Cross-Reactivity as a Mechanism Linking Infections to Stroke

Guglielmo Lucchese¹,²*, Agnes Flöel¹ and Benjamin Stahl¹,³,⁴,⁵

¹ Department of Neurology, University of Greifswald, Greifswald, Germany; ² Department of Computing, Goldsmiths, University of London, London, United Kingdom; ³ Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; ⁴ Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ⁵ Psychologische Hochschule Berlin, Berlin, Germany

The relevance of infections as risk factor for cerebrovascular disease is being increasingly recognized. Nonetheless, the pathogenic link between the two entities remains poorly understood. Consistent with recent advances in medicine, the present work addresses the hypothesis that infection-induced immune responses may affect human proteins associated with stroke. Applying established procedures in bioinformatics, the pathogen antigens and the human proteins were searched for common sequences using pentapeptides as probes. The resulting data demonstrate massive peptide sharing between infectious pathogens—such as Chlamydia pneumoniae, Streptococcus pneumoniae, Tannerella forsythia, Haemophilus influenzae, Influenza A virus, and Cytomegalovirus—and human proteins related to risk of ischemic and hemorrhagic stroke. Moreover, the shared peptides are also evident in a number of epitopes experimentally proven immunopositive in the human host. The present findings suggest cross-reactivity as a potential mechanistic link between infections and stroke.

Keywords: stroke, infections, cross-reactivity, peptides, inflammation

INTRODUCTION

When considered separately from other cardiovascular diseases, stroke ranks fifth among all causes of death (1) and, critically, its incidence is on the rise (2).

The etiology of stroke is multifactorial with various environmental and genetic risk factors. Hypertension, diabetes and insulin resistance, smoking, dyslipidemia, obesity, heavy alcohol consumption, atrial fibrillation, and carotid stenosis are all established and well-investigated modifiable risk factors of stroke (3–5).

Additionally, there is evidence that environmental factors may also increase risk of stroke, including viral and bacterial infections, such as periodontitis (6) and respiratory infections (7), and infection with Chlamydia pneumoniae (8) or Cytomegalovirus (9). However, relatively little is known so far about the role of different pathogens as well as the molecular basis and the mechanisms that potentially link infections to stroke.
Here we set out to investigate whether or not infections can induce immune responses capable of cross-reacting with human proteins that, when altered, have been associated with stroke. Our hypothesis was that immune responses induced by infectious agents might cross-react with crucial stroke-related proteins, thus contributing to the multifactorial pathogenesis of cerebrovascular disease.

To address this hypothesis, we analyzed pathogens, as well as proteins that are known to be associated with increased risk of ischemic and hemorrhagic stroke by searching for common peptides that might underlie cross-reactions.

Specifically, we analyzed antigens from the following pathogens that have been reported to have a possible influence on stroke: the periodontal bacterium *Tannerella forsythia* (10), *Haemophilus influenza* (11), *Streptococcus pneumoniae* (7), *Chlamydia pneumoniae* (8), Influenza A viruses (12, 13), and Human Cytomegalovirus (9).

METHODS

We analyzed the amino acid (aa) primary sequence of pathogen antigens (with short name and Uniprot ID in parentheses):

- Surface antigen repeat/outer membrane protein (OMP; UniProtKB: A0A0F7WYE8_CHLPLN) from *Chlamydia pneumoniae*;
- Pneumococcal vaccine antigen A (PVAA;UniProtKB: PVAA_STRR6) from *Streptococcus pneumoniae*;
- Surface antigen BspA (BspA; UniProtKB: O68831_TANFO) from *Tannerella forsythia*;
- Outer membrane antigenic lipoprotein B (LPPB; UniProtKB: LPPB_HAEIN) from *Haemophilus influenzae* (strain ATCC 51907);
- Hemagglutinin (HA H1N1; UniProtKB: HEMA_I34A1) from Influenza A virus (strain A/Puerto Rico/8/1934 H1N1);
- Hemagglutinin (HA H5N1; UniProtKB: HEMA_I96A0) from Influenza A virus (strain A/Goose/Guangdong/1/1996 H5N1);
- Hemagglutinin (HA H3N2; UniProtKB: HEMA_I68A6) from Influenza A virus (strain A/Northern Territory/60/1968 H3N2); and
- 65 kDa phosphoprotein (pp65; UniProtKB: PP65_HCMVM) from Human Cytomegalovirus (HCMV; strain Merlin).

The primary sequence of pathogen antigens was dissected into partially overlapping pentapeptides with a one-residue-offset: i.e., MFKRI, FKIRI, KRIRR, and so on. Then, each pentapeptide was analyzed for occurrences within a library consisting of primary sequences of human proteins involved in stroke. The human protein library was *a priori* chosen from the UniProtKB Database (https://www.uniprot.org) (14) using the keyword “stroke.” We obtained an unbiased list of 74 human proteins (in)directly associated with stroke (Table S1). Stroke-related proteins are indicated as UniProtKB entry names throughout the present article, except when discussed in detail. The pathogen antigens and the human proteins were searched for common sequences using the pentapeptide as a probe unit because a pentapeptide is an immunobiological determinant sufficient for epitope-paratope interaction and for inducing specific immune responses (15–18).

The immunologic potential of the shared peptides was analyzed using the Immune Epitope Database (IEDB; www.iedb.org) (19). All evaluations were based only on epitopic sequences that had been experimentally validated as immunopositive in the human host.

This linear peptide similarity analysis procedure has been used and described before (20, 21).

RESULTS

In a detailed overview, Table 1 shows that 49 out of the 74 human stroke-related proteins share peptide sequences with antigens from pathogens that proved to be (in)directly involved in stroke (6–10). It can be seen that

- The pathogen vs. human peptide overlap is unexpectedly high when considering that the probability for two proteins to share a pentapeptide is 1 out of 20^5, that is, 0.0000003125 or close to zero.
- The peptide overlap varies widely, with *T. forsythia* BspA and Influenza A HA H3N2 being the pathogen more and less involved in the peptide sharing, respectively.
- The high number of stroke-related proteins involved in the viral peptide overlap precludes a detailed protein-by-protein analysis. However, an example worth noting is the human ATP-binding cassette sub-family C member nine (ABCC9 or SUR2) that shares peptide sequences with all of the pathogen antigens analyzed, with the exception of the Influenza A HA H3N2 virus. ABCC9 is a subunit of ATP-sensitive potassium channels (K$_{ATP}$) that can form cardiac and smooth muscle-type KATP channels with KCNJ11 and mediates neuroprotection (22).

In summary, Table 1 describes a peptide platform that connects the infectious agents under analysis human proteins related to stroke.

Subsequently, in order to define the immunologic potential of the shared peptides, we conducted analyses throughout the peptide immunome cataloged in the Immune Epitope Database (IEDB; www.iedb.org) (19). The search was finalized to identify epitopic sequences corresponding to (or containing) the peptide sequences shared between stroke-related infectious agents and stroke-related human proteins. It was found that a great number of the shared peptides listed in Table 1 are also distributed through hundreds of epitopic sequences with an immunological potential. A list of such epitopic sequences is reported in Table 2.

CONCLUSION

Stroke risk appears to be the result of a complex combination of multiple genetic non-modifiable and environmental modifiable factors that can be further classified as either “traditional” or new, “emerging” ones (23). As highlighted by Grau et al. (24, 25), the occurrence of stroke is only partially explained by traditional modifiable cardiovascular
TABLE 1 | Peptide sharing between pathogen antigens and human proteins that have been associated with stroke.

Shared peptides\(^{a,b}\)	Human protein involved in the peptide\(^{b,c}\)
C. pneumoniae OMP:	
ITNYL	**ABCC9.** ATP-binding cassette sub-family C member 9
RKFLL	**CCM2.** Cerebral cavernous malformations 2 protein
RKFLL: KGFS	**CCM2L.** Cerebral cavernous malformations 2 protein-like
ASSVLD; LEHNOQ	**CSF1R.** Macrophage colony-stimulating factor 1 receptor
IALHL	**DAPK1.** Death-associated protein kinase 1
SEKGT	**FA5.** Coagulation factor V
PTTLQ	**GNAO.** Guanine nucleotide-binding protein G(i) subunit alpha
EGPCC	**HTRA1.** Serine protease HTRA1
NTTAE	**KCNE2.** Potassium voltage-gated channel subfamily E member 2
GFRCGL; LRSSA	**NOTC3.** Neurogenic locus notch homolog protein 3
VSAAG	**NU155.** Nuclear pore complex protein Nup155
SGLOGG	**PARD1.** Protein disintegrin and Tumor necrosis factor receptor
SGNQV	**PAWR.** PRKC apoptosis WT1 regulator protein
GYFAS	**PDE4D.** cAMP-specific 3',5'-cyclic phosphodiesterase 4D
DSSPR; SPRTP	**RN213.** E3 ubiquitin-protein ligase RNF213
S. pneumoniae PVAA:	
LAMQY	**ABCC9.** ATP-binding cassette sub-family C member 9
TVAPL; VAPLL	**KCNA5.** Potassium voltage-gated channel subfamily A member 5
AQNGK	**KLOK.** Klotho
SASGS	**LMNA.** Prelamin-A/C
LVLAV	**NMDE2.** Glutamate receptor ionotrophic, NMDA 2B
IOTLTL	**NU5M.** NADH-ubiquinone oxidoreductase chain 5
T. forsythia BspA:	
AWTAR; SGKT	**ABCC9.** ATP-binding cassette sub-family C member 9
GLQTL; LTITN	**B1L.** Bax inhibitor 1
TSLAL	**CO4A2.** Collagen alpha-2(I) chain
APQRA	**COQ8A.** Atypical kinase COQ8A, mitochondrial
GKKAV	**CX53.** Gap junction alpha-5 protein
IFVST	**GATA5.** Transcription factor GATA-5
NCGAL	**GATA6.** Transcription factor GATA-6
HSLQCS	**IL4.** Interleukin-4
LGATA; GATAQ	**ITIH4.** Inter-alpha-trypsin inhibitor heavy chain H4
DALTT	**KCNQ1.** Potassium voltage-gated channel subfamily Q member 1
AGGAL; VTTIG	**KRIIT1.** Krev interaction trapped protein 1
TAPDA	**LYAM3.** P-selectin
EGPFAL	**NMDE2.** Glutamate receptor ionotrophic, NMDA 2B
VTNQI	**NOTC3.** Neurogenic locus notch homolog protein 3
DGVNT; SGTTG	**SCN4B.** Sodium channel subunit beta-4
GLFLLL	**SCN5A.** Sodium channel protein type 5 subunit alpha
TLPNNS	**SYLM.** Probable leucine—tRNA ligase, mitochondrial
TLPDQ; VTLPN	**ZFHX3.** Zinc finger homeobox protein 3
LDPDALL; LTLSA; SGLITS; TLPDA	
H. influenzae LPPB:	
TSNFP; GIDIS	**ABCC9.** ATP-binding cassette sub-family C member 9
LLLPL	**ACE.** Angiotensin-converting enzyme
SFLLLL; TTTVS	**ANP.** Natriuretic peptides A
AQPAP	**CSF1R.** Macrophage colony-stimulating factor 1 receptor
ILVAD	**ENPP4.** Bis(5'-adenosyl)-triphosphatase ENPP4
VTSSV	**GATA6.** Transcription factor GATA-6

(Continued)
TABLE 1 | Continued

Shared peptides^{a,b}	Human protein involved in the peptide Sharing ^{b,c}
GNLII	ITH4. Inter-alpha-trypsin inhibitor heavy chain H4
PGANG; SGSRG	KCNAS5. Potassium voltage-gated channel subfamily A member 5
APDYS; PYDSK; DYSKI; TYTPG	KRTT1. Krev interaction trapped protein 1
SNVGG; SPSVP	NU155. Nuclear pore complex protein Nup155
AYLAG	PDE3A. cGMP-inhibited 3′,5′-cyclic phosphodiesterase A
LLPLS; AYLAG; VTSSV; QEVKA	RN213. E3 ubiquitin-protein ligase RNF213
GPIKS	SCN5A. Sodium channel protein type 5 subunit alpha
KKFL	SYLM. Probable leucine–IFNA ligase, mitochondrial

Influenza A HA H1N1:

LAVK	ADA2. Adenosine deaminase 2
LLVSL	ATP6. ATP synthase subunit a
ENAVV	ABCC9. ATP-binding cassette sub-family C member 9
ASSLV	PDE3A. cGMP-inhibited 3′,5′-cyclic phosphodiesterase A
AELLV, ELLLV, LLVLL, LVLLV	DAPK1. Death-associated protein kinase 1
TVLEK; YSVSV; QTPLG; FLDIW	RN213. E3 ubiquitin-protein ligase RNF213
TSNAS	NMDE2. Glutamate receptor ionotropic, NMDA 2B
CALAA	GAS6. Growth arrest-specific protein 6
LLVLL; YAADO; KVDGV	KLOT. Klotho
EELRE	LMNA. Prelamin-A/C
YSEE	ZFHX3. Zinc finger homeobox protein 3

Influenza A HA H5N1:

LLAIV	AL5AP. Arachidonate 5-lipoxygenase-activating protein
LLLAI	ABCC9. ATP-binding cassette sub-family C member 9
AQDIL; ISGVK	PDE4D. cAMP-specific 3′,5′-cyclic phosphodiesterase 4D
LLLAI	CYTC. Cystatin-C
ORLVVP; AELLV, ELLLV	DAPK1. Death-associated protein kinase 1
ILEKT, UKHLL, VSSAC	RN213. E3 ubiquitin-protein ligase RNF213
EGGWQ	KLOT. Klotho
SLALA	NUSM. NADH-ubiquinone oxidoreductase chain 5
KIVLL; LVLAT	NU155. Nuclear pore complex protein Nup155
ARLNR; SIYST	KCNQ1. Potassium voltage-gated channel subfamily KQT member 1
VSSAC	SCN1B. Sodium channel subunit beta-1
VPEWS	TBX5. T-box transcription factor TBX5
SVAGW	S19A2. Thiamine transporter 1
SLALA	GATA5. Transcription factor GATA-5

Influenza A HA H3N2:

GGSNA; AELLV	DAPK1. Death-associated protein kinase 1
INSN	SAMH1. Deoxyxynucleoside triphosphate triphosphohydrolase SAMHD1
KITYG	MYL4. Myosin light chain 4
LLGDP	KCNAS5. Potassium voltage-gated channel subfamily A member 5
ISFAI	HTRA1. Serine protease HTRA1
VLNV	SCN3B. Sodium channel subunit beta-3

^a References in Table S1 (Supplementary Material).

^b Viral/bacterial antigens are described under Methods. Further details at https://www.uniprot.org (1–4).

^c Multiple occurrences in bold.

^d Human proteins given as UniProt entry and name. Further details at https://www.uniprot.org (1–4).

Risk factors, such as increasing blood pressure, cigarette smoking, and diabetes mellitus. Most importantly, infectious diseases appear to play a key role in contributing to the risk of stroke and are to be counted among “emerging” modifiable risk factors that receive increasing scientific interest (6–10, 23, 26, 27).

Searching for possible immunopathogenic links between infection and risk of stroke, the present study aimed to analyze
1	2	1	2	1	2
58129	SGLTSlf	459109	sLLPLShv	554097	lvesyLTPDGrii
66225	tSQLTSi	466105	tglplLVAV	554098	lvesyLTPDGriiK
68617	tSQLTSi	467909	LLLLLRiev	554195	mtfHINSGKvp
69631	vLVLGIal	47133	SPRTPpvil	555093	ogDGKLVKaLk
79809	ELVLLVenerlid	47166	tAELLVL	555672	rslrtqELERE
113324	dgFLWdmYnELVLL	475091	akefNTTAei	557456	vvesyLTPDGrii
113533	idlwfnELVLL	476488	avIDGVNTl	563134	eaeVELLVKh
150977	eeaklnreei	478710	GLTTIlknv	570114	aELLVshga
151075	ynAELLVLenerlid	479848	neLVLAdy	571918	EELREaaw
151076	ypgdfidYELREeq	482780	nryASSLV	573110	haCALAAsw
163409	serLalFSSA	483921	pykLVoNVLATg	575661	kqapgLATAG
164690	gvdtGIDIShsdf	485150	rySGNQVlf	577318	eskKSFLcic
164772	vLLVSLgai	487836	TVLEKyfryl	578014	sprtspLpLl
190442	hELLVLvkkaq	489284	vLLVSLdyqgmlp	581635	aLKHLLsy
194133	llaAWTARa	489926	ypASSLVvv	584143	lldksVAPLL
196781	silEKTsiay	490154	anaALLPLj	585672	kgVSAAGilke
213534	kssGKTTrik	492412	irfTVLEKl	587804	rLKHLLsy
223189	ldLLLPLnl	492430	irfSGTTGqm	589061	rLKHLLsy
223510	peLLLPL	492987	lepsorALLPLl	590120	slsSPSVP
223880	seeLLLPL	493222	mpeyasCLLLPLl	590444	tveSSEGTk
224543	fLPLLSlf	497010	tpvyLGATAgmrll	591020	srskVLLV
262701	yrtLLVLs	499610	plLLVSLw	591635	eEELREyrv
240338	sASSLVkidSlv	499947	qroqLVSll	594849	krELREK
243935	FLDWynha	506316	kpplLVLmnr	601366	rTLPDGthel
409699	gpprlLPLL	513877	trALLPLU	602564	fAPDYSsrl
423950	alLKHLSy	514637	eitTVLEKI	603166	rTPDGLthel
424543	fLPLLSlf	519070	tpvyLGATAgmrll	605701	tAPAFinn
426499	riltAVARTy	504703	clyLLAl	606516	fsslLPLShl
430136	plspfLDPDdny	505049	editLKT	607194	laELReNw
430260	rtVLEKtry	505187	fastVAPLLef	610338	qEVAKAlt
435575	rlLPLLj	505268	flaTRGTSTli	612086	crLKHLLsy
435576	rlLPLLj	507273	mptLPLLl	613909	rnvkEVEL
436234	aptGPKSIdlm	507343	mtLPLLl	615815	evAEVll
437494	gAGGALVhrd	507484	paSPSVPi	616957	glvnSGLTSv
437792	gSGQLGltdk	509413	assPSPVlj	617652	rLKHLLsy
440682	SPRTpvsvip	511858	arrSLALArpKssdvy	617652	rLKHLLsy
441210	TVLEKyel	518869	inhvSVAGWvsgd	620564	fAPDYSsrl
442404	apaAPQRAl	519272	ilTEkVspdfre	620828	qhyekSGNOV
443560	erySGNQVfl	520276	kqelLVSL	621193	rnvkEVEL
444320	gslLPLSek	521984	lqagAGALQvhr	624191	asfapiSFLak
445722	kplpFRTTGli	523925	qaAGALQvhrsvir	626581	glvnSGLTSv
448068	nrVPPTGi	532960	mPTGIney	627346	crAGALsl
448661	SPRTDPpff	535616	ELVLKqkhpseirf	627740	qAPDYSsrl
448662	SPRTpdpdkhal	537116	rikveELVLEK	628038	crAGALsl
448918	sryLPLLs	541075	alpAGALqo	628737	vPVTGyey
449666	VSAAGKvgl	544699	eEELREkay	629959	alvhLLVSl
453784	flpLLLV	544699	EELREkay	632600	tvPDLVLl
456288	LLLAILpivh	544699	rsgaAGALp	633968	tvPDLVLl
456316	LLLLPlpl	545442	srwpLLPLl	634370	tvPDLVLl
457304	nltLVSL	548311	llGDPDmrav	636430	mPTGIney
457363	pekTLSAU	551494	esyLTPDGrii	637221	stdLLVLsL
458901	nAEELVirv	553367	kqfipxlyELVLL	639941	tvPDLVLl

Column 1: Epitopes listed according to the IEDB-ID number. Epitope details and references at www.immuneepitope.org [19]. Column 2: Sequences common to pathogen antigens and human proteins related to stroke are indicated in capital letters.
the potential immunologic relationship between pathogens and human proteins that, when altered, have been associated with risk of stroke. In line with our hypothesis, we found that immune cross-reactions between infectious pathogens and human stroke-related proteins might occur, thus increasing the risk of stroke (see Tables 1, 2).

The immunologically relevant peptide sharing reported in the present study depicts a complex scenario. Some potential molecular targets of cross-reactions are proteins belonging to the cardiovascular system, thus possibly directly accounting for cerebrovascular damage. Other possible targets are proteins of the immune system, thus suggesting mechanisms resulting in immune dysregulation which could lead to cerebrovascular damage.

An example of the first type of potential targets are ion-channels, particularly potassium (K\(^+\)) and sodium (Na\(^+\)) channels (ABCC9, KCNE2, KCNA5, KCNQ1, SCN4B, SCN5A, SCN1B, SCN3B, see Table 1). Accordingly, a growing body of evidence points to the involvement of cardiac K\(^+\) and Na\(^+\) channel dysfunction (cardiac channelopathies as a result of genetic mutations and/or inflammatory mechanisms) in the pathogenesis of atrial fibrillation (AF), an established risk factor for stroke (28, 29). Moreover, autoantibodies targeting ion-channels may be involved in cardiac arrhythmias (30). In light of the potential cross-reactivity suggested by the observed peptide sharing, AF and subsequent stroke could result from antibodies primarily targeting epitopes of infective agents but also cross-reacting with cardiac ion channels. For instance, activating antibodies could lead to a gain-of-function of K\(^+\)-channels and inhibiting antibodies to a loss-of-function of Na\(^+\)-channels. This could promote re-entry or increase susceptibility to early and/or delayed afterdepolarizations, two mechanisms that can generate AF (31, 32).

The second class of potential targets includes proteins that actively modulate the inflammatory response, such as cytokines and colony-stimulating factor receptors (IL-4, macrophage colony-stimulating factor receptor 1, see Table 1) (33, 34). IL-4, for example, is a well-investigated tolerogenic cytokine that is able to suppress inflammatory responses and organ-specific autoimmunity in both animal models and humans (35, 36). It is then conceivable that autoantibodies downregulating the function of these proteins can promote inflammatory responses, thus increasing the risk of cerebrovascular damage and stroke. Indeed, inflammatory responses appear to be crucial in the pathogenesis of stroke by inducing atherosclerosis progression, pro-thrombotic activation, and AF—among other mechanisms (37). Inflammation can therefore be considered as one key factor underpinning the relationship between classical stroke risk factors and comorbidities. It appears that not just single infections, but overall infectious burden from multiple agents predicts stroke incidence. Moreover, poor outcome may be proportional to systemic inflammatory burden both in patients and experimental models. For instance, Influenza and Streptococcus infection seem to contribute to stroke incidence and outcome, and evidence from experimental models indicate that blocking inflammatory processes might be an effective prevention strategy (38, 39).

The increasingly recognized relevance of inflammation in stroke is consistent with a possible role of peptide sharing-based cross-reactivity as contributing factors to cerebrovascular damage. In fact, the past two decades of immunologic research have radically changed the way we think of inflammation and innate immunity. It is now known that innate immune responses can “specifically” drive the following adaptive responses through recognition of pathogen-associated molecular patterns (PAMPs) (40, 41). That is to say that peptide epitopes, cell-wall components, and other PAMPs activate immune cells already from the very first stages of immune reactions and drive inflammation. Indeed, there are examples of cross-reactivity between host and pathogen-associated molecular patterns: identical inflamasomes and toll-like receptors (TLRs) recognizing molecular fingerprints of both pathogens (the PAMPs) and injured host cells (so-called danger-associated molecular patterns; DAMPs). For instance, both bacteria LPS and HMGB1 from injured host cells activate TLR4, with consequent inflammation in various tissues including the brain (41, 42). TLR- and inflamasome-dependent pathways seem to be important drivers of inflammation, vascular disease, and reportedly contribute to stroke outcome (43, 44).

Our preliminary results underline the importance of further experimental efforts to define the molecular basis through which microbial infections might contribute to an increased risk of stroke (45–50). Future studies should evaluate immunoreactivity against the peptides shared by infectious pathogens and human stroke-related proteins in sera from stroke patients. Possibly, such serological analyses could also help identify specific markers predicting a higher risk of stroke and might therefore be useful to design preventive strategies following an infection. The ultimate translational relevance of our finding lies in the possibility of adopting effective individualized primary and secondary preventive strategies in patients at risk for stroke after infections. Generic hygienic measure, as well as antibiotic prophylaxis and vaccination campaigns have already been proposed and tested with contrasting results (37). Identifying and stratifying patients according to individual biomarker profiles would allow to personalize treatment for each patient, thus possibly increasing overall efficacy.

Until now, stroke is a leading cause of preventable death and adult disability (1–5, 47–52), but preventive strategies mostly concentrate on traditional cardiovascular risk factors (53–56). Moreover, “cryptogenic” stroke (i.e., ischemic stroke with no obvious cause) poses a challenge in terms of primary and secondary prevention (57, 58).

Given the burden of cerebrovascular disease, and the potential to identify immunological markers that may then serve as prognostic indicators of risk of cerebrovascular damage after an infection, our results justify further intensive research on the cross-reactive link between infections and risk of stroke.
AUTHOR CONTRIBUTIONS

GL formulated the hypothesis, analyzed the data and wrote the manuscript. GL, AF, and BS interpreted the data, revised and finalized the manuscript.

FUNDING

We acknowledge support for the Article Processing Charge from the DFG (German Research Foundation, 393148499) and the Open Access Publication Fund of the University of Greifswald and from the Deutsche Forschungsgemeinschaft to AF (SFB1315 TP B03).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2019.00469/full#supplementary-material
Kim AS, Johnston SC. Temporal and geographic trends in the
Kuklina EV, Tong X, George MG, Bansil P. Epidemiology and prevent
tion
Lindsberg PJ, Grau AJ. Inflammation and infections as
Muhammad S, Haasbach E, Kotchourko M, Strigli A, Krenz A, Riddler DA, et al. Influenza virus infection aggravates stroke outcome. Stroke. (2011) 42:783–91. doi: 10.1161/STROKEAHA.110.596783
Denés Á, Pradillo JM, Drake C, Sharp A, Warn P, Murray KN, et al. Streptococcus pneumoniae worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ibα. Ann Neurol. (2014) 75:670–83. doi: 10.1002/ana.24146
Root-Bernstein R, Fairweather D. Complexities in the relationship between infection and autoimmunity. Curr Allergy Asthma Rep. (2014) 14:407. doi: 10.1007/s11882-013-0407-3
Mills K. H. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol. (2011) 11:807–22. doi: 10.1161/STROKEAHA.110.309952
Aucott H, Lundberg J, Salo H, Klevenvall L, Damberg P, Ottosson L, et al. Neuroinflammation in response to intracerebral injections of different HMGB1 redox isoforms. J Innate Immun. (2018) 10:215–27. doi: 10.1159/000487056
Kim ID, Lee H, Kim SW, Lee HK, Choi J, Han PL, et al. Alarmin HGMB1 induces systemic and brain inflammatory exacerbation in post-stroke infection rat model. Cell Death Dis. (2018) 9:426. doi: 10.1038/s41419-018-0438-8
Vogelgesang A, May VE, Grunwald U, Bakkeboe M, Langner S, Wallaschfoksi H, et al. Functional status of peripheral blood T-cells in ischemic stroke patients. PLoS ONE. (2010) 5:e8718. doi: 10.1371/journal.pone.0008718
Emsley HC, Hopkins SJ. Acute ischaemic stroke and infection: recent and emerging concepts. Lancet Neurol. (2008) 7:341–53. doi: 10.1016/S1474-4422(08)70061-9
Lindsberg PJ, Grau AJ. Inflammation and infections as risk factors for ischemic stroke. Stroke. (2003) 34:2518–32. doi: 10.1161/01.STR.0000089015.51603.CC
Kuklina EV, Tong X, George MG, Bansil P. Epidemiology and prevention of stroke: a worldwide perspective. Expert Rev Neurother. (2012) 12:199–208. doi: 10.1586/ern.11.99
Kim AS, Johnston SC. Temporal and geographic trends in the global stroke epidemic. Stroke. (2013) 44 (6 Suppl. 1):S123–5. doi: 10.1161/STROKEAHA.111.000676
Tan RY, Markus HS. Monogenic causes of stroke: now and the future. J Neurol. (2015) 262:2601–16. doi: 10.1007/s00415-015-7794-4
Kim YD, Cha MJ, Kim J, Lee DH, Lee HS, Nam CM, et al. Long-term mortality in patients with coexisting potential causes of ischemic stroke. Int J Stroke. (2015) 10:541–6. doi: 10.1111/ijis.12013
Carrera E, Maeder-Ingyar M, Rossetti AO, Devuyst G, Bogouslavsky J. Trends in risk factors, patterns and causes in hospitalized strokes over 25 years: the Lausanne Stroke Registry. Cerebrovasc Dis. (2007) 24:97–103. doi: 10.1159/000103123
Inzitari D, Eliazziz M, Gates P, Sharpe BL, Chan RK, Meldrum HE, et al. The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. (2000) 342:1693–700. doi: 10.1056/NEJM200006083422302
Rothstein L, Jickling GC. Ischemic stroke biomarkers in blood. Biomark Med. (2013) 7:37–47. doi: 10.2217/bmm.12.104
Simats A, García-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy. Biochim Biophys Acta. (2016) 1862:411–24. doi: 10.1016/j.bbpadis.2015.10.025
Pullagurla SR, Baird AE, Adamski MG, Soper SA. Current and future bioanalytical approaches for stroke assessment. Bioanalysis. (2015) 7:1017–35. doi: 10.4155/bio.15.40
Salat D, Penalba A, García-Berrocoso T, Campos-Martorell M, Flores A, Pagola J, et al. Immunological biomarkers improve the accuracy of clinical risk models of infection in the acute phase of ischemic stroke. Cerebrovasc Dis. (2013) 35:220–7. doi: 10.1159/000346591
Fonseca AC, Ferro JM. Cryptogenic stroke. Eur J Neurol. (2015) 22:618–23. doi: 10.1111/ene.12673
Saver JL. Clinical practice. Cryptogenic stroke. N Engl J Med. (2016) 374:2065–74. doi: 10.1056/NEJMcp1503946
Conflict of Interest Statement: AF received consulting fees from Bayer and Novartis and honoraria for oral presentations from Novartis, Boehringer-Ingelheim, Lilly, and Biogen Idec (unrelated to current research).

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Lucchese, Flöel and Stahl. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.