ON THE HURWITZ ZETA-FUNCTION

BY

ZHANG WENPENG

1. Introduction

For $0 < \alpha \leq 1$, let $\zeta(s, \alpha)$ be the Hurwitz zeta-function defined by

$$\zeta(s, \alpha) = \sum_{n=0}^{\infty} (n + \alpha)^{-s} \quad \text{for} \ Re(s) > 1$$

and its analytic extension,

$$\zeta_{x}(s, \alpha) = \zeta(s, \alpha) - \sum_{0 \leq n \leq x - \alpha} \frac{1}{(n + \alpha)^x}.$$

J.F. Koksma and C.G. Lekkerkerker [1] first studied the mean square value

$$f(s) = \int_{0}^{1} |\zeta_{1}(s, \alpha)|^2 \, d\alpha,$$

and obtained the following results:

Theorem A. If $1/2 < \sigma \leq 1$ and $|t| \geq 3$, then

(I) \[f\left(\frac{1}{2} + it\right) \leq 64 \ln |t|, \]

(II) \[\left| f(\sigma + it) - \frac{1}{2\sigma - 1} \right| \leq |t|^{1-2\sigma}\left(32 \ln |t| + \frac{1}{2\sigma - 1}\right). \]

Secondly, V.V. Rane [2] gave a general conclusion, namely:

Received January 26, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 10H10; Secondary 11M35.

Project Supported by the National Natural Science Foundation of China.