Amine-based vapor-phase crosslinking processes of polyimide-based membranes for energy efficient separations

Dave Mangindaan*
Professional Engineer Program Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480
dave.mangindaan@binus.ac.id

Abstract. Membrane processes are crucial in the industrial and engineering chemistry, for separation and purification of not only chemicals but also gases and wastewater treatment. In order to obtain high quality products from membrane processes, the membranes must be engineered to cater such performance, namely by chemical crosslinking process. One of the emerging crosslinking methods is the vapor phase crosslinking (VPC). The advantages of VPC for enhancing membranes are usage of fewer amounts of chemicals, with specific crosslinking of the top selective layer only (no unnecessary crosslinking of bulk layer). Therefore, membranes can boost their quality without sacrificing much of their productivity (quantity of flux). In this paper, several utilization of amine molecules for VPC of polyimide membranes for gas separations, pervaporation (gas-liquid separation), and organic solvent nanofiltration (OSN) are covered. The performance enhancements of the polymeric membranes for the aforementioned processes are summarized. Furthermore, the molecular mechanisms of the VPC of the amine-based vapors are reviewed, based on X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared characterizations. It was found that there are several possible scenarios of interaction between amines and polyimides, which are not only involving crosslinking (combination of several polymeric chains), but also grafting, and sometimes chain scissions. The investigation of molecular mechanism of the amine-based VPC process provides insights to the relationship between structural configurations towards the separation performance of various types of membrane processes, which paves way for the development of membranes of the future.

Keywords: Vapor phase crosslinking, amines, membranes polyimide, pervaporation, gas separation, organic solvent nanofiltration

1. Introduction
Membrane is a semi-permeable material that selectively separates a particular stream (permeate) from a mixture (feed), with several of driving forces such as differences of concentration, pressure, temperature, etc.[1] Nowadays, membrane processes are vital in the field of industrial and engineering chemistry, especially for separation and purification of not only chemicals but also food [2-5], gases [6, 7] and wastewater treatment [8-11]. Its performance is evaluated from the aspects of selectivity or rejection (representing quality) and flux or permeability (representing quantity). These two parameters in the field of membrane separations are quite opposing each other, and therefore research of membranes are conducted intensively in the world. Although both the aforementioned parameters can
be achieved, but there are several problems lurking to be solved, such as price, manufacturability, durability, thermal and/or mechanical resistance etc.[1] From materials point-of-view, there are 2 (two) major classes of membranes, i.e. (1) ceramic (inorganic) membranes, and (2) polymeric membranes [2, 12, 13]. Ceramic membranes exhibit high performance (both flux and selectivity), but expensive, and quite difficult to fabricate and also brittle (broken easily). Polymeric membranes are relatively easy to process and fabricate, much cheaper than ceramic membranes, however with low or moderate flux and/or selectivity. With proper treatment or modifications, polymeric membranes might be improved to be on par with ceramic membranes [14].

There are several polymeric materials for membranes [15], especially for that of glassy polymers such as polyvinylidene fluoride [16, 17], polybenzimidazole [18, 19], polyvinyl alcohol[20, 21], or polysulfone [22, 23], but the most common one is polyimide, with its widespread variations namely P84 [24-27] or Matrimid [7, 28], and some popular lab-made 6FDA-Durene materials [6, 29, 30]. These materials of glassy polymers are highly utilized for membranes because of the thermal resistance, mechanical properties, facile processing of using relatively safe solvents, etc. However, the separation quality of the polyimides is very moderate and therefore it is imperative to be improved.

To enhance the performance of membranes, there are several methods e.g. thermal annealing [31, 32], blending different polymers [18], or incorporation of nanoparticles [6, 33], etc. On the other hand those methods might have some drawbacks regarding the compatibility issues of polymer-polymer or polymer-nanoparticles interactions, which will hinder the true potential of membranes for the applications in the industrial and engineering chemistry. Another method that is common to be employed for improving polymeric membranes is crosslinking process [34, 35]. In this method, polymer chains are joined together to deliver more compact membrane structures, resulting not just in stronger and more durable membranes, but also in the increase of the selectivity (quality of a separation) of the membranes. However, it is also crippled with the loss of flux (quantity of a separation) [25], which is quite normal, considering the tighter pores of membranes brought by the crosslinking process.

Membrane-based processes	Feed	Permeate	Amine crosslinker	Reference
Organic solvent nanofiltration (OSN)	Organic solvent (Rose Bengal dye in isopropanol)	Organic solvent (isopropanol)	Tris(aminopropyl) amine (TAPA)	[36]
Gas separation	Gas (H₂/CO₂)	Gas (H₂)	Tris(aminopropyl) amine (TAEA)	[29]
	Gas (H₂/CO₂)	Gas (H₂)	Diethylene triamine (DETA)	[30]
Pervaporation	Liquid (acetone/water)	Vapor (water)	Ethylenediamine (EDA)	[25]
There are several conventional crosslinking methods, i.e. thermal, ultraviolet, and wet crosslinking processes [34]. Thermal crosslinking requires long time and also large input of energy, while ultraviolet crosslinking is more energy-efficient than the thermal crosslinking, but it suffers from unstable and random reaction and heavily equipment-dependent [37-39]. An emerging crosslinking process that deserves more exploration is vapor-phase crosslinking (VPC). It was first utilized by applying ethylenediamine vapor for modification of polyimide membranes for improved H₂ purification (gas-gas separation) [29, 30, 40, 41], and then extended for the pervaporation process (vapor-liquid separation) [25], and also for solvent-resistant nanofiltration (SRNF) or more recognized as organic solvent nanofiltration (OSN). It is quite interesting to review VPC as it is logically an economical process (crosslinker can be easily reused), perform crosslinking exclusively on top of the selective layer of membranes, and the use of mild conditions.

In this paper, the rising and unique procedure of VPC for selected various membrane processes (pervaporation, gas separation, and OSN, as shown in Table 1) is discussed and analyzed. The amines used are tris(aminopropyl)amine (TAPA) [36], tris(aminomethyl)amine (TAEA) [29], diethylene triamine (DETA) [30], and ethylenediamine (EDA) [25]. The molecular point-of-view of the crosslinking mechanism is also highlighted, as assisted by several chemical characterization methods, namely FTIR (Fourier transform infrared spectroscopy) and XPS (X-ray photoelectron spectroscopy).

2. Methodology
In this review, selected polyimide membranes (backbone shown in Figure 1) modified with amine-based VPC for various membrane separations are summarized in Table 2 (along with the functional groups of the related polyimide backbone in Figure 1).

No.	Selected membrane processes	Polyimide	R1	R2	Amine crosslinker
1	OSN [36]	Matrimid 5218	![Image](image1.png)	TAPA	
2	H₂ selective gas separation [29]	6FDA-Durene	![Image](image2.png)	TAEA	
3	H₂ selective gas separation [30]	6FDA-Durene	![Image](image3.png)	DETA	
4	Pervaporation [25]	P84	![Image](image4.png)	EDA	
Figure 1. Polyimide backbone for several selected membrane separations. The functional groups R1 and R2 are shown in Table 2.

The VPC was applied to the different membranes by using simple lab-made apparatuses shown in Figure 2. During VPC, there will be variations of operation conditions that are shown in Table 3.

![Figure 2. Apparatuses for amines VPC](image)

Table 3. Operation conditions of several amine VPC processes

No	Selected membrane processes	Amine crosslinker	Temperature (°C)	Time (min)	Volume of amines
1	OSN [36]	TAPA	50-120	10-45	20 mL
2	H₂ selective gas separation [29]	TAEA	40-80	10	15 mL
3	H₂ selective gas separation [30]	DETA	80	10-60	25 mL
4	Pervaporation [25]	EDA	30-60	0.5-1.5	10 mL

The VPC modified membranes were tested at various separation processes, with feed and permeate are briefly mentioned in Table 1. In brief, the details of the experiments are as follows. In the OSN experiment, a dead-end permeation cell using membranes of 3.14 cm² was employed to separate Rose Bengal dye (50 ppm) in isopropanol. [36] The permeation cell was stirred by magnetic stirrer at 600 rpm. For the gas separation, a variable-pressure constant volume permeation system having upstream pressure of 3.5 atm was used to measure the permeability of standalone stream of pure H₂ and pure CO₂ gas (35 °C). To assess the separation performance with mixed gas as a mixture, the H₂ and CO₂ gas were mixed at 50/50 (v/v) as the feed, and measured with a variable-volume constant pressure permeation system with total pressure of 7 atm. [29, 30] For the pervaporation experiment, a lab-scale Sulzer pervaporation apparatus was used, using membranes of 15.2 cm², to capture water from acetone/water (85/15 w/w, 50 °C) feed [25]. The membranes modified by amines VPC were characterized in terms of morphology by using scanning electron microscopy (SEM) or field-emission SEM. The chemical functional groups were analyzed qualitatively by using Fourier transform infrared spectroscopy (FTIR) and quantitatively by using XPS (X-ray photoelectron spectroscopy).

3. Results and Discussion

The performance of the modified membranes via amines VPC process is shown in Table 4 (OSN and pervaporation) and Figure 3 (gas separations). Furthermore, in Table 4, there are also several data from other literatures cited in order to provide a good comparison between membranes modified with and without amines VPC. For H₂/CO₂ gas separation, the selectivity to H₂ is enhanced to pass the Robeson upper bond 2008, which is the benchmark of membrane-based gas separation processes before 2008. For the case of acetone/water pervaporation, the VPC modified polyimide membranes perform
acceptable separation factor (equals to rejection of 90%), balanced with the highest productivity of 1.8 kg m$^{-2}$ h$^{-1}$ of water in the permeate side of the pervaporation process.

Table 4. Separation performance of several OSN and acetone/water pervaporation modified by amines VPC

Membranes	Cross-linker/ modification	Rejection or separation factor	Flux
Matrimid 5218/UiO-66-NH$_2$ 0.1% [36]	TAPA VPC, 120 °C, 30 mins	Rejected Rose Bengal dye in isopropanol \sim95%	4 L m$^{-2}$ h$^{-1}$ (stable at 10 bar, 12 days)
Deacetylated chitosan [42]	-	SF= 208	0.240 kg m$^{-2}$ h$^{-1}$
Chitosan [43]	Glutaldehyde	SF= 1276	0.084 kg m$^{-2}$ h$^{-1}$
PBI/P84 [18]	p-xylene dichloride & heat treatment	SF= 1187	0.284 kg m$^{-2}$ h$^{-1}$
P84 [25]	EDA VPC, 50 °C, 1 min	SF= 53.48	1.825 kg m$^{-2}$ h$^{-1}$

Figure 3. H$_2$/CO$_2$ separation performance of membranes modified by DETA and TAEA

These successful enhancements of membrane processes by amines VPC are definitely related with the structural change of the membranes after the vapor crosslinking process. In general, the morphology (not shown here) of the membranes modified by amines VPC were quite distinctive, having increased dense selective on the top layer in the nanometric region, and up to 150 nm [25, 29, 30, 36], which is acceptable as the expected outcome of a crosslinking process.

The chemical characterization by FTIR (Figure 4) and XPS (Table 5) of representative EDA VPC-modified pervaporation membrane showed that the improvement of the membranes is highly related to the increased signal of amide groups at 1644 and 1520 cm$^{-1}$ (associated with C=O stretch and C-N stretch), at the cost of the disappearance of polyimide characteristic hands of imide groups at 1718 and 1352 cm$^{-1}$ (C=O symmetric stretch and C-N stretch), as a fruit of the attack on imide ring, causing the opening of the ring. The phenomenon captured by the FTIR results was recalculated by using XPS analysis, delivering the quantification of surface functional groups (via high-resolution deconvolution spectra, not shown here), led by the increasing of C-N bonds (285.5 eV [44, 45]. By observing Figure
4, it also can be seen that there is an optimized point of the temperature and time of amines VPC. Beyond that point, the membrane might be heavily damaged.

Table 5. High-resolution deconvolution spectra of EDA VPC-modified pervaporation membranes

Name	C-C/benzene 284.7 eV	C-N 285.5 eV	C=O 284.7 eV	R²
Control	71.26	12.52	16.22	0.99
E30-60	64.77	20.07	15.16	0.99
E50-30	69.61	23.03	7.36	0.99
E50-60	60.91	31.14	7.95	0.99
E50-90	68.11	23.42	8.47	0.99
E60-60	75.97	11.94	12.09	0.99

Figure 4. Typical FTIR results of polyimide membranes modified with amines VPC

Figure 5. Proposed molecular mechanism of amine-based vapor phase crosslinking (represented by TAEA)

Based on the result of FTIR and also XPS, it is clearly shown that the amine VPC process involves not only crosslinking (indicated by tighter pores, and slightly decreased flux, but higher selectivity),
but also attack of the imide groups that leads to opening of imide ring, and probable scission of polymeric chain. Moreover, grafting of amines (resulting from incomplete crosslink of polymeric chain by amines) is also possible. Therefore, the molecular mechanism of crosslinking of polyimide membranes by amines VPC is proposed in Figure 5, represented by TAEA VPC.

4. Conclusions
In this review, amine-based vapor crosslinkers (EDA, DETA, TAEA, TAPA) have been successfully applied for a wide array of membrane separations (OSN of Rose Bengal in isopropanol, acetone/water pervaporation, H₂/CO₂ gas separation) to improve the purification processes (selectivity, durability, productivity, etc.). Several advanced characterization techniques have aided to reveal the crosslinking mechanism (which deployed the opening of imide ring that permits not just crosslinking but also grafting that allows substantial incorporation of free amines) that is beneficial for designing membranes for the future.

References
[1] M. Mulder 1992 Basic Principles of Membrane Technology (Netherlands: Kluwer Academic Publishers)
[2] P.T.P. Aryanti, E. Subroto, D. Mangindaan, I.N. Widiasa and I.G. Wenten, (2020), "Semi-industrial high-temperature ceramic membrane clarification during starch hydrolysis", J. Food Eng. Vol. 274 pp. 109844
[3] D. Mangindaan, K. Khoiruddin and I.G. Wenten, (2018), "Beverage dealcoholization processes: Past, present, and future", Trends Food Sci. Technol. Vol. 71 pp. 36-45
[4] M. Purwasasmita, D. Kurnia, F.C. Mandias, Khoiruddin and I.G. Wenten, (2015), "Beer dealcoholization using non-porous membrane distillation", Food Bioprod Process Vol. 94 pp. 180-186
[5] H. Julian, F. Yaohanny, A. Devina, R. Purwadi and I.G. Wenten, (2020), "Apple juice concentration using submerged direct contact membrane distillation (SDCMD)", J. Food Eng. Vol. 272 pp. 109807
[6] S. Japip, H. Wang, Y. Xia and T.S. Chung, (2014), "Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation", J. Membr. Sci. Vol. 467 pp. 162-174
[7] W.F. Yong, F.Y. Li, T.S. Chung and Y.W. Tong, (2013), "Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification", J. Mater. Chem. A Vol. 1 pp. 13914-13925
[8] G. Febrianto, D. Karisma and D. Mangindaan, (2019), "Polyetherimide nanofiltration membranes modified by interfacial polymerization for treatment of textile dyes wastewater", IOP Conf. Ser.: Mater. Sci. Eng. Vol. 622 pp. 012019
[9] D. Karisma, G. Febrianto and D. Mangindaan, (2018), "Polyetherimide thin film composite (PEI-TFC) membranes for nanofiltration treatment of dyes wastewater", IOP Conf. Ser.: Earth Environ. Sci. Vol. 195 pp. 012057
[10] D. Karisma, G. Febrianto and D. Mangindaan, (2017), "Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane", IOP Conf. Ser.: Earth Environ. Sci. Vol. 109 pp. 012012
[11] F.M. Gunawan, D. Mangindaan, K. Khoiruddin and I.G. Wenten, (2019), "Nanofiltration membrane cross-linked by m-phenylenedianime for dye removal from textile wastewater", Polym. Adv. Technol. Vol. 30 pp. 360-367
[12] P.D. Chapman, T. Oliveira, A.G. Livingston and K. Li, (2008), "Membranes for the dehydration of solvents by pervaporation", J. Membr. Sci. Vol. 318 pp. 5-37
[13] K.C. Khulbe, C. Feng and T. Matsuura, (2010), "The Art of Surface Modification of Synthetic Polymeric Membranes", J. Appl. Polym. Sci. Vol. 115 pp. 855-895
[14] J. Zuo, Y. Wang and T.S. Chung, (2013), "Novel organic-inorganic thin film composite membranes with separation performance surpassing ceramic membranes for isopropanol dehydration", J. Membr. Sci. Vol. 433 pp. 60-71

[15] R.W. Baker 2000 Membrane Separation (Membrane Technology & Research Inc. (MTR), Menlo Park, CA, USA

[16] P. Sukitpaneenit and T.S. Chung, (2011), "Molecular design of the morphology and pore size of PVDF hollow fiber membranes for ethanol–water separation employing the modified pore-flow concept", J. Membr. Sci. Vol. 374 pp. 67-82

[17] S. Bonyadi, T.S. Chung and R. Rajagopalan, (2009), "Novel approach to fabricate macrovoid-free and highly permeable PVDF hollow fiber membranes for membrane distillation", AIChE J. Vol. 55 pp. 828-833

[18] G.M. Shi, Y. Wang and T.S. Chung, (2012), "Dual-layer PBI/P84 hollow fibers for pervaporation dehydration of acetone", AIChE J. Vol. 58 pp. 1133-1145

[19] Y. Wang, M. Gruender and T.S. Chung, (2010), "Pervaporation dehydration of ethylene glycol through polybenzimidazole (PBI)-based membranes. 1. Membrane fabrication", J. Membr. Sci. Vol. 363 pp. 149-159

[20] V.S. Praptowidodo, (2005), "Influence of swelling on water transport through PVA-based membrane", J. Mol. Struct. Vol. 739 pp. 207-212

[21] M.N. Hyder and P. Chen, (2009), "Pervaporation dehydration of ethylene glycol with chitosan–poly(vinyl alcohol) blend membranes: Effect of CS–PVA blending ratios", J. Membr. Sci. Vol. 340 pp. 171-180

[22] A. Sutedja, C.A. Josephine and D. Mangindaan, (2017), "Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater", IOP Conf. Ser.: Earth Environ. Sci. Vol. 109 pp. 012042

[23] G. Han, S. Zhang, X. Li, N. Widjojo and T.S. Chung, (2012), "Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection", Chem. Eng. Sci. Vol. 80 pp. 219-231

[24] A.C. Lua and Y. Shen, (2013), "Preparation and characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas separation", J. Membr. Sci. Vol. 429 pp. 155-167

[25] D.W. Mangindaan, G.M. Shi and T.S. Chung, (2014), "Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking", J. Membr. Sci. Vol. 458 pp. 76-85

[26] J. Gao, S.P. Sun, W.P. Zhu and T.S. Chung, (2014), "Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb$^{2+}$ removal", J. Membr. Sci. Vol. 452 pp. 300-310

[27] D.W. Mangindaan, N.M. Woon, G.M. Shi and T.S. Chung, (2015), "P84 polyimide membranes modified by a triodal amine for enhanced pervaporation dehydration of acetone", Chem. Eng. Sci. Vol. 122 pp. 14-23

[28] P.S. Tin, T.S. Chung, Y. Liu, R. Wang, S.L. Liu and K.P. Pramoda, (2003), "Effects of cross-linking modification on gas separation performance of Matrimid membranes", J. Membr. Sci. Vol. 225 pp. 77-90

[29] S. Japip, K.-S. Liao, Y. Xiao and T.S. Chung, (2016), "Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking", J. Membr. Sci. Vol. 497 pp. 248-258

[30] H. Wang, D.R. Paul and T.S. Chung, (2013), "Surface modification of polyimide membranes by diethylenetriamine (DETA) vapor for H$_2$ purification and moisture effect on gas permeation", J. Membr. Sci. Vol. 430 pp. 223-233

[31] H.A. Tsai, Y.L. Ye, K.R. Lee, S.H. Huang, M.C. Suen and J.Y. Lai, (2011), "Characterization and pervaporation dehydration of heat-treatment PAN hollow fiber membranes", J. Membr. Sci. Vol. 368 pp. 254-263
[32] F. Peng, L. Lu, H. Sun and Z. Jiang, (2006), "Analysis of annealing effect on pervaporation properties of PVA-GPTMS hybrid membranes through PALS", J. Membr. Sci. Vol. 281 pp. 600-608

[33] S.N. Wijenayake, N.P. Panapitiya, S.H. Versteeg, C.N. Nguyen, S. Goel, K.J. Balkus Jr., I.H. Musselman and J.P. Ferraris, (2013), "Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation", Ind. Eng. Chem. Res. Vol. 52 pp. 6991-7001

[34] K. Vanherck, G. Koeckelberghs and I.F.J. Vankelecom, (2013), "Crosslinking polyimides for membrane applications: A review", Prog. Polym. Sci. Vol. 38 pp. 874-896

[35] L.Y. Jiang, Y. Wang, T.S. Chung, X.Y. Qiao and J.-Y. Lai, (2009), "Polyimides membranes for pervaporation and biofuels separation", Prog. Polym. Sci. Vol. 34 pp. 1135-1160

[36] Z.F. Gao, Y.N. Feng, D.C. Ma and T.S. Chung, (2019), "Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH₂ for organic solvent nanofiltration", J. Membr. Sci. Vol. 574 pp. 124-135

[37] C. Staudt-Bickel and W.J. Koros, (1999), "Improvement of CO₂/CH₄ separation characteristics of polyimides by chemical crosslinking", J. Membr. Sci. Vol. 155 pp. 145-154

[38] C. Cao, T.S. Chung, Y. Liu, R. Wang and K.P. Pramoda, (2003), "Chemical cross-linking modification of 6FDA-2,6-DAT hollow fiber membranes for natural gas separation", J. Membr. Sci. Vol. 216 pp. 257-268

[39] C.T. Wright and D.R. Paul, (1997), "Gas sorption and transport in UV-irradiated polyarylate copolymers based on tetramethyl bisphenol-A and dihydroxybenzophenone", J. Membr. Sci. Vol. 124 pp. 161-174

[40] L. Shao, C.H. Lau and T.S. Chung, (2009), "A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification", Int. J. Hydrogen Energ. Vol. 34 pp. 8716-8722

[41] C.H. Lau, B.T. Low, L. Shao and T.S. Chung, (2010), "A vapor-phase surface modification method to enhance different types of hollow fiber membranes for industrial scale hydrogen separation", Int. J. Hydrogen Energ. Vol. 35 pp. 8970-8982

[42] S. Sridhar, G. Susheela, G.S. Murthy, G. Veeraiah and M. Ramakrishna, (2003), "Pervaporation performance of deacetylated chitosan membrane in the dehydration of acetone", J. Polym. Mater. Vol. 20 pp. 9

[43] W. Zhang, G. Li, Y. Fang and X. Wang, (2007), "Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance", J. Membr. Sci. Vol. 295 pp. 130-138

[44] D. Mangindaan, W.-H. Kuo and M.-J. Wang, (2013), "Two-dimensional amine-functionality gradient by plasma polymerization", Biochem. Eng. J. Vol. 78 pp. 198-204

[45] D. Mangindaan, W.-H. Kuo, H. Kurniawan and M.-J. Wang, (2013), "Creation of biofunctionalized plasma polymerized allylamine gradients", J. Polym. Sci. Part B: Polym. Phys. Vol. 51 pp. 1361-1367