Benign and efficient preparation of thioethers by solvent-free S-alkylation of thiols with alkyl halides catalyzed by potassium fluoride on alumina

Kha Ngoc Nguyen\(^a\), Fritz Duus\(^b\) and Thi Xuan Thi Luu\(^a\)

\(^a\)Department of Organic Chemistry, University of Science of Ho Chi Minh City, Ho Chi Minh City, Vietnam; \(^b\)Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark

ABSTRACT

The preparation of thioethers by S-alkylation of various thiols with alkyl halides under solvent-free reaction conditions using potassium fluoride on alumina (KF/Al\(_2\)O\(_3\)) as a solid catalyst has been investigated in detail with respect to three different modes of reaction activation (ultrasound irradiation, microwave irradiation, and conventional heating) for obtaining maximum yield of the thioether. The importance of KF/Al\(_2\)O\(_3\) as a particularly efficient catalyst was corroborated for all three modes of reaction activation, although the reaction time was found to be strongly dependent on the mode of activation. The yield of the thioethers was also found to depend on the amount of the solid catalyst relative to the equimolar amounts of the two reactants.

ARTICLE HISTORY

Received 25 July 2015
Accepted 1 February 2016

KEYWORDS

Potassium fluoride on alumina; thioether; ultrasound irradiation; microwave irradiation; solvent-free reaction

1. Introduction

Thioethers (sulfides) are the sulfur analogs of ethers and constitute an important class of organosulfur compounds.[1,2] Thioethers have large applications, for example, as potential hypocholesterolemic agents,[3] antagonists of leukocyte function-associated antigen-1 (LFA-1),[4] nicotinic acetylcholine receptors,[5] precursors of sulfoxides and sulfones,[6–8] and in general useful synthetic reagents and/or intermediates in organic synthesis, agro-chemistry and heterocyclic chemistry.[9–12]
Many categories of thioethers are mainly synthesized by S-alkylation of thiols/thiolates with alkyl halides,[13–25] or with alcohols,[26–37] S-arylation (Ullmann cross-coupling) of thiols and aryl halides catalyzed by KF/alumina as base [38–40] or promoted by metal compounds/complexes,[41–48] and cleavage of disulfides to react with alkyl halides or alkyl tosylate.[49–53] However, the base-promoted S-alkylation of thiols with alkyl halides is the classical and most common method to produce thioethers. The previous works on the catalyst-free S-alkylation of thiols and alkyl halides illustrated that the presence of a catalyst is necessary in order to reduce the reaction time.[13] A variety of inorganic or organic base catalysts in the presence of phase transfer catalyst,[14–17] or solid supports have been investigated in solvent media.[18,19] Moreover, solvent-promoted S-alkylation of thiols by alkyl halides can take place in the presence of Zn powder.[20] In recent years, solvent-free S-alkylation of thiols with alkyl halides by using Mg–Al Hydrotalcite,[21] KF/Al2O3 ground in a mortar as primary tests,[22] or magnetic iron oxide nanoparticles has been developed.[25] In addition, the application of ionic liquid [pmIm]Br as a catalyst and reaction medium for the conversion of thiols to thioethers has been investigated.[23,24]

Solid-phase organic syntheses are preferable due to simple handling, cheaper operation, easy product isolation (avoiding the removal of the polar organic solvent at the work up step), highly efficient catalyst recycling, and especially of importance in the chemical industry.[54–56] Since the invention of ultrasound and microwave irradiation, many categories of solid phase syntheses or heterogeneous reactions accelerated by ultrasound or microwave irradiation have been launched in order to reduce the reaction time, generate fewer by-products, giving higher yield of the main products, or produce other products incidentally compared with reactions under the conventional methods (stirring or thermal heating methods).[57–61]

In this work, we report the influences of ultrasound or microwave irradiation on the solvent-free S-alkylation of thiols with alkyl halides catalyzed by potassium fluoride absorbed on alumina (KF/Al2O3) to form the corresponding thioethers (Scheme 1). KF/Al2O3 was introduced as a useful base reagent by Ando et al. in 1979. Subsequently, the applications of KF/Al2O3 in organic synthesis became popular and widely used in the formation of carbon–carbon bonds, carbon–oxygen bonds, carbon–nitrogen bonds, carbon–phosphor bonds,[62,63] carbon–sulfur bonds via solvent S-alkylation of thiols with alkyl halides,[19] or solvent-free Ullmann cross-coupling,[38–40] and sulfur–sulfur bonds.[64]

\[
\begin{align*}
R^1\text{SH} + R^2\text{X} & \xrightarrow{\text{KF/Al}_2\text{O}_3} R^1\text{S} \text{R}^2 \quad \text{(MW or HIHI)} \\
& \xrightarrow{\text{R}^1\text{S} \text{S} \text{R}^1} \\
R^1 & : n-C_4H_9, t-C_4H_9, n-C_8H_{17}, c-C_6H_{11}, C_6H_{13}, p-CH_3C_6H_4, ... \\
R^2 & : n-C_4H_9, C_6H_5CH_3 \\
X & : \text{Cl, Br}
\end{align*}
\]

Scheme 1. S-alkylation of thiols with alkyl/aryl halides catalyzed by KF/Al2O3.
2. Result and discussion

At the beginning of this research, \(p \)-thiocresol was arbitrarily selected as the test substance in order to find the most efficient reaction molar ratios. A series of experiments was performed under microwave irradiation, in which the molar ratio between \(p \)-thiocresol, 1-chlorobutane and the amount of catalyst (KF/Al\(_2\)O\(_3\)) was varied. Obviously, an increasing amount of KF/Al\(_2\)O\(_3\) affected the reaction conversion and hence the reaction yield more drastically than excessive amounts of the alkyl halide and the thiol. However, an excessive amount of KF/Al\(_2\)O\(_3\) catalyst led to an increase in the formation of the disulfide from the self-coupling reaction of the thiol (Figure 1). This observation is comparable with the observation of E. J. Lenardão et al. on the synthesis of symmetrical disulfide from thiols by using KF/Al\(_2\)O\(_3\) as the base, although the self-coupling reaction of thiols occurred only slowly.[60] Further experiments demonstrated that the appropriate amount of KF/Al\(_2\)O\(_3\)-promoted solvent-free \(S \)-alkylation of \(p \)-thiocresol into 4-(butylthio)toluene to take place most efficiently is 0.6 g.

Altogether nine thiols were subjected to solvent-free \(S \)-alkylation with three alkyl halides under three different reaction conditions. In the first series of solvent-free \(S \)-alkylation reactions, the mixture of reactants was allowed to react under the assistance of ultrasound irradiation (Method A, Table 1). Some experiments on the effects of ultrasound irradiation were compared with magnetic stirring at room temperature. The results showed that the yields obtained by the heterogeneous reactions between \(p \)-thiocresol and 1-chlorobutane with KF/Al\(_2\)O\(_3\) catalyst was 77% after 2 h of ultrasound irradiation, while it was 63% after 5 h of magnetic stirring. Thus, ultrasound irradiation is selected to activate the further experiments of solvent-free \(S \)-alkylation of thiols with alkyl halides. The second series of solvent-free \(S \)-alkylation reaction was performed under the assistance

![Figure 1. Influence of the catalyst amount in the \(S \)-alkylation of \(p \)-thiocresol into 4-(butylthio)toluene under solvent-free reaction conditions and assistance by microwave irradiation (50° 4 W, 6 min, \(p \)-thiocresol: 1.5 mmol, 1-chlorobutane: 1.5 mmol).](image)
Table 1. Yields of sulfides obtained by the solvent-free alkylation of thiols by various methods.\(^a\)

\[
\text{R}^1\text{-SH} + \text{R}^2\text{-X} \xrightarrow{\text{KF/Al}_2\text{O}_3} \text{MW,)) or } \Delta \quad \xrightarrow{\text{Method A}^d} \quad \text{R}^1\text{-S-R}^2 + \text{HX}
\]

Entry	\(\text{R}^1\text{-SH}\)	\(\text{R}^2\text{-X}\)	Yield of \(3^b\) (time\(^c\))		
			Method \(A^d\)	Method \(B^d\)	Method \(C^d\)
1	\(\text{C}_6\text{H}_5\) \(\text{SH}\)	\(\text{CH}_3\) \(\text{Cl}\)	72 (120)	85 (13)	63 (13); 72 (60)
2		\(\text{CH}_3\) \(\text{Br}\)	82 (120)	88 (8)	64 (8); 86 (60)
3	\(\text{C}_6\text{H}_4\text{CH}_2\text{Cl}\)	\(\text{CH}_3\) \(\text{Cl}\)	72\(^e\) (120)	75\(^e\) (13)	52\(^e\) (13); 63\(^e\) (60)
4	\(\text{C}_6\text{H}_4\) \(\text{SH}\)	\(\text{CH}_3\) \(\text{Br}\)	77 (120)	89 (7)	40 (7); 70 (60)
5	\(\text{C}_6\text{H}_4\) \(\text{SH}\)	\(\text{CH}_3\) \(\text{Cl}\)	89 (120)	95 (8)	58 (8); 92 (60)
6	\(\text{C}_6\text{H}_4\text{CH}_2\text{Cl}\)	\(\text{CH}_3\) \(\text{Cl}\)	71\(^e\) (120)	71\(^e\) (13)	42\(^e\) (13); 62\(^e\) (60)
7	\(\text{C}_6\text{H}_4\text{CH}_2\text{Cl}\)	\(\text{CH}_3\) \(\text{Br}\)	72\(^e\) (120)	70\(^e\) (13)	68\(^e\) (60)
8	\(\text{C}_6\text{H}_4\text{CH}_2\text{Cl}\)	\(\text{CH}_3\) \(\text{Cl}\)	80\(^e\) (120)	82\(^e\) (13)	73\(^e\) (60)
9	\(\text{C}_6\text{H}_4\text{CH}_2\text{Cl}\)	\(\text{CH}_3\) \(\text{Br}\)	75\(^e\) (180)	77\(^e\) (16)	60\(^e\) (90)
10	\(\text{C}_6\text{H}_4\text{CH}_2\text{Cl}\)	\(\text{CH}_3\) \(\text{Br}\)	76\(^e\) (150)	78\(^e\) (14)	64\(^e\) (75)
11	\(\text{CH}_3\) \(\text{SH}\)	\(\text{C}_6\text{H}_4\text{CH}_2\text{Cl}\)	96 (90)	95 (12)	96 (45)
12	\(\text{CH}_3\) \(\text{SH}\)	\(\text{C}_6\text{H}_4\text{CH}_2\text{Cl}\)	97 (90)	98 (12)	97 (45)
13	\(\text{C}_6\text{H}_2\text{O}\) \(\text{SH}\)	\(\text{CH}_3\) \(\text{Cl}\)	96 (120)	97 (13)	98 (60)
14	\(\text{CH}_3\) \(\text{SH}\)	\(\text{CH}_3\) \(\text{Cl}\)	92 (120)	96 (13)	96 (60)

\(^a\)Ratio of thiol : alkyl/aryl halides : KF/Al\(_2\)O\(_3\) = 1.5 mmol : 1.5 mmol : 0.6 g.
\(^b\)Yields were calculated based on GC/MS.
\(^c\)Time = reaction time in minutes.
\(^d\)Method A: ultrasound irradiation; Method B: Microwave irradiation at 4 W, 50°C; Method C: Conventional heating at 50°C.
\(^e\)Yields of isolated products.
Figure 2. Influence of the catalyst cycles on the S-alkylation of thiophenol into 1-(phenylthio)butane under solvent-free reaction conditions and assistance by microwave irradiation (50°C, 4 W, 8 min, thiophenol: 1.5 mmol, 1-bromobutane: 1.5 mmol).

of microwave irradiation (Method B, Table 1). A series of experiments on testing reaction temperatures from room temperature to 40°C, 50°C, 60°C and 70°C was carried out. The results of the experiments clearly demonstrated that a conveniently increased reaction temperature (50°C) could shorten the time of the solvent-free S-alkylation. Consequently, the yields of the products were comparable to those of experiments on Method A, but the reaction times appeared shortened drastically from some hours down to some minutes at 50°C. Microwave irradiation inevitably affects the temperature rise of the reaction mixture, and it would be of interest to check whether the drastically shortened reaction times could be affected simply by the higher reaction temperatures. A series of experiments was performed under conventional heating (Entries 1–6, Method C, Table 1) at the same reaction times and temperatures with those under microwave irradiation. The results showed that microwave irradiation affected considerably the yields of the thioethers and reaction times owing to the efficient internal heating of microwave irradiation by direct coupling of microwave energy with molecules present in the reaction mixture.

With advantages of KF/Al₂O₃ on enhanced reactivity, a straightforward work-up procedure and milder reaction conditions, the reusability of KF/Al₂O₃ was paid attention and needs to be examined. The KF/Al₂O₃ collected after filtration from the previous reaction was washed sequentially with diethyl ether, ethyl acetate and acetone at room temperature, subsequently dried in an oven at 100°C for 1, 2 and 3 h. The structure of the recovered catalyst after 2-h drying was comparable with that of the fresh KF/Al₂O₃ by the X-ray diffraction pattern. The recycled KF/Al₂O₃ was used for solvent-free S-alkylation of thiophenol with 1-bromobutane under microwave irradiation as that of the optimized experiment presented in Entry 2, Table 1. The catalytic efficiency of KF/Al₂O₃ did not drop significantly even after four cycles of being reused and recycled (Figure 2).

3. Experimental

3.1. Instrumentation and chemicals

3.1.1. Instrumentation

Microwave irradiations were performed by means of a CEM Discover microwave oven. Ultrasound irradiation was performed by means of a BRANSON 1510 ultrasonic bath,
operating at frequency 40 kHz. GC/MS analyses were performed on a Hewlett Packard 6890 GC series II, apparatus of MS 5975C with Triple-Axis detector equipped with a J&W DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 μm film thickness) and a Hewlett Packard 7683B autosampler. HPLC analyses were performed on a micrOTOF-QII (Bruker) with UV/VIS and MS detector, the heated capillary of iron trap mass spectrometer was set to 350°C, reverse column ACE 3C18 (5 μm × 4.6 × 150 mm) and ESI (electrospray ionization): μQTOF Bruker. NMR spectra were recorded on a Bruker 500 NMR spectrometer at 500 MHz (1H) and 125 MHz (13C).

3.1.2. Chemicals
All commercially available chemicals used were from Aldrich and analyzed for authenticity and purity by GC/MS before being used.

3.1.3. Preparation of base catalyst KF/Al₂O₃ (40% w/w)
KF (20 g) was dissolved completely in de-ionized water (150 mL, pH of solution: 6.5). Neutral Al₂O₃ (30 g) was stirred regularly in de-ionized water (150 mL) for around 5 min. Then the KF solution was poured into the solution containing Al₂O₃ under continuous stirring for 30–45 min, until the pH of the mixture of the solutions was 11.5–11.7. Subsequently, water was removed from the solution mixture by rotatory evaporation, until the weight of the remaining solid mass was 53–55 g. The wet solid mass was dried at 100–110°C for 6 h. Finally, the obtained solid mass (50.5–51.5 g) was ground in a mortar into a fine powder.

3.2. Typical procedures

3.2.1. S-alkylation of thiols into corresponding thioethers by KF/Al₂O₃ under solvent-free reaction conditions assisted by ultrasound irradiation (Method A).
A suitable quantity of alkyl halide (1.5 mmol) and KF/Al₂O₃ (0.6 g) was added to the 5 mL round-bottom flask containing thiol (1.5 mmol). The flask was placed into an ultrasound bath where the mixture of reactants was exposed to ultrasound irradiation for a specific period of time (Table 1). Subsequently, the reaction mixture was extracted with dichloromethane (4 × 15 mL). The combined extracts were filtered, washed with water until neutral, and then dried by anhydrous Na₂SO₄. After removal of the solvent by rotary evaporation, the remaining crude product was analyzed by GC/MS and NMR spectroscopy.

3.2.2. S-alkylation of thiols into corresponding thioethers by KF/Al₂O₃ under solvent-free reaction conditions assisted by microwave irradiation (Method B)
A suitable quantity of alkyl halides (1.5 mmol) and KF/Al₂O₃ (0.6 g) was added to a specific test tube (h = 9 cm, d = 1.5 cm) containing the thiol (1.5 mmol). The test tube was placed into a Discover CEM microwave oven. For each of the thiols, an irradiation program was fixed to operate at power of oven (4 W), reaction temperature (50°C) and reaction time (minutes), see Table 1. After cooling, the reaction mixture was worked up as described in method A.
3.2.3. **S-alkylation of thiols into corresponding thioethers by KF/Al₂O₃ under solvent-free reaction conditions assisted by conventional heating (Method C)**

A test tube \((h = 18 \text{ cm}, d = 2 \text{ cm})\) containing a suitable quantity of thiols, alkyl halides and KF/Al₂O₃ (following the molar ratio as in Table 1) was placed in an oil bath heated to the temperature applied for the reactions under microwave irradiation. The test tube was kept in the oil bath for a period of time corresponding exactly to that found at optimum in Method B or for a period of time to optimize the reaction yields. After cooling, the reaction mixture was worked up as described in Method A.

3.3. **Spectroscopic data**

The identity and purity of all of the thioethers synthesized were ensured by \(^1\)H and \(^{13}\)C NMR spectroscopy as well as by GC/MS or HPLC/ESI. The observed data of \(^1\)H, \(^{13}\)C NMR spectroscopic and mass spectra for the 12 thioethers synthesized are listed below, and most of them were found compatible with those reported in the literature.[65–68]

1-(Phenylthio)butane
(Entry 1 or 2, Table 1): \(^1\)H NMR (CDCl₃): \(\delta_H = 7.14–7.33 \text{ (m, 5H)}, 2.93 \text{ (t, } J = 7.5 \text{ Hz, 2H}), 1.64 \text{ (quintet, } J = 7 \text{ Hz, 2H}), 1.45 \text{ (sextet, } J = 7.5 \text{ Hz, 2H}), 0.92 \text{ (t, } J = 7.5 \text{ Hz, 3H})\). \(^{13}\)C NMR (CDCl₃): \(\delta_C = 137.04, 128.85 \text{ (2C)}, 128.78 \text{ (2C)}, 125.60, 33.26, 31.21, 21.93, 13.60\). MS: \(m/z = 166\)[M]⁺, 123, 110.

Benzylthiobenzene
(Entry 3, Table 1): \(^1\)H NMR (CDCl₃): \(\delta_H = 7.19–7.34 \text{ (m, 10H)}, 4.14 \text{ (s, 2H)}\). \(^{13}\)C NMR (CDCl₃): \(\delta_C = 137.46, 136.37, 129.84 \text{ (2C)}, 128.79 \text{ (4C)}, 128.44 \text{ (2C)}, 127.13, 126.31, 39.05\). MS: \(m/z = 200\)[M]⁺, 91, 65.

4-Butylthiotoluene
(Entry 4 or 5, Table 1): \(^1\)H NMR (CDCl₃): \(\delta_H = 7.25 \text{ (d, } J = 8.0 \text{ Hz, 2H}), 7.09 \text{ (d, } J = 8.0 \text{ Hz, 2H}), 2.88 \text{ (t, } J = 7.5 \text{ Hz, 2H}), 2.32 \text{ (s, 3H)}, 1.61 \text{ (quintet, } J = 7 \text{ Hz, 2H}), 1.44 \text{ (sextet, } J = 7.5 \text{ Hz, 2H}), 0.91 \text{ (t, } J = 7.5 \text{ Hz, 3H})\). \(^{13}\)C NMR (CDCl₃): \(\delta_C = 135.81, 133.14, 129.77 \text{ (2C)}, 129.58 \text{ (2C)}, 34.04, 31.34, 21.91, 20.96, 13.62\). MS: \(m/z = 180\)[M]⁺, 137, 124, 91.

4-Benzylthiotoluene
(Entry 6, Table 1): \(^1\)H NMR (CDCl₃): \(\delta_H = 7.24–7.32 \text{ (m, 7H)}, 7.09 \text{ (d, } J = 8.0 \text{ Hz, 2H}), 4.10 \text{ (s, 2H)}, 2.34 \text{ (s, 3H)}\). \(^{13}\)C NMR (CDCl₃): \(\delta_C = 137.78, 136.50, 132.49, 130.68 \text{ (2C)}, 129.56 \text{ (2C)}, 128.79 \text{ (2C)}, 128.38 \text{ (2C)}, 127.01, 39.76, 20.98\). MS: \(m/z = 214\)[M]⁺, 123, 91.

2-Butylthiobenzimidazole
(Entry 7, Table 1): \(^1\)H NMR (CDCl₃): \(\delta_H = 9.06 \text{ (s, 1H)}, 7.52–7.55 \text{ (m, 2H)}, 7.18–7.21 \text{ (m, 2H)}, 3.35 \text{ (t, } J = 7.5 \text{ Hz, 2H}), 1.72 \text{ (quintet, } J = 7.5 \text{ Hz, 2H}), 1.39 \text{ (sextet, } J = 7.5 \text{ Hz, 2H}), 0.86 \text{ (t, } J = 7.5 \text{ Hz, 3H})\). \(^{13}\)C NMR (CDCl₃): \(\delta_C = 150.99, 139.17 \text{ (2C)}, 122.25 \text{ (2C)}, 113.98 \text{ (2C)}, 32.47, 31.56, 21.75, 13.48\). MS (ESI⁺): \(m/z = 207.0986 \text{ ([M+H]⁺, 6%)}\), 151.0378 (100%).
2-Benzylthiobenzimidazole
(Entry 8, Table 1): 1H NMR (DMSO-\textit{d}_6): \(\delta_H = 12.55\) (s, 1H), 7.09–7.57 (m, 9H), 4.55 (s, 2H). \(^{13}\text{C}\) NMR (CDCl\textsubscript{3}): \(\delta_C = 149.68, 143.61, 137.66, 135.44, 128.81\) (2C), 128.45 (2C), 127.29, 121.65, 121.13, 117.40, 110.32, 35.13. MS (ESI\(^+\)): \(m/z = 241.0769\) ([M]\(^+\), 100%), 198.0791 (34%), 150.0339 (18%).

2-Butylthio-4,5-dihydrothiazole
(Entry 9, Table 1): 1H NMR (CDCl\textsubscript{3}): \(\delta_H = 4.20\) (t, \(J = 7.5\) Hz, 2H), 3.36 (t, \(J = 8.0\) Hz, 2H), 3.09 (t, \(J = 7.5\) Hz, 2H), 1.66 (quintet, \(J = 7.5\) Hz, 2H), 1.41 (sextet, \(J = 7.5\) Hz, 2H), 0.91 (t, \(J = 7.5\) Hz, 3H). \(^{13}\text{C}\) NMR (CDCl\textsubscript{3}): \(\delta_C = 166.34, 64.10, 35.19, 32.52, 31.23, 21.82, 13.52\). MS (ESI\(^+\)): \(m/z = 176.0537\) ([M]\(^+\), 98%).

2-Butylthio-4-phenylimidazole
(Entry 10, Table 1): 1H NMR (CDCl\textsubscript{3}): \(\delta_H = 7.68\) (dm, \(J = 8\) Hz, 2H), 7.34 (tm, \(J = 7.25\) Hz, 3H), 7.23 (tt, \(J = 7.5\) Hz, \(J = 1\) Hz, 1H), 6.52 (s, 1H), 3.00 (t, \(J = 7.5\) Hz, 2H), 2.18 (s, 1H), 1.58 (quintet, \(J = 7.5\) Hz, 2H), 1.35 (sextet, \(J = 7.5\) Hz, 2H), 0.85 (t, \(J = 7.5\) Hz, 3H). \(^{13}\text{C}\) NMR (CDCl\textsubscript{3}): \(\delta_C = 141.13, 139.57, 132.19, 128.69\) (2C), 127.06, 124.80 (2C), 117.86, 34.84, 31.96, 21.67, 13.53. MS (ESI\(^+\)): \(m/z = 233.1144\) ([M]\(^+\), 9%), 177.0581 (100%).

1-(Benzylthio)butane
(Entry 11, Table 1): 1H NMR (CDCl\textsubscript{3}): \(\delta_H = 7.30–7.33\) (m, 4H), 7.22–7.27 (m, 1H), 3.71 (s, 1H), 2.43 (t, \(J = 7.0\) Hz, 2H), 1.56 (quintet, \(J = 7.0\) Hz, 2H), 1.38 (sextet, \(J = 7.0\) Hz, 2H), 0.90 (t, \(J = 7.0\) Hz, 3H). \(^{13}\text{C}\) NMR (CDCl\textsubscript{3}): \(\delta_C = 138.69, 128.83(2C), 128.44(2C), 126.85, 36.31, 31.34, 31.07, 22.03, 13.68\). MS: \(m/z = 180\) [M]\(^+\), 91, 77, 65, 45.

1-(Benzylthio)octane
(Entry 12, Table 1): 1H NMR (CDCl\textsubscript{3}): \(\delta_H = 7.29–7.36\) (m, 4H), 7.22–7.26 (m, 1H), 3.71 (s, 1H), 2.41 (t, \(J = 7.0\) Hz, 2H), 1.56 (quintet, \(J = 7.0\) Hz, 2H), 1.22–1.37 (m, 10H), 0.89 (t, \(J = 7.2\) Hz, 3H). \(^{13}\text{C}\) NMR (CDCl\textsubscript{3}): \(\delta_C = 138.72, 128.84(2C), 128.45(2C), 126.86, 36.34, 31.82, 31.45, 29.26, 29.20, 29.18, 28.91, 22.66, 14.10\). MS: \(m/z = 236\) [M]\(^+\), 145, 91, 69.

Benzylthiocyclohexane
(Entry 13, Table 1): 1H NMR (CDCl\textsubscript{3}): \(\delta_H = 7.29–7.35\) (m, 4H), 7.22–7.26 (m, 1H), 3.75 (s, 1H), 2.54–2.60 (m, 1H), 1.94–1.97 (m, 2H), 1.75–1.77 (m, 2H), 1.60–1.75 (m, 1H), 1.24–1.33 (m, 5H). \(^{13}\text{C}\) NMR (CDCl\textsubscript{3}): \(\delta_C = 138.97, 128.76(2C), 128.44(2C), 126.77, 42.93, 34.61, 33.39(2C), 26.00, 25.89(2C)\). MS: \(m/z = 206\) [M]\(^+\), 115, 91, 67.

2-Benzylthio-2-methylpropane
(Entry 14, Table 1): 1H NMR (CDCl\textsubscript{3}): \(\delta_H = 7.20–7.36\) (m, 5H), 3.77 (s, 2H), 1.36 (s, 9H). \(^{13}\text{C}\) NMR (CDCl\textsubscript{3}): \(\delta_C = 138.61, 128.96(2C), 128.45(2C), 126.76, 42.87, 33.45, 30.92(3C)\). MS: \(m/z = 180\) [M]\(^+\), 124, 91, 77, 57.
Conclusion

Comprehensive experimental work has made it possible for us to introduce an fast and efficient synthetic method for the preparation of thioethers in fair to high yields by solvent-free S-alkylation of thiols with alkyl halides by means of KF/Al₂O₃ as a green catalyst (safety for use and high recyclability) under the assistance of ultrasound or microwave irradiation, subsidiarily also under the influence of conventional heating.

Funding

We are grateful to Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number [104.01-2011.40] for financial support.

References

[1] McMurry J. Organic chemistry. 8th ed. Belmont, CA, USA: Brooks/Cole; 2012. p. 693–694.
[2] Roy K-M. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2012. p. 629–655.
[3] Cai Z, Zhou W, Sun L. Synthesis and HMG CoA reductase inhibition of 4-thiophenyl quinolines as potential hypocholesterolemic agents. Bioorgan Med Chem. 2007;15:7809–7829.
[4] Liu G, Huth JR, Olejniczak ET, et al. Novel p-arylthiocinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties. J Med Chem. 2001;44:1202–1210.
[5] Nielsen SF, Nielsen EØ, Olsen GM, Liljefors T, Peters D. Novel potent ligands for the central nicotinic acetylcholine receptor: synthesis, receptor binding, and 3D-QSAR analysis. J Med Chem. 2000;43:2217–2226.
[6] Durst T. Sulfoxides. In: Barton DH, Ollis WD, editors. Comprehensive organic chemistry. Oxford, Great Britain: Pergamon Press; 1979. Vol. 3, Jones D.N, Vol. editor.
[7] Rayner CM. Thiols, sulfides, sulfoxides and sulfones. Contemp Org Synth. 1994;1(3):191–203.
[8] Carreno MC. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem Rev. 1995;95:1717–1760.
[9] Trost BM. Some aspects of organosulfur-mediated synthetic methods. Acc Chem Res. 1978;11(12):453–461.
[10] Hruby VJ, Bonner GG. Design of novel synthetic peptides including cyclic conformationally and topographically constrained analogs. Methods Mol Biol. 1994;35:231–240.
[11] Jacob C. A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat Prod Rep. 2006;23:851–863.
[12] Wang X, Guo Z. The role of sulfur in platinum anticancer chemotherapy. Anti-Cancer Agents Med Chem. 2007;7(1):19–34.
[13] Movassagh B, Soleiman-Beigi M. Synthesis of sulfides under solvent- and catalyst-free conditions. Monatsh Chem. 2009;140:409–411.
[14] Herriott AW. The phase-transfer synthesis of sulfides and dithioacetals. Synthesis. 1975;(7):447–448.
[15] Ono N, Miyake H, Saito T, Kaji A. A convenient synthesis of sulfides, formaldehyde dithioacetals, and chloromethyl sulfides. Synthesis. 1980;(11):952–953.
[16] Feroci M, Inesi A, Rossi L. A simple and convenient method for preparation of sulfides. Synth Commun. 1999;29(15):2611–2615.
[17] Salvatore RN, Smith RA, Nischwitz AK, Gavin T. A mild and highly convenient chemoselective alkylation of thiols using Cs₂CO₃·TBAI. Tetrahedron Lett. 2005;46:8931–8935.
[18] Shah STA, Khan KM, Heinrich AM, Voelter W. An alternative approach towards the
syntheses of thioethers and thioesters using CsF-Celite in acetonitrile. Tetrahedron Lett.
2002;43:8281–8283.

[19] Moghaddam FM, DokhtTaimoory SM, Ismaili H, Bardajee GR. KF/Al₂O₃-Mediated N-
alkylation of amines and nitrogen heterocycles and S-alkylation of thiols. Synth Commun.
2006;36:3599–3607.

[20] Bandgar BP, Pandit SS, Nagargoje SP. Zinc-Mediated simple and practical synthesis of sulfides.
Sulfur Lett. 2002;25(6):247–249.

[21] Vijaikumar S, Pitchumani K. Simple, solvent-free syntheses of unsymmetrical sulfides
from thiols and alkyl halides using hydrotalcite clays. J Mol Catal A-Chem. 2004;217:
117–120.

[22] Jain SK, Meena S, Singh B, et al. KF/alumina catalyzed regioselective benzylation and benzoy-
lation using solvent-free grind-stone chemistry. RSC Adv. 2012;2:8929–8933.

[23] Ranu BC, Jana R. Ionic liquid as catalyst and reaction medium: a simple, convenient and green
procedure for the synthesis of thioethers, thioesters and dithianes using an inexpensive ionic
liquid, [pmlm]Br. Adv Synth Catal. 2005;347:1811–1818.

[24] Wang Z, Mo H, Bao W. Mild, efficient and highly stereoselective synthesis of (Z)-vinyl chalco-
genides from vinyl bromides catalyzed by copper(I) in liquidic acids. Synlett. 2007;(1):0091–0094.

[25] Movassagh B, Yousefi A. Magnetic iron oxide nanoparticles as an efficient and recyclable cat-
alyst for the solvent-free synthesis of sulfides, vinyl sulfides, thiol esters, and thia-Michael
adducts. Monatsh Chem. 2015;146:135–142.

[26] Zaragoza F. (Cyanomethyl)trimethylphosphonium iodide as reagent for the intermolecular S-
alkylation of thiois with alcohols. Tetrahedron. 2001;57:5451–5454.

[27] Martin MT, Thomas AM, York DG. Direct synthesis of thioethers from sulfonyl chlorides and
activated alcohols. Tetrahedron Lett. 2002;43:2145–2147.

[28] Kawano Y, Kaneko N, Mukaiyama T. A convenient method for the preparation of alkyl
aryl sulfides from alcohols and (chloromethylene)dimethylammonium chloride. Chem Lett.
2005;34(12):1612–1613.

[29] Chochrek P, Wicha J. 1,3-Chirality transfer by fragmentation of allylsulfinic acids: a diastero-
selective approach to vinyl bromides related to trans-hydrindane or trans-decalin. Eur J Org
Chem. 2007;(15):2534–2542.

[30] Saxena A, Kumar A, Mozumdar S. Ni-nanoparticles: a mild chemo-selective catalyst for
synthesis of thioethers. Appl Catal A-Gen. 2007;317:210–215.

[31] Mukaiyama T, Kuroda K, Maruyama Y. A new type of oxidation-reduction condensation
by the combined use of phenyl diphenylphosphinite and oxidant. Heterocycles. 2010;80(1):
63–82.

[32] Gunes D, Sirkecioglu O, Bicak N. Aliphatic thioethers by S-alkylation of thiols via trialkyl
borates. Phosphorus sulfur. 2010;185:1685–1690.

[33] Bahrami K, Khodaei MM, Khodadoustan N. TAPC-Catalyzed synthesis of thioethers from
thiols and alcohols. Synlett. 2011;(15):2206–2210.

[34] Altimari JM, Delaney JP, Servinis L, et al. Rapid formation of diphenylmethyl ethers
and thioethers using microwave irradiation and protic ionic liquids. Tetrahedron Lett.
2012;53:2035–2039.

[35] Corma A, Navas J, Ródenas T, Sabater MJ. One-pot palladium-catalyzed borrowing hydrogen
synthesis of thioethers. Chem Eur J. 2013;19:17464–17471.

[36] Perin G, Borges EL, Duarte JEG, Webber R, Jacob RG, Lenardão EJ. Glycerol as renewable
resource in the synthesis of thioethers using KF/Al₂O₃. Current Green Chemistry.
2014;1(2):115–120.

[37] Baddam SR, Neelam UK, Manne NR, Adulla PR, Bandichhor R. Zinc triflate catalyzed
synthesis of thioethers. Chemistry & Biology Interface. 2014;4(2):131–136.

[38] Schmittling EA, Sawyer JS. Synthesis of diaryl thioethers, and diarylamines mediated by
potassium fluoride-alumina and 18-Crown-6. J Org Chem. 1993;58:3229–3230.
[39] Feng Y-S, Li Y-Y, Tang L, Wu W, Xu, H-J. Efficient ligand-free copper-catalyzed C-S cross-coupling of thiols with aryl iodides using KF/Al$_2$O$_3$ as base. Tetrahedron Lett. 2010;51:2489–2492.

[40] Huang L-Z, Han P, Li Y-Q, Xu Y-M, Zhang T, Du Z-T. A facile and efficient synthesis of diaryl amines or ethers under microwave irradiation at presence of KF/Al$_2$O$_3$ without solvent and their anti-fungal biological activities against six phytopathogens. Int J Mol Sci. 2013;14:18850–18860.

[41] Murata M, Buchwald SL. A general and efficient method for the palladium-catalyzed cross-coupling of thiols and secondary phosphines. Tetrahedron. 2004;60:7397–7403.

[42] Kumar A, Singh P, Kumar S, Chandra R, Mozumdar S. A facile one-pot synthesis of thioethers using heteropoly acids. J Mol Catal A-Chem. 2007;276:95–101.

[43] Prasad DJC, Sekar G. An efficient, mild and intermolecular Ullmann-type synthesis of thioethers catalyzed by a diol-copper(I) complex. Synthesis. 2010;(1):0079–0084.

[44] Okauchi T, Kuramoto K, Kitamura M. Facile preparation of aryl sulfides using palladium catalysis under mild conditions. Synlett. 2010;(19):2891–2894.

[45] Kovács S, Novák Z. Oxidoreductive coupling of thiols with aryl halides catalyzed by copper on iron. Org Biomol Chem. 2011;9:711–716.

[46] Gogoi P, Hazarika S, Sarma MJ, Sarma K. Nickel-Schiff base complex catalyzed C-S cross-coupling of thiols with organic chlorides. Tetrahedron. 2014;70:7484–7489.

[47] Lee C-F, Liu Y-C, Badsara SS. Transition-metal-catalyzed C-S bond coupling reaction. Chem Asian J. 2014;9:706–722.

[48] Movassagh B, Takallou A, Mobaraki A. Magnetic nanoparticle-supported Pd(II)-cryptand 22 complex: An efficient and reusable heterogeneous precatalyst in the Suzuki-Miyaura coupling and the formation of aryl-sulfur bonds. J Mol Catal A: Chem. 2015;401:55–65.

[49] Comasseto JV, Lang ES. The use of aminoiminomethanesulfonic acid (thiourea dioxide) under phase transfer conditions for generating organochalcogenate anions. Synthesis of sulfides, selenides and tellurides. J Organomet Chem. 1987;334:329–340.

[50] Lakouraj MM, Movassagh B, Fadaei Z. Synthesis of organic sulfides via Zn/AlCl$_3$ system in aqueous media. Synth Commun. 2002;32(8):1237–1242.

[51] Movassagh B, Mossadegh A. Reductive cleavage of S-S bond by Zn/AlCl$_3$ system: a novel method for the synthesis of sulfides from alkyl tosylates and disulfides. Synth Commun. 2004;34(13):2337–2343.

[52] Tang R-Y, Zhong P, Lin Q-L. Sulfite-promoted one-pot synthesis of sulfides by reaction of aryl disulfides with alkyl halides. Synthesis. 2007;(1):0085–0091.

[53] Tang R-Y, Zhong P, Lin Q-L. One-pot synthesis of sulfides by reaction of disulfides with alkyl halides in the presence of sodium dithionite. Phosphorus Sulfur. 2007;182:167–174.

[54] Tanaka K. Solvent-free organic synthesis. Weinheim: Wiley-VCH; 2003.

[55] Dörwald FZ. Organic synthesis on solid phase. 2nd ed. Weinheim: Wiley-VCH; 2002. p. 1–32.

[56] Ahluwalia VK, Kidwai M. New trends in green chemistry. New Delhi: Anamaya Publishers; 2004. p. 189–231.

[57] Kappe CO, Stadler A. Microwaves in organic and medicinal chemistry, Vol. 25. Weinheim: Wiley-VCH; 2005. p. 1–28.

[58] Loupy A. Microwaves in organic synthesis. Weinheim: Wiley-VCH; 2002. p. 62–76.

[59] Tierney J-P, Lidström P. Microwave assisted organic synthesis. Oxford: Blackwell publishing; 2005. p. 1–22.

[60] Mason TJ, Lorimer JP. Sonochemistry: theory, applications and uses of ultrasound in chemistry. West Sussex: Ellis Horwood; 1988. p. 74–98.

[61] Luche J-L. Synthetic organic sonochemistry. New York: Plenum Press; 1998. p. 246–263.

[62] Blass BE. KF/Al$_2$O$_3$ mediated organic synthesis. Tetrahedron. 2002;58:9301–9320.

[63] Basu B, Mandal B. KF/Alumina: a potential heterogeneous base for organic reactions. Curr Org Chem. 2011;15:3870–3893.

[64] Lenardão EJ, Lara RG, Silva MS, Jacob RG, Perin G. Clean and fast oxidative transformation of thiols to disulfides under solvent-free conditions. Tetrahedron Lett. 2007;48:7668–7670.
[65] Saxena DB, Khajuria RK, Suri OP. Synthesis and spectral studies of 2-mercaptobenzimidazole derivatives. J Heterocyclic Chem. 1982;19:681–683.
[66] Bates CD, Gujadhur RK, Venkataraman D. A general method for the formation of aryl-sulfur bonds using copper(I) catalysts. Org Lett. 2002;4:2803–2806.
[67] Taniguchi N. Alkyl- or arylthiolation of aryl iodide via cleavage of the S-S bond of disulfide compound by nickel catalyst and zinc. J Org Chem. 2004;69(20):6904–6906.
[68] Ramkishan NA, Santosh VG, Pagare BY, Bhusare SR. Solid-supported fluoroboric acid: an efficient reagent combination for S-alkylation of thiols. Chem Sci Trans. 2013;2:282–286.