Andreev states, supercurrents and interface effects in clean SN multilayers

C. Ciuhu, A. Lodder*, R.E.S. Rotadoy, R.T.W. Koperdraad
Faculty of Sciences / Natuurkunde en Sterrenkunde, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
(November 19, 2018)

We present results for the local density of states in the S and N layers of a SN multilayer, and the supercurrent, based on a Green’s function formalism, as an extension of previous calculations on NS, SNS and SNSNS systems. The gap function is determined self-consistently. Our systems are chosen to have a finite transverse width. We focus on phenomena which occur at so-called critical transverse widths, at which a new transverse mode is starting to contribute. It appears, that for an arbitrary width the Andreev approximation (AA), which takes into account only Andreev reflection at the SN interfaces, works well. We show that at a critical width the AA breaks down. An exact treatment is required, which considers also ordinary reflections. In addition, we study the influence of an interface barrier on the coupling between the S-layers.

I. INTRODUCTION

Starting about two decades ago, the interest of developing devices at a very small scale gave rise to a new branch in physics, the mesoscopic physics. Both theoretically and experimentally, many interesting phenomena were discovered which occur at this scale which lies essentially in submicron ranges.

Many samples are built up out of superconducting (S) and normal metallic (N) components in which necessarily SN interfaces and possibly point contacts occur. It is why a lot of theoretical work was devoted to studying different SN configurations.

The first experimental investigations, using tunneling spectroscopy measurements, revealed the fact that the density of states in a normal metal connected to a superconductor is modified. McMillan provided a simple tunneling model for the proximity effect at SN interfaces, which allows for a solution of the Gor’kov equations. Ishii and Furusaki extend his work to include Andreev reflections.

Recently a powerful Green’s function formalism was published which unified earlier formulations and improved upon them. First applications were made for NS, SNS, and SNSNS systems. An important feature of these calculations was, that the systems were chosen to have a finite transverse width and they were focussed on particular phenomena which occur at specially chosen transverse widths. Up to now only treatments are known for an infinite width, or if a finite width was considered it was done in a global way, in terms of the number of allowed transverse modes.

The aim of the present paper is to show applications to different SN multilayer structures, by which we understand a periodic sequence of S and N layers, extended in the x-direction, see Fig. 1. A set of observables is calculated, such as the local density of states (LDOS) in the S and N layers of a multilayer, and the supercurrent in the multilayer.

In Section II, we present the theory, applied to SN multilayers. In many situations, it is enough to work within the Andreev approximation (AA), which reduces to taking into account only Andreev reflections at the S/N interfaces. In Section III we will show results derived within AA. Exact calculations, which include ordinary reflections, are discussed in Section IV, in relation with the so-called critical transverse widths, at which a new transverse mode is starting to contribute. In Section V we present results for the supercurrent in the SN multilayers. In Section VI we study the consequences of using a selfconsistently calculated gap. Finally, to complete the picture, in Section VII we take into consideration an interface potential, by this modelling a Schottky barrier. We apply a simple δ-function barrier located at the SN interface, introduced by Blonder et al.

II. CLEAN SN STRUCTURES

The purpose of this section is to summarize first the basic ingredients of the general theory presented in Ref., which we need in calculating the LDOS $\rho(x, E)$ for energies E of the order of magnitude of the gap energy and the supercurrent I. After that we show how the general theory is elaborated for applications to SN multilayers.

*Corresponding author, e-mail: alod@nat.vu.nl
We study a periodic SN multilayer, which extends in the x-direction, as depicted in Fig. 1. In the transverse directions y and z, the system has finite size, $L_y = L_z = L_t$. We apply a Kronig-Penney superlattice model, depicted in Fig. 2, which means that the pair potential is

$$\Delta(x + d_S + d_N) = \Delta(x)e^{i\phi}$$

$$\Delta(x) = \begin{cases} \Delta & \text{if } x \in S \text{ layer} \\ 0 & \text{if } x \in N \text{ layer}, \end{cases}$$

where d_S and d_N are the thicknesses of the S and N layers respectively, and ϕ is the phase difference between two neighbouring superconducting layers.

Both quantities we want to calculate, can be expressed in terms of the Green’s function in the following way

$$\rho(x, E) = -\frac{2}{\pi L_yL_z} \lim_{\delta \rightarrow 0} \sum_{k_y,k_z} \text{Im} \ G_{11}(x, x; k_y, k_z; E + i\delta).$$

$$I = -2\pi e \frac{1}{L_yL_z} \sum_{k_y,k_z} \lim_{x' \rightarrow x} \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x'} \right) kT \sum_n G_{11}(x, x'; k_y, k_z, i\omega_n).$$

where the Green’s function G_{11} is the upper left element of the matrix Green’s function.

The Green’s function can be expressed in terms of a kind of wave function, which is the solution of the one-dimensional differential equation

$$\begin{pmatrix} i\omega_n + \frac{d^2}{dx^2} + k_F^2 & -\Delta \\ -\Delta^* & i\omega_n - \frac{d^2}{dx^2} - k_F^2 \end{pmatrix} \Psi(x) = 0.$$

where $k_F^2 = \mu - k_S^2$. Note that the Bogoliubov equations arise from Eq. (4) by substituting $i\omega_n \rightarrow E$. The solution of Eq. (4) for the spatially dependent Δ of the multilayer (1) is built up by starting with the solution for a homogeneous superconductor, having a constant Δ_S. The wave function can then be written as

$$\Psi^{\sigma\nu}_S(x) = \begin{pmatrix} u_S^\sigma e^{i\phi_\sigma/2} \\ u_S^{-\sigma} e^{-i\phi_\sigma/2} \end{pmatrix} e^{i\sigma\nu k_S^0 x},$$

with $\phi_\sigma = \sqrt{i\omega_n + i\sigma \Omega_S}$, $\Omega_S = \sqrt{(i\omega_n + 0^+)^2 - \Delta_S}$, and the Matsubara frequencies $\omega_n = n\pi k_BT$, n taking odd integer values only. The four standard solutions are labeled with the sign indices σ and ν, that can both equal ± 1. The index σ refers to the type of the propagating particle (electron-like for $\sigma = +$ and hole-like for $\sigma = -$) and the index ν indicates the direction of propagation.

In order to express the Green’s function in terms of $\Psi^{\sigma\nu}_S(x)$, a conjugate wave function is needed, namely,

$$\tilde{\Psi}^{\sigma\nu}_S(x) = \begin{pmatrix} u_S^\sigma e^{-i\phi_\sigma/2} \\ u_S^{-\sigma} e^{i\phi_\sigma/2} \end{pmatrix} e^{i\sigma\nu k_S^0 x},$$

(which is not the hermitian conjugate), in which ν has now to be explained as minus the direction of propagation.

With the use of these wave functions, we can express the Green’s function for a homogeneous superconductor as

$$G_S(x, x') = \sum_{\sigma} d_S^\sigma \Psi^{\sigma\mu}_S(x) \tilde{\Psi}^{\sigma\mu\nu}_S(x'),$$

with $\mu = \text{sgn}(x - x')$ and $d_S^\sigma = -\frac{1}{4\pi i k_S^0}$.

A. A single interface and more interfaces

For a single interface, situated at the position x_j, the general form of the Green’s function is
\[G_{\nu j,\nu' j'}(x, x') = \mathcal{G}_{\nu j}(x, x') \delta_{\nu \nu'} + \sum_{\sigma \sigma'} d_{\nu j}^{\sigma \nu'} \tilde{\Psi}_{\nu j}^{\sigma \nu'}(x) t_{\nu j,\nu' j'}^{\sigma \sigma'}(x') \tilde{\Psi}_{\nu' j'}^{\sigma' \nu'}(x'), \] (8)

where the subscript \((\nu j)\) refers to the part of the system that is at the \(\nu\) side of the interface at position \(x_j\). The first term accounts for the possible ways of propagating from \(x'\) to \(x\) without being scattered at the interface, while the second term describes the propagation via the interface.

The scattering matrix \(t_{\nu j,\nu' j'}^{\sigma \sigma'}\) is found by applying boundary conditions at \(x = x_j\). We require the continuity of the Green’s function and its derivative. Thus, the equation obeyed by the \(t\)-matrix is

\[\sum_{\sigma \nu} \nu d_{\nu j}^{\sigma \nu} \tilde{\Psi}_{\nu j}^{\sigma \nu}(x_j) t_{\nu j,\nu' j'}^{\sigma \sigma'}(x_j) = -\nu' \tilde{\Psi}_{\nu' j'}^{\sigma' \nu'}(x_j). \] (9)

If we consider a system with an arbitrary number of interfaces, with position coordinates \(x_j < x_{j+1}\), then the scattering of the quasiparticles is described by the scattering matrices \(T_{\nu j,\nu' j'}^{\sigma \sigma' \mu \mu'}\). The general form of the Green’s function is

\[G_{\nu j,\nu' j'}(x, x') = \mathcal{G}_{\nu j}(x, x') \left[\delta_{\nu \nu'} \delta_{jj'} + \delta_{-\nu \nu'} \delta_{j+j'}, \right] + \sum_{\sigma \sigma'} \sum_{\mu \mu'} d_{\nu j}^{\sigma \mu} \tilde{\Psi}_{\nu j}^{\sigma \mu}(x) T_{\nu j,\nu' j'}^{\sigma \sigma' \mu \mu'}(x) \tilde{\Psi}_{\nu' j'}^{\sigma' \mu'}(x'). \] (10)

Again, imposing the boundary conditions, we obtain a Lippmann–Schwinger equation which allows to calculate the \(T\)-matrices by means of the single interface \(t\)-matrices

\[T_{\nu j,\nu' j'}^{\sigma \sigma' \mu \mu'} = t_{\nu j,\nu' j'}^{\sigma \sigma' \mu \mu'} \left[\delta_{\mu \mu'} \delta_{jj'} + \delta_{-\mu \mu'} \delta_{j+j'}, \right] + \sum_{\sigma \sigma'} \sum_{\mu \mu'} t_{\nu j,\nu' j'}^{\sigma \sigma' \mu \mu'} \tilde{d}_{\nu j}^{\sigma \mu} \tilde{d}_{\nu' j'}^{\sigma' \mu'} T_{\nu j,\nu' j'}^{\sigma \sigma' \mu \mu'}. \] (11)

This equation expresses the idea of multiple scattering, since the matrix \(T_{\nu j,\nu' j'}^{\sigma \sigma' \mu \mu'}\) contains all possible processes that yield the correct final state. The first term in Eq. (11) accounts for the possibility that the particle is scattered once. The second term collects the processes in which the particle is scattered once due to \(t_{\nu j,\nu' j'}^{\sigma \sigma' \mu \mu'}\) and an arbitrary number of other times due to \(T_{\nu j,\nu' j'}^{\sigma \sigma' \mu \mu'}.\)

B. Periodic SN multilayers

Till now we just summarized the description given previously. We will now focus on an infinite periodic SN multilayer to which the theory has not been applied yet. For an infinite multilayer, it is always possible to refer to any layer of the system by referring to an even-numbered (or an odd-numbered interface only). This can lead to a further simplification of the Lippmann–Schwinger equation. We choose to refer to any part of the system by referring the even interfaces. However, for the \(t\)-matrices, both even and odd interface indices need to be used.

In order to rewrite Eq. (11) for the present purpose, we define the following matrices

\[T_{\nu j,\nu' j'} = D_{\nu j} \delta_{jj'} + \begin{pmatrix} T_{\nu j,\nu' j'}^{\sigma \sigma', -\mu \mu'} & T_{\nu j,\nu' j'}^{\sigma \sigma', +\mu \mu'} \\ T_{\nu j,\nu' j'}^{\sigma \sigma', -\mu \mu'} & T_{\nu j,\nu' j'}^{\sigma \sigma', +\mu \mu'} \end{pmatrix} \] (12)

\[D_{\nu j} = \begin{pmatrix} \delta_{\sigma \sigma'} & 0 \\ 0 & \delta_{\sigma \sigma'} \end{pmatrix} \] (13)

\[A_{\nu j} = \begin{pmatrix} 0 & t_{\sigma \sigma', -\mu \mu'}^{\pm} \\ 0 & 0 \end{pmatrix} \] (14)

\[B_{\nu j} = \begin{pmatrix} 0 & t_{\sigma \sigma', -\mu \mu'}^{\pm} \\ 0 & 0 \end{pmatrix} \] (15)

\[C_{\nu j} = \begin{pmatrix} 0 & t_{\sigma \sigma', -\mu \mu'}^{\pm} \\ 0 & 0 \end{pmatrix} \] (16)
All elements of these 2×2 matrices can themselves be regarded as 4×4 matrices, with the indices (σ, μ) and (σ', μ') labeling the rows and the columns, respectively. That makes $T_{jj'}$ an 8×8 matrix that satisfies

$$A_j \cdot T_{j-2,j'} + (B_j - 1) \cdot T_{jj'} + C_j \cdot T_{j+2,j'} + D_j \delta_{jj'} = 0. \quad (17)$$

In terms of these matrices, the system Green’s function (10) gets the following form

$$G_{\nu j \nu' j'}(x, x') = G_{\nu j}(x, x') \left[\delta_{\nu \nu'} \delta_{jj'} + \delta_{-\nu \nu'} \delta_{j+2,j'} \right] + \sum_{\sigma \sigma'} \sum_{\mu \mu'} \delta_{\nu j} \delta_{\nu' j'} \Psi_{\nu j}(x) \Psi_{\nu' j'}(x') \left(T_{jj'} - D_j \delta_{jj'} \right)_{\nu j \nu' j'} \left(\ldots A_j, B_j, C_j, A_{j+1}, B_{j+1}, C_{j+1}, \ldots \right) \tilde{\Psi}_{\nu' j'}(x'), \quad (18)$$

All possible scattering processes are incorporated in Eq. (17), which expresses the content of the Lippmann–Schwinger equation. To illustrate the different processes accounted by the A_j, B_j, and C_j matrices, we show a schema in Fig. 3.

We now turn to the periodic system. For the moment, we assume that the phase of the pair potential is the same and equal to zero in all the S-layers. The periodicity allows us to simplify the problem and to rewrite equation (17).

First we perform the following transformations

$$\tilde{t}_{\nu j \nu' j'} \equiv e^{i \sigma v k^0_{\nu j}} \tilde{t}_{\nu j \nu' j'} e^{i \sigma' \nu' k^0_{\nu' j'} x_j}, \quad (19)$$

$$\hat{T}_{\mu j \mu' j'} \equiv e^{i \sigma v k^0_{\mu j}} T_{\mu j \mu' j'} e^{i \sigma' \nu' k^0_{\mu' j'} x_j}. \quad (20)$$

The scattering matrices with hats no longer depend on the interface positions x_j, although they still refer to the interface number, through the labels νj.

The matrices $T_{jj'}$, D_j, A_j, B_j, C_j, become

$$\hat{T}_{jj'} \equiv \hat{D}_j \delta_{jj'} + \left(\begin{array}{cc} \hat{T}_{\sigma \sigma' \nu \nu'} & \hat{T}_{\sigma \sigma' \nu' \nu'} \\ \hat{T}_{\mu \mu' \nu \nu'} & \hat{T}_{\mu \mu' \nu' \nu'} \end{array} \right) \quad (21)$$

$$\hat{D} \equiv \left(\begin{array}{cc} \delta_{\sigma \sigma'} & 0 \\ 0 & \delta_{\sigma \sigma'} \end{array} \right) \quad (22)$$

$$\hat{A} \equiv \left(\begin{array}{cc} 0 & \delta_{\sigma \sigma'} \delta_{\mu \mu'} e^{i \sigma v k^0_{\nu j}} a_{\nu} \delta_{\mu} \delta_{\mu'} e^{i \sigma' v k^0_{\nu' j'} a_{\nu'}} \\ 0 & 0 \end{array} \right) \quad (23)$$

$$\hat{B} \equiv \left(\begin{array}{cc} \delta_{\sigma \sigma'} & 0 \\ \delta_{\mu \mu'} & 0 \end{array} \right) \quad (24)$$

$$\hat{C} \equiv \left(\begin{array}{cc} 0 & \delta_{\sigma \sigma'} \delta_{\mu \mu'} e^{i \sigma v k^0_{\nu j}} a_{\nu} \delta_{\mu} \delta_{\mu'} e^{i \sigma' v k^0_{\nu' j'} a_{\nu'}} \\ 0 & 0 \end{array} \right) \quad (25)$$

After these transformations, and as a consequence of the periodicity, the Green’s function becomes dependent on the relative coordinates only, and the j-independent layer thicknesses $a_{\mu} = \mu(x_{j+\mu} - x_j)$ and $a_{-\mu} = \mu(x_j - x_{j-\mu})$ can be defined. In terms of these matrices, Eq. (17) now reads as

$$\hat{A} \cdot \hat{T}_{j-2,j'} + (\hat{B} - 1) \cdot \hat{T}_{jj'} + \hat{C} \cdot \hat{T}_{j+2,j'} + \hat{D} \delta_{jj'} = 0. \quad (26)$$

This is a kind of discretized version of the original Green’s function equation. The general solution is

$$\hat{T}_{jj'} = X_{\pm}^{j-j'/2} \cdot \hat{T}_0, \quad (27)$$

where X_-, X_+ and \hat{T}_0 are implicitly given by the following set of equations
The coming subsection, we will follow the development of the LDOS for a bulk system to the LDOS for systems with
we first look at simpler systems and we postpone the treatment of SN multilayers to subsections III B and III C. In
Green’s function (18) in a simpler form
Note that (28) and (29) are quadratic equations. By that, for a period system, we can rewrite the expression of the
LDOS is normalized to the spatially constant LDOS of the bulk N material. The coupling potential V is calculated
using the BCS formula

\[G_{\nu j \nu' j'}(x, x') = G_{\nu j}(x, x') \left[\delta_{\nu \nu'} \delta_{jj'} + \delta_{-\nu \nu'} \delta_{j+j'} \right] + \sum_{\sigma \sigma'} \sum_{\mu \mu'} d_{\nu j}^\sigma d_{\nu' j'}^{\sigma'} \Psi_{\nu j}^{\sigma \mu}(x - x'_j) \]

\[(\hat{T}_{jj'} - \hat{D}_{jj'} \delta_{jj'})^{\sigma \sigma' \mu \mu'}(\hat{A}, \hat{B}, \hat{C}) \tilde{\Psi}_{\nu j}^{\sigma \mu}(x - x_j), \]

(31)

The problem of calculating the LDOS or the supercurrent, reduces to solving the system of quadratic matrix equations
(28) to (30).

After some manipulations, one can manage to reduce the problem to solving a 2 \times 2 matrix equation, which is
equivalent to solving a system of 8 simultaneous equations with real coefficients. In the Appendix, we show this more
explicitly.

The formalism described up to now can be extended to the situation in which the pair potential has a phase, which
allows for currents in the multilayer.

By convention, we assume that the N-layer has also a phase, equal to the phase of one of the two adjacent S-layers.
This means that the phase over a bilayer is constant and it makes a jump of \phi at the edges between two bilayers.

Suppose the interface between two bilayers in chosen at \textit{j} odd, then for even \textit{j} the t-matrices obey the equation

\[\sum_{\sigma \nu} \nu d_{\nu j}^\sigma \nu d_{\nu' j'}^{\sigma'} \tilde{\Psi}_{\nu j}^{\sigma \mu}(x - x_j) = -u'_{\nu' j} u_{\nu' j'}^{\sigma' - \sigma} \]

\[\text{ (j even)}. \]

while for odd interfaces, a \phi dependence remains and we are left with

\[\sum_{\sigma \nu} \nu d_{\nu j}^\sigma \nu d_{\nu' j'}^{\sigma'} \tilde{\Psi}_{\nu j}^{\sigma \mu}(x - x_j) = -u'_{\nu' j} u_{\nu' j'}^{\sigma' - \sigma} \]

\[\text{ (j odd)}, \]

where

\[U(\phi) \equiv \begin{pmatrix} e^{i\phi/2} & 0 & 0 & 0 \\ 0 & e^{-i\phi/2} & 0 & 0 \\ 0 & 0 & e^{i\phi/2} & 0 \\ 0 & 0 & 0 & e^{-i\phi/2} \end{pmatrix}. \]

\[\text{ (34)} \]

III. LOCAL DENSITY OF STATES IN SN MULTILAYERS

First we apply the theory in calculating the LDOS in the middle of one of the S or N layers. For most of the systems
which will be described, the transverse width \(L_t \) is fixed to 13 Bohr, the chemical potential \(\mu = 0.5 \text{ Ryd} \), and the
LDOS is normalized to the spatially constant LDOS of the bulk N material. The coupling potential \(V \) is calculated
using the BCS formula

\[T_c = 1.13 \omega_D e^{-1/\sqrt{N(\mu)V}}, \]

\[\text{ (35)} \]

where \(N(\mu) = \sqrt{\mu}/4\pi \). For Al with \(T_c = 1.2 \text{ K}, \mu = 0.5 \text{ Ryd} \), and \(\omega_D = 375 \text{ K} \), we find \(V = 9.516 \text{ Ryd} \). For the
pair potential \(\Delta \) we choose a value of 0.0001 Ryd. Given the BCS relation \(\frac{\Delta}{k_B T_c} = 1.77 \), the pair function should
be somewhat larger, \(\Delta = 0.00018 \text{ Ryd} \). However, we should also keep in mind the reduction of the pair function
due to the finite size of the system. This we will discuss in Section VI, in which we will determine the gap function
selfconsistently. Furthermore, many of the results we will show are not quite sensitive to the precise choice for \(\Delta \).

It appears that the LDOS curves for SN multilayers look rather complicated. As a preparation to understand them,
we first look at simpler systems and we postpone the treatment of SN multilayers to subsections III B and III C. In
the coming subsection, we will follow the development of the LDOS for a bulk system to the LDOS for systems with
a few interfaces.
A. From bulk superconductor to SNS system

In this subsection we will first follow the development of the LDOS for a bulk bar-shaped superconductor to the LDOS of a SN multilayer with \(d_S \gg (\xi, d_N)\) and of multilayers with \(d_S \gg \xi\), in which \(d_N\) becomes comparable to \(d_S\). For the present clean systems the BCS coherence length \(\xi \approx 4000\) Bohr. Looking at Fig. 2 it is clear that a multilayer with thick superconducting layers, such that \(d_S \gg \xi\), comes close to a SNS system, particularly for \(E < \Delta\).

In Fig. 4 we show the LDOS inside the S layer of a SN multilayer and the DOS of bulk S material. One clearly sees the singularity in the LDOS at \(E = \Delta\). The non-zero DOS of the S material for \(E < \Delta\) is due to the small imaginary part \(i\delta\) added to the energy, \(E + i\delta\). In all calculations we used \(\delta \approx 0.02\Delta\). Here \(d_N = 1000\) Bohr and \(d_S = 50000\) Bohr, so that the presence of the N layer is just a small perturbation from a bar shaped superconductor.

First we concentrate on the development of the LDOS for \(E < \Delta\). In Fig. 5 we show for the same system both the LDOS inside the S and the N layer. Due to the very small N layer thickness, there is just one Andreev bound state in the N layer LDOS close to the gap value of the energy, which is broadened by \(\delta\) to a peak.

Figs. 6, 7, and 8 show what happens to the LDOS of the SN multilayers if we increase \(d_N\) to \(d_N = 2000, 4000,\) and \(10000\) Bohr respectively. The pictures look more and more complex as we increase \(d_N\). In the N layer LDOS we notice the appearance of more Andreev bound states at lower and lower energies. The singularity in the S-layer DOS lowers, certainly due to reduced interaction of the neighbouring S-layers.

The oscillations in the LDOS in all figures for \(E > \Delta\) are a periodic-multilayer effect. Before discussing this band structure effect, we will first consider multilayer systems with decreasing \(E\), just a perturbation of a SNS system, as we can notice from the small oscillations at energies \(E\) which are larger than \(\Delta\). In Fig. 12 we illustrate these dispersion relations for a multilayer with \(d_S = d_N = 10000\) Bohr and two different choices for the phase difference, \(\phi = 0\) and \(\phi = \pi\). To make it more clear, we considered here only the \((1,2)\)-mode contribution to the LDOS. We notice the change in the succession of gaps with the phase \(\phi\).

Using the definition of \(k_{F,x}\), we notice that the number of allowed modes \((n_y, n_z)\) is limited by the condition \(k_{F,x}^2 \geq 0\). Besides, since \(k_{F,x}\) is different for each mode, the periodicity with which there is a solution for \(k_x\) in the equations

\[
\cos[(k_x - k_{F,x})(d_S + d_N)] = \cosh\left(\frac{\sqrt{E^2 + \Delta^2}d_S}{2k_{F,x}}\right)\cosh\left(\frac{E d_N}{2k_{F,x}} + \frac{i\phi}{2}\right) \\
+ \sinh\left(\frac{\sqrt{E^2 + \Delta^2}d_S}{2k_{F,x}}\right)\sinh\left(\frac{E d_N}{2k_{F,x}} + \frac{i\phi}{2}\right), \\
\cos[(k_x + k_{F,x})(d_S + d_N)] = \cosh\left(\frac{\sqrt{E^2 + \Delta^2}d_S}{2k_{F,x}}\right)\cosh\left(\frac{E d_N}{2k_{F,x}} - \frac{i\phi}{2}\right) \\
+ \sinh\left(\frac{\sqrt{E^2 + \Delta^2}d_S}{2k_{F,x}}\right)\sinh\left(\frac{E d_N}{2k_{F,x}} - \frac{i\phi}{2}\right),
\]

(36)

where \(k_{F,x}\) is given by

\[
k_{F,x}^2 = \mu - \left(\frac{n_y \pi}{L_t}\right)^2 - \left(\frac{n_z \pi}{L_t}\right)^2.
\]

(37)

In Fig. 12 we illustrate these dispersion relations for a multilayer with \(d_S = d_N = 10000\) Bohr and two different choices for the phase difference, \(\phi = 0\) and \(\phi = \pi\). To make it more clear, we considered here only the \((1,2)\)-mode contribution to the LDOS. We notice the change in the succession of gaps with the phase \(\phi\).

Using the definition of \(k_{F,x}\), we notice that the number of allowed modes \((n_y, n_z)\) is limited by the condition \(k_{F,x}^2 \geq 0\). Besides, since \(k_{F,x}\) is different for each mode, the periodicity with which there is a solution for \(k_x\) in the equations

B. From SNS system to SN multilayer

Let us pick up the N layer LDOS from Fig. 8 and put it together with the LDOS of a SNS system, whose \(d_N = 10000\) Bohr. This is what we show in Fig. 9. The good similarity is due to the large \(d_S\). This SN multilayer is just a perturbation of a SNS system, as we can notice from the small oscillations at energies \(E\) which are larger than the gap. Way below \(E = \Delta\) the Andreev bound states curves coincide. Just below \(E = \Delta\) the clear peak in the SNS system curve is smeared out in the multilayer curve, due to tunneling interaction between the N-layers.

The similarity between SNS systems and SN multilayers reduces with decreasing \(d_S\). Multilayer features start to appear gradually in the LDOS, as we can see in Figs. 10 and 11.

Due to the increased tunnelling, the discrete states start to form bands, while at \(E\) larger than the gap, the oscillations are more pronounced and follow a periodicity, according to the dispersion relations\(^6\)

\[
\cos[(k_x - k_{F,x})(d_S + d_N)] = \cosh\left(\frac{\sqrt{E^2 + \Delta^2}d_S}{2k_{F,x}}\right)\cosh\left(\frac{E d_N}{2k_{F,x}} + \frac{i\phi}{2}\right) \\
+ \sinh\left(\frac{\sqrt{E^2 + \Delta^2}d_S}{2k_{F,x}}\right)\sinh\left(\frac{E d_N}{2k_{F,x}} + \frac{i\phi}{2}\right), \\
\cos[(k_x + k_{F,x})(d_S + d_N)] = \cosh\left(\frac{\sqrt{E^2 + \Delta^2}d_S}{2k_{F,x}}\right)\cosh\left(\frac{E d_N}{2k_{F,x}} - \frac{i\phi}{2}\right) \\
+ \sinh\left(\frac{\sqrt{E^2 + \Delta^2}d_S}{2k_{F,x}}\right)\sinh\left(\frac{E d_N}{2k_{F,x}} - \frac{i\phi}{2}\right),
\]

(36)

where \(k_{F,x}\) is given by

\[
k_{F,x}^2 = \mu - \left(\frac{n_y \pi}{L_t}\right)^2 - \left(\frac{n_z \pi}{L_t}\right)^2.
\]

(37)

In Fig. 12 we illustrate these dispersion relations for a multilayer with \(d_S = d_N = 10000\) Bohr and two different choices for the phase difference, \(\phi = 0\) and \(\phi = \pi\). To make it more clear, we considered here only the \((1,2)\)-mode contribution to the LDOS. We notice the change in the succession of gaps with the phase \(\phi\).

Using the definition of \(k_{F,x}\), we notice that the number of allowed modes \((n_y, n_z)\) is limited by the condition \(k_{F,x}^2 \geq 0\). Besides, since \(k_{F,x}\) is different for each mode, the periodicity with which there is a solution for \(k_x\) in the equations
(36) is also different. For a higher mode \((n_y,n_z)\), \(k_{F_x}\) is smaller and the frequency with which peaks and gaps in the LDOS are alternating increases. We can see this in Fig. 13, where we compare the contributions to the LDOS coming from different modes, at phase \(\phi = 0\). As in Fig. 12, the system has \(d_S = d_N = 10000\) Bohr. One can easily check out that by just adding the four modes’ contributions one obtains the total LDOS shown in Fig. 14, which we are going to discuss in the following subsection.

C. From infinite transverse size of a SN multilayer to a finite one

Now we are prepared to investigate real periodic-multilayer effects. In addition to the \(\phi = 0\) result shown in Fig. 14 we also show the \(\phi = \pi\) result for the same system in Fig. 15. The dispersion relations (36) are nicely illustrated in the succession of bands and gaps. This system was studied also by Tanaka and Tsukada\(^8\). In their Fig. 2a, they describe a SN multilayer which has \(d_N = d_S = 5000\) Å and \(\phi = 0\), and is infinite in the transverse direction. For \(E < \Delta\) the pictures look quite similar, but above the gap the LDOS in Figs. 14 and 15 is much less smooth than in Fig. 2 of Tanaka and Tsukada. However, in Fig. 16 we show the LDOS for a system with a larger transverse width \((L_t = 130\) Bohr\)), and indeed, the behaviour for \(E > \Delta\) has become much smoother. So we conclude that differences between our results and the results of Tanaka and Tsukada come from their use of an infinite transverse width.

IV. EXACT CALCULATIONS AT CRITICAL WIDTHS

In many situations, the Andreev approximation gives results with an error which is estimated to be less than 0.1\%. The systems which we discussed up to now satisfy the conditions for which the Andreev approximation is very good. In this section, we will deal with situations in which exact calculations are necessary.

In Fig. 17 we show the not-normalized LDOS at \(E = 5\Delta\) of a homogeneous bar as a function of the transverse width \(L_t\). At \(E = 5\Delta\), the LDOS of multilayers with the same \(L_t\) approaches a constant value, given by the homogeneous bar, as we can see in Figs. 4 - 16. We notice in Fig. 17 that at certain values of \(L_t\), the LDOS has steps, followed by a fast and smooth decrease. At these widths, where the condition \(k_{F_x}^2 \geq 0\) reaches the equality, an extra mode is allowed in addition to the previous ones. The new mode has a large contribution to the LDOS, explaining the step. Apparently, at smaller \(L_t\)’s the steps are higher, which means that the effect of adding a new mode is larger. These values of \(L_t\) are called critical widths, and we will denote them by \(L_{cr}\).

Close to the critical widths, for \(0 \leq k_{F_x}^2 \leq \Delta\), the AA is not good anymore. The highest modes contribute most to the LDOS, as the steps in Fig. 17 suggest us. Besides, since \(k_{F_x}^2\) is very small in the dispersion relations (36), these modes will give rise to much more states than the lower modes.

As an illustration, in Fig. 18 we show the absolute value of the LDOS for a SN multilayer, whose \(d_S = d_N = 10000\) Bohr, (like we showed in Fig. 14), but this time at a width \(L_t = 12.566371\) Bohr. This value of the transverse width, corresponding to the equality \(k_{F_x}^2 = 0.3\Delta\) for the highest, \((2,2)\) mode, lies very close to the critical width corresponding to \(k_{F_x}^2 = 0\) and can be implemented without getting numerical problems. At this width, we calculated the LDOS at two different positions \(x\) with respect to the SN interface, inside the N layer. Although the solid and dashed curves have peaks at the same energies (the dispersion relations do not change with \(x\)), their magnitude goes up or down, depending very much on \(x\). This is not the case within the Andreev approximation, represented for comparison with a dotted line, where peaks of the same height are situated on the energy axis at equal distance from each other. This difference between the exact and the approximate results can be explained if we make use of the definition of the LDOS,

\[
LDOS(r) = \sum_n |\Psi_n(r)|^2 \delta(E - E_n).
\]

In the AA the Andreev states with the electron moving to the right and to the left are uncoupled and are degenerate. They can be represented by plane waves, having a \(r\)-independent absolute value. In the exact treatment the corresponding travelling waves are coupled and they are split into two standing waves, an odd (sinus) and even (cosinus) function. This leads to weighting factors in the expression of the LDOS which are different and position-dependent. So, the lifted degeneracy in the exact calculation explains the position dependence of the LDOS illustrated in Fig. 18.

In order to compare multilayer results with published SNS results\(^5,7\), we calculated the LDOS inside the N and S layers of a multilayer with \(d_N = d_S = 4000\) Bohr. This is shown in Fig. 19 together with the comparing SNS result. The corresponding results derived in the Andreev approximation are shown in Fig. 20. We restricted the calculations to the highest mode’s \((2,2)\) contribution to the LDOS, at \(L_t = 12.5676\) Bohr. This transverse width corresponds to \(k_{F_x}^2 = \Delta\) for the mode \((2,2)\). In both Figures, at energies \(E < \Delta\), we do not notice any difference for the N-layer.
multilayer features appear only above the gap. Besides, inside the S-layer there is no contribution from the highest mode, as the corresponding states have such a small momentum \(k_x \) that, for \(E < \Delta \), they are localized inside the N layer. The features shown in this section are directly related to a fine-tuning of the transverse width. In this respect, these results are new compared to those reported by Tanaka and Tsukada\(^8\), who have considered an infinite transverse width only.

V. Calculation of the Supercurrent

This section is devoted to the supercurrent in a SN multilayer. In 1962 Josephson predicted that a supercurrent can be present in a SIS junction (Josephson junction) in the absence of an external voltage (dc Josephson effect). This current appears provided there is a difference \(\phi \) in the phase of the pair potential between the two S layers of the Josephson junction.

\[
I = I_{\text{max}} \sin \phi. \tag{39}
\]

Further, if an external potential is applied to the junction, then

\[
\frac{d\phi}{dt} = 2eV/h. \tag{40}
\]

In other words, an external potential gives rise to an alternating supercurrent of frequency \(f = 2eV/h \) (so called ac Josephson effect). The quantum energy \(hf \) equals the energy of a Cooper pair transferred across the junction. It appears that the Josephson effect is present also in SNS junctions. We will investigate it for SN multilayers.

Using equation (3), we calculated the supercurrent \(I \) through a SN multilayer with \(d_S = d_N = 10000 \) Bohr as a function of the phase difference \(\phi \) between two consecutive S layers. Fig. 21 gives the supercurrent normalized to the basic supercurrent unit \(I_0 = \epsilon \Delta/h \) for different choices of the transverse width \(L_t \) of the multilayer. The \(\phi \) dependence of \(I \) is basically similar to a \(\sin \phi \) dependence, as for a Josephson junction, in that it is periodic in \(2\pi \). We notice that the supercurrent increases in magnitude with the transverse width, which makes sense, given the fact that the larger the width \(L_t \), the more modes contribute to the current. However, a small deviation from this monotonic behaviour in the dependence of the supercurrent on the transverse widths is noticed at a larger phase, \(\phi \approx 2\pi/3 \). In our Fig. 21 we see this behaviour between the critical widths \(L_{t \text{cr}}^t = 14.0492 \), when the mode (3,1) starts to contribute and \(L_{t \text{cr}}^s = 16.0186 \), when the mode (3,2) appears. Around \(\phi = 2\pi/3 \), the curve corresponding to \(L_t = 15 \) Bohr lies slightly higher than the curve for \(L_t = 16 \) Bohr. This can be interpreted as being due to a destructive interference between the electronic contributions to the current at larger phase. This results in a small deviation from the symmetry of the sin-function dependence of the supercurrent as a function of phase. For an infinite transverse width, Tanaka and Tsukada show a similar dependence in Fig. 4 of their paper\(^8\).

The way in which the transverse width influences the maximum of the supercurrent \(I_{\text{max}} \) is shown in Fig. 22. The monotonic increase of the supercurrent exhibits steps at each critical width. This is not surprising, since at a critical width new modes start to contribute. At the onset of this contribution, the kinetic energy of the new modes \(k_{Ft}^2 = \left(\frac{2\pi \cdot \text{max}}{L_{\text{cr}}^t} \right)^2 \) is very small and so is their contribution to the supercurrent. But with the increase of \(L_t \), the supercurrent reaches a constant regime, till the next \(L_{t \text{cr}}^t \).

Now we fix the transverse width at \(L_t = 13 \) Bohr and we change the layer thicknesses \(d_S \) and \(d_N \). The results are shown in Fig. 23. If \(d_S \gg \xi \), in which the coherence length \(\xi \approx 4000 \) Bohr, the SN multilayer compares well to a SNS system, for which \(\phi_{\text{max}} \approx 0.8\pi \), as we will see below in discussing Fig. 30. At smaller values of \(d_S \) the phase \(\phi_{\text{max}} \) at which the current has a maximum shifts gradually towards lower values. Further, if the ratio between \(d_S \) and \(d_N \) is constant, the systems have approximatively the same maximum supercurrent. However, it should be noticed that all systems have the same \(\Delta \). This picture of constant \(I_{\text{max}} \) changes if the gap function is calculated selfconsistently, as will be shown in Section VI. With the decrease of \(d_N \) with respect to \(d_S \), the current increases due to a better coupling between the S layers. Modifying the value of \(d_N \) doesn’t have consequences on \(\phi_{\text{max}} \). This can be noticed if we compare the curves corresponding to \(d_N = d_S = 4000 \) Bohr and \(d_N = d_S/2 = 2000 \) Bohr.

VI. Selfconsistent Calculation of the Gap

The formalism described in Section II can be applied to a selfconsistent calculation of the gap function \(\Delta \). The method, which is extensively described in Refs.\(^5,7\), is based on the selfconsistency condition
\[
\Delta(x) = -k_B T V(x) \frac{1}{L^t} \sum_{k_y, k_z > 0} \sum_{n} G_{12}(x, x; k_y, k_z, i\omega_n). \tag{41}
\]

The summation in equation (41) is divergent. In order to render the sum convergent, a cut-off of the summation over the Matsubara frequencies is introduced, as in the following expression

\[
\Delta(x) = -k_B T V(x) \frac{1}{L^t} \sum_{k_y, k_z > 0 \mid \omega_n = \pi k_B T} \sum_{\omega_D} G_{12}(x, x; k_y, k_z, i\omega_n), \tag{42}
\]

where \(\omega_D\) is the Debye frequency. We limit the Matsubara frequency to \(\omega_D = n_{\text{max}} \pi k_B T\), where \(n_{\text{max}} = [\Theta_D / \pi T]\) and \(\Theta_D = \omega_D / k_B\) the Debye temperature. As we notice, at large temperatures, \(n_{\text{max}}\) becomes small, while \(d \omega_n = \omega_n - \omega_{n-1}\) is large. This gives rise to big, unphysical oscillations of the order parameter \(\Delta\) with temperature \(T\), close to \(T_c\). We get rid of these unwanted oscillations by taking an integration, rather than a summation over \(\omega_n\). Results for a bar of transverse widths \(L_t = 30\) and 100 are shown in Fig. 24 and Fig. 25 respectively, at which we will come back later in this section.

In addition to the integration over the Matsubara frequencies, we also investigated another cut-off method, which avoids the gap oscillations at large temperatures. An alternative way to render the summation (41) convergent, is to impose the cut-off on the momenta \(k\), instead of on the Matsubara frequencies. For a homogeneous S bar this reads

\[
\Delta(x) = -\frac{k_B T V(x)}{8\pi} \frac{1}{L^t} \int_{k^2=\mu - k_B \Theta_D}^{\mu + k_B \Theta_D} dk_x \sum_{k_y, k_z} \sum_{n} G_{12}(x, x; k_y, k_z, i\omega_n). \tag{43}
\]

More explicitly, equation (43) can be written

\[
\Delta(x) = -\frac{k_B T V(x)}{8\pi} \frac{1}{L^t} \int_{k^2=\mu - k_B \Theta_D}^{\mu + k_B \Theta_D} dk_x \sum_{k_y, k_z} \sum_{n} \frac{\Delta}{(i\omega_n)^2 - (\mu - k_x^2 - k_y^2 - k_z^2)^2 - \Delta^2}. \tag{44}
\]

We further perform the summation over the Matsubara frequencies, obtaining

\[
\Delta(x) = -\frac{V(x) \Delta}{8\pi} \frac{1}{L^t} \int_{k^2=\mu - k_B \Theta_D}^{\mu + k_B \Theta_D} dk_x \sum_{k_y, k_z} \tanh\frac{E_k}{2E_k}, \tag{45}
\]

where \(E_k^2 = (\mu - k_x^2 - k_y^2 - k_z^2)^2 + \Delta^2\). For bulk superconductors, both ways of rendering the integral convergent lead to the same result. However, in the case of a homogeneous superconducting bar, we have summation over the transverse momenta \(k_y\) and \(k_z\) instead of an integration. This affects dramatically the results when \(k_y\) and \(k_z\) are large, particularly at small \(L_t\). We can see this in the dependence of the gap \(\Delta\) on the transverse width \(L_t\), shown in Fig. 26. The calculation is done at \(T = 0\). The dotted line comes from a calculation with a cut-off on the Matsubara frequencies. Apparently, the latter cut-off method leads to a much more stable result than the method in which the momenta are cut off. The solid line exhibits unphysical oscillations in the gap indeed. In addition we show a dependence \(\Delta(T)\) in Fig. 27. This curve exhibits a largely reduced superconductivity compared to the upper curve in Fig. 24 obtained by the other cut-off method. We conclude that cutting off the Matsubara frequencies leads to much more reliable results. Otadoy et al.\(^5\) used this method to calculate the selfconsistent gap for systems such as SNS and SNSNS systems. Here, we extend the application to SN multilayers. We show results for two transverse widths. In Fig. 24 the temperature dependence of the gap is shown for \(L_t=30\) Bohr. The solid, dotted, and dashed curves represent \(\Delta(T)\) for a homogeneous S bar, a SN multilayer with \(d_S = d_N = 10000\) Bohr, and a SN multilayer with \(d_S = d_N = 4000\) Bohr respectively. As expected, the selfconsistent gap decreases with the periodicity \(d_S + d_N\) of the multilayer. Indeed, for a smaller \(d_S\), the contribution to the averaged gap over the layer comes mostly from the regions close to the NS interface, where the suppression of the gap is most effective. Similarly, in Fig. 25 we show results for systems with \(L_t=100\) Bohr. Again, one clearly sees the suppression of superconductivity by reducing the transverse width.

In addition to the results derived in Section V, in the present stage we can look to the temperature dependence of the supercurrent. First we show in Fig. 28 the phase dependence of the supercurrent for multilayers with \(L_t = 30\), at different temperatures. For a given layer thickness, the peaks at different temperature occur at the same phase. The multilayer with a smaller periodicity \(d_S + d_N\) has the corresponding maximum at a lower \(\phi\), as we discussed in the previous section. We notice the suppression of the current with the increase of \(T\). For the multilayer with \(d_S = d_N = 10000\) and \(L_t=30\), we show the current-temperature dependence \(I(T)\), in Fig. 29. The temperature at
which the supercurrent becomes zero coincides with the critical temperature at which the corresponding gap function is zero, see Fig. 24.

Finally, we compare the phase dependence of the supercurrent for SN multilayers with corresponding results for the SNS system. In Fig. 30 we show results at temperature \(T = 0.4 \) K. Obviously, since the gap function in the SNS systems is equal to the homogeneous bar gap, the supercurrent is larger than in the SN multilayers. However, with the increase of the N-layer thickness, the supercurrent in the SNS system decreases, since to a thicker N-layer corresponds a weaker coupling between the two half-infinite S-layers. On the contrary, for the SN multilayer results shown, the S-layer thickness increases as well when the N-layer thickness is increased, and the supercurrent increases.

In consistency with the discussion of Fig. 23, the phase at which the supercurrent has a maximum, \(\phi_{\text{max}} \) does not depend on the N-layer thickness, and it shifts to the right with increasing \(d_S \).

VII. INTERFACE POTENTIALS

Stimulated by recent work on the influence of interface barriers in SNS systems\(^{14}\), we studied this in more detail and for SN multilayers as well. Interface barriers can come out in practice as an effect of localized disorder at the interface or as a typical oxide layer in a point contact.

A simple model of a \(\delta \)-function potential at the interfaces introduced by Blonder et al.\(^{13}\), can be implemented in our formalism easily. The corresponding Hamiltonian for interfaces at positions \(x_j \) reads as

\[
H_x \equiv -\frac{d^2}{dx^2} - k_F^2 + \sum_j W_j \delta(x - x_j),
\]

where \(W_j \) is the strength of the barrier and can be estimated using the transmission coefficient of the barrier

\[
T \equiv \frac{1}{1 + mW^2/\hbar^2 E}.
\]

In the presence of a \(\delta \)-function barrier, the wave function is still given by equation (4), but the boundary conditions for the Green’s function read now

\[
\sum_\nu S_{\nu j} G_{\nu j \nu j'}(x_j, x') = 0,
\]

where

\[
S_{\nu j} = \begin{pmatrix}
\nu & 0 & 0 & 0 \\
0 & \nu & 0 & 0 \\
-\frac{1}{2}W_j & 0 & \nu & 0 \\
0 & -\frac{1}{2}W_j & 0 & \nu
\end{pmatrix}.
\]

We choose \(W_j = W \) the same for each SN interface.

Before applying this to SN structures, we first look at the bound states of a SNS system at different choices of the barrier strength \(W \). In Fig. 31 we show the LDOS of a SNS system characterized by \(d_N = 10000 \) Bohr and \(L_t = 13 \) Bohr. In the absence of the interface potential, the SNS system LDOS has four bound states for \(E < \Delta \), corresponding to the modes (1,1), (1,2), (2,1), and (2,2). Due to the fact that \(L_y = L_z = L_t \), the states corresponding to the (1,2) and (2,1) modes are degenerate. Apparently, as we can notice, the presence of the \(\delta \)-function potential favours the appearance of new bound states, due to the scattering with the interface potential. This implies that in the presence of a scattering potential even in AA the bound states split up.

In the case of the multilayer, for which results are shown in Fig. 32, the deviation from the zero potential case is even more pronounced, as the quasi-periodicity of the dispersion relations (36) is perturbed by the interface barrier. As for the SNS system, new bound states appear and complicate the picture seen in Fig. 14, which describes the same multilayer, but in the absence of an interface barrier.

In the limit of a large barrier strength \(W \) (\(W > 1 \) RydBohr), the S-layers decouple, so that the density of states for a multilayer becomes similar to the one of a SNS system. This can be seen in Fig. 33, in which we show the LDOS for a SN multilayer with \(d_S = d_N = 10000 \) and \(L_t = 13 \), and for a SNS system with \(d_N = 10000 \). The barrier strength is \(W = 10 \) RydBohr. Compared to the strength of a S layer, which is \(\Delta d_S = 1 \) RydBohr, this interface barrier is 10 times larger. At such a large strength of the barrier, in the N-layer there are just bound states. To make it more clear, in Fig. 34 we show the contribution from each transverse mode to the LDOS of a SNS system, for energies up to 10
times the gap. The peaks corresponding to the same mode \((n_y, n_z)\) have the same height and obey the dispersion relation for a 3-dimensional box,

\[
E + \mu = k_x^2 + k_y^2 + k_z^2 = \left(\frac{2(n_x + 1)\pi}{a_N}\right)^2 + \left(\frac{n_y\pi}{d}\right)^2 + \left(\frac{n_z\pi}{d}\right)^2,
\]

with \(2n_x + 1 \geq \frac{k_{F_x} d}{\pi}\) and \(k_{F_x} = \sqrt{\mu - (\frac{n_y\pi}{L})^2 - (\frac{n_z\pi}{L})^2}\). Thus, for the \((1,1)\) mode, the first peak has \(n_x = 985\) and is situated at the energy \(E = 2\Delta\), while the second peak has \(n_x = 986\) and occurs at \(E = 9.7\Delta\). Similarly, using Eq. (50) for the modes \((1,2)\) and \((2,1)\), we obtain peaks for \(n_x = 726\) at \(E = 3.6\Delta\) and for \(n_x = 727\) at \(E = 9.3\Delta\). For the mode \((2,2)\) we get peaks for \(n_x = 288, 289, 290, 291,\) and \(292,\) at the energies \(E = 0.6\Delta, 2.9\Delta, 5.1\Delta, 7.4\Delta,\) and \(9.7\Delta\) respectively.

The fact that the S-layers decouple in the limit of large barrier strength has also consequences on the phase dependence of the LDOS. We first show in Fig. 35 the LDOS of an SN multilayer without interface barrier for \(\phi = 0\) and \(\phi = \pi\). In this figure the solid curves of the Figs. 14 and 15 are shown in one picture. Clearly, the features of the LDOS, already discussed in Section III, are different for the two values of the phase \(\phi\). However, in the presence of an interface barrier, the picture changes. In Figs. 36 and 37 we show the LDOS for \(W = 1\) and \(W = 10\) respectively. When \(W = 1\), the bound states occur almost at the same energies for both phases, and for \(W = 10\) the LDOS almost coincide, as a result of a complete decoupling of the successive S-layers. This leads to a total suppression of the supercurrent at large values of \(W\).

The calculated supercurrent \(I\) for a SN multilayer at different barrier strengths \(W\) is shown in Fig. 38. Clearly, an interface barrier diminishes the supercurrent. The stronger the barrier, the smaller is the transmission probability through the interface. For values of \(W\) larger that 2 RydBohr the supercurrent is completely suppressed. A similar result was obtained in the recent study mentioned above, of the Josephson current in the much simpler SNS system having several insulating barriers\(^{14}\).

\section*{VIII. CONCLUSIONS}

In this paper we discussed SN multilayer structures. In particular we show results for periodic infinite multilayers, represented by a Kronig-Penney superlattice model. By applying a Green’s function formalism, we focussed first on the Andreev bound states and we studied the limitations of the Andreev approximation in relation to the finite transverse size of the systems.

Further, we calculated the supercurrent through such a periodic SN multilayer. We completed this study using a selfconsistently calculated gap. Finally, including a \(\delta\)-function potential at the interface, we derived results which account for possible barrier scattering at the interfaces.

The results presented in this paper are meant to understand the physics which is behind SN multilayer structures. For our purpose it is more appropriate to investigate systems of very small transverse size because in such systems the effects of the breakdown of the Andreev approximation come out most clearly. However, at the moment there are no experimental data to which we can compare. For larger systems, more accessible to experiments, the physics remains the same, but their complexity could obscure some of the fundamental aspects we are looking at.

Applications to intrinsic Josephson junctions\(^{15}\) made from high-\(T_c\) superconducting materials would require an extension of the present theory to the case of d-wave symmetry of the order parameter.

\section*{APPENDIX: THE MATRICES \(\hat{A}, \hat{B}, AND \hat{C}\)}

In this Appendix we show the structure of the equations (28) to (30) more explicitly. The matrices \(\hat{A}\) and \(\hat{C}\) are highly singular and due to this, the solutions of Eqs. (28) and (29) are sparse matrices, which can be written

\[
\mathbf{X}_- = \begin{pmatrix} 0 & 0 & \hat{x}^{13} & 0 \\ 0 & 0 & \hat{x}^{23} & 0 \\ 0 & 0 & \hat{x}^{33} & 0 \\ 0 & 0 & \hat{x}^{43} & 0 \end{pmatrix} = \begin{pmatrix} \hat{0} & \hat{0} & X^{15} & X^{16} \\ \hat{0} & \hat{0} & X^{25} & X^{26} \\ \hat{0} & \hat{0} & X^{35} & X^{36} \\ \hat{0} & \hat{0} & X^{45} & X^{46} \end{pmatrix} \begin{pmatrix} \hat{0} \hat{0} \hat{0} \hat{0} \\ \hat{0} \hat{0} \hat{0} \hat{0} \\ \hat{0} \hat{0} \hat{0} \hat{0} \\ \hat{0} \hat{0} \hat{0} \hat{0} \end{pmatrix}
\]
and

\[
\mathbf{X}_+ = \begin{pmatrix}
0 & 0 & \hat{x}_{14}^+ \\
0 & 0 & \hat{x}_{24}^+ \\
\hat{x}_{14}^+ & \hat{x}_{24}^+ & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & (X_{17}^+ X_{18}^+) \\
0 & 0 & (X_{37}^+ X_{38}^+) \\
0 & 0 & (X_{57}^+ X_{58}^+)
\end{pmatrix} \quad (A2)
\]

Substituting these matrices into Eqs. (28) and (29), we can reduce the set to solving two quadratic matrix equations for the 2×2 complex matrices \hat{x}_{33}^- and \hat{x}_{44}^+.

\[
\hat{x}_{33}^- = \begin{pmatrix} X_{55}^- & X_{56}^- \\ X_{65}^- & X_{66}^- \end{pmatrix} \quad (A3)
\]

and

\[
\hat{x}_{44}^+ = \begin{pmatrix} X_{77}^+ & X_{78}^+ \\ X_{87}^+ & X_{88}^+ \end{pmatrix}. \quad (A4)
\]

This appears to be equivalent to solving a system of 8 simultaneous equations with real coefficients. Mathematically, one can never predict the number of solutions. We solve this system numerically, by applying Newton's method, which requires an initial guess of the solution. Since we know that the solution is close to the Andreev approximation, we give as an initial guess a diagonal matrix, namely the unitary matrix. This leads us to the physical solutions for \mathbf{X}_- and \mathbf{X}_+, which, by using equation (30), allows the calculation of the T_{ij} matrix, which we need for the $T_{ij\nu}$ matrix (27) and the Green's function (31). Finally, we are able to make use of the expressions (2) and (3) and calculate the LDOS and the supercurrent of a periodic SN multilayer.

In Andreev approximation some matrix elements are zero and further simplifications can be made. By neglecting the ordinary reflections of the quasiparticles at the SN interfaces, some of the t-matrices are equal to zero. This results in a more simple form for the matrices \mathbf{A} and \mathbf{C}

\[
\hat{A} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \hat{a}_{24} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad (A5)
\]

where

\[
\hat{a}_{24} = \begin{pmatrix}
\hat{t}_{++}^+ t_{++}^+ e^{-ik_{++}^+} & \hat{t}_{++}^+ t_{++}^- e^{ik_{++}^-} \\
\hat{t}_{--}^- t_{--}^+ e^{-ik_{--}^+} & \hat{t}_{--}^- t_{--}^- e^{ik_{--}^-}
\end{pmatrix} = \begin{pmatrix}
\hat{t}_{++}^+ t_{++}^- e^{-ik_{++}^+} & 0 \\
0 & \hat{t}_{--}^- t_{--}^- e^{ik_{--}^-}
\end{pmatrix}. \quad (A6)
\]

\[
\hat{C} = \begin{pmatrix}
0 & 0 & \hat{c}_{13} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad (A7)
\]

where

\[
\hat{c}_{13} = \begin{pmatrix}
\hat{t}_{++}^+ t_{--}^+ e^{-ik_{--}^+} & \hat{t}_{++}^- t_{--}^- e^{ik_{--}^-} \\
\hat{t}_{--}^- t_{++}^+ e^{-ik_{++}^+} & \hat{t}_{--}^- t_{++}^- e^{ik_{++}^-}
\end{pmatrix} = \begin{pmatrix}
\hat{t}_{++}^+ t_{--}^+ e^{-ik_{--}^+} & 0 \\
0 & \hat{t}_{--}^- t_{++}^- e^{ik_{++}^-}
\end{pmatrix}. \quad (A8)
\]
By consequence, the solutions \hat{x}_{33} and \hat{x}_{44} get then a diagonal form.

$$\hat{x}_{33} = \begin{pmatrix} X_{55} & 0 \\ 0 & X_{66} \end{pmatrix}$$ \hspace{1cm} (A9)

and

$$\hat{x}_{44} = \begin{pmatrix} X_{77} & 0 \\ 0 & X_{88} \end{pmatrix}$$ \hspace{1cm} (A10)

This allows us to decouple the equations for X_{55} and X_{66} into two quadratic equations which can be solved directly. The same holds for \hat{x}_{44}. Combining the two possible solutions for X_{55} and X_{66} with the two possible solutions for X_{77} and X_{88}, one obtains four mathematical solutions for \hat{X}_{-} and \hat{X}_{+}. Two of the solutions are complementary and lead to a zero value for the LDOS. Using the other two solutions, one gets either the positive physical value for the LDOS, or the same value with the opposite sign. We use this criterion to distinguish the physical solution from the four mathematically possible solutions.
1 W.L. McMillan and M. Rowell, in Superconductivity, edited by R.D. Parks (Marcel Dekker, New York, 1969), p. 561; W.L. McMillan, Phys. Rev. 175, 537 (1968); W.L. McMillan, Phys. Rev. 175, 559 (1968).
2 C. Ishii, Prog. Theor. Phys 47, 1464 (1972), 44, 1525 (1970).
3 A. Furusaki and M. Tsukada, Solid State Commun. 78, 299 (1991); A. Furusaki and M. Tsukada, Physica B 165 & 166, 967 (1990).
4 A. Furusaki, H. Takayanagi, and M. Tsukada, Phys. Rev. B 45, 10563 (1992).
5 R.T.W. Koperdraad, R.E.S. Otadoy, M. Blaauboer, and A. Lodder, J. Phys.: Condensed Matter 13, 8707 (2001).
6 M. Blaauboer, R. T. W. Koperdraad, A. Lodder, and D. Lenstra, Phys. Rev. B 54, 4283 (1996).
7 R.E.S. Otadoy, and A. Lodder, Phys. Rev. B 65, 024521 (2002).
8 Y. Tanaka and M. Tsukada, Phys. Rev. B 44, 7578 (1991).
9 B. P. Stojkovic and O. T. Valls, Phys. Rev. B 50, 3374 (1994).
10 P. Miller and J. K. Freericks, J. Phys.: Condens. Matter 13, 3187 (2001).
11 C.W.J. Beenakker, Phys. Rev. B 67, 3836 (1991).
12 N.M. Chtchelkatchev, G.B. Lesovik, and G. Blatter, Phys. Rev. B 62, 3559 (2000).
13 G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
14 A.V. Galaktionov and A.D. Zaikin, Phys. Rev. B 65, 184507 (2002).
15 R. Kleiner and P. Müller, Physica C 293, 156 (1997).
FIG. 1. Illustration of a Superconductor/Normal metal multilayer with finite transverse widths.

\[\Delta_0 e^{-i\phi} \]

\[\Delta_0 \]

\[\Delta_0 e^{i\phi} \]

FIG. 2. The Kronig-Penney model for the pair potential, used in Ref. 8.

FIG. 3. Schematic representation of the processes accounted for by the matrices \(A_j \), \(B_j \) and \(C_j \).

FIG. 4. LDOS for a SN multilayer (\(d_S = 50000 \) Bohr and \(d_N = 1000 \) Bohr) and for a bar shaped superconductor (dashed line).
FIG. 5. LDOS for a SN multilayer ($d_S = 50000$ Bohr and $d_N = 1000$ Bohr) in the N layer (solid line) and S layer (dashed line).

FIG. 6. LDOS for a SN multilayer ($d_S = 50000$ Bohr and $d_N = 2000$ Bohr) in the N layer (solid line) and S layer (dashed line).

FIG. 7. LDOS for a SN multilayer ($d_S = 50000$ Bohr and $d_N = 4000$ Bohr) in the N layer (solid line) and S layer (dashed line).
FIG. 8. LDOS for a SN multilayer ($d_S = 50000$ Bohr and $d_N = 10000$ Bohr) in the N layer (solid line) and S layer (dashed line).

FIG. 9. LDOS for a SN multilayer ($d_S = 50000$ Bohr and $d_N = 10000$ Bohr) and for a SNS system (dashed line), calculated inside the N layer.

FIG. 10. LDOS for a SN multilayer ($d_S = 30000$ Bohr and $d_N = 10000$ Bohr) and for a SNS system (dashed line), calculated inside the N layer.
FIG. 11. LDOS for a SN multilayer ($d_S = 10000$ Bohr and $d_N = 10000$ Bohr) and for a SNS system (dashed line), calculated inside the N layer.

FIG. 12. Contributions to the LDOS of a SN multilayer ($d_S = d_N = 10000$ Bohr) in the middle of the N layer from the mode (1,2), for two choices of the phase of the pair potential, $\phi = 0$ and $\phi = \pi$.

FIG. 13. Contributions to the LDOS of a SN multilayer ($d_S = d_N = 10000$ Bohr) in the middle of the N layer from the modes (1,1), (1,2), (2,1), and (2,2). The phase of the pair potential is $\phi = 0$.
FIG. 14. LDOS for a SN multilayer ($d_S = d_N = 10000$ Bohr) in the middle of the N layer (solid line) and S layer (dashed line). The phase of the pair potential is $\phi = 0$.

FIG. 15. LDOS for a SN multilayer ($d_S = d_N = 10000$ Bohr) in the N layer (solid line) and S layer (dashed line). The phase of the pair potential is $\phi = \pi$.

FIG. 16. LDOS calculated in the N and S layers of a SN multilayer, at a higher transverse size, $L_t = 130$ Bohr.
FIG. 17. LDOS calculated in a bar shaped S material, at $E = 5\Delta$, at different transverse widths.

FIG. 18. LDOS calculated in a SN multilayer, for a width $L_t = 12.566371$ Bohr close to a critical width L_t^{cr}, at different positions x with respect to the S/N interface, inside the N layer. $d_N = d_S = 10000$ Bohr. For comparison, Andreev approximation is represented with dotted line.

FIG. 19. LDOS calculated in both S and N layers of a SN multilayer, with $d_N = d_S = 4000$ Bohr, as well as in a SNS system, at a transverse width $L_t = 12.5676$ Bohr.
FIG. 20. LDOS calculated in Andreev approximation in the N layer of a SN multilayer, with $d_N = d_S = 4000$ Bohr, as well as in a SNS system, at a transverse width $L_t = 12.5676$ Bohr.

FIG. 21. The dependence of the supercurrent I on the phase of the pair potential ϕ. $d_N = d_S = 10000$ Bohr and the normalization factor $I_0 = e\Delta/\hbar$.

FIG. 22. The dependence of the supercurrent I on the transverse length L_t. $I_0 = e\Delta/\hbar$.
FIG. 23. The dependence of the supercurrent I on d_N and d_S for $L_t=13$ Bohr. $I_0 = e\Delta/h$.

FIG. 24. Selfconsistent gap calculations for systems with transverse width $L_t=30$ Bohr.
FIG. 25. Selfconsistent gap calculations for systems with transverse width $L_t=100$ Bohr.

FIG. 26. Selfconsistent gap calculations for homogeneous S bars of different thicknesses L_t, at $T=0$, for two different cut-off methods.
FIG. 27. Selfconsistent gap calculations for an homogeneous S bar of $L_t=30$ Bohr, using momenta cut-off.

FIG. 28. Phase dependence of the supercurrent I, calculated with a selfconsistent gap function. $L_t = 30$ and $I_0 = e\Delta^s/\hbar$, with $\Delta^s = 0.8 \times 10^{-4}$ the selfconsistent gap for the homogeneous bar at $T = 0$.

FIG. 29. Selfconsistent calculation of the supercurrent as a function of temperature for a SN multilayer with $d_s = d_N = 10000$ and $L_t = 30$. $I_0 = e\Delta^s/\hbar$ and $\Delta^s = 0.8 \times 10^{-4}$.
FIG. 30. Selfconsistent calculation of the supercurrent as a function of phase for SN multilayers with $d_S = d_N = 10000$ and $d_S = d_N = 4000$, and corresponding SNS systems with $d_N = 10000$ and $d_N = 4000$ respectively. $L_t = 30$, $I_0 = e\Delta^s/\hbar$, and $\Delta^s = 0.8 \times 10^{-4}$.

FIG. 31. LDOS for a SNS system at different barrier strengths W. $d_N = 10000$, $L_t = 13$.

FIG. 32. LDOS for a SN multilayer at different barrier strengths W. $d_S = d_N = 10000$, $L_t = 13$.
FIG. 33. LDOS in the N-layer of a SN multilayer and of a SNS system, at $W = 10$ RydBohr. $d_S = d_N = 10000$, $L_t = 13$.

FIG. 34. The contributions of the transverse modes to the LDOS of a SNS system with $W = 10$. $d_N = 10000$, $L_t = 13$.

FIG. 35. LDOS in the N-layer of a SN multilayer at $\phi = 0$ and π, and without interface barrier. $d_S = d_N = 10000$, $L_t = 13$.
FIG. 36. LDOS in the N-layer of a SN multilayer at $\phi = 0$ and π, and with $W = 1$. $d_S = d_N = 10000$, $L_t = 13$.

FIG. 37. LDOS in the N-layer of a SN multilayer at $\phi = 0$ and π, and with $W = 10$. $d_S = d_N = 10000$, $L_t = 13$.

FIG. 38. Supercurrent for a SN multilayer at different potentials. $d_N = 10000$, $L_t = 13$, and $I_0 = e\Delta/h$.