Advanced scenarios for ITER operation

A C C Sips, for the Steady State Operation and the Transport Physics topical groups of the International Tokamak Physics Activity

Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748, Garching, Germany

E-mail: ccs@ipp.mpg.de

Received 29 October 2004
Published 12 April 2005
Online at stacks.iop.org/PPCF/47/A19

Abstract

In thermonuclear fusion research using magnetic confinement, the tokamak is the leading candidate for achieving the conditions required for a reactor. An international experiment, ITER, is proposed as the next essential and critical step on the path to demonstrating the scientific and technological feasibility of fusion energy. ITER is to produce and study plasmas dominated by self-heating. This would give unique opportunities to explore, in reactor relevant conditions, the physics of α-particle heating, plasma turbulence and turbulent transport, stability limits to the plasma pressure and exhaust of power and particles. Important new results obtained in experiments, theory and modelling, enable an improved understanding of the physical processes occurring in tokamak plasmas and give enhanced confidence that ITER will achieve its goals. In particular, progress has been made in research to raise the performance of tokamaks, aimed to extend the discharge pulse length towards steady-state operation (advanced scenarios). Standard tokamak discharges have a current density increasing monotonically towards the centre of the plasma. Advanced scenarios, on the other hand, use a modified current density profile. Different advanced scenarios range from (i) plasmas that sustain a central region with a flat current density profile (zero magnetic shear), capable of operating stationary at high plasma pressure, to (ii) discharges with an off-axis maximum of the current density profile (reversed magnetic shear in the core), able to form internal transport barriers, to increase the confinement of the plasma. The physics of advanced tokamak discharges is described, together with an overview of recent results from different tokamak experiments. International collaboration between experiments aims to provide a better understanding, control and optimization of these plasmas. The ability to explore advanced scenarios in ITER is very desirable, in order to verify the results obtained in experiments today and to demonstrate the potential to significantly increase the economic attractiveness of the tokamak.

(Some figures in this article are in colour only in the electronic version)
1. Introduction

The ITER project [1] will provide a basis for the scientific and technological feasibility of a fusion power reactor. It aims to create, for the first time, a sustained deuterium/tritium plasma, predominantly heated by \(\alpha \)-particles produced by the fusion reactions (‘burning’ plasmas). It is a major step in the world fusion programme, and a culmination of almost fifty years of magnetic confinement fusion research.

An essential feature of a tokamak plasma confinement scheme is the presence of a toroidal current in the plasma itself [2]. Normally, this current is established and maintained in the plasma by a transformer in the centre of the device (inductive drive). This implies that the configuration can be maintained only for a limited time, determined by the magnetic flux available for one half cycle of the transformer coil. An increase in pulse length, or steady-state operation, can be achieved if the toroidal plasma current is driven non-inductively. Heating and current-drive methods do exist to do this: the injection of energetic neutral atoms and powerful radio-frequency radiation. In addition, the plasma itself produces a non-inductive current associated with density and temperature gradients. This is the diffusion-driven, or bootstrap current [3].

ITER is a tokamak and represents an extrapolation of approximately a factor of 2 in linear dimension from the largest experiments today (see table 1). It will contain a plasma volume of more than 800 m\(^3\) using a magnetic field of 5.3 T. ITER is designed as an experimental device with extensive diagnostics and a considerable flexibility in shaping, heating/current drive and fuelling methods. These are essential for accommodating uncertainty in ITER’s performance projection, for exploring new operation regimes attractive for a reactor and for investigating new aspects of plasma physics, which may arise from significant \(\alpha \)-particle heating, large size and extended burn.

The principal physics objectives of ITER [4] are:

(i) To achieve extended burn using inductively driven plasmas with the ratio of fusion power to auxiliary heating power (\(Q \)) of at least 10 for a range of operation scenarios and with a duration sufficient to achieve stationary conditions on the timescales characteristic of plasma processes.

(ii) To aim at demonstrating steady-state operation using non-inductive current drive with a ratio of fusion power to input power for current drive of at least 5.

In addition, the possibility of higher \(Q \) operation will be explored if favourable confinement conditions can be achieved. The rules and methodologies for the projection of plasma performance to the scale of ITER have been formulated in the ITER Physics Basis [1], which has been developed from broadly based experimental and modelling activities within the magnetic fusion programmes of the ITER parties.

It is also important to carry out engineering tests of components for future reactors, to test tritium breeding module concepts with the 14 MeV neutron power load on the first wall \(\geq 0.5 \text{ MW m}^{-2} \) and fluence \(\geq 0.3 \text{ MW year m}^{-2} \). Operation of ITER is planned in two phases: an experimental physics-oriented programme lasting 10 years and including, sequentially, operation in hydrogen, deuterium and deuterium–tritium mixtures, followed by a 10 year long technology-oriented programme. This second phase depends on reliable schemes for long pulse or steady state operation to be developed in the first 10 years of ITER operation. In this respect, ITER faces significant physics and technical challenges during its construction period and operation phases.

The reference scenario for ITER inductive operation is the H-mode [5], which has been observed in many tokamaks reliably and reproducibly. The properties of the H-mode...
Table 1. Predicted performance for three ITER scenarios.

Parameters	Reference	Reversed shear	Hybrid
Major radius, R_0 (m)	6.2	6.35	6.2
Minor radius, a (m)	2.0	1.85	2.0
Toroidal field at R_0, B_T (T)	5.3	5.2	5.3
Plasma current, I_p (MA)	15	9	12
Edge safety factor, q_{95}	3.0	5.3	4.1
Confinement enhancement, $H_{(y,2)}$	1.0	1.57	1.2
Normalized beta, β_N	1.8	2.95	2.1
Average electron density, $\langle n_e \rangle$ \(10^{19} \text{ m}^{-3}\)	10.1	6.7	8
Fraction of Greenwald density, $\langle n_e \rangle/n_{GW}$	0.85	0.82	0.85
Average ion temperature, T_i (keV)	8.0	12.5	8.8
Average electron temperature, T_e (keV)	8.8	12.3	9.9
Neutral beam power, P_{NB} (MW)	33	33	30
RF power, P_{RF} (MW)	7	29	0
Fusion power, P_{fusion} (MW)	400	356	367
Fusion gain, $Q = P_{fusion}/(P_{NB} + P_{RF})$	10	6	11
Non-inductive current fraction, I_{NI}/I_p (%)	28	100	44
Burn time (s)	400	3000	1550

a This scenario has $q_0 = 3.5$ and $q_{min} = 2.2$, and uses a plasma configuration that is shifted outwards.
b Could go to higher normalized beta with increased input power.
c Limited by ITER plant restrictions.

have been investigated over the last 23 years, providing the basis for achieving ITER’s primary goal of operation at $Q = 10$ based on scaling laws for projection. The energy confinement time is predicted using the IPB98(y,2) scaling law [1], while the average density in discharges should reach at least $\sim 85\%$ of the Greenwald density for H-mode operation, $n_{GW} = 10^{20} I_p \text{[MA]}/\pi a \text{[m]}^2$ [6], where I_p (MA) is the plasma current, a (m) is the plasma minor radius.

The standard ITER scenario does not allow conditions to be reached where the plasma current is completely non-inductively driven, utilizing the self-generated bootstrap effect in the plasma. The so-called advanced scenarios in fusion experiments seek to improve confinement and stability over standard H-modes in order to maximize the bootstrap current. What is important in tokamaks is the inverse rotational transform of a magnetic flux surface, the safety factor q. Typically, for standard H-modes, q in the centre (q_0) is the minimum q-value (q_{min}) and is just below 1, while q at the plasma boundary (q_{95}, the safety factor at 95% of the plasma minor radius) is 3 or above. This safety factor q and the magnetic shear $s = (r/q)(dq/dr)$ (where r is the minor radius of the flux surface) play an important role in plasma stability and confinement. The key to the development of these scenarios is a tailoring and control of the current density profile. Advanced scenarios use a range of (non-monotonic) q-profiles as shown in figure 1. It is of course possible to imagine a continuum of regimes between the reference non-inductive and inductive scenarios in which the current profile is modified externally but not completely driven by non-inductive means.

To date, two main types of advanced regimes are being developed. First, the ‘steady-state’ advanced scenario should provide the basis for satisfying ITER’s second major goal of reaching $Q = 5$ under fully non-inductive conditions. Typically, these discharges have central q above 1.5, with either weak $|q_0 - q_{min}| \sim 0.5$ or strong $q_0 \gg q_{min}$ reversed magnetic shear [7–12]. This kind of q-profile is used to obtain internal transport barriers (ITBs) (regions of reduced transport in the core), which could provide sufficient bootstrap
current for steady-state operation. A second advanced regime, the so-called ‘hybrid’ scenario, has a stationary current density profile with weak or low magnetic shear, $q_0 \sim 1$ and $q_{95} \sim 4$ [13–16]. This allows operation at high values for normalized beta, $\bar{\beta}_N = \langle \beta \rangle a B_T / I_p$ ($\langle \beta \rangle$, volume averaged normalized pressure (p) in the tokamak $\beta = p/(B_T^2/2\mu_0)$, B_T the toroidal field). Operating at lower plasma current compared to the ITER reference scenario, this regime could lengthen the discharge duration substantially (although not steady state) and could play a key role in the second (technological) phase of ITER operation, in case the challenging requirements for full non-inductive operation cannot be met.

In the subsequent sections of this paper, transport in tokamaks is described (section 2) as a physics basis for projection of the performance of the ITER reference scenario (section 3). This is followed, in section 4, by a description and overview of experiments with ITBs. The hybrid scenario is presented in section 5. The results of an international collaboration activity to study and compare advanced scenarios are given in section 6, followed by an outlook for ITER and implications for a fusion reactor (section 7). The results presented in this paper are summarized in section 8.

2. Transport and confinement in tokamaks

Understanding transport in magnetized plasmas is important for the design of future fusion reactors. A theory of the classical collisional transport losses has been developed. However, it does not completely explain the transport across magnetic surfaces, and, especially for electron energy transport, the discrepancy between neo-classical theory and experimental observation is large. Hence, additional processes driven by plasma turbulence are required to understand the cross-field transport in tokamaks. This turbulence is mainly driven by two main micro-instabilities: ion temperature gradient (ITG) driven modes and trapped electron modes (TEMs) [17, 18]. In the non-linear regime these produce particle, momentum, electron and ion heat transport. The main characteristic of these micro-instabilities is the existence of an instability threshold (critical gradient); with a strong increase in turbulent transport above the threshold, although a finite diffusivity persists even when the gradient is below this critical gradient.
Over a significant part of the plasma cross-section, the logarithmic gradient of the temperature is close to the threshold; hence in this region the profiles are stiff. An exception to this is the edge of the plasma. Here, energy transport across the plasma edge region is observed to decrease significantly when the input power is increased above a threshold value [2]. With this edge transport barrier (see figure 2(a)), the total energy confinement of the plasma doubles (H-mode) compared to that for the plasma without this edge transport barrier (L-mode). Access to the H-mode requires a configuration with a magnetic X-point, called the divertor configuration, so that the core plasma is separated from the plasma–wall interaction region. ITER is a divertor tokamak (see figure 2(b)).

The energy confinement in a magnetic confinement device is characterized by a global energy confinement time \(\tau_E = W/P \), where \(W \) is the thermal energy stored in the plasma and \(P \) is the input power to the plasma. Integrating a critical gradient model over the plasma volume could give a prediction for the core energy content. However, a correct prediction of the total energy content of the plasma will still depend, strongly, on the edge pedestal, and the degree of stiffness of the transport model. Despite results from experiments today, the interplay between electron and ion heat channels is unclear so no firm conclusion can yet be drawn regarding profile stiffness in ITER. Hence, the applicability of a critical gradient model for predictions to ITER requires more investigation.

On the other hand, tokamaks with a range of sizes, operating parameters and heating powers have been constructed. Empirical scaling laws derived from confinement measurements of these experiments are useful for predicting plasma performance in any new device. A global scaling has been derived for the thermal energy confinement time of H-mode plasmas using the IPB98(y, 2) scaling law [1].

\[
\tau_{\text{IPB98}(y,2)} = 0.0562 H_{\text{IPB98}(y,2)} I_p^{0.93} B_t^{0.15} P_n^{-0.69} \langle n_e,19 \rangle^{0.41} R_0^{1.97} M^{0.19} \kappa_a^{0.78} \varepsilon^{0.58},
\]

where \(\langle n_e,19 \rangle (10^{19} \text{ m}^{-3}) \) is the line-averaged electron density, \(P_n \) (MW) the net heating power, calculated from the total input power subtracting radiation losses [1], \(R_0 \) (m) denotes the major plasma radius, \(M \) (amu) the average hydrogenic ion mass, \(\kappa_a \) the plasma elongation defined as \(\kappa_a = V/(2\pi^2 R_0 a^2) \) with \(V \) being the plasma volume and \(\varepsilon = a/R_0 \) the plasma inverse aspect ratio.
The confinement of any H-mode plasma is then referred to this scaling using the confinement enhancement factor or \(H \)-factor \((H_{IPB98(y, 2)}) \), which is the ratio of the observed confinement to the scaling. Scaling laws are widely used to predict the energy confinement time in next step devices, and are a basis for comparing results from various different experiments today. Since no knowledge of the heating, temperature or density profiles, or atomic physics for that matter, is built into the analysis, a degree of uncertainty still exists in predicting the confinement properties and plasma performance (see next section). The energy confinement time predicted for ITER by the \(IPB98(y, 2) \) scaling is 3.7 s (for 40 MW additional heating, see table 1) with one technical standard deviation of \(\pm 14\% \) and 95\% log-non-linear interval estimate of \(\pm 28\% \). The uncertainty for ITER predictions is not only statistical. When written in dimensionless form, the global scaling laws can still yield information on the mechanisms that underlie turbulent transport. For example, the log-linear form of the scaling law is equivalent to assuming that a single turbulence mechanism with one scale size is responsible for the transport. This seems unlikely to be the case for H-modes, where the core region may be dominated by short wavelength turbulence of the gyroBohm type, and the behaviour in the edge region is possibly determined by magnetohydrodynamic instabilities determining the height and width of the edge transport barrier. These two processes will scale differently with the main scaling parameter \(\rho^* \) and the normalized Larmor radius \(\rho^* = \rho_s/a \), \(\rho_s = (m_i T_s)^{1/2}/eB_T \) is the ion Larmor radius, \(m_i \) is the ion mass and \(T_s \) the temperature). Hence, rewriting the \(IPB(y, 2) \) scaling using dimensionless variables suggests that electromagnetic effects are important, either in turbulence itself or via plasma instabilities:

\[
B_T \tau_{IPB98(y, 2)} = (\rho^*)^{-2.7} \beta^{-0.9} (\nu^*)^{-0.01} q^{-3},
\]

(2)

where \(\nu^* \) is the normalized collisionality defined as \(\nu^* = \nu_{ei} q R / e^{3/2} v_{Te} \) (\(\nu_{ei} \) the electron–ion collision frequency, \(v_{Te} \) the thermal electron velocity). However, the observation that H-mode confinement scaling is closer to the gyroBohm expectation is confirmed by recent dedicated experiments in the JET and DIII-D devices [19, 20].

In addition, improved confinement discharges described in this paper reveal that transport results from a balance between driving terms (gradients) and stabilizing effects, such as magnetic shear and velocity shear. A particular example is the so-called reversed magnetic shear discharge, discussed in section 4. Here, a reversal of the magnetic shear in the core of the plasma allows the formation of ITBs. This is not only useful for optimizing the performance of plasmas with the aim of obtaining fully non-inductive operation of a tokamak, but is also important for understanding transport. Models for transport not only need to be able to predict confinement in standard discharges, but also the existence of zones of reduced transport in the core of advanced scenario discharges, a difficult challenge for any model of turbulent transport in fusion plasmas. On the other hand, scenarios with improved confinement will increase the confidence that the ITER targets can be met, despite uncertainty in predicting the confinement of a device that is a significant extrapolation of results obtained today.

3. The ITER reference scenario

The H-mode is a reproducible and robust mode of tokamak operation with a long-pulse capability, and has been recommended as a reference scenario for inductive \(Q \sim 10 \) operation in ITER. Consolidation of this mode of operation is progressing well in experiments, with the aim of refining the fusion performance prediction and possibly finding ways to reach increased fusion power in ITER. Three main areas of research can be identified, and are summarized below: (i) operation at high plasma density, (ii) study and mitigation of edge localized modes (ELMs) and (iii) the stability of the plasma.
3.1. Operation at high plasma density

At plasma temperatures sufficient to sustain fusion reactions, it is advantageous to operate at high plasma density to ensure plasma purity together with good power and particle exhaust at the plasma periphery or divertor. However, density limits are observed in tokamak operation, mainly determined by the physics of the edge plasma. For H-modes, a maximum density for the sustainment of the edge barrier is observed, the Greenwald density. Typically, H-mode operation at densities approaching \(n_{GW} \) is accompanied by a deterioration of the energy confinement. One of the major achievements in recent tokamak experiments [21] is the demonstration of H-modes with good energy confinement \((H_{98}(\nu, 2) \approx 1) \) in plasmas with densities close to this Greenwald density.

3.2. Study and mitigation of ELMs

In H-mode plasmas, the so-called ELMs periodically relax the edge pressure gradient (hence they are called ELMy H-modes). Moreover, stationary conditions can usually only be achieved with regular ELMs to control the particle behaviour. Most experiments observe so-called type I ELMs [22] with up to 10% of rapid (<1 ms) loss of stored energy in the plasma. As the ELM generates an energy pulse outwards, this leads to considerable concern for the lifetime of the plasma facing components (the divertor) in a reactor scale device [23]. Extrapolating current ELM data to ITER, the expected divertor target erosion rates are too excessive, although in recent estimates the expected ELM size is only a factor of 2 above the limit for target ablation (for carbon or tungsten targets) [24]. Hence, the mitigation of ELMs remains one of the priority research items for ITER.

3.3. Stability of the plasma

The safety factor \(q \) plays a key role in plasma stability [1]. Conventional H-modes, have monotonically decreasing \(q \)-profiles with \(q_0 < 1 \). As a result, in the core of the plasma, periodic reconnections inside the \(q = 1 \) surface, called sawtooth oscillations, flatten the pressure profile. Other magnetic (MHD) instabilities are observed at or near rational values of \(q \). Neoclassical tearing modes (NTMs), occur at low-order rational surfaces (e.g. \(q = 3/2 \)), driven unstable by the local gradient of the equilibrium current density, and lead to a loss (10–30%) in plasma stored energy. NTMs are often seeded by magnetic islands, which can result from a sawtooth collapse [25]. For the ITER reference scenario active means exist to stabilize, or reduce the impact of such modes using electron cyclotron current drive (ECCD).

3.4. Prediction of ITER performance

Sophisticated transport simulation codes are used for the calculation of the time evolution of plasma profiles (assumed to be toroidally axisymmetric) in a tokamak. Such plasma simulation codes are termed ‘1.5D’ codes as the geometry of the magnetic surfaces is recomputed to be consistent with the detailed two-dimensional pressure balance of the plasma and magnetic field. The performance of ITER is predicted by means of a 1.5D transport code ASTRA [26], using transport coefficients based either on theoretical models or a prescribed radial dependence normalized to fit the scaling law for the thermal energy [27].

Certain reference scenarios [28] have been defined for design purposes, and assessed with these 1.5D transport codes in order to determine the ‘envelope’ of performance within ITER’s capabilities. The ‘operation’ domain of one ITER scenario at 15 MA plasma current is given in figure 3 where the fusion power is predicted for a range of the confinement enhancement.
Figure 3. A simulation of the operation domain in the $H_{H98(y,2)}$-factor and fusion power space when $I_p = 15$ MA and $Q = 10$ [60].

$H_{H98(y,2)}$ in line with uncertainties in the energy confinement scaling. Curves for different values of β_N are given, which are important for MHD stability and for the amount of fusion power (P_{fusion}) produced, as P_{fusion} increases with β^2. A lower bound indicates a minimum amount of power required to sustain H-mode operation [29], together with an upper bound for the density ($\langle n_e \rangle/n_{GW} = 1.0$) in H-modes. This gives maximum and minimum fusion power predictions of 560 MW and 260 MW, respectively, for $H_{H98(y,2)} = 1.0$. The reference point for ITER is chosen at $H_{H98(y,2)} = 1$ and $\langle n_e \rangle/n_{GW} = 0.85$, expecting 400 MW of fusion power at $Q = 10$ (see also table 1). This is at $\beta_N = 1.8$, deemed safe for avoiding excessive NTMs, which would otherwise significantly reduce (up to 30%) the energy confinement. As seen from figure 3, a confinement margin of about 7% is required to achieve operation with $Q = 10$ for $\langle n_e \rangle/n_{GW} \leq 0.85$ (a safe distance away from the density limit for H-modes). In this reference scenario, argon impurity dosing is used to keep the power flux to the divertor region below 30 MW, which approximately corresponds to 5 MW m$^{-2}$ of target heat load, acceptable for current divertor target designs.

Although the realization of the ITER working point has been demonstrated in experiments, optimization continues, in particular in the three areas described at the beginning of this section. Part of this optimization is also performed in research on the advanced scenarios presented in the remainder of this paper.

4. Scenarios with ITBs

 Obtaining stationary or steady-state operation is key for advanced scenarios, but challenging as a tokamak maximizes its fusion performance with inductive operation at high plasma current. Maintaining the desired fusion performance ($P_{\text{fusion}} \sim 400$ MW for ITER) at lower plasma current implies foremost operation at higher β_N (~ 3) compared to the ITER reference scenario ($\beta_N = 1.8$). In addition, operation at sufficient confinement ensures operation at $Q \geq 5$, allowing for the use of input powers >40 MW to control the profiles in the plasma. In order to satisfy these objectives for the ITER non-inductive regime, several conditions have to be satisfied simultaneously. In particular, significant external current drive is foreseen together with the bootstrap current. Lower hybrid current drive, with the highest current
drive efficiency, energetic neutral beam injection and ECCD are used in today’s experiments. Since the bootstrap current is the consequence of local pressure gradients and proportional to β_p, $\beta_p = 2 \mu_0 \langle p \rangle_a / \langle B_p \rangle^2$, with $\langle p \rangle_a$ the poloidal cross-section averaged plasma pressure and $\langle B_p \rangle$ the average poloidal magnetic field on the plasma boundary, most experiments tend to operate at low current and with ITBs. The physics of ITBs is a broad subject that has already been covered by several review papers [30, 12].

What is important is that ITB formation has a power threshold, which is the amount of power that is necessary to produce a barrier. This is similar to the observation of a power threshold to produce an edge transport barrier for H-mode plasmas, but not necessarily governed by the same physics processes. Turbulent transport reduction due to $E \times B$ shear (E is the local electric field in the plasma) flow is well documented [31, 32]. Stabilization results essentially from the shearing of turbulent convective cells, with two key ingredients playing a central role in the physics of the ITB formation: shear plasma flow and magnetic topology. Here, negative magnetic shear is known to decrease the drive for the turbulence, this effect is enhanced by the Shafranov shift of magnetic surfaces (also called α effect, $\alpha = -q^2 R (d\beta / dr)$ is a measure of the Shafranov shift). Note that the velocity shear rate will be small in a reactor at the onset of an ITB, so that magnetic shear and Shafranov shift will have to be optimized to trigger the ITB.

Reversed shear configurations are typically obtained by heating the plasma just after initiation, during the current ramp-up phase with the current still diffusing in from the edge of the plasma. An increase in central temperature, using additional heating, slows down the current diffusion in the core, while the total current in the plasma is increasing towards the preset flat-top value. This creates (transiently) an off-axis maximum for the current distribution in a tokamak. Additional current drive, a variation of the amount of central heating and changing the rate of rise of the plasma current allows different reversed shear configurations to be created. Once enough additional heating is applied under these conditions to allow an ITB to form, a positive loop takes place where density and ITGs increase, thus enhancing the velocity shear rate and allowing the confinement barrier to be sustained. The non-linear interaction between the pressure profile and evolution of the current density profile determine the evolution of the ITB in time. In this section, experiments with a deep reversal of the magnetic shear are described, which have so-called ‘strong’ ITBs. This is followed by a presentation of results from experiments that optimize the stability of the plasma using ‘weak’ transport barriers, including a demonstration for active control to maintain plasma profiles in ITB discharges close to their optimum shapes.

4.1. Strong internal transport barriers

Strongly reversed shear configurations have been studied in view of ITER steady-state operation. Typical ITBs in reversed shear configurations are found to be located at the vicinity of the location of q_{min}. Once such strong ITBs are formed, the bootstrap current is driven locally at the transport barrier location, and the shear reversal becomes larger. In an extreme case, the central toroidal current can be almost or absolutely zero—hence the name of current hole is given to these particular scenarios, first observed in JT-60U [33]. Within the operation boundaries for stable operation, these discharges achieve bootstrap fractions of $\sim 50\%$. In order for the shear reversal to be maintained, a certain amount of off-axis current drive is required, driving $\sim 50\%$ of the plasma current in these strongly reversed shear plasmas. However, the steep pressure gradients in these plasmas tends to create MHD instabilities, such that the required beta for operation with dominant bootstrap fraction cannot be achieved. An example of a reversed shear discharge, with a current hole in the centre, is given in figure 4. High transient
performance is obtained using the ECCD and preheating with neutral beam under feedback control to obtain a stable current rise phase [33]. This heating scheme gives reproducibility for these types of discharges with enhanced confinement and performance of the plasma. The performance phase ends with a global instability terminating the discharge (called disruption). This is an ideal kink instability \(n = 1 \), with \(n \) the toroidal mode number of the instability) of the plasma column, driven by the steep local pressure gradients associated with the strong ITB (figure 4(c)) [34]. Typically, stationary operation with strong reversed shear is at low beta (see as well figure 10(a) in section 6, which, using an international data-base, gives a comparison of all experiments). This is also the case for stationary reversed shear discharges in JET using lower hybrid current drive; even with control of the ITB strength to maintain appropriate current density and pressure profiles [35] in these experiments, \(\beta_N \) is limited to values below 2.

In addition, discharges with strong ITBs do observe an accumulation of plasma impurities in the core, diluting the fusion fuel mix [36]. Moreover, the fast-ion confinement in current-hole plasmas was studied on JET using tritium neutral beam injection in deuterium plasmas [37]. The confinement of \(\alpha \)-particles was determined from the decay time of \(\gamma \)-ray emission after tritium beam switch-off, with the \(\gamma \)-ray emission coming from the reaction of the fusion alphas and beryllium impurities (in JET beryllium is used to getter oxygen in the vacuum chamber). Results, indicate an \(\alpha \)-confinement degradation of a factor \(\sim 5 \) in strongly reversed shear discharges, compared to conventional H-modes, as predicted from orbit losses by three-dimensional Fokker–Planck codes. Both the observation of impurity accumulation and prompt alpha losses would be unacceptable for obtaining a stable burning plasma in ITER.
4.2. Weak internal transport barriers

Discharges with reversed magnetic shear can gain in stability against ideal kink modes using weaker ITBs with broader pressure profiles [34]. One route is to produce ITBs at larger radii (away from the plasma centre). This can be done by operating at plasma currents such that $q_{95} \sim 3$, creating a wide region with reversed magnetic shear by heating during the current rise phase, or at much lower plasma current using off-axis current drive. It is observed that these transport barriers are often positioned close to a low order rational surface in the vicinity of the plasma boundary [38] (near $q = 2$ for the high current discharges, near $q = 3$ or 4 for the low current cases). These transport barriers have weaker density and temperature gradients improving stability and show no signs of accumulation of impurities in the core. So far, however, these plasmas have not achieved performance levels required for ITER advanced scenarios, the main difficulty being the simultaneous optimization of the edge conditions (avoiding type I ELMs, which can erode the ITBs) and q-profile to maintain the barrier.

Maintaining even these weakened ITBs for durations longer compared to typical energy and current diffusion time scales is a challenge. Multi-variable, model-based, techniques have been developed [39] for the real-time control of the current profile and/or the pressure profile, to ensure stationary conditions and MHD stability of the discharge. In experiments in JET, a first successful demonstration of combined electron temperature and current density profile control in advanced tokamak regimes has been obtained. Closed feedback loops using three actuators, the input power from lower hybrid current drive, ion cyclotron resonance heating and neutral beam injection systems, were used in conditions reaching up to 100% non-inductive current drive [40]. However, these results are still in ITB plasmas with a rather modest plasma performance ($\beta_N < 2$) using discharges at low plasma current ($q_{95} \geq 7$), to maximize the bootstrap fraction and externally driven non-inductive fractions. This is similar to results obtained in JT-60U, where discharges with a weak ITB and broad pressure profile produce up to 80% of the bootstrap fraction even though, $\beta_N < 2.2$ in such discharges. Due to the lower β_N limit, these experiments have been performed at $q_{95} \sim 9$ in JT-60U, in order to attain a high enough β_p [41].

On the other hand, discharges with weak magnetic shear ($|q_0 - q_{min}| \sim 0.5$) also produce less strong barriers. In this case, the moderately peaked pressure profile prevents the bootstrap current from peaking off-axis, and the shear from reversing too strongly, sustaining a rather flat q profile with $q_0 > 1.5$ in the core. An example of such a regime is given in figure 5 [42] showing the typical time evolution of a weak reversed shear discharge in the DIII-D tokamak. Here, a central neutral beam current drive together with an off-axis ECCD is used together with the bootstrap current to create the desired weak transport barriers. These discharges start with an H-mode induced early in the current ramp. During the high performance phase, $\beta_N = 3.1$ is maintained by feedback control of the neutral beam power. Approximately 2.5 MW of co-directed ECCD resonant off-axis at 40% of the minor plasma radius is applied starting at 3.0 s. Between 3.0 and 4.0 s, the current density profile is observed to be nearly constant with $q_0 \sim 2.1$ and $q_{min} \sim 1.7$. The total non-inductive current drive, in this case, approaches 95%, with 65% of the plasma current provided by the bootstrap current and 20% by the neutral beam current drive. These discharges typically achieve β_N up to 3.5, for several energy confinement times. The termination of these conditions is due to the resistive evolution of the current profile, leading to the onset of NTMs as q_{min} crosses 1.5. This results support the observation that the loop voltage profile is not fully relaxed, i.e. the net Ohmic current is almost zero, but the local Ohmic current is not zero everywhere. Hence, this regime requires further optimization to obtain stationary conditions.

Along the lines of reducing the negative shear in the centre, it has been observed that ITBs can also been formed in plasmas with low magnetic shear. The so-called high β_p plasmas in
JT-60U belong to this category [43]. A series of full non-inductive current drive experiments at high performance have been achieved in this way. In these high β_p plasmas, magnetic shear is low or even positive and q profiles can vary from those with q_0 slightly in excess of 1 to those with q_0 around 2. Steady-state demonstration discharges have been obtained where q_0 is below 1.5 [44]. As for the DIII-D discharges described above, on-axis neutral beam heating is a key feature to achieve full current drive conditions. In JT-60U neutral beam injection at an energy of ~ 350 keV is used (compared to typically 80–120 keV in other experiments), from negative ion based sources, to increase the current drive efficiency.

The next section goes a step further, where an intermediate, or hybrid, between the conventional scenario and the weak reversed shear scenarios is given with $1.0 \leq q_0 \leq 1.5$. Consequently, the JT-60U results with $q_0 < 1.5$ (described above) are now assigned to this regime.

5. Hybrid scenarios

Scenarios with ITBs, presented in the previous section, rely on careful tailoring of the current density profile by external heating and current drive methods, to optimize performance. In this way, sufficient bootstrap current may be provided to satisfy ITER’s second major goal of reaching $Q \geq 5$ under fully non-inductive conditions. However, the stringent control requirements for scenarios with ITBs have prompted research into advanced regimes, which are inherently stationary with respect to the current relaxation time scale, requiring only minimum control by external actuators.

It was originally envisioned [1] that discharges with extended duration at lower plasma current would be intermediate between an inductive (baseline) scenario and a fully
non-inductive (advanced steady-state) scenario. Therefore, this type of discharge is known as a ‘hybrid’ scenario. This will allow ITER to operate in a mode maximizing the neutron fluence for the purpose of testing the design of various components (second operation phase of the project). It has been found that scenarios with a stationary current density profile, maintaining zero magnetic shear in the centre permit us to achieve such a target. The different \(q \)-profile of the hybrid scenario, compared to the standard inductive H-mode scenario \([1]\) prevents sawtoothing activity in the core and the triggering of large NTMs at the \(q = 3/2 \) rational surface. These MHD events generally lead to a significant reduction in confinement and limit plasma performance for \(\beta_N > 2 \) as observed in the standard H-mode regime with \(q_{95} \sim 3 \). The properties of the current density profile allow the hybrid scenario to operate at \(\beta_N \sim 3 \), suggesting that it could even provide an alternative route to establishing \(Q = 10 \) in ITER \([2]\). Rapid progress has been made recently in developing this regime, and is described below.

In 1998, the ASDEX Upgrade tokamak found a stationary regime with improved core confinement for both electrons and ions in combination with an H-mode edge \([13]\). Initially, the pressure increase in the core was attributed to the formation of an ITB. However, soon after, detailed transport analyses showed that in such a regime the temperature profiles remain in the so-called stiff regime. The gradients do not exceed a critical temperature gradient length set by the turbulence in the plasmas, and hence, no ITB is produced \([45]\). This new regime was called ‘Improved H-Mode’. Further development of these type of discharges in ASDEX Upgrade \([46, 47]\) and DIII-D \([48, 49]\) are now known under the common name ‘ITER Hybrid Scenario’. The desired \(q \)-profile is obtained by heating, during the current rise phase of the discharge, at moderate neutral beam powers (2.5–5 MW). In the subsequent main heating phase, beta can be increased, with either small MHD \(m = 1/n = 1 \) activity in the core (called fishbone activity, with \(m \) the poloidal mode number of the instability) or a small \(m = 3/n = 2 \) NTM creating a central \(q \)-profile with very low magnetic shear and \(q_0 \) close to 1. These discharges have no sawteeth and peaked density profiles with \(H_{98(y,2)} \) up to 1.4 for the duration of the heating phase. An example of an ASDEX Upgrade discharge is given in figure 6. Note that increasing the neutral beam power after 3 s in the discharge leads to a strong rise in beta to \(\beta_N \sim 3 \), together with an improvement in confinement. Typically, these discharges obtain non-inductive current fractions of \(\sim 50\% \), in combination with benign MHD modes in the core, maintaining a stationary \(q \)-profile without active control.

Recently, experiments in JET established the hybrid scenario in similar non-dimensional parameters (e.g. \(\rho^* \) and \(q \)-profile, \(q_{95} \sim 4 \)) compared to ASDEX Upgrade \([50, 51]\). These discharges are stationary for the duration of the heating phase with small NTM and fishbone activity in the core at similar \(\beta_N, H_{98(y,2)} \)-factor, density and temperature profiles compared to ASDEX Upgrade or DIII-D.

Further evidence that the hybrid scenario may be a natural operating point for a tokamak comes from experiments in JT-60U. As described in the previous section, stationary high performance is obtained in the so-called ‘high \(\beta_p \) ELMy H-mode regime’ \([43]\), closely resembling the conditions obtained in other experiments. Discharges without sawteeth have been sustained at \(\beta_N = 2.6 \) for 2.6 s with \(q_{95} \sim 3.4 \) \([44]\). More recently, discharges have been obtained with longer duration (see next section) at somewhat lower beta; \(\beta_N = 3 \) was sustained for a shorter time (6 s). These recent experiments confirm the potential of the hybrid scenario to reproducibly obtain improved confinement and stability over standard H-modes in stationary conditions.

For extrapolation to ITER, a mapping of the operational domain of the hybrid scenario at various plasma densities has started, in a collaboration between various experiments. ASDEX Upgrade demonstrated operation of this regime at 80–90% of the Greenwald density.
Figure 6. Waveforms of a hybrid discharge at ASDEX Upgrade. Shown are (a) the plasma current (MA) and D_{α} measurements in the divertor (showing the ELM behaviour), (b) the neutral beam power (MW) applied, (c) the plasma inductance and the normalized beta (β_N) and (d) the confinement enhancement factor $H_{98(y,2)}$ and averaged electron density ($\langle n_e \rangle$) normalized to the Greenwald density (n_{GW}).

Discharges with a high triangularity configuration of the plasma cross-section, $\delta = 0.43$, showed only a small reduction in confinement ($H_{98(y,2)} = 1.1-1.2$) compared to hybrid discharges at lower density, while sustaining $\beta_N = 3.5$ and peaked density profiles. Moreover, the type I ELM activity in these discharges is moderated and small amplitude (called type II) ELMs are observed when the discharge configuration is changed to have a double null divertor configuration (both an upper and lower divertor are active, termed ‘double null’ configuration) [52]. This is shown in figure 7, where the heat load to the lower divertor is measured with infrared camera diagnostics. Initially, large transient heat loads (>18 MW m$^{-2}$) are observed, during the type I ELMing phase (as described before, a concern for ITER). As the plasma shifted to a double null configuration at 3.5 s, smaller type II ELMs appear. During this phase the outer divertor shows a near continuous power load of <6 MW m$^{-2}$, the inner divertor has no power load as part of the power now goes to the top of the device. These small ELMs can also be obtained in conventional H-modes, although with $H_{98(y,2)} < 1$ [52]. The hybrid scenario compensates for the confinement loss with improved core confinement, achieving $H_{98(y,2)} \sim 1.1$. These type II ELMs, would give acceptable power loading of the ITER divertor target, however, so far this regime has only been obtained in discharges at high density, with plasma collisionality a factor 10 higher compared to conditions in ITER.

6. The international tokamak physics activity for advanced scenarios

While the inductive H-mode is relatively well explored, how the currently developed advanced scenarios will extrapolate to next-step experiments is an open issue. The scientific progress in the preparation of ITER now benefits from a coordinated experimentation between tokamaks worldwide, in particular between large and middle-size D-shaped tokamaks, such as JET, JT60-U, DIII-D or ASDEX-Upgrade. The past two years have seen an unprecedented number
Advanced scenarios for ITER operation

Figure 7. Example of a hybrid discharge at high density \((\langle n_e \rangle/n_{GW} \sim 0.85)\) from ASDEX Upgrade. (a) Plasma current and the \(D_\alpha\) measurements in the divertor (showing small ELMs). (b) The infrared measurements of the power loads on the inner lower divertor. (c) The infrared measurements of the power loads on the outer lower divertor.

of experiments involving two or more tokamaks, as well as coordinated parametric scans. The International Tokamak Physics Activity (ITPA) initiates these experiments.

Construction of an international database for advanced tokamak discharges is also an activity coordinated under the ITPA [53]. Data from ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, RTP, T-10, TCV, TFTR and Tore Supra experiments have been collected, creating a set of scalar data covering a wide range of plasma parameters. Extensive analyses of this database have been presented before, using values at the time of maximum performance during the discharges [54]. This has recently been extended to document the differences in operational domain of reversed shear and hybrid scenarios, taking data as an average over the performance phase, as this is more appropriate for scenarios developed for stationary or non-inductive operation.

In the analysis of the data a figure of merit defined as \(H_{89}\beta_N/q_{95}^2\) is used for performance: \(H_{89}\beta_N/q_{95}^2 \sim 0.40\) for the ITER reference scenario and \(H_{89}\beta_N/q_{95}^2 \sim 0.3\) for the ITER non-inductive scenario. The confinement enhancement factor, \(H_{89}\), relative to \(\text{ITER89P}\) scaling [1] is used, as this is more suited for a dataset containing discharges with a variety of edge conditions (L-mode, ELM free and H-modes with various types of ELM behaviour). The operation space and the performance of the advanced scenarios described in the previous two sections are compared with data from the different experiments.

6.1. Reversed shear scenarios

The results for reversed shear scenarios with internal transport are presented in figure 8, showing the performance from several machines plotted as function of the duration of the discharges. The discharge duration is defined as the time that the discharge reaches at least 85%
Figure 8. Data from the ITPA database for reversed shear discharges from various devices (colour coded). (a) The performance \(H_{90}b_N/q_{95}^2\) as a function of discharge duration, open symbols are transient discharges, closed symbols are stationary; the duration \(W > 0.85\) maximum \(W\) is normalized to the energy confinement time \(\tau_E\), which is averaged during this time window. (b) \(H_{90}b_N/q_{95}^2\) versus \(\varepsilon_0\). The lines indicate the different values for \(q_{95}\); transient (open symbols) and stationary results (closed symbols) are given. (c) The performance \(H_{90}b_N/q_{95}^2\) as a function of the discharge duration \(W > 0.85\) maximum \(W\), normalized to the resistive diffusion time \(\tau_R\) as defined in the text.

of the maximum stored energy. This duration can be normalized to the energy confinement time (figure (a)), to indicate stationary of the kinetic profiles. Alternatively, the duration can be normalized to the current diffusion time, \(\tau_R\) as defined by Mikkelsen in [55], figure (c). Transient discharges (duration \(< 10\tau_E\)) can obtain performance exceeding ITER requirements, but this cannot be maintained at these levels in more stationary conditions (duration \(\geq 10\tau_E\)). The reversed shear discharges separate into two distinct groups, dominated by data from DIII-D, on the one hand, and data from JET and JT-60U both at lower performance. As a comparison, ITER is planned to have an inductive discharge duration of 400 s (equivalent to 110\(\tau_E\) or 2\(\tau_R\)). The duration of the experiments is mainly determined by machine limits, i.e. duration of the heating systems. This implies from the results presented in figure 8(c) that reversed shear discharges, which are stationary with respect to current diffusion time scales, still need to be demonstrated.
More results are given in figure 8(b) where H_{90}^2/β_N is plotted versus $\epsilon^{0.5}\beta_p$. The latter is a measure of the fraction of the bootstrap current for similar q-profiles; such as the reversed shear discharges plotted in this figure. For reference, detailed transport analyses, including an assessment of the non-inductive current distribution of a few discharges in this database, indicate that for $\epsilon^{0.5}\beta_p = 1$, a bootstrap fraction in the range 55–65% is achieved. ITB discharges with $q_{95} < 5$ are only transient. Stationary operation has been obtained at $q_{95} \geq 5$, with the maximum performance (discharges from DIII-D) obtaining $\epsilon^{0.5}\beta_p \sim 1$ for q_{95} near 5. With $H_{90}\beta_N/q_{95}^2 \sim 0.3$ and sufficient bootstrap current, combined with external current drive sources, these discharges fulfill the ITER requirements for non-inductive current operation at $Q \sim 5$. The results at $q_{95} \geq 6$ are from discharges with weaker ITBs at large radii (outside mid-radius), predominantly operating in stationary conditions at low plasma current. Despite producing bootstrap current fractions in the range 40–80% or using real-time control techniques to optimize the profiles, they fail to meet the ITER performance targets, as either the energy confinement time or the achieved beta values are too low to ensure sufficient fusion power.

6.2. Hybrid discharges

The duration of hybrid discharges is typically longer compared to reversed shear plasmas. This is shown in figure 9(a) (note that the time axis in figure 9(a) is different from the axis used in figures 8(a) and 9(c)). There is no clear difference between the various experiments in the dataset. The Tore Supra data, have lower performance as these are optimized in a limiter configuration with limited amount of additional heating power available; hence the values for β_N are typically below 1. The typical performance of hybrid scenarios achieves ITER reference values for $Q > 10$ operation or higher. The duration approaches ITER target values for the conventional scenario, limited again by machine hardware. For high fluence operation in ITER a demonstration of longer duration pulses is required, although it is difficult to obtain. For example, discharges in JT-60U have obtained $\beta_N \sim 1.9$ for 24 s for $q_{95} = 3.3$, with the q-profile matching hybrid conditions, obtaining $H_{90}\beta_N/q_{95}^2 \sim 0.4$ for about 120τ_E (not shown in figure 9(a)). Here, the long duration is achieved by applying different beam sources in subsequent phases (hence not at maximum input power or beta) to compensate for the limited duration of the neutral beam heating systems (typically 10 s) in these experiments. Most of the highest performance pulses shown are a direct result of collaboration between experiments, benefiting from an exchange of expertise to optimize the hybrid regime. Such a cross fertilization between experiments has not yet taken place for reversed shear scenarios with ITB as seen from the separation of the results from various devices in figure 8(a).

The fraction of the bootstrap current in hybrid discharges is lower, compared to reversed shear discharges, and increases at lower current (higher q_{95}) as shown in figure 9(b). For this type of q-profile with q_0 near 1, a value of $\epsilon^{0.5}\beta_p = 1$, achieved for discharges at $q_{95} = 4–4.5$, represents a bootstrap fraction of 30–40%. This implies that this regime can only be used for long pulse operation with a substantial increase in discharge duration (see next section). On the other hand, at lower values of $q_{95} \sim 3$, the results of hybrid discharges far exceed ITER performance targets for operation at $Q = 10$. Operating with $H_{90}\beta_N/q_{95}^2$ in the range 1.0–1.3 and β_N values between 2.5–3, these discharges would allow a significant increase in fusion power for ITER, as can be seen from figure 3. In the conventional scenario, operation at $q_{95} < 3$ significantly increases this risk of sawteeth instabilities and NTM modes. Now, hybrid scenarios are being developed with $q_{95} < 3$, without sawteeth and low magnetic shear in the core, as this mode of operation may achieve stationary conditions at $\beta_N > 2$ to allow for controlled ignition ($Q > 20$) experiments in ITER at 17 MA.
Figure 9. Data from the ITPA database for hybrid shear discharges from various devices (colour coded). (a) The performance \(\frac{H_{q_95} \beta_N}{q_95} \) as a function of discharge duration, closed symbols are transient discharges, closed symbols are stationary, the duration \(W > 0.85 \) maximum \(W \) is normalized to the energy confinement time \(\tau_E \), which is averaged during this time window. (b) \(H_{q_95} \beta_N/q_95 \) versus \(\varepsilon_0 \). The lines indicate the different values for \(q_95 \), transient (open symbols) and stationary results (closed symbols) are given. (c) The performance \(\frac{H_{q_95} \beta_N}{q_95} \) as function of the discharge duration \(W > 0.85 \) maximum \(W \), normalized to the resistive diffusion time \(\tau_R \), as defined in the text.

6.3. Beta limits

Advanced scenarios maximizing the fraction of self-generated bootstrap current, are likely to operate near one or more stability limits. In general, discharges can gain in stability against ideal \(n = 1 \) kink modes by optimizing the pressure profile and plasma shape [34]. Kink modes can manifest themselves as resistive wall modes [56], which set in when the plasma pressure typically exceeds \(\beta_N \sim 4 l_i \) (with \(l_i \), the inductance of the plasma). Reversed shear discharges, have low plasma inductance \(l_i < 0.8 \), as the current density peaks off-axis, and have predominantly peaked pressure profiles due to the presence of (weak) ITBs. Hence, they are at a particular disadvantage with regard to kink stability. Figure 10 plots the \(\beta_N \) values achieved in the advanced discharges of the ITPA database as a function of the pressure peaking
Figure 10. Normalized beta, β_n, as a function of the pressure peaking, $p_0/\langle p\rangle$, for different advanced regimes: (a) reversed shear discharges and (b) hybrid discharges. Transient (open symbols) and stationary results (closed symbols) are given. Discharges from various devices are colour coded (see legend).

($p_0/\langle p\rangle$, calculated using central density, central temperatures and plasma stored energy). The data support previous studies that the maximum β_n drops sharply for high pressure peaking [57]; in fact 80% of the reversed shear discharges in the database achieve the high performance only transiently, limited to $\beta_n < 2$. Discharges with strong reversed shear, achieve a pressure peaking, $p_0/\langle p\rangle > 4$, and have very good transient confinement ($H_{H98(y,2)} \sim 1.5$) compared to conventional H-modes. In reactor plasmas with $P_a > P_{\text{input}}$ and sufficient confinement, the fusion performance is set by the ability of the plasma to operate at the maximum plasma pressure possible ($P_{\text{fusion}} \propto \beta^2$). Hence, reversed shear discharges with a low beta limit are not useful for fusion reactors. On the other hand, one promising scenario uses weak negative magnetic shear, with broad pressure profiles produced by weak transport barriers. Here, results from DIII-D and JT-60U show that $\beta_n \sim 3$ can be obtained with nearly 100% non-inductive current. This suggests an optimum in the range of q-profiles suitable for advanced operation, with only weak negative shear and $q_0 = 1.5$–2, not far away from q-profiles used in the hybrid scenario. Figure 10(b) indicates that these hybrid scenarios operating with q_{95} in the range 3–4.5, routinely obtain beta values close to the no wall limit ($\beta_n/4l_i \sim 1$).

Building on the success of the experiments coordinated under the ITPA, further study and collaboration between experiments are defined. These include (i) a continuation of the documentation of the operational space for hybrid discharges, planning experiments to optimize the regime at lower $\rho^*\text{in JET and JT-60U, and further documentation of the regime at ASDEX Upgrade and DIII-D}$, (ii) an effort to define a common reversed shear scenario for various devices, concentrating on operation near $q_{95} = 5$, (iii) performing transport studies in a range of scenarios as, for example, the improvement in confinement for the hybrid scenario is not fully understood, and (iv) operation in a parameter range closer to ITER values to facilitate a more robust extrapolation of the results obtained—for instance, new experiments to confirm that injected momentum from the neutral beams is not essential, as found in preliminary experiments in ASDEX Upgrade [58] and JET [59] using ICRH heating, to simulate the heating conditions in ITER or a reactor.
7. Predictions for ITER and outlook

ITER has a flexible design, capable of exploring the advanced scenarios presented in this paper. It could incorporate the use of current drive methods, such as neutral beams, ion cyclotron, electron cyclotron, and lower hybrid waves, which are important for reversed shear scenarios. In the ITER plans, operation will start with a total additional power of 73 MW: a neutral beam system will provide 33 MW in atomic deuterium beams at 1 MeV from two injectors, with the capability of providing on-axis and near off-axis current drive. An additional 40 MW will be available from radio frequency heating and current drive systems. In using this as boundary conditions, performance predictions for the various scenarios for ITER have been made using 1.5D transport simulation codes [60]. The conventional scenario given in section 3 is summarized in table 1, together with predictions for two advanced scenarios.

As a candidate scenario for steady-state operation a ‘weak’ negative shear configuration is chosen, requiring off-axis current drive using the neutral beam system. Absence of $q = 2$, 1.5 and 1 surfaces inside the plasma eliminates the growth of tearing modes. Although the normalized beta and $H_{98(y,2)}$ are relatively high, the ITER PF-coil system is designed to cover this operation scenario. In the simulations, realistic neutral beam heating and current drive modelling in ITER geometry have been used. For the radio frequency heating and current drive systems, the absorption and current drive efficiency ($\gamma_2 = 0.3$ $\text{AW}^{-1} \text{m}^{-2}$) are predicted for ITER plasma conditions. The weak negative shear scenario still uses substantial external current drive (50% of the total current). In this context, one needs to bear in mind that in a steady-state tokamak reactor, a fraction of the bootstrap current of $\geq 70\%$ is required for economical operation.

1.5D transport simulations are performed for the hybrid scenario. The results show that this scenario already satisfies operation at $Q \sim 5$ for $H_{98(y,2)} = 1.0$, with a burn time ≥ 1000 s assuming the start of the additional heating during the current ramp-up phase [60]. The improved energy confinement found in recent experiments, if realized in ITER, could significantly improve the plasma performance in the hybrid scenario allowing $Q \geq 10$ at reduced plasma current (table 1). This simulation only uses 30 MW neutral beam power for the hybrid scenario. However, this scenario is capable of operation at $\beta_s \sim 3$, which would allow the full 73 MW of input power to be used, providing a substantial increase in fusion power and an increase in discharge length. Future developments of hybrid scenarios might even lead to the concept of a ‘quasi-steady-state’ reactor: a system with minimal time between two subsequent very long duration discharges that aims at a duty cycle of $> 90\%$. This would reduce the corresponding thermal stresses, which are seen as the main limitation of such a pulsed tokamak reactor proposal.

ITER is expected to play an important role in the development of a fusion reactor producing electricity. What is clear is, that in the short-term, the results of ITER advanced scenarios are important, to make it one step to a demonstration reactor. The size of such a demonstration reactor depends on improvements in operational scenarios, especially in relation to plasma shaping and stability, limiting density, and in the minimization of the divertor loads without penalizing the core plasma conditions.

8. Conclusions

ITER is an essential step to develop the scientific and technical feasibility of fusion energy. It is based on a magnetic confinement concept called the tokamak; an inherently pulsed system where a current in the plasma plays an important role in the confinement and stability of the system. Magnetically confined plasmas at finite pressure have turbulent transport across the
magnetic field lines, driven by temperature gradients. Hence, predominantly, empirical scaling and system modelling are used to predict the energy confinement and system size of ITER, so that its primary goal for obtaining conditions with significant fusion power and gain $Q \geq 10$ can be met. Stabilization, or reduction of the turbulence allows transport barriers to be formed, improving overall confinement. What is important for creating and sustaining transport barriers is the local magnetic shear in the plasma. Discharges with improved confinement, employing ITBs are called advanced scenarios. These are being developed to meet ITER’s second goal of steady state (non-inductive) operation with $Q \geq 5$, allowing for a reduced gain to operate at lower plasma current, and to use additional heating to control the current density profile. To achieve this, the performance of tokamaks needs to be improved. Standard tokamak discharges have a current density increasing monotonically towards the centre of the plasma. Reversed shear discharges have an off-axis maximum of the current density, creating negative magnetic shear in the core. Results show that the confinement is indeed improved in plasmas with ITBs. However, the plasma pressure required to obtain sufficient self-generated, bootstrap current and fusion power, cannot be sustained due to MHD stability limits. Only discharges with weak reversed shear maintaining reduced internal barrier strength approach the required performance. This has prompted research into so-called hybrid regimes that have a central region with a flat current density profile (zero magnetic shear), capable of operating stationary at high plasma pressure. Recently, international collaboration between experiments has enabled better documentation of the various types of advanced scenarios used and an exchange of expertise to optimize these regimes. The optimum advanced scenario operates with a current density profile that is close to the non-inductive scenario, but significantly different to allow an increase in stability and (some) reduction of the turbulent transport. In summary, it is critical to study advanced scenarios in ITER to increase the understanding of the physics of transport and stability of fusion plasmas, and secondly to validate and improve these regimes in preparation for a fusion power plant demonstration.

References

[1] ITER Physics Basis 1999 \textit{Nucl. Fusion} 39 2137
[2] Wesson J 1997 \textit{Tokamaks} 2nd edn (Oxford: Clarendon)
[3] Bickerton R J et al 1971 \textit{Nature Phys. Sci.} 229 110
[4] Summary of the ITER Final Design Report 2001 \textit{ITER EDA Documentation Series No} 22 (Vienna: IAEA)
[5] Wagner F et al 1982 \textit{Phys. Rev. Lett.} 49 1408
[6] Greenwald M et al 1988 \textit{Nucl. Fusion} 28 2199
[7] Levinton F M et al 1995 \textit{Phys. Rev. Lett.} 75 4417
[8] Strait E J et al 1995 \textit{Phys. Rev. Lett.} 75 4421
[9] Fujita T and JT-60U Team 1997 \textit{Plasma Phys. Control. Fusion} 39 B75
[10] Gormezano C and the JET team 1997 Proc. 16th Int. Conf. on Fusion Energy 1996 (Montreal) vol 1 (Vienna: IAEA) p 487
[11] Gruber O and Wolf R C 1999 \textit{Phys. Rev. Lett.} 83 1787
[12] Wolf R C 2003 \textit{Plasma Phys. Control. Fusion} 45 R1
[13] Wolf R C et al 1999 \textit{Plasma Phys. Control. Fusion} 41 B93
[14] Luce T C et al 2001 \textit{Nucl. Fusion} 41 1585
[15] Sips A C C et al 2002 \textit{Plasma Phys. Control. Fusion} 44 B69
[16] Luce T C et al 2003 \textit{Nucl. Fusion} 43 321
[17] Horton W et al 1999 \textit{Rev. Mod. Phys.} 71 735
[18] Weiland J et al 2000 \textit{Collective Modes in Inhomogeneous Plasmas} (Bristol: Institute of Physics Publishing)
[19] McDonald D C et al 2004 \textit{Plasma Phys. Control. Fusion} 46 A215
[20] Petty C C et al 2004 \textit{Phys. Plasmas} 11 2514
[21] Saibene G et al 2002 \textit{Plasma Phys. Control. Fusion} 44 1796
[22] Zohm H 1996 \textit{Plasma Phys. Control. Fusion} 38 105
[23] Federici G et al 2003 \textit{Plasma Phys. Control. Fusion} 45 1523
[24] Loarte A et al 2003 Plasma Phys. Control. Fusion 45 1549
[25] Zohm H et al 2003 Plasma Phys. Control. Fusion 45 A163
[26] Pereverzev G V et al 1991 ASTRA—an automatic system for transport analysis in a tokamak IPP Report Nr. 5/42, Max-Planck-Institut für Plasmaphysik
[27] Polevoi A R et al 2003 Nucl. Fusion 43 1072
[28] Green B J et al 2003 Plasma Phys. Control. Fusion 45 687
[29] Horton L D et al 1999 Nucl. Fusion 39 993
[30] Connor J W et al 2004 Nucl. Fusion 44 R1
[31] Terry P W 2000 Rev. Mod. Phys. 72 109
[32] Burrell 1999 Phys. Plasmas 6 4418
[33] Fukuda T and the JT-60U team 2002 Plasma Phys. Control. Fusion 44 B39–52
[34] Turnbull A D et al 1998 Nucl. Fusion 38 1467
[35] Litaudon X et al 2003 Nucl. Fusion 43 565
[36] Dux R et al 2003 J. Nucl. Mater. 313 1150
[37] Zastrow K-D et al 2004 Plasma Phys. Control. Fusion 46 B255
[38] Joffrin E et al 2002 Plasma Phys. Control. Fusion 44 1739
[39] Moreau D et al 2003 Nucl. Fusion 43 870
[40] Mazon D et al 2003 Plasma Phys. Control. Fusion 45 L47
[41] Kamada Y and the JT-60U team 2001 Nucl. Fusion 41 1311
[42] Wade M R et al 2003 Nucl. Fusion 43 634
[43] Kamada Y et al 1999 Plasma Phys. Control. Fusion 41 1371
[44] Isayama A et al 2001 Nucl. Fusion 41 761
[45] Gruber O et al 1999 Phys. Rev. Lett. 83 1787
[46] Sips A C C et al 2002 Plasma Phys. Control. Fusion 44 B69
[47] Sips A C C et al 2003 Fusion Technol. 44 chapter 4
[48] Wade M R et al 2001 29th EPS. (Montreux, Switzerland, 17–21 June 2001)
[49] Luce T et al 2003 Nucl. Fusion 43 321
[50] Sips A C C et al 2003 30th EPS on Controlled Fusion and Plasma Physics (St Petersburg, Russia, 7–11 July 2003)
[51] Joffrin E et al 2004 Nucl. Fusion submitted
[52] Stober J et al 2001 Nucl. Fusion 41 1123
[53] Fukuda T et al 2001 Proc. 28th EPS Conf. (Funchal)
[54] Litaudon X et al 2004 Plasma Phys. Control. Fusion 46 A19
[55] Mikkelsen D R et al 1989 Phys. Fluids B 1 333
[56] Liu Y Q et al 2004 Nucl. Fusion 44 232
[57] Huysmans G T A et al 1999 Nucl. Fusion 39 1489
[58] Staebler A et al 2004 Nucl. Fusion submitted
[59] Gormezano C et al 2004 Plasma Phys. Control. Fusion 46 B435
[60] ITER Physics Performance Assessment August 2004