Liquid biopsy reveals KLK3 mRNA as a prognostic marker for progression free survival in patients with metastatic castration-resistant prostate cancer undergoing first-line abiraterone acetate and prednisone treatment

Emmy Boerrigter¹, Guillemette E. Benoist¹, Inge M. van Oort², Gerald W. Verhaegh², Onno van Hooij², Levi Groen², Frank Smit³, Irma M. Oving⁴, Pieter de Mol⁵, Tineke J. Smilde⁶, Diederik M. Somford⁷, Niven Mehra⁸, Jack A. Schalken² and Nielka P. van Erp¹

1 Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
2 Department of Urology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
3 MDxHealth, Nijmegen, the Netherlands
4 Department of Medical Oncology, Ziekenhuisgroep Twente, Almelo, the Netherlands
5 Department of Medical Oncology, Gelderse Vallei Hospital, Ede, the Netherlands
6 Department of Medical Oncology, Jeroen Bosch Hospital, ’s Hertogenbosch, the Netherlands
7 Department of Urology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
8 Deparment of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands

Keywords
abiraterone acetate; biomarkers; Castration-resistant prostate cancer; KLK3; liquid biopsy; RNAs

Correspondence
J. A. Schalken, Urological Research Laboratory, Department of Urology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
Fax: +31-24-36 35 121
Tel: +31-24-3614146
E-mail: jack.schalken@radboudumc.nl

(Received 13 November 2020, revised 12 February 2021, accepted 26 February 2021, available online 29 May 2021)
doi:10.1002/1878-0261.12933

Circulating RNAs extracted from liquid biopsies represent a promising source of cancer- and therapy-related biomarkers. We screened whole blood from patients with metastatic castration-resistant prostate cancer (mCRPC) following their first-line treatment with abiraterone acetate and prednisone (AA-P) to identify circulating RNAs that may correlate with progression-free survival (PFS). In a prospective multicenter observational study, 53 patients with mCRPC were included after they started first-line AA-P treatment. Blood was drawn at baseline, 1, 3, and 6 months after treatment initiation. The levels of predefined circulating RNAs earlier identified as being upregulated in patients with mCRPC (e.g., microRNAs, long noncoding RNAs, and mRNAs), were analyzed. Uni- and multivariable Cox regression and Kaplan–Meier analyses were used to analyze the prognostic value of the various circulating RNAs for PFS along treatment. Detectable levels of kallikrein-related peptidase 3 (KLK3) mRNA at baseline were demonstrated to be an independent prognostic marker for PFS (201 vs 501 days, P = 0.00054). Three months after AA-P treatment initiation, KLK3 could not be detected in the blood of responding patients, but was still detectable in 56% of the patients with early progression. Our study confirmed that KLK3 mRNA detection in whole blood is an independent prognostic marker in mCRPC patients receiving AA-P treatment. Furthermore, the levels of circulating

Abbreviations
AA-P, abiraterone acetate and prednisone; AR-V7, androgen receptor splice variant 7; CI, confidence interval; Cp, crossing point; CTC, circulating tumor cell; Ct(0,h), concentration before the next dose; CV%, coefficient of variation; Hb, hemoglobin; HR, hazard ratio; KLK3, kallikrein-related peptidase 3; KM, Kaplan–Meier; LDH, lactate dehydrogenase; LLN, lower limits of laboratory normal; IncRNA, long noncoding RNA; mCRC, metastatic castration-resistant prostate cancer; miR-141, microRNA 141; miR-200a, microRNA 200a; miR-200c, microRNA 200c; miR-21, microRNA 21; miR-3687, microRNA 3687; miR-375, microRNA 375; miRNA, microRNA; ncRNA, noncoding RNA; OS, overall survival; PBMCs, peripheral blood mononuclear cells; PCA, prostate cancer; PCA3, prostate cancer-associated 3; PCWG, Prostate Cancer Working Group; PFS, progression-free survival; PSA, prostate-specific antigen; qPCR, quantitative polymerase chain reaction; SCHLAP1, SWI/SNF antagonist associated with prostate cancer 1; SL-RT, stem-loop reverse transcriptase; TMPRSS2-ERG, transmembrane serine protease 2-ETS transcription factor ERG fusion gene product; ULN, upper limit of normal.
1. Introduction

Prostate cancer (PCa) is the second most common cancer in men worldwide [1]. It presents with a wide range of disease stages, from localized PCa to lethal metastatic castration-resistant prostate cancer (mCRPC). The therapeutic landscape for patients with mCRPC is rapidly evolving, with several new therapies improving overall survival (OS). Abiraterone acetate and prednisone (AA-P) is one of these therapies that has been proven to prolong OS in patients with mCRPC [2,3]. However, suboptimal response [de novo resistance or shorter progression-free survival (PFS)] has been observed in a subset of patients and eventually all patients develop therapy resistance. To improve outcome and cost-effectiveness, it is important to select patients for treatment with AA-P that will benefit most.

Liquid biopsies are a promising source for biomarker analysis. Besides circulating tumor DNA and circulating tumor cells (CTC), liquid biopsies also contain circulating RNAs, protein-coding mRNAs, and noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), all of which can be released by the tumor into the circulation [4]. Liquid biopsies are minimally invasive, and therefore, longitudinal sample collection and biomarker analysis are feasible. Furthermore, with liquid biopsies it is possible to identify tumor heterogeneity in a single biopsy [5].

Detection of cancer-specific mRNAs has the potential to characterize the tumor and determine tumor burden in blood. The prostate-specific kallikrein-related peptidase 3 (KLK3) mRNA, which codes for prostate-specific antigen (PSA), is a clinically validated diagnostic marker used in urine-based tests [6]. Furthermore, the predictive value of KLK3 mRNA decreases in patients with advanced PCa treated with docetaxel has been explored [7]. Danila et al. [8] have developed and validated a droplet digital polymerase chain reaction (ddPCR)-based assay to detect gene transcripts (KLK2, KLK3, HOXB13, GRHL2, and FOXA1) that are highly expressed in prostate tissue and peripheral blood from patients with mCRPC. The AdnaTest is an assay that detects KLK3, PSMA, and EGFR transcripts in CTCs captured on magnetic beads [9]. Both the AdnaTest and ddPCR are considered positive if at least one of the transcripts is detected. In a clinical validation study, Danila et al. [9] showed that KLK3 detection was the primary marker for positive AdnaTest and ddPCR test results. Therefore, they suggested to remove the less-useful transcripts from those tests and only measure KLK3. However, these results have not been confirmed in a prospective clinical trial yet.

MiRNAs are short (~21 nucleotide) single-stranded RNAs that are able to drive tumor initiation and progression by controlling the expression of oncogenes and tumor suppressor genes [10]. Clinical studies showed that upregulation of miR-21, miR-141, miR-200a, miR-200c, miR-375, and miR-3687 are related to shorter PFS or OS in patients with CRPC [11–13].

LncRNAs are lncRNA transcripts with a length of more than 200 nucleotides [14]. An aberrant expression of many lncRNAs has been associated with PCa [15]. Prostate cancer-associated 3 (PCA3) is currently used in PCa diagnostic urine tests [16,17]. Furthermore, the association of PCA3 levels with treatment outcome was explored in a small cohort of patients treated with docetaxel [7]. Another lncRNA which has been shown to be upregulated in PCa tissue compared with benign tissue is SWI/SNF complex antagonist associated with prostate cancer 1 (SCHLAP1) [18,19]. Beside these, many other lncRNAs are being explored but the prognostic or predictive value for patients with mCRPC is yet unclear.

Although preclinical work revealed many biomarkers of potential use, the number of biomarkers that are translated to the clinical practice is very disappointing. In the biomarker landscape, many researchers are discovering new biomarkers, but without further validation their clinical usefulness is limited [20]. The ultimate goal is to implement biomarkers in clinical practice, and therefore, prospective validation is important and crucial. For AA-P, only androgen receptor splice variant 7 (AR-V7) is used as a predictive biomarker. Detection of AR-V7 in CTCs is associated with abiraterone acetate and enzalutamide resistance [21,22]. Though, the detection and thereby use of AR-V7 as a predictive marker appears to be treatment line specific, since AR-V7 is only detectable in 3% of first-line patients vs 18–31% in second line or higher and is therefore only useful to guide treatment in more advanced mCRPC patients [23].

KLK3 mRNA in patients receiving AA-P treatment might reflect treatment response or early signs of progression.
Therefore, it also seems to be very important to study the value of biomarkers in a well-defined stage of disease.

A prognostic index model for chemotherapy-naïve patients treated with AA-P has been described, including the following clinical parameters: presence of lymph node metastasis, lactate dehydrogenase (LDH) > upper limits of laboratory normal (ULN), ≥ 10 bone metastasis, hemoglobin (Hb) ≤ lower limits of laboratory normal (LLN), and PSA > 39.5 ng.mL⁻¹ [24]. However, the additional value of novel biomarkers and drug exposure in this model has not been well-studied. Abiraterone shows substantial interpatient variability in drug exposure [25]. For abiraterone, a minimum concentration (C(\text{trough})) of 8.4 ng.mL⁻¹ is suggested as a threshold for efficacy [26,27]. Suboptimal exposure, defined as a C(\text{trough}) below 8.4 ng.mL⁻¹, has never been incorporated in prediction models before. Therefore, a prospective, observational multicenter study was conducted to explore the value of (pre)clinically identified promising circulating RNAs as prognostic biomarkers as well as the influence of abiraterone exposure on PFS in first-line mCRPC patients (ClinicalTrials.gov ID: NCT02426333).

2. Materials and methods

2.1. Study design

This prospective, observational, multicenter study was conducted in five hospitals in the Netherlands. All patients with mCRPC starting first-line AA-P treatment, according to the drug label, were eligible. Patients were allowed to be pretreated with upfront docetaxel according to CHAARTED/STAMPEDE protocols in a hormone-sensitive prostate cancer setting. Comedication that affected abiraterone pharmacokinetics was not allowed (e.g., potent CYP3A4 inhibitors and inducers). Patients were replaced if they stopped treatment or had dose reductions before the second visit (1 month after start). The study was conducted in accordance with Good Clinical Practice and the Declaration of Helsinki and approved by our Investigational Review board. Written informed consent was obtained from all patients before entering the study.

To identify biomarkers that are upregulated in PCA patients, blood from healthy individuals was used as control. Thirty healthy individuals (10 men < 35 years, 10 men between 55 and 70 years, and 10 women [no age restriction]), gave written informed consent for the use of an aliquot of their donated blood as control.

2.2. Assessments

During the study period of 6 months, patients had to visit the hospital at baseline, 1, 3, and 6 months after inclusion for physical examinations, laboratory tests, and blood collection. For biomarker analysis, blood was collected in PAXgene Blood RNA Tubes (PreAnalytiX; Qiagen/BD-company, Hombrechtikon, Switzerland) at each visit. Plasma was collected in EDTA tubes at 1, 3, and 6 months for measuring abiraterone concentrations. Patients were instructed to take their abiraterone acetate (1000 mg once daily, combined with 10 mg of prednisolone) in the morning 1 h before breakfast. At the day of pharmacokinetic assessment, AA-P was taken after the first blood collection for measuring the abiraterone trough level. Patients filled out a diary to check for drug adherence and side effects. Their diary and concomitant medication were checked during every visit.

Imaging was performed at baseline, 3, and 6 months after start of therapy. Tumor response was assessed by the treating physician and by an independent investigator during the study period, according to Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 criteria. Progression during the study was defined according to the Prostate Cancer Working Group 3 (PCWG3) criteria. For patients not progressing before the final study visit at 6 months, progression thereafter was assessed by the treating physician. Survival data were collected from patients’ medical record by the research nurse. Progression could be radiographic, biochemical, or clinically. Quality check of data-entry was performed by an independent monitor.

2.3. Biomarker analysis

2.3.1. RNA isolation from whole blood

The following biomarkers were selected for analyses based on previous data; mRNAs: AR, AR-V7, and KLK3; miRNAs: miR-21, miR-141, miR-200a, miR-200c, miR-375, and miR-3687; lncRNAs: AC012531.25, NAALADL2-AS2, PCA3, SCHLAP1, and SNHG3 [21,22,11,12,7,13,18,29].

Total RNA was isolated from whole blood collected in PAXgene Blood RNA Tubes (blood volume 2.5 mL with 6.9 mL additive), using the PAXgene Blood RNA and PAXgene Blood RNA kits (PreAnalytiX; Qiagen/BD-company), according to the manufacturer’s instructions. The biological source of total RNA is both cells and exosomes. In this study, we included only first-line patients, and hence, the number of CTCs...
is expected to be very low, and therefore, the isolated RNA is mainly from blood cells and tumor-derived exosomes and only minimally from CTCs. (Cell free RNA is very unstable and susceptible to degradation, and will therefore not be detected.) PAXgene blood RNA tubes (Qiagen) are specifically developed and validated to isolate RNA from blood specimens. PAXgene tubes allow instant preservation of RNA, and the quality of RNA extracted using these tubes has been thoroughly investigated [30].

For miRNA analysis, each blood sample was first spiked with 2.0 fmoles of each C. elegans miR-39 and miR-238 (Table S1). RNA was eluted from the columns using 50–80 µL elution buffer. The samples were stored in nonstick RNase-free tubes at –20 °C until further use. Total RNA quantification was performed on a Qubit 3.0 Fluorometer using the Qubit RNA BR Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). RNA quality was assessed on an Agilent 2100 Bioanalyzer Instrument using RNA Nano Chips (Agilent, Santa Clara, CA, USA). The median RNA integrity number value was 8.5 (range 5.4–9.9).

2.4. Reverse transcriptase and real-time PCR analysis

Gene expression analysis was performed by relative quantification of mRNA levels and levels of the PCA3 lncRNA using fluorescence-based quantitative real-time PCR assays, which were developed according to the MIQE guidelines [31]. Total RNA (extracted with the PAXgene Blood RNA Kit) was used for cDNA synthesis. RNA was first treated with DNasel, and then, random-primed cDNA was synthesized using SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). RNA levels were determined by SYBR Green real-time PCR using a LightCycler LC480 Instrument (Roche). Relative RNA levels were calculated using the weighted average of the C. elegans spiked-in miRNAs (for miRNAs) or GAPDH (for lncRNAs) levels for normalization. Primer sequences are listed in Tables S2, S5; RT reaction conditions and PCR cycle conditions are listed in Tables S6, S7.

2.4.1. Biomarker analysis in healthy controls

MiRNAs and the AR mRNAs were measured in 30 healthy individuals. LncRNA levels were measured in 10 age-matched men. Levels of KLK3 mRNA and PCA3 lncRNA were not measured in healthy controls, since previous work revealed that these transcripts are only present in CRPC patients compared with healthy individuals [7]. Average Cp values in healthy controls were calculated and used as a reference.

2.4.2. Biomarker analysis in patients

RT–PCR was performed twice for each sample to test for reproducibility. The RNA levels of AR, AR-V7, KLK3, and PCA3 were analyzed by using a calibration curve. Biomarkers were classified negative if one or both samples were below the lowest point of the calibration curve. For the miRNAs and lncRNAs (except PCA3), no calibration curve was used and the relative expression was calculated. For miRNAs, we used the following algorithm: If the mean Cp value of the replicates is > 37 and/or delta Cp of the replicates is > 1.0, a Cp value of 45 was used for analysis. For lncRNAs, the following algorithm was used: If the mean Cp value of the replicates is > 38 and/or delta Cp of the replicates is > 1.5, a Cp value of 45 was used for analysis. The relative RNA expression levels in mCRPC patients compared with healthy controls (using the ΔΔCt method) were calculated. If mean baseline levels of a biomarker in patients were more than twofold higher compared with healthy controls, they were included for survival analysis. All biomarkers that did not meet this criterion were excluded for further analysis.

2.4.3. Follow-up of biomarker levels related to treatment response

To investigate whether there is a relation between biomarker levels over time and treatment response,
biomarker levels were measured longitudinally. Only the biomarkers showing a relation with PFS in the univariable analyses (P-value ≤ 0.1) were selected for longitudinal analyses. RNA expression levels of these biomarkers are visualized over time for patients with early progression (progression within 6 months) compared to patients with stable disease or responders (no progression within 6 months). Patients who stopped treatment due to toxicity were excluded from longitudinal analyses.

2.5. Pharmacokinetic assessment

The abiraterone concentration was measured by a validated liquid chromatography-tandem mass spectrometry method [34]. Abiraterone plasma concentrations were calculated at exactly 24 h after ingestions. For calculating the trough levels, Bayesian estimation was used based on a population pharmacokinetic model described by Stuyckens et al. [35]. The population pharmacokinetic parameters were re-estimated based on the data collected in our study. The average abiraterone calculated trough levels at 1, 3, and 6 months per patient were used for further analysis.

2.6. Statistics

The primary endpoint was a difference in PFS on frontline AA-P treatment explained by biomarker expression and/or drug exposure. Univariable Cox regression was used to identify whether biomarkers and drug exposure were related to PFS by estimating hazard ratios (HR) and corresponding 95% confidence intervals (CI). Cutoff values for biomarkers were calculated using the maximally selected rank statistics. The cutoff value used for the effect of abiraterone exposure on survival was the earlier identified abiraterone trough concentration of 8.4 ng.mL$^{-1}$ [26,27]. Pretreatment according to CHAARTED / STAMPEDE protocols and presence of visceral metastasis were added in univariable analysis too.

Biomarkers and abiraterone exposure were included in the multivariable model and Kaplan–Meier (KM) analysis if the P-value was ≤ 0.1 in the univariable Cox regression. Based on a previous defined prognostic index model for PFS in chemotherapy-naïve mCRPC patients treated with AA-P, the following covariates were added to the multivariable model regardless of the univariable outcome: presence of lymph node metastasis, LDH \geq ULN, \geq 10 bone metastasis, Hb \leq LLN, and PSA > 39.5 ng.mL$^{-1}$ [24]. Missing covariates were kept missing. Since this study was an exploratory study, no corrections for multiple testing were done. KM curves and log-rank tests were used to compare differences in PFS between groups with a biomarker expression or drug exposure above and below the cutoff. Statistical significance was set at $P < 0.05$. All statistical analyses were performed in R Studio (Version 1.1.456).

3. Results

3.1. Patients

From January 2016 to October 2018, 57 patients entered the study. Four patients were excluded [two patients stopped directly, one patient stopped before the second visit, and one patient did not meet with the inclusion criteria (treated with AA-P as second-line treatment)]. In total, 53 patients were included for analysis. At the time of analysis, 74% of the patients ($N = 39$) showed progression, with a median PFS of 11 months (range 2–30 months) and 28% of the patients ($N = 15$) died. Radiologic progression was reported for 30 patients, biochemical progression only was reported for six patients, one patient stopped due to clinical progression and two patients died due to progressive disease. Three patients stopped AA-P therapy because of toxicity. These patients were censored for survival analysis. The median follow-up time for patients still on AA-P therapy was 18 months (range 12–26 months). Baseline characteristics are summarized in Table 1.

3.2. Expression levels of circulating RNAs

Expression levels of miRNA and AR in healthy individuals were not different between the three groups of healthy controls, and therefore, their blood RNA values were pooled. AR-V7 was not detectable in healthy controls. All individual biomarker expression levels in healthy controls are listed in Table S8.

For miR-375, miR-3687, and NAALDL2-AS2, the mean relative circulating RNA levels were more than twofold higher in patients compared with healthy controls and were therefore included as putative prognostic biomarkers in the survival analyses. AR-V7 could be detected in 6 patients at baseline and KLK3 was detectable in 17 patients at baseline. Both were included for survival analysis. For miR-21, miR-141, miR-200a, miR-200c, AR, ACO12531.25, and SNHG3 the mean baseline levels were less than twofold higher compared with healthy controls, and therefore, no survival analysis was performed for these biomarkers. PCA3 was detectable in only two patients, and
Table 1. Baseline characteristics. ALP, alkaline phosphatase; DHEAS, dehydroepiandrosterone sulfate. Data are presented as median (Q1–Q3) for continuous data or N (%) for categorical data.

Patient characteristics at baseline	Total N = 53
Age at baseline (years)	71 (65–78)
Weight at baseline (kg)	86 (80–93)
Hb (mL)	7.9 (7.4–8.4)
LDH (U/L)	230 (206–264)
ALP (U/L)	85 (71–125)
Albumin (g/dL)	4.1 (3.7–4.4)
PSA (ng/mL)	39 (23–130)
PSA doubling time (months)	3.3 (2.3–6.1)
DHEAS (µg)	1.6 (0.9–2.5)
N (%)	
Gleason score at diagnosis	
≤ 7	13 (24.5)
≥ 8	37 (69.8)
Missing	3 (5.7)
Ethnicity / Race	
White	53 (100)
ECOG performance status	
0	34 (64.2)
1	17 (32.1)
2	2 (3.8)
Pretreatment docetaxel^a	16 (30.2)
Previous treatments	
Prostatectomy	20 (37.7)
Radiation	21 (39.6)
Anti-androgen pretreatment	38 (71.7)
Other^b	1 (1.9)
> 10 metastases at baseline	21 (39.6)
Spread of disease	
Lymph only	5 (9.4)
Bone only	14 (26.4)
Both bone and lymph	24 (45.3)
Visceral + lymph node/bone	9 (17.0)

^aPretreatment with docetaxel according to CHAARTED/STAMPEDE schedule.
^bTamoxifen.

SCHLAP1 was not detectable in any patient and therefore excluded for survival analysis. The mean biomarker expression levels of all patients per timepoint are shown in Table 2.

3.3. Progression-free survival analysis

3.3.1. Univariable and multivariable Cox regression

AR-V7, KLK3, miR-375, miR-3687, NAALADL2-AS2, drug exposure, pretreatment according to CHAARTED / STAMPEDE protocols and presence of visceral metastasis were included in univariable Cox regression (Table 3). **KLK3** and **AR-V7** were only detectable in a subset of patients, and therefore, the cutoff was set at detectable yes or no. The cutoff values for miR-375, miR-3687, and **NAALADL2-AS2** calculated with maximally selected rank statistics were 2.16, 0.29, and 3.66 (relative to healthy controls), respectively.

High levels of miR-375 and detectable KLK3 mRNA levels were related to PFS (HR 1.78; 95% CI 0.93–3.41; \(P = 0.08 \) and HR 3.16; 95% CI 1.59–6.27; \(P = 0.001 \)). All other parameters were not related to PFS (in univariable analysis) and therefore not included in multivariable Cox regression analysis. In a multivariable Cox regression model, detectable KLK3 mRNA levels and presence of lymph node metastasis were both independent predictors of shorter PFS (HR...
Table 3. Cox regression analysis in relation to PFS.

	Univariable HR (95%CI)	P-value	Multivariable (N = 51*) HR (95%CI)	P-value
AR-V7 positive	1.37 (0.53–3.57)	0.52	–	–
KLK3 positive	3.16 (1.59–6.27)	< 0.0001	5.07 (1.81–14.18)	0.0020
miR-375 > cutoff	1.78 (0.93–3.41)	0.08	1.10 (0.49–2.48)	0.81
miR-3687 > cutoff	2.41 (0.73–7.99)	0.15	–	–
NAAALDL2-AS2 > cutoff	0.60 (0.31–1.15)	0.14	–	–
Abiraterone C\text{trough} > 8.4 ng\text{mL}^{-1}	0.85 (0.37–1.95)	0.70	–	–
Pretreatment according to CHAARTED/STAMPEDE	0.91 (0.46–1.80)	0.78	–	–
Visceral metastasis	0.67 (0.39–1.90)	0.72	–	–
Lymph node metastasis	1.86 (0.94–3.65)	0.07	2.57 (1.20–5.50)	0.0149
LDH > ULN	1.53 (0.79–2.96)	0.21	1.77 (0.77–4.05)	0.18
Hb ≤ LLN	1.55 (0.78–3.10)	0.21	1.44 (0.63–3.33)	0.39
PSA > 39.5 ng\text{mL}^{-1}	2.32 (1.21–4.44)	0.01	1.54 (0.70–3.38)	0.29
≥ 10 bone metastases	2.39 (1.23–4.64)	0.0098	1.62 (0.72–3.62)	0.24

Two observations deleted due to missing covariates.

5.07; 95% CI 1.81–14.18; \(P = 0.0020 \) and HR 2.57; 95% CI 1.20–5.50, \(P = 0.0149 \) respectively; Table 3).

3.3.2. Kaplan–Meier analysis

Patients with detectable levels of KLK3 had a significantly shorter PFS compared to patients without KLK3 detection, median 201 vs 501 days (\(P = 0.00054 \)). Patients with expression levels of miR-375 above cutoff showed shorter PFS compared to patients with miR-375 levels below cutoff, although not statistically significant, median 352 vs 456 days (\(P = 0.076 \)). Figure 1A,B shows the survival curves.

3.4. Abiraterone exposure

The abiraterone trough concentration (\(C_{\text{trough}} \)) was measured in 52 patients. Pharmacokinetic assessment in one patient failed due to errors made in blood sample collection. The mean calculated abiraterone \(C_{\text{trough}} \) was 14.5 ng\text{mL}^{-1} with a range of 3.4–92.1 ng\text{mL}^{-1}. The intra- and interpatient variability was 30.2% and 49.5%, respectively. In total, 10 patients had a mean \(C_{\text{trough}} \) level below the threshold of 8.4 ng\text{mL}^{-1}. In univariable Cox regression analysis a mean \(C_{\text{trough}} \) level ≥ 8.4 ng\text{mL}^{-1} was not related to PFS (HR 0.85; 95% CI 0.37–1.95, \(P = 0.70 \); Table 3).

3.5. Longitudinal follow-up of treatment response using AR-V7, KLK3, and miR-375

During treatment, 13 patients stopped AA-P therapy due to progression within 6 months (early progression, median time to PFS of 3 months). Expression levels of AR-V7, KLK3, and miR-375 over time in patients with early progression were compared with patients who responded to treatment (stable disease or partial response, median PFS follow-up of 15 months).

At baseline, six patients were AR-V7 positive, of which five patients responded to treatment (stable disease or partial response). During treatment, AR-V7 positivity dropped in all six patients to undetectable levels. Expression levels of KLK3 are higher and more frequent detectable in patients with early progression compared with responders. Under treatment, expression levels of KLK3 decreased. For patients who responded to AA-P treatment, KLK3 was not detectable in any patient at 3 months, where in patients with early progression KLK3 was still detected in five patients (55.6%) (Fig. 2A).

At baseline, 17 patients were KLK3 positive of which seven patients responded to treatment (stable disease or partial response) and 10 patients had early progression. At 6 months, only three patients were KLK3 positive (Fig. 2A and Table 2). This drop is due to the fact that 8 KLK3-positive patients at baseline dropped out before evaluation at 6 months due to early progression. Furthermore, in seven patients KLK3 levels dropped to undetectable levels after 3 months, which is reflecting treatment response. One patient became KLK3 positive at 6 months during treatment. Levels of miR-375 showed an overall decrease after start of AA-P therapy regardless of response. Patients with early progression had higher levels of miR-375 compared with responders, especially at baseline. However, no clear pattern in changes in miR-375 levels over time was observed.
between the responders and patients with early progression (Fig. 2B).

4. Discussion

In this study, the prognostic value of KLK3 mRNA and other novel circulating RNAs in first-line mCRPC patients starting AA-P was studied. Furthermore, the effect of abiraterone exposure on treatment outcome was evaluated. Our study confirmed that detectable levels of KLK3 at baseline appear to be prognostic for shorter PFS. Furthermore, circulating KLK3 mRNA levels outperform all other investigated clinical prognostic biomarkers.

To the best of our knowledge, this is the first prospective clinical trial confirming KLK3 as a prognostic biomarker for PFS. Previous work revealed that KLK2/3 mRNA detection in whole blood by RT–PCR is highly concordant with CTCs detected by the CellSearch system [36]. Danila et al. [9] investigated whether the CTCs detected with the CellSearch and AdnaTest assay or the direct detection of tumor mRNA with a ddPCR method were the best biomarker for OS. The ddPCR and AdnaTest had higher detection rates compared with the CellSearch system, and therefore were superior to the CellSearch system. Because KLK3 mRNA detection appeared to be the most relevant marker for a positive result by the AdnaTest and ddPCR, detection of KLK3 mRNA in whole blood can be used as a surrogate marker for CTC counts [9]. Since CTC isolation is technically and logistically challenging, the clinical utility of CTC enumeration in this disease setting is minimal. We showed that our RT–PCR method for KLK3 detection in whole blood collected in PAXgene tubes is a sensitive method and could be used in first-line patients. The method requires minimal sample pretreatment and therefore can easily be implemented into clinical practice.

KLK3 mRNA detection in early disease setting, but presumably also in patients with more advanced disease, might therefore be an easier to measure biomarker compared to CTC detection.

By longitudinally follow-up of KLK3 mRNA levels, we assessed the potential value for monitoring...
treatment response. Previous work in CRPC patients treated with docetaxel revealed that KLK3 levels in patients responding to docetaxel were decreased [7]. In our study, we found similar results, all patients responding to AA-P (median PFS follow-up of 15 months) had undetectable KLK3 after 3 months of treatment. Because KLK3 is the transcript encoding for PSA, one might think that KLK3 would be related to PSA levels. However, in our multivariable Cox regression analysis serum PSA was not prognostic for survival. This emphasizes the additional value of KLK3 mRNA detection over serum PSA measurement. Although serum PSA is clinically used to monitor treatment response, serum PSA levels may not reflect the status of the disease accurately [37]. CTC enumeration has been incorporated by the PCWG3 as a clinical endpoint in trials for treatment response [38]. Since KLK3 mRNA detection likely reflects CTC burden, KLK3 detection may alternatively be used to assess treatment response. This hypothesis should be confirmed in a larger well-annotated patient cohort with time to progression data and blood collection for translational RNA studies.

Another potentially promising RNA biomarker is miR-375. However, in multivariable analysis and KM analysis, no statistically significant effect was seen in our cohort which might be due to our limited number of patients. Several previous studies showed that higher miR-375 levels at baseline are related to shorter survival [39,13]. Therefore, miR-375 is potentially promising and should be considered for preclinical functionality testing and future clinical validation.

MiR-3687 and NAALADL2-AS2 were also upregulated in PCa patients compared with healthy controls. However, both biomarkers failed to be related to PFS. In our previous cohort of first-line mCRPC patients treated with enzalutamide, high levels of miR-3687 and low levels of NAALADL2-AS2 were significantly prognostic of shorter PFS. Since the functionality of miR-3687 and NAALADL2-AS2 in PCa is currently not clear, preclinical functionality testing is required before these results can be interpreted. Future clinical validation of these biomarkers in a larger independent cohort is needed.

In our study, AR-V7 RNA levels were not prognostic for survival. Our study included only first-line AA-P patients. Six out of 53 patients (11.3%) were AR-V7 positive with copy numbers just above the lower limit of quantification, while AR levels were not distinctive from healthy volunteers. A previous study showed that only 3% of first-line patients were AR-V7 positive [23]. In our study, a whole blood AR-V7 test is used, while most studies have been performed with AR-V7 detection in CTCs. AR-V7 detection in whole blood might
have a lower sensitivity compared with CTC-based AR-V7 detection. On the other hand, many first-line patients are CTCs negative, and therefore, CTC-based AR-V7 detection is not useful. It has been shown that whole blood AR-V7 positivity is correlated with CTC counts and that patients with undetectable CTC levels still can be AR-V7 positive when using whole blood [40]. Therefore, the predictive value of AR-V7 in whole blood might only be clinically relevant for higher copy numbers of AR-V7 which can be detected at later stages of treatment. Future research should compare CTC-based and whole-blood AR-V7 detection, and determine a clinically relevant threshold for AR-V7 detection in whole blood. Next to the biomarkers, we studied the effect of drug exposure on PFS. It has been suggested that underexposure of abiraterone (C_\text{trough} \text{ level} < 8.4 \text{ ng mL}^{-1}) is related to shorter PFS [26,27]. The beneficial effect of higher abiraterone exposure levels could not be confirmed in this study for chemotherapy naive patients treated with AA-P. This could be due to our study cohort of only first-line patients. Xu et al. [41] found that the effective concentration levels of abiraterone in chemotherapy-naïve patients were lower compared with postchemotherapy patients. The previously defined threshold has been established in a mixed cohort of chemotherapy-naïve and chemotherapy-pretreated patients. Future research is necessary to investigate the threshold for abiraterone in chemotherapy-naïve patients treated with AA-P.

In our study, besides KLK3 mRNA, the prognostic value of the other biomarkers and drug exposure could not be confirmed. Since the prostate landscape is changing, and the indication for drugs such as AA-P has broadened from the castration-resistant to the hormone-sensitive setting, it is important to study the value of biomarkers and drug exposure in a clear subset of patients. In this light, we set up a well-defined cohort of only first-line mCRPC patients treated with AA-P. This explains the lower expression levels of most RNAs compared with previous studies and underscores the need to investigate the added value of biomarkers in well-defined stage of disease.

Although the biomarker research field is growing, there remains a large gap between biomarker discovery and clinical validation. Therefore, prospective clinical validation of biomarkers is needed. Our study is a step forward in biomarker validation, providing valuable information in an independent group of patients in a prospective study design about the clinical validation of KLK3 mRNA and absent value of the other investigated biomarkers in identifying patients who will benefit shorter from AA-P therapy. A strength of our study is that we have used healthy controls to make sure that the biomarkers we measured are related to prostate cancer. Only biomarkers which were upregulated in CRPC patients compared with healthy controls are selected. Therefore, our working hypothesis is that the identified whole blood RNA biomarkers are reflecting disease burden. Expression levels of many of the circulating RNAs in our cohort were not distinctive from expression levels in healthy controls. This highlights the need of incorporating a control cohort to identify biomarkers that are specifically upregulated in patients with mCRPC. Results of biomarker studies without healthy volunteers should therefore be interpreted with more caution.

5. Conclusions
Our study confirmed KLK3 mRNA as an independent prognostic marker for PFS in mCRPC patients receiving first-line AA-P treatment. Detection of whole blood KLK3 could be easily incorporated into clinical practice. KLK3 detection over time may be a potential biomarker to monitor treatment response or progression, but prospective clinical validation is needed.

Acknowledgements
This study was part of the REFINE project (grant no. 836041013) that is funded by ZonMw, The Netherlands Organisation for Health Research and Development, as part of the Goed Gebruik Geneesmiddelen (GGG) program, and supported by a research grant of Janssen Cilag BV.

Conflict of interest
JAS and GWV are inventors on the PCA3-related IP. The IP is owned by their employer, Radboud university medical center, which has licensed the technology and receives royalty payments. IMvO: Astellas, Janssen-Cilag, Bayer, SelectMDx, Roche; NPHvE: Astellas, Janssen-Cilag, Sanofi, Bayer; N.M.: Advisory role (compensated and institutional): Roche, MSD, BMS, Bayer, Astellas and Janssen’. Research support (institutional): ‘Astellas, Janssen, Pfizer, Roche and Sanofi’ Genzyme. Travel support: ‘Astellas, MSD’. All remaining authors have declared no conflicts of interest.

Data Accessibility
The data that support the findings of this study are available in the Supporting information of this article and from the corresponding author upon reasonable request.
Author contributions
EB and GEB managed the project, analyzed the data, and wrote the manuscript with input from all authors. JAS and NPE designed the study. EB, GEB, IvMO, IMO, PM, TJS, DMS, and NM were responsible for patient inclusion. GWV, OH, LG, and FS performed the experiments. GWV, JAS, NPE, IvMO, and NM supervised the project. All authors contributed to the interpretation of the data, discussed the results, contributed to the manuscript, and approved the final version.

Peer Review
The peer review history for this article is available at https://publons.com/publon/10.1002/1878-0261.12933.

References
1. Mattiuzzi C & Lippi G (2019) Current cancer epidemiology. J Epidemiol Glob Health 9, 217–222.
2. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F et al. (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364, 1995–2005.
3. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng S et al. (2013) Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368, 138–148.
4. Boerrigter E, Groen LN, Van Erp NP, Verhaegh GW & Schalken JA (2020) Clinical utility of emerging biomarkers in prostate cancer liquid biopsies. Expert Rev Mol Diagn 20, 219–230.
5. Mateo J, Seed G, Bertan C, Rescigno P, Dolling D, Figueiredo I, Miranda S, Nava Rodrigues D, Gurel B, Clarke M et al. (2020) Genomics of lethal prostate cancer at diagnosis and castration resistance. J Clin Invest 130, 1743–1751.
6. Hendriks RJ, van Oort IM & Schalken JA (2017) Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis 20, 12–19.
7. Dijkstra S, Leyten GH, Jannink SA, de Jong H, Mulders PF, van Oort IM & Schalken JA (2014) KLK3, PCA3, and TMPRSS2-ERG expression in the peripheral blood mononuclear cell fraction from castration-resistant prostate cancer patients and response to docetaxel treatment. Prostate 74, 1222–1230. Research Support. Non-U.S. Gov’t.
8. Danila DC, Anand A, Schultz N, Heller G, Wan M, Sung CC, Dai C, Khanin R, Fleisher M, Lilja H et al. (2014) Analytic and clinical validation of a prostate cancer-enhanced messenger RNA detection assay in whole blood as a prognostic biomarker for survival. Eur Urol 65, 1191–1197.
9. Danila DC, Samoila A, Patel C, Schreiber N, Herkal A, Anand A, Bastos D, Heller G, Fleisher M & Scher HI (2016) Clinical validity of detecting circulating tumor cells by AdnaTest assay compared with direct detection of tumor mRNA in stabilized whole blood, as a biomarker predicting overall survival for metastatic castration-resistant prostate cancer patients. Cancer J 22, 315–320.
10. Pritchard CC, Cheng HH & Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13, 358–369.
11. Benoist GE, van Oort IM, Boerrigter E, Verhaegh GW, van Hooij O, Groen L, Smit F, de Mol P, Hamberg P, Dezentjé VO et al. (2020) Prognostic value of novel liquid biomarkers in patients with metastatic castration-resistant prostate cancer treated with enzalutamide: a prospective observational study. Clin Chem 66, 842–851.
12. Cheng HH, Plets M, Li H, Higano CS, Tangen CM, Agarwal N, Vogelzang NJ, Hussain M, Thompson IM Jr, Tewari M et al. (2018) Circulating microRNAs and treatment response in the Phase II SWOG S0925 study for patients with new metastatic hormone-sensitive prostate cancer. Prostate 78, 121–127.
13. Lin HM, Mahon KL, Spielman C, Gurney H, Mallesara G, Stockler MR, Bastick P, Briscoe K, Marx G, Swarbrick A et al. (2017) Phase 2 study of circulating microRNA biomarkers in castration-resistant prostate cancer. Br J Cancer 116, 1002–1011.
14. Fernandes JCR, Acuna SM, Aoki JI, Floeter-Winter LM & Muxel SM (2019) Long non-coding RNAs in the regulation of gene expression: physiology and disease. Non-coding RNA 5, 17.
15. Helsmoortel H, Everaert C, Lumen N, Ost P & Vandesompele J (2018) Detecting long non-coding RNA biomarkers in prostate cancer liquid biopsies: hype or hope? Noncoding RNA Res 3, 64–74.
16. Gittelman MC, Hertzman B, Bailen J, Williams T, Koziol I, Henderson RJ, Efros M, Bidair M & Ward JF (2013) PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. J Urol 190, 64–69.
17. Leyten GH, Hissel D, Smit FP, Jannink SA, de Jong H, Melchers WJ, Cornel EB, de Reijtke TM, Vergunst H, Kil P et al. (2015) Identification of a candidate gene panel for the early diagnosis of prostate cancer. Clin Cancer Res 21, 3061–3070.
and its metabolites in real-world patients with metastatic castration-resistant prostate cancer. *Prostate Cancer Prostatic Dis* **23**, 244–251.

28 Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M et al. (2013) The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. *Nat Genet* **45**, 1392–1398.

29 Whitaker HC, Shiong LL, Kay JD, Gronberg H, Warren AE, Seipel A, Wiklund F, Thomas B, Wiklund P, Miller JL et al. (2014) N-acetyl-L-aspartyl-L-glutamate peptidase-like 2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype. *Oncogene* **33**, 5274–5287.

30 Tang R, She Q, Lu Y, Yin R, Zhu P, Zhu L, Zhou M & Zheng C (2019) Quality control of RNA extracted from PAXgene blood RNA tubes after different storage periods. *Biopreserv Biobank* **17**, 477–482.

31 Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. *Clin Chem* **55**, 611–622.

32 Dijkstra S, Mulders PF & Schalken JA (2014) Clinical use of novel urine and blood based prostate cancer biomarkers: a review. *Clin Biochem* **47**, 889–896.

33 Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. *Nucleic Acids Res* **33**, e179.

34 Benoist GE, van der Meulen E, Lubberman FJE, Gerritsen WR, Smilde TJ, Schalken JA, Beumer JH, Burger DM & van Erp NP (2017) Analytical challenges in quantifying abiraterone with LC-MS/MS in human plasma. *Biomed Chromatogr* **31**, e3986.

35 Stuyckens K, Saad F, Xu XS, Ryan CJ, Smith MR, Griffin TW, Yu MK, Vermeulen A, Nandy P & Poggesi I (2014) Population pharmacokinetic analysis of abiraterone in chemotherapy-naive and docetaxel-treated patients with metastatic castration-resistant prostate cancer. *Clin Pharmacokinet* **53**, 1149–1160.

36 Helo P, Cronin AM, Danila DC, Wenske S, Gonzalez-Espinoza R, Anand A, Kosciusza M, Vaananen RM, Pettersson K, Chun FK et al. (2009) Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: concordance with Cell Search assay and association with bone metastases and with survival. *Clin Chem* **55**, 765–773.

37 Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanas DM, Petrylak DP, Sartor AO & Scher HI (2012) Biomarkers in the management and treatment of men
with metastatic castration-resistant prostate cancer. Eur Urol 61, 549–559.

38 Scher HI, Morris MJ, Stadler WM, Higano C, Basch E, Fizazi K, Antonarakis ES, Beer TM, Carducci MA, Chi KN et al. (2016) Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol 34, 1402–1418.

39 Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F et al. (2015) Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 67, 33–41.

40 Todenofer T, Azad A, Stewart C, Gao J, Eigl BJ, Gleave ME, Joshua AM, Black PC & Chi KN (2017) AR-V7 transcripts in whole blood RNA of patients with metastatic castration resistant prostate cancer correlate with response to abiraterone acetate. J Urol 197, 135–142.

41 Xu XS, Ryan CJ, Stuyckens K, Smith MR, Saad F, Griffin TW, Park YC, Yu MK, De Porre P, Vermeulen A et al. (2017) Modeling the relationship between exposure to abiraterone and prostate-specific antigen dynamics in patients with metastatic castration-resistant prostate cancer. Clin Pharmacokinet 56, 55–63.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Sequences of synthetic *C. elegans* miRNAs.

Table S2. Sequences and amplicon size of primer pairs used for PCR analysis.

Table S3. Sequences of hydrolysis probes for qPCR analysis.

Table S4. Stem-loop reverse transcriptase (SL-RT) primers.

Table S5. Sequences of primer pairs used for miRNA PCR analysis.

Table S6. RT reaction conditions.

Table S7. PCR cycle conditions.

Table S8. Overview of biomarker expression levels in healthy controls.