Characterizing N_+-perfect line graphs

Mariana Escalante1, Graciela Nasini1, and Annegret Wagler2

1CONICET and FCEIA, Universidad Nacional de Rosario, Rosario, Argentina, \{mariana,nasini\}@fceia.unr.edu.ar

2CNRS and LIMOS, Université Blaise Pascal, Clermont-Ferrand, France, wagler@isima.fr

May 18, 2015

Abstract

The subject of this contribution is the study of the Lovász-Schrijver PSD-operator N_+ applied to the edge relaxation of the stable set polytope of a graph. We are particularly interested in the problem of characterizing graphs for which N_+ generates the stable set polytope in one step, called N_+-perfect graphs. It is conjectured that the only N_+-perfect graphs are those whose stable set polytope is described by inequalities with near-bipartite support. So far, this conjecture has been proved for near-perfect graphs, fs-perfect graphs, and webs. Here, we verify it for line graphs, by proving that in an N_+-perfect line graph the only facet-defining graphs are cliques and odd holes.

1 Introduction

The context of this paper is the study of the stable set polytope, different of its linear and semi-definite relaxations, and graph classes for which certain relaxations are tight. Our focus lies on N_+-perfect graphs: those graphs where a single application of the Lovász-Schrijver PSD-operator N_+ to the edge relaxation yields the stable set polytope.

The stable set polytope $\text{STAB}(G)$ of a graph $G = (V,E)$ is defined as the convex hull of the incidence vectors of all stable sets of G (in a stable set all nodes are mutually nonadjacent).

Two canonical relaxations of $\text{STAB}(G)$ are the fractional or edge constraint stable set polytope

$$\text{ESTAB}(G) = \{x \in \mathbb{R}^{|V|}_+ : x_i + x_j \leq 1, ij \in E\},$$
and the clique constraint stable set polytope

$$QSTAB(G) = \{ x \in R_{+}^{V} : \sum_{i \in Q} x_i \leq 1, \ Q \subseteq V \text{ clique} \}$$

(in a clique all nodes are mutually adjacent, hence a clique and a stable set share at most one node). We have

$$STAB(G) \subseteq QSTAB(G) \subseteq ESTAB(G)$$

for any graph, where \(STAB(G) \) equals \(ESTAB(G) \) for bipartite graphs, and \(QSTAB(G) \) for perfect graphs only [5].

According to a famous characterization achieved by Chudnovsky et al. [4], perfect graphs are precisely the graphs without chordless cycles \(C_{2k+1} \) with \(k \geq 2 \), termed odd holes, or their complements, the odd antiholes \(\overline{C}_{2k+1} \) (the complement \(\overline{G} \) has the same nodes as \(G \), but two nodes are adjacent in \(\overline{G} \) if and only if they are non-adjacent in \(G \)).

Perfect graphs turned out to be an interesting and important class with a rich structure and a nice algorithmic behaviour [13]. However, solving the stable set problem for a perfect graph \(G \) by maximizing a linear objective function over \(QSTAB(G) \) does not work directly [12], but only via a detour involving a geometric representation of graphs [16] and the resulting theta-body \(\text{TH}(G) \) introduced by Lovász et al. [13].

An orthonormal representation of a graph \(G = (V,E) \) is a sequence \((u_i : i \in V)\) of \(|V|\) unit-length vectors \(u_i \in R^N \), such that \(u_i^T u_j = 0 \) for all \(ij \notin E \). For any orthonormal representation of \(G \) and any additional unit-length vector \(c \in R^N \), the corresponding orthonormal representation constraint is \(\sum_{i \in V} (c^T u_i)^2 x_i \leq 1 \). \(\text{TH}(G) \) denotes the convex set of all vectors \(x \in R_{+}^{V} \) satisfying all orthonormal representation constraints for \(G \). For any graph \(G \), we have

$$STAB(G) \subseteq \text{TH}(G) \subseteq QSTAB(G)$$

and that approximating a linear objective function over \(\text{TH}(G) \) can be done with arbitrary precision in polynomial time [13]. Most notably, the same authors proved a beautiful characterization of perfect graphs:

$$G \text{ is perfect} \iff \text{TH}(G) = STAB(G)$$
$$\iff \text{TH}(G) = QSTAB(G)$$
$$\iff \text{TH}(G) \text{ is polyhedral}$$

which even shows that optimizing a linear function on polyhedral \(\text{TH}(G) \) can be done in polynomial time.
For all imperfect graphs G it follows that $\text{STAB}(G)$ does not coincide with any of the above relaxations. It is, thus, natural to study further relaxations and to combinatorially characterize those graphs where $\text{STAB}(G)$ equals one of them.

1.1 A linear relaxation and rank-perfect graphs

Rank-perfect graphs are introduced in [20] in order to obtain a superclass of perfect graphs in terms of a further linear relaxation of $\text{STAB}(G)$. As natural generalization of the clique constraints describing $\text{QSTAB}(G)$, we consider rank constraints

$$x(G') = \sum_{i \in G'} x_i \leq \alpha(G')$$

associated with arbitrary induced subgraphs $G' \subseteq G$. By the choice of the right hand side $\alpha(G')$, denoting the size of a largest stable set in G', rank constraints are obviously valid for $\text{STAB}(G)$. The *rank constraint stable set polytope*

$$\text{RSTAB}(G) = \{ x \in \mathbb{R}^{|V|} : \sum_{i \in G'} x_i \leq \alpha(G'), \ G' \subseteq G \}$$

is a further linear relaxation of $\text{STAB}(G)$. As clique constraints are special rank constraints (namely exactly those with $\alpha(G') = 1$), we immediately obtain

$$\text{STAB}(G) \subseteq \text{RSTAB}(G) \subseteq \text{QSTAB}(G).$$

A graph G is *rank-perfect* by [20] if and only if $\text{STAB}(G) = \text{RSTAB}(G)$ holds. By definition, rank-perfect graphs include all perfect graphs (where rank constraints associated with cliques suffice). In general, by restricting the facet set to rank constraints associated with certain subgraphs only, several well-known graph classes are defined, e.g., *near-perfect graphs* [18] where only rank constraints associated with cliques and the whole graph are allowed, or *t-perfect* [5] and *h-perfect graphs* [13] where rank constraints associated with edges and odd cycles resp. cliques and odd holes are required.

Further classes of rank-perfect graphs are antiwebs [21] and line graphs [8, 9].

An *antiweb* A^k_n is a graph with n nodes $0, \ldots, n-1$ and edges ij if and only if $k \leq |i - j| \leq n - k$ and $i \neq j$. Antiwebs include all complete graphs $K_n = A^1_n$, all odd holes $C_{2k+1} = A^k_{2k+1}$, and their complements $\overline{C_{2k+1}} = A^2_{2k+1}$, see Fig. [1] for examples.
As common generalization of perfect, t-perfect and h-perfect graphs as well as antiwebs, the class of \textit{a-perfect graphs} was introduced in [22] as those graphs whose stable set polytopes are given by nonnegativity constraints and rank constraints associated with antiwebs only. Antiwebs are a-perfect by [21], further examples of a-perfect graphs were presented in [22].

A \textit{line graph} is obtained by taking the edges of a graph as nodes and connecting two nodes if and only if the corresponding edges are incident, see Fig. 2 for illustration. Since matchings of the original graph correspond to stable sets of the line graph, the results on the matching polytope by \cite{8,9} imply that line graphs are also rank-perfect, see Section 3 for details.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2}
\caption{A graph and its line graph.}
\end{figure}

\subsection{A semi-definite relaxation and N_+-perfect graphs}

In the early nineties, Lovász and Schrijver introduced the PSD-operator N_+ which, applied over the edge relaxation $\text{ESTAB}(G)$, generates the positive semi-definite relaxation $N_+(G)$ stronger than $\text{TH}(G)$ \cite{17}. We denote by e_0, e_1, \ldots, e_n the vectors of the canonical basis of \mathbb{R}^{n+1} (where the first coordinate is indexed zero), 1 the vector with all components equal to 1 and S^n_+ the space of $(n \times n)$ symmetric and positive semidefinite matrices with real entries. Given a convex set K in $[0, 1]^{n}$, let

\[
\text{cone}(K) = \left\{ \left(\begin{array}{c}
x_0 \\
x_0
\end{array} \right) \in \mathbb{R}^{n+1} : x = x_0 y; \ y \in K \right\}.
\]
Then, we define the set $M_+(K) =$

$$\{ Y \in S_+^{n+1} : \quad Ye_0 = \text{diag}(Y),$$

$$Ye_i \in \text{cone}(K),$$

$$Y(e_0 - e_i) \in \text{cone}(K), \quad i = 1, \ldots, n \} ,$$

where $\text{diag}(Y)$ denotes the vector whose i-th entry is Y_{ii}, for every $i = 0, \ldots, n$. Projecting this lifting back to the space \mathbb{R}^n results in $N_+(K) =$

$$\left\{ x \in [0,1]^n : \begin{pmatrix} 1 \\ x \end{pmatrix} = Ye_0, \text{ for some } Y \in M_+(K) \right\} .$$

In [17], Lovász and Schrijver proved that $N_+(K)$ is a relaxation of the convex hull of integer solutions in K and that $N_+^i(K) = \text{conv}(K \cap \{0,1\}^n)$, where $N_+^0(K) = K$ and $N_+^k(K) = N_+(N_+^{k-1}(K))$ for $k \geq 1$. In this work we focus on the behaviour of a single application of the N_+-operator to the edge relaxation of the stable set polytope of a graph.

In order to simplify the notation we write $N_+(G) = N_+(\text{ESTAB}(G))$. In [17] it is shown that

$$\text{STAB}(G) \subseteq N_+(G) \subseteq \text{TH}(G) \subseteq \text{QSTAB}(G) .$$

As it holds for perfect graphs, the stable set problem can be solved in polynomial time for the class of graphs for which $N_+(G) = \text{STAB}(G)$. We will call these graphs N_+-perfect. A graph G that is not N_+-perfect is called N_+-imperfect.

In [2], the authors look for a characterization of N_+-perfect graphs similar to the above characterizations for perfect graphs. More precisely, they intend to find an appropriate polyhedral relaxation of $\text{STAB}(G)$ playing the role of $\text{QSTAB}(G)$ in [1]. Following this line, the following conjecture has been recently proposed in [3]:

Conjecture 1 ([3]). /N_+-Perfect Graph Conjecture/ The stable set polytope of every N_+-perfect graph can be described by facet-defining inequalities with near-bipartite support.

Near-bipartite graphs, defined in [19], are those graphs where removing all neighbors of an arbitrary node and the node itself leaves the resulting graph bipartite. Antiwebs and complements of line graphs are examples of near-bipartite graphs. Again from results in [17], we know that graphs for which every facet-defining inequality of $\text{STAB}(G)$ has a near-bipartite
support is $N_+\text{-perfect}$. Thus, Conjecture [1] states that these graphs are the only $N_+\text{-perfect}$ graphs. In particular, near-bipartite and a-perfect graphs are $N_+\text{-perfect}$.

In addition, it can be proved that every subgraph of an $N_+\text{-perfect}$ graph is also $N_+\text{-perfect}$. This motivates the definition of *minimally $N_+\text{-imperfect}$ graphs* as these $N_+\text{-imperfect}$ graphs whose proper induced subgraphs are all $N_+\text{-perfect}$.

In [10] and [14] it was proved that all the imperfect graphs with at most 6 nodes are $N_+\text{-perfect}$, except the two imperfect near-perfect graphs depicted in Figure 3. The graph on the left is denoted by G_{LT} and the other one is denoted by G_{EMN}. So, G_{LT} and G_{EMN} are the two smallest minimally $N_+\text{-imperfect}$ graphs. Characterizing all minimally $N_+\text{-imperfect}$ graphs within a certain graph class can be a way to attack Conjecture [1] for this class. That way, Conjecture [1] has been already verified for near-perfect graphs by [2], f$_s$-perfect graphs (where the only facet-defining subgraphs are cliques and the graph itself) by [3], and webs (the complements of antiwebs) by [11].

In this contribution, we verify Conjecture [1] for line graphs. For that, we present three infinite families of $N_+\text{-imperfect}$ line graphs (Section 2) and show that all facet-defining subgraphs of a line graph different from cliques and odd holes contain one of these $N_+\text{-imperfect}$ line graphs (Section 3). Finally, we notice that the graphs in the three presented families are minimally $N_+\text{-imperfect}$ and, in fact, the only minimally $N_+\text{-imperfect}$ line graphs. We close with some concluding remarks and lines of further research.

2 Three families of $N_+\text{-imperfect}$ line graphs

In this section, we provide three infinite families of $N_+\text{-imperfect}$ line graphs. For that, we apply an operation preserving $N_+\text{-imperfection}$ to the two smallest $N_+\text{-imperfect}$ graphs G_{LT} and G_{EMN} (note that both graphs are line graphs).

In [14], the *stretching* of a node v is introduced as follows: Partition its
neighborhood $N(v)$ into two nonempty, disjoint sets A_1 and A_2 (so $A_1 \cup A_2 = N(v)$, and $A_1 \cap A_2 = \emptyset$). A stretching of v is obtained by replacing v by two adjacent nodes v_1 and v_2, joining v_i with every node in A_i for $i \in \{1, 2\}$, and either subdividing the edge v_1v_2 by one node w or subdividing every edge between v_2 and A_2 with one node. Moreover, it is shown in [14] that the stretching of a node preserves N_4-imperfection.

For our purpose, we will use the stretching of node v in the case of subdividing the edge v_1v_2 by one node w. If $|A_1| = 1$ or $|A_2| = 1$ the stretching corresponds to the 3-subdivision of an edge (that is, when the edge v_1v_2 is replaced by a path of length 3).

We next establish a connection between subdivisions of edges in a graph H and stretchings of nodes in its line graph $L(H)$. Let G be the line graph of H and consider an edge $e = u_1u_2$ in H together with its corresponding node v in G. If e is a simple edge of H (i.e., if there is no edge parallel to e in H), then the neighborhood $N(v)$ of its corresponding node v in G partitions into two cliques U_1 and U_2 representing the edges in H incident to e in u_1 and u_2, respectively. Accordingly, we call a stretching of a node v in a line graph canonical if these cliques U_1 and U_2 are selected as partition of $N(v)$.

For illustration, see Figure 4 which shows the graph $C_5 + c$ (a 5-hole with one chord c), the graph $C_5 + E_3$ (obtained from $C_5 + c$ by subdividing c into a path E_3 of length 3), and their line graphs, where $L(C_5 + E_3)$ results from $L(C_5 + c)$ by a canonical stretching of the node corresponding to c.

In fact, we have in general:

Lemma 2. Let e be a simple edge in H and v be the corresponding node in its line graph G. A 3-subdivision of e in H results in a canonical stretching of v in G.

Proof. Let $e = u_1u_2$ be a simple edge of H and H' be the graph obtained from H by replacing e by the path u_1, u'_1, u'_2, u_2.

The line graph $L(H')$ contains a node v_1 representing the edge $u_1u'_1$ of H', a node w corresponding to the edge $u'_1u'_2$ of H', and a node v_2 for the edge u'_2u_2 of H'.

In $L(H')$, v_1 is adjacent to w and to a clique U_1 corresponding to all edges different from $u_1u'_1$ incident to u_1, w has only v_1 and v_2 as neighbors, and v_2 is adjacent to w and to a clique U_2 corresponding to all edges different from u'_2u_2 incident to u_2.

All other nodes and adjacencies in $L(H')$ are as in $L(H)$, hence $L(H')$ corresponds exactly to the graph obtained from $L(H)$ by the canonical stretching of the node v representing the edge e.

\[\square\]
Figure 4: This Figure shows (a) the graph $C_5 + c$ (a 5-hole with one chord c), (b) the graph $C_5 + E_3$ (obtained from $C_5 + c$ by a 3-subdivision of c), (c) the line graph $L(C_5 + c)$, and (d) the line graph $L(C_5 + E_3)$, where $L(C_5 + E_3)$ results from $L(C_5 + c)$ by a canonical stretching of the (black-filled) node corresponding to c.

This enables us to show:

Theorem 3. A line graph $L(H)$ is $N_+\text{-imperfect}$ if H is

- an odd hole with one double edge;
- an odd hole with one chord;
- an odd hole with one odd path attached to non-adjacent nodes of the hole.

Proof. Let $C_{2k+1} + d$ (resp. $C_{2k+1} + c$, resp. $C_{2k+1} + E_\ell$) denote the graph obtained from an odd hole C_{2k+1} with $k \geq 2$ by adding one edge d parallel to an edge of the hole (resp. adding one chord c to the hole, resp. attaching one path of length ℓ to two non-adjacent nodes of the hole).

To establish the $N_+\text{-imperfection}$ of the three families, we first observe that the two minimally $N_+\text{-imperfect}$ graphs G_{LT} and G_{EMN} are line graphs: indeed, we have $G_{LT} = L(C_5 + d)$ and $G_{EMN} = L(C_5 + c)$.

Clearly, the graph $C_{2k+3} + d$ can be obtained from $C_{2k+1} + d$ by 3-subdivision of a simple edge (not being parallel to d) of the hole. Thus, any odd hole with one double edge can be obtained from $C_5 + d$ by repeated 3-subdivisions of simple edges.
According to Lemma 2, their line graphs are obtained by repeated canonical stretchings of G_{LT}, which yields the first studied family of graphs.

Analogously, $C_{2k+3} + c$ can be obtained from $C_{2k+1} + c$ by 3-subdivision of an edge of the hole. Thus, any odd hole with one (short or long) chord can be obtained from $C_5 + c$ by repeated 3-subdivisions of edges different from c. Moreover, applying repeated 3-subdivisions of the chord c yields graphs $C_{2k+1} + E_\ell$ where E_ℓ is a path of arbitrary odd length ℓ attached to two non-adjacent nodes of the hole at arbitrary distance.

According to Lemma 2, their line graphs are obtained by repeated canonical stretchings of G_{EMN}, which yields the two remaining families of graphs.

That G_{LT} and G_{EMN} are minimally N_+-imperfect and canonical stretchings preserve N_+-imperfection completes the proof.

\[\square\]

3 Characterizing N_+-perfect line graphs

A combination of results by Edmonds [8] and Edmonds & Pulleyblank [9] about the matching polytope implies the following description of the stable set polytope of line graphs.

Theorem 4 (Edmonds [8], Edmonds & Pulleyblank [9]). If G is the line graph of a graph H, then $STAB(G)$ is described by nonnegativity constraints, maximal clique constraints, and rank constraints

\[x(L(H')) \leq \frac{|V(H')| - 1}{2}\]

associated with the line graphs of 2-connected hypomatchable induced subgraphs $H' \subseteq H$.

A graph H is hypomatchable if, for all nodes v of H, the subgraph $H - v$ admits a perfect matching (i.e., a matching meeting all nodes) and is 2-connected if it remains connected after removing an arbitrary node.

Due to a result by Lovász [15], a graph H is hypomatchable if and only if there is a sequence $H_0, H_1, \ldots, H_k = H$ of graphs such that H_0 is a chordless odd cycle and for $1 \leq i \leq k$, H_i is obtained from H_{i-1} by adding an odd path E_i that joins two (not necessarily distinct) nodes of H_{i-1} and has all internal nodes outside H_{i-1}. The odd paths $E_i = H_i - H_{i-1}$ are called ears for $1 \leq i \leq k$ and the sequence $H_0, H_1, \ldots, H_k = H$ an ear decomposition of H, see Fig. 5 for illustration. Moreover, we call an ear of length at least three long, and short otherwise.

Hypomatchable graphs have an odd number of nodes, are non-bipartite and connected, but neither necessarily 2-connected (since an ear E_i may be
attached to a single node of H_{i-1}) nor simple (since a short ear E_i may become an edge parallel to one edge of H_{i-1}).

However, if H is 2-connected, Cornuéjols & Pulleyblank [6] proved that H admits an ear decomposition $H_0, H_1, \ldots, H_k = H$ with H_i 2-connected for every $0 \leq i \leq k$. If, in addition, H has at least five nodes, Wagler [20] later proved that H admits an ear decomposition $H_0, H_1, \ldots, H_k = H$ where H_0 has at least five nodes and H_i is 2-connected for every $0 \leq i \leq k$.

Since the latter result is a key property for our argumentation, we give its proof for the sake of completeness:

Lemma 5 (Wagler [20]). Let H be a 2-connected hypomatchable graph and $|V(H)| \geq 5$. Then there is an ear decomposition $H_0, H_1, \ldots, H_k = H$ of H such that each H_i is 2-connected and H_0 is an odd cycle of length at least five.

Proof. Since H is 2-connected, it admits an ear decomposition $H_0, H_1, \ldots, H_k = H$ with H_i 2-connected for $0 \leq i \leq k$ by [6]. We are ready if H_0 is an odd cycle of length ≥ 5, hence assume, for the sake of contradiction, that H_0 is a triangle.

From $|V(H)| > 3$ follows that there is an ear with at least three edges, let $i \in \{1, \ldots, k\}$ be the smallest index such that E_i has length ≥ 3. Then $V(H_{i-1}) = V(H_0)$ holds and E_i has two distinct nodes $v, v' \in V(H_0)$ as endnodes (since H_i is 2-connected). Hence $(H_0 - vv') \cup E_i; vv', E_1, \ldots, E_{i-1}$ is an ear decomposition of H_i starting with an odd cycle of length ≥ 5 and defining only 2-connected intermediate graphs. The ears E_{i+1}, \ldots, E_k complete this ear decomposition to the studied decomposition of H. \qed

With the help of these results, we can give the following characterization of 2-connected hypomatchable graphs:

Theorem 6. Let H be a 2-connected hypomatchable graph, then exactly one of the following conditions is true:

- H has only three nodes;
• H equals an odd hole;

• H contains one of the following subgraphs:
 – an odd hole with one double edge;
 – an odd hole with one chord;
 – an odd hole with one long ear, attached to non-adjacent nodes of the hole.

Proof. Consider a 2-connected hypomatchable graph H and distinguish the following cases.

If H has more than three nodes, then H admits an ear decomposition $H_0, H_1, \ldots, H_k = H$ where H_0 has at least five nodes and H_i is 2-connected for every $0 \leq i \leq k$ by Wagler [20].

If $H = H_0$, then H equals an odd hole.

If $H \neq H_0$, then H_1 equals one of the above mentioned graphs:

• an odd hole with one double edge (if E_1 is a short ear attached to adjacent nodes of H_0);

• an odd hole with one chord (if E_1 is a short ear attached to non-adjacent nodes of H_0 or if E_1 is a long ear attached to adjacent nodes of H_0);

• an odd hole with one long ear E_1, attached to non-adjacent nodes of H_0 (otherwise).

(Recall that E_1 cannot be attached to a single node of H_0 since H_1 is 2-connected.)

Combining Theorem 6 and Theorem 3 we can further prove:

Theorem 7. If H is a 2-connected hypomatchable graph, then $L(H)$ is either a clique, an odd hole, or $N_+\text{-imperfect.}$

Proof. Consider a 2-connected hypomatchable graph H and distinguish the following cases.

If H has only three nodes, then H has an ear decomposition $H_0, H_1, \ldots, H_k = H$ where H_0 is a triangle and all ears are short, becoming edges parallel to one edge of H_0. In this case, $L(H)$ is clearly a clique.

If H has more than three nodes, then H admits an ear decomposition $H_0, H_1, \ldots, H_k = H$ where H_0 is an odd hole with at least five nodes and H_i is 2-connected for every $0 \leq i \leq k$ by Wagler [20].
If $H = H_0$, then H equals an odd hole and $L(H)$ is clearly an odd hole, too.

If $H \neq H_0$, then H_1 equals one of the graphs from Theorem 6:

- an odd hole with one double edge;
- an odd hole with one chord;
- an odd hole with one long ear, attached to non-adjacent nodes of H_0.

According to Theorem 3, the line graph $L(H_1)$ is N_+-imperfect, hence $L(H)$ is N_+-imperfect.

Combining Theorem 7 and the description of stable set polytopes of line graphs from Theorem 4 further yields:

Corollary 8. A line graph $L(H)$ is N_+-perfect if and only if all 2-connected hypomatchable induced subgraphs $H' \subseteq H$ have either only three nodes or are odd holes.

Thus, the definition of h-perfect graphs finally implies the following characterization of N_+-perfect line graphs:

Corollary 9. A line graph is N_+-perfect if and only if it is h-perfect.

Since both the class of line graphs and the class of N_+-perfect graphs are hereditary (i.e., closed under taking induced subgraphs), we can derive from a characterization of N_+-perfect line graphs also a characterization of minimally N_+-imperfect line graphs.

In fact, combining the assertions from Theorem 3, Theorem 4 by Edmonds [8] and Edmonds & Pulleyblank [9], Theorem 6 and Corollary 8 we can even conclude that the graphs in the three families presented in Theorem 3 are minimally N_+-imperfect and, in fact, the only minimally N_+-imperfect line graphs. This leads to the following characterization:

Corollary 10. A line graph $L(H)$ is minimally N_+-imperfect if and only if H is an odd hole with one ear attached to distinct nodes of the hole.

Proof. On the one hand, each of the line graphs $L(H)$ with $H \in \{C_{2k+1} + d, C_{2k+1} + c, C_{2k+1} + E \ell\}$ from Theorem 3 has, by construction, the property that H is a 2-connected hypomatchable graph and admits an ear decomposition $H_0, H_1 = H$ with $H_0 = C_{2k+1}, k \geq 2$.

Removing any edge e from H yields a graph $H - e$ which is either an odd hole (if $e \in \{c, d\}$) or else not hypomatchable anymore. In all cases,
$H - e$ is bipartite or contains at most one odd cycle such that $L(H - e)$ has cliques and odd holes as only facet-defining subgraphs.

Hence, $L(H)$ is N_4-imperfect by Theorem 3, but all proper induced subgraphs are h-perfect (and, thus, N_4-perfect). This implies that $L(H)$ is minimally N_4-imperfect for all graphs within the 3 studied families.

On the other hand, any minimally N_4-imperfect graph needs to have a full-support facet. Thus, any minimally N_4-imperfect line graph $L(H)$ is the line graph of a 2-connected hypomatchable graph H (by Theorem 4) which has more than 3 nodes and is different from an odd hole (by Theorem 6).

Then H admits an ear decomposition $H_0, H_1, \ldots, H_k = H$ with $k \geq 1$ where H_0 has at least five nodes and H_i is 2-connected for every $0 \leq i \leq k$ by Wagler [20].

In fact, $k = 1$ follows since $H_1 \in \{C_{2k+1} + d, C_{2k+1} + c, C_{2k+1} + E_2\}$ holds as H_1 is 2-connected and, thus, already $L(H_1)$ is N_4-imperfect by Theorem 3 (note: $L(H)$ contains $L(H_1)$, is N_4-imperfect and minimally N_4-imperfect only if $L(H) = L(H_1)$).

Finally, H_1 has the stated property: it is an odd hole H_0 with one ear attached to distinct nodes of H_0.

4 Conclusion and further results

In this contribution, we addressed the problem to verify Conjecture 1 for line graphs. For that, we presented three infinite families of N_4-imperfect line graphs (Section 2) and showed that all facet-defining subgraphs of a line graph different from cliques and odd holes contain one of these N_4-imperfect line graphs (Section 3). Since cliques and odd holes are clearly near-bipartite, Corollary 9 shows that Conjecture 1 is true for line graphs.

In the following, we will discuss a reformulation of Conjecture 1.

As superclass of a-perfect graphs, joined a-perfect graphs where introduced in [7] as those graphs whose only facet-defining subgraphs are complete joins of a clique and prime antiwebs (an antiweb A_n^k is prime if $k+1$ and n are relatively prime integers). The inequalities obtained from complete joins of antiwebs, called joined antiweb constraints, are of the form

$$\sum_{i \leq k} \frac{1}{\alpha(A_i)} x(A_i) + x(Q) \leq 1,$$

where A_1, \ldots, A_k are different antiwebs and Q is a clique (note that the inequalities are scaled to have right hand side equal to 1). We denote by
ASTAB∗(G) the linear relaxation of STAB(G) obtained by all joined antiweb constraints. Then, a graph G is joined a-perfect if STAB(G) equals ASTAB∗(G).

In particular, Shepherd [19] showed that the stable set polytope of a near-bipartite graph has only facet-defining inequalities associated with complete joins of a clique and prime antiwebs. Thus, every near-bipartite graph is joined a-perfect (but the converse is not true since there exist perfect graphs that are not near-bipartite, see Figure 6 for an example).

Moreover, Conjecture 1 identifies N+ perfect graphs and graphs for which its stable set polytope can be described by inequalities with near-bipartite support. It is known that, given a graph G, every facet defining inequality of STAB(G) with support graph G′ is a facet defining inequality of STAB(G′). Then, again by Shepherd’s results [19], those graphs for which its stable set polytope can be described by inequalities with near-bipartite support are joined a-perfect graphs.

Taking this into account, Conjecture 1 can be reformulated as follows:

Conjecture 11. Every N+ perfect graph is joined a-perfect.

The results of Lovász and Schrijver [17] prove that joined a-perfect graphs are N+ perfect, thus, the conjecture states that both graph classes coincide and that ASTAB∗(G) shall be the studied polyhedral relaxation of STAB(G) playing the role of QSTAB(G) in (1).

In particular, in this paper we have proved that every N+ perfect line graph is h-perfect. Then, combining these results, we obtain that a line graph is joined a-perfect if and only if it is h-perfect. However, it seems natural to look for a proof of the latter result independent of the N+-operator.

Theorem 12. A line graph is joined a-perfect if and only if it is h-perfect.

Proof. A joined a-perfect graph has as only facet-defining subgraphs complete joins of a clique and prime antiwebs.

Following the same argumentation as in [19] that odd antiholes are the only prime antiwebs in complements of line graphs, we see that odd holes are the only prime antiwebs in line graphs.
Analogous arguments as in \cite{21, 22} yield that in a line graph, no complete join of a clique and odd holes or of two or more odd holes can occur: every such complete join would particularly contain an odd wheel W_{2k+1}, i.e., the complete join of a single node and an odd hole C_{2k+1}.

The W_5 is one of the minimal forbidden subgraphs of line graphs by Beineke \cite{1}, larger odd wheels contain a claw, another minimal forbidden subgraph of line graphs by \cite{1}.

Thus, the only remaining facet-defining subgraphs in a joined a-perfect line graph are cliques and odd holes.

Conversely, an \(h \)-perfect line graph is clearly joined a-perfect.

Our future lines of further research include

- to look for new families of graphs where the conjecture holds (e.g., by characterizing the minimally $N_+\,-$imperfect graphs within the class);

- to find new subclasses of $N_+\,-$perfect or joined a-perfect graphs.

In all cases, the structural results would have algorithmic consequences since the stable set problem could be solved in polynomial time for the whole class or its intersection with $N_+\,-$perfect or joined a-perfect graphs by optimizing over $N_+(G)$.

Acknowledgment

This work was supported by an ECOS-MINCyT cooperation France-Argentina, A12E01, PIP-CONICET 0241, PICT-ANPCyT 0361, PID-UNR 415 and 416.

References

[1] Beineke L.W. (1968). Derived graphs and digraphs, In: Beiträge zur Graphentheorie, H. Sachs, H. Voss und H. Walther (Hrg.), Teubner Verlag, Leipzig, 17-33.

[2] Bianchi S., Escalante M., Nasini G., Tunçel L. (2011). Near-perfect graphs with polyhedral $N_+(G)$, Electronic Notes in Discrete Mathematics 37, 393-398.

[3] Bianchi S., Escalante M., Nasini G., Tunçel L. (2013), Lovász-Schrijver PSD-operator and a superclass of near-perfect graphs, Electronic Notes in Discrete Mathematics 44, 339-344.
[4] Chudnovsky M., Robertson N., Seymour P., Thomas R. (2006). The Strong Perfect Graph Theorem, *Annals of Mathematics* 164, 51-229.

[5] Chvátal V. (1975). On Certain Polytopes Associated with Graphs, *J. Combin. Theory (B)* 18, 138-154.

[6] Cornuèjols G., Pulleyblank W.R. (1983). Critical Graphs, Matchings, and Tours of a Hierarchy of Relaxations for the Traveling Salesman Problem, *Combinatorica* 3, 35-52.

[7] Coulouges S., Pécher A., Wagler A. (2009). Characterizing and bounding the imperfection ratio for some classes of graphs, *Mathematical Programming A* 118, 37-46.

[8] J.R. Edmonds, “Maximum Matching and a Polyhedron with (0,1) Vertices,” *J. Res. Nat. Bur. Standards*, vol. 69B, pp. 125–130, 1965.

[9] Edmonds J.R., Pulleyblank W.R. (1974) Facets of 1-Matching Polyhedra, In: C. Berge and D.R. Chuadhuri (eds.) Hypergraph Seminar. Springer, 214-242.

[10] Escalante M., M.S. Montelar M.S., Nasini G. (2006). Minimal N^+-rank graphs: Progress on Lipták and Tunçel’s conjecture, *Operations Research Letters* 34, 639-646.

[11] Escalante M., Nasini G. (2014). Lovász and Schrijver N^+-relaxation on web graphs, *Lecture Notes in Computer Sciences* 8596 (Special Issue ISCO 2014), 221-229.

[12] Grötschel M., Lovász L., Schrijver A. (1981). The Ellipsoid Method and its Consequences in Combinatorial Optimization, *Combinatorica* 1, 169-197.

[13] Grötschel M., Lovász L., Schrijver A. (1988). *Geometric Algorithms and Combinatorial Optimization*. Springer-Verlag.

[14] Lipták L., Tunçel L. (2003). Stable set problem and the lift-and-project ranks of graphs, *Math. Programming A* 98, 319-353.

[15] Lovász L. (1972). A Note on Factor-critical Graphs, *Studia Sci. Math. Hungar.* 7, 279-280.

[16] Lovász L. (1979), On the Shannon capacity of a graph, *Transactions* 25, 1-7.
[17] Lovász L., Schrijver A. (1991). Cones of matrices and set-functions and 0-1 optimization, *SIAM J. on Optimization* 1, 166-190.

[18] Shepherd F.B. (1994). Near-Perfect Matrices, *Math. Programming* 64, 295-323.

[19] Shepherd F.B. (1995) Applying Lehman’s Theorem to Packing Problems, *Math. Programming* 71, 353-367.

[20] Wagler A. (2000). Critical Edges in Perfect Graphs. *PhD thesis, TU Berlin and Cuvillier Verlag Göttingen.*

[21] Wagler A.(2004). Antiwebs are rank-perfect, *4OR* 2, 149-152.

[22] Wagler A.(2005). On rank-perfect subclasses of near-bipartite graphs, *4OR* 3, 329-336.