Particle size and pathogenicity in the respiratory tract

Richard James Thomas
Defence Science and Technology Laboratories (Dstl); Salisbury, Wiltshire, UK

Keywords: particle size, aerosols, upper respiratory tract, infection, pneumonia

Introduction: The Ubiquitous Nature of Bioaerosols

Bioaerosols are defined as a collection of particles suspended on a column of air derived from or incorporating material of biological origin. Individual particles within the bioaerosol can vary markedly in aerodynamic diameter from submicron (e.g., viruses) to many millimeters (e.g., pet dander). Importantly, bioaerosols can affect human health due to the presence of pathogens or allergens. The sources of bioaerosols containing pathogens are varied and individual aerosol particles may vary widely from submicron to several millimeters dependent on the mechanism of generation and attachment to larger particulates, for example skin cells (Table 1); although only those <100 μm are within the inhalable range for humans, it should be noted that the initial particles will rapidly evaporate depending on the humidity of the local environment. The final inhaled particle size is dependent on a number of factors including the solid organic content of the initial particle (including pathogens) and location of an individual to the aerosol source. It is evident that even pollen grains that represent comparatively larger bioaerosols can travel large distances in conducive meteorological conditions. Airborne dissemination whether outdoors or indoors is influenced by a number of inter-relating factors that impact on air mass movement, turbulence, and thermal convection including meteorology, vehicle/human activity, and ventilation that may far outweigh the terminal velocity of particles that are generally calculated in very still air. This review will concentrate on aerosols containing pathogens and the inter-relationship between factors governing particle size, deposition site, clearance, and inhalational infection.

Aerosol Transmission: Relation to Mechanism of Generation

The mechanism of generation influences the particle size of the resultant bioaerosol (Table 1), and these may be biotic (e.g., sneeze or pollen), or abiotic where the aerosol is produced by a non-living system (e.g., water cooling towers). Irrespective, all aerosols will be generated with an initial mass median aerodynamic diameter (MMAD) that will decrease with increased distance from the source due to evaporation and settling dependent on environmental parameters such as relative humidity and turbulence.

All mechanisms of human oro-nasal activity such as breathing, talking, laughing, coughing and sneezing produce particles within the inhalable range for humans of <1 to >100 μm (Table 1). Significant variation occurs between studies regarding number of particles expelled, size range of the particles and the number of pathogens incorporated within the particles, attributable to differences in methodology and human factors where standardization is difficult. Comparatively, coughing and sneezing produce greater quantities of particles that travel further due to the velocity of expulsion from the nose or mouth. The majority of these particles reside in the inhalable fraction for humans (i.e., <100 μm) at 78.6–96.0% and 98.9% for coughing and sneezing respectively; while of this inhalable fraction, 7.1–46.7% and 18.8% produced by coughing and sneezing were less than 4 μm, evaporating to droplet nuclei and deposit in the bronchoalveolar region of the lung.

The situation in relation to deposition is more complex due to evaporation. Atmospheric relative humidity (RH) and temperature are generally lower than that of the body. Once the particles are in the atmosphere evaporation occurs at rates according to their original size and composition of the particle to reach equilibrium with atmospheric conditions. Hence, the aerosol
produced is dynamic, changing with distance from the initial point of generation. Particles produced from sneezing and coughing will contain varying amounts of saliva and mucus comprising inorganic and organic ions plus glycoproteins. Many aerosol transmission modeling studies are based on assumptions e.g., settling velocities and/or evaporation parameters of pure water droplets within a vacuum and droplet distributions from healthy volunteers. However, extrapolating to natural situations where the droplet composition will be very different and turbulence will exert a large effect on how rapidly particles deposit requires care. Indeed, one recent study demonstrated that infected individuals generated larger aerosol particles than healthy counterparts. This could be attributable to differences in mucus (composition, quantity, and viscosity) produced during infection affecting evaporation and the location of the infection. The closer an individual is situated to an aerosol source then the greater the likelihood of large particles being inhaled prior to complete evaporation.

Table 1. Sources of bioaerosol

Bioaerosol source	Mechanisms	Particle size distribution^{a,b}	Reference(s)
Healthcare	Surgical or dental procedures	Up to 50 μm^a	1 and 2
	Hospital air	<2 μm (22%), 2 to 6 μm (30%), >5 μm (48%)	3
	Mechanical ventilators, bed making, and resuspension on dust or skin squamae	0.3 to >5 μm	4 and 5
Water industry	Cooling towers	<5 up to >100 μm (bimodal peaks at <5 μm and 20–40 μm)	6
	Wastewater irrigation sites	1.0 to 5.9 μm	7
Agricultural/forestry industries	Grain harvesting, food processing, dust, and/or feces from animal housing and farming activities	0.9 to 18.9 μm	8 and 9
	Insectical crop spraying	4.6 to 39 μm^c	10 and 11
		12.3 to 37.1 μm^c	12
		15 to 45 μm^c	13
		60 to 100 μm (kromecote card); 5.3 to 7.3 μm (Anderson cascade impactor)	14
	Genetic dispersion	Pollen grains: 10 to 100 μm^c	15
		Fungal spores: 1 to 50 μm^c	16
Agricultural/forestry industries	Grain harvesting, food processing, dust, and/or feces from animal housing and farming activities	0.9 to 18.9 μm	8 and 9
	Insectical crop spraying	4.6 to 39 μm^c	10 and 11
		12.3 to 37.1 μm^c	12
		15 to 45 μm^c	13
		60 to 100 μm (kromecote card); 5.3 to 7.3 μm (Anderson cascade impactor)	14
	Genetic dispersion	Pollen grains: 10 to 100 μm^c	15
		Fungal spores: 1 to 50 μm^c	16
Postal and shopping industry	Mail sorting and opening	0.3 to >5 μm; 19.6-fold increase in particles >5 μm	17
	Mist machine	“between 40 and 70 μm”	18
Leisure activities	Marine activities, e.g., surfing	24 to 44 μm, median 34 μm	19
	Whirlpools	<1 to 15 μm dependent on turbulence	20
Human activity	Breathing	<0.8 to 2 μm	21
	Speaking	16 to 125 μm	22 and 23
	Shouting	<0.8 to 7 μm	21
	Coughing	0.62 to 15.9 μm	21, 22, and 25–27
		40 to 125 μm	23 and 28
	Sneezing	7 to 125 μm	28 and 29
	Vuvuzela playing	0.5 to >10 μm (mean = 1.3 μm)	24
	Showering	Hot water (5.2 to 7.5 μm)	30
		Cold water (2.5 to 3.1 μm)	30
Miscellaneous	Pulp waste water treatment plant	2.4 to 3.5 μm (median); 99.9% of particles were below 15 μm	31
	Building tower (sweeping dust containing pigeon feces)	1.1 to 11.0 μm	32

*aAerodynamic diameter; *distributions should be viewed with caution as often experiments used samplers with cut off limits less than 15 μm and therefore were preferentially selective for particles smaller than this size; *spray-dried Bacillus thuringiensis produced at different homogenization speeds; *non-biological aerosols for vector control; *procedure- or species-dependent.
Table 2. Tissues that may represent the primary site of deposition, clearance and infection during exposure to a bioaerosol

Anatomical region	Tissue(s)	Function	Epithelium
Nasopharyngeal/Ororharyngeal	Nares to nasopharynx	Inhalation, filtration, and mucociliary clearance of foreign particles; warming/humidification of air	Ciliated
Paranasal sinuses		Humidification of air; mucociliary clearance of foreign particles	Ciliated
Olfactory epithelium		Detection of odors	Sensory
Mouth to oropharynx		Mastication and ingestion; inhalation	Non-ciliated
Tonsils, adenoids*		Defense against inhaled/ingested pathogens; URT mucosal immunity	Lymphoepithelial
Tracheobronchial	Larynx	Sound generation; mucociliary clearance	Ciliated/non-ciliated
	Trachea	Air conduction; mucociliary clearance	Ciliated
	Bronchi to bronchioles	Air conduction and particulate filtration; mucociliary clearance	Ciliated
Pulmonary	Respiratory bronchioles to alveoli	Air conduction; gaseous exchange; pulmonary clearance and immunity	Non-ciliated
Ocular	Ocular conjunctiva	Lubrication of ocular region	Non-ciliated
	Nasolacrimal duct	Drainage of excess tear fluid	Non-ciliated
Gastrointestinal	Esophageal, stomach and intestinal epithelium	Digestion and absorption of ingested material, including inhaled particles trapped in the mucociliary escalator	Non-ciliated
	Peyer patches	Defense against ingested pathogens	Lymphoepithelial

*Nasal-associated lymphoid tissue (NALT) represents the rodent equivalent.

Similar principles can be extrapolated to any aerosol present in Table 1, simply the mechanism of generation, the solute type and concentrations (organic and inorganic) plus the surrounding environment will differ and therefore the processes of evaporation and dissemination will accordingly vary. Irrespective of whether aerosol particles are generated by abiotic or biotic processes (e.g., Table 1), inhalation of particles into the warm humid respiratory tract will prompt rehydration and affect deposition due to particle growth.43 It is evident that there is significant potential for URT deposition depending on how close an individual is to the source.

Initial Site of Deposition and Infection is Dependent on Particle Size

The respiratory tract is complex, comprising a collection of specialized organs, tissues, and cells ranging from the nares to the alveoli.44 These tissues convey a range of physiological functions connected to breathing (i.e., air conditioning, air conductance, and gaseous exchange) and defense against foreign particulates (i.e., immune function and mucociliary or phagocytic clearance). After exposure to a bioaerosol containing pathogens, the initial site of deposition where infection may ensue is likely to be the respiratory epithelium. However, due to the interconnecting anatomical features and clearance mechanisms within the mammalian body, the ocular conjunctiva, olfactory epithelium, or URT immunological tissues may represent further sites where infection could initiate after inhalational exposure to a pathogenic aerosol (Table 2; Fig. 1). Various viruses with dual tropism for both ocular and respiratory tissues utilize the nasolacrimal duct to produce URT infection (e.g., influenza virus, respiratory syncytial virus, and adenovirus).45 Depending on clearance mechanisms and the sensitivity of the pathogen to stomach acidity, gastrointestinal (GI) tissues may represent a further portal. The enteric Norwalk-like virus has been demonstrated to be transmitted by aerosol, presumably via droplets produced during diarrhea and vomiting.46,47 Similarly, aerosol dissemination of *Clostridium difficile* spores has been observed in hospital wards;48 however, this has not been conclusively linked to infection via inhalation.

The aerodynamic diameter of inhaled particles determine where within the respiratory tract pathogens incorporated within the particles deposit and interact with host tissues. A number of mechanisms determine deposition of particles within the respiratory tract including inertial impaction, Brownian diffusion, gravitational sedimentation, and electrostatic effects.44 Small particles (<1–3 μm) diffuse deep into the lung tissue, depositing in the alveoli by a number of mechanisms including diffusion, sedimentation, and electrostatic effects. In contrast, larger particles (>8 μm) impact further up the respiratory airways due to greater inertion, depositing in a size-dependent manner from the nasal passages to the larger bronchioles. This relationship is extant across mammalian species albeit differences in respiratory anatomy and physiology dictate the penetration of a particular particle size into the respiratory tract.59-54 The size and body shape of the species determines the morphometry of the nasal cavity and respiratory airways influencing the size of the particles that may deposit in corresponding anatomical regions.51,55 Even within species, variables including age, body weight, breathing mode (oro-nasal/nasal), sex, strain (or ethnicity), activity (e.g., sleeping, exercise), and disease state (e.g., asthma, pneumonia, emphysema, and chronic obstructive pulmonary disorder) influence biometry or affect respiratory physiology and hence deposition profiles.49,56,57 The propensity of humans to revert to oro-nasal breathing during exertion significantly increases the size of particles that may be inhaled into the respiratory tract due to the comparative size of the oral cavity and bypassing the
filtration of the nasal cavity. Differences in deposition can then affect clearance mechanisms and rates and ultimately infection kinetics for an inhaled pathogen (Fig. 1).

Clearance Mechanisms in the Respiratory Tract

Clearance kinetics are fundamental to determining the dose of deposited pathogens within the respiratory tract and ultimately systemically. A schematic of the interplay between deposition site, clearance mechanisms and pathogen dissemination from the respiratory tract is illustrated in Figure 1. The nose effectively filters foreign particles that enter the nasal cavity in a manner dependent on particle size and air flow rate with filtration efficiency decreasing with particle size. Once deposited, the speed of nasal clearance depends on the deposition location in the nasopharynx. In healthy humans, clearance from the ciliated anterior region is much more rapid than the non-ciliated posterior region, ranging from 1.3 to 12.6 mm min⁻¹. These rates are comparable to reported tracheal and bronchial mucociliary rates that range from 0.8 to 12.4 mm min⁻¹. Similarities exist in animal models however clearance rates are generally more rapid due to the decreased distances required to reach the larynx.

Both the nasal and tracheobronchial escalators comprise mucus that entraps deposited particulates and via the cumulative action of the cilia remove deposited material to the GI tract. Mucus composition is highly variable comprising glycoproteins (mucins), proteins, proteoglycans, and lipids. The quantities of these components present at any particular time govern the viscoelasticity, adhesiveness, and wettability of the mucus and can influence the size of particles emitted by coughing or...
| Particle size (μm) | Animal species (strain) | Mouse (Balb/c) | Guinea pig | Rhesus macaque | Rhesus | Mouse (A/J) | Guinea pig | Georgia, 1984; and 1985. A.21 The diversity of oligosaccharide chains present on respiratory mucins and proteoglycans adds complexity providing a mechanism for microbial interaction and clearance.63 Factors such as underlying disease both infectious and non-infectious (e.g., cystic fibrosis, smoking, and diabetes) reduce mucociliary clearance rates,84,85,86,87 hence increasing residence time for deposited pathogens within the respiratory tract.

The pulmonary region is non-ciliated and clearance of foreign particulates is conducted by resident alveolar macrophages that phagocytose particles and transport to the local lung associated lymph nodes and play an important role in pulmonary immunity.65-67 Across species, numbers of alveolar macrophages increase in response to deposited foreign particles, however interspecies variability exists with respect to the rate of chemotaxis and phagocytosis.63

Pathogenesis as a Function of Particle Size in Animal Models

Lung and URT lymphoid tissue infections

No studies exist investigating the effects of particle size on respiratory infection in humans. However, comparative studies in animal models have been conducted using experimental systems that can differentially deposit pathogens in the LRT and URT within small or large particle aerosols.69-77 The general theme running through studies investigating the effects of aerosol particle size on infectivity is that greater numbers of pathogens need to deposit in the URT to produce lethal infection compared with the LRT (Tables 3 and 4). This is likely a function of the mucociliary escalators present in the nasal cavity and tracheobronchial regions clearing material to the gastrointestinal tract. An increased time to death was observed in animals that inhaled large particles that in time-course studies could be related to differences in pathogenesis between infections initiating in the LRT and URT.69-77

The inhalation of pathogens within small particle aerosols results in the typical disease profile associated with deposition in the alveolar region across all the rodent and NHP models used. Bacterial pathogens such as Francisella tularensis, Burkholderia pseudomallei, Brucella suis, and Yersinia pestis proliferate within the alveolar spaces or alveolar macrophages causing an influx of neutrophils that contribute to a massive cytokine storm resulting in edema and pneumonia consolidation characteristic of primary pneumonia. Eventually tissue destruction leads to dissemination to visceral organs, septic shock and death.69-72,75,76,79-82 B. pseudomallei is further characterized by the formation of abscesses throughout infected tissues and the potential to relapse after completion of antimicrobial therapy.77 B. anthracis endospores are phagocytosed by alveolar macrophages and dendritic cells and trafficked to lung-associated lymph nodes where they germinate and replicate destroying the lymph node before eventually disseminating via the bloodstream resulting in septicemic shock and toxemia.76,83

Deposition of these pathogens within the nasal cavity produces a different disease profile with some similarities across the different bacterial pathogens. Degradation and ulceration of the

Table 3. Influence of aerosol particle size on the respiratory/lethal dose values for respiratory pathogens

| Particle size (μm) | Animal species (strain) | Mouse (Balb/c) | Guinea pig | Rhesus macaque | Mouse (A/J) | Guinea pig | Georgia, 1984; and 1985. A.21 The diversity of oligosaccharide chains present on respiratory mucins and proteoglycans adds complexity providing a mechanism for microbial interaction and clearance.63 Factors such as underlying disease both infectious and non-infectious (e.g., cystic fibrosis, smoking, and diabetes) reduce mucociliary clearance rates,84,85,86,87 hence increasing residence time for deposited pathogens within the respiratory tract.

The pulmonary region is non-ciliated and clearance of foreign particulates is conducted by resident alveolar macrophages that phagocytose particles and transport to the local lung associated lymph nodes and play an important role in pulmonary immunity.65-67 Across species, numbers of alveolar macrophages increase in response to deposited foreign particles, however interspecies variability exists with respect to the rate of chemotaxis and phagocytosis.63

Pathogenesis as a Function of Particle Size in Animal Models

Lung and URT lymphoid tissue infections

No studies exist investigating the effects of particle size on respiratory infection in humans. However, comparative studies in animal models have been conducted using experimental systems that can differentially deposit pathogens in the LRT and URT within small or large particle aerosols.69-77 The general theme running through studies investigating the effects of aerosol particle size on infectivity is that greater numbers of pathogens need to deposit in the URT to produce lethal infection compared with the LRT (Tables 3 and 4). This is likely a function of the mucociliary escalators present in the nasal cavity and tracheobronchial regions clearing material to the gastrointestinal tract. An increased time to death was observed in animals that inhaled large particles that in time-course studies could be related to differences in pathogenesis between infections initiating in the LRT and URT.69-77

The inhalation of pathogens within small particle aerosols results in the typical disease profile associated with deposition in the alveolar region across all the rodent and NHP models used. Bacterial pathogens such as Francisella tularensis, Burkholderia pseudomallei, Brucella suis, and Yersinia pestis proliferate within the alveolar spaces or alveolar macrophages causing an influx of neutrophils that contribute to a massive cytokine storm resulting in edema and pneumonia consolidation characteristic of primary pneumonia. Eventually tissue destruction leads to dissemination to visceral organs, septic shock and death.69-72,75,76,79-82 B. pseudomallei is further characterized by the formation of abscesses throughout infected tissues and the potential to relapse after completion of antimicrobial therapy.77 B. anthracis endospores are phagocytosed by alveolar macrophages and dendritic cells and trafficked to lung-associated lymph nodes where they germinate and replicate destroying the lymph node before eventually disseminating via the bloodstream resulting in septicemic shock and toxemia.76,83

Deposition of these pathogens within the nasal cavity produces a different disease profile with some similarities across the different bacterial pathogens. Degradation and ulceration of the
nasal epithelium precedes infection of the URT lymphoid tissues such as the nasal-associated lymphoid tissue (NALT) and tonsils. Eventually cervical lymphadenitis is observed prior to dissemination to other tissues and septic shock. Intranasal deposition resulted in the presence of higher viral titers in the nasal mucosa, NALT, and cervical lymph nodes. In contrast, for the encephalic alphaviruses, the demarcation between LRT and URT infection is much less marked demonstrating the difficulties in employing rigid health-related demarcations to particle size penetration into the respiratory tract.

Pathogen	Yersinia pestis (murine)	Bacillus anthracis (murine)	Burkholderia pseudomallei (murine)	Francisella tularensis (Rhesus macaque)				
Particle size	1	12	1	12	1	12		
Deposition site	Lungs	Nasal mucosa	Lungs	Nasal mucosa	Lungs	Nasal mucosa		
MLD (cfu)	6.01 × 10^1	2.95 × 10^1	2.43 × 10^1	7.65 × 10^1	4	12		
MTTD (h)	72 ± 0	90 ± 11.5	101.6 ± 10.4	161.0 ± 16.1	173.8 ± 11.3	174.7 ± 14.9	138.9 ± 8.8	224.5 ± 9.6
Mortalitya (%)	100	80	78	56	100	90	100	83
Pathogenesis	1° pneumonia	Nasal ulceration	BALT infection	Nasal ulceration	1° pneumonia	Nasal ulceration	1° pneumonia	Nasal ulceration
Splenitis	NALT infection	Mediastinal LN	NALT infection	Splenitis	NALT infection	Splenitis	Tonsillitis	
Septicemia	Cervical adenitis	Splenitis	Cervical adenitis	Septicemia	Cervical adenitis	Septicemia		
Splenitis	Septicemia	Splenitis	Splenitis	Splenitis				
Septicemia								
Primary gastritis								
2° pneumonia								
Peyer patches	Olfactory neuritis	Conjugunctivitis						
Mesenteric LN	Brain abscess							

Mortality indicated for retained dose of 10^3 cfu in the lungs or nasal cavity; cfu, colony-forming unit. Data from references 69 and 75–77.

Intriguingly, differences in pathogenesis were observed between the bacterial pathogens upon deposition in the URT. In mice that inhaled 12 μm particles containing B. anthracis endospores GI pathology was observed with primary gastritis (17%), and activation and degeneration of GI lymphoid tissues such as the Peyer patches (72%) and mesenteric lymph nodes (67%). This pathology was not observed in other species, and is perhaps related to a combined effect of mucociliary clearance of the endospores to the stomach and the hardiness of endospores to the harsh acidic environment of the stomach. Bacteria such as Y. pestis, F. tularensis, and B. pseudomallei that do not produce GI pathology after URT deposition are much more sensitive to low acidity. Mice that inhaled B. pseudomallei within 12 μm particles demonstrated tropism toward the olfactory epithelium with sequential infection and resultant inflammatory responses within the olfactory neurone and olfactory bulb (100%) culminating in brain abscessation (33%). Similar observations were observed in an intranasal infection model. Ocular infection characterized by severe conjunctivitis associated with “purulent discharge from the nose and eyes” was observed in 16% of rhesus macaques that inhaled F. tularensis within 12–24 μm particles. In contrast, inhalation of 1–8 μm particles did not produce this pathology.

In contrast, for the encephalic alphaviruses, the demarcation between LRT and URT infection is much less marked demonstrating the difficulties in employing rigid health-related demarcations to particle size penetration into the respiratory tract. Intranasal deposition resulted in the presence of higher viral titers in the nasal mucosa, NALT, and cervical lymph nodes. Similarly, intranasal challenge in the Guinea pig resulted in targeted infection of the olfactory bulb prior to viremia. Similar pathogenesis has been observed in the Rhesus macaque, however, the virus localized in the olfactory bulb apparently not progressing to the brain. In eastern equine encephalitis virus (EEEV) the olfactory neuronal pathway is important for inhalational but not parenteral routes of infection in rodent models. Utilization of the olfactory neurone to cross the cribriform plate into the central nervous system has also been observed in URT infection models for Nipah virus, Japanese encephalitis virus, Hendra virus, herpes simplex virus, influenza virus (H5N1 subtype),
Borna virus, *Balamuthia mandrillaris*, *Naegleria fowleri*, *B. pseudomallei*, *Streptococcus pneumoniae*, *Listeria monocytogenes*, and *Neisseria meningitidis*. Interestingly, recently differential phagocytosis of *Escherichia coli* and *Burkholderia thailandensis* was observed in vitro by olfactory sheathing and Schwann cells perhaps representing a mechanism for colonization, infection, or clearance. These studies demonstrate that deposition site can profoundly influence infection kinetics and pathogenesis within inhalational animal models. Depending on the initial site of deposition and clearance kinetics, aerosolized pathogens may come into contact with a range of tissues and organs through which infection may occur: nasal mucosa, nasal and URT lymphoid tissues, olfactory epithelium, bronchoalveolar epithelium, gastrointestinal tract, and ocular conjunctiva.

Can CDC Select Agents Cause Infection of the URT in Humans?

In the United States, possession and transfer of biothreat agents is regulated under the Select Agent Program (SAP) administered by the Centers for Disease Control and Prevention (CDC). The pathogens and toxins controlled by the SAP are commonly referred to as select agents and represent a potential severe threat to the health and agriculture sectors. This review specifically deals with those select agents that are harmful to humans.

It is difficult to extrapolate animal studies to humans directly because time-course data are not available in humans and therefore the intricacies of pathogenesis cannot be related to respiratory tract deposition. The reported pathology in human cases of inhalational infections is generally from terminal cases or during treatment regimens where the infection is already at a progressed stage and it is difficult to be certain where the infection initiated. It is further complicated by the high mortality, often approaching 90%, for the LRT infections caused by these pathogens. However, cases of human infections caused by select agents occur that originate in the URT and demonstrate similar pathology to that described in inhalational animal infection models of the URT. Patients present with febrile illness, tonsillitis, pharyngitis, and cervical lymphadenitis prior to septicemia (Table 5). These presentations are generally termed pharyngeal or oropharyngeal infections and are predominantly associated with consumption of contaminated meats or water for *Y. pestis*, *B. anthracis*, and *F. tularensis*. *B. pseudomallei* presents as a pharyngocervical infection predominantly in children, however there are adult cases.

Table 5. Upper respiratory tract symptoms in bacterial select agents

Symptoms	Percentage of patients with symptom (%)	Melioidosis (Pharyngocervical)				
	Plague* (Pharyngeal)	Tularemia (Oropharyngeal)	Anthrax (Nasopharynx)	Anthrax (Oropharyngeal)	Anthrax (Laryngeal)	
Fever	92	96	83	97	50	60
Tonsillitis	75	-	-	-	-	-
Pharyngitis	92	81	33	72	-	15
Nasal/sinus complaints	-	-	83	3	0	10
Malaise/fatigue	92	54	33	-	25	-
Headache	92	62	17	6	0	-
Cervical/submandibular lymphadenitis	83	92	50	100	-	85
Arthralgia/myalgia	83	35	-	-	-	-
Abdominal pain	50	-	17	-	25	-
Vomiting/nausea	50	-	0	3	25	5
Cough	42	-	0	6	0	5
Dysphagia	17	-	17	-	0	-
Diarrhea	17	-	-	3	-	-
Hemoptysis/dyspnea	8	-	17	39	75	-
Anorexia	-	46	17	-	-	-
Depression	-	50	17	-	0	-
Concentration	-	42	-	-	-	-
Sleep disturbance	-	46	-	-	-	-
Mortality	40%	< 10%	50%	40%	50%	< 10%
Treatable	+	+	+	+	+	+

Also known as tonsillar plague. Data taken from references 107–113, 117, 118, 121, and 124–128.
Mycobacterium spp. Interestingly, a recent case of GI anthrax occurred after exposure to endospores aerosolized during drumming, the inference being that the deposited endospores were cleared from the respiratory tract to the GI tract. This supports observations in mice where infection of the GI tract occurred in mice that inhaled 12 μm particles containing B. anthracis endospores with pathology similar to that described for humans.

Conclusions

It is difficult to predict the particle size that an individual may inhale from a bioaerosol because any source comprises a particle distribution (Table 1) that changes with time and distance due to the local climate (e.g., meteorology, turbulent activity, ventilation, etc.) and removal from the air column. As such, from the view-point of inhalational infections the respiratory tract should be considered as a continuum with deposition occurring throughout and the probability of infection dependent on the interplay between respiratory physiology, regional dose, clearance kinetics, host-pathogen colonization mechanisms and immunological response. Therefore, a range of tissues that have perhaps not been thought of as routes of inhalational challenge are brought into consideration including the URT lymphoid tissues, olfactory system, GI tract and potentially the ophthalmic system.

The site of deposition after an inhalational event can affect disease kinetics and pathogenesis, however, the deposition of respiratory pathogens in the lungs will generally result in the more rapid aggressive infection with higher mortality rates. However, evidence exists in both animal models and humans for a number of select agents for URT infections involving the URT lymphoid tissues as the initial foci followed by dissemination via the cervical lymph nodes and bacteremic spread. In addition to LRT presentations, other presentations have been observed in a pathogen specific manner including neurological infection via the olfactory system, GI tract infection, and conjunctivitis.

Increased understanding of the pathogenesis and immunology of infections resulting from inhalation and resultant clearance will aid in the development of vaccine candidates and antimicrobial regimens. Research into host-pathogen interactions and the immunology of URT infections is still in its infancy compared with LRT and systemic infections. However, recent years have seen an increased understanding of host-pathogen and pathogen-pathogen interactions throughout the URT and the function of immunological systems. In humans it is unknown whether the olfactory system is utilized as a direct pathway from the URT to the brain. However, it remains a potential route and only recently has the immune response within the olfactory system been researched for viruses and the picture is even less clear for bacteria.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The author recognizes the contribution of Ministry of Defense funding for aspects of work covered by this review. © Crown copyright 2013. Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO.
66. Yoshida M, Whitsett JA. Interactions between
67. Eddens T, Kolls JK. Host defenses against bacterial
57. Schulz H, Johner C, Eder G, Ziesenis A, Reitmeier P,
58. Puchelle E, Aug F, Zahm JM, Bertrand A.
59. Foster WM, Langenback E, Bergofsky EH.
52. Schlesinger RB. Comparative deposition of
53. Ménache MG, Miller FJ, Raabe OG. Particle
54. Kuehl PJ, Anderson TL, Candelaria G, Gershman B,
51. Raabe OG, Al-Bayati MA, Teague SV, Rasolt A.
Regional deposition of inhaled monodisperse coarse and fine aerosol particles in small laboratory ani-
50. Maniscalco C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in rats and mice. Inhale Toxicol 2012; 24:27-35; PMID:22157484.
58. Harlin K, Hesterman JY, Holmes T, Hoppin J, Lackas C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in humans and animals. J Toxicol Environ Health 1985; 15:197-214; PMID:3892021; http://dx.doi.org/10.1080/15287398509556467
56. Ménache MG, Miller FJ, Raabe OG. Particle inhaled cytotoxicity for humans and small labora-
tory animals. Ann Occup Hyg 1995; 39:317-28; PMID:7779371
54. Kuehl PJ, Anderson TL, Candelaria G, Gershman B,
Harlin K, Hesterman JY, Holmes T, Hoppin J, Lackas C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in rats and mice. Inhale Toxicol 2012; 24:27-35; PMID:22157484.
59. Currie TR. Virulence in the pathogenesis of lung disease. Cell Mol Biol (Noisy-le-grand) 2004; 50 Online Pub;OL639-48; PMID:15579257
56. Yoshida M, Whitsett JA. Interactions between
57. Schulz H, Johner C, Eder G, Ziesenis A, Reitmeier P,
58. Puchelle E, Aug F, Zahm JM, Bertrand A.
59. Foster WM, Langenback E, Bergofsky EH.
52. Schlesinger RB. Comparative deposition of
53. Ménache MG, Miller FJ, Raabe OG. Particle
54. Kuehl PJ, Anderson TL, Candelaria G, Gershman B,
51. Raabe OG, Al-Bayati MA, Teague SV, Rasolt A.
Regional deposition of inhaled monodisperse coarse and fine aerosol particles in small laboratory ani-
50. Maniscalco C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in rats and mice. Inhale Toxicol 2012; 24:27-35; PMID:22157484.
58. Harlin K, Hesterman JY, Holmes T, Hoppin J, Lackas C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in humans and animals. J Toxicol Environ Health 1985; 15:197-214; PMID:3892021; http://dx.doi.org/10.1080/15287398509556467
56. Ménache MG, Miller FJ, Raabe OG. Particle inhaled cytotoxicity for humans and small labora-
tory animals. Ann Occup Hyg 1995; 39:317-28; PMID:7779371
54. Kuehl PJ, Anderson TL, Candelaria G, Gershman B,
Harlin K, Hesterman JY, Holmes T, Hoppin J, Lackas C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in rats and mice. Inhale Toxicol 2012; 24:27-35; PMID:22157484.
59. Currie TR. Virulence in the pathogenesis of lung disease. Cell Mol Biol (Noisy-le-grand) 2004; 50 Online Pub;OL639-48; PMID:15579257
56. Yoshida M, Whitsett JA. Interactions between
57. Schulz H, Johner C, Eder G, Ziesenis A, Reitmeier P,
58. Puchelle E, Aug F, Zahm JM, Bertrand A.
59. Foster WM, Langenback E, Bergofsky EH.
52. Schlesinger RB. Comparative deposition of
53. Ménache MG, Miller FJ, Raabe OG. Particle
54. Kuehl PJ, Anderson TL, Candelaria G, Gershman B,
51. Raabe OG, Al-Bayati MA, Teague SV, Rasolt A.
Regional deposition of inhaled monodisperse coarse and fine aerosol particles in small laboratory ani-
50. Maniscalco C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in rats and mice. Inhale Toxicol 2012; 24:27-35; PMID:22157484.
58. Harlin K, Hesterman JY, Holmes T, Hoppin J, Lackas C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in humans and animals. J Toxicol Environ Health 1985; 15:197-214; PMID:3892021; http://dx.doi.org/10.1080/15287398509556467
56. Ménache MG, Miller FJ, Raabe OG. Particle inhaled cytotoxicity for humans and small labora-
tory animals. Ann Occup Hyg 1995; 39:317-28; PMID:7779371
54. Kuehl PJ, Anderson TL, Candelaria G, Gershman B,
Harlin K, Hesterman JY, Holmes T, Hoppin J, Lackas C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in rats and mice. Inhale Toxicol 2012; 24:27-35; PMID:22157484.
59. Currie TR. Virulence in the pathogenesis of lung disease. Cell Mol Biol (Noisy-le-grand) 2004; 50 Online Pub;OL639-48; PMID:15579257
56. Yoshida M, Whitsett JA. Interactions between
57. Schulz H, Johner C, Eder G, Ziesenis A, Reitmeier P,
58. Puchelle E, Aug F, Zahm JM, Bertrand A.
59. Foster WM, Langenback E, Bergofsky EH.
52. Schlesinger RB. Comparative deposition of
53. Ménache MG, Miller FJ, Raabe OG. Particle
54. Kuehl PJ, Anderson TL, Candelaria G, Gershman B,
51. Raabe OG, Al-Bayati MA, Teague SV, Rasolt A.
Regional deposition of inhaled monodisperse coarse and fine aerosol particles in small laboratory ani-
50. Maniscalco C, Norenberg JP, et al. Regional particle size depen-
dent deposition of inhaled aerosols in rats and mice. Inhale Toxicol 2012; 24:27-35; PMID:22157484.
105. Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P, Schrauwen EJ, Herfst S, Leijten LM, van Run P.
146. Munck K, Mandpe AH. Mycobacterial infections of the head and neck. Otolaryngol Clin North Am 2003; 36:569-76; PMID:14567053; http://dx.doi.org/10.1016/S0030-6665(03)00032-X

147. Dutw W, Saidi F, Kohout E. Gastric anthrax with massive ascites. Gut 1970; 11:352-4; PMID:5428857; http://dx.doi.org/10.1136/gut.11.4.352

148. Mayo L, Dionne-Odom J, Talbot EA, Adamski C, Bean C, Daly ER, et al.; Centers for Disease Control and Prevention (CDC). Gastrointestinal anthrax after an animal-hide drumming event - New Hampshire and Massachusetts, 2009. MMWR Morb Mortal Wkly Rep 2010; 59:872-7; PMID:20651643

149. Halperin SA, Gast T, Ferrieri P. Oculoglandular syndrome caused by Francisella tularensis. Clin Pediatr (Phila) 1985; 24:520-2; PMID:6017462; http://dx.doi.org/10.1177/000992285024000969

150. Li B, Yang R. Interaction between Yersinia pestis and the host immune system. Infect Immun 2008; 76:1804-11; PMID:18250178; http://dx.doi.org/10.1128/IAI.01517-07

151. Brandraa P. Immune functions of nasopharyngeal lymphoid tissue. Adv Otorhinolaryngol 2011; 72:20-4; PMID:21865681; http://dx.doi.org/10.1159/000324588

152. Bosch AA, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 2013; 9:e1003057; PMID:23326226; http://dx.doi.org/10.1371/journal.ppat.1003057

153. Mina MJ, Klugman KP. Pathogen replication, host inflammation, and disease in the upper respiratory tract. Infect Immun 2013; 81:625-8; PMID:23319561; http://dx.doi.org/10.1128/IAI.01460-12

154. Kalinke U, Bechmann I, Derje CN. Host strategies against virus entry via the olfactory system. Virulence 2011; 2:367-70; PMID:21758805; http://dx.doi.org/10.4161/viru.2.4.16138

155. Panni P, Ferguson IA, Beacham I, Mackay-Sim A, Ekberg JAK, St John JA. Phagocytosis of bacteria by olfactory ensheathing cells and Schwann cells. Neurosci Lett 2013; 539:65-70; PMID:23415799; http://dx.doi.org/10.1016/j.neulet.2013.01.052