Pretargeted immunoscintigraphy in patients with medullary thyroid carcinoma

P Magnani, G Paganelli*, C Songini, A Samuel, F Sudati, AG Siccardi and F Fazio

INB-CNR, Institute H San Raffaele, University of Milan, Milan, Italy.

Summary To evaluate the use of pretargeted immunoscintigraphy (ISG) in the diagnosis and follow-up of patients with medullary thyroid carcinoma (MTC), we studied 25 patients with histologically proven disease. ISG was repeated after surgery in two patients. The antibody, either an antcinchochrome c antigen (CEA) or an antichromogranin A (CgA) biotinylated monoclonal antibody (MAB) or a cocktail of the two biotinylated MABs was first injected. After 24 h, avidin was administered i.v., followed by 111In-labelled biotin 24 h later. Fifty-two lesions were visualised. Six primary tumours, diagnosed by increased calcitonin levels, were all correctly diagnosed; 47 recurrences, also suspected by blood tumour markers, were detected and confirmed by cytology or histology. In one case, single photon emission tomography allowed the detection of small lymph nodes with a diameter of 4–7 mm. These lesions, not judged neoplastic by ultrasound, were confirmed to be neoplastic by fine needle aspiration. Pretargeted ISG correctly localises primary tumours and recurrences in MTC patients, when the only marker of relapse is serum elevation of calcitonin. With this three-step pretargeting method, cocktails of potentially useful MABs can be used, avoiding false-negative studies that may occur when CEA or CgA are not expressed.

Keywords: medullary thyroid carcinoma; monoclonal antibody; avidin–biotin
normal Ct serum levels following surgical treatment of their primary tumour. They underwent either fine needle aspiration (FNA) (five patients) or surgical intervention (14 patients) of all the lesions visualised by ISG. Histopathological diagnosis (HIS) was always assessed on paraffin sections when surgery was available and on cytology when FNA had been performed.

ISG was repeated in two patients following surgery.

Clinical patient data are reported in Table I.

Reagents

MAB FO23C5 (IgG1) (Sorin Biomedica, Saluggia, Italy) reacts with the protein portion of the CEA molecule with an affinity constant (Kᵦ) of 7 × 10⁹ M⁻¹. It has already been described and extensively used in ISG (Buraggi et al., 1987; Gasparri et al., 1988; Siccardi et al., 1989).

MAB A11 (IgG1) is a monoclonal antibody directed against human CgA that does not react with CgB and CgC. It was obtained by immunisation of Balb/c mice with humanphaeochromocytoma-derived chromaffin granules and screening of hybridoma supernatants by enzyme-linked immunonassay (ELISA) on crude chromogranin preparations. MAB A11 was characterised by two-dimensional immunoblotting and immunohistochemistry (Pelagi et al., 1989) but Kᵦ is not yet defined.

MABs were biotinylated by Società Prodotti Antibiotici (S.P.A., Milano, Italy) as previously described (Paganelli et al., 1991). The degree of biotinylation was 5 ± 1 biotin per antibody determined spectrophotometrically, after protein digestion, as described (Hnatowich et al., 1987). At this grade of biotinylation the retained immunoreactivity of the antibodies was more than 90%, as tested in a standard ELISA system (Paganelli et al., 1991).

Pure hen egg avidin was obtained from S.P.A. DTPA-conjugated biotin was purchased from Sigma (St Louis, MO, USA).

Radiolabelling

DTPA-conjugated biotin was diluted in phosphate-buffered saline (PBS), pH 7.4, at a concentration of 2 μg μl⁻¹. The solution was sterilised by 0.22 μm Millipore filtration. ¹¹¹InCl₃ was diluted in citrate buffer (0.02 m; pH 6.5) to 740 kBq μl⁻¹. The reagents were then mixed and allowed to react at room temperature for 10 min. More than 98% of ¹¹¹In was bound to the conjugate, as shown by paper chromatography performed with Whatman no.1 and bicarbonate buffer 0.05 m as liquid phase. The ability to bind avidin after labelling was verified by fast protein liquid chromatography (FPLC) (Pharmacia, Sweden), by mixing [¹¹¹In]biotin with an appropriate amount of avidin. No loss of reactivity was observed.

Toxicity and immunogenicity

All patients were closely observed for 2 h following administration of avidin. Blood samples (10 ml) were obtained in appropriate tubes just before the administration of avidin, then 10–15 days following the injection. All samples were sent out both for routine blood tests as well as to assess the human anti-mouse immunoglobulin (HAMA) and anti-avidin response (HAAR).

The induction of human anti-mouse immunoglobulin antibodies was investigated using an ELISA system (Seccamani et al., 1989) in only 11 patients. In fact, our patients being a continuous sequence of patients attending endocrine and oncological clinics of various cities in Italy, they were not always willing to come back for blood tests. In these patients, avidin immunogenicity was studied on microwell plates coated with avidin or streptavidin separately. The plates were saturated for 1 h with PBS/3% bovine serum albumin (BSA). Human sera dilutions were added and incubated for 1 h at 37°C. After five washes, the binding of human anti-avidin antibodies was revealed with horseradish peroxidase-conjugated rabbit anti-human Ig antibodies (Dako) diluted 1:1000, for 45 min at 37°C. After six washes, the enzymatic reaction was developed with a chromogenic substrate (o-phenylenediamine; Sorin Biomedica, Saluggia, Italy) for 10 min and blocked by addition of 1 M sulphuric acid. The optical density reading was 492 nm.

IGS study

The three-step protocol used has been described previously (Paganelli et al., 1991). Briefly: 1 mg of biotinylated MAB

Patients	Age (years)	Familial (F)	Sporadic (S)	Syndrome	New case (NC)	Recurrence (R)	Biochemical data	CEAt
1	49/F	S	–	R	20; 210	Elevated	MTC	NA
2	60/M	–	–	R	25; 230	Elevated	MTC	NA
3	51/M	–	–	M	15; 50	Normal	MTC	NA
4	32/M	–	–	R	50; 700	Elevated	MTC	NA
5	19/F	S	MEN2B	R	13; 300	Elevated	MTC	NA
6	60/M	–	–	R	647; 3000	Elevated	MTC	NA
7	36/F	–	NC	R	125; 2000	Normal	MTC	NA
8	28/M	F	MEN2A	R	1700; 3055	Elevated	MTC	NA
9	29/M	S	–	NC	24; 430	Normal	MTC	NA
10	18/F	–	NC	R	22; 205	Normal	MTC	NA
11	40/M	S	–	R	13; 320	Normal	MTC	NA
12	53/M	F	MEN2A	NC	50; 400	Elevated	MTC	NA
13	22/M	F	MEN2A	NC	150; 3000	Normal	MTC	NA
14	22/F	S	–	R	314; 1700	Elevated	MTC	NA
15	24/F	F	MEN2A	R	513; 3300	Normal	MTC	NA
16	29/M	F	MEN2A	R	671; 3900	Elevated	MTC	NA
17	46/F	S	–	R	530; 2900	NA	MTC	NA
18	28/F	F	MEN2A	R	6; n.a.	NA	MTC	NA
19	54/M	S	–	R	700; 2320	Elevated	MTC	NA
20	46/M	F	–	R	156; 1500	Normal	MTC	NA
21	32/M	F	MEN2A	R	20; 220	Elevated	MTC	NA
22	22/F	F	MEN2A	R	70; 400	Elevated	MTC	NA
23	29/M	F	MEN2A	R	1600; 2424	Elevated	MTC	NA
24	34/M	F	–	R	189; 1900	Elevated	MTC	NA
25	68/F	S	–	R	160; 1800	Elevated	MTC	NA

Normal value (IRMA): Ct <10 pg ml⁻¹; CEA <5 ng ml⁻¹. *Serum levels elevated or normal. NA, not available.
was injected i.v. over 2 min (first step). The biotinylated FO23C5 MAb was used in 16 ISG studies, the biotinylated A11 MAb in seven studies, whereas in four studies a cocktail of biotinylated FO23C5 and A11 MABs (0.5 mg + 0.5 mg) was administered. After 24 h, 1 mg of unlabelled avidin was injected i.v. over 2 min, followed by an additional 9 mg 15 min later (second step). The aim of these two avidin administrations is to precipitate circulating biotinylated antibodies (1 mg) and subsequently to target the biotinylated MAbs bound on tumour cells (9 mg) (Schmid et al. 1987; Buraggi et al., 1987; O’Byrne et al., 1992). [¹¹¹In]biotin (200 µg) (111–185 MBq) was injected i.v. 24 h after the administration of cold avidin in 3 ml of saline solution in a bolus injection (third step).

Within 1–3 h after the [¹¹¹In]biotin injection, a single photon emission tomography (SPET) study (64 x 64 pixel matrix, 64 projections over 360°) of the neck and planar spot views (64 x 64 pixel matrix, 150 Kcounts-view) of the neck, chest and abdomen were acquired. Indeed, as the label is a small molecule, background radioactivity levels are drastically reduced, and imaging can be performed shortly after injection of the radiolabel.

Images were obtained using a 40 cm circular field rotating gamma-camera (7500 Orbiter, Siemens), linked to a Microvax II computer (Siemens) and equipped with a high-energy collimator and by selecting two 15% energy windows centered over the 173 and 247 keV photopeaks of [¹¹¹In].

Tomographic images were reconstructed with a filtered back projection algorithm and Hann filter (cut-off 0.5/pixel).

Planar and tomographic images were evaluated for the presence or absence of pathological tracer accumulation by two independent observers who are unaware of the clinical problem and the biochemical tumour marker levels. A semiquantitative visual analysis was carried out on planar and tomographic images by dividing the neck region into three sections (left laterocervical, median and right laterocervical). The ISG studies were visually scored; the score ranged from 0 to 2 (0 = absent tracer uptake; 1 = doubtful tracer uptake; 2 = pathological tracer uptake). The statistical analysis was carried out on the scores of tracer uptake from the three sections considered. A kappa test (Fleiss, 1980) was used to test inter-observer agreement.

Results

No toxicity was observed. Out of the 11 patients tested, one developed a weak antibody response against mouse immunoglobulins whereas six patients demonstrated anti-avidin antibodies 10–15 days after injection.

The kappa test demonstrated a strong agreement between the two observers (κ>0.75) both for planar and for tomographic images.

ISG results were classified as true positive (TP), true negative (TN), false positive (FP) and false negative (FN) according to histological diagnosis.

ISG results, final diagnoses and classifications are reported in Table II.

Figure 1 reports the overall distribution of activity in a typical patient. Activity biodistribution in the three-step pretargeting method using anti-CEA MAbs was compared with that obtained in the conventional ISG using the same antibody as Paganelli et al. (1991). No liver uptake and a negligible bone marrow uptake were demonstrated.

Fifty-two lesions were visualised by SPET and all verified by histology or cytology. Only three of these 52 lesions were visualised on planar spot views (patients 2, 16 and 23).

Fifty lesions were TP and two FP. In these two cases (patients 20, 21), metastatic lymph nodes visualised by ISG were not found at surgery. The smallest lesion detected by SPET was a right laterocervical lymph node of 4 mm in diameter. Two lymph nodes (patients 6, 21) identified as MTC metastases at histology were not visualised by ISG (two FN).

As regards patient 9 (TN, Table II), he had an abnormal Ct response to pentagastrin stimulation; ISG study did not show abnormal thyroid uptake of the tracer. The patient underwent surgery, and histology revealed a nodular hyperplasia as a colloid goiter.

Patients	MAbs (F)	ISG sites of tracer uptake	Final diagnosis	HIS	Classification
1	F	R	FNA MTC	1	TP
2	F	2 left LC	FNA MTC	2	TP
3	F	2 right LC	FNA MTC	2	TP
4	F	2 right LC	FNA MTC	2	TP
5	F	R	Histology MTC	1	TP
6	F	R + 1 left LC	Histology MTC	2	TP, 1 FN
7	F	Thyroid	Histology MTC	1	TP
8	F	1 left + 1 right LC	Histology MTC	2	TP
9	F	Negative scan	Histology NH	1	TN
10	F	Thyroid	Histology MTC	1	TP
11	F	Thyroid	Histology CCH	1	TP
12	F	Thyroid + 3 right LC	Histology MTC	4	TP
13	F	Thyroid	Histology MTC	1	TP
14	F	R + 1 right LC	Histology MTC	2	TP
15	A	R + 1 right LC	Histology MTC	2	TP
16	A	2 right LC	Histology MTC	2	TP
17	A	R + 1 right LC	Histology MTC	2	TP
18	A	R + 2 left LC	Histology MTC	3	TP
19	A	R + 2 left, 3 right LC	Histology MTC	6	TP
20	A	R + 3 left LC	Histology MTC	3	TP, 1 FP
21	A	R + 1 right LC	FNA MTC	1	TP, 1 FP, 1 FN
22	FA	2 left, 1 right LC	Histology MTC	3	TP
23	FA	R + 1 left, 1 right LC	Histology MTC	3	TP
24	FA	2 right LC	Histology MTC	2	TP
25	FA	2 right LC	Histology MTC	2	TP
Total	11R, 5 thyroid, 36 LC	50 TP, 1 TN, 2 FP, 2 FN			

MAbs, (F) FO23C5; (A) A11; (FA) FO23C5 + A11. NH, nodular hyperplasia; CCH, C-cell hyperplasia; R, remnant; LC, laterocervical lymph nodes.
The two follow-up ISG studies correctly identified the presence of malignant tissue. Patient 7 had a primary MTC with elevated Ct serum levels and a first positive ISG study. The tumour was removed by surgery, and histology confirmed two MTC foci. Immunohistochemical staining was highly positive for CEA. Ct serum levels returned to normal post-operatively (basal and in response to pentagastrin stimulation) and post-operative ISG showed no cervical accumulation.

Patient 4, who had biochemical evidence of recurrence following surgical treatment of his primary MTC, underwent a first ISG study that showed a pathological tracer uptake in the right region of the neck. US did not confirm a laterocervical involvement and FNA was inadequate. ISG was repeated about 4 months later and an abnormal tracer uptake was still evident in some right laterocervical lymph nodes. FNA was also repeated and cytology confirmed the presence of metastases of MTC.

Four patients who underwent anti-CEA ISG study had normal CEA serum level and a TP scan. In particular, patient 11 with C-cell hyperplasia had a positive ISG study. This patient, with a family history of MEN2A and elevated Ct serum levels in response to pentagastrin stimulation, underwent total thyroidectomy. Histology revealed diffuse C-cell hyperplasia with an immunohistochemical stain positive for CEA. On the other hand, patient 18 had normal Ct serum levels, but US revealed a thyroid remnant. ISG showed a strong uptake of the tracer not only in the residual thyroid but also in some left laterocervical lymph nodes (Figure 2). The patient underwent surgery and histology confirmed the presence of metastases of medullary thyroid carcinoma.

Figure 3 illustrates a case of cervical involvement (patient 3) detected by ISG. Immunoscintigraphy revealed a clear uptake of the tracer in the right region of the neck. Two small lymph nodes of 4 mm and 11 × 7 mm in diameter, not detected as neoplastic by US, have been confirmed to be metastases from MTC by FNA. Moreover, this patient had a suspicious-looking solid lesion, 20 mm in diameter in the liver, revealed by US and CT. ISG showed no liver uptake. Histological control revealed a benign liver lesion (angioma).

Figures 4–6 show examples of planar and SPET images from patient 15, 18 and 25 respectively.

Discussion

Medullary thyroid carcinoma is an uncommon tumour that frequently metastasises to cervical and mediastinal lymph nodes, bone and lung (Brunt and Wells, 1987). Ct and CEA are very sensitive indicators of MTC and are currently used as serum markers for relapse or distant metastases after thyroidectomy. Localisation of the tumour may be a more
complicated problem. US is useful in the post-surgical follow-up of MTC patients in order to evaluate cervical lymph nodes and relapse, but it is not specific (Schwerk et al., 1985). MRI has similar indications and it can also be used in the evaluation of the mediastinum (Crow et al., 1989). Various radiotracers have been proposed for this purpose. [99mTc(V)DMSA, 111In-1-P-MIBG and 201TI show different sensitivities of lesion detection in different reports (Arnstet al., 1986; Hilditch et al., 1986, 1987; Baulieu et al., 1987; Clarke et al., 1987, 1988; Hoefnagel et al., 1988; Adams et al., 1990; Guerra et al., 1990; Charkes et al., 1990; Udelsman et al., 1993).}

Figure 4 ISG planar image (A) and transaxial sections (B, C) from patient 18. No pathological tracer uptake is evident on planar spot view. A pathological tracer uptake is clearly evident in a left laterocervical lymph node (B, arrow) and in the thyroid remnant (C, arrow) on SPET sections. R, right.

Figure 5 ISG planar image (A) and transaxial section (B) from patient 15. A pathological tracer uptake in the thyroid remnant (arrow) is visible only in the SPET section. R, right.

Figure 6 ISG planar image (A) and coronal section (B) from patient 25. A pathological tracer uptake in two right laterocervical lymph nodes (arrows) is visible only in the SPET section. R, right.
tumour, given that more avidin can bind biotinylated MAbs that recognised the two antigens expressed in different tumour cells. Of the 55 histologically confirmed ISG lesions, 50 turned out to be TP, two TN, two FP and two FN. One patient (no. 7), who underwent ISG 2 months after surgery for primary MTC, did not show tracer uptake. Ct serum levels, both basal and after pentagastrin stimulation, and neck US were normal in a 6 month period of follow-up. Thus the patient can also be considered TN.

No relationship between CEA serum levels and ISG sensitivity was found. Four patients who underwent anti-CEA ISG, who had normal CEA serum levels and TP scans. Thus, ISG using anti-CEA MAb is effective even when Ct alone is elevated.

All primary tumours were visualised. In addition, a patient with C-cell hyperplasia, considered a preneoplastic condition, was correctly diagnosed, and in a patient with normal Ct serum levels a pathological uptake of the tracer was demonstrated by ISG and subsequently confirmed by histology.

Fifty out of 52 tumour recurrences (96%) were imaged and confirmed by cytology or histology.

Tomographic ISG study was crucial for detecting small lymph nodes, with a diameter of 4–7 mm, that were not recognised as neoplastic by US. Moreover the presence of blood activity, although low with respect to directly labelled MAbs, could make it difficult to distinguish lymph node activity from vascular background (see Figures 4–6) on planar images. Using SPECT the separation of the tumour from background activity is feasible.

A patient whose US and CT scans revealed a liver lesion had a negative ISG liver scan, and histology subsequently revealed the benign nature of the lesion.

One potential disadvantage of this pretargeting protocol is the immunogenicity of avidin. The immunogenicity of biotinylated antibodies and avidin was tested in only 11 patients. However, data available from 60 other patients receiving, in similar protocols, biotinylated antibodies (i.e. anti-tenascin, anti-CEA and anti-CgA) and avidin, comply with the results of this study. In particular, none of the patients studied developed an important response to mouse immunoglobulin after the injection of 1 mg of biotinylated IgG and 22% developed HAAR after the injection of 5–6 mg of avidin (unpublished data).

In conclusion, pretargeted ISG with CEA and/or CgA MAb may be useful in MTC follow-up, when the only marker of relapse is serum elevation of Ct, in order to localise tumour recurrences, and in the early detection of preneoplastic conditions, such as C-cell hyperplasia.

With this method, radiolabelled biotin can serve as a carrier not only for diagnostic but also for therapeutic purposes. However, radioactivity delivered per gram of tumour is still below the optimal dose for radioimmunotherapy (Paganelli et al., 1994b). A higher tumour radioactivity could be obtained by using more biotinylated MAbs in the first step and streptavidin in the second step, as this results in a better avidination of the tumour. As avidin blood clearance is very fast, the longer plasma t½ of streptavidin can convey more streptavidin and so more radiolabelled biotin to the tumour. However, streptavidin may be more immunogenic than avidin when injected in humans (unpublished data). Methods to block this response are currently under evaluation and it is anticipated that advances in molecular biology and recombinant DNA technology will contribute significantly to circumventing this problem. By using the radioisotope of the radiolabelled biotin bound to the avidin and by labelling biotin with β-emitting isotopes, such as 90Y and 186Re, antibody-guided therapy of small MTC recurrences may be feasible.

Acknowledgement

The work was supported in part by grant of the Consiglio Nazionale delle Ricerche, Finalised Project ACREO.

References

ADAMS BK, FATAAR A, BYRNE MJ, LEVIT NS AND MATLEY PJ. (1990). Pentavalent technetium-99m (V) DMSA uptake in a patient with Sipple's syndrome. J. Nucl. Med., 31, 106–108.

ARNSTEIN NB, JUNI JE, SISSON JC, LLOYD RV AND THOMPSON NW. (1986). Recurrent medullary carcinoma of the thyroid demonstrated by thallium-201 scintigraphy. J. Nucl. Med., 27, 1544–1554.

BAULIEU JL, GIULLOTEAU D, DELISLE MJ, PERDRISOT R, GARDET P, DELEPINE N, BAULIEU F, DUPONT JL, TALBOT JN, COUTRIS G AND CALMETTES C. (1987). Radiodinated meta-iodobenzylguanidine uptake in medullary thyroid cancer. A French cooperative study. Cancer, 60, 2189–2194.

BERCHE C, MACH JP AND LUMBROSO JD. (1982). Tomoscintigraphy for detecting gastrointestinal and medullary thyroid cancer: first clinical results using radiolabelled monoclonal antibodies against carcinoembryonic antigen. Br. Med. J., 285, 1447–1451.

BRUNT LM AND WELLS SA. (1987). Advances in the diagnosis and treatment of medullary thyroid carcinoma. Endocrinol. Surg., 67, 263–279.

BURAGGI GL, CALLEGARO L, TURRIN A, GENNARI L, BOMBARDIERI E, MARIANI G, DELEIDE G, DOVIS M, GASPARINI M, DOCI R, REGALIA E, SEREÑI E AND SCASSELLATI GA. (1987). Immunoscinography of colorectal cancer with F(ab)² fragments of anti-CEA monoclonal antibody. Cancer Detect. Prev., 13, 335–345.

CLARKE SEM, LAZARUS C, MISTRY R AND MAISEY MN. (1987). The role of technetium-99m pentavalent DMSA in the management of patients with medullary carcinoma of the thyroid. Br. J. Nucl. Med., 28, 1089–1090.

CLARKE SEM, LAZARUS CR, WRAIGHT P, SAMPSON C AND MAISEY MN. (1988). Pentavalent (99mTc)DMSA, (131I)MBG, and (99mTc)MDP: an evaluation of three imaging technique in patients with medullary carcinoma of the thyroid. J. Nucl. Med., 29, 33–38.

CHARLES ND, VITTI RA AND BROOKS K. (1990). Thallium-201 SPECT increases detectability of thyroid cancer metastases. J. Nucl. Med., 31, 147–153.

CHONG GC, BEAURS OH, SZEMERE GW AND WODNER LH. (1975). Medullary carcinoma of the thyroid gland. Cancer, 35, 695–704.

COLOMBO P, PAGANELLI G, MAGNANI P, SONGINI C, FAZIO F AND FAGLIA G. (1993). Immunoscintigraphy with anti-chromogranin A antibodies in patients with endocrine/neuroendocrine tumours. J. Endocrinol. Invest., 16, 841–843.

CROW JP, AZAR-KIA B AND PRINZ RA. (1989). Recurrent occult medullary thyroid carcinoma detected by MR imaging. Am. J. Roentgenol., 152, 1255–1256.

DE LEllis RA, RULE AH, SPIeler I, NATHANSON L, TASHIUMAN AH AND WOLFE HJ. (1978). Calcitonin and carcinoembryonic antigen as tumour markers in medullary thyroid carcinomas. Am. J. Clin. Pathol., 50, 578–594.

DOMOGETSKY SP. (1989). Rapid blood clearance of biotinylated IgG after infusion of avidin. J. Nucl. Med., 30, 66–69.

DOSIO F, MAGNANI P, PASSENNI G, SAMUEL R, CHIESA G AND FAZIO F. (1994). Three-step tumour pretargeting in lung cancer. J. Nucl. Biol. Med., 37, 228–233.

EDINGTON HD, WATSON CG AND LEVINE G. (1988). Radioimmunoscintigraphy of metastatic medullary carcinoma of the thyroid gland using an iodine-111 labelled monoclonal antibody to CEA. Surgery, 104, 1004–1010.

FAZIO F AND PAGANELLI G. (1993). Antibody-guided scintigraphy: targeting the 'magic bullet'. Eur. J. Nucl. Med., 20, 1138–1140.

FLEISS JL. (1980). The measurement of interrater agreement. In Statistical Methods for Rates and Proportions, pp. 212–236, J. Wiley and Sons: New York.

FRANK K, RAUE F, LORCH D, HEFARTH C AND ZIEGLER R. (1987). Importance of ultrasound examination for the follow-up of medullary thyroid carcinoma: comparison with other localization methods. Henry Ford Hosp. Med. J., 35, 122–123.

GASPARINI M, RIPAMONTI M, SEREÑI E, REGALIA E AND BURAGGI GL. (1988). Tumour imaging of colorectal carcinoma with an anti-CEA monoclonal antibody. Int. J. Cancer, (Suppl. 2), 81–84.
GOLDENBERG DM, KIM EE, DELAND FH, BENNETS AND PRIMUS FJ. (1980). Radioimmuno detection of cancer with radioactive antibodies to carcinoembryonic antigen. Cancer Res., 40, 2984 – 2992.

GOODWIN DA, MEARES CF, MCCALL MJ, MCTIGUE M AND CHAOVAPONG W. (1988). Pre-targeted immunoscintigraphy of malignant tumors with indium-111-labelled bifunctional hapten. J. Nucl. Med., 29, 226 – 234.

GUERRA UP, PIZZOCARO C, TERZI A, GIUBBINI R, MAIRA G, PAGLIAINI R AND BESTAGNO M. (1989). New tracers for the imaging of the medullary thyroid carcinoma. Nucl. Med. Commun., 10, 285 – 295.

HILDITCH TE. (1987). Technetium-99m(V)-DMSA in the imaging of medullary thyroid carcinoma. J. Nucl. Med., 28, 253.

HILDITCH TE, CONNEL JMC, ELLIOT AT, MURRAY T AND REED NS. (1986). Poor results with technetium-99m(V) DMSA and iodine-131 MIBG in the imaging of medullary thyroid carcinoma. J. Nucl. Med., 27, 1150 – 1153.

HNATOWICH DJ, VIRZI F AND RUSCKOWSKI M. (1987). Investigation of avidin and biotin for imaging applications. J. Nucl. Med., 28, 1294 – 1302.

HOEFPNAGEL CA, DELPRAZ CC, ZANIN D AND VAN DER SCHOOT JB. (1988). New radioisotopic tracers for the diagnosis and therapy of medullary thyroid carcinoma. Clin. Nucl. Med., 13, 159 – 165.

KALOFONOS HP, RUSCKOWSKI M, SIEBECKER DA, SIVOLAPENKO GB, SNOOK D, LAVENDER JP, EPENETOS AA AND HANTOWICH DJ. (1990). Imaging of tumour in patients with Indium-111 labelled di- and tri-streptavidin conjugated antibodies: preliminary communications. J. Nucl. Med., 31, 1791 – 1796.

LABSON MA. (1985). Radiolabelled monoclonal anti-tumour antibodies in diagnosis and therapy. J. Nucl. Med., 26, 538 – 545.

LE DOUSSAL JM, MARTIN M, GAUTHIER E, DELAGE A AND BARRET J. (1989). In vitro and in vivo targeting of radiolabelled monoclonal and divalent hapten with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J. Nucl. Med., 30, 1358 – 1366.

MANIL L, BOUTE I, FOTTE P, GARDET P, SACCAVINI JC, LUMBROSO JD, SCHLUMBERGER M, CAILOU B, BAZIN JP, RICARD M, BELLET D, BOHUON C, TUBIANA M, DI PAOLA R AND PARMENTER C. (1989). Positive autoantibodies in immunoscintigraphy in patients with medullary thyroid carcinoma. Cancer Res., 49, 5480 – 5485.

MATZKU S, KIRCHGESSNER H, SCHMID U, TEMPONI M AND FERRONE S. (1989). Melanoma targeting with a cocktail of monoclonal antibodies to distinct determinants of the human HMW-MAA. J. Nucl. Med., 30, 390 – 397.

MOJIMINIYI OA, UDELSMAN B, SHEPSTONE BJ, DUDLEY NE AND SOPER NDW. (1989). More on 99mTc(V)DMSA scintigraphy in patients with medullary carcinoma of the thyroid. J. Nucl. Med., 30, 1420.

O'BRYNE KJ, HAMILTON D, ROBINSON I, SWEENEY E, FREYNE PJ AND CULLEN MJ. (1992). Imaging of medullary carcinoma of the thyroid using 111In-labelled anti-CEA monoclonal antibody fragments. Nucl. Med. Commun., 13, 142 – 148.

PACINI F, BASOLO F AND ELISEI R. (1991). Medullary thyroid cancer: an immunohistochemical and tumoural study using six separate antigens. Am. J. Clin. Pathol., 95, 300 – 308.

PAGANELLI G, MAGNANI P, ZITO F, VILLA E, SUDATI F, LOPALCO L, ROSSETTI C, MALCOVATI M, CHIOLETO F, SECCAMANI E, SICCARDI AG AND FAZIO F. (1991). Three-step monoclonal antibody tumour targeting in carcinoembryonic antigen-positive patients. Cancer Res., 51, 5960 – 5966.

PAGANELLI G, MAGNANI P, ZITO F, LUCIGNANI G, SUDATI F, TRUCHI M, MOTTI E, TERRIEN M, PELLO B, GIOVANELLI M, CANAL M, SCOTTI G, COMI G, KOPH P, MAECKE HR AND FAZIO F. (1994a). Pre-targeted immunodetection in glioma patients: tumour localization and single-photon emission tomography imaging of 99mTcPnA-ribofuranosylvinylpyrimidine. Eur. J. Nucl. Med., 21, 314 – 321.

PAGANELLI G, SONGINI C, MAGNANI P, SAMUEL A, DI LEO C, SUDATI F, SIDILO S, SICCARDI AG AND FAZIO F. (1994b). Pre-targeted immunoscintigraphy with the avidin/biotin system: four years experience. J. Nucl. Med., 35, 55P.

PELAGI M, BISIANI C, GINI A AND BONARDI MA. (1989). Preparation and characterization of an anti-human chromogranin A and chromogranin B (secretogranin I) monoclonal antibodies. Mol. Cell Probes, 3, 87 – 101.

PELTIER P, CURTET C, CHATAL JF, LE DOUSSAL JM, DANIEL G, AILLET G, GRUAZ-GUYON A, BARRET J AND DELAGE M. (1993). Radioimmuno detection of medullary thyroid cancer using a bispecific anti-CEA/anti-Indium-DTPA antibody and an Indium-111-labelled DTPA dimer. J. Nucl. Med., 34, 1267 – 1273.

REINERS C, EILLES C, SPIEGEL W, BECKER W AND BORNER W. (1986). Immunoscintigraphy in medullary thyroid cancer using a 123I- or 111In-labelled monoclonal anti-CEA antibody fragment. Med. Nucl., 25, 227 – 231.

ROSSI RL, MEISSNER WA, WOD MS, SEDGWICK CE AND WEVER J. (1980). Nonfamilial medullary thyroid carcinoma. Am. J. Surg., 139, 554 – 560.

ROUGIER P, PARMENTIER C AND LAPLANCHE A. (1983). Medullary thyroid carcinoma: prognostic factors and treatment. Int. J. Radiat. Oncol. Biol. Physiol., 9, 161 – 169.

ROWLINSON G, RUSCKOWSKI M, GIONET M, SIEBECKER D, SNOOK D, EPENETOS AA AND HANTOWICH DJ. (1988). Animal tumour localization studies with streptavidin-conjugated antibody and biotinylated bin. J. Nucl. Med., 29, 762.

SAMAAN NA, SCHULTZ PA AND HICKY RC. (1988). Medullary thyroid carcinoma: prognosis of familial versus sporadic disease and the role of radiotherapy. J. Clin. Endocrinol. Metab., 67, 8801 – 8805.

SCHMID KW, FISCHER-COLBRIE R, HAGN C, JASANI B, WILLIAMS ED AND WINKLER H. (1987). Chromogranin A and B and secretogranin III in medullary carcinomas of thyroid. Am. J. Surg. Pathol., 11, 551 – 556.

SCHWERK WB, GRUN R AND WAHL R. (1985). Ultrasound diagnosis of C-cell carcinoma of the thyroid. Cancer, 55, 624 – 630.

SECCAMANI E, TATTANELLI M, MARIANI M, SPRANZI E, SICCASSETTI GA AND SICCARDI AG. (1989). A simple qualitative determination of human antibodies to murine immunoglobulins (HAMA) in serum samples. Nucl. Med. Biol., 2, 167 – 170.

SICCARDI AG, BURAGGI GL, CALLEJARLO L, CENTI-COLELLA A, DE FILIPPI PG, GALLI G, MARIANI G, MASI R, PALUMBO R, RIVA P, SALVATORE M, SCASSASSETTI GA, SCHEIDHAUER K, TURCO GL, ZANOLI P, BENINI S, DELEIDE G, GASPARINI M, LASTORIA S, MANSI L, PAGANELLI G, SALVISCCHIANI E, SENERGI E, VIALE G AND NATALI PG. (1989). Immunoscintigraphy of adenoacarcinomas by means of radiolabelled F(ab')2 fragments of an anti-carcinoembryonic antigen monoclonal antibody: a multicenter study. Cancer Res., 49, 3095 – 3103.

TALERMAN A, LINDEMAN J, KIEVIT-TYSON PA AND DROGE-DROPPERT C. (1979). Demonstration of calcinin and carcinoembryonic antigen (CEA) in medullary carcinoma of the thyroid (MTC) by immunoperoxidase technique. Histopathology, 3, 503 – 510.

UDELSMAN R, BALL D, BAYLIN SB, WONG CY, OSTERMAN FA, AND SOSTRE S. (1993). Preoperative localization of occult medullary carcinoma of the thyroid gland with single-photon emission tomography dimercaptosuccinic acid. Surgery, 114, 1083 – 1089.

VUILLIEZ J, PELTIER P, CARAVEL J, CHETANNEAU A, SACCAVINI JC AND CHATAL JF. (1992). Immunoscintigraphy using 111In-labelled F(ab')2 fragments of anti-carcinoembryonic antigen monoclonal antibody for detecting recurrences of medullary thyroid carcinoma. J. Clin. Endocrinol. Metab., 74, 157 – 163.

ZANIN DEA, VAN DONGEN A, HOEFENAGEL CA AND BRUNING PF. (1990). Radioimmunoscinigraphy using iodine-131 anti-CEA monoclonal antibodies and thallium-201 scintigraphy in medullary thyroid carcinoma: a case report. J. Nucl. Med., 31, 1854 – 1855.