Assessment the effect of fentanyl and dexmedetomidine as adjuvant to epidural bupivacaine in parturients undergoing normal labor

Rabie Soliman1,2* and Gomaa Zohry2

*Correspondence: rabiesoliman@hotmail.com

1Department of Anesthesia, Aldar hospital, Almadinah Almonwarah, Saudi Arabia.
2Department of Anesthesia, Cairo University, Egypt.

Abstract

Background: Dexmedetomidine acts on the pre and post-synaptic sympathetic nerve terminal and central nervous system. It decreases the sympathetic outflow and norepinephrine release; therefore it leads to sedation, analgesia and hemodynamic effects. The aim of the study was to compare the effect of fentanyl and dexmedetomidine as adjuvant to epidural bupivacaine in parturients undergoing normal labor.

Materials and methods: The study included 170 parturients scheduled for epidural anesthesia for labor. The cases were classified randomly (by simple randomization) into two groups (n=85): Group D: The patients received 13 ml of 0.25% bupivacaine and 1μg/kg dexmedetomidine diluted in 2 ml saline. Group F: The patients received 13 ml of 0.25% bupivacaine and 1μg/kg fentanyl diluted in 2 ml saline.

Results: The dexmedetomidine shortened the onset and prolonged the duration of analgesia compared to fentanyl (p<0.05). Dexmedetomidine was associated with an increased incidence of maternal hypotension, bradycardia, motor block, and dry mouth (p<0.05), while the epidural fentanyl was associated with an increased incidence of maternal pruritus, nausea and vomiting, and respiratory depression (p<0.05). The incidence of shivering was lower in the dexmedetomidine group compared to fentanyl group (p=0.003).

Conclusions: The epidural dexmedetomidine has many advantages over the fentanyl, where it fastens the onset, prolongs the duration of analgesia, decreases the doses of bupivacaine and the incidence of pruritus, respiratory depression, nausea and vomiting. Also, it is associated with some disadvantages such as maternal hypotension, bradycardia and motor block.

Keywords: Dexmedetomidine, fentanyl, bupivacaine, epidural anesthesia, analgesia, labor

Introduction

Epidural analgesia has been extensively used to provide pain relief during labor [1]. Labor pain and painful uterine contractions cause hyperventilation and high catecholamine levels, resulting in maternal and fetal hypoxemia [2]. Pain relief provides a comfort for the patients and attenuates the release of stress hormones [3]. Epidural bupivacaine is still the most widely used local anesthetic in obstetric analgesia [1]. Many drugs are added to bupivacaine to minimize its total dose and to prolong the analgesic effect [4].

Fentanyl has been used as an adjuvant for epidural local anesthetics during labor analgesia to achieve the desired anesthetic effect [5], and to decrease motor block of local anesthetics. However, the addition of opioid may increase the incidence of pruritus, urinary retention, nausea, vomiting and respiratory depression [6-8].

Dexmedetomidine is alpha-2 adrenergic agonists with analgesic properties which potentiate the epidural local anesthetic effects [9,10]. They act on both pre- and postsynaptic sympathetic nerve terminal and central nervous system, thereby decreasing the sympathetic outflow and nor-epinephrine release, causing sedative, anti-anxiety, analgesic, sympatholytic and hemodynamic effects [11-13]. The aim of the study was to compare the effect of fentanyl and dexmedetomidine as adjuvant to epidural bupivacaine in parturients undergoing labor.

Outcome

The primary outcome was the adequacy of maternal analgesia...
throughout labor and the secondary outcome was the safety of the intervention. The safety was assessed by the occurrence of any adverse events to the parturient and fetus.

Materials and methods
After obtaining informed consent and approval of local ethics and research committee in Aldar hospital, Almadinah Almon-warah, Saudi Arabia. A pilot study was done before starting this study to compare the effect of dexmedetomidine and fentanyl on the analgesic effect of epidural bupivacaine. The results of the pilot study showed that dexmedetomidine has a more analgesic effect than fentanyl and the requirement for a second dose local anesthetic was of 14.4% in dexmedetomidine group, and 32.5% in fentanyl group. Taking power 0.8 and alpha error 0.05, a minimum sample size of 85 patients was calculated for each group. 170 parturients with a full-term pregnancy were assessed in the study and scheduled for epidural anesthesia during labor. The inclusion criteria were full term pregnancy, active labor with cervical dilatation >4 cm, intact membrane, uterine contractions occurring at least every 5 minutes, normal cardiotocography (baseline fetal heart rate 120-160 bpm, baseline variability >5 beats/minute, the presence of accelerations). The exclusion criteria were coagulopathy, cardiac diseases, pregnancy-induced hypertension, the refusal the epidural anesthesia, accidental dural puncture, rapid progress of labor (delivery in less than two hours of study period), and hypersensitivity to local anesthetic, dexmedetomidine or fentanyl.

Anesthetic technique
In the labor ward, intravenous line G18 was inserted for all parturients and an infusion of 500 ml Ringer lactate solution was started. Monitors such as ECG, pulse oximetry, and blood pressure cuff were attached to the included parturients. Under complete sterilization and local anesthesia, an epidural set (Perican® needle G18, catheter G27, B. Braun Melsungen AG Germany) was used. The epidural needle was inserted into the epidural space through the needle and secured. A test dose of 2 ml saline was withdrawn by the pediatrician in the delivery or operative room.

The statistical analysis
Data were statistically described in terms of range; mean±standard deviation (±SD), frequencies (number of cases) and relative frequencies (percentages) when appropriate. Comparison of quantitative variables between the study groups were done using Mann Whitney U test and one-way or two-way or repeated ANOVA for normally distributed variables. For comparing categorical data, Chi square (c2) test was performed. Exact test was used instead when the expected frequency is less than 5. A probability value (p value) less than 0.05 was considered statistically significant. All statistical calculations were done using computer programs Microsoft Excel version 7 (Microsoft Corporation, NY, USA) and SPSS (Statistical Package for the Social Science; SPSS Inc., Chicago, IL, USA) statistical program for Microsoft Windows.

Results
Figure 1 shows the CONSORT diagram for the flow of participants through each stage of the present study. All cases completed the study. There was no statistical difference regarding the demographic data, ASA class, parity, gestational and the

Reference
Soliman et al. Journal of Anesthesiology & Clinical Science 2016, http://www.hoajonline.com/journals/pdf/2049-9752-5-2.pdf
degree of cervical dilatation (p>0.05) (Table 1).

Table 2 shows the outcomes of epidural blocks. All parturients of both groups received a single dose of bupivacaine, but 12 cases in dexmedetomidine group and 28 cases in the fentanyl group required a second dose with statistical difference between the two groups (p=0.003). The onset of sensory block was earlier in the dexmedetomidine group more than the fentanyl group (p=0.011) and the duration of analgesia was longer in the dexmedetomidine group compared to the fentanyl group (p=0.001). The quality of pain relief was better in the dexmedetomidine group than the fentanyl group. The comparison of sensory block level between the two groups was insignificant (p>0.05). The incidence of motor block was higher in the dexmedetomidine group compared to the fentanyl group (p=0.004). The incidence of sedation was 9 patients in dexmedetomidine group and no sedation in the fentanyl group (p=0.002).

Table 3 shows the obstetric and fetal outcomes. There was no significant difference regarding the progress of labor, spontaneous labor, assisted labor, cesarean section, Apgar score, and the umbilical cord PH.

Figures 2 and 3 shows the changes in the maternal heart
Table 1. Demographic data of the parturients (data are presented as mean±SD, number).

Variables	Group D (n=85)	Group F (n=85)	P-value
Age (year)	25.92±4.60	26.24±4.99	0.664
Weight (kg)	79.42±13.17	77.80±11.48	0.393
Height (cm)	167.51±7.35	165.74±7.18	0.114
ASA I	41	37	0.707
ASA II	44	48	0.736
Parity	1.80±1.40	2.12±1.51	0.182
Gestational age (week)	38.15±1.14	38.22±1.11	0.685
Cervical dilatation (cm)	5.23±1.17	5.18±1.12	0.776

ASA: American Society of Anesthesiologists physical status classification system

Group D: Dexmedetomidine group, Group F: Fentanyl group

Table 2. Outcomes of the epidural block (data are presented as mean±SD, number).

Variables	Group D (n=85)	Group F (n=85)	P-value
Single dose of bupivacaine	All patients	All patients	0.999
Second dose of bupivacaine	12	28	0.003
Onset of analgesia (min)	6.55±1.87	10.70±2.12	0.011
Duration of analgesia (min)	314.54±38.41	240.63±25.74	0.001
Pain verbal scale			
0	58	45	0.041
1	13	4	0.021
2	2	8	0.050
3	9	12	0.484
4	3	16	0.002
Sensory block level			
T5	24	29	0.407
T6	21	25	0.489
T7-T10	40	31	0.161
Motor block	14	3	0.004
Sedation	9	0	0.002

Group D: Dexmedetomidine group, Group F: Fentanyl group

Table 3. Obstetric and fetal outcomes (data are presented as mean±SD, number).

Variables	Group D (n=85)	Group F (n=85)	P-value
Progress of labor (cm/hr)	1.69±0.45	1.73±0.48	0.575
Spontaneous delivery	68	70	0.694
Assisted delivery	4	3	0.699
Cesarean delivery			
Total number	13	12	0.828
Failure of progress	10	7	0.443
Fetal distress	3	5	0.468
Birth weight (kg)	3.24±0.45	3.19±0.49	0.489
Apgar score			
at 1 minute	7.82±0.72	7.77±0.84	0.677
at 5 minute	9.42±0.30	9.44±0.43	0.780
Umbilical cord PH >7.2	83	82	0.649
Umbilical cord PH <7.2	7.28±0.06	7.27±0.04	0.203

Group D: Dexmedetomidine group, Group F: Fentanyl group

rate and mean arterial blood pressure in the patients of the two groups. The heart rate decreased significantly in the dexmedetomidine group with minimal changes in the fentanyl group (P>0.05). Also the mean arterial blood pressure decreased significantly in the dexmedetomidine group compared to the fentanyl group (P<0.05).

Table 4 shows that the incidence of maternal hypotension, bradycardia and dry mouth was higher in the dexmedetomidine group than the fentanyl group and the comparison was significant (p<0.05). The incidence of pruritus, respiratory depression, nausea and vomiting was lower in the dexmedetomidine group than the fentanyl group and the difference was significant (p<0.05). The incidence of the headache, urine retention and shivering between the two groups was insignificant (p>0.05). The incidence of fetal distress (fetal heart rate<100bpm) between the two groups was insignificant (p=0.468).
The present study showed that the addition of dexmedetomidine to epidural bupivacaine fastens the onset of analgesia and prolongs the duration of analgesia compared to the addition of fentanyl to the epidural bupivacaine in women undergoing labor and other studies showed the same results [9,18-21].

The present study showed that the incidence of side effects such as the motor block, hypotension, bradycardia, sedation, and dry mouth was higher in the dexmedetomidine group than the fentanyl group. These findings correlate with the study of Selim et al [17]. The study showed that the incidence of maternal hypotension and bradycardia was higher in the dexmedetomidine group than the fentanyl group. A meta-analysis of 16 studies showed that the most side effects of neuraxial dexmedetomidine were hypotension, bradycardia, and sedation [22]. Another metaanalysis study showed that the dexmedetomidine is associated with a significant requirement to phenylephrine or atropine to manage the hypotension and bradycardia compared to the control group (p<0.0001) [23]. Hanoura et al., [18] evaluated the effect of fentanyl or fentanyl plus dexmedetomidine to the combined spinal-epidural anesthesia for cesarean section. The study showed no significant difference regarding the Apgar scores, the incidence of hypotension, bradycardia, nausea, vomiting, and duration of motor blockade and Salgado et al., [19] found no significant side effect related to the dexmedetomidine to the epidural ropivacaine in patients undergoing hernia repair or varicose vein surgery. But Gupta k et al., [20] found no significant difference in the hemodynamics between the epidural dexmedetomidine–levobupivacaine (0.5%) and fentanyl–levobupivacaine (0.5%) in patients undergoing vaginal hysterectomy and the same result was shown in patients undergoing cesarean section with combined spinal-epidural anesthesia [24]. The side effects such as pruritus, respiratory depression, nausea and vomiting were lower in the dexmedetomidine group than the fentanyl group and other studies documented the same results [9,17,20]. The present study showed no difference in the incidence of shivering between the two groups, but Hanoura et al., [18] found the incidence of shivering was lower in the dexmedetomidine group compared to fentanyl group (p=0.03).

Although the systemic maternal effect of dexmedetomidine such as hypotension and bradycardia, there was no effect on the fetus as reflected by the Apgar score and the umbilical PH. Ala-Kokko et al., [25] showed that the fetus is protected as the placenta minimizes the crossing of dexmedetomidine to the fetus [25] and if there is any uteroplacental transfer, it doesn’t affect the fetus [26-28]. Palanisamy et al., [28] used intravenous dexmedetomidine as an adjunct to opioid-based PCA and general anesthesia for the labor analgesia and cesarean section in a parturients with favorable maternal and neonatal outcome and the same result were reported by Abu-Halaweh et al [27].

On the other hand, Konaki et al., [29] demonstrated that 10 μg of dexmedetomidine HCl produces moderate to severe demyelination of spinal cord white matter in rabbits following epidural administration. They postulate that low pH of

Discussion
The present study showed that the addition of dexmedetomidine to epidural bupivacaine fastens the onset of analgesia and prolongs the duration of analgesia. The quality of analgesia was better with dexmedetomidine group compared to fentanyl group; therefore the incidence of the required second dose of bupivacaine was lower the dexmedetomidine group compared to the fentanyl group. These findings correlate with the result of Selim et al [17]. They reported that the dexmedetomidine shortened the onset with analgesia of bupivacaine and

Table 4. Complications of the epidural block (data are presented as number).

Complication	Group D (n=85)	Group F (n=85)	P-value
Maternal hypotension (Decrease in MAP >20%)	15	6	0.035
Maternal bradycardia (Heart rate<60 bpm)	14	4	0.012
Fetal heart rate <100 bpm	3	5	0.468
Nausea and vomiting	5	15	0.017
Dry mouth	14	3	0.004
Pruritis	0	8	0.003
Headache	4	3	0.699
Respiratory depression	0	5	0.023
Urine retention	0	3	0.080
Shivering	3	15	0.003
4.5–7.0 of dexmedetomidine is responsible for injury to the myelin sheath; however clonidine with similar pH (5–7) does not produce neurotoxic side effects [30–32].

The present study and other studies showed the perineural addition of dexmedetomidine to bupivacaine, prolongs the duration of sensory block, motor block, and analgesia, in addition to the decreased requirement to postoperative analgesia. These findings can be explained by the following mechanisms. Dexmedetomidine produces vasoconstriction around the injection site and decreases the absorption of local anesthetics [22], induces local analgesic substances such as enkephalin-like substances [23], decreases the release of proinflammatory mediators [24], increases the release of anti-inflammatory cytokines and modulates the impulse propagation through neurons as a result of interaction with axonal ion channels or receptors [25].

Conclusions
The epidural dexmedetomidine has many advantages over the fentanyl, where it fastens the onset, prolongs the duration of analgesia, decreases the doses of bupivacaine and the incidence of pruritus, respiratory depression, nausea, and vomiting. Also, it is associated with some disadvantages such as maternal hypotension, bradycardia and motor block. Therefore other studies are recommended to determine the proper dose of epidural dexmedetomidine that does not affect the maternal hemodynamics undergoing labor.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Authors’ contributions	RS	GZ
Research concept and design	✓	✓
Collection and/or assembly of data	✓	--
Data analysis and interpretation	✓	✓
Writing the article	✓	✓
Critical revision of the article	✓	✓
Final approval of article	✓	✓
Statistical analysis	--	--

Acknowledgement
The authors thank all staff-nurses in the post anesthesia care unit for their efforts and performance during the study.

Publication history
EIC: D. John Doyle, Case Western Reserve University, USA.
Received: 28-Jan-2016 Final Revised: 02-Mar-2016
Accepted: 25-Mar-2016 Published: 01-Apr-2016

References
1. Nakamura G, Ganem EM, Rugolo LM and Castiglia YM. Effects on mother and fetus of epidural and combined spinal-epidural techniques for labor analgesia. Rev Assoc Med Bras. 2009; 55:405-9. | Article | PubMed
2. Dilesh PK, Eappen S, Kiran S and Chopra V. A comparison of intrathecal dexmedetomidine versus intrathecal fentanyl with epidural bupivacaine for combined spinal epidural labor analgesia. J Obstet Anaesth Crit Care. 2014; 4:69-74. | Article
3. Onah HE, Obi SN, Ogunnaike TC, Ezike HA, Ogbughiri CM and Ezugworie JO. Pain perception among parturients in Enugu, South-eastern Nigeria. J Obstet Gynaecol. 2007; 27:585-8. | Article | PubMed
4. Boutros A, Blary S, Bronchard R and Bonnet F. Comparison of intermittent epidural bolus, continuous epidural infusion and patient controlled-epidural analgesia during labor. Int J Obstet Anesth. 1999; 8:236-41. | Article | PubMed
5. Benzon HT, Wong HY, Belavic AM, Jr., Goodman I, Mitchell D, Leheiti T and Locicero J. A randomized double-blind comparison of epidural fentanyl infusion versus patient-controlled analgesia with morphine for postthoracotomy pain. Anesth Analg. 1993; 76:316-22. | Article | PubMed
6. Salomaki TE, Laitinen JO and Nuutinen LS. A randomized double-blind comparison of epidural versus intravenous fentanyl infusion for analgesia after thoracotomy. Anesthesiology. 1991; 75:790-5. | Article | PubMed
7. Lorenzo C, Moreira LB and Ferreira MB. Efficacy of ropivacaine compared with ropivacaine plus sufentanil for postoperative analgesia after major knee surgery. Anesthesia. 2002; 57:424-8. | Article | PubMed
8. Gupta R, Verma R, Bogra J, Kohli M, Raman R and Kushwaha JK. A Comparative study of intrathecal dexmedetomidine and fentanyl as adjuvants to Bupivacaine. J Anaesthesiol Clin Pharmacol. 2011; 27:339-43. | Article | PubMed Abstract | PubMed FullText
9. Bajwa SJ, Arora V, Kaur J, Singh A and Parmar SS. Comparative evaluation of dexmedetomidine and fentanyl for epidural analgesia in lower limb orthopedic surgeries. Saudi J Anaesth. 2011; 5:365-70. | Article | PubMed Abstract | PubMed FullText
10. Bajwa SJ, Bajwa SK, Kaur J, Singh G, Arora V, Gupta S, Kulshrestha A, Singh A, Parmar S and Goraya S. Dexmedetomidine and clonidine in epidural anaesthesia: A comparative evaluation. Indian J Anaesth. 2011; 55:116-21. | Article | PubMed Abstract | PubMed FullText
11. Bhana N, Goa KL and McClellan KJ. Dexmedetomidine. Drugs. 2000; 59:263-8. | Article | PubMed
12. Jaakola ML, Salonen M, Lehtinen R and Scheinin H. The analgesic action of dexmedetomidine—a novel alpha 2-adrenoceptor agonist—in healthy volunteers. Pain. 1991; 46:281-5. | Article | PubMed
13. Talke P, Richardson CA, Scheinin M and Fisher DM. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesth Analg. 1987; 55:301-12. | Article | PubMed
14. Lew E, Yeo SW and Thomas E. Combined spinal epidural anesthesia using epidural volume extension leads to rapid motor recovery after elective caesarean section: a prospective, randomized, double blind study. Anesth Analg. 2004; 98:810-4. | Article
15. Merson N. A comparison of motor block between ropivacaine and bupivacaine for continuous labor epidural analgesia. AANA J. 2001; 69:54-8. | Article
16. Nemethy M, Paroli L, Williams-Russo PG and Blanck TJ. Assessing sedation with regional anesthesia: inter-rater agreement on a modified Wilson sedation scale. Anesth Analg. 2002; 94:723-8. | Article | PubMed
17. Selim MF, Elabity AM and Hassan AM. Comparative evaluation of epidural bupivacaine - dexmedetomidine and bupivacaine -fentanyl on Doppler velocimetry of uterine and umbilical arteries during labor. J Prenat Med. 2012; 6:47-54. | Article | PubMed Abstract | PubMed FullText
18. Hanoura SE, Hassainan R and Singh R. Intraoperative conditions and quality of postoperative analgesia after adding dexmedetomidine to epidural bupivacaine and fentanyl in elective caesarean section using combined spinal-epidural anesthesia. Anesth Essays Res. 2013; 7:168-72. | Article | PubMed Abstract | PubMed FullText
19. Salgado PF, Nascimento P, Modolo NS, Sabbag AT and Silva PC. Adding dexmedetomidine to ropivacaine 0.75% for epidural anesthesia. Does it improve the quality of the anesthesia? Anesthesiology. 2005; 103:974A.
20. Gupta K, Rastogi B, Gupta PK, Jain M, Gupta S and Mangla D. Epidural 0.5% levobupivacaine with dexmedetomidine versus fentanyl for vaginal hysterectomy: A prospective study. Indian Journal of Pain. 2014; 28:149-54. | Article
21. Akin S, Aribogan A and Arslan G. Dexmedetomidine as an adjunct to epidural analgesia after abdominal surgery in elderly intensive care patients: A prospective, double-blind, clinical trial. *Curr Ther Res Clin Exp*. 2008; 69:21-26. | Article | PubMed Abstract | PubMed FullText

22. Wu HH, Wang HT, Jin JJ, Cui GB, Zhou KC, Chen Y, Chen GZ, Dong YL and Wang W. Does dexmedetomidine as a neuraxial adjuvant facilitate better anesthesia and analgesia? A systematic review and meta-analysis. *PLoS One*. 2014; 9:e93114. | Article | PubMed Abstract | PubMed FullText

23. Klinger RY, White WD, Hale B, Habib AS and Bennett-Guerrero E. Hemodynamic impact of dexmedetomidine administration in 15,656 noncardiac surgical cases. *J Clin Anesth*. 2012; 24:212-20. | Article | PubMed

24. Yousef AA, Salem HA and Moustafa MZ. Effect of mini-dose epidural dexmedetomidine in elective cesarean section using combined spinal-epidural anesthesia: a randomized double-blinded controlled study. *J Anesth*. 2015; 29:708-14. | Article | PubMed

25. Ala-Kokko TI, Pienimaki P, Lampela E, Hollmen AI, Pelkonen O and Vahakangas K. Transfer of clonidine and dexmedetomidine across the isolated perfused human placenta. *Acta Anaesthesiol Scand*. 1997; 41:313-9. | Article | PubMed

26. Nair AS and Sriprakash K. Dexmedetomidine in pregnancy: Review of literature and possible use. *J Obstet Anaesth Crit Care*. 2013; 3:3-6. | Article

27. Abu-Halaweh SA, Al Oweidi AK, Abu-Malooh H, Zabalawi M, Alkazaleh F, Abu-Al H and Ramsay MA. Intravenous dexmedetomidine infusion for labour analgesia in patient with preeclampsia. *Eur J Anaesthesiol*. 2009; 26:86-7. | Article | PubMed

28. Palanisamy A, Klickovich RJ, Ramsay M, Ouyang DW and Tsen LC. Intravenous dexmedetomidine as an adjunct for labor analgesia and cesarean delivery anesthesia in a parturient with a tethered spinal cord. *Int J Obstet Anesth*. 2009; 26:86-7. | Article | PubMed

29. Konakci S, Adanir T, Yilmaz G and Rezanko T. The efficacy and neurotoxicity of dexmedetomidine administered via the epidural route. *Eur J Anaesthesiol*. 2008; 25:403-9. | Article | PubMed

30. Gordh TE, Ekman S and Lagerstedt AS. Evaluation of possible spinal neurotoxicity of clonidine. * Ups J Med Sci*. 1984; 89:266-73. | Article | PubMed

31. Eisenach JC and Grice SC. Epidural clonidine does not decrease blood pressure or spinal cord blood flow in awake sheep. *Anesthesiology*. 1988; 68:335-40. | Article | PubMed

32. Yoshitomi T, Kohjintani A, Maeda S, Higuchi H, Shimada M and Miyawaki T. Dexmedetomidine enhances the local anesthetic action of lidocaine via an alpha-2A adrenoceptor. *Anesth Analg*. 2008; 107:96-101. | Article | PubMed

33. Furst S. Transmitters involved in antinociception in the spinal cord. *Brain Res Bull*. 1999; 48:129-41. | Article | PubMed

34. Kawasaki T, Kawasaki C, Ueki M, Hamada K, Habe K and Sata T. Dexmedetomidine suppresses proinflammatory mediator production in human whole blood in vitro. *J Trauma Acute Care Surg*. 2013; 74:1370-5. | Article | PubMed

35. Kosugi T, Mizuta K, Fujita T, Nakashima M and Kumamoto E. High concentrations of dexmedetomidine inhibit compound action potentials in frog sciatic nerves without alpha(2) adrenoceptor activation. *Br J Pharmacol*. 2010; 160:1662-76. | Article | PubMed Abstract | PubMed FullText