**RESEARCH**

**CliqueSNV: An Efficient Noise Reduction Technique for Accurate Assembly of Viral Variants from NGS Data**

Sergey Knyazev¹,²,³†, Viachaslau Tsyvina¹†, Anupama Shankar², Andrew Melnyk¹, Alexander Artyomenko⁴, Tatiana Malygina⁵, Yuri B Porozov⁵,⁶, Ellsworth M Campbell², William M Switzer², Pavel Skums¹ and Alex Zelikovsky¹,⁵*

---

**Abstract**

Rapidly evolving RNA viruses continuously produce viral minority variants following infection that can quickly spread and become dominant variants if they are drug-resistant or can better evade the immune system. Early detection of minority viral variants may help to promptly change a patient’s treatment plan preventing potential disease complications. Next-generation sequencing (NGS) technologies used for viral testing have recently gained popularity in commercial pipelines and can efficiently identify minority variants. Unfortunately, NGS data require nontrivial computational analyses to eliminate sequencing noise and current computational haplotyping methods do not adequately address this challenging task. To overcome this limitation, we developed CliqueSNV, which finds statistically linked mutations from the same haplotypes to detect minor mutations with an abundance below the sequencing error rates. We compared the performance of CliqueSNV with five state-of-the-art methods with six benchmarks, including three Illumina and one PacBio *in vitro* sequencing datasets. We show that CliqueSNV can assemble viral haplotypes with frequencies as low as 0.1%. CliqueSNV haplotype predictions were the closest to the experimental viral populations and showed up to a 2.94-fold improvement on Illumina data and a 19.3-fold improvement on PacBio data.

**Keywords:** Quasispecies; Haplotypes; Benchmarking; NGS; Viruses

---

**Background**

Rapidly evolving RNA viruses such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), influenza A virus (IAV), SARS, and SARS-CoV-2 exist in infected hosts as highly heterogeneous populations of closely related genomic variants called quasispecies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The composition and structure of intra-host viral populations plays a crucial role in disease progression and epidemic spread. The presence of low-frequency variants that differ from major strains by a few mutations may result in immune escape, emergence of drug resistance, and an increase of virulence and infectivity [11, 12, 13, 14, 15, 16, 17]. Furthermore, such minor variants are often responsible for transmissions and establishment of infection in new hosts [18, 19, 20]. Therefore, accurate inference and characterization of viral mutation profiles sampled from infected individuals is essential for viral research, therapeutics and epidemiological investigations.
Next-generation sequencing (NGS) technologies now provide versatile opportunities to study viral populations. In particular, the popular Illumina MiSeq/HiSeq platforms produce 25-320 million reads, which allow multiple coverage of highly variable viral genomic regions. This high coverage is essential for capturing rare variants. However, haplotyping of heterogeneous viral populations (i.e., assembly of full-length genomic variants and estimation of their frequencies) is extremely complicated due to the vast number of sequencing reads, the need to assemble an unknown number of closely related viral sequences and to identify and preserve low-frequency variants. Single-molecule sequencing technologies, such as PacBio, provide an alternative to short-read sequencing by allowing full-length viral variants to be sequenced in a single pass. However, the high level of sequence noise due to background or platform-specific sequencing errors produced by all currently available platforms makes inference of low-frequency genetically close variants especially challenging, since it is required to distinguish between real and artificial genetic heterogeneity produced by sequencing errors.

Recently, a number of computational tools for inference of viral quasispecies populations from noisy NGS data have been proposed, including Savage [21], PredictHaplo [22], aBayesQR [23], QuasiRecomb [24], HaploClique [25], VGA [26], VirA [27, 28], SHORAH [29], ViSpA [30], QURE [31] and others [32, 33, 34, 35, 36]. Even though these algorithms proved useful in many applications, accurate and scalable viral haplotyping remains a challenge. In particular, inference of low-frequency viral variants is still problematic, while many computational tools designed for the previous generation of sequencing platforms have severe scalability problems when applied to datasets produced by state-of-the-art technologies.

Previously, several tools such as V-phaser[37], V-phaser2[38] and CoVaMa[39] exploited linkage of mutations for single nucleotide variant (SNV) calling rather than haplotype assembly, but they do not accommodate sequencing errors when deciding whether two variants are linked. These tools are also unable to detect the frequency of mutations above sequencing error rates[40]. The 2SNV algorithm[41] accommodates errors in links and was the first such tool to be able to correctly detect haplotypes with a frequency below the sequencing error rate.

Other methods (e.g., HaploClique[25], Savage[21]) assembled viral haplotypes using maximal cliques in a graph, where nodes represent reads which is called a read graph. These methods infer haplotypes by iteratively merging these read cliques, thus heavily relying on the correct order of merging. In contrast, our proposed approach finds maximal cliques in a graph with nodes corresponding to SNVs, which facilitates a significant performance increase, since for viruses the size of the SNV graph is significantly smaller than the size of the read graph. Furthermore, with CliqueSNV the clique merging problem is formulated and solved as a combinatorial problem on the auxiliary graph of cliques of the SNV graph, thus facilitating an increase of the algorithm’s accuracy.

Herein, we present CliqueSNV, a novel method that is designed to infer closely related intra-host viral variants from noisy next-generation and third-generation sequencing technologies[42]. Our method infers haplotypes from patterns from distributions of SNVs inside sequencing reads. CliqueSNV is suitable for long single-molecule reads (PacBio) as well as for short paired-end reads (Illumina). Our method recognizes groups of linked SNVs and efficiently distinguishes them from sequencing errors. CliqueSNV constructs an SNV graph, where SNVs are nodes and edges connect linked SNVs. Then, by merging
cliques in that graph, CliqueSNV identifies true viral variants. Using optimized combinatorial techniques makes CliqueSNV fast and efficient in comparison with other tools.

Validation testing shows that CliqueSNV outperforms PredictHaplo[22], aBayesQR[23] and 2SNV[41] in both speed and accuracy using four real and two simulated datasets. Our benchmarks consist of sequencing experiments from samples with known viral mixtures: (i) an in vitro PacBio sequencing experiment from a sample with ten influenza A (IAV) viral variants[41], (ii) two in vitro MiSeq sequencing experiments from two samples of HIV-1 mixtures with nine and two viral variants, (iii) in vitro experimental MiSeq data from a sample with five HIV-1 variants of different subtypes, and (iv) two simulated MiSeq datasets with IAV and HIV-1 sequences.

Together with standard precision and recall metrics we introduced two additional quality measures: (i) Matching Error between Populations and (ii) Earth Mover’s Distance between Populations. These two measures are more adapted for evaluating the quality of inference of viral samples from sequencing data because they take into account both the distance between and frequencies of true and inferred haplotypes.

**Results**

**CliqueSNV algorithm**

A schematic diagram of the CliqueSNV algorithm is shown in Figure 1. The algorithm takes aligned reads as input and infers haplotype sequences with their frequencies as output. The method consists of six steps. Step 1 uses aligned reads to build the consensus sequence and identifies all SNVs. Then all pairs of SNVs are tested for dependency and are then divided into three groups: *linked*, *forbidden*, or *unclassified*. Each SNV is represented as a pair \((p, n)\) of its position \(p\) and nucleotide value \(n\) in the aligned reads. If there are enough reads that have two SNVs \((p, n)\) and \((p', n')\) simultaneously, then they are tested for dependency. If the dependency test is positive and statistically significant (see Methods for details), then the algorithm classifies these two SNVs as *linked*. Otherwise, these two SNVs are tested for independency. If the independency test is positive and statistically significant (see Detailed description for details), then these two SNVs are classified as a *forbidden* pair. In Step 2, we build a graph \(G = (V, E)\) with a set of nodes \(V\) representing SNVs, and a set of edges \(E\) connecting linked SNV pairs. Step 3 finds all maximal cliques in graph \(G\). A clique \(C \subseteq V\) is a set of nodes such that \((u, v) \in E\) for any \(u, v \in C\) and for any \(x \notin C\) there is \(u \in C\) such that \((x, u) \notin E\). Each maximal clique in \(G\) represents groups of pairwise-linked SNVs that potentially belong to a single haplotype. Ideally, there is a one-to-one correspondence between SNV cliques and haplotypes. When sequencing noise and the shortness of the NGS reads cannot identify all linked SNV pairs, a single clique corresponding to a haplotype will be split into several overlapping cliques. Step 4 merges such overlapping cliques. In order to avoid merging distinct haplotypes, two cliques are not merged if they contain a forbidden SNV pair. Step 5 assigns each read to a merged clique with which it shares the largest number of SNVs. Then CliqueSNV builds a consensus haplotype from all reads assigned to a single merged clique. Finally, haplotype frequencies are estimated via an expectation-maximization algorithm in Step 6.

**Intra-host viral population sequencing benchmarks**

We tested the ability of CliqueSNV to assemble haplotype sequences and estimate their frequencies from PacBio and MiSeq reads using four real (experimental) and two simulated datasets from HIV and IAV samples (Table 1). Each dataset contains between two to
ten haplotypes with frequencies of 0.1 to 50%. The Hamming distances between pairs of variants for each dataset are shown in Figure S1.

**Experimental datasets:**

1–2. **HIV-1 subtype B plasmid mixtures and MiSeq reads (HIV2exp and HIV9exp).** We designed nine *in silico* plasmid constructs comprising a 950-bp region of the HIV-1 subtype B polymerase (*pol*) gene that were then synthesized and cloned into pUCIDT-Amp (Integrated DNA Technologies, Skokie, IL). Each clone was confirmed by Sanger sequencing. This 950-bp region at the beginning of *pol* contains known protease and reverse transcriptase genes that are monitored for drug-resistant mutations and is monitored with sequence analysis for patient care. Each of these plasmids contains a specific set of point mutations chosen using mutation profiles from a real clinical study[43] to create nine unique synthetic HIV-1 *pol* haplotypes. Different proportions of these plasmids were mixed and then sequenced using an Illumina MiSeq protocol to obtain 2x300-bp reads (see Supplementary Methods). HIV2exp and HIV9exp are mixtures of two and nine variants, respectively.

3. **HIV-1 subtype B mixture and MiSeq reads (HIV5exp).** This dataset consists of Illumina MiSeq 2×250-bp reads with an average read coverage of ~20,000× obtained from a mixture of five HIV-1 isolates: 89.6, HXB2, JRCSF, NL43, and YU2 available at[44]. Isolates have pairwise Hamming distances in the range from 2-3.5%(27 to 46-bp differences). The original HIV-1 sequence length was 9.3kb, but was reduced to the beginning of *pol* with a length of 1.3kb.

4. **Influenza A mixture and PacBio reads (IAV10exp).** This benchmark contains ten IAV virus clones that were mixed at a frequency of 0.1-50%. The Hamming distances between clones ranged from 0.1-1.1% (2-22–bp differences)[41]. The 2kb-amplicon was sequenced using the PacBio platform yielding a total of 33,558 reads with an average length of 1973 nucleotides.

**Simulated datasets:**

1. **HIV-1 subtype B mixture and MiSeq reads (HIV7sim).** This benchmark contains simulated Illumina MiSeq reads with a 10k-coverage of 1-kb *pol* sequences. The reads were simulated from seven equally distributed HIV-1 variants chosen from the NCBI database: AY835778, AY835770, AY835771, AY835777, AY835763, AY835762, and AY835757. The Hamming distances between clones are in the range from 0.6-3.0%(6 to 30-bp differences). We used SimSeq[45] for generating reads.

2. **Influenza A mixture and MiSeq reads (IAV10sim).** This benchmark contains simulated IAV Illumina MiSeq reads with the same IAV haplotypes and their frequencies as for the IAV10exp benchmark. The sequencing of a 2kb-amplicon with 40k coverage with paired Illumina MiSeq reads was simulated by SimSeq[45] with the default sequencing error profile in SimSeq.

**Validation metrics for viral population inference**

**Precision and recall**

Inference quality is typically measured by precision and recall.

\[
\text{Precision} = \frac{TP}{TP + FP}
\]
Recall \(= \frac{TP}{TP + FN}\)

where \(TP\) is the number of true predicted haplotypes, \(FP\) is the number of false predicted haplotypes, and \(FN\) is the number of undiscovered haplotypes.

Initially we measured precision and recall strictly by treating a predicted haplotype with a single mismatch as an \(FP\). Additionally, like in [22] we introduced an acceptance threshold, which is the number of mismatches permitted for a predicted haplotype to count as a \(TP\).

Matching errors between populations

However, precision and recall do not take into account (i) distances between true and inferred viral variants as well as (ii) the frequencies of the true and inferred viral variants. Instead, we chose to use analogues of precision and recall defined for populations as follows.

Let \(T = \{(t, f_t)\}\), be the true haplotype population, where \(f_t\) is the frequency of the true haplotype \(t\), \(\sum_{t \in T} f_t = 1\). Similarly, let \(P = \{(p, f_p)\}\), be the reconstructed haplotype population, where \(f_p\) is the frequency of the reconstructed haplotype \(p\), \(\sum_{p \in P} f_p = 1\). Let \(d_{pt}\) be the distance between haplotypes \(p\) and \(t\). Thus, instead of precision, we used the matching error \(E_{T \rightarrow P}\) which measures how well each reconstructed haplotype \(p \in P\) weighted by its frequency is matched by the closest true haplotype.

\[
E_{T \rightarrow P} = \sum_{p \in P} f_p \min_{t \in T} d_{pt}
\]

Indeed, precision increases while \(E_{T \rightarrow P}\) decreases and reaches 100% when \(E_{T \rightarrow P} = 0\). Similarly, instead of recall, we propose to use the matching error \(E_{T \leftarrow P}\) which measures how well each true haplotype \(t \in T\) weighted by its frequency is matched by the closest reconstructed haplotype. [46]

\[
E_{T \leftarrow P} = \sum_{t \in T} f_t \min_{p \in P} d_{pt}
\]

Note that recall increases while \(E_{T \leftarrow P}\) decreases and reaches 100% when \(E_{T \leftarrow P} = 0\).

Earth mover’s distance (EMD) between populations

The matching errors described above match haplotypes of true and reconstructed populations but do not match their frequencies. In order to simultaneously match haplotype sequences and their frequencies, we allowed for a fractional matching when portions of a single haplotype \(p\) of population \(P\) are matched to portions of possibly several haplotypes of \(T\) and vice versa. Thus, we separated \(f_p\) into \(f_{pt}\)’s each denoting portion of \(p\) matched to \(t\) such that \(f_p = \sum_{t \in T} f_{pt}\), \(f_{pt} \geq 0\). Symmetrically, \(f_t\’s\) are also separated into \(f_{pt}\’s\), i.e. \(\sum_{p \in P} f_{pt} = f_t\). Finally, we chose \(f_{pt}\’s\) minimizing the total error of matching \(T\) to \(P\) which is also known as Wasserstein metric or the EMD between \(T\) and \(P\)[47, 48].

\[
EMD(T, P) = \min_{f_{pt} > 0} \sum_{t \in T} \sum_{p \in P} f_{pt} d_{pt}
\]

s.t. \(\sum_{t \in T} f_{pt} = f_p\), and \(\sum_{p \in P} f_{pt} = f_t\).
EMD is efficiently computed as an instance of the transportation problem using network flows.

EMDs can vary a lot over different benchmarks since they may have different complexities, which depends on the number of true variants, the frequency distribution, the similarity between haplotypes, sequencing depth, sequencing error rate, and many other parameters. Hence, we measured the complexity of a benchmark as the EMD between the true population and a population consisting of a single consensus haplotype [49].

Performance of haplotyping methods

We compared CliqueSNV to the 2SNV, PredictHaplo, and aBayesQR haplotyping methods. Since CliqueSNV, PredictHaplo and aBayesQR use Illumina reads, we compared them using the HIV9exp, HIV2exp, HIV5exp, HIV7sim, and IAV10sim datasets. Since CliqueSNV, 2SNV, and PredictHaplo can also use PacBio reads, we compared them using the IAV10exp dataset. We also used consensus sequences in the comparisons [49] because of its simplicity and to evaluate sequences most similar to those generated by the Sanger sequencing method [50].

The precision and recall of haplotype discovery for each method is provided in Table 2. CliqueSNV had the best precision and recall for five of the six datasets. For the HIV5exp dataset, PredictHaplo was more conservative and predicted less false positive variants (better precision) than CliqueSNV.

Following study [22], we also showed how precision and recall grew with the reduction of restriction on mismatches (Fig. 2). The number of true predicted haplotypes for CliqueSNV was always greater than that of the other methods on real experimental sequencing benchmarks indicating that CliqueSNV more accurately identified the true haplotypes. The number of falsely predicted haplotypes for CliqueSNV was always lower than those for aBayesQR, but similar to those predicted by PredictHaplo on four out of five datasets indicating that both CliqueSNV and PredictHaplo had the best precision with MiSeq datasets.

Matching distance analysis showed that matching distances $E_{T \leftarrow P}$ and $E_{T \rightarrow P}$ are better for CliqueSNV than for both PredictHaplo and aBayesQR on four out of five MiSeq datasets (Fig. 3). For HIV7sim, $E_{T \leftarrow P}$ for aBayesQR was slightly better than for CliqueSNV. Using HIV9exp, HIV2exp, HIV7sim, and IAV10sim datasets, the $E_{T \leftarrow P}$ and $E_{T \rightarrow P}$ for CliqueSNV were very close to zero indicating that the predictions were almost perfect. Since $E_{T \leftarrow P}$ and $E_{T \rightarrow P}$ correlate with precision and recall, matching distance analysis indicates that CliqueSNV had a better precision, and significantly outperformed both PredictHaplo and aBayesQR. Since aBayesQR had a higher $E_{T \rightarrow P}$ on MiSeq datasets, it is more likely to make more false predictions. Notably, on the HIV7sim dataset, aBayesQR outperformed both CliqueSNV and PredictHaplo by $E_{T \leftarrow P}$.

The EMD between the predicted and true haplotype populations for all five MiSeq datasets are shown in Figure 4. The exact EMD values are provided in Table 3. CliqueSNV provided the lowest (the best) EMD across all tools on four out of five MiSeq benchmarks. For the simulated and PacBio datasets, CliqueSNV had almost a zero EMD indicating a low error in predictions. PredictHaplo had a lower EMD than aBayesQR on four out of five MiSeq datasets. aBayesQR has almost a zero EMD with the HIV7sim dataset and outperformed CliqueSNV, while using the HIV5exp dataset, aBayesQR performed poorer than other methods.
Next, CliqueSNV, 2SNV, and PredictHaplo were compared using the IAV10exp benchmark dataset (see Table S1). CliqueSNV correctly recovered all 10 true variants, including the haplotype with frequencies significantly below the sequencing error rate. 2SNV recovered nine true variants but found one false positive. PredictHaplo recovered only seven true variants and falsely predicted three variants. To further explore the precision of these three methods with the IAV10exp data, we simulated low-coverage datasets by randomly sub-sampling \( n = 16K, 8K, 4K \) reads from the original data. For each dataset, CliqueSNV found at least one true variant more than both 2SNV and PredictHaplo.

**Runtime comparison**

To compare the computational run time of each method, we used the same PC (Intel(R) Xeon(R) CPU X5550 2.67GHz x2 8 cores per CPU, DIMM DDR3 1,333 MHz RAM 4Gb x12) with the CentOS 6.4 operating system. The runtime of CliqueSNV is sublinear with respect to the number of reads while the runtime of PredictHaplo and 2SNV exhibit super-linear growth. For the 33k IAV10sim reads the CliqueSNV analysis took 21 seconds, while PredictHaplo and 2SNV took around 30 minutes. The runtime of CliqueSNV is quadratic with respect to the number of SNVs rather than by the length of the sequencing region (Fig. S2).

We also generated five HIV-1 variants within 1% Hamming distance from each other, which is the estimated genetic distance between related HIV variants from the same person [51]. Then we simulated 1M Illumina reads for sequence regions of length 566, 1132, 2263 and 9181 nucleotides for which CliqueSNV required 37, 144, 227, and 614 seconds, respectively, for analyzing these datasets (Fig. S3). For the HIV2exp benchmark, aBayesQR, PredictHaplo, and CliqueSNV required over ten hours, 24 minutes, and only 79 seconds, respectively.

**Software availability**

CliqueSNV is available at https://github.com/vtsyvina/CliqueSNV

**Data availability**

The datasets HIV2exp and HIV9exp have been deposited in the Sequence Read Archive under accession number SRR12042289 and SRR12042290, respectively. The links to the data sets and the consensus sequences of the individual strains are available at relevant_haplotypes/HIV9exp.fasta

**Validation scripts availability**

All scripts and configuration files that were used for validation of the tools are available at https://github.com/Sergey-Knyazev/CliqueSNV-validation

**Discussion**

Assembly of haplotype populations from noisy NGS data is one of the most challenging problems of computational genomics. High-throughput sequencing technologies, such as Illumina MiSeq and HiSeq, provide deep sequence coverage that allows discovery of rare, clinically relevant haplotypes. However, the short reads generated by the Illumina technology require assembly that is complicated by sequencing errors, an unknown number of haplotypes in a sample, and the genetic similarity of haplotypes within a sample. Furthermore, the frequency of sequencing errors in Illumina reads is comparable to the frequencies
of true minor mutations[34]. The recent development of single-molecule sequencing platforms such as PacBio produce reads that are sufficiently long to span entire genes or small viral genomes. Nonetheless, the error rate of single-molecule sequencing is exceptionally high reaching $13 - 14\%[52]$, which hampers PacBio sequencing to detect and assemble rare viral variants.

We developed CliqueSNV, a new reference-based assembly method for reconstruction of rare genetically-related viral variants such as those observed during infection with rapidly evolving RNA viruses like HIV, HCV and IAV. We demonstrated that CliqueSNV infers accurate haplotyping in the presence of high sequencing error rates and is also suitable for both single-molecule and short-read sequencing. In contrast to other haplotyping methods, CliqueSNV infers viral haplotypes by detection of clusters of statistically linked SNVs rather than through assembly of overlapping reads used with methods such as Savage[21].

Using experimental data, we demonstrate that CliqueSNV can detect haplotypes with frequencies as low as 0.1%, which is comparable to the precision of many deep sequencing-based point mutation detection methods[53, 54]. Furthermore, CliqueSNV can successfully infer and reconstruct viral variants, which differ by only a few mutations, thus highlighting its high precision for identifying closely related variants. Another significant advantage of CliqueSNV is its low computation time, which is achieved by a very fast search of linked SNV pairs and the application of the special graph-theoretical approach to SNV clustering.

Although very accurate and fast, CliqueSNV has some limitations. Unlike Savage[21], CliqueSNV is not a de novo assembly tool and requires a reference viral genome. This obstacle could easily be addressed by using Vicuna[49] or other analogous tools to first assemble a consensus sequence from the NGS reads, which can then be used as a reference. Another limitation is for variants that differ only by isolated SNVs separated by long conserved genomic regions longer than the read length which may not be accurately inferred by CliqueSNV. While such situations usually do not occur for viruses, where mutations are typically densely concentrated in different genomic regions, we plan to address this limitation in the next version of CliqueSNV.

The ability to accurately infer the structure of intra-host viral populations makes CliqueSNV applicable for studying viral evolution, transmission and examining the genomic compositions of RNA viruses. In addition, we envision that the application of our method could be extended to other highly heterogeneous genomic populations, such as metagenomes, immune repertoires, and cancer cell genes.

**Methods**

Data input for CliqueSNV consists of PacBio or Illumina reads from an intra-host viral population aligned to a reference genome. Output is the set of inferred viral variant RNA sequences with their frequencies. The formal high-level pseudocode of the CliqueSNV algorithm is described in the supplementary materials. Below we describe in detail the six major steps of CliqueSNV that are schematically presented in Figure 1.

**Step 1: Finding linked and forbidden SNV pairs.** At a given genomic position $I$, the most frequent nucleotide is referred to as a major variant and is denoted 1. Let us fix one of the less frequent nucleotide (referred to as a minor variant) and denote it 2. A pair of variants at two distinct genomic positions $I$ and $J$ is referred to as a 2-haplotype. There are four 2-haplotypes with major and minor variants at $I$ and $J$: (11), (12), (21), and (22). Let $O_{11}, O_{12}, O_{21}, O_{22}$ be the observed counts of 2-haplotypes in the reads covering $I$ and $J$.  

In this step, CliqueSNV tries to decide whether the \( O_{22} \) reads are sequencing errors or they are produced by an existing haplotype containing the 2-haplotype \((22)\).

The pairs of minor variants (referred to as SNV pairs) are classified into three categories: linked, forbidden, and unclassified. An SNV pair is **linked** if it is highly probable that there exists a haplotype containing both minor variants. On the contrary, an SNV pair is **forbidden** if it is extremely unlikely that the corresponding minor variants belong to the same haplotype. All other SNV pairs are referred to as **unclassified**.

Assuming that errors are random, it has been proven in [55] that if the 2-haplotype \((22)\) does not exist, then the expected number of reads \( E_{22} \) containing the 2-haplotype \((22)\) should not exceed

\[
E_{22} \leq \frac{E_{21} \cdot E_{12}}{E_{11}} \tag{1}
\]

where \( E_{21}, E_{12}, \) and \( E_{11} \) are the expected numbers of reads containing the 2-haplotypes \((21), (12)\) and \((11)\), respectively. To determine if a pair of SNVs (the minor variants in positions \( I \) and \( J \)) are linked, we need to estimate the probability that the observed counts of 2-haplotypes \( O_{11}, O_{12}, O_{21}, O_{22} \) are produced by 2-haplotype counts satisfying equation 1.

Let \( n \) be the total number of reads covering both positions \( I \) and \( J \). Then

\[
p = \frac{O_{21} \cdot O_{12}}{O_{11} \cdot n} \tag{2}
\]

is the probability of observing \( O_{22} \) reads with the both minor variants given that the variant \((22)\) does not exist.

The 2-haplotype \((22)\) exists with high probability \( 1 - P \) and the corresponding pair of SNVs is linked if the value of \( p \) satisfies the following inequality [55]

\[
1 - \sum_{i=0}^{O_{22}-1} \binom{n}{i} p^i (1-p)^{n-i} \leq \frac{P}{L^2} \tag{3}
\]

where \( P \) is the user-defined \( P \)-value (by default \( P = 0.01 \)) and dividing by \( \binom{L}{2} \) is the Bonferroni correction for multiple testing.

Pairs of SNVs passing this linkage test are classified as a **linked** SNV pairs. For every other pair of SNVs, we check whether they can be classified as a **forbidden** SNV pair, i.e., whether the probability of observing at most \( O_{22} \) reads is low enough (\(< 0.05\)) given that the variant \((22)\) has frequency \( T_{22} \geq t \) (by default \( t = 0.001 \)).

\[
P(x \leq O_{22}|T_{22} \geq t) \leq \sum_{i=0}^{O_{22}} \binom{n}{i} t^i (1-t)^{n-i} \tag{4}
\]

**Step 2: Constructing the SNV graph.** The SNV graph \( G = (V, E) \) consists of vertices corresponding to minor variants and edges corresponding to linked pairs of minor variants from different positions. If the intra-host population consists of very similar haplotypes, then graph \( G \) is very sparse. Indeed, the PacBio dataset for IAV encompassing \( L = 2,500 \)
positions is split into 10,000 vertices, while the SNV graph contains only 700 edges, and, similarly, the simulated Illumina read dataset for the same haplotypes contains only 368 edges.

Note that the isolated minor variants correspond to genotyping errors unless they have a significant frequency. This fact allows us to estimate the number of errors per read, assuming that all isolated SNVs are errors. As expected, the distribution of the PacBio reads has a heavy tail (see Figure S4), which implies that most reads are (almost) error free, while a small number of heavy-tail reads accumulate most of the errors. Our analysis allows the identification of such reads, which can then be filtered out. By default, we filter out \(\approx 10\%\) of PacBio reads, but we do not filter out any Illumina reads. The SNV graph is then constructed for the reduced set of reads. Such filtering allows the reduction of systematic errors and refines the SNV graph significantly.

**Step 3: Finding cliques in the SNV graph** \(G\). Although the MAX CLIQUE is a well-known NP-complete problem and there may be an exponential number of maximal cliques in \(G\), a standard Bron-Kerbosch algorithm requires little computational time since \(G\) is very sparse [56].

**Step 4: Merging cliques in the clique graph** \(C_G\). The clique graph \(C_G = (C, F, L)\) consists of vertices corresponding to cliques in the SNV graph \(G\) and two sets of edges \(F\) and \(L\). A forbidding edge \((p, q) \in F\) connects two cliques \(p\) and \(q\) with at least one forbidden pair of minor variants from \(p\) and \(q\) respectively. A linking edge \((p, q) \in L\) connects two cliques \(p\) and \(q\), \((p, q) \notin F\), with at least one linked pair of minor variants from \(p\) and \(q\) respectively. Any true haplotype corresponds to a maximal \(L\)-connected subgraph \(H\) of \(C_G\) that does not contain any forbidding edge (see Fig. 1 (4)).

Unfortunately, even deciding whether there is a \(L\)-path between \(p\) and \(q\) avoiding forbidding edges is known to be NP-hard [57]. We find all subgraphs \(H\) as follows (see Figure S5): (i) connect all pairs of vertices except connected with forbidding edges, (ii) find all maximal super-cliques in the resulted graph \(C'_G = (C, C^{(2)} - F)\) using [56], (iii) split each super-clique into \(L\)-connected components, and (iv) filter out the \(L\)-connected components which are proper subsets of other maximal \(L\)-connected components.

**Step 5: Partitioning reads between merged cliques and finding consensus haplotypes.**

Let \(S\) be the set of all positions containing at least one minor variant in \(V\). Let \(q_S\) be an **major clique** corresponding to a haplotype with all major variants in \(S\). The distance between a read \(r\) and a clique \(q\) equals the number of variants in \(q\) that are different from the corresponding nucleotides in \(r\). Each read \(r\) is assigned to the closest clique \(q\) (which can possibly be \(q_S\)). In case of a tie, we assign \(r\) to all closest cliques.

Finally, for each clique \(q\), CliqueSNV finds the consensus \(v(q)\) of all reads assigned to \(q\). Then \(v(q)\) is extended from \(S\) to a full-length haplotype by setting all non-\(S\) positions to major SNVs.

**Step 6: Estimating haplotype frequencies by using the expectation-maximization (EM) algorithm.**

CliqueSNV estimates the frequencies of the assembled intra-host haplotypes via an expectation-maximization algorithm similar to the one used in IsoEM [58]. Let \(K\) be the number of assembled viral variants, and let \(\alpha\) be the probability of sequencing error. EM algorithm works as follows:

1. Initialize frequencies of viral variants \(f_j^{(0)} \leftarrow \frac{1}{K}\).

   Compute the probability of \(l_i\)-long read \(r_i\); \(i = 1, N\), being emitted by viral variant
\[ j = 1, K, \]
\[ h_{ji} = \prod_{l=1}^{i} \left( (1 - \alpha) M_{ji,l} + \frac{\alpha}{2} (1 - M_{ji,l}) \right), \]

where \( M_{ji,l} \) - indicator if \( i \)-th read coincides with \( j \)-th viral variant in the position \( l \)

1. (Expectation) Update the amount of read \( r_i \) emitted by the \( j \)-th viral variant \( p_{ij} \leftarrow f_{j}^{(n-1)} h_{ji} / \sum_{j=1}^{N} f_{j}^{(n-1)} h_{ji} \)

2. (Maximization) Update the frequency of the \( j \)-th viral variant \( f_{j}^{(n)} \leftarrow \frac{\sum_{i=1}^{N} p_{ij} f_{j}^{(n)}}{\sum_{i=1}^{N} \sum_{j=1}^{N} p_{ij}} \)

3. if \( |f_{j}^{(n-1)} - f_{j}^{(n)}| > \varepsilon \), then \( n \leftarrow n + 1 \) and go to step 2

4. Output estimated frequencies \( f_{j}^{(n)} \)

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
AZ, SK designed and directed the project. SK, VT, AZ conceived the algorithm idea; VT, SK, AA designed and implemented the software. SK, AS, EMC, WMS designed and implemented HIV-1 benchmarks. PK, WMS, SK, VT, AS, YBP contributed to the writing. AM, SK, VT designed and implemented software tool validation and obtained results. AZ, SK, PS, WMS interpreted the results. All authors reviewed and edited the manuscript.

Acknowledgements
This research was supported in part by NIH Grant 1R01EB025022-01 and NSF Grant CCF-1619110. SK, VT, AM were partly supported by Molecular Basis of Disease at Georgia State University.

Use of trade names is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services, the Public Health Service, or the Centers for Disease Control and Prevention (CDC). The findings and conclusions in this paper are those of the authors and do not necessarily represent the official position of the CDC.

Author details
1. Department of Computer Science, Georgia State University, 30303 Atlanta, GA, USA. 2. Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 30333 Atlanta, GA, USA. 3. Oak Ridge Institute for Science and Education, 37830 Oak Ridge, TN, USA. 4. Guardant Health Inc., 94063 Redwood City, CA, USA. 5. The laboratory of bioinformatics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia. 6. The laboratory of bioinformatics, ITMO University, 197101 St. Petersburg, Russia.

References
1. Klmarx, P.H.: Global epidemiology of hiv. Current Opinion in HIV and AIDS 4(4), 240–246 (2009)
2. Hajarizadeh, B., Grebely, J., Dore, G.J.: Epidemiology and natural history of hcv infection. Nature Reviews Gastroenterology and Hepatology 10(9), 553–562 (2013)
3. Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S.Y., et al.: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. The Lancet 380(9859), 2095–2128 (2012)
4. Eigen, M., McCaskill, J., Schuster, P.: The molecular quasi-species. Advances in chemical physics 75, 149–263 (1989)
5. Martell, M., Esteban, J.L., Quer, J., Genesca, J., Weiner, A., Esteban, R., Guardia, J., Gomez, J.: Hepatitis c virus (hcv) circulates as a population of different but closely related genomes: quasispecies nature of hcv genome distribution. Journal of Virology, 66, 3225–3229 (1992)
6. Steinhauer, D.A., Holland, J.J.: Rapid evolution of rna viruses. Annual Review of Microbiology, 41, 409–433 (1987)
7. Domingo, E., Sheldon, J., Perales, C.: Viral quasispecies evolution. Microbiology and Molecular Biology Reviews 76(2), 159–216 (2012)
8. Rodriguez-Frias, F., Buti, M., Tabernero, D., Homs, M.: Quasispecies structure, cornerstone of hepatitis b virus infection: mass sequencing approach. World J Gastroenterol 19(41), 6995–7023 (2013)
9. Xu, D., Zhang, Z., Wang, F.-S.: SARS-associated coronavirus quasispecies in individual patients. New England Journal of Medicine 350(13), 1366–1367 (2004). doi:10.1056/nejmc032421
10. Shen, Z., Xiao, Y., Kang, L., Ma, W., Shi, L., Zhang, L., Zhou, Z., Yang, J., Zhong, J., Yang, D., Guo, L., Zhang, G., Li, H., Xu, Y., Chen, M., Gao, Z., Wang, J., Ren, L., Li, M.: Genomic diversity of severe acute respiratory syndrome–coronavirus 2 in patients with coronavirus disease 2019. Clinical Infectious Diseases (2020). doi:10.1093/cid/ciaa203
11. Beerenwinkel, N., Sing, T., Lengauer, T., Rahnenfuehrer, J., Roopm, K.: Computational methods for the design of effective therapies against drug resistant HIV strains. Bioinformatics 21, 3943–3950 (2005)
12. Douek, D.G., Koup, R.A., Fauci, A.S.: The rational design of an AIDS vaccine. Cell 124, 677–681 (2006)
13. Gaschen, B., Taylor, J., Yusim, K., Foley, B., Gao, F.: Diversity considerations in HIV-1 vaccine selection. Science 296, 2354–2360 (2002)
14. Holland, J.J., De La Torre, J.C., Steinhauer, D.A.: RNA virus populations as quasispecies. Curr Top Microbiol Immunol 176, 1–20 (1992)
15. Rhee, S.-Y., Liu, T.F., Holmes, S.P., Shafer, R.W.: HIV-1 subtype B protease and reverse transcriptase amino acid covariation. PLoS Comput Biol 3, 87 (2007)

16. Campo, D.S., Skums, P., Dimitrova, Z., Vaughan, G., Forbi, J.C., Teo, C.-G., Khudyakov, Y., Lau, D.T.: Drug resistance of a viral population and its individual intrahost variants during the first 48 hours of therapy. Clinical Pharmacology & Therapeutics 95(6), 627–635 (2014)

17. Skums, P., Bunimovich, L., Khudyakov, Y.: Antigenic cooperation among intrahost hcv variants organized into a complex network of cross-immunoreactivity. Proceedings of the National Academy of Sciences 112(21), 6653–6658 (2015)

18. Campo, D.S., Xia, G.-L., Dimitrova, Z., Lin, Y., Forbi, J.C., Ganova-Raeva, L., Punkova, L., Ramachandran, S., Thai, H., Skums, P., et al.: Accurate genetic detection of hepatitis c virus transmissions in outbreak settings. Journal of Infectious Diseases 213(6), 957–965 (2016)

19. Fischer, G.E., Schaefer, M.K., Labus, B.J., Sands, L., Rowley, P., Azzam, I.A., Armour, P., Khudyakov, Y.E., Lin, Y., Xia, G., et al.: Hepatitis c virus infections from unsafe injection practices at an endoscopy clinic in las vegas, nevada, 2007–2008. Clinical infectious diseases 51(3), 267–273 (2010)

20. Apostolou, A., Bartholomew, M.L., Greeley, R., Guilfoyle, S.M., Genese, C., Davis, J.P., Montana, B., Borlaug, G.: Transmission of hepatitis b virus associated with surgical procedures-new jersy 2010 and wisconsin 2011. MMWR. Morbidity and mortality weekly report 64(7), 165–170 (2015)

21. Baaijens, J.A., El Aabidine, A.Z., Rivals, E., Schönhuth, A.: De novo assembly of viral quasispecies using overlap graphs. Genome Research 27(5), 835–848 (2017)

22. Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N., Roth, V.: HIV haplotype inference using a propagating Dirichlet process mixture model. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 11(1), 182–191 (2014)

23. Ahn, S., Vikalo, H.: abayescr: A bayesian method for reconstruction of viral populations characterized by low diversity. In: International Conference on Research in Computational Molecular Biology, pp. 353–369 (2017). Springer

24. Töpfer, A., Zagordi, O., Prabhakaran, S., Roth, V., Halperin, E., Beerenswinkel, N.: Probabilistic inference of viral quasispecies subject to recombination. Journal of Computational Biology 20(2), 113–123 (2013)

25. Töpfer, A., Marschall, T., Bull, R.A., Luciani, F., Schönhuth, A., Beerenswinkel, N.: Viral quasispecies assembly via maximal clique enumeration. PLoS Computational Biology 10(3) (2014). doi:10.1371/journal.pcbi.1003515

26. Manguel, S., Wu, N.C., Mancuso, N., Zelikovsky, A., Sun, R., Eskin, E.: Accurate viral population assembly from ultra-deep sequencing data. Bioinformatics 30(12), 329–337 (2014)

27. Skums, P., Mancuso, N., Artyomenko, A., Tork, B., Mandidou, I., Khudyakov, Y., Zelikovsky, A.: Reconstruction of viral population structure from next-generation sequencing data using multicommodity flows. BMC bioinformatics 14(Supp 9), 2 (2013)

28. Mancuso, N., Tork, B., Skums, P., Ganova-Raeva, L., Mandouli, I., Zelikovsky, A.: Reconstructing viral quasispecies from ngs amplicon reads. In silico biology 11(5), 237–249 (2011)

29. Zagordi, O., Bhattacharya, A., Eriksson, N., Beerenswinkel, N.: Shorah: estimating the genetic diversity of a mixed sample from next-generation sequencing data. BMC bioinformatics 12(1), 119 (2011)

30. Astrovskaya, I., Tork, B., Manguel, S., Westbrooks, K., Mandouli, I., Bale, P., Zelikovsky, A.: Inferring viral quasispecies spectra from 454 pyrosequencing reads. BMC bioinformatics 12(Suppl 6), 1 (2011)

31. Proserpi, M.C., Salem, M.: Qure: software for viral quasispecies reconstruction from next-generation sequencing data. Bioinformatics 28(1), 132–133 (2012)

32. Zagordi, O., Töpfer, A., Prabhakaran, S., Roth, V., Halperin, E., Beerenswinkel, N.: Probabilistic inference of viral quasispecies subject to recombination. In: Proceedings of the 16th Annual International Conference on Research in Computational Molecular Biology. RECOMB’12, pp. 342–354. Springer, Berlin, Heidelberg (2012)

33. Skums, P., Dimitrova, Z., Campo, D.S., Vaughan, G., Rossi, L., Forbi, J.C., Yokosawa, J., Zelikovsky, A., Khudyakov, Y.: Efficient error correction for next-generation sequencing of viral amplicons. BMC Bioinformatics 13(5–10), 6 (2012)

34. Skums, P., Artyomenko, A., Glebova, O., Campo, D.S., Dimitrova, Z., Zelikovsky, A., Khudyakov, Y.: Error correction of ngs reads from viral populations. Computational Methods for Next Generation Sequencing Data Analysis (2016)

35. Barik, S., Das, S., Vikalo, H.: Viral quasispecies reconstruction via correlation clustering. bioRxiv, 096768 (2016)

36. Westbrooks, K., Astrovskaya, I., Campo, D., Khudyakov, Y., Berman, P., Zelikovsky, A.: Hcv quasispecies assembly using network flows. Bioinformatics Research and Applications, 159–170 (2008)

37. Macalalad, A.R., Zody, M.C., Charlebois, P., Lennon, N.J., Newman, R.M., Malboeuf, C.M., Ryan, E.M., Boutwell, C.L., Powers, C., Braceley, D.E., et al.: Highly sensitive and specific detection of rare variants in mixed viral populations from massively parallel sequence data. PLoS computational biology 8(3), 1002417 (2012)

38. Yang, X., Charlebois, P., Macalalad, A., Henn, M.R., Zody, M.C.: V-phase2: variant inference for viral populations. BMC genomics 14(1), 674 (2013)

39. Routh, A., Chang, M.W., Okulicz, J.F., Johnson, J.E., Torbett, B.E.: Covama: Co-variation mapper for disequilibrium analysis of mutant loci in viral populations using next-generation sequence data. Methods 91, 40–47 (2015)

40. Verbit, B.M., Thys, K., Reumers, J., Wetzes, Y., Van der Borgh, K., Taloow, W., Aerssens, J., Clement, L., Thas, O.: Vviraseq: a low-frequency virus variant detection pipeline for illumina sequencing using adaptive base-calling accuracy filtering. Bioinformatics 31(1), 94–101 (2014)

41. Artyomenko, A., Wu, N.C., Manguel, S., Eskin, E., Sun, R., Zelikovsky, A.: Long single-molecule reads can resolve the complexity of the influenza virus composed of rare, closely related mutant variants. Journal of Computational Biology 24(5), 558–570 (2017). doi:10.1089/jcb.2016.0146

42. Bleidorn, C.: Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. System. Biodivers. 14(1), 1–8 (2016)

43. Zanini, F., Brodin, J., Theo, L., Lanz, C., Bratt, G., Albert, J., Neher, R.A.: Population genomics of intrapatient hiv-1 evolution. eLife (2015)
44. Giallonardo, F.D., Töpfer, A., Rey, M., Prabhakaran, S., Duport, Y., Leemann, C., Schmutz, S., Campbell, N.K., Joos, B., Lecca, M.R., Patrignani, A., Däumer, M., Beisel, C., Rusert, P., Trkola, A., Günthard, H.F., Roth, V., Beerenwinkel, N., Metzner, K.J.: Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic Acids Research 42(14), 115 (2014). doi:10.1093/nar/gku537

45. Benidt, S., Nettleton, D.: Simseq: a nonparametric approach to simulation of rna-sequence datasets. Bioinformatics 31(13), 2131–2140 (2015). doi:10.1093/bioinformatics/btv124

46. Gerasimov, E.: Analysis of ngs data from immune response and viral samples. PhD thesis, Georgia State University (2017)

47. Levina, E., Bickel, P.: The earthmover's distance is the mallows distance: Some insights from statistics. Proceedings of ICCV 2001, 251–256 (2001)

48. Mallows, C.L.: A note on asymptotic joint normality. Annals of Mathematical Statistics 43(2), 508–515 (1972)

49. Yang, X., Charlebois, P., Gnerre, S., Coole, M.G., Lennon, N.J., Levin, J.Z., Qu, J., Ryan, E.M., Zody, M.C., Henn, M.R.: De novo assembly of highly diverse viral populations. BMC genomics 13(1), 475 (2012)

50. Kireev, D.E., Lopatukhin, A.E., Murzakova, A.V., Pimkina, E.V., Speranskaya, A.S., Neverov, A.D., Fedonin, G.G., Fantin, Y.S., Shipulin, G.A.: Evaluating the accuracy and sensitivity of detecting minority HIV-1 populations by illumina next-generation sequencing. J. Virol. Methods 261, 40–45 (2018)

51. Wertheim, J.O., Leigh Brown, A.J., Hepler, N.L., Mehta, S.R., Richman, D.D., Smith, D.M., Kosakovsky Pond, S.L.: The global transmission network of hiv-1. The Journal of Infectious Diseases 209(2), 304–313 (2014). doi:10.1093/infdis/jit524

52. Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni, A., Swerdlow, H.P., Gu, Y.: A tale of three next generation sequencing platforms: comparison of ion torrent, pacific biosciences and illumina miseq sequencers. BMC genomics 13(1), 341 (2012)

53. Flaherty, P., Natkoulis, G., Muralidharan, O., Winters, M., Buenrostro, J., Bell, J., Brown, S., Holodniy, M., Zhang, N., Ji, H.P.: Ultrasensitive detection of rare mutations using next-generation targeted resequencing. Nucleic Acids Res. 40(1), 2 (2012)

54. Harismendy, O., Schwab, R.B., Bao, L., Olson, J., Rozenzhak, S., Kotsopoulos, S.K., Pond, S., Crain, B., Chee, M.S., Messer, K., Link, D.R., Frazer, K.A.: Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing. Genome Biol. 12(12), 124 (2011)

55. Artymenko, A., Wu, N.C., Mangul, S., Eskin, E., Sun, R., Zelikovsky, A.: Long single-molecule reads can resolve the complexity of the influenza virus composed of rare, closely related mutant variants. Journal of Computational Biology 24(6), 558–570 (2017). doi:10.1089/cmb.2016.0146

56. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973). doi:10.1145/362342.362367

57. Kováč, J.: Complexity of the path avoiding forbidden pairs problem revisited. Discrete Appl. Math. 161(10-11), 1506–1512 (2013). doi:10.1016/j.dam.2012.12.022

58. Nicolae, M., Mangul, S., Mandoliu, I., Zelikovsky, A.: Estimation of alternative splicing isoform frequencies from rna-seq data. Algorithms for Molecular Biology 6:9 (2011)
Figures

Figure 1 Schematic representation of the CliqueSNV algorithm, where SNV is single nucleotide variation.

Figure 2 The number of true and false predicted haplotypes depending on the number of accepted mismatches for five benchmarks: (A) HIV9exp; (B) HIV2exp; (C) HIV5exp; (D) HIV7sim; (E) IAV10sim. Two haplotypes are regarded identical if the Hamming distance between them is at most the number of accepted mismatches.

Figure 3 Matching distances $E_{T \to P}$ and $E_{T \leftarrow P}$ between the true haplotype population $T$ and the reconstructed haplotype population $P$ for five benchmarks.

Figure 4 Earth Movers’ Distance (EMD) between true and reconstructed haplotype populations for five benchmarks.

Tables

| Name   | Type      | Virus | #haplotypes | Haplotype frequencies | Hamming distance |
|--------|-----------|-------|-------------|-----------------------|------------------|
| HIV9exp | experimental | HIV-1 | 9           | 0.2-50%               | 0.22-2.1%        |
| HIV2exp | experimental | HIV-1 | 2           | 50-50%                | 1.2%             |
| HIV5exp | experimental | HIV-1 | 5           | 20-20%                | 2-3.5%           |
| IAV10exp | experimental | IAV   | 10          | 0.1-50%               | 0.1-1.1%         |
| HIV7sim | simulated  | IAV   | 7           | 14.3-14.3%            | 0.6-3%           |
| IAV10sim | simulated  | IAV   | 10          | 0.1-50%               | 0.1-1.1%         |

**Table 1** Four experimental and two simulated sequencing datasets of human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV). The datasets contain MiSeq and PacBio reads from intra-host viral populations consisting of two to ten variants each with frequencies in the range of 0.1-50%, and Hamming distances between variants in the range of 0.1-3.5%.
### Table 2
Prediction statistics of haplotype reconstruction methods using experimental and simulated (a) MiSeq and (b) PacBio datasets. The precision and recall was evaluated stringently such that if a predicted haplotype has at least one mismatch to its closest answer, then that haplotype is scored as a false positive.

| Benchmark   | CliqueSNV | aBayesQR | PredictHaplo |
|-------------|-----------|----------|--------------|
|             | Precision | Recall   | Precision    | Recall   | Precision | Recall   |
| HIV9exp     | 0.60      | 0.33     | 0.00         | 0.00     | 0.00      | 0.00     |
| HIV2exp     | 0.66      | 1.00     | 0.11         | 0.50     | 0.50      | 0.50     |
| HIV5exp     | 0.18      | 0.40     | 0.00         | 0.00     | 0.33      | 0.20     |
| HIV7sim     | 1.00      | 0.71     | 1.00         | 0.42     | 0.45      | 0.71     |
| IAV10sim    | 0.75      | 0.30     | 0.11         | 0.10     | 0.33      | 0.10     |

### Table 3
Earth Movers' Distance from predicted haplotypes to the true haplotype population and haplotyping method improvement. Four haplotyping methods (aBayesQR, CliqueSNV, Consensus, PredictHaplo) are benchmarked using five MiSeq (a) and one PacBio datasets (b). The column Impro. (improvement) shows how much better is prediction of haplotyping method over inferred consensus, and it is calculated as $\frac{EMD_m}{EMD_c}$, where $EMD_c$ is an EMD for consensus, and $EMD_m$ is an EMD for method.

| Benchmark   | Consensus | CliqueSNV | aBayesQR | PredictHaplo |
|-------------|-----------|-----------|----------|--------------|
|             | EMD       | EMD Impr. | EMD Impr. | EMD Impr.   |
| HIV9exp     | 4.18      | 2.35      | 1.78     | 5.02         | 0.83       | 6.90      | 0.61     |
| HIV2exp     | 5.50      | 1.87      | 2.94     | 3.02         | 1.82       | 3.65      | 1.51     |
| HIV5exp     | 14.80     | 7.37      | 2.01     | 14.05        | 1.05       | 9.43      | 1.57     |
| HIV7sim     | 9.63      | 0.76      | 12.72    | 0.67         | 14.4       | 2.00      | 4.80     |
| IAV10sim    | 4.22      | 0.59      | 7.2      | 3.57         | 1.18       | 2.97      | 1.42     |

| Benchmark   | Consensus | CliqueSNV | 2SNV     | PredictHaplo |
|-------------|-----------|-----------|----------|--------------|
|             | EMD       | EMD Impr. | EMD Impr. | EMD Impr.   |
| IAV10exp    | 4.22      | 0.22      | 19.18    | 0.23         | 18.35      | 0.38      | 11.12    |

Additional Files
Additional file 1 — Supplementary Material
Step 1: Finding linked and forbidden SNV pairs

Linked SNV pairs

SNV A at position 5 → 5A
SNVs on the same read → 8C

Forbidden SNV pairs

SNVs on different reads → 48A

Step 2: Constructing SNV graph

8C 20T
5A 15G 48A

Step 3: Finding cliques in SNV graph

Clique 1
5A 8C 15G

Clique 2
8C 15G 20T

Clique 3
15G 20T 48A

Step 4: Merging cliques in the clique graph with forbidden pairs

Merged clique 1:
5A, 8C, 15G, 20T

Merged clique 2:
15G, 20T, 48A

Step 5: Partitioning reads between merged cliques and finding consensus haplotypes

5A .. 8C .. 15G .. 20T
15G .. 20T .. 48A

Consensus haplotype 1
Consensus haplotype 2

Step 6: Estimating haplotype frequencies by expectation-maximization algorithm

Haplotype 1
Abundancy: 70%

Haplotype 2
Abundancy: 30%
