Updating Boer-Mulders functions from unpolarized pd and pp Drell-Yan data

Zhun Lu1,2 and Ivan Schmidt2

1Department of Physics, Southeast University, Nanjing 211189, China
2Departamento de Física y Centro de Estudios Subatómicos, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

We extract the Boer-Mulders functions for the proton by combining the unpolarized pd and pp Drell-Yan data measured by the E866/NuSea Collaboration by the assumption that the $\cos 2\phi$ asymmetry is from the Boer-Mulders function. Using the extracted Boer-Mulders functions, we present the predictions for the $\cos 2\phi$ asymmetries in future pp experiments at J-PARC and $p\bar{p}$ experiments at PANDA and PAX.

PACS numbers: 13.85.Qk, 14.20.Dh

I. INTRODUCTION

In a recent work [1] the Boer-Mulders functions for the proton have been extracted from the $\cos 2\phi$ angular asymmetry measured in the unpolarized pd Drell-Yan process by the E866/NuSea Collaboration [2] at FNAL. Much earlier, the first $\cos 2\phi$ asymmetries of dilepton production had been measured two decades ago by the NA10 [3] Collaboration and E165 [4] Collaboration, but for the π-nucleus Drell-Yan processes, showing that the magnitude of the asymmetries is around 30% at most. This substantial $\cos 2\phi$ angular dependence that violates the so-called Lam-Tung relation [5] predicted by perturbative QCD, belongs to the remaining challenges which need to be understood from QCD dynamics. Several attempts have been made to interpret these data, including QCD vacuum effects [6, 7] and higher-twist mechanisms [8, 9]. Furthermore, in the last decade significant efforts have been put forward on the understanding of the $\cos 2\phi$ angular dependence from the view point of the transverse momentum dependent (TMD) Boer-Mulders function $h_1^T(x, p_T^2)$ [10]. It was shown [11] by Boer that the angular dependence can be related to the product of two functions h_1^T, each of which comes from one of the incident hadrons. The Boer-Mulders function describes a correlation between the transverse spin and the transverse momentum of a quark inside an unpolarized hadron. Despite the naive T-odd nature of the Boer-Mulders functions and of their chiral-even partner the Sivers functions [12], it has been shown that they can originate from initial/final state interactions [13, 14] between the struck quark and the spectator of the nucleon, which are important to ensure the gauge invariance of the TMD distribution functions [15, 16].

Recently a lot of theoretical studies and phenomenological analysis [18, 37] on Boer-Mulders functions have been carried out.

The first measurement of the $\cos 2\phi$ asymmetry in the nucleon-nucleon interacting Drell-Yan process by the E866/NuSea Collaboration makes the attempt on extracting the proton Boer-Mulders function possible. In Ref. [11] we parameterized the Boer-Mulders functions for u, d, \bar{u} and \bar{d} quarks, which were fitted to the E866/NuSea pd data, based on the assumption that the $\cos 2\phi$ asymmetry comes only from the Boer-Mulders effect in the region $q_T^2 \ll Q^2$, where q_T and Q are the transverse momentum and the invariant mass of the lepton pair. In our parametrization the transverse momentum dependence of $h_1^T(x, p_T^2)$ was modeled by the Gaussian ansatz:

$$ h_1^T(x, p_T^2) = h_1^T(x) \exp \left(-\frac{p_T^2}{p_{Tm}^2} \right) . $$

The parameter p_{Tm}^2 describes the Gaussian width of the transverse momentum distribution. The x-dependence of $h_1^T(x)$ was further parameterized to be proportional to the unpolarized parton distribution $h_1(x) = x (1-x) f_1^p(x)$, where the parameter c is the same for all flavors. The large-x behavior of $h_1(x)$ compared with $f_1^p(x)$ was taken into account by the factor $(1-x)$ following the argument in Ref. [38].

More recently the E866/NuSea Collaboration reported new measurements [39] on the $\cos 2\phi$ asymmetry in the unpolarized pp Drell-Yan process. The overall magnitude of the $\cos 2\phi$ dependence for pp processes is consistent with, but slightly larger than that of pd processes. The new pp data, besides the previous pd data, will provide further information and constraint on the shape of the Boer-Mulders functions for different flavors. Therefore there is the need to perform a new extraction of Boer-Mulders function in the presence of new pp data. In this work we combine the previous pd data and the new pp data to extract Boer-Mulders functions for the proton to update our previous results. Furthermore, in the new fit we include x_T-dependent and Q-dependent data that have not been applied in the previous extraction. We then apply our extracted Boer-Mulders functions to predict the $\cos 2\phi$ asymmetries in future pp experiments at J-PARC and $p\bar{p}$ experiments at PANDA and PAX.

II. DESCRIPTION OF $\cos 2\phi$ ASYMMETRIES IN TERMS OF BOER-MULDERS FUNCTIONS

The angular differential cross section for unpolarized Drell-Yan processes has the general form

$$ \frac{1}{\sigma} \frac{d\sigma}{d\Omega} = \frac{3}{4\pi \lambda + 3} \frac{1}{\lambda} \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\lambda}{2} \sin^2 \theta \cos 2\phi . $$

where θ and ϕ are, respectively, the polar angle and the azimuthal angle of dileptons in the Collins-Soper frame [40].
The coefficients λ, μ and ν do not depend on these angles, and for scattering that has azimuthal symmetry their values are $\mu = \nu = 0$.

This angular distribution has been measured in muon pair production by pion-nucleon collisions: $\pi^- N \rightarrow \mu^- \mu^+ X$, with N denoting a nucleon in deuterium or tungsten, and for a π^- beam with energies of 140, 194, 286 GeV [3] and 252 GeV [4]. The experimental data show large values of ν, near 30%. The most recent measurements of the angular distribution were performed by the E866 Collaboration [2], in pd Drell-Yan processes at 800 GeV/c. The measured ν is about several percent, a result which cannot be explained by leading-twist collinear factorization 1 in QCD. As proposed by Boer [11], the non-zero $\cos 2\phi$ term can be produced by the product of two h_1^\perp's, each coming from one of the two incident hadrons.

The leading order unpolarized Drell-Yan cross section expressed in the Collins-Soper frame [40] is [11]

$$\frac{d\sigma(h_1 h_2 \rightarrow \ell \ell X)}{d\cos2\phi d^2q_T} = \frac{a^2}{3Q^2} \sum_{q_0} \{ A(y)F[f_1^q, f_2^q] + B(y) \}
\times \cos2\phi f \left[\left(\hat{h} \cdot p_T \hat{k} \cdot k_T \right) - (p_T \cdot k_T) \right] h_1^q h_2^q M_1 M_2,$$

(3)

where $Q^2 = q^2$ and q_T are the invariant mass square and the transverse momentum of the lepton pair. The vector \mathbf{h} is q_T/Q_T. We have used the notation

$$F[f] = \int d^2 p_T d^2 k_T \delta(\mathbf{p}_T + \mathbf{k}_T - \mathbf{q}_T) f(x_1, p_T^2) \bar{f}(x_2, k_T^2).$$

The first term in Eq. (3) is azimuthal independent, while the second term has a $\cos 2\phi$ azimuthal dependent term which contributes to the asymmetry ν.

In the case of the pd and pp Drell-Yan processes, the $\cos 2\phi$ asymmetry can be expressed as

$$\nu_{pd}(x_1, x_2, q_T) = \frac{F_{pd}(x_1, x_2, q_T)}{M^2 G_{pd}(x_1, x_2, q_T)}$$

(5)

$$\nu_{pp}(x_1, x_2, q_T) = \frac{F_{pp}(x_1, x_2, q_T)}{M^2 G_{pp}(x_1, x_2, q_T)}$$

(6)

where

$$F_{pd}(x_1, x_2, q_T) = 2F \left[(\hat{h} \cdot p_T \hat{k} \cdot k_T - p_T \cdot k_T) (e_1^\perp h_1^u)
+ e_2^\perp h_1^d \left(h_1^u + h_1^d \right) \right] + (q \leftrightarrow \bar{q}),$$

(7)

$$G_{pd}(x_1, x_2, q_T) = F' \left(e_1^u f_1^u + e_1^d f_1^d \right) (f_1^\perp + f_1 \perp) + (q \leftrightarrow \bar{q}),$$

(8)

$$F_{pp}(x_1, x_2, q_T) = 2F' \left[(\hat{h} \cdot p_T \hat{k} \cdot k_T - p_T \cdot k_T) (e_1^u h_1^u)
+ e_2^\perp h_1^d \left(h_1^u + h_1^d \right) \right] + (q \leftrightarrow \bar{q}),$$

(9)

$$G_{pp}(x_1, x_2, q_T) = F'' \left(e_1^u f_1^u + e_1^d f_1^d \right) (f_1^\perp + f_1 \perp) + (q \leftrightarrow \bar{q}).$$

(10)

For distribution functions for deuteron, we have used the isospin relation:

$$f_{u/d}^{\text{deuteron}} \approx f_{u/d}^{p} + f_{u/d}^{n} = f_{u} + f_{d}.$$

(11)

In Ref. [11] we have parameterized the transverse momentum dependence of Boer-Mulders functions with a Gaussian form as follows

$$h_1^q(x, p_T^2) = h_1^q(x) \frac{\exp(-p_T^2/p_{\text{min}}^2)}{\pi p_{\text{min}}^2},$$

(12)

The x dependence for u, d, \bar{u} and \bar{d} quarks is parameterized, as follows

$$h_1^\perp q(x) = H_q x' (1 - x) f_1^{\perp q}(x).$$

(13)

The above parametrizations, with 6 parameters, have been applied to fit pd Drell-Yan data measured by E866/NuSea Collaboration. In the fit the P_T-dependent and $x_{1/2}$-dependent $\cos 2\phi$ asymmetry data were used. The fitted result was employed to predict the x_T-dependent and Q-dependent $\cos 2\phi$ asymmetries which were compared with the corresponding data.

Recently the E866/NuSea Collaboration reports measurements [39] of the $\cos 2\phi$ asymmetries on unpolarized pd Drell-Yan processes at $E_p = 800$ GeV. The new pp data, together with the previous pd data, will provide further information on the shape of the Boer-Mulders functions for different flavors. In this paper we will combine the previous pd data and the new pp data in the fit. Further more we will include x_T-dependent and Q-dependent data in our fit. To do this we will parameterize the Boer-Mulders functions as in Eqs. (12) and (13), but changing the form slightly.

In our previous fit we modeled the x_T-dependent behavior of $h_1^{\perp q}(x, p_T^2)$ at small x as x' compared with $f_1^{\perp q}(x)$, and we assumed the value of e to be flavor independent, as shown in

1 In has been shown in Ref. [41] that the $\cos 2\phi$ asymmetries can be explained by taking into account the twist-three quark-gluon correlations in collinear factorization which is consistent with the Boer-Mulders effect in the TMD factorization approach.
Now with more data available, we are able to release this constraint to replace c as c_q, depending on flavor. Secondly we model the large x-dependence of the Boer-Mulders functions by $(1 - x)^b$, different from our previous fit in which the large x dependence is $1 - x$. Therefore we have the new parametrizations for $h_1^{l,q}$ ($q = u, d, \bar{u}, \bar{d}$) as follows:

$$h_1^{l,q}(x) = H_q x^a (1 - x)^b f_1^{q}(x), \quad (14)$$

The first p_T^2-moment of Boer-Mulders function is defined as

$$h_1^{(1),q}(x) = \int d^2 p_T \frac{p_T^2}{2M^2} h_1^{q}(x, p_T^2) \quad (15)$$

From Eqs. (12) and (14) one can calculate $h_1^{(1),q}(x)$ from our parametrization as

$$h_1^{(1),q}(x) = \frac{p_T^2}{2M^2} h_1^{l,q}(x) \quad (16)$$

With the Gaussian form for the p_T dependence of Boer-Mulders functions and the unpolarized TMD distribution

$$f_1^{q}(x, p_T^2) = f_1^{q}(x) \frac{1}{\pi p_{un}^2} \exp \left(-\frac{p_T^2}{2p_{un}^2}\right), \quad (17)$$

the transverse momentum integrations in Eqs. (7) – (10) can be deconvoluted and the results are:

$$F_{pd}(x_1, x_2, q_T) = F_{pd}(x_1, x_2) \frac{q_T^2}{36 \pi p_{un}^2} \exp \left(-\frac{q_T^2}{2p_{un}^2}\right), \quad (18)$$

$$F_{pp}(x_1, x_2, q_T) = F_{pp}(x_1, x_2) \frac{q_T^2}{36 \pi p_{un}^2} \exp \left(-\frac{q_T^2}{2p_{un}^2}\right), \quad (19)$$

$$G_{pd}(x_1, x_2, q_T) = G_{pd}(x_1, x_2) \frac{1}{18 \pi p_{un}^2} \exp \left(-\frac{q_T^2}{2p_{un}^2}\right), \quad (20)$$

$$G_{pp}(x_1, x_2, q_T) = G_{pp}(x_1, x_2) \frac{1}{18 \pi p_{un}^2} \exp \left(-\frac{q_T^2}{2p_{un}^2}\right), \quad (21)$$

where the $x_{1,2}$ dependent parts are

$$F_{pd}(x_1, x_2) = \left(4 h_1^{u}(x_1) + h_1^{d}(x_1)\right)$$
\[\left(h_1^{\perp u}(x_2) + h_1^{\perp d}(x_2) \right) + (q \to \bar{q}) \]
\[= (1 - x_1) h_1^{\perp u}(1 - x_2) f_1^{'u}(x_1) x_2^2 f_2^{'u}(x_2) + H_2 x_1^{\perp u} f_1^{u}(x_1) x_2^{\perp u} f_2^{u}(x_2) + \left(H_1 H_2 / H_3 \right) x_1^{\perp u} f_1^{u}(x_1) x_2^{\perp u} f_2^{u}(x_2) + (q \to \bar{q}), \]
\[F_{pp}(x_1, x_2) = 4 h_1^{\perp u}(x_1) h_1^{\perp d}(x_2) + h_1^{\perp d}(x_1) h_1^{\perp d}(x_2) + (q \to \bar{q}), \]
\[G_{pd}(x_1, x_2) = 4 f_2^{\perp u}(x_1) + f_2^{\perp d}(x_1) \]
\[\times \left(f_1^{\perp u}(x_2) + f_1^{\perp d}(x_2) \right) + (q \to \bar{q}), \]
\[G_{pp}(x_1, x_2) = 4 f_1^{\perp u}(x_1) f_1^{\perp u}(x_2) + f_1^{\perp u}(x_1) f_1^{\perp d}(x_2) + (q \to \bar{q}), \]

where the subscript \(H \) = \(H_u H_d \), \(H_2 = H_u H_d \), \(H_3 = H_u H_d \), \(H_1 H_2 / H_3 = H_u H_d \). Since \(H_u, H_d, H_u \) and \(H_d \) always appear as products of two of them, we will apply \(H_1, H_2 \) and \(H_3 \) as the parameters in the fit. Therefore the actual number of free parameters is reduced to 9.

The \(q_T, x_1 \)- and \(x_2 \)-dependent cos 2\(\phi \) asymmetries in unpolarized \(p d \) and \(pp \) Drell-Yan processes can then be expressed as

\[\nu_{NN}(q_T) = \frac{\int dx_1 \int dx_2 F_{NN}(x_1, x_2, q_T)}{M_p^2 \int dx_1 \int dx_2 G_{NN}(x_1, x_2, q_T)}, \]
\[\nu_{NN}(x_1) = \frac{\int dx_2 \int dx_T^2 F_{NN}(x_1, x_2, q_T)}{M_p^2 \int dx_2 \int dx_T^2 G_{NN}(x_1, x_2, q_T)}, \]
\[\nu_{NN}(x_2) = \frac{\int dx_1 \int dx_T^2 F_{NN}(x_1, x_2, q_T)}{M_p^2 \int dx_1 \int dx_T^2 G_{NN}(x_1, x_2, q_T)}, \]

where the subscript \(NN \) denotes \(p d \) and \(pp \).

One can also express the cross-section of the Drell-Yan process, depending on Feynman \(x_F \) and the mass of the lepton pair \(Q \) as

\[\frac{d\sigma}{dx_F dQ^2 dQ_T} = \frac{1}{s} \sqrt{\frac{x_F^2 + Q^2/s}{x_F^2 + Q^2/s}} \frac{d\sigma}{dx_1 dx_2 d^2q_T}, \]

with

\[x_{1/2} = \pm x_F + \sqrt{x_F^2 + Q^2/s} \]

Therefore the \(x_F \)- and \(Q \)-dependent cos 2\(\phi \) asymmetries can be expressed as

\[\nu_{NN}(x_F) = \frac{\int dx_F \int dx_T^2 F_{NN}(x_F, x_T, Q_T)}{M_p^2 \int dx_F \int dx_T^2 G_{NN}(x_F, x_T, Q_T)}, \]
\[\nu_{NN}(Q) = \frac{\int dx_F \int dx_T^2 G_{NN}(x_F, x_T, Q_T)}{M_p^2 \int dx_F \int dx_T^2 F_{NN}(x_F, x_T, Q_T)} . \]

FIG. 6: The first \(p_T^2 \)-moments of Boer-Mulders functions for \(u, d, \bar{u}, \bar{d} \) quarks for \(Q^2 = 1 \) GeV\(^2\) by solid lines, the shadows depict the variation ranges of \(x_1 h_1^{\perp u}(x) \) allowed by the positivity bound. The dashed lines show \(\frac{d\rho_{\perp} q}{2m} \times f_1^q(x) \).

III. FITTING BOER-MULDERS FUNCTIONS TO THE UNPOLARIZED E866/NUSEA \(p d \) AND \(pp \) DATA

The E866/NuSea Collaboration measured the cos 2\(\phi \) asymmetries \(\nu_{pd} \) and \(\nu_{pp} \) vs \(Q_T, x_1, x_2, x_F \) and \(m_{pp} \) in the following kinematical region:

\[4.5 \text{ GeV} < Q < 9 \text{ GeV}, \quad 10.7 \text{ GeV} < Q < 15 \text{ GeV}, \quad q_T < 4 \text{ GeV}, \quad 0.15 < x_1 < 0.85, \quad 0.02 < x_2 < 0.24. \]

In the following we apply the theoretical expressions \(\text{(26)} \) - \(\text{(28)} \) to fit the unpolarized \(p d \) and \(pp \) Drell-Yan cos 2\(\phi \) asymmetry data \(\text{(31)} \). The Boer-Mulders effect to the cos 2\(\phi \) asymmetry is supposed to apply in the region where \(q_T \) is not large. At large \(q_T \), the higher order perturbative QCD contributions \(\text{(42)} \) might be important. Therefore we exclude the data with \(q_T > 2 \text{ GeV} \) in our fit. For the parton distribution \(f_1^q(x) \) we adopt the MSTW2008 LO set \(\text{(44)} \). We choose the Gaussian width for \(f_1^q(x, p_T^2) \) as \(\sigma_{p_T^2} = 0.25 \text{ GeV}^2 \), following the value given in Refs. \(\text{[45, 46]} \). The best fit results and the errors for the parameters are as follows:

\[H_1 = 0.62^{+0.52}_{-0.29}, \quad H_2 = 1.45^{+1.30}_{-1.12}, \quad H_3 = 0.61^{+0.50}_{-0.55}, \]
\[c_u = 0.63^{+0.53}_{-0.21}, \quad c_d = 0.47^{+0.36}_{-0.39}, \quad c_{\bar{u}} = 0.07^{+0.06}_{-0.05}, \]
\[c_{d} = 0.75^{+0.72}_{-0.52}, \quad b_0 = 0.17^{+0.15}_{-0.14}, \quad p_{b1}^2 = 0.173^{+0.027}_{-0.033}. \]

The \(\chi^2 \) of this fit is 35.95 for 52 data points, resulting \(\chi^2/d.o.f. = 0.84 \). In Figs. \(\text{[11, 12, 8, 4, and 5]} \) we show the \(q_T, x_1, x_2, x_F \) and \(Q \)-dependent cos 2\(\phi \) asymmetries for unpolarized \(p d \) and \(pp \) Drell-Yan process calculated from our fitted results and compare them with FNAL E866/NuSea data. The solid lines show the best fit results, and the regions between
the two dotted lines correspond to the uncertainty of the parameter. In Fig. 1, we also show the predictions for \(p_T > 2 \text{GeV} \) region from the Boer-Mulders effect.

The possible range of coefficients \(H_q \) are obtained from the values of \(H_1, H_2 \) and \(H_3 \), by employing the positivity bound [47] for \(h_1^{q}(x, p_T^2) \) for the entire \(x \) and \(p_T \) regions:

\[
\frac{|p_T h_1^{q}(x, p_T^2)|}{M} \leq f_1^q(x, p_T^2). \tag{34}
\]

We have

\[
H_u = 0.59^{+0.64}_{-0.31}, \quad H_d = 1.37^{+1.53}_{-0.72}, \quad H_{\bar{d}} = 1.10^{+1.21}_{-0.57}, \quad H_{\bar{u}} = 1.08^{+1.18}_{-0.56}. \tag{35}
\]

The upper and lower limits for \(H_q \) are determined by the positivity bound for \(h_1^{q}(x, p_T^2) \). The central value for \(H_q \) shown above is obtained from the geometric mean values of the upper and lower limits for \(H_q: H_q^{\text{cen}} = \sqrt{H_q^{\text{max}} H_q^{\text{min}}} \). In our previous work [1] the variation range of \(H_q \) allowed by the positivity bound was described by the coefficient \(\omega_q \), namely, that the substitution \(H_q \rightarrow \omega_q H_q \) for \(q = u, d \) and \(H_q \rightarrow \frac{1}{\omega_q} H_q \) for \(q = \bar{u}, \bar{d} \) will not change the result. In our new fit presented here, the range of \(\omega_q \) is \(0.48 < \omega < 2.1 \), and central values for \(H_q \) correspond to \(\omega = 1 \).

The positivity bound given in (34) implies

\[
h_1^{(1)q}(x) \leq \frac{(p_T \omega M)}{2M} f_1^q(x). \tag{36}
\]

In Fig. 6, we show the first \(p_T^2 \)-moments of the Boer-Mulders functions \(x h_1^{(1)q}(x) \) for \(u, d, \bar{u}, \bar{d} \) and \(q \) quarks for \(Q^2 = 1 \) \GeV^2 \) by solid lines, the shadows depict the variation range of \(x h_1^{(1)q}(x) \) allowed by the positivity bound. The dashed lines show \(\frac{(p_T \omega M)}{2M} x f_1^q(x) \).

Several comments on our fit are in order. First, since we don’t know the scale dependence of Boer-Mulders functions, we assumed that it has the same behavior as that of the unpolarized distribution \(f_1^q \). Recently there has been growing interest on performing next-to-leading order analysis [48-52] of single-spin asymmetries in Semi-inclusive deeply inelastic scattering and Drell-Yan processes, especially on the Sivers asymmetry. Those studies can provide information on the evolution of the Sivers function. It is also interesting to study the evolution of the Boer-Mulders function. However, to investigate the scale dependence behavior of the Boer-Mulders function and its impacts on the cos 2\(\phi \) asymmetries is out of the scope of this paper. Secondly, we considered the Boer-Mulders effect as the dominant source for the cos 2\(\phi \) asymmetries, which is reasonable in the region \(Q_1^2 \approx Q^2 \). Since the data in E866/NuSea covers the kinematics regime 4.5 GeV < \(Q < 9 \) GeV and 10.7 GeV < \(Q < 15 \) GeV, one expects that the Boer-Mulders effect dominates in the region \(q_T < 2 \) GeV. At \(q_T > 3 \) GeV, the higher order perturbative QCD contributions [42-43] might be important. This can be seen from Fig. 1 which indicates that the predicted asymmetries at large \(q_T \) are small, while the size of the data in that region is substantial [2, 39]. Thirdly, the \(\chi^2/d.o.f. \) in the fit presented in this work is a little bigger than that in the previous fit shown in Ref. [1]. This is because in Ref. [1] we only included 16 data points from the \(p d \) process, while now we have 52 data points in our new fit. And among those data we include \(Q \)- and \(x_T \)-dependent data also. We have checked that the two data points in the large \(x_T \) region give rise to substantial contributions (20%) to the total \(\chi^2 \) in our best fit.

IV. PREDICTIONS FOR FUTURE \(pp \) AND \(p\bar{p} \) EXPERIMENTS

We will then apply our extracted Boer-Mulders in previous section to predict the cos 2\(\phi \) asymmetries in future \(pp \) and \(p\bar{p} \) experiments.

Drell-Yan process has been proposed at J-PARC [53] by pp scattering with proton beam energy \(E_p = 50 \) GeV, with this lower beam energy than that at E866/NuSea, the measurement of cos 2\(\phi \) asymmetry at J-PARC will provide complementary information on Boer-Mulders functions in a different kinematical region. We estimate the \(x_T \)-dependent cos 2\(\phi \) asymmetry at J-PARC by imposing the cuts 0 ≤ \(q_T \) ≤ 1 \GeV \ and 4 ≤ \(Q \) ≤ 5 \GeV \ from the fitted results in Eq. (33) directly, as shown in Fig. 7. The solid curve shows the result from the best fitted values, while the region between the dotted lines correspond to the parameters uncertainty.

The GSI-PANDA experiment [54] will run the Drell-Yan process with an unpolarized antiproton beam colliding with an unpolarized proton target at \(s = 30 \) GeV^2. The PAX [55] experiment might also perform unpolarized \(p\bar{p} \) Drell-Yan process at the energy \(s = 45 \) GeV^2 in the fixed target mode. The kinematical cuts we apply in the estimation of the asymmetry for those experiments are 2 ≤ \(Q \) ≤ 3 \GeV \ and 0 ≤ \(q_T \) ≤ 0.4 \GeV. To estimate the asymmetries in \(p\bar{p} \) processes we need to use the \(H_q \) results given in (35), rather than to the results for \(H_i \) (1, 2, 3) in (33). In Fig. 8 we show the predicted cos 2\(\phi \) asymmetries \(\nu \) at PANDA for \(s = 30 \) GeV^2, and PAX...
for \(s = 45 \text{ GeV}^2 \), as a function of \(x_F \). The solid lines are calculated from the central value of \(H_\phi \) given in Eq. (35), and the bands correspond to all possible values of \(\omega \) in the allowed range \(0.48 < \omega < 2.1 \). The asymmetry calculated from the central value of \(H_\phi \) in \(p\bar{p} \) process is smaller than that in \(pp \) case. Therefore the measurement on the cos 2\(\phi \) asymmetry at PANDA and PAX might provide valuable examination on our extraction of Boer-Mulders functions.

![Diagram of cos 2\(\phi \) asymmetries vs \(x_F \) at PANDA for \(s = 30 \text{ GeV}^2 \) and at PAX for \(s = 45 \text{ GeV}^2 \).](image)

V. SUMMARY

We have parameterized the Boer-Mulders functions for the proton by employing a Gaussian form for their transverse momentum dependence. We then fitted our parameterizations to both the previous measured \(p\bar{d} \) data and recent \(p\bar{d} \) data on the unpolarized Drell-Yan \(\cos 2\phi \) dilepton asymmetries from the E866/NuSea Collaboration. The basic assumption in the fit is that the \(\cos 2\phi \) asymmetry is contributed by the product of two Boer-Mulders functions and that other contributions such as perturbative QCD effects can be ignored in the region \(q^2_F \ll Q^2 \). In our fit we included not only the \(q^2-, x_1- \) and \(x_2- \)-dependent asymmetry data, but also \(Q- \) and \(x_F- \) dependent data. We applied our extracted Boer-Mulders to predict the cos 2\(\phi \) asymmetries in future \(pp \) experiment at J-PARC and \(p\bar{p} \) experiment at PANDA and PAX. We found a smaller asymmetry for \(p\bar{p} \) processes compared with that for \(pp \) processes, which might serve as a test on our extraction of Boer-Mulders functions.

Acknowledgements. We would like to thank B.-Q. Ma and B. Zhang for useful discussions. This work is supported by the PBCT project No. ACT-028 “Center of Subatomic Physics” and FONDECYT (Chile) Project No. 11090085.
[38] S.J. Brodsky and F. Yuan, Phys. Rev. D 74, 094018 (2006).
[39] L. Y. Zhu et al. [FNAL E866/NuSea Collaboration], Phys. Rev. Lett. 102, 182001 (2009) [arXiv:0811.4589 [nucl-ex]].
[40] J.C. Collins and D.E. Soper, Phys. Rev. D16, 2219 (1977).
[41] J. Zhou, F. Yuan and Z. T. Liang, Phys. Lett. B 678, 264 (2009) [arXiv:0901.3601 [hep-ph]].
[42] D. Boer and W. Vogelsang, Phys. Rev. D 74, 014004 (2006) [arXiv:hep-ph/0604177].
[43] E. L. Berger, J. W. Qiu and R. A. Rodriguez-Pedraza, Phys. Lett. B 656, 74 (2007) [arXiv:0707.3150 [hep-ph]]; Phys. Rev. D 76, 074006 (2007) [arXiv:0708.0578 [hep-ph]].
[44] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63, 189 (2009) [arXiv:0901.0002 [hep-ph]].
[45] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin, Phys. Rev. D 71, 074006 (2005) [arXiv:hep-ph/0501196].
[46] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin, Phys. Rev. D 71, 074006 (2005) [arXiv:hep-ph/0501196].
[47] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin, Phys. Rev. D 72, 094007 (2005) [Erratum-ibid. D 72, 099903 (2005)] [arXiv:hep-ph/0507181].
[48] A. Bacchetta, Mariacelena Boglione, A. Henneman, and P.J. Mulders, Phys. Rev. Lett. 85, 712 (2000).
[49] Z. B. Kang and J. W. Qiu, Phys. Rev. D 79, 016003 (2009) [arXiv:0811.3101 [hep-ph]].
[50] J. Zhou, F. Yuan and Z. T. Liang, Phys. Rev. D 79, 114022 (2009) [arXiv:0812.4484 [hep-ph]].
[51] W. Vogelsang and F. Yuan, Phys. Rev. D 79, 094010 (2009) [arXiv:0904.0410 [hep-ph]].
[52] V. M. Braun, A. N. Manashov and B. Pirnay, [arXiv:0909.3410 [hep-ph]].
[53] P. G. Ratcliffe and O. Teryaev, [arXiv:0910.5348 [hep-ph]].
[54] D. Dutta, et al., J-PARC Letter of Intent L15, URL: http://www-ps.kek.jp/jhf-np/LOList/LOList.html
[55] M. F. Lutz et al. [The PANDA Collaboration], arXiv:0903.3905 [hep-ex].
[56] PAX Collaboration, V. Barone, et al., [hep-ex/0505054].