Abstract

The archives of Flora Medicinal, an ancient pharmaceutical laboratory that supported ethnomedical research in Brazil for more than 30 years, were searched for plants with antimalarial use. Forty plant species indicated to treat malaria were described by Dr. J. Monteiro da Silva (Flora Medicinal leader) and his co-workers. Eight species, *Bathyca cuspidata*, *Cosmos sulphureus*, *Cecropia hololeuca*, *Erisma calcaratum*, *Gomphrena arborescens*, *Musa paradisiaca*, *Ocotea odorifera*, and *Pradosia lactescens*, are related as antimalarial for the first time in ethnobotanical studies. Some species, including *Mikania glomerata*, *Melampodium divaricatum*, *Galipea multiflora*, *Aspidosperma polyneuron*, and *Coutarea hexandra*, were reported to have activity in malaria patients under clinical observation. In the information obtained, also, there were many details about the appropriate indication of each plant. For example, some plants are indicated to increase others’ potency. There are also plants that are traditionally employed for specific symptoms or conditions that often accompany malaria, such as weakness, renal failure or cerebral malaria. Many plants that have been considered to lack activity against malaria due to absence of in vitro activity against *Plasmodium* can have other mechanisms of action. Thus researchers should observe ethnomedical information before deciding which kind of screening should be used in the search of antimalarial drugs.

I. Background

Flora Medicinal is an ancient and small pharmaceutical laboratory established, in early 1915, by Mr. José Monteiro da Silva, a Medical Doctor in Rio de Janeiro. Mr. Monteiro da Silva was an idealist who believed that the Brazilian rainforest had an enormous potential for research and discovery of new drugs. For more than 40 years Mr. Monteiro da Silva had organized a group of technicians and scientists who made a great number of excursions into Brazilian rainforest, collecting plant specimens and information. Although he had also edited the Revista da Flora Medicinal, a scientific paper in which he described his discoveries, a considerable part of his research remains unpublished. During the ’30 s and ’40 s, the Revista da Flora Medicinal was translated to French and republished by the Institut Pasteur, in Paris, which allowed some of his findings to be used by the international pharmaceutical industry. During his activities, Mr. Monteiro da Silva and his team described more than 200 new medicinal plants from this region. One of his targets was the study of new antimalarial plants, as at his time malaria was a concerning health problem in Brazil. In the following years, quinine, its derivatives and other drugs helped to control malaria. Nowadays, however, its incidence is again growing worldwide, and *Plasmodium falciparum* is getting more resistant to the usual antimalarial.
2. Materials and methods
All documents, including books, hand notes, unpublished studies and the issues of Revista da Flora Medicinal, belonging to the library of Mr. Monteiro da Silva, were examined for information aboutbotanical therapies and plant species used for malaria. Any data or references to plants used for malaria were carefully inserted into a template, and botanical name and classification were re-examined and confirmed with four major plant databases – The Missouri Botanical Garden’s VAST[7], the International Plant Names Index[8], the New York Botanical Garden vascular plants database[9] and the Brazilian’s Northeast Plants Database[10]. Other information existing in modern databases such as PubMed (U.S. National Library of Medicine’s database that is searchable on the Web) were also examined and compared to other ethnopharmacological studies and current published data.

A review of plants with possible antimalarial activity reported in ethnomedical studies or in pharmacological and biochemical research was also made [11-31].

3. Results
The results are summarized on Table 1. Forty [40] plants with possible antimalarial activity were reported and examined by Dr. Monteiro da Silva and his co-workers. The plants were identified by scientific names and families, as well as by vernacular names and usual translations to English, if existent. For each of the species, the parts used for general conditions and symptoms and for treating malaria, as gathered from ethnomedical reports published in Flora Medicinal, are listed. Scientific data about in vitro and in vivo research are also provided.

Most plants, like Bidens pilosa, Cantharanthus roseus, Cassia fistula, Cinchona calisaya, Cuphea ingritra, Geissospermum sericeum, Jateorrhiza palmata, Quassia amara, Simaba ferruginea, and Strychnos pseudoquina, were already reported as antimalarial in previous ethnobotanical studies. Some of these had also their activity against Plasmodium tested, as shown on Table 1. Eight species are reported as antimalarial for the fist time: Bathysa cuspiderata, Cosmos sulphureus, Cecropia hololeuca, Erisma calcaratum, Gomphrena arborescens, Musa paradisiaca, Ocotea odorifera, and Pradesia lacteens.

A greater proportion of the plants reported as antimalarial belong to the families Asteraceae (six species), Rubiaceae (five), Apocynaceae (four), and Simaroubaceae (four).

4. Discussion
Most research for antimalarial new drugs is only focused on direct activity against Plasmodium species. But attention to ethnomedical information gathered by Monteiro da Silva suggests that other effects should be investigated. For example, some plants are referred to enhance the action of other herbs, which can indicate an increase on permeability of the Plasmodium membrane to antiparasitic substances, or an inhibition of pump mechanisms of eliminating the drugs[58,59]. Considering that one of the common mechanisms of drugs resistance is the reduction of permeability, the development of drugs that enhance parasite permeability could be of valuable help in the treatment of infectious diseases[60,61]. Other possible mechanism of action is interference with parasite enzymes used for protection against antiparasitic drugs[62].

Some plants with noticeable ethnopharmacological use in malaria showed only weak or even no activity against Plasmodium in vitro[55]. For example, Mikania glomerata, Melampodium divaricatum, Galipea multiflora, Aspidosperma polyneuron, and Coutarea hexandra had their antimalarial activity confirmed by clinical observations of medical doctors (Table 1), an information that yields a high probability of accuracy.

Some authors have underestimated the traditional plants used for malaria based exclusively on low activity against Plasmodium in vitro or in animal models[55]. This can be a mistake of strategy or even methodology.

There are many explanations for the absence of in vitro activity of an effective antimalarial drug. As an example, the active principle could be formed by hepatic metabolism, or as a result of transformation by gut bacteria. Other possible mechanisms of action include immunomodulation or interference with the invasion of new red blood cells by parasites, which can be species specific. Therefore studies in human subjects, as well as the observance of ethnomedical detailed data, are urged in order to exclude or confirm the activity of herbs traditionally used to treat malaria.
Scientific name and family	Vernacular name	Part used	General indications found in ethnomedical studies	Information regarding use for malaria	Scientific data on anti-malarial activity	Origin and geographic distribution	Ref.
Aniba canellia (H.B.K.) Mez. (Lauraceae)	Preciosa, Casca preciosa, Pau rosa, Casca do Maranhão, Rosewood, Brazilian rosewood	Barks and leaves	Arthritis, fever, colic, heart problems, dyspepsia, infection, intermittent fevers, weakness, malaria, leukorrhea, chronic discharge, Thoracic, stimulant.	Dr. Monteiro da Silva indicates that Amazon Indians used this plant to treat malaria.	Plants of the same genus used to treat malaria in Africa showed antiplasmodial activity against *P. falciparum* in vitro.	Large tree that occurs in the Amazon and Atlantic Forest.	(32)
Anacardium occidentale (L.) Kunt. (Anacardiaceae)	Amor de negro, Mata-pasto, Picão da prata, Paraguayan starburr	Leaves and roots	Fever, malaria, diarrhea, erysipelas, anemia, urinary infections, bennorrhea, bronchitis, dyspepsia. Tonic, diaphoretic, eupetic, antidiarrheal, mucilaginous, antimalarial, antiblennorrhagic.	Dr. Monteiro da Silva indicates this plant as a substitute for quina and reports that doctors have a good outcome when using this plant in malaria.		Herbaceous, invasive and ruderal plant that usually invades crops and occurs spontaneously in the Cerrado.	(33,34)
Aristolochia cymbifera Mart. & Zucc. (Aristolochiaceae)	Jarrinha, Mil homens	Roots	Asthma, fever, diarrhea, dyspepsia, gout, infection, amenorrhea, orchitis, intermittent fevers.	Dr. Monteiro da Silva reports that this must be associated to *Cayaponia toyuya* for use in malaria.			(35,36)
Aspidosperma polyneuron Mull. Arg. (Apocynaceae)	Peroba rosa, Sobro, Peroba amargosa	Barks	Fever, diarrhea. Febrifuge, antimalarial, astringent.	Indicated for malaria in the Flora Medicinal literature.	Plant contains alkaloids with antimalarial action. Cases of malaria controlled with this bark are reported.	Its alkaloids were extensively studied.	(37)
Bathysa cuspidata (St. Hil.) Hook. f. (Rubiaceae)	Quina do mato	Barks	Febrifuge, bitter tonic, eupetic used as a substitute for quina in malaria	Indicated for malaria in the Flora Medicinal literature.	Preclinical tests revealed strong antiplasmodial activity.	Tree that occurs in the Atlantic Rainforest.	(38)
Bidens pilosa L. (Asteraceae)	Picão, Picão preto, Erva picão, Cuambu, Farmer’s Friend, Cobbler’s pegs, Beggar’s ticks, Pitchforks, Hairy beggarticks	Leaves	Jaundice, fever, hepatitis, leukorrhea, diarrhea, pharyngitis, worms, cough, pneumonia, hepatomegaly. Mucilaginous.	Indicated in many medical texts in the past for malaria.		Plant with worldwide distribution.	(33,39)
Cosmos sulphureus Cav. Syn. *Bidens sulphurea* (Cav.) Sch. Bip. (Asteraceae)	Picão de flor grande, Picão grande, Beijo de moça, Cosmo amarelo, Yellow cosmos, Klondike Cosmos, Sulphur cosmos, Orange cosmos	Fruits and aerial parts	Jaundice, intermittent fever, splenomegaly. Tonic, hepatic, hepatoprotective.	Indicated for malaria in the Flora Medicinal literature.		Plant bred with ornamental purposes.	(33)
Cassia fistula L. (Leguminosae Caesalpinioideae)	Chuva de ouro, Cássia amarela, Cássia imperial, Canafístula, Golden shower, Indian laburnum, Purging fistula, Drumstick tree	Barks, leaves and seeds	Poisons, erysipelas. Febrifuge, purgative, emmenagogue, diuretic, hepatic, skin problems.	Indicated by Dr. Monteiro da Silva as an adjuvant for the treatment of malaria.		Ornamental plant found all over Brazil.	(32)
Catharanthus roseus (L.) G. Don. (Apocynaceae)	Vinca, Boa noite, Lavadeira, Vinca rosea, Cape periwinkle, Catharanthus, Church flower, Madagascar periwinkle, Red periwinkle, Rosy periwinkle	Aerial parts	Diabetes, urinary infection, malaria, intermittent fever. Sudorific, diuretic, hypoglycemic, febrifuge.	Indicated as a substitute for quina by Dr. Monteiro da Silva.		Ornamental plant used by the pharmacy industry for obtaining alkaloids.	(33)
Cecropia hololeuca Miq. (Cecropiaceae)	Embába, Embába, Embába branca, Embába prateada, Trumpet tree, Silver embauva, Black embauva, White embauva	Leaves, fruit and sprouts juice	Diuretic, antihypertensive, sedative, refreshing, antiinflammatory, thoracic, healing, expectorant antitussive, cough suppressant, resolutive, antithermal.	Indicated by Dr. Monteiro da Silva as an adjuvant in malaria with very high fever or neurological symptoms.		Tree that occurs in the Atlantic Rainforest.	(40)
Cedrela fissilis Vell. (Meliaceae)	Cedro rosa, Cedro vermelho, South American cedar	Barks	Swamp fever, urinary infection, diarrhea. Aromatic, astringent, diuretic, depurative, febrifuge.	Indicated for malaria in the Flora Medicinal literature.		Plant that occurs in the Atlantic Forest.	(41)
Table 1: Plants with possible antimalarial activity gathered from ethnomedical reports published in Flora Medicinal (Continued)

Table 1: Plants with possible antimalarial activity gathered from ethnomedical reports published in Flora Medicinal (Continued)
Chondodendron platyphyllum (St. Hill.) Miers. *(Menispermaceae)*
Cinchona calisaya Wedd. *(Rubiaceae)*
Coffeea arabica L. *(Rubiaceae)*
Coutarea hexandra (Jacq.) Schum. *(Rubiaceae)*
Cuphea ingrata Hoehne *(Lythraceae)*
Dipteryx odorata (Aublet) Willd. *(Fabaceae)*
Elephantopus mollis Kunth. *(Asteraceae)*
Erisma calcaratum (Link) Warm. *(Vochysiaceae)*
Esenbeckia febrifuga (St. Hil.) A. Juss. ex Mart. *(Rutaceae)*
Galpea multiflora Schultz *(Rutaceae)*
Table 1: Plants with possible antimalarial activity gathered from ethnomedical reports published in Flora Medicinal (Continued)

Plant Name	Common Names	Parts Used	Uses	Reported Activity	Source	
Geissospermum sericeum (May) Benth (Apocynaceae)	Pau pereira, Quinarana, Pau forquilha, Acurarízha	Barks	Dermatoses, inflammations, swamp fevers. Bitter tonic.	Reported in a review as being a plant tested and approved by doctors for malaria.	Alkaloids with activity against *Plasmodium falciparum* were isolated from trees of the genus *Geissospermum*.	Species from the Atlantic Forest. (32, 42, 46)
Gomphrena arborescens L. (Amaranthaceae)	Pau pereira, Quinarana, Pau forquilha, Acurarízha	Barks	Menstrual cramps, fever, hysteria, gastric atony, malaria. Purgative, antispasmodic.	Plant that occurs in the Cerrado and Atlantic Forest. (48)		
Himanthus lancifolius (Mull. Arg) Wood. Syn. *Plumeria lancifolia* Mull. Arg. (Apocynaceae)	Agoniada, Plumeria, Agoníorum, Arapuê	Barks	Flatulence, colic, diarrhea, abdominal pain, verminosis, fever, emesis, nausea, infection, hypertension, bronchitis, dyspepsia, digestive atony. Bitter tonic, eupeptic.	Species from the Atlantic Forest. (32, 42, 46)		
Jateorhiza palmuta Miers. (Menispermaceae)	Calumba, Calunga	Barks	Flatulence, colic, diarrhea, abdominal pain, verminosis, fever, emesis, nausea, infection, hypertension, bronchitis, dyspepsia, digestive atony. Bitter tonic, eupeptic.	Plant rich in quinolinic alkaloids with antiparasitary potential. Exotic plant, natural from Africa, adapted to Brazil. (41)		
Melampodium divaricatum (L.C. Rich.) DC. (Asteraceae)	Picão da praia, Fel da terra, Salsa da praia, Butte daisy	Leaves	Fever, malaria, flatulence, stomachache, colics, joint pain, muscular pain, palpitation, vertigo, rheumatism, jaundice, anuria, Diuretic, carminative.	Dr. Monteiro da Silva reports many cases of malaria cure using the extract of this plant. Worldwide distribution. (32, 49)		
Mikania glomerata Spreng. (Asteraceae)	Guaco, Coração de Jesus, Ema de cobra, Cipo almecega	Leaves and flowers	Rheumatism, snake poison, intestinal problems, colics, dysmenorrhea, fever, malaria.	Dr. Pires de Almeida reports to have observed Indians using this plant for malaria with good outcomes. Liana that is common in the Atlantic Forest. (50, 51)		
Musa paradisiaca L. (Musaceae)	Banana, Bananeira	Stem juice	Worms, diarrhea, intermittent fever, weakness. Tonic, antidiarrheal, thoracic, expectorant, nutritive.	Indicated by Dr. Monteiro da Silva to potentiate other plants used in malaria and help in the recovery of patients. Exotic plant adapted to Brazil. (52)		
Ocotoea odorifera (Vell.) Rohwer Syn. *Ocatoea pretiosa* (Nees) Mee. (Laureaceae)	Sassafras, Canela de sassafras, Sassafras do Brasil, Brazilian sassafras	Barks and roots	Dermatoses, joint pain, fever, rheumatism, syphilis, gout. Sudorific, depurative.	Indicated for malaria in the Flora Medicinal literature. Species form the Atlantic Forest. (41)		
Picrolemma sprucei Hook. f. (Simaroubacea)	Caferana, Caferana verdadeira	Aerial parts and roots	Malaria, intermittent fevers. Sudorific, depurative, febrifuge, antinfectious.	Dr. Monteiro da Silva reports many cases of recovery from malaria after treatment with the extract of this plant. Shrub that grows on solid ground in the Amazon. (49)		
Pradisia lactescens (Vell.) Radlk. (Sapotaceae)	Bunhanhém, Pau de remo, Pau doce, Guaranidhém, Monesia	Barks	Discharge, bronchitis, hemoptysis, diarrhea, ocular inflammation, tuberculosis, cutaneous ulcers, metrorrhagia. Bark provides a milky juice that is astringent and tonic.	Indicated for malaria in the Flora Medicinal literature. According to Dr. Monteiro da Silva, this plant could be associated to any antimalarial therapeutic drug if the patient is not recovering quickly. Species from the Atlantic Forest.	Personal writings and archives of Mr. Monteiro da Silva.	
Plant Name	Plant Description	Medicinal Uses	Antimalarial Activity			
----------------------------------	--	--	--			
Quassia amara L. (Simaroubaceae)**	Barks	Gastric debility, dyspepsia, bленнорея, diarrhea, worms, Bitter tonic.	Extracts showed antimalarial activity in experimental malaria in mice.			
Quassia amara L. (Simaroubaceae)**	Barks	Intermittent fever, malaria.	Cited by Dr. Monteiro da Silva as one of the species popularly used to substitute Plasmodium falciparum in vitro.			
Simaba ferruginea A. St. Hil. (Simaroubaceae)**	Barks	Malaria, fevers, diarrhea. Tonic, eutropic, fever, antidiarrheal, diuretic.	Indicated for malaria in Flora Medicinal literature.			
Simarouba amara L. (Simaroubaceae)**	Barks and roots	Intestinal infections, verminosis, fever, wounds, infected ulcers, abdominal pain. Antidiarrheal, antidyspeptic.	Used by Amazonian Indians to treat fever and malaria.			
Strychnos pseudoquina A. St. Hil. (Loganiaceae)**	Barks	Splenomegaly, hepatomegaly, intermittent fever, malaria, gastric problems. Tonic, bitter, febrifuge, depurative.	Cited by Dr. Monteiro da Silva as one of the species popularly used to substitute Plasmodium falciparum in vitro.			
Tabebuia roseo-alba (Bignoniaceae)**	Barks	Fever, tumors, allergy, weakness, psoriasis. Antinfecitious, antifungal, antitumor, tonic, immunostimulant.	Indicated for malaria in the Flora Medicinal literature.			
Tabebuia impetiginosa Syn. **Tabebuia avellanedae** (Bignoniaceae)**	Barks	Fever, tumors, parasites. Antinfecitious, antifungal, antitumor, tonic, immunostimulant.	Cited by Dr. Monteiro da Silva as one of the species popularly used to substitute Plasmodium falciparum in vitro.			
Xylopia brasiliensis Spreng. (Annonaceae)**	Seeds and barks	Stomachaches, flatulence, malaria. Stomachic, carminative, febrifuge.	Indicated for malaria in the Flora Medicinal literature.			

Plant Name	Plant Description	Medicinal Uses	Antimalarial Activity
Quassia amara L. (Simaroubaceae)**	Barks	Gastric debility, dyspepsia, bленнорея, diarrhea, worms, Bitter tonic.	Extracts showed antimalarial activity in experimental malaria in mice.
Quassia amara L. (Simaroubaceae)**	Barks	Intermittent fever, malaria.	Cited by Dr. Monteiro da Silva as one of the species popularly used to substitute Plasmodium falciparum in vitro.
Simaba ferruginea A. St. Hil. (Simaroubaceae)**	Barks	Malaria, fevers, diarrhea. Tonic, eutropic, fever, antidiarrheal, diuretic.	Indicated for malaria in Flora Medicinal literature.
Simarouba amara L. (Simaroubaceae)**	Barks and roots	Intestinal infections, verminosis, fever, wounds, infected ulcers, abdominal pain. Antidiarrheal, antidyspeptic.	Used by Amazonian Indians to treat fever and malaria.
Strychnos pseudoquina A. St. Hil. (Loganiaceae)**	Barks	Splenomegaly, hepatomegaly, intermittent fever, malaria, gastric problems. Tonic, bitter, febrifuge, depurative.	Cited by Dr. Monteiro da Silva as one of the species popularly used to substitute Plasmodium falciparum in vitro.
Tabebuia roseo-alba (Bignoniaceae)**	Barks	Fever, tumors, allergy, weakness, psoriasis. Antinfecitious, antifungal, antitumor, tonic, immunostimulant.	Indicated for malaria in the Flora Medicinal literature.
Tabebuia impetiginosa Syn. **Tabebuia avellanedae** (Bignoniaceae)**	Barks	Fever, tumors, parasites. Antinfecitious, antifungal, antitumor, tonic, immunostimulant.	Cited by Dr. Monteiro da Silva as one of the species popularly used to substitute Plasmodium falciparum in vitro.
Xylopia brasiliensis Spreng. (Annonaceae)**	Seeds and barks	Stomachaches, flatulence, malaria. Stomachic, carminative, febrifuge.	Indicated for malaria in the Flora Medicinal literature.
56. Moretti C, Deharo E, Sauvain M, Jardel C, David PT, Gasquet M: Antimalarial activity of cedronin. J Ethnopharmacol 1994, 43:57-61.
57. Jenett-Siems K, Mockenhaupt FP, Bienzle U, Gupta MP, Eich E: In vitro antiplasmodial activity of Central American medicinal plants. Trop Med Int Health 1999, 4:611-615.
58. Normark BH, Normark S: Evolution and spread of antibiotic resistance. J Intern Med 2002, 252:91-106.
59. Sanchez CP, Stein W, Lanzer M: Trans stimulation provides evidence for a drug efflux carrier as the mechanism of chloroquine resistance in Plasmodium falciparum. Biochemistry 2003, 42:9383-9394.
60. Jones RN: The current and future impact of antimicrobial resistance among nosocomial bacterial pathogens. Diagn Microbiol Infect Dis 1992, 15:35-105.
61. Fernandes P, Ferreira BS, Cabral JM: Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 2003, 22:211-216.
62. Trotta RF, Brown ML, Terrell JC, Geyer JA: Defective DNA repair as a potential mechanism for the rapid development of drug resistance in Plasmodium falciparum. Biochemistry 2004, 43:4885-4891.