Classical Correlation in Quantum Dialogue

Yong-gang Tan\(^1\,^2\) and Qing-yu Cai\(^3\)
\(^1\)State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China and
\(^2\)Graduate School of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Classical communications are used in the post-processing procedure of quantum key distribution. Since the security of quantum key distribution is based on the principles of quantum mechanics, intuitively the secret key can only be derived from the quantum states. We find that classical communications are incorrectly used in the so-called quantum dialogue type protocols. In these protocols, public communications are used to transmit secret messages. Our calculations show that half of Alice’s and Bob’s secret message is leaked through classical channel. By applying Holevo bound, we can see that the quantum efficiency claimed in the quantum dialogue type of protocols is not achievable.

Keywords: classical communication, quantum dialogue

I. INTRODUCTION

Quantum key distribution (QKD) is an unconditionally secure method by which a private key can be created between two parties, Alice and Bob, who share a quantum channel and a public authenticated classical channel. Since the pioneer QKD protocol was presented by Bennett and Brassard in 1984\(^1\), its security has been studied intensively\(^2\,^3\,^4\). In BB84 protocol, Alice randomly selects one of four states in two complementary bases to encode her secret message and Bob also randomly selects one of the two bases to decode Alice’s key bits. Consequently, basis reconciliation is necessary in BB84 protocol. Recently, the quantum secure direct communication (QSDC) protocols have been presented\(^5\,^6\,^7\,^8\,^9\,^10\). In the QSDC protocols, Bob can decode Alice’s encoded message directly after his measurement and they don’t need to do basis reconciliation. Based on the idea of QSDC, a new type of quantum communication protocol, called quantum dialogue (QD), has been presented\(^11\,^12\,^13\,^14\).

In the entanglement-based QD protocol\(^12\), it is claimed that both Alice and Bob can encode two-bit secret message on an EPR pair. After a public announcement, both Alice and Bob can obtain two-bit secret message from each other. That is, Alice and Bob can encode four-bit secret message in one EPR pair. Likewise, in a single-photon QD protocol\(^13\), both Alice and Bob can encode one-bit secret message on a photon. So, both Alice and Bob can obtain one-bit secret message from each other. It is claimed that one qubit can be used to transmit two-bit secret message\(^13\), where the quantum efficiency is four times than BB84.

In this paper, we prove that QD protocol presented by\(^11\,^12\,^13\,^14\) are insecure because classical communication is erroneously used in these protocols. Alice and Bob’s encoding operations are correlated given the published measurement results. Our calculations show that Eve can gain half information of Alice and Bob’s secret message only by listening the classical channel. By applying Holevo bound, we can see that the quantum efficiency claimed in the quantum dialogue type of protocols\(^11\,^12\,^13\,^14\) is not achievable.

II. REVIEW THE QUANTUM DIALOGUE PROTOCOL

There are three types of QD protocols, quantum dense key distribution using entanglement\(^11\) which is the prototype of quantum dialogue, QD protocol based on EPR pairs\(^12\) and QD protocol with single photon sources\(^13\). Let us briefly review the idea of QD here\(^12\). Alice first prepares an EPR pair in the singlet state\(^\Psi_{AB}^\text{−}\rangle\), where \(|\Psi_{AB}^\text{−}\rangle = \frac{1}{\sqrt{2}}(|0\text{A}1\text{B}\rangle - |1\text{A}0\text{B}\rangle)\). She keeps one qubit A in her laboratory and sends the other qubit B to Bob. After receiving qubit B, Bob may randomly select message mode (MM) or control mode (CM). In CM, Bob performs a local measurement on qubit B and tells measurement results to Alice. After receiving Bob’s announcement, Alice also switches to CM and measures her qubit A. Alice and Bob can estimate the fidelity of EPR pair after enough runs of CM. The QD transmission will be aborted if the fidelity of the EPR pair is lower than some certain threshold. In MM, after receiving qubit B, Bob performs a unitary operation \(U_B\) on qubit B to encode his secret message and then sends it back to Alice. After receiving the back qubit B, Alice first performs a unitary operation \(U_A\) on qubit A and the state becomes \(|\Psi_{AB}\rangle = U_A^\dagger U_B^\dagger |\Psi_{AB}^\text{−}\rangle\). Next, Alice announces her measurement result \(|\Psi_{AB}\rangle\) through the classical channel. Since Alice knows her own encoding operation \(U_A\) and the measurement result \(|\Psi_{AB}\rangle\), she can exactly know Bob’s encoding operation \(U_B\) to attain

*Electronic address: qycai@wipm.ac.cn
Bob’s encoded message. Likewise, Bob can obtain Alice’s encoded message according to $|\Psi_{AB}\rangle$ and U_B. Consequently, it seems as if both Alice and Bob can transmit one-bit “secret” message to each other simultaneously so that we call this protocol QD. In Ref. [12], both Alice and Bob use four unitary operations σ_{00}, σ_{01}, σ_{10}, σ_{11} to encode their secret message, 00, 01, 10, 11, respectively. Consequently, both Alice and Bob can transmit two-bit secret message to each other in each MM.

Likewise, in quantum dense key distribution protocol [11], Alice first prepares one EPR pair in $|\Psi_{AB}\rangle$ and sends one qubit to Bob. In MM, both Alice and Bob encode one-bit secret message and then Alice announces her measurement results through classical channel. In this way, they can transmit one-bit secret message to each other. Similarly, in the single photon QD protocol [13], Alice first prepares a photon in one of four states in two complementary bases and then both Alice and Bob encode one-bit secret message on it. After Alice’s announcement, both can obtain one-bit secret message from each other.

III. HALF SECRET MESSAGE LEAKED THROUGH PUBLIC CHANNEL

At the first glance, the QD protocol is secure since no one except Alice and Bob knows Alice or Bob’s secret encoding operations to gain their secret message. However, we will show in the following, anyone who can access Alice and Bob’s classical channel can gain half information about their secret message. Eve’s mean information gain on Alice and Bob’s bits, $I(AB : E)$, equals their relative entropy decrease [17]:

$$I(AB : E) = H_a \text{ priori} - H_a \text{ posteriori},$$

where $H_a \text{ priori}$ is the a priori entropy and $H_a \text{ posteriori}$ is the a posteriori entropy. In Ref. [12], the a priori entropy Alice and Bob shared are 4 bits, that is, $H_a \text{ priori} = 4$. And the a posteriori entropy of Eve is averaged over all possible results r. So she can get $H_a \text{ posteriori} = \sum_i P(r) H(i|r)$, where $H(i|r) = -\sum_j P(i|r) \log_2 [P(i|r)]$ is the conditional information entropy. By listening the classical channel, Eve can obtain Alice’s measurement results $|\Psi_{AB}^r\rangle$, $|\Phi_{AB}^r\rangle$, $|\Phi_{AB}^+\rangle$ and $|\Phi_{AB}^-\rangle$, i.e., $r = 4$. Each of the four measurement results corresponds to four of Alice’s and Bob’s operations $\sigma^r_i\sigma^r_k$. The true value table of their encoding operations is presented in Table I. And the final state, $|\Psi_{AB}\rangle$, $|\Psi_{AB}^+\rangle$, $|\Phi_{AB}\rangle$, or $|\Phi_{AB}^-\rangle$, would be published through classical channel. For instance, after Alice announces her measurement result $|\Psi_{AB}\rangle$, Eve may have that $P(\sigma_{00}^A|\Psi_{AB}^+\rangle) = P(\sigma_{00}^A|\Psi_{AB}^+\rangle) = P(\sigma_{10}^B|\Psi_{AB}^+\rangle) = P(\sigma_{10}^B|\Psi_{AB}^+\rangle) = 1/4$. (Here $P(x|y)$ is the probability of x conditioned on y, and we assume that Alice and Bob’s operations are random.) In this case, Eve’s information about Alice and Bob’s secret message is $I(AB : E) = 2$. That is, Eve can obtain half information about Alice and Bob’s secret message only by listening the classical channel.

Likewise, Eve can gain one-bit secret information only by listening the classical channel in the quantum dense key distribution protocol [11]. In [12], Eve can also obtain one-bit secret message by listening the classical channel. Therefore, QD protocols are insecure even if Alice and Bob hold a perfect quantum channel since half of secret message would be leaked through the classical channel. On the other hand, we will show in the following, the quantum efficiency claimed in QD violates Holevo bound.

IV. VIOLATION OF HOLEVO BOUND

In QKD, a secret key is encoded in quantum states. So, the maximal secret information that can be transmitted in each run is completely determined by the quantum channel capacity. The capacity of a quantum channel is bounded by the Holevo bound. If information is encoded on a state ρ, the accessible information of ρ is bounded by the Holevo quantity [15]:

$$\chi(\rho) = S(\rho) - \sum_i p_i S(\rho_i).$$

where $\rho = \sum_i p_i \rho_i$. In quantum communication, the mutual information $I(A : B)$ between Alice and Bob should be less than the Holevo bound [16], i.e., $I(A : B) \leq S(\rho) - \sum_i p_i S(\rho_i)$. In [12], the quantum channel capacity is bounded by $\log_2 4 = 2$, i.e., at most two-bit secret message can be encoded in each MM. As has been discussed above, Alice and Bob encodes four bits secret message in each MM, so that two-bit secret message will be leaked through classical channel. In fact, Alice’s and Bob’s encoding operations are correlated by the formula

$$\sigma^A_i\sigma^B_{kl} |\Psi_{AB}\rangle \rightarrow |\Psi_{AB}(1/2^4)\rangle.$$

So, Eve can directly obtain the correlation between Alice’s and Bob’s encoding operations after the announcement of the final states. Let us assume that Alice publishes her measurement result $|\Psi_{AB}\rangle$. As discussed above, the possible operations of Alice’s and Bob’s are $\sigma^A_{00}\sigma^B_{00}$, $\sigma^A_{01}\sigma^B_{10}$ and $\sigma^A_{11}\sigma^B_{11}$ (also see Table I) and then Eve can obtain partial information of Alice and Bob’s secret message.

| $|\Psi_{AB}\rangle$ | $|\Psi_{AB}^+\rangle$ | $|\Phi_{AB}\rangle$ | $|\Phi_{AB}^-\rangle$ |
|-----------------|-----------------|-----------------|-----------------|
| $\sigma^A_{00}\sigma^B_{00}$ | $\sigma^A_{00}\sigma^B_{00}$ | $\sigma^A_{00}\sigma^B_{10}$ | $\sigma^A_{00}\sigma^B_{10}$ |
| $\sigma^A_{01}\sigma^B_{01}$ | $\sigma^A_{01}\sigma^B_{11}$ | $\sigma^A_{01}\sigma^B_{10}$ | $\sigma^A_{01}\sigma^B_{10}$ |
| $\sigma^A_{10}\sigma^B_{10}$ | $\sigma^A_{10}\sigma^B_{10}$ | $\sigma^A_{10}\sigma^B_{00}$ | $\sigma^A_{10}\sigma^B_{00}$ |
| $\sigma^A_{11}\sigma^B_{11}$ | $\sigma^A_{11}\sigma^B_{11}$ | $\sigma^A_{11}\sigma^B_{00}$ | $\sigma^A_{11}\sigma^B_{00}$ |
V. DISCUSSION AND CONCLUSION

Although QD is insecure, it can still be applied to QKD as an approach to generate raw key. If Alice and Bob have realized that half of their secret message has leaked through classical channel, they can implement privacy amplification to distill secure final key bits. Let us emphasize that quantum efficiency can truly be improved by some other approaches. Note that the efficient BB84 has already been proposed and its unconditional security proof has also been presented [18].

In summary, QD is insecure because of the erroneous use of classical communication which reveals classical correlations between Alice and Bob’s encoding operations. The classical channel is public so that everyone including Eve can access it to attain the correlations between Alice and Bob’s encoding operations. Our calculations showed that half of Alice and Bob’s secret message would be leaked through classical channel in QD protocols. The quantum efficiency claimed in QD violates the Holevo bound.

We note that when this study was completed, we found that the erroneous use of classical communication in QD was independently pointed out by Gao et al. [19].

Acknowledgments

This work is funded by Natural Science Foundation of China (Grant No. 10504039) and Chenguang Youth Project of Wuhan City.

[1] C. H. Bennett, and G. Brassard, in proceedings of IEEE International Conference on computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), p. 175.
[2] D. Mayers, J. ACM 48, 351 (2001).
[3] H.-K. Lo and H. F. Chau, Science 283, 2050 (1999).
[4] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).
[5] K. Boström and T. Felbinger, Phys. Rev. Lett. 89, 187902 (2002); Q.-Y. Cai, Phys. Rev. Lett. 91, 100801-1 (2003).
[6] Q.-Y. Cai and B.-W. Li, Phys. Rev. A 69, 054301 (2004).
[7] Q.-Y. Cai and B.-W. Li, Chin. Phys. Lett. 21, 601 (2004).
[8] F.-G. Deng, G.L. Long, Phys. Rev. A 69, 052319 (2004).
[9] F.-G. Deng, G.L. Long, Phys. Rev. A 70, 012311 (2004).
[10] M. Lucamarini, S. Mancini, Phys. Rev. Lett. 94, 140501 (2005).
[11] I. P. Degiovanni, I. R. Berchera, S. Castelletto, M. L. Rastello, F. A. Bovino, A. M. Colla, and G. Castagnoli, Phys. Rev. A 69, 032310-1 (2004).
[12] B. A. Nguyen, Phys. Lett. A, 328, 6-10 (2004).
[13] X. Ji, and S. Zhang, Chin. Phys. 15, 1418 (2006).
[14] Y. Xia, J. Song and H.-S. Song, Phys. Scr. 76, 363-369 (2007).
[15] A. S. Holevo, Probl. Peredachi. Inf. 9, 3 (1973) [Probl. Inf. Transm. (USSR) 9, 177 (1973)].
[16] A. Cabello, Phys. Rev. Lett. 85, 5635 (2000).
[17] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[18] H.-K. Lo, C. H. Chau, and M. Ardehali, J. of Cryptology, 18, 133-165 (2005); [arXiv:quant-ph/0011056].
[19] F. Gao, F.-Z. Guo, Q.-Y. Wen, F.-C. Zhu, arXiv:08012420.