Examples of cyclically-interval non-colorable bipartite graphs

R.R. Kamalian

Abstract. For an undirected, simple, finite, connected graph G, we denote by $V(G)$ and $E(G)$ the sets of its vertices and edges, respectively. A function $\varphi : E(G) \to \{1, 2, \ldots, t\}$ is called a proper edge t-coloring of a graph G if adjacent edges are colored differently and each of t colors is used. An arbitrary nonempty subset of consecutive integers is called an interval. If φ is a proper edge t-coloring of a graph G and $x \in V(G)$, then $S_G(x, \varphi)$ denotes the set of colors of edges of G which are incident with x. A proper edge t-coloring φ of a graph G is called a cyclically-interval t-coloring if for any $x \in V(G)$ at least one of the following two conditions holds: a) $S_G(x, \varphi)$ is an interval, b) $\{1, 2, \ldots, t\} \setminus S_G(x, \varphi)$ is an interval. For any $t \in \mathbb{N}$, let \mathcal{M}_t be the set of graphs for which there exists a cyclically-interval t-coloring, and let

$$\mathcal{M} = \bigcup_{t \geq 1} \mathcal{M}_t.$$

Examples of bipartite graphs that do not belong to the class \mathcal{M} are constructed.

Mathematics subject classification: 05C15.

Keywords and phrases: cyclically-interval edge coloring, bipartite graph.

1 Introduction

We consider undirected, simple, finite, and connected graphs. For a graph G we denote by $V(G)$ and $E(G)$ the sets of its vertices and edges, respectively. For a graph G, we denote by $\Delta(G)$ and $\chi'(G)$ the maximum degree of a vertex of G and the chromatic index of G [14], respectively. The terms and concepts which are not defined can be found in [17].

For an arbitrary finite set A, we denote by $|A|$ the number of elements of A. The set of positive integers is denoted by \mathbb{N}. An arbitrary nonempty subset of consecutive integers is called an interval. An interval with the minimum element p and the maximum element q is denoted by $[p, q]$.

For any $t \in \mathbb{N}$ and arbitrary integers i_1, i_2 satisfying the conditions $i_1 \in [1, t]$, $i_2 \in [1, t]$, we define [8,9] the sets $\text{intcyc}_1((i_1, i_2), t)$, $\text{intcyc}_1((i_1, i_2), t)$, $\text{intcyc}_2((i_1, i_2), t)$, $\text{intcyc}_2((i_1, i_2), t)$ as follows:

$$\text{intcyc}_1((i_1, i_2), t) \equiv \left[\min\{i_1, i_2\}, \max\{i_1, i_2\} \right],$$

$$\text{intcyc}_2((i_1, i_2), t) \equiv \left[\min\{i_1, i_2\}, \max\{i_1, i_2\} \right] \setminus \{i_1\} \cup \{i_2\},$$

© R.R. Kamalian 2013

M are constructed.

C found for which obtained in [1–6, 11–13, 15, 16].

If \(t \in \mathbb{N} \) and \(Q \) is a non-empty subset of the set \(\mathbb{N} \), then \(Q \) is called a \(t \)-cyclic interval if there exist integers \(i_1, i_2, j_0 \) satisfying the conditions \(i_1 \in [1, t] \), \(i_2 \in [1, t] \), \(j_0 \in \{1, 2\} \), \(Q = \text{intcyc}_{j_0}([i_1, i_2], t) \).

A function \(\varphi : E(G) \to [1, t] \) is called a proper edge \(t \)-coloring of a graph \(G \) if adjacent edges are colored differently and each of \(t \) colors is used.

For a graph \(G \) and a positive integer \(t \), where \(\chi'(G) \leq t \leq |E(G)| \), we denote by \(\alpha(G, t) \) the set of all proper edge \(t \)-colorings of \(G \). Let us set

\[
\alpha(G) \equiv \bigcup_{t=\chi'(G)}^{|E(G)|} \alpha(G, t).
\]

If \(G \) is a graph, \(\varphi \in \alpha(G) \), and \(x \in V(G) \), then the set \(\{ \varphi(e)/e \in E(G), e \text{ is incident with } x \} \) is denoted by \(S_G(x, \varphi) \).

A proper edge \(t \)-coloring \(\varphi \) of a graph \(G \) is called a cyclically-interval \(t \)-coloring of \(G \), if for any \(x \in V(G) \) at least one of the following two conditions holds: a) \(S_G(x, \varphi) \) is an interval, b) \([1, t] \setminus S_G(x, \varphi) \) is an interval.

For any \(t \in \mathbb{N} \), we denote by \(\mathcal{M}_t \) the set of graphs for which there exists a cyclically-interval \(t \)-coloring. Let

\[
\mathcal{M} \equiv \bigcup_{t \geq 1} \mathcal{M}_t.
\]

For an arbitrary tree \(D \), it was shown in [8,9] that \(D \in \mathcal{M} \), and, moreover, all possible values of \(t \) were found for which \(D \in \mathcal{M}_t \). For an arbitrary simple cycle \(C \), it was shown in [7,10] that \(C \in \mathcal{M} \), and, moreover, all possible values of \(t \) were found for which \(C \in \mathcal{M}_t \). Some interesting results on this and related topics were obtained in [11,12,13,14,15,16].

In this paper, the examples of bipartite graphs that do not belong to the class \(\mathcal{M} \) are constructed.

For any integer \(m \geq 2 \), set:

\[
V_{0,m} \equiv \{x_0\}, \quad V_{1,m} \equiv \{x_{i,j} / 1 \leq i < j \leq m\},
\]

\[
V_{2,m} \equiv \{y_{p,q} / 1 \leq p \leq m, 1 \leq q \leq m\},
\]

\[
E'_m \equiv \{(x_0, y_{p,q}) / 1 \leq p \leq m, 1 \leq q \leq m\}.
\]

For any integers \(i, j, m \) satisfying the inequalities \(m \geq 2 \), \(1 \leq i < j \leq m \), set:

\[
E''_{i,j,m} \equiv \{(x_{i,j}, y_{q}) / 1 \leq q \leq m\} \cup \{(x_{i,j}, y_{j,q}) / 1 \leq q \leq m\}.
\]

For any integer \(m \geq 2 \), let us define a graph \(G(m) \) by the following way:

\[
G(m) \equiv \left(\bigcup_{k=0}^{2} V_{k,m}, E'_m \cup \bigcup_{1 \leq i < j \leq m} E''_{i,j,m} \right).
\]
It is not difficult to see that for any integer \(m \geq 2 \), \(G(m) \) is a bipartite graph with \(\Delta(G(m)) = \chi'(G(m)) = m^2, |V(G(m))| = \frac{3m^2 - m}{2} + 1, |E(G(m))| = m^3. \)

Theorem 1. For any integer \(m \geq 8 \), \(G(m) \notin \mathfrak{M}. \)

Proof. Assume the contrary. It means that there exist integers \(m_0, t_0, k_0 \), satisfying the conditions \(m_0 \geq 8, m_0^2 \leq t_0 \leq m_0^3, t_0 = m_0^2 + k_0, 0 \leq k_0 \leq m_0^3 - m_0^2, G(m_0) \in \mathfrak{M}_{t_0}. \)

Let \(\varphi_0 \) be a cyclically-interval \(t_0 \)-coloring of the graph \(G(m_0) \). Without loss of generality, we can suppose that \(S_{G(m_0)}(x_0, \varphi_0) = [1, m_0^2] \). Let us consider the edges \(e' \) and \(e'' \) of the graph \(G(m_0) \), which are incident with the vertex \(x_0 \) and satisfy the equalities \(\varphi_0(e') = 1, \varphi_0(e'') = \lfloor \frac{m_0^2}{2} \rfloor \)

Suppose that \(e' = (x_0, y') \), \(e'' = (x_0, y'') \). Clearly, there exists a vertex \(\bar{x} \in V_{1,m_0} \) in the graph \(G(m_0) \) which is adjacent to the vertices \(y' \) and \(y'' \). It is not difficult to see that \(S_{G(m_0)}(y', \varphi_0) \cup S_{G(m_0)}(\bar{x}, \varphi_0) \cup S_{G(m_0)}(y'', \varphi_0) \) is a \(t_0 \)-cyclic interval.

Clearly, the inequalities \(m_0^2 + k_0 - 4m_0 + 4 \leq 4m_0 - 2 \) and \(4m_0 - 1 \leq \lfloor \frac{m_0^2}{2} \rfloor \leq m_0^2 + k_0 - 4m_0 + 3 \) are true. Consequently, \(\lfloor \frac{m_0^2}{2} \rfloor \in \text{intcyc}_1((4m_0 - 2, m_0^2 + k_0 - 4m_0 + 4), m_0^2 + k_0) \). But it is incompatible with the evident relations \(\lfloor \frac{m_0^2}{2} \rfloor \in S_{G(m_0)}(y'', \varphi_0) \) and \(S_{G(m_0)}(y', \varphi_0) \cup S_{G(m_0)}(\bar{x}, \varphi_0) \cup S_{G(m_0)}(y'', \varphi_0) \subseteq \text{intcyc}_2((4m_0 - 2, m_0^2 + k_0 - 4m_0 + 4), m_0^2 + k_0) \). Contradiction.

The author thanks P.A. Petrosyan for his attention to this work.

References

[1] **Altinakar S., Caporossi G., Hertz A.** *On compact k-edge-colorings: A polynomial time reduction from linear to cyclic.* Discrete Optimization 8(2011), 502–512.

[2] **Asratian A.S.** *Investigation of some mathematical model of scheduling theory.* Doctoral Thesis, Moscow, 1980 (in Russian).

[3] **Bartholdi J.J., Orlin J.B., Ratliff H.D.** *Cyclic scheduling via integer programs with circular ones.* Operations Research 28, 1980, 1074–1085.

[4] **Dausha W., Modrow H.D., Neumann A.** *On cyclic sequence type for constructing cyclic schedules.* Zeitschrift für Operations Research 29, 1985, 1–30.

[5] **Jensen T.R., Toft B.** *Graph Coloring Problems.* Wiley Interscience Series in Discrete Mathematics and Optimization, 1995.

[6] **Kamalian R.R.** *Interval Edge Colorings of Graphs.* Doctoral dissertation. The Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1990 (in Russian).

[7] **Kamalian R.R.** *On cyclically continuous edge colorings of simple cycles.* Proceedings of the CSIT Conference, Yerevan, 2007, 79–80 (in Russian).

[8] **Kamalian R.R.** *On a number of colors in cyclically interval edge colorings of trees.* Research report LiTH-MAT-R-2010/09-SE, Linköping University, 2010.

[9] **Kamalian R.R.** *On cyclically-interval edge colorings of trees.* Buletinul of Academy of Sciences of the Republic of Moldova, Matematica 1(68), 2012, 50–58.
On a number of colors in cyclically-interval edge-colorings of simple cycles. Open Journal of Discrete Mathematics, 3(2013), 43–48.

Kubale M. Graph Colorings. American Mathematical Society, 2004.

Kubale M., Nadolski A. Chromatic scheduling in a cyclic open shop. European Journal of Operational Research 164(2005), 585–591.

Nadolski A. Compact cyclic edge-colorings of graphs. Discrete Mathematics 308(2008), 2407–2417.

Vizing V.G. The chromatic index of a multigraph. Kibernetika 3 (1965), 29–39.

de Werra D., Mahadev N.V.R., Solot Ph. Periodic compact scheduling. ORWP 89/18, Ecole Polytechnique Fédérale de Lausanne, 1989.

de Werra D., Solot Ph. Compact cylindrical chromatic scheduling. ORWP 89/10, Ecole Polytechnique Fédérale de Lausanne, 1989.

West D.B. Introduction to Graph Theory. Prentice-Hall, New Jersey, 1996.

R.R. Kamalian
Institute for Informatics and Automation Problems
National Academy of Sciences of RA, 0014 Yerevan,
Republic of Armenia
E-mail: rrkamalian@yahoo.com