Identification of volatile compounds produced by the bacterium *Burkholderia tropica* that inhibit the growth of fungal pathogens

Silvia Tenorio-Salgado,1,* Raunel Tinoco,2 Rafael Vazquez-Duhalt,2 Jesus Caballero-Mellado1 and Ernesto Perez-Rueda2,*

*Programa de Ecología Genómica; Centro de Ciencias Genómicas; UNAM; Cuernavaca, Mexico; 2Departamento de Ingeniería Celular y Biorcatálisis; Instituto de Biotecnología; UNAM; Cuernavaca, Mexico

Keywords: *Burkholderia* tropica, volatile compound, antagonism, phytopathogenic fungi

It has been documented that bacteria from the *Burkholderia* genera produce different kinds of compounds that inhibit plant pathogens, however in *Burkholderia tropica*, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about *Burkholderia tropica* as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, *Colletotrichum gloeosporioides*, *Fusarium culmorum*, *Fusarium oxysporum* and *Sclerotium rolfsii*. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by *B. tropica* and, in particular, two bacterial strains (MTo293 and TT6203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including α-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid, however, their roles in the antagonism mechanism remain unclear.

Introduction

The genus *Burkholderia* comprises around 60 different species, and their taxonomic classifications have shown the existence of two large groups. In the first group, there are diverse pathogenic species, such as *B. mallei* and *B. pseudomallei* and other species belonging to the *B. cepacia* complex.1,2 In the second group, more than 25 related environmental nonpathogenic species have been identified, most of which preferentially associate with plants. In general, diverse and interesting properties have been described for members of this genus, such as their ability to form symbiotic interactions with plants. For example, *B. phytofirmans* has the capacity to nodulate and fix nitrogen with the *Leguminosae* Mimosa species, such as *M. caesalpiniifolia* and *M. unamae*, have a catabolic potential to degrade aromatic compounds.3,4 Some species exhibit the ability to colonize the rhizosphere in several plants and promote plant growth, e.g., *B. phytofirmans*.5 Finally, there is the ability of *Burkholderia* species to inhibit the growth of multiple soil-borne pathogens on different crops by different antagonistic mechanisms, such as production of antibiotics or siderophores.6,7 Nevertheless, the roles of siderophores and other antagonistic mechanisms have been poorly described for this genus, except for the clinical isolates *B. cepacia* and *B. vietnamensis*, for which ornibactin and cepabactin (siderophores of the hydroxamate class) and pyochelin and salicylic acid (catechol type) have been identified.8,9 In this work, we analyzed the antagonistic activities of 15 different strains of *B. tropica* against plant pathogenic fungi under different conditions and, in particular, the role of bacterial volatile compounds and siderophores in fungal growth inhibition. *B. tropica* was selected because of its ability to fix nitrogen, solubilize phosphates and produce siderophores;6 moreover, this bacterium associates with corn, trevizoite and sugarcane plants from different geographical regions from Mexico.

Results

B. tropica is an antagonist of plant pathogenic fungi. In order to determine the effects of the bacterial strains on fungal mycelial growth, dual-culture antagonism assays were performed on PDA plates. Fifteen *B. tropica* strains and four plant pathogenic fungi, *Colletotrichum gloeosporioides*, *Fusarium culmorum*, *F. oxysporum* and

*Correspondence to: Silvia Tenorio-Salgado and Ernesto Perez-Rueda; Email: s.tenorio.salgado@gmail.com and erueda@ibt.unam.mx
Submitted 01/09/13; Revised 01/25/13; Accepted: 01/29/13
Sclerotium rolfsii were selected. All 15 tested strains significantly inhibited the mycelial growth, showing radial inhibition ranging from 6 to 74% in comparison with the control, when they were cocultured with fungi in dual-culture assays. In all cases, the inhibitory activity was evidenced by the limited growth or by the complete absence of fungal mycelia in the inhibition zone in front of a bacterial streak. The inhibition patterns observed for each fungal species are shown in Figure 1 and are summarized in Table 1. F. culmorum exhibited an elevated level of antagonism by all strains assayed (59 to 74% of inhibition), and the mycelia changed from pink to yellow. Seven bacterial strains, MXo436, MXo437, MCu812, MMi786, MTo785, TTe203 and MTo293, exhibited the largest antagonistic effects over this fungus. F. oxysporum showed a radial inhibition of around 50%, and five bacterial strains were able to inhibit strongly the growth of sensitive fungi, such as F. oxysporum, S. rolfsii and C. gloeosporioides and the growth inhibition was visible after the fourth day of incubation (Table 2). The strongest effect on growth inhibition (86 ± 4.5%) was observed in S. rolfsii with the MTo293 strain, followed by the MTo431, TTe203, MOc725 and CBN724 strains (Fig. 2A and Table 2). C. gloeosporioides was strongly inhibited (86 ± 3.2%) by strain TTe203, followed by the MOc725, MTo293 and MTo431 strains (Fig. 2B). F. oxysporum was inhibited by TTe203 (54%), followed by the MOc725 and MTo293 strains (Table 2 and Fig. 2C).

In order to determine the role of the bacterial strains in plant protection, plants were grown in Fahraeus nutritive solution16 in the presence or absence of the MTo431 strain (Fig. 3) without carbon and nitrogen source additions. The MTo431 bacterial strain was selected because it exhibits greater antagonist activity among the additional fungi tested, this bacterial strain showed the lowest inhibition percentages. Finally, the antagonistic property associated with a bacterial strain did not seem to reflect its association with the source of origin, as the highest inhibition was associated with strains isolated from maize, teocinte and coffee (MXo436, TTe203 and CBN724, respectively).

Production of antifungal volatile compounds by B. tropica. It has been demonstrated that volatile organic compounds produced by soil bacteria can influence growth of fungi.12-15 Therefore, in this section we discuss the potential roles of volatile compounds associated to five strains, selected on the basis of their antagonistic capacities against the four fungi. From our analysis, we found that volatile compounds produced by B. tropica exhibited fungistatic and fungicidal activities against F. culmorum, F. oxysporum, S. rolfsii and C. gloeosporioides and the growth inhibition was visible after the fourth day of incubation (Table 2). The strongest effect on growth inhibition (86 ± 4.5%) was observed in S. rolfsii with the MTo293 strain, followed by the MTo431, TTe203, MOc725 and CBN724 strains (Fig. 2A and Table 2). F. oxysporum was inhibited by TTe203 (54%), followed by the MOc725 and MTo293 strains (Table 2 and Fig. 2C).

Finally, F. culmorum showed the highest inhibition level with strain TTe203 exhibiting a radial growth of only 22%, while the other four bacterial strains (MTo431, MOc725, CBN726 and MTo293) produced only around 12% inhibition of radial growth (Table 2 and Fig. 2D). The inhibition of F. culmorum was more evident when the mycelium quality was evaluated, as it changed color from pink in the absence of the bacterial strain to white in the presence of the bacterial strain and the texture changed from cotton-like without the bacterial strain to flattened and slender in the presence of the bacteria. In summary, the bacterial strains MTo293 and TTe203 exhibited the strongest inhibitory activities in almost all the fungi tested. In addition, S. rolfsii, a soil-borne plant pathogen, demonstrated the highest sensitivity to volatile compounds under the tested conditions.

Protection of maize plants by B. tropica. In order to determine the role of the bacterial strains in plant protection, plants were grown in Fahraeus nutritive solution16 in the presence or absence of the MTo431 strain (Fig. 3) without carbon and nitrogen source additions. The MTo431 bacterial strain was selected because it exhibits greater antagonist activity among the strains isolated. This strain has a similar growth pattern as the MTo431 and MTo293 strains showing the largest antagonistic effects over this fungus. Finally, B. cepacia, used as a positive control, showed a high antagonistic effect against F. oxysporum, F. culmorum and S. rolfsii, as we expected, whereas for C. gloeosporioides it showed less inhibition.

In summary, these data suggest that seven bacterial strains were able to inhibit strongly the growth of sensitive fungi, such as F. culmorum, whereas five bacteria inhibited the growth of F. oxysporum and two strains were mainly associated with growth inhibition of S. rolfsii. C. gloeosporioides seems to be the fungus with the lowest sensitivity to the bacterial strains tested, because all bacterial strains were less inhibitory. One strain, MTo293, was able to inhibit three out of four fungi (Table 1), suggesting that its antagonistic compounds could affect diverse phytopathogenic organisms. Alternatively, strains MXo436 and MXo437 were able to inhibit in large proportions only two fungi. Another interesting result was the inhibition specificity associated with strain MM786 toward the fungus F. culmorum, as it was not able to inhibit the growth of additional fungi. Indeed, in two additional fungi tested, this bacterial strain showed the lowest inhibition percentages. Finally, the antagonistic property associated with a bacterial strain did not seem to reflect its association with the source of origin, as the highest inhibition was associated with strains isolated from maize, teocinte and coffee (MXo436, TTe203 and CBN724, respectively).

Production of antifungal volatile compounds by B. tropica. It has been demonstrated that volatile organic compounds produced by soil bacteria can influence growth of fungi.12-15 Therefore, in this section we discuss the potential roles of volatile compounds associated to five strains, selected on the basis of their antagonistic capacities against the four fungi. From our analysis, we found that volatile compounds produced by B. tropica exhibited fungistatic and fungicidal activities against F. culmorum, F. oxysporum, S. rolfsii and C. gloeosporioides and the growth inhibition was visible after the fourth day of incubation (Table 2). The strongest effect on growth inhibition (86 ± 4.5%) was observed in S. rolfsii with the MTo293 strain, followed by the MTo431, TTe203, MOc725 and CBN724 strains (Fig. 2A and Table 2). F. oxysporum was inhibited by TTe203 (54%), followed by the MOc725 and MTo293 strains (Table 2 and Fig. 2C).

Finally, F. culmorum showed the highest inhibition level with strain TTe203 exhibiting a radial growth of only 22%, while the other four bacterial strains (MTo431, MOc725, CBN726 and MTo293) produced only around 12% inhibition of radial growth (Table 2 and Fig. 2D). The inhibition of F. culmorum was more evident when the mycelium quality was evaluated, as it changed color from pink in the absence of the bacterial strain to white in the presence of the bacterial strain and the texture changed from cotton-like without the bacterial strain to flattened and slender in the presence of the bacteria. In summary, the bacterial strains MTo293 and TTe203 exhibited the strongest inhibitory activities in almost all the fungi tested. In addition, S. rolfsii, a soil-borne plant pathogen, demonstrated the highest sensitivity to volatile compounds under the tested conditions.

Protection of maize plants by B. tropica. In order to determine the role of the bacterial strains in plant protection, plants were grown in Fahraeus nutritive solution16 in the presence or absence of the MTo431 strain (Fig. 3) without carbon and nitrogen source additions. The MTo431 bacterial strain was selected because it exhibits greater antagonist activity among the strains isolated. This strain has a similar growth pattern as the MTo293 and TTe203 strains, but it is easier to grow with different carbon sources; in addition, it showed a strong antagonist inhibition mediated by volatile compounds against all the fungi tested. Under these growth conditions, without carbon and nitrogen source additions, the bacterial growth reached 10^9 CFU/ml in 7 d from initial inocula of 10^4 CFU/ml. B. tropica strain MTo431 was coinoculated with each of the four fungal species, F. oxysporum, S. rolfsii, C. gloeosporioides and F. culmorum, and
with maize plant, in a solution containing a mixture of the MT0431 strain and the fungus. Plants exclusively inoculated with the fungus showed intense fungal growth in the solution and around the maize roots, and the maize plant growth was poor. In contrast, in plants inoculated with a mixture of fungi and bacteria, the growth of maize roots, and the maize plant growth was favorable (Fig. 3). These results suggest that the MT0431 strain has the ability to not only antagonize Colletotrichum glocesporioides and Fusarium spp., but also in association with the plant and with root exudates as the only carbon source.

Fungi exhibit morphological changes as a consequence of the volatile compounds produced by B. tropica. Microscopic analysis of fungi co-cultivated with B. tropica MT0431 showed evidence of the morphological changes resulting from the presence of bacterial volatile compounds synthesized by B. tropica. On one hand, F. culmorum in the presence of the bacteria changed its hyphal morphology, including hyphal swelling, distortion, large amounts of balloon-shaped cells and cytoplasm and protoplasms aggregation (Fig. 4B). On the other hand, F. oxysporum showed degradation of fungal cell walls, cell breakage and leakage of intracellular substances, alterations in hyphal morphology and ruptured mycelia (Fig. 4D). Similar results were previously reported for Fusarium spp. Colletotrichum lindenmiuthianum and Rhizoctonia solani treated with CF66I, an antifungal compound produced by B. cepacia and in mycelium structures in F. oxysporum and Phytophthora ater, in which lysis of fungal hyphae, vacuolization and granulation in mycelium structures have been observed. In contrast, the absence of B. tropica (Fig. 4A and C), spindly mycelia were observed for the four fungi. Therefore, these results show that volatile compounds produced by this organism possess significant fungistatic activities. Similar findings have been described for the growth and sporulation of phytopathogenic fungi, such as Verticillum dahliae, Sclerotinia sclerotiorum and R. solani. In addition, we do not exclude the possibility that other molecules beyond volatile compounds could be also involved in the actual morphological changes. In this regard, a recent screening of antifungal active compounds from B. cepacia K27, identified pyrolysin and two derivatives as antifungal compounds; whereas, in B. ambifaria a mixture of lipopeptides, where the burkholdines have been characterized, are involved in the antifungal activity.

Chemical analysis of volatile compounds. In order to identify the chemical nature of the volatile compounds previously described, we used GC coupled to MS for B. tropica strain MT0431. The volatile profile of this strain was compared against noninoculated medium control profiles. Based on a double dish system, 18 different compounds were identified, including sulfur metabolites, dimethyldisulfide (DMDS), toluene and terpene compounds, such as α-pinene, limonone and ocimene (Table 3). Several of these volatile compounds, such as DMDS, methyl ketone and toluene, have been previously detected in the headspace of cultures of many strains of Pseudomonas spp and from B. cepacia cultured in trypticase soy. Although diverse volatile compounds, for example, DMDS, are able to inhibit spore germination in other fungi, such as Paecilomyces lilacinus,
Pochania chlamydospora and Chlonostachys rosea,23 in this work we found novel compounds, including α-pinene, ocimene, limonene and fenona, which are typically associated with plants and fruits with antibacterial properties,24 suggesting that they play an important role in the antagonistic antifungal mechanism associated with this bacterium. B. tropica has the capacity for siderophore production and is influenced by carbon sources. It has been reported that siderophores, chitinase, proteases and cyanohydric acid (HCN) are used by bacteria to inhibit fungal growth;25 however, none of the 15 bacterial strains produced either chitinase, HCN or proteases under our culture conditions (see Supplemental Materials). In order to determine if siderophores play an antagonistic role, their production was evaluated in all 15 B. tropica strains by the universal assay on CAS agar plates, using diverse carbon sources (see Materials and Methods). The halo diameter produced by iron chelation, as a product of 72 h of incubation, was considered a direct measure of siderophore production. Based on this approach, we found that all analyzed strains formed an orange halo on CAS plates (94 to 100% of strains), suggesting that siderophore production is a common characteristic of B. tropica (see Fig. S1) that is associated with the carbon source. In this regard, three main groups of carbon sources influencing siderophore production were identified. The first group corresponds to the carbon sources glutamic acid, succinic acid, ornithine, alanine, aspartic acid, mannitol and lysine, in which bacteria produce a siderophore that is a derivative of succinic acid (0.4 to 5 μM) and is secreted by the pyoverdine-type siderophore biosynthetic pathway. This idea is based on the structure of pyoverdine, in which the 3-amino-acid moiety of the iron chelator is replaced with various acyl groups derived from succinate, malate or α-ketoglutarate.32,36 Furthermore, it was described previously that glutamic acid is transformed into ornithine, which is a frequent amino acid associated with siderophore structures.29 In contrast, with glucose or fructose as the only carbon source, we observed small halos in comparison to other carbon sources, suggesting that these two carbon sources may induce catalytic repression in the genes associated with siderophore production, as has been reported for Escherichia coli.32,33 Alternatively, in order to evaluate the bacterial response for siderophore production under physiological conditions, the bacterial strain MTO431 of B. tropica was cocultivated together with a maize plant in Fahraeus nutritive solution. This strain produces siderophores with root exudates as the carbon source (see Fig. S4). The siderophore production in the cocultivation assay, using maize root exudates, reached the maximal level (2.5 μM) on the second day, and then the siderophore concentration decreased. Therefore, the siderophore production correlates with the time of susceptibility of the plant to infection by a phytopathogenic organism. These results suggest that...
siderophore production also contributes to plant protection against pathogenic organisms. However, when the role of siderophores for the antagonistic effect was evaluated in dual cultures in PDA plates in the presence and absence of iron (FeCl₃), no significant differences were observed, suggesting that siderophores belonging to the hydroxamate and catechol classes are not directly involved in the antagonistic mechanism of B. tropica against fungi (see Fig. S5) and also suggesting that alternative classes of undefined siderophores could participate in this mechanism.

Discussion and Conclusions

To expand our knowledge about B. tropica as a potential biological control agent, in this work we studied its capacity to inhibit the growth of diverse phytopathogenic fungi and their antagonistic mechanism. Our results showed that B. tropica has the capacity to inhibit growth of C. gloeosporioides, S. rolfsii, F. culmorum and F. oxysporum fungi, with F. culmorum the most sensitive to the antagonistic activity and C. gloeosporioides the least susceptible. In in vivo experiments, we showed that B. tropica has the ability to protect maize plants against fungal attack. B. tropica MTo431

Figure 2. Growth inhibition of (A) S. rolfsii, (B) C. gloeosporioides, (C) F. oxysporum and (D) F. culmorum by volatile compounds.

Figure 3. Antagonistic effect of strain MTo431 over the fungus F. oxysporum when cocultivated with maize plant in Fahraeus nutritive solution. Bacterial strains inhibited the fungus growth and resulted in maize plant protection. Control experiments were performed by inoculating plants with only the fungus without bacteria.
All strains were inoculated in BSE liquid medium64 for 16 h at 29°C with reciprocal shaking (250 rpm). The cultures were diluted with 0.1 M phosphate buffer (pH 7.5) and the optical density at 600 nm was adjusted to 0.4. Four strains were streaked per plate to evaluate the siderophore activities; this assay was performed in the presence and absence of 15 ppm Fe(CN)\textsubscript{6}. Plant antagonism assay. Antagonism assays were performed in association with plants under conditions of sterility by using maize seeds previously germinated in a solution with mineral salts, Fahraeus nutritive solution16 and in the absence of carbon sources. Two conditions were assayed: (1) only the fungus was inoculated and (2) the fungus was concomulated with \textit{B. tropica} strain MTo435.

Microscopic analysis. In order to evaluate morphological changes associated with volatile compounds, a double dish assay was performed as previously described, and fungal samples of \textit{F. culmorum} and \textit{F. oxysporum} were taken from areas showing high inhibition levels and stained with lactophenol-cotton blue. Samples from control plates without bacteria were also stained and examined.

Detection and extraction of volatile compounds. Volatile compounds were detected by the method reported by Jayaswal et al.70 Bacterial strains and each fungus were cultivated in PDA medium in separate plates and then the plate with bacteria was placed over the plate with the fungus, avoiding direct contact between the two, sharing only the air. Both plates were sealed from the bottom with parafilm and plates were incubated at 25°C for 5 to 6 d. The production of volatile compounds was then determined based on inhibition of the radial growth of the fungi. In a posterior step and in order to extract the volatile compounds produced by \textit{B. tropica}, two bacterial strains were inoculated on PDA plates and the lid was replaced with a bottom plate that contained 3 g of sterile activated charcoal (Sigma). These two plates were sealed with adhesive transparent tape and they were incubated at 30°C for 4 d for the fungi \textit{C. gloeosporioides} and \textit{S. rolfsii} and for 7 d for \textit{F. oxysporum} and \textit{F. culmorum}. All experiments were performed in triplicate and mean values are provided. After the incubation, the activated charcoal was collected and washed with 5 ml of ethyl acetate to extract all trapped volatile compounds, which were posteriorly analyzed by gas chromatography-mass spectrometry (GC-MS).

GC-MS analyses. The GC-MS analyses were performed using an Agilent GC-MS system (GC with 6890N and mass selective detector 5973N). Samples (1 µl volume) were injected in splitless mode. An Agilent Technologies HP-5MS (30 min by 250 mm by 0.25 mm fused silica capillary column was used. Helium (99.999%) was used as the carrier gas at an on-column flow of 1 ml/min. The temperature of the oven was programmed at 60°C for 5 min, raised at a rate of 15°C/min up to 300°C and then held for 10 min at 300°C. The mass detector conditions were the following; the transfer line from GC to MS was held at 280°C, the MS quadrupole was at 150°C and the MS source was at 230°C. The detector was operated at 70 eV. The analysis was performed in full scan mode, ranging from m/z 2 to 600.

Siderophore production assays. Siderophore production was determined by the universal chemical assay on chrome azuril S.
No potential conflicts of interest were disclosed.

Acknowledgments

We kindly thank Oscar Mascorro-Gallardo for providing fungi. We thank Juan Miranda-Rios and Tanya Romantsov for their critical reading of the manuscript. S.T-S. was supported with a doctoral scholarship (117009) by the Mexican Science and Technology Research Council (CONACYT). E.P.R. was supported by a grant (IN-209511) from DGAPA-UNAM and CONACYT grant 155116.

Supplemental Materials

Supplemental material may be found here: www.landesbioscience.com/journals/bioengineered/articles/23808

Figure 4. Morphological changes in phytopathogenic fungi by diffusible and volatile compounds produced by B. tropica strain MTo431. (A) F. culmorum without bacteria. (B) Effects of the volatile compounds on morphology of the fungus F. culmorum. (C) F. oxysporum without strain MTo431. (D) F. oxysporum in the presence of MTo431. The black arrows indicate hyphal swelling and red arrows denote protoplast aggregation. The scale bar represents 1 mm.
References

1. Compan S, Nonac J, Goosen T, Chiron C, Air Berka E. Diversity and occurrence of Burkholderia spp. in the root environment. FEMS Microbiol Ecol 2008; 62:497-506; PMID:18421066; http://dx.doi.org/10.1111/j.1564-6297.2008.00584.x.

2. Park HC, Gwon EJ, Shin SY, Lee M. Burkholderia cepacia complex and implications for risk assessment of biological control strain. Annu Rev Phytopathol 2001; 39:253-66; PMID:11463018; http://dx.doi.org/10.1146/annurev.phyto.39.1.225.

3. Chiu WM, De Feis SM, Chiu JH, James EK, Elliott GN, Spratt B, et al. Burkholderia cepacia sp. nov., isolated from the root habitats of Mimosa utilis. Int J Syst Bacteriol 2000; 50:217-26; PMID:10796587; http://dx.doi.org/10.1099/00207713-50-1-217.

4. Elliott GN, Chen WM, Chiu JH, Wang JC, Hsu SH, Paris J, et al. Burkholderia phytofirmans is a highly effective rhizobacterial symbiont of Mimosa spp. and fixes nitrogen on plants. New Phytol 2007; 173:148-60; PMID:17718448; http://dx.doi.org/10.1111/j.1469-8137.2007.02094.x.

5. Rui VM, Estrada de los Santos F, Tieturado-Silva S, Vidal J, Buffet M, Gourdon S, et al. Burkholderia sorokiniae sp. nov., a novel rhizobacterium isolated from the rhizosphere of sorghum (Sorghum bicolor L.). Int J Syst Evol Microbiol 2006; 56:2135-62; PMID:16594551; http://dx.doi.org/10.1099/ijs.0.63149-0.

6. Calabrese-Mellado J, Ouelfe-Lamour J, Estrada de los Santos F, Arantia-Mareiras A. The rhizosphere, an environment rich in nutrients and substrates of interest for agriculture and biotechnology. Appl Environ Microbiol 2007; 73:5300-9; PMID:17601817; http://dx.doi.org/10.1128/AEM.02223-07.

7. Soudir A, Goosen T, Vanacova M, Vanacova F, Bekei EA, Salles JF, et al. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant growth-promoting properties isolated from an Egyptian oak Grevillea robusta (Proteaceae). Syst Appl Microbiol 2005; 28:1187-92; PMID:15879025; http://dx.doi.org/10.1016/j.syapm.2005.09.013.

8. Vidal M, Chapoulie A, Groccia MC, Denis E. The rhizosphere of the maize-growing crop, a reservoir for adaptation. Environ Microbiol 2011; 13:3506-17; PMID:21952476; http://dx.doi.org/10.1111/j.1462-2920.2011.02582.x.

9. Jesus M, Figueiredo EM, Arrais JM, Almeida H. A review of mechanisms of action of biological control agents against plant pathogens. Ecol Entomol 2011; 36:333-46; PMID:21781501; http://dx.doi.org/10.1111/j.1365-2338.2011.01894.x.

10. Perlegard A, Fauconier P, Kellman M, Picard C, Thibault P. Pathogenicity of Pseudomonas fluorescens CCM 2798. Identification of Pyoverdins Pt, siderophores of Burkholderia cepacia. Antonie Van Leeuwenhoek 2013; 103:147-54; PMID:23049593; http://dx.doi.org/10.1007/s10482-013-9745-x.

11. Quan CC, Fan SD. Antifungal activity of a novel compound from Burkholderia cepacia against plant pathogenic fungi. Lett Appl Microbiol 2007; 45:508-14; PMID:17599356; http://dx.doi.org/10.1111/j.1365-2338.2007.02221.x.

12. Li X, He Y, Liu W, Tong HM, Da L, Mi GG. Morphological Changes of Fusarium oxysporum induced by CF66I, an antifungal compound from Burkholderia ambifaria. Biochem Biophys Res Commun 2013; 438:1497-503; PMID:23415854; http://dx.doi.org/10.1016/j.bbrc.2013.05.021.

13. Chenhuan B, Farsky A, Faike LG, Treid A, Kumar R, Colter N. Differential and cell-specific production of a single aromatic Bacillus subtilis strain causes structural deformations in pathogenic fungi in vitro. Bioresour Biodegrad 2006; 15:70-81; PMID:17582943; http://dx.doi.org/10.1111/j.1112-7454.2006.00190.x.

14. Julian P, Park E, Lee SY, Park J, Vanghe T, Moore VS. Novel antioxidant derivative of antimicrobial polyphenols from the rhizobacterium Burkholderia cepacia KST-1. J Agric Food Chem 2008; 56:4285-9; PMID:18778494; http://dx.doi.org/10.1021/jf080108j.

15. Bento C, Kaiser KA, Dehne B, Dvorák G, Fittohová JD, Mocháč M, et al. Burkholderia phyllobacter sp. nov. and B. phyllobacter sp. nov., two novel Burkholderia species that cause soft rot disease of trees. J Syst Bacteriol 2002; 52:1467-95; PMID:12047994; http://dx.doi.org/10.1099/0022-532X.52.6.1467.

16. Labes H, Nicholson KG, Wilkins GB, Lydiate J. Haemoparas analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatographic-ultraviolet spectrometry. J Clin Microbiol 1990; 29:152-4; PMID:17745755; http://dx.doi.org/10.1128/JCM.29.2.152.

17. Chauveco V, Minutolo M, Longe Z, Keo P. Soil microbial activity and volatiles production by Burkholderia cepacia CS, Fan SD. Antifungal activity of a novel compound from Burkholderia ambifaria. Biochem Biophys Res Commun 2013; 438:1497-503; PMID:23415854; http://dx.doi.org/10.1016/j.bbrc.2006.05.083.

18. Furlan KA, Lee JY, Chung S, Park J, Park JK, Varughese T, et al. Antagonism of Burkholderia cepacia strain Nissle 1917 against Pythium palmivorum. J Microbiol Biotechnol 2011; 21:146-52; PMID:21692203; http://dx.doi.org/10.5492/1385-3585.2011.00190.

19. Manwar AV, Khandelwal SR, Chaudhari BL, Mehta K, Webber J, et al. Antagonism of Pseudomonas aeruginosa against pathogenic fungi. Curr Microbiol 2010; 60:193-9; PMID:20572787; http://dx.doi.org/10.1007/s00284-009-9514-5.

20. Chauveco V, Minutolo M, Longe Z, Keo P. Soil microbial activity and volatiles production by Burkholderia cepacia strain Nissle 1917 against Pythium palmivorum. J Microbiol Biotechnol 2011; 21:146-52; PMID:21692203; http://dx.doi.org/10.5492/1385-3585.2011.00190.

21. Chauveco V, Minutolo M, Longe Z, Keo P. Soil microbial activity and volatiles production by Burkholderia cepacia strain Nissle 1917 against Pythium palmivorum. J Microbiol Biotechnol 2011; 21:146-52; PMID:21692203; http://dx.doi.org/10.5492/1385-3585.2011.00190.

22. Chauveco V, Minutolo M, Longe Z, Keo P. Soil microbial activity and volatiles production by Burkholderia cepacia strain Nissle 1917 against Pythium palmivorum. J Microbiol Biotechnol 2011; 21:146-52; PMID:21692203; http://dx.doi.org/10.5492/1385-3585.2011.00190.

23. Chauveco V, Minutolo M, Longe Z, Keo P. Soil microbial activity and volatiles production by Burkholderia cepacia strain Nissle 1917 against Pythium palmivorum. J Microbiol Biotechnol 2011; 21:146-52; PMID:21692203; http://dx.doi.org/10.5492/1385-3585.2011.00190.

24. Chauveco V, Minutolo M, Longe Z, Keo P. Soil microbial activity and volatiles production by Burkholderia cepacia strain Nissle 1917 against Pythium palmivorum. J Microbiol Biotechnol 2011; 21:146-52; PMID:21692203; http://dx.doi.org/10.5492/1385-3585.2011.00190.