Josephson Tunnel Junctions with Nonlinear Damping for RSFQ-Qubit Circuit Applications

A. B. Zorin, M. I. Khabipov, D. V. Balashov, R. Dolata, F.-I. Buchholz, and J. Niemeyer
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

We demonstrate that shunting of Superconductor-Insulator-Superconductor (S-I-S) Josephson junctions by Superconductor-Insulator-Normal metal (S-I-N) structures having pronounced nonlinear I-V characteristics can remarkably modify the Josephson dynamics. In the regime of Josephson generation the phase behaves as an overdamped coordinate, while in the superconducting state the damping and current noise are strikingly small, that is vitally important for application of such junctions for readout and control of Josephson qubits. Superconducting Nb/AlO$_x$/Nb junction shunted by Nb/AlO$_x$/AuPd junction of S-I-N type was fabricated and, in agreement with our model, exhibited non-hysteretic I-V characteristics at temperatures down to at least 1.4 K.

The overdamped Josephson junctions are the key elements of the SQUIDs and Rapid Single-Flux-Quantum (RSFQ) logic circuits. Due to non-hysteretic (single-valued) I-V characteristics, they allow the convenient readout of critical currents of interferometers and the generation and processing of Single Flux Quantum (SFQ) voltage pulses associated with 2π slips of the Josephson phase. Recently, RSFQ electronics have been considered as possible complementary digital electronics for serving the Josephson qubits. Specifically, these generic superconducting circuits should allow the efficient control, readout and processing of information in terms of the SFQ pulses (see, for example, Refs. [3, 4]). Among the challenging problems of matching RSFQ and qubit circuits, the principal one seems to be the back action of RSFQ circuits on qubit. This back action is due to current noise which stems from unfavorably large damping in the RSFQ-circuit junctions. Moreover, this noise is essential even in the quiescent (zero-voltage) state of the junctions. By means of direct inclusion (or inductive coupling) of an RSFQ-circuit input to a qubit based on underdamped Josephson junctions, the current (or flux) noise may cause dramatic decoherence of the qubit: pure dephasing due to low-frequency components of the noise and both dephasing and relaxation due to the frequency components close to the transition frequency of the qubit ν_0. (Typically, $\nu_0 = 10$-30 GHz $\ll \Delta/h$, Δ being the superconductor energy gap.) Then quantum manipulation of the qubit is impossible.

At an operating temperature T \lesssim 0.5 T_c (T_c being the critical temperature of the superconductor) the most technological Josephson junctions of the Superconductor-Insulator-Superconductor (S-I-S) type of low and moderate critical current density j_c are underdamped. In these junctions, the transient dynamics of the Josephson phase ϕ prevents their immediate use for generating SFQ pulses. When the bias current I rises above the critical value I_c, the junction switches from the superconducting to the resistive state, while reset (return to the superconducting state) occurs at the much smaller current I_R \ll I_c. Overdamped behavior is usually achieved by shunting the junctions with a normal resistance of sufficiently small R. In this case, the dynamics is described by the Resistively Shunted Junction (RSJ) model and the condition of sufficient damping is formulated as $\beta_c \lesssim 2$, where the Stewart-McCumber parameter is given by

$$\beta_c = (2\pi/\Phi_0) I_c R^2 C,$$

where $\Phi_0 = h/2e$, flux quantum and C, junction capacitance. For such β_c, the hysteresis in autonomous junctions is small, $I_R/I_c \gtrsim 80\%$, which ensures correct operation of an RSFQ circuit. The real part of the junction zero-voltage admittance is, however, large, $\text{Re} Y(\omega) = G \equiv R^{-1}$. The corresponding spectral density of current fluctuations,

$$S_I(\omega) = (\hbar \omega G/\pi) \coth(\hbar \omega/2k_B T),$$

is also large at the qubit frequencies, i.e., $\omega/2\pi \lesssim \nu_0$.

One of the possible ways to suppress the current fluctuations consists in using a very transparent tunnel barrier having a specific tunnel resistance $R \sim 1 \Omega \cdot \mu m^2$ yielding critical current density $j_c = 10^6-10^{10}$ A/cm2 [10, 11, 12]. In the dynamic state ($V \neq 0$), the effective damping dramatically increases and the return current I_R can approach I_c [13, 14, 15]. At $T \to 0$ and $\omega < 2\Delta/h$, the zero-bias admittance $\text{Re} Y(\omega) = \sigma_{qp}(\omega) + \sigma_{qp}(\omega) \cos \phi$ (where $\sigma_{qp}(eV/h)$ is quasiparticle and $\sigma_{qp}(eV/h)$ is pair-quasiparticle-interference conductances [16]) is remarkably small (for the BCS density of states, $\text{Re} Y(\omega) \sim 10^{-10}$). So one could expect low current noise in this frequency range. Unfortunately, the barriers of these junctions often have pin-hole defects leading to large σ_{qp} at small V [12]. Therefore, these junctions can hardly be implemented in multi-junction circuits and guarantee small noise.

In this Letter we frame a concept of nonlinear shunts which can be realized by means of Superconductor-Insulator-Normal metal (S-I-N) junctions. It is well known that the I-V curve of an S-I-N junction is strongly
non-linear. For the BCS superconductor, it is given by

$$I_{SIN}(V) = \frac{1}{eR} \int_{\Delta}^{\infty} dE \frac{[f(E-eV) - f(E+eV)]E}{(E^2-\Delta^2)^{1/2}}, \quad (3)$$

R being the junction resistance at large voltage ($eV \gg \Delta$) and $f(E) = 1/[1 + \exp(E/k_BT)]$, the Fermi function. At low temperature, $\delta = \Delta/k_BT \gg 1$, the small-bias current $I_{SIN}(V \ll \Delta/e)$ and the zero-bias conductance G_0 of the junction are small, $G_0R = (2\pi\delta)^{1/2}\exp(-\delta) \ll 1$.

Therefore, one can expect only small current noise to be generated by this element at $\omega \ll \Delta/h$ (see Eq. (2)) in which G should be substituted for $eI_{SIN}(h\omega/e)/\hbar$ [19].

The only question which arises is whether it is possible to ensure sufficient damping in a Josephson junction by shunting it with an S-I-N junction.

The answer is apparently positive, first of all, because the dynamics of S-I-S junctions with very small quasiparticle leakage current can theoretically be made overdamped by increasing β_c. Quantitatively, the condition can be formulated in terms of $\beta_c \lesssim 0.1$, assuming that R in Eq. (1) is the tunneling resistance of the S-I-S junction at $V \gg 2\Delta/e$ (see calculations made within the framework of the microscopic model of Josephson tunneling [17, 18] in Ref. [17]). The simpler model of Prober et al. [21] approximating the quasiparticle curve by three straight line segments, also gives the values of β_c sufficient for suppressing the hysteresis in the range of 0.1–1.

We carried out simple simulations of a Josephson junction shunted by an S-I-N junction. In this model we assumed that the total current I from a source branches into the capacitive, dissipative and Josephson components:

$$C\frac{dV}{dt} + I_{SIN}(V) + I_c \sin \phi = I, \quad (4)$$

where C is the total capacitance of both junctions. Current $I_{SIN}(V)$ is given by the BCS dependence Eq. (3) with the instant voltage V as an argument. The Josephson current amplitude I_c was assumed to be frequency-independent and the quasiparticle and pair-quasiparticle interference components of current through the S-I-S junction were omitted. These assumptions are reasonable because in the interesting voltage range (up to approximately the characteristic value $V_c \equiv I_c/R$), the damping should be produced by the S-I-N junction. Finally, we omitted the ac terms in the current through the S-I-N junction, related to the imaginary part of its impedance and leading to an equation of motion of the integral type. The estimation had, however, shown that taking these terms in account did not lead to an essential correction of the dc I-V curves, but significantly complicated the calculations.

We numerically solved Eq. (4) for different values of parameter δ. We found out that in the most interesting case of pronounced nonlinearity, i.e. large δ ($\gtrsim 10$), sufficient damping can be achieved by reasonable reduction of β_c only if the parameter $\alpha \equiv eV_c/\Delta \gtrsim 1$. Figure 1 shows the effect of β_c on the I-V curves for fixed $\delta = 10$ (yielding the ratio of the zero-bias and large-bias conductances $G_0R \approx 3 \times 10^{-4}$) and $\alpha = \pi/2$. The leftmost curve which corresponds to $\beta_c = \infty$ is merely the I-V curve of the S-I-N junction for the given δ. At $\beta_c < 1$, hysteresis is sufficiently suppressed. The shape of these curves has a much steeper voltage rise at $I = I_c$, than that given by the RSJ model (dashed line). This is the result of deficient low-frequency damping which the system compensates by large damping at high frequencies, corresponding to large mean voltage, $(V) \gtrsim \Delta/e$. The return current as function of β_c (see Fig. 2) generally mimics the dependencies given by the RSJ model, especially for small δ (cf. dashed line), as well as the piecewise-resistor model [21] and the microscopic model [18] (both not shown).

To implement the idea, we manufactured S-I-S junctions from Nb/AlO$_x$/Nb trilayer with a nominal critical
From Josephson inductance equivalent circuit is displayed as parallel connection of lower inset of Fig. 3. The product $\phi_0/2I_c^*$ yielding a plasma frequency $\nu_p = 1/2\pi(L^*C^*)^{1/2}$ ≈ 70 GHz. Such a shunting path almost behaved as a sole S-I-N junction when the Josephson oscillation frequency $2e\langle V \rangle /h$ was not close to ν_p. At $\langle V \rangle \approx h\nu_p/2e$ the impedance of the shunting path resonantly increased and this enhanced (negative) contribution to the average voltage due to self-detecting of Josephson oscillations. As a result, the negative peaks with tips positioned at $\langle V \rangle \approx \pm 140 \mu V$ had emerged.

In conclusion, we have shown by modelling and preliminary experiment that external shunting of S-I-S Josephson junctions by S-I-N junctions can ensure both sufficiently high dynamic damping and low zero-voltage damping. For operation at very low temperature ($\delta \gg 1$), the conditions $\beta_c \lesssim 1$ and $\alpha \gtrsim 1$ lead to a limitation of the specific resistance of S-I-N structure, viz. $\rho \lesssim h/2c\Delta$, c being the specific capacitance of the barrier. For example, in the S-I-N structures based on superconducting aluminum ($\Delta_A \approx 200 \mu eV$, $c \approx 50 \text{fF}/\mu m^2$) and operating at qubit (mK) temperatures, ρ should be $\lesssim 30 \Omega \mu m^2$. The manufacture of such sandwiches ensuring negligible zero-bias conductance required for dramatic suppression of back action on the qubit is quite feasible.

The authors would like to thank D. Esteve, D. Vion, M. G. Castellano, F. Chiarello and K. Arutyunov for stimulating discussions. This work was partially supported by the EU through the SQUBIT-2 and RSFQubit projects.

![FIG. 3: Non-hysteretic I-V curves of S-I-N-shunted SIS junction measured at 4.2 K (dotted line) and 1.4 K (solid line). Upper inset shows the dV/dI-I curves of a stand-alone S-I-N junction manufactured from the same sandwich. Lower inset shows the electric diagram of the circuit including an additional S-I-S junction manufactured from the same sandwich. Lower inset of Fig. 3](image)

[1] K. K. Likharev and V. K. Semenov, IEEE Trans. Appl. Supercond. 1, 3 (1991).
[2] P. Bunyk, K. K. Likharev and D. Zinoviev, Int. J. of High Speed Electron. and Systems 11, 257 (2001).
[3] V. K. Semenov and D. V. Averin, IEEE Trans. Appl. Supercond. 13, 960 (2003).
[4] D.S. Crankshaw, J. L. Habif, X. Zhou, T. P. Orlando, M. J. Feldman and M. F. Bocko, ibid., p. 966.
[5] M. Wulf, X. Zhou, J. L. Habif, P. Rott, M. F. Bocko and M. J. Feldman, ibid., p. 974.
[6] Yu. Makhlin, G. Schön and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).
[7] A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).
[8] D. E. McCumber, J. Appl. Phys. 39, 3113 (1968).
[9] W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).
[10] J. Niemeyer and V. V. Kose, Appl. Phys. Lett. 29, 380 (1976).
[11] R. E. Miller, W. H. Mallison, A. W. Kleinsasser, K. A. Delin and E. M. Macedo, Appl. Phys. Lett. 63, 1423 (1993).
[12] V. Patel and J. E. Lukens, IEEE Trans. Appl. Supercond. 9, 3247 (1999).
[13] D. G. McDonald, E. G. Johnson and R. E. Harris, Phys. Rev. B 13, 1028 (1976).
[14] A. B. Zorin and K. K. Likharev, Fiz. Nizk. Temp. 3, 148 (1977) [Sov. J. Low Temp. Phys. 3, 70 (1977)].
[15] A. B. Zorin, K. K. Likharev and S. I. Turovets, IEEE Trans. Magn. 19, 629 (1983).
[16] B. D. Josephson, Adv. Phys. 14, 419 (1965).
[17] N. R. Werthamer, Phys. Rev. 147, 255 (1966).
[18] A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 53, 2159 (1966) [Sov. Phys.–JETP 24, 1035 (1967)].
[19] M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975).
[20] A. Dahm, A. Denenstein, D.N. Langenberg, W.H. Parker, D. Rogovin and D.J. Scalapino, Phys. Rev. Lett. 22, 1416 (1969).
[21] D.E. Prober, S.E.G. Slusky, R.W. Henry and L.D. Jackel, J. Appl. Phys. 52, 4145 (1981).
[22] R. Dolata, M.I. Khabipov, F.-I. Buchholz, W. Kessel and J. Niemeyer, Inst. Phys. Conf. Ser. No. 148, 2, 1709 (1995).