Assessment of surveillance core and support functions regarding neglected tropical diseases in Kenya

Arthur Kipkemoi Saitabau Ng'etich (arthursaitabau@yahoo.com)
University of Pretoria
https://orcid.org/0000-0002-2637-0451

Kuku Voyi
University of Pretoria

Clifford Maina Mutero
International Centre for Insect Physiology and Ecology

Research article

Keywords: Surveillance and response systems, Core functions, Support functions, Neglected Tropical Diseases

DOI: https://doi.org/10.21203/rs.3.rs-67662/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

**Background:** Effective surveillance and response systems are vital to achievement of disease control and elimination goals. Kenya adopted the revised guidelines of the integrated disease surveillance and response system in 2012. Previous assessments of surveillance system core and support functions in Africa are limited to notifiable diseases with minimal attention given to neglected tropical diseases amenable to preventive chemotherapy (PC-NTDs). The study aimed to assess surveillance system core and support functions relating to PC-NTDs in Kenya.

**Methods:** A mixed method cross-sectional survey was adapted involving 192 health facility workers, 50 community-level health workers and 44 sub-national level health personnel. Data was collected using modified World Health Organization generic questionnaires, observation checklists and interview schedules. Descriptive summaries, tests of associations using Pearson's Chi-square or Fisher's exact tests and mixed effects regression models were used to analyse quantitative data. Qualitative data derived from interviews with study participants were coded and analysed thematically.

**Results:** Detection of PC-NTDs was minimal at the peripheral level with limited (60%) use of standard case definitions. Case registration and confirmation capacities were suboptimal at the lower levels with 52% of facilities having functional laboratories. Presence of well-equipped laboratories \( p = 0.007 \), provision for PC-NTDs in reporting forms \( p = 0.004 \) and training of personnel on surveillance \( p < 0.001 \) were associated with higher odds of having a functional surveillance system. Lower levels lacked sufficient action thresholds and feedback was limited across all surveillance levels. Supervisory visits frequency at the community (73%) and facility (53%) levels were minimal. Challenges facing PC-NTDs surveillance activities implementation revealed through qualitative data included lack of surveillance guidelines and reporting tools, minimal data analysis, inconsistent feedback, limited supervisory activities, minimal training and low resource provision.

**Conclusions:** Sufficient milestones have been achieved towards improving performance of surveillance functions in Kenya. However, challenges exist relating to PC-NTDs. Core functions including case detection, registration and confirmation, reporting, data analysis and feedback perform sub-optimally at the facility and community levels. Additionally, support functions including standards and guidelines, supervision, training and resources are particularly weak at the sub-national level. Improved PC-NTDs surveillance performance sub-nationally requires strengthened capacities.

Background

Health systems building blocks derived from the World Health Organization (WHO), work in concert with one another and are key to achieving health system strengthening [1]. Health Information Systems (HIS) are a particularly critical building block providing evidence-based and technological structures to collect, analyse and interpret data in order to generate useful information on patterns and determinants of...
disease occurrence for action by policy makers, health managers and personnel [2]. Lack of adequate
disease-related information hinders health ministries from developing and strengthening health systems
capacities for future needs [3]. Public health surveillance is a key component of HIS involving the
continuous collection, analysis and interpretation of health data resulting in the timely dissemination of
information to enable effective public health action [4]. Effectiveness of surveillance systems is
dependent on continued improvement of their performance in detecting and responding to diseases,
which can be achieved through ensuring accurate and timely reporting for effective response to identified
cases and outbreaks [5]. In September 1998, an Integrated Disease Surveillance (IDS) strategy, which was
later renamed Integrated Disease Surveillance and Response (IDSR) system, was adopted by member
states of the World Health Organization Regional Office for Africa (WHO-AFRO). This strategy aimed to
ensure that action oriented, integrated and district-focused public health surveillance systems are in place
[6–8]. An effective disease surveillance and response system requires optimal functioning of core
activities including case detection, registration and confirmation, reporting, data analysis, feedback and
outbreak response. On the other hand, sustained core function performance necessitates support from
adequate standards and guidelines, supervision, training and resources [9].

Strengthening national disease surveillance and response systems requires periodic evaluation of the
structure, functions and attributes of the system to review strengths, weaknesses, and opportunities for
improvement [10]. In Kenya, the IDSR system was adopted in the year 2000 and core capacity
assessment undertaken in the same year [11]. In 2009, an external review was conducted with the aim of
assessing the performance of Vaccine Preventable Diseases (VPD) surveillance within the IDSR
framework [11]. Findings from the assessment revealed strong surveillance structures were in place and
the availability of IDSR technical guidelines and case definitions at all levels. Recommendations resulting
from the assessment led to increased training on IDSR and budget line creation for surveillance and
response activities [11]. However, assessment of surveillance and response systems focused on tackling
priority diseases overlooks the silent burden of neglected tropical diseases (NTDs), which cause serious
debilitating effects among the affected communities. NTDs in recent years have gained public health
importance and their elimination by 2030 is a key target within the Sustainable Development Goals
(SDGs) and attaining Universal Health Coverage [12, 13]. Mass drug administration being the most
pragmatic approach to combating NTDs faces consistent implementation challenges relating to
hampered drug delivery strategies, inadequate number of community drug distributors, vast areas of drug
coverage and unclear geographical boundaries [14]. Hence, to address these challenges given scarce
resources requires targeted interventions. In addition, NTD endemic regions face variations in local health
systems performance among other factors. This poses a foreseeable challenge to maintaining NTDs
elimination goals beyond 2020 especially in ascertaining local elimination of disease transmission [15].
Therefore, there is need to strengthen surveillance and response systems focused on NTDs control and
elimination in order to inform targeted treatment and meet post-elimination goals. Key to addressing
NTDs endgame challenges is to strengthen post-control surveillance efforts by developing new and
improving existing monitoring tools and ensuring reporting systems function effectively [16]. A shift from
donor dependence to more sustainable approaches through strengthened national health systems is vital
to achieving NTDs elimination goals [17]. NTDs technical and programmatic challenges coupled to the changing donor and partner landscape rationalise the need for increased efforts to strengthen existing health systems [17].

NTDs mainly burden health systems at the sub-national level [17]. Hence, requiring surveillance technical and operational strategies to be well adapted to the sub-national context and resource capacity [17]. Additionally, operational research to inform surveillance and response strategies grounded on local settings are crucial to identifying research priorities regarding disease elimination [18]. In line with efforts of ‘leaving no one behind’ it would require strengthened surveillance capacity to identify NTDs transmission foci that will ensure interventions and health services reach the most afflicted communities [13, 17]. The IDSR system categorised targeted diseases in to three main groups including those of a notifiable nature, diseases targeted for eradication or elimination and other disease conditions or events of public health importance [8]. However, there is paucity of knowledge on surveillance system core and support functions assessment with a focus on diseases targeted for elimination and eradication in accordance with the revised IDSR guidelines. Focus on notifiable disease conditions was quite evident from previous systematic literature reviews, with the reviewed studies assessing surveillance core, support and attribute functions of the IDSR system mostly based on notifiable diseases [19, 20]. Specifically in Kenya, a number of NTDs are earmarked for eradication or elimination or considered major diseases, events or conditions of public health importance [11, 21]. The NTDs include Guinea Worm Disease (GWD), Leishmaniasis, Schistosomiasis and Trachoma. Interestingly, the listed NTDs except for GWD are not included in the IDSR epidemic monitoring form routinely utilised for weekly reporting at the health facility level in Kenya. To date, there is no systematic assessment of the existing IDSR system functions with regard to NTDs especially at the surveillance operational level, i.e. sub-national level in Kenya.

This study aimed at assessing the core and support functions of the existing IDSR system in relation to four preventive chemotherapy-targeted NTDs (PC-NTDs) of known endemicity prioritised for control or elimination in Kenya including Soil Transmitted Helminths, Schistosomiasis, Trachoma and Lymphatic Filariasis [22–24]. Improved surveillance and response to PC-NTDs will ensure timely disease detection and lead to appropriate evidence-based public health action towards achieving disease elimination.

**Methods**

**Study setting and population**

Kenya is situated in East Africa and bordered by Uganda to the West, Somalia to the East, South Sudan and Ethiopia to the North and Tanzania to the South (Fig. 1).

The country comprises of 47 administrative counties and up to 290 sub-counties. The study areas included endemic counties with at least one sub-county having three co-endemic PC-NTDs of known prevalence [22]. According to data provided in the second national strategic plan for control of neglected tropical diseases in Kenya and the Demographic Health Information System (DHIS2), the PC-NTDs
endemic counties meeting this criteria and representing regions highly endemic of the diseases in Kenya included; Baringo, Narok, West Pokot, Kwale, Kilifi, Lamu, Tana River, Taita Taveta, Kitui and Embu counties [22]. The study sites are in three distinct geographical regions namely; Rift Valley (Baringo, Narok and West Pokot), Coast (Kwale, Kilifi, Lamu, Tana River and Taita Taveta) and Eastern (Kitui and Embu) based on previous regional boundaries in Kenya (Fig. 1). A common ecological characteristic of the study sites was that of arid and semi-arid conditions with the populous mostly settled in remote parts of the study areas.

The study targeted healthcare personnel responsible for collection and transmission of surveillance data at the following three levels;

**Community (peripheral) level**

Community health extension workers (CHEWs) responsible for compiling and reporting disease data and assigned to fully functional community health units (CHUs) linked to selected health facilities.

**Health facility level**

Healthcare facility workers (HFWs) in both public and private facilities responsible for collection and transmission of surveillance data. HFWs were drawn from various facility levels including dispensaries (level 2), basic primary health care facilities (level 3), primary care hospitals (level 4) and county referral hospitals (level 5) that reported a high-threshold of PC-NTD cases in the one-year surveillance period.

**Sub-national level**

Healthcare personnel at the sub-county and county levels responsible for collation and transmission of surveillance data reported from the healthcare facilities in the given surveillance period. Also included in this category were key healthcare stakeholders responsible for decision-making and overseeing surveillance and response related activities including county directors of health, county epidemiologists and county health information managers from each of the selected endemic counties.

**Surveillance System Functioning**

At the peripheral level, community health volunteers complete relevant reporting forms either monthly or biannually to capture the monthly services offered, health and demographic information of the households at the community level. These reports are submitted to CHEWs to undertake data verification, consolidation and data summaries for onward submission to the health facility chalkboard and further to the upper levels for entry into the DHIS2 [28]. The requirement for reporting weekly IDSR data at the health facility level is submission of original copy of reports by Monday of the following week [11, 29]. The health worker concerned can either submit weekly IDSR data through hardcopy report delivery or orally through a phone call. However, other common alternative methods of submitting weekly reports include Short Message Services (SMSs), emails or through WhatsApp messaging application. A copy of the report is retained at the health facility level while the original copy is submitted to the sub-county level. The sub-county disease surveillance and response coordinator (SCDSRC) then collates reports from all
reporting health facilities and submits the aggregated report through the DHIS2 by Wednesday of the following week. On the other hand, monthly summary IDSR data from health facilities require submission to the sub-county level by the 5th day of the following month following which the SCDSRC enter the data into the DHIS2 before 15th of the following month [11]. The county disease surveillance and response coordinators (CDSRCs) and county health information and records officers (CHIROs) verify and validate data entered into the DHIS2 before the information is available to health system end-users.

The IDSR strategy is comprehensive and comprising of diverse activities to enable effective disease detection to inform appropriate public health action. Four principal elements namely structural, core activities, support activities and attribute functions constitute the IDSR framework. However, this study delineated and focused on the surveillance core and support functions, which form the main driving force to implement the strategy effectively. In addition, bearing in mind the consolidated component of the IDSR strategy that aims to accommodate all diseases under surveillance, the researchers purposively assessed the performance of surveillance core and support activities specific to neglected tropical diseases. Further attribute functions relating to PC-NTDs surveillance were evaluated in a subsequent study. Assessment of the surveillance functions relating to PC-NTDs was based on components of the system as documented in the WHO guideline [5]. Definitions for surveillance core and support functions were derived from the proposed framework for communicable disease surveillance by World Health Organization and Centers for Disease Control and Prevention (CDC) updated guideline for evaluating public health surveillance systems [5, 30]. The core functions are based upon indicators that measure the system processes and outputs [31]. These include case detection, registration and confirmation of health related events, reporting, analysis and interpretation of surveillance data and public health action including reports and feedback from the systems to the users of the system, key stakeholders and policy makers. On the other hand, support functions guide and facilitate implementation of the core functions including; standards and guidelines, training, supervisory activities, communication facilities, resources, coordination, monitoring and evaluation [31].

**Study Design And Sampling Procedure**

A mixed method cross-sectional survey approach was used to assess the IDSR system surveillance functions comprising; core and support functions. The study involved the concurrent collection of both quantitative and qualitative data. The convergence method employed was aimed at ensuring detailed data was captured from the study participants while giving equal importance in terms of analysis and comparison to both types of data [32]. Surveillance system assessment was guided by the WHO protocol for assessing national surveillance system and the CDC updated guidelines for evaluating public health surveillance systems [30, 31].

Study areas were purposively sampled from the Rift Valley, Eastern and Coastal parts of Kenya, which are regions endemic of fully mapped PC-NTDs. These regions were selected to enable detailed assessment of NTDs surveillance and response activities within the IDSR system framework. Within the three regions, ten (10) administrative counties prevalent of at least three or more PC-NTDs were purposively sampled.
Furthermore, within the counties, nineteen (19) sub-counties reporting a high number of PC-NTD cases in the one-year surveillance period (2017) were selected. This was followed up by purposive sampling of all the healthcare facilities linked to fully functional community health units that reported high-threshold levels of PC-NTD cases in the 2017 surveillance period in the selected endemic sub-counties. There were about 341 operational healthcare facilities providing PC-NTDs control and preventive services in the selected endemic counties according to data obtained from the Kenya Master Health Facility List (KMHFL) and Kenya Service Availability and Readiness Mapping (SARAM) Report [33, 34]. An estimated 221 of these facilities were located in the selected sub-counties prevalent of at least three PC-NTDs of known endemicity. Of the 221 healthcare facilities, the study included those facilities that reported high-threshold levels of PC-NTD cases in the 2017 surveillance period according to data retrieved from the DHIS2 system. The high-threshold levels of PC-NTD cases reported was determined based on the average number of cases reported in the one-year surveillance period within a given region. Hence, an equivalent of 192 healthcare workers responsible for surveillance data collection and transmission in the selected health facilities were included in the study. Moreover, there were 50 fully functional community health units linked to the selected healthcare facilities according to data obtained from the KMHFL [33]. Therefore, healthcare personnel in-charge of the fully functional CHUs linked to 50 out of the 192 healthcare facilities were enrolled in the study. Similarly, healthcare personnel in-charge of disease surveillance activities at the sub-counties and county levels were purposively sampled. This comprised of sub-county disease surveillance and response coordinators (n = 19) and county disease surveillance and response coordinators (n = 10). Furthermore, fifteen (15) key stakeholders overseeing disease surveillance activities at the sub-national level were also enrolled. Purposive sampling technique was largely preferred since it enabled careful selection of specific “information rich” participants across the surveillance levels to gain extensive knowledge on their experiences [35, 36]. Selection of experienced respondents was vital to obtain convincing non-random outcomes [37]. Therefore, in the current study, respondents were purposively sampled based on their direct involvement in surveillance activities at the sub-national level.

Data Collection And Analysis

Semi-structured questionnaires were used to obtain information from healthcare personnel responsible for surveillance data collection and transmission at the community (CHEWs), healthcare facility (HFWs), sub-county (SCDSRC) and county (CDSRC) levels based on their availability during the study. The semi-structured questionnaires gathered information on IDSR core and support functions’ performance relating to PC-NTDs across the surveillance levels. The questionnaires comprised of participants’ demographic information with questions made relevant to the specific surveillance level and administered in the most appropriate language to the participants, which was either English or Swahili. Additionally, interview schedules were used to conduct key informant interviews with healthcare personnel overseeing disease surveillance related activities in the PC-NTD endemic counties including county directors of health, county epidemiologists and county health information and records officers. Data was collected between November 2017 and June 2018.
Data entry was conducted using Epi Info Version 7 and later the data was imported into Stata/IC 14.0 (College Station, 77845 Texas USA) for further statistical analysis. Frequency computation and summary tables of healthcare workers’ socio-demographic characteristics at the sub-national level were undertaken. Categorical variables relating to questionnaire items on IDSR system core and support functions regarding PC-NTDs were summarised as frequencies and the corresponding percentages. Bivariate analysis between categorical variables and HFWs socio-demographic characteristics and other facility surveillance activities were assessed using Pearson’s Chi Square test. Additionally, where assumptions for use of Pearson’s Chi Square test were violated we resorted to using the Fisher’s Exact test. Independent variables associated with the outcome in the bivariate analysis (i.e. with p-value < 0.05) were incorporated in a mixed effects logistic regression model. Bivariate mixed effects logistic regression model was implemented to determine the crude estimates of the effects of independent variables before a multivariable (adjusted) mixed effects model was fitted. The adjusted model was selected by excluding independent variables with the greatest p-value > 0.05 using backward selection method. Noteworthy, the counties were modelled as a random effect and all the other independent variables retained in the model were modelled as fixed effects. The logistic regression models were interpreted by the adjusted odds ratio (AOR) with a 95% confidence interval (CI), and the corresponding p-value. Qualitative data was managed using ATLAS.ti version 8 qualitative data analysis software [38]. Research participants’ verbal responses to the questionnaire open-ended questions were transcribed and coded into various themes of the surveillance system core and support functions. Qualitative data analysis identified the main themes based on surveillance functions that required strengthening while the emerging codes identified key recommendations to improving the surveillance functions relating to neglected tropical diseases rated according to the codes groundedness [39].

Results

Study setting

Data was collected from three regions comprising ten counties: Rift Valley (Baringo, West Pokot and Narok), Eastern (Embu and Kitui) and Coast (Kwale, Kilifi, Lamu, Taita Taveta and Tana River). The counties were further stratified into nineteen administrative sub-counties from which health facilities were sampled (Table 1).
| Region     | County         | Sub-County    | N   | n (%)  |
|------------|----------------|---------------|-----|--------|
| Rift Valley| Baringo        | Marigat       | 12  | 12 (100%) |
|            | West Pokot     | Kacheliba     | 19  | 8 (42%)  |
|            |                | Pokot West    | 11  | 11 (58%)  |
|            | Narok          | Trans Mara West| 11  | 11 (100%)  |
| Eastern    | Embu           | Runyenjes     | 22  | 22 (100%)  |
|            | Kitui          | Kitui Central | 24  | 18 (75%)  |
|            |                | Mwingi        | 6   | 6 (25%)  |
| Coast      | Kwale          | Kinango       | 34  | 9 (27%)  |
|            |                | Lungalunga    | 9   | 9 (27%)  |
|            |                | Matuga        | 13  | 13 (38%)  |
|            |                | Msambweni     | 3   | 3 (9%)  |
|            | Kilifi         | Kaloleni      | 24  | 7 (29%)  |
|            |                | Kilifi North  | 6   | 6 (25%)  |
|            |                | Kilifi South  | 6   | 6 (25%)  |
|            |                | Malindi       | 5   | 5 (21%)  |
|            | Lamu           | Lamu West     | 15  | 15 (100%)  |
|            | Taita Taveta   | Taveta        | 10  | 10 (100%)  |
|            | Tana River     | Galole        | 21  | 7 (33%)  |
|            |                | Garsen        | 14  | 14 (67%)  |

N – Number of sampled healthcare facility units

**Study Participants’ Socio Demographic Information**

Two hundred and ninety-five health personnel were enrolled in the study with a response rate of 96%. Excluding those who did not give their consent (n = 12), comprising community health workers (n = 5) and health facility workers (n = 7), the final sample size was 286. This comprised of community (50, 17%), health facility (192, 67%), sub-county (19, 7%) and county (10, 3%) level health personnel and other key informants (15, 5%). Overall, majority (89%, 254/286) of the study participants were aged over 30 years with a preponderance (57%, 164/286) of male participants. Forty-one percent (117/286) had more than
five years working experience in their current designation with 77% (219/286) having at least attained a diploma level of education. Up to 54% (27/50) of CHUs were in the Coast region and a majority (60%) were linked to level 2 health facilities with 94% (47/50) being public health facilities. Community Health Extension Workers (CHEWs) who oversee the CHUs were mostly males (74%), aged between 41–50 years (44%), having at least attained a diploma level of education (78%) and having worked for more than 5 years (42%) as CHEWs. Fifty-four percent (104/192) of the sampled health facilities were in the Coast region with up to 71% being level 2 facilities and 88% (169/192) being public health facilities. Health facility respondents were mostly female (51%), aged between 31–40 years (47%), nurses by health cadre (65%), having at least attained a diploma level of education (83%) and having worked for more than 5 years in their current cadre (37%). Study participants enrolled at the sub-county (19) and county levels (10) were mainly disease surveillance coordinators. Majority of the sub-national level health personnel were male (79%, 23/29) with more than 5 years work experience in their current designation (69%, 20/29). Key informants at the county level comprised of county directors of health (3), county epidemiologists (2) and county health information and records officers (10). Most key informants were male (67%), aged between 41–50 years (53%), attained at least a degree level of education (73%) and having worked between 3–5 years in their current designation (60%).

**Study Participants' Involvement In Surveillance Activities**

The data showed that in their current cadre, up to 53% (101/192) of health facility respondents had been involved in health facility based disease surveillance for at least three years (Fig. 2). On the other hand, 86% (43/50) of respondents at the community level reported to be involved in disease surveillance activities.

Eighty-four percent (161/192) of facility respondents reported having a functional health facility-based surveillance system in place. Further results indicated that availability of a laboratory equipped to confirm PC-NTDs cases, provision for PC-NTDs in the reporting forms and training of personnel on disease surveillance were associated with higher odds of having a functional health facility-based surveillance system [AOR = 3.07, 95% CI: 1.36, 6.94, p = 0.007], [AOR = 3.20, 95% CI: 1.44, 7.10, p = 0.004] and [AOR = 4.15, 95% CI: 2.30, 7.48, p < 0.001] respectively. Of the facilities with a functional health facility-based surveillance system, 64% (104/161) confirmed to report PC-NTDs through this system and up to 97% of respondents reported that it was important to have a PC-NTD surveillance system at the facility level. Majority (95%, 182/192) of facility respondents were well aware of PC-NTDs prevalent in the region. The common PC-NTDs reported in the study regions in the previous surveillance year were Soil Transmitted Helminths (87%), Schistosomiasis (63%), Lymphatic Filariasis (33%), Trachoma (25%) and Leishmaniasis (7%) (Fig. 3).

Up to 25% of facility respondents identified Schistosomiasis and Soil Transmitted Helminths as the most common co-endemic conditions while 23% reported Lymphatic Filariasis, Schistosomiasis and Soil Transmitted Helminths to commonly co-occur at any given time. At the community level, 88% (44/50) of
respondents were aware of the PC-NTDs prevalent in the study regions. Up to 80% of them had identified and reported at least one PC-NTD case at the community level in the previous year.

Case Detection, Registration And Guidelines

All sub-national levels (sub-counties and counties) were provided with IDSR standard case definition guidelines. Up to 53% and 70% of respondents reported to use the available standard case definitions to detect at least one PC-NTD in the previous year in the sub-county and county levels respectively (Table 2). Sixty-six percent (33/50) of respondents at the community level reported that they were issued with surveillance guidelines. Of this number, up to 85% reported that the guidelines were obtained from the health facilities. Fifty percent (25/50) of respondents indicated that the surveillance guidelines were useful for PC-NTDs case detection. Further results showed that 82% of community level respondents were aware of the term standard case definitions and 58% (29/50) of them reported that PC-NTDs standard case definitions were provided in the surveillance guidelines. Of this fraction, up to 55% indicated that the PC-NTDs case definitions were not easily applicable. At the health facility level, 83% (159/192) of the respondents reported that standard case definitions for all diseases were available for use in the health facilities. Of this fraction, 99% confirmed that the facilities were utilising the available standard case definitions as provided in IDSR guidelines. Up to 60% of health facility workers felt the available PC-NTDs case definitions were clear and easy to use. However, a health facility respondent further remarked;
| Core surveillance Activities | Indicators                                                                 | IDSR Target | Community Level (N = 50) | Health Facility Level (N = 192) | Sub-County Level (N = 19) | County Level (N = 10) |
|-----------------------------|-----------------------------------------------------------------------------|-------------|--------------------------|-------------------------------|---------------------------|------------------------|
|                             |                                                                             | %           | % [n/N]                  | % [n/N]                      | % [n/N]                  | % [n/N]                |
| Case detection              | Proportion provided with IDSR standard case definitions                      | 80          | 66 [33/50]               | 83 [159/192]                 | 100 [19/19]              | 100 [10/10]            |
|                             | Proportion using standard case definitions to detect at least one PC-NTD    | 80          | 58 [29/50]               | 60 [115/192]                 | 53 [10/19]               | 70 [7/10]              |
| Case registration           | Proportion using specific case registers for PC-NTDs registration           | 80          | 68 [34/50]               | 19 [36/192]                  | NA                       | NA                     |
| Case confirmation           | Proportion with a functional laboratory                                     | 80          | N/A                      | 52 [100/192]                | 100 [19/19]              | 100 [10/10]            |
|                             | Proportion with the capacity to collect and store PC-NTD specimens          | 80          | N/A                      | 41 [79/192]                 | 84 [16/19]               | 100 [10/10]            |
|                             | Proportion that sent samples to a higher-level laboratory of at least one PC-NTD | 80         | 32 [16/50]               | 18 [35/192]                 | NA                       | NA                     |
|                             | Proportion that received reports on referred PC-NTD samples                 | 80          | 32 [16/50]               | 80 [28/35<sup>a</sup>]      | NA                       | NA                     |
| Reporting                   | Proportion having IDSR reporting forms always available                     | 80          | 74 [37/50]               | 89 [170/192]                | 79 [15/19]               | 80 [8/10]              |
|                             | Proportion that reported at least one PC-NTD case                           | 80          | 78 [39/50]               | 84 [162/192]                | 100 [19/19]              | 100 [10/10]            |
|                             | Proportion that undertook zero reporting of at least one PC-NTD            | 80          | N/A                      | 81 [156/192]                | 100 [19/19]              | 100 [10/10]            |

NA – indicator was either not available or unmeasurable at the specific surveillance level

<sup>a,b,c,d</sup> - denominators are derived from totals of a preceding affirmative outcome
| Core surveillance Activities | Indicators                                                                 | IDSR Target | Community Level (N = 50) | Health Facility Level (N = 192) | Sub-County Level (N = 19) | County Level (N = 10) |
|-----------------------------|-----------------------------------------------------------------------------|-------------|--------------------------|-------------------------------|---------------------------|----------------------|
|                             | Proportion that met deadlines for submitting PC-NTD’s surveillance reports  | 80          | N/A                      | 88 [143/162<sup>b</sup>]     | 84 [16/19]                | 80 [8/10]            |
| Data analysis               | Proportion that analysed data of at least one PC-NTD                        | 80          | 42 [21/50]               | 58 [111/192]                 | 84 [16/19]                | 80 [8/10]            |
|                             | Proportion that undertook trend analysis of at least one PC-NTD            | 80          | N/A                      | 44 [49/111<sup>c</sup>]     | 26 [5/19]                 | 60 [6/10]            |
|                             | Proportion with action thresholds of at least one PC-NTD                   | 80          | N/A                      | 29 [56/192]                 | 74 [14/19]                | 80 [8/10]            |
| Feedback                    | Proportion that received feedback from higher-level of at least one reported PC-NTD | 80          | 54 [27/50]               | 36 [70/192]                 | 53 [10/19]                | 60 [6/10]            |
|                             | Proportion that received at least one written feedback report from the higher level of a reported PC-NTD case | 80          | N/A                      | 80 [56/70<sup>d</sup>]     | N/A                      | N/A                  |
| Epidemic preparedness      | Proportion with a rapid response team                                       | 80          | N/A                      | NA                           | 63 [12/19]                | 100 [10/10]          |
|                             | Proportion with adequate outbreak response supplies                         | 80          | N/A                      | NA                           | 63 [12/19]                | 100 [10/10]          |

NA – indicator was either not available or unmeasurable at the specific surveillance level

a,b,c,d - denominators are derived from totals of a preceding affirmative outcome

“There was a time we came across a suspected trachoma case at the onset and it was difficult to apply the provided case definition guidelines...symptoms of redness and teary eyes are at times as a result of other allergic reactions...we needed more clear case definitions to accurately identify a trachoma case especially at the acute stages before follicles are visible” – HFW#118 (Kitui County)
Sixty-eight percent (34/50) of community level respondents reported to register identified PC-NTD cases. Of this fraction, majority (74%) registered the observed symptoms of the suspected case. At facility level, less than one-fifth of respondents reported that specific case registers for PC-NTDs were available. However, these facilities were mainly designated NTDs treatment centres. Further, facility respondents reported that most disease conditions were routinely recorded in a common outpatient register;

“We do not have special case registers for NTDs in this facility...normally we register all diseases in the common outpatient register” – HFW#022 (West Pokot County)

“We record all disease cases in a common register...so there is no separate register for certain specific diseases...may be such registers are present in the health facilities that mostly see and treat patients with diseases such as Trachoma” – HFW#009 (Baringo County)

However, facilities designated as treatment centres for specific PC-NTDs were provided with up-to-date case definition and case confirmation guidelines;

“Since our facility is a designated treatment center especially for Leishmaniasis...we find case definitions for most NTDs easy to understand and apply...we receive regular updates on NTDs generally...however, this is not the case in other health facilities in the region” – HFW#012 (Baringo County)

Less than half (48%, 93/192) of the respondents reported that manuals for disease surveillance were available at the facility. Of this fraction, 75% reported that the manuals were up-to-date, 89% reported that the manuals were useful in guiding disease surveillance activities, and 61% reported that the available manuals specifically guided PC-NTDs surveillance activities at the health facility level;

“Disease surveillance manuals available in this facility clearly guide surveillance of diseases such as acute flaccid paralysis and measles but not neglected diseases” – HFW#075 (Kwale County)

“Manuals are available in the form of booklets...we rarely refer to these manuals in our day-to-day activities in the facility since we mostly rely on the knowledge we have from our basic training” – HFW#061 (Kwale County)

Case Confirmation

At the regional level, 84% of sub-counties had the capacity to collect and store PC-NTD specimens (Table 2). At the periphery, up to 32% (16/50) of community level respondents had collected PC-NTD specimens in the previous year. Of this number, 88% of them indicated that they collected urine samples for suspected urinary schistosomiasis cases. All collected PC-NTD specimens were sent to the health facility for testing. Of the respondents who collected PC-NTD specimens at the community level in the previous year, up to 81% reported that it took more than a week to receive specimen feedback reports from the health facilities. On the other hand, 52% (100/192) of health facility respondents reported presence of a functional laboratory with 51% of them indicating that the laboratories were adequately equipped to confirm PC-NTD cases. However, direct observations revealed that only about 22% (43/192)
of health facility laboratories were adequately equipped to confirm PC-NTDs. Further observations showed that most laboratories lacked essential laboratory reagents, specimen collection and storage equipment and laboratory standard operating procedures with respondents remarking;

“We have a cooler box available for transporting specimens for confirmation at the sub-county hospital since we lack a laboratory...but we have not used it in the past year to transport any NTD specimen” – HFW#019 (West Pokot County)

“Specimen handling guidelines are specific to notifiable conditions like acute flaccid paralysis but do not adequately guide on specimen handling or collection for neglected diseases” – HFW#127 (Embu County)

Up to 41% (79/192) of respondents reported that the health facilities were able to handle PC-NTD specimens, and 46% reported that the facilities had capacity to transport the specimens to higher-level laboratories. Less than half (48%) of respondents reported that the facilities had guidelines for specimen collection, handling, storage and transportation to the next level. Further, less than one-fifth of respondents reported that the facilities sent PC-NTD specimens to higher-level laboratories in the past year with 80% of this fraction reporting that the facilities received specimen reports. Of the fraction that received PC-NTDs specimen reports, 93% indicated that the reports were reliable and all facilities confirmed the reports were complete;

“We had a patient who visited this facility in the past year complaining of abdominal discomfort and presenting with traces of blood in urine...suspecting bilharzia...we took a urine sample from the patient and sent to the sub-county hospital laboratory since we lack one at our facility...the laboratory results were received in about two days confirming the case...we followed up the patient and started him on treatment” – HFW#089 (Kilifi County)

**Reporting**

Eighty percent of respondents at the sub-national levels reported to have IDSR reporting forms always available. Up to 84% and 80% of sub-national levels met deadlines for submission of PC-NTDs surveillance reports at the sub-county and county levels respectively (Table 2). At community level, 74% (37/50) of the respondents indicated that they had forms for reporting diseases to the health facility level. Forty percent (20/50) of them reported lack of reporting forms at some point in the past six months. Up to 78% had reported a PC-NTD case in the past year and 76% had referred the identified PC-NTD case to the health facility level. Further results at the health facility level indicated that up to 89% of respondents reported that surveillance data reporting forms were available at the facility, though one-quarter reported having lacked reporting forms at some point in the previous six months. Slightly more than half (55%) of health facility respondents reported that the forms had provision for reporting PC-NTDs. Of this fraction, 61% indicated that the provision for reporting PC-NTDs was sufficient with 83% reporting ease of completing the forms. Facility respondents (39%) who felt that the reporting form provision was insufficient, attributed their reasons to lack of PC-NTDs inclusion in the forms;
“NTDs are in extension still neglected even in the available IDSR reporting forms...seeing that NTDs are not included in summary forms clearly indicates lack of priority...these diseases need to be listed in the forms similar to other common conditions to ease reporting” – HFW#094 (Kilifi County)

“Reporting of NTDs under the “other” provision in the IDSR monthly summary forms creates a low perception on their importance....this impacts health workers’ reporting attitudes and reluctance in reporting whenever they come across suspected NTD cases” – CDSRC#005 (Kilifi County)

Results showed that 84% of respondents were aware of deadlines for submission of PC-NTDs surveillance reports at the facility level. Of the fraction aware of deadlines, 94% indicated specific days of the week when the reports were due for weekly submission with a majority (85%) of respondents reporting to submit monthly reports before the fifth day of the following month and 88% of them confirming compliance with the deadlines. Surveillance data report preparation took a couple of minutes as reported by 37% of respondents. Nurses (48%) were solely responsible for preparing PC-NTDs surveillance reports at the facility level. This was because most (71%, 136/192) facilities in the study were second-tier (dispensaries), which were commonly overseen by health workers of the nursing cadre. Up to 59% of respondents reported that the staff responsible for preparing PC-NTDs surveillance reports at the facility were trained on disease surveillance reporting while 81% of them confirmed that “zero” reporting was undertaken when there were no PC-NTD cases to report at any given month. Findings from a logistic regression model assessing the predictors of “zero” reporting of PC-NTDs showed that the clinical officers and a combination of health records management staff (HRMS), laboratory staff (LS) and public health staff (PHS) had a higher propensity of practicing “zero” reporting compared to nurses; [AOR = 6.11, 95% CI: 1.71, 21.8; p = 0.005] and [AOR = 5.66, 95% CI: 1.97, 16.3; p = 0.001] respectively. Similarly, respondents with longer years of work experience had higher odds of undertaking “zero” reporting compared to those who had served fewer years (Table 3). Availability of PC-NTDs case definitions and availability of reporting forms were associated with higher odds of “zero” reporting; [AOR = 2.52, 95% CI: 1.01, 6.28; p = 0.048] and [AOR = 3.18, 95% CI: 1.10, 9.23; p = 0.033] respectively.
Table 3
Factors associated with “Zero” reporting for PC-NTDs

| Characteristic                          | N     | No, n (%) | Yes, n (%) | OR (95% CI) | p-value | OR (95% CI) | p-value |
|-----------------------------------------|-------|-----------|------------|-------------|---------|-------------|---------|
|                                         |       | Unadjusted Estimates | Adjusted Estimates |             |         |             |         |
|                                         |       | N | No (%) | Yes (%) | OR (95% CI) | p-value | OR (95% CI) | p-value |
| Health cadre                            |       |   |        |         |           |         |           |         |
| Nurse                                  |       |   | 24 (19.5%) | 99 (80.5%) | 1.00 | 1.00 |
| Clinical Officer                       | 183   |   | 2 (5.3%) | 36 (94.7%) | 4.36 (1.13, 16.8) | 0.032 | 6.11 (1.71, 21.8) | 0.005 |
| HRMS/LS/PHS                            |       |   | 1 (4.5%) | 21 (95.5%) | 5.09 (1.31, 19.8) | 0.019 | 5.66 (1.97, 16.3) | 0.001 |
| Years of work experience               |       |   |         |         |           |         |           |         |
| 1–2 years                              |       |   | 3 (23.1%) | 10 (76.9%) | 1.00 | 1.00 |
| 2–3 years                              | 183   |   | 13 (26%) | 37 (74%) | 0.85 (0.28, 2.64) | 0.784 | 1.05 (0.25, 4.45) | 0.946 |
| 3–5 years                              |       |   | 7 (13.0%) | 47 (87.0%) | 2.01 (0.38, 10.6) | 0.409 | 2.26 (0.38, 13.6) | 0.373 |
| > 5 years                              |       |   | 4 (6.1%) | 62 (93.9%) | 4.65 (1.80, 12.0) | 0.001 | 6.11 (2.26, 16.5) | < 0.001 |
| Availability of PC-NTDs case definitions|       |   |         |         |           |         |           |         |
| No                                     | 175   | 15 (24.2%) | 47 (75.8%) | 1.00 | 1.00 |
| Yes                                    |       | 12 (10.6%) | 101 (89.4%) | 2.69 (1.16, 6.23) | 0.021 | 2.52 (1.01, 6.28) | 0.048 |
| Availability of reporting forms        |       |   |         |         |           |         |           |         |
| No                                     | 183   | 7 (33.3%) | 14 (66.7%) | 1.00 | 1.00 |

N – Number of observations with valid data analysed, OR – Odds Ratio, 95% CI – 95% Confidence Interval
| Zeror-Reporting for PC-NTDS | Unadjusted Estimates | Adjusted Estimates |
|-----------------------------|----------------------|--------------------|
| Yes                         | 20 (12.3%)           | 142 (87.7%)        |
|                             | 3.55 (1.22, 10.3)    | 0.020              |
|                             |                      | 3.18 (1.10, 9.23)  |
|                             |                      | 0.033              |

N – Number of observations with valid data analysed, OR – Odds Ratio, 95% CI – 95% Confidence Interval

The common channels for surveillance reports submission utilised by respondents at the facility level were either through mobile short message services (SMSs) (81%) or in person report submission (73%). At the community level, 82% of respondents reported that the channel mostly used to transmit PC-NTDs surveillance data from the periphery was in person submission of hardcopy forms to the health facilities. Respondents at the community level also reported using phone calls (64%) and mobile SMS (48%) to transmit surveillance data. Respondents across the surveillance levels reported challenges using the available reporting channels;

“The amount of workload within the health facility affects timely reporting through these channels especially submission of hardcopy monthly reports in person” – HFW#042 (Narok County)

“We are demotivated by having to incur out of pocket costs while sending reports via mobile SMSs and transport costs for delivering monthly summary reports” – HFW#135 (Embu County)

“Submitting reports via the DHIS2 portal is at times challenging given the inconsistent internet connectivity in the area...most times we have to incur the expenses resulting from purchase of internet bundles so as to access the portal during report submission” – KII#003 (West Pokot County)

“Long distances between the health facility and the next reporting level...and poor terrain in the region pose a challenge to delivering hardcopy monthly summary reports within the required time” – SCDSRC#001 (Baringo County)

Health personnel mainly recommended improving PC-NTDs reporting within the IDSR system through provision of adequate resources to facilitate surveillance data reporting. Adopting electronic reporting tools through use of computers and mobile phone devices, and provision of financial incentives to cover for airtime, internet and transport costs;

“We lack adequate support to cover for transport costs when submitting hardcopy monthly reports...mobile message service costs are incurred from out-of-pocket when submitting surveillance reports which is straining” – HFW#001 (Baringo County)

“If we had an electronic reporting system right from the facility level it would ease reporting and eliminate the burden of having to physically submit monthly summary reports” – KII#001 (Baringo County)
Additionally, respondents recommended provision of reliable means of transport to ease submission of hardcopy monthly summary reports and designation of health workers in every surveillance level to be responsible for compiling and submitting surveillance reports;

“We require enhancement of the health workforce at the facility level by having a health records staff in each facility to handle disease surveillance data including NTDs data” – HFW#015 (West Pokot County)

Other health facility respondents recommended improved road and telecommunication network infrastructures especially in hard-to-reach areas to ease surveillance data reporting;

“Poor mobile and internet networks in the area hinders our ability to effectively communicate with the next surveillance levels...we also face the challenge of having very poor roads especially during the rainy seasons which limits movement” – HFW#035 (Narok County)

Provision of adequate reporting forms at any given time to ensure timely compilation of surveillance reports. In addition, providing improved monthly summary reporting forms with the inclusion of PC-NTDs to enhance their priority in surveillance reports;

“The current reporting forms hardly include most of the NTDs...this makes it difficult to report the cases especially in the monthly summary reports...it would be better if most of the NTDs common in the region would be included in the reporting forms” – HFW#112 (Kitui County)

Further recommendations alluded to enhanced training amongst health facility workers on the use of reporting tools and provision of surveillance manuals and regular updates to guide proper reporting of PC-NTDs surveillance data. Health workers sensitisation on the benefits of effective surveillance reporting and involvement of all health personnel in surveillance activities across all surveillance levels;

“We need periodical training and capacity building on NTDs surveillance activities...health workers sensitisation on NTDs will improve reporting of the cases through the surveillance system” – HFW#089 (Kilifi County)

Provision of case registers specific to registering PC-NTDs cases to ensure there is a clear log of reported cases starting from the peripheral to regional levels. This could provide a rumor log for suspected cases right from the community level, ease of assessment of PC-NTDs burden and facilitate follow-up efforts for PC-NTDs cases;

“By having specific case registers for NTDs that are being utilised right from the peripheral level...will help track disease occurrences...suspected cases can always be followed up if they are well registered and a proper record is kept” – CHEW#031 (Kwale County)

Respondents further indicated the need to provide improved reporting tools to effectively capture PC-NTDs surveillance data. Inclusion of PC-NTDs in the reporting forms would encourage reporting of the
cases starting from the peripheral to the regional levels, hence ascertaining their magnitude and informing follow up actions and interventions;

“Need to avail revised reporting tools that adequately capture common NTD cases in the region” – CHEW#022 (West Pokot County)

“I feel there is need for listing all NTDs in the existing reporting tools...it will encourage reporting and response to NTD cases” – HFW#033 (Narok County)

Data Analysis

Sub-county (84%) and county (80%) levels had analysed data of at least one PC-NTD in the previous year (Table 2). Forty-two percent (21/50) of the community level respondents performed analysis of PC-NTDs surveillance data collected in the previous year. Of this number, 95% analysed data based on the age of the individual. Further findings showed that up to 58% (111/192) of respondents reported to conduct analysis of surveillance data at the facility level in the past year. Several variables including age, sex, place and time were cited as possible data analysis stratifiers. PC-NTDs surveillance data analysis at the health facility level was mainly either based on age and locality of the individual (27%), age and gender of the individual (23%) or solely based on the individuals’ age (24%). Up to 26% and 60% of respondents undertook trend analysis of at least one PC-NTD in the previous year at the sub-county and county levels respectively. Among health facilities that conducted data analysis, 44% (49/111) performed trend analysis based on PC-NTDs surveillance data collected in the previous year. Further results indicated that availability of PC-NTDs case definitions, availability of case registers and receipt of feedback on surveillance reports were associated with higher odds of conducting analysis of surveillance data at the facility; [AOR = 2.76, 95% CI: 1.44, 5.31; p = 0.002], [AOR = 2.28, 95% CI: 1.08, 4.83; p = 0.030] and [AOR = 5.11, 95% CI: 2.13, 12.3; p < 0.001] respectively (Table 4). Availability of computers as well as the availability of posters were also associated with higher odds of conducting data analysis at the facility; [AOR: 2.47, 95% CI: 1.18, 5.18; p = 0.017] and [AOR: 3.37, 95% CI: 1.52, 7.48; p = 0.003] respectively. On the contrary, supervision of surveillance activities was strongly associated with 70% reduction in the odds of conducting data analysis at the facility level [AOR = 0.30, 95% CI: 0.11, 0.81; p = 0.017].
Table 4
Factors associated with PC-NTDs surveillance data analysis

| Characteristic                              | N   | No, n (%) | Yes, n (%) | OR (95% CI) | p-value | OR (95% CI) | p-value |
|---------------------------------------------|-----|-----------|------------|-------------|---------|-------------|---------|
| PC-NTDs surveillance data analysis          |     |           |            |             |         |             |         |
| Unadjusted Estimates                        |     |           |            |             |         |             |         |
| Adjusted Estimates                          |     |           |            |             |         |             |         |
| Availability of PC-NTDs case definitions    | 180 | 41 (61%)  | 26 (39%)   | 1.00        |         | 1.00        |         |
| No                                          | 180 | 41 (61%)  | 26 (39%)   | 1.00        |         | 1.00        |         |
| Yes                                         | 32  | 81 (72%)  | 81 (72%)   | 4.76 (2.69, 8.43) | < 0.001 | 2.76 (1.44, 5.31) | 0.002 |
| Availability of PC-NTDs case registers      | 189 | 72 (47%)  | 81 (53%)   | 1.00        |         | 1.00        |         |
| No                                          | 189 | 72 (47%)  | 81 (53%)   | 1.00        |         | 1.00        |         |
| Yes                                         | 30  | 30 (100%) | 83 (83%)   | 4.50 (1.75, 11.60) | 0.002 | 2.28 (1.08, 4.83) | 0.030 |
| Feedback on PC-NTDs surveillance reports    |     |           |            |             |         |             |         |
| No                                          | 172 | 52 (51%)  | 50 (49%)   | 1.00        |         | 1.00        |         |
| Yes                                         | 12  | 58 (83%)  | 83 (83%)   | 5.03 (2.52, 10.0) | < 0.001 | 5.11 (2.13, 12.3) | < 0.001 |
| Supervision of surveillance activities      |     |           |            |             |         |             |         |
| No                                          | 189 | 8 (24%)   | 26 (76%)   | 1.00        |         | 1.00        |         |
| Yes                                         | 70  | 85 (55%)  | 85 (55%)   | 0.37 (0.15, 0.90) | 0.029 | 0.30 (0.11, 0.81) | 0.017 |
| Availability of computers                   |     |           |            |             |         |             |         |

N – Number of observations with valid data analysed, OR – Odds Ratio, 95% CI – 95% Confidence Interval
### PC-NTDs surveillance data analysis

|                | PC-NTDs surveillance data analysis | Unadjusted Estimates | Adjusted Estimates |
|----------------|-----------------------------------|----------------------|--------------------|
|                | No                                | 188                  | 57 (51%)           | 55 (49%)           | 1.00 | 1.00 |                |
|                | Yes                               | 21                   | 55 (72%)           | 2.81 (1.40, 5.67)  | 0.004 | 2.47 (1.18, 5.18) | 0.017 |

### Availability of surveillance posters

|                | No                                | 188                  | 44 (61%)           | 28 (39%)           | 1.00 | 1.00 |                |
|                | Yes                               | 34                   | 82 (71%)           | 3.92 (1.78, 8.66)  | 0.001 | 3.37 (1.52, 7.48) | 0.003 |

N – Number of observations with valid data analysed, OR – Odds Ratio, 95% CI – 95% Confidence Interval

Sub-county (74%) and county (90%) levels had action thresholds of at least one PC-NTD (Table 2). At the facility level, slightly less than one-third (29%) of respondents reported that their facilities had action thresholds for PC-NTDs. The action thresholds were based mostly (89%) on number of cases reported and to a lesser extent based on percentage increase in number of cases (4%) or rates based on specific variables (4%). Respondents reported initiating mass drug administration and deworming exercises, conducting health education at the community level and putting in place epidemic preparedness measures as the common actions that followed when the number of PC-NTD cases met the set thresholds;

"An increase in the number of children reporting at the facility with diarrhea led to undertaking deworming exercises in a nearby school among children we suspected to be infected by hookworms...we normally monitor the number of such cases and intervene accordingly" – HFW#052 (Kwale County)

"A high number of helminth cases prompted the facilities in the area to undertake deworming of children...we also conducted personal hygiene health talks in a couple of schools in the region to sensitise them (school children) on proper sanitary practices" – SCDSRC#012 (Kilifi County)

Slightly less than a half (47%) of respondents reported satisfaction with analysis done on the PC-NTDs surveillance data at the health facility level;

"All health workers in the region need to be sensitised on the importance of surveillance data analysis...especially since this area is known to be endemic of bilharzia...we require knowledge on analysis of surveillance data collected for bilharzia" – HFW#060 (Kwale County)
“At this facility level we lack the skills and knowledge to adequately conduct data analysis of surveillance data…we require a health staff with such skills to be posted to our facility” – HFW#127 (Embu County)

Respondents attributed improved analysis of PC-NTDs surveillance data to provision of proper analytical tools and equipment such as computers with pre-loaded analysis software for effective surveillance data analysis and refining existing reporting tools to accommodate all PC-NTDs;

“More elaborate and standard reporting and analysis tools should be made available...we need to capture more data on NTDs to be able to carry out comprehensive data analysis to inform appropriate actions” – SCDSRC#003 (West Pokot County)

Further recommendations suggested the need for enhanced training and capacity building on analytical skills involving all health workers across the surveillance levels and sensitising health workers on the importance of data analysis to inform follow up actions;

“I feel we require further training to better understand surveillance data analysis...frequent refresher training on analysis methods and techniques is required” – HFW#054 (Kwale County)

“More training and awareness among health workers on conducting analysis of NTDs surveillance data is needed...through frequent analysis of data we will be able to monitor trends of NTD cases in the region and plan well to control the diseases” – HFW#027 (West Pokot County)

Moreover, respondents indicated the need to provide standard operating procedures for data analysis to ensure standardised analysis methods are being utilised and designation of specific health staff in each surveillance level responsible for analysis of surveillance data;

“We need reporting tools for NTDs and standard operating procedures for analysis of NTDs surveillance data” – HFW#134 (Embu County)

“Most facilities in this region require a designated surveillance person with the right analytical skills to handle surveillance data and compile reports” – KII#011 (Kitui County)

“If we could be allocated a health staff with knowledge on analysis and management of surveillance data...then we can adequately make sense of all the surveillance data collected” – HFW#052 (Kwale County)

Additionally, health personnel recommended prioritisation of PC-NTDs in the analysis process and adapting simplified analysis methods to ensure minimal time is spent to complete data analysis;

“Not much emphasis is given to NTDs so we require more capacity building on this...most health workers require data analysis and interpretation skills that are disease-specific” – SCDSRC#012 (Kilifi County)

“More needs to be done in the region to capture enough NTDs data to warrant analysis...most of the NTDs are not well captured in the data analysis and this needs to be done” – CDSRC#002 (West Pokot County)
Feedback

Sub-county (74%) and county (80%) levels had received feedback from higher-levels of at least one reported PC-NTD in the previous year (Table 2). At the community level, 54% (27/50) of respondents reported to receive feedback relating to PC-NTDs from the facility level and 32% indicated that it took more than a week to receive the feedback reports. At the facility level, 37% (70/192) of facilities received feedback on PC-NTDs reports submitted to the next surveillance level in the previous one-year surveillance period. Further, facilities (39%) received 1–2 feedback reports while 41% received at least three reports from the higher levels, however, one-fifth of respondents were not aware of the number of feedback reports received in the previous year;

“We hardly received hardcopy feedback reports from the sub-county level in the past year...feedback on reported surveillance data was mainly through general discussions during health facility supervisory visits” – HFW#112 (Kitui County)

The findings showed that a combination of HRMS, LS and PHS had higher odds of reporting receipt of feedback for surveillance reports sent to the higher level compared to nurses [AOR: 2.41, 95% CI: 1.05, 5.53; p = 0.037]. Further, the ability to meet reporting deadlines and to conduct data analysis at the facility level were associated with increased odds of receiving feedback on surveillance reports; [AOR = 1.80, 95% CI: 1.29, 2.52; p = 0.001] and [AOR = 4.55, 95% CI: 2.08, 9.97; p < 0.001] respectively (Table 5). Sixty percent (115/192) of facilities did not hold feedback meetings with CHUs, 14% held 1–2 meetings and 13% held three or more meetings with CHUs in the previous year. Some of the respondents (6%) were not aware of the number of meetings held with CHUs in the previous year;
Table 5
Factors associated with feedback reports received from higher levels

| Characteristic                  | N     | No, n (%) | Yes, n (%) | OR (95% CI) | p-value | OR (95% CI) | p-value |
|--------------------------------|-------|-----------|------------|-------------|---------|-------------|---------|
| **Feedback reports received from higher levels** |       |           |            |             |         |             |         |
| Health cadre                   |       |           |            |             |         |             |         |
| Nurse                          | 72    | (65%)     | 39 (35%)   | 1.00        |         | 1.00        |         |
| Clinical Officer               | 172   | 22 (56%)  | 17 (44%)   | 1.41 (0.64, 3.13) | 0.397   | 1.46 (0.63, 3.38) | 0.378   |
| HRMS/LS/PHS                    | 8     | 3 (36%)   | 14 (64%)   | 3.18 (1.52, 6.65) | 0.002   | 2.41 (1.05, 5.53) | 0.037   |
| **Surveillance report submission deadlines met** |       |           |            |             |         |             |         |
| No                             | 172   | 27 (73%)  | 10 (27%)   | 1.00        |         | 1.00        |         |
| Yes                            | 75    | 60 (44%)  | 10 (36%)   | 2.18 (1.48, 3.23) | < 0.001 | 1.80 (1.29, 2.52) | 0.001   |
| **Conduct data analysis**      |       |           |            |             |         |             |         |
| No                             | 172   | 52 (81%)  | 12 (19%)   | 1.00        |         | 1.00        |         |
| Yes                            | 50    | 58 (54%)  | 12 (46%)   | 5.02 (2.49, 10.1) | < 0.001 | 4.55 (2.08, 9.97) | < 0.001 |

N – Number of observations with valid data analysed, OR – Odds Ratio, 95% CI – 95% Confidence Interval

“Feedback meetings with members of the community units were mostly based on the common health conditions such as malaria...those diseases affecting the community regularly...but the agenda was not specific to NTDs...I can hardly recall the number of meetings held with the community units in the past year” – HFW#071 (Kwale County)

Recommendations by respondents for improved feedback regarding PC-NTDs surveillance data suggested the need for regular and timely feedback on reports sent from one level to the other to inform actions at the point of surveillance report generation. In addition, ensuring feedback reports are relevant and applicable to surveillance activities undertaken by the concerned surveillance level;
“Feedback should be provided promptly and all health staff at the facility should have access to the feedback reports...feedback on submitted reports from our in-charges will enable us gauge our reporting performance and know what actions to take at a facility level” – HFW#037 (Narok County)

“Ensure regular feedback meetings are held and feedback provided is relevant to each facility level...feedback should be given on monthly basis since we also attend monthly in-charges meetings which are a good platform of getting the latest feedback on reports sent previously” – HFW#065 (Kwale County)

“Feedback reports sent from the higher levels should be relevant to the lower surveillance level for which it is meant...feedback needs to be specific to activities of the health facility that generated the reports in the first place...not a general report for all health facilities in the region combined to one” – HFW#129 (Embu County)

Additional recommendations required adoption of electronic mechanisms or hardcopy written feedback reports to ensure timely feedback is provided to the relevant surveillance levels as opposed to verbal feedback for effective PC-NTDs surveillance and response;

“We need to improve the feedback mechanisms by adapting electronic methods to ensure timely feedback is provided...using electronic media such as mobile SMSs and emails” – HFW#142 (Embu County)

“Provision of written feedback for effective referencing rather than the common verbal feedback especially to lower levels...physical copies of feedback can be filed and be easily referred to when there is need” – HFW#035 (Narok County)

Other recommendations pinpointed the need to focus surveillance feedback reports on PC-NTDs prevalent in the regions to ensure close monitoring of their occurrence and enhanced feedback directed to the lower surveillance levels;

“Sharing feedback from higher levels with community health staff and the community at large will encourage their involvement in the surveillance activities...it would also motivate active NTDs case searches at the community level” – CDSRC#007 (Embu County)

Supervision

Sub-counties (68%) and counties (60%) received regular supervision of PC-NTDs surveillance activities from the national levels in the previous year (Table 6). Further, 81% (156/192) of facilities received regular supervisory visits from the sub-national levels. Of this fraction, slightly more than half (53%) received supervisory visits more than twice in the previous one-year surveillance period;
| Support surveillance Activities | Indicators                                                                 | IDSR Target | Community Level (N = 50) | Health Facility Level (N = 192) | Sub-County Level (N = 19) | County Level (N = 10) |
|---------------------------------|-----------------------------------------------------------------------------|-------------|--------------------------|---------------------------------|---------------------------|----------------------|
|                                 | % [n/N]                                                                     | % [n/N]     | % [n/N]                  | % [n/N]                         | % [n/N]                   |
| Standards and guidelines        | Proportion with IDSR guidelines                                             | 80          | 66 [33/50]               | 48 [93/192]                     | 100 [19/19]              | 100 [10/10]         |
|                                 | Proportion with surveillance manuals guiding PC-NTDs surveillance activities | 80          | 50 [25/50]               | 61 [57/93\(^a\)]               | 100 [19/19]              | 100 [10/10]         |
|                                 | Proportion with laboratory standard operating procedures for specimen collection, handling, storage or transportation | 80          | N/A                      | 46 [88/192]                     | 74 [14/19]               | 70 [7/10]           |
| Supervision                     | Proportion regularly supervised                                            | 80          | 60 [30/50]               | 81 [156/192]                    | 89 [17/19]               | 90 [9/10]           |
|                                 | Proportion supervised more than twice in the one-year surveillance period   | 80          | 73 [22/30]               | 53 [83/156\(^b\)]              | 100 [19/19]              | 100 [10/10]         |
|                                 | Proportion supervised on PC-NTDs surveillance activities                   | 80          | 33 [10/30\(^c\)]        | 42 [66/156\(^c\)]              | 68 [13/19]               | 60 [6/10]           |
|                                 | Proportion conducting supervision of surveillance activities at the lower levels | 80          | N/A                      | 41 [78/192]                     | 100 [19/19]              | 100 [10/10]         |
| Training                        | Proportion with staff trained on disease surveillance in basic training     | 80          | 80 [40/50]               | 83 [159/192]                    | 100 [19/19]              | 100 [10/10]         |
|                                 | Proportion with staff who received post-basic training on surveillance activities | 80          | N/A                      | 20 [39/192]                     | 84 [16/19]               | 80 [8/10]           |

NA – indicator was either not available or unmeasurable at the specific surveillance level

\(^{a,b,c,d}\) - denominators are derived from totals of a preceding affirmative outcome
| Support surveillance Activities | Indicators                                                                 | IDSR Target | Community Level (N = 50) | Health Facility Level (N = 192) | Sub-County Level (N = 19) | County Level (N = 10) |
|--------------------------------|-----------------------------------------------------------------------------|-------------|--------------------------|-------------------------------|--------------------------|----------------------|
|                                | Proportion with staff trained specifically on PC-NTD surveillance activities in post basic training | 80          | N/A                      | 44 [17/39]                   | 53 [10/19]               | 50 [5/10]            |
| Resources                      | Proportion with electricity available                                       | 80          | N/A                      | 85 [164/192]                 | 100 [10/10]              | 100 [10/10]          |
|                                | Proportion with computers available                                          | 80          | N/A                      | 40 [76/192]                  | 95 [18/19]               | 100 [10/10]          |
|                                | Proportion with access to telephone services                                  | 80          | N/A                      | 85 [164/192]                 | 100 [10/10]              | 100 [10/10]          |
|                                | Proportion with access to internet services                                   | 80          | N/A                      | 24 [47/192]                  | 79 [15/19]               | 100 [10/10]          |
|                                | Proportion with PC-NTDs posters available                                     | 80          | N/A                      | 61 [117/192]                 | NA                       | NA                   |

NA – indicator was either not available or unmeasurable at the specific surveillance level

*a,b,c,d* - denominators are derived from totals of a preceding affirmative outcome

“Supervisory visits to this health facility are conducted quarterly... at times monthly or whenever there is need for the sub-county management team to follow up on a specific issue” – HFW#035 (Narok County)

In the last supervisory visit, up to 80% of facilities that received regular supervisory visits had disease surveillance activities reviewed. However, previous supervisory visits focused largely on other common conditions and hardly on PC-NTDs surveillance activities as reported by 53% (83/156) of facility respondents. Of this fraction, 42% (66/156) indicated that PC-NTDs surveillance data were reviewed during the last supervisory visit with 88% of them reporting that supervisory reports were received following the visit. Further, facilities in the Coast region were less likely to receive regular supervisory visits from the sub-national levels compared to facilities in the Eastern and Rift Valley regions (Coast, 71% vs. Eastern, 94% vs. Rift Valley, 93%, p < 0.001). In addition, higher-level facilities (level 3, 4 and 5) were more likely to receive regular supervisory visits compared to lower level 2 facilities (93% vs. 77%, p = 0.008). Respondents at the sub-national level claimed that poor accessibility to remotely located health facilities, unavailability of reliable transport means and inadequate human resource were some of the factors hindering effective supervision of surveillance activities;
“We lack an adequate number of supervisory personnel to cover all the health facilities in the region...we also experience transportation challenges since we at times lack a vehicle to move us around during supervision...we rely on a few vehicles that are able to manoeuvre through the difficult terrain to reach remote facilities” – KII#006 (Baringo County)

“Because of the long distances to be covered to reach some facilities and lack of reliable means of transport...supervision in some of these facilities is only conducted when there is a pressing need and at times not on a regular basis because of some of these challenges” – SCDSRC#012 (Kilifi County)

Further, respondents (31%, 49/156) reported that recommendations concerning PC-NTDs surveillance activities were provided during the last supervisory visit with 55% of this fraction reporting that follow-up on previous recommendations were undertaken in the last supervisory visit;

“The supervisory team recommended that we should be collecting specimen and forwarding to the sub-county level since we lack a laboratory in this facility...also that we apply the standard procedure provided in the guidelines during specimen collection and transportation” – HFW#063 (Kwale County)

“During the previous supervisory visit the need for timely reporting of both weekly and monthly surveillance data was overly emphasised...the team followed up recently by reviewing timeliness of previous reports sent over the last couple of months” – HFW#047 (Kwale County)

Furthermore, facilities (41%, 78/192) conducted disease surveillance supervisory visits at the community level in the previous year. Of this fraction, 41% reported to have conducted supervision at the community level more than twice in the previous year with a majority (57%) of respondents in these facilities stating that this was the recommended number of supervisory visits required at the lower levels in a one-year surveillance period. However, 17% of respondents were not aware of the recommended number of supervisory visits required at the peripheral levels. Close to half (49%) of facility respondents reported to have a schedule for conducting supervisory visits at the lower levels and health workers responsible for conducting supervisory visits at the community levels were mostly (42%) public health staff. Up to 62% (48/78) of respondents reported that PC-NTDs surveillance activities at the community level were reviewed during the last supervisory visit. Of this fraction, 79% reported that written feedback reports were provided to the lower levels;

“In our last supervisory visit to the lower levels we did not directly focus much on NTDs...however issues of latrine use, sanitation and deworming were briefly discussed...these were somehow relevant prevention measures to intestinal worms” – HFW#152 (Taita Taveta County)

Moreover, 78% (61/78) of respondents in facilities that conducted supervisory visits at the community levels reported various challenges while conducting supervisory activities;

“We lack a functional community health unit and an adequate number of community based health workers to effectively undertake supervision at the community level...the current community health
workers are not motivated to be involved in supervisory activities because they are not entitled to any form of remuneration for their work” – HFW#066 (Kwale County)

“Because of lack of adequate resources and other competing tasks at the health facility level...we rarely get time to conduct supervision at the community level...we require more staff to adequately conduct these supervisory activities” – HFW#110 (Kitui County)

Respondents recommended that improved supervision required adequate resource provision in terms of logistical support and incentives to facilitate supervisory visits to lower surveillance levels. Ensuring supervisory teams are well constituted by including an NTD focal person as part of the team;

“Provision of adequate funds from the sub county level to the health facility to facilitate conducting the supervisory visits at the lower levels will go a long way to support such activities” – HFW#072 (Kwale County)

“Even though we hardly undertake supervision at the community level...we foresee challenges of transport costs and lack of funds to conduct supervision of surveillance activities at the lower levels” – SCDSRC#014 (Kitui County)

“Provide both human and financial resources to facilitate supervisory activities at the lower levels and involving community health workers in NTDs case finding activities” – CHEW#030 (Kwale County)

“Ensuring there is a designated surveillance focal person always accompanying the supervisory teams to review NTDs surveillance data among other diseases...we require specific staff to be assigned duties for supervision of disease surveillance activities at the lower levels” – KII#004 (Baringo County)

Further recommendations by respondents alluded to regular supervision of surveillance activities relating to PC-NTDs at the lower surveillance levels and involvement of community health workers through strengthened and functional CHUs for effective supervision of active case search activities for PC-NTDs. Reinstating inactive CHUs linked to facilities to functional status to ensure effective community-based surveillance. Functional CHUs would enable effective active case finding and improved reporting of PC-NTD cases especially at the peripheral levels;

“Having functional community health units linked to the facility that coordinates surveillance activities at the lower levels” – CHEW#042 (Taita Taveta County)

“Reactivation of the community health units to functional status to assist in supervision of NTDs surveillance activities at the lower levels” – CDSRC#006 (Kitui County)

“Ensure community health volunteers and the community are fully integrated into the supervisory activities to fully achieve effective NTDs case finding at the lower levels” – CHEW#027 (Narok County)

Furthermore, respondents recommended the need to train supervisory teams on the conduct of supervisory activities and to put focus on monitoring PC-NTDs surveillance activities during supervision.
In addition, involvement of health workers at the lower surveillance levels in the supervision process;

“Sensitising the community health workers and the community generally on the importance of supervisory visits to improve surveillance activities...this should not be seen as a way of victimising anyone but rather a way to motivate their efforts” – CHEW#032 (Kwale County)

“Involving all actors at the lower levels including community health extension workers, community health volunteers, community leaders and community members in the surveillance supervisory activities” – HFW#163 (Tana River County)

“Important to have on-job trainings and sensitisation of health workers on supervisory activities at the lower levels...this will encourage ownership and should motivate their involvement in surveillance activities” – HFW#016 (West Pokot County)

Moreover, health personnel across the various surveillance levels felt the need to prioritise PC-NTDs in the supervision agenda and ensure supervision of PC-NTDs surveillance activities are conducted on a regular basis;

“Encourage supervisory teams to consider disease surveillance and NTDs in their agenda in future...we realise a lot more concentration is put on the surveillance of other common conditions such as malaria and a lot less on NTDs” – HFW#181 (Lamu County)

“There is need to put more focus on NTDs in the supervision agenda throughout the year” – SCDSRC#004 (Narok County)

“Ensuring supervision is conducted regularly and the agenda of the visit is all inclusive and not just for selected diseases” – CDSRC#004 (Kwale County)

Lastly, respondents recommended provision of improved tools and guidelines for conducting supervision tailored to specific diseases under surveillance inclusive of PC-NTDs;

“Provide a proper supervision guideline from the higher levels to the lower ones...these guidelines should focus on specific diseases including NTDs” – HFW#114 (Kitui County)

“Provide an integrated standard guideline for conducting supervision of all NTDs surveillance activities” – CHEW#012 (Kitui County)

Training

Most facility respondents (83%, 159/192) were trained on disease surveillance during their basic training. Of this number, up to 40% admitted that their basic training was sufficient to adequately undertake disease surveillance activities with 67% confirming that the training was applicable to undertaking PC-NTDs surveillance activities at the facility level;
“If I can remember well...our basic training on disease surveillance mainly focused on common conditions such as malaria but did not specifically concentrate on neglected tropical diseases” – HFW#091 (Kilifi County)

Majority of health workers at sub-county (84%) and county (80%) levels had received post basic training on disease surveillance (Table 6). Further, up to 53% and 50% of health workers had received post basic training specifically on PC-NTDs surveillance at the sub-county and county levels respectively. At the facility level, 20% (39/192) of respondents had received post-basic training on disease surveillance. Further, 64% (25/39) of this fraction reported that all elements of disease surveillance and response were covered during the last post-basic training. Up to 44% (17/39) of respondents reported that the post basic training covered aspects relating to PC-NTDs surveillance. Of this fraction, 65% reported that all elements of disease surveillance and response relating to PC-NTDs were covered in the training. At the community level, 42% (21/50) of respondents had previously received training on use of surveillance guidelines. Of this fraction, 47% were trained on use of surveillance guidelines more than five years ago and up to 91% of respondents indicated that the trainings were facilitated by health facilities. Respondents further reported that surveillance updates were mostly provided through on-the job trainings;

“Training of health workers on issues regarding disease surveillance in most health facilities was mainly on the basis of on-job training...especially during supervisory visits...formally organised trainings are rarely done” – SCDSRC#012 (Kilifi County)

“During one of the in-charges meeting...we were briefed on detection of schistosomiasis based on the symptoms presented by a patient...most times this is the forum we get an opportunity to receive updates” – HFW#063 (Kwale County)

Fifty-one percent (20/39) of facility respondents reported that disease surveillance aspects specific to PC-NTDs were not covered in previous post-basic trainings and would be interested in a training focusing on PC-NTDs. Of this number, 75% indicated that the training needed to focus on all surveillance functions regarding PC-NTDs. Furthermore, 47% (90/192) of respondents reported challenges facing post-basic training for health personnel at the facility level;

“Health workers in facilities are not fully involved in assessing their training needs when planning for trainings...their involvement would ensure their needs are met and health workers receive the relevant up-to-date information” – HFW#019 (West Pokot County)

“Not much priority is given to providing training to lower level health staff...health workers in higher levels when they receive training they in most times forget to share this knowledge with the rest of us at the lower levels” – HFW#054 (Kwale County)

Sub-national levels also faced challenges that hindered organising post-basic training for health workers;

“We lack both the funds and health personnel to effectively conduct training on surveillance activities in the region...such constraints hinder our ability to organise for trainings as often as we would have liked”
Respondents recommended regular training and dissemination of up-to-date information on PC-NTDs for effective surveillance and response to common cases prevalent in the region. In addition, well-formulated training plans and schedules would ensure training covers important aspects relating to PC-NTDs surveillance activities;

“We require frequent refresher courses on disease surveillance to be organised annually” – HFW#069 (Kwale County)

“Training on NTDs surveillance and response activities be conducted periodically to enable us get updates on progress achieved” – HFW#190 (Lamu County)

“There is need to design training programmes and schedules that focus on NTDs surveillance aspects” – HFW#087 (Kilifi County)

“Need for the sub-county level to ensure on-job trainings and updates especially regarding surveillance of NTDs are frequently provided” – SCDSRC#007 (Kwale County)

Further recommendations alluded to enhanced training to strengthen all surveillance functions relating to PC-NTDs case detection and registration across surveillance levels through effective utilisation of case definitions. Provide ease of understanding of the available disease surveillance guidelines and training on proper completion of reporting forms, analysis of the surveillance data and compilation of surveillance reports;

“We need a clear understanding of the case definitions and surveillance guidelines to tackle NTDs... through frequent training health workers will be able to easily and consistently apply the available case definitions for NTDs” – HFW#118 (Kitui County)

Moreover, respondents identified the need for resource provision through financial incentives for organising training sessions and providing training tools and materials to facilitate training on surveillance activities. In addition, health workers suggested the need to prioritise training for PC-NTDs surveillance activities given their unique nature;

“Providing adequate information, education and communication material for NTDs to facilitate the trainings...this will ensure health workers receive quality training” – HFW#061 (Kwale County)

“Solicit funds from the ministry of health and other donors involved in NTD programs to train health workers with a focus on surveillance of the endemic NTDs in this region” – CDSRC#007 (Embu County)

Furthermore, respondents pinpointed the need to involve all the health cadres in training activities to ensure knowledge and awareness on PC-NTDs is cascaded to other health workers. Additionally, need to retain trained staff across surveillance levels for sustained performance of surveillance activities and conduct training needs assessment to determine specific areas of focus regarding PC-NTDs surveillance;
“All health cadres need to be involved in trainings on NTDs surveillance... when each one of us is well aware of the NTDs, how they present and what surveillance measures to be taken then we can effectively tackle the diseases” – HFW#084 (Kili County)

“Sensitisation of health workers on the importance of understanding the role of each surveillance function... ensuring all staff are involved in all surveillance training activities... we also need to retain the trained health workers for longer periods to improve performance of surveillance activities” – SCDSRC#015 (Embu County)

Lastly, recommendations on the adoption and utilisation of various social media platforms for training purposes to regularly disseminate up-to-date information on PC-NTDs surveillance activities to all health workers;

“Facilitate distance learning and training of health workers through sharing of information on disease surveillance strategies and progress via social media platforms” – KII#007 (West Pokot County)

“WhatsApp can be a good platform for conveying quick and regular updates regarding NTDs... this will enable health workers adjust their surveillance activities accordingly based on updates” – HFW#137 (Embu County)

Resources

Assessment of surveillance resources regarding transport support showed that 13% (24/192) of facilities had motor vehicles available and were fully functional. Up to 67% (16/24) of respondents in these facilities reported that the motor vehicles facilitated PC-NTDs surveillance activities. On the other hand, motor cycles were available in 38% (72/192) of facilities with 92% (66/72) of these facilities having motor cycles that were functional and 92% (61/66) of respondents in these facilities reported that the motor cycles facilitated surveillance activities. Further, respondents reported that having access to motorcycles aided surveillance activities, especially being the most reliable means of transport given the poor terrain to accessing peripheral levels and long distances between health facilities and the next reporting levels. Other respondents reported that bicycles were available in 6% (12/192) of the facilities, functional and supported surveillance activities in all the twelve facilities.

Electricity supply was available in 85% (164/192) of health facilities. Of these fraction, 98% (161/164) of respondents in these facilities indicated that the electricity was functional with 91% (146/161) reporting that electricity facilitated PC-NTDs surveillance activities. Stationaries were available in 86% (166/192) of facilities, functional (98%, 162/166) and supported surveillance activities in 96% (156/162) of the facilities. Facility respondents further reported that the availability of stationery materials facilitated paper-based reporting. Calculators, computers, printers and photocopiers were available in 69% (133/192), 40% (76/192), 25% (47/192) and 23% (45/192) of the facilities respectively. Further, these equipment were functional in 99% (132/133), 83% (63/76), 87% (41/47) and 91% (41/45) of the facilities and facilitated surveillance activities in 96% (126/132), 83% (52/63), 85% (35/41) and 90% (37/41) of the
health facilities respectively. Respondents reported that having access to functional computers facilitated data analysis and surveillance reports compilation. Respondents also reported that having calculators enabled facilities to undertake basic data enumerations. Data analysis software were available in 12% (22/192) of the facilities, functional in 86% (19/22) and facilitated surveillance activities in 63% (12/19) of the facilities.

Assessment of communication equipment, internet access and information, education and communication (IEC) materials showed that telephone or mobile phone services were available in 85% (164/192) of the facilities, functional in 98% (160/164) and facilitated surveillance activities in 96% (154/160) of the facilities. Respondents reported that having access to telephone or mobile services facilitated reporting of PC-NTDs surveillance data through SMSs and phone calls. Internet services were available in 25% (47/192) of the facilities, functional in 94% (44/47) and facilitated surveillance activities in 93% (41/44) of the facilities. Posters, pamphlets and flipcharts for PC-NTDs were available in 61% (117/192), 27% (51/192) and 8% (15/192) of the facilities respectively. Furthermore, the posters, pamphlets and flipcharts were put to use by health workers in 99% (116/117), 96% (49/51) and 93% (14/15) of the facilities and facilitated surveillance activities in 91% (106/116), 92% (45/49) and 93% (13/14) of the facilities respectively. Electronic visual aids were available in 3% (5/192) of the facilities, functional in all facilities and facilitated surveillance activities in 80% (4/5) of the facilities.

Respondents recommended provision of electronic equipment such as calculators, mobile phones and computers to ease reporting and data analysis at the lower surveillance levels. Additionally, provision of financial incentives to cover for communication and transport costs during surveillance reports submission. Moreover, providing an adequate number of surveillance staff responsible for collection, collation and transmission of reports across the surveillance levels;

“We require airtime incentives and computers to facilitate reporting and analysis of NTDs data respectively...most times having to use our own money to purchase airtime or internet bundles really demotivates health workers” – HFW#137 (Embu County)

“I wish we had a health staff designated to this facility whose role will be handling of surveillance activities and reports submission...this will allow the rest of the health workers to concentrate on other tasks knowing there is someone responsible for compilation of all reports” – HFW#122 (Kitui County)

Furthermore, respondents recommended the need to strengthen laboratory capacity to confirm suspected PC-NTD cases. In addition, provision of adequate laboratory personnel, reagents, and equipment and IEC materials especially at the facility levels;

“We require fully equipped laboratories with trained laboratory personnel at the community level which mostly lack capacity to confirm suspected NTDs cases...we lack adequate resources to transport specimens...patients also lack money to cover for transport costs when referred to the facility” – HFW#161 (Tana River County)
“We have a standard case definition chart for priority diseases displayed in the facility...provided by the Ministry of Health...though case definitions for NTDs are not included in the chart...we require clear visual aids and posters for NTDs to be displayed at the health facility” – HFW#095 (Kili County)

Satisfaction With PC-NTDs Surveillance Activities

Logistic regression analysis assessing the predictors of satisfaction with PC-NTDs surveillance and response activities indicated that the facility level, adequacy of forms for reporting PC-NTDs and feedback on submitted PC-NTDs surveillance reports were associated with increased odds of satisfaction with PC-NTDs surveillance and response activities in the endemic region; [AOR = 3.04, 95% CI: 1.77, 5.23; p < 0.001], [AOR = 4.25, 95% CI: 2.23, 8.08; p < 0.001] and [AOR = 4.55, 95% CI: 2.30, 9.02; p < 0.001] respectively. Respondents further reported that having in place alternative PC-NTDs surveillance strategies within the existing IDSR system would influence their satisfaction with the system;

“We require a behavioral surveillance system to better understand community dynamics for effective active case finding of neglected diseases...these are diseases (NTDs) associated with a lot of stigma, therefore, making it difficult to capture certain cases with a majority of those suffering from example elephantiasis shying away from the public eye” – KII#009 (Kwale County)

“Rolling out of the DHIS2 system right from the peripheral level will improve the quality of reports...an electronic reporting system will reduce the burden of having to physically submit reports to the next reporting level...adoption of modern methods of reporting will motivate health workers at lower levels to improve their reporting” – SCDSRC#004 (Narok County)

There were eleven a priori identified main themes with up to 62 emerging sub-themes, which were derived based on recommendations to improve PC-NTDs surveillance and response within the existing IDSR system according to health workers’ perspectives (Tables 7 and 8). The numerical value of code groundedness was used to determine the degree of probable evidence for each code [39]. A high degree of code groundedness was defined as those codes (recommendations) that were mentioned fifteen or more times (G ≥ 15) by the research participants under each main theme.
## Table 7
Recommendations to improve PC-NTDs surveillance core activities

| THEMES            | CODES (Recommendations)                                                                 | Code Groundedness (Quotations) |
|-------------------|-----------------------------------------------------------------------------------------|--------------------------------|
| **Case detection**| Provide PC-NTDs case definitions                                                       | 30                             |
|                   | Provide training on application of PC-NTDs case definitions                                | 25                             |
|                   | Simplify PC-NTDs case definitions                                                        | 15                             |
| **Case confirmation** | Improved laboratory capacity                                                              | 25                             |
|                   | Sensitisation and training on PC-NTD case confirmation                                     | 11                             |
| **Case registration** | Availing PC-NTDs case registers                                                           | 5                              |
|                   | Improved PC-NTDs case registration                                                        | 1                              |
| **Reporting**      | Prioritising PC-NTDs reporting                                                            | 79                             |
|                   | Improved and updated PC-NTDs reporting tools                                              | 69                             |
|                   | Enhanced training on PC-NTDs data reporting                                              | 42                             |
|                   | Adequate provision of reporting forms                                                    | 20                             |
|                   | Provision of reporting guidelines                                                        | 5                              |
|                   | Competing tasks for the limited time and resources                                         | 4                              |
|                   | Support supervision on reporting                                                         | 2                              |
|                   | Provision of electronic reporting tools                                                   | 1                              |
| **Data analysis**  | Enhance training on data analysis                                                         | 87                             |
|                   | Prioritising PC-NTDs surveillance data analysis                                           | 24                             |
|                   | Frequent updates on data analysis skills                                                  | 21                             |
|                   | Involvement of all health cadres in surveillance activities                                | 17                             |
|                   | Provision of data analysis tools and equipment                                            | 4                              |
|                   | Providing ample time for data analysis                                                    | 3                              |
|                   | Provision of guidelines for data analysis                                                | 3                              |
|                   | Provide designated staff responsible for data analysis                                     | 2                              |
| **Feedback**       | Timely feedback on surveillance reports                                                   | 58                             |
| THEMES                      | CODES (Recommendations)                  | Code |
|-----------------------------|-----------------------------------------|------|
| Groundedness               |                                         |      |
|                             | Regular feedback on surveillance reports | 48   |
|                             | Adopting electronic feedback mechanisms | 25   |
|                             | Enhanced feedback to lower levels       | 9    |
|                             | Prioritising PC-NTDs feedback           | 6    |
|                             | Training on feedback mechanisms         | 1    |
| Epidemic preparedness       | Adequate outbreak response supplies     | 25   |
|                             | Well constituted rapid response teams   | 5    |
|                             | Training on NTDs epidemic preparedness  | 4    |
Table 8
Recommendations to improve PC-NTDs surveillance support activities

| THEMES                              | CODES (Recommendations)                                                                 | Code Groundedness |
|-------------------------------------|----------------------------------------------------------------------------------------|-------------------|
| Standards and guidelines            | Availing PC-NTDs surveillance manuals                                                   | 20                |
|                                     | Provide guidelines for supervision                                                      | 18                |
|                                     | Provision of reporting guidelines                                                       | 5                 |
|                                     | Provide guidelines for data analysis                                                    | 3                 |
| Supervision                         | Regular supervision from higher levels                                                 | 76                |
|                                     | Prioritising PC-NTDs in supervision agenda                                             | 59                |
|                                     | Training and sensitisation on surveillance supervisory activities                       | 29                |
|                                     | Provide properly constituted supervisory teams                                         | 22                |
|                                     | Resource provision to facilitate supervisory activities                                | 22                |
|                                     | Community involvement in supervisory activities                                        | 12                |
|                                     | Provide focal person for surveillance supervisory activities                           | 7                 |
|                                     | Regular supervisory visits to lower levels                                             | 7                 |
|                                     | Well formulated supervision schedules                                                  | 4                 |
|                                     | Provision of written supervisory reports                                               | 3                 |
|                                     | Providing tools for conducting supervision                                             | 2                 |
| Training                            | Regular sensitisation of health workers on PC-NTDs surveillance                         | 59                |
|                                     | Prioritising PC-NTDs surveillance in training                                           | 55                |
|                                     | Involvement of all health workers in PC-NTDs surveillance training                      | 31                |
|                                     | Providing adequate surveillance training materials                                      | 28                |
|                                     | Providing frequent updates on PC-NTDs                                                  | 21                |
|                                     | Retention of trained surveillance staff                                                | 10                |
|                                     | Assessment of surveillance training needs for health workers                            | 4                 |
|                                     | Proper coordination of surveillance training activities                                 | 2                 |


| THEMES | CODES (Recommendations) | Code Groundedness (Quotations) |
|--------|-------------------------|-------------------------------|
|        | Adopting modern training techniques using social media platforms | 1 |
| Resources | Provide funding to facilitate PC-NTDs surveillance activities | 103 |
|         | Enhance human resource responsible for surveillance activities | 83 |
|         | Provision of surveillance tools and equipment | 78 |

**Discussion**

The idea of an integrated disease surveillance and response framework was propositioned by WHO based on the sub-optimal performance of vertical surveillance systems characterised by unstandardised case definitions, numerous reporting forms, limited laboratory capacity and inadequately trained human resource [40]. Optimal functioning and implementation of the IDSR system requires consolidation of all strategic components including effective communication, enhanced laboratory capacity, improved training and sustainable resource provision [41, 42]. A recent assessment of the regional IDSR system implementation status in Africa indicated that most countries had implemented the IDSR framework [43]. About 85% of the countries had initiated IDSR training at the sub-national levels and slightly more than two-thirds had started community-based surveillance in the IDSR context with about 26% having met the desired target of at least 90% implementation coverage in peripheral health facilities [43]. Therefore, improved PC-NTDs surveillance through the IDSR framework is the most pragmatic approach. The IDSR process would enable extensive baseline assessment and gaps identification to inform formulation of PC-NTDs prioritised plans of action for implementation by concerned stakeholders within the health system [44, 45]. Hence, it is critical for countries to recognise hindrances to IDSR implementation by identifying feasible solutions that are tailored for specific countries [46].

In Kenya, PC-NTDs are considered as either diseases of public health importance or conditions targeted for elimination/eradication within the existing IDSR framework. An assessment of IDSR surveillance functions considering PC-NTDs revealed sub-optimal system performance, which hampered adequate detection and prompt implementation of appropriate public health actions. Focused efforts to improve specific surveillance functions in connection with PC-NTDs are paramount for effective identification of disease foci to inform targeted treatment and halt disease transmission. However, a review of existing literature identified unwavering focus on notifiable diseases in assessing the performance of surveillance systems [41, 47–52]. Therefore, comparable findings to the current study were based mostly on assessment of surveillance functions within the IDSR system with a leaning to notifiable conditions. It is...
assumable that previously recommended efforts to improve the performance of surveillance functions cut across most conditions under surveillance given the well-known consolidated approach of the IDSR system adapted by countries in Africa.

The study assessed surveillance core and support function performance based on specific measurable indicators. These indicators were compared to the gold standard IDSR indicator performance target of 80% across all surveillance levels [8]. Study findings identified satisfactory performance of IDSR indicators at the sub-national level as relates to adequate provision of IDSR standard case definitions, capacity to handle PC-NTD specimens, data analysis, trained health personnel and sufficient resources to undertake surveillance activities regarding PC-NTDs (Tables 2 and 3). However, indicators at lower surveillance levels hardly met the IDSR performance targets due to surveillance activities implementation challenges relating to unavailability of PC-NTD case definition guidelines and case registers, limited reporting and data analysis, minimal supervision of surveillance activities at lower levels and limited training on surveillance, which together contributed to the sub-optimal performance of PC-NTDs surveillance activities at the sub-national level. These challenges are comparable to findings from studies conducted in other countries in the African region [41, 52–56].

Core Functions

Efficient case detection is dependent on the availability of case definition guidelines and well-trained health personnel on utilising the available case definitions [57]. Availability of surveillance guidelines at the health facility level is the cornerstone of a strengthened surveillance system especially regarding disease notification [54]. In the current study, low utilisation of PC-NTDs case definitions was commonly reported by health facility workers due to unavailability of such guidelines. Similarly elsewhere, health facilities lacked up-to-date IDSR technical guidelines, which bear the standard case definitions [58]. In a study in Madagascar, about two-thirds of healthcare facilities had case definitions available with most health workers being aware of standard case definitions for commonly notifiable conditions such as malaria, measles, diarrheal and respiratory conditions [52]. However, health providers were less aware of case definitions for neglected conditions such as dengue fever [52].

Health providers reported lack of specific case registers for PC-NTDs with the exception of facilities designated as treatment sites. Similarly elsewhere, health facilities lacked dedicated registers to capture specific diseases during investigation [42, 59]. Disease-specific case registers were hardly utilised with most facilities utilising outpatient registers to register cases. Use of general outpatient registers for recording all disease cases tends to put emphasis on common conditions given reporting frequency, hence concealing the burden of other neglected conditions [57]. Inadequate registration of PC-NTDs cases according to respondents in the current study was due to lack of specific case registers and increased workload. Similarly, in Zambia, inconsistent case registration resulted from health workers lacking ample time to accurately register cases due to high patient demand and lack of designated data entry clerks [54]. In the present study, peripheral levels lacked the capacity to collect and handle PC-NTD specimens. This was consistent with other findings, where routine case confirmation was limited at the
lower health facilities in comparison to disease confirmation efforts at higher-level facilities [50, 57]. Limited laboratory capacities and inadequate number of health workers at the health facility level hinder case detection efforts as depicted in the current study [53]. Health providers identified lack of adequate laboratory guidelines as a barrier to confirmation of PC-NTD cases. Similarly elsewhere, only a few health facilities had laboratory standard operating procedures [14]. Adequate case confirmation is directly dependent on laboratory capacity in terms of having appropriate equipment and availability of skilled laboratory workforce [57].

Some PC-NTDs but not all are reported through the health management information system (HMIS), for instance, data on Soil transmitted helminths, Guinea worm disease and Schistosomiasis are captured at the peripheral level. However, data on Lymphatic Filariasis, Leishmaniasis, Onchocerciasis, Trachoma among other PC-NTDs are not incorporated in the health facility physical registers and the HMIS [22]. These diseases are mostly categorised and reported as “other” conditions. A major challenge hindering PC-NTDs reporting at the lower surveillance levels was lack of adequate reporting tools. Lack of such forms deters efforts to effectively investigate specific diseases and results to loss of vital information to inform adequate response. Reporting forms unavailability and missing guidelines hinder disease notification efforts [55]. Moreover, lack of simplified surveillance tools limits the overall performance of surveillance and response systems [40]. Other previous studies showed that availing the relevant reporting tools improved surveillance performance at the health facility level [29, 46, 60]. Further findings from the current study demonstrated that lack of adequate reporting tools and training on proper reporting demotivated health workers engagement in the surveillance system [50].

Overall, current study findings mainly identified use of paper-based reporting systems especially at the health facility level. Similarly elsewhere, weekly surveillance reports prepared at the health facility level were mostly submitted in paper format [19, 55, 58, 59, 61]. However, use of manual reporting tools reduced data accuracy, hence weakening the surveillance system [59]. Furthermore, our study findings reported cost-burden on health workers linked to reporting forms reproduction. Contrarily, the regional surveillance levels in Ghana took up the responsibility of reproducing and distributing reporting forms, hence reducing the burden to incur reproduction costs on the lower reporting levels [62]. In line with our study findings on irregular reporting methods, inconsistent use of various reporting channels results to inaccuracies in the compiled surveillance reports [29, 53]. Use of varied reporting channels especially at the health facility level hindered effective retrieval of previously reported PC-NTDs data with some of the health workers using paper-based reports while others transmitted reports using mobile phones. In a study assessing the factors associated with weekly surveillance reporting in health facilities in Kenya, the short message service (SMS) was the most preferred channel for reporting [29]. Elsewhere, reporting from health facilities to higher levels was mostly either through phone calls, emails or hand-delivery of hard copy reports [54]. Furthermore, inconsistent use of alternative electronic reports submission mechanisms fosters reluctance among health personnel to submit reports using the conventional paper-based reports [53]. This identifies the need to adapt standard reporting channels to maintain data quality and ease data validation across the surveillance levels. Moreover, increased adoption of the DHIS2 system especially at
the lower surveillance levels would improve data accuracy [63]. However, most resource-constrained African nations still face challenges relating to adoption of electronic reporting tools [52].

Findings revealed that surveillance data analysis at the peripheral levels of PC-NTD endemic regions was inadequate. Comparably, routine data analysis was conducted in only a third of the health facilities surveyed from selected WHO African Region countries [40]. In Uganda, routine data analysis was conducted by at most a half of the health facilities surveyed with the remaining not performing analysis of any surveillance data whatsoever [58]. Routine surveillance data analysis requirements are dependent on the surveillance level with common forms of data analysis based on person, place and time [54, 64, 65]. However, challenges of limited data analysis capacities cutting across all surveillance levels have been reported elsewhere [42, 57, 64–67]. Inadequate data analysis limits surveillance system capacity to efficiently detect outbreaks and constrain use of the data for planning and decision-making [57, 62]. Notably, reduced odds of conducting data analysis among regularly supervised facilities in our study could be attributed to limited efforts by health workers to analyse surveillance data due to insufficient data analysis skills. Further findings discerned that most surveillance levels rarely undertook trend analysis for PC-NTDs except for priority diseases. A notable number of health facilities in the African region showed evidence of plotted trend lines especially for priority conditions [40]. In line with other previous studies, trend analysis was especially conducted for more common conditions such as malaria and diarrheal cases [57, 64]. Routine data analysis is mostly restricted to notifiable conditions and hardly is analysis done on surveillance data collected for other non-priority conditions [58]. Current study findings showed trend analysis was mostly conducted for common conditions but PC-NTDs surveillance data collected by health facilities was hardly sufficient to assess disease trends. Therefore, more emphasis on regularly tracking the number of PC-NTD cases on a short-term or long-term basis in endemic regions could enable adequate planning and inform decisions by stakeholders at the sub-national level. This necessitates reinstitutionalisation of data analysis of all surveillance data to achieve equivalent surveillance and response to all conditions.

Our study findings identified limited feedback to peripheral levels on PC-NTDs surveillance data submitted to the higher surveillance levels. Several other studies have reported low feedback from national or regional levels to the lower surveillance levels [10, 56, 58]. Feedback to peripheral levels of the health system is limited and mostly provided only during health facility supervisory meetings similar to health worker reports from the current study [53]. Contrarily elsewhere, most health facilities regularly provided the peripheral levels with feedback [57]. Other challenges facing feedback from regional to lower surveillance levels relate to unreliable follow up mechanisms to ascertain whether all concerned lower surveillance levels received the feedback [50]. Consistent feedback to the peripheral level motivates community's involvement in surveillance activities [54, 57]. Additionally, frequent feedback positively influence surveillance system acceptability and willingness of health providers to participate in surveillance activities [68]. Our findings showed that HRMS, LS and PHS were more likely to report receipt of feedback from higher levels, which indicated lack of adequate dissemination of feedback reports to all health workers at the facility level. Despite reports of low feedback from higher to peripheral surveillance levels, there was relatively higher feedback from the national to regional levels in other NTD endemic
countries [57]. Inconsistencies in relaying feedback reports to lower surveillance levels especially to health facilities and the communities have been increasingly reported in other NTD endemic regions similar to the current study findings [54, 57]. Feedback tends to be provided on as-needed basis and hardly on routine-basis. For instance, feedback to health facility levels was mostly prompted by discrepancies with data from the weekly and monthly surveillance reports in Ghana [58]. Motivation of health personnel involvement in surveillance reporting activities can be attributed to provision of regular feedback [46]. Health workers responsible for surveillance activities at the health facility level in Zambia identified timely feedback as being critical to strengthening all aspects of the IDSR system [56]. Similarly, current study findings linked delayed feedback to ineffective PC-NTDs surveillance. In respect to these findings, support supervision across all surveillance levels along provision of prompt feedback would ensure optimal functioning of surveillance activities [10, 59].

Health personnel reported limited outbreak preparedness at the sub-national level regarding adequacy of supplies to respond to probable PC-NTD epidemics in Kenya. Another study showed regional surveillance levels lacked adequate outbreak preparedness supplies due to insufficient budgetary allocation for epidemic emergencies [53]. Poor budgeting and limited logistical support impede adequate epidemic preparedness [53]. Moreover, limited supplies hinder outbreak preparedness and response across the surveillance levels [59]. Hence, underscoring the importance of strengthening outbreak preparedness at the peripheral level, which constitutes the first level of responders to suspected epidemics. Further findings from the current study indicated that most sub-national levels had well-constituted rapid response teams in place. However, these teams lacked adequate preparedness plans to respond to PC-NTD epidemics. Notably, formulation of standardised disease-specific guidelines for outbreak management and case confirmation would be vital in curbing neglected tropical conditions [62]. Similarly, other countries in Africa had functional outbreak rapid response teams mostly with the capacity to effectively respond to priority diseases but their preparedness to respond to NTDs was obscure [42, 54].

**Support Functions**

Inaccurate case registration at health facility levels was due to inconsistent use of the standard case definitions similar to our study findings on irregular use of PC-NTDs case definitions [64]. Similarly, inconsistencies in surveillance reports resulted from health personnel relying on their basic training skills for disease diagnoses as opposed to applying the available standard case definitions [64, 65, 69]. Lack of updated case definitions across surveillance system levels was reported in other African countries adopting the IDSR system [59]. Contrarily, health workers tend to be more aware of case definitions for priority conditions as reported in our study findings [40]. Low utilisation of available surveillance guidelines or complete lack of the guidelines at health facility and community levels was reported by health workers in the current study. In comparison to a previous study conducted in Kenya, less than one-tenth of health facilities in an urban setting had IDSR technical guidelines available to health workers [29]. Therefore, unavailability of surveillance guidelines and lack of training on use of the guidelines among health workers responsible for surveillance reports compilation affects overall data quality [52].
Similarly, inadequate sensitisation on the available IDSR guidelines affects health workers attitudes and practices on routine reporting [54].

Supervision of surveillance activities at the peripheral levels of PC-NTD endemic regions in the current study was limited, similar to what has been reported in other studies [45, 58, 70]. Lack of consistent supervisory visits especially at the lower surveillance levels was due to lack of adequate capacity to undertake supervisory activities. Likewise, in Ghana, supervision from district to health facility levels was inconsistently conducted and hardly focused on disease surveillance issues [58]. Similarly, supervisory activities were only initiated in the event of a suspected outbreaks or when need arose in Zambia [54]. Enhanced supervisory support is critical to improving IDSR system performance [46]. In addition, support supervision across all surveillance levels is critical for effective monitoring of surveillance system indicators, improved disease reporting and persuading health workers' engagement in surveillance activities at the peripheral level [57]. Agreeably, health providers in the present study pointed out that regular supervision motivated their involvement in surveillance activities. Additionally, in line with our findings, consistent supportive supervision to health facility personnel on case detection, surveillance data reporting and analysis is imperative to maintain high-level surveillance performance [40]. On the other hand, current study findings highlighted various challenges to undertaking supervisory activities at the sub-national level. Similar challenges were reported in previous studies, for instance unavailability of funds, unreliable means of transportation to access lower surveillance levels, inadequate number of surveillance personnel and poor attitudes and perceptions towards surveillance activities hindered efforts for support supervision [53, 54]. It is to be expected that inadequate supervisory activities negatively affect surveillance data quality [52], while inconsistent support for supervision across surveillance levels also poses a major challenge to implementation of other surveillance activities [14, 46, 53, 56].

Similar to present study findings, most surveillance staff elsewhere were trained on disease surveillance activities [59]. However, not all health workers especially at the peripheral levels were involved in surveillance training in the current study. The findings somewhat compares to reports of lower surveillance levels facing shortages of trained staff with training mostly focused on staff at the national surveillance levels [59]. Previous study findings elsewhere showed that health personnel lacked adequate training specific to IDSR implementation similar to our findings [54, 56]. Likewise, limited training among health workers on IDSR system implementation has largely been reported in other African countries [58, 71]. Insufficient post-basic training results to health workers' over-dependence on prior experiences to undertake surveillance activities, hence limiting surveillance data quality [54]. Notably, challenges face sub-national levels in creating adequate capacity to provide IDSR training [62]. Elsewhere, most surveillance personnel had received post-basic training but there were minimal efforts to cascade the knowledge and skills gained to other health facility workers [58]. Surveillance staff reluctance to share information on surveillance activities with other health workers could be attributed to lack of interest shown by health personnel not directly involved in surveillance undertakings [53]. Similar findings from the present study demonstrated that failing to prioritise health worker training and lack of adequate funds limits the capacity of health personnel to effectively undertake surveillance activities [57]. Furthermore, trained staff turnover posed a major challenge to achieving effective surveillance, which was in
agreement with our study findings [57]. Trained surveillance staff turnover to a great extent affects operationalisation of the IDSR system and poor utilisation of electronic reporting systems leading to inconsistent reports submission [58, 61]. Inconsistencies amongst health workers regarding application of knowledge gained from their basic training to PC-NTDs surveillance activities could have resulted from differences in specific diseases encountered in the different regions. Nevertheless, health workers in the current study mostly recommended inclusion of specific training on disease surveillance covering NTDs in the pre-service training. Moreover, institutionalisation of training on the IDSR system is the most pragmatic approach for effective and sustainable implementation of the system [19]. Further findings indicated limited formal training for health workers specifically on surveillance activities in PC-NTDs endemic regions. Hence, health workers mostly relied upon on-the-job training and regular updates during supervisory visits. Similarly, elsewhere, IDSR training strategies adapted included pre-service training, cascading and on-the job training [40, 59]. The cost burden of facilitating IDSR training requires ministries of health and other development partners to identify other cost-effective and sustainable training strategies [46]. Present study findings identified the need for training health workers on all PC-NTDs surveillance aspects. Elsewhere, health personnel were mostly trained on surveillance supervision strategies and on data management [40]. These demonstrates that disease-specific needs assessment of surveillance aspects that require training is imperative and further elucidates the need to prioritise surveillance training on neglected tropical conditions.

Insubstantial funding in support of surveillance activities has been identified as a major hindrance to optimal functioning of surveillance and response systems [57, 58]. Moreover, inadequate funding of surveillance activities limits preparedness and response to epidemics [41]. Most health workers in our study identified the need for adequate resources to facilitate day-to-day surveillance activities. Similarly, respondents elsewhere reported inadequate financial support for surveillance activities at the health facility level [56]. Surveillance activities are hugely impeded by lack of sufficient financial, human, logistical and infrastructural resources [58]. Similar to reports from the present study, health workers had to bear out-of-pocket costs when submitting surveillance reports due to lack of adequate resource provision to cover for communication expenses [54]. This demonstrated the snowball effect that limited financial resources had on the performance of other surveillance functions and on health workers’ attitudes. Therefore, there is need for increased funding to support disease surveillance activities at the sub-national level [46]. Limited government funds to support implementation of routine surveillance activities require external development partners funding supplementation [42]. Strengthened resource capacity are a requisite measure for sustainable positive gains within surveillance systems [42]. Present study findings identified lack of designated surveillance focal persons especially at the peripheral levels. Consequently, limited human resource capacity hinders active surveillance activities at the peripheral levels [53, 57]. Elsewhere, having a designated surveillance health worker was positively associated with adequate surveillance data reporting [29].

Health providers outlined various logistical challenges limiting surveillance performance in PC-NTDs endemic regions in Kenya. Comparably, elsewhere, weak technical and logistical capacities hindered IDSR system implementation [54]. Consequently, these limited capacities indirectly affected optimal
performance of other core surveillance functions [54]. Seemingly, inadequate resource capacity limits ideal functioning and sustainable performance of the surveillance systems [54, 57, 72]. Other resource challenges reported by health workers in the current study related to lack of dependable electricity supply. Previous studies showed that unreliable electricity supply in remote regions impede the use of electronic equipment such as computers [61]. Inadequate communication infrastructure and equipment limits timely transmission of surveillance data [62]. A well-functioning IDSR system necessitates all surveillance levels to reliably communicate and transmit data on a routine-basis or when prompted by an outbreak [62]. Surveillance data reporting at the lower health facility levels in the current study in Kenya was hampered by limited access to reliable communication facilities and ample network connectivity [57, 58]. Effective case notification is hinged on reliable communication mechanisms and enhanced logistical capacity across all surveillance levels [57]. Our study findings indicated unavailability and low utilisation of computers for surveillance-related activities especially at the peripheral levels. Similarly, there was low utilisation of computers for surveillance data management in health facilities in South Sudan and Uganda [14, 56, 59]. Findings elsewhere depicted that the availability of computers did not necessarily mean that they were being put to use to facilitate surveillance activities [62]. This could be attributed to low knowledge levels among health workers on use of computers to perform data analysis. Information, education and communication resources also played a key role to guide surveillance activities especially at the health facility levels in the current study. Elsewhere, posters displaying IDSR functions were positively associated with adequate surveillance data reporting [29]. However, our findings showed that case definition posters on display at the health facility level were mostly for routinely reported notifiable conditions similar to findings from a previous study in Khartoum State [50].

Strengths And Limitations

The main strength of the current study was the use of a mixed methods survey approach, which gave an in depth understanding of the issues relating to PC-NTDs surveillance within the existing IDSR system based on users’ perceptions. However, there were several limitations to this study, firstly. In the first instance, study participants were required to recount specific surveillance activities conducted in the past, a situation which could have introduced instances of recall bias. This was minimised by limiting the assessment to a one-year surveillance period to ensure accurate recollection of specific surveillance activities. Secondly, the study was based on individual perceptions, which may have influenced some of their responses to what they considered socially desirable. To overcome this limitation, the study participants’ responses were supplemented by direct observations. Thirdly, logistical challenges relating to inaccessible study sites, which were characterised by very poor terrain, harsh climatic conditions and personal security concerns, were mitigated through use of telephone interviews. Lastly, there were limited number of studies assessing PC-NTDs surveillance activities in Kenya to make sufficient comparisons with the current study findings. However, this study provides a comprehensive overview of critical recommendations to address key challenges facing PC-NTDs surveillance within the IDSR system.

Conclusions
The sub-national level is the crux of IDSR implementation with the capacity to provide adequate response to public health conditions. Over reliance on donor-initiated PC-NTDs control programmes in endemic regions leads to reluctant control efforts by the sub-national health systems. Principally, strengthened health information systems are a product of quality data generated through effective and well-functioning disease surveillance and response systems. Surveillance core and support functions regarding common disease conditions seem to perform optimally and have been documented extensively in Kenya [11, 29]. However, findings from the current study indicate that a great deal of effort is required to achieve effective surveillance and response to PC-NTDs. Findings revealed implementation of the IDSR system in PC-NTD endemic regions in Kenya lacked clear objectives, hardly prioritised PC-NTDs reporting with low utilisation of case definitions and limited application of surveillance guidelines, lacked adequate feedback mechanisms and support supervision, was short of trained surveillance staff and faced challenges of limited financial and logistical resources. These outcomes were in part due to lack of proper PC-NTDs case-based surveillance systems across the sub-national surveillance levels with the current IDSR system focusing mainly on notifiable conditions. Findings depicted the symbiotic association between surveillance core and support functions to achieve optimal surveillance system performance. Therefore, reviewing existing sub-national policies with a keen focus on strengthening specific surveillance functions based on recommendations derived from health personnel perceptions would improve the overall surveillance and response efforts for PC-NTDs. Recommendations specific to improving PC-NTDs core surveillance activities at the sub-national level were linked to provision of simplified case definitions, improved laboratory capacity, provision of PC-NTDs reporting tools, timely and regular feedback on surveillance reports, adopting electronic feedback mechanisms, improved data analysis skills, provision of adequate outbreak response supplies. Furthermore, recommendations to improve surveillance support functions pointed to availing surveillance guidelines for supervision, having properly constituted supervisory teams, regular supervision from higher levels, providing frequent updates on PC-NTDs, regular sensitisation and involvement of all health workers in surveillance activities and enhanced training on PC-NTDs case definitions, data reporting, data analysis and supervisory activities. Moreover, enhancing human resource capacity, provision of surveillance tools, equipment and training materials, provision of adequate funding to facilitate surveillance activities and provision of reliable transport means.

The sub-national levels are compelled to strengthen PC-NTDs case-based surveillance to ensure adequate case confirmation of suspected cases and early detection of probable outbreaks as a critical measure to control and eliminate the diseases. The study further recommends periodic and objective assessment of the surveillance system focusing on PC-NTDs. The sub-national level of the healthcare system provides an adequate platform for operational activities of disease surveillance and response systems as opposed to the national levels that provide a much more strategic platform for decision-making [73]. Therefore, formulating strategic plans for disease surveillance at the sub-national will ensure long-term sustainable achievements. Moreover, decentralising key surveillance functions to the peripheral levels would be critical to improving commitment among health personnel by fully engaging them in surveillance activities right from the beginning. Essentially, there is need to raise profiles of surveillance units at the
sub-national level and compel policy makers to prioritise surveillance activities for domestic revenue allocations.

**Abbreviations**

AOR: Adjusted Odds Ratio; ARNTD: African Research Network for Neglected Tropical Diseases; CDC: Centers for Disease Control and Prevention; CDSRCs: County Disease Surveillance and Response Coordinators; CHEWs: Community Health Extension Workers; CHIROs: County Health Information and Records Officers; CHUs: Community Health Units; CI: Confidence Interval; COR-NTD: Coalition for Operational Research on Neglected Tropical Diseases; DHIS2: Demographic Health Information System II; ESPEN: Expanded Special Project for Elimination of Neglected Tropical Diseases; GWD: Guinea Worm Disease; HFWs: Healthcare Facility Workers; HIS: Health Information Systems; HRMS: Health Records Management Staff; IDS: Integrated Disease Surveillance; IDSR: Integrated Diseases Surveillance and Response; IEC: Information, Education and Communication; KII: Key Informant Interview; KMHFL: Kenya Master Health Facility List; LS: Laboratory Staff; NTDs: Neglected Tropical Diseases; OR: Odds Ratio; PC-NTDs: PreventiveChemotherapy-targeted Neglected Tropical Diseases; PHS: Public Health Staff; SARAM: Service Availability and Readiness Mapping; SCDSRCs: Sub-County Disease Surveillance and Response Coordinators; SDGs: Sustainable Development Goals; SMSs: Short Message Services; UK Aid: UK Aid from the British People; USA: United States of America; USAID: United States Agency for International Development; VPD: Vaccine Preventable Diseases; WHO: World Health Organization; WHO-AFR: World Health Organization Regional Office for Africa.

**Declarations**

**Ethics approval and consent to participate**

This study was approved by the Faculty of Health Sciences Research Ethics Committee of the University of Pretoria in South Africa (*Ethics Reference No: 27/2018*) and the Institutional Research and Ethics Committee of Moi University/Moi Teaching and Referral Hospital in Kenya (*Formal Approval No: IREC 2099*). In addition, the National Commission for Science, Technology and Innovation provided research authorisation to undertake the research in Kenya (*Reference No: NACOSTI/P/18/62894/21393*). Permission to conduct the study was granted by the Ministry of Health in Kenya, relevant county health authorities and written informed consent was obtained from all study participants.

**Consent for publication**

Not applicable. The manuscript only draws on data from healthcare personnel surveys in which unique identifiers were assigned to each participant and no personal information was collected.

**Availability of data and material**
The datasets generated and/or analysed to assess the surveillance system attributes are not publicly available due to the need to keep the identities of respondents confidential as they granted consent to be enrolled in the study on the basis of remaining anonymous, but are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was funded by the United States Agency for International Development (USAID), UK Aid from the British people (UK Aid) and the Coalition for Operational Research on Neglected Tropical Diseases (COR-NTD) through the African Research Network for Neglected Tropical Diseases (ARNTD). The funding bodies had no role in the design of the study, data collection, analysis and interpretation of data and in writing the manuscript.

Authors’ contributions

AKSN: conceived and designed the study, conducted data collection, analysis and writing the manuscript. CMM and KV: supervised all stages of the study, provided intellectual input and contributed to writing the manuscript. All the authors reviewed and approved the final version of the manuscript before submission.

Acknowledgements

The authors acknowledge the Principal Secretary in the Kenya Ministry of Health, County Commissioners, County Directors of Health, County Diseases Surveillance Coordinators and Healthcare Facility In-charges, for granting permission to undertake this study. We also extend our sincere gratitude to all the healthcare personnel who were involved in the study.

References

1. Block MG, Akosa A, Chowdhury M. Health systems research and infectious diseases of poverty: from the margins to the mainstream. WHO/TDR, Global Report for Research on Infectious Diseases of Poverty Geneva: WHO/WHO TDR 2012.

2. Fisher G, Pappas G, Limb M. Prospects, problems, and prerequisites for national health examination surveys in developing countries. Social science & medicine (1982) 1996, 42(12):1639-1650.

3. Gyapong JO, Gyapong M, Yellu N, Anakwah K, Amofah G, Bockarie M, Adjei S. Integration of control of neglected tropical diseases into health-care systems: challenges and opportunities. The Lancet 2010, 375(9709):160-165.
4. Thacker SB, Berkelman RL. Public health surveillance in the United States. Epidemiol Rev 1988, 10:164-190.

5. WHO. Communicable disease surveillance and response systems: guide to monitoring and evaluating. 2006.

6. WHO. Integrated disease surveillance in the African Region: a regional strategy for communicable diseases 1999-2003. In: Integrated disease surveillance in the African Region: a regional strategy for communicable diseases 1999-2003. edn.; 1999: 24-24.

7. WHO. Assessment protocol for national disease surveillance systems and epidemic preparedness and response. In. Harare, Zimbabwe: WHO Regional Office for Africa; 2000.

8. WHO. Technical guidelines for integrated disease surveillance and response in the African region. Brazzaville, Republic of Congo and Atlanta, USA 2010:1-398.

9. Nsubuga P, Eseko N, Tadesse W, Ndayimirije N, Stella C, McNabb S. Structure and performance of infectious disease surveillance and response, United Republic of Tanzania, 1998. Bull World Health Organ 2002, 80(3):196-203.

10. Xiong W, Lv J, Li L. A survey of core and support activities of communicable disease surveillance systems at operating-level CDCs in China. BMC Public Health 2010, 10:704-2458-2410-2704.

11. MOH-Kenya. Technical Guidelines for Integrated Disease Surveillance and Response in Kenya - 2nd Edition. In. Kenya: Ministry of Health; 2012.

12. Nations U. Sixty-ninth session of the United National General Assembly: Draft outcome document of the United Nations summit for the adoption of the post-2015 development agenda. UN General Assembly: New York, NY, USA 2013.

13. Fitzpatrick C, Engels D. Leaving no one behind: a neglected tropical disease indicator and tracers for the Sustainable Development Goals. International health 2016, 8(suppl_1):i15-i18.

14. Wamala JF, Okot C, Makumbi I, Natseri N, Kisakye A, Nanyunja M, Bakamutumaho B, Lutwama JJ, Sreedharan R, Xing J et al. Assessment of core capacities for the International Health Regulations (IHR[2005]) - Uganda, 2009. BMC Public Health 2010, 10(SUPPL. 1).

15. Hollingsworth TD, Langley I, Nokes DJ, Macpherson EE, McGivern G, Adams ER, Bockarie MJ, Mortimer K, Reimer LJ, Squire B et al. Infectious disease and health systems modelling for local decision making to control neglected tropical diseases. BMC Proc 2015, 9(10):S6.

16. WHO. Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases: World Health Organization; 2017.

17. WHO. Controlling and eliminating neglected tropical diseases [fact sheet]. 2018.

18. Tambo E, Ai L, Zhou X, Chen JH, Hu W, Bergquist R, Guo JG, Utzinger J, Tanner M, Zhou XN. Surveillance-response systems: the key to elimination of tropical diseases. Infectious diseases of poverty 2014, 3:17.

19. Phalkey RK, Yamamoto S, Awate P, Marx M. Challenges with the implementation of an Integrated Disease Surveillance and Response (IDSR) system: systematic review of the lessons learned. Health
Policy Plan 2015, 30(1):131-143.

20. Sahal N, Reintjes R, Aro AR. Communicable diseases surveillance lessons learned from developed and developing countries: Literature review. Scand J Soc Med 2009, 37(2):187-200.

21. MOH-Kenya. Report on the Baseline Assessment of Capacity for Monitoring and Evaluation. In. Kenya: Ministry of Health-Kenya; 2013.

22. MOH-Kenya. The 2nd Kenya National Strategic Plan for Control of Neglected Tropical Diseases 2016-2020. In. Kenya: Ministry of Health; 2016.

23. MOH-Kenya. Kenya National Breaking Transmission Strategy for Soil-Transmitted Helminthiasis, Schistosomiasis, Lymphatic Filariasis and Trachoma (2019-2023). In. Kenya: Ministry of Health; 2019.

24. WHO. The Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN) 2017 Annual Report. 2018.

25. Mapsland: Detailed location map of Kenya in Africa. https://www.mapsland.com/africa/kenya/detailed-location-map-of-kenya-in-africa (2020). Accessed 14 Jan 2020.

26. SlideModel.com: Editable Kenya PowerPoint Map. https://slidemodel.com/templates/editable-kenya-powerpoint-map/ (2020). Accessed 15 Jan 2020.

27. Statistics KNBo. 2019 Kenya Population and Housing Census Volume I: Population by County and Sub-County. 2019.

28. Oyore J, Mwitari J, Ouma J, Ndung’u E. Evaluation report of the Community Health Strategy implementation in Kenya. Ministry of Public Health and Sanitation 2010.

29. Mwatondo AJ, Ng’ang’a Z, Maina C, Makayotto L, Mwangi M, Njeru I, Arvelo W. Factors associated with adequate weekly reporting for disease surveillance data among health facilities in Nairobi County, Kenya, 2013. The Pan African medical journal 2016, 23:165.

30. WHO. Protocol for the assessment of national communicable disease surveillance and response systems: guidelines for assessment teams. 2001.

31. German RR, Lee LM, Horan JM, Milstein R, Pertowski C, Waller M. Updated guidelines for evaluating public health surveillance systems. MMWR Recomm Rep 2001, 50(1-35).

32. Curry LA, Krumholz HM, O’Cathain A, Clark VLP, Cherlin E, Bradley EH. Mixed methods in biomedical and health services research. Circ Cardiovasc Qual Outcomes 2013, 6(1):119-123.

33. MOH-Kenya. Kenya Master Health Facility List. In. Kenya: Kenya Ministry of Health; 2017.

34. Kenya Go. Kenya Service Availability and Readiness Assessment Mapping (SARAM). In. Nairobi, Kenya: Ministry of Health; 2014.

35. Polkinghorne DE. Language and meaning: Data collection in qualitative research. J Couns Psychol 2005, 52(2):137.

36. Patton MQ. Qualitative research & evaluation methods: Integrating theory and practice: Sage publications; 2014.
37. Rubin H, Rubin I. Qualitative interviewing (ed.). Thousand Oaks, CA: Sage Publications Ltd doi 2005, 10:9781452226651.
38. Friese S. Qualitative data analysis with ATLAS. ti: SAGE Publications Limited; 2019.
39. Muhr T. ATLAS. ti Visual qualitative data analysis (Version 5)[Software de cómputo]. Berlin: Scientific Software Development 2003.
40. Sow I, Alemu W, Nanyunja M, Duale S, Perry HN, Gaturuku P. Trained district health personnel and the performance of integrated disease surveillance in the WHO African region. East African journal of public health 2010, 7(1).
41. Issah K, Nartey K, Amoah R, Bachan EG, Aleea J, Yeetey E, Letsa T. Assessment of the usefulness of integrated disease surveillance and response on suspected ebola cases in the Brong Ahafo Region, Ghana. Infectious diseases of poverty 2015, 4(1):17.
42. Lukwago L, Nanyunja M, Ndayimirije N, Wamala J, Malimbo M, Mbabazi W, Gasasira A, Nabukenya IN, Musenero M, Alemu W et al. The implementation of Integrated Disease Surveillance and Response in Uganda: a review of progress and challenges between 2001 and 2007. Health Policy Plan 2013, 28(1):30-40.
43. Fall IS, Rajatonirina S, Yahaya AA, Zabulon Y, Nsubuga P, Nanyunja M, Wamala J, Njuguna C, Lukoya CO, Alemu W et al. Integrated Disease Surveillance and Response (IDSR) strategy: current status, challenges and perspectives for the future in Africa. In: BMJ global health. vol. 4; 2019: e001427.
44. Perry HN, McDonnell SM, Alemu W, Nsubuga P, Chungong S, Otten MW, Lusambadikassa PS, Thacker SB. Planning an integrated disease surveillance and response system: a matrix of skills and activities. BMC Med 2007, 5.
45. Nsubuga P, Brown WG, Groseclose SL, Ahadzie L, Talisuna AO, Mmbuji P, Tshimanga M, Midzi S, Wurapa F, Bazeyo W et al. Implementing Integrated Disease Surveillance and Response: Four African countries' experience, 1998-2005. Global public health 2010, 5(4):364-380.
46. Masiira B, Nakiire L, Kihembo C, Katuhabe E, Natseri N, Nabukenya I, Komakech I, Makumbi I, Charles O, Adatu F et al. Evaluation of integrated disease surveillance and response (IDSR) core and support functions after the revitalisation of IDSR in Uganda from 2012 to 2016. BMC Public Health 2019, 19(1):46.
47. Maponga BA, Chirundu D, Shambira G, Gombe NT, Tshimanga M, Bangure D. Evaluation of the Notifiable diseases surveillance system in Sanyati district, Zimbabwe, 2010-2011. The Pan African medical journal 2014, 19:278.
48. Tsitsi JP, Nomagugu N, Gombe NT, Tshimanga M, Donewell B, Mungati M, Rudo C. Evaluation of the Notifiable Diseases Surveillance System in Beitbridge District, Zimbabwe 2015. Open Journal of Epidemiology 2015, 5(03):197.
49. Ngwa MC, Liang S, Mbam LM, Mouhaman A, Teboh A, Brekmo K, Mevoula O, Morris JG, Jr. Cholera public health surveillance in the Republic of Cameroon-opportunities and challenges. Pan Afr Med J 2016, 24:222-222.
50. Baghdadi I. Assessment of core and support functions of case-based surveillance of meningitis in hospitals in Khartoum State in 2015/Evaluation des fonctions essentielles et des fonctions d'appui du système de surveillance des cas de méningite dans les hôpitaux de l'État de Khartoum en 2015. Eastern Mediterranean Health Journal 2016, 22(4):280.

51. Lakew GA, Wassie E, Ademe A, Fenta A, Wube S, Werede M, Kidane A, Mekonnen L, Hiwot TG, Gallagher K. Status of surveillance and routine immunization performances in Amhara Region, Ethiopia: findings from in-depth peer review. The Pan African medical journal 2017, 27:6.

52. Randriamiarana R, Raminosoa G, Vonjitsara N, Randrianasolo R, Rasamoelina H, Razafimandimby H, Rakotonjanabelo AL, Lepec R, Flachet L, Halm A. Evaluation of the reinforced integrated disease surveillance and response strategy using short message service data transmission in two southern regions of Madagascar, 2014-15. BMC Health Serv Res 2018, 18(1):265.

53. Adokiya MN, Awoonor-Williams JK, Barau IY, Beiersmann C, Mueller O. Evaluation of the integrated disease surveillance and response system for infectious diseases control in Northern Ghana. BMC Public Health 2015, 15:75-015-1397-y.

54. Mandyata CB, Olowski LK, Mutale W. Challenges of implementing the integrated disease surveillance and response strategy in Zambia: A health worker perspective. BMC Public Health 2017, 17(1).

55. Mairosi N, Tshuma C, Juru T, Gombe N, Shambira G, Tshimanga M. Evaluation of Notifiable Disease Surveillance System in Centenary District, Zimbabwe, 2016. Open Journal of Epidemiology 2017, 7(03):251.

56. Haakonde T, Lingenda G, Munsanje F, Chishimba K. Assessment of Factors Affecting the Implementation of the Integrated Disease Surveillance and Response in Public Health Care Facilities-The Case of Rufunsa District, Zambia. 2018.

57. Phalkey RK, Shukla S, Shardul S, Ashtekar N, Valsa S, Awate P, Marx M. Assessment of the core and support functions of the Integrated Disease Surveillance system in Maharashtra, India. BMC Public Health 2013, 13(1):575.

58. Adokiya MN, Awoonor-Williams JK, Beiersmann C, Muller O. The integrated disease surveillance and response system in northern Ghana: challenges to the core and support functions. BMC Health Serv Res 2015, 15(Generic):288.

59. Sahal N, Reintjes R, Eltayeb E, Aro AR. Assessment of core activities and supportive functions for the communicable diseases surveillance system in Khartoum state, Sudan, 2005-2007. EMHJ-Eastern Mediterranean Health Journal, 16 (12), 1204-1210, 2010 2010.

60. Lar LA, Afolaranmi TO, Tagurum YO, Uzochukwu B, Zoakah Al. Challenges of integrated disease surveillance response reporting among healthcare personnel in Mangu, Plateau State, Nigeria. Journal of Public Health and Epidemiology 2015, 7(4):108-113.

61. Kiberu VM, Matovu JK, Makumbi F, Kyozira C, Mukooyo E, Wanyenze RK. Strengthening district-based health reporting through the district health management information software system: the Ugandan experience. BMC Med Inform Decis Mak 2014, 14:40-6947-6914-6940.
62. Franco LM, Setzer J, Banke K. Improving performance of IDSR at district and facility levels: experiences in Tanzania and Ghana in making IDSR operational. 2006.

63. Adokiya MN, Awoonor-Williams J, Beiersmann C, Mueller O. Evaluation of the reporting completeness and timeliness of the integrated disease surveillance and response system in northern Ghana. Ghana Med J 2016, 50(1):3-8.

64. Rumisha SF, Mboera LE, Senkoro KP, Gueye D, Mmbuji PK. Monitoring and evaluation of integrated disease surveillance and response in selected districts in Tanzania. Tanzania health research bulletin 2007, 9(1):1-11.

65. Mghamba JM, Mboera LEG, Krekamoo W, Senkoro KP, Rumisha SF, Shayo E, Mmbuji P. Challenges of implementing an integrated disease surveillance and response strategy using the current health management information system in Tanzania. Tanzania journal of health research 2004, 6(2):57-63.

66. Abubakar A, Sambo M, Idris S, Sabitu K, Nguku P. Assessment of integrated disease surveillance and response strategy implementation in selected Local Government Areas of Kaduna state. In., vol. 7; 2013: 14-19.

67. Gueye D, Senkoro KP, Rumisha SF. Baseline monitoring and evaluation of integrated disease surveillance and response in Tanzania. 2005.

68. Benson FG, Musekiwa A, Blumberg L, Rispel LC. Survey of the perceptions of key stakeholders on the attributes of the South African Notifiable Diseases Surveillance System. BMC Public Health 2016, 16(1):1120.

69. Franco LM, Fields R, Mmbuji PK, Posner S, Mboera LE. Situation analysis of infectious disease surveillance in two districts in Tanzania 2002. 2003.

70. Nsubuga P, Nwanyanwu O, Nkengasong JN, Mukanga D, Trostle M. Strengthening public health surveillance and response using the health systems strengthening agenda in developing countries. BMC Public Health 2010, 10 Suppl 1:S5-2458-2410-S2451-S2455.

71. Nnebue CC, Onwasigwe CN, Adogu PO, Onyeonoro UU. Awareness and knowledge of disease surveillance and notification by health-care workers and availability of facility records in Anambra state, Nigeria. Niger Med J 2012, 53(4):220-225.

72. Somda ZC, Meltzer MI, Perry HN, Messonnier NE, Abdulmumini U, Mebrahtu G, Sacko M, Touré K, Ki SO, Okorosobo T. Cost analysis of an integrated disease surveillance and response system: case of Burkina Faso, Eritrea, and Mali. Cost Effectiveness and Resource Allocation 2009, 7(1):1.

73. AbouZahr C, Boerma T. Health information systems: the foundations of public health. Bull World Health Organ 2005, 83(8):578-583.

Figures
Figure 1

Map showing the location of Kenya in Africa [25]; Map showing the sampled study sites in Kenya (This figure was downloaded from SlideModel.com [26], modified using Microsoft Powerpoint 2016 and the source data retrieved from the 2019 Kenya Population and Housing Census Volume I: Population by County and Sub County [27])
Figure 2

Distribution of respondents by the years of involvement in health facility based disease surveillance

Note: Denominator for each bar is number aware of neglected tropical diseases (n=182)

Figure 3

Common neglected tropical diseases
Distribution of common PC-NTDs reported in the regions

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- DataCollectionInstruments.pdf