levofloxacin and amikacin produced a successful outcome in this case; no recurrent pulmonary disease was reported in the patient. However, treatment with other drugs to which _M. canariasense_ is susceptible might also succeed. In a 2006 report, Campos-Herrero et al. noted the favorable outcomes produced by fluoroquinolones and amikacin (8). However, the optimal antimycobacterial regimen for _M. canariasense_ infection needs to be clearly established in more cases.

Acknowledgments

We thank all the personnel of the Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, for their assistance in this project. Funding: This study was funded by a grant from the Pasteur Institute of Iran (no. 866).

About the Author

Miss Sakhaee is an expert clinical microbiologist at the Pasteur Institute of Iran. Her primary research interests focus on epidemiologic and clinical aspects of mycobacterial infections.

References

1. Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993;31:175–8.

2. Turenne CY, Tschetter L, Wolfe J, Kabani A. Necessity of quality-controlled 16S rRNA gene sequence databases: identifying nontuberculous _Mycobacterium_ species. J Clin Microbiol. 2001;39:3637–48. https://doi.org/10.1128/JCM.39.10.3638-3648.2001

3. Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003;41:5699–708. https://doi.org/10.1128/JCM.41.12.5699-5708.2003

4. Jiménez MS, Campos-Herrero MI, García D, Luquin M, Herrera L, García MJ. _Mycobacterium canariasense_ sp. nov. Int J Syst Evol Microbiol. 2004;54:1729–34. https://doi.org/10.1099/ijs.0.02999-0

5. Tortoli E. The new mycobacteria: an update. FEMS Immunol Med Microbiol. 2006;48:159–78. https://doi.org/10.1111/j.1574-695X.2006.00123.x

6. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al.; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416. https://doi.org/10.1164/rccm.200604-571ST

7. Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes—second edition: approved standard (M24-A2). Wayne (PA): The Institute; 2011.

8. Campos-Herrero MI, García D, Figuerola A, Suárez P, Campo C, García MJ. Bacteremia caused by the novel species _Mycobacterium canariasense_. Eur J Clin Microbiol Infect Dis. 2006;25:58–60. https://doi.org/10.1007/s10096-005-0079-6

9. Paniz-Mondolfi A, Ladutko L, Brown-Elliott BA, Vasireddy R, Vasireddy S, Wallace RJ, Jr, et al. First report of _Mycobacterium canariasense_ catheter-related bacteremia in the Americas. J Clin Microbiol. 2014;52:2265–9. https://doi.org/10.1128/JCM.03103-13

Address for correspondence: Abolfazl Fateh, Pasteur Institute of Iran, Department of Mycobacteriology and Pulmonary Research, No. 69, 12th Farvardin Ave, Tehran, Iran; email: afateh2@gmail.com

Mycobacterium conceptionense Pneumonitis in Patient with HIV/AIDS¹

Sarah M. Michienzi, Rodrigo M. Burgos, Richard M. Novak

Author affiliations: University of Illinois at Chicago College of Pharmacy, Chicago, Illinois, USA (S.M. Michienzi, R.M. Burgos); University of Illinois at Chicago College of Medicine, Chicago (R.M. Novak)

DOI: https://doi.org/10.3201/eid2510.190444

Approximately 21 human cases of infection with _Mycobacterium conceptionense_ have been reported. However, most cases were outside the United States, and optimal treatment remains uncertain. We report a case of _M. conceptionense_ pneumonitis in a patient with HIV/AIDS in the United States. The patient was cured with azithromycin and doxycycline.

Mycobacterium conceptionense is a nonpigmented, rapidly growing, nontuberculous mycobacterium, first isolated in France in 2006 (1). Approximately 21 cases of human infection have been reported (1–10). However, excluding the case we report here, only 2 cases have been reported in the United States (2). Optimal treatment for _M. conceptionense_ infection remains uncertain. We report the clinical course and management of _M. conceptionense_ pneumonitis in a patient with HIV/AIDS in the United States.

A 47-year-old black cisgender man sought care at an emergency department during 2015 for cough, shortness of breath, and weight loss. He lived in the United States for 2 years, had been homeless for the past year, and had never used recreational drugs. He had been diagnosed with HIV/AIDS 2 years prior to this presentation, with a CD4 cell count of 61 cells/μL and a viral load of 50,000 copies/mL at presentation. He was on antiretroviral therapy, which included tenofovir disoproxil fumarate (Viread) and emtricitabine (S chatt), with incomplete adherence.

¹Results from this study were presented at the American College of Clinical Pharmacy 2018 Global Conference, October 20–23, 2018, Seattle, Washington, USA.
breath, and diarrhea. He denied travel outside of the United States. The patient had HIV/AIDS, which was diagnosed during the 1980s but was untreated until this admission. He also had chronic hepatitis C, which was diagnosed during this admission. He was positive for HLA-B*5701, indicating hypersensitivity to the antiretroviral drug abacavir, but had no other known allergies to medications.

At admission, the patient was febrile (temperature 38.9°C) and had tachycardia (heart rate 112 beats/min) with low oxygen saturation (92% on room air), bibasilar rales, and poor inspiratory effort. Baseline laboratory test values were compiled (Table). A baseline chest radiograph showed increased interstitial marking and bibasilar patchy opacities. A baseline chest computed tomography scan showed bilateral interstitial and ground-glass opacities and a 6-mm nodule in the right middle lobe.

The patient was given empiric antimicrobial drugs (azithromycin 250 mg/d and ceftriaxone 1 g/d, both intravenously [IV]) for presumptive community-acquired pneumonia and trimethoprim/sulfamethoxazole (TMP/SMX; 800/160 mg every 6 h IV) for presumptive Pneumocystis jirovecii pneumonia (PJP). On day 4, ceftriaxone and azithromycin were discontinued. Induced sputum culture obtained on day 2 showed acid-fast bacilli (AFB) on day 8.

Infection with M. tuberculosis was not suspected because of the patient’s clinical manifestations and fast growth of the organism. The symptoms improved after admission. On day 11, he was discharged from the hospital and received oral TMP/SMX equivalent to that for intravenous dosing for PJP treatment. In addition, he erroneously received oral azithromycin (1,250 mg/wk) for M. avium complex prophylaxis.

On day 22, the patient returned to the ambulatory care clinic at the same institution. At this time, additional induced sputum cultures from days 3 and 4 were positive for AFB. His TMP/SMX treatment course was completed and decreased to 800/160 mg/day orally for secondary PJP prophylaxis. Azithromycin was corrected to treatment doses and increased to 250 mg/d orally. Baseline HIV genotyping showed wild-type virus, and antiretroviral therapy (ART) was initiated with elvitegravir/cobicistat/emontricitabine/tenofovir alafenamide (E/c/F/TAF) in a fixed-dose combination.

At day 43, the pneumonitis had clinically resolved, and repeat computed tomography and AFB culture showed negative results. A diagnosis of infection with M. conceptionense was confirmed from 3 induced sputum cultures obtained during days 2–4. Growth of M. conceptionense was identified by rpoB gene sequencing. Testing was performed at National Jewish Mycobacteriology Reference Laboratory (Denver, CO, USA). Drug susceptibility testing was not performed. An environmental source of the infection was not sought. Doxycycline (100 mg 2×/day orally) was given in addition to azithromycin because of lack of susceptibility information and previous case reports using dual therapy, although there is no clear guidance for management. ART with E/c/F/TAF was continued.

The patient is still profoundly immunosuppressed (CD4 cell count 60 cells/μL [6%]) because of nonadherence to ART. Darunavir (800 mg/day orally) was added to E/c/F/TAF because of development of resistance to ART, most notably the M184V pathway. We plan to continue oral azithromycin and doxycycline at current doses until immune reconstitution is achieved.

Cases of infection with M. conceptionense have been reported in immunocompetent and immunocompromised patients and in traumatic (e.g., after surgery or injury) and nontraumatic situations (1–10). The lungs are the most common site for M. conceptionense infection, comprising 7 of the ≈21 cases reported (1–4). Our patient was immunocompromised because of infection with HIV. Pathogen entry occurred by inhalation in a nontraumatic fashion and led to pneumonitis.

Outside the United States, M. conceptionense infection has been reported in France, Iran, Taiwan, South Korea, China, and Japan (1,3–10). The only 2 previously reported case-patients with M. conceptionense infection in the United States were also in Chicago but were epidemiologically unrelated to the patient we describe (2).

Similar to other reported case-patients, this patient was given broad-spectrum antimicrobial drugs, which were tailored once diagnosis of nontuberculous mycobacterium was confirmed. In vitro drug susceptibility data from rapidly growing mycobacteria indicate that M. conceptionense is susceptible to clarithromycin, doxycycline, and fluoroquinolones but resistant to sulfamethoxazole (3). In addition, macrolides, fluoroquinolones, or doxycycline have been used for treatment of M. conceptionense infections in case reports. (1–10) These cases have assisted our choice of treatment for this case. In summary, our case report shows

Laboratory test	Value or result
Serum creatinine	0.89 mg/dL
Aspartate aminotransferase	25 U/L
Alanine aminotransferase	23 U/L
HIV RNA	25,611 copies/mL
CD4 cells	19 cells/μL (5%)
Hepatitis C virus antibody	Positive
Leukocytes	2.3 × 10³/μL
Neutrophils	1.9 × 10³/μL
Lymphocytes	0.2 × 10³/μL
Lactate dehydrogenase	546 U/L
Histoplasma antigen	Negative
Rapid plasma reagin	1:0
Clostridioides difficile	Negative
Stool culture	Negative

*Abnormal values are indicated in bold.
clinical and microbiological cure of *M. conceptionense* pneumonitis by using azithromycin and doxycycline in a patient with HIV/AIDS in the United States.

About the Author

Dr. Michienzi is a clinical assistant professor and pharmacist at the University of Illinois at Chicago College of Pharmacy, Chicago, IL. Her research interests are HIV–hepatitis C virus co-infection, HIV in incarcerated and underserved populations, and pharmacist roles in care.

References

1. Adékambi T, Stein A, Carvajal J, Raoult D, Drancourt M. Description of *Mycobacterium conceptionense* sp. nov., a *Mycobacterium fortuitum* group organism isolated from a posttraumatic osteitis inflammation. J Clin Microbiol. 2006; 44:1268–73. https://doi.org/10.1128/JCM.44.4.1268-1273.2006
2. Oda G, Winters M, Pacheco SM, Sikka M, Bleasdale S, Dunn B, et al. Identical strain of *Mycobacterium conceptionense* isolated from patients at 2 veterans affairs medical centers within the same metropolitan area over a 4-year period. Abstract no. 648. In: Abstracts of ID Week 2017, San Diego, October 4–8, 2017.
3. Kim SY, Kim MS, Chang HG, Yim JJ, Lee JH, Song SH, et al. Pulmonary infection caused by *Mycobacterium conceptionense*. Emerg Infect Dis. 2012;18:174–6. https://doi.org/10.3201/eid1801.110251
4. Shojaei H, Hashemi A, Heidari A, Ateai B, Naser AD. Pulmonary and extrapulmonary infection caused by *Mycobacterium conceptionense*: the first report from Iran. JRSM Short Rep. 2011;2:31. https://doi.org/10.1258/shorts.2010.010103
5. Liao CH, Lai CC, Huang YT, Chou CH, Hsu HL, Hsieh PR. Subcutaneous abscess caused by *Mycobacterium conceptionense* in an immunocompetent patient. J Infect. 2009;58:308–9. https://doi.org/10.1016/j.jinf.2009.02.012
6. Lee KH, Heo ST, Choi SW, Park DH, Kim YR, Yoo SJ. Three cases of postoperative septic arthritis caused by *Mycobacterium conceptionense* in the shoulder joints of immunocompetent patients. J Clin Microbiol. 2014;52:1013–5. https://doi.org/10.1128/JCM.02652-13
7. Yang HJ, Yim JW, Lee MY, Ko KS, Yoon HJ. *Mycobacterium conceptionense* infection complicating face rejuvenation with fat grafting. J Med Microbiol. 2011;60:371–4. https://doi.org/10.1099/jmm.0.024554-0
8. Zhang X, Liu W, Liu W, Jiang H, Zong W, Zhang G, et al. Cutaneous infections caused by rapidly growing mycobacteria: case reports and review of clinical and laboratory aspects. Acta Derm Venereol. 2015;95:985–9. https://doi.org/10.2340/00015555-2105
9. Yaita K, Matsunaga M, Tashiro N, Sakai Y, Masunaga K, Miyoshi H, et al. *Mycobacterium conceptionense* bloodstream infection in a patient with advanced gastric carcinoma. Jpn J Infect Dis. 2017;70:92–5. https://doi.org/10.7883/yoken.JJID.2015.626
10. Thibeaut S, Levy PY, Pelletier ML, Drancourt M. *Mycobacterium conceptionense* infection after breast implant surgery, France. Emerg Infect Dis. 2010;16:1180–1. https://doi.org/10.3201/eid1607.090771

Emergence of Influenza A(H7N4) Virus, Cambodia

Dhanasekaran Vijaykrishna, Yi-Mo Deng, Miguel L. Grau, Matthew Kay, Annika Suttie, Paul F. Horwood, Wantanee Kalpravidh, Filip Claes, Kristina Osbjer, Phillipe Dussart, Ian G. Barr, Erik A. Karlsson

Author affiliations: Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia (D. Vijaykrishna, Y.-M. Deng, M. Kay, I.G. Barr); Monash University, Melbourne (D. Vijaykrishna, M.L. Grau); Institut Pasteur du Cambodia, Phnom Penh, Cambodia (A. Suttle, P.F. Horwood, P. Dussart, E.A. Karlsson); James Cook University, Townsville, Queensland, Australia (P.F. Horwood); Food and Agriculture Organization of the United Nations, Bangkok, Thailand (W. Kalpravidh, F. Claes); Food and Agriculture Organization of the United Nations, Phnom Penh, Cambodia (K. Osbjer)

DOI: https://doi.org/10.3201/eid2510.190506

Active surveillance in high-risk sites in Cambodia has identified multiple low-pathogenicity influenza A(H7) viruses, mainly in ducks. None fall within the A/Anhui/1/2013(H7N9) lineage; however, some A(H7) viruses from 2018 show temporal and phylogenetic similarity to the H7N4 virus that caused a nonfatal infection in Jiangsu Province, China, in December 2017.

Avian influenza virus (AIV) subtype A(H7) is of concern because it has been a leading cause of zoonotic infections over the past 2 decades (1). The A/Anhui/1/2013-lineage A(H7N9) viruses, a leading cause of zoonotic infections in Asia since 2013, have not been detected in the Greater Mekong Subregion, but independent H7 lineages, including H7N3, H7N7, and H7Nx, have been detected occasionally in Cambodia since 2009 (2–4). H7N3 virus was detected from a duck mortality event in Kampong Thom during January 2017 (2), and H7N7 virus was detected in a live-bird market (LBM) in Takeo in September 2017 (4). Furthermore, highly pathogenic avian influenza (HPAI) A(H5N1) and low-pathogenicity avian influenza (LPAI) A(H9N2) are endemic in Cambodia (5); 59 poultry outbreaks of AIV and 56 human HPAI A(H5N1) cases have occurred since 2006. Although the exact ecological links are unknown, serologic studies suggest that AIVs of multiple subtypes are frequently introduced into poultry in Cambodia, possibly through cross-border trade or through wild birds (2,6,7).

In December 2017, a 68-year-old woman in Jiangsu, China, who had underlying medical conditions was infected by an LPAI influenza A(H7N4) virus, which led to severe pneumonia and intensive care unit admission, but