Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma

Daniel Pablos

in collaboration with J. Casalderrey, G. Milhano & K. Rajagopal

arXiv:1907.11248

Quark Matter 2019
Wuhan

6th November 2019
Motivation

Many new jet substructure measurements:

- differential
- groomed

Chance to explore underlying physical mechanisms with detail:

- phase space effects
- medium response
- QGP resolution length
The hybrid strong/weak coupling model

- Evolution of high virtuality energetic jets dominated by DGLAP evolution;

- Interaction of partons with QGP of $T \sim \Lambda_{QCD}$ is strongly coupled;

- Energy and momentum deposited in the QGP hydrodynamize quickly;
The hybrid strong/weak coupling model

Evolution of high virtuality energetic jets dominated by DGLAP evolution;
- Parton shower generated with PYTHIA8.
- Formation time argument for space-time picture.

Interaction of partons with QGP of $T \sim \Lambda_{QCD}$ is strongly coupled;
- Energy loss rate from holography:

$$\frac{1}{E_{\text{in}}} \frac{dE}{dx} = -4 \frac{x^2}{\pi x_{\text{stop}}^2} \frac{1}{\sqrt{x_{\text{stop}}^2 - x^2}}$$

$$x_{\text{stop}} = \frac{1}{2} \frac{E_{\text{in}}^{1/3}}{\kappa_{\text{SC}} T^{4/3}}$$

Energy and momentum deposited in the QGP hydrodynamize quickly;
- Compute modified hadron spectrum from perturbed freeze-out hyper-surface:

$$E \frac{d\Delta N}{d^3p} = \frac{1}{32\pi} \frac{m_T}{T^5} \cosh(y - y_j) \exp \left[-\frac{m_T}{T} \cosh(y - y_j) \right] \left\{ p_T \Delta P_T \cos(\phi - \phi_j) + \frac{1}{3} m_T \Delta M_T \cosh(y - y_j) \right\}$$

Pablo et al. - JHEP '14, '16, '17

Chesler & Rajagopal - PRD '14, JHEP '16
The QGP Resolution Length

QGP resolution length:

minimal distance between two coloured charges such that they engage with the plasma independently.

The medium perceives a parton shower as a collection of effective probes.
The QGP Resolution Length

QGP resolution length:
minimal distance between two coloured charges such that they engage with the plasma independently.

At weak coupling:
connection between resolution length and energy loss.

At strong coupling:
no such connection (yet).

In the hybrid model:
resolution length proportional to the Debye screening length of QGP.

\[L_{\text{res}} \sim \lambda_D \]
Two extreme scenarios

Look for sensitivity of observables to L_{res}:

Take two extreme values for L_{res}:

- $L_{\text{res}} = 0$ fully resolved case
- $L_{\text{res}} = \infty$ fully unresolved case

(explore realistic values later on)
Two extreme scenarios

Look for sensitivity of observables to L_{res}:

- Take two extreme values for L_{res}:
 - $L_{\text{res}} = 0$ fully resolved case
 - $L_{\text{res}} = \infty$ fully unresolved case

(choose realistic values later on)

Amount of jet quenching depends on L_{res}

- Adjust value of κ_{sc} to compare results at the same value of jet RAA

κ_{sc} range:

- $L_{\text{res}} = 0$ (global fit) 0.404 $< \kappa_{\text{sc}} < 0.423$
- $L_{\text{res}} = \infty$ (adjusted) 0.5 $< \kappa_{\text{sc}} < 0.52$

Relative suppression of hadrons vs jets strongly depends on QGP resolution length.

(see Pablos et al. - PRC '19 and Mehtar-Tani & Tywoniuk - PRD '18)
A frustrating observable: charged jet mass

Without wake:

\(L_{\text{res}} = 0 \)
shift towards smaller masses

\(L_{\text{res}} = \infty \)
barely any modification

Larger mass jets
are more active;
more suppressed if
substructure resolved.

Daniel Pablos 9

University of Bergen
A frustrating observable: charged jet mass

With wake:

Soft particles from the wake increase the mass, compensating quenching.

\[L_{\text{res}} = 0 \quad \text{and} \quad L_{\text{res}} = \infty \]

barely distinguishable!

Surprisingly good description of data across three \(p_T \) ranges, after cancellation of effects…
Soft Drop (SD) procedure in a nutshell:

1. Reconstruct jet with anti-k_T.

2. Recluster jet with Cambridge-Aachen.

3. Go back clustering history, store z and ΔR of each pair of branches.
Soft Drop (SD) procedure in a nutshell:

1. Reconstruct jet with anti-k_T.
2. Recluster jet with Cambridge-Aachen.
3. Go back clustering history, store z and ΔR of each pair of branches.

If stop at first step that satisfies SD condition:

- **1st SD “splitting”**
 - study such 1st “splitting”
 - study groomed jet properties

Soft Drop condition:

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{cut} \left(\frac{R_{12}}{R_0} \right)^\beta$$
Soft Drop (SD) procedure in a nutshell:

1. Reconstruct jet with anti-k_T.
2. Recluster jet with Cambridge-Aachen.
3. Go back clustering history, store z and ΔR of each pair of branches.

If stop at first step that satisfies SD condition:
- 1st SD “splitting”
 - study such 1st “splitting”
 - study groomed jet properties

If count all “splittings” that satisfy SD condition: (following the hardest branch, i.e. Iterative SD)
- # SD “splittings”, n_{SD}

Frye et al. - JHEP ’17

Analytic Distributions

\begin{align*}
& p_T = 500 \text{ GeV}, \quad R = 0.6 \\
& z_{\text{cut}} = 0.007, \quad \beta = -1, \quad \theta_{\text{cut}} = 0
\end{align*}

- quark, NLL
- quark, LL
- gluon, NLL
- gluon, LL

\begin{align*}
\text{Probability} & \quad n_{SD} \\
0.5 & \quad 0.4 \\
0.3 & \quad 0.2 \\
0.1 & \quad 0.0 \\
0 & \quad 2 \quad 4 \quad 6 \quad 8 \quad 10
\end{align*}
SD Splittings

Flat grooming setup:

\[
 z_{\text{cut}} = 0.1 \quad \beta = 0
\]

Remove soft & soft-collinear

\[
 L_{\text{res}} = 0
\]

reduction of \(n_{\text{SD}} \)

Wake negligible.

\[
 L_{\text{res}} = \infty
\]

barely any modification

Jets with higher multiplicity are more suppressed, ensemble biased towards less active ones if substructure is resolved.

(Also a subleading effect from "per jet" energy loss, see back-up)
1st SD splitting z_g vs ΔR

Strong ordering in ΔR
(if parton shower resolved).

Larger ΔR;
Larger phase-space for emissions;
Larger quenching, smaller survival rate;
(almost NO effect from “per jet” energy loss, see back-up)

$L_{\text{res}} = 0$
$L_{\text{res}} = \infty$

normalised to N_{jets}

(Not Sudakov safe, but results unchanged for $\beta = -\epsilon$)
1st SD splitting z_g vs ΔR

Flat $z_{cut} = 0.1$ $\beta = 0$

- **L_{res} = 0**
 - no wake, all ΔR
 - no wake, $\Delta R < 0.1$
 - no wake, $\Delta R > 0.2$
 - all ΔR

- **L_{res} = \infty**
 - $R = 0.4$, $80 < P_{T,jet} < 120$ GeV

Strong ordering in ΔR
(if parton shower resolved).

- Larger ΔR;
- Larger phase-space for emissions;
- Larger quenching, smaller survival rate;

(almost NO effect from "per jet" energy loss, see back-up)

normalised to N_{jets}

- Wake almost no effect.
- Negligible modification z_g shape.

(not Sudakov safe, but results unchanged for $\beta = -\epsilon$)

(Daniel Pablos)
1st SD splitting z_g vs ΔR

Flat $z_{cut} = 0.1 \quad \beta = 0$

L_{res} = 0	L_{res} = ∞
no wake, all ΔR	no wake, all ΔR
no wake, $\Delta R < 0.1$	no wake, $\Delta R < 0.1$
no wake, $\Delta R > 0.2$	no wake, $\Delta R > 0.2$

$R = 0.4$, $80 < P_{T, jet}^{ch} < 120$ GeV

- Quark vs Gluon jet effect more dominant here

- **RESOLVED**
- **UNRESOLVED**

$1/N_{jets} \frac{dN}{dz_g}$ (PbPb/pp)

- Normalised to N_{jets}
- Wake almost no effect.
- Negligible modification z_g shape.

(Not Sudakov safe, but results unchanged for $\beta = -\epsilon$)

Strong ordering in ΔR

(if parton shower resolved).

- Larger ΔR;
- Larger phase-space for emissions;
- Larger quenching, smaller survival rate;

(almost NO effect from “per jet” energy loss, see back-up)

Daniel Pablos

University of Bergen
If shower resolved \rightarrow \text{increased weight of jets with smaller (groomed) mass.}

\textbf{White curves:} \text{lines of constant } \log\left(\frac{1}{(M_g/p_{T,g})}\right), \text{ where } \frac{M_g^2}{p_{T,g}^2} \approx z_g(1-z_g)\Delta R^2
Cutting the Lund Plane

Difference PbPb-pp of 1st SD splitting Lund plane

Flat
Removes soft & soft-collinear

Core
Removes soft-wide

Soft-core
Extends soft-collinear region

CMS angularity limit: $\Delta R > 0.1$
Cutting the Lund Plane

Difference PbPb-pp of 1st SD splitting Lund plane

- **Flat**
 - Removes soft & soft-collinear

- **Core**
 - Removes soft-wide

- **Soft-core**
 - Extends soft-collinear region
 - *Enhances Lund plane structure above $\Delta R > 0.1$*

CMS angularity limit: $\Delta R > 0.1$
Groomed jet mass

Not self-normalized:
merely reflect absence of wide angle configurations

Self-normalized:
differences due to L_{res} of the size of the wake effect

Strong discriminating power,
not relying on the norm.
Low z_g enhancement arises in our model from smearing effects.

Strong ordering in ΔR is robust under smearing effects. $L_{\text{res}} = \infty$ is disfavoured by data.

z_g distribution, differential in ΔR, successfully described by the Hybrid Model.
Low z_g enhancement arises in our model from smearing effects. Strong ordering in ΔR is robust under smearing effects. z_g distribution, differential in ΔR, successfully described by the Hybrid Model. No enhancement of hard radiation.
Sensitivity to L_{res}

ΔR ordering of z_g dist. closely correlated with value of QGP resolution length.

Results for $L_{\text{res}} = 2/\pi T$
closer to $L_{\text{res}} = 0$ than to $L_{\text{res}} = \infty$
Conclusions

- Studied the sensitivity of jet substructure observables to the value of the QGP resolution length:

 - Ungroomed observables too sensitive to soft particles from the wake (charged jet mass).
 - Groomed observables have a strong discriminating power:
 - Jet selection based on the properties of the 1st SD “splitting”;
 - Good taggers for the total amount of jet activity, which regulates quenching.
 - The smaller L_{res}, the larger the bias towards narrow configurations.
 - Different grooming setups give access to different phase space regions;
 - Proposed soft-core grooming to maximise discriminating power for groomed mass.

- Comparison between smeared theory & not unfolded data disfavours unresolved scenario.
 - Hybrid model describes very well the z_9 distribution, differential in ΔR.
 - Questions power of observable to identify medium induced radiation or hard recoils.
Correlation between n_{SD} and ΔR

$80 < P_{T, jet}^{ch} < 120$ GeV

$R = 0.4$

$z_{cut} = 0.1, \beta = 0$
Correlation between n_{SD} and z_g

$80 < P_{T,jet}^{ch} < 120$ GeV

$R = 0.4$

$z_{cut} = 0.1$, $\beta = 0$
A careful look into the selection bias

Bias: Increase # of low mult. jets
E. loss: Some branches below z_{cut}

Restricted pp: sample of pp jets from which the “surviving” sample of PbPb jets come from

Bias: Increase # of one-pronged jets
E. loss: Incoherent energy loss shift of z_g (see Mehtar-Tani & Tywoniuk - JHEP ’17)
The role of formation time

Is wide configuration suppressed because formed early?

Radical test:
Assume all formation times are zero.

- Small adjustment of kappa.
- Almost no change in ΔR ordering.

Observable dominated by correlation between ΔR and multiplicity.
Wider jets lose more energy

Wider, more active jets lose more energy than narrower, hard fragmenting ones

Effect seen in the literature, for different models, on different observables

- Holographic “jets”
- JEWEL
- Hybrid Model

Even though each individual jet widens, the final distribution is narrower

Initial jet ensemble binned in energy and width

CMS’ jet shapes ratio

Brewer et al. - JHEP ’18
Wider, more active jets lose more energy than narrower, hard fragmenting ones

Effect seen in the literature, for different models, on different observables

Dijet asymmetry dominated by mass to momentum ratio, proxy for # vacuum splittings
Wider, more active jets lose more energy than narrower, hard fragmenting ones

Effect seen in the literature, for different models, on different observables

Larger R jets more quenched due to more energy loss sources