Genetic structure and population dynamics of the silver pheasant (*Lophura nycthemera*) in southern China

Chaoying ZHU¹, Wenjing LU¹, Guanglong SUN¹, Jiang CHEN², Zhen ZHANG¹, Liangjie YU¹, Peng CHEN³, Yuqing HAN¹, Zhifeng XU¹, Junpeng BAI¹, Dongqin ZHAO¹, Luzhang RUAN¹,*⁴

¹School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, P.R. China
²Poyang Lake Construction Office, Water Resources Department of Jiangxi Province, Nanchang, Jiangxi Province, P.R. China
³Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, P.R. China
⁴Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, P.R. China

Abstract: In southern China, the silver pheasant (*Lophura nycthemera*) is a widespread species due to complex topography and sufficient habitats and food resources. We investigated the microsatellite and mitochondrial DNA control region sequence of 115 individuals from 7 locations in China to study population dynamics of the silver pheasant during the Pleistocene. The neutrality test and mismatch distribution analyses showed that population expansion began in the interglacial period (76,053 years ago), and the latest common ancestor appeared approximately 970,300 years ago. Most populations exhibited a high level of genetic diversity as well as gene flow. Results of phylogenetic trees and network and STRUCTURE analyses provided insights into the weak population structure of this species. The weak phylogeographic and complex historical expansion population of the silver pheasant during the interglacial period could probably be related to its complex topography and the sufficient amount of suitable habitats and food resources in southern China.

Key words: Genetic differentiation, genetic diversity, gene flow, Pleistocene, population expansion

1. Introduction

Pleistocene geologic and climatic events seriously affected the genetic patterns and phylogeographic structure of organisms (Cracraft, 1973; Hewitt CD, 2000; Wu et al., 2012; Wang et al., 2017), resulting in high diversity in tropical and subtropical areas of southern China, which was an important biodiversity site due to sufficient suitable habitats and abundant food resources during the glacial periods (Alain et al., 1998; Crowe et al., 2006; Huang et al., 2010; Cao et al., 2012). In these regions, birds could survive in different refugia and then may have differentiated into new lineages (Hewitt G, 2000) where gene flow could be prevented by some types of geographic barriers (Aleixo, 2004; Anthony et al., 2007; Nicolas et al., 2011).

The Pleistocene seriously affected the structure of most birds (Hewitt CD, 2000; Greer, 2013). Nevertheless, quite a few studies have discovered that the populations during the interglacial period were stable (Marín et al., 2013; Zhu et al., 2018), while other studies have shown that gene flow and genetic diversity are vital for population existence and evolution (Clement and Crandall, 2000; Trask et al., 2017). High gene flow and population expansion can promote genetic diversity (Song and Lei, 2014; Ruan et al., 2018; Xu et al., 2019). However, low genetic diversity can lead to a population bottlenecks (Excoffier et al., 2009). Sex-biased dispersal can improve breeding opportunities for birds, thereby increasing gene flow, genetic diversity, and inclusive fitness (Clinton et al., 2007; Hamilton and May, 1977; Taylor, 1988; Pernetta et al., 2011), which are significantly beneficial to the evolutionary process of a population (Paris et al., 2016).

The silver pheasant (*Lophura nycthemera*) is a common species that is widely distributed in southern China and Southeast Asia, which prefers to inhabit shrub patches (Zhang et al., 2003). Based on mitochondrial markers, previous researchers studied the divergence time and evolutionary history of *Lophura* (Alain et al., 1998; Huang et al., 2010; Jiang et al., 2014). However, there are no previous studies of the sex-biased dispersal patterns or population structures of the silver pheasant in southern China. Considering previous results, we adopted mitochondrial and microsatellite approaches to explore
the pattern of sex-biased dispersal of the silver pheasant and its influencing factors and to determine whether and how the interglacial period affected the population structure, gene flow, genetic diversity, and dynamics of the silver pheasant in southern China.

2. Materials and methods

2.1. Sample collection

From 2010 to 2011, we collected 72 adult blood samples and 43 fresh feather samples from silver pheasants in 18 localities in southern China (101.72°E to 119.65°E and 25.86°N to 32.92°N). The samples were classified into seven populations, namely SC, AH, JX, FJ, ZJ, HB, and HN, based on the Euclidean distance and obvious barriers such as rivers and mountain regions near the sampling sites (Figure 1; Table 1). We collected blood samples (approximately 0.1 mL) into heparinized vessels with a 26-gauge needle. All of the samples were stored in a refrigerator at -20 °C. For microsatellite data, the population SC was removed from gene flow, bottleneck, and pairwise difference analyses due to small sample size (n = 1; Tables 2 and 3).

2.2. DNA extraction and PCR amplification

We used the methods described by Hermet et al. (2013) and Luo and Xu (2004) to extract genomic DNA. PCR with primer pairs (Excoffier and Lischer, 2010) PHDH (5′-CATCTTGGCATCTCTCATGCC-3′) and PHDL (5′-AGGACTACGGCTTGAAAAGC-3′) was conducted to amplify the partial sequence of the mitochondrial control region (D-loop) in the samples. The amplified volume was 15 µL. PCR amplification was performed as follows: denaturation at 95 °C for 4 min and then denaturation at 94 °C for 35 cycles, annealing of mitochondrial DNA at 53 °C for 30 s, elongation at 72 °C for 1 min, and elongation at 72 °C for 10 min as the final step. ABI Prism Large Dye Terminator Cycle sequencing chemistry was applied with the ABI 3730 automated DNA sequencer using an international sequencing technique for mitochondrial PCR products. Then we used SeqMan 8.0.2 (DNASTAR Inc., Madison, WI, USA) to calibrate, edit, and trim the chromatogram to a final length of 1053 bp. Nuclear microsatellite genotypes of 82 individuals were amplified by singleplex fluorescent PCR with primer pairs.
The thermal cycling parameters were denaturation for 2 min at 94 °C and then 30 cycles for 30 s at 94 °C, annealing for 30 s at 52 °C, and elongation for 1 min at 72 °C. Each reaction had a 10-min elongation as the final step. In accordance with the Internal Lane Standard GeneScan 500 using ABI GeneScan Analysis [Rox], we also analyzed fragment sizes. Then the allele sizes were detected through ABI GeneMapper analysis. Sixteen samples (20%) were amplified twice to check the accuracy of results. We compared the complete mitochondrial sequences of this species from GenBank (Accession no. NC_012895.1) with our mtDNA sequence data to identify nucleotide differences in the control region.

2.3. Genetic differentiation and diversity

We used CLUSTALX 1.83 to align mitochondrial DNA sequences (Thompson et al., 1997) and DNASP 4.1 (Rozas et al., 2003) to calculate haplotype (H) and nucleotide

Table 1. Sample sizes and distribution information of silver pheasant (Lophura nycthemera).

Population code	Sample site	Latitude (N)	Longitude (E)	mtDNA (N)	Microsatellite (N)
SC	Panzhihua	26.58	101.72	14	1
AH	Bengbu	32.92	117.39	5	5
	Dongzhi	30.11	117.03	5	1
JX	Le'an	27.43	115.83	11	11
	Jinggangshan	26.75	114.29	11	8
	Ruijin	25.86	116.06	4	4
	Dexing	29.95	117.58	1	1
	Xinyu	27.82	114.92	1	1
	Jingdezhen	29.27	117.18	1	1
	Yongxiu	29.02	115.82	1	1
	Guanshan	27.33	113.56	12	7
FJ	Fu’an	27.09	119.65	17	17
ZJ	Jianshan	28.77	118.64	3	3
HB	Huangmei	30.09	115.94	12	12
	Xiaochikou	29.81	116.01	1	1
	Xiangyang	32.01	112.12	2	2
HN	Shaoyang	27.24	111.47	12	4
	Xinning	26.43	110.86	2	2
Total				115	82

Table 2. Average of silver pheasant pairwise differences in 6 populations.

	HB	AH	JX	FJ	ZJ	HN
HB	–0.004	0.051**	0.031*	–0.079	0.016*	
AH	–0.004	0.068**	0.060*	–0.078	–0.010	
JX	0.068**	0.133**	0.030**	–0.029	0.115**	
FJ	0.179**	0.180**	0.226**	–0.017	0.059**	
ZJ	0.080	0.038	0.283**	0.458*	–0.022	
HN	0.099	0.041	0.239**	0.280**	–0.101	

Lower matrix diagonals for mtDNA (ΦST); upper matrix diagonals for microsatellite analyses (FST); *P < 0.05; **P < 0.01.

SR01, SR08, SR13 (Wang et al., 2009), SE02 (Jiang et al., 2006), PC125 (Hale et al., 2004), MCW98 (Crooijmans et al., 1996), and MCW146 (Crooijmans et al., 1997). The thermal cycling parameters were denaturation for 2 min at 94 °C and then 30 cycles for 30 s at 94 °C, annealing for 30 s at 52 °C, and elongation for 1 min at 72 °C. Each reaction had a 10-min elongation as the final step. In accordance with the Internal Lane Standard GeneScan 500 using ABI GeneScan Analysis [Rox], we also analyzed fragment sizes. Then the allele sizes were detected through ABI GeneMapper analysis. Sixteen samples (20%) were amplified twice to check the accuracy of results. We compared the complete mitochondrial sequences of this species from GenBank (Accession no. NC_012895.1) with our mtDNA sequence data to identify nucleotide differences in the control region.

2.3. Genetic differentiation and diversity

We used CLUSTALX 1.83 to align mitochondrial DNA sequences (Thompson et al., 1997) and DNASP 4.1 (Rozas et al., 2003) to calculate haplotype (H) and nucleotide
diversities (π), while allelic richness (A) and expected (H_E) and observed heterozygosities (H_O) were calculated using ARLEQUIN 3.5 (Excoffier and Lischer, 2010). HP-Rare 1.1 (Kalinowski, 2005) was used to compute the rarefied allelic richness (A_P). Statistical deviations were examined using ARLEQUIN 3.5 from Hardy–Weinberg and genotypic linkage equilibrium. We also used ARLEQUIN 3.5 to analyze the genetic structure of the microsatellite and mitochondrial DNA data through analysis of molecular variance (AMOVA). In addition, we used F- and Φ-statistics to evaluate the population differences (Excoffier and Lischer, 2010). Genetic bottleneck tests via BOTTLENECK 1.2.02 (Cornuet and Luikart, 1996) were applied to examine the signatures of recent population bottlenecks. Each population was analyzed using two-phase models (TPMs). Genetic bottleneck analysis with 10,000 repetitions was conducted to obtain P-values based on the Wilcoxon symbolic rank test, as recommended by Cornuet and Luikart (1996). It was expected that the rare alleles would rapidly be lost under the bottleneck conditions, consequently distorting the mode-shift (Luikart et al., 1998). Thus, we examined all population allele frequencies using the allele frequency distribution test. We also adopted the Garza–Williamson index (dividing the allelic range by the number of alleles; Garza and Williamson, 2001) as a measurement of the bottleneck experiment for all populations by using ARLEQUIN 3.5 (Excoffier and Lischer, 2010). A historical decline in sizes was defined when the M value was less than 0.68 (Alasaad et al., 2011).

2.4. Population expansion test
Using BEAST 1.6.1 (Drummond et al., 2003), we identified the nodes of the silver pheasant clades where the most recent common ancestor (TMRCA) lies. Assuming a strict molecular clock, we constructed a best substitution model (HKY+I+G) from MODELTEST 3.06 and among-site rate heterogeneity across all branches. We selected an uncorrelated lognormal model to explain the rate variation among all lineages. The fluctuations in population size were examined using the Bayesian skyline model. Independent Markov chain Monte Carlo (MCMC) analyses were run for 10^8 steps. The first 10% of data was ignored as burn-in, and then sampling was performed every 1000 generations. Demographic history time was

Parameter	Microsatellite	Mode	0.975	0.025	Mode	0.975	0.025
θ_AH	0.524	0.822	0.311		1.550	2.940	0.480
θ_BI	0.891	1.000	0.712		2.730	4.560	1.360
θ_HN	0.633	0.859	0.437		1.410	2.760	0.420
θ_JX	0.609	0.899	0.397		1.630	3.180	0.520
θ_JZ	0.764	0.933	0.581		1.830	3.480	0.640
θ_LI	0.638	0.959	0.405		2.250	4.100	0.960
θ_LJ	1.850	3.400	0.700		2.920	4.380	0.960
θ_NJ	1.710	3.660	0.580		1.670	3.280	0.580
θ_PJ	1.710	3.460	0.520		1.270	2.320	0.400
θ_QJ	2.390	4.440	1.080		2.050	3.280	1.000
θ_RJ	1.530	3.120	0.480		1.850	2.980	0.860
θ_SJ	1.390	2.600	0.460		1.210	2.180	0.360
θ_TJ	2.230	3.740	0.960		1.090	2.120	0.240
θ_UJ	1.550	2.780	0.560		1.770	3.680	0.540
θ_VJ	2.930	4.600	1.680		1.830	3.580	0.660
θ_WJ	1.250	2.420	0.320		1.970	3.720	0.660
θ_XJ	1.450	2.620	0.480		1.810	3.580	0.580
θ_YJ	1.910	3.400	0.820		2.230	4.140	0.920

θ: Effective population size, long-term in mutation-scale; M: migration rate between two populations. Arrows show the direction of gene flow.

Table 3. Arguments of silver pheasant geographic population migration.
rebuilt with Tracer 1.5 (http://beast.bio.ed.ac.uk/Tracer). The neutrality test (Tajima’s D and Fu’s Fs) was conducted using ARLEQUIN 3.5 (Excoffier and Lischer, 2010), and mismatch distribution was determined by DNASP 4.1 (Rozas et al., 2003). The results of the neutrality test showed significantly negative values (P < 0.05) for Tajima’s D and Fu’s Fs tests, which were regarded as indicators of the recent population expansion. The raggedness index (RAG) was used to test the sum of square deviations (SSDs) for mismatch distribution analysis. The expansion time was estimated from the value of tau by using tau = 2 µkt (Rogers and Harpending, 1992), where tau, µ, and k are the mismatch distribution mode, the nucleotide mutation rate (1.19% per Myr) (Dong et al., 2013), and the number of nucleotides (k = 1053 bp), respectively.

2.5. Phylogeographic and population structure

Three mitochondrial D-loop sequences from Lophura hatinhensis (AJ300150), Lophura leucelomelas (AJ300153), and Lophura swinhoii (AJ300155) were treated as outgroups because they have a close phylogenetic relationship to the silver pheasant (Randi et al., 2001; Jiang et al., 2006). MODELTEST 3.06 was used to test the molecular evolution of nucleotide substitution for the mtDNA sequence data (Posada, 1998) with PAUP 4.0b10 (Swofford, 1998). We identified the best-fitted model with the Akaike information criterion (AIC; Posada, 1998). MrBayes 3.1.1 (Drummond et al., 2003) was used to construct the Bayesian trees in order to generate Bayesian posterior probabilities for phylogenetic deductions. ML trees were built with IQ-TREE (Trifinopoulos et al., 2016). We adopted two independent MCMC runs with three chains per run, totaling 3,000,000 generations after sampling every 100 steps. The convergence to a static distribution was tested by the splitting frequency between two independent runs (less than 0.01). TCS 1.21 (Clement and Crandall, 2000) was used to calculate genealogical relationships among haplotypes. A median-joining network method (MJN; Bandelt et al., 1999) was also used to describe the relationship among the silver pheasant haplotypes. NETWORK 4.5 (http://www.fluxus-engineering.com) was used to compute the MJN. STRUCTURE version 2.3.3 was used to examine the patterns of population structure (Pritchard et al., 2000). We used twenty replicate runs to analyze K values from 1 to 6 with an initial 1 x 10^5 burn-in step with 2 x 10^5 analysis replicates following. STRUCTURE HARVESTER was used to evaluate the K value (Earl and Vonholdt, 2012).

2.6. Recent and historical gene flow test

The first-generation migration among populations was tested by GENECLASS 2.0 (Cornuet et al., 1999), and the long-term interisland gene flow rate was estimated by MIGRATE-N 3.2.6 (Beerli and Palczewski, 2010). MIGRATE-N 3.2.6 can estimate the mutation rate-scaled effective population size as \(\theta = \chi N_e \mu \), where \(\chi \), \(N_e \), and \(\mu \) represent separate inheritance scaling factors (1 for mtDNA and 4 for microsatellite markers), mutation rate per generation per locus, and effective population size. The equation \(M = m/\mu \) was used to test mutation-scaled migration rates, where \(m \) represents the ratio of immigration per generation. We used a Brownian motion mutational model for microsatellite analyses. The \(\theta \) value was bounded from 0 to 10 (delta = 0.1), while the \(M \) value was bounded from 0 to 30 (delta = 0.1). The static heating scheme was set including four chains (mathematical temperatures: 1.0, 1.5, 1.5, and 10^4). We repeated the entire analysis twice. The Mantel correlation coefficient (Mantel, 1967) was calculated by MANTEL 1.18. The estimates of genetic distance \(F_{ST}/(1-F_{ST}) \) (Slatkin, 1995) were computed by ARLEQUIN 3.5 for both microsatellite and mitochondrial datasets (Excoffier and Lischer, 2010). The genetic distance measures of the pairwise populations were regarded as a linear correlation to pairwise logarithmic Euclidean distances (Fenster and Hardy, 2003), where 10,000 random permutations were carried out to calculate the significance of the correlation.

3. Results

3.1. Genetic differentiation and diversity

After the sequential Bonferroni corrections, the Hardy–Weinberg test did not show any significant differences among microsatellite loci, while linkage disequilibrium tests indicated only one significant separate locus pair at the 0.05 level. This observation in population HN could be treated as occasional (Miller et al., 2012). Of all the values of expected heterozygosity, observed heterozygosity, and allelic richness, the highest values were detected in ZJ (\(H_e = 0.717, H_o = 0.917, A_e = 1.900; \) Table 4). The lowest values of expected heterozygosity, allelic richness, and rarefied allelic richness were all detected in population HN (\(H_e = 0.406, A = 2.000, A_e = 1.450; \) Table 4). The lowest value of the observed heterozygosity was detected in population JX (\(H_o = 0.549 \)). There was no evidently consistent trend of genetic diversity among populations in the observations according to microsatellite data. Both the highest haplotype diversity and nucleotide diversities (\(H_d = 0.914, \pi = 10.180 \times 10^{-3}; \) Table 4) of mtDNA data were obtained in population SC. AMOVA showed that the main genetic variances were among the populations for mitochondrial data (56.63%, \(F_{ST} = 0.566, P = 0.000; \) Table 5), whereas the main genetic variances were within populations for microsatellite data (95.65%, \(F_{ST} = -0.293, P = 0.000 \)). Pairwise \(F_{ST} \) analysis indicated that there was relatively low genetic difference among populations. The lowest \(F_{ST} \) estimates separately belonged to population pair HN/ZJ for mitochondrial DNA and population pair HB/ZJ for microsatellites (Table 2), whereas the highest \(F_{ST} \) estimates
belonged to population pair ZJ/FJ for mitochondrial DNA and population pair JX/HN for microsatellites. In analysis of genetic differences in both mtDNA and microsatellite datasets, populations JX, FJ, and HN were significantly different from the other populations.

3.2. Evidence for genetic bottlenecks

In TPM for bottleneck analysis, populations AH and ZJ revealed statistically significant results (P < 0.05). Even so, allelic shift tests suggested that only four populations of the seven, namely SC, JX, FJ, and HN, had an L-shaped distribution. A recent population bottleneck could explain the observed mode shift in HB, AH, and ZJ. The Garza–Williamson index for the HB, AH, FA, and ZJ populations was below 0.68 (Garza and Williamson, 2001), indicating that these populations underwent a historical population bottleneck (Williamson-Natesan, 2005).

3.3. Demographic history test

Tajima’s D (Table 6) test was negative for all populations and significant for the whole population (P = 0.04). Fu’s Fs test was negative for most populations except SC and AH and was extremely significantly negative for the whole population (P = 0.007). The tests of both RAG and SSD for mismatch distribution were all insignificant at the 0.05 level except for population SC, which implied that the curves fit the model test of population expansion well. In summary, both mismatch distribution analysis and the neutral test revealed that significant historical population expansion existed in the whole population. Calculated by $t = \tau/2\mu_k$ ($\tau = 1.906, 95\%$ confidence interval: 0.363–10.465), the whole population expansion could be evaluated to 76,053 years ago. The model (HKY+G+I) picked with the AIC was identified by MODELTEST to be the best for molecular evolution. The BSP analysis for the

Table 4. Genetic diversity of mitochondrial DNA and microsatellites of silver pheasant.

Population	Mitochondrial DNA	Microsatellite				
	h	H_d	$\pi \times 10^3$	H_O	H_E	$A(A_P)$
SC	10	0.914	10.180	-	-	-
HB	9	0.892	4.240	0.653	0.503	2.800 (1.690)
AH	4	0.711	2.510	0.708	0.538	2.500 (1.540)
JX	11	0.849	2.580	0.549	0.428	3.000 (1.740)
FJ	8	0.728	1.090	0.573	0.463	2.833 (1.800)
ZJ	2	0.667	1.910	0.917	0.717	3.000 (1.900)
HN	4	0.800	8.970	0.600	0.406	2.000 (1.450)

h: Haplotype quantities; H_d: haplotype diversity; π: nucleotide diversity. H_O: observed heterozygosity; H_E: expected heterozygosity; A_P: rarefied allelic richness.

Table 5. Analysis of molecular variance of silver pheasant.

Source of variation	Sum of squares	Variance components	Percentage variation
Mitochondrial DNA			
Among populations	202.122	2.108 Va	56.630
Within populations	174.391	1.615 Vb	43.370
Microsatellite loci			
Among populations	12.757	0.058 Va	4.35
Within populations	66.144	–0.371 Vb	95.65

Table 6. Neutral tests for silver pheasant.

Group	Tajima’s D	Fu’s Fs	Mismatch distribution
	P_{SSD}	P_{RAG}	
HB	–1.115	–0.496	0.270 0.410
AH	–0.280	0.305	0.180 0.200
JX	–0.359	–0.570	0.810 0.940
FJ	–1.822 *	–4.927 **	0.760 0.580
HN	–0.689	–1.967	0.700 0.730
SC	–0.166	0.021	0.040* 0.090
Whole populations	–1.490 *	–10.558**	0.306 0.307

Tajima’s D: Tajima’s neutrality test; Fu’s Fs: Fu’s neutrality test; SSD: sum of squared deviations; RAG: raggedness index; *P < 0.05; **P < 0.01.
3.4. Evidence for genetic structure and phylogeography

In a 1053-bp sequence for 115 individuals, we observed 33 variable sites, which defined 36 haplotypes. Most of the populations had only one private haplotype. Six shared haplotypes were observed: H3, H4, H19, H20, H24, and H29. Most haplotypes showed a weak geographic population structure, except those for population SC (Figure 3). The phylogenetic tree analysis showed no obvious geographical structure for most populations except population SC, which was consistent with the results from the MJN analysis (Figure 4). Furthermore, STRUCTURE HARVESTER analysis showed that K = 2 or ΔK = 3 (log marginal likelihood = −1086.76, Figure 5) was the best clustering. Unfortunately, STRUCTURE analysis indicated that the whole population had no obvious geographical structure according to K = 2 or ΔK = 3.

3.5. Historical gene flow test

GENECLASS was applied to test the dispersal among populations. No individual was identified as a first-generation migrant (P < 0.01). Computed by MIGRATE-N 3.2.6, the gene flow analysis implied that the highest θ was in population FJ (0.891), while the highest M (2.930) was in neighbor populations JX to FJ. The lowest θ and M were observed in AH (0.524) and ZJ to JX (1.090), respectively (Table 3). In general, population JX was a main source of genetic migrants to the others, and the adjacent populations had apparently higher gene flows than the distant populations (Table 3). The Mantel test also indicated a positively insignificant correlation between the pairwise genetic distance and the Euclidean distance (r = 0.285, P = 0.8239 and r = 0.151, P = 0.2902 for mitochondrial and microsatellite, respectively).

3.6. Sex-biased dispersal test

Sex-biased dispersal was tested over the whole population, indicating that m_{AI} (male m_{AI} = −0.083, female m_{AI} = 0.187, P = 0.170), F_{ST} (male F_{ST} = 0.043, female F_{ST} = 0.066, P = 0.220), r (male r = 0.112, female r = 0.181, P = 0.080), and ν_{AI} (male ν_{AI} = 1.503, female ν_{AI} = 0.851, P = 0.090) were not significant between females and males. In summary, all indexes in the sex-biased dispersal analyses showed no apparent sex-biased dispersal pattern in the silver pheasant.

4. Discussion

4.1. High genetic diversity and gene flow lead to a weak population structure

Both the genetic diversity and gene flow of silver pheasant were high, whereas the population structure was comparatively weak. Both the mtDNA and microsatellite analyses in our investigation showed that genetic diversity was high in all the geographical populations (Table 4), possibly because of the wide distribution of the silver pheasant (Dong, 2011) and its habitat mainly distributed in warmer regions of southern China, a principal high-
Figure 3. mtDNA MJN for silver pheasant. Circle size represents proportion of haplotype. Circles with single color indicate a private haplotype, whereas circles with two or more colors represent a shared haplotype.
level biodiversity area with abundant habitats (Crowe et al., 2006). The high genetic diversity in this area was also attributed to the long history (TMRCA = 970,300 ybp) of colonizing and evolving, and this observation was supported by the statistical analysis of historical demographic data (Table 6; Figure 2). Moreover, high gene flow and population expansion would promote the genetic diversity in Rallidae (Ruan et al., 2018).

Our results revealed high genetic exchange and low genetic differentiation among populations. AMOVA showed that the main genetic variances were among populations for mitochondrial data, whereas the main genetic variances were within populations for microsatellite data. Different evolutionary rates among markers (Brown and Swank, 1983) or male-biased gene flow (Gibbs et al., 2000; Miller et al., 2015) are both reasonable hypotheses, which could explain the differences in datasets. Pairwise F_{ST} analysis indicated a slight genetic difference among populations. Birds usually have a higher gene flow than other organisms because of their ability to fly and move over longer distances (Miller et al., 2015). Nuclear genetic differentiation ascending with gene flow among populations explained that in adjacent populations, those with high gene flow always have low genetic differentiation (Ruan et al., 2018). This study obtained consistent results with previous studies, which could be explained as high gene flow resulting in low genetic differentiation. Geographic features, such as potential river and basin barriers, could prevent gene flow in birds. Phylogenetic tree analyses suggested that no obvious geographical structure existed in the populations, except for population SC, which was in accordance with the results of Zhang et al. (2003). This phenomenon might be attributed to the unique topography of Sichuan, which is located north of the Yangtze River and is mainly dominated by basins, chiefly affected by rivers and basin barriers. STRUCTURE also supported a weak geographic structure. High gene flow and genetic diversity may correspond to a fragile population structure (Li et al., 2015; Ruan et al., 2018). However, there was no significant sex-biased dispersal.
pattern in the silver pheasant, indicating that sex-biased dispersal must not be an explanation for the weak population structure. Consequently, our results revealed that a weak population structure was mostly caused by high gene flow and genetic diversity.

4.2. Population dynamics during the interglacial period
In both Tajima’s D and Fu’s Fs tests, significantly negative findings were found in the whole population. Both the mismatch distribution analysis and the neutral test showed that the whole population had significant population expansion. The time of the whole population expansion could reach to 76,053 years ago, which indicated that the population in China expanded during the interglacial period, before the last glacial period. Several studies have stated that Galliformes may be susceptible to climate change with their low dispersal capability (e.g., Li et al., 2010; Wang et al., 2013), which likewise revealed that no sex-biased dispersal pattern occurred in the silver pheasant. Although a few local populations underwent a historical bottleneck, the whole population expanded in the last interglacial period, because the latest time that the global temperature was higher than the present is considered as the last interglacial period (Muhs et al., 2001). Therefore, the expansion population of the silver pheasant could be attributed to the abundant habitats and food resources in the last interglacial period. Fossils showed that the divergence time of Lophura was 38.9 Mya (Tuinen and Dyke, 2004), and the TMRCA of the entire population expansion occurred approximately 970,000 years ago (Figure 2), which was earlier than that of Lophura, indicating a long history for the current lineage for this species. Moreover, southern China has subtropical and tropical climates with complex topography and abundant habitats and food resources, suggesting that, typically, multiple refugia existed during the glacial periods (Song and Lei, 2014). Consequently, our study suggested that the long history of the current lineage of the silver pheasant might be related to the complex topography and enough refugia during the glacial periods in southern China. Briefly, the suitable climate in the last interglacial period provided rich habitats and food resources for the silver pheasant to survive, and the sophisticated topography with the refugia of southern China contributed to their reproduction and evolution.

Acknowledgments and disclaimers
We are very grateful to all the assistants who worked on this project, in particular Q. Zhu, Y.S. Wang, C.X. Xu, and Y. Ouyang. This study was supported by the National Science Foundation of China (Nos. 30960052 and 31260510), the Innovation Fund Designated for Graduate Students of Jiangxi Province (No. YC2017-S036), and the Innovation and Entrepreneurship Training Program for College Students of Nanchang University (No. 201802218). No potential conflict of interest was reported by the authors.
References

Alain H, Randi E, Lucchini V (1998). Genetic diversity, phylogenetic relationships and conservation of Edward’s Pheasant Lophura edwardsi. Bird Conservation International 8 (4): 395-410. doi: 10.1017/s09592790000215x

Alasasd S, Soriguer RC, Chelomina G, Sushitsky YP, Fickel J (2011). Siberian tiger’s recent population bottleneck in the Russian Far East revealed by microsatellite markers. Mammalian Biology 76 (6): 722-726.

Alexio A (2004). Historical diversification of a Terra-firma forest bird superspecies: a phylogeographic perspective on the role of different hypotheses of Amazonian diversification. Evolution 58 (6): 1303-1317. doi: 10.2307/3494226

Anthony NM, Johnson-Bawe M, Jeffery K, Clifford SL, Abernethy KA et al. (2007). The role of Pleistocene refugia and rivers in shaping gorilla genetic diversity in central Africa. Proceedings of the National Academy of Sciences of the United States of America 104 (51): 20432-20436.

Bandelt HJ, Forster P, Röhl A (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16 (1): 37-48. doi: 10.1093/oxfordjournals.molev.a026036

Beerli P, Palczewski M (2010). Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185 (1): 313-326.

Brown JA, Swank RT (1983). Subcellular redistribution of newly synthesized macrophage lysosomal enzymes. Correlation between delivery to the lysosomes and maturation. Journal of Biological Chemistry 258 (24): 15323-15328. doi: 10.1016/S0022-1317(97)73676-6

Cao F, Qi C, Li G, Zhong C, Tang D et al. (2012). Climate change effects on southern subtropical and tropical tree species in Ganzhou City, China. British Journal of Environment and Systematics 40 (1): 481-501. doi: 10.1007/s12686-011-9548-7

Chang J, Hua H, Wang L, Wang J, Zhou Z et al. (2013). Microsatellite markers in the common carp (Cyprinus carpio). Animal Genetics 44 (6): 730-732. doi: 10.1111/j.1365-2009.2013.02649.x

Crowe TM, Bloomer BP, Mandiwana TG, Heddderson TAJ, Randi E et al. (2006). Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics 22 (6): 495-532. doi: 10.1111/j.1096-0031.2006.00120.x

Crow RM, van der Poel JJ, Groenen M, Bierbooms V, Komen H et al. (1997). Microsatellite markers in common carp (Cyprinus carpio). Animal Genetics 28 (2): 129-134.

Crooijmans RP, Groen AF, Van Kampen AJ, Van DB, VDP et al. (1996). Microsatellite polymorphism in commercial broiler and layer lines estimated using pooled blood samples. Poultry Science 75 (7): 904-909.

Crooijmans RP, van der Poel JJ, Groenen M, Bierbooms V, Komen H et al. (1997). Microsatellite markers in common carp (Cyprinus carpio). Animal Genetics 28 (2): 129-134.

Crow M, Bloomer BP, Mandiwana TG, Heddderson TAJ, Randi E et al. (2006). Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics 22 (6): 495-532. doi: 10.1111/j.1096-0031.2006.00120.x

Dong L (2011). Intraspecific taxonomy study of silver pheasant Lophura nycthemera. Acta Zootaxonomica Sinica 36 (2): 431-446. doi: 10.1111/j.1749-4877.2010.00232.x

Dong L, Heckel G, Liang X, Zhang H, Liang Y et al. (2011). Phylogeography of silver pheasant (Lophura nycthemera) across China: aggregate effects of refugia, introgression and riverine barriers. Molecular Ecology 22 (12): 3376-3390.

Drummond A, Aroya GP, Rambaut A (2003). Inference of viral evolutionary rates from molecular sequences. Advances in Parasitology 54 (54): 331-358. doi: 10.1016/S0065-2458(03)54008-8

Earl DA, Vonholdt BM (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4 (2): 359-361. doi: 10.1007/s12686-011-9548-7

Excoffier L, Foll M, Petit RJ (2009). Genetic consequences of range expansions. Annual Review of Ecology Evolution and Systematics 40 (1): 481-501. doi: 10.1146/annurev.ecolgs.39.110707.173414

Excoffier L, Lischer H (2010). Arlequin suite ver3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10 (3): 566-567. doi: 10.1111/j.1755-0998.2010.02847.x

Fenster CV, Hardy OJ (2003). Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae). Evolution 57 (5): 995-1007. doi: 10.1111/j.0016-6526.2003.tb01342.7

Garza JC, Williamson EG (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10 (2): 305-318. doi: 10.1046/j.1365-294X.2001.01190.x

Gibbs MJ, Koga R, Moriyama H, Pfeiffer P, Fukushima T (2000). Phylogenetic analysis of some large double-stranded RNA replicons from plants suggests they evolved from a defective single-stranded RNA virus. Journal of General Virology 81 Pt 1: 227-233. doi: 10.1099/0022-1317-81-1-227

Greer DT (2013). Grassland bird abundance and habitat quality, and Sedge Wren (Cistothorus platensis) ecology on Fort Drum, New York. M.Sc, State University of New York, Brockport, NY, USA.
Hale DA, Kirk AD (2004). Mammalian target of rapamycin inhibitors in transplantation: novel immunosuppressive strategies with sirolimus. Current Opinion in Organ Transplantation 9 (4): 400-405

Hamilton WD, May RM (1977). Dispersal in stable habitats. Nature 269 (5629): 578-581. doi: 10.1038/269578a0

Hermet JP, Besson-Faure I, Houille-Decloesmesnil AE (2013). Method for Extracting Deoxiribonucleic Acids (DNA) from Microorganisms Possibly Present in a Blood Sample. US Patent US20100240023A1.

Hewitt CD (2000). A study of the mechanisms of climate change at the Last Glacial Maximum. PhD, University of Reading, Reading, UK.

Hewitt G (2000). The genetic legacy of the Quaternary ice ages. Nature 405 (6789): 907-913. doi: 10.1038/35016000

Huang Z, Liu N, Wei L, Zhang Y, Liao X et al. (2010). Phylogeography of Chinese bamboo partridge, Bambusiscola thoracica thoracica (Aves: Galliformes) in south China: Inference from mitochondrial DNA control region sequences. Molecular Phylogenetics and Evolution 56 (1): 273-280. doi: 10.1016/j.ympev.2010.01.028

Jiang L, Wang G, Peng R, Peng Q, Zou F (2014). Phylogenetic and molecular dating analysis of Taiwan Blue Pheasant (Lophura swinhoii). Gene 539 (1): 21-29. doi: 10.1016/j.gene.2014.01.067

Jiang PP, Ding P, Fang SG (2006). Isolation and characterization of microsatellite markers in Elliot’s pheasant (Syrmaticus elliott). Molecular Ecology Notes 6 (4): 1160-1161. doi: 10.1111/j.1471-2124.2006.01472.x

Kalinskiwski ST (2005). hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Resources 5 (1): 187-189.

Li R, Tian H, Li X (2010). Climate change induced range shifts of Galliformes in China. Integrative Zoology 5 (2): 154-163. doi: 10.1111/j.1749-4877.2010.00198.x

Li Z, Kruger U, Lei X, Almansoori A, Su H (2015). Adaptive KPCA modeling of nonlinear systems. IEEE Transactions on Signal Processing 63 (9): 2364-2376. doi: 10.1109/tsp.2015.2412913

Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998). Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity 89 (3): 238-247.

Luo X, Keqian XU (2004). A solid phase method for extracting DNA from whole blood. Chinese Journal of Clinical Laboratory Science 22: 123-125.

Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 29 (2-3): 209-220. doi: 10.1007/s00253-002-1013-9

Marín JC, Varas V, Vila AR, López R, Orozco-Ter WP et al. (2013). Refugia in Patagonian fords and the eastern Andes during the Last Glacial Maximum revealed by huemul (Hippocamelus bisulcus) phylogeographical patterns and genetic diversity. Journal of Biogeography 40 (12): 2285-2298. doi: 10.1111/jbi.12161

Miller MJ, Kennedy AD, Eckhart AD, Burrage LC, Wulff JE et al. (2015). Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism. Journal of Inherited Metabolic Disease 38 (6): 1029-1039. doi: 10.1007/s10545-015-9843-7

Miller MP, Haig SM, Mullins TD, Popper KJ, Green M (2012). Evidence for population bottlenecks and subtle genetic structure in the yellow rail. Condor 114 (1): 100-112. doi: 10.1525/cond.2012.110055

Muhs DR, Ager TA, Begét JE (2001). Vegetation and paleoclimate of the last interglacial period, central Alaska. Quaternary Science Reviews 20 (1): 41-61.

Nicolas V, Missoup AD, Denys C, Peterhans JK, Katuala P et al. (2011). The roles of rivers and Pleistocene refugia shaping genetic diversity in Pormys missonii in tropical Africa. Journal of Biogeography 38 (1): 191-207. doi: 10.1111/j.1365-2699.2010.02399.x

Paris D, Nicholls AO, Hall A, Harvey A, Massaro M (2016). Female-biased dispersal in a spatially restricted endemic island bird. Behavioral Ecology and Sociobiology 70 (12): 2061-2069. doi: 10.1007/s00265-016-2210-3

Pernetta AP, Allen JA, Beebee TJ, Reading CJ (2011). Fine-scale population genetic structure and sex-biased dispersal in the smooth snake (Coronella austriaca) in southern England. Heredity 107 (3): 231-238.

Posada D (1998). MODELTEST: Testing the model of DNA substitution. Bioinformatics 14 (9): 817-818. doi: 10.1093/bioinformatics/14.9.817

Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155 (2): 945-959.

Randi E, Lucchini V, Hennache A, Kimball RT, Braun EL et al. (2001). Evolution of the mitochondrial DNA control region and cytochrome b genes and the inference of phylogenetic relationships in the avian genus Lophura (Galliformes). Molecular Phylogenetics and Evolution 19 (2): 187-201. doi: 10.1006/mpev.2001.0922

Rogers AR, Harpending H (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9 (3): 552-569. doi: 10.1093/oxfordjournals.molbev.a040727

Rozas J, Sánchez-Delbarrio JC, Xavier M, Ricardo R (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 (18): 2496-2497. doi: 10.1093/oxfordjournals.hmoj.a025180

Ruan L, Wei X, Han Y, Zhu C, Guan B et al. (2018). Gene flow from multiple sources maintains high genetic diversity and stable population history of common moorhen Gallinula chloropus in China. Ibis 160 (4): 855-869. doi: 10.1111/ibi.12579

Slatkin M (1995). Hitchhiking and associative overdominance at a microsatellite locus. Molecular Biology and Evolution 12 (3): 473-480. doi: 10.1093/oxfordjournals.molbev.a004072
Song G, Lei F (2014). Gene flow maintains genetic diversity and colonization potential in recently range-expanded populations of an Oriental bird, the Light-vented Bulbul (Pycnonotus sinensis, Aves: Pycnonotidae). Diversity and Distributions 19 (10): 1248-1262. doi: 10.1111/ddi.12067

Swofford DL (1998). PAUP (Phylogenetic Analysis Using Parsimony). Champaign, IL, USA: Illinois Natural History Survey.

Taylor D (1988). Ethnographic educational evaluation for children, families, and schools. Theory into Practice 27 (1): 67-76.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25 (25): 4876-4882.

Trask AE, Bignal EM, McCracken DI, Piertney SB, Reid JM (2017). Estimating demographic contributions to effective population size in an age-structured wild population experiencing environmental and demographic stochasticity. Journal of Animal Ecology 86 (5): 1082-1093. doi: 10.1111/1365-2656.12703

Trifinopoulos J, Nguyen LT, Von HA, Minh BQ (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1): W232-235. doi: 10.1093/nar/gkw256

Tuinen MV, Dyke GJ (2004). Calibration of galliform molecular clocks using multiple fossils and genetic partitions. Molecular Phylogenetics and Evolution 30 (1): 74-86.

Wang B, Li J, Wang G, Liang W, Zhang Y et al. (2013). Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation. ACS Applied Materials & Interfaces 5 (5): 1827-1839. doi: 10.1007/s10592-008-9773-0

Wang N, Liu Y, Zhang ZW (2009). Characterization of nine microsatellite loci for a globally vulnerable species, Reeves's Pheasant (Syrmaticus reevesii). Conservation Genetics 10 (5): 1511-1514.

Wang T, Zhang H, Lei Z, Hai H (2017). Responses of a phytoplankton community to seasonal and environmental changes in Lake Nansihu, China. Marine and Freshwater Research 68 (10): 1877-1886. doi: 10.1071/MF16331

Williamson-Natesan EG (2005). Comparison of methods for detecting bottlenecks from microsatellite loci. Conservation Genetics 6 (4): 551-562. doi: 10.1007/s10592-005-9009-5

Wu Y, Huang J, Zhang M, Zhang Y (2012). Genetic divergence and population demography of the Hainan endemic Black-throated Laughingthrush (Aves: Timaliidae, Garrulax chinensis monachus) and adjacent mainland subspecies. Molecular Phylogenetics and Evolution 65 (2): 482-489. doi: 10.1016/j.ympev.2012.07.005

Xu ZF, Han YQ, Zhu CY, Chen P, Xu W et al. (2019). Bi-parentally inherited genetic evidence for male-biased dispersal in common moorhen (Gallinula chloropus). Biochemical Genetics 57: 46-55, doi: 10.1007/s10528-018-9873-6

Zhang ZW, Ding CQ, Ding P, Zheng GM (2003). The current status and a conservation strategy for species of Galliformes in China. Chinese Biodiversity 11 (5): 414-421.

Zhu CY, Chen P, Han YQ, Ruan L (2018). Low genetic diversity and low gene flow corresponded to a weak genetic structure of ruddy-breasted crake (Porzana fusca) in China. Biochemical Genetics 56 (6): 586-617. doi: 10.1007/s10528-018-9862-9