PERFECT FLUID SPACE-TIMES ADMITTING A
3-DIMENSIONAL CONFORMAL GROUP ACTING
ON NULL ORBITS

A. M. Sintes and J. Carot
Departament de Física, Universitat Illes Balears, 07071 Palma de Mallorca Spain

Abstract

Space-times admitting a 3-dimensional Lie group of conformal motions C_3 acting on null orbits are studied. Coordinate expressions for the metric and the conformal Killing vectors (CKV) are then provided (irrespectively of the matter content) and all possible perfect fluid solutions are found, although none of them verifies the weak and dominant energy conditions over the whole space-time manifold.

1 Introduction

So far in the literature, the study of null orbits has been restricted to isometries only. The groups G_r, $r \geq 4$, on N_3 have at least one subgroup G_3 which may act on N_3, N_2 or S_2. For G_3 on S_2, one obtains special cases of the LRS models, G_r admitting either a group G_3 on N_3 or a null Killing vector. The case G_3 on N_2 was studied by Barnes, the group G_3 is then of Bianchi type II and perfect fluid solutions are excluded since the metric leads to a Ricci tensor whose Segre type is not that of a perfect fluid. Another case that has been considered in the literature is that of G_3 on N_3, such case is subject to the condition $R_{ab}k^a k^b = 0$ and this condition excludes perfect fluids with $\mu + p \neq 0$. Perfect fluid solutions cannot admit a non-twisting ($w = 0$) null Killing vector except if $\mu + p = 0$. The algebraically special perfect fluid solutions with twisting null Killing vectors are treated by Wainwright and they admit an Abelian group G_2.

This paper will deal with space-times admitting a 3-dimensional Lie group of conformal motions C_3 acting on null orbits. In the beginning one could get the feeling that this kind of space-times would be empty for perfect fluid solutions, since the line element of these space-times is, by the theorem of Defrise-Carter, conformally related to one admitting a G_3 acting on null orbits and these ones, as we have pointed out above, do not admit perfect fluid solutions. But, as we will show, this is not the case, since indeed a conformal scaling does change the Ricci tensor, but there are just a few solutions.

2 Space-times admitting CKVs acting on null orbits

We shall concern ourselves with space-times (M, g) that admit a three-parameter conformal group C_3 containing an Abelian two-parameter subgroup of isometries G_2, whose orbits S_2
are spacelike, diffeomorphic to \mathbb{R}^2 and admit orthogonal two-surfaces; furthermore, we shall assume that the C_3 acts transitively on null orbits N_3.

The classification of all possible Lie algebra structures for C_3 under the previous hypothesis was given in [3] where coordinates were adapted so that the line element associated with the assumed energy-momentum tensor.

In all of these cases

$$F, Q, H \text{ and } W \text{ are all functions of } t \text{ and } r \text{ alone.}$$

If the conformal algebra C_3 belongs to the family (A), it was shown in [3] that, for null conformal orbits, one can always bring X to the form

$$X = \partial_t + \partial_r + X^y(y, z)\partial_y + X^z(y, z)\partial_z,$$

where $X^y(y, z)$ and $X^z(y, z)$ are linear functions of their arguments to be determined from the commutation relations of X with the Killing vectors. Specializing now the conformal equations to the CKV (2) and the metric (1), for each possible case, one has the following forms for X and the metric functions F, Q, H, and W appearing in [3]

\begin{align*}
(I) & \quad Q = q(t - r), \quad H = h(t - r), \quad W = w(t - r), \\
& \quad X = \partial_t + \partial_r.
\end{align*}

\begin{align*}
(II) & \quad Q = q(t - r), \quad H = h(t - r), \quad W = w(t - r) - \frac{t + r}{2}, \\
& \quad X = \partial_t + \partial_r + z\partial_y.
\end{align*}

\begin{align*}
(III) & \quad Q = e^{\frac{t}{1 + p}}q(t - r), \quad H = e^{\frac{t}{1 + p}}h(t - r), \quad W = e^{\frac{t}{1 + p}}w(t - r), \\
& \quad X = \partial_t + \partial_r + y\partial_y.
\end{align*}

\begin{align*}
(IV) & \quad Q = e^{-(t + r)}q(t - r), \quad H = h(t - r), \quad W = w(t - r) - \frac{t + r}{2}, \\
& \quad X = \partial_t + \partial_r + (y + z)\partial_y + z\partial_z.
\end{align*}

\begin{align*}
(V) & \quad Q = e^{-(t + r)}q(t - r), \quad H = h(t - r), \quad W = w(t - r), \\
& \quad X = \partial_t + \partial_r + y\partial_y + z\partial_z.
\end{align*}

\begin{align*}
(VI) & \quad Q = e^{-(1 + p)\frac{t + r}{2}}q(t - r), \quad H = e^{(1 - p)\frac{t + r}{2}}h(t - r), \quad W = e^{(1 - p)\frac{t + r}{2}}w(t - r), \\
& \quad X = \partial_t + \partial_r + y\partial_y + pz\partial_z \quad (p \neq 0, 1).
\end{align*}

\begin{align*}
(VII) & \quad Q = e^{-\frac{t + r}{2}}q(t - r), \quad c = c(t - r), \quad g = g(t - r), \\
& \quad H = \frac{\sqrt{1 - p^2}}{\sqrt{1 + c^2 + g^2 + c\cos(\sqrt{4 - p^2\frac{t + r}{2}}) + g\sin(\sqrt{4 - p^2\frac{t + r}{2}})}}, \\
& \quad W = \frac{p + \sqrt{4 - p^2}[c\sin(\sqrt{4 - p^2\frac{t + r}{2}}) - g\cos(\sqrt{4 - p^2\frac{t + r}{2}})]}{\sqrt{1 + c^2 + g^2 + c\cos(\sqrt{4 - p^2\frac{t + r}{2}}) + g\sin(\sqrt{4 - p^2\frac{t + r}{2}})}}, \\
& \quad X = \partial_t + \partial_r - z\partial_y + (y + pz)\partial_z \quad (p^2 < 4).
\end{align*}

In all of these cases $F = F(t, r)$ and the conformal factor Ψ is given by

$$\Psi = F_t + F_r .$$

Furthermore one can prove that family (B) cannot admit conformal Killing vectors acting on null orbits (the proof can be found in [3]).

Note that these results are completely independent of the Einstein field equations and therefore of the assumed energy-momentum tensor.
3 Perfect fluid solutions

For perfect fluid solutions the study is exhausted. For a maximal C_3, with a proper CKV, all possible solutions have been found (see [8] for details). They correspond only to the types III and VI, although none of them satisfies the weak and dominant energy conditions over the whole space-time manifold.

Type VI (this includes the type III for $p = 0$)

We make the coordinate transformation $u = t + r$ and $v = t - r$, so that we have $h = h(v)$ and $q = q(v)$. The field equations yield

\[W = 0 , \]
\[F = f(x) + \frac{1}{2} \frac{1 + p}{1 - p} \ln h - \frac{1}{2} \ln q , \quad x \equiv u - \frac{2}{1 - p} \ln h , \]
\[0 = \left\{ \frac{q_x h_v}{qh} + \frac{h_{vv}}{h} \right\} \Sigma_0 + \left(\frac{h_v}{h} \right)^2 \Sigma_1 , \]
where

\[\Sigma_0 \equiv -1 + p^4 + 4 f_x - 4 p f_x + 4 p^2 f_x - 4 p^3 f_x + 8 f^2_x - 8 p^2 f^2_x \]
\[- 32 f^3_x + 32 p f^3_x - 8 f_{xx} + 8 p^2 f_{xx} + 32 f_{xx} f_x - 32 p f_{xx} f_x . \]
\[\Sigma_1 \equiv 2 + 2 p + 2 p^2 + 2 p^3 - 16 f_x - 8 p f_x - 16 f^2_x - 8 p^3 f_x + 32 f^2_x + 16 p f^2_x \]
\[+ 48 p^2 f^2_x - 64 p f^3_x - 16 f_{xx} + 16 p f_{xx} - 32 p f_{xx} x + 64 f_{xx} f_x . \]

$h_{,v} = 0$ is excluded since the solution does not correspond to a perfect fluid. Therefore, two possibilities arise:

i) $\Sigma_0 = 0, \quad \Sigma_1 = 0$

ii) $\frac{q_x h_v}{qh} + \frac{h_{vv}}{h} = a \left(\frac{h_v}{h} \right)^2 \quad (a = \text{const}) .$

In the first case f_x must be a constant, and therefore the CKV is not proper. For the second case we have

\[\frac{q_v}{q} = a \frac{h_v}{h} - \frac{h_{,vv}}{h_{,v}} , \]
which can be integrated to give

\[q = \frac{h^a}{h_{,v}} , \]
and equation (13) reduces to:

\[1 = \frac{f_{,xx}[f_x 32(ap - a - 2p) + 8(2 - p^2a - 2p + 4p^2 + a)]}{[4f_x - p - 1][f_x 8(ap - a - 2p) + f_{,x} 32p(2 + 1) + a - ap + ap^2 - ap^3 - 2 - 2p^2]} . \]

It is convenient to divide the analysis into three sub-cases.

Sub-case (a): $a = 2p/(p - 1)$.

Equation (18) can be readily integrated to give

\[f = \frac{p + 1}{4} x - \frac{(1 - p)^2}{p^2 + 1} \ln |x| + c , \quad c = \text{const} . \]

We notice that for \(p = -1 \) there exists a third Killing vector of the form

\[
\zeta = \left(\frac{1}{2} + \frac{1}{2} \frac{h}{h_v} \right) \partial_t + \left(\frac{1}{2} - \frac{1}{2} \frac{1}{h_v} \right) \partial_r + y \partial_y - z \partial_z.
\]

(20)

Sub-case (b): \(a = 2/(1 - p) \).

When \(p = -1 \) the solution is a particular case of sub-case (a). The remaining cases may now be integrated giving:

\[
f = - \ln |1 - e^{-(1+p)x/4}| + c, \quad c = \text{const}.
\]

(21)

We note that this sub-case admits the further Killing vector

\[
\zeta = \left(\frac{1}{2} + \frac{1 - p}{4} \frac{h}{h_v} \right) \partial_t + \left(\frac{1}{2} - \frac{1 - p}{4} \frac{h}{h_v} \right) \partial_r + \frac{1 - p}{2} y \partial_y - \frac{1 - p}{2} z \partial_z,
\]

(22)

which violates our requirement of a maximal three-dimensional conformal group \(C_3 \).

Sub-case (c): we finally consider the possibility \(a \neq 2p/(p - 1) \) and \(a \neq 2/(1 - p) \). The solution of (18) is then given implicitly by

\[
x = \gamma_1 \ln |f_{,x} - \beta_0| + \gamma_2 \ln |f_{,x} - \beta_+| + \gamma_3 \ln |f_{,x} - \beta_-|
\]

(23)

where

\[
\beta_0 = \frac{p + 1}{4}, \quad \beta_\pm = \frac{-2(p^2 + 1) \pm \sqrt{2(p^2 + 1)(1 - p)^2(a^2 - 2a + 2)}}{4(ap - a - 2p)}.
\]

(24)

\(\gamma_i, i = 1, 2, 3 \) being constants.

A careful analysis of the energy conditions shows that for all cases (i.e., for all values of the parameters \(a \) and \(p \)) the solutions can only satisfy the energy conditions over certain open domains of the manifold (see [8]).

Acknowledgements. This work has been supported by DGICYT Research Project No. PB94-1177.

References

[1] D. Kramer, H. Stephani, M.A.H. MacCallum and E. Herlt, *Exact Solutions of Einstein’s Field Equations*, Deutscher Verlag der Wissenschaften, Berlin (1980).

[2] A. Barnes, Commun. Math. Phys., 33(1973)75.

[3] A. Barnes, J. Phys. A, 12(1979)1493.

[4] J. Wainwright, Commun. Math. Phys., 17(1970)42.

[5] L. Defrise-Carter, Commun. Math. Phys., 40(1975)273.

[6] J. Carot, A.A. Coley and A.M. Sintes, Gen. Rel. Grav., 28(1996)311.

[7] J. Wainwright, J. Phys. A, 14(1981)1131.

[8] A.M Sintes, Ph.D. Thesis, Universitat de les Illes Balears (1996).