INVITED REVIEW

Genetic aetiology of glycaemic traits: approaches and insights

Eleanor Wheeler¹, Gaëlle Marenne¹ and Inês Barroso¹,²,*

¹Department of Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK and ²Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK

*To whom correspondence should be addressed. Tel: +44 1223834244; Fax: +44 1223494919; Email: ib1@sanger.ac.uk

Abstract

Glycaemic traits such as fasting and post-challenge glucose and insulin measures, as well as glycated haemoglobin (HbA1c), are used to diagnose and monitor diabetes. These traits are risk factors for cardiovascular disease even below the diabetic threshold, and their study can additionally yield insights into the pathophysiology of type 2 diabetes. To date, a diverse set of genetic approaches have led to the discovery of over 97 loci influencing glycaemic traits. In this review, we will focus on recent advances in the genetic aetiology of glycaemic traits, and the resulting biological insights. We will provide a brief overview of results ranging from common, to low- and rare-frequency variant-trait association studies, studies leveraging the diversity across populations, and studies harnessing the power of genetic and genomic approaches to gain insights into the biological underpinnings of these traits.

Introduction

Since their advent in 2005 (1), genome-wide association studies (GWAS) have been very successful at identifying common variant (minor allele frequency (MAF) > 5%) trait associations, with over 30,000 unique associations described to date (2). The type 2 diabetes (T2D) field has been no exception, with the number of loci robustly associated with T2D risk rising from three [PPARG, KCNJ11 and TCFL2 (3–5)] prior to the GWAS-Era, to 128 (6,7).

Fasting and post-challenge glycaemic measures, and glycated haemoglobin (HbA1c), have also been the subject of intense genetic research as they are used to diagnose and monitor T2D, and are important risk factors for cardiovascular disease even within the non-diabetic range. For example, studies have found that patients diagnosed using either fasting (FG) or 2-h glucose (2hG) have distinct cardiometabolic risk (8), with 2hG being a better predictor of cardiovascular mortality than FG (9). Similarly, glycated haemoglobin (HbA1c) which reflects average glycaemia over the 2-3 month lifespan of a red blood cell, is an accepted diagnostic test for diabetes (10), but also predicts future vascular complications (11). Furthermore, insulin resistance, commonly measured using proxy phenotypes fasting insulin (FI) and insulin resistance by homeostasis model assessment [HOMA-IR (12)], is often associated with obesity or with limited peripheral adipose tissue capacity (13), and is an important risk factor for T2D. However, more sophisticated glycaemic measures such as the insulin suppression test or euglycemic clamp (considered the ‘gold standard’ estimate of peripheral insulin sensitivity) or proinsulin [adjusted for FI, equivalent to the proinsulin:insulin ratio, an indicator of beta-cell stress (14)], may, in combination with other glycaemic traits (FG, 2hG, HOMA-B and HbA1c), provide insights into diabetes pathophysiology, and possible disease stratification.

The application of a series of genetic approaches to these traits have to date yielded over 97 trait-associated loci (Table 1, Fig. 1). In this review, we will focus on the progress made in...
Locus	Chr	Refs.	SNP	Refs.	Ancestry	Alleles [PO]	Type of variant	EAF	Effect Size (SE)	P-value	Trait
ABO	9	rs505922	38	EA	AA	C/T	Intronic	0.47	0.038 (0.006)	3.80 x 10^-9	FG adjBMI
ADRB2	10	rs10885122	80	EA	AA	G/T	Intergenic	0.87	0.022 (0.004)	9.70 x 10^-8	FG adjBMI
AMY1A	13	rs998922	60	EA	AA	A/G	Intronic	0.48	0.012 (0.002)	5.30 x 10^-7	FG adjBMI
ANKRD55/MAP3K1	18	rs6474359	90	EA	T/C	Intronic	0.97	0.058 (0.011)	1.18 x 10^-3	FG adjBMI	
CDKAL1	6	rs9368222	22	EA	A/C	Intronic	0.28	0.031 (0.005)	5.30 x 10^-7	FG adjBMI	
CCR2	11	rs11065924	92	EA	AA	A/G	Intronic	0.48	0.012 (0.002)	5.30 x 10^-7	FG adjBMI
DLRZ	9	rs11065924	92	EA	AA	A/G	Intronic	0.48	0.012 (0.002)	5.30 x 10^-7	FG adjBMI
DPP4R	5	rs1019503	22	EA	A/G	3'UTR	Intronic	0.48	0.063 (0.011)	8.90 x 10^-9	FG adjBMI
DYS1R	16	rs174550	80	EA	T/C	Intronic	0.64	0.017 (0.003)	8.30 x 10^-8	FG adjBMI	
EMID2	7	rs6947345	93	EA	C/T	Intronic	0.98	0.162 (0.029)	3.80 x 10^-9	FG adjBMI	
FOXA2	20	rs613676	92	EA	AA	A/G	Intronic	0.48	0.125 (0.022)	1.00 x 10^-2	FG adjBMI
FZF1	17	rs11065924	92	EA	AA	A/G	Intronic	0.48	0.012 (0.002)	5.30 x 10^-7	FG adjBMI
FOXA2	20	rs613676	92	EA	AA	A/G	Intronic	0.48	0.125 (0.022)	1.00 x 10^-2	FG adjBMI
Locus	Chr	Index SNP	Refs.	Ancestry	Alleles [I/O]	Type of variant	EAF	Effect Size (SE)	P-value	Trait	
-------------	-----	------------	-------	----------	--------------	----------------	------	------------------	---------	---------------------	
FTO	16	rs1421085	(22)	EA	C/T	Intrinsic	0.42	0.020 (0.003)	1.90 x 10^-15	FI	
G6PC2	2	rs560887	(80)	EA	C/T	Intrinsic	0.70	0.070 (0.003)	8.50 x 10^-12	FG	
		rs555276	(90)	EA	G/A	Intrinsic	0.62	-0.042 (0.004)	7.60 x 10^-9	HOMA-B	
		rs138726309	(40)	EA	T/C	H177Y	0.01	0.032 (0.004)	1.00 x 10^-17	HbA1c	
		rs492594	(49)	EAA	C/G	V219L	0.48	0.047 (0.003)	8.16 x 10^-18	HbA1c	
		rs3755157	(17)	T/C	Intronic	0.34	-0.102 (0.002)	3.10 x 10^-8	FG_adBMI		
G6PC3	17	rs12602486	(50)	Malay	G/T	Downstream	0.03	-0.362 (0.035)	1.00 x 10^-4	HbA1c	
GCKb	7	rs9607517	(80)	EA	A/G	Upstream	0.16	0.062 (0.004)	1.20 x 10^-4	FG	
		rs6975024	(22)	EA	C/T	Upstream	0.15	0.103 (0.016)	5.20 x 10^-11	2hG	
		rs1799884	(90)	EA	C/T	Upstream	0.18	0.038 (0.004)	1.45 x 10^-10	HbA1c	
		rs1799886	(33)	EAA	A/NR	Intronic	0.02	0.063 (0.007)	4.53 x 10^-18	FG	
GCKRb	2	rs780094	(80)	EA	C/T	Intronic	0.62	0.029 (0.003)	1.70 x 10^-24	1hG	
izations		rs1260326	(89)	T/C	L446P	0.42	0.032 (0.004)	3.60 x 10^-19	FG		
GIPR	19	rs2302593	(22)	EA	C/G	Intronic	0.50	0.014 (0.002)	9.30 x 10^-10	2hG_adBMI	
GLIS3	9	rs7034200	(80)	EA	A/C	Intronic	0.49	0.018 (0.003)	1.20 x 10^-9	FG	
GLP1R	6	rs10305492	(39)	EA + AA	A/G	A316T	0.01	-0.009 (0.013)	3.40 x 10^-12	FG	
GLS2	12	rs2657879	(22)	EA	G/A	L581P	0.18	0.016 (0.003)	3.90 x 10^-8	Insulinogenic index	
GPSM1	9	rs60980157	(38)	EA	T/C	S391L	0.30	0.072 (0.013)	1.40 x 10^-8	FG	
GRB10	7	rs6943153	(22)	EA	T/C	Intronic	0.34	0.015 (0.002)	1.60 x 10^-10	FG	
GRB14/COBL11	2	rs10195252	(22)	EA	T/C	Upstream	0.59	0.016 (0.003)	4.90 x 10^-7	FG	
		rs7607980	(52)	EA	T/C	N939D	0.60	0.017 (0.002)	1.30 x 10^-10	FL_adBMI	
		rs7607980	(40)	EA	T/C	N939D	0.86	0.039 (0.008)	4.90 x 10^-7	FL_BMI30	
		rs9399137	(49)	EAA	T/C	Intronic	0.69	0.007 (0.01)	8.50 x 10^-15	HbA1c	
HFE	6	rs1800562	(90)	EA	G/A	C282Y	0.94	0.063 (0.007)	2.59 x 10^-20	HbA1c	
HPI	7	rs1167800	(22)	EA	A/G	Intronic	0.54	0.016 (0.003)	2.60 x 10^-9	FG	
HKI	10	rs16926246	(90)	EA	C/T	Intronic	0.90	0.089 (0.004)	3.11 x 10^-54	HbA1c	
HNF1A	12	rs2650000	(38)	EA	A/C	Intergenic	0.46	-0.076 (0.012)	5.00 x 10^-10	Insulinogenic index	
IGF1	12	rs33576	(80)	EA	G/A	Upstream	0.85	0.010 (0.006)	0.10	FI	
IGF1R	15	rs2018860	(48)	EAA	A/T	Intronic	0.46	0.031 (0.006)	2.99 x 10^-8	FG_adBMI	
IGF2BP2	3	rs7651090	(22)	EA	G/A	Intronic	0.31	0.013 (0.002)	1.75 x 10^-8	FG	

(continued)
Table 1. Continued

Locus	Chr	Index SNP	Refs.	Ancestry	Alleles [I/O]	Type of variant	EAF	Effect Size (SE)	P-value	Trait

JNK1	9	rs16913693	(22)	EA	T/G	Intronic	0.97	0.043 (0.007)	3.50 × 10⁻¹¹	FG	
JRS1	2	rs2943634	(52)	EA	C/A	Downstream	0.66	0.021 (0.010)	0.0036	FL_BMI30	
		rs2972143	(22)	EA	G/A	Downstream	0.62	-0.015 (0.018)	2.00 × 10⁻¹⁰	HOMA-IR	
		rs2943645	(22)	EA	T/C	Downstream	0.63	0.014 (0.003)	3.20 × 10⁻⁸	FL	
									0.019 (0.002)	2.30 × 10⁻⁹	FL adjBMI

KANK1	9	rs3824420	(58)	EA	A/G	Intronic	0.67	0.019 (0.005)	2.40 × 10⁻¹⁰	Proinsulin
KL	13	rs576674	(22)	EA	G/A	Upstream	0.55	0.017 (0.003)	2.30 × 10⁻⁸	FG
LARP5	15	rs1549318	(24)	EA	T/C	Downstream	0.61	0.015 (0.003)	4.40 × 10⁻⁹	FI
LYPAL1	1	rs8280436	(22)	EA	C/A	Downstream	0.67	0.010 (0.002)	1.80 × 10⁻⁸	FL_adjBMI
		rs9484656	(22)	EA	G/A	Downstream	0.67	0.010 (0.002)	1.80 × 10⁻⁹	FL_BMI30
		rs2785980	(92)	EA	T/C	Downstream	0.67	0.010 (0.002)	1.80 × 10⁻⁹	FG

MADD (ACP2)	11	rs7944584	(20)	EA	A/T	Intronic	0.65	0.010 (0.002)	5.10 × 10⁻¹¹	FG
MRPL33	2	rs373594	(92)	EA	A/C	Intronic	0.65	0.010 (0.002)	5.10 × 10⁻¹¹	FG
MTNR1B	11	rs10830963	(70)	EA	G/C	Intronic	0.80	0.020 (0.003)	6.90 × 10⁻¹²	Proinsulin
		rs35223100	(58)	EA	T/C	R667H	0.67	0.010 (0.002)	6.90 × 10⁻¹²	Proinsulin
		rs10501320	(74)	EA	G/C	Intronic	0.72	0.010 (0.002)	6.90 × 10⁻¹²	Proinsulin
		rs10838867	(24)	EA	T/G	Intronic	0.68	0.010 (0.002)	6.90 × 10⁻¹²	Proinsulin

MYL2	12	rs12229654	(33)	EA	G/NR	Intragenic	0.56	0.010 (0.002)	1.40 × 10⁻¹²	FL_BMI30	
MYO9B	19								0.030 (0.004)	2.30 × 10⁻⁸	FG
NAT2	8	rs1208	(25)	EA	A/G	K268R	0.57	-0.130 (0.03)	9.81 × 10⁻⁷	Insulin sensitivity	
NYAP2	2	rs13422522	(26)	EA	C/G	Intragenic	0.77	-0.060 (0.010)	1.20 × 10⁻¹⁰	ISL_adjBMI	
OAS1	12	rs11064355	(33)	EA	G/NR	Intragenic	0.56	0.010 (0.002)	1.40 × 10⁻¹²	FL_BMI30	
OR45L	11	rs14831211	(92)	EA	G/A	Downstream	0.86	0.010 (0.002)	1.40 × 10⁻¹²	FL_BMI30	
P2RX2	12	rs10740783	(22)	EA	A/G	Upstream	0.72	0.010 (0.002)	1.40 × 10⁻¹²	FG	
PAM	5	rs35568696	(38)	EA	G/A	Downstream	0.69	0.010 (0.002)	1.40 × 10⁻¹²	FG	
PCSK1	5	rs13179048	(92)	EA	C/A	Downstream	0.69	0.010 (0.002)	1.40 × 10⁻¹²	FG	
		rs4873672	(22)	EA	T/C	Downstream	0.69	0.010 (0.002)	1.40 × 10⁻¹²	FG	
		rs6234	(24)	EA	G/C	Downstream	0.69	0.010 (0.002)	1.40 × 10⁻¹²	FG	
		rs6235	(24)	EA	G/C	Downstream	0.69	0.010 (0.002)	1.40 × 10⁻¹²	FG	
		rs6235	(24)	EA	G/C	Downstream	0.69	0.010 (0.002)	1.40 × 10⁻¹²	FG	
PDGFC	4	rs4694830	(52)	EA	C/T	Intragenic	0.67	0.010 (0.002)	1.40 × 10⁻¹²	FG	
		rs6828282	(22)	EA	A/G	Intragenic	0.68	0.010 (0.002)	1.40 × 10⁻¹²	FG	
		rs6828282	(22)	EA	A/G	Intragenic	0.68	0.010 (0.002)	1.40 × 10⁻¹²	FG	
		rs6828282	(22)	EA	A/G	Intragenic	0.68	0.010 (0.002)	1.40 × 10⁻¹²	FG	

(continued)
Locus	Chr	Refs.	Ancestry	Alleles [E/O]	Type of variant	EAF	Effect Size (SE)	P-value	Trait		
PEPD	19	rs731839	EA	G/A	Intronic	0.34	0.015 (0.003)	1.70 $\times 10^{-8}$	FI		
PPARG	3	rs17036328	EA	T/C	Intronic	0.86	0.021 (0.003)	3.60 $\times 10^{-12}$	FL_adjBMI		
PP1P5K2	5	rs36046591	EA	G/A	S1228G	0.05	-0.152 (0.027)	2.3 $\times 10^{-8}$	Insulinogenic index		
PPP1R3B	8	rs9841132	EA	A/G	Upstream	0.10	0.054 (0.021)	0.0031	FG_BMI30		
		rs983309	EA	T/G	Upstream	0.12	0.032 (0.016)	0.00073	FL_BMI30		
		rs2126259	EA	T/C	Upstream	0.11	-0.055 (0.028)	2.0 $\times 10^{-6}$	HOMA-IR		
		rs11782386	EA	C/T	Upstream	0.87	0.026 (0.003)	6.30 $\times 10^{-15}$	FG		
									0.029 (0.004)	3.80 $\times 10^{-14}$	FI
PROX1	1	rs340874	EA	C/T	Upstream	0.52	0.013 (0.003)	6.60 $\times 10^{-6}$	FG		
RMST	12	rs17331697	EA	T/C	Intronic	0.90	0.046 (0.007)	1.30 $\times 10^{-11}$	FG		
RRE1b	6	rs17762454	EA	T/C	Intronic	0.26	0.014 (0.002)	9.60 $\times 10^{-9}$	FG_adjBMI		
RSPO3	6	rs2745353	EA	T/C	Intronic	0.51	0.014 (0.002)	5.50 $\times 10^{-9}$	FG		
SC4MOL	4	rs17046216	EA	A/NR	Intergenic	0.18	0.030 (0.020)	1.65 $\times 10^{-8}$	FL_adjBMI		
S6M2	17	rs4790333	EA	T/C	Intronic	0.45	0.015 (0.004)	3.00 $\times 10^{-9}$	Proinsulin		
		rs8574502	EA	A/G	V996I	0.01	0.126 (0.021)	8.70 $\times 10^{-10}$	Fasting proinsulin		
SIX2/SIX3	2	rs8959636	EA	T/C	Intergenic	0.38	0.039 (0.006)	9.99 $\times 10^{-13}$	FG		
SLC2A2b	3	rs11920090	EA	T/A	Intronic	0.87	0.022 (0.004)	3.30 $\times 10^{-6}$	FG		
SLC30A8b	8	rs13266634	EA	C/T	R325W	0.97	0.027 (0.004)	5.50 $\times 10^{-10}$	FG		
		rs11558471	EA	A/G	3'UTR	0.07	0.02 (NR)	5.00 $\times 10^{-8}$	HbA1c		
SNX7	1	rs9727115	EA	G/A	Intronic	0.64	0.013 (0.005)	2.40 $\times 10^{-10}$	Proinsulin		
SPTA1	1	rs27791197	EA	T/C	Intronic	0.28	0.024 (0.004)	2.75 $\times 10^{-9}$	HbA1c		
TBC1D30	12	rs150781447	EA	T/C	R797C	0.02	0.024 (0.005)	1.30 $\times 10^{-6}$	Proinsulin AUC30-120		
TCEG1L	10	rs7077836	EA	T/NR	Intergenic	0.30	0.022 (0.002)	2.70 $\times 10^{-20}$	FG		
TCF7L2	10	rs7903146	EA	T/C	Intronic	0.28	-0.018 (0.003)	6.10 $\times 10^{-11}$	FI		
		rs12243326	EA	C/T	Intronic	0.38	0.032 (0.007)	2.30 $\times 10^{-20}$	Proinsulin		
			EA						0.28 (0.005)	1.48 $\times 10^{-7}$	HbA1c
TET2	4	rs9884482	EA	C/T	Intronic	0.35	0.017 (0.002)	1.40 $\times 10^{-11}$	FL_adjBMI		
TMEM79	1	rs6684514	EA	G/A	Intronic	0.39	0.014 (0.002)	3.30 $\times 10^{-11}$	FL_adjBMI		
TMRPSS6	22	rs855791	EA	G/A	V147M	0.76	0.009 (0.01)	1.30 $\times 10^{-23}$	HbA1c		
TOP1/ZHX3b	20	rs6072275	EA	A/G	Intronic	0.16	0.016 (0.003)	1.70 $\times 10^{-8}$	FG		
UHRF1BP1	6	rs9464949	EA	T/G	Intronic	0.75	0.009 (0.010)	0.16	FL_BMI30		
URB2	1	rs14120381	EA	T/A	ES594V	0.001	0.017 (0.003)	2.30 $\times 10^{-8}$	FL_adjBMI		
VPS13C/C2CD4A/B	15	rs17271305	EA	G/A	Intronic	0.42	0.060 (0.010)	4.11 $\times 10^{-8}$	2hG_adjBMI		

(continued)
Recent years and will briefly describe: a) insights from common variant (MAF ≥ 5%) associations; b) results from approaches that expand the allelic frequency range to low- and rare-variant associations; c) results from diverse populations; d) early biological and functional insights and e) application of results to T2D.

Common Variant Trait Associations

Genome-wide association studies (GWAS) have transformed the landscape of glycaemic trait genetics. Prior to GWAS FG was associated with genetic variants in GCK (Glucokinase) (15). Subsequently, early GWAS replicated the GCK association (16,17) and identified novel associations with FG at G6PC2 (16,17) and GCKR (18–20). Aggregation of data through meta-analyses, primarily in populations of European ancestry in the setting of large consortia (such as the Meta-Analyses of Glucose and Insulin-related traits Consortium, MAGIC), and the development of targeted arrays such as the Metabochip (21), have increased the number of associations between common variants and the most commonly used glycaemic measures (FG, FI, 2hG and HbA1c) to over 70 (Table 1), accounting for <6% of phenotypic variance in Europeans (22,23).

Association with more sophisticated glycaemic measures, identified additional genome-wide significant loci, such as LARP6 and SGSM2 associated with fasting proinsulin (24), NAT2 associated with euglycemic clamp and insulin suppression test techniques (25), BCL2 and FAM19A2 associated with the modified Stumvoll Insulin Sensitivity Index (ISI) (a dynamic measure of whole-body insulin sensitivity) (26). These measures enabled detailed physiological characterization of existing loci (27–29), including establishment of the role of MTNR1B in decreased early phase insulin response (30). An alternative measure of impaired glucose tolerance, 1-h glucose (1hG) may warrant further research following studies investigating its potential utility (31,32), and the identification of novel loci MYL2, C12orf51 and OAS1 associated 1hG in Koreans (33) (Table 1).

The Contribution of Low Frequency and Rare Variants

The majority of genome-wide association signals are both common and non-coding, and recent efforts have focused on the contribution of rare (MAF < 1%) and low frequency (1% < MAF < 5%) variants, and their role as possible causal variants. Current strategies include: 1) genotyping arrays targeting the exons (also known as ‘Exome Chips’) or with combined common variant backbone and exonic content; 2) genome- and exome-wide sequencing and 3) combined genotyping arrays and dense imputation using sequence based reference panels such as 1000 genomes (34), UK10K (35,36) and HRC (37).

Huyghe et al. (38) were the first to demonstrate the utility of exome-array genotyping. Using this approach in Finns, they found novel low-frequency coding variants at TBC1D30 (R279C, MAF = 2.0%) and KANK1 (R667H, MAF = 2.9%) associated with fasting proinsulin levels (and late/early-phase proinsulin to insulin conversion ratio, respectively) and two variants with MAF = 5.3%, and in near-perfect LD (r² = 0.997) at PAM (D563G) and PPIPS2 (S1228G) associated with insulin secretion (insulinogenic index). Novel low frequency variants at previously identified GWAS loci, SGSM2 (V996I, MAF 1.4%) and MADD (R766X, MAF = 3.7%) associated with fasting proinsulin, and common variants associated with insulin secretion or beta-cell function at GPSM1 (S391L), HNF1A (intergenic), and ABO

Table 1. Continued

Locus	Chr	Index SNP	Refs.	Ancestry	Alleles [E/O]	Type of variant	Effect Size (SE)	P-value	Trait
WARS	14	rs11071657	80	EA	A/G	Downstream	0.63 (0.003)	0.008 (0.003)	FG_adjBMI
Y5K4	2	rs4502156	24	EA	T/C	Downstream	0.58 (0.004)	0.029 (0.004)	FG_adjBMI
Y2L2G	5	rs3783347	22	EA	G/T	Intronic	0.79 (0.003)	0.015 (0.003)	FG_adjBMI
		rs1530559	22	EA	A/G	Intronic	0.52 (0.003)	0.015 (0.003)	FG_adjBMI
		rs7708285	22	EA	G/A	Intronic	0.27 (0.003)	0.015 (0.003)	FG_adjBMI

Human Molecular Genetics, 2017, Vol. 26, No. R2 | R177

Downloaded from https://academic.oup.com/hmg/article-abstract/26/R2/R172/4016580

by guest on 27 July 2018
(intronic) were also identified. Gene-based tests (aggregating rare/low frequency variants at the locus) identified significant associations with fasting proinsulin at TBC1D30, SGSM2 and ATG13, although conditional analyses suggested the ATG13 signal was partially driven by variants in MADD. Wessel et al. (39) identified a non-synonymous variant at GLP1R (A316T; rs10305492; MAF = 1.4%) associated with lower FG, early insulin secretion and type 2 diabetes risk, but higher 2hG (39). The same effort identified a gene-based signal at G6PC2, which was driven by three non-synonymous rare variants (H177Y, Y207S and S324P) and a stop variant (R283X). Further evidence of FG association at G6PC2 was provided by Mahajan et al. (40), who also found multiple rare coding variants at this gene (V219L, H177Y, Y207S), with evidence of loss of protein function, identifying G6PC2 as an effector transcript at the G6PC2/ABCB11 locus (Table 1). The same study identified 10 additional non-synonymous coding variants associated with FG or FI, of which eight mapped to known GWAS loci: GCKR (P446L), SLC30A8 (R325W), RREB1 (S1554Y), PCSK1 (S690T, Q665E), COBLL1 (N939D), TOP1 (N310S) and PPARG (P12A) (Table 1). Two novel loci, GLP1R and RREB1 (S1554Y), were also identified. Despite this success only two association signals were low frequency variants, H177Y MAF 0.8% at G6PC2/ABCB11 and E594V MAF 0.1% at URB2, (Table 1), and the data supported PCSK1, RREB1 and ZHX3 as likely effector transcripts at the associated loci, with RREB1 also replicated in a type 2 diabetes study (7), confirming it as the probable effector gene for T2D at the SSR1 locus.

The UK10K Consortium (35) performed low depth (7x) whole-genome sequencing in 3,781 participants from two British cohorts (ALSPAC and TwinsUK) and conducted association analyses with 31 phenotypes available in both cohorts, replicating common variant associations at G6PC2-ABCBI1 with FG. Subsequent fine-mapping efforts identified missense variant associations as the causal variant or within the credible set of causal variants at GCKR (L446P) and SLC30A8 (R325W) (41).

Transferability to Other Ancestries and Fine Mapping

Driven by the availability of large sample sizes, the majority of early GWAS studies were performed in populations of European ancestry. Since then, efforts have expanded to diverse populations, leveraging differences in allele frequency and linkage disequilibrium (LD) structure, to harness power for novel locus discovery and fine-mapping (42). While genetic effect sizes for common variants are largely consistent across ancestry groups, allele frequencies can vary (43,44), improving power for association in certain populations.

Figure 1. Venn diagram showing the overlap between the groups of glycaemic loci identified. Lists of loci (identified by the name of the closest gene to the index variant, or biologically plausible gene where known) unique to each trait, or overlapping between traits, are listed outside the diagram where that number is high, otherwise they are indicated in the figure. Loci were identified from large-scale meta-analyses with N=108-133K for FI and FG and N=43-48K for 2hrGlu, HbA1c, and HOMA-IR. Sample sizes for other glycaemic measures were much smaller, ranging from N=16K for ISI to just ~1,000 participants for 1hrGlu.
Studies in African Americans have identified SC4MOL and TCERG1L associated with FI and insulin resistance (HOMA-IR) (45), and FAM13A3 and PELO associated with FI, where PELO was identified in a trans-ethnic meta-analysis combining African American data with publicly available European summary statistics from MAGIC (46). In East Asians, studies have identified SIX2-SIX3, C12orf51, PDK1-RAPGFP4, KANK1 and IGFIR associated with FG (33,47,48), MYL2, C12orf51 and OAS1 associated with 1-hg (33) and HBS1L-MYB, CYBA, MYO9B and G6PC3 for Hba1c (49,50) (Table 1).

More focused replication and fine-mapping efforts have also been carried out in African Americans (51–53), Asian populations (54,55) and an admixed Mexican population (56). Exact (the same (49,50)(Table 1). MNTR1B ever the mouse phenotype did not provide any clues regarding plays a role in glucose-stimulated insulin secretion (68), how-by a beta-cell specific mouse model which showed that Madd and MADD Madd is provided by a beta-cell specific mouse model which showed that Madd plays a role in glucose-stimulated insulin secretion (68), how-ever the mouse phenotype did not provide any clues regarding the insulin processing effects also strongly associated with MADD (24). ACP2, on the other hand, encodes a lysosomal protein; the role of lysosomes in the degradation of ageing insulin granules (69) was hypothesised by the authors (63) as a possible link for the fasting glucose and proinsulin association signals. WARS, NKX6-3 (at the ANK1 locus) and RBMA6 (at the AMT locus) were also implicated as plausible effector transcripts but the mechanism through which they impact islet function, is as yet, unknown (63).

Loci associated with insulin resistance have been more re-calculant to the GWAS approach and thus the number of established loci and effector transcripts is much smaller (Table 1). Recently, a blood transcriptomic genome-wide analysis (TWAS) combined with eQTL analysis, identified a trans-eQTL (rs592423) where the A-allele was associated with higher IGF2BP2 transcript levels and higher fasting insulin, suggesting this is the effector transcript at this locus (70). The TWAS also identified several genes with established roles in metabolic traits, namely IRS2 and FOXO4 involved in insulin signalling, and three genes involved in adipocyte or adipokine biology (ITLN1, PID1, ADIPOR1) (70). Another recent approach focused on identifying loci simultaneously associated with higher levels of FI adjusted for BMI, higher levels of triglycerides and lower levels of HDL, a hallmark of insulin resistance and of the condition lipodystrophy. In total, 53 associated loci were identified which when combined in a genetic risk score, were associated with increased T2D and coronary heart disease risk, but lower peripheral adipose tissue. The same loci also provided the first evidence of polygenic influence in familial lipodystrophy type 1, a severe form of insulin resistance previously thought to be monogenic in origin. Overall, these data suggested that impaired peripheral adipose tissue capacity may be an important mechanism influencing insulin resistance and is likely to be an important aetiological contributor to insulin-resistant cardiometabolic disease (13). The importance of adipose tissue differentiation in insulin resistant states was known from monogenic lipodystrophy due to mutations in PPARG (71,72) and has also more recently been demonstrated to be an important aetiologic factor in T2D predisposition (73).

Complementing functional regulatory associations, the identification of multiple rare missense variants shown to affect protein function, and that contribute to a gene-based association signal, is a strong indicator that the effector transcript has been identified [e.g. G6PC2 (39,40), SLC30A8 (74) and PPARG (73)]. Similarly, single-point associations shown, or predicted, to have an effect on protein function [e.g. the PSOT variant at AKT2 associated with FI (60) and the S690T and Q665E at PCSK1 associated with proinsulin and FG (24,40)], or mapping proximal to classical candidate loci are also strong indicators that the effector transcript is likely to map to those specific genes. This approach suggested that SLC2A2 (encoding GLUT2), GCK, GCKR, FOXA2 and PDX1 are the likely effector transcripts at these loci (Table 1). SLC2A2 encodes GLUT2, the main glucose transporter in the islets of rodents but not of humans, where GLUT1 and GLUT3 predominate both in islets and beta-cells, suggesting that the role of variants at this gene are likely to be mediated through effects on other metabolic tissues (75). Recently, another study has supported this hypothesis, where the C allele of rs8192675 in SLC2A2 was associated with a greater metformin-induced decrease in Hba1c levels, and was also shown to be an eQTL for GLUT2 in human liver samples. This suggested a role of hepatic GLUT2 in metformin action and glucose metabolism with significant clinical impact, and proposed as a biomarker for precision medicine (76). The importance of the liver in glucose homeosta-sis and FG levels, was also confirmed by studies of the P446L variant in GCKR, which demonstrated that this variant affected

Biological and Functional Insights

As mentioned earlier, most glycaemic trait genetic variant associations map within non-coding regions, with the underlying causal or effector transcript hard to establish, requiring fine-mapping which often necessitates other genomic evidence to establish a functional link between associated variants and underlying biology. Recent studies have shown that pancreatic islet enhancers are enriched with FG associated loci (61,62), and that pancreatic islet eQTLs provide important clues for candidate effector transcripts at FG associated loci (63,64). For some of these loci, the eQTL provides compelling confirmatory evidence for the biological candidate loci at these association signals [e.g. ADCYS, DGK at the DGKB/TMEM195 locus, FADS1 and MTNR1B (63), replicating previous findings at this locus (64,65)]. At the ARAPI locus a recent study (63) suggests STARD10 is the likely effector transcript, which is in contrast with earlier data (66), but consistent with another more recent report (67). At the MADD locus two potential effector transcripts were identified, MADD and ACP2 (63), supporting evidence for MADD is provided by a beta-cell specific mouse model which showed that MADD plays a role in glucose-stimulated insulin secretion (68), however the mouse phenotype did not provide any clues regarding the insulin processing effects also strongly associated with MADD (24). ACP2, on the other hand, encodes a lysosomal...
GCKR inhibition of GCK which was predicted to promote hepatic glucose metabolism with consequent decrease in FG (77). A number of glycaemic trait-associated loci map within, or proximal to, genes associated with a range of Mendelian metabolic disorders namely SLC2A2 (OMIM # 227810), GCK (OMIM # 125851), PPARγ (OMIM # 604367), PCSK1 (OMIM # 600955), PDX1 (OMIM # 606392), GLIS3 (OMIM # 610199), IGF1 (OMIM # 608747) and HNF1A (OMIM # 600496) providing additional biological support for their candidacy as effector transcripts at these loci, and suggesting a role for rare penetrant and common variants influencing familial or polygenic traits, respectively.

These data combined, highlight genes involved in glucose regulation, insulin processing, secretion and response, and transcription factors with an established role in pancreas development as important mechanisms influencing glycaemic traits. Early GWAS results highlighted for the first time in humans, the role of loci involved in circadian rhythm [MTNR1B (65,78,79)] and CRY2 (80) in glucose metabolism. These results have been replicated in many additional studies, and subsequent analyses have shown that the associations at these loci are season-dependent (81) and that clock genes are regulated in pancreatic islet cells confirming that perturbations in circadian clock components are likely important in glucose homeostasis (82). The role of circadian clock in metabolism and possible therapeutic opportunities has recently been extensively reviewed (83), though the exact mechanism of how MTNR1B is likely to affect glucose homeostasis and diabetes risk remains the subject of some controversy (84,85).

Glycaemic Traits and T2D

Fasting glucose is used to diagnosis type 2 diabetes (T2D) however, GWAS studies have demonstrated that the genetic architecture of these two traits does not fully overlap (22,80,86), suggesting that raising fasting glucose is insufficient to confer T2D risk and that pathophysiology is likely conditional on the affected pathway. The availability of detailed measures of glycaemia has thus helped demonstrate that a diverse set of mechanisms are involved in conferring risk of T2D. To date, T2D risk loci have been grouped into five distinct groups: a) those loci whose primary effect appears to be on insulin sensitivity (PPARG, KLF14, IRS1, GCKR); b) loci associated with decreased insulin secretion and with fasting hyperglycaemia (MTNR1B, GCK); c) a single locus, ARAP1, associated with impaired proinsulin processing; d) a large cluster of loci influencing insulin processing and secretion with modest or no detected effects on fasting glucose levels (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B, PROX1, THADA, ADCYS, DGKB/TMEM195); and e) a large set of 20 loci that despite influencing T2D risk did not have clear associations with any of the available measures of glycaemia and which may correspond to novel mechanisms influencing diabetes by as yet not understood biology (87). Similar earlier analyses of loci influencing fasting and post-challenge glucose measures also suggested similar diverse mechanisms influencing these traits (27).

A recent large-scale trans-ethnic meta-analyses of GWAS for HbA1c has expanded the number of HbA1c-associated loci to 60, and importantly highlighted that the genetic architecture of the trait differed in African Americans compared to the other ancestries studied (European, East and South Asians). In African Americans, a single variant in the G6PD gene (G202A) responsible for glucose-6-phosphate deficiency, accounted for a significant fraction of the variance in the trait (14.4%) and led to a substantial decrease in HbA1c values in hemizygous men (0.81%-units) and homozygous women (0.68%-units). This variant, if unaccounted for, could lead to up to 2% of African Americans with T2D to remain undiagnosed, highlighting the importance of studying glycaemic traits in diverse populations in order to avoid racial health disparities in the application of precision medicine (23).

Summary and Future Directions

In conclusion, large-scale genetic association analyses, combined with information on genomic features (enhancers, expression QTLs, TWAS) and high-throughput functional assays (88) have provided an increasingly growing list of loci associated with continuous glycaemic measures. The genetic architecture of these traits is comprised of many common variants of modest effect, mostly mapping to non-coding regions, with evidence of enrichment in active islet enhancers, and some overlap with monogenic loci involved in various disorders of metabolism. Genetic locus overlap between several glycaemic traits can be observed, most notably between FG and many of the other glycaemic traits, including T2D, though this number is likely to change as larger more powered studies become available (Fig. 1). Interestingly, FG and FI have limited overlap in associated loci which may be a reflection of underlying differences in physiology affecting these traits (Fig. 1). These approaches have revealed some expected, and some novel pathways involved in glucose homeostasis, with recent efforts highlighting a number of low-frequency or rare missense variants affecting protein function, which provide compelling evidence for the effector transcript at a given locus. Studies of diverse populations have demonstrated, for the most part, the transferability of glycaemic trait-associated loci across ancestries and highlighted the power of isolated populations to identify variants of larger effect sizes. More recently, large-scale trans-ethnic genetic analysis of HbA1c highlighted the need for more powered studies on diverse ancestries to avoid health disparities in the application of genomics to the clinic. Future efforts combining sequencing approaches, increased sample sizes (particularly in non-European ancestries), understanding of the non-coding regions of the genome and the integration of other 'omics' data will continue to improve understanding of the biology underlying glycaemic traits and how they impact on disease.

Acknowledgements

The authors wish to thank all participants and researchers of the cited studies, and would like to apologise to colleagues whose work we were unable to cite due to space constraints.

Conflict of Interest statement. None declared.

Funding

Wellcome Trust (WT098051). Funding to pay the Open Access publication charges for this article was provided by Wellcome Trust WT098051.

References

1. Klein, R.J., Zeiss, C., Chew, E.Y., Tsai, J.Y., Sackler, R.S., Haynes, C., Henning, A.K., SanGiovanni, J.P., Mane, S.M., Mayne, S.T. et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science, 308, 385–389.
2. MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkids, H., McMahon, A., Milano, A., Morales, J. et al. (2017) The new NHGRI-EBI Catalog of published
13. Lotta, L.A., Gulati, P., Day, F.R., Payne, F., Ongen, H., van de Bilt, P., Weedon, M.N., Clark, V.J., Qian, Y., Ben-Shlomo, Y., Silver, K.D., Timpson, N.J., Hansen, T., Orru, M., Grazia Piras, M. et al. (2008) Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J. Clin. Invest., 118, 2620–2628.

14. Roder, M.E., Porte, D., Jr., Schwartz, R.S. and Kahn, S.E. (1998) Role of peripheral adipose storage capacity in the pathogenesis of type 2 diabetes. Nat. Genet., 26, 76–80.

15. Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Matthews, P.M., Cerasi, E., Haffner, S.M., Diamandopoulos, F., Zinman, B., Cowie, C.R., et al. (2000) The common PPARGamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature, 407, 380–384.

16. Bouatia-Naji, N., Rocheleau, G., Van Lommel, L., Lemaire, K., Schuit, F., Cavalcanti-Proenca, C., Marchand, M., Hattacharyya, A.L., Sovio, U., De Graeve, F. et al. (2008) A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science, 320, 1085–1088.

17. Chen, W.M., Erdos, M.R., Jackson, A.U., Saxena, R., Sanna, S., Silver, K.D., Timpson, N.J., Hansen, T., Orru, M., Grazia Piras, M. et al. (2008) Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J. Clin. Invest., 118, 2620–2628.

18. Scott, L.J., Mohlke, K.L., Bonnycastle, L.L., Willer, C.J., Li, Y., Duren, W.L., Erdos, M.R., Stringham, H.M., Chines, P.S., Jackson, A.U. et al. (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316, 1341–1345.

19. Orho-Melander, M., Melander, O., Guiducci, C., Perez-Martinez, P., Corella, D., Roos, C., Tewhey, R., Rieder, M.J., Hall, J., Abecasis, G. et al. (2008) Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes, 57, 3112–3121.

20. Vaxillaire, M., Cavalcanti-Proenca, C., Dechaume, A., Tichet, J., Marre, M., Balkau, B., Froguel, P. and Group, D.S. (2008) The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes, 57, 2253–2257.

21. Vought, B.F., Kang, H.M., Ding, J., Palmer, C.D., Sidore, C., Chines, P.S., Burtt, N.P., Fuchsberger, C., Li, Y., Erdmann, J. et al. (2012) The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet., 8, e1002793.

22. Scott, R.A., Lagou, V., Welch, R.P., Wheeler, E., Montasser, M.E., Luan, J., Magi, R., Strawbridge, R.J., Rehnberg, E., Gustafsson, S. et al. (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet., 44, 991–1005.

23. Wheeler, E., Leong, A., Liu, C.T., Hivert, M.-F., Strawbridge, R.J., Podmore, C., Li, M., Yao, J., Sim, X., Hing, J. et al. (Submitted) Impact of Common Genetic Determinants of Hemoglobin A1c on Type 2 Diabetes Risk and Diagnosis in Ancestrally Diverse Populations: A Transethnic Genome-Wide Meta-Analysis.

24. Strawbridge, R.J., Dupuis, J., Prokopenko, I., Barker, A., Ahlqvist, E., Rybin, D., Petrie, J.R., Travers, M.E., Bouatia-Naji, N., Dimas, A.S. et al. (2011) Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes, 60, 2624–2634.

25. Knowles, J.W., Xie, W., Zhang, Z., Chennamsetty, I., Assimes, T.L., Paananen, J., Hansson, O., Pankow, J., Goodarzi, M.O., Carcamo-Orive, I. et al. (2015) Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. J. Clin. Invest., 125, 1739–1751.

26. Walford, G.A., Gustafsson, S., Rybin, D., Stancakova, A., Chen, H., Liu, C.T., Hong, J., Jensen, R.A., Rice, K., Morris, A.P. et al. (2016) Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci. Diabetes, 65, 3200–3211.

27. Ingelsson, E., Langenberg, C., Hivert, M.F., Prokopenko, I., Lyssenko, V., Dupuis, J., Magi, R., Sharp, S., Jackson, A.U., et al. (2016) Genome-wide association studies (GWAS Catalog). Nucleic Acids Res., 45, D896–D901.
Assimes, T.L. et al. (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes, 59, 1266–1275.

28. Prokopenko, I., Poon, W., Magi, R., Prasad, B.R., Salehi, S.A., Almgren, P., Osmark, P., Bouatia-Naji, N., Wierup, N., Fall, T. et al. (2014) A central role for GRB10 in regulation of islet function in man. PLoS Genet., 10, e1004235.

29. Palmer, N.D., Goodarzi, M.O., Langefeld, C.D., Wang, N., Guo, X., Taylor, K.D., Fingerlin, T.E., Norris, J.M., Buchanan, T.A., Xiang, A.H. et al. (2015) Genetic variants associated with quantitative glucose homeostasis traits translate to Type 2 diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium. Diabetes, 64, 1853–1866.

30. Langenberg, C., Pascoe, L., Mari, A., Tura, A., Laakso, M., Frayling, T.M., Barroso, I., Loos, R.J., Wareham, N.J., Walker, M. et al. (2009) Common genetic variation in the melatonin receptor 1B gene (MTNR1B) is associated with decreased early-phase insulin response. Diabetologia, 52, 1537–1542.

31. Manco, M., Panunzi, S., Macfarlane, D.P., Golay, A., Melander, O., Konrad, T., Petrie, J.R. and Mingrone, G. Relationship between Insulin, S. and Cardiovascular Risk. C. (2010) One-hour plasma glucose identifies insulin resistance and beta-cell dysfunction in individuals with normal glucose tolerance: cross-sectional data from the Relationship between Insulin Sensitivity and Cardiovascular Risk (RISC) study. Diabetes Care, 33, 2090–2097.

32. Joshi, F.J., Andrianjanahy, M.O., Hu, F.B. and Ritchie, C.S. (2011) Relative utility of 1-h Oral Glucose Tolerance Test as a measure of abnormal glucose homeostasis. Diabetes Res. Clin. Pract., 93, 268–271.

33. Go, M.J., Hwang, J.Y., Kim, Y.J., Hee Oh, J., Kim, Y.J., Heon Kwak, S., Soo Park, K., Lee, J., Kim, B.J., Han, B.G. et al. (2013) New susceptibility loci in MYL2, C12orf51 and OAS1 associated with 1-h plasma glucose as predisposing risk factors for type 2 diabetes in the Korean population. J. Hum. Genet., 58, 362–365.

34. Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A. et al. (2015) A global reference for human genetic variation. Nature, 526, 68–74.

35. Consortium, U.K., Walter, K., Min, J.L., Huang, J., Crooks, L., Memari, Y., McCarthy, S., Perry, J.R., Xu, C., Futema, M. et al. (2015) The UK10K project identifies rare variants in health and disease. Nature, 526, 82–90.

36. Huang, J., Howie, B., McCarthy, S., Memari, Y., Walter, K., Min, J.L., Danecpek, P., Malerba, G., Trabetti, E., Zheng, H.F. et al. (2015) Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat. Commun., 6, 8111.

37. McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A.R., Teumer, A., Kang, H.M., Fuchsberger, C., Danecpek, P., Sharp, K. et al. (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet., 48, 1279–1283.

38. Huyghe, J.R., Jackson, A.U., Fogarty, M.P., Bukovich, M.L., Stancakova, A., Stringham, H.M., Sim, X., Yang, L., Fuchsberger, C., Cederberg, H. et al. (2013) Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat. Genet., 45, 197–201.

39. Wessel, J., Chu, A.Y., Willems, S.M., Wang, S., Yaghootkar, H., Brody, J.A., Dauriz, M., Hivert, M.F., Raghavan, S., Lipovich, L. et al. (2015) Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat. Commun., 6, 5897.

40. Mahajan, A., Sim, X., Ng, H.J., Manning, A., Rivas, M.A., Highland, H.M., Locke, A.E., Grarup, N., Im, H.K., Cingolani, P. et al. (2015) Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet., 11, e1004876.

41. Iotchkova, V., Huang, J., Jiang, J., Jain, D., Barbieri, C., Walter, K., Min, J.L., Chen, L., Astle, W., Cucca, M. et al. (2016) Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nat. Genet., 48, 1303–1312.

42. Zaitlen, N., Pasaniuc, B., Gur, T., Ziv, E. and Halperin, E. (2010) Leveraging genetic variability across populations for the identification of causal variants. Am. J. Hum. Genet., 86, 23–33.

43. Ioannidis, J.P., Ntzani, E.E. and Trikalinos, T.A. (2004) ‘Racial’ differences in genetic effects for complex diseases. Nat. Genet., 36, 1312–1318.

44. Yang, Q., Liu, T., Shrader, P., Yesupriya, A., Chang, M.H., Dowling, N.F., Ned, R.M., Dupuis, J., Florez, J.C., Khoury, M.J. et al. (2010) Racial/ethnic differences in association of fasting glucose-associated genomic loci with fasting glucose, HOMA-B, and impaired fasting glucose in the U.S. adult population. Diabetes Care, 33, 2370–2377.

45. Chen, G., Bentley, A., Adeyemo, A., Shriner, D., Zhou, J., Doumatey, A., Huang, H., Ramos, E., Erdos, M., Gerry, N. et al. (2012) Genome-wide association study identifies novel loci associated with fasting insulin and insulin resistance in African Americans. Hum. Mol. Genet., 21, 4530–4536.

46. Liu, C.T., RagHAVAN, S., Mar thur, N., Kabag ambe, E.K., Hong, J., Ng, M.C., Hivert, M.F., Lu, Y., An, P., Bentley, A.R. et al. (2016) Trans-ethnic meta-analysis and functional annotation illuminates the genetic architecture of fasting glucose and insulin. Am. J. Hum. Genet., 99, 56–75.

47. Kim, Y.J., Go, M.J., Hu, C., Hong, C.B., Kim, Y.K., Lee, J.Y., Hwang, J.Y., Oh, J.H., Kim, D.J., Kim, N.H. et al. (2011) Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat. Genet., 43, 990–995.

48. Hwang, J.Y., Sim, X., Wu, Y., Liang, J., Tabara, Y., Hu, C., Hara, K., Tam, C.H., Cai, Q., Zhao, Q. et al. (2015) Genome-wide association meta-analysis identifies novel variants associated with fasting plasma glucose in East Asians. Diabetes, 64, 291–298.

49. Chen, P., Takeuchi, F., Lee, J.Y., Li, H., Wu, J.Y., Liang, J., Long, J., Tabara, Y., Goodarzi, M.O., Pereira, M.A. et al. (2014) Multiple nonglycemic genomic loci are newly associated with blood level of glycated hemoglobin in East Asians. Diabetes, 63, 2551–2562.

50. Chen, P., Ong, R.T., Tay, W.T., Sim, X., Ali, M., Xu, H., Suro, C., Liu, J., Chia, K.S., Vithana, E. et al. (2013) A study assessing the association of glycated hemoglobin A1C (HbA1C) associated variants with HbA1C, chronic kidney disease and diabetic retinopathy in populations of Asian ancestry. PLoS One, 8, e79767.

51. Fesinmeyer, M.D., Meigs, J.B., North, K.E., Schumacher, F.R., Buzkovka, P., Franceschini, N., Haessler, J., Goodloe, R., Spencer, K.L., Voruganti, V.S. et al. (2013) Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) study. BMC Med. Genet., 14, 98.
transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet., 48, 1055–1059.

77. Beer, N.L., Tribble, N.D., McCulloch, L.J., Roos, C., Johnson, P.R., Orho-Melander, M. and Gloyn, A.L. (2009) The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet., 18, 4081–4088.

78. Prokopenko, I., Langenberg, C., Florez, J.C., Saxena, R., Soranzo, N., Thorleifsson, G., Loos, R.J., Manning, A.K., Jackson, A.U., Aulchenko, Y. et al. (2009) Variants in MTNR1B influence fasting glucose levels. Nat. Genet., 41, 77–81.

79. Bouatia-Naji, N., Bonnefond, A., Cavalcanti-Proenca, C., Sparso, T., Holmkvist, J., Marchand, M., Delplanque, J., Lobbens, S., Rocheleau, G., Durand, E. et al. (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet., 41, 89–94.

80. Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R., Soranzo, N., Jackson, A.U., Wheeler, E., Glazer, N.L., Bouatia-Naji, N., Gloyan, A.L. et al. (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet., 42, 105–116.

81. Renstrom, F., Koivula, R.W., Varga, T.V., Hallmans, G., Mulder, H., Florez, J.C., Hu, F.B. and Franks, P.W. (2015) Season-dependent associations of circadian rhythm-regulating loci (CRY1, CRY2 and MTNR1B) and glucose homeostasis: the GLACIER Study. Diabetologia, 58, 997–1005.

82. Stamenkovic, J.A., Olsson, A.H., Nagorny, C.L., Malmgren, S., Dekker-Nitert, M., Ling, C. and Mulder, H. (2012) Regulation of core clock genes in human islets. Metabolism, 61, 978–985.

83. Forrestel, A.C., Miedlich, S.U., Yurcheshen, M., Wittlin, S.D. and Sellix, M.T. (2017) Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia, 60, 808–822.

84. Mulder, H. (2017) Melatonin signalling and type 2 diabetes risk: too little, too much or just right? Diabetologia, 60, 826–829.

85. Bonnefond, A. and Froguel, P. (2017) The case for too little melatonin signalling in increased diabetes risk. Diabetologia, 60, 823–825.

86. Morris, A.P., Voight, B.F., Teslovich, T.M., Ferreira, T., Segre, A.V., Steinthorsdottir, V., Strawbridge, R.J., Khan, H., Grallert, H., Mahajan, A. et al. (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet., 44, 981–990.

87. Dimas, A.S., Lagou, V., Barker, A., Knowles, J.W., Magi, R., Hivert, M.F., Benazzo, A., Rybin, D., Jackson, A.U., Stringham, H.M. et al. (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes, 63, 2158–2171.

88. Majithia, A.R., Tsuda, B., Agostini, M., Grannapradeepan, K., Rice, R., Peloso, G., Patel, K.A., Zhang, X., Broekema, M.F., Patterson, N. et al. (2016) Prospective functional classification of all possible missense variants in PPARG. Nat. Genet., 48, 1570–1575.

89. Saxena, R., Hivert, M.F., Langenberg, C., Tanaka, T., Pankow, J.S., Vollenweider, P., Lyssenko, V., Bouatia-Naji, N., Dupuis, J., Jackson, A.U. et al. (2010) Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet., 42, 142–148.

90. Soranzo, N., Sanna, S., Wheeler, E., Gieger, C., Radke, D., Dupuis, J., Bouatia-Naji, N., Langenberg, C., Prokopenko, I., Stolerman, E. et al. (2010) Common variants at 10 genomic loci influence hemoglobin A1c levels via glycemic and nonglycemic pathways. Diabetes, 59, 3229–3239.

91. Ryu, J. and Lee, C. (2012) Association of glycosylated hemoglobin with the gene encoding CDKAL1 in the Korean Association Resource (KARE) study. Hum. Mutat, 33, 655–659.

92. Manning, A.K., Hivert, M.F., Scott, R.A., Grimsby, J.L., Bouatia-Naji, N., Chen, H., Rybin, D., Liu, C.T., Bielak, L.F., Prokopenko, I. et al. (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet., 44, 659–669.

93. Horikoshi, M., Mgi, R., van de Bunt, M., Surakka, I., Sarin, A.P., Mahajan, A., Marullo, L., Thorleifsson, G., Hgg, S., Hottenga, J.J. et al. (2015) Discovery and fine-mapping of glycemic and obesity-related trait loci using high-density imputation. PLoS Genet., 11, e1005230.

94. Pare, G., Chasman, D.I., Parker, A.N., Nathan, D.M., Miletich, J.P., Zee, R.Y. and Ridker, P.M. (2008) Novel association of HK1 with glycosylated hemoglobin in a non-diabetic population: HK1 gene counting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet., 40, 981–990.