GROUP ACTIONS ON CONTRACTIBLE 2-COMPLEXES II

KEVIN IVÁN PITERMAN AND IVÁN SADOFSCHI COSTA

ABSTRACT. In this second part we prove that, if G is one of the groups $PSL_2(q)$ with $q > 5$ and $q \equiv 5 \pmod{24}$ or $q \equiv 13 \pmod{24}$, then the fundamental group of every acyclic 2-dimensional, fixed point free and finite G-complex admits a nontrivial representation in a unitary group $U(m)$. This completes the proof of the following result: every action of a finite group on a finite and contractible 2-complex has a fixed point.

CONTENTS

1. Introduction 1
2. More representation theory 2
3. The \hat{G}-graph $X_1^{OS}(G)$ 2
4. Representations and centralizers 4
5. The proof of Theorem C 5
6. The differential of X_0 at 1 5
7. The degree of \overline{Y}_0 6
References 7

1. INTRODUCTION

In this second part we prove the following:

Theorem C. Let G be one of the groups $PSL_2(q)$ with $q > 5$ and $q \equiv 5 \pmod{24}$ or $q \equiv 13 \pmod{24}$. Then the fundamental group of every 2-dimensional, fixed point free, finite and acyclic G-complex admits a nontrivial representation in a unitary group $U(m)$.

This completes the proof of the following result: every action of a finite group G on a finite and contractible 2-complex X has a fixed point.

The groups G considered in [SC21, Theorem B] share a key property: they admit a nontrivial representation ρ_0 which restricts to an irreducible representation on the Borel subgroup. The moduli M_k of representations of $\Gamma_k = X_1^{OS+k}(G) : G$ constructed in the proof of [SC21, Theorem B] is built from a representation with this property. When $q \equiv 1 \pmod{4}$ no nontrivial representation of $PSL_2(q)$ restricts to an irreducible representation on the Borel subgroup. To prove Theorem C, we circumvent this difficulty by instead considering the action of $\hat{G} = SL_2(q)$ on $X_1^{OS+k}(G)$.

2010 Mathematics Subject Classification. 57S17, 57M20, 57M60, 55M20, 55M25, 20F05, 20E06, 20D05.

Key words and phrases. Group actions, contractible 2-complexes, moduli of group representations, mapping degree, finite simple groups.

Researchers of CONICET. Kevin Iván Piterman was partially supported by grants PIP 11220170100357, PICT 2017-2997, and UBACyT 20020160100081BA, and by an Oberwolfach Leibniz Fellowship. Iván Sadofschi Costa was partially supported by grants PICT-2017-2806, PIP 11220170100357CO and UBACyT 20020160100081BA.
Acknowledgements. This work was partially done during a stay of the first author at The Mathematisches Forschungsinstitut Oberwolfach. He is very grateful to the MFO for their hospitality and support.

2. More representation theory

We denote the set of eigenvalues of a square matrix M by $\Lambda(M)$.

Lemma 2.1. Let G be a finite group, $g_1, g_2 \in G$ and $H_1 = \langle g_i \rangle$. Let $\rho: G \to U(m)$ be a unitary representation and let $k_i = \# \Lambda(\rho(g_i))$. Then there are matrices $A_1, A_2 \in U(m)$ such that $A_i \rho(g_i) A_i^{-1}$ is diagonal (for $i = 1, 2$), $A_1^{-1} A_2$ commutes with $C_{U(m)}(\rho(G))$ and

$$\dim \left((A_1 C_{U(m)}(\rho(H_1)) A_1^{-1}) \cap (A_2 C_{U(m)}(\rho(H_2)) A_2^{-1}) \right) \geq \frac{m^2}{k_1 k_2}.$$

Proof. By [SC21, Theorems 4.1 and 4.2], we can take $T \in U(n)$ and irreducible representations $\rho_j: G \to U(m_j)$ with $j = 1, \ldots, k$ such that $T \rho T^{-1} = \rho_1 \oplus \ldots \oplus \rho_k$. Moreover, we can do this so that whenever ρ_j and ρ_j' are isomorphic we have $\rho_j = \rho_j'$. For each $i = 1, 2$ we take matrices $D_{i,1}, \ldots, D_{i,k}$ with $D_{i,j} \in U(m_j)$ such that

$$D_{i,j} \rho_j(g_i) D_{i,j}^{-1}$$

is diagonal. We choose the $D_{i,j}$ so that $\rho_j = \rho_j'$ implies $D_{i,j} = D_{i,j'}$. Let $D_i = D_{i,1} \oplus \ldots \oplus D_{i,k}$. Then, by [SC21, Proposition 4.3 and Remark 4.4], D_i commutes with $C_{U(m)}(T \rho(G) T^{-1})$ and letting $A_i = D_i T$ we have that $A_i \rho(g_i) A_i^{-1}$ is diagonal and $A_1^{-1} A_2$ commutes with $C_{U(m)}(\rho(G))$.

Now for $\lambda_1 \in \Lambda(\rho(g_1))$ and $\lambda_2 \in \Lambda(\rho(g_2))$ we define

$$n(\lambda_1, \lambda_2) = \# \{ j : 1 \leq j \leq m \text{ and } (A_1 \rho(g_1) A_1^{-1})_{j,j} = \lambda_1 \text{ and } (A_2 \rho(g_2) A_2^{-1})_{j,j} = \lambda_2 \}.$$

Note that

$$(A_1 C_{U(m)}(\rho(H_1)) A_1^{-1}) \cap (A_2 C_{U(m)}(\rho(H_2)) A_2^{-1})$$

has a subgroup isomorphic to

$$\prod_{\lambda_1 \in \Lambda(\rho(g_1)), \lambda_2 \in \Lambda(\rho(g_2))} U(n(\lambda_1, \lambda_2))$$

and therefore has dimension at least $\sum_{\lambda_1 \in \Lambda(\rho(g_1)), \lambda_2 \in \Lambda(\rho(g_2))} n(\lambda_1, \lambda_2)^2$. The AM-QM inequality gives

$$\frac{m}{k_1 k_2} = \frac{\sum_{\lambda_1 \in \Lambda(\rho(g_1)), \lambda_2 \in \Lambda(\rho(g_2))} n(\lambda_1, \lambda_2)}{k_1 k_2} \leq \sqrt{\frac{\sum_{\lambda_1 \in \Lambda(\rho(g_1)), \lambda_2 \in \Lambda(\rho(g_2))} n(\lambda_1, \lambda_2)^2}{k_1 k_2}},$$

and we obtain the desired inequality.

3. The \hat{G}-graph $X_1^{O_S}(G)$

Let $G = \text{PSL}_2(q)$ with $q \equiv 5 \pmod{24}$ or $q \equiv 13 \pmod{24}$. Let $\hat{G} = \text{SL}_2(q)$, so that $Z(\hat{G}) = \{1, -1\}$ and $\hat{G}/Z(\hat{G}) = G$. In what follows we denote $z = -1 \in Z(\hat{G})$.

We consider a construction of $X_1^{O_S}(G)$ as in [SC21, Proposition 5.5]. Recall that for any $k \geq 0$, we can also consider the G-graph $X_1^{O_S+k}(G)$ obtained from $X_1^{O_S}(G)$ by attaching k free orbits of 1-cells (note that by [SC20, Proposition 3.10] the G-homotopy type of $X_1^{O_S+k}(G)$ does not depend on the particular way these free orbits are attached).

We consider the action of $\hat{G} = \text{SL}_2(q)$ on $X_1^{O_S+k}(G)$ defined using the projection $\pi: \hat{G} \to G$. The stabilizer of a vertex (resp. edge) for the action of \hat{G} is a central extension, by $Z(\hat{G})$, of the
stabilizer for the action of G. Then the \hat{G}-orbits are connected as in Figure 1. The group B denotes the Borel subgroup of \hat{G} and Q_8 denotes the quaternion group.

\[
\begin{array}{c|c}
B & \text{SL}_2(3) \\
\hline
C_q - 1 & C_6 \\
\hline
2D_q - 1 & \text{SL}_2(3) \\
\end{array}
\]

\[
\begin{array}{c|c}
B & 2D_{q+1} \\
\hline
C_q - 1 & C_6 \\
\hline
2D_q - 1 & Q_8 \\
\end{array}
\]

$\hat{G} = \text{SL}_2(q)$, $q \equiv 13 \pmod{24}$.

$\hat{G} = \text{SL}_2(q)$, $q \equiv 5 \pmod{24}$.

Figure 1. The \hat{G}-graph $X^O_{1S}(G)$.

We now apply Brown’s result [SC21, Theorem 3.1]. The choices in each case are the following. Note that in each case the stabilizers are given in Tables 1 and 2.

- For $\hat{G} = \text{SL}_2(q)$ with $q \equiv 13 \pmod{24}$ we take $V = \{v_0, v_1, v_2, v_3\}$, $E = \{\eta_0, \eta_1, \eta_2, \eta_3, \eta_1', \ldots, \eta_k'\}$, $T = \{\eta_0, \eta_1, \eta_2\}$, with $v_0 \overset{\eta_0}{\rightarrow} v_1$, $v_1 \overset{\eta_2}{\rightarrow} v_2$, $v_2 \overset{\eta_3}{\rightarrow} v_3$, $v_3 \overset{\eta_k}{\rightarrow} g_{\eta_k}v_0$ and $v_0 \overset{\eta_i'}{\rightarrow} v_0$ for $i = 1, \ldots, k$.
- For $\hat{G} = \text{SL}_2(q)$ with $q \equiv 5 \pmod{24}$ we take $V = \{v_0, v_1, v_2, v_3\}$, $E = \{\eta_0, \eta_1, \eta_2, \eta_3, \eta_1', \ldots, \eta_k\}$, $T = \{\eta_0, \eta_2, \eta_3\}$, with $v_0 \overset{\eta_0}{\rightarrow} v_1$, $v_1 \overset{\eta_2}{\rightarrow} v_2$, $v_2 \overset{\eta_3}{\rightarrow} v_3$, $v_3 \overset{\eta_k}{\rightarrow} g_{\eta_k}v_0$ and $v_0 \overset{\eta_i}{\rightarrow} v_0$ for $i = 1, \ldots, k$.

\hat{G}	q	\hat{G}_{v_0}	\hat{G}_{v_1}	\hat{G}_{v_2}	\hat{G}_{v_3}
$\text{SL}_2(q)$	q odd	$B = \mathbb{F}_q \rtimes C_{q - 1}$	$2D_{q - 1}$	$2D_{q + 1}$	$\text{SL}_2(3)$

Table 1. Stabilizers of vertices for the graph $X^O_{1S}(G)$.

\hat{G}	q	\hat{G}_{η_0}	\hat{G}_{η_1}	\hat{G}_{η_2}	\hat{G}_{η_3}	\hat{G}_{η_k}
$\text{SL}_2(q)$	q odd	$C_{q - 1}$	C_4	Q_8	C_6	$\mathbb{Z}(\hat{G})$

Table 2. Stabilizers of edges for the graph $X^O_{1S}(G)$.

In what follows Γ_k is the group obtained by applying Brown’s result to the action of G on $X^O_{1S+k}(G)$ with these choices. The following lemma is an extension of [SC21, Lemma 5.6] for the action of \hat{G} on $X^O_{1S}(G)$.

Lemma 3.1. Let G be one of the groups in Theorem C. Let E be a set of representatives of the orbits of edges in $X^O_{1S}(G)$. Let X be an acyclic 2-complex obtained from $X^O_{1S}(G)$ by attaching a free orbit of 2-cells along the G-orbit of a closed edge path $\xi = (a_1e_1, \ldots, a_ne_n)$ with $e_i \in E$, $a_i \in \hat{G}$ and $\varepsilon_i \in \{-1, 1\}$. Then it is possible to choose, for each $e \in E$ an element $x_e \in \mathbb{C}[\hat{G}]$ and an element $\delta \in \mathbb{C}[\hat{G}]$ so that

$$1 = (1 - z)\delta + \sum_{i=1}^{n} \varepsilon_i a_i N(\hat{G}_{e_i})x_{e_i}.$$

Therefore, for any complex representation V of \hat{G} we have $V = (1 - z)V + \sum_{e \in E} s_e V^{G_e}$, where $s_e = \sum_{i \in I_e} \varepsilon_i a_i$ and $I_e = \{i : e_i = e\}$.
more concretely, \(B \) of the subgroups appearing in the above list and by [SC21, Theorem A.5.1]. For example, note [Dor71, p.234]). The above computation follows then from the structure description of each one.

Proof.

Consider the ring homomorphism \(\pi: \mathbb{C}[\hat{G}] \to \mathbb{C}[G] \). By [SC21, Lemma 5.6], there are elements \(\hat{x}_e \in \mathbb{C}[\hat{G}] \) such that \(1 = \sum_{i=1}^{n} \epsilon_i \pi(a_i) N(G_{e_i}) \pi(\hat{x}_{e_i}) \). Let \(x_e = \frac{1}{2} \hat{x}_e \). Note that \(\pi(N(G_x)) = 2 \cdot N(G_x) \) and then \(\pi(\sum_{i=1}^{n} \epsilon_i a_i N(G_{e_i}) x_{e_i}) = 1 \). Therefore, since the kernel of \(\pi \) is the ideal generated by \(1 - z \), there is an element \(\delta \in \mathbb{C}[\hat{G}] \) such that \(1 = (1-z)\delta + \sum_{i=1}^{n} \epsilon_i a_i N(G_{e_i}) x_{e_i} \). \(\square \)

4. **Representations and centralizers**

In this section we fix a suitable irreducible representation \(\rho_0: \hat{G} \to \mathbb{G} \) and compute the dimension of the centralizers \(\mathbb{C}_G(\rho_0(\hat{G}_h)) \) and \(\mathbb{C}_G(\rho_0(\hat{G}_{h})) \). To perform these computations, we first need to know how many elements of each conjugacy class of \(\hat{G} \) appear in each of the subgroups \(\hat{G}_h \) and \(\hat{G}_{h} \). Recall that if \(x \) is an element of \(\hat{G} \), then \((x) \) denotes its conjugacy class. For the structure and conjugacy classes of the groups \(\text{SL}_2(q) \) we refer to [SC21, Appendix A.5].

Proposition 4.1. Let \(\hat{G} = \text{SL}_2(q) \), with \(q \equiv \pm 1 \) (mod 3) and \(q \equiv 1 \) (mod 4). Then

(i) \(C_{q-1} \) contains 1 and \(z \); and 2 elements of each class \(\langle a^l \rangle \), for \(l = 1, \ldots, \frac{q-3}{2} \).

(ii) \(C_4 \) contains 1 and \(z \); and 2 elements of the class \(\langle a^\frac{q-1}{4} \rangle \).

(iii) \(Q_8 \) contains 1 and \(z \); and 6 elements of the class \(\langle a^\frac{q-3}{2} \rangle \).

(iv) If \(q \equiv 1 \) (mod 3) then \(C_6 \) contains 1 and \(z \); and 2 elements of each class \(\langle a^l \rangle \) for \(l = \frac{q-1}{3}, \frac{q-1}{6} \). If \(q \equiv 2 \) (mod 3) then \(C_6 \) contains 1 and \(z \); and 2 elements of each class \(\langle b^m \rangle \) for \(m = \frac{q+1}{3}, \frac{q+1}{6} \).

(v) The Borel subgroup \(B \) contains 1 and \(z \); \(\frac{q-1}{2} \) elements of each of the classes \(\langle a \rangle, \langle d \rangle, \langle zc \rangle \) and \(\langle zd \rangle \); and \(2q \) elements of each class \(\langle a^l \rangle \), for \(l = 1, \ldots, \frac{q-3}{2} \).

(vi) If \(q \equiv 1 \) (mod 3) then \(2D_{q-1} \) contains 1 and \(z \); 2 elements of each class \(\langle a^l \rangle \), for \(l = 1, \ldots, \frac{q-3}{2} \); and \(q-1 \) extra elements of the class \(\langle a^\frac{q-1}{4} \rangle \).

(vii) \(2D_{q+1} \) contains 1 and \(z \); 2 elements of each class \(\langle b^m \rangle \), for \(m = 1, \ldots, \frac{q-1}{2} \); and \(q+1 \) elements of the class \(\langle a^\frac{q+1}{4} \rangle \).

(viii) If \(q \equiv 1 \) (mod 3) then \(\text{SL}_2(3) \) contains 1 and \(z \); 6 elements of the class \(\langle a^\frac{q+1}{4} \rangle \); and 8 elements of each class \(\langle a^l \rangle \) for \(l = \frac{q-1}{3}, \frac{q-1}{6} \). If \(q \equiv 2 \) (mod 3) then \(\text{SL}_2(3) \) contains 1 and \(z \); 6 elements of the class \(\langle a^\frac{q+1}{4} \rangle \); and 8 elements of each class \(\langle b^m \rangle \) for \(m = \frac{q+1}{3}, \frac{q+1}{6} \).

Proof. Note that if \(q \equiv 1 \) (mod 4), then every element of \(\text{SL}_2(q) \) is conjugate to its inverse (cf. [Dor71, p.234]). The above computation follows then from the structure description of each one of the subgroups appearing in the above list and by [SC21, Theorem A.5.1]. For example, note that \(B = \mathbb{F}_q \rtimes C_{q-1} \), and that \(2D_{q-1} \) and \(2D_{q+1} \) can be described as follows:

\[2D_{q-1} \simeq C_{(q-1)/4} \rtimes Q_8, \quad 2D_{q+1} \simeq C_{(q+1)/2} \rtimes C_4. \]

More concretely, \(2D_{q-1} = \langle a, \alpha \rangle \) (resp. \(2D_{q+1} = \langle b, \alpha \rangle \)), where \(a \) (resp. \(b \)) has order \(q-1 \) (resp. \(q+1 \)), \(\alpha \) has order 4, \(a^\alpha = a^{-1} \) (resp. \(b^\alpha = b^{-1} \)) and \(\alpha^2 = z \). \(\square \)

For \(i = 1, 3 \) and each of the groups \(G \) in Theorem C, we fix a generator \(\hat{g}_i \) of \(\hat{G}_i \).

Proposition 4.2. Let \(\hat{G} = \text{SL}_2(q) \) where \(q \equiv 5 \) (mod 8) and let \(G = U \left(\frac{q-1}{2} \right) \). There is an irreducible representation \(\rho_0: \hat{G} \to \mathbb{G} \) satisfying the following properties:

(i) The centralizer \(\mathbb{C}_G(\rho_0(\hat{G}_m)) \) has dimension \(\frac{q-1}{2} \).

(ii) The eigenvalues of \(\rho_0(\hat{g}_1) \) are \(i \) and \(-i \). The centralizer \(\mathbb{C}_G(\rho_0(\hat{G}_m)) \) has dimension \(\frac{(q-1)^2}{8} \).
(iii) The centralizer \(C_G(\rho_0(\hat{G}_{v_0})) \) has dimension \(\frac{(q-1)^2}{18} \).
(iv) The eigenvalues of \(\rho_0(\hat{g}_3) \) are \(\omega, \omega^5 \) and \(-1\), where \(\omega = e^{2\pi i/6} \). The dimension of \(C_G(\rho_0(\hat{G}_{v_3})) \) is given by
\[
\dim C_G(\rho_0(\hat{G}_{v_3})) = \begin{cases}
\frac{(q-1)^2}{12} & \text{if } q \equiv 1 \pmod{3} \\
\frac{q^2-2q+9}{12} & \text{if } q \equiv 2 \pmod{3}.
\end{cases}
\]
(v) The restriction of \(\rho_0 \) to the Borel subgroup \(\hat{G}_{v_0} \) is irreducible.
(vi) The centralizer \(C_G(\rho_0(\hat{G}_{v_0})) \) has dimension \(\frac{q-1}{4} \).
(vii) The centralizer \(C_G(\rho_0(\hat{G}_{v_2})) \) has dimension \(\frac{q-1}{4} \).
(viii) The dimension of \(C_G(\rho_0(\hat{G}_{v_3})) \) is given by
\[
\dim C_G(\rho_0(\hat{G}_{v_3})) = \begin{cases}
\frac{(q-1)^2}{48} & \text{if } q \equiv 1 \pmod{3} \\
\frac{(q-1)^2+32}{48} & \text{if } q \equiv 2 \pmod{3}.
\end{cases}
\]

Proof. We take \(\rho_0 \) a representation realizing the degree \(\frac{q-1}{2} \) character \(\eta_1 \) of [SC21, Theorem A.5.1]. By [SC21, Theorem 4.1], we can take \(\rho_0 \) to be unitary. By [SC21, Lemma A.1.1] and [SC21, Lemma 4.5] we can prove parts (i) to (viii) by computing inner products of the restrictions of \(\eta_1 \). These restrictions are computed using Proposition 4.1. \(\square \)

5. The proof of Theorem C

For each of the groups \(G \) in Theorem C, we consider a closed edge path \(\pi \) in \(X_1^{OS}(G) \) such that attaching a free orbit of 2-cells along this path gives an acyclic 2-complex. We define \(x_0 = i(\xi) \), where \(i: \pi_1(X_1^{OS}(G), v_0) \to \Gamma_0 \) is the inclusion given by Brown’s theorem. We set \(x_i = x_{i\eta} \) for \(i = 1, \ldots, k \). Let \(\tilde{\eta} \) be the unique edge of \(X_1^{OS}(G) \) which lies in \(E - T \). We define \(y_0 = x_{\tilde{\eta}} \) and \(y_i = x_{i\eta} \) for \(i = 1, \ldots, k \).

Let \(M_k \) be the moduli of representations of \(\Gamma_k \) obtained from the representation \(\rho_0: \hat{G} \to U(m) \) of Proposition 4.2 using [SC21, Theorem 3.2]. Let \(\overline{M}_k \) be the corresponding quotient obtained using [SC21, Proposition 3.3]. Note that the equalities \(M_k = M_0 \times G^k \) and \(\overline{M}_k = \overline{M}_0 \times G^k \) still hold, because \(\rho_0(z) \in Z(G) \).

In what follows we consider the induced maps \(X_i(\tau) = \rho_\tau(x_i), Y_i(\tau) = \rho_\tau(y_i) \).

Proof of Theorem C. By [SC21, Corollary 3.4], \(M_k \) and \(\overline{M}_k \) are connected and orientable. A computation using Proposition 4.2 shows \(\dim \overline{M}_k = \dim G^{k+1} \) (alternatively, note that this also follows from [SC21, Lemma 7.2]). By Lemma 6.2, \(1 \) is a regular point of \(X_0 \). By Propositions 7.1 and 7.2, \(\overline{Y}_0: \overline{M}_0 \to G \) has degree 0. The rest of the proof now continues in exactly the same way as the proof of [SC21, Theorem B]. See [SC21, Sections 8, 9 and 10] for more details. \(\square \)

6. The differential of \(X_0 \) at \(1 \)

Proposition 6.1. The representation \(\rho_0 \) satisfies \(\text{Ad} \circ \rho_0(z) = 1 \), where \(\text{Ad}: G \to GL(T_1 G) \) is the adjoint representation.

Proof. This is immediate, for \(\text{Ad}(g) \) is the differential of the map \(x \mapsto gxg^{-1} \) and \(\rho_0(z) = -1 \) is central. \(\square \)

Lemma 6.2. For each of the groups in Theorem C, \(1 \) is a regular point of \(X_0: M_0 \to G \).
Proof. Consider the representation $\text{Ad} \circ \rho_0 : \hat{G} \to \text{GL}(T_1 \mathbb{G})$ which is given by $g \cdot v = d_{\rho_0(g)}^{-1} L_{\rho_0(g)} \circ d_1 R_{\rho_0(g)}^{-1}(v)$. By [SC21, Proposition 2.4], we have $T_1 C_G(\rho_0(H)) = (T_1 \mathbb{G})^H$. By Proposition 6.1 we have $(1 - z) \cdot T_1 \mathbb{G} = 0$ and then Lemma 3.1 gives $T_1 \mathbb{G} = \sum_{e \in E} s_e \cdot T_1 C_G(\rho_0(\hat{G}_e))$. Then the result follows from [SC21, Theorem 3.7].

7. The degree of \mathbf{Y}_0

We now prove the degree of \mathbf{Y}_0 is 0 for each of the groups in Theorem C. When $q \equiv 13 \pmod{24}$, the approach is similar to that of [SC21, Propositions 9.1 and 9.2]. When $q \equiv 5 \pmod{24}$ the approach needs to be modified. Table 3 gives the value of Y_0 in the different cases we consider.

\hat{G}	$q \equiv 13 \pmod{24}$	$q \equiv 5 \pmod{24}$
$\text{SL}_2(\mathbb{Q})$	$\tau_{\eta_1}^{-1} \tau_{\eta_2}^{-1} \rho_0(\eta_{31})$	$\tau_{\eta_1}^{-1} \tau_{\eta_2}^{-1} \tau_{\eta_3}^{-1} \rho_0(\eta_{31})$

Table 3. The map Y_0, for each of the groups G that we consider.

Proposition 7.1. In the case of $q \equiv 13 \pmod{24}$ the degree of $\mathbf{Y}_0 : \mathcal{M}_0 \to \mathbb{G}$ is 0.

Proof. Consider the manifold $M = C_G(\rho_0(\hat{G}_{\eta_1})) \times C_G(\rho_0(\hat{G}_{\eta_2})) \times C_G(\rho_0(\hat{G}_{\eta_3}))$, the group $H = C_G(\rho_0(\hat{G}_{v_1})) \times C_G(\rho_0(\hat{G}_{v_2}))$ and the free right action $M \acts H$ given by $(\tau_{\eta_1}, \tau_{\eta_2}, \tau_{\eta_3}) \cdot (\alpha_{v_1}, \alpha_{v_2}) = (\alpha_{v_1}^{-1} \tau_{\eta_0}, \alpha_{v_2}^{-1} \tau_{\eta_2} \alpha_{v_1}, \tau_{\eta_3} \alpha_{v_2})$.

For $q > 3$ we have

\[
\dim \frac{M}{H} = \dim M - \dim H = \dim \mathcal{M}_0 - \dim H - \dim C_G(\rho_0(\hat{G}_{\eta_1})) - \dim C_G(\rho_0(\hat{G}_{v_2})) = \dim \mathbb{G} - \frac{(q - 1)^2}{8} + \frac{q - 1}{4} < \dim \mathbb{G}.
\]

Note that the image of \mathbf{Y}_0 is the image of the map $M/H \to \mathbb{G}$ given by $(\tau_{\eta_0}, \tau_{\eta_2}, \tau_{\eta_3}) \mapsto \tau_{\eta_0}^{-1} \tau_{\eta_2}^{-1} \rho_0(\eta_{31})$. Since this map is differentiable we conclude that \mathbf{Y}_0 is not surjective and therefore has degree 0.

Proposition 7.2. In the case of $q \equiv 5 \pmod{24}$ and $q > 5$ the degree of $\mathbf{Y}_0 : \mathcal{M}_0 \to \mathbb{G}$ is 0.

Proof. By Lemma 2.1 (and parts (ii) and (iv) of Proposition 4.2) there are matrices $A_{\eta_1}, A_{\eta_3} \in \mathbb{G}$ such that $A_{\eta_3} = A_{\eta_1} A_{\eta_3}$ commutes with $C_G(\rho_0(\hat{G}_{v_2}))$ and letting

\[
K = \left(A_{\eta_3} C_G(\rho_0(\hat{G}_{\eta_1})) A_{\eta_3}^{-1}\right) \cap \left(A_{\eta_1} C_G(\rho_0(\hat{G}_{\eta_1})) A_{\eta_1}^{-1}\right)
\]

we have $\dim K \geq \frac{(q - 1)^2}{24}$. Consider the H-equivariant map $Z : \mathcal{M}_0 \to \mathbb{G}$ defined by

$\tau \mapsto A_{\eta_3} \tau_{\eta_0}^{-1} \tau_{\eta_2}^{-1} \tau_{\eta_3}^{-1} A_{\eta_3}^{-1} \cdot A_{\eta_1} \tau_{\eta_1}^{-1} A_{\eta_1}^{-1} \rho_0(\eta_{31})$.

By [SC21, Proposition 3.11], the induced maps \(Y_0, Z : M_0 \to \mathcal{G} \) are homotopic. To conclude, we will prove that \(Z \) is not surjective. Let
\[
M = \left(A_{\eta_3} C_{\mathcal{G}}(\rho_0(\hat{G}_{\eta_3})) A_{\eta_3}^{-1} \right) \times \left(A_{\eta_1} C_{\mathcal{G}}(\rho_0(\hat{G}_{\eta_1})) A_{\eta_1}^{-1} \right)
\times \left(A_{\eta_5} C_{\mathcal{G}}(\rho_0(\hat{G}_{\eta_5})) A_{\eta_5}^{-1} \right)
\times \left(A_{\eta_3} C_{\mathcal{G}}(\rho_0(\hat{G}_{\eta_3})) A_{\eta_3}^{-1} \right) \times K
\]
and consider the free right action \(M \curvearrowright H \) given by
\[
(\tau_0, \tau_1, \tau_2, \tau_3) \cdot (\alpha_1, \alpha_3, \alpha_K) = (\alpha_1^{-1} \tau_0, \tau_1 \alpha_K, \alpha_3^{-1} \tau_2 \alpha_1, \alpha_K^{-1} \tau_3 \alpha_3).
\]
Finally, note that the image of \(Z \) is the image of the \(H \)-equivariant map \(T : M \to \mathcal{G} \) given by
\[
(\tau_0, \tau_1, \tau_2, \tau_3) \mapsto \tau_0^{-1} \tau_2^{-1} \tau_3^{-1} \tau_1^{-1} \rho(g_{\eta_1})
\]
which cannot be surjective since we have
\[
\dim M / H = \dim M - \dim H
\]
\[
= \dim M_0 - \dim \mathcal{H} + \dim C_{\mathcal{G}}(\rho_0(\hat{G}_{\eta_2})) - \dim K
\]
\[
\leq \dim \mathcal{G} + \frac{q - 1}{4} - \frac{(q - 1)^2}{24}
\]
(since \(q > 7 \))
\[
< \dim \mathcal{G}.
\]

References

[Dor71] Larry Dornhoff. Group representation theory. Part A: Ordinary representation theory. Marcel Dekker, Inc., New York, 1971. Pure and Applied Mathematics, 7.

[SC20] Iván Sadofschi Costa. Group actions of \(A_5 \) on contractible 2-complexes. Preprint, arXiv:2009.01755, 2020.

[SC21] Iván Sadofschi Costa. Group actions on contractible 2-complexes I. With an appendix by Kevin I. Piterman. Preprint, 2021.