Development of Rating Curve for Ofu River at Oforachi Hydrometric Station

M. I. Alfa1, D. B. Adie2, M. A. Ajibike2, O. J. Mudiare3

1Department of Civil Engineering, University of Jos, Jos, Nigeria.
2Department of Water Resources & Environmental Engineering, Ahmadu Bello University, Zaria, Nigeria.
3Department of Agricultural Engineering Technology, Ahmadu Bello University, Zaria, Nigeria.

\textbf{ABSTRACT:} The stage-discharge rating curve is widely used in the research for analysis of flow regime and design of hydraulic structure and river channel where the measurement of discharge is difficult especially in developing countries like Nigeria. This study sought to develop a stage-discharge relationship for Ofu River in Nigeria where water resources project planning has been limited by the unavailable of stream flow data. Discharge Measurement was carried out using Valeport Current meter while stage was measured using staff gauge at Oforachi Bridge hydrometric station from February, 2016 to January, 2017. The Stage and discharge results were used to determine the curve coefficient via regression analysis and finally the rating curve equation for the river at this station. The Oforachi Bridge serves as the permanent control, thus the curve is reliable.

\textbf{KEYWORDS:} Discharge, Efficiency, Ofu River, Rating curve, Hydrometric station.

[Received May 25 2017; Revised November 25 2017; Accepted December 20 2017]

\section{I. INTRODUCTION}

Measurement of surface water flow is an important aspect of hydrology related project such as water quality monitoring, flooding, geomorphology, and aquatic life support amongst others (Meals and Dressing, 2008; Gore and Banning, 2017; Barbetta \textit{et al}., 2017; Sikorska \textit{et al}., 2017). Accurate measurement of discharge of a basin therefore is the first and the most essential requirement for planning and management of any water resource project including flood forecasting (Patra, 2008; Borga \textit{et al}., 2011; Kiang \textit{et al}., 2017; Westerberg \textit{et al}., 2017). Discharge measurements are usually done once in a day during normal periods and on an hourly basis during floods. This continuous measurement is usually impractical and very expensive, especially in less developed and developing countries such as Nigeria, where the cost of establishing and maintaining a network of stream gauges is prohibitive (Patra, 2008; WMO, 2010).

The rating curve is a most frequently used methodology to overcome this difficulty (Leonard \textit{et al}., 2000; Patra, 2008; Maghrebi and Ahmadi, 2017) reducing the problem to a simple reading of river stage and then finding the corresponding discharge either from stage-discharge graph or equation established at the site (El-Jabi \textit{et al}., 1992; Meals and Dressing, 2008; Patra, 2008; Sadeghian \textit{et al}., 2016).

The rating curve is an empirical or theoretical relationship existing between the water level (stage) and the corresponding flow discharge in an open channel (Braca, 2008). The rating curve is a very important tool in surface hydrology because the reliability of discharge data values is highly dependent on a satisfactory stage-discharge relationship at the gauging site. It can be used to obtain an estimate of the discharge of a large flood where only the stage data is available, by extension of the rating curve (Patra, 2008; Mustafa and Yusuf, 2012). The preparation of rating curves is an essentially empirical task which requires a wide theoretical background in order to create a reliable tool for transforming measured water level to discharge.

The development of the rating curve for a particular gauging site requires measurement of discharge usually by a current meter or other methods and the corresponding stage values at the site usually from a staff gauge or any other method. This has been the common practice since the early 19th century (Rantz, 1982a; Patra, 2008); Mustapha and Yusuf 2012; Meals and Dressing, 2008). A curve of discharge against stage can then be developed by fitting these data with a power or polynomial curve which can be used to transform stage data into discharge as long as the gauging control does not change.

Ofu River which takes its Origin from Ojofu in Dekina Local Government Area of Kogi State Nigeria and empties into the Anambra River falls within the Lower Benue River Basin Development Authority. Records of Stream flow for the river exist from 1955 to 1973 after which no measurement was done again. This makes all water resources development related to the river to rely on this obsolete record which has tendencies of leading to erroneous decisions.

It therefore becomes important for a stage discharge relationship to be developed for the river at the Oforachi Hydrometric station to provide basis for transforming the readily available stage values to discharge.

\section{II. MATERIALS AND METHODS}

\textbf{A. Stage Measurement}

Ofu River stage at Oforachi Bridge hydrometric station was measured from February 1, 2016 to January 31, 2017 using three recalibrated staff gauges at Oforachi, Kogi State, Nigeria. The location of the gauging site is shown in Figure 1. The selected site was firm and satisfies all the criteria for locating a gauging site as recommended by Meals and
Dressing (2008) and Sauer and Turnipseed (2010). The stage measurement was taken twice daily and the average taken as the value for the day.

B. Discharge Measurement

The discharge of Ofu River was measured for 12 months beginning from February, 2016 to January 2017 in order to generate data for the development of the rating curve. The discharge measurement adopted is the Velocity-Area method (Mid section) using a Valeport Impeller current meter model 0012B Version 4.01. Ofu River is a perennial river whose year round flow depth does not go below two meters at the centre thus making it difficult to apply the wading method. The bridge suspension method was therefore adopted incorporating some wading techniques to fit into the site peculiarities. The method of measurement has been described previously in Mays (2005), Patra (2008) and Mustapha and Yusuf (2012). Limited number of discharge measurements (22 nos.) was carried out within the period for the development of the rating curve.

C. Development, fitting and Extension of Ofu River Rating Curve at Oforachi Hydrometric Station

Generally, the most commonly used stage-discharge rating curves treat the discharge as a unique function of the stage which typically follows a power curve where the discharge Q (m3/s) is related with the stage H (m above mean sea level) as follows (Braca, 2008):

$$Q = K(H - h)^m$$ \hspace{1cm} (1)

Where, Q is discharge (m3/s), H is the observed stage (m above sea level), h is the gauge height of zero flow (m above sea level), K, h and m are calibration coefficients for the rating curve (Rantz, 1982b; Herschy, 1995; Braca, 2008; Patra, 2008).

Equation 1 is a parabolic equation which plots as a straight line on double logarithmic graph sheet. Taking logarithms of both sides of equation (1) we obtain the relation.

$$\log Q = m \log (H - h) + \log K$$ \hspace{1cm} (2)

It takes the form of a straight line equation, $y = mx + c$ where $y = \log Q$ and $x = \log (H - h)$ and $c = \log K$. M is the slope of the straight line while $\log K$ is the intercept on the y axis. This implies that the coefficient K is the antilogarithm of the intercept c. The value of h was obtained by trial and error while the value of K and m were obtained by the linear regression analysis using the analysis tool park of Microsoft Excel 2007 as shown in Table 1. The value of h with the lowest standard error of estimate (S_e) was accepted (Patra, 2008). The efficiency of the fitting of the curve was checked using the standard error of estimates, efficiency and the coefficient of determination (Patra, 2008). The efficiency, $Ƞ$ was calculated using eqn (3).

$$Ƞ = \frac{\text{Variance of observed discharge} - S_e^2}{\text{Variance of observed discharge}} \times 100$$ \hspace{1cm} (3)

The standard error of estimates and coefficient of determination (R^2) were both calculated using the regression analysis tool in Microsoft Excel. Maroof et al. (2015) used this approach to develop a stage-discharge relationship or rating curve for the Ero-Omola falls in Kwara State, Nigeria determining the calibration coefficients by method of least square. The simplicity and accuracy of the method as demonstrated by these authors informed its choice in this study.

Table 1: Estimation of rating curve calibration coefficients.

S/No	H (m asl)	Q_o (m3/s)	$H-h$	X ($\log (H-h)$)	Y ($\log Q_o$)	$Q_c = K(H-h)^m$	$(Q_c - Q_o)^2$
1	55.43	0.1583	0.0001	-4.0969	-0.8005	0.0230	0.0183
2	55.46	0.2688	0.0301	-1.5217	-0.5707	1.3827	1.2408
3	55.52	4.2430	0.0891	-1.0502	0.6277	2.9261	1.7341
Table 1: Estimation of rating curve calibration coefficients.

S/No.	H (m asl)	Qo (m3/s)	H-h	X (log(H-h))	Y (log Qo)	Qc = KH-hm	(Qo-Qc)2	
4	55.52	4.2187	0.0911	-1.0406	0.6252	2.9713	1.5560	
5	55.53	4.3853	0.0961	-1.0174	0.6420	3.0830	1.6959	
6	55.52	4.8054	0.0881	-1.0551	0.6817	2.9034	3.6175	
7	55.56	5.3853	0.1236	-0.9081	0.7312	3.6683	2.9484	
8	55.55	6.6511	0.1197	-0.9217	0.8229	3.5893	9.3745	
9	55.54	6.6311	0.1102	-0.9576	0.8216	3.3902	10.5036	
10	55.66	7.9056	0.2311	-0.6362	0.8979	5.6513	5.0816	
11	55.65	8.6407	0.2187	-0.6601	0.9366	5.4413	10.2364	
12	55.60	6.6948	0.1692	-0.7715	0.8257	4.5579	4.5666	
13	55.60	7.4216	0.1649	-0.7827	0.8705	4.4770	8.6709	
14	56.31	13.4353	0.8783	-0.0564	1.1282	14.2086	0.5981	
15	56.30	13.3080	0.8699	-0.0605	1.1241	14.1156	0.6521	
16	56.39	14.6134	0.9553	-0.0199	1.1648	15.0576	0.1974	
17	56.36	14.2385	0.9308	-0.0312	1.1535	14.7898	0.3040	
18	55.65	7.6747	0.2207	-0.6563	0.8851	5.4742	4.8425	
19	55.45	0.2099	0.0138	-1.8601	-0.6779	0.8074	0.3570	
20	55.45	0.3150	0.0207	-1.6846	-0.5016	1.0672	0.5657	
21	55.44	0.1781	0.0117	-1.9311	-0.7494	0.7211	0.2949	
22	55.44	0.1683	0.0111	-1.9554	-0.7739	0.6938	0.2762	
Σ						-23.6753	9.8645	69.3324

III. RESULTS AND DISCUSSION

The average daily stage hydrograph developed for Ofu River at Oforachi Bridge hydrometric station is shown in Figure 2.

The maximum water level observed was 56.39 m above mean sea level (asl) while the minimum value was 55.43 m above sea level. The variations in water level could be explained by the 35-years average monthly rainfall of the study area presented in Figure 3.

Figure 2: Average daily stage hydrograph of Ofu River at Oforachi Hydrometric Station.
The average monthly rainfall showed a similar pattern to the water level (stage). September has the highest average monthly rainfall of 312.16 mm which is closely followed by August with an average monthly rainfall of 235.63 mm. These two months were the months during which highest stage readings were observed (Figure 2). January has the least rainfall of 4.70 mm followed by December with 5.29 mm which correspond with the relatively lower stage readings (Figure 2). Furthermore, the discharge hydrograph developed from the observations is shown in Figure 4.

The maximum discharge obtained during the period of measurement was 14.61 m³/s recorded on 23rd September, 2016 while the minimum was 0.16 m³/s recorded on 13th February, 2016. The calibration coefficients h, m and K for the rating curve are presented in Table 2 while the coefficient of determination and efficiency used as validation parameters for the curve fitting process are presented in Table 3.

Table 2: Calibration Coefficients for Ofu River Rating at Oforachi Hydrometric Station.

Coefficient	Value
Height of zero flow, h (m)	55.4319 m
Slope, m	0.6910
K	15.5410

Table 3: Parameters for validation of curve fitting process.

Parameter	Value
R^2	0.7257
Adjusted R^2	0.7120
Efficiency, η (%)	99.33

Table 3 shows that the coefficient of determination (R^2) is 0.7257 (adjusted $R^2 = 0.7120$) which implies that about 72.57% variance in the curve fitting process was explained by the regression model (Nagelkerke, 1991). In as much as it is desirable that R^2 be close to unity as much as possible, the value obtained herein could be accepted as a good fit since
the efficiency of the fitting process is 99.33% (Patra, 2008). Thus the Final fitted rating curve equation for Ofu River at Oforachi bridge hydrometric station is

\[Q = 15.5410(H - 55.4319)^{0.6905} \]

(4)

The plot of effective depth of flow against the calculated discharge using the fitted rating curve is shown in Figure 5.

Figure 5: Fitted Rating Curve for Ofu River at Oforachi Hydrometric station.

The curve in Figure 5 shows that a very close loop was formed by the rising and falling stage which according to Mustafa and Yusuf (2012) is characteristic of an acceptable rating curve. The rating curve was used to transform the one year stage measurement into discharge. The discharge hydrograph obtained is shown in Figure 6.

Figure 6: Discharge Hydrograph for Ofu River using fitted Rating Curve.

The discharge hydrograph shows a similar pattern to that of the stage hydrograph (Figure 2) which is also not unconnected with the variations in the average monthly rainfall for the study area (Figure 3).

IV. CONCLUSION

The rating curve equation relating discharge \(Q \) in \(\text{m}^3/\text{s} \) and stage \(H \) in m above mean sea level was developed for Ofu River at Oforachi Bridge hydrometric station. This curve equation can be used for the transformation of available stage data into discharge since stage readings are readily available at the site. This will go a long way to solve the problem of discharge data scarcity for the river. The Oforachi Bridge serves as a permanent control structure which makes the developed curve reliable until there is a change in this control.

REFERENCES

Barbetta, S.; T. Moramarco and M. Perumal. (2017). A Muskingum-based methodology for river discharge
estimation and rating curve development under significant lateral inflow conditions. Journal of Hydrology, 554: 216-232.

Borga, M.; E. N. Anagnostou, G. Blöschl and J. D. Creutin. (2011). Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science & Policy, 14(7), 834-844.

El-Jabi, N.; G. Wakim and S. Sarraf. (1992). Stage-discharge relationship in tidal rivers. Journal of waterway, port, coastal, and ocean engineering, 118(2), 166-174.

Gore, J. A. and Banning, J. (2017). Discharge measurements and streamflow analysis. In Methods in Stream Ecology, Volume I (Third Edition) (pp. 49-70).

Herschy R. W. (1995). Streamflow Measurement, Chapman & Hall, Second Edition http://www.waterbase.org/download_data.html accessed 15/09/2016.

Kiang, J., H. McMillan, C. Gazoorian, R. Mason, J. Le Coz, B. Renard and A. Sikorska. (2017). An experiment to compare multiple methods for streamflow uncertainty estimation. In EGU General Assembly Conference Abstracts (Vol. 19, p. 5680).

Léonard, J.; M. Mietton, H. Najib and P. Gourbesville. (2000). Rating curve modelling with Manning’s equation to manage instability and improve extrapolation. Hydrological Sciences Journal, 45(5): 739-750.

Maghrebi, M. F. and Ahmadi, A. (2017). Stage-discharge prediction in natural rivers using an innovative approach. Journal of hydrology, 545: 172-181.

Maroof, L. K.; B. F. Sule and O. A. Ogunlela. (2015). Economic Sustainability of Integrated Hydropower Development of Ero-Omola Falls, Kwara State, Nigeria. In Decision Making and Knowledge Decision Support Systems (pp. 143-164).

Mays, L. W. (2005). Water Resources Engineering. John Wiley & Sons Inc. New Jersey.

Meals D. W. and Dressing S. A. (2008). Surface water flow measurement for water quality monitoring projects, Tech Notes 3, March 2008. Developed for U.S. Environmental Protection Agency by Tetra Tech Inc., Fairfax, VA, 16 p. Available online at www.bae.ncsu.edu/programs/extension/wqg/319monitoring/tech_notes.htm

Nagelkerke, N. J. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691-692.

Patra, K. C. (2008). Hydrology and Water Resources Engineering, Second Edition. New Delhi. Narosa Publishing House.

Rantz S. E. (1982a). Measurement and computation of streamflow, Volume 1 Measurement of Stage and Discharge U.S. Geological Survey Water Supply Paper 2175

Rantz S. E. (1982b). Measurement and computation of streamflow, Volume 2 Computation of Discharge, U.S. Geological Survey Water Supply Paper 2175

Sadeghian, M. S.; M. Salarijazi, I. Ahmadianfar and M. Heydarian. (2016). Stage-Discharge Relationship in Tidal Rivers for Tidal Flood Condition. Feb-Fresenius Environmental Bulletin, 25(10). 4111-4117

Sauer, V. B. and Turnipseed, D. P. (2010). Stage measurement at gaging stations: U.S. Geological Survey Techniques and Methods book 3, chap. A7, 45 p. (Also available at http://pubs.usgs.gov/tm/tm3-a7/.)

Sikorska, A. E. and Renard, B. (2017). Calibrating a hydrological model in stage space to account for rating curve uncertainties: general framework and key challenges. Advances in water resources, 105, 51-66.

Westerberg, I., Lam, N. and Lyon, S. W. (2017). Can hydraulic-modelled rating curves reduce uncertainty in high flow data?. In EGU General Assembly Conference Abstracts (Vol. 19, p. 10109).

World Meteorological Organization (2010). Manual on StreamGauging.wmo.int/pages/prog/hwrp/publications/stream_gauging/1044_vol_II_en.pdf