The vortex core in chiral p-wave superconductors exhibits various properties owing to the interplay between the vorticity and chirality inside the vortex core. In the chiral p-wave superconductors, the site-selective nuclear spin-lattice relaxation rate T_1^{-1} is theoretically studied inside the vortex core within the framework of the quasiclassical theory of superconductivity. T_1^{-1} at the vortex center depends on the sense of the chirality relative to the sense of the magnetic field. The effect of a tilt of the magnetic field upon T_1^{-1} is investigated. The effect of the anisotropy in the superconducting gap and the Fermi surface is then investigated. The result is expected to be experimentally observed as a sign of the chiral pairing state in a superconducting material Sr_2RuO_4.

PACS numbers: 74.60.Ec, 76.60.-k, 74.70.Pq

1. INTRODUCTION

Site-selective nuclear magnetic resonance (NMR) method is a powerful tool for investigating the electronic structure inside vortex cores in the mixed state of type-II superconductors. We have theoretically studied the site-selective nuclear spin-lattice relaxation rate T_1^{-1} inside a vortex core in the case of an isotropic chiral p-wave superconductivity $d = \tilde{z}(k_x \pm i k_y)$. We found that T_1^{-1} was suppressed and almost vanished in the $k_x - i k_y$ state owing to the interplay between the vorticity and chirality inside the vortex core (here, the magnetic field was applied in positive direction of the z axis). In this paper, we investigate the effect of a tilt of the magnetic fields
N. Hayashi and Y. Kato

on T_1^{-1}. We then investigate the effect of the anisotropy in the superconducting gap and the Fermi surface. Our result is expected to be experimentally observed as a sign of the chiral pairing state in a superconducting material Sr$_2$RuO$_4$.\[2]

2. QUASICLASSICAL THEORY

To investigate T_1^{-1}, we utilize the quasiclassical theory of superconductivity. We consider the quasiclassical Green function

$$\hat{g}(i\omega_n, \mathbf{r}', \mathbf{k}) = -i\pi \begin{pmatrix} g & if \\ -if & -g \end{pmatrix},$$

which is the solution of the Eilenberger equation,8

$$i\mathbf{v}_F(\mathbf{k}) \cdot \nabla \hat{g} + [i\omega_n \hat{\tau}_z - \hat{\Delta}, \hat{g}] = 0,$$

where the superconducting order parameter is $\hat{\Delta}(\mathbf{r}', \mathbf{k}) = [(\hat{\tau}_x + i\hat{\tau}_y)\Delta(\mathbf{r}', \mathbf{k}) - (\hat{\tau}_x - i\hat{\tau}_y)\Delta^*(\mathbf{r}', \mathbf{k})]/2$ and $\hat{\tau}_i$ the Pauli matrices. $\mathbf{v}_F(\mathbf{k})$ is the Fermi velocity. The vector $\mathbf{r}' = (x', y', z') = (r \cos \phi, r \sin \phi, z')$ is the center of mass coordinate, where the magnetic field is applied along the z' axis. The unit vector $\mathbf{\bar{k}} = (\bar{k}_x, \bar{k}_y, \bar{k}_z) = (k_\perp \cos \theta, k_\perp \sin \theta, k_z)/\sqrt{k_\perp^2 + k_z^2}$ represents the wave number of relative motion of the Cooper pairs in the crystallographic coordinate frame.

From the spin-spin correlation function,2 we obtain the expression for T_1^{-1} in terms of \hat{g},

$$\frac{T_1^{-1}(T)}{T_1^{-1}(T_c)} = \frac{1}{4T_c} \int_{-\infty}^{\infty} \frac{d\omega}{\cosh^2(\omega/2T)} W(\omega, -\omega),$$

where the spectral function $\hat{a}(\omega, \mathbf{r}', \mathbf{\bar{k}}) = (a_{ij})$ is given as

$$\hat{a}(\omega, \mathbf{r}', \mathbf{\bar{k}}) = -i\frac{2\pi}{\tau_3} \hat{\tau}_3[\hat{g}(i\omega_n \rightarrow \omega - i\eta, \mathbf{r}', \mathbf{\bar{k}}) - \hat{g}(i\omega_n \rightarrow \omega + i\eta, \mathbf{r}', \mathbf{\bar{k}})],$$

the symbol $\langle \cdots \rangle$ represents the average over the Fermi surface, and η is a small positive constant roughly representing the impurity effect. T is the temperature and T_c the superconducting transition temperature.

3. EFFECT OF TILT OF MAGNETIC FIELD

We define γ as the angle between the magnetic field ($\parallel z'$ axis) and the z crystallographic axis ($\parallel \bar{k}_z$ axis). The isotropic cylindrical Fermi surface
Interplay between Vorticity and Chirality inside the Vortex Core

![Graph](image)

Fig. 1. T_{C}^{-1} vs T at the vortex center. The magnetic field is tilted from the positive direction of the z crystallographic axis. The angle γ between the magnetic field and the z crystallographic axis is set to $\gamma = 85^\circ$ (solid lines) and $\gamma = 0^\circ$ (dashed lines). The parameter $\eta = 0.2\Delta_{0}$ (Δ_{0} is the gap amplitude at $T = 0$).

is assumed and the Fermi velocity is $v_{F}(\bar{k}) = (v_{F}\cos\theta, v_{F}\sin\theta, 0)$ in the crystallographic coordinate frame. We assume that the layer perpendicular to the z crystallographic axis is isotropic. In this section, we consider the isotropic chiral p-wave pairing $d = \bar{z}(\bar{k}_{x} \pm i\bar{k}_{y}) = \bar{z}\exp(\pm i\theta)$. We assume that this pairing is unchanged by a tilt of the magnetic field.

The order parameter around a vortex is expressed as $\Delta(r', \bar{k}) = |\Delta(r)|\exp(i\phi)\exp(\pm i\theta)$. On the basis of an analysis of the so-called zero-core vortex model, the matrix elements of \hat{g} at the vortex center $r = 0$ are approximately obtained as

$$g = \sqrt{\omega_{n}^{2} + |\Delta|^{2}\omega_{n}^{-1}}, \quad f = -\tilde{\Delta}\omega_{n}^{-1}, \quad f^\dagger = \tilde{\Delta}^{*}\omega_{n}^{-1},$$

where $\tilde{\Delta} = |\Delta(r \to \infty)|\exp(i\phi)\exp(\pm i\theta)$ and $(\cos\phi, \sin\phi) \parallel (v_{Fx}'', v_{Fy}')$ in the plane perpendicular to the z' axis, i.e., to the magnetic field. Without loss of generality, we tilt the magnetic field in the z-y plane. In the present case, it follows that $\cos\phi = \cos\theta$ and $\sin\phi = \sin\theta\cos\gamma$.

Inserting these matrix elements of \hat{g} into Eq. (5) and taking the Fermi-surface average $\langle \cdots \rangle = \int \cdots \sin\theta/2\pi$ in Eq. (4), we numerically calculate $T_{C}^{-1}(T)$ at the vortex center. We show the result for $\gamma = 85^\circ$ in Fig. 1. Increasing the tilt angle γ, we observe in our numerical results that $T_{C}^{-1}(T)$ are almost unchanged by γ up to $\gamma \sim 50^\circ$. Above $\gamma \sim 50^\circ$ ($\gamma < 90^\circ$), each $T_{C}^{-1}(T)$ in the $\bar{k}_{x} \pm i\bar{k}_{y}$ states gradually deviates from $T_{C}^{-1}(T)$ of $\gamma = 0^\circ$ and the difference in $T_{C}^{-1}(T)$ between the two chiral states gradually becomes small. At $\gamma = 90^\circ$, $T_{C}^{-1}(T)$ of the two chiral states coincide each other. As seen in Fig. 1, however, even at a large tilt angle, the difference in $T_{C}^{-1}(T)$
Fig. 2. T^{-1}_1 vs T at the vortex center. The magnetic field is applied in positive direction of the z crystallographic axis. The parameter $\eta = 0.2\Delta_0$ (Δ_0 is defined such that the pair potential is $\Delta(k) = \Delta_0(\sin k_x \pm i \sin k_y)$ at $T = 0$).

between the $\vec{k}_x \pm i \vec{k}_y$ states is still noticeable. At $\gamma = 85^\circ$ (the solid lines in Fig. 2), $T^{-1}_1(T)$ in the $\vec{k}_x + i \vec{k}_y$ state is two times larger at $T \sim 0.4T_c$ than that in the $\vec{k}_x - i \vec{k}_y$ state.

4. EFFECT OF ANISOTROPY

Within the present framework based on the quasiclassical theory, we calculate $T^{-1}_1(T)$ using an anisotropic gap $d = \vec{\Delta}(\sin k_x \pm i \sin k_y)$ and an anisotropic dispersion relation $\varepsilon_k = -2t(\cos k_x + \cos k_y) - 2t'(\cos(k_x + k_y) + \cos(k_x - k_y))$, ($t' = 0.47t$ and the chemical potential $\mu = 1.2t$). In this section, the magnetic field is applied in positive direction of the z crystallographic axis, namely $\gamma = 0^\circ$. This physical situation is the same as that of a calculation of $T^{-1}_1(T)$ by Takigawa et al.12

We show our result for $T^{-1}_1(T)$ in Fig. 2. We find that, even in this case of the anisotropic gap and the anisotropic Ferm surface, the difference in $T^{-1}_1(T)$ between the $\sin k_x \pm i \sin k_y$ states is noticeable and $T^{-1}_1(T)$ in the $\sin k_x - i \sin k_y$ state is suppressed in wide T region in comparison with that in the $\sin k_x + i \sin k_y$ state. This result is in contrast to a corresponding theoretical result for $T^{-1}_1(T)$ by Takigawa et al. In their result, there is not such suppression of $T^{-1}_1(T)$ as seen in our Fig. 2. While the same anisotropy is taken into account in both calculations, their result is different from ours. A reasonable origin of this difference may be as follows. The calculation of $T^{-1}_1(T)$ by Takigawa et al. is in the quantum limit ($k_F \xi \sim 1$) where the energy spectrum inside the vortex core is quantized and it dominantly
Interplay between Vorticity and Chirality inside the Vortex Core

determines $T_1^{-1}(T)$ as pointed out by them while we base our calculation on the quasiclassical theory relevant in the opposite limit $k_F\xi \gg 1$ where the vortex core spectrum is continuous. Now, in the case of the material Sr$_2$RuO$_4$ the coherence length is not so small ($\xi \sim 660 \AA$), namely $k_F\xi \gg 1$, and therefore our result based on the quasiclassical theory is relevant to this material.

5. SUMMARY

Within the framework of the quasiclassical theory of superconductivity, we numerically calculated the site-selective nuclear spin-lattice relaxation rate T_1^{-1} at the vortex center in the chiral p-wave superconductors. The case of the tilted magnetic field and the case of the anisotropic gap and Fermi surface were investigated. Our result (Fig. 1) can be experimentally observed as a sign of the chiral pairing state in Sr$_2$RuO$_4$ by applying the magnetic field tilted from the z crystallographic axis by $\sim 85^\circ$.

ACKNOWLEDGMENTS

We thank M. Ichioka, M. Takigawa, M. Matsumoto, K. Machida, N. Schopohl, and M. Sigrist for helpful discussions.

REFERENCES

[1] M. Takigawa, M. Ichioka, and K. Machida, Phys. Rev. Lett. 83, 3057 (1999); J. Phys. Soc. Jpn. 69, 3943 (2000).
[2] K. Kakuyanagi, K. Kumagai, and Y. Matsuda, Phys. Rev. B 65, 060503(R) (2002).
[3] V. F. Mitrović et al., Nature 413, 501 (2001).
[4] N. Hayashi and Y. Kato, Physica C (to be published), /21BP84/ Proc. The 23rd International Conference on Low Temperature Physics, August 20–27, 2002, Hiroshima, Japan.
[5] Y. Kato and N. Hayashi, Physica C (to be published), /25BP83/ Proc. The 23rd International Conference on Low Temperature Physics, August 20–27, 2002, Hiroshima, Japan.
[6] M. Sigrist et al., Physica C 317-318, 134 (1999); A. G. Lebed and N. Hayashi, Physica C 341-348, 1677 (2000).
[7] Y. Maeno et al., Nature 372, 532 (1994).
[8] J. W. Serene and D. Rainer, Phys. Rep. 101, 221 (1983).
[9] E. V. Thuneberg, J. Kurkijärvi, and D. Rainer, Phys. Rev. B 29, 3913 (1984).
[10] N. Hayashi and Y. Kato, Physica C 367, 41 (2002); Phys. Rev. B 66, 132511 (2002).
[11] M. Takigawa, M. Ichioka, K. Machida, and M. Sigrist, Phys. Rev. B 65, 014508 (2002).
[12] M. Takigawa, M. Ichioka, K. Machida, and M. Sigrist, *J. Phys. Chem. Solids* **63**, 1333 (2002).
[13] T. Akima, S. NishiZaki, and Y. Maeno, *J. Phys. Soc. Jpn.* **68**, 694 (1999).