ENVELOVIMENTO DAS CATECOLAMINAS NO MIOCÁRDIO DE RATOS SUBMETIDOS A MODELO EXPERIMENTAL DE HIPERTENSÃO PORTAL

Involvement of catecholamines in the myocardium of rats submitted to experimental model of portal hypertension

Antonella VINCHIOLI1;3, Marília Da Cruz FAGUNDES1,3, Danieli Cristina FOGOZ2,3, Fernando Bermudez KUBRUSLY4,4, Luiz Fernando KUBRUSLY3,3, Camila Aparecida Moraes MARQUES1,3

Estudo Randomizado

Com o fluxo sanguíneo, de acordo com a lei de Ohm (ΔP=Q x R), a pressão arterial é cerca de 7 mmHg e o débito cardíaco é de cerca de 1.200 ml/min, o que representa cerca de 5% do débito cardíaco. Após 24 h, o débito cardíaco se mantém constante, e a pressão arterial e a resistência arterial sistêmica variam com o tempo, podendo ser importante contribuir para a vasodilatação esplâncnica e suas repercussões hemodinâmicas. Apesar dos estudos sobre as repercussões cardiovasculares na hipertensão portal, ainda não se sabe como a expressão adrenérgica se comporta a nível cardíaco nas etapas iniciais desse processo. O objetivo: Avaliar a expressão imunoistoquímica da enzima tirosina hidroxilase (tirosina 3-mono-oxigenase), relacionada à síntese da norepinefrina, no miocárdio de rattyos operados. O controle parcial da veia porta foi realizada apenas em grupo hipertensão portal. O controle parcial da veia porta foi realizada apenas em grupo hipertensão portal e, após 1/6/24 h e 3/5/14 dias, os animais foram eutanasiados. Foi feita a análise imunoistoquímica para quantificar a expressão da enzima corada, utilizando o programa ImageJ. Resultados: No grupo hipertensão portal, a porcentagem corada pela enzima seguiu padrão crescente nas primeiras 6 h e decrescente após 24 h. Conclusão: A expressão da noradrenalina no miocárdio de ratos durante as primeiras duas semanas após a ligadura parcial da veia porta, tomando como marcador a enzima tirosina hidroxilase, não apresentou diferenças entre grupos ao longo do tempo.

ABSTRACT - Background: The role of autonomic nervous system in the development and maintenance of portal hypertension is not fully elucidated. It is known that the gene expression of norepinephrine in the superior mesenteric artery varies with time, and it may contribute for splanchic vasodilation and its consequent hemodynamic repercussions. It is still not known exactly how the adrenergic expression behaves at the heart level in the initial stages of this process. Aim: To evaluate the immunohistochemical expression of the enzyme tyrosine hydroxylase (tirosine 3-mono-oxygenase), involved in the synthesis of norepinephrine, in the myocardium of rats submitted to partial ligation of the portal vein. Methods: Twenty-four Wistar rats were divided into two groups: Sham Operated and Portal Hypertension. The partial ligation was performed in the Portal Hypertension group, and after 1/6/24 h and 3/5/14 days, the animals were euthanized. Immunohistochemical analysis was performed to quantify the expression of the stained enzyme using the ImageJ program. Results: The Portal Hypertension group expressed percentages between 4.6-6% of the marked area, while the Sham Operated group expressed percentages between 4.6-6% of the marked area, with no statistical significance. Although there was no statistical significance, the percentage stained in the Portal Hypertension group followed an increasing pattern in the first 6 h and a decreasing pattern after 24 h, which was not observed in the Sham Operated group. Conclusion: The expression of noradrenaline in rat myocardium during the first two weeks after partial ligation of the portal vein, with tyrosine hydroxylase as marker, did not show differences between groups over time.

INTRODUÇÃO

A veia porta é formada pela união das veias mesentérica superior e esplênica, e suas tributárias incluem as veias gástricas e pancreatoduodenais. Estende-se até o hilo hepático, dividindo-se em ramos direito e esquerdo. Possui distribuição intra-hepática segmentar, acompanhando a artéria hepática. O fígado recebe fluxo sanguíneo de cerca de 1.200 ml/min, o que representa cerca de 25% do débito cardíaco. Desse total, 25% do volume provém da artéria hepática, e 75% da veia porta. A circulação venosa portal possui duas características hemodinâmicas importantes, que são o alto fluxo sanguíneo com baixa resistência e baixa pressão. Em indivíduos adultos, a pressão portal é cerca de 7 mmHg. Ela tem relação direta com a resistência e com o fluxo sanguíneo, de acordo com a lei de Ohm (ΔP=Q x R). O ΔP corresponde ao...
O grádio de pressão da veia porta (diferença entre a pressão portal e a pressão da veia cava inferior), Q ao fluxo sanguíneo portal e R à resistência ao fluxo. A hipertensão portal (HP) é a síndrome clínica usualmente secundária à obstrução intra ou extra-hepática do fluxo portal, sendo o aumento da resistência do fluxo sanguíneo portal o fator primário dessa doença.

A HP é classificada como pré-hepática (ex. trombose da veia porta ou esplêncica), intra-hepática (ex. cirrose) e pós-hepática (ex. trombose da veia hepática, da veia cava inferior ou cardiopatia congestiva). A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causado principalmente pela distorção congestiva. A causa mais comum de HP é a cirrose, em que o aumento da resistência é causada principalmente pela distorção congestiva.

Essa vasodilatação e a redução da resistência vascular sistêmica levam à redução do volume de sangue arterial efetivo e, portanto, ativação do sistema nervoso simpático, do sistema renina-angiotensina-aldosterona e aumento na liberação de vasopressina e endotelina-1, causando retenção de sódio e água. As consequências são aumento do volume plasmático, do débito cardíaco e da frequência cardíaca, e diminuição do fluxo sanguíneo renal, hipotensão vascular e retenção de líquidos e água. Uma vez que a circulação hiperdinâmica é estabelecida, ela pode aumentar o fluxo portal e agravar ainda mais a pressão portal em um círculo vicioso.

Vasodilatadores - em particular óxido nítrico e endotelinhas - parecem ter papel central no desarranjo circulatório e contribuírem no mecanismo de vasodilação esplâncnica. Além disso, endotelininas provavelmente induzem a produção de prostaciclina, que também contribuem para esse processo. Atrofia simpática também ocorre na área esplâncnica, devido aos altos níveis de vasodilatadores, como óxido nítrico, e à diminuição da reatividade vascular a vasocostritores. Nos pacientes cirúrgicos, em contrapartida, há menor produção de óxido nítrico na microvasculatura hepática, o que também contribui para a circulação hiperdinâmica.

Dessa forma, a vasodilação esplâncnica parece ser o evento hemodinâmico inicial que se segue ao aumento da pressão portal, sendo o gatilho das subsequentes modificações hemodinâmicas, tendo o óxido nítrico como principal vasodilatador envolvido.

O modelo de ligadura parcial da veia porta (LPVP) é essencial para pesquisa sobre HP, porque permite a reprodução de todas as etapas e alterações hemodinâmicas de forma bem estabelecida, tornando possível prever cronobiologicamente a sequência de eventos que levam à circulação hiperdinâmica. Estudos sugerem que a produção endotelial excessiva de óxido nítrico está diretamente relacionada à vasocostritão mesentérica que acontece precocemente após a LPVP, sendo essa vasocostritão reflexo miogênico ao aumento agudo da pressão portal e provocada por vasocostritores. Logo após a LPVP, ocorre up-regulation dos genes relacionados à neurotransmissão adrenérgica, sendo que tardiamente há down-regulation da expressão desses genes adrenérgicos e aumento da síntese de óxido nítrico pela ativação da NO sintetase, com vasodilatação mesentérica característica dos ratos submetidos à LPVP, isso contribui para o estado de circulação hiperdinâmica e leva às demais complicações da HP. A ativação de tais eixos neuro-humorais e a consequente circulação hiperdinâmica da HP podem levar às alterações morfológicas e funcionais cardíacas, principalmente o aumento dos átrios esquerdo e direito, e do diâmetro diastólico do ventrículo direito. Essa dilatação pode ser interpretada como adaptação hemodinâmica cardíaca às alterações da circulação periférica, como o aumento da pré-carga. Alterações na função sistólica são frequentemente relatadas nesses pacientes, a sua presença é considerada um marcador precoce de lesão cardíaca.

MÉTODOS

O experimento foi conduzido na Faculdade Evangélica do Paraná (FEPAR) e no Instituto de Pesquisas Médicas (IPEM), Curitiba, PR, Brasil. O projeto de pesquisa foi aprovado pelo Comitê de Ética em Pesquisa da Sociedade Evangélica Beneficente de Curitiba sob o parecer 1408/2016. Os procedimentos com os animais foram de acordo com o preconizado pela Comissão de Ética no Uso de Animais da FEPAR.

Foram utilizados 24 ratos machos Wistar, pesando entre 200-300 g, provenientes do biotério do Instituto de Tecnologia do Paraná. Os animais foram mantidos durante o experimento no biotério do IPEM em caixas plásticas de 47x34x18 cm forradas com maravilha em ciclo de 12 h claro/escuro e temperatura de 22±2 °C. Os animais foram tratados diariamente com água filtrada e ração apropriada administrada livremente.

O modelo utilizado foi de HP através de LPVP, e os animais foram divididos em dois grupos: Sham Operated, grupo submetido à simulação da operação, sem a LPVP; e LPVP, grupo submetido à LPVP. Foi utilizada mistura de cloridrato de xilazina 10 mg/kg e cloridrato de cetamina 90 mg/kg intraperitonealmente para anestesiar os animais. Após anestesiados, a intervenção cirúrgica iniciou-seocumentando realização de tricotomia e desinfecção da região abdominal, seguida de laparotomia ventral média. As alças intestinais foram expostas delicadamente por sobre uma gaze umidificada com soro fisiológico e a veia porta isolada. Uma agulha de 20 G foi colocada sobre a veia porta e ambas unidas por um fio seda 3,0, sendo retirada a agulha delicadamente após a ligadura. Certifica-se que não tenha ocorrido trombose da veia porta durante essa manipulação. A cavidade abdominal era fechada com pontos individuais no plano cutâneo, e o peritônio e a camada muscular abdominal com pontos contínuos. Os animais controlados ou Sham Operated sofreram o mesmo procedimento, não tendo, no entanto, a veia porta parcialmente ligada, apenas manipulada. A Figura 1 representa o modelo esquemático da LPVP, estabelecido por Sikuler et al.13.

FIGURA 1 - Modelo de ligadura parcial de veia porta (LPVP)

Transcorridos 1, 6 e 24 h, e 3, 5 e 14 dias do desenvolvimento do modelo conforme o grupo, os ratos foram eutanasiados.
através de overdose anestésica intraoperacionalmente, com as mesmas substâncias utilizadas na anestesia pré-procedimento. Após a eutanásia, o coração foi removido, fixado em formol a 10% dissolvido em 0,1M de PBS e pH 7,4 e os fragmentos para o processamento colhidos segundo técnica histológica convencional. Os fragmentos foram incluídos em parafina e orientados para que os cortes obtidos resultassem em secções transversais do órgão, e posteriormente submetidos à análise imunistoquímica para TH.

As imagens da imunistoquímica foram capturadas com o foco do microscópio no miocárdio (ventrículo esquerdo) e aumento de 40x. As capturas foram gravadas em 8-bit e, com o software ImageJ, foram transformadas em 8-bit cor azul. Após o comando “threshold”, seguido do comando “measure”, as imagens foram processadas e tiveram suas porcentagens de áreas marcadas pela TH registradas para posterior análise estatística.

Análise estatística
Os dados coletados foram submetidos ao software GraphPad Instat, versão 3.0 para Windows XP2000, sendo utilizado o teste de Wilcoxon, adotando-se nível de significância de 5% (p<0,05).

RESULTADOS
Participaram do experimento 24 ratos, 12 LPVP e 12 Sham Operated, sendo as amostras obtidas em 1, 6 e 24 h e 3, 5, e 14 dias. Na Figura 2, podem ser observadas as fotomicrografias do miocárdio obtidas após 1 h (A), 6 h (B) e 24 h (C) e na Figura 3 as em 3 (D), 5 (E) e 14 (F) dias de LPVP, nas resoluções 24-bit, 8-bit e após o comando threshold, respectivamente. As áreas mais escuras representam a marcação pela TH.

FIGURA 2 - Miocárdio em 1 h (A), 6 h (B) e 24 h (C) (40x)

FIGURA 3 - Miocárdio em 3 (D), 5 (E) e 14 (F) dias (40x)

A porcentagem de área marcada pela TH foi calculada com a aplicação do comando “threshold” seguido de “measure”, e os valores estão expressos na Tabela 1. O miocárdio expressou percentuais que variaram de 4-5,1% no grupo Sham Operated, e de 4,6-6,8% no grupo LPVP. Não foi observada diferença significativa entre os grupos (p<0,05). Contudo, é interessante observar os diferentes padrões de curvas da porcentagem corada pela TH ao longo do tempo entre os grupos, melhor observada na Figura 4.

TABELA 1 - Área marcada pela TH em cada grupo (%)

amostras	Sham Operated	LPVP
1h	5,143	4,685
6h	5,065	6,020
24h	4,544	6,823
3d	4,886	5,045
5d	4,129	4,655
14d	4,042	5,020

FIGURA 4 - Área marcada pela TH ao longo do tempo (%)

DISCUSSÃO
Muitos estudos procuram elucidar o papel do sistema nervoso autônomo na HP. Apesar do aumento dos níveis sistêmicos de catecolaminas, sabe-se que essa hiperatividade do sistema nervoso simpático não é homogênea, uma vez que há órgãos e tecidos em que ela não foi verificada. Um exemplo disso ocorre nos vasos mesentéricos. Há importante down-regulation dos genes relacionados à neurotransmissão adrenérgica na artéria mesentérica superior após LPVP, acompanhado também por regressão/atrofia da inervação simpática em todo o território vascular mesentérico. Contudo, essa atrofia nervosa não está presente em outros leitos vasculares, como as artérias renais, por exemplo. O down-regulation adrenérgico mesentérico pode ser interpretado como conseqüência local da HP, que pode contribuir para agravar a vasodilatação esplâncnica, a qual é responsável pela hiperatividade simpática generalizada, especialmente nos músculos e rins.

As evidências experimentais disponíveis ainda não permitem conclusão definitiva sobre a importância do sistema nervoso simpático no desenvolvimento da hipertrofia cardíaca. Estudos sugerem que o aumento nos marcadores de inervação simpática pode ser característica comum do estágio de hipertrofia cardíaca precoce e compensada, independentemente do curso do tempo. Mecanismos neurais simpatizantes não parecem desempenhar papel estimulante ou trófico no processo hipertrófico. Por outro lado, eles parecem ser de natureza secundária, sugerindo possível influência estimuladora do miocárdio hipertrófiado em nervos cardíacos simpáticos. Porém, sabe-se também que norepinefrina e acetilcolina estão esgotadas com a progressão da insuficiência cardíaca manifesta. Essa depleção causa menos

ABCD Arq Bras Cir Dig 2018;31(3):e1383
suporte para o débito cardíaco em resposta à ativação simpática do nervo\(^1\). Partindo-se desses princípios, na LPVP estariam presentes características hiperatividade simpática - consequente à HP - e o estímulo do sistema nervoso simpático pela hipertrofia cardíaca induzida.

Neste experimento, avaliou-se a imunooistoquímica da TH no miocárdio após 1, 6, 24 h e 3, 5 e 14 dias da LPVP, visando identificar o comportamento do sistema nervoso simpático no nível cardíaco nos diferentes estágios da HP. O modelo de LPVP reproduz todas as alterações sistêmicas e hemodinâmicas detectadas na HP e no estádo de circulação hiperdinâmica: aumento da pressão e do fluxo portal, aparecimento de shunts porto-sistêmicos, vasodilação esplâncnica com redução da resistência arterial e do fluxo esplâncnico, vasodilação sistêmica com hipotensão arterial, redução da resistência periférica e aumento do débito cardíaco. Esse modelo é muito homogêneo, reproduzível e com excelente previsão cronobiológica, que permite a elucidação da sequência de eventos envolvidos na geração da circulação hiperdinâmica. O shunt porto-sistêmico é detectado após dois dias de LPVP e a porcentagem de sangue portal desviada para as colaterais alcança 100% após uma semana. A circulação se torna hiperdinâmica 4-5 dias após a LPVP e, uma semana após a operação, os ratos apresentam gama completa de alterações de HP\(^1\).

Neste estudo, o miocárdio expressou percentuais que variaram de 4-5,1% no grupo Sham Operated, e de 4,6-6,8% no grupo LPVP. Apesar de não ter ocorrido diferença significativa entre os grupos, é interessante observar os diferentes padrões de curvas da porcentagem corada pela TH ao longo do tempo. No grupo LPVP, houve elevação nas primeiras 6 h, que se manteve estável até o final das primeiras 24 h, e apresentou padrão decrescente até o 5º dia. Após o 5º e até o 14º dia, teve porcentagem retornando para os níveis próximos àqueles do início do experimento. Esse padrão não foi observado no grupo Sham Operated, que manteve seus níveis mais estáveis durante os 14 dias de experimento. Analisando a previsão cronobiológica da LPVP, o retorno da porcentagem corada após o 5º até o 14º dia pode estar relacionado ao início da circulação hiperdinâmica, prevista nesse modelo a partir do 4º ao 5º dia. De forma análoga ao leito arterial mesentérico, em que há a up-regulation inicial simpática com posterior down-regulation, pode haver no miocárdio mecanismos semelhantes associados. Contudo, são necessários mais estudos para compreender a razão das curvas terem sido tão discrepantes entre os grupos, ao longo dos 14 dias de experimento.

CONCLUSÃO

A expressão da noradrenalina no miocárdio de ratos durante as primeiras duas semanas após a ligadura parcial da veia porta, tendo como marcador a enzima tirosina hidroxilase, não apresentou diferenças entre grupos ao longo do tempo.