What triggers black hole growth? Insights from star formation rates

Eyal Neistein and Hagai Netzer

Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching, Germany
School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

ABSTRACT
We present a new semi-analytic model for the common growth of black holes (BHs) and galaxies within a hierarchical Universe. The model is tuned to match the mass function of BHs at $z = 0$ and the luminosity functions of active galactic nuclei (AGNs) at $z < 4$. We use a new observational constraint, which relates the luminosity of AGNs to the star formation rate of their host galaxies. We show that this new constraint is important in various aspects: (a) it indicates that BH accretion events are episodic; (b) it favours a scenario in which BH accretion is triggered by merger events of all mass ratios; (c) it constrains the duration of both merger-induced starbursts and BH accretion events. The model reproduces the observations once we assume that only 4 per cent of the merger events trigger BH accretion; BHs accretion is not related to secular evolution; and only a few per cent of the mass made in bursts goes into the BH. We find that AGNs with low or intermediate luminosity are mostly being triggered by minor merger events, in broad agreement with observations. Our model matches various observed properties of galaxies, such as the stellar mass function at $z < 4$ and the clustering of galaxies at redshift zero. This allows us to use galaxies as a reliable backbone for BH growth, with reasonable estimates for the frequency of merger events. Other modes of BH accretion, such as disc-instability events, were not considered here, and should be further examined in the future.

Key words: galaxies: active – galaxies: bulges – galaxies: haloes – galaxies: nuclei – galaxies: starburst – large-scale structure of Universe.

1 INTRODUCTION
Most massive galaxies in the local Universe host supermassive black holes (BHs) in their centres (Kormendy & Richstone 1995). Active periods of accretion on to such objects, seen as active galactic nuclei (AGNs), are observed in less than a few per cent of the objects. Consequently, models of BH evolution rely on assumptions about the triggering of accretion events and the connection, if any, with the host galaxy evolution. A key problem in such studies relates to the big difference in scale between the cold gas in the galaxy (distributed over several kpc) and the inner disc around the BH (typically smaller than a parsec). Various suggestions have been made to bridge the gap between these scales, including: merger triggered accretion, secular processes in the host galaxy including disc instabilities, mass-loss from evolved stars, star formation (SF) activity in the central region, and more.

The merger scenario is motivated by two different lines of evidence. First, N-body and hydrodynamical simulations of merging galaxies suggest that such events drive a large amount of cold gas into the centre of the merging system, resulting in the formation of a large bulge or a spheroidal galaxy (Barnes & Hernquist 1991; Milos & Hernquist 1996; Cox et al. 2006; Robertson et al. 2006; Di Matteo et al. 2007). Secondly, AGN activity is observed in local ultraluminous infrared galaxies, which are known to be associated with energetic merger events (Sanders et al. 1988; Sanders & Mirabel 1996; Surace, Sanders & Evans 2000; Canalizo & Stockton 2001; Veilleux et al. 2009). Observationally, evidence for a direct connection between minor mergers and AGN activity is more difficult to establish.

Recent studies show that most galaxies at $z < 2$ that host a low-luminosity AGN do not show morphological evidence for major merger events in their recent history (Gabor et al. 2009; Cisternas et al. 2011; Kocevski et al. 2012; Schawinski et al. 2012). Only high-luminosity AGNs are related to major mergers (Treister et al. 2012). This has been taken to indicate that the role of secular processes in driving gas to the centre of galaxies and feeding the BH is important and very common at almost all redshifts (Efstathiou, Lake & Negroponte 1982; Genzel et al. 2006; Ceverino, Dekel & Bournaud 2010; Elmegreen & Burkert 2010; Bournaud et al. 2012).
The nature and frequency of such internal events are not fully understood, partly because it is difficult to discriminate them from minor mergers. Nonetheless, various structural properties of galaxies have been suggested to distinguish between secular and merger events (Kormendy et al. 2009).

Most of the studies mentioned above have measured the mass ratio in mergers by visual inspection, involving a large uncertainty. Moreover, there may well be a time-delay between the merger event and the peak luminosity of the AGN. Since recently merged galaxies have similar clustering properties as other galaxies of the same mass (Bonoli et al. 2010), the effect of time-delay is difficult to detect (however, it might be constrained by detailed analysis of galaxy spectra; Davies et al. 2007; Wild et al. 2007; Wild, Heckman & Charlot 2010).

Other internal mechanisms within a galaxy were proposed as a trigger for BH accretion. Hopkins & Hernquist (2006) have demonstrated that feedback from the BH can regulate low levels of BH accretion. Best et al. (2005) have argued that observations of radio-loud AGNs provide indications for hot gas accretion into BHs.

The mass of supermassive BHs in galactic centres is strongly correlated with both the bulge mass (Magorrian et al. 1998; McLure & Dunlop 2002; Marconi & Hunt 2003; Häring & Rix 2004; Sani et al. 2011; Graham 2012; McConnell & Ma 2013; Graham & Scott 2013) and the bulge velocity dispersion (Ferrarese & Merritt 2000; Gebhardt et al. 2000). These relatively tight correlations suggest that the mechanisms which are responsible for building up the mass in bulges are also related to BH growth and hence the triggering of AGN activity. However, since the mass is an integrated quantity, these correlations could also originate from the hierarchical aggregation of mass (Hirschmann et al. 2010; Jahnke & Macciò 2011). Better understanding of the various accretion scenarios is therefore required in order to understand the BH–bulge relationships.

Further hints for the nature of BH accretion could be provided by relating AGN luminosities to SF rates (SFRs) of their host galaxies. Unlike morphological studies, SFRs are well defined, and can be quantitatively compared between various populations of galaxies. Studies of SFRs and AGNs luminosities in large spectroscopic surveys, like the Sloan Digital Sky Survey (York et al. 2000) suggest that many AGNs are located within star-forming galaxies (Kauffmann et al. 2003; Daddi et al. 2007; Davies et al. 2007; Salim et al. 2007; Wild et al. 2007, 2010; Netzer 2009; Silverman et al. 2009; Mor et al. 2012; Rovilos et al. 2012; Tommasin et al. 2012). Here, we choose to highlight the recent measurements by Shao et al. (2010) and Rosario et al. (2012) that are based on SFRs obtained by Herschel in the far-infrared (FIR), and are more reliable than UV-based SFRs. According to Rosario et al. (2012), such SFRs are uncorrelated with the AGN luminosity at low and intermediate luminosities and at high redshift. However, high-luminosity AGNs at low and intermediate redshifts do show a correlation with the SFRs of their host galaxies.

In this paper, we use a semi-analytic model (SAM) of galaxy formation combined with BH evolution, in order to examine the correlations between SFRs and AGN luminosities. SAMs are naturally being used for this problem as they provide a statistical sample of galaxies that is in general agreement with observations (Kauffmann & Haehnelt 2000; Bower et al. 2006; Croton et al. 2006; Malbon et al. 2007; Monaco, Fontanot & Taffoni 2007; Somerville et al. 2008; Bonoli et al. 2009; Fanidakis et al. 2011, 2012; Hirschmann et al. 2012).

Our study is different from previous SAMs in various aspects. First, we use the SAM from Neistein & Weinmann (2010) and Wang, Weinmann & Neistein (2012) that fits the stellar mass function of galaxies at $0 < z < 4$ and the clustering of galaxies at low redshift. As a result, the SF histories and merger rates of galaxies within the model are in broad agreement with the observed Universe. Secondly, we do not attempt to model AGN feedback as a function of each specific AGN but rather assume that the galaxies within our model experience an average AGN feedback that depends only on halo mass. Thirdly, we aim to match a wide range of AGN observations, including the relation between SFR and AGN luminosity mentioned above, and the fraction of host galaxies that are experiencing major merger events.

Various recent empirical models of BHs and AGNs evolution are aimed to fit the BH mass function and AGN luminosity functions (e.g. Wyithe & Loeb 2003; Hopkins et al. 2006, 2007, 2008; Lapi et al. 2006; Croton 2009; Shankar, Weinberg & Miralda-Escudé 2009; Shankar 2010; Pereira & Miranda 2011; Conroy & White 2013; Draper & Ballantyne 2012; Shankar, Weinberg & Miralda-Escudé 2013). Here, we choose to use SAMs, as they allow a more direct modelling of SFRs and merger fractions of individual objects, in close contact with the formation history of their host haloes. These features play a key role in our model.

This paper is organized as follows. In Section 2, we describe the model ingredients and the details of computing all the properties of galaxies and BHs. Section 3 includes a detailed comparison between the model and observations. The results are summarized and discussed in Section 4. This study is based on the cosmological parameters that are used by the Millennium simulation: $(\Omega_m, \Omega_{\Lambda}, \sigma_8, h) = (0.25, 0.75, 0.9, 0.73)$. Throughout the paper, we use log to denote \log_{10}.

2 THE MODEL

2.1 Galaxy formation and evolution

The SAM used in this work is adopted from Wang et al. (2012), and is based on the formalism of Neistein & Weinmann (2010). The model follows galaxies inside the complex structure of subhalo merger trees taken from a large N-body cosmological simulation (the Millennium simulation; Springel et al. 2005). This simulation follows 2160^3 dark-matter particles inside a periodic box of length 500 h$^{-1}$ Mpc, with a minimum halo mass of 1.72 $\times 10^{10} h^{-1} M_{\odot}$.

Our SAM includes the effects of cooling, SF, accretion, merging and feedback. Unlike other SAMs, these laws are simplified to be functions of only the host subhalo mass and redshift. We have shown in Neistein et al. (2012) that this concept is sufficient for the SAM to reproduce the gas and stellar mass content of galaxies, on an object by object basis, as obtained from a hydrodynamical simulation to an accuracy of 0.1 dex. Consequently, this SAM is complex enough to accurately follow the SF histories of galaxies.

The specific model used here was presented in Wang et al. (2012) as model 4. It is based on the SAM of De Lucia & Blaizot (2007), transformed to the language of Neistein & Weinmann (2010) and including the following modifications:

(i) SF efficiency (the ratio between the SFR and the cold gas mass within the disc) is lower in small mass haloes.

(ii) Satellite galaxies experience stripping of hot gas in proportion to the stripping of dark-matter, following the suggestion of Weinmann et al. (2010) (see also Khocharf & Ostriker 2008).

(iii) Cooling is suppressed within haloes that are more massive than $5.6 \times 10^{11} h^{-1} M_{\odot}$, and there is no SF within haloes of mass $>5 \times 10^{12} h^{-1} M_{\odot}$ at $z < 1.3$. These ingredients are aimed to
mimic the feedback from AGNs, although they do not depend on the specific AGN hosted by each galaxy.

(iv) The dynamical friction time is assumed to depend on the cosmic time and is shorter at higher redshift. This behaviour is obtained by using the Chandrasekhar formula with a multiplication factor of $5 \times (t/13.6)^{0.3}$, where t is the time in Gyr since the big bang. This dependence is motivated by a more radial infall of satellite galaxies towards the centre of their group at high redshifts (Hopkins et al. 2010; Weinmann, Neistein & Dekel 2011).

(v) The SFR in merger induced bursts depends on the halo mass. In particular, it is lower than the approximation used by De Lucia & Blaizot (2007) for haloes less massive than $3 \times 10^{11}\, h^{-1} M_{\odot}$. The specific implementation is described below.

Galaxies in our model are embedded within dark-matter subhaloes as extracted from the N-body simulation. We assume that the galaxies merge following the merging-time of their host subhaloes, with an additional time-delay. This delay is estimated using the Chandrasekhar formula for dynamical friction (see Wang et al. 2012). Mergers trigger SF bursts, with an efficiency that depends on the mass ratio of the two galaxies. The total stellar mass formed in the merger-induced burst is

$$\Delta m_{\text{burst}} = \begin{cases}
0.56 \left(\frac{m_1}{m_2} \right)^{0.7} m_{\text{cold}} & \text{if } M_b \geq M_0 \\
0.56 \left(\frac{m_1}{m_2} \right)^{0.7} m_{\text{cold}} \frac{M_b}{M_0} & \text{otherwise},
\end{cases}$$

where m_1, m_2 are the baryonic masses of the central and satellite galaxy, respectively (including both stellar and cold gas mass), m_{cold} is the sum of the cold gas masses of the two galaxies, M_b is the mass of the descendant subhalo and $M_0 = 3 \times 10^{11}\, h^{-1} M_{\odot}$. For high-mass galaxies, this recipe follows the results of hydrodynamical simulations by Mihos & Hernquist (1994) and Cox et al. (2000), and was adopted by various SAMs (e.g. Somerville, Primack & Faber 2001; Croton et al. 2006; Khochfar & Silk 2009; Neistein & Weinmann 2010; Khochfar et al. 2011). For low-mass galaxies, this recipe is motivated by recent observations of SF efficiency (Wang et al. 2012). Note that mergers provide the only trigger for SF bursts in our model. The other mode of SF, by secular processes, describes the relatively slow conversion of cold gas into stars within disc galaxies.

The specific model used here is able to fit the SF histories of galaxies to a higher accuracy than most other SAMs (see Henriques et al. 2013, for a recent success in this respect). As was shown in Neistein & Weinmann (2010), our models reproduce both the stellar mass function of galaxies up to $z = 4$, and the distribution of SFRs at $z = 0$. In Wang et al. (2012), we further improved the model to reproduce the autocorrelation function of galaxies at $z = 0$. These results are unique in comparison to other SAMs, allowing us to use reliable SF histories of galaxies as a basis for the work presented here which focuses on BH evolution. The model fits observations to a level of 20–40 per cent, and is probably not the only possible galaxy formation model. In particular, there is a degeneracy between the amount of stars formed in mergers induced bursts, versus the amount of SF due to secular processes.

The duration of SF bursts has a negligible effect on the statistical properties of the model galaxies. This is because these events are rare, and hardly contribute to the total SFR density of the Universe. However, in our current study, bursts are the only channel of BH growth, and their duration plays an important role in the model. We assume that the shape of SF bursts follows a Gaussian as a function of time, with the following parametrization:

$$\frac{d\Delta m_{\text{burst}}}{dt} = \frac{\Delta m_{\text{burst}}}{\sigma_\text{burst} \sqrt{2\pi}} \exp \left[-\frac{(t - t_0)^2}{2\sigma_\text{burst}^2} \right].$$

Here, σ_burst determines the burst duration, t is the time in Gyr since the big bang and t_0 is the time of the peak in the SF burst. We assume that t_0 occurs $2\sigma_\text{burst}$ after the time the galaxies merge, to allow a smoothly rising peak of SFR (the burst of SF starts at the time of merging). We allow the burst to continue forming stars up to $4\sigma_\text{burst}$ after t_0, so the total duration of the burst is $6\sigma_\text{burst}$.

At higher redshifts galaxies have smaller radii, and time-scales are shorter (the halo dynamical time is proportional to the cosmic time, t). We therefore assume that σ_burst depends on t in the following way:

$$\sigma_\text{burst} = \sigma_0 \frac{t}{13.6} \text{ Gyr},$$

where σ_0 is a free constant.

An additional important ingredient of the model is the definition of the bulge mass. We assume that galaxies can grow a bulge according to two different channels. First, SF bursts that are triggered by mergers of any mass ratio are assumed to contribute their stellar content to the bulge (i.e. Δm_{burst} from equation (1) is added to the bulge of the remnant galaxy). Secondly, once the mass ratio m_2/m_1 is larger than 0.3, the total stellar mass of both galaxies is moved to the bulge of the remnant galaxy. Therefore, the mass of stars within the bulge might be larger than the total amount of stars formed within bursts.

2.2 Black holes

Our SAM assumes that BHs grow only during merger induced starbursts. The masses of seed BHs in this model are extremely small in comparison to the mass added in the first merger event and make no difference to the accumulated mass of BHs at relatively low redshifts. We have tested that using BH seeds of mass $10^4 M_{\odot}$ does not change our model results significantly.

When galaxies merge, we merge their corresponding BHs at the same time. Following each merger event, a burst of SF occurs according to equations (1)–(3). We allow the remnant BH to grow in mass according to

$$\frac{d\Delta m_{\text{BH}}}{dt} = \begin{cases}
(1 - \eta) \frac{\Delta m_{\text{burst}}}{\Delta t} & \text{with probability } \alpha_p \\
0 & \text{otherwise},
\end{cases}$$

Here, η is the fraction of mass that is transformed into radiation and α_p is a free parameter, corresponding to the efficiency of BH accretion with respect to the SF burst.

In a Λ cold dark matter (ΛCDM) universe, the fraction of galaxies with an active SF burst at any given time is high, especially due to the non-negligible burst duration τ_burst. However, observations show that the number of AGNs is significantly lower (e.g. Croom et al. 2009). Our model assumes that only a fraction α_p of the merger events induce accretion into the BH. In practice, at each time-step of the SAM (with a typical duration of 10 Myr) and for each BH we generate a random number, distributed uniformly between zero and unity. We then allow accretion only if this random number is smaller than α_p. In practice, each merger event adds on average a mass of $\alpha_p \Delta m_{\text{burst}}$ to the BH.

The bolometric luminosity of the AGN is defined as

$$L_{\text{AGN}} = \frac{\eta}{1 - \eta} \frac{\Delta m_{\text{BH}}}{\Delta t} c^2.$$

$$\Delta m_{\text{BH}} = \Delta m_{\text{burst}} \text{ with probability } \alpha_p.$$
where Δt is the length of the time-step within the SAM (∼10 Myr), \(\Delta m_{\text{BH}} \) is the total mass that is added to the BH within a time-step (i.e. the integration of equation 4) and \(c \) is the speed of light.

The Eddington luminosity describes the limit at which radiation pressure balances the gravitational force of the BH

\[
L_{\text{Edd}} = 1.5 \left(\frac{m_{\text{BH}}}{10^8 M_\odot} \right) 10^{46} \text{ erg s}^{-1},
\]

where the factor 1.5 on the left is derived for solar metallicity gas. In our model, the accretion into the BH is determined by the SF burst, and might be above the Eddington limit. In addition, it is reasonable to assume that this limit will vary between different BHs. In order to use a practical accretion limit, we define \(\lambda_{\text{Edd}} \) to be a log-normal random variable (i.e. its log value is normally distributed) with a mean of \(\lambda_{\text{Edd},0} \) and a standard deviation of \(\sigma_{\text{Edd}} \) (in log). For each accretion event, we randomly choose a value for \(\lambda_{\text{Edd}} \) and do not allow \(L_{\text{AGN}} \) to exceed \(L_{\text{Edd}} \lambda_{\text{Edd}} \). We will refer to \(L_{\text{Edd}} \lambda_{\text{Edd}} \) as the Eddington threshold, since it is being used to actively limit the accretion on to BHs. We note that we do not use the Eddington threshold for the first accretion event (i.e. when the BH mass equals zero).

At low accretion rates, we use the properties of ‘advection-dominated accretion flows’ (ADAFs). As in previous studies (e.g. Fanidakis et al. 2012), we model the ADAF limit by

\[
\eta_{\text{ADAF}} = \frac{L_{\text{AGN}}}{L_{\text{Edd}}} \frac{\eta}{\alpha_{\text{ADAF}}},
\]

which is valid only for \(L_{\text{AGN}}/L_{\text{Edd}} < \alpha_{\text{ADAF}} \). By definition, \(\eta_{\text{ADAF}} \) equals \(\eta \) when \(L_{\text{AGN}}/L_{\text{Edd}} = \alpha_{\text{ADAF}} \). In this work, we fix \(\alpha_{\text{ADAF}} \) to a value of 0.01.

Some of the results presented here make use of the luminosity of AGNs in the B band. For the conversion between \(L_{\text{AGN}} \) and \(L_{\text{B}} \), we use the bolometric correction from Marconi et al. (2004):

\[
\log \left(\frac{L_{\text{B}}}{L_{\text{AGN}}} \right) = 0.8 + 0.067 L_1 - 0.017 L_1^2 + 0.0023 L_1^3,
\]

where \(L_1 = \log(L_{\text{AGN}}/L_\odot) - 12 \). The absolute magnitude in the AB system is then given by

\[
M_\lambda = -11.32 - 2.5 \log \left(\frac{L_{\text{B}}}{10^{40} \text{ erg s}^{-1}} \right),
\]

where \(\lambda \) refers to a rest wavelength of 4400 Å.

To summarize, our SAM includes all the ingredients from Wang et al. (2012) related to galaxies, with the following additional parameters related to the evolution of BHs: \(\eta, \alpha_{\text{acc}}, \alpha_p, \lambda_{\text{Edd},0}, \lambda_{\text{Edd}} \) and \(\sigma_{\text{Edd}} \). These parameters are presented in Table 1 and their best chosen values are justified in Section 3. The ingredients used here are similar to previous SAMs (e.g. Malbon et al. 2007), although we do not include growth modes that are not due to bursts (e.g. Hirschmann et al. 2012).

Finally, we note that the model is limited both in terms of the minimum BH mass that is properly resolved, and in terms of the limited volume of our simulation box. These limitations originate from the limited dynamical range of the Millennium simulation that is being used here, and will be discussed below.

3 RESULTS

3.1 Observational constraints and best model parameters

In this work, we treat the galaxies as priors and do not change the parameters that affect their evolution, except for the value of \(\sigma_0 \), which has a negligible effect on the properties of galaxies. Consequently, there are only six free parameters in the model, as listed in Table 1. However, the low density of AGNs in the Universe forces us to test each set of model parameters by using the full Millennium simulation, spending a few CPU hours on each run. In order to achieve fast tuning, while still running our model on the full simulation box, we first save all the model results that are related to the evolution of galaxies. We then run the BH ingredients only, thus saving a large amount of computational time. Our tuning procedure can evolve BHs over the full Millennium simulation in only three minutes (using one processor), allowing us to systematically explore a large region of the parameter space.

We use three different types of observations to constrain our model parameters: the luminosity functions (LFs) of AGNs at \(z < 4 \), the mass function of BHs at \(z = 0 \) and the relation between SFRs and AGN luminosities. While we further compare the model to other observations in the following sections, these additional observations were not used for tuning the model.

3.1.1 The mass function of BHs and the LFs of AGNs

We start by tuning the model parameters against two common observations: the mass function of BHs at redshift zero, and the LF of AGNs at \(z < 4 \). We apply a tuning procedure that systematically scans a range of the parameters \(\alpha_{\text{acc}}, \alpha_p, \lambda_{\text{Edd},0}, \alpha_{\text{Edd}} \) according to the range listed in Table 1. The value of \(\sigma_0 \) can significantly affect the LF of AGNs. However, it is fixed here due to its effect on the relation between SFRs and AGN luminosities, which will be discussed in the next section. Using the prior value of \(\sigma_0 = 0.13 \) Gyr, we could not find a model that matches the data to a satisfying accuracy, while using constant values for all the parameters. We note that larger values of \(\sigma_0 \) allow for better models. Consequently, we choose to add a dependence on time for \(\alpha_{\text{acc}} \). It should be noted that a similar result as shown here could arise from varying the parameter \(\alpha_p \) with time. We will discuss below the degeneracy in choosing the best solution, and its relation with the SFR values of our model galaxies. Our best model uses \(\eta = 0.05 \), consistent with a value of 0.057 obtained for non-rotating BHs.

In Fig. 1, we show that the mass function of BHs from the model at \(z = 0 \) agrees with the prediction from Shankar et al. (2009). The results from Shankar et al. (2009) are based on the mass function

Parameter	Range	Best value	Description
\(\sigma_0 \)	0.1–0.5 Gyr	0.13 Gyr	Burst duration, equation (3)
\(\eta \)	0.05–0.3	0.05	Radiative efficiency, equation (4)
\(\alpha_{\text{acc}} \)	0.001–0.3	0.185(\(r_1^2 - 1.68r_1 + 0.75 \))	Accretion efficiency, equation (4), \(r_1 = 1/13.6 \) Gyr
\(\alpha_p \)	0.001–0.1	0.04	Fraction of mergers that result in AGN activity, equation (4)
\(\lambda_{\text{Edd},0} \)	0.1–3	1.0	Eddington threshold (mean)
\(\sigma_{\text{Edd}} \)	0–1	0.7	Eddington threshold (scatter)
of galaxies, combined with the correlation between the bulge and the BH mass. It is therefore not a direct observation, and should not be considered as a strong constraint. However, the mass function points to important features of the model, and we choose to use it as a constraint even though the actual values are not certain. For example, the recent work by McConnell & Ma (2013) indicates that the ratio between the mass of bulges and BHs could reach a level of ~100 at the high-mass end. Fig. 1 also shows the model mass functions at higher redshifts, indicating that the number of low-mass BHs grows fast before \(z \approx 1 \) and changes only slightly at \(z < 1 \).

As seen in Fig. 1, the computed mass function declines at \(\log m_{\text{BH}}/M_{\odot} \lesssim 7.7 \). We have tested a lower resolution model by allowing BHs to grow only within subhaloes more massive than \(10^{11} \) h\(^{-1}\) M\(_{\odot}\). This mimics a low-resolution simulation with respect to the actual minimum mass of the simulation (1.72 \(\times \) \(10^{10} \) h\(^{-1}\) M\(_{\odot}\)). Within this resolution test, the bend in the mass function occurs at a larger mass, indicating that our resolution limit is indeed the reason for the bend at \(\log m_{\text{BH}}/M_{\odot} \lesssim 7.7 \). Our limited resolution has a negligible effect on other results shown in this work.

Models based on high-resolution merger trees could possibly solve the above resolution problem (e.g. Fanidakis et al. 2012). Since it is difficult to increase the mass resolution within cosmological simulations, this issue could be addressed by using Monte Carlo algorithms for generating merger trees of haloes (e.g. Somerville & Kolatt 1999; Neistein & Dekel 2008; Parkinson, Cole & Helly 2008). However, the merger trees used here are based on subhaloes, and are more accurate than the theoretical merger trees based on haloes. We plan to check the use of Monte Carlo merger trees in a future study.

The LFs of AGNs are shown in Fig. 2 where points are observations adopted from Croom et al. (2009), Richards et al. (2006) and solid lines are the model results. The theoretical LFs computed by the SAM are in broad agreement with the observations. In case we use constant \(\alpha_{\text{Edd}} \), the LFs at \(z < 1 \) are higher than the observed ones. We choose to use only optical LFs here since it was shown by previous studies that different LFs (e.g. based on bolometric luminosity or X-ray), do not add more constraints on the models (Fanidakis et al. 2012; Hirschmann et al. 2012).

Previous studies using the merger scenario as the main mechanism of feeding BHs, like the one presented in Marulli et al. (2008), had difficulties matching the AGN LF. Our model is different from these earlier attempts. In particular, it is based on improved SF histories which match the observed stellar mass functions over a large range of redshifts. Such modifications alter the amount of cold gas available for bursts within mergers, and the number of major versus minor mergers. Consequently, the AGN LF is different although the mode of BH accretion is the same (see the appendix for more details).

It should be noted that our simulation volume is smaller than the observed volume at \(z \gtrsim 2 \), giving rise to some of the deviations seen at high luminosities at this redshift range. Furthermore, we do not take into account various effects that could change the model at the level of ~30 percent. For example, it is well known that some AGNs are obscured and would not be accounted for in the observed LFs. We have tested that using the slim-disc approximation for super-Eddington accretion rates (e.g. Fanidakis et al. 2012) does not change the model results. Lastly, re-tuning the ingredients related to galaxy formation might further improve the model results. We neglect all these effects in order to keep our model as simple as possible.

Most of the free parameters in our model have a simple effect on the LF. Since the SF bursts of galaxies are not modified, \(\sigma_{\text{Edd}} \) behaves as a constant multiplicative factor for the luminosity of all AGNs at a given redshift. Changing \(\sigma_{\text{Edd}} \) thus induces a lateral shift in the LF. The value of \(\sigma_{\text{acc}} \) changes the number of bursts leading to BH activity, and therefore shifts the LF along the \(\gamma \)-axis. Both \(\sigma_{\text{acc}} \) and \(\sigma_{\gamma} \) are degenerated at some level, yielding similar results for different combinations with the same value of \(\sigma_{\text{acc}} \sigma_{\gamma} \). The value of \(\eta \) is similar in its effect to \(\sigma_{\text{acc}} \). In addition, it changes the relations between mass growth (i.e. the mass function of BHs) and luminosity. The parameters of the Eddington threshold, \(\lambda_{\text{Edd,0}} \) and \(\sigma_{\text{Edd,1}} \), change...
mostly the high-end part of the LFs, and also the mass function of BHs. These two parameters do not have a simple effect on the model results. When neglecting the Eddington threshold, the luminosity of AGNs only depends on the SFR within bursts, and not on the BH mass. In this simplified case, the LF of AGNs has the same shape as the number density of SFRs in the model.

3.1.2 SFR and AGN luminosity

In Fig. 3, we show the observed results from Rosario et al. (2012) in grey dashed lines. Values along the x-axis correspond to the bolometric luminosity of X-ray selected AGNs. The original y-axis of this plot corresponds to the rest-frame luminosity at a wavelength of 60 μm, stacking all galaxies that host AGNs with similar L_{AGN}. In order to transform the IR luminosity into SFR, we use the relation $L_{\text{IR}} = 3.8 \times 10^{11} \text{SFR} \ (\text{erg s}^{-1})$ and $L_{\text{60 μm}} = 0.5 L_{\text{IR}}$, where SFRs are given in units of $M_\odot \ \text{yr}^{-1}$. The corresponding SFR values are thus population averages for various redshift groups and do not represent individual objects.

Interestingly, as discussed in Rosario et al. (2012), for $z \approx 1$ there is hardly a correlation between the AGN luminosities and SFRs. At $z < 1$, the correlation between SFRs and AGN luminosities only exist for $L_{\text{AGN}} > 10^{42} \ \text{erg s}^{-1}$. These findings seem surprising, since we expect that AGN growth modes will be coupled to the properties of their host galaxies. A lack of correlation might indicate that most AGNs are triggered by processes that are not related to the dominant mode of SF. In addition, it does not seem obvious that the correlation for bright AGNs only exist at low redshifts. In what follows, we term this plot as the ‘rates diagram’, since it shows the relation between BH accretion rates, and SF rates of their host galaxies.

An explanation for the rates diagram should take into account the various time-scales that are buried within this relation. First, the observations of SFRs are based on indicators that last $\sim 150 \ \text{Myr}$ (this is a combination of both UV light emission from young stars, and dust heating that yields IR luminosity). Hence, the observed SFR values reflect some of the recent history of the galaxy. To follow the same effect in the model, we compute the average SFR for each galaxy over time, taking into account the last $150 \ \text{Myr}$ before the output snapshot. Secondly, AGN luminosities represent an instantaneous emission, assumed by the model to last for $\sim 10 \ \text{Myr}$. Thirdly, the duration of both the burst of SF and AGN activity is $\delta \sigma_0 \approx 0.06 t_0$ (see equations 2 and 3).

The time-averaged SFR is crucial to our main findings and it was therefore tested under a different assumption. We have used the stellar bolometric luminosity as a function of time as a proxy of the FIR luminosity. The bolometric luminosity is obtained from Bruzual & Charlot (2003) for a delta function starburst. This has resulted in only a minor change of the results. The reason is that although the stellar bolometric luminosity starts to decrease after about $10^7 \ \text{yr}$, it remains high enough to affect the integration of the SFR over several hundred Myr.

As a result of the SF time-scale, the observed value of the IR luminosity is affected by the secular SF that occurred before the burst. This luminosity is uncorrelated with the merger event and with the AGN luminosity. High-luminosity AGNs are those that are observed at a time that is close to the peak of their accretion event (t_0 from equation 2). In these cases, the SF burst is significant, and consists of most of the observed SFR value. This explains why the correlation between SFRs and AGN luminosities is only seen at high AGN luminosities. At $z = 2$, the secular SFR for star-forming galaxies is high, reaching the same level of SFR due to bursts in the most luminous AGNs. This is the reason for the lack of correlation between SFR and AGN luminosity at these redshifts.

At a given observed epoch t, different bursts have different values of t_0 and Δm_{burst} only, as all other parameters do not vary between different objects. Since the time-scale for averaging the AGN luminosity is short, objects with the same value of Δm_{burst} and $|t-t_0|$ will have the same values of L_{AGN}. However, these objects will have very different SFRs because those with $t > t_0$ will include the peak of SF within their SFRs, while for $t < t_0$ the SFR will mostly include the secular SF. This effect is more severe for larger values of $|t-t_0|$, and once the burst duration is smaller than the time-scale of SFR, contributing significantly to the scatter at low L_{AGN}.

In Fig. 4, we demonstrate these effects on our model galaxies at $z = 0$. We first plot individual SFRs and AGN luminosities from the model, and show how the average SFR is flat at $L_{\text{AGN}} < 10^{42} \ \text{erg s}^{-1}$. We then plot for the same objects the SFRs that are calculated based on bursts only, taking out the contribution from the secular SF mode. The SFR due to the bursts is more correlated with the AGN luminosity. The remaining scatter between the bursty SFR and L_{AGN} originates from the fact that AGNs can be selected both before and after the peak (i.e. t_0 can occur before or after the observation). This changes the contribution to SFR from the burst itself, although the AGN luminosity is left unchanged. In Fig. 4, we show in different symbols AGNs that are selected before the peak of the burst, with $|t-t_0|/\sigma_0 < -1$. For these objects, the correlation between SFR and AGN luminosity is strong, as expected. The strength of this last effect is smaller when σ_0 is higher (even when using $\sigma_0 = 0.2$ instead of the current value of 0.13, the scatter due to different values of $|t-t_0|$ becomes less dominant).

Our model suggests that only σ_0 and σ_{AGN} affect the rates diagram. Changing the value of σ_0 results in modifying the average level of SFR for low L_{AGN}. On the other hand, σ_{AGN} shifts the diagram along the x-axis. Unlike the behaviour of the LF, there is no simple degeneracy between these parameters here. The value of $\sigma_0 = 0.13 \ \text{Gyr}$ that is chosen for the best model is obtained by matching the observed rates diagram.
The rates diagram: values of SFR versus L_{AGN} at $z = 0$. Circles represent the SFRs and AGN luminosities of the model galaxies. Cross and square symbols show the level of SFR for the same objects, when considering contributions from SF bursts only (symbols are plotted for 20 per cent of the objects). We use the variable $x = (t - t_0)/\sigma_b$, where $x < -1$ corresponds to objects in the early stages of the burst. The thick solid line shows the average SFR value for a given L_{AGN}, as was computed in Fig. 3 (i.e. based on the total SFRs). The dashed line corresponds to the average value of L_{AGN}, for a given value of total SFR.

We have tested how other standard SF modes affect the rates diagram and found that the L_{AGN}–SFR correlation is very sensitive to secular modes. For example, when using accretion into BHs that is proportional to the secular SFR, there are no regions with uncorrelated SFR and AGN luminosity. This is apparent even in cases where the BH growth in the secular mode is only 10^{-5} of the assumed SFR. As indicated by Fig. 4, the rates diagram originates from two effects. First, there is hardly a correlation between the SF within the burst and the secular SF. Secondly, the episodic nature of the burst together with the integration time of the SFR indicator. These two effects do not exist in a secular mode that is based on continuous BH accretion mode. However, different types of secular accretion, e.g. episodic events that were not tested by us, might show better agreement with the observed rates diagram.

The rates diagram as shown here is defined as the average SFR at a given AGN luminosity, and is not affected by the number of AGNs of different luminosities. However, once we compute the average AGN luminosity as a function of SFR (dashed line in Fig. 4), we see a different trend, in which SFR and L_{AGN} are always correlated. This way of averaging hides the flat part of the diagram, occupied by low-luminosity AGNs, and is more dependent on the number of low-luminosity AGNs (i.e. on sample selection). Since the flat part of the rates diagram is highly restricting the models, the average L_{AGN} is less restrictive when comparing models to observations.

In Fig. 5, we plot for each value of SFR and AGN luminosity the median value of $x = (t - t_0)/\sigma_b$. According to equation (2), x is the location within the Gaussian of the burst, where negative values (down to -2) correspond to the burst starting point, and positive values (up to 4) correspond to the late episode of the burst. Each burst starts on the left part of the rates diagram, with small AGN luminosity that is due to a value of $x = -2$. As x increases towards 0, both the SFR and L_{AGN} rise. Later on, when $x > 0$ L_{AGN} goes down to its initial level, while the SFR stays a bit higher, due to the integration over 150 Myr. As a result, the right part of the diagram is mostly populated with $x < -1$, and the higher values of L_{AGN} are related to $x \sim 0$. This effect modifies the correlation of SFR $\propto L_{AGN}$ (that is used by the model, equation 4) such that SFR $\propto L_{AGN}^{0.7}$, as observed by Netzer (2009).

3.2 Merger fraction

The main argument against a model of BH growth that is based only on mergers is the morphology of AGN hosts. As discussed in the Introduction, numerous works show that most AGNs reside in normal disc galaxies, with no sign of interaction. Here, we test the observational constraint in this respect more closely.

In Fig. 6, we show the fraction of galaxies that host AGNs and are participating in major merger events, out of all galaxies that host AGNs. Major merger events are defined as those with mass ratio

Figure 4. The temporal location of AGNs with respect to the peak luminosity of the burst. For each value of SFR and L_{AGN}, we plot the median value of $x = (t - t_0)/\sigma_b$ (see equation 2). All AGNs are selected at redshift zero. The dashed line follows the relation SFR $\propto L_{AGN}^{0.7}$. AGNs that are starting their accretion episode lie on the right part of the diagram.

Figure 5. The temporal location of AGNs with respect to the peak luminosity of the burst. For each value of SFR and L_{AGN}, we plot the median value of $x = (t - t_0)/\sigma_b$ (see equation 2). All AGNs are selected at redshift zero. The dashed line follows the relation SFR $\propto L_{AGN}^{0.7}$. AGNs that are starting their accretion episode lie on the right part of the diagram.

Figure 6. The fractional frequency of AGNs that host AGNs and are going through major mergers (mass ratio is bigger than 0.3) out of all galaxies that host AGNs. Thick lines show the model results at various redshifts as indicated, after selecting all galaxies that host BHs with masses $\log m_{BH}/M_\odot > 7.7$. The thin dashed line shows the fitting function from Treister et al. (2012), obtained from a compilation of various studies at $0 < z < 1$. The grey box line shows the results from Kocevski et al. (2012), derived at $z \sim 2$.

References:

- Netzer, H. (2009). AGN properties and the unified model. New Astronomy Review, 53, 631-666.
- Treister, E., Kocevski, D. D., & Sanders, D. B. (2012). The black hole mass density and its dependence on galaxy mass and redshift. The Astronomical Journal, 144(5), 128.
that is bigger than 0.3. Note that in the SAM, if a galaxy have more than one merger event, the mass ratio is determined by the event with the largest contribution to the SFR. A galaxy is considered to be a part of a merger event throughout the burst.

Fig. 6 shows that the results of the model are roughly consistent with those of Treister et al. (2012), although they deviate from the analysis of Kocevski et al. (2012). The model predicts that major mergers are associated with more luminous AGNs. There are a few limitations in this comparison that should be mentioned. First, we assume that the mass ratio for major mergers is 0.3, which is somewhat arbitrary. Secondly, we assume that the time-scale for detecting the morphological features within the galaxy is similar to the assumed duration of the burst. Thirdly, we do not allow for a time-delay between the change in morphology and the onset of accretion into the BH. All these issues complicate the interpretation of the results.

A different way to examine this issue is to compare galaxies that host AGNs to a control sample of galaxies with the same stellar mass, that do not host AGNs. According to Kocevski et al. (2012), these two populations show similar fractions of galaxies that are detected as going through merger events. In Fig. 7, we make the same comparison with our model galaxies. This plot shows the fraction of galaxies going through a merger event of mass ratio \(r \), after selecting only galaxies at \(z = 2 \), with stellar mass \(10.5 < \log m_\star < 11.0 \). The AGN sample includes galaxies hosting an AGN with \(10^{42} < L_{\text{AGN}} < 10^{44} \) erg s\(^{-1}\), as were selected by Kocevski et al. (2012).

3.3 Bulge and BH mass

In Fig. 8, we show the relation between bulge and BH mass in our model. The ratio of the two masses depends on various factors. First, bulges can grow in major merger events by using the stellar mass from the discs of both progenitor galaxies. This effect will allow bulges to gain more mass than the total SFR during mergers, more than what is used for feeding the BH. In addition, the scatter between the bulge and BH masses should be a result of \(\sigma_r \), which allows for only a part of the burst events to feed the central BH.

Our model agrees with the results of both Häring & Rix (2004) and Sani et al. (2011) at redshift zero. However, the recent study by McConnell & Ma (2013) shows that at a bulge mass of \(10^{12} \) M\(_\odot\) the BH mass is higher than what we get here, reaching \(10^{10} \) M\(_\odot\). Our model BHs are less massive at the high-mass end because we use the mass function from Shankar et al. (2009) for calibrating the mass of BHs in our model. In addition, the model predicts a smaller scatter in the mass relation for more massive objects in comparison to observations.

3.4 The distribution of BH masses for a given AGN luminosity

The distribution of BH masses, for a given value of \(L_{\text{AGN}} \), are shown in Fig. 9. The model predicts that most AGNs accretion is below the Eddington limit, especially at low redshift. At higher redshifts and high \(L_{\text{AGN}} \), the AGNs accretion is closer to the Eddington limit. The scatter we use for the Eddington threshold allow for some objects to slightly exceed the formal Eddington limit, mostly at high redshift.

3.5 Specific SFR in AGN hosts

Interestingly, our merger scenario naturally predicts that AGNs are hosted by massive star-forming galaxies. This can be seen in Fig. 10. Observations of this type were done by Salim et al. (2007) and Bongiorno et al. (2012) using different SFR indicators. This diagram is an extension of the rate diagram shown in Fig. 3, as it shows the full distribution of specific SFR (sSFR), for each value of stellar mass. Results at higher redshifts are similar to what is shown here for \(z = 0 \).
3.6 BH mass and accretion rate in the SFR–L_{AGN} plane

In Fig. 11, we show how other properties of AGNs depend on both SFRs and AGN luminosities at $z = 0$. We show that the model predicts a higher value of $L_{\text{AGN}}/L_{\text{Edd}}$ at higher L_{AGN} with small dependence on SFRs. This is in spite of the lower values of $x = (t - t_0)/\sigma_b$, seen in Fig. 5 at high L_{AGN} and low SFRs. As a result, the Eddington ratio does not depend on x, the time within the burst. We have further tested that the Eddington threshold does not play a role in shaping the rates diagram at $z = 0$.

In the lower panel of Fig. 11, we show the median BH mass at each value of SFR and L_{AGN}. The scatter in masses around $L_{\text{AGN}} < 10^{44}$ erg s$^{-1}$ depends on the SFR but other regions of the diagram include more uniform distribution of BH masses.

4 SUMMARY AND CONCLUSIONS

This work presents an SAM for the formation of galaxies and BHs within a ΛCDM Universe. Our model is built on a galaxy formation model that matches various observations of galaxies. These include the stellar mass function at $0 < z < 4$, the distribution of SFRs at $z = 0$, and the autocorrelation function of galaxies at $z = 0$. The results were developed in a previous study (Wang et al. 2012), and are adopted here with no further modifications to the properties of galaxies. When adding BHs to the model, we are interested in the properties of BHs and AGNs, and how they correlate with the properties of their host galaxies. We do not take into account the possible feedback from AGNs on the physics of gas within galaxies.

Our model assumes that BHs grow only during SF bursts, with a probability α_p that is the same for all galaxies at all redshifts. The bursts in our model are only due to merger events; we do not model bursts from secular processes such as disc instability. When an event of BH accretion occurs, we assume that the gas mass that reaches the BH equals a fraction α_{acc} of the stars made in the burst at the same time. We use two additional parameters to describe the threshold on accretion due to the Eddington luminosity, in order to limit the accretion in case the burst is large and the BH mass is small. This model for the formation and evolution of BHs is therefore
very simple, also in comparison to previous SAMs (Kauffmann & Haehnelt 2000; Bower et al. 2006; Croton et al. 2006; Malbon et al. 2007; Monaco et al. 2007; Somerville et al. 2008; Bonoli et al. 2009; Fanidakis et al. 2011, 2012; Hirschmann et al. 2012).

The observational constraints used here are the mass function of BHs at redshift zero (Shankar et al. 2009), the LF of AGNs at z ≤ 4 (Richards et al. 2006; Croom et al. 2009) and the relation between SFRs and AGN luminosities (Shao et al. 2010; Rosario et al. 2012). We specifically study the latter constraint, as it was not tested by previous models. According to Rosario et al. (2012), AGNs at low redshift are related to a constant level of SFR within their host galaxies for L_{AGN} < 10^{46} erg s^{-1}. At higher AGN luminosity, where L_{AGN} is larger than the luminosity of SFR, a power-law type correlation, SFR ∝ L_{AGN}^{0.2} is seen (see also Netzer 2009). At z ∼ 2, AGNs of all luminosities are hosted within galaxies of the same average SFR, at a level of ~30 M⊙ yr^{-1}. We term these results as the ‘rates diagram’, since it shows the relation between the SFR and the rate of BH growth.

As was demonstrated in Figs 3 and 4, our model fits well the observed rates diagram. A necessary condition for the agreement is that we adopt the correct time-scales for both SF and AGN activity. We therefore assume that the luminosity at 60 μm used by Rosario et al. (2012) represent an averaging of 150 Myr over the SFR of each galaxy, and that the AGN luminosity is instantaneous (i.e. using the minimum time-step of our model, ~10 Myr). When using these time-scales, we naturally reproduce the observed rates diagram. In our model, the lack of correlation between SFR and AGN luminosities is due to two main reasons: first, secular SF in galaxies are not associated with BH activity. Secondly, BH accretion before and after the peak in SFR could have the same AGN luminosity, but different SFR. A key assumption in the model is the lack of correlation between the properties of a galaxy prior to the merger event, and the amount of SF within the burst, which depends on the properties of both merging galaxies. We thus argue that the rates diagram favours a mode of BH accretion that is due to mergers.

The rates diagram is used here for constraining the duration of the bursts in our model and for constraining the BH accretion factor, η_{acc}. The diagram is very sensitive to secular modes of BH growth (i.e. modes that do not depend on merger events). Even a small level of BH accretion from the secular mode, which adds a negligible mass to BHs, can modify the rates diagram considerably. Although we do not model such scenarios here, more constraints could be obtained by measuring the SFR in the central regions of galaxies (e.g. Stern & Laor 2012).

Visual classification of AGN hosts indicates that most AGNs are located within normal disc galaxies, with no signs of mergers (Gabor et al. 2009; Cisternas et al. 2011; Kocevski et al. 2012; Schawinski et al. 2012; Treister et al. 2012). We show in Figs 6 and 7 that a similar result is obtained here, using a model with BH growth coming only from mergers. This is because most BH accretion is associated with minor merger events, which are difficult to detect observationally. However, our model shows that a typical galaxy has roughly half the chance to experience a merger event in comparison to a galaxy of the same stellar mass that hosts an AGN. We do not test in this work the possibility of having a time-delay between the merger event and the episode of BH accretion. Such a time-delay will further decrease the amount of AGN hosts that are showing morphological signs of interactions.

The model parameters used here were tuned to fit the observed mass function of BHs at z = 0, and the LF of AGNs at z ≤ 4. In addition, our final model agrees with the observed correlation between the mass of bulges and BHs (Haring & Rix 2004; Sani et al. 2011; McConnell & Ma 2013). We show in Fig. 10 that our model predicts that AGN hosts are relatively massive, star-forming galaxies.

Finally, we provide predictions for the mass of BHs, and their Eddington ratios, within the rates diagram, as a function of both SFR and L_{AGN}. These predictions could be used to test the model against new observations.

ACKNOWLEDGEMENTS

The Millennium simulation data bases used in this paper and the web application providing online access to them were constructed as part of the activities of the German Astrophysical Virtual Observatory. EN acknowledges funding by the DFG via grant KH-254/2-1. We thank David Rosario, Eleonora Sani and Francesco Shankar for sharing their data in electronic format; David Rosario, Francesco Shankar, Dieter Lutz and Benny Trakhtenbrot for useful discussions; and Sadegh Khochar for reading an earlier draft and for many helpful suggestions.

REFERENCES

Barnes J. E., Hernquist L. E., 1991, ApJ, 370, L65
Best P. N., Kauffmann G., Heckman T. M., Brinchmann J., Charlot S., Ivezić Ž., White S. D. M., 2005, MNRAS, 362, 25
Bongiorno A. et al., 2012, MNRAS, 427, 3103
Bonoli S., Marulli F., Springel V., White S. D. M., Branchini E., Moscardini L., 2009, MNRAS, 396, 423
Bonoli S., Shankar F., White S. D. M., Springel V., Wyithe J. S. B., 2010, MNRAS, 404, 399
Bournaud F. et al., 2012, ApJ, 757, 81
Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645
Brusa G., Charlot S., 2003, MNRAS, 344, 1000
Canalizo G., Stockton A., 2001, ApJ, 555, 719
Ceverino D., Dekel A., Bournaud F., 2010, MNRAS, 404, 2151
Cisternas M. et al., 2011, ApJ, 726, 57
Conroy C., White M., 2013, ApJ, 762, 70
Cox T. J., Jonsson P., Primack J. R., Somerville R. S., 2006, MNRAS, 373, 1013
Cox T. J., Jonsson P., Somerville R. S., Primack J. R., Dekel A., 2008, MNRAS, 384, 386
Croom S. M. et al., 2009, MNRAS, 399, 1755
Croton D. J., 2009, MNRAS, 394, 1109
Croton D. J. et al., 2006, MNRAS, 365, 11
Daddi E. et al., 2007, ApJ, 670, 173
Davies R. I., Müller Sánchez F., Genzel R., Tacconi L. J., Hicks E. K. S., Friedrich S., Stempel A., 2007, ApJ, 671, 1388
De Lucia G., Blažek J., 2007, MNRAS, 375, 2
Di Matteo T., Combes F., Melchior A.-L., Semelin B., 2007, A&A, 468, 61
Draper A. R., Ballantyne D. R., 2012, ApJ, 753, L37
Efstathiou G., Lake G., Negroponte J., 1982, MNRAS, 198, 1069
Elmegreen B. G., Burkert A., 2010, ApJ, 712, 294
Fanidakis N., Baugh C. M., Benson A. J., Bower R. G., Cole S., Done C., Frenk C. S., 2011, MNRAS, 410, 53
Fanidakis N. et al., 2012, MNRAS, 419, 2797
Ferrarese L., Merritt D., 2000, ApJ, 539, L9
Gabor J. M. et al., 2009, ApJ, 691, 705
Gebrhardt K. et al., 2000, ApJ, 539, L13
Genzel R. et al., 2006, Nature, 442, 786
Graham A. W., Scott N., 2013, ApJ, 764, 151
Haring N., Rix H.-W., 2004, ApJ, 604, L89
Henriques B., White S., Thomas P., Angulo R., Lemson G., Springel V., 2013, MNRAS, 431, 3373
What triggers black hole growth?

Hirschmann M., Khochfar S., Burkert A., Naab T., Genel S., Somerville R. S., 2010, MNRAS, 407, 1016
Hirschmann M., Somerville R. S., Naab T., Burkert A., 2012, MNRAS, 426, 237
Hopkins P. F., Hernquist L., 2006, ApJS, 166, 1
Hopkins P. F., Hernquist L., Cox T. J., Di Matteo T., Robertson B., Springel V., 2006, ApJS, 163, 1
Hopkins P. F., Lidz A., Hernquist L., Coil A. L., Myers A. D., Cox T. J., Spergel D. N., 2007, ApJ, 662, 110
Hopkins P. F., Cox T. J., Keres D., Hernquist L., 2008, ApJS, 175, 390
Hopkins P. F. et al., 2010, ApJ, 724, 915
Jahnke K., Macciò A. V., 2011, ApJ, 734, 92
Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576
Kauffmann G. et al., 2003, MNRAS, 346, 1055
Khochfar S., Ostriker J. P., 2008, ApJ, 680, 54
Khochfar S., Silk J., 2009, ApJ, 700, L21
Khochfar S. et al., 2011, MNRAS, 417, 845
Kocevski D. D. et al., 2012, ApJ, 744, 148
Kormendy J., Richstone D., 1995, ARA&A, 33, 581
Kormendy J., Fisher D. B., Cornell M. E., Bender R., 2009, ApJS, 182, 216
Lapi A., Shankar F., Mao J., Granato G. L., Silva L., De Zotti G., Danese L., 2006, ApJ, 650, 42
McConnell N. J., Ma C.-P., 2013, ApJ, 764, 184
McLure R. J., Dunlop J. S., 2002, MNRAS, 331, 795
Magorrian J. et al., 1998, AJ, 115, 2285
Maller A. K., Baugh C. M., Frenk C. S., Lacey C. G., 2007, MNRAS, 382, 1394
Marconi A., Hunt L. K., 2003, ApJ, 589, L21
Marconi A., Risaliti G., Gilli R., Hunt L. K., Maiolino R., Salvati M., 2004, MNRAS, 351, 169
Marulli F., Bonoli S., Branchini E., Moscardini L., Springel V., 2008, MNRAS, 385, 1846
Mihos J. C., Hernquist L., 1994, ApJ, 431, L9
Mihos J. C., Hernquist L., 1996, ApJ, 464, 541
Monaco P., Fontanot F., Taffoni G., 2007, MNRAS, 375, 1189
Mor R., Netzer H., Trakhtenbrot B., Shemmer O., Lira P., 2012, ApJ, 749, L25
Neistein E., Dekel A., 2008, MNRAS, 383, 615
Neistein E., Weinmann S. M., 2010, MNRAS, 405, 2717
Neistein E., Khochfar S., Dalla Vecchia C., Schaye J., 2012, MNRAS, 421, 3579
Netzer H., 2009, MNRAS, 399, 1907
Parkinson H., Cole S., Helly J., 2008, MNRAS, 383, 557
Pereira E. S., Miranda O. D., 2011, MNRAS, 418, 30
Richards G. T. et al., 2006, AJ, 131, 2766
Robertson B., Hernquist L., Cox T. J., Di Matteo T., Hopkins P. F., Martini P., Springel V., 2006, ApJ, 641, 90
Rosario D. J. et al., 2012, A&A, 545, A45
Rovilos E. et al., 2012, A&A, 546, A58
Salim S. et al., 2007, ApJS, 173, 267
Sanders D. B., Mirabel I. F., 1996, ARA&A, 34, 749
Sanders D. B., Soifer B. T., Elias J. H., Madore B. F., Matthews K., Neugebauer G., Scoville N. Z., 1988, ApJ, 325, 74
Sani E., Marconi A., Hunt L. K., Risaliti G., 2011, MNRAS, 413, 1479
Schawinski K., Simmons B. D., Urry C. M., Treister E., Glikman E., 2012, MNRAS, 425, L61
Shankar F., 2010, in Peterson B. M., Somerville R. S., Storchi-Bergmann T., eds, Proc. IAU Symp. Vol. 267, Merger-Induced Quasars, Their Light Curves, and Their Host Haloes. Cambridge Univ. Press, Cambridge, p. 248
Shankar F., Weinberg D. H., Miralda-Escudé J., 2009, ApJ, 690, 20
Shankar F., Weinberg D. H., Miralda-Escudé J., 2013, MNRAS, 428, 421
Shao L. et al., 2010, A&A, 518, L26
Silverman J. D. et al., 2009, ApJ, 696, 396
Somerville R. S., Kollat T. S., 1999, MNRAS, 305, 1
Somerville R. S., Primack J. R., Faber S. M., 2001, MNRAS, 320, 504
Somerville R. S., Hopkins P. F., Cox T. J., Robertson B. E., Hernquist L., 2008, MNRAS, 391, 481
Springel V. et al., 2005, Nature, 435, 629
Stern J., Laor A., 2012, MNRAS, 423, 600
Surace J. A., Sanders D. B., Evans A. S., 2000, ApJ, 529, 170
Tommasi S. et al., 2012, ApJ, 753, 155
Treister E., Schawinski K., Urry C. M., Simmons B. D., 2012, ApJ, 758, L39
Veilleux S. et al., 2009, ApJS, 182, 628
Wang L., Weinmann S. M., Neistein E., 2012, MNRAS, 421, 3450
Weinmann S. M., Kauffmann G., von der Linden A., De Lucia G., 2010, MNRAS, 406, 2249
Weinmann S. M., Neistein E., Dekel A., 2011, MNRAS, 417, 2737
Wild V., Kauffmann G., Heckman T., Charlot S., Lemson G., Brinchmann J., Reichard T., Pasquali A., 2007, MNRAS, 381, 543
Wild V., Heckman T., Charlot S., 2010, MNRAS, 405, 933
Wuyts J. S. B., Loeb A., 2003, ApJ, 595, 614
York D. G. et al., 2000, AJ, 120, 1579

APPENDIX A: COMPARISON WITH PREVIOUS MODELS

As was discussed in the main body of the paper, previous models (e.g. Croton et al. 2006; De Lucia & Blaizot 2007; Marulli et al. 2008) have obtained different results with models that are often based on the same N-body simulation as is used here. In order to provide more details on the difference between our model and previous ones, we plot in Fig. A1 the mass functions of BHs from our model, along with the results from the publicly available model of De Lucia & Blaizot (2007). It can be seen that our model builds the mass of BH faster at high redshift than the previous model. This is probably due to the difference in SF law that was implemented in our model (see Wang et al. 2012, for more details on our model). In brief, our model uses lower SF efficiencies at high redshift, and for low-mass galaxies. In this way, more cold gas is available for SF during bursts, allowing much larger gas feeding into the central BH. It is shown in Wang et al. (2012) that the cold gas content within our model is much higher than in De Lucia & Blaizot (2007). It should

Figure A1. The mass function of BHs. The shaded region represents the observational prediction from Shankar et al. (2009) based on the correlation between bulge and BH masses at low redshift. Different line types correspond to the model mass function at various redshifts as indicated. The grey dashed line shows the minimum BH mass that is reliably reproduced by the model (due to a minimum subhalo mass of $1.72 	imes 10^{10} h^{-1} M_{\odot}$). We add in red lines results from the public model of De Lucia & Blaizot (2007) for comparison.
be mentioned that our model galaxies actually include more cold gas than what is allowed by observations. This issue, discussed in detail in Wang et al. (2012), should effect the choice of our parameter α_{acc}. Lastly, our merger rates (as a function of galaxy mass) might differ from those of previous models due to the difference in the stellar mass function. The different BH mass function shown in Fig. A1 indicates that the relation between stellar mass and BH mass is also different in our model, giving rise to different merger rates per BH mass in comparison to previous models.

This paper has been typeset from a TeX/LaTeX file prepared by the author.