Monolayer WS$_2$ electro- and photo-luminescence enhancement by TFSI treatment

A R Cadore, B L T Rosa, I Paradisanos, S Mignuzzi, D De Fazio, E M Alexeev, A Dagkli, J E Muench, G Kakavelakis, S M Shinde, D Yoon, S Tongay, K Watanabe, T Taniguchi, E Lidorikis, I Goykhman, G Soavi and A C Ferrari

Keywords: layered materials heterostructures, electroluminescence, transition metal dichalcogenides

Abstract

Layered material heterostructures (LMHs) can be used to fabricate electroluminescent devices operating in the visible spectral region. A major advantage of LMH-based light emitting diodes (LEDs) is that electroluminescence (EL) emission can be tuned across that of different exciton complexes (e.g. biexcitons, trions, quintons) by controlling the charge density. However, these devices have an EL quantum efficiency as low as $\sim 10^{-4}\%$. Here, we show that the superacid bis-(triuoromethane)sulphonimide (TFSI) treatment of monolayer WS$_2$-LEDs boosts EL quantum efficiency by over one order of magnitude at room temperature. Non-treated devices emit light mainly from negatively charged excitons, while the emission in treated ones predominantly involves radiative recombination of neutral excitons. This paves the way to tunable and efficient LMH-based LEDs.

Transition metal dichalcogenide monolayers (1L-TMDs) are ideal to study light-matter interactions and many-body effects at the atomic scale [1–3]. Compared to bulk semiconductors [2], the reduced dielectric screening combined with the spatial confinement of charge carriers [1] favours the formation of various excitonic complexes which can be controlled by modulation of the carrier density [1–8]. Thus, 1L-TMDs photoluminescence (PL) spectra host features arising from formation of charged [4–8] and neutral [9–12] exciton complexes.

Layered material heterostructures (LMHs) combining single layer graphene (SLG), 1L-TMDs, and hexagonal boron nitride (hBN), from IL-hBN to hundreds of layers, are promising for electronics [13, 14], photonics [15], and optoelectronics [16, 17]. Direct bandgap 1L-TMDs and LMHs can be used to make light-emitting diodes (LEDs) [18–27], with fast modulation speed (up to GHz) [7, 25, 28], and emission wavelength tunability [6, 7, 25] besides multi-spectral (visible ~ 618 nm [21–23] to near-infrared ~ 1160 nm [29, 30]) emission.

In 1L-TMD-based LEDs, the electroluminescence (EL) efficiency (η_{EL}), i.e. ratio between emitted photons and injected electrons (e) [19, 20], depends on the optical emission of the material [30–37], as well as on its doping level [6, 38–41]. In doped 1L-TMDs, the PL and EL emission originates from either negative (X$^-$) [28, 33, 34, 38] or positive (X$^+$) [6, 19, 20] trions, depending on the type of doping. However, 1L-TMD-LEDs based on trionic emission show low η_{EL} (typically $<0.05\%$ [19, 20]) with respect to neutral exciton (X0) emission (typically $\eta_{EL} < 1%$ [6, 7, 31, 32, 38, 39]). This difference in η_{EL} occurs due the small (~ 30 meV) binding energy of trions [42]. Since the X$^-$ binding energy is close to the lattice thermal energy at room-temperature ($RT = 300$ K, ~ 25.2 meV), trions dissociate [2]. An excess
of free-carriers decreases the available phase-space filling for exciton complexes, due to Pauli blocking, with a reduction of trion and exciton binding energies [43] and oscillator strengths [44] (i.e. the probability of absorption/emission of electromagnetic radiation [45]).

In 1L-TMDs, low light-emission efficiency is observed in both EL ($\eta_{EL} \sim 10^{-4}$ [33, 34] to $\sim{1\%}$ [6, 7, 31, 32, 38, 39]) and PL ($\eta_{PL} \sim 10^{-3}$ [36, 40] to $\sim{5\%}$ [1–3]). η_{PL} is defined as the ratio between emitted and absorbed photons [19, 20]. Thus, several chemical approaches were suggested [46] to enhance η_{PL}, such as treatment with sodium sulphide [47], 2,3,5,6 tetrafluoro tetracyanoquinodimethane (F4TCNQ) [11, 48], tris(4-bromophenyl)ammoniumyl hexachloroantimonate (magic blue) [49], water [11], hydrogen peroxide [50], titanyl phthalocyanine [51], sulfuric acid [52], oleic acid [53–55], and the superacid (i.e. with acidity greater than that of 100% pure sulfuric acid [56]) bis-(trifluoromethane)sulfonimide (TFSI) [49, 57–70], in addition to other no chemical treatments [8, 71–75]. The PL enhancement reported to date for 1L-WS$_2$ treated with different chemical and non-chemical approaches is summarized in table 1. The effect of chemical passivation on η_{EL} combined with gated-PL emission in 1L-TMD-based LEDs was not discussed to date, to the best of our knowledge.

References [57–64] reported PL measurements on 1L-TMDs and focused on non-gated samples, thus limiting the modulation of charge density in 1L-TMDs. Reference [8] performed gated-PL measurements in 1L-WS$_2$, finding that both TFSI treatment and electrical gating increase η_{PL} by up to a factor $\sim{10}$ (at $\sim{10^{19}}$ cm$^{-2}$ s$^{-1}$ photocarrier generation rate), because both processes reduce the n-type behaviour of 1L-WS$_2$ and suppress X$^-$ formation, thus enhancing X0 radiative recombination. However, gated-PL measurements after TFSI passivation were not provided. The activation of trapping states on TFSI-treated 1L-TMDs was not discussed. Reference [76] carried out EL experiments with TFSI passivation for high-speed (MHz) modulation, but did not report PL nor EL emission tunability. Therefore, an investigation on how TFSI affects EL emission and modifies gated-PL of 1L-TMD-based devices is required.

Here, we fabricate LEDs with 1L-WS$_2$ as active material on a metal–insulator-semiconductor (MIS) structure. We measure EL and gated-PL before and after TFSI treatment. We find that TFSI increases η_{EL} by over one order of magnitude at RT, and PL intensity by a factor $\sim{5}$. Our PL results on TFSI-treated samples agree with previous literature, table 1 [57, 59, 60, 69, 70], while EL for TFSI-treated samples is twice that of reference [76], reporting both EL and PL characterization before and after TFSI treatment, but not gated-PL. We find that X$^+$ and X0 are present in both EL and PL before TFSI treatment, whereas X0 dominate after. We attribute this to deple- tion of excess e and changes in the relaxation pathway, induced by the treatment. This paves the way to more efficient 1L-TMDs-based LEDs and excitonic devices.

1. Results and discussion

We use 1L-WS$_2$ as the active light-emitting layer since it has a direct bandgap [77–80], its PL emission is $\sim{60}$ times stronger than 1L-MoS$_2$ [39, 78] at RT, η_{EL} can be up to $\sim{50}$ times larger than 1L-MoS$_2$ [19, 20] at RT, whereas references [55, 57–68] demonstrated that TFSI treatment increases up to $\sim{10}$-times its PL intensity.

Figure 1(a) shows the 1L-WS$_2$/hBN/SLG tunnel junction configuration used here, where the metallic
Figure 1. (a) Schematic of LED. Cr/Au electrodes, SLG, FLG, hBN, and 1L-WS₂ are indicated as well as the electrical connections. (b) Optical image of device. Scale bar 4 μm. The dotted lines highlight the footprint of SLG (black dashed line), FLG (orange dashed line), hBN (blue dashed line), 1L-WS₂ (red dashed line). The green-shaded part corresponds to the active area ∼23 μm². Cr/Au contact the bottom SLG; FLG contacts the top 1L-WS₂. Schematic band diagram for (c) V = 0 V and (d) V > 0 V for pristine 1L-WS₂ LED and (e) V > 0 V for TFSI-treated 1L-WS₂ LED. Tuning the SLG E₂g (gray dotted line) across the 1L-WS₂-VB edge, Ẽ, allows h-tunneling from SLG to 1L-WS₂, resulting in current onset and light emission via radiative recombination with e from the n-type 1L-WS₂. The blue circles represent e accumulated on 1L-WS₂ due to the MIS structure, while the red circles are h injected into 1L-WS₂ through the hBN barrier. TFSI promotes a reduction of excess e in the 1L-WS₂.

electrodes provide contacts to apply a voltage (V) between SLG and 1L-WS₂. This is prepared as follows.

WS₂ crystals are synthesized using a two-step self-flux technique [81] using 99.9999% purity W and S powders without any transporting agents. Commercial (Alfa Aesar) sources of powders contain a number of defects and impurities (Li, O, Na, and other metals as determined by secondary ion mass spectroscopy). Before growth, W and S powders are thus purified using electrolytic [82] and H₂ [82] based techniques to reach 99.995% purity. WS₂ polycrystalline powders are created by annealing a stoichiometric ratio of powders at 900 °C for 3 weeks in a quartz ampoule sealed at 10⁻⁷ Torr. The resulting powders are re-sealed in a different quartz ampoule under similar pressures and further annealed at 870 °C–910 °C with thermodynamic temperature differential (hot to cold zone difference) ∼40 °C. The growth process takes 5 weeks. At the end of the growth, ampoules are cooled to RT slowly (∼40 °C h⁻¹) [83]. We use this material as bulk source because we previously [83] demonstrated that this has a defect density ∼10²⁻¹⁰ cm⁻², on par or better than previous reports [84].

Bulk WS₂, hBN (grown by the temperature-gradient method [85]), and graphite (sourced from HQ Graphene) crystals are then exfoliated by micromechanical cleavage using Nitto-tape [86] on 285 nm SiO₂/Si. Optical contrast [87] is first used to identify 1L-WS₂, SLG, FLG (3-10 nm), and hBN(<5 nm). The LMs are then characterized by Raman spectroscopy as discussed in Methods. After Raman characterization of all individual LMs on SiO₂/Si, the FLG/1L-WS₂/hBN/SLG LMH is assembled using dry-transfer, as for references [88, 89]. FLG is picked-up from SiO₂/Si using a polycarbonate (PC) membrane on a polydimethylsiloxane (PDMS) stamp (as mechanical support) at 40 °C. We use 40 °C because this is sufficient to increase the adhesion of the PC film [90], to pick all LMs from SiO₂/Si. Then, FLG is aligned to one edge of 1L-WS₂ on SiO₂/Si and brought into contact using xyz micromanipulators at 40 °C, leaving the majority of 1L-WS₂ without FLG cover to be used as active area (AA). AA is the region from where light emission is expected, and it is the overlap area between 1L-WS₂ and SLG (green-shaded part in figure 1(b)). Next, FLG/1L-WS₂ is aligned to a hBN flake deposited onto SiO₂/Si and brought into contact using xyz micromanipulators at 40 °C. Finally, FLG/1L-WS₂/hBN is aligned to a SLG on SiO₂/Si and brought into contact using xyz micromanipulators at 180 °C, whereby PC preferentially adheres to SiO₂ [88], allowing PDMS to be peeled away, leaving PC/FLG/1L-WS₂/hBN/SLG on SiO₂/Si. PC is then dissolved in chloroform for ∼15mins at RT, leaving FLG/1L-WS₂/hBN/SLG LMH on SiO₂/Si [88, 89]. After LMH assembly, Cr/Au electrodes are fabricated by electron beam lithography (EBPG 5200, Raith GMBH), followed by metallization (1:50 nm) and lift-off.
The tunnel junction based on a MIS structure consists of a LMH with 1L-WS₂ as the light emitter, FL-hBN (typically from 2 to 4 nm) as tunnel barrier, and a SLG electrode to inject holes (h) into 1L-WS₂. We use FL-hBN≤5 nm so that a low (typically <5 V) driving voltage is sufficient for charge injection to the 1L-WS₂ [91, 92]. We employ FLG (≈3–10 nm) to contact 1L-WS₂, because FLG reduces the contact resistance [93], while Cr/Au electrodes give Ohmic contacts to SLG and FLG [93]. SLG could also be used to contact 1L-WS₂, however, as the optical contrast is higher in FLG than SLG [87, 94], using FLG makes it easier to align it to 1L-WS₂ during transfer.

Since TFSI treatment requires direct exposure of 1L-TMDs [57], we place 1L-WS₂ on top of the stack to compare device performance before and after treatment. We TFSI-treat 4 samples for EL and gated-PL measurements. These are immersed in a TFSI solution (0.2 mg ml⁻¹) in a closed vial for 10 min at 100 °C [57–59], then removed, dried by a N₂ gun, and annealed on a hot plate at 100 °C for 5 min [57–59].

Figure 1(b) is an image of the 1L-WS₂-LEDs. The FLG electrode is placed on the side of the SLG to avoid direct tunneling of carriers from SLG to FLG, hence keeping as AA the LMH region extended over SLG and 1L-WS₂, green-shaded in figure 1(b). If there is a FLG/SLG overlap, tunneling through FLG-SLG may be possible, not resulting in e-h recombination into 1L-WS₂, hence no EL [6, 25, 38].

Figures 1(c) and (d) sketch the band diagram of our LEDs for V = 0 V and V > 0 V, respectively. For V = 0 V (at thermodynamic equilibrium as indicated in figure 1(c)), the Fermi level, E_F, is constant across the junction, and the net current (I) is zero [6, 21, 25, 28, 38]. For V > 0 V (positive potential on SLG), the SLG E_F is shifted below the 1L-WS₂ valence band (VB) energy E_V, figure 1(d), and h from SLG tunnel across the hBN barrier into 1L-WS₂, promoting EL emission by radiative recombination between the injected excess h and intrinsic e [21–24, 28, 35, 38]. The EL emission is expected to increase as a function of tunneling current because of the increasing h injected into 1L-WS₂ available for e-h recombination.

The LMs are characterized by Raman, PL, EL spectroscopy using a Horiba LabRam HR Evolution. The Raman spectra are collected using a 100X objective with numerical aperture (NA) = 0.9, and a 514.5 nm laser with a power ~5 μW to avoid damage or heating. The voltage bias dependent PL and EL are collected using a long working distance 50X objective (NA = 0.45). For the PL spectra, we use a λ = 532 nm (2.33 eV) continuous-wave laser in order to excite above the X² emission (~2 eV) [9, 10]. The laser power is kept ~80 mW to avoid laser-induced thermal effects [2, 9–11]. The spot size A_spot for the PL measurements is calculated as A_spot = π[1.22λ/2NA]² ≈ 1.6 μm². The voltage (V) and current (I) between source (SLG) and drain (1L-WS₂) electrodes are set (V) and measured (I) by a Keithley 2400 (see section 3 for details of electrical measurements).

Figure 2 plots the Raman spectrum of 1L-WS₂/hBN/SLG on Si/SiO₂ after device fabrication and before current–voltage (I–V) measurements. The Raman modes of each LM can be identified, table 2. For 1L-WS₂, Pos(A') and its full width at half maximum, FWHM(A'), change from ~418.9 ± 0.2 cm⁻¹; 3.9 ± 0.2 cm⁻¹, before assembly, to ~419.8±0.2 cm⁻¹; 3.4±0.2 cm⁻¹, after. All the changes in the other modes are close to our spectral resolution and errors, as for reference [95]. Pos(A') and FWHM(A') are sensitive to changes in n-doping [96, 97]. The mechanism responsible for this effect is an enhancement of electron-phonon (e-ph) coupling when e populates the valleys at K and Q simultaneously [97]. The energy of the K and Q valleys is modulated by the A' ph [97]. Since the K and Q energies are modulated out-of-phase, charge transfer between the two valleys occurs in presence of the A' ph [96, 97]. When the K and Q valleys are populated by e, these are transferred back and forward from one valley to the other [97, 98]. This increases the e-ph coupling of out-of-plane modes, such as A' [97]. The same process does not occur for p-doping [97]. The reason for this asymmetry between n- and p-doping is due to a much larger energy separation (~230 meV [97]) between the VB Γ and K valleys than that (~100 meV [97]) of the conduction band (CB) K and Q valleys. From the changes in Pos(A') and FWHM(A'), and by comparison with reference [97], we estimate a reduction in n-doping ~5 × 10¹² cm⁻².

For hBN in figure 2, Pos(E₂g) ~1366.4±0.2 cm⁻¹ and FWHM(E₂g) ~9.2±0.2 cm⁻¹. Although FWHM(E₂g) changes within the error, Pos(E₂g) downshifts ~2.1 cm⁻¹ after assembly, suggesting a contribution from strain (see section 3 for comparison between FL- and bulk-hBN Raman). Uniaxial strain lifts the degeneracy of the E₂g mode and results in the splitting in the two subpeaks E₂g and E₂g', with shift rates ~ −8.4 and −25.2 cm⁻¹%/99, 100]. For small levels of uniaxial strain (~<0.5%) splitting cannot be observed and the shift rate is ~ −16.8 cm⁻¹%/99, 100]. For biaxial strain, splitting does not occur and E₂g shifts with rate ~ −39.1 cm⁻¹%/99]. Since we do not observe splitting, the E₂g shift can be attributed to uniaxial or biaxial tensile strain ~0.13% or ~0.06%, respectively.

For SLG in figure 2, no D peak is observed after LMH assembly, indicating negligible defects [101–103]. In figure 2, Pos(G) ~1585.1±0.2 cm⁻¹, FWHM(G) ~9.0±0.2 cm⁻¹, Pos(2D) ~2692.3±0.2 cm⁻¹, FWHM(2D) ~20.9±0.2 cm⁻¹, I(2D)/I(G) ~2.4, and A(2D)/A(G) ~5.6. These indicate that the SLG is p-doped, with E_F ~150 ± 50 meV [102–104] by taking into account the average dielectric constant (~3.85) of the environment (ε_{SiO₂} ~3.8 [105] and ε_{hBN} ~3.9 [106]). E_F ~150 meV should correspond to Pos(G) ~1584.1 cm⁻¹ for unstrained SLG [107].
Figure 2. 514.5 nm Raman spectrum of 1L-WS\(_2\)/hBN/SLG LMH after device fabrication. The SLG and hBN Raman modes are labelled. The 1L-WS\(_2\) modes are summarized in table 2. The 1300–2900 cm\(^{-1}\) spectral window is multiplied by a factor 10 for better visualization.

Table 2. Pos and (FWHM) in cm\(^{-1}\) of WS\(_2\) Raman peaks, before and after LMH assembly, and TFSI treatment.

Peak	Bulk-WS\(_2\) Assignment	Bulk-WS\(_2\)	1L-WS\(_2\) Assignment	1L-WS\(_2\)/SiO\(_2\)	1L-WS\(_2\)-LMH	TFSI + 1L-WS\(_2\)-LMH
1	LA(M)	174.5 (11.1)	LA(M)	175.6 (14.5)	175.6 (14.6)	174.9 (14.4)
2	LA(K)	194.8 (3.3)	LA(K)	193.3 (4.5)	193.8 (3.3)	193.3 (4.7)
3	A\(_{1g}\)(K)-LA(K)	213.7 (4.2)	A\(_{1g}\)(K)-LA(K)	214.5 (5.7)	214.5 (5.2)	213.5 (6.0)
4	A\(_{1g}\)(M)-LA(M)	232.8 (5.7)	A\(_{1g}\)(M)-LA(M)	231.5 (6.7)	231.9 (7.1)	231.4 (5.9)
5	A\(_{1g}\)(M)-ZA(M)	266.8 (6.9)	A\(_{1g}\)(M)-ZA(M)	265.3 (6.9)	265.9 (7.2)	265.4 (7.0)
6	E\(_{2g}\)(Γ)	297.6 (4.2)	E\(_{2g}\)(Γ)	297.7 (2.8)	298.5 (3.1)	298.7 (2.6)
7	LA(M)+TA(M)	311.2 (2.4)	LA(M)+TA(M)	311.2 (2.5)	311.8 (2.3)	311.2 (2.4)
8	E\(_{2g}\)(M)	324.6 (17.5)	E\(_{2g}\)(M)	326.7 (25.5)	325.9 (24.7)	327.7 (25.7)
9	2LA(M)	350.6 (8.3)	2LA(M)	352.4 (9.3)	352.7 (9.2)	352.7 (8.0)
10	E\(_{2g}\)(Γ)	356.9 (1.5)	E\(_{2g}\)(Γ)	357.2 (3.3)	357.4 (3.1)	357.2 (2.9)
11	A\(_{1g}\)(Γ)	420.8 (2.1)	A\(_{1g}\)(Γ)	418.9 (3.9)	419.8 (3.4)	419.9 (3.4)

However, Pos(G) \(\sim 1585.1 \pm 0.2\) cm\(^{-1}\), which implies a contribution from compressive uniaxial (biaxial) strain \(\sim 0.04\% \sim 0.01\%\). The strain level for SLG and hBN are different, most likely due to the fact that the SLG is directly exfoliated onto SiO\(_2\)/Si, while hBN is picked up and transferred by PDMS stamps, hence, this could induce a larger amount of strain on hBN.

Figure 3(a) plots the I-V characteristics. For \(V = 0\) V the current is zero (figure 1(c)). When \(V\) is applied, an electrical rectification (i.e. diode behavior) with negligible leakage current (\(I < 10^{-11}\) A) for \(V < 0\) is seen. A tunneling onset, (i.e. exponential increase of \(I\)) is seen at \(V_{ON} \sim 4.1\) V, figure 3(a). \(V_{ON}\) is related to the breakdown electric field (\(E_{bd}\)) across the junction, which depends on the voltage drop on the hBN tunnel barrier and hBN thickness \((d)\) accordingly to \(E_{bd} = (V_{bd}/d) \sim 0.7-1\) V nm\(^{-1}\) \([91, 92]\), where \(V_{bd}\) is voltage breakdown \(V_{bd} = qn\bar{\mu}\langle\epsilon_0\epsilon_{hBN}\rangle\), \(q\) is the e charge, \(n\) is total charge concentration, \(\epsilon_0 = 8.854 \times 10^{-12}\) F/m and \(\epsilon_{hBN} \sim 3.9\) \([91, 92]\), so that \(V_{ON}\) can vary between different devices. When \(V > V_{ON}\) h from SLG tunnel across the hBN barrier into 1L-WS\(_2\), promoting EL emission by radiative recombination between the injected \(h\) and majority \(e\) in 1L-WS\(_2\), figure 1(c) \([21-24, 35, 38]\). The EL intensity \(\sim 634\) nm (\(\sim 1.956\) eV) increases with tunneling current, as in figure 3(b). The red-shifts (<2 nm) in EL emission in figure 3(b) for larger \(I\) can be assigned to the \(E_F\) shift induced by the MIS structure \([6, 31, 33]\). FWHM(EL) also increases.
with I, attributed to the scattering of excitons with extra carriers [6, 108]. This shift and EL broadening is assigned to heating effects at the layered junction [28]. A red-shift ~ 48 meV is observed in EL emission ~ 634 nm (~ 1.956 eV) with respect to the PL X^0 emission of the unbiased device (dashed black line, figure 3(b)). Figure 3(b) shows a EL peak position close to X^- of unbiased PL (dashed black line, figure 3(b)), implying a trionic EL emission, due to excess e in 1L-WS$_2$ [28, 38]. In contrast, no light emission is observed for $V < 0$ V and small positive ($0 < V < V_{ON}$) bias, below the tunneling condition ($V_{ON} < 4.1$ V).

To further understand the EL emission origin, we perform EL and PL spectroscopy at the same V. Figure 4(a) plots PL spectra at different V. At $V = 0$ V, the PL peak is ~ 619.2 nm (~ 2.002 eV), assigned to X^0 [9, 78]. By increasing V (i.e. increasing e density in 1L-WS$_2$), a second peak appears at longer wavelengths (~ 630 nm, ~ 1.968 eV), due to X^- [9–11, 109]. The dashed lines in figure 4(a) describe the peak position evolution of X^0 and X^- emission for different V. For $V > 0$ V, the X^0 intensity gradually decreases and nearly vanishes, while X^- shifts to longer wavelengths, figure 4(a), reaching a similar position for both EL and PL emission (see methods for further details). Figure 4(a) demonstrates that the gated-PL data show multiprope emissions at certain V (i.e. $0 < V < V_{ON}$) due to injection of charge carriers from SLG to 1L-WS$_2$, allowing the recombination of both X^0 and X^-, whereas for n-doping ($V > 0$ V), only X^- recombination takes place. This is expected for trionic emission, due to e-doping induced by V [9–12, 38, 109]. Similar effects were observed in 1L-MoS$_2$/SiO$_2$/Si [110], hBN/1L-WSe$_2$/hBN/SiO$_2$/Si [6], and hBN/1L-WS$_2$/hBN/SiO$_2$/Si [28]. Therefore,

Figure 3. (a) I as a function of V for 1L-WS$_2$-LED. Inset: schematic of I-V data collection. Purple, SiO$_2$ (300 nm)/Si substrate; black, SLG; blue, hBN; green, 1L-WS$_2$; yellow, Cr/Au electrodes. The voltage V is applied while the current I is measured. (b) EL spectra for different tunneling currents without TFSI treatment. The dashed black line is the PL spectrum for $V = 0$, normalized to the maximum EL intensity.

Figure 4. (a) Evolution of PL as a function of V. For comparison, an EL spectrum for $I \sim 16$ nA is shown (red). The dashed lines are guides to the eye for the X^0 and X^- positions. In all PL measurements up to 3 V, $I < 10^{-11}$ A. At 4 V, $I \sim 10$ nA, indicating t tunneling through hBN into 1L-WS$_2$. (b) Normalized gated-PL and EL spectra of a representative 1L-WS$_2$ LED near the threshold bias highlighting similarity of the emission spectra. (c) EL and PL positions from 4 different devices. The dashed line plots the unbiased PL position of X^0 measured in figure 3(b).
for similar tunneling current, EL agrees in energy and shape with the PL emission, further verifying the same origin for EL and PL, figure 4(b). This is confirmed by figure 4(c), where EL and PL peak positions are plotted for 4 devices, showing EL and PL emission at similar wavelengths. Thus, EL predominantly originates from X− [6, 9, 10, 21, 38]. The variations in X− for different LEDs are due to changes in charge carriers density across different samples. The charge density variation can be due to number of vacancies in 1L-WS2 [41] and external impurities (PC residues and adsorbed water) after LED fabrication, which may vary from sample to sample.

We now consider the origin and consequences of excess e in 1L-WS2 for EL emission induced by V. Besides the intrinsic charge carriers in 1L-WS2 (typically n-type due to S vacancies [41]), there is also an electrostatically induced charge in 1L-WS2 when V > 0 V. A SLG/hBN/1L-WS2 tunneling junction acts as a MIS capacitor [6, 28, 38]. When V > 0 is applied to SLG, inducing positive charges in SLG, there is an opposite (negative) charge induced in 1L-WS2 [6, 28, 38], thus making the charge density on 1L-WS2 larger than for V=0. When V > VON, h will be injected by tunneling into 1L-WS2 (figure 1(d)), hence, h will recombine with e. Consequently, the EL emission originates from X− states. However, the radiative recombination efficiency (defined as the number of e-h pairs that recombine by emission of a photon divided by the total number of e-h pairs) of X− is lower than X0 because of the small (~30 meV) binding energy of trions [42]. Thus, to gain higher ηEL one should favor X0 EL emission by lowering the unbalanced free-carriers concentration in 1L-TMDs by either gate modulation [6, 12, 28, 31, 36, 38], physical [111, 112], or chemical doping [11, 25].

We thus treat 1L-WS2 using TFSI to reduce doping and favor X0 emission under bias and investigate the effects on EL emission and gated-PL. Figure 5 plots representative Raman spectra before (black) and after (red) TFSI treatment. By comparing the spectra before and after TFSI treatment, and the fits for 1L-WS2 in table 2, we do not observe significant changes in peak position and FWHM. However, there is an overall intensity increase of the Raman peaks of ~50%, compared to the Si peak. This indicates a reduction of n-doping induced by TFSI treatment, because S vacancies in 1L-TMDs are commonly associated to n-type behaviour and the reduction of these defects will reflect in p-type doping [57–59, 69]. Pos(A') is unaffected by TFSI treatment, which suggests that the reduction in the intrinsic 1L-WS2 n-doping induced by TFSI is << 1012 cm−2 [97]. Although TFSI is able to p-dope SLG when it is in contact with the TFSI solution [113], figure 5 shows negligible (within the errors [95]) changes in SLG (e.g. before (after): Pos(G) ~585.1 (1585.0) ± 0.2 cm−1, FWHM(G) ~9.0 (9.1) ± 0.2 cm−1, Pos(2D) ~2692.3 (2692.2) ± 0.2 cm−1, FWHM(2D) ~20.9 (20.8) ± 0.2 cm−1, I(2D)/I(G) ~2.4 (2.4), and A(2D)/A(G) ~5.6 (5.6)) and hBN (e.g. before (after): Pos(E2g) ~1366.4 (1366.5) ± 0.2 cm−1 and FWHM(E2g) ~9.2 (9.1) ± 0.2 cm−1) Raman spectra after treatment, as both are protected by the top 1L-W2.

Figure 6(a) plots a representative PL spectrum of 1L-WS2 embedded in the LMH before TFSI treatment, and figure 6(b) after. For the pristine case, there are two components, fitted by two Lorentzians

![Figure 5](image-url)
The observation of X− emission and FWHM(X−) > FWHM(X0) is related to the n-type doping behavior of 1L-WS2 [115], which favors X− recombination. For non-biased devices, the spectral weight (defined as the area of each peak) of the PL emission indicates a majority emission due to X0. After treatment, the PL emission evolves to a main single peak ~618.1 nm with FWHM ~8.7 nm, accompanied by a ~4-fold increase in PL intensity. The PL intensity enhancement induced by TFSI is consistent with that reported in references [8, 49, 55, 57, 59, 60, 69, 70]. The changes in spectral weight of X0 and X− emission and FWHM after treatment can be assigned to a reduction in e-density of 1L-WS2 [57–59], in agreement with our Raman analysis. References [53–55, 57–68] reported that PL enhancement depends on sample quality (defects) and may vary 1 to 10 times. We observe a PL increase ~5±1-times, as for references [53–55, 57–68].

Figure 7(a) plots typical I-V characteristics of 3 devices before (solid black lines) and after (dashed red lines) TFSI treatment. I is not affected by the treatment. VON is related to the breakdown electric field Ebd across the junction, which depends on the voltage drop on the hBN tunnel barrier and hBN thickness [91, 92]. Our LED-devices use 2 to 4 nm hBN as tunnel barrier. Consequently, VON can vary between different devices. Our results on the same device demonstrate that TFSI treatment does not induce changes in the tunneling because the chemical treatment does not modify the MIS structure. Figures 9(a) and (b) show EL collected before and after TFSI, respectively, for different I. In both cases, EL is triggered for similar current levels (I < 5 nA), and the intensity increases linearly with I, figure 9(c). The EL intensity slope as a function of current density (I divided by AA) is affected by TFSI. For pristine-LEDs we get an average slope $\alpha \sim 1.4 \pm 0.3$, while after TFSI $\alpha \sim 13.5 \pm 1.1$, with 1 order of magnitude η_{EL} increase, figure 9(c). The red-shifts in the EL emission with I increase in pristine (<6 nm) and TFSI treated LEDs (<5 nm), figures 9(a) and (b), can be assigned to E_g shift induced by the MIS structure [6, 31, 33], or heating effects at the layered junction [28].

Next, we estimate the external quantum efficiency (EQE) of our LEDs. This is defined as the ratio between the number of emitted photons (N_{ph}) and that of injected h per second (N_h) [116]:

$$\text{EQE} = \frac{N_{ph}}{N_h} = \frac{\sum \lambda N_{ph \text{-counts}}}{N_h} \times \frac{A_{eff}}{\eta_{sys}}, \quad (1)$$

where $\sum \lambda N_{ph \text{-counts}}$ is the sum of the total photons collected by the spectrometer over the measured spectral range, $A_{eff} = A/A_{spot}$, where A_{spot} is the microscope objective spot size $A_{spot} \approx 2.2 \mu m^2$, with $\lambda = 618$ nm and NA = 0.45, and $N_h = I \times t \times q$, where t is the acquisition time, and q the e charge. The efficiency factor (defined as the ratio between the photons collected by the detector and the emitted photons by EL at the sample position) of our setup, including all optical components and spectrometer, is $\eta_{sys} \approx 0.0051$, see section 3.

From equation (1) we get EQE ~0.025% ± 0.021% and ~0.195% ± 0.324% for pristine- and TFSI treated-LEDs, respectively, corresponding to a ~8.7 ± 1.5-fold increase, thus demonstrating that TFSI can boost EQE by almost one order of magnitude. EQE ~0.2% is better than previously reported for 1L-WS2-based EL (~0.1%) on a SiO2/SiNx microcavity [35], bulk organic (2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene) emissive layer (~0.1%) [117], and semiconducting (6,5) single-wall nanotubes (~0.1%) [118]. The WS2-LED performance can be further improved if placed within a photonic cavity [25, 119–127].
To evaluate the cavity enhanced EQE, we extract the performance metrics from our reference measurements on SiO$_2$/Si and project them on simulation results for a cavity system. We first estimate the reference internal quantum efficiency IQE$_{\text{ref}}$ = EQE$_{\text{ref}}$/η_{extr} (116), where η_{extr} is the extraction efficiency on SiO$_2$/Si, defined as the number of photons emitted into free space over the total number of emitted photons (116). Estimated photons not reaching free space include the absorbed and/or lost into the reference substrate. By 3d finite-difference time-domain method (FDTD) simulations (128, 129), a 10\times10 μm2 reference system with a single reverse electric (TE) (i.e. parallel to the surface) point dipole emitter on the surface at $\lambda = 624$ nm, we calculate η_{extr} \sim 14%, i.e. a significant (\sim86%) portion of the emitted light is absorbed and/or lost into the substrate. This yields for the TFSI-treated LED IQE$_{\text{ref}}$ \sim 1.43%. In turn, IQE$_{\text{ref}}$ is related to the ratio of radiative to total recombination rates, i.e. IQE$_{\text{ref}}$ = $\Gamma_{\text{R,ref}}$/(1 + $\Gamma_{\text{NR,ref}}$) (116, 130), where $\Gamma_{\text{R,ref}}$ and $\Gamma_{\text{NR,ref}}$ denote the radiative and non-radiative rates, respectively. For simplicity we assume $\Gamma_{\text{NR,ref}}$ independent of substrate, i.e. the non-radiative relaxation pathways are unaffected by the environment. Thus $\Gamma_{\text{NR}} = \Gamma_{\text{R,ref}}$ (IQE$_{\text{ref}}$). Inside a cavity, the radiative density of states increases, leading to a proportional increase in radiative rate due to the Purcell effect (130, 131). Thus, IQE$_{\text{cav}}$ = $\Gamma_{\text{R,cav}}$/(1 + $\Gamma_{\text{NR,cav}}$), where $\Gamma_{\text{R,cav}}$ = η_{extr} $\Gamma_{\text{R,ref}}$ and η_{extr} is the relative Purcell enhancement factor calculated by FDTD as the ratio of total light (free and lost) emitted by a point dipole in the cavity over the total light emitted on the reference substrate. Combining the above relations, we get IQE$_{\text{cav}}$ = 1 + η_{extr} (IQE$_{\text{SiO}_2$/Si})$^{-1}$. The external quantum efficiency becomes IQE$_{\text{cav}}$ = η_{extr}IQE$_{\text{cav}}$, with η_{extr} the extraction efficiency of the cavity evaluated by FDTD. The photonic cavity, shown in the top inset of figure 8, is asymmetric to enable unidirectional emission. Nb$_2$O$_5$/SiO$_2$ bilayers are used for the Bragg mirrors, with N_p Nb$_2$O$_5$/SiO$_2$ periods on top, a SiO$_2$ cavity in the middle, and an Ag back mirror. At $\lambda = 624$ nm the refractive indices are $n_{\text{Nb}_2\text{O}_5} = 2.325$ (132), $n_{\text{SiO}_2} = 1.457$ (133), $n_{\text{Ag}} = 0.0581 + i4.212$ (134), $n_{\text{SLG}} = 2.787 + i1.443$ (135, 136), $n_{\text{hBN}} = 2.12$ (137), $n_{\text{WS}} = 5.38 + 0.382$ (138). The layer thicknesses are $d_{\text{Nb}_2\text{O}_5} = 67$ nm, $d_{\text{SiO}_2} = 107$ nm and $d_{\text{cav}} = 191$ nm, while 1L-WS$_2$/hBN(3 nm) SLG is placed in the middle of the SiO$_2$ cavity layer. FDTD simulations predict the cavity enhanced EQE as a function N_p for figure 8. For $N_p = 1$ the EQE gets a $\times 5.75$ enhancement, reaching \sim1.15%, attributed to a Purcell enhancement of $\times 1.15$ and a $\times 5$ increase in extraction efficiency. Cavity effects also enhance the directionality of light, as shown in the bottom inset of figure 8 for the SiO$_2$/Si reference as well as for the $N_p = 1$ and $N_p = 2$ cavity structures. To quantify the enhancement in the vertical direction (e.g. were we to use a narrow NA = 0.0125 (127)), we also plot the normal emission enhancement through a 1d calculation in figure 8. These are consistent with the angular plots of full 3d systems (lower inset of figure 8) and predict an optimal cavity with $N_p = 3$ and relative normal emissivity enhancement of $\times 16$. Further enhancement mechanisms can also be considered, such as plasmonic cavities and/or antenna-coupling (139–145), as well as dielectric domes on top of the device to further boost extraction.

We now consider the EL emission features induced by TFSI treatment. By comparing EL before and after TFSI (figures 9(a) and (b)), a blue-shift in EL is observed. In pristine-LEDs, the main EL emission can be fitted with a single Lorentzian at \sim641.8 nm with FWHM \sim28.6 nm, figure 10(a), whereas after treatment it can be fitted with two-Lorentzian \sim625.9 nm with FWHM \sim28.6 nm and \sim640.1 nm with FWHM \sim29.2 nm, figure 10(b). The observation of X0 emission and similar FWHM(X$^-$) and Pos(X$^-$) after TFSI treatment suggests that there is a reduction in n-doping, consistent with PL and Raman analysis. The fact that we observe X$^-$ emission in EL after TFSI treatment indicates that 1L-WS$_2$ is still n-doped, which can be caused by e injection from the bias in the MIS structure (6, 28, 33, 108). Figure 10(c) plots the EL peak position before and after treatment in 4 devices. After treatment, the EL emission shifts to shorter wavelengths, where X0 is expected (77, 78) (dashed line in figure 10(c)). In non-biased S-based TMDs devices, this shift could be due to the depletion of excess e in n-doped 1L-WS$_2$ due to TFSI (57–62, 65–67). Nevertheless, we cannot neglect the additional charge density induced by V on the MIS capacitor. E.g. the I-V characteristics in figure 7 show that I and V_{ON} do not change before and after TFSI, suggesting the same tunneling condition is
maintained across the 1L-WS₂/hBN/SLG junction. In both cases a comparable electric field (and charge) is developed across the junction for a given \(V \). Figure 7 implies that, independent of TFSI treatment, the same amount of negative charge is electrostatically induced in 1L-WS₂ at \(V > 0 \). However, taking into account the EL spectral shift towards \(X^0 \) emission upon bias, the expected depletion of excess \(e \) in 1L-WS₂ cannot explain the electrical behaviour of figures 10(b) and (c). Thus, the emission profile is not compatible with the \(I-V \) curves before and after TFSI in figure 7, given that the electric field across the junction should be modified by the \(e \) density change in 1L-WS₂.

To get a better insight on the effects of TFSI on 1L-WS₂ based LEDs, figures 10(d) and (e) plot normalized PL spectra as a function of \(V \) before and after TFSI. In the pristine case (figure 10(d)), the PL map shows an evolution in emission spectra from \(\sim 620 \text{ nm (} \sim 2.000 \text{ eV)} \) to \(\sim 638 \text{ nm (} \sim 1.943 \text{ eV)} \), corresponding to a spectral shift from \(X^0 \) to \(X^- \) due to excess \(e \) in 1L-WS₂ induced by \(V \). After TFSI treatment (figure 10(e)), the PL exhibits only a minor shift from \(\sim 618 \text{ nm (} \sim 2.006 \text{ eV)} \) to \(\sim 622 \text{ nm (} \sim 1.993 \text{ eV)} \), implying that the induced \(e \)-charge
in 1L-WS₂ does not contribute to the X⁻ emission pathway. Therefore, similar to figures 10(a) and (b), PL also indicates that the emission after TFSI treatment predominantly originates from radiative recombination of X₀, independent of V. References [57, 59, 61–64] claimed that TFSI treatment reduces the extent of n-type behavior in S-based 1L-TMDs due to S vacancies passivation, consistent with the suppression of X⁻ formation in references [60, 65–68]. Reference [8] reported that TFSI acts as a Lewis acid, i.e. it can accept an e⁻ pair from a donor [56], suppressing X⁻ formation. Whereas references [53–55] claimed that TFSI may activate sub-gap states and reduce the n-type behavior in S-based TMDs, as well as reducing X⁻ formation. Our I-V, EL and gated-PL results suggest that TFSI treatment (i) depletes the excess e⁻ in 1L-WS₂, acting as a Lewis acid [8] and (ii) favours the radiative recombination of X₀ independent of bias, due to the activation of trapping states [53, 55] in 1L-WS₂ caused by the treatment. One would expect changes in the excitonic emission at such trapping states at RT, where the thermal energy can assist carrier de-trapping, and radiative recombination from excitons [67]. Therefore, the modification from non-radiative to radiative recombination by activation of trapping states could be further engineered to achieve more efficient optoelectronic devices.

2. Conclusions

We demonstrated a one order of magnitude enhancement in EL emission of 1L-WS₂-LEDs by performing TFSI treatment. EL predominantly originates from trions in pristine devices, while neutral excitons dominate in treated ones. The neutral excitonic emission is also restored in 1L-WS₂ gated-PL measurements. We attribute these changes to a reduction of n-doping of 1L-WS₂, as well as changes in the relaxation and recombination pathways within 1L-WS₂. This paves the way to more efficient 1L-TMDs-based LEDs, and sheds light into tunability of the excitonic emission of these devices.

3. Methods

3.1. Raman characterization of LMH individual constituents

Raman spectroscopy allows one to monitor LMs at every step of device fabrication. This should always be performed on individual LMs before and after assembly in LMHs and devices. This is an essential step to ensure reproducibility of results but, unfortunately, it is often neglected in literature.

Ultralow-frequency (ULF) Raman spectra in the range ~10–50 cm⁻¹ probe shear (C), corresponding to layer motion parallel to the planes, and layer breathing modes (LBM), corresponding to the motion perpendicular to them [102, 146–148]. Pos(C)N can determine the number of layers [146–149] N = π(2cos⁻¹(\frac{\text{Pos}(C)_{\infty}}{\text{Pos}(C)_{\infty}}))⁻¹, with Pos(C)∞ the bulk Pos(C).

Figure 11 plots the Raman spectra of non-treated 1L-WS₂ and bulk-WS₂. In figure 11(a), the C mode and LBM are not observed for 1L-WS₂, as expected [146–148]. In bulk-WS₂, Pos(C) ~ 26.9 ± 0.14 cm⁻¹. The spectral resolution ± 0.14 cm⁻¹ for the ULF region is obtained as for reference [95]. We observe two additional peaks ~28.7 ± 0.14 cm⁻¹ and 46.4 ± 0.14 cm⁻¹, respectively, in agreement with references [150–152]. These do not depend on N [150, 151] and are seen because 514.5 nm (~2.41 eV) is nearly resonant with the B exciton (~2.4 eV) of 1L-WS₂ [9, 153–156], and ~20 meV above the bulk-WS₂ B exciton (~2.38 eV) [9, 154]. This gives rise to a resonant process [9, 153–156], which occurs because the laser energy matches the electronic transition of the B exciton, revealing features associated with intervalley scattering mediated by acoustic ph [157–159]. A similar process also happens in 1L-MoS₂ [150, 151] and other 1L-TMDs [157–159]. Although our ULF filters cut ~5 cm⁻¹, the LBM is not detected in bulk-WS₂, as its frequency is expected to be <10 cm⁻¹ [148], because this resonant process with a 514.5 nm laser reduces the signal to noise ratio in this spectral region [150].

The high-frequency (HF) Raman spectra of non-treated 1L-WS₂ and bulk-WS₂ (figure 11(b)) show various peaks, table 2. The first order Raman modes are E′, A₁' in 1L-WS₂ [77–80] and E₁g, A₁g in bulk-WS₂ [77–80]. E′ (E₁2g) and A₁' (A₁g) correspond to in-plane and out-of-plane optical ph for 1L(bulk)-WS₂. Their nomenclature for 1L and bulk differs due to the different crystal symmetry [77–80]. In 1L-WS₂ we get Pos(E′) ~356.8 ± 0.2 cm⁻¹, FWHM(E′) ~3.2 ± 0.2 cm⁻¹, Pos(A₁') ~418.5 ± 0.2 cm⁻¹, FWHM(A₁') ~4.3 ± 0.2 cm⁻¹. In bulk-WS₂ we have Pos(E₁g) ~356.8 ± 0.2 cm⁻¹, FWHM(E₁g) ~1.5 ± 0.2 cm⁻¹, Pos(A₁g) ~420.8 ± 0.2 cm⁻¹, FWHM(A₁g) ~2.1 ± 0.2 cm⁻¹. In 1L-WS₂ the difference in peaks’ position [Pos(E′)-Pos(A₁')] is ~61.7 cm⁻¹ while this is ~64.0 cm⁻¹ in bulk-WS₂, further corroborating the identification of 1L [77]. In the HF spectra of 1L- and bulk-WS₂ we also observe the 2LA(M) mode, involving two longitudinal acoustic (LA) ph close to the M point [77–79]. For 1L-WS₂, Pos(2LA(M)) ~351.9 ± 0.2 cm⁻¹ and FWHM(2LA(M)) ~9.2 ± 0.2 cm⁻¹, whereas for bulk-WS₂, Pos(2LA(M)) ~350.6 ± 0.2 cm⁻¹ and FWHM(2LA(M)) ~8.3 ± 0.2 cm⁻¹. The 2LA(M) mode originates from a second-order double resonant process [157–159], where momentum conservation is satisfied by two LA ph with opposite momenta around K- and M [158], therefore sensitive to differences in band structure between bulk and 1L-WS₂ [77, 160].
I(A_{1g})/I(E_{1g}) \sim 3.2 in bulk-WS\textsubscript{2}, with \(I \) the peak height, is higher than \(I(A'_{1g})/I(E'_{1g}) \sim 0.8 \) in 1L-WS\textsubscript{2}. \(I(2LA)/I(E_{1g}) \sim 1 \) in bulk-WS\textsubscript{2} is lower than \(I(2LA(M))/I(E'(1g)) \sim 1.7 \) in 1L-WS\textsubscript{2}. This can be explained considering that the main first-order (\(E' \), \(A'_{1g} \)) and second-order (\(2LA(M) \)) Raman modes are enhanced for 2.41 eV excitation, due to exciton-ph coupling effects involving B exciton transitions [155, 161]. These depend on mode symmetry (i.e. differ between out-of-plane and in-plane modes) as well as \(N \) [157]. In bulk-WS\textsubscript{2}, the out-of-plane \(A_{1g} \) is resonant with the B exciton, unlike \(E_{2g} \) [157]. The enhancement of \(A_{1g} \) decreases with decreasing \(N \) due to the dependence of the lifetime of the intermediate excitonic states on \(N \) [157]. The difference between \(I(2LA)/I(E'_{1g}) \) in 1L-WS\textsubscript{2} and \(I(2LA)/I(E_{2g}) \) in bulk-WS\textsubscript{2} is due to a change in band structure from direct bandgap in 1L to indirect in bulk-WS\textsubscript{2} [77–80], which changes the double resonance conditions [157–159].

The Raman spectrum of 1L-WS\textsubscript{2} also shows 8 peaks in the range 170–350 cm\(^{-1}\) (figure 10(b) and table 2). LA(M) and LA(K) correspond to one-ph processes originating from the LA branch at M- and K- respectively [77–80]. Since LA(M) and LA(K) and \(E_{2g}^{\frac{1}{2}}(M) \) are one-ph processes from the edge of the Brillouin Zone (\(q \neq 0 \)) [77–80], they should not be seen in the Raman spectra considering that, due to the Raman fundamental selection rule [162], one-ph processes are Raman active only for \(ph \) with \(q \sim 0 \), whereas for multi-ph scattering the sum of ph momenta needs to be \(\sim 0 \) [157–160]. However, these modes can be activated in presence of defects, as these can exchange momentum with \(ph \), such that the sum of the momenta in the process is \(\sim 0 \) [77–80]. \(A_{1g}(K)-LA(K), A_{1g}(M)-LA(M), A_{1g}(M)-ZA(M), LA(M)+TA(M) \) in bulk-WS\textsubscript{2} and \(A'(K)-LA(K), A'_{1g}(M)-LA(M), A'_{1g}(M)-ZA(M), LA(M)+TA(M) \) in 1L-WS\textsubscript{2} are combinational modes, and Raman allowed [77–80]. \(E_{2g}^{\frac{1}{2}}(M) \) correspond to a one-ph process originating from the transverse optical (TO) branch at the M-point [77–80]. \(E_{2g}^{\frac{1}{2}}(\Gamma) \) is a degenerate mode originating from the LO and TO branches at \(\Gamma \) [77–80].

Figure 12 plots the Raman spectra of a \(\sim 3 \) nm hBN flake (black curves) and bulk-hBN (red curves). The latter has 2 Raman-active modes [163, 164], C and \(E_{2g} \). In figure 12(a) Pos(C)\textsubscript{\(\infty \)} = 52.3 ± 0.14 cm\(^{-1}\) with FWHM \(\sim 0.7 \pm 0.2 \) cm\(^{-1}\) for bulk-hBN and Pos(C)\textsubscript{\(N \)} = 50.4 ± 0.14 cm\(^{-1}\), FWHM \(\sim 0.8 \pm 0.2 \) cm\(^{-1}\) for the hBN flake. In bulk-hBN Pos(C)\textsubscript{\(\infty \)} = \(\frac{1}{\pi^{\frac{1}{2}}} \sqrt{\frac{m}{\mu}} \approx \frac{52.3 \text{ cm}^{-1}}{\mu = 6.9 \times 10^{27} \text{ kg A}^{-2}} \) the mass of one layer per unit area, \(c \) the speed of light in cm s\(^{-1}\), and \(\alpha \) the spring constant associated to the coupling between adjacent layers [95, 148]. From this, we get \(\alpha = 16.9 \times 10^{4} \text{ Nm}^{-1} \). Hence Pos(C)\textsubscript{\(\infty \)} \(\sim \frac{2 \cos^{-1} \left(\frac{\text{Pos}(C)\textsubscript{\(\infty \})}{\text{Pos}(C)\textsubscript{\(N \})} \right)}{\text{Pos}(C)\textsubscript{\(N \})} \). From N \(\sim 1 \), we get \(N = 6.1 \pm 1 \) for the 3 nm thick flake (measured with a Dimension Icon Bruker AFM in tapping mode) as shown in the inset of figure 12(b). In figure 12(b) Pos(E\textsubscript{2g}) \(\sim 1368.5 \pm 0.2 \) cm\(^{-1}\) and FWHM(E\textsubscript{2g}) \(\sim 9.1 \pm 0.2 \) cm\(^{-1}\) for FL-hBN, and Pos(E\textsubscript{2g}) \(\sim 1367.0 \pm 0.2 \) cm\(^{-1}\) with FWHM(E\textsubscript{2g}) \(\sim 7.6 \pm 0.2 \) cm\(^{-1}\) for bulk-hBN. The peak broadening \(\sim 1.5 \) cm\(^{-1}\) in FL-hBN can be attributed to strain variations within the laser spot, as thinner flakes conform more closely to the roughness of the underlying SiO\textsubscript{2} [95]. This is consistent with the fact that thicker hBN have lower root mean square (RMS) roughness [88, 92, 95, 165], e.g. 300 nm SiO\textsubscript{2} has RMS roughness \(\sim 1 \) nm [92], 2–8 nm hBN has RMS roughness \(\sim 0.2–0.6 \) nm [95], while \(> 10 \) nm hBN thick has RMS roughness \(\sim 0.1 \) nm [88, 92].

The red curves in figures 13(a) and (b) are the Raman spectra of SLG on SiO\textsubscript{2}/Si before LMH assembly. Pos(G) = 1586.9 ± 0.2 cm\(^{-1}\) with FWHM(G) = 7.7 ± 0.2 cm\(^{-1}\), Pos(2D) =
2D Mater. 11 (2024) 025017

A R Cadore et al

Figure 12. (a) ULF and (b) HF 514.5 nm Raman spectra of ∼3 nm hBN on Si/SiO$_2$ normalized to the Si peak. Inset: AFM height profile of ∼3 nm hBN on Si/SiO$_2$.

Figure 13. (a) ULF and (b) HF 514.5 nm Raman spectra of SLG and FLG on Si/SiO$_2$ normalized to the Si peak.

2685.2 ± 0.2 cm$^{-1}$ with FWHM(2D) ∼ 29.3 ± 0.2 cm$^{-1}$, I(2D)/I(G) ∼ 0.85, A(2D)/A(G) ∼ 3.3. These indicate a p-doping [102–104] with E_F ∼ 200 ± 50 meV. No D peak is observed, thus negligible defects [101–103]. Pos(G) and Pos(2D) are affected by the presence of strain [102, 103]. Biaxial strain can be differentiated from uniaxial from the absence of G-peak splitting with increasing ϵ [166, 167], however at low ($\leq 0.5\%$) ϵ the splitting cannot be resolved [166, 167]. Pos(G) also depends on doping [104, 107]. E_F ∼ 200 ± 50 meV should correspond to Pos(G) ∼ 1584.3 cm$^{-1}$ for unstrained SLG [107]. However, in our experiment Pos(G) ∼ 1586.9 ± 0.2 cm$^{-1}$, which implies a contribution from compressive uniaxial (biaxial) strain ∼ 0.1% (∼ 0.04%). The black curves in figures 12(a) and (b) show the Raman spectrum of the FLG electrode on SiO$_2$/Si. Pos(G) ∼ 1581.2 ± 0.2 cm$^{-1}$ with FWHM ∼ 12 ± 0.2 cm$^{-1}$, Pos(2D$_1$) ∼ 2694.0 ± 0.2 cm$^{-1}$ with FWHM ∼ 48 ± 0.2 cm$^{-1}$, and Pos(2D$_2$) ∼ 2725 ± 0.2 cm$^{-1}$ with FWHM ∼ 53 ± 0.2 cm$^{-1}$. Pos(C)$_N$ ∼ 41.4 ± 0.14 cm$^{-1}$, corresponding to $N = 5$.

3.2. Electrical characterization

Electrical characterization is performed at RT and in air, using two micrometric (xyz) positioners (Lambda EverBeing EB-050) with 10 zm W tips to provide signal and check the read-out. A Keithley 2400 sourcemeter is used as a DC source for the voltage potential V, with constant reading of the current I. The I-V curves are measured in a two-probe station, with one probe touching the Cr/Au pad connecting
the SLG, and the other connected to the pad associated to 1L-WS₂. The 1L-WS₂ electrode is grounded to keep the electric field aligned from SLG towards 1L-WS₂, inducing electrons on 1L-WSe for V > 0. For the I-V curves, the voltage sweep is 10mV/s and the data acquisition is interrupted as soon as I has exponential rise, to avoiding damage. The first measurement is the I-V curve, followed by EL, then gated-PL spectra collection. For EL and gated-PL, the voltage is set manually to the desired V, then either EL or PL are acquired for 10 and 1 s, respectively. A new V is then set by hand, followed by the next data acquisition. As soon as I reaches the values measured in the I-V curve, V is manually set back to zero. This guarantees that the devices can be measured at least 6 times (I-V, EL, and gated-PL before and after TFSI treatment) without damage.

3.3. Trionic PL and EL emission in 1L-WS₂ LEDs

Figures 14(a) and (b) show the gated-PL spectra with a continuous shift for larger V, with a ~20 nm shift, consistent with reference [28]. To further corroborate that both gated-PL and EL come from X⁻, we fabricate 3 types of 1L-WS₂ based LEDs, figure 14(c): (i) 1L-WS₂ on top of hBN and SLG layers; (ii) 1L-WS₂ encapsulated by 2 hBN layers (top and bottom), and SLG on the top-hBN layer; (iii) 1L-WS₂ sitting directly onto SiO₂/Si, capped with hBN and SLG. All devices are made following similar procedures. Electrical connection is done by applying V between SLG and 1L-WS₂. The hBN tunnel barrier is 2–4 nm thick. All devices are then checked by I-V measurements, gated-PL, and EL. Figure 14(c) demonstrates that all present a good match for EL and PL emission, in agreement with the X⁻ emission of figure 4. We then TFSI treat 4 devices, those with 1L-WS₂ at the top of the stack, allowing direct comparison before and after treatment.

3.4. Spectrometer efficiency

The \(\eta_{\text{sys}} \) of our spectrometer is derived as follows. We use a 50x objective (NA = 0.45). Hence, the solid angle is \(\theta = (1-\cos\theta) \times 2\pi \), where \(\theta = \arcsin(\text{NA}/n) \), and n is the refractive index. Assuming n = 1 we get \(\theta = 0.672 \). Thus, \(M_{\text{50x-eff}} = \theta/(4\pi) \times 100% \sim 5.4\% \). In our Horiba system, the optical path from \(M_{\text{50x}} \) to CCD includes 7 Mirrors (\(M_{\text{eff}} \sim 83\% \)), a slit (\(S_{\text{eff}} \sim 90\% \)), a grating (\(G_{\text{eff}} \sim 60\% \)) and a CCD detector (\(\text{CCD}_{\text{eff}} \sim 85\% \)). Therefore, the calculated overall collection+Horiba efficiency is: \(M_{\text{50x-eff}} \times (M_{\text{eff}})^7 \times S_{\text{eff}} \times G_{\text{eff}} \times \text{CCD}_{\text{eff}} \sim 0.0067 \). To experimentally validate the calculation, we use a
0.5pW laser at 632.8 nm and measure the counts at the CCD detector $N_{\text{counts}} = 149.748$. The photon energy at 632.8 nm is $E_{\text{ph}} = (1.24/0.638) \times 1.6 \times 10^{-19} = 3.13e^{-19}$. The laser power is $P_{\text{opt}} = 0.5e^{-12}$ J/s. As a result, if the system efficiency is 100% we expect to get $0.5e^{-12}/3.13e^{-19} = 1597$ counts. Therefore, the Horiba system efficiency is $S_{\text{eff}} = 149.748/1597$ 444.094. Considering M_{det}, we get an overall collection + Horiba efficiency $M_{\text{det}} \times S_{\text{eff}} = 0.054 \times 0.094 = 0.0051$, consistent with the theoretical estimation.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

We acknowledge funding from the EU Graphene and Quantum Flagships, EU grant Graph-X, ERC Grants Hetero2D, GSYNCCOR and GIPT, EPSRC Grants EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/L016807/1, EP/V000053/1, EP/X015742/1, JSPS KAKENHI (Grant Numbers 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan.

ORCID iDs

A R Cadore https://orcid.org/0000-0003-1081-0915
I Paradisanos https://orcid.org/0000-0001-8310-710X
S Mignuzzi https://orcid.org/0000-0001-6051-2022
D De Fazio https://orcid.org/0000-0003-3327-078X
E M Alexeev https://orcid.org/0000-0002-8149-6364
D Yoon https://orcid.org/0000-0002-9328-4350
S Tongay https://orcid.org/0000-0001-8294-984X
K Watanabe https://orcid.org/0000-0003-3701-8119
E Lidorikis https://orcid.org/0000-0002-9552-9366
I Goykhman https://orcid.org/0000-0002-8833-9193
G Soavi https://orcid.org/0000-0003-2434-2251
A C Ferrari https://orcid.org/0000-0003-0907-9993

References

[1] Schneider C, Glazov M M, Korn T, Hofling S and Urbaszek B 2018 Nat. Commun. 9 2695
[2] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001
[3] Mueller T and Malic E 2018 npj 2D Mater. Appl. 2 29
[4] Glazov M M 2020 J. Chem. Phys. 153 034703
[5] Barbone M et al 2018 Nat. Commun. 9 3721
[6] Wang J, Lin F, Verzhbitskii I, Watanabe K, Taniguchi T, Martin J and Eda G 2019 Nano Lett. 19 7470–5
[7] Paur M, Molina-Mendoza A J, Bratschitsch R, Watanabe K, Taniguchi T and Mueller T 2019 Nat. Commun. 10 1709
[8] Lien D H, Uddin S Z, Teh M, Amani M, Kim H, Anger I I J W, Yablonovitch E and Javey A 2019 Science 364 608–71
[9] Zhu B, Chen X and Cui X 2013 Sci. Rep. 3 9218
[10] Shang J, Shen X, Cong C, Peimyoo N, Cao B, Eginligil M and Yu T 2015 ACS Nano 9 647–55
[11] Peimyoo N, Yang W, Wang J, Shen X, Wang Y and Yu T 2014 Nano Lett. 8 6723–9
[12] Yang W et al 2016 Nano Lett. 16 5606–7
[13] Ferrari A C et al 2015 Nanoscale 7 4989–810
[14] Manzeli S, Oschkinotov D, Pasquier D, Yazev O V and Kis A 2017 Nat. Rev. Mater. 2 1703
[15] Bonacorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[16] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
[17] Romagnoli M, Soriano C, Madrio M, Koppens F H L, Huyghebaert C, Neumaier D, Galli P, Tempel W, D’Errico A and Ferrari A C 2018 Nat. Rev. Mater. 3 392–414
[18] Choi W, Choudhary N, Han G H, Park J, Akinwande D and Lee Y H 2017 Mater. Today 20 116
[19] Wang Z, Jingqing Q, Wang X, Zhang Z, Chen Y, Huang X and Huang W 2018 Chem. Soc. Rev. 47 6128–74
[20] Zheng W, Jiang Y, Hu X, Li H, Zeng Z, Wang X and Pan A 2018 Adv. Opt. Mater. 6 1800420
[21] Palacios-Berraquero C et al 2016 Nat. Commun. 7 12978
[22] Jo S, Ubrig N, Berger H, Kuzmenko A B and Morpurgo A F 2014 Nano Lett. 14 2019–25
[23] Withers F et al 2015 Nat. Mater. 14 301–6
[24] Withers F et al 2015 Nano Lett. 15 8223–8
[25] Liu C H, Clark G, Fryett T, Wu S, Zheng J, Hatami F, Xu X and Majmudar A 2017 Nanoscale 7 200–5
[26] Roman R J P, Aasa Y, Grasso L, Álvarez F, Barcelos I D and Zagonel L F 2020 Nanoscale 12 13460–70
[27] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[28] Kwak D, Paur M, Watanabe K, Taniguchi T and Mueller T 2021 Adv. Mater. Technol. 21000915
[29] Zhu Y, Li Z, Zhang L, Wang B, Luo Z, Long J, Yang J, Fu L and Lu Y 2018 ACS Appl. Mater. Interfaces 10 43291–8
[30] Bie Y Q et al 2017 Nat. Nanotechnol. 12 1142–30
[31] Sundaram R S, Engel M, Lombardo A, Kruipke R, Ferrari A C, Avouris P and Steiner M 2013 Nano Lett. 13 1416–21
[32] Sheng Y, Chen T, Lu Y, Chang R J, Sinha S and Warner J H 2019 Nano Lett. 19 4530–7
[33] Andrejewski D, Miyia H, Heukens M, Grundmann A, Kalisch H, Vescan A, Kümmler T and Bacher G 2019 ACS Photonics 6 1832–9
[34] Andrejewski D, Hopmann E, John M, Kümmler T and Bacher G 2019 Nanoscale 11 8372
[35] Gu J, Chakraborty B, Kathotia M and Menon V M 2019 Nat. Nanotechnol. 14 1024–8
[36] Ross J S et al 2014 Nat. Nanotechnol. 9 268–72
[37] Baugher B W, Churchill H O H, Yang Y and Jariello-Herrero P 2014 Nat. Nanotechnol. 9 262–7
[38] Wang S, Wang J, Zhao W, Giustiniano F, Chu L, Verzhbitskii I, Yong J S and Eda G 2017 Nano Lett. 17 5156–62
[39] Yuan L and Huang I 2015 Nanoscale 7 7402–8
[40] Wang H, Zhang C and Rana F 2015 Nano Lett. 15 339–45
[41] Zhang Y J, Oka T, Suzuki R, Ye J T and Iwasa Y 2014 Science 344 725–8
[42] Jones A M, Yu H, Schaibley J R, Van J, Mandrus D G, Taniguchi T, Watanabe K, Dery H, Yao W and Xu X 2016 Nat. Phys. 12 323–7

2D Mater. 11 (2024) 025017 A R Cadore et al
