The turbulent interstellar medium

A. Burkert

University Observatory Munich, Scheinerstr. 1, D-81679 Munich, Germany

Abstract

An overview is presented of the main properties of the interstellar medium. Evidence is summarized that the interstellar medium is highly turbulent, driven on different length scales by various energetic processes. Large-scale turbulence determines the formation of structures like filaments and shells in the diffuse interstellar medium. It also regulates the formation of dense, cold molecular clouds. Molecular clouds are now believed to be transient objects that form on timescales of order 10^7 yrs in regions where HI gas is compressed and cools. Supersonic turbulence in the compressed HI slab is generated by a combination of hydrodynamical instabilities, coupled with cooling. Turbulent dissipation is compensated by the kinetic energy input of the inflow. Molecular hydrogen eventually forms when the surface density in the slab reaches a threshold value of $\sim 10^{21}$ cm$^{-2}$ at which point further cooling triggers the onset of star formation by gravitational collapse. A few Myrs later, the newly formed stars and resulting supernovae will disperse their molecular surrounding and generate new expanding shells that drive again turbulence in the diffuse gas and trigger the formation of a next generation of cold clouds. Although a consistent scenario of interstellar medium dynamics and star formation is emerging many details are still unclear and require more detailed work on microphysical processes as well as a better understanding of supersonic, compressible turbulence.

Key words: interstellar medium, turbulence, molecular clouds, star formation, galaxies

1 Introduction

Steady-state multi-phase models have dominated our picture of the interstellar medium (ISM) in the Milky Way for a long time. According to the early model of Field et al. (1969) and subsequent modifications the ISM represents an ensemble of two stable gas phases that are in thermal pressure equilibrium...
with a mean pressure of \(n \times T \approx 1000 \text{ K cm}^{-3} \). Cold molecular clouds with mean densities of \(n \approx 100 \text{ cm}^{-3} \) and temperatures \(T \approx 10 \text{ K} \) are embedded in a warm, diffuse and partly ionized intercloud component with density \(n \approx 0.1 \text{ cm}^{-3} \) and temperatures of order \(10^4 \text{ K} \). The gas clouds contain a large fraction of the total mass and move as stable, dense spheroidal objects in the widespread intercloud medium which on the other hand has the dominant volume filling factor. Star formation would eventually heat and disperse the massive clouds. New generations of small clouds form from the intercloud medium by cooling instabilities (Field 1965) and subsequently grow by random inelastic cloud-cloud collisions (e.g. Elmegreen 1989). Already in 1977 McKee & Ostriker noticed that the two-phase model could not be valid as supernova explosions should lead to a third, hot and tenuous gas phase. However they still focussed on the importance of thermal pressure equilibrium and a steady state description as the main physical constraint to evaluate the state of the various gas phases.

This situation has changed drastically in the last decade. High-resolution observations e.g. with the Infrared Astronomical Satellite (IRAS) and more recently with the Spitzer satellite reveal a complex kinematical state and spatial structure of the interstellar gas. The ISM appears to be far from hydrostatic equilibrium and turbulent. In fact, it is the kinetic turbulent pressure, not thermal pressure, that probably dominates the gas dynamics and that characterizes its density structure and the dynamics of the various gas phases. Turbulence couples structures on very different scales. Molecular clouds might just represent the high-density tail of this hierarchy, forming in colliding gas flows that lead to transient local compressions that subsequently cool. We will discuss below that the complex internal structure of molecular clouds that determines their evolution and their condensation into stars and stellar clusters is also a result of turbulence, generated by various hydrodynamical instabilities during the process of molecular cloud formation.

With turbulence becoming the dominant source of structure in the ISM, theoretical models lost their simplicity and equilibrium descriptions had to be replaced by dynamical models where large and small scales are simultaneously considered. We are just starting to explore and understand this rich and enormously complex new field of astrophysics. In this short review I can only focus on a few interesting topics and unsolved questions. An excellent and comprehensive review of our current understanding is presented by Elmegreen & Scalo (2004) and Scalo & Elmegreen (2004). Reviews that focus especially on numerical simulations of ISM turbulence are e.g. Vázquez-Semadeni et al. (2000) and Ballesteros-Paredes et al. (2006). A summary of our understanding of star formation in turbulent clouds is given by Mac Low & Klessen (2004).
Fig. 1. Characteristic velocity dispersion σ of a sample of disk galaxies as function of their average surface star formation rate in units of $\left(M_\odot \, yr^{-1} \, kpc^{-2} \right)$ (Dib et al. 2006). σ is almost independent of the star formation rate for typical values found in slowly evolving disk galaxies like the Milky Way. It rises steeply in star burst regions with high star formation rates.

2 Turbulence in the diffuse ISM

It is now a well established fact that the ISM in galactic disks is dominated by irregular and often supersonic gas motions (Larson 1981; Scalo 1987; Dickey & Lockman 1990). In most spiral galaxies HI emission lines exceed the values, expected from thermal broadening, indicating turbulent velocity dispersions σ of order 10 km/s. The velocity dispersion in galactic disks in general decreases outwards from $\sigma \approx 12-15$ km/s in the inner regions to $\sigma \approx 4-6$ km/s in the outer parts. Figure 1 shows the characteristic velocity dispersion for a sample of galaxies as function of their surface averaged star formation rate (Dib et al. 2006). Note that self-regulated star formation rates that are typical for Milky Way-type disk galaxies lead to velocity dispersions of order $\sigma \approx 6-8$ km s$^{-1}$, independent of the star formation rate. The diffuse ISM acts like a thermostat. The situation changes drastically in situations where star formation is getting out of control, leading to starbursts that last a short time, of order 10^8 yrs. As shown in figure 1, the transition into the starburst regime is marked by a steep increase of the velocity dispersion.
2.1 Driving turbulence in the diffuse ISM

Several physical processes, acting on different scales and injecting different amounts of kinetic energy contribute to the driving of ISM turbulence. However, despite a large amount of numerical work in this field, the dominant energetic sources and the physical processes that convert the kinetic energy into turbulence are not well understood. Stars are obvious candidates. Large-scale expanding gas flows could e.g. be generated by high-pressure HII regions, resulting from the UV radiation of young, massive stars (Kessel-Deyn et & Burkert 2003), stellar winds or supernova explosions. Mac Low & Klessen (2004) argue that supernova explosions dominate the global kinetic energy input into the interstellar medium. Several two- and three-dimensional numerical simulations have tested supernova driving in galactic disks (e.g. Kim et al. 2001; de Avillez & Breitschwerdt 2004, 2005; Slyz et al. 2005; Mac Low et al. 2005). The recent investigation by Dib et al. (2006) demonstrates that the HI gas velocity dispersion saturates at values of 3 km/s for values of the supernova rate, ranging from 0.01 to 0.5 the Galactic value (1/57 yr$^{-1}$, Cappellaro et al. 1999). It increases sharply at larger rates, reproducing the transition into the starburst regime. Although the constant velocity dispersion, found at lower rates is promising, the actual value of 3 km/s is a factor of 2-3 lower than observed. Part of this discrepancy might be due to thermal line broadening. However other feedback processes probably are also important to produce the observed level of turbulence in galactic disks.

What is the origin of a constant HI velocity dispersion, independent of the supernova rate? Dib et al. (2006) argue that the answer lies in a dominant gas phase that is in a thermally unstable temperature regime between 400 K \(\leq T \leq 10000 \) K. It is produced when individual supernova remnants cool and are dispersed. In these regions thermal instability (Burkert & Lin 2000) generates local irregular pressure gradients that lead to HI gas flows with typical velocities of order the local sound speed, corresponding to a few km/s. The importance of thermal instability as a driver of turbulence in the ISM has previously been discussed in details by Kritsuk & Norman (2002a,b). In the starburst regime, on the other hand, supernova remnants begin to overlap in an early hot phase, generating a stable, hot gas component with a large volume filling factor. HI flows are now directly coupled to the expansion of bubbles generated by multiple supernovae, leading to larger velocities that are however still subsonic with respect to the hot gas component.

Note, that in the Milky Way this scenario would predict the existence of a thermally unstable gas phase with a high mass fraction (Gazol et al. 2001), in contrast to previous static multi-phase models. A large fraction of interstellar gas in the unstable regime has indeed been observed (Dickey et al. 1977; Heiles 2001; Kanekar et al. 2003). As outlined by Elmegreen & Scalo (2004),
this phase also explains the origin of large variations in observed gas pressures that were puzzling in the static models (Jenkins 2004; Kim et al. 2001).

Many physical mechanisms, not related to stellar energetic feedback, could in principle contribute to the driving of turbulence in the ISM. Clear evidence for additional sources is for example the high HI velocity dispersion observed in the outer parts of galactic disks where star formation is negligible (Dickey et al. 1990). Numerical simulations are just starting to explore these drivers of turbulence in greater details. Galactic rotation, for example, represents a huge reservoir of kinetic energy. Wada et al. (2002) demonstrate that the dissipation of turbulent energy in disks could be compensated by a combination of galactic shear and gas self-gravity. In addition, the coupling of galactic shear with magnetic fields can trigger a magnetorotational instability (MRI; Balbus & Hawley 1991; Sellwood & Balbus 1999). Three-dimensional simulations by Kim et al. (2003) show that the MRI could generate velocity dispersions of order a few km/s which is similar to supernova driving (see also Dziourkevitch et al. 2004). Similar values are found by Piontek & Ostriker (2004) who studied the combined affect of thermal instability and MRI.

Only recently have galaxies in early phases of evolution been detected in deep images with the Hubble Space Telescope (e.g. Cowie et al. 1995; Tran et al. 2003; Elmegreen et al. 2004, Forster Schreiber et al. 2006). They are characterised by a few giant blue, bright clumps of sizes ~ 500 pc where stars appear to form with high efficiency in a starburst mode. The clumps dominate the disk light, suggesting a global gravitational disk instability and implying an unusually high velocity dispersion of order 30% the disk rotational velocity (Elmegreen 2004), corresponding to 40-60 km/s which is similar to the velocity dispersion of the thick disk component of the Milky Way. The triggering mechanism of this highly turbulent starburst mode in young galaxies and its affect on the evolution of the various galactic components and galaxy morphologies is not well understood up to now.

2.2 HI holes and the complex filamentary structure of the ISM

The left panel of figure 2 shows the peak 21cm HI surface density distribution in the Large Magellanic Cloud (Kim et al. 1999) which reveals a complex network of interacting filaments, shells and superbubbles. The question of which physical processes produce these holes in the LMC and other galaxies is not solved. Their circular shapes suggest a stellar central energy source. Observations however indicate that the voids especially in the outer parts of galactic disks are often not a result of supernova explosions. Kim et al. (1999) for example find only a weak correlation between the positions of the HI shells in the LMC and HII regions. Rhode et al. (1999) have studied 51 HI holes in
Fig. 2. The left figure, provided by S.Kim (Kim et al. 1999), shows the peak 21 cm HI surface density distribution in the Large Magellanic Cloud which nicely demonstrates the existence of a complex network of filaments and shells. The right figure, provided by B. Elmegreen (Elmegreen et al. 2001), shows the power spectrum of the HI emission in the LMC which is well fitted by a power-law of slope -3 over 2 decades in length.

the dwarf galaxy Holmberg II (Puche et al. 1992). They show that in 86% of all cases the holes do not show any signature of the presence of an embedded stellar cluster or any sign of ongoing stellar activity. In fact, X-ray observations of Holmberg II show that the HI holes are often devoid of hot gas (Kerp et al. 2002) and therefore probably did not form by the expansion of a hot gas bubble, sweeping up its environment.

Dib & Burkert (2005) suggest that large HI holes can form naturally as a combined result of ISM turbulence, coupled with thermal and gravitational instabilities. Their hydrodynamical simulations of large-scale driven turbulence, including cooling and heating processes as well as self-gravity can reproduce the structure of shells and holes, observed in regions where no stellar activity is observed. For a more quantitative analyses they subdivided the gas disk into rectangular cells of constant size \(l \) and determined the autocorrelation lengthscale of the HI surface density distribution in each cell. Averaging over all cells, the mean autocorrelation length scale \(l_{cr} \) was determined as function of cell size \(l \). Dib & Burkert find that \(l_{cr} \) increases linearly with \(l \) as long as the cell size is smaller than the length scale \(l_{turb} \) on which turbulent energy is injected into the ISM. Once \(l > l_{turb} \), the autocorrelation lengthscale becomes independent of the map size. This analysis can be used to determine the scale of energy injection into the ISM for observed HI disks. Applying the method...
Fig. 3. The distribution of young stars in the Taurus molecular cloud, superimposed upon 12CO emission. Most of the stars have ages of order 2 Myr despite the fact that the lateral sound crossing time is of order 20 Myr (figure provided by L. Hartmann; see Hartmann et al. 2001 and Hartmann 2002, 2003).

to Holmberg II leads to a driving scale of $l_{\text{turb}} \approx 6$ kpc which is very puzzling as this scale is much larger than any known energy source in the galaxy.

The power spectra of 2D gas column densities and emission fluctuations are often fitted well by power-law profiles with a slope around -3 (right panel of Fig. 2, see Elmegreen et al. 2001). This power-law extends from the largest to the smallest observable scales which is surprising given the fact that multiple sources of energy are likely to contribute to the driving of turbulence on very different length scales. The similarity of this slope to a 2D Kolmogorov power spectrum (Kolmogorov 1941) of -8/3 is also not well understood as Kolomogorov’s scaling relations are strictly valid only for incompressible fluids where vortices (solenoidal modes) are the relevant dynamical structures in contrast to the ISM where compressible modes leading to shocks and rarefaction waves are important. As the Fourier transform of a step function has a 2D power-law slope of -3 (Mac Low & Klessen 2004) we might just see the complex network of interacting shock fronts. Unfortunately numerical simulations of the turbulent supersonic ISM do not have enough dynamical range yet to investigate this interesting question in greater details.
3 Turbulence in the dense, cold interstellar medium

Stars form in the cold, dense molecular phase of the interstellar medium where clumps with masses in the stellar regime can become gravitationally unstable and collapse. Like the diffuse ISM, molecular clouds (MC) exhibit a wealth of clumpy and filamentary substructures that indicate that they are again turbulent regions, embedded and interacting with the turbulent diffuse interstellar medium.

3.1 The problem of star formation in a crossing time

How stars form in MC is an important unsolved question of modern astrophysics (for a review see Mac Low and Klessen 2004). Ordinary spiral galaxies like the Milky Way form stars at a low, self-regulated rate. Although a large fraction of the visible gas is condensed in MCs with masses in the range of $10^4 - 10^6 \, M_\odot$ that by far exceed their thermal Jeans mass, star formation turns out to be surprisingly inefficient (Blitz & Shu 1980). The Milky Way, for example, with a total molecular gas mass of order $2 \times 10^9 \, M_\odot$ and mean molecular cloud densities of order $100 \, \text{cm}^{-3}$, corresponding to collapse timescales of $5 \times 10^6 \, \text{yrs}$, could in principle form stars with a rate of more than $100 \, M_\odot/\text{yr}$ which is a factor of 100 larger than observed.

Supersonic (Mach numbers: $M \approx 5-10$) turbulent gas motions have been detected in most cloud complexes (Larson 1981, Falgarone & Philips 1996; Elmegreen & Falgarone 1996, Williams et al 2000) and are considered as the main source for their stability and complex density structure. However numerical hydro- and magneto-hydrodynamical simulations show that supersonic turbulence dissipates on timescales shorter than the collapse timescale (Stone et al. 1998; Mac Low et al. 1998). In addition, no driver of molecular cloud turbulence has ever been found which on the one hand suppresses star formation on the small scales while, at the same time, stabilizing giant molecular clouds on the large scales (Heitsch et al. 2001).

Another serious problem is the so called post-T Tauri problem (Hartmann 2001, 2002, 2003; Hartmann et al. 2001): the typical age spread of young stellar populations is of the order of 1-3 Myrs which is surprisingly narrow, indicating a coherent star formation process (see however Palla et al. 2005). Figure 3, for example, shows the young stars observed in the Taurus complex. They are aligned in 3 parallel filaments at the ridges of an irregular diffuse gas complex. The origin of this alignment is not understood. In addition, the age spread of the stars is only a few Myrs which is a factor of 10 smaller than the lateral sound crossing times of the filaments. Which processes triggered
star formation coherently along all three filaments at exactly the same time? Finally, almost all molecular clouds in the solar neighborhood show signs of star formation which implies that they cannot be much older than a few Myrs as otherwise either the newly formed stellar systems should have a larger age spread or a larger fraction of clouds should not show signatures of star formation.

If molecular clouds condense into stars within a few Myrs the problem arises how clouds with masses of $10^3 - 10^6 \, M_\odot$ could form in the first place. Consider a perturbation travelling through the ISM and sweeping up gas. Adopting typical velocities of order 10 km/s, cross sections of order $(10 \, \text{pc})^2$ and densities of the diffuse gas that is being swept up of order $1 \, \text{cm}^{-3}$ it takes more than 10^7 yrs to accumulate a total mass of $10^3 - 10^4 \, M_\odot$. Giant molecular clouds might form in larger-scale spiral arms with dimensions of several 100 pc and speeds of order 50 - 100 km/s (Bonnell et al. 2006). Still, several 10^7 yrs are required which is in conflict with the above mentioned molecular cloud lifetimes.

3.2 Formation of molecular clouds in converging gas flows

The arguments, presented in the previous section, indicate that molecular cloud formation and evolution is highly dynamical and that clouds never have the time to achieve a long-term equilibrium state, supported by internal turbulence. They instead form from the turbulent diffuse ISM with their irregular motions and filamentary substructures probably already imprinted at the time of formation. They are dispersed a few dynamical timescales later by star formation. That molecular clouds are transient dense islands in a turbulent sea and part of a hierarchy of structures that form in the ubiquitous colliding shock waves of the turbulent, diffuse ISM has already been outlined a long time ago by von Weizsäcker (1951, for a summary of early work in this field see Elmegreen & Scalo 2004). At that time however it was not possible to study this model with numerical methods in details.

The situation has changed in the meantime due to sophisticated numerical schemes and the availability of fast computers. The cooling and subfragmentation of dense slabs that form in colliding gas flows has now been investigated in details (Walder & Folini 1998, 2000; Klein & Woods 1998; Heitsch et al. 2005, 2006; Vázquez-Semadeni et al. 2005; Bonnell et al. 2006). It has been shown that the compressed region fragments as a result of a combination of thermal- and hydrodynamical instabilities (non-linear thin shell instability: Vishniac 1994; Kelvin-Helmholtz instability: Blondin & Marks 1996; thermal instability: Burkert & Lin 2000; see also Hennebelle & Pérault 1999, 2000; Koyama & Inutsuka 2004). Figure 4 shows an example of a fragmenting, cold compressed slab. Dense filamentary and clumpy HI substructures with tem-
Fig. 4. Formation of a turbulent, irregular dense sheet of cold gas in the interaction zone of two colliding gas flows with inflow velocity of 10 km/s and temperature of 3000 K. The density distribution of the cold gas with a temperature of \(\leq 300 \) K is shown. The colorbar shows the logarithm of the particle density in units of \(\text{cm}^{-3} \). Vectors show the velocity of the diffuse intercloud medium that moves into the inner region of the cold gas complex along open channels, driving irregular turbulent flows in its interior.

Temperatures of order 100 K are forming that move with irregular velocities in a diffuse interclump medium. The numerical simulations show that even with modest inflow speeds and completely uniform inflows, non-linear density perturbations form that could represent the seeds of structure in molecular clouds. These irregular sheets and filaments might lateron collapse and fragment into stars (e.g. Burkert & Bodenheimer 1993; Klessen & Burkert 2000; Burkert and Hartmann 2004). The random gas velocities within individual cold clumps are quite small. However the relative velocities of the cold gas clumps with respect to each other are highly supersonic, compared to the sound speed of the cold component and consistent with the observed values of a few km/s. The irregular, turbulent motion of the cold gas in the slab is continuously driven by the kinetic energy of the inflowing diffuse gas. This might stabilize the region against gravitational collapse as long as the inflow continues.

If the inflowing gas is preferentially HI, a dense irregular HI slab forms. The formation of molecular gas starts as soon as the HI surface density reaches values of \(\Sigma_{\text{crit}} \approx 10^{21} \text{ cm}^{-2} \) (Bergin et al. 2004). For inflow speeds of 10 km/s this will require timescales of order a few \(10^7 \) yrs for densities of the inflowing material of 1 cm\(^{-3}\). The accumulated molecular cloud mass would then be of order 1000 M\(_\odot\) which is typical for filamentary molecular clouds like Taurus in the solar neighborhood. Similar timescales are required in the larger-scale flows in spiral density waves that produce giant molecular cloud complexes. During the early period of proto-cloud evolution, the gas would still be atomic and not easily detectable. Bergin et al. (2004) show however that as soon as \(\Sigma_{\text{crit}} \) is reached, the conversion into a molecular cloud takes only a few \(10^6 \)
yrs. In addition, the previously 100 K gas would cool down to 10 K which could trigger local gravitational collapse and star formation. More work is required to detect this gas phase observationally and investigate its evolution with numerical simulations.

4 Summary

The interstellar medium is a highly turbulent mixture of various interacting gas phases. The existence of turbulence is expected, given the fact that the typical Reynolds numbers in the ISM are of order $10^4 - 10^7$ (Elmegreen & Scalo 2004). That turbulence is however also found in regions without energy input by stars is surprising.

A wealth of connected and coupled structures on different scales all the way down to the scale of star formation have been identified, starting with the early work of Larson (1981) who found that the density and velocity dispersion of molecular clouds scales with the size of the region as a power law. This indicates an interesting connection between ISM dynamics and star formation. Many questions are still unsolved and need to be explained theoretically. This might eventually lead to a quantitative model of star formation that is one of the crucial missing ingredients in order to understand the evolution of galaxies.

Acknowledgements: I would like to acknowledge inspiring discussions with Lee Hartmann, Bruce Elmegreen, Fabian Heitsch, Nick Scoville and Sami Dib on this topic and would like to thank Sungeun Kim, Lee Hartmann and Bruce Elmegreen for providing figures for this review.

References

Alcock C. et al: 2001, ApJS 136, 439
Bahcall J.N.: 1984, ApJ 287, 926
Balbus, S.A., Hawley, J.F.: 1991, ApJ 376, 214
Ballesteros-Paredes, J., Klessen, R.S., Mac Low, M.-M., Vazquez-Semadeni, E.: 2006, to appear in Protostars and Planets V, astro-ph/0603357
Bergin, E.A., Hartmann, L.W., Raymond, J.C., Ballesteros-Paredes, J.: 2004, ApJ 612, 921
Blitz, L., Shu, F.H.: 1980, ApJ 238, 148
Blondin, J.M., Marks, B.S.: 1996, New Astronomy 1, 235
Bonnell, I.A., Dobbs, C.L., Robitaille, T.P., Pringle, J.E.: 2006, MNRAS 365, 37
Burkert, A., Bodenheimer, P.: 1993, MNRAS 264, 798
Burkert, A., Lin, D.N.C.: 2000, ApJ 537, 270
Burkert, A., Hartmann, L.: 2004, ApJ 616, 288
Cappellaro, E., Evans, R., Turatto, M.: 1999, A & A 351, 459
Cowie, L., Hu, E., Songalia, A.: 1995, AJ 110, 1576
de Avillez, M.A., Breitschwerdt, D.: 2004, A & A 425, 899
de Avillez, M.A., Breitschwerdt, D.: 2005, ApJ 634, L65
Dib, S., Burkert, A.: 2005, ApJ 630, 238
Dib, S., Bell, E., Burkert, A.: 2006, ApJ 638, 797
Dickey, J.M., Salpeter, E.E., Terzian, Y.: 1977, ApJ 211, L77
Dickey, J.M., Lockman, F.J.: 1990, ARAA 28, 215
Dziourkevitch, N., Elstner, D., Rüdiger, G.: 2004, A & A 423, 29
Elmegreen, B.G.: 1989, ApJ 347, 859
Elmegreen, B.G., Kim, S., Staveley-Smith, L.: 2001, ApJ 548, 749
Elmegreen, B.G.: 2004, In Penetrating bars through the masks of cosmic dust: the Hubble tuning fork strikes a new note, ed. D.L. Block, I. Puevar i, K.C. Freeman, R. Groess, E.K. Block, Astrophys. Space Sci. 319, 561
Elmegreen, B.G., Scalo, J.: 2004, ARAA 42, 211
Elmegreen, D.M., Elmegreen, B.G., Hirst, A.C.: 2004, ApJ 604, L21
Falgarone, E., Phillips, T.G.: 1996, ApJ 472, 191
Field, G.B.: 1965, ApJ 142, 531
Field, G.B., Goldsmith, D.W., Habing, H.J.: 1969, ApJ 155, 149
Forster Schreiber, N.M. et al: 2006, ApJ in press, astro-ph/0603559
Gazol, A., Vázquez-Semadeni, E., Sánchez-Salcedo, F.J., Scalo, J.: 2001, ApJ 557, L121
Hartmann, L.: 2001, AJ 121, 1030
Hartmann, L.: 2002, ApJ 578, 914
Hartmann, L.: 2003, ApJ 585, 398
Hartmann, L., Ballesteros-Paredes, J., Bergin, E.A.: 2001, ApJ 562, 852
Heiles, C.: 2001, ApJ 551, L105
Heitsch, F., Mac Low, M., Klessen, R.S.: 2001, ApJ 547, 280
Heitsch, F., Burkert, A., Hartmann, L., Slyz, A.D., Devriendt, J.E.: 2005, ApJ 633, L113
Heitsch, F., Slyz, A.D., Devriendt, J.E.G., Hartmann, L., Burkert, A.: 2006, ApJ submitted (astro-ph/????)
Hennebelle, P., Pérault, M.: 1999, A & A 351, 309
Hennebelle, P., Pérault, M.: 2000, A & A 359, 1124
Jenkins, J.B.: 2004, Astrophys. Space Sci. 289, 215
Klein, R.I., Woods, D.T.: 1998, ApJ 497, 777
Kanekar, N. C., Subrahmanyan, R., Chengular, J.N., Safouris, V.: 2003, MN-RAS 346, L57
Kerp, J., Walter, F., Brinks, E.: 2002, ApJ 571, 809
Kessel-Deynet, O., Burkert, A.: 2003, MNRAS 338, 545
Kim, S., Dopita, M.A., Staveley-Smith, L., Bessell, M.S.: 1999, AJ 118, 2797
Kim, J., Balsara, D., Mac Low, M.M.: 2001, JKAS 34, 333
Kim, W.T., Ostriker, E., Stone, J.: 2003, ApJ 599, 1157
Klessen, R.S., Burkert, A.: 2000, ApJS 128, 287
Kolmogorov, A.N.: 1941, Proc. R. Soc. London Ser. A 434, 9
Koyama, H., Inutsuka, S.: 2004, RMxAC 22, 26
Kritsuk, A.G., Norman, M.L.: 2002b, ApJ 569, L127
Kritsuk, A.G., Norman, M.L.: 2002a, ApJ 580, L51
Larson, R.B.: 1981, MNRAS 194, 809
Mac Low, M.M., Klessen, R.S., Burkert, A., Smith, M.D.: 1998, Phys. Rev. Lett. 80, 2754
Mac Low, M.M., Klessen, R.S.: 2004, Rev. Mod. Phys. 76, 125
Mac Low, M.M., Balsara, D.S., Kim, J., de Avillez, M.A.: 2005, ApJ 626, 864
McKee, C.F., Ostriker, J.P.: 1977, ApJ 218, 148
Palla, F., Randich, S., Flaccomio, E., Pallavicini, R.: 2005, ApJ 626, L49
Piontek, R., Ostriker, E.C.: 2004, ApJ 601, 905
Puchta, D., Westpfahl, D.J., Brinks, E., Roy, J.R.: 1992, AJ 103, 1841
Rhode, K.L., Salzer, J.J., Westpfahl, D.J., Radice, L.A.: 1999, AJ 118, 323
Scalo, J., Elmegreen, B.G.: 2004, ARAA 42, 275
Scalo, J.: 1987, In Interstellar Processes, ed. D.J. Hollenbach, H.A. Thronson Jr, (Dordrecht: Reidel), p. 349
Sellwood, J.A., Balbus, S.A.: 1999, ApJ 511, 660
Slyz, A.D., Devriendt, J.E., Bryan, G., Silk, J.: 2005, MNRAS 356, 737
Stone, J.M., Ostriker, E.C., Gammie, C.F.: 1998, ApJ 508, L99
Tran, H. et al.: 2003, ApJ 585, 750
Vázquez-Semadeni, E., Ostriker, E.C., Passot, T., Gammie, C.F., Stone, J.M.: 2000, In Protostars and Planets IV, ed. V. Mannings, A.P. Boss, S.S. Russell, (Tucson: Univ. Arizona), p.3
Vázquez-Semadeni, E., Ryu, D., Passot, T., Gónzalez, R.F., Gazol, A.: 2005, submitted
Vishniac, E.T.: 1994, ApJ 428, 186
von Weizsäcker, C.F.: 1951, ApJ 114, 165
Wada, K., Meurer, G., Norman, C.A.: 2002, ApJ 577, 197
Walder, R., Folini, D.: 1998, ApSS 260, 215
Walder, R., Folini, D.: 2000, ApSS 274, 343
Williams, J.P., Blitz, L., McKee, C.F.: 2000, In Protostars and Planets IV, ed. V. Mannings, A.P. Boss, S.S. Russell, (Tucson: Univ. Arizona), p.97