Traditional knowledge and its transmission of wild edibles used by the Naxi in Baidi Village, northwest Yunnan province

Yanfei Geng1,2, Yu Zhang1, Sailesh Ranjitkar1,3, Huyin Huai4 and Yuhua Wang1*

Abstract

Background: The collection and consumption of wild edibles is an important part in livelihood strategies throughout the world. There is an urgent need to document and safeguard the wild food knowledge, especially in remote areas. The aims of this study are to accomplish detailed investigation of wild edibles used by the Naxi in Baidi village and evaluate them to identify innovative organic food products. Also, we aim to explore the characteristics of distribution and transmission of the traditional knowledge (TK) on wild edibles among the Naxi.

Methods: Data was collected through a semi-structured interview of key informants above the age of 20 years, chosen carefully by a snowball sampling. The interviews were supplemented by free lists and participatory observation methods. Informants below 20 years were interviewed to test their knowledge of traditional practices. A quantitative index like Cultural Importance Index (CI) was used to evaluate the relative importance of the different wild edibles. Linear regression and t-test were performed to test variation in the TK among the informants of different age groups and genders.

Results: Altogether 173 wild edible plant species belonging to 76 families and 139 genera were recorded in the study. Cardamine macrophylla, C. tangutorum and Eutrema yunnanense have traditionally been consumed as an important supplement to the diet, particularly during food shortages as wild vegetables. The age was found to have a significant effect on TK, but there was no significant difference between male and female informant in knowledge abundance. The traditional food knowledge was dynamic and affected by social factors. Also, it was descending partly among younger generations in Baidi.

Conclusion: Baidi village is a prime example of a rapidly changing community where local traditions compete with modern ways of life. Overall, this study provides a deeper understanding of the Naxi peoples’ knowledge on wild edibles. Some wild edibles might have an interesting dietary constituent, which need in-depth studies. Such detailed studies can help to promote the market on one hand and protect TK in the other. Protecting TK from disappearing in succeeding generations is necessary, and understanding the dynamics of TK is one important solution to this dilemma.

Keywords: Knowledge dynamics, Quantitative index, Organic food products, Naxi people, Gender

Background

Wild plants have gained renewed interest in recent years, and the tradition of gathering wild plants continues to the present day [1, 2]. The collection and consumption of wild edibles is an important part of livelihood strategies throughout the world [3]. Wild food also is an essential supplement to the local people’s daily nutrition in developing countries [2, 4, 5]. Schunko and Vogl [6] mentioned that collection and use of wild edibles are not only part of the cultural history of a region but also are part of people’s local identity, pride, and traditions. Moreover, wild foods can contribute to overcoming periods of food scarcity, and dishes made of wild foods can be functional foods [6]. Wild plant sources and their use are under severe threat as a result of economic globalization, environmental degradation and cultural homogenization [7]. There is an urgent need to document the traditional knowledge of plant uses and
conserve its habitat [7–9], especially where it is not yet completely lost [10]. Wild edibles are not an exception to this fact. It is important to document local knowledge before it vanishes along with the knowledgeable people, in the sense that it is slowly disappearing with the demise of those who have traditionally upheld it [11].

China is a fascinating and significant arena for studies on wild food use traditions, particularly Yunnan province [12]. Northwest Yunnan is one of biodiversity hotspots and is home to many minority groups. Some ethnobotanical researchers have documented wild edibles used by different minorities of this region [13–18].

The Naxi people, one of the main ethnic groups in northwest Yunnan, have accumulated rich knowledge on using wild edibles. Baidi Village (Sanba Naxi Nationality Township, Shangri-La City, Deqing Prefecture) is located in 27° 30′ N to 27° 28′ N and 100° 01′ E to 100° 05′ E, the Northwest of Yunnan Province, roughly between the two cities Lijiang and Diqing (Fig. 1). It is 103 kilometers from Shangri-La City and 170 kilometers from Lijiang city. The mountain in its territory belongs to Haba Snow Mountain, Yunling Mountain range. Baidi has an area of 8.26 km² and reaches an elevation of approximately 4500 m while networks of streams and rivers including Geji and Yangtze dissect numerous valleys, which make it encompass a rich diversity of plants. The village has 15 sections or groups of the settlement, eight of which belong to the Naxi (Fig. 1). In the northwest of the village, there is a big limestone terrace, Baishuitai (literal meaning white water terrace). Local people believe this place as a shrine and perform various religious activities [19]. It also is a famous scenic spot that attracts the considerable number of tourists all over the world.

Baidi comprises approximately 3000 inhabitants, and the majority of them are the Naxi ethnic minority along with about 25 % of the Han people and the Yi people. The Naxi in Baidi is culturally related to the Lijiang Naxi, but they are usually considered the purest of their race [20, 21]. Joseph Rock, who is a well-known researcher, studied the Naxi people closely and mentioned that the Naxi in Baidi is the most aboriginal among Naxi, and they follow their old religious customs, which are a mixture of shamanism and the pre-Buddhist Bon religion of Tibet. There are neither Lama temples nor Chinese temples as in the Lijiang city. The Naxi believes that mountains, rivers, trees, herbs, animals and humans, all have their unique spirits. Among these spirits of nature, the Shu spirits are the most important. According to a Naxi myth, farmland and livestock are in the realm of men while Shu rules the mountains and the rivers. Men frequently invaded the territory of Shu creating hostility and fights between men and Shu. Dongba priests, the mediators with spiritual powers, were then called to regain the harmony between them. They agreed that human beings must worship the Shu god of nature every year, in return Shu would provide men's need from nature and stop assaulting them. In this way, men and Shu lived in harmony afterward [21]. The religion and ceremonies of the Naxi represent the long history of keeping equilibrium between man and nature to guarantee the sustainability of natural resources.

Wild edibles in this article refer to those plants that grow without cultivation, including fungi and lichen, and consumed by Naxi people or local animals. It mostly includes native species growing in their natural habitat, but sometimes managed, as well as introduced species.
that have been naturalized [22]. In this paper, we documented angiosperm, gymnosperm, fern, fungi, lichen and algae, which are sources of vegetables, vitamin and functional food, forage, starch and sugar, edible pigments, oil and fats, beverage and honey source.

This study aims to accomplish detailed investigation into wild edibles used by the Naxi in Baidi village and evaluate them to identify innovative organic food products. Also, we aim to explore the distribution of traditional knowledge (TK) and its transmission pathways to the young generation of Naxi.

Methods

Data collection

The fieldwork was conducted in 2013 and 2014. Field studies included free lists, semi-structured interviews, and participatory observation. The total of 86 key informants was selected using snowball sampling [23, 24]. The ages of informants ranged from 21 to 91 (mean age 57 years old), and the sex ratio of informants was almost 1:1 (male to female was 42 to 44). To that 20 other participants below an age of 20 years (mean age 14 years old) were randomly invited. These youngsters were asked to fill the questionnaire with the purpose of documenting the traditional knowledge transmission.

In the first phase of the field research, participants were invited to list all wild edibles still used on a regular basis, and those were used only in the past. The interviews include the questions that were relevant to document detail information on all wild edibles including the source of knowledge about plant use. Every use report on edible plants included (1) number of useful plants mentioned and their botanical families, (2) most frequently used plant parts, (3) most cited species, (4) ways of consumption and preparation, (5) season of collection, (6) habitats where collected. In the second phase, we collected the wild edibles mentioned above with local gatherers. The participatory observation was utilized to secure the cultural implication of plant gathering, preparation, and distribution of wild edibles. Nomenclature of all vascular plants follows *Flora of China* [25], and the voucher specimens deposited at the herbarium of the Kunming Institute of Botany, CAS (KUN).

Data analysis

Ethnobotanical information collected from 86 key informants was properly documented and analyzed. We classified the wild edibles into the following categories based on usage or main chemical composition: carbohydrates, protein, oil and fats, vegetable, vitamin and functional food, beverage, condiments, forage, honey source and chewing and stimulate plants.

To quantify the use frequency of certain species, we calculated the utilization frequency [26], using following formula:

\[f = \frac{N_m}{N_i} \]

In this formula, \(f \) represents the utilization frequency, \(N_m \) is the number of informants mentioned certain species, \(N_i \) represents the total number of informants. Higher the value of \(f \), the more frequent is the plant used.

Each species mentioned by an informant within one food category was a use report (UR). To determine diversity of uses and the consensus of informants, we used the Cultural Importance Index (CI), which can be mathematically expressed as [27]:

\[CI_s = \sum_{u=1}^{N_u} \sum_{i=1}^{N_i} UR_{ui}/N \]

\(N \) is the total number of informants, and \(NC \) is the total number of use categories. Therefore, the CI is the sum of the proportion of informants that mention each of the use categories for a given species. This index indicates the spread of the use (number of informants) of each species, as well as the diversity of its uses. Every additional use category is a measure of the relative importance of each plant use [27]. Therefore, multiple uses of a species is an indicator of higher CI value.

Also, the Cultural Food Significance Index (CFSI) was calculated to evaluate the cultural significance of wild edibles using following formula given by Andrea Pieroni [28]:

\[CFSI = QI \times AI \times FUI \times PUI \times MFFI \times TSAI \times FMRI \times 10^{-2} \]

This index takes into consideration a wide variety of factors in the evaluation of a specific wild edible. The CFSI include quotation frequency (QI, frequency of quotation index), availability(AI, availability index), typology of the used parts(PUI, parts used index), frequency of use (FUI, frequency of utilization index), kind and number of the food uses (MFFI, multifunctional food use index), taste appreciation (TSAI, taste score appreciation index) and perceived role as food medicine (FMRI, food-medicinal role index). The use of this index allows for exploring the potential wild greens.

To analyze how TK varied according to the characteristics of the different informants, we performed linear regression and t-test using R software (version 3.2.2), taking “Number of edible plants cited by each informant” as the variable to the model. We also consider two entities representing personal data, “ages” (a quantitative variable) and “gender” (a qualitative variable taking a value of male or female). Furthermore, documentation of our
field investigation was compared with the nutrition information reported in the various relevant literatures.

Results and discussion

The traditional diet culture of the Baidi village has developed from nomadic lifestyle into an agricultural and pastoral context. Cultivated species play a crucial role in the local diet, but they have a long history of wild edibles gathering. The 86 informants (Fig. 2) of Baidi village reported 173 wild edible species belonging to 76 families and 139 genera (Table 1) that they still collecting or had gathered in the past. Table 1 lists the wild edibles mentioned at least by two informants. Botanical and ethnomedical information about these plants include scientific name, family, voucher or digital photograph number, vernacular name, food categories, part(s) used and mode of consumption (prevalence of use) and collecting habitat (season) [29]. Food categories include carbohydrates, oil and fats, vegetable, vitamin and functional food, beverage, condiments, forage, and honey source. On average, 20.6 edible taxa were listed per informant. The highest number of wild edibles included vegetables (mean – 13.2 species), whereas vitamins and functional foods were frequently used (mean – 7.4). Other categories were less frequent in use such as carbohydrates (mean –0.4), Edible pigments (mean –0.36), Oil and fats (mean – 1.8), Beverage (mean –0.34), Honey source plant (mean –0.23). CI and CFSI values of the wild edibles, except the forage category, cited at least three times were calculated (Table 1).

Diversity of wild edibles

Almost all major groups of wild plants in Baidi village have edible members that are reported to have been used by the indigenous Naxi people. Exceptions to the bryophytes, documented wild edibles include algae, lichen, fungi, fern, gymnosperm and angiosperm (Table 2). Most of the documented species were angiosperm with 126 species belonging to 53 families. Rosaceae was the biggest family with 18 wild edibles (Fig. 3), whereas 32 families contained only one edible plant species. Fungi was the second largest group containing 37 species representing 17 families. Gymnosperm included one species (one family), fern four species (two families), lichen three species (two families), and algae two species (one family). About one-sixth of 173 wild edibles were included in more than one food category, as listed in Table 3. As to the collecting habitats [29], most of these plants were collected from the wild populations nearby the village. It was also common that there was a small-scale cultivation of wild plants in the home gardens and all the space surrounding human habitations. Different plant parts were used as a source of food in Baidi village, but the most used parts were different depending on the purpose of the foods (such as forage and food medicines). Leaves, fruits, and the complete aerial parts were the mostly consumed by humans while the animals consumed leaves.

Wild vegetables

This group was the biggest food category with 75 edible species belonging to 40 families. Russulaceae belonged
Taxon	Family	Vernacular name	Food categories	Part(s) used and mode of consumption (prevalence of use)	Collecting habitatb (season)	Voucher number	FC	f	CI	CFSI
Acorus gramineus Sol. ex Aiton	Acoraceae	vitamine & functional food	Rhizomes, boiled in water without garnish (TC).	AE(all seasons)	P1408					
Amaranthus sp.	Amaranthaceae	vegetable	Leaves, fried (TC).	SC-CA-UA (spring)	0354					
Chenopodium album L.	Amaranthaceae	mulv	Leaves, fried (TC).	CA-UA (spring and summer)	0151					
Kochia scoparia (L.) Schrad.	Amaranthaceae	vegetable	Leaves, fried (TC).	CA-UA (spring and summer)	P1413					
Allium sp.	Amaryllidaceae	gu	edible condiments, vegetable	Leaves, fried (TC).	FO (spring and summer)	0355	40	0.47	0.47	24.00
Pistacia weinmannifolia J. Poiss. ex Franch.	Anacardiaceae	yizhu	vitamine & functional food	Fruits, eaten raw (AB).	FO-CA-UA(summer and autumn)	0055	16	0.19	0.19	5.40
Ligusticum sinense cv. Chuanxiong S. H. Qiu & et al.	Apiaceae	root	vegetable	Roots, boiled in water (TC).	FO(all seasons)					
Oenanthe javanica (Bl.) DC.	Apiaceae	zen axi	vegetable	Leaves, fried (TC).	AE(all seasons)	0045	31	0.36	0.36	27.90
Cynanchum auriculatum Royle ex Wight	Apocynaceae	niezi	vegetable	Leaves and stems, boiled in water (AB).	SC-UA (all seasons)	0088				
Marsdenia sp.	Apocynaceae	Lubei	vegetable	Leaves and stems, boiled in water (AB).	SC (spring and summer)	0234				
Amorphophallus konjac K. Koch	Araceae	Bulei	carbohydrates	Tubers, dried, smashed and boiled in water for making curd (TC).	FO-CA-SC (autumn)	0052				
Arisaema elephas Buchet	Araceae	Babaxiluo	forage, vitamine & functional food	Roots, boiled in water (TC). Leaves, eaten raw as forage (TC).	SC-CA-UA (all seasons)	0048				
Arisaema erubescens (Wall.) Schott	Araceae	Rihaxiluo	forage, vitamine & functional food	Roots, boiled in water (TC). Leaves, eaten raw as forage (TC).	SC-CA-UA (all seasons)	0095				
Asparagus cochinchinensis (Lour.) Merr.	Asparagaceae	Laosha	vitamine & functional food	Roots, boiled in water (TC).	FO-SC-UA (all seasons)	0047				
Maianthemum japonicum (A. Gray) La Frankie	Asparagaceae	Abu	vegetable	Leaves, fried (TC).	FO (spring and summer)	0011	53	0.62	0.62	55.65
Arctium lappa L.	Asteraceae	Elaba	vegetable, vitamine & functional food	Roots, stewed (TC).	SC-CA-UA (all seasons)	0258	4	0.05	0.05	7.02
Artemisia sieversiana Ehrhart ex Willd.	Asteraceae	forage, vitamine & functional food	Whole plant, boiled in water (AB). Aerial part, eaten raw as forage (TC).	FO-SC-UA (spring, summer and autumn)	0137					
Carpesium cernuum L.	Asteraceae	La men ga	forage, vitamine & functional food	Whole plant, boiled in water (TC). Aerial part, eaten raw as forage (TC).	SC-UA (all seasons)	0299				
Plant Name	Family	Common Name/Usage	Notes	Location	Code					
-----------------------------	------------------	-------------------	--	---------------------------	------					
Carpesium sp.	Asteraceae	La men ga	forage, vitamin & functional food	Whole plant, boiled in water (TC). Aerial part, eaten raw as forage (TC).	SC-UA (all seasons)	0150				
Cichorium intybus L.	Asteraceae	vegetable, forage	Leaves, fried (TC).		SC-CA-UA (all seasons)	P1407				
Cirsium lijiangense Petr. & Hand.-Mazz.	Asteraceae	Raqiku	vegetable, vitamin & functional food	Roots, stewed (TC).	SC-CA-UA (all seasons)	0260 3 0.03 0.03 5.27				
Galinsoga parviflora Cav.	Asteraceae	Murukepei; Youcong	forage	Aerial part, eaten raw (TC).	CA (spring, summer, autumn)	0020				
Hippolytia delavayi (Franch. ex W. W. Smith) C. Shih	Asteraceae	Bunasi	vitamin & functional food	Roots, boiled in water (TC).	FO (all seasons)	0114				
Leibnizia anandra (L.) Turcz.	Asteraceae	Mumeicidei	forage	Aerial part, eaten raw or boiled in water (AB).	CA (spring, summer, autumn)	0061				
Sigesbeckia orientalis L.	Asteraceae	Umeiheiba	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer, autumn)	0101				
Sonchus oleraceus L.	Asteraceae	Umeisennier	vegetable	Leaves, fried (TC).	CA-UA (spring)	P1420				
Taraxacum mongolicum Hand.-Mazz.	Asteraceae	Pugongying	vegetable, vitamin & functional food	Whole plant, boiled in water (TC).	SC-CA-UA (all seasons)	0189 70 0.81 0.85 157.50				
Begonia grandis Dryand.	Begoniaceae	Akangzi	vegetable	Tender leaves and stems, eaten raw (AB).	FO-CA-UA(summer and autumn)	0087				
Berberis sp.	Berberidaceae	Csílv	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA(summer and autumn)	0007 4 0.05 0.05 1.35				
Cynoglossum amabile Stapf & J. R. Drumm.	Boraginaceae	forage	Aerial part, eaten raw or boiled in water (AB).		CA (spring, autumn)	0064				
Ehretia dicksonii Hance	Boraginaceae	Buna	forage, vitamin & functional food	Fruits, eaten raw (AB). Leaves, as forage (AB).	SC-CA-UA (all seasons)	0207 4 0.05 0.05 1.35				
Capsella bursa-pastoris (L.) Medik.	Brassicaceae	vegetable	Leaves, fried (TC).		SC-CA-UA (spring)	0198				
Cardamine macrophylla Willd.	Brassicaceae	You	vegetable	Leaves, fried (TC).	FO (spring and summer)	0266 76 0.88 0.94 205.20				
Cardamine tangutorum O. E. Schulz	Brassicaceae	You	vegetable	Leaves, fried (TC).	FO (spring and summer)	0353 76 0.88 0.94 205.20				
Eutrema yunnanense Franch.	Brassicaceae	Bei	vegetable, forage	Leaves, fried (TC). Eaten raw by animals.	FO (spring and summer)	0352 73 0.85 0.85 65.70				
Nasturtium officinale R. Br.	Brassicaceae	Shuicai, Xiyangcai	vegetable	Leaves, fried (CC).	AE(all seasons)	0166 45 0.52 0.52 206.72				
Thlaspi arvense L.	Brassicaceae	Jucu	oil & fats, vitamin & functional food	Seeds, dried and boiled in water (AB). Whole plant, boiled in water as functional food (AB).	SC-CA-UA (summer)	0129				
Adenophora stricta Miq.	Campanulaceae	Apudada	vitamin & functional food	Roots, stewed in meat (TC). Leaves, eaten raw (TC).	CA (all seasons)	0038 38 0.44 0.45 106.88				
Plant Name	Family	Common Name	Part(s) Used	Preparation Method	Season	Code	P Value 1	P Value 2	P Value 3	
---	--------------	-----------------	---	---	-------------------------------	------	------------	------------	-----------	
Cannabis sativa L.	Cannabaceae	Samei	Oil & fats	Seeds, dried and boiled in water (AB).	SC-CA-UA (summer and autumn)	P1422	67	0.78	0.78	
Dipsacus asper Wall. ex DC.	Caprifoliaceae	Caprifoliaceae	Vitamine & functional food	Roots, boiled in water (TC).	FO-SC-CA-UA (all seasons)	P1421				
Sambucus adnata Wall. ex DC.	Caprifoliaceae	Shousi	Vitamine & functional food	Whole plant, boiled in water (TC).	FO-SC (all seasons)	3	0.03	0.03	1.01	
Sambucus javanica Blume	Caprifoliaceae	Munongzi	Vitamine & functional food	Whole plant, boiled in water (TC).	SC-CA-UA (all seasons)	0227				
Valeriana jatamansi Jones	Caprifoliaceae	Matixiang	Vegetable, vitamin & functional food	Whole plant, stewed (TC).	SC-CA-UA (all seasons)	0041	67	0.78	0.90	
Viburnum betulifolium Batalin	Adoxaceae	Efuni	Vitamine & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)	0122	30	0.35	0.35	
Viburnum cylindricum Buch.-Ham. ex D. Don	Adoxaceae	Ciifuni	Vitamine & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)	0213	30	0.35	0.35	
Viburnum foetidum var. ceanothoides (C. H. Wright) Handel-Mazzetti	Adoxaceae									
Cuscuta chinensis Lam.	Convolvulaceae	Mulupabie	Vegetable, vitamin & functional food	Whole plant, boiled in water (TC).	SC-CA-UA (all seasons)	0156				
Cornus capitata Wall.	Cornaceae	Laka	Vitamine & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)	0086	52	0.60	0.60	
Cyperus sp.	Cyperaceae	Wongdanzi	Forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)		7	0.08	0.08	
Dioscorea deltoidea Wall. ex Griseb.	Dioscoreaceae	Rua ba; Luamba	Carbohydrates	Tubers, dried and boiled in water (TC).	FO-CA-SC (autumn)	0094			4.73	
Dioscorea yunnanensis Prain & Burkii	Dioscoreaceae		Vitamine & functional food	Roots, boiled in water (TC).	FO-SC-CA-UA (all seasons)	P1409				
Diospyros lotus L.	Ebenaceae	Tazhu	Vitamine & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)	P1417	3	0.03	0.03	
Elaeagnus umbellata Thunb.	Elaeagnaceae		Vegetable	Fruits, eaten raw (TC).	SC-UA (autumn)	0211				
Hippophae rhamnoides L.	Elaeagnaceae	Zhu	Beverage	Fruits, fermented for sour taste (AB).	FO-SC (autumn)					
Pyrola atropurpurea Franch.	Ericaceae		Forage	Aerial part, eaten raw or boiled in water (TC).	FO (spring, summer and autumn)					
Vaccinium fragile Franch.	Ericaceae	Anmiximi	Vitamine & functional food	Fruits, eaten raw (AB).	FO-CA-UA (summer and autumn)	0021				
Bauhinia sp.	Fabaceae	Huangrekei	Forage	Leaves, eaten raw or boiled in water (TC).	FO (spring, summer and autumn)	0142				
Cassia sp.	Fabaceae	Wujiaba	Forage	Leaves, eaten raw or boiled in water for livestocks (TC).	FO (spring, summer and autumn)	0319				
Lespedeza sp.	Fabaceae	Fushibeibei	forage	Leaves, eaten raw or boiled in water (AB).	FO (spring, summer and autumn)	0100				
----------------------	----------	----------------	----------	---	---------------------------------	------				
Lespedeza thunbergii subsp. elliptica (Benth. ex Maxim.) H. Ohashi	Fabaceae									
Medicago lupulina L.	Fabaceae	Mosu	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)	0239				
Piptanthus nepalensis (Hook.) Sweet	Fabaceae	Murekei	forage	Leaves, eaten raw or boiled in water (TC).	FO (spring, summer and autumn)	0105				
Trifolium repens L.	Fabaceae	Laba	forage	Tender Leaves, eaten raw or boiled in water (TC).	FO (all seasons)	0098				
Quercus sp.	Fagaceae									
Gentiana rigescens Franch.	Gentianaceae	Yinini, Zii	forage	Whole plant, boiled in water (TC).						
Helwingia chinensis Batalin	Helwingiaceae	Ninahagubii	vegetable	Tender leaves, fried (AB).	FO (spring and summer)	0215				
Hypericum forestii (Chitt.) N. Robson	Hypericaceae	Muwaniba	honey source plant	Flowers, sucked (AB).	SC-CA-UA (summer)	0243				
Itea yunnanensis Franch.	Iteaceae	Piejulu	forage	Tender leaves, eaten raw (TC).	FO-CA-UA (spring and autumn)	0077				
Juglans cathayensis Dode	Juglandaceae	Gudu	oil & fats	Seeds, dried and boiled in water (AB).	FO-SC-UA (autumn and winter)	P1412				
Dracocephalum sp.	Lamiaceae	Bingba	forage	Aerial part, eaten raw or boiled in water (AB).	FO (spring, summer and autumn)	0039				
Elsholtzia strobilifera (Benth.) Benth.	Lamiaceae		edible condiments	Seeds, dried, for seasoning (AB).	SC-CA-UA (autumn and winter)	0192				
Mentha canadensis L.	Lamiaceae	Angzhi	vegetable, edible condiments	Tender leaves and stems, fried, or cold and dressed with sauce (TC).	CA-UA (all seasons)	0012				
Origanum vulgare L.	Lamiaceae	Kedu	edible condiments	Seeds and leaves, dried, for seasoning (AB).	SC-CA-UA (autumn and winter)	0058				
Salvia trijuga Diels	Lamiaceae		vitamine & functional food	Roots, boiled in water (TC).	FO-SC-UA (all seasons)	0119				
Streptolirion volubile Edgew.	Commelinaceae	Mailexu	forage	Aerial part, eaten raw (TC).	CA (spring, summer and autumn)	0030				
Malva verticillata L.	Malvaceae		carbohydrates	Tubers, dried and boiled in water (TC).	FO-CA-SC (autumn)	0152				
Ficus sarmentosa Buch.-Ham. ex Sm.	Moraceae	Kesulu	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (spring and autumn)	0040				
Morus mongolica (Bureau) C. K. Schneid.	Moraceae	Ciiliu	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (spring and autumn)	0132				
Species	Family	Usage	Description	Season	Code					
---------------------------------	-----------------	----------------	---	-------------------------	----------					
Epipactis mairei Schlr.	Orchidaceae	forage	Aerial part, eaten raw or boiled in water (AB).	FO (spring, summer and autumn)	0026					
Habenaria sp.	Orchidaceae	vitamin & functional food	Tubers, boiled in water (AB).	FO (autumn)	0037					
Oxalis acetosella L.	Oxalidaceae	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)	0313					
Plantago asiatica L.	Plantaginaceae	vegetable, vitamin & functional food	Whole plant, boiled in water (TC).	SC-CA-UA (all seasons)	0049 64 0.74 0.78 144.00					
Avena fatua L.	Poaceae	carbohydrate forage	Seeds, dried, smashed and fried (TC). Whole plant for animal (TC).	CA (summer and autumn)	P1419					
Catabrosa aquatica (L.) P. Beauv.	Poaceae	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)	0256					
Echinochloa crusgalli (L.) P. Beauv.	Poaceae	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)	0146					
Phyllostachys glauca McClure	Poaceae	vegetable	Young shoots, fried (TC).	SC-CA-UA (spring and early summer)	0154 5 0.06 0.06 1.13					
Setaria viridis (L.) P. Beauv.	Poaceae	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)	0144					
Fagopyrum dibotrys (D. Don) H.Hara	Polygonaceae	forage	Aerial part, eaten raw or boiled in water (TC).	CA (all seasons)	0015					
Fagopyrum gracilipes (Hemsl) Dammmer ex Diels	Polygonaceae	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)	0141					
Oxyria sinensis Hemsl.	Polygonaceae	vegetable, forage	Young shoots, eaten raw by people (AB). Leaves, eaten by animals (TC).	SC-CA-UA (spring, summer and autumn)	0176 10 0.12 0.23 15.19					
Polygonum capitatum Buch.-Ham. ex D. Don	Polygonaceae	forage	Aerial part, eaten raw (TC).	CA (spring, summer and autumn)	0144					
Polygonum paleaceum Wall.	Polygonaceae	vitamin & functional food	Roots, boiled in water (TC).	FO (all seasons)	0015					
Polygonum runcinatum Buch.-Ham. ex D. Don	Polygonaceae	forage	Aerial part, eaten raw or boiled in water (TC).	SC-CA-UA (spring, summer and autumn)	0237 6 0.07 0.07 4.68					
Rumex acetosa L.	Polygonaceae	vegetable	Young shoots, eaten raw (AB).	SC-CA-UA (spring, summer and autumn)	0236					
Myrsine africana L.	Primulaceae	vitamin & functional food	Fruits, eaten raw (AB).	FO-CA-UA (summer and autumn)	0076					
Clematis armandii Franch.	Ranunculaceae	vegetable	Young shoots, fried (TC).	SC-CA-UA (spring)	0163					
Clematis ranunculoides Franch.	Ranunculaceae	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)	0046					
Common Name	Family	Other Names	Habitat	Uses	Collection Period					
-------------	--------	-------------	---------	------	-------------------					
Thalictrum aquilegifolium var. sibiricum	Ranunculaceae	Renuba	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)					
Zaphophyllum montana W. W. Smith	Rhamnaceae	Cipa	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Amygdalus davidiana (Carrière) de Vos ex Henry	Rosaceae	Buji,buka	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Cerasus cerasoides (Buch.-Ham. ex D. Don) S. Y. Sokolov	Rosaceae	Sibu	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Docynia delavayi (Franch.) C. K. Schneid.	Rosaceae	Anmenbuzi; Aliibuji; Ameibuji	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Fragaria nilgerrensis Schltdl. ex J. Gay	Rosaceae	Ameibuji	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Malus rockii Rehder	Rosaceae	Ameibuji	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Malus yunnanensis (Franch.) C.K. Schneid.	Rosaceae	Lvba	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Osteomeles schwerinae C. K. Schneid.	Rosaceae	Dazhu	vitamin & functional food	Fruits, eaten raw (AB).	FO-CA-UA (summer and autumn)					
Potentilla kleiniana Wight & Arn.	Rosaceae	forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)						
Prunus serotina	Rosaceae	Chuda	vitamin & functional food, beverage, oil & fats	Fruits, eaten raw (AB). Seeds, smashed and boiled in water for oil (CC). Leaves, for making functional tea (TC).	SC-CA-UA (spring, summer and autumn)					
Pyracantha angustifolia (Franch.) C. K. Schneid.	Rosaceae	Anmilaximi; Saigulu; Youlubuzhu	vitamin & functional food	Fruits, eaten raw (AB).	FO-CA-UA (summer and autumn)					
Pyracantha fortuneana (Maxim.) H. L. Li	Rosaceae	Abalugu	vitamin & functional food	Fruits, eaten raw (AB).	FO-CA-UA (summer and autumn)					
Pyrus pashia Buch.-Ham. ex D. Don	Rosaceae	vitamine & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)						
Rosa sp.	Rosaceae	Haducii	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Rubus biflorus Buch.-Ham. ex Sm.	Rosaceae	Cipaaha	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Rubus sp.	Rosaceae	Ciinaaha	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Rubus sp.	Rosaceae	Emaiji	vitamin & functional food	Fruits, eaten raw (TC).	FO-CA-UA (summer and autumn)					
Table 1 Inventory of wild edibles gathered and consumed in the Baidi village (Continued)

Plant Family	Genus	Species	Habitat	Characteristics	Collection Period	Output 1	Output 2	Output 3			
Sorbus	hemsleyi (C. K. Schneid.) Rehder	Sorbus hemsleyi (C. K. Schneid.) Rehder	Rosaceae	Forage	FO-CA-UA (summer and autumn)	0275	48	0.56	135.00		
Sorbus	hupehensis C. K. Schneid.	Sorbus hupehensis C. K. Schneid.	Rosaceae	Forage	FO-CA-UA (summer and autumn)	0121	5	0.06	0.08	13.78	
Rubia	membranacea Diels	Rubia membranacea Diels	Rubiaceae	Forage	CA (spring, summer and autumn)	0250	10	0.12	0.12	2.25	
Zanthoxylum	armatum DC.	Zanthoxylum armatum DC.	Rutaceae	Edible condiments	FO-SC-CA (autumn)	0139	4	0.05	0.05	1.35	
Zanthoxylum	bungeanum Maxim.	Zanthoxylum bungeanum Maxim.	Rutaceae	Edible condiments	FO-SC-CA (autumn)	0078	5	0.06	0.08	13.78	
Houttuynia	cordata Thunb.	Houttuynia cordata Thunb.	Saururaceae	Forage	CA-UA (all seasons)	0044	74	0.86	1.21	2164.50	
Schisandra	sp.	Schisandra sp.	Schisandraceae	Forage	FO (spring)	0143	12	0.14	0.14	8.10	
Debregeasia	orientalis C. J. Chen	Debregeasia orientalis C. J. Chen	Urticaceae	Forage	SC-CA-UA (spring)	0014	11	0.13	0.13	96.80	
Verbena	officinalis L.	Verbena officinalis L.	Verbenaceae	Forage	SC-CA-UA (all seasons)	0180	4	0.05	0.05	1.35	
Viola sp.			Violaceae	Forage	SC-CA-UA (all seasons)	0084	4	0.05	0.05	1.35	
Ampelopsis	delavayana Planch.	Ampelopsis delavayana Planch.	Vitaceae	Forage	FO-CU-UA (spring and autumn)	0250	10	0.12	0.12	2.25	
Gymnosperm			Pinaceae	Forage	FO-SC (autumn)	0222	38	0.44	0.44	51.3	
Pinus armandi	Franch.	Pinus armandi Franch.	Pinaceae	Forage	FO (spring, summer and autumn)	0267	38	0.44	0.44	51.3	
Equisetum	hyemale L.	Equisetum hyemale L.	Equisetaceae	Forage	FO (spring and summer)	0143	12	0.14	0.14	8.10	
Adiantum sp.			Pteridaceae	Forage	FO (spring and summer)	0250	10	0.12	0.12	2.25	
Pteridium	aquilinum var. latisculum (Desv.) Underw. ex Heller.	Pteridium aquilinum var. latisculum (Desv.) Underw. ex Heller.	Pteridaceae	Forage	Aerial part, eaten raw or boiled in water (TC).	CA (spring, summer and autumn)	0078	5	0.06	0.08	13.78
Pteridium	revolutum (Blume) Nakai	Pteridium revolutum (Blume) Nakai	Pteridaceae	Forage	Aerial part, eaten raw or boiled in water (TC).	FO (spring and summer)	0222	38	0.44	0.44	51.3
Mushroom			Pteridaceae	Forage	FO (spring and summer)	0267	38	0.44	0.44	51.3	
Auicularia	sp.	Auicularia sp.	Auriculariaceae	Forage	FO (spring and summer)	0143	12	0.14	0.14	8.10	
Boletus	edulis Bull.	Boletus edulis Bull.	Boletaceae	Forage	FO (spring and summer)	0222	38	0.44	0.44	51.3	
Table 1	Inventory of wild edibles gathered and consumed in the Baidi village (Continued)										
----------	--										
Tylopilus balloui (Peck) Sing	Boletaceae	Niuganjun	vegetable	Fruit body, stewed, fried (TC).	FO (summer and autumn)						
Tylopilus sp.	Boletaceae	Bamu	vegetable	Fruit body, stewed, fried (TC).	FO (summer and autumn)	10	0.12	0.12	5.20		
Cantharellus cibarius Fr.	Cantharellaceae	Jiyoujun	vegetable	Fruit body, stewed, fried (TC).	FO (summer and autumn)	P1405	10	0.12	0.12	6.00	
Cordyceps sobolifera (Hill.) Berk. et Br.	Clavicipitaceae	Chongcao	vitamine & functional food	Fruit body, stewed (TC).	FO (summer)						
Entoloma clypeatum (L.) P. Kumm.	Entolomataceae	Yiwojun	vegetable	Fruit body, fried (TC).	FO (summer and autumn)	P1406					
Gomphus sp.	Gomphaceae	Labajun	vegetable	Fruit body, stewed, fried (TC).	FO (summer and autumn)						
Hericium sp.	Hericiaceae	Houtoujun	vegetable	Fruit body, stewed (TC).	FO (spring, summer and autumn)	5	0.06	0.06	2.60		
Laccaria laccata (Scop.) Cooke	Hydnangiaceae	Tashimu	vegetable	Fruit body, stewed, fried (TC).	FO (summer and autumn)	0282					
Hygrophorus sp.	Hygrophoraceae	Huanglasan	vegetable	Fruit body, fried (TC).	FO (autumn)	3	0.03	0.03	1.80		
Engleromyces sp.	Hypocreaceae	Zhujun	vegetable	Fruit body, dried and stewed (TC).	FO (summer and autumn)						
Lentinula sp.	Marasmiaceae	Zhemu	vegetable	Fruit body, fried (TC).	FO (summer and autumn)	6	0.07	0.07	3.60		
Lactarius hatsudake Tanaka	Russulaceae	Tongbulu	vegetable	Fruit body, stewed (TC).	FO (summer)						
Lactarius sp. 1	Russulaceae	Saobajun	vegetable	Fruit body, stewed, fried (TC).	FO (spring and summer)	0278	3	0.03	0.03	1.80	
Lactarius sp. 2	Russulaceae	Baipajun	vegetable	Fruit body, stewed, fried (TC).	FO (spring and summer)	0338	14	0.16	0.16	8.40	
Lactarius sp. 3	Russulaceae	Minuka	vegetable	Fruit body, stewed, fried (TC).	FO (spring and summer)	0341	17	0.20	0.20	10.20	
Lactarius sp. 4	Russulaceae	Angzhishi	vegetable	Fruit body, stewed, fried (TC).	FO (spring and summer)	0284					
Lactarius sp. 5	Russulaceae	Jucu	vegetable	Fruit body, stewed, fried (TC).	FO (spring and summer)	0285					
Lactarius sp. 6	Russulaceae	Jucu	vegetable	Fruit body, stewed, fried (TC).	FO (spring and summer)	0288					
Lactarius sp. 7	Russulaceae	Jucu	vegetable	Fruit body, stewed, fried (TC).	FO (spring and summer)	0281					
Table 1 Inventory of wild edibles gathered and consumed in the Baidi village (Continued)

Species	Family	Vernacular name	Type of collection	FC	CFSI	CI	P	Prevalence of use:	Collecting habitat:
Russula sp. 1	Russulaceae	Kaca	vegetable				0286	9	FO (summer and autumn)
Russula sp. 2	Russulaceae	Zhebu	vegetable				0340	9	FO (summer and autumn)
Russula sp. 3	Russulaceae	Huotanjun	vegetable						FO (summer)
Russula sp. 4	Russulaceae	Azimenihu	vegetable				0283		FO (summer and autumn)
Russula virescens (schaeff. ex Zanted) Fr.	Russulaceae	Qingtoujun	vegetable						FO (summer)
Thelephora sp.	Thelephoraceae	Ganbajun	vegetable						FO (summer)
Tricholoma matsutake Sing	Thelephoraceae	Songmaojun	vegetable						FO (summer)
Tricholoma sp.	Thelephoraceae	Songmaojun	vegetable						FO (summer)
Tricholoma sp.	Thelephoraceae	Yumu	vegetable						FO (summer)
Tricholoma sp.	Thelephoraceae	Yumu	vegetable						FO (summer)
Lyophyllum fumosum (Pers.: Fr.) P. D. Orton.	Tricholomataceae	Yiwojun	vegetable						FO (summer and autumn)
Lyophyllum sp.	Tricholomataceae	Menzher	, stewed (TC).				0280	31	FO (summer and autumn)
Marasmius sp.	Tricholomataceae	Huangpifujun	vegetable						FO (summer)
Termitomyces sp. 1	Tricholomataceae	Mulu	vegetable				0140	36	FO (summer and autumn)
Termitomyces sp. 2	Tricholomataceae	Umu	vegetable				0140		FO (summer and autumn)
Lichen	Lobariteae	vegetable	Whole plant				0219	42	FO (all seasons)
Lobaria retigera Trevis.	Lobariteae	vegetable	Whole plant				0253	42	FO (all seasons)
Lobaria yunnanensis Yoshim	Lobariteae	vegetable	Whole plant				0279		AE (summer)
Thamnolia vermicularia (Sw.) Ach. Ex Schae	Thamnoliaceae	beverage	Whole plant				0141		RP (spring)
Algae	Nostoc commune Vaucher ex Bornet & Flahault	vegetable	Aerial part				0141		AE (summer)
Nostoc sphaeroids Kutz	Nostocaceae	Bacai e	vegetable				0141		FO (summer)

Species in inventory are ordered from higher to lower plants, and they are arranged firstly by family taxa and then by genus taxa. Vernacular name of wild edibles are written using Chinese pinyin.

The types of collecting habitats are based on the characterization proposed by Calabuig (2008)

FC: frequency of citation, CFSI: cultural food significance index, CI: cultural importance index

a Prevalence of use: AB: Abandoned, CC: Currently consumed, TC: Traditionally consumed
b Collecting habitat: FO: Forests (oak woods, pine woods, etc.); SC: Scrublands (Pistacia, etc.); AE: Aquatic environments (streams, ditch, wet places, etc.); RP: Rock places (rocky slopes, rocks, etc.); CA: Cultivated areas (orchards, farmland, etc.); UA: Urban and periurban areas (villages, roads, etc.)

Voucher number with P means voucher photograph number, and the one without P means voucher specimen number.
to fungi had the highest number of species (11 species) eaten as vegetables (Fig. 4). Often wild vegetables were cooked in oil or fat or consumed in stews and soups. The most common procedure was to boil them first and then fried with garlic and chilies. The pork fat was common compared to vegetable oil for frying. The consumption of wild vegetable eaten raw was very rare.

The most frequently reported species were *Cardamine macrophylla* Willd., *C. tangutorum* O. E. Schulz., *Eutrema yunnanense* Franch. and *Houttuynia cordata* Thunb. All of these consumed after frying, except the last one, consumed as a salad with sauce. The first three species grow in the mountains, local people collected these species most often while grazing their cattle and horses during the spring and summer seasons. *Houttuynia cordata* grew wild in cropland and was collected by the local people when they finished their farm work. These four wild vegetables had been consumed for a long time, especially in the time of food shortages, later became the most popular vegetables in Baidi village. Wild gathered vegetables had different chemical composition and nutritional value from cultivated ones, according to Zeghichi [30]. Another two wild vegetables often used in the past, especially in time of food shortage, were the well-known *Lobaria retigera* Trevis. and *L. yunnanensis* Yoshim. (laolongpi is a vernacular name for both). These two plants are still consumed in other regions, like the Naxi in Lijiang city. These two species are proved to have high nutritional values such as antioxidant activity [31], but the Naxi in Baidi village abandoned this food tradition because of the unpleasant taste.

Most of the wild vegetables were defined as “bitter”, according to the Naxi, who related this to the concept of “healthy”. This kind of vegetable was considered “healthy” without any specification. According to Johns [32], such use had cultural significance related to the ingestion rather than taste.

| Table 2 Number of species and number of families in different plant categories |
|-------------------------------|------------------------------|------------------|
| Plant categories | Number of families | Number of species |
| Angiosperm | 53 | 126 |
| Gymnospermae | 1 | 1 |
| Fern | 2 | 4 |
| Fungi | 17 | 37 |
| Lichen | 2 | 3 |
| Algae | 1 | 2 |
| Total | 76 | 173 |

| Table 3 Number of species in different food categories |
|-------------------------------|-------------------------------|
| Food categories | Number of species |
| Vegetable | 75 |
| Vitamin and functional food | 60 |
| Forage | 40 |
| Carbohydrates | 6 |
| Edible pigments | 6 |
| Oil and fats | 5 |
| Beverage | 4 |
| Honey source plant | 1 |

![Fig. 3 Family distribution of wild edible plant species of angiosperm category](image-url)
Mushrooms also played a significant role in the local diet. Of 37 fungi species, most were eaten as vegetables and could be gathered during spring and fall. The mushrooms were consumed while fresh or after drying, and mostly grilled like meat. The harvesting of fungi for markets also had been one of main economic activities in the Baidi village. According to informants, *Boletus edulis* Bull., *Cantharellus cibarius* Fr. and *Entoloma clypeatum* (L.) P. Kumm., for example, were sold to Lijiang city, and to other provinces, such as Guangdong in Southern China. Women and children were the primary collectors of mushrooms. Mushrooms are the source of food in more than 80 countries worldwide, and their commercial harvesting is an important business in many countries, such as Turkey, the USA and Bhutan [33].

Vitamin and functional food

This food category included mainly wild fruits, which had a high content of vitamins and minerals, and food medicines consumed as both edible plants and medicinal plants. This group, with 60 species, was the second largest regarding the number of wild edibles cited.

Of the 30 wild edible fruits, Rosaceae was the largest family. Most of them did not have market value and sporadically gathered for household consumption, except *Malus pumila* Mill. and *Pyrus pashia* Buch.-Ham. ex D. Don. The most frequently eaten fruit was *Cornus capitata* Wall. for the Naxi. According to Johns [34], wild fruits are more fibrous and contain higher concentrations of vitamins and a greater diversity of secondary compounds compared to the cultivated species. Our study showed that many wild fruits were used as snacks, mainly by children in the past when cultivated fruits were not frequently available. They were probably a good source of vitamins and minerals but have become less important now, such as *Rubus biflorus* Buch.-Ham. ex Sm.

We documented 33 species belonging to food medicines. It is interesting that food medicines can also be wild vegetables and wild fruits. For example, *Houttuynia cordata* was delicious salad and antiphlogosis medicine. Similarly, *Sorbus hupehensis* C. K. Schneid. was tasty fruit and medicine to high blood pressure. Balick and Cox [35] explained aboriginal people do not make a clear distinction between edible and medicinal plants; we documented similar findings in the traditional practice of the Naxi in Baidi village. This kind of practices also exists in other Naxi villages in Shangri-La [15]. Moreover, some food preparations were taken exclusively for medicinal purpose, for example, *Habenaria* sp. fried with eggs was the most commonly used medicine for a cough [36, 37].

Carbohydrates and edible condiments

In the past, underground parts of some wild edibles such as *Dioscorea oppositifolia* that contain a high amount of starch used to be consumed, especially in the time of hardship. We documented six wild edibles used as the source of carbohydrates, out of that two were abandoned, and the remaining four were occasionally consumed. The main reason for the decrease in consumption was the diversity and abundance of cultivated crops in Baidi village. It was very common that wild edibles once frequently consumed in the past were now considered as weeds.

![Fig. 4 Percentage of wild vegetables in each family](image-url)
and rarely eaten. Such kind of change in perception has been reported from several places in Turkey, India and Brazil [38–40].

There were only six condiments from the wild source in the diet of Baidi village according to this study. The most often consumed species was *Zanthoxylum armatum* DC. The use of condiments not only enhances the flavor of certain dishes but also provides preservative and medicinal properties (anti-parasitic) [41].

Oil and fats, beverage and honey source plant

The Naxi in Baidi used total five wild edibles as a source of oil and fats, of which *Juglans mandshurica* Maxim. and *Cannabis sativa* L. were most commonly used. These two species were still widely used to make oil and fats. Similarly, *Prinsepia utilis* oil, rich in flavonoid and have been proved to have an anti-bacteria effect [42, 43], was also frequently used.

A total of four wild edibles recorded were used as the beverage. Fruits of *Schisandra* sp. were usually soaked in wine, which make the liquor medicinal [44, 45]. Leaves of the three species (*Hippophae rhamnoides, Prinsepia utilis* and *Thamnolia vermicularia*), were used to make vinegar and tea. Tea made of *Prinsepia utilis* has been proved to have significant immunosuppressive and anti-tumor activity [46, 47].

Hypericum forestii (Chittenden) N. Robson was the only honey source plant. The local name for this species is “muwaniba”, which means it blooms during Dragon Boat Festival. This species with bright flowers attracts lots of bees during the flowering season, and local children have the habits of sucking its nectar for a sweet taste.

Forage

Altogether 40 wild species belong to 20 families were used as animal fodder in Baidi village. According to informants, they divided fodder plants into two groups: cropland group and mountain group based on the habitats. In mountain group, *Eutrema yunnanense* was the favorite fodder for the cattle. In cropland group, *Fagopyrum gracilipes* (Hems.) Dammer was often intentionally cultivated as animal fodder. Naxi women collected and carried those fodders from the cropland for stall feeding. The fodder plants also included *Oxystena sinensis* Hems. and *Cichorium intybus* L., the local people once consumed both of these during the food scarcity.

Evaluating and selecting of wild edibles based on traditional wisdom

Twenty wild edibles were selected (Table 4) using four quantitative indices (FC, f, CI and CFSI). The ranks of

Latin name	Vernacular name	Indices	Ranking						
		FC	f	CI	CFSI	FC	f	CI	CFSI
Cardamine macrophylla Willd.	You	76	0.88	0.94	205.20	1	1	2	3
Cardamine tangutorum O. E. Schulz	You	76	0.88	0.94	205.20	1	1	2	3
Houttuynia cordata Thunb.	Arunaha, Azina	74	0.86	1.21	2164.50	2	2	1	1
Eutrema yunnanense Franch.	Bei	73	0.85	0.85	65.70	3	3	4	13
Taraxacum mongolicum Hand.-Mazz.	Pugongying	70	0.81	0.85	157.50	4	4	6	
Cannabis sativa L.	Samei	67	0.78	0.78	24.12	5	5	6	18
Juglans cathayensis Dode	Gudu	67	0.78	0.80	20.35	5	5	5	21
Valeriana jatamansi Jones	Matixiang	67	0.78	0.90	120.60	5	5	5	9
Plantago asiatica L.	Umeiheizhou	64	0.74	0.78	144.00	6	6	6	7
Maianthemum japonicum (A. Gray) La Frankie	Abuz	53	0.62	0.62	55.65	7	7	7	14
Cornus capitata Wall.	Laka	52	0.60	0.60	14.04	8	8	8	24
Docynia delavayi (Franch.) C. K. Schneid.	Sibu	51	0.59	0.59	11.48	9	9	9	26
Sorbus hemsleyi (C. K. Schneid.) Rehder	Erniaji	48	0.56	0.56	135.00	10	10	11	8
Sorbus hupehensis C. K. Schneid.	Yumiaji	48	0.56	0.56	135.00	10	10	11	8
Nasturtium officinale R. Br.	Shucai	45	0.52	0.52	206.72	11	11	12	2
Prinsepia utilis Royce	Chuda	45	0.52	0.57	177.69	11	11	10	4
Mentha canadensis L.	Angzhai	43	0.50	0.50	169.31	12	12	13	5
Lobaria retigera Trevis.	Laolongpi	42	0.49	0.49	3.47	13	13	14	38
Lobaria yunnanensis Yoshim	Laolongpi	42	0.49	0.49	3.47	13	13	14	38
Allium sp.	Gu	40	0.47	0.47	24.00	14	14	15	19
some species based on different indices were different, indicating that different indices assigned particular importance of the various attributes, such as the multiplicity of uses and taste appreciation [27].

Food botanicals with high CI values

Wild edibles that had high CI values were Houttuynia cordata (1.21), Cardamine macrophylla (0.94), C. tangutorum (0.94), Valeriana jatamansi Jones (0.90) and Eutrema yunnanense (0.85). Whole plants of Houttuynia cordata and Valeriana jatamansi were consumed as functional food having a medicinal property, whereas the others were frequently eaten leafy vegetables.

Wild edibles with high CI values might have an interesting dietary constituent and needed further research. Also, a plant with a low CI value could be an important plant for a few people [27].

Food botanicals with high CFSI values

Wild edibles that had high CFSI values had different ranks from those with high CI values, and they were Houttuynia cordata (2164.50), Nasturtium officinale (206.72), Cardamine macrophylla (205.20), Cardamine tangutorum (205.20) and Prinsepia utilis (177.69). Three of them (Houttuynia cordata, Cardamine tangutorum and Cardamine macrophylla) were also in the front rank when assessed with CI values, but only Houttuynia cordata was positioned the same place when assessed with CFSI and CI values. Eutrema yunnanense growing on the high-elevation mountains ranked 13th with CFSI index, attributed to its low availability index value, multifunctional food use index value and food-medicinal role index value. The local people consumed Eutrema yunnanense only as vegetables, and the collection was often time-consuming due to its mountain-grown habitat. While Nasturtium officinale and Prinsepia utilis were in the front position for their high availability index value, and food-medicinal-role index value respectively.

Traditional wisdom from the Naxi

Our interview indicated a long history of consumption of Cardamine macrophylla, C. tangutorum and Eutrema yunnanense (Fig. 5). The results of quantitative indices showed that Cardamine macrophylla, C. tangutorum, and Eutrema yunnanense were in front positions. Hence,
we selected these three species as most promising organic products. Relevant literature studies show that high levels of vitamin C, minerals, fibers and protein have been reported in Cardamine macrophylla [48–52]. Also, low concentration of heavy metal has been found in this wild edible species. As its affinity, C. tangutorum, theoretically also had abundant nutrient components. Furthermore, other species of Cardamine are consumed as wild vegetables in Tanzania, India, Poland, United States and Slovakia [53–57]. Eutrema wasabi Maxim. is one of the raw materials of mustard. The species has proved to have anti-bacterial activity and flavor components [58, 59], and it has been developed as a condiment for many years by Lijiang Washabi Company Eutrema yunnanense widely consumed in Baidi village seems to be a potential vegetable. Additionally, as an affinity of E. wasabi, this species may have a similar chemical component with E. wasabi, and consequently use a substitute for E. wasabi.

Apart from the consumption in the rural area, the market of these wild edibles was expanded in the nearby city areas in the recent years. However, the scientific research regarding nutritional, phytochemical or phytopharmacological analysis was not conducted on the wild edibles recorded in Baidi village. In the context of increasing interest in the health potential foods, such as functional food and pharmafood, studies on wild edibles regarding the nutritional and medicinal qualities, and as potential alternative crops may be very useful [60]. The resurgence of the interest in the wild edibles was also consistent with a reappraisal of traditional cuisines, for example in European countries and with the general claim for ‘natural’ foods [61].

Age, gender and knowledge dynamics

Age, gender, and traditional knowledge

All the informants in Baidi agreed that they consumed less number of wild edibles compared to the previous decades. Our results indicate the younger people almost could not identify, gather and process these species. Similarly, many middle-aged informants regarded the consumption of wild edibles as a symbol of poverty as they consumed these wild edibles during the time of scarcity. However, the gathering of wild edibles, such as Cardamine macrophylla, C. tangutorum and Eutrema yunnanense in the spring still represents a significant role in the daily diet. Overall, the number of wild edibles cited by informants increased with age according to our regression analysis (Fig. 6), even the correlation was weak (P value < 0.01, the coefficient = 0.19). Concurrent to our results, differences in the knowledge of wild food plants and wild edible fungi among different age groups is reported in two valleys of Shaanxi, central China [62]. However, decreasing knowledge trends in youngsters are common as in the case of other parts of the Himalayas [7]. A study in a Caribbean village finds that the older the people, the less they are affected by external influences [63]. In Baidi, many young people have migrated to other cities in Yunnan to search for employment and education in recent decades. According to our informants, such migration severely disrupted the transfer of local wild edibles knowledge between generations and led to the loss of TK.

The t-test results showed that there were no significant differences between females and males (P value = 0.361), even the number of species cited by women and men in different age groups fluctuated all the time. According to Pfeiffer and Butz [64], gender is a critical variable that influences local knowledge distribution, as it is highly correlated with other sociocultural factors including occupation, education, resource access, and social status and networks. Women tend to know more traditional knowledge [65, 66] because of the sociocultural factors mentioned above. Women are usually unemployed in the rural areas, dedicating themselves to the household and subsistence activities, and they combine this information with their cultural background as well as external knowledge to improve their subsistence
there was no significant difference in knowledge between male and female informants. The traditional food knowledge of the Naxi in Baidi is dynamic, affected by social factors and communicated with the outsiders' food knowledge. Overall, this study provides a deeper understanding of the Naxi traditional knowledge on wild edibles. The study suggests some wild edibles might have an interesting dietary constituent, which necessitates further investigation on the nutrition value as well as market opportunities. With scientific evidence on nutrition value and market opportunity, more people will be attracted toward the wild edibles that will help in addressing food security issues along with the conservation of traditional knowledge of the aboriginal population.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
WYH and GYF conceived and designed the research. WYH funded this study. GYF and ZY collected the data, and ZY provided the botanical identification. GYF analyzed the data and prepared the manuscript. HHY undertook a critical review of the manuscript. SR reviewed and rewrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments
Special gratitude is expressed to the families of Xihong He for their kind hospitality, and to the Jinfu He for his genuine assistance. We are thankful to the families Cuiliu Yang for their helpful comments and suggestions. We are also thankful for the help of other members of our group (Liji He, Zhenzhen Chai, Shan Li, Ruyan Fan). We also thank Renbin Zhu and Dahai Zhu for providing pictures of Cardamine tangutorum and Eutrema yunnanense. This research was funded by National Nature Science Foundation of China (31270379). Sailesh Ranjitkar is supported by the CGIAR research programs on ‘Forests, Trees and Agroforestry’ (CRP 6.2).

Author details
1.Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. 2.University of Chinese Academy of Sciences, Beijing 100049, China. 3.World Agroforestry Centre East and Central Asia, Kunming 650201, China. 4.College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.

Received: 14 July 2015 Accepted: 26 January 2016
Published online: 05 February 2016

References
1. Luczaj L, Köhler P, Piroznikow E, Graniszewska M, Pieroni A, Gervasi T. Wild edible plants of Belarus: from Rostafinski’s questionnaire of 1883 to the present. J Ethnobiol Ethnomed. 2013;9:21.
2. Lulekal E, Asfaw Z, Kelbessa E, Van Damme P. Wild edible plants in Ethiopia: a review on their potential to combat food insecurity. Afr Focus. 2011;24:71–121.
3. Cunningham AB. Applied ethnobotany. People, wild plant use and conservation. 1 publth edition. London: Earthscan; 2001.
4. Pardo-de-Santayana M, Tardío J, Blanco E, Carvalho AM, Lastra JJ, San Miguel E, et al. Traditional knowledge of wild edible plants used in the northwest of the Iberian Peninsula (Spain and Portugal): a comparative study. J Ethnobiol Ethnomed. 2007;3:27.
5. Luczaj L, Siymański WM. Wild vascular plants gathered for consumption in the Polish countryside: a review. J Ethnobiol Ethnomed. 2007;3:17.
6. Schunko C, Vogl CR. Organic farmers use of wild food plants and fungi in a hilly area in Syria (Austria). J Ethnobiol Ethnomed. 2010;6:17.
7. Rajbhandary S, Ranjitkar S. Herbal drugs and pharmacognosy – monographs on commercially important medicinal plants of Nepal. Kathmandu: Ethnobotanical society of Nepal; 2006.
8. Pieroni A. Medicinal plants and food medicines in the folk traditions of the upper Lucca Province, Italy. J Ethnopharmacol. 2000;70:235–73.

9. Signorini MA, Priedda M, Bruschi P. Plants and traditional knowledge: an ethnobotanical investigation on Monte Orebono (Nuoro, Sardinia). J Ethnobiol Ethnmed. 2009;5:6.

10. Grasser S, Schunko C, Vogl CR. Gathering “tea” – from necessity to connectedness with nature. Local knowledge about wild plant gathering in the Biosphere Reserve Grooves Walsertal (Austria). J Ethnobiol Ethnmed. 2012;8:31.

11. González JA, García-Barnuso M, Amich F. The consumption of wild and semi-domesticated edible plants in the Ambles del Duero (Salamanca-Zamora, Spain): an analysis of traditional knowledge. Genet Resour Crop Evol. 2011;58:991–1006.

12. Kang YX, Luczaj L, Kang J, Wang F, Hou JI, Guo QP. Wild food plants used by the Tibetans of Gongba Valley (Zhouxu county, Gansu, China). J Ethnobiol Ethnmed. 2014;10(1):20.

13. Xin T, De Riek J, Guo H, Janvis D, Ma LJ, Long CL. Impact of traditional culture on Camellia reticulata in Yunnan, China. J Ethnobiol Ethnmed. 2015;11(1):1–11.

14. Zhang LL, Zhang Y, Peij S, Geng YF, Wang C, Yuhua W. Ethnobotanical survey of medicinal dietary plants used by the Naxi People in Lijiang Area, Northwest Yunnan, China. J Ethnobiol Ethnmed. 2015;11(1):40.

15. Ju Y, Zhuo JX, Liu B, Long CL. Eating from the wild: diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan, China. J Ethnobiol Ethnmed. 2013;5:29.

16. Yang LX, Ahmmed M, Steppe M, Ji K, Zhao YQ, Ma JZ, et al. Comparative homegardan medical ethnobotany of Naxi healers and farmers in Northwest Yunnan, China. J Ethnobiol Ethnmed. 2014;10(1):16.

17. Liu YC, Dao ZL, Yang CY, Liu YT, Long CL. Medicinal plants used by Tibetans in Shangri-la, Yunnan, China. J Ethnobiol Ethnmed. 2009;5:15.

18. Huber FK, Ineichen R, Yang YP, Weckerle CS. Livelihood and conservation aspects of non-wood forest product collection in the Shaxi Valley, Southwest China. Econ Bot. 2010;64:180–204.

19. He JO, He JR. The cultural transmission and religion harmony for multivariant nationalities—the Eryueba among the Naxi in Baidi village, Shangri-La as a case study. Thinking. 2009;5:14–8.

20. Yang FQ. A brief history of modern Naxi Yunnan. Kunming: Yunnan People's Publishing House; 2012.

21. Rock JFC. The ancient Nakh kingdom of southwest China. Cambridge. Harvard University Press; 1947.

22. Menendez-Baceta G, Aceituno-Mata L, Tardio J, Reyes-Garcia V, Pardo-de-Santayana M. Wild edible plants traditionally gathered in Gorbeialdea (Biscay, Basque Country). Genet Resour Crop Evol. 2012;59(7):1329–47.

23. Heckathorn DD. Snowball versus respondent-driven sampling. Soc Methodol. 2011;41:335–66.

24. Bilenarck P, Walldorf D. Snowball sampling: problems and techniques of chain referral sampling. Sociol Methods Res. 1981;10:141–63.

25. Flora of China Editorial Committee. Flora of China. Beijing: Science Press, and St. Louis: Missouri Botanical Garden Press; 1994–2013.

26. Ladio AH, Lozada M. Nontimber forest product use in two human populations from northwest Patagonia: a quantitative approach. Hum Ecol. 2001;29:367–80.

27. Tardio J, Pardo-de-Santayana M. Cultural importance indices, a comparative analysis based on the useful wild plants of southern Cantabria (Northern Spain). Econ Bot. 2008;62:24–39.

28. Pieroni A. Evaluation of the cultural significance of wild food botanicals traditionally consumed in Northwestern Tuscany, Italy. J Ethnobiol. 2001;21:89–104.

29. Calabuig EL (Coord.). Arribes del Duero: Guia de la naturaleza. Leon: Edilesa; 2000.

30. Zeghichi S, Kallithraka S, Simopoulos AP, Kyronatous Z. Nutritional composition of selected wild plants in the diet of Crete. World Rev Nutr Diet. 2003;91:22–40.

31. Wang XM, Li JJ, Li ZX, Zhao WQ. Antioxidant activity of extracts of Laolongpi in vitro. Mod Tradit Chin Med. 2010;30:79–80.

32. Johns T, Chapman L. Phytochemicals ingested in traditional diets and medicines as modulators of energy metabolism. In: Amason JT, Mata R, Romeo JT, editors. Phytochemistry of medicinal plants. New York: Plenum Press; 1995. p. 161–88.

33. Boa E. Wild edible fungi: a global overview of their use and importance to people. Rome: FAO; 2004.
62. Kang YX, Lu X, Kang J, Zhang SJ. Wild food plants and wild edible fungi in two valleys of the Qinling Mountains (Shaanxi, central China). J Ethnobiol Ethnomed. 2013;9(1):26.

63. Quinlan MB, Quinlan RJ. Modernization and medicinal plant knowledge in a Caribbean horticultural village. Med Anthropol Q. 2007;21:169–92.

64. Pfeiffer J, Butz R. Assessing cultural and ecological variation in ethnobiological research: the importance of gender. J Ethnobiol. 2005;25:240–78.

65. Panyaphu K, Van On T, Sirisa-ard P, Srisanga P, Kaow SC, Nathakamkitkul S. Medicinal plants of the Mien (Yao) in northern Thailand and their potential value in the primary healthcare of postpartum women. J Ethnopharmacol. 2011;135:226–37.

66. Junsongduang A, Balslev H, Inta A, Jampeetong A, Wangpakapattanawong P. Karen and Lawa medicinal plant use: Uniformity or ethnic divergence? J Ethnopharmacol. 2014;151:517–27.

67. Garibay-Orijel R, Ramírez-Terrazo A, Ordaz-Veláquez M. Women care about local knowledge, experiences from ethnomycology. J Ethnobiol Ethnomed. 2012;8:25.

68. Haselmair R, Pirker H, Kuhn E, Vogl CR. Personal networks: a tool for gaining insight into the transmission of knowledge about food and medicinal plants among Tyrolean (Austrian) migrants in Australia, Brazil and Peru. J Ethnobiol Ethnomed. 2014;10:1.

69. Powell B, Ouarghidi A, Johns T, Tattou MI, Eyzaguirre P. Wild leafy vegetable use and knowledge across multiple sites in Morocco: a case study for transmission of local knowledge? J Ethnobiol Ethnomed. 2014;10:34.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit