Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
ACE2, B⁰AT1, and SARS-CoV-2 spike protein: Structural and functional implications
Yuanyuan Zhang¹,², Renhong Yan³ and Qiang Zhou¹,²

Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a public health crisis and led to tremendous economic devastation. The spike protein (S) of SARS-CoV-2 hijacks the angiotensin converting enzyme 2 (ACE2) as a receptor for virus entry, representing the initial step of viral infection. S is one of the major targets for development of the antiviral drugs, antibodies, and vaccines. ACE2 is a peptidase that plays a physiologically important role in the renin–angiotensin system. Concurrently, it also forms dimer of heterodimer with the neutral amino acid transporter B⁰AT1 to regulate intestinal amino acid metabolism. The symptoms of COVID-19 are closely correlated with the physiological functions of ACE2. In this review, we summarize the functional and structural studies on ACE2, B⁰AT1, and their complex with S of SARS-CoV-2, providing insights into the various symptoms caused by viral infection and the development of therapeutic strategies.

Introduction
The emergence and continued presence of SARS-CoV-2 variants highlight the need to develop effective interventions against COVID-19 pandemic. S of SARS-CoV-2 [1,2] is responsible for receptor recognition and membrane fusion, similar to that of SARS-CoV-1, which has caused the severe acute respiratory syndrome pandemic in 2002–2003 [3]. During assembly of the virus, S is cleaved into the S1 and S2 subunits by furin or furin-like proprotein convertase [4]. The S1 subunit binds to the viral entry receptor ACE2 through the receptor binding domain (RBD) [5] (Figure 1). Then, S undergoes second protease processing to release the membrane fusion peptide by transmembrane protease serine 2 (TMPRSS2) [6,7] or carhepsin L [8] on S² cleavage site to mediate the fusion of the virus and host cell membrane [9]. The interaction between S and ACE2 is the important step of viral infection, therefore making it the critical target for developing the small molecule drugs, neutralizing antibodies and vaccines [10,11].

The lung damage followed by pulmonary fibrosis and chronic impairment of lung function is one typical symptom for SARS-CoV-2 infection [12]. In addition to its role as the receptor for SARS-CoV-2 invasion, ACE2 is a peptidase belonging to the renin–angiotensin system that controls vasoconstriction and blood pressure in human [13]. The ace2 gene knockout mice showed that the downregulation of ACE2 significantly increases angiotensin II (Ang II) levels in the lungs and plasma, causing acute lung failure [14]. In addition, Ang II levels in the lung tissues of the mice were significantly increased after treatment with acid and SARS-CoV-1 Spike-Fc (a fusion protein of SARS-CoV-1 S with the Fc portion of human IgG1), and lung damage induced by this treatment could be attenuated by blocking Ang II receptor type 1 (AT1R) using its inhibitor [15]. These results collectively suggest that SARS-CoV-2 infection is closely correlated with the primary physiological function of ACE2. Besides, ACE2 forms heterodimers with the intestinal transporter B⁰AT1 to mediate the uptake of neutral amino acids, which provides an important insight into enterocyte infection with SARS-CoV-2 [16,17].

In the past few years, many studies have reported on SARS-CoV-2 and its receptor, ACE2. In this review, we will focus on the physiological functions and structural information of ACE2, B⁰AT1 and their complex with S of SARS-CoV-2, which can help us understand the
mechanism of SARS-CoV-2 infection and its symptom
determinants to develop effective therapeutic and
prophylactic strategies.

ACE2 and renin–angiotensin system
ACE2, encoded by a gene located on the X chromosome,
was discovered in 2000 as a protein homolog of ACE [13,18]. Multiple studies have shown that ACE2 is highly expressed in many tissues, including the small intestine, thyroid, kidney, heart, testis and adipose tissue, and expressed at low levels in the blood, spleen, muscle, brain, and bone marrow [19–21]. ACE2 is a type I transmembrane (TM) glycoprotein with a full length of 805 amino acid residues that can be divided into two parts: the N-terminal catalytic domain (also known as the peptidase domain, PD) and the C-terminal collectrin-like domain (CLD) [13,22]. PD of ACE2, which shares 42% sequence homology with the N-terminal domain of ACE, contains a zinc ion in its active site. CLD of ACE2 contains a single TM helix and has approximately 48% sequence homology with collectrin, which does not contain a PD [22].

ACE2 plays an important role in the renin–angiotensin system [23,24] (Figure 1). Both ACE2 and ACE have peptidase activity, but their substrates and cleavage mechanisms are different [25]. ACE is a dipeptidyl peptidase that releases a dipeptide from the C-terminal of its substrate per digestion reaction, while ACE2 cleaves one amino acid. The crystal structure of ACE2 [25] shows that Arg273 forms a salt bridge with the C-terminal of the substrate. But in ACE, it is replaced with the smaller amino acid Glu, which explains the difference in substrate specificity between ACE and ACE2.

To be exact, ACE converts Ang I to Ang II, which function is to constrict blood vessels and raise blood pressure. ACE2 cleaves Ang II to Ang-(1–7), the role of which is to relax blood vessels and lower blood pressure. ACE2 can also convert Ang I into Ang-(1–9), and ACE or other peptidases will then convert Ang-(1–9) into Ang-(1–7) (Figure 1). ACE2 much more efficiently cleaves Ang II into Ang-(1–7) than Ang I into Ang-(1–9) [26]. Therefore, ACE2 plays a role in lowering blood pressure in the renin–angiotensin system. In
addition, Ang-(1–7) mediates various effects, including vasodilatation, anti-inflammatory, anti-oxidation and so on [27], by binding the G protein-coupled receptor Mas [28], making Ang-(1–7) a promising therapeutic target for cardiovascular disease [29]. In summary, ACE2 negatively regulates the level of Ang II and maintains the balance with ACE to control local homeostasis to protect the lung, kidney, and cardiovascular system [14].

ACE2 and B₀AT1 complex

ACE2 is reported to be a molecular chaperone of the neutral amino acid transporter B₀AT1 in small intestine, which is also known as SLC6A19 that belongs to the neurotransmitter and amino acid co-transporter SLC6 family [16,30]. The slc6a19 gene is located on the chromosome 5 and was cloned in 2004 because its mutation causes Hartnup disorder, an autosomal recessive condition that leads to aminoaciduria and eventually to symptoms like photosensitive rash, cerebellar ataxia and emotional instability [31–33]. It is also called B₀AT1 due to the properties of system B₀ which mediates the Na⁺-dependent neutral amino acid transporter [32]. B₀AT1 has a total length of 634 amino acid residues, including its N-terminal and C-terminal on the intracellular side, as well as 12 TM helices arranged as a LeuT-fold [17]. The plasma membrane location of B₀AT1 requires the chaperone of some proteins, represented by ACE2 in the small intestine or collectrin in the kidney [16,30].

It was reported that ACE2-B₀AT1 complex was involved in immunoregulation by controlling amino acid homeostasis, antimicrobial peptide expression and ecological regulation of intestinal microbes [34–37]. Further research showed that this complex affects the composition of the gut microbiota through its role in amino acid transport, which may explain why amino acid malnutrition in Hartnup disease can lead to diarrhea and intestinal inflammation [35,36]. The ace2 gene knockout mice showed a high susceptibility to intestinal inflammation and diarrhea, which could be reversed by dietary tryptophan or its metabolite nicotinamide, which are necessary for the biosynthesis of nicotinamide adenine dinucleotide (phosphate) via the kynurenine pathway [37]. The Hartnup diseases patients show symptoms of the skin and psychiatric disorders that are also ameliorated by nicotinamide supplementation [36]. The similarity between these studies is related to the weakened function of B₀AT1 that transports neutral amino acids, suggesting that ACE2 is essential for the expression and stability of B₀AT1 in the small intestine [16,30,37].

The high-resolution cryo-EM structure of the ACE2-B₀AT1 complex revealed that ACE2 and B₀AT1 form a heterodimer, and this heterodimer further forms a dimer through the ACE2-mediated dimerization interfaces (Figure 2) [17]. ACE2 has two dimerization interfaces, one of which is mediated by weaker interactions in PD and can be disrupted, inducing a conformational change of ACE2 from a closed conformation to an open conformation [17]. Another interface is mediated by CLD with extensive polar interactions. The properties of the ACE2 dimeric interfaces suggest that ACE2 can form a dimer independently in the absence of B₀AT1. Besides, B₀AT1 adopts a typical LeuT-fold, whose TM7 helix region extends to the extracellular and binds CLD of ACE2 (Figure 2), suggesting that ACE2 can regulate the transport activity of B₀AT1 through this interface.

ACE2 as SARS-CoV-2 receptor

ACE2 is the entry receptor for SARS-CoV-2 [5,7], as well as other coronaviruses such as SARS-CoV-1 [38] and NL63 [39]. The virion particles of SARS-CoV-2 are irregularly spherical with dozens of S randomly arranged on the surface, which can bind to ACE2 [17,40–42] and then bring viral genetic material into cells through membrane fusion at cell surface or later at endosome after endocytosis [6–9]. RBD of S has two conformations, “up” and “down” [1,2], of which only the “up” conformation can bind the receptor (Figure 1). A binding assay showed that SARS-CoV-2 binds ACE2 more strongly than SARS-CoV-1 does [1]. The interface between ACE2 and RBD of SARS-CoV-2 is similar to that of SARS-CoV-1, which is mainly involved in polar interactions. The extended loop region of RBD spans the α1 helix of ACE2 like an arch bridge (Figure 2) [17]. Besides, the functional study and cryo-EM structure of the extracellular domain of S (S-ECD) and the ACE2-B₀AT1 complex showed that each ACE2 monomer in the ACE2 dimer can bind an S (Figure 2) [17,43,44]. Structures of S of SARS-CoV-2 in different states in complex with ACE2 showed that PD of ACE2 binds S with a consistent interface and triggers the conformational change of S1 region to activate RBD. The uncleaved and trypsin-digested S-ECD alone exhibits an almost identical conformation, but the trypsin-digested S-ECD can be bound by more molecules of PD of ACE2 [44]. To be noticed, S has great structural flexibility and can form complex with ACE2 in various conformations [45,46]. RBD of SARS-CoV-2 variants tends to be in “up” state, so it more easily binds ACE2, which exhibits stronger infectivity. Interestingly, previous studies showed that the cleavage of the C-terminal segment of ACE2, especially residues 697 to 716, by proteases such as TMPRSS2 can enhance the S-driven viral entry [47,48]. In the ACE2-B₀AT1 complex structure, the residues 697–716 of ACE2 form helices in CLD and map to the dimeric interface. The presence of B₀AT1 might block the access of TMPRSS2 to the cutting site on ACE2 (Figure 1). These findings revealed the structural basis for the activation of S during infection.
and led to the development of specific peptide drugs [49] against SARS-CoV-2.

In addition, SARS-CoV-2 is a zoonotic pathogen, which can infect a variety of animals [50]. The cryo-EM structure of the complex of cat ACE2 and RBD of SARS-CoV-2 shows that cat ACE2 and human ACE2 bind the virus in a similar manner [50].

The different forms of ACE2

There are two forms of ACE2: the full-length form, which exists on the cell membrane, and the soluble form (sACE2), which is generated by enzymes cleavage [51]. ACE2 is cleaved by the metalloprotease ADAM17 [52] or the serine protease TMPRSS2, and then released into the blood. The cleavage patterns and functions of the two enzymes are different: only ACE2 cut by TMPRSS2
enhances SARS-CoV-1 infection [48]. Expression of TMPRSS2 inhibits the shedding of ACE2 by ADAM17. In many lung diseases, treatment with recombinant ACE2 can prevent blood vessel and lung damage. sACE2 has enzymatic activity and the ability to bind SARS-CoV-2, which can prevent the virus from invading host cells and spreading [53]. Recombinant sACE2 molecules can reduce viral load and prevent SARS-CoV-2 infection in blood vessels and kidney organoids [54]. An artificially designed trimeric ACE2 molecule eliminated the symmetry mismatch with trimeric S, and greatly enhanced the affinity between ACE2 and S [55]. The trimeric ACE2 molecule induces three RBDs of S to open state, which has an excellent ability to neutralize viruses [55]. Antibodies targeting to ACE2 can compete with viruses to bind ACE2, so they can be used for antiviral prevention and treatment [56]. However, a recent study found the secretory form of ACE2 can mediate the endocytosis of SARS-CoV-2 by the interaction between S and sACE2 or sACE2-vasopressin through AT1 or AVPR1B, respectively [57]. The concrete mechanism of soluble form of ACE2 requires further investigation.

Relationship with intestinal diseases
Gastrointestinal symptoms, including nausea, vomiting, anorexia, abdominal discomfort, diarrhea, are one class of the symptoms of COVID-19 infection [58,59]. SARS-CoV-2 can be detected in the stool samples and rectal swabs of COVID-19 patients, suggesting the invasion of digestive tract by this virus [60,61]. These findings are supported by an assay for SARS-CoV-2 infection with human small intestinal organoids [62]. In addition, previous studies have shown that intestinal inflammation and diarrhea occur in ace2 gene knockout mice and Hartnup disease patients caused by B0AT1 mutation [35–37]. These results collectively support the hypothesis that intestinal ACE2 engagement by S of SARS-CoV-2 might negatively regulate the absorption of neutral amino acids in the small intestine of COVID-19 patients, leading to diarrhea and intestinal inflammation. Other studies have shown that SARS-CoV-2 was detected in the small intestine, but small intestine infection appeared to have an attenuating effect on SARS-CoV-2-associated inflammation and a reduction in mortality in COVID-19 patients [59,63,64]. Further studies are required due to individual differences and limited case numbers.

Conclusion
ACE2 plays a major role in the renin—angiotensin system as a peptidase, and participates in the absorption and metabolism of amino acids as a molecular chaperone of B0AT1, thus related to the intestinal inflammation. Over the past two years, ACE2 has attracted much attention as the entry receptor of SARS-CoV-2. The physiological functions and the tissue expression and distribution of ACE2 are one of keys to understanding the symptoms of COVID-19. The interaction interface between receptor and virus is an important target for developing drugs to inhibit viral invasion and alleviate infection symptoms. A variety of potential drugs to block virus binding receptors are being developed, including small molecules, peptides, and a variety of potent neutralizing antibodies. In addition, therapeutic strategies such as supplementation with essential amino acids, soluble ACE2 [53,54] or Ang-(1–7) [27–29] have been proposed and should be considered.

Conflict of interest statement
Nothing declared.

Acknowledgements
This work was funded by the National Natural Science Foundation of China (projects 3202037, 31971123), the Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou, and the Special Research Program of Novel Coronavirus Pneumonia of Westlake University and Tencent Foundation. We would like to express our sincere gratitude towards the generous supports from Tencent Foundation and Westlake Education Foundation.

References
Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest
** of outstanding interest

1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020.

2. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181:281–292. e286.

3. Weinstein RA: Planning for epidemics—the lessons of SARS. N Engl J Med 2004, 350:2332–2334.

4. Hoffmann M, Kleine-Weber H, Pohlmann S: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 2020, 78:779–784 e775.

5. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al.: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579:270–273.

6. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F: Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010, 84:12658–12664.

7. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al.: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proved protease inhibitor. Cell 2020, 181:271–280. e278.

8. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P: Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A 2005, 102:11876–11881.

9. Jackson CB, Farzan M, Chen B, Choe H: Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022, 23:3–20.
This work reported the cryo-EM structures of full-length human ACE2 domain of ACE2 mediates homo-dimerization of the ACE2-B0AT1 complex, and is developmentally regulated in embryonic kidneys. J Biol Chem 2001, 276:17132–17139.

This work reported the crystal structure of the RBD of SARS-CoV-2 in complex with the peptidase domain of ACE2 and provided important clues for initial infection.

This work reported the crystal structure of the RBD of SARS-CoV-2 in complex with the peptidase domain of ACE2 and provided important clues for initial infection.
This work reported the crystal structure of the RBD of SARS-CoV-2 S in complex with the peptidase domain of ACE2 and provided important clues for initial infection.

34. Stevens BR, Ellory JC, Preston RL: **B0AT1** amino acid transporter complexed with SARS-CoV-2 receptor ACE2 forms a heterodimeric functional unit: in situ conformation using rational inactivation analysis. Function 2021, 2.

35. Yan R, Zhang Y, Li Y, Ye F, Guo Y, Xia L, Zhong X, Chi X, Zhou Q: Structural basis for the different states of the spike protein of SARS-CoV-2 in complex with ACE2. Cell Res 2021, https://doi.org/10.1038/s41422-021-00490-0.

This work reported cryo-EM structures of the S protein of SARS-CoV-2 at multiple conformations or states, including locked, activated, S1/S2 trypsin-cleaved, peptidase domain (PD) of ACE2-bound, and the full-length ACE2-bound states. The protease-processed S protein tends to accommodate more PD of ACE2. The structure of the S/ACE2/B0AT1 ternary complex indicates that one ACE2 dimer can be bound by two trimeric S proteins simultaneously. This work provides clues for the activation mechanism of the S protein of SARS-CoV-2.

36. Benton DJ, Wrobel AG, Xu P, Roustan C, Martin SR, **Rosenthal PB, Skehel JJ, Gamblin SJ**: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020, https://doi.org/10.1038/s41586-020-2772-0.

This work analyzed the binding of ACE2 to the furin-cleaved spike protein of SARS-CoV-2 using cryo-EM and classified multiple molecular species, describing ACE2-binding events during the priming and the activation of the S protein.

37. Xu C, Wang Y, Liu C, Zhang C, Han W, Hong X, Wang Y, Hong Q, Wang S, Zhao Q, et al.: Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Sci Adv 2021, 7.

38. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Wu L, Chen Q, Liu K, Wang J, Han P, Zhang Y, Hu Y, Meng Y, Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Dunleavy K, Matchett-R Wrobel AG, Xu P, Roustan C, Martin SR, **Rosenthal PB, Skehel JJ, Gamblin SJ**: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020, https://doi.org/10.1038/s41586-020-2772-0.

This work analyzed the binding of ACE2 to the furin-cleaved spike protein of SARS-CoV-2 using cryo-EM and classified multiple molecular species, describing ACE2-binding events during the priming and the activation of the S protein.

39. Wang G, Yang ML, Duan ZL, Liu FL, Jin L, Long CB, Zhang M, Tong X, Qiao C, et al.: Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models. Cell Res 2021, 31:17–24.

This work discovered dalbavancin, a lipoglycopeptide antibiotic, as a promising anti-COVID-19 drug candidate based on virtual screening. Dalbavancin directly binds to ACE2 with high-affinity, blocking SARS-CoV-2 replication with an EC50 in nM range.

40. Wu L, Chen Q, Liu K, Wang J, Han P, Zhang Y, Hu Y, Meng Y, Pan X, Qiao C, et al.: Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discov 2020, 6:68.

41. Battle D, Wysocki J, Satchell K: Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin Sci (Lond) 2020, 134:543–545.

42. Lambert DW, Yasaki M, Warner FJ, Thornhill P, Parkin ET, Smith AI, Hooper NM, Turner AJ: Tumor necrosis factor-alpha coactivator (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005, 280:30113–30119.

43. Chen KK, Tan TJ C, Narayanan KK, Procko E: An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants. Sci Adv 2021, 7.

44. Monteil V, Kwon H, Prado P, Hagelkuys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, et al.: Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020, 181:905–913. e907.

45. Guo L, Bi W, Wang X, Xu W, Yan R, Zhang Y, Zhao K, Li Y, Zhou M, Cai X, et al.: Engineered trimeric ACE2 binds viral spike protein and locks it in “Three-up” conformation to potently inhibit SARS-CoV-2 infection. Cell Res 2020, https://doi.org/10.1038/s41422-020-00438-w.

This work engineered a trimeric ACE2 protein (T-ACE2) that could bind spike protein with extremely high affinity to potently inhibit infection of coronaviruses that utilize ACE2 as receptor, including SARS-CoV-2, SARS-CoV mutants, and SARS-CoV. T-ACE2 can avoid the mutational escape and could also be used to treat the virus-infected patients or detect all SARS-CoVs and related viruses.

46. Chen Y, Zhang YN, Yan R, Wang G, Zhang Y, Zhang ZR, Li Y, Ou J, Chu W, Liang Z, et al.: ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduct Targeted Ther 2021, 6:315.

This work reported a human ACE2-targeting monoclonal antibody, 3E8, which blocked infection of multiple coronaviruses including wild type and mutant SARS-CoV-2, SARS-CoV and hCoV-NL63. Cryo-EM structure of ACE2 in complex with 3E8 revealed an anti-coronavirus epitope on human ACE2. This work provided a potent and broad-spectrum strategy against all coronaviruses that target ACE2 as receptor.

47. Yeung ML, Teng JLL, jia LL, Zhang CY, Huang CX, Cai JP, Zhou RH, Chan KH, Zhao HJ, Zhu L, et al.: Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell 2021, 184:2212–2227.

48. Song Y, Liu P, Shi XL, Chu YL, Zhang J, Xia J, Gao XZ, Qu T, Wang MY: SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 2020, 69:1143–1144.

49. Guo M, Tao W, Flavell RA, Zhu S: Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol 2021, 18:269–283.

50. Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, Guo Q, Sun X, Zhao D, Shen J, et al.: Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 2020, 26:502–505.

51. Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, Yang Y, Liu B, Wang W, Wei C, et al.: The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol 2020, 92:833–840.

52. Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhol J, Breugem TI, Ravelli RBG, van Schayck JP, Mykytyn AZ, Duimei HQ, et al.: SARS-CoV-2 productively infects human gut enterocytes. Science 2020, 369:50–51.

This work demonstrated enterocytes were infected by SARS-CoV and SARS-CoV-2 in human small intestinal enteroids.

53. Lehmann M, Allers K, Heidt C, Meinhardt J, Schmidt F, Rodriguez-Sillke Y, Kunkel D, Schumann M, Botcher C, Stahl-Hennig C, et al.: Human small intestinal infection by SARS-CoV-2 is characterized by a mucosal infiltration with activated CD8(+) T cells. Mucosal Immunol 2021, 14:1381–1392.

54. Livanos AE, Jha D, Cossarini F, Gonzalez-Reiche AS, Tokuyama M, Aydillo T, Parigi TL, Ladinsky MS, Ramos I, Dunleavy K, et al.: Intestinal host response to SARS-CoV-2 infection and COVID-19 outcomes in patients with gastrointestinal symptoms. Gastroenterology 2021, 160:2435–2450. e2434.