Application Analysis of Foundation Pit Monitoring Technology in Geotechnical Engineering

Yinghao Li1*, Chuanyun Yue1 and Yang Zhao2

1Shenyang Urban Construction College
2Shenyang Geophysical Survey Institute
* Corresponding author’s e-mail: 1109624103@qq.com

Abstract. In the process of foundation pit excavation, due to the comprehensive influence of many complex factors and the fact that the theoretical predicted value cannot accurately, comprehensively and fully reflect the various changes of the project, it is particularly important to monitor the foundation pit in real time. During the construction of pile foundation and soil reinforcement, due to the damage of soil stress balance, it will have a certain adverse impact on the surrounding buildings (structures), roads and pipelines. In order to ensure the normal construction and use of the project, the surrounding buildings (structures), roads and underground pipelines should be monitored periodically, and the construction scheme should be timely adjusted according to the monitoring results.

1. Introduction
The demand for land space in urban economic development is increasing day by day, and the aboveground space can no longer meet the demand for land use, so underground engineering is more and more favored[1]. As a part of underground engineering, foundation pit engineering cannot be ignored in civil engineering or other engineering fields. During the excavation of the foundation pit, due to the influence of many factors, it will cause damage to the underground foundation and surrounding roads and underground pipelines. Through the processing and analysis of monitoring data, the trend of foundation pit changes can be predicted in time, and the hidden dangers in the excavation of the foundation pit can be fully understood, the problems can be solved in a targeted manner, and advice and suggestions can be provided for the organization of construction.

2. Project overviews
The project foundation pit project is located in Hunnan District of Shenyang City. The foundation pit is approximately triangular. The northwest side is Greenland square, the east side is next to South Tiantan Street, and the south side is next to Jinka Road. The minimum distance between the side line of the foundation pit on the east side and the curbstone of South Tiantan Street is about 6m, and the width of South Tiantan Street is about 20m; the curbstone of Jinka Road on the south side of the foundation pit is about 4m, and the width of Jinka Road is about 20m. There are many underground pipelines around the East and south sides of the foundation pit, and the deformation requirements are strict[2].

3. Foundation pit monitoring schemes

3.1 Monitoring frequency and period
The monitoring period of this project starts from the construction of enclosure (pile foundation) to the end of ± 0.00 of underground structure.

According to the design requirements of Party A, the design depth of the foundation pit is 12.2m-14.0m, the excavation and support construction period is 31 days, the pile foundation construction period is 65 days, and the structure positive and negative zero construction period is 65 days. The total monitoring period is 161 days.

Serial number	Image progress	Duration (days)	Standard frequency (point / time / day)	Estimated times (point · time)
1	Support to within 5m under natural ground	6	1/2	3
2	Support to 5-10m below natural ground	12	1	12
3	Support to more than 10 meters under the natural ground	12	2	24
4	Completion of pile foundation construction	65	1/2	32
5	Completion structure plus or minus zero	65	1/5	13
	Total			84

Explain: The average monitoring times of each monitoring point is 84 points per time.

In the implementation process, the measurement frequency of each project can be adjusted according to the construction progress, measurement results, owner's requirements and supervision instructions.[3]

3.2 Foundation pit monitoring and early warning mechanism

Serial number	Monitoring items	Alarm value	Control value
1	Horizontal displacement of support structure top	40mm	50mm
2	Top of support structure and ground settlement	40mm	55mm
3	Settlement of surrounding roads	15mm	20mm
4	Internal force of bolt	Below 0.4nk or above 1.2nk	

3.3 Layout and protection of datum points and monitoring points

3.3.1 The horizontal displacement of the top of the foundation pit supporting structure has the following characteristics: The deformation measurement mainly focuses on the coordinate change value of the measuring point, and the precision of the coordinate change amount is very high, but the absolute coordinate value of the measuring point is not high; The directivity is mainly directed to the free side; the site has poor visibility conditions and is greatly affected by the construction; it is difficult to have a suitable measurement reference point in the site[4]. According to the characteristics of the horizontal displacement of the foundation pit, a two-level measurement system is selected for this project. During the monitoring process, the benchmark network should be regularly tested and calibrated to ensure the stability of the benchmark. The observation technical requirements are in Table 3.
Table 3. Accuracy index

Grade	Weakest edge length (mm)	Mean square error of angle measurement (")	Weakest edge relative error
Secondary	+3	300	1:100000

3.3.2 Settlement observation of top and surrounding roads of foundation pit support structure

In this project, the second-class geometric leveling method is used for settlement observation. Three shallow benchmarks Bm1, BM2 and BM3 are buried on the stable building far away from the foundation pit to be measured as the datum points for settlement observation. The technical requirements of leveling observation shall be in accordance with the technical requirements of secondary deformation observation (national first-class leveling). The observation requirements are shown in the Table 4 and the Table 5...

Table 4. Line of sight length, front and rear sight distance difference and line of sight height

Category	Line of sight length	Parallax difference between front and back	Accumulated difference of front and rear sight distance	Line of sight height
Control network	Less than 25	Less than 1	Less than 2	More than 0.3
Settlement point	Less than 30	Less than 2	Less than 3	More than 0.2

Table 5. Tolerance of leveling observation (mm)

Category	Kiev Division Reading difference	Kiev Branch Office Difference of elevation difference	Poor return and attachment Or loop closure error	One way two station measurement Poor height difference
Control network	0.3	0.5	$0.3\sqrt{n}$	$0.2\sqrt{n}$
Settlement point	0.5	0.7	$1.0\sqrt{n}$	$0.7\sqrt{n}$

3.3.3 Layout of reference points and monitoring points

Figure 1. Distribution of monitoring points
4. Monitoring data analysis
In order to intuitively analyze the deformation of each building measuring point in the surrounding environment, we draw the following settlement curve chart of buildings in the construction process.

4.1. Table and curve of cumulative change of horizontal displacement of foundation pit support

Order number	Cumulative value (m)						
V1	0.023	V7	0.0202	V13	0.0235	V19	0.0228
V2	0.0251	V8	0.0209	V14	0.0236		
V3	0.03	V9	0.0212	V15	0.0231		
V4	0.0267	V10	0.0236	V16	0.0227		
V5	0.0266	V11	0.0229	V17	0.0221		
V6	0.0251	V12	0.0232	V18	0.0233		

Figure 2. Cumulative value curve of horizontal displacement monitoring points

It can be seen from the above list and curve chart of accumulated horizontal displacement of foundation pit support that the foundation pit is always in a safe state during the foundation construction of the project. The cumulative maximum value of V3 monitoring point is 0.03m, and the cumulative value of all monitoring points does not exceed the warning value range.

4.2. List and curve of cumulative change of vertical displacement of foundation pit

Order number	Cumulative value (m)						
V1	0.0119	V6	0.01	V11	0.0105	V16	0.0109
V2	0.0122	V7	0.0097	V12	0.0111	V17	0.0108
V3	0.0129	V8	0.011	V13	0.0098	V18	0.0102
V4	0.0146	V9	0.0092	V14	0.0131	V19	0.0069
V5	0.0126	V10	0.0097	V15	0.011		

The cumulative value curve of 19 monitoring points of foundation pit support in the whole monitoring period is in the Figure3:
Figure 3. Cumulative value curve of vertical displacement monitoring points

The above data "+" indicates sinking and "-" indicates rising. From the cumulative change trend and curve of vertical displacement of the settlement monitoring points in the surrounding areas, it can be seen that the cumulative change of the maximum value V4 monitoring point is + 0.0146m. In the excavation stage of foundation pit, the change curve is relatively uniform and gentle.

Table 8. Accumulated values of road settlement monitoring points

Order number	Cumulative value (m)								
L1	0.0021	L6	0.0028	L11	0.0025	L16	0.0032	L21	0.0026
L2	0.0024	L7	0.003	L12	0.0017	L17	0.003		
L3	0.0022	L8	0.0031	L13	0.0025	L18	0.003		
L4	0.0035	L9	0.0022	L14	0.0035	L19	0.003		
L5	0.0032	L10	0.0033	L15	0.0024	L20	0.0029		

The cumulative value curve of 21 settlement monitoring points around the foundation pit in the whole monitoring period is in the Figure 4:

Figure 4. Cumulative vertical displacement curve of surrounding road monitoring points

The above data "+" indicates sinking and "-" indicates rising. From the above vertical displacement curve, it can be seen that in the excavation stage of the foundation pit, due to the pressure of the
underground soil, the surrounding roads are forced to change under the external force, and the accumulated maximum value of monitoring point L11 in the whole monitoring cycle is 0.0041m.

5. Conclusion
During the excavation construction of the foundation pit of the project, the earth pressure and water pressure outside the pit move horizontally to the foundation pit due to the excavation of the soil in the foundation pit and the construction factors such as the precipitation in the pit, which drives the surrounding soil to sink, resulting in large deformation of the surrounding environment[5]. Although the change of individual monitoring points exceeds the alarm value, the overall monitoring data is relatively normal, the enclosure structure is relatively stable, there is no surrounding road rupture, and there is no major danger. It is suggested to speed up the construction and reduce the impact on the surrounding environment in the future construction process. The deficiency of the monitoring work is that some monitoring points cannot be observed in the later stage of monitoring due to the complex site environment, narrow site in the base and other external factors, resulting in the discontinuity of some monitoring content data.

Reference
[1] Tiancai Li, Zhengjun Yang, Guangchao Yang, Huaiming Luo. (2020) Monitoring plan and implementation of a deep foundation pit support project [J]. Chongqing Architecture, 19 (03): 40-43
[2] Pengfei Zhang. (2020) The application of intelligent monitoring system in the consolidation method of large-area soft foundation treatment monitoring [J]. Guangdong Civil Engineering and Architecture, 27 (04): 6-8 + 12.
[3] Yong Zhao. Deformation monitoring and data analysis of a deep foundation pit [C]. (2019) Proceedings of the Civil Engineering New Materials, New Technologies and Engineering Application Exchange Conference (Part 2). Industrial Architecture Magazine, Inner Mongolia.
[4] Qiuya Duan. (2020) Deep foundation pit monitoring method and accuracy analysis in construction [J]. Value Engineering, 39 (07): 278-279.
[5] Baoping Sun. (2018) Analysis of the design and monitoring data of a foundation pit support [C]. China Civil Engineering Association Professional Committee of Civil Engineering. Proceedings of the Twelfth Academic Conference on Construction, Reconstruction and Disease Treatment. Beijing: 133 -136.