Taxonomy of *Ganoderma lucidum* from Korea Based on rDNA and Partial β-Tubulin Gene Sequence Analysis

Young-Jin Park¹, O-Chul Kwon¹, Eun-Suk Son¹, Dae-Eun Yoon¹, Woorijarang Han¹, Young-Bok Yoo² and Chang-Soo Lee¹*

¹Department of Applied Biochemistry, Konkuk University, Chungju 380-701, Korea
²Mushroom Research Division, Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 404-707, Korea

(Received December 31, 2011. Revised January 27, 2012. Accepted February 17, 2012)

In the present study, a phylogenetic analysis was undertaken based on the internal transcribed spacer (ITS) rDNA and partial β-tubulin gene sequence of the *Ganoderma* species. The size of the ITS rDNA regions from different *Ganoderma* species varied from 625 to 673 bp, and those of the partial β-tubulin gene sequence were 419 bp. Based on the results, a phylogenetic tree was prepared which revealed that Korean *Ganoderma lucidum* strains belong in a single group along with a *G. lucidum* strain from Bangladesh.

KEYWORDS : β-Tubulin, *Ganoderma lucidum*, Internal transcribed spacer

Due to perceived health benefits, the *Ganoderma* species is popularly used as a dietary supplement in Korea, China, Japan and other regions of the world. It has also been used to prevent and treat immunological diseases, hypertension and tumorigenesis [1]. However, species identification and circumscription have often been unclear in studies of the *Ganoderma* species, and taxonomic segregation of the genus has remained controversial [2]. Moreover, a number of *Ganoderma* isolates have been misnamed [3]. In addition, taxonomic classification of *Ganoderma lucidum* and its allied species has often been confusing. Here in Korea, the import of *G. lucidum* of low price from other countries is a factor limiting the domestic cultivation of *G. lucidum*. Many of these imported products are of inferior quality. Therefore, the precise identification and classification of commercial lines of *G. lucidum* is important in order to safeguard both public health and industry.

Ribosomal DNA (rDNA) sequences have been widely used to discriminate fungal taxa at the family [4], generic and sub-generic levels [5-8]. Bae et al. [9] and Moncalvo et al. [2, 10] used rDNA internal transcribed spacer (ITS) sequences to distinguish the taxa between isolates of *Ganodermataceae*. Of the genes coding for proteins with basic metabolic or structural functions, those coding for β-tubulin are receiving increasing attention. Studies have made use of β-tubulin genes to investigate the relationships between fungi at all levels of taxa, and has also been found to be useful in deep-level phylogenetic studies [11]. This study aimed to investigate the genetic diversity of *G. lucidum* strains isolated in Korea from other *Ganoderma* species by analyzing their ITS rDNA and partial β-tubulin gene sequences.

The *Ganoderma* species used were obtained from the Korean Collection for Type Cultures, the American Type Culture Collection, Incheon University, Konkuk University, the Centraalbureau voor Schimmelcultures, and the Mushroom Division of the Korean Rural Development Administration (Table 1). The *Ganoderma* species were cultured at 25°C on mushroom complete medium (0.46 g KH₂PO₄, 0.5 g MgSO₄, 1 g K₂HPO₄, 2 g yeast extract, 2 g bacto peptone, 20 g glucose, and with or without 20 g/L agar). Fungal DNA was extracted using the CTAB method [12]. PCR reactions were performed with a premixed polymerase kit (Taq PreMix; TNT Research, Seoul, Korea) in a 20 μL reaction mixture containing 1 μL of DNA (ca. 10 ng), 10 pM ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and 10 pM ITS4 (5'-TCCTCCGCTTATTGATATGC-3') for the ITS region, and 10 pM β-tubulin_F (5'-CCGGTGACAGCGCATGGGTACC-3') and 10 pM β-tubulin_R (5'-TGAGACCGGGGAAGGAAAC-3') for the partial β-tubulin gene sequence. DNA was amplified in a

*Corresponding author <E-mail : cslee@kku.ac.kr>

© The Korean Society of Mycology

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
MyCycler (Bio-Rad, Hercules, CA, USA) according to the following protocol: initial denaturation duration of 5 min at 94°C, followed by 35 cycles of 30 sec at 94°C, 30 sec at 62°C and 1 min at 72°C, with final extension for 5 min at 72°C. A 5-µL aliquot of each product was mixed with 1 µL of Dyne LoadingStar loading dye (DyneBio, Seoul, Korea), electrophoresed on a 1.2% agarose gel, and visualized with a UV transilluminator. The PCR product sizes for the ITS region were of variable lengths, from 636 to 673 bp. The nucleotide sequences were deposited into the National Center for Biotechnology Information (NCBI) GenBank data base (Table 2). Of those organisms assessed, the PCR product from \(G. mirabile \) produced the longest ITS region (673 bp). However, the PCR product sizes from the partial \(\beta \)-tubulin genes were identical (419 bp) to the others.

The sequences were aligned for phylogenetic analysis using the program BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html). The phylogenetic tree was constructed by a neighbor-joining method using the MEGA5 program [13]. Table 2 lists the sequence information for the ITS region and the partial \(\beta \)-tubulin gene. Total G + C and A + T content in the ITS region varied from 41.54~50% and 50~58.46%, respectively. The 5.8S gene located between the ITS 1 and 2 regions was, as expected, very well conserved (158 bp in length). Moncalvo et al. [14] reported that the 5.8S rDNA sequences of the basidiomycetes isolates were identical, a result agreeing with our findings. The nucleotide composition of the partial \(\beta \)-tubulin gene sequence varied little, with G + C content and A + T content ranging from 54.89~56.56% and 43.44~44.87%, respectively. The phylogenetic trees constructed from the ITS region sequences and partial \(\beta \)-tubulin gene sequences depicted a similar pattern (Fig. 1). The resulting phylogenetic tree suggested a greater level of genetic diversity of \(Ganoderma \) species originating from different regions. Interestingly, \(G. lucidum \) strains from Korea and Bangladesh maybe clustered into a single group. However, the \(G. lucidum \) strains from China, Taiwan and Canada were clustered into other groups. The aligned rDNA sequences of \(G. lucidum \) strains from Korea (Yeongji 2), China (IUM-4242), Taiwan (ATCC64251) and Canada

Table 1. \(Ganoderma \) species used in the present study

No.	Species	Collection sites	Collection ID	Origin
1	\(G. annulare \)	Korean Collection for Type Culture	KCTC 16803	Brazil
2	\(G. carnosum \)	The Centraalbureau voor Schimmecultures	CBS 516.96	Netherlands
3	\(G. lucidum \)	Incheon University	IUM-4303	Bangladesh
4	\(G. lucidum \)	Incheon University	IUM-4304	Bangladesh
5	\(G. lucidum \)	Incheon University	IUM-4310	Bangladesh
6	\(G. lucidum \)	The American Type Culture Collection	ATCC46755	Canada
7	\(G. lucidum \)	Incheon University	IUM-4242	China
8	\(G. lucidum \)	Mushroom Division at RDA	RDA (cultivar Yeongji 1)	Korea
9	\(G. lucidum \)	Konkuk University	KU-4011	Korea
10	\(G. lucidum \)	Mushroom Division at RDA	RDA (cultivar Yeongji 2)	Korea
11	\(G. lucidum \)	Konkuk University	KU-4015	Korea
12	\(G. lucidum \)	Konkuk University	KU-4006	Korea
13	\(G. lucidum \)	Konkuk University	KU-4009	Korea
14	\(G. lucidum \)	Mushroom Division at RDA	ASI-7152	Korea
15	\(G. lucidum \)	Konkuk University	KU-4035	Korea
16	\(G. lucidum \)	Incheon University	IUM-0938	Korea
17	\(G. lucidum \)	The American Type Culture Collection	ATCC 64251	Taiwan
18	\(G. mirabile \)	The Centraalbureau voor Schimmecultures	CBS 218.36	Philippines
19	\(G. neo-japonicum \)	Mushroom Division at RDA	ASI-7032	Korea
20	\(G. pfefferi \)	The Centraalbureau voor Schimmecultures	CBS 747.84	Netherlands
21	\(G. resinaeatum \)	The Centraalbureau voor Schimmecultures	CBS 152.27	UK
22	\(G. resinaeatum \)	The Centraalbureau voor Schimmecultures	CBS 220.36	USA
23	\(G. resinaceum \)	Mushroom Division at RDA	ASI-7142	Korea
24	\(G. resinaceum \)	Mushroom Division at RDA	ASI-7143	Korea
25	\(G. resinaceum \)	Incheon University	IUM-3651	Czech
26	\(G. sabamboiense \)	The American Type Culture Collection	ATCC 52420	Argentina
27	\(G. tsugae \)	The American Type Culture Collection	ATCC 64795	Canada
28	\(G. tsugae \)	Konkuk University	KU-4018	USA
29	\(G. tsugae \)	The American Type Culture Collection	ATCC 64794	USA
30	\(G. tornatum \)	The Centraalbureau voor Schimmecultures	CBS 109679	Netherlands
31	\(G. valseiicum \)	The Centraalbureau voor Schimmecultures	CBS 428.84	USA
32	\(G. weberia \)	The Centraalbureau voor Schimmecultures	CBS 219.36	Philippines
Table 2. Sequence information of ITS and the partial β-tubulin gene sequence of *Ganoderma* species

No.	Species	Collection ID	Internal transcribed spacer rDNA	Partial β-tubulin gene
			Length (bp)	Accession No.
			A+T content (%)	G+C content (%)
				Accession No.
				Length (bp)
				A+T content (%)
				G+C content (%)
				Accession No.
1	*G. annulare*	KCTC 16803	648	51.54
				48.46
				JQ520160
2	*G. carnosum*	CBS 516.96	653	51.30
				48.70
				JQ520163
3	*G. lucidum*	IUM-4303	636	51.42
				48.58
				JQ520182
4	*G. lucidum*	IUM-4304	636	51.42
				48.58
				JQ520183
5	*G. lucidum*	IUM-4310	636	51.42
				48.58
				JQ520184
6	*G. lucidum*	ATCC-46755	644	50.62
				49.38
				JQ520185
7	*G. lucidum*	IUM-4242	643	50.54
				49.46
				JQ520186
8	*G. lucidum*	RDA (cultivar Yeongji 1)	636	51.89
				48.11
				JQ520167
9	*G. lucidum*	KU-4011	636	51.73
				48.27
				JQ520168
10	*G. lucidum*	RDA (cultivar Yeongji 2)	636	51.73
				48.27
				JQ520169
11	*G. lucidum*	KU-4015	636	52.04
				47.96
				JQ520171
12	*G. lucidum*	KU-4006	636	51.73
				48.27
				JQ520172
13	*G. lucidum*	KU-4009	636	51.73
				48.27
				JQ520173
14	*G. lucidum*	ASI-7152	636	51.89
				48.11
				JQ520214
15	*G. lucidum*	KU-4035	636	51.73
				48.27
				JQ520207
16	*G. lucidum*	IUM-0938	636	51.57
				48.43
				JQ520176
17	*G. lucidum*	ATCC-64251	650	51.38
				48.62
				JQ520187
18	*G. mirabile*	CBS 218.36	673	55.57
				44.43
				JQ520192
19	*G. neo-japonicum*	ASI-7032	645	51.47
				48.53
				JQ520193
20	*G. pfeifferi*	CBS 747.84	650	51.38
				48.62
				JQ520198
21	*G. resinaceum*	CBS 152.27	650	51.38
				48.62
				JQ520200
22	*G. resinaceum*	CBS 220.36	645	51.32
				48.68
				JQ520201
23	*G. resinaceum*	ASI-7142	651	51.32
				48.68
				JQ520202
24	*G. resinaceum*	ASI-7143	650	51.38
				48.62
				JQ520203
25	*G. resinaceum*	IUM-3651	650	51.23
				48.77
				JQ520204
26	*G. subamboinense*	ATCC-52420	644	50.62
				49.38
				JQ520205
27	*G. tsugae*	ATCC-64795	644	50.00
				50.00
				JQ520215
28	*G. tsugae*	KU-4018	644	50.62
				49.38
				JQ520216
29	*G. tsugae*	ATCC-64794	650	58.46
				41.54
				JQ675674
30	*G. tornatum*	CBS 109679	642	52.96
				47.04
				JQ520217
31	*G. valesiacum*	CBS 428.84	645	51.32
				48.68
				JQ520218
32	*G. webeianum*	CBS 219.36	646	52.01
				47.99
				JQ520219

ITS, internal transcribed spacer.

![Genetic Diversity of Ganoderma lucidum](image)

Fig. 1. Phylogenetic trees constructed from the internal transcribed spacer (ITS) rDNA region sequence (left) and partial β-tubulin gene sequence (right) of the *Ganoderma* species. 🌐 *G. lucidum* (Korea); 🌐 *G. lucidum* (Bangladesh); 🌐 *G. lucidum* (China); 🌐 *G. lucidum* (Canada); 🌐 *G. lucidum* (Taiwan).
G. lucidum (ATCC46755) are shown in Fig. 2. Wu et al. [15] reported that G. lucidum had undergone certain variations after being introduced from its original locations to Korea. These variations were related to differences in ecological habitats, and lead to subtle discriminations in morphological traits as well as resulting medical efficacy. The G. tsugae ATCC 64794 strain demonstrated a different phylogenetic pattern, as observed from its ITS rDNA region, and was not related to any of the other strains used. However, it closely clustered in terms of the phylogeny with G. lucidum strains, based on its partial β-tubulin gene sequences. In order to satisfy controversial questions regarding the different phylogeny of G. tsugae ATCC 64794 as constructed from the rDNA region and partial β-tubulin gene sequences, additional integrated phylogenetic analyses using other molecular techniques such as random amplification of polymorphic DNA, amplified fragment length polymorphism and sequence characterized regions, may be necessary.

In the present study, we analyzed the ITS rDNA region and partial β-tubulin gene sequences of Ganoderma species in order to clarify their genetic relationships. Of the Ganoderma species, Korean G. lucidum strains, including cultivar Yeongji 1 and 2, were specifically identified as differing from those from China, Taiwan, and Canada. The taxonomy of the genus is traditionally based on morphological characteristics. However, difficulty remains in distinguishing between these close groups, such as populations or strains of the same species. Zheng et al. [16] reported that environmental factors, variability, interhybridization and morphological propensity can lead to inaccurate identification of Ganoderma species.

Acknowledgements

This study was supported by a National Joint Agricultural Research Project of the RDA (Project No. 20110401-302-586-001-08-00), Republic of Korea.

References

1. Liu X, Yuan JP, Chung CK, Chen XJ. Antitumor activity of the sporoderm-broken germinating spores of Ganoderma lucidum. Cancer Lett 2002;182:155-61.
2. Moncalvo JM, Wang HH, Hseu RS. Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia 1995;87:223-38.
3. Smith BI, Sivasithamparam K. Internal transcribed spacer ribosomal DNA sequence of five species of Ganoderma from Australia. Mycol Res 2000;104:943-51.
4. Hibbett DS, Donoghue MJ. Progress towards a phylogenetic classification of the Polyporaceae through parsimony analysis of mitochondrial ribosomal sequences. Can J Bot 1995;73(Suppl 1):S853-61.
5. Vilgalys R, Sun BL. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc Natl Acad Sci U S A 1994;91:4599-603.
6. Crawford AR, Bassam BJ, Drenth A, Maclean DJ, Irwin JA. Evolutionary relationships among Phytophthora species deduced from rDNA sequence analysis. Mycol Res 1998;102:437-43.
7. Anderson DL, Gibbs AJ, Gibson NL. Identification and phylogeny of spore-cyst fungi (Ascosphaera spp.) using ribosomal DNA sequences. Mycol Res 1998;102:541-7.
8. Chillali M, Idder-Ighili H, Guillaumin JJ, Mohammed C, Escarmant BL, Botton B. Variation in the ITS and IGS regions of ribosomal DNA among the biological species of European Armillaria. Mycol Res 1998;102:533-40.
9. Bae SC, Lee SW, Kim HJ, Park DS, Rhee IK. PCR amplification of ITS II region of rDNA for the classification of Ganoderma spp. RDA J Agric Sci 1995;37:182-8.
Genetic Diversity of *Ganoderma lucidum*

1995;99:1489-99.

11. Thon MR, Royse DJ. Partial β-tubulin gene sequences for evolutionary studies in the Basidiomycotina. *Mycologia* 1999;91:468-74.

12. Cao H, But PP, Shaw PC. Methodological studies on genomic DNA extraction and purification from plant drug materials. *J Chin Pharm Sci* 1998;7:130-7.

13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* 2011;28:2731-9.

14. Moncalvo JM, Wang HF, Wang HH, Hseu RS. The use of rDNA nucleotide sequence data for species identification and phylogeny in the Ganodermataceae. In: Proceedings of Contributed Symposium 59A, B 5th International Mycological Congress; 1994 Aug 14-21; Vancouver, Canada. Taipei: National Taiwan University; 1995. p. 31-44.

15. Wu S, Guo X, Zhou X, Li X, Chen Y, Lin J. AFLP analysis of genetic diversity in main cultivated strains of *Ganoderma* spp. *Afr J Biotechnol* 2009;8:3448-54.

16. Zheng L, Jia D, Fei X, Luo X, Yang Z. An assessment of the genetic diversity within *Ganoderma* strains with AFLP and ITS PCR-RFLP. *Microbiol Res* 2009;164:312-21.