Immunomodulatory perspectives of potential biological spices with special reference to cancer and diabetes

Muhammad Imrana, Muhammad Nadeemb, Farhan Saeedc, Ali Imranc, Moazzam Rafiq Khand, Muhammad Asif Khane, Sheraz Ahmedf and Abdur Raufg

aDepartment of Diet and Nutritional Sciences, Imperial College of Business Studies, Lahore, Pakistan; bDepartment of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan; cInstitute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan; dNational Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan; eUniversity of Agriculture Faisalabad, Sub-campus, Burewala/Vehari, Pakistan; fDepartment of Food Science and Technology, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; gDepartment of Chemistry, University of Swabi, Ambar, Khyber Pakhtunkhwa, Pakistan

ABSTRACT

In millennia, nutritionists are motivated to explore innovative approaches against lifestyle-related syndromes for improving public health and life span. Spices are the promising and cost-effective choice for consumer owing to their high antioxidant potential, that is, ability to entrap free radicals at cellular level to alleviate various metabolic syndromes. Besides that, spices are not only popular in developed countries, but also attaining consideration in developing world due to extensive biological activity and safe status. In this regard, contemporary nutrition regime has gained researchers’ attention on spices to mitigate various metabolic syndromes. Moreover, the promising bioactive moieties – that is, curcumin and curcuminoids (turmeric); limonene (cardamom), allicin, allyl isothiocyanate (garlic), cinnamic aldehyde, 2-hydroxycinnamaldehyde, and eugenol (cinnamon); gingerol, zingiberone, zingiberene (ginger), dipropyle disulfides, and quercetin (onion); piperidine piperine, limonene, α- and β-pinene (black pepper); crocetin, crocin, and safranal (saffron) – have been identified as chemopreventing agents against various malignancies.

ARTICLE HISTORY

Received 29 March 2016
Accepted 5 November 2016

KEYWORDS
Spices; chemical composition; chemopreventive agent; anticancer potential; antidiabetic role

Introduction

The role of nutrition in appropriate functionality of the immune system is well established since ancient times (Saeed et al., 2016). Spices have gained enormous popularity on nutraceutical and functional value as mentioned in previous histories. In addition to increasing the aroma and savor of foods, herbs and spices are widely utilized as preventive and curative agents in degenerative diseases (Komalavalli, Nithya, Muthukumarasamy, & Mohan, 2013). Herbal medicines are now being used for the treatment of various diseases, including cancer and diabetes in many countries (Ghazanfari et al., 2013). Approximately 180 spice-derived bioactive components have been reported as effective against various...
These spices showed impressive biological responses and curing role against a wide range of disorders such as cancer, diabetes, and cardiovascular diseases (Komalavalli, Nithya, Muthukumarasamy, & Mohan, 2014). These are potential sources of biochemical compounds such as polyphenols, flavonoids, quinines, polypeptides, terpenoids, alkaloids, or their oxygen-substituted byproducts and acted like as antioxidants. These are cherished mixtures of terpenoids (such as geraniol, linalool, menthol, α-terpineol, borneol, citronnillol, and thujanol) and phenols (including carvacrol, thymol, guaiacol, and eugenol and aromatic aldehydes) (Raina & Negi, 2012). Spices suppress the oxidative rancidity, slow down the development of off-flavor and retardation of microbial growth in food-containing products such as snack foods and meat products (Houghton, 2015).

1. Turmeric

Turmeric (Curcuma longa Zingiberaceae) is the potential source of at least 235 compounds, primarily phenolic compounds and terpenoids such as diarylpentanoids, diaryleptanoids, sesquiterpenes, monoterpenes, triterpenoids, diterpenes, sterols, and alkaloids. It is a mixture of three curcuminoids, 71.5% curcumin (curcumin I), 19.4% demethoxycurcumin (curcumin II), and 9.1% bisdemethoxycurcumin (curcumin III) (Kim, Zamel, Bai, & Liu, 2013). Schneider, Gordon, Edwards, and Luis (2015) determined that turmeric suppressed the activation of NF-κB induced by phorbol myristate acetate (PMA), TNF-α, or H2O2 through delaying the phosphorylation of IKKα. Likewise, it also suppresses the tissue plasminogen activator (TPA)-induced NF-κB activation through weakening consequent translocation of the p65 subunit and the degradation of IκBα in HL-60 cells. It lowers the TPA-encouraged activation of NF-κB through direct intermission of the binding of NF-κB to its agreement DNA sequences (Sun, Liu, Wu, Feng, & Meng, 2015). In addition, curcumin also blocks IκBα degradation, cytokine-encouraged NF-κB DNA-binding activity, IKK activity in HT-29, RelA atomic translocation, IκB serine 32 phosphorylation, Caco-2, and EC-6 cells (Gonçalves et al., 2015). The previous explorations of Abdel-Daim and Abdou (2015) determined that high administration of curcumin inhibited the BCG-convinced IL-8 production and LPS (lipopolysaccharide)-mediated TLR2 mRNA induction on mouse splenic macrophages in human monocytes and gingival fibroblasts through overwhelming NF-κB initiation. Additionally, it also powerfully inhibits propagation of HT-29 and HCT-15 human colon tumor cell lines (Kocaadam & Sanlier, 2015).

Curcumin has chemopreventive potential against diabetic secondary complications, that is, wound healing, retinopathy, reduction of advanced glycation, and diabetic nephropathy-renal lesions end products. Curcumin exhibits anti-inflammatory potential in cancer-necrosis-factor-α-treated HaCaT cells through reserve of nuclear factor-κB and mitogen-stimulated protein kinase (Cho, Lee, & Kim, 2007). In diabetic rats, it enhances the activation of peroxisome proliferator-activated receptor (PPAR)-γ and increases the antioxidant level of pancreatic β-cells (Murugan & Pari, 2006). Curcumin shows the protective effect in diabetes rats due to the inhibition of vascular endothelial growth factor (VEGF) and NF-κB signaling, pro-inflammatory cytokines (IL-1b), and increasing activity of chaperone molecules. Similarly, Jang et al. (2008) determined that curcumin normalized the lipid blood profile along with attenuation in insulin resistance, and reduction in leptin
levels in hamsters-fed high-fat rats. Furthermore, turmeric lowered blood sugar glucose level, reduced TNF-α levels, and improved the insulin sensitivity in male Sprague Dawley rats. It also improved glucose tolerance, amplified adipose tissue adiponectin making, lowered insulin conflict, and pro-inflammatory cytokines with IL-1β, TNF-α, and partial white adipose tissue macrophage permeation in obese, leptin-deficient ob/ob C57 BL/6J rats (Weisberg et al., 2003). Wickenberg, Ingemansson, and Hlebowicz (2010) assessed that the supplementation of 6 g/day turmeric improved the postprandial serum insulin levels in mice, whilst lowered the plasma glucose levels.

2. Garlic

Garlic (Allium sativum L.) is the most widely studied and oldest cultivated plant and has been used in food-based products for over 4000 years. The word ‘garlic’ was derived from the Anglo-saxon ‘gar-leac’ or spike plant (Sheoran et al., 2017). It comprises more than 200 biochemical compounds and additional key compounds are allicin, alliiin, cyroalliiin, dialyl disulfide (DADS), and ajoene, β-phellandrene, geraniol, citral, α-phellandrene, linalool, and enzymes (allinase, myrosinase, and peroxidase) (Karangiya et al., 2016). Throughout metabolism, garlic is transformed into various metabolites such as allyl-mercaptan, N-acetyl-S-allyl cysteine, dialyl sulfoxide, dialyl sulfide, dialyl-sulfone, dialyl disulfide, and allylmethyl sulfide. About pharmacological role, garlic has prospective to prevent the cells from the different cancer phases through neutralizing free radicals, improving glutathione contents, increasing the actions of antioxidant enzymes, that is, S-transferase, glutathione, catalase, suppression of cytochrome p450E1, avoiding the chromosomal damage, and DNA repair mechanisms (Kim, 2016). As an anti-carcinogenic agent, garlic and its organosulfur compounds (OSCs) prevent the cell proliferation through blocking cell cycle process, inhibition of DNA adduct formation, bringing apoptosis, upregulation of antioxidant defenses, inflection of carcinogen metabolism, and DNA repair systems (Percival, 2016). These dietary bioactive OSCs modulate the cancer cascades and act as latent chemopreventive and chemotherapeutic agents (Tsubura, Lai, Kuwata, Uehara, & Yoshizawa, 2011). The garlic and its oil-soluble compounds such as DADS downfall the carcinogen activation, cause arrest at G2/M stage of cell cycle, enhance phase 2 detoxifying processes, increase acetylation of histones, encourage mitochondrial apoptotic pathway, effect gap-junctional intercellular communication, connection in signal transduction, modulation of cellular redox state, post-translational alteration, and participate in the growth of multidrug resistance. They also inhibit the propagation of tumor cells in vitro through the induction of apoptosis (Iciek, Kwiecień, & Włodek, 2009; Melino, Sabelli, & Paci, 2011).

Similarly, garlic extract also depresses the blood sugar level and inhibits superoxide formation and lipid per-oxidation in rats. S-allyl cysteine is a potent antioxidant which blocked the AGEs synthesis that augmented the insulin release effect and hepatic metabolism (Khan et al., 2012). Allicin controls the blood sugar level in serum and modifies the activities of hemoglobin coenzyme-A reductase and liver hexokinase glucose-6-phosphatase. Likewise, supplementation of allicin to rabbits crucially enhanced the liver glycogen and free amino acids contents that overwhelms the triglycerides level, liver serum proteins, and fasting blood sugar (FBS) when compared to high sucrose-fed diet mice (Tripathi, Bhoyar, & Baheti, 2011).
3. Ginger

Ginger (*Zingiber officinale*) belongs to the family Zingiberaceae and is the source of gingerol (5-hydroxy-1-(4-hydroxy-3-methoxy phenyl) decan-3-one. It is also a promising source of essential volatile oils, including 30–70% alpha-zingiberene, 15–20% beta-sesquiphellandrene, 10–15% beta-bisabolene, curcumene, betaphellandrene, camphene, zingiberene, cineole, geranyl acetate, terpineol, terpenes, geraniol, borneol, linalool, alpha-farnesene, and limonene (Kumar, Manasa, Rahman, & Sudhakar, 2012). Gingerol overpowers the production of reactive oxygen species brought by ferric chloride FeCl3-ascorbatesystem and also hinders the oxidation activity of xanthine. It also increases the concentration of catalase and SOD in the tissues, whilst the level of oxidized glutathione lowers (Manju & Nalini, 2005).

The previous results of Hsu et al. (2010) demonstrated that 6-dehydrogingerdione prevented breast cancer through activating caspase, upregulating p21 level and downregulating cyclin A, cyclin B1, Cdc25C, Cdc2, and hence arrested cells at G2/M phase and caused apoptosis. Apparently, ginger works as an anticancer agent overblocking NF-κB activation by the inhibition of TNF-α pro-inflammatory cytokine (Kim, Chun, Kundu, & Surh, 2004). Likewise, 6-paradol and 6-gingerol possess a solid anti-inflammatory action and inhibit the TNF-α production in TPA-treated female ICR rats (Shishodia & Aggarwal, 2006). The gingerols and zerumbone have been known as strong inhibitors for pro-inflammatory cytokine TNF and NF-κB. It blocks the different steps of NF-κB signaling pathway, including translocation of NF-κB into the nucleus, DNA obligatory of dimers with the basal transcriptional equipment, and activates the NF-κB signaling cascade (Habib et al., 2008).

Akhani, Vishwakarma, and Goyal (2004) determined that ginger juice exhibits hypoglycemic activities in both usual and streptozotocin (STZ)-induced diabetic mice, through its inhibitory effect on serotonin-induced hyperglycemic and hypoinsulinemia. On the other end, the management of ginger extract to STZ-induced diabetic mice caused substantial decreases in plasma malondialdehyde concentration and significant increases in total antioxidant capacity as well as erythrocyte antioxidant enzyme activities (GSH-Px and SOD) (Afshari et al., 2007).

4. Cinnamon

Cinnamon (*Cinnamomum zeylanicum*) is the source of cinnamaldehyde and trans-cinnamaldehyde essential oils, which showed various health-endorsing properties (Yeh et al., 2013). It is a source of several bioactive components, that is, cinnamaldehyde, cinnamic acid, cinnamate, and several essential oils, including trans-cinnamaldehyde, cinnamy1 acetate, eugenol, 1-borneol, b-caryophyllene, caryophyllene oxide, E-nerolidol, L-borneyl acetate, α-terpineol, α-cubebeene, α-thujene, and terpinolene. Cinnamon and its polyphenols extract repressed the proliferation of cancer cells lines and encouraged cell death of tumor cells through inhibiting AP1 and NF-kB activity and their target genes i.e. Bcl-xL, Bcl-2, and upregulating pro-apoptotic molecules (Kwon et al., 2010). It also lowers the stages of HIF-1α and COX-2 in melanoma cell outlines and in the melanoma mouse model. Cinnamon expressively decreases the growth rate of SiHa cells in a dose conditional manner and limits the development of cervical cancer cells in rats (Singh et al., 2009). It downregulates the appearance of Her-2 in SiHa cells and this appearance is linked with the decrease in the expression of MMP-2 protein. The administration
of cinnamon significantly inhibited the azoxymethane (AOM) encouraged colon carcinogenesis in mice (Liao et al., 2015).

It also improved the insulin receptor (IR) function through the enzyme that bases insulin to bind to cells and suppressing the enzyme (IR phosphatase), important to phosphorylation of the IR that is linked with enhanced insulin sensitivity. The methylhydroxychalcone polymer (MHCP) in cinnamon has the ability to act as insulin mimetic in 3T3-L1 adipocytes (Jarvill-taylor, Anderson, & Graves, 2001). The MHCP downregulated glycogen synthase kinase-3β (GSK-3β) activity and stimulated the autophosphorylation of the IR, glycogen synthesis, glycogen synthase (GS) activity, and upregulated glucose endorsement in 3T3-L1 adipocytes. Anderson et al. (2004) assessed the in vitro insulin-potentiating activity of procyanidin type-A polymers (monomers) of cinnamon in epididymal fat cells (Shiao, Lee, Lin, & Wang, 1994). Similarly, cinnamon also reduces the sugar level through increasing glucose transport (Kannappan, Jayaraman, Rajasekar, Ravichandran, & Anuradha, 2006; Kim, Hynu, & Choung, 2006)

5. Clove

Clove is a prominent source of essential oils such as caryophyllene, eugenol, alpha-terpinyl acetate, alpha-humulene, methyl eugenol, eugenyl, naphthalene, actyl eugenol, heptanone, sesquiterpenes, chavicol, vanillian, and methyl salicylate pinene (Sengupta, Ghosh, & Bhattacharjee, 2005). Kim et al. (2005) determined the chemopreventive role of eugenol in peel tumor of rats. The orally administrated eugenol controlled the proliferation of carcinogenesis at the premalignant stage. It also downregulates the H-ras, c-Myc, and Bcl2 countenance along with the upregulated Bax, p53, and active caspase-3 expression in the skin lesions of the rats. Similarly, eugenol treatment recovers the cellular GSH and activities of various enzymes such as GR, CAT, GPX, GST, and XO level. It also enhances the p21 and p53 WAF1 stages in the 7,12-dimethylbenz (α) anthracene (DMBA)-treated rats. It also overwhelms the COX-2 and iNOS countenance and levels of pro-inflammatory cytokines (TNF-α, IL-6, PGE-2), and ODC activity in mice. Eugenol has an inhibitory effect on the NF-kB, upstream signing molecule that controls the look of above-mentioned genes. The concentration of clove oil at 300 μl/ml presented extreme cell death and apoptotic cell demise in TE-13 cells within 1 day whilst DU-145 cells showed slight cell death (Dwivedi, Shrivastava, Hussain, Ganguly, & Bharadwaj, 2011). Furthermore, eugenol protects the decrease of glutathione and antioxidant enzymes caused by TPA (Kaur, Athar, & Alam, 2010). Gupta, Garg, Uniyal, and Kumari (2008) showed that orally administrated clove protects the living organism from damage caused by free radicals, lipid per-oxidation, and DNA strand breaking, as well as protein damage.

During cellular metabolism, production of reactive oxygen species and environmental factors injured the cell membranes that caused diabetes (Hartnett et al., 2000). STZ-induced diabetic rats increase the oxidative stress, oxidized LDL-cholesterol, and other lipoproteins problems (Jafarnejad, Bathaie, Nakhjavani, & Hassan, 2008).

6. Basil

The Basil (Ocimum sanctum) belongs to family Labiatae. It is a rich source of essential oil which contains octane, α-thujene, ethyl 2-methyl butyrate, α-pinene, (Z)-3-hexanol,
myrecene, β-pinene, limocene, ethyl benzene, allo-oc-imene, terpiniolene, α-cubebene, butyl-benzene, eugenol, linalool, carvacrol, borneol, methyl eugenol, iedol, humulene oxide, germacrene-D, τ-cadinol, α-guaiol, (EZ)-famesol, α-bisabolol, elemol, cissesquisainene hydrate, selin-11-en-4-α-ol, tetradecanal, and 14-hydroxy-α-humulene. These oils have antioxidant potential due to their redox properties that quench singlet and triplet oxygen, and absorb and neutralize free radicals (Asami, Hong, Barrett, & Mitchell, 2003). The application of basil downregulates the expression of genes that endorses the propagation, migration, and assault of tumor cells and also downregulates the FAK, activated ERK-1/2, and p65 (subunit of NF-κB). The aqueous extract of basil considerably overcomes the growth of orthotopically transplanted cancer cells. It upregulates the genes that induce apoptosis (BAD), and metastasis (E-cadherin) and downregulate such genes that endorse chemo/radiation resistance, and survival (Bcl-2 and Bcl-xL) (Shimizu et al., 2013). Basil possesses the anticancer mechanisms through lowering nitric oxide (NO), decreasing the incidence of 3-methyl dimethyl amino azobenzene, and benzo (a) pyrine-induced neoplasia and inducing hematomas in mice (Kim et al., 2010). The alcoholic extract of basil plant enhances the activities of cytochrome b5, glutathione S-transferase, cytochrome p450, and aryl hydrocarbon hydroxylase that detoxify the carcinogens and mutagens (Govind & Madhuri, 2006). The basil plant has potential to lower the incidence of 3-methyl-4-dimethylaminoazobenzene-induced hepatomas of mice and benzo (a) pyrine-induced neoplasia of forestomach in rats. Likewise, the ethanolic extract of basil leaves overcomes the oxidative stress and DMBA-persuaded genotoxicity through sinking the amount of lipid and protein corrosion, moderating xenobiotic metabolizing enzymes, and upregulating antioxidant emplacements. Similarly, Manikandan, Letchoumy, Prathiba, and Nagini (2007) resolve the anticancer potential of basil beside N-methyl-N′-nitro-N-nitrosoguanidine-persuaded gastric carcinogenesis, cell propagation, apoptosis, and angiogenesis in a rogue forestomach carcinogenesis model.

7. Cumin

Cumin (Nigella sativa L.) belongs to family Ranunculaceae and is an excellent source of thymoquinone (TQ), thymol, and dithymoquinone compounds. These compounds are operative against cardiovascular diseases, different types of human cancers, diabetes complications, kidney disease, asthma, etc. (Lutterodt et al., 2010). TQ shows anticancer effect against human myeloblastic leukemia HL-60 prison cell. It also induces apoptosis linked with DNA ripping and a reduction in mitochondrial membrane probable in 518A2 melanoma and HL-60 cells. TQ inhibits the MCF-7 breast tumor cells lines in mice (Farah & Begum, 2003). It has 88% inhibitory effect on human hepatoma HepG2 cells. Similarly, it increases the glutathione transferase and quinone reductase contents and TQ. The oral managements of cumin (0.05–0.1 g/kg BW) meaningfully lowered the DNA synthesis, H2O2 generation, and incidence of tumors. It suppressed the proliferation, DNA synthesis, and viability of cancerous cells (C4-B, LNCaP, PC-3, and DU145).

In antidiabetic effects, cumin considerably enhanced the area beneath the glucose acceptance curve and hyperglycemic peak in rabbits. The methanolic extract of cumin seeds lowers the blood glucose and overcomes the creatinine, blood urea nitrogen, glycosylated hemoglobin, and better-quality serum glycogen and insulin contents in STZ and alloxan diabetic rats (Jagtap & Patil, 2010). The management of cumin lowered the
hyperglycemia and glucosuria attended by an enhancement in body weight, blood urea, and compact evacuation of urea and creatinine for eight weeks in STZ-diabetic rats. Cuminaldehyde also inhibited the aldose reductase and alphaglucosidase enzymes activities (Lee, 2005). The earlier studies of Aruna, Rukkumani, Varma, and Menon (2005) showed that orally administrated cumin reduced the body weight, tissue cholesterol, triglycerides, free fatty acids (FFAs), and phospholipids level. Cumin lowered alkaline phosphatase (ALP), aspartate transaminase (AST), and \(\gamma \)-glutamyl transferase (GGT) activities and reduced the tissue levels of triglycerides, cholesterol, and phospholipids and prohibited the changes in the arrangement of fatty acids in the plasma of mice. In a study conducted by Tabasi et al. (2015), they demonstrated that *N. sativa* exerts pro-apoptotic and anti-proliferative effects on human kidney adenocarcinoma cells in a concentration- and time-dependent manner.

8. Rosemary

Rosemary (*Rosmarinus officinalis* L.) is being used as a food flavoring agent due to its powerful antimicrobial, anticancer, antidiabetic activities, and also as a chemopreventive agent (Wang, Wu, Zu, & Fu, 2008). It constitutes a wide variety of bioactive phytochemicals such as, carnosic acid, carnosol, 7-methyl-epirosmanol, rosmanol, rosmadial, isorosmanol, rosmaridiphenol, caffeic acid, and rosmariquinone. Approximately 90% of the antioxidant activity of rosemary is attributable to the presence of carnosol and camosic acid (Saber & Hawazen, 2012). These bioactive compounds such as carnosic acid and rosmarinic acid hinder the proliferation of MCF-7 (human breast adenocarcinoma), DU145 (human prostate carcinoma), NCI-H82 (human, small cell lung carcinoma), K-562 (human chronic myeloid leukemia), Hep-3B (human (black) liver carcinoma), MDA-MB-231 (human breast adenocarcinoma, and PC-3 (human prostate adenocarcinoma) cancer cell lines (Yesil-Celiktas, Sevimli, Bedir, & Vardar-Sukan, 2010). Rosemary extracts lower the NF-\(\kappa \)B activation, TNF-\(\alpha \)-induced ROS generation, and then enhanced the TNF-\(\alpha \) persuaded apoptosis (Moon, Kim, Lee, Choi, & Kim, 2010). Kim et al. (2011) determined that ursolic acid suppresses different stages of cancer such as tumorigenesis, tumor promotion, and angiogenesis. Ursolic acid induces apoptosis in human breast tumor cell line, MDA-MB-231, and lowers the cell proliferation rate. The oral supplementation of rosemary leaf extract lowers the glucose level, total cholesterol, triglycerides, and low-density lipoprotein (LDL)-cholesterol and enhances the high-density lipoprotein (HDL)-cholesterol. As a hypolipidemic agent, it is also tortuous in exclusion of the lipids from the body (Deví & Sharma, 2004). The supreme important phenolic mixtures such as caffeic, ferulic acids, ellagic, rosmarinic acid, sesamol, and vanillin suppress the atherosclerosis. Additionally, rosemary compounds have cardio protective abilities to guard LDL from oxidative alteration in mice (Nofer et al., 2002)

9. Oregano

The oregano (*Origanum vulgare*) consists of oleanolic acid, flavonoids, ursolic acid, caffeic, terpinene, hydroquinones, \(p \)-cymene, carvacrol, lisothespermic, thymol, and rosmarinic acids, and tannins. Talpur, Echard, Ingram, Bagchi, and Preuss (2005) investigated that oregano extract improves glucose concentration through growing insulin sensitivity.
It exerts the anti-hyperglycemic role owing to the interference on stimulation of glucose application or captivation of dietary starches in small intestine or by peripheral tissues. Likewise, Ortiz-Andrade et al. (2007) presented the anti-hyperglycemic activity of oregano phenolic glucosides due to inhibition of tubular glucose re-absorption and a decrease in the intestinal absorption of glucose. Similarly, Vinay et al. (2010) indicated that supplementation of aqueous extract of oregano leaves significantly lowered the glycosylated hemoglobin (HbA1C) (high level of HbAlc indicates Diabetes Mellitus (DM)) in rats. Moreover, Broadhurst, Polansky, and Anderson (2000) evaluated that oregano extracts showed the hypoglycemic effect through civilizing glucose and insulin metabolism. The administration of oregano showed a substantial increment in muscle and liver glycogen level in diabetic rats (Vinay et al., 2010). The management of aqueous extract of oregano leaves lessen the concentration of blood glucose in STZ-induced diabetic mice without affecting basal plasma insulin absorptions (Lemhadri, Zeggwagh, Maghrani, Jouad, & Eddouks, 2004).

10. Fenugreek

Fenugreek (Trigonella foenum graecum L.) is used in diverse thrifs around the world for antidiabetic, reducing cholesterol level, anticancer, antimicrobial, manufacture food products such as stew with rice, flavor cheese, and syrup. It shows many health approving properties such as emollient, tonic, demulcent, carminative, astringent emmenagogue, diuretic, restorative, expectorant, vermifugal, and aphrodisiac. The pharmacological and biological activities of fenugreek are due to the presence of N compounds, steroids, polyphenolic compounds, the flavonoids luteolin, apigenin, isovitexin, quercetin, vitexin, orientin, amino acids, and volatile constituents. The fenugreek seeds halt the DMBA-induced mammary hyperplasia observed in DMBA-persuaded breast cancer in mice (Raju, Patlolla, Swamy, & Rao, 2004). Likewise, the ethanolic extract of fenugreek exhibited anti-neoplastic consequence on the growth of MCF-7 cells through declining the mitochondrial membrane potential, persuading early apoptotic changes via flicking of phosphatidylserine, humiliating cellular DNA into fragments, and lowering cell viability (Corbiere et al., 2003). Fenugreek and its bioactive components exhibit anticancer role through several functional and molecular targets. They encourage apoptosis in multiple tumor cell lines such as osteosarcoma, human colon, breast, leukemia, and liver (Corbiere et al., 2003; Raju et al., 2004). They block the immigration and invasion through decreasing NO and prostaglandin production by inhibiting iNOS and COX-2 in an osteosarcoma cell line, and lowering matrix metalloproteinase expression in human prostate cancer PC-3 cells, respectively (Liu et al., 2005; Srinivasan et al., 2009). Additionally, they block the initiation of I-κB kinase, AKT, NF-KB, and inhibit the production of pro-inflammatory cytokines like TNF-α, IL-1, and IL-6 by cancer cells (Chen, Shih, Huang, Cheng, & Means, 2011; Varjas et al., 2011).

11. Coriander

The coriander (Coriandrum sativum) belongs to Apiose family and is comprised of linalool (60–80%), γ-terpinene (1–8%), terpinen-4-ol (trace–3%), hydrocarbons; ρ-cymene (trace–3.5%), ketones (7–9%), and esters (Ganesan, Phaiphan, Murugan, & Baharin, 2013). It is also a good source of mahanimbicine, mahanine, and mahanimbine and has
Spices	Botanical name	Composition	References
Turmeric	Curcuma longa	Diarylpentanoids, diarylheptanoids, sesquiterpenes, monoterpenes, triterpenoids, diterpenes, sterols, and alkaloid 71.5% curcumin (curcumin I), 19.4% demethoxycurcumin (curcumin II), and 9.1% bisdemethoxycurcumin (curcumin III)	Henrotin et al. (2010) and Pfeiffer, Höhle, Solyom, and Metzler (2003)
Garlic	Allium sativum L.	Allicin, allii, cycoallin, DADS, and ajoene, β-phellandrene, geraniol, citral, α-phellandrene, linalool and enzymes (allinase, myrosinase, and peroxidase) flavonoids, vitamins (A, B1, C), and minerals such as potassium, phosphorous, manganese, selenium, sulfur, magnesium, calcium, sodium, iron, germanium, and trace iodine	Bungu, Van de Venter, and Frost (2008), Cerella, Dicato, Jacob, and Diederich (2011)
Ginger	Zingiber officinale	Carbohydrates 60–70%, water 9–12%, protein 9%, ash 8%, fatty oil 3–6%, crude fiber 3–8%, and volatile oil 2–3% 30–70% alpha-zingiberene, 15–20% beta-sesquiphellandrene, 10–15% beta-bisabolene, curcumene, betaphellandrene, camphene, zingiberene, cineole, geranyl acetate, terphineol, terpenes, geraniol, borneol, linalool, alpha-farmesene, and limonene	Kumar et al. (2012)
Cinnamon	Cinnamomum zeylanicum	Cinnamaldehyde, cinnamatic acid, cinnamate, and several essential oils including trans-cinnamaldehyde, cinnamyl acetate, eugenol, l-borneol, b-caryophyllene, caryophyllene oxide, E-nerolidol, l-bornyl acetate, α-terpineol, α-cubebeene, α-thujiene, and terpinolene	Kwon et al. (2010)
Clove		Caryophyllene, eugenol, alpha-terpinyl acetate, alpha-humulene, methyl eugenol, eugenyl, naphthalene, acyl eugenol, heptanone, sesquiterpenes, chavicol, vanillan, and methyl salicylate pinene	Banerjee and Das (2005), Das et al. (2004), and Sengupta et al. (2005)
Basil	Ocimum sanctum	Octane, α-thujiene, ethyl 2-methyl butyrate, α-pinene, (Z)-3-hexanol, myrecene, β-pinene, limocene, ethyl benzene, allo-c-imene, terpinolene, α-cubebeene, butyl-benzene, eugenol, linalool, carvacrol, borneol, methyl eugenol, iodol, humulene oxide, germacrene-D, τ-cadinol, α-quaial, (EZ)-famesol, α-bisbolol, elemol, cissesquisainene hydrate, selin-11-en-4-ol, tetradecanal, and 14-hydroxy-α-humulene	Kothari, Bhattacharya, and Ramesh (2004), Mondello et al. (2002), and Vina and Murillo (2003)
Rosemary	Rosmarinus officinalis L.	Carnosic acid, carnosol, 7-methyl-epirosmanol, rosmanol, rosmadial, isorosmanol, rosmariquinone, caffeic acid, and rosmariquinine	Saber and Hawazen (2012)
Oregano	Origanum vulgare	Oleanolic acid, flavonoids, ursolic acid, caffeic, terpinene, hydroquinones, p-cymene, carvacrol, linalool, thymol, and rosemarinic acids, and tannins.	Bozin, Mimica-Duki, Simin, and Anackov (2006), Giordani et al. (2010), and Tampieri et al. (2005)
Fenugreek	Trigonella foenum graecum L.	Steroids, polyphenolic compounds, the flavonoids luteolin, apigenin, isovitexin, quercetin, vitexin, orientin, amino acids, and volatile constituents constituents (1–8%), terpinen-4-ol (trace–3%), hydrocarbons; p-cymene (trace–3.5%), ketones (7–9%) and esters	Mehrfarin et al. (2010)
Coriander	Coriandrum sativum	γ-terpine (1–8%), terpinen-4-ol (trace–3%), hydrocarbons; p-cymene (trace–3.5%), ketones (7–9%) and esters	Ganesan et al. (2013)
Cardamom	Elettaria cardamomum (L.)	1,8-cineole (21–41%), α-terpinyl acetate (21–35%), α-terpine (6.2–11.5%), sabinene + β-pinene (0.3–2.4%), limonene (1.7–3.7%), linalool (0.4–8.7%), borneol (0.1–1.2%), nerol (0.6–1.6%), linalyl acetate (1.6–2.4%), neryl acetate (0.8–1.2%), geraniol (1.1–3.7%), farnesol (up to 12.5%), isosafrole (3.8%) and nerolidol (0.2–6.7%)	Georgiev and Stoyanova (2006) and Misharina et al. (2009)
Thymus	Thymus serpyllum L.	Thymol, carvacrol, linalool, α-terpine and 1,8-cineole. In Estonia, the major components comprise E-nerolidol, caryophyllene oxide, myrcene, (E)-β-caryophyllene, and germacrene-D	Raa, Paaver, Arak, and Orav (2004) and Seung-Joo et al. (2005)
Table 2. Anticancer perspectives of spices.

Sr. no.	Spices	Mechanisms	References
1	Turmeric	Suppressed the activation of NF-κB induced by PMA, TNF-α, or H₂O₂	Singh and Aggarwal (1995)
		Abrogated LPS persuaded mitogen-activated protein kinase (MAPK) initiation and the translocation of NF-κB p65 Downregulated TNF-α-induced NF-κB initiation	Kim et al. (2005) and Lee (2005)
		Arrested the NF-κB obligatory activity in A549 cells Mediated TRAIL-induced apoptosis Suppressed the NF-κB-dependent countenance of IL-6 downstream, deprivation of IκBα upstream and subsequent NF-κB DNA-binding activity in WI-38 VA13 cell Inhibited Ap-1 and NF-κB initiation	Lee and Surh (2004) and Wang et al. (2004)
		Lowered the TPA-encouraged activation of NF-κB through direct intermission of the binding of NF-κB to its agreement DNA sequences	Han, Keum, Seo, and Surh (2002)
		Blocked IκBα degradation, cytokine- encouraged NF-κB DNA-binding activity, IKK activity in HT-29, RelA atomic translocation, IκBα serine 32 phosphorylation, Caco-2, and EC-6 cells	Renard, Delaive, Van, Remacle, and Raes (2001)
		Inhibited the BCG-convincing IL-8 production and LPS-mediated TLR2 mRNA induction	Kato et al. (2004)
		Inhibited the activity of NF-κB in primary ATL cells and HTLV-1 infected T-cell lines	Jung et al. (2006)
		Inhibited the activation of activator protein-1 (AP-1) by hindering phosphorylation of IκB	Surh, Han, Keum, Seo, and Lee (2000)
		Reduced the activity of cytochrome P450 and COX-2 Downlegalized endogenous bcl-2 and baxxL proteins in DU145 cells	Leu and Maa (2002) and Dorai, Cao, Dorai, Buttyan, and Katz (2001)
		Declined the expression of cyclooxygenase-2 (COX-2) and also blocked the phosphorylation of cytosolic phospholipase (cPLA(2)) Reserved catalytic activities of 5-lipoxygenase (LOX). Inhibited propagation of HT-29 and HCT-15 human colon tumor cell lines	Ravindran, Prasad, and Aggarwal (2009)
2	Garlic	Prevented from the cell proliferation through blocking cell cycle progress, inhibition of DNA adduct formation, bringing apoptosis Modulated the cancer cascades and acts as latent chemopreventive and chemotherapeutic agents Arrested G2/M stage of cell cycle Enhanced phase 2 detoxifying processes Increased acetylation of histones Modulated cellular redox state, post-translational alteration, and participate in the growth of multidrug resistance Inhibited the propagation of tumor cells in vitro through the induction of apoptosis Hindered the oxidation activity of xanthine Increased the concentration of catalase and SOD Inhibited the colon carcinogenesis induced through aprocarcinogen, DMH Activated caspase Upregulated the p21 level Downregulated cyclin A, cyclin B1, Cdc25C, Cdc2 Arrested cells at G2/M phase and caused apoptosis Suppressed cell proliferation, NF-κB activation Captured cell cycle at G1 phase through down variable cyclin D1 Elevated expression of TNF-α and NF-κB Deactivated NF-κB by the inhibition of the pro-inflammatory TNF-α Inhibited TNF-α production in TPA-treated female ICR rats	Nagini (2008) and Tsubura et al. (2011) and Iciek et al. (2009) and Melino et al. (2011)
			Hsu et al. (2010) and Ippoushi, Azuma, Ito, Horie, and Higashio (2003) and Kim et al. (2005) and Okidgo and Mmeka (2006)
			Park, Chun, Lee, Lee, and Surh (1998)

(Continued)
Sr. no.	Spices	Mechanisms	References
3	Cinnamon	Modulated angiogenesis and cytotoxic activity of CD8+ T cells Induced the apoptosis in a cancer cells lines Reduced the levels and activities of AP1 and NF-κB and their target genes such as Bcl-2 and Bcl-xL	Kwon et al. (2010)
		Decreased the growth rate of SiHa cells	Schoene, Kelly, Polansky, and Anderson (2005) and Singh et al. (2009)
		Downregulated the appearance of Her-2 in SiHa cells Decrease in the expression of MMP-2 protein Increased the intracellular Ca^{2+} concentration Induced apoptosis	Krum and Mattson (1999) and Meijerman, Beijnen, and Schellens (2006)
		Repressed the thioredoxin reductase and activated the Nrf2.	Cabello et al. (2009)
		Inhibited the azoxymethane encouraged colon carcinogenesis Lowered the interest of alamine in the rat intestine.	Bhattacharjee, Rana, and Sengupta (2007)
		Repressed the proliferation of cancer cells lines and encouraged cell death of tumor cells Inhibited AP1 and NF-κB activity and their target genes i.e. Bcl-xL, Bcl-2, and upregulated pro-apoptotic molecules	Kwon et al. (2010)
		Lowered the stages of HIF-1α and COX-2 in melanoma cell outlines and in the melanoma mouse model	Gasparini and Xu (2003) and Pugh (2003)
		Lowered the Cox-2 and HIF-1α appearance in the cancer tissues	Gasparini and Xu (2003) and Tomozawa et al. (2000)
4	Clove	Downregulated the H-ras, c-Myc, and Bcl2 countenance along with upregulated the Bax, p53, and active caspase-3 expression in the skin lesions of the rats Recovered the cellular GSH and various enzymes like activities of GR, CAT, GPX, GST, and XO level. It also enhances the p21 and p53 WAF1 stages Overwhelms the COX-2 and iNOS countenance and levels of pro-inflammatory cytokines (TNF-α, IL-6, PGE-2), and ODC activity in mice. Protected from free radicals, lipid per-oxidation, DNA strand breaking, and protein damage. Furthermore, eugenol protects the decrease of GSH and antioxidant enzymes caused by TPA Induced extreme cell death and apoptotic cell demise in TE-13 cells within 1 day whilst DU-145 cells showed slight cell death	Gupta et al. (2008) Kaur et al. (2010) Dwivedi et al. (2011)
5	Basil	Downregulated the expression of genes that endorses the propagation, migration and assault of tumor cells Downcontrol the FAK, activated ERK-1/2, and p65 (subunit of NF-κB) Downregulated such genes that endorse chemo/radiation resistance, and survival (Bcl-2 and Bcl-xL) Lowered NO amount, 3-methyl dimethyl amino azobenzene, and benzo (a) pyrine-induced neoplasia and inducing hematomas Prevented from the social laryngeal epithelial carcinoma cell line (HEp-2), human cervical tumor cell line (HeLa), and NIH 3T3 mouse embryonic fibroblasts	Shimizu et al. (2013) Kim et al. (1998) Kathirvel and Ravi (2011)

(Continued)
Sr. no.	Spices	Mechanisms	References
Lowered 20-methylcholanthrene persuaded tumor incidence and tumor volume.	Prakash and Gupta (2000)		
Downregulated VEGF and Bcl-2 expression induced gastric cancer bearing rates	Manikandan et al. (2007) and Prashar et al. (1998)		
Enhanced the activities of cytochrome b5, glutathione S-transferase, cytochrome p450, and aryl hydrocarbon hydroxylase that detoxify the carcinogens and mutagens	Govind and Madhuri (2006)		
Induced hepatomas of mice and benzo(a)pyrene-induced neoplasia of forestomach	Devi (2001)		
Cumin	Induced apoptosis linked with DNA ripping and a reduction in mitochondrial membrane probable in 518A2 melanoma and HL-60 cells.	Farah and Begum (2003)	
Encouraged apoptosis and reserved proliferation in pancreatic ductal adenocarcinoma cells	Chehl, Chipitsyna, Gong, Yeo, and Arafat (2009)		
Downregulated the consequence of TQ on MUC4 in pancreatic tumor cells Showed 88% inhibitory effect on human hepatoma HepG2 cells Enhanced glutathione transferase and quinone reductase contents	Khan and Sultana (2005)		
Preventive effect against ferric nitroltriacetate (FeNTA)-induced renal oxidative stress, renal carcinogenesis, and hyper-proliferative response	Ashour et al. (2014), Hassan, Ahmed, Galeb, El-Taweel, and Abu-Bedair (2008), and Roepke et al. (2007)		
Induced the p53 sovereign apoptosis through using p53-null human osteosarcoma cells in rats.	Sethi et al. (2008)		
Suppressed the NF-κB activation through inhibition of the activation of IκB alpha-kinase, IκB alpha degradation, IκB alpha phosphorylation, p65 fissionable translocation, the NF-κB reliant on gene expression, and p65 phosphorylation. It inhibits the through binding of recombinant p65 and nuclear p65 to the DNA, and this binding was inverted by DTT. It did not suppress p65 binding to DNA when cells were transfected with the p65 plasmid comprising cysteine remainder 38 mutated to serine			
Downregulated the countenance of proliferative (cyclooxygenase-2, c-Myc, and cyclin D1), NF-κB-regulated antiapoptotic (IAP1, IAP2, Bcl-xL, XIAP Bcl-2, and survivin), and angiogenic (vascular endothelial growing factor and atmosphere metalloproteinase-9) gene yields			
Rosemary	Hindered the proliferation of MCF-7 (human breast adenocarcinoma), DU145 (human prostate carcinoma), NCI-H82 (human, small cell lung carcinoma), K-562 (human chronic myeloid leukemia), Hep-3B (human (black) liver carcinoma), and MDA-MB-231 (human breast adenocarcinoma and PC-3 (human prostate adenocarcinoma) cancer cell lines	Yesil-Celiktas et al. (2010)	
Lowered the NF-κB activation, TNF-α-induced ROS generation, and then enhanced the TNF-α-persuaded apoptosis	Moon et al. (2010)		
Induced the apoptotic cell death in lymphoblastic leukemia carnosol and lowered the tumor proliferation	Dörrie, Gerauer, Wachter, and Zunino (2001)		
Reduced the cell expiry in the pre-B ALL lines REH, and SEM, RS4;11	Zunino and Storms (2009)		

(Continued)
Sr. no.	Spices	Mechanisms	References
8	Oregano	Enhanced the serum level of CYT-C in colorectal cancer-induced rats	Chen et al. (2011)
		Enhanced the expression of Fas and FasL that leads to cleavage and activation	Kim et al. (2011)
		of procaspase-8 and tBid and then mobilization of Bax from cytosol into	
		mitochondria	
		Induced apoptosis in human breast tumor cell line, MDA-MB-231 and lowers	Jiang and Wang (2004)
		the cell proliferation rate	
		Induced apoptotic molecules associated to either extrinsic or inherent	
		apoptosis signal pathway in MDA-MB-231 cells	
		Induced Bcl-2 downregulation and Bax upregulation then proclamation of	Stevenson et al. (2011)
		cytochrome C to the cytosol from mitochondria	
9	Fenugreek	Suppressed the growth of human hepatocellular carcinoma cell line HepG-2	Yin et al. (2012)
		through inducing apoptosis.	
		Exhibited cytotoxic activity alongside non-small cell lung cancer (NSCLC-N6)	Chinou, Liolios, Moreau, and Roussakis (2007)
		and murine leukemia (P388) cell lines.	
		Showed cytotoxicity in human lung carcinoma cell line A-549, lymphocytic	Chinou et al. (2007) and Yin et al. (2012)
		leukemia cell lines P-388 and L-1210	
		Induced cell growth arrest and cell death in a dose and time reliant in	Isebella, Rosaria, Maria, and Luciana (2009)
		colon adenocarcinoma (CaCO2) cells	
		Protected the DNA from variety damaging agents and hinder the proliferation	Shaban, Seyed, and Ali (2009)
		of cancer cells	
		Exhibited the significant proliferative activity beside human breast tumor	Tatjana, Aleksandra, Zorica, and Milka (2010)
		cell lines (MDR-MB-453), and (MDA-MB-361)	
10	Coriander	Exhibited anti-neoplastic consequence on the growth of MCF-7 cells	Corbiere et al. (2003)
		through declining the mitochondrial membrane potential, persuading early	
		apoptotic changes via flicking of phosphatidylserine, humiliating cellular	
		DNA into fragments, and lowering cell viability	
		Induced apoptosis in the HT-29 human colon tumor cell line	Raju et al. (2004)
		Upregulated the expression of caspase-3 and inhibited the bcl-2	
		Induced chemoprotection in osteosarcoma cells, HT-29 cells, and DMBA-	Liu et al. (2005)
		persuaded cancer in AKR/J H-2k rats involve consequent overthwart of	
		arachidonic acid metabolism pathway Downregulated the cyclooxygenase-2 and	
		enhanced the mRNA appearance of p53 and p21 and stimulated nuclear	
		factor kappa B (NF-κB) chief to apoptosis	
11	Saffron	Significantly lowered the cell viability as attention and duration of exposure	Mousavi, Tavakkol-Afshari, Brook, and Jafari-Anarkooli (2009)
		amplified (IC50 of 400 ± 18.5 μg/mL after 48 hours) in MCF-7 cells	
		Prolonged progression of papilloma growth and decreased squamous cell	Nair, Kurumboor, and Hasegawa (1995)
		carcinoma Decreased soft tissue sarcoma in treated mice	
		Inhibited nucleic acids synthesis in carcinoma development	
		Exhibited almost 95.6% reduction of solid tumor	Bakshi et al. (2009)
12	Cardamon	Lowered the liver Cytochrome P450 content and overwhelms the chemical	Bhattacharjee et al. (2007)
		carcinogenesis in Swiss	
anticancer effect on the human cell lines like human cervical HeLa, human breast MCF-7, and murine leukemia cell lines (Thilahgavani, Perumal, Mohd, & Abdul, 2011). Coriander seeds lower the absorption of cholesterol and cholesterol to phospholipid ratio and significantly enhanced the phospholipid level in the spice managed group as compared to 1,2-dimethyl hydrazine (DMH)-persuaded colon cancer in rats. The utilization of coriander reduced the blood glucose level in mice owing to improvement in glucose uptake and metabolism with inspiration of insulin secretion by muscle. The utilization of coriander seeds caused hypoglycemia effect as well as also protect from cardiovascular diseases caused by hyperlipidemia in the metabolic syndrome, and T2DM (Abderrahmane, Soumia, Zafar, & Badiaam, 2011).

12. Saffron

Saffron is a conspicuous source of crocetin that disturbs the growth of cancer cells lines through multiple mechanisms such as suppressing nucleic acid synthesis, inducing apoptosis, hindering growth factor signaling pathways, and attractive anti-oxidative system (Samarghandian, Boskabady, & Davoodi, 2010). The saffron ethanolic extract depresses the cell feasibility in malignant cells in absorption and time-dependent manner (Abdullaev & Espinosa-Aguirre, 2004). It also inhibits the chemically induced skin carcinogenesis such as carcinogen bio-activation and tumor proliferation. The after and before supplementation of saffron enhance the GPx, GST, superoxide dismutase, and catalase in liver rats (Das, Chakrabarty, & Das, 2004).

Saffron and its bioactive ingredients crocus inhibit the cell development in neoplastic cells to a greater extent than in normal cells (Bakshi et al., 2009). Saffron extract containing dimethyl-crocetin was evaluated against human leukemia and murine tumor cell lines where saffron extract reduced ascites tumor growth and augmented the life expectancy of mice up to 45–120%. Furthermore, the extract also inhibits nucleic acids’ synthesis.
Table 3. Antidiabetic perspectives of spices.

Sr. no.	Spices	Mechanisms	References
1	Turmeric	Inhibited the nitric oxide synthase (NOS) overexpression and NF-κB activation	Weber et al. (2006)
		Exhibited anti-inflammatory potential in cancer necrosis factor alpha-treated HaCaT cells through reserve of nuclear factor-κB and mitogen-stimulated protein kinase	Cho et al. (2007)
		Reduced diabetes problems such as nephrologic, ophthalmologic, and cardiovascular	Suryanarayana et al. (2005)
		Decreased renal lesions in STZ encouraged diabetes mice	Khajehdehi et al. (2012)
		Lowered plasma lipid peroxides, enlarged antioxidant α-tocopherol and coenzyme Q levels	Quiles et al. (2002)
		Improved the postprandial serum insulin levels	Wickenberg et al. (2010)
		Exhibited inhibition on macrophage inflammatory protein-1a, tumor necrosis factor-a by PMA, membrane cofactor protein-1 and IL-1b, alveolar macrophages and the production of interleukin (IL)-8	Iqbal, Okazaki, and Okada (2003)
		Inhibited VEGF, and NF-κB signaling, pro-inflammatory cytokines (IL-1b) and increasing activity of chaperone molecules	Murugan and Pari (2006)
		Inhibited the glucose level enhancement in hyperglycemic KK-A(y) mice	Kuroda et al. (2005)
		Stimulated the human adipocyte diversity in a dose-dependent manner and shown human PPAR-γ ligand-binding activity in a GAL4-PPAR-gamma whimsy assay	
		Reduced the glucose level, FFAs, glycosylated hemoglobin, triglyceride, total cholesterol, and lipid per-oxidation levels	Arun and Nalini (2002)
		Enhanced the hepatic glycolokinase activity and plasma insulin points in CS7BL/Ks-db/db diabetic rats	
		Attenuated insulin resistance, and reduction in leptin levels	Jang et al. (2008)
		Lowered blood sugar glucose level, reduces TNF-α levels, and improved the insulin sensitivity	Weisberg et al. (2003)
2	Garlic	Improved the hepatic glycogen equal and permitted amino acid content and dropped the glucose and triglyceride concentration	Khan et al. (2012)
		Inhibited superoxide formation and lipid per-oxidation	
		Blocked the AGEs synthesis	Tripathi et al. (2011)
		Enhanced the liver glycogen and free amino acids contents that overwhelms the triglycerides level, liver serum proteins, and FBS	Noor, Bansal, and Vijayalakshmi (2013)
		Triggered many enzymes including lecithin–cholesterol acyltransferase (LCAT), glucose-6-phosphatase, and hexokinase, 3-hydroxy-3-methylglutaryl (HMG) CoA reductase	
		Lessened the levels of anti-islet cell antibodies ICA, elevated pan innate cells marker (CD11b), the elevated pan B cell marker (CD19), and elevated pan T-cell marker (CD90)	Osman, Adnan, Salmah, and Alashkham (2012)

(Continued)
Sr. no.	Spices	Mechanisms	References
3	Ginger	Released bound insulin or improved insulin sensitivity and high pancreatic excretion of insulin from β-cells	Liu, Wong, Li, Hse, and Sheen (2006).
		Modulated the NADPH oxidase	Yang et al. (2013)
4	Cinnamon	Released bound insulin or improved insulin sensitivity and high pancreatic excretion of insulin from β-cells	Liu, Wong, Li, Hse, and Sheen (2006).
		Decreased TBARS level	Afshari et al. (2007) and Cho et al. (2002)
5	Clove	Reduced plasma glucose level	Kannappan et al. (2006)
6	Basil	Reduced plasma glucose level	Kannappan et al. (2006)
7	Cumin	Reduced plasma glucose level	Kannappan et al. (2006)

(Continued)
Sr. no.	Spices	Mechanisms	References
		lived protein) Lowered the area beneath the glucose lenience curve Inhibited the aldose reductase and alaphaglucosidase enzymes activities	Aruna et al. (2005)
		Repressed alcohol and thermally oxidized oil induced hyperlipidemia Lowered ALP, AST, and γ- GGT activities Lowered the activity of phospholipase A and C	Ani and Akhilenre r (2008) and Fujita, Yamagami, and Ohshima (2001) and paper folder
		Inhibited α-glucosidase, this enzyme Decreased serum glucose level	Fujita, Yamagami, and Ohshima (2001)
		Hindered α-glucosidase, and Aldose reductase Decreased absorption of glucose from intestine through reduction glucose transport processes Avoided rises of insulin level in the body	
8	Rosemary	Suppressed the LDL oxidation in a dose-reliant manner Lowered high blood sugar level	Fuhrman, Volkova, Rosenblat, and Aviram (2000) and Naidu and Thippeswamy (2002)
		Improved glucose concentration through growing insulin sensitivity	Talpur et al. (2005)
		Inhibited tubular glucose re-absorption and a decrease in the intestinal absorption of glucose	Maghrani, Lemhadri, Jouad, Michel, and Eddouks (2003), Ortiz-Andrade et al. (2007), and Takeda et al. (2008)
		Significantly lowered the neck and neck of glycosylated hemoglobin (HbA1C) (high level of HbAlc indicates DM) Stimulated the insulin level from the remainder pancreatic β-cells	Vinay et al. (2010)
		Enhanced the pancreatic amylase Prolonged the carbohydrate digestion time	Valiathan (1998)
		Exhibited robust inhibitory activity against porcine pancreatic amylase (PPA) in vitro trial of rats Inhibited the PPA activity	McCue, Vattem, and Shetty (2004)
		Lessened the concentration of blood glucose in STZ-induced diabetic mice without affecting basal plasma insulin absorptions	Lemhadri et al. (2004)
9	Oregano	Showed the insulin tropic activity, improved the glucose-persuaded insulin issue	Sauvaire et al. (1998)
		Enhanced the number of IRS, and decreases the area beneath the plasma glucose curve in human studies	Raghuram, Sharma, Sivakumar, and Sahay (1994)
		Showed the anti-hyperglycemia action through overwhelming the accomplishments of alpha-amylase, and rouse the glucose reliant on insulin excretion from pancreatic beta cells	Ethan, Grace, and Michael (2003)
10	Fenugreek	Showed the insulin tropic activity, improved the glucose-persuaded insulin issue	Sauvaire et al. (1998)
		Enhanced the number of IRS, and decreases the area beneath the plasma glucose curve in human studies	Raghuram, Sharma, Sivakumar, and Sahay (1994)
		Showed the anti-hyperglycemia action through overwhelming the accomplishments of alpha-amylase, and rouse the glucose reliant on insulin excretion from pancreatic beta cells	Ethan, Grace, and Michael (2003)
11	Coriander	Lowered the absorptions of cholesterol and cholesterol to phospholipid ratio and significantly enhanced the phospholipid level	Chithra and Leelamma (2000)
		Reduced the blood glucose level in mice owing to improvement in glucose uptake and metabolism Elevated the levels of insulin resistant, insulin, TG, TC, and LDL-cholesterol	Gray and Flatt (1999)
		Lowered the cholesterol biosynthesis through suppression of 3-hydroxy-3-methylglutaryl coenzyme-A reductase (cholesterol biosynthesis enzyme) Increased in LCAT activity Improved the poverty of cholesterol to fecal bile acids and impartial sterols Suppressed the lipogenic enzymes or inhibited hormone-sensitive tissue lipases Activated LCAT and tissues lipases	Another group of researchers: Aissaoui, Zizi, Israili, and Lyoussi (2011), Chithra and Leelamma (1997), Dhanapakiam, Joseph, Ramaswamy, Moonthi, and Kumar (2007) , and Pari and Venkateswaran (2003)
		Encouraged glucose consumption by peripheral tissues including muscle and adipose tissue or by enhanced insulin signaling Increased hepatic	The groups of different scientists : Gallagher, Flatt, Duffy, and Abdel-Wahab (2003),

(Continued)
in carcinoma development and thus concluded that dimethyl-crocetin interrupts interaction of DNA. In an in vitro trial, Abdullaev (2002) examined cytotoxic activity of saffron extract in colony forming assay and showed anti-mutagenic behavior. Furthermore, saffron extract showed a dose-dependent inhibition in HeLa cells. Crocin shows dose-dependent activity through lowering the cell viability in diffusion-limited aggregation cells (Bakshi et al., 2009).

13. Cardamom

Cardamon (*Elettaria cardamomum* L.) belongs to Zingiberaceae family and has 1,8-cineole (21–41%), α-terpinyl acetate (21–35%), α-terpineol (6.2–11.5%), sabinen + β-pinene (0.3–2.4%), limonene (1.7–3.7%), linalool (0.4–8.7%), borneol (0.1–1.2%), nerol (0.6–1.6%), linalyl acetate (1.6–2.4%), neryl acetate (0.8–1.2%), geraniol (1.1–3.7%), farnesol (up to 12.5%), isosafrole (3.8%), and nerolidol (0.2–6.7%) (Misharina, Terenina, & Krikunova, 2009). The cardamom showed preventive role in AOM-persuaded colonic aberrant crypt foci in Swiss Albino mice. It modulates the status of proliferation, modification of cyclooxygenase-2 (COX-2) expression, and inducible nitric oxide synthase (iNOS) (Sengupta et al., 2005). It also overwhelms the acid-soluble sulfhydryl level and hepatic carcinogen absorbing enzymes (aryl hydrocarbon hydroxylase, cytochrome P450, and glutathione S-transferase). The essential oils of cardamom meaningfully elevated the acid-soluble sulfhydryl and glutathione S-transferase activity in rats when compared to placebo.

14. Thyme

The thymus (*Thymus serpyllum* L.) belongs to family Labiateae and is usually used for various functions such as anti-septic, anthelmintic, carminative, expectorant, sedative,
and tonic. Carvacrol, thymol, and borneol are principal constituents found in thyme (Jaafari et al., 2007). The major ingredients of thyme are thymol, carvacrol, linalool, α-terpineneol, and 1,8-cineole (Seung-Joo, Katumi, Takayuki, & Kwang-Geun, 2005).

Carvacrol has vital in vitro antitumor effect beside tumor cell lines such as Hep-2, B-16, and A-549 (Karkabounas, Kostoula, & Daskalou, 2006). Horvathova, Turcaniova, and Slamenaova (2007) described the anti-proliferative activity of carvacrol with IC 50 of 90 μM and 67 μM for 24 h and 48 h of cell incubation, respectively. The earlier results of Zeytinoglu, Incesu, and Baser (2003) determined that carvacrol suppressed the growth of myoblast cells through activating mutated N-ras oncogene. In K-562 cells, carvacrol and thymol considerably lowered the level of DNA damage due to their strong antioxidant potential. They also suppressed the mutagenicity induced by 4-nitro-ophenylendiamine (Tables 1–3).

Conclusion

Spices are acknowledged to have several advantageous physiological possessions, including the anticancer and antidiabetic influence. Plentiful studies are carried out in past few decades which confirms anti-inflammatory, digestive stimulatory, hypolipidemic, antidiabetic, antioxidant, and anti-mutagenic actions of a range of spices. The research over spices is still having a wide span of exploration and probability to evaluate the spice therapy as substitute and complementary in various lifestyle-related disorders.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Dr. Muhammad Imran’s field of interest is food science and technology, food nutrition and functional and nutraceutical compounds. Recovery of bioactive compounds for food and biomedical applications, identification/development of dietary antiangiogenic functional foods/nutraceuticals are his primary areas of interest.

Dr. Muhammad Nadeem’s research focuses on the physiologic effects of bioactive food components to reduce risk factors for cardiovascular and obesity-related chronic diseases.

Dr. Farhan Saeed’s research focuses on the interaction of dietary constituents (macronutrients and nonnutritional components) with processes/risk factors for chronic human diseases (i.e. coronary vascular disease and cancer).

Dr. Ali Imran’s research themes include infant and young child feeding (breast feeding and complementary feeding), relationships between infection and nutrition, and control of specific micronutrient deficiencies, with particular focus on vitamin A, zinc, and iron.

Dr. Moazzam Rafiq Khan’s research interests are nutraceutical functions of phytochemicals; Sensory/nutritional qualities of fruit and vegetable products. He is also working on fruits and vegetable processing technologies.

Dr. Muhammad Asif Khan’s research interests include study of the health effects of the dietary fermentable fiber, resistant starch, which includes molecular effects and the effect on the microbiota. This includes the study of the whole grain and non-whole grain forms of resistant starch and the effects of different dietary levels of fat on fermentation of resistant starch.
Dr. Sheraz Ahmed focuses his research on Food Microbiology and Food Safety, Control/elimination of Listeria monocytogenes, E. coli O157:H7, Shigella, Salmonella, Campylobacter, Vibrio, Bacillus cereus, Hepatitis A, and Norovirus in food and water.

Dr. Abdur Rauf’s field of specialization is Medicinal Chemistry; Pharmacology, Green synthesis of nanoparticles and molecular docking of bioactive compounds.

References

Abdel-Daim, M. M., & Abdou, R. H. (2015). Protective effects of diallyl sulfide and curcumin separately against thallium-induced toxicity in rats. *Cell Journal, 17*, 379–388.

Abderrahmane, A., Soumia, Z., Zafar, H., & Badaam, I. L. (2011). Hypoglycemic and hypolipidemic effects of *Coriandrum sativum* L. in *Meriones shawi* rats. *Journal of Ethnopharmacology, 137*(1), 652–661.

Abdullaev, F. I., & Espinosa-Aguirre, J. J. (2004). Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. *Cancer Detection and Prevention, 28*(6), 426–432.

Abdullaev, F. I. (2002). Cancer chemopreventive and tumorcidal properties of saffron (*Crocus sativus* L.). *Experimental Biology and Medicine, 227*(1), 20–25.

Afnan, A., Aisha, A., Hana, A., Hana, A., Maryam, A., & Meaad, A. (2014). Thymus vulgaris (Thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells. *Journal of Medicinal Food, 18*(1), 54–59.

Afshari, A. T., Shirpoor, A., Farshid, A., Saadatian, R., Rasi, Y., Saboory, E., … Allamh, A. (2007). The effect of ginger on diabetic nephropathy plasma antioxidant capacity and lipid peroxidation in rats. *Food Chemistry, 101*, 148–153.

Aggarwal, B. B., & Shishodia, S. (2006). Molecular targets of dietary agents for prevention and therapy of cancer. *Biochemical Pharmacology, 71*, 1397–1421.

Aissaoui, A., Zizi, S., Israili, Z. H., & Lyoussi, B. (2011). Hypoglycemic and hypolipidemic effects of *Coriandrum sativum* L. in *Meriones shawi* rats. *Journal of Ethnopharmacology, 137*(1), 652–661.

Akhani, S. P., Vishwakarma, S. L., & Goyal, R. K. (2004). Anti-diabetic activity of *Zingiber officinale* in streptozotocin-induced type I diabetic rats. *Journal of Pharmacy and Pharmacology, 56*, 101–105.

Amin, K. A., & Abd El-Twab, T. M. (2009). Oxidative markers, nitric oxide and homocysteine alteration in hypercholesterolemic rats: Role of atorvastatine and cinnamon. *International Journal of Clinical and Experimental Medicine, 2*(3), 254–256.

Anderson, R. A., Broadhurst, G. L., Polansky, M. M., Schmidt, W. F., Khan, A., Flanagan, V. P., … Graves, D. J. (2004). Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. *Journal of Agricultural and Food Chemistry, 52*(1), 65–70.

Ani, V., & Akhilender, N. K. (2008). Antihyperglycemic and antibacterial activities of polyphenolic components of black/bitter cumin *Centratherum abthelminticum* (L.) kuntze seeds. *European Food Research & Technology, 226*(4), 897–903.

Aruna, K., Rukkumani, R., Varma, P. S., & Menon, V. P. (2005). Therapeutic role of *Cuminum cyminum* on ethanol and thermally oxidized sunflower oil induced toxicity. *Phytotherapy Research, 19*, 416–421.

Arun, N., & Nalini, N. (2002). Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. *Plant Foods for Human Nutrition, 57*(1), 41–52.

Asami, D. K., Hong, Y., Barrett, D. M., & Mitchell, A. E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. *Journal of Agricultural and Food Chemistry, 51*(5), 1237–1241.

Ashour, A. E., Abd-Allah, A. R., Korashy, H. M., Attia, S. M., Alzahrani, A. Z., Saquib, Q., & Rishi, A. K. (2014). Thymoquinone suppression of the human hepatocellular carcinoma cell growth...
involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis. *Molecular and Cellular Biochemistry*, 389(1–2), 85–98.

Bakshi, H. A., Sam, S., Feroz, A., Ravesh, Z., Shah, G. A., & Sharma, M. (2009). Crocin from Kashmiri saffron (*Crocus sativus*) induces in vitro and in vivo xenograft growth inhibition of Dalton’s lymphoma (DLA) in mice. *Asian Pacific Journal of Cancer Prevention*, 10(5), 887–890.

Banerjee, S., & Das, S. (2005). Anticarcinogenic effects of an aqueous infusion of cloves on skin carcinogenesis. *Asian Pacific Journal of Cancer Prevention*, 6, 304–308.

Banerjee, S., Sharma, R., Kale, R. K., & Rao, A. R. (1994). Influence of certain essential oils on carcinogenmetabolizing enzymes and acid-soluble sulfhydryls in mouse liver. *Nutrition and Cancer*, 21(3), 263–269.

Bhattacharjee, S., Rana, T., & Sengupta, A. (2007). Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice. *Asian Pacific Journal of Cancer Prevention*, 8(4), 578–582.

Bozin, B., Mimica-Dukic, N., Simin, N., & Anackov, G. (2006). Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. *Journal of Agricultural and Food Chemistry*, 54(5), 1822–1828.

Broadhurst, C. L., Polansky, M. M., & Anderson, R. A. (2000). Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. *Journal of Agricultural and Food Chemistry*, 48, 849–852.

Bengu, L., Van de Venter, M., & Frost, C. (2008). Evidence for an in vitro anticoagulant and anti-thrombotic activity in Tuberbaigia violacea. *African Journal of Biotechnology*, 7(6), 681–688.

Cabello, C. M., Bair, W. B., Lamore, S. D., Ley, S., Bause, A. S., Azimian, S., & Wondrak, G. T. (2009). The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. *Free Radical Biology and Medicine*, 46(2), 220–231.

Cerella, C., Dicato, M., Jacob, C., & Diederich, M. (2011). Chemical properties and mechanisms determining the anticancer action of garlic-derived organic sulfur compounds. *Anti-Cancer Agents in Medicinal Chemistry*, 11(3), 267–271.

Chehl, N., Chipitsyna, G., Gong, Q., Yeo, C. J., & Arafat, H. A. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. *HPB (Oxford)*, 11, 373–381.

Chen, P. S., Shih, Y. W., Huang, H. C., Cheng, H. W., & Means, R. E. (2011). Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression. *PLoS One*, 6, e20164.

Chinou, I., Liolios, C., Moreau, D., & Roussakis, C. (2007). Cytotoxic activity of *Oregano dictamnus*. *Fitoterapia*, 78(5), 342–344.

Chithra, V., & Leelamma, S. (1997). Hypolipidemic effect of coriander seeds (*Coriandrum sativum*): mechanism of action. *Plant Foods for Human Nutrition*, 51(2), 167–172.

Chithra, V., & Leelamma, S. (2000). *Coriandrum sativum* double-dash;effect on lipid metabolism in 1,2-dimethyl hydrazine induced colon cancer. *Journal of Ethnopharmacology*, 71, 457–463.

Cho, J. W., Lee, K. S., & Kim, C. W. (2007). Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. *International Journal of Molecular Medicine*, 19(3), 469–474.

Cho, S. Y., Park, J. Y., Park, E. M., Choi, M. S., Lee, M. Y., & Jeon, S. M. (2002). Alteration of hepatic antioxidant enzyme activities and lipid profile in STZ-induced rats by supplementation of dandelion water extract. *Clinica Chimica Acta*, 317, 109–117.

Corbierre, C., Liagre, B., Bianchi, A., Bordji, K., Daucu, M., Netter, P., & Beneytout, J. L. (2003). Different contribution of apoptosis to the antiproliferative effects of diosgenin and other plant steroids, hecogenin and tigogenin, on human 1547 osteosarcoma cells. *International Journal of Oncology*, 22, 899–905.

Das, I., Chakrabarty, R. N., & Das, S. (2004). Saffron can prevent chemically induced skin carcinogenesis in Swiss Albino mice. *Asian Pacific Journal of Cancer Prevention*, 5(1), 70–76.

Devi, P. U. (2001). Radioprotective, anticarcinogenic and antioxidant properties of the Indian Holy Basil, *Ocimum sanctum* (Tulasi). *Indian Journal of Experimental Biology*, 39(3), 185–190.
Devi, R., & Sharma, D. K. (2004). Hypolipidemic effect of different extracts of *Clerodendrum colebrookiaum* Walp in normal and high-fat diet fed rats. *Journal of Ethnopharmacology*, 90, 63–68.

Dhanapakiam, P., Joseph, J. M., Ramaswamy, V. K., Moorthy, M., & Kumar, A. S. (2007). The cholesterol lowering property of coriander seeds (*Coriandrum sativum*): Mechanism of action. *Journal of Environmental Biology*, 29(1), 53–56.

Dhandapani, S., Subramanian, V. R., Rajagopal, S., & Namasiavayam, N. (2002). Hypolipidemic effect of *Cuminum cyminum* L. on alloxan-induced diabetic rats. *Pharmacological Research*, 46(3), 251–255.

Dorai, T., Cao, Y. C., Dorai, B., Buttyan, R., & Katz, A. E. (2001). Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCAp prostate cancer cells in vivo. *Prostate*, 47(4), 293–303.

Dörrie, J., Gerauer, H., Wachter, Y., & Zunino, S. J. (2001). Resveratrol induces extensive apoptosis by depolarizing mitochondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells. *Cancer Research*, 61(12), 4731–4739.

Dwivedi, V., Shrivastava, R., Hussain, S., Ganguly, C., & Bharadwaj, M. (2011). Comparative anticancer potential of clove (*Syzygium aromaticum*) – an Indian spice – against cancer cell lines of various anatomical origin. *Asian Pacific Journal of Cancer Prevention*, 12(8), 1989–1993.

El-Daly, E. S. (1998). Protective effect of cysteine and vitamin E, *Crocus sativus* and *Nigella sativa* extracts on cisplatin-induced toxicity in rats. *Journal De Pharmacie De Belgique*, 53, 93–95.

Ethan, B., Grace, K., & Michael, S. (2003). Therapeutic applications of Fenugreek. *Alternative Medicine Review*, 8(1), 20–27.

Farah, I. O., & Begum, R. A. (2003). Effect of *Nigella sativa* (*N. sativa* L.) and oxidative stress on the survival pattern of MCF-7 breast cancer cells. *Biomedical Sciences Instrumentation*, 39, 359–364.

Fuhrmann, B., Volkova, N., Rosenblat, M., & Aviram, M. (2000). Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. *Antioxidants & Redox Signaling*, 2(3), 491–506.

Fujita, H., Yamagami, T., & Ohshima, K. (2001). Fermented soybean derived watersoluble touchi extract inhibits glucosidase and is antiglycemic in rats and humans after single oral treatment. *Journal of Nutrition*, 131, 1211–1213.

Gallagher, A. M., Flatt, P. R., Duffy, G., & Abdel-Wahab, Y. H. (2003). The effects of traditional antidiabetic plants on in vitro glucose diffusion. *Nutrition Research*, 23, 413–424.

Ganesan, P., Phaiphan, A., Murugan, Y., & Baharin, B. S. (2013). Comparative study of bioactive compounds in curry and coriander leaves. *Journal of Chemical and Pharmaceutical Research*, 5(11), 590–594.

Gasparini, L., & Xu, H. (2003). Potential roles of insulin and IGF-1 in Alzheimer’s disease. *Trends in Neurosciences*, 26, 404–406.

Georgiev, E., & Stoyanova, A. (2006). Peppermint oil. In D. Dimitrov (Ed.), *A guide for the specialist in aromatic industry* (pp. 219–232). Plovdiv: UFT Academic Publishing House.

Ghazanfari, T., Yaraee, R., Shams, J., Rahmati, B., Radjabian, T., & Hakimzadeh, H. (2013). Cytotoxic effect of four herbal medicines on gastric cancer (AGS) cell line. *Food and Agricultural Immunology*, 24(1), 1–7.

Giordani, R., Regli, P., Kaloustian, J., Mikhail, C., Abou, L., & Portugal, H. (2004). Antifungal effect of various essential oils against *Candida albicans*. Potentiation of antifungal action of amphotericin B by essential oil from *Thymus vulgaris*. *Phytotherapy Research*, 18(12), 990–995.

Gonalves, I., Andersson Georgiadou, E., Mattsson, S., Skog, G., Pedro, L., Fernandes, E. F. J., & Stenström, K. (2015). Direct association between diet and the stability of human atherosclerotic plaque. *Scientific Reports*, 5, doi:10.1038/srep15524.

Govind, P., & Madhuri, S. (2006). Medicinal plants, better remedy for neoplasm. *Indian Drugs*, 43(11), 869–874.

Gray, A. M., & Flatt, P. R. (1999). Insulin-releasing and insulin-like activity of the traditional antidiabetic plant *Coriandrum sativum* (coriander). *British Journal of Nutrition*, 81(3), 203–209.

Gupta, C., Garg, A. P., Uniyal, R. C., & Kumari, A. (2008). Antimicrobial activity of some herbal oils against common food-borne pathogens. *African Journal of Microbiology Research*, 2, 258–261.
Habib, S. H. M., Makpol, S., Hamid, N. A. A., Das, S., Ngah, W. Z. W., & Yusof, Y. A. M. (2008). Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. *Clinics, 63*, 807–813.

Han, S. S., Keum, Y. S., Seo, H. J., & Surh, Y. J. (2002). Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. *Journal of Biochemistry and Molecular Biology, 35*(3), 337–342.

Hartnett, M. E., Stratton, R. D., Browne, R. W., Rosner, B. A., Lanham, R. J., & Armstrong, D. (2000). Serum markers of oxidative stress and severity of diabetic retinopathy. *Diabetes Care, 23*(2), 234–240.

Hashim, S., Aboobaker, V. S., Madhubala, R., Bhattacharya, R. K., & Rao, A. R. (1994). Modulatory effects of essential oils from spices on the formation of DNA adduct by aflatoxin B1 in vitro. *Nutrition and Cancer, 21*(2), 169–175.

Hassan, S. A., Ahmed, W. A., Galeb, F. M., El-Taweel, M. A., & Abu-Bedair, F. A. (2008). In vitro challenge using thymoquinone on hepatocellular carcinoma (Hepg2) cell line. *Iranian Journal of Pharmaceutical Research, 7*(4), 283–290.

Henrotin, Y., Clutterbuck, A. L., Allaway, D., Lodwig, E. M., Harris, P., Mathy-Hartert, M., & Mobasheri, A. (2010). Biological actions of curcumin on articular chondrocytes. *Osteoarthritis and Cartilage, 18*(2), 141–149.

Horvathova, E., Turcaniova, V., & Slamenova, D. (2007). Comparative study of DNA-damaging and DNA-protective effects of selected components of essential plant oils in human leukemic cells K562. *Neoplasma, 54*, 478–483.

Houghton, A. M. (2015). Matrix metalloproteinasises in destructive lung disease. *Matrix Biology, 44–46*, 167–174.

Hsu, Y. L., Chen, C. Y., Hou, M. F., Tsai, E. M., Jong, Y. J., Hung, C. H., & Kuo, P. L. (2010). 6-Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human breast cancer cells. *Molecular Nutrition & Food Research, 54*(9), 1307–1317.

Iciek, M., Kwiecien, I., & Wlodek, L. (2009). Biological properties of garlic and garlic-derived organosulfur compounds. *Environmental and Molecular Mutagenesis, 50*(3), 247–265.

Ippoushi, K., Azuma, K., Ito, H., Horie, H., & Higashio, H. (2003). [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitrination reactions. *Life Sciences, 73*(26), 3427–3437.

Iqbal, M., Okazaki, Y., & Okada, S. (2003). In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipids and DNA damage. *Tartarogenesis, carcinoogenesis, and mutations*, 1, 151–160.

Isebella, S., Rosaria, A., Maria, V., & Luciana, A. (2009). Origanum vulgare induced apoptosis in human cancer CaCO2 cells nutrition and cancer. *Nutrition and Cancer, 61*(3), 381–389.

Jaafari, A., Mouse, H. A., Rakib, E. M., M’barek, L. A., Tilaoui, M., Benbakhta, C., … Zyd, A. (2007). Chemical composition and antitumor activity of different wild varieties of Moroccan thyme. *Brazilian Journal of Pharmacognosy, 17*(4), 477–491.

Jafarnejad, A., Bathaie, S. Z., Nakhjavani, M., & Hassan, M. Z. (2008). Effect of spermine on lipid profile and HDL functionality in the streptozotocin-induced diabetic rat model. *Life Sciences, 82*(5–6), 301–307.

Jagtap, A. G., & Patil, P. B. (2010). Antihyperglycemiac activity and inhibition of advanced glycation end product formation by *Cuminum cyminum* in streptozotocin induced diabetic rats. *Food and Chemical Toxicology, 48*(8–9), 2030–2036.

Jang, E. M., Choi, M. S., Jung, U. J., Kim, M. J., Kim, H. J., Jeon, S. M., … Lee, M. K. (2008). Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. *Metabolism, 57*(11), 1576–1583.

Jarvill-taylor, K. J., Anderson, R. A., & Graves, D. J. (2001). A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. *Journal of the American College of Nutrition, 20*(4), 327–336.

Jiang, X., & Wang, X. (2004). Cytochrome C-mediated apoptosis. *Annual Review of Biochemistry, 73*, 87–106.
Jung, K. K., Lee, H. S., Cho, J. Y., Shin, W. C., Rhee, M. H., Kim, T. G., & Kang, S. Y. (2006). Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sciences, 79(21), 2022–2031.

Kang, C., Lee, H., Jung, E. S., Seyedian, R., Jo, M., Kim, J., & Kim, E. (2012). Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chemistry, 135(4), 2350–2358.

Kannappan, S., Jayaraman, T., Rajasekar, P., Ravichandran, M. K., & Anuradha, C. V. (2006). Cinnamon bark extract improves glucose metabolism and lipid profile in the fructose-fed rat. Singapore Medical Journal, 47(10), 858–863.

Karangiya, V. K., Savsani, H. H., Patil, S. S., Garg, D. D., Murthy, K. S., Ribadiya, N. K., & Vekariya, S. J. (2016). Effect of dietary supplementation of garlic, ginger and their combination on feed intake, growth performance and economics in commercial broilers. Veterinary World, 9(3), 245–250.

Karkabounas, S., Kostoula, O., & Daskalou, T. (2006). Anticarcinogenic and antiplatelet effects of carvacrol. Experimental Oncology, 28, 121–125.

Kathirvel, P., & Ravi, S. (2011). Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEP-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts. Natural Product Research, 26(12), 1112–1118.

Kato, S., Yuzawa, Y., Tsuboi, N., Maruyama, S., Morita, Y., Matsuguchi, T., & Matsuo, S. (2004). Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: The role of toll-like receptor 4. Journal of the American Society of Nephrology, (5): 1289–1299.

Kaur, G., Athar, M., & Alam, M. S. (2010). Eugenol precludes cutaneous chemical carcinogenesis in mice by preventing oxidative stress and inflammation and by inducing apoptosis. Molecular Carcinogenesis, 49(3), 290–301.

Khajehdehi, P., Zanjaninejad, B., Aflaki, E., Nazarinia, M., Azad, F., Malekmakan, L. J., & Dehghanzadeh, G. R. (2012). Oral supplementation of turmeric decreases proteinuria, hematuria, and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis, a randomized and placebo-controlled study. Journal of Renal Nutrition, 22(1), 50–57.

Khan, V., Najimi, A. K., Akhtar, M., Aqil, M., Mujeeb, M., & Pillai, K. K. (2012). A pharmacological appraisal of medicinal plants with antidiabetic potential. Journal of Pharmacy And Bioallied Sciences, 4(1), 27–42.

Khan, N., & Sultana, S. (2005). Inhibition of two stage renal carcinogenesis, oxidative damage and hyperproliferative response by Nigella sativa.. European Journal of Cancer Prevention, 14, 159–168.

Kim, S. O., Chun, K. S., Kundu, J. K., & Surh, Y. J. (2004). Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NFjB and p38 MAPK in mouse skin. Biofactors, 21, 27–31.

Kim, H. K. (2016). Garlic supplementation ameliorates UV-induced photoaging in hairless mice by regulating antioxidative activity and MMPs expression. Molecules, 21, 1–13.

Kim, S. H., Hynu, S. H., & Choung, S. Y. (2006). Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of Ethnopharmacology, 104(1), 119–123.

Kim, J. (1998). Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis, 19(1), 81–85. doi:10.1093/carcin/19.1.81

Kim, S. O., Kundu, J. K., Shin, Y. K., Park, J. H., Cho, M. H., Kim, T. Y., & Surh, Y. J. (2005). [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol esterstimulated mouse skin. Oncogene, 24, 2558–2567.

Kim, S. C., Magesh, V., Jeong, S. J., Lee, H. J., Ahn, K. S., Lee, H. J., … Kim, S. H. (2010). Ethanol extract of Ocimum sanctum exerts anti-metastatic activity through inactivation of matrix metalloproteinase-9 and enhancement of anti-oxidant enzymes. Food and Chemical Toxicology, 48(6), 1478–1482.

Kim, K. H., Seo, H. S., Choi, H. S., Choi, I., Shin, Y. C., & Ko, S. G. (2011). Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells. Archives of Pharmacal Research, 34(8), 1363–1372.
Kim, H., Zamel, R., Bai, X.-H., & Liu, M. (2013). PKC activation induces inflammatory response and cell death in human bronchial epithelial cells. *PLoS One*, 18, 641–648. doi:10.1371/journal.pone.0064182

Kluth, D., Banning, A., Paur, I., Blomhoff, R., & Brigelius-Flohe, R. (2007). Modulation of pregnane X receptor- and electrophile responsive element-mediated gene expression by dietary polyphenolic compounds. *Free Radical Biology & Medicine*, 42, 315–325.

Kocaadam, B., & Sanlier, N. (2015). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. *Critical Reviews in Food Science and Nutrition*, 57(13), 2889–2895. doi:10.1080/10408398.2015.1077195

Komalavalli, T., Nithya, P. Y., Muthukumarasamy, S., & Mohan, V. R. (2013). Antiinflammatory activity of whole plant of *Sonerila tinneveliensis* Fischer (Melastomataceae). *International Journal of Pharmacology Research*, 3, 74–76.

Komalavalli, T., Nithya, P. Y., Muthukumarasamy, S., & Mohan, V. R. (2014). Evaluation of hepatoprotective and antioxidative activity of *Sonerila tinneveliensis* Fischer (Melastomataceae) whole plant-CCl4 induced hepatotoxicity in rats. *International Journal of Advances in Pharmacy, Biology and Chemistry*, 3, 597–603.

Kondeti, V. K., Badri, K. R., Maddirala, D. R., Thu, S. K., Fatima, S. S., Kasetti, R. B., & Rao, C. A. (2010). Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. *Food and Chemical Toxicology*, 48(5), 1281–1287.

Kothari, S. K., Bhattacharya, A. K., & Ramesh, S. (2004). Essential oil yield and quality of methyl eugenol rich Ocimum tenuiflorum L. f. (syn. O. sanctum L.) grown in South India as influenced by method of harvest. *Journal of Chromatography A*, 1054, 67–72.

Kruman, I. I., & Mattson, M. P. (1999). Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. *Journal of Neurochemistry*, 72, 529–540.

Kumar, K. S., Manasa, B., Rahman, K., & Sudhakar, B. (2012). Development and validation of HPTLC method for estimation of 6-gingerol in herbal formulations and extracts. *International Journal of Pharmaceutical Science and Research*, 3(10), 3762–3765.

Kuroda, M., Mimaki, Y., Nishiyama, T., Mae, T., Kishida, H., Tsukagawa, M. Kitahara, M. (2005). Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. *Biological and Pharmaceutical Bulletin*, 28(5), 937–939.

Kwon, H. K., Hwang, J. S., So, J. S., Lee, C. G., Sahoo, A., Ryu, J. H., … Im, S. H. (2010). Cinnamon extract induces tumor cell death through inhibition of NFkappaB and AP1. *BMC Cancer*, 10, 392.

Lee, H. S. (2005). Cuminaldehyde: Aldose reductase and alpha-glucosidase inhibitor derived from Cuminum cyminum L. seeds. *Journal of Agricultural and Food Chemistry*, 53(7), 2446–2450.

Lee, J. S., & Surh, Y. J. (2004). Nrf2 as a novel molecular target for chemoprevention. *Cancer Letters*, 224(2), 171–184.

Lemhadri, A., Zeggwagh, N. A., Maghrani, M., Jouad, H., & Eddouks, M. (2004). Anti-hyperglycaemic activity of the aqueous extract of *Origanum vulgare* growing wild in Tafilalet region. *Journal of Ethnopharmacology*, 92(2–3), 251–256.

Leu, T. H., & Maa, M. C. (2002). The molecular mechanisms for the antitumorigenic effect of curcumin. *Current Medicinal Chemistry - Anti-Cancer Agents*, 2(3), 357–370.

Liao, C. C., Chiu, Y., Chiu, S., Tung, W. C., Chuang, Y. T., Wu, H. L., & Huang, C. C. (2015). Proteomics analysis to identify and characterize the molecular signatures of hepatic steatosis in ovariectomized rats as a model of postmenopausal status. *Nutrients*, 7, 8752–8766.

Liu, C. T., Wong, P. L., Lii, C. K., Hse, H., & Sheen, L.Y. (2006). Antidiabetic effect of garlic oil but not diallyl disulfide in rats with streptozotocin-induced diabetes. *Food and Chemical Toxicology*, 44(8), 1377–1384.

Liu, X. M., Zhang, F. D., Zhang, S. Q., He, X. S., Fang, R., Feng, Z., & Wang, Y. (2005). Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. *Plant Nutrition and Fertilizer Science*, 11, 14–18.

Lutterodt, H., Luther, M., Slavin, M., Yin, J. J., Parry, J., Gao, J. M., & Yu, L. (2010). Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils. *LWT – Food Science and Technology*, 43, 1409–1413.
Maghrani, M., Lemhadri, A., Jouad, H., Michel, J. B., & Eddouks, M. (2003). Effect of the desert plant Retama raetam on glycaemia in normal and streptozotocin-induced diabetic rats. *Journal of Ethnicity*, 87, 21–25.

Majdalawieh, A. F., & Carr, R. I. (2010). In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). *Journal of Medicinal Food*, 13(2), 371–381.

Manikandan, P., Letchoumy, P. V., Prathiba, D., & Nagini, S. (2007). Proliferation, angiogenesis and apoptosis-associated proteins are molecular targets for chemoprevention of MNNG-induced gastric carcinogenesis by ethanolic *Ocimum sanctum* leaf extract. *Singapore Medical Journal*, 48, 645–651.

Manju, V., & Nalini, N. (2005). Chemopreventive efficacy of ginger, a naturally occurring anticarcinogen during the initiation, post-initiation stages of 1,2 dimethylhydrazine-induced colon cancer. *Clinica Chimica Acta*, 358(1–2), 60–67.

McCue, P., Vattem, D., & Shetty, K. (2004). Inhibitory effect of clonal oregano extracts against porcine pancreatic amylase in vitro. *Asia Pacific Journal of Clinical Nutrition*, 13(4), 401–408.

Mehrafarin, A., Qaderi, A., Rezazadeh, Sh., Naghdi Badi, H., Noormohammadi, Gh., & Zand, E. (2010). Bioengineering of important secondary metabolites and metabolic pathways in Fenugreek (Trigonella foenumgraecum L.). *Journal of Medicinal Plants*, 9(35), 1–18.

Meijerman, I., Beijnen, J. H., & Schellens, J. H. M. (2006). Herb-drug interactions in oncology: Focus on mechanisms of induction. *Oncologist*, 11, 742–752.

Melino, S., Sabelli, R., & Paci, M. (2011). Allyl sulfur compounds and cellular detoxification system: Effects and perspectives in cancer therapy. *Amino Acids*, 41(1), 103–112.

Misra, T. A., Terenina, M. B., & Krikunova, N. I. (2009). Antioxidant properties of essential oils. *Applied Biochemistry and Microbiology*, 45(6), 642–647.

Moon, D. O., Kim, M. O., Lee, J. D., Choi, Y. H., & Kim, G. Y. (2010). Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-Kb activation and ROS generation in human leukemia U937 cells. *Cancer Letters*, 288, 183–191.

Mousavi, S. H., Tavakkol-Afshari, J., Brook, A., & Jafari-Anarkooli, I. (2009). Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. *Food and Chemical Toxicology*, 47(8), 1909–1913.

Murugan, P., & Pari, L. (2006). Effect of tetrahydrocurcumin on plasma antioxidants in streptozotocin-nicotinamide induced experimental diabetes. *Journal of Basic and Clinical Physiology and Pharmacology*, 17(4), 231–244.

Nagini, S. (2008). Cancer chemoprevention by garlic and its organosulfur compounds-panacea or promise? *Anti-Cancer Agents in Medicinal Chemistry*, 8(3), 313–321.

Naidu, K. A., & Thrippeswamy, N. B. (2002). Inhibition of human low density lipoprotein oxidation by active principles from spices. *Molecular and Cellular Biochemistry*, 229, 19–23.

Nair, S. C., Kurumboor, S. K., & Hasegawa, J. H. (1995). Saffron chemoprevention in biology and medicine: A review. *Cancer Biotherapy*, 10(4), 257–264.

Noer, J. R., Kehrel, B., Fobker, M., Levkau, B., Assmann, G., & Von, E. A. (2002). HDL and atherosclerosis: Beyond reverse cholesterol transport. *Atherosclerosis*, 161, 1–16.

Noor, A., Bansal, V. S., & Vijayalakshmi, M. A. (2013). Current update on anti-diabetic biomolecules from key traditional Indian medicinal plants. *Current Science*, 104(6), 721.
Okigbo, R. N., & Nmeka, I. A. (2006). Control of Yam tuber rot with leaf extracts of Xylopia aethiopica and Zingiber officinale. *African Journal of Biotechnology, 4*(8), 804–807.

Ortiz-Andrade, R. R. G., García-Jiménez, S., Castillo-Espana, S., Ramírez-Ávila, P. V., Villalobos-Molina, R. G., & Estrada-Soto, S. (2007). α-Glucosidase inhibitory activity of the methanolic extract from *Tournefortia hartwegiana*: An anti-hyperglycemic agent. *Journal of Ethnopharmacology, 109*, 48–53.

Osman, M., Adnan, A., Salmah, B. N., & Alashkham, F. (2012). Allicin has significant effect on autoimmune anti-islet cell antibodies in type 1 diabetic rats. *Polish Journal of Pathology, 63*(4), 248–254.

Pal, D., Banerjee, S., Mukherjee, S., Roy, A., Panda, C. K., & Das, S. (2010). Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. *Journal of Dermatological Science, 59*(1), 31–39.

Pari, L., & Venkateswaran, S. (2003). Effect of an aqueous extract of *Phaseolus vulgaris* on plasma insulin and hepatic key enzymes of glucose metabolism in experimental diabetes. *Die Pharmazie - An International Journal of Pharmaceutical Sciences, 58*(12), 916–919.

Percival, S. S. (2016). Aged garlic extract modifies human immunity. *The Journal of Nutrition, 146*(2), 433S–436S.

Pfeiffer, E., Höhle, S., Solyom, A., & Metzler, M. (2003). Studies on the stability of turmeric constituents. *Journal of Food Engineering, 56*, 257–259.

Prakash, J., & Gupta, S. K. (2000). Chemopreventive activity of Ocimum sanctum seed oil. *Journal of Ethnicity, 72*(1–2), 29–34.

Prashar, R., Kumar, A., Hewer, A., Cole, K. J., Davis, W., & Phillips, D. H. (1998). Inhibition by an extract of Ocimum sanctum of DNA-binding activity of 7, 12-dimethylbenz[a]anthracene in rat hepatocytes in vitro. *Cancer Letters, 128*(2), 139–144.

Pugh, C. W. (2003). Regulation of angiogenesis by hypoxia: Role of the HIF system. *Nature Medicine, 9*, 677–684.

Qin, B., Polansky, M. M., Sato, Y., Adeli, K., & Anderson, R. A. (2009). Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals. *Journal of Nutritional Biochemistry, 20*(11), 901–908.

Quiles, J. L., Mesa, M. D., Ramírez-Tortosa, C. L., Aguilera, C. M., Battino, M., Gil, A., & Ramírez-Tortosa, M. C. (2002). Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. *Arteriosclerosis, Thrombosis, and Vascular Biology, 22*(7), 1225–1231.

Raal, A., Paaver, U., Arak, E., & Orav, A. (2004). Content and composition of the essential oil of Thymus serpyllum L. growing wild in Estonia. *Medicina (Kaunas), 40*(8), 795–800.

Raghuram, T. C., Sharma, R. D., Sivakumar, B., & Sahay, B. K. (1994). Effect of fenugreek seeds on intravenous glucose disposition in non-insulin dependent diabetic patients. *Phytotherapy Research, 8*(2), 83–86.

Raina, A. P., & Negi, K. S. (2012). Essential oil composition of *Origanum majorana* and *Origanum vulgare* ssp. hirtum growing in India. *Chemistry of Natural Compounds, 47*, 1015–1017.

Raju, J., Patlolla, J. M., Swamy, M. V., & Rao, C. V. (2004). Diosgenin, a steroid saponin of *Trigonella foenum graecum* (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. *Cancer Epidemiology Biomarkers Prevention, 13*, 1392–1398.

Ravindran, J., Prasad, S., & Aggarwal, B. B. (2009). Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? *AAPS Journal, 11*(3), 495–510.

Renard, P., Delaive, E., Van, S. M., Remacle, J., & Raes, M. (2001). Is the effect of interleukin-1 on glutathione oxidation in cultured human fibroblasts involved in nuclear factor-kappaB activation? *Antioxidants & Redox Signaling, 3*(2), 329–340.
Roepke, M., Diestel, A., Bajbouj, K., Walluscheck, D., Schonfeld, P., Roessner, A., Gali-Muhtasib, H. (2007). Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. *Cancer Biology & Therapy, 6*(2), 160–169.

Saber, A. S., & Hawazen, A. L. (2012). Protective effect of Rosemary (*Rosmarinus officinalis*) leaves extract on carbon tetrachloride-induced nephrotoxicity in Albino rats. *Life Science Journal, 9*, 779–785.

Saber, A. S., & Hawazen, A. L. (2012). Protective effect of rosemary (*Rosmarinus officinalis*) leaves extract on carbon tetrachloride-induced nephrotoxicity in albino rats. *Life Science Journal, 9*, 779–785.

Saeed, F., Nadeem, M., Ahmad, R. S., Nadeem, M. T., Arshad, M. S., & Ullah, A. (2016). Studying the impact of nutritional immunology underlining the modulation of immune responses by nutritional compounds – A review. *Food and Agricultural Immunology, 27*(2), 205–229.

Samarghandian, S., Boskabady, M. H., & Davoodi, S. (2010). Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (*Crocus sativus* L.) in human lung cancer cell line. *Pharmacognosy Magazine, 6*(24), 309–314.

Sauvaire, Y., Petit, P., Broca, C., Manteghetti, M., Baissac, Y., Fernandez-Alvarez, J. Ribes, G. (1998). 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. *Diabetes, 47*(2), 206–210.

Schmidt, M., Betti, G., & Hensel, A. (2007). Saffron in phytotherapy: pharmacology and clinical uses. *Wiener Medizinische Wochenschrift, 157*, 315–319.

Schneider, C., Gordon, O. N., Edwards, R. L., & Luis, P. B. (2015). Degradation of curcumin: From mechanism to biological implications. *Journal of Agricultural and Food Chemistry, 63*, 7606–7614.

Schoene, N. W., Kelly, M. A., Polansky, M. M., & Anderson, R. A. (2005). Watersoluble polymeric polyphenols from cinnamon inhibit proliferation and alter cell cycle distribution patterns of hematologic tumor cell lines. *Cancer Letters, 230*, 134–140.

Sengupta, A., Ghosh, S., & Bhattacharjee, S. (2005). Dietary cardamom inhibits the formation of azoxymethane-induced aberrant crypt foci in mice and reduces COX-2 and iNOS expression in the colon. *Asian Pacific Journal of Cancer Prevention, 6*(2), 118–122.

Sethi, G., Ahn, K. S., Sung, B., Kunnumakkara, A. B., Chaturvedi, M. M., & Aggarwal, B. B. (2008). SH-5, an AKT inhibitor potentiates apoptosis and inhibits invasion through the suppression of anti-apoptotic, proliferative and metastatic gene products regulated by IkappaBalpha kinase activation. *Biochemical Pharmacology, 76*(11), 1404–1416.

Seung-Joo, L., Katumi, U., Takayuki, S., & Kwang-Geun, L. (2005). Identification of volatile components in basil (*Ocimum basilicum* L.) and thyme leaves (*Thymus vulgaris* L.) and their antioxidant properties. *Journal of Food Chemistry, 91*, 131–137.

Shaban, A., Seyed, A., & Ali, R. (2009). Antineoplastic effect of Fenugreek (*Trigonella Foenum Graecum*) seed extract against acute myeloblastic leukemia cell line (KG-1). *Iranian Journal of Blood and Cancer, 1*(4), 139–146.

Sheoran, N., Kumar, R., Kumar, A., Batra, K., Sihag, S., Maan, S., & Maan, N. S. (2017). Nutrigenomic evaluation of garlic (*Allium sativum*) and holy basil (*Ocimum sanctum*) leaf powder supplementation on growth performance and immune characteristics in broilers. *Veterinary World, 10*, 121–129.

Shiao, M. S., Lee, K. R., Lin, L. J., & Wang, C. T. (1994). Natural product and biological activity of Chinese medicinal fungus of Ganoderma lucidum. *ASC-Symposium Series U.S.A., 547*, 342–354.

Shimizu, T., Torres, M. P., Chakraborty, S., Soucek, J. J., Rachagani, S., Kaur, S., … Batra, S. K. (2013). Holy basil leaf extract decreases tumorigenicity and metastasis of aggressive human pancreatic cancer cells in vitro and in vivo: Potential role in therapy. *Cancer Letters, 336*(2), 270–280.

Shishodia, S., & Aggarwal, B. B. (2006). Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the down-regulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. *Oncogene, 25*, 1463–1473.

Singh, S., & Aggarwal, B. B. (1995). Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). *Journal of Biological Chemistry, 270*(42), 24995–5000.
Singh, R., Koppikar, S. J., Paul, P., Gilda, S., Paradkar, A. R., & Kaul-Ghanekar, R. (2009). Comparative analysis of cytotoxic effect of aqueous cinnamon extract from Cinnamomum zeylanicum bark with commercial cinnamaldehyde on various cell lines. Pharmaceutical Biology, 47, 1174–1179.

Sozmen, E. Y., Sozmen, B., Delen, Y., & Onat, T. (2001). Catalase superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control. Archives of Medical Research, 32, 283–287.

Srinivasan, K. (2005). Spices as influencers of body metabolism: an overview of three decades of research. Food Research International, 38, 77–86.

Srinivasan, S., Koduru, S., Kumar, R., Venguswamy, G., Kyprianou, N., & Damodaran, C. (2009). Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. International Journal of Cancer, 125(4), 961–967.

Stevenson, L., Allen, W. L., Proutski, I., Stewart, G., Johnston, L., McCloskey, K., Johnston, P. G. (2011). Calbindin 2 (CALB2) regulates 5-fluorouracil sensitivity in colorectal cancer by modulating the intrinsic apoptotic pathway. PLoS One, 6(5), e20276.

Sun, X., Liu, N., Wu, Z., Feng, Y., & Meng, X. (2015). Anti-tumor activity of a polysaccharide from blueberry. Molecules, 20, 3841–3853.

Surh, Y. J., Han, S. S., Keum, Y. S., Seo, H. J., & Lee, S. S. (2000). Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF-kappaB and AP-1. Biofactors 1–4, 107–112.

Suryanarayana, P., Saraswat, M., Mrudula, T., Krishna, T. P., Krishnaswamy, K., & Reddy, G. B. (2005). Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Investigative Ophthalmology & Visual Science, 46(6), 2092–2099.

Suzuki, K., Ito, Y., Nakamura, S., Ochiai, J., & Aoki, K. (2002). Relationship between serum carotenoids and hyperglycemia: A population-based cross-sectional study. Journal of Epidemiology, 12(5), 357–366.

Tabasi, N., Mahmoudi, N., Rastin, M., Sadeghnia, H. R., Mashhadi, M. H. P., Rabe, S. Z. T. R., & Rad, A. K. (2015). Cytotoxic and apoptogenic properties of Nigella sativa and thymoquinone, its constituent, in human renal cell carcinoma are comparable with cisplatin. Food and Agricultural Immunology, 26(1), 138–156.

Tahraoui, A., El-Hilaly, J., Israeli, Z. H., & Lyoussi, B. (2007). Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south eastern Morocco (Errachidia province). Journal of Ethnicity, 110, 10–117.

Takeda, Y., Tomonari, M., Arimoto, S., Masuda, T., Otsuka, H., Matsunami, K. Khodzhimatov, O. K. (2008). A new phenolic glucoside from an Uzbek medicinal plant, Origanum Tyttanthum. Journal of Natural Medicines, 62(1), 71–74.

Talpur, N., Echard, B., Ingram, C., Bagchi, D., & Preuss, H. (2005). Effects of a novel formulation of essential oils on glucose-insulin metabolism in diabetic and hypertensive rats: A pilot study. Diabetes, Obesity and Metabolism, 7(2), 193–199.

Tampieri, M. P., Galuppi, R., Macchioni, F., Carelle, M. S., Falcioni, L., Cioni, P. L., & Morelli, I. (2005). The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia, 159(3), 339–345.

Tatjana, P. S., Aleksandra, K. R., Zorica, D. J., & Milka, J. (2010). Cytotoxic and cell cycle effects induced by two herbal extract on human cervix carcinoma and human breast cancer cell lines. Journal of Medicinal Food, 13(2), 445–450.

Thilahgavani, N., Perumal, R., Mohd, E., & Abdul, W. (2011). Biological activity of carbazole alkaloids and essential oil of Murraya koenigii against antibiotic resistant microbes and cancer cell lines. Molecules, 16, 9651–9664.

Tomozawa, S., Tsuno, N. H., Sunami, E., Hatano, K., Kitayama, J., Osada, T. Nagawa, H. (2000). Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer. British Journal of Cancer, 83(3), 324–328.

Tripathi, A. K., Bhoyar, P. K., & Baheti, J. R. (2011). Herbal antidiabetics, a review. International Journal of Research in Pharmaceutical Sciences, 2(1), 30–37.
Tsubura, A., Lai, Y. C., Kuwata, M., Uehara, N., & Yoshizawa, K. (2011). Anticancer effects of garlic and garlic-derived compounds for breast cancer control. *Anticancer Agents in Medicinal Chemistry, 11*(3), 249–253.

Valiathan, M. S. (1998). Healing plants. *Current Science, 75*, 1122–1126.

Varjas, T., Nowrasteh, G., Budán, F., Horváth, G., Cseh, J., Gyöngyi, Z., … Ember, I. (2011). The effect of fenugreek on the gene expression of arachidonic acid metabolizing enzymes. *Phytotherapy Research, 25*(2), 221–227.

Vats, V., Grover, J. K., & Rathi, S. S. (2002). Evaluation of antihyperglycemic and hypoglycemic effect of T foenumgraecum, O sanctum and Pmarsupium in normal and alloxanized diabetic rats. *Journal of Ethnopharmacology, 79*, 95–100.

Vats, V., Yadav, S. P., & Grover, J. K. (2004). Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. *Journal of Ethnopharmacology, 90*(1), 155–160.

Vina, A., & Murillo, E. (2003). Essential oil composition from twelve varieties of basil (Ocimum spp) grown in Colombia. *Journal of the Brazilian Chemical Society, 14*, 744–749.

Vinay, K. K., Kameswara, R. B., Dilip, R. M., Sampath Kumar, M. T., Shaik, S. F., … Chippada, A. R. (2010). Effect of *Pterocarpus santalinus* bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. *Food and Chemical Toxicology, 48*(5), 1281–1287.

Wang, W., Wu, N., Zu, Y., & Fu, Y. (2008). Antioxidative activity of *Rosmarinus officinalis* L. essential oil compared to its main components. *Food Chemistry, 108*, 1019–1022.

Weber, W. M., Hunsaker, L. A., Roybal, C. N., Bobrovnikova-Marjon, E. V., Abcouwer, S. F., Royer, R. E. Vander, D. L. (2006). Activation of NFkappaB is inhibited by curcumin and related enones. *Bioorganic & Medicinal Chemistry, 14*(7), 2450–2461.

Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. *Journal of Clinical Investigation, 112*(12), 1796–1808.

Wickenberg, J., Ingemansson, S. L., & Hlebowicz, J. (2010). Effects of *Curcuma longa* (turmeric) on postprandial plasma glucose and insulin in healthy subjects. *Nutrition Journal, 9*, 43.

Yang, J., Wang, T., Yang, J., Rao, K., Zhan, Y., Chen, R. B. Ye, Z. Q. (2013). S-allyl cysteine restores erectile function through inhibition of reactive oxygen species generation in diabetic rats. *Andrology, 1*(3), 487–494.

Yeh, H. F., Luo, C. Y., Lin, C. Y., Cheng, S. S., Hsu, Y. R., & Chang, S. T. (2013). Methods for thermal stability enhancement of leaf essential oils and their main constituents from indigenous cinnamon (*Cinnamomum osmophloeum*). *Journal of Agricultural and Food Chemistry, 61*(26), 6293–6298.

Yesil-Celiktas, O., Sevimli, C., Bedir, E., & Vardar-Sukan, F. (2010). Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. *Plant Foods for Human Nutrition, 65*(2), 158–163.

Yin, Q., Yan, F., Zu, X., Wu, Y., Wu, X., Liao, M. Zhuang, Y. (2012). Antiproliferative and proapoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. *Cytotechnology, 64*(1), 43–51.

Zeytinoglu, H., Incesu, Z., & Baser, K. H. (2003). Inhibition of DNA synthesis by carvacrol in mouse myoblast cells bearing a human NRAS oncogene. *Phytochemistry, 10*, 292–299.

Zunino, S. J., & Storms, D. H. (2009). Carnosol delays chemotherapy-induced DNA fragmentation and morphological changes associated with apoptosis in leukemic cells. *Nutrition and Cancer, 61*(1), 94–102.