A Stone-Age Method of Communication that is Practical Today.

F. Appiah, Member, IEEE

Abstract — The Stone-Age Method of Communication that is ever practical than ever in a quick approach to a form of communication. This paper describes a communication setup made of can-threadline-can in a head-mouth voice transmission in a physical free environment. The basic physical quantity of the stage setup is also looked into.

Index Terms — communication physics, forms, threadline, structure, man communication.

The background of this form of communication[1,2,3] is due to this ancient ages[5] of stone life by Africans. It is believed to be the first ever form of communication for hunting in underground situations. The modern form of communication is all based on the concept of a can-threadline-can. This can-threadline-can setup on human communication done to hindrance of space and time within 2m distance is possibly not an issue for the Stone-Ages. In cases of bad signal information in mobile communication, can-threadline-can setup is a possible solution even though, of its ancient form. In this pandemic, Covid-19 virus is known not be strong to spread in 2m distant apart space. In describing the can-2-can setup, an empty can with opening has a silk threaded lined to another can-opening. Both cans are connected to a threadline for sound / voice transmission over the connected line. A can holding a human at both ends creates a stone age form of human communication[5, 6].

A human at an end talks time through the opening side of the can. An "over to you" voice will signal a stop for the other to begin a different talk. With several talks in this setup, a Covid-19 scenario of required 2m distant apart in space is feasible to a low method of practical human communication. The impetus of this article is because of my personal involvement in a form of intellectual joke on practical reason for a telephone ability to make a call spaced at distant. Then, it was fun to investigate the telephone phenomenon with a simple can-threadline-can telephone. Ridiculous as it may sound, it works for us then in our childhoods. The author was not old in any sense than the ages of existing telephone or mobile forms of present communication. They were in existence, that is just about 25 years ago. The findings then was a practical joke on telephone with the main message "Hello there". "Hello there" over a can-threadline-can setup in human communication is now practical today in this modern ages is only 2m apart will aid the ever existing essential human communication. A Stone age telephone cannot make a call to the whole world but it can to a 2m distant apart.

2.1 Communication Setup Stage

The importance of that also in the structure of Can made up from an empty milk Tin-can. Of course after milk is used. The structure helps aid an entrapment of mouth opening in a possible cross-transport Covid-19 virus transmit. A good Can is made from a milk can and stone aged you may find it. A nonconvid-can, it is in human aid for a breath drop or lockdown in unstoppable man communication. Let me guess, you want to make a can-2-man threadline setup at home. In other sense, you can describe it as a can-threadline-can setup piece at home. Then go ahead and stay ahead with your stone ageing can-voice or can-talk. If it is no talk, then it is can-2-can setup in practice today. Now, it is ridiculous device from the Stone-Ages but it has the principles of a communication setup.
CANOPEN---TALK---HM.

In the sequence of Stone-Age Automata, it is linear ordering of voice-call made up of two human mouths or head mouth setups at both ends of voice talks via two ended-can opening connected by a silk thread lining. In a scenario of no head-mouth(HM), in the human stone age communication then a voice through the other cam opening will cause the hanging can-open to shake a bit due to voice that sounds through the threadlines.

2.2 Communication Physics

The equation for sounds is given by:

\[ E = mk^2 \]

M is mass and K is speed of sound.

Here, the mass is the thread plus the hanging can dropped from HM,. The second can (at the right hand) is fixed in the hand and that can be eliminated from the can-thread mass calculation. Sound transmit through the threadline and gets suspended which finally loses power over time to drop the voice call on the threadlines. In the can sound is transmitted in a cylindrical area form then molecules of sound air collides inside the can which is forced out through a small opening made with a hitted nail head on an ended close can. Sound is now radiated from the vibrating structure made with can along the threadline traveling as a sound wave on the line to the other can-line setend. A point force is formed on the elastic threadline hitting the back of the cans structure in amplifying the sound heard due to sound response from structural vibrations.

The power equation is given by:

\[ P = E/T \]

\[ P = F/I \text{ where } F \text{ is force, } I \text{ is cylindrical area.} \]

\[ P = \frac{F}{(2\pi(r+h))} \]

With \( \pi = 3.142 \)

\[ P = \frac{E}{T} = \frac{Fd}{T} = \frac{P * A}{d/T} = \frac{P(2\pi(r+h))}{d/T}. \]

The quantization of sound energy in the can is the product of force and the velocity of sound waves (distance over time, distance of thread length). The structural vibration of point force amplifying the sound is due to pressure of sound molecules in air around the threadline. The sound is heard at matching natural frequencies from varying modes of vibration with different voice sound strengths. The point force impedance of sound over threadline in a didactic purpose of setup.

3 Conclusion

The physical free of an open-ended can-2-can human communication has its own exploit of physic rigor in a physical space for qualitative purpose or reason. It is meritorious and correct in the human form of ageing communication. A take on the setup can be cladding threadline with a PVC pipe to guide the sound waves from dripping early in causing loss sound amplitude. The pipe can give low-frequency vibration by sound absorption because it is thicked than the threadline.

References

[1] Rogers, E. M. (1986). Communication technology. Simon and Schuster.
[2] Lee, E. A., & Messerschmitt, D. G. (2012). Digital communication. Springer Science & Business Media.
[3] Tuohino, M., Poikselka, M., Mayer, G., & Westman, I. (2005). U.S. Patent Application No. 10/932,253.
[4] Gabor, D. (1950). CIII. Communication theory and physics. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(322), 1161-1187.
[5] Littlejohn, S. W., & Foss, K. A. (2010). Theories of human communication. Waveland press.
[6] Tomasello, M. (2010). Origins of human communication. MIT press.
[7] Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37(1), 10-21.