ON THE ORDERS OF THE NON-FRATTINI ELEMENTS
OF A FINITE GROUP

ANDREA LUCCHINI

Abstract. Let G be a finite group and let p_1, \ldots, p_n be distinct primes. If G contains an element of order $p_1 \cdot \cdots \cdot p_n$, then there is an element in G which is not contained in the Frattini subgroup of G and whose order is divisible by $p_1 \cdot \cdots \cdot p_n$.

1. Introduction

Let G be a finite group. We say that $g \in G$ is a non-Frattini element of G if $g \notin \text{Frat}(G)$, where Frat(G) denotes the Frattini subgroup of G. Let $d(G)$ be the smallest cardinality of a generating set of G. In [6] L. G. Kovács, J. Neubüser and B. H. Neumann proved that the set $G \setminus \text{Frat}(G)$ of the non-Frattini elements of G coincides with the set $\kappa_{d(G)+1}(G)$ of those elements g of G that are not omissible from some family of $d(G)+1$ generators of G. In the same paper they noticed that if a prime p divides $|G|$, then p divides the order of some element of $G \setminus \text{Frat}(G) = \kappa_{d(G)+1}(G)$. This follows immediately from the fact that if a prime p divides $|G|$, then p divides also $|G/\text{Frat}(G)|$ [3, III Satz 3.8]. In other words the set $\pi(G)$ of the prime divisors of $|G|$ can be deduced from the knowledge of the non-Frattini elements of G or, equivalently, looking at the elements which appear in the minimal generating sets of cardinality $d(G)+1$. One can ask whether some more elaborated information about the arithmetical properties of the orders of the elements of G can be recovered from $G \setminus \text{Frat}(G)$. Looking for results in this direction, we consider in this note the prime graph of G.

If G is a finite group, its prime graph $\Gamma(G)$ is defined as follows: its vertices are the primes dividing the order of G and two vertices p, q are joined by an edge if $p \cdot q$ divides the order of some element in G. It has been introduced by Gruenberg and Kegel in the 1970s and studied extensively in recent years (see for examples [5], [8], [9]). We consider now the subgraph $\tilde{\Gamma}(G)$ of $\Gamma(G)$ (called the non-Frattini prime graph) defined by saying that two vertices p and q are joined by an edge if and only if $p \cdot q$ divides the order of some element of $G \setminus \text{Frat}(G)$. Our main result is the following.

Theorem 1. Let G be a finite group. Then the prime graph $\Gamma(G)$ and the non-Frattini prime graph $\tilde{\Gamma}(G)$ coincide.

Notice that, although $\pi(G) = \pi(G/\text{Frat}(G))$, it is not in general true that $\Gamma(G) = \Gamma(G/\text{Frat}(G))$. Consider for example $G = \langle a, b \mid a^3 = 1, b^4 = 1, a^b = a^{-1} \rangle$. We have $|G| = 12$ and $|ab^2| = 6$, so $\Gamma(G)$ is the complete graph on the two vertices 2 and 3. However Frat(G) = $\langle b^2 \rangle$ and $G/\text{Frat}(G) \cong \text{Sym}(3)$, hence $\Gamma(G/\text{Frat}(G))$ consists of two isolated vertices.
Clearly if \(p \cdot q \) divides the order of some elements of \(G \), then \(G \) contains an element of order \(p \cdot q \). This is no more true for \(G \setminus \text{Frat}(G) \). For example all the elements of order \(p \cdot q \) in a cyclic group \(G \) of order \(p^2 \cdot q^2 \) are contained in \(\text{Frat}(G) \).

A question that is not easy to be answered is, in the case when \(G \setminus \text{Frat} G \) contains an element of order divisible by \(p \cdot q \), whether this element could be chosen so that \(p \) and \(q \) are the unique prime divisors of its order. We prove that this is true for soluble groups and we provide a reduction to this question to a problem concerning the finite nonabelian simple groups and their representations.

2. Proofs and remarks

Given an element \(g \) in a finite group \(G \), we will denote by \(\pi(g) \) the set of the prime divisors of \(|g| \). Theorem 1 is a consequence of the following stronger result.

Theorem 2. Let \(G \) be a finite group and suppose that \(\pi = \{p_1, \ldots, p_n\} \) is a subset of the set \(\pi(G) \) of the prime divisors of \(|G| \). Set \(\pi^* = \pi \) if \(G \) is soluble, \(\pi^* = \pi \cup \{2\} \) otherwise. If \(G \) contains an element \(g \) of order \(p_1 \cdots p_n \), then there exists an element \(\gamma \) in \(G \setminus \text{Frat}(G) \) such that \(\pi \subseteq \pi(\gamma) \subseteq \pi^* \).

Proof. Choose \(g \in G \) with \(|g| = p_1 \cdots p_n \). We may assume \(g \in \text{Frat}(G) \), otherwise we have done. Let \(N \) be a minimal normal subgroup of \(G \). Consider the element \(\bar{g} = gN \) of the factor group \(\bar{G} = G/N \) and let \(M/N = \text{Frat}(G/N) \). If \(|\bar{g}| = |g| \), then by induction there exists \(x \in G \) such that \(\bar{x} = xN \notin M/N \) and \(\pi \subseteq \pi(\bar{x}) \subseteq \pi^* \).

We may choose \(x \) such that \(\bar{\pi}(x) = \bar{\pi}(\bar{x}) \). Since \(x \notin M \) and, by [4, 5.2.13 (iii)], \(N \text{Frat}(G) \leq M \), we have that \(x \notin \text{Frat}(G) \) and we are done. So we may assume that there exists \(i \in \{1, \ldots, n\} \) with \(1 \neq g^{p_i} \in N \). If \(N \notin \text{Frat}(G) \), then \(N \cap \text{Frat}(G) = 1 \), hence \(g^{p_i} \notin \text{Frat}(G) \), a contradiction.

We remain with the case in which for every minimal normal subgroup \(N \) of \(G \), we have that \(N \) is contained in \(\text{Frat}(G) \) and \((g) \cap N \neq 1 \). Since \(\text{Frat}(G) \) is nilpotent, we deduce that \(\pi(\text{Frat}(G)) \subseteq \pi \). On the other hand we must have that \(\pi \subseteq \pi(\text{Frat}(G)) \), otherwise \(g \notin \text{Frat}(G) \). So \(\pi(\text{Frat}(G)) = \pi \) and \(\text{Frat}(G) = P_1 \times \cdots \times P_n \), where for each \(i \in \{1, \ldots, n\} \), \(P_i \) is a \(p_i \)-group. Let \(i \in \{1, \ldots, n\} \) and \(N \) a minimal normal subgroup of \(G \) with \(N \leq P_i \). Assume \(N \neq P_i \). In this case, choose \(x \in P_i \setminus N \), and take \(y = xp_i^k \). The element \(\bar{y} = yN \) of the factor group \(\bar{G}/N \) has order divisible by \(p_1 \cdots p_n \) and, as in the first paragraph of this proof, this allows us to conclude that \(G \setminus \text{Frat}(G) \) contains an element of order divisible by \(p_1 \cdots p_n \). So we may assume \(N = P_i \). In particular \(P_i \) is an irreducible \(G \)-module, for every \(i \in \{1, \ldots, n\} \).

First assume that \(G/\text{Frat}(G) \) contains an abelian minimal normal subgroup \(M/\text{Frat}(G) \). There exists a prime \(p \) such that \(M/\text{Frat}(G) \) is a \(p \)-group. If \(p \notin \pi \), then \(\text{Frat}(G) \) is a normal \(\pi \)-Hall subgroup of \(M \) and therefore, by the Schur-Zassenhaus Theorem, \(\text{Frat}(G) \) has a complement, say \(K \), in \(M \) and all these complements are conjugate in \(M \). By the Frattini’s Argument, \(G = \text{Frat}(G)N_G(K) \), hence \(G = N_G(K) \), so \(K \) is a nontrivial normal subgroup of \(G \). However all the minimal normal subgroups of \(G \) are contained in \(\text{Frat}(G) \) and \(\text{Frat}(G) \cap K = 1 \), a contradiction. So \(p = p_i \) for some \(i \in \{1, \ldots, n\} \). Let \(Q_i = \prod_{j \neq i} P_j \) and let \(T_i \) be a Sylow \(p_i \)-subgroup of \(M \). Again by the Frattini Argument, \(G = M \cdot N_G(T_i) = Q_i \cdot N_G(T_i) = Q_i \cdot \text{Frat}(G)N_G(T_i) \), so \(N_G(T_i) = G \) and \(M = Q_i \times T_i \).

Take \(x \in T_i \setminus P_i \) and consider \(\gamma = xq^{p_i} \). Since \(q^{p_i} \in Q_i \), we have \(|\gamma| = |x||q^{p_i}| \) and consequently \(\pi(\gamma) = \pi \).
Finally assume that \(M/\text{Frat}(G) \) is a nonabelian minimal normal subgroup of \(G/\text{Frat}(G) \) and let \(x = z\frac{Frat}{G} \) be an element of \(M/\text{Frat}(G) \) of order 2. We may assume \(|z| = 2^c \) for some positive integers \(c > 0 \). Let \(I \) be the subset of \(i \in \{1, \ldots, n\} \) consisting of the indices \(i \) such that \(p_i \) is odd. If \(i \in I \) and \(M \leq C_G(P_i) \), let \(x_i \) be an arbitrarily chosen nontrivial element of \(P_i \). Assume that \(i \in I \) and that \(M \not\leq C_G(P_i) \). In this case \(M/\text{Frat}(G) \) is isomorphic to a subgroup of \(\text{GL}(F_i) \). It can be easily seen that if \(y \in \text{GL}(P_i) \) has order 2, then either 1 is an eigenvalue of \(y \) or \(y \) is the scalar multiplication by -1. Since \(Z(M/\text{Frat}(G)) = 1 \), we deduce that \(z \) fixes a non-trivial element of \(x_i \) of \(P_i \). Now let \(x = \prod_{i \in I} x_i \) and take \(\gamma = z x \). Since \(|\gamma| = 2^c \prod_{i \in I} p_i \), we conclude \(\pi(\gamma) = \pi^* \).

Given a pair \((p, q)\) of distinct prime divisors of the order of a finite group \(G \), let
\[
\Omega_{p\cdot q}(G) = \{ g \in G \mid p \cdot q \text{ divides } |g| \}, \quad \Omega_{p\cdot q}^*(G) = \Omega_{p\cdot q}(G) \setminus \text{Frat}(G).
\]
Moreover, denote by \(\Omega_{p\cdot q}^{**}(G) \) the set of the elements \(g \in \Omega_{p\cdot q}^*(G) \) whose order is not divisible by any prime different from \(p \) and \(q \). One can ask the following question.

Question 1. Is it true that if \(\Omega_{p\cdot q}(G) \neq \emptyset \), then \(\Omega_{p\cdot q}^{**}(G) \neq \emptyset \) ?

By Theorem 2, Question 1 has an affirmative answer if \(2 \in \{p, q\} \).

Definition 3. Let \(S \) be a finite nonabelian simple group, \(P \) a faithful irreducible \(S \)-module of \(p \)-power order and \(Q \) a faithful irreducible \(S \)-module of \(q \)-power order. We say that \((S, P, Q)\) is a \((p, q)\)-Frattini triple if the following conditions are satisfied:

1. \(\Omega_{p\cdot q}^*(S) = \emptyset \);
2. \(H^2(S, P) \neq 0 \);
3. \(H^2(S, Q) \neq 0 \);
4. \(C_P(s) = 0 \) for every nontrivial element \(s \) of \(S \) with \(q \)-power order;
5. \(C_Q(s) = 0 \) for every nontrivial element \(s \) of \(S \) with \(p \)-power order.

Notice that if \((S, P, Q)\) is a \((p, q)\)-Frattini triple then we may construct a Frattini extension \(G \) of \(P \times Q \) by \(S \).

Lemma 4. If \((S, P, Q)\) is a \((p, q)\)-Frattini triple and \(G \) is a Frattini extension \(G \) of \(P \times Q \) by \(S \), then \(\Omega_{p\cdot q}^{**}(G) = \emptyset \).

Proof. Let \(F = \text{Frat}(G) = P \times Q \). Assume that \(g \) is an element of \(G \) with \(|g| = p^a \cdot q^b \), for some positive integers \(a \) and \(b \). We can write \(g = xy \) where \(x \) has order \(p^a \), \(y \) has order \(q^b \) and \(x \) and \(y \) commute. By (1), \(S \cong G/F \) does not contain elements of order \(p \cdot q \), hence either \(x \in P \) or \(y \in Q \). It is not restrictive to assume \(x \in P \). Then \(y \) is a \(q \)-element of \(C_G(x) \), i.e. \(C_P(yF) \neq 0 \). By (4), this implies \(y \in Q \) and consequently \(g = xy \in F \).

Proposition 5. Let \(p \) and \(q \) be two odd primes. Assume that \(G \) is a finite group of minimal order with respect to the property that \(\Omega_{p\cdot q}(G) \neq \emptyset \) but \(\Omega_{p\cdot q}^*(G) = \emptyset \). Then there exists a \((p, q)\)-Frattini triple \((S, P, Q)\) such that \(G \) is a Frattini extension \(G \) of \(P \times Q \) by \(S \).

Proof. Let \(X = G/\text{Frat}(G) \). As in the proof of Theorem 2, \(\text{Frat}(G) = P \times Q \), where \(P \) and \(Q \) are, respectively, the Sylow \(p \)-subgroup and the Sylow \(q \)-subgroup of \(\text{Frat}(G) \). Moreover \(P \) and \(Q \) are the unique minimal normal subgroups of \(G \). Now let \(C = C_G(P) \). Clearly \(Q \leq C \). Let \(x \in C \) such that \(|x| \) is a nontrivial \(q \)-power and let \(1 \neq y \in P \). The order of \(xy \) is divisible by \(p \cdot q \) so \(xy \in \text{Frat}(G) \) i.e.
x \in Q. Hence Q is a normal q-Sylow subgroup of C and therefore, by the Schur-Zassenhaus Theorem, Q has a complement, say K, in C and all these complements are conjugate in C. By the Frattini’s Argument, G = QG(K) = Frat(G)NG(K), hence G = N_G(K) and C = Q \times K. In particular K \leq C_G(Q), and, repeating the same argument as before, we deduce that P is a normal Sylow subgroup of K. Again by the Schur-Zassenhaus Theorem, P is complemented in K: so we have C = (P \times Q) \rtimes T = Frat(G) \rtimes T for a suitable subgroup T whose order is coprime with p \cdot q. By the Frattini’s Argument, G = Frat(G)NG(T) hence G = N_G(T) so T is normal in G. However all the minimal normal subgroups of G are contained in Frat(G) = P \times Q and Frat(G) \cap T = 1. So it must be T = 1, i.e. C_G(P) = Frat(G). With a similar argument we deduce that C_G(Q) = Frat(G) so P and Q are faithful nontrivial irreducible X-module, setting X = G/Frat(G).

By [7, 5.2.13 (iii)], Frat(G/P) = Frat(G)/P \cong Q, so G/P is a non-split extension of Q by X and consequently H^2(X, Q) \neq 0 and, similarly, H^2(X, P) \neq 0. Let Y be a non-trivial normal subgroup of X. Since C_P(Y) is X-invariant and P is an irreducible and faithful X-module, it must be C_P(Y) = 0, hence, by [2 Corollary 3.12 (2)], if p would not divide |S|, then H^2(X, P) = 0, so p (and similarly q) must divide |Y|. Let T be a Sylow p-subgroup of G. If there exists t \in T \setminus Frat commutes with a non-trivial element y in Q, then ty \in G \setminus Frat(G) and |ty| = |t||y| = p^a q for some a \in \mathbb{N}, against our assumption. But then T/P \cong T Frat(G)/Frat(G) is a fixed-point-free group of automorphisms of Q, and therefore, by [7, 10.5.5], T/Frat(G) is a cyclic group. Similarly, a Sylow q-subgroup of G/Frat(G) is cyclic. Now let S = soc X. Since p divides the order of every minimal normal subgroup of X, S = S_1 \times \cdots \times S_t, where, for each 1 \leq i \leq t, S_i is a simple group whose order is a multiple of p. However a Sylow p-subgroup of S is cyclic, hence we must have t = 1, i.e. S is a simple group. Moreover by [2 Lemma 5.2], S is nonabelian. Let now U be a Sylow p-subgroup of X. Since U is cyclic, if U \not\leq S, then U \cap S \leq Frat(U).

By a theorem of Tate (see for instance [3 p. 431]), S would be p-nilpotent, a contradiction. Hence U \leq S and therefore, by [2 Lemma 3.6], the restriction map H^2(X, P) \to H^2(S, P) is an injection. So in particular H^2(S, P) \neq 0 and similarly H^2(S, Q) \neq 0. This implies that there exist an irreducible S-submodule P^* of P and an irreducible S-submodule Q^* of Q such that H^2(S, P^*) \neq 0 and H^2(S, Q^*) \neq 0. We have that (S, P^*, Q^*) is a (p, q)-Frattini triple.

Let S_{p,q} be the set of the nonabelian simple groups S for which there exist P and Q such that (S, P, Q) is a (p, q)-Frattini triple. From Proposition [5] and its proof, the following can be easily deduced.

Theorem 6. Let p and q be two distinct odd primes. Assume that G is a finite group with \Omega_{p,q}(G) \neq \emptyset. If no composition factor of G is in S_{p,q}, then \Omega_{p,q}(G) \neq \emptyset.

It seems a difficult problem to determine whether S_{p,q} is non empty. The following remark can give some help in dealing with this question. Following [1], we say that a subset \{g_1, …, g_d\} of a finite group G invariably generates G if \{g_1^{x_1}, …, g_d^{x_d}\} generates G for every choice of x_i \in G.

Proposition 7. Assume that S \in S_{p,q}. If no proper subgroup of S is isomorphic to a group in S_{p,q}, then there exist x and y in S such that:

1. \langle x \rangle is a Sylow p-subgroup of S;
2. \langle y \rangle is a Sylow q-subgroup of S;
(3) \(\{x, y\}\) invariably generates \(S\).

Proof. Let \((S, P, Q)\) be a \((p, q)\)-Frattini triple and let \(X\) and \(Y\) be, respectively, a Sylow \(p\)-subgroup and a Sylow \(q\)-subgroup of \(S\). The subgroup \(X\) is a fixed-point-free group of automorphisms of \(Q\), and therefore, by [7, 10.5.5], \(X\) is a cyclic group. Similarly \(Y\) is a cyclic group. Let \(X = \langle x \rangle\) and \(Y = \langle y \rangle\). Assume, by contradiction, that \(\{x, y\}\) does not invariably generate \(S\). Then there exist \(s, t \in S\) such that \(H = \langle x^s, y^t \rangle\) is a proper subgroup of \(S\). Since \(H\) contains both a Sylow \(p\)-subgroup and a Sylow \(q\)-subgroup of \(G\), by [2, Lemma 3.6] the restriction maps \(H^2(S, P) \to H^2(H, P)\) and \(H^2(S, Q) \to H^2(H, Q)\) are injective. Hence \(H^2(H, P) \neq 0\) and \(H^2(H, Q) \neq 0\). Arguing as in the proof of Proposition 5 we deduce that \(T = \text{soc} H\) is a finite nonabelian simple group and \(T \in S_{p,q}\), against our assumption.

\(\square\)

References

1. J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Math 105 (1992) 25-39.
2. R. Guralnick, W. Kantor, M. Kassabov and A. Lubotzky, Presentations of finite simple groups: profinite and cohomological approaches, Groups Geom. Dyn. 1 (2007), no. 4, 469-523.
3. B. Huppert, Endliche Gruppen, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer-Verlag, Berlin-New York 1967.
4. W. M. Kantor, A. Lubotzky, A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, J. Algebra 348 (2011), 302-314.
5. A.S. Kondrat’ev, On prime graph components of finite simple groups, Math. USSR-Sb. 67 (1990), 302-314.
6. L. G. Kovács, J. Neubüser and B. H. Neumann, On finite groups with “hidden” primes, J. Austral. Math. Soc. 12 (1971), 287-300.
7. D. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, 80 Springer-Verlag, New York, 1993.
8. J.S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), 487-513.
9. A.V. Zavarnitsine, On the recognition of finite groups by the prime graph, Algebra and Logic 45 (2006), 220-231.

Andrea Lucchini, Università degli Studi di Padova, Dipartimento di Matematica “Tullio Levi-Civita”, email: lucchini@math.unipd.it