennmahdi H, Beizakem N. Ethnopharmacological survey of medicinal plants used in the traditional treatment of diabetes mellitus in the North Western and South Western Algeria. J Med Plants Res 2012;6:2041-50.
10. Djellouli M, Moussaoui A, Bennmahdi H, Ziane L, Belabbes A, Badraoui M, et al. Ethnopharmacological study and phytochemical screening of three plants (Asteraceae family) from the region of south West Algeria. Asian J Nat Appl Sci 2013;2:59-65.
27. Al-Rawi S, Fetters MD. Traditional Arabic & Islamic medicine: A conceptual model for clinicians and researchers. Glob J Health Sci 2012;4:164-9.
28. Meddour R, Meddour OS, Derriji A. Medicinal plants and their traditional uses in Kabylie (Algeria): An ethnobotanical survey. Planta Med 2011;77:PF29.
29. Abouzid SF, Mohamed AA. Survey on medicinal plants and spices used in Beni-Suef, Upper Egypt. J Ethnobiol Ethnomed 2011;7:1-6.
30. Mikou K, Rachiq S, Qulidi AJ. Ethnobotanical survey of medicinal and aromatic plants used by the people of Fez in Morocco. Phytothérapie 2016;14:35-43.
31. Hammiche V. Treatment of cough based on traditional Kabylian pharmacopoeia. Phytothérapie 2015;13:358-72.
32. Eraky MA, El-Fakahany AF, El-Sayed NM, Abou-Out EA, Yaseen DI. Effects of Thymus vulgaris ethanolic extract on chronic toxoplasmosis in a mouse model. Parasitol Res 2016;115:2683-71.
33. Ahmed HM. Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah province, Kurdistan, Iraq. J Ethnobiol Ethnomed 2016;12:1-17.
34. Benarba B, Meddah B, Hamdani H. Cancer incidence in North West Algeria (mascara) 2000-2010: Results from a population-based cancer registry. Excli J 2014;13:709-23.
35. Benarba B. Use of medicinal plants by breast cancer patients in Algeria. Excli J 2015;14:1164-66.
36. Kim H, Song MJ, Brian H, Choi K. A comparative analysis of ethnomedical practices for treating gastrointestinal disorders used by communities living in three national parks (Korea). J Evid Based Complement Alternat Med 2014;2014:1-31.
37. Andrade-Cetto A. Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. J Ethnopharmacol 2009;122:163-71.
38. Gómez-Estrada H, Díaz-Castillo F, Franco-Ospina L, Mercado-Camargo J, Guzmán-Ledeza M, Medina JD, et al. Folk medicine in the northern coast of Colombia: An overview. J Ethnobiol Ethnomed 2011;7:27.
39. Knecht KT, Nguyen H, Auker AD, Kinder DH. Effects of extracts of lupine seed on blood glucose levels in glucose resistant mice: Antihyperglycemic effects of Lupinus albus (white lupine, Egypt) and Lupinus caudatus (tailcup lupine, Mesa Verde national park). J Herb Pharmacother 2006;6:89-104.
40. Andrade-Cetto A, Díaz-Castillo F, Núñez-Chávez F. Investigation of hypoglycemic and hypolipidemic effects of an aqueous extract of Lupinus albus legume seed in streptozotocin-induced Type I diabetic rats. Afr J Tradit Complement Altern Med 2015;12:36-42.
41. Terruzzi I, Senesi P, Magni C, Montesano A, Scarafoni A, Luzi L, et al. Insulin-mimetic action of conglutinin, a lupin seed protein, in mouse myoblasts. Nutr Metab Cardiovasc Dis 2011;21:197-205.

© SAGEYA. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited. Source of Support: Nii, Conflict of Interest: None declared.