Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

Martin E. Budd, Judith L. Campbell*

Divisions of Biology and Chemistry, Caltech, Braun Laboratories, Pasadena, California, United States of America

Abstract

The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5’ to 3’ exonuclease degradation creating a single-stranded 3’ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3’ to 5’, rather than 5’ to 3’ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5’ to 3’ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2ΔA with a pif1ΔA. The dna2ΔA pif1ΔA mutant is IR-resistant. We have determined that dna2ΔA pif1ΔA mre11-D56N and dna2ΔA pif1ΔA mre11-H125N strains are equally as sensitive to IR as mre11ΔA strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2ΔA pif1ΔA mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5’ to 3’ degradation at DSB ends. We further show that sgs1ΔA mre11-H125N, but not sgs1ΔA, is very sensitive to IR, implicating the Sgs1 nuclease in the Dna2-mediated pathway.

Introduction

Double-strand breaks (DSBs) are a major result of endogenous DNA replication errors and of exogenous DNA damaging agents, and failure to repair such breaks leads to the gross chromosomal rearrangements characteristic of tumor cells. In yeast, homologous recombination (HR), carried out by proteins encoded by the RAD52 epistasis group, is used to repair DSBs induced by ionizing radiation (IR). The time course of IR repair in vivo has been assayed by observing the post-irradiation appearance of foci of the various HR repair proteins tagged with green fluorescent protein [1]. Mre11, Rad50, and Xrs2 form a complex (MRX) and are the first arrivals after DSB formation. The MRX complex regulates the processing of the end of the DSB, resulting in resection of the 5’ end and leaving a 3’ single-stranded overhang [2]. RPA binds the single-stranded DNA, followed by Rad52 and Ddc2/Mec1 binding. Ddc2/Mec1 is the apical checkpoint-activating protein kinase. Rad52 can mediate the exchange of RPA for the Rad51 strand exchange protein, generating the 3’ terminal filament that initiates invasion into the intact sister or homologous chromosome [3]. Rad51 association is followed by the binding of Rad54 and additional strand exchange proteins, Rad55 and Rad57. Mechanistically, the initial steps are poorly understood. Our studies address the function of the MRX complex, which has ATP binding, ATPase, adenylyl kinase, nuclease, and DNA end-bridging activity [4,5]. Mre11 houses the nuclease activity in a domain containing five phosphodiesterase motifs homologous to the E. coli sbcD exonuclease. Mre11 has 3’ to 5’ exonuclease activity on double-stranded DNA and single-stranded endonuclease activity on DNA hairpins [6–8]. Rad50 is an ATP binding protein, with the Walker A motif in the N terminus and Walker B motif in the C terminus separated by a long heptad repeat domain [9]. A signature (arginine finger) region in the C terminus is also part of the ATP binding motif [10]. Mutations in the ATP binding motif result in strains with meiotic recombination null phenotypes [9,11]. The Xrs2 protein (known as Nbs1 in mammals) contains a forkhead domain at the N terminus and a binding domain for Tel1 at the C-terminus. Tel1 is a kinase involved in telomere maintenance and checkpoint signaling. Mre11/Rad50/Nbs1 has weak ATP-stimulated DNA unwinding activity [12].

In bacterial recombinational repair, the strand invasion intermediate is generated by the RecBCD helicase/nuclease in a complicated reaction requiring 5’ to 3’ helicase, 3’ to 5’ helicase, 5’ to 3’ nuclease, 3’ to 5’ nuclease, and a specific DNA sequence called chi. A counterpart to this complex has not been identified in eukaryotic cells. The most highly radioresistant organism known, Micrococcus radiodurans, does not have a RecBCD helicase/nuclease, but does possess a complete RecF pathway [13]. A major question has been what pathway is found in eukaryotes. MRE11 is a nuclease involved in DSBR repair and mre11ΔA strains are extremely sensitive to irradiation. After 17 krad the survival of an mre11ΔA strain is about 0.06%. If one assumes 2 krad results in 1 DSB per haploid cell [14], then a survival of about 0.02% would be expected in the absence of repair. Therefore, repair is nearly absent in a mre11ΔA strain. mre11-D65N and mre11-H125N are more sensitive to IR than MRE11 strains but much more resistant than...
mre11A strains. At a high dose of 70 krads about 75 DSBs are induced, which would predict a survival value of e^{-35} or 10^{-13}% in the complete absence of repair. The survival of mre11-D36N and mre11-H125N mutants at 70 krads is about 5 to 10 fold less than MRE11 strains (3% survival), which is much higher than the predicted survival in the absence of DSB repair [15,16]. In addition, paradoxically, Mre11 has 3’ to 5’ exonuclease activity rather than the 5’ to 3’ nuclease expected for 5’ resection [6–8]. Furthermore, resection is not reduced in mre11 mutants defective in the nuclease active site but proficient in the other functions of Mre11 [17,18]. This has led to the proposal that other nucleases are required and that they can compensate for the absence of the Mre11 nuclease. Sac2 is another nuclease that appears to be associated with the MRX complex, but also has 3’ to 5’ activity [19]. Exo1, a 5’ to 3’ nuclease of the Fen1 family involved in mismatch repair, may play a role. Overproduction of Exo1 indeed increases the IR resistance of an mre11A strain [20,21]. However, exo1Δ mre11A and exo1Δ mre11-nuclease deficient double mutants are viable, are no more sensitive to IR than mre11A or mre11-nuclease deficient mutants, respectively, and can carry out gene conversion as efficiently in vivo as EXO1 MRE11 strains [20]. This suggests that yet another nuclease must compensate for Mre11 nuclease deficiency.

Dna2 is a candidate for this role. Dna2 is a 5’ to 3’ helicase, 5’ to 3’ exonuclease, 3’ to 5’ exonuclease, and has single strand DNA annealing and strand exchange activity [22–20]. Dna2 plays a role in Okazaki fragment processing (OFP), assisting FEN1 in RNA primer removal [26,29]. Dna2 forms a hub in a genetic network of 322 proteins that preserve genome stability [33]. Since the Dna2 gene is essential, however, it has been difficult to test the hypothesis that Dna2 nuclease participates in generation of the 3’ overhang during DSB repair. Recently, we found that the inviability of dna2Δ mutants is efficiently suppressed by deletion of Pif1, a helicase orthologous to E. coli RecD helicase, that functions in DNA replication and telomere homeostasis [34,35]. Using a dna2Δ pif1Δ strain and mre11Δ nuclease defective mutants, we show that the nucleases of Dna2 and Mre11 are required in repair of IR-induced damage, presumably in 5’ resection, and that they can compensate for each other’s loss. In addition, we show that the helicase of Dna2 is dispensable but that the Sgs1 helicase is required for Dna2 nuclease to be able to compensate for lack of Mre11 nuclease.

Results

Dna2 nuclease can compensate for the loss of Mre11 nuclease in DSB repair and vice versa

The relative importance of repair proteins can be measured by determining the survival of mutants defective in the respective proteins after increasing doses of a DNA damaging agent. We have used assays that measure survival after an acute dose of IR followed by growth in the absence of the DNA damaging agent. We were surprised that the dna2Δ pif1Δ mutant was resistant to X-rays (Figure 1, the sensitivity of mre11A and mre11A pif1Δ are shown as controls), since several dna2 hypomorphic mutants are sensitive to IR [31,36]. This suggested that in the absence of Pif1, another protein might carry out the role of Dna2 in repair. Both hypomorphic dna2 mutants and the dna2Δ pif1Δ strain are synthetically lethal with mutants affecting three nuclease mutants defective in DSB repair, mre11A, sae2A, and exo1Δ [31,33,34]. We reasoned that the Mre11 nuclease might be compensating for the loss of Dna2 during X-ray repair in the dna2Δ pif1Δ strain.

To test the hypothesis that Mre11 and Dna2 had compensatory functions, we wished to compare the X-ray sensitivity of dna2Δ pif1Δ and dna2Δ pif1Δ mre11-nuclease defective strains. We first created dna2Δ pif1Δ mre11A strains carrying MRE11, mre11-D36N or mre11-H125N on centromeric plasmids. The D36N and H125N mutations lie in the conserved phosphodiesterase motif of Mre11, and the mutant proteins have no in vitro endonuclease activity [18,37]; however, they are able to form a complex with Rad50 and Xrs2. As shown in

![Figure 1. X-ray resistance of the dna2A pif1Δ strain compared to sensitivity of mre11A pif1Δ. The strains MB120-5A (WT), MB121- pif1Δ, MB1618- dna2A pif1Δ, MB122-17C- mre11A, MB124-2D- mre11A pif1Δ were harvested in mid-log phase, resuspended in water, irradiated, serially diluted (1:10), and plated.

doi:10.1371/journal.pone.0004267.g001](https://www.plosone.org/doi/10.1371/journal.pone.0004267.g001)
Figure 2. dna2Δ pif1Δ mre11Δ (pRS414 mre11Δ-D56N) and dna2Δ pif1Δ mre11Δ (pRS414 mre11Δ-H125N) strains exhibit similar sensitivity to X-rays as mre11Δ pif1Δ. These strains were created by dissecting tetrads from the following crosses: MATa dna2Δ pif1Δ trp1Δ bar1Δ/ MATa mre11Δ trp1Δ (pRS414 MRE11), MATa dna2Δ pif1Δ trp1Δ bar1Δ/ MATa mre11Δ trp1Δ (pRS414 mre11Δ-D56N) and MATa dna2Δ pif1Δ trp1Δ bar1Δ/ MATa mre11Δ trp1Δ (pRS414 mre11Δ-H125N) diploids. Trp+ spores were replica plated, and irradiated. Control strains mre11Δ pif1Δ (pRS414 MRE11) and dna2Δ pif1Δ mre11Δ (pRS414 MRE11) were identified from the respective cross and were X-ray resistant. dna2Δ pif1Δ mre11Δ (pRS414 mre11Δ-D56N) or dna2Δ pif1Δ mre11Δ (pRS414 mre11Δ-H125N), from the two respective crosses were radiation sensitive. To compare the radiation sensitivity of the dna2Δ pif1Δ mre11Δ (pRS414 mre11Δ-D56N) and the dna2Δ pif1Δ mre11Δ (pRS414 mre11Δ-H125N) (bottom panel) to mre11Δ pif1Δ (pRS414 mre11Δ-D56N) and to mre11Δ pif1Δ (pRS414 mre11Δ-H125N) strains (top panel), serially diluted cells were irradiated with 26 krads on a plate and allowed to grow for three days. Note that a dna2Δ pif1Δ mre11Δ strain carrying only the pRS vector is inviable, so an mre11Δ pif1Δ strain carrying the pRS vector alone is shown as the control, as indicated by the * in the bottom panel.

Figure 2, both wild-type and nuclease-defective alleles of MRE11 suppress the lethality of dna2Δ pif1Δ mre11A strains. As predicted, however, the strains deficient in both Dna2 and the Mre11 nuclease are X-ray sensitive, while strains expressing wild-type Mre11 are resistant to IR. Thus, in the absence of Dna2, Mre11 nuclease is required for X-ray repair. By contrast, the X-ray sensitivity of pif1Δ mre11Δ, in which there is a functional Dna2 nuclease, is complemented not only by wild-type MRE11 but also by nuclease defective mre11Δ-D56N or mre11Δ-H125N. These results suggest that Dna2 nuclease can function in X-ray repair in the absence of Mre11 nuclease, but not in the complete absence of Mre11. It also says that Mre11 nuclease can function in X-ray repair in the absence of Dna2.

To ensure that the X-ray sensitivities of the nuclease-dead mre11Δ mutants were not the result of inefficient expression due to employing extrachromosomal plasmids to express the mre11Δ alleles, the mre11Δ nuclease defective genes were integrated into the chromosome by two-step gene replacement. The dna2Δ pif1Δ mre11Δ-D56N and dna2Δ pif1Δ mre11Δ-H125N clones were as X-ray sensitive as the mre11Δ pif1Δ strain (compare Figure 3A and Figure 3B to Figure 1). Importantly, in both dna2Δ pif1Δ mre11Δ-D56N and dna2Δ pif1Δ mre11Δ-H125N X-ray sensitive clones, X-ray resistance is restored by introduction of a plasmid expressing either DNA2 or MRE11 (Figure 3A,B). The helicase activity of Dna2 was not essential for complementation, since the X-ray resistance of the dna2Δ pif1Δ mre11Δ-H125N clone was restored by plasmids expressing Dna2 with either of two mutations in the helicase domain: pRS314 dna2 K160E plasmid, which has a mutation in the conserved Walker P loop but has a functional nuclease, and pRS314 dna2 R1253Q (dna2-2) (Figure 3B). We conclude that it is the nucleolytic activities of Mre11 and Dna2 that are complementary.

mre11Δ-D56N and mre11Δ-H125N mutants are not sensitive enough to DNA damaging agents to allow direct scoring in genetic crosses. Therefore, to compare the DNA2 PIF1 mre11Δ nucleases-minus with the dna2Δ PIF1 mre11Δ nucleases-minus mutants, triple mutants were also constructed by introduction of a genetically tagged copy of the mre11Δ nuclease-minus mutants into the chromosome, as described in the legend to Figure 4. dna2Δ PIF1 mre11Δ were X-ray resistant (see Figure 1). As before, dna2Δ PIF1 mre11Δ mre11Δ::NatR::306 mre11Δ-D56N::URA3 or dna2Δ PIF1 mre11Δ mre11Δ::NatR::306 mre11Δ-H125N::URA3 were highly sensitive to IR compared to the mre11Δ::NatR::306 mre11ΔD56N::URA3 and the mre11Δ::NatR::306 mre11ΔH125N::URA3 strains (Figure 4 A,B). Clearly, in the absence of Dna2 nuclease, Mre11 nuclease is essential for repair of IR-induced damage.

Sgs1 is Required for the Dna2-mediated Repair Pathway

Based on the above results, we hypothesized that Dna2 nuclease might play a role in resection of the 5’ end at IR-induced breaks. Since the Dna2 helicase was not required, we asked what helicase might participate to convert the DSB into a substrate recognized by Dna2, which recognizes only single-stranded termini. Sgs1, which encodes a helicase of the RecQ family, was a likely candidate, since helicase defective dna2-2 mutants are defective in X-ray repair but the double sgs1Δ dna2-2 mutant is significantly more sensitive to IR than dna2-2, even though sgs1Δ itself is X-ray resistant [31,38]. Furthermore, we also recently demonstrated that human BLM, a RecQ family helicase, can suppress the MMS and
bleomycin sensitivity of dna2-2 mutants [39,40]. We therefore investigated whether yeast Sgs1 might be involved in the Dna2 repair pathway. We found, as have others, that sgs1D mutants are as resistant to IR as wildtype (Figure 5). We then constructed an sgs1D mre11-H125N double mutant. As we predicted, the double mutant was as sensitive to IR as the dna2D mre11-H125N mutant (compare Figures 3 and 4 with Figure 5). We conclude that Sgs1 is required in order for Dna2 to compensate for the loss of Mre11 nuclease during repair of IR-induced damage.

Sae2 is also a nuclease that functions in the MRX complex and can function as a nuclease on its own [19]. Thus, we wanted to test whether sae2D sgs1A strains have the same survival as sgs1A mre11-H125N, dna2A mre11-H125N, and mre11A strains. As illustrated in Figure 5, sae2D sgs1A strains are indeed sensitive to IR as sgs1A mre11-H125N strains. These results put Mre11 nuclease and Sac2 nuclease in one pathway and Dna2 nuclease and Sgs1 helicase in another pathway in the initiation of exonucleolytic degradation after DSB formation.

Figure 3. (A) X-ray sensitivity of a dna2A pif1A mre11-D56N strain and complementation by CEN plasmids containing Mre11 or Dna2. DNA fragments containing mre11-D56N and mre11-H125N mutant genes with 800 bp 5' and 140 bp 3' to the gene were cloned into pRS306URA3, cleaved in the mre11 promoter and transformed into a dna2A pif1A MRE11 strain to allow integration at the MRE11 locus. The resulting transformants were propagated on YPD media then grown on 5-FOA containing media to excise the mre11 allele. Approximately 15% of the pRS306mre11-D56N and pRS306mre11-H125N Ura− pop outs were X-ray sensitive. Strains MB161B-56- dna2A pif1A mre11D56N, MB161B-56 (pRS414MRE11), MB161B (pRS314DNA2) were then compared for X-ray sensitivity as in Figure 1. (B) X-ray sensitivity of a dna2A pif1A mre11-H125N strain and complementation by plasmids containing MRE11 or nuclease proficient DNA2 genes. Strain MB161B-125 – dna2A pif1A mre11H125N, MB161B-125 (pRS414MRE11), MB161B-125 (pRS314DNA2), MB161B (pRS314dna2K1080E), MB161B-125 (pRS314dna2-2) were compared for X-ray sensitivity as described in Figure 1.

doi:10.1371/journal.pone.0004267.g003
Dna2 Helicase Activity produces the Requirement for Dna2 Nuclease Activity

Separation of function of MRX ATP binding and nuclease functions has been investigated extensively so we attempted a similar analysis of Dna2. The nuclease of Dna2 maps to a region N-terminal to the helicase, between amino acids 649–744 in a domain containing conserved E. coli RecB nuclease motifs. Two mutants of Dna2, D657A and E675A, specifically affecting RecB active site motifs, result in Dna2 proteins with greatly reduced or undetectable nuclease activity but with intact helicase and ATPase activity [25,41]. The plasmid pGAL::DNA2, is a high copy vector containing a GAL10 inducible Dna2 but expresses sufficient Dna2 without induction to complement dna2-1 mutants at 37°C on glucose plates [25]. The plasmids pGAL::dna2-K1080E, pGAL::dna2-D657A, pGAL::dna2-E675A do not complement a dna2-1 mutant on glucose plates at 37°C [25]. Also, we found here, that the dna2-K1080E, dna2-D657A, and dna2-E675A genes expressed from centromeric plasmids fail to complement the dna2A

Figure 4. (A) Comparison of the X-ray sensitivity of a mre11-D56N pif1/ strain with a dna2/ mre11-D56N pif1/ strain. The integrating plasmids pRS306::mre11-D56N::URA3 and pRS306::mre11-H125N::URA3 were cut with Sph1 which cleaves about 300 bp 5’ to the ATG of MRE11 and transformed into a MATa mre11::natR strain and insertion at the MRE11 locus was selected for on G418 plates lacking uracil. These strains were mated with MB1618-MATa dna2::pif1/ MRE11, and the diploids were sporulated and dissected. When the resulting spores were scored, the NatR gene always segregated with the URA3 gene, demonstrating that the pRS306::mre11 nuclease minus plasmids were integrated at the MRE11 loci in the respective strains. Strains MB126::mre11::natR::mre11-D56N::URA3, MB128::mre11::natR::mre11-D56N::URA3 pif1/ A, and MB133 - dna2::pif1/ A mre11::natR::mre11-D56N::URA3 were treated as in Figure 1 to determine IR sensitivity. (B) Comparison of the X-ray sensitivity of a mre11-H125N pif1/ strain with a dna2/ mre11-H125N pif1/ strain. Strains were constructed as in Figure 4A. Strains MB127::mre11::natR::mre11-H125N::URA3, MB129::mre11::natR::mre11-H125N::URA3 pif1/ A, and MB134 - dna2::pif1/ A mre11::natR::mre11-H125N::URA3 pif1/ A, were treated as in Figure 1.

doi:10.1371/journal.pone.0004267.g004
PIF1 mutant (data not shown). This indicates that the ATP binding and nuclease functions of Dna2 are essential. To verify that an active Dna2 nuclease was necessary for IR repair in the absence of Mre11 nuclease, we compared the growth and X-ray sensitivity of \(\text{dna2}^{+} \) strains transformed with centromeric plasmids carrying \(\text{DNA2} \), \(\text{dna2K1080E} \), and \(\text{dna2E675A} \), or \(\text{dna2K1080E},\text{E675A} \). The \(\text{dna2K1080E},\text{E675A} \) is doubly deficient in both helicase and nuclease. When the \(\text{dna2A} \) \(\text{pif1A} \) transformants were incubated at \(23^\circ \text{C} \) on tryptophan deficient plates all five transformants grew, as illustrated in Figure 6. At \(30^\circ \text{C} \), the transformants containing the plasmids \(\text{pRS314}, \text{pRS314DNA2}, \text{pRS314dna2K1080E} \) (helicase minus, nuclease plus) formed viable colonies. Thus, \(\text{pif1A} \) suppresses the inviability of a \(\text{dna2A} \) \(\text{pif1A} \) (\(\text{RS314dna2-K1080E} \)) strain, and in fact the \(\text{dna2A} \) \(\text{pif1A} \) (\(\text{RS314dna2-K1080E} \)) strain even grows at \(37^\circ \text{C} \), unlike the \(\text{dna2A} \) \(\text{pif1A} \) strain [34]. Interestingly, the \(\text{pRS314dna2E675A} \) transformant (helicase plus, nuclease minus) did not form colonies at \(30^\circ \text{C} \) (Figure 6). However, the \(\text{pRS314dna2K1080E},\text{E675A} \) (helicase minus, nuclease minus) did support viability at \(30^\circ \text{C} \). We conclude that at this temperature the absence of the nuclease was deleterious to normal DNA replication, and furthermore that it is the Dna2 helicase activity that generates a need for the Dna2 nuclease.

Next, the \(\text{dna2A} \) \(\text{pif1A} \) transformants were irradiated after plating and incubated at \(23^\circ \text{C} \). The \(\text{pRS314}, \text{pRS314DNA2}, \text{pRS314dna2K1080E} \), and \(\text{pRS314dna2K1080E},\text{E675A} \) transformants were resistant to IR, whereas the transformant containing the \(\text{pRS314dna2E675A} \) plasmid was sensitive to IR. Thus, as with

![Figure 6. Expression of nuclease deficient Dna2 is toxic in a dna2A pif1A strain.](image_url)
growth at the restrictive temperature of 30°C, after IR, the Dna2 nuclease minus strain is sensitive to damage, but only in the presence of an active Dna2 helicase. We conclude that the activities of the Dna2 helicase and nuclease must be properly coordinated for both DNA replication and repair.

The requirement for coordination of the Dna2 helicase and nuclease was further examined in the dna2Δ pif1Δ mre11-H125N mutant. The dna2Δ pif1Δ mre11-H125N (pGAL::DNA2) was transformed with the same set of Dna2 mutant plasmids used in Figure 6, to yield double transformants, dna2Δ pif1Δ mre11-H125N (pGAL::DNA2) (pRS14Δ-dna2 mutant). Each double transformant was grown in tryptophan deficient liquid media to select for the pRS314 plasmid. The resulting cultures were spotted on tryptophan-deficient or tryptophan-deficient media containing 5-FOA and grown at 23°C needing nuclease processing.

Dna2 also appears to be required for extending a short telomere, and its nucleolytic function may be at play [32,43,44]. Dna2 also appears to be required for extending a short telomere, and its nucleolytic function may be at play [32,43,44].

Figure 7. Inactivation of the Dna2 nuclease is lethal in a pif1Δ mre11-H125N strain. A dna2Δ pif1Δ mre11-H125N trp1Δ (pGAL::DNA2URA3) strain was transformed with the Trp⁺ plasmids pRS314DNA2, Hel⁺, Nuc⁺; pRS314, Vector; pRS314dna2K1080E, Hel⁺, Nuc⁺; pRS314dna2E675A, Hel⁺, Nuc⁺ or pRS314dna2K1080E, dna2E675A, Hel⁺, Nuc⁺. The Trp⁺ Ura⁺ transformants were grown in tryptophan deficient media and spotted onto tryptophan minus (left) or tryptophan minus, 5-FOA containing (right) media at 23°C and photographed after 4 days at 23°C.

doi:10.1371/journal.pone.0004267.g007

Discussion

We have shown that the Dna2 5’ to 3’ nuclease can function in IR repair in the absence of an active Mre11 nuclease. The key result is that the dna2Δ pif1Δ strain is resistant to X-rays but the dna2Δ pif1Δ mre11-H125N mutant is as sensitive to X-rays as an mre11Δ strain, showing that in the absence of both the Mre11 nuclease and Dna2 nuclease, cells are nearly blocked in repair. Thus, strikingly, either nuclease can support repair efficiently (Figure 3). The most direct mechanistic inference is that Dna2 and Mre11 are performing at least partially overlapping nucleolytic functions in processing the ends of DSBs. Since Mre11 has 3’ to 5’ nuclease rather than 5’ to 3’ activity in vitro, the question arises as to how it can perform 5’ to 3’ nucleolytic degradation in the absence of Dna2. Mre11 may achieve this in the absence of Dna2 by cleaving hairpin structures in ends that are unwound by an unknown helicase [8]. Another interpretation is that Mre11 nuclease and Dna2 function sequentially and that a second nuclease, exonuclease 1, can substitute for Dna2 nuclease, when Mre11 is present. In the absence of Mre11 nuclease, however, Dna2 but not Exo1, can overcome the requirement for the Mre11 nucleolytic step. We favor the latter interpretation (see below).

While our studies show that the Dna2 nuclease can compensate entirely, in terms of repair and survival, for the absence of Mre11 nuclease, Dna2 cannot compensate for the absence of Mre11. Mre11 is clearly required to form the MRX end processing complex.

The interaction between Mre11 and Dna2 at DSB damage is paralleled by the fact that Dna2, like Mre11, is found at telomeres, the linear ends of chromosomes that resemble DSBs [32]. The Mre11 nuclease is required during the de novo synthesis of telomeres at a DSB with a telomere seed sequence, though an mre11Δ nuclease deficient mutant does not have short telomeres [42]. Dna2 also appears to be required for extending a short telomere, and its nucleolytic function may be at play [32,43,44]. Interestingly, dna2Δ pif1Δ mutants have short telomeres compared to pif1Δ mutants [34].

Unexpectedly, our study has also supplied genetic evidence that supports biochemical studies suggesting that the Dna2 helicase and nuclease activities are coupled. dna2Δ pif1Δ expressing a Dna2-E675A (helicase plus, nuclease minus) protein have a reduced maximum permissive growth temperature and they are sensitive to IR. However, dna2Δ pif1Δ expressing a helicase minus, nuclease minus double Dna2 mutant protein has no growth or repair defect, i.e. inactivation of the helicase removes the requirement for the nuclease (Figure 6). This suppression occurs only if Mre11...
nuclease is functional (Figure 7). Therefore, we propose that the Dna2 helicase creates a structure during DNA replication and DNA repair that is potentially toxic unless coordinately processed by the nuclease of either Dna2 or, in its absence, Mre11. Further, the observed lethality at all temperatures and in the absence of DNA damage in mre11-1/nuclease minus dna2A pif1A expressing nuclease defective Dna2 leads to the hypothesis that Mre11 nuclease may play a role in Okazaki fragment processing or in repair of lethal endogenous DNA damage. A role for Mre11 in ODP is consistent with previous results showing that mre11-H125N rad27 mutants are inviable [18].

Also worth emphasizing is the fact that our findings suggest an additional role for Dna2, besides 5ʹ resection, in X-ray repair. dna2A pif1A strains are as resistant to IR as wild-type (this work), whereas dna2A PIF1 overexpressing FEN1 to maintain viability is as X-ray sensitive as rad52A [31]. Therefore, during IR repair, Pif1 may contribute to formation of a structure that is lethal unless processed by Dna2, and this function is not complemented by MRE11, EXO1, or SGS1. Furthermore, a dna2A PIF1 mutant (nuclease plus, helicase defective) is 100 times more sensitive to IR than DNA2 PIF1 (at 75 krads) [31]. However, the dna2A gene complements the X-ray sensitivity of the dna2A pif1A mre11-H125N strain (Figure 5B). These latter two results appear at odds but could be explained if Dna2-2 protein can perform resection but not some other function necessary for X-ray resistance in the presence of PIF1, either during resection or during strand exchange.

Mechanistic studies that were published after our work was completed show that dna2 mutants as well as sgs1 mutants exhibit significantly delayed long-range resection in a Rad51-independent single-strand annealing (SSA) repair reaction at an enzymatically-induced DSB [45,46]. Based on these studies and the enzymatic activities of Dna2 and Sgs1, we propose that our results imply an interaction between Mre11 nuclease and Dna2/Sgs1 during resection in Rad51-dependent homologous recombination. At the same time, however, our new results also raise a conundrum. The reduced exonuclease resection in the dna2A pif1A mutant observed in the SSA studies does not appear to cause a defect in subsequent Rad51-dependent repair [46], since we show that the dna2A pif1A strain is as resistant to IR as a wild-type strain after 70 krads IR (35 DSB or 2 per 17 chromosomes). Similarly, sgs1A strains, though they show reduced SSA, are as resistant to IR as wild-type strains, even after 75 krads. Thus, the mechanisms at work during the long-range resection in SSA may not be entirely interchangeable with the resection pathway leading to strand exchange. In this regard it is interesting that Exo1, another 5ʹ to 3ʹ nuclease, appears able to compensate for Dna2 or Sgs1 deficiency in SSA [45,46], but does not appear to be able to do so in IR repair, since dna2A mre11-H125N and sgs1 mre11-H125N mutants are as sensitive to IR as mre11A, even though Exo1 is present at normal levels and since mre11 nuclease-defective exo1 double mutants are not significantly more sensitive to IR than mre11 nuclease deficient mutants. Previous studies showed that only 100–300 bp of homology are required for Rad51-dependent gene conversion [47,48], which differs from SSA in that gene conversion requires strand invasion of a homologous sister chromatid or homolog. We propose that the Dna2/Sgs1 pathway is the major pathway of resection in homologous recombination.

The observed IR sensitivity of the sgs1 mre11-H125N mutant we report here, combined with the defect in resection in sgs1A demonstrated by others, may help explain both some of our previous and our current results. We have shown that helicase defective dna2-2 mutants are very defective in X-ray repair, but the double sgs1A dna2-2 mutant is significantly more sensitive to IR than dna2-2, even though sgs1A itself is X-ray resistant [31]. Thus, Dna2 may compensate for the absence of Sgs1 helicase, but Sgs1 does not fully compensate for a defective Dna2 helicase. We have previously shown that BLM, a human counterpart of Sgs1 helicase, complements the MMS sensitivity of dna2-2 mutants as well as the lethality of dna2-1 mutants [39], and this suppression can now be attributed to suppression of defects in DSB processing. We expect that overexpression of BLM should also suppress the IR-sensitivity of dna2-2 mutants. Genetic evidence suggests Pif1 helicase is an inhibitor of the Sgs1 helicase [49]. Another possible role for Dna2 may be to counteract Pif1 inhibition of Sgs1 during the 5ʹ to 3ʹ processing step.

What do our results tell us about the role of Dna2 in endogenous damage repair? We have previously identified the DNA replication fork pause at the replication fork barrier (RFB) in the ribosomal DNA as a specific site of endogenous DNA damage requiring the combined activities of Dna2 and Sgs1 for repair. In the presence of Fob1, DNA replication fork pauses at the RFB and a DSB arises, the occurrence of which is elevated in dna2-2 and sgs1A mutants [40,50]. Interestingly, Pif1 is also required for normal levels of pausing at the RFB and subsequent chromosomal breakage [51]. These endogenous DBSs and the inability to repair them contribute to the synthetic sickness/lethality in the dna2-2 sgs1A strain, since the sickness/lethality is suppressed by the fob1A mutation [40,50]. A similar situation occurs with Ctf4, a replication/cohesion protein, in which the dna2-2 ctf4A mutant is lethal, but the dna2-2 ctf4A fob1A is viable and slow growing. The dna2-2 ctf4A fob1A mutant is significantly more sensitive to IR than either dna2-2 fob1A or ctf4 fob1A mutants [33]. Presumably dna2-2 ctf4A inviability also results from failure to repair endogenous DSBs at the RFB. Thus, Dna2 plays a role in repairing endogenous breaks in collaboration with Sgs1 and Ctf4 and this is likely a reflection of the role of Dna2 and Sgs1 in resection. It is probably this role of Dna2 that accounts for the remarkable observation that increasing the gene dosage of Dna2 by one copy leads to partial genome stabilization and is absolutely required for viability of a mre1-21 strain [52].

In conclusion, while our results and those of Zhu et al. [46] clarify the multiple events occurring early in repair at DSBs, especially the previously unappreciated centrality of Dna2, they also highlight several fundamental questions for the future: First, how much resection is sufficient for repair and what is the rate-limiting step in repair? Second, what is the mechanism of resection per se? How do Mre11 and Dna2, which may form a link between DNA replication and repair, coordinate repair of endogenous DSBs occurring due to replication fork failure?

Materials and Methods

Strains and Plasmids

The plasmids pRS314DNA2, pRS314dna2K1080E, pRS314dna2E675A, and pRS314dna2K1080E,E675A have the 6 kb EcoRI fragment containing Dna2 or Dna2 with the indicated mutations cloned into pRS414, pRS314, and pRS414mre11-D56N, and this suppression was observed with Fob1 in the Dna2 mutant (Figure 5B). These endogenous DBSs and the inability to repair them contribute to the synthetic sickness/lethality in the dna2-2 sgs1A strain, since the sickness/lethality is suppressed by the fob1A mutation [40,50]. A similar situation occurs with Ctf4, a replication/cohesion protein, in which the dna2-2 ctf4A mutant is lethal, but the dna2-2 ctf4A fob1A is viable and slow growing. The dna2-2 ctf4A fob1A mutant is significantly more sensitive to IR than either dna2-2 fob1A or ctf4 fob1A mutants [33]. Presumably dna2-2 ctf4A inviability also results from failure to repair endogenous DSBs at the RFB. Thus, Dna2 plays a role in repairing endogenous breaks in collaboration with Sgs1 and Ctf4 and this is likely a reflection of the role of Dna2 and Sgs1 in resection. It is probably this role of Dna2 that accounts for the remarkable observation that increasing the gene dosage of Dna2 by one copy leads to partial genome stabilization and is absolutely required for viability of a mre1-21 strain [52].

In conclusion, while our results and those of Zhu et al. [46] clarify the multiple events occurring early in repair at DSBs, especially the previously unappreciated centrality of Dna2, they also highlight several fundamental questions for the future: First, how much resection is sufficient for repair and what is the rate-limiting step in repair? Second, what is the mechanism of resection per se? How do Mre11 and Dna2, which may form a link between DNA replication and repair, coordinate repair of endogenous DSBs occurring due to replication fork failure?

Materials and Methods

Strains and Plasmids

The plasmids pRS314DNA2, pRS314dna2K1080E, pRS314dna2E675A, and pRS314dna2K1080E,E675A have the 6 kb EcoRI fragment containing Dna2 or Dna2 with the indicated mutations cloned into pRS314. The construction of the Dna2 containing fragment and further construction of the mutants was described previously [25]. The plasmid pSEY18GALDNA2, referred to herein as pGAL::DNA2, was described previously [25], except that in this work the DNA2 gene carried an additional FLAG tag, MDYKDDDK, at the N terminus of the protein.

The plasmids pRS414MRE11, pRS414mre11-D56N, and pRS414mre11-H125N [gift of K. Lewis, Texas State University, San Marcos, TX] contain the MRE11 genes with about 800 bp 5ʹ to the ATG and 136 bp 3ʹ to the TAG contained on a Kpn1 Not1 fragment. The Kpn1 Not1 fragments containing mre11-D56N and mre11-H125N were cloned into the Kpn1 Not1 site of the integrating
H125N plasmids were cut with SphI and transformed into yeast.

References

1. Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair processes. Cell 118: 699–713.

2. Ivanov EJ, Sugawara N, White CI, Fabre F, Haber JE (1994) Mutants of XRS2 and RAD59 delay, but do not prevent, mating-type switching in Saccharomyces cerevisiae. Mol Cell Biol 14: 3414–3425.

3. Sung P (1997) Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272: 28194–28197.

4. D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3: 317–327.

Table 1. Strains.

Strain	Description
BY4741	MAT α his3Δ1 leu2Δ0 met15Δ0 ura3Δ0
BY4742	MAT α his3Δ1 leu2Δ0 met15Δ0 ura3Δ0
MB120-5A	4742 MATα bar1Δ::kanMX trp1Δ
MB121	4741 MATα pif1Δ::HIS3 bar1Δ::kanMX
MB122-17C	4741 MATα mre11Δ::natR bar1Δ::kanMX
MB123-1D	4742 MATα mre11Δ::natR trp1Δ

X-ray Treatment

Cells were treated with X-rays as previously described using a Pantak MKII X-ray machine operated at 20 mA and 70 keV [31]. The dosimetry was determined using a Radca\(^{\text{a}}\); 0.6 cubic centimeter

plasmid, pRS306. The pRS306*vre11-D56N* and pRS306*vre11-H125N* plasmids were cut with SphI and transformed into yeast. All *MRE11* and *DNA2* alleles used in this study are expressed under the control of their native promoters.

Strains used are described in Table 1.

Acknowledgments

We thank Kevin Lewis for the cloned wild-type and mutant *MRE11* genes.

Author Contributions

Conceived and designed the experiments: JLC MEB. Performed the experiments: MEB. Analyzed the data: JLC MEB. Wrote the paper: JLC MEB.
Moreau S, Morgan EA, Symington LS (2001) Overlapping functions of the

Resnick MA, Martin P (1976) The repair of double-strand breaks in the nuclear

Lewis LK, Karthikeyan G, Westmoreland JW, Resnick MA (2002) Differential

Llorente B, Symington LS (2004) The Mre11 nuclease is not required for 5

Moreau S, Morgan EA, Symington LS (2001) Overlapping functions of the

Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT (2007) Sae2 is

Alani E, Subbiah S, Kleckner N (1989) The yeast RAD50 gene encodes a

Bae S-H, Seo Y-S (2000) Characterization of the enzymatic properties of the

DNA2

Masuda-Sasa T, Polaczek P, Campbell JL (2006) Single strand annealing and

Budd ME, Choe W-C, Campbell JL (2000) The nuclease activity of the yeast Dna2 enzyme is essential in vivo. J Biol Chem 275: 26030–26039.

Masuda-Sasa T, Polaczek P, Campbell JL (2006) Single strand annealing and ATP-independent strand exchange activities of yeast and human DNA2: possible role in Okazaki fragment maturation. J Biol Chem 281: 38553–38564.

Budd ME, Choe W-C, Campbell JL (2000) The nuclease activity of the yeast Dna2 protein, which is related to the RecB/Ek nucleases, is essential in vivo. J Biol Chem 275: 16185–16192.

Budd ME, Campbell JL (1997) A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol Cell Biol 17: 2136–2142.

Budd ME, Choe W-C, Campbell JL (1995) DNA2 encodes a DNA nuclease essential for replication of eukaryotic chromosomes. J Biol Chem 270: 26766–26769.

Budd ME, Campbell JL (1995) A new yeast gene required for DNA replication encodes a protein with homology to DNA helicases. Proc Natl Acad Sci USA 92: 7642–7646.

Bae SH, Bae K-H, Kim JA, Seo YS (2001) RNA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412: 456–461.

Formosa T, Nissin T (1999) Dna2 mutants reveal interactions with DNA polymerase alpha and Cbf1, a Pol α accessory factor, and that show that full DNA2 helicase activity is not essential for growth. Genetics 151: 1459–1470.

Budd ME, Campbell JL (2000) The pattern of sensitivity of yeast dna2 mutants to DNA damaging agents suggests a role in DSB and postreplication repair pathways. Mutat Res 459: 173–186.

Choe W, Budd M, Imamura O, Hoopes L, Campbell JL (2002) Dynamic localization of an Okazaki fragment processing protein suggests a novel role in telomere replication. Mol Cell Biol 22: 2002–2017.

Budd ME, Tong AH, Polaczek P, Peng X, Boone C, et al. (2005) A network of multi-Tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet 1: 634–640.

Budd ME, Reis CC, Smith S, Myung K, Campbell JL (2006) Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol 26: 2498–2500.

Besler JB, Toere JZ, Zakian VA (2003) The Pif1p subfamily of helicases: region-specific DNA helicase? Trends in Cell Biology 11: 60.

Fiorentino DF, Crabtree GR (1997) Characterization of Saccharomyces cerevisiae dna2 mutants suggests a role for the helicase late in S phase. Mol Cell Biol 18: 2539–2557.

Hopffer KP, Karcher A, Craig L, Arthur LM, et al. (2000) Structural localization of an Okazaki fragment processing protein suggests a novel role in telomere replication. Mol Cell Biol 20: 9682–9694.

Moege S, Ferguson JR, Symington LS (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 19: 536–566.

Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT (2007) Sac2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/ Rad50/Srs2 complex. Mol Cell 28: 638–651.

Moreau S, Morgan EA, Symington LS (2001) Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. Genetics 159: 1423–1433.

Lewis K, Storici F, Van Komen S, Calero S, Sung P, et al. (2004) Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells. Genetics 166: 1701–1713.

Llorente B, Symington LS (2004) The Mre11 nucleosome is not required for 5’ to 3’ resection at multiple HO-induced double-strand breaks. Mol Cell Biol 24: 9682–9694.

Moreau S, Ferguson JR, Symington LS (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 19: 536–566.

Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT (2007) Sac2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/ Rad50/Srs2 complex. Mol Cell 28: 638–651.

Moreau S, Morgan EA, Symington LS (2001) Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. Genetics 159: 1423–1433.

Lewis K, Kurthkevan G, Westmoreland JW, Resnick MA (2002) Differential suppression of DNA repair deficiencies of Yeast rad50, exo1 and srs2 mutants by EJ01 and TEC1 (the RNA component of telomerase). Genetics 160: 49–62.

Bae S-H, Seo Y-S (2000) Characterization of the enzymic properties of the yeast Dna2 helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem 275: 30022–30031.

Bae S-H, Choi E, Lee K, Park J, Lee S, et al. (1998) Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP. J Biol Chem 273: 26030–26039.

Imamura O, Campbell JL (2003) The human Bloom syndrome gene suppresses the DNA replication and repair defects of yeast dna2 mutants. Proc Natl Acad Sci USA 100: 8193–8198.

Wei Tao, Budd M, Campbell JL (2003) Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability. Mutation Res 532: 157–172.

Lee K-H, Kim DW, Bae S-H, Kim J-A, Ryu G-H, et al. (2000) The endonuclease activity of the yeast Dna2 enzyme is essential in vivo. Nucl Acids Res 28: 2073–2081.

Frank CJ, Hyde M, Geisler CW (2006) Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol Cell 24: 425–432.

Tomita K, Kiese T, Kang H-Y, Seo Y-S, Uritani M, et al. (2004) Fission yeast Dna2 is required for generation of the telomeric single-strand overhang. Mol Cell 24: 9557–9567.

Parenteau J, Wellinger RJ (1999) Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol Cell Biol 19: 4143–4152.

Miningat EP, Symington LS (2000) Sac2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770–774.

Zhu Z, Chang W-H, Shi EY, Lee SE, Ira G (2000) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 135: 981–994.

Jin-ShoRobertson S, Michelich M, Ramcharan S (1993) Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 13: 3937–3950.

Ira G, Haber JE (2002) Characterization of RAD53-independent break-induced replication that acts preferentially with short homologous sequences. Mol Cell Biol 22: 6384–6392.

Wagner M, Price G, Rothstein R (2006) The absence of Top3 reveals an interaction between the Sgs1 and Pol1 DNA helicases in Saccharomyces cerevisiae. Genetics 174: 555–573.

Wei Tao, Budd M, Mays Hoopes LL, Campbell JL (2005) Dna2 helicase/ nuclease causes replicative fork stalling and double-strand breaks in the ribosomal DNA of Saccharomyces cerevisiae. J Biol Chem 278: 22513–22522.

Ivesa AS, Zhou J-Q, Zakian V (2000) The Saccharomyces Pol3p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in the ribosomal DNA. Cell 100: 479–489.

Vernon M, Lobachev K, Peters TD (2008) High rates of “unselected” aneuploidy and chromosomal rearrangements in tel m1c haploid yeast strains. Genetics 170: 237–247.