On the spectrum of the Kronig–Penney model in a constant electric field

Simon Larson
Caltech

Abstract. We are interested in the nature of the spectrum of the one-dimensional Schrödinger operator

$$-\frac{d^2}{dx^2} - Fx + \sum_{n \in \mathbb{Z}} g_n \delta(x-n)$$

with $F > 0$ and two different choices of the coupling constants $\{g_n\}_{n \in \mathbb{Z}}$. In the first model $g_n \equiv \lambda$ and we prove that if $F \in \pi^2 \mathbb{Q}$ the spectrum is absolutely continuous away from a discrete set of points. In the second model g_n are i.i.d. random variables with mean zero, variance λ^2, with absolutely continuous and compactly supported distribution. For this model we prove that almost surely the spectrum is pure point if $F/\lambda^2 < 1/2$ and purely singular continuous if $F/\lambda^2 > 1/2$. Based on joint work with Rupert Frank.