Anemia and Its Associated Factors Among Women of Reproductive Age in Horticulture Area

Prayudhy Yushananta1*; Yetti Aggraini2; Mei Ahyanti3; Iwan Sariyanto4

1*234 Politeknik Kesehatan Kementerian Kesehatan Tanjungkarang

ARTICLE INFO

Article history:
Received 11 March 2021
Accepted 30 May 2021
Published 25 June 2021

Keyword:
Anemia
Women of reproductive age
Farmers
Protein
Iron

ABSTRACT

Anemia continues to be an important and widespread public health problem, so it must be addressed. About 1.74 (1.72-1.76) billion people worldwide suffer from anemia, especially children under five, Women of Reproductive Age (WRA), and pregnant women. As many as 500 million WRA suffer from anemia; this will impact the loss of productivity due to decreased work capacity, cognitive impairment, susceptibility to infections, and increased risk of complications in pregnancy and childbirth. This study analyzes the risk factors for anemia in women of reproductive age (15-49) who work in horticultural agriculture. The study was conducted with a cross-sectional design involving 160 participants from three main centers of horticultural agriculture in West Lampung Regency. SPSS was used for Chi-square analysis, Odds Ratio, and Logistic Regression (alpha = 0.05). The results showed that the prevalence of anemia in women of reproductive age who worked in horticultural agriculture was 27.5%. The study also identified three risk factors for anemia: dissatisfactory nutritional status (AOR = 24.53; 95% CI 5.59-107.70), lack of protein intake (AOR = 28.01; 95% CI 6.97-112.52), and lack of high iron vegetables (AOR = 6.13; 95% CI 1.79-21.01). Nutritional interventions should emphasize increasing protein, iron, and vitamins through improved diet, fortification efforts, and iron supplementation.

Keyword:
Anemia
Women of reproductive age
Farmers
Protein
Iron

Anemia dan Faktor yang Terkait pada Wanita Usia Subur di Daerah Pertanian Hortikultura

Kata kunci:
Anemia
Wanita usia subur
Petani
Protein
Zat besi

*) corresponding author
Politeknik Kesehatan Kementrian Kesehatan Tanjungkarang, Bandar Lampung, Lampung, Indonesia

Email:prayudhyyushananta@gmail.com
DOI: 10.30604/jika.v6i2.498

Anemia masih terus menjadi masalah kesehatan masyarakat yang penting dan meluas, sehingga harus ditangani. Sekitar 1.74 (1.72-1.76) miliar penduduk dunia menderita anemia, terutama anak balita, Wanita Usia Subur (WUS) dan wanita hamil. Sebanyak 500 juta WUS menderita anemia, ini akan berdampak pada hilangnya produktivitas karena penurunan kapasitas kerja, gangguan kognitif, dan kerentanan terhadap infeksi, serta meningkatkan risiko komplikasi kehamilan dan persalinan. Penelitian bertujuan menganalisis faktor risiko anemia pada wanita usia subur (15-59) yang bekerja pada pertanian hortikultura. Penelitian dilakukan dengan rancangan cross sectional, melibatkan 160 orang partisipan dari tiga sentra utama pertanian hortikultura di Kabupaten Lampung Barat. SPSS digunakan untuk analisis Chi-square, Odds Ratio, dan Logistic Regression (alpha=0,05). Hasil penelitian mendapatkan prevalensi anemia pada wanita usia subur yang bekerja pada pertanian hortikultura sebesar 27.5%. Penelitian juga mendapatkan tiga faktor risiko untuk anemia: status gizi yang kurang baik (AOR=24,53; 95%CI 5,59-107,70), kurang konsumsi protein (AOR=28,01; 95% CI 6,97-112,52), dan kurang konsumsi sayuran tinggi zat besi (AOR=6,13; 95%CI 1,79-21,01). Intervensi gizi harus menekankan pada peningkatan asupan protein, zat besi dan vitamin, baik melalui perbaikan menu makanan, upaya fortifikasi dan suplementasi tablet Fe.
INTRODUCTION

Anemia is still a very important public health problem around the world, especially in developing countries. Anemia contributes to increased morbidity and mortality, decreased work productivity, neurological development disorders, and the risk of complications of pregnancy and childbirth (Chaparro & Suchdev, 2019; Mantikika & Mulyati, 2014; Teshale, Tesema, Worku, Yeshaw, & Tessema, 2020). In the long term, anemia has a major impact on health, economic and social welfare conditions (Priyanto, 2018; Teshale et al., 2020). In 2019, anemia caused 58.6 (40.14-81.1) million years of living with disabilities (YLDs = Years Lived with Disability) (Gardner & Kassebaum, 2020). Anemia results from an imbalance between erythrocyte loss relative to production, caused by ineffective or ineffective erythropoiesis (for example, from nutritional deficiency, inflammation, or genetic Hb disorder) and/or excessive erythrocyte loss (due to hemolysis, blood loss, or both) (Chaparro & Suchdev, 2019).

Globally, the prevalence of anemia for all ages in 2019 is 22.8% (95% CI: 22.6-23.1), or around 1.74 (1.72-1.76) billion (Gardner & Kassebaum, 2020). The regions with the highest burden are in the tropics, especially Africa, Asia, the Caribbean and Oceania (Chaparro & Suchdev, 2019; Gardner & Kassebaum, 2020; Kassebaum et al., 2014; Priyanto, 2018). Women are consistently at greater risk of developing anemia than men (Chaparro & Suchdev, 2019; Kassebaum et al., 2014; WHO, 2012). The most vulnerable population groups are children under the age of five (toddlers), women of reproductive age (WRA) and pregnant women (Chaparro & Suchdev, 2019; Shah & Gupta, 2002). Approximately 500 million (Teshale et al., 2020; WHO, 2012), and 41.8% of pregnant women suffer from anemia (Chaparro & Suchdev, 2019; WHO, 2012).

The anemia situation in Indonesia is no different from the global situation. Anemia cases were more common in women (27.2%) than men (20.3%), living in rural areas (25.0%) than in urban areas (22.7%) (Kemenkes RI, 2018a). Likewise, for vulnerable groups, children under five (38.5%), WRA (22.7%), and pregnant women (48.9%) (Kemenkes RI, 2013, 2018a; Sudikno & Sandjaja, 2016). Anemia in pregnant women increased from 37.1% (2013) to 48.3% (2018) (Kemenkes RI, 2018a). In addition, the WRA group also saw a 9% increase from 19.7% (2007) to 22.7% (2013) (Kemenkes RI, 2013; Sudikno & Sandjaja, 2016; Wijayanty & Firtriani, 2019).

More than half of anemia cases in the world are caused by a lack of iron which plays a role in erythropoiesis and the formation of hemoglobin. Other nutritional factors that play a role are insufficient intake of protein, folate, vitamin-A, vitamin-B, vitamin-C, and zinc (Gardner & Kassebaum, 2020; Pasalina, Jurnalis, & Ariadi, 2019; Sahana & Sumantri, 2015; Sudikno & Sandjaja, 2016; Teshale et al., 2020; Widyarini & Qoriati, 2019; Wijayanty & Firtriani, 2019). Based on the Decree of the Minister of Health of the Republic of Indonesia Number 736a / Menkes / XI / 1989, an adult woman is declared anemic if the hemoglobin (Hb) level in the blood is below normal, which is less than 12.0 g / dL, while in a pregnant woman it is less than 11.0 g / dL (Kemenkes RI, 2020).

Anemia contributes to increased morbidity and mortality, decreased work productivity due to fatigue, cognitive decline, and neurological development disorders (Chaparro & Suchdev, 2019; Kemenkes RI, 2018b). In pregnancy, anemia increases the risk of bleeding, premature birth, infant mortality in the womb, impaired fetal growth resulting in low birth weight (LBW) and stunted babies, and causes indirect maternal death (Destarina, 2018; Eskenaziet al., 2004; Jaacks et al., 2019; Petit et al., 2012, 2010; Sudikno & Sandjaja, 2016; Teshale et al., 2020; Whyatt et al., 2004; Yushananta, Ahyanti, & Anggraini, 2020, 2021).

Apart from being influenced by nutritional and physiological problems, anemia can also be influenced by environmental factors, one of which is pesticide poisoning. Pesticide poisoning causes nervous system disorders (such as headaches, paresthesias, tremors, discoordination, seizures) due to the accumulation of acetylcholine in nerve tissue and in vector organs. In the long term (chronic), it causes weight loss, anemia, anorexia, and impaired liver function (Agustina & Norfai, 2018; Arwini & Suyud, 2016; Azmi, Naqvi, Azmi, & Aslam, 2006; Fauziyyah, Suhartono, & Astorina, 2017; Hassar, Salim, & Malhat, 2016; Neghab, Jaliilian, Taheri, Tatar, & Haji Zadeh, 2018; Okvitasari & Anwar, 2017; Patil, Patil, & Govindwar, 2003; Prasetyaningsih, Arisandi & Retnosetiawati, 2017; Yushananta et al., 2020).

In the case of pesticide poisoning, sulfhemoglobin is formed from the sulfur content in pesticides, as well as methemoglobin due to excessive oxidation so that the ferrous compounds turn into iron. The formation of sulfhemoglobin and methemoglobin will interfere with the function of hemoglobin in delivering oxygen (Brett & Budinsky A, 2000; George, Shaikh, Thomas, & Kundavaram, 2014; GS Nutakki, Madhavmakineni, & Madhukiran, 2016; G. Nutakki, Siripurapu, Kumar, & Sasi Sekhar, 2017; Pinkhas & All, 1963; Shihana, Dawson, & Buckley, 2016). The largest use of pesticides is especially in agriculture, horticulture, which uses large doses of pesticides and continuously during the growing season (Yushananta et al., 2020).

METHOD

A cross sectional study was conducted in West Lampung Regency, to determine the risk factors for anemia in women of reproductive age (WRA) (15-59) who work in horticultural agriculture. Three sub-districts as the main horticultural agricultural centers were chosen to follow the area of agriculture and the amount of horticultural agricultural production (BPS, 2019), namely Balik Bukit, Sukau and Sekincau Districts. The research was conducted after obtaining approval from the Health Research Ethics Committee, Tanjungkarang Health Polytechnic (No.211 / EA / KEPK-TJK / VII / 2019) and permission from the West Lampung District Health Office. Guided by the Helsinki protocol, participant informed consent was taken, and data handling was confidential. There is no risk of harm to participants, and all participants had the right to withdraw during the study. All study procedures were explained prior to the interview.

The study was conducted from July up to August 2019. Women of reproductive age (WRA) aged 15-49 years were selected purposively. Women who were pregnant, had blood disorders, were taking drugs that inhibited iron absorption were excluded from the study. Respondents are declared...
The results (Table 1) found that 27.5% of women of reproductive age (WRA) who work in horticultural agriculture suffer from anemia. The proportion of respondents with good nutritional status (54.4%) was slightly higher than those with dissatisfactory nutrition (45.6%). All respondents (n = 160), the majority of respondents (81.9%) had been pregnant more than once (multigravida), and (73.8%) gave birth to live babies more than once (multiparous), so they are at risk of developing anemia.

Table 1 also describes the eating habits and types of food that the respondents usually consume. Based on the results of the interviews, the majority of respondents (71.3%) had intake adequate amounts of protein. However, it was found that 28.8% were still experiencing shortages. The types of side dishes that are often intake as a source of protein and iron are fish, eggs, and meat. As many as 71.9% of respondents have intake types of green vegetables that are high in iron, including cassava leaves, kale, genjer (edible riverine plant), papaya leaves, mustard greens, and pumpkin leaves. Likewise for fruit intake, the majority (78.8%) had intake fruits high in vitamin-C and vitamin-A content, such as oranges, mangoes, bananas, and papayas.

RESULTS AND DISCUSSION

The relationship between risk factors and anemia, a Logistic Regression analysis was used. Odds Ratio (OR) and 95% Confident Interval (CI) calculations were also performed. For all statistical tests, p-value ≤ 0.05 was considered significant.

Table 1 Respondents Characteristics

Variables	Frequency (n)	Percentage (%)
Anemia’s Status		
Anemia	44	27.5
Normal	116	72.5
Nutritional Status		
Dissatisfactory	73	45.6
Good	87	54.4
Total Pregnancy		
Risk	131	81.9
Good	29	18.1
Total birth		
Risk	118	73.8
Good	42	26.3
Protein Intake		
Lack	46	28.8
Good	114	71.3
Vegetable intake		
Lack	45	28.1
Good	115	71.9
Fruit Intake		
Lack	34	21.3
Good	126	78.8

Bivariate analysis was performed to determine the correlation between each research variable and the prevalence of anemia, using the Chi-square test at alpha = 0.05. From Table 2, it can be seen that in the group suffering from anemia, 42.5% had a dissatisfactory nutritional status. The analysis showed a significant relationship between nutritional status and the prevalence of anemia (p <0.05).
and fruit also showed a very significant correlation with the prevalence of anemia in women who work in horticultural agriculture (p<0.05).

Table 2
Chi-square test of Respondents Characteristics and Anemia

Variables	Anemia (n=37)	Normal (n=123)	p-value
	Frequency (%)	Frequency (%)	
Nutritional Status			
Dissatisfactory	31 (42,5%)	42 (57,5%)	0,000
Good	6 (6,9%)	81 (93,1%)	
Total Pregnancy			
Risk (more than once)	33 (25,2%)	98 (74,8%)	0,283
Good (once)	4 (13,8%)	25 (86,2%)	
Total Birth			
Risk (more than once)	29 (24,6%)	89 (75,4%)	0,605
Good (once)	8 (19,0%)	34 (81,0%)	
Protein Intake			
Lack	29 (63,0%)	17 (37,0%)	0,000
Good	8 (7,0%)	106 (93,0%)	
Vegetable Intake			
Lack	25 (55,6%)	20 (44,4%)	0,000
Good	12 (10,4%)	103 (89,6%)	
Fruit Intake			
Lack	16 (47,1%)	18 (52,9%)	0,000
Good	21 (16,7%)	105 (83,3%)	

Variables with p value <0.25 were continued to multivariate analysis to identify risk factors and determine the correlation between risk factors and anemia. The analysis was performed using Logistic Regression (alpha = 0.05).

Tabel 3.
Logistic Regression Test on the Risk Factors of Anemia

Variables	Anemia Frequency (%)	Normal Frequency (%)	Unadjusted OR (95%CI)	Adjusted OR (95%CI)
Nutritional Status				
Dissatisfactory	31 (42,5%)	42 (57,5%)	9,96 (3,85-25,77)	24,53 (5,59-107,70)
Good	6 (6,9%)	81 (93,1%)	1	1
Protein Intake				
Dissatisfactory	29 (63,0%)	17 (37,0%)	22,60 (8,87-57,59)	28,01 (6,97-112,52)
Good	8 (7,0%)	106 (93,0%)	1	1
Vegetable Intake				
Dissatisfactory	25 (55,6%)	20 (44,4%)	10,73 (4,64-24,82)	6,13 (1,79-21,01)
Good	12 (10,4%)	103 (89,6%)	1	1

In the analysis (Table 3), there are three risk factors for anemia among women who work in horticultural agriculture in West Lampung Regency, namely nutritional status, protein intake, and vegetable intake. Dissatisfactory nutritional status increases the risk of anemia by 24.53 times (5.59-107.70). Lack of protein intake is the dominant risk factor for anemia, amounting to 28.01 times (6.97-112.52). Meanwhile, less intake of green vegetables shows a risk of 6.13 times (1.79-21.01).

The results showed that the prevalence of anemia among women working in horticultural agriculture was 27.5% (Table 1). This result is greater than some previous research reports, amounting to 22.7% (Ministry of Health, 2013; Sudikno & Sandjaja, 2016; Wijayanti & Fitriani, 2019). This condition has the potential to increase morbidity and mortality, impaired neurological development, decreased productivity due to fatigue, illness, and cognitive impairment (Chaparro & Suchdev, 2019; Kemenkes RI, 2018b; Teshale et al., 2020).

Anemia in the women of reproductive age (WRA) group will also increase the risk of experiencing anemia during pregnancy, so that it has the potential to cause complications of pregnancy and childbirth (Chrispinus Setiti, 2014; Wijayanti & Fitriani, 2019). Pregnancy complications include premature birth, infant mortality in the womb, impaired fetal growth leading to low birth weight and stunted babies (Chaparro & Suchdev, 2019; Destarina, 2018; Eskenazi et al., 2004; Jaacks et al., 2019; Petit et al., 2012, 2010; Sudikno & Sandjaja, 2016; Whyatt et al., 2004, 2004; Wijayanta et al., 2012). While labor complications are bleeding that can cause maternal death (Chrispinus Setiti, 2014; Sudikno & Sandjaja, 2016; Widyarni & Qoriati, 2019; Wijayanti & Fitriani, 2019).

The women of reproductive age (WRA) group are one of the groups at high risk of developing anemia, apart from toddlers and pregnant women (Chaparro & Suchdev, 2019; Chrispinus Setiti, 2014; Shah & Gupta, 2002). Physiologically, women of reproductive age (WRA) are prone to anemia because they experience menstrual cycles every month so that there is an increased need for iron (Chaparro & Suchdev, 2019; Mantika & Mulayati, 2014; Pasalina et al., 2019; Priyanto, 2018; Sudikno & Sandjaja, 2016; WHO, 2004;
Wijayanti & Fitriani, 2019). In one menstrual period, the amount of blood lost is around 20-25 cc, or the equivalent of losing iron around 12.5-15.0 mg / month or about 0.4-0.5 mg a day (Sy’a Bani & Sumarmi, 2016). So it requires more iron intake to replace lost iron (Priyanto, 2018; Sy’a Bani & Sumarmi, 2016).

Anemia in adolescents and women of reproductive age (WRA) will continue during pregnancy (Azwar, 2004), so that it becomes an independent predictor of anemia during pregnancy (Demmouche, S, & S, 2011). Nutritional problems in certain age groups will affect nutritional status in the next life cycle period (intergenerational impact) (Azwar, 2004; Demmouche et al., 2011). So that the effort to control anemia in pregnant women is to ensure the fulfillment of iron needs in the period before pregnancy (Mariana, 2013; Priyanto, 2018; Sy’a Bani & Sumarmi, 2016).

Research has proven that nutritional status is a risk factor for anemia (AOR = 24.53; 95% CI 5.59-107.70). The results of this research are consistent with several previous studies which state that nutritional status is closely related to the prevalence of anemia (Mariana, 2013; Pasalina et al., 2019; Priyanto, 2018; Sahana & Sumarmi, 2015; Sikoway, Mewo & Assa, 2020; Suddikno. & Sandjaja, 2016; Sy’a Bani & Sumarmi, 2016; Widyarmi & Qoriati, 2019; Wijayanti & Fitriani, 2019).

Anemia was determined based on the calculation of body mass index (BMI), then categorized as thin (BMI <18.5 kg / m2), normal (BMI 18.5-24.9 kg / m2), obese (BMI 23.0-24.9 kg / m2), obesity I (BMI 25.0-29.9 kg / m2), and obesity II (BMI ≥ 30.0 kg / m2) (Kanazawa et al., 2005). In this study, cases of anemia were mostly found in women who were underweight. The results of this study are in accordance with the results of previous studies which concluded that anemia sufferers were more often found in WRA with the thin category (Sihombing & Riyadina, 2009; Suddikno & Sandjaja, 2016; Wijayanti & Fitriani, 2019).

Nutritional requirements and age are related to the prevalence of anemia. In etiology, increasing age will be followed by a decrease in bone marrow erythroid progenitor, resulting in a decrease in the number of red blood cells released into the bloodstream. Bone marrow decline begins at the age of 30 years by 30% and increases to 50% at the age above 60 years (Mahlknecht & Kaiser, 2010). Not meeting nutritional needs causes a decrease in the production of red blood cells, resulting in anemia (Demmouche et al., 2011; Mantikat&Mulyati, 2014). Nutritional status and anemia provide a picture of chronic malnutrition (Azwar, 2004).

This research found that lack of protein intake and consumption of vegetables high in iron was a risk factor for anemia (Table 3). Lack protein intake and exposure to pesticides are thought to be the causes of the high prevalence of anemia in the study sites. Efforts are needed to increase the consumption of vegetables and other micronutrients through good food selection and improved diet. The absorption of iron can be achieved optimally if the diet consists of a combination of food ingredients that contain high iron in animals (heme), vegetables (non-heme), vitamin-A, vitamin-B, and vitamin-C (Balarajan, Ramakrishnan, Ozaltin, Shankar, & Subramanian, 2011; Basith, Agustina, & Dian, 2017; Bharati, Som, Chakrabarty, Bharati, & Pal, 2008; Ghosh et al., 1980; Prihartono et al., 2019). Selection of good food is expected to prevent or overcome anemia (Stephen et al., 2018). Efforts for fortification and supplementation of Fe tablets are an important part to be carried out by the health authorities to WRA. Control of anemia in pregnant women is to ensure the fulfillment of iron needs in the period before pregnancy (Mariana, 2013; Priyanto, 2018; Sy’a Bani & Sumarmi, 2016).
CONCLUSIONS AND SUGGESTIONS

Anemia continues to be a widespread and significant public health problem, so it must be treated adequately. The results showed that the prevalence of anemia among women working in horticultural agriculture was 27.5%, higher than the previous report (22.7%). Three risk factors for anemia were found, namely dissatisfaction nutritional status (AOR = 24.53; 95% CI 5.59-107.70), lack of protein intake (AOR = 28.01; 95% CI 6.97-112.52), and lack consumption of high-iron vegetables (AOR = 6.13; 95% CI 1.79-21.01). Increasing protein and iron intake is an intervention that must be implemented immediately, both through food selection and food menu improvements. Give special attention to chronic anemia in the group of WRA, post menarche adolescents, and the Dissatisfactory through fortification and supplementation of Fe tablets.

Acknowledgment

Thanks to the Lampung Barat District Health Office, as well as all participants who helped this research.

Conflict of Interest

The author states there is no conflict of interest.

REFERENCES

Agustina, N., & Norfai, N. (2018). Paparan Pesticida terhadap Kejadian Anemia pada Petani Hortikultura. Majalah Kedokteran Bandung, 50(4), 215–221. https://doi.org/10.15395/mkb.v50i4.1398

Arwin, N. M., & Suyud, S. (2016). Pajanan pestisida dan kejadian anemia pada petani hortikultura di Kecamatan Cikajang, Kabupaten Garut tahun 2016. Berita Kedokteran Masyarakat, 2(7), 245–250.

Azizah, A., & Adriani, M. (2018). Tingkat Kecukupan Energi Protein Pada Ibu Hamil Pertama Dan Kejadian Kekurangan Energi Kronis. Media Gizi Indonesia, 1(1), 21. https://doi.org/10.20473/mgi.v1i1.21-26

Azm, M. A., Naqui, S. N. H., Amzi, M. A., & Aslam, M. (2006). Effect of pesticide residues on health and different enzyme levels in the blood of farm workers from Gadap (rural area) Karachi-Pakistan. Chemosphere, 64(10), 1739–1744. https://doi.org/10.1016/j.chemosphere.2006.01.016

Azwar, A. (2004). Trends in Nutrition Problems and Challenges in Agricultural Tobacco Workers. Prog D.I.Yogyakarta. GIZI INDONESIA, 4(1), 39. https://doi.org/10.36457/gizindo.v4i1.250

Diamanti-Kandarakis, E., Bourguignon, J.-P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., ... Gore, A. C. (2009). Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocrine Reviews, 30(4), 293–342. https://doi.org/10.1210/er.2009-0002

Ekrenzati, B., Harsley, K., Bradman, A., Weltzien, E., Jewell, N. P., Barr, D. B., ... Holland, N. T. (2004). Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environmental Health Perspectives, 112(10), 1116–1124. https://doi.org/10.1289/ehp.6789

Fauziyyah, R., Suhartono, & Astorina, N. (2017). Studi Praktik Penanganan defisiensi anemia pada petani Buah Di Desa Tunggak Kecamatan Toroh Kabupaten Grobogan. Jurnal Kesehatan Masyarakat (e-Journal), 5(5), 860–870.

Gardner, W., & Kassebaum, N. (2020). Global, Regional, and National Prevalence of Anemia and Its Causes in 204 Countries and Territories, 1990–2019. Current Developments in Nutrition, Supplement 2, 216–211. https://doi.org/10.1093/cdn/nzaa053_035

George, T., Shaikh, A., Thomas, L., & Kundavaram, A. (2014). Severe methemoglobinemia due to insecticide poisoning. Indian Journal of Critical Care Medicine, 18(2), 113–114. https://doi.org/10.4103/0972-5229.126087

Bharati, P., Som, S., Chakrabarty, S., Bharati, S., & Pal, M. (2008). Prevalence of anemia and its determinants among nonpregnant and pregnant women in India. Asia-Pacific Journal of Public Health, 20(4), 347–359. https://doi.org/10.1177/1010539508322762

BPS. (2019). Provinsi Lampung Dalam Angka 2019 (1st ed.). Bandar Lampung: BPS Provinsi Lampung.

Bhosh, S. K., Parikh, J. R., Gokani, V. N., Rao, M. N., Kashyap, S. K., & Chatterjee, S. K. (1980). Studies on occupational health problems in agricultural tobacco workers. Occupational Medicine, 30(3), 113–117. https://doi.org/10.1093/occmed/30.3.113
Anemia and Its Associated Factors Among Women of Reproductive Age in Horticulture Area

Hunt, J. R. (2003). Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. *The American Journal of Clinical Nutrition*, 78(3), 633S-639S. https://doi.org/10.1093/ajcn/78.3.633S

Jaacks, L. M., Diao, N., Calafat, A. M., Ospina, M., Mazumdar, M., Ilbne Hasan, M. O. S., ... Christiani, D. C. (2019). Association of prenatal pesticide exposures with adverse pregnancy outcomes and stilling in rural Bangladesh. *Environment International*, 123(October), 105243. https://doi.org/10.1016/j.envint.2019.105243

Kanazawa, M., Yoshiike, N., Osaka, T., Numba, Y., Zimmet, P., & Inoue, S. (2005). Criteria and Classification of Obesity in Japan and Asia-Oceania. In *Nutrition and Fitness: Obesity, the Metabolic Syndrome, Cardiovascular Disease, and Cancer* (pp. 1–12). https://doi.org/10.1195/000088200

Kassebaum, N. J., Jasrasaria, R., Naghavi, M., Wulf, S. K., Johns, N., Lozano, R., ... Murray, C. J. L. (2014). A systematic analysis of global anemia burden from 1990 to 2010. *Blood*, 123(5), 615–624. https://doi.org/10.1182/blood-2013-06-508325

Kemenkes RI. (2013). *Risikesda Biomedis Riset Kesehatan Dasar 2013*. Retrieved from http://labmandat.litbang.depkes.go.id/images/download/laporan/RKD/2013/LAPORAN_BIOMEDIS_RKD_2013.pdf

Kemenkes RI. (2018a). *Hasil Utama Riset Kesehatan Dasar (RISKESDAS)*. https://doi.org/10.1870/1751-8113/44/8/085201

Kemenkes RI. (2018b). *Profil Kesehatan Indonesia 2018*. https://doi.org/10.1002/ajq

Mahlknecht, U., & Kaiser, S. (2010). Age-related changes in peripheral blood counts in humans. *Experimental and Therapeutic Medicine*, 7(6), 1019-1025. https://doi.org/10.3892/etm.2010.150

Mantika, A. I., & Mulyati, T. (2014). Hubungan Asupan Energi, Protein, Zat Besi Dan Aktivitas Fisik Dengan Kadar Hemoglobin Tenaga Kerja Wanita Di Pabrik Pengolahan Rambut Pt. Won Jin Indonesia. *Journal of Nutrition College*. 4(4), 848-854. https://doi.org/10.14710/jnc.v4i3.6890

Marcia, N., Ketryn, S. P., Karen, L., & Long, R. S. (2010). *Nutrition Therapy and Pathophysiology* (2nd ed.). USA : Wadsworth: Wadsworth Cengage Learning.

Mariana, W. dkk. (2013). Hubungan status gizi dengan kejadian anemia pada remaja putri di SMK Swadaya wilayah kerja semarang tahun 2013. *Jurnal Kebidanan*. 2(4), 35-42. https://doi.org/10.31983/jkb.v2i4.98

Mellah, A. M. K., Salim, Y. M., & Malhat, F. M. (2016). Assessment of pesticide residues in human blood and effects of occupational exposure on hematological and hormonal qualities. *Pakistan Journal of Biological Sciences*, 19(3), 95-105. https://doi.org/10.3923/pjbs.2016.95.105

Nahgah, M., Jaililian, H., Taheri, S., Tatar, M., & Haji Zadeh, Z. (2018). Evaluation of hematological and biochemical parameters of pesticide retailers following occupational exposure to a mixture of pesticides. *Life Sciences*, 202(April), 182–187. https://doi.org/10.1016/j.lfs.2018.04.020

Nutakki, G. S., Madhav Makineni, V., & Madhukiran. (2016). Methemoglobinemia Due to Pesticide Poisoning: A Case Report. *IOSR Journal of Dental and Medical Sciences*, 15(9), 12–17. https://doi.org/10.9709/s053-1509121217

Nutakki, G., Siripurapu, I., Kumar, C., & SasiSekhar, T. (2017). Methemoglobinemia Due To Biological Poisoning – Case Report. *International Journal of Advanced Research*, 5(1), 2079-2082. https://doi.org/10.21474/ijarr01/2980

Oktivitasari, R., & Anwar, M. C. (2017). Hubungan Antara Keracunan Pestisida Dengan Kejadian Anemia Pada Petani Kentang di Gabungan Kelompok Tani Al-Farruq Desa Patak Banteng Kecamatan Kejar Kabupaten Wonosobo Tahun 2016. *Buletin Keslingmas*. 36(3), 299–310. https://doi.org/10.31983/keslingmas.v36i3.3109

Pasalina, P. E., Jurnalis, Y. D., & Ariadi, A. (2019). Hubungan Indeks Massa Tubuh Dengan Kejadian Anemia Pada Wanita Usia Subur Pranikah. *Jurnal Ilmu Keperawatan Dan Keibidan*. 10(1), 12. https://doi.org/10.26571/jiik.2016.518

Patil, J. A., Patil, A. J., & Govindwar, S. P. (2003). Biochemical effects of various pesticides on sprayers of grape gardens. *Indian Journal of Clinical Biochemistry*, 18(2), 16-22. https://doi.org/10.1007/BF02867362

Petit, C., Blangiardo, M., Richardson, S., Coquet, F., Chevrier, C., & Cordier, S. (2012). Association of environmental insecticide exposure and fetal growth with a bayesian model including multiple exposure sources: The PELAGIE mother-child cohort. *American Journal of Epidemiology*, 175(11), 1182–1190. https://doi.org/10.1093/aje/kwr422

Pettit, C., Chevrier, C., Durand, G., Monfort, C., Rouget, F., Garlantezec, R., & Cordier, S. (2010). Impact on fetal growth of prenatal exposure to pesticides due to agricultural activities: A prospective cohort study in Brittany, France. *Environmental Health: A Global Access Science Source*, 9(1), 71. https://doi.org/10.1186/1476-069X-9-71

Pinkhas, J., & All, E. (1963). Sulphhemoglobinemia and Acute Hemolytic Anemia with Heinz Bodies Following Contact with a Fungicide Zink Ethylene Bisdithiocarbamate in a Subject with Glocose-6-Phosphate Dehydrogenase Deficiency and Hypocatalasemia. *Blood*, 21(4), 484-494. https://doi.org/10.1177/105381107145324.004

Prasetyaningsih, Y., Arisandi, D., & Retnosetiaiwati, P. D. (2017). Persentase Kejadian Anemia Pada Petani Terpapar Pestisida Di Kelompok Tani Karang Rejo, Dusun Kringin Lor, Desa Jatisarono, Kecamatan Naggulan, Kabupaten Kulon Progo. *THE 5TH URECOL PROCEEDING*, (February), 452-457. Retrieved from http://iup.ac.id/wp-content/uploads/2017/05/99-yuliana-prasetya-452-457.pdf

Prihartono, N., Kriebel, D., Worskie, S., Thethkathuek, A., Sripuang, N., Padungtong, C., & Kaufman, D. (2011). Risk of aplastic anemia and pesticide and other chemical exposures. *Asia Pac J Public Health*, 23(3), 69–77. https://doi.org/10.1177/1013539511403605

Priyanto, L. D. (2018). The Relationship of Age, Educational Background, and Physical Activity on Female Students with Anemia. *Jurnal Berkala Epidemiologi*. 6(3), 1. https://doi.org/10.20473/jbe.2018.6.3.1

Sahana, O. N., & Sumarmi, S. (2015). Hubungan asupan mikronutrien dengan kadar hemoglobin pada wanita usia subur (WUS). *Media Gizi Indonesia*, 10(2), 184–191. https://doi.org/10.20473/mgi.v10i2.184-191

Setyaningsih, A., AP, W., & Nurrwijayanti, A. (2014). *Hubungan Antara Status Gizi Dan Konsumsi Tablet Zat Besi*. 34–43. https://doi.org/10.32583/jskm.4.1.2014.34-43

Shah, B. K., & Gupta, P. (2002). Weekly vs Daily Iron and Folic Acid Supplementation in Adolescent Nepalese Girls. *Archives of Pediatrics & Adolescent Medicine*, 156(2), 131. https://doi.org/10.1001/archpedi.156.2.131

Jurnal Aisyah: Jurnal Ilmu Kesehatan, 6(2), June 2021, –323 Prayudhy Yushananta; Yetti Aggraini; Mebi Ahyant; Iwan Sariyanto.
Shihana, F., Dawson, A. H., & Buckley, N. A. (2016). A bedside test for methemoglobinemia, Sri Lanka. Bulletin of the World Health Organization, 94(8), 622–625. https://doi.org/10.2471/BILT.15.185147

Siahaan, G., Siallagan, R. F., Purba, R., & Oppusungu, R. (2018). Mikronutrien Penyebab Anemia Pada Pengguna Narkoba Di Medan Tembung. Media Gizi Indonesia, 13(2), 183. https://doi.org/10.20473/mgi.v13i2.183–193

Sihombing, M., & Riyad. (2019). Analisis Faktor Whyatt, R. M., Rauh, V., Barr, D. B., Camann, D. E., Andrews, H. F., ... & Sandjaja, S. (2016). Prevalensi Dan Faktor Risiko Terhadap Kejadian Anemia Pada Ibu Hamil di Puskesmas Minor cohort. Jurnal Kesehatan Masyarakat, 6(2), 725. https://doi.org/10.22435/mgmi.v11i1.2166

Yushananta, P., Ahyanti, M., & Anggraini, Y. (2020). Risk of pesticides on anaemia events in horticulture farmers. International Journal of Innovation, Creativity and Change, 13(2), 30–40.

Yushananta, P., Ahyanti, M., & Anggraini, Y. (2021). Risk Factors of Stunting in Children Aged 6–59 Months: A Case-Control Study in Horticulture Area. Turkish Journal of Physiotherapy and Rehabilitation, 2, 2688–2693.

Wijayanti, E., & Fitriani, U. (2019). Profil Konsumsi Zat Gizi Pada Wanita Usia Subur Anemia. Media Gizi Mikro Indonesia, 1(1), 39–48. https://doi.org/10.22435/mgmi.v11i1.2166