Comparison of secondary islands in collisional reconnection to Hall reconnection

L. S. Shepherd and P. A. Cassak

Department of Physics, West Virginia University, Morgantown, WV, 26506, USA

Large-scale resistive Hall-magnetohydrodynamic (Hall-MHD) simulations of the transition from Sweet-Parker (collisional) to Hall (collisionless) magnetic reconnection are presented, the first to separate effects of secondary islands from collisionless effects. Three main results are described. There exists a regime in which secondary islands occur without collisionless effects when the thickness of the dissipation regions exceed ion gyroscales. The reconnection rate with secondary islands is faster than Sweet-Parker but significantly slower than Hall reconnection. This implies that secondary islands are not the cause of the fastest reconnection rates. Because Hall reconnection is much faster, its onset causes the ejection of secondary islands from the vicinity of the X-line. These results imply that most of the energy release occurs during Hall reconnection. Coronal applications are discussed.

Magnetic reconnection is widely regarded as the mechanism underlying energy release in the solar corona during flares, coronal mass ejections, and coronal jets [1]. The Sweet-Parker model [2, 3] was the first self-consistent theory, but is far too slow to explain observations. Much has been invested in faster reconnection scenarios, such as collisionless (Hall) reconnection [4] in which the Hall term plays a key role $\frac{E}{S}$ [5]. Hall reconnection seems fast enough to explain observed energy release rates [6]. Lately, the role of secondary islands (plasmoids) on Sweet-Parker reconnection has generated much interest. While they were discussed some time ago [8–10], systematic studies were not carried out until recently. It has been argued in various contexts that secondary islands make reconnection faster than Sweet-Parker reconnection [11–13]. (Note, we are discussing secondary islands occurring during collisional reconnection, not those that occur after collisionless reconnection has begun [14].)

Understanding secondary islands in Sweet-Parker reconnection is important for explaining coronal evolution. On the theoretical side, the reconnection rate places constraints on the dynamics. For example, if secondary islands make Sweet-Parker reconnection much faster or hasten the transition to fast reconnection, it cannot take place during pre-flare energy storage. If it remains slow, then it can occur while energy accumulates [15–17]. On the observational side, it was hypothesized that high density blobs in current sheets during solar eruptions are secondary islands [18, 19]. Also, numerous observations of reconnection processes display a slow phase preceding an eruptive event with an abrupt transition. Examples include non-eruptive flux emergence [20] and flows during coronal implosion as a result of an impulsive flare [21, 22].

Past work on secondary islands showed that they appear spontaneously due to a secondary tearing instability when the Lundquist number $S = 4\pi c_A L_{SP}/\eta c^2$ exceeds $\sim 10^4$ [10], where L_{SP} is the half-length of the Sweet-Parker dissipation region, η is the resistivity, and c_A is the Alfvén speed based on the reconnecting magnetic field. Equivalently, this can be written as $\delta/L_{SP} < 0.01$, where δ is the thickness of the dissipation region. A study of the linear phase of the instability [23] found a growth rate faster than the Alfvén transit time along the sheet.

Recent simulations addressed the nonlinear reconnection rate E for high S, showing that it is considerably faster than the Sweet-Parker rate and its dependence on S becomes weak [24, 25]. However, the simulations only go up to $S \sim 10^6$, so E is only one order of magnitude faster than the Sweet-Parker rate and it is not clear whether it will be fast or slow at larger S. Other relevant studies showed that E increases with the square root of the number of islands [26, 28], and that secondary islands are suppressed when reconnection is embedded, meaning that the upstream field is smaller than the asymptotic field [27]. Many studies consider secondary islands caused by external random magnetic perturbations [28, 31]. Other studies include the interaction of multiple islands [32] and a statistical model of multiple island interaction [33].

In addition to increasing the reconnection rate, secondary islands hasten the transition to Hall reconnection [26, 34]. When a secondary island forms, the fragmented current sheet is shorter, so its Sweet-Parker thickness is smaller [25, 26]. When the layer reaches ion gyroscales [35, 36], Hall reconnection begins abruptly [15, 26, 37–39]. This was recently verified using collisional particle-in-cell (PIC) simulations [26, 40].

The only previous study to include both secondary islands and the Hall effect utilized large PIC simulations [26, 40], but numerical constraints forced S to be small enough that Hall reconnection began as soon as a secondary island formed. Since the Hall effect arises only at ion gyroscales, there should be a regime in which secondary islands are present without the Hall effect playing a role if the sheet is thicker than ion gyroscales. The goal of this study is to separate the two effects and ascertain which one leads to dramatically larger reconnection rates, which dictates the mechanism releasing the majority of the energy during the eruptive phase of reconnection.

In this paper, the first simulations to separate the two effects are presented. There are three main results: (1) there is a regime in which secondary islands occur without collisionless effects entering, (2) the reconnection rate is faster than Sweet-Parker but significantly slower than Hall reconnection, which shows that secondary islands are not the cause of the highest reconnection rates, and (3) the onset of Hall reconnection ejects secondary is-
lands in the vicinity of the X-line. The latter two imply that the majority of the energy release occurs at Hall reconnection sites. Coronal applications are discussed.

Numerical simulations are performed using the two-fluid code F3D [41]. Magnetic fields and densities are normalized to arbitrary values B_0 and n_0, velocities to the Alfvén speed $c_{A0} = B_0/(4\pi m_in_0)^{1/2}$ where m_i is the ion mass, lengths to the ion inertial length $d_{i0} = c/\omega_{pi}$, times to the ion cyclotron time Ω^{-1}_i, electric fields to $E_0 = cA0B_0/c$, and resistivities to $\eta_0 = 4\pi cA0d_{i0}/c^2$.

The initial configuration is a double tearing mode with two Harris sheets, $B_s(y) = \tanh[(y + L_y/4)/w_0] - \tanh[(y - L_y/4)/w_0] - 1$, where w_0 is the initial current sheet thickness and L_y is the system size in the inflow direction. Total pressure is balanced initially using a non-uniform density which asymptotes to 1. The temperature $T = 1$ is constant and uniform. A single X-line is seeded using a coherent magnetic perturbation of amplitude 1.6×10^{-2} to rapidly achieve nonlinear reconnection. Initial random magnetic perturbations break symmetry so secondary islands are ejected. There is no initial out-of-plane (guide) magnetic field. Boundaries in both directions are periodic. Electron inertia is $m_e = m_i/25$. This value is acceptable since we focus on the onset of Hall reconnection at ion scales rather than electron scales.

Simulation parameters are chosen so reconnection will proceed in three distinct phases: Sweet-Parker without secondary islands, Sweet-Parker with secondary islands, and Hall reconnection. A very large system size $L_x \times L_y = 819.2 \times 409.6$ is employed with resistivity $\eta = 0.008$, corresponding to a global Lundquist number $S_y = L_x/\eta \sim 10^5$, which exceeds the Biskamp criterion of 10^4. To postpone secondary island onset, we choose $w_0 = 12.0$ which makes the reconnection embedded [27]. Embedding makes the Sweet-Parker layer thicker since $\delta \sim (\eta L_{SP}/c_{Aup})^{1/2}$, where c_{Aup} is the Alfvén speed based on the upstream field B_{up}. For wide current layers, $B_{up} \sim B_0 \delta/w_0$ [27], so eliminating B_{up} gives $\delta \sim (\eta L_{SP}w_0)^{1/3} \sim 2.7$, where $L_{SP} \sim L_x/4 \sim 200$ in our periodic system. Thus, the layer begins wider than d_i, and since $\delta/L_{SP} > 0.01$, no secondary islands occur initially and the system undergoes Sweet-Parker reconnection. The reconnection inflow convects in stronger magnetic fields, so the current sheet self-consistently thins. Islands arise when $\delta/L_{SP} \sim 0.01$, which gives $\delta \sim 2.0$ since $L_{SP} \sim 200$. It has been shown [25, 24] that if N X-lines are present, δ decreases by a factor of $N^{1/2}$. For a single secondary island ($N = 2$), the layer shrinks to $\delta \sim 2.0/2^{1/2} \sim 1.4$. This exceeds d_i, so Sweet-Parker and secondary islands should persist. Hall reconnection only starts when $\delta \sim 1$, so three distinct phases occur.

A simulation is first performed with a grid scale $\Delta = 0.2$ and the results are qualitatively consistent with expectations. To assure Δ does not play a role, the simulations are redone with $\Delta = 0.1$, giving comparable results. Data is presented only from the high resolution runs. The equations employ fourth order diffusion with coefficient $D_4 = 1.75 \times 10^{-4}$ to damp noise at the grid scale. A smaller value of D_4 leads to a slightly larger Hall reconnection rate, but does not alter our key conclusions.

We now summarize the simulation results, followed by a careful justification of the conclusions. At early times, Sweet-Parker reconnection prevails. A secondary island first appears at $t \approx 700$. Reconnection proceeds with the secondary island until $t \approx 1780$, when Hall reconnection sets in. Thus, reconnection proceeds in three distinct phases including an extended phase with secondary islands but without the Hall effect triggered.

We compare the reconnection rate E in the three phases to each other and to theoretical predictions in Fig. 1(a), showing E vs. time t as the solid (blue) line. We measure E as the time rate of change in the difference in magnetic flux function ψ between the main X-line and O-line. Dashed lines at $t = 700$ and 1780 denote where secondary islands and the Hall effect arise, respectively. Ignoring secondary islands, Sweet-Parker theory predicts $E \sim E_{SP} \sim 0.006$, where $E_{SP} \sim (\eta/L_{SP})^{1/2}$, and $L_{SP} \sim 200$. This assumes the magnetic field is its asymptotic value of 1. The measured value is $E \sim 0.004$, slightly lower than predicted as expected because $B_{up} < 1$ (the reconnection is embedded). When N X-lines are present, E scales as $E_{SP} \sim E_{SP}\sqrt{N}$ [26, 27]. The measured rate of 0.005 is consistent with this for a single secondary island ($N = 2$). After the Hall effect sets off, E increases by about an order of magnitude. Therefore, the reconnection rate with secondary islands is faster than Sweet-Parker, but significantly slower than Hall reconnection.

The transitions occur when predicted, as shown in

![FIG. 1: (Color) (a) Reconnection rate E as a function of time t. The solid (blue) line is a Hall-MHD run. Dashed lines at $t = 700$ and 1780 indicate the onset of secondary islands and Hall reconnection, respectively. The dot-dashed (red) line shows E for a simulation restarted at $t = 1120$ with no Hall effect and $m_e = 0$. (b) Thickness δ of the dissipation region vs. t. Horizontal dotted lines mark predicted δ for the onset of secondary islands ($\delta \sim 2$) and Hall reconnection ($\delta \sim 1$).](image)
Early in time, \(J_z \) is structureless and extends the half-length of the domain, as expected during Sweet-Parker reconnection. A secondary island near \(x = 0 \) appears as a dark spot with associated strengthening of the fragmented current sheets. This occurs at \(t \approx 700 \), marked by the vertical dashed line. This agrees with Biskamp’s criterion shown in Fig. 1(b). As time evolves, the island grows and \(\delta \) shrinks. When \(\delta \sim d_i \), Hall reconnection onsets and the current sheet becomes much shorter and intense, appearing as a sharp peak in \(J_z \) in Fig. 2. This begins at \(t \approx 1780 \), as also marked in Fig. 1(b).

There are two locations where Hall reconnection onsets. An X-line near \(x \approx -70 \) onsets slightly earlier than an X-line at \(x \approx 70 \). As Fig. 2 vividly shows, the latter X-line is ejected from the dissipation region, along with the secondary island, which is ejected at the Alfvén speed. The ejection of the secondary island implies that the two effect will not (locally) coexist, so most of the energy is released at Hall reconnection sites.

This current sheet has only a single secondary island and one may ask whether this result remains valid in more realistic settings with multiple islands. To address this, we show results from the other current sheet in our double tearing mode setup, showing the ejection of secondary islands when Hall reconnection onsets.

FIG. 2: (Color) Time history plot of the out-of-plane current density \(J_z \) in the outflow direction. Dashed lines mark when a secondary island appears and when the Hall term onsets.

FIG. 3: (Color) Time evolution of \(J_z \) from the other current sheet in our double tearing mode setup, showing the ejection of secondary islands when Hall reconnection onsets.

A careful determination of when the Hall effect begins to become important is obtained using a time history plot of the out-of-plane Hall electric field \(E_{Hz} = J_y B_x / n \) in the inflow direction through the main X-line, plotted in Fig. 4(a). (Note, this cut is in the inflow direction, while Fig. 2 is in the outflow direction.) The color bar is again stretched. The plot clearly shows that \(E_{Hz} \) does not contribute during the secondary island phase. A cut of \(E_{Hz} \) in time, taken at the solid (gray) line in Fig. 4(a), is plotted in Fig. 4(b). The onset time, defined as when \(E_{Hz} \) reaches 1% of its maximum value, is at \(t \approx 1780 \), the time that \(E \) begins to increase as seen in Fig. 1(a).

To emphasize differences between Sweet-Parker with secondary islands and Hall reconnection, we restart the simulation at \(t = 1120 \) with the Hall effect and electron inertia disabled. The reconnection rate is plotted as the dot-dashed (red) line in Fig. 1(a). The value reaches \(E \approx 0.009 \) as the asymptotic upstream field reaches the dissipation region, in excellent agreement with the predicted value \(E_{SI} \sim E_{SP} \sqrt{N} \approx 0.009 \) with \(N = 2 \) for a single island. This rate is consistent with the largest
two-phase reconnection events in the corona. In observations of flux emergence \cite{20}, a slow phase of reconnection preceded an abrupt transition to a fast phase \sim 30 times faster (compare the slopes in their Fig. 18). In observations of the contraction of magnetic loops in an impulsive flare \cite{22}, the contraction velocity abruptly increased by a factor of \sim 16. It is enticing to attribute these observations to a transition from resistive secondary island reconnection at a normalized reconnection rate of \Er \sim 0.01 (consistent with implications of Refs. \cite{24,26} to Hall reconnection \sim 10 times faster which occurs abruptly when gyroscales are reached. The existing level of accuracy of both theory and observations make such an identification premature, but it remains an exciting possibility.

Assumptions in this work that require further study include using a Spitzer resistivity instead of the uniform resistivity employed here, including Ohmic heating and viscosity, and including Dreicer field effects, which may be important for the transition to Hall reconnection. The simulations have no guide field, but one would be expected in the corona. Also, the simulations are two-dimensional; three-dimensional effects are not included.

The authors gratefully acknowledge support by NSF grant PHY-0902479, NASA’s EPSCoR Research Infrastructure Development Program and a WVU Faculty Senate Research Grant. This research used resources at National Energy Research Scientific Computing Center. We thank J. F. Drake for helpful conversations.

[1] J. Birn and E. Priest, eds., \textit{Reconnection of Magnetic Fields} (Cambridge University Press, 2007).
[2] P. A. Sweet, in \textit{Electromagnetic Phenomena in Cosmical Physics}, edited by B. Lehnert (Cambridge University Press, New York, 1958), p. 123.
[3] E. N. Parker, J. Geophys. Res. 62, 509 (1957).
[4] J. Birn et al., J. Geophys. Res. 106, 3715 (2001).
[5] K. Malakit et al., Geophys. Res. Lett. 36, L07107 (2009).
[6] P. A. Cassak et al., Phys. Plasmas 17, in press, (2010).
[7] M. A. Shay et al., Geophys. Res. Lett. 26, 2163 (1999).
[8] W. H. Matthaeus and S. L. Lamkin, Phys. Fluids 26, 303 (1985).
[9] W. H. Matthaeus and S. L. Lamkin, Phys. Fluids 29, 2513 (1986).
[10] D. Biskamp, Phys. Fluids 29, 1520 (1986).
[11] B. Kliem, in \textit{Proc. CESRA Workshop}, edited by A. O. Benz and A. Krueger (1995), vol. 444, p. 93.
[12] A. Lazarian and E. Vishniac, Ap. J. 517, 700 (1999).
[13] G. Lapenta, Phys. Rev. Lett. 100, 235001 (2008).
[14] W. Daughton et al., Phys. Plasmas 13, 072101 (2006).
[15] P. A. Cassak et al., Phys. Rev. Lett. 95, 235002 (2005).
[16] D. A. Uzdensky, Ap. J. 671, 2139 (2007).
[17] P. A. Cassak et al., Ap. J. Lett. 676, L69 (2008).
[18] A. Ciaravella and J. C. Raymond, Ap. J. 686, 1372 (2008).
[19] J. Lin et al., Ap. J. 693, 1666 (2009).
[20] D. W. Longcope et al., Ap. J. 630, 596 (2005).
[21] R. Liu et al., Ap. J. 696, 121 (2009).
[22] R. Liu and H. M. Wang, Ap. J. Lett. 714 (2010).
[23] N. F. Loureiro et al., Phys. Plasmas 14, 100703 (2007).
[24] A. Bhattacharjee et al., Phys. Plasmas 16, 112102 (2009).
[25] P. A. Cassak et al., Phys. Plasmas 16, 102702 (2009).
[26] W. Daughton et al., Phys. Rev. Lett. 103, 065004 (2009).
[27] P. A. Cassak and J. F. Drake, Ap. J. Lett. 707, L158 (2009).
[28] D. Smith et al., Geophys. Res. Lett. 31, L02805 (2004).
[29] G. Kowal et al., Ap. J. 700, 63 (2009).
[30] N. F. Loureiro et al., Mon. Not. R. Astron. Soc. 399, L146 (2009).
[31] M. Skender and G. Lapenta, Phys. Plasmas 17, 022905 (2010).
[32] T. K. M. Nakamura et al., Geophys. Res. Lett. 37, L02103 (2010).
[33] R. L. Fermo et al., Phys. Plasmas 17, 010702 (2010).
[34] K. Shibata and S. Tanuma, Earth Planets Space 53, 473 (2001).
[35] M. E. Mandt et al., Geophys. Res. Lett. 21, 73 (1994).
[36] Z. W. Ma and A. Bhattacharjee, Geophys. Res. Lett. 23, 1673 (1996).
[37] A. Bhattacharjee, Annu. Rev. Astron. Astrophys. 42, 365 (2004).
[38] P. A. Cassak et al., Ap. J. 644, L145 (2006).
[39] P. A. Cassak et al., Phys. Rev. Lett. 98, 215001 (2007).
[40] W. Daughton et al., Phys. Plasmas 16, 072117 (2009).
[41] M. A. Shay et al., Phys. Plasmas 11, 2199 (2004).