A New Integrable Variable-Coefficient 2 + 1-Dimensional Long Wave-Short Wave Equation and the Generalized Dressing Method

Su, Ting; Dai, Hui Hui

Published in: Advances in Mathematical Physics

Published: 09/07/2018

Document Version: Final Published version, also known as Publisher's PDF, Publisher's Final version or Version of Record

License: CC BY

Publication record in CityU Scholars: Go to record

Published version (DOI): 10.1155/2018/7286574

Publication details: Su, T., & Dai, H. H. (2018). A New Integrable Variable-Coefficient 2 + 1-Dimensional Long Wave-Short Wave Equation and the Generalized Dressing Method. Advances in Mathematical Physics, 2018, [7286574]. https://doi.org/10.1155/2018/7286574

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 14/06/2020
Research Article

A New Integrable Variable-Coefficient 2 + 1-Dimensional Long Wave-Short Wave Equation and the Generalized Dressing Method

Ting Su and Hui Hui Dai

1Department of Mathematical and Physical Science, Henan Institute of Engineering, Zhengzhou, China
2Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

Correspondence should be addressed to Ting Su; suting1976@163.com

Received 1 February 2018; Accepted 12 June 2018; Published 9 July 2018

Academic Editor: Ben T. Nohara

Copyright © 2018 Ting Su and Hui Hui Dai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on the generalized dressing method, we propose a new integrable variable-coefficient 2 + 1-dimensional long wave-short wave equation and derive its Lax pair. Using separation of variables, we have derived the explicit solutions of the equation. With the aid of Matlab, the curves of the solutions are drawn.

1. Introduction

It is well known that the interactions of long wave and short wave play an important role in fluid dynamics. The model is described by the following equation:

\[i \partial_t S + c g \partial_x S - \beta L S - \gamma \partial_x^2 S - \delta |S|^2 S = 0, \]
\[\partial_y L + c_1 \partial_y L + a \partial_x |S|^2 = 0. \]

(1)

The inverse scattering technique proposed in [1] plays an important role in constructing the complete solution of the long wave and short wave resonance equations. The N soliton solution of long wave and short wave has been obtained in [2]. Radha et al. in [3] derived periodic solutions and localized solutions of (1). Lai and Chow in [4] studied position and dromion solutions of 2 + 1-dimensional long wave and short wave resonance interaction equations. Researchers have focused on the long wave and short wave equation [5–10] by using different methods. Serkin et al. [11] discussed integrable variable-coefficient nonlinear evolution equations. By utilizing the exp-function method, the generalized solitary solution and periodic solution of soliton equations can be given in [12]. Authors in [13] discussed the interactions of dark soliton and bright soliton in a double-mode optical fiber. In [14, 15], authors (Dai and Jeffrey [14], Jeffrey and Dai [15]) extended the dressing method [16, 17] to a generalized version for solving soliton equations associated with matrix nonspectral problems and variable-coefficient cases. The generalized dressing method was based on the problems of factorization of an integral operator F on the line into the product of two Volterra type integral operators \(K_\lambda \), from which the Gel'fand-Levitan-Marchenko (GLM) equation is obtained. These Volterra operators are then used to construct dressed operators \((M_1, M_2) \) starting from a pair of initial operators \((N_1, N_2) \). Integrable variable-coefficient nonlinear equations are obtained from the compatibility of the dressed operators. There are some differences between the original dressing method and the generalized dressing method. In the original dressing method, the constant coefficient operators have transformed into different constant coefficient operators. The generalized dressing method transforms the variable-coefficient operators into different variable-coefficient ones. The advantages in the generalized dressing method lie in deriving integrable variable-coefficient nonlinear evolution equation and corresponding Lax pairs. However, the original dressing method is a system way to study constant coefficient nonlinear evolution equation [18–20]. Authors (Dai and Jeffrey [14]) presented the generalized dressing method; we also discussed some integrable variable-coefficient evolution equations [21–25]. In fact, the dressing method can
be thought as a rather general formulation of the inverse scattering method, which has the advantage of bypassing the scattering problem. The common point between the two methods is that two methods can deal with the initial boundary value problem.

In the paper, we applied the generalized dressing method to derive a new integrable variable-coefficient 2 + 1-dimensional long wave-short wave equation:

\[
i\alpha_2 w_{xy} + \beta_2 w_{xx} + \beta_2 (uv)_x = 0,
\]

\[
-i\alpha_1 u_t + \beta_1 (v_{xx} - u_{xx} - u_{yy}) + 2\beta_1 \left(u^2 v + uw_x\right) = 0, \quad (2)
\]

\[
i\alpha_1 v_y - \beta_1 v_{yy} + 2\beta_1 \left(u^2 v + uv_x\right) = 0,
\]

where \(\alpha_2\) and \(\beta_2\) are functions of \(t\) and \(y\). \(\alpha_1\) and \(\beta_1\) are functions of \(t\). Particularly, the above equation is reduced to a new 2 + 1-dimensional integrable variable-coefficient equation:

\[
i(\alpha_2 uv) + \beta_2 [(uv)_{xx} + (uv)_{yy}] - \beta_1 [(u - v) v_{xx} + 2uv_{yy} + 2(u_x v_x + u_y v_y)]
\]

\[= 0, \quad (3)
\]

in view of \(\alpha_2 = \beta_2\).

Furthermore, under the transformations \(\alpha_1 = 1, \beta_1 = 1/t\), (3) can be read as the cylindrical equation:

\[
i(\alpha_2 uv) + \frac{1}{t} [(uv)_{xx} + (uv)_{yy}] - \frac{1}{t} [(u - v) v_{xx} + 2uv_{yy} + 2(u_x v_x + u_y v_y)]
\]

\[= 0. \quad (4)
\]

Moreover, (2) are written as a 2 + 1-dimensional integrable modified long wave-short wave equation for \(\alpha_2 = \beta_2\) and \(\alpha_1 = 1/\beta_1\):

\[
iw_{xy} + w_{xx} + (uv)_x = 0,
\]

\[
-iu_t + v_{xx} - u_{xx} - u_{yy} + 2\left(u^2 v + uw_x\right) = 0, \quad (5)
\]

\[iv_y - v_{yy} + 2\left(u^2 v + uv_x\right) = 0.
\]

The outline of the paper is as follows. In Section 2, we briefly describe the generalized dressing method and its properties. Moreover, we introduce two dressing operators. In Section 3, new integrable variable-coefficient 2 + 1-dimensional long wave-short wave equations and their Lax pairs are derived with the aid of the generalized dressing method. In Section 4, as an application, we obtain explicit solutions of these equations and draw the curves of the solutions.

2. The Generalized Dressing Method and Dressing Operators

First, we consider three integral operators \(F(x, z, y)\), \(K_1(x, z, y)\), and \(K_2(x, z, y)\) defined by [16]

\[
K_1\psi(x) \equiv \int_x^\infty K_1(x, z, y) \psi(z) \, dz,
\]

\[
K_2\psi(x) \equiv \int_x^\infty K_2(x, z, y) \psi(z) \, dz,
\]

\[
F\psi(x) \equiv \int_x^\infty F(x, z, y) \psi(z) \, dz.
\]

We assume that \((I + K_1)^{-1}\) exists and \(F\) admits the triangular factorization

\[
I + F = (I + K_1)^{-1} (I + K_2),
\]

where \(I\) is the identity operator. From (7), a direct calculation shows that \(F\) and \(K_1\) satisfy the Gel'fand-Levitan-Marchenko (GLM) equation [16]:

\[
K_1(x, z, y) + F(x, z, y)
\]

\[+ \int_x^\infty K_1(s, z, y) F(s, z, y) \, ds = 0, \quad z > x,
\]

here it is supposed that \(K_1(x, z, y)\) and \(F(x, z, y)\) satisfy the condition

\[
\sup_{x_0} \int_{x_0}^\infty |K_1(x, z, y)| \psi(z) \, dz < +\infty,
\]

\[
\sup_{x_0} \int_{x_0}^\infty |F(x, z, y)| \psi(z) \, dz < +\infty, \quad x_0 > -\infty.
\]

We now introduce two differential operators \(M_1\) and \(M_2\) defined by

\[
M_1 = \alpha_1 \partial_t + i\beta_1 \Theta \partial_{x}^2,
\]

\[
M_2 = \alpha_2 \partial_y - i\beta_2 \Theta \partial_{x},
\]

with \(\alpha_1\) and \(\beta_1\) being matrix functions of \(t\), \(\alpha_2\) and \(\beta_2\) are matrix functions of \(t\) and \(y\):

\[
\Theta = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
\]

Suppose that the operator \(F\) commutes with \(M_1\) and \(M_2\); that is,

\[
[M_1, F] = M_1 F - FM_1 = 0,
\]

\[
[M_2, F] = M_2 F - FM_2 = 0,
\]

which together with (10) implies the following equations:

\[
\alpha_1 F_t + i\beta_1 \Theta F_{xx} + iF_{xx} \beta_1 \Theta = 0,
\]

\[
\alpha_2 F_y - i\beta_2 \Theta F_x - iF_{x} \beta_2 \Theta = 0.
\]
In what follows, we obtain the dressing operators \(N_1 \) and \(N_2 \) with the aid of operators \(M_1 \) and \(M_2 \). The dressing procedure is accomplished through the relations \([14, 15]\)

\[
N_1 \left(I + K_2 \right) - \left(I + K_2 \right) M_1 = 0, \quad (15a)
\]

\[
N_2 \left(I + K_2 \right) - \left(I + K_2 \right) M_2 = 0. \quad (15b)
\]

The difference between the original dressing method and the generalized dressing method lies in the differential operators \(M_1 \) and \(M_2 \) which satisfied the relation

\[
[M_1, M_2] = \phi_1 M_1 + \phi_2 M_2,
\]

with \(\phi_1 \) and \(\phi_2 \) being arbitrary functions of their arguments. In view of \([14, 15]\), the corresponding dressed operators obey the equation

\[
\begin{align*}
N_1, N_2 &= \phi_1 N_1 + \phi_2 N_2. \\
(17)
\end{align*}
\]

Letting \(N_1 = M_1 + u_0^{(1)} \partial_x + u_0^{(1)}, N_2 = M_2 + u_0^{(2)}, \) from \((15a)\) and \((15b)\), we have

\[
\begin{align*}
v_0^{(1)} &= u_0^{(1)} K + i \beta_1 \Theta (K + K_1 I_{z=0}) + i \hat{K}_1, I_{z=0} \beta_1 \Theta, \\
v_0^{(1)} &= i \beta_1 \left(\Theta \hat{K} - \hat{K} \Theta \right), \\
v_0^{(1)} &= i \beta_2 \left(\Theta K - \Theta \hat{K} \right).
\end{align*}
\]

In view of \((16)\), it is easy to obtain

\[
\begin{align*}
\alpha_1 \alpha_2 &= \phi_2 \alpha_2, \\
\alpha_1 \beta_2 &= \phi_2 \beta_2, \\
\phi_1 &= 1;
\end{align*}
\]

thus, we have \(\alpha_2 = e^{i \phi_2 \alpha_2 x + c_1(y)}, \beta_2 = e^{i \phi_2 \alpha_2 x + c_1(y)} \). Here, \(\phi \) is an arbitrary function of \(x \) and \(y \). \(c_1(y) \) and \(c_2(y) \) are arbitrary functions of \(y \).

3. A New Integrable Variable-Coefficient 2+1-Dimensional Long Wave-Short Wave Equation and Its Lax Pair

In this section, based on the generalized dressing method, we derive a new integrable variable-coefficient 2+1-dimensional long wave-short wave equation. From \((17)\), we have

\[
\begin{align*}
\alpha_1 u_0^{(2)} + i \beta_1 \Theta u_0^{(2)} - \alpha_2 u_0^{(1)} + i \beta_2 \Theta u_0^{(1)} + u_0^{(2)} - i \beta_1 \Theta u_0^{(1)} = 0, \\
- u_0^{(2)} - i \beta_1 \Theta u_0^{(1)} = \phi_2 u_0^{(2)}, \\
2i \beta_1 \Theta u_0^{(2)} - \alpha_2 u_1^{(1)} + i \beta_2 \Theta u_1^{(1)} - i \beta_2 \Theta u_0^{(2)} + i \beta_2 \Theta u_0^{(1)} + u_1^{(1)} - u_0^{(2)} = 0.
\end{align*}
\]

We denote

\[
\begin{align*}
\hat{K} &= K(x, z, y), \\
\hat{K}_{12} &= \left(\begin{array}{c}
\hat{k}_{11} \\
\hat{k}_{12} \\
\hat{k}_{21} \\
\hat{k}_{22}
\end{array} \right), \\
\hat{k}_{11} &= \omega, \hat{k}_{12} = u, \hat{k}_{21} = v.
\end{align*}
\]

In view of \((16)\), we have

\[
\begin{align*}
\alpha_1 \hat{k}_{12} + \beta_2 \hat{k}_{12} \hat{k}_{22} + \beta_2 \hat{k}_{12} |_{z=0} = 0, \\
\alpha_1 \hat{k}_{21} - \beta_2 \hat{k}_{21} \hat{k}_{11} + \beta_2 \hat{k}_{21} |_{z=0} = 0.
\end{align*}
\]

Based on \((18)\) and \((22)-(23)\), we obtain

\[
\begin{align*}
u_0^{(1)} &= i \beta_1 \left(\begin{array}{c}
0 \\
- \hat{k}_{21} \\
0 \\
0
\end{array} \right) = i \beta_1 \left(\begin{array}{c}
0 \\
u \\
0
\end{array} \right), \\
u_0^{(2)} &= i \beta_2 \left(\begin{array}{c}
0 \\
- \hat{k}_{12} \\
0 \\
0
\end{array} \right) = i \beta_2 \left(\begin{array}{c}
0 \\
-u \\
0
\end{array} \right), \\
u_0^{(1)} &= i \beta_1 \left(\begin{array}{c}
\hat{k}_{12} \hat{k}_{21} + 2 \hat{k}_{12x} \hat{k}_{12x} + \hat{k}_{12x} \hat{k}_{12x} + \hat{k}_{12x} \hat{k}_{22x} \\
- \hat{k}_{12} \hat{k}_{21} + \hat{k}_{12x} \hat{k}_{12x} + \hat{k}_{12x} \hat{k}_{22x} \\
- \hat{k}_{12} \hat{k}_{21} + \hat{k}_{12x} \hat{k}_{12x} + \hat{k}_{12x} \hat{k}_{22x} \\
- \hat{k}_{12} \hat{k}_{21} + \hat{k}_{12x} \hat{k}_{12x} + \hat{k}_{12x} \hat{k}_{22x}
\end{array} \right).
\end{align*}
\]

From \((20)\), we derive new integrable variable-coefficient 2+1-dimensional long wave-short wave equation with the aid of \((22)-(26)\):

\[
\begin{align*}
\alpha_3 w_{xx} + \beta_2 (uv)_x + \beta_2 w_{xx} = 0, \\
- \alpha_3 u_t + \beta_1 (\nu_{xx} - u_{xx} - u_{yy}) + 2 \beta_1 (u^2 v + uw_x) &= 0, \\
- \alpha_1 \beta_2 \nu_t - \alpha_2 \beta_2 \nu_{yy} + 2 \beta_2 \beta_1 (u^2 v + uw_x) &= 0.
\end{align*}
\]

Particularly, the above equations are reduced to the cylindrical form:

\[
\begin{align*}
iw_y + w_x + uv &= 0, \\
-i u_t + \frac{1}{t} (v_{xx} - u_{xx} - u_{yy}) + \frac{2}{t} (u^2 v + uw_x) &= 0, \\
i \nu_t + \frac{1}{t} \nu_{yy} + \frac{2}{t} (u^2 v + uw_x) &= 0,
\end{align*}
\]

where \(\alpha_3 = \beta_2, \alpha_1 = 1, \beta_1 = 1/t, \) and the integration constant is zero.

The Lax pairs of \((27)\) are \(N_1 \) and \(N_2, u_0^{(1)}, u_0^{(2)} \) are presented in \((24)-(26)\).

Particularly, we consider the case for \(y = x \); then \((28)\) is reduced to a new coupled equation:

\[
\begin{align*}
(i + 1) w_x + uv &= 0, \\
-i u_t + \frac{1}{t} v_{xx} - \frac{2}{t} u_{xx} + \frac{2}{t} (u^2 v + uw_x) &= 0, \\
i \nu_t - \frac{1}{t} \nu_{xx} + \frac{2}{t} (uv^2 + vw_x) &= 0.
\end{align*}
\]
4. Explicit Solutions and the Curves of Solutions

In this section, we shall apply the generalized dressing method to construct explicit solutions of these obtained 2 + 1-dimensional long wave-short wave equation and its reductions. We assume that \(F \) and \(K \) have solutions in the form of separation of variables:

\[
F(x, z, y, t) = \sum_{j=1}^{N} f_j(x, t) g_j(z, y, t),
\]

\[
K(x, z, y, t) = \sum_{j=1}^{N} k_j(x, t) g_j(z, y, t),
\]

where \(f_j(x, t), g_j(z, y, t) \) are some 2 \times 2 matrices.

Substituting (30) and (31) into the GLM equation (8) yields the following:

\[
K(x, x, t) = \sum_{j=1}^{N} k_j(x, t) g_j(x, x, t)
\]

\[
= - (f_1, f_2, \ldots, f_N) L^{-1} (g_1, g_2, \ldots, g_N)^T,
\]

Then, from (32) we obtain

\[
K(x, x, y, t) = \frac{1}{\Delta} \begin{pmatrix} \bar{k}_{11} & \bar{k}_{12} \\ \bar{k}_{21} & \bar{k}_{22} \end{pmatrix},
\]

where \(\Delta = (L_{ij})_{2N \times 2N} \) is defined by

\[
L_{ij} = \delta_{ij} + \int_{x}^{\infty} g_j(s, y, t) f_i(s, y, t) \, ds,
\]

and \(\delta_{ij} \) is the Kronecker delta.

We denote \(F = (F_{ij})_{2 \times 2} \), and, in view of (13) and (14), we obtain

\[
\alpha_1 F_{11t} + i \beta_1 (F_{11xx} + F_{11zz}) = 0,
\]

\[
\alpha_2 F_{11y} - i \beta_2 (F_{11xx} + F_{11zz}) = 0,
\]

\[
\alpha_1 F_{12t} + i \beta_2 F_{12xx} = 0,
\]

\[
\alpha_1 F_{21t} + i \beta_2 F_{21zz} = 0,
\]

\[
\alpha_2 F_{12y} - i \beta_2 F_{12xx} = 0,
\]

\[
\alpha_2 F_{21y} - i \beta_2 F_{21zz} = 0,
\]

In the what follows, we obtain one soliton solution for the case of \(N = 1 \) of (30). Let

\[
F(x, z, y, t) = f(x, t) g(z, y, t) = \begin{pmatrix} e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)} & e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)} \\ e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)} & 0 \end{pmatrix} \begin{pmatrix} e^{m_1^2 x} & 0 \\ 0 & e^{m_2^2 y} \end{pmatrix},
\]

with

\[
\Delta = 1 - \frac{1}{m_1 + l_1} e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)} - \frac{1}{(m_1 + l_2)} e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)},
\]

\[
\bar{k}_{11} = \frac{1}{\Delta} e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)} + \frac{1}{m_1 + l_2} e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)},
\]

\[
\bar{k}_{12} = \frac{1}{\Delta} e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)} + \frac{1}{m_2 + l_1} e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)},
\]

\[
\bar{k}_{21} = \frac{1}{\Delta} e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)},
\]

\[
\bar{k}_{22} = \frac{1}{\Delta} e^{-i(\beta_1 m_1^2 t + \beta_2 m_2^2 t + l_1 x + l_2 y + \omega)}.\]
Using (22), we obtain the solutions of (27). Particularly, for $\alpha_2 = \beta_2, \alpha_1 = 1$, and $\beta_1 = 1/t$, we derive the solutions of (28). In what follows, we draw the curves of the solutions for $\alpha_2 = \beta_2, \alpha_1 = 1$, and $\beta_1 = t$. Figures 1 and 2 describe the imaginary of u and real of u, respectively. From the curves, we can see that the forms are similar. The imaginary of v and real of v are shown by Figures 3 and 4, respectively. From the curves, we can see that the forms are different and with diminishing energy. Figures 5 and 6 construct the imaginary of w and real of w, respectively. In view of the solution curves, we can read the difference between the imaginary of w and real of w. Furthermore, we find that imaginary of v and that of w are similar. At the same time, we find that real of v and that of w are similar. Similarly, in later paper, we will discuss two soliton solutions and N–soliton solutions.
Figure 6: $x = 0.9, l_1 = 0.3, l_2 = 0.5, l_3 = 0.8, m_1 = 1, m_2 = 2, y = 3,$ and $t \in [-6, 6].$

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The authors acknowledge the support by National Natural Science Foundation of China (no. 11301149) and Henan Natural Science Foundation of Basic Research (no. 162300410072).

References

[1] Y. C. Ma, “The Complete Solution of the Long-Wave–Short-Wave Resonance Equations,” Studies in Applied Mathematics, vol. 59, no. 3, pp. 201–221, 1978.
[2] M. Yurova, “Application of dressing method for long wave–short wave resonance interaction equation,” Journal of Mathematical Physics, vol. 48, no. 5, 053516, 7 pages, 2007.
[3] R. Radha, C. Senthil Kumar, M. Lakshmanan, X. Y. Tang, and S. Y. Lou, “Periodic and localized solutions of the long wave–short wave resonance interaction equation,” Journal of Physics A: Mathematical and General, vol. 38, no. 44, pp. 9649–9663, 2005.
[4] D. W. C. Lai and K. W. Chow, “‘Positon’ and ‘Dromion’ Solutions of the (2+1) Dimensional Long Wave-Short Wave Resonance Interaction Equations,” Journal of the Physical Society of Japan, vol. 68, no. 6, pp. 1847–1853, 1999.
[5] S. Y. Lou, “Symmetries and algebras of the integrable dispersive long wave equations in (2+1)-dimensional spaces,” Journal of Physics A: Mathematical and General, vol. 27, no. 9, p. 3233, 1994.
[6] G. Symonds, D. A. Huntley, and A. J. Bowen, “Two-dimensional surf beat: long wave generation by a time-varying breakpoint,” Journal of Geophysical Research: Atmospheres, vol. 87, no. 1, pp. 492–498, 1982.
[7] R. Hirota, “Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices,” Journal of Mathematical Physics, vol. 14, pp. 80–84, 1973.
[8] C. L. Zheng, J. P. Fang, and L. Q. Chen, “New variable separation excitations of (2+1)-dimensional dispersive long-water wave system obtained by an extended mapping approach,” Chaos, Solitons and Fractals, vol. 23, no. 5, pp. 1741–1748, 2005.
[9] X.-Y. Tang, C.-L. Chen, and S.-Y. Lou, “Localized solutions with chaotic and fractal behaviours in a 2+1-dimensional dispersive long-wave system,” Journal of Physics A: Mathematical and General, vol. 35, no. 22, pp. L293–L301, 2002.
[10] C.-L. Zheng, J.-M. Zhu, J.-F. Zhang, and L.-Q. Chen, “Fractal dromion, fractal lump, and multiple peakon excitations in a new 2+1-dimensional long dispersive wave system,” Communications in Theoretical Physics, vol. 39, no. 3, pp. 261–266, 2003.
[11] V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous solitons in external potentials,” Physical Review Letters, vol. 98, no. 7, Article ID 074102, 2007.
[12] S. Zhang, “Application of Exp-function method to a KdV equation with variable coefficients,” Physics Letters A, vol. 365, no. 5–6, pp. 448–453, 2007.
[13] V. V. Afanasyev, Y. U. S. Kivshar, V. V. Konotop, and V. N. Serkin, “Dynamics of coupled dark and bright optical solitons,” Optics Express, vol. 14, no. 15, pp. 805–807, 1989.
[14] H.-H. Dai and A. Jeffrey, “The inverse scattering transforms for certain types of variable coefficient KdV equations,” Physics Letters A, vol. 139, no. 8, pp. 369–372, 1989.
[15] A. Jeffrey and H. H. Dai, “On the application of a generalized version of the dressing method to the integration of variable-coefficient KdV equation,” Rendiconti di Matematica. Serie VII, vol. 10, pp. 439–455, 1990.
[16] V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I,” Functional Analysis and its Applications, vol. 8, no. 3, pp. 226–235, 1974.
[17] V. E. Zakharov and A. B. Shabat, “Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II,” Functional Analysis and its Applications, vol. 13, no. 3, pp. 166–174, 1979.
[18] A. Roy Chowdhury and S. Basak, “On the complete solution of the Hirota-Satsuma system through the “dressing” operator technique,” Journal of Physics A: Mathematical and General, vol. 17, no. 16, pp. L863–L868, 1984.
[19] J. M. Dye and A. Parker, “An inverse scattering scheme for the regularized long-wave equation,” Journal of Mathematical Physics, vol. 41, no. 5, pp. 2889–2904, 2000.
[20] A. Parker, “A reformulation of the “dressing” method for the Sawada-Kotera equation,” Inverse Problems, vol. 17, no. 4, pp. 885–895, 2001.
[21] T. Su, H.-H. Dai, and X. Geng, “On the application of a generalized dressing method to the integration of variable-coefficient coupled Hirota equations,” Journal of Mathematical Physics, vol. 50, no. 11, 113507, 12 pages, 2009.
[22] H. Dai and T. H. Su, “The generalized dressing method with applications to the integration of variable-coefficient Toda equations,” Proceedings of the Estonian Academy of Sciences, vol. 59, no. 2, pp. 93–98, 2010.
[23] T. Su, H. Dai, and G. Geng X, “A Variable-Coefﬁcient Manakov Model and Its Explicit Solutions through the Generalized
Dressing Method,” *Chinese Physics Letters*, vol. 30, no. 6, Article ID 060201, 2013.

[24] T. Su, H. Dai, and X. G. Geng, ”On the application of a generalized version of the dressing method to the integration of variable coefficient N-coupled nonlinear Schrödinger equation,” *Journal of Nonlinear Mathematical Physics*, vol. 19, no. 4, Article ID 1250028, 19 pages, 2012.

[25] J. Zhu and X. Geng, ”The generalized version of dressing method with applications to AKNS equations,” *Journal of Nonlinear Mathematical Physics*, vol. 13, no. 1, pp. 81–89, 2006.
