Collectrin and ACE2 in renal and intestinal amino acid transport

Singer, D; Camargo, S M R

Abstract: Neutral amino acid transporters of the SLC6 family are expressed at the apical membrane of kidney and/or small intestine, where they (re-)absorb amino acids into the body. In this review we present the results concerning the dependence of their apical expression with their association to partner proteins. We will in particular focus on the situation of B0AT1 and B0AT3, that associate with members of the renin-angiotensin system (RAS), namely Tmem27 and angiotensin-converting enzyme 2 (ACE2), in a tissue specific manner. The role of this association in relation to the formation of a functional unit related to Na+ or amino acid transport will be assessed. We will conclude with some remarks concerning the relevance of this association to Hartnup disorder, where some mutations have been shown to differentially interact with the partner proteins.

DOI: https://doi.org/10.4161/chan.5.5.16470

Accepted Version

Originally published at:
Singer, D; Camargo, S M R (2011). Collectrin and ACE2 in renal and intestinal amino acid transport. Channels, 5(5):410-423.
DOI: https://doi.org/10.4161/chan.5.5.16470
Tmem27 and ACE2 in renal and intestinal amino acid transport
Dustin Singer1 and Simone M. R. Camargo2
1 INRA/AgroParisTech, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France.
2 Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland.

Correspondence to:
Simone M. R. Camargo
Institute of Physiology and Center for Integrative Human Physiology, University of Zürich, 8057 Zurich, Switzerland.
Telephone: +41446355035
Fax: +416356814
E-mail: simonemc@physiol.uzh.ch

Dustin Singer
INRA/AgroParisTech, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France.
Telephone: +33144081826
Fax: +33144081825
E-mail: dustin.singer@agroparistech.fr
Abstract:
Neutral amino acid transporters of the SLC6 family are expressed at the apical membrane of kidney and/or small intestine, where they (re-)absorb amino acids into the body.
In this review we present the results concerning the dependence of their apical expression with their association to partner proteins. We will in particular focus on the situation of B₀AT1 and B₀AT3, that associate with members of the renin-angiotensin system (RAS), namely Tmem27 and angiotensin-converting enzyme 2 (ACE2), in a tissue specific manner.
The role of this association in relation to the formation of a functional unit related to Na⁺ or amino acid transport will be assessed. We will conclude with some remarks concerning the relevance of this association to Hartnup disorder, where some mutations have been shown to differentially interact with the partner proteins.

Keywords: Amino acid transporters, B₀AT1, Tmem27, ACE2, SLC6, Kidney, Small intestine, Renin Angiotensin System, Hartnup disorder

Abbreviations:
RAS : renin angiotensin system
SLC : solute carrier
HAT: heterodimeric amino acid transporters
SGLT1 : sodium dependant glucose transporter 1
MeAIB : methylaminoisobutyrate
Ang : Angiotensin
AT1R : Angiotensin II type 1 receptor
AT2R : Angiotensin II type 2 receptor
ACE : Angiotensin Converting Enzyme
MasR : G protein-coupled receptor encoded by the mas protooncogene
The description of amino acid transport has greatly evolved in the last 50 years, from the original transport systems description to the molecular identification of the transporters. Transport systems were classified according to the physico-chemical properties, stereospecificity, size and charge of the amino acids transported, as well as the ion or pH dependency and/or inhibition by (synthetic) amino acids.

Identification of the molecular correspondents of these systems in the early 90s was a great advance and allowed the development of the necessary tools to characterize the variability and the subcellular localization of these transporters.

A new development in the characterization of amino acid transporters has appeared through the increasing evidence of their association with partner proteins. It is reasonable to assume that the partner proteins are selected in an evolutionary coherent process in order to impact on transporter function and form a functional unit.

The following review will focus on SLC6 amino acid transporters, some of which have been shown to associate with partner proteins. The situation of these transporters is particularly interesting, as the partner proteins are tissue-specific and may thereby be linked to the etiology of Hartnup disorder. It is also interesting to note that these partner proteins were originally described because of their role in the renin angiotensin system (RAS) that is mainly known to regulate blood pressure and Na⁺ reabsorption.

Amino Acid Transporters of the SLC6 Family

The solute carrier family 6 (SLC6), is also called Sodium- and chloride-dependent neurotransmitter transporter family. It is formed by 21 members of about 600 amino acids and 12 transmembrane domains¹, grouped by homology and divided in four branches (GABA, monoamine, amino acid I and amino acid II transporter branch) (Figure 1). The solutes transported by the members of this family range from neurotransmitters to osmolytes and amino acids. In contrast to channels, the transporters of the SLC6 family are never fully open, actively transport the substrates against a concentration gradient at a speed that is about 10⁴ times slower than channels.

Most of the neurotransmitter transporters are expressed in the central and peripheral nervous system in the presynaptic membrane of neurons and can be the target of pharmacological manipulation. They are characterized by the rapid regulation of their insertion in the membrane and their high affinity transport (micromolar range). The osmolytes betaine and taurine are also transported by members of the Slc6 family and have important osmoregulation functions on kidneys and brain. We will focus our attention on the amino acid transporters of the SLC6 family. For the purpose of this paper, the amino acid transporters were grouped by the physico-chemical properties of their substrates in neutral, neutral and cationic and imino transporters. The amino acid
transporter members of the SLC6 family are mainly expressed in the central nervous system and epithelial cells. With the exception of B₀AT1 (Slc6a19), they are high affinity transporters with sodium dependence (symporters) with the number of Na⁺ varying from 1 to 3, whereas chloride dependence is variable. The majority of the transporters localize to the plasma membrane with the exception of NTT4 (Slc6a17), which was characterized as a vesicular transporter (Table 1).

Neutral amino acids

B₀AT1 (Slc6a19)

B₀AT1 (Slc6a19) is the major neutral amino acid transporter in epithelial cells of kidney and small intestine. The sodium dependent transport of a broad range of neutral amino acids was functionally described as system B₀ much earlier than the identification of the transporter. The transporter was molecularly identified and characterized as a sodium and broad range neutral amino acids co-transporter with low affinity (millimolar range). B₀AT1 is only chloride sensitive but not dependent and does not transport biogenic amines or osmolytes. B₀AT1 mRNA is highly expressed in kidney proximal tubule and small intestine where the protein localizes to the brush border membrane of small intestine enterocytes and the early portion of the proximal kidney tubules (S1). The transporter interaction with accessory proteins and its role in Hartnup disorder will be discussed in later sections. A knock-out mouse model of B₀AT1 has recently been described and these mice were shown to display decreased intestinal and renal neutral amino acid transport, the latter leading to neutral aminoaciduria similar to Hartnup subjects (discussed later on this review). Lower body weights and weight loss of mice under low (6%) and high (40%) protein diets and a blunted insulin response was observed.

B₀AT2/NTT7-3 (Slc6a15)

B₀AT2 has 35-40% identity to the epithelial transporter B₀AT1 (Slc6a19). Even though it was molecularly identified before B₀AT1, its function remained unknown for many years. It has a particular substrate specificity for branched chain amino acids like L-isoleucine, L-valine, L-leucine, L-methionine, small amino acids like L-alanine and the imino acid L-proline, characteristics reminiscent of the IMINO system. The co-transport of amino acids with high affinity is sodium dependent and chloride sensitive. It was shown to be expressed in the brain (cortex, cerebellum and brain stem), kidneys, lungs, and testis. The function of this transporter is not completely understood. In the central nervous system, B₀AT2 is expressed mainly in the neurons, whereas kidney localization of the transporter was not solved. The knock-out mice demonstrate lower L-leucine accumulation in synaptosomes with mild behavioral alterations and normal viability.
B₀AT3 (Slc6a18)
B₀AT3 shares 50% identity with B₀AT1 in rodents and humans. The gene SLC6A18 is arranged in tandem with SLC6A19 (B₀AT1) on chromosome 5p15 in human.¹⁰ It is highly expressed in the apical membrane of the proximal tubules in the kidney and displays an axial arrangement complementary to B₀AT1 along the proximal tubule, being higher in the more distal segments (S2, S3). Functionally, B₀AT3 was shown to transport a broad range of neutral amino acids as for B₀AT1, but with high affinity (micromolar range) in a sodium and chloride dependent manner. As for B₀AT1, B₀AT3 requires an accessory protein to be correctly expressed at the membrane.¹²,¹⁸,¹⁹ B₀AT3 appears to be required for the reabsorption of tubular amino acids leftover by B₀AT1 in the early proximal kidney tubule segments or amino acids that have leaked back through the paracellular pathway.²⁰ In a knock-out mouse model of slc6a18, an abnormal excretion of several neutral amino acids was observed, especially glycine and L-glutamine. The mice otherwise develop normally and are viable but have been shown to develop high blood pressure under stress conditions.¹⁸,²¹ In humans, the connection between single nucleotide polymorphism, high blood pressure or myocardial infarction has been examined and remained inconclusive.²²,²³

Glyt1 (Slc6a9)
Glyt1 is expressed in brain, lung, kidney, small intestine, pancreas and liver.²⁴,²⁵ In brain, it is expressed in glial processes close to inhibitory neurons which use glycine as a neurotransmitter. When over-expressed in polarized epithelial cells, the isoforms Glyt1a and Glyt1b localize to the apical and basolateral membranes, respectively. It induces a high affinity (micromolar range) sodium and chloride dependent uptake of glycine.²⁶ Glyt1 knock-out mice suffer severe motosensory and respiratory deficits, and die shortly after birth.²⁷ Nothing is described about the role of Glyt1 deletion on epithelial cells of the kidney or small intestine.

Glyt2 (Slc6a5)
Glyt2 is mainly expressed in brain, more precisely in axons and presynaptic terminals of inhibitory neurons that secrete glycine. When overexpressed in polarized epithelial cells it localizes to the apical membrane and like Glyt1, induces a high affinity (micromolar range) sodium and chloride dependent uptake of glycine.²⁸ The ablation of slc6a5 gene in mice impairs high-affinity glycine uptake in brain areas with glycine-mediated transmission. The mice appeared to be normal at birth but die prematurely, displaying severe neuromotor alterations.²⁹

NTT4 (Slc6a17)
The so called neurotransmitter transporter-4 (NTT4), member 17 of the Slc6 family was also identified in the early 90’s, but remained an orphan transporter for many years.\(^{30}\) It has high identity (60%) with B\(^0\)AT2 (Slc6a15), is sodium dependent but chloride independent as B\(^0\)AT1 and 2 (Slc6a19 and 15, respectively). It transports L-proline, and neutral amino acids (L-alanine, glycine and L-leucine) like B\(^0\)AT2 but with low affinity. It differs from the other members of the family by being a vesicular transporter rather than a plasma membrane transporter.\(^{31, 32}\) It is expressed in brain, more specifically in glutamatergic and gabaergic neurons.\(^{30}\) In the kidneys, it was shown to be highly expressed at the mRNA level in the medullary and cortical thick ascending limb and more distal nephron segments.\(^{33}\) The function of this transporter is still not clear and a knock-out mouse model is not available yet.

Cationic and neutral amino acids
ATB\(^0,+\) (Slc6a14)
ATB\(^0,+\) is a sodium and chloride dependent high affinity transporter for almost all neutral and cationic amino acids. ATB\(^0,+\) (\(slc6a14\)) shares moderate identity with B\(^0\)AT1 (30% protein identity). The mRNA is highly expressed in brain, salivary and mammary glands, lungs and large intestine.\(^{34, 35}\) A knock-out mouse model is not available yet.

Imino acids
SIT1 (Slc6a20)
SIT1 co-transport with high affinity (micromolar range) L-proline, methylaminoisobutyrate (MeAIB), methyl-proline, and hydroxyproline with sodium and chloride and escapes β-alanine inhibition.
In mouse SIT1 is encoded by \(Slc6a20a\) (XT3s1) whereas the product of a second closely related gene \(Slc6a20b\) (XT3) does not lead to any uptake.\(^{36}\) There is however only one gene in human. The mRNA is highly expressed in small intestine, kidney, lungs, spleen, thymus, testis, and brain. The protein localizes to the brush border membrane of the proximal tubules (S1=S2=S3) and enterocytes.\(^{10, 37}\) SIT1, as B\(^0\)AT1 and 3 (\(Slc6a19\) and 18), may also functionally interact with accessory proteins. SIT1 transporter represents the molecular component of the previously described IMINO system. Other transporters, using proton as driving force (PAT1 and PAT2 or \(Slc36a1\) and 2, respectively), were also described to transport imino acids and additionally glycine and β-alanine in intestine and kidney.\(^{36-40}\) There is no knock-out mouse model for SIT1 (\(slc6a20\)) yet.

PROT (Slc6a7)
PROT is a specific L-proline transporter expressed in brain, more specifically in glutamatergic neurons. It is a high affinity sodium and chloride dependent transporter.\(^{41}\)
Partner Proteins

Some carriers were shown to interact with other proteins for appropriate localization/expression and/or function. The interaction guarantees the insertion of the transporter in the membrane and may modulate the activity or the supply of substrate. The amino acid transporters accessory partner proteins have been shown to be implicated in a variety of cellular or physiological functions such as cell surface antigens (CD98), endoplasmic reticulum proteins (GTRAP3-18 or 41), other amino acid transporters (TAT1-4F2hc-LAT2 or ASCT2-4F2hc-LAT1) and the renin angiotensin system (RAS). The mechanisms of interaction are variable and will be discussed in the following section.

Heavy chains and the heterodimeric amino acid transporters (slc3 family)

The interaction of amino acid transporters of the Slc7 family with type II glycoproteins of the Slc3 family is necessary for a correct targeting of the transporter-complex to the plasma membrane. The so called heterodimeric amino acid transporters (HAT) family is formed by an amino acid transporter or light chain (Slc7 members) which interact with the surface antigen CD98/4F2hc or rBAT (related to b0,+ amino acid transporter). rBAT and 4F2hc are also called heavy chains, and are the only members of the solute carrier 3 family (Slc3a1 and 2, respectively). To this day, b0,+AT (Slc7a9) is the only member of the SLC7 family that was shown to interact with rBAT, while several transporters interact with 4F2hc (namely LAT1, LAT2, y’LAT1, y’LAT2, xCT, Asc-1 (Slc7a5, 8, 7, 6, 11 and 10, respectively)). rBAT and 4F2hc share 30% identity and target to different membrane compartments in polarized epithelial cells, rBAT being directed to the apical membrane and 4F2hc to the basolateral one. The interaction of 4F2hc or rBAT with the HAT transporters was shown to be made via a disulfide bridge.

When over-expressed together in cell line models, the heavy chain rBAT (Slc3a1) is mostly expressed as a complex with b0,+AT (Slc7a9). When expressed alone, rBAT remains endoglycosidase H sensitive, is disposed by the ER-mannosidase-dependent ERAD pathway and degraded. Recently, a trafficking signal on the transporter or light chain (Slc7a9) was suggested to define the fate of the complex. If the complex rBAT-b0,+ is formed, rBAT will be able to leave the ER, go through full glycosylation and rBAT-b0,+ will reach the membrane as an active complex. The deletion or mutation of the C-terminal signal of b0,+AT (Slc7a9) does not prevent complex formation, but leads to the formation of an inactive complex. Interestingly, mutations in the gene encoding the heavy chain or accessory protein rBAT (Slc3a1) as well as in its interacting light chain b0,+AT (Slc7a9) are associated with the autosomal disease cystinuria. Mutations on the gene encoding 4F2hc (Slc3a2), which associates with several members of the Slc7 family, are not connected to any physiological anomaly.
Modulating interacting proteins (GTRAP3-18 or 41, negative modulators of Slc1 family members)

Members of the glutamate and aspartate transporters from the solute carrier family 1 (Slc1) were shown to be modulated by the Glutamate TRANsport Associated Protein for EAAT3 (Slc1a1) and EAAT4 (Slc1a6) (GTRAP3–18 or 41). GTRAPs are structurally homologous to the Ras superfamily in their secondary structure and molecular weight, but lack a GTP-binding consensus motif. GTRAP3-18 is an integral endoplasmic reticulum (ER) membrane protein with four transmembrane domains and cytosolic N and C termini. GTRAP3–18 interacts with the carboxy-terminal end of the transporter and regulates the function of EAAT3/EAAC1 (Slc1a1) by delaying its exit from the ER. GTRAP3-18 is expressed in the same tissues EAAT3 is present in, and the interaction of EAAT3 in the ER with GTRAP3-18 oligomer protein may prevent the complex from exiting as cargo proteins to the Golgi.

Functional interaction: TAT1 / LAT2-4F2 and ASCT2 / LAT1-4F2

The functional interaction of antiporter transporters with other carriers has been shown to provide substrates to one of the carriers and to control cell volume and apoptosis. The interaction is only functional, no physical interaction was observed between the transporters involved. The first described interaction of this kind was among transporters expressed on the basolateral membrane of epithelial cells of the kidney proximal tubules involving an amino acid uniporter and an amino acid antiporter. The substrates transported from the cytoplasm to the extracellular compartment of the cells by the uniporter TAT1 (Slc16a10) can be used as substrate of the antiporter or obligatory exchanger LAT2-4F2hc (Slc7a8-Slc3a2) and possibly by y’LAT1-4F2hc (Slc7a7-Slc3a2). The uniporter has a very narrow specificity and low affinity, transporting only aromatic amino acids. The exchanger LAT2-4F2hc can import the effluxed aromatic amino acids outside of the cells in exchange for cytoplasmic neutral amino acids. The aromatic amino acid can again be recycled by the uniporter, triggering the efflux of neutral amino acids by the exchangers, favoring re-absorption. Whether this interaction triggers a cascade of events in the epithelial cells, which might control the transport by changing the expression of the transporter or its presence at the membrane has not been elucidated yet.

The interaction between the symporter ASCT2 (Slc1a5) and the antiporters of the HAT family LAT1-4F2hc (Slc7a5-Slc3a2), was shown to trigger an activation cascade upstream of the mTOR pathway that was independent of insulin. L-glutamine transported into cells by ASCT2 triggers the transport of essential amino acids by LAT1-4F2hc. The high intracellular concentration of L-glutamine and the later accumulation of essential amino acids into the cytoplasm activate rapamycin-sensitive mTOR complex 1 (mTORC1). This two steps amino acid exchange is necessary to activate the downstream cascade with phosphorylation and activation of the 70 kDa ribosomal protein S6 kinase (S6K), induce cell growth and inhibit autophagy. This work proposes a functional interaction between amino acid
transporters upstream of mTOR that is necessary to activate the pathway. In addition, these results suggest that the expression levels of the transporters may also be related to cell division, survival and recovering of the tissue when exposed to different diets or after injury.

Solute transport and the renin angiotensin system
Neutral amino acid transporters of the SLC6 family have recently been shown to rely on the expression of Tmem27 and the angiotensin-converting enzyme 2 (ACE2), two members of the RAS. The RAS is critical in the regulation of blood pressure homeostasis, electrolyte balance and extracellular volume. The main effector of the RAS is the key component angiotensin (Ang) II that mediates the majority of its cardiac and renal actions by binding Ang II type 1 receptor (AT1R). Responses include vascular smooth muscle contraction, enhanced myocardial contractility, aldosterone secretion, catecholamine release from medulla and sympathetic nerve endings, adrenergic stimulation, increased sympathetic nervous system activity, renal sodium reabsorption and thirst and salt appetite stimulation. Ang II also binds to Ang II type 2 receptor (AT2R), inducing a counter regulatory vasodilation through the stimulation of (NO)/cGMP, mediated by bradykinin release (aorta, heart, kidney), but also growth inhibition and apoptosis promotion. In recent years, it has become clear that the RAS functions at two levels, the classical systemic RAS, as well as the local, tissue or intrinsic RAS.

Systemic RAS leads to the generation of circulating Ang II through a series of cleaving events. The decapeptide precursor angiotensinogen (AGT) produced by the liver is first cleaved by the protease renin secreted by kidney juxtaglomerular cells in response to low effective circulating volume to the octapeptide Ang I. Ang I is then itself cleaved to Ang II by the dipeptidyl carboxypeptidase angiotensin converting enzyme (ACE) that is highly expressed on the surface of endothelial cells of the pulmonary circulation (Figure 2a).

ACE2 (ACEH)
The classical RAS view was complemented by the discovery of ACE2, an ACE homologue sharing 41.8% sequence identity with its extracellular domain that was originally identified in a screen for metalloproteases as well as a human heart failure ventricle library (Figure 2b). ACE2 was also found to play a role in the regulation of Ang II levels, although in contrast to ACE, the catalytic site of ACE2 only displays a single HEMGH zinc-binding catalytic domain. Another difference relies in the fact that ACE2 functions as a carboxypeptidase, which cleaves the terminal hydrophobic/basic amino acid following a L-proline (± 1-3 residues). ACE2 expression was measured in kidney, heart, testis, vascular smooth muscle cells, lung, liver, small intestine, placenta and brain, and localizes to the apical membrane in polarized cells.
Expression at the membrane is down regulated after extracellular shedding by the ADAMs family of zinc metalloproteinases,60 and by binding of the SARS coronavirus.51, 62

The crucial role of ACE2 in the RAS relies on its ability to cleave Ang I and Ang II to Ang (1-9) and Ang (1-7), respectively (Figure 2a).56, 57 The difference in protease target recognition is essential for the opposing functions of ACE and ACE2. Indeed, cleavage of Ang II by ACE2 not only decreases its bioavailability but also leads to the formation of Ang (1-7), that can bind to the G protein-coupled receptor encoded by the mas proto-oncogene (MasR), opposing AT1R-mediated vasoconstriction and cellular proliferation.63, 64

Furthermore, ACE2 is involved in cardiovascular and renal (patho)physiology, as well as in diabetes, acute lung disease and pregnancy.59

Tmem27 (Collectrin)

Tmem27 or Collectrin is a homologue of ACE2 that shares 47.8% identity with its non-catalytic extracellular, transmembrane and cytosolic domains.65 Tmem27 was originally described as dramatically up regulated in 5/6 nephrectomized mouse kidney (NX-17) in a screen to identify genes involved in glomerular hyperfiltration and hypertrophy.66 The \textit{tmem27} gene is located next to \textit{ace2} on chromosome Xp22 and encodes a 222 amino acid protein with a signal peptide that represents a 32 kDa membrane glycoprotein with a single transmembrane segment (Figure 2b).65 Tmem27 has been shown to be expressed in liver, lung, endocrine pancreas and kidney proximal tubule brush border membrane and collecting duct, hence the misleading name Collectrin.12, 13, 67, 68

Given the lack of Tmem27 catalytic activity, it does not seem to play a role in the classical RAS although an implication in the development of salt sensitive hypertension has been suggested.69 Tmem27 has been shown to bind proteins involved in intracellular and membrane protein trafficking and ciliary movement such as γ-actin-myosin II-A, snapin, SNAP-25, and polycystin-2-polaris complexes. This may constitute the link between Tmem27 and its implication in glucose-stimulated insulin exocytosis and and/or β-cell mass in pancreas,68, 67 as well as renal collecting duct primary cilium formation and polycystic kidney disease.70

As described more in detail in later paragraphs, Tmem27 has also been shown to be critical for the correct expression of amino acid transporters in kidney.12, 13

Local RAS

The notion of local, intrinsic or tissue RAS has emerged in recent years in complement to the general circulating RAS. Tissues exhibiting expression of some RAS components include the lung, pancreas, liver, intestine, heart, kidney, vasculature, carotid body and adipose tissue, as well as the nervous, reproductive and digestive systems.71, 72 Local RAS action has been shown to be implicated in a wide
variety of functions distinct from the circulating RAS such as cell growth, anti-proliferation and apoptosis, reactive oxygen species (ROS) generation, pro-inflammatory and pro-fibrogenic actions, hormonal secretion, and also nutrient transport.53, 73, 74

Role of local ACE2
The kidney is particular in the regulation of its local RAS, as it expresses all the RAS components from renin to the AT receptors. The regulation of local Ang II levels was not always clear as it is difficult to discriminate locally synthesized components from those provided by the circulation and because renal RAS is compartmentalized between tubular, interstitial and intracellular systems.

Cleavage of Ang I to Ang II is mainly performed by ACE that, in kidney, mostly localizes to the brush border membrane of the proximal tubule in human, in contrast to rats that also display localization on vascular endothelial cells and the basolateral side.75 The resulting levels of Ang II are up to a 100 times higher than in plasma, which argues in favor of a local RAS as these levels cannot be achieved by the systemic supply alone.76

Physiological actions of Ang II occur in the proximal tubule and further along the nephron in the distal segments and the collecting duct.77 The Ang II locally produced favors Na+ retention through the modulation of renal hemodynamics (decreased renal blood flow and glomerular filtration rate, afferent and efferent arteriole constriction and enhanced tubuloglomerular feedback) and increased Na+ transport.

The increase of Na+ re-absorption induced by Ang II in proximal and distal tubules is mediated by activation of AT1R.78 In the proximal tubules, Ang II favors the expression of the H+-ATPase expression, thereby increasing transcellular sodium reabsorption through the Na+/H+ exchanger.79-83 As described previously, renal SLC6 members co-transport Na+ and thereby participate in Na+ re-absorption. A possible hypothesis is that the interaction of these Na+ co-transporters with ACE2, the enzyme counter regulating Ang II amounts and effects, could be a fine tuning mechanism to control Na+ reabsorption. The functional link would explain the dependence of these amino acid transporters on elements of the RAS. Such a hypothesis has however not been tested until now, and this mechanistic link might have been lost through evolution by the shift of the partner protein from ACE2 to Tmem27 in the kidney.

The role of local RAS in small intestine and the expression of RAS components in enterocytes have led to the investigation of its impact on nutrient absorption.84 Local intestinal RAS system has also been shown to regulate sodium dependent glucose transporter 1 (SGLT1, \textit{Slc5a1}) expression in rat small intestine. There, SGLT1-mediated glucose transport in intestinal ring segments was decreased by exposure to Ang II through transporter down regulation, which was reversible by AT1R antagonist
Additionally, ACE2 gene expression in Caco2 cells was induced by high glucose treatment.\(^\text{84}\) We could however demonstrate that the expression of ACE2 on the apical membrane of enterocytes as well as Tmem27 in kidney is necessary for the expression of amino acid transporters. Members of the Slc6 family transporters, more specifically the neutral amino acid transporters \(\text{B}^0\text{AT1}\) and 3 (Slc6a19 and 18) and imino transporter SIT1 (Slc6a20) interact with Tmem27 and ACE2, but not with ACE. The interaction mechanism of the transporters with the accessory proteins is not completely elucidated, but has been speculated by several groups.

Neutral amino acid transporters associate with Tmem27 and ACE2

Tmem27 and ACE2 partner proteins

\(\text{B}^0\text{AT1}\) and \(\text{B}^0\text{AT3}\) were first shown to rely on Tmem27 expression to be correctly expressed at the brush border membrane of renal proximal tubule cells. Indeed \(\text{B}^0\text{AT1}\) and \(\text{B}^0\text{AT3}\) were strongly downregulated in the kidneys of \(\text{tmem27}\) knock-out mice which led to massive amounts of amino acids lost in the urine.\(^\text{12, 13}\)

Discovery of ACE2 as a second partner protein for \(\text{B}^0\text{AT1}\) arose when the transporter was observed to be normally localized at the membrane of small intestine enterocytes of \(\text{tmem27}\) knockout mice, but absent from knock-out mice for its homologue ACE2.\(^\text{9, 11}\)

Partner in kidney

Tmem27’s role as a partner protein of amino acid transporters was revealed by gene ablation. Two independent groups generated \(\text{tmem27 (coll)}\) knock-out mice and observed a strong generalized neutral aminoaciduria, but no glucosuria or phosphaturia. Kidney morphology of \(\text{tmem27}\) knock-out mice was normal and the mice were fertile and viable.\(^\text{12, 13}\) Analysis of amino acid transporters expression in kidney showed normal RNA but abnormal protein expression in proximal tubules with reduced transport function. The membrane expression of the neutral amino acid transporters of the Slc6 family, \(\text{B}^0\text{AT1}, \text{B}^0\text{AT3 (Slc6a19 and 18), the imino transporter SIT1 (Slc6a20)}\) but also Slc1 L-glutamate and L-aspartate transporter EAAT3 (Slc1a1) were abolished or strongly reduced.\(^\text{12, 13}\) The accumulation of neutral amino acids was shown to be decreased in renal brush border membrane vesicles of \(\text{tmem27}\) knock-out mice. To confirm the interaction, the function of the transporters was assayed in the *Xenopus laevis* heterologous expression system. The presence of Tmem27 increased transporter function and accelerated expression kinetics. Interestingly, the expression of human \(\text{B}^0\text{AT1}\) with human Tmem27 induced a stronger effect on \(\text{B}^0\text{AT1}\) function than the mouse Tmem27 ortholog. Tmem27 orthologs share 84% identity and the dissimilar residues are distributed in all segments of the protein. The C-terminal domain of Tmem27 appear to be involved in the interaction
with B₀AT1 according to our split ubiquitin experiments (unpublished data), but the role of this domain or of the specific residues were not studied yet.

The association between Tmem27 and B₀AT1 may occur through non-covalent interactions in contrast to Slc3 (4F2hc or rBAT) and Slc7 members. The proteins co-localize at the apical membrane and the surface expression of B₀AT1 is increased by Tmem27 presence \textit{in vitro} and \textit{in vivo}. \textit{In vitro}, the surface expression increase suggests a chaperone function, but the impact on the function was much sturdier than the effect seen on the surface expression of the protein. This would suggest that the association may also impact transporter function, possibly by increasing the cycling rate.

Other members of the SLC6 family interacting with Tmem27 in kidney

The function of other members of the Slc6 family was also modulated by Tmem27. B₀AT3 (\textit{Slc6a18}) and SIT1 (\textit{Slc6a20}) membrane expression were decreased in the brush border of \textit{tmem27} knock-out mice. Accordingly, the neutral aminoaciduria observed in these mice is broader than that typically observed in humans with Hartnup disorder that display mutations in B₀AT1, and also extends to L-proline suggesting the additional implication of the IMINO system. The loss of neutral amino acids in the urine, is probably caused by the decrease of both B₀AT3 and B₀AT1 (\textit{Slc6a18 and 19}), however L-proline is poorly transported by B₀AT1 and 3.7,12,18,86 This suggests that L-proline loss in urine might be due to the decreased expression of SIT1 (\textit{Slc6a20}). Exogenous expression of B₀AT3 with Tmem27 in \textit{Xenopus laevis} oocytes generates divergent results. Our own experiments showed that the expression of B₀AT3 with Tmem27 (mouse or human orthologs) did not result in a substantial increase of transport function or membrane expression.18 However, Vanslambrouck and colleagues showed a more than 10 fold increase in function with the co-expression of mouse B₀AT3 and Tmem27.19 To characterize the transport in heterologous expression system we overexpressed the transporter with the other member of the RAS system, ACE2 (Figure 3). With this approach, we could characterize the function of mouse B₀AT3 that had remained an orphan transporter until then.

The protein interaction mechanism is unknown. It is interesting that B₀AT3 readily reaches the membrane when overexpressed alone. In the presence of ACE2, we observed a slight increase of protein expression at the membrane, but most importantly, the function was revealed. The protein migrates equally when expressed in \textit{Xenopus laevis} alone or in the presence of ACE2 or Tmem27. In the native tissue, the transporter most likely interacts with Tmem27.10 The axial gradient of B₀AT3 along the proximal tubule corresponds to that of ACE2, \textit{i.e.} higher expression in the later segments (S3), while Tmem27 expression follows the opposite trend. Interestingly, the ablation of \textit{ace2} neither interferes with B₀AT3 expression on the apical membrane of the proximal tubules nor with the function of the transporter.
B₀AT3 knock-out mice present mild aminoaciduria characterized by high excretion of glycine, L-glutamine, L-methionine, L-alanine, L-threonine, L-serine, branched chain and aromatic amino acid. The urinary analysis of the ace2 knock-out mice showed no aminoaciduria. Knowing that the ablation of tmem27 induces a massive neutral aminoaciduria and decreases B₀AT3 expression, it seems that Tmem27 is the partner of B₀AT3 in the kidney.

Partner in small intestine
The transporter B₀AT1 (Slc6a19) is highly expressed not only in kidney, where it interacts with Tmem27, but also in small intestine where Tmem27 is absent. We hypothesized that the transporter interacts with another RAS member expressed in the small intestine, namely ACE2. Using the knock-out mouse model and an overexpression system, we could demonstrate that ACE2 is indeed the partner of B₀AT1 in small intestine. The two proteins co-localize at the apical membrane of enterocytes of wild type mice and humans, and ACE2 could be co-immunoprecipitated with B₀AT1 antibody from brush border membrane preparations. In ace2 knock-out mice, expression of B₀AT1 is completely abolished in the brush border of small intestine, but normal in kidney. Additionally, Na⁺ dependent transport of neutral amino acids was decreased in ace2 knock-out mice small intestine.

The interaction was confirmed by the overexpression model, where co-expression with ACE2 increased transporter membrane expression and function. Mouse and human ACE2 orthologs induced similar increases of transporter function unlike Tmem27, where only the human ortholog induced an effect on human B₀AT1. Another transporter apparently having two tissue specific accessory proteins is SIT1 (Slc6a20). In the ace2 knock-out mice we observed a decrease in sodium dependent, pH independent L-proline transport (unpublished results).

The interaction mechanism of B₀AT1 (Slc6a19) with ACE2 is also not known. Based on the analysis of several B₀AT1 mutants, we postulate that the absence of ACE2 may cause a decrease of transporter insertion or stability at the membrane.

The physiological importance of this interaction could be explained from the transporter point of view. The ACE2 carboxypeptidase activity would provide substrate for the transporter with which it is interacting. This theory would explain the symbiosis between B₀AT1 and ACE2 in the small intestine, since the carboxy amino acids released by ACE2 cleavage are mostly neutral amino acids, but also cationic. A catalytic dead mutant of ACE2 however still had the same effect on B₀AT1 function. The slc6a19 knock-out model (B₀AT1) has normal expression of ACE2 and Tmem27 suggesting that transporter ablation has no impact on RAS system members. We can therefore not conclude if the interaction also has a positive effect for the enzyme. Evidence however suggests that this is not the case, as the enzyme reaches the membrane in organs where the amino acid transporter is not
expressed, suggesting the interaction is important for the transporter but not crucial for RAS members.

B0AT1, Tmem27, ACE2 and Hartnup disorder

The aminoaciduria observed in tmem27 knock-out mice was shown to be caused by the reduction of amino acid reabsorption, and resembles the one observed in Hartnup disorder. Namely, elevated urinary excretion of neutral amino acids, absence of glucosuria or phosphaturia, and normal plasma amino acids levels. Neutral aminoaciduria is a hallmark of Hartnup disorder, as it is observed in all patients and is the first diagnostic of the disorder. Under certain conditions, patients may also additionally develop symptoms resembling pellagra (including light-sensitive dermatitis), intermittent cerebellar ataxia and psychosis-like symptoms.89

Hartnup disorder is caused by mutations in gene SLC6A19 (chromosomal locus 5p15.33) encoding the B0AT1 transporter. Even though B0AT1 is the major neutral amino acid transporter in kidney and small intestine, patients develop normally and may present symptoms, other than the aminoaciduria, only under stress conditions (infections, malnutrition, etc.). The aminoaciduria is attributed to the defective transporter in kidney, but the impact of the transport defect on intestinal absorption and its connection to pellagra or neurological manifestations is still unclear.

The first mutation of the SLC6A19 gene (B0AT1) was identified in members of the British Hartnup family, in which the disorder was originally described.90 Twenty-one additional mutations were further described to cause the disease, including deletions, missense, nonsense and splice site mutations on the gene SLC6A19, as depicted in Figure 4.90-93 Most of the patients are compound heterozygous which could partially contribute to the variable symptoms observed in patients (Table 2).

Knowing that B0AT1 interacts with Tmem27 in kidney and ACE2 in small intestine, a natural question is the role of these accessory proteins on the phenotype of the disorder. Both the ace2 and the tmem27 genes are located on the X chromosome (Xp22). So far, no X-linked recessive Hartnup or other neutral aminoaciduria disorders have been described. This suggests that mutations on the accessory protein are not the cause of the disorder.

On the other hand, the mutated transporter may interact differently with the accessory proteins, and show a tissue dependent role. The mutations causing Hartnup disorder are distributed all over the protein. Using the crystallized structure of the Slc6 bacterial homologue LeuTaq,94 we modeled B0AT1 and could identify the sites where the mutations are possibly localized (Figure 4). The domain responsible for the interaction with the accessory proteins is not yet known, but some important regions and residues, like sodium and substrate binding domain or domains which undergo
conformational changes during the transport cycle, were identified based on LeuT\textsubscript{aq} and previous cysteine scan studies.

The expression of B0AT1 containing Hartnup causing mutations with Tmem27 or ACE2 showed different effects on function and membrane expression of the transporter (Table 3). From the mutated transporters analyzed, we could identify an intriguing class of mutants (D173N and P265L) which differentially interacted with the two tissue-specific accessory proteins such that their function is stimulated only by the intestine-specific associated protein ACE2. The D173N allele was identified in different unrelated Hartnup pedigrees and displays a high heterozygote frequency in healthy Caucasians (1:122 healthy individuals).95 The interaction with ACE2 might allow the “survival” of this frequent allele by increasing the amino acid absorption in the individuals bearing the mutation. Unfortunately, no data on the intestinal absorption of patient bearing the D173N mutation is available. Another complicating factor would be the heterozygosis of the patients. Until now, only 3 D173N homozygote mutant individuals have been identified in American and Australian pedigrees.

A second class of mutants corresponds to those which are not stimulated by either associated protein (R240Q and A69T). R240Q interacts with the accessory protein, but there is no increase of surface appearance upon co-expression with ACE2 or Tmem27 when compared to the transporter expressed alone. In the case of A69T, the surface expression is increased. The results suggest a different fate for these mutations. R240Q may impact on the interaction with accessory proteins, whereas A69T, which is localized in a domain that undergoes conformational changes during the transport, reaches the membrane as a complex but cannot work properly.9, 11, 96

The majority of the mutations tested (R57C, L242P, E501K, G93R and P579L) are dead mutants. They do not reach the membrane or display any measurable function. Finally, some mutations have not been assayed for the interaction with the tissue accessory proteins yet.

The phenotype of Hartnup patients has been shown to be very variable. One of the reasons for the variation observed can be the nutritional status and diet of the subjects and their environment. Another cause of variation may be the high frequency of compound heterozygous. Additionally, B0AT1 mutants can interact differentially with tissue specific accessory proteins, favoring the absorption of amino acids in the intestine and might also contribute significantly to the phenotypic heterogeneity among individuals with Hartnup disorder.

Conclusion and Outlook

The work on amino acid transporters of the SLC6 family and their tissue-specific partner proteins has provided critical information concerning the modulation of amino acid transporter function, and the possible physiological relevance of such an association in the context of Ang II sensitivity. With this
information, new questions waiting to be solved have emerged concerning the exact beginning and extent of this association, as well as the mechanism guiding the selection of the Tmem27 partner protein in kidney, rather than ACE2 that is also expressed in that organ. Additionally, questions related to the regulation of the expression and function of the transporters and their accessory proteins by diet, gender, hormones, age and diseases are crucial and are just starting to be investigated. These questions will allow us to understand the complex mechanism of amino acids homeostasis maintenance and its relevance for several processes in the body distinct from the basic energy supply and protein synthesis. After the transporter cloning era, we predict an exciting translational era to answer old physiological questions related to amino acids transport.
Legends:

Figure 1: Phylogenetic tree of human and mouse Slc6 family. Protein sequences of the human and mouse Slc6 family members were aligned and a phylogenetic tree was constructed. The *Phylogeny.fr* platform was used to construct the tree. The members are divided in GABA (white, continuous line): hGAT1/SLC6A1, P30531; hGAT2/SLC6A13, Q9NSD5; hGAT3/SLC6A11, P48066; hTAUT/SLC6A6, P31641; hCT1/SLC6A8, P48029; hBGT1/SLC6A12, P48065; SLC6A10 hypothetical protein, Q6ZUB2; mGAT1/slc1a1, P31648; mGAT2/slc6a13, P31649; mGAT3/slc6a11, P31650; mbetaine, GABA/slc6a12, Q8VC9; mCT1/slc6a8, Q8BVW1; mTAUT/slc6a6, O35316. Monoamines (white, dashed line): hNET/SLC6A2, P23975; hDAT/SLC6A3, Q01959; hSERT/SLC6A4, P31645, mNET/slc6a2, O55192; mDAT/slc6a3, Q61327; m5HTT/slc6a4, Q60857. Amino acids I (gray, dashed line): hGlyt2/SLC6A5, Q9Y345; hGyt1/SLC6A9, P48067; hPROT/SLC6A7, Q99B84; hB0+/SLC6A14, Q9UN76; hGlyt2/slc6a5, B2RQX9; mGlyt1/slc6a9, P28571; mPROT/slc6a7, Q6PGE7; mB0+/slc6a14, Q9JMA9. Amino acids II (orphans, gray, continuous line): hB0AT2/SLC6A15, Q9H217; hNTT5/SLC6A16, Q9GZN6; hNTT4/SLC6A17, Q9H1V8; hB0AT3/SLC6A18, Q96N87; hB0AT1/SLC6A19, NP_001003841.1; hSIT1/SLC6A20a, Q9NP91; mB0AT2/slc6a15, Q8BG16; mslc6a16, XM_355900.5; mNTT4/slc6a17, Q8BJ11; mB0AT1/slc6a18, O85876; mB0AT1/slc6a19, Q9D687; mSIT1/slc6a20a, NP_035861.2; mXT3/slc6a20b, O88575.

Figure 2: Renin angiotensin system and its members. **a) Schematic representation of the renin–angiotensin (RAS) system.** The main role of the system involves ACE and the production of the octapeptide Angiotensin II. ACE2 role was suggested to be involved in the counterbalance effect of Angiotensin II and ACE activity. **b) ACE2 and Tmem27 share high identity in the C-terminal domain.** ACE2 and Tmem27 share identity in the C-terminus (white, shaded), whereas ACE and ACE2 in the N-terminal extracellular domain (grey, vertical lines). Somatic ACE (sACE), ACE2 and Tmem27/Collectrin are type I integral proteins with a signal peptide in the N-terminal, transmembrane, and short C-terminal domains. ACE2 and ACE have 1 or 2 zinc-binding motif (HEMGH) (bm) in the extracellular domain. sACE is encoded by a gene located on human chromosome 17, while ACE2 and Tmem27 on the X chromosome. Testis ACE was omitted from the schematic representation. AT1R, Angiotensin type 1 receptor; AT2R, Angiotensin type 2 receptor; MasR, G protein coupled Mas proto-oncogene receptor.

Figure 3: ACE2 and TMEM27, but not ACE, functionally interact with B0AT3 and B0AT1. Mouse B0AT3 and 1 (Slc6a18 and 19, respectively) were expressed in *Xenopus laevis* oocytes alone or in combination with mouse Tmem27, ACE2 or ACE. Transporter alone (empty bars), co-expression with: Tmem27 (gray bars), ACE2 (checkered bars), ACE (solid bars). 10 ng of each cRNA was injected, and the transport of L-isoleucine (100 µM for B0AT3 and 1 mM B0AT1 for 30 minutes) measured after 6 days expression. The low effect of Tmem27 in mouse B0AT1 after long expression was previously observed.11 ACE expression in tmem27 and ace2 knockout is normal, supporting the hypothesis that ACE is not an accessory protein even though in oocytes injected with B0AT1 the transport was increased.

Figure 4: Mutations in the SLC6A19 gene causing Hartnup disorder. The homology model of human B0AT1 transport was based on the crystal structure of LeuT _Aa_ (NP_214423) as a template using the I-TASSER server. The pdb file was visualized using PyMol (DeLano Scientific LLC, Palo Alto, CA). The transporter is oriented with the top facing the lumen of the renal proximal tubule or small intestine and the bottom facing the intracellular compartment. The mutations are from refs. 11, 90-93, 100, 101.
Acknowledgements
This project was supported by Swiss National Science Foundation Grants 31-108021/1, 31-59141.02, 31-130471/1 and EU GINDAT (The European FP6 Project) to the laboratory of François Verrey and a fellowship from the University Research Priority Program “Integrative Human Physiology” at the University of Zurich (to D.S.)
We would also like to thank François Verrey for his support in writing this review.

References
1. Nelson N. The family of Na+/Cl- neurotransmitter transporters. J Neurochem 1998; 71:1785-803.
2. Chen NH, Reith ME, Quick MW. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 2004; 447:519-31.
3. Broer S. The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int 2006; 48:559-67.
4. Doyle FA, McGivan JD. The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na(+)-dependent neutral amino acid transport system (System Bo) similar to that in bovine renal brush border membrane vesicles. Biochim Biophys Acta 1992; 1104:55-62.
5. Doyle FA, McGivan JD. Reconstitution and identification of the major Na(+)-dependent neutral amino acid-transport protein from bovine renal brush-border membrane vesicles. Biochem J 1992; 281 (Pt 1):95-102.
6. Broer A, Klingel K, Kowalczyk S, Rasko JE, Cavanaugh J, Broer S. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 2004; 279:24467-76.
7. Camargo SM, Makrides V, Virkki LV, Forster IC, Verrey F. Steady-state kinetic characterization of the mouse BOAT1 sodium-dependent neutral amino acid transporter. Pflugers Arch 2005; 451:338-48.
8. Bohmer C, Broer A, Munzinger M, Kowalczyk S, Rasko JE, Lang F, et al. Characterization of mouse amino acid transporter BOAT1 (slc6a19). Biochem J 2005; 389:745-51.
9. Kowalczyk S, Broer A, Tietze N, Vanslambrouck JM, Rasko JE, Broer S. A protein complex in the brush-border membrane explains a Hartnup disorder allele. Faseb J 2008; 22:2880-7.
10. Romeo E, Dave MH, Bacic D, Ristic Z, Camargo SM, Loffing J, et al. Luminal kidney and intestine SLC6 amino acid transporters of BOAT-cluster and their tissue distribution in Mus musculus. Am J Physiol Renal Physiol 2006; 290:F376-83.
11. Camargo SM, Singer D, Makrides V, Huggel K, Pos KM, Wagner CA, et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology 2009; 136:872-82.
12. Daniczyk U, Sarao R, Remy C, Benabbes C, Stange G, Richter A, et al. Essential role for collectrin in renal amino acid transport. Nature 2006; 444:1088-91.
13. Malakauskas SM, Quan H, Fields TA, McCall SJ, Yu MJ, Kourany WM, et al. Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. Am J Physiol Renal Physiol 2007; 292:F533-44.
14. Broer A, Juelich T, Vanslambrouck JM, Tietze N, Solomon PS, Holst J, et al. IMPAIRED NUTRIENT SIGNALING AND BODY WEIGHT CONTROL IN AN Na+ NEUTRAL AMINO ACID Cotransporter (Slc6a19) DEFICIENT MOUSE. J Biol Chem.
15. Broer A, Tietze N, Kowalczyk S, Chubb S, Munzinger M, Bak LK, et al. The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (BOAT2). Biochem J 2006; 393:421-30.
16. Takanaga H, Mackenzie B, Peng JB, Hediger MA. Characterization of a branched-chain amino acid transporter SBAT1 (SLC6A15) that is expressed in human brain. Biochem Biophys Res Commun 2005; 337:892-900.
17. Drgonova J, Liu QR, Hall FS, Krieger RM, Uhl GR. Deletion of v7-3 (SLC6A15) transporter allows assessment of its roles in synaptosomal proline uptake, leucine uptake and behaviors. Brain Res 2007; 1183:10-20.

18. Singer D, Camargo SM, Huggel K, Romeo E, Danilczyk U, Kuba K, et al. Orphan transporter SLC6A18 is renal neutral amino acid transporter BOAT3. J Biol Chem 2009; 284:19953-60.

19. Vanslambrouck JM, Broer A, Thavoryagarajah T, Holst J, Bailey CG, Broer S, et al. Renal imino acid and glycine transport system ontology and involvement in developmental iminoglycinuria. Biochem J 2010; 428:397-407.

20. Parks LD, Barfuss DW. Transepithelial transport and metabolism of glycine in S1, S2, and S3 cell types of the rabbit proximal tubule. Am J Physiol Renal Physiol 2002; 283:F1208-15.

21. Quan H, Athirakul K, Wetsel WC, Torres GE, Stevens R, Chen YT, et al. Hypertension and impaired glycine handling in mice lacking the orphan transporter XT2. Mol Cell Biol 2004; 24:4166-73.

22. Eslami B, Kinboshi M, Inoue S, Harada K, Inoue K, Koizumi A. A nonsense polymorphism (Y319X) of the solute carrier family 6 member 18 (SLC6A18) gene is not associated with hypertension and blood pressure in Japanese. Tohoku J Exp Med 2006; 208:25-31.

23. Matsumoto K, Shimodaira M, Nakagawa T, Nakayama T, Nakazato T, Izumi Y, et al. Association study: SLC6A18 gene and myocardial infarction. Clin Biochem 2011.

24. Howard A, Goodlad RA, Walters JR, Ford D, Hirst BH. Increased expression of specific intestinal amino acid and peptide transporter mRNA in rats fed by TPN is reversed by GLP-2. J Nutr 2004; 134:2957-64.

25. Kim KM, Kingsmore SF, Han H, Yang-Feng TL, Godinot N, Seldin MF, et al. Cloning of the human glycine transporter type 1: molecular and pharmacological characterization of novel isoform variants and chromosomal localization of the gene in the human and mouse genomes. Mol Pharmacol 1994; 45:608-17.

26. Poyatos I, Ruberti F, Martinez-Maza R, Gimenez C, Dotti CG, Zafra F. Polarized distribution of glycine transporter isoforms in epithelial and neuronal cells. Mol Cell Neurosci 2000; 15:99-111.

27. Gomez J, Hulsmann S, Ohno K, Eulenburg V, Szoke K, Richter D, et al. Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycineric inhibition. Neuron 2003; 40:785-96.

28. Martinez-Maza R, Poyatos I, Lopez-Corcuera B, E Nu, Gimenez C, Zafra F, et al. The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem 2001; 276:2168-73.

29. Gomez J, Ohno K, Hulsmann S, Armes W, Eulenburg V, Richter DW, et al. Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 2003; 40:797-806.

30. el Mestikawy S, Giros B, Pohl M, Hamon M, Kingsmore SF, Seldin MF, et al. Characterization of an atypical member of the Na+/Cl(-)-dependent transporter family: chromosomal localization and distribution in GABAergic and glutamatergic neurons in the rat brain. J Neurochem 1994; 62:445-55.

31. Parra LA, Baust T, El Mestikawy S, Quiroz M, Hoffman B, Hafllett JM, et al. The orphan transporter Rxt1/NTT4 (SLC6A17) functions as a synaptic vesicle amino acid transporter selective for proline, glycine, leucine, and alanine. Mol Pharmacol 2008; 74:1521-32.

32. Zaia KA, Reimer RJ. Synaptic Vesicle Protein NTT4/XT1 (SLC6A17) Catalyzes Na+-coupled Neutral Amino Acid Transport. J Biol Chem 2009; 284:8493-48.

33. Cheval L, Pierrat F, Dossat C, Genete M, Imbert-Teboul M, Duong Van Huyen JP, et al. Atlas of gene expression in the mouse kidney: new features of glomerular parietal cells. Physiol Genomics 2011; 43:161-73.

34. Sloan JL, Mager S. Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). J Biol Chem 1999; 274:23740-5.

35. Ugawa S, Sunouchi Y, Ueda T, Takahashi E, Saishin Y, Shimada S. Characterization of a mouse colonic system B(0+) amino acid transporter related to amino acid absorption in colon. Am J Physiol Gastrointest Liver Physiol 2001; 281:G365-70.
36. Kowalczyk S, Broer A, Munzinger M, Tietze N, Klingel K, Broer S. Molecular cloning of the mouse IMINO system: an Na+- and Cl–-dependent proline transporter. Biochem J 2005; 386:417-22.
37. Takanaga H, Mackenzie B, Suzuki Y, Hediger MA. Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino. J Biol Chem 2005; 280:8974-84.
38. Inigo C, Barber A, Lostao MP. Na+ and pH dependence of proline and beta-alanine absorption in rat small intestine. Acta Physiol (Oxf) 2006; 186:271-8.
39. Boll M, Foltz M, Rubio-Alia A, Kottra G, Daniel H. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters. J Biol Chem 2002; 277:22966-73.
40. Kennedy DJ, Gatfield KM, Winpenny JP, Ganapathy V, Thwaites DT. Substrate specificity and functional characterisation of the H+/amino acid transporter rat PAT2 (Slc36a2). Br J Pharmacol 2005; 144:28-41.
41. Shafqat S, Velaz-Faircloth M, Henzi VA, Whitney KD, Yang-Feng TL, Seldin MF, et al. Human brain-specific L-proline transporter: molecular cloning, functional expression, and chromosomal localization of the gene in human and mouse genomes. Mol Pharmacol 1995; 48:219-29.
42. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 2004; 447:532-42.
43. Pfeiffer R, Loffing J, Rossier G, Meier C, Eggermann T, et al. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell 1999; 10:4135-47.
44. Bartoccioni P, Rius M, Zorzano A, Palacin M, Chillaron J. Distinct classes of trafficking rBAT mutants cause the type I cystinuria phenotype. Hum Mol Genet 2008; 17:1845-54.
45. Sakamoto S, Chairengdua A, Nagamori S, Wiriyasermkul P, Promchan K, Tanaka H, et al. A novel role of the C-terminus of b0,+ AT in the ER-Golgi trafficking of the rBAT-b0,+ AT heterodimeric amino acid transporter. Biochem J 2009; 417:441-8.
46. Chillaron J, Font-Llitjos M, Fort J, Zorzano A, Goldfarb DS, Nunes V, et al. Pathophysiology and treatment of cystinuria. Nat Rev Nephrol 2010; 6:424-34.
47. Ruggiero AM, Liu Y, Vidensky S, Maier S, Jung E, Farhan H, et al. The endoplasmic reticulum exit of glutamate transporter is regulated by the inducible mammalian Yip6b/GTRAP3-18 protein. J Biol Chem 2008; 283:6175-83.
48. Butchbach ME, Lai L, Lin CL. Molecular cloning, gene structure, expression profile and functional characterization of the mouse glutamate transporter (EAAT3) interacting protein GTRAP3-18. Gene 2002; 292:81-90.
49. Ramadan T, Camargo SM, Herzog B, Bordin M, Pos KM, Verrey F. Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2-4F2hc exchanger. Pflugers Arch 2007; 454:507-16.
50. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136:521-34.
51. Corvol P, Michaud A, Soubrier F, Williams TA. Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J Hypertens Suppl 1995; 13:S3-10.
52. Skeggs LT, Dorer FE, Levine M, Lentz KE, Kahn JR. The biochemistry of the renin-angiotensin system. Advances in experimental medicine and biology 1980; 130:1-27.
53. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacological reviews 2000; 52:415-72.
54. Peach MJ. Renin-angiotensin system: biochemistry and mechanisms of action. Physiological reviews 1977; 57:313-70.
55. Johren O, Bruggemann N, Dominik P. Orexins (hypocretins) and adrenal function. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 2004; 36:370-5.
56. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000; 275:33238-43.
57. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation research 2000; 87:E1-9.
58. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002; 277:14838-43.
59. Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, et al. The emerging role of ACE2 in physiology and disease. The Journal of pathology 2007; 212:1-11.
60. Lambert MH, Blackburn RK, Seaton TD, Kassel DB, Kinder DS, Leesnitzer MA, et al. Substrate specificity and novel selective inhibitors of TNF-alpha converting enzyme (TACE) from two-dimensional substrate mapping. Combinatorial chemistry & high throughput screening 2005; 8:327-39.
61. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436:112-6.
62. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature medicine 2005; 11:875-9.
63. Ferrario CM. Contribution of angiotensin-(1-7) to cardiovascular physiology and pathology. Current hypertension reports 2003; 5:129-34.
64. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proceedings of the National Academy of Sciences of the United States of America 2003; 100:8258-63.
65. Zhang H, Wada J, Hida K, Tsuchiyama Y, Hiragushi K, Shikata K, et al. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem 2001; 276:17132-9.
66. Zhang H, Wada J, Kanwar YS, Tsuchiyama Y, Hiragushi K, Hida K, et al. Screening for genes up-regulated in 5/6 nephrectomized mouse kidney. Kidney international 1999; 56:549-58.
67. Akpinar P, Kuwajima S, Krutzfeldt J, Stoffel M. Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. Cell Metab 2005; 2:385-97.
68. Fukui K, Yang Q, Cao Y, Takahashi N, Hatakeyama N, Wang H, et al. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab 2005; 2:373-84.
69. Yasuhara A, Wada J, Malakauskas SM, Zhang Y, Eguchi J, Nakatsuka A, et al. Collectrin is involved in the development of salt-sensitive hypertension by facilitating the membrane trafficking of apical membrane proteins via interaction with soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. Circulation 2008; 118:2146-55.
70. Zhang Y, Wada J, Yasuhara A, Iseda I, Eguchi J, Fukui K, et al. The role for HNF-1 beta-targeted collectrin in maintenance of primary cilia and cell polarity in collecting duct cells. PloS one 2007; 2:e414.
71. Kobori H, Nangaku M, Navar LG, Nishiya A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacological reviews 2007; 59:251-87.
72. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiological reviews 2006; 86:747-803.
73. Leung PS. The peptide hormone angiotensin II: its new functions in tissues and organs. Current protein & peptide science 2004; 5:267-73.
74. Warner FJ, Lubel JS, McCaughan GW, Angus PW. Liver fibrosis: a balance of ACEs? Clin Sci (Lond) 2007; 113:109-18.
75. Metzger R, Bohle RM, Pauls K, Eichner G, Alhenc-Gelas F, Danilov SM, et al. Angiotensin-converting enzyme in non-neoplastic kidney diseases. Kidney international 1999; 56:1442-54.
76. Inger C, Grima C, Coquard C, Barthelemebs M, Imbs JL. Contribution of angiotensin II internalization to intrarenal angiotensin II levels in rats. Am J Physiol Renal Physiol 2002; 283:F1003-10.
Pohl M, Kaminski H, Castrop H, Bader M, Himmerkus N, Bleich M, et al. Intrarenal renin angiotensin system revisited: role of megalin-dependent endocytosis along the proximal nephron. J Biol Chem; 285:41935-46.

Barreto-Chaves ML, Mello-Aires M. Effect of luminal angiotensin II and ANP on early and late cortical distal tubule HCO3- reabsorption. The American journal of physiology 1996; 271:F977-84.

Eiam-Ong S, Hilden SA, Johns CA, Madias NE. Stimulation of basolateral Na(+)-HCO3-cotransporter by angiotensin II in rabbit renal cortex. The American journal of physiology 1993; 265:F195-203.

Garvin JL. Angiotensin stimulates bicarbonate transport and Na+/K+ ATPase in rat proximal straight tubules. J Am Soc Nephrol 1991; 1:1146-52.

Liu FY, Cogan MG. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. The Journal of clinical investigation 1988; 82:601-7.

Mitchell KD, Braam B, Navar LG. Hypertensinogenic mechanisms mediated by renal actions of renin-angiotensin system. Hypertension 1992; 19:I18-27.

Wang T, Giebisch G. Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. The American journal of physiology 1996; 271:F143-9.

Wong TP, Debnam ES, Leung PS. Involvement of an enterocyte renin-angiotensin system in the local control of SGLT1-dependent glucose uptake across the rat small intestinal brush border membrane. J Physiol 2007; 584:613-23.

Leung PS. Local RAS. Advances in experimental medicine and biology; 690:69-87.

Ristic Z, Camargo SM, Romeo E, Bodoy S, Bertran J, Palacin M, et al. Neutral amino acid transport mediated by ortholog of imino acid transporter SIT1/SLC6A20 in opossum kidney cells. Am J Physiol Renal Physiol 2006; 290:F880-7.

Dales NA, Gould AE, Brown JA, Calderwood EF, Guan B, Minor CA, et al. Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors. J Am Chem Soc 2002; 124:11852-3.

Broer A, Juelich T, Vanslambrouck JM, Tietze N, Solomon PS, Holst J, et al. IMPAIRED NUTRIENT SIGNALING AND BODY WeIGHT CONTROL IN AN Na+ NEUTRAL AMINO ACID COTRANSPORTER (Slc6a19) DEFICIENT MOUSE. J Biol Chem 2011.

 Levy LL, ed. In The Metabolic and Molecular Bases of Inherited Diseases. New York: McGraw-Hill, 2001.

Kleta R, Romeo E, Ristic Z, Ohura T, Stuart C, Arcos-Burgos M, et al. Mutations in SLC6A19, encoding BOAT1, cause Hartnup disorder. Nat Genet 2004; 36:999-1002.

Cheon CK, Lee BH, Ko JM, Kim HJ, Yoo HW. Novel mutation in SLC6A19 causing late-onset seizures in Hartnup disorder. Pediatr Neurol 2010; 42:369-71.

Zheng Y, Zhou C, Huang Y, Bu D, Zhu X, Jiang W. A novel missense mutation in the SLC6A19 gene in a Chinese family with Hartnup disorder. Int J Dermatol 2009; 48:388-92.

Seow HF, Broer S, Broer A, Bailey CG, Potter SJ, Cavanaugh JA, et al. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 2004; 36:1003-7.

Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. Crystal structure of a bacterial homologue of Na+/Cl−–dependent neurotransmitter transporters. Nature 2005; 437:215-23.

Azmanov DN, Rodgers H, Auray-Blais C, Giguerre R, Bailey C, Broer S, et al. Persistence of the common Hartnup disease D173N allele in populations of European origin. Ann Hum Genet 2007; 71:755-61.

Sato Y, Zhang YW, Androutsellis-Theotokis A, Rudnick G. Analysis of transmembrane domain 2 of rat serotonin transporter by cysteine scanning mutagenesis. J Biol Chem 2004; 279:22926-33.

Dereeper A, Audic S, Claverie JM, Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 2010; 10:8.

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008; 36:W465-9.
99. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008; 9:40.
100. Nozaki J, Dakeishi M, Ohura T, Inoue K, Manabe M, Wada Y, et al. Homozygosity mapping to chromosome 5p15 of a gene responsible for Hartnup disorder. Biochem Biophys Res Commun 2001; 284:255-60.
101. Potter SJ, Lu A, Wilcken B, Green K, Rasko JE. Hartnup disorder: polymorphisms identified in the neutral amino acid transporter SLC1A5. J Inherit Metab Dis 2002; 25:437-48.
102. Azmanov DN, Kowalczuk S, Rodgers H, Auray-Blais C, Giguere R, Rasko JE, et al. Further evidence for allelic heterogeneity in Hartnup disorder. Hum Mutat 2008; 29:1217-21.
Table 1: SLC6 human family members*.

Gene	Protein name	Key substrate	Ion dependence	Tissue distribution	chromosome
SLC6A1	GAT1	GABA	Na⁺, Cl⁻	central and peripheral neurons (gabaergic neurons)	3p25-p24
SLC6A2	NET, NAT1, NET1	norepinephrine	Na⁺, Cl⁻	central and peripheral neurons, adrenal gland, placenta	16q12.2
SLC6A3	DAT1, DAT	dopamine	Na⁺, Cl⁻	brain (dopaminergic neurons)	5p15.3
SLC6A4	SERT, 5-HTT	serotonin	Na⁺, Cl⁻, K⁺	central and peripheral nervous system, epithelial cells, platelets	17q11.1-q12
SLC6A5	GlyT2	glycine	Na⁺, Cl⁻	spinal cord, brain (axon and presynaptic terminal of glycineric neurons)	11p15.2-15.1
SLC6A6	TauT	taurine	Na⁺, Cl⁻	brain, retina, liver, kidney, heart, spleen, pancreas	3p25-p24
SLC6A7	PROT	L-proline	Na⁺, Cl⁻	brain (glutamatergic neurons)	5q31-q32
SLC6A8	CT1, CRTR	creatine	Na⁺, Cl⁻	ubiquitous	Xq28
SLC6A9	GlyT1	glycine	Na⁺, Cl⁻	brain, pancreas, uterus, stomach, spleen, liver, lung	1p33
SLC6A11	GAT3, GAT-B, GAT-4	GABA	Na⁺, Cl⁻	brain (gabaergic neurons, glia)	3p25.3
SLC6A12	BET1	betaine, GABA	Na⁺, Cl⁻	kidney, brain	12p13
SLC6A13	GAT2, GAT3	GABA	Na⁺, Cl⁻	brain (meninges, ependymal, choroid plexus), retina, liver, kidney	12p13.3
SLC6A14	ATB⁰⁺	neutral, cationic amino acids	Na⁺, Cl⁻	lung, trachea, salivary gland, mammary gland, stomach, colon, pituitary gland	Xq23-q24
SLC6A15	B⁰AT2, v7-3, NTT7-3	L-isoleucine	Na⁺	brain (amygdala, putamen, corpus callosum)	12q21.3
SLC6A16	NTT5	Orphan transport	Na⁺	testis, pancreas, prostate	19q13.1 - q13.4
SLC6A17	NTT4, XT1	neutral amino acids	Na⁺	synaptic vesicles	1p13.3
SLC6A18	XT2, B⁰AT3	Glycine, L-glutamine	Na⁺, Cl⁻	kidney (apical)	5p15.33
SLC6A19	B⁰AT1, XT2s1	neutral amino acids	Na⁺	intestine and renal proximal tubule (apical)	5p15.33
SLC6A20	SIT1, XT3s1, Xtrp3	imino acids	Na⁺, Cl⁻	intestine, kidney proximal tubule, choroid plexus, microglia, meninges of the brain, ovary	3p21.3
*This table is based on the references cited along the section describing the amino acid transporters. For the monoamine, GABA and osmolyte transporter based on the work of Chen, Reith and Quick. The hypothetical proteins encoded by the genes $SLC6A10$ and 21 were not included in this table.
Table 2: Hartnup causing mutations – Identified mutations in the SLC6A19 gene encoding B₀AT1.

Pedigree	Family	Mutation	Zygosity	Symptoms
Hartnup family	UK	IVS8+2T→G	homozygous	Aminoaciduria, mild cerebral ataxia, light sensitive skin rash (pellagra-like)
Japan	a	884-885del TG (V295fsX351)	homozygous	I) Mental retardation, gait disturbances, sunlight skin rash II) Psychological symptoms, ataxia and diplopia.
Japan	a	169C→T (R57C)	homozygous	Aminoaciduria, low plasma amino acid levels, light sensitive rash (pellagra-like)
Japan	a	340delC (L114FSX114) 682-683AC→TA (T228X)	Compound heterozygous	Aminoaciduria, asymptomatic
USA	a	517G→A (D173N)	Homozygous	Aminoaciduria, asymptomatic
Australia	b	IVS8+2G 725T→C (L242P)	Compound heterozygous	Aminoaciduria, asymptomatic
Australia	517G→A (D173N) 1501G→A (E501K)	Compound heterozygous	Aminoaciduria, asymptomatic	
Australia	b, f	IVS11+1A 719G→A (R240Q)	Compound heterozygous	Aminoaciduria, asymptomatic
Australia	b	517G→A (D173N)	homozygous	Aminoaciduria, asymptomatic
Australia	b, f	517G→A (D173N) 196G→A (G66R)	Compound heterozygous	Aminoaciduria, asymptomatic
Australia	b, f	517G→A (D173N) 1550A→G (D517G)	Compound heterozygous	Aminoaciduria, asymptomatic
Australia	b	517G→A (D173N) 718C→T (R240X)	Compound heterozygous	Aminoaciduria, asymptomatic
Denmark	c	725T→C (L242P) 794C→T (P265L)	Compound heterozygous	Pellagra-like skin rash, atactic gait
Denmark	c	IVS8+2T→G 205C→A (A69T)	Compound heterozygous	Aminoaciduria, asymptomatic
Denmark	c	IVS8+2T→G 1735C→G (P579L)	Compound heterozygous	Aminoaciduria, asymptomatic
Germany	c	277G→A (G93R)	homozygous	Aminoaciduria, asymptomatic
China	d	850G→A (G284R)	homozygous	Edema, involuntary movements of head and bilateral upper extremities history of dermatitis caused by photosensitivity.
Country	Chromosome Changes	Mutation(s)	Clinical Features	
-----------	--------------------	-------------	-------------------	
Korea e	c.908C>T (S303L)	c.1787_1788insG (T596fsX73)	Compound heterozygous seizures, attention-deficit hyperactivity disorder, and mental retardation without pellagra or ataxia, aminoaciduria	
Australia f	196G→A (G66R)/277G→A (G93R) 277G→A (G93R)/517G→A (D173N) 517G→A (D173N)/850G→A (G284R) 517G→A (D173N)/1550A→G (D517G)	Compound heterozygous	Aminoaciduria, asymptomatic	
Canada f	532C→T (R178X)/1213G→A (E405K) 517G→A (D173N)/982C→T (R328C)	Compound heterozygous	Aminoaciduria, asymptomatic Newborn screening	

a, 90, 100; b, 91, 101; c, 11; d, 92; e, 91; f, 102.
Table 3: SLC6A19 missense mutations shown to interact with Tmem27 and/or ACE2. From the mutations co-expressed with the two accessory proteins, the majority caused a loss of surface expression (R57C, G93R, L242P, E501K, P579L) and the transporters were not functional alone or in co-expression. Two mutations had low function as shown for the wild type expressed alone, but prevented both accessory proteins of stimulating the transport function (A69T and R240Q). Two mutations led to a differential interaction with the accessory proteins (D173N and P265L), only the intestinal accessory protein triggers an increase in cell surface expression and function. Several mutations were not yet assayed with the accessory proteins.

Protein	Position in the protein	Co-expression with	Membrane expression	Function
R57C	1st TMS	ACE2 and Tmem27	-	-
A69T	2nd TMS	ACE2 and Tmem27	↑	=
G93R	2nd TMS	ACE2 and Tmem27	-	-
D173N	2nd EL	ACE2 and Tmem27	↑	↑
R240Q	3th EL	ACE2 and Tmem27	=	=
L242P	3th EL	ACE2 and Tmem27	-	-
P265L	6th TMS	ACE2 and Tmem27	↑	↑
E501K	10th TMS	ACE2 and Tmem27	-	-
P579L	6th TMS	ACE2 and Tmem27	-	-
G66R	2nd TMS	nd		
G284R	6th TMS	nd		
S303L	7th TMS	nd		
R328C	7th TMS	nd		
E405K	4th EL	nd		
D517G	5th IL	nd		

nd, the function or membrane expression of these missense mutant were not yet determined in the presence of ACE2 or Tmem27.