Allelic Variants of Complement Genes Associated with Dense Deposit Disease

Maria Asuncion Abrera-Abeleda,*† Carla Nishimura,† Kathy Frees,† Michael Jones,† Tara Maga,*† Louis M. Katz,§ Yuzhou Zhang,† and Richard J.H. Smith*†‡

*Interdisciplinary PhD Program in Genetics, †Department of Otolaryngology–Head and Neck Surgery, and ‡Department of Medicine, University of Iowa, Iowa City, Iowa; and §Mississippi Valley Regional Blood Center, Davenport, Iowa

ABSTRACT

The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies.

J Am Soc Nephrol 22: 1551–1559, 2011. doi: 10.1681/ASN.2010080795

The complement system is an integral arm of innate immunity that facilitates lysis, opsonization, and clearance of pathogens.1 Its three initiating arms—the classical, lectin, and alternative pathways—respond to different triggers to generate an amplifying complex known as the C3 convertase (C3bBb). The classical pathway typically requires antibodies for activation, whereas the mannose-binding lectin and alternative pathways are activated by antigens and C3 hydrolysis, respectively.

C3 hydrolysis is the reaction of a thioester on C3 with water to form C3(H2O). The process occurs spontaneously, and consequently the alternative pathway (AP) is continuously active, albeit at a low rate.2 Unchecked, C3(H2O) reacts with complement factor B (fB) to generate the initial C3 convertase C3(H2O)B, which is converted to C3(H2O)Bb in the presence of complement factor D (fD). Additional cleavage of C3 to C3b leads to formation of C3 convertase, which continues to catalyze the cleavage of C3 to C3a and C3b in a potent amplification loop.3 C3b molecules that associate with C3 convertase form C5 convertase (C3bBbC3b), which cleaves C5 to initiate the terminal complement cascade (TCC). The TCC culminates in formation of membrane attack complex, a multimeric transmembrane channel comprised of C5b, C6, C7, C8, and polymeric C9 that causes osmotic lysis of target pathogens.4,5

Because the AP does not recognize target-specific activators and is constitutively active, a number of strategies have evolved to regulate AP activity and discriminate between activating (pathogenic)
and nonactivating (self) surfaces.\(^6\) The major regulator of AP in plasma is complement factor H (fH). fH accelerates the decay of C3bBb, acts as a cofactor for complement factor I (fI)-mediated proteolytic inactivation of C3b, and competes with fB for binding to C3b.\(^7,8\) When fH has high affinity for a surface or for surface-bound C3b, AP activation is stopped; if affinity is low, AP activation proceeds, and opsonization and lysis occur.

The AP has been implicated in the pathogenesis of dense deposit disease (DDD), a rare renal disease that affects two of 1,000,000 persons and progresses to end-stage renal failure in over 10 years of diagnosis.\(^9\)–\(^13\) DDD is named for the pathognomonic amorphous electron-dense deposits that must be present in the glomerular basement membranes on renal biopsy to make the diagnosis. Affected patients typically present with nonspecific signs and symptoms of glomerular damage such as nephrotic syndrome, hypertension, hematuria, and proteinuria; however, evidence of AP dysregulation is also present.\(^14\) C3 serum levels are often exceedingly low, and in most patients, autoantibodies to fH (FHAA) or fB (FBAA).\(^17\)–\(^19\) Over the long term, DDD patients develop visual impairment secondary to ocular deposits known as drusen in Bruch’s membrane.\(^20\)

Mutations and polymorphisms in CFH have been associated with DDD, and on that basis we hypothesized that novel alterations and known polymorphisms in other complement genes may play a role in DDD.\(^21\)–\(^23\) Because the AP is continuously activated at a low rate in human plasma, we also hypothesized that AP activity among individuals differs and that controls carrying DDD “risk” alleles have intrinsically higher AP activity compared with other controls.

RESULTS

DDD Cases and Controls

Sixty-six patients with biopsy-proven DDD were ascertained in nephrology divisions and enrolled in this study. The control group was comprised of 165 age-, gender-, and ethnicity-matched individuals. The status of the control group with respect to age-related macular degeneration and/or other complement-mediated disease was unknown (Table 1). All patients and controls were American Caucasians who identified themselves as of Northern European heritage. Patients with ambiguous/unknown race were excluded from the analysis. All procedures were approved by the Institutional Review Board of the University of Iowa, Carver College of Medicine.

Novel Sequence Alterations

Genomic DNA extracted from blood samples of patients and controls (PAXgene Blood DNA Kit, Qiagen, Valencia, California) was used to amplify and bidirectionally sequence the coding regions and intron-exon boundary junctions of C3 (NM_000064), CFH (NM_000186), CFHR5 (NM_030787), C3aR1 (NM_004054), C5aR1 (NM_001736), CR1 (NM_000651), and ADAM19 (NM_033274). Novel missense variants in DDD patients were identified in four genes: C3 p.K1203R, C3aR1 p.L84S, CR1 p.V1222L, and ADAM19 p.G507S (Table 2). These changes were not found in any controls and are not reported in single nucleotide polymorphism (SNP) databases. Each variant was found in a single DDD patient except C3aR1 p.L84F, which was found in two patients. PolyPhen predicted this sequence change to be possibly damaging; SIFT predicted C3 p.K1203R to be possibly damaging; and Align GVGD predicted that ADAM19 p.G507S is likely to interfere with protein function. CR1 p.V1222L was classified as benign by PolyPhen, SIFT, and Align GVGD.

Association Analyses

A CNV in C4A, which renders a null allele, and 18 SNPs were selected for association analysis based on possible function and data from other complement-mediated diseases like age-related macular degeneration and atypical hemolytic uremic syndrome (aHUS). The SNPs included four in C3 (rs2230199, rs2230201, rs1047286, and rs2230203), five in CFH (rs3753394, rs800292, rs1061170, rs3753396, and rs1065489), three in CFHR5 (rs9427661, rs9427662, and rs800292), two in C5aR1 (rs4467185 and rs11008897), three in CR1 (rs3738467, rs2274567, and rs3811381) and one in ADAM19 (rs1422795). Five SNPs were eliminated from further consideration because they were in linkage disequilibrium with nearby SNPs included in the analysis (C3 rs2230203; CFHR5 rs9427661; CR1 rs2274567 and rs3811381; and C5aR1 rs11008897).

Using a chi-squared test of independence without correction, the C4A CNV and five SNPs with a P-value <0.05 were

Table 1. Demographics of DDD cases and controls

Gene	Patients	ConSeq	PolyPhen	SIFT	Align GVGD
C3	c0.3607 A>G p.K1203R	1	Benign	Affects protein function	Least likely to interfere with function
C3aR1	c0.250 C>T p.L84F	2	Possibly damaging	Tolerated	Least likely to interfere with function
CR1	c0.3664 G>T p.V1222L	1	Benign	Tolerated	Most likely to interfere with function
ADAM19	c0.1522 G>A p.G507S	1	Benign	Tolerated	Least likely to interfere with function
considered nominally associated with the DDD phenotype [CFH P.Y402H (rs1061170), C3 p.R102G (rs2330199), C3 p.P314L (rs1047286), CFHR5 −20 T>C (rs9427662), and ADAM19 p.S284G (rs1422795)]. With Bonferroni correction (α = 0.0044), ADAM19 SNP rs1422795 (P = 5.49E-05), C4A CNV (P = 3.29E-05), and C3 SNP rs1047286 (P = 0.0018) were associated with DDD. With correction for multiple testing using the false discovery rate method described by Benjamini and Hochberg to minimize the likelihood of rejecting false negatives, C3 SNP rs2330199 (P = 0.0065), CFH SNP rs1061170 (P = 0.019), and CFHR5 SNP rs9427662 (P = 0.02) were also associated with DDD (α = 0.021). The Cochrane-Armitage trend test gave nearly identical results. For each variant, the minor allele was the risk allele with the exception of CFHR5, where the minor allele was protective (Table 3).

Haplotype Analyses

Haplotype analyses were performed using an expectation-maximization (EM) algorithm for all genes. In CFH, four SNPs—331 T>C (rs3753394), p.V62I (rs800292), p.Y402H (rs1061170), and p.Q673 (rs3753396)—define a low-risk (protective) haplotype: CATA or haplotype 2 (odds ratio [OR], 0.33 to 1.00) (Table 4). A haplotype analysis by Pickering and colleagues using the same SNPs produced similar results (OR, 0.42; CI, 0.14 to 1.24). For C3, a linkage disequilibrium analysis was done to identify haploblocks. Haplotype analysis was then performed using SNPs in the haplotype block p.R102G (rs2230199), p.R304 G>A (rs2230201), p.P314L (rs1047286), and p.P518 C>A (rs1047286). The “at-risk” haplotype was GGTA (haplotype 2) (Table 5).

Gene-Gene Interaction

To evaluate SNP-based gene-gene interactions, we selected SNPs based on known protein interactions (i.e., C3 binds to fH and CFHR5) and applied multifactor dimensionality reduction. This process predicted a synergistic interaction between CFH p.V62I and C3 p.P314L (Figure 1). Main effect and two- and three-variant combination analyses were performed using CFH p.Y402H, CFH p.V62I, C3 p.R102G, and C3 p.P314L, and the EM algorithm to predict allele combination frequencies (Table 6). To determine significant allele combinations in DDD patients, we computed ORs, 95% CIs, and P-values. The most significant SNP combination was CFH p.Y402H × CFH p.V62I × C3 p.P314L, which had the highest OR. CFH p.Y402H × C3 p.P314L had the second

Gene	Variant	DDD	Controls	Chi-squared	Cochran Armitage	OR	95% CI		
CFHR5	−20 T>C	6	0.045	37	0.11	0.020	0.020	0.38	0.16 to 0.92
CFH	Y402H	64	0.48	121	0.37	0.019	0.029	1.63	1.08 to 2.45
C3	R102G	43	0.36	68	0.21	0.0065	0.0091	1.86	1.19 to 2.92
C3	P314L	44	0.33	65	0.20	0.0018	0.0021	2.04	1.30 to 3.20
ADAM19	S284G	58	0.44	82	0.25	5.49E-05	0.00012	1.61	1.04 to 2.51
C4A	Deletion	24	0.18	19	0.06	3.29E-05	1.17E-05	1.88	1.00 to 3.51

Significant P-values: P < 0.05 (uncorrected); P < 0.021 (FDR); P < 0.004 (Bonferroni); DDD, n = 66; controls, n = 165.

Gene	Variant	DDD	Controls	OR (95% CI)	P-value		
CFHR5	−331 T>C	V62I (G>A)	Y402H (T>C)	Q673 (A>G)	Control Frequency	DDD Frequency	1.00
1	C	C	A	0.3218	0.4048	—	
2	C	A	T	0.2420	0.1743	0.58 (0.33 to 1.00)	0.05
3	T	G	T	0.1050	0.1084	—	NS
4	C	G	T	0.1193	0.1050	—	NS
5	T	G	C	0.0159	0.0180	—	NS
6	C	G	T	0.0065	0.0246	—	NS

The reference haplotype, which is the most common haplotype in both groups, has OR = 1; the protective haplotype is in bold type. P-values < 0.05 are significant.

Gene	Variant	DDD	Controls	OR (95% CI)	P-value			
CFHR5	−20 T>C	V62I (G>A)	Y402H (T>C)	Q673 (A>G)	Control Frequency	DDD Frequency	1.00	—
1	C	G	C	0.6417	0.5004	1.00	—	
2	C	G	T	0.1354	0.2389	2.12 (1.24 to 3.60)	0.0061	
3	C	A	C	0.1305	0.1095	1.13 (0.63 to 2.03)	0.54	
4	C	G	T	0.0218	0.0565	—	NS	

The reference haplotype, which is the most common haplotype in both groups, has OR = 1; the risk haplotype is in bold type. P-values < 0.05 are significant.
highest OR. These data mean that likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3.

Complement Activity
To determine whether the fH-C3 interaction had a functional consequence, we tested AP activity in genotyped controls. Using unconditional logistic regression, a significant association was noted between APH50 and CFH p.V62I, C3 p.R102G, and C3 p.P314L (P = 0.0193, 0.0166, 0.0054, respectively). Pearson goodness-of-fit P-values indicated that the predicted model was a good model for the observed data (P > 0.05), and the OR indicated that the presence of risk allele CFH p.V62, C3 p.G102, or C3 p.L314 doubled the risk of a low APH50 (high complement activity).

The association between APH50 and C3 p.R102G and C3 p.P314L was verified using a Mann-Whitney U-test by comparing the medians between controls homozygous for C3 R102 or C3 P314 with controls either homozygous or heterozygous for C3 G102 or C3 L314. Controls carrying either C3 G102 or C3 L314 (in heterozyosity or homozyosity) had significantly lower APH50 values and therefore higher AP activity than controls homozygous for either C3 R102 or C3 P314 (P = 0.045 and 0.0176, respectively). There were no differences in protein levels between groups (C3 G102 or C3 L314 C3 levels, 1.29 ± 0.95 and 1.34 ± 0.95 mg/ml, respectively; C3 R102 or C3 P314 C3 levels, 1.19 ± 0.92 and 1.15 ± 0.92 mg/ml, respectively; P > 0.05) (Figure 2, A and B).

In two variant combinations, controls with at least one copy of both C3 G102 and C3 L314 demonstrated lower APH50 values (higher AP activity) than controls homozygous for both C3 R102 and C3 P314 (P = 0.0329). Again, there were no differences in protein levels between groups (C3 G102 and C3 L314 C3 serum levels, 1.29 ± 0.93 mg/ml; C3 R102 and C3 P314 (1.18 ± 0.93 mg/ml) (P-value = 0.5956) (Figure 2C).

Comparison of major and minor alleles of CFH H402Y showed that higher %AP values (lower AP activity) were present in controls homozygous for CFH Y402 (P = 0.0345) com-

Table 6. ORs of main effects and variant combinations between CFH and C3

Risk Alleles	DDD Frequency	Control Frequency	OR	95% CI	P-value	
Main effects						
CFH Y402H	H	47 (0.71)	93 (0.56)	1.92	1.04 to 3.54	0.034
CFH V62I	V	23 (0.35)	73 (0.44)	0.67	0.37 to 1.22	0.19
C3 R102G	G	37 (0.56)	57 (0.36)	2.42	1.35 to 4.33	0.0028
C3 P314L	L	37 (0.56)	58 (0.35)	2.35	1.32 to 4.21	0.0037
Two-variant combinations						
CFH Y402H × CFH V62I	H × V	32 (0.49)	56 (0.34)	1.83	1.02 to 3.27	0.039
CFH Y402H × C3 R102G	H × G	10 (0.15)	14 (0.08)	2.61	1.30 to 5.24	0.0077
CFH Y402H × C3 P314L	H × L	12 (0.18)	12 (0.07)	3.58	1.72 to 7.45	8.00E-04
CFH V62I × C3 R102G	V × G	17 (0.27)	27 (0.16)	1.63	0.95 to 2.79	0.075
CFH V62I × C3 P314L	V × L	21 (0.32)	24 (0.15)	2.47	1.43 to 4.27	0.0014
C3 R102G × C3 P314L	G × L	18 (0.27)	29 (0.18)	1.87	1.14 to 3.07	0.014
Three-variant combinations						
CFH Y402H × CFH V62I × C3 R102G	H × V × G	10 (0.15)	14 (0.09)	2.74	1.26 to 5.94	0.011
CFH Y402H × CFH V62I × C3 P314L	H × V × L	12 (0.18)	12 (0.07)	4.51	2.01 to 10.13	3.00E-04
CFH Y402H × C3 R102G × C3 P314L	H × G × L	7 (0.11)	10 (0.06)	2.49	1.05 to 5.91	0.04
CFH V62I × C3 R102G × C3 P314L	V × G × L	16 (0.24)	22 (0.13)	2.06	1.09 to 3.89	0.026

P < 0.05 are significant; DDD, n = 66, controls, n = 165.
pared with controls carrying at least one copy of CFH H402 (CFH H402 fH serum levels, 2.51 ± 0.91 mg/ml; CFH Y402 fH serum levels, 2.17 ± 0.84 mg/ml; P > 0.05) (Figure 2D). Although AP activity in controls homozygous for both CFH H402 and C3 G102 could not be studied due to the rarity of the CFH H402 plus C3 G 102 homozygous genotype (approximately one per 230 persons), we did compare controls homozygous for C3 G102, C3 L314, or CFH H402 (risk alleles) to controls homozygous for C3 R102, C3 P314, or CFH Y402 and noted consistently greater AP activity associated with DDD risk alleles (P < 0.05). This observation was also true when AP activity was compared between controls homozygous for both C3 G102 and C3 L314 versus controls homozygous for both C3 R102 and C3 P314 (P < 0.05) (Table 7). These data confirm that AP activity is greater in controls with DDD risk alleles compared with controls without these alleles, supporting a genetic basis for differences in normal AP activity.

DISCUSSION

The AP and TCC form a complex network of pathways with amplification loops and cascades. Dysregulation of this system underlies two rare renal diseases: aHUS and DDD. In aHUS, dysregulation occurs at the cell surface, and multiple mutations in complement genes and their functional impact have been characterized in affected patients.25–32 DDD is rarer than aHUS and has not been studied as thoroughly.13,14,21,33 It is caused by fluid-phase dysregulation of the C3 and C5 convertases that leads to accumulation of complement debris—C3b breakdown products and sMAC—in renal glomeruli.34

We identified novel missense sequence variants in four genes (C3, C3aR1, CR1, and ADAM19) in DDD patients. Although we have not determined the effect of these variants on complement activity, the rarity of these changes and their presence only in DDD patients suggests that they may have functional significance. In testing gene-gene interactions, we also found that four SNPs in CFH and C3—namely CFH p.Y402H, CFH p.V62I, C3 p.R102G, and C3 p.P314L—are associated with DDD and that the presence of two or more of these risk alleles increases the ORs of developing DDD (Table 6). The additive effect of these SNPs on DDD risk is consistent with the known interaction of fH and C3 and defines a predisposing at-risk complement haplotype or “complotype” in DDD patients.

The functional consequence of the DDD at-risk complotype is increased AP activity. Functional studies of the first
CFH SNP, Y402H, has shown that the H402 variant decreases binding to C-reactive protein and heparin and alters affinity for ocular membranes. Our data show that it is also associated with increased AP activity. The second CFH SNP, p.V62I, is in SCR1 of fH and contributes to a C3b binding site important for fluid-phase complement control through fH-mediated cofactor activity and fH/fB competition for C3b. It is interesting to note that despite finding that the protective allele CFH Y62 was more frequently found in controls than DDD patients, CFH p.V62I was not associated with the DDD phenotype in this study (chi-squared test of independence and Cochran-Armitage trend test). In an earlier study, in contrast, we found that it was (chi-squared test of independence), a discrepancy that may be due to the small number of cases and controls in both studies, which can cause inflated type I or II errors using a chi-squared test of independence. However, it is also possible that the main effect of CFH p.V62I is not independent but synergistic with another variant, consistent with our gene-gene interaction analysis, which found that CFH p.V62I and C3 p.P314L together are associated with DDD.

The associated C3 SNPs are in the macroglutulin (MG) domains of C3. C3 p.R102G is also known as the C3 F/S allele and lies in MG1 near the thioester domain (TED). Based on the three-dimensional structure of C3 using SNPs3D, it is on the protein surface. With arginine at this position, an electronegative interface is created on MG1 that can interact with the strong electropositive region on the exposed TED surface to stabilize C3b. In the absence of stabilizing electrostatic interactions, because glycine is not electronegative, TED binding to target surfaces could be affected.

The second C3 SNP, p.P314L, is also known as the HAV4–1 ± allele and lies in MG3, a binding site for fB. SNPs3D places this SNP on the protein surface, and PolyPhen and SIFT predict the change to be probably damaging, with an effect on function. The C3 L314 allele also reacts with the monoclonal antibody, HAV4–1, consistent with a structural alteration that exposes or creates an epitope recognized by the antibody. Both C3 SNPs are associated with aHUS and systemic lupus erythematosus.

Synergism between CFH p.V62I and C3 p.P314L may occur because the fH variant decreases binding to C3b, whereas the C3 variant increases binding to fB. These interactions would promote fB association with C3b to form C3 convertase while simultaneously decreasing fH affinity for and regulation of C3b. The predicted outcome would be a more active AP, which we demonstrated in functional assays of AP activity using genotyped control serum. However, it is also possible that the major effect of these interactions is to expose novel epitopes on C3 convertase that favor the development of C3Nefs. Consistent with this second possibility, Finn and Mathieson have shown an association between C3 G102 and the presence of C3Nefs in serum.

In summary, we have shown that DDD patients segregate a complotype that is comprised of risk alleles in CFH and C3. This complotype is associated with higher AP activity, which is consistent with the interaction of the two proteins. The DDD complotype may predispose to disease development by facilitating generation of autoantibodies like C3Nefs. These data also suggest that deep sequencing of all complement genes in DDD patients is warranted to better define the complotype of this complex disease. Determining the complex genotype associated with DDD may provide insight into the care of affected patients by identifying complotypes associated with disease progression and clinical outcome.

CONCISE METHODS

Mutation Screening and Analyses

Genomic DNA was extracted from blood samples of patients and controls using commercially available kits (PAXgene Blood DNA Kit, Qiagen, Valencia, California). Coding regions and intron–exon boundary junctions of C3 (NM_000064), CFH (NM_000186), CFHR5 (NM_030787), C3aR1 (NM_004054), C5aR1 (NM_001736), CR1 (NM_000651), and ADAM19 (NM_033274) were amplified and screened for sequence variants and polymorphisms by bidirectional sequencing. To identify the C4A deletion, two sets of primers were used that detected a nondeleted C4A (5.4 kb) band and/or a deleted C4A (5.2 kb) band. The quantitative alleles, H/L, for CR1 were determined by restriction digestion with HindIII. The H allele generates a 1.8-kb restriction digestion band, whereas the L allele generates 1.3- and 0.5-kb bands. Possible functional effects of variants were predicted using ConSeq, PolyPhen, and SIFT, Align GVGD, and SNPs3D.

Alternative Pathway Functional Studies

Functional studies were completed on 102 anonymized blood and serum samples obtained from the Mississippi Valley Regional Blood Center in Davenport, Iowa. Serum was immediately frozen and kept at −80°C until use. DNA was extracted from leukocytes using standard techniques (PAXgene Blood DNA Kit, Qiagen, Valencia, California). Each sample was genotyped and screened for CFH and C3 SNPs associated with DDD (C3 p.R102G, p.R304, p.P314L, p.P518; CFH −331 T>C, p.V62I, p.Y402H, p.Q673).
considered significant. The Cochran-Armitage trend test was used to identify linear trends in genotypes and to compare these trends between cases and controls. Haplotype analyses for all genes were performed using an EM algorithm in Haploview and SNPStats programs. Possible gene-gene interactions were tested using the Focused Interaction Testing Framework program. Possible gene-gene interactions were tested using the Focused Interaction Testing Framework program.

Alternative Pathway Functional Immunoassay

The AP functional immunoassay (Wieslab COMPL AP330 kit; ALPCO Immunoassays, Salem, New Hampshire) utilizes microtiter strips coated with specific activators of the AP. We measured absorbance at 405 nm and calculated %AP as (Abssample − Absnegative control)/(Abspositive control − Absnegative control) × 100. Lower %APs are associated with greater AP complement activity.

C3 and Complement fH Serum Levels

Serum levels of C3 and fH were determined using commercially available kits (Genway Biotech, Inc., San Diego, California, and Hycult Biotechnology, Uden, The Netherlands, respectively). Serum concentrations were calculated from a standard plot using either a linear or a four-parameter fit.

Statistical Analyses

The chi-squared test of independence was used to detect differences in allele frequencies between cases and controls; P-values < 0.05 were considered significant. The Cochran-Armitage trend test was used to identify linear trends in genotypes and to compare these trends between cases and controls. Haplotype analyses for all genes were performed using an EM algorithm in Haploview and SNPStats programs. For each polymorphism, ORs, 95% CI, and Hardy-Weinberg equilibrium were computed using SNPStats. Correction for multiple hypothesis testing was performed using Bonferroni correction and false discovery rate at α = 0.05 using the Focused Interaction Testing Framework program. Possible gene-gene interactions were determined using MDR (www.epistasis.org).

For testing association between C3 and CFH alleles and complement activity, two control groups were considered: one group consisted of all individuals homozygous for the protective allele; the second group consisted of all individuals homozygous or heterozygous for the risk allele. Unconditional logistic regression analysis using a full model was performed with P-values < 0.05 considered significant. P-values for Pearson goodness-of-fit test were calculated to determine if the predicted model described the data well (P > 0.05, rejected the null hypothesis and the goodness-of-fit model was a good model for the observed data). ORs and 95% CIs were computed to determine if alleles were at-risk or protective. Association was analyzed using a Mann-Whitney U-test (two variables) or Kruskal-Wallis test (three or more variables) by comparing mean and SD values between groups of major and minor alleles. C3 and fH serum levels in genotyped controls were compared using unpaired t test analysis. All statistical analyses were done using SAS 9.1.3.

ACKNOWLEDGMENTS

This work was supported in part by National Institutes of Health Grant DK074409 to R.J.H.S. We are grateful to those patients with DDD whose participation made this research possible.

Competing Financial Interests: The authors have no relationships with pharmaceutical firms or other entities (such as employment contracts, consultancy, advisory boards, speaker bureaus, membership of Board of Directors, stock ownership) that could be perceived to represent a financial conflict of interest and declare that no financial conflict of interest exists.

DISCLOSURES

None.

REFERENCES

1. Walport MJ: Complement. First of two parts. N Engl J Med 344: 1058–1066, 2001
2. Pangburn MK, Muller-Eberhard HJ: Initiation of the alternative complement pathway due to spontaneous hydrolysis of the thioester of C3. Ann NY Acad Sci 421: 291–298, 1983
3. Pangburn MK, Muller-Eberhard HJ: Relation of putative thioester bond in C3 to activation of the alternative pathway and the binding of C3b to biological targets of complement. J Exp Med 152: 1102–1114, 1980
4. Pangburn MK, Rawal N: Structure and function of complement C5 convertase enzymes. Biochem Soc Trans 30: 1006–1010, 2002
5. Ward PA: Functions of C5a receptors. J Mol Med 87: 375–378, 2009
6. Atkinson JP, Oglesby TJ, White D, Adams EA, Liszewski MK: Separation of self from non-self in the complement system: A role for membrane cofactor protein and decay accelerating factor. Clin Exp Immunol 86(Suppl 1): 27–30, 1991
7. Whaley K, Rudd K: Modulation of the alternative complement pathways by beta 1 H globulin. J Exp Med 144: 1147–1163, 1976
8. Kazatchkine MD, Fearon DT, Austen KF: Human alternative complement pathway: Membrane-associated sialic acid regulates the competition between B and beta 1 H for cell-bound C3b. J Immunol 122: 75–81, 1979
9. di Belgioioso B, Tarantino A, Colasanti G, Bazzi C, Guerra L, Durante A: The prognostic value of some clinical and histological parameters in membranoproliferative glomerulonephritis (MPGN): Report of 112 cases. Nephron 19: 250–258, 1977
10. Droz D, Noel LH, Barbanel C, Grunfeld JP: Long-term evolution of membranoproliferative glomerulonephritis in adults: spontaneous clinical remission in 13 cases with proven regression of glomerular lesions in 5 cases (author’s transl). Nephrologie 3: 6–11, 1982
11. McEnery PT: Membranoproliferative glomerulonephritis: The Cincin-nati experience—cumulative renal survival from 1957 to 1989. J Pe-diatri 116: S109–S114, 1990
12. Lu DF, McCarthy AM, Lanning LD, Delaney C, Porter C: A descriptive study of individuals with membranoproliferative glomerulonephritides. Nephrol Nurs J 34: 295–302, 2007
13. Smith RJ, Alexander J, Barlow PN, Botto M, Cassavant TL, Cook HT, de Cordoba SR, Hageman GS, Jokiranta TS, Kimberling WJ, Lambiris JD, Lanning LD, Levidiotis V, Licht C, Lutz HU, Men S, Pickering MC, Quigg R, Rops AL, Salant DJ, Sethi S, Thurman JM, Tully HF, Tully SP, van der Vlag J, Walker PD, Würzner R, Zipfel PF: New approaches to the treatment of dense deposit disease. J Am Soc Nephrol 18: 2447–2456, 2007
14. Appel GB, Cook HT, Hageman G, Jennette JC, Kashgarian M, Kirschfink M, Lambris JD, Lanning LD, Lutz HJ, Meri S, Rose NR, Salant DJ, Sethi S, Smith RJH, Smoyer W, Tully HF, Tully SP, Walker PD, Welsh M, Würzner R, Zipfel PF: Membranoproliferative glomerulonephritis type II (dense deposit disease): An update. *J Am Soc Nephrol* 16: 1392–1403, 2005

15. Dragon-Durey MA, Loirat C, Cloarec S, Macher MA, Blouin J, Nivet H, Weiss L, Fridman WH, Fremeaux-Bacchi V: Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. *J Am Soc Nephrol* 16: 555–563, 2005

16. Daha MR, Austen KF, Fearon DT: Heterogeneity, polypeptide chain composition and antigenic reactivity of C3 nephritic factor. *J Immunol* 120: 1389–1394, 1978

17. Strobel S, Zimmering M, Papp K, Prechtl J, Jozsi M: Anti-factor B autoantibody in dense deposit disease. *Mol Immunol* 47: 1476–1483, 2010

18. Jokiranta TS, Solomon A, Pangburn MK, Zipfel PF, Meri S: Nephrotoxicogenic lambda chain dimer: A unique human miniautoantibody against complement factor H. *J Immunol* 163: 4590–4596, 1999

19. Sethi S, Sukov WR, Zhang Y, Fervenza FC, Lager DJ, Miller DV, Cornell CL, Goodship TH, Atkinson JP: Membrane cofactor protein mutations in atypical hemolytic uremic syndrome. *Hum Mol Genet* 112: 4948–4952, 2008

20. Colville D, Guymer R, Sinclair RA, Savage J: Visual impairment caused by retinal abnormalities in mesangiocapillary (membranoproliferative) glomerulonephritis type II (“dense deposit disease”). *Am J Kidney Dis* 42: E2–E5, 2003

21. Licht C, Heinen S, Jozsi M, Hoppe B, Zipfel PF: Deletion of Lys224 in regulatory domain 4 of factor H reveals a novel pathomechanism for dense deposit disease (MPGN II). *Kidney Int* 70: 42–50, 2006

22. Abreu-Abeleda MA, Nishimura CJ, Smith JL, Sethi S, McRae JL, Murphy TF, Silvestri G, Skerka C, Jozsi M, Zipfel PF, Hageman GS, Smith RJ: Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). *J Med Genet* 43: 582–589, 2006

23. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. *J Royal Stat Soc Ser B* 57: 289–300, 1995

24. Pickering MC, de Jorge EG, Martinez-Barricarte R, Recalde S, Garcia-Layana A, Rose KL, Moss J, Walport MJ, Cook HT, de Cordoba SR, Botto M: Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. *J Exp Med* 204: 1249–1256, 2007

25. Maga TK, Nishimura CJ, Weaver AE, Frees KL, Smith RJ: Mutations in alternative pathway complement protein genes in American patients with atypical hemolytic uremic syndrome. *Hum Mutat* 31: E1445–E1460, 2010

26. Zipfel PF, Edey M, Heinen S, Jozsi M, Richter H, Misselwitz J, Hoppe B, Routledge D, Strain I, Hughes AE, Goodship JA, Licht C, Goodship TH, Skerka C: Deletion of complement factor H related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. *PLoS Genet* 3: e41, 2007

27. Johnson S, Taylor C: What’s new in haemolytic uraemic syndrome? *Eur J Pediatr* 167: 965–971, 2008

28. Fang CJ, Fremeaux-Bacchi V, Liszewski MK, Pianetti G, Noris M, Goodship TH, Atkinson JP. Membrane cofactor protein mutations in atypical hemolytic uremic syndrome (aHUS), fatal SxS-HUS, C3 glomerulonephritis, and the HELLP syndrome. *Blood* 111: 624–632, 2008

29. Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, Moghal N, Kaplan BS, Weiss RA, Lhotta K, Kapur G, Mattoo T, Nivet H, Wong W, Gie S, Hurault de Ligny B, Fischbach M, Gupta R, Haahr H, Mennel R, Andersson AM, Walport MJ, Cook HT, de Cordoba SR: The disease-protective complement factor H allotypic variant Ile62 shows increased binding affinity for C3b and enhanced cofactor activity. *Proc Natl Acad Sci U S A* 104: 228–232, 2008

30. Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, Lopez-Trascasa M, Sanchez-Corral P, Morgan BP, Rodriguez de Cordoba S: Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. *Proc Natl Acad Sci U S A* 104: 240–245, 2007

31. Kavanagh D, Burgess R, Spitzer D, Richards A, Diaz-Torres ML, Goodship JA, Hourcade DE, Atkinson JP, Goodship TH: The decay accelerating factor mutation I197V found in hemolytic uraemic syndrome does not impair complement regulation. *Mol Immunol* 44: 3162–3167, 2007

32. Tawadros H, Maig Y, Sharma J, Kupferman J, Smith RJ, Schoeneman M: A novel mutation in the Complement Factor B gene (CFB) and atypical hemolytic uremic syndrome. *Pediatr Nephrol* 25: 947–951, 2010

33. Lau KK, Smith RJ, Kollbeck PC, Butani L: Dense deposit disease and the factor H H402 allele. *Clin Exp Nephrol* 12: 228–232, 2008

34. Sethi S, Gamez JD, Vrana JA, Thies JD, Berger HR, Zipfel PF, Dogan A, Smith RJ: Glomeruli of dense deposit disease contain components of the alternative and terminal complement pathway. *Kidney Int* 75: 952–960, 2009

35. Skerka C, Lauer N, Weinberger AA, Keilhauer CN, Suhnel J, Smith R, Schlotzer-Schrehardt U, Fritsche L, Heinen S, Hartmann A, Weber BH, Zipfel PF: Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. *Mol Immunol* 44: 3398–3406, 2007

36. Laine M, Jarva H, Seisonen S, Haapasalo K, Lehtinen MJ, Lindeman N, Anderson DH, Johnson PT, Jarvela I, Jokiranta TS, Hageman GS, Immonen I, Meri S: Y402H polymorphism of complement factor H affects binding affinity to C-reactive protein. *J Immunol* 178: 3831–3836, 2007

37. Herbert AP, Deakin JA, Schmidt CO, Blaum BS, Egan C, Ferreira VP, Pangburn MK, Lyon M, Uhrin D, Barlow PN: Structure shows that a glycosaminoglycan and protein recognition site in factor H is perturbed by age-related macular degeneration-linked single nucleotide polymorphism. *J Biol Chem* 282: 18960–18968, 2007

38. Tortajada A, Montes T, Martinez-Barricarte R, Morgan BP, Harris CL, de Cordoba SR: The disease-protective complement factor H allotypic variant Ile62 shows increased binding affinity for C3b and enhanced cofactor activity. *Hum Mol Genet* 18: 3452–3461, 2009

39. Alper CA, Propp RP: Genetic polymorphism of the third component of human complement (C3). *J Clin Invest* 47: 2181–2191, 1968

40. Botto M, Fong KY, So AK, Koch C, Walport MJ: Molecular basis of polymorphisms of human complement component C3. *J Exp Med* 172: 1011–1017, 1990

41. Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P: Structure of C3b reveals conformational changes that underlie complement activity. *Nature* 444: 213–216, 2006

42. Abdul Ajees A, Gunasekaran K, Vellanakis JE, Narayana SV, Kotwal GJ, Murthy HM: The structure of complement C3b provides insights into complement activation and regulation. *Nature* 444: 221–225, 2006

43. Torreira E, Tortajada A, Montes T, Rodriguez de Cordoba S, Llorca O: 3D structure of the C3bB complex provides insights into the activation and regulation of the complement pathway alternative pathway convertase. *Proc Natl Acad Sci U S A* 106: 882–887, 2009

44. Francis PJ, Hartin SC, Ott J, Weleber RG, Klein ML: Polymorphisms in C2, CFB and C3 are associated with progression to advanced age related macular degeneration associated with visual loss. *J Med Genet* 46: 300–307, 2009

45. Huang JL, Lin CY: A hereditary C3 deficiency due to aberrant splicing of exon 10. *Clin Immunol Immunopathol* 73: 267–273, 1994

46. Miyagawa H, Yama M, Sakaguchi D, Kiyohara C, Tsukamoto H, Kimoto Y, Nakamura T, Lee JH, Tsai CY, Chiang BL, Shimoda T, Harada M, Tahira T, Hayashi K, Horiuchi T: Association of polymorphisms in complement component C3 gene with susceptibility to systemic lupus erythematosus. *Rheumatology* 47: 158–164, 2008
47. Finn JE, Mathieson PW: Molecular analysis of C3 allotypes in patients with nephritic factor. Clin Exp Immunol 91: 410–414, 1993
48. Grant SF, Kristjansdottir H, Steinsson K, Blondal T, Yuryev A, Stefansson K, Gulcher JR: Long PCR detection of the C4A null allele in B8–C4AQ0–C4B1-DR3. J Immunol Methods 244: 41–47, 2000
49. Wilson JG, Murphy EE, Wong WW, Klickstein LB, Weis JH, Fearon DT: Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erythrocytes. J Exp Med 164: 50–59, 1986
50. Sunyaev S, Ramensky V, Koch I, Lathe W, Kondrashov AS, Bork P: Prediction of deleterious human alleles. Hum Mol Genet 10: 591–597, 2001
51. Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31: 3812–3814, 2003
52. Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N: ConSeq: The identification of functionally and structurally important residues in protein sequences. Bioinformatics 20: 1322–1324, 2004
53. Tavtigian SV, Deffenaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Zharkikh A, Thomas A: Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet 43: 295–305, 2006
54. Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV: Computational approaches for predicting the biological effect of p53 missense mutations: A comparison of three sequence analysis based methods. Nucleic Acids Res 34: 1317–1325, 2006
55. Yue P, Melamud E, Moult J: SNPs3D: Candidate gene and SNP selection for association studies. BMC Bioinformatics 7: 166, 2006
56. Whaley K: Methods in Complement for Clinical Immunologists, Edinburgh, Churchill Livingstone, 1985
57. Joiner KA, Hawiger A, Gelfand JA: A study of optimal reaction conditions for an assay of the human alternative complement pathway. Am J Clin Pathol 79: 65–72, 1983
58. Fredrikson GN, Truedsson L, Sjoholm AG: New procedure for the detection of complement deficiency by ELISA. Analysis of activation pathways and circumvention of rheumatoid factor influence. J Immunol Methods 166: 263–270, 1993
59. Preacher KJ: Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence [Computer software] April, 2001. Available from http://quantpsy.org
60. Armitage P: Tests for linear trends in proportions and frequencies. Biometrics 11: 375–386, 1955
61. Sole X, Guino E, Valls J, Iniesta R, Moreno V: SNPStats: A web tool for the analysis of association studies. Bioinformatics 22: 1928–1929, 2006
62. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265, 2005
63. Millstein J, Conti DV, Gilliland FD, Gauderman WJ: A testing framework for identifying susceptibility genes in the presence of epistasis. Am J Hum Genet 78: 15–27, 2006
64. Hahn LW, Ritchie MD, Moore JH: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19: 376–382, 2003