4D Visualization of a Nonthermal Coherent Magnon in a Laser Heated Lattice by an X-ray Free Electron Laser

Hoyoung Jang, Hiroki Ueda, Hyeong-Do Kim, Minseok Kim, Kwang Woo Shin, Kee Hoon Kim, Sang-Youn Park, Hee Jun Shin, Pavel Borisov, Matthew J. Rosseinsky, Dogeun Jang, Hyeongi Choi, Intae Eom, Urs Staub, and Sae Hwan Chun*

Ultrafast optical manipulation of magnetic phenomena is an exciting achievement of mankind, expanding one’s horizon of knowledge toward the functional nonequilibrium states. The dynamics acting on an extremely short timescale push the detection limits that reveal fascinating light–matter interactions for nonthermal creation of effective magnetic fields. While some cases are benchmarked by emergent transient behaviors, otherwise identifying the nonthermal effects remains challenging. Here, a femtosecond time-resolved resonant magnetic X-ray diffraction experiment is introduced, which uses an X-ray free-electron laser (XFEL) to distinguish between the effective field and the photoinduced thermal effect. It is observed that a multiferroic Y-type hexaferrite exhibits magnetic Bragg peak intensity oscillations manifesting entangled antiferromagnetic (AFM) and ferromagnetic (FM) Fourier components of a coherent AFM magnon. The magnon trajectory constructed in 3D space and time domains is decisive to evince ultrafast field formation preceding the lattice thermalization. A remarkable impact of photoexcitation across the electronic bandgap is directly unraveled, amplifying the photomagnetic coupling that is one of the highest among AFM dielectrics. Leveraging the above-bandgap photoexcitation, this energy-efficient optical process further suggests a novel photomagnetic control of ferroelectricity in multiferroics.

1. Introduction

Magnetism maneuverable by an ultrashort optical laser pulse represents an outstanding showcase that illuminates intriguing light interactions with fundamental physical degrees of freedom in condensed matter.[1–3] Apart from the magnetic field component of the electromagnetic wave, the light–matter interactions may produce an internal effective magnetic field through relativistic spin–orbital coupling (spin/orbital degrees of freedom),[4–6] resonant electronic transitions (charge degree of freedom),[7–8] and direct optical pumping of phonons (lattice degree of freedom).[9–12] Each of the processes commences nonthermally by the photoirradiation, being dissociated with the photoinduced thermal effect.[13] The fascinating physics uncovered in these processes have contributed to the current research paradigm of investigating photoinduced nonequilibrium states in quantum materials[14]. The emerging research field of optospintronics regards those nonthermal effects as innovative
pathways to accomplish ultrafast control of the magnetic moment.[1–3]

A variety of nonthermal ways to create an effective field have been identified with the aid of time-resolved optical spectroscopy experiments.[4–12,15–23] However, the fact that the optical techniques also sense photoinduced changes in other degrees of freedom makes it nontrivial to distinguish the nonthermally created field from the photoinduced thermal effect. While some cases can be attributed to transient magnetic behaviors distinct from the static ones at the elevated temperature, e.g., pump-light polarization dependences,[4,5,16–18] or emergent new properties,[13,24] or inferred by using a low pump fluence supposed to increase temperature insignificantly,[21,26] if neither of these criteria is applicable, it becomes challenging to identify the origin of magnetic dynamics. For dielectric materials, photoexcitation above the electronic bandgap is one of the most effective ways to optically manipulate material properties based on large amount of the photoexcited charge carriers coupled to the other physical degrees of freedom.[14,27–29] However, for the study of the nonthermal field effects, this approach has been largely avoided because of the great confusion with thermal effect caused by formidable light absorption. If one has experimental probes that are able to differentiate the dynamics of spin and the other degrees of freedom, the gateway to revealing nonthermal magnetic effects can be widely open.

The recent development of X-ray free electron lasers (XFELs) has made a breakthrough to extend various X-ray spectroscopy and scattering techniques into ultrafast time domain based on femtosecond X-ray pulses with high brightness.[30] In this work, we devise time-resolved resonant magnetic X-ray diffraction to investigate temporal changes of the magnetic Bragg reflections. The transverse conical magnetic order consists of FM and AFM components, projecting each component on the x-axis in the ab-plane aligns the FM component of \(\mu_i \) (\(m = \mu_{11} + \mu_{12} \)) along the field and the AFM component of \(\mu_i \) (\(l = \mu_{11} - \mu_{12} \)) along the orthogonal y-axis in the ab-plane. Meanwhile, \(\mu_i \) directs its FM component opposite to the field and AFM component along the 3-axis perpendicular to the ab-plane. These individual sublattices of \(\mu_i \) and \(\mu_s \) give rise to FM (0 0 3) and AFM (0 0 3 ± 1.5) Bragg reflections with integer n. These reflections can be probed using resonant soft X-ray diffraction near the Fe L edge (\(\approx 710 \) eV), owing to the low c-axis parameter of BSZFQO (c = 43.3 Å, a = b = 5.85 Å) (Figure 1c). Figure 1d summarizes the experimental setup, where an external magnetic field is applied normal to the horizontal scattering plane. This geometry allows the \(\pi - \pi' \) and \(\pi - \sigma' \) polarization channels to selectively detect the FM and AFM components, projecting each component on the x-axis and the incident X-ray direction (|| k), respectively.

We employ the optical laser pump and X-ray probe experiment to investigate temporal changes of the magnetic Bragg reflections. The transverse conical magnetic structure is stable below 260 K with an external magnetic field (\(H_{ext} \)) applied along the ab-plane. To prepare the magnetic state, the sample was cooled from 300 K (above the magnetic transition temperature) down to 82 K (the base temperature of the liquid-nitrogen cryostat) with \(H_{ext} = 200 \) mT (|| ab-plane) applied during the cooling process (Figure 1d). The pump–probe experiment was conducted mostly at the base temperature because the oscillating features in the magnetic Bragg peak intensities could be clearly shown. The optical laser with the wavelength (\(\lambda_{laser} \)) = 400 nm was used to excite the valence electrons above the direct bandgap (Figure S1, Supporting Information).[39] We tuned the X-ray to the incident energy (\(E_i \)) = 702 eV, with an energy of a few eV below the Fe L edge, which penetrates deep into the material and probes the bulk properties (see Experimental Section). Figure 2a shows the transient intensities of FM (0 0 3), AFM (0 0 3 ± 1.5), and (0 0 4.5) Bragg reflections as a function of time delay after the photoirradiation. We observe that these Bragg peaks display multiple oscillation cycles with a period of 24 ± 0.5 ps. Their Fourier transformation shows a single oscillation frequency centered at 41.7 ± 0.9 GHz (\(\approx 0.17 \) meV), implying a quasiparticle state present with the corresponding energy (see Figure S3, Supporting Information).

Quasiparticles such as coherent phonons or magnons are able to oscillate Bragg reflection intensities. We first inspect the relevance of coherent phonon for the oscillating feature. The resonant FM (0 0 3) Bragg peak contains structure factors not only from the FM component but also from the crystal structure and the orbital asphericity. If the coherent phonon is the origin of intensity oscillation in the middle panel of Figure 2a, the same oscillation will be present in a non-resonant condition suppressing x = 0.00 which has drawn significant attention as a rare example of room-temperature magnetoelectrics.[38] We choose the x = 0.08 compound marking a giant magnetoelectric coupling that enables \(P_{FE} \) to be switched by a small magnetic field of <10 mT.[36] We anticipate that the photoinduced effective magnetic field in this multiferroic not only controls the magnetization but also potentially manipulates \(P_{FE} \).

2. Results and Discussion

2.1. Photoinduced Intensity Oscillations in Magnetic Bragg Reflections

The Y-type hexaferrite studied in this work is \(\text{Ba}_{0.08}\text{Sr}_{1.5}\text{Zn}_2\text{(Fe}_{1-x}\text{Al}_x)_3\text{O}_{12} \) (\(x = 0.08 \), BSZFQO), a multiferroic material that features magnetically-induced ferroelectric polarization \(P_{FE} \).[36] It has a transverse conical magnetic order, i.e., a canted AFM structure with a cycloid spin component, which involves inverse Dzyaloshinskii–Moriya interaction in creating \(P_{FE} \) (Figure 1a).[36,37] The notion that this magnetic order persists close to or even at room temperature (for
the magnetic contribution. It turns out such an oscillation is not shown in the non-resonant (0 0 3) reflection (shown later in Figure 4). Thus, we turn our attention to the coherent magnon as the possible origin. We observe that reversing an external magnetic field inverts the oscillation profiles of the AFM (0 0 4.5) Bragg reflection, while the profiles of the FM (0 0 3) Bragg reflection remain unaffected (Figure 2b,c). Notably, an AFM magnon with \(\mu_1 \) and \(\mu_2 \) precessing counter-clockwise around quasi-equilibrium positions fully explains the oscillation profiles of the AFM (0 0 4.5) and FM (0 0 3) intensities (Figure 2d). For example, the AFM precession projected on the scattering plane for \(H_{\text{ext}} \parallel +x \) (Figure 2e) realizes that the AFM (0 0 4.5) intensity \(\langle \mathbf{m} \cdot \mathbf{r} \rangle \) minimizes at \(\pi/2 \)-phase (every first quarter period) and maximizes at \(3\pi/2 \)-phase (every third quarter period). Meanwhile, the FM (0 0 3) intensity \(\langle \mathbf{m} \cdot \mathbf{x} \rangle \) minimizes at \(\pi \)-phase (every half period) and maximizes at \(2\pi \)-phase (every full period). These relations result in inverted-sinusoidal and cosinusoidal profiles in the AFM (0 0 4.5) and FM (0 0 3) Bragg reflections, respectively. On the other hand, when \(H_{\text{ext}} \) is reversed \(\parallel -x \), the \(\mu_L \) and its precession trajectory are rotated by 180° around the \(z \)-axis (Figure 2f): the AFM component precessing on the scattering plane is reversed, while the FM component out of the plane keeps the mirror symmetry. As the consequence, the AFM and FM profiles are inverted and maintained, i.e., sinusoidal and cosinusoidal, respectively (Figure 2b,c). We confirm that the other combinations of the precessing motions are incompatible with the intensity oscillations in Figure 2a–c (see Note S4 and Figures S5–S8, Supporting Information).

2.2. An Effective Magnetic Hamiltonian Quantifying the Precessing Magnetic Moment

An effective magnetic Hamiltonian model provides a further understanding of the coherent AFM magnon. This Hamiltonian is built from the \(L \) and \(S \) blocks:[40,41]

\[
H = J_{SS} \sum_{i,j} \mu_S^i \cdot \mu_S^j + 2J_{LL} \mu_L^i \cdot \mu_L^j + 2J_{LS} \mu_S^i \cdot \mu_S^j
\]

\[
+ D_L \sum_{i,j} (\mu_L^i)^2 + D_S \sum_{i,j} (\mu_S^j)^2 - H_x \sum_{i,j} (\mu_L^i + 2\mu_S^j)
\]

with \(J_{LS}, J_{LL}, \) and \(J_{SS} \) being the exchange interaction constants of \(L \) and \(S \) and \(L \) and \(L \) and \(S \) and \(S \) blocks, respectively; \(D_L \) and \(D_S \) are the magnetic anisotropy constants of \(L \) and \(S \) blocks along the \(z \)-axis (\(\parallel [001] \)), respectively, and \(H_x \) is the sum of internal (\(H_{\text{int}} \)) and external (\(H_{\text{ext}} \)) magnetic fields along the \(x \)-axis. Most of the parameters in the Hamiltonian are determined by matching the simulation and the experimental data of the static magnetization (\(M_z \)) vs magnetic field (see Experimental Section). The \(H_{\text{ext}} \) regions...
showing steep (<100 mT), moderate (100 mT to 1.6 T), and gentle (>1.6 T) slopes correspond to magnetic domain alignment, gradual reduction of the transverse conical angles for $\mu_{L, 1}$ and $\mu_{L, 2}$ down to zero, and progressive flop of $\mu_{L, 1}$ and $\mu_{L, 2}$ toward +x direction, respectively (Figure 3a). The M_s vs H_{ext} relation derived from the magnetic Hamiltonian is consistent with the behavior of the single magnetic domain, reproducing well the experimental data above 100 mT. Meanwhile, the magnetic anisotropy constants D_s and D_d are determined from the magnet energies calculated from the Landau–Lifshitz–Gilbert equation (see Experimental Section; Note S1, Supporting Information). Two solutions for the equation correspond to normal modes that embody distinct magnitudes of AFM precessions of $\mu_{L, 1}$ and $\mu_{L, 2}$, and $\mu_{S, 1}$ and $\mu_{S, 2}$. We assign the observed 41.7 GHz (≈ 0.17 meV) in Figure 2 to the lower energy magnon by noting that the higher energy magnon in Y-type hexaferrites is usually located in the frequency range of 0.5–1.5 THz.\cite{40,42,43} Using the fully determined parameters in the Hamiltonian, the relative magnitudes of $\mu_{L, 1}$ and $\mu_{S, 1}$ precessions are calculated (see Experimental Section; Figure S2, Supporting Information). Figure 3d illustrates the precession motion of the lower energy magnon relevant to the observed intensity oscillations. The μ_{L} precession is dominant and nearly isotropic in the surface normal to the precession axis, while the μ_{S} precession is insignificant and anisotropically elongated along the x-axis. This calculation result verifies our data interpretation mainly with the μ_{L} precession.

We note that the oscillation amplitudes measured at both magnetic reflections allow for direct quantification of the precessing magnetic moment. For a more precise quantification, we match the penetration depths between the X-ray probe and the optical laser pump by tuning the incident X-ray energy $E_x = 711$ eV. This energy slightly above the Fe L_3 absorption edge significantly decreases the X-ray penetration depth comparable to that of the optical laser pump for $\lambda_{laser} = 400$ nm (see Experimental Section).

(We avoid using the λ_{laser} right at the Fe L_3 edge ≈ 710 eV because of the complexity of analysis caused by radically different relative spin contributions from the octahedral and tetrahedral sites at the Fe L_3 edge.\cite{44} The $E_x = 702$ and 711 eV employed for this study capture the behaviors of the octahedral sites of which net spin contribution is parallel to the net magnetic moment.) Figure 3b shows that the AFM (0 0 4.5) intensity exhibits a large initial oscillation amplitude amounting to 28% of the static value at the laser fluence $= 1.0$ mJ cm$^{-2}$. This change corresponds to the situation that $\mu_{L, 1}$ and $\mu_{L, 2}$ move out of the xy-plane by 4° toward the +z and $-z$ directions, respectively, at the first $\pi/2$-phase (the first quarter of the oscillation period). As the precession is nearly isotropic around the precession axis (Figure 3d), each precession axis for $\mu_{L, 1}$ and $\mu_{L, 2}$ tilts by the same angle toward $-x$ direction from the
This assessment is contradicted with the quasi-dense of the magnetic Bragg peak intensities observed in neutron comparable amount, in accordance with the temperature dependence of the magnetic AFM (0 0 4.5) and FM (0 0 3) intensities would decrease by a reduced thermal effect. If the thermal effect were dominant, the time change observed in Figure 3 is not relevant for the photoinduced thermal changes in the magnetic AFM magnon. A study of time-resolved optical spectroscopy measurement shows the time-delay dependence of the peak shifts and widths obtained by fits to a Lorentzian for the θ–2θ scans (Figure 4a). It is evident that the Bragg peak shifts to a lower angle after 10 ps manifesting a lattice expansion while the rapid increase of the peak width around the same time delay indicates sizable strain gradient during the lattice expansion. The lattice response is also checked by the non-resonant X-ray diffraction at $E_i = 652$ eV tuned away from the X-ray absorption edges of any atomic element in the BSZFAO (Figure 4c). It appears no pronounced oscillation in the transient (0 0 3) Bragg peak intensity, but substantial intensity decrease after 10 ps followed by a saturation after 50 ps. This intensity change shows a monotonic dependence with the fluence, indicative of photoinduced thermal effects with

Figure 3. Net magnetization modified by the photoexcited AFM magnon. a) H_{ext} dependence of M_y per a formula unit (f.u.) at $T = 80$ K presenting the experimental data (blue symbols) and calculation result (red lines) from the magnetic Hamiltonian in Equation (1). The gray circle denotes M_y at H_{ext} ($=200$ mT) where the X-ray diffraction experiment is performed. b) AFM (0 0 4.5) and c) FM (0 0 3) intensities at $H_{ext} \parallel x$ and $T = 82$ K for a laser fluence $=1.0$ mJ cm$^{-2}$ using incident X-ray energy, $E_i = 711$ eV. The colored circles correspond to the same colored μ_y directions on the precession trajectory shown in (e). d) Schematic illustration of the precession trajectories of $\mu_{1,3}$ and $\mu_{1,2}$ simulated from the magnetic Hamiltonian. e) Illustration of the magnetization (dark pink arrow along the x-axis) modified by the AFM magnon at the first half of the oscillation period.

The M_x oscillates along the x-axis for laser fluences below 2 mJ cm$^{-2}$. To confirm the irrelevance of the thermal effect to the observed substantial magnetization change, we inspect the timescale for the lattice to be heated by the photoirradiation with a higher fluence (8.3 mJ cm$^{-2}$). We note that the FM (0 0 3) Bragg peak contains the crystal structure factor and its radial profile (e.g., θ–2θ scan) serves as an indicator of the lattice response. Figure 4b shows the time-delay dependence of the peak shifts and widths obtained by fits to a Lorentzian for the θ–2θ scans (Figure 4a). It is evident that the Bragg peak shifts to a lower angle after 10 ps manifesting a lattice expansion while the rapid increase of the peak width around the same time delay indicates sizable strain gradient during the lattice expansion. The lattice response is also checked by the non-resonant X-ray diffraction at $E_i = 652$ eV tuned away from the X-ray absorption edges of any atomic element in the BSZFAO (Figure 4c). It appears no pronounced oscillation in the transient (0 0 3) Bragg peak intensity, but substantial intensity decrease after 10 ps followed by a saturation after 50 ps. This intensity change shows a monotonic dependence with the fluence, indicative of photoinduced thermal effects with

2.3. Time Scale of the Lattice Thermalization

A study of time-resolved optical spectroscopy measurement suggested that photoinduced thermal changes in the magnetic exchange interactions and anisotropy energies may result in the quasi-equilibrium magnetic structure in the Y-type hexaferrite.[40] However, we find that the substantial magnetization change observed in Figure 3 is not relevant for the photoinduced thermal effect. If the effect were dominant, the AFM (0 0 4.5) and FM (0 0 3) intensities would decrease by a comparable amount, in accordance with the temperature dependence of the magnetic Bragg peak intensities observed in neutron scattering.[17] This assessment is contradicted with the quasi-equilibrium intensities (the dotted offset lines in Figure 3b,c) that exhibit –3% of the AFM (0 0 4.5) reflection, much less than the amount –23% of the FM (0 0 3) reflection. In order to confirm ultrafast nonthermal formation of offsets, we examine the transient intensities by subtracting the oscillatory contributions (see Figure S9, Supporting Information). It is noted that the offset of the FM (0 0 3) reflection intensity emerges on a resolution-limited short timescale, implying a nonthermal origin. The initiation of small offset for the AFM (0 0 4.5) reflection is hard to resolve precisely as it is influenced by the remaining oscillatory feature that is not completely subtracted from the data.] At long timescales, there may be a thermal contribution to the transient intensities. However, our observation in Figure 3b,c (also Figure S9, Supporting Information) indicates that this thermal contribution does not significantly impact the nonthermal effect for laser fluences below 2 mJ cm$^{-2}$.
a combination of the Debye–Wallor factor and the peak shift. The lattice thermalization much slower than the formation of quasi-equilibrium point for the magnetic moment direction evinces the engagement of a nonthermal origin for the coherent magnon.

It is noteworthy to mention that the magnetic Bragg intensity change observed for laser fluences below 2 mJ cm\(^{-2}\) is not significantly influenced by the peak shift and broadening. The maximum values of peak shift and broadening for 2 mJ cm\(^{-2}\), determined through linear interpolation from the values obtained at 8.3 mJ cm\(^{-2}\) (Figure 4b), are \(\Delta \theta (2\theta) \approx -0.07^\circ\) and \(\Delta \text{peak-width change of } \approx 0.6^\circ\). These changes are insignificant when compared to the relatively broad FM (0 0 3) Bragg peak, which has a FWHM (full-width-at-half-maximum) of \(\approx 3^\circ\) for the negative time delay in the resonant X-ray diffraction condition at \(E_\perp = 711\) eV (Figure 4b). The mosaicity of the magnetic Bragg peak is 0.2\(^\circ\) in the FWHM (see Figure S10, Supporting Information), which is still considerably broader than the estimated \(\Delta \theta \approx -0.035^\circ\).

2.4. Photoinduced Effective Magnetic Field

We note that the 4D trajectory of the magnon is able to elucidate the cause of the large change of magnetization. We first rule out ICME (inverse Cotton–Mouton effect)\([17,18,22]\) and IMR (inverse magneto-refraction)\([7,8]\) for photoinduced effective magnetic field available by the linearly polarized pump laser. These effects are present only when the laser pulse resides in the sample and thereby leads a magnetic moment to precess around its original position after the pulse is gone, which are disagreed by the formation of the new quasi-equilibrium position (Figure 3e).

Instead, we find that nonthermal DECM (displacive excitation of coherent magnon) effect is consistent with our observation.\([16]\)

This effect produces a long-lived, photoinduced magnetic field \(H_{\text{photo}}\), which is described as:\([1,16]\)

\[
H_{\text{photo}} = \chi_{ijkl} E_i E_j M_k
\]

where \(\chi_{ijkl}\) is components of a fourth-rank magnetoelectric tensor related to the magnetic symmetry, \(E_i\) is electric-field components inside the BSZFAO launched by the pump laser (long living even after the pump duration, to be discussed later), and \(M_k\) is components of the magnetic moment at the initial equilibrium position. The transverse conical order in the BSZFAO has the magnetic symmetry with nonzero \(\chi_{ijkl}\) components that allow the net of \(H_{\text{photo}}\) to be axial to the magnetization (\(M_x\)) with not only p-polarization but also s-polarization of the pump laser. The \(H_{\text{photo}}\) direction turns out to be opposite to \(M_x\). We confirmed the qualitatively similar intensity oscillations in the AFM (0 0 3) Bragg reflection for both polarizations (Figure S11, Supporting Information), while the quantitative difference is attributed to the polarization dependence of either the laser absorption or the magnetoelectric tensor component, \(\chi_{ijkl}\).

The magnitude of \(H_{\text{photo}}\) can be quantified based on the quasi-equilibrium position determined in the 4D precession trajectory. We evaluate \(\Delta M_x\) at this quasi-equilibrium position, and then deduce the corresponding \(H_{\text{photo}}\) through the \(M_x\) vs \(H_{\text{ext}}\) relationship.
Figure 5. Effective magnetic field changes due to the laser excitation.

a) AFM (0 0 4.5) intensities (circles) and their fit (solid curve) at \(H_{\text{ext}} (= 200 \text{ mT}) \) \(\parallel \mathbf{x} \) and \(T = 82 \text{ K} \) using incident X-ray energy, \(E_i = 711 \text{ eV} \) for the laser pump with \(\lambda_{\text{laser}} = 400 \text{ nm} \) (above the bandgap). The data for each fluence are vertically shifted for clarity. The gray lines denote initial intensities.

b) FM (0 0 3) intensities (circles) and their fit (solid curve) under the same experimental condition except the laser pump with \(\lambda_{\text{laser}} = 800 \text{ nm} \) (below the bandgap). The laser fluence dependence of \(H_{\text{photo}} \) estimated from the coherent magnon trajectory for \(\lambda_{\text{laser}} = 400 \text{ nm} \) (pink circles) (c) and 800 nm (cyan squares) (d). The dashed lines are guides to the eye. The error bars are determined by the range of fitting parameters that give 10% increase of the least-squares values from the best fitting result.

We remark that the overall fluence dependence in Figure 5c,d is in stark contrast with that for the coherent magnon driven by photoinduced strain on the lattice.\(^{[45,47–49]}\) The photexcitation above and below the bandgap are able to produce the strain through one-photon and two-photon absorption processes, respectively. In turn, the magnitudes of strain and its resultant coherent magnon follow linear and quadratic dependence on the laser fluence for the former and the latter, respectively, which contradicts our result in Figure 5c,d. Besides, the oscillation profiles measured with \(E_i = 702 \text{ and } 711 \text{ eV} \) penetrating differently deep into the sample, match each other by adjusting their scale of amplitude to the penetration mismatch. If the strain propagating...
from the sample surface were involved in generating the coherent magnon, both profiles would be qualitatively different. For instance, the signal measured with the X-ray probe at $E_p = 702$ eV penetrating deeper than the laser pump with $\lambda_{\text{laser}} = 400$ nm would be influenced by the strain after about tens of picosecond (see Figure S3, Supporting Information).

2.5. Possible Microscopic Mechanism

The photoexcitation above the bandgap yields significant photon absorption that generally obscures the influence on the photomagnetic effect due to other myriad photoinduced phenomena, e.g., demagnetization, magnetoelectric effect, and so on.

We remark that the 4D trajectory of the precessing magnetic moment enables clear access to the photomagnetic effect against the complication of the above-bandgap photoexcitation. This unique merit allows us to find a remarkably large amplification of the photomagnetic coupling. The coupling strength determined by the linear slope of H_{photo} vs. fluence presents 187 ± 13 mT cm$^{-2}$ mJ$^{-1}$ for the above-bandgap photoexcitation ($\lambda_{\text{laser}} = 400$ nm), which is much larger than 12.3 ± 0.5 mT cm$^{-2}$ mJ$^{-1}$ for the below-bandgap photoexcitation ($\lambda_{\text{laser}} = 800$ nm). This amplified photomagnetic coupling is at least an order of magnitude higher than those in other AFM dielectrics, which have been characterized only for the below-bandgap photoexcitation due to the difficulty aforementioned for the time-resolved magneto-optical spectroscopy. Note that the realized $H_{\text{photo}} = 187$ mT with the fluence of 1.0 mJ cm^{-2} for $\lambda_{\text{laser}} = 400$ nm, is as strong as the field strength of rare-earth permanent magnets widely used in practice. This level of H_{photo} may flip the magnetization with a single-laser shot in a magnet, if the coercive magnetic field is small.

The enhanced photomagnetic coupling in the BSZFAO is understood based on the microscopic origin for DEC effect.

This effect relies on photoinduced electron redistribution among multivalent magnetic ions, which lasts long even after the photoradiation. For example, iron garnets are known to have the nonthermal valence exchange persisting longer than a few nanoseconds, resulting in a quasi-static photoinduced magnetic anisotropy (PMA) that essentially works as a photoinduced magnetic field. This microscopic process is known for the below-bandgap photoexcitation, but in principle also available for the above-bandgap photoexcitation. We note that a similar valence exchange channel is allowed for the BSZFAO. Its oxygen vacancy induced during the single crystal growth yields the multivalent iron ions distributed on tetrahedral/octahedral sites. This situation is analogous to that in the iron garnets. Therefore, the enhancement of photomagnetic coupling in the BSZFAO implies higher efficiency in the valence exchange process through the charge transfer transition above the bandgap than the d-d transition below the bandgap. This route to boost the photomagnetic effect will be also effective for a variety of AFM dielectrics.

3. Conclusion

The 4D visualization of the coherent magnon realizes a long-anticipated capability of XFELs for investigating ultrafast nonequilibrium magnetic phenomena. This allows us to unambiguously identify the photoinduced magnetic field for both above- and below-bandgap photoexcitation in a Y-type hexaferrite. We find that a remarkable amplification of the photomagnetic effect is achieved by the photoexcitation above the bandgap, which accounts for a large modulation of the net magnetization through the photoexcited AFM magnon. The notion that this hexaferrite is a multiferroic with ferroelectricity and ferrimagnetism strongly coupled to each other, suggests application prospects not only for optospintronics but also for ultrafast optical control of magnetoelectric effects. This work fully demonstrates the advantages of resonant and nonresonant X-ray diffraction experiments brought into the ultrafast time domain, and further extends one’s capability of revealing nonthermal phenomena in quantum materials with complex coupling among the fundamental physical degrees of freedom.
the Center for X-ray Optics.[34] It is well known that these calculations are accurate for X-rays energies away from the absorption edge. To estimate the penetration depth at the edge at 711 eV more precisely, the intensity ratio ≈9.26 of the XAS spectrum at the pre-edge and the absorption edge were taken into account.[34] The penetration depth was deduced to be 39 nm by dividing the depth at $E_E = 702$ eV by the XAS intensity ratio. In the actual experimental geometry with an incident angle (θ), the penetration depths calculated for normal incidence needed to be multiplied by the factor of $\sin(\theta)$. In the geometries of the (0 0 3) Bragg reflection with an angle of $\theta \approx 29^\circ$ and the (0 0 4.5) Bragg reflection with an angle of $\theta \approx 66^\circ$, the penetration depths from the sample surface were estimated to be 19 and 36 nm, respectively, at $E_E = 711$ eV.

Penetration Depth of the Optical Laser: Optical transmittance measurement by the UV–vis–NIR spectroscopy identified the absorption coefficient and penetration depth of the sample in the wavelength range. The BSZFAO single crystal was attempted to measure, but it was too thick ($\approx 200 \mu m$) to obtain any relevant signal, absorbing almost all the incident photons. Alternatively, an epitaxial thin film of BaFe$_{10.2}$Sc$_{1.8}$O$_{19}$ (M-type hexaferrite) with thickness = 74 nm was measured to estimate the penetration depth.[32] This M-type hexaferrite is known to have material properties in common with the BSZFAO, such as the transverse conical magnetic structure and magnetoelectricity.[32] Figure S1 (Supporting Information) shows a substantial rise of the absorption coefficient above 2.85 eV (blue), indicating the direct electronic bandgap. The penetration depth reduced abruptly around this wavelength and was counted to be 39 nm at $\lambda_{\text{user}} = 400$ nm. Later, the absorption coefficient (red, Figure S1, Supporting Information) of the BSZFAO was obtained by the optical ellipsometry measurement using M-2000 (J. A. Woollam Co.). Figure S1 (Supporting Information) shows that the BSZFAO has a direct bandgap = 2.75 eV and the penetration depth = 30 nm for $\lambda_{\text{user}} = 400$ nm (3.10 eV, above the bandgap) and 263 nm for $\lambda_{\text{user}} = 800$ nm (1.55 eV, below the bandgap). In the experimental setup where the optical laser pump and X-ray probe were incident collinearly on the sample, the penetration depths from the sample surface were calculated with the penetration depths for normal incidence multiplied by the factor of $\sin(\theta)$: in the geometries of the (0 0 3) Bragg reflection ($\theta = 29^\circ$) and (0 0 4.5) Bragg reflection ($\theta = 66^\circ$), 15 and 27 nm, respectively for $\lambda_{\text{user}} = 400$ nm, and 131 and 237 nm, respectively for $\lambda_{\text{user}} = 800$ nm.

Fitting of the Transverse Magnetic Bragg Peak Intensities: The magnetic Bragg peak intensities in Figure 2a are fit with a damped oscillation and an exponential decay:

$$I = A_1 \exp(-t/t_1) \sin \left(\frac{2 \pi t (t - t_1)}{\Omega} \right) - A_2 \exp(-t/t_2) + A_3$$

where t is the time delay, t_1 is a phase shift, Ω is the oscillation period, and t_2 is a damping constant for the oscillation and t_2 the exponential decay constant; A_1, A_2, A_3 are amplitudes of the oscillation and the decay, respectively, and A_3 represents a constant background. The values extracted from the fit to the data in Figure 2a are summarized in Table S1 (Supporting Information).

Magnetic Hamiltonian Model Calculation: The M_s vs H_{ext} relation was deduced from the magnetic Hamiltonian (Equation 1) minimized with respect to the μ_L and μ_S directions.[33] The $\mu_{L1}, \mu_{L2}, \mu_{S1}$, and μ_{S2} vectors constructing the transverse conical magnetic structure (the right panel of Figure 1a) are represented as:

$$
\begin{align*}
\mu_{L1}' &= \mu_{L1} \cos \phi, & \mu_{L2}' &= \mu_{L2} \cos \phi, \\
\mu_{L1}' &= -\mu_{L1} \sin \phi, & \mu_{L2}' &= \mu_{L2} \sin \phi,
\end{align*}
$$

and

$$
\begin{align*}
\mu_{S1}' &= -\mu_{S1} \sin \theta, & \mu_{S2}' &= -\mu_{S2} \sin \theta, \\
\mu_{S1}' &= 0, & \mu_{S2}' &= 0.
\end{align*}
$$

where ϕ and θ are angles between μ_L and the x-axis, and μ_S and the z-axis, respectively. The magnetic Hamiltonian (Equation 1)) can be reformulated as:

$$
H = -4J_{LL} \mu_L \mu_S \cos \phi \sin \theta + 2J_{LL}(\mu_L)^2 \cos^2 \phi - \sin^2 \phi + 2J_{SS}(\mu_S)^2 \sin^2 \theta + 2D_s(\mu_S)^2 \cos^2 \theta - 2(H_{int} + H_{ext})(\mu_S \cos \phi - \mu_L \sin \theta)
$$

Minimizing the Hamiltonian with respect to the μ_L and μ_S directions or ϕ and θ angles,

$$
\frac{\partial H}{\partial \phi} = 4J_{LL} \mu_L \sin \phi \sin \theta - 8J_{LL} \mu_L \cos \phi + 2(H_{int} + H_{ext}) \mu_L \sin \phi = 0
$$

and

$$
\frac{\partial H}{\partial \theta} = 2J_{SS} \mu_S \sin \theta + 4D_s \mu_S \cos \theta + 2(H_{int} + H_{ext}) \mu_S \cos \theta = 0
$$

When the external magnetic field, H_{ext}, is increased to 1.59 T, it is known that ϕ gradually decreases to zero, while θ remains finite.[33] In the region of $H_{ext} < 1.59$ T, the aforementioned minimization conditions lead to

$$
\begin{align*}
M_s (\mu_{L/f. u.}) &= \mu_{L1}' + \mu_{S1}' = \mu_L \cos \phi - \mu_S \sin \theta \\
&= \frac{1}{2} (J_{SS} - J_{LL} - J_{LS} - J_{DS} - 2D_s) (H_{int} + H_{ext})
\end{align*}
$$

while in the region of H_{ext} \geq 1.59 T, as ϕ is fixed to zero,

$$
\begin{align*}
M_s (\mu_{L/f. u.}) &= \mu_{L1}' + \mu_{S1}' = \mu_L - \mu_S \sin \theta \\
&= \frac{1}{2} (2J_{LL} - J_{LS} - J_{DS}) \mu_L \\
&+ \frac{1}{2} (J_{SS} - J_{DS}) (H_{int} + H_{ext})
\end{align*}
$$

The M_s vs H_{ext} relation was represented with these two linear lines with a change in slope at $H_{pre} = 1.59$ T.

The net moments of the L and S blocks were set as $|\mu_L| = 17.5 \mu_B$ and $|\mu_S| = 4 \mu_B$ with the notion that interlayer spins of Fe$^{3+}$ ions within each block are in antiparallel and numbers of Fe$^{3+}$ sites at different layers result in the uncompensated moments. It was found that the M_s vs H_{ext} relation with $J_{LS}[\mu_L][\mu_S] = 85.3 \mu_B$ T, $J_{LL}[\mu_L]^2 = 54.8 \mu_B$ T, $J_{SS}[\mu_S]^2 = 40 + 0.8 D_s$ μ_B T, and $H_{int} = 1.21$ T is in good agreement with the experimental data (Figure 3a). Incorporating the Dzyaloshinskii–Moriya interaction into the magnetic Hamiltonian and adjusting the M_s vs H_{ext} relation might improve the correspondence between the calculated results and experimental data.[33] However, it was inferred that the interaction still had a minor impact as indicated by the small deviation observed in Figure 3a.

The parameters and relation obtained above were employed to determine the magnetic anisotropy constants, D_s and D_s. To this end, the Landau–Lifshitz–Gilbert equations (without damping terms for simplicity) were used that are written:

$$
\frac{d}{dt} (\mu_L) = -\gamma (\mu_L \times \vec{H}_{L}(S)) \text{ and } \frac{d}{dt} (\mu_S) = -\gamma (\mu_S \times \vec{H}_{S})
$$

where γ is the gyromagnetic ratio and $\vec{H}_{L(S)}(S) = -V_{\mu_{L(S)}}$ is the effective magnetic field on the L(S) block. The solutions taking into account AFM precisions of μ_{L1} and μ_{L2}, and μ_{S1} and μ_{S2} reveal two $k = 0$ normal AFM magnon modes (Note S1, Supporting Information).[33] The lower energy AFM magnon (low-lying mode) was attributed to the coherent magnon with the frequency of 41.7 ± 0.9 GHz.[40] The higher energy AFM
magnon (high-lying mode) was presumed in the frequency range 0.5–1.5 THz where a number of Y-type hexaferrites exhibited another AFM magnon mode.\[42,43\] By setting the frequency of this higher energy mode to 0.8 THz, it was found that $D_1|\mu_L|^2 = 11.6 \mu_B T$ and $D_3|\mu_S|^2 = -54.4 \mu_B T$.

With all the parameters determined in the magnetic Hamiltonian, relative magnitudes of the AFM magnon modes were calculated. Figure S2 (Supporting Information) shows the trajectories of the lower- and higher-frequency modes. The former mode had dominant μ_L precession of which trajectory was nearly isotropic, while μ_S precession was insignificant and highly anisotropic along the x-axis. On the other hand, the latter mode exhibited comparable magnitudes of the μ_L and μ_S precessions that were largely elongated along the z-axis and nearly circular, respectively.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was supported by the National Research Foundation of Korea (2019R1F1A060295, 2019R1C1C1010034, 2019K1A3A7A09033399, 2019R1A2C2090648, 2020R1C1C1010477, 2022M3H4A1A04074153). The time-resolved resonant magnetic X-ray diffraction experiment was performed using the RSXS instrument at PAL-XFEL (Proposal No. 2021-2nd-SSS-022) funded by the Ministry of Science and ICT of Korea. H.U. and U.S. were supported by the National Research Foundation of Korea (2019R1F1A09033399, 2019R1A2C2090648, 2020R1C1C1010477, 2022M3H4A1A04074153). The time-resolved resonant magnetic X-ray diffraction experiment was performed using the RSXS instrument at PAL-XFEL (Proposal No. 2021-2nd-SSS-022) funded by the Ministry of Science and ICT of Korea. H.U. and U.S. were supported by the National Research Foundation of Korea (2019R1F1A09033399, 2019R1A2C2090648, 2020R1C1C1010477, 2022M3H4A1A04074153).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

multiferroic materials, photomagnetic effect, time-resolved resonant magnetic X-ray diffraction, X-ray free electron laser

[1] A. Kirilyuk, A. V. Kimel, T. Rasing, Nature 2010, 82, 2731.
[2] B. A. Ivanov, Low Temp. Phys. 2014, 40, 91.
[3] P. Némec, M. Fiebig, T. Kampfrath, A. V. Kimel, Nat. Phys. 2018, 14, 229.
[4] A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, T. Rasing. Nature 2005, 435, 655.
[5] P. Némec, E. Rozkotová, N. Tesařová, F. Trojánek, E. De Ranieri, K. Olejník, J. Zemen, V. Novák, M. Cukr, P. Malý, T. Jungwirth, Nat. Phys. 2012, 8, 411.
[6] N. Tesařová, P. Némec, E. Rozkotová, J. Zemen, T. Janda, D. Butkovíčová, F. Trojánek, K. Olejník, V. Novák, P. Malý, T. Jungwirth, Nat. Photonics 2013, 7, 492.
[7] R. V. Mikhailovskyi, E. Hendry, A. Secchi, J. H. Mentink, M. Eckstein, A. Wu, R. V. Pisarev, V. V. Kruglyak, M. I. Katnselson, Th. Rasing, A. V. Kimel, Nat. Commun. 2015, 6, 8190.
[8] R. V. Mikhailovskyi, T. J. Huisman, V. A. Gavrishkov, S. I. Polukeyev, S. G. Ovchinnikov, D. Afanasiev, R. V. Pisarev, Th. Rasing, A. V. Kimel, Phys. Rev. Lett. 2020, 125, 157201.
[9] T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhailovskyi, A. V. Kimel, R. Merlin, A. Cavalleri, Nat. Phys. 2017, 13, 132.
[10] A. S. Disa, M. Fechner, T. F. Nova, B. Liu, M. Först, D. Prabhakaran, P. G. Radaelli, A. Cavalleri, Nat. Phys. 2020, 16, 937.
[11] D. Afanasiev, J. R. Hortensius, B. A. Ivanov, A. Sasani, E. Bousquet, Y. M. Blanter, R. V. Mikhailovskyi, A. V. Kimel, A. D. Caviglia, Nat. Mater. 2021, 20, 607.
[12] A. Stupakiewicz, C. S. Davies, K. Szerenos, D. Afanasiev, K. S. Rabinovich, A. V. Boris, A. Caviglia, A. V. Kimel, A. Kirilyuk, Nat. Phys. 2021, 17, 489.
[13] A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, Th. Rasing. Nature 2004, 429, 850.
[14] A. de la Torre, D. M. Kennes, M. Claassen, S. Gerber, J. W. Mclver, M. A. Sentei, Rev. Mod. Phys. 2021, 93, 041002.
[15] T. Ogasawara, K. Ohgushi, Y. Tomioka, K. S. Takahashi, H. Okamoto, M. Kawasaki, Y. Tokura, Phys. Rev. Lett. 2005, 94, 087202.
[16] F. Hansteen, A. Kiriel, A. Kirilyuk, Th. Rasing, Phys. Rev. Lett. 2005, 95, 047405.
[17] A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev, N. V. Gridnev, A. Kirilyuk, Th. Rasing, Phys. Rev. Lett. 2007, 99, 167205.
[18] R. Iida, T. Sato, T. Shimura, K. Kuroda, B. A. Ivanov, Y. Tokunaga, Y. Tokura, Phys. Rev. B 2011, 84, 064402.
[19] N. Kanda, T. Higuchi, H. Shimizu, K. Konishii, K. Yoshioishi, M. Kuwata-Gonokami, Nat. Commun. 2011, 2, 362.
[20] T. Sato, R. Iida, T. Higuchi, M. Fiebig, T. Shimura, Nat. Photonics 2015, 9, 25.
[21] V. Saidi, P. Némec, P. Wadley, V. Hills, R. P. Campion, V. Novák, K. W. Edmonds, F. Maccherozzi, S. S. Dhesi, B. L. Gallagher, F. Trojánek, J. Kuneš, J. Železný, P. Malý, T. Jungwirth, Nat. Photonics 2017, 11, 97.
[22] L. Q. Shen, L. F. Zhou, J. Y. Shi, M. Tang, Z. Zheng, D. Wu, S. M. Zhou, L. Y. Chen, H. B. Zhao, Phys. Rev. B 2018, 97, 224304.
[23] C. Tszchaschel, T. Sato, M. Fiebig, Nat. Commun. 2019, 10, 1995.
[24] N. P. Duong, T. Sato, M. Fiebig, Phys. Rev. Lett. 2004, 93, 117402.
[25] J. Wang, I. Cotoros, K. M. Dani, X. Liu, J. K. Furdyna, D. S. Chemla, Phys. Rev. Lett. 2007, 98, 217401.
[26] Y. Hashimoto, S. Kobayashi, H. Munekata, Phys. Rev. Lett. 2008, 100, 067202.
[27] S. L. Johnson, R. A. de Souza, U. Staub, P. Beaud, E. Mohr-Vorobeva, G. Ingold, A. Caviezel, V. Scagnoli, W. F. Schlott, J. J. Turner, O. Krupin, W.-S. Lee, Y.-D. Chuang, L. Patthey, R. G. Moore, D. Lu, M. Yi, P. S. Kirchmann, M. Trigo, P. Denes, D. Doering, J. Z.-X. Shen, D. Prabhakaran, A. T. Boothroyd, Phys. Rev. Lett. 2012, 108, 037203.
[28] M. P. M. Dean, Y. Cao, X. Liu, S. Wall, D. Zhu, R. Mankowsky, V. Thampy, M. M. Chen, J. G. Vale, D. Casa, Jungho Kim, A. H. Said, P. Juhás, R. Alonso-Mori, J. M. Glownia, A. Robert, J. Robinson, M. Sikorski, S. Song, M. Kozina, H. Lemke, L. Patthey, S. Owada, T. Katayama, M. Yabashi, Yoshikazu Tanaka, T. Togashi, J. Liu, C. Rayan Serrao, B. J. Kim, et al., Nat. Mater. 2016, 15, 601.
[29] D. G. Mazzone, D. Meyers, Y. Cao, J. G. Vale, C. D. Dashwood, Y. Shi, A. J. A. James, N. J. Robinson, J. Lin, V. Thampy, Y. Tanaka, A. S. Johnson, H. Miao, R. Wang, T. A. Assefa, J. Kim, D. Casa, R. Mankowsky, D. Zhu, R. Alonso-Mori, S. Song, H. Yavas, T. Katayama, M. Yabashi, Y. Kubota, S. Owada, J. Liu, J. Yang, R. M. Konik, I. K. Robinson, et al., Proc. Natl. Acad. Sci. USA 2021, 118, e2103696118.

[30] B. W. J. McNeil, N. R. Thompson, Nat. Photonics 2010, 4, 814.

[31] A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. V. Kimel, Nature 2017, 542, 71.

[32] M. Först, A. D. Caviglia, R. Scherwitzl, R. Mankowsky, P. Zubko, V. Khanna, H. Bromberger, S. B. Wilkins, Y.-D. Chuang, W. S. Lee, W. F. Schlotter, J. J. Turner, G. L. Dakovsky, M. P. Minitti, J. Robinson, S. R. Clark, D. Jaksch, J.-M. Triscone, J. P. Hill, S. S. Dhesi, A. Cavalleri, Nat. Mater. 2015, 14, 883.

[33] T. Kubacka, J. A. Johnson, M. C. Hoffmann, C. Vicario, S. de Jong, P. Beaud, S. Grübel, S.-W. Huang, L. Huber, L. Patthey, Y.-D. Chuang, J. J. Turner, G. L. Dakovsky, W.-S. Lee, M. P. Minitti, W. Schlotter, R. G. Moore, C. P. Hauri, S. M. Koopmayeh, V. Scagnoli, G. Ingold, S. L. Johnson, U. Staub, Science 2014, 343, 1333.

[34] M. Matsubara, S. Manz, M. Mochizuki, T. Kubacka, A. Iyama, N. Aliouane, T. Kimura, S. L. Johnson, D. Meier, M. Fiebig, Science 2015, 348, 1112.

[35] D. Bossini, K. Konishi, S. Toyoda, A. Kimura, M. Kuwata-Gonokami, Nat. Phys. 2018, 14, 370.

[36] S. H. Chun, Y. S. Chai, Y. S. Oh, D. Jaiswal-Nagar, S. Y. Haam, I. Kim, B. Lee, D. H. Nam, K.-T. Ko, J.-H. Park, J.-H. Chung, K. H. Kim, Phys. Rev. Lett. 2010, 104, 032004.

[37] H. B. Lee, Y.-S. Song, J.-H. Chung, S. H. Chun, Y. S. Chai, K. H. Kim, M. Reehuis, K. Prokeš, S. Mat’aš, Phys. Rev. B 2011, 83, 144425.

[38] T. Kimura, G. Lawes, A. P. Ramirez, Phys. Rev. Lett. 2005, 94, 137201.

[39] K. Knížek, P. Nováčk, M. Kúpferling, Phys. Rev. B 2006, 73, 153103.

[40] D. Talbayev, S. A. Trugman, A. V. Balatsky, T. Kimura, A. J. Taylor, R. D. Averitt, Phys. Rev. Lett. 2008, 101, 097603.

[41] S. H. Chun, K. W. Shin, H. J. Kim, S. Jung, J. Park, Y.-M. Bahk, H.-R. Park, J. Kyong, D.-H. Choi, D.-S. Kim, G.-S. Park, J. F. Mitchell, K. H. Kim, Phys. Rev. Lett. 2018, 120, 027202.

[42] N. Kida, D. Okuyama, S. Ishiwata, Y. Taguchi, R. Shiman, K. Iwasa, T. Arima, Y. Tokura, Phys. Rev. B 2009, 80, 220406.

[43] J. Vit, F. Kadlec, C. Kadlec, F. Borodavka, Y. S. Chai, K. Zhai, Y. Sun, S. Kamba, Phys. Rev. B 2018, 97, 134406.

[44] W.-S. Noh, K.-T. Ko, S. H. Chun, K.-H. Kim, B.-G. Park, J.-Y. Kim, J.-H. Park, Phys. Rev. Lett. 2015, 114, 117603.

[45] H. Ueda, H. Jang, S. H. Chun, K.-H. Kim, M. Kim, S.-Y. Park, S. Finizio, N. O. Hernandez, Y. Ovuka, M. Savoini, T. Kimura, Y. Tanaka, A. Doll, U. Staub, Phys. Rev. Res. 2022, 4, 023007.

[46] D. Afanasiev, A. Catilova, D. J. Groenendijk, B. A. Ivanov, M. Gibert, S. Gariglio, J. Mentink, J. Li, N. Dasari, M. Eckstein, Th. Rasing, A. D. Caviglia, A. V. Kimel, Phys. Rev. X 2019, 9, 021020.

[47] Y. Hashimoto, D. Bossini, T. H. Johansen, E. Saitoh, A. Kirilyuk, T. Rasing, Phys. Rev. B 2018, 97, 140404.

[48] L. Soumah, D. Bossini, A. Anane, S. Bonetti, Phys. Rev. Lett. 2021, 127, 077203.

[49] S. P. Zeuschner, J.-E. Pudell, A. von Reppert, M. Deb, E. Popova, N. Keller, M. Rössle, M. Herzog, M. Bargheer, Phys. Rev. Res. 2020, 2, 022013.

[50] Y. S. Chai, S. H. Chun, S. Y. Haam, Y. S. Oh, I. Kim, K. H. Kim, New J. Phys. 2009, 11, 073030.

[51] N. Momozawa, M. Mita, H. Takei, J. Cryst. Growth 1987, 83, 403.

[52] P. Borisov, J. Alaria, T. Yang, S. R. C. McMitchell, M. J. Rosseinsky, Appl. Phys. Lett. 2013, 102, 032902.

[53] H. Jang, H.-D. Kim, M. Kim, S. H. Park, S. Kwon, J. Y. Lee, S.-Y. Park, G. Park, S. Kim, H. Hyun, S. Hwang, C.-S. Lee, C.-Y. Lim, W. Gang, M. Kim, S. Heo, J. Kim, K. Jung, S. Kim, J. Park, H. Shin, J. Park, T.-Y. Koo, H.-J. Shin, H. Heo, C. Kim, C.-K. Min, J.-H. Han, H.-S. Kang, et al., Rev. Sci. Instrum. 2020, 91, 083904.

[54] L. B. Henke, E. M. Guillikson, J. C. Davis, At. Data Nucl. Data Tables 1993, 54, 181.