A remark on the Restricted Isometry Property in Orthogonal Matching Pursuit

Qun Mo and Yi Shen

Abstract—This paper demonstrates that if the restricted isometry constant \(\delta_{K+1} \) of the measurement matrix \(A \) satisfies

\[
\delta_{K+1} < \frac{1}{\sqrt{K+1}},
\]

then a greedy algorithm called Orthogonal Matching Pursuit (OMP) can recover every \(K \)-sparse signal \(x \) in \(K \) iterations from \(Ax \). By contrast, a matrix is also constructed with the restricted isometry constant

\[
\delta_{K+1} = \frac{1}{\sqrt{K}}
\]

such that OMP can not recover some \(K \)-sparse signal \(x \) in \(K \) iterations. This result positively verifies the conjecture given by Dai and Milenkovic in 2009.

Index Terms—compressed sensing, restricted isometry property, orthogonal matching pursuit, sparse signal reconstruction.

I. INTRODUCTION

C OMPRESSIVE sensing is a new type of sampling theory. It shows that it is highly possible to reconstruct sparse signals and images from what was previously believed to be incomplete information [2]. Let \(x \in \mathbb{R}^n \) be a signal, we want to recover it from a linear measurement

\[
Ax = y,
\]

where \(A \) is a given \(m \times n \) measurement matrix. In general, if \(m < n \), the solution of (1) is not unique. To recover \(x \) uniquely, some additional assumptions on \(x \) and \(A \) are needed. We are interested in the case when \(x \) is sparse. Let \(|x|_0 \) denote the number of nonzero entries of \(x \). We say that a vector \(x \) is \(K \)-sparse when \(|x|_0 \leq K \). To recover such a signal \(x \), a natural choice is to seek a solution of the \(l_0 \) minimization problem

\[
\min_x ||x||_0 \quad \text{subject to} \quad Ax = y
\]

where \(A \) and \(y \) are known. To ensure the \(K \)-sparse solution is unique, we would like to use the restricted isometry property introduced by Candès and Tao in [3]. A matrix \(A \) satisfies the restricted isometry property of order \(K \) with the restricted isometry constant \(\delta_K \) if \(\delta_K \) is the smallest constant such that

\[
(1 - \delta_K)||x||_2^2 \leq ||Ax||_2^2 \leq (1 + \delta_K)||x||_2^2
\]

holds for all \(K \)-sparse signal \(x \). If \(\delta_{2K} < 1 \), the \(l_0 \) minimization problem has a unique \(K \)-sparse solution [3]. The \(l_0 \) minimization problem is equal to the \(l_1 \) minimization problem when \(\delta_{2K} < \sqrt{2} - 1 [1] \). Recently, Mo and Li have improved the sufficient condition to \(\delta_{2K} < 0.4931 [8] \).

OMP is an effective greedy algorithm for seeking the solution of the \(l_0 \) minimization problem. Basic references for this method are [6], [10] and [11]. For a given \(m \times n \) matrix \(A \), we denote the matrix with indices of its columns in \(\Omega \) by \(A_\Omega \). We shall use the same way to deal with the restriction \(x_\Omega \) of the vector \(x \). Let \(e_i \) be the \(i \)th coordinate unit vector in \(\mathbb{R}^n \). The iterative algorithm below shows the framework of OMP.

\[
\text{Input:} \quad A, \ y
\]

\[
\text{Set:} \quad \Omega_0 = \emptyset, \ r_0 = y, \ j = 1
\]

while not converge

\[
- \quad \Omega_j = \Omega_{j-1} \cup \arg \max_{i \in [Ae_i]} |\langle Ae_i, r_{j-1} \rangle|
- \quad x_j = \arg \min_{z \in \mathbb{R}^n} ||A_{\Omega_j}z - y||_2
- \quad r_j = y - A_{\Omega_j}x_j
- \quad j = j + 1
\]

end while

\[
\hat{x}_{\Omega_j} = x_j, \ \hat{x}_{\Omega_j^C} = 0
\]

Return \(\hat{x} \)

Davenport and Wakin have proved that \(\delta_{K+1} < \frac{1}{\sqrt{K+1}} \) is sufficient for OMP to recover any \(K \)-sparse signal in \(K \) iterations [3]. Later, Liu and Temlyakov have improved the condition to \(\delta_{K+1} < \frac{1}{\sqrt{K+1} + 1} [7] \). By contrast, Dai and Milenkovic have conjectured that there exist a matrix with \(\delta_{K+1} \leq \frac{1}{\sqrt{K}} \) and a \(K \)-sparse vector for which OMP fails in \(K \) iterations. This conjecture has been confirmed via numerical experiments in [5] for the case \(K = 2 \). The main results of this paper are consist of two parts.

- We prove that

\[
\delta_{K+1} \leq \frac{1}{\sqrt{K+1} + 1}
\]

is sufficient for OMP to exactly recover every \(K \)-sparse \(x \) in \(K \) iterations.

- For any given \(K \geq 2 \), we construct a matrix with

\[
\delta_{K+1} = \frac{1}{\sqrt{K}}
\]

where OMP fails for at least one \(K \)-sparse signal in \(K \) iterations.

II. PRELIMINARIES

Before going further, we introduce some notations. Suppose \(x \) is a \(K \)-sparse signal in \(\mathbb{R}^n \). In the rest of this paper, we
assume that
\[\mathbf{x} = (x_1, \ldots, x_k, 0, \ldots, 0) \]
where \(x_i \neq 0, \, i = 1, 2, \ldots, k, \, k \leq K \). For a given \(K \)-sparse signal \(\mathbf{x} \) and a given matrix \(\mathbf{A} \), we define
\[S_i := \langle \mathbf{A} e_i, \mathbf{A} \mathbf{x} \rangle, \quad i = 1, \ldots, n. \]
Denote \(S_0 := \max_{i \in \{1, \ldots, K\}} |S_i| \). The following lemma is useful in our analysis.

Lemma 2.1: Suppose that the restricted isometry constant \(\delta_{K+1} \) of a matrix \(\mathbf{A} \) satisfies
\[\delta_{K+1} < \frac{1}{\sqrt{K+1}}, \]
then \(S_0 > |S_i| \) for \(i > K \).

Proof: By Lemma 2.1 in [1], we have
\[|S_i| = |\langle \mathbf{A} e_i, \mathbf{A} \mathbf{x} \rangle| \leq \delta_{K+1} \| \mathbf{x} \|_2 \quad \text{for all} \quad i > K. \tag{2} \]
For the given \(K \)-sparse \(\mathbf{x} \), we obtain
\[\langle \mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{x} \rangle = \left\langle \mathbf{A} \sum_{i=1}^{K} x_i \mathbf{e}_i, \mathbf{A} \mathbf{x} \right\rangle \]
\[= \sum_{i=1}^{K} x_i \langle \mathbf{A} e_i, \mathbf{A} \mathbf{x} \rangle \]
\[= \sum_{i=1}^{K} x_i S_i. \]
It follows
\[(1 - \delta_{K+1}) \| \mathbf{x} \|_2^2 \leq \langle \mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \]
\[= \sum_{i=1}^{K} x_i S_i \]
\[\leq S_0 \| \mathbf{x} \|_1 \]
\[\leq S_0 \sqrt{K} \| \mathbf{x} \|_2. \]
This implies
\[\frac{(1 - \delta_{K+1}) \| \mathbf{x} \|_2}{\sqrt{K}} \leq S_0. \tag{3} \]
It follows from (2) and (3) that the lemma holds.

III. MAIN RESULTS

This section establishes the main results of this paper.

Theorem 3.1: Suppose that \(\mathbf{A} \) satisfies the restricted isometry property of order \(K + 1 \) with the restricted isometry constant
\[\delta_{K+1} < \frac{1}{\sqrt{K+1}}, \]
then for any \(K \)-sparse signal \(\mathbf{x} \), OMP will recover \(\mathbf{x} \) from \(\mathbf{y} = \mathbf{A} \mathbf{x} \) in \(K \) iterations.

Proof: Consider the first iteration, the sufficient condition for OMP choosing an index from \(\{1, \ldots, K\} \) is
\[S_0 > |S_i| \quad \text{for all} \quad i > K. \]
By Lemma 2.1 \(\delta_{K+1} < \frac{1}{\sqrt{K+1}} \) guarantees the success of the first iteration. OMP makes an orthogonal projection in each iteration. By induction, it can be proved that OMP selects a different index from \(\{1, 2, \ldots, K\} \) in each iteration. \(\blacksquare \)

Theorem 3.2: For any given positive integer \(K \geq 2 \), there exist a \(K \)-sparse signal \(\mathbf{x} \) and a matrix \(\mathbf{A} \) with the restricted isometry constant
\[\delta_{K+1} = \frac{1}{\sqrt{K}}, \]
for which OMP fails in \(K \) iterations.

Proof: For any given positive integer \(K \geq 2 \), let
\[\mathbf{A} = \begin{pmatrix} I_K & \frac{1}{\sqrt{K}} & \cdots & \frac{1}{\sqrt{K}} \\ \frac{1}{\sqrt{K}} & \frac{\sqrt{K}}{K} & \cdots & \frac{1}{\sqrt{K}} \\ & \cdots & \cdots & \cdots \\ \frac{1}{\sqrt{K}} & \frac{1}{\sqrt{K}} & \cdots & \frac{\sqrt{K}}{K} \end{pmatrix}_{(K+1) \times (K+1)}. \]
By simple calculation, we get
\[\mathbf{A}^T \mathbf{A} = \begin{pmatrix} I_K & \frac{1}{\sqrt{K}} & \cdots & \frac{1}{\sqrt{K}} \\ \frac{1}{\sqrt{K}} & \frac{\sqrt{K}}{K} & \cdots & \frac{1}{\sqrt{K}} \\ & \cdots & \cdots & \cdots \\ \frac{1}{\sqrt{K}} & \frac{1}{\sqrt{K}} & \cdots & \frac{\sqrt{K}}{K} \end{pmatrix}_{(K+1) \times (K+1)} \]
where \(\mathbf{A}^T \) denotes the transpose of \(\mathbf{A} \). It is obvious that the eigenvalues \(\{\lambda_i\}_{i=1}^{K+1} \) of \(\mathbf{A}^T \mathbf{A} \) are
\[\lambda_1 = \cdots = \lambda_{K-1} = 1, \quad \lambda_K = 1 - \frac{1}{\sqrt{K}} \quad \text{and} \quad \lambda_{K+1} = 1 + \frac{1}{\sqrt{K}}. \]
Therefore, the restricted isometry constant \(\delta_{K+1} \) of \(\mathbf{A} \) is \(\frac{1}{\sqrt{K}} \). Let
\[\mathbf{x} = (1, 1, \ldots, 1, 0)^T \in \mathbb{R}^{K+1}. \]
We have
\[S_i = \langle \mathbf{A} e_i, \mathbf{A} \mathbf{x} \rangle = 1 \quad \text{for all} \quad i \in \{1, \ldots, K+1\}. \]
This implies OMP fails in the first iteration. Since OMP chooses one index in each iteration, we conclude that OMP fails in \(K \) iterations for the given matrix \(\mathbf{A} \) and the vector \(\mathbf{x} \). \(\blacksquare \)

Remark 3.3: It is challenging to design a measurement matrix having a very small restricted isometry constant \(\delta_{K+1} \); and Theorem 3.2 shows that this kind of requirement is necessary. However, if we select multiple indices per iteration, we can recover the \(K \)-sparse signal given in Theorem 3.2 in \(K \) iterations. Actually, this technique has been widely used in many related greedy pursuit algorithms, such as CoSaMP [9] and Subspace Pursuit algorithm [4].

REFERENCES

[1] E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. Acad. Sci., Ser. I, vol. 346, pp. 589-592, 2008.
[2] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inform. Theory, vol. 52, no.2, pp. 489-509, 2006.
[3] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inform. Theory, vol. 51, no.12, pp. 4203-4215, 2005.
[4] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Trans. Inform. Theory, vol. 55, no. 5, pp. 2230-2249, 2009.
[5] M. A. Davenport and M. B. Wakin, “Analysis of orthogonal matching pursuit using the restricted isometry property,” IEEE Trans. Inform. Theory, vol. 56, no. 9, pp. 4395-4401, 2010.
[6] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approximation,” *J. Constr. Approx.*, vol. 13, pp. 57-98, 1997.

[7] E. Liu and V. N. Temlyakov, “Orthogonal super greedy algorithm and applications in compressed sensing,” preprint, 2010.

[8] Q. Mo and S. Li, “New bounds on the restricted isometry constant δ_{2k},” *Appl. Comput. Harmon. Anal.*, vol. 31, no. 3, pp. 460-468, 2011.

[9] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” *Appl. Comput. Harmon. Anal.*, vol. 26, no. 3, pp. 301-321, 2009.

[10] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal Matching Pursuit: Recursive function approximation with applications to wavelet decomposition,” in *Proc. 27th Ann. Asilomar Conf. on Signals, Systems and Computers*, Nov. 1993.

[11] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,” *IEEE Trans. Inform. Theory*, vol. 50, no. 10, pp. 2231-2242, 2004.

Qun Mo was born in 1971 in China. He has obtained a B.Sc. degree in 1994 from Tsinghua University, a M.Sc. degree in 1997 from Chinese Academy of Sciences and a Ph.D. degree in 2003 from University of Alberta in Canada.

He is current an associate professor in mathematics in Zhejiang University. His research interests include compressed sensing, wavelet frames and subdivision schemes.

Yi Shen was born in 1982 in China. He has obtained a B.S. degree and a Ph.D. degree in mathematics from the Zhejiang University in 2004 and 2009, respectively.

He is current an associate researcher in mathematics in Zhejiang Sci-Tech University. His research interests include compressed sensing, wavelet analysis and its applications.