A Review on the Use of Metformin in Pregnancy and Its Associated Fetal Outcomes

Vaishnavi Verma 1, Ashok M. Mehendale 2

1. Obstetrics/Gynaecology, Jawaharlal Nehru Medical College, Wardha, Datta Meghe Institute of Medical Sciences (DMIMSU), Wardha, IND 2. Preventive Medicine, Datta Meghe Institute of Medical Sciences, Wardha, IND

Corresponding author: Vaishnavi Verma, vaishnavi.verma@gmail.com

Abstract

A commonly used first-line anti-diabetic medication, metformin, has been used in pregnancy. The drug is known to have specific effects on different organs around the body. One of these organs includes the ovaries. Therefore, for more than 40 years, it has often been prescribed for maternal obesity along with gestational diabetes mellitus. Untreated pregnancies like these frequently result in complications for both the mother and the fetus, like macrosomia, pregnancy-induced hypertension, obstructed labor, stillbirths, and perinatal deaths. In addition, there is also evidence that these mothers tend to develop type II diabetes mellitus during their pregnancy and even a few years post-delivery. These complications can be controlled or even reduced with the help of metformin, sometimes combining it with insulin or clomiphene citrate if required. There is still a need to cautiously prescribe the drug by outweighing its benefits against the risk associated with it. The current research on the subject leans more towards the benefits offered to the mother during pregnancy. Only a few randomized, controlled trials have been conducted on the fetal condition after the mother has been administered metformin.

Furthermore, these studies lack the appropriate sample size and long-term follow-up on these metformin-exposed offspring. As a result, there are no reliable data available to clinicians and physicians about the drug. Owing to its benefits in certain pregnancies, it is less likely that the drug will cease to be prescribed. Therefore, it becomes increasingly imperative to conduct more research on this topic to ensure the drug is safe for the mother and the offspring.

Introduction And Background

Diabetes, especially type II/adult/non-insulin-dependent diabetes mellitus, is the primary condition for which the oral anti-diabetic medication metformin (a biguanide derivative) is prescribed [1]. The first piece of evidence indicating its use is seen in books on herbs from the 1600s, which stated its origin in the French lilac plant [2]. In modern times, the drug was first explicitly synthesized as a dimethyl biguanide compound in 1922, around the same time synthetic insulin started being produced on the market [3]. The drug was named Glucophage, or ‘glucose-eater,’ by French scientist Jean Stearne in the 1950s due to the mechanism by which it achieves glycemic control when used for diabetes mellitus. The sheer popularity of its use can be attributed to its ease of administration (daily oral dosage as the medication is available as extended-release preparations), mild side effects, affordability, and minimal weight gain [4].

Even though metformin has been a reliable drug prescribed for diabetes mellitus for the past few decades, its exact mode of action still remains unclear. Recent studies suggest that the drug enters the cells via transporters on their cell membranes. Therefore, alterations in these transporters lead to different outcomes with metformin therapy in such patients [5]. Metformin enters the hepatic cells via these transporters and chiefly acts in the mitochondria. Within the mitochondria, it decreases the efficiency of the electron transport chain (ETC) when it reduces the activity of complex I. Adenosine triphosphate (ATP) production is reduced as a result of this. The drug increases adenosine monophosphate (AMP) levels in the electron transport chain (ETC) when it reduces the activity of complex I. Adenosine triphosphate (ATP) production is reduced as a result of this. The drug increases adenosine monophosphate (AMP) levels in the

How to cite this article

Verma V, Mehendale A M (October 07, 2022) A Review on the Use of Metformin in Pregnancy and Its Associated Fetal Outcomes. Cureus 14(10): e30039. DOI 10.7759/cureus.30039
Metformin acting on different sites of the body produces specific actions. In the liver, it improves fasting plasma glucose by decreasing gluconeogenesis, and opposing glucagon signaling enhances insulin sensitivity in the muscles by boosting the number and activity of insulin receptors and glucose absorption.

In the gastrointestinal tract, it increases postprandial blood glucose by decreasing intestinal glucose uptake and increasing GLP-1 secretion. It enhances insulin sensitivity in the adipose tissues while reducing inflammation. Finally, in the ovary, it may restore ovulation in those living with polycystic ovary syndrome [4]. Because of these actions, while metformin is primarily used to manage diabetes mellitus (both types 1 and 2), it has also seen its use in various other conditions, including obesity, polycystic ovary syndrome, non-alcoholic fatty liver disease, and even as an adjuvant in the prevention and treatment of upper gastrointestinal cancers [9-12].

Review

Pregnancy and the use of metformin

For pregnant women, metformin is widely recognized as a sensible, safe, and successful treatment choice, especially in polycystic ovary syndrome and gestational diabetes mellitus. It is even prescribed for non-diabetic obese pregnant women [13].

Gestational diabetes mellitus
The pregnancy issue known as gestational diabetes mellitus occurs when a pregnant woman’s blood glucose levels suddenly rise on their own. As reported by the International Diabetes Foundation (IDF) [14], gestational diabetes mellitus affects around 14% of pregnancies globally. Obesity, a lack of certain micronutrients, a family history of either insulin resistance or diabetes mellitus, and an older maternal age increase the likelihood of gestational diabetes mellitus. Pregnancy complications such as gestational diabetes mellitus can potentially be fatal. It can cause these mothers to acquire non-insulin-dependent diabetes mellitus five to ten years [15] post-delivery, obstructed labor, elevated blood pressure, and big birth weight kids [16].

It is often challenging to differentiate between gestational diabetes mellitus and pre-existing diabetes as many of these mothers were not screened for diabetes before their pregnancies. Currently, two strategies have been adopted by various international guidelines which can help diagnose gestational diabetes mellitus, namely the ‘one-step’ approach and the ‘two-step’ approach, where the former method uses a 75 g oral glucose tolerance test and the latter employs a 50 g non-fasting glucose screening which is followed up with a 100 g oral glucose tolerance test for those who screened positive (the diagnostic values seen in Table J) [17].

![Image](image-url)

TABLE 1: Different guidelines for the diagnosis of gestational diabetes mellitus.

Vandorsten JP, Dodson WC, Espeland MA, et al.: NIH consensus development conference: diagnosing gestational diabetes mellitus. NIH Consen State Sci Statements. 2013, 29:1–31.

Strategy	Guidelines	Fasting Blood Glucose	One-hour postprandial blood glucose	Two hours postprandial blood glucose
One-step approach	World Health Organization	90–125 mg/dL	160 mg/dL	180 mg/dL
One-step approach	National Institute for Health and Care Excellence	110 mg/dL	140 mg/dL	160 mg/dL
Two-step approach	Canadian Diabetes Association	95 mg/dL	131 mg/dL	160 mg/dL

According to several international recommendations, metformin is a medication that is frequently prescribed for gestational diabetes mellitus. The Scottish Intercollegiate Guidelines Network (SIGN) says that [18] glibenclamide or metformin may be used to lower blood sugar in cases of gestational diabetes mellitus [19]. The American Diabetes Association (ADA) [20] recognizes metformin as a category B medication that should be used for gestational diabetes mellitus as a second-line medication following insulin [21]. For gestational diabetes mellitus, the National Institute for Health and Care Excellence (NICE) advises a diet and exercise regime to achieve appropriate blood glucose levels, which, if not met within a fortnight, should be followed by the recommended administration of metformin [22].

While there is no specific treatment for gestational diabetes mellitus, it is often managed using lifestyle interventions like controlled diets and exercise to improve insulin sensitivity in pregnant mothers. As far as pharmaceutical management is concerned, metformin and insulin are frequently prescribed drugs, with metformin being preferred over insulin even though it causes nausea, vomiting, and other gastrointestinal side effects [23]. Five randomized controlled trials on this subject were conducted, and the meta-analysis concluded that metformin helps lower the mother’s weight gain throughout pregnancy and reduces the occurrence of pregnancy-induced hypertension (or pre-eclampsia) [24]. Compared to insulin and Glibenclamide therapies, macrosomia, or large for gestational age births, newborn hypoglycemia, and admission of the infant to neonatal intensive care units [25] are all at a decreased risk when metformin medication is used to treat gestational diabetes mellitus [25,26].

Maternal obesity

The WHO has defined obesity as the build-up of excess fat in the body. As a result, this could cause additional health problems for the affected individual. The body mass index (BMI) is a simple approach to evaluate obesity. It is determined by dividing the individual’s weight in kilograms by the square of their height in meters. Being overweight means the person has a BMI of above 25 kg/m², while being obese means the BMI is over 30 kg/m². Obesity is a growing global health concern since 13% of adults globally are currently obese [27]. The rise in maternal obesity is one of the key factors contributing to morbidity and mortality in both mothers and neonates [28].

Gestational diabetes mellitus, pregnancy-induced hypertension or pre-eclampsia, thrombo-embolism, cesarean birth, and labor induction [29] are the most frequent maternal problems linked to maternal obesity [30–33]. When it comes to fetal complications, stillbirths and neonatal deaths are two times more likely to occur [34]. A distinct correlation exists between fetal macrosomia and obesity during pregnancy [35]. Additionally, there is a higher chance of developing birth defects in the fetus, including spina bifida among
neural tube defects, cardiac defects, multiple congenital anomaly syndromes [36], and abdominal wall defects [37].

Metformin is not a routine drug to be administered to obese pregnant mothers. However, its use is linked with reduced weight gained during pregnancy and the risk of developing pregnancy-related hypertension [29]. It can even improve neonatal outcomes by decreasing NICU admission rates [50]. Metformin usage is also linked to reduced concentrations of the inflammatory proteins CRP and interleukin-6 in circulation [39]. Metformin’s anti-inflammatory properties can significantly improve the likelihood of blastocyst implantation, which lowers the risk of premature delivery [40].

Polycystic ovarian syndrome

A prevalent endocrine condition known as polycystic ovary syndrome causes hormonal imbalance among females of childbearing age. The ovaries’ polycystic appearance is often distinguished as visualized under ultrasonography or USG. Other features like hyperandrogenism and ovulatory dysfunction, often leading to anovulation and irregular menstrual cycles, are also observed in this condition [41]. Due to the irregularity of ovulation, conceiving a child is more difficult for women with polycystic ovarian syndrome. Moreover, these individuals are more susceptible to experiencing pregnancy-related complications [42]. The metabolic abnormalities associated with this syndrome, like insulin resistance, obesity, and hyperandrogenism, may contribute to neonatal and obstetric complications in such pregnancies. These complications include a twofold increased risk of premature delivery, a threefold increased risk of developing gestational diabetes mellitus [43], and a threefold to fourfold increase in developing pregnancy-induced hypertension (PIH) or pre-eclampsia [44]. Further complications can be attributed to the inflammation, thrombosis, and infarction of the placenta observed in females with polycystic ovary syndrome. When this is coupled with nucleated red blood cells and villous immaturity, it may indicate fetal hypoxia and vascular damage [45].

Patients with the polycystic ovarian syndrome who are not pregnant are frequently prescribed metformin. It tends to have an anti-androgenic effect and increases insulin sensitivity, ovulation, and menstrual cyclicity [46]. It is often used with clomiphene citrate to treat subfertility, particularly in clomiphene citrate-resistant women [47].

The two thiazolidinedione drugs-rosiglitazone and pioglitazone—are categorized under pregnancy category C drugs as in experiments on animals they demonstrated a reduction in fetal growth. Therefore, those pregnancies associated with polycystic ovary syndrome are mainly administered metformin because there is no proof that this medication increases the chance of gross abnormalities during pregnancy, making it a category B drug. [48,49]. Metformin usage has shown a lowered incidence of miscarriage in such patients, wherein the incidence is 18.7% in untreated patients. In contrast, for patients who had metformin medication for the first 32 weeks of pregnancy, the incidence is 10%. Meanwhile, it has even dropped to 0% if they underwent metformin therapy throughout their pregnancy [50]. Some studies have suggested that using metformin in such pregnancies is linked with a reduced incidence of androgen excess in the fetus and fewer chances of gestational diabetes mellitus developing in such pregnancies, especially when supplemented with dietary control [51]. Studies on neonatal outcomes of metformin usage in pregnant women who have polycystic ovary syndrome suggest that the drug does not exhibit teratogenic properties [52] and, therefore, does not negatively impact growth, birth weight, and motor-social development during the first one and a half years of the life of the child [53]. Under metformin therapy, especially in the preconception period, pregnancies tend to be singleton pregnancies. Moreover, the patient is less likely to develop OHSS or ovarian hyperstimulation syndrome [54].

Fetal outcomes associated with the use of metformin during pregnancy

As per the Food and Drug Administration (FDA), metformin is a category B medication, meaning animal trials using the drug have not revealed any substantial risks or negative effects for the fetus; however, the same has not been conducted in adequate and well-controlled human patients. It has been over 40 years since metformin began to be used during pregnancy. Since then, there have been multiple studies to evaluate the outcomes of such pregnancies to ensure the safe prescription of the drug.

Certain cohort studies and randomized controlled trials have concluded that neonatal hypoglycemia is significantly less common when metformin is used. Additionally, there have been fewer admissions of neonates to the NICU than insulin use [55]. A network meta-analysis of 32 randomized controlled trials revealed metformin is considered superior to hypoglycaemic drugs like insulin and glyburide in reducing respiratory distress, pregnancy-induced hypertension, macrosomia, and LGA babies, especially in obese mothers with gestational diabetes mellitus [56].

Short-term follow-up of pregnancies that used metformin therapy revealed that there was not any higher chance of pre-eclampsia, premature labor, neonatal intensive care unit admissions, macrosomia or microsomia, and morbidity or mortality of the child up to the first year of life [26]. However, long-term follow-ups of such pregnancies revealed specific noteworthy outcomes, as listed in Table 2.
Due of the drug's tendency to cross the placenta readily and expose the fetus to it, the use of metformin during pregnancy is a widely contested subject. The fetus is exposed to high metformin levels a few hours after it has been administered to the mother [61]. This increased exposure to metformin may be because metformin is primarily excreted through the renal route in adults. Still, in the fetus, it is excreted into the amniotic fluid, which could be swallowed back by them, thereby re-entering their circulation [62]. Therefore, it poses a potential problem because there has not been enough research on metformin metabolism in the fetus, and thus, knowledge on the subject is scarce [61].

Generally speaking, metformin is not regarded as a teratogenic medication; therefore, healthcare professionals usually prescribe it without expecting birth defects in the fetus. However, some controlled studies have observed certain birth defects in pregnant women with polycystic ovary syndrome and diabetes mellitus who were given metformin, as seen in Table 3.

TABLE 2: Outcomes of pregnancies under metformin therapy upon long-term follow up

Due of the drug's tendency to cross the placenta readily and expose the fetus to it, the use of metformin during pregnancy is a widely contested subject. The fetus is exposed to high metformin levels a few hours after it has been administered to the mother [61]. This increased exposure to metformin may be because metformin is primarily excreted through the renal route in adults. Still, in the fetus, it is excreted into the amniotic fluid, which could be swallowed back by them, thereby re-entering their circulation [62]. Therefore, it poses a potential problem because there has not been enough research on metformin metabolism in the fetus, and thus, knowledge on the subject is scarce [61].

Generally speaking, metformin is not regarded as a teratogenic medication; therefore, healthcare professionals usually prescribe it without expecting birth defects in the fetus. However, some controlled studies have observed certain birth defects in pregnant women with polycystic ovary syndrome and diabetes mellitus who were given metformin, as seen in Table 3.

TABLE 2: Outcomes of pregnancies under metformin therapy upon long-term follow up

Due of the drug's tendency to cross the placenta readily and expose the fetus to it, the use of metformin during pregnancy is a widely contested subject. The fetus is exposed to high metformin levels a few hours after it has been administered to the mother [61]. This increased exposure to metformin may be because metformin is primarily excreted through the renal route in adults. Still, in the fetus, it is excreted into the amniotic fluid, which could be swallowed back by them, thereby re-entering their circulation [62]. Therefore, it poses a potential problem because there has not been enough research on metformin metabolism in the fetus, and thus, knowledge on the subject is scarce [61].

Generally speaking, metformin is not regarded as a teratogenic medication; therefore, healthcare professionals usually prescribe it without expecting birth defects in the fetus. However, some controlled studies have observed certain birth defects in pregnant women with polycystic ovary syndrome and diabetes mellitus who were given metformin, as seen in Table 3.

TABLE 3: Observed birth defects seen in studies done on metformin-exposed pregnant groups

Cassina M, Donà M, Di Gianantonio E, Litta P, Clementi M: First-trimester exposure to metformin and risk of birth defects: a systematic review and meta-analysis. Hum Reprod Update. 2014, 20:666–69. 10.1093/humupd/dmu22 [67].

A link exists between metformin usage during pregnancy and small-for-gestational age births because
metformin affects the bioavailability of nutrients and fetal growth by inhibiting mitochondrial complex I, which activates AMPK signaling and inhibits placental mTOR signaling [68]. Metformin can further affect fetal and placental development along with increasing the incidence of cardiometabolic complications in the fetus by resulting in an unbalanced level of folate and vitamin B12; therefore, vitamin supplementation is recommended before the administration of metformin for a pregnancy to reduce the incidence of small-for-gestational-age babies and childhood obesity [42,62].

Conclusions
For more than forty years now, metformin has been a routinely prescribed drug for diabetes mellitus, which has also seen its use in certain pregnancies. These pregnancies include those of obese mothers, mothers with polycystic ovarian disorder, and gestational diabetes mellitus. However, there still exists a grey area when prescribing metformin for pregnancy. Even though its benefits have been more or less established through findings from various controlled trials, one has to weigh the benefits against the risks posed by the drug, as not much research has been conducted regarding the mechanisms of its metabolism in the fetus. All the information on metformin as a drug for pregnancy comes from studies that are often underfunded, do not have enough study participants, and do not conduct long-term follow-ups. As a result of this, regarding the drug’s safety, there are no readily available definite facts. The number of maternal gestational diabetes mellitus and polycystic ovary syndrome cases has only gone up over the years. Thus, it becomes increasingly important to conduct more high-quality research on fetal outcomes of metformin administration during pregnancy.

Additional Information
Disclosures
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors declare that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References
1. Nasri H, Rafieian-Kopaei M: Metformin: current knowledge. J Res Med Sci. 2014, 19:568-64.
2. Bailey CJ, Day C: Traditional plant medicines as treatments for diabetes. Diabetes Care. 1989, 12:553-64. 10.2337/diacare.12.8.553
3. Pryor R, Cabreiro F: Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J. 2015, 471:507-22. 10.1042/bj20150497
4. Thomas I, Gregg B: Metformin; a review of its history and future: from lilac to longevity. Pediatr Diabetes. 2017, 18:10-6. 10.1111/pedi.12473
5. Todd JN, Flores JC: An update on the pharmacogenomics of metformin: progress, problems and potential. Pharmacogenomics. 2014, 15:529-59. 10.2217/pgs.14.21
6. Joyquera G, Echiburú R, Crisosto N, Sotomayor-Zárate R, Maliqueo M, Cruz G: Metformin during pregnancy: Effects on offspring development and metabolic function. Front Pharmacol. 2020, 11:653. 10.3389/fphar.2020.00653
7. Pernicova I, Korbonits M: Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014, 10:145-56. 10.1038/nrendo.2013.256
8. He L, Wondiford FE: Metformin action: concentrations matter. Cell Metab. 2015, 21:159-62. 10.1016/j.cmet.2015.01.005
9. Domecq JP, Prutzky G, Leppin A, et al.: Clinical review: drugs commonly associated with weight change: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2015, 100:565-70. 10.1210/jc.2014-3421
10. Motta AB: Mechanisms involved in metformin action in the treatment of polycystic ovary syndrome. Curr Pharm Des. 2009, 15:3074-7. 10.2174/138161209789058101
11. Lavine JE, Schwimmer JB, Van Natta ML, et al.: Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA. 2011, 305:1659-68. 10.1001/jama.2011.520
12. Nimako GK, Wintrob ZA, Sulik DA, Donato JL, Ceacareanu AC: Nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA. 2011, 305:1659-68. 10.1001/jama.2011.520
13. Hyer S, Balani J, Shehata H: Metformin in pregnancy: mechanisms and clinical applications. J Clin Endocrinol Metab. 2015, 100:565-70. 10.1210/jc.2014-3421
14. Hyperglycaemia in pregnancy (HGP) (20-49 y): prevalence of gestational diabetes mellitus (GDM). Diabetes Care. 2018, 19:10.3390/jmris.19015627255
15. Hydroxycarbamylin: a drug that can improve insulin sensitivity in type 2 diabetes. Diabetes Metab J. 2015, 47:10.1210/jc.2014-3421
16. Gestational diabetes. (2020). Accessed: July 31, 2022: http://www.idf.org/our-activities/care-prevention/gdm.
17. Panaiteascu AM, Ghioanu AM, Popa M, Dutu I, Gica N, Peteiu G, Veduta A: Screening for gestational diabetes during the COVID-19 pandemic-current recommendations and their consequences. Medicina (Kaunas). 2021, 57:10.3390/medicine57040381
prospective longitudinal assessment of women with polycystic ovary syndrome from preconception insulin resistance, insulin secretion, weight, testosterone and development of gestational diabetes: Glueck CJ, Goldenberg N, Wang P, Loftspring M, Sherman A: 10.1111/j.1447-0756.2008.00856.x pregnancy outcomes in women with polycystic ovarian syndrome? Gilbert C, Valois M, Koren G: 349:1443-50. Petitti DB: 10.1056/NEJMct0707092 Nestler JE: 10.1093/humrep/dev265 characteristics in women with polycystic ovary syndrome Koster MP, de Wilde MA, Veltman-Verhulst SM, Houben ML, Nikkels PG, van Rijn BB, Fauser BC: 98:208-17. Dunning AM T: 10.1542/peds.111.S1.1152. Inflammation-induced preterm birth in mice with higher endocannabinoid levels diabetes mellitus Syngelaki A, Nicolaides KH, Balani J, et al.: 2019, 35:e3164. women: a systematic review and meta-analysis of two randomized controlled trials D'Ambrosio V, Brunelli R, Vena F, et al.: 2013, 8:e64585. Matsui H, Tominaga Y, Yokota T, et al.: 2019. Metformin reduces maternal weight gain in obese pregnant women: a systematic review and meta-analysis of two randomized controlled trials. Diabetes Metab Res Rev. 2019, 35:e5164. 10.1002/dmrr.e5164. Synglelaki A, Nicolaides KH, Balani J, et al.: Metformin versus placebo in obese pregnant women without diabetes mellitus. N Engl J Med. 2016, 374:434-43. 10.1056/NEJMoa1509981. Sun X, Tavenier A, Deng W, Leishman E, Bradshaw HB, Dey SK: Metformin attenuates susceptibility to inflammation-induced preterm birth in mice with higher endocannabinoid levels. Biol Reprod. 2018, 99:208-17. 10.1093/biolre/iox164. Deans R: Polycystic ovary syndrome in adolescence. Med Sci (Basel). 2019, 7:10.3390/medscien7100101. Maxwell C, Farine D: Pregnancy and Obesity. De Gruyter, Berlin; 2017. 10.1097/01.AOG.0000107291.46159.00. Dunning AM T: Care of People with Diabetes: A Manual of Nursing Practice. 1 ed. Wiley-Blackwell, New York; 2017. https://www.wiley.com/en-us/Care+of+People+with+Diabetes+3A+A+Manual+of+Nursing+Practice%2C+2nd+Edition+P-9781405151865. Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC: Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015, 21:575-92. 10.1093/humupd/dmv029. Koster MP, de Wilde MA, Veltman-Verhulst SM, Houben ML, Nikkels PG, van Rijn BB, Fauser BC: Placental characteristics in women with polycystic ovary syndrome. Hum Reprod. 2015, 30:2829-37. 10.1093/humrep/dev265. Nestler JE: Metformin for the treatment of the polycystic ovary syndrome . N Engl J Med. 2008, 358:47-54. 10.1056/NEJMct0707092. Creanga AA, Bradley HM, McCormick C, Witkop CT: Use of metformin in polycystic ovary syndrome: a meta-analysis. Obstet Gynecol. 2008, 111:959-68. 10.1097/AOG.0b013e31816ec2f8. Petitti DB: Clinical practice. Combination estrogen-progesteron oral contraceptives. N Engl J Med. 2005, 349:1445-50. 10.1056/NEJMep050751. Gilbert C, Valois M, Koren G: Pregnancy outcome after first-trimester exposure to metformin: a meta-analysis. Fertil Steril. 2006, 86:658-63. 10.1016/j.fertnstert.2006.02.098. Nawaz FH, Khalid R, Nara T, Rizvi JI: Does continuous use of metformin throughout pregnancy improve pregnancy outcomes in women with polycystic ovarian syndrome? Obstet Gynecol Res. 2008, 34:832-7. 10.1111/j.1470-0756.2008.00856.x. Glueck CJ, Goldberg N, Wang P, Loftspring M, Sherman A: Metformin during pregnancy reduces insulin, insulin resistance, insulin secretion, weight, testosterone and development of gestational diabetes: prospective longitudinal assessment of women with polycystic ovary syndrome from preconception throughout pregnancy. Hum Reprod. 2004, 19:510-21. 10.1093/humrep/deh109.
52. Farid NR, Diamanti-Kandarakis E: Diagnosis and Management of Polycystic Ovary Syndrome. Springer US, Boston; 2009. 10.1007/978-0-387-09718-3

53. Hellmuth E, Damm P, Malsted-Pedersen L: Oral hypoglycaemic agents in 118 diabetic pregnancies. Diabet Med. 2000, 17:507-11. 10.1046/j.1464-5491.2000.00314.x

54. Mathur R, Alexander CJ, Yano J, Trivax B, Aziz R: Use of metformin in polycystic ovary syndrome. Am J Obstet Gynecol. 2008, 199:596-609. 10.1016/j.ajog.2008.09.010

55. Priya G, Kalra S: Metformin in the management of diabetes during pregnancy and lactation. Drugs Context. 2018, 7:212523. 10.7573/dic.212523

56. Liang HL, Ma SJ, Xiao YN, Tan HZ: Comparative efficacy and safety of oral antidiabetic drugs and insulin in treating gestational diabetes mellitus: An updated PRISEMA-compliant network meta-analysis. Medicine (Baltimore). 2017, 96:e7939. 10.1097/MD.0000000000007939

57. Hanem LG, Stridsklev S, Júlíusson PB, et al.: Metformin Use in PCOS pregnancies increases the risk of offspring overweight at 4 years of age: follow-up of two RCTs. J Clin Endocrinol Metab. 2018, 103:1612-21. 10.1210/jc.2017-02419

58. Ra TB, Ludvigsen HV, Carlsen SM, Vanky E: Growth, body composition and metabolic profile of 8-year-old children exposed to metformin in utero. Scand J Clin Lab Invest. 2012, 72:570-5. 10.3109/00365513.2012.712319

59. Rowan JA, Rush EC, Obolokun V, Battin M, Woulde T, Hague WM: Metformin in gestational diabetes: the offspring follow-up (MiG TOFU): body composition at 2 years of age. Diabetes Care. 2011, 34:2279-84. 10.2337/dc11-0660

60. Ijäs H, Vääräsmäki M, Saarela T, Keravuo R, Raudaskoski T: A follow-up of a randomised study of metformin and insulin in gestational diabetes mellitus: growth and development of the children at the age of 18 months. BJOG. 2015, 122:994-1000. 10.1111/bjog.12964

61. Vanky E, Zahlrien K, Spigset O, Carlsen SM: Placental passage of metformin in women with polycystic ovary syndrome. Fertil Steril. 2005, 85:1575-8. 10.1016/j.fertnstert.2004.11.051

62. Stowers JM, Sutherland HW: The use of sulphonyleureas biguanides and insulin in pregnancy. Carbohydrate Metabolism in Pregnancy and the Newborn. Churchill Livingstone, Edinburgh ; 1984. 205-20. 10.1002/pdi.1960020524

63. Coetzee EJ, Jackson WP: Oral hypoglycaemics in the first trimester and fetal outcome. S Afr Med J. 1984, 65:635-7.

64. Moll E, Bossuyt PM, Korevaar JC, Lambalk CB, van der Veen F: Effect of clomifene citrate plus metformin and clomifene citrate plus placebo on induction of ovulation in women with newly diagnosed polycystic ovary syndrome: randomised double blind clinical trial. BMJ. 2006, 332:1485. 10.1136/bmj.38867.631551.55

65. Hughes RC, Rowan JA: Pregnancy in women with type 2 diabetes: who takes metformin and what is the outcome?. Diabet Med. 2006, 23:318-22. 10.1111/j.1464-5491.2006.01750.x

66. Legro RS, Barroliar HK, Schlaff WD, et al.: Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007, 356:551-66. 10.1056/NEJMoa065971

67. Cassina M, Donà M, Di Gianantonio E, Litta P, Clemeni M: First-trimester exposure to metformin and risk of birth defects: a systematic review and meta-analysis. Hum Reprod Update. 2014, 20:656-69. 10.1093/humupd/dmu022

68. Grace MR, Dottert-Katz SK, Zhou C, Manuck T, Beggess K, Bae-Jump V: Effect of a high-fat diet and metformin on placental mTOR signaling in mice. AJR Rep. 2019, 9:e138-43. 10.1053/j-sor-1665362