Mammalian carboxylesterases (CEs) are key enzymes from the serine hydrolase superfamily. In the human body, two predominant carboxylesterases (CES1 and CES2) have been identified and extensively studied over the past decade. These two enzymes play crucial roles in the metabolism of a wide variety of endogenous esters, ester-containing drugs and environmental toxicants. The key roles of CES in both human health and xenobiotic metabolism arouse great interest in the discovery of potent CES modulators to regulate endobiotic metabolism or to improve the efficacy of ester drugs. This review covers the structural and catalytic features of CES, tissue distributions, biological functions, genetic polymorphisms, substrate specificities and inhibitor properties of CES1 and CES2, as well as the significance and recent progress on the discovery of CES modulators. The information presented here will help pharmacologists explore the relevance of CES to human diseases or to assign the contribution of certain CES in xenobiotic metabolism. It will also facilitate medicinal chemistry efforts to design prodrugs activated by a given CES isoform, or to develop potent and selective modulators of CES for potential biomedical applications.
1. Introduction

Mammalian carboxylesterases (CES, E.C. 3.1.1.1) are essential members of the serine hydrolase superfamily, which are localized within the lumen of the endoplasmic reticulum in many tissues. As their name implies, CES catalyze the ester cleavage of a large number of structurally diverse ester- or amide-containing substrates into the corresponding alcohol and carboxylic acid. Actually, CES can hydrolyze ester, thioester, amide, and carbamate linkages in a wide variety of endo- and xenobiotic compounds, thus playing key roles in both endobiotic metabolism, and in activation and/or detoxification of xenobiotics. In the human body, three CES have been identified, although human carboxylesterase 1 (CES1) and human carboxylesterase 2 (CES2) are the two extensively studied isoenzymes involved in xenobiologic metabolism. Both CES1 and CES2 play crucial roles in the metabolism of various ester xenobiotics including many ester drugs (such as oseltamivir, clorpodigrel, irinotecan and capetitabine) and environmental toxicants (such as pyrethroids). These two enzymes are also known to metabolize endogenous esters including cholesteryl esters, triacylglycerols and other endogenous lipids, thus playing vital physiological functions in lipid homeostasis.

Over the past twenty years, many studies have provided powerful insight into the roles of CES in metabolic diseases and xenobiotic metabolism. The key roles of CES in both endogenous and xenobiotic metabolism have attracted great interest in the discovery of CES modulators to regulate lipid metabolism or to enhance the activity of ester drugs. This review covers the structural and catalytic features of CES, tissue distribution, biological functions, substrate specificities and inhibitor profiles of two predominant CES, as well as the significance and recent progress on the discovery of CES modulators. It will be very helpful for pharmacologists to explore the relevance of CES to human diseases or to confirm the contribution of CES in xenobiotic metabolism. In addition, it will assist medicinal chemists in designing ideal prodrugs which can be activated by a given CES isoform in the human body, or to develop more potent inhibitors/inducers of CES.

2. Structural features and catalytic properties of CES

2.1. Structural features of CES

CES belong to the α/β-hydrolase fold superfamily of proteins. The majority of mammalian carboxylesterases are intracellular proteins found predominantly in the microsomal fraction that encompass the endoplasmic reticulum (ER) lumen. Microsomal CES from human, rabbit, and mouse carry the HXEL motifs of the KDEL consensus ER retrieval sequence at their C-terminal (such as HIEL and HTEL for CES1 and CES2, respectively), which is essential for the localization of these enzymes to the ER lumen in mammalian cells. Following cleavage of the C-terminal signal peptide, microsomal carboxylesterases can be released from their membrane-associated state, suggesting that these enzymes are not transmembrane proteins but soluble proteins that reside in the ER lumen.

The three-dimensional (3D) structures of several mammalian CES including human carboxylesterase 1 (CES1) have been solved by X-ray crystallography with several ligands. As depicted in Fig. 1, CES1 is composed by a central catalytic domain, an αβ domain, and an adjacent regulatory domain which containing the low-affinity surface ligand-binding Z-site. The X-ray crystal structure of CES1 demonstrated its existence as monomer, trimer, or hexamer, with substrate-dependent equilibrium of homooligomer formation. In contrast, CES2 and CES3 exist as monomers. Both sequence alignments and secondary sequence predictions have suggested that these three CES are members of αβ hydrolase family. Although the 3D structures of CES2 and CES3 have not been reported, the 3D structure modelling of both CES2 and CES3 can be downloaded from the SWISS-MODEL repository (a database of annotated 3D protein structure models generated by the SWISS-MODEL homology-modelling pipeline).

The molecular properties of CES1 and CES2 are listed in Table 1. Similar to all reported serine hydrolases, the catalytic domain of human CES contains a catalytic triad (such as Ser221, Glu354, and His468 in CES1) at the interface of the three domains, which is highly conserved among all mammalian carboxylesterases and is crucial for carboxylesterases-mediated catalysis. Mutation of any residue of the catalytic triad will lead to the loss of carboxylesterase activity. Furthermore, the oxyanion hole formed by Gly142 and Gly143 in the HGGG motif is also highly conserved among all mammalian carboxylesterases and is essential for carboxylesterase activity.

![Figure 1](image-url) The structural features of CES1. (A) The scheme for catalyzing (hydrolysis) ester groups; (B) The 3D structure of CES1. The catalytic triad including Ser221, Glu354 and His468 are colored in red, yellow and blue, respectively.
a wide range of esters with various acyl groups. These features make CES1 capable of interacting with a wide variety of chemically diverse ligands.

2.2. The catalytic properties of CES

The CES hydrolyze substrates using a classic base-catalysed mechanism via a two-step reaction which is conserved in all serine hydrolases, including proteases, peptidases and lipases (Fig. 2). This process is dependent on an essential catalytic triad which is generally composed by three residues (Ser, His, and Glu) within the active cavity of mammalian carboxylesterases. First, a nucleophilic attack by the base-activated serine oxygen atom (such as Ser in human CES1) on the carbonyl carbon of the substrate lead to the formation of an acyl-enzyme intermediate and the release of an alcohol, thiol, or amine product (Fig. 2). Second, the acyl-enzyme intermediate is attacked in an identical fashion with water acting as the nucleophile, leading to release of the carboxylic acid metabolite, which regenerates the carboxylesterase to its original state with the free serine residue.

Notably, several mammalian CES (especially CES1) can perform transesterification reactions. When ethyl alcohol is present in the CES1 reaction system, alcohol replaces water to attack the acyl-enzyme intermediate to generate an ethyl ester product. One of the well-studied examples of this reaction is the formation of cocaethylene in individuals abusing both cocaine and alcohol. Under these conditions, the ethyl group from ethanol replaces the methyl group of cocaine to produce a more toxic metabolite cocaethylene. Furthermore, CES1 can catalyze the creation of cholesteryl esters from cholesterol and fatty acids, as well as to generate fatty acid ethyl esters (FAEEs) from fatty acyl-Coenzyme A (CoA) and ethanol, using a transesterification reaction. Because CES have cholesteryl esters hydrolysis and FAEE hydrolysis activities, the formation of these endogenous esters is the result of the balance between typical hydrolysis reactions and transesterification reactions.

3. Tissue distribution and substrate specificity of CES

Although CES1 and CES2 share 47% amino acid sequence identity, these two enzymes exhibit extremely different substrate distribution and specificity. Typically, CES1 and CES2

| Table 1 Molecular properties of CES1 and CES2 |
|----------------|-----------------
| Property | CES1 | CES2 |
| Molecular weight | 60 kD (monomer), 180 kD (trimer) | 60 kD (monomer) |
| Isoelectric point | 5.6–5.8 | 4.8–5.0 |
| Optimal pH | 6.5 | 7.5–8.0 |
| C-terminal signal peptide | HIEL | HTEL |
| Catalytic triad | Ser²²¹, Glu³⁵⁴ and His⁴⁶⁸ | Ser²²⁸, Glu³⁴⁵ and His⁴⁵⁷ |
| Glycosylation site | Asn-X-Thr and Asn⁷⁹ | Asn-X-Ser/Thr, Asn¹⁰³ and Asn²⁶⁷ |

Figure 2 The two-step catalytic mechanism of mammalian carboxylesterases.
are highly expressed in the epithelia of most metabolic organs including liver, intestine and kidney, indicating that these two enzymes play a protective role against xenobiotics. CES1 is abundantly expressed in the liver and adipocyte, with lesser amounts in the kidney, monocytes, lung, intestine, testis, heart, and macrophages. In contrast, CES2 is expressed mainly in the small intestine and colon, but also observed in kidney, liver, heart, brain and testis. Quantitative data on CES abundance in the human liver microsomes (HLMs) and liver cytosol (HLC) have been reported. Protein levels of CES1 and CES2 in 16 individual HLMs were 402 and 29.8 pmol/mg, respectively, while in HLC were 54.5 and 2.76 pmol/mg, respectively. Furthermore, the secreted forms of CES and very high activity levels of CES were barely detected in human blood. Notably, the expression of CES1 and CES2 in tumour tissues or cancer cell lines differ markedly from those of healthy cells. For example, human Caco-2 cells mainly express the CES1 isoenzyme, yet protein levels of CES1 in the human intestine are extremely low. CES2 barely detected in human blood. Notably, the expression profiles of CES1 and CES2 in tumour tissues or cancer cell lines differ markedly from those of healthy cells. For example, human Caco-2 cells mainly express the CES1 isoenzyme, yet protein levels of CES1 in the human intestine are extremely low.In addition, CES2 is overexpressed in several types of cancer or cancer cell lines, including multiple myeloma, thyroid papillary carcinoma, esophageal squamous carcinoma, and kidney adenocarcinoma. CES2 expression in cancer cell lines and tumour tissue significantly correlate with bioactivation of several cancer prodrugs (such as irinotecan and LY2334737, the prodrug of gemicitabine), in agreement with the anticancer effects of these drugs. These results suggest that the rational design of CES2-bioactivated prodrugs will be very useful for cancer therapy.

Human carboxylesterases have a broad substrate specificity, which can hydrolyze a vast number of endo- and xenobiotic substrates with ester, thioester, carbamate, and amide bonds (Fig. 3, Fig. 4, and Supplementary Information Table S1). Over the past decade, many studies have reported that CES1 and CES2 exhibit distinct substrate specificities. The representative substrates for CES1 and CES2 have been depicted in Fig. 3, and Fig. 4, respectively. In general, CES1 prefers to metabolize the ester substrates that contain a small alcohol group and a bulky acyl group, such as enalapril, oseltamivir, imidapril, clopidogrel, meperidine, d-luciferin methyl ester, and the illegal drugs heroin and cocaine. In contrast, CES2 prefers to hydrolyse esters with a relatively large alcohol group and a small acyl group, such as irinotecan, prasugrel, capcitabine, flutamide, and fluorescein diacetate. However, several substrates with a small acyl group, such as R-propionyl propranolol, can also be hydrolyzed by CES1. As mentioned above, CES1 has two ligand-binding pockets, one is a rigid pocket and another is a flexible pocket, which makes CES1 promiscuous towards a vast number of substrates. The substrate specificity of CES3 has not been extensively studied, but CES3 has been found with irinotecan hydrolysis activity but exhibits much lower hydrolysis activity, compared with CES2. Based on the substrate specificities of both CES1 and CES2, some optical probe substrates have been recently developed for assessing the real activities of CES1 or CES2 in complex biological systems (Supplementary Information Table S2). These optical probes provide practical and efficient tools for high-throughput screening (HTS) of CES modulators in cell/tissue preparations or even in living cells, due to the inherent advantages including non-destructive, highly sensitive, easily managed, and applicable to HTS assay.

4. Biological functions of CES

The primary physiological function of CES appears to be xenobiotic metabolism. Over the past twenty years, CES have been regarded as the classic xenobiotic-metabolizing enzymes which are responsible for in the metabolism of a variety of ester-containing drugs, prodrugs, and environmental toxins. Many clinical drugs with ester moieties can be readily hydrolyzed by CES. Such compounds include the anticancer prodrugs (such as irinotecan, capcitabine), opioids and stimulants (cocaine, heroin, and meperidine), angiotensin-converting enzyme inhibitors (enalapril, temocapril, imidapril and quinapril), and other drugs with ester moieties (oseltamivir, clopidogrel, flumazenil, procaine, oxybutynin, delapril, flutamide, and prasugrel). In addition to drug metabolism, CES also participate in the detoxification and metabolic clearance of many ester-containing toxics, such as the pyrethroid insecticides (deltamethrin and permethrin). Notably, strong inhibition of CES may slow down the hydrolysis of CES substrates, which may affect their pharmacokinetic properties and thus modulate their activities in vivo. For example,
irinotecan (CES2 substrate) can trigger severe delayed diarrhea due to the overproduction of SN-38 (the hydrolytic product of irinotecan) in the small intestine, but co-administration with potent CES inhibitors may ameliorate CPT-11 caused severe diarrhea in patients and thus improve the therapeutic effect. Besides the well-known roles of CES in xenobiotic metabolism, these enzymes have recently been studied for their participation in endogenous metabolism. As one of the most abundant serine hydrolases found in human hepatocytes and adipocytes, CES1 is responsible for the hydrolysis of a vast number of endogenous esters (such as cholesteryl esters and triacylglycerols) thereby participating in physiological and pathological processes, such as lipid metabolism, cholesterol homeostasis, and fatty liver disease.

Notably, it has been shown that the protein expression and enzymatic activities of CES1 in adipose tissues from obese and type 2 diabetic patients are markedly elevated compared to lean subjects, yet treatment with CE1 inhibitors has multiple benefits. CES1 and CES2 appear to regulate protein trafficking and retention of proteins in the endoplasmic reticulum (ER). In the ER, CES1 and CES2 appear to regulate protein trafficking, including release of proteins. For instance, CES1 can directly bind to the C-reactive protein (CRP) and retain this small protein before its release into the plasma. Both CES use a region of amino acid sequence adjacent to the ‘side door’, which is comprised of the loop between α15 and β18, to contact CRP. These CEs could hold a small reservoir of CRP within the ER, and then release it during the stage of tissue injury. It has also been reported that CES can directly interact with β-glucuronidases, the enzymes responsible for the removal of glucuronic acid moieties which are typically conjugated to drugs and endobiotics by the UDP-glucuronosyltransferase (UGT) enzymes, in the ER. Although the interactions between β-glucuronidases with CES have not been extensively investigated, several studies have demonstrated that some compounds (such as organophosphate) are capable of inducing the release of β-glucuronidases from the ER by disrupting the β-glucuronidase-CES1 complex.

5. Genetic polymorphisms of CES

The genomic structures of CES1 and CES2 have been ascertained, and both are located on 16q13-q22. Over the past decade, a vast number of single-nucleotide polymorphisms (SNPs) have been reported in the NCBI SNP database. It is worth note that the allele and haplotype frequencies of known SNPs showed significant differences among ethnic groups. For instance, the G143E and the D260fs variants were two important functional SNPs in Caucasian populations, while these two CES1 polymorphisms were not found in a Korean population. To date, a number of functional genetic variants of CES1 and CES2 have been reported, which may be associated with substantial individual variations in the responses to pharmacologic therapies

6. CES inhibitors

The key roles of CES in both human health and xenobiotic metabolism arouse great interest in the discovery of potent modulators to regulate enzyme expression in order to modulate endogenous metabolism or to improve patient responses to...
ester drugs. With this goal in mind, many small molecule inhibitors or inducers of CES have been identified with the specific intention of altering enzyme activity for therapeutic purposes.

6.1. Clinical drugs and the pharmaceutical excipients

The crucial roles of CES in the metabolism of many ester-containing drugs suggest that some drugs might serve as CES inhibitors with the potential to cause significant drug–drug interactions.\(^{58,84,85}\). Some antihyperlipidemic drugs, such as simvastatin and fenofibrate, could significantly inhibit the catalytic activities of CES.\(^{86}\). It was reported that simvastatin was a potent inhibitor against imidapril hydrolysis in recombinant CES1 with the \(K_i\) value of 0.11 \(\mu\)mol/L, while CES2-mediated irinotecan (CPT-11) hydrolysis could be strongly inhibited by both fenofibrate and simvastatin (Fig. 5).\(^{72,87-91}\).

The antihypertensive drugs telmisartan and nitrendipine, displayed strong inhibitory effects on CES1 with the \(K_i\) values of 1.69 and 1.24 \(\mu\)mol/L, respectively.\(^{87}\). Carvedilol and diltiazem showed excellent inhibitory effects against CES2 with the \(K_i\) values of 1.60 and 0.25 \(\mu\)mol/L, respectively.\(^{72}\). Physostigmine, an anticholinesterase drug, was reported to be a strong CES2 inhibitor with the \(K_i\) value of 0.20 \(\mu\)mol/L.\(^{88}\). Loperamide was often used to treat CPT-11 associated diarrhea, and it was a potent and selective CES2 inhibitor (IC\(_{50}\)=1.5 \(\mu\)mol/L).\(^{72}\). Pharmaceutical excipients are applied to obtained appropriate biopharmaceutical and physicochemical properties.\(^{89,90}\). But this has been neglected as evidenced by the lack of mechanisms to evaluate excipient safety outside the new drug application process. Zhang et al.\(^{91}\) found that sodium lauryl sulfate (SLS) and polyoxyyl 40 hydrogenated castor oil (RH40) could significantly inhibit CES1-mediated imidapril hydrolysis, and Tween 20 could dramatically inhibit CES2-mediated CPT-11 hydrolysis. These results indicate that some pharmaceutical excipients, such as SLS, RH40 and Tween 20, may attenuate carboxylesterases activity, therefore such inhibitions should be regarded with some care during drug administration.

6.2. Natural products

Natural products have been an important source of potential drug leads and inspiration for medicinal chemists to develop more potent modulators for a given enzyme via efficient chemical modifications.\(^{92-94}\). However, their use against molecular targets has diminished over the past two decades, due to the technical barriers to screening natural products.\(^{95}\). Zou et al.\(^{96,97}\) have collected a series of natural tripterpenoids and characterized their inhibitory effects against CES using DME (\(\alpha\)-luciferin methyl ester, a probe for CES1) and DDAB (6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate, a probe for CES2) as the specific substrates for high-throughput screening of inhibitors against CES1 and CES2, respectively. Two pentacyclic triterpenoids, ursoic acid (UA) and oleanolic acid (OA), exhibited strong inhibitory effects on CES1 (Fig. 6).\(^{97-100}\). By structural modifications on OA and UA, two derivatives including 3\(\beta\)-O-(\(\beta\)-carboxy-propionyl)-urs-12-en-28-oic acid and 3\(\beta\)-O-(\(\beta\)-carboxypropionyl)-olean-12-en-28-oic acid were obtained, which displayed very strong inhibitory effects against CES1 (\(K_i\) value as 0.012 \(\mu\)mol/L and 0.017 \(\mu\)mol/L, respectively) and high selectivity over CES2 (6919-fold and 3296-fold against CES2, respectively). Guided by the structure-CES2 inhibition relationships of a series of glycyrhretinic acid (GA) derivatives, Zou et al.\(^{96}\) designed and developed a novel compound 3\(\beta\)-O-(\(\beta\)-carboxypropionyl)-11-deoxy-glycyrrhetinic acid-30-ethyl ester as the most potent inhibitor against CES2 (IC\(_{50}\)= 20 \(\mu\)mol/L). This compound showed high selectivity over CES1 (>1000-fold), which is 3463-fold more potent than the parent compound GA. Recently, 22 protostane triterpenoids have been isolated from the rhizome of *Alisma orientale*.\(^{99}\). Among them, five could potently inhibit CES2, with IC\(_{50}\) values less than 10 \(\mu\)mol/L. The inhibition kinetics demonstrated that alismanol F could inhibit the CES2-catalyzed 4-benzyol-N-butyl-1,8-naphthalimide hydrolysis with the \(K_i\) value of 1.76 \(\mu\)mol/L via mixed inhibition. Zhang et al.\(^{100}\) investigated the inhibitory effects of 22 protostane triterpenoids including 10 new protostane-type triterpenoids from the phytochemical investigation of *A. orientalis*, on CES2. Among them, five compounds,

SNP	Drug	Function	In vitro	In vivo
CES1 rs2244613	Dabigatran etexilate	Decrease the catalytic function of CES1	-	Decrease in trough concentrations of dabigatran etexilate Required lower doses of methylphenidate for symptom reduction
CES1 rs71647871	Methylphenidate	Decrease the catalytic function of CES1	-	Significantly higher levels of active clopidogrel metabolite \((P = 0.001)\) and better clopidogrel response
CES1 rs71647871	Clopidogrel	Decrease the catalytic function of CES1	-	Increased oseltamivir AUC and 23% smaller carboxyletomseltamivir AUC
CES1 rs121912777	Oseltamivir	-	-	-
CES1 rs3785161	Imidapril	40% Maximal decrease in CES2 functioning and, thus, decreased aspirin hydrolysis	-	The responder rate was significantly higher
CES2 A139T	Aspirin	Associated with low \textit{in vitro} expression and function of CES2	Reduced \textit{in vivo} CES2 activity in irinotecan-treated patients	
CES2 rs72547531	Irinotecan	Associated with low \textit{in vitro} expression and function of CES2	Reduced \textit{in vivo} CES2 activity in irinotecan-treated patients	

-Not assessed.
including alismanol H, 25-O-butyl alisol A, alisol A 23,24-acetonide, 24-deacetyl alisol O, 16,23-oxido alisol B displayed strong inhibitory effects on CES2, with the IC₅₀ values less than 3.0 µmol/L (Fig. 6).97–101

Flavonoids are a large group of polyphenolic products widely distributed in vegetables, fruits, and beverages such as wine and tea.102,103 Recent research has revealed that some natural flavonoids are strong inhibitors against both CES1 and CES2 (Fig. 7).98–100 Bavachinin and corylin significantly inhibited the CES1-mediated BMBT hydrolysis with low Ki values as 0.5 µmol/L and 0.7 µmol/L, respectively, while corylifol A found in Fructus Psoraleae (also named Bu-gui-shi), is a potent inhibitor against CES2 with the Ki value of 0.62 µmol/L.100,101,104–106 More recently, three major constituents from the root-bark of white mulberry (also named Sang-bai-pi) including sanggenone D, kuwanon G, and sanggenone C, could strongly inhibit CES2-mediated FD hydrolysis in HLM via non-competitive manner107. Furthermore, some naturally occurring fatty acids displayed potential inhibitory effects on the hydrolytic activities of CES117. In contrast to saturated fatty acids, unsaturated fatty acids displayed more potent inhibitory effects on CES1, and arachidonic acid demonstrated strong inhibitory effects on CES1 with the Ki value of 1.7 µmol/L. 27-Hydroxycholesterol (27-HC), an oxidized form of cholesterol, also showed promising inhibitory activity against CES1 and high selectivity over CES2.17 Further investigation on the inhibitory behavior of

![Figure 5](http://example.com/figure5.png)

Figure 5 Clinical drugs as inhibitors of CES.

![Figure 6](http://example.com/figure6.png)

Figure 6 Triterpenoids as inhibitors of CES.
27-HC demonstrated that 27-HC functioned as a noncompetitive inhibitor against CES1, with the very low K_i value (10 nmol/L).

Bakuchiol, a natural phenolic compound isolated from Fructus Psoraleae, displayed strong inhibitory effects against CES2. The K_i value of bakuchiol against CES2-mediated FD hydrolysis is 2.12 μmol/L and the inhibition type was non-competitive inhibition. Further investigation suggested that bysspectin A functioned as a competitive inhibitor against CES2, and the O-atom of the C-3' phenolic or the O-atom at the funan ring could strongly interact with the Ser-288 (the key amino acid of the catalytic triad) of CES2 via hydrogen bonding. Hatfield et al. found that Salvia miltiorrhiza root extracts demonstrated strong inhibitory effects on CES, due to the presence of tanshinones. These bioactive compounds have been found to be potent inhibitors of both CES1 and CES2, while most of these tanshinone-type compounds could inhibit neither human acetylcholinesterase (AchE) nor human butyrylcholinesterase (BchE). Furthermore, both tanshinones and S. miltiorrhiza root extracts could inhibit the hydrolysis of CPT-11 by the cell-based assays.

6.3. Other compounds

1,2-Diones including benzils, alkyl-1,2-diones, isatins, and 1,2-quinones (Fig. 8) have been identified as the most important chemical compounds for CES inhibition with K_i values in the nanomolar range, which demonstrate potent and selective inhibitory effects toward CES1 or CES2; these agents do not exhibit inhibitory effects on human AchE and BchE. Benzene sulfonamides usually displayed potent inhibitory effects against CES2 and relative high selectivity over CES1, and had no inhibitory effects on either human AchE and BchE. The SAR analysis of benzene sulfonamides revealed that the relative hydrophobicity of these sulfonamides is an important factor affecting the inhibitory potency to CES2. Trifluoroketones were generally inhibitors to CES with K_i values at the nanomolar range, and mostly demonstrated poor specificity toward CES1 or CES2, but these compounds displayed weak inhibition towards human AchE and BchE. Clopidogrel acyl-β-D-glucuronide, the phase-II metabolites of clopidogrel carboxylic acid by uridine diphosphate glucuronosyltransferases (UGTs), could inhibit CES1-mediated 4-nitrophenyl acetate hydrolysis with the K_i values of 4.32 μmol/L, but did not significantly inhibit CES2. Pyrethroids are popular household insecticides for their relatively low toxicity to mammals in contrast to organophosphorus insecticides. Recently, Lei et al. found that six commonly used pyrethroids showed moderate inhibitory effects on CES. Among them, deltamethrin demonstrated strong inhibitory effects toward CES1 with the IC$_{50}$ value of 2.39 μmol/L. Further investigation demonstrated that deltamethrin was a competitive inhibitor toward CES1-mediated BMBT hydrolysis, but acted as a noncompetitive inhibitor against CES1-mediated DME or DMCB hydrolysis in HLM.

7. CES inactivators

Carbamate compounds were developed as pharmaceutical agents specifically targeting members of the serine hydrolase superfamily via covalent binding and modification of serine at the active site. These compounds, as potent inhibitors of AchE, have been widely used for the pest control in domestic animals and agriculture. However, several cholinesterase inhibitors containing the carbamate moiety, such as JZL184 and phenethylcymserine (Fig. 9).
were found to be CES inhibitors. But all these compounds displayed poor isoform selectivity towards various CES. Organo-phosphate (OP) insecticides are inhibitors to AChE, which exert their toxicity through the termination of nerve impulses by metabolism of the neurotransmitter acetylcholine. A number of serine hydrolases including cholinesterases and carboxylesterases (CES1 and CES2) could be significantly inhibited following exposure to OPs. OPs could react with CES and generate a stable phosphate ester that is covalently linked to the catalytic residue (such as Ser-221 of CES1) of CES. Several OPs, including chlorpyrifos oxon, paraoxon, and bis(4-nitrophenyl)phosphate (BNPP), are potent irreversible inhibitors of CES with IC50 values at the nanomolar level.

8. CES inducers

Over the past two decades, most researchers have focused on the discovery of CES inhibitors. In contrast, only a few studies were conducted to explore the regulation of CES expression. Recent studies have reported the relevance of CES to some metabolic disorders (such as diabetes and obesity), indicating these enzymes might be potential targets for treatment of these metabolic diseases. Especially, the key roles of CES1 and CES2 in lipid metabolism in which the protein expression in liver and adipose tissues are strongly related with several human diseases such as non-alcoholic steatohepatitis, and obesity. Thus, it is necessary to discover more potent CES modulators to regulate the expression or function of CES, and then to modulate endogenous metabolism or to improve the therapeutic effect of patients administrated with ester drugs.

Generally, microsomal enzyme inducers (MEIs) exert their effects on target genes through constitutive androstane receptor (CAR), pregnane X receptor (PXR), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptors (PPARs). Recent studies have demonstrated that the expression of mammalian CES could be regulated via activation of CAR, AhR, PPARs, LXR, PXR, hepatocyte nuclear factor-4α (HNF-4α), and/or Nrf2 transcriptional pathways. It is worth noting that most of these investigations focus on the transcriptional regulation of rodent Ces genes. A few studies have indicated Nrf2 can be activated by MEIs and induced CES1 in human tumour cells. Moreover, a PXR-activating agent, rifampicin, caused moderate induction of both CES1 and CES2 gene expression in human hepatocytes. Future investigations should be conducted to explore whether these signalling pathways associated with CES expression in rodent animals are conserved in humans.

As depicted in Fig. 10 and (Supplementary Information Table S3), some endogenous and exogenous substances have been confirmed with regulatory effects on the expression of mammalian CES. Treatment of mice with glucose could induce hepatic CE1 expression in vivo, due to glucose significantly activated the promoter activity of CES1 and increased acetylation of histone 3 and 4 in the CES1 chromatin. Xu et al. suggested that cholic acid or FXR agonist induced the expression of hepatic CES1, then reduced the levels of plasma cholesterol, hepatic TG, and plasma TG. CES1 could also be highly induced by sensitizers and antioxidants in several cell lines. Recently, Chen et al. reported that sensitizer trinitrobenzene sulfonate (TNBS) and antioxidant sulforaphane induce CES1 through a novel element, nuclear factor-E2 related factor-2 related factor-2, in primary hepatocytes and cell lines (human fibrosarcoma cell line HT1080 and Huh7). Another report showed that NO1886 (Ibrolipim), a lipoprotein lipase-promoting agent, could slightly induce CES1 and CES2 in primary cultures of cryopreserved human hepatocytes. In addition, urethane dimethacrylate (UDMA) was proved to induce the mRNA expression of CES2 in human dental pulp cells, without regulating the CES1 or CES3 mRNA expression. In addition, gambogic acid decreased the protein expression of CES1 and CES2 via a dose-dependent manner, and the hydrolytic activities of CES1 and CES2 were also significantly decreased upon addition of gambogic acid.

![Figure 8](image.png)

Figure 8 Inhibitors of CES.
Over the past twenty years, the molecular properties, substrate specificities and the biological roles of human carboxylesterases (including CES1 and CES2) in both endo- and xenobiotic metabolism have been extensively studied. Recent studies have suggested that CES participate in the hydrolysis of a vast number of endogenous esters and thus serve as therapeutic targets for the treatment of a variety of human metabolic disorders. The importance of CES in both human health and xenobiotic metabolism arouse great interest in the discovery of potent CES modulators. The development of new optical substrates for CES1 and CES2 has made the screening of CES modulators more convenient and efficient. Although many CES inhibitors with diverse scaffolds have been reported, their ability to target intracellular CES combined with their good in vivo efficacy and safety profiles have not been well-studied. In contrast to the structurally diverse CES inhibitors, the inducers of CES are rarely reported and most studies focus on the transcriptional regulation of rodent Ces genes. Thus, it is necessary to develop new potent CES inducers by using cell-based assays. In addition, more in-depth investigations on the physiological functions of CES, the relevance of CES to human diseases, the species differences between human CES and other mammalian CES, as well as the interactions between CES and ligands, should be conducted in near future. These studies will be very helpful for revealing the crucial roles of CES in human health and diseases, as well as for the discovery and development of CES modulators with potential biomedical applications.

9. Summary

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2016YFC1003900, 2017YFC100200, 2017YFC1002000), the National Scientific and Technological Major Projects of China (2017ZX09101004), the National Natural Science Foundation of China (81703604, 81773687, 21602219, 81573501 and 81473181), Program of Shanghai Academic/Technology Research Leader (18XD1403600), and the Innovative Entrepreneurship Program of High-level Talents in Dalian (2016RQ025).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apsb.2018.05.005.

References

1. Sanghani SP, Sanghani PC, Schiel MA, Bosron WF. Human carboxylesterases: an update on CES1, CES2 and CES3. Protein Pept Lett 2009;16:1207–14.
2. Satoh T, Hosokawa M. Structure, function and regulation of carboxylesterases. Chem Biol Interact 2006;162:195–211.
3. Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 1998;38:257–288.
4. Ross MK, Crow JA. Human carboxylesterases and their role in xenobiotic and endobiotic metabolism. J Biochem Mol Toxicol 2007;21:187–96.
5. Hosokawa M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules 2008;13:412–31.
6. Imai T. Human carboxylesterase isozymes: catalytic properties and rational drug design. Drug Metab Pharmacokinet 2006;21:173–85.
7. Redinbo MR, Potter PM. Mammalian carboxylesterases: from drug targets to protein therapeutics. Drug Discov Today 2005;10:313–25.
8. Satoh T, Taylor P, Bosron WF, Sanghani SP, Hosokawa M, La Du BN. Current progress on esterases: from molecular structure to function. Drug Metab Dispos 2002;30:488–93.
9. Potter PM, Wolverton JS, Morton CL, Wierdl M, Danks MK. Cellular localization domains of a rabbit and a human carboxylesterase: influence on irinotecan (CPT-11) metabolism by the rabbit enzyme. Cancer Res 1998;58:3627–32.
10. Zhu HJ, Wang X, Gawronski BE, Brinda BJ, Angiulli DJ, Markowitz JS. Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J Pharmacol Exp Ther 2013;344:665–72.
11. Zhu HJ, Markowitz JS. Activation of the antiviral prodrug oseltamivir is impaired by two newly identified carboxylesterase 1 variants. Drug Metab Dispos 2009;37:264–7.
12. Nishi K, Huang H, Kamita SG, Kim IH, Morisseau C, Hammock BD. Characterization of pyrethroid hydrolysis by the human liver carboxylesterases CES-1 and CES-2. Arch Biochem Biophys 2006;445:115–23.
13. Imai T, Ohura K. The role of intestinal carboxylesterase in the oral absorption of prodrugs. Curr Drug Metab 2010;11:793–805.
14. Lian J, Nelson R, Lehner R. Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell 2018;9:178–95.
15. Alam M, Ho S, Vance DE, Lehner R. Heterologous expression, purification, and characterization of human triacylglycerol hydrolase. Protein Expr Purif 2002;24:33–42.
16. Ruby MA, Massart J, Hunerdosse DM, Schönke M, Correia JC, Louie SM, et al. Human carboxylesterase 2 reverses obesity-induced
diacylglycerol accumulation and glucose intolerance. Cell Rep 2017;18:636–46.

17. Crow JA, Herrig KL, Xie S, Borazjani A, Potter PM, Ross MK. Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids. Biochim Biophys Acta 2010;1801:31–41.

18. Alam M, Vance DE, Lehner R. Structure-function analysis of human triacylglycerol hydrolase by site-directed mutagenesis: identification of the catalytic triad and a glycosylation site. Biochemistry 2002;41:6679–87.

19. Wang DD, Zou LW, Jin Q, Hou J, Ge GB, Yang L. Recent progress in the discovery of natural inhibitors against human carboxylesters. Fitoterapia 2017;117:84–95.

20. Dominguez E, Galmozzi A, Chang JW, Hsu KL, Pawlak J, Li W, et al. Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes. Nat Chem Biol 2014;10:113–21.

21. Crow JA, Middleton BL, Borazjani A, Hatfield MJ, Potter PM, Ross MK. Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocytes/macrophages. Biochim Biophys Acta 2008;1781:643–54.

22. Yoon KJP, Hyatt JL, Morton CL, Lee RE, Potter PM, Danks MK. Characterization of inhibitors of specific carboxylesterases: development of carboxylesterase inhibitors for translational application. Mol Cancer Ther 2004;3:903–9.

23. Xu Y, Zhang C, He W, Liu D. Regulations of xenobiotics and endobiotics on carboxylesterases: a comprehensive review. Eur J Drug Metab Pharmacokinet 2016;41:321–30.

24. Hicks LD, Hyatt JL, Stoddard S, Tsurkan L, Edwards CC, Wadkins RM, et al. Improved, selective, human intestinal carboxylesterase inhibitors designed to modulate 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyl oxymethotrexate (irinotecan; CPT-11) toxicity. J Med Chem 2009;52:3742–52.

25. Furutaka T, Hosokawa M, Koyano N, Nakamura T, Sato H, Chiba K. Identification of di-(2-ethylhexyl) phthalate-induced carboxylesterase 1 in C57BL/6 mouse liver microsomes: purification, cDNA cloning, and baculovirus-mediated expression. Drug Metab Dispos 2004;32:1170–7.

26. Robbi M, Beauflay H. The COOH terminus of several liver carboxylesterases targets these enzymes to the lumen of the endoplasmic reticulum. J Biol Chem 1991;266:20498–503.

27. Benchirat S, Morton CL, Howard-Williams EL, Danks MK, Potter PM, Redinbo MR. Structural insights into CPT-11 activation by mammalian carboxylesterases. Nat Struct Biol 2002;9:337–42.

28. Benchirat S, Morton CL, Xae Y, Potter PM, Redinbo MR. Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat Struct Biol 2003;10:349–56.

29. Benchirat S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, et al. Crystal structure of human carboxylesterase 1 complexed with the Alzheimer's drug tacrine: from binding promiscuity to selective inhibition. Chem Biol 2003;10:341–9.

30. Kim KK, Song HK, Shin DH, Hwang KY, Choe S, Yoo OJ, et al. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Structure 1997;5:1571–84.

31. Fleming CD, Edwards CC, Kirby SD, Maxwell DM, Potter PM, Cerasoli DM, et al. Crystal structures of human carboxylesterase 1 in covalent complexes with the chemical warfare agents soman and tabun. Biochemistry 2007;46:5063–71.

32. Holmes RS, Glenn JP, Vandenberg JL, Cox LA. Baboon carboxylesterases 1 and 2: sequences, structures and phylogenetic relationships with human and other primate carboxylesterases. J Med Primatol 2009;38:27–38.

33. Parker RB, Laizure SC. The effect of ethanol on oral cocaine pharmacokinetics reveals an unrecognized class of ethanol-mediated drug interactions. Drug Metab Dispos 2010;38:317–22.

34. Dean RA, Christian CD, Sample RH, Bosron WF. Human liver cocaine esterases: ethanol-mediated formation of ethylcocaine. FASEB J 1991;5:2735–9.

35. Brzezinski MR, Abraham TL, Stone CL, Dean RA, Bosron WF. Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochem Pharmacol 1994;48:1747–55.

36. Beckemeyer ME, Bora PS. Fatty acid ethyl esters: potentially toxic products of myocardial ethanol metabolism. J Mol Cell Cardiol 1998;30:2487–94.

37. Bora PS, Guruge BL, Miller DD, Chatman BR, Ruyile MS. Purification and characterization of human heart fatty acid ethyl ester synthase/carboxylesterase. J Mol Cell Cardiol 1996;28:2027–32.

38. Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther 2006;319:1467–76.

39. Sato Y, Miyashita A, Iwasubo T, Usui T. Simultaneous absolute protein quantification of carboxylesterases 1 and 2 in human liver tissue fractions using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 2012;40:1389–96.

40. Diczfalusy MA, Bjorkhem I, Einarsson C, Hillebrant CG, Alexson SE. Characterization of enzymes involved in formation of ethyl esters of long-chain fatty acids in humans. J Lipid Res 2001;42:1025–32.

41. Williams ET, Wang H, Wrighton SA, Qian YW, Perkins EJ. Genomic analysis of the carboxylesterases: identification and classification of novel forms. Mol Phylogenet Evol 2010;57:23–34.

42. Taketani M, Shi M, Ohura K, Nominaya S, Imai T. Carboxylesterase in the liver and small intestine of experimental animals and human. Life Sci 2007;81:924–32.

43. Li B, Sedlacek M, Manoharan I, Boopathy R, Duyse GG, Masson P, et al. Butyrylcholinesterase, paraoxonase, and albumin esterase, but neither carboxylesterase, are present in human plasma. Biochem Pharmacol 2005;70:1673–84.

44. Lv X, Wang DD, Feng L, Wang P, Zou LW, Hao DC, et al. A highly selective marker reaction for measuring the activity of human carboxylesterase 1 in complex biological samples. RSC Adv 2016;6:4302–9.

45. Imai T, Imoto M, Sakamoto H, Hashimoto M. Identification of esterases expressed in Caco-2 cells and effects of their hydrolyzing activity in predicting human intestinal absorption. Drug Metab Dispos 2005;33:1185–90.

46. Yano H, Kayukawa S, Iida S, Nakagawa C, Oguri T, Senda T, et al. Overexpression of carboxylesterase-2 results in enhanced efficacy of topoisomerase I inhibitor, irinotecan (CPT-11), for multiple myeloma. Cancer Sci 2006;97:2309–14.

47. Xu G, Zhang W, Ma Z, McLeod H. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin Cancer Res 2002;8:2605–11.

48. Pratt SE, Durland-Busbyce S, Shepard RL, Heinz-Taheny K, Iversen PW, Dantzig AH. Human carboxylesterase-2 hydrolyzes the prodrug of gencitabine (LY2334737) and confers prodrug sensitivity to cancer cells. Clin Cancer Res 2013;19:1159–68.

49. Wang DD, Jin Q, Zou LW, Hou J, Lv X, Lei W, et al. A bioluminescent sensor for highly selective and sensitive detection of human carboxylesterase 1 in complex biological samples. Chem Commun 2016;52:3183–6.

50. Imai T, Taketani M, Shi M, Hosokawa M, Chiba K. Substrate specificity of carboxylesterase isozymes and their contribution to hydrolysis activity in human liver and small intestine. Drug Metab Dispos 2006;34:1734–41.

51. Wang J, Williams ET, Bourgea J, Wong YN, Patten CJ. Characterization of recombinant human carboxylesterases: fluorescein diacetate as a probe substrate for human carboxylesterase 2. Drug Metab Dispos 2011;39:1329–33.

52. Yoshida T, Fukami T, Kurokawa T, Gotoh S, Oda A, Nakajima M. Difference in substrate specificity of carboxylesterase and arylacetamide deacetylase between dogs and humans. Eur J Pharm Sci 2018;111:167–76.
53. Thomsen R, Rasmussen HB, Linnet K. The INDICES Consortium. In vitro drug metabolism by human carboxylesterase 1: focus on angiotensin-converting enzyme inhibitors. Drug Metab Dispos 2014;42:126–33.

54. Williams ET, Jones KO, Ponsler GD, Lowery SM, Perkins EJ, Wrighton SA, et al. The biotransformation of prasugrel, a new thienopyridine prodrug, by the human carboxylesterases 1 and 2. Drug Metab Dispos 2008;36:1227–32.

55. Shi J, Wang XW, Nguyen J, Wu A, Bleske B, Zhu HJ. Sacubitril is selectively activated by carboxylesterase 1 (CES1) in the liver and the activation is affected by CES1 genetic variation. Drug Metab Dispos 2016;44:554–9.

56. Takahashi S, Katoh M, Saitoh T, Nakajima M, Yokoi T. Allosteric kinetics of human carboxylesterase 1: species differences and interindividual variability. J Pharm Sci 2008;97:5434–45.

57. Sanghani SP, Quinney SK, Fredenburg TB, Davis WI, Murry DJ, Williams ET, Jones KO, et al. Design and development of a newly expressed carboxylesterase isoenzyme, CES3. ACS Appl Mater Interfaces 2014;6:1482–9.

58. Liu ZM, Feng L, Hou J, Lv X, Ning J, Ge GB, et al. Highly selective fluorescent probes for the detection of CES1 and its biological applications. Chem Commun (Camb) 2014;50:14159–22.

59. Dai ZR, Feng L, Liu ZM, Lv X, Ning J, Ge GB, et al. A highly selective fluorescent ESIPOT probe for the detection of CES1 and its biological applications. Biosens Bioelectron 2015;65:9–15.

60. Liu ZM, Feng L, Hou J, Lv X, Ning J, Ge GB, et al. A highly selective fluorescent probe for imaging carboxylesterase 2 in living cells and tissues. ACS Appl Mater Interfaces 2015;7:28474–81.

61. Liu ZM, Feng L, Ge GB, Lv X, Hou J, Cao YF, et al. Highly selective ratiometric fluorescent probe for in vitro monitoring and cellular imaging of human carboxylesterase 1. Biosens Bioelectron 2014;57:30–5.

62. Liu ZM, Feng L, Hou J, Lv X, Ning J, Ge GB, et al. A ratiometric fluorescent sensor for highly selective detection of human carboxylesterase 2 and its application in living cells. Sens Actuat B Chem 2014;205:151–7.

63. Jin Q, Feng L, Wang DD, Dai ZR, Wang P, Zou LW, et al. A two-photon ratiometric fluorescent probe for imaging carboxylesterase 2 in living cells and tissues. ACS Appl Mater Interfaces 2015;7:28474–81.

64. Ding LL, Tian ZH, Hou J, Weng ZM, Cui JN, Yang L, et al. Design and development of fluorescent probe substrates for carboxylesterase 1 using BODIPY as the basic fluorophore. Acta Pharm Sin 2017;52:58–65.

65. Dai ZR, Ge GB, Feng L, Ning J, Hu LH, Jin Q, et al. A highly selective ratiometric two-photon fluorescent probe for human cytochrome P450 1A. J Am Chem Soc 2015;137:14488–95.

66. Dai ZR, Feng L, Jin Q, Cheng H, Li Y, Ning J, et al. A practical strategy to design and develop an isomeric-specific fluorescent probe for a target enzyme: cycP1α as a case study. Chem Sci 2017;8:2795–2803.

67. Jin Q, Feng L, Zhang SJ, Wang DD, Wang FL, Zhang Y, et al. Real-time tracking of the synthesis and degradation of albumin in complex biological systems with a near-infrared fluorescent probe. Anal Chem 2017;89:9884–91.

68. Wang P, Xia YL, Zou LW, Qian XK, Dou TY, Jin Q, et al. An optimized two-photon fluorescent probe for biological sensing and imaging of catechol-O-methyltransferase. Chem Eur J 2017;23:10800–7.

69. Zou LW, Wang P, Qian XK, Feng L, Yu Y, Wang DD, et al. A highly specific ratiometric two-photon fluorescent probe to detect dipeptidyl peptidase IV in plasma and living systems. Biosens Bioelectron 2017;90:283–9.

70. Shi J, Wang X, Eyler RF, Liang Y, Liu L, Mueller BA, et al. Association of oseltamivir activation with gender and carboxylesterase 1 genetic polymorphisms. Basic Clin Pharmacol Toxicol 2016;119:555–61.

71. Yang D, Pearce RE, Wang X, Gaedigk R, Wan YJ, Yan B. Human carboxylesterases CES1 and CES2: ontogenic expression, interindividual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem Pharmacol 2009;77:238–47.

72. Quinney SK, Sanghani SP, Davis WI, Hurley TD, Sun Z, Murry DJ, et al. Hydrolysis of capcetibin to 5′-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide. J Pharmacol Exp Ther 2005;313:1011–6.

73. Alimonti A, Gelibter A, Pavese I, Satta F, Cognetti F, Ferretti G, et al. New approaches to prevent intestinal toxicity of irinotecan-based regimens. Cancer Treat Rev 2004;30:555–62.

74. Fauks MH, Dahlman-Wright K. Metabolic diseases and cancer risk. Curr Opin Oncol 2012;24:58–61.

75. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JJ, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention, National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640–5.

76. Bie J, Wang J, Marquen KE, Osborne R, Kakiyama G, Korzun W, et al. Association of CES1 genetic variation with the activation is affected by CES1 genetic variation. Arterioscler Thromb Vasc Biol 2015;35:1795–802.

77. Cha YJ, Jeong HE, Shin JG, Kim EY, Yu KS, Cho JY, et al. Genetic polymorphisms of the CES1 gene encoding carboxylesterase 2 prevents liver steatosis by modulating lipolysis, endoplasmic reticulum stress, and lipogenesis and is regulated by hepatocyte nuclear factor 4 alpha in mice. Hepatology 2016;63:1860–74.

78. Yue CC, Muller-Greven J, Dailey P, Lozanski G, Anderson V, Macintyre S. Identification of a C-reactive protein binding site in two hepatic carboxylesterases capable of retaining C-reactive protein within the endoplasmic reticulum. J Biol Chem 1996;271:22245–50.

79. Zhen LD, Baumann H, Novak EK, Swank RT. The signal for retention of the egasyn glucuronidase complex within the endoplasmic-reticulum. Arch Biochem Biophys 1993;304:402–14.

80. Cha YJ, Jeong HE, Shin JG, Kim EY, Yu KS, Cho JY, et al. Genetic polymorphisms of the CES1 gene in a Korean population. Transl Clin Pharm 2014;22:30–42.

81. Kobo T, Kim SR, Saikawa K, Yagi Y, Nakajima T, Matsumoto K, et al. Functional characterization of three naturally occurring single nucleotide polymorphisms in the CES2 gene encoding carboxylesterase 2 (HCE-2). Drug Metab Dispos 2005;33:1482–7.

82. Nemoda Z, Angyal N, Tarnok Z, Gadoros J, Sasvari-Szekely M. Carboxylesterase 1 gene polymorphism and methylphenidate response in ADHD. Neuropharmacology 2009;57:731–3.

83. Sai K, Saito Y, Tatewaki N, Hosokawa M, Kaniwa N, Nishimakimogami T, et al. Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients. Br J Clin Pharmacol 2010;70:222–33.

84. Rhoades JA, Peterson YK, Zhu HJ, Appel DI, Peloquin CA, Markowitz JS. Prediction and evaluation of selected protease inhibitor antiviral drugs as inhibitors of carboxylesterase 1: a potential source of drug–drug interactions. Pharm Res 2012;29:972–82.

85. Laizure SC, Herring V, Hu ZY, Witbrodt K, Parker RB. The role of Carboxylesterase 2 prevents liver steatosis by modulating lipolysis, endoplasmic reticulum stress, and lipogenesis and is regulated by hepatocyte nuclear factor 4 alpha in mice. Arterioscler Thromb Vasc Biol 2013;33:1795–802.

86. Fukami T, Takahashi S, Nakagawa N, Maruiuchi T, Nakajima M, Yokoi T. In vitro evaluation of inhibitory effects of antidiabetic and antihyperlipidemic drugs on human carboxylesterase activities. Drug Metab Dispos 2010;38:2173–8.
87. Xu YJ, Zhang CL, Li XP, Wu T, Ren XH, Liu D. Evaluation of the inhibitory effects of antihypertensive drugs on human carboxylesterase in vitro. Drug Metab Pharmacokinet 2013;28:468–74.
88. Pard G, Eriksson N, Lehr T, Connolly S, Ekelboom J, Ezekowitz MD, et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 2013;127:1404–12.
89. Murthy SN, Repka MA. Excipient stability: a critical aspect in stability of pharmaceuticals. AAPS PharmSciTech 2018;19:11.
90. Patra M, Bhattacharya S, Patnaik M. Importance of propellants and excipients in pharmaceutical topical aerosol. Curr Drug Deliv 2017;14:1106–13.
91. Zhang C, Xu Y, Zhong Q, Li X, Gao P, Feng C, et al. In vitro evaluation of the inhibitory potential of pharmaceutical excipients on human carboxylesterase 1A and 2. PLoS One 2014;9:e93819.
92. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016;79:629–61.
93. Neves BI, Andrade CH, Crovo PVL. Natural products as leads in drug discovery. Molecules 2015;20:1872–903.
94. Clement JA. Recent progress in medicinal natural products drug discovery. Curr Top Med Chem 2014;14:2758.
95. Tabassum N, Tai HM, Jung DW, Williams DR. Fishing for nature’s hits: establishment of the zebrafish as a model for screening antidiabetic natural products. Evid Based Complement Altern Med 2015;2015:287847 [2015].
96. Zou LW, Dou TY, Wang P, Lei W, Weng ZM, Hou J, et al. Structure-activity relationships of pentacyclic triterpenoids as potent and selective inhibitors against human carboxylesterase 1. Front Pharmacol 2017;8:435.
97. Zou LW, Jin Q, Wang DD, Qian QK, Hao DC, Ge GB, et al. Carboxylesterase inhibitors: an update. Curr Med Chem 2018;25:1627.
98. Zou LW, Li YG, Wang P, Zhou K, Hou J, Jin Q, et al. Design, synthesis, and structure-activity relationship study of glycyrrhetinic acid derivatives as potent and selective inhibitors against human carboxylesterase 2. Eur J Med Chem 2016;112:280–8.
99. Mai ZP, Zhou K, Ge GB, Wang C, Hux KO, Dong PP, et al. Proteostate tetraprenoids from the rhizome of Alisma orientale exhibit inhibitory effects on human carboxylesterase 2. J Nat Prod 2015;78:2372–80.
100. Zhang ZJ, Hoo XK, Tian XG, Feng L, Ning J, Zhao XY, et al. Novel proteostate-triprenoids with inhibitory human carboxylesterase 2 activities. RSC Adv 2017;7:28702–10.
101. Li YG, Hou J, Li SY, Lv X, Ning J, Wang P, et al. Fructus Psoraleae contains natural compounds with potent inhibitory effects towards human carboxylesterase 2. Fitoterapia 2015;101:99–106.
102. Wen L, Jiang Y, Yang J, Zhao Y, Tian M, Yang B. Structure, bioactivity, and synthesis of methylated flavonoids. Ann N Y Acad Sci 2017;1398:120–9.
103. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Bio Med 1996;20:933–56.
104. Santos-Buelga C, Feliciano AS. Flavonoids: from structure to health. Molecules 2017;22:477.
105. Sun DX, Ge GB, Dong PP, Cao YF, Fu ZW, Ran RX, et al. Inhibition behavior of Fructus Psoraleae’s ingredients towards human carboxylesterase 1 (hCES1). Xenobiotica 2016;46:503–10.
106. Weng ZM, Ge GB, Dou TY, Wang P, Liu PK, Tian XH, et al. Characterization and structure-activity relationship studies of flavonoids as inhibitors against human carboxylesterase 2. Bioorg Chem 2018;77:320–9.
107. Liu YJ, Li SY, Hou J, Liu YF, Wang DD, Jiang YS, et al. Identification and characterization of naturally occurring inhibitors against human carboxylesterase 2 in White Mulberry Root-bark. Fitoterapia 2016;115:57–63.
108. Wu YZ, Zhang HW, Sun ZH, Dai JG, Hu YC, Li R, et al. Byssochin A, an unusual octaketide dimer and the precursor derivatives from the endophytic fungus Byssochlamys spectabilis IMM0002 and their biological activities. Eur J Med Chem 2018;145:717–25.
109. Hatfield MJ, Tsurkan LG, Hyatt JL, Edwards CC, Lemoif A, Jeffries C, et al. Modulation of esterified drug metabolism by tanninones from Salvia miltiorrhiza (“Danshen”). J Nat Prod 2013;76:36–44.
110. Hatfield MJ, Potter PM. Carboxylesterase inhibitors. Expert Opin Ther Pat 2011;21:1159–71.
111. Hyatt JL, Wadkins RM, Tsurkan L, Hicks LD, Hatfield MJ, Edwards CC, et al. Planarity and constraint of the carbonyl groups in 1,2-diones are determinants for selective inhibition of human carboxylesterase 1. J Med Chem 2007;50:5727–34.
112. Wadkins RM, Hyatt JL, Yoon KJ, Morton CL, Lee RE, Damodaran K, et al. Discovery of novel selective inhibitors of human intestinal carboxylesterase for the amelioration of irinotecan-induced diarrhea: synthesis, quantitative structure-activity relationship analysis, and biological activity. Mol Pharmacol 2004;65:1336–43.
113. Wadkins RM, Hyatt JL, Edwards CC, Tsurkan L, Redino MB, Wheelock CE, et al. Analysis of mammalian carboxylesterase inhibition by trifuoroethylketone-containing compounds. Mol Pharmacol 2007;71:713–23.
114. Gelb MH, Svanep JP, Abeles RH. Fluoro ketone inhibitors of hydrolytic enzymes. Biochemistry 1985;24:1813–7.
115. Di Meo F, Steel M, Nicolous P, Marquet P, Duroux JL, Trouillas P. Acylglucuronide in alkaline conditions: migration vs. hydrolysis. J Mol Model 2013;19:2423–32.
116. Buchheit D, Dragan CA, Schmitt EL, Burek M. Production of auroprofen acyl glucosides by human UGT2B7. Drug Metab Dispos 2011;39:2174–81.
117. Kaneko H. Pyrethroids: mammalian metabolism and toxicity. J Agr Food Chem 2011;59:2786–91.
118. Moreno SC, Silviero FO, Picano MC, Alvarenga ES, Pereira RR, Santana Júnior PA, et al. New pyrethroids for use against Tuta absoluta (lepidoptera: gelechiidae): their toxicity and control speed. J Insect Sci 2017;17:99.
119. Lei W, Wang DD, Dou TY, Hou J, Feng L, Yin H, et al. Assessment of the inhibitory effects of pyrethroids against human carboxylesterases. Toxicol Appl Pharmacol 2017;321:48–56.
120. Crow JA, Bittles V, Borzajani A, Potter PM, Ross MK. Covalent inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by the carbamates JZL184 and UR2597. Biochem Pharmacol 2012;84:1215–22.
121. Tsurkan LG, Hatfield MJ, Edwards CC, Hyatt JL, Potter PM. Inhibition of human carboxylesterases hCE1 and hiCE by choline esterases inhibitors. Chem Biol Interact 2013;203:226–30.
122. Scalon A, Barra D, Jones WM, Manning JM. Human acylpeptidase hydrolyase. Studies on its thiol groups and mechanism of action. J Biol Chem 1994;269:1507–13.
123. Lee I, Eriksson P, Fredriksson A, Buratovic S, Viberg H. Developmental neurotoxic effects of two pesticides: behavior and biomolecular studies on chlorpyrifos and carbaryl. Toxicol Appl Pharmacol 2015;288:429–38.
124. Schozl NL, Tuelove NK, Labenia JS, Baldwin DH, Collier TK. Dose-additive inhibition of chinook salmon acetylcholinesterase activity by mixtures of organophosphate and carbamate insecticides. Environ Toxicol Chem 2006;25:1200–7.
125. Kovach IM. Structure and dynamics of serine hydrolyase-organophosphate adducts. J Enzym Inhib 1988;2:199–208.
126. Nomura DK, Durkin KA, Chiang KP, Quistad GB, Cravatt BF, Casida JE. Serine hydrolyase KIAA1363: toxicological and structural features with emphasis on organophosphate interactions. Chem Res Toxicol 2006;19:1142–50.
127. Heymann E, Mentlein R, Schnalz R, Schwabe C, Wagenmann F, A method for the estimation of esterase synthesis and degradation and its application to evaluate the influence of insulin and glucagon. Eur J Biochem 1979;102:509–20.
128. Wei Y, Peng HJ, Huang J. Inhibition of porcine liver carboxylesterase by phosphorylated flavonoids. Chem Biol Interact 2013;204:75–9.
129. Casida JE, Quistad GB. Serine hydrolyase targets of organophosphorus toxicants. Chem Biol Interact 2005;157:277–83.
130. Xu J, Li Y, Chen WD, Xu Y, Yin L, Ge X, et al. Hepatic carboxylesterase 1 is essential for both normal and farnesoid X receptor-controlled lipid homeostasis. *Hepatology* 2014;59:1761–71.

131. Jones RD, Taylor AM, Tong EY, Repa JJ. Carboxylesterases are uniquely expressed among tissues and regulated by nuclear hormone receptors in the mouse. *Drug Metab Dispos* 2013;41:40–9.

132. Staudinger JL, Xu C, Cui YJ, Klaassen CD. Nuclear receptor-mediated regulation of carboxylesterase expression and activity. *Expert Opin Drug Metab Toxicol* 2010;6:261–71.

133. Chen YT, Shi D, Yang D, Yan B. Antioxidant sulforaphane and sensitizer trinitrobenzene sulfonate induce carboxylesterase-1 through a novel element transactivated by nuclear factor-E2 related factor-2. *Biochem Pharmacol* 2012;84:864–71.

134. Shi D, Yang J, Yang D, Yan B. Dexamethasone suppresses the expression of multiple rat carboxylesterases through transcriptional repression: evidence for an involvement of the glucocorticoid receptor. *Toxicology* 2008;254:97–105.

135. Rigano D, Sirignano C, Tagliatela-Scafati O. The potential of natural products for targeting PPARα. *Acta Pharm Sin B* 2017;7:427–38.

136. Morioka Y, Nishimura M, Imai T, Suzuki S, Harada M, Satoh T, et al. Assessment of induction of cytochrome p450 by NO-1886 (Ibrolipim), a lipoprotein lipase-promoting agent, in primary cultures of human Hepatocytes and in female rat liver. *Drug Metab Pharmacokin* 2006;21:19–28.

137. Xu J, Yin L, Xu Y, Li Y, Zalzala M, Cheng G, et al. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. *PLoS One* 2014;9:e109663.

138. Chang HH, Chang MC, Wang HH, Huang GF, Lee YL, Wang YL, et al. Urethane dimethacrylate induces cytotoxicity and regulates cyclooxygenase-2, hemeoxygenase and carboxylesterase expression in human dental pulp cells. *Acta Biomater* 2014;10:722–31.

139. Ning R, Wang XP, Zhan YR, Qi Q, Huang XF, Hu G, et al. Gambogic acid potentiates clopidogrel-induced apoptosis and attenuates irinotecan-induced apoptosis through down-regulating human carboxylesterase 1 and 2. *Xenobiotica* 2016;46:816–24.