Sugar Accumulation in Leaves of Arabidopsis sweet11/sweet12 Double Mutants Enhances Priming of the Salicylic Acid-Mediated Defense Response

Pierre Gebauer†, Martin Korn, Timo Engelsdorf†, Uwe Sonnewald, Christian Koch and Lars M. Voll*

Division of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

In compatible interactions, biotrophic microbial phytopathogens rely on the supply of assimilates by the colonized host tissue. It has been found in rice that phloem localized SWEET sucrose transporters can be reprogrammed by bacterial effectors to establish compatibility. We observed that sweet11/sweet12 double mutants, but not single mutants, exhibited increased resistance toward the fungal hemibiotroph Colletotrichum higginsianum (Ch), both in the biotrophic and the necrotrophic colonization phase. We therefore investigated if the phloem localized transporters AtSWEET11 and AtSWEET12 represent additive susceptibility factors in the interaction of Arabidopsis with Ch. AtSWEET12-YFP fusion protein driven by the endogenous promoter strongly accumulated at Ch infection sites and in the vasculature upon challenge with Ch. However, susceptibility of sweet12 single mutants to Ch was comparable to wild type, indicating that the accumulation of AtSWEET12 at Ch infection sites does not play a major role for compatibility. AtSWEET12-YFP reporter protein was not detectable at the plant–pathogen interface, suggesting that AtSWEET12 is not targeted by Ch effectors. AtSWEET11-YFP accumulation in pAtSWEET11:AtSWEET11-YFP plants were similar in Ch infected and mock control leaves. A close inspection of major carbohydrate metabolism in non-infected control plants revealed that soluble sugar and starch content were substantially elevated in sweet11/sweet12 double mutants during the entire diurnal cycle, that diurnal soluble sugar turnover was increased more than twofold in sweet11/sweet12, and that accumulation of free hexoses and sucrose was strongly expedited in double mutant leaves compared to wild type and both single mutants during the course of Ch infection. After 2 days of treatment, free and conjugated SA levels were significantly increased in infected and mock control leaves of sweet11/sweet12 relative to all other genotypes, respectively. Induced genes in mock treated sweet11/sweet12 leaves were highly significantly enriched for several GO terms associated with SA signaling and response compared to mock treated wild-type leaves, indicating sugar-mediated priming of the SA pathway in the double mutant. Infection
assays with salicylic acid deficient sweet11/sweet12/sid2 triple mutants demonstrated that reduced susceptibility observed in sweet11/sweet12 was entirely dependent on the SA pathway. We suggest a model how defects in phloem loading of sucrose can influence SA priming and hence, compatibility.

Keywords: pathogen nutrition, SWEET, Arabidopsis, sugar transport, phloem loading, carbon metabolism, salicylic acid, defense priming

INTRODUCTION

Prokaryotic and eukaryotic plant pathogens drive their own metabolism by diverting organic and inorganic solutes from colonized host tissue. Nutrient acquisition from host cells and their efficient uptake is crucial for the successful establishment of phytopathogens in planta (reviewed by Divon and Fluhr, 2007).

Plant pathogens have evolved different strategies to acquire organic nutrients from their host plants. After penetration by wounds or natural openings, necrotrophic pathogens rapidly kill the plant tissue by the secretion of highly efficient toxins and/or cell wall degrading enzymes (as reviewed by van Kan, 2006) and can utilize simple organic carbon and nitrogen sources as well as building blocks liberated by hydrolysis of complex polymers. In contrast, biotrophic pathogens strictly rely on the supply of organic carbon and nitrogen metabolites by living host tissue (Divon and Fluhr, 2007). Due to a substantial diversion of C and N assimilates, infected leaf tissues are transformed into strong local sinks at the infection site (e.g., Biemelt and Sonnewald, 2006).

It has been shown that fungal biotrophs require metabolite transporters for the uptake of host assimilates, but it is yet unclear, which host functions mediate the export of carbon and nitrogen assimilates into the apoplasmic interface between host and pathogen. Seminal work on the bean rust fungus Uromyces fabae lead to the identification of a proton-coupled hexose transporter and two proton-coupled amino acid transporters that were induced in fungal haustoria (Hahn et al., 1997; Voegele et al., 2001; Struck et al., 2002, 2004). A secreted fungal invertase was found to be induced in rust infected leaves (Voegele et al., 2006), which is thought to ensure the supply of hexoses to the fungus by the cleavage of sucrose in the extrahaustorial matrix. Many fungal and bacterial phytopathogens studied to date either produce secreted invertases or induce host-derived cell wall invertases to secure the provision of hexoses as carbon source (Billett et al., 1997; Heisterüber et al., 1994; Chou et al., 2000; Fotopoulos et al., 2003; Swarbrick et al., 2006; Voegele et al., 2006; Horst et al., 2008; Hayes et al., 2010). Direct uptake of sucrose, as by the proton-coupled high-affinity Ustilago maydis sucrose transporter Srt1 (Wahl et al., 2010), remains an exception. In some cases, sufficient activity of extracellular invertases (Siemens et al., 2011) or direct sucrose uptake by sucrose transporters (Wahl et al., 2010) are indispensable for full virulence, indicating that sucrose is the major carbon source of these pathogens in planta. In contrast, loss of citrate uptake, but not the loss of sucrose uptake, compromised in planta proliferation of Xanthomonas campestris pv. vesicatoria (Xcv) (Tamir-Ariel et al., 2011), demonstrating that the organic acid citrate is the preferred carbon source for this bacterial phytopathogen. It also needs to be noted that favorable organic nitrogen sources like glutamine (Clark and Hall, 1998; Horst et al., 2010), asparagine (Horst et al., 2010) or GABA (Solomon and Oliver, 2001) provide excess carbon along with organic N to fungal pathogens.

Neutral sugars represent an important carbon source for most biotrophs studied to date. The induction of bidirectional sugar uniporters of the SWEET (SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER) family by TAL (transcriptional activator like)-effectors was shown to be required for virulence of the bacterial rice pathogen Xanthomonas oryzae pv. oryzae (Xoo) (Chen et al., 2010). Four different bacterial TAL effectors are known to induce the rice sugar transporters OsSWEET11 or OsSWEET14 (Chu et al., 2006; Yang et al., 2006; Antony et al., 2010; Chen et al., 2010; Yuan et al., 2011). In compatible interactions, at least one of these two target SWEET genes is induced by Xoo. Recessive bacterial blight resistance alleles of both SWEET transporter genes were described, in which mutated TAL effector binding sites in the promoter regions of the respective SWEET genes prevent reprogramming by the pathogen (Chu et al., 2006; Yang et al., 2006; Chen et al., 2010; Liu et al., 2011; Yu et al., 2011; Yuan et al., 2011). This suggests that enhanced sucrose export by SWEET transporters may be essential for nutrition of Xoo, which proliferates in the xylem, an environment that is typically poor in organic carbon sources. With the help of artificially designed TAL effectors, (Streubel et al., 2013) demonstrated that only the induction of clade III SWEET transporters is sufficient to support virulence of Xoo. Interestingly, all characterized clade III SWEET transporters were shown to transport sucrose (Chen et al., 2012). Recently, the Xanthomonas axonopodis pv. manihotis (Xam) TAL effector TAL20 was identified to target MeSWEET10a, a clade III hexose and sucrose transporter, in cassava (Cohn et al., 2014). However, TAL20 deletion strains only exhibited a moderately reduced virulence, while in planta proliferation was not impaired (Cohn et al., 2014), indicating that induction of MeSWEET10a by Xam is dispensable for pathogenicity.

Taken together, this may either indicate that substrate specificity of the induced SWEET transporters is important for the establishment of compatibility in the individual pathosystem or that SWEET transporters are not the major route of carbon supply for all pathogens. Among other SWEET genes, AtSWEET11 and AtSWEET12 were shown to be induced during infection of Arabidopsis leaves with biotrophic, hemibiotrophic and necrotrophic pathogens, suggesting that reprogramming of SWEET transporters may represent a common strategy for nutrient acquisition of Arabidopsis pathogens (Chen et al., 2010). Since AtSWEET11 and AtSWEET12 exert redundant functions in
phloem loading with sucrose and are the most abundant clade III transporters in leaves (Chen et al., 2012), we investigated the role of Arabidopsis AtSWEET11 and AtSWEET12 during the interaction with the adapted fungal hemibiotroph Colletotrichum higginsianum (Ch), which had not been studied by Chen et al. (2012).

Colletotrichum higginsianum forms haploid conidiospores, which land on the plant surface and differentiate specialized penetration organs, so called appressoria. Penetration pegs emerge at the bottom of the appressoria and breach the underlying epidermal cell walls predominantly by mechanical force (Bechinger, 1999; Deising et al., 2000). To build up sufficient turgor pressure for this process, Colletotrichum appressoria accumulate sugar alcohols and require osmosis-driven water supply from the outside, e.g., by rain drops (Bechinger, 1999; Deising et al., 2000). In the first penetrated epidermis cell, Ch establishes itself as a biotroph within 36 h post inoculation by forming a bulbous infection vesicle that subsequently produces lobed biotrophic primary hyphae (O’Connell et al., 2004). Recent data indicate that this stage may rather serve defense suppression than nutrient uptake: stage specific RNAseq analysis could not identify transporters for major organic carbon and nitrogen that were strongly induced in the biotrophic phase (O’Connell et al., 2012). Furthermore, an almost quantitative depletion of soluble sugars from infected host tissue during biotrophic colonization did not result in attenuated growth of C. higginsianum, but rather lead to increased host susceptibility (Engelsdorf et al., 2013). Hyphal morphology and fungal lifestyle change at around 72 h post inoculation, when neighboring cells are colonized by rapidly growing necrotrophic secondary hyphae (SH) of Ch, which leads to visible necrotic lesions on infected leaves that contain acervuli with newly formed conidiospores.

The data presented here suggest that the local induction of AtSWEET12 at infection sites does not support fungal nutrition and proliferation, while AtSWEET11 is not locally induced. The absence of AtSWEET12 accumulation at the direct plant–fungal interface makes it unlikely that AtSWEET12 expression is locally induced by fungal effectors. Our results further demonstrate that reduced susceptibility of Arabidopsis sweet11/sweet12 double mutants toward Ch is caused by sugar-induced priming of the SA pathway.

MATERIALS AND METHODS

Plant Lines, Fungal and Bacterial Strains and Growth Conditions

Arabidopsis plants were grown in short day (8 h light/16 h dark), 12 h light/12 h dark and long days (16 h light/8 h dark) as described in Engelsdorf et al. (2013). All mutants, AtSWEET11-GFP and AtSWEET12-GFP reporter plants used in this study are described in Chen et al. (2010, 2012), except for sid2-3 (SALK_042603) that is described in Gross et al. (2006), pAtSWEET11:AtSWEET11-YFP and pAtSWEET12:AtSWEET12-YFP reporter constructs were made by cloning pAtSWEET11:AtSWEET11 and pAtSWEET12:AtSWEET12, respectively, from the donor vector pDONR221-T1 (Chen et al., 2012) into the pEG-TW Gateway vector (Chen et al., 2012; Fan et al., 2014) by LR clonase. Transgenic plants were produced as described previously (Chen et al., 2012) and were a generous gift of Li-Qing Chen and Wolf Frommer (Carnegie Institution for Science, Stanford, CA, United States). All mutants and transformants were in the Col-0 background.

Evaluation of Fungal Proliferation and In Plant Development

To assess early in planta establishment of Ch between 1.5 and 2.5 days post infection (dpi), the developmental stages of about 200 to 400 fungal structures were analyzed in whole-leaf mounts after lactophenol-trypsin blue staining as described in Koch and Slusarenko (1990) with minor modifications. After boiling freshly sampled leaves in trypan blue staining solution for 1 min, the infected leaves were kept in the staining solution for 24 h and were then transferred to chloral hydrate [250% (w/v)] for destaining on the following day. Microscopy was performed on a Leica DMR microscope (Bensheim, Germany) with DIC optics. For later infection stages, quantification of the relative genomic DNA content of Ch was performed according to Engelsdorf et al. (2013).

Fluorescence Imaging by Confocal Laser Scanning and Binocular Microscopy

Localization of AtSWEET11-YFP and AtSWEET12-YFP in Arabidopsis leaves was performed on a Leica TCS SP5 confocal laser scanning microscope (Leica, Wetzlar, Germany). After excitation with an argon laser at 514 nm, YFP fluorescence was recorded with a photomultiplier tube (PMT) detector between 525 and 560 nm. Ch expressing CIH1-mCherry was visualized after excitation with a DP55 laser at 561 nm and emission PMT detector settings between 570 and 630 nm. Chlorophyll autofluorescence was detected between 657 and 721 nm after excitation with an argon laser.

Localization of YFP signals on the whole leaf scale was performed using a Leica MZ16F binocular (Leica, Wetzlar, Germany).
Germany) with the corresponding YFP band pass filter set for excitation (510/20 nm) and emission (560/40 nm).

Determination of Free SA and SAG

Extraction and quantification of free SA, SAG in leaf samples was performed as described (Voll et al., 2012) with minor modifications reported in Engelsdorf et al. (2013).

Determination of Soluble Sugar and Starch Contents

Snap-frozen Arabidopsis leaves were extracted twice with 80% ethanol and soluble sugar contents were assayed in a coupled enzymatic assay using a microtiter plate reader as described by Voll et al. (2003). Starch measurements from ethanol insoluble leaf material was performed as described by Voll et al. (2003).

Transcriptome Analysis by Microarrays

For transcriptome analysis on Agilent Arabidopsis V4 4x44K microarrays (Design-ID 021169, Agilent, Waldbronn, Germany), total RNA was extracted from pools of twelve fully expanded leaves per replicate using the RNase-all method (Chomczynski and Sacchi, 1987). Leaf samples of 5-week-old sweet11/sweet12 and wild type Col-0 plants grown in 12 h light (20°C)/12 h dark cycles (18°C) were either taken immediately before the treatment, at 1 h before the end of the light period (0 dpi) and at 2.5 dpi, at 3 h into the light period. At 2.5 dpi, both mock treated and Ch infected samples were taken. Prior to microarray hybridization, RNA quality was assessed by an Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany). Gene expression and GO term enrichment analysis was performed with GeneSpring V12.6 (Agilent Technologies, Waldbronn, Germany).

Statistical Analysis

Student’s t-tests were performed with SigmaPlot 12 (Systat Software Inc., Chicago, IL, United States) after testing for normality (Shapiro–Wilk test) and equal variance.

RESULTS

Loss of AtSWEET11 and AtSWEET12 Reduces Susceptibility toward C. higginsianum

It was shown that SWEET sucrose transporters are induced by bacterial effectors in the phloem of rice leaves to establish compatibility with Xoo (Chen et al., 2010; Yuan et al., 2011). In Arabidopsis leaves, various sets of SWEET transporters were found to be induced upon infection with bacterial and fungal pathogens (Chen et al., 2010). Since AtSWEET11 and AtSWEET12 were shown to exert redundant functions in phloem loading of Arabidopsis (Chen et al., 2012), we first investigated if either or both transporters might play a role in the interaction of Arabidopsis with Ch.

Immediate post penetration establishment of Ch was evaluated microscopically in the middle of the biotrophic phase at 2.5 dpi. The relative number of appressoria (A), biotrophic structures (infection vesicles and primary hyphae, PH) and necrotrophic SH was scored in histological specimen and was taken as a measure for the progress of fungal in planta development (Figure 1A). In wild type leaves, around 55% of the assessed appressoria had successfully formed biotrophic hyphae in planta, while only 20% of the penetration attempts on sweet11/sweet12 double

FIGURE 1 | Proliferation of *C. higginsianum* in infected leaves. Plants were grown in 12h/12h light/dark cycles and five-week old plants were infected at the end of the light period with 2 × 10^6 Ch conidia ml^-1. (A) Early fungal development in planta as given by the relative distribution of infection structures. The progress of fungal development was scored in trypan blue stained leaves of the indicated genotypes at 2.5 dpi. Starting from appressoria, the most advanced infection structure derived from each conidium was classified. Per replicate, the developmental status of *in planta* hyphae formed from 200 to 400 conidia was scored. Values are means of four analyzed leaves per genotype with error bars representing the SE. The developmental order is as follows: A, appressoria (black bars), PH, primary hyphae (light gray bars), SH, secondary hyphae (dark gray bars). (B) Fungal colonization in the necrotrophic infection phase. As an indicator for Ch proliferation, the amount of fungal genomic DNA per leaf area in the indicated genotypes was assessed by qPCR of a genomic ChTrpC fragment at 3.5 dpi. Values are means of four independent biological replicates ± SE and represent the normalized relative quantity (NRQ) with Col-0 as a reference. For each replicate, leaf punches from three infected leaves were pooled. Data from one representative out of seven independent replicate experiments with similar results are shown. Asterisks indicate significant differences from Col-0 in a Student’s t-test (**P < 0.05, ***P < 0.01, ****P < 0.001).
mutants had resulted in establishment of the biotrophic phase (Figure 1A). The sweet11 and sweet12 single mutants showed an intermediate phenotype (Figure 1A). Necrotrophic hyphae were only occasionally observed at that time point in all genotypes. Thus, the establishment of biotrophy in planta was significantly delayed in the sweet11/sweet12 double mutant, while early post penetration of Ch was also attenuated in both single mutants, indicating an additive effect of AtSWEET11 and AtSWEET12 deficiency on early post-penetration.

Fungal colonization of the double mutant was reduced by approximately 50% relative to wild type in the early necrotrophic phase at 3.5 dpi (Figure 1B), while no significant differences between wild type and both single mutants were observed in any of seven independent replicate experiments (results of one representative experiment are shown in Figure 1B).

AtSWEET12 Is Locally Induced around C. higginsianum Infection Sites

Since deficiency of both transporters showed an additive effect on compatibility, we next assessed if AtSWEET11 and AtSWEET12 are induced by Ch. Transcript profiling in the biotrophic (2 dpi) and necrotrophic infection phase (4 dpi) indicated that none of the two transporters was substantially induced during biotrophic colonization, while only AtSWEET12 got strongly induced on the whole leaf scale during the necrotrophic phase of Ch infection (Table 1).

To assess the local and temporal induction of AtSWEET11 and AtSWEET12 more closely, we performed droplet inoculation with Ch on pAtSWEET11:AtSWEET11-YFP and pAtSWEET12:AtSWEET12-YFP reporter plants. Confirming the microarray data, AtSWEET11-YFP protein was detected in vascular tissue of infected and mock control leaves, but no further induction of AtSWEET11-YFP was observed in Ch infected leaves (Supplementary Figure S1A). In contrast, AtSWEET12-YFP accumulated at Ch infection sites during the biotrophic phase at 2.5 dpi, and strong expression of AtSWEET12-YFP fusion protein was detected around necrotic lesions during the necrotrophic infection phase at 4 dpi (Figure 2A, see Supplementary Figure S1B for images from an independent pAtSWEET12:AtSWEET12-YFP reporter line). In addition, AtSWEET12-YFP accumulation was much stronger in the vasculature of infected compared to control plants at both stages of the infection (Figure 2A). To assess the local induction of AtSWEET12 during the biotrophic phase at the cellular level, we infected the pAtSWEET12:AtSWEET12-YFP reporter lines with a Ch strain expressing a secreted LysM-Domain CIH1-mCherry reporter protein, which accumulates around primary hyphae in planta (Figure 2B and Supplementary Figure S2). Interestingly, we never detected AtSWEET12-YFP around primary hyphae of the pathogen by CLSM. An accumulation of AtSWEET12-YFP was only observed in 9% of the penetrated epidermis cells (Figure 2B). By contrast, neighboring epidermis cells and underlying mesophyll cells showed AtSWEET12-YFP reporter fluorescence in 84 and 61% of all cases, respectively (Figure 2B).

The absence of AtSWEET11-YFP and AtSWEET12-YFP from the interfacial matrix strongly argues against a role of these two transporters in providing sugars to Ch directly at the plant–pathogen interface. However, induction of AtSWEET12 in mesophyll and epidermis cells surrounding the infected cell might enrich the apoplastic compartment at the infection site with sucrose. Therefore, we investigated major carbohydrate metabolism in control and Ch infected leaves in more detail.

Table 1 | Induction of clade III AtSWEET genes during infection of wild type Col-0 with C. higginsianum.

Gene	Gene No.	2 dpi	4 dpi
SWEET9	AT2G39060	−2.94	1.12
SWEET10	AT5G0790	n/a	n/a
SWEET11	AT3G48740	1.22	1.70
SWEET12	AT5G23660	1.29	69.66
SWEET13	AT5G50800	1.76	−2.32
SWEET14	AT4G25010	n/a	n/a
SWEET15	AT5G13170	−1.41	1.31

Transcript data were obtained by microarray analysis of total RNA isolated from fully expanded leaves at the indicated time points after spray infection with 2 × 10^6 conidia/mL. Data were calculated using GeneSpring v12.6, are given as fold change of infected vs. mock treated samples and represent the mean values of three to four biological replicates. n/a – no matching probe set on the Agilent ATHV4 microarray.

sweet11/12 Double Mutant Leaves Show Elevated Sugar Turnover and Accumulate Hexoses

Since the sweet11/sweet12 double mutant exhibited an approximately 50% reduction in sugar exudation and reduced nocturnal starch mobilization (Chen et al., 2012), we expected that soluble sugar levels are constantly elevated in the sweet11/sweet12 double mutant.

To study major carbohydrate contents in more detail, we measured the contents of soluble sugars and starch in leaves during diurnal light/dark cycles in short day (8 h light/16 h dark), 12 h light/12 h dark cycles and long day conditions (16 h light/8 h dark). In all light regimes, the sweet11/sweet12 double mutant showed strongly elevated contents of hexoses, sucrose and starch throughout the diurnal cycle compared to wild type and the single mutants (Figure 3A and Supplementary Figure S3). Throughout the diurnal cycle, sucrose and starch contents remained constantly elevated in the double mutants compared to the other genotypes, while hexose accumulated in the double mutant during the first half of the light period (Figure 3A and Supplementary Figure S3). To assess more closely, if the rate of starch and soluble sugar accumulation (i.e., the content at the end of light minus the content at the end of the preceding dark period) as well as starch and soluble sugar mobilization (i.e., the content at the end of light minus the content at the end of the following dark period) differ between the genotypes, we calculated the turnover of total soluble sugars and starch from the time course data (Figure 3B and Supplementary Figure S3). While the turnover of soluble sugars was significantly increased in the sweet11/sweet12 double mutant...
under all studied diurnal cycles, the calculated total diurnal carbohydrate accumulation and mobilization were comparable between all other genotypes (Figure 3B and Supplementary Figure S3).

Infected leaves of all genotypes accumulated more hexoses and sucrose than the corresponding mock controls at the end of the light periods at 3 and 4 dpi. Hexose contents in Ch infected leaves were twice as high in the double mutant as compared to the other genotypes at all time points, while sucrose contents were elevated in infected double mutant compared to infected wild type leaves at the end of the subjective light phases at 3 and 4 dpi (Figure 4). Taken together, the progressive accumulation of hexoses and sucrose in the course of Ch infection was much more pronounced in double mutant leaves compared to wild type and single mutants. Leaves of infected single mutants only exhibited a transient increase of hexose and sucrose contents compared to infected wild type leaves at 3 dpi (Figure 4).

Increased Resistance of sweet11/sweet12 toward C. higginsianum Depends on Salicylic Acid (SA)

The observed elevated levels of soluble sugars, especially hexoses, in mock treated sweet11/sweet12 double mutants – as well as
FIGURE 3 | Continued
soluble sugars (top panel) and total carbohydrate content (bottom panel), as calculated from the data depicted in (A). Carbohydrate accumulation, white bars; carbohydrate mobilization, black bars. Values are means of five biological replicates ± SE. Asterisks indicate significant differences from Col-0 in a Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001). Data from one representative out of two independent replicate experiments with similar results are shown. FW, Fresh weight.

the enhanced accumulation of soluble sugars upon challenge with Ch – may elicit sugar mediated priming of the SA pathway, as described by Linke et al. (2002) and Conrath et al. (2006). Therefore, we monitored contents of free SA as well as conjugated SA glucoside (SAG) in leaves of untreated control plants, mock treated plants and Ch infected plants in 12 h intervals from the time of treatment until 2.5 dpi. At all time points, SA and SAG contents in untreated leaves ranged between 40 and 50 µg.m⁻² and 60 and 80 µg.m⁻², respectively, and did not differ significantly between genotypes. Both SA and SAG contents rapidly increased at the time of biotrophic establishment of Ch at 2 dpi in all genotypes (Figures 5A,B). While the timing of SA production was comparable among all genotypes, SA and SAG accumulation was increased approximately twofold in sweet11/sweet12 compared to wild type at 2 dpi (Figure 5).

Interestingly, the contents of free SA and SAG were also significantly elevated by around twofold in mock treated sweet11/sweet12 double mutants compared to mock treated wild type, i.e., in plants that were sprayed with water and kept at high humidity (Figure 5C). This might be connected to sugar-mediated priming of the SA pathway in the absence of pathogen. We employed microarray analysis to investigate the response of SA regulated genes in mock treated leaves at 2.5 dpi. In mock treated double mutants, 645 genes were significantly down-regulated and 345 genes were significantly up-regulated compared to mock treated wild type at 2.5 days post treatment (Supplementary Table S1). More than 13% of those genes that were significantly induced in sweet11/sweet12 double mutants, i.e., 134 genes, were associated with plant defense responses according to GO term annotation. GO categories associated with defense, incompatible interactions and SA associated pathways were highly significantly enriched in this gene set (Table 2), corroborating that mock treated sweet11/sweet12 leaves are in a primed state. Concomitantly, Ch infected double mutant leaves exhibited a significant enrichment of the antagonistic JA response among the down-regulated genes compared to infected wild type leaves at 2.5 dpi (corrected p-value 2.57×10^{-5}), indicating a faster establishment of the SA response in sweet11/sweet12 upon Ch challenge. Most obviously, dozens of GO terms associated with photosynthetic and primary metabolism were significantly enriched among the genes induced in Ch infected double mutant leaves compared to Ch infected wild type (Supplementary Table S2), reflecting a reduced degree of infection and, consequently, increased metabolic capacity of the double mutant at 2.5 dpi. In untreated sweet11/sweet12 double mutants only 114 genes were significantly up- and down-regulated, respectively, compared to untreated
FIGURE 4 | Accumulation of soluble sugars in C. higginsianum infected leaves. The contents of soluble sugars of untreated (left) and Ch infected plants (right), grown in a 12 h/12 h light/dark rhythm were monitored at the end of the light (0, 3.0, and 4.0 dpi) and at the end of the dark period (2.5 and 3.5 dpi). Col-0, black circles; sweet11, white triangles; sweet12, white squares; sweet11/12, white diamonds. Values are means of five biological replicates ± SE. Asterisks indicate significant differences from Col-0 in a Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001). Data from one representative out of two independent replicate experiments with similar results are shown. FW, Fresh weight.

Col-0 wild type (Supplementary Table S3). An enrichment of defense associated GO categories was absent from these gene sets.

Taken together, sweet11/sweet12 double mutants exhibit enhanced SA accumulation and an induction of SA regulated genes already in mock treated leaves. Since SA mediated responses are reportedly very effective in defense of Ch during biotrophy (O’Connell et al., 2004; Birker et al., 2009), a faster induction of the SA triggered defense response might explain the reduced susceptibility of the double mutant toward Ch. To provide genetic evidence for the role of the SA priming for the diminished susceptibility of double mutants toward Ch, we investigated fungal colonization in sweet11/sweet12/sid2 triple mutants, which lack the committed step of SA biosynthesis, isochorismate synthase, and hence, SA (Wildermuth et al., 2001).

Fungal colonization of wild type Col-0, sweet11, sweet12, and sweet11/sweet12 mutants at 3.5 dpi was comparable to the data shown in Figure 1, while the SA deficient mutant sid2 was hypersusceptible toward Ch (Figure 6). Intriguingly, the sweet11/sweet12/sid2 triple mutant shared the hypersusceptible phenotype with sid2, demonstrating that the diminished susceptibility of the sweet11/sweet12 mutant depends on the SA pathway.

DISCUSSION

AtSWEET11 and AtSWEET12 Do Not Play a Major Role in the Interaction of Arabidopsis with C. higginsianum

Besides SWEET transporters that have been identified as direct targets of bacterial TAL effectors in rice and cassava (Chu et al., 2006; Yang et al., 2006; Antony et al., 2010; Chen et al., 2010; Liu et al., 2011; Yu et al., 2011; Cohn et al., 2014), a strong transcriptional induction of several SWEET transporters has been reported during the interaction of Arabidopsis and grapevine with systematically diverse biotrophic and necrotrophic pathogens (Chen et al., 2010; Chong et al., 2014), which may indicate that reprogramming of SWEET transporters for the diversion of organic carbon from the host tissue is a recurring motif during microbial attack. Based on
We observed that early post penetration establishment during the biotrophic phase of \textit{Ch} was delayed in both, \textit{sweet11} and \textit{sweet12} single mutants and an additive effect of both mutations in the double mutant was evident. This may indicate a role of \textit{AtSWEET11} and \textit{AtSWEET12} in nutrient supply to \textit{Ch}, but it is impossible to determine \textit{in vivo} carbon transfer rates that could provide direct experimental evidence to verify this hypothesis.

Nevertheless, circumstantial evidence speaks against this hypothesis. While both single mutants showed delayed establishment of \textit{Ch} in the early biotrophic phase at 2 dpi, only \textit{AtSWEET12}-YFP reporter protein accumulated around \textit{Ch} infection sites. Fungal proliferation in the \textit{sweet12} single mutant remained unaffected at the end of the biotrophic phase at 3.5 dpi, demonstrating that \textit{AtSWEET12} accumulation around the infection site cannot have a substantial influence on the interaction. In contrast, \textit{AtSWEET11}-YFP expression remained unaffected in \textit{Ch} infected leaves and was restricted to vascular tissue, making it very unlikely that \textit{AtSWEET11} confers major changes in carbohydrate allocation in \textit{Ch} infected leaves. If \textit{AtSWEET11} or \textit{AtSWEET12} were targets of fungal effector proteins and were reprogrammed for diversion of assimilates from colonized leaf tissue, a strong induction of the two SWEET fusion proteins at the plant–fungal interface, i.e., the interfacial matrix, around biotrophic hyphae of \textit{Ch} would have been expected. This was clearly not the case. Recent data indicate that the initial so-called biotrophic phase of \textit{Ch} rather serves defense suppression than nutrient uptake (O’Connell et al., 2012; Engelsdorf et al., 2013). None of the 93 potential sugar transporters encoded in the \textit{Ch} genome were highly induced in biotrophic hyphae of \textit{Ch} and only 13 sugar transporters were exclusively transcribed in biotrophic hyphae (O’Connell et al., 2012). In addition, \textit{C. higginsianum} was found to be much more virulent on plants that had been kept in the dark for 60 h and were devoid of free sugars (Engelsdorf et al., 2013). In summary, it is to be expected that the pathogen is largely independent of host sugar transporter expression, if \textit{Ch} does not rely on carbon provision by host cells during the initial biotrophic phase.

the previously observed transcriptional induction seen by Chen et al. (2010), our study was set out to find indication, if reprogramming of the phloem localized Arabidopsis transporters \textit{AtSWEET11} and \textit{AtSWEET12} might be vital for carbon supply to \textit{C. higginsianum}.

TABLE 2 | GO term enrichment analysis of genes induced in mock treated leaves of \textit{sweet11} / \textit{sweet12} double mutants.

GO term	Corrected p-value
Defense response	1.28 × 10^{−26}
Defense response, incompatible interaction	8.30 × 10^{−25}
SAR	1.26 × 10^{−18}
SA biosynthetic process	1.14 × 10^{−16}
Defense response fungus	4.87 × 10^{−13}
MAPK cascade	6.80 × 10^{−12}
Regulation of immune response	1.26 × 10^{−9}
Regulation of ROS metabolic process	1.46 × 10^{−9}
Defense response to bacterium	1.87 × 10^{−8}

Transcript data from three independent biological replicates were obtained by microarray analysis of total RNA isolated from fully expanded leaves at 2.5 days after the onset of mock treatment, i.e., high humidity, as described in the materials and methods section. GO term enrichment analysis of genes differentially expressed with a fold change >2 and \(p < 0.05 \) in \textit{sweet11} / \textit{sweet12} double mutant vs. wild type Col-0 samples was conducted with GeneSpring v12.6. Significantly enriched GO terms are in ascending order based on corrected p-values.
Diminished Susceptibility of sweet11/sweet12 Double Mutants toward C. higginsianum Can Be Explained by Sugar-Mediated Defense Priming

The sweet11/sweet12 double mutant exhibited reduced susceptibility toward Ch both during the biotrophic and in the ensuing necrotrophic colonization phase, which may indicate that AtSWEET11 and AtSWEET12 might act redundantly for the nutrition of Ch. While AtSWEET11 expression could never be detected outside the vasculature, AtSWEET12 was strongly induced in vicinity of Ch infection sites. This argues against a functional redundancy of AtSWEET11 and AtSWEET12 on the local scale at the interaction site, also excluding a major role of the two transporters in carbon provision to the fungal pathogen.

However, both transporters were expressed in the vasculature of Ch infected leaves. Therefore, it seems reasonable to associate the functional redundancy of AtSWEET11 and AtSWEET12 during Ch challenge with their role in phloem loading (Chen et al., 2012). Unlike sweet11 and sweet12 single mutants, the sweet11/sweet12 double mutant exhibited elevated steady state contents of hexoses, sucrose and starch throughout the diurnal cycle, irrespective of the duration of the light phase. This physiological phenotype indicates that AtSWEET11 and AtSWEET12 play redundant roles for major leaf carbohydrate metabolism. Furthermore, AtSWEET11 and AtSWEET12 appear to have an additive effect on compatibility toward Ch (see data in Figure 1). If we assume that their impact on compatibility is connected to their function in carbohydrate export, it seems reasonable that the loss of AtSWEET11 has a more pronounced effect on compatibility than AtSWEET12, since the expression level of AtSWEET11 is more than twofold higher than that of AtSWEET12 (as analyzed with the eFP browser1).

It has previously been demonstrated that reduced carbohydrate availability in Arabidopsis leaves correlates with susceptibility toward Ch (Engelsdorf et al., 2013). Furthermore, reduced availability of carbohydrates hampered the induction of SA triggered PR genes (Engelsdorf et al., 2013). In turn, diminished susceptibility of the sweet11/sweet12 double mutant toward Ch may simply be explained by a surplus of carbohydrates compared to the other genotypes. Carbohydrates that fail to be exported from the symplast into the apoplasm will likely accumulate in the cytosol (and in the vacuole) of sweet11/sweet12 leaf cells. It has recently been demonstrated that the PAMP-triggered activation of the hexose transporter STP13 reduces compatibility toward Pseudomonas syringae pv. tomato by influencing the allocation of sugars in expense of the apoplasm and in favor of the host cytosol (Yamada et al., 2016). Likewise, these extra carbon reserves in the sweet11/sweet12 double mutant might allow for increased metabolic activity, and hence an enhanced defense response. In support of the proposed connection between elevated carbon status and enhanced defense in the double mutant, we have observed an accumulation of free SA, SA-glucosides (SAG) as well as a highly significant induction of genes involved in the SA mediated defense response not only in Ch infected, but also in mock treated sweet11/sweet12 double mutants relative to wild type. Interestingly, the described

1http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
stimulation of the SA pathway was absent from untreated double mutants, indicating that elevated contents of soluble sugars are not sufficient to evoke a response of the SA pathway in sweet11/sweet12 in general. Our observations suggest that the stimulation of SA accumulation can either be triggered upon challenge with Ch, or may also occur in the presence of abiotic stimuli like high humidity, as in mock treated plants.

Priming is defined as ‘a physiological state in which plants are able to faster and better activate defense responses’ (Beckers and Conrath, 2007; Moghaddam and Van den Ende, 2012). Defense priming can either be achieved by contact to avirulent pathogens or symbiotic microbes, by particular physiological conditions, or by chemical treatment (for an overview, please see Beckers and Conrath, 2007). While systemic acquired resistance (SAR) upon pathogen challenge is mediated by pipericolic acid (Bernsdorff et al., 2016), it has been shown that mobilization of SAG into free SA plays a key role in chemical priming of the SA response (Noutoshi et al., 2012). Consistently, the pool size of SAGs was 3.5-fold elevated in primed sweet11/sweet12 compared to Col-0 wild type in our study, while the difference in SAG pool size was less than 1.5-fold between double mutants and wild type in control conditions and after Ch challenge. Since a positive influence of sugar metabolism on the SA pathway is well-known (as compiled by Bolton, 2009), we assume that constantly elevated levels of soluble sugars, especially hexoses, promote defense priming in sweet11/sweet12. A stimulation of SA-dependent PR gene expression in pathogen or elicitor challenged, but not in untreated, potato tubers with antisense suppression of the plastidic ATP/ADP transporter AATP1 has previously been observed by Linke et al. (2002). Interestingly, AATP1 antisense tubers exhibited an elevated energy charge and 10-fold increased contents of glucose compared to controls (Tjaden et al., 1998). The increase in hexose content in leaves of sweet11/sweet12 double mutants was substantial throughout the diurnal cycle, but only 3.5-fold elevated compared to wild type. Nevertheless, it seems reasonable to assume a similar physiological scenario in sweet11/sweet12 double mutant leaves compared to AATP1 potato tubers. Furthermore, it has been demonstrated that priming depends on MAP kinase signaling via MPK3 and MPK6 (Beckers et al., 2009). In turn, MAPK signaling belonged to the six most significantly enriched GO terms of genes induced in mock treated sweet11/sweet12 double mutants compared to wild type, providing further evidence for priming of the SA pathway in sweet11/sweet12. The observation that the effect of the sid2 mutation on compatibility is epistatic over sweet11/sweet12 in the sweet11/sweet12/sid2 triple mutant unequivocally demonstrates that diminished susceptibility in sweet11/sweet12 is conferred by SA accumulation and the SA pathway. It is known since more than a decade that the SA triggered defense response is very effective against Ch infection during the initial biotrophic phase (Narusaka et al., 2004; O’Connell et al., 2004).

CONCLUSION
Our results indicate that diminished susceptibility of sweet11/sweet12 double mutants toward Ch is not caused by impaired sugar provision to the pathogen, but by the sugar-primed activation of the SA pathway.

AUTHOR CONTRIBUTIONS
US, CK, and LV conceived the project. MK produced all the fungal strains used and PG, MK, and TE performed the described experiments. All authors analyzed the data. LV and PG wrote the manuscript. US and CK edited the manuscript.

FUNDING
The work of US was supported by the SFB796, sub-project C2.

ACKNOWLEDGMENTS
This work would not have been possible without the generous provision of mutant and transgenic seed material by Li-Qing Chen (University of Illinois at Urbana–Champaign, United States) and Wolf Frommer (Carnegie Institution for Science, Stanford, CA, United States). We would also like to express our gratitude to Li-Qing Chen and Wolf Frommer for fruitful discussions that have helped to substantially improve the manuscript. The authors would like to further acknowledge Alexandra Ammon and Hildegard Voll (Department of Biochemistry, FAU Erlangen-Nuremberg) for excellent technical assistance in measuring quantitative transcript amounts by qRT-PCR. The authors also wish to express their gratitude to the Optical Imaging Center Erlangen (OICE, www.oice.uni-erlangen.de) and Ruth Stadler (Division of Molecular Plant Physiology, FAU Erlangen-Nuremberg) for providing generous access to confocal laser scanning facilities and expert technical advice.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2017.01378/full#supplementary-material

REFERENCES
Antony, G., Zhou, J., Huang, S., Li, T., Liu, B., White, F., et al. (2010). Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22, 3864–3876. doi: 10.1105/tpc.110.078964
Bechinger, C. (1999). Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285, 1896–1899. doi: 10.1126/science.285.5435.1896
Beckers, G. J. M., and Conrath, U. (2007). Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10, 425–431. doi: 10.1016/j.pbi.2007.06.002
Beckers, G. J. M., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., et al. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21, 944–953. doi: 10.1105/tpc.108.062158

Bensdorp, F., Döring, A. C., Gruner, K., Schuck, S., Bräutigam, A., and Zeier, J. (2016). Pimelic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28, 102–129. doi: 10.1105/tpc.15.00496

Biemelt, S., and Sonnewald, U. (2006). Plant-microbe interactions to probe regulation of plant carbon metabolism. J. Plant Physiol. 163, 307–318. doi: 10.1016/j.jplph.2005.10.011

Billett, E. E., Billett, M. A., and Burnett, J. H. (1977). Stimulation of maize invertase activity following infection by ustilago-maydis. Phytochemistry 16, 1163–1166. doi: 10.1016/S0031-9422(00)94352-8

Birker, D., Heinrich, K., Takahara, H., Narusaka, M., Deslandes, L., Narusaka, Y., et al. (2009). A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J. 60, 602–613. doi: 10.1111/j.1365-313X.2009.03984.x

Bolton, M. D. (2009). Primary metabolism and plant defense–fuel for the fire. Mol. Plant Microbe Interact. 22, 487–497. doi: 10.1094/MPMI-22-5-0487

Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532. doi: 10.1038/nature09606

Chen, L. Q., Qu, X. Q., Hou, B. H., Sonso, D., Osorio, S., Fernie, A. R., et al. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335, 207–211. doi: 10.1126/science.1213351

Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159. doi: 10.1016/0003-2697(87)90021-2

Chong, J., Piron, M. C., Meyer, S., Merdinoglu, D., Bertsch, C., and Mestre, P. (2014). The SWEET family of sugar transporters in grapevine: VvSWEET4 is essential for pollen development result in disease resistance in rice. Mol. Plant Pathol. 16, 1186–1198. doi: 10.1094/MPPP-12-00667-x

Christman, M., Bart, R. S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., et al. (2004). A genetic screen for pathogenicity genes in the hemibiotrophic fungus Ustilago maydis identifies the plasma membrane proton pump Pma2 required for host penetration. PLoS ONE 10:e0125960. doi: 10.1371/journal.pone.0125960

Chou, H. M., Bundock, N., Rolfe, S. A., and Schols, J. D. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprograming of host metabolism. Mol. Plant Pathol. 1, 99–113. doi: 10.1046/j.1364-3703.2000.00013.x

Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C., et al. (2006). Promotion mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 20, 1250–1255. doi: 10.1101/gad.141606

Clark, J. I. M., and Hall, J. L. (1998). Solute transport into healthy and powdery mildew-infected leaves of pea and uptake by powdery mildew mycelium. New Phytol. 140, 261–269. doi: 10.1046/j.1469-8137.1998.00263.x

Cohn, M., Bart, R. S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., et al. (2014). Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol. Plant Microbe Interact. 27, 1186–1198. doi: 10.1094/MPMI-06-14-0161-R

Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustín, P., Jakab, G., Mauch, F., et al. (2006). Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071. doi: 10.1094/MPMI-19-1062

Deising, H. B., Werner, S., and Wernitz, M. (2000). The role of fungal appressoria in plant infection. Microbes Infect. 2, 1631–1641. doi: 10.1016/S1226-4579(00)01319-8

Divon, H. H., and Fluur, R. (2007). Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol. Lett. 266, 65–74. doi: 10.1111/j.1574-6968.2006.00504.x

Engelsdorf, T., Horst, R. J., Prols, R., Proschel, M., Dietz, F., Huckelhoven, R., et al. (2013). Reduced carbohydrate availability enhances the susceptibility of Arabidopsis toward Colletotrichum higginsianum. Plant Physiol. 162, 225–238. doi: 10.1104/pp.112.209676

Fan, M., Bai, M. Y., Kim, J. G., Wang, T., Oh, E., Chen, L., et al. (2014). The BHLL transcription factor BHL1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis. Plant Cell 26, 828–841. doi: 10.1105/tpc.113.121111
Solomon, P. S., and Oliver, R. P. (2001). The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. *Planta* 213, 241–249. doi: 10.1007/s00425-000-0550

Struck, C., Ernst, M., and Hahn, M. (2002). Characterization of a developmentally regulated amino acid transporter (AAAT1p) of the rust fungus *Uromyces fabae*. *Mol. Plant Pathol.* 3, 23–30. doi: 10.1046/j.1364-6722.2001.00091.x

Struck, C., Mueller, E., Martin, H., and Lohaus, G. (2004). The *Uromyces fabae* UfAAT3 gene encodes a general amino acid permease that prefers uptake of in planta scarce amino acids. *Mol. Plant Pathol.* 5, 183–189. doi: 10.1111/j.1364-3703.2004.00222.x

Swarbrick, P. J., Schulze-Lefert, P., and Scholes, J. D. (2006). Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. *Plant Cell Environ.* 29, 1061–1076. doi: 10.1111/j.1365-313X.2005.01472.x

Tamar-Ariel, D., Rosenberg, T., and Burdman, S. (2011). The *Xanthomonas campestris pv. vesicatoria* citH gene is expressed early in the infection process of tomato and is positively regulated by the TctDE two-component regulatory system. *Mol. Plant Pathol.* 12, 57–71. doi: 10.1111/j.1364-3703.2010.00652.x

Tsjaden, J., Mohlmann, T., Kampfenkel, K., Henrichs, G., and Neuhaus, H. E. (1998). Altered plastidic ATP/ADP-transporter activity influences potato (*Solanum tuberosum* L.) tuber morphology, yield and composition of tuber starch. *Plant J.* 16, 531–540. doi: 10.1046/j.1365-313x.1998.00317.x

van Kan, J. A. (2006). Licensed to kill: the lifestyle of a necrotrophic plant pathogen. *Trends Plant Sci.* 11, 247–253. doi: 10.1016/j.tplants.2006.03.005

Voegelé, R. T., Struck, C., Hahn, M., and Mendgen, K. (2001). The role of haustoria in sugar supply during infection of broad bean by the rust fungus *Uromyces fabae*. *Proc. Natl. Acad. Sci. U.S.A.* 98, 8133–8138. doi: 10.1073/pnas.13118798

Voegelé, R. T., Wirsel, S., Moll, U., Lechner, M., and Mendgen, K. (2006). Cloning and characterization of a novel invertase from the obligate biotroph *Uromyces fabae* and analysis of expression patterns of host and pathogen invertases in the course of infection. *Mol. Plant Microbe Interact.* 19, 625–634. doi: 10.1094/MPMI-19-0625

Voll, L., Hausler, R. E., Hecker, R., Weber, A., Weissenbock, G., Fiene, G., et al. (2003). The phenotype of the Arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway. *Plant J.* 36, 301–317. doi: 10.1046/j.1365-313X.2003.01889.x

Voll, L., M., Zell, M. B., Engelsdorf, T., Saur, A., Wheeler, M. G., Drincovich, M. F., et al. (2012). Loss of cytosolic NADP-malic enzyme 2 in *Arabidopsis thaliana* is associated with enhanced susceptibility to *Collotrichum higginsianum*. *New Phytol.* 195, 189–202. doi: 10.1111/j.1469-8137.2012.04129.x

Wahl, R., Wippel, K., Goos, S., Kamper, J., and Sauer, N. (2010). A novel high-affinity sucrose transporter is required for virulence of the plant pathogen *Ustilago maydis*. *PLoS Biol.* 8:e1000303. doi: 10.1371/journal.pbio.1000303

Wildermuth, M. C., Dewdney, J., Wu, G., and Ausubel, F. M. (2001). Isochorisomate synthase is required to synthesize salicylic acid for plant defence. *Nature* 414, 562–565. doi: 10.1038/35107108

Yamada, K., Saijo, Y., Nakagami, H., and Takano, Y. (2016). Regulation of sugar transporter activity for antibacterial defense in *Arabidopsis*. *Science* 354, 1427–1430. doi: 10.1126/science.aah5692

Yang, B., Sugio, A., and White, F. F. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. *Proc. Natl. Acad. Sci. U.S.A.* 103, 10503–10508. doi: 10.1073/pnas.0604088103

Yu, Y., Streubel, J., Balzergue, S., Champion, A., Boch, J., Koebnik, R., et al. (2011). Colonization of rice leaf blades by an African strain of *Xanthomonas oryzae* pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 OsN1N3 gene. *Mol. Plant Microbe Interact.* 24, 1102–1113. doi: 10.1094/MPMI-11-10-0254

Yuan, T., Li, X., Xiao, J., and Wang, S. (2011). Characterization of *Xanthomonas oryzae*-responsive cis-acting element in the promoter of rice race-specific susceptibility gene Xa13. *Mol. Plant* 4, 300–309. doi: 10.1093/mp/sqq076

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Gebauer, Korn, Engelsdorf, Sonnewald, Koch and Voll. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.