Interactions in higher-spin gravity: a holographic perspective

Charlotte Sleight

Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, 1050 Brussels, Belgium

E-mail: charlotte.sleight@gmail.com

Received 27 October 2016, revised 22 June 2017
Accepted for publication 25 July 2017
Published 21 August 2017

Abstract

This review is an elaboration of recent results on the holographic re-construction of metric-like interactions in higher-spin gauge theories on anti-de Sitter space (AdS), employing their conjectured duality with free conformal field theories (CFTs). After reviewing the general approach and establishing the necessary intermediate results, we extract explicit expressions for the complete cubic action on AdS_{d+1} and the quartic self-interaction of the scalar on AdS_4 for the type A minimal bosonic higher-spin theory from the three- and four-point correlation functions of single-trace operators in the free scalar $O(N)$ vector model. For this purpose tools were developed to evaluate tree-level three-point Witten diagrams involving totally symmetric fields of arbitrary integer spin and mass, and the conformal partial wave expansions of their tree-level four-point Witten diagrams. We also discuss the implications of the holographic duality on the locality properties of interactions in higher-spin gauge theories.

Keywords: higher-spin theories, $O(N)$ vector models, AdS/CFT, Witten diagrams, conformal partial wave expansion, bulk locality

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. A tale of two theories

Existing physical theories provide a powerful framework to describe all phenomena observed so far in Nature. To date, the range of length scales accessed by physical experiment is colossal: from the deep subatomic distances of $\sim 10^{-19}$ m probed by collisions of highly accelerated particles, to $\sim 10^{25}$ m from deep sky surveys.
The two monumental pillars behind our theoretical understanding of Nature thus far are quantum field theory (QFT) and General Relativity:

QFT describes the dynamics of elementary particles. All known elementary particles and their interactions are encoded in the Lagrangian of the standard model of particle physics [1–3], and consists of three fundamental ingredients: matter fields, the Brout–Englert–Higgs boson responsible for particle masses [4–7] and force carriers (gauge bosons). The gauge bosons account for three of the four known fundamental interactions amongst the constituents of visible matter: the electromagnetic, strong nuclear and weak nuclear forces.

The remaining fundamental force is gravity. Einstein’s theory of general relativity [8] provides a beautiful theory of gravitation at the classical level, which elegantly geometrises dynamics. Gravity is a dominant force at large, cosmic, scales and indeed, general relativity is the backbone of the cosmological standard model (or ΛCDM model). The latter provides a coherent framework for the history of the Universe from Big Bang nucleosynthesis up to the present day.

In spite of these successes, the theoretical tools of QFT—that have been so effective in describing interactions at the subatomic scale—are unfortunately not directly applicable to the gravitational force. The characteristic gravitational scale is the Planck scale \(\ell_{\text{pl}} \sim 10^{-35} \) m, with the gravitational coupling being \(\sim \ell_{\text{pl}}^2/L^2 \) in a process at length scales \(L \). Unlike for the standard model, general relativity therefore suffers a lack of predictive power at Planckian scales, where it becomes strongly coupled (in other words, it is non-renormalisable [9, 10]). An understanding of how to reconcile QFT and general relativity is imperative, since gravity couples to matter and consequently we cannot forgo the need for a quantum description of it.

One approach, which has proven to be particularly successful in improving UV behaviour, is to consider coupling gravity to an enlarged spectrum of gauge and matter fields. A notable example is \(N = 8 \) supergravity, which contains one graviton, 8 gravitinos (which have spin 3/2), 28 vector bosons, 56 fermions and 70 scalar fields. Current results indicate its finiteness at seven-loop order [11–15], with speculations that it is all-loop finite. These promising results illustrate that the idea of increasing the particle content, and symmetry, is one worth pursuing.

1.2. Higher-spins and strings

From a Wilsonian perspective, both the standard model and general relativity are effective field theories describing the relevant degrees of freedom up to a certain energy scale. The ultimate physical theory is viewed as having an onion-like structure, with different layers corresponding to different energies, with different degrees of freedom being excited and governed by different Lagrangians. In this regard, the break down of general relativity at the Planck scale indicates that it should be substituted by a new, more fundamental theory.

The problem of formulating a consistent quantum theory that includes as its low-energy limit both the standard model and general relativity is known as the quantum gravity problem. Because energies at which quantum-gravitational effects become significant are not directly accessible via existing experiments, the development of the subject has been largely driven by Gedanken experiments and symmetry principles.

For example, considering general relativity as an effective quantum theory with cut-off \(M_{\text{pl}} \), counter-terms to the Einstein–Hilbert action appear in the form of higher curvature invariants (due to diffeomorphism invariance) and therefore additional derivatives. At one loop for example, the only correction that is generated is the Gauss–Bonnet term,

\[
S_{1\text{-loop}} = S_{\text{EH}} + S_{\text{GB}} = \frac{1}{\ell_{\text{pl}}^2} \int \sqrt{-g} \left[R + \alpha \left(R^2 - 4R^{\mu \nu} R_{\mu \nu} + R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma} \right) \right],
\]

(1.1)
with $\alpha \gg \ell_p^2$. Such corrections ($\mathcal{O}(R^2, R^4, \ldots)$) lead to short distance violations of causality at the classical level [16], inducing (Shapiro) time advances. Causality cannot be restored by adding local higher curvature terms, but instead by introducing an infinite number of new massive particles of spins $s > 2$ and mass $\sim 1/\sqrt{\alpha}$.

We see from above example that basic consistency requirements seem to imply that a theory of quantum gravity should admit a completion to a theory with an enlarged spectrum, which includes an infinite tower of higher-spin excitations.

A promising research program which addresses the problem of quantum gravity is string theory, which indeed has a spectrum containing infinitely many massive excitations of increasing mass and spin. These arise from the different vibrational modes of the fundamental string, in an enticing unified manner. The string states dispose themselves on Regge trajectories in the $(mass)^2$ versus spin plane, where for the first Regge trajectory we have, e.g. for the open bosonic spin in flat space,

$$\alpha' m_s^2 = s - 1,$$

with $\alpha' = \ell_s^2$ the square of the string length. In fact, the higher-spin resonances are responsible for the improved UV behaviour [17–25] compared to general relativity above, essentially because the string length l_s acts as a natural UV-cutoff.

An important observation from our experience with QFTs is that improved UV behaviour is typically the signal of an underlying symmetry. In addition to the example of supersymmetry mentioned previously, another well-known example of this phenomenon is given by the weak interaction: Fermi’s four-fermion theory is non-renormalisable, but describes the weak interaction remarkably well up to ~ 100 GeV. Together with QED, it can be considered as the low-energy effective theory for the standard model of the electroweak interactions. In the latter, as opposed to the effective four-point interaction of Fermi’s theory, weak interactions are mediated by massive W^\pm and Z bosons. These arise from the spontaneous breaking of an $SU(2) \times U(1)$ gauge symmetry, which emerges at very high energies.

One may then ask whether a similar phenomenon occurs in string theory. This question was indeed posed by Gross in 1988 [26], and subsequently explored in a number of works (for instance: [25, 27–33]). Just like the broken $SU(2) \times U(1)$ symmetry of the electroweak interactions can be seen by examining weak scattering amplitudes at energies high enough so that the masses of W^\pm and Z can be neglected, by studying the high energy ($\alpha' \rightarrow \infty$) behaviour of string scattering, Gross argued for the existence of an infinite dimensional symmetry group that gets restored at high energies. Should this be the case, the symmetry would be generated by gauge symmetries associated to the infinite family of higher-spin gauge fields that emerge in this limit.

With the presence of an infinite dimensional symmetry comes a lot of control. Uncovering such an underlying symmetry principle behind string theory could therefore lead to a greater understanding of quantum gravity at high energies. For example, from the space-time viewpoint string theory is still formulated in a background-dependent manner, without an analogue of the powerful geometric background independent presentation of Einstein gravity. Furthermore, at present both the action principle and equations of motion for the second quantised form of string theory (string field theory) require the addition of infinitely many auxiliary fields. In this sense there is much to be unravelled about the properties of high energy interactions in quantum gravity.

1 For example, recall that on the first Regge trajectory in flat space we have $m_s^2 \propto 1/\alpha' \rightarrow 0$.

2 At the free level, the second quantised formulation of all string models was completed in the ‘80s [34–41]. While at the interacting level, see for example: [42–44].
1.3. This review

In this review we aim to summarise recent efforts towards shedding light on the nature of interactions in the presence of higher-spin symmetry. To this end we employ a particular consequence of string theory known as holography, focusing on its most celebrated incarnation: the AdS/CFT correspondence [45–47].

In its most general form, the AdS/CFT correspondence is the statement that two systems are equivalent:

\[
\text{AdS}_{d+1} \text{QG} = \text{CFT}_d.
\] (1.3)

Quantum gravity in asymptotically anti-de Sitter spacetime \(\text{AdS}_{d+1}\) and non-gravitational conformal field theory\(^3\) (CFT) in a flat \(d\)-dimensional spacetime. This relationship is called a duality. It is holographic since the gravitational theory lives in (at least) one extra dimension. Since AdS space is conformally flat, we can in fact think of the dual CFT as living on the boundary of the gravity theory in AdS. This is often represented as in figure 1.

The duality (1.3) is remarkable as it opens up the possibility to study quantum gravity through its dual CFT, and vice versa. In particular, the dimensionless coupling \(\lambda\) in the CFT is typically related to the string length of the gravity theory in AdS via

\[
\lambda \sim \left(\frac{R^2}{\alpha'} \right)^{d/2},
\] (1.4)

where \(R\) is the AdS radius. This relationship between the CFT coupling and the string length tells us that the duality (1.3) is strong-weak in nature, with two interesting limits:

1. The point-particle limit: \(\alpha'/R^2 \to 0\), where the CFT coupling grows large \(\lambda \gg 1\).
2. The high energy limit: \(\alpha'/R^2 \to \infty\), in which \(\lambda \to 0\).

Although 1. has been subject to intense study to mine the possibilities of investigating strongly coupled systems via relatively well understood general relativity\(^4\), 2. underpins the topic of this review.

The limit 2. tells us that the high-energy limit of string theory may be probed by taking the free theory limit \(\lambda \to 0\) in the dual CFT [50–63]. As will become apparent later, free CFTs are constrained by higher-spin symmetry owing to the emergence of an infinite tower of conserved currents of increasing spin in the free limit. Since the dual quantum gravity theory should be governed by the same symmetry as its CFT counterpart, this makes the existence of a highly symmetric phase of string theory even more plausible and more tractable to study.

The most famous manifestation of the holographic duality (1.3), crystallised by Maldacena in 1997 [45], is the conjecture that \(\mathcal{N} = 4\) super Yang–Mills theory in \(d = 3 + 1\) dimensions is equivalent to type IIB superstring theory on \(\text{AdS}_5 \times S^5\). In the high energy limit \(\alpha'/R^2 \to \infty\), the string spectrum on the \(\text{AdS}_5 \times S^5\) background has been extrapolated, and could be identified with the operator spectrum of planar\(^5\) \(\mathcal{N} = 4\) super Yang–Mills theory at weak coupling \((\lambda \to 0)\) [64–70]. With control of the spectrum, studies towards understanding the spontaneous breaking of the local higher-spin symmetries in AdS were also undertaken from a holographic vantage point. From the CFT perspective, this corresponds to switching on the Yang–Mills coupling \((\lambda \neq 0)\), leading to the anomalous violation of the higher-spin \((s > 2)\) conserved currents. These studies were made possible by a remarkable feature of

\(^3\) A conformal field theory is a quantum field theory without any intrinsic scale.

\(^4\) See [48, 49] for pedagogical introductions.

\(^5\) i.e. when the number of colours goes to infinity. As shall be explained later, this limit corresponds to the weak coupling regime of the dual string theory.
Topical Review

$\mathcal{N} = 4$ super Yang–Mills, which is that the spectrum of local operators is calculable for any coupling λ in the planar limit [71]. See [32, 33, 72] for the more recent parallel storyline unfolding in AdS$_3$, where further relevant progress has been made.

While the above example provides a concrete framework to study string theory in the $\alpha' \to \infty$ limit, in practice this is complicated by the exponentially growing spectrum, composed of infinitely many Regge trajectories. A streamlined version of this set-up is provided by instead considering interacting higher-spin gauge theories on AdS space, which are believed to provide an effective description of the first Regge trajectory of string theory in the tensionless limit. Such theories have been conjectured to be dual to the free fixed points of vector models[52, 73–79], which indeed have linear spectra as opposed to the exponentially growing spectra of Matrix models, like that of $\mathcal{N} = 4$ super Yang–Mills theory. The duality between higher-spin theories and vector models therefore provides a toy model for investigating the nature of string interactions in its putative maximally symmetric phase. Moreover, there have been recent results on embedding such higher-spin gauge theories into string theory [85, 86].

The construction of consistent interactions amongst higher-spin gauge fields has a long history, with some of their properties remaining quite elusive. While on a flat background the existence of consistent higher-spin theories remains to be clarified, significant progress has been made on an AdS background: thus far all possible structures for cubic interactions of bosonic gauge fields have been constructed for any triplet of spin [31, 109–128] and classified [99, 121, 125, 126], with consistent propagation at the non-linear level requiring the spectrum to be unbounded in spin [101, 102, 129]. Within a metric-like Lagrangian framework, little is known about the properties of quartic and higher-order interactions in (A)dS, though background-independent fully non-linear equations of motion have been constructed by Vasiliev [76, 79, 133–142], which employ an infinite set of auxiliary fields.

Without additional auxiliary fields, a complete understanding of higher-spin theories beyond cubic order and in a metric-like Lagrangian framework is a problem which has remained open.

6 See also [80–84] for earlier closely related work.
7 In particular in the view of the no-go theorems [87–99], with [100] being a nice review. However see [101–108] for further developments in four-dimensions using non-covariant formalisms.
8 This comes from the structure of the higher-spin algebra, which is to large extent unique [130–132].
9 See also [143–147] for proposals of an action, using the machinery of auxiliary fields.
since the ball began rolling for studies of higher-spin interactions in the '70s. In particular, like
the tail of α' corrections in string theory, one expects the emergence of non-local interactions
unbounded in their number of derivatives, whose locality properties have not yet been fully
understood [98, 106–108, 148–157]. The latter behaviour requires careful consideration for
the consistency of interacting higher-spin theories.

Holographic duality (1.3) may in principle to shed some light on the above questions
regarding the nature of interactions in higher-spin gauge theories. The main idea is simple:
correlation functions of the free CFTs can be interpreted as a perturbative Feynman diagram
expansion in a higher-spin gauge theory on an AdS background. Assuming this holographic
duality holds, with the knowledge of correlators in the free CFT (which, in a free theory, are
straightforward to compute by Wick’s theorem) one can then in principle extract the interac-
tions in the bulk higher-spin theory and study their properties.

1.4. Outline

The outline of this review is as follows:

In section 2 we explain in detail the general approach employed to holographically recon-
struct bulk interactions from CFT. We review the precise dictionary between CFT correlation
functions and amplitudes in the dual gravity theory on AdS, as well as the identification of
CFT operators with fields in AdS. We further elaborate on the relevant aspects of the duality
between higher-spin theories on AdS and free CFTs, focusing in particular on its simplest
manifestation: the conjectured duality between the free scalar $O(N)$ model and the so-called
minimal type A higher-spin gauge theory.

In section 3 we give a self contained review of the techniques in CFT which are relevant
for this work. We recall how the conformal symmetry constrains two-, three- and four-point
functions of operators, paying particular attention to operators of arbitrary integer spin. We
further review the conformal partial wave expansion of four-point correlation functions, and
introduce useful techniques for later application.

In section 4 we introduce the free scalar $O(N)$ vector model. We apply the review of CFT
correlators in section 3, together with useful methods to apply Wick’s theorem, to establish
the two- and three-point functions of all single-trace conserved currents of arbitrary spin in
the theory. We also compute the four-point function of the scalar single-trace operator, and deter-
mine all coefficients in its operator product expansion. With the latter result, we determine the
conformal partial wave expansion and express it in an integral form for later application. This
section is based on aspects of the original works: [152, 158].

Section 5 is dedicated to the computation of Witten diagrams. We review existing results
for three-point Witten diagrams involving external scalars, and present their extension to
external fields of arbitrary integer spin and mass. We then turn to four-point Witten diagrams,
deriving bulk-to-bulk propagators for gauge fields of arbitrary spin in a basis of AdS harmonic
functions. We then demonstrate how to expand a general four-point Witten diagram into con-
formal partial waves. We apply the latter techniques to Witten diagrams with identical exter-
nal scalars, including four-point exchanges of gauge fields with arbitrary spin and a general
contact interaction dressed with derivatives. This section is based on aspects of the original
works: [152, 158–160].

Section 6 is a culmination of the preceding sections, in which the intermediate results
established throughout are put together to extract all cubic interactions in the minimal bosonic
higher-spin theory on AdS_{d+1}, and the quartic self-interaction of the scalar for the theory on
AdS_4. This section is based on aspects of the original works: [152, 158].
In section 7 we summarise the main results and discuss the non-locality of higher-spin interactions from a holographic perspective. This section is based on ongoing work (see e.g. [161]), and aspects of the original works: [152, 155]. Various technical details are relegated to the appendices A–I). In particular, a detailed review of the ambient formalism is given in appendix A.

2. The AdS/CFT correspondence

As stated in the introduction, the AdS/CFT correspondence is the conjecture that quantum gravity in asymptotically anti-de Sitter spacetime AdS_{d+1} is equivalent to a non-gravitational conformal field theory (CFT) in a flat d-dimensional spacetime,

$$\text{AdS}_{d+1} \text{QG} = \text{CFT}_d. \quad (2.1)$$

The aim of this section is to review the most pertinent aspects of this duality relevant for holographic reconstruction of interactions of bulk fields from CFT data.

2.1. Practicalities

In practice, the holographic correspondence is more conveniently formulated in terms of the generating functions, in Euclidean signature.

In a CFT, the generating function $F_{\text{CFT}}[\bar{\phi}]$ of connected correlators admits the path-integral representation,

$$\exp\left(-F_{\text{CFT}}[\bar{\phi}]\right) = \int D\phi \exp\left(-S_{\text{CFT}}[\phi] + \int d^d y \bar{\phi}(y) O(y)\right). \quad (2.2)$$

We use ϕ to denote the fundamental field(s) in the theory, governed by the conformally invariant action $S_{\text{CFT}}[\phi]$. The operator O is built from the fields ϕ, and is sourced by $\bar{\phi}(y)$. The source is not dynamical, but a fixed function which is under our control\(^{10}\).

The basic idea behind the holographic duality (2.1) is to breathe life into the source $\bar{\phi}$. We can think of the CFT as living on the boundary of the higher-dimensional AdS_{d+1}, in which the source is promoted to a dynamical field $\varphi(y,z)$ governed by the bulk action $S_{\text{AdS}}[\varphi]$ at the classical level. The only control we have over the field is the boundary value $\bar{\phi}(y)\big|_{z=0}$.

The duality then states that the physical quantity $F_{\text{CFT}}[\bar{\phi}]$ in the CFT coincides with the AdS one $\Gamma_{\text{AdS}}[\varphi]$, [46, 47]. I.e. $F_{\text{CFT}}[\bar{\phi}] = \Gamma_{\text{AdS}}[\varphi]$, with

$$\exp\left(-\Gamma_{\text{AdS}}[\varphi]\right) = \int_{\varphi_{\text{dual}}=\varphi} D\varphi \exp\left(-\frac{1}{G} S_{\text{AdS}}[\varphi]\right), \quad (2.3)$$

and G the gravitational constant. We make the above identification more precise in the following section.

The GKP/W formula provides a prescription for computing correlation functions of gauge invariant operators in the CFT using the dual gravity theory. Connected correlation functions for instance can be computed by instead functionally differentiating the bulk quantity $\Gamma_{\text{AdS}}[\varphi]$

$$\langle O(y_1) \ldots O(y_n) \rangle_{\text{conn.}} = (-1)^n \frac{\delta}{\delta \varphi(y_1)} \ldots \frac{\delta}{\delta \varphi(y_n)} \Gamma_{\text{AdS}}[\varphi] \big|_{\varphi=0}, \quad (2.4)$$

with each differentiation sending a $\varphi(y,z)$ particle into AdS.

\(^{10}\) For example, it might be a background electric or magnetic field, or a background pressure density.
Quantum effects in the gravity theory on AdS are measured in the dual CFT by the number of degrees of freedom
\[
\left(\frac{R}{\ell_p} \right)^{d-1} \sim N_{\text{dof}} .
\] (2.5)
This can be understood by the fact that we can roughly measure the degrees of freedom in a CFT by the overall coefficient \(C_T \) of the energy momentum tensor two-point function\(^\text{11} \). From the preceding discussion, under the holographic duality we identify
\[
\langle TT \rangle_{\text{CFT}} \sim C_T \sim N_{\text{dof}} \quad \leftrightarrow \quad \langle gg \rangle_{\text{AdS}} \sim \frac{R^{d-1}}{G} \sim \left(\frac{R}{\ell_p} \right)^{d-1} .
\] (2.6)
since the CFT energy momentum tensor is dual to the graviton in AdS (see section 2.2). This gives the relation (2.5). The classical limit in the bulk thus corresponds to having a large number of degrees of freedom in the dual CFT, \(N_{\text{dof}} \gg 1 \). In particular, the weak coupling \(G \ll R \) expansion
\[
\Gamma_{\text{AdS}} [\bar{\phi}] = \frac{1}{G} \Gamma_{\text{AdS}} [\bar{\phi}]^{(0)} + \Gamma_{\text{AdS}} [\bar{\phi}]^{(1)} + G \Gamma_{\text{AdS}} [\bar{\phi}]^{(2)} + ..., \] (2.7)
which is regulated by the dimensionless coupling
\[
g := R^{1-d} G \sim 1/N_{\text{dof}} + \mathcal{O} \left(1/N_{\text{dof}}^2 \right) ,
\] (2.8)
translates to a large \(N_{\text{dof}} \) expansion in the CFT,
\[
F_{\text{CFT}} = N_{\text{dof}} F_{\text{CFT}}^{(0)} + F_{\text{CFT}}^{(1)} + \frac{1}{N_{\text{dof}}} F_{\text{CFT}}^{(2)} +
\] (2.9)
Given that the expansion (2.7) encodes the one-particle irreducible scattering amplitudes of the \(\varphi_i \) in AdS, we encounter an elegant diagrammatic holographic interpretation of connected CFT correlators at large \(N_{\text{dof}} \):
\[
\langle \mathcal{O}_1 (y_1) \ldots \mathcal{O}_n (y_n) \rangle_{\text{conn.}} = \sum_{k=0}^{\infty} G^{k-1} \sum_{k=0}^{\infty} \frac{1}{N_{\text{dof}}} \]
\[
\Gamma_{\text{AdS}} [\bar{\phi}]^{(k)} = G^{k-1} \Gamma_{\text{AdS}} [\bar{\phi}]^{(0)} + G^k \Gamma_{\text{AdS}} [\bar{\phi}]^{(1)} + \frac{1}{N_{\text{dof}}} \Gamma_{\text{AdS}} [\bar{\phi}]^{(2)} +
\] (2.10)
The bulk diagrams on the right hand side are known as Witten diagrams. They were first computed in the context of the limit 1. of the duality in [162–172, 173–183]. More recently Witten diagrams in the context of the limit 2. where considered in [152, 158–160, 184–192]. One-loop vacuum energies \((n = 0 \text{ and } k = 1 \text{ in (2.10)}) \) have been computed in [193–202].

\(^{11}\text{Consider for example free theory: the stress tensors add, so increasing the number of fields (degrees of freedom) increases the two-point function coefficient.}\)
2.2. Field-operator map

What does it take for an operator O of scaling dimension Δ and spin-s to be described by some field ϕ in an asymptotically AdS$_{d+1}$ space? First of all, the CFT operator must be gauge invariant. This restricts the spectrum of local operators to be composed of traces. In the large N_{def} limit, single-trace operators are identified with single particle states in the gravity theory, while multi-trace operators with multi-particle states.

An important feature of the AdS/CFT duality is that both theories are governed by the same symmetry group: the conformal group is isomorphic to $SO(d,2)$, which is the isometry group of AdS. A second natural requirement for CFT operators and bulk fields to be identified, is then that they sit in the same representation of $SO(d,2)$. This has the implication that ϕ is also spin-s. Furthermore, it must transform in the same way as O under dilatations, which correspond to boundary limit of the energy generators E in AdS:

The action of the dilatation generator D on O is derived in section 3.2, and is given by

$$[D, O(y)] = -i (\Delta + y \cdot \partial) O(y).$$ \hspace{1cm} (2.11)

It acts on the bulk field ϕ through a Lie derivative with respect to the AdS Killing field E (see appendix A, e.g. equation (A.18))12:

$$L_E \phi_{\mu_1...\mu_s} = -i (z \cdot \partial z + y \cdot \partial y + s) \phi_{\mu_1...\mu_s}.$$ \hspace{1cm} (2.13)

Comparing the above with (2.11), to preserve conformal invariance as $z \to 0$, we require for boundary directions

$$z \cdot \partial_z + s) \phi_{i_1...i_s} \sim z^{\Delta-\epsilon}.$$

The coefficient of $z^{\Delta-\epsilon}$ is identified with the expectation value $\langle O(y) \rangle$, since both have the same transformation properties under the conformal group.

The source $\bar{\phi}$ of O has scaling dimension $d - \Delta$, which can be verified by demanding that (2.2) is invariant under dilatations. For ϕ to describe the source, we thus require13

$$\phi_{i_1...i_s} \sim z^{d+s-\Delta}$$

as $z \to 0$, with the coefficient of $z^{d+s-\Delta}$ given by the source $\bar{\phi}$.

The above near-boundary behaviour places restrictions on the mass of the field φ_i, which can be seen as follows. At the linearised level, we have

$$(-\Box + m_i^2) \varphi_{\mu_1...\mu_s} = 0.$$ \hspace{1cm} (2.16)

To extract the boundary behaviour, we need only consider the asymptotic form of the equation of motion as $z \to 0$, which in the boundary directions reads

$$- \left(\frac{z}{R} \right)^{d+1} \partial_z \left(\frac{R}{z} \right)^{d-1} \partial^z \varphi_{i_1...i_s} - \frac{2sz}{R^2} \partial^z \varphi_{i_1...i_s} + \frac{sd}{R^2} \varphi_{i_1...i_s} + \left(m_i^2 - \frac{1}{R^2} s (s-1) \right) \varphi_{i_1...i_s} = 0.$$ \hspace{1cm} (2.17)

12 For concreteness we work in Poincaré co-ordinates for AdS$_{d+1}$

$$ds^2 = \frac{R^2}{z^2} (dt^2 + dy_i dy^i),$$ \hspace{1cm} (2.12)

with R the AdS radius. The boundary of AdS is located at $z = 0$, with boundary directions $y_i, i = 1,...,d$.

13 Note that here we do not have $-s$ (unlike in (2.14)) since the μ indices are raised and receive a minus sign in the Lie derivative.
The solution is given in terms of two integration constants $A_{i_{1\ldots i}}, B_{i_{1\ldots i}}$\footnote{This can be obtained by Fourier transforming with respect to the boundary directions, and making an ansatz of the type $\hat{\varphi}_s(p, z) \sim A(p) z^{d-\Delta+s}$.},
\[
\varphi_{i_{1\ldots i}} \sim A_{i_{1\ldots i}}(y) z^{d-\Delta+s} + B_{i_{1\ldots i}}(y) z^{d-\Delta-s},
\] (2.18)
where Δ satisfies
\[
\Delta (\Delta - d) = m^2_{n} R^2.
\] (2.19)
Should this hold, from the above discussion we can thus interpret $A_{i_{1\ldots i}}(y)$ as the expectation value $\langle O_{i_{1\ldots i}}(y) \rangle$ in the presence of the source $B_{i_{1\ldots i}}(y) = \bar{\varphi}_{i_{1\ldots i}}(y)$.

To summarise, small excitations around a given CFT state are dual to perturbations of the gravitational background, where the latter satisfy equations of motion derived from the gravitational action.

\subsection*{2.2.1. Gauge fields and conserved currents.}
A special entry in the field-operator dictionary is reserved for operators/fields with spin-\(s\) and $\Delta = s + d - 2$. Such representations of $SO(d,2)$ are short representations due to the appearance of zero norm states in the Fock space. The latter form an invariant submodule, which can be factored out. This leaves us with a ‘shorter’ unitary representation. For the bulk fields, this multiplet shortening can be seen as the emergence of a gauge symmetry
\[
\delta \varphi_{\mu_{1\ldots \mu_s}} = \nabla_{(\mu_{1}} \xi_{\mu_{2\ldots \mu_s})}.
\] (2.20)
In the CFT, this shortening manifests itself in the conservation of the lowest weight (primary) operator in the conformal multiplet:
\[
\partial^i O_{i_{1\ldots i}} \approx 0.
\] (2.21)
Indeed, invariance of (2.2) under the gauge variations (2.20) corresponds to the conservation of O:
\[
0 = \delta \xi \int_{\partial AdS} d^d y \varphi^{i_{1\ldots i}} O_{i_{1\ldots i}} \approx \int_{\partial AdS} d^d y \xi^{i_{1\ldots i}} \partial^i O_{i_{1\ldots i}} \Rightarrow \partial^i O_{i_{1\ldots i}} \approx 0.
\] (2.22)

\subsection*{2.3. Higher-spin/vector model holography}
With the dictionary between CFT operators and bulk fields in place, we are ready to explore the holographic duality in more detail. As outlined in the introduction, we are interested in studying interactions in the high energy limit $\alpha'/R^2 \to \infty$ through the holographic looking-glass. The logic is clear: in this regime the dual CFT with coupling λ is free (recall (1.4))
\[
\lambda \sim \left(\frac{R^2}{\alpha'} \right)^{d/2} \to 0,
\] (2.23)
and one may then hope that its simplicity can be used to help us gain some insight in the bulk.
Let us first consider this limit in the context of well-known conjectured equivalence between $\mathcal{N} = 4$ super-Yang–Mills in $d = 3 + 1$ dimensions with $SU(N)$ gauge group, and the type IIB super-string on $AdS_5 \times S^5$. Amongst the single-trace operators in the former,
in the free limit there emerges an infinite tower of conserved currents of increasing spin. For example, bi-linears of the schematic form15,16

\[J_{i_1...i_s} = \frac{1}{N} \sum_{a=1}^{6} \text{Tr} \left[\phi^a \partial(i_1 \ldots \partial i_s) \phi^a \right] + \ldots, \quad s = 2, 4, 6, \ldots, \] (2.24)

where the \ldots denote terms which make the operator a primary one (see section 3.3), and the \(\phi^a \) are the six scalar fields17 in the adjoint representation of \(SU(N) \). Recalling the field-operator map for conserved currents (see section 2.2.1), each conserved current (2.24) is dual to a gauge field of the same spin in the bulk. In this way the correspondence confirms that string theory in the regime \(\alpha'/R^2 \rightarrow \infty \) possesses an infinite tower of gauge fields: one for each spin \(s \). Since these states saturate the unitarity bound, they have the lowest mass for given spin and therefore lie on the first Regge trajectory.

Since the fields in \(\mathcal{N} = 4 \) SYM are matrix valued, the single-trace operators in the theory are not restricted to bi-linears in the elementary fields. In general, any single-trace operator built from \(\phi^a \) can be expressed as a linear combination of the operators

\[\frac{1}{N^{n/2}} \text{Tr} \left[(\partial^{i_1} \ldots \partial^{i_{n+1}} \phi^{a_1}) (\partial^{j_1} \ldots \partial^{j_{n+2}} \phi^{a_2}) \ldots (\partial^{k_1} \ldots \partial^{k_{n+m}} \phi^{a_n}) \right], \] (2.25)

which are multi-linear in the elementary fields. These correspond to the exponentially growing number of single-particle states on sub-leading (for \(n > 2 \)) Regge trajectories in the bulk AdS theory, forming matter multiplets of the higher-spin algebra.

While the above set up gives a complete holographic description of the high-energy limit of string theory, the study of interactions is complicated by the sheer magnitude of the spectrum. A crucial simplifying observation is that the bi-linears (2.24) form a closed subsector in the free theory at \(\lambda \equiv 0 18 \). This suggests that it is possible to consistently restrict attention to the first Regge trajectory in the tensionless limit \(\alpha'/R^2 \rightarrow \infty 19 \), which contains a single gauge field for each integer spin. The dynamics of the first Regge trajectory in this regime is thus captured by non-linear theories of higher-spin gauge fields on AdS20, and their study may shed some light on string theory in the tensionless limit (or equivalently, its maximally symmetric phase).

From a CFT perspective, the proliferation of single-trace operators (2.25) is a consequence of the elementary fields sitting in the adjoint of \(SU(N) \). A toy model of the above scenario was proposed by Szegin and Sundell [73], and Klebanov and Polyakov [74], who contemplated the holographic duals of CFTs in which the elementary fields are instead in the fundamental representation. In this case the only possible class of single-trace operators are bi-linears in the elementary fields, and one could therefore conceive that they give a holographic description of higher-spin gauge theories on AdS. More concretely, they proposed:

15 Note that we use the partial derivative \(\partial \) as opposed to the gauge-covariant derivative \(\nabla \), since we are working in the free theory.

16 Since the scalar \(\phi^a \) has scaling dimension \(\frac{2}{d} - 1 \), the quantum numbers of (2.24) coincide with that for a spin-\(s \) conserved current section 2.2.1.

17 Analogous gauge-invariant bi-linears also exist for the \(\mathcal{N}^2 - 1 \) free gauge fields and \(4 (\mathcal{N}^2 - 1) \) free complex fermions. At the free level different fundamental fields propagate independently so it is consistent to restrict attention to a subset of them.

18 By this we mean that the OPEs of the bi-linears (2.24) contain no contributions from single-trace operators with \(k > 2 \). This can be confirmed by direct computation of the OPE coefficients via Wick’s theorem, or see [84].

19 In fact, this was verified recently [83] for the case of string theory on AdS\(_3 \times S^3 \times T^4 \).

20 See [100, 203–213] for a selection of reviews on various aspects of higher-spin theories.
The theory on AdS is one of even spin gauge fields, represented by symmetric tensors φ_s, of spins $s = 2, 4, 6, \ldots$. It also contains a parity even scalar, which we denote by φ_0.

The free scalar $O(N)$ vector model is a theory of an N component free real scalar field ϕ^a, transforming in the fundamental representation of $O(N)$. The single-trace spectrum consists of a scalar single-trace operator $O = \phi^a \phi^a$ of scaling dimension $\Delta = d - 2$, as well as an infinite tower of even-spin conserved currents

$$J_{i_1 \ldots i_s} = \frac{1}{\sqrt{N}} \phi^a \partial_{i_1} \cdots \partial_{i_s} \phi^a + \ldots, \quad \partial^{i_1} J_{i_1 \ldots i_s} = 0, \quad s = 2, 4, 6, \ldots \tag{2.26}$$

of scaling dimension $\Delta_s = s + \Delta = s + d - 2$.

While the crucial requirement that the CFT single-trace and bulk single-particle states are in one-to-one correspondence is satisfied, the bulk fields must be prescribed the near-boundary behaviour (see section 2.2):

$$\varphi_{i_1 \ldots i_s} \sim z^{\Delta - s}, \tag{2.27}$$

in order to be able to identify

$$\varphi_s \leftrightarrow J_s,$$

$$\varphi_0 \leftrightarrow O.$$

2.3.1. Generalizations.

The above duality is the simplest of its kind in the context of AdS higher-spin / vector model dualities. In particular, the spectrum of gauge fields in the bulk is truncated to those involving only even spin. The full non-minimal theory contains a higher-spin gauge field for each integer spin, and its dual CFT description is given by the free $U(N)$ invariant theory with a complex N component scalar field ϕ^a. The latter also contains conserved currents of odd spin, which accommodates for the extension of the bulk spectrum to include gauge fields of odd spin. Further generalizations of this set up have been considered, including for instance: having a parity odd scalar in the bulk (the so-called type-B theory), Chan–Paton factors and supersymmetry [75–77, 79]21. However in this work we focus on the simplest, most streamlined, case presented above, free from the latter extra decorations. See: [208, 227, 228] for comprehensive reviews of the higher-spin / vector model dualities.

2.3.2. Tests of the duality.

Before we proceed to applications of the higher-spin / free vector model duality, let us emphasise that the duality is still a conjecture, but has withstood a number of non-trivial checks: the first was the tree-level three-point function test by Giombi and Yin [185, 186], who verified using Vasiliev’s system that certain three-point amplitudes in the bulk higher-spin theory on AdS$_5$ correctly reproduce the corresponding three-point functions in the free scalar $O(N)$ vector model in $3d$22. Using the result for the cubic order action presented in this review, the latter test of the duality was later extended to all three-point

21 Some approaches towards deriving the higher spin/vector model duality from first principles were investigated in [214–226].
22 See also [187, 188] for subsequent tree-level three point function tests in the context of the higher-spin holographic dualities in AdS$_5$.

amplitudes and to general dimensions in the metric-like formalism in [107]. The duality has also been verified at the level of one-loop vacuum energy [193–202].

2.4. AdS higher-spin interactions from CFT

As explained in the introduction, there is much still to be learnt about interactions in higher-spin gauge theories within a metric-like Lagrangian framework that is free from auxiliary fields. This makes the higher-spin / vector model duality even more profound, as it opens up the opportunity to study the possible higher-spin interactions on AdS space through the consideration of a drastically simpler (free) CFT. The role of this section is to put this idea on a more concrete footing.

Assuming the existence of a standard action principle $S_{HSAdS}[\phi]$ for the minimal bosonic higher-spin theory, we perform a weak field expansion around an AdS background in the power of the fields

$$S_{HSAdS}[\phi] = G_s^{(2)} E_{HSAdS}^{(2)}[\phi] + G_s^{3/2} E_{HSAdS}^{(3)}[\phi] + G_s^2 E_{HSAdS}^{(4)}[\phi] + \ldots$$

(2.28)

Recalling the holographic equality (2.10), with the knowledge of the leading contribution to the generating function, $F_{0 \text{free } O(N)}^{(0)}$, of connected correlators in the large N free scalar $O(N)$ vector model, one may in principle iteratively extract the on-shell interactions in the conjectured classical bulk higher-spin theory:

$$\exp \left(-\frac{1}{\sqrt{N}} F_{\text{free } O(N)}^{(0)} \right) = \prod_{n=2}^{\infty} \exp \left(-\sqrt{G} \frac{n-2}{2} E_{HSAdS}^{(n)}[\phi] \right) \bigg|_{\phi = \bar{\phi}}.$$

(2.29)

With the quadratic kinetic term $E_{HSAdS}^{(2)}[\phi]$ known, we begin this procedure at cubic order ($n = 3$). The cubic action of the minimal bosonic higher-spin theory takes the form

$$S_{HSAdS}^{(3)}[\phi] = \sum_{s_i = 0}^{\infty} \int_{AdS} V_{s_1, s_2, s_3} [\phi_{s_i}],$$

(2.30)

where by applying the Noether procedure the possible structures that can enter the cubic vertex V_{s_1, s_2, s_3} between gauge fields of spins s_1, s_2 and s_3 have already been determined [121, 122, 126]. In this work, building on the latter results we completely fix the coupling constants between all vertex structures by solving

$$\langle J_{s_1} J_{s_2} J_{s_3} \rangle = \sqrt{G} \frac{\delta}{\delta \phi_{s_1}} \frac{\delta}{\delta \phi_{s_2}} \frac{\delta}{\delta \phi_{s_3}} E_{HSAdS}^{(3)}[\phi] \bigg|_{\phi = \bar{\phi}}.$$

(2.31)

which equates the three-point correlator of the spin-s_i conserved currents (2.26) in the free scalar $O(N)$ vector model, to the tree-level three-point amplitude of the dual spin-s_i gauge fields φ_{s_i}, generated by the bulk interaction V_{s_1, s_2, s_3}. In particular, to this end we determine the three-point correlators of all single-trace conserved currents J_s, and develop techniques to systematically compute three-point bulk amplitudes involving external fields of arbitrary integer spin.

With the above result for the cubic action, we may then proceed to quartic order. We restrict to the simplest case of solving for the quartic self-interaction of the scalar φ_0, which is dual to the scalar single-trace operator O. Moreover, we focus on the set-up in AdS$_4$, where the

23To do so, we re-define the fields $\varphi \rightarrow \sqrt{G} \varphi$. This also ensures a canonically normalised kinetic term.
conformally coupled scalar provides further simplifications (which will become clear in section 5.). For clarity, the equation we solve is given diagrammatically below

\[
\langle \mathcal{O}(y_1) \mathcal{O}(y_2) \mathcal{O}(y_3) \mathcal{O}(y_4) \rangle_{\text{conn.}}.
\]

The diagrams contributing to the right hand side of the equality consist of: the contact amplitude generated by the quartic interaction \(V_{0,0,0,0} \) we seek to establish, and the four-point exchanges of each spin-\(s \) gauge field between two pairs of the bulk scalar. The iterative nature of this reconstruction procedure is thus apparent, for in order to compute the exchange diagrams we require all cubic interactions between two real scalars and a spin-\(s \) gauge field in the theory.

There is a gap in technical difficulty in applying this holographic approach to extracting the cubic vertices \(V_{s_1,s_2,s_3} \), and extending it to the quartic vertex above. In particular, in order to match the four-point correlator of the operator \(\mathcal{O} \) with the dual four-point bulk amplitudes as shown in equation (2.32), we put both sides of the equation on an equal footing by decomposing them into conformal partial waves. While it is well understood how to decompose CFT correlators into conformal partial waves (especially in free theories), as an intermediate step we tailor methods to establish conformal partial wave expansions of the bulk amplitudes.

We therefore spend the following sections gathering the necessary ingredients and sharpening technical tools. This culminates in section 6, in which we put together the latter intermediate results, to fix completely the cubic action and the scalar quartic self-interaction in the type A minimal bosonic higher-spin theory as described above. Let us however emphasise that a lot of the tools and intermediate results presented also hold in more general contexts for theories involving totally symmetric fields of arbitrary mass and integer spin, not just higher-spin gauge fields.

3. Correlation functions in CFT

This section is intended to give a self-contained overview of the relevant techniques and ideas in conformal field theory (CFT), in particular of the constraints imposed by conformal symmetry on two-, three- and four-point functions of local operators. The first few sections set the notation and cover the basics of CFT, which can be safely skipped by the knowledgeable reader. Later sections move on to discuss conformal block expansions, and more recent developments relevant for applications presented in this review.

3.1. Conformal algebra and transformations

A \textit{conformal transformation} is a change of co-ordinates that locally rescales the metric tensor,

\[
g_{\mu\nu}(x) \rightarrow \Omega^2(x)g_{\mu\nu}(x).
\]

A conformal field theory is a field theory that is invariant under these transformations, and whose physics looks the same at all length scales as a consequence. In this review we are
concerned with CFTs defined on a fixed flat background, and for the remainder of this discussion we therefore restrict to the case $g_{\mu\nu}(x) = \eta_{\mu\nu}$.

The transformations (3.1) form a group, which for a fixed Minkowski background includes the Poincaré group as a subgroup, since the metric is invariant under Lorentz transformations and translations ($\Omega(x) = 1$). In addition to the latter, the conformal group is generated by scale transformations

$$x^\mu \rightarrow \lambda x^\mu, \quad \Omega(x) = \lambda, \quad \lambda \in \mathbb{R}, \quad (3.2)$$

and special conformal transformations

$$x^\mu \rightarrow \frac{x^\mu + b^\mu x^2}{1 + 2b \cdot x + b^2 x^2}, \quad \Omega(x) = \frac{1}{x^2}. \quad (3.3)$$

The conformal algebra can be determined by considering the infinitesimal form of the above transformations. For example, the generator D associated to scale transformations can be obtained by considering its action on a test function

$$\delta f(x) = e^{ikD} f(x) e^{-ikD} = \lambda [iD, f(x)] + O(\lambda^2) = \lambda (x \cdot \partial) f(x) + O(\lambda^2), \quad (3.4)$$

which implies $iD = (x \cdot \partial)$. Similarly, the remaining generators can be determined

$$iP_\mu = \partial_\mu, \quad iM_{\mu\nu} = \sigma_\mu \partial_\nu - \sigma_\nu \partial_\mu, \quad iK_\mu = 2\sigma_\mu (x \cdot \partial) - x^2 \partial_\mu, \quad (3.5)$$

which are associated to translations, special conformal transformations and Lorentz transformations, respectively. These annihilate the conformal vacuum. With the explicit form of the generators, the conformal algebra can be worked out to be

$$[D, K_\mu] = iK_\mu, \quad [D, P_\mu] = -iP_\mu, \quad [P_\mu, K_\nu] = 2iM_{\mu\nu} - 2i\eta_{\mu\nu}D,$$

$$[M_{\mu\nu}, P_\sigma] = -i(\eta_{\sigma\nu}P_\mu - \eta_{\sigma\mu}P_\nu), \quad [M_{\mu\nu}, K_\sigma] = -i(\eta_{\mu\sigma}K_\nu - \eta_{\nu\sigma}K_\mu),$$

$$[M_{\mu\nu}, M_{\rho\sigma}] = i(\eta_{\rho\nu}M_{\mu\sigma} + \eta_{\rho\sigma}M_{\mu\nu} - \eta_{\mu\sigma}M_{\rho\nu} - \eta_{\mu\nu}M_{\rho\sigma}), \quad (3.6)$$

with all other commutators vanishing.

3.2. Representations on operators

With the knowledge of the conformal algebra and its generators, we can classify operators according to their representations. These can be derived as induced representations of the subgroup that leave a point in space-time invariant, the stability subgroup.

The stability subgroup is generated by Lorentz generators $M_{\mu\nu}$, dilatations D and special conformal transformations K_μ. This can be verified using their explicit forms (3.4) and (3.5).

Operators at a fixed space-time point form a representation of this subgroup. On the other hand, the translation generator P_μ acts exclusively on the co-ordinates x^μ, so that

$$[P_\mu, O^\mu(x)] = -i\partial_\mu O^\mu(x). \quad (3.7)$$

This implies that an operator O^μ at a generic point in space-time can be obtained from its value at, for example, the origin via

$$O^\mu(x) = e^{ix^\mu} O^\mu(0) e^{-ix^\mu}. \quad (3.8)$$

Therefore, the representation of an operator under the full conformal algebra can be determined (or induced) from its representation under the stability subalgebra through the action (3.8) of the translation generator. To wit, for a conformal generator G
\[[G, \mathcal{O}^\mu(x)] = e^{ix \cdot P} [\tilde{G}, \mathcal{O}^\mu(0)] e^{-ix \cdot P}, \quad (3.9) \]

with
\[\tilde{G} = e^{-ix \cdot P} G e^{ix \cdot P} = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \left[x \cdot P, [x \cdot P, \ldots, [x \cdot P, G] \ldots] \right], \quad (3.10) \]

using the Baker–Campbell–Hausdorff formula. In practice, for all generators of the conformal algebra this series truncates at either the first or second term.

3.2.1. Warm up: Poincaré representations. In a Poincaré invariant QFT, local operators at the origin transform in irreducible representations of the Lorentz group,
\[[M_{\mu\nu}, \mathcal{O}^\mu(0)] = (\Sigma_{\mu\nu})^a_{\ b} \mathcal{O}^b(0). \quad (3.11) \]

This defines the spin of the operator \(\mathcal{O}^\mu \), given matrices \(\Sigma_{\mu\nu} \) forming a finite dimensional representation of the Lorentz algebra. Away from the origin, we then have
\[[M_{\mu\nu}, \mathcal{O}^\mu(x)] = e^{ix \cdot P} \left[e^{-ix \cdot P} M_{\mu\nu} e^{ix \cdot P}, \mathcal{O}^\mu(0) \right] e^{-ix \cdot P} = e^{ix \cdot P} \left[M_{\mu\nu} + x_{\mu} P_{\nu} - x_{\nu} P_{\mu}, \mathcal{O}^\mu(0) \right] e^{-ix \cdot P} = (\Sigma_{\mu\nu}^a - ix_{\mu} \partial_{\nu} + ix_{\nu} \partial_{\mu}) \mathcal{O}(x), \quad (3.12) \]

where in the second equality we employed (3.10).

3.2.2. Dilatations and special conformal transformations. In a scale invariant theory, it is natural to diagonalise the dilatation operator acting on operators at the origin,
\[[D, \mathcal{O}(0)] = -i\Delta \mathcal{O}(0). \quad (3.13) \]

\(\Delta \) is referred to as the scaling dimension of \(\mathcal{O} \).

Applying again the Baker–Campbell–Hausdorff formula, we find
\[[D, \mathcal{O}(x)] = -i(\Delta + x \cdot \partial) \mathcal{O}(x). \quad (3.14) \]

Likewise, for the special conformal transformation,
\[[K_{\mu}, \mathcal{O}(x)] = (2x^\nu \Sigma_{\nu\mu} + 2i\Delta x_{\mu} - ix_{\mu}^2 \partial_{\mu} + ix_{\mu} x \cdot \partial + K_{\mu}) \mathcal{O}(x), \quad (3.15) \]

where we define
\[[K_{\mu}, \mathcal{O}(0)] = K_{\mu} \mathcal{O}(0). \quad (3.16) \]

3.3. Primaries and descendants

In fact, \(K_{\mu} \) is a lowering operator for scaling dimension,
\[[D, [K_{\mu}, \mathcal{O}(0)]] = [[D, K_{\mu}] + K_{\mu} D, \mathcal{O}(0)] = -i(\Delta - 1) [K_{\mu}, \mathcal{O}(0)]. \quad (3.17) \]

In unitary CFTs, scaling dimensions are bounded from below. This implies that each representation of the conformal algebra must have an operator of lowest dimension, which is then annihilated by \(K_{\mu} \) at \(x = 0 \),
\[[K_{\mu}, \mathcal{O}(0)] = K_{\mu} \mathcal{O}(0) = 0. \quad (3.18) \]
This is the definition of a primary operator. Translation generators on the other hand are raising operators for scaling dimension,

\[[D, [P_\mu, O(0)]] = -i (\Delta + 1) [P_\mu, O(0)]. \]

(3.19)

Given a primary operator \(O \) of dimension \(\Delta \), we can construct operators of higher dimension by acting with translation generators,

\[O(0) \to (-i)^n \partial_\mu_1 ... \partial_\mu_n O(0), \quad \Delta \to \Delta + n. \]

(3.20)

These operators are called descendants of the operator \(O \). A representation of the conformal algebra is thus constructed from \(O(0) \) and its descendants.

3.4. Finite conformal transformations

In the preceding section, we derived the action of infinitesimal conformal transformations on operators, given by (3.7), (3.12), (3.14) and (3.15). For a primary operator of scaling dimension \(\Delta \) and rotation matrices \(\Sigma_{\mu\nu} \), these can be summarised as

\[[Q_v, O(x)] = -i (v \cdot \partial + \frac{\Delta}{d} (\partial \cdot v) - \frac{i}{2} \partial^\mu v^\nu \Sigma_{\mu\nu}) O(x), \]

(3.21)

where \(v_\mu \) is a general conformal Killing vector

\[v_\mu = a_\mu + \omega_{\mu\sigma} x^\sigma + \lambda x_\mu + (b_\mu x^2 - 2x_\mu b \cdot x). \]

(3.22)

This corresponds to a combination of infinitesimal translations \(a_\mu \), rotations \(\omega_{\mu\nu} \), scalings \(\lambda \) and special conformal transformations parametrised by \(b_\mu \).

The corresponding finite transformations are obtained by exponentiating the charge,

\[O'(x') = U O(x) U^{-1} = \Omega(x')^\Delta D(R(x')) O(x'), \quad U = e^{Q_v}, \]

(3.23)

where

\[\frac{\partial x'^\mu}{\partial x^\nu} = \Omega(x') R^\mu_\nu(x'), \quad R^\mu_\nu \in SO(d). \]

(3.24)

In (3.23), \(D(R) \) is a matrix implementing the action of \(R \) in the \(SO(d) \) representation of \(O \). For example,

- scalar representation: \(D(R) = 1 \)
- vector representation: \(D(R)_{\mu}^{\nu} = R_{\mu}^{\nu} \)
- spin-\(s \) representation: \(D(R)_{\mu_1 ... \mu_s}^{\nu_1 ... \nu_s} = R_{\mu_1}^{\nu_1} ... R_{\mu_s}^{\nu_s} - \text{traces} \).

3.5. Correlation functions of primary operators

The absence of a length scale means the concept of the standard S-matrix ill-defined in a CFT. This makes correlation functions of gauge invariant operators key observables in conformally invariant theories. As we shall see below, conformal symmetry places powerful constraints on the form they can take. We focus on the correlation functions of primary operators, since those involving descendants can be immediately determined from the latter via (3.20).
In a conformally invariant theory, correlation functions are constrained to be invariant under conformal transformations \((3.23) \)
\[
\langle \mathcal{O}_1(\mathbf{x}_1) \ldots \mathcal{O}_n(\mathbf{x}_n) \rangle = \Omega(\mathbf{x'}_1) \Delta_1 D_1(R(\mathbf{x}'_1)) \ldots \Omega(\mathbf{x'}_n) \Delta_n D_n(R(\mathbf{x}'_n)) \langle \mathcal{O}_1(\mathbf{x}'_1) \ldots \mathcal{O}_n(\mathbf{x}'_n) \rangle,
\]
where \(D_i(R) \) is the SO\((d) \) representation of the primary operator \(\mathcal{O}_i \), of scaling dimension \(\Delta_i \).

In the following, we investigate the consequences of the above constraints on the structure of two-, three- and four-point functions.

3.5.1. Two-point functions. As a warm up, consider the two-point function of scalar primary operators \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) with scaling dimensions \(\Delta_1 \) and \(\Delta_2 \). For rotation and translation invariance, we require
\[
\langle \mathcal{O}_1(\mathbf{x}) \mathcal{O}_2(\mathbf{y}) \rangle = h(|\mathbf{x} - \mathbf{y}|),
\]
for some function \(h \). In a scale-invariant theory with scale-invariant boundary conditions, correlators must be invariant under the action of the dilatation operator \(D \),
\[
0 = \langle [D, \mathcal{O}_1(\mathbf{x})] \mathcal{O}_2(\mathbf{0}) \rangle + \langle \mathcal{O}_1(\mathbf{x}) [D, \mathcal{O}_2(\mathbf{0})] \rangle,
\]
which implies the following differential equation for \(h \)
\[
i (x \cdot \partial + \Delta_1 + y \cdot \partial + \Delta_2) h(|x - y|) = 0.
\]
It is straightforward to see that the general solution is
\[
h(|x - y|) = \frac{C}{|x - y|^\Delta_1 + \Delta_2},
\]
for some constant \(C \). This gives the form of the two-point function in a scale invariant theory.

For theories exhibiting full conformal symmetry, there is a further constraint from invariance under special conformal transformations:
\[
0 = \langle [K_{\mu,}, \mathcal{O}_1(\mathbf{x})] \mathcal{O}_2(\mathbf{0}) \rangle + \langle \mathcal{O}_1(\mathbf{x}) [K_{\mu,}, \mathcal{O}_2(\mathbf{0})] \rangle
\]
\[
= i \left(2\Delta_1 x_{\mu} - x^2 \partial_{\mu} + x_{\mu} x \cdot \partial \right) \frac{C}{|x|^\Delta_1 + \Delta_2}
\]
\[
= i (\Delta_1 - \Delta_2) \frac{C}{|x|^\Delta_1 + \Delta_2},
\]
where in the second equality we used the fact that \(\mathcal{O}_2 \) is primary. For a non-trivial two-point function, we therefore require \(\Delta_1 = \Delta_2 \).

To summarise, two-point functions of scalar operators with dimensions \(\Delta_1 \) and \(\Delta_2 \) in a CFT take the form
\[
\langle \mathcal{O}_1(\mathbf{x}) \mathcal{O}_2(\mathbf{y}) \rangle = C \frac{\delta_{12}}{|x - y|^\Delta_1 + \Delta_2},
\]
for some constant \(C \), and Kronecker delta \(\delta_{12} \).
3.5.2. Technical interlude. When considering correlators of operators with spin, a direct generalization of the approach used for the scalar operators above becomes increasingly involved as the spin increases. Before considering the analogous constraints on the two-point functions of such operators, we make a brief pause to review some useful tools for dealing with spinning operators. The full details can be found in appendix A.

First, when considering operators with spin it is convenient to encode them in polynomials of auxiliary vectors. For example, a spin-s primary operator $O_{\mu_1 \ldots \mu_s}$ can be packaged in the polynomial

$$O_{\mu_1 \ldots \mu_s} \rightarrow O_s(x|z) = \frac{1}{s!} O_{\mu_1 \ldots \mu_s}(x) z^{\mu_1} \ldots z^{\mu_s}, \quad z^2 = 0,$$ \hspace{1cm} (3.32)

with the null condition on the auxiliary vector z enforcing tracelessness. In this way, tensorial operations (e.g. trace and index contractions) are mapped into relatively simple differential operations.

Second, investigating the consequences of conformal invariance is more transparent in the ambient space formalism, in which the $SO(d,2)$ symmetry is manifest. The basic idea behind this framework is due to Dirac [229], and is that the natural habitat for the conformal group $SO(d,2)$ is an ambient $(d+2)$-dimensional ambient space $\mathbb{R}^{d,2}$. Here, the conformal group is realised as the group of linear isometries, and the constraints from conformal symmetry become as trivial as those from Lorentz symmetry. This is provided all CFT fields can be lifted to $\mathbb{R}^{d,2}$, which we quickly review below (see appendix A for full details).

In the ambient framework, d-dimensional flat space-time is realised as a hypercone in $\mathbb{R}^{d,2}$. Points x^μ are represented by null rays in $\mathbb{R}^{d,2}$, which can be parameterised in light-cone ambient co-ordinates as

$$P^A(x) = (1, x^2, x^\mu), \quad P^A = (P^+, P^-, P^\mu).$$ \hspace{1cm} (3.33)

Analogously, the auxiliary variables z^μ in (3.32), are represented by

$$Z^A(x) = z^\mu \frac{\partial P^A}{\partial x^\mu} = (0, 2x \cdot z, z^\mu).$$ \hspace{1cm} (3.34)

Therefore, the ambient counterpart of the generating function (3.32) for a spin-s primary operator is given by

$$O_s(P|Z) = \frac{1}{s!} O_{A_1 \ldots A_s}(P) Z^{A_1} \ldots Z^{A_s},$$ \hspace{1cm} (3.35)

where to make the mapping one-to-one, we require

$$O_s(\lambda P|Z) = \lambda^{-\Delta} O_s(P|Z) \quad \text{and} \quad (P \cdot \partial_z) O_s(P|Z) = 0.$$ \hspace{1cm} (3.36)

In other words, $O_s(P)$ must be homogeneous and tangent to the hypercone $P^2 = 0$. As usual, Δ represents the scaling dimension of the operator.

Two-point functions of operators with spin. We turn to applying the above technology to the study of conformal correlators involving operators with spin, which was developed in [230] for symmetric and traceless operators. We begin in this section with two-point functions.

Generalizing the selection rule for scalar two-point functions considered previously, it can be shown that two-point functions of primaries with different spin or conformal dimension vanish. We therefore consider the two-point function of two identical spin-s primary operators $O_{\mu_1 \ldots \mu_s}$ of scaling dimension Δ. Employing the ambient framework that was reviewed in the previous section, this takes the form
\[\langle O_i (P_1 | Z_1) O_i (P_2 | Z_2) \rangle = H (P_1, P_2 | Z_1, Z_2), \tag{3.37} \]

where \(H \) is a function of \((P_1 \cdot P_2), (P_1 \cdot Z_2) \) and \((P_2 \cdot Z_1)\). It must also be a \(SO (d, 2) \) singlet, satisfying homogeneity, tangentiality and spin constraints. The first condition arises from the fact that the ambient representative of \(O_{\mu_1 \ldots \mu_s} \) is homogeneous of degree \(-\Delta\). The second condition ensures that \(H \) is tangent to the projective null cone in the \((d + 2)\)-dimensional ambient space. The third is just a fancy way of saying that it is a degree \(s \) polynomial in null auxiliary vectors \(Z_1 \) and \(Z_2 \).

To satisfy the transversality condition (3.39), it is straightforward to see that the auxiliary vectors \(Z_1 \) and \(Z_2 \) can only appear through the following building block

\[H_3 = \frac{1}{P_{12}} \left((Z_1 \cdot Z_2) + \frac{2 (Z_1 \cdot P_2) (Z_2 \cdot P_1)}{P_{12}} \right), \tag{3.41} \]

where the overall factor of \(P_{12} = -2P_1 \cdot P_2 \) has been chosen for future convenience. The homogeneity and spin-\(s \) conditions (3.38) and (3.40), can then be solved up to an overall coefficient as

\[\langle O_i (P_1 | Z_1) O_i (P_2 | Z_2) \rangle = C_i \frac{(H_3)^i}{P_{12}^i}, \tag{3.42} \]

where we have introduced the twist \(\tau_s \equiv -\Delta - s \) of a spin-\(s \) operator with scaling dimension \(\Delta \).

3.5.3. Three-point functions

Conformal invariance is also sufficiently powerful to fix three-point correlation functions. Like with the two-point functions of operators with spin above, constructing their form is most straightforward and systematic in the ambient formalism [230]. As a warm up, we begin with three-point functions involving only scalar primary operators.

Scalar primary operators. Consider the three-point function of scalar primary operators \(O_i \) with dimensions \(\Delta_i, i = 1, 2, 3 \),

\[\langle O_i (P_1) O_j (P_2) O_j (P_3) \rangle = F (P_1, P_2, P_3). \tag{3.43} \]

Since the \(P_i \) are null vectors \(P_i^2 = 0 \), this is a function only of \(P_{12}, P_{13} \) and \(P_{23}, \)

\[F (P_1, P_2, P_3) \propto P_{12}^{k_1} P_{13}^{k_2} P_{23}^{k_3}, \tag{3.44} \]

for some constants \(k_i \) to be determined.

For scalar operators in the ambient formalism, there is only the homogeneity constraint

\[F (\{ \lambda_i P_i \}) = \lambda_1^{-\Delta_1} \lambda_2^{-\Delta_2} \lambda_3^{-\Delta_3} F (\{ P_i \}). \tag{3.45} \]

This is enough to fix the \(k_i \) in (3.44) completely.

24 Since the \(P_i \) and \(Z_i \) are null vectors, all other possible contractions are zero.

25 For concision we often abbreviate functions \(\tilde{F} (P_1, \ldots, P_s) = \tilde{F} (\{ P_i \}), i = 1, \ldots, n. \)
\[k_1 = \frac{1}{2} (\Delta_1 - \Delta_2 - \Delta_3), \quad k_2 = \frac{1}{2} (\Delta_2 - \Delta_1 - \Delta_3), \quad k_3 = \frac{1}{2} (\Delta_3 - \Delta_2 - \Delta_1). \]
\[(3.46) \]

Conformal symmetry thus requires the three-point function takes the form
\[
\langle O_1 (x_1) O_2 (x_2) O_3 (x_3) \rangle = \frac{C_{123}}{(P_{23})^{\frac{\Delta_1 - \Delta_2 - \Delta_3}{2}} (P_{13})^{\frac{\Delta_2 - \Delta_1 - \Delta_3}{2}} (P_{12})^{\frac{\Delta_3 - \Delta_2 - \Delta_1}{2}}}, \]
\[(3.47) \]

for some multiplicative constant \(C_{123} \).

As a final note, while the above form \((3.47)\) is the most general one dictated by conformal symmetry, an additional constraint comes from Bose symmetry. This requires that it is invariant under the exchange of any two operator insertions, from which it follows that \(C_{ijk} \) is symmetric in its indices \(i, j \) and \(k \).

Two scalars and a spinning operator. We now turn things up a gear, and consider three-point functions involving primary operators with spin. The simplest case is given by those involving a single spinning operator and two scalars, as it involves just a single tensor structure.

For a three-point function involving scalar operators \(O_1 \) and \(O_2 \), and a spin-\(s \) operator \(O_{\mu_1 \ldots \mu_s} \) of dimension \(\Delta \),
\[
\langle O_1 (x_1) O_2 (x_2) O_s (x_3 | z) \rangle = F (P_1, P_2, P_3 | Z), \]
\[(3.48) \]
we must satisfy the three constraints
\[
F (\{ \lambda_i P_i \} | Z) = \lambda_1^{-\Delta_1} \lambda_2^{-\Delta_2} \lambda_3^{-\Delta} F (\{ P_i \} | Z), \]
\[(3.49) \]
\[
P_3 \cdot \frac{\partial}{\partial Z} F (\{ P_i \} | Z) = 0, \]
\[(3.50) \]
\[
F (\{ P_i \} | \alpha Z) = \alpha^s F (\{ P_i \} | Z). \]
\[(3.51) \]

In this case, satisfying the transversality condition \((3.50)\) is only possible if \(Z \) appears with \(P_1 \) and \(P_2 \) through the new building block
\[
Y_3 = \frac{(Z \cdot P_2)}{P_{23}} - \frac{(Z \cdot P_3)}{P_{13}}, \]
\[(3.52) \]
where the overall factor of \((P_{13}) (P_{23})\) was chosen for later convenience. Combining this with the homogeneity \((3.49)\) and spin conditions \((3.51)\), we find that the most general form of the correlator \((3.48)\) as fixed by conformal symmetry is
\[
\langle O_1 (x_1) O_2 (x_2) O_s (x_3 | z) \rangle = C_{O_1 O_2 O_s} \left(\frac{Y_3'}{(P_{12})^{\frac{\Delta_1 + \Delta_2 - \Delta}{2}} (P_{23})^{\frac{\Delta_2 + \Delta_3 - \Delta}{2}} (P_{31})^{\frac{\Delta_3 + \Delta_1 - \Delta}{2}}}. \right. \]
\[(3.53) \]

Just like for the scalar three-point function in the previous section, we can constrain the overall coefficient using Bose symmetry. In this case, since \(Y_3 \leftrightarrow -Y_3 \) under \(O_1 \leftrightarrow O_2 \), a similar argument shows that
\[
C_{O_1 O_2 O_s} = (-1)^s C_{O_2 O_1 O_s}. \]
\[(3.54) \]

The immediate consequence of this condition is that the correlator \((3.53)\) vanishes for odd spin \(s \).
The general case. We now consider the general case of a three-point function involving primary operators O_i of integer spin s_i and dimension Δ_i. This is more involved, owing to the increased number of possible tensorial structures compatible with conformal symmetry.

We write
\[
\langle O_{n_1} (P_1 | Z_1) O_{n_2} (P_2 | Z_2) O_{n_3} (P_3 | Z_3) \rangle = \frac{F (P_1, P_2, P_3 | Z_1, Z_2, Z_3)}{(P_{12})^{\frac{1}{2} n_1 + s_1 - \Delta_1} (P_{13})^{\frac{1}{2} n_1 + s_1 - \Delta_1} (P_{23})^{\frac{1}{2} n_2 + s_2 - \Delta_2}},
\]
where $\tau_i = \Delta_i - s_i$. Conformal symmetry requires
\[
F (\{\lambda_i P_i\} | \{\alpha_i Z_i\}) = F (\{P_i\} | \{Z_i\}) \prod_i (\alpha_i)^{\xi_i}
\]
and
\[
\partial_{Z_j} F (\{P_i\} | \{Z_i\}) = 0, \quad \text{for each } j = 1, 2, 3.
\]
Restricting to parity-invariant correlators, in this case there are six possible transverse building blocks from which the three-point function can be constructed
\[
\begin{align}
Y_1 &= \left(\frac{Z_1 \cdot P_3}{P_{13}} - \frac{Z_2 \cdot P_2}{P_{12}}\right), \\
Y_2 &= \frac{Z_2 \cdot P_1}{P_{21}}, \\
Y_3 &= \frac{Z_3 \cdot P_2}{P_{32}} - \frac{Z_3 \cdot P_3}{P_{31}},
\end{align}
\]
with theory-dependent coefficients c_{n_1, n_2, n_3}.

3.5.4. Back to intrinsic. In the preceding sections, with the efficiency of the ambient formalism we were able to write down the most general form of two- and three-point functions of primary operators of any scaling dimension and spin. In section 4 we apply these results to a particular CFT, and for this purpose it is useful to give the dictionary which translates them back into the standard d-dimensional language.

For the scalar products of ambient vectors that are ubiquitous in the ambient expressions for the correlators: $-2P_i \cdot P_j$, $Z_i \cdot P_j$ and $Z_i \cdot Z_j$, this is straightforward to write down from the explicit forms of the ambient space-time and auxiliary vectors

\[\text{We chose the denominator such that } F (\{P_i\} | \{Z_i\}) \text{ does not scale with the } P_i.\]

\[\text{In three- and four-dimensions, we can construct parity odd correlators using the } \text{SO}(d, 2)\text{-invariant epsilon tensor.}\]
Recalling that we work in light-cone ambient co-ordinates, this establishes the following
dictionary between ambient and intrinsic scalar products
\[-2P_i \cdot P_j = x^2_{ij}, \quad Z_i \cdot P_j = -z_i \cdot x_{ij}, \quad Z_i \cdot Z_j = z_i \cdot z_j, \quad (3.61)\]
where by definition
\[P_i \equiv P(x_i), \quad Z_i \equiv Z(x_i). \quad (3.62)\]

Employing the above dictionary, one obtains the following intrinsic expressions of the build-
ing blocks found above:
\[Y_1 = \frac{z_1 \cdot x_{12}}{x^2_{12}} - \frac{z_1 \cdot x_{13}}{x^2_{13}}, \quad H_1 = \frac{1}{x^2_{23}} \left(z_2 \cdot z_3 + \frac{2z_2 \cdot x_{23} z_3 \cdot x_{32}}{x^2_{23}} \right), \quad (3.63a)\]
\[Y_2 = \frac{z_2 \cdot x_{21}}{x^2_{21}} - \frac{z_2 \cdot x_{23}}{x^2_{23}}, \quad H_2 = \frac{1}{x^2_{31}} \left(z_3 \cdot z_1 + \frac{2z_3 \cdot x_{31} z_1 \cdot x_{13}}{x^2_{31}} \right), \quad (3.63b)\]
\[Y_3 = \frac{z_3 \cdot x_{31}}{x^2_{31}} - \frac{z_3 \cdot x_{32}}{x^2_{32}}, \quad H_3 = \frac{1}{x^2_{12}} \left(z_1 \cdot z_2 + \frac{2z_1 \cdot x_{12} z_2 \cdot x_{21}}{x^2_{12}} \right). \quad (3.63c)\]

3.5.5. Four-point functions. Correlation functions with more than three operator insertions
are no longer fixed by conformal kinematics alone. This is due to the existence of cross ratios,
which are conformal invariants that can be built from four or more distinct space-time points.
In this section, and for the remainder of this section, we focus our attention on the degree
to which four-point functions of scalar primary operators can be constrained by conformal
symmetry.

Out of four distinct points, one can build two independent cross ratios,
\[u = \frac{(x_1-x_2)^2 (x_3-x_4)^2}{(x_1-x_3)^2 (x_2-x_4)^2}, \quad v = u \big|_{2+4} = \frac{(x_1-x_4)^2 (x_2-x_3)^2}{(x_1-x_3)^2 (x_2-x_4)^2}. \quad (3.64)\]

Four-point functions may therefore depend non-trivially on \(u\) and \(v\), in a way that cannot
be fixed by conformal symmetry. For a four-point function of scalar operators \(O_i\), reverting
briefly to the ambient formalism we have
\[
\langle O_1 (P_1) O_2 (P_2) O_3 (P_3) O_4 (P_4) \rangle = \frac{g_{1234} (u,v)}{P^i_{12} P^j_{34} P^k_{13} P^l_{24}}. \quad (3.65)
\]
with the \(k_i\) constrained by the homogeneity condition
\[
\langle O_1 (\lambda_1 P_1) O_2 (\lambda_2 P_2) O_3 (\lambda_3 P_3) O_4 (\lambda_4 P_4) \rangle = \lambda^\Delta_1 \lambda^\Delta_2 \lambda^\Delta_3 \lambda^\Delta_4 \langle O_1 (P_1) O_2 (P_2) O_3 (P_3) O_4 (P_4) \rangle. \quad (3.66)
\]

This implies the following relations amongst the \(k_i\),
\[
k_1 = \Delta_1 + \Delta_2 - \Delta_3 - \Delta_4 + k_6, \quad k_2 = \Delta_1 - \Delta_2 + \Delta_3 - \Delta_4 + k_5\]
\[
k_3 = 4\Delta_1 - k_5 - k_6, \quad k_4 = -\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4 - k_5 - k_6. \quad (3.67)
\]

For instance we can take the following convenient parametrisation
Like for the three-point functions, the function \(g_{1234} (u, v) \) is not completely unconstrained as it must be consistent with Bose-symmetry. I.e. invariance under permutations of the scalar operators. Since all permutations of \(\{x_1, x_2, x_3, x_4\} \) are generated by \(x_1 \leftrightarrow x_2, x_3 \leftrightarrow x_4 \) and \(x_1 \leftrightarrow x_3 \), it is sufficient to consider the constraints coming from \(\mathcal{O}_1 (x_1) \leftrightarrow \mathcal{O}_2 (x_2), \mathcal{O}_3 (x_3) \leftrightarrow \mathcal{O}_4 (x_4) \) and \(\mathcal{O}_1 (x_1) \leftrightarrow \mathcal{O}_3 (x_3) \). These require

\[
g_{1234} (u, v) = \frac{u}{v} \frac{\Delta_1 - \Delta_2}{\Delta_1 + \Delta_2} g_{2134} \left(\frac{1}{v}, \frac{1}{u} \right),
\]

\[
g_{1234} (u, v) = \frac{v}{u} \frac{\Delta_1 - \Delta_2}{\Delta_1 + \Delta_2} g_{1243} \left(\frac{1}{u}, \frac{1}{v} \right),
\]

\[
g_{1234} (u, v) = \frac{u}{v} \frac{\Delta_1 - \Delta_2}{\Delta_1 + \Delta_2} g_{3214} (v, u),
\]

respectively. This gives the most general form of a scalar four-point function in a conformally invariant theory.

The case relevant for applications in later sections of this review is the four-point functions of identical scalar operators. In general, the Bose-symmetry constraints (3.69)–(3.71) relate different functions \(g_{ijkl} (u, v) \). However for four-point functions involving identical scalars \(\mathcal{O} \), these constraints just apply to a single function \(g (u, v) \),

\[
g (u, v) = g \left(\frac{u}{v}, \frac{1}{v} \right), \quad g (u, v) = g \left(\frac{u}{v} \right).
\]

3.6. Conformal block decomposition

In the previous section, we observed that conformal kinematics fixes four-point functions up to a function of the cross ratios \(u \) and \(v \). As we shall demonstrate below, this function can be completely determined from a combination of conformal invariance and the so-called operator product expansion (OPE), which we first review briefly below.

3.6.1. Operator product expansion.

The operator product expansion is an invaluable tool in conformal field theory. This is a statement about what happens as local operators approach each other. Although it has a place in any quantum field theory, in a CFT the OPE gains additional and very powerful properties.

More concretely, the OPE asserts that the product of any two local operators inserted at nearby points can be closely approximated by a string of operators at one of these points. In a CFT, the OPE can thus be expressed in the form

\[
\mathcal{O}_1 (x_1) \mathcal{O}_2 (x_2) = \sum_{\mathcal{O}_k \text{ primary}} F_{12k} (x_{12}, \partial x_1) \mathcal{O}_k (x_2),
\]

28 Note that under \(x_1 \leftrightarrow x_2 \) and \(x_3 \leftrightarrow x_4 \), the cross ratios transform as \(u \rightarrow u/v \) and \(v \rightarrow 1/v \). Under \(x_1 \leftrightarrow x_3 \), we have \(u \leftrightarrow v \).

29 We will see shortly that the functions \(g_{ijkl} (u, v) \) are not arbitrary, but for a given theory are related in a non-trivial way to its three-point functions.
where \(\mathcal{F}_{12k} (x_{12}, \partial z) \) is a power series in \(\partial z \), and \(x_{ij} = x_i - x_j \). From a primary operator \(\mathcal{O}_k \), this generates the contributions of all of its descendants\(^{30}\).

The OPE is to be understood as a statement that holds inside correlation functions (within its radius of convergence),

\[
\langle \mathcal{F} \mathcal{O}_1 (x_1) \mathcal{O}_2 (x_2) \rangle = \sum_{\mathcal{O}_k \text{ primary}} \mathcal{F}_{12k} (x_{12}, \partial z) \langle \mathcal{F} \mathcal{O}_k (x_2) \rangle, \tag{3.74}
\]

where \(\mathcal{F} \) denotes any other operator insertions, \(\mathcal{F} = \mathcal{O}_i (y_1) \ldots \mathcal{O}_n (y_n) \). This relation can in fact be established using radial quantisation:

Let \(\mathcal{F} \) be a sphere that separates \(\{x_1, x_2\} \) from all other insertion points \(\{y_1, \ldots, y_n\} \) in the correlation function (3.74). We can then quantise radially around the centre \(z \) of \(\mathcal{F} \), inserting a complete basis of states \(|n\rangle \) and applying the OPE to the three-point function\(^{31}\).

\[
\langle 0 | \mathcal{F} \mathcal{O}_1 (x_1) \mathcal{O}_2 (x_2) | 0 \rangle = \sum_n \langle 0 | \mathcal{F} | n \rangle \langle n | \mathcal{O}_1 (x_1) \mathcal{O}_2 (x_2) | 0 \rangle. \tag{3.75}
\]

By the state-operator correspondence, the states \(|n\rangle \) correspond to operators \(\mathcal{O} \) inserted at \(z \). We can thus write

\[
\langle 0 | \mathcal{F} \mathcal{O}_1 (x_1) \mathcal{O}_2 (x_2) | 0 \rangle = \sum_{\mathcal{O}_k} f_{\mathcal{O} \mathcal{O}_k} (x_{12}) \langle \mathcal{F} \mathcal{O} (z) \rangle, \quad f_{\mathcal{O} \mathcal{O}_k} (x_{12}) = \langle \mathcal{O} | \mathcal{O}_1 (x_1) \mathcal{O}_2 (x_2) | 0 \rangle. \tag{3.76}
\]

To bring the above in the desired form (3.74), we separate the contributions from the primaries and descendants, and re-sum the descendants. In this way, we obtain

\[
\langle 0 | \mathcal{F} \mathcal{O}_1 (x_1) \mathcal{O}_2 (x_2) | 0 \rangle = \sum_{\mathcal{O}_k \text{ primary}} \tilde{\mathcal{F}}_{12k} (x_{12}, \partial z) \langle \mathcal{F} \mathcal{O}_k (z) \rangle = \sum_{\mathcal{O}_k \text{ primary}} \mathcal{F}_{12k} (x_{12}, \partial z) \langle \mathcal{F} \mathcal{O}_k (x_2) \rangle, \tag{3.77}
\]

where in the second equality we expanded \(\mathcal{O}_k (z) = \mathcal{O}_k (x_2) + (z - x_2) \cdot \partial_z \mathcal{O}_k (x_2) + \ldots \).

The above derivation indicates that for the OPE to hold, we require the existence of a sphere which separates \(x_1 \) and \(x_2 \) from all other insertion points \(y_i \). In fact, in CFT the OPE is convergent, with radius of convergence equal to the distance to the closest insertion point \(y_i \) [231, 232].

The form of the differential operators \(\mathcal{F} (x, \partial) \) appearing in the OPE (3.73) is fixed by conformal invariance. To see this, we simply apply the OPE to the three-point function\(^{31}\),

\[
\langle \mathcal{O}_1 (x_1) \mathcal{O}_2 (x_2) \mathcal{O}_i (y) \rangle = \sum_{\mathcal{O}_k \text{ primary}} \mathcal{F}_{12k} (x_{12}, \partial z) \langle \mathcal{O}_k (x_2) \mathcal{O}_i (y) \rangle = \mathcal{F}_{12k} (x_{12}, \partial z) \langle \mathcal{O}_1 (x_2) \mathcal{O}_i (y) \rangle. \tag{3.78}
\]

The \(\mathcal{F} (x, \partial) \) are therefore determined by the two- and three-point functions of the corresponding primary operator and, as we saw in the sections 3.5.1 and 3.5.3, the structures appearing in both of the latter are fixed by conformal symmetry.

With the above property of the OPE, higher-point functions are essentially determined with the knowledge of the two- and three-point functions in the theory. This is discussed in detail for four-point functions of scalar operators in the following section.

\(^{30}\) For simplicity, we have suppressed all \(SO(d) \) indices.

\(^{31}\) This is valid in the domain \(|x_1 - x_2| < |y - x_2| \). In the second line, we assumed an orthogonal basis of primaries.
3.6.2. Conformal block decomposition of 4pt scalar correlators. For simplicity and relevance for applications in this review, we simply consider a four-point function of identical scalar operators O with scaling dimension Δ,

$$\langle O(x_1) O(x_2) O(x_3) O(x_4) \rangle = g(u, v) \frac{\Delta}{(x_{12}^2)^\Delta (x_{34}^2)^\Delta}, \quad (3.79)$$

where $x_y^2 = (x_j - x_i)^2$. Applying the OPE twice, for example in the (12) and (34) channels, we can represent the four-point function as a double sum over the primary operators that appear in the OPE

$$\langle O(x_1) O(x_2) O(x_3) O(x_4) \rangle = \sum_{O_{i,0}} F_{OO} (x_{12}, \partial_{x_2}) F_{OO} (x_{34}, \partial_{x_4}) \langle O_i (x_2) O_j (x_4) \rangle. \quad (3.80)$$

Choosing an orthonormal basis of operators, this collapses to a single sum

$$\langle O(x_1) O(x_2) O(x_3) O(x_4) \rangle = \sum_{O_{i,0}} (c_{O_i O_i})^2 W_{O_i} (x_1, x_2; x_3, x_4), \quad (3.81)$$

where we have extracted the OPE coefficients $c_{O_i O_i}$ from the differential operators F_{OO}. Owing to the relationship (3.78) between F_{OO} and the three-point function $\langle O_i O_i O_i \rangle$, this OPE coefficient is given by

$$c_{O_i O_i}^2 = C_{O_i O_i O_i}/C_{O_i O_i}. \quad (3.82)$$

where $C_{O_i O_i O_i}$ is the overall three-point function coefficient and $C_{O_i O_i}$ the overall coefficient of the two-point function $\langle O_i O_i \rangle$. The conformal partial wave W_{O_i} re-sums the contribution of the primary O_i and all of its descendants to the correlator, and thus represents the contribution from the entire conformal multiplet.

It is often instructive to think of a conformal partial wave W_{O_i} as the insertion of a projector onto the conformal multiplet of O_i,

$$W_{O_i} (x_1, x_2; x_3, x_4) = \langle O(x_1) O(x_2) | O_i O(x_3) O(x_4) \rangle,$$

$$\langle O_i \rangle = \sum_n \langle P_{\mu_1} ... P_{\mu_n} O_i \rangle \frac{1}{\mathcal{N}_{O_i}} \langle P_{\mu_1} ... P_{\mu_n} O_i \rangle, \quad (3.83)$$

for some normalisation \mathcal{N}_{O_i}. The identity is the sum of the projection operators over all primary operators

$$\mathbb{1} = \sum_{O_i} \langle O_i \rangle. \quad (3.84)$$

The projector $\langle O_i \rangle$ commutes with all conformal generators, and thus the partial wave W_{O_i} has the same transformation properties as the four point function (3.79). It may then be written as

$$W_{O_i} (x_1, x_2; x_3, x_4) = G_{O_i} (u, v) \frac{\Delta}{(x_{12}^2)^\Delta (x_{34}^2)^\Delta}. \quad (3.85)$$

The function $G_{O_i} (u, v)$ of cross ratios is known as a conformal block, and encodes the contribution of a primary O_i and its descendants to the function $g(u, v)$ in the correlator (3.79),

\[
\text{J. Phys. A: Math. Theor. 50 (2017) 383001} \] Topical Review
The space-time dependence of \(g(u,v) \) is completely encoded in the conformal blocks \(G_{O_i}(u,v) \), which are universal in the sense that they do not depend on the CFT under consideration but only on the conformal representation of \(O_i \), i.e. its spin and scaling dimension. The \textit{a priori} arbitrary function \(g(u,v) \) is thus completely fixed by conformal invariance and the OPE.

While conformal blocks are central objects in CFT32, their explicit forms have been difficult to pin down in generality. Explicit closed-form expressions are available only in certain cases, like for external scalar operators in even spacetime dimensions [236, 237]. In other cases one has to resort to more indirect methods, like recursion relations [236, 238, 239] or efficient series expansions [240, 241]. There is also a general method to increase the spin of the external operators using differential operators [242–244].

Another indirect approach is given by so-called integral representations [238, 245–251], which we introduce in the following section. This is most useful for our purposes, for it allows us to define conformal blocks as integral products of three-point structures. In this way it is more straightforward to identify conformal blocks arising from computations in theories which are not, \textit{a priori}, CFTs. Such as gravity theories in anti-de Sitter space.

3.6.3. Integral representation. In this section we derive a useful representation of the projector (3.84), which leads to an integral expression for conformal blocks. This is motivated by the following observation of Hoffmann, Petkou and Ruehl [252, 253] (see also Dolan and Osborn [238])33, which is underpinned by the shadow formalism of Ferrara, Gatto, Grillo, and Parisi [245–248].

We first define for a given primary operator \(O \) with quantum numbers \([\Delta, s] \), an associated dual (or shadow) operator34

\[
\tilde{O}(x_1|z_1) = \kappa_{\Delta,s} \int d^d x_2 \frac{1}{(x_1 \cdot x_2)^{d-\Delta}} \left(z_1 \cdot I(x_1 - x_2) \cdot \hat{\partial}_{z_2} \right)^s O(x_2|z_2),
\]

(3.88)

which has quantum numbers \([d - \Delta, s] \). The normalisation \(\kappa_{\Delta,s} \) is chosen such that \(\tilde{O} = \tilde{O} \), which requires

\[
\kappa_{\Delta,s} = \left(\frac{2}{\pi} \right)^{\frac{d}{2}} \frac{\Gamma(d - \Delta + s)}{\Gamma(d - \frac{d}{2})} \frac{1}{(\Delta - 1)_s}.
\]

(3.89)

Dolan and Osborn observed that inserting the invariant projection operator

\[
P_{O_i} = \kappa_{d-\Delta,s} \int d^d x O_i(x) |0\rangle \langle 0| \tilde{O}_i(x),
\]

(3.90)

in a four-point function yields the contributions from the \([\Delta_i, s] \) and \([d - \Delta_i, s] \) conformal multiplets.

32 For example, they are basic ingredients in the conformal bootstrap program [233–235].

33 Later resurrected in the ambient framework in [249].

34 \(\hat{\partial} \) is a differential operator which accommodates traceless (appendix A.2.3), and \(I_{\mu\nu}(x) \) is the inversion tensor

\[
I_{\mu\nu}(x) = \delta_{\mu\nu} - \frac{2 z_{1\mu} z_{1\nu}}{x^2} ; \quad z_1 \cdot I(x) \cdot z_2 = z_1 \cdot z_2 - \frac{2 z_1 \cdot x z_2 \cdot x}{x^2}.
\]

(3.87)
\[\langle \mathcal{O} (x_1) \mathcal{O} (x_2) \mathcal{P}_\mathcal{O}, \mathcal{O} (x_3) \mathcal{O} (x_4) \rangle = c^2_{\mathcal{O} \mathcal{O} \mathcal{O}} W_{\mathcal{O}} (x_1, x_2; x_3, x_4) + c^2_{\mathcal{O} \mathcal{O} \mathcal{O}} W_{\mathcal{O}} (x_1, x_2; x_3, x_4). \]

This entails an integral representation of their total contribution,

\[
\begin{align*}
& c^2_{\mathcal{O} \mathcal{O} \mathcal{O}} W_{\mathcal{O}} (x_1, x_2; x_3, x_4) + c^2_{\mathcal{O} \mathcal{O} \mathcal{O}} W_{\mathcal{O}} (x_1, x_2; x_3, x_4) \\
= \kappa_{d-\Delta_i} \int d^\nu \langle \langle \mathcal{O} (x_1) \mathcal{O} (x_2) \mathcal{O} (x_3) \rangle \rangle \langle \langle \mathcal{O} (x) \mathcal{O} (x_3) \rangle \rangle \\
\text{as a product of two three-point functions. The factor of } \kappa_{d-\Delta_i} \text{ in the above ensures that the projector } (3.90) \text{ acts trivially when inserted into a correlator involving } \mathcal{O},
\end{align*}
\]

An integral expression for the non-shadow contribution can be obtained by integrating over complex scaling dimensions with poles at dimensions \(\Delta_i \) and \(d-\Delta_i \),

\[
\int^{-\infty}_{\infty} \frac{d\nu}{\nu^2 + (\Delta_i - \frac{d}{2})^2} \left(W_{\mathcal{O}_{\frac{d}{2}+\nu}} (x_1, x_2; x_3, x_4) + W_{\mathcal{O}_{\frac{d}{2}-\nu}} (x_1, x_2; x_3, x_4) \right) = \frac{2\pi}{(\Delta_i - \frac{d}{2})} W_{\mathcal{O}} (x_1, x_2; x_3, x_4).
\]

We then arrive to the following integral representation of a single conformal block

\[
W_{\mathcal{O}} (x_1, x_2; x_3, x_4) = \frac{\Delta_i - \frac{d}{2}}{2\pi} \int^{-\infty}_{\infty} \frac{d\nu}{\nu^2 + (\Delta_i - \frac{d}{2})^2} \kappa_{\frac{d}{2}-\nu, \Delta_i} \Gamma \left(\frac{\frac{d}{2}-\nu + \nu}{2} \right)^2 \Gamma \left(\frac{\frac{d}{2}+\nu + \nu}{2} \right)^2 \\
\times \int d^\nu \langle \langle \mathcal{O} (x_1) \mathcal{O} (x_2) \mathcal{O}_{\frac{d}{2}+\nu} (x) \rangle \rangle \langle \langle \mathcal{O}_{\frac{d}{2}-\nu} (x) \mathcal{O} (x_3) \rangle \rangle \langle \langle \mathcal{O} (x_4) \rangle \rangle, \tag{3.93}
\]

where we introduced the notation

\[
\langle \langle \bullet \rangle \rangle \text{ denotes the removal the overall coefficient from the three-point function}.\tag{3.94}
\]

I.e. \(\langle \langle \bullet \rangle \rangle \) denotes the removal the overall coefficient from the three-point function.\tag{3.94}

Similarly, we can express the conformal block expansion of a given four-point function in the following form 37

35 The partial wave \(W_{\mathcal{O}_{\frac{d}{2}+\nu}} (x_1, x_2; x_3, x_4) \) decays fast enough (exponentially) only for \(\text{Im} (\nu) \rightarrow \pm \infty \). Applying the residue theorem, we must therefore close the contour in the lower half plane for \(W_{\mathcal{O}_{\frac{d}{2}+\nu}} \) thus picking up a contribution from the pole at \(\nu = \frac{d}{2} - \nu_i \), while for \(W_{\mathcal{O}_{\frac{d}{2}-\nu}} \) we close in the upper-half plane around the pole at \(\nu = \frac{d}{2} - \nu_i \).

36 In establishing (3.93), we used that

\[
C_{\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}} = \frac{1}{(2\pi)^3} \frac{\Gamma \left(\frac{\nu + \nu_i}{2} \right)}{\Gamma \left(\frac{\nu + \nu_i}{2} \right)} C_{\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}}.
\]

37 Which has origins in the early literature, for example [254–256].
\[\langle \mathcal{O}(x_1) \mathcal{O}(x_2) \mathcal{O}(x_3) \mathcal{O}(x_4) \rangle = \sum_s \int_{-\infty}^{\infty} d\nu \ g_s(\nu) \ W_{\mathcal{O}^{2s} \mathcal{O}}(x_1, x_2; x_3, x_4), \] \tag{3.96}

which we refer to as the contour integral representation. For each spin-\(s\) primary operator in the \(\mathcal{O}\mathcal{O}\) OPE of scaling dimension \(\Delta_s\), the meromorphic function contains a pole at \(i\nu = \Delta_s - \frac{d}{2}\). The residue of \(g_s(\nu)\) at this pole gives the square of the corresponding OPE coefficient, such that the usual conformal block decomposition (3.81) is recovered upon application to the residue theorem.

This way of representing the conformal block expansion and conformal blocks will prove instrumental in later sections of this review, in which we apply the conformal block expansion in the context of the AdS/CFT duality.

4. Correlators in the free \(O(N)\) model

Having discussed the general structure and properties of two-, three- and four-point correlation functions in CFTs, in this section we move on to consider them in the context of the simplest examples of such theories: free conformal field theories. In this case, exact results for the correlators can be obtained by simple application of Wick’s theorem.

Our consideration of these simple CFTs is motivated by the conjectured equivalence between higher-spin gauge theories on AdS and free vector model CFTs. In particular, we compute two-, three- and four-point functions of single-trace operators in the free scalar \(O(N)\) vector model, which are dual to single-particle states in the dual higher-spin gauge theory. Moreover, we apply the conformal partial wave expansion techniques introduced in the previous section to the four-point function of the scalar single-trace operator. This is in the view to compare with the corresponding processes in the dual higher-spin gauge theory on AdS.

4.1. The free scalar \(O(N)\) vector model

Some of the simplest examples of CFTs are given by free theories without a mass scale. These theories are solvable in the sense that the path integral is Gaussian, which can therefore be straightforwardly be evaluated to determine all correlators in the theory.

In this section we focus on the example of the free scalar \(O(N)\) vector model, which is conjectured to be dual to the type A minimal bosonic higher-spin theory on AdS (section 2.3). This is a theory of an \(N\) component real scalar field \(\phi^a\), transforming in the fundamental representation of \(O(N)\). The action is simply

\[S[\phi] = \sum_{a=1}^{N} \int d^d x \ \frac{1}{2} \partial_\mu \phi^a \partial^\mu \phi^a, \] \tag{4.1}

with equation of motion \(\partial^2 \phi^a = 0\). Free massless scalar fields are primary of scaling dimension \(\Delta_\phi = \frac{d}{2} - 1\).

Correlation functions of operators in the theory can be defined by the path integral

\[\langle \mathcal{O}_1(x_1) ... \mathcal{O}_n(x_n) \rangle = \int d[\phi] \ \mathcal{O}_1(x_1) ... \mathcal{O}_n(x_n) \ e^{-S[\phi]}, \] \tag{4.2}

where the measure is normalised such that \(\langle 1 \rangle = 1\). In particular, by evaluating the Gaussian integral the two-point function of the fundamental scalar is given by
\(\langle \phi^a (x_1) \phi^b (x_2) \rangle = \frac{1}{(d - 2) \text{Vol} (S^d) |x_{12}|^{d-2}} \delta^{ab}, \quad \text{Vol} (S^d) = \frac{2\pi^{\frac{d}{2}}}{\Gamma (\frac{d}{2})}. \) \hspace{1cm} (4.3)

It is conventional to re-define \(\phi \rightarrow \sqrt{(d - 2) \text{Vol} (S^d)} \), to obtain a canonical unit normalisation

\[\langle \phi^a (x_1) \phi^b (x_2) \rangle = \frac{\delta^{ab}}{|x_{12}|^{d-2}}. \] \hspace{1cm} (4.4)

Since the theory is free, we may determine all correlation functions of operators in the theory by expressing them in terms of the two-point function (4.3) through Wick’s theorem.

As explained in section 2.4, from the correlation functions of operators in the singlet sector, we can study the possible interactions in the dual minimal bosonic higher-spin theory on AdS. For this purpose, in the following sections we determine the explicit forms of the appropriate 2-, 3- and 4-pt functions. We work in Euclidean signature throughout.

4.1.1 Singlet sector. By definition, operators in the singlet sector are invariants under the \(O(N) \) symmetry group. Operators in this sector have no free \(O(N) \) indices, and are thus composite in the elementary scalar \(\phi^a \). We distinguish between single-trace operators, consisting of a single contraction of the \(O(N) \) indices, and multi-trace operators, consisting of two or more contractions. As discussed in section 2.2, these are dual to single- and multi-particle states in anti-de Sitter space, respectively.

Single-trace operators. The spectrum of single-trace operators in the vector model are bi-linear in the elementary scalar \(\phi^a \). There is just a single scalar primary operator

\[\mathcal{O} = \frac{1}{\sqrt{N}} : \phi^a \phi^a : , \quad \Delta = 2\Delta_{\phi} = d - 2, \] \hspace{1cm} (4.5)

whose scaling dimension is simply twice the scaling dimension of the elementary scalar.\(^{38}\) The rest of the single-trace spectrum comprises of an infinite tower of even spin conserved currents of the schematic form

\[\mathcal{J}_{s_{1...s}} \sim \frac{1}{\sqrt{N}} : \phi^a \partial_1 ... \partial_s \phi^a : + ... , \quad s \in 2\mathbb{N}. \] \hspace{1cm} (4.6)

The \(... \) denote further symmetric singlet bi-linear structures, which ensure that the operator is primary and whose form we determine explicitly below. Recall (see section 2.2.1) that spin-\(s \) conserved operators are primary with scaling dimension \(\Delta_s = s + d - 2 = s + \Delta \), which can be verified in the above by counting derivatives.

To compute correlation functions of the conserved currents (4.6), it is convenient to employ the index-free notation

\[\mathcal{J}_s (x|z) = \mathcal{J}_{s_{1...s}} (x) z^1 ... z^s , \quad z^2 = 0. \] \hspace{1cm} (4.7)

In this way, they can be packaged in the compact form

\[\mathcal{J}_s (x|z) = \frac{1}{\sqrt{N}} f^{(s)} (z \cdot \partial_{y_1}, z \cdot \partial_{y_2}) : \phi^a (y_1) \phi^a (y_2) : |_{y_1,y_2 \rightarrow x}, \] \hspace{1cm} (4.8)

where the function \(f^{(s)} (x, y) \) is given in terms of a Gegenbauer polynomial \([257]\).

\(^{38}\) Recall that in a free theory, scaling dimensions are additive.
Recall that \(\Delta_\phi \) is the scaling dimension of \(\phi^a \).

This way of representing the currents can be derived by demanding that the expression (4.8) is annihilated by the conformal boost generator \(K_i \), which gives rise to the differential equation \((\Delta_\phi + x \partial_x + y \partial_y) f^{(s)} (x, y) = 0 \), (4.10)
whose solution is expressed in terms of the Gegenbauer polynomials above.

Double-trace operators. There are also operators in the singlet sector composed of higher traces, which are dual to multi-particle states in the gravity theory on AdS. At the level of four-point functions studied in this work, we need only consider double-trace operators. In particular, in studying the conformal block expansion of the four-point function \(\langle OOOO \rangle \), we will encounter contributions from double-trace operators of the schematic form

\[
[O^2]_{n,s} \sim 1 \cdot \phi^a \phi^b \cdot \partial^a_1 \cdots \partial^a_n \left(\partial^b_1 \cdots \partial^b_n \right)^n : \phi^b \phi^b :,
\]
(4.11)

where \(s \) is the spin, and \(\Delta_{n,s} = 2\Delta + 2n + s \) the scaling dimension. The primary condition (3.18) fixes their precise form, which we determine for all \(s \) and \(n \) in appendix D.

4.2. Singlet sector correlation functions

We now consider correlation functions of operators in the singlet sector introduced above. Since the theory is free, we simply apply Wick’s theorem and express them in terms of two-point functions of the fundamental scalar (4.3).

Our computations are drastically simplified by using the Schwinger-parametrised form of the fundamental scalar two-point function

\[
\langle \phi^a (x_1) \phi^b (x_2) \rangle = \frac{\delta^{ab}}{\Gamma \left(\frac{\Delta}{2} \right)} \int_0^\infty \frac{dt}{t} e^{t \frac{\Delta}{2}} t^{\frac{\Delta}{2} - 1} x_1^{\Delta/2 - 1},
\]
(4.12)

which allows for a seamless application of Wick’s theorem.

Conformal symmetry fixes the form of 2- and 3-pt functions up a set of theory dependent coefficients (section 3.5). The goal of the following sections is to determine them for the free scalar \(O(N) \) vector model in \(d \)-dimensions.

4.2.1. 2-point functions.

As we reviewed in section 3.5.1, conformal invariance determines two-point functions up a single overall coefficient, with those of spin-\(s \) conserved currents (4.8) taking the form

\[
\langle J_s \left(x_1 \right) J_s \left(x_2 \right) \rangle = C_{J_s} \left(\frac{H_s}{x_1^{\Delta/2}} \right)^s.
\]
(4.13)

The purpose of this section is to determine the coefficient \(C_{J_s} \), which essentially depends on the choice of normalisation of the currents (4.8).

\(^{39}\) This equation can be generalized to deal with scalar single-trace operators built out of constituents with different dimensions \(\Delta_1/2 \) and \(\Delta_2/2 \). The corresponding primary is in this case a Jacobi polynomial \(f(x, y) = (x + y)^{\Delta_1/2 - 1, \Delta_2/2 - 1} \left(\frac{\Delta_1}{\Delta_2} \right)^{\Delta_1/2 - 1} \).
Employing the generating function (4.9) for the conserved current, applying Wick’s theorem we have

\[
\langle J_\mu (x_1|z_1) J_\nu (x_2|z_2) \rangle = \frac{1}{N} f^{(n)} (z_1 \cdot \partial \bar{z}_1, z_1 \cdot \partial \bar{z}_1) f^{(n)} (z_2 \cdot \partial \bar{z}_2, z_2 \cdot \partial \bar{z}_2) \times \left[\langle \phi^a (y_1) \phi^b (y_2) \rangle \langle \phi^b (y_1) \phi^b (y_2) \rangle + \phi^a (y_1) \leftrightarrow \phi^a (y_2) \leftrightarrow \phi^b (y_2) \right] |_{y_1: x_1 \rightarrow x_1, y_2 \rightarrow z_2}.
\]

To extract the overall two-point coefficient, due to conformal invariance it is sufficient to restrict attention to terms with zero contractions between the null auxiliary vectors. We thus set to zero \(z_1 \cdot z_2\), and match with the corresponding term in (4.13). This is straightforward using the Schwinger-parametrised form of the fundamental scalar two-point function (4.12), through which we obtain

\[
C_{\phi \phi} = \frac{1}{2} \left[1 + (-1)^n \right] \frac{2^{2n+1}}{\Gamma (\frac{3}{2})^2} \int_0^{\infty} \frac{d s_1 d s_2}{s_1 s_2} t_1 t_2 \frac{s_1 - s_2}{s_1 + s_2} \frac{(t_1 + t_2)^2 C_s^{(\Delta_n - 1)} (p)}{t_1 t_2} \frac{(t_1 - t_2)^2 C_s^{(\Delta_n - 1)} (p)}{t_1 + t_2} e^{-s_1 t_1 + s_2 t_2}.
\]

In the second equality we used the change of variables

\[
q = t_1 + t_2, \quad p = \frac{t_1 - t_2}{t_1 + t_2},
\]

in the third the integral representation of the Gamma function and the orthogonality relation for Gegenbauer polynomials in the fourth.

In the same way, we can determine the coefficient of the two-point functions of the double-trace operators (4.11)

\[
\langle \langle O^a O^b \rangle \rangle_{n \times n} (x_1|z_1) \langle O^a O^b \rangle_{n \times n} (x_2|z_2) \rangle = C_{\langle O^a O^b \rangle_{n \times n}} \frac{(H_3)^4}{\left(s_1^2 + 2 n \right)^{2 n}}.
\]

Using the explicit form (D.2) of the operators \(\langle O^a O^b \rangle_{n \times n} \) together with the Schwinger parameterisation (4.12), we find

\[
C_{\langle O^a O^b \rangle_{n \times n}} = \frac{1}{N} \frac{2^{2n+1}}{\Gamma (\frac{3}{2})^2} \left(\frac{d}{2} - 1 \right)_{n+\frac{1}{2}} \left(\frac{d}{2} - 2 \right)_{n+\frac{1}{2}} \times \frac{(-1)^n 4^{n+1} \Gamma (n + 1) (-d - 2 n + 4) \Gamma (d - 2)_{n+\frac{1}{2}} (\frac{d}{2} + s) \Gamma (\frac{d}{2} + n + s - 4)}{\Gamma (s + 1) \left(\frac{d}{2} - 1 \right)_{n} \left(\frac{d}{2} + 2 n + s - 4 \right)_{n}} \left(\frac{d}{2} - 1 \right)_{n+\frac{1}{2}} \left(\frac{d}{2} - 2 \right)_{n+\frac{1}{2}},
\]

where we inserted \(\Delta = d - 2\).

4.2.2. 3-point functions of single-trace operators.

Warm-up: s=0.0. As a warm up, we consider the simplest case of two scalar single trace operators \(O\) and a spin-\(s\) conserved current. In section 3.5.3, we saw that conformal symmetry fixes its form up to an overall factor.
\[\langle J_s(x_1|z_1) \mathcal{O}(x_2) \mathcal{O}(x_3) \rangle = C_{J_s,\mathcal{OO}} \frac{1}{(x_{12}^2)^{\frac{\Delta}{2}} (x_{13}^2)^{\frac{\Delta}{2}} (x_{23}^2)^{\frac{\Delta}{2}}} Y_1^i, \]

(4.19)

which we determine in the following.

Applying the same tools we used for the two-point functions in the previous section, we have

\[
\langle J_s(x_1|z_1) \mathcal{O}(x_2) \mathcal{O}(x_3) \rangle \\
= \frac{4}{(\sqrt{N})^3} \int (z_1 \cdot \partial_{\imath_1}, z_1 \cdot \partial_{\imath_2}) \left[\langle \phi^s(y_1) \phi^b(x_2) \rangle \langle \phi^b(y_2) \phi^s(x_3) \rangle \langle \phi^b(x_2) \phi^s(x_3) \rangle \right] + y_1 \leftrightarrow y_2 \bigg|_{y_1, y_2 \to \infty} \\
= \frac{1}{\sqrt{N}} \frac{8}{\Gamma(x)} \left[\frac{1 + (-1)^s}{2} \right] \left(z_1 \cdot \partial_{\imath_1} + z_1 \cdot \partial_{\imath_2} \right) \left(\frac{z_1 \cdot \partial_{\imath_1} - z_1 \cdot \partial_{\imath_2}}{z_1 \cdot \partial_{\imath_1} + z_1 \cdot \partial_{\imath_2}} \right) \\
\times \int_0^\infty \left(\prod_{i=1}^3 \frac{dt_i}{t_i^3} \right) e^{-t_1 (y_1-x_3)^2 + t_2 (y_2-x_3)^2 + t_3 (y_3-x_3)^2} \bigg|_{y_1, y_2 \to \infty}.
\]

(4.20)

To extract \(C_{J_s,\mathcal{OO}} \), as with the two-point function in the previous section, by conformal symmetry we need only identify the coefficients of \((x_{12} \cdot z_1)^s\) in (4.20) and (4.19). This leads to

\[
C_{J_s,\mathcal{OO}} = \frac{1}{\sqrt{N}} \frac{2^{s+2}}{\Gamma(x)} \left[\frac{1 + (-1)^s}{2} \right] \int_0^\infty \left(\prod_{i=1}^3 \frac{dt_i}{t_i^3} \right) e^{-t_1 - n_x - n_y} \\
= \frac{8}{\sqrt{N}} \left[\frac{1 + (-1)^s}{2} \right] \frac{2^s (\frac{x}{2}) \Gamma(x) \Gamma(x + 1)}{\Gamma(s + 1)}.
\]

(4.21)

Likewise, we can also determine the analogous three-point function for a spin-s double-trace operator for general \(n \),

\[
\langle \mathcal{O} \mathcal{O} \rangle_{\Delta^n} (x_1|z_1) \mathcal{O}(x_2) \mathcal{O}(x_3) = C_{\mathcal{O} \mathcal{O} \mathcal{O}} \frac{(x_{12}^2)^n}{(x_{13}^2)^{\Delta + n}(x_{23}^2)^{\Delta + n}} Y_1^i.
\]

(4.22)

with

\[
C_{\mathcal{O} \mathcal{O} \mathcal{O}} = (-1)^{n+1} 2^{s+2} (d-2)_{n+1} \left(1 + (-1)^n \right) \frac{4}{\sqrt{N}} \frac{\Gamma(x) \Gamma(x + 1)}{2 \Gamma(x) \Gamma(x + 1)} \left[\frac{1}{2} \right] \left[(d-2)_{n+1} \right].
\]

(4.23)

General case: s1-s2-s3. With the approach clear, we now tackle the more involved general case of a three-point function involving currents (4.8) for a generic triplet of spin \(\{s_1, s_2, s_3\} \). As we saw in section 3.5.3, the most general three-point function takes the form

\[
\langle J_{s_1}(x_1|z_1) J_{s_2}(x_2|z_2) J_{s_3}(x_3|z_3) \rangle \\
= \sum_n C_{J_{s_1}J_{s_2}J_{s_3}}^{n_1,n_2,n_3} \frac{Y_1^{n_1-n_2-n_3} Y_2^{n_2-n_3-n_1} Y_3^{n_3-n_1-n_2} H_1^{n_1} H_2^{n_2} H_3^{n_3}}{(x_{12}^2)^{\frac{\Delta_{s_1} + \Delta_{s_2} + \Delta_{s_3}}{2}} (x_{13}^2)^{\Delta_{s_1}} (x_{23}^2)^{\Delta_{s_2}}},
\]

(4.24)

built from the six basic conformal structures (3.63). Each individual term is independently invariant under conformal transformations, and thus conformal symmetry does not determine the coefficients \(C_{J_{s_1}J_{s_2}J_{s_3}}^{n_1,n_2,n_3} \).

The requirement that the currents are conserved relates the coefficients \(C_{J_{s_1}J_{s_2}J_{s_3}}^{n_1,n_2,n_3} \) amongst each other, reducing the number of independent forms. Conservation constraints on the
structure of three-point functions involving conserved vector operators and the stress-energy tensor where first studied by Osborn and Petkou in [258]. This was extended to a generic triplet of spins \(\{s_1, s_2, s_3\}\) in [230, 259, 260]. In [260], the general structure required by conservation in \(d > 3\) was found to be

\[
\langle J_{s_1}(x_1|z_1)J_{s_2}(x_2|z_2)J_{s_3}(x_3|z_3)\rangle = \sum_{l=0}^{\infty} c_l F_1 \left(\frac{1}{2} - l, -l, 3 - \frac{d}{2} - 2l; -\frac{1}{2}; H_1^2, H_2^2, H_3^2 \right)
\times e^{Y_1+z_1+Y_2+z_2+Y_3+z_3} \frac{F_1(\Delta, -\frac{1}{2}H_1, 0) F_1(\Delta, -\frac{1}{2}H_2, 0) F_1(\Delta, -\frac{1}{2}H_3, 0)}{(x_{12})^{\Delta + \frac{1}{2} - z_1 - z_2} (x_{23})^{\Delta + \frac{1}{2} - z_2 - z_3} (x_{31})^{\Delta + \frac{1}{2} - z_3 - z_1}} \Lambda^{2l},
\]

with

\[
\Lambda = Y_1Y_2Y_3 + \frac{1}{2} [Y_1H_1 + Y_2H_2 + Y_3H_3],
\]

and where \(l\) takes both integer and half integer values. The coefficients \(c_l\) are left unfixed by current conservation, and depend on the theory. In particular, for a generic triplet of spins there are \(1 + \min(s_1, s_2, s_3)\) independent structures, which was first counted in [258, 261] (see also [30, 262, 263]). In the following we determine the coefficients \(c_l\) for the \(d\)-dimensional free scalar \(O(N)\) vector model\(^{40}\). As we shall see, our results confirm a prediction made in [260], that the free scalar correlator corresponds to the \(l = 0\) structure in the above.

As with the two-point functions in section 4.2.1, we can focus on terms with no contractions amongst the auxiliary vectors. In the calculations we may then set \(z_i \cdot z_j = 0\), giving

\[
\langle J_{s_1}(x_1|z_1)J_{s_2}(x_2|z_2)J_{s_3}(x_3|z_3)\rangle = \frac{8N}{\Gamma \left(\frac{d}{2} \right)^3} \int_0^\infty \left(\frac{3}{\prod_{i=1}^3 J_i} \right)^2 f^{(s_1)} (-2t_1z_1 \cdot x_{12}, -2t_1z_1 \cdot x_{13}) \cdot f^{(s_2)} (-2t_2z_2 \cdot x_{21}, -2t_2z_2 \cdot x_{23}) \cdot f^{(s_3)} (-2t_3z_3 \cdot x_{31}, -2t_3z_3 \cdot x_{32})
\]

\[
\times e^{-t_1z_1^2 - t_2z_2^2 - t_3z_3^2}
\]

\[
= \sum_{n_i=0}^{s_i} D_n^{(s_1,s_2,s_3)} \frac{(s_1 \cdot x_{12})^{y_{s_1}} (s_2 \cdot x_{21})^{y_{s_2}} (s_3 \cdot x_{32})^{y_{s_3}}}{(x_{12})^{\Delta + y_{s_1} + y_{s_2} - n_1} (x_{21})^{\Delta + y_{s_2} + y_{s_3} - n_2} (x_{32})^{\Delta + y_{s_3} + y_{s_1} - n_3}} \cdot \frac{(s_1 \cdot x_{13})^{y_{s_1}} (s_2 \cdot x_{23})^{y_{s_2}} (s_3 \cdot x_{31})^{y_{s_3}}}{(x_{13})^{\Delta + y_{s_1} + y_{s_3} - n_1} (x_{23})^{\Delta + y_{s_2} + y_{s_1} - n_2} (x_{31})^{\Delta + y_{s_3} + y_{s_2} - n_3}}
\]

where

\[
D_n^{(s_1,s_2,s_3)} = \frac{N(-1)^{y_{s_1}+y_{s_2}+y_{s_3}} (s_1 \cdot n_1) (s_2 \cdot n_2) (s_3 \cdot n_3) (\Delta - 1)(\Delta - 1)(\Delta - 1)}{s_1s_2s_3}
\]

\[
\times \Gamma (s_1 + \frac{1}{2}) \Gamma (s_2 + \frac{1}{2}) \Gamma (s_3 + \frac{1}{2}) \Gamma (n_1 + \frac{1}{2}) \Gamma (n_2 + \frac{1}{2}) \Gamma (n_3 + \frac{1}{2}) \Gamma (-n_1 + s_1 + s_2 + s_3 + \frac{1}{2}) \Gamma (-n_2 + s_2 + s_3 + \frac{1}{2}) \Gamma (-n_3 + s_3 + s_1 + \frac{1}{2})
\]

\[
(\Delta - 1)(\Delta - 1)(\Delta - 1)
\]

\[
(\Delta - 1)(\Delta - 1)(\Delta - 1)
\]

By matching with the corresponding expansion of the general form for the correlator (4.24), we can write down the following recursion relation for the coefficients \(C_{s_1,s_2,s_3}^{n_1,n_2,n_3}\)

\(^{40}\)These results extend to general dimensions the results [264–266] for the same correlators in three-dimensions. See also [267] for an earlier result for the stress-tensor three-point function in a free scalar theory in general dimensions.
where the summation assumes $k_i \leq n_i$. Solving for the explicit form of the coefficients, we find:

$$C_{s_1, s_2, s_3}^{n_1, n_2, n_3} = - \frac{N(-1)^{n_1 + n_2 + n_3} 2^{n_1 + n_2 + n_3 - (n_1 + n_2 + n_3) + 3}}{n_1! n_2! n_3! [(s_1 - n_2 - n_3)! (s_2 - n_3 - n_1)! (s_3 - n_1 - n_2)!]} \times \frac{\Gamma(s_1 + \frac{3}{2}) \Gamma(s_2 + \frac{1}{2}) \Gamma(s_3 + \frac{3}{2})}{\Gamma(n_1 + \frac{3}{2}) \Gamma(n_2 + \frac{1}{2}) \Gamma(n_3 + \frac{3}{2})} (\Delta - 1)_{s_1} (\Delta - 1)_{s_2} (\Delta - 1)_{s_3}. \quad (4.30)$$

A nice check of this result is that it is consistent with that established for the s-0-0 correlator in the previous section, which was already available in the literature [268]. Furthermore, using the identity

$$\Gamma(\alpha + 1) x^{-\alpha} J_\alpha(2x) = 2^{-\alpha} {}_0F_1 \left(\alpha + 1; -\frac{x^2}{4} \right), \quad (4.34)$$

our result confirms the conjecture made in [260], that the free scalar correlator corresponds to the $l = 0$ term in (4.25).

With the results (4.13) and (4.31) for the two- and three-point functions of higher-spin conserved currents, in section 6 we are able to fix the cubic action of the dual type A minimal bosonic higher-spin theory on AdS_{d+1}, using the conjectured holographic higher-spin / vector model duality. Furthermore, together with the double-trace operator 3- and 2-point functions (4.22) and (4.17), as discussed in section 3.6 these expressions also determine the conformal block expansion of the scalar single-trace operator four-point function, to which we now turn our attention. The latter is a key result for later applications (section 6), as it will allow us to determine the on-shell quartic self interaction of the scalar in the dual higher-spin theory.

41 I.e. by redefining $J_s \rightarrow \sqrt{c_s} \tilde{J}_s$.

35
4.2.3. Scalar 4-point function. For the remainder of this section we consider the four-point function of the scalar single-trace operator \[\langle O(x_1)O(x_2)O(x_3)O(x_4)\rangle\] = \(g_{O}(u,v)\left(\frac{x_{12}^2 x_{34}^2}{x_{12}^2 + x_{34}^2}\right)\Delta\), \hspace{1cm} (4.35)

which has disconnected and connected parts,

\[g_{O}(u,v) = g_{\text{disc.}}(u,v) + g_{\text{conn.}}(u,v)\], \hspace{1cm} (4.36)

\[g_{\text{disc.}}(u,v) = 1 + u^{\Delta} + \left(\frac{u}{v}\right)^{\Delta}, \hspace{1cm} g_{\text{conn.}}(u,v) = \frac{4}{N} \left(u^{-\Delta} + \left(\frac{u}{v}\right)^{-\Delta} + \Phi(u)\Phi\left(\frac{u}{v}\right)\right)\], \hspace{1cm} (4.37)

where we used canonical normalisation for the \(\langle OO\rangle\) two-point function. As usual, we can obtain the above expressions by simply Wick contracting. The individual contributions can be understood pictorially in figure 2.

4.2.3. Scalar 4-point function. For the remainder of this section we consider the four-point function of the scalar single-trace operator [236],

\[\langle O(x_1)O(x_2)O(x_3)O(x_4)\rangle = \frac{g_{O}(u,v)}{x_{12}^2 x_{34}^2}\Delta\], \hspace{1cm} (4.35)

which has disconnected and connected parts,

\[g_{O}(u,v) = g_{\text{disc.}}(u,v) + g_{\text{conn.}}(u,v)\], \hspace{1cm} (4.36)

\[g_{\text{disc.}}(u,v) = 1 + u^{\Delta} + \left(\frac{u}{v}\right)^{\Delta}, \hspace{1cm} g_{\text{conn.}}(u,v) = \frac{4}{N} \left(u^{-\Delta} + \left(\frac{u}{v}\right)^{-\Delta} + \Phi(u)\Phi\left(\frac{u}{v}\right)\right)\], \hspace{1cm} (4.37)

where we used canonical normalisation for the \(\langle OO\rangle\) two-point function. As usual, we can obtain the above expressions by simply Wick contracting. The individual contributions can be understood pictorially in figure 2.

OPE and conformal block expansion. For later application, we require the conformal block expansion of the four-point function (4.35). As explained in section 3.5.5, although functions (4.37) of the cross ratios are invariant under conformal transformations, those in four-point functions they are completely determined by the \(OO\) OPE. Schematically, the latter takes the form \(^{42}\)

\[O\bar{O} \sim \mathbb{1} + \sum_{\gamma} c_{O\bar{O}}(\gamma) \xi_{\gamma} + \sum_{i,n} c_{O\bar{O}|O\bar{O}|i,n} \Phi_{i,n} + \text{descendants}, \hspace{1cm} (4.38)\]

\(^{42}\)That there are no contributions from higher-trace operators is clear from the triviality of their three-point functions with two insertions of \(O\). This can be seen immediately by applying Wick’s theorem.
with OPE coefficients $c_{O(O|O|O)}$ and $c_{O(O|O|O|)}$, of the conserved currents and double-trace operators, respectively. Using the results for the two- and three-point functions established in the previous sections, together with their relationship (3.82) to the corresponding OPE coefficients, we find

$$c^2_{O(O|O)} = \left[\frac{(-1)^n}{2} \frac{1}{N s!} (\frac{2}{2})^n \right] \frac{2^{s+3} \left(\frac{2}{2}\right)}{\Gamma(s)} (\Delta + s - 1)^n.$$ \hspace{1cm} (4.39)

$$c^2_{O(O|O|O|)} = \frac{s! \Gamma(s)}{(2s+1)^n (2\Delta + 2n + s - 1)} \frac{2^{s+1} (\frac{2}{2})^n \Gamma(s + n)}{(\Delta + s + 1)^n}.$$ \hspace{1cm} (4.40)

With the above results, we can write down the conformal block decomposition of the four-point function (4.35) (recall the discussion section 3.6 on the conformal block decomposition of four-point correlators). For example, in the (12)(34) channel

$$\langle O(x_1) O(x_2) O(x_3) O(x_4) \rangle = \frac{1}{(x_{12}^2 x_{34}^2)^\Delta} \left[\sum_s c^2_{O(O|O)} G_{\Delta + s, b} (u, v) + \sum_{s,n} c^2_{O(O|O|O)} G_{2\Delta + 2s + n, b} (u, v) \right],$$ \hspace{1cm} (4.41)

where the first term on the RHS is the contribution from the identity operator, the second from the conformal multiplet of each conserved currents (4.8) and the third from the multiplets of each of the double-trace operators (4.11).

To compare with the corresponding calculations of Witten diagrams in the dual higher-spin theory in section 5, it is useful to express the expansion (4.41) of the correlator in a crossing-symmetric form. To this end, it is instrumental to understand the microscopic interpretation of each term in the connected part of the correlator (4.35). For this it is sufficient to recall that in, say, the limit $u \to 0$ operators of twist τ enter as u^τ. We thus have

$$\frac{4}{N} \left(u^\tau + \frac{u}{v} \right) = \sum_s c^2_{O(O|O)} G_{\Delta + s, b} (u, v),$$ \hspace{1cm} (4.42)

and

$$\frac{4}{N} u^\tau \left(\frac{u}{v} \right) = \sum_{s,n} c^2_{O(O|O|O)} G_{2\Delta + 2s + n, b} (u, v).$$ \hspace{1cm} (4.43)

With the above understanding, we can express the four-point correlator in a manifestly crossing-symmetric form by writing

$$\langle O(x_1) O(x_2) O(x_3) O(x_4) \rangle_{\text{conn.}} = G(x_1, x_2; x_3, x_4) + G(x_1, x_3; x_2, x_4) + G(x_1, x_4; x_3, x_2)$$\hspace{1cm} (4.44)

with

$$G(x_1, x_2; x_3, x_4) = \frac{1}{(x_{12}^2 x_{34}^2)^\Delta} \left(a \cdot \sum_s c^2_{O(O|O)} G_{\Delta + s, b} (u, v) + b \cdot \sum_{s,n} c^2_{O(O|O|O)} G_{2\Delta + 2s + n, b} (u, v) \right),$$ \hspace{1cm} (4.45)
We are at liberty to choose any \(a \) and \(b \) with \(2a + b = 1 \) so that, via the identifications (4.42) and (4.43), the full connected correlator (4.35) is recovered. This simply parametrises the freedom to add to terms which vanish under symmetrisation. In other words \(G \) with different solutions for \(a \), \(b \) and \(c \) are related by the addition of \(G \) with the property that

\[
\hat{G} (x_1, x_2; x_3, x_4) + \hat{G} (x_1, x_3; x_2, x_4) + \hat{G} (x_1, x_4; x_2, x_3) = 0
\]

(4.46)

4.2.4. Contour integral form. In section 6.2.2 we employ the conformal block expansion of the scalar singlet four-point function (4.41) in 3d to extract the quartic self-interaction of the scalar singlet four-point function (4.41) in 3d to extract the quartic self-interaction of the scalar singlet four-point function (4.41) in 3d.

\[
\langle O (x_1) O (x_2) O (x_3) O (x_4) \rangle = \int_{-\infty}^{\infty} d\nu \sum s g_s (\nu) W_{s+i\nu}^C (x_1, x_2; x_3, x_4),
\]

(4.47)

which we determine in the following for \(d = 3 \).

As explained in section 3.6.3, the poles of the meromorphic function \(g_s (\nu) \) encode the contributions of each spin-\(s \) conformal multiplet. In the case of the scalar singlet four-point function (4.41), it thus takes the form

\[
g_s (\nu) = g_{s, \nu} (\nu) + g_{[O O]} (\nu),
\]

(4.48)

with \(g_{s, \nu} (\nu) \) generating the contribution from the spin-\(s \) conserved current multiplets, and \(g_{[O O]} (\nu) \) that of each of the spin-\(s \) double trace operators (4.11).

More precisely, when closing the \(\nu \)-contour in the lower half plane as prescribed in section 3.6.3, \(g_{s, \nu} (\nu) \) contains a single simple pole corresponding to the dimension of a spin-\(s \) conserved current. I.e. at \(\frac{\nu}{2} + i\nu = \Delta + s \)

\[
g_{s, \nu} (\nu) = \frac{c_{O \nu, s} (\nu)}{\nu^2 + (\Delta + s - \frac{\nu}{2})^2},
\]

(4.49)

\[
c_{O \nu, s} (\nu) = \left[\frac{(-1)^s + 1}{2} \right] \frac{2^{-2\nu + s + 5} \Gamma (i\nu + \frac{1}{2}) \Gamma \left(\frac{2\nu + 2s + 1}{4} \right)}{\pi^{1/2} N (2i\nu + 2s + 1) \Gamma (i\nu) \Gamma \left(\frac{2\nu + 2s + 1}{4} \right)^2}.
\]

(4.50)

The function \(c_{O \nu, s} (\nu) \) is chosen so that

\[
c_{O \nu, s} (\nu) \bigg|_{\nu = \Delta + s} = \frac{i}{2\pi} \left(2\Delta + 2s - d \right) c_{O \nu, s}^2,
\]

(4.51)

i.e. such that the single-trace contribution in (4.39) is recovered upon application of Cauchy’s residue theorem.

Similarly, for the spin-\(s \) double-trace operators, \(g_{[O O]} (\nu) \) has a string of simple poles at double-trace dimensions: \(\frac{\nu}{2} + i\nu = 2\Delta + 2n + s \), \(n = 0, 1, 2, \ldots, \infty \)

\[
g_{[O O]} (\nu) = c_{[O O]} (\nu) \Gamma \left(\frac{2\Delta + s - \frac{\nu}{2} - i\nu}{2} \right),
\]

(4.52)

which are accounted for by the poles of the Gamma function factor, and \(c_{O [O O]} (\nu) \) generates the corresponding OPE coefficients at each pole.
represent points on the AdS manifold and for those on the conformal boundary. We set to one for all computations in this section. When working in ambient space, we often work in Poincaré co-ordinates.

Theory containing fields of arbitrary rank. These methods are underpinned by the ambient

nal fields of arbitrary spin and mass (and also a parity even scalar), as well as methods to

5. Witten diagrams in higher-spin theory

With this section we turn to the bulk side of the story. In the preceding section we computed

correlation functions of single-trace operators in the singlet sector of the free scalar \(O(N)\)

vector model. In the context of holography, correlation functions of single-trace operators cor-

respond to so-called Witten diagrams in the weak coupling regime of the dual gravity theory

on AdS. In the present context, the dual theory is one of higher-spin gauge fields on AdS. With

this setting in mind, in this section we introduce methods for computing Witten diagrams in

theories containing fields of arbitrary rank. These methods are underpinned by the ambient

space framework, which is reviewed in detail in appendix A.

In particular, we demonstrate how to compute three-point Witten diagrams involving exter-

nal fields of arbitrary spin and mass (and also a parity even scalar), as well as methods to

establish conformal partial wave expansions of four-point exchange and contact diagrams.

This is all in the view to bring the Witten diagrams into the appropriate form to match their

counter-parts in the dual CFT. All computations are at tree-level.

Before we proceed, let us first settle the notation. We denote points on \(\text{AdS}_{d+1}\) by \(x^\mu\), and

often work in Poincaré co-ordinates \(x^\mu = (z, y)\),

\[
ds^2 = \frac{R^2}{z^2} \left(dz^2 + dy_1 dy_d \right),
\]

with \(y^i\) representing points on the boundary of AdS, \(i = 1, 2, \ldots, d\). We set the AdS radius \(R\) is set to one for all computations in this section. When working in ambient space, we use \(X\) to represent points on the AdS manifold and \(P\) for those on the conformal boundary.

5.1. Witten diagrams

Back in section 2.1, we saw that the AdS/CFT duality can be phrased as the equivalence

between the generating functional of correlators in a CFT and the full AdS partition function

of its putative dual gravity theory, which in Euclidean signature reads

\[
\langle \exp \left(\int d^d y \varphi(y) O(y) \right) \rangle_{\text{CFT}} = \int_{\varphi|_{\text{AdS}}} D\varphi \exp \left(-\frac{1}{G} S_{\text{AdS}} [\varphi] \right).
\]

The bulk field \(\varphi\), which is dual to the single-trace CFT operator \(O\) of scaling dimension \(\Delta\) and

spin-\(s\), is subject to the boundary condition (2.15)
$$\lim_{z \to 0} \varphi(z, y) z^\Delta - d - s = \tilde{\varphi}(y),$$
(5.3)

in order to define the path integral. In particular, this implies that correlators of single-trace operators \mathcal{O}_i can be computed by functionally differentiating the gravity partition function with respect to φ_i,

$$\langle \mathcal{O}_1(y_1) \ldots \mathcal{O}_n(y_n) \rangle = \frac{\delta}{\delta \varphi_1(y_1)} \ldots \frac{\delta}{\delta \varphi_n(y_n)} \int_{\varphi | \partial \text{AdS} = \bar{\varphi}_i} \mathcal{D} \varphi \exp \left(- \frac{1}{G} S_{\text{AdS}} [\varphi] \right) \bigg|_{\varphi = 0}.$$
(5.4)

When the gravity theory in AdS is weakly coupled\(^{43}\), we can perform a semi-classical expansion of the correlators generated by the gravity partition functional,

$$\langle \mathcal{O}_1(y_1) \ldots \mathcal{O}_n(y_n) \rangle = \frac{\delta}{\delta \varphi_1(y_1)} \ldots \frac{\delta}{\delta \varphi_n(y_n)} \exp \left(- \frac{1}{G} S_{\text{AdS}} [\varphi] | \partial \text{AdS} = \bar{\varphi}_i \right) \bigg|_{\varphi = 0} + \text{loops},$$
(5.5)

in which quantum loop corrections are subdominant. This corresponds to a large N_{dof} expansion in the dual CFT, and the corresponding Feynman diagrams in AdS space are known as Witten diagrams.

As explained in section 2.4, by studying the tree-level contribution to the relation (5.5) for non-linear higher-spin theories on AdS, we can extract the nature of their on-shell interactions by employing their conjectured equivalence with free conformal field theories. To do so, we therefore need to develop effective techniques for the systematic evaluation of tree-level Witten diagrams in theories containing fields of arbitrary rank. We first warm up by considering the simplest index-free example of a scalar field in AdS, the amplitudes of which we later show can be related to those with external higher-spin fields.

5.1.1 Warm-up example: scalar field in AdS. Consider the example of a scalar field ϕ in AdS_{d+1}, with classical action

$$S = \frac{1}{G} \int_{\text{AdS}} \frac{1}{2} \nabla \mu \phi \nabla^\mu \phi + \frac{1}{2!} m^2 \phi^2 + \frac{1}{3!} g \phi^3 + \frac{1}{4!} \lambda \phi^4 + \ldots,$$
(5.6)

for some overall coupling G. According to the field-operator map section 2.2, the bulk scalar ϕ will be dual to some single-trace scalar operator \mathcal{O} with scaling dimension Δ, which is related to the (mass)\(^2\) of ϕ

$$(mR)^2 = \Delta (\Delta - d).$$
(5.7)

In the weak coupling regime $G \ll 1$ we can make the saddle point approximation

$$\exp \left(- F_{\text{CFT}} [\bar{\phi}] \right) \approx \exp \left(- S [\bar{\phi}] \right),$$
(5.8)

where we neglect loop corrections, which are suppressed in G. Here, $F_{\text{CFT}} [\bar{\phi}]$ is the generating function of connected correlators of \mathcal{O} with source ϕ, and $S [\bar{\phi}]$ is the on-shell action (5.6) subject to the boundary condition

$$\lim_{z \to 0} \phi(z, y) z^{\Delta - d} = \bar{\phi}(y).$$
(5.9)

In the following, we demonstrate how to to evaluate correlation functions of \mathcal{O} at leading order in N_{dof} using the holographic equality (5.8).

\(^{43}\) In the sense of $\hbar \to 0$, not necessarily small curvature/non-stringy.
To do so, we must evaluate the on-shell action \(S[\bar{\phi}] \). The first step is to solve the non-linear classical equation of motion,

\[
\frac{\delta S}{\delta \phi} = (- \Box + m^2) \phi + \frac{g}{2!} \phi^2 + \frac{\lambda}{3!} \phi^3 + ... = 0,
\]

subject to the boundary condition (5.9). To express the solution in terms of the boundary value \(\bar{\phi} \), we solve perturbatively in \(\bar{\phi} \) by using integral kernels\(^44\). We write

\[
\phi(x) = \phi_0(x) + \phi_1(x) + \phi_2(x) + ..., \tag{5.11}
\]

where \(\phi_n \) is the solution at order \(n + 1 \) in \(\bar{\phi} \). To begin, the solution of the linear equation

\[
(- \Box + m^2) \phi_0 = 0, \tag{5.12}
\]

can be constructed from the boundary data via the corresponding bulk-to-boundary propagator. This is an integral kernel

\[
\phi_0(z, y) = \int_{\partial \text{AdS}} \frac{d^d y'}{|g|} K_\Delta (z, y; y') \bar{\phi}(y'), \tag{5.13}
\]

where

\[
(- \Box + m^2) K_\Delta (z, y; y') = 0, \quad \lim_{z \to 0} (z^{\Delta-d} K_\Delta (z, y; y')) = \frac{1}{2 \Delta - d} \delta^d (y - y'). \tag{5.14}
\]

Increasing the order in \(\bar{\phi} \), we must solve

\[
(- \Box + m^2) \phi_0 = 0,
\]

\[
(- \Box + m^2) \phi_1 + \frac{g}{2!} \phi_0^2 = 0,
\]

\[
(- \Box + m^2) \phi_2 + g \phi_0 \phi_1 + \frac{\lambda}{3!} \phi_0^3 = 0,
\]

\[
\vdots. \tag{5.15}
\]

Through use of the bulk-to-bulk propagator

\[
(- \Box + m^2) \Pi_\Delta (x, x') = \frac{1}{\sqrt{|g|}} \delta^{d+1} (x - x'), \tag{5.16}
\]

the solution can be determined order-by-order in terms of the linear solution \(\phi_0 \) and thus the boundary value \(\bar{\phi} \),

\[
\phi_0(x) = \int_{\partial \text{AdS}} \frac{d^d y'}{|g|} K_\Delta (z, y; y') \bar{\phi}(y'),
\]

\[
\phi_1(x) = -\frac{g}{2!} \int_{\text{AdS}} \frac{d^{d+1} x'}{|g|} \Pi_\Delta (x; x') \phi_0^2 (x'),
\]

\[
\phi_2(x) = -\frac{\lambda}{3!} \int_{\text{AdS}} \frac{d^{d+1} x'}{|g|} \Pi_\Delta (x; x') \phi_0^3 (x') - g \int_{\text{AdS}} \frac{d^{d+1} x'}{|g|} \Pi_\Delta (x; x') \phi_0 (x') \phi_1 (x'),
\]

\[
\vdots. \tag{5.17}
\]

The value of the action for this classical solution is given by the diagrammatic expansion

\(^{44}\) This is justified either for small source \(\bar{\phi} \) or small couplings \(\{g, \lambda, ...\} \).
Correlation functions of O can be computed at leading order in N_{dof} by taking functional derivatives of (5.18). In the following sections we give explicit examples for the two- and three-point functions, for which we only require the bulk-to-boundary propagator (5.14). We therefore first discuss the latter in more detail.

Propagators. To compute two- and three-point Witten diagrams at tree-level, as can be seen from the diagrammatic expansion (5.18) we require the form of the boundary-to-bulk propagator (5.14). Its most familiar expression is given in the Poincaré patch

$$K_\Delta(z, y; y') = C_{\Delta,0} \left(\frac{z}{z^2 + (y - y')^2} \right)^\Delta.$$

(5.19)

where the overall coefficient is fixed by the near-boundary behaviour (5.14)

$$C_{\Delta,0} = \frac{\Gamma(\Delta)}{2\pi^{d/2} \Gamma(\Delta + 1 - \frac{d}{2})}.$$

(5.20)

We postpone a derivation until section 5.2.2, where it is considered together with the higher-spin propagators.
However, we consider the evaluation of Witten diagrams in ambient space appendix A, in which the propagator takes the form

$$K_{\Delta}(X; P) = \frac{C_{\Delta,0}}{(-2X \cdot P)^{\Delta}}.$$ (5.21)

As we shall see, the ambient framework proves effective in extending the results for the scalar to those with higher-spin external legs. In particular, the ambient expression for the propagator admits a Schwinger-parameterised form

$$K_{\Delta}(X; P) = C_{\Delta,0} \frac{\Gamma(\Delta)}{\Gamma(\Delta)} \int_0^\infty \frac{dt}{t} t^{2\Delta - d} e^{2\Delta X \cdot P},$$ (5.22)

which turns out to dramatically simplify the evaluation of contact Witten diagrams.

Two-point Witten diagram. We begin with the two-point Witten diagrams. Unlike their higher-point counterparts, their computation via the above prescription requires careful treatment of IR divergences which arise from integrating over the infinite volume of AdS space [269]. However these issues can be circumvented by noting that, as in flat space, at tree-level they can simply be given by the corresponding propagator (5.16)/(5.14)

$$\langle O(x_1) O(x_2) \rangle = K_{\Delta}(x_1; x_2) = \Pi_{\Delta}(x_1; x_2),$$ (5.23)

which can be seen pictorially in figure 3.

Three-point Witten diagram. For Witten diagrams of three or more external points, there are no issues of IR divergences. We thus proceed using the prescription for computing Witten diagrams as described at the beginning of this section. The three-point correlator of O at leading order in $1/N_{\text{dof}}$ can thus be computed holographically via

$$\langle O(P_1) O(P_2) O(P_3) \rangle = g \int_{\text{AdS}} dX K_{\Delta}(X; P_1) K_{\Delta}(X; P_2) K_{\Delta}(X; P_3)$$

and is depicted in figure 4. An effective way to evaluate the bulk integral (5.24), is to employ the Schwinger-parameterised form of the propagator in the ambient formalism. This gives

$$\langle O(P_1) O(P_2) O(P_3) \rangle = g \int_{\text{AdS}} dX e^{2\Delta x \cdot P_1} e^{2\Delta x \cdot P_2} e^{2\Delta x \cdot P_3}.$$ (5.25)

The integral over AdS is straightforward to evaluate using (B.1), and yields

$$\langle O(P_1) O(P_2) O(P_3) \rangle = g \pm \Gamma \left(\frac{3\Delta - d}{2} \right) \left(\frac{C_{\Delta,0}}{\Gamma(\Delta)} \right)^3 \int_0^\infty \prod_{i=1}^3 \left(\frac{dt}{t} \right)^{2\Delta} e^{(-t_1 t_2 + t_1 t_3 - t_2 t_3) P_1 P_2}.$$ (5.26)

The remaining integrals can dealt with through the change of variables

This can be verified straightforwardly by power counting.
which gives the final form for the three-point amplitude

\[\langle O(P_1) O(P_2) O(P_3) \rangle = g \frac{1}{2} \pi^2 \Gamma \left(\frac{3\Delta - d}{2} \right) \left(\frac{C_{\Delta,0}}{\Gamma(\Delta)} \right)^3 \int_0^\infty \prod_{i=1}^3 \left(\frac{dm_i}{m_i} \right) \exp \left(-m_i p_i \right) \]

\[= g \frac{1}{2} \pi^2 \Gamma \left(\frac{3\Delta - d}{2} \right) \left(C_{\Delta,0} \frac{\Gamma \left(\frac{\Delta}{2} \right)}{\Gamma(\Delta)} \right)^3 \frac{1}{p_{13}^{3/2} p_{23}^{3/2} p_{12}^{3/2}}. \]

This result is straightforward to generalize to different interacting scalars \(\phi_i \) of of mass \(m_i^2 \mathcal{R}^2 = \Delta_i (\Delta_i - d) \), connected via the cubic vertex

\[\hat{V}_{0,0,0} = g \phi_1 \phi_2 \phi_3. \]

In precisely the same way as above, the corresponding amplitude at tree-level can be determined to be

\[\langle O_1(P_1) O_2(P_2) O_3(P_3) \rangle = g \pi^2 \Gamma \left(\frac{-d + \sum_{i=1}^3 \Delta_i}{2} \right) \frac{C_{\Delta,0} C_{\Delta,0} C_{\Delta,0}}{\Gamma(\Delta_1) \Gamma(\Delta_2) \Gamma(\Delta_3)} \int_0^\infty \prod_{i=1}^3 \left(\frac{dt_i}{t_i} \right) \exp \left(-t_i p_i \right) \]

\[= g C(\Delta_1, \Delta_2, \Delta_3; 0) \frac{1}{p_{13} \cdot p_{23} \cdot p_{12}}. \]

where in the second equality we use the same change of variables (5.27), and we introduced

\[C(\Delta_1, \Delta_2, \Delta_3; 0) = \frac{1}{2} \pi^2 \Gamma \left(\frac{-d + \sum_{i=1}^3 \Delta_i}{2} \right) \frac{C_{\Delta,0} C_{\Delta,0} C_{\Delta,0}}{\Gamma(\Delta_1) \Gamma(\Delta_2) \Gamma(\Delta_3)}. \]

Note that (5.30) coincides with the structure (3.47) for the three-point correlator for the dual scalar operators, as required for the holographic duality to hold. In a sense this matching of space-time dependence (unlike matching the multiplicative constants) is a bit trivial at the three-point level, since everything is fixed by \(SO(d, 2) \) kinematics.

5.2. Propagators of arbitrary spin

With a firm understanding of tree-level three-point Witten diagrams for external scalars, for the remainder of this section we extend these results to four-point Witten diagrams in theories involving fields with arbitrary integer spin, and also to three-point Witten diagrams with spinning external legs. In this section we begin with the corresponding boundary-to-bulk and bulk-to-bulk propagators.

5.2.1. Bulk-to-bulk propagators. In this section we derive the explicit form of the bulk-to-bulk propagators for spin-\(s \) fields propagating on an AdS background\(^{47}\). In particular we employ the ambient space formalism, which is reviewed in detail in appendix A. Let us note that this

\(^{47}\) See also \([270–274]\) for earlier works on higher-spin bulk-to-bulk propagators. For results on lower spin propagators, see: \([168, 172, 275–280]\).
The linearised dynamics of an off shell spin-s gauge field φ_s in AdS coupled to a conserved source Js is governed by the action

$$S[\varphi_s] = \frac{1}{2} \int_{\text{AdS}_{d+1}} \varphi_s(x; \partial_u) G_s(x; u) - g \varphi_s(x; \partial_u) J_s(x; u), \quad (5.32)$$

where G_s is the generalization of the linearised Einstein tensor to spin-s gauge fields

$$G_s(x; u) = \left(1 - 4 \frac{m^2}{u^2} \partial_u \cdot \partial_u \right) F_s(x; u, \nabla, \partial_u) \varphi_s(x, u), \quad (5.33)$$

with Fronsdal operator $[84, 286]$

$$F_s(x, u, \nabla, \partial_u) = \Box - m^2 - u^2 (\partial_u \cdot \partial_u) - (u \cdot \nabla) \left((\nabla \cdot \partial_u) - \frac{1}{2} (u \cdot \nabla) (\partial_u \cdot \partial_u) \right),$$

$$m^2 R^2 = (s + d - 2) (s - 2) - s, \quad (5.34)$$

In order to satisfy the Bianchi identity

$$\left(\partial_u \cdot \nabla \right) G_s(x, u) = 0, \quad (5.35)$$

we require the field φ_s to be double-traceless, $(\partial_u \cdot \partial_u) \varphi_s(x, u) = 0$. The above action is invariant under the linearised spin-s gauge transformations

$$\delta \varphi_s(x, u) = (u \cdot \nabla) \varepsilon_{s-1}(x, u), \quad (5.36)$$

where $\varepsilon_{s-1}(x, u)$ is a generating function for a rank-$(s - 1)$ symmetric and traceless gauge parameter

$$\varepsilon_{s-1}(x, u) \equiv \frac{1}{(s - 1)!} \varepsilon_{\mu_1 \mu_2 \ldots \mu_{s-1}} a^\mu_1 a^\mu_2 \ldots a^\mu_{s-1}, \quad (\partial_u \cdot \partial_u) \varepsilon_{s-1}(x, u) = 0. \quad (5.37)$$

The field is given in response to the source by

$$\varphi_s(x, u) = g \int_{\text{AdS}} \Pi_s(x, u; x', \partial_{x'}) J_s(x'; u'), \quad (5.38)$$

where the bulk-to-bulk propagator satisfies the equation $[49]$

$$\left(1 - 4 \frac{m^2}{u^2} \partial_u \cdot \partial_u \right) F_s(x_1, u_1, \nabla_1, \partial_{u_1}) \Pi_s(x_1, u_1, x_2, u_2)$$

$$= - \left\{ \left\{ \{ u_1 \cdot u_2 \} \right\} \right\} \delta(x_1, x_2) + (u_2 \cdot \nabla_2) \Lambda_{s-1}(x_1, u_1, x_2, u_2). \quad (5.40)$$

The term Λ_{s-1} is pure gauge, whose effect is immaterial when integrating against a conserved current $\left(5.38\right)^{50}$. We thus have the following freedom in the definition of the propagator

48 See however [190] for the traceless parts of spinning bulk-to-bulk propagators for any mass in AdS.

49 The notation $\{ \{ \bullet \} \}$ signifies a double-traceless projection:

$$\{ \partial_u \cdot \partial_u \} \{ \{ f(u, x) \} \} = 0, \quad \text{and} \quad \{ \{ f(u, x) \} \} = f(u, x) \quad \text{iff} \quad \{ \partial_u \cdot \partial_u \} f(u, x) = 0. \quad (5.39)$$

50 In more detail, it is a bi-tensor that is traceless in tangent indices at x_1 and double-traceless in tangent indices at x_1:

$$\{ u_2 \cdot \partial_{u_2} \} \Lambda_{s-1} = s - 1, \quad \{ u_1 \cdot \partial_{u_1} \} \Lambda_{s-1} = x, \quad \{ \partial_{u_1} \cdot \partial_{u_1} \} \Lambda_{s-1} = \{ \partial_{u_1} \cdot \partial_{u_1} \} \Lambda_{s-1} = 0. \quad (5.41)$$
\(\Pi_2(x_1, u_1, x_2, u_2) \sim \Pi_2(x_1, u_1, x_2, u_2) + (u_2 \cdot \nabla_2) E_{2,3-1}(x_1, u_1, x_2, u_2), \) \quad (5.42)

where \(\mathcal{E}_2 \) is defined by \(\Lambda \).

However, fixing \(\Lambda \) does not specify the propagator uniquely. Due to gauge invariance (5.36), the left hand side of (5.40) is not sensitive to variations of the propagator of the form

\(\Pi_2(x_1, u_1, x_2, u_2) \sim \Pi_2(x_1, u_1, x_2, u_2) + (u_1 \cdot \nabla_1) E_{1,3-1}(x_1, u_1, x_2, u_2), \) \quad (5.43)

where \(\mathcal{E}_1 \) has the same rank and trace properties as \(\mathcal{E}_2 \), but with ‘1’ and ‘2’ interchanged. This freedom is usually fixed by imposing a gauge, and is required to make the operator on the left hand side of (5.40) non-degenerate and thus invertible.

In the following sections, we determine the explicit form of the bulk-to-bulk propagator (5.38) in three different gauges: the de Donder gauge, a traceless gauge and what we define as the ‘manifest trace gauge’. As the name suggests, the latter makes the trace structure of the propagator manifest. In particular, in the view of expressing exchange diagrams as partial wave expansions, we derive the propagators in a basis of AdS harmonic functions.

de Donder gauge. It is often useful to eliminate gradients and divergences from the Fronsdal tensor (5.34). This can be achieved by imposing the de Donder gauge

\[
(\nabla \cdot \partial_u) \phi_u(x, u) - \frac{1}{2} (u \cdot \nabla) (\partial_u \cdot \partial_u) \phi_u(x, u) = 0, \quad (5.44)
\]

With this choice, the Fronsdal tensor reads

\[
\mathcal{F}_s(x, u, \nabla, \partial_u) \phi_u(x, u) = (\Box - m^2_s) \phi_u(x, u) - u^2 (\partial_u \cdot \partial_u) \phi_u(x, u).
\quad (5.45)
\]

To proceed, we decompose the bulk-to-bulk propagator (5.38) into symmetric and traceless components\(^{51}\)

\[
\Pi_2(x_1, u_1, x_2, u_2) = \Pi_2^{(0)}(x_1, u_1, x_2, u_2) + u_1^2 u_2^2 \Pi_2^{(1)}(x_1, u_1, x_2, u_2),
\]

\[
(\partial_{u_1} \cdot \partial_{u_2}) \Pi_2^{(0)} = (\partial_{u_1} \cdot \partial_{u_2}) \Pi_2^{(1)} = 0 = (\partial_{u_1} \cdot \partial_{u_2}) \Pi_2^{(1)} = (\partial_{u_1} \cdot \partial_{u_2}) \Pi_2^{(1)}.
\quad (5.46)
\]

The equation (5.40) for the propagator thus splits in two equations for traceless bi-tensors

\[
(\Box - m^2_s) \Pi_2^{(1)}(x_1, u_1, x_2, u_2) = - \{(u_1 \cdot u_2)^s\} \delta(x_1, x_2),
\]

\[
(\Box - m^2_s) \Pi_2^{(1)}(x_1, u_1, x_2, u_2) = (d + 2s - 3)(d + 2s - 5) \{(u_1 \cdot u_2)^{s-2}\} \delta(x_1, x_2).
\quad (5.47)
\]

where \(m^2_s = s^2 + (d - 1)s - 2 \), and we used

\[
\{(u_1 \cdot u_2)^s\} = \{(u_1 \cdot u_2)^s\} + \frac{s(s - 1)}{2(d + 2s - 3)} u_1^2 u_2^2 \{(u_1 \cdot u_2)^{s-2}\}.
\quad (5.48)
\]

In decomposing into symmetric and traceless components, we can employ the operator algebra on traceless symmetric tensors (which can be found in appendix A.2.3). This reduces the

\(^{51}\) Any double-traceless tensor \((\partial_u \cdot \partial_u)^2 \tau_u(x, u) = 0 \) can be expressed in the form

\[
\tau_u(x, u) = \tau^{(0)}(x, u) + u_1^2 \tau^{(1)}(x, u), \quad (\partial_{u_1} \cdot \partial_{u_2}) \tau^{(0)}(x, u) = (\partial_{u_1} \cdot \partial_{u_2}) \tau^{(1)}(x, u) = 0.
\]
problem to an algebraic one: make an ansatz in a basis of traceless harmonic functions, and apply the latter operator algebra to determine the basis coefficients. This is most streamlined using the ambient formalism (appendix A), in which we make the ansatz

\[
\Pi_s^{(0)} = \sum_{\ell=0}^{s-2} \int_{-\infty}^{\infty} d\nu f_{s,\ell}^{(0)} (\nu) (W_1 \cdot \nabla_1)^\ell (W_2 \cdot \nabla_2)^\ell \Omega_{\nu, s-\ell} (X_1, X_2; W_1, W_2),
\]

\[
\Pi_s^{(1)} = \sum_{\ell=0}^{s-2} \int_{-\infty}^{\infty} d\nu f_{s-2,\ell}^{(1)} (\nu) (W_1 \cdot \nabla_1)^\ell (W_2 \cdot \nabla_2)^\ell \Omega_{\nu, s-2-\ell} (X_1, X_2; W_1, W_2),
\]

(5.49)

where \(f_{s,\ell}^{(0)} \) and \(f_{s-2,\ell}^{(1)} \) are to be fixed by (5.47), and \(W_{1,2} \) are null auxiliary vectors which enforce tracelessness. Employing the equation of motion (C.2) for \(\Omega \), the completeness relation (C.5) and the commutator (A.62), we can conclude that

\[
f_{s,\ell}^{(0)} (\nu) = \frac{c_{s,\ell} (\nu)}{m_s^2 + \ell^2 + \nu^2 + s - \ell + \ell (d + 2s - \ell - 1)},
\]

(5.50)

\[
f_{s-2,\ell}^{(1)} (\nu) = -\frac{s(s-1)}{(d + 2s - 3)(d + 2s - 5)} \frac{c_{s-2,\ell} (\nu)}{m_s^2 + \ell^2 + \nu^2 + s - \ell - 2 + \ell (d + 2s - \ell - 5)},
\]

(5.51)

where

\[
c_{s,\ell} (\nu) = \frac{2^\ell (s - \ell + 1)\ell (d/2 + s - \ell - 1/2)\ell}{\ell! (d + 2s - 2\ell - 1)\ell (d/2 + s - \ell + i\nu)\ell (d/2 + s - \ell - i\nu)\ell}.
\]

(5.52)

comes from the completeness relation (C.5).

Traceless gauge. In a similar way, we can also solve for the propagator by imposing a traceless gauge on the spin-s field. To set the trace of the spin-s Fronsdal field to zero, the gauge parameter \(\varepsilon_s (x, u) \) needs to be chosen such that

\[
(\nabla \cdot \partial_u) \varepsilon_{s-1} (x, u) = -(\partial_u \cdot \partial_x) \varphi_s,
\]

(5.53)
after which \((\nabla \cdot \partial_u) \varepsilon_{s-1} \) is fixed. In this partial gauge, the field \(\varphi_s (x, u) \) is left with residual gauge symmetry

\[
\delta \varphi_s (x, u) = (u \cdot \nabla) \varepsilon_{s-1} (x, u), \quad (\nabla \cdot \partial_u) \varepsilon_{s-1} (x, u) = (\partial_u \cdot \partial_x) \varepsilon_{s-1} (x, u) = 0.
\]

(5.54)

Subject to the condition \((\partial_u \cdot \partial_x) \varphi_s = 0 \), the Fronsdal tensor then reads

\[
F_s (x, u, \nabla, \partial_u) \varphi_s (x, u) = (\Box - m_s^2) \varphi_s (x, u) - (u \cdot \nabla) (\nabla \cdot \partial_u) \varphi_s (x, u) + \frac{1}{d + 2s - 3} u^2 (\nabla \cdot \partial_u)^2 \varphi_s (x, u),
\]

(5.55)

which is simply its traceless part.

Before using the form (5.55) for the Fronsdal tensor to solve for the propagator, we need to fix the residual gauge symmetry (5.54). This can be done by further demanding that the propagator is symmetric under \(u_1 \leftrightarrow u_2 \). The equation for the propagator is then

\[52\text{ Note that (5.40) does not assume this symmetry.}\]
\[\left(\Box_1 - m_1^2 \right) \Pi_s(x_1, u_1, x_2, u_2) - (u_1 \cdot \nabla_1) (\nabla_1 \cdot \partial_1) \Pi_s(x_1, u_1, x_2, u_2) \\
+ \frac{1}{d+2s-3} u_1^2 (\nabla_1 \cdot \partial_1) \Pi_s(x_1, u_1, x_2, u_2) = - \{(u_1 \cdot u_2)^\ell \} \delta(x_1, x_2), \]

with

\[(\partial_1 \cdot \partial_1) \Pi_s(x_1, u_1, x_2, u_2) = (\partial_2 \cdot \partial_2) \Pi_s(x_1, u_1, x_2, u_2) = 0, \]

\[\Pi_s(x_1, u_1, x_2, u_2) = \Pi_s(x_1, u_2, x_2, u_1). \]

In the ambient formalism, using the null auxiliary vectors \(W_{1,2} \) this is

\[\left(\Box_1 - m_1^2 \right) \Pi_s = \frac{2}{d+2s-3} (W_1 \cdot \nabla_1) (\nabla_1 \cdot \hat{D}_W) \Pi_s = -(W_1 \cdot W_2)^\ell \delta(X_1, X_2), \]

with \(\Pi_s(X_1, X_2; W_1, W_2) = \Pi_s(X_1, X_2; W_2, W_1) \).

Like for the de Donder gauge, since the propagator is traceless we can make the ansatz

\[\Pi_s = \sum_{\ell=0}^{\infty} \int_{-\infty}^{\infty} d\nu f_{s,\ell}(\nu) (W_1 \cdot \nabla_1)^\ell (W_2 \cdot \nabla_2)^\ell \Omega_{\nu,\nu-s-\ell} (X_1, X_2; W_1, W_2), \]

where \(f_{s,\ell}(\nu) \) arbitrary functions to be determined. By simply employing again a combination of the equation of motion for the \(\Omega \) \((C.2)\), the completeness relation \((C.5)\), and commutators: \((A.62)\) and \((A.63)\), the propagator equation \((5.59)\) determines the basis coefficients to be

\[f_{s,\ell}(\nu) = -c_{s,\ell}(\nu) \frac{d+2s-3}{(\ell-1)(2s+d-\ell-3)} \nu^2 + (s-2+\frac{d}{2})^2, \]

where we recall that \(c_{s,\ell}(\nu) \) comes from the completeness relation \((C.5)\).

Manifest trace gauge. In the previous sections, fixing a gauge for the massless spin-\(s \) field allowed us to invert the differential operator in the defining equation \((5.38)\) for the bulk-to-bulk propagator, and solve for its form. However, as already explained, since we ultimately integrate the propagators against a conserved current \((5.38)\), they are defined only up to the addition of terms proportional to gradients\(^53\).

This freedom can be used to simplify the form of the de Donder- \((5.49)\) and traceless- \((5.60)\) propagators: by removing terms proportional to gradients, it is possible to bring them into the form

\[\Pi_s = \sum_{k=0}^{[s/2]} \int_{-\infty}^{\infty} d\nu g_{s,k}(\nu) (u_1^2)^k (u_2^2)^k \Omega_{\nu,s-2k}, \]

i.e. without differential operators in the explicit expression. We refer to this as the ‘manifest trace gauge’.

Reaching this gauge, on the other hand, is a non-trivial task owing to the non-commuting covariant derivatives \(\nabla \). Relegating the details to appendix E, starting from either the de Donder \((5.49)\) or traceless \((5.60)\) propagators, we find

\(^53\) In other words, we are free to add or eliminate terms of the form \(\nabla \cdot f \), because they drop out after integrating by parts and employing current conservation in \((5.38)\).
\[g_{s,0}(\nu) = \frac{1}{(\frac{d}{2} + s - 2)^2 + \nu^2}, \]

\[g_{s,k}(\nu) = \frac{(1/2)^{k-1}}{2^{2k+1} \cdot k!} \left(\frac{d}{2} + s - 2k \right)_k \left(\frac{d}{2} + s - k - 3/2 \right)_k \]

\[\times \left(\frac{(\frac{d}{2} + s - 2k + iv)/2}{k-1} \right) \left(\frac{(\frac{d}{2} + s - 2k - iv)/2}{k} \right), \quad k \neq 0. \] (5.63)

5.2.2. Review: boundary-to-bulk propagators. Boundary-to-bulk propagators are limiting cases of bulk-to-bulk propagators, where one of the two bulk points is taken to the boundary. In this section we review existing results for the bosonic boundary-to-bulk propagators for particles of arbitrary spin and mass in the ambient formalism [190].

Generalizing the scalar case (5.14) presented in section 5.1.1, the boundary-to-bulk propagator for a symmetric and traceless rank-s tensor \(\varphi_{\mu_1 \ldots \mu_s} \) of energy \(\Delta \) and spin-\(s \) satisfies the wave equation

\[(-\Box + \Delta (\Delta - d) - s) K_{\Delta,\mu_1 \ldots \mu_s}^{i_1 \ldots i_s}(z, y') = 0, \] (5.64)

\[\lim_{z \to 0} (z^{\Delta-d+s} K_{\Delta,\mu_1 \ldots \mu_s}^{i_1 \ldots i_s}(z, y')) = \delta^{i_1 \ldots i_s}_{\mu_1 \ldots \mu_s} \delta^d (y - y'). \] (5.65)

Finding the explicit form of the propagator is straightforward in the ambient formalism. Within this framework, the simple form of the constraints imposed by the boundary and bulk \(SO(d, 2) \) symmetry:

\[K_{\Delta,s}(X, \alpha_1 W; \alpha_2 Z + \beta P) = \lambda^{-\Delta} (\alpha_1 \alpha_2)^s K_{\Delta,s}(X, W; P, Z), \] (5.66)

imply the unique structure

\[K_{\Delta,s}(X, W; P, Z) = (W \cdot P \cdot Z)^s C_{\Delta,s} \frac{C_{\Delta,s}}{(-2X \cdot P)^s}. \] (5.67)

with projector

\[P^4_a = \delta^4_a - P^4_X a \cdot P \cdot X. \] (5.68)

The role of the above projector is to ensure transversality of the propagator at both its bulk and boundary points. The normalisation \(C_{\Delta,s} \) is fixed by equation (5.65), where the coefficient of the Dirac delta function in the latter ensures consistency with the boundary limit of the corresponding bulk-to-bulk propagator,

\[K_{\Delta,s}(z, y') = \lim_{w \to 0} \Pi_{\Delta,s}(z, y'; w). \] (5.69)

This gives,

\[C_{\Delta,s} = \frac{(s + \Delta - 1) \Gamma(\Delta)}{2\pi^{d/2} (\Delta - 1) \Gamma((\Delta + 1 - \frac{d}{2})}. \] (5.70)

\(^{54}\) See also [84, 270, 287, 288] for earlier formulations of the propagators, which includes the intrinsic and unfolded forms.
5.3. Three-point Witten diagrams

By taking the results for the propagators in the previous section, we can proceed to evaluate Witten diagrams with spinning external legs and exchanged fields. We begin in this section with three-point Witten diagrams, which also (as we shall see) play a significant role for higher-point amplitudes.

When considering spinning external particles, the bulk integrals encountered are more complicated due to the introduction of tensor structures. Before proceeding further, we first introduce some useful tools in order to handle the latter more effectively.

5.3.1. Tool kit. The basic idea behind the techniques introduced in this section, is to simplify the bulk integrals encountered when evaluating Witten diagrams with spinning external legs by removing the tensor structures from the integrand. This enables amplitudes with spinning external legs to be expressed in terms of those generated by the basic scalar cubic vertex (5.29).

The way this idea is implemented, is to express spinning propagators and their derivatives in terms of a scalar propagator:

\[\frac{1}{(\Delta - 1)_s} (D_P (Z|W))^s K_{\Delta,0} (X; P) \cdot \]

Moreover, we can express the \(n \)th ambient derivative of the bulk-to-boundary propagator in terms of a scalar propagator of dimension \(\Delta + n \):

\[(U_1 \cdot \partial_X)^n K_{\Delta,\mathcal{V}} (X, U_1; P, Z) = \frac{1}{(\Delta - 1)_s} (D_P (Z; U))^s (U_1 \cdot \partial_X)^n K_{\Delta,0} (X; P) \]
where

\[(U_i \cdot \partial_k)^n K_{\Delta,0} (X; P) = 2^n \left(\Delta + 1 - \frac{d}{2} \right) (U_i \cdot P)^n K_{\Delta+n,0} (X; P) . \tag{5.74} \]

With (5.71) and (5.73), we can shift the tensor structures from the integrand in a Witten diagram with spinning external legs, allowing the amplitudes to be expressed in terms of a basic scalar amplitude (i.e. generated by an interaction involving only scalars and with no derivatives). As we shall demonstrate in the following, this provides a powerful approach to evaluating bulk amplitudes with external fields of non-zero spin.

5.3.2. Two scalars and a spin-s. We begin with the simplest case of three-point Witten diagrams involving two external scalars and a bosonic spin-s field.

Any such amplitude can be evaluated at tree-level with the knowledge of that generated by the basic vertex,

\[\hat{V}_{s,0,0} = \phi_{\mu_1} \cdots \mu_s \phi_1 \nabla^{\mu_1} \cdots \nabla^{\mu_s} \phi_2, \tag{5.75} \]

where the covariant derivatives just act on the scalar \(\phi_2\). The reason for this is that external legs are on-shell, and there is just a single on-shell non-trivial vertex involving two scalars and a spin-s field [261].

The example that we encounter in later sections is the following: on-shell, a spin-s field is traceless and transverse. Through integrating by parts and using transversality, the following types of vertices can then be identified on-shell with the basic vertex (5.75):

\[\nabla^{\mu_1} \phi_{\mu_1} \cdots \mu_s \approx 0 = \int_{\text{AdS}} \hat{V}_{s,0,0}(x), \quad r \in \{1, \ldots, s\}. \tag{5.76} \]

We therefore spend the remainder of this section on evaluating tree-level three-point amplitudes generated by the basic vertex (5.75), whose computation in the ambient formalism can be found in [152, 190]. According to the usual recipe, this is given by

\[
\hat{A}_{\Delta_1, \Delta_2, \Delta_3} (P_1, P_2, P_3 | Z) = \frac{1}{s!} \left(\frac{d}{2} - 1 \right)_s \int_{\text{AdS}} K_{\Delta,0} (X, \hat{D}W, P_3, Z) K_{\Delta,0} (X, P_1) (W \cdot \nabla)^s K_{\Delta_1,0} (X, P_2). \tag{5.77} \]

As explained in section 5.3.1, with the help of (5.71) and (5.73) which express any propagator or its derivatives in terms of a scalar propagator, this amplitude can be generated from that with \(s = 0\). In this way we can use the result already obtained in section 5.1.1, equation (5.30). More explicitly, we have

\[
\hat{A}_{\Delta_1, \Delta_2, \Delta_3} (P_1, P_2, P_3 | Z) = \frac{1}{s!} \left(\frac{d}{2} - 1 \right)_s \int_{\text{AdS}} K_{\Delta,0} (X, P_3) K_{\Delta,0} (X, P_1) (W \cdot \nabla)^s K_{\Delta_1,0} (X, P_2)
\]

\[
= \frac{(1 - \frac{d}{2} + \Delta_2)_s}{(\Delta_3 - 1)_s} (2 \hat{D}_P (Z | P_2))^s \hat{A}_{\Delta_1, s, \Delta_3, 0} (P_1, P_2, P_3). \tag{5.78} \]

This relationship is illustrated in figure 5.
The amplitude (5.77) can then be expressed in the more familiar form (3.53) dictated by conformal symmetry by using

$$(D_{P_0}(Z|P_1))_j \frac{1}{P_{23}^1 P_{23}^2 P_{12}^2} = \frac{1}{2} \left(\frac{\Delta_1 + \Delta_3 - \Delta_2 - s}{\Delta_1 + \Delta_3 - \Delta_2 - s} \right) s \frac{(Z \cdot P_1) P_{23} - (Z \cdot P_2) P_{12}}{P_{23}^1 P_{23}^2 P_{12}^2}.$$ \hspace{1cm} (5.79)

We therefore obtain

$$\hat{A}_{\Delta_1,\Delta_2,\Delta_3}(P_1, P_2, P_3) = C(\Delta_1, \Delta_2, \Delta_3; s) \frac{((Z \cdot P_1) P_{23} - (Z \cdot P_2) P_{12})^j}{P_{23}^1 P_{23}^2 P_{12}^2},$$ \hspace{1cm} (5.80)

with

$$C(\Delta_1, \Delta_2, \Delta_3; s) = \frac{2}{(\Delta_1 - 1)^{C}} \left(\frac{\Delta_1 + \Delta_3 - \Delta_2 - s}{2} \right) s \frac{(\Delta_1 + \Delta_3 - \Delta_2 - s)}{\Gamma(\Delta_1 + \Delta_2 + s)} \Gamma(\Delta_1 + \Delta_3 + s) \Gamma(\Delta_2 + \Delta_3 + s).$$ \hspace{1cm} (5.81)

5.3.3. General case: s1-s2-s3. We now consider the more involved general case of treelvel three-point Witten diagrams with external fields of spin (s1, s2, s3), based on the original work [158]. The logic is the same as for the simpler (0, 0, s) amplitudes considered in the previous section: reduce the task to the straightforward evaluation of basic three-point Witten diagrams with external scalars.

The most general cubic vertex involving symmetric fields of spin (s1, s2, s3) in AdSd+1 is parameterised by six basic contractions, given by (5.84) in the ambient formalism (appendix A) below. These are the bulk counterparts of the six conformal structures on the boundary (3.58). Using point-splitting, the most general (on-shell) cubic vertex takes the form [122] 55, 56

$$\mathcal{Y}_{s_1, s_2, s_3}(\varphi_1) = \sum_{n_1} s_{1, 1, 3} s_{2, 2, 3} s_{3, 3, 3}(\varphi_1),$$ \hspace{1cm} (5.82)

with structures

$$\mathcal{I}_{s_1, s_2, s_3}(\varphi_1) = \int_{0}^{\infty} \mathcal{H}_{1}^{s_1} \mathcal{H}_{2}^{s_2} \mathcal{H}_{3}^{s_3} \varphi_{3}(X_{1, U_{1}}) \varphi_{3}(X_{2, U_{2}}) \varphi_{3}(X_{3, U_{3}}) \bigg|_{X_{X}}.$$ \hspace{1cm} (5.83)

and

$$\mathcal{Y}_1 = \partial U_1 \cdot \partial X_1, \quad \mathcal{Y}_2 = \partial U_2 \cdot \partial X_1, \quad \mathcal{Y}_3 = \partial U_3 \cdot \partial X_1.$$ \hspace{1cm} (5.84a)

55 In AdSd, dimensional dependent identities reduce the number of independent structures, and allow for parity violating vertices. However these are not relevant in the context of the work presented in this review.

56 For concision we define $\sum_{n} = \sum_{n=0}^{n_{\text{max}}} \sum_{n_{\text{max}}}^{n_{\text{min}}} \sum_{n_{\text{min}}}^{n_{\text{max}}} \sum_{n_{\text{max}}}^{n_{\text{min}}}$.
where for conciseness we defined \(\bar{s}_i = s_i - n_i - 1 \) and introduced the auxiliary vector \(\bar{U}_i \) which enters the contraction \(\bar{H}_i = \partial_{U_{i-1}} \cdot \partial_{U_{i+1}} \). We illustrate this relation in figure 6.

Using the explicit result (5.30) for the scalar Witten diagram, after evaluating all derivatives and some lengthy algebra, we can see how the amplitude generated by each individual bulk structure (5.83) decomposes into conformal structures (3.58) on the boundary.\(^{57}\)
Given a CFT, this result provides the complete holographic reconstruction of all cubic couplings involving totally symmetric fields in the putative dual theory on AdS, by matching with the dual three-point correlators in the free scalar $O(N)$ vector model. As a double-check, with the above result we recover the same coefficient as for the $(s,0,0)$ case (5.81) when any two of the s_i are set to zero.

5.4. Four-point Witten diagrams

In this section we consider four-point Witten diagrams with identical parity even external scalar fields\(^{58}\).

At tree level, there are two possible processes: a contact interaction or the exchange of a field between two pairs of the scalars. These two possibilities are illustrated in figure 7.

In the present context of higher-spin gauge theories on AdS, the exchanged fields are bosonic gauge fields of integer spin, in addition to the bulk scalar itself. The former have dimension $\Delta = s + d - 2$, while the parity even scalar of the type A theory has dimension $\Delta = d - 2$.

Ultimately, our goal is to identify the above four-point Witten diagrams in the type A minimal bosonic higher-spin theory with the dual scalar operator four-point function in the free scalar $O(N)$ vector model. This is in order to extract the on-shell quartic self-interaction of the bulk scalar from its corresponding contact diagram (figure 7(b)). To compare the Witten diagrams with their dual CFT correlator, we put them both on an equal footing by decomposing them into conformal blocks. For the correlator of the scalar operator O in the free scalar $O(N)$ model, this was carried out in section 4.2.3. In the following we introduce a method to decompose four-point Witten diagrams into their constituent conformal blocks, which draws upon the results for the three-point Witten diagrams obtained in the previous sections.

5.4.1. Conformal partial wave expansion. The key idea behind our method to determine the conformal block expansion of four-point Witten diagrams, is to decompose the them into

\(^{58}\)Four-point Witten diagrams for theories of low spin were considered in the foundational series of papers [163–169, 171, 172, 289]. In the context of higher-spins, for earlier works see [184, 290, 291].
Since $SO(d+1,1)$ is also the d-dimensional Euclidean conformal group, this way of decomposing Witten diagrams is equivalent to a conformal block expansion on the boundary. We make this identification more concrete in the following, which draws upon a particular feature of harmonic functions, known as their split representation\[59.\] See e.g. [190, 294] for previous related investigations, where the traceless part of the four-point exchange of massive integer spin fields between external scalars was considered.

Split representation. As projectors onto angular momentum and energy components, harmonic functions admit the factorisation [190, 270–272, 295]

$$\Omega_{\nu,\ell}(x_1, w_1; x_2, w_2) = \frac{\nu^2}{\pi \ell ! \left(\frac{d}{2} - 1 \right) \ell} \int_{\partial \text{AdS}} \! d^d y \, K_{\frac{d}{2} - 1 + \nu, \ell}(x_1, w_1; y, \partial \dot{y}) \mathbf{K}_{\frac{d}{2} - 1 - \nu, \ell}(y, w; x_2, w_2),$$

which is depicted in figure 8.

Drawing comparisons with the conformal block expansion in CFT, the split representation (5.90) makes manifest that harmonic functions $\Omega_{\nu,\ell}$ are the bulk analogue of the boundary projector (3.83) onto a given conformal multiplet. Indeed, inserting this form for the harmonic

\[59.\] See also an alternative approach [292], centered on the bulk objects ‘geodesic Witten diagrams’ interpreted as the holographic counterparts to conformal blocks. This was recently extended to the case in which one external leg has arbitrary integer spin in [293].
functions into the partial wave expansion (5.89) of a four-point Witten diagram causes each partial wave to factorise into a product of two three-point Witten diagrams,

\[O(P_1) \times O(P_3) = \sum_{\ell} \int_{-\infty}^{\infty} d\nu \, p_{\ell}(\nu) \]

(5.91)

Evaluating the two integrals over AdS in each bulk partial wave gives the unique structure of a product of two three-point correlation functions with two scalar operator insertions, as in the analogous representation of boundary conformal partial waves (3.93). The bulk partial wave expansion (5.89) thus induces a conformal partial wave expansion on the boundary, in the contour integral form (3.96).

In the following we apply this technology to derive the conformal partial wave expansions of four-point Witten diagrams with identical external scalars (figure 7). In particular, for the exchange diagrams we focus on the exchange of bosonic gauge fields of arbitrary spin.

5.4.2. Exchange diagrams. We first determine the conformal partial wave expansion of the Witten diagram corresponding to the tree-level exchange of a spin-s gauge field between two pairs of real scalars in the s-channel (figure 7(a) for $\Delta_s = s + d - 2$). As previously explained, the cubic vertex mediating this exchange is unique on-shell, and for consistency with the gauge symmetry is required to be of the Noether type

\[\mathcal{V}_{s,0,0}(x) = g_s \, s! \, \varphi_s(x; \partial_x) J_s(x,u), \quad (\nabla \cdot \partial_x) J_s(x,u) \approx 0, \]

(5.92)

with coupling g_s, and where \[117\]

\[J_s(x,u) = \sum_{k=0}^{s} \frac{(-1)^k}{s! (s-k)!} (u \cdot \nabla)^k \phi(x) (u \cdot \nabla)^{s-k} \phi(x) + \Lambda u^2 (\ldots). \]

(5.93)

\[60\] Since the external scalars are identical, expansions for the t- and u-channel exchanges can be obtained from the s-channel result by permuting the external legs.
The second term that is proportional to the cosmological constant Λ is pure trace and vanishes in the flat-space limit, $\Lambda \to 0$.

Putting the ingredients together, the four-point amplitude takes the form

$$
A_4^{\text{exch.}}(y_1, y_2; y_3, y_4) = g_s^2 \int_{\text{AdS}} \frac{d^{d+1}x_1}{\text{AdS}} \int_{\text{AdS}} \frac{d^{d+1}x_2}{\text{AdS}} \Pi_f(x_1, \partial u_1; x_2, \partial u_2) J_f(x_1, u_1; y_1; y_2) J_f(x_2, u_2; y_3; y_4),
$$

(5.94)

where Π_f is the spin-s bulk-to-bulk propagator, and the notation $J_f(x, u; y, y')$ denotes the insertion of scalar boundary-to-bulk propagators anchored at the boundary points y_i and y_j.

In section 5.2.1, we derived bulk-to-bulk propagators gauge fields of arbitrary integer spin in a basis of harmonic functions. This way of representing the propagators therefore turned out to be beneficial, as it readily establishes the partial wave expansion of the bulk amplitude and the subsequent factorisation of each partial wave into three-point Witten diagrams. In practice, it is most convenient to employ the propagator in the manifest trace amplitude and the subsequent factorisation of each partial wave into three-point Witten diagrams. The exchange then takes the form

$$
A_4^{\text{exch.}}(y_1, y_2; y_3, y_4) = \sum_{k=0}^{[s/2]} \int_{-\infty}^{\infty} d\nu \ g_s \kappa (\nu) \ A_{d-2k}^{\text{exch.}}(y_1, y_2; y_3, y_4),
$$

(5.95)

with factorised partial amplitudes

$$
A_{d-2k}^{\text{exch.}}(y_1, y_2; y_3, y_4) = \frac{\nu^2}{\pi (s-2k)! (\frac{d}{2} - 1)_{s-2k}} \int_{\partial \text{AdS}} d^d y
$$

$$
g_s \kappa \left(\kappa \int_{\text{AdS}} d^{d+1} x_1 K_{\xi+iv,v,-2k}(x_1, \partial u_1; y, \partial \nu) J_s^{(k)}(x_1, u_1; y_2) \right.
$$

$$
\times \left. g_s \kappa \int_{\text{AdS}} d^{d+1} x_2 K_{\xi-iv,v,-2k}(x_2, \partial u_2; y, z) J_s^{(k)}(x_2, u_2; y_3; y_4) \right),
$$

$$
= \frac{\nu^2}{\pi (s-2k)! (\frac{d}{2} - 1)_{s-2k}} \int_{\partial \text{AdS}} d^d y
$$

$$
\times A_{\Delta, \Delta, \xi+iv,v,-2k}(y_1, y_2; y, \partial \nu) A_{\Delta, \Delta, \xi-iv,v,-2k}(y, y_3, y_4|z)
$$

(5.96)

where $J_s^{(k)}$ denotes the kth trace of J_s. Each of the above partial amplitudes is a product of three-point Witten diagrams $A_{\Delta, \Delta, \xi+iv,v,-2k}$, generated by cubic vertices of the form

$$
\check{V}_{\xi+iv,v,-2k} = g_s \varphi_{\xi+iv,v,-2k}(x, \partial u) J^{(k)}(x, u),
$$

(5.97)

where $\varphi_{\xi+iv,v,-2k}$ is a spin-$(s-2k)$ field of dual scaling dimension $\frac{d}{2} \pm iv$.

The next step is to evaluate the amplitudes $A_{\Delta, \Delta, \xi+iv,v,-2k}$ in (5.96). As previously noted, cubic vertices involving two scalars and a (massive or massless) spinning field are unique on-shell. This has the implication that the vertex (5.97) above can be expressed in terms of the basic vertex (5.75), modulo terms which do not contribute to the tree-level three-point amplitudes. Relegating the details to appendix F, this relation is

$$
\check{V}_{\xi+iv,v,-2k} \approx g_s 2^{s-2k} \tau_{\Delta}(v) \varphi_{\xi+iv,v,-2k}(x, \partial u) \varphi_0(x) (u \cdot \nabla)^{s-2k} \varphi_0(x),
$$

(5.98)
with
\[\tau_{\pm \nu} (\nu) = \sum_{m=0}^{\nu} \frac{\nu!}{m!(\nu-m)!} \left(\frac{d}{2} - k + m - \frac{3}{2} \right) \left(\frac{d+s-2m+1+i\nu}{2} \right) \left(\frac{d+s-2m-1-i\nu}{2} \right) \sum_{\nu=0}^{\nu} \cdot \cdot \cdot \].

In this way we may we the result (5.80) for the three-point amplitude of the basic vertex (5.75), which gives
\[A_{\Delta, \Delta, \pm \nu, \pm \nu, \pm \nu} (y_1, y_2, y_3, y_4) = \frac{g_s 2^{n-2k}}{C_{\Delta, 0}} A_{\Delta, \Delta, \pm \nu, \pm \nu, \pm \nu} (y_1, y_2, y_3, y_4) = \frac{g_s 2^{n-2k}}{C_{\Delta, 0}} \sum_{\nu=0}^{\nu} \left(\frac{\nu}{2\pi} \right)^{\frac{d+s-2m+1+i\nu}{2} \left(\frac{d+s-2m-1-i\nu}{2} \right) \sum_{\nu=0}^{\nu} \cdot \cdot \cdot \right).
\]

where the (\nu) notation was introduced in section 3.6.3.

With this way of decomposing the exchange amplitude, we may readily apply the techniques introduced in section 3.6.3 to establish the conformal partial wave expansion. By simply recalling that
\[W_{\pm \nu, \pm \nu, \pm \nu} (y_1, y_2, y_3, y_4) + W_{\pm \nu, \pm \nu, \pm \nu} (y_1, y_2, y_3, y_4) = \frac{\kappa_{\pm \nu, \pm \nu, \pm \nu}}{(2\pi)^{\frac{d+s-2m+1+i\nu}{2} \left(\frac{d+s-2m-1-i\nu}{2} \right) \sum_{\nu=0}^{\nu} \cdot \cdot \cdot \right),
\]

where \(W_{\pm \nu, \pm \nu, \pm \nu} \) denote conformal partial waves for \([\pm \nu, \pm \nu, \pm \nu] \) conformal multiplets, we may write down the conformal partial wave expansion for the spin-\(s \) exchange diagram in the contour integral form:
\[A_{\text{exch}} (y_1, y_2, y_3, y_4) = \sum_{\nu=0}^{\nu} \int_{-\infty}^{\infty} d\nu b_{\pm \nu, \pm \nu, \pm \nu} (y_1, y_2, y_3, y_4),
\]

with
\[b_{\pm \nu, \pm \nu, \pm \nu} (y_1, y_2, y_3, y_4) = \frac{\nu}{\pi} g_s (\nu) \tau_{\pm \nu} (\nu) \left(\frac{g_s 2^{n-2k} C_{\Delta, \Delta, \pm \nu, \pm \nu, \pm \nu} (y_1, y_2, y_3, y_4) \right)^2.
\]

We recall (section 3.6.3) that the poles of the function \(b_{\pm \nu, \pm \nu, \pm \nu} (\nu) \) in the lower-half complex plane encode the contributions to the conformal block expansion: a pole located at \(\nu \) for
\[\langle \mathcal{O} (y_1) \mathcal{O} (y_2) \rangle = \frac{1}{(\nu_2)^{\Delta}}.
\]

\[\langle \mathcal{O} (y_1) \mathcal{O} (y_2) \rangle = \frac{1}{(\nu_2)^{\Delta}}.
\]

Note that
\[C_{\Delta, \Delta, \pm \nu, \pm \nu, \pm \nu} (y_1, y_2, y_3, y_4) = \frac{\nu}{\pi} C_{\Delta, \Delta, \pm \nu, \pm \nu, \pm \nu} \left(\frac{\nu}{2\pi} \right)^{\frac{d+s-2m+1+i\nu}{2} \left(\frac{d+s-2m-1-i\nu}{2} \right) \sum_{\nu=0}^{\nu} \cdot \cdot \cdot \right),
\]

with \(\kappa_{\pm \nu, \pm \nu, \pm \nu} \) defined in (3.89).
corresponds to the contribution from a conformal multiplet with quantum numbers \([\Delta, s - 2k]\).
We discuss these contributions in detail for the spin-s exchange in the following.

Conformal block expansion contributions. It is illuminating to understand the contributions to
the conformal block expansions of Witten diagrams, for they give a means to quantify the proper-
ties of the process that occurs in the bulk. For example, the properties of the intermediate states.

Focusing first on the spin-s contribution, (5.104) for \(k = 0\), explicitly we have

\[
b_s(\nu) = \frac{i\nu}{\pi \nu^2 + (\Delta + s - \frac{d}{2})^2} \frac{(g_s 2^\nu C(\Delta, \Delta, \frac{d}{2} + i\nu, s))^2}{C_{\Delta+s,\nu} C_{\Delta,0}}. \tag{5.105}
\]

This encodes two types of contribution: single trace and double-trace of spin-s (see figure 9).

- **Single-trace**

 The factor \(g_s(\nu) = \frac{1}{\nu^2 + (\Delta + s - \frac{d}{2})^2} \) coming from the on-shell (traceless and trans-
verse) part of the spin-s bulk-to-bulk propagator contains a pole for \(\text{Im}(\nu) < 0\) at \(\frac{d}{2} + i\nu = \Delta + s = s + d - 2\). This corresponds to a contribution from a conformal mul-
tiple of a spin-s single-trace conserved current \(J_s\). It is consistent with the notion that
a single-trace operator in the CFT corresponds to a single-particle state in the bulk: the
exchange of a single-trace conserved current in the boundary four-point function cor-
responds to the exchange of the dual gauge field in AdS.

 Furthermore, recalling that \(g_s 2^\nu C(\Delta, \Delta, \Delta + s, s)\) is the overall coefficient of the dual
(0, 0, s) CFT correlator as generated by the bulk cubic vertex (5.92), we may identify the
following combination with the OPE coefficient \(c_{\Delta,s,\nu} \) at leading order in \(N_{\text{gut}}\) \(^63\):

\[
\frac{(g_s 2^\nu C(\Delta, \Delta, \Delta + s, s))^2}{C_{\Delta+s,\nu} C_{\Delta,0}} = c_{\nu,\Delta,s}^2. \tag{5.106}
\]

In applying Cauchy’s residue theorem to (5.103) about the pole \(\frac{d}{2} + i\nu = \Delta + s\), the
spin-s single-trace contribution to the spin-s exchange is thus

\[
A_{\text{exch}}^{\text{spin-s single-trace}}(y_1, y_2; y_3, y_4) \bigg|_{\text{spin-s single-trace}} = c_{\nu,\Delta,s}^2 W_{\Delta + s, s}(y_1, y_2; y_3, y_4) . \tag{5.107}
\]

This precisely coincides with the form of the spin-s single-trace contribution in the (12)
(34) channel expansion of the dual CFT correlator.

- **Double-trace**

 The remaining contributions come from the factor

\[
C(\Delta, \Delta, \frac{d}{2} + i\nu, s) = \frac{2^{-\frac{d}{2} - i\nu - 2} \Gamma \left(\frac{d}{2} + i\nu - 1 \right) \Gamma \left(\frac{d + 2 \nu + 2i\nu}{4} \right) \Gamma \left(-\frac{d}{2} + \frac{d}{2} + \Delta + \frac{i\nu}{2} \right) \Gamma \left(\frac{d + 2 \nu + 2i\nu - 2}{4} \right)}{\pi^{d-\frac{d}{2}} \Gamma(i\nu + 1) \Gamma \left(\frac{d}{2} + \Delta + 1 \right)^2 \Gamma \left(\frac{d + 2 \nu + 2i\nu - 2}{4} \right)} . \tag{5.108}
\]

\(^63\) The definition of the OPE coefficient is given in terms of those of three- and two-point functions (3.82). Recall
also that the bulk-to-boundary propagator coefficients \(C_{\Delta,s}\) give the normalisations of the two-point functions from
the bulk side.
in which the Gamma function \(\Gamma \left(\frac{s + \Delta - \frac{k}{2} - i\nu}{2} \right) \) generates an infinite string of poles at \(\frac{d}{2} + i\nu = 2\Delta + 2n + s \), for each \(n = 0, 1, 2, 3, ... \). These correspond to contributions from the family of spin-\(s \) double-trace operators (4.11).

Double-trace contributions originate from contact terms in the bulk-to-bulk propagator (note the Dirac delta function on the RHS of its equation of motion (5.40)), and therefore arise from the limit of coincidence between the two-points where the spin-\(s \) particle is exchanged in AdS. This is consistent with the interpretation that double-trace operators are dual to two-particle states of the scalar in the bulk.

As we shall discuss below, for the exchange in AdS\(_4\) we need only consider the spin-\(s \) contributions above. However let us comment that the spin \(s - 2k \) contributions in (5.104) for \(k \neq 0 \) take the form

\[
b_{s-2k}(\nu) = (\text{no poles in Im}(\nu) < 0) \times \Gamma \left(\frac{2\Delta + s - 2k - \frac{d}{2} - i\nu}{2} \right)^2,
\]

and therefore give rise to contributions from double-trace operators of scaling dimension \(2\Delta + 2n + s - 2k \) and spin \(s - 2k \). In the same way as for the contributions from the spin-\(s \) double-trace operators above, these also arise from limit of coincidence between the two-points in the bulk.

Exchange in AdS\(_5\) In section 6.2.2 we will employ the above result for the conformal block expansion of the spin-\(s \) exchange to extract the quartic self interaction of the scalar in the type A minimal bosonic higher-spin theory on AdS\(_5\). That we work in AdS\(_4\) is no coincidence, for in this case the bulk scalar is conformally coupled. This provides certain simplifications, which we discuss below.

64 Recall that the gamma function \(\Gamma(s) \) has poles at \(s = 0, -1, -2, -3, ... \).
A particular consequence of having a conformally coupled scalar, is that the spin-s conserved currents (5.93) built from it can be taken to be traceless. Since the scalar is conformal, its energy momentum tensor can be made traceless. The currents of higher-spin sit in the same higher-spin symmetry multiplet as the energy momentum tensor, and they are also traceless as a result. Choosing a traceless conserved current to enter the cubic vertex (5.92), means that the contributions to the conformal block expansion of spin less than s are vanishing: $\mathcal{A}_{s-2k}^{\text{exch}} \equiv 0$. This is a dramatic simplification, for then only spin-s conformal blocks contribute to the spin-s exchange; there is no sum over k in (5.103). Moreover, these contributions are encoded in a single meromorphic function $b_s(\nu)$, equation (5.105).

5.4.3. Contact diagrams. In this section we determine the conformal partial wave expansion of a general four-point contact Witten diagram with identical external scalars. For similar reasons as described in the previous section, we focus our attention on contact amplitudes in AdS$_4$. As will be explained, since the scalar is conformal in AdS$_4$ a particularly useful basis for their quartic interaction may be chosen.

A generic quartic self-interaction of a scalar φ_0 in AdS space has the form
$$
\Box^{n_1} (\nabla \ldots \nabla \varphi_0) \Box^{n_2} (\nabla \ldots \nabla \varphi_0) \Box^{n_3} (\nabla \ldots \nabla \varphi_0), \quad n_i \in \mathbb{N},
$$
(5.109)
i.e. each φ_0 is dressed with covariant derivatives ∇, which are contracted amongst each other. Not all such vertices are independent: first of all, since the covariant derivatives do not commute there is a choice of ordering. There is also freedom to distribute derivatives amongst the four scalars by integrating by parts. Going on-shell, as relevant for four-point contact Witten diagrams, vertices can also be related using the equation of motion for φ_0.

An example of a complete basis of on-shell quartic self-interactions can be constructed from the spin-s conserved currents (5.93), which are bi-linear in the bulk scalar
$$
J_{\mu_1 \ldots \mu_s}(x) = \varphi_0(x) \nabla_{(\mu_1} \ldots \nabla_{\mu_s)} \varphi_0(x) +
$$
(5.110)
In appendix I it is shown that an example of such a basis is given by the collection of structures
$$
\hat{V}_{s,m} = J_s(x) \cdot \Box^m(J_s(x)), \quad s = 2k, \quad k \geq m \geq 0, \quad k, m \in \mathbb{N},
$$
(5.111)
and accounts for all independent quartic self-interactions of the scalar in AdS$_{d+1}$. As will become clear, this choice of basis allows us to re-cycle some of the steps taken in computing the partial wave expansion of the exchange diagrams in the previous section. While on the one hand this reduces the amount of extra work, it also facilitates a comparison between the features of exchanges and contact diagrams.

A generic quartic self-interaction in AdS$_{d+1}$ can therefore be expressed as the linear combination
$$
V_{0,0,0,0} = \sum_{s,m} a_{s,m} \hat{V}_{s,m}, \quad a_{s,m} \in \mathbb{R},
$$
(5.112)
for some coefficients $a_{s,m}$. To determine the conformal partial wave expansion of a generic four-point contact diagram, it is therefore sufficient to determine the conformal partial wave expansions of the contact amplitudes generated by the basis vertices (5.111).

For the remainder of this section, we therefore consider the tree-level four-point contact diagram associated to the vertex $\hat{V}_{s,m}$. Furthermore, for simplicity we restrict to the AdS$_4$ case, where we may instead use the traceless improvement \tilde{J}_s in place of J_s. That this still provides a complete basis is shown in appendix I.
The first step in determining the conformal partial wave expansion of a given contact diagram, is to decompose the corresponding interaction into into AdS harmonic functions. This can be achieved by simply inserting the completeness relation (C.5) for harmonic functions between the two conserved currents in the vertex (5.111), through which we obtain

\[\hat{\mathcal{V}}_{s,m}(x_1) = (\hat{\partial}_{\nu_1} \cdot \hat{\partial}_{\nu_2}) \mathcal{J}_s(x_1, w_1) \Omega^m(\mathcal{J}_s(x_1, w_2)) \]

\[\approx \sum_{\ell=0}^\infty \int d\nu \, c_{s,\ell}^{\nu} \int_{\text{AdS}} d^4x_2 \left(\hat{\partial}_{\nu_1} \cdot \nabla \right)^\ell \left(\hat{\partial}_{\nu_2} \cdot \nabla \right)^\ell \Omega_{s,\nu,\ell}(x_1, \hat{\partial}_{\nu_1}; \hat{\partial}_{\nu_2}) \]

\[\times \mathcal{J}_s(x_1, w_1) \Omega^m(\mathcal{J}_s(x_2, w_2)) , \quad (5.113) \]

where in the second equality we used conservation of the spin-s current, and the equation of motion for the harmonic function $\Omega_{s,\nu,\ell}$. The function $c_{s,\ell}^{\nu}$ originates from the completeness relation (C.5) for the harmonic functions. Owing to the tracelessness of the currents, only the term $\ell = s$ contributes.

With the above form for the vertex, we can determine the partial wave expansion for the corresponding bulk amplitude in the same way as for the exchange diagrams in the previous section. For a given configuration of external legs, we have

\[\mathcal{A}_{s,m}^{\text{cont}}(y_1, y_2; y_3, y_4) = \int_{-\infty}^\infty d\nu \left(-1 \right)^m \left(\nu^2 + s + \frac{9}{4} \right) \frac{\nu^2}{\pi} \int_{\partial\text{AdS}} d^3y \frac{1}{s! \left(\frac{1}{4} \right)^s} \]

\[\times \int_{\text{AdS}} \sqrt{|g|} d^4x_1 \mathcal{J}_s(x_1, \partial_{\nu_1}; y_1, y_2) K_{s+\nu,\ell}^\nu(x_1, u_1; y, \partial_{\nu_2}) \]

\[\times \int_{\text{AdS}} \sqrt{|g|} d^4x_2 \mathcal{J}_s(x_2, \partial_{\nu_2}; y_3, y_4) K_{s-\nu,\ell}^{\neg\nu}(x_2, u_2; y, z) . \quad (5.114) \]

The utility of the basis (5.111) becomes manifest when one notices that the product of three-point Witten diagrams in the above is precisely the same as that appearing in the corresponding result for the spin-s exchange (5.96). This allows us to immediately write down the conformal partial wave expansion

\[\mathcal{A}_{s,m}^{\text{cont}}(y_1, y_2; y_3, y_4) \]

\[= \int_{-\infty}^\infty d\nu \left(-1 \right)^m \left(\nu^2 + s + \frac{d^2}{4} \right) \frac{\nu^2}{\pi} \left(\frac{2s\mathcal{C}(\Delta, \Delta, \frac{d}{2} + i\nu, s)}{C_{s+\nu,\ell}^\nu C_{s-\nu,\ell}^{\neg\nu}} \right)^2 W^{\nu,\ell}(u, v) , \quad (5.115) \]

where we must keep in mind that $d = 3$.

In this case, since the only poles with $\text{Im}(\nu) < 0$ come from the factor $\mathcal{C}(\Delta, \Delta, \frac{d}{2} + i\nu, s)$, the only contributions to the conformal block expansion come from spin-s double-trace operators. The absence of any single-trace contribution is consistent, since there is no exchange of a single-particle state in a local contact interaction.

With the above result (5.115) for a given basis vertex, the conformal block expansion of a contact diagram generated by a generic quartic scalar self interaction follows by expressing it in the basis (5.111).

Let us note that while in this section we restricted for simplicity to the AdS_4 case, the same procedure applies in general dimensions. The difference is that generally it is not possible to use traceless currents in the basis (5.111). In general dimensions, the use of traceful currents
introduces contributions for all \(\ell \leq s \) in (5.113). This gives rise to contributions from double-trace operators for all spins \(\ell \leq s \) in the subsequent conformal block expansion (5.115). As a final comment, in applying the above approach it is not necessary to use a basis of quartic vertices built from conserved currents. It applies to any quartic vertex, and the choice (5.111) was made for ease of comparison with the exchange diagrams.

6. Holographic reconstruction

This section is a culmination of the results established in the previous, in which we fix the complete cubic action and the quartic scalar self-interaction in the type A minimal bosonic higher-spin theory on AdS. We do so by employing its conjectured duality with the free scalar \(O(N) \) vector model, by matching three- and four-point functions of single-trace operators in the latter (computed in section 4.2) with their dual Witten diagrams in the higher-spin theory (computed in section 5). In extracting the quartic scalar interaction, we employ the conformal partial wave expansion in CFT sections 3.6 and 4.2.3, and for four-point Witten diagrams section 5.4.

We begin by reviewing the standard non-holographic Noether approach to constructing Lagrangian interactions in higher-spin theories, exhibiting the existing results upon which we build in this work.

6.1. Interactions in higher-spin theory

One of the main tools for constructing interactions in higher-spin theories is the Noether method. Any theory whose non-linear form is determined by a gauge principle can be constructed by a Noether procedure, which was first understood in the context of gravity in [296–300] and proved highly successful in the construction of supergravity theories [301–305]. This is a perturbative approach whose aim is to give a systematic prescription for constructing interacting theories, order-by-order in the fields, as deformations of free theories.

The starting point is a given spectrum of free fields, which we denote collectively by \(\varphi \), on a fixed background. These are described by a quadratic action \(S^{(2)} [\varphi] \), which is invariant under the linear gauge transformations \(\delta^{(0)} \varphi \). One then postulates the existence of a full non-linear action with corresponding non-linear gauge transformations, and expands them both in a weak field expansion around the background in powers of the fields

\[
S[\varphi] = S^{(2)} [\varphi] + S^{(3)} [\varphi] + S^{(4)} [\varphi] + ... ,
\]

\[
\delta \xi \varphi = \delta^{(0)} \varphi + \delta^{(1)} \varphi + \delta^{(2)} \varphi +
\]

The superscript \((n) \) means that the corresponding term is power \(n \) in the fields. The requirement \(\delta \xi S[\varphi] = 0 \) that the action is gauge-invariant provides a set of recursive equations

\[
\delta^{(0)} S^{(2)} [\varphi] = 0,
\]

\[
\delta^{(0)} S^{(3)} [\varphi] + \delta^{(1)} S^{(2)} [\varphi] = 0,
\]

where for concision we define

\[
\sum_{n_1} = \sum_{s_1=0}^{s_{\min}} \sum_{s_{\min} = 0}^{s_2-s_1} \sum_{s_3 = 0}^{s_3-s_1-s_2} .
\]
\[
\delta^{(0)}S^{(4)}[\varphi] + \delta^{(1)}S^{(3)}[\varphi] + \delta^{(2)}S^{(2)}[\varphi] = 0,
\]
(6.3c)

\[
\delta^{(0)}S^{(4)}[\varphi] + \delta^{(1)}S^{(3)}[\varphi] + \delta^{(2)}S^{(2)}[\varphi] = 0.
\]
(6.3d)

whose solution would iteratively fix the full non-linear action.

In this way, all possible cubic vertices involving symmetric gauge fields of arbitrary integer spin on an AdS_{d+1} background that are consistent with the first order constraint (6.3b) have been determined [31, 99, 109, 110, 117, 121–126, 128, 306].

The approach to establishing consistent cubic vertices is similar to that of constraining correlation functions involving conserved currents of arbitrary spin (section 4.2.2): working in the ambient framework [31, 99, 122–125, 128], for a given triplet of spins \(\{s_1, s_2, s_3\}\), one considers the most general cubic vertex\(^\text{66}\)

\[
\mathcal{V}_{s_1,s_2,s_3}(\varphi_i) = \sum_{\ell_i} \mathcal{I}_{s_1,s_2,s_3}(\varphi_i),
\]
(6.4)

where

\[
\mathcal{I}_{s_1,s_2,s_3}(\varphi_i) = \mathcal{I}_{1}^{s_1-s_1} \mathcal{I}_{2}^{s_2-s_1} \mathcal{I}_{3}^{s_3-s_1} \times \mathcal{H}_{1}^{s_1} \mathcal{H}_{2}^{s_2} \mathcal{H}_{3}^{s_3} \varphi_{s_1}(X_1,U)\varphi_{s_2}(X_2,U)\varphi_{s_3}(X_3,U)|_{X_i=k'},
\]
(6.5)

built from the six basic contractions (5.84),

\[
\mathcal{I}_1 = \delta U_1, \quad \mathcal{I}_2 = \delta U_1, \quad \mathcal{I}_3 = \delta U_1,
\]
(6.6a)

\[
\mathcal{H}_1 = \delta U_2, \quad \mathcal{H}_2 = \delta U_2, \quad \mathcal{H}_3 = \delta U_2.
\]
(6.6b)

This general cubic interaction (6.4) is the analogue of (3.59), for a correlation function involving operators of spin \(\{s_1, s_2, s_3\}\) in CFT. To constrain the coefficients \(\mathcal{I}_{s_1,s_2,s_3}(\varphi_i)\), one first considers the first non-trivial constraint (6.3b), which leads to the requirement

\[
\delta^{(0)}S^{(3)} \approx 0,
\]
(6.7)

since the rightmost term in (6.3b) is proportional to the free equations of motion. By inserting the ansatz (6.4) into the above, it is possible to identify all independent cubic interactions consistent with the linear gauge symmetries \(\delta^{(0)}\varphi_i\).\(^\text{66}\)

For example, in the case of spin-1 gauge fields there are two independent interaction terms of the schematic form

\[
S^{(3)} = b_{1,1,1}^{1} \int AA F + b_{1,1,1}^{0} \int FF F.
\]
(6.8)

The first is the one-derivative Yang–Mills vertex, while the second is the three-derivative Born Infeld vertex. For spin-2 gauge fields, there are three independent interactions

\[
S^{(3)} = b_{2,2,2}^{1} \int h \nabla h \nabla h + b_{2,2,2}^{1} \int RR + b_{2,2,2}^{0} \int RRR,
\]
(6.9)

where the first is the two-derivative gravitational minimal coupling, while the other two come from the expansions of (Riemann)\(^2\) and (Riemann)\(^3\). The latter involve four and six

\(^\text{66}\) Each such structure is a linear combination of the \(\mathcal{I}_{s_1,s_2,s_3}(\varphi_i)\). The number of independent structures is equal to: 1 + \(\min\{s_1, s_2, s_3\}\), which (as required by the duality) coincides with the number demanded by current conservation on the CFT three-point correlator \(\langle J_0 J_0 J_0 \rangle\), with \(\partial \cdot J_0 = 0\).
derivatives, respectively. More generally, solutions to (6.7) are vertices involving fields of spin \((s_1, s_2, s_3)\), with different number of derivatives associated to the coupling constants \(b^{s_1, s_2, s_3}\), where \(0 \leq n \leq \min (s_1, s_2, s_3)\).

Let us note that the coupling constants \(b^{s_1, s_2, s_3}\) are not fixed at this level: equation (6.3b) is linear in the deformation, and so any linear combination of solutions is also a solution. This freedom left over in the cubic action can in principle be fixed by considering higher-order consistency conditions. This has led to results [109, 121, 132, 307] for the relative coefficients between a certain class of cubic vertices, known as non-abelian vertices\(^\text{67}\). However, due to the increasing complexity of higher order conditions in the Noether procedure, neither the complete cubic action nor higher-order interactions have been determined in a metric-like Lagrangian form without auxiliary fields\(^\text{68}\).

In this section we push the above results further by taking an alternative route, using the conjectured holographic duality between higher-spin theories in \(\text{AdS}_{d+1}\) and free CFTs in \(d\)-dimensions. As we saw in section 2.3, the generating function of connected correlators in a free CFT can be identified with the on-shell classical action of the dual higher-spin theory in \(\text{AdS}\),

\[
\langle O_1 (y_1) ... O_n (y_n) \rangle_{\text{conn.}} = \left. \frac{\delta}{\delta \bar{\phi}_1 (y_1)} ... \frac{\delta}{\delta \bar{\phi}_n (y_n)} S_{\text{HSAdS}} \right|_{\phi = 0}, \tag{6.10}
\]

With the result for the correlators of single-trace operators in the free CFT, one should then in principle be able to determine the on-shell interactions of their dual higher-spin fields in \(\text{AdS}\) by requiring that (6.10) holds.

Here, we work in the context of the conjectured duality between the type A minimal bosonic higher-spin theory on \(\text{AdS}\) and the free scalar \(\mathcal{O}(N)\) vector model. In section 4.2.2, we determined the three-point functions of all single-trace operators in the latter. With these results, combined with those for tree-level 3-point Witten diagrams with spinning external fields in section 5.3.3, by employing the holographic requirement (6.10) we are able to extract the explicit form of all coefficients in the cubic vertex (6.4) in the higher-spin theory on \(\text{AdS}_{d+1}\). In more detail, we solve the equation shown diagrammatically below for \(g^{n_1, n_2, n_3}_{s_1, s_2, s_3}\), for any triplet of even integer spins \(\{s_1, s_2, s_3\}\)

\[
\mathcal{J}_{s_1} (y_1) \mathcal{J}_{s_2} (y_2) \mathcal{J}_{s_3} (y_3) = \sum_{n_i} g^{n_1, n_2, n_3}_{s_1, s_2, s_3} \mathcal{J}_{s_1} (y_1) \mathcal{J}_{s_2} (y_2) \mathcal{J}_{s_3} (y_3)
\]

\(^{67}\) As their name suggests, such vertices deform the linearised gauge transformations and give rise to the non-zero structure constants of the higher-spin algebra. The relative coefficients between such vertices can be constrained by demanding that the linearised theory carries a representation of the global symmetry algebra. This is known as admissibility and is a second order constraint.

\(^{68}\) See however [308] for results for higher-order vertices in the so-called unfolded formulation, which employs an infinite set of auxiliary fields.
With the action fixed up to cubic order, we take the holographic reconstruction to quartic order. The simplest example to begin with is given by solving for the quartic self-interaction of the scalar, as it minimises the number of tensor structures that one needs to confront. The scalar quartic self-interaction contributes to the holographic computation of the scalar single-trace operator 4-pt function section 4.2.3, together with the bulk exchanges mediated by the 0-0-cubic vertices (6.4). The latter we determine at lower order in the holographic reconstruction procedure. The equation we solve for the quartic interaction is shown in figure 10.

To extract the scalar quartic self-interaction, we proceed in the same way as at cubic order by making the most general ansatz

\[
\mathcal{V}_{0,0,0,0} = \sum_{r,m} a_{r,m} (\phi_0 \nabla_{\mu_1} \ldots \nabla_{\mu_r} \phi_0 + \ldots) \Box^m (\phi_0 \nabla_{\mu_1} \ldots \nabla_{\mu_r} \phi_0 + \ldots) \tag{6.11}
\]

where a completion of the \ldots is given for example by the basis of quartic vertices (5.111).

For technical reasons that were explained in the previous section, we restrict to extracting the quartic vertex in AdS4. To solve the holographic equation shown in figure 10 for the coefficients \(a_{r,m}\) in the derivative expansion, it is effective to decompose the bulk and boundary amplitudes into conformal partial waves. We therefore employ the results section 4.2.3 for the expansion of the scalar single-trace four-point function, and those established in sections 5.4.2 and 5.4.3 for tree-level four-point Witten diagrams with identical parity even external scalars.

6.2. Holographic reconstruction

Before we proceed, let us note that in order for the holographic relation (6.10) which we use to extract the interactions to be meaningful, it must be ensured that the two-point functions have the same normalisation from both the bulk and boundary perspectives. In all that follows, we choose the unit normalisation

\[
\langle \mathcal{J}_\delta (y_1|z_1) \mathcal{J}_\delta (y_2|z_2) \rangle = \frac{\langle H_3 \rangle^s}{\langle y_{12} \rangle^{3s}}. \tag{6.12}
\]

In general, the tree-level Witten diagram computation of \(n\)-point CFT correlators involves bulk interactions of orders \(n, n-1, \ldots, 3\). The holographic reconstruction therefore provides an alternative (and more efficient) iterative procedure to the Noether procedure in constructing interactions.
6.2.1. Cubic couplings.

Simple illustrative example: s-0-0 coupling. As customary, we begin the simplest example [152]: fixing holographically the bulk 0-0-s interactions, which are of the Noether type

\[\mathcal{V}_{s,0,0} = g_{s,0,0} \varphi_s (x, \partial_u) \cdot J_s (x, u), \quad \nabla \cdot \partial_u J_s (x, u) \approx 0, \tag{6.13} \]

where \(J_s \) is a conserved current that is bi-linear in the bulk scalar \(\varphi_0 \) (e.g. (5.93)), and \(g_{s,0,0} \) is the coupling we would like to determine. As we already saw, for each \(s \) the form of these vertices is unique on-shell, and the structure is on-shell equivalent to the basic structure (5.75)

\[\mathcal{V}_{s,0,0} = g_{s,0,0} \varphi_s (x, \partial_u) \cdot J_s (x, u) \approx g_{s,0,0} 2^s \hat{V}_{s,0,0}. \tag{6.14} \]

where

\[\hat{V}_{s,0,0} = \varphi_s (x, \partial_u) \varphi_0 (x) (u \cdot \nabla)^s \varphi_0 (x). \tag{6.15} \]

The vertex (6.14) in the type A minimal bosonic theory is the unique bulk structure responsible for the holographic computation of the 0-0-s correlator (4.19) in the free scalar \(O(N) \) vector model. Using AdS/CFT dictionary (6.10), we have

\[(\mathcal{O}(y_1) \mathcal{O}(y_2) J_s (y_3 \mid z)) = \frac{\delta}{\delta \varphi_0 (y_1)} \frac{\delta}{\delta \varphi_0 (y_2)} \frac{\delta}{\delta \varphi_s (y_3)} \mathcal{S}_{\text{HSAdS}} [\varphi \mid \partial \text{AdS} = \tilde{\varphi}] \]

\[= g_{s,0,0} 2^s \hat{A}_{\Delta,\Delta+s,s} (y_1, y_2, y_3 | z), \tag{6.16} \]

where \(\hat{A}_{\Delta,\Delta+s,s} \) is the tree-level 3-pt amplitude (5.80) generated by the basic vertex (6.15). Together with the result (4.19) for the dual vector model correlator on the LHS, normalising the two-point functions consistently (6.12), we can extract \(g_{s,0,0} \) from (6.16):

\[g_{s,0,0} = \frac{2^{d-4} \pi^{d-1} \Gamma (\alpha^2)}{\sqrt{N} \Gamma (d + s - 3)}. \tag{6.17} \]

In particular, for \(d = 3 \) we have

\[g_{s,0,0} = \frac{2^{4-s} \pi}{\sqrt{N} \Gamma (s)}. \tag{6.18} \]

This is consistent with the known vanishing of the cubic scalar self coupling (\(s = 0 \)) in AdS\(_4\) [76], which itself provided an early check of the holographic duality by comparing with earlier CFT results in [309]. In [310] this result was generalized to the type B theory.

In section 6.2.2 we shall employ the result (6.18) to complete the computation of the tree-level spin-s exchange diagram (5.94), mediated by the (0, 0, s) cubic vertices (6.13) in the type A minimal bosonic higher-spin theory on AdS\(_4\).

Full cubic action: s1-s2-s3 couplings. Let us now consider the problem in full generality [158]. Our goal is to determine holographically the complete set of cubic couplings in the action of the type A minimal bosonic higher-spin theory on AdS\(_{d+1}\). As discussed in the preceding section, this takes the form

\[\mathcal{S}_{\text{HSAdS}} [\varphi] = \sum_{s_i} \int_{\text{AdS}_{d+1}} \frac{1}{2} \varphi_{s_i} \left(\Box - m_{s_i}^2 + \cdots \right) \varphi_{s_i} + \sum_{s_1, s_2, s_3} \mathcal{I}_{s_1, s_2, s_3} \int_{\text{AdS}_{d+1}} \mathcal{I}_{s_1, s_2, s_3} (\varphi_{s_1}) + \cdots, \]

67
for some coefficients g_{n_1,n_2,n_3} to be determined. We also display the kinetic terms, to emphasise that the couplings we determine correspond to the canonical normalisation of the former. This is ensured by the normalisation of the boundary-to-bulk propagators.

In this general case, we have to solve the holographic equation in the figure below

$$\langle \mathcal{J}_{s_1}(y_1) \mathcal{J}_{s_2}(y_2) \mathcal{J}_{s_3}(y_3) \rangle = \sum_{n_i} g_{n_1,n_2,n_3} \frac{\mathcal{J}_{n_1,s_2,s_3}(y_1) \mathcal{J}_{n_2,s_1,s_3}(y_2) \mathcal{J}_{n_3,s_1,s_2}(y_3)}{\Delta_4!(y_1^{\Delta_2} y_2^{\Delta_2} y_3^{\Delta_2})},$$

(6.19)

for the coefficients g_{n_1,n_2,n_3}. All the ingredients are at our disposal: in section 5.3.3 we computed the tree-level 3-pt amplitudes generated by each vertex structure (6.5), and in section 4.2.2 we computed all three-point correlation functions of the single-trace conserved currents in the free scalar $O(N)$ vector model. For convenience, we recall here that the latter are given by (4.31)

$$\langle \mathcal{J}_{s_1}(y_1|z_1) \mathcal{J}_{s_2}(y_2|z_2) \mathcal{J}_{s_3}(y_3|z_3) \rangle = N \left(\prod_{i=1}^3 \epsilon_i \right) \frac{1}{\sqrt{q_i}} \frac{\Delta^{\Delta_{2,2}}}{\Delta_{2,2}^2} \left(\sqrt{q_i} \right) \frac{\mathcal{Y}_{1,2,3}}{\Delta_{1,2,3}^2},$$

(6.20)
with \[q_1 = 2H_1 \partial \gamma_1 \partial \gamma_1, \quad q_2 = 2H_2 \partial \gamma_2 \partial \gamma_1, \quad q_3 = 2H_3 \partial \gamma_3 \partial \gamma_1. \] The \(c_s \) are given by

\[c_s = \frac{\sqrt{\pi}}{N s!} \frac{2^{-\Delta-s+3}}{\Gamma(s_1 + \frac{\Delta}{2})} \frac{\Gamma(s_1 + \Delta - 1)}{\Gamma(s_1 + \frac{\Delta+1}{2})^2}, \] (6.22)

for canonical normalisation (6.12) of the two-point functions.

To solve equation (6.19) for the \(g_{n_1,n_2,n_3}^{s_1,s_2,s_3} \), the crucial observation is that the 3-pt amplitude generated by the simplest vertex structure (6.5) with \(n_1 = 0 \) and \(\tau_1 = \tau_2 = 2 \) can be re-summed. The resulting expression precisely produces the free scalar conformal structure (6.20) above, up to an overall coefficient

\[\int_{\text{AdS}_4} \mathcal{F}^{0,0,0}_{n_1,n_2,n_3} (K_{3-d,2-2s}) = \frac{\pi^{\frac{d-d}{2}}}{(\gamma_1 \gamma_2 \gamma_3)^{d/2-1}} \prod_{i=1}^{3} \left(q_i \Gamma(d-3+s_i) \right) \prod_{i=1}^{3} \left(1 + \frac{4}{d-s_i} \right) \Gamma(s_i + 1). \] (6.23)

Since the mapping between consistent cubic vertices in the bulk and conserved 3-pt structures in the dual CFT is one-to-one (cf. footnote 65 of this section), the above vertex is the only one which can possibly generate the CFT result (6.20)\(^{70}\). This immediately gives \(g_{n_1,n_2,n_3}^{s_1,s_2,s_3} = 0 \) for all \(n_i \) except when \(n_1 = n_2 = n_3 = 0 \).

The final step is then to determine \(g_{n_1,n_2,n_3}^{0,0,0} \). Normalising the two-point functions in both the bulk and boundary computations consistently (6.12), and combining the CFT (6.20) and bulk (6.23) results, we obtain the following coupling constants

\[g_{n_1,n_2,n_3}^{s_1,s_2,s_3} := g_{n_1,n_2,n_3}^{0,0,0} = \frac{1}{\sqrt{N}} \frac{\pi^{d-1}}{\Gamma(d+3-s_1+s_2+s_3)} \prod_{i=1}^{3} \left(q_i \Gamma(d-3+s_i) \right) \prod_{i=1}^{3} \left(1 + \frac{4}{d-s_i} \right) \Gamma(s_i + 1). \] (6.24)

The simplest form for the above coupling constants manifests itself in AdS\(_4\), where the spin-dependence coincides with the one obtained in [101, 102] from a flat space quartic analysis

\[g_{n_1,n_2,n_3} = \frac{2^{n_1+n_2+n_3+4}}{\sqrt{N} \Gamma(s_1 + s_2 + s_3)}, \] (6.25)

confirming a conjecture [310] made for the coefficient of the highest derivative part of the \(s_1-s_2-s_3 \) vertex in AdS\(_4\), which is the part of a vertex which survives when taking the flat limit of AdS. This is a non-trivial consistency check of our results, and also a check of the higher-spin / vector model duality itself: upon taking the flat limit \(\Lambda \to 0 \), we recover the known results in flat space.

Discussion / back to intrinsic. As mentioned earlier in section 5.3.3, for ease of computation we established the cubic couplings in the ambient formalism. In this framework, complete bulk cubic coupling for given \((s_1,s_2,s_3) \) in ambient space reads

\(^{70}\)Other vertex structures (6.5) may generate the free scalar conserved structure (6.20) on the boundary, but since the mapping is one-to-one there will also be contributions from the other conserved structures in (4.25) for \(l \neq 0 \), which cannot be removed by any linear combination of bulk cubic vertices. The vertex with \(n_1 = 0 \) is thus singled out when demanding agreement with the result (6.20) in the free scalar \(O(N) \) model.
\[\mathcal{V}_{s_1,s_2,s_3} = \sum_{s_1,s_2,s_3} g_{s_1,s_2,s_3} T^{0,0,0}_{s_1,s_2,s_3}, \]
\begin{equation}
\label{6.26}
(6.26)
\end{equation}

where explicitly
\[T^{0,0,0}_{s_1,s_2,s_3}(\varphi_i) = \left. \left(\partial U_1 \cdot \partial \xi_2 \right)^{s_1} \left(\partial U_2 \cdot \partial \xi_1 \right)^{s_2} \varphi_{s_1}(X_1,U_1) \varphi_{s_2}(X_2,U_2) \varphi_{s_3}(X_3,U_3) \right|_{X=\chi}. \]
\begin{equation}
\label{6.27}
(6.27)
\end{equation}

In particular, we employed the partial derivative \(\partial \) which acts in the flat \(\mathbb{R}^{d+2} \) ambient space, as opposed to the covariant derivative \(\nabla \) that is intrinsic to the \(\text{AdS}_{d+1} \) manifold. In appendix \(\text{H} \) we explain how to obtain the intrinsic expressions for the interactions \((6.26) \), i.e. in terms of \(\nabla \).

One should note that although the interaction \((6.27) \) contains \(s_1 + s_2 + s_3 \) ambient partial derivatives, when re-expressing it in terms intrinsic to AdS one picks up lower derivative terms. In particular, the quasi-minimal interactions with the lowest number \(s_1 + s_2 - s_3 \) of derivatives \((s_1 \geq s_2 \geq s_3) \). In the spin-2 case for example, one recovers the Einstein–Hilbert terms supplemented by those with higher-derivatives.

6.2.2. Quartic couplings.

In the previous section, we fixed holographically the complete cubic action for the type A minimal bosonic higher-spin theory on \(\text{AdS}_{d+1} \). With this result, we may now extend this reconstruction of bulk interactions to the quartic order. The simplest case is given by extracting the scalar self-interaction \([152] \), whose four-point contact diagram contributes to the holographic computation of the scalar single-trace operator four-point function \((4.35) \), with the total contributing Witten diagrams shown in figure 11.

In section 5.4.3 we saw that any bulk quartic scalar self-interaction can be expressed in the form
\[\mathcal{V}_{0,0,0,0} = \sum_{r,m} a_{r,m} \tilde{V}_{r,m} \]
\[= \sum_{r,m} a_{r,m} (\varphi_0 \nabla_{\mu_1} ... \nabla_{\mu_r} \varphi_0 + ...) \Box^m \left(\varphi_0 \nabla^{\mu_1} ... \nabla^{\mu_r} \varphi_0 + ... \right). \]
\begin{equation}
\label{6.28}
(6.28)
\end{equation}

built from the complete set of vertices \(\tilde{V}_{r,m} \) defined in \((5.111) \). In this section we determine the coefficients \(a_{r,m} \) for the higher-spin theory on \(\text{AdS}_d \). As discussed in section 5.4, working in \(\text{AdS}_d \) allowed for certain simplifications in computing the relevant Witten diagrams, which will also manifest themselves in extracting the quartic vertex in this section. The coefficients are fixed by requiring that its four-point contact diagram correctly reproduces the dual model correlator \((4.35) \) when supplemented with the exchange diagrams \((5.103) \) (figure 11). In other words, they must satisfy the equation,
\[\langle O(y_1)O(y_2)O(y_3)O(y_4) \rangle_{\text{conn}} \]
\[= \sum_s A_{s}^{\text{exch}}(y_1,y_2;y_3,y_4) + \sum_{s,m} a_{s,m} A_{s,m}^{\text{cont}}(y_1,y_2;y_3,y_4) + y_2 \leftrightarrow y_3, y_4, \]
\begin{equation}
\label{6.29}
(6.29)
\end{equation}

which we solve in the following. The role of \(y_2 \leftrightarrow y_3, y_4 \) is to include all permutations of the external legs—i.e. all diagrams in figure 11.

First, notice that the Witten diagram computation of the dual CFT correlator is automatically crossing symmetric (as can be seen from the RHS of \((6.29) \)). Using the manifestly
crossing symmetric form (4.44) for the scalar single-trace four-point function, we may thus reduce the above problem to solving the equation

\[G(y_1, y_2; y_3, y_4) = \sum_s A_s^{\text{exch}}(y_1, y_2; y_3, y_4) + \sum_{s,m} a_{s,m} \hat{A}_s^{\text{cont}}(y_1, y_2; y_3, y_4), \]

(6.30)

where we recall that

\[\langle O(y_1)O(y_2)O(y_3)O(y_4) \rangle_{\text{conn}} = G(y_1, y_2; y_3, y_4) + y_2 \leftrightarrow y_3, y_4. \]

(6.31)

If a vertex that solves (6.30) is found, then the definition of \(G \) above ensures that equation (6.29) is automatically satisfied. Since the non-trivial quartic vertex is completely determined by (6.29), any solution of (6.30) would give the only solution of (6.29). The two problems are thus equivalent.

To proceed, we solve for the coefficients \(a_{s,m} \) by matching the contributions in the conformal block expansion of both sides of equation (6.30). Solving equation (6.30) is therefore much simpler, as it eliminates the issue of comparing conformal block expansions in different channels. This is essentially the key technical difficulty behind the conformal bootstrap. Another crucial simplification is provided by the conformally coupled scalar in AdS4: as we saw in section 5.4, in this case each bulk amplitude for fixed \(s \) exhibits the explicit cancellation of the single-trace contributions in equation (6.32).

Recalling (equation (5.107)) that the spin-\(s \) exchange generates precisely the spin-\(s \) single-trace contribution in the (12)(34) channel expansion of the dual CFT correlator, the above choice of \(a \) and \(c \) exhibits the explicit cancellation of the single-trace contributions in equation (6.32).
This leaves only double-trace contributions, to be matched by the contact amplitude of the quartic vertex.

Solving for the coefficients is simplified by using the contour-integral form of the conformal block expansion (4.47), as it eliminates the sum over n^{71}. In this way, the coefficients $a_{i,m}$ are given implicitly by

$$\sum_m a_{i,m} (-1)^m \left(\nu^2 + s + \frac{9}{4} \right)^m = \frac{2^{8-s}}{N} \frac{1}{\nu^2 + (s - \frac{1}{2})^2} \left[\frac{\pi}{\Gamma \left(\frac{2\nu-2\mu+1}{4} \right) \Gamma \left(\frac{2\nu+2\mu+1}{4} \right) - \frac{1}{\Gamma(s)^2}} \right]$$

$$- \frac{1}{N} \frac{(-1)^2 \pi^{4-s} \Gamma(s)}{\Gamma(s+1) \Gamma \left(\frac{s}{2} - \frac{1}{2} \right) \Gamma \left(\frac{s}{2} + \frac{1}{2} \right) \Gamma \left(\frac{s}{2} + \frac{1}{2} + iv \right) \Gamma \left(\frac{s}{2} - \frac{1}{2} - iv \right)},$$

which we obtain by inserting the contour integral forms (4.47), (5.103) and (5.115) into equation (6.32) for $a = -c = 1$. Through setting $z = - \left(\nu^2 + s + \frac{9}{4} \right)$, one can establish a generating function

$$a_s(z) = \sum_m a_{s,m} z^m,$$

for the coefficients for each s:

$$a_s(z) = \frac{\Lambda^s}{N} \frac{\pi e^{\gamma(2s+1)} \Gamma(s)^2 \left((2s+1)^2 + (\Lambda z + s + \frac{9}{4})^2 \right)^2 P \left(s + \frac{1}{2}; z \right)^2 - 4^2}{2^{s-4} \Gamma(s) \left((\Lambda z + s + \frac{9}{4})^2 + (s - \frac{1}{2})^2 \right)}$$

$$- \frac{\nu^2 \pi^2 \Gamma \left(s + \frac{3}{2} \right)}{2^{s-2} N \Gamma \left(\frac{s}{2} + \frac{1}{2} \right)} \left(\gamma \left(s + \frac{3}{2}; z \right) P \left(s + \frac{3}{2}; z \right) \right)$$

$$\times \left((2s+1)^2 + \left(2\Lambda z + 2s + \frac{9}{4} \right)^2 \right) \left(9 + \left(2\Lambda z + 2s + \frac{9}{4} \right)^2 \right),$$

where we introduced

$$P \left(a; z \right) = \prod_{k=0}^{\infty} \left(1 + \frac{a}{k} \right)^2 + \left(\frac{4z + 4s + 9}{4k} \right)^2 e^{-2a/k},$$

and γ is the Euler–Mascheroni constant. In particular, we employed the Weierstrass infinite product representation of the Gamma function and reinserted the dependence on the cosmological constant.

This determines the quartic vertex (6.28) of the parity even scalar in the minimal bosonic higher-spin theory on AdS$_4$, in the form

$$V_{0,0,0} = \sum_{x \in \Sigma N} \bar{J}_s(x, \partial_u) a_s(\square) \bar{J}_s(x, u),$$

where the \bar{J}_s is the traceless improvement of the spin-s conserved currents (5.93), bi-linear in the bulk scalar φ_0.

We conclude this section with some comments:

71 This is because the contributions from double-trace operators of the same spin are packaged in a single gamma function.
To solve for the vertex (6.40), we relaxed the constraint \(m \leq k \) in the basis (5.111). I.e., we used a redundant set of vertices, which can be re-expressed purely in terms of those for \(m \leq k \) using the freedom of integration by parts and the free equations of motion.

Since we solve for the coefficients \(a_{r,m} \) at the level of the contour integral integrand in (6.37), naively it may seem that the vertex is not defined uniquely: one is free to add functions of \(\nu \) that are entire within the contour. In doing so, this would change the form of \(a_{r,m} \) and thus the solution for the quartic vertex. However, the addition of such terms does not change the four-point amplitude and therefore the different vertices obtained in this manner would differ only by trivial terms which vanish on the free mass shell.

Let us also comment on the presence of anomalous scaling dimensions for the double-trace operators in the partial wave decompositions of Witten diagrams: these manifest themselves by the presence of double-poles in (5.104) and (5.115) for \(\frac{d}{2} + i \nu = 2\Delta + 2n + s, \ n = 0, 1, 2, ... \). Owing to the double-poles, evaluating the \(\nu \)-integral using Cauchy's theorem produces not only the 'non-anomalous' double-trace conformal blocks \(G_{\Delta,x,s} \), but also their derivatives with respect to the dimension \((\partial/\partial \Delta_{n,s})G_{\Delta,x,s} \). These two terms together originate from the conformal block \(G_{\Delta,x+\gamma_{n,s},s} \) with an anomalous scaling dimension \(\gamma_{n,s} \) for the double-trace operator. Indeed, this can be seen by expanding as a Taylor series in \(\gamma_{n,s} \):

\[
G_{\Delta,x+\gamma_{n,s},s} = G_{\Delta,x,s} + \gamma_{n,s} \frac{\partial}{\partial \Delta_{n,s}} G_{\Delta,x,s} + \mathcal{O}(1/N^2) .
\]

The presence of anomalous dimensions for a given Witten diagram is natural, since the former are dual to the binding energies of two-particle states in the bulk. At the same time however, the boundary theory is free and the double-trace operators (4.11) do not receive any anomalous dimensions. This fact manifests itself in the contour integral representation (4.47) for the dual CFT four-point function, which contains only single poles at \(\frac{d}{2} + i \nu = 2\Delta + 2n + s, \ n = 0, 1, 2, ... \). The holographic duality between higher spin theories and free CFTs therefore requires a delicate cancellation of the anomalous conformal blocks generated by each individual Witten diagram. That the quartic vertex that we found solves (6.29), implies that this cancellation indeed takes place.

In this respect, the contour integral representation for the conformal block decomposition turned out to be a powerful tool: first of all, it allowed us to solve for the quartic interaction by performing simple algebraic manipulations with the functions of \(\nu \). Moreover, this representation allowed us to treat conformal blocks with anomalous dimensions on the same footing as non-anomalous ones, simply by controlling the degree of the pole in \(\nu \) at the associated point.

As a final point: one motivation for studying higher-spin interactions using holography, was owing due to the technical difficulties encountered when restricted to standard methods of approach. Indeed, using the Noether procedure it has not yet been possible to fix all cubic couplings, or to determine quartic or higher-order vertices in a standard Lagrangian form. In comparison, the holographic approach we took seems to be more efficient. Furthermore, solving for the quartic scalar self-interaction (6.28) holographically even skips steps which are necessary in the Noether procedure. The first Noether-consistency condition in which the quartic action enters is (6.3d)
\[\delta^{(2)} S^{(2)} + \delta^{(1)} S^{(3)} + \delta^{(0)} S^{(4)} = 0. \] (6.42)

However, since the scalar is invariant under \(\delta^{(0)} \) (it is not a gauge field itself), to extract the quartic scalar self-interaction (6.28) using the Noether method one needs to (at least) consider the quintic-order condition

\[\delta^{(3)} S^{(2)} + \delta^{(2)} S^{(3)} + \delta^{(1)} S^{(4)} + \delta^{(0)} S^{(5)} = 0. \] (6.43)

Furthermore, in principle one may require the knowledge of other quartic interactions to solve (6.43) for the scalar quartic self-interaction.

7. Summary and discussion

7.1. Summary of results

In this work we reviewed recent efforts in studying interaction of higher-spin gauge fields using the conjectured duality between higher-spin gauge theories on anti-de Sitter space and free conformal field theories.

In the context of the duality between the type A minimal bosonic higher-spin theory on AdS and the free scalar \(O(N) \) vector model, we determined the complete on-shell cubic action (on \(\text{AdS}_{d+1} \)) and the quartic self interaction of the scalar (on \(\text{AdS}_d \)). These interactions were previously unknown in a metric-like Lagrangian form, without auxiliary fields. For this we drew on the equivalence between correlation functions of single-trace operators in CFT and Witten diagrams in the dual theory on AdS in the large \(N \) limit. The approach is therefore particularly appealing, as correlation functions are straightforward to compute in free CFTs.

We repeat the explicit results for the interactions in the higher-spin action (expanded about AdS) below:

\[S[\varphi] = \sum_s \int_{\text{AdS}} \frac{1}{2} \varphi_s \left(\Box - m^2_s + ... \right) \varphi_s + \sum_{s_i} \int_{\text{AdS}} V_{s_1,s_2,s_3} (\varphi) + \int_{\text{AdS}} V_{0,0,0,0} (\varphi_0) + ... \]

The cubic interaction for each triplet of spins takes the schematic form

\[V_{s_1,s_2,s_3} (\varphi) = g_{s_1,s_2,s_3} \left[\nabla^\mu_1 ... \nabla^\mu_{s_1} \varphi_{\mu_1 ... \mu_{s_1}} \nabla^\nu_1 ... \nabla^\nu_{s_2} \varphi_{\rho_1 ... \rho_{s_2}} \nabla^\rho_1 ... \nabla^\rho_{s_3} \varphi_{\mu_1 ... \mu_{s_3}} + O(\sqrt{|\Lambda|}) \right], \] (7.1)

where the terms \(O(\sqrt{|\Lambda|}) \) and higher in the bracket are descending in the number of derivatives, and are fixed uniquely. The overall coupling is given by

\[g_{s_1,s_2,s_3} = \frac{1}{\sqrt{N}} \frac{\Gamma(s_1 + d - 1)}{\Gamma(s_1 + 1 + s_1 + s_2 + s_3 - 3)} \sqrt{\frac{\Gamma(s_1 + d - 1)}{\Gamma(s_1 + 1)}} \frac{\Gamma(s_2 + d - 1)}{\Gamma(s_2 + 1)} \frac{\Gamma(s_3 + d - 1)}{\Gamma(s_3 + 1)}. \] (7.2)

In [158] it was verified that the rigid structure constants implied by the holographically reconstructed cubic action (7.1) coincide with the the known expressions [142, 311] for higher-spin algebra structure constants, which are unique in general dimensions [132]. This extends to general dimensions (and to the metric-like formalism) the tree-level three-point function test.
In particular, the test confirms that the holographically reconstructed cubic couplings solve the Noether procedure at the quartic order.

The quartic self-interaction of the scalar takes the schematic form

\[V_{0,0,0,0}(\phi_0) = \sum_{r,m} a_{r,m} (\nabla_{\mu_1} \ldots \nabla_{\mu_r} \phi_0 + \ldots) \Delta_0^{m} (\nabla_{\mu_1} \ldots \nabla_{\mu_r} \phi_0 + \ldots), \]

(7.3)

where the \ldots denote a finite number of terms with no more than \(r \) derivatives. In section 6.2.2 we gave a generating function (6.39) for the coefficients \(a_{r,m} \).

Establishing the above results involved a number of non-trivial intermediate steps, which also hold in more general contexts—not just for gauge fields of arbitrary spin but also for arbitrary massive spinning fields. We also list results which may be of interest for further applications below. Afterwards (section 7.2), in the context of the above results we discuss the issue of locality in higher-spin theories.

Three-point Witten diagrams with external fields of arbitrary spin and mass. In order to evaluate tree-level three-point Witten diagrams involving external fields of arbitrary integer spin and mass, we developed an approach which allowed them to be re-expressed in terms of a differential operator acting on three-point diagrams involving only external scalars. This was an instrumental result, in particular because the latter scalar amplitudes are well-known and straightforward to compute. This method is summarised in figure 12 below. Let us emphasise that this result has significance also away from the specific context of higher-spin gauge theories: given a CFT\(_d\), this result provides the complete holographic reconstruction of all cubic couplings involving totally symmetric fields in the putative dual theory on AdS\(_{d+1}\).

In this work we focused on symmetric fields, while for broader applications it may be useful to extend this result to more general representations of the isometry group. For instance, those of the anti-symmetric or mixed-symmetry type, which can be found for example in string theory.

Conformal partial wave expansion of four-point Witten diagrams. In order to extract the quartic self-interaction of the scalar (7.3), we developed tools to determine conformal block expansions of tree-level four-point Witten diagrams. See e.g. [190, 294] for previous related

\[J. \text{Phys. A: Math. Theor.} 50 (2017) 383001 \]
investigations. This was in order to match with the corresponding decomposition of the dual CFT correlator. The idea was centred upon the decomposition of four-point Witten diagrams into partial waves,

\[W_{O,\Delta_i} (y_1, y_2; y_3, y_4) = \frac{(\Delta_i - \frac{d}{2})}{2\pi} \int_{-\infty}^{\infty} \frac{d\nu}{\nu^2 + (\Delta_i - \frac{d}{2})^2} \Gamma \left(\frac{\nu + \ell}{2} \right)^2 \times \int d^4 y \langle \langle O(y_1) O(y_2) O_{\frac{d}{2} + \nu - \ell}(y) \rangle \rangle \langle \langle \tilde{O}_{\frac{d}{2} + \nu + \ell}(y) O(y_3) O(y_4) \rangle \rangle. \]

whose factorised form could be identified with the integral representation (3.93) of conformal blocks,

\[W_{O,\Delta_i} (y_1, y_2; y_3, y_4) = \sum_\ell \int_{-\infty}^{\infty} d\nu p_\ell (\nu) \]

In particular, for exchange diagrams we expressed the bulk-to-bulk propagators for gauge fields of arbitrary spin in a basis of AdS harmonic functions, shown below. This form for the propagator is also applicable in extending this approach to conformal block expansions of diagrams with loops. This would allow, for example, further tests of the higher-spin AdS/CFT duality at loop-level.

While in this work we focused on four-point Witten diagrams involving external scalars, the above method is applicable to more general scenarios. For example, to determine the conformal block expansions of four-point Witten diagrams with spinning external legs. The latter result would be crucial to extract quartic vertices involving fields with non-zero spin. Moreover, it would utilise the result for three-point Witten diagrams mentioned above. For subsequent work in this direction, see: [160, 161].

7.2. Discussion: locality

The most distinguishable feature of our quartic vertex (7.3) is that it is unbounded in its number of derivatives. In a sense, this is to be expected: in string theory there is an infinite number of higher-derivative α' corrections, which play a key role in the soft behaviour of high energy
scattering amplitudes. However, the implications of non-localities for higher-spin gauge theories are still to be fully understood. In this section, we discuss how the AdS/CFT correspondence provides a framework in which these issues may be elucidated. But let us begin by revisiting the concept of locality in the more familiar framework of QFT.

In QFT, locality is a crucial requirement for causality. Since the space-time manifold is non-dynamical in non-gravitational theories, causality in this context is the requirement that the theory has localisable observables which commute at space-like separations,

$$[\mathcal{O}(x), \mathcal{O}(y)] = 0, \quad (x - y)^2 > 0, \quad (7.7)$$

since space-like separated measurements should not interfere. This is a direct consequence of locality, since observables are functions of local fields which, as a consequence of Lorentz invariance and locality of interactions, when considered as quantum operators must (anti-)commute at space-like separations. However in gravitational theories there are no local gauge (diffeomorphism) invariant observables, which leaves open the possibility for fields to interact in a non-local way. As we shall discuss below, in such theories these issues can be translated instead into analyticity properties of the S-matrix.

A well known example of a consistent theory that is not local in the standard QFT sense is string theory. Indeed, the covariant string field theory action governing the dynamics of the infinite set of fields contains space-time derivatives of all orders. For example, one finds interactions of the form

$$\mathcal{V}_3 = \left[e^{\alpha_1 \alpha_2 \phi^2(x)} \right]^3, \quad (7.8)$$

where we can write

$$e^{\alpha_1 \alpha_2 \phi^2(x)} = \frac{1}{2 \pi \alpha'} \int dy \, e^{\frac{1}{\pi \alpha'} (x - y)^2} \phi(y). \quad (7.9)$$

Naïvely, this seems to be problematic: the field ϕ at the point x not only couples to itself, but also to its values arbitrarily far in the future, past, and even at space-like separations. Most troubling is the presence of an infinite number of time derivatives. The issues that generally accompany theories containing such interactions are well-known, and include [312–322]: possible violations of unitarity and causality, problems in setting up an initial value problem, and difficulties quantising the theory and/or finding a stable Hamiltonian. However, for string theory there is evidence which indicates that the higher-derivative structure is not problematic. Indeed, when passing to the light-cone gauge it is possible to make field redefinitions which render the theory completely local in light-cone time [323–325].

7.2.1. Locality in higher-spin theories, and Mellin amplitudes. Our understanding of these issues in higher-spin gauge theories is comparably limited. Recently, classes of admissible field redefinitions (i.e. those which do not alter physical observables) have been proposed in [151, 153, 154, 156, 157], however their implications are yet to be fully realised. The point is whether the field re-definitions required to reduce the number of time derivatives are physical (admissible).

More generally, questions about locality can be translated into certain analytical properties of the S-matrix [326]. It is well-known that local interactions give rise to amplitudes which are polynomial in Mandelstam variables. In turn, amplitudes for exchange diagrams, which are distinct from local contact interactions, contain simple poles in the Mandelstam variables. So one criterion for consistency in higher-spin theories may be to demand that amplitudes of
contact interactions be free from poles, for such non-localities cannot be tamed by admissible field redefinitions. In fact, already in higher-spin theory on flat space it has been observed that gauge invariance requires the quartic contact amplitudes to generate poles in the Mandelstam variables whenever one has external higher-spin particles [29]. I.e. they are of the form

\[\phi^2 \frac{1}{\Box - m^2} \phi^2, \]

(7.10)

and the corresponding class of field-redefinitions is unphysical, as they would allow the removal of non-trivial cubic couplings—i.e. map to a free theory.

On the other hand it is well known that higher-spin theories in flat space are plagued by unresolved existence issues, so one might hope for a better picture when turning to higher-spin theories on AdS. While the standard notion of an S-matrix in AdS is ill defined\(^{73}\), we can create and annihilate particles in AdS by changing the boundary conditions at the time-like boundary. Via the AdS/CFT correspondence, the transition amplitudes between such states are identified with the correlation functions of the dual CFT, which suggests an interpretation of CFT correlators as AdS scattering amplitudes [327–330]. In fact, it has been put forward that the Mellin representation of a CFT correlator of Mack [256, 331] may provide a definition for an S-matrix of the dual gravity theory in AdS [181, 183, 256, 331, 332]:

Consider the example of a Euclidean four-point CFT correlator with identical scalar fields,

\[\langle O(y_1) O(y_2) O(y_3) O(y_4) \rangle = g(u,v) \frac{y_{12} y_{34}}{(y_{12} y_{34})^{\Delta}}. \]

(7.11)

The Mellin representation of (7.11) is given by inverting the Mellin transform

\[\langle O(y_1) O(y_2) O(y_3) O(y_4) \rangle = \mathcal{N} \left(\frac{2 \pi i}{2} \right) \int d \delta_{ij} M(\delta_{ij}) \prod_{i < j} (y_{ij})^{-\delta_{ij}}, \]

(7.12)

with some normalisation \(\mathcal{N} \), and where the integration contour runs parallel to the imaginary axis with Re(\(\delta_{ij} \)) > 0. By conformal symmetry, the Mellin variables \(\delta_{ij} \) are constrained by

\[\sum_j \delta_{ij} = \Delta, \quad \delta_{ii} = 0, \]

(7.13)

The object \(M(\delta_{ij}) \) defined by

\[M(\delta_{ij}) = \mathcal{M}(\delta_{ij}) \prod_{i < j} \Gamma(\delta_{ij}), \]

(7.14)

is known as the Mellin amplitude, and has been proposed to be understood as the AdS scattering amplitude [181]. To help motivate this identification, let us first solve the conditions (7.13) in a suggestive way by introducing auxiliary ‘momenta’ \(k_i \), satisfying

\[\sum_{i=4}^4 k_i = 0, \quad k_i^2 = -\Delta. \]

(7.15)

One can then define analogues of Mandelstam variables as

\[s = -(k_1 + k_2)^2 = 2\Delta - 2\delta_{12} \]

(7.16)

\(^{73}\) AdS space-time has a time-like conformal boundary, and thus does not admit in and out states; particles in AdS live in a box and interact forever.
\[t = -(k_1 + k_3)^2 = 2\Delta - 2\delta_{13} \]
\[u = -(k_1 + k_4)^2 = 2\Delta - 2\delta_{14}, \]
(7.17)

satisfying the relation \(s + t + u = 4\Delta \). Let us now consider the structure of the Mellin amplitude in terms of these variables. As observed by Mack, in order to reproduce the contribution of a conformal multiplet with quantum numbers \([\Delta_k, J]\) in the conformal partial wave expansion of (7.11) in, say, the \((12)(34)\) channel, the Mellin representation (7.14)

\[M(s, t, u) = \frac{1}{\Gamma(\Delta - s/2)^2 \Gamma(\Delta - t/2)^2 \Gamma(\Delta - u/2)^2}, \]
(7.19)

must contain simple poles at

\[s = \Delta_k - J + 2m, \quad m = 0, 1, 2, 3, \ldots \]
(7.20)

The contributions from double-trace operators are thus taken care of by the Gamma function factors in (7.19), leaving the Mellin amplitude \(M(s, t, u) \) to take care of the single-trace contributions. Under the AdS/CFT correspondence, single-trace CFT operators are identified with single-particle bulk states section 2.2, and therefore the Mellin amplitude of a four-point exchange Witten diagram contains the corresponding simple poles in the Mandelstam variables, analogous to flat space S-matrix amplitudes for exchanges\(^{74}\). Furthermore, local bulk contact interactions give rise to polynomial Mellin amplitudes\(^{181}\), in perfect analogy with flat space scattering amplitudes. More substance to this identification of the Mellin amplitude as an S-matrix for AdS was given by the observation that the standard flat space scattering amplitude is recovered in the appropriate flat limit\(^{181, 333}\) (see also:\(^{334}\)).

With the above analogy in place, let us explore its implications in the context of higher-spin holography. According to the above prescription, we may interpret the Mellin amplitude of the connected four-point correlator (4.35) in the free scalar \(O(N) \) vector model

\[\langle O(y_1) O(y_2) O(y_3) O(y_4) \rangle_{\text{conn.}} = \frac{4}{N (y_{12}^2 y_{34}^2)^N} \left(u^\frac{2}{\gamma} + \left(u^\frac{2}{\gamma} \right) + u^\frac{2}{\gamma} \left(u^\frac{2}{\gamma} \right) \right), \]
(7.21)

as a scattering amplitude with external scalar legs in the type A minimal bosonic higher-spin theory on AdS. While the Mellin amplitudes of correlators in strongly coupled CFTs are well understood\(^{335}\), there are some subtleties in applying the definition (7.12) to free (or weakly coupled) CFTs. To see this more clearly, consider the latter in terms of the ‘Mandelstam variables’,

\[\langle O(y_1) O(y_2) O(y_3) O(y_4) \rangle = \frac{N^N (y_{12}^2 y_{34}^2)^N}{2\pi^N} \int \frac{ds}{2\pi} \int \frac{dt}{2\pi} u^{\gamma} v^{\Delta - \gamma} M(s, t). \]
(7.22)

The main issue is that a power function (which is characteristic of free CFT correlators as a result of Wick contractions)

\[f(w) = w^\alpha, \quad \alpha \in \mathbb{R}, \]
(7.23)

does not have a well defined Mellin transform\(^{336}\)

\[M(z) = \int_0^\infty dw \frac{w^z f(w)}{w}. \]
(7.24)

One possibility is to understand the Mellin transform in this case as a distribution\(^{337}\)

\(^{74}\) This was verified explicitly in: \(^{181}\) for the scalar and graviton exchange.
\[M(z) = \delta(z + \alpha). \]

(7.25)

With this interpretation, the Mellin transform of the vector model correlator (7.21) is given by [154, 155]

\[M(s, t, u) = \frac{4}{N} \delta \left(\frac{s}{2} - \frac{\Delta}{2} \right) \delta \left(\frac{t}{2} - \frac{\Delta}{2} \right) \delta \left(\frac{u}{2} - \Delta \right) + \text{cycl.}. \]

(7.26)

Owing to its distributional nature, there may be subtleties in applying the definition (7.19) to obtain the corresponding Mellin amplitude (and hence scattering amplitude in AdS higher-spin theory). The problem is that each value in the support of the LHS in (7.19) corresponds to a pole of one of the Gamma functions on the RHS. Formally, treating the Mellin amplitude as a distributional product one would conclude that it must vanish identically.

Assuming the validity of the above observation, let us briefly explore its implications in the context of the results presented in this review. Recall (section 5.4.2) that the single-trace contributions from the bulk exchanges

\[\mathcal{A}^{\text{exch.}}_{\text{total}}(y_1, y_2; y_3, y_4) = \sum_J A^{\text{exch.}}_J(y_1, y_2; y_3, y_4) \]

(7.27)

precisely account for all single-trace contributions in the conformal block expansion of the dual CFT correlator

\[G(y_1, y_2; y_3, y_4) = \sum_J c_{\Delta J}^2 W_{\Delta+JJ}(y_1, y_2; y_3, y_4) + \text{double - trace}, \]

(7.28)

The Witten diagram generated by the quartic vertex (7.3) therefore should not generate single-trace contributions. Recalling that single-trace contributions are the only ones which can generate simple poles in the corresponding Mellin amplitude [86], one is led to conclude that the scattering amplitude generated by the quartic vertex (7.3) does not give rise to simple poles in the ‘Mandelstam variables’.

While it seems that there are no simple poles in the four-point contact amplitude in AdS, we encounter the following issue. Should the re-summation (75) of the Mellin transforms of the bulk exchanges be an analytic function, with simple poles corresponding to the respective intermediate states (7.20), the above discussion may be in contradiction with the form (7.26) of the dual CFT correlator’s Mellin transform. In this case, the absence of these poles in the full amplitude (7.26) would then imply that the bulk contact amplitude contains simple

\[M^{\text{exch.}}_{\text{total}}(s, t) = \Gamma \left(\Delta - \frac{s}{2} \right) \Gamma \left(\Delta - \frac{t}{2} \right) \Gamma \left(\frac{s + t}{2} - \Delta \right) \sum_{J=0}^\infty M^{\text{exch.}}_J(s, t), \]

(7.29)

\[M^{\text{exch.}}_J(s, t) = \sum_{m=0}^{\infty} k_j \frac{Q_{J,m}(t)}{s - \Delta - 2m} + \text{Pol}_J(s, t), \]

(7.30)

where \(Q_{J,m}(t) \) is a kinematical polynomial [256], \(Q_{J,m}(t) = t' + \mathcal{O}(t'^{-1}) \), and \(\text{Pol}_J(s, t) \) is a possible degree \(J - 1 \) polynomial in \(s \) and \(t \).

75 To avoid confusion with the Mandelstam variable ‘s’, in this section we use the label \(J \) to denote spin.

76 For clarity, the Mellin transform of the sum over exchanges (7.27) takes the form,
poles to compensate. On the other hand, the appearance of Dirac delta functions in the Mellin transform (7.26) indicates possible issues of convergence for the conformal partial wave expansion of the scalar four-point function when summing over the spin. Therefore, one subtlety may lie in subtracting, term-by-term, a divergent sum over bulk exchanges from a divergent series \[154, 155\]. In this delicate scenario, to study the Mellin amplitude generated by the quartic vertex (7.3), the most rigorous way to proceed may be to instead re-sum the bulk exchanges (sum over spins) and then subtract them from the re-summed CFT amplitude (7.26). Further clarity may also be afforded by expressing the quartic vertex (7.3) in a non-redundant basis. See [161] for subsequent work in this direction.

As a final comment, let us note that potential divergent behaviour of higher-spin exchanges discussed above has been observed in the case of conformal higher-spin gauge theories in flat space \[338, 339\]. There, the regularised sum over the spin-\(J\) exchanges gives

\[
M_{\text{total \text{exchange}}} (s, t, u) = \frac{1}{(-s)^{\frac{d-4}{2}}} \sum_{J=0}^{\infty} (J + \frac{d-3}{2}) C_f \left(\frac{2u}{t+u} \right) \left(\frac{t-u}{t+u} \right) \quad (7.31)
\]

\[
\sim \frac{1}{(-s)^{\frac{d-4}{2}}} \frac{1}{(d-4)!} \left(-\frac{2u}{t+u} \right) \delta^{(d-4)} (z), \quad (7.32)
\]

where \(\delta^{(d-4)} (z)\) denotes the \((d-4)\)th derivative of the Dirac delta function, and we recall that \(C_f \left(\frac{2u}{t+u} \right) \) is a Gegenbauer polynomial.

Acknowledgments

The work presented in this review (based on the author’s PhD thesis) would not have been possible without a special set of boundary conditions:

I am especially grateful to my supervisor Johanna Erdmenger, in many respects. For her continuous support, guidance and encouragement throughout these years. For introducing me to this fascinating subject and encouraging me to be independent from the very beginning.

It is a privilege to acknowledge Dieter Lüst, for his constant support and interest in my work. Moreover, for creating the fruitful and friendly atmosphere that permeates the string theory group. Thank you also for refereeing this thesis.

I am deeply indebted to Hugh Osborn, not only for valuable discussions about conformal field theory, but also for his unwavering support since my undergraduate years in Cambridge. In this regard I also owe a lot to Irena Borzym, Wayne Boucher and David Tong.

My very special thanks go to my collaborators on the work which made this thesis: Xavier Bekaert, Mitya Ponomarev and Massimo Taronna. You guys taught me most of what I know about higher-spin theory, and I am also thankful for your patience, support and good advice.

I have also benefited greatly from discussions and correspondence with: Martin Ammon, Francesco Azzurli, Glenn Barnich, Thomas Basile, Nicolas Boulanger, Ralph Blumenhagen, Andrea Campoleoni, Alejandro Castro, Shai Chester, Daniele Dorigoni, Dario Francia, Olga Gelfond, Gaston Giribet, Vasco Gonçalves, Thomas Grimm, Saô Grozdanov, Wei Li, Ruslan Metsaev, Simon Nakach, Miguel Paulos, Tassos Petkou, Nick Poovuttikul, Koenraad Schalm, Ergin Sezgin, Jon Shock, Zhenya Skvortsov, Dmitri Sorokin, Stephan Stieberger, Bo Sundborg, Per Sundell, Marika Taylor, Misha Vasiliev and Alessandro Vichi. As well as my fellow colleagues and gauge-gravity group comrades, who have accompanied me over the years at the MPI and the LMU.
I owe a lot to the Max-Planck-Institut für Physik, the Ludwigs Maximilians-Universität München and the IMPRS program. It was a great privilege to be able to work for my PhD in such a stimulating scientific environment, in a charming city. At the MPI I am particularly grateful to the ever-welcoming Annette, Monika and Rosita, for providing continuous support which helped smooth the navigation through all possible administrative and bureaucratic labyrinths.

My deepest gratitude goes to my family. Without their endless support, I would have never have made it close to this point. For continuously reminding me of what is truly important in life. This thesis is dedicated to them.

Finally, I would like to thank all of my other teachers, colleagues and friends in Hull, Cambridge, Berlin, Munich and scattered around the world, who have helped me along the way.

Appendix A. Ambient formalism

A.1. Ambient space

The basic idea behind the ambient formalism is to regard AdS space as a one-sheeted hyperboloid H_{d+1} with curvature radius R

$$H_{d+1} : \ X^2 = -R^2, \quad X^0 > 0,$$ \hspace{1cm} (A.1)

embedded into an ambient $(d + 2)$-dimensional flat space-time, parameterised by Cartesian co-ordinates X^A with $A = 0, 1, ..., d + 1$.

To be more precise, denoting the intrinsic coordinates on H_{d+1} by x^μ, we are considering the isometric smooth embedding

$$i : \ H_{d+1} \hookrightarrow \mathbb{R}^{d+2} : \ x^\mu \mapsto X^A (x^\mu).$$ \hspace{1cm} (A.2)

The ambient space itself is endowed with a flat metric η_{AB}, which defines the quadratic form $X^2 = -R^2$. The choice of signature dictates whether one describes Euclidean or Lorentzian AdS:

Lorentzian signature : $\eta_{AB} = (- + + ... +) \quad \rightarrow \quad$ Euclidean AdS \hspace{1cm} (A.3)

Conformal signature : $\eta_{AB} = (- + ... + -) \quad \rightarrow \quad$ Lorentzian AdS, \hspace{1cm} (A.4)

where in both cases we adopt the ‘mostly plus’ convention.

Towards the boundary of AdS, the hyperboloid H_{d+1} asymptotes to the light cone $X^2 = 0$. The boundary is thus identified with the ambient projective cone of light rays, which can be identified by setting

$$P^A = \varepsilon X^A,$$ \hspace{1cm} (A.5)

in the limit $\varepsilon \to 0$. Since X^2 is fixed, these ambient co-ordinates satisfy

$$P^2 = 0, \quad P \sim \lambda P, \quad \lambda \neq 0,$$ \hspace{1cm} (A.6)

where the equivalence relation expresses the fact that we are dealing with rays. This quotienting of the light cone allows us to describe the d-dimensional boundary. We can identify this projective null cone with the d-dimensional space by ‘gauge-fixing’ this rescaling. We give an example of this below.
A particular virtue of the ambient formalism is that the mutual $SO(d, 2)$ (or $SO(d + 1, 1)$ in the Euclidean case) symmetry of AdS and its conformal boundary is made manifest, by which we mean that the symmetry transformations act linearly. Simply put, the ambient formalism makes the kinematics in AdS or its conformal boundary as simple as Lorentz-invariant kinematics. For co-ordinates, we have

$$X^i' = e^{\omega^i A} X^i,$$

$$i J_{CD} = X_C \frac{\partial}{\partial x^D} - X_D \frac{\partial}{\partial x^C},$$

(A.7)

with $SO(d, 2)$ generators J_{CD}, which satisfy the commutation relations (A.8).

$$[J_{AB}, J_{CD}] = i \left(\eta_{BC} J_{AD} + \eta_{AD} J_{BC} - \eta_{AC} J_{BD} - \eta_{BD} J_{AC} \right).$$

(A.8)

It is often convenient to use the following basis for the $so(d, 2)$ generators (A.8),

$$M_{ij} = i J_{ij}, \quad P^\pm_i = J_{0i} \pm i J_{(d+1)i}, \quad E = J_{0(d+1)},$$

(A.9)

with commutators (all others are vanishing)

$$[E, P^\pm_i] = \pm P^\pm_i, \quad [M_{ij}, P^\pm_k] = \delta_{jk} P^\pm_i - \delta_{ik} P^\pm_j,$$

(A.10)

$$[M_{ij}, M_{kl}] = \delta_{ik} M_{jl} + \delta_{jk} M_{il} - \delta_{il} M_{jk}, \quad [P^+_i, P^-_j] = 2M_{ij} - 2\delta_{ij} E,$$

(A.11)

where $i, j = 1, \ldots, d$.

Example: Euclidean AdS in Poincaré co-ordinates. A simple example is given by Euclidean AdS in Poincaré co-ordinates $x^\mu = (z, y^i), \ i = 1, \ldots, d$. The points on AdS are parameterised by

$$X^0 = \frac{z^2 + y^2 + R^2}{2z}$$

(A.12)

$$X^{d+1} = \frac{R^2 - z^2 - y^2}{2z}$$

(A.13)

$$X^i = \frac{R}{z} y^i$$

(A.14)

Pulling the ambient metric η_{AB} with signature (A.3) back onto the AdS manifold one recovers

$$ds^2 = \left(\frac{\partial X^A}{\partial x^\nu} \frac{\partial X^B}{\partial x^\nu} \eta_{AB} \right) dx^\mu dx^\nu = \frac{R^2}{z^2} \left(dz^2 + \delta_{ij} dy^i dy^j \right).$$

(A.15)

The usual AdS Killing tensors can be obtained in Poincaré co-ordinates by noting that

$$\eta^{AB} \frac{\partial}{\partial X^B} = g^{\mu\nu} \frac{\partial X^A}{\partial x^\nu} \frac{\partial}{\partial x^\mu} - \frac{X_A}{R^2} X \cdot \partial X,$$

(A.16)

which gives
\[iJ^{AB} = g^{\mu
u} \left(X^A \frac{\partial X^B}{\partial x^\nu} - X^B \frac{\partial X^A}{\partial x^\nu} \right) \frac{\partial}{\partial x^\mu} \]
\[= \frac{z^2}{R^2} \left[\left(X^A \frac{\partial X^B}{\partial z} - X^B \frac{\partial X^A}{\partial z} \right) \frac{\partial}{\partial z} + \delta^i_j \left(X^i \frac{\partial X^B}{\partial y^j} - X^B \frac{\partial X^i}{\partial y^j} \right) \frac{\partial}{\partial y^j} \right]. \quad (A.17) \]

For example, one recovers
\[iE = J_{0(d+1)} = z \frac{\partial}{\partial z} + y \cdot \frac{\partial}{\partial y}. \quad (A.18) \]

With the gauge choice \(P^+ = P^0 + P^{d+1} = 1 \), the boundary can be parameterised by
\[P^0 = \frac{1}{2} \left(1 + y^2 \right), \quad P^{d+1} = \frac{1}{2} \left(1 - y^2 \right), \quad P^i = y^i. \quad (A.19) \]

This corresponds to a Poincaré section of the light cone, and is illustrated in figure A1 for the Euclidean conformal group \(SO(d + 1, 1) \). Conformal transformations relate this section to others with \(dP^+ = 0 \).

The usual conformal generators on the boundary are recovered from
\[iJ_{AB} = -i \mathcal{U}_{BA} = \left(P_A \frac{\partial}{\partial P_B} - P_B \frac{\partial}{\partial P_A} \right), \quad (A.20) \]

and identifying the combinations (A.9). Like for the AdS Killing tensors, one can use that
\[\eta^{AB} \frac{\partial}{\partial P^B} = \left(\frac{\partial P^A}{\partial y^i} \frac{\partial}{\partial y^j} - Q^A P^B - Q^B P^A \right) \frac{\partial}{\partial P^B} \]
\[= \delta^i_j \frac{\partial P^A}{\partial y^i} \frac{\partial}{\partial y^j} - Q^A P^i \frac{\partial}{\partial y^i} - P^A Q^i \frac{\partial}{\partial y^i}, \]

where we employed (A.40) with \(Q^i = (1, 0, -1) \). This gives
\[i_{T^A} = \left(P^A \frac{\partial P^B}{\partial y^i} - P^B \frac{\partial P^A}{\partial y^i} \right) \frac{\partial}{\partial y^i} + \left(P^B Q^A - P^A Q^B \right) y \cdot \partial_i, \]

(A.21)

where one notes that \(P \cdot \partial_P = y \cdot \partial_y \). For example, for dilatations we recover

\[i_E = i_{\ell_0(d+1)} = y \cdot \partial_y. \]

(A.22)

A.2. Fields in the ambient formalism

To describe fields in the bulk or on the boundary of AdS in this formalism, they need to be identified with the appropriate representatives in the ambient space. Uplifting to the higher-dimensional ambient space introduces extra degrees of freedom, and thus the representatives of bulk and boundary fields must be constrained to keep the number of degrees of freedom constant. In the following sections we detail the ambient description of scalar and tensorial bulk and boundary fields. For definiteness, we work with the Euclidean AdS isometry group / conformal group \(SO(d+1,1) \).

A.2.1. Bulk fields.

A smooth rank-\(r \) covariant tensor field \(t_{\mu_1...\mu_r} (x) \) on \(\text{AdS}_{d+1} \) is represented in ambient space \(\mathbb{R}^{d+1,1} \) by a \(SO(d+1,1) \)-tensor \(T_{A_1...A_r} (X) \), whose pullback onto the AdS manifold satisfies

\[i^* : T_{A_1...A_r} (X) \longmapsto t_{\mu_1...\mu_r} (x) = \frac{\partial X^{A_1}(x)}{\partial x^{\mu_1}} \cdots \frac{\partial X^{A_r}(x)}{\partial x^{\mu_r}} T_{A_1...A_r} (X(x)). \]

(A.23)

However, at this level the choice of representative \(T \) is not unique. Indeed, the generators (A.8) are interior to AdS, \([J_{AB}, X^2 + R^2] = 0 \), and are not sensitive to the extension of \(T \) away from the AdS manifold. More explicitly, there are two sources of ambiguity:

1. Addition of tensors with components perpendicular to the AdS manifold, which sit in the kernel of the pullback (A.23):

\[X^2 = -R^2 \implies \frac{\partial X}{\partial \mu_i} \cdot X \bigg|_{X^2 = -R^2} = 0. \]

(A.24)

2. Dependence on the radial direction \(\rho = \sqrt{-X^2} \).

A prescription to fix the above ambiguities was provided by Fronsdal [270] in the ’70s. For ambiguities of type 1, we impose that \(T \) is tangent to submanifolds of constant \(\rho \):

\[X^{A_i} T_{A_1...A_i...A_r} = 0, \quad i = 1, ..., r. \]

(A.27)

For the radial dependence, a simple (and thus convenient) condition is to impose that on-shell \(T \) is a harmonic function in the ambient space

\[\mathcal{P} t^A = \delta^A_B - \frac{\lambda_A X^B}{X_T}, \quad (\mathcal{P} T)_{A_1...A_r} \colon= \mathcal{P} t^{A_1} \mathcal{P} t^{A_2} \cdots \mathcal{P} t^{A_r}, \quad X^A (\mathcal{P} T)_{A_1...A_r} = 0. \]

(A.25)

which acts on ambient tensors as

In particular, we are free to multiply by \(\rho/R \) where \(\rho \) is the radial co-ordinate \(\rho = \sqrt{-X^2} \), or add terms proportional to \(X^2 + R^2 \).

78 This condition can be imposed by hand, applying the projection operator

\[(PT)_{A_1...A_r} := \mathcal{P} t^{A_1} \mathcal{P} t^{A_2} \cdots \mathcal{P} t^{A_r}, \quad X^A (PT)_{A_1...A_r} = 0. \]

(A.26)

85
\[\partial^2 T_{A_1 \ldots A_r} = 0. \]
(A.28)

In order for \(T \) to carry the correct representation of \(SO(d, 2) \), the harmonic condition \((A.28)\) implies that it is homogeneous

\[(X \cdot \partial_X - \mu) T_{A_1 \ldots A_r} = 0, \quad \text{i.e.} \quad T_{A_1 \ldots A_r} (\lambda X) = \lambda^{-\mu} T_{A_1 \ldots A_r} (X), \]
(A.29)

where we may choose either \(\mu = \Delta \) or \(\mu = d - \Delta \).

Example I: AdS metric. A straightforward application of the above is to the intrinsic AdS metric

\[g_{\mu \nu} = \frac{\partial X^A}{\partial x^\mu} \frac{\partial X^B}{\partial x^\nu} \eta_{AB}. \]
(A.30)

The induced AdS metric is given by

\[G_{AB} = P_A^C P_B^D \eta_{CD} = \eta_{AB} + \frac{X_A X_B}{R^2}, \]

confirming its role as a projector.

Example II: Covariant derivative. Following the above prescription, in ambient representative of the covariant derivative is

\[\nabla_A = P_A^B \partial_B, \]
(A.31)

and its action is given by

\[\nabla = \mathcal{P} \circ \partial \circ \mathcal{P}. \]
(A.32)

This ensures that the result is tangent to the AdS manifold, and crucially that the partial derivative is acting on an object which already represents an AdS tensor.

For example,

\[\nabla_B T_{A_1 \ldots A_r} = P_B^C P_{A_1}^C \ldots P_{A_r}^C \frac{\partial}{\partial X^C} (\mathcal{P} T)_{C_1 \ldots C_r} (X). \]
(A.33)

Example III: symmetric and traceless spin-s fields. An important example for this work is the ambient description of symmetric and traceless spin-\(s \) fields in \(AdS_{d+1} \). Such fields satisfy the Fierz system (generalized to AdS)

\[(-\nabla^{\mu} \nabla_{\mu} + m_s^2) \varphi_{\mu_1 \ldots \mu_s} (x) = 0, \quad \nabla^\mu \varphi_{\mu_1 \ldots \mu_s} (x) = 0, \quad \varphi_{\mu_1 \ldots \mu_{s-1} \mu_s} (x) = 0, \]
(A.34)

where \(\nabla_{\mu} \) is the intrinsic covariant derivative on AdS and \(m_s^2 R^2 = \Delta (\Delta - d) - s \), with \([\Delta, s] \) labelling representation of \(SO(d, 2) \): \(\Delta \) is the lowest energy eigenvalue, and \(s \) the spin.

The ambient description \(\varphi_{A_1 \ldots A_r} (X) \) of the above intrinsic system, is naturally given by

\[(-\nabla^{\mu} \nabla_{\mu} + m_s^2) \varphi_{A_1 \ldots A_r} (X) = 0, \quad \nabla^{A_1} \varphi_{A_1 \ldots A_r} (X) = 0, \quad \varphi_{A_1 \ldots A_{r-1} A_r} (X) = 0, \]
(A.35)

where \(\nabla^{A} \) is the ambient representative of the covariant derivative. These are supplemented by the tangentiality and homogeneity conditions

\[X^{A_1} \varphi_{A_1 \ldots A_r} (X) = 0, \quad \varphi_{A_1 \ldots A_r} (\lambda X) = \lambda^{-\Delta} \varphi_{A_1 \ldots A_r} (X), \]
(A.36)
with the requirement that \(\varphi_{A_1 \ldots A_r} \) carries the same representation of \(SO(d, 2) \) fixing the degree of homogeneity to be \(\Delta \) or \(d - \Delta \). A nice feature of the ambient formalism is that the above is equivalent to the flat ambient Fierz system:

\[
\partial^2 \varphi_{A_1 \ldots A_r} (X) = 0, \quad \partial^{\mu_1} \varphi_{A_1 \ldots A_r} (X) = 0, \quad \eta^{A_1 \ldots A_r} \varphi_{A_1 \ldots A_r} (X) = 0. \tag{A.37}
\]

A.2.2. Boundary fields.

In this review we consider only symmetric and traceless primary fields in CFT, though the ambient description can be extended to other representations of \(SO(d) \).

A spin-\(r \) primary field \(f_{i_1 \ldots i_r}(y) \) of dimension \(\Delta \) is represented in the ambient formalism by a \(SO(d + 1, 1) \)-tensor \(F_{A_1 \ldots A_r}(P) \) which lives on the light cone \(P^2 = 0 \). This ambient tensor is also symmetric and traceless, as well as homogeneous of degree \(-\Delta \):

\[
F_{A_1 \ldots A_r}(\lambda P) = \lambda^{-\Delta} F_{A_1 \ldots A_r}(P), \quad \lambda > 0. \tag{A.38}
\]

To be tangent to the light cone, \(F_{A_1 \ldots A_r}(P) \) must satisfy

\[
P^A F_{A_1 \ldots A_r} = 0. \tag{A.39}
\]

We can define \(f_{i_1 \ldots i_r}(y) \) is related to \(F_{A_1 \ldots A_r}(P) \) by a projection onto the Euclidean section (A.19)

\[
f_{i_1 \ldots i_r}(y) = \frac{\partial^P f^A_{i_1 \ldots i_r}(y)}{\partial y^{\mu_1}} \cdots \frac{\partial^P f^A_{i_1 \ldots i_r}(y)}{\partial y^{\mu_r}} F_{A_1 \ldots A_r}(P(y)), \tag{A.41}
\]

whose kernel contains arbitrary tensors proportional to \(P^A \).

To check that the number of degrees of freedom is unchanged, note that the transversality condition (A.39) eliminates one of the two extra components per ambient index. Since we are on the light cone \(P^2 = 0 \), unlike for the bulk case considered in the previous section, the transversality condition (A.39) is not sufficient to fix \(F_{A_1 \ldots A_r} \) uniquely: since the kernel of (A.41) contains tensors proportional to \(P^A \), the tensor \(F_{A_1 \ldots A_r} \) is defined up to arbitrary tensors proportional to \(P^A \)

\[
F_{A_1 \ldots A_r} \sim F_{A_1 \ldots A_r} + P_{(A_1} S_{A_2 \ldots A_r)}, \quad P^A S_{A_1 \ldots A_r} = 0. \tag{A.42}
\]

This ‘gauge invariance’ eliminates the residual extra degrees of freedom.

A.2.3. Operations with ambient tensors.

Tensor operations such as contractions can be greatly simplified by encoding tensors in generating functions. In \(d \)-dimensional intrinsic space, we can encode symmetric tensors in polynomials

\[
t_{\mu_1 \ldots \mu_r}(x) \longrightarrow t(x, u) = \frac{1}{r!} t_{\mu_1 \ldots \mu_r}(x) u^{\mu_1} \ldots u^{\mu_r}, \tag{A.43}
\]

where we have introduced the constant \(d \)-dimensional auxiliary vector \(u^\mu \). Furthermore, traceless tensors can be encoded as

\[
t_{\mu_1 \ldots \mu_r}(x) \longrightarrow t(x, w) = \frac{1}{r!} t_{\mu_1 \ldots \mu_r}(x) w^{\mu_1} \ldots w^{\mu_r}, \tag{A.44}
\]

where now the auxiliary vector is null, \(w^2 = 0 \).

\[\text{Note that this relation preserves tracelessness: to compute the trace of } f_{i_1 \ldots i_r}(y), \text{ we need the contraction}
\]

\[
\delta^{\mu_1} \frac{\partial P^A}{\partial y^{\mu_1}} \frac{\partial P^B}{\partial y^{\mu_2}} = n^{AB} + P^A Q^B + P^B Q^A, \quad \text{where } Q^A = (1, 0, -1). \tag{A.40}
\]

This gives vanishing trace of \(f_{i_1 \ldots i_r} \) owing to the tracelessness and transversality (A.39) of \(F_{A_1 \ldots A_r} \).
In terms of generating functions, tensor operations are then translated into an operator calculus, which simplifies manipulations significantly. For example, the contraction between two symmetric rank-r tensors is implemented via

\[
t_{\mu_1 \ldots \mu_r} (x) s^{\mu_1 \ldots \mu_r} (x) \Big|_{w=0} = r! s (x, \partial w) t (x, w) \Big|_{w=0}.
\]

(A.45)

The covariant derivative also gets modified when acting on functions of the intrinsic auxiliary variables,

\[
\nabla_{\mu} \to \nabla_{\mu} + \omega^{ab}_{\mu} \mu_a \frac{\partial}{\partial u^b},
\]

(A.46)

with ω^{ab}_{μ} the spin-connection. With this, the following further operations can be represented:

\[
\text{divergence : } \nabla \cdot \partial w, \text{ symmetrised gradient : } u \cdot \nabla, \text{ trace : } \partial u \cdot \partial u,
\]

(A.47)

The symmetric metric $g_{\mu \nu}$ is denoted simply by u^2, and thus terms proportional to u^2 are pure trace.

For symmetric and traceless tensors, one instead uses the Thomas derivative \[254, \] which we denote by \(\hat{\partial}_{w^\mu} \). This takes into account

\[
\hat{\partial}_{w^\mu} = \left(d^2 - 1 \right)_r \frac{\partial}{\partial w} - \frac{1}{2} w^\mu \frac{\partial^2}{\partial w \cdot \partial w},
\]

(A.48)

This formalism can be extended to ambient representatives of bulk and boundary tensor fields discussed in the previous section, which we outline in the following.

Ambient AdS tensors. The ambient counterpart of the intrinsic generating function (A.43) for symmetric rank-r tensors is,

\[
T_{A_1 \ldots A_r} (X) \to T (X, U) = \frac{1}{r!} T_{A_1 \ldots A_r} (X) U^{A_1} \ldots U^{A_r}, \quad X \cdot U = 0,
\]

(A.50)

where $T_{A_1 \ldots A_r}$ is the ambient representative of $t_{\mu_1 \ldots \mu_r}$. In this case, the auxiliary vector U^A is constrained to ensure that we are working modulo components which drop out after projection onto the tangent space of H_{d+1}.

Contraction between symmetric tensors slightly modified in contrast to the intrinsic case. The generalization of (A.45) being

\[
T_{A_1 \ldots A_r} (X) S^{A_1 \ldots A_r} (X) = r! T (X, D_U) S (X, U) \bigg|_{U=0} = r! S (X, D_U) T (X, U) \bigg|_{U=0},
\]

(A.51)

where the derivative D_U is given by,

\[
D_U^A = T^{AB}_A \frac{\partial}{\partial U^B} = \frac{\partial}{\partial U^A} - X_A X^2 \left(\partial \cdot \frac{\partial}{\partial U} \right),
\]

(A.52)

and accommodates for the condition $X \cdot U = 0$.

The ambient representative of the covariant derivative in the generating formalism takes the form

\[81\text{ This is also known in the literature as the Todorov differential [254].} \]
\[\nabla^A = \partial^A_X - \frac{1}{X^2} \left(X^A X \cdot \partial_X + U^A X \cdot \partial_U - U \cdot X \partial^U_X \right), \]
(A.53)

which satisfies the useful operator algebra

\[[X \cdot \partial_U, \nabla_A] = 0, \quad [\partial_U \cdot \partial_U, \nabla_A] = 0, \quad [\nabla_A, X^2] = 0, \quad X \cdot \nabla = 0, \]
(A.54)

together with

\[[D^A_U, \nabla^B] = \frac{X^A}{X^2} D^B_U. \]
(A.55)

For symmetric and traceless tensors, the ambient counterpart of the intrinsic generating function (A.44) is

\[T_{A_1 \ldots A_r} (X) \longrightarrow T (X, W) = \frac{1}{p^1} T_{A_1 \ldots A_r} (X) W^{A_1} \ldots W^{A_r}, \quad X \cdot W = W^2 = 0. \]
(A.56)

Like for the symmetric ambient tensors above, the Thomas derivative (A.49) that implements contractions between symmetric traceless tensors is slightly modified, to account for the transversality condition \(X \cdot W = 0 \). We denote it by \(\hat{D}_W \), and it is given explicitly by

\[\hat{D}_W = \left(\frac{d + 1}{2} - 1 + W \cdot \frac{\partial}{\partial W} \right) P^B_A \frac{\partial}{\partial W^B} - \frac{1}{2} W_A (P \circ P)^{CD} \frac{\partial}{\partial W^C} \frac{\partial}{\partial W^D} \]
\[= \frac{d - 1}{2} \left(\frac{\partial}{\partial W^A} - \frac{X_A}{X^2} \left(X \cdot \frac{\partial}{\partial W} \right) \right) + \left(W \cdot \frac{\partial}{\partial W} \right) \frac{\partial}{\partial W^A} \]
\[- \frac{X_A}{X^2} \left(W \cdot \frac{\partial}{\partial W} \right) \left(X \cdot \frac{\partial}{\partial W} \right) - \frac{1}{2} W_A \left(\frac{\partial^2}{\partial W^C \partial W^D} - \frac{1}{X^2} \left(X \cdot \frac{\partial}{\partial W} \right) \left(X \cdot \frac{\partial}{\partial W} \right) \right). \]
(A.57)

The ambient generalization of (A.48) is then

\[T_{A_1 \ldots A_r} (X) S^{A_1 \ldots A_r} (X) = \frac{r!}{(\frac{d}{2} - \frac{1}{2})_r} T \left(X, \hat{D}_W \right) S (X, W) \bigg|_{W=0} \]
\[= \frac{r!}{(\frac{d}{2} - \frac{1}{2})_r} T \left(X, \hat{D}_W \right) T (X, W) \bigg|_{W=0}. \]
(A.58)

When working modulo traces, we have the operations

\[\text{divergence } : \quad \nabla \cdot \hat{D}_W, \quad \text{symmetrised gradient } : \quad W \cdot \nabla, \quad \text{Laplacian } : \quad \nabla^2, \quad \text{W} \cdot \partial_W, \]
(A.59)

and \(W \cdot \partial_W \), which returns the spin of a tensor. These satisfy the operator algebra

\[\left[\nabla \cdot \hat{D}_W, W \cdot \nabla \right] = \left(\frac{d}{2} - \frac{1}{2} + W \cdot \partial_W \right) \nabla^2 - \left(W \cdot \partial_W \right)^2 + 3 \left(\frac{d}{2} - \frac{1}{2} \right) W \cdot \partial_W + \left(\frac{d}{2} - \frac{1}{2} \right)^2 W \cdot \partial_W, \]
(A.60)

\[\left[\nabla^2, W \cdot \nabla \right] = -2 \left(\frac{d}{2} - 1 + W \cdot \partial_W \right) W \cdot \nabla. \]
(A.61)

The following commutators will come in use,

\[\left[\nabla^2, (W \cdot \nabla)^n \right] = -n \left(d - 1 + 2W \cdot \partial_W - n \right) (W \cdot \nabla)^n. \]
(A.62)
and

\[
\left[\nabla \cdot \hat{D}_W, (W \cdot \nabla)^n \right] = \frac{n}{2} (W \cdot \nabla)^{n-1} (d + n + 2W \cdot \partial_W - 2) \left(1 - n - (n + W \cdot \partial_W - 1) (d + n + W \cdot \partial_W - 2) + \nabla^2 \right).
\]

(A.63)

Ambient boundary tensors. The ambient representative \((A.38) \) of a symmetric traceless spin-\(r \) primary field \(f_{i_1 \ldots i_r} \) can be encoded in the generating polynomial

\[
F_{A_1 \ldots A_r} (P) \rightarrow F (P, Z) = \frac{1}{r!} F_{A_1 \ldots A_r} (P) Z^{A_1} \ldots Z^{A_r}, \quad Z^2 = 0.
\]

(A.64)

Tangentiality to the light cone,

\[
\left(P \cdot \partial \right) F (P, Z) = 0,
\]

(A.65)

can be enforced by requiring \(F (P, Z + \alpha P) = F (P, Z) \) for any \(\alpha \). The ‘gauge freedom’ is represented by the orthogonality condition \(Z \cdot P = 0 \).

Contractions between ambient representatives of primary fields can be implemented via the Thomas derivative \((A.49) \), acting in the \((d+2)\)-dimensional ambient space

\[
\partial^A_2 = \left(d - 1 + Z \cdot \frac{\partial}{\partial Z} \right) \frac{\partial}{\partial Z^A} - \frac{1}{2} Z^A \frac{\partial^2}{\partial Z \cdot \partial Z}.
\]

(A.66)

Appendix B. Appendix of integrals

B.1. Bulk integrals

In using the Schwinger parameterised form \((B.2)\) of boundary-to-bulk propagators in the ambient formalism, a key integral often encountered is of the form

\[
\int_0^{+\infty} \prod_{i=1}^n \left(\frac{dt}{t_{i}} \right) \int_{\text{AdS}} dX \exp \left(2 \sum_{i=1}^{n} t_i P_i \cdot X \right) = \pi^{d/2} \Gamma \left(-\frac{d}{2} + 1 \right) \prod_{i=1}^{n} \left(\frac{dt}{t_{i}} \right) \exp \left(-\sum_{i<k} t_i t_k P_{ik} \right). \tag{B.1}
\]

In this appendix we explain its application to tree-level contact diagrams, and give a proof. We also discuss its utility in establishing Mellin amplitudes of Witten diagrams.

B.1.1. Application: tree-level contact diagrams. A straightforward application of the above integral is in evaluating tree-level Witten diagrams. Recall that the Schwinger parameterised form of a scalar boundary-to-bulk propagator of dimension \(\Delta \) is

\[
K_{\Delta,0} (X, P) = \frac{C_{\Delta,0}}{(-2X \cdot P)^\Delta} = \frac{C_{\Delta,0}}{\Gamma (\Delta)} \int_0^{+\infty} \frac{dt}{t} \exp \left(2tP \cdot X \right). \tag{B.2}
\]

Considering for example the tree-level \(n \)-point contact diagram
\[\mathcal{A}^{\text{const}} (P_1, \ldots, P_n) = \int_{\text{AdS}} dX K_{\Delta_0} (X, P_1) \cdots K_{\Delta_0} (X, P_n) \]
\[= \left(\prod_{i=1}^{n} C_{\Delta_0} \right) \int_{0}^{\infty} \int_{0}^{\infty} \left(\prod_{i=1}^{n} \left(\frac{dt_i}{t_i} \right) \right) \int_{\text{AdS}} dX \exp \left(\sum_{i=1}^{n} t_i P_i \cdot X \right), \]

(B.3)

we see that the integral (B.1) naturally arises and can be employed to evaluate the amplitude. This is particularly straightforward for three-point diagrams, for which no integration is required. This will be shown in the subsequent, after proving the formula (B.1).

Proof of (B.1). To prove (B.1), we first evaluate the AdS integral. Defining \(T = \sum_{i=1}^{n} t_i P_i \), by Lorentz invariance we can make the simple choice \(T = |T| (1, 1, 0) \), where we recall that we parameterise \(\text{AdS}_{d+1} \) in the \((d + 2)\)-dimensional ambient space by

\[X = (X^+, X^-, X^0) = \frac{1}{z} (1, z^2, y^i). \]

(B.4)

In this way we obtain

\[\int_{\text{AdS}} dX \exp \left(\sum_{i=1}^{n} t_i P_i \cdot X \right) = \int_{0}^{\infty} d\frac{z}{z} \int_{0}^{\infty} d^d y e^{-\left(1 + z^2 + y^2\right)|T|/z} \]

(B.5)

where in the second line we evaluated the Gaussian integral over \(y \). Returning to the RHS of the full expression (B.1), and rescaling \(t_i \to t_i / \sqrt{2} \),

\[\pi^{d/2} \int_{0}^{\infty} \prod_{i=1}^{n} \left(\frac{dt_i}{t_i} \right) \int_{0}^{\infty} d\frac{z}{z} e^{-d/2 - z + \frac{T^2}{2}} \]

\[= \pi^{d/2} \int_{0}^{\infty} \prod_{i=1}^{n} \left(\frac{dt_i}{t_i} \right) e^{d/2} \int_{0}^{\infty} d\frac{z}{z} e^{-\frac{d}{2} + \frac{1}{2} \sum_{i=1}^{n} \Delta_i} \]

\[= \pi^{d/2} \Gamma \left(-\frac{d}{2} + \frac{1}{2} \sum_{i=1}^{n} \Delta_i \right) \int_{0}^{\infty} \prod_{i=1}^{n} \left(\frac{dt_i}{t_i} \right) e^{\frac{d}{2}}, \]

(B.7)

where in the second equality we simply employ the integral representation of the Gamma function. Noting that \(T^2 = \sum_{i, k} P_{ik} \), the above establishes (B.1).

B.1.2. The Symanzik star formula. To establish the Mellin amplitude of Witten diagrams, it is illuminating to employ the Symanzik star formula [341]

\[\int_{0}^{\infty} \prod_{i=1}^{n} \left(\frac{dt_i}{t_i} \right) \exp \left(-\sum_{i < k} t_i t_k P_{ik} \right) = \frac{\pi^{d/2} / 2}{(2\pi i)^{2m(n-3)}} \int d\delta_j \prod_{1 \leq i \leq n, j \leq m} \Gamma (\delta_j) (P_{ij})^{-\delta_j}, \]

(B.8)

which allows to massage Witten diagrams in the form of a Mellin transform [181, 256]. The integration contour runs parallel to the imaginary axis with \(\text{Re} \delta_j > 0 \), with the integration variables constrained by
\[\sum_{j \neq i}^{n} \delta_{ij} = \Delta_i, \]
(B.9)

so that the integrand is conformally covariant with scaling dimension \(\Delta_i \) at the point \(P_i \). This gives \(n(n-3)/2 \) integration variables.

In particular, this implies that the integration variables are completely fixed for three-point integrals, allowing the straightforward evaluation of three-point Witten diagrams.

Appendix C. Harmonic functions in AdS

In this appendix we give an overview of the harmonic decomposition of tensorial functions of geodesic distance in \(\text{AdS}_{d+1} \).

Consider bi-tensors \(t_{\mu_1...\mu_d,\nu_1...\nu_2} (x_1, x_2) \), which depend only on the geodesic distance between \(x_1, x_2 \in \text{AdS}_{d+1} \), and are square integrable

\[\int_{\text{AdS}_{d+1}} |t(x_1, x_2)|^2 \, d^\text{AdS} < \infty. \]
(C.1)

This includes bulk-to-bulk propagators \(\Pi_{\Delta,r} (x_1, x_2) \).

Such tensors can be decomposed in a basis of regular eigenfunctions of the AdS Laplacian,

\[\left(\Delta_{\text{AdS}} + \left(\frac{d}{2} + i\nu \right) \left(\frac{d}{2} - i\nu \right) + \ell \right) \Omega_{\nu,\ell} (x_1, x_2) \equiv 0, \quad \nu \in \mathbb{R}, \quad \ell \in \mathbb{N} \]
(C.2)

\[\nabla \cdot \Omega_{\nu,\ell} = 0, \]
(C.3)

which are symmetric and traceless spin-\(\ell \) irreducible representations of \(SO(d+1,1) \), with \(\nu \) labelling the energy.

Crucially, they satisfy orthogonality and (traceless) completeness relations [190]

\[\int_{\text{AdS}} d^{d+1}x' \Omega_{\nu,\ell} (x_1; x') \cdot \Omega_{\nu',\ell'} (x_1; x_2) = \frac{1}{2} \delta (\nu + \nu') \delta (\ell + \ell') \Omega_{\nu,\ell} (x_1; x_2), \]
(C.4)

\[\sum_{\ell = 0}^{\infty} \int_{-\infty}^{\infty} d\nu c_{\ell,\nu} (\nu) (w_1 \cdot \nabla_1)^\ell (w_2 \cdot \nabla_2)^\ell \Omega_{\nu,\ell-\ell} (x_1, w_1; x_2, w_2) = (w_1 \cdot w_2)^\ell \delta^{d+1} (x_1, x_2), \]
(C.5)

where auxiliary variables \(w^2_1 = 0 \) enforce tracelessness, and

\[c_{\ell,\nu} (\nu) = \frac{d^\ell \left(r - \ell + 1 \right)^\ell \left(\frac{d}{2} + r - \ell - \frac{1}{2} \right)^\ell}{\ell! (d + 2r - 2\ell - 1)^\ell \left(\frac{d}{2} + r - \ell + iv \right)^\ell \left(\frac{d}{2} + r - \ell - iv \right)^\ell}. \]
(C.6)

The set of tensors

\[\left\{ (w_1 \cdot \nabla_1)^\ell (w_2 \cdot \nabla_2)^\ell \Omega_{\nu,\ell-\ell} (x_1, w_1; x_2, w_2) \mid w^2_1 = 0, \nu \in \mathbb{R}, \ell = 0, 1, ..., r \right\}, \]
(C.7)

thus form a basis for symmetric traceless bi-tensors in AdS,

\[t(x_1, w_1; x_2, w_2) = \sum_{\ell = 0}^{r} \int_{-\infty}^{\infty} f_{\ell,\nu} (\nu) (w_1 \cdot \nabla_1)^\ell (w_2 \cdot \nabla_2)^\ell \Omega_{\nu,\ell-\ell} (x_1, w_1; x_2, w_2), \]
(C.8)

for some \(f_{\ell,\nu} (\nu) = f_{\ell,\nu} (-\nu) \).
As corollary, any symmetric bi-tensor can be expressed in the basis \((C.7)\) supplemented
with products of the metric; any symmetric bi-tensor \(t(x_1, u_1; x_2, u_2)\) admits the trace decom-
position of the schematic form\(^{82}\),
\[
t(x_1, u_1; x_2, u_2) \\
\sim t^{[0]}(x_1, u_1; x_2, u_2) + u_{12}^2 t^{[1]}(x_1, u_1; x_2, u_2) + \ldots + \left(u_{12}^2 \right)^\alpha t^{[\alpha]}(x_1, u_1; x_2, u_2),
\]
where here \(t^{[\alpha]}\) denotes the traceless part of the \(\alpha\)th trace of \(t\). Each of the \(t^{[\alpha]}\) can then be
decomposed in the basis \((C.7)\).

Appendix D. Double trace operators

In this appendix we construct primary operators bi-linear in two scalar primary operators \(O_1\)
and \(O_2\) of scaling dimensions \(\Delta_1\) and \(\Delta_2\). These have the schematic form
\[
[O_1 O_2]_{n,s} = O_1 \partial_{\mu(s)} \Box^n O_2 + \ldots,
\]
where the ellipsis denote terms which ensure that \([O_1 O_2]_{n,s}\) is primary. The double trace oper-
ar \([O_1 O_2]_{n,s}\) has spin \(s\), and in a free theory (or otherwise at leading order in the \(1/N\) ex-
ansion) has scaling dimension \(\Delta_{n,s} = \Delta_1 + \Delta_2 + 2n + s\).

Our goal is to specify implicit terms in \((D.1)\). To this end, we make the most general
ansatz\(^{83}\)
\[
[O_1 O_2]_{n,s} = \sum_{s_1, b_1, b_2} a_{n,s}(s_1, s_2; b_1, b_2) \partial_{\mu(s_1)} \Box^{b_1} \partial^{\nu(b_2)} O_1 \partial_{\mu(s_2)} \Box^{b_2} \partial^{\nu(b_1)} O_2 - \text{traces},
\]
and specify \(a_{n,s}\) from the requirement \((3.18)\) that \([O_1 O_2]_{n,s}\) is primary. In other words, we solve
for the coefficients by imposing the condition
\[
K_\mu [O_1 O_2]_{n,s} = 0.
\]

D.1. The action of the special conformal generator

For ease of computation, we contract the free indices with the auxiliary traceless symmetric
tensors \(z^\mu\) to ensure that \([O_1 O_2]_{n,s}\) is traceless and symmetric. A typical term in the sum \((D.2)\)
then takes the form
\[
T_{n,s}(s_1, s_2; b_1, b_2, b_{12}) = z^{\mu(s_1)}(\eta^{\mu\nu})^{b_1}(\eta^{\nu\sigma})^{b_2}(\eta^{\sigma\tau})^{b_{12}} P_{\mu(s_1+2b_1+b_{12})} O_1 P_{\nu(s_2+2b_2+b_{12})} O_2,
\]
where we employ the notation \(u^{\mu(s)} = u^{\mu_1 \ldots \mu_s}\).

Using the conformal algebra \((3.6)\), one can show that
\[
K_\mu P_{\mu(n)} O_1 = 2n(\Delta_1 + n - 1) \eta_{\mu n} P_{\mu(n-1)} O_1 - n(n-1) \eta_{\mu n} P_{\mu(n-3)} O_1,
\]
which use to determine the action of \(K_\mu\) on each term in the ansatz \((D.2)\). We find

\(^{82}\) I.e. omitting for concision the relative coefficients between the terms.

\(^{83}\) There are three independent summations in the above sum, since \(s = s_1 + s_2\) and \(n = b_1 + b_2 + b_{12}\).
where

\[C_\nu(s_1 - 1, s_2; b_1, b_2, b_1) = V^{\mu\nu(s_1-1)\sigma(s_2)}(\eta^{\mu\nu}b_1^2(\eta^{\mu\sigma})^{b_2}(\eta^{\sigma\nu})^{b_2}P_{\mu(s_1+2b_1+b_1-1)}O_1P_{\nu(s_2+2b_2+b_2-1)}O_2, \]

\[C_1(s_1 + 1, s_2; b_1 - 1, b_2, b_1) = \eta^{\mu(s_1-1)\sigma(s_2)}(\eta^{\mu\nu}b_1^{b_1-1}(\eta^{\mu\sigma})^{b_2}P_{\mu(s_1+2b_1+b_1-2)}O_1P_{\nu(s_2+2b_2+b_2-1)}O_2, \]

\[C_2(s_1, s_2 + 1; b_1, b_2, b_1 - 1) = \eta^{\mu(s_1)\sigma(s_2)}(\eta^{\mu\nu}b_1^{b_1-1}(\eta^{\mu\sigma})^{b_2}P_{\mu(s_1+2b_1+b_1-1)}O_1P_{\nu(s_2+2b_2+b_2-1)}O_2. \] (D.7)

D.2. Imposing the primary condition

Having understood how the special conformal generator \(K_\nu \) acts on each term of the ansatz (D.2), we act with \(K_\nu \) on the entire expression. Using (D.6), the condition

\[K_\nu[O_1 O_2]_{n,t} = 0, \] (D.8)

can be expressed in terms of the three independent structures \(C_\nu, C_1 \) and \(C_2 \) defined in (D.7). By setting the prefactors of each of these structures to zero we obtain three conditions on \(a_{n,t} \).

The equation corresponding to \(C_\nu \) reads

\[a_{n,t}(s_1, s_2; b_1, b_2, b_1)2[\Delta_1 + s_1 + 2b_1 + b_1 - 1]s_1 + a_{n,t}(s_1 - 1, s_2 + 1; b_1, b_2, b_1)2[\Delta_2 + s_2 + 2b_2 + b_1] + 1 = 0. \] (D.9)

It can be used to fix the dependence of \(a_{n,t} \) on \(s_1 \) for fixed \(b_1 \) and \(b_2 \)

\[a_{n,t}(s_1, s_2; b_1, b_2, b_1) = (-1)^s \frac{s!}{s_2! s_1!} \frac{(\Delta_1 + 2b_1 + b_1 + s_1)_{s_1}}{(\Delta_2 + 2b_2 + b_1)_{s_2}} a_{n,t}(s, 0; b_1, b_2, b_1). \] (D.10)
A second equation, which sets the prefactor of C_1 to zero is
\[
a_{n,s}(s_1, s_2; b_1, b_2, b_{12}) 2b_1(2\Delta_1 + 2b_1 - d) \\
- a_{n,s}(s_1, s_2; b_1 - 1, b_2 - 1, b_{12} + 2)(b_{12} + 2)(b_{12} + 1) \\
- a_{n,s}(s_1 + 1, s_2 - 1; b_1 - 1, b_2, b_{12} + 1) 2(s_1 + 1)(b_{12} + 1) \\
+ a_{n,s}(s_1, s_2; b_1 - 1, b_2, b_{12} + 1) 2(\Delta_2 + s_2 + 2b_2 + b_{12})(b_{12} + 1) = 0. \tag{D.11}
\]

The third term contains $a_{n,s}(s_1 + 1, s_2 - 1; b_1 - 1, b_2, b_{12} + 1)$, which can be expressed in terms of $a_{n,s}(s_1, s_2; b_1 - 1, b_2, b_{12} + 1)$ by (D.9). This results in
\[
a_{n,s}(s_1, s_2; b_1, b_2, b_{12}) 2b_1(2\Delta_1 + 2b_1 - d) \\
- a_{n,s}(s_1, s_2; b_1 - 1, b_2 - 1, b_{12} + 2)(b_{12} + 2)(b_{12} + 1) \\
+ a_{n,s}(s_1, s_2; b_1 - 1, b_2, b_{12} + 1) 2(b_{12} + 1)(\Delta_2 + s_2 + 2b_2 + b_{12}) \\
\times \frac{\Delta_1 + s + 2b_1 + b_{12} - 1}{\Delta_1 + s_1 + 2b_1 + b_{12} - 1} = 0, \tag{D.12}
\]

which relates $a_{n,s}$'s for the same values of arguments s_1 and s_2 and different values of b_1, b_2 and b_{12}.

In a similar way, the equation corresponding to C_2 reads
\[
a_{n,s}(s_1, s_2; b_1, b_2, b_{12}) 2b_2(2\Delta_2 + 2b_2 - d) \\
- a_{n,s}(s_1, s_2; b_1 - 1, b_2 - 1, b_{12} + 2)(b_{12} + 2)(b_{12} + 1) \\
+ a_{n,s}(s_1, s_2; b_1 - 1, b_2, b_{12} + 1) 2(b_{12} + 1)(\Delta_1 + s_1 + 2b_1 + b_{12}) \\
\times \frac{\Delta_2 + s + 2b_2 + b_{12} - 1}{\Delta_2 + s_2 + 2b_2 + b_{12} - 1} = 0. \tag{D.13}
\]

Together with (D.12), this defines b-dependence of $a_{n,s}$ for fixed s_1 and s_2.

D.3. Dependence on contracted derivatives

In this section we solve the recurrence equations (D.12) and (D.13) subject to the boundary condition
\[
a_{n,s}(s_1, s_2; b_1, b_2, b_{12}) = 0, \quad \text{for } b_1 < 0 \text{ or } b_2 < 0 \text{ or } b_1 + b_2 > n. \tag{D.14}
\]

More precisely, we express the unknown coefficients in terms of $a_{n,s}(s_1, s_2; 0, 0, n)$. For brevity, in the following we will keep only the arguments b_1 and b_2 of $a_{n,s}$ explicit.

First, we consider (D.12) for $b_2 = 0$. In this case the recursion relation simplifies, since the boundary condition causes the second term to drop out. We can then express $a(b_1, 0)$ with arbitrary b_1 in terms of $a(0, 0)$
\[
a(b_1, 0) = (-1)^{b_1} \frac{n!}{b_1!b_2!} \left(\frac{\Delta_2 + s_2 + n - b_1}{2n} \right) \left(\frac{\Delta_1 + s + n}{b_1} \right) a(0, 0). \tag{D.15}
\]

To establish the b_2-dependence, we use (D.13): first, for any b_1 we express $a(b_1, 1)$ in terms of $a(b_1, 0)$ and $a(b_1 - 1, 0)$, which are known. We then solve for $a(b_1, 2)$ in terms of $a(b_1, 1)$ and $a(b_1 - 1, 1)$, which were determined in the previous step. This process can be continued to express $a(b_1, b_2)$ for any b_2 in terms of $a(0, 0)$. We find
\[
a(b_1, b_2) = \left(-\frac{1}{2} \right)^{b_1+b_2} \frac{n!}{b_1!b_2!b_{12}!} \left(\Delta_1 + s + n - b_1 \right)_b \left(\Delta_2 + s + n - b_2 \right)_b \notag
\]
\[
\times \left(\Delta_1 + 1 - h \right)_b \left(\Delta_2 + 1 - h \right)_b \left(\Delta_1 + s_1 + n \right)_b - b_1 \left(\Delta_2 + s_2 + n \right)_b - b_2 \notag
\]
\[
\times \sum_{k=0}^{b_2} \frac{b_2!}{k!(b_2 - k)!} \frac{(b_1 - k + 1)k}{(\Delta_2 + s + n - b_1)k(\Delta_1 + s + n + b_1 - k)} a(0,0). \tag{D.16}
\]

It can be checked that (D.16) satisfies (D.12) and (D.13).

Combining the \(s\)- and \(b\)-dependences, we obtain the final result
\[
a_{n,s}(s_1, s_2; b_1, b_2, b_{12}) = \frac{(-1)^{b_2+b_1+b_2}}{2^{b_1+b_2}} \frac{s!}{s_1!s_2!} \frac{(\Delta_1 + s_1 + b_1 + b_{12})_{s_1}}{(\Delta_2 + 2b_1 + b_{12})_{s_2}} \notag
\]
\[
\times \frac{n!}{b_1!b_2!b_{12}!} \left(\Delta_2 + 1 - h \right)_b \left(\Delta_1 + s_1 + n \right)_b - b_1 \left(\Delta_2 + s_2 + n \right)_b - b_2 \notag
\]
\[
\times \sum_{k=0}^{b_2} \frac{b_2!}{k!(b_2 - k)!} \frac{(b_1 - k + 1)k}{(\Delta_1 + 1 - h)_b(\Delta_2 + 1 - h)_b(\Delta_1 + s_1 + n)_b - b_1(\Delta_2 + s_2 + n)_b - b_2} a_{n,s}(s_0, 0, 0, n), \tag{D.17}
\]

where \(a_{n,s}(s_0, 0, 0, n)\) is an arbitrary factor.

Appendix E. Trace structure of spinning propagators

With the freedom to remove gradients within the propagators (5.49) and (5.60) already derived, it should be possible to bring them into the form
\[
\Pi_s = \sum_{k=0}^{[s/2]} \int_{-\infty}^{\infty} d\nu \ g_{\nu, k} \ (u_1^\nu)^k (u_2^\nu)^k \Omega_{\nu, s-2k}. \tag{E.1}
\]

by making gauge transformations. This is the goal of this section. We refer to this as the ‘manifest trace gauge’, because here the propagator is presented as a sum of terms, each being essentially a product of certain number of background metrics and a harmonic function \(\Omega\), which is traceless and transverse.

To reach the form (E.1), naively one might expect that, for example in (5.60), one can gauge away all the terms except the one for which \(\ell = 0\). However, closer inspection reveals that this is not the case: according to our conventions, contractions with \(W\) implicitly make a projection onto the traceless part, so a generic term in (5.60) is of the form
\[
\left\{ (u_1 \cdot \nabla_1)^\ell (u_2 \cdot \nabla_2)^\ell \Omega_{\nu, s-\ell}(u_1, x_1, u_2, x_2) \right\}. \tag{E.2}
\]

For a general rank-\(s\) tensor \(T_s\), the explicit action of the operator that implements the traceless projection \(\{\bullet\}\), is
\[
\{T_s(x, u)\} = \sum_{j=0}^{[s/2]} \frac{(-1)^j}{4^j((\frac{s}{2} + 3)/2)^j} (u_i^2)^j (\partial_i \cdot \partial_j)^j T_s(x, u), \tag{E.3}
\]
which makes various contractions of its argument T_ν. It is then clear that for non-zero ℓ there are terms in (E.2) which cannot be gauged away. For example, terms in which all ∇’s are contracted because then no gradients will be present. In fact, the story is even more complicated because for other terms in the projection the commutators of derivatives that appear yield extra lower derivative terms, some of which are also not pure gauge. To summarise, eliminating pure gradient terms is non-trivial, and our aim in the following is to compute (E.2) explicitly modulo such gradient terms. We do this by studying the details of the contractions under (E.3).

It is straightforward to see that when ℓ is odd, (E.2) can be gauged away since it is a gradient. Let us then consider examples for when ℓ is even:

- $\ell = 2$

Using (E.3), the explicit form of the traceless projection for $\ell = 2$ is

\[
\{ (u_1 \cdot \nabla_1)^2(u_2 \cdot \nabla_2)^2 \Omega_{\nu,s-2}(u_1,u_2) \}
= \left(1 - \frac{u_1^2(\partial_\mu \cdot \partial_\mu)}{2(d+2s-3)}\right) \left(1 - \frac{u_2^2(\partial_\mu \cdot \partial_\mu)}{2(d+2s-3)}\right) (u_1 \cdot \nabla_1)^2(u_2 \cdot \nabla_2)^2 \Omega_{\nu,s-2}(u_1,u_2).
\]

(E.4)

Dropping gradient terms, it is straightforward to compute that

\[(\partial_\mu \cdot \partial_\mu)(u_1 \cdot \nabla_1)^2\Omega_{\nu,n}(u_1,u_2) \sim 2 (\Box_1 - n(d+n-1)) \Omega_{\nu,n}(u_1,u_2),
\]

(E.5)

where we used the fact that Ω traceless and divergence-less\(^84\). Therefore the only terms that are not pure gradient in (E.4) come from the product of the second terms in each of the brackets:

\[
\frac{u_1^2(\partial_\mu \cdot \partial_\mu)}{2(d+2s-3)} (u_1 \cdot \nabla_1)^2 \frac{u_2^2(\partial_\mu \cdot \partial_\mu)}{2(d+2s-3)} (u_2 \cdot \nabla_2)^2 \Omega_{\nu,s-2}(u_1,u_2)
\sim u_1^2u_2^2 \left(\frac{\Box_1 - (s-2)(d+s-3)}{d+2s-3}\right)^2 \Omega_{\nu,s-2}(u_1,u_2).
\]

(E.6)

Finally, employing the equation of motion (C.2) for Ω we find

\[
\{ (u_1 \cdot \nabla_1)^2(u_2 \cdot \nabla_2)^2 \Omega_{\nu,s-2}(u_1,u_2) \} \sim u_1^2u_2^2 \left(\frac{\Box_1 + (\frac{d}{2} + s - 2)^2}{d+2s-3}\right)^2 \Omega_{\nu,s-2}(u_1,u_2).
\]

(E.7)

- $\ell = 4$

Explicitly, traceless projection in this case is

\[
\{ (u_1 \cdot \nabla_1)^2(u_2 \cdot \nabla_2)^4 \Omega_{\nu,s-4}(u_1,u_2) \}
= \left(1 - \frac{u_1^2(\partial_\mu \cdot \partial_\mu)}{2(d+2s-3)}\right)\left(1 + \frac{u_2^2(\partial_\mu \cdot \partial_\mu)}{8(d+2s-3)(d+2s-5)}\right)(u_1 \cdot \nabla_1)^2(u_2 \cdot \nabla_2)^4 \Omega_{\nu,s-4}(u_1,u_2).
\]

(E.8)

\(^84\)The dropping of gradient terms is denoted by ‘∼’. Note that in appendix G we also use this notation to instead indicate that equalities hold modulo gradients and traces.
In order to evaluate the traces in the above, a tedious but straightforward computation shows that
\[
(\partial_{a_1} \cdot \partial_{a_2})(u_1 \cdot \nabla_1)^4 \Omega_{\nu,n}(u_1, u_2) = 2 \left(6(u_1 \cdot \nabla_1)^2 \square_1 - 2(3n^2 + 3dn + 4d + 5n + 2)(u_1 \cdot \nabla_1)^2 + 4u_1^2 \square_1 - 4n(d + n - 1)u_1^2 \right) \Omega_{\nu,n}(u_1, u_2),
\]
(E.9)
and
\[
(\partial_{a_1} \cdot \partial_{a_2})(u_1 \cdot \nabla_1)^4 \Omega_{\nu,n}(u_1, u_2) \sim 4 \left(6\square_1 - 4(d + 3dn - n - 3n^2) \square_1 + 2n(d + n - 1)(2d + n + 3dn + n^2) \right) \Omega_{\nu,n}(u_1, u_2).
\]
(E.10)
Modulo gradient terms, each bracket in (E.8) therefore produces a second order polynomial in \square. Using the equations of motion (C.2), this eventually gives
\[
\left\{ (u_1 \cdot \nabla_1)^4 \left((u_2 \cdot \nabla_2)^4 \Omega_{\nu,s-4}(u_1, u_2) \right) \right\} \\
\sim (u_1^2)^2 (u_2^2)^2 3^2 \left(\frac{\nu^2 + (\frac{d}{2} + s - 2)^2}{d + 2s - 5} \right)^2 \left(\frac{\nu^2 + (\frac{d}{2} + s - 4)^2}{d + 2s - 5} \right)^2 \Omega_{\nu,s-4}(u_1, u_2).
\]
(E.11)

* $\ell = 2k$

After studying explicitly cases the $\ell = 2k$ with $k = 1, 2$ above, we conjecture that
\[
\left\{ (u_1 \cdot \nabla_1)^{2k} \left((u_2 \cdot \nabla_2)^{2k} \Omega_{\nu,s-2k}(u_1, x_1, u_2, x_2) \right) \right\} \\
= \left(N(k, s) \right)^2 \left(u_1^2 \right)^k \left(u_2^2 \right)^k \left(4^k \left(\frac{s}{2} + s - 2k + iv \right) \right)_k^2 \\
+ (u_1 \cdot \nabla_1)(\ldots) + (u_2 \cdot \nabla_2)(\ldots),
\]
(E.12)
where
\[
N(k, s) = \frac{(2k)!}{4^k k!(\frac{d}{2} + s - k - 1/2)_k}
\]
and $(a)_r = \Gamma(a + r)/\Gamma(a)$ is the rising Pochhammer symbol.

Let us note that in spite of the fact that equation (E.12) is a conjecture, the pre-factor $N(k, s)$ is determined exactly. We explain how in the following. The combinatorial factor $N(k, s)$ can be derived by studying only the contractions that produce the maximal power of \square. The issue of non-commutativity of covariant derivatives for this computation is irrelevant. Indeed, let us consider an analogous computation in the flat space. Then in (E.5) one has only a \square-term so that instead of (E.6) we find
\begin{equation}
\left\{(u_1 \cdot \nabla_1)^2 (u_2 \cdot \nabla_2)^2 \Omega_{\nu,2}(u_1, u_2)\right\}_\text{flat} \sim u_1^2 u_2^2 \left(\frac{\Box}{d + 2s - 3}\right)^2 \Omega_{\nu,2}(u_1, u_2). \tag{E.14}
\end{equation}
Analogously, for the \(\ell = 4 \) flat case one finds
\begin{equation}
\left\{(u_1 \cdot \nabla_1)^4 (u_2 \cdot \nabla_2)^4 \Omega_{\nu,4}(u_1, u_2)\right\}_\text{flat} \sim (u_1^2)^2 (u_2^2)^2 3^2 \left(\frac{\Box}{(d + 2s - 3)(d + 2s - 5)}\right)^2 \Omega_{\nu,4}(u_1, u_2). \tag{E.15}
\end{equation}
This computation can be easily generalized to the case of any \(\ell = 2k \), and the result is
\begin{equation}
\left\{(u_1 \cdot \nabla_1)^{2k} (u_2 \cdot \nabla_2)^{2k} \Omega_{\nu,2k}(u_1, u_2)\right\}_\text{flat} \sim (u_1^2)^k (u_2^2)^k N(k, s) \left(\frac{\Box}{d + 2s - 2k}\right)^2 \Omega_{\nu,2k}(u_1, u_2), \tag{E.16}
\end{equation}
with \(N(k, s) \) given in (E.13). In fact, this justifies its explicit form.

On the other hand, in AdS the \(\frac{\Box}{d + 2k} \)-term will receive lower derivative corrections, which originate from the non-commutativity of the covariant derivatives. By generalizing the \(k = 1, 2 \) cases, what we conjecture is that these lower derivative terms are such that after evaluating \(\Box \) on \(\Omega_{\nu,2k} \) one finds
\begin{equation}
\left(\nu^2 + \left(\frac{d}{2} + s - 2\right)^2\right) \left(\nu^2 + \left(\frac{d}{2} + s - 4\right)^2\right) \cdots \left(\nu^2 + \left(\frac{d}{2} + s - 2k\right)^2\right) \tag{E.17}
\end{equation}
Combining this with the pre-factor found previously, one obtains (E.12).

Appendix F. Higher-spin conserved currents in AdS

F.1. Single trace of the currents

In this appendix, we show how a single trace of the spin-\(s \) current
\begin{equation}
J_s(x, u) = \sum_{k=0}^{s} \left(-1\right)^k \frac{1}{s! (s-k)!} (u \cdot \nabla)^s \left(\varphi_0(x) (u \cdot \nabla)^{s-k} \varphi_0(x) + \Lambda u^2 \ldots\right), \tag{F.1}
\end{equation}
can be expressed in terms of currents of the same form, but with lower spin. For simplicity we work in ambient space, with the necessary ingredients reviewed below.

F.1.1. Scalar fields in AdS. Since the currents (F.1) are bi-linear in the bulk scalar, we first recall the representation of scalar fields in AdS and their ambient formulation. The lowest weight unitary irreducible scalar representations of \(so(d,2) \)
\begin{equation}
\Box \varphi_0(x) - m^2 \varphi_0(x) = 0, \quad m^2 \equiv \Delta(\Delta - d) \tag{F.2}
\end{equation}
can be realised as the evaluation \(\varphi_0(x) \) on \(\text{AdS}_{d+1} \) of ambient homogeneous harmonic functions \(\Phi_0(X) \)
\begin{equation}
(\partial_X \cdot \partial_X) \Phi_0(X) = 0, \quad \Phi_0(X) = \left(X^2\right)^{-\frac{d}{2}} \varphi_0(x). \tag{F.3}
\end{equation}
For later use, let us denote
\[\Phi_0^i(X) = (X^2)^{-\frac{\Delta}{2}} \varphi_0(x), \]

where \(\Delta_- = d - \Delta \), and we assume \(\Delta \geq \Delta_- \). Throughout, \(\Delta \) will often be referred to as \(\Delta_+ \).

F1.2. The currents. Towards an ambient representation of the currents (F.1) on AdS, it is instructive to consider analogous conserved currents in the flat ambient space. I.e. bi-linear currents conserved with respect to the flat ambient derivative.

It is straightforward to verify that for any ambient massive scalar fields \(\Phi_1(X) \) and \(\Phi_2(X) \) of the same mass \(M \)

\[(\partial_X \cdot \partial_X - M^2) \Phi_1(X) = 0 = (\partial_X \cdot \partial_X - M^2) \Phi_2(X), \]

the currents, given by the generating function \[117, 342\]

\[I(X, U) = \Phi_1(X + U) \Phi_2(X - U), \]

are conserved with respect to flat ambient space derivative

\[(\partial_X \cdot \partial_U) I(X, U) = 0. \]

Explicitly, the rank-\(s \) current generating function is given by

\[I_s(X, U) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(s-k)!} (U \cdot \partial_X)^{-k} \Phi_1(X)(U \cdot \partial_X)^k \Phi_2(X), \]

which is obtained by extracting from (F.6) the \(O(U^s) \) coefficient. I.e.

\[I_s(X, U) = \sum_{\lambda} \frac{1}{s!} I_{\lambda_1...\lambda_s}^1 U^{\lambda_1}...U^{\lambda_s}, \quad I_s(X, U) = \frac{1}{s!} I_{\lambda_1...\lambda_s}^1 U^{\lambda_1}...U^{\lambda_s}. \]

However, a conserved current in the flat ambient space does not necessarily define a conserved current on AdS. In other words, the pull-back of (F.6) onto the AdS manifold is not in general conserved with respect to the covariant derivative on AdS. To do so, it must satisfy some additional constraints, which we specify in the following.

We require (F.6) to be conserved with respect to the ambient representative (A.31) of the covariant derivative, \(\nabla = P \circ \partial \circ P \). First, the projection of the ambient current onto AdS is of the form

\[\mathcal{P} I(X, U) = I(X, U) + (X \cdot U) L(X, U) \]

for some \(L(X, U) \). Further, the commutation relation

\[([\partial_X \cdot \partial_U, X \cdot U] = X \cdot \partial_X + U \cdot \partial_U + d + 2 \]

implies that

\[(\partial_X \cdot \partial_U) \mathcal{P} I(X, U) = (X \cdot U) (\partial_X \cdot \partial_U) L(X, U) + (X \cdot \partial_X + U \cdot \partial_U + d + 2) L(X, U). \]

The first term in (F.12) is transversal to \(H_{d+1} \), so it drops out upon application of the second projection in the covariant derivative (A.31). We then demand that \(I(X, U) \) is conserved in AdS,

\[(\nabla \cdot \partial_U) I(X, U) = 0, \]

which yields the condition:

\[(X \cdot \partial_X + U \cdot \partial_U + d + 2) L(X, U) = 0. \]
This can be satisfied by imposing the following homogeneity condition on the current
\[(X \cdot \partial_X + U \cdot \partial_U + d) I(X, U) = 0. \tag{F.15}\]
The demonstrate that the current (F.6) is conserved in AdS if it obeys (F.15). In particular for \(\Phi_1 = \Phi\), and \(\Phi_2 = \Phi^\dagger\) as introduced in (F.4), the current
\[J(X, U) = \Phi(X + U)\Phi^\dagger(X - U) \tag{F.16}\]
is conserved on AdS. Note that the more familiar form (F.1), intrinsic to AdS, can be obtained from the above by expressing the ambient partial derivatives in terms of AdS covariant derivatives and the metric.

Trace of the currents. We are now ready to proceed in ambient space to express the trace of the current (F.1) in terms of those of lower ranks. The formula we want to establish generalizes to AdS the expression
\[(\partial_u \cdot \partial_u) I(x, u) = (\Box + 4M^2) I(x, u), \tag{F.17}\]
for the trace in flat space.

On AdS, the trace is given by
\[(\partial_u \cdot \partial_u) J(X, U) = (\Box + U^2 + (X \cdot \partial_U)^2) J(X, U), \tag{F.18}\]
where on the first line we expressed the intrinsic AdS trace in terms of ambient quantities, and in the second equality we used that
\[(\partial_X \cdot \partial_X + \partial_U \cdot \partial_U) J(X, U) = 0, \tag{F.19}\]
taking into account that the ambient scalar \(\Phi_0\) is massless (F.3).

The next step is to rewrite the RHS of (F.18),
\[(\partial_u \cdot \partial_u) J(X, U) = (\Box + U^2 + (X \cdot \partial_U)^2) J(X, U),\]
in terms of the ambient representatives of AdS covariant operators: the Laplacian \(\Box\), rank of the current \((U \cdot \partial_U)\), multiplication by the metric \(U^2\) and the covariant gradient \((U \cdot \nabla)\):

(i) We first focus on the term \((X \cdot \partial_U)^2 J(X, U)\). We may eliminate \((X \cdot \partial_U)\) in favour of \((U \cdot \partial_X)\), using that
\[X \cdot \partial_U + U \cdot \partial_X = X^+ \partial_+ - X^- \partial_. \tag{F.20}\]
This gives\(^{85}\)
\[(X \cdot \partial_U) J = (\Box_+ - \Box_- - (U \cdot \partial_X)) J. \tag{F.21}\]
Applying this twice, we find
\[\begin{align*}
(X \cdot \partial_U)^2 J &= (X \cdot \partial_U)(\Box_+ - \Box_- - (U \cdot \partial_X)) J \\
&= (\Box_+ - \Box_- - (U \cdot \partial_X))(X \cdot \partial_U) J - [(X \cdot \partial_U), (U \cdot \partial_X)] J \\
&= (\Box_+ - \Box_- - (U \cdot \partial_X))^2 J - (X \cdot \partial_X - U \cdot \partial_U) J.
\end{align*}\]

\(^{85}\) Let us note that the identity above can be used only when \((X \cdot \partial_u)\) acts directly on the current.
The \((X \cdot \partial_\chi)\) can be expressed in terms of \((U \cdot \partial_u)\) via (F.15),
\[
(X \cdot \partial_\chi)J = -((U \cdot \partial_u) + d)J. \tag{F.22}
\]
As a final step, we express \((U \cdot \partial_\chi)\) in terms of covariant gradients \((U \cdot \nabla)\), using
\[
(U \cdot \nabla) = U^2(X \cdot \partial_\chi) + (U \cdot \partial_\chi). \tag{F.23}
\]
Together with (F.21), this yields
\[
(U \cdot \partial_\chi)J = \frac{1}{1 - U^2} \left((U \cdot \nabla) - U^2(\Delta_+ - \Delta_-)\right)J, \tag{F.24}
\]
where the fraction should be understood as a power series
\[
\frac{1}{1 - U^2} = 1 + U^2 + U^4 + \ldots. \tag{F.25}
\]
We finally arrive to,
\[
(U \cdot \partial_\chi)^2J = \left(\frac{1}{1 - U^2} \left((U \cdot \nabla) - U^2(\Delta_+ - \Delta_-)\right)\right)^2J - \frac{U^2}{1 - U^2}(X\partial_\chi - U\partial_u)J. \tag{F.26}
\]

(ii) To express \((\partial_\chi \cdot \partial_\chi)J(X, U)\) in terms of AdS covariant quantities, we need only employ
\[
\Box = \partial_\chi \cdot \partial_\chi + (X \cdot \partial_\chi)((X \cdot \partial_\chi) + d - 1) - (U \cdot \partial_u) + 2(U \cdot \partial_\chi)(X \cdot \partial_\chi) + U^2(X \cdot \partial_\chi)^2, \tag{F.27}
\]
in combination with the above results.

The generalization of (F.17) to AdS is thus
\[
(\partial_u \cdot \partial_u)J = \left(-\Box + (u \cdot \partial_u + 1)(u \cdot \partial_u + d) + \frac{1}{1 - u^2} \left((\Delta_+ - \Delta_-)^2 - (u \cdot \nabla)^2\right)\right)J. \tag{F.28}
\]
Recalling that
\[
J(X, U) = \sum_{s=0}^{\infty} J_s(X, U), \tag{F.29}
\]
i.e. it is the generating function of conserved currents, equation (F.28) serves as a starting point to express the trace of a current of given spin in terms of other currents.

Appendix G. Multiple traces of the currents

In this appendix we compute \(\tau_{sk}(\nu)\) in (5.98). To this end, we take repeated traces of (F.28).

This allows us to express a \(k\)-fold trace of rank-\(s\) current \(J_s\) in terms of lower degree traces of lower-spin currents
\[
(\partial_u \cdot \partial_u)^k J_s \rightarrow (\partial_u \cdot \partial_u)^{k-1} J_{s-2}, \quad (\partial_u \cdot \partial_u)^{k-2} J_{s-4}, \quad \ldots, \quad J_{s-2k} \tag{G.1}
\]
and terms of the form
\[
(u \cdot \nabla)(\ldots) \quad \text{or} \quad u^2 \cdot (\ldots). \tag{G.2}
\]
The relation (G.1) can then be iteratively applied to eliminate all the traces, thereby expressing \((\partial_a \cdot \partial_a)^k J_i\) in terms of \(J_{s-2k}\) and terms of the form (G.2). Our main goal is to compute the four-point spin-s exchange section 5.4.2, so it is enough to know \((\partial_a \cdot \partial_a)^k J_i\) modulo terms which vanish upon contraction against the traceless and divergence-free \(\Omega_{s-2k}\). These are precisely the terms in (G.2). We will often drop such terms where they are unimportant. Equalities that hold modulo these terms will be denoted by ‘\(\sim\)’.

We shall employ the following useful identities

\[
(\partial_a \cdot \partial_a)^i (u^2)^k J_i = \sum_{n=0}^{k} \frac{i!}{n!(i-n)!} (k - i + n + 1)_{i-n} \\
\times \left(\frac{d + 1}{2} + k - i + n \right) \left(u^2 \right)^{k-i+n} (\partial_a \cdot \partial_a)^n J_i,
\]

which entails

\[
(\partial_a \cdot \partial_a)^m (u \cdot \nabla)^2 J_k = 2m \cdot \frac{k - 2m + 2}{k - 2m + 3} (2m \cdot (u \cdot \nabla)(\partial_a \cdot \partial_a)^{m-1} J_k) + 4m \cdot (\partial_a \cdot \partial_a)^{m-1} J_k.
\]

Here and throughout we use that the current is conserved. To commute divergence and gradient in (G.4), we employ

\[
\frac{1}{n+1} (\partial_a \cdot \nabla)(u \cdot \nabla) J_n = \frac{1}{n} (u \cdot \nabla)(\partial_a \cdot \nabla) J_n - (n + d) J_n + \frac{1}{n} u^2 (\partial_a \cdot \partial_a) J_n,
\]

which entails

\[
(\partial_a \cdot \partial_a)^m (u \cdot \nabla)^2 J_k \sim 2m \cdot (\partial_a \cdot \partial_a)^{m-1} J_k.
\]

With these formulas at hand, we are prepared to compute the \(i\)-fold trace \((\partial_a \cdot \partial_a)^i\) of both sides of (F.28). Using (G.3), keeping only terms with \(k - i + n = 0\), we obtain

\[
(\partial_a \cdot \partial_a)^{i+1} J_{s+2} \sim -\square (\partial_a \cdot \partial_a)^i J_s + (s + 1)(s + d) (\partial_a \cdot \partial_a)^i J_s \]

\[+ \sum_{k=0}^{i} \frac{i!}{(i-k)!} 4^k ((d + 1)/2 + s - i - k) (\partial_a \cdot \partial_a)^{i-k} ((\Delta_+ - \Delta_-)^2 J_{s-2k} - (u \cdot \nabla)^2 J_{s-2k-2}).\]

Which, employing (G.6), becomes

\[
(\partial_a \cdot \partial_a)^{i+1} J_{s+2} \sim -\square (\partial_a \cdot \partial_a)^i J_s + (s + 1)(s + d) (\partial_a \cdot \partial_a)^i J_s \]

\[+ \sum_{k=0}^{i} (\partial_a \cdot \partial_a)^{i-k} ((\Delta_+ - \Delta_-)^2 J_{s-2k} - (u \cdot \nabla)^2 J_{s-2k-2}) \]

\[+ \sum_{k=0}^{i-1} (\square - (s - 2i)(s - 2i + d - 1)) (\partial_a \cdot \partial_a)^{i-k-1} J_{s-2k-2} \]

\[+ \sum_{k=0}^{i} \frac{i!}{(i-k)!} 4^{i+1} \left(\frac{d + 1}{2} + s - i - k \right) \left(\frac{d + 1}{2} + s - i - k \right).\]

The crucial observation is that applying (G.7) to the right combination of \((\partial_a \cdot \partial_a)^{i+1} J_{s+2}\) and \((\partial_a \cdot \partial_a)^i J_s\), the tails of terms on the right hand side cancel. To wit,
\[(\partial_u \cdot \partial_u)^{i+1} J_{s+2} - 2i(d + 2s - 2i - 1)(\partial_u \cdot \partial_u)^{i} J_s \]
\[
\sim \left((\Delta_+ - \Delta_-)^2 - \annulus + (s + 1)(s + d)\right)(\partial_u \cdot \partial_u)^{i} J_s \\
- 2i(\annulus - (s - 2i)(s - 2i + d - 1))(\partial_u \cdot \partial_u)^{i-1} J_{s-2} \\
- 2i(d + 2s - 2i - 1)(\annulus - (s - 1)(s + d - 2))(\partial_u \cdot \partial_u)^{i-1} J_{s-2}. \tag{G.8}
\]

To deal with the \annulus terms, from this point onwards we assume that both sides of (G.8) are integrated against the traceless and divergenceless harmonic function \(\Omega_{s-2k}\). Then one can integrate by parts all \annulus’s that appear on the right hand side of (G.8), thus making them act on \(\Omega_{s-2k}\). We can then use the equation of motion (C.2) for \(\Omega_{s-2k}\) to eliminate all \annulus’s. This establishes the following iterative equation
\[
(\partial_u \cdot \partial_u)^{i+1} J_{s+2} \sim f(i, s)(\partial_u \cdot \partial_u)^i J_s + g(i, s)(\partial_u \cdot \partial_u)^{i-1} J_{s-2}, \tag{G.9}
\]
where
\[
f(i, s) = (2\Delta - d - 1)(2\Delta - d + 1) + \left(\nu^2 + \left(\frac{d}{2} + (s - 2i) + 1\right)^2\right) + 8i(\frac{d}{2} + (s - 2i) + i),
\]
\[
g(i, s) = -4i(\frac{d}{2} + (s - 2i) + i - 1) \left(\nu^2 + \left(\frac{d}{2} + (s - 2i) + 1\right)^2\right) + 4(i - 1)(\frac{d}{2} + (s - 2i) + i).
\]

As ‘boundary conditions’ we take \((\partial_u \cdot \partial_u)^{-1} J_{s-2k-2} \equiv 0\) and assume that \(J_{s-2k}\) is given. Then the iterative equation (G.9) allows to express \((\partial_u \cdot \partial_u)^{i} J_s\) in terms of \(J_{s-2k}\). The result is
\[
(\partial_u \cdot \partial_u)^{i} J_s \sim \tau_{s,k}(\nu) \ J_{s-2k},
\]
with
\[
\tau_{s,k}(\nu) = \sum_{m=0}^{k} \frac{2^{2k} \cdot k!}{m!(k-m)!} (\Delta - \frac{d}{2} - k + m + 1/2)_{k-m} \left(\frac{\nu + s - 2m + 1 + i\nu}{2}\right)^m \\
\times \left(\frac{\nu + s - 2m + 1 - i\nu}{2}\right)^m.
\]

Appendix H. Intrinsic expressions for vertices

In this appendix we give the recipe of how to express vertices in ambient space in intrinsic AdS terms. In section 6.2.1 we used holography to fix the cubic vertices of minimal bosonic higher-spin theory on \(\text{AdS}_{d+1}\) in terms of the ambient structures.

\[86\] Recall that \(\Delta_s\) is the homogeneity degree of the field \(\varphi_s\) and \(\lambda\) is an auxiliary variable to be replaced at the very end of the recursion procedure as follows:
\[
\lambda^\nu \equiv (-1)^\nu (\Delta + d)(\Delta + d - 2) \ldots (\Delta + d - 2m + 2), \tag{H.7}
\]
where \(\Delta\) is the total degree of homogeneity of the given term of the vertex. The reason \(\lambda\) appears is that in order to establish the recursion relations one has to integrate by parts in ambient space (see e.g. [31]).
\[I^{n_1, n_2, n_3}_{l_1, l_2, l_3} (\varphi_s) = \gamma_1^{l_1-n_1-m} \gamma_2^{l_2-n_2-m} \gamma_3^{l_3-n_3-m} \]
\[\times \mathcal{H}_1^{n_1} \mathcal{H}_2^{n_2} \mathcal{H}_3^{n_3} \varphi_{s_1} (X_1, U_1) \varphi_{s_2} (X_2, U_2) \varphi_{s_3} (X_3, U_3) \bigg|_{X=X} . \] (H.1)

where we used point splitting, and introduced
\[\gamma_1 = \partial U_1 \cdot \partial X_1, \quad \gamma_2 = \partial U_2 \cdot \partial X_2, \quad \gamma_3 = \partial U_3 \cdot \partial X_3, \] (H.2)
\[\mathcal{H}_1 = \partial U_1 \cdot \partial U_1, \quad \mathcal{H}_2 = \partial U_2 \cdot \partial U_2, \quad \mathcal{H}_3 = \partial U_3 \cdot \partial U_3 . \] (H.3)

While this representation allowed for a more straightforward manipulation of tensor structures, since they are vertices for a theory on AdS naturally one would like to express them in terms intrinsic to the AdS manifold. In other words, in terms of contractions of the form
\[\tilde{\gamma}_1 = \partial U_1 \cdot \nabla_2, \quad \tilde{\gamma}_2 = \partial U_2 \cdot \nabla_3, \quad \tilde{\gamma}_3 = \partial U_3 \cdot \nabla_1 , \] (H.4)

In order to achieve this, we consider the structure
\[\mathcal{I}_{l_1, l_2, l_3}^{n_1, n_2, n_3, m_1, m_2, m_3} (\varphi_s) = \mathcal{H}_1^{n_1} \mathcal{H}_2^{n_2} \mathcal{H}_3^{n_3} \gamma_1^{l_1} \gamma_2^{l_2} \gamma_3^{l_3} \tilde{\gamma}_1^{m_1} \tilde{\gamma}_2^{m_2} \tilde{\gamma}_3^{m_3} \]
\[\times (X_1^{l_1-m_1} (X_2^{l_2-m_2} (X_3^{l_3-m_3} (X_1, U_1) (X_2, U_2) (X_3, U_3), \] (H.5)

where
\[\mathcal{I}_{l_1, l_2, l_3}^{n_1, n_2, n_3, m_1, m_2, m_3} (\varphi_s) = \mathcal{T}_{l_1, l_2, l_3}^{n_1, n_2, n_3} (\varphi_s). \] (H.6)

Employing the commutation relations (A.54), one can establish the following recursion relations
\[\mathcal{I}_{l_1, l_2, l_3}^{n_1, n_2, n_3, m_1, m_2, m_3} (\varphi_s) = \mathcal{T}_{l_1, l_2, l_3}^{n_1, n_2, n_3} (\varphi_s). \] (H.6)

which can be solved in terms of the intrinsic structures
\[\mathcal{I}_{l_1, l_2, l_3}^{n_1, n_2, n_3, m_1, m_2, m_3} (\varphi_s) = \mathcal{T}_{l_1, l_2, l_3}^{n_1, n_2, n_3} (\varphi_s)(X_1, U_1) \varphi_{s_2} (X_2, U_2) \varphi_{s_3} (X_3, U_3). \] (H.9)

Starting with the original basis (H.1) for the vertices, with the above recursions their intrinsic forms can therefore be established.

Below we give some examples obtained by implementing the above recursion relations in Mathematica for massless fields ($\Delta_i = 2 - d - s_i$)
\[Y_1 Y_2 = \tilde{Y}_1 \tilde{Y}_2 - (d - 2) H_3, \quad (H.10a) \]

\[\begin{align*}
Y_1 Y_2 Y_3 &= \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 - (d - 1) \left(H_1 \tilde{Y}_1 + H_2 \tilde{Y}_2 + H_3 \tilde{Y}_3 \right), \\
Y_1^2 Y_2^2 Y_3^2 &= \tilde{Y}_1^2 \tilde{Y}_2^2 \tilde{Y}_3^2 - 2(d+1) H_1 \tilde{Y}_1^2 \tilde{Y}_2 \tilde{Y}_3 - 2(2d+3) H_2 \tilde{Y}_1 \tilde{Y}_2^2 \tilde{Y}_3 - 2(2d+1) H_3 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3^2 \\
&\quad + 2(d+2) H_1^2 \tilde{Y}_1^2 + 2(d+2) H_2^2 \tilde{Y}_2^2 + 2(d+2) H_3^2 \tilde{Y}_3^2 \\
&\quad + 8 \left(d^2 + 2d + 2 \right) H_1 H_2 \tilde{Y}_1 \tilde{Y}_2 + 2 \left(4d^2 + 4d - 1 \right) H_1 H_3 \tilde{Y}_1 \tilde{Y}_3 \\
&\quad + 4(d+1)(2d+1) H_2 H_3 \tilde{Y}_2 \tilde{Y}_3 - 8 \left(d^3 + 2d^2 + d + 1 \right) H_1 H_2 H_3, \quad (H.10b) \\
Y_1^3 Y_2 Y_3^3 &= \tilde{Y}_1^3 \tilde{Y}_2 \tilde{Y}_3^3 \\
&\quad - 9(d+2) H_1 \tilde{Y}_1^2 \tilde{Y}_2 \tilde{Y}_3^2 - 9(d+4) H_2 \tilde{Y}_1 \tilde{Y}_2^2 \tilde{Y}_3 \\
&\quad - 9(d+2) H_3 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3^2 + 18 \left(d^2 + 5d + 5 \right) H_1^2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 \\
&\quad + 27 \left(2d^2 + 12d + 21 \right) H_1 H_2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 \\
&\quad + 18 \left(d^2 + 7d + 11 \right) H_2^2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 + 18 \left(d^2 + 5d + 5 \right) H_3^2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 \\
&\quad + 54(d+1)(d+3) H_1 H_2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 + 27(d+2)(2d+7) H_3 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 \\
&\quad + 54(d+3) \left(d^2 + 6d + 10 \right) H_1^2 H_2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 - 54(d+3) \left(d^2 + 6d + 10 \right) H_1 H_2^2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 \\
&\quad - 54(2d+7) \left(2d^2 + 8d + 9 \right) H_1 H_2 H_3 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 - 54(d+4) \left(d^2 + 3d + 1 \right) H_1 H_2^2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 \\
&\quad - 27 \left(2d^3 + 14d^2 + 28d + 11 \right) H_1^2 H_2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 - 27 \left(2d^3 + 16d^2 + 38d + 25 \right) H_2^2 H_3 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 \\
&\quad - 54 \left(d^3 + 8d^2 + 21d + 17 \right) H_1 H_2^2 \tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 - 6(d+1)(d+3)(d+5) H_1^3 \tilde{Y}_1 \\
&\quad - 6(d+1)(d+3)(d+5) H_1^2 \tilde{Y}_1 - 6(d+1)(d+3)(d+5) H_1^3 \tilde{Y}_1 \\
&\quad + 54(d+3) \left(2d^3 + 15d^2 + 34d + 27 \right) H_1^2 H_2 H_3 \tilde{Y}_1 \\
&\quad + 54(d+3) \left(2d^3 + 14d^2 + 28d + 19 \right) H_1 H_2^2 \tilde{Y}_2 \\
&\quad + 54(d+3) \left(2d^3 + 14d^2 + 29d + 19 \right) H_1 H_2 \tilde{Y}_1 H_3 \tilde{Y}_3. \quad (H.10c)
\end{align*} \]

Appendix I. Basis of quartic vertices

In this appendix we demonstrate completeness of the basis (5.111) of quartic scalar self-interactions.

A given vertex can be brought into different forms via integration by parts. For our purposes, we need only find a complete set of quartic vertices which are independent on-free-shell. We therefore need to take into account all possible relations between such vertices via integration by parts and using the free equations of motion. In counting the number of independent on-shell vertices, it is simpler to consider the equivalent problem of counting the associated four-point amplitudes. This is how we proceed in the following. For simplicity, following the approach of [343] we carry out this analysis in flat space.

As shown in [343], a complete non-redundant basis of flat space four-point amplitudes is given by the set monomials of the form

87 Note that the normalisation here is such that it is consistent with the normalisation of (I.5).
\[s^k t^k u^m \text{ with integers } k \geq m \geq 0, \tag{I.1} \]

where \(s, t \) and \(u \) are the Mandelstam variables

\[s = (p_1 + p_2)^2, \quad t = (p_1 + p_3)^2, \quad u = (p_2 + p_3)^2. \tag{I.2} \]

For massless particles \(p_l^2 = 0 \), one has

\[s = 2 p_1 \cdot p_2 = 2 p_3 \cdot p_4, \quad t = 2 p_1 \cdot p_3 = 2 p_2 \cdot p_4, \quad u = 2 p_2 \cdot p_3 = 2 p_1 \cdot p_4. \tag{I.3} \]

Our goal is to replace the basis (I.1) with an equivalent one, that is better suited to our purposes - i.e. in terms of amplitudes generated by quartic vertices built from conserved currents. Let us first consider such vertices in position space

\[\Box_{12}^m J_{\mu_1 \ldots \mu_\ell} (\varphi_0(x_1), \varphi_0(x_2), \varphi_0(x_3), \varphi_0(x_4)), \tag{I.4} \]

with \(\Box_{12} = (\partial_{x_1} + \partial_{x_2})^2 \) and

\[J_{\mu_1 \ldots \mu_\ell} (\varphi_0(x_1), \varphi_0(x_2)) \equiv \varphi_0(x_1) \partial_{\mu_1} \cdots \partial_{\mu_\ell} \varphi_0(x_2), \tag{I.5} \]

are the conserved currents of [344], with \(\partial = \frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2} \). The amplitude in momentum space associated to the vertex (I.4) reads

\[(p_1 + p_2)^m [(p_1 - p_2) \cdot (p_3 - p_4)]^l = s^m (t-u)^l. \tag{I.6} \]

For \(\ell = 2k \), this amplitude contains a term \(s^m t^k u^k \). Up to a Bose symmetry transformation, this reproduces the form of the vertices (I.1). We therefore conclude that vertices (I.4) with \(\ell = 2k \) and \(k \geq m \geq 0 \) generate the basis of quartic vertices.

For our purposes it is more convenient to use the traceless improvement of (I.5), given in [345]\(^3\)

\[\tilde{J}_{\mu_1 \ldots \mu_\ell} (\varphi_0(x_1), \varphi_0(x_2)) = \frac{\sqrt{\pi}}{2^{s+d-2} \Gamma \left(\frac{d}{2} \right) \Gamma \left(\frac{s}{2} + \frac{d}{2} - 1 \right)} \sum_{k=0}^{l} a_k \partial_{\mu_1} \cdots \partial_{\mu_k} \varphi_0(x_1) \partial_{\mu_{k+1}} \cdots \partial_{\mu_\ell} \varphi_0(x_2) - \text{traces}, \tag{I.7} \]

where

\[a_k = (-1)^k \frac{k! \Gamma \left(\frac{d}{2} - 1 \right) \Gamma \left(\frac{s}{2} + \frac{d}{2} - 1 \right)}{k! (l-k)! \Gamma \left(\frac{d}{2} - 1 \right) \Gamma \left(\frac{s}{2} + \frac{d}{2} - 1 \right) (l-k)}. \tag{I.8} \]

The improvement (I.7) can always be obtained from (I.5) when the scalar field is conformal.

Analogously to (I.4), the flat space amplitude corresponding to a vertex

\[V_{m,\ell} \equiv \Box_{12}^m \tilde{J}_{\mu_1 \ldots \mu_\ell} (\varphi_0(x_1), \varphi_0(x_2)) \tilde{J}^{\mu_1 \ldots \mu_\ell} (\varphi_0(x_3), \varphi_0(x_4)) \tag{I.9} \]

with \(\ell = 2k \) generates a term \(s^m t^k u^k \). Thus, vertices (I.9) with \(\ell = 2k \) and \(k \geq m \geq 0 \) may be used as a basis for quartic interactions.

ORCID iDs

Charlotte Sleight \(\text{https://orcid.org/0000-0002-7100-1807} \)
References

[1] Glashow S L 1961 Nucl. Phys. 22 579–88
[2] Weinberg S 1967 Phys. Rev. Lett. 19 1264–6
[3] Salam A 1968 Proc. 8th Nobel Symposium on Elementary Particle Theory (19–25 May 1968, Lerum, Sweden) (Stockholm: Wiley) p 367
[4] Englert F and Brout R 1964 Phys. Rev. Lett. 13 321–3
[5] Higgs P 1964 Phys. Lett. 12 132–3
[6] Higgs P W 1964 Phys. Rev. Lett. 13 508–9
[7] Guralnik G S, Hagen C R and Kibble T W B 1964 Phys. Rev. Lett. 13 585–7
[8] Einstein A 1916 Ann. Phys. 49 769–822

Einstein A 2005 Ann. Phys. 14 517
[9] Goroff M H and Sagnotti A 1986 Nucl. Phys. B 266 709
[10] Goroff M H and Sagnotti A 1985 Phys. Lett. B 160 81
[11] Bern Z, Carrasco J J, Dixon L J, Johannson H, Kosower D A and Roiban R 2007 Phys. Rev. Lett. 98 161303
[12] Green M B, Russo J G and Vanhove P 2007 Phys. Rev. Lett. 98 131602
[13] Bern Z, Carrasco J J, Dixon L J, Johannson H and Roiban R 2009 Phys. Rev. Lett. 103 081301
[14] Beisert N, Elvang H, Freedman D Z, Kiermaier M, Morales A and Stieberger S 2011 Phys. Lett. B 694 65–71
[15] Kallosh R 2012 J. High Energy Phys. JHEP03(2012)083
[16] Camanho X O, Edelstein J D, Maldacena J and Zhiboedov A 2016 J. High Energy Phys. JHEP02(2016)020
[17] Veneziano G 1968 Nuovo Cimento A 57 190–7
[18] Amati D, Ciafaloni M and Veneziano G 1987 Phys. Lett. B 197 81
[19] Gross D J and Mende P F 1987 Nucl. Phys. B 268 125–34
[20] Gross D J and Mende P F 1988 Nucl. Phys. B 303 407
[21] Amati D, Ciafaloni M and Veneziano G 1988 Int. J. Mod. Phys. A 3 1615–61
[22] Amati D, Ciafaloni M and Veneziano G 1988 Phys. Lett. B 216 41–7
[23] Muzinich I J and Solidate M 1988 Phys. Rev. D 37 359–67
[24] Sundborg B 1988 Nucl. Phys. B 306 545–66
[25] Moeller N and West P C 2005 Nucl. Phys. B 729 1–48
[26] Gross D J 1988 Phys. Rev. Lett. 60 1229
[27] Gross D J and Manes J L 1989 Nucl. Phys. B 326 73
[28] Moore G W 1993 arXiv: hep-th/9404025
[29] Taronni M 2010 Higher spins and string interactions PhD Thesis Pisa University (http://inspirehep.net/record/855395/files/arXiv:1005.3061.pdf)
[30] Sagnotti A and Taronni M 2011 Nucl. Phys. B 842 299–361
[31] Taronni M 2012 Higher-spin interactions: three-point functions and beyond PhD Thesis Pisa, Scuola Normale Superiore (http://inspirehep.net/record/1188191/files/arXiv:1209.5755.pdf)
[32] Gaberdiel M R and Gopakumar R 2015 J. Phys. A: Math. Theor. 48 185402
[33] Gaberdiel M R and Gopakumar R 2016 J. High Energy Phys. JHEP09(2016)085
[34] Kato M and Ogawa K 1983 Nucl. Phys. B 212 443
[35] Siegel W 1986 Nucl. Phys. B 263 93
[36] Siegel W and Zwiebach B 1986 Nucl. Phys. B 263 105
[37] Banks T and Peskin M E 1986 Nucl. Phys. B 264 513
[38] Ohta N 1986 Phys. Rev. D 33 1681
[39] Ohta N 1986 Phys. Rev. Lett. 56 440
[40] Ohta N 1986 Phys. Rev. Lett. 56 1316 (erratum)
[41] Neveu A, Nicolai H and West P 1986 Nucl. Phys. B 264 573–87
[42] Neveu A and West P 1986 Nucl. Phys. B 268 125–50
[43] Witten E 1986 Nucl. Phys. B 268 253
[44] Zwiebach B 1993 Nucl. Phys. B 390 33–152
[45] Erler T, Okawa Y and Takezaki T 2016 J. High Energy Phys. JHEP08(2016)012
[46] Maldacena J M 1999 Int. J. Theor. Phys. 38 1113–33

Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231
[47] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105–14
[48] Witten E 1998 Adv. Theor. Math. Phys. 2 253–91
[48] Nastase H 2015 *Introduction to the AdS/CFT Correspondence* (Cambridge: Cambridge University Press)
[49] Ammon M and Erdmenger J 2015 *Gauge/Gravity Duality* (Cambridge: Cambridge University Press)
[50] Haggi-Mani P and Sundborg B 2000 *J. High Energy Phys.* JHEP04(2000)031
[51] Sundborg B 2001 *Nucl. Phys. Proc. Suppl.* 102 113–9
[52] Sundborg B 2000 *Nucl. Phys. Proc. Suppl.* 102 113
[53] Witten E 2001 *Conf. in Honor of John Schwarz 60th Birthday* (California Institute of Technology, Pasadena, CA, USA) (http://theory.caltech.edu/jhs60/witten/1.html)
[54] Tseytlin A A 2002 *Theor. Math. Phys.* 133 1376–89
[55] Tseytlin A A 2002 *Teor. Mat. Fiz.* 133 69
[56] Karch A 2002 arXiv: hep-th/0212041
[57] Gopakumar R 2004 *Phys. Rev.* D 70 025009
[58] Bonelli G 2003 *J. High Energy Phys.* JHEP11(2003)028
[59] Sagnotti A and Tsluia M 2004 *Nucl. Phys.* B 682 83–116
[60] Gopakumar R 2004 *Phys. Rev.* D 70 025010
[61] Gopakumar R 2004 *C. R. Phys.* 5 1111–9
[62] Gopakumar R 2005 *Phys. Rev.* D 72 066008
[63] Gopakumar R 2004 *J. High Energy Phys.* JHEP05(2004)016
[64] Yaakov I 2006 *J. High Energy Phys.* JHEP11(2006)065
[65] Aharony O, Komargodski Z and Razamat S S 2006 *J. High Energy Phys.* JHEP05(2006)016
[66] Aharony O, David J R, Gopakumar R, Komargodski Z and Razamat S S 2007 *Phys. Rev.* D 75 106006
[67] Bianchi M, Morales J F and Samtleben H 2003 *J. High Energy Phys.* JHEP07(2003)062
[68] Beisert N, Bianchi M, Morales J F and Samtleben H 2004 *J. High Energy Phys.* JHEP02(2004)001
[69] Beisert N and Tseytlin A A 2002 *Phys. Lett.* B 550 213–9
[70] Leigh R G and Petkou A C 2003 *J. High Energy Phys.* JHEP06(2003)011
[71] Sezgin E and Sundell P 2002 *Nucl. Phys.* B 644 303–70
[72] Sezgin E and Sundell P 2003 *Nucl. Phys.* B 660 403 (erratum)
[73] Klebanov I R and Polyakov A M 2002 *Phys. Lett.* B 550 213–9
[74] Leigh R G and Petkou A C 2003 *J. High Energy Phys.* JHEP06(2003)011
[75] Sezgin E and Sundell P 2005 *J. High Energy Phys.* JHEP07(2005)044
[76] Giombi S, Minwalla S, Prakash S, Trivedi S P, Wadia S R and Yin X 2012 *Eur. Phys. J.* C 72 2112
[77] Aminos D, Hartman T and Strominger A 2011 arXiv:1108.5735
[78] Chang C M, Minwalla S, Sharma T and Yin X 2013 *J. Phys. A: Math. Theor.* 46 214009
[79] Komstein S E, Vasiliev M A and Zaikin V N 2000 *J. High Energy Phys.* JHEP12(2000)018
[80] Shaynkman O V and Vasiliev M A 2001 *Theor. Math. Phys.* 128 1155–68
[81] Shaynkman O V and Vasiliev M A 2001 *Teor. Mat. Fiz.* 128 378
[82] Sezgin E and Sundell P 2001 *J. High Energy Phys.* JHEP09(2001)036
[83] Vasiliev M A 2002 *Phys. Rev.* D 66 066006
[84] Mikhailov A 2002 hep-th/0201019
[85] Gaberdiel M R and Gopakumar R 2014 *J. High Energy Phys.* JHEP11(2014)044
[86] Baggio M, Gaberdiel M R and Peng C 2015 *Phys. Rev.* D 92 026007
[87] Weinberg S 1964 *Phys. Rev.* 135 B1049–56
[88] Coleman S R and Mandula J 1967 *Phys. Rev.* 159 1251–6
[89] Velu G and Zwanziger D 1969 *Phys. Rev.* 186 1337–41
[90] Velu G and Zwanziger D 1969 *Phys. Rev.* 188 2218–22
[91] Velu G 1972 *Nucl. Phys.* B 43 389–401
[92] Aragone C and Deser S 1979 *Phys. Lett.* B 86 161
[93] Deser S and Yang Z 1990 *Class. Quantum Grav.* 7 1491–8
[94] Weinberg S and Witten E 1980 *Phys. Lett.* B 96 59
[95] Porrati M 2008 *Phys. Rev.* D 78 065016
[96] Bekaert X, Boulanger N and Leclercq S 2010 *J. Phys. A: Math. Theor.* 43 185401
[97] Porrati M, Rahman R and Sagnotti A 2011 Nucl. Phys. B 846 250–82
[98] Taronno M 2012 J. High Energy Phys. JHEP04(2012)029
[99] Joung E and Taronno M 2014 J. High Energy Phys. JHEP03(2014)103
[100] Bekaert X, Boulanger N and Sundell P 2012 Rev. Mod. Phys. 84 987–1009
[101] Metsaev R R 1991 Mod. Phys. Lett. A 6 359–67
[102] Metsaev R R 1991 Mod. Phys. Lett. A 6 2411–21
[103] Ponomarev D and Tseytlin A A 2016 J. High Energy Phys. JHEP05(2016)184
[104] Bengtsson A K H 2016 Quartic amplitudes for Minkowski higher spin Int. Workshop on Higher Spin Gauge Theories Singapore (Singapore, 4–6 November 2015) (http://inspirehep.net/record/1456833/files/arXiv:1605.02608.pdf)
[105] Conde E, Joung E and Mkrtchyan K 2016 J. High Energy Phys. JHEP08(2016)040
[106] Bengtsson A K H 2016 J. High Energy Phys. JHEP12(2016)134
[107] Sleight C and Taronno M 2017 J. High Energy Phys. JHEP02(2017)095
[108] Ponomarev D and Skvortsov E D 2017 J. Phys. A: Math. Theor. 50 095401
[109] Fradkin E S and Vasiliev M A 1987 Nucl. Phys. B 291 141
[110] Fradkin E S and Vasiliev M A 1987 Phys. Lett. B 189 89–95
[111] Manvelyan R and Ruhl W 2004 Phys. Lett. B 593 253–61
[112] Fotopoulos A, Irges N, Petkou A C and Tsulaia M 2007 J. High Energy Phys. JHEP10(2007)021
[113] Boulanger N, Leclercq S and Sundell P 2008 J. High Energy Phys. JHEP08(2008)056
[114] Zinoviev Yu M 2009 Class. Quantum Grav. 26 035022
[115] Manvelyan R and Mkrtchyan K 2010 Mod. Phys. Lett. A 25 1333–48
[116] Fotopoulos A and Tsulaia M 2010 Current exchanges for reducible higher spin modes on AdS 19th Int. Colloquium on Integrable Systems and Quantum Symmetries (Prague, Czech Republic, 17–9 June 2010) (http://inspirehep.net/record/860405/files/arXiv:1007.0747.pdf)
[117] Bekaert X and Meunier E 2010 J. High Energy Phys. JHEP11(2010)116
[118] Alkalaev K 2011 J. High Energy Phys. JHEP09(2011)031
[119] Boulanger N, Skvortsov E D and Zinoviev Yu M 2011 J. Phys. A: Math. Theor. 44 415403
[120] Boulanger N and Skvortsov E D 2011 J. High Energy Phys. JHEP09(2011)063
[121] Vasiliev M A 2012 Nucl. Phys. B 862 341–408
[122] Joung E and Taronno M 2012 Nucl. Phys. B 861 145–74
[123] Joung E, Lopez L and Taronno M 2012 J. High Energy Phys. JHEP07(2012)041
[124] Joung E, Lopez L and Taronno M 2013 J. Phys. A: Math. Theor. 46 214020
[125] Joung E, Lopez L and Taronno M 2013 J. High Energy Phys. JHEP01(2013)168
[126] Boulanger N, Ponomarev D and Skvortsov E 2013 J. High Energy Phys. JHEP05(2013)008
[127] Lopez L 2012 TSPU Bull. 2012 113–8
[128] Joung E, Taronno M and Waldron A 2013 J. High Energy Phys. JHEP07(2013)186
[129] Berends F A, Burgers G J H and van Dam H 1985 Nucl. Phys. B 260 295
[130] Fradkin E S and Vasiliev M A 1987 Ann. Phys. 177 63
[131] Konstein S E and Vasiliev M A 1990 Nucl. Phys. B 331 475–99
[132] Boulanger N, Ponomarev D, Skvortsov E and Taronno M 2013 Int. J. Mod. Phys. A 28 1350162
[133] Vasiliev M A 1988 Phys. Lett. B 209 491–7
[134] Vasiliev M A 1990 Phys. Lett. B 243 378–82
[135] Vasiliev M A 1991 Class. Quantum Grav. 8 1387–417
[136] Vasiliev M A 1992 Phys. Lett. B 285 225–34
[137] Vasiliev M A 1992 Mod. Phys. Lett. A 7 3689–702
[138] Vasiliev M A 1996 Int. J. Mod. Phys. D 5 763–97
[139] Prokushkin S F and Vasiliev M A 1999 Nucl. Phys. B 545 385
[140] Vasiliev M A 1999 arXiv hep-th/9910096
[141] Engquist J, Szegz E and Sundell P 2002 Class. Quantum Grav. 19 6175–96
[142] Vasiliev M A 2003 Phys. Lett. B 567 139–51
[143] Boulanger N and Sundell P 2011 J. Phys. A: Math. Theor. 44 495402
[144] Didenko V E, Misuna N G and Vasiliev M A 2017 J. High Energy Phys. JHEP03(2017)164
[145] Bonezzi R, Boulanger N, Szegz E and Sundell P 2016 J. High Energy Phys. JHEP05(2016)003
[146] Arias C, Bonezzi R, Boulanger N, Szegz E, Sundell P, Torres-Gomez A and Valenzuela M 2016 Action principles for higher and fractional spin gravities Int. Workshop on Higher Spin Gauge Theories Singapore (Singapore, 4–6 November 2015) (http://inspirehep.net/record/1427757/files/arXiv:1603.04454.pdf)
[147] Barnich G and Henneaux M 1993 Phys. Lett. B 311 123–9
[149] Polyakov D 2010 Phys. Rev. D 82 066005
[150] Dempster P and Tsuchiya M 2012 Nucl. Phys. B 865 353–75
[151] Vasiliev M A 2015 J. High Energy Phys. JHEP06(2015)031
[152] Bekaeht X, Erdmenger J, Ponomarev D and Sleight C 2015 J. High Energy Phys. JHEP11(2015)149
[153] Skvortsov E D and Taronno M 2015 J. High Energy Phys. JHEP11(2015)044
[154] Taronno M 2016 Pseudo-local theories: a functional class proposal Int. Workshop on Higher Spin Gauge Theories Singapore (Singapore, 4–6 November 2015) (https://inspirehep.net/record/1424813/files/arXiv:1602.08566.pdf)
[155] Bekaeht X, Erdmenger J, Ponomarev D and Sleight C 2016 Bulk quartic vertices from boundary four-point correlators Int. Workshop on Higher Spin Gauge Theories Singapore (Singapore, 4–6 November 2015) (http://inspirehep.net/record/1424869/files/arXiv:1602.08570.pdf)
[156] Vasiliev M A 2016 arXiv:1605.02662
[157] Taronno M 2017 J. Phys. A: Math. Theor. 50 075401
[158] Sleight C and Taronno M 2016 Phys. Rev. Lett. 116 181602
[159] Bekaeht X, Erdmenger J, Ponomarev D and Sleight C 2015 J. High Energy Phys. JHEP03(2015)170
[160] Sleight C and Taronno M 2017 J. High Energy Phys. JHEP06(2017)100
[161] Sleight C and Taronno M 2017 arXiv:1704.07859
[162] Lee S, Minwalla S, Rangamani M, and Seiberg N 1998 Adv. Theor. Math. Phys. 2 697–718
[163] Mueck W and Viswanathan K S 1998 Phys. Rev. D 58 041901
[164] Mueck W and Viswanathan K S 1998 Phys. Rev. D 58 106006
[165] Freedman D Z, Mathur S D, Matusis A and Rastelli L 1999 Phys. Lett. B 452 61–8
[166] Chalmers G and Schalm K 1999 Nucl. Phys. B 554 215–36
[167] Liu H and Tseytlin A A 1999 Phys. Rev. D 59 086002
[168] D’Hoker E and Freedman D Z 1999 Nucl. Phys. B 550 261–88
[169] D’Hoker E and Freedman D Z 1999 Nucl. Phys. B 544 612–32
[170] Liu H and Tseytlin A A 1999 Nucl. Phys. B 533 88–108
[171] Liu H 1999 Phys. Rev. D 60 106005
[172] D’Hoker E, Freedman D Z, Mathur S D, Matusis A and Rastelli L 1999 Nucl. Phys. B 562 353–94
[173] D’Hoker E, Freedman D Z, Mathur S D, Matusis A and Rastelli L 1999 arXiv: hep-th/9908160
[174] Erdmenger J and Perez-Victoria M 2000 Phys. Rev. D 62 045008
[175] Arutyunov G and Frolov S 1999 Phys. Rev. D 60 026004
[176] Arutyunov G and Frolov S 2000 Phys. Rev. D 62 064016
[177] Bianchi M and Marchetti A 2004 Nucl. Phys. B 686 261–84
[178] Bianchi M, Prisco M and Mueck W 2003 J. High Energy Phys. JHEP11(2003)052
[179] Uruchurtu L I 2007 J. High Energy Phys. JHEP09(2007)086
[180] Uruchurtu L I 2009 J. High Energy Phys. JHEP03(2009)133
[181] Penedones J 2011 J. High Energy Phys. JHEP03(2011)025
[182] Uruchurtu L I 2011 J. High Energy Phys. JHEP08(2011)133
[183] Paulo M F 2011 J. High Energy Phys. JHEP10(2011)074
[184] Francia D, Mourad J and Sagnotti A 2008 Nucl. Phys. B 804 383–420
[185] Giombi S and Yin X 2010 J. High Energy Phys. JHEP09(2010)115
[186] Giombi S and Yin X 2011 J. High Energy Phys. JHEP04(2011)086
[187] Chang C M and Yin X 2012 J. High Energy Phys. JHEP10(2012)024
[188] Ammon M, Kraus P and Perlmutter E 2012 J. High Energy Phys. JHEP07(2012)113
[189] Hijano E, Kraus P and Perlmutter E 2013 J. High Energy Phys. JHEP05(2013)163
[190] Costa M S, Gonçalves V and Penedones J 2014 J. High Energy Phys. JHEP09(2014)064
[191] Sezgin E, Skvortsov E D and Zhu Y 2017 arXiv:1705.03197
[192] Didenko V E and Vasiliev M A 2017 arXiv:1705.03440
[193] Giombi S and Klebanov I R 2013 J. High Energy Phys. JHEP12(2013)068
[194] Giombi S, Klebanov I R and Saffi B R 2014 Phys. Rev. D 89 084004
[195] Giombi S, Klebanov I R and Tseytlin A A 2014 Phys. Rev. D 90 024048
[196] Beccaria M and Tseytlin A A 2014 J. High Energy Phys. JHEP11(2014)114
[197] Basile T, Bekaeht X and Boulanger N 2014 J. High Energy Phys. JHEP11(2014)131
[198] Pang Y, Sezgin E and Zhu Y 2017 Phys. Rev. D 95 026008
[199] Bae J B, Joung E and Lal S 2016 J. High Energy Phys. JHEP04(2016)061
[200] Bae J B, Joung E and Lal S 2016 J. High Energy Phys. JHEP10(2016)074
[201] Günyaydin M, Skvortsov E D and Tran T 2016 J. High Energy Phys. JHEP11(2016)168
[202] Bae J B, Joung E and Lal S 2017 J. High Energy Phys. JHEP06(2017)155
[203] Vasiliev M A 2004 Fortsch. Phys. 52 702–17
[204] Sorokin D 2005 AIP Conf. Proc. 767 172–202
[205] Bekaert X, Cnockaert S, Iazeolla C and Vasiliev M A 2004 Nonlinear higher spin theories in various dimensions Higher Spin Gauge Theories: Proc., 1st Solvay Workshop pp 132–97 (https://inspirehep.net/record/678495/files/Solvay1proc-p132.pdf)
[206] Campoleoni A 2010 Riv. Nuovo Cimento 33 123–253
[207] Gaberdiel M R and Gopakumar R 2013 J. Phys. A: Math. Theor. 46 214002
[208] Giombi S and Yin X 2013 J. Phys. A: Math. Theor. 46 214003
[209] Sagnotti A 2013 J. Phys. A: Math. Theor. 46 214006
[210] Rahm R 2012 PoS ModaveVIII 004
[211] Lucena Gómez G 2014 Aspects of higher-spin theory with fermions PhD Thesis Brussels University (https://inspirehep.net/record/1301875/files/arXiv:1406.5319.pdf)
[212] Didenko V E and Skvortsov E D 2014 arXiv:1401.2975
[213] Rahman R and Taronna M 2015 arXiv:1512.07932
[214] Das S R and Jevicki A 2003 Phys. Rev. D 68 044011
[215] Douglas M R, Mazur L and Zarembo K 2011 Phys. Rev. D 83 071701
[216] Koch R d M, Jevicki A, Jin K and Rodrigues J P 2011 Phys. Rev. D 83 025006
[217] Jevicki A, Jin K and Ye Q 2011 J. Phys. A: Math. Theor. 44 465402
[218] Jevicki A, Jin K and Ye Q 2011 Bi-local model of AdS/CFT and higher spin gravity Proc., 11th Workshop on Non-Perturbative Quantum Chromodynamics (https://inspirehep.net/record/1080943/files/arXiv:1112.2656.pdf)
[219] de Mello Koch R, Jevicki A, Jin K, Rodrigues J P and Ye Q 2013 Class. Quantum Grav. 30 104005
[220] Pando Zayas L A and Peng C 2013 J. High Energy Phys. JHEP10(2013)023
[221] Sachs I 2014 Phys. Rev. D 90 085003
[222] Leigh R G, Parrikar O and Weiss A B 2014 Phys. Rev. D 89 106012
[223] Leigh R G, Parrikar O and Weiss A B 2015 Phys. Rev. D 91 026002
[224] Koch R d M, Jevicki A, Rodrigues J P and Yoon J 2015 J. Phys. A: Math. Theor. 48 105403
[225] Mintun E and Polchinski J 2014 arXiv:1411.3151
[226] Jin K, Leigh R G and Parrikar O 2015 J. High Energy Phys. JHEP06(2015)050
[227] Bekaert X, Joung E and Mourad J 2012 Fortsch. Phys. 60 882–8
[228] Giombi S 2017 Higher spin CFT Duality Proc., Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (Boulder, CO, USA, 1–26 June 2015) pp 137–214 (http://inspirehep.net/record/1475038/files/arXiv:1607.02967.pdf)
[229] Dirac P A M 1936 Ann. Math. 37 429–42
[230] Costa M S, Penedones J, Poland D and Rychkov S 2011 J. High Energy Phys. JHEP11(2011)071
[231] Polchinski J 2007 String Theory. Vol. 1: an Introduction to the Bosonic String (Cambridge: Cambridge University Press)
[232] Pappadopulo D, Rychkov S, Espin J and Rattazzi R 2012 Phys. Rev. D 86 105043
[233] Ferrara S, Grillo A F and Gatto R 1973 Ann. Phys. 76 161–88
[234] Polyakov A M 1974 Sov. J. Exp. Theor. Phys. 39 10
[235] Rattazzi R, Rychkov V S, Tonni E and Vichi A 2008 J. High Energy Phys. JHEP12(2008)031
[236] Dolan F A and Osborn H 2001 Nucl. Phys. B 599 459–96
[237] Dolan F A and Osborn H 2004 Nucl. Phys. B 678 491–507
[238] Dolan F and Osborn H 2011 arXiv:1108.6194
[239] Penedones J, Trevisani E and Yamazaki M 2015 arXiv:1509.00428
[240] Hogervorst M and Rychkov S 2013 Phys. Rev. D 87 106004
[241] Iliesiu L, Kos F, Poland D, Pufu S S, Simmons-Duffin D and Yacoby R 2013 J. High Energy Phys. JHEP12(2013)120
[242] Costa M S, Penedones J, Poland D and Rychkov S 2011 J. High Energy Phys. JHEP11(2011)154
[243] Echeverri A C, Elkhidir E, Karateev D and Serone M 2015 J. High Energy Phys. JHEP08(2015)101
[244] Ferrara S and Parisi G 1972 Nucl. Phys. B 42 281–90
[246] Ferrara S, Grillo A F and Parisi G 1972 Lett. Nuovo Cim. 552 147–51
Ferrara S, Grillo A F and Parisi G 1972 Lett. Nuovo Cim. 5 147
[247] Ferrara S, Grillo A F, Parisi G and Gatto R 1972 Lett. Nuovo Cim. 482 115–20
Ferrara S, Grillo A F, Parisi G and Gatto R 1972 Lett. Nuovo Cim. 4 115
Ferrara S, Grillo A F, Parisi G and Gatto R 1972 Nucl. Phys. B 49 77–98
Ferrara S, Grillo A F, Parisi G and Gatto R 1973 Nucl. Phys. B 53 643 (erratum)
[248] Simmons-Duffin D 2014 J. High Energy Phys. JHEP04(2014)146
[249] Costa M S and Hansen T 2015 J. High Energy Phys. JHEP02(2015)151
[250] Rejon-Barrera F and Robbins D 2016 J. High Energy Phys. JHEP01(2016)139
[251] Hoffman L, Petkou A C and Ruhl W 2000 Phys. Lett. B 478 320–6
[252] Hoffman L, Petkou A C and Ruhl W 2002 Adv. Theor. Math. Phys. 4 571–615
[253] Dobrev V K, Petkova V B, Petrova S G and Todorov I T (ed) 1977 Harmonic Analysis: on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory (Lecture Notes in Physics vol 63) (Berlin: Springer)
[254] Mack G 2009 arXiv:0907.2407
[255] Craigie N S, Dobrev V K and Todorov I T 1985 Nucl. Phys. B 249 199 (https://inspirehep.net/record/658467/files/Solvay1proc-p79.pdf)

Franca D 2008 Nucl. Phys. B 796 77–122
[256] Francia D 2010 J. Phys.: Conf. Ser. 222 012002
[257] Metsaev R 1999 Nucl. Phys. B 563 295–348
[258] Dobrev V K 1999 Nucl. Phys. B 553 559–82
[259] Didenko V E and Skvortsov E D 2013 J. Phys. A: Math. Theor. 46 214010
[260] Chalmers G and Schalm K 2000 Phys. Rev. D 61 046001
[261] Francia D, Mourad J and Sagnotti A 2007 Nucl. Phys. B 773 203–37
[262] Sagnotti A 2011 PoS C ORFU2011 106
[263] Hijano E, Kraus P, Perlmutter E and Snively R 2016 J. High Energy Phys. JHEP01(2016)146
[264] Nishida M and Tamaoka K 2017 Prog. Theor. Exp. Phys. 2017 053B06
[265] Penedones J 2007 arXiv:0712.0802
[266] Fronsdal C 1974 Phys. Rev. D 10 589–98
[267] Papapetrou A 1948 Proc. R. Irish Acad. A 52A 11–23

115
[297] Gupta S N 1952 Proc. Phys. Soc. A 65 608–19
[298] Kraichnan R H 1955 Phys. Rev. 98 1118–22
[299] Feynman R P, Morinigo F B and Wagner W G 2003 Eur. J. Phys. 24 330
[300] Deser S 1970 Gen. Relativ. Gravit. 1 9–18
[301] Freedman D Z, van Nieuwenhuizen P and Ferrara S 1976 Phys. Rev. D 13 3214–8
[302] Deser S and Zumino B 1976 Phys. Lett. B 62 335
[303] Stelle K S and West P C 1978 Phys. Lett. B 74 330–2
[304] Ferrara S and van Nieuwenhuizen P 1978 Phys. Lett. B 74 333
[305] Cremmer E, Julia B and Scherk J 1978 Phys. Lett. B 76 409–12
[306] Alkalaev K B and Vasiliev M A 2003 Nucl. Phys. B 655 57–92
[307] Kessel P, Lucena Gómez G, Skvortsov E and Taronna M 2015 J. High Energy Phys. JHEP11(2015)104
[308] Vasiliev M A 1990 Phys. Lett. B 238 305–14
[309] Petkou A 1996 Ann. Phys. 249 180–221
[310] Skvortsov E D 2017 On (un)broken higher-spin symmetry in vector models Proc., Int. Workshop on Higher Spin Gauge Theories: Singapore (Singapore, 4–6 November 2015) pp 103–37 (http://inspirehep.net/record/1410620/files/arXiv:1512.05994.pdf)
[311] Joung E and Mernyukyan K 2014 J. High Energy Phys. JHEP05(2014)103
[312] Ostrogradskiy M 1850 Mem. Ac. St. Petersbourg VII 4 385
[313] Eliezer D A and Woodard R P 1989 Phys. Rev. D 40 465
[314] Eliezer D A and Woodard R P 1989 Nucl. Phys. B 325 389
[315] Müller-Hoissen F 1991 Ann. Phys. 503 543–57
[316] Simon J Z 1990 Phys. Rev. D 41 3720
[317] Schmidt H J 1994 Phys. Rev. D 49 3654
[318] Schmidt H J 1996 Phys. Rev. D 54 7906 (erratum)
[319] Nakamura T and Hamamoto S 1996 Prog. Theor. Phys. 95 469–84
[320] Woodard R P 2000 Phys. Rev. A 62 052105
[321] Bering K 2000 arXiv: hep-th/0007192
[322] Cheng T C, Ho P M and Yeh M C 2002 Nucl. Phys. B 625 151–65
[323] Kaku M and Kikkawa K 1974 Phys. Rev. D 10 1110–33
[324] Kaku M and Kikkawa K 1974 Phys.Rev. D 10 1823–43
[325] Erler T and Gross D J 2004 arXiv: hep-th/0406199
[326] Eden R J, Landshoff P V and Olive D I 1966 The Analytic S-Matrix (Cambridge: Cambridge University Press)
[327] Polchinski J 1999 arXiv: hep-th/9901076
[328] Susskind L 1998 98–112 arXiv: hep-th/9901079
[329] Susskind L 1999 AIP Conf. Proc. 493 98
[330] Giddings S B 1999 Phys. Rev. Lett. 83 2707–10
[331] Mack G 2009 Bull. J. Phys. 36 214–26
[332] Fitzpatrick A L, Kaplan J, Penedones J, Raju S and van Rees B C 2011 J. High Energy Phys. JHEP11(2011)095
[333] Fitzpatrick A L and Kaplan J 2012 J. High Energy Phys. JHEP10(2012)127
[334] Fitzpatrick A L and Kaplan J 2012 J. High Energy Phys. JHEP10(2012)032
[335] Costa M S, Gonçalves V and Penedones J 2012 J. High Energy Phys. JHEP12(2012)091
[336] Flajolet P, Gourdon X and Dumas P 1995 Theor. Comput. Sci. 144 3–58
[337] Bertrand B P J and Ovarez J P 2000 ‘The Mellin transform’ Transforms and Applications Handbook ed A D Poularikas ch 11 (Boca Raton, FL: CRC Press)
[338] Joung E, Nakach S and Tseytlin A A 2016 J. High Energy Phys. JHEP02(2016)125
[339] Beccaria M, Nakach S and Tseytlin A A 2016 J. High Energy Phys. JHEP09(2016)034
[340] Thomas T Y 1926 Proc. Natl Acad. Sci. 12 352–9
[341] Symanzik K 1972 Lett. Nuovo Cimento 3 734–8
[342] Bekaert X, Joung E and Mourad J 2009 J. High Energy Phys. JHEP05(2009)126
[343] Heemskerk I, Penedones J, Polchinski J and Sully J 2009 J. High Energy Phys. JHEP10(2009)079
[344] Berends F A, Burgers G J H and van Dam H 1986 Nucl. Phys. B 271 429
[345] Anselmi D 2000 Class. Quantum Grav. 17 1383–400