On a Generalization of the van der Waerden Theorem

Rudi Hirschfeld
University of Antwerp
rudihirschfeld@hetnet.nl

July 20, 2018

Abstract

For a given length and a given degree and an arbitrary partition of the positive integers, there always is a cell containing a polynomial progression of that length and that degree; moreover, the coefficients of the generating polynomial can be chosen from a given subsemigroup and one can prescribe the occurring powers. A multidimensional version is included.

1 Introduction

A sequence in \mathbb{R} will be called a polynomial progression if it is of the form $\{P(1), P(2), P(3), \ldots\}$ for some polynomial $P(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$. This progression is said to be of degree d if P has degree equal to d and not less.

Theorem 1. Given two positive integers d and l, if the set of the positive integers is split up into finitely many non-overlapping parts, there exists a polynomial progression of length l and of degree d that belongs to precisely one of these parts.

For $d = 1$ the polynomials look like $P(x) = a + bx$ and the l-segment of the polynomial progression takes the form $\{a + b, a + 2b, a + 3b, \ldots, a + lb\}$: the theorem boils down to the well-known van der Waerden Theorem on monochromatic arithmetic progressions. It is fun to write down the $d = 2$ case.

Corollary 1. Given any $l \in \mathbb{N}$ and any finite coloring of \mathbb{N}, there exist three positive integers a, b and c for which all terms in $\{a + b + c, a + 2b + 4c, a + 3b + 9c, \ldots, a + lb + l^2c\}$ have the same color.

The 1927 proof of van der Waerden’s Theorem is quite complicated, involving a double induction argument. The 1927 issue of the journal, $[3]$, is difficult to access nowadays, but a very clear exposition is found in R.L. Graham, B.L. Rothschild and J.H. Spencer ($[1]$), pp 29 – 34. As B.L. van der Waerden once remarked, around 1927 he was not aware of the impact of his result as a prototypical Ramsey Theorem - after all, Ramsey’s famous paper stems from 1930 - and merely considered it as a clever exercise. A proof of the above
theorem by means of induction seems a Sisyphean task. We rather use some ideal theory in the semigroup $\beta \mathbb{N}$. As a matter of fact, the argument in the HINDMAN-strauss treatise $^{(2)}$ for the van der Waerden theorem (see 14.1 l.c.) is readily adapted to the present situation. By preferring the smooth $\beta \mathbb{N}$-argument to a complicated induction proof we ignore the calvinistic concern (see $^{(2)}$ p.280) that it “is enough to make someone raised on the work ethic feel guilty”.

The more restrictions one puts on the admissible polynomials, the fewer polynomials one has at his/her disposal and the more difficult it seems to force the ensuing polynomial progressions into one and the same cell. The polynomials $P(x) = \sum_{k=0}^{d} a_k x^k$ we admit here satisfy

- the admissible coefficients a_k belong to one and the same subsemigroup S of $(\omega, +)$, where $\omega = \mathbb{N} \cup 0$;
- the admissible exponents in the powers x^k belong to a subset $D \subset \{0, 1, 2, \ldots, d\}$ containing d.

Such polynomials will be called (S,D)-polynomials.

The sharpened theorem reads

Theorem 2. Given two positive integers d and l, if the set of the positive integers is split up into finitely many non-overlapping parts, there exists a polynomial progression of length l and of degree d, generated by a (S,D)-polynomial, that belongs to precisely one of these parts.

2 Proof

Since Theorem 1 concerns the special case where $S = \omega$ and $D = \{0, 1, 2, \ldots, d\}$, we only need to prove Theorem 2.

Fix d and l in $\mathbb{N} = \{1, 2, 3\ldots\}$. Without loss of generality we may assume that $l > d$. In fact, once the theorem has been proved for “long” progressions (that is $l > d$), then the pertinent cell certainly contains shorter segments ($l \leq d$). We consider polynomials $P(x) = \sum_{i=0}^{d} a_i x^i$ in one indeterminate x of degree $\leq d$ with coefficients in ω^{d+1}. Consider the following sets S_o and I_o in ω^l consisting of l consecutive polynomial values

$$S_o = \{\{P(1), P(2), \ldots, P(l)\} \in \omega^l : P(x) = \sum_{k \in D} a_k x^k, \text{ with } \{a_0, a_1, \ldots, a_d\} \in \mathbb{S}^{d+1}\}$$

$$I_o = \{\{P(1), P(2), \ldots, P(l)\} \in \mathbb{N}^l : P(x) = \sum_{k \in D} a_k x^k, \text{ with } \{a_0, a_1, \ldots, a_d\} \in (\mathbb{S} \cap \mathbb{N})^{d+1}\}$$

The impact of the assumption that $l > d$ is that each element in S_o corresponds to a unique polynomial. In fact, if such an l-tuple would be generated by two different polynomials, the difference of these polynomials would have more zeros (viz. at the l points $1, 2, \ldots, l$ in \mathbb{C}) than its degree $d < l$ permits.

S_o is a subsemigroup of \mathbb{S}^{d+1} under coordinatewise addition, the restrictions $k \in D$ meaning that only addition of coordinates k from D matters. In fact, the sum of two l-tuples
in S_o corresponds to the sum of their unique polynomials and the latter is again a polynomial of degree $\leq d$ with coefficients in the semigroup S.

The progressions $\{P(1), P(2), \ldots, P(l)\}$ in I_o all have degree $= d$, since $a_d \geq 1$. It follows that I_o is a proper subset of S_o. Obviously, I_o is also a semigroup. Moreover, I_o is an ideal in S_o. In fact, upon adding any point in S_o to an arbitrary element of I_o, all coefficients of the sum polynomial are again ≥ 1 and this polynomial is of exact degree d. Although trivial, we notice that S_o contains constant \mathbb{N}-valued polynomials, but I_o contains none of these. This will be instrumental shortly.

Consider the Stone-Čech compactification $\beta \omega$. We are going to use a few facts about $\beta \omega$ that are found in N. Hindman and D. Strauss [2]. We find it convenient to ignore the slight differences in the ideal theory between the two semigroups (see [2], Chap. 4) $\beta \omega$ and $\beta \mathbb{N}$, writing $\beta \mathbb{N}$ where $\beta \omega$ would sometimes be more appropriate. From this point on we can follow the proof of the van der Waerden Theorem in [2], Theorem 14.1, almost verbatim.

Take the compact product space $Y = (\beta \mathbb{N})^I$ and the closures $S = cl_Y(S_o)$ and $I = cl_Y(I_o)$. The semigroup $\beta \mathbb{N}$ has a smallest ideal $K(\beta \mathbb{N}) \neq \emptyset$ (see [2], Chap 4), which will be our main tool.

Take any point $p \in K(\beta \mathbb{N})$ and consider the constant l-tuple $\vec{p} = \{p,p,\ldots,p\}$. The crucial step is to show that \vec{p} belongs to S.

The closures $cl_{\beta \mathbb{N}} B$ of the members $B \in p$ form a neighborhood basis in $\beta \mathbb{N}$ around p. It follows that for the product topology in Y there exist members $B_1, B_2, \ldots, B_r \in p$ for which the box $U = \prod^{1 \leq i \leq r}_{1 \leq i \leq r} cl_{\beta \mathbb{N}}(B_i)$ is a Y-neighborhood of \vec{p}. The intersection $\cap_{1 \leq i \leq r} cl_{\beta \mathbb{N}}(B_i)$ is a $\beta \mathbb{N}$-neighborhood of p. The set N lying dense in $\beta \mathbb{N}$, it is intersected by this neighborhood. Select $a \in N \cap (\cap_{1 \leq i \leq r} cl_{\beta \mathbb{N}}(B_i))$. The constant l-string $\vec{a} = \{a, a, \ldots, a\}$ thus belongs to U. Also, S_o containing all constant l-tuples, we have $\vec{a} \in S_o$. Consequently, we have $\vec{a} \in S_o \cap U$. This shows that \vec{p} belongs to the closure of S_o in Y, and so $\vec{p} \in S$, indeed.

Next we use the fact that by [2], Theorem 2.23, the K-functor preserves products. From $p \in K(\beta \mathbb{N})$ we infer $\vec{p} \in (K(\beta \mathbb{N}))^I = K((\beta \mathbb{N})^I) = K(Y)$. Conclusion: $\vec{p} \in S \cap K(Y)$.

Having shown that $S \cap K(Y) \neq \emptyset$, we can invoke [2], Theorem 1.65 to determine the smallest ideal of the semigroup S: it simply is $K(S) = S \cap K(Y)$. This leads to

$$\vec{p} \in K(S).$$

(2.1)

Obviously, I is an ideal in S. The smallest ideal in S is contained in I: $K(S) \subset I$. It follows from (2.1) that $\vec{p} \in I$.

Finally, let $N = \bigcup_i A_i$ be a finite partition. The closures $\vec{A}_i = cl_{\beta \mathbb{N}} A_i$ are open and form a partition of $\beta \mathbb{N}$. Hence, precisely one of them, \vec{A}_j say, is a $\beta \mathbb{N}$-neighborhood of our point $p \in K(\beta \mathbb{N})$. Then $V = (\vec{A}_j)^I$ is a Y-neighborhood of \vec{p}. Because $\vec{p} \in I$, V must meet the dense subset I_o of I and we can select a polynomial P in in such a manner that $\{P(1), P(2), \ldots, P(l)\}$ belongs to V. But the $P(1), P(2), \ldots, P(l)$ still are integers in \mathbb{N}. For this reason

$$\{P(1), P(2), \ldots, P(l)\} \subset \vec{A}_j \cup \mathbb{N} = A_j$$

and the segment $\{P(1), P(2), \ldots, P(l)\}$ has the color of A_j. [2]
3 Free gifts

The essential property of the set A_j used in the last part of the above proof is the fact that A_j contains a point p belonging to $K(\beta N)$, or $A_j \in p$. Sets $A \subset N$ belonging to some $p \in K(\beta N)$ are called piecewise syndetic sets. We recall that in terms of N itself, A is piecewise syndetic if and only if the gaps between its intervals of consecutive elements remain bounded in lengths, (see (2) Theorem 4.40). It follows that A_j may be replaced by any infinite piecewise syndetic set A and we get as a

Bonus 3. Given a piecewise syndetic set $A \subset N$, a length l and a degree d, there exists a polynomial progression of degree d for which the first l terms belong to A.

Finally we consider a multidimensional version of the theorem, dealing with m polynomial progressions of varying lengths and degrees simultaneously.

Bonus 4. Pick the following items in N: a dimension parameter m, degrees d_1, d_2, \ldots, d_m, and lengths l_1, l_2, \ldots, l_m. If the set N is split up into finitely many non-overlapping parts, there exist m polynomial progressions of length l_i and of degree d_i each, $1 \leq i \leq m$, that simultaneously belong to one of these parts. Also, any given piecewise syndetic set contains such a collection of polynomial progressions.

Remark There is an obvious (S, D) version.

Proof. We introduce arrays

$$\mathcal{P} = \begin{pmatrix}
P_1(1) & P_1(2) \cdots P_1(l_1) \\
P_2(1) & P_2(2) \cdots P_2(l_2) \\
\vdots & \vdots \\
P_m(1) & P_m(2) \cdots P_m(l_m)
\end{pmatrix}$$

generated by polynomials P_1, P_2, \ldots, P_m with coefficients from ω.

These arrays \mathcal{P} need not have the customary rectangular form, the i^{th} row having l_i entries. Extending these rows by putting zeros in the empty places until they all get max\{$l_i : i = 1, 2, \ldots, m$\} entries would unnecessarily complicate the definition of $I_o infra.$

We have avoided to call these \mathcal{P} matrices since they are not intended to act as transformations in some vector space. In order to describe the set these arrays belong to we write $e_i = \{0, \ldots, 1, 0, \ldots, 0\} = \delta_{ij}$ for the usual unit vectors in \mathbb{R}^m. These unit vectors are customarily envisaged as rows; upon transposition we get the unit columns e_i^T. The direct sum decomposition

$$\omega^m = e_1^T \omega \oplus e_2^T \omega \oplus \cdots \oplus e_m^T \omega$$

divides ω^m, and thereby N^m, into m horizontal layers, each equal to N and each row is an additive semigroup at its own.

$$e_i^T N = \begin{pmatrix}
0 & \cdots & 1 & 2 & 3 & 4 & 5 & \cdots \\
0 & \cdots \\
0
\end{pmatrix}$$
Picture: the i^{th} row of an array P is contained in the i^{th} layer.

Upon replacing the l-tuples in the definitions of S_o and I_o by the arrays P we get

$$S_o = \{ P \in \bigoplus_{i=1}^{m} e_i^T \mathbb{N} : P_i(x) = \sum_{k=0}^{d_i} a_{ki}x^k, \text{ with } \{a_0, a_1, \ldots, a_{d_i}\} \in \omega^{d_i+1} \text{ for } i = 1, 2, \ldots, m \},$$

$$I_o = \{ P \in \bigoplus_{i=1}^{m} e_i^T \mathbb{N} : P_i(x) = \sum_{k=0}^{d_i} a_{ki}x^k, \text{ with } \{a_0, a_1, \ldots, a_{d_i}\} \in \mathbb{N}^{d_i+1} \text{ for } i = 1, 2, \ldots, m \}.$$

These are subsemigroups of the $\bigoplus_{i=1}^{m} e_i^T \mathbb{N}$ and I_o is a proper ideal in S_o.

We refrain from repeating all details the above proof for the $m = 1$ case.

For a start, we may assume without loss of generality that $l_1 > d_1, l_2 > d_2, \ldots, l_m > d_m$. Define $l = \max_{1 \leq i \leq m} l_i$. This time we have to deal with the compact space Y^m, one $Y = (\beta \mathbb{N})^l$ for each layer, so that $Y^m = (\beta \mathbb{N})^{lm}$. The closure $I = \text{cl}_{Y^m}(I_o)$ is an ideal in the semigroup $S = \text{cl}_{Y^m}(S_o)$

To every $p \in K(\beta \mathbb{N})$ we assign the constant $m \times l$ array

$$\bar{p} = \begin{pmatrix} p & p \cdots & p \\ p & p \cdots & p \\ \vdots \\ p & p \cdots & p \end{pmatrix}$$

After a little twist the above argument leads to $\bar{p} \in K(S) \subset I$. For a piecewise syndetic set $A \in p$ the product $V = (\bar{A})^l$ is a Y^m-neighborhood of \bar{p} which intersects the dense subset I_o of I in at least one point. This point is an array P, say. It follows that the entries $P_i(j)$ of P belong to $\text{cl}_{Y^m}A$ and thus to $\text{cl}_{\beta \mathbb{N}}A$. All $P_i(j)$ being positive integers, we may write

$$\bigcup \{P_i(j) : i = 1, \ldots, m; j = 1, \ldots, l_i\} \subset \bar{A} \cap \mathbb{N}.$$

Conclusion: these m polynomial progressions do lie in A itself.

References

[1] R.L. GRAHAM, B.L. ROTHSCHILD AND J.H. SPENCER (1990), Ramsey Theory; Second Edition; New York: John Wiley & Sons

[2] N. HINDMAN AND D. STRAUSS (1998), Algebra in the Stone-Čech compactification, Theory and Applications; Berlin: W. De Gruyter

[3] B.L. VAN DER WAERDEN (1927), Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde 19, 212 – 216.