Dual Kinect v2 system can capture lower limb kinematics reasonably well in a clinical setting: concurrent validity of a dual camera markerless motion capture system in professional football players

Argyro Kotsifaki, Rodney Whiteley, Clint Hansen

ABSTRACT

Objectives To determine whether a dual-camera markerless motion capture system can be used for lower limb kinematic evaluation in athletes in a preseason screening setting.

Design Descriptive laboratory study.

Setting Laboratory setting.

Participants Thirty-four (n=34) healthy athletes.

Main outcome measures Three-dimensional lower limb kinematics during three functional tests: Single Leg Squat (SLS), Single Leg Jump, Modified Counter-movement Jump. The tests were simultaneously recorded using both a marker-based motion capture system and two Kinect v2 cameras using iPi Mocap Studio software.

Results Excellent agreement between systems for the flexion/extension range of motion of the shin during all tests and for the thigh abduction/adduction during SLS were seen. For peak angles, results showed excellent agreement for knee flexion. Poor correlation was seen for the rotation movements.

Conclusions This study supports the use of dual Kinect v2 configuration with the iPi software as a valid tool for assessment of sagittal and frontal plane hip and knee kinematic parameters but not axial rotation in athletes.

INTRODUCTION

Precompetition medical assessment of athletes commonly includes assessment of movement quality while athletes perform standardised testing procedures. Depending on the particular sport's performance requirements and injury patterns, different test batteries are employed in an effort to identify at-risk individuals to target for tailored interventions. The quantification of these movement assessment tests is typically performed with simple visual analysis and rating,1 or occasionally using video recording and later 2-dimensional analysis. Such approaches have shown limited accuracy in estimating injury likelihood, and it has been suggested that this could be attributed, in part, to the reduced objectivity of these approaches in comparison to 3-dimensional kinematic analyses.

In the context of football (soccer), commonly performed functional tests include: Single Leg Squat (SLS) assessing movement in frontal plane knee motion;2-4 Single Leg Jump (SLJ)3,4, and Counter-movement Jump (CMJ) for lower limb power estimation.5 Additionally, a modification of the CMJ with the athlete landing on one leg instead of two (Modified Counter Movement Jump (MCMJ)) has been recommended as being more sport-specific.8

Marker-based motion capture is currently considered the reference method for kinematic analyses. These approaches, however, require expensive equipment, significant operator training and analysis time as well as increased subject set-up time. Accordingly, these approaches are rarely employed in settings where time and/or financial constraints exist such as preseason screening of athletes performing functional movement. Additionally, these somewhat artificial laboratory conditions can cause unknown experimental artefacts.9

Recent advances and improved access to markerless motion capture technology have
made the use of low-cost motion analysis tools a possibility in the clinical setting. However, the validity of this technology in more complex functional movements is currently unclear. The majority of studies done so far used Kinect v1, one camera and the Software Development Kit (SDK) provided by Microsoft. Researchers have evaluated the configuration during working activities, gait in healthy population, gait in multiple-sclerosis, and after cerebrovascular accident, and during a jump test. More recently, single Kinect v2 was used with Microsoft SDK to test the validity during gait and for balance. A multi-Kinect v2 configuration with Microsoft SDK was tested for its validity during gait. To our knowledge, until now, no validation of a dual-camera markerless system during dynamic, advanced movements has been done.

The goals of this study were to examine the validity of a markerless motion capture system using 2 Kinect v2 cameras with custom software during functional movements commonly performed during pre-season physical screening evaluation.

METHOD

Participants

Thirty-four pain-free male professional football players participated in the study (table 1). All athletes had no previous lower extremity surgery and no current injury. We followed Fleiss’ recommendation for reliability studies after considering previous work in the area.

Table 1 Participant information

Participants	Mean±SD
Age (years)	26.63 (±4.23)
Weight (kg)	73.58 (±11.44)
Height (cm)	176.01 (±8.01)
BMI (kg/m²)	23.62 (±2.25)

BMI, body mass index.

Materials

Marker trajectories were measured with a 13-camera motion capture system (BTS-SMART 1000, BTS S.p.A., Italy) sampling at 250 Hz. Depth and colour image data were simultaneously recorded with 2 Kinect v2 cameras at 30 Hz (Kinect for Windows, Microsoft, Redmond, Washington, USA) and iPi Recorder (iPi Soft, Moscow, Russia). Kinect cameras were placed one in front and one to the left side of the capture area (in between the 2 Optojump sensors) at an angle of 70° between them (figure 1).

Data collection

After warm up for a minimum of 5 min, 31 markers were placed using clusters for thigh and shin and on anatomical landmarks according to standard marker protocol (figure 2). Participants stood in the capture area and performed three repetitions each of a SLS, a SLJ and a MCMJ, in the same order. Each trial was captured from BTS and Kinect cameras simultaneously.

Data analysis

Kinematic data from the Kinect cameras were processed using biomechanics add-on software (iPi Soft, Moscow, Russia). Marker trajectories from the marker-based system were processed using the SMART Analyser application (BTS S.p.A., Italy). For this analysis, the trajectories were adjusted to iPi Software such that comparison of the extracted data could be made. Marker based data were filtered using Butterworth Low Pass Filter at 6 Hz and resampled at 30 Hz. Kinematic data from both systems were extracted in Euler angles (rotation sequence XYZ),
Table 2 Range of angles, averaged over the three cycles during the Single Leg Squat test for BTS (considered as reference standard) and IPI software-Kinect configuration

Test	Segment Movement	System	Mean (SD)	95% CI	ICC(2,k) (95% CI)	P value	SEM (deg)	MDC (deg)
SLS_L (n=34)	THIGH	BTS	42.5 (6.5)	40.2 - 44.7	0.532 (-0.21 to 0.84)	0.000	3.8	10.5
		iPi	52.6 (7.8)	49.8 - 55.3				
Rotation		BTS	15.1 (3.2)	14.0 - 16.2	0.312 (-0.31 to 0.65)	0.069	3.5	9.6
		iPi	13.5 (4.5)	12.0 - 15.1				
Abduction/Adduction	BTS	13.2 (4.7)	11.6 - 14.9	0.775 (0.55 to 0.89)	0.791	3.4	9.5	
		iPi	13.5 (6.4)	11.2 - 15.7				
SHIN	Flexion/Extension	BTS	26.3 (5.3)	24.4 - 28.1	0.886 (0.73 to 0.95)	0.006	2.4	6.7
		iPi	28.0 (6.2)	25.8 - 30.2				
Rotation		BTS	21.0 (4.4)	19.5 - 22.5	0.126 (-0.31 to 0.47)	0.000	4.7	12.9
		iPi	15.5 (5.4)	13.6 - 17.4				
Abduction/Adduction	BTS	15.5 (6.7)	13.1 - 17.8	0.718 (0.17 to 0.88)	0.000	3.4	9.4	
		iPi	11.5 (5.2)	9.7 - 13.3				
FOOT	Flexion/Extension	BTS	4.7 (4.0)	3.3 - 6.0	0.324 (-0.20 to 0.68)	0.000	3.1	8.6
		iPi	12.2 (4.6)	10.6 - 13.8				
Rotation		BTS	2.4 (1.8)	1.7 - 3.0	0.084 (-0.09 to 0.32)	0.000	2.6	7.2
		iPi	11.5 (3.8)	10.2 - 12.8				
Abduction/Adduction	BTS	11.2 (4.1)	9.8 - 12.7	0.867 (0.73 to 0.93)	0.000	2.1	6.0	
		iPi	11.4 (4.7)	9.8 - 13.1				
SLS_R (n=34)	THIGH	BTS	43.0 (10.6)	39.3 - 46.7	0.604 (-0.13 to 0.88)	0.000	3.9	10.7
		iPi	57.1 (9.6)	53.7 - 60.4				
Rotation		BTS	13.9 (4.3)	12.4 - 15.4	0.515 (0.01 to 0.76)	0.891	3.4	9.4
		iPi	14.0 (4.0)	12.6 - 15.4				
Abduction/Adduction	BTS	16.1 (7.6)	13.4 - 18.7	0.758 (0.52 to 0.88)	0.134	4.1	11.4	
		iPi	17.6 (5.6)	15.7 - 19.6				
SHIN	Flexion/Extension	BTS	26.3 (5.7)	24.3 - 28.3	0.854 (0.70 to 0.93)	0.051	3.1	8.5
		iPi	27.8 (6.9)	25.4 - 30.2				
Rotation		BTS	20.2 (4.4)	18.7 - 21.8	-0.210 (-0.76 to 0.26)	0.000	4.7	13.0
		iPi	14.1 (4.1)	12.6 - 15.5				
Abduction/Adduction	BTS	16.5 (9.3)	13.3 - 19.7	0.319 (-0.18 to 0.63)	0.000	6.2	17.1	
		iPi	10.1 (4.1)	8.7 - 11.5				
FOOT	Flexion/Extension	BTS	5.7 (2.7)	4.7 - 6.6	0.079 (-0.28 to 0.41)	0.000	4.0	11.0
		iPi	11.1 (5.2)	9.3 - 12.9				
Rotation		BTS	2.2 (1.9)	1.5 - 2.9	0.102 (-0.10 to 0.36)	0.000	1.9	5.2
		iPi	8.4 (2.4)	7.6 - 9.2				
Abduction/Adduction	BTS	10.2 (2.9)	9.2 - 11.2	0.707 (0.42 to 0.85)	0.070	2.2	6.0	
		iPi	11.2 (3.6)	9.9 - 12.5				

ICC(2,k), intraclass correlation coefficient (absolute agreement); MDC, minimal detectable change calculated as SEMx1.96x√2. P<0.05; SEM, SE of the measure calculated as the square root of the residual mean square; SLS_L, Single Leg Squat Left; SLS_R, Single Leg Squat Right.

in degrees, relative to the ground for thigh, shin and foot. For each trial, time synchronisation was performed manually by identifying the starting point of each trial as the moment of heel raise from the floor and the end point as the moment of heel contact to the floor.

The range of movement at the thigh, shin and foot and peak angles at the thigh and shin were averaged across three cycles in each exercise and used for subsequent analysis. Range of movement was calculated for each joint of interest as the difference between...
Table 3
Range of angles, averaged over the three cycles during the Single Leg Jump test for BTS (considered as reference standard) and IPI software-Kinect configuration

Test	Segment Movement	System	Mean (SD)	95% CI	ICC(2,k) (95% CI)	P value	SEM	MDC
SLJ_L (n=31)	THIGH	BTS	39.0 (9.2)	35.6 to 42.3	0.491 (-0.17 to 0.82)	0.000	4.4	12.3
		iPi	52.5 (7.9)	49.6 to 55.4				
	Rotation	BTS	21.6 (6.5)	19.5 to 23.8	0.622 (0.21 to 0.82)	0.870	4.7	13.0
		iPi	21.8 (6.6)	19.4 to 24.3				
	Abduction/Adduction	BTS	22.2 (8.6)	19.0 to 25.3	0.462 (-0.09 to 0.74)	0.216	5.7	15.9
		iPi	20.3 (4.5)	18.7 to 22.0				
SHIN	Flexion/Extension	BTS	28.9 (7.5)	26.1 to 31.6	0.816 (0.62 to 0.91)	0.084	3.6	9.9
		iPi	27.2 (5.4)	25.2 to 29.2				
	Rotation	BTS	29.0 (4.9)	27.2 to 30.8	-0.260 (-0.94 to 0.28)	0.000	6.0	16.5
		iPi	22.2 (6.0)	20.0 to 24.3				
	Abduction/Adduction	BTS	19.2 (4.4)	17.6 to 20.8	0.529 (-0.20 to 0.84)	0.000	2.2	6.1
		iPi	13.2 (4.0)	11.8 to 14.7				
FOOT	Flexion/Extension	BTS	41.6 (10.0)	38.0 to 45.3	0.487 (-0.13 to 0.82)	0.000	4.2	11.7
		iPi	26.4 (7.9)	23.5 to 29.3				
	Rotation	BTS	15.0 (4.3)	13.4 to 16.6	0.461 (-0.04 to 0.73)	0.010	4.3	11.9
		iPi	18.0 (6.1)	15.8 to 20.2				
	Abduction/Adduction	BTS	23.3 (4.5)	21.6 to 25.0	0.213 (-0.18 to 0.55)	0.000	3.6	10.1
		iPi	15.1 (4.3)	13.5 to 16.7				
SLJ_R (n=33)	THIGH	BTS	39.3 (9.1)	36.0 to 42.5	0.658 (-0.19 to 0.88)	0.000	4.5	12.3
		iPi	47.4 (7.5)	44.7 to 50.1				
	Rotation	BTS	21.2 (5.3)	19.3 to 23.1	0.563 (0.15 to 0.78)	0.063	3.8	10.5
		iPi	19.4 (4.5)	17.8 to 21.0				
	Abduction/Adduction	BTS	17.1 (5.3)	15.2 to 19.0	0.725 (0.44 to 0.86)	0.036	3.2	8.8
		iPi	15.4 (4.6)	13.8 to 17.0				
SHIN	Flexion/Extension	BTS	27.9 (8.9)	24.8 to 31.1	0.926 (0.84 to 0.96)	0.022	3.0	8.4
		iPi	26.1 (8.3)	23.2 to 29.1				
	Rotation	BTS	29.2 (5.3)	27.3 to 31.1	0.297 (-0.21 to 0.63)	0.000	4.1	11.3
		iPi	21.6 (4.9)	19.9 to 23.4				
	Abduction/Adduction	BTS	16.7 (4.6)	15.1 to 18.3	0.780 (-0.16 to 0.94)	0.000	1.9	5.2
		iPi	12.8 (5.0)	11.0 to 14.6				
FOOT	Flexion/Extension	BTS	43.1 (9.9)	39.6 to 46.7	0.443 (-0.10 to 0.80)	0.000	4.4	12.1
		iPi	24.5 (9.7)	21.0 to 27.9				
	Rotation	BTS	14.4 (4.3)	12.9 to 15.9	0.421 (-0.11 to 0.71)	0.000	3.3	9.2
		iPi	18.0 (4.0)	16.6 to 19.5				
	Abduction/Adduction	BTS	21.7 (4.9)	19.9 to 23.4	0.289 (-0.20 to 0.64)	0.000	3.4	9.5
		iPi	13.5 (4.2)	12.0 to 15.0				

Statistical analysis

A two-way mixed analysis of variance (ANOVA) (absolute agreement) was performed to assess the reliability and the variability of the measurements. Between measurement agreement was assessed using intraclass correlation coefficient (ICC). SEM, SE of the measure calculated as the square root of the residual mean square; SLJ_L, Single Leg Jump Left; SLJ_R, Single Leg Jump Right.

maximum and minimum angles for each cycle. Mean subject-based values for each test were then determined. Note that these were calculated independently for both the markerless (Kinect) and marker-based (BTS) equipment.
Table 4 Range of angles, averaged over the three cycles during the modified counter movement test for BTS (considered as reference standard) and IPI software-Kinect configuration

Test	Segment	Movement	System	Mean (SD)	95% CI	ICC(2,k) (95% CI)	P value	SEM (deg)	MDC (deg)
MCMJ_L	THIGH	Flexion/Extension	BTS	59.8 (10.4)	56.1 to 63.5	0.851 (0.07 to 0.95)	0.000	3.5	9.8
			iPi	65.7 (9.3)	62.4 to 69.0				
		Rotation	BTS	26.1 (7.3)	23.5 to 28.7	0.518 (0.00 to 0.77)	0.000	4.7	13.0
			iPi	21.4 (5.1)	19.6 to 23.2				
		Abduction/Adduction	BTS	26.9 (5.8)	24.8 to 28.9	0.644 (0.23 to 0.83)	0.002	5.6	15.5
			iPi	31.6 (10.2)	28.0 to 35.2				
SHIN		Flexion/Extension	BTS	35.1 (5.8)	33.1 to 37.2	0.801 (0.60 to 0.90)	0.578	3.4	9.5
			iPi	34.7 (6.1)	32.5 to 36.8				
		Rotation	BTS	35.7 (9.5)	32.3 to 39.1	0.571 (0.05 to 0.80)	0.000	5.8	16.1
			iPi	29.7 (6.7)	27.3 to 32.1				
		Abduction/Adduction	BTS	19.6 (5.2)	17.8 to 21.4	0.493 (−0.05 to 0.75)	0.000	3.2	8.8
			iPi	16.1 (2.9)	15.1 to 17.1				
FOOT		Flexion/Extension	BTS	47.8 (10.8)	44.0 to 51.7	0.384 (−0.13 to 0.75)	0.000	5.2	14.3
			iPi	28.7 (8.1)	25.9 to 31.6				
		Rotation	BTS	22.4 (10.4)	18.7 to 26.1	0.799 (0.59 to 0.90)	0.053	4.8	13.2
			iPi	24.8 (6.0)	22.6 to 26.9				
		Abduction/Adduction	BTS	23.9 (5.6)	21.9 to 25.9	0.550 (−0.23 to 0.83)	0.000	2.8	7.7
			iPi	18.3 (3.5)	17.0 to 19.5				
MCMJ_R	THIGH	Flexion/Extension	BTS	56.8 (11.2)	53.0 to 60.7	0.765 (−0.19 to 0.93)	0.000	3.9	10.9
			iPi	66.3 (10.0)	62.8 to 69.8				
		Rotation	BTS	23.3 (4.7)	21.7 to 25.0	−0.280 (−1.55 to 0.36)	0.253	5.8	15.9
			iPi	21.7 (6.1)	19.6 to 23.8				
		Abduction/Adduction	BTS	28.5 (5.8)	26.4 to 30.5	0.657 (0.33 to 0.83)	0.059	5.0	13.8
			iPi	26.1 (8.2)	23.2 to 29.0				
SHIN		Flexion/Extension	BTS	33.7 (5.2)	31.9 to 35.5	0.856 (0.71 to 0.93)	0.887	3.0	8.2
			iPi	33.8 (6.4)	31.5 to 36.0				
		Rotation	BTS	35.4 (6.3)	33.2 to 37.6	0.049 (−0.50 to 0.45)	0.001	6.0	16.5
			iPi	30.0 (5.8)	28.0 to 32.1				
		Abduction/Adduction	BTS	21.9 (7.0)	19.5 to 24.3	−0.030 (−0.50 to 0.36)	0.000	5.4	14.9
			iPi	15.8 (2.9)	14.8 to 16.8				
FOOT		Flexion/Extension	BTS	46.0 (8.6)	43.0 to 49.0	0.202 (−0.13 to 0.55)	0.000	5.9	16.3
			iPi	26.5 (7.1)	24.0 to 29.0				
		Rotation	BTS	20.9 (4.0)	19.5 to 22.2	0.277 (−0.22 to 0.60)	0.000	4.5	12.5
			iPi	25.5 (6.1)	23.4 to 27.6				
		Abduction/Adduction	BTS	25.4 (4.9)	23.7 to 27.1	0.238 (−0.17 to 0.58)	0.000	4.5	12.5

ICC(2,k), intraclass correlation coefficient (absolute agreement); MCMJ_L, Modified Counter-Movement Jump Left; MCMJ_R, Modified Counter-Movement Jump Right; MDC, minimal detectable change calculated as SEMx1.96x√2. P<0.05; SEM, standard error of the measure calculated as the square root of the residual mean square.

Coefficients (ICC) (2, k; absolute agreement). Because the ICC does not allow us to fully appreciate the magnitude of within-subject variance, we also calculated the SE of measurement (SEM) and the minimal detectable change (MDC).24 SEM represents the within-subject reliability of the measure and, consequently, the reliability of the measure.24 The SEM was determined as √MSE, where MSE=mean square error from the ANOVA table. The MDC represents the threshold over which an individual change can be considered meaningful when taking into account the variability associated with both the measurement technique and the experimental sample and was
Table 5 Peak angles averaged over the three cycles during the Single Leg Squat test for BTS (considered as reference standard) and IPI software-Kinect configuration

Test	Movement	System	Mean (SD) (deg)	95% CI	ICC(2,k) (95% CI)	P value	SEM (deg)	MDC (deg)			
SLS_L (n=34)	Hip flexion	BTS	−30.3 (17.5)	−36.4	−24.2	0.896	−0.09	0.97	0.000	4.1	11.3
		iPi	−40.6 (18.0)	−46.9	−34.3						
	Hip adduction	BTS	−18.6 (5.5)	−20.6	−16.7	0.749	0.49	0.88	0.029	3.3	9.2
		iPi	−20.5 (5.4)	−22.4	−18.6						
	Knee flexion	BTS	30.0 (8.6)	27.0	33.0	0.932	0.71	0.98	0.000	2.5	6.8
		iPi	32.8 (8.5)	29.8	35.7						
	Knee adduction	BTS	−17.5 (6.1)	−19.6	−15.3	0.830	0.57	0.92	0.001	2.6	7.3
		iPi	−15.3 (4.5)	−16.8	−13.7						
SLS_R (n=34)	Hip flexion	BTS	−49.1 (14.8)	−54.3	−44.0	0.767	−0.12	0.94	0.000	3.9	10.9
		iPi	−63.9 (14.7)	−69.0	−58.7						
	Hip adduction	BTS	22.8 (4.7)	21.1	24.4	0.684	−0.13	0.89	0.000	2.6	7.2
		iPi	27.1 (5.1)	25.3	28.9						
	Knee flexion	BTS	25.9 (9.8)	22.5	29.4	0.947	0.83	0.98	0.001	2.8	7.8
		iPi	28.5 (10.7)	24.8	32.3						
	Knee adduction	BTS	18.3 (5.8)	16.3	20.3	0.665	0.08	0.86	0.000	3.0	8.2
		iPi	14.7 (3.8)	13.4	16.1						

ICC(2,k), intraclass correlation coefficient (absolute agreement); MDC, minimal detectable change calculated as SEM×1.96×√2. P<0.05; SEM, SE of the measure calculated as the square root of the residual mean square; SLS_L, Single Leg Squat Left; SLS_R, Single Leg Squat Right.

calculated using the equation MDC=1.96 × √2×SEM

Finally, to better understand system agreement of the peak joint angles, the 95% limits of agreement and the bias were calculated using Bland-Altman analysis. The bias represents the average difference in peak joint angle between the systems while the limits of agreement are the bias ±SD. Significance level was set at p<0.05. Correlation coefficients were interpreted as follows: less than 0.40 as poor, between 0.40 and 0.59 as fair, between 0.60 and 0.74 as good, between 0.75 and 1.00 as excellent. All analyses were performed using SPSS 23.0 (SPSS Statistics for Windows, V.23.0. Armonk, New York, USA: IBM).

RESULTS

Mean(±SD), absolute agreement ICC, SEM and MDC values for angles and ranges of motion are provided in tables 2–4.

Our results showed excellent between system agreement for shin movement in flexion/extension in all three tests, for both legs. Additionally, during the SLS test excellent agreement was found for thigh and foot adduction/abduction motion.

Results for peak angles are shown in tables 5–7. Between systems agreement was excellent for knee flexion in all tests for both legs.

Biases and limits of agreement (table 8) (online supplementary material 1: Bland-Altman plots) were documented. The mean differences are relatively low especially for hip adduction and knee flexion and adduction. For most of the measures examined, no systematic error is detected. For hip flexion, however, there appears to be a systematic error of approximately 10°.

DISCUSSION

Here, we have established, for the first time, validity values for SLS, CMJ and MCMJ in a cohort of professional athletes using a 2 camera markerless motion capture system (Kinect v2).

Our results indicate that a dual Kinect v2 configuration is a valid tool for assessment of sagittal plane knee range and peak angles, during squat and jumping tests. Additionally, during the SLS test excellent agreement between systems was found for thigh and foot adduction/abduction motion.

Although agreement improved when using two cameras configuration instead of one, the between system agreement varied widely, especially for movements of clinical interest like hip flexion, hip adduction and knee adduction. There was also variability in agreement for different joints and different parameters. For example, shin ab/adduction showed better reliability and validity when considering the peak values in comparison to the results from individual tests. Clinical interpretation is therefore recommended for each approach (eg, individual trials vs averaged values, vs peak values). It may be argued that, in the context of risk of an acute anterior cruciate ligament injury, the peak shin adduction is a more important metric than the average across a number of trials whereas in ‘overuse’ type injuries average values may be a more sensible estimator. Also, poor agreement was found...
Table 6 Peak angles averaged over the three cycles during the Single Leg Jump test for BTS (considered the gold standard) and IPI software-Kinect configuration

Test	Movement	System	Mean (SD)	95% CI	ICC(2,k) (95% CI)	P value	SEM	MDC	
			(deg)	Lower (deg)	Upper (deg)				
SLJ_L (n=31)	Hip flexion	BTS	-27.1 (16.4)	-33.2	-21.1	0.890 (-0.05 to 0.97)	0.000	4.3	12.0
		iPi	-36.6 (16.6)	-42.7	-30.5				
	Hip adduction	BTS	-19.0 (5.5)	-21.0	-17.0	0.826 (0.64 to 0.92)	0.744	2.9	7.9
		iPi	-18.7 (4.9)	-20.5	-16.9				
	Knee flexion	BTS	31.4 (10.6)	27.5	35.3	0.951 (0.90 to 0.98)	0.694	3.0	8.3
		iPi	31.7 (8.7)	28.5	34.9				
	Knee adduction	BTS	-16.5 (4.9)	-18.3	-14.7	0.883 (0.32 to 0.96)	0.000	1.7	4.7
		iPi	-14.0 (5.0)	-15.9	-12.2				
SLJ_R (n=33)	Hip flexion	BTS	-46.8 (11.8)	-51.0	-42.6	0.649 (-0.19 to 0.89)	0.000	5.0	14.0
		iPi	-60.7 (11.6)	-64.8	-56.6				
	Hip adduction	BTS	23.1 (5.5)	21.2	25.0	0.901 (-0.04 to 0.97)	0.002	3.7	10.2
		iPi	26.1 (5.9)	24.0	28.2				
	Knee flexion	BTS	27.5 (11.2)	23.6	31.5	0.956 (0.91 to 0.98)	0.513	3.1	8.6
		iPi	28.1 (9.9)	24.5	31.6				
	Knee adduction	BTS	18.8 (4.9)	17.0	20.5	0.726 (-0.21 to 0.92)	0.000	2.0	5.5
		iPi	14.3 (4.5)	12.6	15.9				

ICC(2,k), intraclass correlation coefficient (absolute agreement); MDC, minimal detectable change calculated as SEMx1.96x√2. P<0.05; SEM, SE of the measure calculated as the square root of the residual mean square; SLJ_L, Single Leg Jump Left; SLJ_R, Single Leg Jump Right.

Table 7 Peak angles averaged over the three cycles during the modified counter movement test for BTS (considered the gold standard) and IPI software-Kinect configuration

Test	Movement	System	Mean (SD)	95% CI	ICC(2,k) (95% CI)	P value	SEM	MDC	
			(deg)	Lower (deg)	Upper (deg)				
MCMJ_L (n=33)	Hip flexion	BTS	-49.4 (18.7)	-56.0	-42.8	0.947 (0.33 to 0.99)	0.000	3.7	10.2
		iPi	-56.3 (18.4)	-62.8	-49.7				
	Hip adduction	BTS	-18.8 (6.0)	-20.9	-16.7	0.792 (0.17 to 0.92)	0.002	2.5	7.0
		iPi	-15.3 (4.8)	-17.1	-13.6				
	Knee flexion	BTS	35.8 (10.1)	32.2	39.4	0.954 (0.80 to 0.98)	0.000	2.4	6.6
		iPi	38.4 (9.7)	35.0	41.9				
	Knee adduction	BTS	-16.3 (6.0)	-18.5	-14.2	0.873 (0.59 to 0.95)	0.000	2.4	6.5
		iPi	-13.9 (5.6)	-15.9	-12.0				
MCMJ_R (n=34)	Hip flexion	BTS	-65.7 (14.5)	-70.8	-60.7	0.846 (-0.14 to 0.96)	0.000	3.5	9.7
		iPi	-76.4 (13.9)	-81.3	-71.6				
	Hip adduction	BTS	24.0 (5.9)	21.9	26.0	0.713 (0.12 to 0.88)	0.000	3.1	8.5
		iPi	20.1 (5.0)	18.4	21.9				
	Knee flexion	BTS	31.0 (8.3)	28.1	33.9	0.945 (0.81 to 0.98)	0.000	2.5	6.8
		iPi	33.4 (9.6)	30.1	36.8				
	Knee adduction	BTS	16.8 (5.2)	15.0	18.6	0.742 (-0.01 to 0.91)	0.000	2.5	6.9
		iPi	13.1 (4.8)	11.4	14.7				

ICC(2,k), intraclass correlation coefficient (absolute agreement); MCMJ_L, Modified Counter-Movement Jump Left; MCMJ_R, Modified Counter-Movement Jump Right; MDC, minimal detectable change calculated as SEMx1.96x√2. P<0.05; SEM, SE of the measure calculated as the square root of the residual mean square.
were not. We suggest that this infers the amount of vari-
those who were subsequently injured and those who

group differences being 8.4° and 7.6°, respectively, for
the between

abduction at initial contact and peak during a drop jump
allows for adequate planning (power analyses) of inter-

results found for left side compared with right. Posi-
regarding all rotational movements. Regarding peak
angles, we noticed slightly, but inconsistently, better

important role in the

results obtained. Variations in footwear type and sole
height may have caused variations in ankle joint centre
detection, reducing measurement accuracy. Addition-

better assess if this approach would be viable for their
specific situation.

Some limitations should be considered in the inter-

of the study. Differences in the
definition of reference systems and processing between

UTURE investigations should use standardised footwear
frontal plane may positively influence the extracted data.

LOA (deg)

Table 8

Test	Movement	Lower LOA (deg)	Upper LOA (deg)	Bias (deg)
SLS_L	Hip flexion	−0.9	21.6	10.3
	Hip adduction	−7.4	11.1	1.8
	Knee flexion	−9.6	4.1	−2.8
	Knee adduction	−9.5	5.0	−2.2
SLS_R	Hip flexion	3.8	25.7	14.7
	Hip adduction	−11.6	2.9	−4.4
	Knee flexion	−10.4	5.2	−2.6
	Knee adduction	−4.7	11.8	3.6
SLJ_L	Hip flexion	−2.5	21.4	9.5
	Hip adduction	−8.2	7.7	−0.2
	Knee flexion	−8.6	8.0	−0.3
	Knee adduction	−7.1	2.2	−2.5
SLJ_R	Hip flexion	−0.1	27.8	13.9
	Hip adduction	−13.2	7.2	−3.0
	Knee flexion	−9.1	8.1	−0.5
	Knee adduction	−0.9	10.0	4.5
MCMJ_L	Hip flexion	−3.3	17.1	6.9
	Hip adduction	−10.4	3.6	−3.4
	Knee flexion	−9.2	4.0	−2.6
	Knee adduction	−8.9	4.1	−2.4
MCMJ_R	Hip flexion	1.0	20.4	10.7
	Hip adduction	−4.7	12.4	3.8
	Knee flexion	−9.2	4.4	−2.4
	Knee adduction	−3.1	10.6	3.8

LOA, limits of agreement; MCMJ_L, Modified Counter-Movement Jump Left; MCMJ_R, Modified Counter-Movement Jump Right; SLS_L, Single Leg Squat Left; SLS_R, Single Leg Squat Right.

protocol. In comparison to the displayed MDC values
here, we suggest that both the markerless and mark-
er-based approaches can readily detect such changes. Further to this, it was noted that the hip flexion angle
appeared to have a systematic error of approximately
10° when comparing the markerless and marker-based
systems. Post processing (ie, subtracting 10° from all
measures) could simply remove this artefact and result in
more accurate measures. It is uncertain from where this
shift arises; however, the closed nature of the processing
conducted through the markerless software capture
and subsequent processing likely render this a difficult
problem to resolve.

Recent studies using Kinect v2 multiple

by copyright.
REFERENCES

1. Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason functional movement screen? N Am J Sports Phys Ther 2007;2:147–58.

2. Nakagawa TH, Moriya ET, Maciel CD, et al. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther 2012;42:491–501.

3. Olsen OE, Myklebust G, Engerbretsen L, et al. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 2004;32:1002–12.

4. Zebis MK, Andersen LL, Bencke J, et al. Identification of athletes at future risk of anterior cruciate ligament ruptures by neuromuscular screening. Am J Sports Med 2009;37:1967–73.

5. Gustavsson A, Neeter C, Thomeé P, et al. The da Kinect® camera system for measurement of lower extremity landing biomechanics between male and female dancers and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2016;14:778–88.

6. Young WB, MacDonald C, Flowers MA. Validity of double- and single-leg vertical jumps as tests of leg extensor muscle function. J Strength Cond Res 2001;15:6–11.

7. Markovic G, Dizdar D, Jukić I, et al. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res 2004;18:551–5.

8. Jacob CA, Uhli TL, Mattacola CG, et al. Hip abductor function and lower extremity landing kinematics: sex differences. J Athl Train 2007;42:76–83.

9. Münthermann L, Corazza S, Andriacchi TP. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J Neuroeng Rehabil 2006;3:6.

10. Eltoukhy M, Kelly A, Kim CY, et al. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture 2017;51:77–83.

11. Patrizi A, Pennestri E, Valentini PP. Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics. Ergonomics 2016;59:155–62.

12. Bonnechère B, Jansen B, Salvia P, et al. Validity and reliability of the Kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait Posture 2014;39:593–8.

13. Auvinet E, Multon F, Aubin CE, et al. Detection of gait cycles in treadmill walking using a Kinect. Gait Posture 2015;41:722–5.

14. Xu X, McGorry RW, Chou LS, et al. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking. Gait Posture 2015;42:145–51.

15. Behrens J, Pfüriller C, Mansow-Model S, et al. Using perceptive computing in multiple sclerosis - the Short Maximum Speed Walk test. J Neuroeng Rehabil 2014;11:89.

16. Vernon S, Paterson K, Bower K, et al. Quantifying individual components of the timed up and go using the Kinect in people living with stroke. Neurorehabil Neural Repair 2015;29:48–53.

17. Stone EE, Butler M, McRuer A. Evaluation of the Microsoft Kinect for screening ACL injury. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE 2013:4152–5.

18. Clark RA, Pua YH, Oliveira CC, et al. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control. Gait Posture 2015;42:210–3.

19. Dolatabadi E, Taati B, Mihailidis A. Concurrent validity of the Microsoft Kinect for Windows v2 for measuring spatiotemporal gait parameters. Med Eng Phys 2016;38:952–8.

20. Geerse DJ, Coolen BH, Roerdink M. Kinematic Validation of a Multi-Kinet v2 Instrumented 10-Meter Walkway for Quantitative Gait Assessments. PLoS One 2015;10:e0139913.

21. Fleiss JL. The design and analysis of clinical experiments. Wiley, 1999.

22. Perrott MA, Pizzari T, Cook J, et al. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems. Gait Posture 2017;52:57–61.

23. Schmitz A, Ye M, Boggess G, et al. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system. Gait Posture 2015;41:694–8.

24. Beckerman H, Roebroeck ME, Lankhorst GJ, et al. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res 2001;10:571–8.

25. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.

26. Portney LG, Watkins MP. Foundations of clinical research: applications to practice.

27. Eltoukhy M, Kelly A, Kim CY, et al. Validation of the Microsoft Kinect® camera system for measurement of lower extremity jump landing and squatting kinematics. Sports Biomech 2016;15:89–102.

28. Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 2006;34:492–501.

29. Kornaczek TW, Torny MR, Iwasaki M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med 2008;36:554–65.

30. Liederbach M, Kremenic UJ, Onishimo KD, et al. Comparison of landing biomechanics between male and female dancers and athletes, part 2: influence of fatigue and implications for anterior cruciate ligament injury. Am J Sports Med 2014;42:1089–95.

Patient consent for publication Obtained.

Ethics approval ADL E201300003.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement The data can be accessed via the corresponding author.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: http://creativecommons.org/licenses/by/4.0/