Protective effects of a food-grade recombinant *Lactobacillus plantarum* with surface displayed AMA1 and EtMIC2 proteins of *Eimeria tenella* in broiler chickens

Qiong Liu1,2, Yanlong Jiang1, Wentao Yang1, Yongshi Liu1, Chunwei Shi1, Jing Liu1, Xing Gao1, Haibin Huang1, Tianming Niu1, Guilian Yang1* and Chunfeng Wang1*

Abstract

Background: Avian coccidiosis poses a severe threat to poultry production. In addition to commercial attenuated vaccines, other strategies to combat coccidiosis are urgently needed. *Lactobacillus plantarum* has been frequently used for expression of foreign proteins as an oral vaccine delivery system using traditional erythromycin resistance gene (*erm*). However, antibiotic selection markers were often used during protein expression and they pose a risk of transferring antibiotic resistance genes to the environment, and significantly restricting the application in field production. Therefore, a food-grade recombinant *L. plantarum* vaccine candidate would dramatically improve its application potential in the poultry industry.

Results: In this study, we firstly replaced the erythromycin resistance gene (*erm*) of the pLp_1261Inv-derived expression vector with a non-antibiotic, *asd*-alr fusion gene, yielding a series of non-antibiotic and reliable, food grade expression vectors. In addition, we designed a dual-expression vector that displayed two foreign proteins on the surface of *L. plantarum* using the anchoring sequences from either a truncated poly-γ-glutamic acid synthetase A (*pgsA*) from *Bacillus subtilis* or the *L. acidophilus* surface layer protein (*SlpA*). EGFP and mCherry were used as marker proteins to evaluate the surface displayed properties of recombinant *L. plantarum* strains and were inspected by western blot, flow cytometry and fluorescence microscopy. To further determine its application as oral vaccine candidate, the AMA1 and EtMIC2 genes of *E. tenella* were anchored on the surface of *L. plantarum* strain. After oral immunization in chickens, the recombinant *L. plantarum* strain was able to induce antigen specific humoral, mucosal, and T cell-mediated immune responses, providing efficient protection against coccidiosis challenge.

Conclusions: The novel constructed food grade recombinant *L. plantarum* strain with double surface displayed antigens provides a potential efficient oral vaccine candidate for coccidiosis.

Keywords: *Lactobacillus plantarum*, Food-grade, Surface displayed expression, *Eimeria tenella*

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
parasites resistant to anti-coccidial drugs and the public pressure to limit the use of chemicals in animals [2] have prompted the development of cost-effective vaccines. Although some commercial vaccines are available, such as live virulent, attenuated [3] or live-tolerant vaccines [4], some disadvantages have been noticed including the poor immunological protection, affecting weight gain and virulence reversion [5]. To overcome these problems, several novel vaccine candidates have been studied recently. In particular, bacterial vectors originating from but not limited to Bacillus subtilis [6], Mycobacterium bovis BCG [7], Salmonella enteritidis [8] and Lactococcus lactis [9] have drawn more and more attention to be used as vectors for oral vaccines.

Among these vectors, lactic acid bacteria (LAB) have long been used in the fermentation industry as probiotics with the ability to enhance the functionality of the immune system. LAB has also great potential to serve as a vehicle for oral vaccine delivery, by genetically expressing desired foreign proteins [10]. There are three different ways to present foreign proteins (or antigens), which include intracellular, cellular surface and secreted protein production. Usually it is considered that the cell surface anchored antigen and secreted antigen could induce much stronger immune responses compared with the intracellular production of desired antigen due to the higher degree of exposure of the antigen to the host. Our lab has recently used the anchoring sequence from poly-γ-glutamic acid synthetase A (pgsA), a transmembrane protein from Bacillus subtilis [11–13] in order to construct recombinant L. plantarum strains capable in expressing foreign antigens. The resulting strains were efficient in the production of protective antibody responses and partial protection against either influenza virus [14], transmissible gastro-enteritis virus [15, 16] or porcine epidemic diarrhea virus [17]. Notably, the traditional recombinant L. plantarum vaccines still relies on antibiotic resistance markers such as erythromycin, ampicillin or kanamycin. However, more and more studies have shown that the antibiotic resistance genes may not be safe for food or oral vaccine applications due to its possibility to affect environment [18]. To overcome these disadvantages, several non-antibiotic selection markers such as thyA [19], thr [20], and alr [21] have been developed. Another commonly used non-antibiotic selection marker is the asd gene (EC1.2.1.11), which has been used in E. coli and Salmonella [22].

Apical membrane antigen 1 (AMA1) is a member of the highly conserved parasite surface proteins among apicomplexan protozoan, such as Toxoplasma gondii [23], Plasmodium and Coccidia [24]. The AMA1 is found on the sporozoite surface of E. tenella. Its expression level at sporozoite stage is higher than that of other stages. The AMA1 protein is a type I transmembrane protein, which plays an important role in sporozoite invasion [25]. A previous report showed that DNA vaccines encoding EbAMA1 of E. brunetti could increase the level of serum specific IgG and cytokines concentration [26]. AMA1 of E. tenella sporozoite is effective at stimulating partial protection against a homologous challenge when expressed as a recombinant protein by Lactococcus lactis [27].

In addition, a number of microfilament proteins such as EtMIC2, which is expressed throughout the life cycle of coccidia and located on the membrane of sporozoites, can be used as potential vaccine candidate antigens against E. tenella infection by either eukaryotic or prokaryotic vectors [28–30]. Protective efficacy analysis indicated EtMIC2 conveys only partial protection [31]. To improve the immunogenicity and protective efficacy of EtMIC2 and AMA1, the two antigens were co-expressed on the surface of L. plantarum. As a vaccine delivery vector, L. plantarum has the function of enhancing immunity. We speculate that AMA1 and EtMIC2 co-expressed by L. plantarum could stimulate immune responses and improve immune protection against E. tenella infection.

In this study, we firstly designed a non-antibiotic dependent expression system for use in L. plantarum strains using the asd and alr selective markers. Then a double anchoring vector consisting of pgsA′ and S-layer protein anchoring sequences was constructed and the AMA1 and EtMIC2 proteins of Eimeria tenella (E. tenella) were anchored on the surface of recombinant L. plantarum strain Lp-12 at the same time. The results of in vivo studies suggested that the novel double-antigen anchoring construction delivery via L. plantarum significantly enhanced the immune response in chicken, which protected against E. tenella challenge.

Results
Construction of non-antibiotic selective plasmids
In this study, we sought to create a single expression vector that could be used to co-express two foreign proteins using a dual-anchoring sequence and non-antibiotic selection markers. To achieve this goal, we constructed a series of vectors, including vectors with a food-grade marker (asd-alr) containing various anchoring sequences (see Fig. 1). The Lp1261inv gene in parental plasmid pLP_1261inv was replaced with either a pgsA′ or S anchor encoding sequence, yielding pLP-pgsA′ or pLP-S, respectively. Then EGFP gene was inserted into the above plasmids, resulting in two EGFP anchoring plasmid pLP-pgsA′-EGFP and pLP-EGFP-S. On the other hand, the erm resistant gene was replaced with an asd-alr expression cassette, which could synthesize Asd and Alr at the same time, yielding the non-antibiotic selective plasmids pLQa-pgsA′, pLQa-S, pLQa-pgsA′-EGFP and pLQa-EGFP-S.
To determine whether the expression of foreign proteins affects the growth of recombinant strains, the constructed plasmids described above were transformed into either *L. plantarum* NC8 or its *alr* deletion mutant strain *L. plantarum* NC8/Δalr. After induction by the addition of SppIp, significantly decreased growth rates were observed for strains containing pLp-pgsA'-EGFP or pLQa-pgsA'-EGFP, whereas the growth rates of strains harboring pLp-EGFP-S or pLQa-EGFP-S were not obviously affected (Fig. 2). The reason of the decreased growth for strains containing pLp-pgsA'-EGFP or pLQa-pgsA'-EGFP is not clear. We speculate that the pgsA' anchoring sequence plays an important role that affects growth rate, because the growth rates of the strains containing the pgsA' sequence were lower than those containing the S anchoring sequence. PgsA' is a transmembrane-anchoring sequence. Interestingly, a previous study also showed that the Lp_1568 transmembrane anchoring sequence significantly affected the growth of *L. plantarum* [32]. Our results suggest that the S layer anchoring approach may be a better choice for surface displayed expression in *L. plantarum* strains.
The production and display of EGFP on the surface of \(L. \) \textit{plantarum} strains was determined by Western blot, fluorescence microscopy and flow cytometric analysis. As expected, a 46 kDa band (26.3 kDa for EGFP plus the anchoring sequence) was observed in all constructs harboring the EGFP encoding gene (Fig. 3a). A second band with lower molecular weight was observed in some samples (lanes 4–6, but not 3 in Fig. 3a). It is not clear what this band is, but one possibility is that this is a putative protein product, as previously reported [32–35].

Fig. 3 a Western blot analysis of EGFP. Same amount of total protein was loaded for each strain. Two strains containing pLP-pgsA\(^{\prime}\) (Lane 1) and pLQa-pgsA\(^{\prime}\) (Lane 2) were used as negative controls. The arrow indicates the bands of the EGFP fusion proteins. b Quantitative analysis of EGFP fusion proteins from Western blots. c Fluorescence microscopy analysis of single-anchoring expression of EGFP in \(L. \) \textit{plantarum} containing \(\textit{asd-aih-marked} \) or \(\textit{erm-marked} \) plasmids (\(\times 100 \) objective). d Representative images of flow cytometry analysis of recombinants containing the following plasmids at 4 h post induction: pLP-pgsA\(^{\prime}\)-EGFP (black), pLQa-pgsA\(^{\prime}\)-EGFP (yellow), pLP-EGFP-S (light blue), pLQa-EGFP-S (green). pLP-pgsA\(^{\prime}\) (pink) and pLQa-pgsA\(^{\prime}\) (gray) were used as negative controls.

Synthesis of EGFP on surface of recombinant strains

The production and display of EGFP on the surface of \(L. \) \textit{plantarum} strains was determined by Western blot, fluorescence microscopy and flow cytometric analysis. As expected, a 46 kDa band (26.3 kDa for EGFP plus the anchoring sequence) was observed in all constructs harboring the EGFP encoding gene (Fig. 3a). A second band with lower molecular weight was observed in some samples (lanes 4–6, but not 3 in Fig. 3a). It is not clear what this band is, but one possibility is that this is a putative protein product, as previously reported [32–35].
Table 1 Stability of erm-marked and asd-alr-marked plasmids

Plasmid/medium	50 generations Percentage containing plasmid	100 generations Percentage containing plasmid
pLP-ect A'-EGFP/MRS	46	0
pLP-EGFP-S/MRS	48	0
pLPQa-ect A'-EGFP/MRS	100	100
pLpQa-EGFP-S/MRS	100	100
pLP-ect A'-EGFP/MRS + erythromycin	91	83
pLP-EGFP-S/MRS + erythromycin	93	86
pLPQa-ect A'-EGFP/MRS + d-ala	83	66
pLpQa-EGFP-S/MRS + d-ala	85	69

*a L. plantarum NC8 containing pLP-ect A'-EGFP and pLP-EGFP-S, respectively, were cultivated in MRS solid media with or without 5 μg/mL erythromycin

*b L. plantarum NC8/Δalr containing pLPQa-ect A'-EGFP and pLPQa-EGFP-S, respectively, were cultivated in MRS solid media with or without 200 μg/mL d-ala. These strains were sub-cultivated at 30 °C without agitation and passaged every 12 h. The percentage containing plasmid was calculated as the number of single colonies on selected plates

Expression of EGFP and mCherry in a single plasmid with co-anchoring sequences

The cloning cassettes of single- or dual-anchored EGFP and mCherry proteins in plasmids pLPQa-ect A'-mCherry, pLpQa-p'm-ES and pLpQa-ES-p'm are shown in Fig. 4a. A Shine-Dalgarno (SD) sequence (AGGAAACAGACC), which helps recruit ribosomes to the messenger RNA to initiate protein synthesis, was used for the expression of the secondary protein gene, either EGFP in pLpQa-p'm-ES or mCherry in pLpQa-ES-p'm.

Expression of EGFP and mCherry was confirmed with anti-EGFP and anti-6×His Tag antibodies. Western blot revealed the presence of a 45.4 kDa band for EGFP (26.3 kDa of EGFP plus the anchoring sequence) (Fig. 4b). The quantitative analysis indicated that the expression level of EGFP was significantly higher in the single-anchor plasmid (pLPQa-EGFP) (P < 0.05) compared with the dual-anchor plasmid (pLPQa-p'm-ES) (Fig. 4c). The presence of a 47.6 kDa band corresponds to mCherry (26.6 kDa for mCherry) plus the His-tag and anchoring sequence (Fig. 4d). The identity of this band was further confirmed by western blot, where no significant differences among single or double expression plasmids could be observed (Fig. 4e). These findings were also confirmed by flow cytometry analysis (Fig. 4f, g). All these results indicated that the synthesis of the desired protein in double expression plasmid was mainly dependent on the type and order of anchors rather than the target protein.

Co-expression of EGFP and mCherry was further confirmed by fluorescence microscopy (Fig. 5). No green-fluorescence or red-fluorescence was observed in L. plantarum NC8/Δalr strains harboring the plLPQa-EGFP-S or pLPQa-ect A'-mCherry for single-anchoring either EGFP or mCherry. On the other
hand, both green-fluorescence and red-fluorescence were detected in NC8/Δalr strains harboring plasmids pLQa-p’m-ES and pLQa-ES-p’m for co-anchoring EGFP and mCherry. When the green and red fluorescence were merged together, the recombinants were yellow for L. plantarum NC8/Δalr harboring pLQa-p’m-ES or pLQa-ES-p’m (Fig. 5), indicating that they were colocalized.

Co-anchoring of AMA1 and EtMIC2 on surface of L. plantarum strains

According to the results shown in Fig. 5, we selected the construct “protein1-S anchoring-SD-pgsA’-protein2” for further study. Two antigens of E. tenella (AMA1 and EtMIC2) were inserted into the plasmid pLQa-ES-p’m to obtain pLQa-AMA1S-p’EtMIC2, named pLQa12 (Fig. 6a). The L. plantarum NC8/Δalr containing the pLQa12 was referred as Lp-12. Protein expression of AMA1 and EtMIC2 on the surface of Lp-12 surface was determined by western blotting and immunofluorescence using anti-AMA1 or anti-EtMIC2 antibody. As shown in Fig. 6b, a specific AMA1 band appeared at ~66 kDa and a specific EtMIC2 band appeared at ~56 kDa, with no bands being detected in the vector controls. The presence of synthesized antigens on the surface of Lp-12 strains were confirmed by immunofluence assay, where green fluorescence could be observed (Fig. 6c). These results

![Fig. 5](image-url)
Fig. 5 Fluorescence microscopy showing co-anchored EGFP and mCherry encoded by a single plasmid. L. plantarum NC8/Δalr harboring plasmids pLQa-EGFP-S or pLQa-pgsA’-mCherry designed for single-anchoring of mCherry or EGFP were used as controls (×100 objective). White arrows indicate co-localization of EGFP and mCherry in strains harboring pLQa-p’m-ES and pLQa-ES-p’m, respectively.
suggested that the AMA1 and EtMIC2 proteins were co-anchored on the surface of recombinant Lp-12 strains.

Induced protection for chickens against E. tenella
To determine whether Lp-12-elicited immune response could provide protection against *E. tenella*, birds in experimental groups were challenged with *E. tenella* (5 × 10⁴ oocysts/bird) after booster vaccination with Lp-12 strain. Ten days after the challenge, the body weight and oocyst output of chickens were observed and lesion scores in cecum were recorded. As shown in Table 2, the chickens immunized with Lp-12 had significantly increased body weight gains (BWG), decreased cecum lesions and reduced numbers of oocyst output compared with PBS and Lp/pLQa-pgsA′ group (P < 0.001). No chickens died after challenge in any group.

Lp-12 improved the T cell responses in chickens
To determine whether immunization of Lp-12 affects the cellular immune responses, the T lymphocytes cell
responses in peripheral blood of chicken were evaluated by flow cytometry (Fig. 7a) 10 days after the second vaccination. The percentage of CD3+CD4+ T cells in Lp-12 group was significantly higher than that in Lp/plQa-pgsA′ group and PBS group (P < 0.05). Meanwhile, the proportions of CD3+CD8+ T cells in the chickens immunized with Lp-12 increased significantly compared to the Lp/plQa-pgsA′ group and PBS group (P < 0.05) (Fig. 7c, d). There was no significant difference between PBS group and vector group.

Lp-12 strains increased specific anti-AMA1 and EtMIC2 antibody level
To determine whether vaccination of recombination Lp-12 strains affects the specific antibody levels, 10 days after the second immunization, 5 chickens from each group were chosen to detect the specific serum IgY and intestinal SIgA antibody titers. The results showed that higher specific IgY titer against both AMA1 and intestinal SIgA antibody titers. The results showed that higher specific IgY titer against both AMA1 and EtMIC2 proteins was observed in the Lp-12 group compared with the PBS and Lp/plQa-pgsA′ groups (Fig. 8a). Similar
results were also observed regarding to the mucosal IgA antibody response (Fig. 8b), indicating that the co-expressed antigens could provide us an efficient approach for oral immunization.

Lp-12 protected chickens from colonic inflammation
HE staining showed that chickens in the PBS-challenge group and the Lp/pLQa-pgsA' vector group had severe colonic inflammation (Fig. 8c). The cecum villus was...
seriously damaged, and gland structure was blurred, with inflammatory cells and blood cells in the submucosa. The cecum had a large number of coccidial oocysts in the PBS-challenge group. The Lp-12 group showed the smallest histopathological changes. The villus of cecum was partly exfoliated, but the villus structure was relatively intact.

Discussion

In the genetic engineering of bacteria such as *E. coli*, *Bacillus* spp. and LAB, antibiotic resistance genes have traditionally been used as selection markers for the maintenance of recombinant plasmids [36]. For example, numerous recombinant *L. plantarum* strains have been constructed to deliver various functional proteins such as antigens [1, 37], enzymes [38], and cytokines [39–41]. However, most of these studies used the *erm* antibiotic resistance gene as selection marker. This resistance gene may however affect human health or the environment negatively [42].

In recent years, auxotrophic selection marker genes such as *asd* [43] and *alr* [44] have been used successfully in prokaryotic expression plasmids. In this study, using an *asd-alr* fusion gene as an auxotrophic selection marker, we designed a series of food-grade plasmids by replacing the *erm* gene of the pLP_1261Inv-derived expression plasmids. This method can be applied to other pSIP-type vectors, which can then be used as templates for the amplification of DNA fragments when replacing the *erm* gene with the *asd-alr* gene. Our results indicated that the *asd-alr* marked plasmids were more stable than the *erm*-marked plasmids in both selective and nonselective media. In the *alr* gene deleted host strain, the *alr* plasmid is required for growth. The non-selective medium may not have any disadvantage to the cells. In contrast, an antibiotic gene is not necessary but harmful to cells. The non-selective medium does not have selection pressure towards the host strain, so the plasmid may get lost easily. These findings are consistent with those reported previously [21]. More importantly, the *asd-alr*-marked plasmid allows for the screening and selection of this plasmid in *E. coli* (with *asd*) and in *L. plantarum* (with *alr*). This makes it valuable and sustainable for use in the context of LAB engineering [44].

In this study, pgsA' and S-layer proteins were employed for the co-expression of foreign proteins in *L. plantarum*. The results showed that both EGFP and mCherry proteins were successfully co-expressed on the surface of *L. plantarum* NC8/Δalr and the fluorescence signals for EGFP and mCherry could easily be measured in bacterial suspensions. This single plasmid with two anchoring sequences was subsequently employed for the co-expression of AMA1/EtMIC2 resulting in the recombinant *L. plantarum* strain Lp-12 to exhibit an anti-coccidial effect due to the antigens delivered via the engineered strain.

To evaluate the immune effect of the Lp-12 vaccine strain, we quantified the IgY and SlgA antibody titers and percentages of T cells in peripheral blood. The anti-AMA1 or anti-EtMIC2 specific IgY and SlgA antibodies were significantly higher (*P < 0.05*) in Lp-12 group compared with PBS group and vector group. The data revealed that Lp-12 can elicit strong humoral and mucosal immunity. The result is in accordance with our previous report, where a recombinant *L. plantarum* NC8 strain expressed the SO7-DCpep fusion protein by the *erm*-marked plasmid pSIP409 [1]. The proportions of CD3+CD4+ T and CD3+CD8+ T cells in peripheral blood were significantly higher in the Lp-12 group, which indicates that Lp-12 efficiently stimulates the cellular immune response, the *L. plantarum* strain with no antigen can also increase the proportion of CD3+CD4+ T and CD3+CD8+ T cells. The Lp-12 with surface-displayed AMA1/EtMIC2 might be more effective in interacting with intestinal cells to stimulate the mucosal immune response [45] than the strain with no antigen.

To further evaluate the protecting effect of the Lp-12 against coccidia, chickens were challenged with *E. tenella*. The average BWG of the group vaccinated with Lp-12 was higher compared to the PBS-challenge control group and the empty vector group (*P < 0.05*). Our results showed that the chickens immunized with Lp-12 exhibited reduced oocyst shedding, less cecum damage, and lower average lesion scores compared to chickens immunized with the empty vector. An explanation for our results could be that the Lp-12 vaccine was able to stimulate the cellular immune response in addition to the humoral and mucosal immune response, resulting in reduced damage of chicken gut tissue, improved feed utilization and an increase in weight gain, the protective effects obtained in this study are similar to those obtained in other studies [27, 45, 46]. One limitation of this animal study is this is a single trial. Further studies, including the protective effect with attenuated vaccines, would be helpful to further confirm these conclusions.

Lactobacillus has been used as a feed supplement to improve weight gain and promote health effects [47]. Previous studies have shown that *Lactobacillus* itself has an anti-coccidial effect [48]. Our current results showed the *L. plantarum* strain with no antigen (vector control group: Lp/pLQa-pgsA') can significantly improve the body weight gain of chickens (*P < 0.05*) compared with the PBS-challenged group.

Attenuated vaccines against *Eimeria* parasite are mainly from egg-adapted lines or precocious strains. Because egg-adapted lines are difficult to obtain, the precocious strains are the most widely used. Although the precocious strains provide a satisfactory protective...
immunity, its uses are limited due to the high cost and reduction of performance [9]. In this study, we developed a safe, economic, and practical oral vaccine against *E. tenella*, using the recombinant *L. plantarum* strain as a mucosal vaccine vector. This strain offers several advantages for the development of a coccidiosis vaccine, including ease of use, low cost, higher safety levels, and feasibility of genetic manipulation [49]. To our best knowledge, this is the first report in which an engineered LAB strain delivered double-antigen induced immune responses towards *E. tenella*. Compared with attenuated vaccines, the recombinant strains may not be as effective as the attenuated vaccines in a humoral immune response, but our present results from T cells proportions suggest the function of recombinant strains might be more effective. In addition, the double-anchoring sequence based co-expression strategy may not be restricted to *E. tenella*, but provide us a novel platform to co-express antigens from other pathogens. Our technology may further expand its applications in the field of oral vaccine.

Conclusions

In conclusion, we successfully constructed a plasmid that was used to express two foreign proteins on the surface of the *L. plantarum* NC8/Δalr strain. This plasmid has two anchoring motifs for the two proteins and carries an *asd-alr* fusion gene as the complementation screening marker. With the non-antibiotic markers, both *E. coli* and *L. plantarum* could be screened for successful transformation events and therefore safe for human use. The recombinant Lp-12 strain with co-expressed the AMA1/
EtMIC2 improved the chicken immune response and provided partial protection against *E. tenella* challenge. This may provide a novel option for parasite vaccine research.

Methods

Plasmids, bacterial strains and growth conditions

The plasmids and bacterial strains used are listed in Table 3. *E. coli* Top10 was grown in lysogeny broth (LB). *L. plantarum* NC8 was cultured in De Man, Rogosa and Sharpe (MRS) medium at 30 °C without agitation. *L. plantarum* NC8-competent cells were prepared as previously described [50]. The *L. plantarum* NC8/Δalr strain was cultured in MRS medium with 200 μg/mL d-ala (Sigma, USA). *E. coli* χ6212 was cultured in LB medium with 50 μg/mL DAP (Sigma, USA) to compensate for the *asd* deletion. *E. coli* χ6212-competent cells were prepared and transformed as described previously [51]. Unless otherwise stated, the erythromycin concentration was 5 μg/mL (for *L. plantarum* NC8) or 200 μg/mL (for *E. coli* Top10). The AMA1 and EtMIC2 proteins were purified from *E. coli* BL21 (DE3) using a His-tagged protein purification kit (Cwbiotech, China). The mouse anti-AMA1 polyclonal antibody was obtained by immunizing mice with the purified AMA1 protein. A highly pathogenic *E. tenella* strain was isolated from chickens suffering from clinical coccidiosis at the Animal Hospital of Jilin Agricultural University and stored in our lab. In order to ensure its vitality, the *E. tenella* strain was rejuvenated in chickens every 6 months. The sporulated oocysts were preserved in 2.5% potassium dichromate solution at 4 °C as previously described [52].

DNA manipulation

The PurePlasmid Mini Kit (Cwbiotech) was used to extract plasmids, and the Gel Extraction Kit (Cwbiotech) was used to purify DNA fragments. Restriction enzymes and PrimeSTAR Max DNA Polymerase were purchased from TaKaRa (Dalian, China). Polymerase chain reaction fragments were cloned into digested plasmids using the In-Fusion HD cloning kit (Clontech Laboratories, Inc.), according to the manufacturer’s instructions. The PCR primers used are listed in Table 4. These PCR fragments were sequenced by Genewiz (Suzhou, China). Transforms harboring *asd-alr*+ plasmids were selected on LB (without DAP) or MRS (without d-ala).

Construction of alr-deletion mutants

The *alr*-deletion mutant of *L. plantarum* NC8 (*L. plantarum* NC8/Δalr) was constructed using the Cre-lox-based vector mutagenesis system [53] (pNZ5319/pNZ5348) as previously described [21].

Construction of pLp-S, pLp-pgsA, pLp-pgsA’-EGFP and pLp-EGFP-S cell-surface display vectors

Plasmids were constructed as shown in Fig. 1. First, to ensure the single-vector, the pLp-S and pLp-pgsA’ plasmids were constructed by replacing the lp_1261 Inv fusion gene of the plasmid pLp_1261Inv...
(Table 1) either with a part of the SlpA gene (SP-linker and S_anchoring sequence Genbank NO. X71412) or shortened pgsA gene (pgsA′) [35], respectively. Both genes were codon optimized and synthesized by Genewiz (Suzhou, China). A synthesized fragment containing a linker (GGC ACG ATT GCG GCG) [54] and the multiple cloning site MCS1 (SalI, XhoI, EcoRI, KpnI) downstream of ogsA′ was digested with NdeI/HindIII and ligated into the NdeI/HindIII digested pLp-S plasmid, respectively, yielding pLp-pgsA′. A synthesized fragment containing a linker (GGC ACG ATT GCG GCG) [54] and the multiple cloning site MCS2 (XbaI, SmaI, AsuII, NarI, and HindIII) downstream of ogsA′ was digested with NdeI/HindIII and ligated into the NdeI/HindIII digested pLp-1261Inv (5.6 kba fragment) to yield pLp-pgsA′.

Construction of food-grade expression vectors pLQa-pgsA′, pLQa-pgsA′-EGFP, pLQa-S, and pLQa-EGFP-S plasmids

To construct food-grade expression vectors, the erm marker was replaced with the non-antibiotic marker asd-alr in the “pLp” vectors. The pYA3342 plasmid (Table 3) was used as template to amplify the asd gene (containing the promoter and terminator sequences) with asd F/asd R primer pairs (Table 4). A plasmid containing the Streptococcus cremoris promoter 23 sequence (P23, GenBank: M24763.1) and the alr gene (NCBI: NC_004567.2) was synthesized by Genewiz. The Sall and HindIII sites in the alr gene were removed during synthesis by mutation (GTGCAGC → GTgGAC and AAGCTT → AAACCTT). The synthesized fragment was used as a template to amplify the P23-alr fusion fragment using P23 F/alr R primers (Table 4). Purified asd and P23-alr fragments were fused by overlap extension-PCR using asd F/alr R primers. Four plasmids constructed as described above (pLP-pgsA′, pLP-pgsA′-EGFP, pLP-S, and pLP-EGFP-S) were amplified without the erm gene using pF/pR primers (Table 4). These fragments were subsequently ligated with the asd-p23-alr fusion fragments by seamless cloning, yielding pLQa-pgsA′, pLQa-pgsA′-EGFP, pLQa-S, and pLQa-EGFP-S plasmids (Table 3, Fig. 1). These expression vectors were amplified in E. coli χ6212-competent cells using the asd gene as auxotrophic marker before transformation into the L. plantarum NC8/Δalr strain (using alr gene as screening marker) by electroporation.

Analysis of EGFP expression

To examine whether the non-antibiotic marker affects bacterial growth, six strains (L. plantarum NC8 harboring pLP-pgsA′, pLP-pgsA′-EGFP, and pLP-EGFP-S; L. plantarum NC8/Δalr harboring pLQa-pgsA′, pLQa-pgsA′-EGFP, and pLQa-EGFP-S) were grown at 30 °C without agitation. The overnight liquid cultures were sub-cultured in fresh MRS to a density corresponding to an OD₆₀₀ ≈ 0.3. Each culture was then divided into an induced culture (addition of SppIp, 25 ng/mL) and a non-induced culture. OD₆₀₀ values were measured 4 h post induction.

To compare the expression levels of EGFP in antibiotic and non-antibiotic resistance conveying plasmids, after induction for 4 h, the density of cultures were normalized to the same OD₆₀₀ values. Cells were harvested from the cultures, and then the protein extractions were performed by a method described previously [33, 35]. The protein in the cell-free extracts was quantified using a BCA kit (Beyotime, Shanghai, China) and same amount of protein was subjected to 12% SDS-PAGE and western blotting using mouse anti-EGFP monoclonal antibody (1:5000 dilution) (BBI Life Science) and goat anti-mouse HRP-conjugated monoclonal antibody (1:8000 dilution) (BBI Life Science). The specific band representing EGFP was quantified using ImageJ software. An inverted fluorescence microscope (Leica DMI8) was used to visualize EGFP. The EGFP was quantified using a flow cytometer (BD LSRFortessa). Strains with the empty vector pLP-pgsA′ and pLQa-pgsA′ were used as negative controls.

Measurement of plasmid stability

Replica plating was used to detect the plasmid stability of pLP-pgsA′-EGFP, pLP-EGFP-S, pLQa-pgsA′-EGFP, and pLQa-EGFP-S. The percentage of host cells still containing the plasmid was measured after 50 and 100 generations [21].

Construction of a single plasmid co-expression EGFP and mCherry using dual-anchoring sequences

The mCherry gene (GenBank: KP238582.1) with 6 × His tag was synthesized by Genewiz, and was then ligated with the XbaI/HindIII-digested pLQa-pgsA′ using T₄ DNA ligase (NEB). This process yielded the pLQa-pgsA′-mCherry plasmid (Fig. 4a). Then the SP-linker-EGFP-S_anchoring and pgsA′-mCherry fragments were amplified from pLQa-EGFP-S and pLQa-pgsA′-mCherry using SD-EGFPSF/SD-EGFPS R and SD-P′M F/SD-P′ M R primers, respectively. The amplified fragments were cloned into HindIII-digested pLQa-pgsA′-mCherry and
pLQa-EGFP-S plasmids (Table 3) with introduction of the SD sequences (AGGAAAAGACACC) by seamless cloning. This process yielded the two single co-expression plasmids pLQa-p’m-ES and pLQa-ES-p’m, respectively (Fig. 4a). In order to simplify further plasmid manipulations, the HindIII sites upstream the SD sequence were mutated (AAGCTT → AAaCTT) using the primer SD-P’M F (Table 4) when amplifying the pgsA’-mCherry gene. These plasmids were amplified in E. coli y6212-compotent cells, then transformed into L. plantarum NC8/Δalr by electroporation.

Co-anchoring of EGFP and mCherry on L. plantarum NC8/Δalr surface

Lactobacillus plantarum NC8/Δalr strains harboring pLQa-p’m-ES, or pLQa-ES-p’m were cultured and induced in MRS, fluorescence microscopy and flow cytometry were performed to measure EGFP and mCherry expression as described above. For Western blot analysis, 2 mL of bacterial cultures were harvested. Two identical 12% SDS-PAGE gels were run in parallel, then transferred to two nitrocellulose membranes. One was used to detect EGFP as described above. The second membrane was incubated in mouse anti-6 × His tag monoclonal antibody (1:2000 dilution) (Kangwei Co., China) and goat anti-mouse HRP-conjugated monoclonal antibody (1:8000 dilution) (BBI Life Science). Levels of protein expression were analyzed and quantified using ImageJ software. Single-expression vectors (pLQa-EGFP-S and pLQa-pgsA’-mCherry) were used as positive controls.

Co-anchoring of AMA1 and EtMIC2 on L. plantarum NC8/Δalr surface

Both the AMA1 (GenBank: AEJ33058.1) and EtMIC2 (GenBank: ACN93990.1) fragments without signal sequence were codon optimized, synthesized by Genewiz (Suzhou, China) and cloned into the pUC57-Kan plasmid. To co-anchor AMA1 and EtMIC2, the synthesized fragments were inserted into pLQa-ES-p’m in two steps. First, AMA1 was cloned into pLQa-ES-p’m using the SalI/XhoI restriction sites, yielding pLQa-AMA1S-p’m. Second, the EtMIC2 fragments were cloned into pLQa-AMA1S-p’m using XbaI/HindIII. This process yielded pLQa-AMA1S-p’ EtMIC2 (pLQa12) (Fig. 6a). The L. plantarum NC8/Δalr containing the pLQa12 is referred to as Lp-12. Western blotting was used to determine the co-expression of AMA1 and EtMIC2 using a mouse anti-AMA1 polyclonal antibody (1:2000 dilution, provided by Jilin Agricultural University) and a mouse anti-EtMIC2 monoclonal antibody (1:2000 dilution, provided by Professor Xiaomin Zhao of Shandong Agricultural University). Co-anchored AMA1 and EtMIC2 on the surface of Lp-12 was detected by an immunofluorescence assay [56]. Approximately 10⁶ cells were incubated with the mouse anti-EtMIC2 monoclonal or the anti-AMA1 polyclonal antibody, followed by incubation with FITC-conjugated goat anti-mouse IgG. Cells were washed twice with PBST and visualized using a Leica DMI8 fluorescence microscope.

Animal experiments

All animal experiments were approved by the Animal Care and Ethics Committees of Jilin Agriculture University. White feather broiler chickens (1-day-old) were obtained from Hongda Animal Technology Co., Ltd. (Changchun, China). Chickens were weighed and randomly divided into groups A-D with 20 animals per group. All animals in the experimental group A were gavaged with 200 μL buffer containing 2 × 10⁹ CFU of Lp-12 at an age of 4 to 6 days, followed by a booster vaccination at an age of 18 to 20 days with the same amount of Lp-12. Animals in the experimental group B (vector control group) were gavaged with 200 μL buffer containing 2 × 10⁹ CPU of Lp/pLQa-pgsA’ at an age of 4 to 6 days, followed by a booster vaccination at age of 18 to 20 days with the same amount. Animals in the experimental group C (PBS control group) were gavaged with 200 μL PBS at an age of 4 to 6 days and 18 to 20 days. Animals in the experimental group D (PBS-challenge group) were treated with the same amount of PBS as group C. Ten days after the immunization (at age of 30 days), 5 chickens each of group A, B and C were chosen for sample collections to detect immune response. The remaining chickens within groups A, B and D were challenged with 5 × 10⁹ sporulated oocysts of E. tenella as previously described [1].

Detection of antibody response

ELISA was performed to determine the IgY responses against AMA1 and EtMIC2 in sera, as well as secretory immunoglobulin (SIgA) in intestinal washes as described previously [14]. Briefly, to get the intestinal washes [22], the intestines were opened, and the contents were removed. Intestinal scrapings were collected using glass slides and diluted in cold PBS. After shaking for 1 min, the samples were centrifuged for 5 min at 5000 × g at 4°C. Supernatants were collected and stored at −80 °C for SIgA assays. The 96-well plates were coated with AMA1 or EtMIC2 (100 ng/well) at 4 °C overnight. 1% BSA was added to each sample well and incubated overnight at 4 °C. 100 μL serum samples (1:100) and intestinal washes (1:20) were added to each well and incubated for 1.5 h at 37 °C. Subsequently, HRP-conjugated goat anti-chicken IgY or IgA (SouthernBiotech, USA) antibodies (1:10,000) were added to each well and incubated for additionally
1 h. After washing, 100 μL of 3,3′,5,5′-tetramethylbenzidine (TMB) was added to each well. The reaction was stopped by addition of 2 N H2SO4 (50 μL/well). Finally, the absorbance was recorded at 450 nm in a plate reader.

Flow cytometry

Single-cell suspensions from blood were prepared using a peripheral-blood lymphocyte separation kit (Solarbio, Beijing, China), and flow cytometry was performed to detect the percentages of CD3⁺, CD8⁺-T-cells [57]. The isolated cells (1 x 10⁶) were incubated with FITC-conjugated anti-chicken CD3 and PE-conjugated anti-chicken CD4 or CD8 (SouthernBiotech) monoclonal antibodies, respectively. The samples were quantified by a flow cytometer (BD LSRFortessa™, USA). Experiments were performed in triplicates and the data were analyzed using FlowJo (Version 7.6.2, Becton, Dickinson and Company, USA).

Evaluation of immune protection

At 7 days post-infection (7 dpi), the cecal lesion scores of five chickens per experimental group were assessed as previously described [58]. Ceca were removed and fixed with 4% paraformaldehyde and stained with standard hematoxylin and eosin (HE) as described previously [59]. Body weights were measured at the day of challenge and 7 dpi to calculate the relative BWG (%) [9]. Fecal samples were collected between 4 dpi and 7 dpi to determine the numbers of oocysts per gram (OPG) in feces [1] and to determine the percentual reduction of oocysts in the feces of the respective treatments relative to the control [60].

Statistical analysis

All results are presented as mean ± standard error of the mean (SEM). Data were analyzed with GraphPad Prism 5.0 software using One-Way ANOVA. P < 0.05 was considered statistically significant.

Abbreviations

EGFP: Enhanced green fluorescent protein; L. plantarum: Lactobacillus plantarum; E. coli: Escherichia coli; E. tenella: Eimeria tenella; LAB: Lactic acid bacteria; pgkA: Poly-γ-glutamic acid synthetase A; SP: Signal peptide; S: Anchoring sequence of the surface layer protein; DAP: 5-2,6-Diaminopimelic acid; erm: Erythromycin resistance gene; atr: α-Alanine racemase gene; asd, β-Semialdehyde dehydrogenase gene; α-al: α-Alanine; EMIC2: Eimeria tenella microneme-2; AMA1: Apical membrane antigen 1; SD: Shine-Dalgarno; LB: Luria broth; MRS: De Man Rogosa Sharpe; SDS: Sodium dodecyl sulfate; SDS-PAGE: SDS-polyacrylamide gel electrophoresis; PBS: Phosphate buffered saline; TMB: Tetramethylbenzidine; ELISAs: Enzyme-linked immunosorbent assay; StgA: Secretory immunoglobin A

Acknowledgements

The authors thank Dr. Lars Axellson and Geir Mathiesen from Norwegian University of Life Sciences for providing the pLp_1261Inv plasmids and thank Dr. Michel Kleerebezem from NIZO food research for providing the pNZ5319 and pNZ5348 plasmids.

Authors' contributions

QL, YLJ, GLY and CFW designed most of the investigation and data analysis; QL and YLJ wrote the manuscript; QL, YSL and XG performed experiments, TMN and HZH provided pathological assistance; SCW and WTY contributed to interpretation of the data and analyses. All authors read and approved the final manuscript.

Funding

This study was supported by the National Key Research and Development Program of China (2017YFD0501000, 2017YFD0501200, 2017YFD0500400), National Natural Science Foundation of China (31672528, 31602092), Science and the Technology Development Program of Jilin Province (20180201040NY and 20190301042NY).

Ethics approval and consent to participate

All animal experiments were approved by the Animal Care and Ethics Committee of Jilin Agriculture University.

Competing interests

The authors declare that they have no competing interests.

Author details

1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China. 2 College of Food Engineering, Jilin Engineering Normal University, 3050 KaiXuan Road, Changchun 130052, Jilin, China.

Received: 13 November 2019 **Accepted:** 27 January 2020

Published online: 11 February 2020

References

1. Yang G, Yao J, Yang W, Jiang Y, Du D, Huang H, Gu W, Hu J, Ye L, Shi C, et al. Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing S07 of *Eimeria tenella* fenula DC-targeting peptide. Vet Parasitol. 2017;236:7–13.

2. Liu L, Zhang W, Song Y, Wang W, Zhang Y, Wang T, Li K, Pan Q, Qi X, Gao Y, et al. Recombinant Lactococcus lactis co-expressing OmpH of an M cell-targeting ligand and IBDV-VP2 protein provide immunological protection in chickens. Vaccine. 2018;36:729–35.

3. Shirley MW, Rednik P. Live attenuated vaccines against avian coccidiosis: success with precocious and egg-adapted lines of *Eimeria*. Parasitol Today. 1997;13:481–4.

4. Li QG, Kanu S, Xiao SM, Xiang FY. Responses of chickens vaccinated with a live attenuated multi-variant ionophore-tolerant *Eimeria* vaccine. Vet Parasitol. 2005;129:79–86.

5. Yin G, Lin Q, Wei W, Qin M, Liu X, Suo X, Huang Z. Protective immunity against *Eimeria tenella* infection in chickens induced by immunization with a recombinant C-terminal derivative of EtiMP1. Vet Immunol Immunopathol. 2014;162:117–21.

6. Lin Z, Shi Y, Deng B, Mao X, Yu D, Li W. Protective immunity against *Eimeria tenella* infection in chickens following oral immunization with *Bacillus subtilis* expressing *Eimeria tenella* 3-1E protein. Parasitol Res. 2015;114:3229–36.

7. Li WC, Zhang XK, Du L, Pan L, Gong PT, Li JH, Yang J, Li H, Zhang X. *Eimeria maxima* maxima: efficacy of recombinant *Mycobacterium bovis* BCG expressing apical membrane antigen 1 against homologous infection. Parasitol Res. 2013;112:3825–33.

8. Shivaramaiah S, Barta JR, Layton SL, Lester C, Tellez G. Development and evaluation of an Δ aroA/Δ htrA *Salmonella enteritidis* fusion DC-targeting IBDV-VP2 protein to provide immunological protection against coccidiosis. Today. 1997;13:481–4.

9. https://doi.org/10.3923/ijps.2010.1031.1037.

10. Ma D, Gao M, Dalloul RA, Ge J, Ma C, Li J. Protective effects of oral immunization with live *Lactococcus lactis* expressing *Eimeria tenella* 3-1E protein. Parasitol Res. 2013;112:4161–7.

11. Lu W, Kong J, Kong W. Construction and application of a food-grade expression system for *Lactococcus lactis*. Mol Biotechnol. 2013;54:170–6.
11. Yoon SW, Lee TY, Kim SJ, Lee IH, Sung MH, Park JS, Poo H. Oral administration of HPV-16 L2 displayed on Lactobacillus casei induces systemic and mucosal cross-neutralizing effects in Balb/c mice. Vaccine. 2012;30:3268–74.

12. Li H, Peng X, Zhao D, Ouyang J, Jiao H, Shu H, Ge X. Lactococcus lactis displayed neuraminidase confers cross protective immunity against influenza A viruses in mice. Virology. 2015;476:189–95.

13. Smit E, Jager D, Martinez B, Tielen FJ, Pouwels PH. Structural and functional analysis of the S-layer protein crystallisation domain of Lactobacillus acidophilus ATCC 45566 evidence for protein-protein interaction of two subdomains. J Mol Biol. 2002;324:953–64.

14. Jiang Y, Yang G, Wang Q, Zhang W, Yang Z, Wang Y, Gu W, Shi C, Wang J, Huang C. Molecular mechanisms underlying protection against H9N2 influenza virus challenge in mice by recombinant Lactobacillus plantarum with surface displayed H2A-LTB. J Biotechnol. 2017;259:6–14.

15. Yang WT, Li QY, Ata EB, Jiang YL, Huang HB, Shi CW, Wang JZ, Wang G, Kang YH, Liu J, et al. Immune response characterization of mice immunized with Lactobacillus plantarum expressing spike antigen of transmissible gastroenteritis virus. Appl Microbiol Biotechnol. 2018;102:8307–18.

16. Jin YB, Yang WT, Shi CW, Feng B, Huang KY, Zhao GX, Li QY, Xie J, Huang HB, Jiang YL, et al. Immune responses induced by recombinant Lactobacillus plantarum expressing the spike protein derived from transmissible gastroenteritis virus in pigs. Appl Microbiol Biotechnol. 2018;102:849–57.

17. Huang KY, Yin JL, Yin Y, Liu J, Chen HL, Wang PB, Jiang YL, Shi CW, Huang HB, Wang JZ, et al. Construction and immunogenicity analysis of Lactobacillus plantarum expressing a porcine epidemic diarrhea virus S gene fused to a DC-targeting peptide. Virus Res. 2018;247:84–93.

18. Trombert A. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination? Benef Microbes. 2015;6:313–24.

19. Zhu D, Zhao K, Xu H, Zhang X, Bai Y, Saris PEJ, Qiao M. Construction of a deficient Lactococcus lactis using the Cre-loxP recombination system. Ann Microbiol. 2014;65:1659–65.

20. Glenting J, Madsen SM, Vrang A, Fomsgaard A, Israelsen H. A plasmid selection marker. J Agric Food Chem. 2011;59:5617–24.

21. Glenting J, Madsen SM, Vrang A, Fomsgaard A, Israelsen H. A plasmid selection marker. J Agric Food Chem. 2011;59:5617–24.

22. Hoan TD, Thao DT, Gadahi JA, Song X, Xu L, Yan R, Li X. Analysis of virulence factors in Lactobacillus plantarum. Int J Food Microbiol. 2017;245:30–40.

23. Smit E, Jager D, Martinez B, Tielen FJ, Pouwels PH. Structural and functional analysis of the S-layer protein crystallisation domain of Lactobacillus acidophilus ATCC 45566 evidence for protein-protein interaction of two subdomains. J Mol Biol. 2002;324:953–64.

24. Pastor-Fernandez I, Kim S, Billington K, Bumstead J, Marugan-Hernandez E, Hernandez-Marmol L. Lactobacillus plantarum expressing the B1-domain of glucokinase and its effects on the glucose consumption in human gut. PLoS ONE. 2012;7:e41115.

25. Pastur-Fernandez I, Kim S, Billington K, Rumsfeld J, Marugan-Hernandez E, Kuster T, Ferguson DP, Vervelde L, Blake DP, Tomley FM. Development of cross-protective Eimeria-vectored vaccines based on apical membrane antigens. Int J Parasitol. 2018;48:505–18.

26. Yang WT, Yang GL, Wang Q, Huang HB, Yang W, Du F, Yao Y, Shi C, Wang C. Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb Cell Fact. 2015;14:202.

27. Michon C, Kuczkowska K, Langella P, Eijsink VG, Chatel JM. Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo. Microb Cell Fact. 2015;14:95.

28. Ding X, Lillehoj HS, Daloull RA, Min W, Sato T, Yasuda A, Lillehoj EP. In vivo vaccination with the Eimeria tenella EMTIC2 gene induces protective immunity against coccidiosis. Vaccine. 2005;23:3733–40.

29. Yan M, Cui X, Zhao Q, Zhu S, Huang B, Wang L, Zhao H, Liu G, Li Z, Han H, Dong H. Molecular characterization and protective efficacy of the microneme 2 protein from Eimeria tenella. Parasite. 2018;25:60.

30. Cai R, Jiang Y, Wang W, Shi S, Shi C, Hu J, Gu W, Ye L, Zhou F, Gong Q, et al. Surface-displayed IL-10 by recombinant Lactobacillus plantarum reduces Th1 responses of RAW264.7 cells stimulated with poly(I:C) or LPS. J Microbiol Biotechnol. 2016;26:421–31.

31. Wen LL, Hou XL, Wang GH, Yu LY, Wei XM, Liu JX, Liu Q, Wei CH. Immunization with recombinant Lactobacillus casei strains producing K99, K88 fimbrial protein protects mice against enterotoxigenic Escherichia coli. Vaccine. 2012;30:3339–49.

32. Shi SY, Wang WT, Yang GL, Zhang XK, Liu YY, Zhang ZL, Ye LP, Hu JT, Xing X, Qi C, et al. Lactobacillus plantarum vaccine vector expressing hemagglutinin provides protection against H9N2 challenge infection. Virus Res. 2016;214:46–57.

33. Mathiesen S, Svecen A, Brunberg MB, Fredriksen L, Axellson L, Ejsink VG. Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genom. 2009;10:425.

34. Yang G, Jiang Y, Wang W, Du F, Yao Y, Shi C, Wang C. Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb Cell Fact. 2015;14:202.

35. Michon C, Kuczkowska K, Langella P, Eijsink VG, Chatel JM. Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo. Microb Cell Fact. 2015;14:95.

36. Wen LL, Hou XL, Wang GH, Yu LY, Wei XM, Liu JX, Liu Q, Wei CH. Immunization with recombinant Lactobacillus casei strains producing K99, K88 fimbrial protein protects mice against enterotoxigenic Escherichia coli. Vaccine. 2012;30:3339–49.

37. Renault P. Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie. 2002;84:1073–87.

38. Xiao Z, Dai Q, Zhu D, Liu M, Chen S, Sun K, Yang Q, Wu Y, Kong Q, Jia R. Recombinant attenuated Salmonella Typhimurium with heterologous expression of the Salmonella choleraesuis O-polysaccharide: high immunogenicity and protection. Sci Rep. 2017;7:7127.

39. Staudigel P, Haltrich D, Peterbauer CK. L-glutamic acid isomerase and l-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose to D-glucose. J Agric Food Chem. 2014;62:1617–24.

40. Ma C, Zhang L, Gao M, Ma D. Construction of Lactococcus lactis expressing secreted and anchored Eimeria tenella 3-1E protein and comparison of protective immunity against homologous challenge. Exp Parasitol. 2017;178:14–20.

41. Wang Q, Chen L, Ji J, Zheng J, Cai N, Gong P, Li S, Liu H, Zhang X. A novel recombinant BGC vaccine encoding Eimeria tenella rhomboid and chicken IL-2 induces protective immunity against coccidiosis. Korean J Parasitol. 2014;52:251–6.

42. Trabelsi I, Kari N, Ben Slima S, Bouchaala K, Ben Salah R. Effects of supplementation with L. plantarum TH8 encapsulated in alginate-chitosan in broiler chickens. Int J Biol Macromol. 2016;89:677–81.

43. Gannenas I, Papadopoulos E, Tsialei T, Triantafillou E, Henkii S, Teichmann K, Tontis D. Assessment of dietary supplementation with probiotics on performance, intestinal morphology and microflora of chickens infected with Eimeria tenella. Vet Parasitol. 2012;188:31–40.

44. Cano-Garrido O, Seras-Franzoso J, Garcia-Fruito E. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact. 2015;14:137.

45. Josson K, Scheirlinck T, Michiels F, Platteeuw C, Stanssens P, Joos H, Dhaese P, Zabeau M, Mahillon J. Characterization of a gram-positive
broad-host-range plasmid isolated from Lactobacillus hilgardii. Plasmid. 1989;21:9–20.
51. Galan JE, Nakayama K, Curtiss R 3rd. Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene. 1990;94:29–35.
52. Yang S-y. Letting the troops loose: pillage, massacres, and enslavement in early tang warfare. J Chin Mil Hist. 2017;6:1–52.
53. Lambert JM, Bongers RS, Kleerebezem M. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol. 2007;73:1126–35.
54. Fredriksen L, Kleiveland CR, Hult LT, Lea T, Nyaarda CS, Eijsink VG, Mathiesen G. Surface display of N-terminally anchored invasin by Lactobacillus plantarum activates NF-kappaB in monocytes. Appl Environ Microbiol. 2012;78:5864–71.
55. Sorvig E, Mathiesen G, Naterstad K, Eijsink VG, Axelsson L. High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology. 2005;151:2439–49.
56. Yang WT, Yang GL, Zhao L, Jin YB, Jiang YL, Huang HB, Shi CW, Wang JZ, Wang G, Kang YH, Wang CF. Lactobacillus plantarum displaying conserved M2e and HA2 fusion antigens induces protection against influenza virus challenge. Appl Microbiol Biotechnol. 2018;102:5077–88.
57. Gao X, Xu K, Yang G, Shi C, Huang H, Wang J, Yang W, Liu J, Liu Q, Kang Y, et al. Construction of a novel DNA vaccine candidate targeting F gene of genotype VII Newcastle disease virus and chicken IL-18 delivered by Salmonella. J Appl Microbiol. 2019;126:1362–72.
58. Johnson J, Reid WM. Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens. Exp Parasitol. 1970;28:30–6.
59. Jiang Y, Hu J, Guo Y, Yang W, Ye L, Shi C, Liu Y, Yang G, Wang C. Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing HN of Newcastle disease virus and DC-targeting peptide fusion protein. J Biotechnol. 2015;216:82–9.
60. Song X, Zhao X, Xu L, Yan R, Li X. Immune protection duration and efficacy stability of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 against coccidiosis. Res Vet Sci. 2017;111:31–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.