Integrative effects of stress- and stress tolerance-inducing elicitors on in vitro bioactive compounds of ajowan [Trachyspermum ammi (L.) Sprague] medicinal plant

Mohsen Niazian1 · Mehdi Soltani Howyzeh2 · Seyed Ahmad Sadat-Noori3

Received: 9 February 2021 / Accepted: 26 April 2021 / Published online: 5 May 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021, corrected publication 2021

Abstract
In the present study, the integrative effects of two sets of stress tolerance-inducing and stress-inducing elicitors, including polyethylene glycol–salicylic acid and NaCl–methyl jasmonate, were evaluated on regeneration efficiency, antioxidants activity and phytochemical profile of in vitro shoot cultures of ajowan. Combinations of salicylic acid (SA) (0, 10, 20, 40, 80 µM)–polyethylene glycol (PEG 6000) (0, 1, 2, 5%) and/or methyl jasmonate (MeJA) (0, 100, 200, 300 mg/L)–NaCl (0, 10, 15, 20 mM) were added to the shoot regeneration Murashige and Skoog medium containing KIN (1.50 mg/L) and NAA (0.25 mg/L) plant growth regulators. The number of regenerated shoots and the in vitro rooting decreased significantly with increasing PEG and NaCl levels. SA (40 µM) reduced the adverse effect of PEG on the number of regenerated shoots and in vitro rooting. The activities of catalase, superoxide dismutase and peroxidase enzymatic antioxidants were significantly increased in SA (80 µM)–PEG (5%) and MeJA (300 mg/L)–NaCl (20 mM) treated plants. The gas chromatography–mass spectrometry (GC–MS)-profiling revealed quantitative and qualitative phytochemical differences between control and SA–PEG and MeJA–NaCl treated plants. The greatest means of p-cymene and thymol bioactive compounds were obtained from in vitro shoots treated with 5% PEG + 40 µM SA. The interaction of PEG–SA was better than NaCl–MeJA elicitors in terms of the content of valuable γ-terpinene, p-cymene and thymol compounds. The inter-simple sequence repeats (ISSR) markers proved the genetic stability of in vitro regenerated plants. The presented protocol is useful for large-scale sustainable production of secondary metabolites (SMs) of medicinal plants.

Key message
Secondary metabolites are important plants defense molecules. Stress induction and/or defense machine stimulation are two practical strategies to increase the accumulation of secondary metabolites. The combined effects of stress tolerance-inducing...
salicylic acid and stress-inducing polyethylene glycol were evaluated in indirect shoot culture of ajowan. Levels of p-cymene and thymol increased in PEG–SA treated ajowan plants.

Keywords Antioxidants · Bioactive compounds · Elicitor · Indirect shoot · Secondary metabolites · Stress

Abbreviations

BBBMs Biotechnology-based breeding methods
CAT Catalase
DMRT Duncan's multiple ranges test
GC–MS Gas chromatography–mass spectrometry
ISSR Inter-simple sequence repeats
KIN Kinetic
MeJA Methyl jasmonate
MS Murashige and Skoog medium
NAA Naphthalene acetic acid
PEG Polyethylene glycol
PGR Plant growth regulator
POX Peroxidase
ROS Reactive oxygen species
SA Salicylic acid
SMs Secondary metabolites
SOD Superoxide dismutase

Introduction

Secondary metabolites (SMs) are chemical defense molecules that secreted when plants are under biotic and abiotic stresses (Alvarado et al. 2019). Improving the growth and survival of plants under stressful conditions is the primary function of SMs (Khare et al. 2020). Accumulation of higher amounts of SMs is one of the plant responses to stressful conditions (Mahajan et al. 2020). Stress induction and/or defense machine stimulation are two practical strategies to increase the accumulation of plants defense molecules, mainly antioxidant SMs. Due to environmental, geographical and seasonal independency, in vitro culture systems have great potential to increase the accumulation of plant’s bioactive compounds in a sustainable manner (Chandran et al. 2020). In vitro culture systems provide controlled conditions for quantitative and qualitative alteration of SMs of medicinal plants. Different stress-inducing materials and defense-trigger biotic and abiotic elicitors can be easily added to the culture medium to stimulate the accumulation of SMs of medicinal plants. Polyethylene glycol (PEG), NaCl and heavy metal ions are examples of such stress-inducing additives. Adding cadmium chloride (CdCl₂) to the culture medium increased alliin content in in vitro cultures of garlic (*Allium sativum*) (Malik et al. 2020) and plumbagin in the callus culture of chitrak (*Plumbago zeylanica* L.) (Singh et al. 2020). The accumulation of secondary metabolites of shikimic acid, caffeic acid, p-coumaric acid and rosmarinic acid was increased significantly in the cell suspension culture of *Salvia miltiorrhiza* by adding 50 mmol/L of NaCl to the culture medium (Yu et al. 2019). The positive effect of PEG 6000 (4%) on the total phenolic content, total flavonoid content and total antioxidant capacity of shoot cultures of *Stevia rebaudiana* has been reported (Ahmad et al. 2020). Applying elicitors, which stimulate the plant stress response (defense-trigger elicitors), is another important strategy to enhance the accumulation of SMs of medicinal plants in in vitro culture systems. Stress hormones (signaling compounds), including abscisic acid, jasmonic acid, methyl jasmonate (MeJA), and salicylic acid (SA), are the most important group of elicitors that have been applied to improve SMs accumulation in medicinal plants in vitro cultures (Thakur et al. 2019). Application of SA (1.0 mg/L) resulted in a significant increase in bacoside content in the cell suspension culture of *Bacopa monnieri* (Koul and Mal-lubhotla 2020).

Simultaneous application of stress- and stress tolerance-inducing elicitors in the culture medium is the third strategy to increase the accumulation of SMs of medicinal plants in in vitro culture systems. The integrative application of these two types of elicitors may be more effective than their individual application. The stress tolerance-inducing elicitors alleviate the harmful effects of stress-inducing elicitors on plant growth and development and subsequently increase their efficiency on SMs accumulation (Razavizadeh et al. 2020). The positive effects of concomitant use of stress-inducing and stress tolerance-inducing elicitors on in vitro production of SMs of *Verbascum sinuatum* (Karamian et al. 2020) and basil (*Ocimum basilicum* L.) (Nazir et al. 2020) have been reported.

Ajowan (*Trachyspermum ammi* L.) is one of the valuable medicinal plants of the *Apiaceae* family. Ajowan seeds have essential oil that contains about 50% of thymol. Thymol is a valuable bioactive compound with strong germicide, anti-spasmodic and fungicidal effects (Niaizian et al. 2018). P-cymene and γ-terpinene are other majorly present bioactive compounds in the essential oil of ajowan, which also the major precursors for thymol and carvacrol biosynthesis (Soltani Howzyeh et al. 2018a). Ajowan has a little area under cultivation in some of its major habitats such as Iran. In vitro production systems are a promising alternative to meet the growing demands for valuable bioactive compounds of ajowan and prevent the risk of extinction in the future (Niaizian et al. 2017). Different in vitro-based methods, including artificial tetraploidy induction (Noori et al. 2017), genetic engineering (Niaizian et al. 2019; Nomani et al. 2019), and biotic–abiotic elicitation (Razavizadeh...
et al. 2020), have been applied to improve the valuable bioactive compounds of ajowan. Despite their adverse effects on yield and yield components, abiotic stresses can increase the SMs of ajowan. Therefore, increasing the stress tolerance of ajowan is an applicable strategy to increase its SMs content under stressful conditions (Niazian et al. 2019). The present study was conducted to evaluate the effect of SA and MeJA elicitors on regeneration efficiency, enzymatic antioxidants activity and secondary metabolite production in shoot cultures of ajowan under the artificially induced drought (PEG 6000) and salinity (NaCl) stresses, respectively.

Materials and methods

Plant material and indirect regeneration procedure

Fifteen days old in vitro-obtained hypocotyl segments of Shiraz ecotype of ajowan were used as initial explants for callus induction. Five hypocotyls segments (0.5–1 cm) were placed in Petri dishes containing 30 mL of full-strength Murashige and Skoog (MS) medium supplemented with 0.20 mg/L naphthalene acetic acid (NAA) and 1.50 mg/L 6-benzylaminopurine (BAP). Petri dishes were incubated in a phytotron with 16/8 h (light/dark) photoperiod, photosynthetic photon flux density (PPFD) of 40 µmol/m²/s, and 24 °C. Callus induction of established hypocotyls was initiated after 15 days and three rounds of subcultures (each for 4 weeks) were done in the same medium. For shoot regeneration, induced calli were transferred to MS medium supplemented with 1.50 mg/L of Kinetin (KIN) plus 0.25 mg/L NAA. The complete details of the indirect shoot regeneration procedure of ajowan have been elaborated in Niazian et al. (2017).

Elicitation of in vitro shoot cultures

Two separate experiments were conducted to evaluate the effect of SA and MeJA elicitation on enzymatic antioxidants and bioactive compounds of in vitro regenerated shoots of ajowan under artificially induced drought and salinity stresses, respectively. Combination of different concentrations of SA (0, 10, 20, 40, 80 µM)–PEG 6000 (0, 1, 2 and 5%) and/or MeJA (0, 100, 200, 300 mg/L)–NaCl (0, 10, 15, 20 mM) were applied in shoot regeneration medium. The MS medium containing KIN (1.50 mg/L), NAA (0.25 mg/L), 3% (w/v) sucrose and 0.7% (w/v) agar (pH 5.8) was used as control. The culture medium was autoclaved at 121 °C for 20 min and then filter-sterilized (0.20 µm) elicitors were added to the medium under the laminar airflow chamber. Five callus segments (~ 200 mg) were cultured in Petri dishes containing 30 mL of MS medium supplemented with the aforementioned concentrations of KIN and NAA plant growth regulators (PGR) along with different combinations of PEG–SA and/or NaCl–MeJA elicitors. Both experiments were arranged as factorial, based on a completely randomized design (CRD), with three replications (as Petri dishes) and five samples per replication. All cultures were incubated in phytotron with the aforementioned condition for the callus induction procedure. Subcultures were done with 2 weeks intervals and the main and interaction effects of applied elicitors on the number of regenerated shoots were investigated in the seventh week of the experiment.

For root induction, the regenerated shoots (~ 4–5 cm height) were transferred to a half-strength PGR-free MS medium. Culture vessels were maintained in a phytotron with the aforementioned condition for the callus induction and shoot regeneration. The combined effect of PEG–SA and NaCl–MeJA on the rooting percentage of in vitro regenerated shoots was evaluated after 2 weeks.

Acclimatization

The well-developed roots (~ 3 cm) of regenerated plants were first washed with distilled sterile water to remove the traces of agar. Then, plantlets were transferred to plastic pots (200 mL) containing 1:1 perlite:peat moss. The pots were covered with transparent plastic and irrigated with half-strength MS medium for 1 week and then covers were removed for complete acclimatization. The successfully acclimatized plantlets were then transferred to larger plastic pots (8 × 10 cm) filled with autoclaved farm soil. The greenhouse established plants were grown and after 2 months starts to flowering. In the next 2 months, reached seeds were gathered and used for essential oil extraction and phytochemical assessments.

Measurement of enzymatic antioxidants

Fresh leaf samples protein was extracted by Sudhakar et al. (2001) method. For this purpose, a leaf sample (0.1 g) of acclimatized plantlets was homogenized in 2 mL tubes containing 20 mg of polyvinylpyrrolidone (PVP). Then, 1 mL of extraction buffer [Potassium phosphate (50 mM) + sodium sulfite (1 mM)] was added to the samples. After vortexing, samples were incubated at 4 °C for 30 min and then centrifuged at 12,000 rpm (Sudhakar et al. 2001). After centrifuging, the supernatant was isolated to measure antioxidant enzyme activities. The activity of the catalase (CAT) enzyme was measured using the Aebi (1974) method based on the rate of hydrogen peroxide (H₂O₂) decomposition. The reduction of absorbance at 240 nm was measured and activity was expressed as unit/mg protein. The activity of peroxidase (POX) was estimated using Hemededa and Klein (1990) method. The reaction mixture was prepared by mixing 10 mmol/L H₂O₂, 0.05% guaiacol enzyme and 25 mmol/L phosphate buffer (pH 7) and the activity of the...
enzyme was determined by determining the absorbance at 470 nm. Superoxide dismutase (SOD) activity was measured using Beauchamp and Fridovich (1971) method. The assay mixture, including 300 µL of the extracts in addition to 50 mM sodium phosphate buffer (pH 7), 12 mM l-methionine, 50 mM Na2CO3, 1 µM riboflavin, 0.1 mM ethylenediaminetetraacetic acid (EDTA), and 75 µM p-nitro blue tetrazolium chloride was prepared. The SOD activity unit was identified as the amount of enzyme needed to prevent a 50% (w/v) p-nitro blue tetrazolium chloride photo-reduction increase in absorbance at 560 nm.

Essential oil extraction and gas chromatography–mass spectrometry (GC–MS) analysis

For essential oil extraction, a seed sample (20 g), consist of a mixture of three plants from each group of in vitro regenerated plants, was ground using an electric grinder, then achieved fine powder was added to 500 mL distilled water on top of a heater at 100 °C and oil was extracted using a Clevenger-type 5 apparatus (Noori et al. 2017) for 2.5 h. Essential oil extraction was conducted in three replications. For GC–MS, 1 µL of the essential oil samples was injected into the GC split-less with the injection port. The GC–MS analysis was conducted in three replications. A GC–MS apparatus using the HP (Agilent Technology): 6890 Network GC System gas chromatograph connected to a mass detector (5973 Network Mass Selective Detector) was used for GC–MS analysis. The gas chromatograph was equipped with an HP-5MS capillary column (fused silica column, 30 m × 0.25 mm i.d., Agilent Technologies) and an EI mode with ionization energy of 70 eV with a scan time of 0.4 s and mass range of 40–460 amu was used. Helium gas was a carrier and its flow rate was 1.0 mL/min. The oven temperature was linearly programmed from 40 to 250 °C at a rate of 3 °C/min. The composition of the essential oil constituents was identified based on the comparison of their retention time relative to n-alkanes and computer matching with the NIST (National Institute of Standards and Technology) Adams library spectra, Wiley 7 n.1 mass computer library, and with those reported in the literature (Adams 1997). In the final, area under the curve of GC/MS spectra was used to calculate the relative percentage of each component (Soltani Howyzeh et al. 2018b; Noori et al. 2017).

Genetic stability assessment using inter simple sequence repeats (ISSR) markers

DNA samples of 3 weeks old regenerated plants (mixed DNAs of leaves of 10 plants), were used to assess the genetic stability of in vitro regenerants under the effect of applied elicitors. DNA samples of seed obtained plants were used as control. The DNA extraction was done using a CTAB-activated charcoal protocol described by Križman et al. (2006). Ten UBC primers of Set #9 (University of British Columbia, Vancouver, Canada) were used as ISSR markers (Table 1). The PCR amplifications were carried out using a C-1000 thermal cycler (Bio-Rad, Hercules, USA) following the protocol described by Rawat et al. (2013). PCR amplified products were separated through an agarose gel (1.5%) in 0.5 × TBE buffer stained with ethidium bromide under 100 V constant power supply for 1.5 h and visualized under UV light in a gel documentation system (Cleaver Scientific Ltd., Rugby, UK). The polymorphism percentage was calculated as the fraction of total polymorphic bands on the total number of amplified bands (Table 1).

Table 1 Information of UBC ISSR primers applied to evaluate the genetic stability of in vitro regenerated ajowan medicinal plants under the effect of applied elicitors

No.	Primer code	Primer sequence (5’–3’)	Tm (°C)	Number of allele/primer	Number of monomorphic bands	Number of polymorphic bands	Total number of amplified bands/primer	Size range (bp)
1	UBC 815	(CT)₈G	52	4	3	1	27	600–1400
2	UBC 817	(CA)₉A	52	2	2	0	14	600–1200
3	UBC 820	(GT)₉T	52	2	2	0	14	1000–1400
4	UBC 826	(AC)₉C	52	4	3	1	27	300–1400
5	UBC 829	(TG)₉C	53	4	4	0	28	500–1300
6	UBC 836	(AG)₈YA	52	3	2	1	20	400–1200
7	UBC 845	(CT)₉RG	54	4	4	0	28	300–1300
8	UBC 857	(AC)₉YG	54	3	3	0	21	350–1200
9	UBC 859	(TG)₉RC	55	3	2	1	20	400–1400
10	UBC 860	(TG)₉RA	52	4	3	1	27	500–1300
Total	33	28	5	226				
Statistical analysis

All statistical analyses of the present study, including analysis of variance (ANOVA) and means comparison analysis, were conducted using SAS® software (SAS Institute, Inc., Cary, NC). All experiments were performed with three biological replications. The normality test was conducted with SAS software before the analysis of variance. The Duncan’s multiple ranges test (DMRT) at a 5% ($P \leq 0.05$) probability level was used for the means comparisons analysis. A dendrogram was constructed by using NTSYSpc (V. 2.02e) software based on ISSR results.

Results

Indirect shoot regeneration and rooting of regenerated shoots under the effect of PEG–SA and NaCl–MeJA elicitors

Proliferated calli were obtained in MS medium supplemented with NAA (0.20 mg/L) and BAP (1.50 mg/L) at the end of the second week of the experiment (Fig. 1a). Induced calli were then transferred to the shoot induction medium. The first regenerated shoots were observed on MS medium containing NAA (0.25 mg/L) and KIN (1.50 mg/L) PGRs along with combinations of PEG and SA (Fig. 1b). Regenerated shoots showed visual symptoms of wilting in a culture medium containing PEG treatment (Fig. 1c).

The results of means comparison analysis, using DMRT at 5% probability level, showed a significant decrease in the number of regenerated shoots with increasing concentrations of PEG and NaCl in the culture medium (Fig. 2a, c). In both experiments, the greatest means of the number of regenerated shoots were observed in the control treatment (MS medium containing NAA and KIN PGRs), whereas, the lowest means of regenerated shoots were obtained in MS medium containing the highest concentration of PEG (5%)–SA (80 µM) (Fig. 2a) and NaCl (20 mM)–MeJA (300 mg/L) (Fig. 2c). At a certain concentration of PEG, SA treatment caused a significant increase in the number of regenerated shoots (Fig. 2a). The regenerated shoots were transferred to the root induction medium (Fig. 3a). Developed roots were observed after 2 weeks of establishment in PGR-free MS medium (Fig. 3b). The results of means comparison analysis revealed the significant adverse effect of both PEG and NaCl treatments on root induction percentage of in vitro regenerated shoots of ajowan. The lowest rooting percentage was obtained by the highest degree of drought (5% PEG 6000) (Fig. 2b) and salinity (20 mM NaCl) (Fig. 2d) stresses. The greatest rooting percentage was obtained in the control treatment. Salicylic acid showed a positive effect on the rooting percentage of PEG-treated shoots as the greatest mean of rooting percentage under severe drought stress (5% PEG 6000) was obtained by using 40 µM of SA (Fig. 2b). MeJA elicitor was not able to compensate for the harmful effects of NaCl on root induction of regenerated shoots and no rooting was observed at the highest level (20 mM) of NaCl (Fig. 2d).

The successfully acclimatized plantlets were transferred to a greenhouse (24 ± 1 °C and 90% relative humidity), along with intact (seed obtained) plants, for flowering and seed maturation. There was no obvious morphological difference between in vitro micropropagated and seed obtained plants of ajowan (Fig. 4). The acclimatization rate of in vitro regenerated ajowan plants was 85%.
Antioxidative enzymes activity under the effects of PEG and SA elicitors

A substantial increase in CAT activity was observed with increasing levels of PEG and SA in the shoot induction medium (Table 2). The greatest mean of CAT activity was observed in shoots regenerated in MS medium containing the highest concentrations of applied PEG 6000 (5%) and SA (80 µM). Under the severe artificial drought stress (5% PEG), there was no significant difference between 40 and 80 µM of SA, based on the DMRT test (Table 2). The highest POX activity was observed at severe artificial drought stress, whereas the lowest activity was observed in the control treatment. Salicylic acid under PEG treatment induced a significant increase in POX activity (Table 2). In non-stress condition (0% PEG), SA treatment increased the activity of POX, however, there was no significant difference between applied concentrations of SA at the 5% probability level (Table 2).

Antioxidative enzymes activity under the effects of NaCl and MeJA elicitors

The activity of CAT, SOD and POX antioxidative enzymes was significantly increased with increasing levels of NaCl and MeJA elicitors in the shoot induction medium (Table 3). The greatest means of mentioned antioxidative enzymes were obtained by the interaction of the highest concentrations of NaCl (20 mM) and MeJA (300 mg/L) (Table 3). The lowest means of CAT, SOD and POX were observed in control medium (0 mM NaCl + 0 mg/L MeJA) (Table 3).
The phytochemical profile of ajowan under the effects of PEG and SA elicitors

The results of GC–MS analysis showed significant quantitative and qualitative differences in the composition of the essential oils of in vitro PEG–SA treated plants with plants regenerated in the control medium (Fig. 5a, b). Thymol, γ-terpinene, and p-cymene were the main components in the essential oil of in vitro regenerated ajowan plants (Table 4). The major qualitative difference of in vitro regenerated plants was related to Sabinene that missed in the phytochemical profile of in vitro regenerated shoots treated with high levels of PEG 6000 (2 and 5%) (Table 4). The α-thujene percentage of non-treated plants was less than the PEG and SA treated shoots (Table 4).

Based on the results of GC–MS analysis, the p-cymene of in vitro micropropagated plants was increased with increasing levels of PEG and SA (Table 4). The greatest mean of p-cymene was observed when 5% PEG along with 40 µM of SA were added to the shoot induction medium (Table 4). Another major component of essential oil, γ-terpinene, in PEG and SA treated shoots was more than the control plants, however, there were no significant differences among applied PEG and SA concentrations in terms of this bioactive compound (Table 4). The combination of PEG and SA had a significant positive effect on the amount of thymol. The greatest mean of thymol content (53.15%) was obtained with the application of SA (40 µM) under severe drought stress treatment (5% PEG). The lowest mean of the thymol content was obtained in plants regenerated under control treatment (Table 4).

The phytochemical profile of ajowan under the effects of NaCl and MeJA elicitors

The results of GC–MS analysis revealed that NaCl and MeJA elicitors enhanced the contents of and p-cymene, γ-terpinene and thymol in in vitro regenerated shoots of ajowan (Table 5). The greatest mean of p-cymene was obtained from the interaction of NaCl (20 mM) and MeJA (300 mg/L), whereas the greatest means of γ-terpinene and Thymol were obtained from the interaction of NaCl (20 mM) and MeJA (200 mg/L) (Table 5). Sabinene was lost in the phytochemical profile of in vitro regenerated ajowan shoots treated with NaCl (Table 5).

Genetic stability assessment

Ten amplified ISSR primers produced 226 scorable bands from in vitro regenerated and control plants of ajowan. An average of 3 bands per primer, ranging from 2 to 4 bands, with only 2.21% of polymorphism was observed (Fig. 6a, S1, S2). The dendrogram obtained from ISSR primers analysis...
Table 2
Effect of in vitro drought stress and salicylic acid elicitor on the catalase, superoxide dismutase and peroxidase activity in indirect regenerated shoots of ajowan

PEG 6000 concentration (%)	Salicylic acid concentration (µM)	Catalase (unit/mg protein)	Superoxide dismutase (unit/mg protein)	Peroxidase (unit mg/protein/min)
0	0	0.56±0.02^m	127.33±0.27^f	0.40±0.00^g
10	0	0.76±0.11^l	125.67±1.66^g	0.52±0.02^k
20	0	0.76±0.01ⁱ	130.67±0.66^g	0.57±0.00^b
40	0	0.81±0.01^h	133.00±0.57^g	0.65±0.01ⁱ
80	1	1.03±0.03^j	131.67±0.88^g	0.71±0.00^f
0	10	0.93±0.03^{ik}	135.33±1.66^g	0.74±0.00^b
10	0.88±0.01^{il}	97.33±3.66^b	0.75±0.00^h	
20	0.93±0.03^{ik}	138.67±0.88^g	0.78±0.00^b	
40	1.13±0.03ⁱ	143.00±1.00^g	0.76±0.01^h	
80	1.33±0.12^h	145.67±0.66^g	0.76±0.02ⁱ	
1	0	1.46±0.03^{eh}	148.33±0.33^d	0.82±0.00^f
10	1.53±0.03^{ef}	150.67±0.66^g	0.84±0.02^g	
20	1.60±0.00^{fg}	153.00±0.00^f	0.87±0.00^f	
40	1.71±0.01^e f^{if}	167.00±0.01^{bo}	0.88±0.00^f	
80	1.78±0.01^{ef}	171.00±1.00^{ce}	0.90±0.00^f	
5	0	1.86±0.03^{cd}	175.67±0.33^d	1.06±0.03^{ef}
10	1.93±0.03^{bc}	179.33±0.33^{bc}	1.13±0.03^{cd}	
20	2.03±0.03^b	186.67±1.66^b	1.26±0.03^{cd}	
40	2.33±0.08^a	240.00±0.00^e	1.43±0.06^{cd}	
80	2.46±0.03^a	245.00±2.88^d	1.73±0.03^{cd}	

Induced calli were cultured on MS medium containing 0.25 mg/L NAA and 1.5 mg/L KIN along with combinations of PEG 6000 (0, 1, 2, 5%) and salicylic acid (0, 10, 20, 40, 80 µM) for indirect shoot regeneration. Values represent the mean± standard error of three biological replicates. Values followed by the same letters are not significantly different at the $P < 0.05$.

Table 3
Effect of in vitro salinity stress and methyl jasmonate elicitor on the catalase, superoxide dismutase and peroxidase activity in indirect regenerated shoots of ajowan

NaCl concentration (mM)	Methyl jasmonate concentration (mg/L)	Catalase (unit/mg protein)	Superoxide dismutase (unit/mg protein)	Peroxidase (unit mg/protein/min)
0	0	0.50±0.00^k	126.33±0.33^k	0.36±0.03^l
10	0.60±0.05^d	127.33±0.33^k	0.43±0.03^l	
200	0.68±0.01^h	129.33±0.33^{jk}	0.53±0.03^h	
300	0.74±0.00^g	132.33±0.33^j	0.62±0.03^g	
10	0.86±0.01^h	140.33±0.33^g	0.67±0.00^h	
100	0.94±0.01^g	142.33±0.33^{jh}	0.70±0.00^h	
200	0.96±0.01^g	144.66±0.33^h	0.72±0.00^g	
300	1.00±0.00^g	146.33±0.33^{jh}	0.76±0.00^g	
15	0.32±0.00^f	149.33±0.66^{fg}	0.86±0.00^d	
100	1.40±0.00^f	150.66±0.33^{gf}	0.88±0.00^d	
200	1.54±0.01^f	154.00±1.00^f	0.91±0.00^d	
300	1.53±0.00^f	160.00±5.00^f	0.93±0.00^d	
20	1.76±0.03^{de}	176.00±1.52^c	1.06±0.03^{de}	
100	1.93±0.03^{de}	182.33±0.33^e	1.23±0.03^{de}	
200	2.06±0.06^b	240.66±0.66^d	1.50±0.00^e	
300	2.26±0.03^a	243.00±1.00^e	1.50±0.05^e	

Induced calli were cultured on MS medium containing 0.25 mg/L NAA and 1.5 mg/L KIN along with combinations of NaCl (0, 10, 15, 20 mM) and methyl jasmonate (0, 10, 200, 300 mg/L) for indirect shoot regeneration. Values represent the mean± standard error of three biological replicates. Values followed by the same letters are not significantly different at the $P < 0.05$.

© Springer
showed the similarity among in vitro regenerants and also their similarity with control plant of ajowan (Fig. 6b).

Discussion

The plant cell/tissue/organ culture is one of the promising biotechnology-based breeding methods (BBBMs) for the constant production of SMs of medicinal plants (Niazian 2019). The traditional in vitro techniques (adding different components such as PGRs, precursors, elicitors and other additives to the culture medium) are simpler and cost-effective than complicate BBBMs, such as genetic engineering and synthetic biology, to manipulate the phytochemical profile of medicinal plants.

Differentiated (organogenesis) and undifferentiated (callus) culture systems have been applied for in vitro production of the bioactive compounds of medicinal plants. Callus cultures have great potential in this regard (Koufan et al. 2020). However, undifferentiated calli are not as promising as organogenesis cultures in terms of SMs production (Santos et al. 2020). The superiority of differentiated cultures over the callus culture systems, in terms of the level of produced bioactive compounds, has been reported in *Schisandra henryi* (Jafernik et al. 2020), *Phellodendron chinense* (He et al. 2020) and *Argania spinosa* (L.) (Koufan et al. 2020). These observations could be due to the effect of developmental factors on SMs of medicinal plants, as the major of secondary metabolites often occur at a certain stage of plant growth. In addition, there is a relationship between morphogenesis and synthesis and accumulation of SMs in medicinal plants (Li et al. 2020).

The application of biotic and abiotic elicitors in culture medium, which induces defense-related metabolic pathways, is one of the creative strategies to change the biochemical profile of medicinal plants and enhance the accumulation of SMs. The key to successful elicitation is the identification of the best elicitor for a specific plant. The chemical composition and concentration of the elicitor, as well as the timing of its application, are critical factors in elicitation processes. The efficacy of elicitation can be assessed through the production of bioactive compounds, which can be quantified using various analytical techniques such as GC–MS. Figure 5 presents the GC–MS profiling of in vitro regenerated plants in control and under the effect of applied elicitors. The GC–MS chromatograms reveal the changes in the phytochemical profile of the plants, indicating the potential of elicitation in enhancing the production of bioactive compounds.
Table 4 The phytochemical profile of in vitro regenerated plants of ajowan under the effects of drought stress and salicylic acid elicitor

PEG concentration (%)	Salicylic acid concentration (µM)	α-Thujene	α-Pinene	Sabinene	β-Pinene	β-Myrcene	α-Terpine	p-Cymene	β-Phellandrene	γ-Terpinene	Terpinene-4-ol	Thymol
0	0	0.24 ± 0.00^b										
10	0	0.25 ± 0.00^b										
20	0	0.26 ± 0.00^b										
40	0	0.28 ± 0.00^b										
80	0	0.31 ± 0.00^b										
5	0	0.39 ± 0.00^b										

Induced calli were cultured on MS medium containing 0.25 mg/L NAA and 1.5 mg/L KIN along with combinations of PEG 6000 (0, 1, 2, 5%) and salicylic acid (0, 10, 20, 40, 80 µM) for indirect shoot regeneration. Values represent the mean ± standard error of three biological replicates. Values followed by the same letters are not significantly different at the *P* < 0.05.
Table 5 The phytochemical profile of in vitro regenerated plants of ajowan under the effects of salinity stress and methyl jasmonate elicitor

NaCl concentration (mM)	Methyl jasmonate concentration (mg/L)	α-Thujene	α-Pinene	Sabinene	β-Pinene	β-Myrcene	α-Terpinene	p-Cymene	β-Phellandrene	γ-Terpinene	Terpinene-4-ol	Thymol
0	0	0.21 ± 0.00	0.18 ± 0.00	0.21 ± 0.00	1.58 ± 0.00	0.43 ± 0.00	0.16 ± 0.00	0.22 ± 0.00	0.22 ± 0.00	27.72 ± 0.00	0.36 ± 0.00	41.36 ± 0.00
100	0	0.23 ± 0.00	0.19 ± 0.00	0.21 ± 0.00	1.55 ± 0.00	0.43 ± 0.00	0.16 ± 0.00	0.23 ± 0.00	0.23 ± 0.00	27.12 ± 0.00	0.36 ± 0.00	41.36 ± 0.00
200	0	0.23 ± 0.00	0.19 ± 0.00	0.18 ± 0.00	1.53 ± 0.01	0.44 ± 0.01	0.16 ± 0.00	0.24 ± 0.00	0.24 ± 0.00	27.35 ± 0.01	0.37 ± 0.00	41.66 ± 0.00
300	0	0.23 ± 0.00	0.20 ± 0.00	0.16 ± 0.00	1.52 ± 0.00	0.47 ± 0.00	0.16 ± 0.00	0.25 ± 0.00	0.25 ± 0.00	27.35 ± 0.00	0.37 ± 0.00	41.64 ± 0.01
10	0	0.25 ± 0.00	0.23 ± 0.00	0.23 ± 0.00	1.62 ± 0.00	0.48 ± 0.00	0.17 ± 0.00	0.26 ± 0.00	0.26 ± 0.00	27.44 ± 0.01	0.38 ± 0.00	43.43 ± 0.11
100	0	0.25 ± 0.00	0.22 ± 0.00	0.23 ± 0.00	1.62 ± 0.01	0.49 ± 0.00	0.17 ± 0.00	0.27 ± 0.00	0.27 ± 0.00	27.10 ± 0.32	0.38 ± 0.00	43.87 ± 0.00
200	0	0.26 ± 0.00	0.23 ± 0.00	0.23 ± 0.00	1.60 ± 0.00	0.50 ± 0.00	0.18 ± 0.00	0.28 ± 0.01	0.28 ± 0.01	27.37 ± 0.10	0.38 ± 0.00	43.99 ± 0.05
300	0	0.27 ± 0.00	0.24 ± 0.00	0.24 ± 0.00	1.62 ± 0.02	0.52 ± 0.00	0.18 ± 0.00	0.30 ± 0.00	0.30 ± 0.00	27.55 ± 0.11	0.40 ± 0.00	44.09 ± 0.00
15	0	0.32 ± 0.00	0.27 ± 0.00	0.27 ± 0.00	1.68 ± 0.00	0.56 ± 0.00	0.17 ± 0.00	0.33 ± 0.00	0.33 ± 0.00	27.62 ± 0.04	0.42 ± 0.00	44.84 ± 0.04
100	0	0.32 ± 0.00	0.28 ± 0.00	0.28 ± 0.00	1.68 ± 0.00	0.57 ± 0.00	0.17 ± 0.00	0.35 ± 0.00	0.35 ± 0.00	27.66 ± 0.00	0.43 ± 0.00	44.93 ± 0.01
200	0	0.34 ± 0.00	0.28 ± 0.00	0.28 ± 0.00	1.69 ± 0.00	0.58 ± 0.00	0.17 ± 0.00	0.38 ± 0.00	0.38 ± 0.00	27.45 ± 0.16	0.43 ± 0.00	45.38 ± 0.06
300	0	0.35 ± 0.00	0.28 ± 0.00	0.28 ± 0.00	1.67 ± 0.00	0.58 ± 0.00	0.17 ± 0.00	0.38 ± 0.00	0.38 ± 0.00	27.66 ± 0.02	0.43 ± 0.00	46.38 ± 0.03
20	0	0.36 ± 0.00	0.29 ± 0.00	0.29 ± 0.00	1.69 ± 0.00	0.60 ± 0.00	0.18 ± 0.00	0.36 ± 0.00	0.36 ± 0.00	27.71 ± 0.00	0.44 ± 0.00	48.27 ± 0.03
100	0	0.31 ± 0.00	0.31 ± 0.00	0.29 ± 0.00	1.67 ± 0.05	0.57 ± 0.00	0.17 ± 0.00	0.36 ± 0.00	0.36 ± 0.00	27.76 ± 0.00	0.45 ± 0.00	48.59 ± 0.03
200	0	0.33 ± 0.00	0.30 ± 0.00	0.30 ± 0.00	1.67 ± 0.00	0.58 ± 0.00	0.17 ± 0.00	0.37 ± 0.00	0.37 ± 0.00	27.86 ± 0.02	0.37 ± 0.00	49.91 ± 0.03
300	0	0.33 ± 0.00	0.30 ± 0.00	0.30 ± 0.00	1.65 ± 0.06	0.62 ± 0.00	0.18 ± 0.00	0.42 ± 0.04	0.42 ± 0.04	27.40 ± 0.10	0.42 ± 0.00	46.34 ± 0.02

Induced calli were cultured on MS medium containing 0.25 mg/L NAA and 1.5 mg/L KIN along with combinations of NaCl (0, 10, 15, 20 mM) and methyl jasmonate (0, 10, 200, 300 mg/L) for indirect shoot regeneration. Values represent the mean ± standard error of three biological replicates. Values followed by the same letters are not significantly different at the P < 0.05.
valuable antioxidant bioactive compounds (Liu et al. 2018; Mahendran et al. 2018; Tonk et al. 2016). Elicitors are a group of plant biostimulants that can increase the accumulation of SMs of medicinal plants (Tonk et al. 2016). Stress hormones (SA, abscisic acid, jasmonic acid, MeJA), compatible solutes (proline), chitosan, and microbial extracts (bacterial, fungal and yeast) are the most applied elicitors in this regard. Some abiotic elicitors can be added to the culture medium for direct stress induction, especially osmotic stress. Polyethylene glycol, NaCl, heavy metal ions and nanoparticle-based metals are examples of abiotic stress-inducing elicitors (Ahmad et al. 2020; Yu et al. 2019; Malik et al. 2020; Mosavat et al. 2019).

In the present study, the combined effects of stress-inducing abiotic elicitors and stress tolerance-inducing elicitors of SA and MeJA were assessed on the SMs and enzymatic antioxidants activity of ajowan shoot cultures. PEG is a water-soluble polymer that widely has been applied to induce osmotic stress in plants by blocking the water-conducting channels of leaves, reducing the osmotic potential of cells and impairment of nutrient uptake (Castañeda and González 2021). Both applied PEG and NaCl significantly reduced the number of regenerated shoots and rooting percentage of the regenerated shoots. Salicylic acid treatment compensated for the negative effects of artificially induced drought stress on shoot regeneration and rooting of regenerated shoots and increased the regeneration efficiency of ajowan under stressful conditions. However, the greatest means of regenerated shoots and rooting percentage were related to the control medium. Miclea et al. (2020) have reported the adverse effect of elicitors on the number of in vitro shoots in Lavandula angustifolia. Salicylic acid is a stress tolerance-inducing compound that can improve plants growth under stressful conditions via modulation of the physiological parameters, reactive oxygen species (ROS) scavenging capacity, phytohormonal changes and antioxidant enzyme activity (Abdelaal et al. 2020; Rasheed et al. 2020; Torun et al. 2020). The positive effects of combinations of SA–PEG and MeJA–NaCl elicitors on SMs content and antioxidants activity of in vitro regenerated shoots were evident in the present study. Thymol, γ-terpinene and p-cymene considerably increased under the interaction of artificially induced drought and salinity stresses with SA and MeJA treatments. Salicylic acid is a signaling molecule that involved in the expression of stress-related genes in plant cells and the secretion of SMs in stress conditions induced by abiotic or biotic factors (Demirci et al. 2021). Therefore, to increase the accumulation of secondary metabolites, the use of salicylic acid under stressful conditions can be much more effective than its use in non-stressful conditions. Methyl jasmonate is another important signal molecule that its positive effect on bioactive compounds of different medicinal plants, including Macleaya cordata (Huang et al. 2021), S. miltiorrhiza (Wei et al. 2020), and S. rebaudiana (Rasouli et al. 2021), has been reported. Researchers have mainly applied the above mentioned biotic and abiotic elicitors individually in in vitro cultures of different medicinal plants. However, there are some examples of the combined use of these elicitors. Razavizadeh et al. (2020) applied different concentrations of chitosan (0, 10 and 20 mg/L) in callus and shoot cultures of ajowan, under artificially induced salinity stress (NaCl), and reported the positive effect of NaCl and chitosan in enhancing the contents of thymol and p-cymene. They also reported the increased activity of CAT, SOD and ascorbate peroxidase antioxidants under in vitro induced salt stress (100 mM NaCl). The integrative application of biotic (chitosan and SA) and abiotic (NaCl) elicitors led to enhanced total phenolics and total flavonoids in callus cultures of safflower (Carthamus tinctorius L.) (Golkar et al. 2019; Karamian et al. 2020) investigated the effect of

Fig. 6 a DNA fingerprinting pattern generated with UBC 815 ISSR primer. M molecular weight marker, C control plants, T1–T6 in vitro regenerated plants in MS medium supplemented with of KIN (1.5 mg/L) and NAA (0.25 mg/L) plant growth regulators and applied elicitors. b The dendrogram obtained from ISSR primers results for clustering in vitro regenerated and control plants of ajowan
in vitro methyl jasmonate elicitor on bioactive compounds of *V. sinusatum* under drought stress (PEG 6000) condition. They reported that the highest total phenol and flavonoid contents were obtained when 200 µM of methyl jasmonate was added to the culture medium under severe drought stress (− 0.5 MPa).

In addition to the stress tolerance-inducing elicitors, stress tolerance-enhancer compounds, such as melatonin, have been applied as elicitors to increase the accumulation of in vitro bioactive components of medicinal plants (Coskun et al. 2019; Duran et al. 2019). Other stress tolerance-enhancer additives, such as gibberellin inhibitors, ethylene inhibitors, osmoprotectants, antioxidant activators, ROS scavengers, and detoxification activators (Niazian and Shariatpanahi 2020), can potentially be used in combination with stress-inducing elicitors (PEG, NaCl, heavy metal ions) to increase the in vitro production of plants bioactive compounds. Silver nitrate (AgNO₃), as an ethylene inhibitor compound, has been applied to increase bioactive compounds of medicinal plants in different in vitro culture systems (Gonçalves et al. 2019; Yu et al. 2019; Açıkgöz 2020). It is obvious that the integrative application of these stress tolerance-enhancers and stress-inducing elicitors can be more effective than their individually application in terms of accumulation of antioxidant SMs.

Finding the best combination(s) of defense-trigger biotic and abiotic elicitors is very important to achieve the maximum levels of desired bioactive compounds of medicinal plants in different in vitro culture systems. However, in vitro culture is a multi-variable procedure with many influential factors (Niazian and Niedbała 2020). There are some useful advanced computational methods, such as machine learning algorithms, that can help researchers to overcome the complex nature of in vitro studies (Hesami et al. 2020; Hesami and Jones 2020; Niazian and Niedbała 2020). These advanced computational methods have also been applied for modeling and optimizing in vitro production of plant’s bioactive compounds, under the effect of various influencing factors (Kaur et al. 2020; Salehi et al. 2020, 2021).

Monomorphic patterns of ISSR primers showed high similarity between control and in vitro regenerated plants under the effect of applied elicitors. Production of genetic clones of the true-too-type plants is the main objective of an in vitro regeneration program. However, obtained plants from an indirect organogenesis pathway usually show slight divergence in genetic composition (Kshirsagar et al. 2021). Preservation of the original genetic background of medicinal plants during in vitro propagation is very important to protect valuable endemic genotypes/ecotypes (Niazian et al. 2017). Therefore, assessing the genetic fidelity of regenerated plants is an essential step in establishing an efficient protocol for the in vitro production of SMs of medicinal plants. Researchers often use molecular markers and flow cytometry to study the genetic stability of in vitro regenerated shoots. ISSR markers cover different genomic regions and offer an effective method for evaluating somaclonal variation in regenerated plants (Rawat et al. 2018; Raji and Farajpour 2020). While preserving the genetics of the in vitro regenerants, the optimized protocol in the present study increased the accumulation of valuable bioactive compounds of ajowan medicinal plant using integrated SA–PEG biotic and abiotic elicitors. This protocol can be widely used for the sustainable and safe production of SMs of other medicinal plants of the Apiaceae family.

Conclusions

In vitro culture systems provide an excellent opportunity for the sustainable production of valuable bioactive compounds of medicinal plants. Precursor feeding, elicitation and manipulation of culture medium parameters (basal culture medium, PGRs, carbon sources, additives and pH) are the simple and efficient traditional methods to increase contents of in vitro SMs. Elicitation of culture systems with defense-trigger compounds is a creative strategy to stimulate the accumulation of defense SMs.

In the present study, two combinations of stress tolerance-inducing and stress-inducing elicitors, including PEG–SA and NaCl–MeJA, were applied in indirect shoot regeneration of ajowan. Applied concentrations of SA reduced the adverse effects of PEG on shoot regeneration and rooting percentage of in vitro cultures. It did not happen for the interaction of NaCl–MeJA as shoot regeneration and rooting percentage was decreased with increasing levels of applied elicitors. The co-application of both PEG–SA and NaCl–MeJA led to the higher activity of enzymatic antioxidants (CAT, POX and SOD) and higher contents of valuable γ-terpinene, p-cymene and thymol bioactive compounds than non-stress (control) condition. Salicylic acid elicitation under artificially induced drought stress was more efficient than MeJA elicitation under salinity stress condition, in terms of in vitro production of SMs in ajowan medicinal plant. The genetic background of micropropagated ajowan plants showed high similarity with intact seed obtained plants. The results of the present study are useful for researchers who want to increase the amount of valuable bioactive compounds of their desired medicinal plants.

Supplementary Information The online version of this article (https://doi.org/10.1007/s11240-021-02096-1) contains supplementary material, which is available to authorized users.

Acknowledgements The authors are thankful to the Research Institute of Forests and Rangelands of Iran for procuring the ajowan seeds.
Author contributions MN performed in vitro and greenhouse experiments and wrote the whole body of the manuscript. MSH contributed to study conception and project design, analysis and interpretation of data, GC/MS analysis, and revised the manuscript. SASN supervised the project and helped to improve the manuscript.

Declarations

Conflict of interest The authors declare that they have no conflicts of interest to disclose.

Ethical approval There is no any ethical standard related to the present article.

References

Abdelaal KA, EL-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, El-Esawi M, Elkelish A (2020) Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agriculture 10(1):26. https://doi.org/10.3390/Agro10010026

Açıkgöz MA (2020) Establishment of callus suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients. Ind Crops Prod 148:112278. https://doi.org/10.1016/j.indcrop.2020.112278

Adams RP (1997) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publication Corporation, Carol Stream

Aebi H (1974) Catalases. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York, pp 673–684

Ahmad MA, Javed R, Adeel M, Rizwan M, Yang Y (2020) PEG 6000-stimulated drought stress improves the attributes of in vitro growth, steviol glycosides production, and antioxidant activities in Stevia rebaudiana Bertoni. Plants 9(11):1552. https://doi.org/10.3390/plants9111552

Alvarado AM, Aguirre-Beccerra H, Vázquez-Hernández MC, Mañá Lorenzo E, Parola-Conreras I, Caicedo-Lopez LH, Contreras-Medina LM, García-Trejo JF, Guevara-Gonzalez RG, Feregrino-Perez AA (2019) Influence of elicitors and eustressors on the production of plant secondary metabolites. In: Akhtar M, Swamy AH (eds) Natural bio-active compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7154-7_11

Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay applicable to acrylamide gels. Ann Biochem 44:276–287

Castañeda V, González EM (2021) Strategies to apply water-deficit stress: similarities and disparities at the whole plant metabolism level in Medicago truncatula. Int J Mol Sci 22(6):2813. https://doi.org/10.3390/ijms22062813

Chandran H, Meena M, Barupal T, Sharma K (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep. https://doi.org/10.1016/j.btre.2020.e00450

Coskun Y, Duran RE, Kilic S (2019) Striking effects of melatonin on secondary metabolites produced by callus culture of rosemary (Rosmarinus officinalis L.). Plant Cell Tissue Organ Cult 138(1):89–95. https://doi.org/10.1007/s11240-019-01605-7

Demirci T, Asci ÖA, Baydar NG (2021) Influence of salicylic acid and L-phenylalanine on the accumulation of anthraquinone and phenolic compounds in adventitious root cultures of madder (Rubia tinctorum L.). Plant Cell Tissue Organ Cult 144:313–324. https://doi.org/10.1007/s11240-020-01952-w

Duran RE, Kilic S, Coskun Y (2019) Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.). Vitro Cell Dev Biol Plant 55(4):468–475. https://doi.org/10.1007/s11627-019-10006-6

Golkar P, Taghizadeh M, Yousefian Z (2019) The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue Organ Cult 137(3):575–585. https://doi.org/10.1007/s11240-019-01592-9

Gonçalves S, Mansinhos I, Rodríguez-Solana R, Pérez-Santín E, Coelho N, Romano A (2019) Elicitation improves rosmarinic acid content and antioxidant activity in Thymus lotocephalus shoot cultures. Ind Crops Prod 137:214–220. https://doi.org/10.1016/j.indcrop.2019.04.071

He H, Qin J, Ma Z, Sun W, Yan W, He G, Yang M, Zhang D (2020) Highly efficient regeneration and medicinal component determination of Phellodendron chinense Schneid. In Vitro Cell Dev Biol Plant 56:775–783. https://doi.org/10.1007/s11267-020-10808-1

Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–185

Hesami M, Jones AMP (2020) Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-020-10882-2

Hesami M, Naderi R, Tohidfar M, Yoosofzadeh-Najafabadi M (2020) Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study. Plant Methods 16(1):1–15. https://doi.org/10.1186/s13007-020-00655-9

Huang P, Xia L, Zhou L, Liu W, Wang P, Qing Z, Zeng J (2021) Influence of different elicitors on BIA production in Macleaya cordata. Sci Rep 11(1):1–7. https://doi.org/10.1038/s41598-020-07980-2

Jafernik K, Szopa A, Barnaś M, Dziurka M, Ekiert H (2020) Schisandra hensyi CB Clarke in vitro cultures: a promising tool for the production of lignans and phenolic compounds. Plant Cell Tissue Organ Cult 143(1):45–60. https://doi.org/10.1007/s11240-020-01895-2

Karaman R, Ghasemlou F, Amiri H (2020) Physiological evaluation of drought stress tolerance and recovery in Verbascum sinuatum plants treated with methyl jasmonate, salicylic acid and titanium dioxide nanoparticles. Plant Biosyst Int J Deal Asp Plant Biol 154(3):277–287. https://doi.org/10.1080/11263504.2019.1591535

Kaur P, Gupta RC, Dey A, Malik T, Pandey DK (2020) Optimization of salicylic acid and chitosan treatment for bitter secoiridoid and xanthone glycosides production in shoot cultures of Swertia paniculata using response surface methodology and artificial neural network models. BMC Plant Biol 20(1):1–13. https://doi.org/10.1186/s12870-020-02410-7

Khare S, Singh NB, Singh A, Hussain I, Niharika K, Yadav V, Bano C, Yadav RK, Amist N (2020) Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J Plant Biol 63(3):203–216. https://doi.org/10.1007/s12374-020-09245-7

Koufan M, Belkoura I, Mazri MA, Amarraque A, Elhorri H, Zaddoug F, Alaoui T (2020) Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Aegania spinosa (L.) Skeels, Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-020-01782-w

Koul A, Mallubhotla S (2020) Elicitation and enhancement of bacoside production using suspension cultures of Bacopa monnieri (L.) Wettst. 3 Biotech 10:256. https://doi.org/10.1007/s13205-020-2224-0
Li Y, Kong D, Fu Y, Sussman MR, Wu H (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148:80–89. https://doi.org/10.1016/j.plaphy.2020.01.006

Liu ZB, Chen JG, Yin ZP, Shangguan XC, Peng DY, Lu T, Lin P (2018) Methyl jasmonate and salicylic acid elicitation increase content and yield of chlorogenic acid and its derivatives in Gardenia jasminoides cell suspension cultures. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-018-1401-1

Mahajan M, Kuiry R, Pal PK (2020) Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J Appl Res Med Aromat Plants. https://doi.org/10.1016/j.jarmap.2020.100255

Mahendra D, Sreeramnan S, Venkatachalapam P (2018) Enhanced biosynthesis of colchicine and thiocolchicoside contents in cell suspension cultures of Gloriosa superba L. exposed to ethylene inhibitor and elicitors. Ind Crops Prod 120:123–130. https://doi.org/10.1016/j.indcrop.2018.04.040

Malik MQ, Mujib A, Gulzar B, Zafar N, Syed R, Mammajin E, Ejaz B (2020) Enrichment of alliin in different in vitro grown tissues of Allium sativum through CdCl2 elicitation as revealed by high performance thin layer chromatography (HPTLC). Ind Crops Prod 158:113007. https://doi.org/10.1016/j.indcrop.2020.113007

Miclea I, Suhani A, Zahan M, Bunea A (2020) Effect of jasmonic acid and salicylic acid on growth and biochemical composition of in-vitro-propagated Lavandula angustifolia Mill. Agronomy 10(11):1722. https://doi.org/10.3390/agronomy10111722

Mosavat N, Golpar K, Yousefiarif M, Javed R (2019) Modulation of callus growth and secondary metabolites in different Thymus species and Zataria multiflora micropropagated under ZnO nanoparticles stress. Biotechnol Appl Biochem 66(3):316–322. https://doi.org/10.1002/bab.1727

Niazian M, Sadat Noori SA, Galuszka P, Tohidifar M, Mortazavian SM (2017) Genetic stability of regenerated plants via indirect somatic embryogenesis and indirect shoot regeneration of Carum coticum L. Ind Crops Prod 97:330–337. https://doi.org/10.1016/j.indcrop.2016.12.044

Niazian M (2019) Application of genetics and biotechnology for improving medicinal plants. Planta 249:956–973. https://doi.org/10.1007/s00425-019-03099-1

Niazian M, Sadat-Noori SA, Tohidifar M, Galuszka P, Mortazavian SMM (2019) Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Ind Crops Prod 132:29–40. https://doi.org/10.1016/j.indcrop.2019.02.005

Niazian M, Niedbala G (2020) Machine learning for plant breeding and biotechnology. Agriculture 10(10):436. https://doi.org/10.3390/agriculture10100436

Niazian M, Shariatpanah ME (2020) In vitro-based doubled haploid production: recent improvements. Euphytica 216:1–21. https://doi.org/10.1007/s10681-020-02609-7

Nomani M, Noori SAS, Tohidifar M, Ramshini H (2019) Overexpression of TP52 gene to increase thymol content using Agrobacterium tumefaciens-mediated transformation in Trachyspermum ammi (Qom ecotype). Ind Crops Prod 130:63–70. https://doi.org/10.1016/j.indcrop.2018.12.076

Noori SA, Norouzi M, Karimzadeh G, Shirkool K, Niazian M (2017) Effect of colchicine-induced polyplody on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult 130:543–551. https://doi.org/10.1007/s11240-017-1245-0

Raj MR, Farajpour M (2020) Genetic fidelity of regenerated plants via shoot regeneration of muskmeleon by inter simple sequence repeat and flow cytometry. J Saudi Soc Agric Sci. https://doi.org/10.1016/j.jssas.2020.12.003

Rasheed F, Anjum NA, Masood A, Sofo A, Khan NA (2020) The key roles of salicylic acid and sulfur in plant salinity stress tolerance. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10257-3

Rasouli D, Werbrouck S, Maleki B, Jafary H, Schurdi-Levraud V (2020) Ralstonia solanacearum LMG 7653 strain isolation via biofilm formation and its potential for wheat blight control. J Plant Dis Prot. https://doi.org/10.1016/j.jsp.2020.10.016

Rawat JM, Rawat B, Agnihotri RK, Chandra A, Nautiyal S (2013) In vitro propagation, genetic and secondary metabolite analysis of Aconitum violaceum Jacq.: a threatened medicinal herb. Acta physiol plant 35(8):2589–2599. https://doi.org/10.1007/s11738-013-1294-x

Rawat JM, Bhandari A, Mishra S, Rawat B, Dhakad AK, Thakur A, Chandra A (2018) Genetic stability and phytochemical profiling of the in vitro regenerated plants of Angelica gauca Edgew.: an endangered medicinal plant of Himalaya. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-018-1448-z

Razavizadeh R, Adabavazeh F, Komatsu S (2020) Chitosan effects on the elevation of essential oils and antioxidant activity of Carum coticum L. seedlings and callus cultures under in vitro salt stress. J Plant Biochem Biotechnol 29(3):473–483. https://doi.org/10.1007/s13562-020-00560-1

Salehi M, Farhari S, Moieni A, Safaei N, Ahmadi H (2020) Mathematical modeling of growth and paclitaxel biosynthesis in Corylus avellana cell culture responding to fungal elicitors using multi-layer perceptron-genetic algorithm. Front Plant Sci. https://doi.org/10.3389/fpls.2020.01148

Salehi M, Farhari S, Moieni A, Safaei N, Hesami M (2021) A hybrid model based on general regression neural network and fruit fly optimization algorithm for forecasting and optimizing paclitaxel biosynthesis in Corylus avellana cell culture. Plant Methods 17(1):1–13. https://doi.org/10.1186/s13007-021-00714-9

Santos GS, Sinoti SBP, de Almeida FTC, Silveira D, Simeoni LA, Gomes-Copeland KKP (2020) Use of galantamine in the treatment of Alzheimer’s disease and strategies to optimize its biosynthesis using the in vitro culture technique. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-020-01911-5

Singh T, Sharma U, Agrawal V (2020) Isolation and optimization of plumbagin production in root callus of Plumbago zeylanica L. augmented with chitosan and yeast extract. Ind Crops Prod 151:112446. https://doi.org/10.1016/j.indcrop.2020.112446

Soltani Howzeyeh M, Sadat Noori SA, Shariati JV, Niazian M (2018) Essential oil chemotype of Iranian Ajowan (Trachyspermum ammi L.). J Essent Oil Bear Plants 21(1):273–276. https://doi.org/10.1007/s10789-020-0060X. 2018.1433074

Soltani Howzeyeh M, Sadat Noori SA, Shariati V (2018) Essential oil profiling of Ajowan (Trachyspermum ammi) industrial medicinal plant. Ind Crops Prod 119:255–259. https://doi.org/10.1016/j.indcrop.2018.04.022

Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the production of methyl jasmonate and swertiamarin production in elicitated cell suspension cultures of Aconitum violaceum (Griseb.) Knobl. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-017-1245-0

Gomes-Copeland KKP (2020) Use of galantamine in the treat-
of mulberry (*Morus alba* L.) under NaCl salinity. Plant Sci 161(3):613–619. https://doi.org/10.1016/S0168-9452(01)00450-2

Thakur M, Bhattacharya S, Khosla PK, Puri S (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12:1–12. https://doi.org/10.1016/j.jarmap.2018.11.004

Tonk D, Mujib A, Maqsood M, Ali M, Zafar N (2016) *Aspergillus flavus* fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in *Catharanthus roseus*. Plant Cell Tissue Organ Cult 126(2):291–303. https://doi.org/10.1007/s11240-016-0998-1

Torun H, Novák O, Mikulík J, Pěnčík A, Strnad M, Ayaz FA (2020) Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (*Hordeum vulgare* L.). Sci Rep 10(1):1–17. https://doi.org/10.1038/s41598-020-70807-3

Wei T, Deng K, Gao Y, Chen L, Song W, Zhang Y, Wang C, Chen C (2020) *SmKSL* overexpression combined with elicitor treatment enhances tanshinone production from *Salvia miltiorrhiza* hairy roots. Biochem Eng J 158:107562. https://doi.org/10.1016/j.bej.2020.107562

Yu Y, Wang T, Wu Y, Zhou Y, Jiang Y, Zhang L (2019) Effect of elicitors on the metabolites in the suspension cell culture of *Salvia miltiorrhiza* Bunge. Physiol Mol Biol Plants 25(1):229–242. https://doi.org/10.1007/s12298-018-0605-5

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.