De novo Assembly and Analysis of the Northern Leopard Frog
Rana pipiens Transcriptome

Matthew K. Christenson
University of Nebraska at Omaha

Andrew J. Trease
University of Nebraska at Omaha

Lakshmi-Prasad Potluri
University of Nebraska at Omaha

Andrew Jezewski
University of Nebraska at Omaha, ajezewski@unomaha.edu

Vincent M. Davis
Heteroskedastic, Inc.

Follow this and additional works at: https://digitalcommons.unomaha.edu/biofacpub
Authors
Matthew K. Christenson, Andrew J. Trease, Lakshmi-Prasad Potluri, Andrew Jezewski, Vincent M. Davis, Lindsey A. Knight, Alan Kolok, and Paul H. Davis

This article is available at DigitalCommons@UNO: https://digitalcommons.unomaha.edu/biofacpub/113
Research Paper

De novo Assembly and Analysis of the Northern Leopard Frog Rana pipiens Transcriptome

Matthew K. Christenson1†, Andrew J. Trease1†, Lakshmi-Prasad Potluri1, Andrew J. Jezewski1†, Vincent M. Davis2, Lindsey A. Knight1, Alan S. Kolok1,3, Paul H. Davis1,4

1. Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA; 2. Heteroskedastic, Inc., Arvada, Colorado 80403, USA; 3. Center for Environmental Health and Toxicology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; 4. Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.

† Current addresses: MKC - Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. AJT - Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA. AJJ - Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA

© Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.

Published: 2014.10.01

Abstract

The northern leopard frog Rana (Lithobates) pipiens is an important animal model, being used extensively in cancer, neurology, physiology, and biomechanical studies. R. pipiens is a native North American frog whose range extends from northern Canada to southwest United States, but over the past few decades its populations have declined significantly and is now considered uncommon in large portions of the United States and Canada. To aid in the study and conservation of R. pipiens, this paper describes the first R. pipiens transcriptome. The R. pipiens transcriptome was annotated using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Eukaryotic Orthologous Groups (KOG). Differential expression analysis revealed universal and tissue specific genes, and endocrine-related genes were identified. Transcriptome assemblies and other sequence data are available for download.

Key words: Northern Leopard Frog; Rana pipiens; Transcriptome.

Results and Discussion

General Characteristics of the Rana pipiens Transcriptome

To characterize the transcriptome of the northern leopard frog Rana (Lithobates) pipiens (Figure 1), a widely distributed North American species (Figure 2), cDNA samples were separately prepared from gonad, liver, kidney, brain, and tadpole homogenates and sequenced using paired-end 100 bp reads [1]. The resulting 1.166 billion reads, comprising 116.6 Gb of sequence, were used to construct a transcriptome with Velvet and Oases (Table 1 and Table 2) [2,3]. Assembled transcriptomes and annotated characteristics are available at http://www.davislab.net/rana/, and raw reads have been deposited at NCBI under BioProject accession PRJNA240240.

Organism Homology and Species Confirmation of Rana pipiens

To identify transcript homologs, blastx was used to compare the R. pipiens transcriptome against the NCBI non-redundant (nr) protein database. Of the assembled transcripts, 91.7% (30,364) yielded significant BLAST hits. Among these, the western clawed frog Xenopus tropicalis and African clawed frog Xenopus laevis have the greatest number of top BLAST hits (71.6%). These result are consistent with accepted
taxonomy but are strongly influenced by the completeness of protein annotation in the nr database; e.g. *X. tropicalis* is the closest, fully sequenced relative of *R. pipiens*. To further identify the completeness of the representative transcriptome, this set was compared via BLASTX against all Anura (frog) sequences in the nr database, resulting in more than 73% of the transcripts exhibiting a length coverage greater than 80% (Figure 3). To validate our transcriptome assembly as being from *R. pipiens*, we compared several genes (18S and 28S rRNA, rhodopsin, and histone H3) to published sequences. The concatenated results indicate a significant identity (99.42%) to previously published *R. pipiens* gene sequences, suggesting a preliminary level of genetic variation within the species (Table 3). Assembled sequence data also supported the previously published phylogenic differences between the *Rana* species established using these genes[4].

Functional Annotation and Characterization of *Rana pipiens* Transcripts

In an effort to both review the putative functions of the *R. pipiens* transcripts, and to validate the completeness of its transcriptome, multiple functional analyses were performed against *R. pipiens* and the *X. tropicalis* and *X. laevis* transcriptomes. Gene Ontology (GO) analysis was performed with 63.6% (21,056) of the transcripts being assigned GO terms (Figure 4). Importantly, *X. tropicalis* and *X. laevis* displayed a similar ontology pattern with the average percent difference in GO categories between *R. pipiens* and *X. tropicalis* of 25.03%, as compared to *X. tropicalis* and *X. laevis* at 24.42% (calculated by summing the organism differences between each GO category, and dividing by the number of GO categories). Further examination using Eukaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that 59.8% (19,785) and 33.4% (11,064) of the transcripts were assigned KOG terms and K-numbers, respectively (Figure 5 and Figure 6). Overall, the nearly identical patterns observed in the GO, KOG, and KEGG analyses by *R. pipiens*, *X. tropicalis*, and *X. laevis* suggests the completeness of the *R. pipiens* transcriptome.

Differential Expression of Transcripts in the *Rana pipiens* Tissues

Differential expression analysis was carried out to determine the relative abundance of the *R. pipiens* transcripts within each tissue. In total, 23,058, 18,711, 16,359, 18,325, 24,960, 27,247, and 28,603 transcripts were detected and 72, 12, 76, 33, 182, 612, and 1,272 transcripts were unique to only that tissue in the male gonad, male liver, female gonad, female liver, female kidney, female brain, and tadpole, respectively (Figure 7). A file containing the relative expression of each transcript in individual tissues is available at http://www.davislab.net/rana/.

Identification of *Rana pipiens* Endocrine-Related Genes

Increasing evidence demonstrates that agricultural contaminants, such as veterinary pharmaceuticals, fertilizers, and pesticides, can alter endocrine activities in wildlife and other vertebrates, including humans [5,6]. Therefore, because of its range and habitat, *R. pipiens* can serve as an ideal sentinel organism for monitoring the potential effects of these chemicals on other affected organisms. To this end, putative *R. pipiens* homologs of major endocrine-related genes were identified and exhibited a high degree of similarity to those genes of *X. laevis* (Table 4).

Table 1. Information on sequencing reads for *Rana pipiens*.

Tissue	Number of Reads	Total Length
Male Gonad	32,771,881	65,543,762 bp
Male Liver	35,791,829	71,583,658 bp
Female Gonad	77,777,594	155,555,188 bp
Female Liver	35,527,804	71,055,608 bp
Female Brain	111,972,214	223,944,428 bp
Female Kidney	108,243,825	216,487,650 bp
Tadpole	181,032,472	362,064,944 bp
Total	1,166,235,238	1,166,235,238 bp

The seven RNA samples, from both adult and juvenile *R. pipiens* tissues, were converted into individual libraries and were subsequently run on three sequencing lanes (Lane 1: Male Gonad, Male Liver, Female Gonad, Female Liver; Lane 2: Female Brain and Female Kidney; and Lane 3: Two Tadpole Stages) capturing 100 bp paired end reads.

Table 2. Statistics for *Rana pipiens* transcriptome assembly.

Number of Transcripts	Mean Length	Median Length	N50	GC Content
33,086	2,639 bp	2,004 bp	3,783 bp	44.02

The *R. pipiens* transcriptome was analyzed and the total number of transcripts, mean and median transcript length, N50, and GC content was determined.

Table 3. Percent identity to published *Rana* species sequences.

Species	Percent identity
Rana pipiens	99.42
Rana chiricahuensis	95.69
Rana capito	94.17
Rana yavapaiensis	93.57
Rana sylvatica	90.57
Rana temoporaria	89.5

Transcripts generated in this study were aligned to previously published *Rana* species sequences and a percent identity matrix was computed (4). This study utilized *Rana_pipiens_Transcript_030065, 050213, 496664, and 023205* for 18s rRNA, histone H3, rhodopsin, and 28s rRNA sequences, respectively.
Table 4. *Rana pipiens* endocrine-related genes.

Gene Name	Gene Symbol	Gene ID	Query ID	Length (bp)	Subject ID	E-Value	Bit Score
Androgen Receptor	ar	399456	Rana_pipiens_Transcript_250514	7338	NP_001084353.1	0	1209
Cytochrome P450, Family 17, Subfamily A,	cyp17a1	100036774	Rana_pipiens_Transcript_280688	2963	AAG42003.1	0	777
Polypeptide 1							
Cytochrome P450, Family 19, Subfamily A,	cyp19a1	373656	Rana_pipiens_Transcript_263665	3388	BAA90529.1	0	837
Polypeptide 1							
Hydroxysteroid (17-beta) Dehydrogenase 12	hsd17b12-b	379747	Rana_pipiens_Transcript_478585	1367	NP_001080055.1	0	264
Estrogen Receptor 1 (alpha)	esr1-a	398734	Rana_pipiens_Transcript_057318	4278	AAQ84782.1	0	924
Estradiol Receptor 2 (beta)	esr2	100174814	Rana_pipiens_Transcript_334780	2192	NP_001124426.1	0	917
Glucocorticoid Receptor	nr3c1-a	378598	Rana_pipiens_Transcript_449022	6500	CAAS4804.1	0	569
Hydroxy-Delta-5-Steroid Dehydrogenase, 3	hsd3b1	734818	Rana_pipiens_Transcript_284246	2143	NP_001089754.1	0	536
Beta- and Steroid Delta-Isomerase 1							
Hypoxia Inducible Factor 1 Alpha	hif-1a	445838	Rana_pipiens_Transcript_190140	4052	ABF71072.1	0	1264
Steroid 11-Beta-Hydroxylase Protein	-	-	Rana_pipiens_Transcript_141896	1464	AAQ04666.1	3.00E-152	431
Steroidogenic Acute Regulatory Protein	star	100381120	Rana_pipiens_Transcript_388250	3776	NP_001167502.1	2.00E-168	497
Vitellogenin	vtga2	100037071	Rana_pipiens_Transcript_478090	5777	NP_001152753.1	0	1126

To aid in the use of *R. pipiens* as a sentinel organism, putative *R. pipiens* endocrine-related genes were identified and the top BLAST hits are displayed.

Figure 1. *The northern leopard frog Rana pipiens*. From March to June mature *R. pipiens* gather at communal breeding ponds. Each female lays between 2,000 to 6,500 small, black and white eggs that hatch after two to three weeks [1]. Tadpoles are greenish or brown, with yellow or black speckles and their bellies are white and somewhat transparent, reaching 84 mm in length [1]. Metamorphosis typically occurs after 60 to 80 days, depending on conditions, and frogs are 20 to 30 mm long at metamorphosis [1]. Sexual maturity is reached in one to three years and adult *R. pipiens* are slender, long-legged green or brown with a white or cream underside, prominent, light-colored dorsolateral ridges, and large, dark spots located on its back, sides, and legs and grow to an average length of 68 mm and mass of 38.0 g [1].
Figure 2. Geographic Distribution of *Rana pipiens*. *R. pipiens* is a native North American frog whose range extends from northern Canada to the southwest United States [1]. Its life cycle includes an aquatic larval stage and semi-terrestrial juvenile and adult stages; thus, this frog is found residing within grassland, brushland, and forest environments, preferring static or slow-moving water [1].

Figure 3. Coverage of Anura (frog) proteins by *Rana pipiens* transcripts. Sequence coverage length of *R. pipiens* transcripts when compared to available Anura (frog) proteins. The generated representative *R. pipiens* transcriptome was BLASTed against all available Anura proteins (count=159,284). The length of sequence homology as reported by BLASTx was compared to the length of the Anura protein homolog. The majority of the *R. pipiens* transcripts (45%) had sequence homology with one or more Anura transcripts which covered at least 90% of the length of the Anura protein.
Figure 4. Gene Ontology (GO) Analysis of the *Rana pipiens* Transcripts. GO functional analysis was performed to evaluate transcript function and transcriptome completeness. GO terms were assigned to the *R. pipiens* transcripts and the mRNA RefSeq nucleotide entries of *Xenopus tropicalis* and *Xenopus laevis* retrieved from NCBI. The distributions of three transcriptomes closely resemble one another, suggesting the completeness of the *R. pipiens* transcriptome.
Figure 5. Eukaryotic Orthologous Groups (KOG) Characterization of *Rana pipiens* Transcripts. Putative transcript functions were assessed and transcriptome completeness was evaluated using KOG analysis. The *R. pipiens* transcriptome and mRNA nucleotide entries from NCBI of *Xenopus tropicalis* and *Xenopus laevis* were assigned KOG terms. The three transcriptomes have similar distributions, supporting the completeness of the *R. pipiens* transcriptome.

Figure 6. Kyoto Encyclopedia of Genes and Genomes (KEGG) Classification of *Rana pipiens* Transcripts. To review the putative functions of the transcripts and to assess the completeness of the transcriptome, KEGG analysis was performed. The *R. pipiens* transcripts and the mRNA nucleotide entries of *Xenopus tropicalis* and *Xenopus laevis*, retrieved from NCBI, were characterized by assigning K-numbers. The distributions of these three transcriptomes closely mimic one another, suggesting the completeness of the *R. pipiens* transcriptome.
Figure 7. Differential Expression of Transcripts Present in Separate *Rana pipiens* Tissues. Differential expression analysis was performed to determine the abundance of the transcripts within each *R. pipiens* tissue. In total, 23,058, 18,711, 16,359, 18,325, 24,960, 27,247, and 28,603 transcripts were detected and 72, 12, 76, 33, 182, 612, and 1,272 transcripts were unique to only that tissue (blue) in the male gonad, male liver, female gonad, female liver, female kidney, female brain, and tadpole, respectively. Moreover, 12,904 transcripts were present in all seven tissues (green) and a varied number of transcripts were present in more than one, but less than six, other tissues (red).

Methods

Organism Growth Conditions, RNA Sample Preparation and Generation of Sequence Data

Adult frogs and tadpoles were obtained from Science Kit & Boreal Laboratories, Rochester, NY (Item Number 67496-32 and 67040-12, wild-caught). Adult *R. pipiens* were sacrificed and their organs, including gonad, liver, kidney, and brain, were isolated according to approved IUCAC protocols. Upon their arrival, the tadpoles were housed overnight (Group 1) and for one week (Group 2) within a 40 gallon tank. Following each period, the tadpoles were starved and placed into a tetracycline (100 mg/L) solution for 24 hours then sacrificed in accordance with approved IUCAC protocols. To preserve the integrity of the RNA, the isolated tissues were stored in RNA later (Qiagen) for 24 hours at 4°C then placed at -80°C.

Total RNA was extracted from each tissue individually, using the RNeasy Plus Mini Kit (Qiagen). mRNA was purified from the total RNA preparations, using poly-T oligo-attached magnetic beads and converted into cDNA with random primers using the TruSeq® RNA Sample Preparation Kit v2 (Illumina). Libraries were sequenced using paired-end 100 bp reads with an Illumina HiSeq 2000 sequence analyzer at the University of Nebraska Medical Center.

Transcriptome Assembly

To facilitate an accurate transcriptome assembly, reads were processed using PRINSEQ (version 0.17.3 lite) then Khmer (version 181e441) [7,8]. The processed reads were then assembled using Velvet (version 1.2.07) and Oases (version 1.2.07) in multi-k fashion [2,3]. Putative coding transcripts were identified in the redundant transcriptome by removing any transcript less than 200 bp with PRINSEQ, translating with TransDecoder (release Jan 16, 2014), reducing redundancy of the predicted proteins with CD-HIT and simplicity with PRINSEQ (version 0.17.3 lite), and then using blat (version 35x1) to compare against UniProt (release 2014_02) and the *X. tropicalis* NCBI proteome (retrieved April 1, 2014). Potential non-coding RNAs were identified using blastn (E-value ≤ 1e-5) and the Rfam (version 11.0) and NONCODE (version 3.0) databases [9,10]. Transcripts that closely matched a UniProt or *X. tropicalis* protein or non-coding RNA were counted and in the case of multiple query matches to a single subject, the transcript with the highest bit-score was selected. The command-line codes used for transcriptome assembly are available at http://www.davislab.net/rana/.

Similarity of *Rana pipiens* Transcripts to Other Species

Transcripts were analyzed for sequence similarity by scanning the NCBI nr database (retrieved March 30, 2014) using blastx (E-value ≤ 1e-5). The top-hit species for each BLAST query was counted using Blast2GO (version 2.7.1) [11]. Representative transcripts were compared to Anura proteins (retrieved August 13, 2014) to determine their coverage using blastx (E-value ≤ 1e-5) and MuSeqBox [12].
Percent Identity Matrix Calculation

Sequences obtained from the current assembly were aligned with sequences previously published to evaluate phylogenetic relationships within amphibians [4]. Alignments were trimmed with Gblocks, concatenated into a single ordered sequence, and ClustalW alignment used to produce a percent identity matrix [13,14].

Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG)

Multiple functional analyses were performed to assess the putative functions of the R. pipiens transcripts and to validate the transcriptome completeness, with X. tropicalis and X. laevis mRNA nucleotide entries from NCBI (retrieved April 1, 2014). First, blastx (E-value ≤ 1e-5) was used to scan the transcriptome against the NCBI nr database (retrieved March 30, 2014) and GO terms were assigned using B2G4Pipe (version 2.5.0) and Blast2GO (version 2.7.1) with the b2g_may13 GO database [11]. Next, transcripts were translated by OrfPredictor (version 2.3) and these results were aligned using rps-blast (E-value of ≤ 1e-5) to the NCBI KOG database (version 3.0) [15,16]. Lastly, transcripts were compared to the Eukaryotic and Amphibian GENES datasets using the KEGG Automatic Annotation Server (version 1.68x) [17].

Expression Profile of the Rana pipiens Tissues

To calculate differential expression of transcripts between tissues, reads from each tissue were aligned to the transcriptome with Bowtie (version 2.2.0) and TopHat (version 2.0.11), and then Cuffdiff (version 2.2.0) was used to estimate transcript abundance [18,19,20].

Identification of Endocrine-Related Genes

Endocrine-related genes present within the R. pipiens transcriptome were identified by comparing the transcriptome to a custom BLAST database containing endocrine-related genes from X. laevis (retrieved from NCBI on October 8, 2013) using blastx (E-value ≤ 1e-5).

Acknowledgements

Financial support for the present study was provided by grants from the Nebraska Academy of Sciences and the Minnesota Herpetological Society. The University of Nebraska provided additional support through the Biomedical Research Training Program, the Fund for Investing in the Research Enterprise, the Graduate Research and Creative Activity Fund, the Holland Computing Center, and the Fund for Undergraduate Scholarly Experience.

The following NIH awards supported this work: NCRR R027754, RR016469-8348, RR018788-08 and NIGMS GM103427, GM103471. This publication’s contents are the sole responsibility of the authors and do not necessarily represent the official views of the NIH.

Competing Interests

The authors have declared that no competing interest exists.

References

1. [Internet] US Environmental Protection Agency. Species Profile: Northern Leopard Frog. http://www.epa.gov/housatonic/thesite/restofriver/reports/final_era/B%20-%20Focus%20Species%20Profiles/EcoRiskProfile_leopard_frog.pdf
2. Zerboino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821-829
3. Schulz MH, Zerboino DR, Vinzing M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:1086-1092
4. Frost DR, Grant T, Faivovich J, Bain RU, Haas A, Haddad CFB, de SA RO, Channing A, Wilkinson M, Donnellan SC, Rayworth CJ, Campbell JA, Blotto BL, Moler P, Droxes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC. The Amphibian Tree of Life. Bull Am Mus Nat Hist. 2006;297:1-370
5. Knight LA, Christenson MK, Trease AJ, Davis PH, Kolak AS. The spring runoff in Nebraska’s (USA) Elkhorn River watershed and its impact on two sentinel organisms. Environ Toxicol Chem. 2013;32:1544-1551
6. Hayes TB, Anderson LL, Beasley VR, de Solla SR, Iguchi T, Ingraham H, Kestemont P, Kniweld J, Kniewald Z, Langlois VS, Luque EH, McCoy KA, Muñoz-de-Toro M, Oka T, Oliveira CA, Orton F, Ruby S, Suzawa M, Tavares-Mendoza LR, Trude V, Victor-Costa AB, Willingham E. Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. J Steroid Biochem Mol Biol. 2011;127:64-75
7. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863-864
8. [Internet] Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH. A Reference-free algorithm for computational normalization of shotgun sequencing data. http://arxiv.org/abs/1203.4802v2
9. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013;41:226-233
10. Bu D, Yu K, Sun S, Xie C, Skogerbo G, Miao R, Xiao H, Luo J, Xiong Z, Zhao H, Liu Z, Liu C, Chen R, Zhao Y. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res. 2012;40:210-215
11. Conesa A, Gótz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674-3676
12. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821-829
13. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821-829
17. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:182-185.

18. Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357-359

19. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:1-13

20. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511-515.