Effect of baseline disease severity on achievement of treatment target with apremilast: results from a pooled analysis

K. Reich,1,* U. Mrowietz,2 A. Menter,3 C.E.M. Griffiths,4 J. Bagel,5 B. Strober,6,7 N. Nunez Gomez,6,† R. Shi,9 B. Guerette,9 M. Lebwohl10

1Center for Translational Research in Inflammatory Skin Diseases, Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
2University Medical Center Schleswig-Holstein Campus, Kiel, Germany
3Baylor University Medical Center, Dallas, TX, USA
4The Dermatology Centre, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
5Psoriasis Treatment Center of Central New Jersey, East Windsor, NJ, USA
6Yale University, New Haven, CT, USA
7Central Connecticut Dermatology Research, Cromwell, CT, USA
8Bristol Myers Squibb, Summit, NJ, USA
9Amgen Inc., Thousand Oaks, CA, USA
10Icahn School of Medicine at Mount Sinai, New York, NY, USA

*Correspondence: K. Reich. E-mail: k.reich@uke.de

Abstract

Background Treating to absolute treatment targets rather than relative measures such as Psoriasis Area and Severity Index (PASI)-75 is emerging as an important clinical concept included in psoriasis guidelines and clinical practice. Achieving treatment targets is associated with achievement of long-term outcomes.

Objective To evaluate the relationship between psoriasis severity, disease characteristics and achievement of PASI ≤2 with apremilast in a pooled analysis of the phase 3 ESTEEM 1 and 2 (NCT01194219 and NCT01232283), phase 3b LIBERATE (NCT01690299) and phase 4 UNVEIL (NCT02425826) clinical trials.

Methods Pooled data from patients with moderate-to-severe plaque psoriasis randomized to apremilast 30 mg BID were analysed by baseline PASI quartiles (Q1: 2.4–13.1; Q2: 13.2–15.9; Q3: 16.0–20.0; Q4: 20.1–57.8). Assessments included PASI, Dermatology Life Quality Index (DLQI), Scalp Physician’s Global Assessment (ScPGA; ScPGA ≥1) and target (worst) Nail Psoriasis Severity Index (NAPSI; NAPSI ≥1).

Results Of 1062 patients, 963 had ScPGA ≥1 and 643 had NAPSI ≥1; 771 patients with baseline and Week 32 PASI assessments were included in analyses of Week 32 PASI target achievement. Rates of PASI ≤2 at Week 32 were greater in lower PASI quartiles (Q1: 43.5%; Q2: 31.2%; Q3: 26.8%; Q4: 18.4%). Most patients achieving PASI ≤2 target (83.6%) achieved DLQI ≤5 at Week 32; 59.3% of patients who did not achieve PASI ≤2 target achieved DLQI ≤5. At Week 32, mean improvements in ScPGA and NAPSI were similar with more moderate vs. more severe disease (ScPGA, range: 1.1–1.4; NAPSI, range: 1.6–2.5). In a subgroup analysis, achievement of PASI ≤2 target was higher in the lowest PASI quartile and with disease duration <5 years.

Conclusions Greater achievement of PASI ≤2 was observed in patients with more moderate vs. more severe skin disease. Apremilast may be particularly beneficial in more moderate disease early in the treatment paradigm.

Received: 1 February 2021; Accepted: 21 April 2021

Conflicts of Interest

KR: AbbVie, Affibody, Almirall, Amgen Inc., Avillion, Biogen, Boehringer Ingelheim, Bristol Myers Squibb, Celgene Corporation, Centocor, Covagen, Dermira, Forward Pharma, Fresenius Medical Care, Galapagos, Galderma, GlaxoSmithKline, Janssen-Cilag, Kyowa Kirin, LEO Pharma, Lilly, Medac, Merck Sharp & Dohme, Miltenyi Biotec, Novartis, Ocean Pharma, Pfizer, Regeneron, Samsung Bioepis, Sanofi, Sun Pharma, Takeda, UCB, Valeant, and XenoPort – paid speaker/

†At the time of analysis.

Prior presentations: Poster presented at the AAD Annual Meeting; March 20–24, 2020; Denver, CO. Posters presented at the EADV Congress; October 29–31, 2020.
advisor/participated in clinical trials. UM: AbbVie, Almirall, Amgen Inc., Biogen Idec, Boehringer Ingelheim, Celgene Corporation, Centocor, Dr. Reddy’s, Eli Lilly, Foamix, Formycon, Forward Pharma, Janssen, LEO Pharma, Medac, MSD, Miltényi Biotech, Novartis, VBL, and XenolPort – consultant, grants/research funding. AM: AbbVie, Amgen Inc., Boehringer Ingelheim, Eli Lilly, Janssen Biotech, LEO Pharma, and Sienna – advisory board, honoraria; AbbVie, Abbott, Amgen Inc., Anacor, Boehringer Ingelheim, Celgene, Eli Lilly, Janssen Biotech, LEO Pharma, Merck & Co., Novartis, Sienna, and UCB – consultant, grants/research funding; AbbVie, Abbott Labs, Amgen Inc., Anacor, Boehringer Ingelheim, Celgene, Eli Lilly, Janssen Biotech, LEO Pharma, Merck & Co., Novartis, Sienna, and UCB – investigator, grants/research funding. CEMG: AbbVie, Almirall, Bristol Myers Squibb, Celgene, Eli Lilly, Galderma, LEO Pharma, Novartis, Pfizer, and UCB – speaker/advisory board/consultant fees or honoraria; Celgene, Sandoz – investigator, grants/research funding. JB: AbbVie, Amgen, Arcutis Biotherapeutics, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Corona LLC, Dermavant Sciences, LTD, Dermira, UCB, Eli Lilly and Company, Glenmark Pharmaceuticals Ltd, Janssen Biotech, Kadmon Corporation, LEO Pharma, Lycera Corp, Menlo Therapeutics, Novartis, Pfizer, Regeneron Pharmaceuticals, Sun Pharma, Taro Pharmaceutical Industries Ltd, and Ortho Dermatologics – research funds payable to Psoriasis Treatment Center; AbbVie, Amgen, Celgene, Bristol Myers Squibb, Eli Lilly and Company, Janssen Biotech, Novartis, Sun Pharmaceutical Industries Ltd, and UCB – consultant fees; AbbVie, Celgene, Eli Lilly, Janssen Biotech, and Novartis – speaker fees. BS: AbbVie, Almirall, Amgen, Arcutis, Arena, Arista, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Dermavant, Eli Lilly, GlaxoSmithKline, Immunic Therapeutics, Janssen, LEO Pharma, Maruho, Meiji Seika Pharma, Minder, Novartis, Ortho Dermatologics, Pfizer, Regeneron, Sanofi-Genzyme, Sun Pharma, and UCB Pharma – consultant (honoraria); AbbVie, Eli Lilly, Janssen, Ortho Dermatologics, Pfizer, and UCB Pharma – consultant (honoraria); Almirall, Amgen Inc., Arcutis, Boehringer Ingelheim, Dermavant Sciences, Eli Lilly, Incyte, Janssen Research & Development, LLC, LEO Pharma, Ortho Dermatologics, Pfizer, and UCB, Inc. – research funding; Aditum Bio, Allergan, Almirall, Arcutis, Avotres Therapeutics, BirchBioMed Inc., BMD Skincare, Inc., Boehringer Ingelheim, Bristol Myers Squibb, Cara Therapeutics, Castle Biosciences, Corrona, Dermavant Sciences, EMD Serono, Evelo Biosciences, Foundation for Research and Education in Dermatology, Inozyme Pharma, LEO Pharma, Meiji Seika Pharma, Menlo, Mitsubishi, Neuroderm, Pfizer, Promius/Dr. Reddy’s Laboratories, Theravance, and Verrica – consultant.

Funding source
This study was sponsored by Amgen Inc.

Introduction
Psoriasis treatment guidelines and clinical trials often focus on relative improvement from baseline in Psoriasis Area and Severity Index (PASI) as a treatment goal for patients with psoriasis.\(^1\)\(^,\)\(^3\) In real-world clinical practice, selecting a relevant baseline time point is challenging when managing a chronic condition and may be confounded by variability in prior treatment washout periods.\(^2\)\(^,\)\(^4\) Furthermore, using improvement from baseline as an indicator of treatment efficacy may inadequately capture clinically meaningful improvements in patients with more moderate disease because they have lower absolute baseline scores.\(^2\) Expert opinion and national and international psoriasis guidelines are shifting towards treating psoriasis to an absolute treatment target such as target PASI, psoriasis-involved body surface area (BSA) or Dermatology Life Quality Index (DLQI) scores.\(^1,\)\(^2\)\(^,\)\(^4\)\(^,\)\(^6\) Achievement of absolute PASI treatment target may demonstrate stronger correlations with indicators of quality of life (QOL) than relative PASI improvements,\(^4\) and a target PASI ≤2 has been validated as a relevant, practical treatment goal for psoriasis.\(^2\)

Apremilast, an oral phosphodiesterase 4 inhibitor, demonstrated efficacy and tolerability vs. placebo in clinical trials of patients with moderate-to-severe plaque psoriasis.\(^7\)\(^-\)\(^10\) In a recent real-world study, patients initiating apremilast in routine clinical practice generally had more moderate psoriasis (e.g. lower BSA) than those in apremilast clinical trials,\(^11\) underscoring the importance of evaluating apremilast efficacy using measures that adequately capture meaningful improvements in more moderate psoriasis. In clinical studies, apremilast-treated patients with moderate psoriasis\(^10\) had lower PASI-75 response rates (UNVEIL: 21.6%)\(^10\) than those with moderate-to-severe psoriasis (ESTEEM 1: 33.1%; ESTEEM 2: 28.8%).\(^7,\)\(^8\) However, data on achieving target PASI response (defined as PASI ≤2), which may more adequately capture clinically meaningful improvement in patients with more moderate disease,\(^7,\)\(^4\) have not been reported for most apremilast clinical trials.
This analysis evaluated achievement of PASI treatment target with apremilast by baseline disease severity and disease characteristics in a pooled population of patients with moderate-to-severe plaque psoriasis from ESTEEM 1 and 2 (NCT01194219 and NCT0132283) and LIBERATE (NCT01690299) and patients with moderate plaque psoriasis from UNVEIL (NCT0245826).7–10

Materials and methods

Eligibility criteria and study design
Methodologies for ESTEEM 1 and 2,7,8 LIBERATE,9 and UNVEIL10 have been reported. ESTEEM 1 and 2 were similarly designed phase 3 studies including patients with moderate-to-severe plaque psoriasis (PASI ≥12, BSA ≥10%, static Physician Global Assessment [sPGA] score ≥3).7,8 LIBERATE was a phase 3b study including biologic-naive patients with moderate-to-severe plaque psoriasis (PASI ≥12, BSA ≥10%, sPGA score ≥3).9 UNVEIL was a phase 4 study of conventional systemic- and biologic-naive patients with moderate plaque psoriasis (BSA of 5–10%, sPGA score of 3).10

In ESTEEM 1 and 2,7,8 patients were randomized (2:1) to apremilast 30 mg twice daily (BID) or placebo through Week 16; patients received apremilast 30 mg BID from Week 16 to Week 32. In LIBERATE,9 patients were randomized (1:1:1) to apremilast 30 mg BID, subcutaneous etanercept 50 mg once weekly, or placebo up to Week 16; at Week 16, etanercept and placebo patients switched to apremilast 30 mg BID and apremilast patients continued apremilast 30 mg BID up to Week 104. In UNVEIL,10 patients were randomized (2:1) to apremilast 30 mg BID or placebo through Week 16; patients received apremilast 30 mg BID from Week 16 to Week 32.

Assessments and statistical analyses
Efficacy assessments, including PASI, DLQI, Scalp PGA (ScPGA) and target (worst) Nail Psoriasis Severity Index (NAPSI), were summarized descriptively. Logistic regression was performed to evaluate baseline PASI score as a predictor of achieving PASI ≤2 at Week 32. Achievement of PASI ≤2 at Week 32 by baseline PASI quartiles (Q1: 2.4–13.1; Q2: 13.2–15.9; Q3: 16.0–20.0; Q4: 20.1–57.8) was analysed in patients with baseline and Week 32 PASI assessments. Achievement of DLQI total score ≤5 at baseline and Weeks 4, 16 and 32 by PASI response status at Week 32 (PASI ≤2 vs. PASI >2; non-responder imputation) was analysed in patients with baseline PASI >3 and available Week 32 PASI assessments. Mean ScPGA and NAPSI scores at baseline, Week 16 and Week 32 by baseline PASI quartiles were analysed in patients with baseline ScPGA ≥1 and NAPSI ≥1 (data as observed).

A subgroup analysis assessed achievement of PASI ≤2 at Week 32 based on baseline disease severity (PASI ≤13.1 vs. >13.1; patients in Q1 vs. patients in higher quartiles), disease duration (<5 vs. ≥5 years) and treatment history (systemic-naive vs. systemic-experienced) in patients with baseline PASI ≥3, and available disease duration and Week 32 PASI data.

Results

Patients
Of 1062 patients in the pooled population, 963 (90.7%) had ScPGA ≥1 and 643 (60.5%) had NAPSI ≥1. At Week 32, 771 patients were included in analyses of PASI target achievement. Subgroup analyses included 925 patients at Week 16 and 764 patients at Week 32.

Baseline characteristics were generally consistent across PASI quartiles (Table S1). Lower PASI quartiles had greater proportions of patients classified as moderate (lower mean BSA and DLQI), and patients in the lowest PASI quartile had lower prior use of systemic treatments vs. higher quartiles (Table S1). Most patients had ScPGA ≥1 across PASI quartiles, and rates of NAPSI ≥1 were greater in higher quartiles (Table S1).

Achievement of PASI treatment target with apremilast 2411 by Week 32 PASI Target Status (PASI ≤2 vs. >2) in the pooled population, 29.5% of patients achieved PASI ≤2 at Week 32. A 1-point decrease from baseline in PASI was estimated

Figure 1 Proportion of Patients Achieving a PASI ≤2 at Week 32 Based on Baseline PASI Quartiles. Analysis included patients with baseline and Week 32 PASI assessments. Data are presented as observed.

Table 1 Proportion of Patients Achieving a DLQI Total Score ≤5 by Week 32 PASI Target Status (PASI ≤2 vs. >2)

PASI target status	Patients achieving a DLQI total score ≤5			
	Baseline	Week 4	Week 16	Week 32
PASI ≤2, n/N (%)	45/226 (19.9)	129/226 (57.1)	176/226 (77.9)	189/226 (83.6)
PASI >2, n/N (%)	96/541 (17.7)	286/541 (52.9)	346/541 (64.0)	321/541 (59.3)

Patients with missing values were considered non-responders. Analysis included patients with baseline PASI >3 and available Week 32 PASI assessments.
to increase the odds of achieving PASI \(\leq 2 \) by 7% at Week 32 (odds ratio [95% CI]: 0.93 [0.91-0.96]). Achievement of PASI \(\leq 2 \) at Week 32 was greater among patients with a mean baseline PASI in the first quartile vs. higher quartiles; 43.5% of patients in the lowest quartile achieved PASI \(\leq 2 \) at Week 32 (Fig. 1).

At baseline, the percentage of patients with a DLQI total score \(\leq 5 \) (no or small effect on QOL) was generally similar, regardless of Week 32 PASI target status (Table 1). Among patients with PASI \(\leq 2 \) at Week 32, 83.6% achieved DLQI total score \(\leq 5 \); however, 59.3% of patients who did not reach PASI \(\leq 2 \) achieved DLQI total score \(\leq 5 \) at Week 32 (Table 1).

Mean improvements from baseline in ScPGA and NAPSI scores at Weeks 16 and 32 were similar across PASI quartiles (Fig. 2).

In the subgroup analysis, patients with shorter disease duration and lower baseline PASI score achieved PASI \(\leq 2 \) at higher rates than those with longer disease duration and higher baseline PASI score at Weeks 16 and 32 (Fig. 3). Among systemic-naive patients with <5-year disease duration, 37.0% with PASI \(\leq 13.1 \) and 30.0% with PASI >13.1 achieved PASI \(\leq 2 \) at Week 16; at Week 32, 45.5% with PASI \(\leq 13.1 \) and 36.6% with PASI >13.1 achieved PASI \(\leq 2 \) (Fig. 3).
In this analysis of pooled apremilast clinical trials, patients with more moderate disease had higher odds of achieving the PASI treatment target (PASI ≤ 2) and higher rates of PASI response with apremilast treatment than those with more severe disease. Most patients who achieved PASI ≤ 2 with apremilast achieved good QOL overall, as measured by DLQI total score ≤ 5, which indicates a small or no effect on QOL.12 More than half of patients who did not reach PASI ≤ 2 also achieved DLQI total score ≤ 5, suggesting that factors other than the extent of skin disease severity influence QOL. This is in line with other analyses showing that improvements in PASI and DLQI do not always correlate well.13,14 Patients with itch or psoriasis in highly visible and sensitive special areas, such as the scalp and nails, often report high disease burden regardless of their level of overall skin involvement.15,16 Apremilast treatment was associated with similar improvements in scalp and nail psoriasis in patients with more moderate vs. more severe skin disease. It is possible that patients who achieved DLQI total score ≤ 5 without achieving PASI ≤ 2 had improvements in itch or special areas of psoriasis (scalp or nails) that substantially reduced their overall disease burden.

Figure 3 Achievement of the PASI Treatment Target (PASI ≤ 2) at (a) Week 16 and (b) Week 32 by Baseline PASI (PASI ≤ 13.1 vs. >13.1), Disease Duration and Treatment History. Analysis included patients with baseline PASI ≥ 3 and available Week 16 or Week 32 PASI assessments. Data are presented as observed; note that this analysis excluded patients with baseline PASI <3 (n = 4) and those missing disease duration data (n = 3).
Subgroups of patients with lower baseline PASI score and shorter disease duration had greater achievement of PASI ≤2. Among patients with disease duration ≥5 years, systemic-naive patients had a higher rate of achievement of PASI ≤2 than systemic-experienced patients. Our observations are consistent with a pooled post hoc analysis of ESTEEM 1 and 2, in which apremilast-treated patients with moderate psoriasis had higher rates of achievement of absolute treatment targets (PASI ≤3, BSA ≤2%, sPGA 0 or 1) vs. the pooled population of all apremilast-treated patients.17

Study limitations include the post hoc nature of the analyses and the small numbers of patients in some subgroups despite the use of pooled data from 4 clinical trials. Also, PASI responses were not captured between study visits. Real-world studies capturing patient-reported outcomes in daily patient diaries would be beneficial to complement physician-rated assessments of apremilast effectiveness.

This pooled analysis of apremilast studies adds to the literature evaluating systemic psoriasis treatments using absolute PASI treatment goals.18–20 Our findings suggest that apremilast treatment is particularly beneficial in patients with more moderate skin disease who may have psoriasis in special areas, and when used early in the treatment paradigm to achieve treatment targets.

Acknowledgments
This study was sponsored by Amgen Inc. Writing support was funded by Amgen Inc. and provided by Amy Shaberman, PhD, and Kristin Carlin, RPh, MBA, of Peloton Advantage, LLC, an OPEN Health company, and Mandy Suggitt, Amgen Inc. The authors, however, directed and are fully responsible for all content and editorial decisions for this manuscript.

Data Sharing
Qualified researchers may request data from Amgen clinical studies. Complete details are available at http://www.amgen.com/datasharing.

References
1 Mrowietz U, Kragballe K, Reich K et al. Definition of treatment goals for moderate to severe psoriasis: an European consensus. Arch Dermatol Res 2011; 303(1): 1–10.
2 Mahl SK, Wilson N, Dand N et al. Psoriasis treat to target: defining outcomes in psoriasis using data from a real-world, population-based cohort study (the British Association of Dermatologists Biologics and Immunomodulators Register, BADBIR). Br J Dermatol 2020; 182(5): 1158–1166.
3 Menter A, Korman NJ, Elmets CA et al. Guidelines of care for the management of psoriasis and psoriatic arthritis section 6. Guidelines of care for the treatment of psoriasis and psoriatic arthritis: case-based presentations and evidence-based conclusions. J Am Acad Dermatol 2011; 65(1): 137–174.
4 Carretero G, Puig L, Carrascosa JM et al. Redefining the therapeutic objective in psoriatic patients candidates for biological therapy. J Dermatol Treat 2018; 29(4): 334–346.
5 Armstrong AW, Siegel MP, Bagel J et al. From the Medical Board of the National Psoriasis Foundation: Treatment targets for plaque psoriasis. J Am Acad Dermatol 2017; 76(2): 290–298.
6 Puig L, Carrascosa JM, Carretero G et al. Spanish evidence-based guidelines on the treatment of psoriasis with biologic agents, 2013. Part 1: on efficacy and choice of treatment. Spanish Psoriasis Group of the Spanish Academy of Dermatology and Venerology. Actas Dermosifiligr 2013; 104(8): 694–709.
7 Papp K, Reich K, Leonard CI et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM 1]). J Am Acad Dermatol 2015; 73(1): 37–49.
8 Paul C, Cather J, Gooderham M et al. Efficacy and safety of apremilast, an oral phosphodiesterase 4 inhibitor, in patients with moderate to severe plaque psoriasis over 52 weeks: a phase III, randomized, controlled trial (ESTEEM 2). Br J Dermatol 2015; 173(6): 1387–1399.
9 Reich K, Gooderham M, Green L et al. The efficacy and safety of apremilast, etanercept, and placebo, in patients with moderate to severe plaque psoriasis: 52-week results from a phase IIIb, randomized, placebo-controlled trial (LIBERATE). J Eur Acad Dermatol Venereol 2017; 31(3): 507–517.
10 Strober B, Bagel J, Lebwohl M et al. Efficacy and safety of apremilast in patients with moderate plaque psoriasis with lower BSA: week 16 results from the UNVEIL study. J Drugs Dermatol 2017; 16(8): 801–808.
11 Augustin M, Kleyn CE, Conrad C et al. Characteristics and outcomes of patients treated with apremilast in the real world: results from the APPRECIATE Study. J Eur Acad Dermatol Venereol 2021; 35(1): 123–134.
12 Hongbo Y, Thomas CL, Harrison MA, Salek MS, Finlay AY. Translating the science of quality of life into practice: what do dermatology life quality index scores mean? J Invest Dermatol 2005; 125(4): 659–664.
13 Loft ND, Egeberg A, Rasmussen MK et al. Patient-reported outcomes during treatment in patients with moderate-to-severe psoriasis: a Danish Nationwide Study. Acta Derm Venereol 2019; 99(13): 1224–1230.
14 Hesselvig JH, Egeberg A, Loft ND, Zachariae C, Kofod K, Skov L. Correlation between Dermatology Life Quality Index and Psoriasis Area and Severity Index in patients with psoriasis treated with ustekinumab. Acta Derm Venereol 2018; 98(3): 335–339.
15 Augustin M, Sommer R, Kirsten N et al. Topology of psoriasis in routine care - results from a high-resolution analysis in 2009 patients. Br J Dermatol 2019; 181(2): 358–365.
16 Reich A, Hrebrov E, Szepietowski JC. Pruritus is an important factor negatively influencing the well-being of psoriatic patients. Acta Derm Venereol 2010; 90(3): 257–263.
17 Iversen L, Paul C, Cirulli J, Chen R, Andersson C, Yamauchi P. Efficacy of apremilast versus placebo in patients with lower plaque psoriasis disease activity: Results of a pooled post hoc analysis of the ESTEEM 1 and 2 trials [poster P1957]. Presented at: Annual Meeting of the European Academy of Dermatology and Venereology, September 13–17, 2017; Geneva, Switzerland.
18 Leonardi C, Reich K, Foley P et al. Efficacy and safety of ixekizumab through 5 years in moderate-to-severe psoriasis: long-term results from the UNCOVER-1 and UNCOVER-2 phase-3 randomized controlled trials. Dermatol Ther 2020; 10(3): 431–447.
19 Chiricozzi A, Balato A, Conrad C et al. Secukinumab demonstrates improvements in absolute and relative psoriasis area severity indices in moderate-to-severe plaque psoriasis: results from a European, multicentric, retrospective, real-world study. J Dermatol Treat 2019; 1–8.
20 Gerdes S, Korber A, Biermann M, Karrthaler C, Reimhardt M. Absolute and relative psoriasis area and severity index (PASI) treatment goals and their association with health-related quality of life. J Dermatol Treat 2020; 31(5): 470–475.

Supporting information
Additional Supporting Information may be found in the online version of this article:

Table S1. Demographics and Baseline Disease Characteristics by Baseline PASI Quartiles