Filter impact based on inverter circuit performances

Hardisdal1, R A Candra1, D N Ilham1, S Suherman2*, A Yunan1, D P Saragi1, R Harahap2 and Irwansyah1

1Politeknik Aceh Selatan, Aceh-Indonesia
2Electrical Engineering Department, Universitas Sumatera Utara, Medan-Indonesia

*Email: suherman@usu.ac.id

Abstract. This paper examines filter component impact on inverter output. The inverter prototype was designed by using pulse width modulation (PWM) signal generated by EGS002 module, combined with DC voltage source, voltage regulator, MOSFET Bridge and low pass filter. As component assembled, the output voltage quality is determined by the choice of filter components. Experiment shows that the calculated values may not suitable as soldering and connection imperfection may change component values. As adjustments were performed, filter components of 12.63 H and 6.5uf generated the finest sinusoidal output of 30.8 Vpp with frequency of 50.05 Hz.

1. Introduction
Inverter compliments alternative energy sources such as refilled battery and solar cell. Inverter is often used in remote area where electric supply from the electric company does not exist. Inverter is also applied for stand-alone equipment such as water-pump, street-lighting and other equipment [8][9].

There are three types of inverter: square-wave, modified sinusoid and sinusoid inverters. The square-wave inverter has the lowest quality but is the lowest in price. Meanwhile, sinusoid inverter is expensive and complicated [6]. Current research have arrived in multilevel inverter [4] and application specific inverter [1].

This paper designed and implemented a sinusoid inverter to convert 12V DC to 220V AC by using EGS002 SPWM Driver Board. The EGS002 SPWM Driver Board is a pulse wave modulated (PWM) inverter driver which requires filter to obtain pure sine wave voltage. After designing and implementing the circuit, component adjustments were performed to obtain the expected voltage shape. The following sections discussed the inverter design and implementation, followed by the output signal analysis.

2. Inverter design
In order to realize the expected inverter, the EGS002 SPWM Driver Board is used as the main component. The module employs PWM switching which compare the reference wave to a triangle carrier wave [2]. EGS002 uses an application specific integrated circuit (ASIC)CMOS EG8010 to manage the circuit. Voltage and current protection, temperature sensor, fan control and indicators are performed by IR2110S. Frequency choices are selected via jumper. EGS002 has been improved from predecessor EGS001 by adding some protection schemes, and liquid display interfacing [3].
A full H bridge converter is used to change stable DC voltage to AC ripple. The bridge is made from some MOSFET that is controlled EGS002 to switch on and off. A lowpass filter is added to reduce high frequency components of the bridge output. Inductor capacitor combination [5] were employed to perform this task. Figure 1 shows the simplified diagram.

![Figure 1. Inverter scheme](image1.png)

In order to realize the inverter circuit, IC 7805 and 7812 were employed for voltage regulator to activate the IC. MOSFET 40N60C3 were employed for the full bridge. The full circuit is shown in Figure 2.

![Figure 2. Inverter circuit](image2.png)
Measurement was performed by setting the circuit as in Figure 3, where output waveform was displayed in an oscilloscope. A 40AH 12V Battery was used as the DC voltage source, converted to 220V AC by the inverter.

3. Capacitor impact to inverter performances

Since voltages to activate IC EGS002 and IR2110S influence the inverter performances, the regulated voltage should be ensured sufficient. Measurement showed that regulated voltages are 5V and 12.1V. The battery source was 12.8V. The PWM voltage generated by MOSFET had frequency of 25KHz, 23.6Vpp, minimum voltage was -12.8 V and maximum voltage was 10.2V.

Filter circuit within Figure 2 determined the inverter performance. Figure 5 shows second order LC filter. Output input voltage comparison is given by Equation 1 and the resonance frequency in in Equation 2:

\[
\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{1 - \omega^2 LC} \quad (1)
\]

\[
f_c = \frac{1}{2\pi \sqrt{LC}} \quad (2)
\]
The measurement produced various waveform as LC filter adjusted. Figure 6 shows the variations. The best performance was obtained when LC filter component: L=12.63H and C=6.5uf generating 30.8Vpp. At this frequency gives 17.57 Hz according to Equation 2. This frequency is far from 50 Hz. This may cause the unprecise component values. Suppose these component values were right, the bode plot was given by [7] plotted in Figure 7. The gain is about 35 dB at 17.57 Hz and 16.3 dB at 50 Hz. This means, if the L and C are selected so that fc=50Hz, the output may reach \(\frac{35}{16.3} \times 30.8 = 66.13 \) Vpp.

![PWM output](image)

Figure 5. PWM output

![Inverter output to LC Filter Variations](image)

(a) L=130.8mH, C=3.5uf \(f_c = 235.22 \) Hz

(b) L=130.8mH, C=6.5uf

(c) L=130.8mH, C=6.5uf

(d) L=12.63H, C=6.5uf

Figure 6. Inverter output to LC Filter Variations
4. Conclusions
This paper designed an inverter circuit based on EGS002 where DC voltage was recycled using 40N60C3 H-Bridge MOSFET and the output was filtered by using LC circuit. LC tank was adjusted to get perfect sinusoid shape. The best form was when $L=12.63\text{H}$ and $C=6.5\text{uf}$ generating 30.8Vpp. Although the plot shows that at these values, circuit was not at 50Hz, instead it was working at 17.57Hz, so that output voltage was only 30.8Vpp. Despite the imperfection, circuits produced sinusoid waveform and filter components held the important role.

Acknowledgement
This research has been sponsored by Universitas Sumatera Utara through TALENDA scheme 2019.

References
[1] Chakravarthy, B. K 2019 All-Silicon Carbide Power Modules Based High Performance Inverter for Traction Applications CVR Journal of Science and Technology 16(1) 66-71
[2] Doucet J, Eggleston D, Shaw J 2007 DC/AC Pure Shine Wave Inverter Worcester Polytechnic Institute
[3] EGS002 data sheet EGS002 Sinusoid Inverter Driver Board User Manual
[4] Gupta, K. K., Ranjan, A., Bhatnagar, P., Sahu, L. K., & Jain, S 2015 Multilevel inverter topologies with reduced device count: A review. IEEE transactions on Power Electronics 31(1) 135-151
[5] Mahmoud FA 2011 An Active Passive Filter Topology for Low Power DC/AC Inverter. Brunel University of Berlin London,UK
[6] Mutua JB. 2009 Microcontroller Based Power Inverter. University of Nairobi Kenya
[7] Okawa-denshi, http://sim.okawa-denshi.jp/en/RLCtool.php.
[8] Sandeep P 2014 Analysis of Single-Phase SPWM Inverter International Journal of Science and Research 3
[9] DN Ilham, Fifi fadhila, Erna B Nababa and RA Candra. Optimizing solar panel output by using light sensors, driving motors and fuzzy controller In IOP Conference Series: Materials Science and Engineering 2019 Apr Vol. 506, No. 1, p. 012042 IOP Publishing