Integrated Analysis of Dysregulated miRNA-gene Expression in *HMGA2*-silenced Retinoblastoma Cells

Nalini Venkatesan1,2, P. R. Deepa3, Madavan Vasudevan4, Vikas Khetan5, Ashwin M. Reddy6 and Subramanian Krishnakumar1

1Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India. 2Bird Institute of Technology and Science (BITS), Pilani, Rajasthan, India. 3Department of Biological Sciences, Biria Institute of Technology and Science (BITS) – Pilani, Rajasthan, India. 4Bionivid Technology [P] Ltd, Kasturi Nagar, Bangalore, India. 5Sri Bhagawarn Mahavir Department of Vitreoretinal and Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India. 6Department of Ophthalmology, Barts Health NHS Trust, London, UK.

ABSTRACT: Retinoblastoma (RB) is a primary childhood eye cancer. *HMGA2* shows promise as a molecule for targeted therapy. The involvement of miRNAs in genome-level molecular dys-regulation in *HMGA2*-silenced RB cells is poorly understood. Through miRNA expression microarray profiling, and an integrated array analysis of the *HMGA2*-silenced RB cells, the dysregulated miRNAs and the miRNA-target relationships were modelled. Loop network analysis revealed a regulatory association between the transcription factor (SOX5) and the deregulated miRNAs (miR-29a, miR-9*, miR-9-3). Silencing of *HMGA2* deregulated the vital oncomirs (miR-7, miR-331, miR-26a, miR-221, miR-17–92 and miR-106b–25) in RB cells. From this list, the role of the miR-106b–25 cluster was examined further for its expression in primary RB tumor tissues (n = 20). The regulatory targets of miR-106b–25 cluster namely p21 (cyclin-dependent kinase inhibitor) and BIM (pro-apoptotic gene) were elevated, and apoptotic cell death was observed, in RB tumor cells treated with the specific antagomirs of the miR-106b–25 cluster. Thus, suppression of miR-106b–25 cluster controls RB tumor growth. Taken together, *HMGA2* mediated anti-tumor effect present in RB is, in part, mediated through the miR-106b–25 cluster.

KEYWORDS: Retinoblastoma, High mobility group proteins (*HMGA2*), miR-106b–25 cluster, Integrated mRNA-miRNA analysis, Antagomirs

Introduction

Computational tools are widely used to complement biological investigations, especially in global gene expression analysis and high throughput assays. Advanced computational analyses such as integrated analyses of mRNA and miRNA expression, provide information on several regulatory networks in cancers, including retinoblastoma (RB), a paediatric ocular tumor. The identification of these molecular networks could implicate potential genes and miRNAs that may behave as biomarkers. It will also help better understand RB biology and clinical management.

RB is a childhood cancer that arises from the primitive retinal layer. The current management is enucleation (removal of eye in childhood), chemotherapy and/or focal therapy. Targeted therapy is gaining importance in the management of RB. Gene expression profiling of RB tumors has helped to characterize cell signalling and the molecular pathways involved in its pathogenesis. Earlier reports on relative miRNA profiling between normal and RB tumor tissues, and global gene dys-regulation studies (*HMGA2*, Tiam 1, EpCAM) have indicated several aberrant miRNAs and their regulatory genes.
We had earlier reported that silencing of *HMGA2* reduced cell proliferation in cultured RB cells.\(^\text{12}\) *HMGA2*, a non-histone chromosomal protein, is highly expressed during embryogenesis and in various malignant tumors including RB.\(^\text{16,17}\) This protein contains structural DNA binding AT-rich domains, and at the C-terminus these domains undergo conformational change due to their interaction with the B form of DNA. This conformational change plays a crucial role in the transcriptional regulation of other proteins which are also involved in the epithelial mesenchymal transition (EMT) pathways.\(^\text{18}\) Over-expression of *HMGA2* protein is seen in several malignancies and may be due to the suppression of miRNAs, namely miR-15, miR-16, miR-196\(^\text{19,20}\) and let-7.\(^\text{21}\) In a study on putitary tumors, E2F1 activation through displacement of HDAC1 by *HMGA2* resulted in pRB inactivation.\(^\text{22}\)

Reports from, in vivo and in vitro studies have demonstrated a reduction in cell proliferation in various cancers including RB by blocking the *HMGA2* protein synthesis using antisense methodology.\(^\text{22,23}\) Our previous study,\(^\text{12}\) implicated changes of several abnormal gene networks including mitogen-activated protein kinase (MAP) kinase, JAK/STAT, Ras pathway, Ras induced ERK1/2 and tumor protein 53 (p53) dependent pathways in *HMGA2* silenced RB cells.

In the present study, using computational and experimental tools, the role of dys-regulated miRNAs in *HMGA2*-silenced retinoblastoma (RB) cells was investigated. Their association with the gene targets have been analysed using integrated array analysis. The specific role of miR-106b-25 cluster in RB has also been examined.

Materials and Methods

Primary RB tumor samples. Fresh frozen tumor samples were collected from 20 enucleated eyeballs of RB patients reported at Larsen and Toubro Department of Ocular Pathology, Medical Research Foundation, Sankara Nethralaya as part of RB management (2010–2011) and utilised for research purpose. The Institutional Ethics Committee of Vision Research Foundation, Sankara Nethralaya (Chennai, India) has reviewed and approved the study (Institutional ethics clearance number: 2009–146p). Fresh adult retinas were collected from 3 cadaveric eyeballs (received at C.U Shah eye bank, Medical Research Foundation Sankara Nethralaya, http://www.sankaranethralaya.org/eye-bank.html). The collected tumor samples and the normal retinas were snap frozen in liquid nitrogen and stored at –80 °C until further use.

The haematoxylin and eosin stained RB sections were reviewed microscopically and graded by an ocular pathologist (S.K). The clinic-pathological features tabulated in Table 3 are based on the tumor invasion of the choroid, optic nerve or orbit. These RB tumors were recorded as per the report by Sastre X et al.\(^\text{24}\)

Cell culture. Human RB cell lines (Y79, Weri Rb1, Riken cell bank, Japan) were used as in vitro model to study the significance of the *HMGA2*, hsa-miR-106b-25 clusters in RB. The RB cell lines were cultured in RPMI 1640 medium (Gibco-BRL, Rockville, MD, USA) supplemented with 10% heat-inactivated FBS (Gibco-BRL, Rockville, MD, USA), 0.1% ciprofloxacin, 2 mM L-glutamine, 1 mM sodium pyruvate, and 4.5% dextrose (Sigma Aldrich, St. Louis, MD, USA) and grown in suspension at 37 °C in a 5% CO\(_2\) incubator.

Transient transfection in RB cells (Y79, weri Rb1). The transfection method of silencing *HMGA2* using Human *HMGA2* siRNA (Hs_HMGA2_6 catalogue number SI03029929: forward strand: 5′-CGGCCAGAGCCACCUATT-3′ and the reverse strand: 5′-UAGGUCUCUCUCUUUGGC-CGTT-3′, Qiagen, Santa Clara, CA, USA) in RB cells (Y79, Weri Rb1) was carried out as reported earlier.\(^\text{12}\)

MicroRNA profiling. The small RNAs were extracted from the *HMGA2*-silenced RB (Y79) cells using miRNA microarray kit (Ambion, Foster city, CA, USA) following manufactures protocol. The quantity of RNA was measured by Nano Drop spectrophotometer and the quality of small RNA was assessed using Agilent 2100 bioanalyzer. The extracted total RNA sample was diluted to 50 ng/ul in nuclease free water. About 100 ng of total RNA was dephosphorylated along with appropriate diluted Spike-In control (Agilent Technologies, microRNA Spike-In Kit, Part Number 5190–1934) using Calf Intestinal Alkaline Phosphatase (CIP) master mix (Agilent Technologies, Part Number: 5190–0456) by incubating at 37 °C for 30 min. Following the dephosphorylation, miRNA samples were denatured by adding dimethylsulfoxide and heated at 100 °C for 10 min and transferred to ice-cold water bath. The miRNA labeling was performed using miRNA Complete Labeling and Hyb Kit (Agilent Technologies, Part Number: 5190–0456). The Ligation master mix containing Cyanine 3-pCp was added to the denatured miRNA samples and incubated at 16 °C for 2 hours. The Cyanine 3-pCp labeled miRNA samples were dried completely in the vacuum concentrator (Concentrator Plus, Eppendorf, Germany) at 45 °C to 55 °C for 2 hours. The dried sample was resuspended in nuclease free water and mixed with Hybridization Mix containing blocking solution and Hi-RPM Hybridization Buffer and incubated at 100 °C for 5 min followed by snap chill immediate cooling on ice for 5 min. The samples were hybridized on the Human_miRNA_ version 3.15 × 8 array. The hybridization was carried out at 55 °C for 20 hours. After hybridization, the slides were washed using Gene Expression Wash Buffer (Agilent Technologies, Part Number 5188–5325) at room temperature for 5 min and Gene Expression Wash Buffer 2 (Agilent Technologies, Part Number 5188–5326) at 37 °C for 5 min. The slides were then washed with acetonitrile for 30 seconds. The microarray slides were then scanned using Agilent Scanner (Agilent Technologies, Part Number G2565CA).

Data analysis of microarray. The miRNA microarray profiling of the transiently *HMGA2*-silenced RB cells
using Human miRNA Microarray (V3), 8 × 15K chip was performed in two replicates to identify a spectrum of deregulated cellular miRNAs. Intra-array normalization was done using 90th percentile and baseline transformation was done to the median of all the samples. Volcano plot based method was used to identify miRNAs that were 2.0 fold differentially expressed between siRNA-treated and untreated, (P-value ≤ 0.05 was calculated by unpaired Student’s t-test and Benjamini Hochberg based FDR correction). Unsupervised hierarchical clustering of differentially expressed miRNA were done using Pearson uncentered distance matrix and average linkage rule to establish gene clusters that differentiate the two groups (Fig. 1A shows the scatter plot for the top 100 deregulated miRNAs). Predicted and validated targets of differentially expressed miRNAs was obtained using Microcosm database (www.ebi.ac.uk/microcosm/). Further, significant biological analysis of the non-redundant list of gene targeted by differentially expressed miRNA was performed using DAVID functional annotation tool. Statistically significant Gene Ontology and pathways that were enriched with a corrected P value of ≤0.05 and an FDR of ≥2.0 were chosen for regulatory network modelling. Significantly regulated genes, miRNA along with Gene Ontologies and pathways were provided as input to BridgeIsland Software (Bionvid Technology Pvt Ltd, Bangalore) to obtain the nodes and edges information. Further, Cytoscape V 2.8.1 was used to model the regulatory network.

Transfection of hsa-miR-106b-25 cluster antagonimers in RB cells. Transient transfections of hsa-miR-106b-25 cluster antagonimers (anti-miR-106b, anti-miR-93, anti-miR-25), Thermo scientific, Dharmacon, Lafayette, CO, USA) were carried out in RB cells. The antagonimers for the mature miRNA sequences are: hsa-miR-106b, 5'-UAAAGUGCUGACAGCCGACAU-3' (catalogue number: IH-300649–07–0005), hsa-miR-93, 5'-CAAGAGUGCUGUGCGAGGUGAG-3' (catalogue number: IH-300512–08–0005), hsa-miR-25, 5'-CAUUGCAC-UUGUCUCGUGCUGA-3' (catalogue number: IH-300498–07–0005). The scrambled miRNA sequence used in the study is 5'-GCAACGAGUGUCCAACACCUCGGCC-3' (Thermo scientific, Dharmacon, Lafayette, CO, USA).

Quantitative real time PCR. Total RNA was isolated from HMG2 mRNA expressing primary RB tumor tissues (n = 20) and RB cells (Y79, Weri Rb1: anti-miR treated and untreated cells, scrambled miRNA treated cells) using TRIzol reagent (Life Technologies, Carlsbad, CA, USA). The extracted total RNA was treated with TURBO DNase to remove the genomic DNA (Ambion, Genetix Biotech Asia Pvt. Ltd., New Delhi, India). A RT-master mix (15 µL) containing 100 ng of total RNA (5 µL), 100 mM dNTPs (0.15 µL), 50 U/µL MultiScribe™ Reverse Transcriptase (1.00 µL), 20 U/µL RNase Inhibitor (0.19 µL) and nuclease-free water (4.16 µL) was prepared. The prepared reaction volume was incubated in a thermal cycler programmed for the an initial hold for 30 minutes at 16 °C, followed by a second hold for 30 minutes at 42 °C, followed by a third hold for 5 minutes at 85 °C and a final hold at 4 °C.

The gene expression assays for HMG2 (Hs00171569_m1), GAPDH (Glyceraldehyde-3-phosphate dehydrogenase; endogenous control for gene; Hs99999905_m1), hsa-miR-106b-25 family, hsa-miR-106b (Catalogue number RT 442), hsa-miR-93 (catalogue number: RT 1090), hsa-miR-25 (Catalogue number: RT 403) and miRNA assay control RNU6B (Catalogue number: RT 0011093) were purchased from Applied Biosystems (Lab India, Chennai, India). Normalization of the HMG2 gene expression was performed with GAPDH, which was determined using pre-developed assay reagents (Applied Biosystems, Bangalore, India). The PCR reaction was performed in 20 µL volume containing 1 µL (100 ng) of the sample cDNA, universal PCR master mix (Taqman, ABI Applied Biosystem, Bangalore, India) and probes for gene/miRNA according to the manufacturer’s instructions. The relative expression of the gene in each sample was analysed in triplicates and the miRNA expression in transfected RB cells was analysed in duplicates. The PCR protocol using Taqman probes was performed as follows: 2 min at 50 °C, 10 min at 95 °C followed by 40 cycles of 15 sec at 95 °C and 1 min at 60 °C. Commercial software (SDS version 1.3, ABI, Bangalore, India) was used to determine relative expression of genes/miRNAs after normalisation with cadaveric retina (non-neoplastic tissue control). The relative expression values for HMG2 gene expression were normalized to the GAPDH and miRNA (hsa-miR-106b-25) expressions were normalized to the RNU6B. Fold change in relative gene expression are expressed as log2 fold change.

Cell proliferation assay. Five thousand RB cells (Y79 and Weri Rb1) were plated in 96 wells plate at day 0. On day 1, the cells were transfected with 100 µl of serum free RPMI medium containing 50 pmol of antagonimers and 0.5 µl of Lipofectamine™ transfection reagent (Invitrogin, Darstadt, Germany). The cells were incubated for 24 hours, 48 hours and 72 hours respectively. At the end of the incubation period, serum free RPMI medium containing 5 mg/ml of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma Aldrich, St. Louis, MD, USA) was added to the wells, and the cells were incubated at 37 °C for 4 hours. Following incubation, 100 µl of MTT solubilization solution DMSO (Sigma Aldrich, St. Louis, MD, USA) was added, and the cells were incubated at 37 °C for 10 min. Absorbance measurements were made using a spectrophotometer (Beckman Coulter India Private Ltd, New Delhi, India) at 562 nm, and the background was subtracted at 562 nm.

Immunoblotting. The protein lysate from antagonimers–treated and untreated RB cells were prepared using RIPA buffer containing 50 mM Tris-HCl (pH 7.6), 5 mM EDTA, 150 mM sodium chloride, 0.1% PMSF and 250 µl of protease inhibitor cocktail (1 mg/ml). A total protein of 50 µg was resolved by using 12% SDS-PAGE followed by electrophoretic transfer onto the nitrocellulose membrane at
100V for 1.5 hours. The membranes were incubated with primary antibodies for human BIM (1:1000; catalogue No: H-191, Santa cruz, USA), human p21 (1:1000; catalogue No: SC-6246, Santa Cruz Biotechnology, CA), β-actin (1:5000; Sigma Aldrich, St. Louis, MD, USA) overnight at 4 °C followed by 2 hours of incubation with appropriate anti-mouse horseradish peroxidase-conjugated secondary antibodies. After three intermittent washes for 30 mins each with TBST containing 0.5% Tween-20, the membranes were subjected to chemiluminescence detection method (Super signal West Femto Maximum Sensitivity Substrate, Pierce Technologies, Germany). To determine the fold-change in the expressions of BIM and p21 proteins in the individual samples, the intensities of the bands were calculated using Quantity One, version 4.7 software in GS 800 calibrated Densitometer (Bio Rad, Gurgaon, Haryana, India) followed with normalization with the respective β-actin expression.

Flow cytometry. Flow cytometric analysis was performed on RB cells following transfection. About 2 × 10^5 cells were plated in 24 wells plate, transfected with 50 pm of antago-mirs to all the three miRNAs (hsa-miR–106b-25 cluster). Flow cytometric analyses were performed after 48 hours of transfection, using the Annexin V-fluorescein isothiocyanate (FITC) Kit for apoptosis analysis according to the manufacturer’s protocol (BD Biosciences, Gurgaon, India).

Scratch assay. After transfection of RB cells (1 × 10^5 cells/96 well plate), a single uniform scratch was made once a confluent monolayer was attained. The wells were then washed with PBS to remove the detached cells. Media was added to the culture immediately before taking the images. The area

Figure 1A. The miRNA expression profile in HMGA2 siRNA treated Y79 cells.
Notes: Hierarchical cluster represents the expression profile of 100 differentially altered miRNAs in post HMGA2 silenced Y79 cells compared with untreated RB cells. Red line indicates up-regulation, while green line indicates downregulation in fold change relative to untransfected Y79 cells.

Figure 1B. miRNA and Target Gene Regulatory Network Modeling.
Notes: The key miRNAs that targets differentially expressed genes are presented here (Cytoscape v 2.8). Circles and squares indicate miRNA and genes respectively, red colour indicates up-regulation and green colour indicates down-regulation. Red colour indicates up-regulation while green colour indicates downregulation in fold change relative to untreated Y79 cells. The colour lines represent: green line describes the positive regulation between miRNA (down) and target gene (up); red line describes the positive regulation between miRNA (up) and target gene (down); pink line describes the positive regulation between miRNA(up) and target gene(up) and blue line describes positive regulation between miRNA (down) and target gene (down).
of scratch infiltrated by migrating cells at 0 hour, 24 hours and 48 hours of incubation in the experimental groups were calculated using Image J software (Image J, NIH, USA). The difference in area of migration between these time points and their 0 hour area was noted. The average area covered by the treated RB cells relative to untreated RB cells was expressed as percentage of migration at 24 hours and 48 hours of durations.

Statistical analysis. ANOVA (Post Hoc, Dunnett t-test) was used to compare the controls and test variables for cell proliferation using SPSS software (version 12.0). Paired student’s t-test was used to compare the untreated and treated experiment groups for scratch assay. Values expressed for cell proliferation, apoptosis and scratch assay are mean ± SD of at least three experiments. They were considered statistically significant at P ≤ 0.05.

Results

miRNA expression in HMG2 silenced RB (Y79) cells. The miRNA expression analysis in Y79 cells revealed 188 differentially expressed miRNAs. These differentially regulated miRNAs (supplementary file 1) include 86 up-regulated and 102 downregulated miRNAs. The family cluster classification of up-regulated miRNAs using TAM tool revealed three main clusters:

- bsa-miR-let7e cluster (miR-99b, miR125a), bsa-miR-506 cluster (miR-513a, miR-513b, miR-513c), and bsa-miR-1283 cluster. Functionally, the filtered 82 up-regulated miRNAs were found to be involved in the activation of the caspase cascade (miR-150, miR-155), angiogenesis (miR-150) and activation of apoptosis, cell cycle regulation (miR-494, miR-150, and miR-155), cell proliferation (miR-150), and tumor suppression (miR-125a, miR-150, and miR-155). From this, it appears that miR-150 and miR-155 expressions are common to the key regulatory cellular functions in RB.

The downregulated 102 miRNAs were categorized into 15 families using TAM tool. Table 1 lists the various miRNA clustering in the specific families along with their function. The suppression of bsa-miR-17 cluster, its paralogs, bsa-miR-106a cluster, bsa-miR-106b cluster, bsa-miR-23b family, bsa-miR-130 family following the silencing of HMG2 oncogene indicates a positive regulation of these miRNAs by HMG2. The pathway analysis of these dysregulated miRNAs using TAM tool revealed the down regulation of AKT pathway (P < 0.001). The miRNA involved in this pathway was determined as miR-20a, miR-18a, miR-7, miR-17, miR-19a, miR-331, miR-19b, miR-26a, miR-92a, miR-21 and miR-221. The functional annotations of these deregulated miRNAs are found to be involved in angiogenesis, apoptosis, cell cycle regulation, cell differentiation, cell proliferation, tumor suppression and oncomirs. These data have been submitted to the NCBI: GEO data base (GSE51696).

The sequence alignment of the HMG2 mRNA with the conserved miRNAs described above was carried out using the online tool: microRNA.org-Targets and expression

Table 1. The list of miRNAs de-regulated in the post- HMG2 silenced RB cells (Y79) revealed in the microarray analysis and their functional annotations.

S.NO	FUNCTIONAL ANNOTATION OF DYSREGULATED miRNA	DYSREGULATED miRNAs	DOWN-REGULATED miRNA
1.	Angiogenesis	miR-150	miR-15a, miR-let7b, miR-18a, miR-let7l, miR-21, miR-126, miR-16, miR-19a, miR-19b, miR-378, miR-27b, miR-130a, miR-20a, miR-92a, miR-17, miR-221
2.	Apoptosis	miR-494, miR-150, miR-155	miR-15a, miR-15b, miR-21, miR-148a, miR-221, miR-7g, miR-19a, miR-19b, miR-182, miR-27a, miR-34b, miR-34c, miR-29b, miR-29a, miR-20a, miR-17, miR-16, miR-92a, miR-96, miR-18a, miR-7, miR-26a, miR-195
3.	Cell cycle	miR-494, miR-150, miR-155	miR-15a, miR-24, miR-15b, miR-21, miR-19a, miR-140, miR-107, miR-221, miR-let7b, miR-7a, miR-124, miR-7g, miR-331, miR-19b, miR-182, miR-27a, miR-27b, miR-34b, miR-185, miR-29b, miR-20a, miR-17, miR-16, miR-34c, miR-92a, miR-424, miR-96, miR-18a, miR-9, miR-195
4.	Cell differentiation	–	miR-15a, miR-424, miR-16
5.	Cell proliferation	miR-150	miR-15a, miR-24, miR-15b, miR-124, miR-21, miR-let7d, miR-16, miR-9, miR-27b, miR-130a, miR-34b, miR-34c, miR-140, miR-29b, miR-221
6.	Tumour suppressors	miR-125a	miR-15a, , miR-let7b, miR-7a, miR-7f, miR-7 g, miR-7d, miR-16, miR-7i, miR-7e, miR-26b, miR-25a, miR-101, miR-34b, -c, miR-195, miR-124, miR-125a, miR-126, miR-29a
7.	Oncomirs	miR-150, miR-155	miR-24, miR-20a, miR-20b, miR-21, miR-17, miR-106b, miR-19a, miR-19b, miR-107, miR-27a, miR-18a, miR-92a, miR-93, miR-18b, miR-221
8.	Akt pathway	–	miR-20a, miR-18a, miR-7, miR-17, miR-19a, miR-331, miR-19b, miR-26a, miR-92a, miR-21 and miR-221
Fig. hsA-miR-29a, hsa-miR-9*, hsa-miR-9-3-silenced (type of regulation) based on Microcosm database. The BAN were generated by connecting the nodes (genes) and edges (type of regulation) based on Microcosm Database. The Supplementary file 2 shows some highly interconnected genes and their regulatory factor, gene targets in RB tumors.

Interestingly, we observed elevates number of cell cycle genes with a positive correlation to mir-17-92 cluster and its paralog mir-106b-25 cluster. The biological role of the mir-17–92 cluster has been reported in RB tumors.

Table 2. The alignments of the conserved miRNAs identified in HMGA2 silenced RB (Y79) cells with the HMGA2 mRNA.

S.NO	miRNAs	LOCATION	ALIGNMENT	mirSRV SCORE
1.	miR-150	2615	3’ gugaccaguucucaAACCUCu 5’	-0.6787
			5’ uauuguucauuuuuuGAGA 3’	
2.	miR-17	1197	3’ guGAGCGUGA-AUU--CGUGAAAc 5’	-0.5950
			5’ aucUCUCAUCUAAACUGACACUUu 3’	
3.	miR-106a	1197	3’ guGAGCGUGA-AUU--CGUGAAAs 5’	-1.2030
			5’ aucUCUCAUCUAAACUGACACUUu u3’	
4.	miR-106b	1199	3’ uaGACGUGA--CAUCUGUGAAAu 5’	-0.5950
			5’ cuCUAUUCAACUCUGACU3’	
5.	miR-93	1197	3’ guGAGCUU--GCUGUGUGAAAc 5’	-0.5950
			5’ aucUCUCAUCUAAACUGACACUUu 3’	
6.	miR-23b	1979	3’ ccaueeucgcguUUACACu5 5’	-1.0962
			5’ uguuuuuaccaAAUGUGAu 3’	
7.	miR-20a	1197	3’ guGACGUGAU-J--CGUGAAAtu 5’	-0.5950
			5’ aucUCUCAUCUAAACUGACACUUu 3’	
8.	miR-129-5p	982	3’ cuGUUGGUGCGUGCUUuuc 5’	-1.2030
			5’ aucAUAUUCACUCAGAAAa 3’	
9.	miR-26a	546	3’ ucggauGGAC--CU--AAUGACu5 5’	-0.5528
			5’ guaAUCUUGUGACCAUCUGUu 3’	

(www.microRNA.org) to confirm its regulatory networks. The output of this analysis has been tabulated in Table 2. Among this list, we could identify the suppression of two oncomir families—hsa-miR-17–92 cluster and hsa-miR-106b cluster with good mir-SVR scores, which are also found in other cancers, including RB.

Integrating differentially expressed miRNAs and their gene targets in HMGA2 silenced RB cells. To understand the interactions between the dysregulated miRNAs and the genes involved in cancer progression, a computational approach was adopted. The dysregulated genes in HMGA2 silenced Y79 cells obtained from cDNA microarray analysis (published earlier [13]) may be referred to at the NCBI: GEO database (GSE31687).

The present analysis revealed a total of 337 genes that are under the regulatory control of dysregulated miRNAs in HMGA2-silenced RB cells (Fig. 1B). Biological networks were generated by connecting the nodes (genes) and edges (type of regulation) based on Microcosm Database. The BAN shows some highly interconnected genes and their regulatory miRNAs (Supplementary file 2). These networks are vital for tumorigenesis and cancer control (Fig. 1B).

Interestingly, we observed elevated number of cell cycle genes with a positive correlation to mir-17–92 cluster and its paralog mir-106b–25 cluster. While the biological role of the mir-17–92 cluster has been reported in RB tumors, the functional role of the mir-106b–25 cluster in RB is not understood. The present study, therefore, attempts to characterize the mir-106b–25 cluster in primary RB tissues, and in HMGA2-silenced RB cells.

Analysis of transcription factors, mRNA–miRNA feed forward loops (FFL) and feed backward loops (FBL) in HMGA2 silenced RB cells. In order to evaluate the interactions between transcription factors, genes (mRNA) and miRNAs, we carried out the feed forward and feed backward loop analysis based on data obtained from Circuits Database. The supplementary file 3 shows the loops obtained with high significance (corrected P value ≤ 0.05) in genes and mRNA expression levels. Enriched loop connections were visualized using Cytoscape V 2.8 with nodes coloured by their fold change (Fig. 2B). Transcription factors that were shown to regulate the differentially expressed miRNA and mRNA were identified based on its role in promoting tumorigenesis. Among these loops, we observed that the key transcription factor, SOX5, is regulated by the miRNAs—hsa-miR-29a, and hsa-miR-9 family (hsa-miR-9*, hsa-miR-9-3). This has been analyzed with the corresponding dysregulated genes, as given below.

Network regulation between SOX5, hsa-miR-29a and TFs/genes. The predicted regulatory networks between SOX5, miR-29a and the other key regulatory transcription factors/genes derived from the integrated array in HMGA2-silenced
RB cells shows the up-regulation of IRF1 (gene involved in nuclear apoptosis), CDX2 (tumor suppressor gene), SPARC (apoptosis mediator and chemo-sensitizer), NAV3 (navigator gene), CREG1 (involved in cellular senescence) and downregulation of NASP (involved in cell growth arrest).

Network regulation between SOX5, hsa-miR-9* and RIT1 gene. In this network, the downregulation of RIT1, an onco-gene mediated through SOX5 and hsa-miR-9* may be a part of the molecular dysregulation contributing to the arrest of cell proliferation in the HMG2A-silenced RB cells.

Network regulation between SOX5, hsa-miR-9-3 and TFs (AREB6/ZEB1, CDP, and ANP32B). The present analysis reveals the link between SOX5, hsa-miR-9-3, and the downregulated genes AREB6/ZEB1, CDP (transcription factors), ANP32B (negative regulator of caspase 3). These gene downregulations were observed with the concomitant induction of the pro-apoptotic gene BNIP3L. These results explain in part the contributors to cell growth arrest in HMG2A silenced RB cells.

The current FFL analysis has predicted the various networks existing between the SOX5, miRNAs (hsa-miR-29a, hsa-miR-9* and hsa-miR-9-3) and the key regulatory genes (Fig. 2B). These predicted outcomes can be experimentally validated.

Experimental validation to understand the role of miR-106b–25 clusters in RB. The BAN results clearly implicated the dys-regulation of miR-106b–25 cluster in HMG2A silenced RB cells. In order to understand the role of miR-106b–25 in RB tumorigenesis, the following experiments were performed: (a) Assessment of miR-106b–25 cluster expressions in primary RB tissues (discussed in section 3.4.1), and (b) Implication of miR-106b–25 in RB cancer cell proliferation using specific antagonists (discussed in sections 3.4.2–3.4.5).

The miR-106b–25 cluster, its direct target MCM7 are over expressed in RB primary tumors. Initially, to understand the role of miR-106b–25 cluster in RB, the expression of this miRNA cluster was determined in RB primary tumors (n = 20), using qRT-PCR. The median fold change of

Notes: The network pinpoints the regulations between the transcription factors (TFs), miRNA and their regulatory gene targets. The circle denotes genes, rhombus denotes transcription factors and triangle denotes miRNA. The pink line describes the repression of genes and the green line describes the activation of genes.
miR-106b, miR-93, miR-25 and MCM7 were 6.56, 7.67 and 11.25 and 7.9 respectively. Relative to donor retina control, miR-106b–25 cluster was over expressed in most of the RB tumor samples: miR-106b: 17/21 (85%), miR-93: 19/21 (95%), miR-25: 21/21 (100%), and MCM7: 21/21 (100%) of positivity (Fig. 3). Among the cluster, miR-106b and miR-93 showed a significant difference ($P < 0.05$) between the invasive and no invasive RB tumors while no significant difference was observed based on tumor differentiation and status of chemotherapy. This reveals the presence of the oncogene MCM7 and its resident intronic miRNAs (miR-106b–25 clusters) in RB tumors.

Silencing of miR-106b–25 cluster using antagonirs downregulates HMGAI2 and MCM7 oncogenes. The link between miR-106b–25 clusters and its gene target (HMGAI2) was further established using the short antisense oligos (antagonirs) against the individual miRNAs of this family. A transient transfection with these antagonirs was induced in the RB cell lines resulting in the downregulation of miR-106b–25 cluster (fold change in the order miR-106b, miR-93 and miR-25): −6.68, −6.60, −10.26 versus untreated cells and a fold change: −4.96, −4.48, −8.06 versus scrambled miRNA-treated control in Y79 cells (Fig. 4A). In Weri Rb1 cells, we observed the suppression of miR-106b–25 family in the order miR-106b, miR-93 and miR-25: −8.27, −6.17, 7.06 compared with untreated cells and fold change of −5.88, −7.77, −6.17 (in the order miR-106b, miR-93 and miR-25) compared with scrambled miRNA-treated control (Fig. 4B). The expression of miR-106b–25 family in the RB cells treated with the mixture of all the 3 antagonirs showed a down regulation of by a fold change in the order miR-106b, miR-93 and miR-25: −1.79, −7.34, −6.51 in Y79 cells and −8.15, −4.50, −6.07 in Weri Rb1 cells, respectively (Fig. 4A and 4B).

After antagonirs transfection (miR-106b, miR-93, miR-25 and mixture) in RB cells, the HMGAI2 gene was downregulated by −2.20, −1.89, −1.74, −2.24 fold change in Y79, and by a fold-change of −1.03, −0.71, −1.6, −0.33 in Weri Rb1 cells respectively (Fig. 5A). The suppression of HMGAI2 transcripts confirms the regulation of these oncogenes by miR-106b–25 clusters. The downregulation of MCM7 to a fold change −3.51, −1.04, −9.48 and −0.06 in log$_2$ fold change was observed in anti–miRs (miR-106b, miR-93, miR-25 and mixture) treated Y79 cells and −1.72, −2.55, −1.25, −3.03 log$_2$ fold change in anti–miRs (miR-106b, miR-93, miR-25 and mixture) treated Weri Rb1 (Fig. 5B). Further we probed the role of this miRNA family in mediating RB cell proliferation.

Role of the miR-106b–25 cluster in RB cell proliferation and cell apoptosis. The MTT assay and Annexin V fluorescence binding assay results reflected the effects of the anti-miR-106b–25 cluster in RB cells. The Figure 6 (A and B) shows decreased cell proliferation compared to the untransfected RB cells at the end of 24 hrs, 48 hrs, and 72 hrs. At the end of 48 hrs, the percentage of viable cells in the antagonirs treated RB cells in comparison with untreated cells in the order of miR-106b, miR-93, miR-25 and mix were (i) Y79 cells: 67.52%, 64.87%, 64.72%, 67.68%; (ii) Weri Rb1: 66.37%, 68.44%, 64.46%, 66.09% respectively. Moreover, the Annexin V florescence staining and FACS analysis showed an increased level of apoptosis significantly in the RB cells transfected with the anti-miRs compared to the untransfected RB cells (Fig. 6C, 6D, 6E). The average percentage of early apoptotic cells induced at the end of 48 hrs in the anti–miRs treated RB cells (in the order of untreated control, miR-106b, miR-93, miR-25 and the mix) are (i) Y79 cells: 1.2%, 33.54%, 28.00%, 38.91%, 31.02%; (ii) Weri Rb1: 0.22, 39.86%, 39.82%, 38.417%, 22.09% respectively. These results suggest that these miRNAs promote the cell proliferation and suppresses
Dysregulation of miRNAs in HMGA2 silenced RB cells

miR-106b–25 clusters mediates cell cycle by down-regulating the expression of p21 and BIM in RB. The expression of apoptotic proteins–p21 and BIM (direct targets of miR-106b and miR-25) was measured in the anti-miR-transfected RB cells by immunoblot analysis (Fig. 8A and 8B). This experiment revealed the increase in p21 and BIM protein levels in the antagonirs transfected RB cells compared to the untransfected RB cells. This indicated the apoptotic mechanisms, in part, regulated through the miR-106b–25, and its relationship with the oncogene HMGA2.

Discussion

a. HMGA2 induced miRNA-gene regulatory pathways in RB:

We explored the global miRNA expressions in HMGA2-silenced RB cells. Through an integrated miRNA-mRNA

The apoptosis in RB cells (Y79 control: 1.2%, Weri Rb1 control: 0.22%).

Role of the miR-106b–25 cluster in RB cell growth and cell migration. To further understand the role of the miR-106b–25 cluster in cell growth and cell invasion, the scratch assay was carried out in the antagonirs-transfected and untransfected RB cells. The average area of scratch invaded by the Y79 cells in the order (untreated, antagonirs treated: miR-106b, miR-93, miR-25) at the end of 24 hrs: 17.91%, 10.6%, 9.4%, 9.79% and 48 hrs 25.25%, 4.5%, 4.18%, 4.81% respectively. The average area of scratch invaded by the Weri Rb1 cells in the order (untreated, antagonirs treated: miR-106b, miR-93, miR-25) at the end of 24 hrs: 34.71%, 19.96%, 15.33%, 14.31% and 48 hrs 36.16%, 19.28%, 11.15%, 9.06% respectively. These experiments showed a marked reduction in migrating cell populations in the antagomirs transfected RB cells (Fig. 7A and 7B), suggesting that the miR-106b–25 cluster is involved in RB tumor progression.25

The expression of apoptotic proteins–p21 and BIM (direct targets of miR-106b and miR-25) was measured in the anti-miR-transfected RB cells by immunoblot analysis (Fig. 8A and 8B). This experiment revealed the increase in p21 and BIM protein levels in the antagonirs transfected RB cells compared to the untransfected RB cells. This indicated the apoptotic mechanisms, in part, regulated through the miR-106b–25, and its relationship with the oncogene HMGA2.

Discussion

a. HMGA2 induced miRNA-gene regulatory pathways in RB:

We explored the global miRNA expressions in HMGA2-silenced RB cells. Through an integrated miRNA-mRNA

...
expression analysis, we were able to correlate the dys-regulated miRNAs and corresponding mRNAs (genes) that are involved in various cellular processes (Fig. 2A). The study mainly focuses on the dysregulated miRNAs which have been reported to play a vital role in cancer development (Fig. 9) and their roles in HMGA2-silenced RB cancer cells. The HMGA2 siRNA treatment induced up-regulation of miR-125a, miR-150, miR-155, and miR-494 which may contribute to cell growth arrest in RB tumor cells through alterations in expression of cancer regulatory genes. miR-125a, known as a tumor suppressor, regulates ERBB oncogene (ERBB2 and ERBB3) via ERK1/2 and AKT phosphorylation.

Figure 6. Reduction in RB cell proliferation in anti-miRs (miR-106b–25, mix) treated cells: The anti-miRs treated Y79 (A) and Weri Rb1 (B) cells was compared for cell viability with the untreated and scrambled treated RB cells as controls. Percentage of cell proliferation was obtained after treating the RB cells with antagonim at 24 hrs, 48 hrs and 72 hrs of time interval. (C) The graph represents the average number of apoptotic cells in anti-miRs treated RB cells (miR-106b–25 cluster, mix) performed in triplicate. The dotted line represents Y79 cells, and the straight line represents Weri Rb1 cells. Figure (D) and (E) show a representative graph of annexin V Fluor staining using flow cytometry. in RB cells (Y79 and Weri Rb-1).
Notes: Asterisks represent the significant difference between the controls and the antagonim transfected RB cells (*P ≤ 0.05, **P ≤ 0.01).

Figure 7. Influence of miR-106b–25 cluster antagonim on cell migratory behaviour in RB cells: Photomicrographs show the migratory behaviour between the untreated and antagonim treated Y79 (A) and Weri Rb1 (B); Figure (C) represents the percentage of area migrated by Y79 cells at 24 hours (black bar) and 48 hours (grey bar). Figure (D) represents the percentage of area migrated by Weri Rb 1 cells at 24 hours (black bar) and 48 hours (grey bar).
Notes: Asterisks represent the significant difference between the controls and the antagonim treated RB cells. (*P ≤ 0.05, **P ≤ 0.05).
The suppression of this oncogene, through the over-expression of miR-125a was reported to alter the cancer cell phenotype of SKBR3 cells (ERBB2-dependent human breast cancer cell line).43 miR-125a has also been suggested as a prognostic and therapeutic marker in gastric cancers.44 High expression of ERBB3, along with the dys-regulation of AKT pathway has also been reported in RB earlier.45 These studies strongly indicate that one of the mechanisms of HMGA2-silencing mediated RB cell death could be through the over expression of miR-125a (and subsequent oncogene modifications).

![Figure 8. Western blot of p21 and BIM proteins in antagomirs treated cells: The western analysis of p21 and BIM proteins in Y79 (A) and Weri Rb1 (B) cells are presented here. The intensity of protein (p21 and BIM) bands were normalized with beta-actin expression in RB cells (control and antagomirs treated cells). [Lanes 1–5: control RB cells, antagomirs to mir-106b, mir-93 and mir-25, mix respectively].](image)

![Figure 9. Schematic representation of the key dysregulated genes and the miRNAs in the post-HMGA2 silenced RB cells contributing to apoptosis and cell proliferation arrest. (A) Downregulation of the HMGA2 protein resulting in the activation of Rb protein resulting in the up-regulation of cyclin A1/E2 (expressed in the G2/S phase of cell cycle). (B) Suppression of the miR-106b-25 cluster through downregulation of its host gene, MCM7 via the reduced E2F family proteins. This, in turn results in the up-regulation of the p21 and BIM, which are the direct targets of miR-106b-25 cluster contributing to the RB cell death. (C) Downregulation of the key oncomirs and cell cycle regulatory miRNAs namely; miR-331, miR-21, miR-221, miR-26a, miR-15a, miR-16, miR-29a. (D) Up-regulation of tumor suppressor miRNAs and cell cycle regulatory miRNAs namely miR-150, miR-155, miR-494, miR-125a.](image)
miR-150 is reported as a tumor suppressor in lymphoma and corticotropicomas. Watanabe et al. showed that miR-150 directly downregulated the expression of gene targets DKCI and AKT2 while increasing that of the tumor suppressors, Bim and p53 in lymphoma. This is in line with the present finding of over-expressed miR-150, along with increased level of Bim protein (Fig. 8A and RR), and our earlier finding of elevated p53 protein in HMGA2-silenced RB cells. These findings strongly point to the tumor suppressor mechanisms of miR-150 induced by the silencing of HMGA2 gene in RB. The up-regulated miR-155 in the current study has been previously reported to reverse EGF-induced epithelial-mesenchymal transition (EMT) resulting in inhibition of proliferation, metastasis, invasion, and contributing to increase cisplatin sensitivity in cervical cancer cells. miR-494 is reported to induce cellular senescence by suppressing IGFB2BP1 in lung cancer cells. Thus, the up-regulation of miR-155 (fold change = 7.421) and miR-494 (fold change = 2.421) can be linked to cell growth arrest in post-HMGA2 silenced RB cells.

The HMGA2 siRNA treatment has induced downregulation of a number of clusters such as miR-21, miR-9, miR-221 and the 2 major families miR-17–92 cluster and its paralogs miR-106a–363 and miR-106b–25 clusters. miR-21 is known to be an oncomir with its regulatory target genes involved in tumor invasiveness and microvascular proliferations in cancers such as glioblastoma, breast cancer, pre-cell lymphoma. The gene targets RECK (a matrix metalloproteinase regulator, fold change: 0.93), PTEN (fold change: 0.64), PDCD4, and TMI are modulated by this miR-21 in breast cancer. Thus the observed downregulation of miR-21 (fold change: -1.821) links the anti-proliferative effect of HMGA2-silencing with the suppression of the oncomir miR-21. Another oncomir, miR-9, was down-regulated (fold change: -2.878) along with increased expression of E-cadherin gene in HMGA2 silenced RB cells. E-cadherin (CDH1), a gene target of miR-9, is involved in tumor angiogenesis through the activation of β-catenin that promotes cancer metastasis.

miR-21 from an earlier report and miR-9 from our current integrated data analysis (Fig. 2B) regulate SOX5, a member of (SRY-related HMG-box) family of transcription factors. The over-expression of SOX5 has resulted in regulation of embryonic development and cell fate, malignant B cell proliferation and reduction of glioma cell proliferation with induction of acute cell senescence. The up-regulation of SOX5 (fold change: 1.93), together with downregulation of miR-9 family and miR-21 contributes to HMGA2-silencing, mediated RB cell growth arrest.

In addition, miR-221, which is a suppressor of cell cycle inhibitor proteins p27/Kip1 and p57, and a promoter of RAS-RAF-MEK signalling pathway was found to be downregulated (fold change: -6.838). This miRNA downregulation may result in the inhibition of cell migration as reported earlier in MDA MB-231, breast cancer cell line and thus will contribute to the reduction of RB tumor cell proliferation, invasiveness and motility in post-HMGA2 gene silencing.

We also observed the suppression of two major oncomir clusters namely miR-17–92 and miR-106b–25 due to the silencing of HMGA2 in RB. The miRNA family, miR-17–92 clusters and one of its paralogs miR-106a–363 cluster reside on c13ORF25 genes of chromosome 13 and chromosome X, respectively. The over expression of these clusters have been reported earlier in various cancers such as leukemias, breast cancer and AIDS associated non-Hodgkin's lymphoma.

In HMGA2 silenced cells, we observed the suppression of the other paralog miR-106b–25 and its host gene MCM7. HMGA2 is known to be a positive regulator of MCM7, where one of the reported mediators is the E2F family. The involvement of E2F in tumor promotion has been implicated in RB primary tumors. Further, the HMGA2 silencing also induced suppression of E2F family. Thus the silencing of HMGA2 gene induces downregulation of MCM7 (via E2F family) which in turn prevents the biosynthesis of miR-106b–25 (please see Fig. 9). In addition, the sequence complementarity between 3’UTR of HMGA2 and miR-106b–25 may also be a direct target for regulation. The miR-106b–25 cluster has been investigated in detail and is discussed in the next section.

b. Implication of miR-106b–25 in RB pathogenesis, validation of its host gene MCM7 and target genes p21, BIM

The miR-106b–25 family includes three miRNAs namely miR-106b, miR-93 and miR-25. This family is highly conserved in vertebrates and resides in the 13th intron of MCM7 gene on chromosome 7. The MCM7 is well known for its regulation of the replication fork assembly on chromosomal DNA during G1/S phase transition. The suppression of this cluster using inhibitors had resulted in increased apoptosis and G1/S cell cycle arrest in oesophageal adenocarcinoma and laryngeal cancer. Earlier studies have correlated its over expression with poor prognosis in prostate, endometrial and gastric cancers. We have observed over-expression of MCM7 in a cohort of 20 primary RB cases (Table 3, Fig. 3). Although the over-expression of MCM7 cluster, (especially miR-106b) has been reported in RB tumor and serum samples, their gene regulation mechanisms are not known.

In the present study, the over-expression of miR-106b–25 cluster was identified in primary RB tumors (n = 20) relative to donor retina. Secondly, we have used a model of RB cells where the miR-106b–25 cluster was inhibited by specific antagonirs to study its functional and regulatory mechanisms.

In a study on unrestricted somatic stem cells, the various gene targets of miR-106b such as cyclinD1 (CCND1), E2F1 (II) CDKN1A (p21), PTEN, RB1 (VI) and KIL1 (p107), and (VII) have been reported indicating enhanced G1/S transitions with increased levels of E2F transcription factors using bioinformatics and experimental validation.
Table 3. Clinicopathological features of the primary RB tumours following the International Intraocular Retinoblastoma Classification (IIRC) with HMGA2, MCM7 gene expression and miR-106b–25 cluster (by qRT-PCR).

S.NO	AGE/SEX	CHEMOTHERAPY	GROUP	CLINICO-PATHOLOGICAL PARAMETERS	EXPRESSION OF miRNAs /mRNA IN PRIMARY RB TUMOURS				
					miR-106b	miR-93	miR-25	MCM7	HMGA2
1.	3/F	Pre-operative, 2 cycles of adjuvant chemotherapy	G–E	OU:PD; viable TC, thickened sclera, NI	2.40	7.08	12.95	7.08	4.36
2.	3/M	NC	D	OD: UD; a focal retinoma component, NI	8.01	9.32	20.01	4.92	9.66
3.	2/M	NC	G–E	OS:MD; NI	5.12	5.93	11.25	8.69	5.9
4.	5/M	NC	D	OD:PD; NI	8.04	8.78	19.22	14.50	10.09
5.	3/F	NC	D	OS:WD; formation of fleurettes, prelaminar invasion of ON, NI	3.31	6.59	7.87	2.04	4.91
6.	1/M	Focal therapy	A	OU:OS; WD; Focal CI <3 mm	2.62	7.19	9.74	4.77	7.56
7.	1/F	Pre-operative, 2 cycles of chemotherapy	G–D	OU:OD:WD, prelaminar invasion of ON, No CI	10.34	12.23	14.64	14.58	2.64
8.	3/M	NC	D	OS:MD, with focal retinoma component, prelaminar invasion of ON, No CI	9.81	10.96	8.05	11.28	11.45
9.	2/M	NC	D	OS:MD; retinoma, Focal CI <3 mm	13.70	15.42	12.03	10.18	7.01
10.	4/M	NC	G–E	OD:PD; CI measuring >3 mm, No ON invasion	8.71	9.80	8.83	12.96	6.78
11.	3 mon/F	Post-operative chemotherapy, 6 cycles	E	OD:PD, iris neovascularization, few TC seen over the iris surface, CI >3 mm, TC invading anterior fibres of the sclera, pre and post laminar invasion of ON	4.61	8.10	12.61	7.11	11.45
12.	3/M	NC	B	OD:UD; CI <3 mm, pre and post laminar invasion of ON	3.97	6.37	11.25	3.14	12.05
13.	3/F	Post-operative chemotherapy, 6 cycles	E	OD:PD, focal CI <3 mm, pre and post laminar ON, 1.5 mm in height and 1 mm thickness	1.79	0.99	2.791	5.44	2.46
14.	2/F	Post-operative chemotherapy, 6 cycles	G–E	OS: massive CI >3 mm, TC invading the anterior, middle and posterior border of sclera with spill over into the orbital tissue	3.09	7.24	9.74	2.95	4.58
15.	4/M	Post-operative, 2 cycles (Expired)	E	OS:PD massive CI >3 mm, TC invading the anterior, middle and posterior border of sclera with spill over into the orbital tissue	1.60	5.41	7.74	12.44	6.69
16.	2/M	Post-operative, 6 cycles	E	OU:OS; tumor seen in iris surface, trabecular meshwork, diffuse CI >3 mm thickness (>60%), pre and post laminar invasion, invasion of anterior and middle portion of sclera	1.94	5.29	7.27	4.61	7.71
17.	8/M	Pre-operative, 7 cycles	E	OU:OD:UD; cells adherent to iris surface, invasion of ciliary process, diffuse full thickness CI >3 mm, tumor touching anterior fibres and outer margins of sclera, invasion of pre and post laminar portion of ON	8.90	6.09	7.31	6.05	3.39
18.	3/M	Post-operative, 2 cycles	B	OD: MD CI measuring >3 mm, TC seen in iris stroma and pre and early post invasion of ON, SE is free	10.84	11.77	13.05	9.57	8.11
19.	4/F	NC	E	OD: PD, massive CI >3 mm, tumor invading into anterior, middle and posterior border of sclera and emissary veins, Pre, post laminar, and meningeal sheath of ON invasion, hemorrhage in ON, TC seen posterior to the sclera and in orbital tissue	12.22	13.22	15.21	9.64	5.6
20.	3/M	Pre-operative, 7 cycles of adjuvant chemotherapy	E	OD: PD tumor invading into anterior, middle and posterior border of sclera and emissary veins, Pre and post laminar invasion of ON, meningeal sheath of ON invasion, hemorrhage in ON, tumor nodules seen close to the ON and posterior to the sclera and orbital tissue	12.60	14.83	17.38	14.58	8.81

Abbreviations: M, Male; F, Female; NC, No chemotherapy; OU, Both eyes; OD, Right eye; OS, Left eye; WD, Well differentiated; MD, Moderately differentiated; PD, Poorly differentiated; CI, Choroid invasion; pre-L, pre-laminar; PL, post-laminar; ON, optic nerve; Inv, Invasion.
silenced RB cells (Y79). The description of the listed miRNAs includes fold change, miRBase accession number, chromosome location (start and end), and its orientation.

Supplementary File 2. The list of miRNAs and the respective gene targets derived from the integrated analysis of mRNA-miRNA expressions in RB cells (Y79).

Supplementary File 3. The list of miRNAs and respective gene targets derived from Feed Forward Loop/Feed Backward Loop analysis. The first work sheet states the net result of FFL/FBL linking the transcription factors, genes and miRNAs de-regulated in the HMG2 silenced RB (Y79) cells. Second worksheet provides the list of transcription factors, gene targets, miRNAs, FFL/FBL type, fold change in transcription factor, expression of genes in fold change and expression of miRNAs in fold change.

REFERENCE

1. Moser JJ, Fritzler MJ. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells. PLoS One. 2010;5(10):e13445.

2. Zhang J, Benavente CA, McEvoy J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nat Genet. January 2012;48(1):329–34.

3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. March 4, 2011;144(5):646–74.

4. Sachdeva UM, O’Brien JM. Understanding pRB: toward the necessary development of targeted treatments for retinoblastoma. J Clin Invest. February 2012;122(2):425–34.

5. Enever E, Steinfeld I, Kleivi K, et al. mRNA-miRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One. 2011;6(3):e16915.

6. Nalini V, Segu R, Deepa PR, Kheter V, Vasudevan M, Krishnakumar S. Molecular Insights on Post-chemotherapy Retinoblastoma by Microarray Gene Expression Analysis. Bioinform Biol Insights. 2013;7:289–306.

7. Ganguly A, Shield CL. Differential gene expression profile of retinoblastoma compared to normal retina. Mol Vis. 2010;16:292–303.

8. Konkrite K, Sundby M, Mikai S, et al. miR-17–92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev. August 15, 2011;25(16):1734–45.

9. Xu X, Jia R, Zhao Y, et al. Microarray-based analysis: identification of hyponia-regulated microRNAs in retinoblastoma cells. Int J Oncol. May 2011;38(5):1385–93.

10. Martin J, Bryar P, Mets M, et al. Differentially expressed miRNAs in retinoblastoma. Gene. January 10, 2013;512(2):294–9.

11. Kandalam MM, Beta M, Maheswari UK, Swaminathan S, Krishnakumar S. Oncogetic microRNA 17–92 cluster is regulated by epithelial cell adhesion molecule and could be a potential therapeutic target in retinoblastoma. Mol Vis. 2012;18:2279–87.

12. Venkatesan N, Krishnakumar S, Deepa PR, Deepa M, Kheter V, Reddy MA. Molecular deregulation induced by silencing of the high mobility group protein A2 gene in retinoblastoma cells. Mol Vis. 2012;18:2420–37.

13. Mitra M, Kandalam M, Sundaram CS, et al. Reversal of stathmin-mediated microtubule destabilization sensitizes retinoblastoma cells to a low dose of anti-microtubule agents: a novel synergistic therapeutic intervention. Invest Ophthal Vis Sci. Jul 2013;54(7):5441-8.

14. Mitra M, Kandalam M, Verma RS, UmaMaheswari K, Krishnakumar S. Genome-wide changes accompanying the knockdown of Ep-CAM in retinoblastoma. Mol Vis. 2010;16:828–42.

15. Subramanian N, Navaneethakrishnan S, Biwas J, Kanwar RK, Kanwar JR, Krishnakumar S. RNAi Mediated Tiam1 Gene Knockdown Inhibits Invasion of Retinoblastoma. PLoS One. 2013;8(8):e70422.

16. Fusco A, Fedele M. Roles of HMG2 proteins in cancer. Nat Rev Cancer. Dec 2007;7(12):899–910.

17. Venkatesan N, Kandalam M, Pasricha G, et al. Expression of high mobility group A2 protein in retinoblastoma and its association with clinicopathologic features. J Pediatr Hematol Oncol. Mar 2009;31(3):209–14.

18. Wu J, Liu Z, Shao C, et al. HMG2 overexpression-induced ovarian surface epithelial transformation is mediated through regulation of EMT genes. Cancer Res. January 15, 2011;71(2):349–59.

19. De Martino I, Visone R, Fedele M, et al. Regulation of microRNA expression by HMGAI proteins. Oncogene. March 19, 2009;28(11):1432–42.
Watanabe A, Tagawa H, Yamashita J, et al. The role of miRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia. Aug 2011;25(8):1324–34.

Chakraborty S, Khare S, Dorairaj SK, Prabhakaran VC, Prakash DR, Kumar A. Micro-RNA-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. Rocz. Nar. 2008;14(11):2438–40.

Qi L, Bart J, Tan LP, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9:163.

Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. September 2, 2010;467(7311):86–90.

Risio ST, Pontes-Júnior J, Antunes AA, et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol. 2012;12:14.

Lee YS, Dutta A. The tumor suppressor microRNA let-7 reverses the HMGA2 oncogene. Genes Chromosomes Cancer. May 2007;46(5):423–30.

Moolmuang B, Tainsky MA. CREG1 enhances p16(INK4a)-induced cellular senescence by enhancing EZH2 activity. Cancer Cell. Jun 2007;12(6):459–71.

Vanderpool KG, Samuels SL, Oshiro M, et al. miR-15a and miR-16 act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. J Biol Chem. 2012;287(7):6267–74.

Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008;10(2):203.

Thapa DR, Li X, Jamieson BD, Martinez-Maza O. Overexpression of micro-RNA-21 from the miR-17–92 family in MLL-rearranged acute leukemia. Blood. 2010;116(3):375–81.

Kim PK, Armstrong M, Liu Y, et al. IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo. Oncogene. February 1, 2011;30(3):3125–32.

Chen Y, Liu W, Chao T, et al. Micro-RNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell line T98G. Cancer Lett. December 18, 2008;272(2):197–205.

Moore B, Cai Y, Seaberg EC, et al. The miR-106b-25 cluster targets Smad7, a tumor suppressor, in HIV-exposed uninfected children. J Virol. 2012;86(9):5710–20.

Kim JH, Kim J, Lee H, et al. Synthetic lethality between Rb, p53 and Dicer or miR-17–92 in retinoblastoma suppressors formation. Nat Cell Biol. Sep 2012;14(9):958–66.

Friard O, Re A, Taverna D, De Bortoli M, Cora D. CircuitsDB: a database of mixed microRNA/transcription factor-fed regulatory circuits in human and mouse. BMC Bioinformatics. 2010;11:435.

Olivo M, Spencer CE, Wang L, Gallie B. Expression and function of a novel isoform of Sox5 in malignant B cells. Leuk Res. 2014;38(3):393–401.

Shah MY, Calin GA. Micro-RNAs miR-21 and miR-22: a new level of regulation in aggressive breast cancer. Genome Med. 2011;3(8):56.

Li JT, Liu W, Kuang ZH, et al. [Amplification of RIT1 in hepatocellular carcino-noma and its clinical significance]. Ai Zhong. Jul 2005;22(7):695–9.

Fukuda M, Tagawa H, Yamashita J, et al. Identification of genes associated with tumorigenesis of retinoblastoma by microarray analysis. Genomics. Sep 2007;90(3):344–53.

Kaddar T, Sato F, Ito T, et al. Synthetic lethality between Rb, p53 and Dicer or miR-17–92 paralog clusters in AIDS-related non-Hodgkin’s lymphoma. Leukemia. Apr 2010;24(4):487–93.

Mikita K, Kurumizaka H, Hayashi S, et al. miR-21 regulates PDCD4, TM1 and suppresses sensitivity to cisplatin in human Caski cervical cancer cells. PLoS One. 2012;7(2):e32310.

Oldhaire H, Sekiguchi M, Miyata K, Yoshida K. Micro-RNA-494 suppresses cell proliferation and induces senescence in A549 lung cancer cells. Cell Prolif. Feb 2012;45(1):32–8.

Molchanov S, Hara N, Koseki H, et al. miR-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. July 5, 2005;65(14):6039–43.

Kumar A, Chakraborty S, Khare S, Dorairaj SK, Prabhakaran VC, Prakash DR. Micro-RNA-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. Rocz. Nar. 2008;14(11):2438–40.

Qi L, Bart J, Tan LP, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9:163.

Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. September 2, 2010;467(7311):86–90.

Reis ST, Pontes-Júnior J, Antunes AA, et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol. 2012;12:14.

Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYC-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. Mar 2012;14(3):247–54.

Chen Y, Liu W, Chao T, et al. Micro-RNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell line T98G. Cancer Lett. December 18, 2008;272(2):197–205.

Shah MY, Calin GA. Micro-RNAs miR-21 and miR-22: a new level of regulation in aggressive breast cancer. Genome Med. 2011;3(8):56.

Lamberti E, Lodi A, Vezzali F, Penolazzi L, Gambari R, Piva R. Correlation between Slug transcription factor and miR-221 in MDA-MB-231 breast cancer cells. Cancer Lett. Aug 2009;279(1):157–62.

Chen S, Li Z, Chen P, et al. MicroRNAs in the miR-106b family modulate E2F1 expression. J Biol Chem. Apr 2006;281(14):11325–32.

Feldman D, Lambertini E, Rini BL, et al. Two new miR-16 targets: caprin-1 and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. J Biol Chem. 2012;287(7):635–41.

Lee C, Wang Y, Huang Y, Yu H, Wu L, Huang L. Up-regulated miR155 reverses the epithelial-mesenchymal transition induced by EGF and increases chemosensitivity to cisplatin in human Caski cervical cancer cells. PLoS One. 2012;7(2):e32310.