Continuum correlations in accreting X-ray pulsars

M I Gornostaev1,2, K A Postnov1,2 and D Klochkov3

1 Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
2 Sternberg Astronomical Institute, Moscow M. V. Lomonosov State University, Universitetskij pr., 13, Moscow 119992, Russia
3 Institute of Astronomy and Astrophysics, Karl-Eberhard University, Tübingen, Sand 1, D-72076, Germany

E-mail: mgornost@gmail.com; kpostnov@gmail.com

Abstract. Two-dimensional structure of accretion columns in the radiation-diffusion limit is calculated for two possible geometries (filled and hollow cylinder) for mass accretion rates \dot{M} ranging from 10^{17} to 1.2×10^{18} g s$^{-1}$. The observed spectral hardening in the transient X-ray pulsars with increasing \dot{M} can be reproduced by a Compton-saturated sidewall emission from optically thick magnetized accretion columns with taking into account the emission reflected from the neutron star atmosphere. At \dot{M} above some critical value $\dot{M}_{cr} \sim (6-8) \times 10^{17}$ g s$^{-1}$, the height of the column becomes such that the contribution of the reflected component to the total emission starts decreasing, which leads to the saturation and even slight decrease of the spectral hardness. Hollow-cylinder columns have a smaller height than the filled-cylinder ones, and the contribution of the reflected component in the total emission does not virtually change with \dot{M} (and hence the hardness of the continuum monotonically increases) up to higher mass accretion rates than \dot{M}_{cr} for the filled columns.

1. Observations

After the discovery of X-ray pulsars in 1971 [1] it was realized that in bright pulsars the radiation plays a crucial role in braking of the accreting matter onto the surface of a neutron star with strong magnetic field. It is now well recognized that once the radiation density above the polar cap starts playing the role in the accreting matter dynamics, an optically thick accretion column above the polar cap is formed [2] (see [3] for the latest investigation). The characteristic height of the column increases with accretion rate, most of the emission escapes through sidewalls, and it can be expected that above some X-ray luminosity the dependence of the observed properties of the continuum emission on the X-ray luminosity can become different from that in the low-luminosity regime.

Indeed, a similar bimodality is observed in the dependence of the X-ray continuum hardness on luminosity. This dependence can be studied using, for example, data from all-sky monitors such as RXTE/ASM and MAXI, i.e. without dedicated spectroscopic observations which are necessary to measure CRSFs. Following this approach, we measured the hardness ratio as a function of luminosity in the accreting pulsars GX 304–1, 4U 0115+63, V 0332+53, EXO 2030+375, A 0535+26 and MXB 0656–072 using the data from different energy bands of RXTE/ASM. The result is shown in Fig. 1. To convert the ASM count rates into X-ray luminosities, we used published distances to the sources (GX 304–1: ~ 2 kpc, [4]; 4U 0115+63:
~7 kpc, [5], V 0332+53: ~7 kpc, [6]; EXO 2030+375: ~7 kpc, [7]; A 0535+26: ~2 kpc, [8]; MXB0656-072: ~3.9 kpc, [9]) and their broadband X-ray spectra from the archival pointed observations with INTEGRAL and RXTE available to us. One can see that at lower fluxes the hardness ratio increases with flux. At a certain flux, however, a flattening of the hardness ratio is observed in 4U 0115+63, V 0332+53, EXO 2030+375, A 0535+26 and MXB 0656-072. This ‘turnover’ occurs at the flux roughly corresponding luminosities $(3–7) \times 10^{37} \, \text{erg s}^{-1}$. In GX 304−1, which does not show such a turnover, this ‘critical’ luminosity has simply not been reached during the outbursts registered by RXTE/ASM.

A similar dependence of spectral properties on the X-ray flux at luminosities below $\sim 10^{37} \, \text{erg s}^{-1}$ was also reported from spectroscopic observations of the transient Be-X-ray pulsar GRO J1008-57 [10].

At the lowest energies covered by RXTE/ASM, the spectrum of accreting pulsars is significantly affected by photo-electric absorption caused mostly by matter in the vicinity of the source. Such an absorption naturally influences the derived hardness ratios and cannot be accounted for without a high-resolution spectral analysis using pointed observations. Neutral absorbing matter surrounding the accretor might correlate with the mass transfer rate in the binary and might therefore be proportional to the X-ray luminosity of the pulsar. Such an effect might at least contribute to the observed positive correlation between the hardness ratio and flux. However, we do not expect any break in the slope of the correlation between the absorption column density and flux at $L_X \sim 10^{37} \, \text{erg s}^{-1}$ (although we cannot exclude this possibility). We therefore identify the observed breaks with those reported by [11] at similar X-ray luminosities based on the data from RXTE/PCA observations taken at higher energies which should be unaffected by the photo-electric absorption.
2. Numerical simulations of accretion column in radiation-diffusion approximation

2.1. Boundary conditions

We introduce cylindrical coordinates \(r, \varphi, z \) centred at the columns axis and \(z = 0 \) at the neutron star surface. The initial velocity of the falling matter at high altitude above the surface of the neutron star is \(v_0 = 10^{10} \, \text{cm s}^{-1} \). At the cylinder base (\(z = 0 \)), the velocity is \(v = 0 \). As a boundary condition at the column side surface we used the relation between the radial energy flux to the energy density \(U \) in the form \(F_r(r_0, z) = \frac{2cU(r_0, z)}{3} \), which roughly corresponds to the conditions expected in the scattering atmospheres in the Eddington approximation.

2.2. Basic equations

The cylindrical symmetry of the problem makes it essentially two-dimensional. The steady-state momentum equation (ignoring gravity, which is very good approximation as discussed e.g. in [2]) for accretion braking by the radiation with energy density \(U \) reads

\[
(S \cdot \nabla) v = -\frac{1}{3} \nabla U, \tag{1}
\]

where \(S = \rho v = \text{const} \) is the mass continuity equation. The integration of these equation yields

\[
U = 3S(v_0 - v). \tag{2}
\]

Following [12], the energy equation can be written as

\[
\nabla \cdot F = -S \cdot \nabla \left(\frac{v^2}{2} \right), \tag{3}
\]

where we has neglected the flow of internal energy of the falling matter.

The radiative transfer equation in the diffusion approximation is

\[
F = -\frac{c}{3\kappa \rho} U + \frac{4}{3} U v, \tag{4}
\]

where the inflow of gas is considered to be stationary.

From equation (4) in cylindrical coordinates we find the components of the radiation energy flux:

\[
F_r = \frac{-\frac{c}{3\kappa \rho} U \frac{\partial U}{\partial r}}{1 + \frac{1}{3\kappa \rho U} \left| \frac{\partial U}{\partial r} \right|}, \tag{5}
\]

\[
F_z = \frac{-\frac{c}{3\kappa \rho} U \frac{\partial U}{\partial z} - \frac{4}{3} U v}{1 + \frac{1}{3\kappa \rho U} \left| \frac{\partial U}{\partial z} \right|}, \tag{6}
\]

where the coefficients \(1 + \frac{1}{3\kappa \rho U} \left| \frac{\partial U}{\partial r} \right|^{-1} \) and \(1 + \frac{1}{3\kappa \rho U} \left| \frac{\partial U}{\partial z} \right|^{-1} \) are introduced to use the modified diffusion approximation in the optically thin regions where the change of the radiation energy density on the photon mean free path becomes significant (see [13]). Equations (1) – (6) describe the accretion shock mediated by radiation in the diffusion limit and provide the structure of the zone where most of the accretion energy responsible for the formation of the emergent spectrum is released. The 'sinking zone' downstream the radiation shock, where the matter settles down subsonically and advects thermal energy towards the NS surface, should be treated separately (see [2, 13]). Different physical effects can appear in this zone, e.g. 'photon bubble oscillations' discussed in [14, 15].
2.3. Equations in dimensionless form

The convenient variables are dimensionless velocity of matter squared $Q = v^2/v_0^2$, the dimensionless column radius $\tilde{r} = \tau_T S_1 T r/c$ and height $\tilde{z} = \tau_T S_1 T z/c$, where $S_1 = S(M_{17} = 1) = 8.79 \times 10^6 \text{ erg s}^{-1} \text{ cm}^{-2}$ (in the case of filled column) and $M_{17} = M/(10^{17} \text{ g s}^{-1})$ is dimensionless mass accretion rate onto one pole. For the assumed value of $r_0(M_{17} = 1)$ (here and below r_0 is the current column radius) the dimensionless factors almost exactly equal to 10^{-4} cm^{-1}. For the scattering cross-sections we shall assume $\tau_\perp = \tau_T$ and $\tau_T/\tau_\parallel = 10$.

With this notation and dimensionless variables, the system of equations (2), (3), (5), (6) is equivalent to one non-linear partial differential equation (cf. [12])

$$
\tilde{K}_\perp \left[\frac{\partial^2 Q}{\partial \tilde{r}^2} + \frac{1}{\tilde{r}} \frac{\partial Q}{\partial \tilde{r}} \right] + \tilde{K}_\parallel \left[\frac{\tau_T}{\tau_\parallel} \frac{\partial^2 Q}{\partial \tilde{z}^2} - 8 \frac{\partial}{\partial \tilde{z}} (\sqrt{Q} - Q) \right] - \frac{\partial Q}{\partial \tilde{z}} = 0, \tag{7}
$$

where the coefficients $\tilde{K}_\perp = \left(1 + \frac{v_0}{6c(1-\sqrt{Q})} \left| \frac{\partial Q}{\partial \tilde{r}} \right| \right)^{-1}$ and $\tilde{K}_\parallel = \left(1 + \frac{\tau_T}{\tau_\parallel} \frac{v_0}{6c(1-\sqrt{Q})} \left| \frac{\partial Q}{\partial \tilde{z}} \right| \right)^{-1}$ are calculated at each consecutive iteration using values of Q obtained in the previous iteration.

2.4. Numerical procedure

Equation (7) was solved numerically using the finite difference approximation method. A time-relaxation scheme was used. In this approach, the equation in the form $L(Q) = 0$, where L is the corresponding differential operator, has been replaced by a parabolic equation of the form $\frac{\partial Q}{\partial t} - L[Q] = 0$. The steady-state solution of the last equation coincides with the solution of the original elliptic equation. An explicit finite-difference scheme was used to solve the parabolic equation.

2.5. Results of numerical calculations

Numerical simulations were carried out for accretion rates onto one pole in the range $10^{17} - 1.2 \times 10^{18} \text{ g s}^{-1}$ for the hollow cylinder with wall thickness $b r_0$ ($b=0.1$) and the filled cylinder geometry. The column structure at different accretion rates is shown in Fig. 2. Note that at a given mass accretion rates and the NS magnetic field, the height of the braking zone in the hollow cylinder case is smaller than that in the case of the filled cylinder, as expected from the dependence of the radiation diffusion time t_d on the wall thickness, $t_d \propto b$.

![Figure 2](image-url)
3. Hardness ratio variations

3.1. Saturated Compton spectrum of sidewall emission

The LTE treatment of the spectrum of the sidewall emission from accretion columns is clearly a strong oversimplification. To take into account the scattering on electrons in the optically thin boundary of the column, we can use the model calculations of the radiation transfer problem in a semi-infinite plane-parallel atmosphere with strong magnetic field. In this case the emerging spectrum will be formed in the saturated Compton regime, with the mode 1 photons (extraordinary, i.e. polarized perpendicular to the \(k - B \)-plane, where \(k \) is the photon wavevector and \(B \) is the magnetic field vector) predominantly escaping through sidewalls [16]. The intensity of mode 2 (ordinary, i.e. polarized in the \(k - B \) plane) photons is comparable to that of mode 1 photons only at large angles to the normal, \(\mu' \sim 0 \), and thus insignificantly contribute to the total flux from the unit surface area due to the geometrical factor.

In this regime, the specific intensity of extraordinary photons at energies far below the cyclotron resonance can be written to an accuracy of a few per cents as [16]

\[
I'_\nu = I_\nu (1 + 2\mu') = \frac{2\sqrt{3}}{5} (1 + 2\mu') \frac{h \nu \nu_e^2}{c^2 \tau_0} e^{-\frac{\nu}{kT}},
\]

where \(\mu' = \cos \theta' \) is the angle between the normal to the atmosphere and the escaping radiation direction in the plasma reference frame, \(\tau_0 \) is the characteristic optical depth of the problem, \(\nu_e = \frac{eB}{2\pi m_e c} \) is the electron gyrofrequency in the magnetic field. By expressing the characteristic optical depth \(\tau_0 \) through the emergent radiation flux \(\Phi \) using Eqs. (34-37) from [16], we find

\[
I_\nu = \frac{3}{10\pi} \left(\frac{h \nu}{kT} \right)^2 \Phi \frac{\nu}{e^{-\frac{\nu}{kT}}}. \tag{9}
\]

Therefore, we are in the position to calculate the emerging spectrum from the column in this approximation using the solutions for the column structure obtained above. To do this, it is sufficient to substitute the total radial energy flux at each height of the column \(\Phi \rightarrow F_r(z)/2 \) (\(F_r(z) \) (6) is known from our numerical calculations), and temperature \(T \rightarrow T(z) \) estimated deep inside the column (at the optical depth \(\sim 1 \)), so that \(T(z) = (U(z)/a_r)^{1/4} \). Note here that at large optical depth the number density of ordinary and extraordinary photons are equal, with the extraordinary photons becoming overwhelmingly dominant in the optically thin outer layers. Therefore, only half of the radial energy flux, \(F_r(z)/2 \), should be taken into account in the spectral calculations.

3.2. Account for the reflected component

Now we should take into account the fact that the electrons in the optically thin part of the column are moving with high velocity \(v_0 \sim 1/3c \), and thus the emission beam of the column (8) should be Doppler-boosted towards the neutron star surface and reflected from the neutron star atmosphere, as discussed in [17] and [18]. The reflection coefficient in the case of single Compton electron scattering in strong magnetic field is determined by the ratio \(\lambda(\nu) = \kappa_{sc}/(\kappa_{sc} + \kappa_{abs}) \), where \(\kappa_{sc} \) and \(\kappa_{abs} \) is the scattering and absorption coefficients for photons in the strong magnetic field, respectively. Note that the calculated X-ray albedo turns out to be very similar for both extraordinary and ordinary photons and is virtually insensitive to the photon incident angle to the magnetic field. Below we shall use the mode-averaged value of X-ray albedo for the angle \(\pi/4 \). It is seen that soft photons are mostly absorbed, while hard photons are reflected by the neutron star atmosphere. Therefore, the reflected spectrum is harder than the incident one.

Let \(\alpha \) be the angle between the photon wavevector and the direction to the NS center. Due to the boosting, part of radiation from the column will be intercepted by the neutron star surface
and reflected. The critical angle \(\alpha_{\text{max}} \) within which the radiation from the height \(z \) above the surface will be intercepted by the neutron star (in the Schwarzschild metric) is [18]

\[
\sin \alpha_{\text{max}} = \frac{R_{NS}}{R_{NS} + z} \sqrt{\frac{1 - r_S/(R_{NS} + z)}{1 - r_S/R_{NS}}},
\]

(10)

where \(r_S = 2GM/c^2 \) is the Schwarzschild radius. Suppose from now that \(\alpha \) is the angle between photon wavevector and the plasma bulk velocity vector. Then for a point on the accretion column sidewall of radius \(r_0 \) on the height \(z \) the critical angle reads

\[
\alpha^*(z) = \arcsin \left(\frac{R_{NS}}{\sqrt{(R_{NS} + z)^2 + r_0^2}} \right) - \arctan \frac{r_0}{R_{NS} + z}.
\]

(11)

Let \(\Sigma \) be the surface of the column, \(\Sigma'(\varphi, z) \) be a point on the surface and \(d\Sigma = r_0 d\varphi dz \) be the elementary area. The flux from the surface element at frequency \(\nu \) (in conventional notations) reads \(f_\nu(\Sigma') = dE(\Sigma')/(d\nu d\Sigma) \) and can be separated into three parts in accordance to the angle relative to the observer. Photons escaping with angles \(\alpha > \alpha^* \) to the column are directly seen as the proper column radiation \(f_\nu^{\text{col}} \). The second part includes the radiation \(f_\nu^{\text{ref}} \) intercepted by the neutron star and reflected from the neutron star surface with X-ray albedo \(\lambda(\nu) \). The third part \(f_\nu^{\text{abs}} \) is the radiation absorbed and re-radiated by the neutron star atmosphere. Then we can write:

\[
f_\nu(\Sigma') = \int_{-1}^{\cos \alpha^*} \frac{d\nu (\Sigma')}{d\cos \alpha} d \cos \alpha = \int_{-1}^{\cos \alpha^*} \frac{d\nu (\Sigma')}{d\cos \alpha} d \cos \alpha + \int_{\cos \alpha^*}^{1} \frac{d\nu (\Sigma')}{d\cos \alpha} d \cos \alpha
\]

(12)

\[
= f_\nu^{\text{col}}(\Sigma') + f_\nu^{\text{ref}}(\Sigma') + f_\nu^{\text{abs}}(\Sigma').
\]

The integrands [18] in the cylindrical coordinates with account for the axial symmetry \((I_\nu(\Sigma') = I_\nu(z), \text{ giving by (8)}) \) have the form:

\[
\frac{d\nu (\Sigma')}{d\cos \alpha} = I_\nu(z) \frac{2D^3}{\gamma} \sin \alpha \left(1 + \frac{\pi D}{2} \sin \alpha \right),
\]

(13)

where the Doppler factor is \(D = 1/(\gamma(1 - \beta \cos \alpha)), \gamma = 1/\sqrt{1 - \beta^2} \) is the plasma Lorentz factor and \(\beta = \nu/c \). Here we have taken into account that the specific flux (per unit frequency interval) is \(D \) times as small as the integral flux. Then for the total radiation from the column at frequency \(\nu \) we obtain:

\[
L_\nu = \iint_{z_{\text{max}}} f_\nu(\Sigma') d\Sigma = 2\pi r_0 \int_0^{z_{\text{max}}} f_\nu(z) dz
\]

(14)

\[
= 2\pi r_0 \int_0^{z_{\text{max}}} \left(f_\nu^{\text{col}}(z) + f_\nu^{\text{ref}}(z) + f_\nu^{\text{abs}}(z) \right) dz
\]

\[
= L_\nu^{\text{col}} + L_\nu^{\text{ref}} + L_\nu^{\text{abs}},
\]

where \(z_{\text{max}} \) is the upper limit of the computational area. The observed X-ray flux from one column is \(F_\nu = (L_\nu^{\text{col}} + L_\nu^{\text{ref}})/(4\pi d^2) \), where \(d \) is the distance to the source. For the illustrative
purposes, we assume \(d = 5 \) kpc. Taking into account of the radiation absorbed by the neutron star atmosphere \(L_\nu^{\text{abs}} \) will add more soft photons to the total spectrum.

Since we are observing both the direct and reflected radiation from the column, the total change in the hardness of the spectrum will depend on the fraction of the reflected radiation in the total flux. This, in turn, depends on the height of the column. We have calculated the total flux as the sum of the direct and reflected component as a function of \(\dot{M} \) with taking into account the photon ray propagation in the Schwarzschild metric of the neutron star with a fiducial mass \(M = 1.5 M_\odot \) and radius \(R = 10 \) and \(13 \) km. The magnetic field of the neutron star is set to \(3 \times 10^{12} \) G, so that the CRSF energy is about 35 keV. The result is presented in Fig. 3. It is seen that the hardness ratio \(HR = \int_{5 \text{ keV}}^{12 \text{ keV}} F_\nu d\nu / \int_{1.3 \text{ keV}}^{3 \text{ keV}} F_\nu d\nu \) first increases with the mass accretion rate (X-ray luminosity), but starting from \(\dot{M}_{\text{cr}} \sim (6 - 8) \times 10^{17} \) g s\(^{-1}\) it gets saturated and even decreases. This is in agreement with observations shown in Fig. 1.

For the hollow cylinder accretion columns which have smaller height (see Fig. 2), the fraction of the reflected component in the total emission does not virtually change with mass accretion rate within the calculated range, therefore the hardness ratio of the total spectrum monotonically increases with \(M \) in this range. Note also that in this case the spectrum is harder than in the case of the filled column because the reflected (harder) emission dominates in the total spectrum.

4. Summary and conclusions

Therefore, our model calculations lead to the following conclusions.

1. The spectral hardening in X-ray pulsars with positive CRSF energy dependence on X-ray flux can be explained by increasing of the Comptonization parameter \(y \) in the slab atmosphere of the accretion mound. It is in this regime that positive correlation of the cyclotron line is observed, for example, in Her X-1 [19].

2. At high accretion rates, the radiation-supported optically thick accretion column grows above the polar cap, the sidewall emission from the column is formed by extraordinary photons in the saturated Compton regime. The spectrum of this emission gets harder with increasing mass accretion rate.
3. With further increasing mass accretion rate the height of the column increases, such that the fraction of radiation reflected from the neutron star atmosphere starts decreasing. As the reflected radiation is harder than the incident one, the spectrum of the total emission (direct plus reflected) practically stops hardening (of course, the points in the Fig. 3 have some uncertainty).

4. In the frame of this model, the saturation of the spectral hardness in the case of a hollow cylinder geometry of the accretion column can be achieved at much higher accretion rates (roughly, scaled with the relative thickness of the column wall, b), because the characteristic height of the column in this case is correspondingly smaller than that of the filled column.

5. Variations in the pulse profile form and polarization properties during the transition from the Coulomb-braking low-luminosity regime to the radiation-braking high-luminosity state should occur with changing mass accretion rate (X-ray luminosity) in accreting X-ray pulsars. The profile change has already been reported during the low-states in Vela X-1 [20].

References
[1] Giacconi R, Gursky H, Kellogg E, Schreier E and Tananbaum H 1971 Ap.JL 167 L67
[2] Basko M M and Sunyaev R A 1976 MNRAS 175 395–417
[3] Mushtukov A A, Suleimanov V F, Tsygankov S S and Poutanen J 2015 MNRAS 447 1847–1856
[4] Parkes G E, Murdin P G and Mason K O 1980 MNRAS 190 537–542
[5] Negueruela I and Okazaki A T 2001 A&A 369 108–116 (Preprint astro-ph/0011407)
[6] Negueruela I, Roche P, Fabregat J and Coe M J 1999 MNRAS 307 695–702 (Preprint astro-ph/9903228)
[7] Wilson C A, Finger M H, Coe M J, Laycock S and Fabregat J 2002 Ap.J 570 287–302 (Preprint astro-ph/0201227)
[8] Steele I A, Negueruela I, Coe M J and Roche P 1998 MNRAS 297 L5 (Preprint astro-ph/9803113)
[9] McBride V A, Wilms J, Coe M J, Kreykenbohm I, Rothschild R E, Coburn W, Galache J L, Kretschmar P, Edge W R T and Staubert R 2006 A&A 451 267–272 (Preprint astro-ph/0602113)
[10] Kühl M, Müller S, Kreykenbohm I, Fürst F, Pottschmidt K, Rothschild R E, Caballero I, Grinberg V, Schönherr G, Shradar C, Klokchov D, Staubert R, Ferrigno C, Torrejón J M, Martínez-Núñez S and Wilms J 2014 Luminosity dependent accretion state change in GRO J1008-57 European Physical Journal Web of Conferences (European Physical Journal Web of Conferences vol 64) p 6003
[11] Reig P and Nespoli E 2013 A&A 551 A1 (Preprint 1212.5944)
[12] Davidson K 1973 Nature Physical Science 246 1–4
[13] Wang Y M and Frank J 1981 A& A 93 255–268
[14] Arons J 1992 Ap.J 388 561–578
[15] Klein R I, Arons J, Jernigan G and Hsu J J L 1996 Ap.JL 457 L85
[16] Lyubarskii Y E 1986 Astrophysics 25 577–586
[17] Lyubarskii Y E and Sunyaev R A 1988 Soviet Astronomy Letters 14 390
[18] Poutanen J, Mushtukov A A, Suleimanov V F, Tsygankov S S, Nagirner D I, Doroshenko V and Lutovinov A A 2013 Ap.J 777 115 (Preprint 1304.2633)
[19] Staubert R, Shakura N I, Postnov K, Wilms J, Rothschild R E, Coburn W, Rodina L and Klokchov D 2007 A&A 465 L25–L28 (Preprint astro-ph/0702490)
[20] Doroshenko V, Santangelo A and Suleimanov V 2011 A&A 529 A52 (Preprint 1102.5254)