INTRODUCTION

Some types of soil can suppress the symptoms of plant diseases (Craft and Nelson, 1996). Research showed that the observed increased resistance in these plants is the result of the presence of biocontrol agents (BCAs) in the soil. BCAs typically exercise their protective effect by direct interaction with pathogens (Punja and Utkehed, 2003). Surprisingly, some BCAs were also found to be also effective against pathogens through indirect interactions (De Meyer et al., 1998; Krause et al., 2003; Horst et al., 2005; Ongenae et al., 2005) by means of the activation of a part of the plant's immune system, called induced systemic resistance (ISR; Harman et al., 2004; Conrath, 2011). This is in contrast to the more intensively studied systemic acquired resistance (SAR), which is induced by pathogens (Ryals et al., 1996).

According to the classical vision on SAR in Arabidopsis thaliana, it is dependent on the salicylic acid (SA) signaling pathway (Métraux et al., 1990; Gaffney et al., 1993) and on NPR1-mediated induction (Delaney et al., 1995; Kinkema et al., 2000) of pathogenesis-related protein (PR) genes PR1, PR2, and PR5 (van Loon, 1997). It has been shown that SAR leads to increased resistance toward secondary infections by a broad spectrum of plant pathogens (Ryals et al., 1996). However, not all pathogens induce SAR in the plant. The necrotrophic pathogen Botrytis cinerea, for example, does not trigger SAR during infection (Govrin and Levine, 2002) but rather NPR1-independent defense responses controlled by the ethylene (Et) and jasmonic acid (JA) signaling pathways (Thomma et al., 1998; Zimmerli et al., 2001; Glazebrook, 2005).

Induced systemic resistance, on the other hand, is thought to be regulated by the Et- and JA-signaling pathway with mediation of NPR1 but without induction of PR1, PR2, and PR5 (Pieterse et al., 1996, 2009). However, this traditional view on ISR appears to be more complex (Korolev et al., 2008; Niu et al., 2011), a notion that is confirmed by the results of our present study. The nature and composition of ISR strongly depends on the tripartite combination plant-BCA-pathogen (Dusjif et al., 1998; Tjamos et al., 2005) and the overlap between SAR and ISR could be much larger than only through the reported key marker NPR1 (Pieterse et al., 1998). In this manuscript, a clear distinction is made between ISR that is induced by BCAs before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.

Keywords: induced systemic resistance, microarrays, Arabidopsis thaliana, Trichoderma hamatum T382, Botrytis cinerea
Trichoderma spp. are known to raise resistance against pathogens annotation, advanced techniques and mutants. Up to now, the plant because of the availability of the complete genome sequence, A. thaliana but not yet in induced by soil BCAs. Finally, we chose van Kan, 2006), since it only infects the above-ground parts of the necrotrophic broad spectrum pathogen (review by Harman et al., 2004; V erhagen et al., 2004). In 2006, a consortium of different research groups defined the concept of priming in plant defense as follows: various treatments, like inoculation with pathogens or BCAs, are said to prime plants or – in other words – prepare the plants’ defense system to respond to stresses more quickly and aggressively (Prime-A-Plant Group et al., 2006). Based on this definition, we chose the terms ISR-prime for the actual process of priming of the plant by the BCA and ISR-boost for the subsequent boost of the defense response upon pathogen inoculation.

So far, whole genome analysis of ISR was predominantly focused on bacterial BCAs (Cartiaux et al., 2003, 2008; Verhagen et al., 2004; Wang et al., 2005; Pozo et al., 2008; Van Oosten et al., 2008) and ISR-related microarray data for fungal BCAs are limited. Moreover, the few reported data mostly focus on ISR-prime in tomato (Alfano et al., 2007; Jiang et al., 2009) or on transcriptional changes in the fungus itself (Chacón et al., 2007; Samolski et al., 2009; Lorito et al., 2010; Rubio et al., 2012). In the same context, but not on whole genome level, Broten et al. (2012) very recently reported on their study in which expression of 137 A. thaliana genes was monitored by qRT-PCR analysis during the ISR that is induced by Trichoderma asperelloides T203 against Pseudomonas syringae.

For this reason, we initiated a large-scale analysis of the ISR induced by the biocontrol fungus Trichoderma hamatum T382 against Botrytis cinerea in A. thaliana both before (ISR-prime) and after (ISR-boost) additional inoculation with the pathogen. Trichoderma spp. are known to raise resistance against pathogens by the induction of ISR in the plant (Shores et al., 2005; Segarra et al., 2009; Tucci et al., 2011). This effect was shown for mono- and dicotyledons and for different types of pathogens (fungi, bacteria, and viruses; Harman et al., 2004). Comparison of more than 500 micro-organisms, isolated from several types of soil, showed that treatment with T. hamatum T382 causes the strongest decrease of the symptoms of foliar infections (Krause et al., 2003), supporting our choice for this BCA in the present study. Further we opted for the necrotrophic broad spectrum pathogen B. cinerea (review by van Kan, 2006), since it only infects the above-ground parts of the plant and as a result it is a suitable pathogen to study ISR-effects induced by soil BCAs. Finally, we chose A. thaliana as a model plant because of the availability of the complete genome sequence, annotation, advanced techniques and mutants. Up to now, the activity of T. hamatum T382 against B. cinerea was shown in begonia (Horst et al., 2005) and geranium (Olson and Benson, 2007), but not yet in A. thaliana. Additionally, little is known about the ISR that is induced in A. thaliana by Trichoderma spp., at least at the level of gene expression.

In this study we started to phenotypically demonstrate the ISR-effect of T. hamatum T382 against B. cinerea in A. thaliana. This allowed us to use this model for an in-depth transcriptomic analysis of both ISR-prime and ISR-boost mechanisms induced by T. hamatum T382 before and after B. cinerea inoculation. In addition, this study pioneered the large-scale characterization of the ISR-boost that is induced by a fungal BCA. The involvement of different defense-related pathways identified in this transcriptomic ISR study was validated using phenotypic analysis of A. thaliana disease signaling mutants.
FIGURE 1 | Analysis of the ISR-effect of *T. hamatum* T382 (T) in *A. thaliana* (At) against *B. cinerea* (B). (A) Visual assessment of disease symptoms in mock-treated control plants (top) and in plants treated with *T. hamatum* T382 (bottom), on 4 days post-inoculation (dpBi) with *B. cinerea*. (B) Quantitative analysis of disease symptoms, calculated as average lesion diameters on 2, 3, and 4 days post-inoculation (dpBi) with *B. cinerea* on plants treated with *T. hamatum* T382 (solid line) and mock-treated control plants (dashed line). The disease assay was repeated 12 times comprising a total of 2000 plants. Confidence intervals (95%) are shown.

FIGURE 2 | Analysis of expression of the marker genes *PR1* and *PDF1.2a* in mock-treated control plants (dashed lines) and plants treated with *T. hamatum* T382 (solid lines) using qRT-PCR. For ISR-prime gene expression analysis of *PR1* (A) and *PDF1.2a* (B) was done in six samples (biological replicates) collected on six consecutive days after *T. hamatum* T382 administration. For ISR-boost gene expression analysis of *PR1* (C) and *PDF1.2a* (D) was done in five samples (biological replicates) collected on four consecutive days after *B. cinerea* inoculation.

to 10^8 CFU/g from 1 h to 3 days after *T. hamatum* T382 application in the soil. On the roots, *T. hamatum* T382 increased from 4×10^4 CFU/g to 4×10^8 CFU/g in the same time period.

During ISR-boost, the expression of *PR1* was unaltered (Figure 2C) as was the case for the two other SA-responsive markers *PR2* and *PR5* (results not shown). Interestingly, *PDF1.2a* showed a six-fold downregulation in *T. hamatum* T382 treated plants on 1 day post-*B. cinerea* inoculation (dpBi) whereas no effect was observed in mock-treated control plants (Figure 2D). On 2 dpBi, however, the *PDF1.2a* expression levels increased up to 60-fold in control plants while in *T. hamatum* T382 treated plants still a slight downregulation (2.86-fold) was observed. Thus, during ISR-boost, we could not observe the strong induction of *PDF1.2a* on 2 dpBi, which is characteristic during the defense response induced by *B. cinerea* in *A. thaliana* (Manners et al., 1998). Based on these findings 1 and 2 dpBi were chosen as relevant time points for ISR-boost.

TRANSCRIPTOME ANALYSIS OF *A. THALIANA* AFTER INTERACTION WITH *T. HAMATUM* T382 AND/OR *B. CINEREA* USING MICROARRAYS

For both ISR-prime and ISR-boost, plant samples were collected at the above-selected time points from plants that showed a clear ISR-effect (defined as 40–80% reduction in disease index in the subsequent disease assay) and from their corresponding control plants. Three independent biological replicates were performed, each with a dye swap. Furthermore, control samples of
the ISR-boost experiment (systemic leaves from *A. thaliana* Col-0 plants that were inoculated with *B. cinerea* without pretreatment with *T. hamatum* T382) were compared to those from untreated and uninfected plants (At + B vs. At) to characterize the defense response induced by *B. cinerea* (BIDR).

From all selected plant samples high quality mRNA was isolated, labeled, and hybridized on Agilent 4-pack *Arabidopsis* microarrays. Normalized microarray data were used to identify genes that are differentially expressed during ISR (either prime or boost) and BIDR. Comparing plants treated with *T. hamatum* T382 with mock-treated controls (At + T vs. At), we identified 2075 genes that are differentially expressed during ISR-prime as summarized in Table 1 (for a complete list see Table S1 in Supplementary Material). Furthermore, the microarray analysis revealed 276 and 1135 annotated genes that were differentially expressed during ISR-boost (Table 1, Table S1 in Supplementary Material) on 1 and 2 dpBi, respectively. The analysis of ISR-boost consisted of a comparison of plants treated with *T. hamatum* T382 and consequently inoculated with *B. cinerea* and mock-treated controls consequently inoculated with *B. cinerea* (At + B + T vs. At + B). For BIDR, comparison of these mock-treated plants that were consequently inoculated with *B. cinerea* and mock-treated plants without subsequent *B. cinerea* inoculation (At + B vs. At) resulted in the identification of 1119 and 7317 annotated genes that were differentially expressed on 1 and 2 dpBi, respectively (Table 1, Table S1 in Supplementary Material).

The high number of differentially expressed (DE) genes allowed us to examine the underlying mechanism of ISR at the level of biological processes and pathways leading to a more holistic view on ISR. As shown in Table 2, classification of the DE genes based on the standard Gene Ontology annotation (Gene Ontology Consortium, 2000), led to the identification of biological processes that were significantly (*p* < 0.001) enriched in the sets of DE genes as compared to the complete *A. thaliana* genome, according to the method described by Tavazoie et al. (1999). The main observations are discussed below for both ISR-prime and ISR-boost and compared to BIDR. A concise overview of these results is shown in Table 2 while the complete list of up- and downregulated processes can be found Table S2 in Supplementary Material.

Biological Processes Involved in ISR-Prime

With respect to upregulated processes a striking analogy between ISR-prime and BIDR (on 2 dpBi; Table 2) was observed including both defense responses such as “defense response to fungus,” “plant-type hypersensitive response,” and defense-related plant hormone responses like “response to SA” and “response to abscisic acid” (ABA). Nevertheless, still a number of differences between ISR-prime and BIDR could be observed. For instance, ISR-prime was characterized by the induction of “negative regulation of defense response” while this was not the case for BIDR. On the other hand, ISR-prime was not characterized by the induction of the Et- and JA-signaling pathways. Furthermore, anthocyanins were the main secondary metabolites formed during ISR-prime while defense during BIDR relied mainly on the production of camalexin. Specific for ISR-prime is also the stimulation of the transport of a variety of compounds in the plant, e.g. phospholipids and ions.

Remarkably, when looking at the downregulated processes, the correspondence between ISR-prime and BIDR was very low (Table 2). Where BIDR negatively affected the general metabolism of the plant (e.g. photosynthesis, translation, lipid metabolism), this phenomenon was not observed during ISR-prime.

Biological Processes Involved in ISR-Boost as Compared to BIDR

It is important to stress here that, in order to characterize ISR-boost, we compared plants treated with *T. hamatum* T382 and subsequently inoculated with *B. cinerea* with mock-treated control plants subsequently inoculated with *B. cinerea* (At + T + B vs. At + B). As such the results for ISR-boost represent the biological processes that are specifically affected by the pretreatment with *T. hamatum* T382 and that occur on top of the *B. cinerea* induced defense response (BIDR).

On the first day after *B. cinerea* inoculation, BIDR affected a limited number of defense processes (Table 2) like “response to chitin” and “response to wounding.” Several defense-related plant hormone responses were induced, e.g. responses to JA, SA, and ABA (Table 2) while general metabolic processes, like translation, were downregulated. In contrast to BIDR, defense-related processes and hormone pathways were activated more rapidly (primed) during ISR-boost, such as “biosynthesis of JA” and “response to microbial phytoxins,” or more strongly, such as “response to JA” and “response to wounding” (Table 2). Production of secondary metabolites such as galactolipids and anthocyanins were specifically induced during ISR-boost. Interestingly, defense-related ROS-production as reflected by the biological process “respiratory burst involved in the defense response” is specifically downregulated during ISR-boost.

On the second day after *B. cinerea* inoculation, the strong induction of defense processes that characterized BIDR was not or

Table 1 Numbers of differentially expressed (DE) genes.

ISR-prime	ISR-boost	BIDR			
	2 dpTi	1 dpBi	2 dpBi	1 dpBi	2 dpBi
Up	Down	Up	Down	Up	Down
1377	698	112	164	405	730

*Analysis was done for ISR-prime on plants 2 days post-inoculation with *T. hamatum* T382 (dpTi) and for ISR-boost and BIDR on plants 1 and 2 days post-inoculation with *B. cinerea* (dpBi), corresponding to 7 and 8 days after *T. hamatum* T382 treatment for ISR-boost.*
Differentially expressed process	ISR-prime 2 dpTi	ISR-boost 1 dpBi	ISR-boost 2 dpBi	BIDR 1 dpBi	BIDR 2 dpBi
DEFENSE PROCESSES					
Defense response	4.1E−13	4.6E−06	1.2E−11	0	
Defense response to fungus	6.2E−14	1.2E−07	5.2E−08	1.7E−15	
Regulation of defense response	1.8E−06	1.9E−06			
Negative regulation of defense response	1.3E−05				
Systemic acquired resistance	8.7E−09			7E−06	
Regulation of SAR	8.4E−07			2.7E−06	
Plant-type hypersensitive response	1.2E−06				3.4E−04
Respiratory burst involved in defense		3E−04	9.6E−05		
Programmed cell death	2.4E−04				
Response to fungus	5.5E−04	5.2E−08	1.4E−12		
Response to chitin	5.4E−11	3.3E−16		1.6E−15	1.3E−15
Response to ER stress	1.2E−07				
Response to microbial phytotoxin		1.8E−04			
Response to wounding		5.9E−08	0	1.5E−07	0
PLANT HORMONES					
Response to abscisic acid	2.2E−06			5.8E−08	7.2E−11
Response to auxin	2.4E−04	7.6E−04	1.9E−09		
Signaling mediated by ethylene		8.7E−05	2.6E−04		
Response to ethylene			3.1E−04		
Biosynthesis of jasmonic acid	6.3E−05	3.6E−10	4.2E−07		
Signaling mediated by jasmonic acid			6.5E−04		
Response to jasmonic acid	9.8E−07	1.2E−13	1.5E−04	5.8E−14	
Response to salicylic acid	2.2E−11	5.6E−06	0	8.2E−10	
SECONDARY METABOLITES					
Biosynthesis of anthocyanins	7.3E−04	2.3E−10	9E−10		
Metabolism of anthocyanins	6.4E−04				
Biosynthesis of flavonoids			2.2E−08		
Biosynthesis of lignin				3.2E−04	
Biosynthesis of camalexin	8.4E−04				
Biosynthesis of galactolipids	1.8E−06				
OTHER PROCESSES					
Biosynthesis of ATP	1.7E−04				
Biosynthesis of chlorophyll				3.7E−04	
Calcium ion homeostasis	4.1E−04				
Catabolism of cell wall macromolecules	2E−04				
Catabolism of starch			8E−11		
Chloroplast organization				3.8E−04	
Lipid metabolism				3.7E−04	
Oxidation of fatty acids				8.1E−04	1.4E−04
Photosynthesis					
Protein phosphorylation	2.3E−14				
Protein targeting to chloroplast		6.3E−04	1.4E−04		
Regulation of transcription	1.4E−09	71E−04	1.7E−10		
Ribosome biogenesis				2.2E−06	
Signal transduction	4.6E−06	1.2E−04	1.6E−11		
Toxin catabolism	2.3E−09	5.8E−06	5.3E−08		
Translation				6.8E−02	

(Continued)
to a less extent observed during ISR-boost, indicating that the *T. hamatum* T382 treatment restrained the *Botrytis*-induced defense response (Table 2). Many defense-related processes showed an opposite behavior in ISR-boost as compared to BIDR such as "defense response to fungus," "regulation of defense response," and "response to chitin." Similar observations can be made for the defense-related hormone pathways such as signaling mediated by JA and Et. However, in line with the situation on the first day after *B. cinerea* inoculation, the phenylpropanoid pathway–based biosynthesis of anthocyanins, as well as flavonoids, were specifically induced while “respiratory burst involved in the defense response” was specifically downregulated during ISR-boost. Again, general metabolic processes, like photosynthesis, were downregulated during BIDR.

VALIDATION OF MICROARRAY RESULTS

The above-mentioned microarray results were validated by qRT-PCR and GUS-staining.

Validation of microarray results using qRT-PCR

Because of the high number of differentially expressed (DE) genes during ISR, a set of 26 genes was selected representing the different ISR-related pathways identified in our transcriptome analysis (Table 3) and their expression levels were measured by qRT-PCR (primers shown in Table S3 in Supplementary Material) under the same conditions and at the same time points as used in the microarray analysis. To this end, additional independent biological samples were tested. As can be concluded from Table 3, the resulting qRT-PCR data are generally in line with the normalized log ratios from the microarrays, thereby confirming the observed gene expression patterns.

Validation of microarray results using GUS-staining

The microarray results were further validated in planta using a histochemical staining approach. We therefore made use of promoter-GUS lines corresponding to *PDF1.2a*, known as well-established markers for the Et/JA-response pathway (Penninckx et al., 1998; Zimmerli et al., 2000), and *PR1* which is considered a marker for the SA-mediated pathway (Shah, 2003). In the present study, we evaluated the expression of these markers after treatment with *T. hamatum* T382 and additional *B. cinerea* inoculation. The results of the GUS-staining for both *PDF1.2a* and *PR1* on different time points in the ISR-process (Figure 3) confirmed both the microarray results and the results of the preliminary qRT-PCR analysis (Figure 2). For ISR-prime, both the strong induction of *PR1* and the absence of the induction of *PDF1.2a* after *T. hamatum* T382 treatment were clearly confirmed by the GUS-staining. During ISR-boost, no expression of *PR1* could be detected in any of the samples. Conform to its well-established role as a marker of *B. cinerea* induced defense (Manners et al., 1998) a strong induction of *PDF1.2a* was observed upon *B. cinerea* inoculation, at least in plants that were not pretreated with *T. hamatum* T382. Interestingly, in plants primed with *T. hamatum* T382 this strong induction of *PDF1.2a* was not observed, again confirming our microarray results.

CONFIRMATION OF THE INVOLVEMENT OF VARIOUS DEFENSE-RELATED PATHWAYS IN ISR

The involvement of the above-mentioned pathways that were identified in this study as contributing to ISR was further confirmed by mutant evaluation and anthocyanin analysis.

Confirmation of the involvement of defense-related pathways in ISR using mutants

We investigated the ISR-effect of *T. hamatum* T382 on *B. cinerea* infection in different *A. thaliana* mutants as compared to wild-type plants. More specifically, mutants or transformants were selected that are affected in a specific defense-related pathway including *npr1, sid2*, and *NahG* for the SA-pathway (Cao et al., 1994; Delaney et al., 1994), *ein2* and *etr1* for the Et-pathway (Guzmán and Ecker, 1990; Chang et al., 1993) and *myc2* for the JA-pathway (Berger et al., 1996), or in defense-related mechanisms such as *tt*, *chs*, and *βh*, all carrying mutations in the phenylpropanoid pathway (Teng et al., 2005). Additionally the gene encoding the respiratory burst oxidase RBOHD (Torres et al., 1998) is inactivated in the *rbohD* mutant affecting defense-related ROS-production (Mersmann et al., 2010) while the *vct1* mutant is deficient in ascorbic acid, an important ROS scavenger (Conklin et al., 2000), resulting in a SAR-phenotype (Pastori et al., 2003; Barth et al., 2004; Mukherjee et al., 2010) with increased levels of SA, *PR1*, *PR2*, and *PR5* (thus also similar to ISR-prime).

More specifically, the SA-signaling mutants *sid2* and *npr1* are impaired in biosynthesis and perception of SA, respectively, while in the transgenic NahG-line SA-accumulation is impossible through transformation of SA to catechol. In our experiments NahG showed a basal susceptibility toward *B. cinerea* that was equal (2 dpi) or significantly higher (3 and 4 dpi; *p < 0.001*) to that of wild-type (wt) *Col-0* and *npr1* showed increased susceptibility (*p < 0.01* on 2 dpi and *p < 0.001* on 3 and 4 dpi; Figure 4), confirming the results of earlier reports on both equal (Ferrari et al., 2002).

Differentially expressed process	ISR-prime	ISR-boost	BIDR
Transmembrane transport of ions	1.3E-06	8.9E-04	8.5E-04
Transport of cations	8.9E-04	8.5E-04	8.5E-04
Transport of phospholipids	8.1E-04	8.5E-04	8.5E-04

p-Values for enrichment of up- and downregulated processes are shown in red and green boxes, respectively; white boxes indicate no enrichment. Analysis was done at 2 days after *T. hamatum* T382 treatment (dpTi) for ISR-prime, and at 1 and 2 days after inoculation with *B. cinerea* (dpBi) for both BIDR and ISR-boost.
Table 3 | Comparison between the results of the microarrays (shown as log₂ ratio) and the qRT-PCR (shown as log₂ ratio) for various ISR-markers.

ISR-marker	Analysis method	ISR-prime	ISR-boost	
		1 dpBi	2 dpBi	
JA + Et-PATHWAY				
PDF1.2a	qRT-PCR	0.51 ± 0.46	-2.6 ± 0.58	-6.26 ± 1.6
microarray	Microarray	0.77 ± 0.26	-1.86 ± 0.27	-1.23 ± 0.17
PDF1.2b	qRT-PCR	0.55 ± 0.7	-4.65 ± 1.91	-2.38 ± 0.8
microarray	Microarray	0.48 ± 0.01	-2.48 ± 0.4	-0.83 ± 0.32
PDF1.2c	qRT-PCR	0.36 ± 0.42	-3.55 ± 1.65	-3.33 ± 1.73
Microarray	Microarray	0.49 ± 0.05	-1.88 ± 0.64	-0.74 ± 0.21
PDF1.3	qRT-PCR	-0.37 ± 0.41	-1.63 ± 0.51	-1.82 ± 0.61
Microarray	Microarray	0.58 ± 0.06	-1.86 ± 0.69	-0.84 ± 0.08
JA-PATHWAY				
VSP2	qRT-PCR	-0.73 ± 1.07	1.5 ± 0.28	0.55 ± 0.06
Microarray	Microarray	0.12 ± 0.32	1.93 ± 0.25	0.03 ± 0.08
LOX3	qRT-PCR	-1.41 ± 0.51	0.23 ± 0.38	-1.11 ± 0.55
Microarray	Microarray	-0.23 ± 0.01	-1.07 ± 0.31	-1.73 ± 0.55
AOC3	qRT-PCR	3.73 ± 0.53	1.38 ± 0.6	-0.9 ± 0.27
Microarray	Microarray	1.53 ± 0.55	0.44 ± 0.14	-1.71 ± 0.68
OPR3	qRT-PCR	3.63 ± 0.18	0.1 ± 0.39	1.41 ± 0.82
Microarray	Microarray	0.74 ± 0.17	0.61 ± 0.12	-1.5 ± 0.37
SA-PATHWAY				
PR1	qRT-PCR	8.94 ± 0.32	-7.7 ± 0.6	0 ± 0.9
Microarray	Microarray	4.24 ± 0.9	NE	-0.03 ± 0.73
PR2	qRT-PCR	4.57 ± 0.04	-0.16 ± 0.33	-0.15 ± 0.25
Microarray	Microarray	3.24 ± 0.41	0.21 ± 0.96	-0.64 ± 0.38
PR5	qRT-PCR	4.49 ± 0.49	1.85 ± 0.58	0.15 ± 0.35
Microarray	Microarray	2.74 ± 0.14	-0.07 ± 0.44	-0.28 ± 0.1
SED2	qRT-PCR	1.92 ± 0.56	0.2 ± 0.35	0.9 ± 0.34
Microarray	Microarray	2.3 ± 0.08	-0.15 ± 0.08	-0.17 ± 0.19
PAL1	qRT-PCR	0.12 ± 0.01	0.55 ± 0.85	3.7 ± 1.4
Microarray	Microarray	-0.23 ± 0.08	-0.38 ± 0.17	-1.13 ± 0.37
APO- AND CYTOPLASMIC ROS				
GRX480	qRT-PCR	5.68 ± 1.93	-2.05 ± 0.15	-2.15 ± 0.65
Microarray	Microarray	1.69 ± 0.31	0.44 ± 0.34	1.79 ± 0.23
RBOHC	qRT-PCR	0.02 ± 0.15	-2.2 ± 0.7	1.35 ± 0.35
Microarray	Microarray	NE	NE	-1.74 ± 0.48
MAMP-TRIGGERED DEFENSE				
EBS1	qRT-PCR	1.6 ± 0.55	0.15 ± 0.27	-0.49 ± 0.01
Microarray	Microarray	1.3 ± 0.24	0.01 ± 0.12	-0.01 ± 0.05
CRT3	qRT-PCR	2.45 ± 0.52	-0.26 ± 0.16	-0.34 ± 0.18
Microarray	Microarray	2.02 ± 0.24	0.02 ± 0.21	-0.44 ± 0.31
MPK3	qRT-PCR	1.56 ± 0.21	-0.05 ± 0.35	0.05 ± 0.75
Microarray	Microarray	0.9 ± 0.08	-0.04 ± 0.14	-0.68 ± 0.17
MPK6	qRT-PCR	0.61 ± 0.1	-0.55 ± 0.25	0.4 ± 0.6
Microarray	Microarray	-0.03 ± 0.07	0.02 ± 0.07	0.09 ± 0.13
PHENYLPROPANOID PATHWAY				
CHS	qRT-PCR	0.82 ± 0.17	2.33 ± 0.35	5.85 ± 0.75
Microarray	Microarray	0.52 ± 0.26	0.22 ± 0.21	1.56 ± 0.2
MYB75	qRT-PCR	2.38 ± 0.41	2.4 ± 0.3	2.2 ± 0.5
Microarray	Microarray	2.63 ± 0.34	3.39 ± 1.11	1.28 ± 0.24

(Continued)
The transparent testa (tt) mutant shows reduced anthocyanin content whereas f3h and chs are characterized by deletions of the flavanone 3-hydroxylase and the chalcone synthase genes, respectively. Both genes encode enzymes that catalyze different steps in the biosynthesis of flavonoids and anthocyanins. The relation of these mutants to B. cinerea resistance has to our knowledge not yet been reported. Our results indicate that these mutants display similar or significantly decreased sensitivity toward B. cinerea infections compared to wt (p < 0.001 for tt and for f3h on 4 dpi; p < 0.05 for chs on 4 dpi). Additionally, both vtc1 and rbohD mutants exhibited significantly increased resistance to B. cinerea (p < 0.001). These results are in accordance with former observations of reduced fungal biomass on rbohD mutants compared to wild-type A. thaliana Col-0 during infection with Alternaria brassicicola (Pogány et al., 2009), a necrotrophic fungal pathogen like B. cinerea.

As shown in Figure 4 the suppressive effect on B. cinerea disease, as earlier observed in wild-type A. thaliana plants pretreated with T. hamatum T382, was not detected in most of these mutants, indicating that the corresponding genes (and pathways) play an important role in this interaction. Indeed, mutants corresponding to key genes in SA- or JA-mediated signaling, or anthocyanin production did not display the T. hamatum T382-induced ISR against B. cinerea. Also in vtc1 and rbohD mutants, additional T. hamatum T382 treatment did not further increase the resistance that was generated by the mutation. More specifically, we could demonstrate that the regulatory protein NPR1 which (nuclear localization) was demonstrated to be essential for SA-mediated defense-gene expression during SAR (Wang et al., 2006), is also a key element in the T. hamatum T382-induced ISR. This protein has recently been shown to be implicated in ISR (Segarra et al., 2009), albeit operating from the cytosol (Stein et al., 2008). The significant divergence of expression of the SID2 gene earlier observed (Table S1 in Supplementary Material) during the Botrytis-induced defense response (not affected) and T. hamatum T382-induced ISR (strongly induced), indicated an important role of SID2 in the former. This was clearly confirmed by the results on the sid2 mutants (Figure 4). These results are not in accordance with the findings of Segarra et al. (2009) who observed a preserved ISR-effect in sid2 mutants treated with another biocontrol Trichoderma strain.

In contrast to the results obtained with the other mutants, the ISR-effect was preserved in etr1 and ein2 mutants (p < 0.001) affected in Et-signaling (Cancel and Larsen, 2002) and no difference was observed in ISR-effect in these mutants as compared to wild-type plants, indicating that the Et-pathway, or at least that part in which ETR1 and EIN2 are involved, is not essential in the T. hamatum T382-induced ISR against B. cinerea in A. thaliana. This finding clearly corresponds to our microarray results which indicate that the Et-signaling pathway, despite of being strongly induced during BIDR, remains unaffected during ISR-prime or is even downregulated during ISR-boost on 1 dpBi.

Confirmation of the involvement of the phenylpropanoid pathway in ISR using anthocyanin measurements

In order to confirm the observed upregulation of the biological process "anthocyanin biosynthesis" during both ISR-prime and ISR-boost, anthocyanin concentrations were compared between
ISR-induced and ISR-boosted plants and their corresponding controls at several time points after *T. hamatum* T382 treatment or *B. cinerea* inoculation. In agreement with the results of the microarray analysis, we observed a significant increase in anthocyanin content between ISR-primed plants and mock-treated controls and between ISR-boosted plants and *B. cinerea* infected controls (Figure 5).

DISCUSSION

In this study we demonstrated that application of *T. hamatum* T382 to the roots of *A. thaliana* results in an increased resistance to subsequent leaf infections by the necrotrophic pathogen *B. cinerea*, characterized by a significant reduction in symptom development. This tripartite model allowed a genome-wide analysis of ISR-related gene expression using microarrays. More specifically, gene expression was characterized both before (ISR-prime) and after (ISR-boost) additional *B. cinerea* inoculation in *T. hamatum* T382-pretreated plants as compared to mock-pretreated controls. To allow further comparison with the regular defense response induced by this pathogen, further mentioned as BIDR, we also compared *B. cinerea* infected plants without *T. hamatum* T382-pretreatment with uninfected controls. Aiming at a holistic view on ISR, we classified the ISR- and BIDR-related genes into the standard biological processes, as defined by the Gene Ontology Consortium (2000), that were significantly induced or downregulated (Table 2). However, since (i) not all relevant biological processes are represented in Gene Ontology (e.g. MAMP-triggered defense is as such not present), and (ii) the analysis of enriched biological processes might miss small differences between ISR and BIDR, we opted to perform an additional reverse analysis process by starting from the structure of a pathway and identifying the differentially expressed genes in that pathway. We focused on pathways with a relatively well-known structure on different reported levels of the plant’s defense response including (i) early...
processes related to MAMP-triggered defense and the subsequent production of reactive oxygen species (ROS; Figure 6A), (ii) downstream signaling [e.g. mediated by SA (Figure 6B) and JA (Figure 6C)] leading to the production of defense-related components (e.g. different types of PR proteins), and (iii) general stress responses such as those occurring via the phenyl propanoid pathway (Figure 6D). The induction or downregulation of genes was visualized in Figure 6 by red and green boxes, respectively, allowing visual comparison of general gene modulation during ISR-prime, ISR-boost and BIDR. By combining this overview with results shown earlier in this manuscript the following overall conclusions can be drawn.

TRICHODERMA HAMATUM T382 INDUCES A MAMP-TRIGGERED DEFENSE REACTION IN THE PLANT

In contrast to what was generally observed for BCOs of bacterial origin (Verhagen et al., 2004; Carteaux et al., 2008) which are believed not to significantly alter gene expression upon treatment, addition of *Trichoderma hamatum* T382 to the roots of the plant triggers a clear and pronounced defense response in the leaves on the second day after the treatment. Our finding is supported by the recent observation that *Bacillus cereus* AR156 treatment to the roots of *A. thaliana* activates expression of defense-related genes PR1, PR2, PR5, and PDF1.2 in the leaves (Niu et al., 2011) thereby inducing ISR against *Botrytis cinerea* inoculated control plants at 2 days post-inoculation with *B. cinerea* inoculated control plants. The values are means ± SE of six measurements of four plants each. FW, fresh weight.

Figure 6A

Figure 6B

Figure 6C

Figure 6D

Table 2

The ISR induced by *T. hamatum* T382, could be chitin-related because we observe a clear induction of “response to chitin” (Table 2) and several chitinases (Table S4 in Supplementary Material). However, it is not clear whether recognition of chitin from *T. hamatum* T382 at the roots would also be reflected by similar alterations in gene expression in systemic tissues such as leaves. In our results on BIDR we also see a clear induction of “response to chitin” and the MAMP-defense pathway in systemic leaves (Table 2). Nevertheless, MAMP recognition is known to result in SID2-dependent accumulation of SA and concomitant activation of the SA-signaling pathway both in local and systemic leaves, leading to increased resistance against subsequent pathogen infections (Mishina and Zeier, 2007; Tsuda et al., 2008), as reflected in our data by the induction of “response to SA” (Table 2). Additionally, Figure 6B clearly shows that during ISR-prime SA is indeed produced via isochorismate (through the actions of SID2) instead of via phenylalanine (through the actions of PAL1–4), which is the main source of SA during BIDR. The MAMP-triggered SA-signal activates ER-localized proteins that are involved in the folding of defense-related proteins (Li et al., 2009; Christensen et al., 2010) through the actions of TF BZIP60 (Iwata et al., 2008), which are all also upregulated in our data (Figure 6A; Table S4 in Supplementary Material). The latter is also the case for the LysM domain containing proteins, which are MAMP recognition receptors (PRRs; Li et al., 2009; Table S4 in Supplementary Material). Activation of PRRs leads to the onset of (i) the phenylpropanoid pathway leading to the accumulation of anthocyanins as reflected by the induction of “biosynthesis of anthocyanins” and “metabolism of anthocyanins” (Table 2; Figure 6D), (ii) a MAPK signaling cascade indicated by the induction of, e.g. MKK4 and MPK3 (Asai et al., 2002; Wan et al., 2004; Figure 6A; Table S4 in Supplementary Material), (iii) wall cell reinforcement, as reflected by the induction of PEN3 (Table S4 in Supplementary Material), and (iv) an increased Ca2+ influx in the cell by ion channels in the plasma membrane that are regulated by glutamate binding (Ranf et al., 2011), as reflected by the induction of “calcium ion homeostasis” and several Ca2+ transporters (Table 2; Table S4 in Supplementary Material). Ultimately Ca2+ regulates the channel activity of cyclic nucleotide-gated channels (Kaupp and Seifert, 2002), of which several are upregulated in our experiments, leading to the induction of the hypersensitive response (Moeder and Yoshioka, 2008) and the concomitant programmed cell death. Both processes are included in the list of upregulated biological processes during ISR-prime. In addition to *Trichoderma*–derived MAMPS inducing the defense response during ISR-prime, pectin could be involved in priming too. Indeed, our data demonstrate also upregulation of wall-associated kinases, which are known to interact with pectin released from the plant cell wall and subsequently activate the MAPK cascade transferring the signal to the nucleus of the cell (Rintjé, 2010). Furthermore, it has been demonstrated that MAMP-perception also results in systemic acquired resistance (SAR) in *A. thaliana* (Mishina and Zeier, 2007), which is reflected in our data by the induction of “systemic acquired resistance” and “regulation of SAR” during ISR-prime (Table 2).
FIGURE 6 | Continued
B

ISR-prime

WRKY28 ➔ WRKY46

EDS1, PAD4 ➔ transport ➔ shikimate

Phe ➔ EDS5 ➔ chorismate ➔ SID2

PAL1, PAL2, PAL3, PAL4 ➔ trans-cinnamic acid ➔ isochorismate

MeSA ➔ storage ➔ 2 MES ➔ BSMT1 ➔ SYP121, SYP122 ➔ TGA1, TGA5 ➔ TGA3 ➔ NiMIN1, NiMIN2, NiMIN3 ➔ NiMIN3 ➔ NPR1 ➔ GRX480, TRX5, G6PD4 ➔ SA ➔ PR1, PR2, PR5 ➔ 15/20 SA inducible genes ➔ 3/7 WRKY5s ➔ lipid signaling ➔ NPR1 oligomer (S-S bonds)

GLY1 ➔ WHY1 ➔

BIDR – 2dpi

WRKY28, WRKY46 ➔ transport ➔ shikimate

EDS1, PAD4 ➔ transport ➔ EDS5 ➔ shikimate ➔ chorismate ➔ SID2

Phe ➔ EDS5 ➔ chorismate ➔ SID2

PAL1, PAL2 ➔ PAL3, PAL4 ➔ trans-cinnamic acid ➔ isochorismate

MeSA ➔ storage ➔ 2 MES, 4 MES ➔ BSMT1 ➔ SYP121, SYP122 ➔ TGA1, TGA5, TGA3 ➔ NiMIN2, NiMIN3 ➔ NiMIN1 ➔ NPR1 ➔ GRX480, TRX5, G6PD4 ➔ SA ➔ PR1, PR2, PR5 ➔ 15/20 SA inducible genes ➔ 3/7 WRKY5s ➔ lipid signaling ➔ NPR1 oligomer (S-S bonds)

GLY1 ➔ WHY1 ➔

ISR-boost – 2dpi

WRKY28, WRKY46 ➔ transport ➔ shikimate

EDS1, PAD4 ➔ transport ➔ EDS5 ➔ chorismate ➔ SID2

Phe ➔ EDS5 ➔ chorismate ➔ SID2

PAL1, PAL2 ➔ PAL3, PAL4 ➔ trans-cinnamic acid ➔ isochorismate

MeSA ➔ storage ➔ 18 MES ➔ BSMT1 ➔ SYP121, SYP122 ➔ TGA1, TGA5, TGA3 ➔ NiMIN2, NiMIN1, NiMIN3 ➔ NPR1 ➔ GRX480, TRX5, G6PD4 ➔ SA ➔ PR1, PR2, PR5 ➔ 6/20 SA inducible genes ➔ 3/7 WRKY5s ➔ lipid signaling ➔ NPR1 oligomer (S-S bonds)

GLY1 ➔ WHY1 ➔
In our data we also observe an induction of genes involved in the “negative regulation of defense response” (Table 2). This might be explained by the fact that *T. hamatum* T382 is recognized by the plant as a “beneficial invader.” For instance, we observe a clear induction of both *PYK10* and *BGLU18*, which encode proteins accumulating in ER bodies (Table S4 in Supplementary
The latter are recently discovered ER compartments reportedly linked to wounding and defense responses (Ogasawara et al., 2009). PYK10, for example, is proposed to be involved in maintaining the interaction between the beneficial endophytic fungus Piriformospora indica and A. thaliana by repressing the defense response (Sherameti et al., 2008). Additionally, both the gene encoding protein kinase OXI1 and the gene encoding monodehydroascorbate reductase MDHAR, two enzymes which are also linked to the interaction with this endophyte (Vadassery et al., 2009; Camehl et al., 2011), are upregulated by *T. hamatum* T382 (Table S4 in Supplementary Material). Interestingly, mutant analysis showed that the production of ascorbate by MDHAR keeps the interaction between plant and endophyte in a mutualistic state whereas the OXI1 pathway seems to control plant growth promotion by the endophyte. Our observation of PYK10, MDHAR, and OXI1 induction during ISR-prime could support a similar role. However, it should be noted again that, in contrast to the results from the *P. indica*–*A. thaliana* interaction, our study did not focus on gene expression in roots but in systemic leaves.

In the next sections we will zoom in on the different defense-related pathways and discuss their involvement in ISR in more detail.

The SA-pathway as a first key player in *T. hamatum* T382-induced ISR

While some reported studies on ISR conclude that in general it would occur independently of SA-signaling (van Loon et al., 1998; Yan et al., 2002; De Vleesschauwer et al., 2008; Segarra et al., 2009), others have contradicted this generalization both in *A. thaliana* (Tjamos et al., 2005; Hossain et al., 2007; Conn et al., 2008; Niu et al., 2011) and in other plants (De Meyer et al., 1999; Audenaert et al., 2002; Schuhegger et al., 2006; Alfano et al., 2007). Triggering of this pathway is reported for inducers of SAR including exogenous application of SA (Delaney et al., 1995), and plant defense activators, such as benzo-(1,2,3)-thiadiazole-7-carbothioic acid...
FIGURE 6 | Overview of modulation of expression of genes in four defense-related pathways as a result of ISR and BIDR. Selected pathways include those involved in MAMP-triggered defense and subsequent ROS-production (A) based on Asai et al., 2002; Kaupp and Seifert, 2002; Mittler et al., 2004; Wan et al., 2004; Kotchoni and Gachomo, 2006; Pitzschke et al., 2006; Tsuda et al., 2008; Van Breusegem et al., 2008; Li et al., 2009; Christensen et al., 2010; Foyer and Noctor, 2011; Ranf et al., 2011), those (Continued)
S-methyl ester (BTH; Lawton et al., 1996), β-aminobutyric acid (BABA; Zimmerli et al., 2000; Ton and Mauch-Mani, 2004) and thiamin (Ahn et al., 2005). SAR is a systemic defense response that is dependent on the SA-pathway (Ward et al., 1991; Uknes et al., 1992; Delaney et al., 1994) and leads via the actions of NPR1 (Cao et al., 1994, 1997) and WRKY TFs (Jaskiewicz et al., 2011) to the activation of pathogenesis-related proteins (PRs) such as PR1, PR2, and PR5 (Ward et al., 1991; Uknes et al., 1992). Subsequent pathogen challenge on plants that display SAR leads to augmented defense-related responses in the whole plant resulting in a long-lasting and increased resistance of the plant toward a broad-spectrum of pathogens (Rylas et al., 1996). As discussed previously, we observe a strong induction of “systemic acquired resistance” and “regulation of SAR” during ISR-prime (Table 2). The similarity between SAR and ISR-prime is further highlighted by the induction of the entire SA-pathway during ISR-prime including WRKY6, WRKY53, PR1, PR2, and PR5 (Figure 6B) and by the analysis of NahG, npr1, and sid2 mutants (Figure 4). Preceding detailed transcriptome analysis of SAR led to the identification of the PR1-regulon, consisting of 30 genes that were coexpressed with the SAR-marker PR1 in SAR-related conditions (Maleck et al., 2000). Interestingly, in the present study this regulon was also significantly induced during ISR-prime (p = 1.1 × 10^−15; Table S4 in Supplementary Material).

Thus, according to our data on both gene expression and mutants, the SA-pathway is indeed a key player in the induction of ISR(-prime) as is the case in SAR. Remarkably, we observe that during ISR-prime SA was synthesized from chorismate rather than via the phenylalanine pathway, the route that is operative during the BIDR (Figure 6B). The active role of the chorismate pathway in ISR was further confirmed by the results on the sid2 mutant (Figure 4). Although the phenylalanine pathway is generally considered the main route of SA-synthesis, the chorismate way is postulated as an important alternative route for the production of SA required for defense responses (Strawn et al., 2007), the chorismate mutant (sid2 pathway in ISR was further confirmed by the results on the phenylpropanoid pathway leading to the production of lignin, flavonoids, and anthocyanins (D) (based on Winkel-Shirley, 2002; Routaboul et al., 2006; Ferrer et al., 2008). For each pathway except for the JA-pathway three panels can be distinguished: Upper panel: overview of modulated gene expression during ISR-prime in plants 2 days post-inoculation with T. hamatum T382 vs. mock-treated control plants. Middle panel: overview of modulated gene expression during BIDR in plants 2 days post-inoculation with B. cinerea vs. mock-treated control plants. Lower panel: overview of modulated gene expression during ISR-boost in plants pretreated with T. hamatum T382 vs. mock-treated control plants, both 2 days post-inoculation with B. cinerea. For the JA-pathway five panels can be distinguished because both 1 and 2 days post-inoculation with B. cinerea are shown for ISR-boost and BIDR. Up- and downregulated genes are shown in red and green respectively. Gene names are in conformity with TAIR annotation.

The JA-pathway as a second important player in T. hamatum T382-induced ISR

Both gene expression and mutant analysis data confirmed the involvement of the JA-pathway in ISR (Table 2; Figures 4 and 6C), which supports earlier findings (Pieterse et al., 1998; Niu et al., 2011). More detailed analysis in our study indicates that the pathway is not induced during ISR-prime (Figure 6C). On the first day of ISR-boost, however, a clear but transient (reinforcement of the) activation of the “biosynthesis of JA” and “response to JA” is observed (as a result of the priming of the JA-pathway by the ISR) suggesting a role of this pathway in countering the B. cinerea infection during the ISR-boosted defense response as was described for bacterial BCOs (Pieterse et al., 1998) and for hexanoic acid (Kravchuk et al., 2011). Furthermore, while the transcription factor MYC2 is regarded a marker gene of the ISR induced by rhizobacteria (Pozo et al., 2008), in our study its expression was not significantly affected during the ISR-prime neither during ISR-boost. However, our mutant analysis clearly showed absence of ISR in myc2 mutants (Figure 4), thereby confirming that it is essential for ISR.

The Et-pathway shows no or minimal involvement in T. hamatum T382-induced ISR

Our observations on a limited role of the Et-pathway in T. hamatum T382-induced ISR, differs from earlier findings in rhizobacteria-mediated ISR in which both Et and JA are postulated to play key roles (Pieterse et al., 1998). Several reasons for this discrepancy can be given. First, rhizobacteria and the fungus T. hamatum T382 do not necessarily use the same working mechanism to trigger ISR in plants. In this aspect our observed induction of “response to chitin” and several chitinases as a consequence of recognition by the plant of fungal (T382) chitin-like MAMPs might be explainatory. Second, since in rhizobacteria-mediated ISR Et is proposed to act downstream of JA (Pieterse et al., 1998) and our results do show a clear induction of JA-related pathways during T. hamatum T382-mediated ISR, it can not be excluded that in the latter Et-induction occurs outside the time frame analyzed in the present study. Third, it has been shown that plants undergoing rhizobacteria-mediated ISR do not display induction of JA/Et-responsive genes during ISR-prime (Pieterse et al., 1998). Therefore, the unaltered expression of JA-Et markers (like PDF1.2) during ISR-prime does not exclude that the Et-pathway is not involved in the induction of T. hamatum T382-mediated ISR. The unaltered ISR-effect observed in the etr1 and ein2 mutants (Figure 4) only indicates that the Et-pathway, or at least the part in which ETR1 and EIN2 are involved,
does not play an important role in *T. hamatum* T382-mediated ISR.

The phenylpropanoid pathway is involved in *T. hamatum*

In accordance with the results on gene expression (Table 2), anthocyanin measurements (Figure 5) and the *tt, chs*, and *β3h* mutant (Figure 4) studies, an overview of ISR-modulated expression of genes involved in the phenylpropanoid pathway showed that this pathway is clearly involved in ISR, and that mainly the final branch of the pathway, leading to the production of anthocyanins, is activated (Figure 6D). The latter is characterized by absence of induction of enzymes that catalyze the first steps of the phenylpropanoid pathway like the PAL proteins, MYB74, C4H, and 4CL2 during ISR-prime (Figure 6D). These findings for *Trichoderma*-induced priming are very similar to the results of Shetty et al. (2011). They found that silicon-induced priming of roses is characterized by upregulation of CHS expression and subsequent elevated levels of phenolic acids and flavonoids in response to infection by rose powdery mildew.

In line with the observation that *T. hamatum* T382-induced ISR-prime closely resembles MAMP-triggered immunity and the resulting SAR, it can be concluded that despite overall similarities with BIDR, ISR-prime can be distinguished by the much more pronounced induction of the SA-pathway (Figure 6B), production of SA via isochorismate instead of phenylalanine (Figure 6B), the absence of any involvement of the JA- and the Et-pathway (Table 2), and the induction of the phenylpropanoid pathway instead of the camalexin pathway as the main source of secondary metabolites (Table 2; Figure 6D).

The most remarkable difference between ISR and BIDR/SAR is the absence in ISR of downregulation of general processes like photosynthesis and translation (Table 2). The latter might explain why ISR-prime as fully fledged defense reaction is much better tolerated by the plant than pathogen-induced defense responses. A negative correlation between SAR and plant growth and metabolism has been frequently reported in literature (Cohen and Kuč, 1981; Heil et al., 2000; Latunde-Dada and Lucas, 2001; Louws et al., 2001; Bolton, 2009). In contrast, we never observed such negative effects in any of our experiments on *T. hamatum* T382-induced ISR.

TRICHODERMA HAMATUM T382 PRIMES THE PLANT TO RESPOND MORE QUICKLY TO PATHOGEN INFECTION

On the first day after *B. cinerea* inoculation, ISR-boost was characterized by a transient activation of JA-biosynthesis that was not observed during BIDR and reinforcement of the BIDR-related induction of JA-response (Table 2). Additionally, the induction of the defense-related process “response to wounding,” which is linked to the JA-pathway, was also reinforced by the ISR. Furthermore, during ISR-boost, the defense-related process “response microbial phytoxotoxin” and the biosynthesis of secondary metabolites (e.g. anthocyanins, galactolipids) were induced, whereas during BIDR these defense responses were not yet activated on the first day after *B. cinerea* inoculation. These findings correspond to the current view that (i) ISR primes the plant to react faster to subsequent pathogen infections (Prime-A-Plant Group et al., 2006; Pozo et al., 2008; De Vleeschauwer et al., 2009) and that (ii) *Trichoderma* spp. are able to activate ISR that leads to such primed responses (Lorito et al., 2010).

On the second day after *B. cinerea* inoculation the production of secondary metabolites (e.g. anthocyanins and flavonoids; Figure 6D; Table 2), was still reinforced. With respect to anthocyanins and flavonoids many different in planta functions have been proposed including their role as antioxidants or protectants against different types of abiotic (e.g. UV) and biotic stress. Regarding the latter, it is suggested that both compounds accumulate around fungal infection sites to protect host cells from oxidative damage as a result of the defense-related ROS-production (Hipskind et al., 1996; Kangatharalingam et al., 2002; Treutter, 2006). Furthermore, anthocyanins have been reported to play a role in attenuating defense-related ROS-production (Figueroa-Balderes et al., 2006; Senthil-Kumar and Mysore, 2010), while some flavonoids have direct antifungal activity (Treutter, 2006; Buer et al., 2010). Like flavonoids, galactolipids are also known to display antifungal effects. For instance, esters formed between jasmonates and galactolipids can inhibit the growth of *Botrytis cinerea* (Kourtchenko et al., 2007). The enhanced (“primed”) production of these antifungal compounds during ISR-boost might give a first explanation for the observed increased resistance toward *B. cinerea* resulting from T382-induced ISR.

TRICHODERMA HAMATUM T382 RESTRAINS THE DEFENSE RESPONSE AFTER *B. CINerea* INOCULATION

On the second day after *B. cinerea* inoculation, we observed a clear moderation of BIDR during ISR-boost (Table 2), possibly as a result of the priming and the subsequent increased inhibition of B. *cinerea* proliferation (and concomitant BIDR-triggering) in *T. hamatum* T382 treated plants. The major induction of the defense system during BIDR was thus restrained during ISR-boost, as was the case for various defense processes (e.g. “defense response to fungus,” “response to chitin,”...), JA-, Et-, and ABA-responses, SA- and JA-mediated signaling and the production of camalexin. Such moderation of the normal defense response against pathogens has been previously observed for other BCAs, from both fungal (Wen et al., 2005) and bacterial (Carteaux et al., 2008) origin. When studying the respective pathways in more detail, we observed the same sets of genes being upregulated during BIDR and downregulated during ISR-boost, thereby confirming the restraining of the BIDR (Figure 6). It is possible that during ISR-prime defensive proteins or their respective transcripts have accumulated so that the levels of these compounds at the moment of *Botrytis* inoculation are already higher in *T. hamatum* T382-treated plants than in control plants. This would leave out the need for a further strong induction of the defense response at the level of gene expression and, hence, would result in the observed restraining of the defense response during ISR-boost.

The induction of compounds with an antioxidant activity (e.g. anthocyanins, flavonoids), together with the observed restraining of the ROS response during ISR-boost (Figure 6A), might give a reasonable second explanation for the T382-induced ISR efficient against *B. cinerea*. The importance of ROS response in ISR is also reflected in our results for the *vtcl* and *rbolD* mutant studies (Figure 4). Both mutants display increased resistance to *B. cinerea* infection and additional *T. hamatum* T382 treatment.
did not further boost this enhanced resistance. However, it should be noted here that the absence of an ISR-effect in mutants with already increased resistance to pathogens (such as B. cinerea) can be related to the fact that an additional boost of defense-related compounds by the biocontrol organism might not be possible in the plant. Different findings support the general idea that infection by B. cinerea is favored by ROS-production in the plant. First, as for other necrotrophic pathogens, infection and colonization of the plant will be promoted by necrosis-inducing components such as ROS (Govrin and Levine, 2000; Glazebrook, 2005). It has indeed been shown that B. cinerea virulence correlates with the intensity by which the plant produces ROS as defense reaction (Temme and Tudzynski, 2009). Secondly, it is known that this pathogen is actively secreting compounds to elicit an oxidative burst and subsequent programmed cell death (Govrin et al., 2006). Additionally, it has been demonstrated that B. cinerea infection can be suppressed by spraying antioxidants on plants (Elad, 1992).

In view of the very recent report by Brotman et al. (2012), it is worthwhile to briefly compare our results with their findings. In their study analysis of gene expression in A. thaliana leaves was done on a restricted set of 137 genes during the ISR induced by another Trichoderma species, T. asperelloides T203, and effective against the bacterial pathogen Pseudomonas syringae. During ISR-prime induced by T. asperelloides T203 they identified 15 up- and 2 downregulated genes. Four of these upregulated genes are also induced during T. hamatum T382-induced ISR-prime, namely WRKY40, WRKY55, TAT3, and PR5. The first one is a gene that is induced by SA-signaling, encoding a transcription factor that interacts with WRKY18 to form a negative feedback loop during ISR-prime induced defense (Pandey et al., 2010). Remarkably, the WRKY18 gene is also induced during T. hamatum T382-ISR-prime. The TAT3 gene is controlled by the JA-signaling pathway in which NPR1 acts as a positive regulator. This induction is linked to the activation of ROS signaling by NPR1 (Brosché and Kangasjärvi, 2012) upon activation of SA-signaling during the MAMP-response. Overall the similarities in ISR-prime between our results and those of Brotman et al. (2012) are low. A possible explanation for this discrepancy might be the fact that both studies characterize ISR-prime at different time points after Trichoderma treatment (4 dpTi in Brotman et al., 2012 vs. 2 dpTi in our study). As shown in Figure 2A, the induced response during ISR-prime triggered by T. hamatum T382 is transient, peaking in the first few days after Trichoderma treatment and then decreasing again until basal expression levels are reached.

Comparing our results on ISR-boost with their data is even more complex. First of all, as ISR-boost in both studies is initiated by different types of pathogen (fungal vs. bacterial) with different infection strategies, comparison of induced responses are expected to also significantly differ. Furthermore their study is restricted to only a comparison between the tripartite interaction (A. thaliana – T. asperelloides T203 – P. syringae) with untreated and mock-inoculated control plants, one can not rule out the effects of the pathogen (P. syringae) infection, as is the case in our study (BIDR). Nevertheless, some overlap in differentially expressed genes can be identified in both studies such as the induction of LTP4 and LOX2, and a downregulation of WRKY40. The LTP4 gene encodes a lipid transfer protein, a member of a family 14 of pathogenesis-related peptides (PR14) with reported in vitro antimicrobial activity (Sels et al., 2008). The JA-responsive LOX2 gene encodes a lipoygenase that is required for JA production (Bell et al., 1995) during pathogen infection (Spoel et al., 2003). Enhanced expression of this gene also takes place during rhizobacteria-induced ISR-boost (Pineda et al., 2012).

CONCLUSION

In this study we demonstrated that application of T. hamatum T382 to the roots of A. thaliana results in an increased resistance to subsequent leaf infections by the necrotrophic pathogen B. cinerea, characterized by a significant reduction in symptom development. Further analysis of this ISR through an extended transcriptome study, more specifically of the responses induced before (ISR-prime) and after addition (ISR-boost) of B. cinerea, and comparison with the more intensively studied pathogen-induced responses (like SAR and MAMP-triggered defense) led to the following general conclusions.

During ISR-prime T. hamatum T382 evokes a fully fledged MAMP-triggered defense response in Arabidopsis leaves on the second day after the treatment that leads to a SAR-like response and that prepares the plant to react more quickly to subsequent pathogen inoculation. Both the SA- and NPR1 were identified as important players in the signaling of this ISR-response. However, in contrast to pathogen-induced defense responses like SAR and BIDR (Cohen and Kuć, 1981; Heil et al., 2000; Latunde-Dada and Lucas, 2001; Louws et al., 2001; Bolton, 2009), the T. hamatum T382-induced ISR-response did not negatively affect translation and photosynthesis, processes that are essential for growth and survival of the plant. This could explain why ISR is relatively well-tolerated by the plant and does not cause any visually observable negative effects on plant growth previously reported for SAR.

The primed defense response that is mounted in T. hamatum T382-treated plants upon pathogen inoculation is characterized by the faster induction of defense processes, JA-synthesis and JA-response, and the production of several secondary metabolites like anthocyanins, flavonoids and galactolipids. The observed induction of the JA-pathway is transient since at a later stage, the Botrytis-induced defense responses are in general reduced as compared to those in plants not pretreated with T. hamatum T382 (BIDR), although this is not the case for the production of anthocyanins and flavonoids. Interestingly, the restrained induction of ROS together with an increased production of antioxidants (like anthocyanins and flavonoids) during ISR-boost could explain a reduction in plant cell necrosis, a process which is considered favorable for necrotrophic pathogens such as B. cinerea, and as such for the observed decrease in B. cinerea-caused disease symptoms. However, the role of anthocyanins and flavonoids in ISR could extend a mere antioxidant activity since they are also known to display direct antimicrobial properties (Buer et al., 2010). Furthermore, the induction of both JA- and galactolipid biosynthesis during ISR-boost might point to a second route for producing antifungal compounds to neutralize the B. cinerea infection (Kourtchenko et al., 2007).
MATERIALS AND METHODS

BIOLOGICAL MATERIALS

Cultivation and spore harvesting of Trichoderma hamatum strain T382 (kindly provided by Tom De Ceuster, DCM, Sint-Katelijne-Waver, Belgium) and Botrytis cinerea strain B05-10 (kindly provided by Rudi Aerts, Katholieke Hogeschool Kempen, Geel, Belgium) was performed as described previously (Broekaert et al., 1990). Arabidopsis thaliana Col-0 plants were obtained from the European Arabidopsis thaliana stock centre (NASC). The Arabidopsis thaliana mutants sid2, npr1, myc2, em2, ett1, chaos, f3h, rbohD, vtc1, and tt were kindly provided by Prof. U. Conrath (RWTH Aachen University, Aachen, Germany), Prof. X. Dong (Duke University, Durham, NC, USA), Prof. S. Berger (Institut für Pflanzenbiochemie, Halle/Saale, Germany), Prof. F. Ausubel (Massachusetts General Hospital, Boston, MA, USA), Prof. J. Glazebrook (University of Maryland, Maryland, MD, USA) and the Arabidopsis Biological Resource Center, Columbus, OH, USA (accession numbers CS237 for ett1, CS3071 for ein2, N3130 for tt, N653439 for f3h, N671192 for chaos, N671557 for rbohD and N8326 for vtc1), respectively. The transgenic Arabidopsis thaliana line containing the NahG gene was obtained from J. Ryals (Ciba Geigy, Switzerland). DCM, Sint-Katelijne-Waver, Belgium) and F. Ausubel (Massachusetts General Hospital, Boston, MA, USA) was performed as described in detail previously (Broekaert et al., 2010).

DISEASE ASSAYS

Arabidopsis thaliana Col-0 plants were grown in untreated and unsterilized soil (“DCM potgrond voor Zaaien and Stekken”, DCM, Sint-Katelijne-Waver, Belgium) in a growth chamber with 21°C daytime temperature, 18°C night-time temperature, 75% humidity and a 12-h day-light cycle with a light intensity of 210 μmol/m² s. Three weeks old plants were treated with Trichoderma hamatum T382 by pipetting a 50 μl spore suspension (2 x 10⁷/ml) directly onto the roots. Six days later, these and an equal number of mock-treated plants were inoculated with Botrytis cinerea B05-10 as described previously (Thomma et al., 1998). Briefly, a 5 μl drop of a Botrytis cinerea spore suspension (5 x 10⁶/ml in 1/2 PDB) was inoculated onto two leaves per plant. Disease symptoms were scored by measuring the diameters of the necrotic lesions on various days after inoculation. The disease assay was repeated 12 times with a total of 2000 plants.

Determination of the level of Trichoderma hamatum T382

Trichoderma hamatum T382 density was determined by (i) dilution plate enumeration on Trichoderma selective medium and (ii) qPCR using Trichoderma hamatum T382 specific primers as previously described (Lievens et al., 2007).

In short, 10 g of each root sample was washed intensely in 100 ml phosphate buffer and 10 g of each soil sample was mixed with 90 ml phosphate buffer in a blender for 30 s at high speed. Next, a 10-fold dilution series was prepared and 100 μl of each dilution was plated and spread on a Trichoderma selective medium (Chung and Hoitink, 1990) in triplicate. After 5 days of incubation at 25°C in the dark, the colonies were counted.

In parallel, genomic DNA was extracted from 0.5 ml washed root or 0.5 g soil sample using Mo Bio Ultraclean Soil DNA Isolation kit according to the manufacturer’s specifications (Mo Bio Laboratories, Solana Beach, CA, USA). DNA extracts were diluted 10-fold and stored at −20°C. To specifically detect Trichoderma hamatum T382, qPCR amplification was performed in a total volume of 25 ml using the intercalating dye SYBR Green I on a SmartCyclerIII instrument (Cepheid, Sunnyvale, CA, USA). Each reaction mixture contained 2 ml of the target DNA extract, 12.5 ml of the QuantitectTM SYBR Green PCR Master Mix (Qiagen, Inc., Valencia, CA, USA), 0.625 ml of each primer (20 mM), and 9.25 ml sterile distilled water. Sequences of the Trichoderma hamatum T382 specific primers are shown in Table S3 in Supplementary Material. qPCR was performed at the end of the PCR run. A melt curve profile was obtained by slowly heating the mixture from 60 to 95°C at 0.2°C/s with continuous measurement of fluorescence. Standard curves were generated by plotting the threshold cycle (CT) of a 10-fold dilution series of standard DNA against the logarithm of the concentration. The regression line was used to calculate the DNA concentration of Trichoderma hamatum T382 in the samples via the obtained Ct-values (Brouwer et al., 2003; Lievens et al., 2006).

qRT-PCR

Primers were designed using Primer3 software (Rozen and Skaltsky, 2000), primer sequences are shown in Table S3 in Supplementary Material. Before qRT-PCR the ideal annealing temperature of each primer was determined in a regular PCR. Six different sets of leaves from mock-treated and T. hamatum T382 treated were collected daily and used for qRT-PCR to study gene expression during ISR-prime. For ISR-boost systemic leaves were collected from five of the same sets of mock-treated and Trichoderma hamatum T382-treated plants after additional Botrytis cinerea inoculation. For qRT-PCR validation of the microarray results, an additional biological repeat was used, for which samples were collected in the same manner. RNA extraction, DNase treatment and reverse transcription were done as described previously (Mirouze et al., 2006). The qRT-PCR analysis was carried out using the StepOnePlus System and Power SYBR Green PCR Master Mix (Applied Biosystems). The PCR parameters were: 10 min at 95°C, 40 cycles of amplification (10 s at 95°C, 10 s at 58°C, 10 s at 72°C) and a melting curve stage (15 s at 95°C, 1 min at 60°C increased to 95°C with steps of 0.3°C). Melt curve analysis was performed as described in the previous section. Elongation factor 1α (EF1α; At5g60390) was used as a reference gene (Becher et al., 2004). Transcript levels were normalized to the respective transcript level of EF1α. Relative log₂ induction ratios of
treated samples compared with the mock treatment were calculated based on the ΔΔCt method (Livak and Schmittgen, 2001).

MICROARRAYS

Samples from three independent sets of both ISR-primed (At + T) and ISR-boosted (At + B + T) plants, and from the corresponding control plants (At and At + B) were used for microarray analysis. For all samples a dye swap was performed. Three biological replicates were included to assess technical and biological variation. RNA was extracted using a combination of Trizol® Reagent (Invitrogen Life Technologies, Paisley, UK) and a Qiagen RNeasy kit (Qiagen, Hilden, Germany). RNA quality control, labeling, hybridizations and imaging were performed at the MicroArray Facility (VIB, Leuven) according to the protocols specified on the web site (http://www.microarrays.be). Agilent *Arabidopsis* 4-pack microarrays (Agilent Technologies, Palo Alto, CA, USA) were used, normalization was done with the accompanying software (Agilent Technologies, Palo Alto, CA, USA). The correlations among the replicates (0.98–0.99 among technical replicates and 0.92 among dye swops) and the scatter plots confirmed the high quality and reproducibility of the microarray experiments. Data from different hybridizations were centered and scaled using quantile normalization, implemented in R (R Development Core Team, 2011). For ISR-prime, ISR-boost and BIDR differentially expressed genes, defined as genes of which the expression level is significantly modified (raised or reduced) in a specific condition as compared to a control treatment were selected using the (adapted) t-test developed by Tusher et al. (2001). Analysis of enrichment of gene ontology (GO) terms was performed on the five sets of differentially expressed (DE) genes that were produced (ISR-prime, BIDR for the biological processes: MAMP-triggered defense, SA-pathway, genes that are differentially expressed during ISR-prime, ISR-boost and BIDR for the biological processes: MAMP-triggered defense, SA-pathway, JA-pathway, phenylpropanoid pathway, and PR1-regulation.

REFERENCES

Ahn, I. P., Kim, S., and Lee, Y. H. (2005). Vitamin B1 functions as an activator of plant disease resistance. *Plant Physiol.* 138, 1505–1515.

Alfano, G., Ivey, M. L. L., Cakir, C., Bos, J. I. B., Miller, S. A., Madden, L. V., Kamoun, S., and Hoitink, H. A. J. (2007). Systemic modulation of gene expression in tomato by *Trichoderma hamatum* 382. *Phytopathology* 97, 429–437.

Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., and Ecker, J. R. (1999). **EIN2**, a bifunctional transducer of ethylene and stress responses in *Arabidopsis*. *Science* 284, 2148–2152.

Asai, T., Tena, G., Plotnikova, I., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., and Sheen, J. (2002). MAP kinase signalling cascade in *Arabidopsis* innate immunity. *Nature* 415, 977–983.

Atitalla, I. H., Johnson, P., Brishammar, S., and Quintanilla, P. (2001). Systemic resistance to *Fusarium* wilt in tomato induced by *Phytophthora cryptogea*. *J. Phytopathol.* 149, 373–380.

Audenaert, K., De Meyer, G. B., and Höfte, M. (2002). Abscisic acid determines basal susceptibility of...
tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 128, 491–501.

Barth, C., Moeder, W., Klessig, D. F., and Conklin, P. L. (2004). The timing of senescence and resistance to pathogens is altered in ascorbate-deficient mutant C-1. Plant Physiol. 134, 178–192.

Becher, M., Talke, I. N., Krall, L., and Kramer, U. (2004). Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J. 37, 251–268.

Bell, E., Creelman, R. A., and Mullet, J. E. (1995). A chloroplast lipoxigenase is required for wound-induced accumulation of jasmonic acid in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 92, 8675–8679.

Berger, S., Bell, E., and Mullet, J. E. (1996). Two methyl jasmonate-insensitive mutants show altered expression of AvrPs in response to methyl jasmonate and wounding. Plant Physiol. 111, 525–531.

Bolton, M. D. (2009). Primary metabolism and plant defense – fuel for the fire. Mol. Plant Microbe Interact. 22, 487–497.

Broekaert, W. F., Terras, F. R., Cammue, B. P. A., and Thomma, B. P. J. M. (2011). An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 315, 867–871.

Cancel, J. D., and Larsen, P. B. (2004). The tim- ing of senescence and response to biotic stress. Eur. J. Plant Pathol. 104, 279–286.

Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583–1592.

Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63.

Carrieaux, F., Contesto, C., Gallou, A., Desbordes, G., Kopka, J., Tanonnet, L., Renou, J. P., and Touraine, B. (2008). Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. strain ORS528 and Pseudomonas sp. strain pv. tomato DC3000 leads to complex transcriptome changes. Mol. Plant Microbe Interact. 21, 244–259.

Carrieaux, F., Thibaud, M. C., Zimmerli, L., Lessard, P., Sarrobert, C., and David, P. (2003). Transcriptome analysis of Arabidopsis coloinfected by a plant-growth promoting rhizobacterium reveals a general effect on gene transcription. Plant Cell 16, 524–531.

Craff, C. M., and Nelson, E. B. (1996). Microbial properties of composts that suppress damping-off and root rot of creeping bentgrass caused by Pythium graminis. Appl. Environ. Microbiol. 62, 1550–1557.

De Bondt, A., Eggermont, K., Druart, P., Vil, M., Goderis, I., Vanderleyden, J., and Broekaert, W. F. (1994). Agrobacterium-mediated transformation of apple (Malus × domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep. 13, 587–593.

De Coninck, B., Bels, J., Venmans, E., Thys, W., Goderis, I., J. Carron, D., Delaure, S. L., Cammue, B. P., De Bolle, M. E., and Mathis, J. Y. (1999). Arabidopsis thaliana plant defense against Pseudomonas Virulence factors affecting gene transfer efficiency. Plant Cell 10, 903–910.

Delaney, T. P., Friedrich, L., and Ryals, J. A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. U.S.A. 92, 6602–6606.

Dong, X., Thiyagarajan, T. P., U. 35, 193, Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J. (1994). A central role of salicylic acid in plant disease resistance. Science 266, 1247–1250.

Delfer, C., Stenzel, I., Hause, B., Mier- sch, O., Feusner, L., and Waster- nack, C. (2006). Jasmonate biosynthesis in Arabidopsis thaliana – enzymes, products, regulation. Plant J. (Stuttg). 8, 297–306.

Dong, X. (2004). NPR1, all things con- sidered. Curr. Opin. Plant Biol. 7, 547–552.

Dufour, B. J., Pouhair, D., Olivain, C., Alabouvette, C., and Lemenance, P. (1998). Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur. J. Plant Pathol. 104, 903–910.

Elad, Y. (1992). The use of antioxidants (free radical scavengers) to control grey and white moulds in various crops. Plant Pathol. 41, 417–426.

Ferrari, S., Plotnikova, J. M., De Lorenzo, G., and Ausubel, F. M. (2003). Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, ED5 and EDS5. Plant Pathol. 52, 193–205.

Ferre, J. L., Austin, M. B., Stewart, C. J., and Noel, J. P. (2008). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46, 356–370.

Figuerola-Balders, R. E., Garcia-Ponce, B., and Rocha-Sosa, M. (2006). Hormonal and stress induction of the gene encoding common bean acetylcoenzyme A carboxylase. Plant Physiol. 142, 609–619.
Heil, M., Hilpert, A., Kaiser, W., and Linsenmair, K. E. (2000). Reduced growth and seed setting following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88, 645–654.

Hipskind, J., Wood, K., and Nicholson, R. L. (1996). Localized stimulation of anthocyanin accumulation and delineation of pathogen ingress in maize genetically resistant to Bipolaris maydis race O. Physiol. Mol. Plant Pathol. 49, 247–256.

Horst, L., Locke, J. C., Krause, R., McMahon, R. W., Madden, L. V., and Hoitink, H. A. (2005). Suppression of Botrytis blight of bogo-

Frontiers in Plant Science
The ISR induced by T382 A. (2006). An elicitor from Ascorbate and glutathione: the heart of the redox hub. Physiol. Mol. Plant Pathol. 58, 199–208.

Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. (1996). Benzo(thiazole)indole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10, 71–82.

Lee, D. S., Kim, B. K., Kwon, S. J., Jin, H. C., and Park, O. K. (2009). Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signal-

Biochem. Biophys. Res. Commun. 379, 1038–1042.

Li, J., Zhao-Hui, C., Batoux, M., Nekrasov, V., Roux, M., Chichulla, D., Zippel, C., and Jones, J. D. (2009). Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc. Natl. Acad. Sci. U.S.A. 106, 15973–15978.

Lievens, B., Brouwer, M., Vanachte, A. C. R. C., Cammue, B. P. A., and Thomma, B. P. H. I. (2006). Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci. 171, 155–165.

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods 25, 402–408.

Lloyd, A. J., William Allwood, J., Winder, C., Dunn, W. B., Heald, J. K., Cristescu, S. M., Sivakumar, A., Arren, F. I., Mulema, J., Denby, K., Goodacre, R., Smith, A. R., and Mur, L. A. (2011). Meta-bolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea. Plant J. 67, 852–868.

Lorenzo, O., Chico, J. M., Sanchez-Serrano, J. J., and Solano, R. (2004). JASMONATE-SENSITIVE encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938–1950.
tomato plants using high-density oligonucleotide microarrays. Microbiology 158(3), 119–128.

Rylas, J. A., Neuschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., and Hunt, M. D. (1996). Systemic acquired resistance. Plant Cell 8, 1809–1819.

Samolski, I., de Luis, A., Vizcaino, J. A., Monte, E., and Sáezre, M. B. (2002). Gene expression analysis of the biotic defense genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res. 8, 153–161.

Schaller, G. E., and Bleecker, A. B. (2002). Signal crosstalk in the cytosol. Trends Plant Sci. 7, 357–363.

Scham, T., and Leibman, M. (2000). Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95, 76–84.

Sears, T. D., and Metraux, J. P. (2005). Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol. Plant Microbe Interact. 19, 555–561.

Sekhon, G. S., Khoon, A., and Chang, S. H. (2002). Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 30, 119–130.

Selvam, M. A., Otsuchi, H., Yamada, S., Machida, C., Hammond-Kosack, K. E., and Jones, J. D. (1998). Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gpp1phox). Plant J. 14, 365–370.

Sen, S. K., and Peterson, P. B. (2007). Significance of flavonoids in plant resistance: a review. Environ. Chem. Lett. 4, 147–157.

Shah, J. (2003). The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6, 365–371.

Shumaker, D. E., and Bleecker, A. B. (2006). Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res. 8, 153–161.

Sikkema, S., Visser, W. J., and Mochizuki, T. (2009). Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res. 8, 153–161.

Sillanpää, M., Jolma, A., and Niinemets, Ü. (2010). Assessing functional role of three water deficit stress-induced genes in nonhost disease resistance using virus-induced gene silencing in Nicotiana benthamiana. Plant Signal. Behav. 5, 586–590.
The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. Plant Microbe Interact. 17, 895–908.

Veronese, P., Nakagami, H., Bluhm, B., AbuQamar, S., Chen, X., Salmeron, J., Dietrich, R. A., Hirt, H., and Mengiste, T. (2006). The membrane anchored Botrytis-induced kinase 1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18, 257–273.

Wan, J., Zhang, S., and Stacey, G. (2004). Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol. Plant Pathol. 5, 125–135.

Wang, D., Amornsiripanitch, N., and Dong, X. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog. 2, 1042–1050. doi:10.1371/journal.ppat.0020123

Wang, Y., Ohara, Y., Nakayashiki, H., Tosa, Y., and Mayama, S. (2005). Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FP1960-1T5 in Arabidopsis. Mol. Plant Microbe Interact. 18, 385–396.

Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Metraux, J. P., and Ryals, J. A. (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3, 1085–1094.

Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100, 681–697.

Wen, K., Seguin, P., St Arnaud, M., and Jabaji-Hare, S. (2005). Real-Time Quantitative RT-PCR of defense-associated gene transcripts of Rhizoctonia solani-infected bean seedlings in response to inoculation with a nonpathogenic binucleate Rhizoctonia isolate. Phytopathology 95, 345–353.

Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5, 218–223.

Yan, Z., Reddy, M. S., Ryu, C.-M., McNer-roy, J. A., Wilson, M., and Kloep-pner, J. W. (2002). Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92, 1329–1333.

Zimmerli, L., Jakab, G., Metraux, J. P., and Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proc. Natl. Acad. Sci. U.S.A. 97, 12920–12925.

Zimmerli, L., Métraux, J. P., and Mauch-Mani, B. (2001). β-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126, 517–523.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 13 March 2012; accepted: 07 May 2012; published online: 29 May 2012.

Citation: Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA and De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front. Plant Sci. 3:108. doi: 10.3389/fpls.2012.00108

This article was submitted to Frontiers in Plant-Microbe Interaction, a specialty of Frontiers in Plant Science.

Copyright © 2012 Mathys, De Cremer, Timmermans, Van Kerckhove, Lievens, Vanhaecke, Cammue and De Coninck. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.