Locating the orbits delineated by tidal streams

Andy Eyre and James Binney

Rudolf Peierls Centre for Theoretical Physics, Keble Road, Oxford OX1 3NP

Accepted 2009 August 4. Received 2009 July 23; in original form 2009 May 13

ABSTRACT

We describe a technique that finds orbits through the Galaxy that are consistent with measurements of a tidal stream, taking into account the extent that tidal streams do not precisely delineate orbits. We show that if accurate line-of-sight velocities are measured along a well-defined stream, the technique recovers the underlying orbit through the Galaxy and predicts the distances and proper motions along the stream to high precision. As the error bars on the location and velocities of the stream grow, the technique is able to find more and more orbits that are consistent with the data and the uncertainties in the predicted distances and proper motions increase. With radial velocity data along a stream $\sim 40^\circ$ long and $\lesssim 0.3^\circ$ wide on the sky accurate to ~ 1 km s$^{-1}$, the precisions of the distances and tangential velocities along the stream are 4 per cent and 5 km s$^{-1}$, respectively. The technique can be used to diagnose the Galactic potential: if circular speed curve is actually flat, both a Keplerian potential and $\Phi(r) \propto r$ are readily excluded. Given the correct radial density profile for the dark halo, the halo’s mass can be determined to a precision of 5 per cent.

Key words: stellar dynamics – methods: N-body simulations – Galaxy: kinematics and dynamics – Galaxy: structure.

1 INTRODUCTION

Deep optical surveys of the Milky Way and other Local Group galaxies have uncovered numerous stellar streams (Odenkirchen et al. 2001; Majewski et al. 2004; Belokurov et al. 2006; Ibata et al. 2007). The Leiden–Argentine–Bonn survey of the Galaxy in the 21 cm line of hydrogen (Kalberla et al. 2005) contains many similar streams. In all probability, both stellar and gaseous streams have been tidally torn from orbiting bodies, and as such delineate the orbits of those bodies around the Galaxy (Johnston, Hernquist & Bolte 1996; Odenkirchen et al. 2003; Choi, Weinberg & Katz 2007). Newton’s laws of motion severely constrain the readily observable quantities along an orbit in the sky, namely the sequence of positions on the sky $[(l(u), b(u))$ and the corresponding line-of-sight velocities, $v_l(u)$, where u is a parameter that varies monotonically along the stream (Jin & Lynden-Bell 2007; Binney 2008, hereafter Paper I).

In fact, if the observables are known to reasonable accuracy, data for a single stream can strongly constrain the Galaxy’s gravitational potential, and once the potential is known, the distance and proper motion at each point on the stream can be predicted with an accuracy that far exceeds anything likely to be possible by conventional astrometry (Paper I).

From the work of Paper I, it emerges that the major limitation on the diagnostic power of streams is that streams do not precisely delineate individual orbits (Choi et al. 2007). This paper is devoted to exploring the extent to which this limitation can be overcome. In Section 2, we illustrate the extent of the problem; in Section 3, we introduce significant improvements to the methodology of Paper I and use these to identify orbits that are consistent with a given body of data. In Section 4, we test this approach. In Section 5, we examine our ability to correctly diagnose the Galactic potential. Section 6 sums up and discusses directions for future work.

Except where stated otherwise, orbits and reconstructions are calculated using the Galactic potential of Model II in Binney & Tremaine (2008), which is a slightly modified version of a halo-dominated potential described by Dehnen & Binney (1998a). We take the distance to the Galactic centre to be 8 kpc, and from Reid & Brunthaler (2004) (for V and W) and Dehnen & Binney (1998b) we take the velocity of the Sun in the Galactic rest frame to be $(U, V, W) = (10.0, 241.0, 7.6)$ km s$^{-1}$.

2 THE PROBLEM

The full curves in Fig. 1 show an orbit superficially similar to that underlying the Orphan Stream (Belokurov et al. 2007) from two viewing locations – the position of the Sun and a position 120$^\circ$ further round the solar circle. Also shown in each projection are the locations of particles tidally stripped from a self-gravitating N-body model of a cluster launched onto the orbit given in Table 1. Clearly, the particles provide a very useful guide to the orbit of the cluster, but they do not precisely delineate it. Moreover, the relationship of the orbit to the stream depends on viewing angle. The line-of-sight velocities of stream particles have a similar relationship to the orbit’s line-of-sight velocity. Hence, even with perfectly error-free data, the orbit we seek will not coincide with the stream, and before we can fully exploit the dynamical potential of streams, we need to explore the extent to which this limitation can be overcome.
Locating the orbits delineated by tidal streams

have to understand how to infer the location of an underlying orbit from measurements of the stream. For the moment, we assume that the errors in measured quantities are negligible, which in practice means that they are small compared to the intrinsic width of the stream. This condition will certainly be satisfied by sky coordinates. It will not always be satisfied by the velocity data, so we address the issue of velocity errors below.

With what precision could the track of an orbit be specified from the positions of the particles in Fig. 1? First, we need to be clear that any orbit will do. Generally, it will be convenient to use the orbit that passes through some point that lies near the centre of the observed stream, both on the sky and in line-of-sight velocity. In some circumstances, this orbit will closely approximate the orbit of the centre of mass of the stream’s progenitor, but there is no requirement that this is so. Since a central point on the orbit is chosen at will, this point is associated with vanishing uncertainty. As one moves away from this point, either up or down the stream, it becomes more uncertain where the chosen orbit lies, and the size of the uncertainties must increase. Hence, the region of \((l, b, v_\parallel)\) space to which the orbit is confined by the observations is widest at its extremities and shrinks, usually to a point, at its centre. We call this the ‘bow-tie region’.

In the top right-hand panel of Fig. 1, the leading and trailing streams are not offset for most of the span, so we may assume that the orbit through the stream’s centre runs right down the centre of the stream. In the lower panels, the stream has a kink at the progenitor and our best guess is that the orbit through the point where the two halves of the tail touch runs near the lower edge of the left-hand half and near the upper edge of the right-hand half. In every case, the uncertainty in the location of the orbit grows from zero at the centre to roughly half width of the stream at its ends. Quantitatively, the largest uncertainty is then \(0.15^{\circ}\) for the top left-hand panel, \(\sim 0.25^{\circ}\) for the top right-hand panel, and \(\sim 5\) km s\(^{-1}\) in the bottom panels.

3 IDENTIFYING DYNAMICAL ORBITS

Paper I showed that given an orbit’s projection on to the sky \([l(u), b(u)]\) and the corresponding line-of-sight velocities \(v_\parallel(u)\), the remaining phase space coordinates can be recovered by solving the differential equations:

\[
\frac{dr}{du} = \frac{1}{2F_1} \left(\frac{dv_\parallel}{du} - \sqrt{\left(\frac{dv_\parallel}{du} \right)^2 - 4sF_1} \right),
\]

\[
\frac{ds}{du} = v_\parallel \frac{dr}{du}.
\]

Table 1. Parameters of highlighted orbits from this paper. The coordinate system used is right-handed with \(\hat{x}\) pointing away from the Galactic centre and \(\hat{y}\) opposite the sense of Galactic rotation.

Orbit	Position (x, y, z) (kpc)	Velocity (x, y, z) (km s\(^{-1}\))
N-body Orphan	(28.1, −10.0, 34.0)	(−0.431, −0.179, −0.368)
PD1 test orbit	(35.5, 7.80, 37.8)	(−0.0385, 0.272, 0.231)
Here, u is distance on the sky down the projected orbit, $s(u)$ is three-dimensional distance to the orbit, $t(u)$ is the time at which the orbiting body reaches the given point on the orbit and F_j is the component of the Galaxy’s gravitational field along the line of sight. The reference frame used is the inertial frame in which the Galactic centre is at rest; consequently, the velocities v_j are obtained by subtracting the projection of the Sun’s motion along the given line of sight from the measured heliocentric velocities.

If the input data used to solve equations (1) are not derived from an orbit in the same force field as is used to derive F_j, the reconstructed phase–space coordinates will not satisfy the equations of motion. Paper I observed that violation of the equations of motions might cause the reconstructed solution to violate energy conservation, and therefore used rms energy variation down the track as a diagnostic for the quality of a solution. However, energy conservation is necessary but not sufficient to qualify a track as being an orbit. Here, we construct a diagnostic quantity from residual errors in the equations of motion themselves, since orbits are defined to be solutions of these equations.

We first derive the equations of motion. In the coordinates (s, b, l), the canonically conjugate momenta are

$$
p_s = \dot{s},
\,
p_b = s^2 \dot{b},
\,
p_l = s^2 \cos^2 b \dot{l}.
$$

The Hamiltonian is therefore

$$
H = \frac{1}{2} p_s^2 + \frac{1}{2} \frac{p_b^2}{s^2} + \frac{1}{2} \frac{p_l^2}{s^2 \cos^2 b} + \Phi(s, b, l),
$$

and the equations of motion are

$$
\dot{p}_s = \ddot{s} = \frac{\dot{p}_s}{s^3} + \frac{\dot{p}_b}{s^2 \cos^2 b} - \frac{\partial \Phi}{\partial s},
\,
\dot{p}_b = \ddot{b} s^2 + 2 b \ddot{s} s = -\frac{\dot{p}_b}{s^2 \cos^2 b} - \frac{\partial \Phi}{\partial b}
\,
\dot{p}_l = \ddot{l} s^2 \cos^2 b - 2 s \ddot{s} \cos b + 2 s s \dot{b} \sin b = -\frac{\partial \Phi}{\partial l}.
$$

As in Paper I, when solving equations (1) extensive use is made of cubic spline fits to the data. In the examples presented in Paper I, natural splines were used in order to avoid specifying the gradient of the data at its endpoints. Significantly improved numerical accuracy can be achieved by taking the trouble to specify these gradients explicitly. Given the input data, we estimate the quantity dl/db at the endpoints by fitting a quadratic curve through the first three and last three points. dl/db is then computed at the location of the middle point of each set, and the very first and very last points are considered “used” and thrown away. This quantity is then used in the geometric relation

$$
\frac{du}{db} = \pm \sqrt{1 + \cos^2 b \left(\frac{dl}{db}\right)^2},
$$

to compute db/du at the ends of the track. The sign ambiguity is resolved by inspection of the directionality of the input data. We then use the geometric relation

$$
\frac{dl}{du} = \pm \sec b \sqrt{1 - \left(\frac{db}{du}\right)^2}
$$

to obtain dl/du at the ends of the track, where the sign ambiguity is resolved in the same way. We are now able to fit cubic splines through the input tracks, with the slopes at the ends computed from dl/du and db/du by the chain rule. The momenta (2) are now calculated explicitly, using the derivatives of the splines $l(t)$, $b(t)$ in place of l, b. The slopes at the endpoints, dv_j/du, can now be calculated from (4) and dl/du; the $v_j(u)$ spline is refitted using these boundary conditions, the reconstruction repeated and the momenta recalculated.

The left- and right-hand sides of the equations of motion (4) are calculated explicitly. For each equation of motion, we define a residual

$$
R(t) = \bar{p}_m - \bar{p}_m(t),
$$

These residuals are used to compute, for each equation of motion, the diagnostic quantity

$$
D = \log_{10} \left(\frac{\int_{t_1}^{t_2} dt R(t)^2}{\int_{t_1}^{t_2} dt \bar{p}_m^2} \right),
$$

where the residuals have been normalized by the mean-square acceleration and the times t_1 and t_2 correspond to the fifth and fifth-from-last input data points; the residual errors from the end regions, $0 < t < t_1$ and $t_2 < t < t_{\text{max}}$, tend to dominate the integrated quantity and are not easily reduced by modifying the input; they are therefore excluded. The largest of the three values for D is used as the diagnostic quantity for that particular input.

3.1 Parametrizing tracks

Our strategy for identifying a stream’s underlying orbit is to compute the diagnostic D (equation 8) for a large number of candidate tracks, and to find which candidates yield values of D consistent with their being dynamical orbits.

We start by specifying a baseline track across the sky $[l_b(u'), b_b(u')]$, where u' is a parameter that increases monotonically down the track from -1 to 1. Similarly, we specify associated baseline line-of-sight velocities $v_b(u')$. The baseline track is required to come closer to every data point than the given uncertainty at that point.

All candidate tracks should be smooth because orbits are. We satisfy this condition by expressing the difference between the baseline track and a candidate track as a low-order polynomial in u'. For streams that cover a wide range of longitudes, the parametrization of candidate tracks is achieved by slightly changing the values of b and v_b associated with a given value of l from the values specified by the baseline functions. That is we write

$$
b(u') = b_b(u') + \sum_{n=0}^N b_n T_n(u'),
$$
$$
v_b(u') = v_{b_b}(u') + \sum_{n=0}^N a_n T_n(u'),
$$

where T_n is the nth order Chebyshev polynomial of the first kind and a_n and b_n are free parameters. These $2N$ parameters are co-ordinates for the space of tracks that we have to search for orbits. When a stream does not stray far from the Galactic plane, candidate tracks are best parametrized by adjusting the baseline values of b and v_b at given longitude. In all examples in this paper, the series in equations (9) are truncated after $N = 10$. A larger number of terms allows the correction function to produce tracks that represent orbits
better, but makes the search procedure computationally more expensive. The number of terms used is a compromise between these considerations.

The space of tracks is defined by the \(a_i \) and \(b_i \) and one extra parameter, the distance to the stream, \(s_0 \), at the starting point \(n = 0 \) for the integration of equations (1).

We shall henceforth denote a point in the \((2N + 1)\)-dimensional space of parameters by \(\chi \). Each \(\chi \) is associated with a complete specification of all six phase–space coordinates for every point on the candidate orbit: \(l, b \) and \(v_0 \) follow from the parametrization and the remaining coordinates are obtained by solution of the differential equations (1). Consequently, each \(\chi \) corresponds to a value of \(D \) (equation 8) that quantifies the extent to which the phase–space coordinates deviate from a dynamical orbit in the given potential.

3.2 Searching parameter space

Dynamical orbits are found by minimizing the sum

\[
D(\chi) = D(\chi) + p(\chi),
\]

where \(p(\chi) \) is the sum of the penalty functions:

\[
p(\chi) = \sum_i p_{i, \text{pos}} + \sum_i p_{i, \text{vel}} + p_i,
\]

where

\[
p_{i, \text{pos}} = \begin{cases} \Delta_i, \text{pos} & \text{if } \Delta_i, \text{pos} > 1 \\ 0 & \text{otherwise} \end{cases}
\]

with

\[
\Delta_i, \text{pos} = \frac{|b(l_i) - b_0(l_i)|}{b b_0(l_i)}.
\]

Here, \(\delta b \) is the width in \(b \) of the bow-tie region at \(l_i \). Similarly,

\[
p_{i, \text{vel}}(l) = \begin{cases} \Delta_i, \text{vel} & \text{if } \Delta_i, \text{vel} > 1 \\ 0 & \text{otherwise} \end{cases}
\]

with

\[
\Delta_i, \text{vel} = \frac{|v_0(l_i) - v_{0b}(l_i)|}{b b_0(l_i)}.
\]

Prior information about the distance to the stream is used by specifying the penalty function \(p_i \) to be

\[
p_i = \begin{cases} \beta |s_0 - s_{0b}| / \delta s & \text{if } |s_0 - s_{0b}| > \delta s \\ 0 & \text{otherwise} \end{cases}
\]

where \(\delta s \) is the half-width of the allowed range in the distance \(s_0 \) to the starting point of the integrations and \(s_{0b} \) is the baseline value of \(s_0 \). These definitions are such that \(p(\chi) = 0 \) so long as the track lies within the region that is expected to contain the orbit, and rises to unity, or in the case of \(p_i \) to \(\beta \), on the boundary and then increases continuously as the orbit leaves the expected region.

In practical cases, the prior uncertainty in distance is large, and the obvious way to search for orbits is to set \(\delta s \) to the large value that reflects this uncertainty and then set the algorithm described below to work. It will find candidate orbits for certain distances. However, we shall see below that it is more instructive to search the range of possible distances by setting \(\delta s \) to a small value such as 0.5 kpc and searching for orbits at each of a grid of values of \(s_{0b} \). In this way, we not only find possible orbits, but we show that no acceptable orbits exist outside a certain range of distances. In this procedure, the logic underlying \(\delta s \) is very different from that underlying \(\delta b \) and \(\delta v_0 \).

Since \(p(\chi) \) is added to the logarithm of the rms errors in the equations of motion and increases by an order of unity at the edge of the bow-tie region, the algorithm effectively confines its search to the bow-tie region, where \(p = 0 \). Thus, at this stage we do not discriminate against orbits that graze the edge of the bow-tie region in favour of ones that run along its centre. Our focus at this stage is on determining for which distances dynamical orbits can be constructed that are compatible with the data. Once this has been established, distances that lie outside some range can be excluded from further consideration.

The space of candidate tracks \(\chi \) is 21-dimensional, so an exhaustive search for minima of \(D \) (equation 10) is impractical. Furthermore, the landscape specified by \(D \) is complex. Some of this complexity is physical; the space should contain continua of related orbits, and ideally \(D \rightarrow -\infty \) at orbits. Hence, deep trenches should criss-cross the space. Superimposed on this physical complexity is a level of numerical noise arising from numerical limitations in the computation of \(D(\chi) \). The limitations include the use of finite step sizes in the solution of equation (1) and the subsequent evaluation of \(D(\chi) \), as well as the difficulty in representing a true orbital track with a collection of sparse input points interpolated with splines. In practice, numerical noise sets a lower limit on the returned values of \(D(\chi) \).

On account of the complexity of the landscape that \(D \) defines, ‘greedy’ optimization methods, which typically follow the path of the steepest descent, are not effective in locating minima. The task effectively becomes one of global minimization, which is a well-studied problem in optimization.

We have used the variant of the Metropolis ‘simulated annealing’ algorithm described in Press et al. (2002), which uses a modified form of the downhill simplex algorithm. In the standard simplex algorithm, the mean of the values of the objective function over the vertices decreases every time the simplex deforms. In the Press et al. algorithm, the simplex has a non-vanishing probability of deforming to a configuration in which this mean is higher than before. Consequently, the simplex has a chance of crawling uphill out of a local minimum. The probability that the simplex crawls uphill is controlled by a ‘temperature’ variable \(T \); when \(T \) is large, uphill moves are likely, and they become vanishingly rare as \(T \rightarrow 0 \). During annealing, the value of \(T \) is gradually lowered from an initially high value towards zero.

One vertex of the initial simplex is some point \(\chi_{\text{guess}} \) and the remaining \(2N + 1 \) vertices are obtained by incrementing each coordinate of \(\chi_{\text{guess}} \) in turn by a small amount. For the coefficients of \(T_0 \), this increment is approximately the size of the allowed half widths, \(\delta s, \delta b \) and \(\delta v_0 \). Increments for coordinates representing coefficients of higher order \(T_n \) are scaled as \(1/n \). The overall size of these increments is, therefore, set by the size of the region within which we believe the global minimum to lie. It is important to note that in each generation of a simplex, the increments should independently have equal chance of being added to or subtracted from the values of \(\chi_{\text{guess}} \), so that no part of the parameter space is unfairly undersampled. The algorithm makes tens of thousands of deformations of the simplex while \(T \) is linearly reduced to zero.

This entire process is repeated some tens of times, after which we have a sample of local minima that are all obtained from \(\chi_{\text{guess}} \).

We now update \(\chi_{\text{guess}} \) to the location of the lowest of the minima just found and initiate a new search. The entire process is repeated until the value of the diagnostic function \(D(\chi) \) hits a floor. When this floor lies higher than the numerical noise floor, the attempt to find an orbit that is consistent with the assumed inputs has been a failure and we infer that no such orbit exists.
When the floor coincides with the numerical noise floor, we conclude that the corresponding χ specifies an orbit that is compatible with the inputs. An approximate value for the numerical noise floor for a given problem may be obtained as follows: given input that perfectly delineates an orbit in the potential in use, the value of D' returned at the correct distance is approximately the numerical noise floor. Conclusive proof that a candidate track with a particular value of D' is an orbit can be obtained by integrating the equations of motion from the position and velocity of any point on the track and ensuring that the time integration essentially recovers the track.

On account of the stochastic nature of the algorithm, an attempt to find a solution at a particular distance occasionally sticks at a higher value of D' than the underlying problem allows. This condition is identified by scatter in the values of D' reached on successive attempts and by inconsistency of these values with the values of D' achieved for nearby distances – the function underlying the minima is smooth (see for example Fig. 6, below). When the magnitude of this scatter is significant, one can only confidently declare an attempt to find an orbit a failure if the D' achieved is consistently higher than the noise floor by more than the scatter; since the diagnostic measure D' quantifies the extent to which a candidate track satisfies the equations of motion, by definition, tracks with higher D' than the noise floor plus scatter cannot represent orbits.

When the observational constraints are weak, we expect several orbits to be compatible with them. In particular, we will be able to find acceptable orbits for a range of initial distances s_0. It is therefore important, for any given input, to run the algorithm starting from many different values of s_0b with δs set to prevent the algorithm straying far from the specified s_0b. In this way, the full range of allowable distances can be mapped out, and dynamical orbits found for each distance in that range. In the case of significant scatter about the noise floor, the range of distances at which valid orbits are found is the range within which solutions yield values of D' smaller than the noise floor plus scatter.

Similar degeneracies in the parameters controlling the astrometry and line-of-sight velocities are a concern because if we have orbits that differ in these observables, we simply concentrate on the orbit that lies closest to the baseline track.

4 TESTING THE METHOD

To test this method, we used the N-body approximation to the Orphan Stream described in Fig. 1 and Table 1 as our raw data. Sets of points of (l, b) and (l, v_l) were selected by eye to lie down the middle of the stream. These sets were each fitted with a low-order polynomial to ensure smoothness, and these polynomials were sampled at 30 points to produce the baseline input data $b(l)$ and $v_l(l)$. To each data set we attached uncertainties δb and δv_l, which through the penalty functions p_{pos} and p_{vel} (equations 12 and 14) constrain the tracks that the Metropolis algorithm can try. Details of the resulting pseudo data sets are given below, and are summarized in Table 2.

In one case, PD1, the above baseline input data were replaced by those of a perfect orbit and δb and δv_l set very narrow (6 arcsec and 2×10^{-3} km s$^{-1}$ in order to validate the reconstruction algorithm.

The uncertainty $\delta b(l)$ takes the same value for all the remaining pseudo data sets because we assume that the astrometry is sufficiently precise for the uncertainty in position to be dominated by the offset of the stream from an orbit. In all cases, δb has a maximum value of 0.15$^\circ$ at the ends of the stream, falling linearly to zero at the position of the progenitor, consistent with the orbit of the progenitor seen in Fig. 1. Fig. 2 shows this input alongside the N-body data from which it was derived.

For the pseudo data sets PD2 and PD3, δv_l is set to a maximum at the ends of the stream, and falls linearly to a minimum of zero and 2 km s$^{-1}$, respectively, at the position of the progenitor. These examples represent a case (PD2) in which the uncertainty in radial velocity is dominated by stream width, and a case (PD3) in which there is a significant contribution from measurement error at a level that is easily obtainable with a spectrograph. The pseudo data set PD4 represents the case in which the uncertainty in v_l is dominated by measurement errors: δv_l is held fixed at 10 km s$^{-1}$, which is typical for the measurement errors in the line-of-sight velocities of Sloan Digital Sky Survey (SDSS) stars in distant streams. Fig. 3 shows the input for these data sets.

For the pseudo data sets PD5 and PD6, we added to the baseline data systematic offsets in $v_l(l)$ to mimic systematic errors in radial velocity. δv_l varies between a maximum and a minimum as in PD2 and PD3, with the values set to encompass the (assumed known) systematic bias. Fig. 4 shows the input for these data sets.

The pseudo data set PD7 is identical to that of PD2, except that the number of raw (l, v_l) points was reduced to just three: one at either end of the N-body stream, and one at the location of the progenitor. A quadratic curve was perfectly fitted through these three points, and sampled at 30 locations to produce the baseline $v_l(l)$ input. δv_l is set to the same maximum value as PD2 at the outermost points; δv_l is set to zero at the centre point. Only these three points are allowed to contribute to the penalty function (14) in this pseudo data set.

In all of the examples, the penalty function (equation 11) acts to constrain the candidate tracks to be consistent with the data. The contribution of the penalty function to D' is, therefore, zero in

Set	$\delta v_{l,\max}$ (km s$^{-1}$)	$\delta v_{l,\min}$ (km s$^{-1}$)	Offset v_l (km s$^{-1}$)
PD1	2×10^{-3}	2×10^{-3}	0
PD2	4	0	0
PD3	6	2	0
PD4	10	10	0
PD5	6	2	2
PD6	15	10.5	10
PD7	4	0	0
Locating the orbits delineated by tidal streams

553

Figure 3. Lines: input track $v_\parallel(l)$, as used for data sets PD2–PD4, along with examples of upper and lower bounds as set for PD2 (narrow) and PD4 (wide). The bounds are enforced by the penalty function p_{ud} (equation 14). Dots: the projection of the N-body simulation on to the sky, from which the input was derived.

Figure 4. Lines: input track $v_\parallel(l)$, as used for data sets PD5 (dotted green) and PD6 (dashed blue). The unmodified input of PD2 (full red) is shown for comparison. Dots: the projection of the N-body simulation on to the sky, from which the input was derived.

all examples. All candidate tracks are guaranteed to be consistent with the data, even if they do not represent dynamical orbits. Fig. 5 provides example plots of (l, b) and (l, v_\parallel) for candidate tracks from PD2 and PD6 along with the raw N-body data from which the baseline data are derived. Equivalent plots for all candidate tracks are similar to these.

For PD1, PD2 and PD3, and each of 15 values of the baseline distance s_θ, 280 optimization attempts were made, each involving Metropolis annealing for 24 000 simplex deformations, from an initial temperature of 0.5 dex. The starting distances were constrained by the penalty function p_s (equation 16) with $\beta = 10^6$ and $\delta s = 0.5$ kpc, so the Metropolis algorithm could only explore a narrow band in s_θ. After 40 optimization attempts from a given starting point χ_{guess}, the starting point was updated to the endpoint of the most successful of these optimizations, and annealing recommenced from a high temperature. In total, six of these updates were performed. With these parameters, a search at a single distance completes in 12 CPU hours on 3 GHz Xeon-class Intel hardware. PD4, PD5 and PD6 follow almost the same schema, except that 48 000 simplex deformations were formed for each of 60 attempts at the same χ, which was updated six times. A single distance in the latter case took 36 CPU hours to search: the computational load scales linearly with the number of deformations considered.

Fig. 6 shows the results obtained with PD1, which has very small error bars. The diagnostic function D' has a smooth minimum that pinpoints the distance $s_\theta = 47.4$ kpc to the starting point with an uncertainty of ~ 0.2 kpc. The Metropolis optimization can significantly reduce D' by tweaking the input track only when s_θ is close to the truth. The depth of the minimum indicates the numerical noise floor for this particular problem, and no significant scatter is seen between successive runs. We do expect the noise floor to be slightly different for PD2–PD6 because both the underlying orbits and the input are somewhat different. Fig. 7 shows that the reconstructed solution at the minimum overlies the input orbit almost exactly. We conclude that when the error bars are as small as in PD1, only one orbit is consistent with the data.

Fig. 8 shows the results obtained with PD2, PD3 and PD4. For PD2 and PD3, which have small to moderate error bars, the Metropolis algorithm reduces D' to the noise floor only for s_θ in the range (44, 46) kpc. The scatter between runs is small, $\sigma_{D'} \sim 0.1$. Figs 9 and 10 show the reconstructed distances and tangential velocities associated with the best two solutions found at 44 and 46 kpc. With PD2, these reconstructions provide a distance estimate to the stream that is, at worst, 2 kpc in error, and a v_\perp estimate that is at worst 5 km s$^{-1}$ in error. With PD3, the reconstruction error is, at worst, 3 kpc and 10 km s$^{-1}$ in error. For many sections of the orbits, the errors are less than stated. Thus, the method can identify orbits
Figure 6. Values of the diagnostic function D' for candidate orbits reconstructed from the pseudo data set PD1. Each group of crosses is associated with one of 15 ranges within which the starting distance s_0 was constrained to lie. For each such range the candidate orbit was reconstructed from 280 trial tracks, and each track yields a cross. In this figure, the crosses are largely superimposed because the uncertainties are small and there is little scope for tweaking the track.

Figure 7. The upper panel shows heliocentric distance, s, versus galactic longitude, l, for the best reconstruction from Fig. 6 and for the true orbit from which the input was generated. The two curves are close to overlying. The lower panel shows tangential velocity, v_\perp, for the best reconstruction and for the true orbit: the departure of the reconstruction from the orbit near the endpoints is symptomatic of the problems near the endpoints that necessitate their excision from the diagnostic.

Figure 8. The same as in Fig. 6 but for input data sets PD2 (upper panel), PD3 (middle panel) and PD4 (lower panel). In PD2 and PD3, the noise floor $D' \sim -4$ is reached only for starting distances in the range 44–46 kpc. In PD4, we find an isolated good solution at 43 kpc, but in contrast to what happens with data sets PD2 and PD3, as we change distance the value of D' oscillates around ~ -3.25 for most of the range, rather than varying smoothly. This behaviour arises because the volume of parameter space that has to be searched is large on account of the largeness of the velocity errors. Such an extensive volume of parameter space cannot be exhaustively searched with the allocated computational resource. Only orbits with $s_0 < 40$ kpc could be excluded with confidence, consistent with the stream, and reject those that are inconsistent with it.

For PD4, which has large error bars comparable to those for velocity data from the SDSS, scatter between repeat runs is much larger, $\sigma_{D'} \sim 0.5$. Only distances $s_0 < 40$ kpc can be confidently excluded, although a high-quality solution near $s_0 \sim 43$ kpc provides a reconstruction in error by at most 2 kpc in distance and 5 km s$^{-1}$.
Locating the orbits delineated by tidal streams

Figure 9. Heliocentric distance for selected reconstructed orbits from PD2, PD3 and PD4. The tracks selected are those with lowest D^\prime at distances for which D^\prime approaches the noise floor in Fig. 8.

Figure 10. Tangential velocities for selected reconstructed orbits from PD2, PD3 and PD4. The tracks selected are the same as in Fig. 9.

in v_\perp. Figs 9 and 10 show us that ignoring this high-quality solution would give reconstructed quantities in error by up to 5 kpc in distance and 12 km s$^{-1}$ in v_\perp. Increasing the errors associated with the input clearly permits less satisfactory solutions to be returned, and also decreases the ability of the search procedure to find true orbits at particular distances, should they exist, by increasing the volume of parameter space it has to search. The former complaint is a physical statement about the limitations of the input data. The latter complaint is an algorithmic one, which may be remedied by providing the search with more computational cycles, or improving its efficiency.

The two top panels of Fig. 11 show the results obtained from input sets PD5 and PD6 in which offsets were applied to the input velocities. The reconstructed distances and tangential velocities for interesting tracks are shown in Figs 12 and 13. For PD5, the scatter between runs is $\sigma_D \sim 0.5$, and the distance to the stream s_0 can be said to lie in the range 42–47 kpc with some confidence. The two top panels of Fig. 12 show that the stream does indeed lie in this range, so the algorithm has successfully corrected the small offset. The error in reconstructed distance and v_\perp would be 3 kpc and 8 km s$^{-1}$ at worst.

The middle panel of Fig. 11 for PD6 demonstrates the limits of the method. On account of the large scatter in D^\prime, $\sigma_D \sim 1$, we cannot identify the correct distance from Fig. 11. We expect the distance range for permitted orbits to be wide with this input, because the velocity error bars are large. Fig. 11 illustrates another problem of using large error bars: the search becomes harder because the parameter space to be searched is much larger. Consequently, the plots of the results have rough bottoms, where the algorithm has failed...
Figure 11. The same as Fig. 8 but for input data sets PD5 (upper panel), PD6 (middle panel) in which offsets are applied to \(v_\parallel \) and PD7 (lower panel), which is for sparse data. The velocity offsets cause the noise floor \(D \sim -3.5 \) to be approached over a wider range in \(s_0 \): 42–47 kpc for PD5 with some confidence, and 38–48 kpc in PD6 with little confidence. As the errors increase, the search becomes a more arduous task, and patchy performance of this task is reflected in the rough bottoms of the upper two panels. The lower panel is for the data set PD7 that specifies (\(l, v_\parallel \)) only at three points in the sky. The results are very similar to those of PD2 and PD3 (Fig. 8), with a noise floor \(D' \sim -4 \) and solutions acceptable only in the range 44–46 kpc.

to reach consistent minima for searches at adjacent distances. This can be remedied by rerunning the search with more deformations and more iterations, and may be addressed in future upgrades to the search procedure.

The bottom panel of Fig. 11 for PD7 demonstrates that the accuracy of the method is not necessarily significantly degraded when the number of velocity data points is substantially lower than the number of positional data points, as might be expected from a stream for which the only available radial velocities are those of giant stars. The results shown in the bottom panel of Fig. 11 and are directly comparable to those of PD2 and PD3 (Fig. 8). In particular, the range of allowed distances, 44–46 kpc, is the same and the reconstructed orbits show comparable accuracy (Figs 12 and 13).

5 THE EFFECT OF CHANGING THE POTENTIAL

Paper I demonstrated the ability of orbit reconstruction to diagnose the Galactic potential with astonishing precision when the track of an orbit on the sky is precisely known. Here, we investigate the ability of orbit reconstruction to identify the correct potential when the track has to be inferred from realistic stream data.
Locating the orbits delineated by tidal streams

Figure 13. As in Fig. 10, except for data sets PD5, PD6 and PD7. The tracks selected are the same as in Fig. 12.

We use as our input the PD2 data set from Section 4. The top panel of Fig. 14 shows the results of asking the algorithm to find orbits in a Kepler potential with mass $M = 4.18 \times 10^{11} M_\odot$, which produces roughly the same passage time along the stream as does Model II. The bottom panel shows the results obtained using a potential of the form $\Phi_1(r) \propto r$, which gives a rotation curve of the form $v_c(r) = \sqrt{r f_r}$, with $f_r = 6.86 \times 10^2 (k \text{ km s}^{-1} \text{ kpc}^{-1})^2$ again chosen to produce the same passage time along the stream as does Model II. These two potentials represent, respectively, relatively extreme falling and rising rotation curve models. We do not offer them as realistic candidates for the Galactic potential, but intend to demonstrate that model potentials with approximately correct radial force, but incorrect shape, can be excluded using this method.

The distance range considered in both cases spans approximately ± 15 per cent of the true distance, which is the uncertainty one might expect in distances obtained by photometry. Since all values of D' are several orders of magnitude larger than the values one obtains with the correct potential, it is clear that no orbits can be found at the distances considered, and both potentials can be excluded.

The upper panel of Fig. 15 shows the results of reconstructing an orbit from the PD2 data set in a potential that differs from the Model II potential used to define the tidal stream only in that the halo mass has been varied by the specified ratio. This high-quality data set yields a sharp minimum in D' as a function of s_0 (Fig. 8) and the upper panel of Fig. 15 shows this minimum value of D' as a function of assumed halo mass. The minimum of D' lies at $D' \lesssim -4$ when the mass used lies within ~ 5 per cent of the true value and $D' > -3.85$ otherwise.

The lower panel of Fig. 15 shows that the value of s_0 at which D' attains its minimum for given halo mass decreases systematically as the halo mass increases. Insight into this behaviour can be obtained by considering the discretized equation of angular momentum conservation:

$$\Delta(s_{V\perp}) = -s \frac{d\Phi}{dr_{\perp}} \Delta t = -s \frac{d\Phi}{dr_{\perp}} F_1, \quad (17)$$

where Δ implies the change in a quantity between successive data points. By expanding the left-hand side to first order in small quantities, we can obtain an expression for Δv_{\perp}. Summing the changes

Figure 14. As the top panel of Fig. 8, except the reconstruction (using PD2) takes place in a Keplerian potential (top panel), and (bottom panel) a potential with $\Phi(r) \propto r$. In both cases, the constants are set to generate approximately the same passage time along the stream as in Model II. Comparing with Fig. 8 shows the values of D' are very poor, demonstrating that no orbits can be found in these potentials, so the latter can be excluded.

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 400, 548–560

Downloaded from https://academic.oup.com/mnras/article-abstract/400/1/548/1073311 by guest on 27 July 2018
in v_\perp along the track, we have

$$v_\perp\text{(end)} - v_\perp\text{(start)} = -\sum \left(\frac{d\Phi}{d r_\perp} F_\parallel v_\perp + v_\perp \frac{\Delta s}{s} \right).$$ \hspace{1cm} (18)$$

An independent equation for v_\perp is

$$v_\perp = s \frac{\Delta u}{\Delta t} = s F_\parallel \frac{\Delta u}{\Delta v_\perp},$$ \hspace{1cm} (19)$$

where we have used the radial equation of motion. Equations (18) and (19) yield independent estimates of $v_\perp\text{(end)} - v_\perp\text{(start)}$. The right-hand side of equation (18) yields an estimate that is independent of the scaling of Φ but systematically decreases with increasing s, while the right-hand side of equation (19) yields an estimate that is proportional to the scaling of Φ, but is almost independent of s, since $F_\parallel \propto 1/s$. When the machine is asked to reconstruct the orbit with F_\parallel taken too small, it can change the right-hand side of equation (18) to match the new value of the right-hand side of equation (19) by increasing s. In this way, the discrepancies between the left-hand sides of equations (18) and (19), which contribute substantially to the diagnostic D', can be largely eliminated by increasing s as Φ is scaled down.

In principle, this variation in reconstructed distance with the scaling of the potential could be combined with photometric distances to constrain the potential. Unfortunately, Fig. 15 shows that in the particular geometry under consideration, even a 10 per cent distance error would produce a \sim50 per cent error in the estimate of the halo mass. Further work is required to discover what effect the geometry of a particular stream has on its sensitivity to the potential. Also of interest is whether simultaneously using multiple streams, or streams with multiple wraps (such as the Sagittarius Dwarf stream), can provide tight constraints on the potential.

6 CONCLUSIONS

Paper I demonstrated the tremendous diagnostic power that is available if one knows the track of an orbit on the sky and the associated line-of-sight velocities. Tidal streams are made up of objects that are on closely related orbits. In particular, they roughly delineate the underlying orbit, but they do not do so exactly. We have presented a technique for identifying an underlying orbit and thus predicting the dynamical quantities that have not been observed, such as the distances to the stream and the proper motions of its particles.

The technique involves defining a space of tracks on the sky and sequences of line-of-sight velocities that are consistent with the observational data, given the observational errors and the extent to which streams deviate from orbits. The equations of Paper I are used to determine a candidate orbit for each track, and then the extent to which the candidate satisfies the equations of motion is quantified – in Paper I only violations of energy conservation along a candidate were quantified. This diagnostic quantity is then used to search for tracks that could be projections of orbits in the Galactic potential. In practice, the search is conducted for several possible distances to a fiducial point on the stream. If constraints on this distance are available from photometry, the computational effort of the search can be reduced by narrowing the range of distances for which searches need to be conducted.

We have taken the Galaxy’s gravitational potential and the solar velocity with respect to the Galactic centre to be known. Our tests revolve around an N-body model of the Orphan Stream (Belokurov et al. 2007) on the assumption that it formed by the disruption of a globular cluster. We show that for this stream, which is \sim40° long and 0.3° wide at its ends, distances to and tangential velocities of points on the stream can be recovered to within \sim2 kpc and \sim5 km s$^{-1}$, respectively, if line-of-sight velocities accurate to \sim1 km s$^{-1}$ are measured. As the errors in the measured radial velocities increase, the space of tracks that must be considered grows bigger and the search for acceptable orbits becomes more laborious. Moreover, the range of distances for which acceptable orbits can be found broadens. However, even with errors in radial velocities as large as \pm10 km s$^{-1}$, the uncertainties in the recovered distances are no greater than \sim10 per cent and the recovered tangential velocities are accurate to better than \sim20 per cent. Zero-point errors in the input velocities that are reflected in appropriately wide error bars broaden the range of acceptable orbits but do not skew the results.

We have shown that the method maintains its accuracy even when very few radial velocity points are used to define the input, as might be necessary when radial velocities can only be measured for giant stars. In our tests, comparable results were obtained from pseudo data based on only three velocity measurements and from pseudo data based on 15 velocity measurements. Indeed, the results obtained with three accurate velocity measurements were significantly superior to those obtained with 15 lower quality measurements. Naturally, exactly how many points are required to provide well-determined input will depend on the shape of the radial velocity curve along the stream in question.

We expect the accuracy of reconstructions to depend on the geometry of the problem in hand. In particular, we expect streams at
apocentre, where families of orbits are compressed both on the sky and in radial velocity, to yield poorer results than streams away from apocentre. Unfortunately, streams are most likely to be discovered at apocentre because both orbital compression and low proper motions around apocentre lead to a high density of stars at apocentre. We expect streams that are relatively narrow to produce more accurate results, because the permitted deviation of the orbit from the stream is then low. We also expect to have more difficulty reconstructing orbits from streams that contain a visible progenitor, since the potential of the progenitor will cause orbits in the progenitor’s vicinity to differ materially from orbits in the Galaxy’s underlying potential.

Paper I suggested that it should be possible, if sufficiently accurate input is provided, to constrain the Galactic potential, since the wrong potential will not admit an acceptable orbit. We have tested this possibility for input with realistic errors. We find that two potentials of significantly different shape, the Kepler potential and $\Phi(r) \propto r$, are clearly excluded. We have also tested for changes in scaling of an otherwise correctly shaped potential, by varying the mass of the assumed dark halo around the value used to make the pseudo data. In this case, we find the correct potential is identified, with the diagnostic quantity generally worsening as the halo mass moves away from its correct value by more than ~ 5 per cent. We further find a consistent relationship between the reported stream distance and the halo mass with which the reconstruction takes place. Although the reported distance is only weakly dependent upon halo mass, this does open the possibility of using alternative distance measurements, such as photometric distances, in conjunction with these techniques to constrain the Galactic potential. Further work is necessary to determine a full scheme to recover parameters of the potential from stream data. Also in question is the extent to which simultaneous reconstruction of multiple streams, and reconstruction of streams with multiple wraps around the Galaxy, might provide stronger constraints on the Galactic potential than the short section of a single wrap that we have considered. It may also prove possible to refine the other main assumption of our scheme, the location and velocity of the Sun.

It is instructive to compare our method of finding orbits of progenitors with the traditional N-body method. First, our method explores each orbit at a tiny fraction of the computational expense of N-body modelling, so it is feasible to automate the search of orbit space. Moreover, the search lends itself to parallelization. Whereas only a successful attempt to model a stream with N-bodies yields an inter-

ACKNOWLEDGMENTS

AE acknowledges PPARC/STFC for partially funding this work, Carlo Nipoti for providing a copy of the ewp5 code, and John Magorrian for useful discussions about numerical methods. We thank the anonymous referee for his/her suggestions.

REFERENCES

Belokurov V. et al., 2006, ApJ, 647, L111
Belokurov V. et al., 2007, ApJ, 658, 337
Binney J., 2008, MNRAS, 386, L47 (Paper I)
Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd ed. Princeton Univ. Press Princeton
Choi J. H., Weinberg M. D., Katz N., 2007, MNRAS, 381, 987
Dehnen W., Binney J., 1998a, MNRAS, 294, 429
Dehnen W., Binney J., 1998b, MNRAS, 298, 387
Eyre A., Binney J., 2006, MNRAS, in press (doi:10.1111/j.1365-2966.2006.09914.x)
Ibata R., Martin N. F., Irwin M., Chapman S., Ferguson A. M. N., Lewis G. F., McNamara A. W., 2007, ApJ, 671, 1591
Jin S., Lynden-Bell D., 2007, MNRAS, 378, 64
Johnston K. V., Hernquist L., Bolte M., 1996, ApJ, 465, 278

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 400, 548–560

Downloaded from https://academic.oup.com/mnras/article-abstract/400/1/548/1073311 on 27 July 2018
Kalberla P. M. W., Burton W. B., Hartmann Dap, Arnal E. M., Bajaja E., Morras R., Pöppel W. G. L., 2005, A&A, 440, 775
Londrillo P., Nipoti C., Ciotti L., 2003, Memorie Soc. Astron. Italiana, 1, 18
Majewski S. R. et al., 2004, AJ, 128, 245
Odenkirchen M. et al., 2001, ApJ, 548, L165
Odenkirchen M. et al., 2003, AJ, 126, 2385
Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T., 2002, Numerical Recipes in C. Cambridge Univ. Press, Cambridge
Reid M. J., Brunthaler A., 2004, ApJ, 616, 872
Reid M. J. et al., 2009, ApJ, 700, 137

This paper has been typeset from a TEX/LATEX file prepared by the author.