Calculation of antineutrino spectrum corrections for sterile neutrino experimental searches

A Oralbaev, M Skorokhvatov and O Titov

1 NRC "Kurchatov Institute", 123182, Moscow, Russia
2 National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow, 115409, Russia
E-mail: oralbaev.ay@nrcki.ru, skorokhvatov.md@nrcki.ru, titov-o@mail.ru

Abstract. For SOX experiment with intense 144Ce-144Pr source, the antineutrino spectrum from two 144Pr decay branches should be calculated with high precision. We analyze the factors that affect beta- and antineutrino spectrum and give methods for their calculation.

Introduction
There are discrepancies between the data from recent neutrino experiments and the theoretical expectations. One of such discrepancies is the "reactor anomaly": a deficiency of antineutrino flux of about $5 - 6\%$ at small distances from the reactor [1]. The reactor anomaly could be explained either by lack of accuracy in reactor antineutrino spectra calculation or by manifestation of new physics such as neutrino transitions to sterile states.

Reactor antineutrinos are detected via inverse beta decay (IBD) reaction

$$\bar{\nu}_e + p \rightarrow n + e^+ \quad (1)$$

with threshold $E_{\text{thr}} = 1.806$ MeV. The cross section of (1) could be calculated with 1% accuracy [2]. The experimental cross section values are determined with less precision, mainly due to uncertainties in reactor antineutrino spectrum. For more precise measurements it was proposed to use an intense radioactive source with well known spectrum [3, 4]. The most promising source is 144Ce-144Pr, which is intended to be used in SOX experiment [5].

In 144Ce-144Pr source experiment the actual antineutrino source is 144Pr: it has two decay branches with endpoint energies greater than the IBD threshold E_{thr}. The first one is a non-unique first-forbidden Gamow–Teller transition $0^- \rightarrow 0^+$ with endpoint energy 2997.5 keV and 97.9% branching. The second one is a unique first-forbidden Gamow–Teller transition $0^- \rightarrow 2^+$ with endpoint energy 2301.0 keV and 1.040% branching.

To find possible effects of new physics in the SOX experiment one needs a precise calculation of the antineutrino spectrum from 144Pr. Here we estimate the accuracy of electron and antineutrino spectra calculation and discuss the factors that affect these spectra.

Accuracy of beta spectrum calculations
The beta spectrum could be described by equation

$$N(W) = K p^2 (W - W_0)^2 H(W) F(Z, W)L(Z, W)C(Z, W)S(Z, W)G(Z, W)B(W) \quad (2)$$
Here W and W_0 are the total electron energy and the endpoint energy in units of $m_e c^2$, p is the electron energy, K is a normalization constant. The antineutrino spectrum is obtained from (2) by replacing W with $W_0 - W$. The factors are [6]:

- shape factor $H(W)$;
- Fermi function $F(Z, W)$;
- electromagnetic finite-size correction $L(Z, W)$;
- weak finite-size corrections $C_V(Z, W)$ (for Fermi transitions), $C_A(Z, W)$ (for Gamow–Teller transitions);
- screening correction $S(Z, W)$;
- radiative corrections $G_{\beta}(Z, W)$ (for electrons), $G_\nu(Z, W)$ (for antineutrinos);
- weak magnetism correction $B(W)$.

Figure 1. Corrections to $\bar{\nu}_e$ spectrum for 144Pr branch with endpoint energy 2997.5 keV.

Figure 2. Corrections to $\bar{\nu}_e$ spectrum for 144Pr branch with endpoint energy 2301.0 keV.
In forbidden decays, one must take into account the shape factor. For the transitions of our interest, the theoretical shape factor values are [7]:

\[H(W) = p_e^2 + E_\nu^2 + 2\beta^2 E_\nu E_e \quad (1\text{st forbidden non-unique Gamow–Teller } 0^- \rightarrow 0^+) \]
\[H(W) = p_e^2 + E_\nu^2 \quad (1\text{st forbidden unique Gamow–Teller } 0^- \rightarrow 2^+) \] (3)

In general, the shape factor depends on the nuclear structure, so the theoretical values are not always reliable. For \(^{144}\text{Ce}\) and \(^{144}\text{Pr}\) the theoretical values differ from experiment, so additional measurements are required [8].

Fermi function describes the effect of Coulomb field of the daughter nucleus on beta particles. The general formula for Fermi function is

\[F(Z, W) = 4(2pR)^2(\gamma - 1)e^{\alpha Zw/p} \frac{\Gamma(\gamma + i\alpha Zw/p)^2}{\Gamma(2\gamma + 1)^2}. \] (5)

There are different calculation methods for the gamma function \(\Gamma\) of complex argument that agree with each other within a few % [9, 10, 11]. The most accurate method which gives reliable results for high neutrino energies is given in [11].

The electromagnetic and weak finite-size corrections \(L(Z, W)\) and \(C_A(Z, W)\) are calculated as prescribed in [12]. The correction for screening from atomic electrons \(S(Z, W)\) was taken from [6] (the method is in agreement with [10]). Radiative corrections \(G_\nu(Z, W)\) were calculated by Sirlin [13]. The weak magnetism correction \(B(W)\) depends on the transition type [7]; it is zero for the main decay branch of \(^{144}\text{Pr}\). Figures 1, 2 show the corrections values to antineutrino spectrum for two decay branches of \(^{144}\text{Pr}\).

Conclusion
We discussed the influence of different factors on antineutrino spectrum calculation. The corrections for two decay branches of \(^{144}\text{Pr}\) (with endpoint energies higher than the IBD threshold) are calculated.

Acknowledgments
The work was partially supported by the Russian Foundation for Basic Research under grant 16-02-00616.

References
[1] Mention G et al. 2011 Phys. Rev. D 83 073006
[2] Oralbaev A, Skorokhvatov M and Titov O 2016 J.Phys.: Conf. Ser. 675 012003
[3] Cribier M et al. 2011 Phys. Rev. Lett. 107 201801
[4] Gaffiot J et al. 2015 Phys. Rev. D 91 072005
[5] Bellini G et al. 2013 JHEP 8 38
[6] Huber P 2011 Phys. Rev. C 84 024617
[7] Hayes A C et al. 2014 Phys. Rev. Lett. 112 202501
[8] Durero M et al. 2016 J.Phys.: Conf. Ser. 675 012032
[9] Behrens H and Jānecke J 1969 Numerical Tables for Beta-Decay and Electron Capture (Berlin: Springer)
[10] Dzhelepov B S, Zvyryanova L N and Suslov Yu P 1972 (In Russian) Beta-processes: functions for the beta-spectra and electron capture analisys (Leningrad: Nauka) (Original Russian title: Beta-processi: funkcii dlya analiza beta-spektrov i elektronnogo zahvata L.: Nauka)
[11] Wilkinson D H 1990 Nucl. Instr. and Meth. A 290 509
[12] Sirlin A 1967 Phys. Rev. 164 1767