Introduction

Pneumoconiosis is an occupational disease mainly caused by inhalation of microscopically respirable coal dust, crystalline silica particles, and other various dust particles. Clinically, pneumoconiosis is characterized by shortness of breath and chest X-ray patchy, subpleural or bibasilar interstitial infiltrates, or small cystic radioluencies (honeycombing). Pathologically, the inhaled dust induces chronic lung inflammation and pulmonary fibrosis. Early pneumoconiosis may be asymptomatic, but advanced stages of pneumoconiosis result in airflow limitation, hypoxia, pulmonary hypertension, respiratory or heart failure, and premature death, even without further exposure to the dust.

Pathogenesis of pneumoconiosis is multifactorial, and different dust particles can induce relatively different host responses. Genetic predisposition also plays a role in the development of pneumoconiosis, particularly in those exposed to respirable coal dust. The transforming growth factor-beta 1 (TGF-β1) polymorphisms have been extensively studied in various human diseases, with many studies suggesting a role in the development of pneumoconiosis. However, the results have been inconsistent and controversial.

Meta Analysis

Association between Genetic Variants of Transforming Growth Factor-β1 and Susceptibility of Pneumoconiosis: A Meta-analysis

Chang-Wen Deng1,2, Xing-Xing Zhang1, Jin-Huan Lin2, Li-Fei Huang3,4, Yu-Lan Qu1, Chong Bai1

1Department of Respiratory and Critical Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
2Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
3Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
4Department of Respiratory, Haining People’s Hospital, Jiaxing, Zhejiang 314400, China

Background: Transforming growth factor-beta 1 (TGF-β1) and gene variants have been extensively studied in various human diseases. For example, TGF-β1 polymorphisms were associated with fibrosis and pneumoconiosis, but the data remained controversial. The aim of this meta-analysis was to assess the association between TGF-β1 −509 C>T [rs1800469], +869 T>C [rs1800470], and +915 G>C [rs1800471] polymorphisms and pneumoconiosis.

Methods: A comprehensive literature search was conducted through searching in PubMed, Embase, the Chinese Biomedical Database, and the Wei Pu (Chinese) Database by the end of April 2016. Eleven publications with 21 studies were included in this meta-analysis, covering a total of 4333 patients with pneumoconiosis and 3478 controls. Study quality was assessed, and heterogeneity and publication bias were measured. All statistical analyses were performed using STATA version 12.0 (StataCorp, College Station, TX, USA) software.

Results: The data showed significant associations between TGF-β1 −509 C>T polymorphism and the risk of pneumoconiosis development (T vs. C, odds ratio [OR] = 1.35, 95% confidence interval [CI]: 1.00–1.81, \(P = 0.046 \)); between TGF-β1 +915 G>C polymorphism and the pneumoconiosis risk (C vs. G, \(OR = 1.69, 95\% CI: 1.19–2.40, P = 0.004 \); CG vs. GG, \(OR = 1.79, 95\% CI: 1.23–2.60, P = 0.002 \); CC+CG vs. GG, \(OR = 1.80, 95\% CI: 1.24–2.61, P = 0.002 \)). In addition, the subgroup analysis of ethnicity versus pneumoconiosis types indicated a significant association of silicosis among Asian populations but not that of coal workers’ pneumoconiosis in Caucasian populations. In contrast, no significant association was exhibited between TGF-β1 +869 T>C polymorphism and risk of pneumoconiosis.

Conclusion: The polymorphisms of both TGF-β1 −509 C>T and +915 G>C are associated with increased risk of pneumoconiosis.

Key words: Meta analysis; Pneumoconiosis; Polymorphism; Transforming Growth Factor-beta1

Access this article online

Quick Response Code: Website:
www.cmj.org
DOI: 10.4103/0366-6999.198917

Address for correspondence: Dr. Chong Bai,
Department of Respiratory and Critical Care Medicine, Changhai Hospital,
The Second Military Medical University, Shanghai 200433, China
E-Mail: baic7878@sohu.com

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

© 2017 Chinese Medical Journal | Produced by Wolters Kluwer - Medknow

Received: 28-08-2016 Edited by: Yuan-Yuan Ji
How to cite this article: Deng CW, Zhang XX, Lin JH, Huang LF, Qu YL, Bai C. Association between Genetic Variants of Transforming Growth Factor-β1 and Susceptibility of Pneumoconiosis: A Meta-analysis. Chin Med J 2017;130:357-64.
immune responses, which are controlled by expression of various genes and gene pathways. For example, it was reported that not all individuals exposed to similar levels of dust developed pulmonary fibrosis, which suggests that genetic predisposition plays a crucial role in individual pneumoconiosis susceptibility. Therefore, a better understanding of the interaction between genetic mutations and dust exposure can help identify high-risk individuals and prevent pneumoconiosis development.

Transforming growth factor-β (TGF-β) is a multifunctional cytokine with various effects on cell proliferation, differentiation, apoptosis, migration, inflammation, tissue repair, and immune responses. The subtype TGF-β1, cloned from human placenta, is the most abundant isoform in the human body. As a growth factor with important immunomodulatory and fibrogenic properties, TGF-β1 facilitates chemotaxis through stimulation of monocyte, lymphocyte, neutrophil, and myofibroblast migration. Thus, it may function as a candidate for pneumoconiosis.

TGF-β1 gene includes seven exons and six introns and is located at chromosome 19q13. Several polymorphic variants in TGF-β1, such as −509 C>T (rs1800469), +869 T>C (rs1800470), and +915 G>C (rs1800471), were assessed for association with pneumoconiosis risk, the data remain controversial currently. In 2012, a meta-analysis published in Chinese reported that TGF-β1 gene −509 C>T, +869 T>C polymorphisms were not associated with risk of developing pneumoconiosis. However, only small sample size related to TGF-β1 gene −509 C>T, +869 T>C was involved in this meta-analysis, and thus, it was unable to provide enough persuasiveness. It is unclear yet whether there are significant associations between −509 C>T (rs1800469), +869 T>C (rs1800470), and +915 G>C (rs1800471) polymorphisms and the risk of pneumoconiosis. To summarize and clarify the published data, we performed this meta-analysis.

Methods

Literature search strategy

We searched the electronic databases of PubMed, Embase, the Chinese Biomedical Database, and the Wei Pu (Chinese) Database to retrieve eligible studies for inclusion in this meta-analysis. The following terms were used in the search: “Pneumoconiosis” OR “siliosis” OR “asbestosis” AND “transforming growth factor β” OR “TGF-β1” OR “TGF beta” AND “single nucleotide polymorphism” OR “polymorphisms,” etc. These keywords were combined with Boolean logic words “OR/AND”. Additional studies were identified by a manual search of the references of related articles, reviews, even citation tracking and so on, and the search included all published literature through April 30, 2016. In cases where publications used the same patient population, we only included the most recent or complete study in the meta-analysis.

Selection criteria

The inclusion criteria were as follows: (1) studies investigating the association between pneumoconiosis risk and TGF-β1 polymorphisms −509 C>T (rs1800469), +869 T>C (rs1800470), and +915 G>C (rs1800471); (2) any study about TGF-β1 −509 C>T (rs1800469) or +869 T>C (rs1800470) or +915 G>C (rs1800471) was considered as an independent study. (2) case-control studies; (3) studies providing sufficient information for genotype and allele frequencies to estimate the odds ratio (OR) with its corresponding 95% confidence interval (CI) and P values; (4) studies written in English or Chinese; (5) human studies; and (6) studies including only cases with definitive diagnosis of pneumoconiosis. The exclusion criteria were as follows: (1) case reports, abstracts, reviews, and repeat studies; (2) genotype distribution did not reach Hardy–Weinberg equilibrium (HWE).

Data extraction

The following data were independently extracted from all eligible publications by two investigators (Chang-Wen Deng and Xing-Xing Zhang) according to the inclusion criteria, and any disagreement was discussed with coauthors until a consensus was reached. A standardized data form was used that included first author’s name, year of publication, country origin, study ethnicity, genotyping methods, total number of cases and controls, genotype distributions in cases and controls, source of controls, and information on HWE test. These data were also tracked manually if missing. Population categories were divided into Caucasian, Asian, and mixed.

Statistical analysis

The pooled ORs with 95% CI were used to determine the association between risk of pneumoconiosis and TGF-β1 polymorphisms −509 C>T, +869 T>C, and +915 G>C according to allele contrast, homozygote, heterozygote, dominant, and recessive models. The pooled ORs were calculated for additive, codominant, dominant, and recessive models, respectively. The significance of pooled ORs was analyzed using the Z-test in recessive models. P < 0.05 was considered statistically significant. The Chi-square-based Q statistic test, quantified by the F metric value, was used to analyze heterogeneity assumption among the studies (I² > 50% or P ≤ 0.1 was considered statistically significant. All P values were two-sided). When studies were homogeneous, the fixed effects model (Mantel–Haenszel method) was performed. Otherwise, the random effects model was applied to estimate the ORs and 95% CI according to the previous studies. The Chi-square test was used to test HWE. The statistical program STATA version 12.0 (StataCorp, College Station, TX, USA) was used to analyze all data in this study.

Results

Characteristics of studied subjects

Based on our search strategy, 11 articles involving 21 studies were included in this meta-analysis, covering a total of 4333 cases with pneumoconiosis and 3478 controls. The controls were matched with those cases for age, dust
exposure period and job type, etc. The study selection process is shown in Figure 1. Seven of these studies investigated association between TGF-β1 −509 C>T polymorphism and pneumoconiosis,[15,21] nine involved +869 T>C polymorphism,[15,17,20,22,23] and five involved +915 G>C polymorphism.[15,17,19,20,24] The characteristics of each selected study are listed in Tables 1-3. Specifically, Table 1 shows characteristics of case and control for association of −509 C>T polymorphism with pneumoconiosis, six of which were performed in Asia.[15,17-21] One was performed in Caucasus,[16] originating from China and USA, respectively. Pneumoconiosis was induced by coal in two studies, and others were induced by silicosis. However, there were only two studies that did not follow the HWE.[18,21] The characteristics of case and control for association of +869 T>C polymorphism with pneumoconiosis are presented in Table 2. Seven studies were performed in Asia,[15,17,20,22,25] one in Caucasus,[24] and one in mixed[21] and originated from China, German, Turkish, and the USA, respectively. Two studies did not follow the HWE, and one study had insufficient data for HWE calculation.[18,21] Pneumoconiosis was present in coal workers in four studies, and in five studies, silicosis was the irritant. Table 3 illustrates the characteristics of case and control for association of +915 G>C polymorphism with pneumoconiosis. Four studies were performed in China[15,17,20] and one in Caucasus in Germany.[24] One study did not follow the HWE, and one study had insufficient data for HWE calculation.[15,17] Pneumoconiosis occurred in coal workers type reported in three studies and in silicosis in two studies.

Quantitative data synthesis

For TGF-β1 −509 C>T polymorphism, we conducted seven studies to evaluate the overall association between −509 C>T polymorphism and risk of pneumoconiosis. We found an overall association between −509 C>T polymorphism and the risk of pneumoconiosis in terms of allele frequency [T vs. C, OR = 1.35, 95% CI: 1.00–1.81, P = 0.046; Figure 2]. However, there was no significant association detected under homozygous, heterozygous, recessive, and dominant models [P > 0.05; Table 4]. The subgroup analysis showed that −509 C>T polymorphism was not significantly associated with pneumoconiosis risk based on pneumoconiosis type and ethnicity.

Moreover, TGF-β1 +915 G>C polymorphism was significantly associated with risk of pneumoconiosis

Table 1: Characteristics of enrolled case–control studies for association of −509 C>T polymorphism with pneumoconiosis

References	Year	Ethnicity (country)	Subjects	Frequency of allele	Distribution of genotype	Pneumoconiosis type	Method of genotyping	HWE					
Fan et al.[15]	2007	Asian (China)	Case	131	103	234	40	51	26	117	Silicosis	PCR-RELP	0.08
Control	100	134	234	26	48	43	117						
Yuecosoy et al.[16]	2008	Caucasus (USA)	Case	171	395	566	31	109	143	283	CWP	PCR-SSP	0.08
Control	189	461	650	34	121	170	325						
Wu et al.[17]	2008	Asian (China)	Case	175	191	366	46	83	54	183	Silicosis	PCR-RELP	0.42
Control	119	103	222	34	51	26	111						
Qian et al.[18]	2010	Asian (China)	Case	515	501	1016	121	273	114	508	CWP	PCR-RELP	<0.05
Control	546	506	1052	122	302	102	526						
Li et al.[19]	2009	Asian (China)	Case	92	62	154	28	36	13	77	Silicosis	PCR-RELP	0.06
Control	70	84	154	20	30	27	77						
Li et al.[20]	2010	Asian (China)	Case	41	39	80	13	15	12	40	CWP	PCR-RELP	0.80
Control	30	50	80	6	18	16	40						
Yao et al.[21]	2006	Asian (China)	Case	124	96	220	34	56	20	110	CWP	PCR-RELP	<0.05
Control	76	144	220	18	40	52	110						

CWP: Coal workers’ pneumoconiosis; HWE: Hardy–Weinberg equilibrium; PCR-SSP: Polymerase chain reaction-sequence-specific primer; PCR-RFLP: Polymerase chain reaction-restriction fragment length polymorphism.
under allele contrast, heterozygous, and dominant models [C vs. G, \(OR = 1.69, 95\% \, CI: \, 1.19–2.40, \, P = 0.004; \) CG vs. GG, \(OR = 1.79, 95\% \, CI: \, 1.23–2.60, \, P = 0.002; \) CC+CG vs. GG, \(OR = 1.80, 95\% \, CI: \, 1.24–2.61, \, P = 0.002; \) Figure 3]. Similarly, the subgroup study of ethnicity, allele contrast, heterozygous, and dominant models also indicated a significant association [C vs. G, \(OR = 1.93, 95\% \, CI: \, 1.24–2.40, \, P = 0.004; \) CG vs. GG, \(OR = 2.13, 95\% \, CI: \, 1.33–3.42, \, P = 0.002; \) CC + CG vs. GG, \(OR = 2.13, 95\% \, CI: \, 1.33–3.42, \, P = 0.002; \) Figure 4]. However, there was no association observed between \(TGF-\beta1 \) +915 G>C polymorphism and risk of pneumoconiosis under other models between Caucasian and coal workers’ pneumoconiosis (CWP) \(P > 0.05; \) Table 4]. However, for \(TGF-\beta1 \) +869 T>C polymorphism, there were nine studies and our analyses showed no statistically significant association between \(TGF-\beta1 \) +869 T>C polymorphism and the risk of pneumoconiosis under heterozygous, homozygous, allele contrast, recessive, and
dominant models \[P > 0.05; Table 4 \]. Similarly, the subgroup study of ethnicity and pneumoconiosis types also showed no significant association between \(TGF-\beta1 +869 \) T>C polymorphism and increased risk of pneumoconiosis under all models \[P > 0.05; Table 4 \].

Sensitivity analysis and publication bias

Sensitivity analysis was performed to reflect the influence of the individual data set on the pooled ORs by sequentially excluding each case–control study. The data showed that the corresponding pooled ORs under all the genetic models were not materially altered.

Begg’s funnel plot and Egger’s regression test were used to check publication bias in our data. Begg’s funnel plots did not reveal obvious asymmetry [Figures 5-7]. There were no statistically significant difference in the Egger’s test, indicating that there was no significant publication bias for all genetic models \(TGF-\beta1 −509 \) C>T polymorphism, \(P = 0.230 \) for T vs. C, \(P = 0.13 \) for CT vs. CC; \(TGF-\beta1 +869 \) T>C polymorphism, \(P = 0.10 \) for CC vs. TT; \(P = 0.90 \) for CT vs. TT; \(TGF-\beta1 +915 \) G>C polymorphism, \(P = 0.80 \) for C vs. G; \(P = 1.00 \) for CG vs. GG).

Discussion

In this meta-analysis, we searched the literature and obtained 21 eligible case–control studies with a total of 4333 pneumoconiosis cases and 3478 controls. Our data provided evidence for statistically significant association between \(TGF-\beta1 −509 \) C>T and \(+915 \) G>C polymorphisms with risk of pneumoconiosis development. However, we did not find an association between \(TGF-\beta1 +869 \) T>C polymorphism and risk of pneumoconiosis. Further study will investigate the role of \(TGF-\beta1 \) on regulation of lung cell fibrosis and pneumoconiosis development.

Pneumoconiosis is a multifactorial disease, and the causes can be silicosis, coal, and other duct irritants. Pneumoconiosis workers develop progressive massive fibrosis in the lung

![Figure 2](image2.png)

Figure 2: Forest plot that describes the meta-analysis under allele contrast model for association between transforming growth factor-\(\beta1 −509 \) C>T polymorphism and pneumoconiosis risk (T vs. C), test for overall effect \((z = 1.99, P = 0.046) \).

![Figure 3](image3.png)

Figure 3: Forest plot that describes the meta-analysis under allele contrast model, homozygous model, and dominant model for the association between transforming growth factor-\(\beta1 +915 \) G>C polymorphism and pneumoconiosis risk. Test for overall effect \([a] \) C vs. G: \(z = 2.91, P = 0.004 \); \([b] \) CG vs. GG: \(z = 3.05, P = 0.002 \); \([c] \) CC+CG vs. GG: \(z = 3.07, P = 0.002 \).

![Figure 4](image4.png)

Figure 4: Forest plot that describes the meta-analysis under allele contrast model, homozygous model, and dominant model for association between transforming growth factor-\(\beta1 +915 \) G>C polymorphism and pneumoconiosis risk. Test for overall effect \([a] \) C vs. G: \(z = 2.91, P = 0.004 \); \([b] \) CG vs. GG: \(z = 3.05, P = 0.002 \); \([c] \) CC+CG vs. GG: \(z = 3.07, P = 0.002 \).
after chronic dust inhalation, which involves complex
gene–gene and gene–environment interactions. However,
not all individuals who are exposed to the similar levels
of dust develop pulmonary fibrosis. It is suggested that
there is a genetic association for the development of
pneumoconiotic diseases. Indeed, lung fibrosis generally
results from dust-induced inflammation, wound healing,
and scar formation that lead to serious breathing problems.
TGF-β1 plays an important role by affecting wound healing
and immunoresponses.[9,29] Furthermore, many candidate

TGF-β1 polymorphisms	OR (95% CI)	P	OR (95% CI)	P
TGF-β1 −509 C>T				
T versus C	1.35 (1.00, 1.81)	0.046	1.69 (0.98, 2.92)	0.059
TT versus CC				
CT versus CC	1.36 (0.90, 2.05)	0.14		
TT+TC versus CC	1.48 (0.95, 2.31)	0.081		
TT versus TC+CC	1.33 (0.98, 1.81)	0.071		

Type of diseases				
Silicosis	1.32 (0.77, 2.28)	0.31	1.65 (0.62, 4.41)	0.32
CWP	1.38 (0.92, 2.07)	0.12	1.75 (0.81, 3.78)	0.15

Ethnicity				
Caucasian	1.06 (0.83, 1.35)	0.66	1.08 (0.63, 1.85)	0.76
Asian	1.43 (0.99, 2.06)	0.060	1.87 (0.96, 3.66)	0.067

TGF-β1 +869 T>C				
C versus T	0.97 (0.89, 1.07)	0.58	1.05 (0.73, 1.52)	0.79
CC versus TT				
CT versus TT	0.95 (0.80, 1.13)	0.56	1.00 (0.86, 1.17)	0.96
CT+CC versus TT				
CC versus TC+CC	1.09 (0.78, 1.51)	0.62		

Type of diseases				
Silicosis	1.04 (0.89, 1.21)	0.64	1.23 (0.68, 2.23)	0.49
CWP	0.94 (0.83, 1.06)	0.29	0.97 (0.60, 1.55)	0.88

Ethnicity				
Caucasian	1.05 (0.76, 1.47)	0.75	1.00 (0.52, 1.95)	0.98
Mixed	1.29 (0.82, 2.01)	0.26	1.55 (0.65, 3.70)	0.32
Asian	0.95 (0.86, 1.05)	0.34	1.02 (0.64, 1.62)	0.92

TGF-β1 +915 G>C				
C versus G	1.69 (1.19, 2.40)	0.004	0.47 (0.02, 11.64)	0.64
CC versus GG				
CG versus GG	1.79 (1.23, 2.60)	0.002		
CC+CG versus GG				
CC versus TT+GG	1.80 (1.24, 2.61)	0.002		

Type of diseases				
Silicosis	1.93 (1.24, 3.00)	0.004		
CWP	1.36 (0.76, 2.42)	0.29	0.47 (0.02, 11.64)	0.64

Ethnicity				
Caucasian	1.35 (0.69, 2.66)	0.37	0.47 (0.02, 11.64)	0.64
Asian	1.84 (1.22, 2.77)	0.003		

CWP: Coal workers’ pneumoconiosis; OR: Odds ratio; CI: Confidence interval; TGF-β1: Transforming growth factor-beta 1.
genes have been evaluated for associations between genetic variability and pneumoconiosis susceptibility. To some extent, validation studies of most genetic polymorphisms and pneumoconiosis have been performed with diverse populations for identifying high-risk individuals for prevention and treatment, such as interleukin-1 and tumor necrosis factor gene families.\(^\text{[7,30-32]}\)

\[\text{TG}F-\beta1\] variants are of great importance in genetic modification of lung disease.\(^\text{[33,34]}\) For example, overexpression of \[\text{TG}F-\beta1\] occurs in lung tissue in animal models and patients with pulmonary fibrosis\(^\text{[35-38]}\) and the association between pulmonary fibrosis susceptibility and \[\text{TG}F-\beta1\] gene polymorphisms has been investigated.\(^\text{[39-41]}\)

Yao et al.\(^\text{[42]}\) showed that \[\text{TGF-}\beta1 -509\] polymorphism influenced serum level of \[\text{TGF-}\beta1\] in CWP. A previous study reported by Yucesoy et al.\(^\text{[43]}\) indicated that \[\text{TGF-}\beta1 +869\] variants were associated with susceptibility to CWP development while Qian et al.\(^\text{[44]}\) demonstrated that some representative genetic variants in \[\text{TGF-}\beta1\] may exert a role in CWP risk. In contrast, Wu et al.\(^\text{[45]}\) found that there were no associations between \[\text{TGF-}\beta1\] polymorphisms at positions -509, +869, and +915 with silicosis risk in Chinese iron miners, even an analysis did by Liu et al.\(^\text{[46]}\) showed that there were no associations between \[\text{TGF-}\beta1\] polymorphisms at positions -509 and +869 with pneumoconiosis. These inconsistent results prompted us to perform this meta-analysis due to larger sample size.

Meta-analyses can utilize different studies to enlarge the sample size and subsequently enhance the statistical power.\(^\text{[47]}\) In the current meta-analysis, we obtained 21 case–control studies with a total of 4,333 pneumoconiosis and 3478 controls. Our data showed an association between \[\text{TGF-}\beta1 -509\] C>T and +915 G>C polymorphism and the risk of pneumoconiosis in terms of the frequency of allele comparison. Furthermore, the subgroup study of ethnicity Asian and pneumoconiosis types among silicosis indicated a significant association with \[\text{TGF} +915\] G>C polymorphism. However, there was no significant association detected under homozygous, heterozygous, recessive, and dominant models as well as the subgroup analysis of pneumoconiosis type and ethnicity with \[\text{TGF-}\beta1 -509\] C>T polymorphism. There was also no significant association between \[\text{TGF-}\beta1 +869\] T>C polymorphism and the risk of pneumoconiosis, consistent with the subgroup analysis by the type of pneumoconiosis.

However, there are several limitations and potential bias which need further considering about how to interpret our meta-analysis. First, although we employed a thorough literature search strategy to identify qualified studies, a few studies may not get involved in the meta-analysis. Second, individuals in most studies were Chinese patients and the sample size of each study was relatively small in the ethnic standardized analysis, especially among Caucasian and the mixed. Third, there were no enough data included in the meta-analysis, especially some environmental factors, such as asbestos, biomass fuels, and wood chips associated with pneumoconiosis. Finally, due to limited data extraction from original studies, our current meta-analysis was mainly based on an unadjusted assessment and all genetic meta-analyses.

In conclusion, this study demonstrated that \[\text{TGF-}\beta1 +869\] T>C polymorphism was not associated with risk of pneumoconiosis, whereas \[\text{TGF-}\beta1 -509\] C>T and +915 G>C were associated with risk of pneumoconiosis. It will be necessary to perform a prospective study via using standardized and unbiased genotyping methods in further study. Such a study will eventually lead to a comprehensive understanding of association of \[\text{TGF-}\beta1\] gene polymorphisms with pneumoconiosis risk and therefore identifying high-risk individuals for prevention and treatment of this disease.

Financial support and sponsorship

This study was supported by the grant from the National Natural Science Foundation of China (No. 81270073).

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Becklake MR. The mineral dust diseases. Tuber Lung Dis 1992;73:13-20. doi: 10.1016/0962-8479(92)90074-T.
2. Yucesoy B, Luster MI. Genetic susceptibility in pneumoconiosis. Toxicol Lett 2007;168:249-54. doi: 10.1016/j.toxlet.2006.10.021.
3. Laney AS, Petsonk EL, Attfield MD. Pneumoconiosis among underground bituminous coal miners in the United States: Is silicosis becoming more frequent? Occup Environ Med 2010;67:652-6. doi: 10.1136/oem.2009.047126.
4. Ji X, Hou Z, Wang T, Jin K, Fan J, Luo C, et al. Polymorphisms in inflammasome genes and risk of coal workers' pneumoconiosis in a Chinese population. PLoS One 2012;7:e47949. doi: 10.1371/journal. pone.0047949.
5. Castranova V, Vallyathan V. Silicosis and coal workers' pneumoconiosis. Environ Health Perspect 2000;108 Suppl 4:675-84.
6. Nadin-R, Mintz M, Marzec J, Jodicka A, Kaufmann F, Kleeberger SR. IL18 and IL18R1 polymorphisms, lung CT and fibrosis: A longitudinal study in coal miners. Eur Respir J 2006;28:1100-5. doi: 10.1183/09031936.00031506.
7. Wang XT, Ohtsuka Y, Kimura K, Muroi M, Ishida T, Saito J, et al. Antithetical effect of tumor necrosis factor-α gene polymorphism on coal workers' pneumoconiosis (CWP). Am J Ind Med 2005;48:24-9. doi: 10.1002/ajim.20180.
8. Kim KA, Cho YY, Cho JS, Yang KH, Lee WK, Lee KH, et al. Tumor necrosis factor-alpha gene promoter polymorphism in coal workers’ pneumoconiosis. Mol Cell Biochem 2002;234:205-9.

9. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998;16:137-61. doi: 10.1146/annurev.immunol.16.1.137.

10. Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-ß family in wound healing, burns and scarring: A review. Int J Burns Trauma 2012;2:18-28.

11. Derynk R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117-29. doi: 10.1038/ng1001-117.

12. Derynk R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, et al. Human transforming growth factor-beta and tumor necrosis factor-beta in serum and its gene polymorphisms in normal and transformed cells. Nature 1985;316:701-5.

13. Tirado-Rodriguez B, Ortega E, Seguera-Medina P, Huerta-Yepez S. TGF-β: An important mediator of allergic disease and a molecule with dual activity in cancer development. J Immunol Res 2014;2014:318481. doi: 10.1155/2014/318481.

14. Fuji D, Brissenden JE, Derynk R, Francce U. Transforming growth factor beta gene maps to human chromosome 19 long arm and to mause chromosome 7. Somat Cell Mol Genet 1986;12:281-8.

15. Fan XY, Li J, Wang XR, Wang LQ, Bai YP, Yao SQ, et al. Association of cytokine gene polymorphisms in CWP and its severity in Turkish coal miners. Am J Ind Med 2008;51:741-7. doi: 10.1002/ajim.20632.

16. Yucesoy B, Vallyathan V, Landsittel DP, Sharp DS, Matheson J, Burleson F, et al. Polymorphisms in the IL-1 gene complex in coal miners with silicosis. Am J Ind Med 2001;39:286-91.

17. Yao W, Hao CF, Wu YM, Wang N, Sun CQ, Li L. The relationship between cytokine gene polymorphisms of TGF-beta and susceptibility of silicosis (in Chinese). Chin J Ind Hyg Occup Dis 2009;27:240-2.

18. Yao W, Wang ZM, Wang MZ, Hao CF, Wang N. The relationship between cytokine gene polymorphisms and asbestos-induced pulmonary fibrosis in coal miners (in Chinese). J Sichuan Univ (Med Sci Ed) 2007;36:827-9. doi: 10.1016/S1674-8301(10)60038-3.

19. Grutters JC, du Bois RM. Genetics of fibrosing lung diseases. Eur Respir J 2010;36:907-43. doi: 10.1183/09031936.00011810.

20. Tarantal AF, Chen H, Shi TT, Lu CH, Fang AB, Buckley S, et al. Overexpression of transforming growth factor-beta1 in fetal monkey lung results in prenatal pulmonary fibrosis. Eur Respir J 2010;36:907-14. doi: 10.1183/09031936.00011810.

21. Xin J, Wang X, Zhang Z, Wang M, Jia X, Li A, Yang Y, et al. Association of transforming growth factor-beta1 gene variants with risk of coal workers’ pneumoconiosis. J Biomed Res 2010;24:270-6. doi: 10.1016/S1674-8301(10)60038-3.

22. Wang N, Hao CF, Wu YM, Wang N, Sun CQ, Li L. The relationship between concentration, gene polymorphisms of TGF-β1 and the risk of CWP (in Chinese). China Occup Med 2006;4:265-8.

23. Yu C, Li L, Qi F. Transforming growth factor beta and tumor necrosis factor gene polymorphism and coal worker’s pneumoconiosis (in Chinese). Chin J Ind Hyg Occup Dis 2009;27:240-2.

24. Ates I, Suzen HS, Yucesoy B, Tekin JO, Karakaya A. Association of cytokine gene polymorphisms in CWP and its severity in Turkish coal workers. Am J Ind Med 2008;51:741-7. doi: 10.1002/ajim.20632.

25. Helmg S, Belwe A, Schneider J. Association of transforming growth factor beta 1 gene polymorphisms and asbestos-induced fibrosis and tumors. J Investig Med 2009;57:655-61. doi: 10.2310/JIM.0b013e3181af43e2a.

26. Yu C, Li L, Qi F, Li DH, Xu XH. Effects of transforming growth factor-beta and tumor necrosis factor-beta gene polymorphisms on genetic susceptibility of silicosis (in Chinese). Chin J Ind Hyg Occup Dis 2009;4:240-2.

27. Liu Q, Su WZ, Shan YL, Zhang ZH, Xu G, Zhang W, et al. Meta-analysis of association of tumor necrosis factor alpha and transforming growth factor beta gene polymorphisms with pneumoconiosis (in Chinese). Chin J Ind Hyg Occup Dis 2012;30:587-92.

28. Zhang Y, Tang HQ, Peng WJ, Zhang BB, Liu M. Meta-analysis for the association of apolipoprotein E e2/e3/e4 polymorphism with coronary heart disease. Chin Med J 2015;128:1391-8. doi: 10.4103/0366-6999.

29. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.

30. Liao CC, Chen YH, Lin F, Qi YF. Hydrogen sulfide inhibits transforming growth factor beta-1 induced bronchial epithelial-mesenchymal transition. Chin Med J 2015;128:3247-50. doi: 10.4103/0366-6999.170266.