Original Article

Anemia, hematinic deficiencies, and hyperhomocysteinemia in burning mouth syndrome patients with thyroglobulin antibody/thyroid microsomal antibody positivity but without gastric parietal cell antibody positivity

Ying-Tai Jin, Yang-Che Wu, Yu-Hsueh Wu, Julia Yu-Fong Chang, Chun-Pin Chiang, Andy Sun

Department of Pathology, Taiwan Adventist Hospital, Taipei, Taiwan
Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
Department of Stomatology, National Cheng Kung University Hospital, Tainan, Taiwan
Institute of Oral Medicine, School of Dentistry, National Cheng Kung University, Tainan, Taiwan
Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan

Received 9 June 2021
Available online 3 July 2021

* Corresponding author. Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Section 3, Chung-Yang Road, Hualien, 970, Taiwan. Fax: +02 2389 3853.
** Corresponding author. Department of Dentistry, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, 10048, Taiwan. Fax: +02 2389 3853.
E-mail addresses: cpchiang@ntu.edu.tw (C.-P. Chiang), andysun7702@yahoo.com.tw (A. Sun).
† These two authors contributed equally to this work.

https://doi.org/10.1016/j.jds.2021.06.010
1991-7902/© 2021 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Burning mouth syndrome (BMS) is characterized by burning sensation of the oral mucosa in the absence of clinically apparent oral mucosal alterations.¹ Our previous study evaluated the symptoms of 884 BMS patients and found that 425 (48.1%) had dry mouth, 271 (30.7%) had numbness of oral mucosa, and 148 (16.7%) had dysfunction of taste.¹ The oral mucosa-associated symptoms such as burning sensation of the oral mucosa in the absence of clinically apparent oral mucosal alterations, dry mouth, numbness, and dysfunction of taste all may interfere with the eating and swallowing function of BMS patients.¹ The eating and swallowing difficulties may result in reduced food intake that in turn leads to anemia, hematinic deficiencies, and hyperhomocysteinemia in a certain percentage of our BMS patients.¹

Our previous study showed that 12.3%, 21.6%, and 22.7% of 884 BMS patients have serum gastric parietal cell antibody (GPCA), thyroglobulin antibody (TGA), and thyroid microsomal autoantibody (TMA, also known as anti-thyroid peroxidase antibody, anti-TPO antibody) positivities, respectively.⁴ Moreover, we also demonstrated that 19.8%, 16.2%, 4.8%, 2.3%, and 19.2% of 884 BMS patients have blood hemoglobin (Hb), iron, vitamin B12, and folic acid deficiencies and hyperhomocysteinemia, respectively.¹ Because GPCA can induce destruction of gastric parietal cells, resulting in failure of intrinsic factor and hydrochloric acid (HCl) production,³,⁴ which in turn may lead to vitamin B12 deficiency, pernicious anemia, hyperhomocysteinemia, and iron deficiency in some GPCA-positive patients.³–⁸ Thus, we also found 30.3%, 16.5%, 16.5%, 1.8%, and 29.4% of 109 GPCA-positive BMS patients have blood Hb, iron, vitamin B12, and folic acid deficiencies and hyperhomocysteinemia, respectively.⁹ However, we have not yet known whether the serum TGA positivity and/or TMA positivity (TGA/TMA positivity) plays a significant role in causing macrocytosis, anemia, hematinic deficiencies, and hyperhomocysteinemia in GPCA⁺/TMA⁺ BMS patients. However, the serum TGA/TMA-positivity is not significantly associated with anemia and serum iron, vitamin B12, and folic acid deficiencies were discovered between 222 GPCA⁺/TMA⁺ BMS patients and 553 GPCA⁻/TMA⁻ BMS patients. However, no significant differences in the frequencies of macrocytosis, blood Hb, serum iron, vitamin B12, and folic acid deficiencies were discovered between 222 GPCA⁺/TMA⁺ BMS patients and 553 GPCA⁻/TMA⁻ BMS patients.

Conclusions: We conclude that the disease of BMS itself does play a significant role in causing macrocytosis, anemia, hematinic deficiencies, and hyperhomocysteinemia in GPCA⁺/TMA⁺ BMS patients. Moreover, 222 GPCA⁺/TMA⁺ BMS patients had significantly greater frequencies of microcytosis, macrocytosis, blood Hb and serum iron deficiencies, and hyperhomocysteinemia than 442 healthy control subjects and significantly lower MCV and lower serum homocysteine levels than 553 GPCA⁻/TMA⁻ BMS patients. However, we have not yet known whether the serum TGA/TMA positivity is not significantly associated with anemia and serum iron, vitamin B12, and folic acid deficiencies were discovered between 222 GPCA⁺/TMA⁺ BMS patients and 553 GPCA⁻/TMA⁻ BMS patients. Moreover, we also demonstrated that 19.8%, 16.2%, 4.8%, 2.3%, and 19.2% of 884 BMS patients have blood hemoglobin (Hb), iron, vitamin B12, and folic acid deficiencies and hyperhomocysteinemia, respectively.¹
Materials and methods

Subjects

This study included 222 (20 men and 202 women, age range 18–87 years, mean age 55.7 ± 13.2 years) GPCA/TGA+/TMA− BMS patients.2 For evaluation of the role of serum TGA/TMA positivity in causing anemia, hematocrit deficiencies, and hyperhomocysteinemia in BMS patients, 553 (166 men and 387 women, age range 18–90 years, mean age 56.0 ± 15.2 years) GPCA/TGA/TMA− BMS patients and 442 age- (+±2 years of each patient’s age) and sex-matched healthy control subjects (106 men and 336 women, age range 18–90 years, mean 57.5 ± 13.5 years) were retrieved from our previous studies and included in this study.1,2,9,10 All the BMS patients and healthy control subjects were seen consecutively, diagnosed, and treated in the Department of Dentistry, National Taiwan University Hospital (NTUH) from July 2007 to July 2017. Patients were diagnosed as having BMS when they complained of burning sensation and other symptoms of the oral mucosa but no apparent clinical oral mucosal abnormality was found.1,2,9–14 The detailed inclusion and exclusion criteria for our BMS patients and healthy control subjects have been described previously.1,2,9,14 In addition, none of the BMS patients had taken any prescription medication for BMS at least 3 months before entering the study.

The blood samples were drawn from our BMS patients and healthy control subjects for measurement of complete blood count, serum iron, vitamin B12, folic acid, and homocysteine concentrations as well as serum GPCA, TGA, and TMA levels. All the BMS patients and healthy control subjects signed the informed consent forms before entering the study. This study was reviewed and approved by the Institutional Review Board at the NTUH (201212066RIND).

Determination of complete blood count and serum iron, vitamin B12, folic acid and homocysteine concentrations.

The complete blood count and serum iron, vitamin B12, folic acid, and homocysteine concentrations were determined by the routine tests performed in the Department of Laboratory Medicine of NTUH as described previously.1,14 This study defined the Hb and hematocrit deficiencies according to the World Health Organization (WHO) criteria. Thus, men with Hb < 13 g/dL and women with Hb < 12 g/dL were defined as having Hb deficiency or anemia.15 Patients with serum iron level < 60 μg/dL,7,8 vitamin B12 level < 200 pg/mL16 or folic acid level < 4 ng/mL17 were defined as having iron, vitamin B12 or folic acid deficiency, respectively. Moreover, patients with the serum homocysteine level > 12.3 μM (which was the mean serum homocysteine level of healthy control subjects plus two standard deviations) were defined as having hyperhomocysteinemia.1,9–14

Determination of serum gastric parietal cell antibody, thyroglobulin antibody, and thyroid microsomal antibody levels.

GPCA, TGA, and TMA levels were measured by the routine tests performed in the Department of Laboratory Medicine, NTUH. Serum GPCA level was measured by indirect immunofluorescence assay. Sera were scored as positive for GPCA when they produced fluorescence at a serum dilution of 10-fold or more.1,12 Moreover, serum TGA and TMA levels were measured by chemiluminescent microparticle immunoassay. Sera were scored as positive for TGA or TMA when the serum TGA level was greater than 14.4 IU/mL or when the serum TMA level was greater than 5.6 IU/mL, respectively.2

Statistical analysis

Comparisons of the mean corpuscular volume (MCV), the mean blood levels of Hb, iron, vitamin B12, folic acid, and homocysteine between 222 GPCA/TGA+/TMA− BMS patients and 553 GPCA/TGA/TMA− BMS patients or 442 healthy control subjects were performed by Student’s t-test. The differences in frequencies of microcytosis, macrocytosis, blood Hb, iron, vitamin B12, and folic acid deficiencies, and hyperhomocysteinemia between 222 GPCA/TGA+/TMA− BMS patients and 553 GPCA/TGA/TMA− BMS patients or 442 healthy control subjects were compared by chi-square test. The result was considered to be significant if the P-value was less than 0.05.

Results

The MCV and mean blood concentrations of Hb, iron, vitamin B12, folic acid, and homocysteine in 222 GPCA/TGA+/TMA− BMS patients, 553 GPCA/TGA/TMA− BMS patients, and 442 healthy control subjects are shown in Table 1. Because men and women usually had different normal blood Hb and iron levels, these two mean levels were calculated separately for men and women. We found significantly lower MCV and lower mean blood Hb and iron levels in 222 GPCA/TGA+/TMA− BMS patients than in 442 healthy control subjects (all P-values < 0.05, Table 1). However, there were no significant differences in the mean serum vitamin B12, folic acid, and homocysteine levels between 224 GPCA/TGA+/TMA− BMS patients and 442 healthy control subjects. The 222 GPCA/TGA+/TMA− BMS patients had significantly lower MCV and lower serum homocysteine level than 553 GPCA/TGA/TMA− BMS patients (both P-values < 0.001, Table 1). However, no significant differences in the mean blood Hb, iron, vitamin B12, and folic acid levels were discovered between 222 GPCA/TGA+/TMA− BMS patients and 553 GPCA/TGA/TMA− BMS patients, suggesting that the serum TGA/TMA-positivity does not play a significant role in causing the anemia and hematocrit deficiencies in 222 GPCA/TGA+/TMA− BMS patients (Table 1).

We also found significantly greater frequencies of microcytosis, macrocytosis, blood Hb and serum iron deficiencies, and hyperhomocysteinemia in 222 GPCA/TGA+/TMA− BMS patients than in 442 healthy control subjects (all P-values < 0.05, Table 2). The 222 GPCA/TGA+/TMA− BMS patients also had greater frequencies of serum vitamin B12 and folic acid deficiencies than 442 healthy control subjects (both P-values = 0.066, marginal significance, Table 2). Moreover, 222 GPCA/TGA+/TMA− BMS patients had significantly greater frequencies of microcytosis but significantly lower frequencies of hyperhomocysteinemia than 553
Comparisons of means of parameters between 222 GPCA-positive and/or thyroid microsomal antibody (TMA)-positive burning mouth syndrome (TGA+/TMA+BMS) patients and healthy control subjects or 553 GPCA-negative, TGA-negative, and TMA-negative BMS (GPCA-TGA/TMA-BMS) patients. These findings also suggest that the serum TGA/TMA-positivity is not significantly associated with the anemia and serum iron, vitamin B12, and folic acid deficiencies in 222 GPCA-TGA+/TMA+BMS patients, but the disease of BMS itself does play a significant role in causing the anemia.

Table 1
Comparisons of mean corpuscular volume (MCV) and mean blood hemoglobin (Hb), iron, vitamin B12, folic acid, and homocysteine levels between 222 thyroglobulin antibody (TGA)-positive and/or thyroid microsomal antibody (TMA)-positive burning mouth syndrome (TGA+/TMA+BMS) patients without serum GPCA positivity (GPCA-TGA+/TMA+BMS patients) and 442 healthy control subjects or 553 GPCA-negative, TGA-negative, and TMA-negative BMS (GPCA-TGA/TMA-BMS) patients.

Group	MCV (fL)	Hb (g/dL)	Iron (µg/dL)	Vitamin B12 (pg/mL)	Folic acid (ng/mL)	Homocysteine (µM)
GPCA-TGA+/TMA+BMS patients						
(n = 222)	GPCA-TGA+	GPCA-TGA+	GPCA-TGA+	GPCA-TGA+	GPCA-TGA+	GPCA-TGA+
Patient number (%)	Men (n = 20)	Women (n = 20)	Men (n = 20)	Women (n = 20)	Men (n = 20)	Women (n = 20)
	87.9 ± 7.8	14.2 ± 1.7	13.1 ± 1.1	88.6 ± 38.4	88.5 ± 30.8	660.2 ± 252.2
P-value	<0.001	<0.001	<0.001	0.024	<0.001	0.075
P-value	<0.001	0.079	>0.999	0.473	0.546	0.449
Healthy control patients	GPCA-TGA+	GPCA-TGA+	GPCA-TGA+	GPCA-TGA+	GPCA-TGA+	GPCA-TGA+
(n = 553)	Men (n = 166)	Women (n = 387)	Men (n = 166)	Women (n = 387)	Men (n = 166)	Women (n = 387)
	89.9 ± 6.7	14.8 ± 1.4	13.1 ± 1.2	93.2 ± 25.4	90.2 ± 33.2	644.4 ± 266.5
P-value	<0.001	0.079	<0.001	0.473	0.546	0.449
P-value	<0.001	>0.999	<0.001	0.473	0.546	0.449

Table 2
Comparisons of frequencies of microcytosis (mean corpuscular volume or MCV < 80 fL), macrocytosis (MCV ≥ 100 fL), blood hemoglobin (Hb), iron, vitamin B12, and folic acid deficiencies, and hyperhomocysteinemia between 222 thyroglobulin antibody (TGA)-positive and/or thyroid microsomal antibody (TMA)-positive burning mouth syndrome (TGA+/TMA+BMS) patients without serum gastric parietal cell antibody (GPCA) positivity (GPCA-TGA+/TMA+BMS patients) and 442 healthy control subjects or 553 GPCA-negative, TGA-negative, and TMA-negative BMS (GPCA-TGA/TMA-BMS) patients.

Group	Microcytosis (MCV < 80 fL)	Macrocytosis (MCV ≥ 100 fL)	Hb deficiency (Men < 13 g/dL, women < 12 g/dL)	Iron deficiency (<60 µg/dL)	Vitamin B12 deficiency (<200 pg/mL)	Folic acid deficiency (<4 ng/mL)	Hyperhomocysteinemia (>12.3 µM)
GPCA-TGA+/TMA+BMS patients	27 (12.2)	4 (1.8)	44 (19.8)	37 (16.7)	3 (1.4)	3 (1.4)	27 (12.2)
(n = 222)							
P-value	<0.001	0.022	<0.001	<0.001	0.066	0.066	<0.001
P-value	0.008	0.231	0.562	0.881	0.122	0.382	0.012
Healthy control patients	34 (6.1)	21 (3.8)	98 (17.7)	88 (15.9)	21 (3.8)	15 (2.7)	111 (20.1)
(n = 553)							
P-value	0.001	0.008	0.001	0.001	0.066	0.066	<0.001
P-value	0.001	0.008	0.001	0.001	0.066	0.066	<0.001

Comparisons of frequencies of parameters between 222 GPCA-TGA+/TMA+BMS patients and 442 healthy control subjects by chi-square test.

Comparisons of frequencies of parameters between 222 GPCA-TGA+/TMA+BMS patients and 553 GPCA-TGA/TMA+BMS patients by chi-square test.

The blood examination data of 553 GPCA-TGA/TMA+BMS patients and 442 healthy control subjects were retrieved from our previous studies.

GPCA-TGA/TMA+BMS patients (both P-values < 0.05, Table 2). However, there were no significant differences in the frequencies of macrocytosis and blood Hb, iron, vitamin B12, and folic acid deficiencies between 222 GPCA-TGA+/TMA+BMS patients and 553 GPCA-TGA/TMA+BMS patients (Table 2). These findings also suggest that the serum TGA/TMA-positivity is not significantly associated with the anemia and serum iron, vitamin B12, and folic acid deficiencies in 222 GPCA-TGA+/TMA+BMS patients, but the disease of BMS itself does play a significant role in causing the anemia.
hematocrit deficiencies, and hyperhomocysteinemia in 222 GPCA\(^{-}/\)TMA\(^{-}\) BMS patients. In this study, 44 (19.8%) of 222 GPCA\(^{-}/\)TMA\(^{-}\) BMS patients were diagnosed as having anemia according to the WHO criteria.\(^{15}\) In addition to having anemia (men with Hb < 13 g/dL and women with Hb < 12 g/dL), macrocytic anemia was diagnosed as having MCV \(\geq 100\) fl,\(^{18-20}\) normocytic anemia as having MCV between 80 and 99.9 fl,\(^{1,9,10}\) iron deficiency anemia (IDA) as having MCV < 80 fl and iron < 60 \(\mu\)g/dL,\(^{7,8,11}\) and thalassemia trait-induced anemia as having the red blood cell count > 5.0 M/\(\mu\)L, the MCV < 74 fl, and a Mentzer index (MCV/RBC) < 13.\(^{21}\) By these definitions, of 44 anemic GPCA\(^{-}/\)TMA\(^{-}\) BMS patients, two had macrocytic anemia rather than pernicious anemia, 25 had normocytic anemia, 7 had IDA, and 10 had thalassemia trait-induced anemia (Table 3).

Discussion

This study predominantly assessed whether the serum TGA/TMA positivity was a significant factor causing anemia, hematocrit deficiencies, and hyperhomocysteinemia in the GPCA\(^{-}/\)TMA\(^{-}\) BMS patients. The rationale for the study design was that if the GPCA\(^{-}/\)TMA\(^{-}\) BMS patients had significantly greater frequencies of anemia, hematocrit deficiencies, and hyperhomocysteinemia than the GPCA\(^{-}/\)TMA\(^{-}\) BMS patients, then the serum TGA/TMA-positivity could be a significant factor causing anemia, hematocrit deficiencies, and hyperhomocysteinemia in the GPCA\(^{-}/\)TMA\(^{-}\) BMS patients. Our previous study also discovered that 553 GPCA\(^{-}/\)TGA\(^{-}/\)TMA\(^{-}\) BMS patients had significantly lower mean blood Hb and serum iron, vitamin B12, and folic acid deficiencies and hyperhomocysteinemia in 222 GPCA\(^{-}/\)TGA\(^{-}/\)TMA\(^{-}\) BMS patients. Our previous study also discovered that 553 GPCA\(^{-}/\)TGA\(^{-}/\)TMA\(^{-}\) BMS patients significantly higher mean serum homocysteine level, and significantly greater frequencies of blood Hb and serum iron, vitamin B12, and folic acid deficiencies and hyperhomocysteinemia than 442 healthy control subjects.\(^{10}\) These findings also confirm that the disease of BMS itself is a significant factor causing anemia, hematocrit deficiencies and hyperhomocysteinemia in 553 GPCA\(^{-}/\)TGA\(^{-}/\)TMA\(^{-}\) BMS patients.\(^{10}\)

Our previous studies and this study found anemia in 175 (19.8%) of 884 BMS,\(^{22}\) 33 (30.3%) of 109 GPCA\(~\)BMS,\(^{9}\) 142 (18.3%) of 775 GPCA\(~\)BMS,\(^{9}\) 20 (28.6%) of 70 GPCA\(~\)TGA\(~\)TMA\(~\)BMS,\(^{10}\) 98 (17.7%) of 553 GPCA\(~\)TGA\(~\)TMA\(~\)BMS,\(^{10}\) and 44 (19.8%) of 222 GPCA\(~\)TGA\(~\)TMA\(~\)BMS patients. These findings indicate that in the subgroups of BMS patients, GPCA-positive BMS patients without TGA/TMA positivity tend to have the higher frequencies of anemia (28.6–30.3%) and GPCA\(~\)TGA\(~\)TMA\(~\)BMS patients have the lowest frequency of anemia (17.7%).\(^{1,9,10}\)

For the iron deficiency in the subgroups of BMS patients, the iron deficiency was noted in 143 (16.2%) of 884 BMS,\(^{22}\) 18 (16.5%) of 109 GPCA\(~\)BMS,\(^{9}\) 125 (16.1%) of 775 GPCA\(~\)BMS,\(^{9}\) 14 (20.0%) of 70 GPCA\(~\)TGA\(~\)TMA\(~\)BMS,\(^{10}\) 88 (15.9%) of 553 GPCA\(~\)TGA\(~\)TMA\(~\)BMS,\(^{10}\) and 37 (16.7%) of 222 GPCA\(~\)TGA\(~\)TMA\(~\)BMS patients. These findings indicate that in the subgroups of BMS patients, GPCA-positive AG patients with or without TGA/TMA positivity are prone to have the higher frequencies of iron deficiency (16.5–20.0%) and GPCA\(~\)TGA\(~\)TMA\(~\)BMS patients have the lowest frequency of iron deficiency (15.9%).\(^{1,9,10}\) The above findings also confirm the influence of GPCA positivity on the reduced absorption of

Anemia type	Patient number (%)	Mean corpuscular volume (fL)	Iron deficiency (<60 \(\mu\)g/dL)	Vitamin B12 deficiency (<200 pg/mL)	Folic acid deficiency (<4 ng/mL)
GPCA\(^{-}/\)TMA\(^{-}\) BMS patients (n = 222)					
Macrocytic anemia	2 (4.6)	\(\geq\)100	1 (50.0)	1 (50.0)	0 (0.0)
Normocytic anemia	25 (56.8)	80–99.9	10 (40.0)	0 (0.0)	0 (0.0)
Iron deficiency anemia	7 (15.9)	\(<\)80	7 (100.0)	0 (0.0)	0 (0.0)
Thalassemia trait-induced anemia	10 (22.7)	\(<\)74	2 (20.0)	0 (0.0)	0 (0.0)
Total	44 (100.0)		20 (45.5)	1 (2.3)	0 (0.0)
iron from the stomach and duodenum and the subsequent iron deficiency.1,9,10

For the vitamin B12 deficiency in the subgroups of BMS patients, vitamin B12 deficiency was noted in 42 (4.8%) of 884 BMS, 3 18 (16.5%) of 109 GPAC- BMS, 9 24 (3.1%) of 775 GPAC-BMS, 9 8 (11.4%) of 70 GPAC-TGA-TMA-BMS, 10 21 (3.8%) of 553 GPAC-TGA-TMA-BMS, 10 and 3 (1.4%) of 222 GPAC-TGA/TMA-BMS patients. These findings indicate that in the subgroups of BMS patients, GPAC-positive BMS patients with or without TGA/TMA positivity do have the higher frequencies of vitamin B12 deficiency (11.4–16.5%) and GPAC-TGA/TMA-BMS patients have the lowest frequency of vitamin B12 deficiency (1.4%).1,9,10 Moreover, the above findings also confirm a significant influence of GPAC positivity on the decreased absorption of vitamin B12 from the terminal ileum and the subsequent vitamin B12 deficiency.1,9,10

For the folic acid deficiency in the subgroups of BMS patients, the folic acid deficiency was noted in 20 (2.3%) of 884 BMS, 3 2 (1.8%) of 109 GPAC-BMS, 9 18 (2.3%) of 775 GPAC-BMS, 9 2 (2.9%) of 70 GPAC-TGA-TMA-BMS, 10 15 (2.7%) of 553 GPAC-TGA-TMA-BMS, 10 and 3 (1.4%) of 222 GPAC-TGA/TMA-BMS patients. These findings suggest that in the subgroups of BMS patients, GPAC-TGA-TMA-BMS patients have the highest frequency of folic acid deficiency (2.9%) and GPAC-TGA/TMA-BMS patients have the lowest frequency of folic acid deficiency (1.4%).1,9,10 Moreover, the above findings also suggest that GPAC positivity does not have a significant interference on the folic acid absorption from the jejunum.1,9,10

For the hyperhomocysteinemia in the subgroups of BMS patients, the hyperhomocysteinemia was noted in 170 (19.2%) of 884 BMS, 3 32 (29.4%) of 109 GPAC-BMS, 9 138 (17.8%) of 775 GPAC-BMS, 9 18 (25.7%) of 70 GPAC-TGA-TMA-BMS, 10 111 (20.1%) of 553 GPAC-TGA-TMA-BMS, 10 and 27 (12.2%) of 222 GPAC-TGA/TMA-BMS patients. GPAC-positive BMS patients with or without TGA/TMA positivity do have the higher frequencies of hyperhomocysteinemia (25.7–29.4%) and GPAC-TGA/TMA-BMS patients have the lowest frequency of hyperhomocysteinemia (12.2%).1,9,10 Moreover, the above findings also provide evidence that GPAC positivity does have a significant influence on the absorption of vitamin B12 from the terminal ileum, resulting in the subsequent vitamin B12 deficiency and hyperhomocysteinemia.1,9,10

After analyses of the frequencies of anemia, hematinic deficiencies, and hyperhomocysteinemia in BMS patients and in different subgroups of BMS patients, we further conclude that the GPAC positivity plays a significant role in causing anemia, iron and vitamin B12 deficiencies, and hyperhomocysteinemia in BMS patients. The serum GPAC positivity does not have a significant influence on folic acid deficiency in BMS patients.1,9,10 Moreover, the serum TGA/TMA-positivity is not significantly associated with anemia and hematinic deficiencies in GPAC-TGA/TMA-AG patients, but the disease of BMS itself does play a significant role in causing anemia, hematinic deficiencies, and hyperhomocysteinemia in BMS patients.

Declaration of competing interest

The authors have no conflicts of interest relevant to this article.

Acknowledgements

This study was supported by the grants (No. 102-2314-B-002-125-MY3 and No. 105-2314-B-002-075-MY2) of Ministry of Science and Technology, Taiwan.

References

1. Chiang CP, Wu YH, Wu YC, Chang JYF, Wang YP, Sun A. Anemia, hematinic deficiencies, hyperhomocysteinemia, and serum gastric parietal cell antibody positivity in 884 patients with burning mouth syndrome. J Formos Med Assoc 2020;119:813–20.
2. Chiang CP, Wu YC, Wu YH, Chang JYF, Wang YP, Sun A. Gastric parietal cell and thyroid autoantibody in patients with burning mouth syndrome. J Formos Med Assoc 2020;119:1758–63.
3. Taylor KB, Roitt IM, Doniach D, Cousshman KG, Shapland C. Autoimmune phenomena in pernicious anemia: gastric antibodies. BMJ 1962;2:1347–52.
4. Snow CF. Laboratory diagnosis of vitamin B12 and folate deficiency. A guide for the primary care physician. Arch Intern Med 1999;159:1289–98.
5. Lahner E, Annibale B. Pernicious anemia: new insights from a gastroenterological point of view. World J Gastroenterol 2009;15:5121–8.
6. Oh RC, Brown DL. Vitamin B12 deficiency. Am Fam Physician 2003;67:979–86.
7. Shine JW. Microcytic anemia. Am Fam Physician 1997;55:2455–62.
8. Wu YC, Wang YP, Chang JYF, Cheng SJ, Chen HM, Sun A. Oral manifestations and blood profile in patients with iron deficiency anemia. J Formos Med Assoc 2014;113:83–7.
9. Chiang ML, Wu YH, Chang JYF, Wang YP, Wu YC, Sun A. Anemia, hematinic deficiencies, and hyperhomocysteinemia in gastric parietal cell antibody-positive and -negative burning mouth syndrome patients. J Formos Med Assoc 2021;120:819–26.
10. Jin YT, Wu YH, Wu YC, Chang JYF, Chiang CP, Sun A. Anemia, hematinic deficiencies, and hyperhomocysteinemia in serum gastric parietal cell antibody-positive burning mouth syndrome patients without serum thyroid autoantibodies. J Dent Sci 2021;16:608–13.
11. Chiang ML, Jin YT, Chiang CP, Wu YH, Chang JYF, Sun A. Anemia, hematinic deficiencies, hyperhomocysteinemia, and gastric parietal cell antibody positivity in burning mouth syndrome patients with vitamin B12 deficiency. J Dent Sci 2020;15:34–41.
12. Chiang ML, Chiang CP, Sun A. Anemia, hematinic deficiencies, and gastric parietal cell antibody positivity in burning mouth syndrome patients with or without hyperhomocysteinemia. J Dent Sci 2020;15:214–21.
13. Jin YT, Chiang ML, Wu YH, Chang JYF, Wang YP, Sun A. Anemia, hematinic deficiencies, hyperhomocysteinemia, and gastric parietal cell antibody positivity in burning mouth syndrome patients with iron deficiency. J Dent Sci 2020;15:42–9.
14. Jin YT, Wu YC, Wu YH, Chang JYF, Chiang CP, Sun A. Anemia, hematinic deficiencies, hyperhomocysteinemia, and gastric
parietal cell antibody positivity in burning mouth syndrome patients with or without microcytosis. *J Dent Sci* 2021;16: 608–13.

15. WHO/UNICEF/UNU. *Iron deficiency anaemia assessment, prevention, and control: a guide for programme managers*. Geneva, Switzerland: World Health Organization, 2001.

16. Morris MS, Jacques PF, Rosenberg IH, Selhub J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. *Am J Clin Nutr* 2007;85:193–200.

17. de Benoist B. Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. *Food Nutr Bull* 2008; 29(suppl):S238–44.

18. Chang JYF, Wang YP, Wu YC, Cheng SJ, Chen HM, Sun A. Hematoclinic deficiencies and pernicious anemia in oral mucosal disease patients with macrocytosis. *J Formos Med Assoc* 2015; 114:736–41.

19. Sun A, Wang YP, Lin HP, Jia JS, Chiang CP. Do all the patients with gastric parietal cell antibodies have pernicious anemia? *Oral Dis* 2013;19:381–6.

20. Sun A, Chang JYF, Wang YP, Cheng SJ, Chen HM, Chiang CP. Do all the patients with vitamin B12 deficiency have pernicious anemia? *J Oral Pathol Med* 2016;45:23–7.

21. Wang YP, Chang JYF, Wu YC, Cheng SJ, Chen HM, Sun A. Oral manifestations and blood profile in patients with thalassemia trait. *J Formos Med Assoc* 2013;112:761–5.