RESEARCH PAPER

TOTAL SYNTHESIS OF A NATURAL CYCLOADPOLYPEPTIDE FROM FRUITS OF SUGAR-APPLES

Rajiv Dahiya1*, Sunil Singh2, Komalpreet Kaur3 and Raminder Kaur3

1Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
2Research Scholar, Department of Pharmacy, Mewar University, Gangrar, Chittorgarh-312901, Rajasthan, India
3Department of Pharmaceutical Chemistry, G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar-141104, Ludhiana, Punjab, India

*E-mail: rajiv.dahiya@sta.uwi.edu
Tel.: +1868 4935655.

Received: Oct 14, 2017 / Revised: Dec 22, 2017 / Accepted: Dec 23, 2017

A cyclopentapeptide, fanlizhicyclopeptide B, previously isolated from the fruits of Annona squamosa, was synthesized via coupling of dipeptide l-Isoleucyl-l-Tyrosyl methyl ester with tripeptide Boc-l-Alanyl-Glycyl-l-Proline followed by cyclization of the linear pentapeptide fragment. Structure of the synthesized cycloadpolypeptide was confirmed using quantitative elemental analysis, FTIR, 1H NMR, 13C NMR and mass spectrometry. Results of pharmacological activity studies indicated that the newly synthesized cyclopentapeptide displayed remarkable anthelmintic potential against Megascopel konkanensis, Pontoscotex corethruses and Eudrilus eugeniea at 2 mg/ml and potent antidermatophytic activities against Trichophyton mentagrophytes and Microsporum audovinii at concentration of 6 mcg/ml.

Key words: Fanlizhicyclopeptide B, Annona squamosa, Solution-phase synthesis, Biological activity.

INTRODUCTION

Discovery and development of new therapeutic agents has been a continuing process. In spite of the fact that large numbers of therapeutic molecules are available for human health care programs, the thrust for safer and effective medicines is increasing. There is an utmost need to understand the principles of traditional systems of medicine more precisely in the light of modern science and there is increasing awareness and general acceptability of the use of herbal drugs in today's medical practice. Therefore, the world is witnessing an unprecedented growth in the usage of herbal products (Kunle et al 2012; Kumari et al 2016). Among natural products, cycloadpolypeptides are a special group of bioactive compounds with interesting pharmacological and biochemical properties which occur in higher plant species. Recently, plants fruit-derived cycloadpolypeptides have received attention of researchers and scientists (Tan and Zhou, 2006) which exhibit a wide range of biological activities viz. immunosuppressive activity (Morita et al 1997; Picur et al 1998), vasorelaxant activity (Morita et al 2006), cell growth inhibitory activity (Morita et al 1996) and anti-inflammatory activity (Noh et al 2015). A natural cyclic pentapeptide, fanlizhicyclopeptide B was isolated from the fruits of Annona squamosa (sugar-apples) and its structure was elucidated by ESI MS/MS, 1D and 2D NMR data and chemical degradation (Wu et al 2014). Keeping in view broad range of pharmacological activities possessed by natural cyclopeptides (Fang et al 2016; Dahiya, 2013; Dahiya and Pathak, 2006a; Pathak and Dahiya,
and in continuation of synthetic studies of our research group toward natural peptides and their analogs (Dahiya et al. 2007a, 2007b, 2007c, 2008a, 2008b, 2008c, 2008d; Dahiya and Gautam, 2010a, 2010b, 2010c, 2011a, 2011b, 2011c, 2011d; Dahiya and Kaur, 2007a, 2008a; Dahiya and Kumar, 2007; 2008; Dahiya and Pathak, 2006b, 2007a, 2007b; Dahiya and Sharma, 2008; Dahiya and Singh, 2017a, 2017b, 2017c, 2016; Dahiya et al. 2006, 2009a, 2009b, 2009c; 2016; Kumar et al. 2017), the present investigation directed toward the synthesis, structure elucidation and the biological evaluation of a sugar-apple derived cyclopeptide, fanlizhicyclopeptide B for the antibacterial, antifungal and anthelmintic potential.

EXPERIMENTAL

Chemistry

Melting point was determined by the open capillary method and is uncorrected. IR spectra were recorded using an FTIR-8400S Fourier transform spectrophotometer (Shimadzu, Kyoto, Japan). 1H NMR and 13C NMR spectra were recorded on a Bruker AC 300 spectrometer at 300 MHz (Bruker, IL, USA). Mass spectra were recorded on a JMS-DX 303 spectrometer (Jeol, Tokyo, Japan). Elemental analysis was performed on a Vario EL III elemental analyzer (Elementar Vario EL III, Hanau, Germany) and optical rotation of the synthesized peptides was measured on an Optics Technology automatic polarimeter (OpticsTech, Delhi, India). Purity of the synthesized peptides was checked by TLC on precoated silica gel G plates (Kieselgel 0.25 mm, 60G F254, Merck, Germany).

General procedure for the synthesis of linear di/tripeptide segments (I, II, IV)

To the solution of the amino acid methyl ester hydrochloride (0.01 mol) in tetrahydrofuran (THF, 25 ml), N-methylmorpholine (NMM) / triethylamine (TEA) (2.23 ml/2.8 ml, 0.021 mol) was added at 0 °C, and the reaction mixture was stirred for 15 min. The Boc-protected amino acid/dipeptide (0.01 mol) in THF (25 ml), N,N'-disopropylcarbodiimide / N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (DIC/EDC.HCl, 1.26 g/1.92 g, 0.01 mol) and 1-hydroxybenzotriazole (HOBT, 1.34 g, 0.01 mol) were added with stirring to the above reaction mixture. Stirring of the resulting mixture was continued for 24 h at RT. The reaction mixture was filtered and the residue was washed with THF (25 ml) and added to the filtrate. The filtrate was washed with 5% NaHCO3 and saturated NaCl solutions. The organic layer was dried over anhydrous Na2SO4, filtered and evaporated in vacuum. The crude product was recrystallized from a mixture of chloroform and petroleum ether (b.p. 40-60°C) followed by cooling at 0°C to get the title compounds.

Deprotection of the dipeptide unit (I) at the amino terminal

Boc-protected dipeptide (I, 4.08 g, 0.01 mol) was dissolved in CHCl3 (15 ml) and treated with CF3COOH (2.28 g, 0.02 mol). The resulting solution was stirred at room temperature for 1 h, washed with a saturated NaHCO3 solution (25 ml). The organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by crystallization from the CHCl3 and petroleum ether (b.p. 40-60°C) to get the pure deprotected compound Ia.

Deprotection of the tripeptide unit (IV) at the carboxyl terminal

To a solution of the tripeptide (IV, 3.57 g, 0.01 mol) in THF–H2O (1:1, 36 ml), LiOH (0.36 g, 0.015 mol) was added at 0°C. The mixture was stirred at room temperature for 1 h and then acidified to pH = 3.5 with 1 N H2SO4. The aqueous layer was extracted with EtO (3 × 25 ml). The combined organic extracts were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was finally crystallized from methanol and ether to get the pure deprotected compound IVa.

Procedure for the synthesis of linear pentapeptide unit and its cyclized form (V, VI)

Dipeptide methyl ester, l-Ile-l-Tyr-OMe (Ia, 3.08 g, 0.01 mol) was dissolved in 30 ml of dichloromethane (DCM) and 2.23 ml/2.8 ml (0.021 mol) of TEA/NMM was added at 0°C and the resulting mixture was stirred for 15 min. Boc-protected tripeptide, Boc-1-Ala-Gly-l-Pro-OMe (IVA, 3.43 g, 0.01 mol) was dissolved in 30 ml of DCM and DIC/EDC.HCl (1.26 g/1.92 g, 0.01 mol) and HOBT (1.34 g, 0.01 mol) were added to above mixture with stirring. Stirring was continued for 24 h, after which the reaction mixture was filtered and the filtrate was washed with 25 ml each of 5% NaHCO3 and saturated NaCl solutions. The organic layer was dried over anhydrous Na2SO4, filtered and evaporated in vacuum. The crude product was recrystallized...
from a mixture of chloroform and petroleum ether (b.p. 40-60°C) followed by cooling at 0°C to get the Boc-I-Ala-Gly-l-Pro-l-Ile-l-Tyr-O\text{Me} (V) as yellowish semisolid mass. Linear pentapeptide unit (V, 3.17 g, 0.005 mol) was then, deprotected at the carboxyl terminal using lithium hydroxide (LiOH, 0.18 g, 0.0075 mol) to obtain the Boc-I-Ala-Gly-l-Pro-l-Ile-l-Tyr-\text{OH} (Va). To a solution of the deprotected heptapeptide (3.1 g, 0.005 mol) in CHCl₃ (50 ml), pentfluorophenol (pF, 1.23 g, 0.0067 mol) and DCC (1.06 g, 0.005 mol) were added followed by stirring at RT for 12 h. Filtrate of the above reaction mixture was washed with 10% NaHCO₃ (3 × 20 ml) and 5% HCl (2 × 20 ml) solutions to obtain the corresponding pentfluorophenyl ester Boc-I-Ala-Gly-l-Pro-l-Ile-l-Tyr-\text{Opf} (Vb). Boc-group of the resulting unit (3.14 g, 0.004 mol) was removed using CF₃COOH (0.91 g, 0.008 mol) to get the deprotected product I-Ala-Gly-l-Pro-l-Ile-l-Tyr-\text{Opf} (Vc) which was dissolved in CHCl₃ (25 ml) and TEA/NMM/pyridine (2.8 ml/2.21 ml/1.61 ml, 0.021 mol) was added. Then, the whole contents were kept at 0°C for 7 days. The reaction mixture was washed with 10% NaHCO₃ (3 × 25 ml) and 5% HCl (2 × 25 ml) solutions. The organic layer was dried over anhydrous Na₂SO₄ and crude cyclized compound was recrystallized from CH₂Cl₂/hexane to obtain the pure cyclic product (VI).

Cyclo[[-Alanyl-Glycyl-l-Prolyl-l-Isoleucyl-l-Tyrosyl]]

(VI)
Pale yellow solid; m.p. 121-123 °C (d); Yield 87 % (C₅H₁₅N), 79 % (NMM), 73 % (TEA); [α]₀ = -113.5° (c = 0.41, MeOH) (-113.6° for natural fannihizycyclopentide B (Wu et al 2014); R₁ = 0.68 (CHCl₃-MeOH - 9:1); IR (KBr): n = 3375 (O-H), aromatic ring, 3128-3124, 3121 (N-H, amide), 3068-3063 (Ar-H, aromatic ring), 2998-2992 (C-H, cyclic CH₂), 2969, 2925, 2918 (C-H, asym, CH₃ and CH₂), 2842, 2837 (C-H, sym, CH₂), 1668, 1645-1639 (C=O, 3° and 2° amide), 1567, 1435 (skeletal bands), 1535, 1531-1527 (N=O, amide), 714, 685 (C=O, amide, aromatic ring) cm⁻¹. ¹H NMR (CDCl₃): δ = 8.86 (br. s, 1 H, NH, Ile), 8.35 (br. s, 1 H, NH, Tyr), 7.72 (br. s, 1 H, NH, Ala), 7.25 (br. s, 1 H, NH, Gly), 6.99, 6.96 (dd, J = 8.6, 4.9 Hz, 2 H, o-H's, Tyr), 6.88, 6.85 (dd, J = 8.6, 5.3 Hz, 2 H, m-H's, Tyr), 5.97 (br. s, 1 H, OH, Tyr), 5.94-5.89 (m, 1 H, α-H, Ala), 5.68-5.64 (q, J = 7.85 Hz, 1 H, α-H, Tyr), 5.29 (d, J = 5.5 Hz, 2 H, α-H's, Gly), 3.89 (t, 1 H, J = 6.9 Hz, α-H, Pro), 3.81 (t, J = 8.6 Hz, 1 H, α-H, Ile), 3.25 (t, 2 H, J = 7.15 Hz, δ-H, Pro), 2.68-2.64 (m, 2 H, β-H's, Pro), 2.37 (d, J = 5.5 Hz, 2 H, β-H's, Tyr), 1.85-1.79 (m, 2 H, γ-H's, Pro), 1.63-1.58 (m, 2 H, γ-H's, Ile), 1.53-1.48 (m, 1 H, β-H's, Ile), 1.44 (d, 3 H, J = 5.85 Hz, β-H's, Ala), 1.01 (d, J = 5.9 Hz, 3 H, 2γ-H's, Ile), 0.96 (t, 3 H, J = 7.8 Hz, δ-H's, Ile); ¹³C NMR (CDCl₃): δ = 173.3 (C=O, Ala), 172.1 (C=O, Tyr), 170.7 (C=O, Ile), 170.2 (C=O, Pro), 163.5 (C=O, Gly), 152.6 (p-C, Tyr), 133.7 (γ-C, Tyr), 129.2 (2 C, α-C's, Tyr), 127.9 (2 C, m-C's, Tyr), 59.0, 56.2, 53.7 (3 C, α-C's, Ile, Pro and Tyr), 49.2, 48.7 (2 C, α-C's, Gly and Ala), 48.0 (δ-C, Pro), 39.9, 36.4, 32.7 (3 C, β-C's, Tyr, Ile and Pro), 24.4, 22.8 (2 C, γ-C's, Ile and Pro), 17.8 (β-C, Ala), 16.9 (γ-C, Ile), 10.6 (δ-C, Ile); MS (FAB, 70 eV): m/z (%): 502 (100) [M + 1]+, 474 (14) [502-CO]⁺, 431 (64) [Gly-Pro-Ile-Tyr]⁺, 403 (15) [431-CO]⁺, 389 (38) [Tyr-Ala-Gly-Pro]⁺, 377 (11) [405-CO]⁺, 374 (76) [Pro-Ile-Tyr]⁺, 361 (18) [389-CO]⁺, 348 (59) [Ile-Tyr-Ala]⁺, 346 (15) [374-CO]⁺, 339 (49) [Gly-Pro-Ile]⁺, 320 (16) [348-CO]⁺, 311 (14) [339-CO]⁺, 292 (61) [Tyr-Ala-Gly]⁺, 277 (28) [Ile-Tyr]⁺, 268 (46) [Gly-Pro-Ile]⁺, 240 (13) [268-CO]⁺, 235 (45) [Tyr-Ala]⁺, 211 (39) [Pro-Ile]⁺, 207 (11) [235-CO]⁺, 198 (10) [226-CO]⁺, 183 (16) [211-CO]⁺, 155 (29) [Gly-Pro]⁺, 136 (28) [Tyr immonium ion, C₃H₄NO⁺], 129 (19) [Ala-Gly]⁺, 127 (10) [155-CO]⁺, 107 (10) [C₃H₄O⁺], 93 (13) [C₃H₂O⁺, 86 (21) [Ile immonium ion, C₄H₅NH⁺], 70 (38) [Pro immonium ion, C₄H₅N⁺], 57 (18) [C₄H₄⁺], 44 (18) [Ala immonium ion, CH₄N⁺], 30 (16) [Gly immonium ion, CH₃N⁺], 29 (12) [C₃H₃⁺, 17 (11) [OH]⁺, 15 (24) [CH₃]⁺, C₂H₃N₅S₅O₆ (501): calc. C 59.87, H 7.03, N 13.96; found C 59.88, H 7.05, N 13.95.

Pharmacology

Anthelmintic evaluation

Newly synthesized linear pentapeptide and pentacyclopeptide (V, VI) were subjected to anthelmintic activity studies against three earthworm species Megascolex konkanensis, Pontoscolex corethruses and Eudrilus eugeniae at 2 mg/ml concentration (Garg and Atal, 1963). TWEEN 80 (0.5%) in distilled water was used as control and mebendazole was used as standard drug.

Antibacterial and antifungal evaluation

The synthesized linear pentapeptide and pentacyclopeptide (V, VI) were evaluated for their antimicrobial activity against Gram-positive bacteria Bacillus subtilis, Staphylococcus aureus, the Gram-negative bacteria Pseudomonas.
and elemental analysis. In addition, mass spectra were confirmed by FT-IR, 1H NMR spectroscopy and elemental analysis. In addition, mass spectra and 13C NMR spectroscopy were recorded for the linear and cyclic pentapeptides.

The synthesis of cyclooligopeptide VI was accomplished with 87% yield, and pyridine proved to be an effective base for cyclization of the linear pentapeptide unit. Cyclization of the linear peptide fragment was supported by the disappearance of absorption bands at 1745, 1271 and 1389, 1367 cm$^{-1}$ (C=O$_{\text{ar}}$, C=O$_{\text{tert}}$, ester and C-H$_{\text{def}}$, tert-butyl groups) in IR spectra of compound VI. The formation of the cyclopeptide was further confirmed by the disappearance of singlets at 3.54 and 1.54 ppm corresponding to three protons of the methyl ester group and nine protons of the tert-butyl group of Boc in the 1H NMR spectrum and the disappearance of the singlets at 156.2, 79.8 and 52.5, 28.7 ppm corresponding to carbon atoms of ester and tert-butyl groups in the 13C NMR spectrum of compound VI. Furthermore, the 1H NMR and 13C NMR spectra of the synthesized cyclic pentapeptide showed characteristic peaks confirming the presence of all the 35 protons and 25 carbon atoms. The appearance of the pseudomolecular ion peak (M + 1)$^+$ at m/z = 502 corresponding to the molecular formula C$_{25}$H$_{35}$N$_2$O$_6$ in the mass spectrum of VI, along with other fragment ion peaks resulting from cleavage at ‘Pro-Gly’, ‘Gly-Ala’, ‘Tyr-Ile’, ‘Ala-Tyr’ and ‘Ile-Pro’ amide bonds showed the exact sequence of the attachment of all the five amino acid moieties in a chain. In addition, the presence of the immonium ion peaks at m/z = 136 (Tyr), 86 (Ile), 70 (Pro), 44 (Ala) and 30 (Gly) further confirmed all the amino acid moieties in the cyclopeptide structure. Furthermore, the elemental analysis of cyclopeptide VI afforded values with tolerance of ±0.02 strictly in accordance with the molecular composition.

Biological activity

The anthelmintic activity results for cyclopeptide VI against three earthworm species *M. konkanensis*, *P. corethruses* and *E. eugeniea* at 2 mg/ml concentration using Garg’s method are compiled in Table I. Moreover, antimicrobial activity results for compound VI against four bacteria *B. subtilis* and *S. aureus*, *P. aeruginosa* and *K. pneumonia*, cutaneous fungi *M. audouinii* and *T. mentagrophytes*, diomorphic fungi *C. albicans* and *A. niger* by disk diffusion method, are tabulated in Table II. Comparison of antifungal activity data suggested that cyclooligopeptide VI possessed potent...
Figure 1. Synthetic route to the pentacyclopeptide (fanlizhicyclopeptide B) (VI)

Table 1. Anthelmintic evaluation data for the linear and cyclopentapeptide (V, VI)

Compound	Earthworm species	M. konk.	P. core.	E. euge.		
	Mean paralyzing time (min)	Mean death time (min)	Mean paralyzing time (min)	Mean death time (min)	Mean paralyzing time (min)	Mean death time (min)
V	14.54 ± 0.20	22.58 ± 0.44	18.26 ± 0.42	28.55 ± 0.11	13.08 ± 0.34	24.38 ± 0.49
VI	10.16 ± 0.33	16.49 ± 0.52	13.46 ± 0.26	22.27 ± 0.17	10.49 ± 0.26	19.39 ± 0.41
Control *	–	–	–	–	–	–
Mebendazole	13.63 ± 0.33	22.43 ± 0.27	17.56 ± 0.49	29.49 ± 0.15	13.50 ± 0.39	24.07 ± 0.44

* Data are given as mean ± S.D. (n = 3); * Tween 80 (0.5%) in distilled water

bioactivity against dermatophytes *M. audouinii* and *T. mentagrophytes* with MIC values of 6 µg/ml when compared to the reference drug griseofulvin. From the analysis of anthelmintic activity data, it is observed that the cyclooligopeptide VI displayed remarkable activity against all three earthworm species *M. konkanensis*, *P. corethruses* and *E. eugeniea*, in
comparison to standard drug mebendazole. Moreover, a moderate level of activity was observed against the Gram-negative bacteria *P. aeruginosa* and *Klebsiella pneumonia* for the newly synthesized cyclopeptide, in comparison to the standard drug gatifloxacin. However, compound VI displayed no significant activity against neither Gram-positive bacteria nor pathogenic *C. albicans* and *A. niger*. In addition, the analysis of the pharmacological activity data revealed that pentacyclopentapeptide VI displayed a higher bioactivity against pathogenic microbes and earthworms than its linear form V, which is due to fact that cyclization of peptides reduces the degree of freedom for each constituent within the ring and thus substantially leads to reduced flexibility, increased potency and selectivity of cyclic peptide.

Table II. Antimicrobial evaluation data for linear and cyclopentapeptide (V, VI)

Compound	Bacterial strains	Fungal strains						
	Diameter of zone of inhibition (mm)							
B. sub.	S. aur.	P. aeru.	K. pneu.	C. alb.	M. audo.	A. niger	T. menta.	
V	–	15(6)	18(6)	10(25)	16(6)	–	19(6)	
VI	–	11(25)	19(6)	21(6)	14(25)	22(6)	–	23(6)
Control*	–	–	–	–	–	–	–	–
Gatifloxacin	18(12.5)†	27(6)	23(6)	25(6)	–	–	–	–
Griseofulvin	–	–	–	–	–	–	–	–

B. sub.: *Bacillus subtilis*, S. aur.: *Staphylococcus aureus*, P. aeru.: *Pseudomonas aeruginosa*, K. pneu.: *Klebsiella pneumonia*, C. alb.: *Candida albicans*, M. audo.: *Microsporum audouinii*, A. niger: *Aspergillus niger*, T. menta.: *Trichophyton mentagrophytes*

† Values in bracket are MIC values (μg/ml) * DMF / DMSO

CONCLUSION

The first total successful synthesis of the natural peptide fanlizhicyclopeptide B (VI) was accomplished with good yield via coupling reactions utilizing different carbodiimides. The DIPC / NMM coupling method proved to be yield-effective, in comparison to methods utilizing EDC-HCl / DIPC and TEA, providing 8% additional yield. The pentafluorophenyl ester was shown to be better for the activation of the acid functionality of the linear pentapeptide unit. Pyridine was found to be a good base for the intramolecular cyclization of the linear peptide fragment in comparison to TEA or NMM. The synthesized pentacyclopentapeptide displayed potent anthelmintic activity and effectiveness against pathogenic dermatophytes. In addition, Gram-negative bacteria were found to be more sensitive than Gram-positive bacteria towards the newly synthesized peptide. On passing toxicity tests, pentacyclopentapeptide VI may prove as a good candidate for clinical studies and can be a new anti-dermatophyte and anthelmintic drug of future.

ACKNOWLEDGEMENT

The authors are thankful to Faculty of Pharmacy, Jamia Hamdard University, Jamia Hamdard, Delhi, India for spectral analysis. Also, great thanks to C.P.C.R.I., Kasaragod, Kerala, India for providing earthworms for testing anthelmintic activity.

REFERENCES

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. *Am. J. Clin. Path.* 1966;45(4):493-6.

Bodansky M, Bodansky A. *The Practice of Peptide Synthesis*. Springer-Verlag: New York, 1984; pp. 78-143.

Dahiya R. Synthesis, characterization and biological evaluation of a glycine-rich peptide - chimerolacyclopeptide E. *J. Chil. Chem. Soc.* 2007a;52(3): 1224-9.

Dahiya R. Synthesis of a phenylalanine-rich peptide as potential anthelmintic and cytotoxic agent. *Acta Pol. Pharm.* 2007b;64(6):509-16.

Dahiya R. Synthetic and pharmacological studies on longicaycin in *A. Pak. J. Pharm. Sci.* 2007c;20(4):317-23.

Dahiya R. Synthesis, spectroscopic and biological investigation of cyclic octapeptide: chimerolacyclopeptide G. *Turk. J. Chem.* 2008a;32(2):205-15.

Dahiya R. Total synthesis and biological potential of psammosilinien A. *Arch. Pharm. Chem. Life Sci.* 2008b; 341(8):502-9. [DOI: 10.1002/ardp.200800006]

Dahiya R. Synthetic studies on a cyclic hexapeptide from *Dianthus superbus*. *Chem. Pap.* 2008c;62(5):527-35. [DOI: 10.2478/s11696-008-0052-9]

Dahiya R. Synthesis and in vitro cytotoxic activity of a natural peptide of plant origin. *J. Iran. Chem. Soc.* 2008d; 5(3):445-52. [DOI: 10.1007/BF03246001]

Dahiya R. Synthesis, characterization and antimicrobial studies on some newer imidazole analogs. *Sci. Pharm.* 2008e;76(2):217-39. [DOI:10.3797/scipharm.0803-04]

Dahiya R. Cyclopolypeptides with antifungal interest. *Coll. Pharm. Commun.* 2013;1(1):1-15.
Dahiya R, Goutam H. Total synthesis and antimicrobial activity of a natural cyclopeptide from marine-origin. *Mar. Drugs* 2010a;8(8):2384-94. [DOI: 10.3390/md8082384]

Dahiya R, Goutam H. Synthetic and pharmacological studies on a natural cyclopeptide from Gypsophila arabica. *J. Med. Plant. Res.* 2010b;4(19):1960-6. [DOI: 10.5897/JMPR10.525]

Dahiya R, Goutam H. Toward the first total synthesis of gypsy D: A natural cyclopeptide from Gypsophila arabica. *Am. J. Sci. Res.* 2010c;11:150-8.

Dahiya R, Goutam H. Toward the synthesis and biological screening of a cyclotetrapeptide from marine bacteria. *Mar. Drugs* 2011a;9(1):71-81. [DOI: 10.3390/md9010071]

Dahiya R, Goutam H. Synthesis, characterization and biological evaluation of cyclolemonatin D. * Afr. J. Pharm. Pharmacol.* 2011b;5(3):447-53. [DOI: 10.5897/AJPP10.384]

Dahiya R, Goutam H. Solution phase synthesis and bioevaluation of cyclohexapeptide B. *Bull. Pharm. Res.* 2011c;1(1):1-10.

Dahiya R, Goutam H. Synthesis and pharmacological studies on a cyclooligopeptide from marine bacteria. *Chin. J. Chem.* 2011d;29(9):1911-6. [DOI: 10.1002/cjoc.2011180333]

Dahiya R, Kaur K. Synthetic and biological studies on natural cyclic heptapeptide: segetalin C. *Arch. Pharm. Res.* 2007a;30(11):1380-6. [DOI: 10.1007/BF02977560]

Dahiya R, Kaur K. Synthetic and pharmacological investigation of segetalin C as a novel antifungal and cytotoxic agent. *Arzneim. Forsch.* 2008a;58(1):29-34. [DOI: 10.1055/s-0031-1296463]

Dahiya R, Kaur R. Synthesis and anthelmintic potential of a novel series of 2-mercaptobenzimidazolopetides. *Biosci. Biotech. Res. Asia* 2007b;4(2):561-6.

Dahiya R, Kaur R. Synthesis of some 1,2,5-trisubstituted benzimidazole analogs as possible anthelmintic and antimicrobial agents. *Int. J. Biol. Chem. Sci.* 2008b;2(1):1-13.

Dahiya R, Kumar A. Synthesis and biological activity of a potent analog of natural cyclopeptide. *Int. J. Nat. Appl. Sci.* 2007;3(4):433-40.

Dahiya R, Kumar A. Synthetic and biological studies on a cyclopolyopeptide of plant origin. *J. Zhejiang Univ. B* 2008;9(5):391-400. [DOI: 10.1631/jzus.B072001]

Dahiya R, Kumar A, Gupta R. Synthesis, cytotoxic and antimicrobial screening of a proline-rich cyclopolyopeptide. *Chem. Pharm. Bull. (Tokyo)* 2009a;57(2):214-7. [DOI: 10.1248/cpb.57.214]

Dahiya R, Kumar A, Yadav R. Synthesis and biological activity of peptide derivatives of iodoquinazinoliones/ nitroimidazoles. *Molecules* 2008;13(4):958-76. [DOI: 10.3390/molecules13040958]

Dahiya R, Maheshwari M, Kumar A. Toward the synthesis and biological evaluation of hirutide. *Monatsh. Chem.* 2009b;140(1):121-7. [DOI: 10.1007/s00706-008-0052-2]

Dahiya R, Maheshwari M, Yadav R. Synthetic, cytotoxic and antimicrobial activity studies on annonumricatin B. *Z. Naturforsch.* 2009c;64b(2):237-44.

Dahiya R, Mourya R. Synthetic studies on novel nitroquinazolinone analogs with antimicrobial potential. *Bull. Pharm. Res.* 2013;3(2):51-7.

Dahiya R, Mourya R. Synthesis and antimicrobial screening of some novel halogenated phenoxyacetyle amino acid and peptides. *Bull. Pharm. Res.* 2012;2(2):56-65.

Dahiya R, Pathak D. Cyclic peptides: new hope for antifungal therapy. *Egypt. Pharm. J.* (NRC) 2006a;5(2):189-99.

Dahiya R, Pathak D. Synthetic studies on a natural cyclic tetrapeptide - halolitoralin C. *J. Chem. Pharm. Res.* 2006b;5(3):69-73.

Dahiya R, Pathak D. Synthesis, characterization and biological evaluation of halolitoralin B - A natural cyclic peptide. *Asian J. Chem.* 2007a;19(2):1499-505.

Dahiya R, Pathak D. First total synthesis and biological evaluation of halolitoralin A. *J. Serb. Chem. Soc.* 2007b;72(2):101-7. [DOI: 10.2298/JSC07021010D]

Dahiya R, Pathak D. Synthetic studies on novel benzimidazolopetides with antimicrobial, cytotoxic and anthelmintic potential. *Eur. J. Med. Chem.* 2007c;42(6):772-8. [DOI: 10.1016/j.ejmech.2006.11.015]

Dahiya R, Pathak D. Hirojama B. Bhatt S. First total synthesis and biological screening of hymenamide E. *Acta Pharm.* 2006;56(4):399-415.

Dahiya R, Sharma RD. Synthesis and bioactivity of a novel cyclic hexapeptide from Stellaria delavayi. *Eur. J. Sci. Res.* 2008;21(2):277-87.

Dahiya R, Singh S. Synthesis, characterization, and biological activity studies on fanilizicyclopentapeptide A. *Iran. J. Pharm. Res.* 2017a;16(3):1178-86.

Dahiya R, Singh S. Synthesis, characterization and biological screening of diadrine A. *Acta Pol. Pharm.* 2017b;74(3):873-80.

Dahiya R, Singh S. Toward the synthesis and pharmacological screening of a natural cyclopeptide from plant origin. *Nat. Prod. Commun.* 2017c;12(3):379-83.

Dahiya R, Singh S. First total synthesis and biological potential of a heptacyclopentapeptide of plant origin. *Chin. J. Chem.* 2016;34(11):1158-64. [DOI: 10.1002/cjoc.201600419]

Dahiya R, Singh S, Sharma A, Chennupati SV, Maharaj S. First total synthesis and biological screening of a proline-rich cyclopeptide from a caribbean marine sponge. *Mar. Drugs* 2016;14(12):228. [DOI: 10.3390/md14120228]

Fang WY, Dahiya R, Qin HL, Mourya, R.; Maharaj, S. Natural proline-rich cyclopeptide from marine organisms: Chemistry, synthetic methodologies and biological status. *Mar. Drugs* 2016;14(11):194. [DOI: 10.3398/md14110194]

Garg LC, Atal CK. Anthelmintic activity of Myrsine africana. *Indian J. Pharmacol.* 1963;59:240-5.

Kumar S, Dahiya R, Khokra SL, Mourya R, Chennupati SV, Maharaj S. Total synthesis and pharmacological investigation of cyclohexapeptide A. *Molecules* 2017;22(6):682. [DOI: 10.3390/molecules22060682]

Kumari R, Kotecha M. A review on the standardization of herbal drugs. *Int. J. Pharm. Sci. Res.* 2016;7(2):97-106.

Kunle OF, Egharevba HO, Ahmadu PO. Standardization of herbal medicines - a review. *Int. J. Biodiv. Conserv.* 2012;4(3):101-12. [DOI: 10.5897/IJBC11.163]

Morita H, Gonda A, Takeya K, Itokawa H. Cycloleunuripeptides A, B and C: three new proline-rich cyclic nonapeptides from *Leonurus heterophyllus*. *Bioorg. Med. Chem. Lett.* 1999;6(7):767-70. [DOI: 10.1016/0960-894X(99)00105-9]

Morita H, Gonda A, Takey aK, Itokawa H, Hirano T, Oka K, Shirota O. Solution state conformation of an immuno-suppressive cyclic dodecapeptide, cycloleunurinin. *Tetrahedron* 1997;53(22):7469-7478. [DOI: 10.1016/S0040-4020(97)00426-2]

Morita H, Iizuka T, Gonda A, Itokawa H, Takeya K. Cycloleunuripeptides E and F, cyclic nonapeptides from *Leonurus heterophyllus*. *J. Nat. Prod.* 2006;69(5):839-41.
Noh HJ, Hwang D, Lee ES, Hyun JW, Yi PH, Kim GS, Lee SE, Pang C, Park YJ, Chung KH, Kim GD, Kim KH. Anti-inflammatory activity of a new cyclic peptide, citrusin XI, isolated from the fruits of Citrus unshiu. *J. Ethnopharmacol.* 2015;163:106-12. [DOI: 10.1016/j.jep.2015.01.024]

Pathak D, Dahiya R. Cyclic peptides as novel antineoplastic agents: a review. *J. Sci. Pharm.* 2003;4(4):125-31.

Picur B, Lisowski M, Siemion IZ. A new cyclolinopeptide containing nonproteinaceous amino acid N-methyl-4-aminoproline. *Lett. Pept. Sci.* 1998;5(2-3):183-7.

Tan NH, Zhou J. Plant cyclopeptides. *Chem. Rev.* 2006;106(3):840-95. [DOI: 10.1021/cr040699h]

Wu P, Wu M, Xu L, Xie H, Wei X. Anti-inflammatory cyclopeptides from exocarps of sugar-apples. *Food Chem.* 2014;152:23-8. [DOI: 10.1016/j.foodchem.2013.11.100]
