The Role of Thymoquinone in Mitigating Carbon Tetrachloride-Induced Hepatocellular Carcinoma in Rats: Targeting the CHOP-1/JNK/P38 MAPK, NFκB/TNF-α/IL-10, and Bax/Bcl-2/Caspase-3 Signalling Pathways

Rania Elsayed HUSSEIN, Laila Ahmed RASHED, Basma Emad ABOULHODA, Ghada Mahmoud ABDELAZIZ, Ebtehal Gamal ABDELHADY, Sarah A. Abd EL-AAL, Asmaa SHAMS ELDEEN, Mohamed Mansour KHALIFA, and Heba MORSI

Original article

The present study was conducted to evaluate the effect of thymoquinone (TQ) on hepatocellular carcinoma (HCC) in rats. Our study has reported that TQ treatment of experimentally-induced HCC results in the up-regulation of the Jun-N-terminal kinase and p38 mitogen activated protein kinase pathway (JNK/p38 MAPK) and the enhancement of anti-inflammatory, anti-oxidant, and pro-apoptotic machineries. TQ resulted in a significant decrease in the levels of nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB), tumor necrosis factor-α (TNF-α), and a significant increase in the anti-inflammatory interleukin-10 (IL-10). The pro-apoptotic effect of TQ was demonstrated through stimulating the apoptotic Bcl-2-associated X (Bax) gene and inhibiting the anti-apoptotic B-cell lymphoma 2 (Bcl-2) gene together with increasing the level of caspase 3 and up-regulating the C/EBP homologous protein (CHOP-1) gene expression. TQ treatment also enhanced the activity of the ROS scavenger, superoxide dismutase (SOD), and decreased the level of the lipid peroxidation product malondialdehyde (MDA). TQ-dependent suppression of HCC was associated with the up-regulation of JNK/p38 MAPK, enhanced CHOP-1 expression, and subsequently increased Bax gene expression.

Key words: HCC, thymoquinone, JNK, p38-MAPK, apoptosis.

Hepatocellular carcinoma (HCC) accounts for 85-90% of all primary liver cancers and is the third leading cause of cancer-related deaths worldwide (OZAKYOL 2017). Endoplasmic reticulum (ER) stress can lead to ER dysfunction in the terminal phase (BHAT et al. 2013), thus triggering an unfolded protein response (UPR). The UPR has a dual function in cells. One function is to alleviate damage and promote homeostasis in cells, and the other is to induce a pro-apoptotic effect in cells exposed to chronic or overwhelming ER stress (WANG et al. 2014).

The key regulator of ER stress-induced apoptosis is the C/EBP homologous protein (CHOP). Generally, the role of autophagy in liver cancer is dynamic and changeable (CHANG et al. 2012). CHOP can also regulate the Bax and Bcl-2 family. Thus, overexpression of CHOP can induce cell cycle arrest leading to cell apoptosis; even more CHOP-deficient cells were
resistant to ER stress-induced apoptosis (Hu et al. 2019).

Both c-Jun NH2-terminal kinase (JNK) and the p38 mitogen activated protein kinase family (p38 MAPK) are the upstream regulators of CHOP. They cooperate together to regulate apoptosis (Park et al. 2014). P38 dis-regulation is implicated in the development of solid tumors, such as lung and liver cancers (Iyoda et al. 2003). Both in-vivo and in-vitro studies have demonstrated that the initiation of HCC was inhibited upon activation of the reactive oxygen species/p38 MAPK pathway (Chiba et al. 2014).

The potential anti-neoplastic role of thymoquinone (TQ) is mediated via inhibition of cell proliferation, the activation of cell cycle arrest, and the triggering of anti-inflammatory, pro-apoptotic, and anti-oxidant mechanisms (Haron et al. 2018). The contribution of oxidative stress in promoting hepatocarcinogenesis was confirmed. In the ovarian cancer cell line, the anti-cancer effect of TQ involves the activation of apoptosis and cellular oxidative stress. In renal carcinoma, Caki cell lines incubated with TQ (75 μM), the key anti-apoptotic factor, Bcl-2, was suppressed in a dose dependent manner causing apoptosis (Park et al. 2016).

Thus, the present study was designed to evaluate the efficacy of using thymoquinone in experimentally-induced HCC and to assess the hepatocellular signalling of JNK/p38 MAPK and the downstream CHOP-regulated pathways.

Materials and Methods

This study was performed at the Unit of Molecular Biology at the Medical Biochemistry and Molecular Biology, Physiology, Anatomy and Embryology Departments. The current protocol was revised and approved by the Institutional Animal Care and Use Committee (CU-IACUC), (approval No. CU/III/F/23/18). All procedures and animal experiments were carried out in accordance with the international Helsinki guidelines.

Animals

Twenty four female adult albino rats were included in this study, inbred strain (Cux1: HEL1) and of matched age (6 months - 1 year) and weight (200-250 g). All animal experiments were performed according to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH publication No.85-23, revised 1996), and according to the standard guidelines of the Institutional Animal Care and Use Committee and after Institutional Review Board approval. Animals were maintained in an air-conditioned animal house with specific pathogen free conditions. Animals had free access to standard laboratory food and water ad libitum.

Experimental design

After acclimatization, the animals were divided into 3 groups (8 rats/group). Group I (control) served as a negative control group (normal healthy rats). The remaining sixteen rats were injected with diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) for induction of HCC (Raghunandhakumar et al. 2013). Then, they were subdivided into 2 groups: Group II (HCC): experimental HCC group (pathological control) and Group III (HCC-Thymoquinone): HCC rats received a single intraperitoneal injection of thymoquinone (TQ) (20 mg/kg body weight) (Ke et al. 2015) after induction of HCC. The rats were euthanized by cervical decapitation 48 hours after giving TQ.

Induction of hepatocellular carcinoma

Hepatocarcinogenesis was induced chemically by injecting a single intra-peritoneal dose of diethylnitrosamine at a dose of 200 mg/kg body weight, followed by weekly single subcutaneous injections of carbon tetrachloride (CCl4) at a dose of 3 ml/kg body weight for 6 weeks (Raghunandhakumar et al. 2013) (Fig. 1).

Reagents:

Diethylnitrosamine (DEN): purchased from Sigma-Aldrich Egypt, number C1900 in a solution form and was given diluted with castor oil at a ratio 1:1.

Carbon tetrachloride (CCl4): purchased in a solution from Sigma-Aldrich Egypt, number C1900.

Thymoquinone (TQ) (2-isopropyl-5-methyl-1,4-benzoquinone): was obtained from (Sigma-Aldrich, Tokyo, Japan) and was prepared as a 100 mM solution and stored at -30 °C until use. Olive oil (Ajinomoto, Japan) was used for dissolving the TQ. The TQ solution was prepared by dissolving it in 0.5% dimethyl sulphoxide (DMSO) followed by the addition of olive oil as previously described (Abukhader 2012; El-Sayed et al. 2019).

At the planned time, blood was collected from each rat, for assessment of serum alanine transaminase (ALT) and aspartate transaminase (AST), and alpha fetoprotein (AFP).

The animals were then euthanized and their abdominal cavities were opened and liver tissues excised and divided into two parts. The first part was used for assessment of superoxide dismutase (SOD) and malondialdehyde (MDA), caspase-3, nuclear factor kappa-light-chain-enhancer of activated B-cell (NFκB), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10) level, gene expression of CHOP-1, Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2), and JNK and p38 MAPK.

The second part was fixed overnight in 40 g/l paraformaldehyde in PBS at 4°C for a histopathological
examination by hematoxylin and eosin (HE) stained sections.

Estimation of serum ALT and AST levels
Using a spectrophotometer, ALT and AST activity values were detected from the calibration curve and were expressed in U/l.

Estimation of AFP using ELISA (Uscn, Life science Inc, UK)
A microtiter plate coated with an antibody specific to AFP was used. Then according to manufacturer protocol, the substrate reaction was spectrophotometrically measured.

Estimation of SOD and MDA in rat liver tissue using colorimetry
After tissue homogenization, the samples were centrifuged; the supernatant was removed for assay and stored on ice. SOD Activity (U/g tissue) was estimated according to manufacturer instructions and the estimated values of MDA are expressed in mmol/mg and compared to the reference standard according to manufacturer protocol.

Estimation of caspase-3, NFκB, TNF-α, and IL-10 levels in rat liver tissue using ELISA (eBioscience, San Diego, CA, USA)
The provided microtiter plate was pre-coated with an antibody specific to caspase-3, NFκB, TNF-α, and IL-10. Standards or samples were then added. Streptavidin conjugated to Horseradish Peroxidase (HRP) was added to each microplate well and incubated. After TMB substrate solution was added, only those wells that contained (caspase-3, NFκB, TNF-α, and IL-10) biotin-conjugated antibody, and enzyme-conjugated avidin would exhibit a change in color. The enzyme-substrate reaction was terminated by the addition of an acid solution and the color change was measured using spectrophotometry at a wavelength of 450 nm. The concentration of (Caspase-3, NFκB, TNF-α, and IL-10) in the samples was then determined by comparing the O.D. of the samples to the standard curve according to manufacturer’s instruction.

qRT-PCR gene expression of CHOP, Bax, and Bcl-2 in rat liver tissues
After homogenization, total RNA was extracted from liver. The bound total RNA was further purified by simple washing steps. Finally, the total RNA was eluted from the membrane by the addition of Nuclease-Free Water. The yield of total RNA obtained was determined spectrophotometrically at 260 nm. Total RNA (0.5-2 μg) was used for cDNA conversion using a high capacity cDNA reverse transcription kit (#K1621, Fermentas, USA). Real-time qPCR amplification and analysis were performed using an Applied Biosystem with software version 3.1 (StepOne™, USA) as previously described (Aziz et al. 2014). After the RT-PCR run, the data were expressed in Cycle threshold (Ct). The PCR data sheet includes the Ct values of the assessed genes (CHOP, Bax, and Bcl-2) and those related to the reference housekeeping gene (β-actin gene).

Estimation of JNK and p38 MAPK using the Western Blot Technique
RIBA lysis buffer PL005 was provided by Bio BASIC INC. (Markham Ontario L3R 8T4 Canada). The lysis buffer was added to the tissues with an additional protease inhibitor and phosphatase inhibitor buffer to maintain protein integrity and high biological activity. The supernatant was transferred to a new tube for further protein concentration determination analysis. A Bradford Protein A assay Kit (SK3041) for quantitative protein analysis was provided by BIO BASIC INC. Markham Ontario L3R 8T4 Canada. A Bradford assay was performed according to manufacturer instructions. Then, the proteins were separated by polyacrylamide gel electrophoresis. The membrane was using tris-buffered saline with Tween 20 (TEST) buffer and 3% bovine serum albumin (BSA) at room temperature for 1 hr. Samples were then incubated overnight in each primary antibody solution, against the blotted target protein (anti JNK antibody and anti p38 MAPK antibody) at 4°C. Incubation was done in a HRP-conjugated secondary antibody (Goat antirabbit IgG-HRP-Img Goat mab-Novus Biologicals) solution against the blotted target protein for 1 hour at room temperature. Chemiluminescent substrate (Clarity™ Western ECL substrate – BIO-RAD, USA cat#170-5060) was applied to the blot according to the manufacturer’s recommendation. The chemiluminescent signals were captured using a CCD camera-based imager. Image analysis software was used to read the band intensity of the target proteins against the control sample after normalization by beta actin on the Chemi Doc MP imager.
Histopathological examination

The liver from all groups was dissected and immediately fixed in 10% formol saline. The specimens were impregnated in paraffin. Serial sections of 5-μm thickness were cut and subjected to hematoxylin and eosin staining and histopathological examination.

Statistical Analysis

Data were coded and analyzed using the Statistical Package for Social Science (SPSS) version 22 (IBM Corp., Armonk, NY, USA) and were tested for normality using the Shapiro-Wilk test and proved to not deviate from normal distribution. Data were summarized using mean and standard deviation. Statistical significance of the differences between the mean values of the different groups was tested using Two-way analysis of variance (ANOVA) followed by Bonferroni multiple comparison post-hoc testing when comparing more than 2 groups for appraisal of statistical significance. Probability values of less than 0.05 (p < 0.05) were considered statistically significant.

Results

Improved liver function biomarkers and alpha-fetoprotein (AFP) with thymoquinone

Deterioration of liver function was observed in the HCC group and detected by a significant increase in ALT and AST levels in the HCC group compared to the normal control (p <0.001). Significant increase in AFP level was observed in the HCC group compared to the normal control (p <0.001). However, TQ resulted in a significant decrease in AFP level compared to the HCC group and a significant decrease in ALT and AST levels compared to the HCC group (p <0.001) (Table 2).

Interference with oxidative stress secondary to thymoquinone intake

Combined DEN and CCL4 used for induction of HCC could enhance oxidative stress in the HCC group. Data showed a significant increase in MDA and a significant decrease in SOD in the HCC group compared to the normal control (p <0.001), however, the intake of TQ significantly reversed these changes compared to the HCC group (p <0.001) (Table 2).

Thymoquinone enhances the host defence strategy by regulating inflammatory machinery

Data showed a significant decrease in levels of IL-10 while levels of NFκB and TNF-α were significantly increased in the HCC group compared to the normal control (p <0.001). Intake of TQ resulted in a significant increase in IL-10 and a significant decrease in NFκB and TNF-α as well compared to the HCC group (p <0.001) (Fig. 2).

Table 1

Primers Sequence of studied genes CHOP, Bax, Bcl-2, and the housekeeping gene beta actin
CHOP
Forward primer: 5’-CTGGAAGCCTGGATGAGGAT-3’
Reverse primer: 5’-CAGGTCAGAGTAGTGAAGGT-3’
Bax
Forward primer: 5’-ATGGACGGGTCCGGAGGAG-3’
Reverse primer: 5’-ATCCAGGCCCACACCGCC-3’
Bcl-2
Forward primer: 5’-AACCCGGCAGCTTCT-3’
Reverse primer: 5’-GGTGCCCGTCAAGGACTCA-3’
β-actin
Forward primer: 5’-CTGAAATGCCCAGGTCTGA-3’
Reverse primer: 5’-CCCTGGCTGCCTCAACAC-3’

Table 2

Serum levels of ALT, AST, AFP, MDA, and SOD among the studied groups. Values are presented as mean ±SD, (n=8). *: statistically significant compared to corresponding value in group I, and #: statistically significant compared to the corresponding value in group II
Parameter
ALT (U/l)
AST (U/l)
AFP (ng/ml)
MDA (nmol/g tissue)
SOD (U/g tissue)

Bonferroni multiple comparisons, ANOVA, two sided p value <0.05.
Enhanced apoptotic process in the livers of HCC rats after treatment with thymoquinone

The key apoptotic executor, caspase-3 showed a significant increase in the HCC-thymoquinone group compared to the HCC group (p < 0.001). A significant increase in Bcl-2 gene expression was also observed in the HCC group compared to the normal control (p < 0.001). Whereas, levels of Bax gene expression were significantly increased in the TQ-treated groups compared to both the control and HCC groups (p < 0.001) (Table 3). The data also demonstrated a significant decrease in CHOP gene expression in the HCC and HCC+TQ groups compared to the normal control (p < 0.001 and p = 0.029, respectively). However, a significant increase in CHOP gene expression was observed in the TQ-treated group compared to HCC group (p < 0.001) (Table 3).

Thymoquinone upgrades the expression of p38 MAPK and JNK in liver tissues of induced HCC

The band intensity of estimated p38 MAPK protein showed a significant increase in the HCC group and TQ-treated group compared to the normal control (p < 0.001). Also, the result showed a significant increase in JNK protein expression in the TQ-treated groups compared to the control and HCC group (p < 0.001) (Fig. 2).

Thymoquinone improves the hepatic histo-pathological changes of experimentally-induced HCC

Combined DEN and CCL4 induced pleopathological architectural and nuclear changes including nuclear atypia, pleomorphism, hyperchromatosis, and scattered mitotic figures. Thymoquinone treatment ameliorated those deleterious effects where the hepatic tissue displayed improved structure with only minimal desmoplaysia and localized clear cell changes (Fig. 3).

Discussion

Thymoquinone (TQ) is the main constituent in *Nigella sativa*; it could exert multiple anticancer effects (WoO et al. 2012). The anti-cancer effect of TQ is mediated through induction of apoptosis and cell cycle arrest (Majdalawieh & FAYYAD 2016). In agreement with our results, TQ can ameliorate CCl4-induced hepatotoxicity through suppression of lipid peroxidation, ALT and AST cleavage, and induction of caspases (Rahmani et al. 2019). TQ treatment has also been reported to up-regulate JNK phosphorylation in human colon cancer cells (El-Najjar et al. 2010) which is also concordant with our results.

Decreased expression of caspase-3 also correlates with a poor prognosis of HCC, which emphasizes the role of caspase-3 in the pathogenesis of the disease. The deficiency of caspase-3 may enhance p38 activa-

![Fig. 2. (a) Anti-inflammatory effects of the natural compound, thymoquinone. (b) The expression bands and quantitative measurements of the relative gene expression of p38 MAPK and JNK (total and phosphorylated) (fold change relative to the control house keeping gene \(/c36\)-actin) in liver tissues. Data are expressed as mean ± SD, (n=8). P value <0.05 was significant, (*) denotes significant difference versus the normal control group, (#) denotes significant difference versus the normal control group.](image-url)
tion in the liver tissues of mice treated with DEN by increasing the expression of TNF-α (Shang et al. 2018). In this regard, current results reported a significant decrease in caspase-3, and an increase in TNF-α levels as well as p38 MAPK in the HCC group compared to the control group.

Deregulated MAPK signalling pathways are often implicated in various types of human tumors, as HCC (Kim et al. 2017). p38 MAPK negatively regulates cell cycle progression and oncogene-induced premature cell senescence thus; it acts as a tumor suppressor factor (Bulavin & Ornace 2004). ROS could augment and activate p38 MAPK (Liu & Chang 2009). Moreover, TQ was found to increase p38 protein expression in liver tissues, and suppress the anti-apoptotic/pro-survival Bcl-2 gene expression as well. In this context, Torres and colleagues (Torres et al. 2010) related the enhanced apoptosis in pancreatic cancer cells by TQ to its promotion of p38 MAPK and JNK signalling pathways.

JNK deficiency in liver tissues could increase hepatocyte death leading consequently to increased compensatory proliferation and HCC development (Das et al. 2011). Notably, in CPT-11-R LoVo colon cancer cells, thymoquinone intake could activate JNK and p38 thereby inducing apoptosis before autophagy-mediated cell death (Chen et al. 2015).

Excessive endoplasmic (ER) reticulum stress increases the C/EBP homologous protein (CHOP) marker, which is a major pro-apoptotic factor (Ron & Walter 2007). ER stress has crucial roles in mitochondrial dysfunction by augmenting CHOP expression. Incubating bladder cancer cells with TQ has also been reported to induce cytotoxicity and apoptosis, mainly through overexpression of CHOP, increasing Bax/Bcl-2 ratio and augmenting caspases (Zhang et al. 2018).

Following exposure to cytotoxic agents, Bax undergoes oligomerization in the mitochondria and endoplasmic reticulum membranes, allowing for the permeabilization of these membranes, and then releases activators of the final effectors of apoptosis such as cytochrome c and SMAC/Diablo (Sharpe et al. 2004; Annis et al. 2005). Thus, preventing Bax oligomerization abrogates apoptosis. However, decreased Bcl-2 could allow Bax to induce apoptosis (Dlugosz et al. 2006). Previous studies demonstrated that CHOP promotes apoptosis by decreasing Bcl-2 expression (Liu & Chang 2009). Our results also document enhanced CHOP expression and decreased Bcl-2. Thus, down-regulating the key factor of cell life and death is a promising target in cancer therapy.

One of the therapeutic potentials of thymoquinone is its immune-regulatory effect against HCC induced by DEN (Bimonte et al. 2019). In hepatocytes, NF-κB has a contradictory effect being pro-inflammatory and anti-apoptotic, which may exert a negative impact on hepatocytes. In addition, nuclear translocation of NF-κB inhibits JNK activation (Lueddke & Schwabe 2011). TQ is able to suppress TNF-α-induced NF-κB activation (Bimonte et al. 2019). Activation of NF-κB components is involved in hepatic injury, fibrosis, and subsequent carcinogenesis (Luedde & Schwabe 2011). Even more, JNK activation could promote regression of the NF-κB-induced anti-apoptotic factors, thus data obtained indicate that TQ may enhance cancer cell apoptosis which could decrease tumor resistance to chemotherapy and radiotherapy. Taken together, our findings suggest that TQ could be considered as a potential drug for targeting hepatocarcinogenesis via activating JNK, p38 MAPK, and enhancing production of pro-apoptotic factors including the final effector of apoptosis, caspase-3.

Acknowledgements

We offer our sincere appreciation for the experimental animal unit, Faculty of Medicine, Cairo University for providing rats.

Table 3

Levels of caspase-3 and the relative gene expression of Bax, Bcl-2, and CHOP-1 in all studied groups. Values presented as mean ±SD (n=8) *: statistically significant compared to corresponding value in group I and #: statistically significant compared to corresponding value in group II

Parameter	Group 1 (normal control)	Group 2 (HCC)	Group 3 (HCC-Thymoquinone)
Caspase-3 (ng/g tissue)	1.86±0.43	0.95±0.11 *	2.83±0.22 *#
Bax (relative expression)	1.01±0.02	0.17±0.05	6.2±0.92 *
Bcl-2 (relative expression)	1.01±0.01	4.4±0.42 *	2.46±0.47 *#
CHOP-1 (relative expression)	1.02±0.04	0.24±0.12 *	0.72±0.07 *#

Bonferroni multiple comparisons, ANOVA, two sided p value <0.05

Fig. 3. H&E-stained sections (a) Control group showing classical hepatic architecture, (b) Higher magnification of control group shows healthy hepatocytes radiating from the central vein (CV) and separated by endothelial-lined blood sinusoids (S), (c) The HCC group showing sheet arrangement of neoplastic highly proliferating hepatocytes. Areas of subcapsular hemorrhagic necrosis (H) are also noticed. (d) Higher magnification of the HCC group displaying neoplastic hepatocytes with nuclear atypia, pleomorphism and hyperchromasia (arrows). (e) The HCC-thymoquinone-treated group revealing improved hepatic structure apart from localized areas of clear cell change (pseudoacinor formation) (circle) and congestion of the central vein (CV), (f) Higher magnification of the HCC-thymoquinone-treated group revealing hepatocytes with mild desmoplasia and minimal ballooning degeneration (arrow head) (a,e scale bar 200 µm; b,d,f scale bar 50 µm).
Author Contributions
Research concept and design: R.E.H., G.M.A., S.A.A.E.-A., H.M.; Collection and/or assembly of data: E.G.A., M.M.K.; Data analysis and interpretation: L.A.R.; Writing the article: B.E.A., A.S.E.; Critical revision of the article: B.E.A., A.S.E.; Final approval of article: B.E.A.

Conflict of Interest
The authors declare no conflict of interest.

References

ABUKHADER M. M. 2012. The effect of route of administration in thymoquinone toxicity in male and female rats. Indian J. Pharm. Sci. 74: 195. https://doi.org/10.4103/0250-474X.106060

ANNIS M.G., SOUCIE E.L., DLUGOSZ P.J., CRUZ-AGUADO J.A., PENN L.Z., LEBER B., ANDREWS D.W. 2005. Bax forms multispanning momomers that oligomerize to permeabilize membranes during apoptosis. EMBO. J. 24: 2096-2103. https://doi.org/10.1038/sj.emboj.7600675

AZIZ M.T.A., WASSIF M.A.A., AHMED H.H., RASHED L., MAHFOUZ S., ALY M.I., HUSSEIN R.E., ABDELAZIZ M. 2014. The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetol. Metab. Syndr. 6: 34.

BULAVIN D.V., FORNACE A.J. 2004. p38 MAP kinase's emerging role as a tumor suppressor. Adv. Cancer. Res. 92: 95-118. https://doi.org/10.1016/S0065-203X(04)92005-2

CHANG Y., LIN J., TSANG S. 2012. Manipulation of autophagy by MIR375 generates antitumor effects in liver cancer. Autophagy 8: 1833-1834. https://doi.org/10.4161/auto.21796

CHEN M.C., LEE N.H., HU T.J., HU H., HUANG C.Y. 2015. Thymoquinone induces caspase-independent, autophagic cell death in CPT-11-resistant lovo colon cancer via mitochondrial dysfunction and activation of JNK and p38. J. Agric. Food. Chem. 63: 1540-6. https://doi.org/10.1021/jf5054063

CHIBA T., SUZUKI E., YUKI K., ZEN Y., OSHIMA M., MIYAGI S., SAKAI K. 2017. Functional interaction of Nkx6.1 and 6.2 with GATA-4 mediates vasculature development. Development 144: 2578-2590. https://doi.org/10.1242/dev.146541

DAS M., GARLICK D.S., GREINER D.L., DAVIS R.J. 2011. The role of JNK in the development of hepatocellular carcinoma. Genes. Dev. 25: 634-45. https://doi.org/10.1101/gad.1989311

DLUGOSZ P.J., BILLEN L.P., ANNIS M.G., ZHU W., ZHANG Z., LIN J., LEBER B., ANDREWS D.W. 2006. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO. J. 25: 2287-96. https://doi.org/10.1038/sj.emboj.7601126

EL-NAJAR N., CHATILA M., MOUKADEM H., VUORELA H., OCKER M., GANDEISI M., SCHNEIDER-STORE R., GALLI-MUHTASIB H. 2010. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 15: 183-95. https://doi.org/10.1007/s10495-009-0421-z

El-Sayed S.A.E.S., RIZK M.A., YOKOYAMA N., IGARASHI I. 2019. Evaluation of the in vitro and in vivo inhibitory effect of thymoquinone on piroplasm parasites. Parasite Vector 12: 37. https://doi.org/10.1186/s13071-019-2396-z

Haron A.S., Syed Ali S.S., Safful Yazan L., Abd Razak R., Ong Y.S., Zakariah Ansar F.H., Roshini Alexander H. 2018. Cytotoxic Effect of Thymoquinone-Loaded Nanostuctured Lipid Carrier (TQ-NLC) on Liver Cancer Cell Integrated with Hepatitis B Genome, Hep3B. Evid. Based. Compliment. Alternat. Med. 1549805 https://doi.org/10.1155/2018/1549805

Hu H., Tian M., Ding C., Yu S. 2019. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front. Immunol. 9: 3083. https://doi.org/10.3389/fimmu.2018.03083

Iyoda K., Sasaki H., Horimoto M., Toyama Y., Yakuushin J., Sakakibara M., Takehara T., Fujimoto J., Hori M., Wands J.R., Hayashi N. 2003. Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 97: 3017-3026. https://doi.org/10.1002/cncr.11425

Ke X., Zhao Y., Liu X., Wang Z., Liu Y., Ren M., Lu G., Zhang D., Sun Z., Xu Z., Song J.H. 2015. TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling. Oncotarget 6: 32610. https://doi.org/10.18632/oncotarget.5362

Kim S.Y., Kyaw Y.Y., Cheong J. 2017. Functional interaction of endoplasmic reticulum stress and hepatitis B virus in the pathogenesis of liver diseases. World. J. Gastroenterol. 23: 7657-7665. https://doi.org/10.3748/wjg.v23.i43.7675

Luedde T., Schwabe R.F. 2011. NF-kB in the liver – linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 8: 108. https://doi.org/10.1038/nrgastro.2010.213

Liu W.H., Chang L.S. 2009. Reactive oxygen species and p38 mitogen-activated protein kinase apoptotic death of U937 cells in response to Naja najaolicis toxin-gamma. J. Cell. Mol. Med. 13: 1695-705. https://doi.org/10.1111/j.1440-1727.2008.00473.x

Majdalawieh A.F., Fayyad M.W. 2016. Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive. J. Ayurveda. Integr. Med. 7: 173-80. https://doi.org/10.1016/j.jaim.2016.07.004

Ozakyl M. 2017. Global epidemiology of hepatocellular carcinoma (HCC epidemiology). J Gastrointest. Cancer 48: 238-240. https://doi.org/10.1007/s12029-017-9995-0

Park E.J., Chauhan A.K., Min K.J., Park D.C., Kwon T.K. 2016. Thymoquinone induces apoptosis through downregulation of c-FLIP and Bel-2 in renal carcinoma Caki cells. Oncol. Rep. 36: 2261-7. https://doi.org/10.3892/or.2016.5019

Park G.B., Cho Y., Kim H.K., Kim D., Hur D.Y. 2014. ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Soralen-induced apoptosis of EBV-transformed B cells. Int. J. Oncol. 44: 977-85. https://doi.org/10.3892/ijo.2014.2252

Raghunandhakumar S., Paramasivam A., Senthilraja S., Naveen Kumar C., Asokkumar S., Binuclara J., Jagan S., Anandanakumar P., Devaki T. 2013. Thymoquinone inhibits cell proliferation through regulation of G1/S phase cell cycle transition in N-nitrosodiethylamine-induced experimental rat hepatocellular carcinoma. Toxicol. Lett. 223: 60-72. https://doi.org/10.1016/j.toxlet.2013.08.018

Rahmani A.H., Almatroodi A., Babiker A.Y., Khan A.A., Alsaahl M.A. 2019. Thymoquinone, an Active Constituent of Black Seed Attenuates CCl4 Induced Liver Injury in Mice via the Modulation of Antioxidant Enzymes, PTEN, P53 and VEGF Protein. Open Access Maced. J. Med. Sci. 7: 311-317. https://doi.org/10.3899/oamjms.2019.050

Ron D., Walter P. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8: 519-29. https://doi.org/10.1038/nrm2199

Shang N., Bank T., Ding X., Breslin P., Li J., Shi B., Qiu W. 2018. Caspase-3 suppresses diethylthrosamine-induced hepatoctye death, compensatory proliferation and hepatocarcino-
genesis through inhibiting p38 activation. Cell. Death. Dis. 9: 558. https://doi.org/10.1038/s41419-018-0617-7

SHARPE J.C., ARNOULT D., YOULE R.J. 2004. Control of mitochondrial permeability by Bcl-2 family members. Biochim. Biophys. Acta 1644: 107-113. https://doi.org/10.1016/j.bbamcr.2003.10.016

TORRES M.P., PONNASAMY M.P., CHAKRABORTY S., SMITH L.M., DAS S., ARAFAT H.A., BATRA S.K. 2010. Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies. Mol. Cancer. Ther. 9: 1419-31. https://doi.org/10.1158/1535-7163.MCT-10-0075

WANG W.A., GROENENDYK J., MICHALAK M. 2014. Endoplasmic reticulum stress associated responses in cancer. Biochim. Biophys. Acta 1843: 2143-2149. https://doi.org/10.1016/j.bbamcr.2014.01.012

WOO C.C., KUMAR A.P., SETHI G., TAN K.H.B. 2012. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem. Pharmacol. 83: 443-51. https://doi.org/10.1016/j.bcp.2011.09.029

ZHANG M., DU H., HUANG Z., ZHANG P., YUE Y., WANG W., LIU W., ZENG J., MA J., CHEN G. WANG X. 2018. Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway. Chem. Biol. Interact. 292: 65-75. https://doi.org/10.1016/j.cbi.2018.06.013