1. INTRODUCTION

The construction of a comprehensive, end-to-end model of the accumulation of the terrestrial planets and giant planet cores has been an elusive goal for planetary scientists because of the huge dynamic range inherent in the problem. The region of the proto-planetary disk from which the planets formed originally contained something like 10^{14} objects with radii perhaps as small as ~ 100 m (Weidenschilling 2011) or as large as 1000 km (Johansen & Klahr 2011) depending on the planetesimal formation model. These objects grew into planets via a process that includes both complex collisional (both accumulation and fragmentation) and dynamical evolution. In addition, at different stages of this process, the action occurred on very different temporal and physical scales, making the construction of comprehensive models very difficult.

Take, for example, the formation of terrestrial planets. Studies have shown that once the first macroscopic planetesimals have formed (which is a field of study in itself), solid body growth can occur in three distinct stages. In the first stage, planetesimals grow by so-called runaway accretion (Wetherill & Stewart 1989; Greenberg et al. 1978). During this stage, the largest objects do not affect the dynamical state of the rest of the disk and so an object’s mass accretion rate scales as M_{accret}. As a result, the largest bodies grow the fastest—mainly by feeding off of much smaller objects. Ida & Makino (1993) showed that runaway accretion ends when the growing planets are only roughly 100 times their original mass. Because this stage requires the study of hundreds of billions of objects, the codes used to study it employ Eulerian statistical algorithms that divide the problem into a multidimensional grid, usually two-dimensional in heliocentric distance and size (Wetherill & Stewart 1989; Spaute et al. 1991; Kenyon & Luu 1999; Kenyon & Bromley 2001; Morbidelli et al. 2009; Bromley & Kenyon 2011) which evolves the total mass, and RMS eccentricity and inclination in each bin. These codes usually accurately follow the detailed collisional/fragmentational evolution of a system, while using relatively simple, semi-analytic equations to evolve the dynamics. These dynamical equations are appropriate in this stage because the dynamics are local and well behaved—there is little dynamical mixing and the surface density of the system remains smooth.

In the middle stage, the largest bodies become big enough to gravitationally “stir their own soup” of planetesimals (Ida & Makino 1993; Kokubo & Ida 1998, 2000; Thommes et al. 2003; Chambers 2006), and thus the mass accretion rate of the largest bodies scales as $M_{\text{accret}}^{1.5}$. In this phase, the largest few objects at any given time are of comparable mass. As the system evolves, the mass of the system is concentrated into an ever-decreasing number of bodies, known as planetary embryos, of increasing masses and separations. This stage ends at a given location in the disk when the surface density of the local “oligarchs” becomes similar to that of the planetesimals (Kenyon & Bromley 2006). This occurs when the largest bodies reach roughly half their so-called isolation mass, which is the mass they would have if they had consumed all planetesimals within their gravitational reach. In the terrestrial planet region, typical disk models produce isolation masses of only about M_{Earth}, which is the most important stage because the dynamics are local and well behaved—there is little dynamical mixing and the surface density of the system remains smooth.
behavior. Studies of these stages are required to represent the large number of planetesimals remaining in the system by a smaller number of more massive tracer particles in order to make the problem computationally tractable. In addition, they assume that when two bodies collide, they merge with 100% efficiency; there is no fragmentation.

There have been a couple of attempts at constructing an end-to-end simulation of planet formation that started with a population of small planetesimals and built a complete planetary system (Spaute et al. 1991; Weidenschilling et al. 1997; Kenyon & Bromley 2006; Bromley & Kenyon 2011, for example). These have employed codes that graft an N-body algorithm onto Eulerian statistical code. The dynamics of the growing planetary embryos are handled correctly by the N-body algorithm, the accretion/fragmentation of the planetesimals are handled by the Eulerian code, and the interaction between the two populations is handled via analytical expressions (for example, applying dynamical friction to the embryos by the planetesimals). The embryos can affect the eccentricities and inclinations of the planetesimals, but not their surface density distribution.

The last point above is likely to be a serious limitation of these algorithms. In Levison et al. (2010, hereafter LTD10) we showed that the growth rate of planetary embryos is strongly affected by the wholesale redistribution of planetesimals due to gravitational interaction with the embryos themselves. In particular, we found that growth can stop if a gap opens around an embryo. In addition, the embryos can migrate as a result of gravitational scattering of the nearby planetesimals (see also Fernandez & Ip 1984; Hahn & Malhotra 1999; Ida et al. 2000; Levison et al. 2007; Kirsh et al. 2009). This so-called planetesimal-driven migration can significantly enhance growth (LTD10; Minton & Levison 2012). Unfortunately, this result calls into question the bulk of the models of the early stages of planet formation because they rely on algorithms that do not take this process into account.

We realized that in order to adequately incorporate our results into full planet formation simulations would require a totally new Lagrangian approach to the problem. Fortunately, we also realized that the code used in LTD10 supplied us with a basic structure in which to develop this algorithm. Here, we report on the first particle-based Lagrangian code that can follow the dynamical/collisional/accretional evolution of a large number of kilometer-sized planetesimals through the entire growth process to become planets. We call this code LIPAD for Lagrangian Integrator for Planetary Accretion and Dynamics. In Section 2, we describe the code in detail. In Section 3, we present a comprehensive set of tests and show that LIPAD represents the behavior of a system containing a large number of planetesimals better than Eulerian codes. Finally, our conclusions are presented in Section 4.

2. LIPAD

LIPAD is built on top of our N-body code known as SyMBA (Duncan et al. 1998) and it is an extension of the code used to study giant planet core formation in LTD10. SyMBA is a symplectic algorithm which has the desirable properties of the sophisticated and highly efficient numerical algorithm known as the Wisdom–Holman Map (WHM; Wisdom & Holman 1991) and which, in addition, can handle close encounters (Duncan et al. 1998). This technique is based on a variant of the standard WHM, but it handles close encounters by employing a multiple time step technique introduced by Skeel & Biesiadecki (1994). When bodies are well separated, the algorithm has the speed of the WHM method. However, whenever two bodies suffer a mutual encounter, the time step for the relevant bodies is recursively subdivided in a way that keeps the system symplectic.

Since we cannot possibly follow the evolution of 10^{14} bodies, we introduce four classes of particles to LIPAD: two types of embryos, to represent individual large objects (these will be described below), and two types of tracers, to represent the small-size end of the population. Each tracer is intended to represent a large number of comparably sized planetesimals on roughly the same orbit. Each tracer will be characterized by three numbers: the physical radius s and the bulk density ρ of its constituent planetesimals, as well as the total mass of the particles it represents, m_t. As the system evolves, m_t and ρ remain fixed, while, as we describe in detail below, the tracer’s orbit and s change. As a result, the number of planetesimals that the tracer represents, $N_t = m_t/(4/3)\pi s^3$, also changes. It is important to note that in order to strictly conserve mass during a simulation N_t is a real number and not an integer. Although this might seem odd, it is a reasonable approach because the combined tracer population is intended to statistically represent a distribution of the much larger number of planetesimals.

Perhaps the best way to illustrate how tracers operate is with a simple example. In Section 3, we describe a test of LIPAD where we attempt to reproduce the terrestrial planet accretion calculation of Kokubo & Ida (2000), who studied a disk that extended from 0.99 to 1.01 AU and contained 0.3 M_\oplus of material. One of their runs contained 4000 particles with initial masses of between 10^{23} and 10^{24} g distributed so that $N(s) ds$ is a power law with a slope of -2.6 (see Figure 1(A)). They followed the system with a full N-body code. We performed the same simulation with LIPAD using 425 tracers. While the results of this calculation are discussed in the section describing the tests we performed on LIPAD (Section 3.6), a look at the initial conditions gives us an opportunity to clarify how tracers work.

Figure 1(b) shows the initial particle distribution of our calculation. In particular, we plot s as a function of semimajor axis a. The tracers each have the same total mass, and so the color represents the total number of planetesimals that each tracer represents. In this case as s decreases from 620 to 290 km, N_t increases from 2 to 20, but N_t can, in principal, become much larger (see some examples in Section 3). Thus, it might be better to think of each tracer as representing a clump of material of mass m_t than as an individual object in an N-body simulation.

The tracers dynamically interact with the larger objects (the two classes of embryos, see below) in the normal N-body way. The innovative aspect of this code is how the tracers interact with each other. In particular, we employ Monte Carlo algorithms to evolve the sizes and random velocities of a tracer’s constituent planetesimals based on the location and behavior of the neighboring tracers. As described in more detail below, we employ statistical algorithms to incorporate dynamical friction, viscous stirring, collisional damping, and accretion/fragmentation. The code is designed so that as objects grow (i.e., s increases and N decreases) a tracer can be promoted to an embryo if N becomes equal to 1. When an object is promoted it becomes an embryo with mass m_t.

Embryos and tracers interact with one another through the SyMBA N-body routines. This leads to a problem when a tracer is promoted. Before promotion, the object in general sees itself
embedded in a sea of much smaller planetesimals. This is due to the fact that, although these small planetesimals are represented by much more massive tracers, their effects are felt through the Monte Carlo routines. If we were to simply promote an object to an embryo, we would have a problem because the embryos directly interact with the tracers and immediately after promotion, the embryo is only slightly more massive than they are. In this case, the perturbations from tracers are much too noisy due to their coarse mass resolution. To avoid these unphysically large gravitational scatterings, we introduce the concept of a sub-embryo. Sub-embryos can respond to analytically computed dynamical friction and planet migration effects of the planetesimals (see below), and can collide with them, while interacting with the rest of the embryos through the SyMBA \(N\)-body routines. A user is free to set the mass at which a sub-embryo becomes a full embryo. Based on the work on planetesimal-driven migration by Kirsh et al. (2009), we recommend that this boundary be at least 100 \(m_{\text{in}}\).

Finally, LIPAD is designed to be able to handle a collisional cascade that can potentially remove material from the system. This is accomplished by defining a class of tracers that represents a population of very small objects that we call dust, for lack of a better word. If the size of a tracer evolves so that \(s < s_{\text{min}}\), it is demoted to dust with a size \(s_{\text{dust}}\). Both \(s_{\text{dust}}\) and \(s_{\text{min}}\) are free parameters of the code. The user has several options concerning the behavior of the dust. One is for dust particles to behave like a tracer with \(s = s_{\text{min}}\) in every respect except that they can no longer fragment. The user also has the option so that dust tracers do not interact with other tracers at all, but fully interact with the embryos and sub-embryos via the \(N\)-body routines. In addition, users can, if they wish, apply a fictitious force to these particles that represents the Poynting–Robertson drag (Robertson 1937) of a particle with \(s_{\text{dust}}\). This allows the particles to slowly drift through the system, eventually being removed by hitting the Sun (if they do not get accreted by an embryo). Note that we disable the aerodynamic drag terms in the equation of motion of a dust particle.

In summary, we employ four classes of particles.

1. **Full embryos.** These objects interact with all classes of particles through the normal \(N\)-body routines, i.e., through the direct summation of individual forces. The \(N\)-body routines also monitor whether physical collisions occur. The algorithm that LIPAD uses to handle these collisions is described in Section 2.2.3.

2. **Sub-embryos.** These objects interact with full embryos and each other through the \(N\)-body routines. However, the only dynamical effect that the tracers have on them is through analytic dynamical friction and planet migration routines (Section 2.2). Collisions are handled in the same way as those of the full embryos.

3. **Tracers.** These objects gravitationally interact with each other through Monte Carlo routines that include viscous stirring, dynamical fraction, and collisional damping. They gravitationally interact with the embryos via the \(N\)-body routines. During a close encounter with a sub-embryo, however, the mass of the tracer is set to zero so that the orbit of the sub-embryo is not perturbed.

4. **Dust tracers.** These are tracers that can no longer fragment. The user can set the code so that these objects do not interact with the other tracers. However, they always interact with the embryos via the \(N\)-body routines. The user also has the option to apply Poynting–Robertson drag.

Note that since embryos and tracers interact with one another through the \(N\)-body routines, LIPAD accurately handles the redistribution of the planetesimals and planet migration. We now describe each of these classes in detail. We start with the tracers because they are the most complex.

2.1. Behavior of the Tracers

Both the dynamical and collisional evolution of the tracers due to the presence of other tracers are handled through statistical algorithms that change the orbit of the tracer and the value of its radius \(s\). In order to perform these calculations, we first need to determine the encounter rate between planetesimals in our disk. This is followed by a series of calculations of the response of the tracer to these encounters.

2.1.1. Tracer–Tracer Encounter Rates

The first step in our calculation is to determine the probability, \(p\), that a particular planetesimal will suffer an encounter with another planetesimal during a time step, \(dt\). In what follows we refer to this object as the target and the potential encounter partner as the interloper. We perform this calculation for two types of encounters: physical collisions, \(p_{\text{col}}\), and gravitational scattering events, \(p_{\text{grav}}\). We employ the particle-in-a-box
approximation. In particular, \(p \sim n \sigma w \, dt \), where \(n \) is the local number density of the disk particles, \(\sigma \) is the cross-section of the encounter, and \(w \) is the mean encounter velocity. In order for these routines to seamlessly interface with the \(N \)-body algorithm, the code requires that the statistical time step be an integer multiple of the \(N \)-body time step. This integer is an input parameter to the code. It is also important to note that \(n \) is not the number density of tracers, but the total number density of their constituent planetesimals.

Before we discuss how we calculate the \(p \)'s, it is instructive to clarify how they are used within the code. As we said above, \(p \) is the probability that an individual planetesimal will suffer an encounter (be it a scattering event or collision) in time \(dt \). Another way of thinking about \(p \) is that it is the fraction of planetesimals that suffer this encounter. Thus, if there are \(n \) planetesimals, \(np \) of them will suffer the encounter. We can, of course, look at it in terms of mass. If there is a total mass of \(m \) in these planetesimals, then \(mp \) of that suffer the encounter. Now, if these planetesimals are presented by \(n_t \) of tracers of mass \(m_t \), then the number of tracers that suffer the encounter is \(mp/m_t = n_t/m_t = pn_t \). The number of tracers undergoing the encounter is also \(pn_t \). Thus, we can apply \(p \) directly to the individual tracers. This leads to a different interpretation for the tracers. Above we defined a tracer as “a large number of disk particles on roughly the same orbit and size as one another.” For our purpose here, it is just as valid to think of a tracer as an individual planetesimal that we are highlighting and following to illustrate the behavior of the system as a whole. That is, they are planetesimals that "trace" the behavior of the system. In either case, we act on the tracer based on the value of \(p \) alone.

We expect that \(n, \sigma, \) and \(w \) will not only be a function of time and location in the disk, but of the size of the particles as well. After all, in the particle swarm, the equilibrium eccentricity and inclination of a planetesimal will be a function of its size. As a result, in order to accurately determine the \(p \)'s, we must integrate \(n \sigma w \) over the sizes of the planetesimals at different locations in the disk. To accomplish this we divide the planetesimals into a two-dimensional grid in heliocentric distance, \(a \), and particle size. The solar system is first divided into a series of logarithmically spaced annular rings that, in the simulations performed here, stretched from 0.5 AU to 60 AU. In all, we divided space into \(N_{\text{in}} \) such rings. In addition, \(s \) is crudely divided into \(N_{\text{size}} \) logarithmically spaced bins. The range of these bins, \(N_{\text{size}} \), and \(N_{\text{bin}} \) are free parameters of the code (although unless otherwise stated \(N_{\text{size}} = 10 \) and \(N_{\text{bin}} = 1000 \) in the tests presented in Section 3). We can justify the crude spacing by noting that this grid representation of the state of the disk is only used to determine the encounter rates and not what happens during the encounter.

As the simulation progresses, we keep track of the tracer particles moving through each bin and from this calculate: (1) the total number of planetesimals in that ring, \(N_t(i_a, j_s) \), where \(i_a \) and \(j_s \) are indexes for the heliocentric and size bins, respectively, (2) the total mass in the bin \(M_t(i_a, j_s) \), (3) the average mass of the planetesimals in the bin, \(m_p(i_a, j_s) \equiv (4/3)\pi r^3 \rho \), and (4) the cylindrical radial and vertical velocity dispersion of the disk particles, \(v_{\phi r}(i_a, j_s) \) and \(u_z(i_a, j_s) \), respectively. These numbers are used in the particle-in-the-box calculation of the encounter probabilities.

The encounters themselves use the positions, velocities, and sizes of real objects in the simulation which are chosen at random at the time of the encounter. However, we were concerned that there may not be enough particles in the simulation to find a neighbor close enough to the target to accurately calculate the result of the encounter. In order to increase the pool of potential interlopers, we keep a running list of a particle’s position and velocities as they pass through each individual ring. Entries are dropped from this list if they are older than a parameter \(t_{\text{update}} \). So, at any time during the simulation, we have a list of potential interlopers for each \((i_a, j_s)\) combination.

We allow each tracer to interact with each \(s \) bin separately because we expect the \(p \)'s and the results of the encounter to be a strong function of \(s \). First, we determine the heliocentric bin the object is in, \(i_a \). For each size bin, we calculate the local number density of planetesimals, \(n(j_s) \), from the binned parameters of the disk. In particular, the midplane number density is assumed to be

\[
 n_0(i_a, j_s) = \frac{N_t(i_a, j_s)}{\sqrt{2\pi a}},
\]

where \(h = u_z(i_a, j_s)\Omega \) is the scale height of the disk and \(\Omega \) is the orbital frequency at the particle’s position. Following Lissauer & Stewart (1993), we assume that

\[
 n(j_s) = n_0(i_a, j_s)e^{-\frac{h}{\sqrt{2}a}}.
\]

Unfortunately, we found through painful experimentation that \(n(\sigma w) \) is not equal to \(n(\sigma) \langle w \rangle \) because \(w \) and \(\sigma \) are correlated with one another when gravitational focusing is taken into account. We therefore need to calculate the combined average \(\langle \sigma w \rangle \). This is done by choosing 10 objects at random from our running list of potential interlopers calculating \(\sigma \) and \(w \) for each of these, and taking the average of the resulting product. In systems that are dynamically cold, this procedure must take into account the fact that not only can relative velocity bring two particles together, but Kepler shear can as well. As a result, we take

\[
 w = \sqrt{(\Delta v_\phi)^2 + (\Delta v_z)^2 + (\Delta v_r + v_{\text{shr}})^2},
\]

where the \(\Delta v \)'s are the components of the relative velocity in cylindrical coordinates and \(v_{\text{shr}} \) is the shear velocity taken over a radius of \(\sqrt{\sigma/\pi} \).

As we already mentioned, we need to calculate two \(\sigma \)'s: one for physical collisions and one for gravitational scatterings. The collision cross-section is simply \(\pi(s_{\text{targ}} + s_{\text{int}})^2 F_g \), where \(F_g \) is the gravitational focusing factor, and \(s_{\text{targ}} \) and \(s_{\text{int}} \) are the size of target and interloper, respectively. We employ the formalism of Greenzweig & Lissauer (1990) to calculate \(F_g \).

The situation is a bit more complicated for the gravitational scattering case. Recall that the cross-section represents an area in which encounters take place in a plane that contains the target and is perpendicular to the encounter velocity vector (i.e., the so-called encounter plane). For physical collisions without gravitational focusing, this area is simply the sum of the objects’ physical radii. In LIPAD, we only include encounters where the interloper gets within a mutual Hill sphere radius of the target, \(r_H \equiv a[(m_{\text{targ}} + m_{\text{int}})/(3 M_d)]^{1/3} \). However, care must be taken when the system is dynamically cold. If \(r_d \) is large enough that the scale height of the planetesimal disk exceeds the radius of the Hill sphere, the disk behaves as if it is fully three-dimensional and encounters are possible anywhere within a circle with a radius \(r_H \). In this case, which is referred to as the dispersion-dominated regime, \(\sigma = \pi r_H^2 \). However, if the scale height of
the disk, \(h \), is smaller than \(r_{14} \), which is known as the shear-dominated regime, then encounters can only occur in the union of \(\pi r_{14}^2 \) and a slab of height \(2h \). In this case,

\[
\sigma_{\text{grav}} = 2r_{14}^{-2} \sin^{-1} \left(\frac{h}{r_{14}} \right) + 2h \sqrt{r_{14}^2 - h^2},
\]

(4)

where \(h \) is the height of the slab projected into the encounter plane. We set the slab height to \(2h \) to allow for the fact that the target can lie above the plane, while the interloper is below, or vice versa.

With the two \(\sigma \)'s in hand, we calculate \(p_{\text{col}} \) and \(p_{\text{grav}} \). These are then compared to two random numbers chosen from a uniform distribution between 0 and 1. (For the remainder of this paper, we refer to this uniform distribution as \{U\}.) If \(p_{\text{col}} \) is less than its random number we say that a physical collision occurs, and if \(p_{\text{grav}} \) is less than its random number, then a scattering event occurs. We now describe how the tracer responds to these events.

2.1.2. Collisional Evolution of the Tracers

Physical collisions have two effects on the tracers: they damp their random motions and they cause the sizes of their constituent planetesimals to change. In order to avoid double counting, tracers are only allowed to collide with objects smaller than themselves (this limitation is also applied when calculating \(p_{\text{col}} \)).

Once we determine that a tracer has suffered a collision with another disk particle using procedures described in the last section, we need to determine the characteristics of the impactor. As we stated above, as the tracers orbit during the simulation, we keep a running list of particles that pass through each of our \(a-s \) bins. The impactor is assumed to have the same location as the target, but its size and velocity are chosen from this running list. However, since the object chosen from the list was not exactly at the target’s location, we scale the magnitude of its velocity vector by \(\sqrt{a_{\text{imp}}/a_{\text{targ}}} \), where \(a_{\text{imp}} \) and \(a_{\text{targ}} \) are the instantaneous heliocentric distance of the impactor and target, respectively, and rotate it to the same longitude assuming cylindrical symmetry. We also assume that two particles bounce off of one another, but that the coefficient of restitution is very small. The end result is that we change the velocity of our target tracer to be the mass-weighted mean of its original velocity and that of the impactor.

We have to spend a little time discussing how we decide which impactor to choose from our running list because if this is done incorrectly it leads to a subtle error in the results. As described in Levison & Morbidelli (2007), it is imperative that our code be able to support eccentric rings. We found we can accomplish this if, rather than choosing an object at random, we choose the object that has the true anomaly that is closest to that of the target tracer. In this way, asymmetries can be supported by the code. See Levison & Morbidelli (2007) for more detail on this issue.

The growth and fragmentation of the planetesimals are also included in LIPAD, i.e., we change \(s \) in response to collisions. When two objects collide in nature, they produce a distribution of objects that follows a size distribution \(n(s) ds \) that is a function of the physical properties of the objects involved and their relative velocity. Recall that LIPAD assumes that all of the planetesimals that make up a tracer have the same size. Thus, in order to determine the new, post-impact, value of \(s \) for the tracer involved in the collision, we choose a random number \(\psi \in \{U\} \) and invert the equation

\[
\psi = \frac{1}{m_c} \int_s^\infty m(s) n(s) ds
\]

(5)

for \(s \), where \(m_c \equiv (4/3)\pi \rho (s_{\text{targ}}^3 + s_{\text{imp}}^3) \) is the total mass of planetesimals involved in the collision and \(m(s) = (4/3)\pi \rho s^3 \). In other words, in the absence of fragmentation, all the planetesimals in a given target tracer would change to a new mass given by the sum of the old target mass plus projectile mass, \(m_c \). With fragmentation, the new mass is chosen from a probability distribution that gives the fractional mass of collision fragments at each size. So, if \(\psi = 0 \) the tracer will be assigned the largest mass in the distribution, if \(\psi = 1 \) it will be assigned the smallest mass, and if \(\psi = 0.5 \), for example, then the new target mass is chosen so that half the total mass of fragments lies above the new target mass, and half below.

It is important to note that by setting the tracer’s size to this new value of \(s \) we are effectively changing all the constituent planetesimals of the tracer to the same size. We believe that this is a reasonable approach in a system where a large number of collisions are occurring. After all, if one were to imagine that we had a large number of collisions with exactly the same characteristics, the procedures described above would reproduce \(n(s) \). We show in Section 3 that this algorithm does function well as long as there are enough tracers in the system to adequately represent its size distribution.

Our algorithm for determining \(n(s) \) is strongly based on that used in Eulerian statistical code developed in Morbidelli et al. (2009, hereafter MBNL09). Following MBNL09, which itself is based on arguments in Benz & Asphaug (1999, hereafter BA99), we define \(Q_D^* \) as the specific impact energy (energy per unit total system mass) required to disperse 50% of the total mass of the interloper and target. Note that here we are not using the tracer mass, \(m_t \), but the combined mass of the planetesimals \(m_c \). Defining \(s_{\text{eff}} \) to be the radius of an object with this combined mass (i.e., \(s_{\text{eff}} = \sqrt[3]{s_{\text{targ}}^3 + s_{\text{imp}}^3} \)), MBNL09 use

\[
Q_D^* = Q_0 \left(\frac{s_{\text{eff}}}{1 \text{ cm}} \right)^{\alpha} + B \rho \left(\frac{s_{\text{eff}}}{1 \text{ cm}} \right)^{\beta},
\]

(6)

where \(Q_0, B, \alpha, \) and \(\beta \) are parameters that depend on the material properties of the objects involved. Users are free to set them to any values they wish in LIPAD.

Based on smoothed particle hydrodynamic (SPH) experiments and analysis, BA99 found that the \(n(s) \) is best represented by one large remnant and a continuous distribution of fragments. MBNL09 argues that the mass of the largest remnant is

\[
m_{kLR} = \begin{cases}
\left[-\frac{1}{2} \left(\frac{Q}{Q_D^*} - 1 \right) + \frac{1}{2} \right] m_c & \text{if } Q < Q_D^* \\
-0.35 \left(\frac{Q}{Q_D^*} - 1 \right) + \frac{1}{2} m_c & \text{if } Q \geq Q_D^*
\end{cases}
\]

(7)

where \(Q \) is kinetic energy of the projectile per unit mass of the collision. Whenever \(m_{kLR} \) is determined to be negative we assume that the target is fully destroyed and we demote the tracer to a dust particle.

In all other cases, we need to determine the size distribution of the fragments that were formed in the collision. To accomplish
this, MBNL09 first turned to the SPH simulations in Durda et al. (2007). Their results typically show that the fragments have a continuous power-law size distribution truncated at large sizes at what MBNL09 call the largest fragment, with mass m_{LF}. MBNL09 found

$$m_{LF} = 8 \times 10^{-3} m_c \left[\frac{Q}{Q_D} \exp\left(-\frac{Q}{Q_D}\right)^2 \right]$$

(8)

for the mass of the largest fragment and

$$q = -10 + 7 \left(\frac{Q}{Q_D} \right)^{0.4} \exp\left(-\frac{Q}{Q_D}\right)$$

(9)

for the cumulative slope of the power-law size distribution of the fragments.

However, as MBNL09 pointed out, for all physically meaningful collisions, the size distribution resulting from Equations (8) and (9) contains infinite mass. To avoid this problem, they assumed that the fragment size distribution has a cumulative slope $q = -2.5$ (Dohnanyi 1969) for $s < s_i$. They then calculate s_i so that the integral over the resulting $m(s)m(s)ds$ is equal to m_c. We follow the same procedures here.

So, in summary, we use the total mass involved in the collision and the impact velocity to determine $n(s)$ from Equations (6)−(9). From this, we use Monte Carlo techniques to determine a new size for the tracer. Depending on the details of the collision, s can either increase or decrease, indicating accretion or erosion. However, the total mass of the tracer does not change as a result of collisions. If s changes, then the number of planetesimals that the tracer represents, $N = m_u/(4/3)\pi s^3$, must also change. If $N \rightarrow 1$ then the tracer is promoted to a sub-embryo.

The above algorithm is necessary but not sufficient for following the accumulation of objects during planet formation. In order to see how it fails, we perform the following thought experiment. Imagine we have a system consisting of i 100 km objects embedded in a population of j 1 km objects such that $j \gg i$. The 100 km objects are represented by k tracers, where $i \gg k$. We also assume that the dynamics are such that growth occurs only by large objects accreting small ones. In this situation, the 100 km objects should increase in size while their number stays the same (i remains constant). In addition, as they grow they eat the small bodies and so j decreases. Eventually the big objects will run out of fuel and growth will stop.

If we were to employ the algorithm we described above alone, we would get a very different behavior. As the large objects grow, the number of tracers remain fixed and thus i must decrease with time. As a result, the total mass in the large objects will remain fixed even though the individual objects are growing. In addition, there is no transfer of mass from the small objects to the large and so j remains constant. So, the large objects do not run out of fuel and they, in principal, can grow forever. This is obviously not correct. To solve this problem, we developed the following algorithm for transferring mass from one size to another.

As the system evolves, for each tracer we keep track of two variables that monitor how much mass it should have accreted over time. The first is $f_c \equiv \prod m_j/m_i$, where the product is taken over all collisions that lead to growth, and m_i and m_j are the initial and the final mass of the constituent planetesimals at each collision, respectively (i.e., they are $(4/3)\pi s^3$). The second is an array, $\Delta m(i_j)$, that contains the total mass that should have been taken from each of the size bins, N_{v-bin}. These variables are reset when a tracer suffers a significant amount of mass loss.

The value of f_c is initially set to 1 and slowly increases with time. As long as it stays less than 2, the mass deficit of the tracer is less than the mass of a tracer and so nothing should be done. As soon as it reaches a value of 2, however, we need to transfer mass to this tracer (call it Tracer κ) from smaller objects. This is accomplished by giving one of the smaller tracers an s that is similar to that of Tracer κ. The first step in this process is to choose which of the N_{v-bin} size bins to draw the mass from. This is done by choosing a bin at random—weighting the probability by $\Delta m(i_j)$. Then we choose one of the tracers from our running list of potential interlopers. This tracer is given a new size, $s = s_i(1 + 10^{-\Gamma})$, where s_i is the size of Tracer κ and Γ is randomly chosen from a normal distribution with a mean of zero and a dispersion of one. In this way, we will now have two tracers of this size thereby doubling the amount of mass, and removing mass from the population that Tracer κ is growing from. Thus, we have solved the problem that our thought experiment illustrated.

2.1.3. Velocity Evolution of the Tracers

LIPAD also needs to account for the velocity evolution of the tracers. Tracers are dynamically excited by embryos through the N-body routines in SyMBA. Indeed, this is a major advantage of LIPAD because it will accurately handle the global redistribution of the planetesimals by the embryos. The tracers also affect each other’s velocity through a combination of viscous stirring, dynamical friction, and collisional damping. We discussed how LIPAD accounts for collisional damping in the last section. Here, we describe its algorithms for the two other effects.

Following standard conventions (see MBNL09, for example), we assume that the gravitational interaction between a tracer of size s and planetesimals of smaller sizes takes the form of a drag force added to the tracer’s equation of motion. This effect is well approximated by the dynamical friction formalism, which, assuming a Maxwellian velocity distribution, can be written as (Chandrasekhar 1943; Binney & Tremaine 1987)

$$\frac{dw_m}{dt} = \left(m_{\text{target}} + m_{\text{inter}} \right) \rho_{\text{disk}} w_m^3 \left[\text{erf}(X) - \frac{2X}{\sqrt{\pi}} e^{-X^2} \right]$$

(10)

where $X \equiv w_m/\sqrt{2}u$, w_m is the velocity of the tracer with respect to the local average velocity of the small planetesimals, u is the velocity dispersion of the small planetesimals, “erf” is the error function, and ρ_{disk} is the background volume mass density of the small planetesimals. LIPAD calculates a separate acceleration for each of the size bins, j, which contain smaller planetesimals. In particular, $\rho_{\text{disk}} = m_{\text{disk}} n(j_i)$, where $n(j_i)$ is calculated with Equation (2) and $u = u_{\text{-}(j_i)}$. In order to stop large planetesimals from getting too cold, the dynamical friction accelerations are only applied to a tracer if its relative velocity is larger than the velocity it would have if it were in energy equipartition with the population of small planetesimals.

Objects embedded in a disk are usually dynamically excited by larger objects in a process known as viscous stirring. LIPAD uses a unique Monte Carlo algorithm to account for this mechanism between tracers of different sizes. In Section 2.1.1, we described how we calculate the encounter probability per time step, p_{grav}, and constructed a running list of potential interlopers in each of our a–s bins. If we determine with these methods that a scattering event occurred, we first choose an interloper at random from the running list. For each of the
potential interlopers we calculate σw and weigh our choice of interloper with these values. Recall that σ includes gravitational focusing, and we determine w by rotating the potential interloper to the same location as the target assuming cylindrical symmetry.

With the interloper identified, our first step is to determine where in the encounter plane the closest approach of the encounter occurs if we assume no gravitational focusing. In most cases this is accomplished by choosing a random number, $p \in [0, 1]$, calculating the impact parameter,

$$b = r_H \sqrt{p}$$ \hspace{1cm} (11)

and a random angle $\phi \in (0, 2\pi]$. We calculate the location of the closest approach in the encounter plane, (b_x, b_z), from simple trigonometry.

However, care must be taken if one of two situations occurs. As explained above, if the system is in the shear-dominated regime then encounters may not be able to occur at large absolute values of b_x. In particular, $|b_x| \ll h_c$ (see the discussion associated with Equation (4)).

We also have to make allowances for what MBNL09 call isolated bodies, which are populations of objects that are separated enough from one another and dynamically cold enough that their orbits do not cross. This case imposes a lower limit on the value of b. We determine whether objects are isolated from one another in the context of our $a-s$ bins, so that objects with $s \geq s_{iso}$ are isolated if

$$\sum_{j=\pm a_{iso}}^n N_i(i, j)r_s(i, j) < \delta a,$$ \hspace{1cm} (12)

where s_{iso} is in bin $j_{s_{iso}}$, δa is the width of bin i_a, $r_s(i, j) = c_H r_H + 2au_s(i, j)/v_c$, r_H is the mutual Hill radius of two objects with mass $m_p(i, j)$, v_c is the circular velocity at a, and c_H is a parameter of the code that we set equal to $2\sqrt{3}$, following Wetherill & Stewart (1993). If the population is deemed to be isolated, then for each j, we define

$$b_{min}(i, j) = \frac{\delta a}{\sum_{j=\pm a_{iso}}^n N_i(i, j)} - 2au_s(i, j)/v_c.$$ \hspace{1cm} (13)

We then choose a (b_x, b_z) pair so that $b_{min} \leq b \leq r_H$ and $|b_x| \ll h_c$.

With (b_x, b_z) in hand, we can apply a kick to the velocity of the tracer that is in response to the passage of the interloper. Our methods depend on the speed of the encounter. If w is faster than the Hill velocity, $v_H \equiv v_c[(m_{\text{int}} + m_{\text{int}})/(3M_\odot)]^{1/3}$, then we apply a change in velocity calculated from the so-called impulse velocity approximation. Following Spitzer (1987),

$$\delta v_\perp = \frac{m_{\text{int}}}{m_c}w \sin(\gamma)$$ \hspace{1cm} (14)

and

$$\delta v_\parallel = \frac{m_{\text{int}}}{m_c}w [1 - \cos(\gamma)],$$ \hspace{1cm} (15)

where

$$\sin(\gamma) = \frac{(2w^2)}{1 + (2w^2/m_c^2)}.$$ \hspace{1cm} (16)

We apply δv_\parallel along the direction of w, and δv_\perp along the vector that connects (b_x, b_z) and the center of the target. If $w < v_H$ then we integrate the encounter numerically. In particular, we place the interloper at (b_x, b_z) in a system containing the target and the Sun. Its initial velocity is w with respect to the target. We first move both the target and interloper backward along their respective Kepler orbits for a time $10r_H/w$, and then integrate the system forward for twice as long. Finally, we move the target back in time to the point of closest approach. Its change in velocity is calculated from its final position and velocity. This change is applied to the tracer at its original position.

In addition to the viscous stirring, we must include, at least crudely, the self-gravity in the tracers to prevent unphysical migration of the embryos (LTD10). We use the algorithm developed in LTD10, which is based on a technique originally developed for the study of disk galaxies, known as the particle-mesh (PM) method (Miller 1978). In what follows, we use the formalism from Binney & Tremaine (1987). We first define a modified polar coordinate system $u \equiv \ln \varrho$ and ϕ, where ϱ and ϕ are the normal polar coordinates, and define a reduced potential,

$$\mathcal{V}(u, \phi) = e^{u/\gamma}\varrho \mathcal{G}(u, \phi)$$

and a reduced surface density $S(u, \phi) = e^{u/\gamma}\sigma(u, \phi)$ such that

$$\mathcal{V}(u, \phi) = -\frac{G}{\sqrt{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{2\pi} \frac{S(u', \phi')d\phi'}{\cosh(u - u') - \cos(\phi - \phi')} du'.$$ \hspace{1cm} (17)

If we break the disk into cells this becomes

$$V_{lm} \approx \sum_{m'} \sum_{m} G(l' - l, m' - m)M_{lm'},$$ \hspace{1cm} (18)

where $M_{lm} = \int \int_{\text{cell}(m, l)} S du d\phi$ and \mathcal{G} is the Green’s function:

$$\mathcal{G}(l' - l, m' - m) = -\frac{G}{\sqrt{2}(\cosh(u - u') - \cos(\phi - \phi'))}$$ \hspace{1cm} (19)

when $l \neq l'$ and $m \neq m'$, and

$$\mathcal{G}(0, 0) = -2G \left[\frac{1}{\Delta \phi} \sinh^{-1}\left(\frac{\Delta \phi}{\Delta \phi}\right) + \frac{1}{\Delta u} \sinh^{-1}\left(\frac{\Delta u}{\Delta \phi}\right) \right].$$ \hspace{1cm} (20)

where Δu and $\Delta \phi$ are the grid spacings.

For this algorithm, we found that it is best to assume that the disk is axisymmetric, so Equation (18) becomes

$$V_{lm} \approx \sum_{l' = l}^{l+1} \sum_{m'} G(l' - l, m' - m)\frac{\Delta \phi}{2\pi}M_{l'} \approx \sum_{l' = l}^{l+1} \sum_{m'} G(l' - l, m' - m) \frac{\Delta \phi}{2\pi}M_{l'} \tilde{\mathcal{G}}(l' - l).$$ \hspace{1cm} (21)

Note that Equation (22) is one-dimensional, and thus it only supplies us with a radial force. The tangential and vertical forces are assumed to be zero. We made this assumption due to the small number of tracers in our system. However, a simple radial force is adequate for our purposes (LTD10).

Also, the form of Equation (22) allows us to use the a bins that we already constructed for the collisional algorithm. All we need is that relationship between $M_{l'}$ and the total amount of mass in ring, $M_a \equiv \sum_j M_{l}(j, i)$. We find that

$$M_{l'} = \frac{2M_a}{(a_{12}^2 - a_{11}^2)^{3/2}} \ln(a_{12}) - \ln(a_{11}) \frac{1}{M_{l'}}.$$ \hspace{1cm} (23)
where a_{2i}, a_{1i}, and a_i are the outer edge, inner edge, and radial center of ring l.

So, Equation (22) gives us the reduced potential at the center of ring l and thus the true potential can be found ($\Phi = e^{-u/2}V$). To calculate the radial acceleration at any location, we employ a cubic spline interpolation scheme. Finally, the acceleration of a particle is calculated by numerically differentiating this interpolation.

A user also has the option of including the drag and tidal effects of a gas disk on the particles. For the tracers this means adding a fictitious force that mimics aerodynamic drag. Our basic algorithm is described in detail in LTD10. It includes cases where the Knudsen number is larger than unity, which occurs when a molecule’s mean-free-path is larger than the size of the particle, using the prescription of Adachi et al. (1976). This can occur for small bodies in the outer region of the nebula.

In order to calculate the drag on particles, we need to adopt a model for the nebula. Our model, which is based on that of Hayashi et al. (1985), has the form

$$\rho_g(\sigma, z) = \rho_{0g} \left(\frac{\sigma}{1 \text{AU}} \right)^{-\alpha} e^{-z^2/z_s^2(\sigma)} \tag{24}$$

where σ and z are the cylindrical radius and height, respectively, ρ_{0g} is the gas density in the plane at 1 AU, and z_s is the scale height of the disk at σ. The scale height is determined by the σ dependence of temperature T; following Hayashi et al. (1985) we adopt $T = T_0 (\sigma/1 \text{AU})^{-1/2}$ so that

$$z_s(\sigma) = z_{0s} \left(\frac{\sigma}{1 \text{AU}} \right)^{5/4} \tag{25}$$

where z_{0s} is the scale height of the disk at 1 AU. Their “minimum mass” model has $z_{0s} = 0.047$, $\alpha = 2.75$, and $\rho_{0g} = 1.4 \times 10^{-9} \text{g cm}^{-3}$. However, the user is free to set these parameters to whatever value they wish. The user also has the option to have the gas disk exponentially decay away with a timescale of τ_{gas}.

Finally, in order to determine the headwind that a planetesimal will experience, we need to determine the local circular velocity of the gas, v_g, in our model. As is conventional we define

$$\eta \equiv \frac{1}{2} \left[1 - \left(\frac{v_g}{v_c} \right)^2 \right] \tag{26}$$

For our assumed temperature profile,

$$\eta = 6.0 \times 10^{-4} \left(\alpha + \frac{1}{2} \right) \left(\frac{\sigma}{1 \text{AU}} \right)^{1/2} \tag{27}$$

The instantaneous acceleration on the tracer is determined from ρ_g, v_g, and s. Following the examples of its Eulerian code brethren, LIPAD currently does not include the acceleration due to the gravitational potential of the gas disk.

In summary, the velocity of the tracers is affected by four processes: dynamical friction, aerodynamic drag, self-gravity, and viscous stirring. The first two are included in LIPAD with the use of analytic expressions. Self-gravity is included through the use of the PM method. Viscous stirring is included via a Monte Carlo algorithm that applies velocity kicks to the particles based on the local characteristics of other tracers.

2.2. Behavior of the Embryos

2.2.1. Velocity Evolution of the Sub-embryos

The full embryos interact with all the objects in the simulation via the N-body algorithms in SyMBA. Thus, no special routines need to be included in LIPAD to handle their velocity evolution. This is not true for the sub-embryos. Recall that we created this class of object so that when a tracer is promoted to an embryo, it does not suddenly find itself embedded in a disk of similar-mass objects. Thus, although sub-embryos interact with the full embryos and other sub-embryos through the N-body algorithms, we needed to construct special routines to calculate the gravitational interactions between the sub-embryos and the tracers. We include two types of interactions in LIPAD: dynamical friction and planetesimal-driven migration. For the former we employ the analytic formalism described in Section 2.1.3 near Equation (10).

Before we can explain the methods we use to include sub-embryo planetesimal-driven migration into LIPAD, we first need to discuss some aspects of how the process works. A planet or planetary embryo placed into a disk of planetesimals will migrate as a result of an asymmetry in the way it gravitationally scatters the planetesimals. This type of migration occurs only when conditions are right (Kirsh et al. 2009; Minton & Levison 2012). From the point of view of designing LIPAD, the most relevant condition is that an embryo will only migrate if the planetesimals it is interacting with are at least 150 times less massive than it is. Thus, a sub-embryo will not migrate if it directly interacts with the tracers and we needed to develop a way of splitting the tracers into their component planetesimals.

In this algorithm we basically perform a series of three-body integrations, similar to those described above, that include the Sun, sub-embryo, and a single interloper. Each interloper is chosen from the tracers that can get within A_{RH} of the sub-embryo, where A is a free parameter that we set to 7 in the examples below. It has the same semimajor axis, eccentricity, and inclination as one of the tracers, but its phases are chosen so that it is initially in the encounter plane at (b_x, b_z). The value of (b_x, b_z) is chosen via the procedures described near Equation (11) above. We move both the target and interloper backward along their respective Kepler orbits for a time 10 τ_{syn}, where τ_{syn} is the synodic period of the pair. Then we integrate the system forward for twice as long. We record the change in energy of the sub-embryo’s orbit.

We determine the total number of such encounters using the same procedures we used to determine p_{gas} for the tracers. At the end of these integrations we have the total change in energy that the sub-embryo should experience in the next time step and thus \dot{E}. This energy change is smoothly added to the orbit of the sub-embryo via a fictitious acceleration applied to its equation of motion. Tests of this algorithm are presented in Section 3.5.

2.2.2. Embryo–Disk Tidal Interactions

If a growing planetary embryo is in the presence of gas, it will migrate due to planet–disk tidal interactions (Ward 1986; Korycansky & Pollack 1993; Ward 1997). As in LTD10, we use the approach of Papaloizou & Larwood (2000). This approach has the advantage that it can handle the case where a protoplanet’s eccentricity is greater than the scale-height-to-semimajor axis ratio. They derive timescales for semimajor axis damping, t_a, and for eccentricity damping, t_e, for an embryo of mass M at semimajor axis a with eccentricity e:

$$t_a = \frac{1}{c_a} \sqrt{\frac{a^3}{GM_\odot}} \left(\frac{\epsilon a}{a} \right)^2 \left(\frac{\Sigma_\pi a^2}{M_\odot} \right)^{-1} \left(\frac{M}{M_\odot} \right)^{-1} \left[1 + \left(\frac{c_a}{1.5c_\pi} \right)^2 \right]$$

$$t_e = \frac{1}{c_e} \sqrt{\frac{a^3}{GM_\odot}} \left(\frac{\epsilon a}{a} \right)^2 \left(\frac{\Sigma_\pi a^2}{M_\odot} \right)^{-1} \left(\frac{M}{M_\odot} \right)^{-1} \left[1 - \left(\frac{c_e}{1.5c_\pi} \right)^2 \right] \tag{28}$$
\[T_e = \frac{1}{c_e} \sqrt{\frac{a^3}{GM_\odot}} \left(\frac{\Sigma_g \pi a^2}{M_\odot} \right)^{-1} \left(\frac{M}{M_\odot} \right)^{-1} \left[1 + \frac{1}{4} \left(\frac{c_d}{c_e} \right)^2 \right]^{3/2}, \]

where \(\Sigma_g = \pi^{1/2} \rho_g c_s^2 \) is the local gas surface density. Papaloizou & Larwood (2000) also argue that if the inclination damping timescale \((t_i) \) is not significantly shorter than the eccentricity damping timescale then it plays little role in the equilibrium state; we set \(t_i = t_e \) for simplicity.

From the formulae above we can find the acceleration on an object due to tidal damping of semimajor axis and random velocity, namely,

\[a_{\text{tidal}} = \frac{v}{t_a} \frac{2 \langle v \cdot \mathbf{r} \rangle - 2 \langle v \cdot \mathbf{k} \rangle \mathbf{k}}{t_i}, \tag{30} \]

where \(\mathbf{r}, \mathbf{v}, \) and \(\mathbf{a} \) are Cartesian position, velocity, and acceleration vectors, respectively (with \(r \) as the magnitude of the radial vector) and \(\mathbf{k} \) is the unit vector in the vertical direction. The user is free to set \(c_a \) and \(c_e \) to whatever values he or she wishes.

2.2.2.3. Collisional Evolution of the Embryos

Basic SyMBA makes the simple assumption that when two objects hit one another they perfectly merge (i.e., create one object with all the mass while conserving linear momentum). This assumption is adopted by all \(N \)-body codes, as far as we are aware. Given the effort we put into accurately following the evolution of the tracer size distribution (see Section 2.1.2), we feel that we need to give the user the ability to relax this assumption in LIPAD. Unfortunately, the structure of LIPAD puts several constraints on our ability to accomplish this. In particular, we cannot increase the number of particles (tracers plus embryos) in the system for fear that the \(N \) would run away and become too large to be computationally tractable. In addition, the statistical algorithms for the tracers require that all the tracer particles have the same mass. Thus, the algorithm that we developed to handle the collisional evolution of the embryos is necessarily cruder than those we use for the tracers, but are based on the same principles.

When two embryos collide, we determine the value of \(m_{LR} \) using Equation (7). We define the \(m_{ej} \equiv m_e - m_{LR} \) as the mass of the ejecta. We distribute the total mass involved in the collision (i.e., \(m_e \)) based on the value of these numbers:

if \(m_{lr} \leq m_{e} \) **then**

1. We declare that both objects are pulverized. We replace both of them with new tracers. One has \(s = \sqrt{3} m_{tr} / (4 \pi \rho) \) and the other has \(s = \sqrt{3} m_{ej} / (4 \pi \rho) \), where \(m_{tr} \) and \(m_{ej} \) are defined in Equations (7) and (8), respectively. Note that this is the one case where the mass of the system is not conserved. We believe that this is a reasonable tack to take given that the pair is blown apart by the collision.

else if \(m_{ej} < m_{tr} / 2 \) **then**

1. In this case there is not enough material in the ejecta to create a new tracer. Therefore, we perfectly merge the two objects.

else if \(m_{lr} \leq m_{e} / 2 \) **then**

1. We are faced with the awkward situation that most of the mass is in fragments. Given our constraint that we do not want to increase \(N \), we simply set the mass of both embryos to \(m_e / 2 \).

else if \(m_{ej} > m_{tr} \) **then**

1. The one embryo is given the mass of \(m_{tr} \) and the other \(m_{ej} \).

else

1. The one embryo is given the mass \(m_e - m_{tr} \) and the other becomes a tracer with \(s = \sqrt{3} m_{tr} / (4 \pi \rho) \).

2.2.4. Embryo Atmospheres and the Accretion of Planetesimals

In LTD10, we presented a review of the problems the community faces when trying to build the cores of the giant planets before the gas nebula dissipates. In the last decade or so, there has been a concerted effort by the planet formation community to overcome these problems. This has led to the development of some additional mechanisms intended to enhance the growth rates of planetary embryos. One particularly promising method was developed by Inaba & Ikoma (2003). They show that the effective capture cross-section of an embryo is significantly increased by the presence of an extended atmosphere that is accreted from the surrounding nebula. In LIPAD, we supply the user with the option to mimic this effect. In particular, we employ the formalism developed by Chambers (2006), who showed that, assuming the relative velocity of the particles is small compared to the escape velocity of the embryo and that the scale height of the atmosphere is set by the energy input due to accreting planetesimals, the effective accretion radius \(R_C \) of an embryo is

\[R_C^2 = \frac{0.0790 \mu^4 c R_e r_H}{\kappa s m_R} \left(\frac{M}{M_\odot} \right)^2, \tag{31} \]

where \(R \) and \(s \) are the radius of the embryo and planetesimal, respectively, \(M \) is the embryo’s mass, \(\mu \) is the mean molecular weight of the atmospheric gas, \(\kappa \) is its opacity, and \(c \) is the speed of light. The parameter \(m_R \) is the accretion rate that the embryo would have had if there was no atmosphere. We calculate this value for each embryo in real time during our simulation by monitoring the number of tracer particles that pass through the embryo’s Hill sphere, and extrapolating to its surface. During our simulations, we do not allow \(R_C \) to exceed \(0.5 r_H \). If an incoming tracer comes within a radius \(R_C \) of the embryo, it is assumed to have a collision.

One issue that we need to address concerning the embryo atmospheres is how they evolve as the gas disk decays and embryos collide with one another. First note that Equation (31) is independent of the surface density of the gas disk. This is due to the fact that the most important regulator for the gas accretion rate onto an embryo is the heating and cooling of the atmosphere itself. The atmosphere is gravitationally bound to the planet and pressure-supported. It needs to cool and collapse before more gas can be added. Thus, given that the atmosphere...
is already bound to the embryo, we expect the atmospheres to survive once the gas disk dissipates—at least in the absence of giant impacts. In that regard, Genda & Abe (2003) found that planets only lose ∼20%–30% of their atmospheres during such collisions.

The fact that only a couple of tens of percent of atmospheres are lost during a collision and it is not clear how this loss affects R_C (which is mainly determined by thermal evolution), we decided to take the simplistic approach of allowing the atmospheres to survive in our simulations for all time. We adopt Equation (31) even after the gas disk dissipates and after giant collisions. We feel that this assumption is reasonable given that the user has the option in LIPAD of ignoring the atmospheres entirely. Thus, we believe it best for models that include atmospheres to represent the end number of possible simulations that maximize the effects of those atmospheres. This is the approach we have taken.

This concludes our description of LIPAD. In the previous sections, we described the three major classes of objects. Each object in the code gravitationally and collisionally interacts with its neighbors, which leads to changes in the dynamical state of the system as well as the sizes of the objects involved. This is the first code of which we are aware that can accurately follow the evolution of a system initially containing only small planetesimals, as objects grow and evolve, until they reach fully formed planets. In the next section, we present tests of LIPAD.

3. TESTS OF LIPAD

LIPAD has been carefully verified and tested. In this section, we present some of these tests. Tests were chosen that not only verify that the code is behaving properly, but also illustrate how the code works.

3.1. Collisional Damping

The first test we present is one designed to test a combination of our particle-in-a-box algorithms for determining the collision rates between tracers (Section 2.1.1) and the collisional damping routines (Section 2.1.2). Following MBNL09 (see their Figure 12), we calculate the evolution of a system of 10 km planetesimals spread from 4 to 6 AU. The system contains $32 \, M_\oplus$ of material. In LIPAD, we represented this population with 1660 tracer particles, and so each tracer initially represents 9.6 million planetesimals. We only included collisional damping in this calculation—particles did not fragment or accrete.

Figure 2 shows a comparison of our LIPAD results (solid curves) to those from MBNL09’s Eulerian code (dotted curves). The eccentricity evolution is quite similar in the two codes, especially at the beginning of the simulation when the two systems are in the same dynamical state. However, the inclination damping is much slower in LIPAD. In particular, $e_{\text{RMS}}/i_{\text{RMS}}$ drops from 2 to roughly 1.2 in 1000 years. MBNL09’s code assumes that this ratio is fixed at 2. The issue now becomes determining which of these codes is correct.

Unfortunately, as far as we are aware, there is no code that can perform this calculation without making serious compromises. Fortunately, we have a code that can, at least, mimic collisions with a coefficient of restitution of zero—the perfect merger routines in SyMBA lead to the same velocity evolution. The issue here is that SyMBA cannot possibly handle the roughly 1010 planetesimals implied by this calculation. We can simplify the simulation by significantly decreasing the number of particles, while increasing their physical cross-section in order to decrease the impact probability and thus the computation time. In this way, although we do not recreate the timescales of the true system, we can determine how $e_{\text{RMS}}/i_{\text{RMS}}$ changes during the simulation.

In particular, we started with the 1660 particles in the original LIPAD run, set their physical radius to 0.01 AU, and set their mass to zero so as to suppress viscous stirring. In Figure 3 we plot $e_{\text{RMS}}/i_{\text{RMS}}$ as a function of e_{RMS} for our new SyMBA run (gray “+”) and our full LIPAD runs (black dots). By plotting e_{RMS} on the abscissa we remove any issues caused by different collision timescales. Since eccentricity monotonically decreases during the simulation, time runs from upper right to lower left in the figure. Recall that $e_{\text{RMS}}/i_{\text{RMS}}$ remains equal to 2 in MBNL09’s code. As can be seen in the figure, the drop in $e_{\text{RMS}}/i_{\text{RMS}}$ seen in the LIPAD run is also seen in SyMBA. Thus, we conclude that this drop is real and that LIPAD is correctly modeling collision damping. Indeed, it is more accurate than the analytic equations used by the Eulerian codes.

3.2. Collisional Fragmentation and Accretion

As a first test of the collisional fragmentation/accretion evolution algorithms, we study a system that should quickly grind down. We start with a 1.3 M_\oplus disk of material between 2.25 and 2.75 AU made up of 30 km objects. We set the initial
eccentricities of this population to 0.2, which is large enough that when two objects hit, they are pulverized in the sense that they go directly to dust. In Figure 4 we compare the results of LIPAD to those from MBNL09's code. We find excellent agreement. We follow the above simple test with one that includes both accretion and fragmentation of the tracers (Section 2.1.2). It was inspired by MBNL09's main result that asteroids were born big. We start with a population of $s = 50$ km objects spread from 2 to 3 AU with a total mass of $1.6 M_⊕$. We made a couple of modifications to the original MBNL09 calculations that are designed to better exercise LIPAD. First, we did not include velocity evolution since we are only interested in studying the size-distribution/collision-rate part of the code. In addition, e_{rms} was set to the particles' Hill eccentricity in the original calculation. Here, we set the rms eccentricities and inclinations to much larger values (0.01 and 0.005, respectively) so that we could produce a significant amount of collisional grinding—we required a test that included both growth and fragmentation. We represented this system with 20,000 tracers.

Figure 5 shows four snapshots of the cumulative mass distribution according to LIPAD (black) and MBNL09's code (red). First, we note that at all four times the size distribution produced by the two codes for the objects that are growing (i.e., for masses greater than 10^{21} g) is in excellent agreement with one another. However, at early times, LIPAD does not correctly reproduce the collisional tail of the distribution. This shows what, in our view, is the most significant limitation of LIPAD—the relatively grainy resolution of the size distribution. Recall that as the system evolves, a tracer's mass remains constant and so, as the mass of the planetesimals that it represents (i.e., $m_p = (4/3)\pi \rho s^3$) changes, the number of particles it represents also changes. Thus, at each value of planetesimal mass, there is a minimum number of planetesimals that a tracer can represent, i.e., m_t/m_p. This is the cyan curve in the plot. Note that the black curve never falls below this curve. At early times, as the collisional tail starts to develop, LIPAD cannot represent it very well because of this resolution limitation (note that the tail of the size distribution from MBNL09's code lies below the cyan line). As a result, LIPAD's tail sits far from that produced by MBNL09's code. Note that, although the size distribution has a different shape, the total amount of mass in the collisional tail is the same for the two codes during this time. LIPAD soon recovers, however, and once the mass in the tail becomes significant, the size distributions match well.

We want to emphasize that, despite this limitation, LIPAD correctly reproduces the growing embryos. At no time does the shape of the collisional tail affect the growth of the planets. Thus, we conclude that, although we would not use LIPAD to study the details of the evolution of the shape of a size distribution during a collisional cascade, it is very capable of following the accretion of any planets in the system, as well as any mass loss due to collisional grinding.

In Figure 6, we show what is actually happening in the code. Each point represents an individual tracer. Location on the dot shows the semimajor axis (a) and planetesimal size (s). Its color shows the number of planetesimals that the tracer represents. Recall that since m_t is fixed, as s decreases this number increases.

3.3. Runaway Growth

As we described in Section 1, the process of runaway growth has been shown to be important in the formation of the planets (Wetherill & Stewart 1989; Greenberg et al. 1978). Thus, it is essential to determine whether LIPAD can reproduce this process. Fortunately, there are analytic solutions to the coagulation equation that include it, which we can use as a test for LIPAD. In particular we will employ a solution by Wetherill (1990, hereafter W90) that includes a severe form of runaway growth.

The coagulation equation follows the evolution of the size or mass distribution of a population of objects under the assumption that when two objects hit they merge (i.e., there is no fragmentation). W90 found an analytic solution to the discrete form of coagulation equation where he assumes that there is a
Figure 5. Four snapshots of the evolution of the cumulative mass distribution of a system initially consisting of a population of 6.4 million \(s = 50\) km objects spread from 2 to 3 AU. A 50 km object has a mass of \(1.5 \times 10^{21}\) g. The rms eccentricities and inclinations were 0.01 and 0.005, respectively, and there was no velocity evolution in the calculations. The black and red curves indicate the results from LIPAD and MBNL09’s Eulerian code, respectively. The cyan line shows the number of particles that a single tracer represents as a function of the mass of its constituent planetesimals.

(A color version of this figure is available in the online journal.)

single runaway object. Under the assumption that at any time the system can be represented by a population of objects that are members of a continuous size distribution (represented by a series of mass bins with mass \(m_k\) that contain \(n_k\) objects) and a runaway with mass \(m_R\), then this equation has the form

\[
\frac{dn_k}{dt} = \frac{1}{2} \sum_{i+j=k} A_{i,j} n_i n_j - n_k \sum_{i=1}^{\infty} A_{i,k} n_i - A_{R,k} n_k, \quad (32)
\]

where \(A_{i,j}\) is the probability that an object in bin \(i\) will impact an object in bin \(j\) per unit time and is, in general, a nonlinear combination of the physical parameters of the system such as masses, velocities, volumes, and bulk densities. The first term in the equation represents objects that are undergoing mergers, thereby entering bin \(k\). The second term represents those objects initially in bin \(k\) that are undergoing collisions and thus leave the bin. The third term are those objects initially in bin \(k\) that collide with the runaway.

W90 found a solution to the above equation for systems that initially consisted of a population of \(n_0\) objects of the same mass, \(m_0\), and where \(A_{ij} \equiv \gamma (m_i/m_0)(m_j/m_0)\) (\(m_i = i m_0\) is the mass in bin \(i\) and \(\gamma\) is a constant). It is important to note that this is not a physically realistic situation because we expect that in the absence of gravitational focusing the \(A’s\) should be proportional to the physical cross-section, which is, in turn, \(\propto m^{7/3}\). Indeed, it is an extreme version of runaway growth because the largest object will grow much faster than its neighbors in this case than in a more physically realistic situation. As such, it makes for an excellent test of LIPAD. Following Trubnikov (1971), W90 found that for the continuous distribution

\[
n_k(\eta) = \frac{n_0 (2k)^{k-1}}{k!} \left(\frac{\eta}{2}\right)^{k-1} e^{-k\eta}, \quad (33)
\]

where \(\eta\) is a normalized time equal to \(\gamma n_0 t\), and the mass of the runaway is

\[
m_R(\eta) = m_\text{tot} - \sum_{k=1}^{\infty} n_k(\eta)m_k, \quad (34)
\]

where \(m_\text{tot} \equiv n_0 m_0\) is the total mass of the system. The value of \(m_R\) is zero for \(\eta < 1\), but increases quickly when \(\eta > 1\).

While these equations have a nice compact form, it turns out that they are very difficult to evaluate numerically. Note that for the problem below, \(k\) needs to be as large as 70,000,000 when \(\eta = 1\) in order to calculate all values of \(n_k\) that are larger than 1, and significantly larger in order for the second term in Equation (34) to converge. After much effort we have been able to develop techniques to calculate Equation (33) when \(n_k > 1\) for all \(\eta’s\). Unfortunately, we have failed to find solutions to Equation (34) near \(\eta = 1\) when \(m_R \ll m_\text{tot}\) because of
Figure 6. Last frame of an animation showing the temporal evolution of the tracers in the simulation presented in Figure 5. In particular, we plot the size of a tracer’s constituent planetesimals, \(s \), as a function of semimajor axis, \(a \). Color shows the number of planetesimals that each tracer represents. (An animation and a color version of this figure are available in the online journal.)

A combination of the convergence issue and the fact that the equation requires that we take the difference of two nearly equal numbers. In LIPAD, we represent the system with a significant number of tracers and thus the tracer representing the runaway is promoted to an embryo when \(m_R \approx m_{tr} \ll m_{tot} \), which is where we cannot solve Equation (34). We must stop the LIPAD simulation at this point in order to preserve our non-physical \(A \)’s.

As a result, when comparing the results of LIPAD simulations to these W90 solutions, we cannot test whether LIPAD’s runaway is growing at an appropriate rate. Fortunately, there are other quantitative comparisons to be made.

W90 studied a system that initially contained a population of \(10^{20} \) objects each with a mass of \(10^6 \) g (40 cm radius). We adopt this test. We present the results of the evolution of this system in two ways. The red heavy weight curve in Figure 7 shows the evolution of the mass of the largest planetesimal in the continuous distribution, \(m_k \), as a function of \(\eta \). In particular, we define the largest mass in the continuous distribution as the largest \(m_k \) for which \(n_k > 1 \) according to Equation (33). The dotted lines show where \(\eta = 1 \). The red curves in Figure 8 show snapshots of the cumulative mass distribution of the continuous population.

The system evolves in the following way according to W90. Initially all objects were \(10^6 \) g. When \(\eta \approx 1 \), the objects remain part of the continuous size distribution as they grow. At \(\eta = 1 \), \(m_R \) becomes non-zero and the runaway phase commences. This occurs when the largest object in the continuous distribution is \(6.9 \times 10^{13} \) g. This, presumably, is the initial mass of the runaway. The runaway grows approximately exponentially after this because \(m_r \propto m_r \). Eventually, its growth slows because it starts running out of fuel. The value of \(m_l \) (thick curve in Figure 7) decreases during this time because \(A_{ij} \propto m_j \) and thus the runaway preferentially accretes the larger objects.

We represented this system with 1000 tracers in LIPAD, so \(m_{tr} = 10^{23} \) g, and set \(N_{s-bin} = 30 \). The code itself was customized in three ways for this calculation. First, we disabled all the dynamical subroutines in the code. Then we modified \(p_{col} \) to allow for the fact that \(A_{ij} = \gamma (m_i/m_0)(m_j/m_0) \). Finally, since we force the impact rate onto the largest object to scale
Figure 8. Six snapshots of the evolution of the cumulative mass distribution of a system initially consisting of 10^{20} objects of 10^6 g. This system was based on the runaway growth test in W90. Note that time is highly compressed at the end of the simulation. The black and red curves show the results from LIPAD and an analytic solution, respectively. In particular, the red curve shows the evolution of the continuous size distribution (Equation (34)). The cyan line shows the number of particles that a single tracer represents as a function of the mass of its constituent planetesimals. As we describe in the text, there is a 9% difference in the growth rates between the LIPAD and analytic solutions. In order to compare the two size distributions, we have removed this difference in this figure. Note that time is highly expanded on the lower panels.

(An animation and a color version of this figure are available in the online journal.)

as its mass, which varies from 10^6 g to $>10^{23}$ g, we included a variable time step in the code. It is important to note that the global time step for the dynamical part of LIPAD cannot be changed because it would break the symplectic character of the underlining SyMBA routines. Thus, we cannot vary the time step of the collision code as long as we include collisional damping in the dynamics. We do not expect this time step issue to arise in a realistic situation because here the A’s are extreme in that they scale as m_{lim}, and W90 starts with very small particles (40 cm), which significantly increases the dynamic range of the problem. LIPAD does print diagnostics that will allow the user to determine whether the time step is becoming an issue during the calculation.

The purpose of this test is to determine whether LIPAD can handle runaway growth. The black curve in Figure 7 shows the mass of the largest object in the LIPAD calculation as a function of η. As can be seen, this curve becomes almost vertical at $\eta = 1.09$. In addition, Figure 7 shows that at the end of the LIPAD simulation (which occurs when the largest tracer is promoted) we have a situation analogous to W90’s prediction—a continuous population of objects with masses less than roughly 7×10^{13} g and a single, detached object that is significantly larger (10^{23} g in this case). Therefore, we can conclude that LIPAD does indeed allow runaway growth to occur.

Having said this, there is a caveat we should discuss—the timing of the runaway. In our LIPAD calculation, the runaway occurs at $\eta \sim 1.09$ rather than at $\eta = 1$ as it should (see Figure 7). Although this error is small enough (only 9%) that we do not think it would significantly affect the results of any real calculations, it deserves an explanation—particularly given that it provides insight into LIPAD. We believe that this offset is a result of the way in which LIPAD resolves the mass distribution.

The black and red curves in Figure 8 show the temporal evolution of the mass distribution of the continuous population according to the analytic theory (Equation (33)) and LIPAD, respectively. As described previously, because each tracer represents a fixed mass, at each value of planetesimal mass, there is a minimum number of real objects that a tracer can represent. This is the cyan line in the plot. Although the black curves follow the red ones remarkably well, the former are truncated at the point where the red curves cross the cyan line as a result of this resolution limitation. This effect can also be seen in Figure 7, where the thick red curve represents the largest mass in the continuous distribution according to Equation (33), but the thin curve represents the mass where $n km_k = m_{tr}$. Before the runaway, the LIPAD results follow the thin curve in this figure.

As a result, at any time before runaway, the largest object in the LIPAD simulation is smaller than the analytic theory would predict. As discussed above, while W90’s theory predicts that runaway should occur at $\eta = 1$, it also states that the mass of the largest planetesimal at that time is 7×10^{13} g. In the LIPAD simulation, runaway starts at a later time, but when the largest object has roughly the same mass (see the lower left
Figure 9. Temporal evolution of the rms eccentricity (top) and inclination (bottom) of a system in the dispersion-dominated regime. In particular, the system contains 800 objects with \(s = 540 \) km spread from 0.94 to 1.06 AU, and initial rms eccentricity and inclination set to 3 \(\times 10^{-5} \). The red, cyan, and green curves show the results from LIPAD, SyMBA, and MBNL09’s code, respectively. In the LIPAD run, the 800 particles were represented by 200 tracers. (A color version of this figure is available in the online journal.)

Figure 10. Temporal evolution of the rms eccentricity (top) and inclination (bottom) of a system in the shear-dominated regime. In particular, the system contains 610 objects with \(s = 93 \) km spread from 0.994 to 1.056 AU, and initial rms eccentricity and inclination set to 7 \(\times 10^{-5} \). This system also satisfies MBNL09’s isolation criterion (Equation (12)). The red, cyan, and green curves show the results from LIPAD, SyMBA, and MBNL09’s code, respectively. In the LIPAD run, the 610 particles were represented by 152 tracers. (A color version of this figure is available in the online journal.)

panel of Figure 8). Indeed, it makes sense that the onset of runaway should be determined by mass and not time. So, it seems reasonable to conclude that the delay in runaway seen in LIPAD is due to tracer resolution—it simply takes a little longer to build an object that can run away. We tested this idea further by performing a simulation with 5000 tracers and found that runaway starts at \(\eta = 1.05 \) rather than 1.09—a result that is consistent with this idea. In both our simulations, runaway starts when the largest planetesimal is roughly \(7 \times 10^{13} \) g. We consider the fact that this is consistent with the predictions of W90 a success of our code and remind the reader that the delay is less than 10%.

3.4. Viscous Stirring

We performed two tests of the viscous stirring routines in LIPAD (Section 2.1.3). The first studies a system in the dispersion-dominated regime and is a repeat of the test performed by MBNL09 (see their Figure 5). In particular, we study the behavior of 0.26 \(M_\oplus \) of material in an annulus from 0.94 to 1.06 AU. This annulus was populated by objects with \(s = 540 \) km. The rms eccentricity and inclination of the disk was initially set to 3 \(\times 10^{-5} \). We performed three simulations using: (1) LIPAD, (2) MBNL09’s code, and (3) SyMBA for a direct \(N \)-body simulation. The direct \(N \)-body simulation required 800 objects, while we represented the disk with 200 tracers in LIPAD. Fragmentation, accretion, and collisional damping are turned off in this simulation; the only physical effect included is viscous stirring.

In the second simulation we test LIPAD’s tracer viscous stirring routines with a system that is both in the shear-dominated regime and for which objects are isolated from one another (i.e., objects are separated enough from one another and dynamically cold enough that their orbits do not cross). As we explained above, MBNL09 argue that it is important that these codes be able to handle such populations. Here, we study a narrow ring containing 0.001 \(M_\oplus \) spread from 0.944 to 1.056 AU. This disk was populated with objects with \(s = 93 \) km. The initial rms eccentricity and inclination of these objects was 7 \(\times 10^{-5} \). For this system, the right-hand side of Equation (12), which defines whether a system is isolated, is 0.033 AU. Since this number is smaller than the width of the annulus, which is 0.11 AU, this system satisfies MBNL09’s isolation criterion (Equation (12)). The SyMBA run contains 610 particles, while we represented the same system with 152 particles in LIPAD.

We show the temporal evolution of the rms eccentricity and the rms inclination in our dispersion-dominated runs in Figure 9 and our shear-dominated, isolated runs in Figure 10. In general, there is excellent agreement between LIPAD (shown in red) and SyMBA (in cyan). LIPAD does tend to excite inclinations slightly faster than in a real \(N \)-body simulation, but this difference is small. In addition, LIPAD performs significantly better then the analytic viscous stirring expressions.
Figure 11. Change in the semimajor axis of a $6.8 \times 10^{-4} M_\oplus$ sub-embryo embedded in a $0.6 M_\oplus$ disk spread from 0.915 to 1.085 AU. The N-body simulation (cyan) contained 200,000 disk particles, which were represented by 1000 tracers in LIPAD (red). This represents a migration of over $20 r_H$.

(A color version of this figure is available in the online journal.)

used by MBNL09 and the other Eulerian statistical codes. Thus, we conclude that our new Monte Carlo viscous stirring algorithm is the most accurate available for this type of problem.

3.5. Sub-embryo Migration

In Section 2.2.1, we described our methods for handling planetesimal-driven migration for sub-embryos. Kirsh et al. (2009) showed that an embryo must be at least 150 time more massive than the surrounding disk particles in order for it to migrate. Unfortunately, when a tracer is promoted to an embryo it finds itself embedded in a disk of similar-mass objects, in spite of the fact that these objects might be representing much smaller planetesimals. Thus, we were forced to develop

Figure 12. Four snapshots of the evolution of the cumulative mass distribution of a system initially consisting of 4000 particles with masses between 10^{23} and 10^{24} g for a total of $0.3 M_\oplus$. This system was based on those in Kokubo & Ida (2000). We represent this by 425 tracers in LIPAD. The black and red curves show the results from LIPAD and a direct N-body simulation done with SyMBA. The cyan line shows when a tracer is promoted to a sub-embryo.

(An animation and a color version of this figure are available in the online journal.)
a statistical way for the small embryos (which we define as sub-embryos) to interact directly with the planetesimals. Our method to accomplish this involves performing a series of three-body integrations, which include the Sun, sub-embryo, and a single planetesimal, in order to determine an average change in the energy of the sub-embryo (see Section 2.2.1). This energy change is smoothly added to the orbit of the sub-embryo via a fictitious acceleration applied to its equation of motion.

We tested our methods using an experiment where we embed a $6.8 \times 10^{-4} M_\oplus$ embryo in a $0.6 M_\oplus$ disk consisting of 200,000 particles spread from 0.915 to 1.085 AU. The embryo was 200 times more massive than the disk particles. The cyan curve in Figure 11 shows the migration of this embryo in an N-body simulation using SyMBA. After a period of 1500 years, the embryo starts to migrate inward. We performed the same simulation with LIPAD where the 200,000 particles were replaced by 1000 tracers. The ratio of the embryo mass to the tracer mass in this simulation was 1.01. The parameters of LIPAD were set so that the embryo was considered to be a sub-embryo by the code. Perhaps, not surprisingly, the LIPAD run was more noisy than the SyMBA run. However, even under these extreme conditions, the embryo’s behavior was very similar in the two simulations.

3.6. Accretion with Velocity Evolution

Here, we use the classic study of terrestrial planet accretion by Kokubo & Ida (2000) as a test of LIPAD. Kokubo & Ida (2000)’s goal was to perform the largest N-body simulation of accretion to date, thereby giving them the ability to start with the smallest possible planetesimals. Indeed, while the state-of-the-art simulations at the time started with a few tens of objects, Kokubo & Ida initially started with several thousand bodies. In order to start with even smaller initial objects, they restricted their simulation to a narrow annulus. In particular, they constructed a distribution of objects initially in a ring that extended from 0.99 to 1.01 AU and contained 0.3 M_\oplus of material. One of their runs contained 4000 particles with masses between 10^{23} and 10^{24} g distributed in a power-law mass distribution with a differential slope of -2.6. They followed the system with a full N-body code. When particles collided—they merged—there was no fragmentation.

We performed the same simulation with LIPAD, using 425 tracers (approximately an order of magnitude fewer than in the N-body calculation) and $N_{\text{tr}} = 20$. Full velocity evolution was included, but fragmentation was disabled. Particles were promoted to embryos when they reached a mass of 4×10^{24} g. Figure 12 compares the temporal evolution of the size distribution from LIPAD (black) and SyMBA (red). The vertical cyan line shows the mass where tracers are promoted to embryos. Through this simulation all the embryos were considered sub-embryos by the code. Some explanation is required to understand these results.

There are two phases of growth in the LIPAD simulation. Before 500 years, all the particles are tracers and thus the evolution of the system is entirely done through our Monte Carlo routines. Note that there is excellent agreement during that time (see the top right panel of Figure 12, for example). However, once an object becomes a sub-embryo, it no longer interacts with the statistical part of the code. As a result, it can only accrete a whole tracer. In this simulation, tracers have 4×10^{24} g and thus the sub-embryos can only grow by accreting objects of this mass. This limitation in the resolution of the growth rate near m_{tr} explains the pileup of objects at 4×10^{24}

![Figure 14](image-url)
and 8×10^{24} g. This does not affect the overall growth rates of the system, however. Note that at the end of the simulation at 10,000 years, the size distributions from the two codes nearly fall on top of one another. Thus, as with the collisional grinding, the resolution limitations of LIPAD do not seem to affect the general behavior of the system.

3.7. MBNL09’s Final Test

As a final test of their Eulerian particle-in-a-box planet accretion code MBNL09 followed the evolution of 8.3×10^8 objects of 4.8×10^{18} g spread from 0.915 to 1.085 AU. These are embedded in a gas disk with a mid-plane density at 1 AU of 1.18×10^{-9} g cm$^{-3}$, $\alpha = 2.25$, and $z_r = 0.05$ AU (see Equation (24)).

The above problem represents an excellent opportunity to compare the two types of algorithms because it is performed on such a narrow annulus that planetesimals/planet migration (which the Eulerian codes cannot handle) does not occur. In particular, we represented the population of 8.3×10^8 planetesimals by 1000 tracers in LIPAD and set $N_{\text{tr}} = 20$. The smallest object included in the collisional cascade is 10 m in size. We have turned on all of the velocity evolution routines with the exception of the routine that allows sub-embryos to migrate.

Figure 13 shows an animation of the evolution of the system in LIPAD. The top panel shows the eccentricity (e) of a particle as a function of semimajor axes (a). The color of a dot shows its size. Tracer particles and embryos are represented by small and large dots, respectively. Note that all particles are tracers at the beginning of the calculation. The bottom panel shows the radius (r) as a function of semimajor axes. Here, the color indicates the number of planetesimals the tracer actually represents.

Recall that the main purpose of LIPAD was to be able to handle the global redistribution of planetesimals due to the embryos. Although this particular test was designed to minimize this effect, we can start to see the development of gaps around the embryos. In addition, although it is difficult to see in the figures, several of the embryos have captured Trojan populations.

The remaining issue is to determine how well LIPAD and MBNL09 agree with one another. A comparison between the two simulations is shown in Figure 14 (see the caption of Figure 12 for a description). The match is reasonable. The largest discrepancies occur in the first 5000 years. We attributed these differences to differences in the velocity evolution. Recall that in our viscous stirring tests presented in Section 3.4, LIPAD did a better job at the velocity evolution than MBNL09’s code did. Thus, we believe that LIPAD is probably correct in this case.

4. CONCLUSIONS

We presented the details of the first particle-based (i.e., Lagrangian) code that can follow the collisional/accretion/dynamical evolution of a large number of kilometer-sized planetesimals through the entire growth process to become planets. We refer to this code as LIPAD. LIPAD is built on top of SyMBA, which is a symplectic N-body integrator (Duncan et al. 1998). In order to handle the very large number of planetesimals required by planet formation simulations, we introduce four types of particles in LIPAD.

1. Tracers. These objects are intended to represent a large number of planetesimals on roughly the same orbit and of the same size as one another. Each tracer is characterized by three numbers: the physical radius r, the bulk density ρ, and the total mass of the disk particles represented by the tracer, m_{tr}. As a result, each tracer represents $N_{\text{tr}} = m_{\text{tr}}/(4/3)\pi \rho r^3$ planetesimals. They gravitationally interact with each other through Monte Carlo routines that include viscous stirring, dynamical friction, and collisional damping (Section 2.1). They are gravitationally stirred by the larger objects (i.e., full embryos and sub-embryos, see immediately below) via the N-body routines.

2. Full embryos. These are the most massive objects in LIPAD. They interact with all classes of particles through the direct summation of individual forces already present in the SyMBA code. SyMBA routines also monitor whether physical collisions occur. The algorithm that LIPAD uses to handle these collisions is described in Section 2.2.3.

3. Sub-embryos. These objects interact with full embryos and each other through SyMBA routines. However, the only dynamical effect that the tracers have on them is through dynamical friction and planetesimal-driven migration routines (Section 2.2). Collisions are handled in the same way as those of the full embryos.

4. Dust tracers. These are tracers that can no longer fragment.

The user can set the code so that these objects do not interact with the other tracers. However, they always interact with the embryos via SyMBA’s N-body routines. The user also has the option to apply Poynting–Robertson drag.

Perhaps LIPAD’s greatest strength is that it can accurately model the wholesale redistribution of planetesimals due to gravitational interaction with the embryos, which has recently been shown to significantly affect the growth rate of planetary embryos themselves (LTD10). This redistribution controls growth in two ways. First, it can open gaps around the embryos thereby effectively stopping accretion. Additionally, the embryos can migrate as a result of gravitational scattering of the nearby planetesimals, which can enhance growth. On the negative side, LIPAD struggles with being able to accurately resolve the side distribution of collisional tails. However, we show that this does not affect embryo growth rates.

We have carefully verified and tested LIPAD. In Section 3, we present experiments that independently exercise all of LIPAD’s abilities. We find that it outperforms Eulerian statistical algorithms previously used to study this problem. Of particular note, LIPAD’s viscous stirring routines are particularly accurate.

Our Lagrangian approach has an advantage over most previous attempts to study planet formation because, rather than using analytical expressions to estimate the global evolution of the system, our code mimics the important micro-physics (i.e., local accelerations and individual collisions) and lets the global system evolve naturally. Therefore, there are fewer assumptions made, and the interactions between different mechanisms are handled more realistically.

LIPAD has many free parameters. In addition, we have not discussed any issues concerning the convergence of the code. Of course, each problem is different and so a user is going to be required to investigate these issues on his or her own. Thus, we decided that the best approach is to present an illustrative example of a production run we are currently undertaking with LIPAD. In particular, we are doing a series of simulations of terrestrial planet formation in the region between 0.7 and 1.5 AU. This region of the planetary system is populated with $2.9 M_\oplus$ of planetesimals whose initial radii varied from 10 to 50 km depending on the run. The surface density of the planetesimals initially scale as $r^{-1.5}$. We represent these planetesimals with
12,000 tracers of 1.4×10^{24} g (roughly 50% more massive than Ceres). This implies that tracers transition to sub-embryos when they have a radius of only ~ 450 km. The transition from sub-embryo to embryo is set to 2.8×10^{26} g, roughly 200 times a tracer mass. We use $N_{\text{sub}} = 30$, spanning sizes from 1 to 450 km, and have 166 annular bins stretching from 0.5 to 60 AU. We set $s_{\text{sub}} = 30 \mu$ and adopt BA99’s values for high velocity rock in the calculations of Q^*_p. We embed this material in a minimum mass gas disk (Hayashi et al. 1985), which we assume has an opacity of 2% of the interstellar medium value when in the atmospheres of the embryos. Type I eccentricity damping is included with $c_e = 1$, but we disable Type I migration by setting $c_a = 0$. The gas disk decays with a lifetime of 2 My. The time step for the N-body code is set to 0.025 years, while the one for the statistical code is 3 times longer. We will present an analysis of these calculations in an upcoming paper.

We thank Glen Stewart and Alessandro Morbidelli for useful discussions, and John Chambers who acted as referee on this manuscript. This work as been directly supported by the Center for Lunar Origin and Evolution (CLOE) of NASA’s Lunar Science Institute (grant Number NNA09DB32A). H.F.L. is also grateful for funding from NASA’s Origins and OPR programs. M.J.D. acknowledges the continuing financial support of NSERC, Canada.

REFERENCES

Adachi, I., Hayashi, C., & Nakazawa, K. 1976, Prog. Theor. Phys., 56, 1756
Agnor, C. B., Canup, R. M., & Levison, H. F. 1999, Icarus, 142, 219
Benz, W., & Asphaug, E. 1999, Icarus, 142, 5
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton, NJ: Princeton Univ. Press), 747
Bromley, B. C., & Kenyon, S. J. 2011, ApJ, 731, 101
Chambers, J. E. 2001, Icarus, 152, 205
Chambers, J. E. 2006, ApJ, 652, L133
Chambers, J. E., & Wetherill, G. W. 1998, Icarus, 136, 304
Chandrasekhar, S. 1943, ApJ, 97, 255
Dohnanyi, J. S. 1969, J. Geophys. Res., 74, 2431
Duncan, M. J., Levison, H. F., & Lee, M. H. 1998, AI, 116, 2067
Durda, D. D., Bottke, W. F., & Nesvorný, D. 2007, Icarus, 186, 498
Fernandez, J. A., & Ip, W.-H. 1984, Icarus, 58, 109

Genda, H., & Abe, Y. 2003, Icarus, 164, 149
Greenberg, R., Hartmann, W. K., Chapman, C. R., & Wacker, J. F. 1978, Icarus, 35, 1
Greenweig, Y., & Lissauer, J. J. 1990, Icarus, 87, 40
Hahn, J. M., & Malhotra, R. 1999, AJ, 117, 3041
Hayashi, C., Nakazawa, K., & Nakagawa, Y. 1985, Protostars and Planets II, ed. D. C. Black & M. S. Matthews (Tucson, AZ: Univ. Arizona Press), 1100
Ida, S., Bryden, G., Lin, D. N. C., & Tanaka, H. 2000, AJ, 534, 428
Ida, S., & Makino, J. 1993, Icarus, 106, 210
Inaba, S., & Ikoma, M. 2003, A&A, 410, 711
Johansen, A., & Klahr, H. 2011, Earth Moon Planets, 108, 39
Kenyon, S. J., & Bromley, B. C. 2001, AJ, 121, 538
Kenyon, S. J., & Bromley, B. C. 2006, AJ, 131, 1837
Kenyon, S. J., & Luu, J. X. 1999, AJ, 118, 1101
Kirsh, D. R., Duncan, M., Brasser, R., & Levison, H. F. 2009, Icarus, 199, 197
Kokubo, E., & Ida, S. 1998, Icarus, 131, 171
Kokubo, E., & Ida, S. 2000, Icarus, 143, 15
Korycansky, D. G., & Pollack, J. B. 1993, Icarus, 102, 150
Levison, H. F., & Morbidelli, A. 2007, Icarus, 189, 196
Levison, H. F., Morbidelli, A., Gomes, R., & Backman, D. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona Press), 669
Levison, D. V., Lissauer, J. J., & Stewart, G. R. 1993, Protostars and Planets III, ed. E. H. Levy & J. I. Lunine (Tucson, AZ: Univ. Arizona Press), 1061
Minton, D., & Levison, H. F. 2012, Icarus, in press
Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. F. 2009, Icarus, 204, 558
O’Brien, D. P., Morbidelli, A., & Levison, H. F. 2006, Icarus, 184, 39
Papaloizou, J. C. B., & Larwood, J. D. 2000, MNRAS, 315, 823
Raymond, S. N., O’Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009, Icarus, 203, 644
Robertson, H. P. 1937, MNRAS, 97, 423
Skeel, R. D., & Biesiadecki, J. J. 1994, Ann. Numer. Math., 1, 191
Spitzer, L. 1987, Dynamical Evolution of Globular Clusters (Princeton, NJ: Princeton Univ. Press), 191
Thommes, E. W., Duncan, M. J., & Levison, H. F. 2003, Icarus, 161, 431
Trubitsyn, B. A. 1971, Doklady Akad. Nauk SSSR, 196, 1316
Ward, W. R. 1986, Icarus, 67, 164
Ward, W. R. 1997, Icarus, 126, 261
Weidenschilling, S. J. 2011, Icarus, 214, 671
Weidenschilling, S. J., Spaute, D., Davis, D. R., Marzari, F., & Ohtsuki, K. 1997, Icarus, 128, 429
Wetherill, G. W. 1990, Icarus, 88, 336
Wetherill, G. W., & Stewart, G. R. 1989, Icarus, 77, 330
Wetherill, G. W., & Stewart, G. R. 1993, Icarus, 106, 190
Wisdom, J., & Holman, M. 1991, AJ, 102, 1528