Introduction

During the last decade post-mortem imaging has strengthened its position giving the opportunity for a revival of medico-legal autopsy examination. The milestones of this examination technique were set up by publications about Virtopsy® [1] as well as the second edition of Brogdon’s forensic radiology [2]. Conventional autopsy replacement ideas seem to be restricted to compatibility between conventional and modern methods of examination heading to opportunities for higher level of objectivity [3]. Due to relatively good availability and moderate costs, the most popular technology applied in modern post-mortem imaging is post-mortem computed tomography (PMCT); however, unenhanced PMCT in violent and natural death cases may be insufficient similarly to conventional autopsy techniques in showing the actual source of bleeding related to the damage of blood vessels and even worse referring to evaluation of internal organ injuries. The addition of contrast agent (CA) administration provides the opportunity for successful supplementation of this examination technique into PMCT angiography (PMCTA).

Material and methods

In everyday practice of the authors’ Department of Forensic Medicine, PMCT acquisitions are performed in almost every case directed to the department. With respect to the PMCTA, we implemented two main indications for this examination: victims of potential homicide especially due to sharp force trauma and cases screened by the PMCT with positive findings showing high possibility of internal bleeding. As a member of the Technical Working Group Postmortem Angiography Methods (TWGPAM) [4] our Department took part in the multicenter study which included mostly violent death cases, referring to sharp force trauma and gunfire injuries; however, other cases with the potential interesting
A 41-year-old male presenting with complaints of pain in the chest and the back, who had been examined two times (day by day) in hospital, finally discharged home where he died the next day. Post-mortem examination revealed the ruptured dissecting aortic aneurysm, spreading to carotid and iliac arteries, with two areas of rupture in the immediate vicinity of the base of the heart and the aortic arch: a thin axial plane of the thorax based on unenhanced PMCT showing blood inside the pericardial sac, b VRT reconstruction based on PMCT at the arterial phase showing CA inside both lumens of the dissecting aortic aneurysm as well as CA extravasation into the pericardial sac, right posterior view, c the autopsy specimen showing internal wall of the aortic arch with the rupture and d microscopic specimen, showing dissection of the aortic wall with bleeding (H&E × 40).
in violent and natural death cases, there are other changes referring to blood vessel pathology taken into consideration, including diagnosis of pulmonary embolism [10], coronary thrombosis, and different aspects of coronary artery disease [11–13] including the possibility of myocardial changes visible after CA administration. Vascular changes at different locations [14] and due to specific illnesses [15] were reported. The use of PMCTA, at first aimed only at examination of bodies of deceased adults, has been introduced for other cases, even with problematic technical issues [16]. There are also reports referring to evaluation and visualization in cases after medical interventions related to the heart and great vessels [17, 18]. The publications are aimed not only at diagnostic efficiency but also present different methods of CA administration [10, 19, 20] with the propositions of standardized protocols [4, 21]. As we understand that there are no universal “remedies” for evaluation of all cases, the advances and limitations in the development of examination methods with the use of administration of CA to cadavers were discussed [22, 23]. A valuable achievement is that the presentation of cases referring to post-mortem imaging results are reaching scientific journals not only dedicated to forensic pathologists/radiologists, but also clinical disciplines [24], which may give the opportunity for better understanding of the value of post-mortem diagnosis for evaluation of clinical problems. Recent publications provide evidence that PMCTA may give forensic post-mortem examination additional strength [4]. Based on the cases presented in the current paper we may even claim that the PMCTA in selected cases might be the sufficient way of examination while combined with conventional external examination and toxicological sampling (investigation); however, in investigations of alleged medical malpractice cases, histopathological examination of specimens seems to be necessary. There are no doubts that post-mortem imaging differs from clinical examination. As we consider the history and the output of clinical imaging methods, there are plenty of challenges awaiting in the field of post-mortem imaging.

Keywords
Post-mortem examination · PMCTA · Aneurysm rupture · Cardiac rupture · Visualization

Postmortale Bildgebung bei plötzlichen Todesfällen aufgrund arterieller oder kardialer Blutungen

Zusammenfassung
Die Autoren präsentieren natürliche Todesfälle aufgrund arterieller oder kardialer Blutungen, die sowohl durch eine konventionelle Autopsie als auch mittels postmortaler Bildgebung, einschließlich postmortaler Computertomographie-Angiographie (PMCTA), beurteilt wurden. Die CT-basierte Visualisierung wird vorgestellt, in Kombination mit den Ergebnissen makroskopischer und mikroskopischer Untersuchungen. Anhand der vorgestellten Fälle wird deutlich, dass die PMCTA in selektierten Fällen als Untersuchungsverfahren ausreichend sein kann, wenn sie mit der konventionellen externen Untersuchung und der toxikologischen Erhebung kombiniert wird; jedoch scheint bei der Untersuchung von Fällen, in denen angeblich ein ärztlicher Behandlungsfehler vorliegt, die histopathologische Untersuchung von Proben notwendig zu sein. Es besteht kein Zweifel, dass sich die postmortale Bildgebung von der klinischen Untersuchung unterscheidet. Betrachtet man die Entwicklung und die Ergebnisse der klinischen Bildungsverfahren, so wird es zahlreiche Herausforderungen im Bereich der postmortalen Bildgebung geben.

Schlüsselwörter
Postmortale Untersuchung · PMCTA · Aneurysmaruptur · Herzeruptur · Visualisierung
A 55-year-old woman with a history of hypertensive and Graves-Basedow diseases, under systematic medical supervision, collapsed and died unexpectedly. Post-mortem examination revealed widening of the circumference of the ascending aorta (up to 10 cm), the ruptured dissecting aortic aneurysm with two ruptures of the ascending aorta, both diameters approximately 1 cm: a thick axial plane of the thorax based on unenhanced PMCT showing blood inside the pericardial sac, b thin axial plane based on PMCTA at the arterial phase showing dissecting aortic aneurysm, c VRT reconstruction based on PMCTA at the arterial phase showing CA inside both lumens of the dissected aortic aneurysm as well as CA extravasation to the pericardial sac, left anterior view and d autopsy specimen showing dissecting aneurysm of the descending aorta.

A 75-year-old male suffered from pain in the inguinal area and subsequently lower back pain. He had been observed for several hours in hospital and discharged home, where he died on the same day: a thin axial plane of the abdomen based on unenhanced PMCT showing the changes located anteriorly to the spine and at the right side (suggesting bleeding because of ruptured aneurysm), b thin coronal plane based on PMCTA at the arterial phase showing ruptured aneurysm of abdominal aorta with CA extravasation to the right, note the cannulation of femoral vessels at the right side and c VRT reconstruction of the aneurysm based on PMCTA at the arterial phase, showing the leakage (arrow).
A 56-year-old male without previous treatment died unexpectedly in the street. Forensic autopsy revealed areas of myocardial necrosis (pale red, partially yellowish tinted) of 9 × 3 cm in size, with the double rupture of the posterior wall (each about 1 cm) of the left ventricle at the apical region: a) axial plane of the thorax based on unenhanced PMCT showing blood inside the pericardial sac, b), c) both based on PMCTA at the arterial phase: thin axial (b) and coronal (c) plane showing CA leakage to the pericardial sac (arrow), d) the autopsy specimen showing the apical part of the heart with the rupture (encircled), e) the autopsy specimen with the cut in the left ventricle, showing the area of necrosis and rupture (arrow) and f) microscopic specimen, showing different stages of necrosis of cardiomyocytes (H&E × 40).

Compliance with ethical guidelines

Conflict of interests. K. J. Woźniak, A. Moskala, E. Rzepecka-Woźniak, P. Kluza, K. Romaszko and O. Lopatin declare that they have no competing interests.

All studies described in this article were carried out in accordance with national law and the Helsinki Declaration from 1964 (in its current revised form). The PMCTA research was approved by the appropriate University Bioethics Committee (KBET/225/B/2012).

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Thali MJ, Dirnhofer R, Vock P (eds) (2009) The virtopsy approach: 3D optical and radiological scanning and reconstruction in forensic medicine. CRC Press, Boca Raton
2. Thali MJ, Viner M, Brogdon BG (eds) (2011) Brogdon’s forensic radiology, 2nd edn. CRC Press, Boca Raton
3. Roberts IS, Benamore RE, Benbow EW, Lee SH, Harris JN, Jackson A, Mallett S, Patankar T, Peebles C, Roobottom C, Traill ZC (2012) Postmortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 379:136–142
4. Grabherr S, Grimm JM, Heinemann A (eds) (2016) Atlas of postmortem angiography. Springer, Heidelberg
5. Grabherr S, Djonov V, Yen K, Thali MJ, Dimhofer R (2007) Postmortem angiography: review of former and current methods. Am J Roentgenol 188:832–838
6. Saunders S, Morgan B, Raj V, Robinson C, Rutty G (2011) Targeted postmortem computed tomography cardiac angiography: proof of concept. Int J Legal Med 125:609–616
432 | Rechtsmedizin 5 · 2017

7. Roberts ISD, Benamore RE, Peebles C, Roobottom C, Traill ZC (2011) Diagnosis of coronary artery disease using minimally invasive autopsy: evaluation of a novel method of postmortem coronary CT angiography. Clin Rad 66:645–650
8. Morgan B, Biggs MJ, Barber J, Raj V, Amoroso J, Hollingbury FE, Robinson C, Rutty GN (2013) Accuracy of targeted postmortem computed tomography coronary angiography compared to assessment of serial histological sections. Int J Legal Med 127:809–817
9. Inokuchi G, Yajima D, Hayakawa M, Motomura A, Chiba F, Torimitsu S, Makino Y, Iwase H (2013) The utility of postmortem computed tomography selective coronary angiography in parallel with autopsy. Forensic Sci Med Pathol 9:506–514
10. Pichereau C, Maury E, Monnier-Cholley L, Bourcier S, Lejour G, Alves M, Baudel JL, Ait Oufella H, Guidet B, Arrivé L (2015) Postmortem CT scan with contrast injection and chest compression to diagnose pulmonary embolism. Intensive Care Med 41:167–168
11. Michaud K, Grabherr S, Doenz F, Mangin P (2012) Evaluation of postmortem MDCT and MDCT-angiography for the investigation of sudden cardiac death related to athersclerotic coronary artery disease. Int J Cardiovasc Imaging 28:1807–1822
12. Palmieri C, Lobrinus JA, Mangin P, Grabherr S (2013) Detection of coronary thrombosis after multi-phase postmortem CT-angiography. Leg Med (Tokyo) 15:12–18
13. Michaud K, Grabherr S, Jackowski C, Bollmann M, Doenz F, Mangin P (2014) Postmortem imaging of sudden cardiac death. Int J Legal Med 128:127–137
14. van Eijk RP, van der Zwan A, Bleys RL, Regli L, Esposito G (2015) Novel application of postmortem CT angiography for evaluation of the Intracranial vascular anatomy in cadaver heads. AJR Am J Roentgenol 205(6):1276–1280
15. Okura N, Okuda T, Shiotsuki S, Kohno M, Hayakawa H, Suzuki A, Kawasaki T (2013) Sudden death as a late sequel of Kawasaki disease: postmortem CT demonstration of coronary artery aneurysm. Forensic Sci Int 225:85–88
16. Sarda-Quarello L, Bartoli C, Laurent PE, Torrents J, Pierrecchi-Marti MD, Sigaudy S, Arisy-Bonnet D, Gorincour G (2016) Whole body perinatal imaging: a late sequel of Kawasaki disease: postmortem imaging (Virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med (Tokyo) 12:215–222
17. Aalders MC, Adolphi NL, Daly B, Davis GG, de Boer RV, Fineschi V (2016) Multi-phase post-mortem CT angiography: a pathologic correlation study on cardiovascular sudden death. J Geriatr Cardiol 13(10):855–865
18. Vogel B, Heinemann A, Tzikas A, Gulbins H, Reichenspurner H, Püschel K, Vogel H (2013) Post-mortem computed tomography (PMCT) and PMCT-angiography after transvascular cardiac interventions. Arch Med Sadowej Kryminol 63:255–266
19. Vogel B, Heinemann A, Tzikas A, Poedendael C, Gulbins H, Reichenspurner H, Püschel K, Vogel H (2013) Post-mortem computed tomography (PMCT) and PMCT-angiography after cardiac surgery. Possibilities and limits. Arch Med Sadowej Kryminol 63:155–171
20. Robinzon C, Barber J, Amoroso J, Morgan B, Rutty G (2013) Pump injector system applied to targeted postmortem coronary artery angiography. Int J Legal Med 127:661–666
21. Schweitzer W, Flach PM, Thali M, Laberke P, Gascho D (2016) Very economical immersion pump feasibility for postmortem CT angiography. J Forensic Radiol Imaging 5:8–14
22. Grabherr S, Doenz F, Steger B, Dinnohofer R, Dominguez A, Söllberger B, Gyax E, Rizzo E, Chevalier C, Meulli R, Mangin P (2011) Multi-phase postmortem CT angiography: development of a standardized protocol. Int J Legal Med 125:791–802
23. Grabherr S, Grimm J, Dominguez A, Vanhaeboest J, Mangin P (2014) Advances in postmortem CT-angiography. Br J Radiol 87(1030):488
24. Ross SG, Bolliger SA, Ampazios G, Osterheulweg L, Thalii MJ, Flach PM (2014) Postmortem CT angiography: capabilities and limitations in traumatic and natural causes of death. Radiographics 34:830–846
25. Verri J, Frati R, Pascalle N, Pomara C, Grilli G, Viola RV, Fineschi V (2016) Multi-phase post-mortem CT-angiography: a pathologic correlation study on cardiovascular sudden death. J Geriatr Cardiol 13(10):855–865
26. Christe A, Flach P, Ross S, Spendlove D, Bolliger S, Vock P, Thalii MJ (2010) Clinical radiology and postmortem imaging (Virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med (Tokyo) 12:215–222
27. Aalders MC, Adolphi NL, Daly B, Davis GG, de Boer H, Decker SJ, Dampers JJ, Ford J, Gerard CY, Hatch GM, Hofman PAM, Iino M, Jacobsen C, Klein WM, Kubat B, Leth PM, Mazuchowski EL, Nolte KB, D’Onofrio C, Thalii MJ, van Rijn RR, Wozniak K (2017) Research in forensic radiology and imaging: Identifying the most important issues. J Forensic Radiol Imaging 8:1–8. https://doi.org/10.1016/j.jfori.2017.01.004

Lesen Sie im Themenheft „Klinische Obduktionen“ (Ausgabe 5/2017) von Der Pathologe mehr zu folgenden Themen:

- Obduktionszahlen in Deutschland
- Erwartungen des Viszeralchirurgen an die Ergebnisse klinischer Obduktionen
- Übersicht nach Sepsis-3 und Ansprüche des Klinikers an die Autopsie des Intensivpatienten
- Klinische Obduktionen aus der Sicht des Hämatologen/Onkologen
- Anforderungen des Neurologen an Obduktionen
- Klinische Obduktionen aus medizinethischer Sicht
- Obduktionen im Grenzbereich zwischen Pathologie und Rechtsmedizin
- Postmortale bildgebende Verfahren

Suchen Sie noch mehr zum Thema?
Mit e-Med – den maßgeschneiderten Fortbildungssabs von Springer Medizin – haben Sie Zugriff auf alle Inhalte von SpringerMedizin.de. Sie können schnell und komfortabel in den für Sie relevanten Zeit schriften recherchieren und auf alle Inhalte im Volltext zugreifen.

Weitere Infos zu e.Med finden Sie auf springermedizin.de unter „Abos“

Lesetipp

Klinische Obduktionen

Nach Vorgaben des Krankenhaus strukturgesetzes soll die Auszahlung finanzieller Zuschläge für klinische Obduktionen im Krankenhaus an das Erreichen einer bestimmten Quote geknüpft werden. Ziel dieser Maßnahme ist die Erhöhung der Häufigkeit klinischer Obduktionen in deutschen Krankenhäusern, damit die Möglichkeit erhalten bleibt, die dabei gewonnenen Erkenntnisse für die Aus- und Weiterbildung des klinischen Personals zu nutzen, ggf. aus Fehlern zu lernen und Obduktionen als Qualitätssicherungsinstrument einzusetzen.