A deep primal-dual proximal network for image restoration

Mingyuan Jiu and Nelly Pustelnik

School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
CNRS, Laboratoire de Physique de l’ENS de Lyon, France

arXiv: 2007.00959
Motivation: image restoration

Direct model

\[z = A\bar{x} + \varepsilon \]

where

- original image \(\bar{x} \in \mathbb{R}^N \) composed with \(N \) pixels
- \(A \in \mathbb{R}^{M \times N} \) models a linear degradation,
- \(\varepsilon \sim \mathcal{N}(0, \alpha^2 \mathbb{I}) \) models the effect of a white Gaussian noise of standard deviation \(\alpha \),
- \(z \in \mathbb{R}^M \) denotes the observed data.

Penalized likelihood approach

\[\hat{x}_\lambda \in \text{Argmin}_x \frac{1}{2}\|Ax - z\|_2^2 + \lambda p(Hx), \]
Motivation: image restoration

Considered framework

\[\hat{x}_\lambda \in \text{Argmin}_x \frac{1}{2} \|Ax - z\|_2^2 + g(Lx) \]

Parameter estimation

- Unsupervised techniques (i.e. SURE)

\[\min_{\lambda} \mathbb{E}\{\|A(\hat{x}_\lambda - x)\|_2^2\}, \]

- Supervised techniques relies on a training data set

\[S = \{(\bar{x}_s, z_s) | s = 1, \ldots, l}\]

\[E(\Theta) := \frac{1}{l} \sum_{s=1}^{l} \|f_{\Theta}(\ell_{z}(z_s)) - \ell_x(\bar{x}_s)\|_2^2. \]
Primal-dual proximal algorithm

Considered framework

\[\hat{x}_\lambda \in \text{Argmin}_x \frac{1}{2} \|Ax - z\|_2^2 + g(Lx) \]

Condat-Vũ primal-dual proximal algorithm

Algorithm 1: Primal-dual splitting algorithm for solving Problem 1.

1. **Set**: \(\tau > 0, \sigma > 0, \) such that \(\frac{1}{\tau} - \sigma \|L\|^2 \geq \frac{\|A\|^2}{2} \)
2. **Initialization**: \((x^{[1]}, y^{[1]}) \in \mathcal{H} \times \mathcal{G}\)
3. **for** \(k = 1, \ldots, K \) **do**
4. \[x^{[k+1]} = x^{[k]} - \tau A^*(Ax^{[k]} - z) - \tau L^*y^{[k]} \]
5. \[y^{[k+1]} = \text{prox}_{\sigma g^*} \left(y^{[k]} + \sigma L(2x^{[k+1]} - x^{[k]}) \right) \]
6. **end**
Proposition

Algorithm 1 fits the network

\[u^K = \eta^K (D^K \ldots \eta^1 (D^1 u^1 + b^1) \ldots + b^K) \]

when considering, for every \(k \in \{1, \ldots, K\} \), \(D^k \in \mathbb{R}^{(N+P) \times (N+P)} \), \(b^k \in \mathbb{R}^{N+P} \) and \(\eta^k : \mathbb{R}^{N+P} \rightarrow \mathbb{R}^{N+P} \) such that

\[
\begin{align*}
D^k &= \begin{pmatrix}
Id - \tau A^* A & -\tau L^* \\
\sigma L(Id - 2\tau A^* A) & Id - 2\tau \sigma LL^*
\end{pmatrix} \\
b^k &= \begin{pmatrix}
\tau A^* z \\
2\tau \sigma LA^* z
\end{pmatrix} \\
\eta^k &= \begin{pmatrix}
Id \\
\text{prox}_{\sigma g^*}
\end{pmatrix}
\end{align*}
\] (1)

where \(\text{Id} \) denotes the identity matrix.
Proposed DeepPDNet

Proposition

Given the training set $S = \{(\bar{x}_s, z_s)|s = 1, \ldots, l\}$ where \bar{x}_s is the undegraded image and $z_s = A\bar{x}_s + \varepsilon$ is its degraded counterpart. We build an inverse problem solver f_Θ relying on the estimation of $\hat{\Theta} = \{\hat{\sigma}^{[k]}, \hat{\tau}^{[k]}, \hat{L}^{[k]}\}_{1 \leq k \leq K}$:

$$\hat{\Theta} \in \text{Argmin}_{\Theta} \frac{1}{l} \sum_{s=1}^{l} \|\bar{x}_s - f_\Theta(z_s)\|_2^2 \quad \text{where} \quad f_\Theta(z_s) = \eta^{[K]}(D^{[K]} (\ldots \eta^{[1]}(D^{[1]} u^{[1]}_s + b^{[1]}) \ldots + b^{[K]}))$$

with

$$
\begin{align*}
 u^{[1]}_s &= A^* z_s \\
 D^{[1]} &= \begin{pmatrix}
 \text{Id} - \tau^{[1]} A^* A \\
 \sigma^{[1]} L^{[1]}(\text{Id} - 2\tau^{[1]} A^* A)
 \end{pmatrix} \\
 D^{[k]} &= \begin{pmatrix}
 \text{Id} - \tau^{[k]} A^* A & -\tau^{[k]} (L^{[k]})^* \\
 \sigma^{[k]} L^{[k]}(\text{Id} - 2\tau^{[k]} A^* A) & \text{Id} - 2\tau^{[k]} \sigma^{[k]} L^{[k]}(L^{[k]})^*
 \end{pmatrix} \\
 b^{[k]} &= \begin{pmatrix}
 \tau^{[k]} A^* z \\
 2\tau^{[k]} \sigma^{[k]} L^{[k]} A^* z
 \end{pmatrix} \\
 \eta^{[k]} &= \begin{pmatrix}
 \text{Id} \\
 \text{prox}_{\sigma^{[k]} g^*}
 \end{pmatrix} \\
 D^{[K]} &= \begin{pmatrix}
 \text{Id} - \tau^{[K]} A^* A & \tau^{[K]} (L^{[K]})^*
 \end{pmatrix} \\
 b^{[K]} &= \tau^{[K]} A^* z, \quad \eta^{[K]} = \text{Id}.
\end{align*}
$$
Results

Figure 3. Visual comparisons on MNIST dataset for different methods. The first row corresponds to the MNIST data with a uniform 3×3 blur and a Gaussian noise with $\alpha = 20$, the second row is with a uniform 5×5 blur and a Gaussian noise with $\alpha = 20$, the third row is with a uniform 7×7 blur and a Gaussian noise with $\alpha = 20$. For each instance, the images from the first to the seventh column respectively correspond to the original one \tilde{x}, the degraded one z, the restored ones by EPLL, TV, NLTV, IRCNN and the proposed full DeepPDNet ($K = 6$).
Results

Data	Method	3×3 Blur	5×5 Blur	7×7 Blur		
		$\alpha = 10$	$\alpha = 20$	$\alpha = 30$	$\alpha = 20$	
		PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	
MNIST	EPL [18]	24.02/0.8564	20.99/0.7628	19.05/0.6871	16.42/0.5629	13.97/0.3265
	TV [8]	25.07/0.8583	19.58/0.7004	18.86/0.6681	18.86/0.6681	16.31/0.5665
	NLTV [53]	25.49/0.8697	21.98/0.7738	20.73/0.7353	20.73/0.7353	16.79/0.6228
	IRCNN [54]	**28.52/0.8904**	25.00/0.8193	**22.63/0.7723**	21.46/0.7698	18.29/0.6546
	Partial DeepPDNet	23.67/0.8366	22.03/0.7983	20.93/0.7750	17.96/0.6534	16.21/0.5505
	Full DeepPDNet	**27.40/0.9410**	**25.09/0.9254**	**23.61/0.9097**	**22.43/0.8738**	**20.43/0.8157**

Table III

Comparison results of different methods on the MNIST dataset from different degradation configurations.
Main conclusions

- DeepPDNet allows us to achieve comparable performance than state-of-the-art CNN based strategies.

- We learn the algorithm step-size and L (including the regularization parameter).

- If the network is designed to satisfy $\frac{1}{\tau} - \sigma \|L\|^2 \geq \frac{\|A\|^2}{2}$ (convergence guarantees of Condat-Vũ proximal scheme) the performance are significantly decreased.

- The more complex is the database, the more layer is required: MNIST 6 layers and BSD68 20 layers.