Some identities of higher-order Bernoulli, Euler, and Hermite polynomials arising from umbral calculus

Dae San Kim¹, Taekyun Kim²*, Dmitry V Dolgy³ and Seog-Hoon Rim⁴

Abstract
In this paper, we study umbral calculus to have alternative ways of obtaining our results. That is, we derive some interesting identities of the higher-order Bernoulli, Euler, and Hermite polynomials arising from umbral calculus to have alternative ways.

MSC: 05A10; 05A19

Keywords: Bernoulli polynomial; Euler polynomial; Abel polynomial

1 Introduction
As is well known, the Hermite polynomials are defined by the generating function to be

\[e^{2xt-t^2} = e^{H(x)t} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}, \]

(1.1)

with the usual convention about replacing \(H_n(x) \) by \(H_n(x) \) (see [1, 2]). In the special case, \(x = 0, H_n(0) = H_n \) are called the \(nth \) Hermite numbers. The Bernoulli polynomials of order \(r \) are given by the generating function to be

\[\left(\frac{t}{e^t - 1} \right)^r e^{xt} = \sum_{n=0}^{\infty} B_n^{(r)}(x) \frac{t^n}{n!} \quad (r \in \mathbb{R}). \]

(1.2)

From (1.2), the \(nth \) Bernoulli numbers of order \(r \) are defined by \(B_n^{(r)}(0) = B_n^{(r)} \) (see [1–16]). The higher-order Euler polynomials are also defined by the generating function to be

\[\left(\frac{2}{e^t + 1} \right)^r e^{xt} = \sum_{n=0}^{\infty} E_n^{(r)}(x) \frac{t^n}{n!} \quad (r \in \mathbb{R}), \]

(1.3)

and \(E_n^{(r)}(0) = E_n^{(r)} \) are called the \(nth \) Euler numbers of order \(r \) (see [1–16]).

The first Stirling number is given by

\[(x)_n = x(x-1) \cdots (x-n+1) = \sum_{l=0}^{n} S_l(n,k)x^l \quad (\text{see } [8, 13]), \]

(1.4)
and the second Stirling number is defined by the generating function to be

\[(e^t - 1)^n = n! \sum_{l=n}^{\infty} S_2(l, n) \frac{t^l}{l!} \]
(see [8, 10, 13]).

For \(\lambda \ (\neq 1) \in \mathbb{C} \), the Frobenius-Euler polynomials are given by

\[
\left(\frac{1 - \lambda}{e^t - \lambda}\right)^r e^{\lambda t} = \sum_{n=0}^{\infty} H_n^{(r)}(x; \lambda) \frac{t^n}{n!} \quad (r \in \mathbb{R}) \]
(see [3, 7]).

In the special case, \(x = 0 \), \(H_n^{(r)}(0|\lambda) = H_n^{(r)}(\lambda) \) are called the \(n \)th Frobenius-Euler numbers of order \(r \).

Let \(\mathcal{F} \) be the set of all formal power series in the variable \(t \) over \(\mathbb{C} \) with

\[
\mathcal{F} = \left\{ f(t) = \sum_{k=0}^{\infty} a_k t^k \mid a_k \in \mathbb{C} \right\}.
\]

Let us assume that \(\mathbb{P} \) is the algebra of polynomials in the variable \(x \) over \(\mathbb{C} \) and that \(\mathbb{P}^* \) is the vector space of all linear functionals on \(\mathbb{P} \). \(\langle L | p(x) \rangle \) denotes the action of the linear functional \(L \) on a polynomial \(p(x) \), and we remind that the vector space structure on \(\mathbb{P}^* \) is defined by

\[
\langle L + M | p(x) \rangle = \langle L | p(x) \rangle + \langle M | p(x) \rangle,
\]
\[
\langle cL | p(x) \rangle = c \langle L | p(x) \rangle,
\]
where \(c \) is a complex constant (see [8, 10, 13]).

The formal power series \(f(t) = \sum_{k=0}^{\infty} \frac{a_k}{k!} t^k \in \mathcal{F} \) defines a linear functional on \(\mathbb{P} \) by setting

\[
\langle f(t) | x^n \rangle = a_n \quad \text{for all } n \geq 0 \]
(see [8, 10, 13]).

Then, by (1.7), we get

\[
\langle t^k | x^n \rangle = n! \delta_{n,k} \quad (n, k \geq 0),
\]

where \(\delta_{n,k} \) is the Kronecker symbol (see [8, 10, 13]).

Let \(f_1(t) = \sum_{k=0}^{\infty} \frac{a_k}{k!} t^k \) (see [13]). For \(f_2(t) = \sum_{k=0}^{\infty} \frac{a_k}{k!} t^k \), we have \(\langle f_2(t) | x^n \rangle = \langle L | x^n \rangle \).

The map \(L \mapsto f_2(t) \) is a vector space isomorphism from \(\mathbb{P}^* \) onto \(\mathcal{F} \). Henceforth, \(\mathcal{F} \) will be thought of as both a formal power series and a linear functional. We will call \(\mathcal{F} \) the umbral algebra. The umbral calculus is the study of umbral algebra (see [8, 10, 13]).

The order of \(o(f(t)) \) of the non-zero power series \(f(t) \) is the smallest integer \(k \) for which the coefficient of \(t^k \) does not vanish. A series \(f(t) \) having \(o(f(t)) = 1 \) is called a delta series, and a series \(f(t) \) having \(o(f(t)) = 0 \) is called an invertible series. Let \(f(t) \) be a delta series and let \(g(t) \) be an invertible series. Then there exists a unique sequence \(S_n(x) \) of polynomials such that \(\langle g(t)f(t)^k | S_n(x) \rangle = n! \delta_{n,k} \), where \(n, k \geq 0 \). The sequence \(S_n(x) \) is called a Sheffer
sequence for \((g(t), f(t))\), which is denoted by \(S_n(x) \sim (g(t), f(t))\). By (1.7) and (1.8), we see that \((e^{\bar{f}(t)} p(x)) = p(y)\). For \(f(t) \in F\) and \(p(x) \in \mathbb{P}\), we have

\[
f(t) = \sum_{k=0}^{\infty} \frac{(f(t)x^k)}{k!} t^k, \quad p(x) = \sum_{k=0}^{\infty} \frac{(t^k p(x))}{k!} x^k.
\]

(1.9)

and, by (1.9), we get

\[
p^{(k)}(0) = (t^k | p(x)), \quad \langle 1 | p^{(k)}(x) \rangle = p^{(k)}(0).
\]

(1.10)

Thus, from (1.10), we have

\[
t^k p(x) = p^{(k)}(x) = \frac{d^k p(x)}{dx^k}.
\]

(1.11)

In [8, 10, 13], we note that \((f(t)g(t)|p(x)) = (g(t)f(t)p(x))\).

For \(S_n(x) \sim (g(t), f(t))\), we have

\[
\frac{1}{g(f(t))} e^{\bar{f}(t)} = \sum_{k=0}^{\infty} \frac{S_k(y)}{k!} t^k \quad \text{for all } y \in \mathbb{C},
\]

(1.12)

where \(\bar{f}(t)\) is the compositional inverse of \(f(t)\). For \(S_n(x) \sim (g(t), f(t))\) and \(r_n(x) = (h(t), l(t))\), let us assume that

\[
S_n(x) = \sum_{k=0}^{n} C_{nk} r_k(x) \quad \text{ (see [8, 10, 13]).}
\]

(1.13)

Then we have

\[
C_{nk} = \frac{1}{k!} \left(\frac{h(\bar{f}(t))}{g(f(t))} \right)^k \left(\frac{\bar{f}(t)}{x} \right)^n \quad \text{ (see [13]).}
\]

(1.14)

Equations (1.13) and (1.14) are called the alternative ways of Sheffer sequences.

In this paper, we study umbral calculus to have alternative ways of obtaining our results. That is, we derive some interesting identities of the higher-order Bernoulli, Euler, and Hermite polynomials arising from umbral calculus to have alternative ways.

2 Some identities of higher-order Bernoulli, Euler, and Hermite polynomials

In this section, we use umbral calculus to have alternative ways of obtaining our results. Let us consider the following Sheffer sequences:

\[
E_n^{(r)}(x) \sim \left(\left(\frac{e^t + 1}{2} \right)^r, t \right), \quad H_n(x) \sim \left(e^{\frac{1}{2} t^2}, \frac{t}{2} \right).
\]

(2.1)

Then, by (1.13), we assume that

\[
E_n^{(r)}(x) = \sum_{k=0}^{n} C_{nk} H_k(x).
\]

(2.2)
From (1.14) and (2.2), we have

\[
C_{n,k} = \frac{1}{k!} \left(\frac{e^{\frac{1}{2}t^2}}{(\frac{t}{2})^r} \right) \langle t^k | x^n \rangle
\]

\[
= \frac{1}{k!2^k} \left(\frac{2}{e^t + 1} \right) e^{\frac{1}{2}t^2} | e^{\frac{1}{2}t^2} x^{n-k} \rangle
\]

\[
= 2^{-k} \binom{n}{k} \left(\frac{2}{e^t + 1} \right) \left(\sum_{l=0}^{\infty} \frac{1}{2^{2l} l!} e^{\frac{1}{2}t^2} x^{n-k} \right)
\]

\[
= 2^{-k} \binom{n}{k} \left(\frac{2}{e^t + 1} \right) \left(\sum_{l=0}^{\infty} \frac{1}{2^{2l} l!} e^{\frac{1}{2}t^2} x^{n-k} \right)
\]

\[
= 2^{-k} \binom{n}{k} \sum_{l=0}^{\infty} \frac{1}{2^{2l} l!} (n-k)_{2l} \left(\frac{2}{e^t + 1} \right) \langle e^{\frac{1}{2}t^2} x^{n-k} \rangle
\]

\[
= 2^{-k} \binom{n}{k} \sum_{l=0}^{\infty} \frac{1}{2^{2l} l!} (n-k)_{2l} E_{n-k-2l}^{(r)}
\]

\[
= n! \sum_{0 \leq l \leq n-k, \text{even}} E_{n-k-l}^{(r)} \left(\frac{1}{2} \right) 2^{k+l} l! \binom{n}{k} \sum_{l=0}^{\infty} \frac{1}{2^{2l} l!} (n-k)_{2l} \langle e^{\frac{1}{2}t^2} x^{n-k} \rangle
\]

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1 For \(n \geq 0 \), we have

\[
E_n^{(r)}(x) = n! \sum_{k=0}^{n} \sum_{0 \leq l \leq n-k, \text{even}} E_{n-k-l}^{(r)} \left(\frac{1}{2} \right) 2^{k+l} l! \binom{n}{k} \sum_{l=0}^{\infty} \frac{1}{2^{2l} l!} (n-k)_{2l} H_k(x).
\]

Let us consider the following two Sheffer sequences:

\[
B_n^{(r)}(x) \sim \left(\left(\frac{e^t - 1}{t} \right)^r, t \right), \quad H_n(x) \sim \left(e^{\frac{1}{2}t^2}, \frac{t}{2} \right).
\]

Let us assume that

\[
B_n^{(r)}(x) = \sum_{k=0}^{n} C_{n,k} H_k(x).
\]

By (1.14) and (2.4), we get

\[
C_{n,k} = \frac{1}{k!} \left(\frac{e^{\frac{1}{2}t^2}}{(\frac{t}{2})^r} \right) \langle t^k | x^n \rangle
\]

\[
= 2^{-k} \binom{n}{k} \left(\frac{t}{e^t - 1} \right) \left(\sum_{l=0}^{\infty} \frac{1}{l!} l^l e^{\frac{1}{2}t^2} x^{n-k} \right)
\]

\[
= 2^{-k} \binom{n}{k} \sum_{l=0}^{\infty} \frac{1}{l!} l^l (n-k)_{2l} \left(\frac{t}{e^t - 1} \right) \langle e^{\frac{1}{2}t^2} x^{n-k} \rangle
\]
\[= 2^{-k} \binom{n}{k} \sum_{l=0}^{n-k} \frac{(n-k)!}{l!2^l(n-k-2l)!} \left\{ 1 \left(\frac{t}{e^t-1} \right)^r x^{n-k-2l} \right\} \]

\[= 2^{-k} \binom{n}{k} \sum_{l=0}^{n-k} \frac{(n-k)!}{l!2^l(n-k-2l)!} B_{n-k-2l}^{(r)} \]

\[= n! \sum_{0 \leq l \leq n-k, \text{even}} \frac{B_{n-k-l}^{(r)}}{k!(n-k-l)!2^{k+l}(\frac{l}{2})!}. \quad (2.6) \]

Therefore, by (2.5) and (2.6), we obtain the following theorem.

Theorem 2.2 For \(n \geq 0 \), we have

\[B_n^{(r)}(x) = n! \left\{ \sum_{0 \leq l \leq n-k, \text{even}} \frac{B_{n-k-l}^{(r)}}{k!(n-k-l)!2^{k+l}(\frac{l}{2})!} \right\} H_k(x). \]

Consider

\[H_n^{(r)}(x|\lambda) \sim \left(\left(\frac{e^t-\lambda}{1-\lambda} \right)^r, t \right), \quad H_n(x) \sim \left(e^{\frac{t}{2}}, t \right). \quad (2.7) \]

Let us assume that

\[H_n^{(r)}(x|\lambda) = \sum_{k=0}^{n} C_{n,k} H_k(x). \quad (2.8) \]

By (1.14), we get

\[C_{n,k} = \frac{1}{k!} \left\{ \frac{e^{\frac{t}{2}}}{(\frac{1-\lambda}{\lambda})^r} \left(\frac{t}{e^t-1} \right)^k \right\} \left\{ \left(\frac{1-\lambda}{e^t-\lambda} \right)^r e^{\frac{t}{2}} t^k x^n \right\} \]

\[= \frac{1}{k!2^k} \left\{ \left(\frac{1-\lambda}{e^t-\lambda} \right)^r e^{\frac{t}{2}} \right\} \left\{ \frac{1}{\lambda} \left(\frac{1-\lambda}{\lambda} \right)^r x^{n-k-2l} \right\} \]

\[= 2^{-k} \binom{n}{k} \sum_{l=0}^{n-k} \frac{(n-k)!}{l!2^l(n-k-2l)!} \left\{ 1 \left(\frac{1-\lambda}{\lambda} \right)^r x^{n-k-2l} \right\} \]

\[= n! \sum_{l=0}^{n-k} \frac{H_{n-k-l}^{(r)}(\lambda)}{l!2^{k+l}(n-k-l)!k!} \]

\[= n! \sum_{0 \leq l \leq n-k, \text{even}} \frac{H_{n-k-l}^{(r)}(\lambda)}{(\frac{l}{2})!2^{k+l}(n-k-l)!k!}. \quad (2.9) \]

Therefore, by (2.8) and (2.9), we obtain the following theorem.

Theorem 2.3 For \(n \geq 0 \), we have

\[H_n^{(r)}(x|\lambda) = n! \left\{ \sum_{k=0}^{n} \sum_{0 \leq l \leq n-k, \text{even}} \frac{H_{n-k-l}^{(r)}(\lambda)}{k!(n-k-l)!2^{k+l}(\frac{l}{2})!} \right\} H_k(x). \]
Let us assume that

\[H_n(x) = \sum_{k=0}^{n} C_{n,k} E_k^{(r)}(x). \]

(2.10)

From (1.14), (2.1), and (2.10), we have

\[
C_{n,k} = \frac{1}{k!} \left(\frac{e^{\frac{t+1}{2}}}{e^{\frac{t}{2}r^2}} (2t)^k \right)_{|x^n} \\
= \frac{1}{k!} \left(\frac{e^{\frac{t+1}{2}}}{e^{\frac{t}{2}r^2}} \right) (2x)^n \\
= \frac{1}{k!} 2^n \left(\frac{e^{\frac{t+1}{2}}}{e^{\frac{t}{2}r^2}} \right) e^{\frac{t}{2}r^2} (2x)^n \\
= 2^n \left(\frac{n}{k} \right) \left(\frac{e^{\frac{t+1}{2}}}{e^{\frac{t}{2}r^2}} \right) \left(\frac{t^r}{r^n} \right) \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} (n-k)^l (2l)^{k-n-2l}. \\
= \frac{1}{2^r} \sum_{j=0}^{r} \sum_{l=0}^{\left[\frac{n-k}{2} \right]} \frac{\left(\frac{n-k}{2} \right) \left(\frac{n-k}{2} \right) 2^l (n-k)!}{l!(n-k-2l)!} (2j)^{k-n-2l}.
\]

(2.11)

Therefore, (2.10) and (2.11), we obtain the following theorem.

Theorem 2.4 For \(n \geq 0 \), we have

\[
H_n(x) = \frac{1}{2^r} \sum_{k=0}^{n} \left[\sum_{j=0}^{r} \sum_{l=0}^{\left[\frac{n-k}{2} \right]} \frac{\left(\frac{n-k}{2} \right) \left(\frac{n-k}{2} \right) 2^l (n-k)!}{l!(n-k-2l)!} (2j)^{k-n-2l} \right] E_k^{(r)}(x).
\]

Note that \(H_n(x) \sim (e^{\frac{t+1}{2}}, \frac{t}{2}) \). Thus, we have

\[e^{\frac{t+1}{2}} H_n(x) \sim \left(1 + \frac{t}{2} \right), \quad \text{and} \quad (2x)^n \sim \left(1 + \frac{t}{2} \right). \]

(2.12)

From (2.12), we have

\[e^{\frac{t+1}{2}} H_n(x) = (2x)^n \quad \Leftrightarrow \quad H_n(x) = e^{\frac{t}{2}r^2} (2x)^n. \]

(2.13)

By (2.11) and (2.13), we also see that

\[
C_{n,k} = \frac{1}{k!} \left(\frac{e^{\frac{t+1}{2}}}{e^{\frac{t}{2}r^2}} (2t)^k \right)_{|x^n} \\
= \frac{1}{k!} \left(\frac{e^{\frac{t+1}{2}}}{e^{\frac{t}{2}r^2}} \right) t^k e^{\frac{t}{2}r^2} (2x)^n
\]
\begin{align*}
&= \frac{1}{k!2^k} \left(e^t + 1 \right) ^k |x^k H_n(x) | \\
&= \frac{1}{2^k} \binom{n}{k} 2^k \sum_{j=0}^{r} \binom{r}{j} H_{n-k}(j) .
\end{align*}

(2.14)

Therefore, by (2.10) and (2.14), we obtain the following theorem.

Theorem 2.5 For \(n \geq 0 \), we have

\[
H_n(x) = \frac{1}{2^k} \sum_{k=0}^{n} \binom{n}{k} 2^k \left[\sum_{j=0}^{r} \binom{r}{j} H_{n-k}(j) \right] E_k^r(x).
\]

Let us assume that

\[
H_n(x) = \sum_{k=0}^{n} C_{n,k} E_k^r(x).
\]

(2.15)

From (1.14), (2.4), and (2.15), we have

\[
C_{n,k} = \frac{1}{k!} \left(\frac{e^t - 1}{t} \right) ^k \left(\frac{e^t - 1}{t} \right) ^{r-k} |x^r \left(e^t - 1 \right) ^{r-k} |x^r H_n(x) |.
\]

\[
= \frac{1}{k!} \left(\frac{e^t - 1}{t} \right) ^k \left(\frac{e^t - 1}{t} \right) ^{r-k} \left(e^t - 1 \right) ^{r-k} \sum_{l=0}^{r-k} \binom{r-k}{l} S_2(l+r-k) H_r(x).
\]

\[
= \frac{1}{k!} \left(\frac{e^t - 1}{t} \right) ^k \left(\frac{e^t - 1}{t} \right) ^{r-k} \sum_{l=0}^{r-k} \binom{r-k}{l} S_2(l+r-k) H_r(x).
\]

(2.16)

From (2.13) and (2.16), we have

\[
C_{n,k} = \frac{1}{k!} \left(\frac{e^t - 1}{t} \right) ^k \left(\frac{e^t - 1}{t} \right) ^{r-k} H_r(x).
\]

(2.17)

For \(r > n \), by (1.5) and (2.17), we get

\[
C_{n,k} = \frac{1}{k!} \left(\frac{e^t - 1}{t} \right) ^k \left(\frac{e^t - 1}{t} \right) ^{r-k} H_r(x).
\]

\[
= \frac{1}{k!} \left(\frac{e^t - 1}{t} \right) ^k \left(\frac{e^t - 1}{t} \right) ^{r-k} \sum_{l=0}^{r-k} \binom{r-k}{l} S_2(l+r-k) H_r(x).
\]

\[
= \frac{1}{k!} \left(\frac{e^t - 1}{t} \right) ^k \left(\frac{e^t - 1}{t} \right) ^{r-k} \sum_{l=0}^{r-k} \binom{r-k}{l} S_2(l+r-k) H_r(x).
\]

(2.18)

Therefore, by (2.15) and (2.18), we obtain the following theorem.
Theorem 2.6 For \(r > n \geq 0 \), we have

\[
H_n(x) = n! \sum_{k=0}^{n} \left(\sum_{j=0}^{k} \sum_{l=0}^{n} \frac{(r-k)!S_2(l+r-k,r-k)(-1)^{k-j}(\binom{k}{j})2^lH_{n-l}(j)}{(l+r-k)!k!(n-l)!} \right) B_k^{(r)}(x).
\]

Let us assume that \(r \geq n \). For \(0 \leq k < r \), by (2.18), we get

\[
C_{n,k} = n! \sum_{j=0}^{k} \sum_{l=0}^{n} \frac{(r-k)!S_2(l+r-k,r-k)(-1)^{k-j}(\binom{k}{j})2^lH_{n-l}(j)}{(l+r-k)!k!(n-l)!}.
\] (2.19)

For \(r \leq k \leq n \), by (2.17), we get

\[
C_{n,k} = \frac{1}{k!} \sum_{j=0}^{r} \binom{r}{j} (-1)^{r-j} (e^{D^{r-j}H_n(x)}) B_k^{(r)}(x) = \frac{2^{k-r}n!}{k!(n-k+r)!} \sum_{j=0}^{r} \binom{r}{j} (-1)^{r-j}H_{n-k+j}(j).
\] (2.20)

Therefore, by (2.15), (2.19), and (2.20), we obtain the following theorem.

Theorem 2.7 For \(n \geq r \), we have

\[
H_n(x) = n! \sum_{k=0}^{n} \left(\sum_{j=0}^{k} \sum_{l=0}^{n} \frac{(r-k)!S_2(l+r-k,r-k)(-1)^{k-j}(\binom{k}{j})2^lH_{n-l}(j)}{(l+r-k)!k!(n-l)!} \right) B_k^{(r)}(x)
\] + \[
n! \sum_{k=r}^{n} \left(\sum_{j=0}^{r} \frac{(-1)^{r-j}(\binom{k}{j})2^{k-r}H_{n-k+r}(j)}{k!(n-k+r)!} \right) B_k^{(r)}(x).
\]

Let us assume that

\[
H_n(x) = \sum_{k=0}^{n} C_{n,k} H_k^{(r)}(x|\lambda).
\] (2.21)

Then, by (1.14), (2.7), and (2.21), we get

\[
C_{n,k} = \frac{1}{k!} \left(\frac{e^{e^{-\lambda}t/x}}{1-e^{-\lambda t}} \right)^r \left(2t \right)^k \left[e^{e^{-\lambda}t/x} \right]
\] = \[
\frac{1}{k!} \left(\frac{e^{e^{-\lambda}t/x}}{1-e^{-\lambda t}} \right)^r \left(2t \right)^k \left[e^{e^{-\lambda}t/x} \right]
\] = \[
\frac{1}{k!} \left(\frac{e^{e^{-\lambda}t/x}}{1-e^{-\lambda t}} \right)^r \left(2t \right)^k \left[e^{e^{-\lambda}t/x} \right]
\] \] (2.22)

By (2.13) and (2.22), we get

\[
C_{n,k} = \frac{1}{k!} \left(\frac{e^{e^{-\lambda}t/x}}{1-e^{-\lambda t}} \right)^r \left(2t \right)^k H_n(x)
\] = \[
\frac{1}{k!(1-\lambda)^r} \left| (e^{e^{-\lambda}t/x})^r (2t)^k H_n(x) \right|
\]
\[
\binom{n}{k} 2^k \sum_{j=0}^r \left(\binom{r}{j} (-\lambda)^{r-j} \langle e^t | H_{n-k}(x) \rangle \right)
\]
\[
= \binom{n}{k} 2^k \sum_{j=0}^r \left(\binom{r}{j} (-\lambda)^{r-j} H_{n-k}(j) \right). \tag{2.23}
\]

Therefore, by (2.21) and (2.23), we obtain the following theorem.

Theorem 2.8 For \(n \geq 0 \), we have

\[
H_n(x) = \frac{1}{(1-\lambda)^r} \sum_{k=0}^n \binom{n}{k} 2^k \left[\sum_{j=0}^r \left(\binom{r}{j} (-\lambda)^{r-j} H_{n-k}(j) \right) \right] H_k^{(r)}(x; \lambda).
\]

Remark From (2.22), we have

\[
C_{n,k} = \frac{1}{k!} \frac{\binom{r}{j} (-\lambda)^{r-j}}{e^t t^j} t^k (2x)^n = \frac{2^n}{k!} \left(\binom{r}{j} \frac{e^t - \lambda}{1 - \lambda} \right)^j \left(e^t \sum_{l=0}^j (-\lambda)^{-l} \frac{t^l}{l!} x^{n-j-l} \right)
\]
\[
= \frac{\binom{n}{k} 2^n}{(1-\lambda)^r} \sum_{l=0}^n \left(\binom{n}{k} \binom{r}{j} (-\lambda)^{r-j} \frac{t^l}{l!} x^{n-k-l} \right)
\]
\[
= \frac{1}{(1-\lambda)^r} \sum_{j=0}^r \sum_{l=0}^j \binom{n}{k} \binom{r}{j} 2^j (-1)^j (-\lambda)^{r-j} \frac{(n-k)!}{l!(n-k-2l)!} \binom{r}{j} \frac{t^l}{l!} x^{n-k-2l}.
\] \tag{2.24}

Thus, by (2.21) and (2.24), we get

\[
H_n(x) = \frac{1}{(1-\lambda)^r} \sum_{k=0}^n \left[\sum_{j=0}^r \sum_{l=0}^j \binom{n}{k} \binom{r}{j} 2^j (-1)^j (-\lambda)^{r-j} \frac{(n-k)!}{l!(n-k-2l)!} \frac{t^l}{l!} x^{n-k-2l} \right] H_k^{(r)}(x; \lambda).
\]
3. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)
4. Araci, S, Erdal, D, Seo, J: A study on the fermionic \(p\)-adic \(q\)-integral representation on \(\mathbb{Z}_p\) associated with weighted \(q\)-Bernstein and \(q\)-Genocchi polynomials. Abstr. Appl. Anal. 2011, Article ID 649248 (2011)
5. Bayad, A: Modular properties of elliptic Bernoulli and Euler functions. Adv. Stud. Contemp. Math. 20(3), 389-401 (2010)
6. Can, M, Cenkci, M, Kurt, V, Simsek, Y: Twisted Dedekind type sums associated with Barnes’ type multiple Frobenius-Eulerl-functions. Adv. Stud. Contemp. Math. 18(2), 135-160 (2009)
7. Carlitz, L: The product of two Eulerian polynomials. Math. Mag. 368, 37-41 (1963)
8. Dere, R, Simsek, Y: Applications of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 22, 433-438 (2012)
9. Ding, D, Yang, J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. 20(1), 7-21 (2010)
10. Kim, DS, Kim, T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ. 2012, 196 (2012). doi:10.1186/1687-1847-2012-196
11. Ozden, H, Cangul, IN, Simsek, Y: Remarks on \(q\)-Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 18(1), 41-48 (2009)
12. Rim, S-H, Joung, J, Jin, J-H, Lee, S-J: A note on the weighted Carlitz’s type \(q\)-Euler numbers and \(q\)-Bernstein polynomials. Proc. Jangjeon Math. Soc. 15, 195-201 (2012)
13. Roman, S: The Umbral Calculus. Dover, New York (2005)
14. Ryoo, C: Some relations between twisted \(q\)-Euler numbers and Bernstein polynomials. Adv. Stud. Contemp. Math. 21(2), 217-223 (2011)
15. Simsek, Y: Special functions related to Dedekind-type DC-sums and their applications. Russ. J. Math. Phys. 17, 495-508 (2010)
16. Simsek, Y: Generalizing functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions. Adv. Stud. Contemp. Math. 16(2), 251-278 (2008)

doi:10.1186/1029-242X-2013-211
Cite this article as: Kim et al.: Some identities of higher-order Bernoulli, Euler, and Hermite polynomials arising from umbral calculus. Journal of Inequalities and Applications 2013 2013:211.