Invariant chiral differential operators
and the \mathcal{W}_3 algebra

Andrew R. Linshaw

ABSTRACT. Attached to a vector space V is a vertex algebra $S(V)$ known as the $\beta\gamma$-system or algebra of chiral differential operators on V. It is analogous to the Weyl algebra $D(V)$, and is related to $D(V)$ via the Zhu functor. If G is a connected Lie group with Lie algebra \mathfrak{g}, and V is a linear G-representation, there is an action of the corresponding affine algebra on $S(V)$. The invariant space $S(V)^{\mathfrak{g}[t]}$ is a commutant subalgebra of $S(V)$, and plays the role of the classical invariant ring $D(V)^G$. When G is an abelian Lie group acting diagonally on V, we find a finite set of generators for $S(V)^{\mathfrak{g}[t]}$, and show that $S(V)^{\mathfrak{g}[t]}$ is a simple vertex algebra and a member of a Howe pair. The Zamolodchikov \mathcal{W}_3 algebra with $c = -2$ plays a fundamental role in the structure of $S(V)^{\mathfrak{g}[t]}$.

Contents

1. Introduction ... 1
 1.1. A vertex algebra analogue of $D(X)^G$ 2
 1.2. Acknowledgements ... 5
2. Invariant differential operators ... 5
 2.1. The case where \mathfrak{g} is abelian 6
3. Vertex algebras .. 9
 3.1. The commutant construction .. 10
 3.2. The Zhu functor .. 11
4. The Friedan-Martinec-Shenker bosonization 14
 4.1. Bosonization of fermions .. 14
 4.2. Bosonization of bosons ... 15
5. W algebras .. 15
 5.1. The representation theory of $W_{3,-2}$ 17
6. The commutant algebra $S(V)^{\Theta^+}$ for $\mathfrak{g} = gl(1)$ and $V = \mathbb{C}$.. 18
 6.1. The map $\pi: S^{\Theta^+} \to D^\mathfrak{g}$ 21
7. $S(V)^{\Theta^+}$ for abelian Lie algebra actions 22
 7.1. The map $\pi: S(V)^{\Theta^+} \to D(V)^\mathfrak{g}$ 28
 7.2. A vertex algebra bundle over the Grassmannian $Gr(m,n)$ 29
8. Vertex algebra operations and transvectants on $D(V)^\mathfrak{g}$ 29

1. Introduction

Let G be a connected, reductive Lie group acting algebraically on a smooth variety X. Throughout this paper, our base field will always be \mathbb{C}. The ring $D(X)^G$ of invariant
differential operators on X has been much studied in recent years. In the case where X is the homogeneous space G/K, $D(X)^G$ was originally studied by Harish-Chandra in order to understand the various function spaces attached to X [8][9]. In general, $D(X)^G$ is not a homomorphic image of the universal enveloping algebra of a Lie algebra, but it is believed that $D(X)^G$ shares many properties of enveloping algebras. For example, the center of $D(X)^G$ is always a polynomial ring [12]. In the case where G is a torus, the structure and representation theory of the rings $D(X)^G$ were studied extensively in [16], but much less is known about $D(X)^G$ when G is nonabelian. The first step in this direction was taken by Schwarz in [17], in which he considered the special but nontrivial case where $G = SL(3)$ and X is the adjoint representation. In this case, he found generators for $D(X)^G$, showed that $D(X)^G$ is an FCR algebra, and classified its finite-dimensional modules.

1.1. A vertex algebra analogue of $D(X)^G$

In [15], Malikov-Schechtman-Vaintrob introduced a sheaf of vertex algebras on any smooth variety X known as the chiral de Rham complex. For an affine open set $V \subset X$, the algebra of sections over V is just a copy of the $bc\beta\gamma$-system $S(V) \otimes \mathcal{E}(V)$, localized over the function ring $\mathcal{O}(V)$. A natural question is whether there exists a subsheaf of “chiral differential operators” on X, whose space of sections over V is just the (localized) $\beta\gamma$-system $S(V)$. For general X, there is a cohomological obstruction to the existence of such a sheaf, but it does exist in certain special cases such as affine spaces and certain homogeneous spaces [15][7].

In this paper, we focus on the case where X is the affine space $V = \mathbb{C}^n$, and we take $S(V)$ to be our algebra of chiral differential operators on V. $S(V)$ is related to $D(V)$ via the Zhu functor, which attaches to every vertex algebra \mathcal{V} an associative algebra $A(\mathcal{V})$ known as the Zhu algebra of \mathcal{V}, together with a surjective linear map $\pi_{Zh}: \mathcal{V} \to A(\mathcal{V})$.

If V carries a linear action of a group G with Lie algebra \mathfrak{g}, the corresponding representation $\rho: \mathfrak{g} \to \text{End}(V)$ induces a vertex algebra homomorphism

$$\mathcal{O}(\mathfrak{g}, B) \to S(V). \quad (1.1)$$

Here $\mathcal{O}(\mathfrak{g}, B)$ is the current algebra of \mathfrak{g} associated to the bilinear form $B(\xi, \eta) = -\text{Tr}(\rho(\xi)\rho(\eta))$ on \mathfrak{g}. Letting Θ denote the image of $\mathcal{O}(\mathfrak{g}, B)$ inside $S(V)$, the commutant $\text{Com}((\Theta, S(V)))$, which we denote by $S(V)^{\Theta^+}$, is just the invariant space $S(V)^{\Theta^+}$.

2
Accordingly, we call \(S(V)^\Theta^+ \) the algebra of invariant chiral differential operators on \(V \).

There is a commutative diagram

\[
\begin{array}{ccc}
S(V)^\Theta^+ & \hookrightarrow & S(V) \\
\pi \downarrow & & \pi_{Zh} \downarrow \\
D(V)^G & \hookrightarrow & D(V)
\end{array}
\] (1.2)

Here the horizontal maps are inclusions, and the map \(\pi \) on the left is the restriction of the Zhu map on \(S(V) \) to the subalgebra \(S(V)^\Theta^+ \). In general, \(\pi \) is not surjective, and \(D(V)^G \) need not be the Zhu algebra of \(S(V)^\Theta^+ \).

For a general vertex algebra \(V \) and subalgebra \(A \), the commutant \(Com(A, V) \) was introduced by Frenkel-Zhu in [4], generalizing a previous construction in representation theory [10] and conformal field theory [6] known as the coset construction. We regard \(V \) as a module over \(A \) via the left regular action, and we regard \(Com(A, V) \), which we often denote by \(V^A^+ \), as the invariant subalgebra. Finding a set of generators for \(V^A^+ \), or even determining when it is finitely generated as a vertex algebra, is generally a non-trivial problem. It is also natural to study the double commutant \(Com(V^A^+, V) \), which always contains \(A \). If \(A = Com(V^A^+, V) \), we say that \(A \) and \(V^A^+ \) form a Howe pair inside \(V \).

Since

\[
Com(Com(V^A^+, V), V) = V^A^+,
\]
a subalgebra \(B \) is a member of a Howe pair if and only if \(B = V^A^+ \) for some \(A \).

Here are some natural questions one can ask about \(S(V)^\Theta^+ \) and its relationship to \(D(V)^G \).

Question 1.1. When is \(S(V)^\Theta^+ \) finitely generated as a vertex algebra? Can we find a set of generators?

Question 1.2. When do \(S(V)^\Theta^+ \) and \(\Theta \) form a Howe pair inside \(S(V) \)? In the case where \(G = SL(2) \) and \(V \) is the adjoint module, this question was answered affirmatively.
in [13].

Question 1.3. What are the vertex algebra ideals in $S(V)^{\Theta+}$, and when is $S(V)^{\Theta+}$ a simple vertex algebra?

Question 1.4. When is $S(V)^{\Theta+}$ a conformal vertex algebra?

Question 1.5. When is $\pi : S(V)^{\Theta+} \to D(V)^G$ surjective? More generally, describe $\text{Im}(\pi)$ and $\text{Coker}(\pi)$.

These questions are somewhat outside the realm of classical invariant theory because the Lie algebra $g[t]$ is both infinite-dimensional and non-reductive. Moreover, when G is nonabelian, $S(V)$ need not decompose into a sum of irreducible $\mathcal{O}(g, B)$-modules. The case where G is simple and V is the adjoint module is of particular interest to us, since in this case $S(V)^{\Theta+}$ is a subalgebra of the complex $(\mathcal{W}(g)_{bas}, d)$ which computes the chiral equivariant cohomology of a point [14].

In this paper, we focus on the case where G is an abelian group acting faithfully and diagonalizably on V. This is much easier than the general case because $\mathcal{O}(g, B)$ is then a tensor product of Heisenberg vertex algebras, which act completely reducibly on $S(V)$. For any such action, we find a finite set of generators for $S(V)^{\Theta+}$, and show that $S(V)^{\Theta+}$ is a simple vertex algebra. Moreover, $S(V)^{\Theta+}$ and Θ always form a Howe pair inside $S(V)$. For generic actions, we show that $S(V)^{\Theta+}$ admits a k-parameter family of conformal structures where $k = \dim V - \dim g$, and we find a finite set of generators for $\text{Im}(\pi)$. Finally, we show that $\text{Coker}(\pi)$ is always a finitely generated module over $\text{Im}(\pi)$ with generators corresponding to central elements of $D(V)^G$. The Zamolodchikov \mathcal{W}_3 algebra of central charge $c = -2$ plays an important role in the structure of $S(V)^{\Theta+}$. Our description relies on the fundamental papers [18] [19] of W. Wang, in which he classified the irreducible modules of $\mathcal{W}_{3,-2}$.

In the case where G is nonabelian, very little is known about the structure of $S(V)^{\Theta+}$, and the representation-theoretic techniques used in the abelian case cannot be expected to
work. In a separate paper, we will use tools from commutative algebra to describe $S(V)_{\Theta^+}$ in the special cases where G is one of the classical Lie groups $SL(n)$, $SO(n)$, or $Sp(2n)$, and V is a direct sum of copies of the standard representation.

One hopes that the vertex algebra point of view can also shed some light on the classical algebras $D(V)^G$. For example, the vertex algebra products on $S(V)$ induce a family of bilinear operations \ast_k, $k \geq -1$ on $D(V)^G$, which coincide with classical operations known as transvectants. $D(V)^G$ is generally not simple as an associative algebra, but in the case where G is an abelian group acting diagonalizably on V, $D(V)^G$ is always simple as a $*$-algebra in the obvious sense.

1.2. Acknowledgements

I thank B. Lian for helpful conversations and for suggesting the Friedan-Martinec-Shenker bosonization as a tool in studying commutant subalgebras of $S(V)$. I also thank A. Knutson, G. Schwarz, and N. Wallach for helpful discussions about classical invariant theory, especially the theory of invariant differential operators.

2. Invariant differential operators

Fix a basis $\{x_1, \ldots, x_n\}$ for V and a corresponding dual basis $\{x'_1, \ldots, x'_n\}$ for V^*. The Weyl algebra $D(V)$ is generated by the linear functions x'_i and the first-order differential operators $\frac{\partial}{\partial x'_i}$, which satisfy $[\frac{\partial}{\partial x'_i}, x'_j] = \delta_{i,j}$. Equip $D(V)$ with the Bernstein filtration

$$D(V)_{(0)} \subset D(V)_{(1)} \subset \cdots,$$

defined by $(x'_1)^{k_1} \cdots (x'_n)^{k_n}(\frac{\partial}{\partial x'_1})^{l_1} \cdots (\frac{\partial}{\partial x'_n})^{l_n} \in D(V)_{(r)}$ if $k_1 + \cdots + k_n + l_1 + \cdots + l_n \leq r$. Given $\omega \in D(V)_{(r)}$ and $\nu \in D(V)_{(s)}$, $[\omega, \nu] \in D(V)_{(r+s-2)}$, so that

$$grD(V) = \bigoplus_{r>0} D(V)_{(r)}/D(V)_{(r-1)} \cong Sym(V \oplus V^*).$$

We say that $deg(\alpha) = d$ if $\alpha \in D(V)_{(d)}$ and $\alpha \notin D(V)_{(d-1)}$.

5
Let G be a connected Lie group with Lie algebra \mathfrak{g}, and let V be a linear representation of G via $\rho : G \to Aut(V)$. Then G acts on $\mathcal{D}(V)$ by algebra automorphisms, and induces an action $\rho^* : \mathfrak{g} \to Der(\mathcal{D}(V))$ by derivations of degree zero. Since G is connected, the invariant ring $\mathcal{D}(V)^G$ coincides with $\mathcal{D}(V)^{\mathfrak{g}}$, where

$$\mathcal{D}(V)^{\mathfrak{g}} = \{ \omega \in \mathcal{D}(V) | \rho^*(\xi)(\omega) = 0, \forall \xi \in \mathfrak{g} \}.$$

We will usually work with the action of \mathfrak{g} rather than G, and for greater flexibility, we do not assume that the \mathfrak{g}-action comes from an action of a reductive group G.

The action of \mathfrak{g} on $\mathcal{D}(V)$ can be realized by inner derivations: there is a Lie algebra homomorphism

$$\tau : \mathfrak{g} \to \mathcal{D}(V), \quad \xi \mapsto -\sum_{i=1}^{n} x_i^\prime \rho^*(\xi)(\frac{\partial}{\partial x_i^\prime}).$$

(2.3)

$\tau(\xi)$ is just the linear vector field on V generated by ξ, so $\xi \in \mathfrak{g}$ acts on $\mathcal{D}(V)$ by $[\tau(\xi), -]$. Clearly τ extends to a map $\mathfrak{U}\mathfrak{g} \to \mathcal{D}(V)$, and

$$\mathcal{D}(V)^{\mathfrak{g}} = Com(\tau(\mathfrak{U}\mathfrak{g}), \mathcal{D}(V)).$$

Since \mathfrak{g} acts on $\mathcal{D}(V)$ by derivations of degree zero, (2.1) restricts to a filtration $\mathcal{D}(V)_{(0)}^{\mathfrak{g}} \subset \mathcal{D}(V)_{(1)}^{\mathfrak{g}} \subset \cdots$ on $\mathcal{D}(V)^{\mathfrak{g}}$, and $gr(\mathcal{D}(V)^{\mathfrak{g}}) \cong gr(\mathcal{D}(V))^{\mathfrak{g}} \cong Sym(V \oplus V^*)^{\mathfrak{g}}$.

2.1. The case where \mathfrak{g} is abelian

Our main focus is on the case where \mathfrak{g} is the abelian Lie algebra $\mathfrak{C}^m = gl(1) \oplus \cdots \oplus gl(1)$, acting diagonally on V. Let $R(V)$ be the \mathbb{C}-vector space of all diagonal representations of \mathfrak{g}. Given $\rho \in R(V)$ and $\xi \in \mathfrak{g}$, $\rho(\xi)$ is a diagonal matrix with entries a_1^ξ, \ldots, a_n^ξ, which we regard as a vector $a^\xi = (a_1^\xi, \ldots, a_n^\xi) \in \mathbb{C}^n$. Let $A(\rho) \subset \mathbb{C}^n$ be the subspace spanned by $\{ \rho(\xi) | \xi \in \mathfrak{g} \}$.

The action of $GL(m)$ on \mathfrak{g} induces a natural action of $GL(m)$ on $R(V)$, defined by

$$(g \cdot \rho)(\xi) = \rho(g^{-1} \cdot \xi)$$

(2.4)

for all $g \in GL(m)$. Clearly $A(\rho) = A(g \cdot \rho)$ for all $g \in GL(m)$. Note that $dim Ker(\rho) = dim Ker(g \cdot \rho)$ for all $g \in GL(m)$, so in particular $GL(m)$ acts on the dense open set
\(R^0(V) = \{\rho \in R(V) | \ker(\rho) = 0\}\). The correspondence \(\rho \mapsto A(\rho)\) identifies \(R^0(V)/GL(m)\) with the Grassmannian \(Gr(m, n)\) of \(m\)-dimensional subspaces of \(\mathbb{C}^n\).

Given \(\rho \in R(V)\), \(\mathcal{D}(V)^g = \mathcal{D}(V)^{g'}\) where \(g' = g/Ker(\rho)\), so we may assume without loss of generality that \(\rho \in R^0(V)\). We denote \(\mathcal{D}(V)^g\) by \(\mathcal{D}(V)^g_{\rho}\) when we need to emphasize the dependence on \(\rho\). Given \(\omega \in \mathcal{D}(V)\), the condition \(\rho^*(\xi)(\omega) = 0\) for all \(\xi \in g\) is equivalent to the condition that \(\rho^*(g \cdot \xi)(\omega) = 0\) for all \(\xi \in g\), so it follows that \(\mathcal{D}(V)^g_{\rho} = \mathcal{D}(V)^g_{g \cdot \rho}\) for all \(g \in GL(m)\). Hence the family of algebras \(\mathcal{D}(V)^g_{\rho}\) is parametrized by the points \(A(\rho) \in Gr(m, n)\).

Fix \(\rho \in R^0(V)\), and choose a basis \(\{\xi^1, \ldots, \xi^m\}\) for \(g\). Let \(a^i = (a^i_1, \ldots, a^i_n) \in \mathbb{C}^n\) be the vectors corresponding to the diagonal matrices \(\rho(\xi^i)\), and let \(A = A(\rho)\) be the subspace spanned by these vectors. The map \(\tau : g \rightarrow \mathcal{D}(V)\) is defined by

\[
\tau(\xi^i) = -\sum_{j=1}^{n} a^i_j x'_j \frac{\partial}{\partial x'_j}.
\] (2.5)

The Euler operators \(\{e_j = x'_j \frac{\partial}{\partial x'_j} | j = 1, \ldots, n\}\) lie in \(\mathcal{D}(V)^g\), and we denote the polynomial algebra \(\mathbb{C}[e_1, \ldots, e_n]\) by \(E\).

For each \(j = 1, \ldots, n\) and \(d \in \mathbb{Z}\), define \(v^d_j \in \mathcal{D}(V)\) by

\[
v^d_j = \begin{cases}
(\frac{\partial}{\partial x'_j})^{-d} & d < 0 \\
1 & d = 0 \\
(x'_j)^d & d > 0
\end{cases}
\] (2.6)

Let \(\mathbb{Z}^n \subset \mathbb{C}^n\) denote the lattice generated by the standard basis, and for each lattice point \(l = (l_1, \ldots, l_n) \in \mathbb{Z}^n\), define

\[
\omega_l = \prod_{j=1}^{n} v^l_{j}.
\] (2.7)

As a module over \(E\),

\[
\mathcal{D}(V) = \bigoplus_{l \in \mathbb{Z}^n} M_l,
\] (2.8)

where \(M_l\) is the free \(E\)-module generated by \(\omega_l\). Moreover, we have

\[
[e_j, \omega_l] = l_j \omega_l,
\] (2.9)
so the \(Z^n \)-grading (2.8) is just the eigenspace decomposition of \(\mathcal{D}(V) \) under the family of diagonalizable operators \([e_j, -] \). In particular, (2.9) shows that
\[
\rho^*(\xi^i)(\omega_l) = \langle \tau(\xi^i), \omega_l \rangle = -\langle l, a^i \rangle \omega_l,
\]
where \(\langle \cdot, \cdot \rangle \) denotes the standard inner product on \(\mathbb{C}^n \). Hence \(\omega_l \) lies in \(\mathcal{D}(V)^\Phi \) precisely when \(l \in A^\perp \), so
\[
\mathcal{D}(V)^\Phi = \bigoplus_{l \in A^\perp \cap Z^n} M_l.
\] (2.11)
For generic actions, the lattice \(A^\perp \cap Z^n \) has rank zero, so \(\mathcal{D}(V)^\Phi = M_0 = E \).

Consider the double commutant \(\text{Com}(\mathcal{D}(V)^\Phi, \mathcal{D}(V)) \), which always contains \(T = \tau(\mathcal{U}g) = \mathbb{C}[\tau(\xi_1), \ldots, \tau(\xi_m)] \). Since \(\text{Com}(E, \mathcal{D}(V)) = E \), we have \(\text{Com}(\mathcal{D}(V)^\Phi, \mathcal{D}(V)) = E \) for generic actions.

Suppose next that \(A^\perp \cap Z^n \) has rank \(r \) for some \(0 < r \leq n - m \). For \(i = 1, \ldots, r \) let \(\{l^i = (l^i_1, \ldots, l^i_n)\} \) be a basis for \(A^\perp \cap Z^n \), and let \(L \) be the \(\mathbb{C} \)-vector space spanned by \(\{l^1, \ldots, l^r\} \). If \(r < n - m \), we can choose vectors \(s^k = (s^k_1, \ldots, s^k_n) \in L^\perp \cap A^\perp \), so that \(\{l^1, \ldots, l^r, s^{r+1}, \ldots, s^{n-m}\} \) is a basis for \(A^\perp \). For \(i = 1, \ldots, r \) and \(k = r + 1, \ldots, n - m \), define differential operators
\[
\phi^i = \sum_{j=1}^n l^i_j e_j, \quad \psi^k = \sum_{j=1}^n s^k_j e_j.
\]
Note that \(\mathbb{C}[e_1, \ldots, e_n] = T \otimes \Psi \otimes \Phi \), where \(\Phi = \mathbb{C}[\phi^1, \ldots, \phi^r] \) and \(\Psi = \mathbb{C}[\psi^{r+1}, \ldots, \psi^{n-m}] \).

Theorem 2.1. \(\text{Com}(\mathcal{D}(V)^\Phi, \mathcal{D}(V)) = T \otimes \Psi \). Hence \(\mathcal{D}(V)^\Phi \) and \(T \) form a pair of mutual commutants inside \(\mathcal{D}(V) \) precisely when \(\Psi = \mathbb{C} \), which occurs when \(A^\perp \cap Z^n \) has rank \(n - m \).

Proof: By (2.9), for any lattice point \(l \in A^\perp \cap Z^n \), and for \(k = r + 1, \ldots, n - m \) we have
\[
[\psi^k, \omega_l] = \langle s^k, l \rangle \omega_l = 0
\]
since \(s^k \in L^\perp \). It follows that \(\Psi \subset \text{Com}(\mathcal{D}(V)^\Phi, \mathcal{D}(V)) \). Hence \(T \otimes \Psi \subset \text{Com}(\mathcal{D}(V)^\Phi, \mathcal{D}(V)) \). Moreover, since \([\phi^i, \omega_l] = \langle l^i, l \rangle \omega_l \) and \(\{l^1, \ldots, l^r\} \) form a basis for \(A^\perp \cap Z^n \), it follows that the variables \(\phi^i \) cannot appear in any element \(\omega \in \text{Com}(\mathcal{D}(V)^\Phi, \mathcal{D}(V)) \). \(\square \)

In the case \(\Psi = \mathbb{C} \), we can recover the action \(\rho \) (up to \(GL(m) \)-equivalence) from the algebra \(\mathcal{D}(V)^\Phi \) by taking its commutant inside \(\mathcal{D}(V) \), but otherwise \(\mathcal{D}(V)^\Phi \) does not determine the action.
3. Vertex algebras

We will assume that the reader is familiar with the basic notions in vertex algebra theory. For a list of references, see page 117 of [13]. We briefly describe the examples and constructions that we need, following the notation in [13].

Given a Lie algebra \mathfrak{g} equipped with a symmetric \mathfrak{g}-invariant bilinear form B, the current algebra $\mathcal{O}(\mathfrak{g}, B)$ is the universal vertex algebra with generators $X^\xi(z), \xi \in \mathfrak{g}$, which satisfy the OPE relations

$$X^\xi(z)X^\eta(w) \sim B(\xi, \eta)(z - w)^{-2} + X^{[\xi, \eta]}(w)(z - w)^{-1}.$$

Given a finite-dimensional vector space V, the $\beta\gamma$-system, or algebra of chiral differential operators $\mathcal{S}(V)$, was introduced in [5]. It is the unique vertex algebra with generators $\beta^x(z), \gamma^{x'}(z)$ for $x \in V, x' \in V^*$, which satisfy

$$\beta^x(z)\gamma^{x'}(w) \sim \langle x', x \rangle (z - w)^{-1}, \quad \gamma^{x'}(z)\beta^y(w) \sim -\langle x', x \rangle (z - w)^{-1},$$

$$\beta^x(z)\beta^y(w) \sim 0, \quad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0. \quad (3.1)$$

Given $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$, $\mathcal{S}(V)$ has a Virasoro element

$$L^\alpha(z) = \sum_{i=1}^n (\alpha_i - 1) : \partial \beta^{x_i}(z)\gamma^{x'_i}(z) : + \alpha_i : \beta^{x_i}(z)\partial \gamma^{x'_i}(z) : \quad (3.2)$$

of central charge $\sum_{i=1}^n (12\alpha_i^2 - 12\alpha_i + 2)$. Here $\{x_1, \ldots, x_n\}$ is any basis for V and $\{x'_1, \ldots, x'_n\}$ is the corresponding dual basis for V^*. An OPE calculation shows that $\beta^{x_i}(z), \gamma^{x'_i}(z)$ are primary of conformal weights $\alpha_i, 1 - \alpha_i$, respectively.

$\mathcal{S}(V)$ has an additional \mathbb{Z}-grading which we call the $\beta\gamma$-charge. Define

$$v(z) = \sum_{i=1}^n : \beta^{x_i}(z)\gamma^{x'_i}(z) : \quad (3.3)$$

The zeroth Fourier mode $v(0)$ acts diagonalizably on $\mathcal{S}(V)$; the $\beta\gamma$-charge grading is just the eigenspace decomposition of $\mathcal{S}(V)$ under $v(0)$. For $x \in V$ and $x' \in V^*$, $\beta^x(z)$ and $\gamma^{x'}(z)$ have $\beta\gamma$-charges -1 and 1, respectively.
There is also an odd vertex algebra $\mathcal{E}(V)$ known as a bc-system, or a semi-infinite exterior algebra, which is generated by $b^x(z)$, $c^{x'}(z)$ for $x \in V$ and $x' \in V^*$, which satisfy

\begin{align*}
 b^x(z)c^{x'}(w) &\sim (x', x)(z - w)^{-1}, & c^{x'}(z)b^x(w) &\sim (x', x)(z - w)^{-1}, \\
 b^x(z)b^y(w) &\sim 0, & c^{x'}(z)c^{y'}(w) &\sim 0.
\end{align*}

$\mathcal{E}(V)$ has an analogous conformal structure $L^\alpha(z)$ for any $\alpha \in \mathbb{C}^n$, and an analogous \mathbb{Z}-grading which we call the bc-charge. Define

\[q(z) = -\sum_{i=1}^{n} : b^{x_i}(z)c^{x'_i}(z) :. \tag{3.4} \]

The zeroth Fourier mode $q(0)$ acts diagonalizably on $S(V)$, and the bc-charge grading is just the eigenspace decomposition of $\mathcal{E}(V)$ under $q(0)$. Clearly $b^x(z)$ and $c^{x'}(z)$ have bc-charges -1 and 1, respectively.

3.1. The commutant construction

Definition 3.1. Let \mathcal{V} be a vertex algebra, and let \mathcal{A} be a subalgebra. The commutant of \mathcal{A} in \mathcal{V}, denoted by $\text{Com}(\mathcal{A}, \mathcal{V})$ or $\mathcal{V}^\mathcal{A}+$, is the subalgebra of vertex operators $v \in \mathcal{V}$ such that $[a(z), v(w)] = 0$ for all $a \in \mathcal{A}$. Equivalently, $a(z) \circ_n v(z) = 0$ for all $a \in \mathcal{A}$ and $n \geq 0$.

We regard \mathcal{V} as a module over \mathcal{A}, and we regard $\mathcal{V}^\mathcal{A}+$ as the invariant subalgebra. If \mathcal{A} is a homomorphic image of a current algebra $\mathcal{O}(\mathfrak{g}, B)$, $\mathcal{V}^\mathcal{A}+$ is just the invariant space $\mathcal{V}^g[t]$. We will always assume that \mathcal{V} is equipped with a weight grading, and that \mathcal{A} is a graded subalgebra, so that $\mathcal{V}^\mathcal{A}+$ is also a graded subalgebra of \mathcal{V}.

Our main example of this construction comes from a representation $\rho : \mathfrak{g} \to \text{End}(V)$ of a Lie algebra \mathfrak{g}. There is an induced vertex algebra homomorphism $\hat{\tau} : \mathcal{O}(\mathfrak{g}, B) \to S(V)$, which is analogous to the map $\tau : \mathfrak{U}\mathfrak{g} \to \mathcal{D}(V)$ given by (2.3). Here B is the bilinear form $B(\xi, \eta) = -\text{Tr}(\rho(\xi)\rho(\eta))$ on \mathfrak{g}. In terms of a basis $\{x_1, \ldots, x_n\}$ for V and dual basis $\{x'_1, \ldots x'_n\}$ for V^*, $\hat{\tau}$ is defined by

\[\hat{\tau}(X^\xi(z)) = \theta^\xi(z) = -\sum_{i=1}^{n} : \gamma^{x'_i}(z)\beta^{\rho(\xi)(x_i)}(z) :. \tag{3.5} \]
Definition 3.2. Let Θ denote the subalgebra $\hat{\tau}(O(g, B)) \subset S(V)$. The commutant algebra $S(V)^{\Theta^+}$ will be called the algebra of invariant chiral differential operators on V.

If $S(V)$ is equipped with the conformal structure L^α given by (3.2), Θ is not a graded subalgebra of $S(V)$ in general. For example, if $g = gl(n)$ and $V = \mathbb{C}^n$, Θ is graded by weight precisely when $\alpha_1 = \alpha_2 = \cdots = \alpha_n$. However, when g is abelian and its action on V is diagonal, $\theta^\xi(z)$ will be homogeneous of weight one for any α. Hence $S(V)^{\Theta^+}$ is also graded by weight, but this grading will depend on the choice of α.

3.2. The Zhu functor

Let V be a vertex algebra with weight grading $V = \bigoplus_{n \in \mathbb{Z}} V_n$. In [21], Zhu introduced a functor that attaches to V an associative algebra $A(V)$, together with a surjective linear map $\pi_{Zh} : V \rightarrow A(V)$. For $a \in V_m$ and $b \in V$, we define

$$a \ast b = \text{Res}_z \left(a(z) \frac{(z+1)^m}{z} b \right), \quad (3.6)$$

and extend \ast by linearity to a bilinear operation $V \otimes V \rightarrow V$. Let $O(V)$ denote the subspace of V spanned by elements of the form

$$a \circ b = \text{Res}_z \left(a(z) \frac{(z+1)^m}{z^2} b \right), \quad (3.7)$$

where $a \in V_m$, and let $A(V)$ be the quotient $V/O(V)$, with projection $\pi_{Zh} : V \rightarrow A(V)$. For $a, b \in V$, $a \sim b$ means $a - b \in O(V)$, and $[a]$ denotes the image of a in $A(V)$. A useful fact which is immediate from (3.6) and (3.7) is that for $a \in V_m$,

$$\partial a \sim ma. \quad (3.8)$$

Theorem 3.3. (Zhu) $O(V)$ is a two-sided ideal in V under the product \ast, and $(A(V), \ast)$ is an associative algebra with unit $[1]$. The assignment $V \mapsto A(V)$ is functorial. If I is a vertex algebra ideal of V, we have

$$A(V/I) \cong A(V)/I, \quad I = \pi_{Zh}(I). \quad (3.9)$$
The main application of the Zhu functor is to study the representation theory of \mathcal{V}, or at least reduce it to a more classical problem. Let $M = \bigoplus_{n \geq 0} M_n$ be a module over \mathcal{V} such that for $a \in \mathcal{V}_m$, $a(n)M_k \subset M_{m+k-n-1}$ for all $n \in \mathbb{Z}$. Given $a \in \mathcal{V}_m$, the Fourier mode $a(m-1)$ acts on each M_k. The subspace M_0 is then a module over $A(\mathcal{V})$ with action $[a] \mapsto a(m-1) \in \text{End}(M_0)$. In fact, $M \mapsto M_0$ provides a one-to-one correspondence between irreducible $\mathbb{Z}_{\geq 0}$-graded \mathcal{V}-modules and irreducible $A(\mathcal{V})$-modules.

A vertex algebra \mathcal{V} is said to be strongly generated by a subset $\{v_i(z)\mid i \in I\}$ if \mathcal{V} is spanned by collection of iterated Wick products

$$\{ : \partial^{k_1}v_{i_1}(z) \cdots \partial^{k_m}v_{i_m}(z) : \mid k_1, \ldots, k_m \geq 0 \}.$$

Lemma 3.4. Suppose that \mathcal{V} is strongly generated by $\{v_i(z)\mid i \in I\}$, which are homogeneous of weights $d_i \geq 0$. Then $A(\mathcal{V})$ is generated as an associative algebra by the collection $\{ \pi_{Zh}(v_i)\mid i \in I \}$.

Proof: Let \mathcal{C} be the algebra generated by $\{ \pi_{Zh}(v_i)\mid i \in I \}$. We need to show that for any vertex operator $\omega \in \mathcal{V}$, we have $\pi_{Zh}(\omega) \in \mathcal{C}$. By strong generation, it suffices to prove this when ω is a monomial of the form

$$: \partial^{k_1}v_{i_1} \cdots \partial^{k_r}v_{i_r} :.$$

We proceed by induction on weight. Suppose first that ω has weight zero, so that $k_1 = \cdots = k_r = 0$ and v_{i_1}, \ldots, v_{i_r} all have weight zero. Note that $v_{i_1} \circ_n (: v_{i_2} \cdots v_{i_r} :)$ has weight $-n - 1$, and hence vanishes for all $n \geq 0$. It follows from (3.6) that

$$[v_{i_1}] \ast [: v_{i_2} \cdots v_{i_r} :] = [\omega].$$

Continuing in this way, we see that $[\omega] = [v_{i_1}] \ast [v_{i_2}] \ast \cdots \ast [v_{i_r}] \in \mathcal{C}$. Next, assume that $\pi_{Zh}(\omega) \in \mathcal{C}$ whenever $wt(\omega) < n$, and suppose that $\omega = : \partial^{k_1}v_{i_1} \cdots \partial^{k_r}v_{i_r} :$ has weight n. We calculate

$$[\partial^{k_1}v_{i_1}] \ast [: \partial^{k_2}v_{i_2} \cdots \partial^{k_r}v_{i_r} :] = [\omega] + \cdots,$$
where \(\cdots \) is a linear combination of terms of the form \(\partial^{k_1} v_{i_1} \circ_k (\partial^{k_2} v_{i_2} \cdots \partial^{k_r} v_{i_r}) \) for \(k \geq 0 \). The vertex operators \(\partial^{k_1} v_{i_1} \circ_k (\partial^{k_2} v_{i_2} \cdots \partial^{k_r} v_{i_r}) \) all have weight \(n - k - 1 \), so by our inductive assumption, \([\partial^{k_1} v_{i_1} \circ_k (\partial^{k_2} v_{i_2} \cdots \partial^{k_r} v_{i_r})] \in C \). Applying the same argument to the vertex operator \(\partial^{k_2} v_{i_2} \cdots \partial^{k_r} v_{i_r} \) and proceeding by induction on \(r \), we see that \(\omega \equiv [\partial^{k_1} v_{i_1}] \cdots [\partial^{k_n} v_{i_n}] \) modulo \(C \). Finally, by applying (3.8) repeatedly, we see that \(\omega \in C \), as claimed. \(\square \).

Example 3.5. \(\mathcal{V} = \mathcal{O}(g, B) \) where each generator \(X^\xi \) has weight 1. Then \(A(\mathcal{O}(g, B)) \) is generated by \(\{[X^\xi] | \xi \in g \} \), and is isomorphic to the universal enveloping algebra \(Ug \) via \([X^\xi] \mapsto \xi \).

Example 3.6. Let \(\mathcal{V} = S(V) \) where \(V = \mathbb{C}^n \), and \(S(V) \) is equipped with the conformal structure \(L^\alpha \) given by (3.2). Then \(A(S(V)) \) is generated by \(\{[\gamma^x], [\beta^x] \} \) and is isomorphic to the Weyl algebra \(D(V) \) with generators \(x_i, \partial / \partial x'_i \) via

\[
[\gamma^x_i] \mapsto x'_i, \quad [\beta^x_i] \mapsto \frac{\partial}{\partial x'_i}.
\]

Even though the structure of \(A(S(V)) \) is independent of the choice of \(\alpha \), the Zhu map \(\pi_{Zh} : S(V) \to A(S(V)) \) does depend on \(\alpha \). For example, (3.6) shows that

\[
\pi_{Zh} : (\gamma^x_i, \beta^x_i) = x'_i \frac{\partial}{\partial x'_i} + 1 - \alpha_i.
\] (3.10)

We will be particularly concerned with the interaction between the commutant construction and the Zhu functor. If \(a, b \in \mathcal{V} \) are (super)commuting vertex operators, \([a]\) and \([b]\) are (super)commuting elements of \(A(\mathcal{V}) \). Hence for any subalgebra \(B \subset \mathcal{V} \), we have a commutative diagram

\[
\begin{array}{ccc}
Com(B, \mathcal{V}) & \xrightarrow{\iota} & \mathcal{V} \\
\pi \downarrow & & \pi_{Zh} \downarrow \\
Com(B, A(\mathcal{V})) & \xleftarrow{\iota} & A(\mathcal{V})
\end{array}
\] (3.11)

Here \(B \) denotes the subalgebra \(\pi_{Zh}(B) \subset A(\mathcal{V}) \), and \(Com(B, A(\mathcal{V})) \) denotes the (super)commutant of \(B \) inside \(A(\mathcal{V}) \). The horizontal maps are inclusions, and \(\pi \) is the restriction of the Zhu map on \(\mathcal{V} \) to \(Com(B, \mathcal{V}) \). Clearly \(Im(\pi) \) is a subalgebra of \(Com(B, A(\mathcal{V})) \). A natural problem is to describe \(Im(\pi) \) and \(Coker(\pi) \). In our main example \(\mathcal{V} = S(V) \) and \(A = \Theta \), we have \(\pi_{Zh}(\Theta) = \tau(Ug) \subset D(V) \) and \(Com(\tau(Ug), D(V)) = D(V)^g \), so (3.11) specializes to (1.2).
4. The Friedan-Martinec-Shenker bosonization

4.1. Bosonization of fermions

First we describe the bosonization of fermions and the well-known boson-fermion correspondence due to [3]. Let \(A \) be the Heisenberg algebra with generators \(j(n), n \in \mathbb{Z} \), and \(\kappa \), satisfying \([j(n), j(m)] = n\delta_{n+m,0}\kappa\). The field \(j(z) = \sum_{n \in \mathbb{Z}} j(n) z^{-n-1} \) satisfies the OPE

\[j(z) j(w) \sim (z - w)^{-2} , \]

and generates a Heisenberg vertex algebra \(\mathcal{H} \) of central charge 1. Define the free bosonic scalar field

\[\phi(z) = q + j(0) \ln z - \sum_{n \neq 0} \frac{j(n)}{n} x^{-n} , \]

where \(q \) satisfies \([q, j(n)] = \delta_{n,0}\). Clearly \(\partial \phi(z) = j(z) \), and we have the OPE

\[\phi(z) \phi(w) \sim \ln(z - w) . \]

Given \(\alpha \in \mathbb{C} \), let \(\mathcal{H}_\alpha \) denote the irreducible representation of \(A \) generated by the vacuum vector \(v_\alpha \) satisfying

\[j(n)v_\alpha = \alpha \delta_{n,0} v_\alpha , \quad n \geq 0 . \quad (4.1) \]

Given \(\eta \in \mathbb{C} \), the operator \(e^{\eta q}(v_\alpha) = v_{\alpha+\eta} \), so \(e^{\eta q} \) maps \(\mathcal{H}_\alpha \rightarrow \mathcal{H}_{\alpha+\eta} \). Define the vertex operator

\[X_\eta(z) = e^{\eta \phi(z)} = e^{\eta q} z^{\eta} \exp(\eta \sum_{n>0} j(-n) \frac{z^n}{n}) \exp(\eta \sum_{n<0} j(-n) \frac{z^n}{n}) . \]

The \(X_\eta \) satisfy the OPEs

\[j(z) X_\eta(w) = \eta X_\eta(w)(z - w)^{-1} + \frac{1}{\eta} \partial X_\eta(w) , \]

\[X_\eta(z) X_\nu(w) = (z - w)^{\eta \nu} : X_\eta(z) X_\nu(w) : . \]

If we take \(\eta = \pm 1 \), the pair of (fermionic) fields \(X_1, X_{-1} \) generate the lattice vertex algebra \(V_L \) associated to the one-dimensional lattice \(L = \mathbb{Z} \). The state space of \(V_L \) is just \(\sum_{n \in \mathbb{Z}} \mathcal{H}_n = \mathcal{H} \otimes_\mathbb{C} L \). It follows that

\[X_1(z) X_{-1}(w) \sim (z - w)^{-1} , \quad X_{-1}(z) X_1(w) \sim (z - w)^{-1} , \]

\[X_1(z) X_1(w) \sim 0 , \quad X_{-1}(z) X_{-1}(w) \sim 0 , \]

so the map \(\mathcal{E} \rightarrow V_L \) sending \(b \mapsto X_{-1}, c \mapsto X_1 \) is a vertex algebra isomorphism. Here \(\mathcal{E} \) denotes the \(bc \)-system \(\mathcal{E}(V) \) in the case where \(V \) is one-dimensional.
Next, we describe the bosonization of bosons, following [2]. Recall that E has the grading $E = \oplus_{l \in \mathbb{Z}} E^l$ by bc-charge. As in [2], define $N(s) = \sum_{l \in \mathbb{Z}} E^l \otimes H_{i(s+l)}$, which is a module over the vertex algebra $E \otimes V_{L'}$. Here L' is the one-dimensional lattice $i \mathbb{Z}$, and $V_{L'}$ is generated by $X_{\pm i}$. We define a map $\epsilon : S \to E \otimes V_{L'}$ by

$$
\beta \mapsto \partial b \otimes X_{-i}, \quad \gamma \mapsto c \otimes X_i.
$$

(4.2)

It is straightforward to check that (4.2) is a vertex algebra homomorphism, which is injective since S is simple. Moreover Proposition 3 of [2] shows that the image of (4.2) coincides with the kernel of $c(0) : N(s) \to N(s - 1)$. Let E' be the subalgebra of E generated by c and ∂b, which coincides with the kernel of $c(0) : E \to E$. It follows that

$$
\epsilon(S) \subset E' \otimes V_{L'}.
$$

(4.3)

5. W algebras

The W algebras are vertex algebras which arise as extended symmetry algebras of two-dimensional conformal field theories. For each integer $n \geq 2$ and $c \in \mathbb{C}$, the algebra $W_{n,c}$ of central charge c is generated by fields of conformal weights $2, 3, \ldots, n$. In the case $n = 2$, $W_{2,c}$ is just the Virasoro algebra of central charge c. In contrast to the Virasoro algebra, the generating fields for $W_{n,c}$ for $n \geq 3$ have nonlinear terms in their OPEs, which makes the representation theory of these algebras highly nontrivial. One also considers various limits of W algebras denoted by $W_{1+\infty,c}$ which may be defined as modules over the universal central extension \hat{D} of the Lie algebra D of differential operators on the circle [11].

We will be particularly concerned with the W_3 algebra, which was introduced by Zamolodchikov in [20] and studied extensively in [1]. Our discussion is taken directly from [18][19]. First, let $\mathcal{F}(W_3)$ denote the free associative algebra with generators L_m, W_m, $m \in \mathbb{Z}$. Let $\hat{\mathcal{F}}(W_3)$ be the completion of $\mathcal{F}(W_3)$ consisting of (possibly) infinite sums of monomials in $\mathcal{F}(W_3)$ such that for each $N > 0$, only finitely many terms depend only
on the variables L_n, W_n for $n \leq N$. For a fixed central charge $c \in \mathbb{C}$, let $\mathfrak{W}_{3,c}$ be the quotient of $\hat{\mathcal{F}}(\mathcal{W}_3)$ by the ideal generated by

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m,-n}, \quad (5.1)$$

$$[L_m, W_n] = (2m-n)W_{m+n}, \quad (5.2)$$

$$[W_m, W_n] = (m-n)\left(\frac{1}{15}(m+n+3)(m+n+2) - \frac{1}{6}(m+2)(n+2)\right)L_{m+n} \quad (5.3)$$

$$+ \frac{16}{22+5c}(m-n)\Lambda_{m+n} + \frac{c}{360}m(m^2-1)(m^2-4)\delta_{m,-n}.$$

Here

$$\Lambda_m = \sum_{n \leq -2} L_n L_{m-n} + \sum_{n > -2} L_{m-n} L_n - \frac{3}{10}(m+2)(m+3)L_m.$$

Let

$$\mathcal{W}_{3,c,\pm} = \{L_n, W_n, \pm n > 0\}, \quad \mathcal{W}_{3,c,0} = \{L_0, W_0\}.$$

The Verma module $\mathcal{M}_c(t, w)$ of highest weight (t, w) is the induced module

$$\mathfrak{W}_{3,c} \otimes \mathcal{W}_{3,c,t} \oplus \mathcal{W}_{3,c,0} \mathbb{C}_{t, w},$$

where $\mathbb{C}_{t, w}$ is the one-dimensional $\mathcal{W}_{3,c,+} \oplus \mathcal{W}_{3,c,0}$-module generated by the vector $v_{t, w}$ such that

$$\mathcal{W}_{3,c,+}(v_{t, w}) = 0, \quad L_0(v_{t, w}) = tv_{t, w}, \quad W_0(v_{t, w}) = wv_{t, w}.$$

A vector $v \in \mathcal{M}_c(t, w)$ is called singular if $\mathcal{W}_{3,c,+}(v) = 0$. In the case $t = w = 0$, the vectors

$$L_{-1}(v_{0,0}), \quad W_{-1}(v_{0,0}), \quad W_{-2}(v_{0,0}) \quad (5.4)$$

are singular vectors in $\mathcal{M}_c(0, 0)$. The vacuum module $\mathcal{V}\mathcal{W}_{3,c}$ is defined to be the quotient of $\mathcal{M}_c(0, 0)$ by the $\mathfrak{W}_{3,c}$-submodule generated by the vectors (5.4). $\mathcal{V}\mathcal{W}_{3,c}$ has the structure of a vertex algebra which is freely generated by the vertex operators

$$L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}, \quad W(z) = \sum_{n \in \mathbb{Z}} W_n z^{-n-3}.$$

In particular, the vertex operators

$$\{\partial^{i_1}L(z) \cdots \partial^{i_m}L(z)\partial^{j_1}W(z) \cdots \partial^{j_n}W(z)\mid 0 \leq i_1 \leq \cdots \leq i_m, 0 \leq j_1 \leq \cdots \leq j_n\}$$
which correspond to \(i_1! \cdots i_m! j_1! \cdots j_n! L_{-i_1-2} \cdots L_{-i_m-2} W_{-j_1-3} \cdots W_{-j_n-3} v_{0,0}\) under the state-operator correspondence, form a basis for \(\mathcal{VW}_{3,c}\). By Lemma 4.1 of [19], the Zhu algebra \(A(\mathcal{VW}_{3,c})\) is just the polynomial algebra \(\mathbb{C}[l, w]\) where \(l = \pi_{Z_h}(L)\) and \(w = \pi_{Z_h}(W)\).

Let \(I_c\) denote the maximal proper \(\mathfrak{g}\mathcal{W}_{3,c}\)-submodule of \(\mathcal{VW}_{3,c}\), which is a vertex algebra ideal. The quotient \(\mathcal{VW}_{3,c}/I_c\) is a simple vertex algebra which we denote by \(\mathcal{W}_{3,c}\). Let \(I_c = \pi_{Z_h}(I_c)\), which is an ideal of \(\mathbb{C}[l, w]\). By (3.9), we have \(A(\mathcal{W}_{3,c}) = \mathbb{C}[l, w]/I_c\).

Generically, \(I_c = 0\), so that \(\mathcal{VW}_{3,c} = \mathcal{W}_{3,c}\). We will be primarily concerned with the non-generic case \(c = -2\), in which \(I_{-2} \neq 0\). The generators \(L(z), W(z) \in \mathcal{VW}_{3,-2}\) satisfy the following OPEs:

\[
L(z)L(w) \sim -(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1}, \quad (5.5)
\]

\[
L(z)W(w) \sim 3W(w)(z-w)^{-2} + \partial W(w)(z-w)^{-1}, \quad (5.6)
\]

\[
W(z)W(w) \sim -\frac{2}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3}
\]

\[
+ (\frac{8}{3} : L(w) L(w) : - \frac{1}{2} \partial^2 L(w))(z-w)^{-2}
\]

\[
+ (\frac{4}{3} \partial (: L(w) L(w) :) - \frac{1}{3} \partial^3 L(w))(z-w)^{-1}. \quad (5.7)
\]

The simple vertex algebra \(\mathcal{W}_{3,-2}\) also has generators \(L(z), W(z)\) satisfying (5.5)-(5.7), but \(\mathcal{W}_{3,-2}\) is no longer freely generated.

In order to avoid introducing extra notation, we will not use the change of variables \(\tilde{W}(z) = \frac{1}{2} \sqrt{6} W(z)\) given by Equation 3.13 of [19]. By Lemma 4.3 of [19], the ideal \(I_{-2} \subset \mathbb{C}[l, w]\) is generated (in our variables) by the polynomial

\[
w^2 - \frac{2}{27} l^2 (8l + 1). \quad (5.8)
\]

5.1. The representation theory of \(\mathcal{W}_{3,-2}\)

In [19], W. Wang gave a complete classification of the irreducible modules over the simple vertex algebra \(\mathcal{W}_{3,-2}\). An important ingredient in his classification is the following realization of \(\mathcal{W}_{3,-2}\) as a subalgebra of the Heisenberg algebra \(\mathcal{H}\) with generator \(j(z)\) satisfying \(j(z)j(w) \sim (z-w)^{-2}\). Define

\[
L_{\mathcal{H}} = \frac{1}{2} (: j^2 :) + \partial j, \quad W_{\mathcal{H}} = \frac{2}{3\sqrt{6}} (: j^3 :) + \frac{1}{\sqrt{6}} (: j \partial j :) + \frac{1}{6\sqrt{6}} \partial^2 j. \quad (5.9)
\]
The map $\mathcal{W}_{3,-2} \hookrightarrow \mathcal{H}$ sending $L \mapsto L_{\mathcal{H}}$ and $W \mapsto W_{\mathcal{H}}$ is a vertex algebra homomorphism, so we may regard any \mathcal{H}-module as a $\mathcal{W}_{3,-2}$-module. Given $\alpha \in \mathbb{C}$, consider the irreducible \mathcal{H}-module \mathcal{H}_{α} defined by (4.1), and let V_{α} denote the irreducible quotient of the $\mathcal{W}_{3,-2}$-submodule of \mathcal{H}_{α} generated by v_{α}. It is easily checked that the generator v_{α} is a highest weight vector of $\mathcal{W}_{3,-2}$ with highest weight

$$\left(\frac{1}{2}\alpha(\alpha - 1), \frac{1}{3\sqrt{6}}\alpha(\alpha - 1)(2\alpha - 1)\right).$$

(5.10)

The main result of [19] is that the modules $\{V_{\alpha} \mid \alpha \in \mathbb{C}\}$ account for all the irreducible modules of $\mathcal{W}_{3,-2}$.

6. The commutant algebra $S(V)^{\Theta^+}$ for $g = gl(1)$ and $V = \mathbb{C}$

In this section, we describe $S(V)^{\Theta^+}$ in the case where $g = gl(1)$ and $V = \mathbb{C}$, where the action $\rho : g \to End V$ is by multiplication. Fix a basis ξ of g and a basis x of V, such that $\rho(\xi)(x) = x$. Then $S = S(V)$ is generated by $\beta(z) = \beta x(z)$ and $\gamma(z) = \gamma x'(z)$, and the map (2.5) is given by

$$g \to D = D(V), \quad \xi \mapsto -x' \frac{d}{dx}. $$

In this case, $O(g, B)$ is just the Heisenberg algebra \mathcal{H} of central charge -1, and the action of \mathcal{H} on S given by (3.5) is

$$\theta(z) = - : \gamma(z)\beta(z) :, $$

(6.1)

which clearly satisfies

$$\theta(z)\theta(w) \sim -(z - w)^{-2}.$$

(6.2)

As usual, Θ will denote the subalgebra of S generated by $\theta(z)$. Since $-\theta(0)$ is the $\beta\gamma$-charge operator, S^{Θ^+} must lie in the subalgebra S^0 of $\beta\gamma$-charge zero.

Let $: \theta^n :$ denote the n-fold iterated Wick product of θ with itself. It is clear from (6.2) that each $: \theta^n :$ lies in S^0 but not in S^{Θ^+}. A natural place to look for elements in S^{Θ^+} is to begin with the operators $: \theta^n :$ and try to “quantum correct” them so that they lie in S^{Θ^+}. As a polynomial in $\beta, \partial \beta, \ldots, \gamma, \partial \gamma, \cdots$, note that

$$: \theta^n : = (-1)^n \beta^n \gamma^n + \nu_n,$$
where \(\nu_n \) has degree at most \(2n - 2 \). By a quantum correction, we mean an element \(\omega_n \in S \) of polynomial degree at most \(2n - 2 \), so that \(: \theta^n : + \omega_n \in S^\Theta^+ \).

Clearly \(\theta \) has no such correction \(\omega_1 \), because \(\omega_1 \) would have to be a scalar, in which case \(\theta \circ_1 (\theta + \omega_1) = \theta \circ_1 \theta = -1 \). However, the next lemma shows that we can find such \(\omega_n \) for all \(n \geq 2 \).

Lemma 6.1. Let

\[
\omega_2 = : \beta (\partial \gamma) : - : (\partial \beta) \gamma :
\]

\[
\omega_3 = -\frac{9}{2} : \beta^2 \gamma (\partial \gamma) : + \frac{9}{2} : \beta (\partial \beta) \gamma^2 : - \frac{3}{2} : \beta (\partial^2 \gamma) : - \frac{3}{2} : (\partial^2 \beta) \gamma : + 6 : (\partial \beta) (\partial \gamma) :
\]

Then \(: \theta^2 : + \omega_2 \in S^\Theta^+ \) and \(: \theta^3 : + \omega_3 \in S^\Theta^+ \). Since \(: (\theta^n) : \) and \(: (\theta^i :) (\theta^j :) : \) have the same leading term as polynomials in \(\beta, \partial \beta, \ldots, \gamma, \partial \gamma, \ldots \) for \(i + j = n \), it follows that for any \(n \geq 2 \) we can find \(\omega_n \) such that \(: \theta^n : + \omega_n \in S^\Theta^+ \).

Proof: This is a straightforward OPE calculation. □

Next, define vertex operators \(L_S, W_S \in S^\Theta^+ \) as follows:

\[
L_S = \frac{1}{2} (: \theta^2 : + \omega_2) = \frac{1}{2} (: \beta^2 \gamma^2 :) - : (\partial \beta) \gamma : + : \beta (\partial \gamma) :
\]

\[
W_S = -\sqrt{\frac{2}{27}} (: \theta^3 : + \omega_3)
\]

\[
= \sqrt{\frac{2}{27}} (: \beta^3 \gamma^3 :) - \sqrt{\frac{3}{2}} (: \beta (\partial \beta) \gamma^2 :) + \sqrt{\frac{3}{2}} (: \beta^2 \gamma (\partial \gamma) :)
\]

\[
+ \sqrt{\frac{1}{6}} (: (\partial^2 \beta) \gamma :) - \sqrt{\frac{8}{3}} (: (\partial \beta) (\partial \gamma) :) + \sqrt{\frac{1}{6}} (: \beta (\partial^2 \gamma) :)
\]

Let \(\mathcal{W} \subset S^\Theta^+ \) be the vertex algebra generated by \(L_S, W_S \). An OPE calculation shows that the map

\[
\mathcal{V} W_{3,-2} \rightarrow S^\Theta^+, \quad L \mapsto L_S, \quad W \mapsto W_S
\]

is a vertex algebra homomorphism. Moreover, the ideal \(\mathcal{I}_{-2} \) is annihilated by (6.5), so this map descends to a map

\[
f : W_{3,-2} \hookrightarrow S^\Theta^+.
\]
In fact, (6.6) is related to the realization of $\mathcal{W}_{3,-2}$ as a subalgebra of \mathcal{H} defined earlier. First, under the boson-fermion correspondence,

$$L_\mathcal{H} \mapsto L_\mathcal{E} = :\partial bc: \, ,$$

$$W_\mathcal{H} \mapsto W_\mathcal{E} = \frac{1}{\sqrt{6}} (: (\partial^2 b)c : - : (\partial b)(\partial c) :).$$

(6.7)

(6.8)

Next, under the map $\epsilon: \mathcal{S} \to \mathcal{E} \otimes \mathcal{H}$ given by (4.2), we have

$$L_\mathcal{S} \mapsto L_\mathcal{E} \otimes 1, \quad W_\mathcal{S} \mapsto W_\mathcal{E} \otimes 1.$$

(6.9)

The subalgebra \mathcal{S}^0 of $\beta\gamma$-charge zero has a natural set of generators

$$\{ J^i = :\beta(\partial^i\gamma) : , \, i \geq 0 \},$$

and it is well known that \mathcal{S}^0 is isomorphic to $\mathcal{W}_{1+\infty,-1}$ [11]. One of the main results of [18] is that $\epsilon: \mathcal{S} \to \mathcal{E} \otimes \mathcal{H}$ restricts to an isomorphism

$$\mathcal{S}^0 \cong \mathcal{A} \otimes \mathcal{H},$$

(6.10)

where $\mathcal{A} \cong \mathcal{W}_{3,-2}$ is the subalgebra of \mathcal{E} generated by $L_\mathcal{E}$ and $W_\mathcal{E}$. By (6.9), ϵ maps \mathcal{W} onto $\mathcal{A} \otimes 1$. Similarly, $\epsilon(\theta) = i(1 \otimes j)$, so ϵ maps Θ onto $1 \otimes \mathcal{H}$, and $\mathcal{S}^0 = \mathcal{W} \otimes \Theta$.

For each $d \in \mathbb{Z}$, the subspace \mathcal{S}^d of $\beta\gamma$-charge d is a module over \mathcal{S}^0, which is in fact irreducible [11][19]. Define $v^d(z) \in \mathcal{S}^d$ by

$$v^d(z) = \begin{cases}
\beta(z)^{-d} & d < 0 \\
1 & d = 0 \\
\gamma(z)^d & d > 0
\end{cases}.$$

(6.11)

Here $\beta(z)^{-d}$ and $\gamma(z)^d$ denote the d-fold iterated Wick products $: \beta(z) \cdots \beta(z) :$ and $: \gamma(z) \cdots \gamma(z) :, \,$ respectively. Each $v^d(z)$ is a highest weight vector for the action of $\mathcal{W}_{3,-2}$, and the highest weight of $v^d(z)$ is given by (5.10) with

$$\begin{cases}
\alpha = d & d \leq 0 \\
\alpha = d + 1 & d > 0
\end{cases}.$$

(6.12)

Moreover, $v^d(z)$ is also a highest weight vector for the action of \mathcal{H}, so \mathcal{S}^d is generated by $v^d(z)$ as a module over $\mathcal{W}_{3,-2} \otimes \mathcal{H}$.

20
Theorem 6.2. The map \(f : \mathcal{W}_{3,-2} \rightarrow S^{\Theta+} \) given by (6.6) is an isomorphism of vertex algebras. Moreover, \(\text{Com}(S^{\Theta+}, S) = \Theta \). Hence \(\Theta \) and \(S^{\Theta +} \) form a Howe pair inside \(S \).

Proof: Clearly \(S^{\Theta +} \subset S^0 \), and since \(S^0 = \mathcal{W} \otimes \Theta \), we have
\[
S^{\Theta +} = \text{Com}(\Theta, \mathcal{W} \otimes \Theta) = \mathcal{W} \otimes \text{Com}(\Theta, \Theta) = \mathcal{W}.
\]
This proves the first statement. As for the second statement, it is clear from (5.10) and (6.12) that \(\text{Com}(S^{\Theta +}, S) \subset S^0 \). Hence
\[
\text{Com}(S^{\Theta +}, S) = \text{Com}(\mathcal{W}, \mathcal{W} \otimes \Theta) = \Theta \otimes \text{Com}(\mathcal{W}, \mathcal{W}) = \Theta.
\]
\[\square\]

6.1. The map \(\pi : S^{\Theta +} \rightarrow \mathcal{D}^g \)

Equip \(S \) with the conformal structure \(L^\alpha = (\alpha - 1) : \partial \beta(z) \gamma(z) : + \alpha : \beta(z) \partial \gamma(z) : \), and consider the map \(\pi : S^{\Theta +} \rightarrow \mathcal{D}^g \) given by (1.2). In this case, \(\mathcal{D}^g \) is just the polynomial algebra \(\mathbb{C}[e] \), where \(e \) is the Euler operator \(x' \frac{d}{dx} \).

Lemma 6.3. We have
\[
\pi(L_S) = \frac{1}{2}(e^2 + e), \quad \pi(W_S) = \frac{2}{3\sqrt{6}}e^3 + \frac{1}{\sqrt{6}}e^2 + \frac{1}{3\sqrt{6}}e.
\]
(6.13)
In particular, \(\pi(L_S) \) and \(\pi(W_S) \) are independent of the choice of \(\alpha \).

Proof: This is a straightforward computation using (3.6) and the fact that \(\pi_{Zh}(\gamma(z)) = x' \) and \(\pi_{Zh}(\beta(z)) = \frac{d}{dx} \). Note that \(l = \pi(L_S) \) and \(w = \pi(W_S) \) satisfy (5.8). \(\square\)

Corollary 6.4. For any conformal structure \(L^\alpha \) on \(S \) as above, \(\text{Im}(\pi) \) is the subalgebra of \(\mathbb{C}[e] \) generated by \(\pi(L_S) \) and \(\pi(W_S) \). Moreover, \(\text{Coker}(\pi) = \mathbb{C}[e]/\text{Im}(\pi) \) has dimension one, and is spanned by the image of \(e \) in \(\text{Coker}(\pi) \).

Proof: The first statement is immediate from Lemma 3.4, since \(S^{\Theta +} \) is strongly generated by \(L_S \) and \(W_S \) which have weights 2 and 3 respectively. The second statement follows from (3.10) and (6.13), because any polynomial in \(\mathbb{C}[e] \) is equivalent to an element which is homogeneous of degree 1 modulo \(\text{Im}(\pi) \). \(\square\)
7. $S(V)^{θ_+}$ for abelian Lie algebra actions

Fix a basis $\{x_1, \ldots, x_n\}$ for V and dual basis $\{x'_1, \ldots, x'_n\}$ for V^*. We regard $S(V)$ as $S_1 \otimes \cdots \otimes S_n$, where S_j is the copy of S generated by $β^{x_j}(z), γ^{x'_j}(z)$. Let $f_j : S → S(V)$ be the obvious map onto the jth factor. The subspace S^0_j of $βγ$-charge zero is isomorphic to $W_j \otimes H_j$, where H_j is generated by $θ_j(z) = f_j(θ(z))$, and W_j is generated by $L_j = f_j(L_S)$, $W_j = f_j(W_S)$. Moreover, as a module over $W_j \otimes H_j$, the space S^d_j of $βγ$-charge d is generated by the highest weight vector $v^d_j(z) = f_j(v^d(z))$, which is given by

$$v^d_j(z) = \begin{cases} \beta^{x_j}(z)^{-d} & d < 0 \\ 1 & d = 0 \\ \gamma^{x'_j}(z)^d & d > 0 \end{cases}$$

(7.1)

We denote by S'_j the linear span of the vectors $\{v^d_j(z)| d \in \mathbb{Z}\}$. Note that for any conformal structure $L^α$ on $S(V)$, the differential operators $v^d_j ∈ D(V)$ defined by (2.6) correspond to $v^d_j(z)$ under the Zhu map. Let B denote the vertex algebra

$$S^0_1 \otimes \cdots \otimes S^0_n \cong (W^1 \otimes H^1) \otimes \cdots \otimes (W^n \otimes H^n).$$

Clearly the space $S(V)'$ consisting of highest-weight vectors for the action of B is just $S'_1 \otimes \cdots \otimes S'_n$. As usual, let $\mathbb{Z}^n ⊂ \mathbb{C}^n$ denote the standard lattice. For each lattice point $l = (l_1, \ldots, l_n) ∈ \mathbb{Z}^n$, define

$$ω_l(z) = :v^{l_1}_1(z) \cdots v^{l_n}_n(z):,$$

(7.2)

where $v^d_j(z)$ is given by (7.1). For example, in the case $n = 2$ and $l = (2, -3) ∈ \mathbb{Z}^2$, we have

$$ω_l(z) = :v^2_1(z)v^{-3}_2(z): = :γ^{x_1}(z)γ^{x_1}(z)β^{x_2}(z)β^{x_2}(z)β^{x_2}(z):.$$

For any conformal structure $L^α$ on $S(V)$, $ω_l(z)$ corresponds under the Zhu map to the element $ω_l ∈ D(V)$ given by (2.7).

Lemma 7.1. For each $l ∈ \mathbb{Z}^n$, the B-module M_l generated by $ω_l(z)$ is irreducible. Moreover, as a module over B,

$$S(V) = \bigoplus_{l ∈ \mathbb{Z}^n} M_l.$$

(7.3)
Proof: This is immediate from the description of S^d as the irreducible S^0-module generated by $v_d(z)$, and the fact that $S(V)' = S'_1 \otimes \cdots \otimes S'_n$. □

Note that $\theta^j(z) \circ_0 \omega_l(z) = -l_j \omega_l(z)$, so the \mathbb{Z}^n-grading on $S(V)$ above is just the eigenspace decomposition of $S(V)$ under the family of diagonalizable operators $-\theta^j(z)\circ_0$.

For the remainder of this section, \mathfrak{g} will denote the abelian Lie algebra

$$C^m = gl(1) \oplus \cdots \oplus gl(1),$$

and $\rho : \mathfrak{g} \to \text{End}(V)$ will be a faithful, diagonal action. Let $A(\rho) \subset C^n$ be the subspace spanned by $\{\rho(\xi)| \xi \in \mathfrak{g}\}$. As in the classical setting, we denote $S(V)^{\Theta^+}$ by $S(V)^{\Theta^+}_\rho$ when we need to emphasize the dependence on ρ. Clearly $S(V)^{\Theta^+}_\rho = S(V)^{\Theta^+}_{\rho g}$ for all $g \in GL(m)$, so the family of algebras $S(V)^{\Theta^+}_\rho$ is parametrized by the points $A(\rho) \in Gr(m,n)$.

Choose a basis $\{\xi^1, \ldots, \xi^m\}$ for \mathfrak{g} such that the corresponding vectors $\rho(\xi^i) = a^i = (a^i_1, \ldots, a^i_n) \in C^n$ form an orthonormal basis for $A = A(\rho)$. Let $\theta^{\xi^i}(z)$ be the vertex operator corresponding to $\rho(\xi^i)$, and let Θ be the subalgebra of \mathcal{B} generated by $\{\theta^{\xi^i}(z)| i = 1, \ldots, m\}$. By (3.5), we have

$$\theta^{\xi^i}(z) = \sum_{j=1}^{n} a_j \theta^j(z) = -\sum_{j=1}^{n} a_j : \gamma^{x^j}(z) \beta^{x^j}(z) :.$$

Clearly $\theta^{\xi^i}(z)\theta^{\xi^j}(w) \sim -\langle a^i, a^j \rangle (z - w)^{-2} = \delta_{i,j}(z - w)^{-2}$.

If $m < n$, extend the set $\{a^1, \ldots, a^m\}$ to an orthonormal basis for C^n by adjoining vectors $b^i = (b^i_1, \ldots, b^i_n) \in C^n$, for $i = m + 1, \ldots, n$. Let

$$\phi^i(z) = \sum_{j=1}^{n} b^i_j \theta^j(z) = -\sum_{j=1}^{n} b^i_j : \gamma^{x^j}(z) \beta^{x^j}(z) :$$

be the corresponding vertex operators, and let Φ be the subalgebra of \mathcal{B} generated by $\{\phi^i(z)| i = m + 1, \ldots, n\}$. The OPEs

$$\phi^i(z)\phi^j(w) \sim -\langle b^i, b^j \rangle (z - w)^{-2}, \quad \theta^{\xi^i}(z)\phi^j(w) \sim -\langle a^i, b^j \rangle (z - w)^{-2}$$
show that the \(\phi^i(z) \) pairwise commute and each generates a Heisenberg algebra of central charge \(-1\), and that \(\Phi \subset S(V)^{\Theta^+} \). In particular, we have the decomposition

\[
\mathcal{H}^1 \otimes \cdots \otimes \mathcal{H}^n = \Theta \otimes \Phi.
\]

Next, let \(\mathcal{W} \) denote the subalgebra of \(\mathcal{B} \) generated by \(\{ L^j(z), W^j(z) \mid j = 1, \ldots, n \} \). Theorem 6.2 shows that \(\mathcal{W} \) commutes with both \(\Theta \) and \(\Phi \), so we have the decomposition

\[
\mathcal{B} = \mathcal{W} \otimes \Theta \otimes \Phi.
\]

(7.4)

In particular, the subalgebra \(\mathcal{B}' = \mathcal{W} \otimes \Phi \) lies in the commutant \(S(V)^{\Theta^+} \). Let \(\mathcal{M}'_l \) denote the \(\mathcal{B}' \)-submodule of \(\mathcal{M}_l \) generated by \(\omega_l(z) \), which is clearly irreducible as a \(\mathcal{B}' \)-module.

In order to describe \(S(V)^{\Theta^+} \), we first describe the larger space \(S(V)^{\Theta>} \) which is annihilated by \(\theta^{\xi_i}(k) \) for \(i = 1, \ldots, m \) and \(k > 0 \). Then \(S(V)^{\Theta^+} \) is just the subspace of \(S(V)^{\Theta>} \) which is annihilated by \(\theta^{\xi_i}(0) \), for \(i = 1, \ldots, m \). It is clear from (7.4) and the irreducibility of \(\mathcal{M}_l \) as a \(\mathcal{B} \)-module that \(S(V)^{\Theta>} \cap \mathcal{M}_l = \mathcal{M}'_l \), so

\[
S(V)^{\Theta>} = \bigoplus_{l \in \mathbb{Z}^n} \mathcal{M}'_l.
\]

(7.5)

Theorem 7.2. As a module over \(\mathcal{B}' \),

\[
S(V)^{\Theta^+} = \bigoplus_{l \in A^+ \cap \mathbb{Z}^n} \mathcal{M}'_l.
\]

(7.6)

Proof: Let \(\omega(z) \in S(V)^{\Theta^+} \). Since \(\omega \) lies in the larger space \(S(V)^{\Theta>} \) which is a direct sum of irreducible, cyclic \(\mathcal{B}' \)-modules \(\mathcal{M}'_l \) with generators \(\omega_l(z) \), we may assume without loss of generality that \(\omega(z) = \omega_l(z) \) for some \(l \). An OPE calculation shows that

\[
\theta^{\xi_i}(z)\omega_l(w) \sim -(a^i,l)\omega_l(w)(z-w)^{-1}.
\]

(7.7)

Hence \(\omega_l \in S(V)^{\Theta^+} \) if and only if \(l \) lies in the sublattice \(A^+ \cap \mathbb{Z}^n \). \(\square \)

Our next step is to find a finite generating set for \(S(V)^{\Theta^+} \). Generically, \(A^+ \cap \mathbb{Z}^n \) has rank zero, so \(S(V)^{\Theta^+} = \mathcal{B}' \), which is (strongly) generated by the set

\[
\{ \phi^i(z), L^j(z), W^j(z) \mid i = m + 1, \ldots, n, j = 1, \ldots, n \}.
\]
If $A^+ \cap \mathbb{Z}^n$ has rank r for some $0 < r \leq n - m$, choose a basis $\{l_1, \ldots, l_r\}$ for $A^+ \cap \mathbb{Z}^n$. We claim that for any $l \in A^+ \cap \mathbb{Z}^n$, $\omega_l(z)$ lies in the vertex subalgebra generated by

$$\{\omega_{\ell_1}(z), \ldots, \omega_{\ell_r}(z), \omega_{-\ell_1}(z), \ldots, \omega_{-\ell_r}(z)\}.$$

It suffices to prove that given lattice points $l = (l_1, \ldots, l_n)$ and $l' = (l'_1, \ldots, l'_n)$ in \mathbb{Z}^n, $\omega_{l+l'}(z) = k\omega_l(z) \circ_d \omega_{l'}(z)$ for some $k \neq 0$ and $d \in \mathbb{Z}$.

First, consider the special case where $l = (l_1, 0, \ldots, 0)$ and $l' = (l'_1, 0, \ldots, 0)$. If $l_1l'_1 \geq 0$, we have $\omega_l(z) \circ_{-1} \omega_{l'}(z) = \omega_{l+l'}(z)$. Suppose next that $l_1 < 0$ and $l'_1 > 0$, so that $\omega_l(z) = \beta^{x_1}(z)^{-l_1}$ and $\omega_{l'}(z) = \gamma^{x_1}(z)^{l'_1}$. Let

$$d_1 = \min\{-l_1, l'_1\}, \quad e_1 = \max\{-l_1, l'_1\}, \quad d = d_1 - 1.$$

An OPE calculation shows that

$$\omega_l(z) \circ_d \omega_{l'}(z) = \frac{e_1!}{(e_1 - d_1)!} \omega_{l+l'}(z),$$

where as usual $0! = 1$. Similarly, if $l_1 > 0$ and $l'_1 < 0$, we take $d_1 = \min\{l_1, -l'_1\}$, $e_1 = \max\{l_1, -l'_1\}$, and $d = d_1 - 1$. We have

$$\omega_l(z) \circ_d \omega_{l'}(z) = -\frac{e_1!}{(e_1 - d_1)!} \omega_{l+l'}(z).$$

Now consider the general case $l = (l_1, \ldots, l_n)$ and $l' = (l'_1, \ldots, l'_n)$. For $j = 1, \ldots, n$, define

$$d_j = \begin{cases} \min\{|l_j|, |l'_j|\}, & l_jl'_j \geq 0, \\ 0, & l_jl'_j < 0 \end{cases}, \quad e_j = \begin{cases} \max\{|l_j|, |l'_j|\}, & l_jl'_j \geq 0, \\ 0, & l_jl'_j < 0 \end{cases},$$

$$k_j = \begin{cases} 0, & l_j \leq 0, \\ d_j, & l_j > 0 \end{cases}, \quad d = -1 + \sum_{j=1}^n d_j.$$

Using (7.8) and (7.9) repeatedly, we calculate

$$\omega_l(z) \circ_d \omega_{l'}(z) = \left(\prod_{j=1}^n (-1)^{k_j} \frac{e_j!}{(e_j - d_j)!}\right) \omega_{l+l'}(z),$$

which shows that $\omega_{l+l'}(z)$ lies in the vertex algebra generated by $\omega_l(z)$ and $\omega_{l'}(z)$. Thus we have proved
Theorem 7.3. Let \(\{l^1, \ldots, l^n\} \) be a basis for the lattice \(A^\perp \cap \mathbb{Z}^n \), as above. Then \(S(V)^{\Theta+} \) is generated as a vertex algebra by \(\mathcal{B}' \) together with the additional vertex operators

\[
\omega_{l^1}(z), \ldots, \omega_{l^n}(z), \quad \omega_{-l^1}(z), \ldots, \omega_{-l^n}(z).
\]

In particular, \(S(V)^{\Theta+} \) is finitely generated as a vertex algebra.

In the generic case where \(A^\perp \cap \mathbb{Z}^n \neq 0 \) and \(S(V)^{\Theta+} = \mathcal{B}' \), we claim that \(S(V)^{\Theta+} \) has a natural \((n - m)\)-parameter family of conformal structures for which the generators \(\phi^i(z), L^j(z), W^j(z) \) are primary of conformal weights \(1, 2, 3 \), respectively. Note first that \(\mathcal{W} \) has the conformal structure \(L_{\mathcal{W}}(z) = \sum_{j=1}^n L^j(z) \) of central charge \(-2n\).

It is well known that for \(k \neq 0 \) and \(c \in \mathbb{C} \), the Heisenberg algebra \(\mathcal{H} \) of central charge \(k \) admits a Virasoro element \(L^c(z) = \frac{1}{2\pi} j(z) j(z) + c \partial j(z) \) of central charge \(1 - 12c^2k \), under which the generator \(j(z) \) is primary of weight one. Hence given \(\lambda = (\lambda_{m+1}, \ldots, \lambda_n) \in \mathbb{C}^{n-m} \) the Heisenberg algebra generated by \(\phi^i(z) \) has a conformal structure

\[
L^\lambda_i(z) = -\frac{1}{2} : \phi^i(z) \phi^i(z) : + \lambda_i \partial \phi^i(z)
\]
of central charge \(1 + 12\lambda_i^2 \). Since \(\phi^i(z) \) and \(\phi^j(z) \) commute for \(i \neq j \), it follows that \(L^\lambda_i(z) = \sum_{i=m+1}^n L^\lambda_i(z) \) is a conformal structure on \(\Phi \) of central charge \(\sum_{i=m+1}^n 1 + 12\lambda_i^2 \). Finally,

\[
L_{\mathcal{B}'}(z) = L_{\mathcal{W}}(z) \otimes 1 + 1 \otimes L^\lambda_i(z) \in \mathcal{W} \otimes \Phi = \mathcal{B}'
\]
is a conformal structure on \(\mathcal{B}' \) of central charge \(-2n + \sum_{i=m+1}^n 1 + 12\lambda_i^2 \) with the desired properties.

When the lattice \(A^\perp \cap \mathbb{Z}^n \) has positive rank, the vertex algebras \(S(V)^{\Theta+} \) have a very rich structure which depends sensitively on \(A^\perp \cap \mathbb{Z}^n \). In general, the set of generators for \(S(V)^{\Theta+} \) given by Theorem 7.3 will not be a set of strong generators, and the conformal structure \(L_{\mathcal{B}'} \) on \(\mathcal{B}' \) will not extend to a conformal structure on all of \(S(V)^{\Theta+} \).

Theorem 7.4. For any action of \(\mathfrak{g} \) on \(V \), \(\text{Com}(S(V)^{\Theta+}, S(V)) = \Theta \). Hence \(S(V)^{\Theta+} \) and \(\Theta \) form a Howe pair inside \(S(V) \).

Proof: Since \(\mathcal{B}' \subset S(V)^{\Theta+} \), we have \(\Theta \subset \text{Com}(S(V)^{\Theta+}, S(V)) \subset \text{Com}(\mathcal{B}', S(V)) \), so it suffices to show that \(\text{Com}(\mathcal{B}', S(V)) = \Theta \). Recall that \(\mathcal{B}' = \mathcal{W} \otimes \Phi \) and \(\Theta \otimes \Phi = \mathcal{H}^1 \otimes \cdots \otimes \mathcal{H}^n \).
Since $\text{Com}(W, S(V)) = \mathcal{H}$ by Theorem 6.2, it follows that $\text{Com}(W, S(V)) = \Theta \otimes \Phi$. Then

$\text{Com}(B', S(V)) = \text{Com}(\Phi, \text{Com}(W, S(V))) = \text{Com}(\Phi, \Theta \otimes \Phi) = \Theta \otimes \text{Com}(\Phi, \Phi) = \Theta$. □

This result shows that we can always recover the action of g (up to $GL(m)$-equivalence) from $S(V)^{\Theta_+}$, by taking its commutant inside $S(V)$. This stands in contrast to Theorem 2.1, which shows that we can reconstruct the action from $D(V)^g$ only when $A^\perp \cap \mathbb{Z}^n$ has rank $n - m$.

Theorem 7.5. For any action of g on V, $S(V)^{\Theta_+}$ is a simple vertex algebra.

Proof: Given a non-zero ideal $I \subset S(V)^{\Theta_+}$, we need to show that $1 \in I$. Let $\omega(z)$ be a non-zero element of I. Since each M'_{l} is irreducible as a module over B', we may assume without loss of generality that

\[
\omega(z) = \sum_{l \in \mathbb{Z}^n} c_l \omega_l(z) \tag{7.10}
\]

for constants $c_l \in \mathbb{C}$, such that $c_l \neq 0$ for only finitely many values of l.

For each lattice point $l = (l_1, \ldots, l_n) \in \mathbb{Z}^n$, both $\omega_l(z)$ and $\omega_{-l}(z)$ have degree $d = \sum_{j=1}^n |l_j|$ as polynomials in the variables $\beta^{x_j}(z)$ and $\gamma^{x'_j}(z)$. Let d be the maximal degree of terms $\omega_l(z)$ appearing in (7.10) with non-zero coefficient c_l, and let l be such a lattice point for which $\omega_l(z)$ has degree d. An OPE calculation shows that

\[
\omega_{-l}(z) \circ_{d-1} \omega_{l'}(z) = \begin{cases}
0 & l' \neq l \\
\left(\prod_{j=1}^n (-1)^{k_j |l_j|} \right) 1 & l' = l \end{cases} \tag{7.11}
\]

where $k_j = \min\{0, l_j\}$, for all lattice points l' appearing in (7.10) with non-zero coefficient. It follows from (7.11) that

\[
\frac{1}{c_l \left(\prod_{j=1}^n (-1)^{k_j |l_j|} \right)} \omega_{-l}(z) \circ_{d-1} \omega(z) = 1. \quad \square
\]
The map $\pi : S(V)^{\Theta^+} \rightarrow D(V)^{g}$

Equip $S(V)$ with the conformal structure L^α given by (3.2), for some $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$. Suppose first that $A^e \cap \mathbb{Z}^n$ has rank zero, so that $S(V)^{\Theta^+} = B'$, and $D(V)^g = \mathbb{C}[e_1, \ldots, e_n] = E$. Let $\pi : S(V)^{\Theta^+} \rightarrow D(V)^g$ be the map given by (1.2). By Lemma 6.3, for $j = 1, \ldots, n$ we have

$$\pi(L^j(z)) = \frac{1}{2}(e_j^2 + e_j), \quad \pi(W^j(z)) = \frac{2}{3\sqrt{6}}e_j^3 + \frac{1}{\sqrt{6}}e_j^2 + \frac{1}{3\sqrt{6}}e_j.$$

Moreover, (3.10) shows that $\pi(\phi^i(z)) = \langle b^i, \alpha \rangle - \sum_{j=1}^n b^j e_j + 1$. Since B' is strongly generated by $\{\phi^i(z), L^j(z), W^j(z)\} | i = m + 1, \ldots, n, j = 1, \ldots, n$, it follows from Lemma 3.4 that $Im(\pi)$ is generated by the collection

$$\{\pi(\phi^i(z)), \pi(L^j(z)), \pi(W^j(z)) \mid i = m + 1, \ldots, n, j = 1, \ldots, n\}.$$

The map π is not surjective, but $Coker(\pi)$ is generated as a module over $Im(\pi)$ by the collection $\{t^\xi_i \mid i = 1, \ldots, m\}$, where t^ξ_i is the image of

$$\pi_{Z\theta}(\theta^\xi(z)) = \langle a^i, \alpha \rangle - \sum_{j=1}^n a^j e_j + 1$$

in $Coker(\pi) = E/\pi(B')$. Unlike the case where V is one-dimensional, π depends on the choice of α.

Suppose next that the lattice $A^e \cap \mathbb{Z}^n = 0$ has positive rank. Clearly $\pi_{Z\theta}(Mli) = Mli$ for all l, so $\pi(Mli) \subset Mli$. This map need not be surjective, but since Mli is the free E-module generated by ω_l, and $E/\pi(B')$ is generated as a $\pi(B')$-module by $\{t^\xi_i \mid i = 1, \ldots, m\}$, it follows that each $Mli/\pi(Mli)$ is generated as a $\pi(B')$-module by $\{t^\xi_i \mid i = 1, \ldots, m\}$, where t^ξ_i is the image of $\pi_{Z\theta}(\theta^\xi(z))\omega_l$ in $Mli/\pi(Mli)$.

Theorem 7.6. For any action of g on V, $Coker(\pi)$ is generated as a module over $Im(\pi)$ by the collection $\{t^\xi_i \mid i = 1, \ldots, m\}$. In particular, $Coker(\pi)$ is a finitely generated module over $Im(\pi)$ with generators corresponding to central elements of $D(V)^g$.

Proof: First, since $\pi(\omega_l(z)) = \omega_l$ for all l, it is clear that the generators t^ξ_i of $Mli/\pi(Mli)$ lie in the $Im(\pi)$-module generated by $\{t^\xi_i \mid i = 1, \ldots, m\}$, which proves the first statement. Finally, the fact that the elements $\pi_{Z\theta}(\theta^\xi(z))$ corresponding to t^ξ_i each lie in the center of $D(V)^g$ is immediate from (2.10).

28
7.2. A vertex algebra bundle over the Grassmannian $Gr(m, n)$

As ρ varies over the space $R^0(V)$ of effective actions, recall that $S(V)^{\Theta, +}_\rho$ is uniquely determined by the point $A(\rho) \in Gr(m, n)$. The algebras $S(V)^{\Theta, +}_\rho$ do not form a fiber bundle over $Gr(m, n)$. However, the subspace of $S(V)^{\Theta, +}_\rho$ of degree zero in the $A(\rho)^\perp \cap \mathbb{Z}^n$-grading (7.6) is just $B'_\rho = B'$, and the algebras B'_ρ form a bundle of vertex algebras E over $Gr(m, n)$. The classical analogue of E is not interesting; it is just the trivial bundle whose fiber over each point is the polynomial algebra E.

For each ρ, recall that $B'_\rho = \mathcal{W}_\rho \otimes \Phi_\rho$, where \mathcal{W}_ρ is generated by $\{L_j(z), W_j(z) \mid j = 1, \ldots, n\}$, and Φ_ρ is generated by $\{\phi^i(z) \mid i = m + 1, \ldots, n\}$. Since \mathcal{W}_ρ is independent of ρ, it gives rise to a trivial subbundle of E. As a vector space, note that $\Phi_\rho = \text{Sym}(\bigoplus_{k \geq 1} A(\rho)^\perp_k)$, where $A(\rho)^\perp_k$ is the copy of $A(\rho)^\perp$ spanned by the vectors $\partial^k \phi^i(z)$ for $i = m + 1, \ldots, n$. It follows that the factor Φ_ρ in the fiber over $A(\rho)$ gives rise to the following subbundle of E:

$$\text{Sym}(\bigoplus_{k \geq 1} F_k),$$

(7.12)

where F_k is the quotient of the rank n trivial bundle over $Gr(m, n)$ by the tautological bundle. Since each F_k has weight k, the weighted components of the bundle (7.12) are all finite-dimensional. The non-triviality of this bundle is closely related to Theorem 7.4.

8. Vertex algebra operations and transvectants on $D(V)^\Theta$

If we fix a basis $\{x_1, \ldots, x_n\}$ for V and a dual basis $\{x'_1, \ldots, x'_n\}$ for V^*, $S(V)$ has a basis consisting of iterated Wick products of the form

$$\mu(z) = : \partial^{k_1} \gamma^{x'_{i_1}}(z) \cdots \partial^{k_r} \gamma^{x'_{i_r}}(z) \partial^{l_1} \beta^{x_{j_1}}(z) \cdots \partial^{l_s} \beta^{x_{j_s}}(z) :.$$

Define gradings degree and level on $S(V)$ as follows:

$$\text{deg}(\mu) = r + s, \quad \text{lev}(\mu) = \sum_{i=1}^{r} k_i + \sum_{j=1}^{s} l_j,$$

and let $S(V)^{(n)}[d]$ denote the subspace of level n and degree d. The gradings

$$S(V) = \bigoplus_{n \geq 0} S(V)^{(n)} = \bigoplus_{n, d \geq 0} S(V)^{(n)}[d] = \bigoplus_{d \geq 0} S(V)[d]$$

(8.1)
are clearly independent of our choice of basis on V, since an automorphism of V has the effect of replacing β^{x_i} and $\gamma^{x'_i}$ with linear combinations of the β^{x_i}'s and $\gamma^{x'_i}$'s, respectively.

Let $\sigma : \mathcal{D}(V) \to gr\mathcal{D}(V) = Sym(V \oplus V^*)$ be the map

$$x'_{i_1} \cdots x'_{i_r} \frac{\partial}{\partial x'_{j_1}} \cdots \frac{\partial}{\partial x'_{j_s}} \mapsto x'_{i_1} \cdots x'_{i_r} x_{j_1} \cdots x_{j_s},$$

(8.2)

which is a linear isomorphism. Any bilinear product \ast on $Sym(V \oplus V^*)$ corresponds to a bilinear product on $\mathcal{D}(V)$, which we also denote by \ast, as follows:

$$\omega \ast \nu = \sigma^{-1}(\sigma(\omega) \ast \sigma(\nu)),$$

for $\omega, \nu \in \mathcal{D}(V)$, Moreover, $\omega_1, \ldots, \omega_k$ generate $\mathcal{D}(V)$ as a ring if and only if $\sigma(\omega_1), \ldots, \sigma(\omega_k)$ generate $Sym(V \oplus V^*)$ as a ring. The map $f : Sym(V \oplus V^*) \to S(V^{(0)})$ given by

$$x'_{i_1} \cdots x'_{i_r} x_{j_1} \cdots x_{j_s}, \mapsto : \gamma^{x'_{i_1}}(z) \cdots \gamma^{x'_{i_r}}(z) \beta^{x_{j_1}}(z) \cdots \beta^{x_{j_s}}(z),$$

(8.3)

is a linear isomorphism, so that $f \circ \sigma : \mathcal{D}(V) \to S(V^{(0)})$ is a linear isomorphism as well.

$S(V^{(0)})$ has a family of bilinear products \ast_k which are induced by the circle products on $S(V)$. Given $\omega(z), \nu(z) \in S(V^{(0)})$, define

$$\omega(z) \ast_k \nu(z) = p(\omega(z) \circ_k \nu(z)),$$

(8.4)

where $p : S(V) \to S(V^{(0)})$ is the projection onto the subspace of level zero. Clearly $\omega(z) \ast_k \nu(z) = 0$ whenever $k < -1$ because $p \circ \partial$ acts by zero on $S(V^{(0)})$. For $k \geq -1$, \ast_k is homogeneous of degree $-2k - 2$.

Via (8.3), we may pull back the products \ast_k, $k \geq -1$ to obtain a family of bilinear products on $Sym(V \oplus V^*)$, which we also denote by \ast_k. In fact, these products have a classical description. Let

$$\Gamma = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \otimes \frac{\partial}{\partial x'_i} - \frac{\partial}{\partial x'_i} \otimes \frac{\partial}{\partial x_i},$$

(8.5)

and define the kth transvectant1 on $Sym(V \oplus V^*)$ by

$$[\cdot, \cdot]_k : Sym(V \oplus V^*) \otimes Sym(V \oplus V^*) \to Sym(V \oplus V^*), \quad [\omega, \nu]_k = m \circ \Gamma^k(\omega \otimes \nu).$$

I thank N. Wallach for explaining this construction to me.
Here m is the multiplication map sending $\omega \otimes \nu \mapsto \omega \nu$.

Theorem 8.1. The product $*^k$ on $\text{Sym}(V \oplus V^*)$ given by (8.4) coincides with the transvectant $[,]_{k+1}$ for $k \geq -1$.

Proof: First consider the case $k = -1$. In this case $[,]_0$ is just ordinary multiplication. Recall the formula $\omega \nu = (\omega \nu)$. Hence given $\omega, \nu \in \text{Sym}(V \oplus V^*)$, we have $[\omega, \nu]_0 = \omega \nu = \omega *_{-1} \nu.$

Next, if $k \geq 0$, it is clear from the definition of the vertex algebra products \circ_k that given $\omega(z), \nu(z) \in \text{Sym}(V)^{(0)}$, $\omega(z) *_k \nu(z)$ is just the sum of all possible contractions of $k + 1$ factors of the form $\beta^{x_i}(z)$ or $\gamma^{x_i}(z)$ appearing in $\omega(z)$ with $k + 1$ factors of the form $\beta^{x_j}(z)$ or $\gamma^{x_j}(z)$ appearing in $\nu(z)$. Here the contraction of $\beta^{x_i}(z)$ with $\gamma^{x_j}(z)$ is $\delta_{i,j}$, and the contraction of $\gamma^{x_i}(z)$ with $\beta^{x_j}(z)$ is $-\delta_{i,j}$. Similarly, it follows from (8.5) that given $\omega, \nu \in \text{Sym}(V \oplus V^*)$, $[\omega, \nu]_{k+1}$ is the sum of all possible contractions of $k + 1$ factors of the form x_i or x'_i appearing in ω with $k + 1$ factors of the form x_i or x'_i appearing in ν. The contraction of x_i with x'_j is $\delta_{i,j}$ and the contraction of x'_i with x_j is $-\delta_{i,j}$. Since $f : \text{Sym}(V \oplus V^*) \rightarrow \text{Sym}(V)^{(0)}$ is the algebra isomorphism sending $x_i \mapsto \beta^{x_i}(z)$ and $x'_i \mapsto \gamma^{x_i}(z)$, the claim follows. □

Via $\sigma : D(V) \rightarrow \text{Sym}(V \oplus V^*)$ the products $*_k$ on $\text{Sym}(V \oplus V^*)$ pull back to bilinear products on $D(V)$, which we also denote by $*_k$. These products satisfy $\omega *_k \nu \in D(V)_{(r+s-2k-2)}$ for $\omega \in D(V)_{(r)}$ and $s \in D(V)_{(s)}$. It is immediate from Theorem 8.1 that $*_1$ and $*_0$ correspond to the ordinary associative product and bracket on $D(V)$, respectively. Since the circle product \circ_0 is a derivation of every \circ_k, it follows that $\omega *_0$ is a derivation of $*_k$ for all $\omega \in D(V)$ and $k \geq -1$.

We call $D(V)$ equipped with the products $\{*_k| k \geq -1\}$ a $*$-algebra. A similar construction goes through in other settings as well. For example, given a Lie algebra \mathfrak{g}
equipped with a symmetric, invariant bilinear form B, $\mathfrak{u}g$ has a $*$-algebra structure (which depends on B). Given a $*$-algebra \mathcal{A}, we can define $*$-subalgebras, $*$-ideals, quotients, and homomorphisms in the obvious way. If V is a module over a Lie algebra \mathfrak{g}, $\mathcal{D}(V)^{\mathfrak{g}}$ is a $*$-subalgebra of $\mathcal{D}(V)$ because the action of $\xi \in \mathfrak{g}$ is given by $[\tau(\xi), -] = \tau(\xi)^*0$ which is a derivation of all the other products.

Given elements $\omega_1, \ldots, \omega_k \in \mathcal{D}(V)^{\mathfrak{g}}$, examples are known where $\omega_1, \ldots, \omega_k$ do not generate $\mathcal{D}(V)^{\mathfrak{g}}$ as a ring, but do generate $\mathcal{D}(V)^{\mathfrak{g}}$ as a $*$-algebra. This phenomenon occurs in our main example, in which \mathfrak{g} is the abelian Lie algebra C^m acting diagonally on $V = C^n$. Recall that $\mathcal{D}(V)^{\mathfrak{g}} = \bigoplus_{l \in A^+ \cap \mathbb{Z}^n} M_l$, where M_l is the free E-module generated by ω_l. Suppose that $A^+ \cap \mathbb{Z}^n$ has rank r, and let $\{l^i = (l^i_1, \ldots, l^i_n) | i = 1, \ldots, r\}$ be a basis for $A^+ \cap \mathbb{Z}^n$. In general, the collection

$$e_1, \ldots, e_n, \ \omega_{l^1}, \ldots, \omega_{l^r}, \ \omega_{-l^1}, \ldots, \omega_{-l^r} \tag{8.6}$$

is too small to generate $\mathcal{D}(V)^{\mathfrak{g}}$ as a ring.

Theorem 8.2. $\mathcal{D}(V)^{\mathfrak{g}}$ is generated as a $*$-algebra by the collection (8.6). Moreover, $\mathcal{D}(V)^{\mathfrak{g}}$ is simple as a $*$-algebra.

Proof: To prove the first statement, it suffices to show that given lattice points $l = (l_1, \ldots, l_n)$ and $l' = (l'_1, \ldots, l'_n)$, $\omega_{l+l'}$ lies in the $*$-algebra generated by ω_l and $\omega_{l'}$. For $j = 1, \ldots, n$, define

$$d_j = \begin{cases} 0 & l_j l'_j \geq 0 \\ \min\{|l_j|, |l'_j|\}, & l_j l'_j < 0 \end{cases}, \quad e_j = \begin{cases} 0 & l_j l'_j \geq 0 \\ \max\{|l_j|, |l'_j|\}, & l_j l'_j < 0 \end{cases},$$

$$k_j = \begin{cases} 0 & l_j \leq 0 \\ d_j & l_j > 0 \end{cases}, \quad d = -1 + \sum_{j=1}^n d_j.$$

The same calculation as in the proof of Theorem 7.3 shows that

$$\omega_l * d \omega_{l'} = \left(\prod_{j=1}^n (-1)^{k_j} \frac{e_j!}{(e_j - d_j)!} \right) \omega_{l+l'},$$

which shows that $\omega_{l+l'}$ lies in the $*$-algebra generated by ω_l and $\omega_{l'}$.

I thank N. Wallach for pointing this out to me.
As for the second statement, the argument is analogous to the proof of Theorem 7.5. Given a non-zero *-ideal $I \subset D(V)^*$, we need to show that $1 \in I$. Let ω be a non-zero element of I. It is easy to check that for $i, j = 1, \ldots, n$, and $l \in A^\perp \cap \mathbb{Z}^n$, we have

$$e_i *_1 e_j = -\delta_{i,j}, \quad e_i *_1 \omega_l = 0$$

By applying the operators $e_i *_1$ for $i = 1, \ldots, n$, we can reduce ω to the form

$$\sum_{l \in \mathbb{Z}^n} c_l \omega_l$$

for constants $c_l \in \mathbb{C}$, such that $c_l \neq 0$ for only finitely many values of l. We may assume without loss of generality that ω is already of this form. Let d be the maximal degree (in the Bernstein filtration) of terms ω_l appearing in (8.7) with non-zero coefficient c_l, and let l be such a lattice point for which ω_l has degree d. We have

$$\omega_{-l} *_{d-1} \omega_{l'} = \begin{cases} 0 & l' \neq l \\ \left(\prod_{j=1}^n (-1)^{k_j} |l_j|! \right) 1 & l' = l \end{cases}$$

where $k_j = \min\{0, l_j\}$, for all l' appearing in (8.7). Hence

$$\frac{1}{c_l \left(\prod_{j=1}^n (-1)^{k_j} |l_j|! \right)} \omega_{-l} *_{d-1} \omega = 1. \quad \Box$$
References

[1] P. Bouwknegt, J. McCarthy, K. Pilch, The \mathcal{W}_3 algebra: Modules, Semi-infinite Cohomology and BV-algebras, Lect. Notes in Phys, New Series Monographs 42, Springer-Verlag, 1996.

[2] B. Feigin and E. Frenkel, Semi-Infinite Weil complex and the Virasoro algebra, Comm. Math. Phys. 137 (1991), 617-639.

[3] I. Frenkel, Two constructions of affine Lie algebras and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44 (1981) 259-327.

[4] I.B. Frenkel, and Y.C. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Mathematical Journal, Vol. 66, No. 1, (1992), 123-168.

[5] D. Friedan, E. Martinec, S. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B271 (1986) 93-165.

[6] P. Goddard, A. Kent, and D. Olive, Virasoro algebras and coset space models, Phys. Lett B 152 (1985) 88-93.

[7] V. Gorbounov, F. Malikov, V. Schectman, Gerbes of chiral differential operators, Math. Res. Lett. 7 (2000), no. 1, 55–66.

[8] Harish-Chandra, Differential operators on a semisimple Lie algebra, Am. J. Math, Vol. 79, No. 1 (1957) 87-120.

[9] Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Am. J. Math. Vol. 86, No. 3 (1964) 534-564.

[10] V. Kac, D. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984) 125-264.

[11] V. Kac, A. Radul, Representation theory of the vertex algebra $\mathcal{W}_{1+\infty}$, Transf. Groups, Vol 1 (1996) 41-70.
[12] F. Knop, A Harish-Chandra homomorphism for reductive group actions, Ann. Math. 140 (1994), 253-288.

[13] B. Lian, A. Linshaw, Howe pairs in the theory of vertex algebras, J. Algebra 317, 111-152 (2007).

[14] B. Lian, and A. Linshaw, Chiral equivariant cohomology I, Adv. Math. 209, 99-161 (2007).

[15] F. Malikov, V. Schectman, and A. Vaintrob, Chiral de Rham complex, Commun. Math. Phys, 204, (1999) 439-473.

[16] I. Musson, M. van den Bergh, Invariants under Tori of Rings of Invariant Operators and Related Topics, Mem. Am. Math. Soc. No. 650 (1998).

[17] G. Schwarz, Finite-dimensional representations of invariant differential operators, J. Algebra 258 (2002) 160-204.

[18] W. Wang, $\mathcal{W}_{1+\infty}$ algebra, \mathcal{W}_3 algebra, and Friedan-Martinec-Shenker bosonization, Commun. Math. Phys. 195 (1998), 95–111.

[19] W. Wang, Classification of irreducible modules of \mathcal{W}_3 with $c = -2$, Commun. Math. Phys. 195 (1998), 113–128.

[20] A. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal field theory, Theor. Math. Phys. 65 (1985) 1205-1213.

[21] Y. Zhu, Modular invariants of characters of vertex operators, J. Amer. Math. Soc. 9 (1996) 237-302.

35