RETRACTED ARTICLE: Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis

Nima Sanadgola,b, Fereshteh Golabc, Zakiyeh Tashakkorde, Nooshin Taki, Samira Moradikouchid, Ali Mostafain, Mehdi Mehdizadehcf, Mohammad Abdollahih and Mohammad Sharifzadeха

аDepartment of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; бDepartment of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; вCellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran; dMSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran; eMedical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; fDepartment of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; gToxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; hDepartment of Occupational Therapy, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran

ABSTRACT

Context: Ellagic acid (EA) is a natural phenol antioxidant with various therapeutic activities. However, the efficacy of EA has not been examined in neuropathologic conditions.

Objective: In vivo neuroprotective effects of EA on cuprizone (cup)-induced demyelination were evaluated.

Material and methods: C57BL/6J mice were fed with chow containing 0.2% cup for 4 weeks to induce oligodendrocytes (OLGs) depletion predominantly in the corpus callosum (CC). EA was administered at different doses (40 or 80 mg/kg body weight/day/i.p.) from the first day of cup diet. Oligodendrocytes apoptosis (TUNEL assay and myelin oligodendrocyte glycoprotein (MOG)þ/caspase-3þ cells), gliosis (H&E staining, glial fibrillary acidic protein (GFAP)þ cells) and inflammatory markers (interleukin 17 (IL-17), interleukin 11 (IL-11) and stromal cell-derived factor 1 (SDF-1a) or CXCL12) during cup intoxication were examined.

Results: High dose of EA (EA-80) increased mature oligodendrocytes population (MOGþ cells, p < 0.001), and decreased apoptosis (p < 0.05) compared with the cup mice. Treatment with both EA doses did not show any considerable effects on the expression of CXCL12, but significantly down-regulated the expression of IL-17 and up-regulated the expression of IL-11 in mRNA levels compared with the cup mice. Only treatment with EA-80 significantly decreased the population of active macrophage (MAC-3þ cells, p < 0.001) but not reactive astrocytes (GFAPþ cells) compared with the cup mice.

Discussion and conclusion: In this model, EA-80 effectively reduces lesions via reduction of neuroinflammation and toxic effects of cup on mature OLGs. EA is a suitable therapeutic agent for moderate brain damage in neurodegenerative diseases such as multiple sclerosis.

Introduction

Multiple sclerosis (MS) is a multifocal chronic autoimmune inflammatory disease in the central nervous system (CNS) (Trapp & Nave 2008; Romo-Gonzalez et al. 2012; Goodin 2014). It has been hypothesized that auto-reactive lymphocytes pervade the CNS and together with the resident microglia generate local inflammation which leads to further oligodendrocytes (OLGs) damage and demyelination (Stasiolek et al. 2006). Cuprizone (bis-cyclohexanone–oxalylidihydrazone, cup) is a copper chelating agent and is frequently used to study factors that affect OLG death and myelin loss (Abakumova et al. 2015). Cup influences the normal OLG metabolism similar to type III MS lesions and provides primary OLG dystrophy rather than autoimmunity (Prae et al. 2014). It has been shown that inflammation and apoptosis could have harmful effects on brain cell function and natural antioxidants have a determinant role in controlling this process (Zeisel 2004; Lau et al. 2007; Hall et al. 2010). However, detailed evaluation of these natural compounds and their significance in cup model of MS are yet to be understood. Polyphenols present in pomegranate are strong chemopreventive and antioxidant agents but with a short half-life and low bioavailability. For instance, the main pomegranate polyphenol, punicalagin, is not absorbed in its intact form but is hydrolyzed to ellagic acid (EA) moieties. Ellagic acid, a naturally occurring tannic acid derivative, affects the neural cell-fate with its anti-inflammatory, antioxidative stress and anti-depressant properties (Han et al. 2006; Rogerio et al. 2008; Feng et al. 2009; Uzar et al. 2012 Baere et al. 2017). When EA is used orally, it undergoes specific metabolism by the gut microbiota and converts to urolithins that...
are much better absorbed in the gastrointestinal track. The limited in vivo pharmacological information about EA indicates serum elimination half-life 8.4 ± 1.4 h (200 ng/mL, orally) in human (Navindra et al. 2004; Abdul-Wahab et al. 2009) and poor absorption beside rapid elimination in rat after oral administration (Lei et al. 2003). Previous studies have shown that EA regulates inflammatory responses in animal models of experimental colitis (Rosillo et al. 2012), acute lung injury (Favarin et al. 2013) and carrageenan-induced acute inflammation (Nagla et al. 2014). EA has anti-inflammatory properties due to nuclear transcription factor-kappaB (NF-κB) suppression and down-regulation of inducible nitric oxide synthase (iNOS), cyclooxygenases-2 (COX-2), interleukin-6 (IL-6) and tumour necrosis factor α (TNF-α) on colon carcinogenesis in rats (Umesalma & Sudhandiran 2010). No studies to date have addressed the role of EA in cup-induced-specific apoptosis of OLGs and key neuroimmune mediators such as IL-17, IL-11 and CXCL12 during toxic demyelination. In the present study, we provide evidence for the significance of EA as a pivotal therapeutic agent in the neuroinflammatory and neurodegenerative diseases.

Materials and methods

Induction of toxic demyelination

Male C57BL/6 mice of 7–8-weeks with body weight ranging from 18 to 20 g were purchased from Pasteur Institute, Tehran, Iran. The animals had free access to food and water and were maintained on a 12 h light/dark cycle at room temperature (20–22°C). Toxic demyelination was induced by feeding a diet containing 0.2% (w/w) cup mixed into ground standard rodent chow for 4 weeks. All animal manipulations were carried out according to the ethical committee for use and care of laboratory animals of Tehran University of Medical Sciences (TUMS). Every possible effort was made to minimize the number of animals used and their suffering (Sanadgol et al. 2016).

Study design and groups

Twenty-four mice were divided randomly into four groups (n = 6 in each group): (i) control group received normal powdered chow with intraperitoneal (i.p.) injection of 1:9 ratio of dimethyl sulfoxide (DMSO) and phosphate buffered saline (PBS) solution as vehicle every day for 4 weeks; (ii) cup groups were fed with powdered chow mixed with 0.2% cup with i.p. injection of vehicle, every day for 4 weeks; (iii) treatment groups that were divided into two separate subgroups, treated with 40, or 80 mg/kg body weight/day of EA (i.p.) dissolved in vehicle during the 4 week of cup feeding period. Finally, we divided all four groups in two subgroups, three animals per group are fixated and used for staining, and three animals per group are used for biochemical analysis (RNA expression/enzyme-linked immunosorbent assay (ELISA)). The dosages and route used for EA administration were selected based on previous studies (Mishra & Vinayak 2015; Mansouri et al. 2016). All mice were investigated by molecular and histopathological assays. All measurements were performed by an observer blinded to group assignments (Sanadgol et al. 2016).

Tissue preparation and staining

Three animals per group were euthanized using i.p. ketamine (50 mg/kg) and xylazine (4 mg/kg), followed by cervical dislocation and opening the diaphragm. Thereafter, mice were transcardially perfused first with PBS and then with 4% paraformaldehyde (PFA) in PBS (pH 7.4). Brains were dissected from the skull and post-fixed overnight in 4% PFA in PBS at 4°C. The next-day brains were rinsed ice-cold with 30% sucrose in BPS and were embedded in optimal cutting temperature compound (OCT, Tissue Tek, Torrance, CA) and stored at −80°C. Fixed brains were coronally sliced on ice-cold acetone. The sections were air dried and fixed by immersion in cold acetone. The sections were air dried and fixed by immersion in cold acetone. The sections were then incubated with appropriately primary antibody at 4°C overnight followed by washing and further incubation (4 h) with secondary antibodies diluted in antibody buffer (0.1% Triton X-100 in PBS). The sections were then incubated with appropriately primary antibody at 4°C overnight followed by washing and further incubation (4 h) with secondary antibodies diluted in antibody buffer (0.1% Triton X-100 in PBS). The next-day brains were rinsed ice-cold with 30% sucrose in BPS and were embedded in OCT, and collected onto polyethelene oxide (PFA) in PBS (pH 7.4). Brains were dissected from the skull and post-fixed overnight in 4% PFA in PBS at 4°C. The next-day brains were rinsed ice-cold with 30% sucrose in BPS and were embedded in optimal cutting temperature compound (OCT, Tissue Tek, Torrance, CA) and stored at −80°C. Fixed brains were coronally sliced (10 µm thickness) using the floor-standing fully automatic cryostat (MNT-SLE, Mainz GmbH, Germany), and white matter corpus callosum (CC) was identified in accordance with the mouse brain atlas (Sanadgol et al. 2016). Haematoxylin and eosin (H&E) staining was performed to study cup induced reactive gliosis (GFAP/Mac-3-positive cells) and trans-endothelial migration of immune cells in the CC region (Sanadgol et al. 2016). Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) test was used for staining DNA fragmentation using an in situ Cell Death Detection Kit (Roche, Mannheim, Germany) in CC as described previously (Sanadgol et al. 2016).

Immunofluorescence (IFS) labelling

The embedded brains in OCT were serially sectioned (10 µm) in the coronal planes with a cryostat, and collected onto poly-lysine-coated cover slips. The rostral part of CC was used for tissue analysis. The sections were air dried and fixed by immersion in cold acetone. The sections were then rehydrated in PBS and incubated in blocking solution (10% serum from host species of secondary antibody, 0.05% Triton X-100 in PBS) for block non-specific binding, and afterwards incubated in permeabilization buffer (0.1% Triton X-100 in PBS). The sections were then incubated with appropriately primary antibody at 4°C overnight followed by washing and further incubation (4 h) with secondary antibodies diluted in antibody buffer (5% goat serum, 0.05% Triton X-100 in PBS). Primary antibodies were mouse monoclonal antibodies to MOG as mature OLG marker (1:500; Millipore, Billerica, MA), mouse monoclonal antibodies to GFAP as reactivated astrocytes marker (1:100; Santa Cruz Biotechnology, Santa Cruz, CA), rabbit monoclonal antibodies to caspase-3 as a marker of apoptotic cells (1:100; Santa Cruz Biotechnology, Santa Cruz, CA) and rabbit monoclonal antibodies to Mac-3 as an activated microglial marker. The secondary antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) were fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG (1:1000) to detect MOG and GFAP, TR-conjugated goat anti-rabbit IgG (1:1000) to detect caspase-3 and Mac-3. All sections were counterstained with DAPI to visualize the nuclei. Negative controls were obtained by omitting either the primary or the secondary antibody which gave no signal (data not shown). All analyses were examined using a fluorescence microscope (Olympus BX51, Olympus, Center Valley, PA), and images were captured using a digital camera (Olympus DP72, Olympus, Center Valley, PA) (Ramrodi et al. 2015).

Gene expression analysis

Total RNA extraction, cDNA synthesis and quantitative reverse transcription PCR (qRT-PCR) were performed as described previously (Sanadgol et al. 2010; Heidiay et al. 2014). In brief, three animals per group were euthanized as described previously, followed by cervical dislocation and opening the diaphragm. Thereafter, mice were transcardially perfused with PBS and brain removed. After brain removal, rostral CC was dissected on ice and placed in RNAase free tubes, snap frozen and stored at

20°C.
and mRNA was extracted according to the AccuZol™ manufacturer’s instructions (BIONEER, Alameda, CA) and dissolved in 50 μL RNase-free water. Purified RNA samples were converted into cDNA (5 μg per 20 μL reaction volume) using the AccuPower ready-to-use reverse transcription kit (BIONEER, Alameda, CA). Synthesized (1 μg) cDNA was used for SYBR Green-based real-time RT-PCR using 2 × Greenstar qPCP kit (BIONEER, Alameda, CA). For each time point, cDNA was pooled from three mice treated under identical conditions. The primer probe pairs used in this study are indicated in Table 1. Thermocycling parameters were as follows: one cycle at 95 °C for 10 min, one cycle at 95 °C for 20 s and one cycle at 58 °C for 45 s followed by 40 amplification cycles at 95 °C for 30 s. Values from housekeeping gene (β-actin) were used to load normalization for each sample. Relative changes in the expression were determined using the ΔΔCt method relative to gene expression values of the control mice. GenePattern 2.0 was used for the analysis of relative expression patterns (Reich et al. 2006).

ELISA

Mice CC was isolated as described in the gene expression section, then 5 mg of freshly frozen tissue was homogenized using 1 mL of ice-cold lysis buffer containing 50 mM Tris-HCl (pH 8), 150 mM NaCl, 5.0% SDS, 1 mM EDTA and 0.5% sodium deoxycholate supplemented with complete protease inhibitor cocktail (Roche, Mannheim, Germany) and centrifuged twice at 14,000 rpm (22,066 g) for 15 min at 4 °C. Total protein concentrations were determined in the supernatants using the BCA method. The supernatant was filtrated through a 0.45 μm filter (Sigma-Aldrich, St. Louis, MO) and then CXCL12 (sensitivity 0.069 ng/mL), IL-11 (sensitivity 0.008 ng/mL) and IL-17 (sensitivity 0.005 ng/mL) protein levels were measured by a commercially available ELISA kits (R&D systems, Minneapolis, MN) following the instructions from the manufacturer. Standard curve and sample concentrations were calculated based on the mean of triplicates for each dilution or sample (Sanadgol et al. 2012; Sanchooli et al. 2014).

Quantification of parameters

Particular area was defined in the ventral body of CC to evaluate similar topography and avoid errors due to the planes orientation. Cells were counted in the specified areas of matched planes using ImageJ software (version 1.49, NIH, Bethesda, MD).

| Table 1. Sequence of specific primers used for quantitative real-time reverse transcription PCR. |
| Gene name | Primer sequence |
| Caspase-3 | Forward 5′-TCTTACAGGCATCGTGCATATTCC-3′
Reverse 5′-TTCCGTGCACCTTCCTGTCG-3′ |
| MOG | Forward 5′-CAAGAAGAGGCACAGAATGGGAG-3′
Reverse 5′-GGACATGCTGGCGATCGTCG-3′ |
| CXCL12 | Forward 5′-AAACCGATCAATGCGCTGACG-3′
Reverse 5′-GCCCTGGCCAGATGGCG-3′ |
| IL-17 | Forward 5′-ACCCGATTGAAACCCCATGAT-3′
Reverse 5′-TCCCTCCGGGATGCCCACA-3′ |
| IL-11 | Forward 5′-AATTCACGCCAGCAGGAGTACA-3′
Reverse 5′-TCTACTGGGAGGAGCTGACA-3′ |
| β-actin | Forward 5′-GCA TCG TCA CCA ACT GGG AC-3′
Reverse 5′-ACC TGG CCG TCA GGC AGC TC-3′ |

MOG: myelin oligodendrocyte glycoprotein; CXCL12: C-X-C motif chemokine 12; IL-17: interleukin-17; IL-11: interleukin-11; β-actin: beta-actin.

The percentage of cells was determined in CC of control animals. The background was subtracted after importing the images in ImageJ software (NIH, Bethesda, MD). A similar threshold level was set for every image on the dark background and the positive signals were quantified. Two independent and blinded readers performed the scoring, and the results were averaged.

Statistical analysis

The effects of cup and EA doses on different measured parameters (main effects and interaction of these effects) were analyzed using a 2 × 3 (cup × EA doses) two-way analysis of variance (ANOVA). A Bonferroni post hoc test for multiple group comparisons was used and the results were considered significant at p < 0.05.

Results

Inhibitory effects of EA on apoptosis of mature OLGs in CC

After 4 weeks of cup feeding, the amount of myelin oligodendrocyte glycoprotein (MOG) positive cells (mature OLGs marker) in CC were significantly reduced about 30% compared with the control group (p < 0.05, Figure 1). On one hand, the main effect of cup (F1,12 = 158.90, p < 0.0001), EA doses (F2,12 = 3.82, p = 0.052) and the interaction effect of these factors (F2,12 = 3.94, p = 0.049) were significant for MOG+ cells (Figure 1). On the other hand, as a result of apoptosis induction, the amount of apoptotic cells (caspase-3+ cells) in the CC region of cup-treated mice was significantly increased about five-fold compared with the control group (p < 0.001, Figure 1). The main effect of cup (F1,12 = 104.10, p < 0.0001), EA doses (F2,12 = 4.05, p = 0.045) and the interaction effect of these factors (F2,12 = 4.60, p = 0.033) were significant for caspase-3+ cells (Figure 1). Administration of cup six-fold increased MOG+/caspase-3 double-positive cells in the CC region indicating mature OLGs-specific apoptosis promotion (p < 0.001, Figure 1). The main effect of cup (F1,12 = 61.25, p < 0.0001) and EA doses (F2,12 = 4.84, p = 0.029) was significant, while the interaction effect of these factors (F2,12 = 3.09, p = 0.083) was not significant for MOG+/caspase-3 double-positive cells (Figure 1). EA treatment exhibited a protective effect on mature OLGs (MOG+) only in the higher treatment dose by about 15% increase of their population (EA-80, p < 0.01, Figure 1). Administration of EA at lower dose (EA-40) had no significant effect on the number of MOG− cells in the CC region compared with the cup-treated mice (Figure 1). In addition, in mice which received only EA-80, MOG+/caspase-3 double-positive cells significantly decreased compared with the cup-treated mice (p < 0.05), indicating specific anti-apoptotic and protective effects for EA on mature OLGs (Figure 1). By quantitative PCR analysis, we also observed a significant decrease in MOG mRNA expression in cup control compared with the control mice (p < 0.001, Figure 2). The main effect of cup (F1,12 = 417.20, p < 0.0001) and the interaction effect of cup and EA doses (F2,12 = 7.12, p = 0.009) were significant, while the main effect of EA doses (F2,12 = 3.039, p = 0.086) were not significant for MOG mRNA expression (Figure 2). Remarkable elevation of MOG mRNA expression detected after EA treatments compared with the cup-treated mice (p < 0.05 and p < 0.01, Figure 2). We also observed by quantitative PCR analysis a significant increase in the caspase-3 mRNA expression in the cup-fed group compared with the control mice (p < 0.001, Figure 2). The main effect of cup (F1,12 = 120.50, p < 0.0001) and EA doses
F2, 12 = 7.67, p = 0.007) as well as the interaction effect of these factors (F2, 12 = 8.17, p = 0.0058) were significant for caspase-3 mRNA expression (Figure 2). Administration of EA at lower dose (EA-40) had no significant effect on the caspase-3 mRNA expression compared with the cup-treated mice (Figure 2). Interestingly, there was a considerable decrease in caspase-3 mRNA in higher dose of EA (80 mg/kg) treatment compared with the cup-treated mice (p < 0.01, Figure 2). In addition of previous investigations to in situ study of apoptosis process among glial cells in CC region, TUNEL assay was performed (Figure 3(A)). The main effect of cup (F1, 12 = 320.10, p < 0.0001) and EA doses (F2, 12 = 11.14, p = 0.002) were significant, while the interaction effect of these factors (F2, 12 = 3.77, p = 0.053) were not significant for TUNEL-positive cells (Figure 3(A)). We confirmed previous findings by TUNEL analyzing whereby the mean number of TUNEL-positive cells considerably increased in the cupfed group compared with the control mice (p < 0.001, Figure 3(A)). Administration of EA at lower dose (EA-40) had no significant effect on the TUNEL-positive cells compared with the cup-treated mice (Figure 3(A)). Remarkably, the mean number of apoptotic cells decreased significantly compared with the cupfed group (p < 0.01) in the CC region when EA-80 was administered (Figure 3(A)). Administration of EA in both doses (40 and 80) in healthy mice had no statistically significant effect on the expression of these markers in the CC region compared with the control mice (Figures 1–3).

EA restricted microgliosis but not astrogliosis in CC

Using H&E staining, our data indicated an about 4.5-fold enhancement of nuclear cells/gliosis after 4 weeks of cup treatment compared with EA-80. MOG and caspase-3 double-positive cells significantly increased after cup treatment and decreased throughout TP treatment. Scale bar = 25 μm, original magnification ×100. Vehicle + con: mice on a regular diet and injected with vehicle for 4 weeks (n = 3), vehicle + cup: cuprizone plus vehicle injection for 4 weeks (n = 3), EA-40 + cup: cuprizone mice were injected with 40 mg/kg of EA for 4 weeks (n = 3), EA80 + cup: cuprizone mice were injected with 80 mg/kg of EA for 4 weeks (n = 3). Data are expressed as means ± SEM. *Compared with control mice, #compared with cuprizone (p < 0.05, ##p < 0.01 and ###p < 0.001).
reduced the reactive gliosis compared with the cup fed group ($p < 0.05$ and $p < 0.01$, Figure 3B). After 4 weeks of cup feeding, the amount of glial fibrillary acidic protein (GFAP) positive cells (astrogliosis marker) in CC was increased about 30\% compared with the control group ($p < 0.001$, Figure 4). The main effect of EA doses ($F_{2, 12} = 2.88$, $p = 0.094$) was not significant for GFAP$^+$ cells, while the main effect of cup ($F_{1, 12} = 332.80$, $p < 0.0001$) and the interaction effect of these factors ($F_{2, 12} = 3.90$, $p = 0.049$) were significant for GFAP$^+$ cells (Figure 4). Similarly, the amount of macrophage-3 (Mac-3)-positive cells (microgliosis...
marker) in the CC region of cup-treated mice was increased about 10% compared with the control group (*p < 0.01, Figure 4). The main effect of cup (F_{1,12} = 67.72, p < 0.0001) and EA doses (F_{2,12} = 312.20, p < 0.0001) as well as the interaction effect of these factors (F_{2,12} = 498.70, p < 0.0001) were significant for MAC-3^+ cells (Figure 4). EA has reduced Mac-3 cells but not GFAP cells only in the higher treatment dose (EA-80, Figure 4). Administration of EA at lower dose (EA-40) had no statistically significant effect on the number of both Mac-3^+ and GFAP^+ cells in the CC region compared with the cup-treated mice (Figure 4). Administration of EA in both doses (40 and 80) in healthy mice had no statistically significant effect on the expression of these markers in the CC region compared with the control mice (Figures 1–4).

EA adjusted immune response via control of IL-11/IL-17/CXCL12 axis

Important mediators of neuroinflammatory response such as stromal cell-derived factor 1α (SDF-1α or CXCL12), interleukin-17 (IL-17) and interleukin-11 (IL-11) were selected for the evaluation of effects of EA treatment on cup-mediated neuroinflammation. PCR analysis showed a significant enhancement of CXCL12 at mRNA levels after 4 weeks of cup feeding compared with the control mice (*p < 0.01, Figure 2). The mean effect of cup (F_{1,12} = 126.10, p < 0.0001) was significant for CXCL12 mRNA expression, while the main effects of EA doses (F_{2,12} = 1.61, p = 0.23) and the interaction effect of these factors (F_{2,12} = 1.61, p = 0.23) were not significant for this parameter (Figure 2). Significant enhancement of IL-17 at mRNA levels was observed after 4 weeks of cup feeding compared with the control mice (*p < 0.001, Figure 2). Administration of EA during the cup treatment declined significantly the amount of IL-17 mRNA but not CXCL12 (Figure 2). The main effect of cup (F_{1,12} = 240.00, p < 0.0001) and EA doses (F_{2,12} = 6.96, p < 0.0098) and the interaction effect of these factors (F_{2,12} = 6.96, p < 0.0098) was significant for IL-17 mRNA expression (Figure 2). Insignificant change in IL-11 mRNA levels was observed after 4 weeks of cup feeding compared with the control mice (Figure 2). In the conditions that CXCL12 was no significantly changed with the EA treatment, IL-11 mRNA levels are significantly increased and indicated IL-11-mediated anti-inflammatory effect of EA in this model (Figure 2). The main effect of cup (F_{1,12} = 129.10, p < 0.0001) and EA doses (F_{2,12} = 12.37, p < 0.0012) and the interaction effect of these factors (F_{2,12} = 12.37, p < 0.0012) were significant for IL-11 mRNA expression (Figure 2). ELISA analysis of CC region tissue showed a significant increase in IL-17 protein levels in the cup-fed mice compared with the control after 4 weeks treatment (*p < 0.01, Figure 5). The main effect of EA doses (F_{1,12} = 3.49, p = 0.063) was not significant for IL-17 protein concentration, while the main effect of cup (F_{2,12} = 14.70, p < 0.0001) and the interaction effect of these factors (F_{2,12} = 4.12, p = 0.043) were significant for this parameter (Figure 5). Our results demonstrated a considerable decrease in IL-17 in high-dose EA treatment compared with the cup-treated mice (*p < 0.05, Figure 5). On one hand, no significant changes in protein concentration of IL-17 have been observed after low-dose treatment with EA in compared with cup-treated mice (Figure 5). On the other hand, a significant increase in CXCL12 protein levels was observed in the cup-fed mice compared with the control after 4 weeks treatment (*p < 0.01, Figure 5). The main effect of cup (F_{1,12} = 533.00, p < 0.0001) was significant for CXCL12 protein concentration, while the main effect of EA doses
compared with the control mice (Figures 2 and 5).

Effect on the expression of these markers in the CC region compared with cup-treated mice (Figure 5). No significant changes in protein concentration of CXCL12 have been observed after both low- and high-dose treatment with EA in compared with cup-treated mice (Figure 5). ELISA analysis also showed significant changes in IL-11 protein levels in the cup-fed mice compared with the control after 4 weeks treatment ($p < 0.0075$). It is believed that during cup challenge pro-inflammatory cytokines are important in the development of cup-induced demyelination (Kang et al. 2012) and transfer of myelin-reactive Th17 cells impairs endogenous remyelination during cup challenge (Baksi et al. 2015). In this study, EA decreased IL-17 expression, a major mediator of monocyte–endothelial interactions and lymphocyte transmigration across BBB, at both protein and mRNA levels. Specific decreasing of IL-17 levels during high EA treatment is accordance with the maintenance of BBB integrity and blocking of microglial migration (Mac-3) that are the main source of these cytokines in brain.

Moreover, the chemokine CXCL12 plays a central role in the development of both adult brains. While CXCL12 is constitutively expressed in the CNS, its role during neuroinflammation is still unclear. Several reports have been recognized that CXCL12 chemokine moderates remyelination, although its effects on neuroinflammation are undeniable (Patel et al. 2012; Nadeem et al. 2015). CXCL12 binds to its receptor CXCR4 on the surface of oligodendrocyte precursor cells (OPCs) and stimulate its differentiation and maturation (Peng et al. 2004; Krumbholz et al. 2006; Peng et al. 2006). CXCL12 expression is up-regulated and is often accompanied by reactive microgliosis and monocyte infiltration into the injured area. McCandless et al. (2006) suggest a novel anti-inflammatory role for CXCL12 during EAE in that it functions to localize CXCR4-expressing mononuclear cells to the perivascular space, thereby limiting the parenchymal infiltration of auto-reactive effector cells. Remarkably, in this study, treatment with both doses of EA (40 and 80) did not show significant change in the CXCL12 level in the CC region but significantly decreased microgliosis and monocyte infiltration.

Recent investigation reveals that local overexpression of IL-11, a member of the IL-6 family of cytokines, is able to limit cup-induced demyelination by decreasing microgliosis, OLGs cell death and enhancing spontaneous repair (Zhang et al. 2006). In accordance with this report, we show that prophylactic effect of high-dose EA induced IL-11 expression, limited OLGs loss and avoided the following demyelination. Main source of IL-11 in brain lesions is activated astrocytes (GFAP$^+$ cells) and it has

$\left(F_{2,12} = 3.05, \ p = 0.085 \right)$ and the interaction effect of these factors $\left(F_{2,12} = 1.82, \ p = 0.20 \right)$ were not significant for this variable (Figure 5). No significant changes in protein concentration of CXCL12 have been observed after both low- and high-dose treatment with EA in compared with cup-treated mice (Figure 5). ELISA analysis also showed significant changes in IL-11 protein levels in the cup-fed mice compared with the control after 4 weeks treatment ($p < 0.0075$). It is believed that during cup challenge pro-inflammatory cytokines are important in the development of cup-induced demyelination (Kang et al. 2012) and transfer of myelin-reactive Th17 cells impairs endogenous remyelination during cup challenge (Baksi et al. 2015). In this study, EA decreased IL-17 expression, a major mediator of monocyte–endothelial interactions and lymphocyte transmigration across BBB, at both protein and mRNA levels. Specific decreasing of IL-17 levels during high EA treatment is accordance with the maintenance of BBB integrity and blocking of microglial migration (Mac-3) that are the main source of these cytokines in brain.

Moreover, the chemokine CXCL12 plays a central role in the development of both adult brains. While CXCL12 is constitutively expressed in the CNS, its role during neuroinflammation is still unclear. Several reports have been recognized that CXCL12 chemokine moderates remyelination, although its effects on neuroinflammation are undeniable (Patel et al. 2012; Nadeem et al. 2015). CXCL12 binds to its receptor CXCR4 on the surface of oligodendrocyte precursor cells (OPCs) and stimulate its differentiation and maturation (Peng et al. 2004; Krumbholz et al. 2006; Peng et al. 2006). CXCL12 expression is up-regulated and is often accompanied by reactive microgliosis and monocyte infiltration into the injured area. McCandless et al. (2006) suggest a novel anti-inflammatory role for CXCL12 during EAE in that it functions to localize CXCR4-expressing mononuclear cells to the perivascular space, thereby limiting the parenchymal infiltration of auto-reactive effector cells. Remarkably, in this study, treatment with both doses of EA (40 and 80) did not show significant change in the CXCL12 level in the CC region but significantly decreased microgliosis and monocyte infiltration.

Recent investigation reveals that local overexpression of IL-11, a member of the IL-6 family of cytokines, is able to limit cup-induced demyelination by decreasing microgliosis, OLGs cell death and enhancing spontaneous repair (Zhang et al. 2006). In accordance with this report, we show that prophylactic effect of high-dose EA induced IL-11 expression, limited OLGs loss and avoided the following demyelination. Main source of IL-11 in brain lesions is activated astrocytes (GFAP$^+$ cells) and it has
been shown that IL-11 receptor α (IL-11Rα) is expressed on OLGs. Moreover, our recent in vivo results are in line with previous reports demonstrating that IL-11 is promoting survival of OLGs in cultures through STAT3 pathway activation (Zhang et al. 2011; Maheshwari et al. 2013).

In addition, apoptosis of OLGs occurs mainly during the first 3 weeks, followed by microglia and astroglia activation, which peaks after 4–5 weeks and persists for some time after ending cup exposure (Doan et al. 2013; Skripuletz et al. 2013). As shown in our results, mature OLGs extensively express caspase-3 in comparison with other glial cells indicating specific effect of cup in these cells. In our study, after 4 weeks of cup diet, the caspase-3 level was elevated and treatment with EA extensively declined this ratio in addition to the number of TUNEL-positive cells. Increasing of MOG+/caspase-3+ cell population in the cup-treated animals indicates that high dose of EA treatment has a protective effect on toxic demyelination induced by cup. In CNS, astrocytes reactivity and microglia/macrophage activation are important components of the lesion environment that can impact demyelination process (Hibbits et al. 2012; Tanaka & Yoshida 2014). However, prolonged reactive gliosis (GFAP/Mac-3-positive cells) is not able to block the progression of cup lesion (Buschmann et al. 2012). Our data indicated that EA treatment reduced the hematopoietic cell infiltration and reactive gliosis during cup challenge.

Similarly, Chen et al. (2016) reported that EA treatment (40 mg/kg/orally) protected rats from hypoxic–ischemic (HI) brain injury by inhibiting inflammatory responses, apoptosis and modulating of apoptotic and MAPK pathways. In the other study, Dolutshahi et al. (2015) showed that EA (50 mg/kg/orally) has neuro-protective effect on nigrostriatal pathway and can ameliorate nociception and cognition defects in the rat model of Parkinson’s disease. Also, Rojanathammanee et al. (2013) reported that extract of pomegranate polyphenols inhibits T-cell activity and microglial activation in a transgenic mouse model of Alzheimer’s disease. Based on these observations, we conclude that higher dose of EA not only has protective effect in mature OLGs via blocking its specific apoptosis but also adjusts immune response via decreasing microgliosis and controlling of astroglialosis during cup-induced reactive gliosis. A better understanding of EA immunomodulatory effects may allow the development of new strategies for pharmacological interventions aimed at minimizing OLG damage during neurodegenerative disorders.

Conclusions
The present study demonstrates that EA alleviates cup-induced-specific OLGs loss via immunomodulatory effects and regulation of CXCL12/IL-17/IL-11 axis. Taken together, our in vivo findings indicate that EA could be a therapeutic candidate for decreasing myelin damage based on its role in OLGs survival during cup challenge. More experiments are needed to prove and elucidate the role of EA in adjusting CXCL12/IL-17/IL-11 axis throughout acute demyelination.

Disclosure statement
The authors report no declaration of interest.

Funding
The authors thank the Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (PSRC) for supporting the doctoral program (PhD) of the first author. This work was supported by funds from Tehran University of Medical Sciences and Health Services, Tehran, Iran.

References
Abakumova TO, Kuz’kina AA, Zararova ME, Pozdeeva DA, Gubskii IL, Shepeleva II, Antonova OM, Nukolova NV, Kekelidze ZI, Chekhonin VP. 2015. Cuprizone model as a tool for preclinical studies of the efficacy of multiple sclerosis diagnosis and therapy. Bull Exp Biol Med. 159:111–115.
Abdul-Wahab RH, Waled MAM, Janakat S, Sawsan AO. 2009. Bioavailability of ellagic acid after single dose administration using HPLC. Pakistan J Nutr. 8:1661–1664.
Amakura Y, Okada M, Tsuji A, Tonogi Y. 2010. High-performance liquid chromatography determination with photodiode array detection of ellagic acid in fresh and processed fruits. J Chromatogr B. 896:87–93.
Baer i M, Montaz S, Navas-Miguel N, Niaz K, Rahimifard M, Ghasemi-Niri SF, Sanadgol N, Hodjat M, Sharifzadeh M, Abdollahi M. 2017. Molecular evidence on the protective effect of ellagic acid on phos-alone-induced senescence in rat embryonic fibroblast cells. Food Chem Toxicol. 100:1–23.
Baxi EG, DeBruin J, Tosi DM, Grishkan IV, Smith MD, Kirby LA, Strasburger HJ, Haefliger AN, Calabresi PA, Gocke AR. 2015. Transfer of myelin-reactive Th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice. J Neurosci. 35:8626–8639.
Buschmann JP, Berger EK, Awad H, Clarner T, Beyer C, Kipp M. 2012. Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci. 48:66–76.
Chen SY, Zheng K, Wang ZQ. 2016. Neuroprotective effects of ellagic acid on neonatal hypoxic brain injury via inhibition of inflammatory mediators and down-regulation of JNK/p38 MAPK activation. Trop J Pharm Res. 15:241–251.
Clifford MN, Scalbert A. 2000. Ellagitannins-nature, occurrence and dietary burden. J Sci Food Agric. 80:1118–1125.
Cruz-Orejano L, Chen YJ, Kim JH, Dorsey D, Song SK, Klein RS. 2011. CXCR7 antagonist prevents axonal injury during experimental autoimmune encephalomyelitis as revealed by in vivo axial diffusivity. J Neuroinflamm. 8:170–184.
Doan V, Kleindienst AM, McMahon EJ, Long BR, Matsushima GK, Taylor LC. 2009. Clifford MN, Scalbert A. 2000. Ellagitannins-nature, occurrence and dietary burden. J Sci Food Agric. 80:1118–1125.
Cruz-Orejano L, Chen YJ, Kim JH, Dorsey D, Song SK, Klein RS. 2011. CXCR7 antagonist prevents axonal injury during experimental autoimmune encephalomyelitis as revealed by in vivo axial diffusivity. J Neuroinflamm. 8:170–184.
Doan V, Kleindienst AM, McMahon EJ, Long BR, Matsushima GK, Taylor LC. 2009. Clifford MN, Scalbert A. 2000. Ellagitannins-nature, occurrence and dietary burden. J Sci Food Agric. 80:1118–1125.
Eisenwein J, Kivis AA, Ransohoff RM, Li X. 2012. IL-17-induced Act1-mediated sig-
multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 129:200–211.

Lau FC, Shukitt-Hale B, Joseph JA. 2007. Nutraceutical intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell Biochem. 42:299–318.

Lei F, Xing DM, Xiang L, Zhao YN, Wang W, Zhang LJ, Du LJ. 2003. Pharmacokinetic study of ellagic acid in rat after oral administration of pomegranate leaf extract. J Chromatogr B Analyt Technol Biomed Life Sci. 796:189–194.

Maheshwari A, Janssens K, Boggie J, Van Den Haute C, Struys T, Lambrits I, Béckelantv V, Stininss P, Hendrjks J, Slaefts H, et al. 2013. Local overexpression of IL-11 in the CNS limits demyelination and enhances remyelination. Mediators Inflamm. 2013:685317.

Mansouri MT, Farbood Y, Naghizadeh B, Shabani S, Mirshekar MA, Sarker A. 2016. Beneficial effects of ellagic acid against animal models of scopolamine- and diazepam-induced cognitive impairments. Pharmacol. 54:1947–1953.

McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS. 2006. CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol. 177:8053–8064.

Mishra S, Vinayak M. 2015. Role of ellagic acid in regulation of apoptosis by modulating novel and atypical PKC in lymphoma bearing mice. BMC Complement Altern Med. 15:281.

Nadeem M, Sklover L, Sloane JA. 2015. Targeting remyelination treatment in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 129:200–211.

Nagla AES, Eman AEB, Karema ED. 2014. Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism. Int Immunopharmacol. 19:290–299.

Navindra PS, Lee R, Heber D. 2004. Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clin Chim Acta. 348:63–68.

Pasquini LA, Calatayud CA, Bertone Uña AL, Millet V, Pasquini JM, Soto EF. 2007. The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res. 32:279–292.

Patel JR, Williams JL, Mccugrosso MM, Liu L, Wang W, Zhang LJ, Du LJ. 2003. CXCL12 mediated regulation of oligodendrocyte progenitor proliferation and differentiation within the adult CNS. Acta Neuropathol. 124:847–860.

Peng H, Erdmann N, Whitney N, Dous H, Gorantla S, Gendelman HE, Ghorpade A, Zheng J. 2006. HIV-1 infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia. 54:619–629.

Peng H, Huang Y, Rose J, Erdichen J, Herek S, Fujii N, Tamamuru H, Zheng J. 2004. Stromal cell-derived factor 1-mediated CXCR4 signaling in rat and human cortical neuronal progenitor cells. J Neurosci Res. 76:35–50.

Prae J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. 2014. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev. 47:485–503.

Ramonoddi N, Shariatzadeh M, Khalseh R, Abbodalli M. 2013. Prophylactic effect of BIO-1211 small-molecule antagonist of VLA-4 in the EAE mouse model of multiple sclerosis. Immunol Invest. 44:694–712.

Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. 2006. GenePattern 2.0, Nat Genet. 38:500–501.

Roggero AP, Fontanari C, Borducchi E, Keller AG, Russo M, Soares EG, Albuquerque DA, Faccioli LH. 2008. Anti-inflammation effects of Lactobacillus casei and ellagic acid in a murine model of diabetes. Eur J Pharmacol. 580:262–270.

Rojanathanmanne L, Puig KL, Combs CK. 2013. Pomegranate polyphenols and extract inhibit nuclear factor of activated T cell activity and microglial activation in vitro and in a transgenic mouse model of Alzheimer disease. J Nutr. 143:597–605.