In all domains of life, non-coding RNAs (ncRNAs) play a central role in cellular biology. In bacteria, the systematic discovery and analysis of ncRNAs revealed a large repertoire of regulatory transcripts, which among other characteristics is responsible for the high adaptability of prokaryotes. Bacterial ncRNAs can be simplistically categorized by their way of biogenesis: into cis-encoded and trans-encoded transcripts. Additionally, they can be classified according to their mode of function as cis- or trans-acting molecules. A special group of trans-encoded and trans-acting ncRNAs are so-called Hfq-binding small RNAs (sRNAs). These short (50–300 nt) and structurally diverse transcripts function at the post-transcriptional level and often recognize entire sets of mRNA targets to ultimately regulate their stability and/or translation. Several studies have confirmed the widespread distribution and sequence conservation of sRNAs and the identification of entire sRNA-regulated networks established their central role in regulation of bacterial gene expression.

The growing understanding of sRNA function not only opened an exciting new field of RNA research, it also drew attention on a long-known RNA-binding protein: the ring-shaped, homo-hexameric (L)Sm protein Hfq. Hfq was discovered in the early 1960s as a host factor required for Qβ-phage replication and in the following decades a plethora of other cellular functions were described: Hfq was shown to function in polyadenylation-mediated mRNA degradation and in regulation of gene expression especially under adaptive growth conditions. However, the central role of Hfq in bacterial RNA metabolism and the associated pleiotropic effects of hfq inactivation, made it difficult to address specific questions in vivo.

The key finding that the biological function of sRNAs depends on Hfq, finally explained many of its pleiotropic effects on bacterial gene expression. In this context, Hfq directly interacts with sRNAs and is essential for their cellular stability. Furthermore, Hfq facilitates sRNA/mRNA base-pairing as it interacts with both the sRNA and the respective mRNA target. In parallel, important insights into Hfq and sRNA-regulated networks established their central role in regulation of bacterial gene expression.

The growing understanding of sRNA function not only opened an exciting new field of RNA research, it also drew attention on a long-known RNA-binding protein: the ring-shaped, homo-hexameric (L)Sm protein Hfq. Hfq was discovered in the early 1960s as a host factor required for Qβ-phage replication and in the following decades a plethora of other cellular functions were described: Hfq was shown to function in polyadenylation-mediated mRNA degradation and in regulation of gene expression especially under adaptive growth conditions. However, the central role of Hfq in bacterial RNA metabolism and the associated pleiotropic effects of hfq inactivation, made it difficult to address specific questions in vivo.

The key finding that the biological function of sRNAs depends on Hfq, finally explained many of its pleiotropic effects on bacterial gene expression. In this context, Hfq directly interacts with sRNAs and is essential for their cellular stability. Furthermore, Hfq facilitates sRNA/mRNA base-pairing as it interacts with both the sRNA and the respective mRNA target. In parallel, important insights into Hfq and sRNA-regulated networks established their central role in regulation of bacterial gene expression.

The general mechanisms of bacterial RNA turnover and the role of Hfq in these processes are the main topic of two additional reviews: the third review by Katarzyna J. Bandrya and Ben F. Luisi provides an overview over the major enzymatic activities and their complexes in bacterial mRNA degradation and particularly addresses the mechanism of sRNA-mediated mRNA degradation. The fourth review by Eliane Hajnsdorf and Phillipe Regnier gives a systematic overview of the enzymes involved in polyadenylation-mediated RNA decay and suggests a model for the interplay of Hfq, poly-(A) polymerase I and the exonuclease PNPase at the 3’ ends of RNAs resulting from Rho-independent termination.

Hfq belongs to the conserved (L)Sm protein superfamily the members of which are generally involved in RNA metabolism.
in all domains of life. Consequently, the increasing understanding of Hfq biology and its RNA binding properties can provide insights into the functions of (L)Sm proteins. Therefore, the implications of the recent findings in Hfq research are also discussed in the context of the (L)Sm superfamily. The fifth review by Carol J. Wilusz and Jeffrey Wilusz compares the relations and differences of bacterial Hfq proteins with the eukaryotic Sm and LSm complexes. The sixth review by Cameron Mura analyzes the archael branch of (L)Sm proteins (SmAPs). Although the current knowledge of SmAPs is rather limited, the phylogenetic relations to eukaryotic and bacterial homologs suggest that SmAPs may represent a missing link for the further understanding of the RNA biology of (L)Sm proteins.

References
1. Sauer E. Structure and RNA-binding properties of the bacterial LSm protein Hfq. RNA Biol 2013; 10:582-90; PMID:23535768; http://dx.doi.org/10.4161/rna.24201.
2. Wagner EG. Cycling of RNAs on Hfq. RNA Biol 2013; 10:591-8; PMID:23466677; http://dx.doi.org/10.4161/rna.24044.
3. Luisi BF. Licensing and due process in the turnover of bacterial RNA. RNA Biol 2013; 10:627-35; PMID:23580162.
4. Régnier P, Hajnudorf E. The interplay of Hfq, poly(A) polymerase I and exonuclease at the 3′ ends of RNAs resulting from Rho-independent termination: A tentative model. RNA Biol 2013; 10:574-81; PMID:23392248; http://dx.doi.org/10.4161/rna.23664.
5. Wilusz CJ, Wilusz J. Lsm proteins and Hfq: Life at the 3′ end. RNA Biol 2013; 10:627-35; PMID:23392247; http://dx.doi.org/10.4161/rna.23695.
6. Mura C, et al. Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol 2013; 10:636-51; PMID:23579284.