MLH1, BRAF and p53 – searching for significant markers to predict evolution towards adenocarcinoma in colonic sessile serrated lesions

DIANA RĂDUŢĂ1, OCTAVIAN MARIUS DINCĂ2, GIANINA VIORICA MICU3, LUCIANA NICHTA1,3, MIRELA DANIELA CIOPLEA1, RADU MIHAI BUŞCĂ1, RALUCA ARDELEANU1, RADU BOGDAN MATEESCU4,5, ANDREEA BENGUS5, SABINA ANDRADA ZURAC1,3, CRISTIANA GABRIELA POPP1, GEORGE CRISTIAN VLĂDAN2

1) Department of Pathology, Colentina University Hospital, Bucharest, Romania
2) Department of Oral and Maxillofacial Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
3) Department of Pathology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
4) Department of Internal Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
5) Department of Gastroenterology, Colentina University Hospital, Bucharest, Romania

Abstract

Background and Aim: Colonic serrated lesions are premalignant lesions, using an alternative malignization pathway, including multiple genetic and epigenetic alterations, as: mismatch repair deficiency due to MutL homolog 1 (MLH1) promoter methylation, tumor protein p53 (TP53) mutations, activating mutations of v-Raf murine sarcoma viral oncogene homolog B (BRAF) and Kirsten rat sarcoma viral oncogene homolog (KRAS). Our study aims to evaluate MLH1, BRAF and p53 immunohistochemical (IHC) status in sessile serrated lesions (SSLs), with and without dysplasia. Materials and Methods: This is a retrospective case-control study including 20 SSLs with dysplasia and 20 SSLs without dysplasia (matching sex and age). IHC expression of MLH1, BRAF and p53 was evaluated as the percent of nuclear loss of MLH1, cytoplasmic positivity of BRAF and nuclear positivity of p53. Data concerning age, sex, localization of the lesion, dysplasia and IHC results were statistically processed using Microsoft Excel. Results: We had very polymorphous patterns of IHC expression for BRAF, MLH1 and p53, especially in the dysplastic group. Thus, two patients were BRAF+/MLH1-/p53+, three were BRAF+/MLH1+/p53- and six were BRAF+/MLH1+/p53+. Dysplastic lesions without BRAF mutation exhibited the following phenotype: one case BRAF+/MLH1+/p53+, four BRAF-/MLH1+/p53- and three BRAF-/MLH1+/p53+. In the control group (SSLs without dysplasia), there was a more homogenous distribution of cases: eight cases BRAF+/MLH1+/p53-, seven BRAF-/MLH1+/p53-, one BRAF-/MLH1+/p53+, two BRAF+/MLH1-/p53- and two BRAF-/MLH1+/p53+. Conclusions: There are more routes on the serrated pathway, with different mutations and time of acquisition of each genetic or epigenetic lesion with the same morphological result. These lesions should be stratified according to their risk to poor outcome and their need to further surveillance.

Keywords: colonic adenocarcinoma, sessile serrated lesions, dysplasia, BRAF.

Introduction

Colonic serrated lesions, defined by epithelial proliferations with saw-tooth or stellate architecture, are one of the most challenging diagnoses in digestive pathology. They include from benign hyperplastic polyps (HPs) to dysplastic lesions with high potential of evolution towards invasive carcinoma (IC). From their inclusion in 2010 in the World Health Organization (WHO) Classification of digestive tumors, many researchers offered their attention to serrated lesions of the large bowel, describing pathways of proliferation and evolution towards malignancy, information that led, in 2019, to a new classification [1–3]. Serrated colonic proliferative lesions are now classified by the WHO as HPs, sessile serrated lesions (SSLs) with or without dysplasia, traditional serrated adenomas (TSAs), and serrated adenoma, unclassified [2]. Some lesions, previously diagnosed as HPs are, according to this classification, in fact, SSLs [1, 2, 4]. SSLs are, usually, asymptomatic lesions, frequently found incidentally, but some of them are rapidly progressive premalignant lesions, involved in up to 35% of colorectal carcinoma (CRC) [5]. From molecular point of view, SSLs share a distinct genotype with microsatellite instability (MSI), v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutation and nuclear hypermethylation [2, 6]. From the pathologist point of view, the criteria to diagnose SSL have never been simpler: for SSLs without dysplasia – one single crypt with unequivocal serrated architecture: asymmetrical proliferation with horizontal growth along the muscularis mucosae, dilation of the basal third of the crypt and serrations present into the crypt base [2, 7, 8]. The cytological aspects vary from small basally located nuclei to occasional larger nuclei with inconspicuous nucleoli [2, 7].

This is an open-access article distributed under the terms of a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which permits unrestricted use, adaptation, distribution and reproduction in any medium, non-commercially, provided the new creations are licensed under identical terms as the original work and the original work is properly cited.
Dysplasia in SSLs is a focal change that appears on the pathway to carcinoma. SSLs with dysplasia have complex crypt architecture (crowding, complex branching, cribriform or villous architecture) and cytological atypia with various patterns: intestinal dysplasia (resembling sporadic dysplasia or the dysplasia in conventional adenoma), serrated dysplasia (eosinophilic cytoplasm and round atypical nuclei, prominent nucleoli, and numerous mitoses [1, 2, 9, 10]. Liu et al. [9] described a new category of dysplasia in SSLs, called minimal deviation dysplasia, characterized by minimal cytological and architectural abnormalities, accompanied by loss of MutL homolog 1 (MLH1) expression. There still are a lot of controversies about the proper manner to report dysplasia (especially low grade) in SSLs and the importance of immunohistochemical (IHC) tests for reporting this feature [11] (Figure 1, a and b).

The serrated pathway to invasive malignancy is an alternative pathway to the more known and documented adenoma–carcinoma pathway, including multiple genetic and epigenetic alterations, the most frequent being mismatch repair deficiency due to MLH1 promoter methylation, extensive methylation of various CpG islands [2, 12, 13], tumor protein p53 (TP53) mutations, activating mutations of BRAF and Kirsten rat sarcoma viral oncogene homolog (KRAS), mutations that involve WNT signaling pathway [2, 5]. Usually, the first genetic mutation involves mitogen-activated protein kinase (MAPK) pathway (KRAS, BRAF) [7, 14]. Next step in SSLs is hypermethylation of MLH1 promoter, which is accompanied by the occurrence of dysplasia [9]. Activation of the WNT signaling pathway is frequently found in SSLs progression towards carcinoma, usually occurring later than in adenomas [15], usually through mutations of ring finger protein 43 (RNF43)–zinc and ring finger 3 (ZNRF3) complex [16].

Mutation of p53, found in different cancers including sporadic and polyoid CRCs, is also described in serrated lesions, although it is conspicuous and usually associated with KRAS-mutated lesions [17–19].

Adenomatous polyposis coli (APC) truncating mutations are rare and tardive in SSL and their role in carcinogenesis is unclear. They are found more frequently in BRAF-mutated lesions, but APC mutations seems to be missense and not involved in activation of the WNT signaling pathway [15, 18] (Figure 2).

Serrated adenocarcinoma, an entity first described by WHO in 2010 [1], is the final stage of serrated-neoplasia pathway. For its diagnosis, besides characteristic morphological features (saw-toothed architecture), the presence of an associated SSL or TSA is needed [20] (Figures 3 and 4).

![Figure 1](image1.png) Figure 1 – SSLs with LGD. Note the branching crypts with dilated base (a) and the hyperchromatic nuclei with minimal atypia and pseudostratification (b). HE staining: (a) ×100; (b) ×200. HE: Hematoxylin–Eosin; LGD: Low-grade dysplasia; SSLs: Sessile serrated lesions.

![Figure 2](image2.png) Figure 2 – SSL with HGD. Although architectural distortion is not severe, there are significant cellular atypia: large irregular nuclei with visible nucleoli and abnormal nuclear/cytoplasmic ratio. HE staining, ×200. HGD: High-grade dysplasia.

![Figure 3](image3.png) Figure 3 – Invasive serrated carcinoma developed in a SSL with dysplasia (LGD and HGD) (left inferior corner). HE staining, ×100.
Since the classification of colonic serrated lesions had been changed recently and there still are many unanswered questions about the serrated pathway of carcinogenesis [21], there is an important need to report molecular alteration and cellular phenotype in these lesions to have a complete and comprehensive characterization of the serrated pathway to CRC.

Aim

The aim of this study was to evaluate, using immunohistochemistry, MLH1, BRAF and p53 status in SSLs, presenting a comparison between SSLs without dysplasia and SSLs that harbor dysplasia or IC.

Materials and Methods

We designed a retrospective case-control study, including 20 consecutive SSLs with dysplasia (13 low-grade, five high-grade and two high-grade with invasive pT1 carcinoma). For each patient with dysplasia, we included a patient with high-grade and two high-grade with invasive pT1 carcinoma).

Since the classification of colonic serrated lesions had been changed recently and there still are many unanswered questions about the serrated pathway of carcinogenesis [21], there is an important need to report molecular alteration and cellular phenotype in these lesions to have a complete and comprehensive characterization of the serrated pathway to CRC.

Aim

The aim of this study was to evaluate, using immunohistochemistry, MLH1, BRAF and p53 status in SSLs, presenting a comparison between SSLs without dysplasia and SSLs that harbor dysplasia or IC.

Materials and Methods

We designed a retrospective case-control study, including 20 consecutive SSLs with dysplasia (13 low-grade, five high-grade and two high-grade with invasive pT1 carcinoma). For each patient with dysplasia, we included a patient with SSL without dysplasia matching sex and age.

All lesions were colorectal SSLs (diagnosed according to 2019 WHO criteria), endoscopically resected and/or biopsied. Tissue samples were immediately immersed in 10% neutral buffered formalin, fixed for 6–24 hours, and then routinely processed using an automatic tissue-processor for paraffin embedding. From every paraffin block, there were obtained at least four sections from two different levels for routine Hematoxylin–Eosin (HE) staining and supplemental sections for IHC assays (MLH1, BRAF and p53) (Table 1).

Results

SSLs with low-grade dysplasia (LGD) were predominantly located in the right colon, while those with high-grade dysplasia (HGD) and IC on the left colon and rectum (Figure 5). In the control group (without dysplasia), SSLs were more frequently located in the right colon, and in fact accounted for more than half of the cases for both the right and left colon areas, while clearly representing less than half of the lesions for the rectum and being completely unaccounted for in the cecum and transverse colon.

The median age in the dysplastic group was of 64.45 years (age range between 43 and 78 years), while the HGD +/- IC group showed a median age of 62.46 years (age range between 55 and 78 years) (Figure 6). Although the second group showed a small reduction in the age of the patients, the difference did not attain statistical significance (t-test, $p=0.1893$).

Patients with LGD were 10 men and three women, while patients with HGD +/- IC were three women and four men, thus the male/female ratio showed a three folds higher preponderance of men for the LGD group (3.333) compared to the HGD +/- IC group (1.333).

Table 1 – Immunohistochemistry data

Primary antibody	Clone	Host	Pretreatment	Dilution
MLH1	E505	Mouse	Citrate	RTU-BOND
BRAF	VE1	Mouse	EDTA	2/200
p53	D07	Mouse	Citrate	1/200

BRAF: v-Raf murine sarcoma viral oncogene homolog B; EDTA: Ethylenediaminetetraacetic acid; MLH1: MutL homolog 1; RTU: Ready to use.
Figure 5 – Distribution of SSLs in case-group (dysplastic lesions) and in control group (non-dysplastic lesions). N/A: Not available.

BRAF positivity was found in over 50% of the cells in eight out of 13 cases of LGD and in four out seven cases with HGD +/- IC (Figures 7 and 8). In the control group, only eight out 20 cases had BRAF positivity in over 50% of the cells, and the overall proportions of reactivity differences could not be deemed significantly different between groups (Fisher’s two-tailed test, $p=0.3431$). Although plotting the data revealed a clear inverse proportion for BRAF positive/negative ratio in control versus both pathological entities, the relatively small number of cases, especially for the two pathological groups, would explain the fail to attain statistical significance.

Figure 6 – Age distribution of patients with dysplastic lesions. IC: Invasive carcinoma.

Only three patients from the control group had MutS homolog 1 (MSH1) loss (MSI) (Figure 9; Figure 10, a and b), while in the case-group 10 patients had loss of MLH1 expression (six out seven cases with HGD +/- IC and four patients with LGD). Thus, there was a clear-cut gradual increase in the lost/preserved ratio from control to LGD and HGD +/- IC groups, and the ratios showed a statistically significant difference between the three groups (Fisher’s two-tailed test, $p=0.0407$).

p53 aberrant expression was noted in three cases without dysplasia and in 12 cases with dysplasia (without any correlation with the severity of dysplasia) (Figures 11 and 12). Since LGD cases showed a much more predominant positive/negative ratio, the overall inter-group differences were highly significant (Fisher’s two-tailed test, $p=0.0079$).

All BRAF-mutated SSL without dysplasia were MSS, while in the dysplastic group seven out of 12 BRAF-mutated cases were MSS (Figure 13).

Practically, we had a very polymorphous pattern of IHC expression of BRAF, MLH1 and p53, especially in the dysplastic group. Thus, two patients were BRAF+/MSI/p53+ (with LGD), three were BRAF+/MSI/p53- (all with HGD +/- IC), one patient was BRAF+/MSS/p53- (with LGD) and six patients were BRAF+/MSS/p53+ (five with LGD and one with HGD).

Figure 7 – Mutation of BRAF is becoming increasingly frequent as the degree of dysplasia is rising. BRAF: v-Raf murine sarcoma viral oncogene homolog B.

Figure 8 – Anti-BRAF antibody immunostaining revealing intense positivity in epithelial cells in a LGD SSL, ×100.
Figure 9 – MLH1 loss revealed in all SSLs, with a strong tendency to dysplastic lesions. MLH1: MutL homolog 1.

Figure 10 – MLH1 loss in a non-dysplastic SSL (a) and in a HGD SSL (b). There is a higher percent of negative cells in the dysplastic lesion. Anti-MLH1 antibody immunostaining: (a) ×100; (b) ×200.

Figure 11 – Mutation of p53 significantly more frequent in HGD SSLs.

Also, dysplastic lesions without BRAF mutation exhibited the following phenotype: one case BRAF-/MSI/p53+ (with HGD + IC), four cases BRAF-/MSI/p53- (three with LGD and one with HGD) and three cases BRAF-/MSS/p53+ (two with LGD and one with HGD).

In the control group (SSLs without dysplasia), IHC assays revealed a much more homogenous distribution of cases: eight cases were BRAF+/MSS/p53-, seven cases were BRAF-/MSS/p53-, one case was BRAF-/MSI/p53+, two cases were BRAF-/MSI/p53- and two were BRAF-/MSS/p53+ (Figure 14).

In conclusion, in the non-dysplastic group, all BRAF-mutated lesions were MSS and p53 negative. Also, most BRAF-negative lesions had the same features. Interestingly, patients with dysplasia did not exhibit this pattern of immunostaining (just one case BRAF+/MSS/p53-), probably because they have more mutation in epithelial cells.
MLH1 and BRAF since they are specifically involved in their 5th or 6th decade of life. In our study, we matched protocol for patients with SSLs [27–29].

Emerging data are important steps towards a successful and management of SSLs with or without dysplasia and continuous search for improving endoscopic diagnosis and usually incompletely resected [25, 26]. There is a appearance, difficult to identify and assess endoscopically frequently small, plat lesions, with Kudo unspecific to know these characteristics, since serrated lesions are more advanced. It is very important for endoscopists to gain knowledge of how SSLs pathway works, we studied 40 lesions (with and without dysplasia, matched in 20 case-control pairs) and reported their heterogeneous IHC phenotypes. We have chosen p53 because it is used largely to aid the diagnosis of dysplasia in colorectal lesions, and MLH1 and BRAF since they are specifically involved in serrated pathway of carcinogenesis and, also, can be used as prognosis tools in CRC [23].

Our study confirms the preference SSLs have for the right, proximal colon [24], but raised an important problem: lesions in the distal colon and rectum were more advanced. It is very important for endoscopists to know these characteristics, since serrated lesions are frequently small, plat lesions, with Kudo unspecific appearance, difficult to identify and assess endoscopically and usually incompletely resected [25, 26]. There is a continuous search for improving endoscopic diagnosis and management of SSLs with or without dysplasia and emerging data are important steps towards a successful protocol for patients with SSLs [27–29].

Age is not very significant in SSLs, patients are, usually, in their 5th or 6th decade of life. In our study, we matched patients according to their age and sex, so there are no differences to analyze between case and control groups. Although, inside the case-group (patients with dysplasia) there is no significant differences between median age of patients with LGD and patients with HGD, confirming the observation that evolution towards invasive neoplasia on the serrated pathway is usually rapid. This is a significant difference of biological behavior comparing to adenomatous pathway, in which evolution from adenoma to IC is slow and patients with high levels of dysplasia are older than patients with LGD lesions [18, 21, 30]. This observation may modify the surveillance schedule for patients with microvesicular HPs or previous diagnosed SSLs.

Males increased prevalence of SSLs is foreseeable since CRC and all its premalignant lesions are more likely found in males [31, 32]. Although a small study, our research confirms this prevalence, in the case-group being included 14 men and six women. Although not statistically significant (t test, p=0.4258), median age for men was smaller than median age for women in the case-group (63.36 years vs 67 years), confirming the fact that CRC affects younger men [33].

BRAF mutation is a precocious event on the serrated pathway [34], being associated by various studies with an increased aggressiveness and rapid evolution. In our case-group, more than half of the patients had BRAF-mutated lesions (12 out of 20). Moreover, BRAF expression was found also in SSLs without dysplasia (eight out of 20), practically similar with the incidence of BRAF mutation in LGD group, which raise an alarm about the possibility of rapid progression to carcinoma of although bland-looking, non-alarming lesions. In the previous mentioned context of frequent incomplete resection of SSLs, this observation raises the idea that BRAF immunostaining can be useful for further therapeutic decision in incompletely resected SSLs, with or without dysplasia. A further study for identifying the relationship of BRAF and KRAS mutations is needed, KRAS being an alternative mutation to activate MAPK pathway [14, 35, 36].

MSI by hypermethylation of MLH1 promoter is a frequent, but somehow later step in serrated carcinogenesis. In our study, there is a significant difference between the case-groups and the control-one. MLH1 loss is much more frequent in the dysplastic SSLs included, confirming the fact that acquisition of this mutation is the hallmark of visible dysplasia [9, 11]. Still, three cases from the control group exhibited MLH1 loss indicating that, at least in some cases, MLH1 loss precedes histologically dysplasia, and some lesions are more evolved than others on the pathway to malignancy [37]. Also, interesting is the observation that half of dysplastic SSLs are, still, MSS (no MLH1 loss). Kane et al. recently described a subgroup of serrated CRCs BRAF-mutated and MSS with a dismal prognosis [38]. In our study, seven out of 10 MSS dysplastic SSLs were BRAF-mutated. For these lesions, it was described...
an alternative pathway of carcinogenesis involving WNT/β-catenin signaling path and transforming growth factor-beta (TGF-β) upregulation [16, 38, 39].

The most significant difference between the two groups is the presence of p53 mutation, indicating the fact it is a late mutation on the carcinogenesis pathway, p53-mutated lesions being more probable the ones which will rapidly evolve towards invasive and metastatic carcinoma. Some studies observed a strong inverse correlation between TP53 mutation and MSI phenotype in CRC [40, 41]. In this study, 11 out of 27 lesions with MSS harbored a TP53 mutation, whereas only four out 13 MSI lesions were p53 mutated (weak correlation, not statistically significant). There is also a correlation between p53 and BRAF mutation, especially in dysplastic SSLs (eight out 12 BRAF-mutated had p53 mutation), and while in non-dysplasia group only three out of eight BRAF-mutated lesions harbored p53 mutation.

An observation about the control group showed that all BRAF-mutated SSLs without dysplasia were MSS. It is interesting to know if the evolving lesions in this group will suffer further mutations or if these lesions are going to evolve towards a BRAF-mutated MSS carcinoma, entity that has, usually, as precursor, a TSA [42].

In the end, the most interesting and intriguing observation of our study is the polymorphism of mutations in SSLs. Although this is a small study, including only 40 lesions and evaluating IHC expression of only three mutation-related markers, we had a very interesting distribution of cases. Practically, there are eight possible combinations (four BRAF-mutated: BRAF+/MSI/p53+, BRAF+/MSI/p53-, BRAF+/MSS/p53+, BRAF+/MSS/p53- and four BRAF negative: BRAF-/MSI/p53+, BRAF-/MSI/p53-, BRAF-/MSS/p53+, BRAF-/MSS/p53-) and dysplastic SSLs were distributed in seven categories (2; 3; 6; 1; 1; 4; 3; 0). Non-dysplastic SSLs were less polymorphous, being restrained in five categories (0; 0; 0; 8; 1; 2; 2; 7). This observation is interesting for diagnosis, classification, and treatment [42, 43].

Conclusions

Our study raises the idea that there are more routes on the serrated pathway, with different mutations and time of acquisition of each genetic or epigenetic lesion with the same morphological result. Probably these lesions have a different biological behavior and should be stratified according to their risk to poor outcome and their need to further surveillance. Also, some of these mutations are therapeutical targets (BRAF, KRAS), potentially useful for treatment of malignant serrated lesions. Although there are a lot of recent data in literature about serrated lesions and their evolution towards malignancy, still there are controversies and questions about the real malignant potential of each serrated lesions and the appropriate clinical management of these patients. Emerging data suggest that IHC studies are necessary to obtain surveillance guides based on strong medical proofs.

Conflict of interests

None of the authors have no conflict of interests to disclose.

Ethics approval

Colentina University Hospital’s Ethics Committee approved this research. The research complied with acceptable international standards mentioned in the Declaration of Helsinki.

Patient consent

All included patients signed and informed consent, permitting the use of their data to research.

Data availability

All data are available on request.

Authors’ contribution

Diana Răduţă & Octavian Marius Dinca are first authors in equal proportion.

References

[1] Bosman FT, Carneiro F, Hruban RH, Theise ND (eds); World Health Organization (WHO) & International Agency for Research on Cancer (IARC). WHO Classification of tumours of the digestive system. 4th edition, vol. 3. IARC Press, Lyon, France, 2010, 160–165. https://publications.iarc.fr/Book-And-Report-Series/WHO-Classification-Of-Tumours/WHO-Classification-Of-Tumours-Of-The-Digestive-System-2010

[2] World Health Organization (WHO) Classification of Tumours Editorial Board. WHO Classification of tumours. Digestive system tumours, 5th edition, vol. 1. International Agency for Research on Cancer (IARC) Press, Lyon, France, 2019, 163–169. https://publications.iarc.fr/Book-And-Report-Series/WHO-Classification-Of-Tumours/Digestive-System-Tumours-2019

[3] Niv Y. Changing pathological diagnosis from hyperplastic polyp to sessile serrated adenoma: systemic review and meta-analysis. Eur J Gastroenterol Hepatol, 2017, 29(12):1327–1331. https://doi.org/10.1097/MEG.0000000000000994 PMID: 29049128

[4] Anderson JC, Lisovsky M, Greene MA, Hagen C, Srivastava A. Factors associated with classification of hyperplastic polyps as sessile serrated adenomas/polyps on morphologic review. J Clin Gastroenterol, 2018, 52(6):524–529. https://doi.org/10.1097/MCG.0000000000000840 PMID: 28723863

[5] Cassese G, Amendola A, Malone F, Giglio MC, Pagano G, Milone M, Aprea G, Luglio G, De Palma GD. Serrated lesions of the colon–rectum: a focus on new diagnostic tools and current management. Gastroenterol Res Pract, 2019, 2019: 9179718. https://doi.org/10.1155/2019/9179718 PMID: 30774654 PMCID: PMC6350577

[6] Sweetser S, Smyrk TC, Sugumaran A. Serrated polyps: critical precursors to colorectal cancer. Expert Rev Gastroenterol Hepatol, 2011, 5(5):627–635. https://doi.org/10.1586/egh.11.67 PMID: 21910580

[7] Crockett SD, Nagtegaal ID. Terminology, molecular features, epidemiology, and management of serrated colorectal neoplasia. Gastroenterology, 2019, 157(4):949–966.e4. https://doi.org/10.1053/j.gastro.2019.06.041 PMID: 31323292

[8] Hu K, Shen S, Zhang L. Herniation of crypts in hyperplastic polyp and sessile serrated adenoma: a prospective study. Am J Cancer Res, 2018, 8(1):144–153. PMID: 29416927 PMCID: PMC5794728

[9] Liu C, Walker NI, Leggett BA, Whitehall VL, Bettington ML, Rosty C. Sessile serrated adenomas with dysplasia: morphological patterns and correlations with MLH1 immunohistochemistry. Mod Pathol, 2017, 30(12):1728–1738. https://doi.org/10.1038/modpathol.2017.92 PMID: 28752838 PMCID: PMC5719122

[10] Cenaj O, Gibson J, Ozde RD. Clinicopathologic and outcome study of sessile serrated adenomas/polyps with sessile versus intestinal dysplasia. Mod Pathol, 2018, 31(4):633–642. https://doi.org/10.1038/modpathol.2017.169 PMID: 29271414

[11] Kim JH, Kang GH. Evolving pathologic concepts of serrated lesions of the colorectum. J Pathol Transl Med, 2020, 54(4):276–289. https://doi.org/10.4132/jptm.2020.04.15 PMID: 32580537 PMCID: PMC7385269

[12] Nguyen LH, Goel A, Chung DC. Pathways of colorectal carcinogenesis. Gastroenterology, 2020, 158(2):291–302. https://doi.org/...
Burgess NG, Pellise M, Nanda KS, Houngan LF, Zanati SA, Brown GJ, Singh R, Williams SJ, Petropoulos SC, Ormonde D, Moss A, Byth K, PNg H, McLeod D, Bourke MJ. Clinical and endoscopic predictors of cytological dysplasia or cancer in a prospective multicentre study of large sessile serrated adenomas/polyps. Gut, 2016, 65(3):437–446. https://doi.org/10.1136/gutjnl-2014-308803 PMID: 25731869

Sano W, Fujimori T, Ichikawa K, Sunakawa H, Utsumi T, Iwatake M, Hasuake N, Hattori S, Kosaka H, Sano Y, Diana Răduță et al.

Prediction of dysplasia within sessile serrated polyps (with video). Gastrointest Endosc, 2018, 87(1):222–231.e2. https://doi.org/10.1016/j.gie.2017.06.031 PMID: 28713060

McCarthy AJ, O’Reilly SM, Shanley J, Geraghty R, Ryan EJ, Cullen G, Sheahan K. Colorectal serrated neoplasia: an institutional 12-year experience of the impact of a screening programme. Gastroenterol Res Pract, 2019, 2019:1592306. https://doi.org/10.1155/2019/1592306 PMID: 30881445 PMCID: PMC6381559

Burgess NG, Pellise M, Nanda KS, Houngan LF, Zanati SA, Brown GJ, Singh R, Williams SJ, Petropoulos SC, Ormonde D, Moss A, Byth K, PNg H, McLeod D, Bourke MJ. Clinical and endoscopic predictors of cytological dysplasia or cancer in a prospective multicentre study of large sessile serrated adenomas/polyps. Gut, 2016, 65(3):437–446. https://doi.org/10.1136/gutjnl-2014-308803 PMID: 25731869

Sano W, Fujimori T, Ichikawa K, Sunakawa H, Utsumi T, Iwatake M, Hasuake N, Hattori S, Kosaka H, Sano Y, C.瞭anal and prospective evaluations of sessile serrated adenoma/polyps with cytological dysplasia. J Gastroenterol Hepatol, 2018, 33(6):1454–1460. https://doi.org/10.1111/jgh.14099 PMID: 29377243

Ogino S, Cantor M, Kawasaki T, Brahmandam M, Kirkner GJ, Hashimoto T, Yamashita S, Yoshida H, Taniguchi H, Ushijima T, Borowsky J, Dumenil T, Bettington M, Pearson SA, Bond C, O’Brien MJ, Yang S, Clebanoff JL, Murakami T, Sakamoto N, Ritsuno H, Shibuya T, Osada T, Sano W, Hirata D, Teramoto A, Iwatate M, Hattori S, Fujita M, Burgess NG, Pellise M, Rosty C. An update on the molecular hallmarks of the serrated pathway activation in sessile neoplasia. Mod Pathol, 2018, 31(3):495–504. https://doi.org/10.1038/modpathol.2017.150 PMID: 29148535

Hashimoto T, Yamashita S, Yoshida H, Taniguchi H, Ushijima T, Yamada T, Saito Y, Ochiai A, Sekine S, Hiraoka N. WNT pathway gene mutations are associated with the presence of dysplasia in colorectal sessile serrated adenoma/polyps. Am J Surg Pathol, 2017, 41(9):1188–1197. https://doi.org/10.1097/PAS.0000000000000877 PMID: 28614199

Murakami T, Kakaoka Y, Yatake N, Hiromoto T, Sasahara N, Saito Y, Nakagawa N, Nagahara A. Molecular characterization of sessile serrated adenoma/polyps with dysplasia/carcinoma based on immunohistochemistry, next-generation sequencing, and microsatellite instability testing: a case series study. Diagn Pathol, 2018, 13(1):88. https://doi.org/10.1186/s13287-018-0603-0 PMID: 31333460

De Palma FDE, D’Argenio V, Pol J, Kroemer G, Maurizi MC, Salvatore F. The molecular hallmarks of the serrated pathway in colorectal cancer. Cancers (Basel), 2019, 11(7):1017. https://doi.org/10.3390/cancers11071017 PMID: 31330830 PMCID: PMC6678087

Ogino S, Cantor M, Kawasaki T, Brahmandam M, Kirkner GJ, Weisenberger DJ, Campana M, Laird PW, Loda M, Fuchs CS. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut, 2006, 55(7):1000–1006. https://doi.org/10.1136/gut.2005.082933 PMID: 16407376 PMCID: PMC1586352

Pai RK, Bettington M, Srivastava A, Rosty C. An update on the morphology and molecular pathology of serrated polyp and associated carcinomas. Mod Pathol, 2019, 32(10):1390–1415. https://doi.org/10.1038/s41379-018-0282-0 PMID: 31542648

Nakanishi Y, Diaz-Meco MT, Moscat J. Serrated colorectal cancer: the road less travelled? Trends Cancer, 2019, 5(11):742–754. https://doi.org/10.1016/j.trecan.2019.09.004 PMID: 31735291 PMCID: PMC6894428

Tuttle T, Gillis S, D’Souza J, Bourke MJ. Sessile serrated adenomas/polyps with cytologic dysplasia: a triple threat for interval cancer. Gastrointest Endosc, 2018, 87(2):307–310. https://doi.org/10.1016/j.gie.2014.03.050 PMID: 24890425

Lochhead P, Kuchiba A, Imamura Y, Liao X, Yamachii M, Nishihara R, Glin ZR, Monkawa T, Shen J, Meyerhardt JA, Fuchs CS, Ogino S. Microsatellite instability and BRAF mutational testing in colorectal cancer prognostication. J Natl Cancer Inst, 2013, 105(15):1151–1156. https://doi.org/10.1093/jnci/djt173 PMID: 23878352 PMCID: PMC3735463

Sano W, Hirata T, Teramoto A, Iwatate M, Hattori S, Fujita M, Sano Y. Serrated polyps of the colon and rectum: remove or not? World J Gastroenterol, 2020, 26(19):2276–2285. https://doi.org/10.3748/wjg.v26.i19.2276 PMID: 32476792 PMCID: PMC7243466

Murakami T, Sakamoto N, Ritusuo H, Shibuya T, Osada T, Mitani K, Takanashi S, Nikatake S. Clinical and pathologic characteristics of sessile serrated adenoma/polyp with and without dysplasia/carcinoma. Gastrointest Endosc, 2017, 85(3):590–600. https://doi.org/10.1016/j.gie.2016.09.018 PMID: 27663716

Tate DJ, Jayanna M, Awadie H, Desomer L, Lee R, Heitman SJ, Sidhu M, Goodrick B, Burgess NG, Mahajan H, McLeod D, Bourke MJ. A standardized imaging protocol for the endoscopic
[39] Yachida S, Mudali S, Martin SA, Montgomery EA, Jacobuzio-Donahue CA. Beta-catenin nuclear labeling is a common feature of sessile serrated adenomas and correlates with early neoplastic progression after BRAF activation. Am J Surg Pathol, 2009, 33(12):1823–1832. https://doi.org/10.1097/PAS.0b013e3181b6da19 PMID: 19745699 PMCID: PMC2788075

[40] Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature, 1993, 363(6429):558–561. https://doi.org/10.1038/363558a0 PMID: 8505985

[41] Cottu PH, Muzeau F, Estreicher A, Fléjou JF, Iggo R, Thomas G, Hamelin R. Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines. Oncogene, 1996, 13(12):2727–2730. PMID: 9000147

[42] Satorres C, Garcia-Campos M, Bustamante-Balén M. Molecular features of the serrated pathway to colorectal cancer: current knowledge and future directions. Gut Liver, 2021, 15(1):31–43. https://doi.org/10.5009/gnl19402 PMID: 32340435 PMCID: PMC7817929

[43] Kedrin D, Gala MK. Genetics of the serrated pathway to colorectal cancer. Clin Transl Gastroenterol, 2015, 6(4):e84. https://doi.org/10.1038/ctg.2015.12 PMID: 25856207 PMCID: PMC4459531

Corresponding author
Cristiana Gabriela Popp, MD, Department of Pathology, Colentina University Hospital, 19–21 Ștefan cel Mare Highroad, Sector 2, 020125 Bucharest, Romania; Phone +4021–317 32 45, Fax +4021–316 55 12, e-mail: brigaela@yahoo.com

Received: February 8, 2022

Accepted: May 11, 2022