A construction of product blocks with a fixed block size

Sergey Bereg

Abstract

Let $M(n, d)$ be the maximum size of a permutation array on n symbols with pairwise Hamming distance at least d. Some permutation arrays can be constructed using blocks of certain type \cite{2} called product blocks in this paper. We study the problem of designing (q, k)-product blocks with a fixed block size k.

1 Introduction

Recently, new bounds for permutations arrays found in \cite{2} by applying the contraction operation \cite{1} to the groups $AGL(1, q)$ and $PGL(2, q)$ for a prime power q satisfying $q \equiv 1 \pmod{3}$. The contraction of $PGL(2, q)$ gives rise to a new problem of finding a maximum independent set in the contraction graph. This problem reduces to another interesting problem of designing blocks satisfying some conditions.

For the sake of simplicity, consider a special case first where q is a prime number. We define q-product blocks as a collection B_1, B_2, \ldots, B_q of subsets of $\{1, 2, \ldots, q\}$ such that for any two elements $a \in B_i$ and $b \in B_j$ with $i < j$,

$$(b - a)(j - i) \neq 1 \pmod{q}.$$ \hspace{1cm} (1)

Clearly, one can identify q and 0 and define the q-product blocks as a collection $B_0, B_1, \ldots, B_{q-1}$ of subsets of $\{0, 1, 2, \ldots, q - 1\}$ such that for any two elements $a \in B_i$ and $b \in B_j$ with $i < j$, Equation (1) holds. We will use this definition in the paper.

In general, when q is a prime power, we define q-product blocks, q-PB for short, as a collection of q blocks $B_s, s \in GF(q)$ (labeled by the elements of a Galois field $GF(q)$) such that (i) each block $B_s \subseteq GF(q)$, and (ii) for any two elements $a \in B_r$ and $b \in B_s$,

$$(b - a)(s - r) \neq 1 \text{ in } GF(q).$$ \hspace{1cm} (2)

Theorem 1. If there exist q-product blocks of total size v for a prime $q = 1 \pmod{3}$, then $M(q, q - 3) \geq (q - 1)(v + q)$.

In this paper we study q-product blocks with a fixed block size k, (q, k)-PB for short. In particular, we are interested in block constructions with large block size. Let $\kappa(q)$ be the largest number k such that there exist q-product blocks with block size k. We also propose to study block constructions using only some number of elements of $GF(q)$, say t elements of $GF(q)$. We call a set of q-product blocks a (q, k, t)-PB if it has block size k and uses only t elements of $GF(q)$.

*Department of Computer Science, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas.
2 \((q, k, t)\)-product blocks

We show some bounds of \(\kappa(q)\) and properties of \((q, k)\)-PBs.

Proposition 1. (i) For any prime power \(q\), \(\kappa(q) \geq 1\). For example, the blocks could be set \(B_i := \{a\}, 0 \leq i < q\) for some fixed \(a\) in \(GF(q)\).

(ii) If the blocks of a \((q, k)\)-PB have at least one element \(a\) in common, then all blocks are equal, i.e., \(B_i = \{a\}\) for all \(0 \leq i < q\).

(iii) There is no \((q, k, k + 1)\)-PB for any prime number \(q\) and \(k \geq 1\). In particular, there is no \((q, 1, 2)\)-PB and there is no \((q, 2, 3)\)-PB. Also, \(\kappa(3) = 1\).

Construction of \((q, k, t)\)-product blocks is not trivial if \(k \geq 2\). Suppose that \(k = 2\). An interesting question is to find a smallest number \(t\) such that \((q, 2, t)\)-product blocks exist for any prime power \(q\). By Proposition\(^1\)iii), this number is at least four. We conjecture that it is at least five for \(q \geq 5\).

Conjecture 1. A \((q, 2, 4)\)-product blocks do not exist for a prime power \(q \geq 5\).

3 \((q, 2, t)\)-product blocks for \(t = 5, 6\)

In this section we study product blocks for block size \(k = 2\) using \(t = 5\) symbols. We implemented a program for searching \((q, 2, 5)\)-product blocks using random blocks using elements \(\{0, 1, 2, 3, 4\}\). It turns out that in many cases the blocks are \(A = \{0, 1\}, B = \{1, 2\}, C = \{2, 3\}, D = \{3, 4\}, E = \{0, 4\}\). For example, the blocks for \(q = 5\) are A, D, B, E, C.

The search program did not find \((q, 2, 5)\)-product blocks for any prime \(q, 5 < q < 31\). However, it found \((31, 2, 5)\)-product blocks of the following structure. Only blocks of type \(A, B, C, D, \) and \(E\) are used. So, the blocks are represented as a sequence of 31 letters, see Table\(^1\).

Tables \(^1\) and \(^2\) show \((q, 2, 5)\)-product blocks for \(q < 90\) computed using the search program. The notation in Tables \(^1\) and \(^2\) is the following. Blocks are labeled as \(A = \{0, 1\}, B = \{1, 2\}, C = \{2, 3\}, D = \{3, 4\}, E = \{0, 4\}\). Additional blocks are labeled as \(F = \{1, 4\}, G = \{0, 2\}, H = \{2, 4\}, I = \{1, 3\}, J = \{0, 3\}\). A space is added after every 10 blocks in the sequences. The column * contains labels \(F, G, H, I, J\) used in the corresponding blocks.

When the search program could not find \((q, 2, 5)\)-product blocks for some value of \(q\), it tries to find \((q, 2, 6)\)-product blocks. In some cases only blocks of type \(\{i, i + 1\}\) were found. For example, \((13, 2, 6)\)-product blocks form a sequence

\[C, F, C, F, C, F, C, A, D, A, E, B, E, \]

where \(A = \{0, 1\}, B = \{1, 2\}, C = \{2, 3\}, D = \{3, 4\}, E = \{4, 5\}, \) and \(F = \{0, 5\}\). We tested all prime numbers up to 100 and found that \((q, 2, 5)\)-product blocks exist for

\[q = 5, 31, 37, 41, 47, 53, 61, 67, 71, 73, 79, 83, 89, 97 \]

and \((q, 2, 6)\)-product blocks exist for

\[q = 7, 11, 13, 17, 19, 23, 29, 43, 59. \]
4 (q, k)-product blocks

We develop another search program for computing lower bounds for $\kappa(q)$ using random blocks of size larger than two. The (q,k)-product blocks for $q < 40$ and the best computed values of k are shown in Table 3. The search program did not find $(13,3)$-product blocks, so the best lower bound for $\kappa(13)$ is two and the corresponding $(13,2)$-product blocks are shown in the previous section.

An extensive search was done for $q < 400$ and the results are shown in Table 4. The third column shows the lower bounds of $M(q,q-3)$ computed using Theorem 1. Based on the results we conjecture the following bounds.

Conjecture 2. For all prime numbers $q \geq 19$, $\kappa(q) \geq 4$.

Conjecture 3. For all prime numbers $q \geq 59$, $\kappa(q) \geq 5$.

Conjecture 4. For all prime numbers $q \geq 163$, $\kappa(q) \geq 6$.

Conjecture 5. For all prime numbers $q \geq 293$, $\kappa(q) \geq 7$.

Notice that ith conjecture follows from $(i+1)$st conjecture for $i = 2, 3$ and 4.

References

[1] S. Bereg, A. Levy, and I. H. Sudborough. Constructing permutation arrays from groups, *Designs, Codes and Cryptography*, 86:1095–1111, (2018), https://doi.org/10.1007/s10623-017-0381-1.

[2] S. Bereg, Z. Miller, L. Mojica, L. Morales, and I. H. Sudborough. Maximizing hamming distance in contraction of permutation arrays, *arXiv:1804.03768*, (2018), https://arxiv.org/abs/1804.03768.
\(q \)	\((q, 2, 5)\)-product blocks	*
5	A D B E C	
31	C A E C B E C B E C B E C B A D B A D B A D C A D C A D	
37	C B A D C B E C B A E C B A D C B E D C A E C B A D C B E C B A D C B E C B A D C B E D C	F
41	B E C B E C A D C F E C A D C A D C A D B A D B A D B E H B A D B E C B E C B E C B E C B E C B A D C	GH
47	B E C B A D B A E C B E C B E D C A D C B E C B A D C B A D C B A D C A D C	I
53	B A D C B E D C B E C B A D C B A D C B A D C B A D C B A D C B A D C B A D C B A D C	HJ
61	C A D B A D B E C B E C A D C A D B E D B E C B E C A D C A D B E D B E C B E C A D B A D C A D C	J
67	B E C A E C B E C B E C B E C B E C B E C B E C B E C B E C B E C B E C B E C B E C B E C B E C B E C B E C B A D B A D B E D B E C B E C B E C B A D B A D B A D B A D B A D B A D B A D B	HIJ
71	C B E C A D B A D B E C A D C A D B E C A D C A D B E C B E C A D C A D B E C B E C A D C A D B E C B E C A D B A D B E	GH
73	E C B A D C A D C B E C B F D C A E C B E C B E C B A D C B E C B E C B A D C B E C B E C B A D C A D C B E D B A D C A D C B E D B A D C A D C B E D B A D C A D C B E D B A D C A D C B E D B A D C A D C B E D B A D C A D C B E D B A D C A D C B E D B A D C A D C B E D B A D C A D C B E D B A D C A D C B E D B A D C A D C B	FHJ

Table 1: \((q, 2, 5)\)-product blocks for \(q \leq 73 \).
q	$(q, 2, 5)$-product blocks	*
79	A D C B E D C B F D B A D C B E C B A J C B A D C B E C B A D C B E C B E H B A D C B A E C B E C B A D C B E D C B E C B A D C B E C B A D C B E	FHJ
83	A D C A J C A D C B E C B E D B A D C A D C A E C B E C B A D B A D B A D C A D C B E C B E D B E C B A D C A D C B E C B E C B A E C B E C B E C B E H B	HJ
89	D B A D C B E C B A D C A E C B E C B A D C B E D I A D C B E C B A D I A D C B A D B A J C B E C B A D C B E C B A D C B E C B A D C B E C B A D C B E C B E	IJ

Table 2: $(q, 2, 5)$-product blocks for $73 < q \leq 89$.
Table 3: \((q, k)\)-product blocks.

\(q\)	\(k\)	\((q, k)\)-product blocks						
5	2	0 3, 0 2, 2 4, 1 4, 1 3						
7	2	0 3, 2 6, 1 5, 0 4, 3 6, 2 5, 1 4, 1 4 9						
11	3	1 6 9, 3 6 9, 0 3 6, 0 3 8, 0 5 8, 2 5 8, 2 5 10, 2 7 10, 4 7 10, 1 4 7, 1 4 9						
17	3	3 6 11, 3 8 13, 10 11 13, 1 7 10, 1 10 12, 5 8 15, 0 5 12, 9 10 12, 2 3 12, 7 9 14, 0 2 7, 4 10 14, 1 7 14, 4 11 16, 1 2 8, 1 4 16, 8 13 15						
19	4	0 1 8 12, 4 5 12 16, 7 8 15 16, 0 1 11 12, 3 4 8 16, 0 7 8 18, 3 4 10 15, 7 8 14 15, 0 10 11 18, 2 3 14 15, 6 7 17 18, 2 3 9 10, 2 6 13 14, 9 10 17 18, 2 9 13 14, 5 6 16 17, 1 2 8 9, 1 5 12 13, 5 8 9 16						
23	4	7 8 12 13, 1 6 17 20, 6 10 13 14, 3 8 19 22, 1 8 12 15, 1 5 10 17, 3 10 14 22, 3 7 8 12, 1 5 19 20, 5 10 14 17, 0 3 21 22, 7 15 16 19, 0 1 6 19, 14 17 18 21, 3 7 11 21, 0 16 19 20, 5 9 13 16, 2 18 21 22, 11 14 15 18, 0 4 8 20, 13 16 17 20, 2 6 10 15, 15 18 19 22						
29	5	7 10 13 16 19, 15 18 21 24 27, 0 3 6 23 26, 2 5 8 11 14, 10 13 16 19 22, 1 18 21 24 27, 0 3 6 9 26, 5 8 11 14 17, 13 16 19 22 25, 1 4 21 24 27, 0 3 6 9 12, 8 11 14 17 20, 16 19 22 25 28, 1 4 7 24 27, 3 6 9 12 15, 11 14 17 20 23, 2 19 22 25 28, 1 4 7 10 27, 6 9 12 15 18, 14 17 20 23 26, 2 5 22 25 28, 1 4 7 10 13, 9 12 15 18 21, 0 17 20 23 26, 2 5 8 25 28, 4 7 10 13 16, 12 15 18 21 24, 0 3 20 23 26, 2 5 8 11 28						
31	4	0 6 7 8, 12 14 22 24, 0 8 18 29, 2 12 14 22, 5 27 29 30, 3 9 11 23, 17 25 27 28, 0 3 6 9 12, 8 11 14 17 20, 16 19 22 25 28, 1 4 7 24 27, 3 6 9 12 15, 11 14 17 20 23, 2 19 22 25 28, 1 4 7 10 27, 6 9 12 15 18, 14 17 20 23 26, 2 5 22 25 28, 1 4 7 10 13, 9 12 15 18 21, 0 17 20 23 26, 2 5 8 25 28, 4 7 10 13 16, 12 15 18 21 24, 0 3 20 23 26, 2 5 8 11 28						
37	4	3 13 16 31, 18 22 30 33, 14 24 25 30, 6 10 17 35, 8 9 15 30, 1 15 20 32, 6 17 18 26, 4 11 30 35, 15 23 28 33, 1 13 18 28, 4 11 13 27, 8 13 34 35, 15 21 25 27, 7 8 12 31, 10 12 29 30, 6 10 17 29, 2 3 9 25, 9 21 23 34, 2 6 30 33, 10 19 21 36, 1 17 27 33, 5 13 20 36, 5 18 29 32, 14 16 22 29, 7 26 31 32, 3 7 24 31, 1 12 22 24, 8 9 18 31, 5 14 16 27, 3 5 7 24, 5 7 12 14, 3 12 32 35, 0 11 15 17, 9 13 23 34, 11 13 17 32, 0 9 10 35, 9 20 33 35						
q	k	$M(q, q - 3)$	q	k	$M(q, q - 3)$	q	k	$M(q, q - 3)$
-----	-----	---------------	-----	-----	---------------	-----	-----	---------------
5	2	-	109	5	70,632	251	6	-
7	2	126	113	5	-	257	6	-
11	3	-	127	5	96,012	263	6	-
13	2	468	131	5	-	269	6	-
17	3	-	137	5	-	271	6	512,190
19	4	1,710	139	5	115,092	277	6	535,164
23	4	-	149	5	-	281	6	-
29	5	-	151	5	135,900	283	6	558,642
31	4	4,650	157	5	146,952	293	7	-
37	4	6,660	163	6	184,842	307	7	751,536
41	4	-	167	6	-	311	7	-
43	4	9,030	173	6	-	313	7	781,248
47	4	-	179	6	-	317	7	-
53	4	-	181	6	228,060	331	7	873,840
59	5	-	191	6	-	337	7	905,856
61	5	21,960	193	6	259,392	347	7	-
67	5	26,532	197	6	-	349	7	971,616
71	5	-	199	6	275,814	353	7	-
73	5	31,536	211	6	310,170	359	7	-
79	5	36,972	223	6	346,542	367	7	1,074,576
83	5	-	227	6	-	373	7	1,110,048
89	5	-	229	6	365,484	379	7	1,146,096
97	5	55,872	233	6	-	383	7	-
101	5	-	239	6	-	389	7	-
103	5	63,036	241	6	404,880	397	7	1,257,696
107	5	-						

Table 4: Lower bounds for $\kappa(q)$ and $M(q, q - 3)$ for prime numbers $q < 400$.

7