Direct manipulation of a superconducting spin qubit strongly coupled to a transmon qubit

Spin qubits in semiconductors are a promising platform for producing highly scalable quantum computing devices. However, it is difficult to realize multiqubit interactions over extended distances. Superconducting spin qubits provide an alternative by encoding a qubit in the spin degree of freedom of an Andreev level. These Andreev spin qubits have an intrinsic spin–supercurrent coupling that enables the use of recent advances in circuit quantum electrodynamics. The first realization of an Andreev spin qubit encoded the qubit in the excited states of a semiconducting weak link, leading to frequent decay out of the computational subspace. Additionally, rapid qubit manipulation was hindered by the need for indirect Raman transitions. Here we use an electrostatically defined quantum dot Josephson junction with large charging energy, which leads to a spin-split doublet ground state. We tune the qubit frequency over a frequency range of 10 GHz using a magnetic field, which also enables us to investigate the qubit performance using direct spin manipulation. An all-electric microwave drive produces Rabi frequencies exceeding 200 MHz. We embed the Andreev spin qubit in a superconducting transmon qubit, demonstrating strong coherent qubit–qubit coupling. These results are a crucial step towards a hybrid architecture that combines the beneficial aspects of both superconducting and semiconductor qubits.
single device11,12, and are readily controlled, read and coupled over long distances due to the use of circuit quantum electrodynamics (QED) techniques13–15. However, transmon qubits have a small anharmonicity, limiting the speed of qubit operations, and they are relatively large (typically 0.01 to 1.00 mm2 per qubit), which leads to large chip sizes and makes transmons susceptible to cross-coupling with distant control elements.

A potential route to leverage the benefits of both superconducting qubits and spin qubits is to encode a qubit in the spin degree of freedom of a quasiparticle occupying an Andreev bound state in a Josephson junction16–20. These states are confined by Andreev reflections at the superconducting interfaces and thus are localized in a small and well-defined region, similar to conventional spin qubits. Furthermore, in the presence of spin–orbit interaction (SOI), the supercurrent across the Josephson junction becomes spin dependent21–23, which allows for interfacing with superconducting circuit elements. Such a superconducting spin qubit has recently been realized in the weak link of a superconductor–semiconductor hybrid nanowire24, where it was named the Andreev spin qubit (ASQ). This first implementation showed that an ASQ can be efficiently read using standard circuit QED techniques25. However, qubit control was hindered by frequent leakage out of the computational subspace of the qubit, formed by higher-energy Andreev levels of the junction. Additionally, due to the selection rules of the system in the absence of a magnetic field26, direct driving of the ASQ is partly suppressed27 and qubit manipulation may require the virtual driving of auxiliary states to induce qubit transitions28.

In this work, we utilize previous insights from semiconducting spin–orbit qubits (SOQ)23,24,27,28 to construct an ASQ using a quantum dot within a Josephson junction25,26. To enhance the confinement of the quantum dot, we implement it in a Josephson junction shorter than that used in another work25 and we use three electrostatic bottom gate electrodes. These two features lead to an enhanced charging energy of the dot compared with that in previous implementations of ASQs, such that it can be exploited to deterministically prepare the quantum dot into a doublet phase29 with well-defined spin-split states. As a consequence, the computational subspace of the qubit is now formed by the lowest-energy states of the junction in the doublet phase. Moreover, this charging energy enhances the parity lifetime of the doublet subspace to the millisecond regime, thereby providing protection against leakage resulting from parity switches of the junction30 (Supplementary Information). Furthermore, this design allows for fast and direct qubit control through spin–orbit-mediated electric-dipole-induced spin resonance31,32,23,28. We additionally demonstrate the magnetic field tunability of the qubit transition frequency over a frequency range of more than 10 GHz, pushing the device into a parameter regime inaccessible to previous experiments, which allows us to investigate the origin of dephasing. At elevated qubit frequencies, this moreover results in a suppression of the population of the excited state, facilitating qubit manipulation and readout without any additional steps needed for the initialization of the qubit beyond qubit relaxation. Finally, the intrinsic coupling between the spin degree of freedom and the supercurrent facilitates strong coherent coupling between the ASQ and a transmon qubit.

ASQ

We implement the ASQ in a quantum dot Josephson junction formed in a hybrid InAs/Al semiconducting–superconducting nanowire (Fig. 1a). The quantum dot is electrostatically defined by three gate electrodes under an uncovered InAs section of the nanowire and tunnel coupled to the superconducting segments25. In the limit of weak coupling between the superconducting part of the nanowire and the quantum dot and in the presence of a magnetic field, the ASQ can be described by the effective Hamiltonian25,26

\[
H_n = E_0 \cos(\phi) - E_{SO} \vec{n} \cdot \vec{\sigma} \sin(\phi) + \frac{1}{2} \vec{E}_z \cdot \vec{n},
\]

where \(\phi\) is the phase difference across the junction, \(\vec{n}\) is the spin operator, \(\vec{n}\) is a unit vector along the zero-field spin-polarization direction (set by the SOI) and \(E_z\) is a Zeeman field arising in the presence of an external magnetic field. Here \(E_{SO}\) denotes the effective Josephson energy of the quantum dot junction, common for both spin states. We note that the term proportional to \(E_{SO}\) has a minimum at \(\phi = \pi\), originating from the odd occupancy of the quantum dot junction26. In turn, \(E_{SO}\) denotes the spin-dependent contribution to the energy of the junction. The spin-dependent potential energy originates from the occurrence of electron co-tunneling accompanied by a spin flip, and it is finite only if SOI is present and multiple levels of quantum dot are involved in the co-tunneling sequence27. The difference between the energies of the \(|\psi\rangle\) and \(|\psi'\rangle\) eigenstates of equation (1) determines the ASQ frequency \(f = E_{SO} - E_z\) (Fig. 1b). For readout and control, we embed the ASQ into a superconducting transmon circuit (Fig. 1c). The transmon circuit consists of a capacitor, with charging energy \(E_c\), shunting a...
superconducting quantum interference device (SQUID) formed by the parallel combination of a gate-tunable Josephson junction with Josephson energy E_J and the quantum dot Josephson junction hosting the ASQ. We operate in the regime $E_J/\sqrt{E_0^2 + E_{SO}^2} > 20$ so that the phase difference Φ across the quantum dot Josephson junction can be controlled by the magnetic flux through the SQUID loop, namely, $\Phi_{\text{ext}} = \Phi_0/2m$, where $\Phi_0 = \hbar/2e$ is the quantum of magnetic flux. Due to the presence of the E_{SO} term, the transmon frequency f_s becomes spin dependent. We exploit this fact to readout the ASQ state by capacitively coupling the transmon circuit to a readout resonator. Due to the transmon–resonator dispersive coupling, the resonator frequency, in turn, becomes spin dependent and probing the readout resonator, therefore, leads to a spin-dependent response. Spectroscopy of the spinful Andreev levels can, thus, be performed using standard two-tone circuit QED techniques. Finally, the spin-flipping qubit transition can be directly driven and the transmon can be maintained in its ground state by applying a microwave tone on the central quantum dot gate ($2\pi \times 2\pi$). Such a microwave drive allows for all-electrical manipulation through electric-dipole-induced spin resonance. Supplementary Section II provides further details about the device implementation and setup.

Following the gate-tuning strategy described elsewhere, we prepare the quantum dot junction in a regime where it is occupied by an odd number of electrons, with $E_d/h = 211$ MHz and $E_{\text{SO}}/h = 305$ MHz and with a parity lifetime of 2.8 ms (Supplementary Section IIIC). In this regime, the qubit states $|\downarrow\rangle$ and $|\uparrow\rangle$ are the lowest-energy states of the system, and the qubit subspace is separated from higher-lying states by a frequency gap of at least 20 GHz (Supplementary Section IIIA). After fixing the gate voltages of the quantum dot, we investigate the tunability of the spin-flip transition f_s by applying a microwave tone at frequency f_{drive} and performing dispersive readout of the transmon qubit. As shown in Fig. 1d, we can finely control f_s by applying a magnetic flux through the SQUID loop (we attribute the shift in the minima and maxima of the spin-flip frequency away from $n/2$ and $3n/2$ to the phase-dependent renormalization of the impurity g-factor by coupling to the leads, known as the impurity Knight shift), although the visibility of the measurement signal is reduced around $\Phi_{\text{ext}} = 0, \pi$, where the spin-dependent transmon frequencies are degenerate. By applying an external magnetic field along the nanowire B_z of up to 65 mT, the qubit frequency can be varied from 250 MHz to 12 GHz (Fig. 1e). The magnetic field direction is chosen to maximize the magnetic field compatibility of the Al shell of the nanowire and is generally not aligned with the spin–orbit direction $\vec{\mu}$ (refs. 26,31).

Qubit coherence

To perform the coherent manipulation of the spin states, we fix $B_z = 65$ mT and $\Phi_{\text{ext}} = 3\pi/2$, setting $f_s = 11.5$ GHz, where the residual population of the excited state is suppressed to less than 5% (Supplementary Section IIIID), facilitating qubit manipulation and readout. We observe Rabi oscillations between the qubit states $|\downarrow\rangle$ and $|\uparrow\rangle$ by applying a Gaussian microwave pulse with a carrier frequency at the spin-flip transition frequency $f_{\text{drive}} = f_s$ (Fig. 2). Here the Gaussian pulses are truncated so that the total pulse length is 2.5 times the Gaussian full-width at half-maximum (FWHM). As shown in Fig. 2a, we resolve up to ten oscillations by varying the amplitude and duration of the pulse envelope. The population transfer between the spin states, as measured by the dispersive readout scheme with a readout time of 2 μs, follows the expected time dependence of a standard Rabi oscillation (Fig. 2b), from which we extract the Rabi frequency for each pulse amplitude. For a fixed Rabi frequency, we calibrate the FWHM needed for π and $\pi/2$ pulses for single-qubit manipulation.

As expected for a two-level system, the Rabi frequency is linear over a wide range of pulse amplitudes. It only starts to deviate from this linear dependence for strong drive amplitudes (Fig. 2c). This deviation is due to the saturation of the maximum power provided by the room-temperature electronics. We measure Rabi frequencies larger than 200 MHz, exceeding the largest Rabi frequencies achieved in SOQ and more than an order of magnitude faster than previous
results for the ASQ. We observe that the Rabi frequency is approaching the anharmonicity of typical transmon qubits, with no indications of higher-order levels being driven. The two-level nature of the ASQ, thus, intrinsically supports faster single-qubit gates than standard transmon qubits.

Next, we characterize the lifetime of the ASQ by applying a π pulse and reading out the qubit state after a delay time \(t \). We obtain an exponential decay with a characteristic time \(T_1 = 24.4 \pm 0.5 \) \(\mu \)s at \(B_z = 65 \) mT (Fig. 3a). As a function of the magnetic field, \(T_1 \) varies between 10 and 40 \(\mu \)s for qubit frequencies above the transmon frequency. We conjecture that the observed lifetime is limited by Purcell-like decay from coupling to the transmon, given the short transmon lifetime of around 250 ns. For \(B_z \) closer to zero, \(T_1 \) drops down to around 1 \(\mu \)s (Supplementary Fig. 10). This low lifetime is in contrast to the near-zero-field lifetimes found in previous ASQ experiments \(^{43,44}\), which were in the range of 10–50 \(\mu \)s. The cause of this discrepancy is unknown, but a potential reason is an enhanced resonant exchange with the nuclear spins due to stronger strain in the InAs nanowire, which may vary for different nanowires depending on the exact growth conditions.

To characterize the coherence time of the qubit, we apply two π/2 pulses separated by a delay time, after which we read the qubit state. From this experiment, we extract a Ramsey coherence time of \(T_2 = 11 \pm 1 \) ns (Fig. 3b), much smaller than \(T_1 \), and thus indicative of strong dephasing. Dephasing that originates from slow noise compared with the spin dynamics can be partially cancelled using a Hahn-echo sequence \(^{35}\), which introduces a π pulse halfway between the two π/2 pulses. This echo sequence increases the measured coherence time by more than three times, to \(T_2 = 37 \pm 4 \) ns (Fig. 3c).

The coherence time of the qubit can be further enhanced by using dynamical decoupling pulse sequences, which serve to filter out faster environmental fluctuations. We apply Carr–Purcell sequences \(^{36-38}\), interleaving a varying number of equidistant π pulses, \(n_\pi \), in between two π/2 pulses. As \(n_\pi \) increases, higher-frequency noise is cancelled out, extending the coherence times. We reach \(T_2 \) times up to more than 90 ns for \(n_\pi = 7 \), at which stage we are most probably limited by decoherence during the π pulses (Fig. 3d and Supplementary Information). We subsequently fit the \(n_\pi \) dependence of \(T_2 \) with a power law, \(T_2(n_\pi) \propto n_\pi^\beta \). Assuming a noise power spectral density of the form \(f^\gamma \), we expect the relation \(\beta = \gamma/(1 - \gamma) \) (refs. 38–40). The observed scaling with \(\gamma = 0.47 \pm 0.10 \), therefore, suggests that the decoherence is governed by noise with a 1/f spectral density in the frequency range of 25–100 MHz.

There are several potential sources of dephasing that are compatible with a 1/f noise spectral density, such as flux noise through the SQUID loop and charge noise.\(^{31,42}\) We exclude the former, as we do not observe an increase in coherence times at the flux sweet spots (Supplementary Fig. 12). Similarly, no consistent trend is observed when varying the gate voltages, nor when increasing the magnetic field strength. The latter indicates that charge noise is probably not the dominant contributor to dephasing, given that electric-dipole-induced spin resonance becomes more effective at coupling charge noise to the qubit at elevated fields.\(^{21,31,33,38}\) Additionally, based on the evolution of the Rabi decay time with increasing pulse amplitudes,\(^{41}\) the size of the charge fluctuations required to cause the observed amount of dephasing is estimated to be 0.25 mV, substantially larger than what is expected to originate from the gate lines (Supplementary Section IIII). However, the contribution of charge fluctuations originating elsewhere, such as in the dielectric material on the device, could still be contributing to the dephasing. Given that the sensitivity to fluctuations in environmental offset charge on the transmon island is suppressed by the large \(E_c/E_J > 30 \) ratio, it is furthermore improbable that the ASQ dephasing originates from offset-charge-dependent fluctuations of the transmon frequency qubit.

Another potential source of dephasing originates from the dynamics of the spinful nuclei in the nanowire, which may couple to the ASQ as a result of the hyperfine interaction. It has previously been shown that these dynamics can lead to longitudinal Overhauser field fluctuations with a 1/f spectral density.\(^{44}\) Moreover, this effect is expected to be particularly strong in InAs due to the large nuclear spin of indium \((I = 9/2) \) and should not be strongly affected by the magnetic field in the \(B_z \) range investigated here, which is not enough to polarize the nuclear spins. Corroborated by the fact that the extracted \(T_{2\pi} \) and \(T_{21\pi} \) times are strikingly similar to those found for the weak-link InAs ASQ\(^{24}\), InAs SOQ\(^{24}\) and InSb SOQ\(^{24}\), we conjecture that the nuclear environment provides a notable contribution to the decoherence of the ASQ.

ASQ–transmon coupling

One of the main characteristics of the ASQ is the intrinsic coupling between the spin degree of freedom and the supercurrent across the quantum dot Josephson junction. We have, so far, only exploited this coupling for readout of the qubit state using circuit QED techniques. Now, we demonstrate the observation of coherent coupling of the ASQ with the transmon qubit.

The first signature of a coherent coupling is the presence of transitions that involve both qubits, in addition to the single-qubit transitions (Fig. 4a). At zero applied magnetic field, we spectroscopically detect two of such transitions, \(\delta f_+ = f_+ - f_e \) and \(\delta f_- = f_+ - f_+ \), where \(f_e \) is the transmon

Fig. 4 | Coherent ASQ–transmon coupling. a. Frequency diagram of the joint ASQ–transmon circuit (Fig. 3c) at large detuning between the ASQ and transmon qubit energy levels. In addition to the two spin-conserving transmon transitions (solid red and blue) and the transmon-conserving spin qubit transition (solid yellow), two additional transitions involving both qubits can take place in the presence of coherent coupling between them (dashed and dotted black). b. Two-tone spectroscopy of the joint two-qubit system at \(B_z = 0 \). In addition to the two spin-dependent branches of the transmon qubit frequency,\(^{24}\) two additional transitions appear. The transition frequencies obtained from the model of equation (2) are overlaid. c. Frequency diagram of the joint ASQ–transmon circuit (Fig. 3c) at large detuning between the ASQ and transmon qubit energy levels. In addition to the two spin-conserving transmon transitions (solid red and blue) and the transmon-conserving spin qubit transition (solid yellow), two additional transitions involving both qubits can take place in the presence of coherent coupling between them (dashed and dotted black). d. Two-tone spectroscopy of the joint two-qubit system at \(B_z = 28 \) mT, where \(f_e < f_+ \). This results in avoided crossings between the two qubit frequencies. The transition frequencies obtained from the model of equation (2) are overlaid. Their colours denote the expectation value of the spin degree of freedom of the excited state and go from \(\langle \uparrow \rangle \) (green) to \(\langle \downarrow \rangle \) (red) for the transition transition to \(\langle \uparrow \rangle \) (yellow) for the spin-flip transition. Here \(f_{\text{trans}} \) denotes the frequency of the second tone, sent through the readout resonator.
frequency (Fig. 4b). We classify them based on a fit with the joint Hamiltonian of the total ASQ–transmon circuit (Fig. 1c) given by

$$H_{tot} = -4E_c \theta^2 - E_I \cos(\phi - \phi_{ext}) + H_c(\phi).$$

We identify the observed additional resonances as the double excitation |g, ↑⟩↔|e, ↑⟩ and the |g, ↑⟩↔|e, ↓⟩ SWAP transitions, where |g⟩ and |e⟩ denote the ground and first excited transmon states, respectively. These transitions could be used to construct entanglement and two qubit gates between the two different qubit platforms, provided the transitions can be driven at a faster rate than the decoherence rates of either qubit.

Additionally, one of the hallmarks of strong coherent coupling is the appearance of an avoided-level crossing when both qubit frequencies are made equal, that is, \(f_I = f_c\). In this case, the |e, +⟩ and |g, +⟩ states are expected to hybridize into superposition states with a frequency splitting of \(2J\) (Fig. 4d). At \(E_I = 28\) mT, this splitting can be readily observed in the experiment. By varying the external flux \(\phi_{ext}\), such that the ASQ frequency \(f_I\) crosses the transmon frequency \(f_c\), we find avoided crossings with a minimum frequency splitting of \(2J/2n\) = \(2 \times 52\) MHz (Fig. 4d). As \(J/4\) is four times larger than the decoherence rate of the ASQ, \(1/T_2 = 14.0 \times 2n\) MHz and one order of magnitude larger than the decoherence rate of the transmon \((-2.0 \times 2n\) MHz), the coupling between the two qubits falls into the strong-coupling regime. This result establishes the first realization of a direct strong coupling between a spin qubit and a superconducting qubit, in contrast to the results of another work\(^{13}\) in which a high-impedance bus resonator was required to mediate the coupling between the spin and transmon qubit through virtual photons.

Analytical estimates predict that the coupling \(J = E_c \phi_{zpf}\sin(\theta)\), where \(\phi_{zpf}\) is the magnitude of the zero-point fluctuation of the transmon phase and \(\theta\) is the angle between the Zeeman field and the spin–orbit direction \(i\) (Supplementary Section IB). This expression suggests that by choosing a resonance with a larger \(E_c\) (ref. 26) and by aligning the magnetic field perpendicular to the spin–orbit direction, coupling rates of hundreds of megahertz can be achieved, which would enable rapid two-qubit gates between the transmon and ASQ and potentially allow for the study of light–matter interactions in the ultrastrong-coupling regime\(^{23,24}\).

Towards new platforms and multiple ASQs
We have implemented an ASQ, where the spin degree of freedom of a quasiparticle in a quantum dot with superconducting leads encodes the qubit state. The qubit subspace is stabilized by the charging energy of the quantum dot and direct microwave driving of the transitions is possible without the requirement of auxiliary leads. The qubit coherence was found to be comparable with previous results for qubits implemented in InAs or InSb nanowires\(^{43,44,39}\). Our results suggest that the nuclear environment strongly contributes to the ASQ decoherence, although the contribution of charge noise cannot be fully neglected. This limitation motivates future investigations of alternative material platforms for ASQs, such as superconductor-proximitized nuclear-spin-free semiconductors\(^{40}\), for example, isotopically purified germanium\(^{40–42}\).

We furthermore observed direct strong coherent coupling between the ASQ and transmon qubit. Such strong coupling showcases the advantage of the intrinsic spin–supercurrent coupling, allowing the ASQ to be readily integrated into a circuit QED architecture. Our results open avenues towards multiqubit devices: we propose to leverage the fact that transmon qubits can be readily coupled together using capacitive coupling, useful for mediating interactions between multiple ASQs. Furthermore, our results are a crucial step towards the coupling of distant ASQs through bus resonators or a shared inductance\(^9\), as well as short-distance coupling through wavefunction overlap\(^2\).

Online content
Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41567-023-02071-x.

References
1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).
2. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).
3. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).
4. Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 5, 184–190 (2022).
5. Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).
6. Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).
7. Landig, A. J. et al. Coherent spin–photon coupling using a resonant exchange qubit. Nature 560, 179–184 (2018).
8. Borjans, F., Croft, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2020).
9. Harvey-Collard, P. et al. Coherent spin-spin coupling mediated by virtual microwave photons. Phys. Rev. X 12, 021026 (2022).
10. Yu, C. X. et al. Strong coupling between a photon and a hole spin in silicon. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01332-3 (2023).
11. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
12. Compute Resources (IBM Quantum, accessed 13 June 2022); https://quantum-computing.ibm.com/services?services=systems
13. Blais, A. et al. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
14. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electronics. Nature 431, 162–167 (2004).
15. Blais, A., Grimsmo, A. L., Girvin, S. & Wallraff, A. Circuit quantum electronics. Rev. Mod. Phys. 93, 025005 (2021).
16. Chchelkatchev, N. M. & Nazarov, Y. V. Andreev quantum dots for spin manipulation. Phys. Rev. Lett. 90, 226806 (2003).
17. Padurariu, C. & Nazarov, Y. V. Theoretical proposal for superconducting spin qubits. Phys. Rev. B 81, 144519 (2010).
18. Béri, B., Bardarson, J. H. & Beenakker, C. W. J. Splitting of Andreev levels in a Josephson junction by spin-orbit coupling. Phys. Rev. B 77, 045311 (2008).
19. Hays, M. et al. Coherent manipulation of an Andreev spin qubit. Science 373, 430–433 (2021).
20. Hays, M. et al. Continuous monitoring of a trapped superconducting spin. Nat. Phys. 16, 1103–1107 (2020).
21. Park, S. & Yeyati, A. L. Andreev spin qubits in multichannel Rashba nanowires. Phys. Rev. B 96, 125416 (2017).
22. Metzger, C. et al. Circuit-QED with phase-biased Josephson weak links. Phys. Rev. Research 3, 013036 (2021).
23. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).
24. Nadji-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).
25. Bargerbos, A. et al. Singlet-doublet transitions of a quantum dot Josephson junction detected in a transmon circuit. PRX Quantum 3, 030311 (2022).
26. Bargerbos, A. et al. Spectroscopy of spin-split Andreev levels in a quantum dot with superconducting leads. Preprint at https://arxiv.org/abs/2208.09314 (2022).
27. Golovach, V. N., Borhani, M. & Loss, D. Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).
28. van den Berg, J. W. G. et al. Fast spin-orbit qubit in an indium antimonide nanowire. Phys. Rev. Lett. 110, 066806 (2013).
29. Wesdorp, J. J. et al. Microwave spectroscopy of interacting Andreev spins. Preprint at https://arxiv.org/abs/2208.11198 (2022).
30. Pavešić, L., Pita-Vidal, M., Bargerbos, A. & Žitko, R. Impurity Knight shift in quantum dot Josephson junctions. Preprint at https://arxiv.org/abs/2212.07185 (2022).
31. Han, L. et al. Variable and orbital-dependent spin-orbit field orientations in an InSb double quantum dot characterized via dispersive gate sensing. Phys. Rev. Appl. 19, 014063 (2023).
32. Lazăr, S. et al. Calibration of drive non-linearity for arbitrary-angle single-qubit gates using error amplification. Preprint at https://arxiv.org/abs/2212.01077 (2022).
33. Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).
34. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580 (1950).
35. Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630 (1954).
36. Barthel, C., Medford, J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. Phys. Rev. Lett. 105, 266808 (2010).
37. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).
38. Cywiński, L., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).
39. Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).
40. Schreier, J. A. et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502 (2008).
41. Braumüller, J. et al. Characterizing and optimizing qubit coherence based on SQUID geometry. Phys. Rev. Appl. 13, 054079 (2020).
42. Malinowski, F. K. et al. Symmetric operation of the resonant exchange qubit. Phys. Rev. B 96, 045443 (2017).
43. Malinowski, F. K. et al. Spectrum of the nuclear environment for GaAs spin qubits. Phys. Rev. Lett. 118, 177702 (2017).
44. Landig, A. J. et al. Virtual-photon-mediated spin-qubit–transmon coupling. Nat. Commun. 10, 5037 (2019).
45. Scarlino, P. et al. In situ tuning of the electric-dipole strength of a double-dot charge qubit: charge-noise protection and ultrastrong coupling. Phys. Rev. X 12, 031004 (2022).
46. de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).
47. Hendrickx, N. W. et al. Gate-controlled quantum dots and superconductivity in planar germanium. Nat. Commun. 9, 2835 (2018).
48. Scappucci, G. et al. The germanium quantum information route. Nat. Rev. Mater. 6, 926–943 (2021).
49. Tosato, A. et al. Hard superconducting gap in germanium. Commun. Mater. 4, 23 (2023).
50. Spethmann, M., Zhang, X.-P., Klinovaja, J. & Loss, D. Coupled superconducting spin qubits with spin-orbit interaction. Phys. Rev. B 106, 115411 (2022).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2023
Data availability
The data that support the findings of this study are publicly available via 4TU.ResearchData at https://doi.org/10.4121/c.6073271.

Code availability
The analysis code that supports the findings of this study is publicly available via 4TU.ResearchData at https://doi.org/10.4121/c.6073271.

Acknowledgements
We acknowledge fruitful discussion with M. Veldhorst, M. Russ, F. Malinowski, V. Fatemi and Y. Nazarov. We further thank P. Krogstrup for guidance in the material growth. This research was inspired by prior work by J.J.W. where the spin-flip transition in an InAs/Al nanowire weak link was directly observed in spectroscopy under the application of a magnetic field29. This research is co-funded by the allowance for Top Consortia for Knowledge and Innovation (TKI) from the Dutch Ministry of Economic Affairs; research project ‘Scalable circuits of Majorana qubits with topological protection’ (i39, SCMQ) with project no. 14SCMQ02; the Dutch Research Council (NWO); and the Microsoft Quantum initiative. R.Ž. acknowledges support from the Slovenian Research Agency (ARRS) under P1-0416 and J1-3008. R.A. acknowledges support from the Spanish Ministry of Science and Innovation through grant PGC2018-097018-B-I00 and from the CSIC Research Platform on Quantum Technologies PTI-001. B.v.H. and C.K.A. acknowledge support from the Dutch Research Council (NWO).

Author contributions
A.B., M.P.-V. and A.K. conceived the experiment. Y.L. developed and provided the nanowire materials. A.B., M.P.-V., L.J.S., L.G. and J.J.W. prepared the experimental setup and data acquisition tools. L.J.S. deposited the nanowires. A.B. and M.P.-V. designed and fabricated the device, performed the measurements and analysed the data, with continuous feedback from L.J.S., L.G., J.J.W., B.v.H., A.K. and C.K.A. R.A., B.v.H. and R.Ž. provided theory support during and after the measurements. A.B., M.P.-V. and B.v.H. wrote the code to compute the circuit energy levels and extract the experimental parameters. L.P.K., R.A., B.v.H., A.K. and C.K.A. supervised the work. A.B., M.P.-V. and C.K.A. wrote the paper with feedback from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41567-023-02071-x.

Correspondence and requests for materials should be addressed to Marta Pita-Vidal or Christian Kraglund Andersen.

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.