A comprehensive and comparative analysis of liposoluble constituents in sloughs of five different species of snakes by GC-MS

Shao Chunfu a, You Wei b, Qiao Minsha b, Wang Fan b, Li Changwen b and Dai Yujie a,*

a State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
b Tasly Academy, Tasly Group, Tianjin 300410, China

Abstract. As a sort of traditional Chinese medicine (TCM), snake sloughs have been proved to be effective in curing miscellaneous diseases such as pruritus, muscular spasm and laryngalgia. However, there are few researches on their chemical components, especially the discriminant analysis based on different species. In this study, the liposoluble constituents in sloughs of five species of snakes (Deinagkistrodon, Elaphe carinata, Naja atra, Ptyas mucosus and Zaocys dhumnades) were revealed by comparative evaluation on GC-MS analysis that fatty acids (49.89%-54.65%) and steroids (13.55%-24.98%) were their major components. Moreover, the content of polyunsaturated fatty acids was found by cluster analysis to be the key index to distinguish the quality of a snake slough. It could be concluded that the slough of Naja atra be more appropriate to be a raw material of traditional Chinese medicines. It was also concluded that the GC-MS based method as well as the experimental results could be of referential value for further studies on the efficiency and activities of snake sloughs.

1. Introduction

Snakes are reptilian creatures that distribute wildly in tropical and subtropical regions, including south and southeast of China. Most of the snakes, according to the variety of species, slough 2-10 times per year. The snake sloughs, also known as the shed skins of snakes, are considered as a valuable traditional Chinese medicine (TCM) and have already been proved by clinical investigations to be efficacious against pruritus, muscular spasm, laryngalgia, etc [1], therefore the researches on the chemical components in snake sloughs are obviously necessary. However, only a few reports can be found in this field [2-4]. For instance, thirty eight fatty acids and seventeen amino acids were detected in the shed skin of Bungarus multicinctus [4], but no further studies had been carried out. Since the medicinal efficiency of sloughs would be discrepant based on the species of snakes, a comparative analysis of the chemical constituents of different snakes is of importance, and thus we focused on the determination of liposoluble constituents, including the fatty acids, esters, alcohols, steroids et al, so as to facilitate further researches on the structural composition as well as the medicinal mechanism of snake sloughs.

The chemical constituents of snake sloughs can be determined by chromatography, such as high/ultra performance liquid chromatography (HPLC/UPLC) [5-7], gas chromatography-mass spectroscopy (GC-MS) [8-11], thin layer chromatography (TLC) [12, 13] and so on. In our study, sloughs of five of the most common snakes in China, including Deinagkistrodon, Elaphe carinata, Naja atra, Ptyas mucosus and Zaocys dhumnades, were collected early in 2016 and their liposoluble constituents [14, 15]
were identified by GC-MS due to its advantages in simultaneous qualitative and quantitative analysis. Cluster analysis was taken out afterwards to evaluate the differences between the five species of sloughs.

2. Experimental

2.1. Materials
Sloughs of five species of snakes, including *Deinagkistrodon* (labelled SS1), *Elaphe carinata* (SS2), *Naja atra* (SS3), *Ptyas mucosus* (SS4) and *Zaocys dhumnades* (SS5) were collected directly from snake keepers in Hunan, Guangdong and Anhui province (Table 1).

Sample label	Species	Toxic/nontoxic	Habitat	Province
SS1	*Deinagkistrodon*	Toxic	Deciduous forests and ditches	Guangdong
SS2	*Elaphe carinata*	Nontoxic	Plains and hills	Anhui
SS3	*Naja atra*	Nontoxic	Jungles and bamboo groves	Hunan
SS4	*Ptyas mucosus*	Toxic	Plains and hills	Anhui
SS5	*Zaocys dhumnades*	Nontoxic	Hills	Anhui

2.2. Reagents
All chemical reagents used in the experiment are listed in Table 2.

Reagent	Type	Manufacturer
n–Hexane	Analytical reagent	Sigma–Aldrich Co. LLC.
Acetic ester	Analytical reagent	Aladdin Industrial Corporation
Aether	Analytical reagent	Tianjin Kangkede Technology Co. Ltd.
Potassium hydrate	Analytical reagent	Tianjin Kangkede Technology Co. Ltd.
Ethanol	Analytical reagent	Aladdin Industrial Corporation
Hydrochloric acid	Analytical reagent	Tianjin Kangkede Technology Co. Ltd.
Anhydrous sodium sulfate	Analytical reagent	Aladdin Industrial Corporation
99% Bis (trimethylsilyl) trifluoroacetamide (BSTFA) + 1% trimethylchlorosilane (TMCS)	Derivatizing reagent	Tokyo Chemical Industry

2.3. Pretreatments of samples
After dehydration and smashing, 20 g of each sample was immersed in 400 mL of elute solution (n-Hexane: ethyl ester = 1:1), respectively. With condensate water on, each of the mixtures was heated to 85 °C and kept for 7 hours in water bath before cooled down to room temperature (22 °C) and filtered. All solvents were evaporated by heating the filtrate to 70 °C in a ventilation environment to afford an amber oily substance. Then this substance was added 65 mL saturated potassium hydrate-ethanol, and the system was set in a water bath at 60 °C for 1 hour. The mixture was diluted with 100 mL of distilled water and extracted by 50 mL of ether in a separating funnel. The aqueous phase was adjusted to pH 2.00 ± 0.02 by hydrochloric acid and extracted by another 50 mL of ether. The organic layers were combined, dried over anhydrous sodium sulfate and heated to remove the solvent to afford a light brown insoluble substance.

Insoluble substance (from oil phase) of about 2.0 mg mixed with 100 μL of 99% BSTFA + 1% TMCS was water bathed at 55 °C for 1.5 hours. All samples were ready for GC-MS analysis after derivatization and centrifugation (12000 r/min, 5 min)

2.4. Analysis of GC-MS
The GC-MS analysis was performed on a GC-2010 plus gas chromatograph (Shimadzu, Japan) equipped with a TQ8030 mass spectrometer (Shimadzu, Japan) and a MP–5ms gas chromatographic column (0.25 mm x 30 m x 0.25 μm, Agilent, USA).
The temperature of the injector was set at 280 °C and the pressure was 73.0 kPa, flow rate of the carrier gas (nitrogen) was 1.00 mL/min and the split ratio was 20:1. The temperature of the column was set to keep at 100 °C for 3 min firstly, then raised to 300 °C at 8 °C/min and kept for 6 min. The injection volume was 1.0 μL.

As for the mass spectrometer, the temperature of the ion source was 230 °C. Scan mode was Q3 and the range of mass-to-charge ratio (m/z) was from 35.00 to 800.00.

2.5. Data Analysis
Identification of the compounds were performed by comparing the retention indices and mass spectra to standard library NIST 11, and the relative concentration of each constituent was determined by calculating the peak areas in total ion current (TIC). Cluster analysis was carried out using The Unscrambler (version 10.3, CAMO Software, Norway), the Ward’s method was selected to be the algorithms while squared Euclidean distance was applied to evaluate the similarity [8, 16, 17].

3. Test Results and Discussions
The TIC of liposoluble constituents of five samples are shown in Fig. 1.

![Fig. 1](image)

Fig. 1 Total ion current (TIC) of liposoluble constituents in snake sloughs, (a) Deinagkistrodon, (b) Elaphe carinata, (c) Naja atra, (d) Ptyas mucosus, (e) Zaocys dhumnades.
A number of 141 compounds were confirmed in the five samples. SS2 and SS3 were the richest in components (79 in each) while SS5 was the fewest (66).

According to the statistics listed in Table 3, fatty acids (FAs) and steroids were the main compounds in snake sloughs. The contents of total FAs in five samples were generally similar, varying slightly from 49.89% (SS4) to 54.65% (SS5), but the percentage of saturated fatty acids (SFAs) and unsaturated fatty acids (USFAs) were quite different. It is remarkable that SS5 was particularly rich in SFAs while the concentration in the others was comparatively in a lower level. Octadecanoic acid (stearic acid), hexadecanoic acid (palmitic acid), eicosanoic acid (arachic acid) and docosanoic acid (behenic acid) accounted the vast majority of SFAs. Odd-carbon SFAs, such as pentadecanoic acid, heptadecanoic acid and nonadecanoic acid, were also detected though they were less in the even-carbon ones. The most common monounsaturated fatty acids (MUFAs) were cis-9-octadecenoic acid (oleic acid) and its trans isomer, both of which had been detected widely in animal tissues. This couple of octadecenoic acids made up the main composition of MUFAs in all samples. As for the polyunsaturated fatty acids (PUFAs), 9,12-octadecadienoic acid (linoleic acid), 8,11,14-eicosatrienoic acid and 5,8,11,14-tetraenoic (arachidonic acid, ARA) acid are the common ones, SS2, SS3 and SS4 were obviously higher in total (all above 10%), indicating that they should be more efficient in antioxidation and free radical eliminating than the other two. Note that the content of ARA in SS3 was extremely high (2.33%) and 4,7,10,13,16,19-docosahexaenoic (DHA) acid was only detected in this sample, which could be considered as a characteristic of Naja atra sloughs.

Table 3 Concentration of the compounds calculated based on relative peak areas (%)

Compound No.	acids	SS1	SS2	SS3	SS4	SS5
1	Butanoic acid	– a	0.01	0.11	0.04	0.31
2	3–methyl Butanoic acid b	–	–	–	–	0.05
3	2–oxo–Butanoic acid	–	–	0.06	0.01	0.08
4	Pentanoic acid	0.02	0.02	0.20	0.36	–
5	4–methyl Pentanoic acid	0.06	–	–	–	–
6	Hexanoic acid	0.17	0.30	0.05	0.32	–
7	2–oxo–Hexanoic acid	–	0.02	–	–	–
8	Heptanoic acid	0.02	0.02	–	–	–
9	Octanoic acid	0.13	–	0.02	–	–
10	Nonanoic acid	0.02	0.04	0.05	0.01	0.02
11	Decanoic acid	2.52	–	0.48	–	0.30
12	3–hydroxy Decanoic acid	0.32	–	–	–	–
13	Hendecanoic acid	0.04	–	–	–	–
14	Dodecanoic acid	0.08	0.02	0.02	0.01	–
15	Tridecanoic acid	0.04	0.02	–	–	0.02
16	Tetradecanoic acid	0.76	0.12	0.19	0.04	0.08
17	Pentadecanoic acid	1.66	0.13	0.48	0.23	0.14
18	hexadecanoic acid	5.63	8.09	4.93	6.36	5.04
19	Heptadecanoic acid	1.00	0.12	0.82	1.19	0.32
20	Octadecanoic acid	7.90	4.81	9.28	4.61	12.79
21	Nonadecanoic acid	0.68	0.58	1.64	0.68	1.10
22	Eicosanoic acid	3.89	5.00	4.72	5.75	8.82
23	Docosanoic acid	3.73	1.72	4.08	3.52	8.74
24	Tetracosanoic acid	–	0.11	–	–	–
25	Benzoic acid	–	0.01	0.01	0.01	0.05
26	Benzene acetic acid	–	0.02	0.47	0.07	–
27	Benzene propanoic acid	0.20	0.21			
28	2-Benzenepropanoic acid	0.02				
29	Ethane dioic acid					
30	Propanedioic acid	0.03				
31	methyl–Propanedioic acid					
32	Butanedioic acid					
33	methyl–Butanedioic acid					
34	Pentanedioic acid					
35	Hexanedioic acid					
36	Heptanedioic acid					
37	Octanedioic acid					
38	Nonanedioic acid					
39	Decanedioic acid					
40	Dodecanedioic acid					
41	Pentenoic acid					
42	3–Pentenoic acid					
43	4–Pentenoic acid					
44	10–Undecenoic acid					
45	6–Octadecenoic acid					
46	cis–9–Octadecenoic acid	15.91	4.26	11.59	13.57	
47	trans–9–Octadecenoic acid	2.04	1.02	1.22	0.58	
48	6,9–Octadecadienoic acid					
49	9,12–Octadecadienoic acid					
50	9,12,15–Octadecatrienoic acid					
51	8,11,14–Eicosatrienoic acid					
52	5,8,11,14–Tetraenoic acid					
53	4,7,10,13,16,19–Docosahexaenoic acid					
54	Butanol					
55	2–Butanol	0.06				
56	3–methyl Butanol					
57	3,7–dimethyl Octanol					
58	Decanol					
59	2–Decanol					
60	2–hexyl–Decanol					
61	Dodecanol	0.02				
62	Tetradecanol					
63	Pentadecanol					
64	Hexadecanol					
65	Heptadecanol					
66	Octadecanol					
67	Hexacosanol					
68	Octacosanol					
69	9,12–Octadecadienol					
70	3,7,11,15–tetramethylhexadec–2–enol					
71	Octade–9–enol					
72	Ethanediol	0.04	0.05			
73	Octadec–9–enol					
74	Ethanediol	0.04	0.05			
75	Octadec–9–enol					
76	Ethanediol	0.04	0.05			

IOP Conf. Series: Earth and Environmental Science **332** (2019) 032001

doi:10.1088/1755-1315/332/3/032001
	Butane–2,3–dil					
73	Glycerol	0.01				
74	1–monooxyglycer	0.12	0.10	0.19	0.23	
75	1–O–heptadecyl Glycerol	5.80	9.14	4.33	6.01	
76	Butane–1,2,4–triol				0.06	
77	**alkanes**					
78	2,4–dimethyl–Hexane				0.18	
79	2,4,4–trimethyl–Hexane			0.14		
80	4–ethyl–Heptane					
81	3,3–dimethyl–Heptane			0.10		
82	3–ethyl–3–methyl–Heptane				0.10	
83	3,3,5–trimethyl–Heptane					
84	2,2,3,3,5,6,6–heptamethyl–Heptane					
85	3,3–dimethyl–Octane	0.08		0.05	0.41	0.15
86	5–butyl–Nonane	1.15			0.07	0.06
87	n–Undecane	0.06	0.06	0.05	0.13	0.09
88	5–methyl–Undecane					
89	2,6–dimethyl–Undecane	0.05				
90	n–Dodecane	0.34	0.18		1.20	1.58
91	2–methyl–Dodecane		0.08			
92	4,6–dimethyl–Dodecane	0.10				
93	2,6,10–trimethyl–Dodecane	0.65	0.34	0.46	0.35	0.47
94	2,6,11–trimethyl–Dodecane		0.95			
95	n–Tridecane	0.12	0.05	0.86	0.08	0.07
96	n–Tetradecane			0.24		
97	n–Pentadecane	0.14			0.04	
98	2–methyl–Pentadecane			0.01		
99	n–Hexadecane	2.18	2.17	2.76	1.95	2.35
100	2,6,10,14–tetramethyl–Hexadecane	0.20	0.16	0.07	0.09	0.15
101	n–Heptadecane	0.85	0.17		0.13	
102	8–methyl–Heptadecane		0.08			0.03
103	n–Nonadecane	0.22	0.16	0.24	0.62	0.28
104	n–Heneicosane	0.53	0.48	0.28	0.36	0.57
105	n–Tetracosane	0.07	0.11		0.07	
106	n–Octacosane	0.44	0.49	0.43	0.40	0.73
107	n–Nonacosane	0.07	0.12	0.04		
108	n–Pentatriacontane		0.05			0.06
109	n–Tetracontane	0.11	0.06			
110	n–Tetratetracontane	0.05	0.01	0.12	0.04	0.33
111	n–Tetrapentacontane		0.10			

	esters					
112	2–methyl–Butanoic acid hexyl ester			0.06	0.06	
113	Docosanoic acid methyl ester	0.22	0.22	0.17	0.32	
114	Tetracosanoic acid methyl ester	1.88		0.01		
115	Dodecyl acrylate		0.06	0.08	0.03	
116	7,10–Hexadecadienoic acid methyl ester	0.90	4.43			
117	11,14–Eicosadienoic acid methyl ester		2.00			
118	5,8,11,14–Eicosatetraenoic acid ethyl ester	–	–	–	0.14	–
119	Phthalic acid bis (7–methyloctyl) ester	–	–	0.02	0.01	0.02
120	Isocitric lactone	0.02	–	–	–	–
121	Isopropyl linoleate	–	–	2.39	–	–
122	Oleyl oleate	–	–	4.12	–	–

Steroids

123	Cholesterol	14.72	13.66	10.12	13.73	18.36
124	Cholestane	2.03	3.18	2.33	1.72	3.27
125	Cholest–5–ene	1.66	3.12	0.79	2.85	3.17
126	Cholest–5–en–3–ol	0.12	–	–	–	–
127	Cholesterol epoxide	0.23	–	–	–	–
128	Sitosterol	1.18	0.28	0.31	1.51	0.18
129	Stigmasterol	0.16	–	–	–	–

Amines and amides

130	Ethylamine	0.32	–	0.77	0.23	1.13
131	Diethylamine	–	–	0.01	–	0.05
132	2–methyl Cyclohexylamine	–	0.23	–	–	–
133	Phenylethanamine	0.01	–	–	–	–
134	Hexadecanamide	–	–	–	–	0.16
135	N–ethyl–Acetamide	–	0.04	0.04	0.01	0.07
136	N–acetyl–N–methyl–Acetamide	0.02	–	–	–	–

Others

137	hexadecyl–Oxirane	–	0.18	4.34	3.09	2.60
138	1,4–Dioxane	–	0.04	–	–	–
139	Borate	0.03	0.13	0.06	0.08	0.05
140	7–Hexadecenal	0.48	–	0.95	–	–
141	9–Tetradecenal	–	0.59	–	–	–

Total	53.42	50.70	53.86	49.89	54.65
Acids					
Saturated fatty acids	28.29	21.11	27.07	23.12	37.68
Substituted fatty acids	0.38	0.02	0.06	0.01	0.13
Monounsaturated fatty acids	18.92	15.11	10.82	12.83	14.24
Polyunsaturated fatty acids	5.57	13.28	14.83	13.26	2.02
Aromatic acid	–	0.02	0.70	0.29	0.05
Dioic acids	0.26	1.16	0.38	0.38	0.53
Alcohols	6.84	16.14	7.31	11.26	5.27
Alkanes	7.31	5.86	5.89	6.33	7.52
Esters	3.02	4.77	8.70	0.62	0.85
Steroids	20.10	20.24	13.55	19.81	24.98
Amines and Aides	0.35	0.27	0.82	0.24	1.41
Others	0.51	0.94	5.35	3.17	2.65
Compounds Identified	91.55	98.92	95.48	91.32	97.33

\(a\) (–): not detected.
\(b\) Compounds in each group are sorted according to the number of carbon atoms in main chains.

Steroids, mostly cholesterol and its derivatives, are the second abundant component in snake sloughs (13.55% to 24.98%). Cholest-5-en-3-ol(0.12%), cholesterol epoxide(0.23%) and stigmasterol(0.16%)
were the characteristic compounds of SS1. Additionally, it could be observed that the content of cholesterol was inversely correlative with that of the PUFAs, the results was consistent with previous theories that PUFAs had the effect in reducing cholesterols [18].

Alcohols were less popular in all samples. Though 24 alcohols were found, only a few of them were mutual. Besides a small amount of saturated monohydric alcohols (0.24%-2.02% in total), glycerol and its derivatives (mainly 1-O-heptadecyl glycerol) were evidently higher in content. Unsaturated alcohols, including 3, 7, 11, 15-tetramethylhexadec-2-enol and octadec-9-enol exist in SS2, SS3 and SS4 only, and no unsaturated alcohols were determined in SS1 and SS5.

Most of the alkanes detected in samples were straight-chained hydrocarbons and n-hexadecane (1.95%-2.35%), n-octacosane (0.40%-0.73%), n-heneicosane (0.28%-0.57%) and n-tridecane (0.05%-0.86%) were the major ones. Long-chained alkanes (n > 30) were also proved to be existed in snake sloughs and SS2 contained the most types, including n-pentatriacontane (0.05%), n-tetracontane (0.11%), n-tetracontacontane (0.01%) and n-tetrapentacontane (0.10%). Except 2,6,10-trimethyl-dodecane (0.34%-0.65%) and 2,6,10,14-tetramethyl-hexadecane (0.07%-0.20%), branched alkanes distributed randomly and thus difficult to summarize a regulation.

Some other compounds could be regarded as the characteristic components due to their specificity, such as 9-tetradecenal in SS2 (0.59%) and hexadecanamide in SS5 (0.16%). Meanwhile, there were also some chemical structures could not be considered as constituents in snake sloughs though they were detected in samples. For example, 1,7,7-trimethyl-bicyclo [2.2.1] heptan-2-one was detected in SS1 (0.01%) during our experiment but was manually excluded from Table 3 because it was more likely from the an environment of camphor where a Deinagkistrodon sloughed.

As for the cluster analysis, all 5 samples were divided into two groups according to the chemical compositions (Fig. 2). SS5 and SS1 were in one cluster while SS3, SS4 and SS2 were in another. Moreover, SS4 and SS2 were disposed together and SS3 was alone in a sub-cluster. It could be concluded that the result of the cluster analysis was related closely to the content of PUFAs as well as cholesterol. SS3 has the largest amount of PUFAs and the lowest cholesterol level, which meant the slough of a Naja atra would be the most appropriate raw material for a TCM prescription. By contrast, Deinagkistrodon and Zaocys dhumnade sloughs would probably not be suitable.

![Cluster analysis by The Unscrambler (v10.3), squared Euclidean distance was chosen to be the evaluating index of similarity.](image-url)

Fig. 2 Cluster analysis by The Unscrambler (v10.3), squared Euclidean distance was chosen to be the evaluating index of similarity.
4. Conclusion
A comprehensive and comparative analysis of five different species of snake sloughs was carried out applying a GC-MS based method. The results indicated that the chemical constituents varied greatly both in varieties and quantities. FAs (49.89%-54.65%) and steroids (13.55%-24.98%, mainly cholesterol) were the key compounds in all samples and the content of PUFA and cholesterol could be considered as the most important indexes to evaluate the medical value of snake sloughs. On the other hand, the GC-MS based method could be regarded as a referential technology for further snake slough related studies such as bioactivities, pharmacodynamics, pharmacokinetics, toxicology, etc.

Acknowledgments
This work was financially supported by Tianjin science and technology plan project, grand No. 18PTSYJC00140.

References
[1] Pharmacopoeia of the People's Republic of China[M]. Pharmacopoeia Committee of the People's Republic of China, 2015,1:316.
[2] Jones DE, Magnin-Bissel G et al. Detection of polycyclic aromatic hydrocarbons in the shed skins of corn snakes (Elaphe guttata)[J]. Ecotoxicology and Environmental Safety, 2009,72(7):2033-2035.
[3] Torri C, Mangoni A et al. Skin lipid structure controls water permeability in snake molts[J]. Journal of Structural Biology, 2014,185:99-106.
[4] Chen Honghong, Li Kaozheng. Study on Chemical Components of Snake Slough of Bungarus Multicinctus Multicinctus II,Components of Fatty Acids and Amino Acids[J]. Journal of Instrumental Analysis,2001,20(3):70-72.
[5] Chan Chi-on, Jin Dengping et al. Qualitative and quantitative analysis of chemical constituents of Centipeda minima by HPLC-QTOF-MS & HPLC-DAD[J]. Journal of Pharmaceutical and Biomedical Analysis, 2016,125:400-407.
[6] Lone Shabir H, Bhat Khursheed A et al. Isolation, cytotoxicity evaluation and HPLC-quantification of thechemical constituents from Artemisia amygdalina Decne[J]. Journal of Chromatography B, 2013,940:135-141.
[7] Chandra Preeti, Pandey Renu et al. Quantitative determination of chemical constituents of Piper spp. using UPLC–ESI–MS/MS[J]. Industrial Crops and Products, 2015,76:967-976.
[8] Zhou Yubi, Ye Runrong et al. GC–MS analysis of liposoluble constituents from the stems of Cynomorium songaricum[J]. Journal of Pharmaceutical and Biomedical Analysis, 2009,49:1097-1100.
[9] Khalil Mohammed NA, Fekry Mostafa I et al. Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC–MS and chemometrics[J]. Food Chemistry, 2017,217:171-181.
[10] Goettel Michael, Niessner Reinhard et al. A fully validated GC-TOF-MS method for the quantification of fattyacids revealed alterations in the metabolic profile of fatty acids after smoking cessation[J]. Journal of Chromatography B, 2017,1041:141-150.
[11] Ribechini Erika, Mangani Filippo et al. Chemical investigation of barks from broad-leaved tree species using EGA-MS and GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2015,114:235-242.
[12] Kokotkiewicz A, Migas P et al. Densitometric TLC analysis for the control of tropane and steroidal alkaloids in Lycium barbarum[J]. Food Chemistry, 2017, 221:535-540.
[13] Kong Weijun, Wang Jiabo et al. A novel “target constituent knock-out” strategy coupled with TLC, UPLC–ELSD and microcalorimetry for preliminary screening of antibacterial constituents in Calculus bovis[J]. Journal of Chromatography B, 2011,879:3565-3573.
[14] Huang Weichao, Li Zhi et al. Chemical composition, anti-inflammatory activity and cytotoxic activity of the liposoluble constituents from different parts of Acanthopanax evodiaefolius by
the Herbal Blitzkrieg Extractor[J]. Environmental Toxicology and Pharmacology, 2014, 38: 406-411.

[15] Parks Alexandre, Marceau Francois. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation[J]. Toxicology and Applied Pharmacology, 2016, 305: 55-65.

[16] Torras-Claveria Laura, Berkov Strahil et al. Metabolomic analysis of bioactive Amaryllidaceae alkaloids of ornamental varieties of Narcissus by GC–MS combined with k-meanscluster analysis[J]. Industrial Crops and Products, 2014, 56: 211-222.

[17] Cheong Kit-Leong, Wu Dingtao et al. Qualitation and quantification of specific polysaccharides from Panax species using GC-MS, saccharide mapping and HPSEC-RID-MALLS[J]. Carbohydrate Polymers, 2016, 153: 47-54.

[18] Ren Yuan, Perez Tulia I et al. Oxidative Stability of Omega-3 Polyunsaturated Fatty Acids Enriched Eggs[J]. Journal of Agricultural and Food Chemistry, 2013, 61: 11595-11602