Sorbicillinoids from Fungi and Their Bioactivities

Jiajia Meng, Xiaohan Wang, Dan Xu, Xiaoxiang Fu, Xuping Zhang, Daowan Lai, Ligang Zhou * and Guozhen Zhang *

Key Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; mengjiajiax@163.com (J.M.); wangxiaohan99@126.com (X.W.); cauxudan@163.com (D.X.); xiaoxiaofu@cau.edu.cn (X.F.); zhangxuping5@163.com (X.Z.); dwlai@cau.edu.cn (D.L.)
* Correspondence: lgzhou@cau.edu.cn (L.Z.); zhanggzh@cau.edu.cn (G.Z.);
Tel.: +86-10-6273-1199 (L.Z.); +86-10-6273-3259 (G.Z.)

Academic Editor: Kira J. Weissman
Received: 6 April 2016; Accepted: 27 May 2016; Published: 1 June 2016

Abstract: Sorbicillinoids are important hexaketide metabolites derived from fungi. They have a variety of biological activities including cytotoxic, antioxidant, antiviral and antimicrobial activity. The unique structural features of the sorbicillinoids make them attractive candidates for developing new pharmaceutical and agrochemical agents. About 90 sorbicillinoids have been reported in the past few decades. This mini-review aims to briefly summarize their occurrence, structures, and biological activities.

Keywords: sorbicillin; sorbicillinoids; bisorbicillinoids; trisorbicillinoids; vertinoids; fungi; occurrence; biological activities

1. Introduction

Sorbicillinoids (also called vertinoids) belong to hexaketide metabolites in which the cyclization has taken place on the carboxylate terminus [1]. They have highly diverse bioactivities and have been isolated from either marine [2–4] or terrestrial fungi [5–7]. Many of them possess elaborate bicyclic or tricyclic systems that appear to arise from the oxidative dearomatization and subsequent dimerization/trimerization of sorbicillin (5). The presence of the C1’–C6’ sorbyl sidechain is another structural feature of these compounds. The term “sorbicillinoid” has come to encompass the family as a whole and generally refers to any compound that contains the carbon skeleton of sorbicillin.

Since first reported in 1948 by Cram et al., sorbicillinoids have been extensively studied [8,9]. In 2011, Harned and Volp reviewed the structures of 62 sorbicillinoids [1]. Since then, many new members of this family were isolated and great progress has been made [4,10–13]. According to the structural features, sorbicillinoids can be divided into four groups: monomeric sorbicillinoids, bisorbicillinoids, trisorbicillinoids, and hybrid sorbicillinoids. Biosynthesis and chemical synthesis have been extensively studied and reviewed [1,11,14–17]. In this mini-review, we focus on the occurrence and biological activities of sorbicillinoids, and 28 additional sorbicillinoids were added on the basis of the previous review [1].

2. Occurrence

Sorbicillinoids have a diverse distribution in fungi (Tables 1–4). Accordingly, their structures are shown in Figures 1–4. In total, about 90 sorbicillinoids have been isolated, and they were found mainly in terrestrial fungi, which contained nine genera, namely Acremonium, Aspergillus, Clonostachys, Emericella, Penicillium, Phaeoacremonium, Scytalidium, Trichoderma, and Verticillium, and partly in marine fungi that included five genera (i.e., Paecilomyces, Penicillium, Phialocephala, Trichoderma and Trichotheceum). All these fungi belong to ascomycetes.
2.1. Monomeric Sorbicillinoids

To date, 30 monomeric sorbicillinoids (Table 1 and Figure 1) have been isolated from Clonostachys, Emericella, Penicillium, Phaeoacremonium, Phialocephala, Scytalidium, Trichoderma, Trichothecium and Verticillium species.

Sorbicillinol (1) was found to be highly reactive and it was the biosynthetic precursor of the other sorbicillinoid family members [11]. Sorrentanone (3-hydroxy-2,5-dimethyl-6-(1′-oxo-2′,4′-diethylhexyl)-1,4-benzoquinone, 26) was the benzoquinone structure of sohirnone B (8), meaning that it was imagined arising from the oxidation of sohirnone B (8) [5,18]. Similarly, 2-(2′,3′-dihydrosorbyl)-3,6-dimethyl-5-hydroxy-1,4-benzoquinone (25) was the benzoquinone of sohirnone C (15) [5,19].

![Figure 1. Structures of the monomeric sorbicillinoids (1–30) isolated from fungi.](image-url)
Table 1. Occurrence of the monomeric sorbicillinoids (1–30) in fungi.

Sorbicillinoid	Fungus and its Origin	Ref.
Sorbicillinol (1)	*Trichoderma* sp. USF-2690 from a soil sample	[14]
Epoxy sorbicillinol (2)	*Trichoderma longibrachiatum* from the sponge *Haliclona* sp.	[20]
Oxosorbicillinol (3)	*Penicillium chrysogenum* E01-10/3 from the sponge *Ircinia fasciculata*; *Penicillium* sp. 06T121 from a soil sample	[21,22]
6'-Hydroxyoxosorbicillinol (4)	*Penicillium* sp. 06T121 from a soil sample	[22]
Sorbicillin (5)	*Clonostachys rosea* YRS-06 from a soil sample; *Emericella* sp. IFM57991 and its origin was not clear; *Penicillium* chrysogenum Q176 and its origin was not clear; *Penicillium* sp. P-1 from a marine sediment; *Trichoderma* sp. from the seastar *Acanthaster planci*; *Trichoderma* sp. USF-2690 from a soil sample; *Verticillium intertextum* and its origin was not clear	[7,13,24,25,26,27,31,32]
Demethylsorbicillin (6)	*Trichoderma* sp. USF-2690 from a soil sample	[23]
6'-Demethylsorbicillin (7)	*Trichoderma* sp. f-13 from a marine sediment	[27]
Sohirnone B (8)	*Penicillium notatum* from a benchtop contamination	[5]
1-(2'-Hydroxy-4'-methoxy-5'-methylphenyl)-E,E-2,4-hexadien-1-one (9)	*Phaeoacremonium* sp. NRRL 32148 from the surface of stromata of *Hypoxylon truncatum* formed on a dead hardwood branch; *Scytalidium* sp. MSX 51631 from a soil sample	[33,12]
5'-Formyl-2'-hydroxyl-4'-methoxy-(E,E)-sorbophenone (10)	*Phaeoacremonium* sp. NRRL 32148 from the surface of stromata of *Hypoxylon truncatum* formed on a dead hardwood branch; *Scytalidium* sp. MSX 51631 from a soil sample; *Scytalidium* sp. FY as an immunizing commensal of Douglas fir utility poles	[33,12,34]
Scalbucidin A (11)	*Scytalidium* album MSX 51631 from a soil sample	[12]
Scalbucidin B (12)	*Scytalidium* album MSX 51631 from a soil sample	[12]
Sorbicillinoid	Fungus and its Origin	Ref
-------------------------------------	---	-----
2',3'-Dihydrodrosorbidin (13)	*Penicillium chrysogenum* R03-8/4 from the sponge *Tethya aurantium*	[35]
	Penicillium chrysogenum E01-10/3 from the sponge *Ircinia fasciculata*	[11]
	Penicillium notatum from a benchtop contamination	[5]
	Penicillium sp. P-1 as an endophyte from the stems of *Huperzia serrata*	[7]
	Trichoderma sp. from the seastar *Acanthaster planci*	[4]
	Trichoderma sp. f-13 from a marine sediment	[27]
	Verticillum intertextum from a laboratory contaminant	[31,32]
Sohirnone A (14)	*Penicillium notatum* from a benchtop contamination	[5]
	Trichoderma sp. f-13 from a marine sediment	[27]
Sohirnone C (15)	*Penicillium notatum* from a benchtop contamination	[5]
	Trichoderma sp. f-13 from a marine sediment	[27]
1-(2'-Hydroxy-4'-methoxy-5'-hydroxymethylphenyl)-E-4-hexen-1-one (16)	*Phaeoacremonium* sp. from the surface of stromata of *Hypoxylon truncatum* formed on a dead hardwood branch	[33]
	Scytalidium sp. FY as an immunizing commensal of Douglasfir utility poles	[34]
	Scytalidium album MSX51631 from a soil sample	[12]
Dihydrodemsorbidin (17)	*Phialocephala* sp. FL30r from a deep sea sediment	[36]
	Scytalidium album MSX51631 from a soil sample	[12]
5'-Formyl-2'-hydroxy-4'-methoxy-(E)-4-hexenophenone (18)	*Scytalidium* album MSX51631 from a soil sample	[12]
	Scytalidium album MSX51631 from a soil sample	[12]
Scalbucillin C (19)	*Scytalidium* album MSX51631 from a soil sample	[12]
Scalbucillin D (20)	*Scytalidium* album MSX51631 from a soil sample	[12]
(2S)-2,3-Dihydro-7-hydroxy-6,8-dimethyl-2-(E)-prop-1-ethyl]-chroman-4-one (21)	*Trichoderma* sp. from the seastar *Acanthaster planci*	[4]
	Penicillium sp. P-1 as an endophyte from the stems of *Huperzia serrata*	[7]
(2S)-2,3-Dihydro-7-hydroxy-6-methyl-2- (E)-prop-1-ethyl]-chroman-4-one (22)	*Trichoderma* sp. from the seastar *Acanthaster planci*	[4]
(E)-6-(2,4-Dihydroxyl-5-methylphenyl)-6-oxo-2-hexenoic acid (23)	*Trichoderma* sp. JH8 from the soil of saline lands	[6]
6-(2,4-Dihydroxyl-5-methylphenyl)-6-oxohexanoic acid (24)	*Trichoderma* sp. JH8 from the soil of saline lands	[6]
2-(2',3'-Dihydrodrosorbyl)-3,6-dimethyl-5-hydroxy-1,4-benzoquinone (25)	*Penicillium terestre* from a marine sediment	[19]
Sorrentanone = 3-hydroxy-2,5-dimethyl-6-(1'-oxo-2',4'-dienylhexyl)-1,4-benzoquinone (26)	*Penicillium chrysogenum* SC13887 and its origin was not clear	[18]
(4'S)-Sorbitrillin (27)	*Trichoderma* sp. from the seastar *Acanthaster planci*	[4]
Vertinolide (28)	*Trichoderma* cruda from the sponge *Agelas dispar*	[3]
	Trichoderma sp. from the sponge *Agelas dispar*	[37]
	Verticillum intertextum from a laboratory contaminant	[31,38]
5-Hydroxymertinolide (29)	*Trichoderma longibrachiatum* UAMH 4159 and its origin was not clear	[39]
5-Epimhydroxymertinolide (30)	*Trichoderma* sp. USF-2690 from a soil sample	[17]

Note: Compounds 4, 11, 12 and 17–24 were not included in the last review [1].
2.2. Bisorbcillinoids

Bisorbcillinoids are also called dimeric sorbicillinoids, which consist of two sorbicillinoid monomers (Table 2), whose structures are shown in Figure 2. Up to now, 30 bisorbcillinoids have been isolated from fungi. These compounds are mainly distributed in the genera *Acremonium*, *Aspergillus*, *Clonostachys*, *Penicillium*, *Phialocephala*, *Trichoderma*, *Trichothecium* and *Verticillium*.

Table 2. Occurrence of the bisorbcillinoids (31–60) in fungi.

Sorbicillinoid	Fungus and Its Origin	Ref.
Bisvertinol (31)	Aspergillus sp. FKI-1746 from a mangrove slurry sample	[40]
Trichoderma longibrachiatum UAMH 4159 and its origin was not clear	[26]	
Trichoderma viride from the sponge *Agelas dispar*	[3]	
Trichoderma sp. from the sponge *Agelas dispar*	[37]	
Verticillium intertextum from a laboratory contaminant	[41]	
Dihydrobisvertinol (32)	Aspergillus sp. FKI-1746 from a mangrove slurry sample	[40]
Verticillium intertextum from a laboratory contaminant	[41]	
Isodihydrobisvertinol (33)	*Verticillium intertextum* from a laboratory contaminant	[41]
Bisvertinolone (34)	*Acremonium strictum* and its origin was not clear	[42]
Penicillium chrysogenum E01-10/3 from the sponge *Ircinia fasciculata*	[21]	
Penicillium citrinum SpI080624G1f01 from a marine sponge	[43]	
Penicillium notatum from a benchtop contamination	[5]	
Trichoderma longibrachiatum UAMH 4159 and its origin was not clear	[26]	
Trichoderma sp. f-13 from a marine sediment	[27]	
Trichoderma sp. JHB from the soil of saline lands	[6]	
Trichoderma sp. USF-2690 isolated from a soil sample	[44]	
Verticillium intertextum from a laboratory contaminant	[41]	
16,17-Dihydrobisvertinolone (35)	*Penicillium terrestre* from a marine sediment	[19]
10,11-Dihydrobisvertinolone (36)	*Penicillium terrestre* from a marine sediment	[27]
Tetrahydrobisvertinolone (37)	*Penicillium terrestre* from a marine sediment	[19]
Isobisvertinol (38)	Aspergillus sp. FKI-1746 from a mangrove slurry sample	[40]
Sorbicillamine D (39)	*Penicillium* sp. F23-2 from a deep-sea sediment	[10]
Sorbicillamine B (40)	*Penicillium* sp. F23-2 from a deep-sea sediment	[10]
Sorbicillamine C (41)	*Penicillium* sp. F23-2 from a deep-sea sediment	[10]
Trichodimerol = MS-182123 (42)	*Clonostachys rosea* YRS-06 from a soil sample	[13]
Penicillium chrysogenum V39673 and its origin was not clear	[45,46]	
Penicillium citrinum SpI080624G1f01 from a marine sponge	[43]	
Penicillium terrestre from a marine sediment	[47]	
Trichoderma citrinoviride ITEM 4484 from the soil under the tree *Abies* sp.	[48]	
Trichoderma viride from the sponge *Agelas dispar*	[3]	
Trichoderma longibrachiatum UAMH 4159 and its origin was not clear	[26]	
Trichoderma sp. f-13 from a marine sediment	[27]	
Trichoderma sp. JHB from the soil of saline lands	[6]	
Trichoderma sp. USF-2690 from a soil sample	[44]	
Trichothecium sp. from a marine sediment	[30]	
Unidentified fungus B00853 from a soil sample	[50]	
Demethyltrichodimerol (43)	*Trichoderma* sp. USF-2690 isolated from a soil sample	[44]
Dihydrotrichodimerol (44)	*Clonostachys rosea* YRS-06 from a soil sample	[13]
Penicillium terrestre from a marine sediment	[47]	
Trichoderma citrinoviride ITEM 4484 from the soil under the tree *Abies* sp.	[48,51]	
Trichoderma viride from the sponge *Agelas dispar*	[3]	
Trichoderma longibrachiatum UAMH 4159 and its origin was not clear	[26]	
Trichoderma sp. f-13 from a marine sediment	[27]	
Trichoderma sp. JHB from the soil of saline lands	[6]	
Trichoderma sp. USF-2690 from a soil sample	[44]	
Unidentified fungus B00853 from a soil sample	[50]	
Tetrahydrotrichodimerol (45)	*Clonostachys rosea* YRS-06 from a soil sample	[13]
Penicillium terrestre from a marine sediment	[47]	
Unidentified fungus B00853 from a soil sample	[50]	
Bisorbetanone (46)	*Trichoderma* sp. USF-2690 isolated from a soil sample	[44]
Bisvertinosquinol (47)	*Penicillium notatum* from a benchtop contamination	[5]
Trichoderma sp. f-13 from a marine sediment	[27]	
Verticillium intertextum from a laboratory contaminant	[31,32]	
Bisorbcillinol (48)	*Penicillium notatum* from a benchtop contamination	[5]
Trichoderma sp. f-13 from a marine sediment	[27]	
Trichoderma sp. USF-2690 from a soil sample	[44]	
Sorbicillinoid	Fungus and Its Origin	Ref.
---------------	----------------------	-----
Bislongiquinolide = Bisorbibutenolide = Trichotetronine (49)	*Penicillium citrinum* SpI080624G1H01 from the sponge Demospongiae sp.	[43]
	Trichoderma citrinoviride ITEM 4484 from the soil under the tree Abies sp.	[45,51]
	Trichoderma longibrachiatum UAMH 4159 and its origin was not clear	[26,54]
	Trichoderma viride sp. FL30r from a deep-sea sediment	[2]
	Phialocephala sp. USF-2690 from a soil sample	[29]
	Trichoderma sp. from the straws of rice plant	[49]
	Clonostachys rosea YRS-06 from a soil sample	[13]
	Clonostachys rosea sp. f-13 from a marine sediment	[27]
	Trichoderma sp. USF-2690 from a soil sample	[29]
24,25-Dihydrotrichotetronine = 16,17-Dihydrobislongiquinolide (50)	*Penicillium citrinum* SpI080624G1H01 from the sponge Demospongiae sp.	[43]
	Trichoderma citrinoviride ITEM 4484 from the soil under the tree Abies sp.	[45,51]
	Trichoderma longibrachiatum UAMH 4159 and its origin was not clear	[26,54]
	Trichoderma sp. USF-2690 from a soil sample	[29]
	Clonostachys rosea YRS-06 from a soil sample	[13]
	Clonostachys rosea sp. f-13 from a marine sediment	[27]

Note: Compounds 36, 39–41 and 56–60 were not included in the last review [1].

Figure 2. Cont.
2.3. Trisorbicillinoids

Trisorbicillinoids are also called trimeric sorbicillinoids. Up to date, only five trimeric sorbicillinoids have been isolated from marine fungi (i.e., *Penicillium* sp. F23-2 and *Phialocephala* sp. FL30r) (Table 3 and Figure 3). Among them, sorbicillamine E (65) was a compound containing N element [10].
2.4. Hybrid Sorbicillinoids

Hybrid sorbicillinoids are proposed to be derived from either a Diels-Alder or a Michael reaction of a monomeric sorbicillinoid diene and a second non-sorbicillinoid dienophile. About 25 hybrid sorbicillinoids have been isolated from fungi so far.

The structure of sorbicillamine A (78) was a tentative assignment for the C-2/C-7 unit, which might exist as either enol or keto tautomers, and they were interconverting on the NMR timescale in solution [10].

Compound 73 from an intertidal marine fungus *Paecilomyces marquandii* was an unnamed sorbicillinoid urea [57]. Chloctanspirones A (74) and B (75) containing chlorine were isolated from *Penicillium terrestre* derived from a marine sediment. The differences between them were their absolute configuration at C-19 [58]. Similarly, both sorbatechols A (76) and B (77) were isolated from the marine sediment-derived fungus *Penicillium chrysogenum* PJX-17, and their differences were the absolute configuration at C-7 [59].

Unnamed urea (73), sorbicillamine A (78), sorbicillactone A (85), and sorbicillactone B (86) were a class of N-containing compounds [10,21,57]. Interestingly, the N-containing sorbicillinoids including dimeric sorbicillamines D (39), B (40), C (41), and trimeric sorbicillamine E (65) were all isolated from marine fungi (Tables 2–4). Except urea 73 from the genus *Paecilomyces*, others were isolated from the genus *Penicillium*.

Table 3. Occurrence of the trimeric sorbicillinoids (61–65) in fungi.

Sorbicillinoid	Fungus and Its Origin	Ref.
Trisorbicillinone A (61)	*Phialocephala* sp. FL30r from a deep-sea sediment	[55]
Trisorbicillinone B (62)	*Phialocephala* sp. FL31r from a deep-sea sediment	[56]
Trisorbicillinone C (63)	*Phialocephala* sp. FL32r from a deep-sea sediment	[56]
Trisorbicillinone D (64)	*Phialocephala* sp. FL33r from a deep-sea sediment	[56]
Sorbicillamine E (65)	*Penicillium* sp. F23-2 from a deep-sea sediment	[10]

Note: Compound 65 was not included in the last review [1].

![Figure 3. Structures of the trimeric sorbicillinoids (61–65) isolated from fungi.](image-url)
Molecules 2016, 21, 715

Table 4. Occurrence of the hybrid sorbicillinoids (66–90) in fungi.

Sorbicillinoid	Fungus and Its Origin	Ref.
Rezishanone A (66)	Penicillium notatum from a benchtop contamination	[5]
Rezishanone B (67)	Penicillium notatum from a benchtop contamination	[5]
Rezishanone C = Sorbivinetone (68)	Penicillium chrysogenum isolated from the sponge Irinina fasciculata	[21]
	Penicillium notatum from a benchtop contamination	[5]
	Trichoderma viride from the sponge Agelas dispar	[3]
	Trichoderma sp. isolated from the sponge Agelas dispar	[37]
Unidentified sorbicillinoid urea (73)	Unidentified fungus B00853 collected from a soil sample	[50]
Chloctanspirone A (74)	Penicillium terrestre from a marine sediment	[58]
Chloctanspirone B (75)	Penicillium terrestre from a marine sediment	[58]
Sorbicatechol A (76)	Penicillium chrysogenum ITX-17 from a marine sediment	[59]
Sorbicatechol B (77)	Penicillium chrysogenum ITX-17 from a marine sediment	[59]
Sorbicillamine A (78)	Penicillium sp. F23-2 from a deep-sea sediment	[10]
Sorbetrin A (79)	Penicillium terrestre from a marine sediment	[61]
JBR-59 (80)	Penicillium citrinum Sp080624G101 from the sponge Demospongeae sp.	[43]
JBR-124 (81)	Penicillium citrinum Sp080624G101 from the sponge Demospongeae sp.	[43]
Sorbifuranone A (82)	Penicillium chrysogenum E03-8/4 from the sponge Tethya aurantium	[35]
Sorbifuranone B (83)	Penicillium chrysogenum E03-8/4 from the sponge Tethya aurantium	[35]
Sorbifuranone C (84)	Penicillium chrysogenum E03-8/4 from the sponge Tethya aurantium	[35]
Sorbicilactone A (85)	Penicillium chrysogenum E01-10/3 from the sponge Irinina fasciculata	[21]
Sorbicilactone B (86)	Penicillium chrysogenum E01-10/3 from the sponge Irinina fasciculata	[21]
Trichodermanone A (87)	Trichoderma viride from the sponge Agelas dispar	[3]
	Trichoderma sp. from the sponge Agelas dispar	[37]
Trichodermanone B (88)	Trichoderma viride from the sponge Agelas dispar	[3]
	Trichoderma sp. from the sponge Agelas dispar	[37]
Trichodermanone C (89)	Trichoderma viride from the sponge Agelas dispar	[3]
	Trichoderma sp. from the sponge Agelas dispar	[37]
Trichodermanone D (90)	Trichoderma viride from the sponge Agelas dispar	[3]
	Trichoderma sp. from the sponge Agelas dispar	[37]

Note: Compounds 74–79 were not included in the last review [1].

Figure 4. Cont.
3. Biological Activities

3.1. Cytotoxic Activity

Many sorbicillinoids were screened to have cytotoxic activities, which are summarized in Table 5. (2S)-2,3-Dihydro-7-hydroxy-6,8-dimethyl-2-[(E)-prop-1-enyl]-chroman-4-one (21) and (2S)-2,3-dihydro-7-hydroxy-6-methyl-2-[(E)-prop-1-enyl]-chroman-4-one (22) displayed significant activities against the human breast cancer cell line MCF-7 with IC_{50} values of 9.51 and 7.82 μg/mL, respectively, and 2′,3′-dihydroisorbicillin (13) showed moderate cytotoxicity against various human cancer cell lines (colon cancer cell line Lovo, hepatic cancer cell line Bel-7402, lung cancer line A549, nasopharyngeal carcinoma cell lines CNE1, CNE2, KB and SUNE1) with IC_{50} values ranging from 9.19 to 21.93 μg/mL [4].
Table 5. Cytotoxic activity of the screened sorbicillinoids from fungi.

Sorbicillinoid	Cytotoxic Activity
Sorbicillin (5)	IC₅₀ of 12.7 µM on HL-60 (Leukemia) cell line.
	IC₅₀ of 1.6 and 27.2 µM on HeLa and HepG2 cells, respectively.
6-Demethylsorbicillin (7)	IC₅₀ of 23.9 µM on HL-60 cell line.
1-(2'-Hydroxy-4'-methoxy-5'-methylphenyl)-E,E-2,4-hexadien-1-one (9)	IC₅₀ of 65.2 and 15.1 µM on MDA-MB-435 and SW-620 cell lines at 72 h, respectively.
5'-Formyl-2'-hydroxy-4'-methoxy-(E,E)-sorbophenone (10)	IC₅₀ of 1.5 and 0.5 µM on MDA-MB-435 and SW-620 cell lines at 72 h, respectively,
	IC₅₀ of 3.1 µM on OSLI-CLL (lymphocytic leukemia) cell line at 48 h.
6-Demethylsorbicillin (7)	IC₅₀ of 23.9 µM on HL-60 cell line.
17-(2'S)-2,3-Dihydro-7-hydroxy-6,8-dimethyl-2-[((E))-prop-1-enyl]-chroman-4-one (21)	IC₅₀ of 9.51 µg/mL on human breast cancer cell line MCF-7.
	IC₅₀ of 7.82 µg/mL on human breast cancer cell line MCF-7.
5'-Formyl-2'-hydroxy-4'-methoxy-(E)-4-hexenophenone (18)	IC₅₀ of 2.3 and 2.5 µM on MDA-MB-435 and SW-620 cell lines at 72 h, respectively.
2',3'-Dihydroborbicillin (13)	IC₅₀ of 7.4 and 44.4 µM on HeLa and HepG2 cells, respectively.
	IC₅₀ of 9.19 to 21.93 µg/mL on various human cancer cell lines.
Dihydrodemethylsorbicillin (17)	IC₅₀ of 0.1 and 4.8 µM on P388 and K562 cell lines, respectively.
16',17-Dihydrobisvertinolone (33)	IC₅₀ of 5.3 µM on HL-60 cell line.
10,11-Dihydrobisvertinolone (36)	IC₅₀ of 1.7 µM and 0.52 µM on P388 and A549 cell lines, respectively.
Tetrahydrobisvertinolone (37)	IC₅₀ of 49 µM on HL-60 cell line.
	IC₅₀ of 16.7 µM on A549 cell line.
Trichodimerol = MS-182123 (42)	IC₅₀ of 7.8 µM on HL-60 cell line.
	IC₅₀ of 0.33 and 4.7 µM on P388 and A549 cell lines, respectively.
	IC₅₀ of 6.55 to 28.35 µM on HL-60, U937 and T47D cell lines.
Dihydrotrichodimerol (44)	IC₅₀ of 36.4 µM on HL-60 cell line.
	IC₅₀ of 2.8 and 2.1 µM on P388 and A549 cell lines, respectively.
	IC₅₀ of 3-34 µM on U373, A549, SKMEL-28, OE21, Hs683, and B16F10 cell lines.
Tetrahydrotrichodimerol (45)	IC₅₀ of 8.8 and 4.3 µM on P388 and A549 cell lines, respectively.
Bislongiquinolide = Bisorbibutenolide = Trichotetronine (49)	IC₅₀ of 4-22 µM on U373, A549, SKMEL-28, OE21, Hs683, and B16F10 cell lines.
Table 5. Cont.

Sorbicillinoid	Cytotoxic Activity	Ref.
Oxosorbiquinol (83)	IC_{50}s of 8.9, 29.9, 103.5, 12.7 and 56.3 \(\mu M \) on HL-60, P388, A549, BEL7402 and K562 cell lines, respectively.	[2]
Dihydroxosorbiquinol (54)	IC_{50}s of 10.5, 40.3, 97.6, 31.8 and 68.2 \(\mu M \) on HL-60, P388, A549, BEL7402 and K562 cell lines, respectively.	[2]
Dihydrotrichodermolide (56)	IC_{50} of 11.5 and 22.9 \(\mu M \) on P388 and K562 cell lines, respectively.	[36]
Trisorbicillione A (61)	IC_{50}s of 3.14, 9.10, 60.28 and 30.21 \(\mu M \) on HL-60, P388, BEL7402 and K562 cell lines, respectively.	[55]
Trisorbicillione B (62)	IC_{50} of 77.1 and 88.2 \(\mu M \) on P388 and K562 cell lines, respectively.	[56]
Trisorbicillione C (63)	IC_{50} of 78.3 and 54.3 \(\mu M \) on P388 and K562 cell lines, respectively.	[56]
Trisorbicillione D (64)	IC_{50}s of 65.7 and 51.2 \(\mu M \) on P388 and K562 cell lines, respectively.	[56]
Chloctansprirone A (74)	IC_{50}s of 9.2 and 39.7 \(\mu M \) on HL-60 and A549 cell lines, respectively.	[58]
Chloctansprirone B (75)	IC_{50} of 37.8 \(\mu M \) on HL-60 cell line.	[58]
Sorbicillactone A (85)	IC_{50} of 2.2 \(\mu g/mL \) on L5178y (murine leukemic lymphoblasts) cell line.	[21]

Note: “IC_{50}” means the median inhibitory concentration.
5'-Formyl-2'-hydroxyl-4'-methoxy-(E,E)-sorbophenone (10) showed cytotoxic activity on OSU-CLL (lymphocytic leukemia) cell lines with IC\textsubscript{50} value of 3.1 \textmu M at 48 h, on MDA-MB-435 (melanoma) and SW-620 (colon) cell lines with IC\textsubscript{50} values of 1.5 and 0.5 \textmu M at 72 h, respectively. Similarly, 1-(2'-hydroxy-4'-methoxy-5'-methylphenyl)-E,E-2,4-hexadien-1-one (9) on MDA-MB-435 and SW-620 cell lines with IC\textsubscript{50} values of 65.2 and 15.1 \textmu M, scalbucillin B (12) on MDA-MB-435 and SW-620 cell lines with IC\textsubscript{50} values of 67.9 and 16.0 \textmu M, and 5'-formyl-2'-hydroxy-4'-methoxy-(E)-4-hexenophenone (18) on MDA-MB-435 and SW-620 cell lines with IC\textsubscript{50} values of 2.3 and 2.5 \textmu M at 72 h, respectively [12].

(E)-6-(2,4-Dihydroxy-5-methylphenyl)-6-oxo-2-hexenoic acid (23) and 6-(2,4-dihydroxy-5-methylphenyl)-6-oxohexanoic acid (24) from a saline lands-derived fungus \textit{Trichoderma sp.} showed cytotoxic effects on P388 cell line with IC\textsubscript{50} values of 72.8 and 44.5 \textmu M, and on HL-60 cell line with IC\textsubscript{50} values of 52.5 and 81.2 \textmu M, respectively [6].

Dihydrotrichodermolide (56) and dihydrodemethylsorbicillin (17) displayed cytotoxic effects against P388 cell line (IC\textsubscript{50} values of 11.5 and 0.1 \textmu M, respectively) and K562 cell line (IC\textsubscript{50} values of 22.9 and 4.8 \textmu M, respectively) [36].

Chloctansprirone A (74) was active against HL-60 and A549 cell lines with IC\textsubscript{50} values of 9.2 and 39.7 \textmu M, respectively. Chloctansprirone B (75) showed relatively weak activity against HL-60 cells with IC\textsubscript{50} value of 37.8 \textmu M [58].

By comparing the structure-activity relationships of the compounds, the sorbyl sidechain was very important. Sorbicillinoids with their C\textsubscript{2}'-C\textsubscript{3}' double bond being reduced were less active. For example, sorbicillin (5) showed significant inhibitory activity on HeLa and HepG2 cells with IC\textsubscript{50} values of 1.6 and 27.2 \textmu M, respectively. On the contrary, 2',3'-dihydrosorbicillin (13) with the C\textsubscript{2}'-C\textsubscript{3}' double bond being reduced showed less activity on HeLa and HepG2 cells with IC\textsubscript{50} values of 7.4 and 44.4 \textmu M, respectively. The same phenomena were observed for the compounds 6-demethylsorbicillin (7) vs. sohrinone A (14) [27], bisvertinolone (34) vs. 10,11-dihydrobisvertinolone (36) [27], and 5'-formyl-2'-hydroxyl-4'-methoxy-(E,E)-sorbophenone (10) vs. 5'-formyl-2'-hydroxyl-4'-methoxy-(E)-4-hexenophenone (18) [12].

3.2. Antimicrobial Activity

Some sorbicillinoids exhibited antimicrobial activities that are shown in Table 6. 5'-Formyl-2'-hydroxyl-4'-methoxy-(E,E)-sorbophenone (10) and 5'-formyl-2'-hydroxyl-4'-methoxy-(E)-4-hexenophenone (18) displayed strong antifungal activity on \textit{A. niger} with MIC values of 0.05 and 0.04 \textmu g/mL (0.20 and 0.16 \textmu M), respectively, much more potent than the positive control (amphotericin B, MIC value of 31 \textmu g/mL). Scalbucillin B (12) showed an MIC value of 0.60 \textmu g/mL (2.42 \textmu M) against \textit{Aspergillus niger}. Considering the potent antimicrobial activity, a hemolytic assay toward sheep red blood cells \textit{in vitro} was carried out to assess the toxicity of these compounds (10, 12, 18). They showed a similarly low toxicity on sheep red blood cells, which indicated the promising safety for their potential application as the anti-\textit{Aspergillus} agents [12].

Dihydrotrichodimerol (44) and tetrahydrotrichodimerol (45) exhibited strong antibacterial activity on \textit{Bacillus megaterium} with MIC values of 25 and 12.5 \textmu g/mL, respectively. Dihydrotrichodimer ether A (59) and dihydrotrichodimer ether B (60) had strong antibacterial activity on \textit{Escherichia coli} with MIC values of 25 and 50 \textmu g/mL, respectively. Furthermore, dihydrotrichodimer ether B (60) showed preferable antibacterial activity against \textit{Ballus subtilis} with MIC value of 50 \textmu g/mL [13].

3.3. Antiviral Activity

Sorbicatechols A (76) and B (77) from the marine-derived fungus \textit{Penicillium chrysogenum} PJX-17 showed potent antiviral activity against influenza A virus (H1N1) with IC\textsubscript{50} values of 85 and 113 \textmu M, respectively (ribavirin as the positive control with IC\textsubscript{50} value of 84 \textmu M) [59].
Table 6. Antimicrobial activity of the screened sorbicillinoids from fungi.

Sorbicillinoid	Antimicrobial activity	Ref.
Oxosorbicillinol (3)	Weak antibacterial activity on *Staphylococcus aureus* and *Bacillus subtilis*.	[5]
Sohirnone B (8)	Weak antibacterial activity on *Staphylococcus aureus* and *Bacillus subtilis*.	[5]
5′-Formyl-2′-hydroxy-4′-methoxy-(E,E)-sorbophenone (10)	Showed potent activity against *Aspergillus flavus* (NRRL 6541) and moderate activity against *Fusarium verticillioides* (NRRL 25457).	[33]
Scalbullin B (12)	MIC value of 0.60 µg/mL (2.42 µM) against *Aspergillus niger*.	[12]
2′,3′-Dihydrosoabicillinol (13)	Weak antibacterial activity on *Staphylococcus aureus* and *Bacillus subtilis*.	[5]
Sohirnone A (14)	Weak antibacterial activity on *Staphylococcus aureus* and *Bacillus subtilis*.	[5]
1-(2′-Hydroxy-4′-methoxy-5′-hydroxymethylphenyl)-4-hexen-1-one (16)	Showed potent activity against *Aspergillus flavus* (NRRL 6541) and weak activity against *Fusarium verticillioides* (NRRL 25457).	[33]
5′-Formyl-2′-hydroxy-4′-methoxy-(E)-4-hexenophenone (18)	Strong antifungal activity on *Aspergillus niger* with MIC values of 0.04 µg/mL (0.16 µM).	[12]
Sorrentanone	MIC values of 32, 16, 128, 32 and 64 µg/mL on *Staphylococcus pneumoniae* A9585, *S. pyogenes* A9604, *Enterococcus faecalis* A20688, *S. aureus*/Hetero MR A27218, *S. epidermidis* A24548, and *S. haemolytic* A21638, respectively.	[18]
Dihydrotrichodimerol (44)	Strong antibacterial activity on *Bacillus megaterium* with MIC value of 25 µg/mL.	[13]
Tetrahydrotrichodimerol (45)	Strong antibacterial activity on *Bacillus megaterium* with MIC value of 12.5 µg/mL.	[13]
Bisvertinoquinol (47)	Weak antibacterial activity on *Staphylococcus aureus* and *Bacillus subtilis*.	[5]
Bisoricillinol (48)	Weak antibacterial activity on *Staphylococcus aureus* and *Bacillus subtilis*.	[5]
Dihydrotrichodimer ether A (59)	Strong antibacterial activity on *Escherichia coli* with MIC value of 25 µg/mL.	[13]
Dihydrotrichodimer ether B (60)	Strong antibacterial activity on *Escherichia coli* and *Balls subtilis* with MIC values of 50 µg/mL.	[13]
Rezishanones A (66)	Weak antibacterial activity on *Staphylococcus aureus* and *Bacillus subtilis*.	[5]
Rezishanone B (67)	Weak antibacterial activity on *Staphylococcus aureus* and *Bacillus subtilis*.	[5]
Rezishanone C = Sorbivinetone (68)	Weak antibacterial activity on *Staphylococcus aureus* and *Bacillus subtilis*.	[5]
Rezishanone D (69)	Strong antifungal activity on *Aspergillus niger* with MIC value of 0.05 µg/mL (0.20 µM).	[12]

Note: “MIC” means the minimum inhibitory concentration.
Sorbicillactone A (85) from a sponge-derived fungus *Penicillium chrysogenum* displayed anti-HIV activity. It protected human T lymphocytes (H9 cells) against the cytopathic effect of HIV-1 in the concentration range of 0.3 and 3.0 µg/mL [21]. This hybrid sorbicillinoid was considered to be a potential inhibitor to VP40 matrix protein of the Ebola virus [63].

3.4. Antioxidant Activity

Active oxygen species cause many diseases such as atherosclerosis, inflammation, ischemia-reperfusion injury, rheumatoid arthritis and central nervous diseases. Furthermore, senility, cancer initiation and progression are also believed to involve active oxygen species [64,65]. Thus, it is expected that the effective antioxidant agents may prevent the onset and development of these diseases. Some sorbicillinoids exhibited obviously antioxidant activity. The DPPH radical scavenging activity of the sorbicillinoids isolated before 2011 was well summarized [1]. After 2011, only one sorbicillinoid JBIR-124 (81) from *Penicillium citrinum* Sp1080624G1f01 was screened to have DPPH radical scavenging activity with IC$_{50}$ value of 30 µM [62].

3.5. Other Biological Activities

Other biological activities of the sorbicillinoids are shown in Table 7. Dihydrotrichodimerol (44) and bislongiquinolide (=bisorbibutenolide=trichotetronine, 49) from *Trichoderma citrinoviride* influenced aphid feeding preferences [48]. Isobisvertinol (38) from *Aspergillus* sp. FKI-1746 inhibited lipid droplet accumulation in macrophages [40].

In addition, dihydrotrichodimerol (44) from an unidentified fungus activated peroxisome proliferator-activated receptor γ (PPAR γ) with an ED$_{50}$ value of 80 ng/mL [50]. Bisvertinolone (34) from *Verticillium intertextum* inhibited the biosynthesis of β-1,6-glucan [42].

Trichodimerol (=MS-182123, 42) from *Penicillium chrysogenum* strain V39673 inhibited the production of tumor necrosis factor-α (TNF-α) by macrophages (IC$_{50}$ value of 200 ng/mL) and monocytes (IC$_{50}$ value of 200 ng/mL) [46]. Subsequently, trichodimerol was screened to show an inhibitory effect on lipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells [66].

Sorbicillinoid	Biological Activity	Ref.
6'-Hydroxyoxosorbicillinol (4)	Inhibitory activity on soybean lipoxygenase; Prostaglandin D2 and leukotriene B4 release suppression activity	[22]
Bisvertinolone (34)	Inhibitory effect on β-1,6-glucan biosynthesis	[42]
Isobisvertinol (38)	Inhibitory effect on lipid droplet accumulation in mouse macrophages	[40]
Trichodimerol (42)	Inhibitory effect on bacterial endotoxin-induced production of tumor necrosis factor (TNF-α) in murine macrophages and human peripheral blood monocytes	[46]
	Inhibitory effect on lipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells	[66]
	Suppression of the production of tumor necrosis factor-α and nitric oxide in LPS-stimulate RAW264.7 cells	[50]
Dihydrotrichodimerol (44)	Activation of peroxisome proliferator-activated receptor γ (PPAR γ) with an ED$_{50}$ of 80 ng/mL	[50]
	Suppression of the production of tumor necrosis factor-α and nitric oxide in LPS-stimulate RAW264.7 cells	[50]
Bislongiquinolide (49)	Effect on feeding preference of the aphid	[48]
Sorbiterrin A (79)	Inhibitory effect on acetylcholinesterase activity with IC$_{50}$ value of 25 µg/mL	[61]

Note: "ED$_{50}$" means the median effective dose. "IC$_{50}$" means the median inhibitory concentration.

6'-Hydroxyoxosorbicillinol (4) showed inhibition on soybean lipoxygenase activity with an IC$_{50}$ value of 16 µM, about 10 folds higher than oxosorbicillinol (3). 6'-Hydroxyoxosorbicillinol (4) also exhibited prostaglandin D$_2$ and leukotriene B$_4$ release suppression activity with IC$_{50}$ values of 10 and 100 µM, respectively [22].
Sorbiterrin A (79) showed moderate acetylcholinesterase (AChE) inhibitory effect with IC$_{50}$ value of 25 µg/mL [61].

4. Conclusions

About 90 sorbicillinoids have been isolated from terrestrial and marine ascomycetous fungi in the past few decades. Some of them exhibited promising bioactivities, especially cytotoxic, antioxidant, antimicrobial, and antiviral activities. In recent years, more and more new members of sorbicillinoids have been isolated. All these sorbicillinoids could be the rich resources of biologically active substances with significant medicinal and agricultural potential.

The biosynthesis studies of sorbicillinoids have been carried out [11,14–17] and well summarized [1]. Sorbicillinol (1) has been hypothesized as a precursor of most sorbicillinoids that were biosynthesized by polyketide synthases (PKs) [14]. In addition, the PKS gene cluster containing SorbA, SorbB and SorbC has been characterized for sorbicillin (5) biosynthesis, and sorbicillinol (1) was proved as a key intermediate [11]. The extensive 13C enrichment studies carried out by Abe and co-workers have unequivocally demonstrated that many of biosynthetic hypotheses of sorbicillinoids are correct [14–17]. There are still some uncertainties. Furthermore, the specific polyketide synthases in the biosynthetic pathway of sorbicillinoids in fungi have not been characterized. Chemical syntheses of sorbicillinoids have attracted pharmaceutical chemists as they have potential applications in the agriculture, pharmaceutical and food industries. Some sorbicillinoids such as sorbicillin (5), vertinolide (28), epoxysorbicillinol (2), and trichodimerol (=MS-182123, 42) have been synthesized successfully, and well summarized [1].

In most cases, biological activities, structure-activity relations, and mode of action of sorbicillinoids have been investigated based on in vitro studies or animal models. Few studies have been performed at the level of clinical trials in patients. Future studies should be emphasized on the improvement in methodological quality and warrant further clinical research on the effects of these compounds. The applications of sorbicillinoids as antitumor agents, antimicrobials, antivirus agents and antioxidants, as well as their underlying bioactivities, have led to considerable interest within the pharmaceutical community and health-care industry. With a good understanding of the biosynthetic pathways of some sorbicillinoids, we can not only increase outputs of the bioactive sorbicillinoids but also block biosynthesis of some harmful sorbicillinoids by specific interferences.

Acknowledgments: This work was co-financed by the grants from the National Natural Science Foundation of China (31271996 and 31471729), and the Hi-Tech R&D Program of China (2011AA10A202).

Author Contributions: Jiajia Meng performed bibliographic research, drafted and corrected the manuscript. Xiaoxiang Fu, Xiaohan Wang, Dan Xu and Xuping Zhang retrieved literature, participated in the discussions and supported manuscript corrections. Daowan Lai reviewed the manuscript and helped to revise it. Ligang Zhou and Guozhen Zhang conceived the idea, designed the review structure, supervised manuscript drafting, and revised the manuscript. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Harned, A.M.; Volp, K.A. The sorbicillinoid family of natural products: Isolation, biosynthesis and synthetic studies. Nat. Prod. Rep. 2011, 28, 1790–1810. [CrossRef] [PubMed]
2. Li, D.; Wang, F.; Cai, S.; Zeng, X.; Xiao, X.; Gu, Q.; Zhu, W. Two new bisorbicillinoids isolated from a deep-sea fungus, Phialocephala sp. FL30r. J. Antibiot. 2007, 60, 317–320. [CrossRef] [PubMed]
3. Abdel-Lateff, A.; Fisch, K.; Wright, A.D. Trichopyrone and other constituents from the marine sponge-derived fungus Trichoderma sp. Z. Naturforsch. 2009, 64c, 186–192. [CrossRef]
4. Lan, W.-J.; Zhao, Y.; Xie, Z.-L.; Liang, L.-Z.; Shao, W.-Y.; Zhu, L.-P.; Yang, D.-P.; Zhu, X.-F.; Li, H.-J. Novel sorbicillin analogues from the marine fungus Trichoderma sp. associated with the seastar Acanthaster planci. Nat. Prod. Commun. 2012, 7, 1337–1340. [PubMed]
5. Maskey, R.P.; Grün-Wollny, I.; Grün-Wollny, H. Sorbicillin analogues and related dimeric compounds from *Penicillium notatum*. J. Nat. Prod. 2005, 68, 865–870. [CrossRef] [PubMed]

6. Ma, L.; Liu, W.; Huang, Y.; Rong, X. Two acid sorbicillin analogues from saline lands-derived fungus *Trichoderma* sp. J. Antimicrob. Chemother. 2011, 64, 645–647. [CrossRef] [PubMed]

7. Ying, Y.-M.; Zhan, Z.-J.; Ding, Z.-S.; Shan, W.-G. Bioactive metabolites from *Penicillium* sp. P-1, a fungal endophyte in *Huperzia serrata*. Chem. Nat. Compd. 2011, 47, 541–544. [CrossRef]

8. Cram, D.J.; Tishler, M. Mold metabolites. I. Isolation of several compounds from clinical penicillin. J. Am. Chem. Soc. 1948, 70, 4238–4249. [CrossRef] [PubMed]

9. Cram, D.J. Mold metabolites. II. The structure of sorbicillin, a pigment produced by the mold *Penicillium notatum*. J. Am. Chem. Soc. 1948, 70, 4240–4243. [CrossRef] [PubMed]

10. Guo, W.; Peng, J.; Zhu, T.; Gu, Q.; Keyzers, R.A.; Li, D. Sorbicillamines A–E, nitrogen-containing sorbicilloids from the deep-sea-derived fungus *Penicillium* sp. F23-2. J. Nat. Prod. 2013, 76, 2106–2112. [CrossRef] [PubMed]

11. Fahad, A.; Abood, A.; Fisch, K.M.; Osipow, A.; Davison, J.; Avramovic, M.; Butts, C.P.; Piel, J.; Simpson, T.J.; Cox, R.J. Oxidative deamoratisation: The key step of sorbicillinoid biosynthesis. Chem. Sci. 2014, 5, 523–527. [CrossRef] [PubMed]

12. El-Elimat, T.; Raja, H.A.; Figueroa, M.; Swanson, S.M.; Fukinok, J.O., III; Lucas, D.M.; Grever, M.R.; Wani, M.C.; Pearce, C.J.; Oberlies, N.H. Sorbicillin analogs with cytotoxic and selective anti-*Aspergillus* activities from *Sclatalidium album*. J. Antibiot. 2015, 68, 191–196. [CrossRef] [PubMed]

13. Zhai, M.-M.; Qi, F.-M.; Hou, Y.; Shi, Y.-P.; Di, D.-L.; Zhang, J.-W.; Wu, Q.-X. Isolation of secondary metabolites from the soil-derived fungus *Clonostachys rosea* YRS-06, a biological control agent, and evaluation of antibacterial activity. J. Agric. Food Chem. 2016, 64, 2298–2306. [CrossRef] [PubMed]

14. Abe, N.; Sugimoto, O.; Tanji, K.; Hirota, A. Identification of the quinol metabolite “Sorbicillinol”, a key intermediate postulated in bisorbicillinoid biosynthesis. J. Am. Chem. Soc. 2000, 122, 12606–12607. [CrossRef]

15. Abe, N.; Yamamoto, K.; Arakawa, T.; Hirota, A. The biosynthesis of bisorbicilloids: Evidence for a biosynthetic route from bisorbutenol and bisorbutinolid. Chem. Commun. 2001, 23–24. [CrossRef]

16. Abe, N.; Arakawa, T.; Yamamoto, K.; Hirota, A. Biosynthesis of bisorbutinol in *Trichoderma* sp. USF-2690; evidence for the biosynthetic pathway, via sorbicillinol, of sorbicillin, bisorbutinol, bisorbutenol, and bisorbutinolid. Biosci. Biotechnol. Biochem. 2002, 66, 2090–2099. [CrossRef]

17. Sugaya, K.; Koshino, H.; Hongo, Y.; Yasunaga, K.; Onose, J.; Yoshikawa, K.; Abe, N. The biosynthesis of sorbicilloids in *Trichoderma* sp. USF-2690: Prospect for the existence of a common precursor to sorbicillinol and 5-epihydroxyvertinolide, a new sorbicillinol member. Tetrahedron Lett. 2008, 49, 654–657. [CrossRef]

18. Miller, R.F.; Huang, S. Isolation and structure of sorrentanone: A new tetrasubstituted quinone from *Penicillium chrysogenum*. J. Nat. Prod. 2016, 48, 520–521. [CrossRef] [PubMed]

19. Liu, W.; Gu, Q.; Zhu, W.; Cui, C.; Fan, G. Two new benzoquinone derivatives and two new bisorbicilloids were isolated from a marine-derived fungus *Penicillium chrysogenum* terrestre. J. Antibiot. 2005, 58, 441–446. [CrossRef] [PubMed]

20. Sperry, S.; Samuels, G.J.; Crews, P. Vertinoid polyketides from the saltwater culture of the fungus *Trichoderma longibrachiatum* separated from a Haliclonia marine sponge. J. Org. Chem. 1998, 63, 10011–10014. [CrossRef]

21. Bringmann, G.; Lang, G.; Gulder, T.A.M.; Tsuruta, H.; Mühlbacher, J.; Maksimenka, K.; Steffens, S.; Schaumann, K.; Stohr, R.; Wiese, J.; et al. The first sorbicillinoid alkaldoids, the antileukemic sorbicillactones A and B, from a sponge-derived *Penicillium chrysogenum* strain. Tetrahedron 2005, 61, 7252–7265. [CrossRef]

22. Komoda, T.; Nishikawa, M. 6’-Hydroxyoxosorbutinol, a new lipoxygenase inhibitor and PGD2/LTB4 release suppressor from *Penicillium* sp. Biosci. Biotechnol. Biochem. 2012, 76, 1404–1406. [CrossRef] [PubMed]

23. Abe, N.; Yamamoto, K.; Hirota, A. Novel fungal metabolites, dimethylsorbutinol and oxosorbutinol, isolated from *Trichoderma* sp. USF-2690. Biosci. Biotechnol. Biochem. 2000, 64, 620–622. [CrossRef] [PubMed]

24. Saito, T.; Itabashi, T.; Wakana, D.; Takeda, H.; Yaguchi, T.; Kawai, K.; Hosoe, T. Isolation and structure elucidation of new phthalide and phthalane derivatives, isolated as antimicrobial agents form *Emericella* sp. IFM57991. J. Antibiot. 2016, 69, 89–96. [CrossRef] [PubMed]

25. Arima, K.; Nakamura, H.; Komagata, K. Studies on variation of penicillin producing mold. Part II. Biochemical genetical studies on the yellow pigments losing mutation of chrysogenum Q 176 to pigmentless sultant *Pen. chrysogenum* Q 176. J. Agric. Chem. Soc. Jpn. 1953, 27, 345–348.
26. Andrade, R.; Ayer, W.A.; Mebe, P.P. The metabolites of Trichoderma longibrachiatum. Part 1. Isolation of the metabolites and the structure of trichodimerol. *Can. J. Chem.* 1992, 70, 2526–2535. [CrossRef]

27. Du, L.; Zhu, T.; Li, L.Y.; Cai, S.; Zhao, B.; Gu, Q. Cytotoxic sorbicillinoids and bisorbicillinoids from a marine-derived fungus *Trichoderma* sp. *Chem. Pharm. Bull.* 2009, 57, 220–223. [CrossRef] [PubMed]

28. Wu, S.H.; Zhao, L.X.; Chen, Y.W.; Huang, R.; Miao, C.P.; Wang, J. Sesquiterpenoids from the endophytic fungus *Trichoderma* sp. PR-35 of *Paecilomyces delavayi*. *Chem. Biodivers.* 2011, 8, 1717–1723.

29. Abe, N.; Murata, T.; Hirota, A. Novel oxidized sorbicillin dimers with 1,1-diphenyl-2-picrylhydrazyl-radial scavenging activity from a fungus. *Biosci. Biotechnol. Biochem.* 1998, 62, 2120–2126. [CrossRef]

30. Yao, Y.; Li, J.; Jiang, C.-S.; Zhao, X.-X.; Miao, Z.-H.; Liu, H.-T.; Zheng, P.; Yao, W.-X.; Li, W.-Q. Trichodimerol and sorbicillin induced apoptosis of HL-60 cells is mediated by reactive oxygen species. *Pharmazie* 2015, 70, 394–398. [PubMed]

31. Trifonov, L.S.; Dreiding, A.S.; Hoesch, L.; Rast, D.M. Isolation of four hexaketides from *Verticillium longisporum*. *Helv. Chim. Acta* 1981, 64, 1843–1846. [CrossRef]

32. Trifonov, L.S.; Bieri, J.H.; Prewo, R.; Dreiding, A.S. Isolation and structure elucidation of three metabolites from *Verticillium longisporum*: Sorbicillin, dihydrosorbicillin and bisvertinoquinol. *Tetrahedron* 1983, 39, 4243–4256. [CrossRef]

33. Reátegui, R.F.; Wicklow, D.T.; Gloer, J.B. Phaeofurans and sorbicillin analogues from a fungicolous *Phialocephala* species (NRRL 32148). *J. Nat. Prod.* 2006, 69, 113–117. [CrossRef] [PubMed]

34. Bringmann, G.; Lang, G.; Bruhn, T.; Schäffler, K.; Steffens, S.; Schmaljohann, R.; Wiese, J.; Imhoff, J.F. Sorbifuranones A-C, sorbicillinoid metabolites from *Penicillium* strains isolated from Mediterranean sponges. *Tetrahedron* 2010, 66, 9894–9901. [CrossRef]

35. Li, D.; Cai, S.; Zhu, T.; Wang, F.; Xiao, X.; Gu, Q. New cytotoxic metabolites from a deep-sea-derived fungus, *Phialocephala* sp., strain FL30r. *Chem. Biodivers.* 2011, 8, 895–901. [CrossRef] [PubMed]

36. Neumann, K.; Abdel-Lateff, A.; Wright, A.D.; Kehraus, S.; Krück, A.; König, G.M. Novel sorbicillin derivatives with an unprecedented carbon skeleton from the sponge-derived fungus *Trichoderma* species. *Eur. J. Org. Chem.* 2007, 2007, 2268–2275. [CrossRef]

37. Trifonov, L.S.; Bieri, J.H.; Prewo, R.; Dreiding, A.S.; Rast, D.M.; Hoesch, L. The constitution of vertinolide, a new derivative of tetronic acid, produced by *Verticillium longisporum*. *Tetrahedron* 1982, 38, 397–403. [CrossRef]

38. Andrade, R.; Ayer, W.A.; Trifonov, L.S. The metabolites of *Trichoderma longibrachiatum* III. Two new tetronic acids: 5-hydroxyvertinolide and bislongiquinolide. *Aust. J. Chem.* 1997, 50, 255–257. [CrossRef]

39. Koyama, N.; Ohshiro, T.; Tomoda, H.; Omura, S. Fungal isolivertinol, a new inhibitor of lipid droplet accumulation in mouse macrophages. *Org. Lett.* 2009, 11, 425–428. [CrossRef] [PubMed]

40. Trifonov, L.S.; Hilpert, H.; Floersheim, P.; Dreiding, A.S.; Rast, D.M.; Skrivanova, R.; Hoesch, L. Bisvertinoxins: A new group of dimeric vertinoids from *Verticillium longisporum*. *Tetrahedron* 1986, 42, 3157–3179. [CrossRef]

41. Kontani, M.; Sakagami, Y.; Marumo, S. Frst β-1,6-giucan biosynthesis inhibitor, bisvertinolone isolated from fungus, *Acremonium strictum* and its absolute stereochemistry. *Tetrahedron Lett.* 1994, 35, 2577–2580. [CrossRef]

42. Ueda, J.; Hashimoto, J.; Inaba, S.; Takagi, M.; Shin-yu, K. JBIR-59, a new sorbicillinoid, from a marine-derived fungus *Penicillium citrinum* SpI080624G1f01. *J. Antibiot.* 2010, 63, 203–205. [CrossRef] [PubMed]

43. Abe, N.; Murata, T.; Hirota, A. Novel DPPH radical scavengers, bisorbicillin and demethyltrichodimerol, from a fungus. *Biosci. Biotechnol. Biochem.* 1998, 62, 661–666. [CrossRef]

44. Gao, Q.; Leet, J.E.; Thomas, S.T.; Matson, J.A. Crystal structure of trichoderanol. *J. Nat. Prod.* 1995, 58, 1817–1821. [CrossRef]

45. Warr, G.A.; Veitch, J.A.; Walsh, A.W.; Hesler, G.A.; Pirnik, D.M.; Leet, J.E.; Lin, P.-F.M.; Medina, I.A.; McBrien, K.D.; Forenza, S.; et al. *BMS-182123, a fungal metabolite that inhibits the production of TNF-α by macrophage and monocytes.* *J. Antibiot.* 1996, 49, 234–240. [CrossRef] [PubMed]

46. Liu, W.; Gu, Q.; Zhu, W.; Cui, C.; Fan, G. Dihydrotrichodimerol and tetrahydrotrichodimerol, two new bisorbicillinoids, from a marine-derived *Penicillium terrestre*. *J. Antibiot.* 2005, 58, 621–624. [CrossRef] [PubMed]
48. Evidente, A.; Andolfi, A.; Cimmino, A.; Ganassi, S.; Altomare, C.; Favilla, M.; Cristofaro, A.D.; Vitagliano, S.; Sabatini, M.A. Bisorbitellinoids produced by the fungus Trichoderma citrinoviride affect feeding preference of the aphid Schizaphis graminum. J. Chem. Ecol. 2009, 35, 533–541. [CrossRef] [PubMed]

49. Shirota, O.; Pathak, V.; Hossain, C.F.; Sekita, S.; Takatori, K.; Satake, M. Structural elucidation of trichotetronines: Polyketides possessing a bicycle [2.2.2] octane skeleton with a tetrone acid moiety isolated from Trichoderma sp. J. Chem. Soc. Perk. Trans. 1 1997, 1997, 2961–2964. [CrossRef]

50. Lee, D.; Lee, J.H.; Cai, X.F.; Shin, J.C.; Lee, K.; Hong, Y.-S.; Lee, J.J. Fungal metabolites, sorbicillinoid polyketides and their effects on the activation of peroxisome proliferator-activated receptor γ. J. Antibiot. 2005, 58, 615–620. [CrossRef] [PubMed]

51. Balde, E.S.; Andolfi, A.; Bruyère, C.; Cimmino, A.; Lamoral-Theys, D.; Verro, M.; Damme, M.V.; Altomare, C.; Mathieu, V.; Kiss, R.; et al. Investigations of secondary metabolites with potential anticancer activity. J. Nat. Prod. 2010, 73, 969–971. [CrossRef] [PubMed]

52. Abe, N.; Murata, T.; Yamamoto, K.; Hirota, A. Bisorbietanone, a novel oxidized sorbicillin dimer, with 1,1-diphenyl-2-picylhydrazyl radical scavenging activity from a fungus. Tetrahedron Lett. 1999, 40, 5203–5206. [CrossRef]

53. Washida, K.; Abe, N.; Sugiyama, Y.; Hirota, A. Novel DPPH radical scavengers, demethylbisorbinolide and trichopyrone, from a fungus. Biosci. Biotech. Biochem. 2007, 71, 1052–1057. [CrossRef] [PubMed]

54. Andrade, R.; Ayer, W.A.; Trifonov, L.S. The metabolites of Trichoderma longibrachiatum Part II. The structures of trichodermolide and sorbiquinol. Can. J. Chem. 1996, 74, 371–379. [CrossRef]

55. Li, D.; Wang, F.; Xiao, X.; Fang, Y.; Zhu, T.; Gu, Q.; Zhu, W. Trisorbicillinone A, a novel sorbicillin trimer, from a deep sea fungus, Phialocephala sp. FL30r. Tetrahedron Lett. 2007, 48, 5235–5238. [CrossRef]

56. Li, D.; Cai, S.; Zhu, T.; Wang, F.; Xiao, X.; Gu, Q. Three new sorbicillin trimers, trisorbicitolones B, C, and D, from a deep ocean sediment derived fungus, Phialocephala sp. FL30r. Tetrahedron 2010, 66, 5101–5106. [CrossRef]

57. Cabrera, G.M.; Butler, M.; Rodriguez, A.; Godeas, A.; Haddad, R.; Eberlin, M.N. A sorbicillinoid urea from Penicillium terrestre, 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity from a fungus. Tetrahedron Lett. 1999, 40, 5203–5206. [CrossRef]

58. Li, D.; Chen, L.; Zhu, T.; Kurtán, T.; Mándi, A.; Zhao, Z.; Li, J.; Gu, Q. Chlorinated polyketides with an unprecedented skeleton, from marine sediment derived fungus Penicillium terrestre. Tetrahedron 2011, 67, 7913–7918. [CrossRef]

59. Peng, J.; Zhang, X.; Du, L.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Sorbicatechols A and B, antiviral sorbicillinoids from the marine-derived fungus Penicillium chrysogenum PJX-17. J. Nat. Prod. 2014, 77, 424–428. [CrossRef] [PubMed]

60. Washida, K.; Abe, N.; Sugiyama, Y.; Hirta, A. Novel secondary metabolites, spirobiscillinols A, B, and C, from a fungus. Biosci. Biotech. Biochem. 2009, 73, 1355–1361. [CrossRef] [PubMed]

61. Chen, L.; Zhu, T.; Ding, Y.; Khan, L.A.; Gu, Q.; Li, D. Sorbieterrin A, a novel sorbicillin derivative with cholinesterase inhibition activity from the marine-derived fungus Penicillium terrestr. Tetrahedron Lett. 2012, 53, 325–328. [CrossRef]

62. Kawahara, T.; Takagi, M.; Shin-ya, K. JBIR-124: A novel antioxidative agent from a marine sponge-derived fungus Penicillium citrinum SpI080624G1f01. J. Antibiot. 2012, 65, 45–47. [CrossRef]

63. Skariyachan, S.; Acharya, A.B.; Subramaniyan, S.; Babu, S.; Kulkarni, S.; Narayonappa, R. Secondary metabolites extracted from marine sponge associated Comamonas testosterone and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: An in vitro and in silico investigation. J. Biomol. Struct. Dyn. 2016, 34.

64. Finkel, T. Radical medicine: Treating ageing to cure disease. Nat. Rev. Mol. Cell Biol. 2005, 6, 971–976. [CrossRef] [PubMed]

65. Abe, N.; Hirota, A. Chemical studies of the radical scavenging mechanism of bisorbicillin using the 1,1-diphenyl-2-picylhydrazyl radical. Chem. Commun. 2002, 2002, 662–663. [CrossRef]

66. Mazzucco, C.E.; Warr, G. Trichodimerol (BMS-182123) inhibits lipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells. J. Leukocyte Biol. 1996, 60, 271–277. [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).