Normative values of fetal nasal bone lengths of Turkish singleton pregnancies in the first trimester

Abstract

Objective: Evaluation of nasal bone improves the performance of first-trimester screening for trisomy 21. In this retrospective study we aimed to determine normative values related to the measurement of nasal bone length of the Turkish population during the first trimester ultrasonographic fetal screening.

Material and Methods: Medical records of singleton pregnancies, whose first trimester fetal screening was performed between 2004 and 2010, were evaluated retrospectively. Pregnancies with any detected/suspicious anatomical or genetic fetal anomalies, biochemical abnormalities, increased nuchal translucency measurements, and pregnancies of artificial reproduction techniques were excluded from data analyses. Mean±standard deviation, median and percentile values of the length of nasal bone were calculated separately for 11th, 12th and 13th gestational weeks.

Results: Nasal bone could be visualized in 99.6% of the included 1762 singleton pregnancies. In 16.5% of the cases nasal bones were not observed as present or absent. Mean maternal age was 29.67±4.50 years and mean gestational age was 12.54±0.61 weeks. Median values of nasal bone lengths were 1.7, 1.9, and 2.2 mm for 11th, 12th and 13th gestational weeks respectively. Nasal bone length (NBL) increased linearly with advancing gestational age and CRL. NBL (mm)= [0.298xGestational Age (weeks)] – 1.779, R²=0.318; p<0.001 and NBL (mm)= [0.023 x CRL (mm)] + 0.520, R²=0.331; p<0.001

Conclusion: The present study presents normative values of nasal bone in the first trimester screening of normal singleton pregnancies of Turkish population. Nasal bone length increases with advancing gestational age and CRL. (J Turkish-German Gynecol Assoc 2011; 12: 225-8)

Key words: Screening, nasal bone, pregnancy, ultrasonography, fetus

Accepted: 26 September, 2011

Introduction
The nasal bones, which begin to develop as collections of neural crest cells, can be histologically demonstrated when the fetal crown-rump length is 42 mm (10.9 weeks) (1). Absence of nasal bone ossification is one of the key skeletal features of trisomy 21 (2). Thus, determination of absence of presence of nasal bone is being used in the fetal sonographic screening for trisomy 21 (3-8). The evaluation of the nasal bone has been also shown to improve the performance of first-trimester screening for trisomy 21 (9). However, interobserver and intraobserver variability is a limitation for the measurement of length of the nasal bone and experience was shown to be important in the use of the nasal bones as an additional sonographic marker in first trimester screening (10-14).

Address for Correspondence: Rahime Nida Ergin, Teşvikiye Cad. Bayer Apt. No: 63/1 Kat: 4 Nüfusato, İstanbul, Turkey
Phone: +90 505 373 71 33 e.mail: drnidaergin@gmail.com
©Copyright 2011 by the Turkish-German Gynecological Education and Research Foundation - Available online at www.jtggga.org
doi:10.5152/jtgga.2011.56

Original Investigation
In this retrospective study we aimed to determine normative values related to the measurement of nasal bone length of the Turkish population during the first trimester ultrasonographic fetal screening.

Materials and Methods

All medical records of singleton pregnancies, whose first trimester fetal screening was performed between January 2004 and December 2010, were evaluated retrospectively. Ultrasonographic fetal screening were performed by one of two sonographers using one of two ultrasound machines (Voluson 730 Pro (U.S.A) and Philips 4000 (U.S.A)). Pregnancies with any detected/suspicious anatomical or genetic fetal anomalies, biochemical abnormalities, increased nuchal translucency measurements, and pregnancies of artificial reproduction techniques were excluded from the data analyses. Ultrasonographic evaluation and measurement of fetal nasal bone had been performed mostly transabdominally (in case of inadequate fetal position transvaginally) in accordance with previously stated in the literature (5, 6).

Mean±standard deviation, median and percentile values of the length of nasal bone were calculated separately for 11th-11 6th, 12th-12 6th, and 13th-13 6th weeks of gestational age. The linear regression analyses were done between the length of nasal bone and gestational week and CRL. Statistical analyses were done with SPSS ver. 14.0.

Results

In accordance with the inclusion and exclusion criteria, data of 1762 singleton pregnancies were analyzed. The nasal bone could be visualized in 99.6% of these 1762 singleton pregnancies. In 16.5% of the cases nasal bones were only noted as present or absent. Therefore demographics and ranges of nasal bones were studied in 1465 fetuses. The mean maternal age was 29.67±4.50 years and the mean gestational age was 12.54±0.61 weeks. The mean and percentiles of ultrasonographic measurements of nasal bone according to the gestational weeks are shown in Table 1. The mean and percentiles of ultrasonographic measurements of nasal bone according to the measurements of CRL are shown in Table 2.

NBL increased linearly with advancing gestational age and was described by the following equation; NBL (mm)=[0.298 x Gestational Age (week)]-1.779, R²=0.318; p<0.001. Again, a linear relationship was present between NBL and CRL and that was described by the following equation; NBL (mm)=[0.023xCRL (mm)]+0.520, R²=0.331; p<0.001 (Figure 1 and Figure 2).

Discussion

Genetic sonography is an important tool in prenatal fetal evaluation. Evaluation of the nasal bone has been suggested to improve the performance of first-trimester screening for trisomy 21 (3-9). Experience has been shown to be an important factor for the use of the nasal bone as an additional sonographic marker in first trimester screening (10-14). In most of the previous studies determining the presence of nasal bone for screen-
ing of trisomy 21 the ratio of successful examination varied
between 83.2% to 100% (4, 8, 14-18). However, in these studies
the determination ratio of trisomy 21 varied between 60% to
80% (4, 8, 14-18).

The ossification of the vomeral bone begins with two bilateral
ossification centers before ossification of the nasal bone and
then these two bilateral ossification centers fuse caudally below
the cartilaginous nasal septum, changing into a U-shaped bone
when observed in the coronal plane (1). The gap between
these structures may sometimes be misinterpreted as absence
of nasal bone (19).

In the literature, there are many studies indicating the nor-
mative values related to the length of nasal bone in different
geographical parts of the world (12, 20-24). The median values
of these nasal bone measurements vary from one study to
another. In the present study, the sample size is larger and our
results of nasal bone measurements were between the values
of two other studies with a large sample size (20, 23). The val-
ues related to various previous studies indicating nasal bone
measurements including the ones above mentioned are shown
in Table 3. In all of these studies the reference values have dif-
ferent ranges. The examinations were commonly performed as
transabdominal in the previous studies and as well our study
(12, 20, 24). However, our mean NBL findings differ negatively
at the 11th, 12th and 13th gestational weeks from some of these
studies (12, 22, 23) and positively from some others (19, 23).
This difference might be due to ethnical difference (25) as well
as interobserver and intraobserver variability in the measure-
ment of length of the nasal bone (11, 13, 14). Variations may
also be due to the quality of the machine as well, however it
seems to be difficult to compare all these previous studies in
this sense as most had different brand types of sonographic
devices (12, 20-24). As a result, it seems to be impossible to
clarify whether these differences are solely due to ethical dif-
ference, interobserver/intraobserver variability or systematic
differences in these studies.

The nasal bone length has been already found to increase
linearly with advancing gestational week or CRL in the first
trimester (13, 20, 22-24). In this study NBL of Turkish singleton
pregnancies is also found to increase linearly with advancing
gestational week and CRL in accordance with these previous
studies in the literature.

Conclusion

This study presents normative values of nasal bone in the first
trimester screening of normal singleton pregnancies of the
Turkish population. In accordance with previous reports, nasal

Table 3. Different studies indicating nasal bone measurements in the first trimester of pregnancy

Gestational Age	Percentile	Present Study	Casasbuena et al. (20)	Staboulidou et al. (21)	Chen et al. (22)	Sonek et al. (23)	Moon et al. (24)	Bekker et al. (12)
11th week	5	1.3	1	**	**	1.4	1.2	**
	50	1.7	1.5	1.73	**	2.3	1.5	2.3
	95	2.2	1.8	**	**	3.3	1.9	**
12nd week	5	1.5	1.2	**	1.7	1.7	1.4	**
	50	1.9	1.7	2.25	2.2	2.8	1.7	2.6
	95	2.4	2.2	**	2.8	4.2	2.1	**
13rd week	5	1.8	1.4	**	2.0	2.3	1.6	**
	50	2.2	1.9	**	2.5	3.1	1.9	2.9
	95	2.8	2.4	**	3.2	4.6	2.3	**
14th week	5	**	**	**	2.2	2.5	1.7	**
	50	**	**	**	2.9	3.8	2.1	**
	95	**	**	**	3.5	5.3	2.6	**

**: data not given
bone length increases linearly with advancing gestational age and CRL. The values show variance similar to previous studies, which might be a consequence of ethnical difference or interobserver/intraobserver variability.

Acknowledgements

No financial or commercial interests from any drug company or others were involved and there is no relationship of authors that may pose a conflict of interest.

Conflict of interest

No conflict of interest was declared by the authors.

References

1. Sandikcioglu M, Molsted K, Kjaer I. The prenatal development of the human nasal and vomeral bones. J Craniofac Genet Dev Biol 1994; 14: 124-34.
2. Stempfle N, Huten Y, Fredouille C, Bishe H, Possmann C. Skeletal abnormalities in fetuses with Down's syndrome: a radiographic post-mortem study. Pediatr Radiol 1999; 29: 682-8. [CrossRef]
3. Orlandi F, Bilardo CM, Campogrande M, Krantz D, Hallahan T, Rossi C, et al. Measurement of nasal bone length at 11-14 weeks of pregnancy and its potential role in Down syndrome risk assessment. Ultrasound Obstet Gynecol 2003; 22: 36-9. [CrossRef]
4. Zoppi MA, Ibba RM, Axiana C, Floris M, Manca F, Monni G. Absence of fetal nasal bone and aneuploidies at first-trimester nuchal translucency screening in unselected pregnancies. Prenat Diagn 2003; 23: 496-500. [CrossRef]
5. Cicero S, Curcio P, Papageorghiou A, Sonek J, Nicolaides K. Absence of nasal bone in fetuses with trisomy 21 at 11-14 weeks of gestation: an observational study. Lancet 2001; 358: 1665-7. [CrossRef]
6. Pandya PP, Snijders RJM, Johnson SP, De Lourdes Brizot M, Nicolaides KH. Screening for fetal trisomies by maternal age and fetal nuchal translucency thickness at 10 to 14 weeks' gestation. Br J Obstet Gynaecol 1995; 102: 957-62. [CrossRef]
7. Cicero S, Longo D, Rembouskos G, Sacchini C, Nicolaides KH. Absent nasal bone at 11-14 weeks of gestation and chromosomal defects. Ultrasound Obstet Gynecol 2003; 22: 31-5. [CrossRef]
8. Cicero S, Rembouskos G, Vandecruys H, Hogg M, Nicolaides KH. Likelihood ratio for trisomy 21 in fetuses with absent nasal bone at the 11-14-week scan. Ultrasound Obstet Gynecol 2004; 23: 218-23. [CrossRef]
9. Kagan KO, Cicero S, Staboulidou I, Wright D, Nicolaides KH. Fetal nasal bone in screening for trisomies 21, 18 and 13 and Turner syndrome at 11-13 weeks of gestation. Ultrasound Obstet Gynecol 2009; 33: 259-64. [CrossRef]
10. Cicero S, Dezerega V, Andrade E, Scheier M, Nicolaides KH. Learning curve for sonographic examination of the fetal nasal bone at 11-14 weeks. Ultrasound Obstet Gynecol 2003; 22: 135-7. [CrossRef]
11. Staboulidou I, Wüstemann M, Vaske B, Scharf A, Hillemanns P, Schmidt P. Interobserver variability of the measurement of fetal nasal bone length between 11+0 and 13+6 gestation weeks among experienced and inexperienced sonographers. Ultraschall Med 2009; 30: 42-6. [CrossRef]
12. Bekker MN, Twisk JW, van Vught JM. Reproducibility of the fetal nasal bone length measurement. J Ultrasound Med 2004; 23: 1613-8. [CrossRef]
13. Kanellopoulos V, Katsetos C, Economides DL. Examination of fetal nasal bone and repeatability of measurement in early pregnancy. Ultrasound Obstet Gynecol 2003; 22: 131-4. [CrossRef]
14. Senat MV, Bernard JP, Boulvain M, Ville Y. Intra- and interoperator variability in fetal nasal bone assessment at 11-14 weeks of gestation. Ultrasound Obstet Gynecol 2003; 22: 138-41. [CrossRef]
15. Otano L, Aiello H, Igarzabal L, Matayoshi T, Gadow EC. Association between first trimester absence of fetal nasal bone on ultrasound and Down's syndrome. Prenat Diagn 2002; 22: 930-2. [CrossRef]
16. Viora E, Masturzo B, Errante G, Sciarone A, Bastonero S, Campogrande M. Ultrasound evaluation of fetal nasal bone at 11 to 14 weeks in a consecutive series of 1906 fetuses. Prenat Diagn 2003; 23: 784-7. [CrossRef]
17. Wong SF, Choi H, Ho LC. Nasal bone hypoplasia: is it a common finding amongst chromosomally normal fetuses of southern Chinese women? Gynecol Obstet Invest 2003; 56: 99-101. [CrossRef]
18. Orlandi F, Rossi C, Orlandi E, Jakil MC, Hallahan TW, Macri VJ, et al. First-trimester screening for trisomy-21 using a simplified method to assess the presence or absence of the fetal nasal bone. Am J Obstet Gynecol 2005; 192: 1107-11. [CrossRef]
19. Peralta CF, Falcon O, Wegryn P, Faro C, Nicolaides KH. Assessment of the gap between the fetal nasal bones at 11 to 13 + 6 weeks of gestation by three-dimensional ultrasound. Ultrasound Obstet Gynecol 2005; 25: 464-7. [CrossRef]
20. Casasbuenas A, Wong AE, Sepulveda W. First-trimester nasal bone length in a normal Latin American population. Prenat Diagn 2009; 29: 108-12. [CrossRef]
21. Staboulidou I, Steinborn A, Schmidt P, Günter HH, Hillemanns P, Scharf A. References values for the fetal nasal bone in the first trimester of pregnancy in a normal collective. A prospective study. Z Geburtshilfe Neonatol 2006; 210: 173-8. [CrossRef]
22. Chen M, Lee CP, Tang R, Chan B, Ou CQ, Tang MH. First-trimester examination of fetal nasal bone in the Chinese population. Prenat Diagn 2006; 26: 703-6. [CrossRef]
23. Sonek JD, McKenna D, Webb D, Croom C, Nicolaides K. Nasal bone length throughout gestation: normal ranges based on 3537 fetal ultrasound measurements. Ultrasound Obstet Gynecol 2003; 21: 152-5. [CrossRef]
24. Moon MH, Cho JY, Lee YM, Lee YH, Yang JH, Kim MY, et al. Nasal bone length at 11-14 weeks of pregnancy in the Korean population. Prenat Diagn 2006; 26: 524-7. [CrossRef]
25. Collado F, Bombard A, Li V, Julliard K, Apteke L, Weiner Z. Ethnic variation of fetal nasal bone length between 11-14 weeks’ gestation. Prenat Diagn 2005; 25: 690-2. [CrossRef]