International Conference on Education and Educational Psychology (ICEEPSY 2011)

How learners cope with English tenses: Evidence from think-aloud protocols

Shahin Vaezi, Mehrasa Alizadeh

Abstract

Mastering the temporal system of a second language and being able to correctly implement this knowledge especially in spontaneous production is a challenging task to accomplish. That is why most learners often have problems using appropriate tenses in oral and written production. The present study attempts to shed light on the way Iranian learners cope with a tense task and how they come up with responses, right or wrong. The participants were given a tense task in the form of a cloze and were asked to think aloud as they were completing the task. The researchers, then, tried to see what processes they went through while filling in the blanks with verbs. The potential sources of error and their significance in teaching English are also discussed.

1. Introduction

According to Klein (2008), time is an indispensable part of human cognition and action. Therefore, languages have developed complex systems for expressing time. There are basically six devices for encoding time. They are tense, aspect, lexical aspect, temporal adverbials, temporal particles, and discourse principles. From among these six devices of temporal expression, the first two will be the main focus of this study, particularly tense, which Comrie (1985) defines as “the grammaticalisation of location in time” (p.1).

Salaberry and Shirai (2002, p.2) have also offered a more detailed definition of tense as “a deictic category that places a situation in time with respect to some other time, usually the moment of speech”. They cite Klein (1994, p.16) for his definition...
of aspect as “the different perspectives which a speaker can take and express with regard to the temporal course of some event, action, process, etc.” (Salaberry & Shirai, 2002, p.2).

Correct use of the tense-aspect system of an L2 is a problematic area for most learners, especially in spontaneous oral production. They may have a good knowledge base of the L2 temporal system but may find it difficult to implement their declarative knowledge when it comes to practice. That is what makes this area open to research.

2. Previous studies on tense/aspect

Researchers have investigated into learners’ development of tense/aspect systems from a variety of perspectives. Studies of tense/aspect acquisition were originally part of research into L2 acquisition (see Bardovi-Harlig (1999) for a review). Researchers in this area were mainly interested in testing the aspect hypothesis. This hypothesis was based on a pioneering classification by Vendler (1957, cited in Salaberry and Shirai, 2002) in which he categorized verbal predicates into four semantic categories, namely states, activities, accomplishments, and achievements. The aspect hypothesis states that the acquisition of perfective / past marking is initially restricted to the marking of telic predicates (achievements and accomplishments). In contrast, imperfective marking is initially restricted to the marking of atelic predicates (states and activities), whereas progressive marking is restricted to marking dynamic and atelic predicates (activities) in learners’ interlanguage.

Working within the framework of the aspect hypothesis, several researchers have investigated L2 acquisition of tense-aspect morphology in English and other languages (Giacalone-Ramat, 2002; Housen, 2002; Robinson, 1995; Rocca, 2002; Rohde, 2002). Two of these researches will be elaborately discussed below.

Robinson (1995) examined the aspect hypothesis by collecting oral interview data from 26 Spanish EFL young-adult learners. He wanted to see whether lexical aspect is more dominant than tense in the distribution of verb morphology and whether this distribution varies across proficiency levels. He found an interdependence of verb morphology and lexical aspect across all proficiency levels. Learners associated –s with states, –ing with activities, and –ed / –IRR with punctual events. Also, highest-level learners generalized the use of –ed / –IRR to all punctual and telic predicates. In general, the association of inflections with tense rather than lexical aspect increased with an increase in proficiency level. In other words, learners in their primary stages of language learning hardly paid attention to tense. Instead, they used verbs in a meaning-wise fashion, which means that the distribution of verb morphology is dependent upon the semantic category of the verb (Vendler’s classification). They gradually started to take into account the appropriate tense when using a verb as they got to higher levels of proficiency.

Housen (2002) studied the L2 development of the English verb system among 23 Dutch-speaking and 23 French-speaking students in primary schools in Belgium. The participants were interviewed and were asked to produce a variety of discourse types such as narrative, descriptive, and expository with different verb forms. The researcher aimed to describe the developmental stages in the L2 acquisition of English and to compare the findings of the study to the stages of development proposed by the Aspect Model. The findings, particularly the data gathered longitudinally from one of the learners, suggest that in the development of tense/aspect (TA) morphology, inherent semantic properties of the verb interact with other factors such as L1 influence, the features of tense-aspect markers in the input language, the morphophonemic properties of the tense-aspect categories, and the processing mechanisms operating at a particular point in the learner’s interlanguage.

In a similar vein, Collins (2007) reports a study in which Japanese and French learners of English were compared with one another on a tense task in which the correct answers to all the blanks, as provided by native speakers, were in the past tense. Moreover, the researcher made a distinction among the blanks based on the semantic categories they belonged to. The four semantic categories identified were statics, activities, accomplishments, and achievements (Vendler’s classification). It was found that the two groups, despite their different L1s, were more or less the same in using the past tense with statives. They also preferred to do so more with accomplishments and achievements. The only significant difference lied in their use of the past tense in case of achievements, where Japanese learners were more successful than their French counterparts. The author discusses this difference in terms of the tense system in Romance languages such as French, where a compound past, passé compose, is used in most cases instead of simple past. The structure of this compound past is just like the way present perfect is formed in English. That’s why some French learners had a tendency toward using the present perfect instead of the simple past. The author concludes by stating that learners from various L1 backgrounds face almost the same challenges in coping with English tense/aspect forms, and exposing them to these forms in different contexts plays a key role in helping them master the English tense/aspect system in meaningful situations.

Mastery over tense-aspect has been investigated in oral and written production as well. In a study of Anglophone learners of French in a school in England, Macrory and Stone (2000) followed 10 participants (half boys and half girls) during a one-year period. They wanted to investigate (1) what learners perceived of their own knowledge of forming and using the perfect tense in French, (2) their actual knowledge, and (3) their ability to use the perfect tense in speaking and writing. Thus, the students were asked to recall what they knew about the formation of the perfect tense and the instances of its use. Then, they were given a gap-filling test devised by the authors, one which was based on familiar texts from their course books. In the third stage, their use of the perfect tense was checked both through semi-structured interviews and in writing. A year later, data was collected from the same students when they were in year 11 and were aged 16 to examine their progress over time. The data of year 10 indicate that students knew about the role of auxiliary in the formation of the perfect tense. They were also able to successfully supply an
auxiliary in the gap-filling test, yet far less successful in auxiliary use in spontaneous production, particularly when referring to a third person. The researchers found similar results in the second round of data collection. In year 11, when students were asked about their knowledge of the perfect tense, they repeated the same thing as year 10. They were also consistent in their responses to the spoken and written versions of the gap-filling test. Moreover, their ability to use the perfect tense followed a pattern similar to the one observed in year 10. In all, the students made little progress in their use of the French perfect tense from year 10 to year 11.

Learners’ ability to use the English tenses, aspects, and the passive voice in written production has also been studied by Hinkel (2004). She compared the patterns of L1 and L2 uses of English tenses (past, present, and future), English aspects (progressive and perfect), and the passive voice in native-speaker (NS) and non-native-speaker (NNS) academic writings. Hinkel found that although the NNSs were all advanced learners of English and had many years of L2 learning, they still had problems using English tenses, aspects, and the passive voice in academic written production. She found that NSs used the present tense and the passive voice more than NNSs. Instead, NNSs used the past tense more and sounded more personal in their texts. The latter group avoided using complex structures such as the passive voice, the perfect aspect, and hypothetical would, with the exception of Arab learners who used sweeping generalizations and “seemingly self-evident truths” more than the other participants. They made a higher contribution in the number of instances of present tense use among NNSs. Nevertheless, their style of writing was not typical of academic texts.

Benati (2001, 2005) has also proved that the method of instruction can make a difference in the acquisition of Italian future tense and English past tense respectively. In his 2005 article, Benati worked on two separate groups of students, Chinese and Greek school-age learners of English. He divided each L1 group into three subgroups in order to investigate the effects of processing instruction (PI), traditional instruction (TI), and meaning-output instruction (MOI) on the acquisition of the English simple past on an interpretation and a production task both at sentence level. The students were given a pretest a few weeks before the treatment. The interpretation task included 20 sentences with 10 distracter sentences in present and 10 sentences in the past. The participants listened to them and had to determine whether the sentences they heard were in present or in past. The production task, on the other hand, was in written mode. Learners were asked to look at 10 pictures and use the verb provided to produce a sentence for each picture. The results indicate that both PI groups (Chinese and Greek) made a significant progress from pre-test to post-test. They performed better than MOI and TI groups in the interpretation task, and all the three groups improved equally in the production task.

In another study, Lim (2007) has shed light on the sources of learners’ errors in the use of the present perfect tense. He focused on Malay learners’ errors in the use of the present perfect in order to see whether crosslinguistic interference was more significant than intralingual interference in the acquisition of the present perfect among Malay ESL learners. He made use of an elicitation procedure, comprised of questionnaires with close-ended questions in written mode, with 51 Malay students at a school in Malaysia. It was found that a large number of the errors in the use of the present perfect were due to crosslinguistic interference, resulting from the differences between the learners’ L1 and L2.

To date, no study has ever focused on Iranian learners’ strategies and mental processes in coping with a tense task. The present study, exploratory in nature as it is, attempts to answer the following questions:
1. What processes do Iranian EFL learners go through as they are handling a tense task?
2. What are the potential causes of their errors?

3. Methodology

3.1. Participants
Twenty-six learners participated in this study. They were all university students majoring in railway, electric, and mechanical engineering at Iran University of Science and Technology (IUST) and were enrolled in an EAP course taught by the first author.

3.2. Instrumentation and Procedure
The researchers collected data through think-aloud protocols. Bowles (2010) maintains that relying exclusively on learners’ production as a means of measuring their language ability does not yield much, if any, information about the actual processes going on in their minds. Therefore, researchers have made use of some other measures such as verbal reports to decipher learners’ thought processes and strategies. Verbal reports may be elicited simultaneously while a given task is being accomplished, in which case they are known as concurrent verbal reports (or think-alouds), or after a task is completed. In this latter case, they are referred to as retrospective reports (or stimulated recalls).

Participants were given a tense task in the form of a cloze test, developed by the researchers (refer to the Appendix A for a copy of the task). The task was adopted from a reading passage in the ILI English Series, High Intermediate Book 1. Sixteen verbs were deleted from the text, and instead, infinitives were given in parentheses. These sixteen verbs were chosen as to cover a range of English tenses and aspects (from simple present, to past perfect, and to future).

The participants were required to fill in the blanks with the correct form of the verbs while providing concurrent verbal reports or think-alouds (TAs). They were allowed to think aloud either in English or in Persian optionally. Each person was first individually instructed, using both a simple mathematical computation and a tense task (see Appendix B) similar to the one used in the study. Then, in order to ensure conformity of the TA sessions, the researchers remained silent unless the participants stopped thinking aloud. In case of such intervals, the participants were reminded to keep talking about whatever was going on in
their minds as they were completing the task. Each single TA session took around 30 minutes. The target text was about robots and their use, which made it a good choice for these participants, who were majoring in branches of engineering and who were frequently dealing with texts about technological advances.

3.3. Confirming the Tense Task

In order to confirm the tense task employed, the author sought expert opinion from an academic who is a native speaker of English. She read through the text and made some modifications by cutting down on the number of blanks. The purpose was to allow more context to the task so that it would not be challenging. In other terms, the focus was to be on tense/aspect, not other linguistic features of the text. She also suggested that the task be given part by part on separate slips of paper so that the participants would take their time to think aloud and would not read through the whole text without uttering much about their thought processes.

Because the task was not a multiple-choice one and the participants had to come up with answers merely based on the infinitives provided, it was speculated that some of the blanks would have more than one correct response. Therefore, the task was completed by 13 native speakers of American English, and it was found that some blanks actually had two or more correct answers. That is, the primary assumption of multiple responses was confirmed, and all those possible responses were also accepted as correct. This was also considered in analyzing the data.

4. Data Analysis and Discussion

Initially, the participants’ TA audio files were fully transcribed. Next, the researchers attempted to extract the processes the participants went through while filling in the blanks and especially the reasons they provided for their choices. The responses provided by the participants in completing the tense task can be found in a table in Appendix C, with the number of correct and incorrect responses listed separately for each blank.

4.1. Research Question 1

Also, after the TA sessions, the cognitive processes and strategies, which were the most dominant among all, were extracted for every single blank in order to come up with a list that make generalizations possible. What follows is a shortened list of the most salient strategies and processes extracted from the think-aloud protocols. Examples of them have also been provided where necessary so as to further clarify the points. There were times when some strategies were used only once or twice by the participants. That’s why they were excluded from the list.

- **Translating:** For example, after reading the following excerpt, one of the participants started translating it into his L1, Persian.

 “Technology marches on. What we only dreamed about yesterday is a reality today. What we dream about today will become a reality tomorrow – or, at the rate things are going, maybe this evening.”

- **Paraphrasing:** Some participants, mainly those who had a better knowledge of English also made use of paraphrasing while reading the text, either in English or in Persian.

- **Referring to time signals:** For example, twenty years ago and in 1921 signaled the past tense, whereas within twenty years and in the next two years signaled the future tense.

- **Referring to previous or following parts:** In order to interpret the text and to fill in the blanks, the participants frequently referred to previous parts. For instance, one of the participants referred to previous parts when reading the following sentence saying that “There’s no threat from robots. Instead there is more benefit now.”

 “Today, though, most visualize robots not as threatening creatures but as beneficial machines that help us with our work, especially unpleasant drudgery.”

- **Activating background knowledge:** From time to time, the participants made references to their background knowledge on the use of robots in industry, for example in car factories, while they were reading. That’s because they had already been involved with such issues as part of their field of study. According to one of the participants:

 “Robots are used in car factories in developed countries like Japan, where they have replaced human force.”

- **Responding based on the meaning of the text:** Where there were not any time signals or specific linguistic elements as clues to the right answer, the participants mainly attempted to arrive at a response based on the meaning of the text. For instance, one of the participants decided to use the verb “predict” because he felt it was in correspondence with the overall meaning of the sentence.

 “The development of the personal robot may be the next big technological advance, and some predict that within twenty years, home robots will become as common as PCs are today.”

- **Request for help/clarification:** This mainly happened upon encountering unfamiliar words such as vaguely, humanoid, etc. In such cases, the participants were given easier synonyms for the unknown words so that the shortage in their vocabulary knowledge would not act as a stumbling block in choosing the right tense/aspect.

- **Inferring the meaning of unknown words from the context:** The meanings of some words such as “coin”, “surgery”, and “companion” were either correctly or incorrectly inferred from the context. Participants who had a better knowledge
of English were mainly more successful in making intelligent and correct guesses about the meaning of unfamiliar words compared to others who mostly relied on their intuition in arriving at guesses (which were in most cases incorrect).

- **Attending to subject-verb agreement:** Where the simple present tense was used, some learners were careful not to violate the subject-verb agreement, while others were ignorant of it. So it seems that language teachers are to make learners attend more consciously to such delicacies in English grammar, particularly those learners whose L1 does not make such distinctions as subject-verb agreement.

- **Parallel structures:** There were two occasions on which parallel structures could aid the participants in making right choices.

 “The Sony Corporation has developed a robotic dog that wags its tail, fetches a ball, and responds to human commands.”

 “In London’s Yo! Sushi restaurant, there are robots that prepare food, serve drinks, warn customers to get out of their way, and make funny statements like, ‘Life is a never-ending circuit.’”

These two blanks are basically of the same nature. That is to say, the correct tense for both of them is the simple present, and they are both surrounded by other verbs of the same tense in the same sentence. However, there exists a subtle difference between them, which is their differing positions in the sentences. “Responds” follows two other verbs of the same tense, person, and number, namely “wags” and “fetches”. That’s why 18 out of 26 participants, which is rather a high proportion, responded based on “parallel structures”. We have more or less the same conditions around Blank 16; nevertheless, the participants tended to treat this blank in a quite different manner. Only 5 participants referred to “parallel structures” when thinking aloud and filling in this blank. Such an eye-catching difference in frequencies of “parallel structures” could well be explicated through participants’ noticing the surrounding context. In case of “responds”, since it is preceded by “wags” and “fetches”, the participants had more time to attend to the surrounding context and to follow the same pattern for the last verb. Yet, for “prepare”, as it precedes “serve”, “warn”, and “make”, responders scarcely managed to attend to the tense of the following verbs to help them as a clue toward the correct response.

The TA protocols revealed that if time signals were available very close to the given blank (either in the same or a neighboring sentence), most of the participants made use of these time signals to choose the right verb form. In other words, they immediately paid attention to form-related elements of the context to arrive at responses, whereas alternative solutions to right answers were less made use of, as frequency counts of processes and strategies have indicated. This is evident in the number of time signals referred to in filling blanks one (20 references), three (14), four (17), six (20), and ten (18).

Generally speaking, learners with lower language abilities have attended to tense more than aspect while completing the task. Among learners with higher knowledge of English, aspect as well as tense was paid attention to. For example, in the following sentence where both the simple past and past perfect were acceptable answers, only a few (4 out of 26) managed to attend to the sequence of the events to help them make use of the perfect aspect.

“The robots in Capek’s play eventually destroyed mankind because they learned (or had learned) to love and hate.”

Table 1 includes the various strategies and processes observed in the TA protocols along with the sum of their frequencies.

The overall frequency of strategies and processes observed in the TA protocols

Strategies / Processes	Frequencies (%)	Strategies / Processes	Frequencies (%)
Translating	177 (34.03%)	Responding based on meaning	109 (20.96%)
Paraphrasing	51 (9.80%)	Request for help / clarification	5 (0.96%)
Referring to Time Signals	76 (14.61%)	Inferring the meaning of unknown words	4 (0.76%)
Referring to previous / following parts	36 (6.92%)	Attending to subject-verb agreement	33 (6.34%)
Activating background knowledge	6 (1.15%)	Parallel structures	23 (4.42%)

As the above table indicates, “translating” and “paraphrasing” were very highly employed in dealing with the target task, while making inferences about the meaning of unknown words was the least used. The former strategies were probably used so frequently since they were applicable to various parts of the task, whereas some other processes such as “attending to subject-
verb agreement" accounted for a lesser proportion, thus a smaller percentage, of the whole strategies because they were only applicable to certain parts of the task.

4.2. Research Question 2

In response to the second research question, it is worth noting that most of the errors were made due to wrong translations of the text, wrong pronominal reference, inattention to subject-verb agreement, and incorrect use of the passive voice. It seems that language teachers are required to make learners conscious of such common mistakes in English. Moreover, they shouldn’t focus exclusively on time signals as clues pointing to right verb tenses or aspects. Instead, they had better make learners aware of the function of a given tense or aspect. In sum, they have to guard against making learners internalize cliché generalization (such as whenever there is "since", use the present perfect!) as far as the use of verbal morphemes is concerned.

5. Conclusion

The present study was an investigation into the way Iranian EFL learners handle a tense task. It employed think-aloud (TA) data collected from 26 participants who were enrolled in an EAP course at Iran University of Science and Technology (IUST). The researchers analyzed the TA data and prepared a list of the processes the learners went through as they were completing the task. The processes and strategies included translating, paraphrasing, activating background knowledge, referring to previous / following parts and so on and so forth. Furthermore, the sources of their errors were discussed. It was found that the errors were mainly due to wrong translations, wrong pronominal reference, inattention to subject-verb agreement, and incorrect use of the passive voice.

The findings of this study can help language teachers improve their approaches to teaching grammar and raising students’ consciousness toward probable sources of errors in using English tenses. The authors suggest replications with other groups of language learners in different settings with different tasks or in spoken mode to come up with more comprehensive results.

References

Bardovi-Harlig, K. (1999). From morpheme studies to temporal semantics: Tense-aspect research in SLA. Studies in Second Language Acquisition, 21(3), 341-382.

Benati, A. (2001). A comparative study of the effects of processing instruction and output-based instruction on the acquisition of Italian future tense. Language Teaching Research. 5(2), 95-127.

Benati, A. (2005). The effects of processing instruction, traditional instruction and meaning-output instruction on the acquisition of the English past simple tense. Language Teaching Research. 9(1), 67-93.

Bowles, M. A. (2010). Concurrent verbal reports in second language acquisition research. ARAL, 30, 111-127.

Collins, L. (2007). L1 differences and L2 similarities: Teaching verb tenses in English. ELT Journal, 61(4), 295-303.

Comrie, B. (1985). Tense. Cambridge: Cambridge University Press.

Giacalone-Ramat, A. (2002). How do learners acquire the classical three categories temporality? Evidence from L2 Italian. In R. Salaberry, & Y. Shirai (Eds.), The L2 Acquisition of tense-aspect morphology (pp.221-247). Amsterdam: John Benjamins Publishing Company.

Hinkel, E. (1992). L2 and time reference. TESOL Quarterly, 20(3), 556-572.

Hinkel, E. (2004). Tense, aspect and the passive voice in L1 and L2 academic texts. Language Teaching Research, 8(1), 5-29.

Housen, A. (2002). The development of Tense-Aspect in English as a second language and the variable influence of inherent aspect. In R. Salaberry & Y. Shirai (Eds), The L2 Acquisition of Tense-Aspect Morphology (pp. 155-197). John Benjamins Publishing Company: Amsterdam.

Klein, W. (2008). Time in language, language in time. Language Learning, 58(Suppl. 1), 1-12.

Lim, J. M. (2007). Crosslinguistic influence versus intralingual interferences: A pedagogically motivated investigation into the acquisition of the present perfect. System, 35(3), 368-387.

Macrory, G., & Stone, V. (2000). Pupil progress in the acquisition of the perfect tense in French: The relationship between knowledge and use. Language Teaching Research, 4(1), 55-82.

Ministry of Education. (2009). The Persian Language II. Tehran: Sherkat Chap va Nashre Ketabhaye Darsi Iran.

Robinson, R. (1995). The aspect hypothesis revisited: A cross-sectional study of tense and aspect marking in interlanguage. Applied Linguistics, 16(3), 344-370.

Rocca, S. (2002). Lexical aspect in child second language acquisition of temporal morphology: A bidirectional study. In R. Salaberry, & Y. Shirai (Eds.), The L2 Acquisition of tense-aspect morphology (pp.249-284). Amsterdam: John Benjamins Publishing Company.

Rohde, A. (2002). The aspect hypothesis in naturalistic L2 acquisition: What uninflected and non-target-like verb forms in early interlanguage tell us. In R. Salaberry, & Y. Shirai (Eds.), The L2 Acquisition of tense-aspect morphology (pp. 199-220). Amsterdam: John Benjamins Publishing Company.

Salaberry, R., & Shirai, Y. (2002). L2 acquisition of tense-aspect morphology. In R. Salaberry, & Y. Shirai (Eds.), The L2 Acquisition of tense-aspect morphology (pp.1-20). Amsterdam: John Benjamins Publishing Company.
Appendix A

Tense Task

My Friend the Robot

Technology marches on. What we only dreamed about yesterday is a reality today. What we dream about today will become
a reality tomorrow – or, at the rate things are going, maybe this evening. Did you know, for example, that there are now
computers that can operate underwater? Soon there will be computers that we can wear. There is now computer-controlled
plastic surgery. And then there are robots.

Twenty years ago, hardly anyone (to think) ………………… 1 personal computers would become common in homes, but they
have. Robots may now be at the stage that personal computers were twenty years ago. The development of the personal robot
may be the next big technological advance, and some (to predict) ………………… 2 that within twenty years, home robots (to
become) ………………… 3 as common as PCs are today.

Robots that looked vaguely humanoid, walking tin cans used to be the staple of science fiction writers. Czech writer Karel
Capek gave us the word “robot” in his play R.U.R., Rossum’s Universal Robot, in 1921. Capek (to coin) ………………… 4 the
term from robota, which means “forced labor” or “drudgery.” The robots in Capek’s play eventually destroyed mankind because
they (to learn) ………………… 5 to love and hate.

Today, though, most visualize robots not as threatening creatures but as beneficial machines that (to help) ………………… 6
us with our work, especially unpleasant drudgery. Computer science professor Gregory Dudek recalls how bulky and awkward
computers were when they first (to appear) ………………… 7 and how they (to get) ………………… 8 much smaller and more
efficient.

He predicts the same kind of development for the personal robot, saying, “That’s the kind of change we (to look for)
……………… 9 in the robot industry. I don’t think it (to happen) ………………… 10 in the next two years, but in the next five
or ten, certainly.”

However, many researchers see future robots as much more than just mechanical workers that (to perform) ………………… 11
the tasks we don’t want to do. Many see them as companions. Consider robotic pets, for example. The Sony
Corporation (to develop) ………………… 12 a robotic dog that wags its tail, fetches a ball, and (to respond) ………………… 13 to
human commands.

Researchers at the Georgia Institute of Technology (to develop) ………………… 14 a mobile robot called Pepe, short for
“personal pet.” Its makers hope that future users (to regard) ………………… 15 it more as a friend or companion than as a
robot. Wouldn’t you like to have a robot pet that does what you want, but you wouldn’t have to feed it or take it to the vet to get
its shots?

Another use of robots is as waiters or servants. Does this sound unbelievable? It isn’t. In London’s Yo! Sushi restaurant, there
are robots that (to prepare) ………………… 16 food, serve drinks, warn customers to get out of their way, and make funny
statements like, “Life is a never-ending circuit.”

Robots will probably never replace humans. Wouldn’t it be nice, though, to have companions who will do our drudgery for
us, be there when we wish, speak when spoken to, listen attentively to everything we say, and not talk back?

Appendix B

Sample Tense Task

The Great Wall of China

Imagine a huge wall stretching for thousands of miles across the land. The wall winds through hills, climbs mountains, and
crosses deserts. If you visit China you can see a wall like this. The Great Wall of China, as it is known, (to be) ………………… 1
the longest structure ever built.

The Great Wall of China zigzags across parts of northern China. It (to be) ………………… 2 built section by section over
centuries. In fact, there are many gaps between the sections, so the Great Wall isn’t a single, solid wall. But if all the sections are
measured, the wall is about 4,000 miles (6,400 kilometers) long!

Since ancient times, Chinese people (to build) ………………… 3 walls to protect their borders. Some walls were built between
parts of China that (to fight) ………………… 4 each other. Other walls protected China from outside invaders.

More than 2,000 years ago, the first emperor of China built a long wall to defend the northern border. The emperor, Qin
Shihuangdi, (to think) ………………… 5 of connecting older existing walls with sections of a new wall. The wall he built is
considered China’s first Great Wall.

By the late 1400s, much of the old wall had fallen into ruin. The Ming dynasty, a group that ruled China, decided to build a
new wall. The Ming rulers wanted to keep China safe from the Mongols, who had a powerful army. They also wanted to move
part of the wall farther south. There it could be built to form a long defensive ring around Beijing, the capital city.

The key:
	Responses Provided by the Participants in the Tense Task
1	thought (16) *
	thoughted (3)
	could think (2)
	have been thought (1)
	think (1)
	has been think (1)
	was thinking (2)
2	predict (16) *
	will predict (5)
	is predicted (2)
	may be predicted (1)
	predicting (1)
	predicted (1)
3	will become (19) *
	become (3)
	would become (1)
	became (1)
	will be become (1)
	are become (1)
4	coined (23) *
	coin (1)
	were coin (1)
	has coined (1)
5	learned (14) *
	had learned (4) *
	have learned (3)
	weren’t learned (1)
	were learned (1)
	did not learn (1)
	is not been learned (1)
	will learn (1)
6	help (22) *
	can help (2) *
	helps (1)
	helping (1)
7	appeared (22) *
	be appeared (2)
	appear (1)
	have been appeared (1)
8	Got (12) *
	get (5)
	are getting (3) *
	will get (1)
	was getting (1)
	have been get (1)
	geted (1)
	to got (1)
9	are looking for (12)
	look for (5) *
	looking for (5)
	will look for (3)
	were looking for (1)
10	will happen (20) *
	happen (1)
	wouldn’t happen (1)
	happens (1)
	be happened (1)
	will not happen (1)
	will be happened (1)
11	perform (25) *
	performs (1)
12	developed (11) *
	develop (4)
	has developed (4)
	develops (2)
	will develop (2)
	have developed (1)
	is developing (1)
	No response (1)
13	responds (21) *
	respond (3)
	will respond (1)
	responded (1)
14	developed (13) *
	have developed (4)
	has developed (3)
	develop (2)
	No response (2)
	are developing (1)
	develops (1)
15	will regard (18) *
	regard (8)
16	prepare (23) *
	preparing (1)
	are prepare (1)
	prepares (1)

*Note: The items in bold face type are correct responses.