Statistical tests under Dallal's model: Asymptotic and exact methods

Zhiming Li, Changxing Ma, Mingyao Ai

1 College of Mathematics and System Science, Xinjiang University, Urumqi, China, 2 Department of Biostatistics, University at Buffalo, Buffalo, NY, United States of America, 3 LMAM, School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China

Abstract

This paper proposes asymptotic and exact methods for testing the equality of correlations for multiple bilateral data under Dallal’s model. Three asymptotic test statistics are derived for large samples. Since they are not applicable to small data, several conditional and unconditional exact methods are proposed based on these three statistics. Numerical studies are conducted to compare all these methods with regard to type I error rates (TIEs) and powers. The results show that the asymptotic score test is the most robust, and two exact tests have satisfactory TIEs and powers. Some real examples are provided to illustrate the effectiveness of these tests.

Introduction

In clinical medicine, we often encounter bilateral data taken from paired organs of patients such as eyes and ears. For the same patient, the intraclass correlation between responses of paired parts should be considered to avoid misleading results. There have been in the past various models to analyze such data. For example, Rosner [1] introduced a positive constant R as a measure of the dependency by assuming that the probability of a response at one side of the paired body given a response at the other side is R times the response rate. Donner [2] provided an alternative approach and considered the common correlation coefficient in each of two groups. Under these two models, asymptotic and exact methods have been studied for many years and achieved significant progress.

Under Rosner’s model, Tang et al. [3] developed exact and approximate procedures when sample size is small or the data structure is sparse. Qiu et al. [4] derived sample formulas for testing difference between two proportions. Shan and Ma [5], and Ma et al. [6] presented several asymptotic and exact methods to investigate the equality of proportions. Peng et al. [7] constructed asymptotic confidence intervals (CIs) of proportion ratio for correlated paired data. Under Donner’s model, Pei et al. [8, 9] used asymptotic methods to analyze test statistics and CIs in two treated groups. Liu et al. [10, 11] provided exact methods to test the homogeneity of prevalence from multiple groups. Generally, asymptotic methods can produce empirical type I error rates (TIEs) close to the pre-specified nominal level for large samples. However,
they may yield inflation TIEs for small samples. Thus, exact tests become alternative to deal with the problem.

Dallal [12] indicated that Rosner’s model may give a poor fit if the characteristic was almost certain to occur bilaterally with widely varying group-specific prevalence. Suppose the probability of response at one organ given response at the other organ was independent of its probability. He introduced likelihood ratio test for large samples. However, the approach performs poorly with unsatisfactory TIE control in small samples. Up to now, statistical inferences on Dallal’s model have been less considered, including asymptotic and exact methods. This paper aims to propose asymptotic and exact methods for testing homogeneity of correlations among multiple bilateral data under Dallal’s model.

The remainder of the work is organized as follows. In Section 2, we review bilateral data structure and introduce Dallal’s model. The maximum likelihood estimations (MLEs) are derived for different hypotheses. Three asymptotic statistics and six exact procedures are proposed in Section 3. In Section 4, some numerical studies are conducted to compare these methods in terms of TIEs and power. Two examples are provided to illustrate these proposed approaches in Section 5. Conclusions are given in Section 6.

Dallal’s model and estimators

Suppose that N patients is randomly allocated into g groups. There are m_i patients in the ith ($i=1,\ldots,g$) group. Let m_{il} be the number of patients who have $l(l=0, 1, 2)$ organ(s) with improvement response(s) in the ith ($i=1,\ldots,g$) group, and S_l be the total number of patients with $l(l=0, 1, 2)$ response(s). Obviously, $m_i = \sum_{l=0}^{2} m_{il}$ and $S_i = \sum_{l=1}^{2} m_{il}$. The data structure is shown in Table 1. Let p_{il} be the probability that a patient has $l(l=0, 1, 2)$ response(s) in the ith ($i=1,\ldots,g$) group. The vector $m_i \triangleq (m_{i0}, m_{i1}, m_{i2})^T$ follows a multinomial distribution $M(m_0, p_0, p_1, p_2)$. The probability density satisfies

$$f(m_i) = \frac{m_i^!}{m_{i0}!m_{i1}!m_{i2}!} p_{i0}^{m_{i0}} p_{i1}^{m_{i1}} p_{i2}^{m_{i2}}, \quad i = 1, \ldots, g.$$

Let $Z_{ijk} = 1$ if the kth organ of the jth patient has improvement response in the ith group for $k=1,2,i=1,2,\ldots,g,$ and $j=1,2,\ldots,m_i$, and 0 otherwise. Under Dallal’s model, we assume

$$P(Z_{ijk} = 1) = p_{ij}, P(Z_{ijk} = 1|Z_{ij(k-1)}) = 1 = \gamma_i,$$

where $0 \leq \pi_p, \gamma_i \leq 1$. Especially, $\gamma_i = \pi_i$ means that two organ responses of each patient are completely independent, and $\gamma_i = 1$ represents that they are completely dependent in ith group. By using the Eq (1), the probabilities of no, one or both response(s) are

$$p_{0i} = 1 - (2 - \gamma_i) \pi_i, \quad p_{1i} = 2 \pi_i(1 - \gamma_i), \quad p_{2i} = \pi_i \gamma_i, \quad i = 1, \ldots, g.$$

Table 1. Bilateral data structure with g groups.

Response (l)	Group	Total						
	1	2	i	g				
0	m_{00}	m_{01}	m_{02}	\ldots	m_{0i}	\ldots	m_{0g}	S_0
1	m_{10}	m_{11}	m_{12}	\ldots	m_{1i}	\ldots	m_{1g}	S_1
2	m_{20}	m_{21}	m_{22}	\ldots	m_{2i}	\ldots	m_{2g}	S_2
Total	m_0	m_1	m_2	\ldots	m_i	\ldots	m_g	N

https://doi.org/10.1371/journal.pone.0242722.t001
where \(0 \leq p_{ii} \leq 1\), \(p_{i0} + p_{ii} + p_{2i} = 1\), and \(\max \left\{0, 1 - \frac{1}{n_{ii}}, 2 - \frac{1}{n_{ii}} \right\} \leq \gamma_i \leq 1\). In the work, we are interested to test whether the correlations of \(g\) groups are identical. Thus, the hypotheses are given by

\[
H_0: \gamma_1 = \cdots = \gamma_g = \gamma \quad \text{versus} \quad H_1: \gamma_i \neq \gamma_j \text{ for some } i \neq j \in \{1, 2, \ldots, g\}
\]

Denote \(\mathbf{m} = (\mathbf{m}_1, \ldots, \mathbf{m}_g)\), \(\mathbf{\pi} = (\pi_1, \ldots, \pi_g)\) and \(\mathbf{\gamma} = (\gamma_1, \ldots, \gamma_g)\). Given the observation \(\mathbf{m}\), the log-likelihood function

\[
l(\mathbf{\pi}, \mathbf{\gamma}|\mathbf{m}) = \ln \left(\prod_{i=1}^g f(\mathbf{m}_i) \right) = \sum_{i=1}^g \left[m_{ii} \ln (1 - 2\pi_i + \gamma_i \pi_i) + m_{ii} \ln (2\pi_i (1 - \gamma_i)) + m_{2i} \ln (\pi_i \gamma_i) \right] + C,
\]

where \(C = \ln \left(\prod_{i=1}^g \frac{m_{ii}!}{m_{ii}^{m_{i0}} m_{ii}^{m_{i2}}} \right)\). Let \(\hat{\pi}_i\) and \(\hat{\gamma}_i\) be the unconstrained MLEs of \(\pi_i\) and \(\gamma_i\) under \(H_1\). Differentiate (2) with respect to \(\pi_i\) and \(\gamma_i\), and set them to 0. The MLEs \(\hat{\pi}_i\) and \(\hat{\gamma}_i\) are the solutions of the following equations

\[
\begin{align*}
\frac{\partial l}{\partial \pi_i} &= \frac{m_{ii} (\gamma_i - 2)}{1 - 2\pi_i + \pi_i \gamma_i} + \frac{m_{ii} + m_{2i}}{\pi_i} = 0, \\
\frac{\partial l}{\partial \gamma_i} &= \frac{m_{ii} \gamma_i}{1 - 2\pi_i + \pi_i \gamma_i} - \frac{m_{ii} + m_{2i}}{\gamma_i} = 0.
\end{align*}
\]

Then,

\[
\hat{\pi}_i = \frac{m_{ii} + 2m_{2i}}{2m_{ii}}, \quad \hat{\gamma}_i = \frac{2m_{2i}}{m_{ii} + 2m_{2i}}, \quad i = 1, \ldots, g.
\]

Let \(\hat{\pi}_i\) and \(\hat{\gamma}_i\) be the constrained MLEs of \(\pi_i\) and \(\gamma_i\) under \(H_0\). Similarly, they are the solution of the equations

\[
\begin{align*}
\frac{\partial l}{\partial \pi_i} &= \frac{m_{ii} (\gamma - 2)}{1 - 2\pi_i + \pi_i \gamma} + \frac{m_{ii} + m_{2i}}{\pi_i} = 0, \\
\frac{\partial l}{\partial \gamma} &= \sum_{i=1}^g \frac{m_{ii} \pi_i}{1 - 2\pi_i + \pi_i \gamma} - \frac{m_{ii} + m_{2i}}{1 - \gamma} = 0.
\end{align*}
\]

For the first equation, we have \(\frac{m_{ii}}{1 - 2\pi_i + \pi_i \gamma} = \frac{m_{ii} + m_{2i}}{\gamma}\). The second equation can be simplified as \(\gamma (S_1 + 2S_2) - 2S_2 = 0\). Then, the constrained MLEs are obtained

\[
\begin{align*}
\hat{\pi}_i &= \frac{(m_{ii} + m_{2i}) (S_1 + 2S_2)}{2m_i (S_1 + S_2)}, \quad i = 1, \ldots, g, \\
\hat{\gamma} &= \frac{2S_2}{S_1 + 2S_2}.
\end{align*}
\]
Test methods

An information matrix

Denote $\mathbf{\beta} = (\gamma_1, \ldots, \gamma_g, \pi_1, \ldots, \pi_g)$. According to the Eq (3), the second-order derivatives of l_i with respect to π_i and γ_i are

$$\frac{\partial^2 l_i}{\partial \gamma_i^2} = \frac{-m_{i1} \gamma_{i}^2 (\gamma_i - 1)^2 - m_{i0} \gamma_{i}^2}{(\gamma_i, - 2\pi_i + 1)^2},$$

$$\frac{\partial^2 l_i}{\partial \gamma_i \partial \pi_i} = \frac{\partial^2 l_i}{\partial \pi_i \partial \gamma_i} = \frac{m_{i1}}{(\gamma_i, - 2\pi_i + 1)^2},$$

$$\frac{\partial^2 l_i}{\partial \pi_i^2} = \frac{-m_{i1} + m_{i0}}{\pi_i^2} - \frac{m_{i0} (\gamma_i - 2)^2}{(\gamma_i, - 2\pi_i + 1)^2},$$

for $i = 1, \ldots, g$, and $\frac{\partial^1 l_i}{\partial \gamma_i \partial \pi_j} = \frac{\partial^1 l_i}{\partial \pi_i \partial \gamma_j} = \frac{\partial^1 l_i}{\partial \gamma_i \partial \pi_j} = \frac{\partial^1 l_i}{\partial \pi_j \partial \gamma_i} = \frac{\partial^1 l_i}{\partial \pi_i \partial \pi_j} = 0$ for $i \neq j$. Thus, the information matrix \mathbf{I}_g with respect to $\mathbf{\beta}$ is

$$\mathbf{I}_g \triangleq \begin{bmatrix}
I_{11} & \cdots & 0 & I_{(g+1)1} & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & I_{gg} & 0 & \cdots & I_{(g+1)g} \\
I_{(g+1)1} & \cdots & 0 & I_{(g+1)(g+1)} & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & I_{(2g)g} & 0 & \cdots & I_{(2g)(2g)}
\end{bmatrix},$$

where

$$\mathbf{I}_i = -E \left(\frac{\partial^2 l_i}{\partial \gamma_i^2} \right) = -\frac{m_{i1} \gamma_{i} (\gamma_i - 2\pi_i + 1)}{\gamma_i (\gamma_i, - 1)(\gamma_i, - 2\pi_i + 1)}, \quad i = 1, \ldots, g,$$

$$\mathbf{I}_{ij} = \mathbf{I}_g = -E \left(\frac{\partial^2 l_i}{\partial \gamma_i \partial \pi_i} \right) = -\frac{m_{i1}}{\gamma_i \pi_i - 2\pi_j + 1}, \quad (i, j) \in \{ (1, g + 1), \ldots, (g, 2g) \},$$

$$\mathbf{I}_j = -E \left(\frac{\partial^2 l_i}{\partial \pi_i^2} \right) = -\frac{m_{i1} (\gamma_i - 2)}{\pi_j (\gamma_j \pi_j - 2\pi_j + 1)}, \quad j = g + 1, \ldots, 2g.$$
Otherwise, $I_g = 0$. By calculation, its inverse matrix is

$$
I_p^{-1} = \begin{bmatrix}
a_1 & \cdots & 0 & c_1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & a_g & 0 & \cdots & c_g \\
c_1 & \cdots & 0 & b_1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & c_g & 0 & \cdots & b_g
\end{bmatrix},
$$

(6)

where

$$
a_i = \gamma_i (\gamma_i - 1) (\gamma_i - 2) / 2m_i \pi_i, \quad b_i = \pi_i (1 + \gamma_i - 2 \pi_i) / 2m_i, \quad c_i = -\gamma_i (\gamma_i - 1) / 2m_i$

for $i = 1, \ldots, g$.

Asymptotic test statistics

In this section, we propose three asymptotic tests for large samples based on the unconstrained and constrained MLEs.

(i) **Likelihood ratio test.** Let $\hat{\pi}_i, \hat{\gamma}_i$ be the unconstrained MLEs, and $\tilde{\pi}_i, \tilde{\gamma}_i$ be the constrained MLEs under H_0. Denote $\hat{\pi} = (\hat{\pi}_1, \ldots, \hat{\pi}_g)$, $\hat{\gamma} = (\hat{\gamma}_1, \ldots, \hat{\gamma}_g)$ and $\tilde{\pi} = (\tilde{\pi}_1, \ldots, \tilde{\pi}_g)$.

Given observation m, likelihood ratio statistic is given by

$$
T_L = 2 \{ l(\hat{\pi}, \hat{\gamma} | m) - l_0(\tilde{\pi}, \tilde{\gamma} | m) \},
$$

where $l(\pi, \gamma | m)$ is defined in (2) and

$$
l_0(\pi, \gamma | m) = \sum_{i=1}^g [m_i \ln (1 - 2 \pi_i + \gamma \pi_i) + m_i \ln (2 \pi_i (1 - \gamma)) + m_i \ln \pi_i \gamma] + C.
$$

From (4) and (5), likelihood ratio test can be represented as

$$
T_L = 2 \sum_{i=1}^g \ln \left[\frac{m_{1i}}{S_1} \left(\frac{m_{2i}}{S_2} \right)^{m_{2i}} \left(\frac{S_1 + S_2}{m_{1i} + m_{2i}} \right)^{m_{1i} + m_{2i}} \right].
$$

(ii) **Score test.** Denote $U(\beta) = \left(\frac{\delta \gamma}{\delta \pi_1}, \ldots, \frac{\delta \gamma}{\delta \pi_g}, 0, \ldots, 0 \right)$. Under H_0, score test statistic can be defined as

$$
T_{SC} = U(\beta)^T I_p^{-1} U(\beta) \bigg|_{\gamma_1 = \gamma_2 = \cdots = \gamma_g = \pi, \pi_i = \pi_j}.
$$
A direct calculation shows that the simplified form of T_{SC} is

$$
T_{SC} = \sum_{i=1}^{g} \frac{(S_i m_{y_i} - S_i m_{y})^2}{S_i S_i(m_{1i} + m_{2i})}.
$$

(iii) Wald-type test. Let $\hat{\beta} = (\hat{\gamma}_1, \ldots, \hat{\gamma}_g, \hat{\pi}_1, \ldots, \hat{\pi}_g)$. The null hypothesis $H_0: \gamma_1 = \ldots = \gamma_g$ is equivalent to $C\hat{\beta} = 0$, where 0 is a zero vector, and

$$
C = \begin{pmatrix}
1 & -1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & -1 & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -1 & 0 & \cdots \\
\end{pmatrix}_{(g-1) \times (2g)}.
$$

Hence, Wald-type test statistic can be written as

$$
T_w = (\beta C^T)(C\hat{\beta}^{-1}C^T)^{-1}(C\beta^T) = (\hat{\beta} C^T)(C\hat{\beta}^{-1}C^T)(C\beta^T),
$$

where I_β^{-1} is defined in (6). Let

$$
\hat{a}_i = \frac{\hat{\gamma}_i(\hat{\gamma}_i - 1)(\hat{\gamma}_i - 2)}{2m_i \hat{\pi}_i} = \frac{4m_i m_{y_i}(m_{1i} + m_{2i})}{(m_{1i} + 2m_{2i})^2}, i = 1, \ldots, g.
$$

Then,

$$
C\hat{\beta}^{-1}C^T = \begin{pmatrix}
\hat{a}_1 + \hat{a}_2 & -\hat{a}_2 & 0 & \cdots & 0 & 0 \\
-\hat{a}_2 & \hat{a}_2 + \hat{a}_3 & -\hat{a}_3 & 0 & \cdots & 0 \\
0 & -\hat{a}_3 & \hat{a}_3 + \hat{a}_4 & -\hat{a}_4 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \cdots \\
0 & 0 & \cdots & \cdots & -\hat{a}_{g-1} & \hat{a}_{g-1} + \hat{a}_g \\
\end{pmatrix}.
$$

For convenience, denote $A = C\hat{\beta}^{-1}C^T$. Obviously, A is a symmetric tridiagonal matrix of order $g - 1$. Let $\hat{d}_{j-1} = \hat{a}_{j-1} + \hat{a}_j$, $\hat{d}_j = \hat{a}_j + \hat{a}_{j+1} - \frac{\hat{a}_j^2}{\hat{a}_{j+1}}$ for $j = 2, \ldots, g - 1$, and $\delta_1 = \hat{a}_1 + \hat{a}_2$, $\delta_i = \hat{a}_i + \hat{a}_{i+1} - \frac{\hat{a}_i^2}{\hat{a}_{i+1}}$, $i = g - 2, \ldots, 1$. Following [13], A^{-1} is also a symmetric matrix denoted by

$$
A^{-1} = \begin{pmatrix}
z_{11} & z_{12} & \cdots & z_{1(g-1)} \\
z_{12} & z_{22} & \cdots & z_{2(g-1)} \\
\vdots & \vdots & \ddots & \vdots \\
z_{1(g-1)} & z_{2(g-1)} & \cdots & z_{(g-1)(g-1)} \\
\end{pmatrix},
$$
where

\[
z_g = \begin{cases}
\frac{(u_{i1} \cdots u_{ij}) (d_{i1} \cdots d_{ij})}{\delta_i \cdots \delta_{g-1}}, & j > i, i, j = 1, \ldots, g - 1, \\
\frac{d_{i1} \cdots d_{ij}}{\delta_i \cdots \delta_{g-1}}, & i = 1, \ldots, g - 1.
\end{cases}
\]

Since \(\beta C' = (\hat{\gamma}_1 - \hat{\gamma}_2, \hat{\gamma}_2 - \hat{\gamma}_3, \ldots, \hat{\gamma}_{g-1} - \hat{\gamma}_g) \), we obtain the simplified form

\[
T_w = \sum_{i=1}^{g-1} \sum_{j=1}^{g-1} (\hat{\gamma}_i - \hat{\gamma}_{i+1})(\hat{\gamma}_j - \hat{\gamma}_{j+1})z_g.
\]

Next we provide the expressions of \(T_w \) for \(g = 2, 3, 4 \). If \(g = 2 \), it follows that

\[
T_w = \frac{(\hat{\gamma}_1 - \hat{\gamma}_2)^2}{\hat{\alpha}_1 + \hat{\alpha}_2} = \frac{4(m_{11}m_{22} - m_{12}m_{21})^2}{4(m_1 + 2m_2)^2 (m_{12} + 2m_{21})^2 \sum_{i=1}^{g-1} \frac{m_{ij}m_{ij} + m_{ij}m_{ji}}{(m_{ij} + m_{ji})}}.
\]

If \(g = 3 \), we have

\[
T_w = \frac{\hat{\alpha}_1 (\hat{\gamma}_2 - \hat{\gamma}_3)^2 + \hat{\alpha}_2 (\hat{\gamma}_1 - \hat{\gamma}_3)^2 + \hat{\alpha}_3 (\hat{\gamma}_1 - \hat{\gamma}_2)^2}{\hat{\alpha}_1 \hat{\alpha}_2 + \hat{\alpha}_1 \hat{\alpha}_3 + \hat{\alpha}_2 \hat{\alpha}_3}.
\]

Denote \(\hat{\alpha} = \hat{\alpha}_1 \hat{\alpha}_2 \hat{\alpha}_3 + \hat{\alpha}_1 \hat{\alpha}_2 \hat{\alpha}_4 + \hat{\alpha}_1 \hat{\alpha}_3 \hat{\alpha}_4 + \hat{\alpha}_2 \hat{\alpha}_3 \hat{\alpha}_4 \). If \(g = 4 \), then

\[
T_w = \frac{1}{\hat{\alpha}} \left[(\hat{\gamma}_1 - \hat{\gamma}_4)(\hat{\gamma}_3 - \hat{\gamma}_4)(\hat{\alpha}_1 \hat{\alpha}_2 + \hat{\alpha}_1 \hat{\alpha}_3 + \hat{\alpha}_2 \hat{\alpha}_3 + \hat{\alpha}_2 \hat{\alpha}_4 + \hat{\alpha}_3 \hat{\alpha}_4 + \hat{\alpha}_3 \hat{\alpha}_4 + \hat{\alpha}_4 \hat{\alpha}_4) + (\hat{\gamma}_1 - \hat{\gamma}_3)(\hat{\gamma}_2 - \hat{\gamma}_4)(\hat{\alpha}_1 \hat{\alpha}_2 + \hat{\alpha}_1 \hat{\alpha}_3 + \hat{\alpha}_2 \hat{\alpha}_3 + \hat{\alpha}_2 \hat{\alpha}_4 + \hat{\alpha}_3 \hat{\alpha}_4 + \hat{\alpha}_3 \hat{\alpha}_4 + \hat{\alpha}_4 \hat{\alpha}_4) + (\hat{\gamma}_1 - \hat{\gamma}_2)(\hat{\gamma}_3 - \hat{\gamma}_4)(\hat{\alpha}_1 \hat{\alpha}_2 + \hat{\alpha}_1 \hat{\alpha}_3 + \hat{\alpha}_2 \hat{\alpha}_3 + \hat{\alpha}_2 \hat{\alpha}_4 + \hat{\alpha}_3 \hat{\alpha}_4 + \hat{\alpha}_3 \hat{\alpha}_4 + \hat{\alpha}_4 \hat{\alpha}_4) + (\hat{\gamma}_1 - \hat{\gamma}_3)(\hat{\gamma}_2 - \hat{\gamma}_4)(\hat{\alpha}_1 \hat{\alpha}_2 + \hat{\alpha}_1 \hat{\alpha}_3 + \hat{\alpha}_2 \hat{\alpha}_3 + \hat{\alpha}_2 \hat{\alpha}_4 + \hat{\alpha}_3 \hat{\alpha}_4 + \hat{\alpha}_3 \hat{\alpha}_4 + \hat{\alpha}_4 \hat{\alpha}_4) \right],
\]

where \(\hat{\alpha}_i \) is defined in (7).

Under \(H_0 \), test statistic \(T_i(= T_L, T_{SC} \text{ or } T_W) \) has asymptotic chi-square distribution with \(g - 1 \) degrees of freedom. Let \(\chi^2_{g-1,1-\alpha} \) be the \((1 - \alpha)\)th quantile of the chi-square distribution with \(g - 1 \) degree of freedom. Given the nominal level \(\alpha \), the null hypothesis \(H_0 \) will be rejected if the value of \(T_i \) is larger than \(\chi^2_{g-1,1-\alpha} \).

Exact methods

Given the observed data \(\mathbf{m} = (\mathbf{m}_1, \ldots, \mathbf{m}_g) \), let \(T_j(\mathbf{m}) \) be the value of the aforementioned statistic \(T_j(l = L, SC, W) \). The asymptotic (A) \(\hat{p} \)-values of these statistics are defined by

\[
p^{A}_l(\mathbf{m}^*) = P(T_j(\mathbf{m}^*) \leq \chi^2_{g-1,1-\alpha}), \quad l = L, SC, W, \tag{8}
\]

where \(\mathbf{m}^* \) is an observed data of \(\mathbf{m} \). For convenience, we call \(p^{L}_1, p^{SC}_1 \) and \(p^{W}_1 \) as “A approach” based on statistics \(T_L, T_{SC} \) and \(T_W \). Asymptotic tests work well when the sample size is large. However, they have some limitations if the sample size is relatively small. Several exact conditional and unconditional methods are proposed for small samples based on these statistics.

An exact conditional method is introduced under the assumption that all of \(m_i(i = 1, \ldots, g) \) and \(S_j(l = 0, 1, 2) \) are fixed in Table 1. Thus, the cell values of the table follow a hypergeometric
distribution. Define the tail area of statistics \(T_L, T_{SC} \) and \(T_W \) as

\[
\Psi_l(m^*) = \{ m : T_l(m) \geq T_l(m^*), m \in S(m^*) \}, \quad l = L, SC, W,
\]

where \(S(m^*) = \{ m : S_i = S_j, i = 0, 1, 2 \} \). According to the tail area \(\Psi_l(m^*) \), the exact conditional (C) \(p \)-values can be calculated by

\[
p_l^C(m^*) = \sum_{m \in \Psi_l(m^*)} \left(\frac{\prod_{i=1}^{g} \frac{m_i!}{m_{l(i)}! m_{l(i)}!}}{S(m^*)!} \right), \quad l = L, SC, W.
\]

(9)

Here, \(p_L^C, p_{SC}^C, \) and \(p_W^C \) are described as “C approach” based on statistics \(T_L, T_{SC} \) and \(T_W \).

Another exact \(p \)-value is from Basu’s maximization approach [14]. It can be obtained by maximizing the tail probability over all nuisance parameters instead of the constrained MLEs under \(H_0 \). In this case, we define the tail area of statistic \(T_l(l = L, SC, W) \) as

\[
\Omega_l(m^*) = \{ m : T_l(m) \geq T_l(m^*) \}, \quad l = L, SC, W
\]

for a given table \(m^* \). Denote \(\Theta = \{ \pi : \pi_i \in [0, 1], i = 1, \ldots, g \} \) and

\[
\Lambda = \{ \gamma : \max \{ 0, 1 - \frac{1}{2\pi_i}, 2 - \frac{1}{\pi_i} \} \leq \gamma_i \leq 1, \pi_i \in [0, 1], i = 1, \ldots, g \},
\]

where \(\pi = (\pi_1, \ldots, \pi_g) \) and \(\gamma = (\gamma_1, \ldots, \gamma_g) \). Hence, under maximization (M) method, three exact unconditional \(p \)-value of are given by

\[
p_l^M(m^*) = \sup_{\pi \in \Theta, \gamma \in \Lambda} \left\{ \sum_{m \in \Omega_l(m^*)} L(\pi, \gamma|m) \right\}, \quad l = L, SC, W,
\]

(10)

where \(L(\pi, \gamma|m) = \exp(l(\pi, \gamma|m)) \) and \(l(\pi, \gamma|m) \) is defined in (2). Corresponding to “A approach” and “C approach”, \(p_L^M, p_{SC}^M \) and \(p_W^M \) are called “M approach” based on \(T_L, T_{SC} \) and \(T_W \).

Numerical studies

In this section, we investigate the performance of the proposed asymptotic and exact tests in terms of TIEs and powers under different parameter settings.

We first compare asymptotic methods \(T_L, T_{SC} \) and \(T_W \) with empirical TIEs. Let \(g = 2, 3, 4, \pi = 0.3: 0.02: 0.5, \gamma = 0.3: 0.02: 0.8 \) and \(m = m_1 = \cdots = m_g = 15, 50, 100 \). Here, \(a: b: c \) means increasing from \(a \) to \(c \) by \(b \). For each parameter setting, 10,000 samples are randomly generated from the null hypothesis \(H_0 \). Given the nominal level \(\alpha = 0.05 \), empirical TIE is calculated by the proportion of rejecting \(H_0 \), i.e., the number of rejections/10,000. Figs 1, 2 and 3 show the distribution surfaces of empirical TIEs for all the tests under \(\pi_i = \pi \) and \(\gamma_i = \gamma(i = 1, 2, \ldots, g; g = 2, 3, 4) \). According to Tang et al. [3], a test is liberal if its empirical TIE is greater than 0.06, conservative if it is less than 0.04, otherwise it is robust. We observe that score test is more robust than other tests since its TIEs are closer to the pre-determined level \(\alpha = 0.05 \). All the tests work well for larger sample size. However, likelihood ratio and Wald-type tests have inflated TIEs and are especially liberal when sample size is small. Some of their TIEs may be less than 0.04 or greater than 0.06.

Next we calculate the empirical powers of these tests according to the parameter settings for \(m = 15, 50, 100: (i) g = 2, \pi = (0.2, 0.3), \gamma_1 = 0.2: 0.05: 0.95, \gamma_2 = 0.1, (ii) g = 3, \pi = (0.2, 0.3, 0.3), \gamma_1 = 0.2: 0.05: 0.95, \gamma_2 = \gamma_3 = 0.1, \) and \((iii) g = 4, \pi = (0.2, 0.3, 0.3, 0.3), \gamma_1 = 0.2: 0.05: 0.95, \gamma_2 = \gamma_3 = \gamma_4 = 0.1. \) For each parameter setting, we randomly choose 10,000 samples from the
alternative hypothesis H_1. The empirical power is computed by the proportion of rejecting H_0 for all samples. Fig 4 reflects the empirical powers of three proposed tests for $g = 2, 3, 4$. The powers will increase when sample size is larger or the group number increases. Especially, the powers of all the tests are very close when $m = 50, 100$. However, there exists some differences between these tests for smaller samples. Wald-type test has higher power and likelihood ratio test has lower power.

Considering the limitations of asymptotic methods, we analyse A, C and M approaches for small samples. Unlike 10,000 random samples of asymptotic tests, we need to generate all possible tables with random cell values. For $m = 10$ and $g = 2, 3$, there are totally 4,356 and 287,492 tables. The TIEs and powers are obtained for $m = m_1 = \cdots = m_g = 10$ and $g = 2, 3$ according to the cases: $\pi = 0: 0.04: 1$, $\gamma = 0: 0.04: 1$, satisfying $0 \leq p_i \leq 1 (i = 0, 1, 2, i = 2, 3)$. At the given nominal level $\alpha = 0.05$, the probabilities are calculated by the log-likelihood (2) of all possible tables. We will reject the null hypothesis H_0 if the probability is less than 0.05. Figs 5 and 6
show TIE surfaces of all the exact methods for $\pi_i = \pi$ and $\gamma_i = \gamma$. We observe that A approach $p_{0.05}^A$ is closer to the pre-specified nominal level $\alpha = 0.05$ for $m = 10$ and $g = 2, 3$. However, $p_{0.05}^C$ and $p_{0.05}^M$ have the inflated TIEs. For C approach, $p_{0.05}^C$ is better than $p_{0.05}^A$ and $p_{0.05}^M$ since they have the inflated TIEs. The M approaches $p_{0.05}^M$ and $p_{0.05}^M$ can produce satisfactory TIEs.

Fig 2. Empirical TIE surfaces of asymptotic tests for $g = 3$, $\pi_i = \pi$ and $\gamma_i = \gamma$.

https://doi.org/10.1371/journal.pone.0242722.g002
Note that all parameter settings of asymptotic and exact methods are studied under balanced designs, that is, \(m = m_1 = \cdots = m_g \). For unbalanced case, we can handle it through some examples.

Real examples

In this section, two real examples with unbalanced designs are provided to illustrate our proposed methods at the nominal level \(\alpha = 0.05 \). We first show an example with large samples based on asymptotic test statistics.

Example 1 [15] There were 216 patients aged 20-39 with retinitis pigmentosa (RP) at the Massachusetts Eye and Ear infirmary. They were divided into four genetic groups (Table 2): autosomal dominant RP (DOM), autosomal recessive RP (AR), sex-linked RP (SL) and isolate RP (ISO).
Let \(m_l \) be the number of patients with \(l(=0, 1, 2) \) affected eyes in the \(i \)th \((i=1, 2, 3, 4)\) group. Under Dallal’s model, we are interested to test if the correlations of these four groups are equal, i.e., \(H_0: \gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 \). Table 3 provides the results of statistics, \(p \)-values and constrained MLEs. Moreover, the unconstrained MLEs \(\hat{\pi} = (\hat{\pi}_1, \hat{\pi}_2, \hat{\pi}_3, \hat{\pi}_4) = (0.3571, 0.5476, 0.7895, 0.4662) \) and \(\hat{\gamma} = (\hat{\gamma}_1, \hat{\gamma}_2, \hat{\gamma}_3, \hat{\gamma}_4) = (0.7000, 0.7826, 0.9333, 0.8261) \). Given the nominal level \(\alpha = 0.05 \), \(T_L, T_W, T_{SC} < \chi^2_{3,0.05} = 7.81 \) and \(p \)-values are greater than 0.05. Thus, there is no evidence to reject \(H_0 \). That is to say, the correlations of four groups are equal: \(\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = 0.8246 \).

For small sample case, we provide another example to compare the effectiveness of asymptotic and exact methods.

Example 2 [16] A double-blind clinical trial was conducted to study amoxicillin treatment of acute otitis media with effusion (OME) in twenty-four children at 14 days. Each child underwent no, unilateral or bilateral OME and was assigned into three groups according to ages: <2, 2-5 and \(\geq 6 \) years (Table 4). Denote \(m^* = (2, 2, 11, 5, 1, 3, 6, 0, 7) \). Next we apply asymptotic and exact methods to test \(H_0: \gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 \).

Through calculating (4) and (5), the unconstrained MLEs \(\hat{\pi} = (0.8000, 0.3889, 0.1179), \hat{\gamma} = (0.9167, 0.8571, 0.9524) \), and the constrained MLEs \(\hat{\pi} = (0.7924, 0.4064, 0.1417), \hat{\gamma} = 0.9063 \) under \(H_0 \). Then, \(T_L(m^*) = 0.2445, T_{SC}(m^*) = 0.2525 \) and \(T_W(m^*) = 0.2285 \).

Table 5 provides the comparison of asymptotic and exact methods. The result shows that there is no significant difference among the correlations of two groups regardless of any approaches.

Fig 4. Empirical power curves of asymptotic tests for \(g = 2, 3, 4 \).

https://doi.org/10.1371/journal.pone.0242722.g004

Fig 5. TIE surfaces of exact approaches for $m = 10$, $g = 2$, $\pi_i = \pi$ and $\gamma_i = \gamma$.

https://doi.org/10.1371/journal.pone.0242722.g005
Fig 6. TIE surfaces of exact approaches for $m = 10$, $g = 3$, $\pi_i = \pi$ and $\gamma_i = \gamma$.

https://doi.org/10.1371/journal.pone.0242722.g006
Fig 7. Power curves of exact approaches for $m = 10$ and $g = 2, 3$.

Table 2. The number of patients for genetic types.

Response	DOM	AR	SL	ISO	Total
0	15	7	3	67	92
1	6	5	2	24	37
2	7	9	14	57	87
Total	28	21	19	148	216

Table 3. Test statistics, p-values and constrained MLEs under H_0.

Value	Test statistics	$\tilde{F} = (\tilde{F}_1, \tilde{F}_2, \tilde{F}_3, \tilde{F}_4)$	\tilde{y}		
Statistic value	T_1	T_{SC}	T_W	(0.3950, 0.5675, 0.7165, 0.4656)	0.8246
p-value	0.2162	0.2424	0.1239		

Table 4. 14-day OME status.

Response	< 2 years	2-5 years	≥ 6 years	Total
0	2	5	6	13
1	2	1	0	3
2	11	3	1	15
Total	15	9	7	31
Conclusions

In this paper, we propose asymptotic statistics and exact procedures to test if the correlations of multiple bilateral data are equal under Dallal’s model. Three asymptotic test statistics are likelihood ratio T_L, score T_{SC} and Wald-type T_W for large sample. The explicit expressions of these tests are obtained, and their asymptotic p-values $p_A(l = L, SC, W)$ are denoted by approach. For small sample, six exact methods are derived based on statistics T_L, T_{SC} and T_W, including three conditional exact C procedures $p_C(l = L, SC, W)$ and three unconditional exact M approaches $p_M(l = L, SC, W)$.

Numerical studies are conducted to investigate the performance of asymptotic and exact methods in terms of TIEs and powers. When the samples is larger, empirical TIEs and powers of T_L, T_{SC} and T_W are close to each other. In general, score test T_{SC} is more robust than other two tests. However, these tests may produce unacceptable TIEs such as Wald-type test when the samples is smaller. The results are similar to those of Rosner’s and Donner’s models, see Ma et al. [6] and Liu et al. [10]. For small sample, we obtain TIE surfaces and power curves of exact C and M approaches with two and three groups, comparing with A approach. As for TIEs, the A approaches p_A^L and p_A^W are liberal, and p_A^{SC} is close to the nominal level 0.05 under different parameter configurations. The C approaches p_C^L and p_C^{SC} tend to be more inflated than p_C^W. The M approach p_M^{SC} is better than p_M^L and p_M^W. On the other hand, the powers of exact methods are very close based on likelihood ratio T_L and score T_{SC}. For C approach, p_C^W has higher power, while $p_C^L(l = L, SC)$ has lower power. Moreover, p_M^L has higher power, but p_M^W has lower power in M approach.

The ideas of asymptotic and exact methods can be extended other data structures with larger or small samples such as crash data. For example, Zeng et al. [17–19] proposed some models for the analysis of crash rates by injury severity. Dong et al. [20] introduced mixed logit model to investigate the difference between single- and multi-vehicle accident probability. Chen et al. [21–23] analyzed unbalance panel models by using real-time environmental and traffic big data. For these problems, we will leave these for future research.

Acknowledgments

The authors thanks the editor and referees for constructive comments that help improve the manuscript.

Author Contributions

Funding acquisition: Zhiming Li.
Methodology: Zhiming Li.
Software: Zhiming Li.
Writing – original draft: Zhiming Li, Changxing Ma.
Writing – review & editing: Changxing Ma, Mingyao Ai.

Table 5. Comparison of asymptotic and exact p-values.

Method	A approach	C approach	M approach			
	p_A^L	p_A^{SC}	p_A^W	p_M^L	p_M^{SC}	p_M^W
p-value	0.8849	0.8814	0.8920	0.8643	0.8963	0.8042

https://doi.org/10.1371/journal.pone.0242722.t005
References

1. Rosner B. Statistical methods in ophthalmology: an adjustment for the intraclass correlation between eyes. Biometrics 1982 38: 105–114. https://doi.org/10.2307/2530293 PMID: 7082754

2. Donner A. Statistical methods in ophthalmology: an adjusted chi-square approach. Biometrics 1989 45:605–611. https://doi.org/10.2307/2531501 PMID: 16381067

3. Tang ML, Tang NS, Rosner B. Statistical inference for correlated data in ophthalmologic studies. Statistics in Medicine 2006 25:2771–2783. https://doi.org/10.1002/sim.2425 PMID: 1803448

4. Qiu SF, Tang NS, Tang ML, Pei YB. Sample size for testing difference between two proportions for the bilateral-sample design. J Biopharm Stat. 2009 19:857–871. https://doi.org/10.1080/10543400903105372 PMID: 20183448

5. Shan G, Ma CX. Exact methods for testing the equality of proportions for binary clustered data from otolaryngologic studies. Stat Biopharm Res. 2014 6(1):115–122. https://doi.org/10.1080/19466315.2013.861767

6. Ma CX, Shan G, Liu S. Homogeneity test for binary correlated data. PLoS One 2015 10: e0124337. https://doi.org/10.1371/journal.pone.0124337 PMID: 25897962

7. Peng X, Liu C, Liu S, Ma CX. Asymptotic confidence interval construction for proportion ratio based on correlated paired data. J Biopharm Stat. 2019; 29(6):1137–1152. https://doi.org/10.1080/10543406.2019.1584629 PMID: 30931053

8. Pei YB, Tang ML, Wang WK, Guo JH. Confidence intervals for correlated proportion differences from paired data in a two-arm randomised clinical trial. Stat Meth Med Res. 2012 21(2):167–187. https://doi.org/10.1177/0962280210365018

9. Pei YB, Tang ML, Wong WK, Tang NS. Testing equality of correlations of two paired binary responses from two treated groups in a randomized trial. Stat Biopharm Res. 2011 21:511–525. https://doi.org/10.1080/10543406.2010.482682 PMID: 21442523

10. Liu XB, Liu S, Ma CX. Testing equality of correlation coefficients for paired binary data from multiple groups. Journal of Statistical Computation and Simulation 2016 86(9):1686–1696. https://doi.org/10.1080/00949655.2015.1080704

11. Liu XB, Yang ZY, Liu S, Ma CX. Exact methods of testing the homogeneity of prevalences for correlated binary data. Journal of Statistical Computation and Simulation 2017 87(15):3021–3039. https://doi.org/10.1080/00949655.2017.1351971

12. Dallal GE. Paired Bernoulli trials. Biometrics 1988 44(1):253–257. https://doi.org/10.2307/2531913 PMID: 3358992

13. Meurant G. A review on the inverse of symmetric tridiagonal and block tridiagonal matrices. SIAM J Matrix Anal Appl. 1992 13(3):707–728.

14. Base D. On the elimination of nuisance parameters. J. American Statistical Association 1977 72(358):355–366.

15. Berson EL, Rosner B, and Simonoff E. An outpatient population of retinitis pigmentosa and their normal relatives: Risk factors for genetic typing and detection derived from their ocular examinations. American Journal of Ophthalmology 1980 89:763–775.

16. Mandel EM, Bluestone CD, Rockette HE, Blatter MM, Reisinger KS, Wucher FP, et al. Duration of effusion after antibiotic treatment for acute otitis media: comparison of cefaclor and amoxicillin. Pediatric Infectious Disease 1982 1:310–316. https://doi.org/10.1097/00006454-198209000-00006 PMID: 6760146

17. Zeng Q, Wen HY, Huang HL, Pei X, Wong SC. A multivariate random parameters Tobit model for analyzing highway crash rate by injury severity. Accident Analysis and Prevention 2017 99:184–191. https://doi.org/10.1016/j.aap.2016.11.018 PMID: 27914307

18. Zeng Q, Guo Q, Wong SC, Wen HY, Huang HL, Pei X. Jointly modeling area-level crash rates by severity: A Bayesian multivariate random-parameters spatio-temporal Tobit regression. Transportmetrica A: Transport Science 2019 15(2):1867–1884. https://doi.org/10.1080/23249935.2019.1652867

19. Zeng Q, Wen HY, Wong SC, Huang HL, Guo Q, Pei X. Spatial joint analysis for zonal daytime and nighttime crash frequencies using a Bayesian bivariate conditional autoregressive model. Journal of Transportation Safety and Security 2020 12(4):566–585. https://doi.org/10.1080/19439962.2018.1516259

20. Dong BW, Ma XX, Chen F, Chen S. Investigating the differences of single- and multi-vehicle accident probability using mixed logit model. Journal of Advanced Transportation, 2018:1–9. https://doi.org/10.1155/2018/2702360

21. Chen F, Chen S, Ma XX. Crash frequency modeling using real-time environmental and traffic data and unbalanced panel data models. International Journal of Environmental Research and Public Health 2016 13:1–16. https://doi.org/10.3390/ijerph13060609 PMID: 27322306
22. Chen F, Chen S, Ma XX. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. Journal of Safety Research 2018 65: 153–159. https://doi.org/10.1016/j.jsr.2018.02.010 PMID: 29776524

23. Chen F, Song MT, Ma XX. Investigation on the injury severity of drivers in rear-end collisions between cars using a random parameters bivariate ordered probit model. International Journal of Environmental Research and Public Health 2019 16(14):1–12. https://doi.org/10.3390/ijerph16142632 PMID: 31340600