Cluster states in \(^{11}\)B and \(^{13}\)C

T. Kawabata\(^1\), Y. Sasamoto\(^1\), M. Fujiwara\(^2\), H. Hashimoto\(^2\), K. Hatanaka\(^2\), K. Itoh\(^3\), M. Itoh\(^4\), Y. Kanada-En'yo\(^5\), K. Kawase\(^2\), Y. Maeda\(^1\), H. Matsubara\(^2\), K. Nakanishi\(^2\), S. Sakaguchi\(^1\), M. Uchida\(^6\), T. Uesaka\(^1\), and H. P. Yoshida\(^4\)

\(^1\)Center for Nuclear Study, Graduate School of Science, University of Tokyo, Wako, Saitama 351-0198, Japan
\(^2\)Research Center for Nuclear Physics, Osaka University Ibaraki, Osaka 567-0047, Japan
\(^3\)Department of Physics, Saitama University, Saitama 338-8570, Japan
\(^4\)Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578, Japan
\(^5\)Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8578, Japan
\(^6\)Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

E-mail: kawabata@cns.s.u-tokyo.ac.jp

Abstract. The cluster structures of the excited states in \(^{11}\)B and \(^{13}\)C were discussed by measuring the isoscalar monopole strengths in the inelastic \(\alpha\) scattering at \(E_\alpha = 388\) MeV. It was found that the \(1^+_2\), \(2^-_2\), and \(2^+_3\) states in \(^{13}\)C are candidates for the \(\alpha\) cluster states with a \(3\alpha + n\) molecular configuration.

1. Introduction

Alpha particle clustering is an important concept in nuclear physics for light nuclei. On the basis of the Ikeda diagram [1], the \(\alpha\) cluster structure is expected to emerge near the \(\alpha\)-decay threshold energy in self-conjugate \(A = 4n\) nuclei. For example, it has been suggested that the 7.65-MeV \(0^+_2\) state in \(^{12}\)C, which locates at an excitation energy higher than the \(3\alpha\)-decay threshold by 0.39 MeV, has a \(3\alpha\)-cluster configuration [2]. Recently, the cluster models have been applied to the neutron-rich nuclei, and the molecular structures where the excess neutrons act as the covalent particles have been discussed.

Milin and von Oertzen proposed \(\alpha\) cluster states in \(^{13}\)C with one covalent neutron based on the compiled experimental data, and proposed \(K = 3/2^-\) and \(K = 3/2^+\) molecular bands [3]. They also pointed out that the \(1/2^-_2\) state at \(E_x = 8.86\) MeV and the \(1/2^+_2\) state at \(E_x = 10.996\) MeV in \(^{13}\)C are considered to have a neutron in the \(1p_{1/2}\) and \(2s_{1/2}\) orbits, respectively, coupled to the \(0^+_1\) state in \(^{12}\)C. They suggested that the \(1/2^-_2\) and \(1/2^+_2\) states in \(^{13}\)C may have the triangular three \(\alpha\)-particle structure since the covalent neutron plays a role to stabilize the three \(\alpha\)-particle structure to a triangular shape in these states. Thus, a comparative study between the \(0^+_1\) state in \(^{12}\)C and the two states in \(^{13}\)C is interesting, and it is meaningful to examine a role of the covalent neutron in the molecular state and to test the molecular orbital model. Although the \(0^+_3\) state of \(^{12}\)C is known at \(E_x = 10.3\) MeV with a width of 3.0 MeV, no candidate for the molecular state in which an excess neutron is coupled to the \(0^+_3\) state has been observed in \(^{13}\)C. The search for such unknown states is also important.
A cluster state relevant to the 0^+_3 state in 12C was suggested in 11B as well as 13C [4]. The $3/2^-_3$ state at $E_x = 8.56$ MeV, which is not predicted by the shell-model calculation by Cohen and Kurath [5], is predominately excited by the $\Delta J^z = 0^+$ transition in the 11B(d, d') reaction. The angular distribution of the (d, d') cross section for the $3/2^-_3$ state in 11B is very similar to that for the 0^+_3 state in 12C. This fact indicates that the $3/2^-_3$ state is considered to be an α cluster state with a proton hole in the $1p_{3/2}$ orbit coupled to the 0^+_3 state in 12C, while the ground state in 11B is considered to have a proton hole in the $1p_{3/2}$ orbit coupled to the ground state in 12C.

For clarification of the cluster structure in 13C and 11B, further information on the natural-parity excitation strengths is necessary. Especially, the isoscalar monopole strength is a key ingredient because it is expected that the α cluster states are excited from the ground state by the monopole transitions [4, 6].

In the present study, the isoscalar monopole strengths in 13C and 11B were obtained by measuring the inelastic α scattering at $E_\alpha = 388$ MeV, and the α cluster structure in 13C and 11B was discussed.

2. Experiment
The experiment was performed at the Research Center for Nuclear Physics, Osaka University, using a 388-MeV α beam. The α beam extracted from the ring cyclotron was achromatically transported to self-supporting 11B and 13C targets with the thicknesses of 16.7 mg/cm2 and 1.5 mg/cm2. Scattered α particles were momentum analyzed by the high-resolution spectrometer Grand Raiden [7]. The focal-plane detector system of Grand Raiden consisting of two multi-wire drift chambers and plastic scintillation detectors allowed the reconstruction of the scattering angle at the target via ray-tracing techniques.

Typical spectra for the 11B(α, α') and 13C(α, α') reactions are shown in Fig. 1. Energy resolutions of the excitation energy spectra were 250 keV and 180 keV for 11B and 13C at full width at half maximum, respectively. The energy resolution for 13C was dominated by the energy spread of the cyclotron beam, whereas that for 11B was deteriorated by the energy straggling in the thick 11B target.

![Figure 1. Excitation energy spectra for the 11B(α, α') (left) and 13C(α, α') (right) reactions measured at 0°.](image)

3. Result and discussion
The measured cross sections for the 13C(α, α') and 11B(α, α') reactions exciting the several low-lying states are compared with the theoretical predictions by the distorted-wave Born
approximation (DWBA) calculation in Figs. 2 and 3. The transition potentials in the DWBA calculation were obtained by folding the macroscopic transition densities [8] with the phenomenological αN interaction $V_{\alpha N}(r)$ given by:

$$V_{\alpha N}(r) = -V \exp(-r^2/\alpha_V) - iW \exp(-r^2/\alpha_W).$$

The interaction strengths and range parameters of $V = 16.9$ MeV, $W = 11.7$ MeV, and $\alpha_V = \alpha_W = 4.38$ fm2 were determined to reproduce the cross section for the elastic scattering from 12C.

The cross sections for the $1/2^-$ and $1/2^+$ states in 13C peak at 0°, and rapidly decrease with the increasing scattering angle. The allowed transferred spin and parity are uniquely defined in the 13C(α, α') reaction since the spin-parity of the ground state of 13C is $1/2^-$ and only the natural-parity transitions are allowed in the inelastic α scattering. Therefore, it is naturally noted that the $1/2^-$ states are excited by the monopole transitions whereas the enhancement of the $1/2^+$ state near 0° is due to the dipole Coulomb excitation.

On the other hand, several multipole transitions are allowed in the 11B(α, α') reaction. The 11B(α, α') cross sections were analyzed by summing up the calculated cross sections for the allowed multipole transitions with $\Delta J \leq 2$.

The deformation lengths in the macroscopic transition densities were determined to reproduce the measured cross sections for the 11B(α, α') and 13C(α, α') reactions, and the isoscalar monopole excitation strengths $B(E0; IS)$ for the $1/2^-$ states in 13C and the $3/2^-$ states in 11B were obtained from the deformation lengths as listed in Table 1.

The three $1/2^-$ states in 13C and the $3/2^-$ state in 11B are strongly excited by the isoscalar monopole transitions, but those large monopole strengths cannot be explained by the shell-model calculation at all. This fact indicates that the structure of these states is quite far from the shell-model picture where each nucleon behaves like an independent particle in the
Table 1. Preliminary results of the isoscalar monopole excitation strengths for the $1/2^-$ states in 13C and the $3/2^-$ states in 11B.

J^n	E_x	$B(E0; IS)$	J^n	E_x	$B(E0; IS)$
1/2$_2^-$	8.86	31 ± 3	3/2$_2^-$	5.02	5 ± 3
1/2$_3^-$	11.08	18 ± 2	3/2$_3^-$	8.56	88 ± 15
1/2$_4^-$	12.5	23 ± 3			

mean-field potential. The non-shell-model-like structure of those states is possibly due to the α-cluster correlation. It is generally difficult to treat the clustering phenomena in the truncated shell-model space since the theoretical description of the clustering phenomena under the shell-model framework requires a huge number of single-particle bases. Actually, the antisymmetrized molecular-dynamics calculation shows the large monopole strength for the $3/2_3^-$ state in 11B is well described by a spatially well-developed $2\alpha + t$ cluster wave function [9].

Recently, it is theoretically pointed out that a sizable monopole strength could be a signature of the α cluster states [6]. Thus, it should be noted that the three $1/2^-$ states in 13C are candidates for the α cluster states with a $3\alpha + n$ molecular configuration. For further clarification, a quantitative comparison between the present result and the cluster-model calculations is desired. The results will be reported elsewhere soon.

4. Summary
The inelastic α scattering at $E_\alpha = 388$ MeV was measured to examine the α cluster structures in 11B and 13C. The measured cross sections for the low-lying states were compared with the DWBA calculation, and the isoscalar monopole strengths were determined. It was found that the $1/2_2^-$, $1/2_3^-$, and $1/2_4^-$ states in 13C are candidates for the α cluster states with a $3\alpha + n$ molecular configuration. For further clarification, a quantitative comparison between the present result and the cluster-model calculations is desired. The results will be reported elsewhere soon.

References
[1] Ikeda K, Takigawa N and Horiuchi H 1968 Prog. Theor. Phys. Suppl. Extra Number 464
[2] Morinaga H 1956 Phys. Rev. 68 29
[3] Milin M and von Oertzen W 2002 Euro. Phys. J. A 14 295
[4] Kawabata T, Akimune H, Fujita H, Fujita Y, Fujiwara M, Hara K, Hatanaka K, Itoh M, Kanada-En'yo Y, Kishi S, Nakanishi K, Sakaguchi H, Shimbara Y, Tamii A, Terashima S, Uchida M, Wakasa T, Yasuda Y, Yoshida H P and Yosoi M 2007 Phys. Lett. B 646 6
[5] Cohen S and Kurath D 1965 Nucl. Phys. 73 1
[6] Yamada T, Horiuchi H, Ikeda K, Funaki Y and Tohsaki A 2007 Preprint nucl-th/0703045
[7] Fujiwara M, Akimune H, Daito I, Fujimura H, Fujita Y, Hatanaka K, Itoh M, Kanada-En'yo Y, Matsuoka N, Morinobu S, Noro T, Yoshimura M, Sakaguchi H, Sakemi Y, Tamii T and Yosoi M 1999 Nucl. Inst. & Meth. in Phys. Res. A 422 481
[8] Harakeh M and van der Woude A 2001 Giant Resonances (New York: Oxford University Press)
[9] Kanada-En’yo Y 2007 Phys. Rev. C 75 024302