INCREASING PROPERTY AND LOGARITHMIC CONVEXITY
OF FUNCTIONS INVOLVING RIEMANN ZETA FUNCTION

BAI-NI GUO AND FENG QI*

Abstract. Let $\alpha > 0$ be a constant, let $\ell \geq 0$ be an integer, and let $\Gamma(z)$
denote the classical Euler gamma function. With the help of the integral representation for the Riemann
czeta function $\zeta(z)$, by virtue of a monotonicity rule for the ratio of two integrals with a parameter,
and by means of complete monotonicity and another property of the function $\frac{1}{e^t - 1}$ and its derivatives,
the authors present that,

1) for $\ell \geq 0$, the function $x \mapsto \frac{(x + \alpha + \ell)}{\alpha} \zeta(x + \alpha) \zeta(x)$
is increasing from $(1, \infty)$ onto $(0, \infty)$, where $\binom{z}{w}$ denotes the extended
binomial coefficient;

2) for $\ell \geq 1$, the function $x \mapsto \Gamma(x + \ell) \zeta(x)$ is logarithmically convex on
$(1, \infty)$.

1. Motivations and main results

In this paper, we use the notation

$\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$,

$\mathbb{N} = \{1, 2, \ldots\}$,

$\mathbb{N}_0 = \{0, 1, 2, \ldots\}$,

$\mathbb{N}_- = \{-1, -2, \ldots\}$.

It is well known that the classical Euler gamma function $\Gamma(z)$ can be defined by

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{\prod_{k=0}^{n} (z + k)}, \quad z \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}.$$

For more information and recent developments of the gamma function $\Gamma(z)$ and its logarithmic derivatives $\psi^{(n)}(z)$ for $n \geq 0$, please refer to [1, Chapter 6], [25, Chapter 3], or recently published papers [14, 18, 20, 21, 31] and closely related references therein.

According to [4, Fact 13.3], for $z \in \mathbb{C}$ such that $\Re(z) > 1$, the Riemann zeta function $\zeta(z)$ can be defined by

$$\zeta(z) = \sum_{k=1}^{\infty} \frac{1}{k^z} = \frac{1}{1 - 2^{-z}} \sum_{k=1}^{\infty} \frac{1}{(2k - 1)^z} = \frac{1}{1 - 2^{1-z}} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k^z} \quad (1.1)$$

and has the integral representation

$$\zeta(z) = \frac{1}{\Gamma(z)} \int_{0}^{\infty} \frac{t^{z-1}}{e^t - 1} \, dt, \quad \Re(z) > 1. \quad (1.2)$$

2010 Mathematics Subject Classification. Primary 11M06; Secondary 11B73, 11M41, 26A48, 26A51, 33B15.

Key words and phrases. Riemann zeta function; increasing property; logarithmic convexity; integral representation; monotonicity rule; complete monotonicity; extended binomial coefficient; gamma function; Stirling number of the second kind.

*Corresponding author.

This paper was typeset using \LaTeX.
The last two definitions in (1.1) tell us some reasons why many mathematicians investigated the Dirichlet eta and lambda functions

\[\eta(z) = \left(1 - \frac{1}{2^z}\right)\zeta(z) \quad \text{and} \quad \lambda(z) = \left(1 - \frac{1}{2^z}\right)\zeta(z). \]

According to discussions in [25, Section 3.5, pp. 57–58], the Riemann zeta function \(\zeta(z) \) has an analytic continuation which has the only singularity \(z = 1 \), a simple pole with residue 1, on the complex plane \(\mathbb{C} \).

We collect several known properties and applications of the Riemann zeta function \(\zeta(x) \), the Dirichlet eta function \(\eta(x) \), and the Dirichlet lambda function \(\lambda(x) \) as follows.

1. In 1998, Wang [27] proved that the Dirichlet eta function \(\eta(x) \) is logarithmically concave on \((0, \infty)\). In 2018, Qi [12, 17] used this result to establish a double inequality for bounding the ratio \(\frac{|B_{2n+1}|}{B_{2n}} \) for \(n \in \mathbb{N} \), where the Bernoulli numbers \(B_{2n} \) for \(n \geq 0 \) are generated by

\[\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!} = 1 - \frac{z}{2} + \sum_{n=1}^{\infty} B_{2n} \frac{z^{2n}}{(2n)!}, \quad |z| < 2\pi. \]

2. In 2009, Cerone and Dragomir [5] proved that the reciprocal \(\frac{1}{\zeta(x)} \) is concave on \((1, \infty)\).

3. In 2010, Zhu and Hua [35] proved that the sequence \(\lambda(n) \) for \(n \in \mathbb{N} \) is decreasing. In 2018, Qi [12, 17] used also this result while he established a double inequality for bounding the ratio \(\frac{|B_{2n+1}|}{B_{2n}} \) for \(n \in \mathbb{N} \). In 2020, Zhu [34] used this result once to discuss those conclusions in [12, 17].

4. In 2015, Adell–Lekuona [2] and Alzer–Kwong [3] proved that the Dirichlet eta function \(\eta(x) \) is concave on \((0, \infty)\).

5. In 2019, Hu and Kim [9] obtained a number of infinite families of linear recurrence relations and convolution identities for the Dirichlet lambda function \(\lambda(2n) \) for \(n \in \mathbb{N} \).

6. In 2020, Yang and Tian [33] proved that the function

\[\frac{1}{2^x} \frac{\zeta(x) - 2^{-p} \zeta(x + p)}{\zeta(x) - \zeta(x + p)} \]

is increasing from \((1, \infty)\) onto \((\frac{1}{2}, 1)\). By this result, Yang and Tian [33] extended and sharpened the double inequality established in [12, 17] for bounding the ratio \(\frac{|B_{2n+1}|}{B_{2n}} \) for \(n \in \mathbb{N} \).

In this paper, we consider

1. the function

\[x \mapsto \left(\frac{x + \alpha + \ell}{\alpha}\right) \frac{\zeta(x + \alpha)}{\zeta(x)} \]

and its monotonicity on \((1, \infty)\), where \(\alpha > 0 \) is a constant, \(\ell \in \mathbb{N}_0 \),

\[\begin{align*}
\Gamma(z + 1) \quad & \text{if } z \not\in \mathbb{N}_-, \quad w, z - w \not\in \mathbb{N}_- \\
\Gamma(w + 1)\Gamma(z - w + 1) & \text{if } z \not\in \mathbb{N}_-, \quad w \in \mathbb{N}_- \text{ or } z - w \in \mathbb{N}_- \\
0 & \text{if } z \in \mathbb{N}_-, \quad w \in \mathbb{N}_0 \\
\frac{\zeta(z)}{w!} & \text{if } z, w \in \mathbb{N}_-, \quad z - w \in \mathbb{N}_0 \\
\frac{\zeta(z - w)}{(z - w)!} & \text{if } z, w \in \mathbb{N}_-, \quad z - w \in \mathbb{N}_- \\
0 & \text{if } z \in \mathbb{N}_-, \quad w \not\in \mathbb{Z}
\end{align*} \]

(1.3)
for $z, w \in \mathbb{C}$ denotes the extended binomial coefficient [28], and

\[
q_n = \frac{1}{n!} \sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} \binom{k}{n-k} (z-w)^k
\]

for $\beta \in \mathbb{C}$ is called the falling factorial.

(2) the function $\Gamma(x + \ell)\zeta(x)$ on $(1, \infty)$ for $\ell \in \mathbb{N}$ and its logarithmic convexity.

2. Lemmas

For proving our main results in this paper, we need the following lemmas.

Lemma 2.1 (Monotonicity rule for the ratio of two integrals with a parameter [15, Lemma 2.8 and Remark 6.3] and [19, Remark 7.2]). Let $U(t), V(t) > 0$, and $W(t, x) > 0$ be integrable in $t \in (a, b)$,

1. if the ratios $\frac{\partial W(t, x)/\partial t}{W(t, x)}$ and $\frac{U(t)}{V(t)}$ are both increasing or both decreasing in $t \in (a, b)$, then the ratio

\[
R(x) = \int_a^b W(t, x)U(t) \, dt \int_a^b W(t, x)V(t) \, dt
\]

is increasing in x;

2. if one of the ratios $\frac{\partial W(t, x)/\partial t}{W(t, x)}$ and $\frac{U(t)}{V(t)}$ is increasing and another one of them is decreasing in $t \in (a, b)$, then the ratio $R(x)$ is decreasing in x.

Lemma 2.2 ([7, Theorem 2.1], [8, Theorem 2.1], and [32, Theorem 3.1]). Let $\vartheta \neq 0$ and $\vartheta \neq 0$ be real constants and $k \in \mathbb{N}$. When $\vartheta > 0$ and $t \neq -\frac{\ln q}{\vartheta}$ or when $\vartheta < 0$ and $t \in \mathbb{R}$, we have

\[
\frac{d^k}{dt^k} \left(\frac{1}{\vartheta e^{\vartheta t} - 1} \right) = (-1)^k \vartheta^k \sum_{p=1}^{k+1} (p-1)! S(k+1, p) \left(\frac{1}{\vartheta e^{\vartheta t} - 1} \right)^p,
\]

where

\[
S(k, p) = \frac{1}{p!} \sum_{q=1}^{p} (-1)^{p-q} \left(\begin{array}{c} p \end{array} \right) q^k, \quad 1 \leq p \leq k
\]

are the Stirling numbers of the second kind.

For detailed information on the Stirling numbers of the second kind $S(k, m)$ for $1 \leq m \leq k$, please refer to [1, pp. 824–825, 24.1.4], [25, pp. 18–21, Section 1.3], the papers [13, 16], or the monograph [22] and closely related references therein.

Recall from [11, Chapter XIII], [23, Chapter I], [30, Chapter IV], and recently published papers [14, 18, 20, 21] that

1. a function $q(x)$ is said to be completely monotonic on an interval I if it is infinitely differentiable and $(-1)^n q^{(n)}(x) \geq 0$ for $n \geq 0$ on I.

2. a positive function $q(x)$ is said to be logarithmically completely monotonic on an interval $I \subseteq \mathbb{R}$ if it is infinitely differentiable and its logarithm $\ln f(x)$ satisfies $(-1)^n \ln f^{(n)}(x) \geq 0$ for $n \in \mathbb{N}$ on I.

Lemma 2.3 ([6, p. 98] and [26, p. 395]). If a function $q(x)$ is non-identically zero and completely monotonic on $(0, \infty)$, then $q(x)$ and its derivatives $q^{(k)}(x)$ for $k \in \mathbb{N}$ are impossibly equal to 0 on $(0, \infty)$.

Lemma 2.4 ([29, Theorem 1]). For $k \in \{0\} \cup \mathbb{N}$, the functions

\[
\mathcal{F}_k(t) = (-1)^k \left(\frac{1}{e^t - 1} \right)^{(k)}
\]
are both increasing on \((0, \infty)\). More strongly, the function \(F_0(t)\) is logarithmically completely monotonic on \((0, \infty)\).

3. Increasing Property and Logarithmic Convexity of Two Functions Involving the Riemann Zeta Function

We are now in a position to state and prove our main results in this paper.

Theorem 3.1. Let \(\alpha > 0\) be a constant and let \(\ell \in \mathbb{N}_0\) be an integer. Then the function defined in (1.3) is increasing from \((1, \infty)\) onto \((0, \infty)\). Consequently, for fixed \(\ell \in \mathbb{N}\), the function \(\Gamma(x + \ell)\) is logarithmically convex in \(x \in (1, \infty)\).

Proof. By virtue of the recurrence relation \(\Gamma(z + 1) = z\Gamma(z)\) and the integral representation (1.2), integrating by parts yields

\[
\frac{\Gamma(x + \alpha + 1) \zeta(x + \alpha)}{\Gamma(x + 1)} \cdot \zeta(x) = \frac{\Gamma(x + \alpha + 1)}{\Gamma(x + 1)} \cdot \frac{\Gamma(\frac{x + \alpha - 1}{e^t - 1})}{\Gamma(\frac{x}{e^t - 1})} \int_0^\infty \frac{t^x + \alpha - 1}{e^t - 1} \, dt
\]

\[
= \frac{(x + \alpha)}{x} \cdot \frac{\Gamma(x + \alpha + 1)}{\Gamma(x + 1)} \int_0^\infty \frac{t^{x + \alpha - 1}}{e^t - 1} \, dt
\]

\[
= \int_0^\infty \frac{1}{e^t - 1} \left(\frac{t^x + \alpha}{t^x} \right) \, dt
\]

\[
= \int_0^\infty \frac{1}{e^t - 1} \left(t^x + \alpha \right) \, dt
\]

\[
= \int_0^\infty \frac{1}{e^t - 1} \left(t^x \right) \, dt
\]

\[
= \int_0^\infty \frac{e^t}{(e^t - 1)^2} \, dt
\]

Applying Lemma 2.1 to

\[
U(t) = \frac{e^t t^\alpha}{(e^t - 1)^2}, \quad V(t) = \frac{e^t}{(e^t - 1)^2} > 0, \quad W(t, x) = t^x > 0,
\]

and \((a, b) = (0, \infty)\), since \(\frac{U(t)}{V(t)} = t^\alpha\) and

\[
\frac{\partial W(t, x)}{\partial x} = \ln t
\]

are both increasing on \((0, \infty)\), we conclude that the ratio

\[
\frac{\int_0^\infty \frac{e^t}{(e^t - 1)^2} \, dt}{\int_0^\infty \frac{e^t}{(e^t - 1)^2} \, dt} = \frac{\Gamma(x + \alpha + 1) \zeta(x + \alpha)}{\Gamma(x + 1) \zeta(x)}
\]

\[
= \Gamma(x + 1) \left(\frac{x + \alpha}{\alpha} \right) \frac{\zeta(x + \alpha)}{\zeta(x)}
\]

is increasing in \(x \in (1, \infty)\), where we used the definition (1.4). Consequently, the function in (1.3) for \(\ell = 0\) is increasing in \(x \in (1, \infty)\).

Inductively, for \(\ell, m > 1\), we obtain

\[
\frac{\Gamma(x + \alpha + \ell)}{\Gamma(x + m)} \cdot \zeta(x + \alpha) = \frac{\Gamma(x + \alpha + \ell)}{\Gamma(x + m)} \cdot \frac{\Gamma(x + \alpha + 1)}{\Gamma(x + 1)} \cdot \zeta(x + \alpha)
\]

\[
= \frac{\Gamma(x + \alpha + \ell)}{\Gamma(x + m)} \cdot \frac{\Gamma(x + \alpha + 1)}{\Gamma(x + 1)} \cdot \frac{\Gamma(\frac{x + \alpha - 1}{e^t - 1})}{\Gamma(\frac{x}{e^t - 1})} \int_0^\infty \frac{t^{x + \alpha}}{e^t - 1} \, dt
\]

\[
= \frac{\Gamma(x + \alpha + \ell)}{\Gamma(x + m)} \cdot \frac{\Gamma(x + \alpha + 1)}{\Gamma(x + 1)} \cdot \int_0^\infty \frac{t^{x + \alpha}}{e^t - 1} \, dt
\]

\[
= \frac{\Gamma(x + \alpha + \ell)}{\Gamma(x + m)} \cdot \frac{\Gamma(x + \alpha + 1)}{\Gamma(x + 1)} \cdot \int_0^\infty \frac{e^t}{(e^t - 1)^2} \, dt
\]
where $2 \leq i \leq \ell - 1$, $2 \leq j \leq m - 1$, and we used (2.1) in Lemma 2.2 for $\theta = \vartheta = 1$ for reaching the limits

$$
\left[(-1)^k F_k(t) t^{x+k} \right]_{t=0^+}^{t=\infty} = \left[\left(\frac{1}{e^t - 1} \right)^k t^{x+k} \right]_{t=0^+}^{t=\infty} = (-1)^k \left(\sum_{p=1}^{k+1} (p-1)! S(k+1,p) \left(\frac{1}{e^t - 1} \right)^p \right)_{t=0^+}^{t=\infty} = (-1)^k \left(\sum_{p=1}^{k+1} (p-1)! S(k+1,p) \left(\frac{1}{e^t - 1} \right) \right)_{t=0^+}^{t=\infty} = 0
$$

for $k \in \mathbb{N}$ and $F_k(t)$ is defined by (2.2) in Lemma 2.4.

By Lemmas 2.3 and 2.4, we see that the functions $F_k(t)$ for $k \geq 0$ are all positive on $(0, \infty)$. Once applying Lemma 2.1 to

$$
U(t) = F_x(t) t^{\alpha+\ell}, \quad V(t) = F_m(t) t^m > 0, \quad W(t, x) = t^{x} > 0,
$$

and $(a, b) = (0, \infty)$, since $U(t) V(t) = F_x(t) t^{\alpha+\ell}$ for $m = \ell$ and the partial derivative in (3.1) are both increasing on $(0, \infty)$, we acquire that the ratio

$$
\frac{\Gamma(x + \alpha + \ell)}{\Gamma(x + \ell)} \frac{\zeta(x + \alpha + \ell)}{\zeta(x)} = \frac{\Gamma(\alpha+1)}{\alpha} \left(\frac{x + \alpha + \ell - 1}{\alpha} \right) \frac{\zeta(x + \alpha + \ell)}{\zeta(x)} = \frac{\int_0^\infty F_x(t) t^{\alpha+\ell} \, dt}{\int_0^\infty F_x(t) t^\ell \, dt}
$$
for $\ell > 1$ and $\alpha > 0$ is increasing in $x \in (1, \infty)$, where we used the definition (1.4).

Consequently, the function in (1.3) for $\ell > 0$ is increasing in $x \in (1, \infty)$.

Because the function

$$\frac{\Gamma(x + \alpha + \ell) \zeta(x + \alpha)}{\Gamma(x + \ell) \zeta(x)} = \frac{\Gamma(x + \alpha + \ell) \zeta(x + \alpha)}{\Gamma(x + \ell) \zeta(x)}$$

for fixed $\ell \in \mathbb{N}$ is increasing in $x \in (1, \infty)$, its derivative

$$\left[\frac{\Gamma(x + \alpha + \ell) \zeta(x + \alpha)}{\Gamma(x + \ell) \zeta(x)} \right]' = \left[\frac{\Gamma(x + \alpha + \ell) \zeta(x + \alpha)}{\Gamma(x + \ell) \zeta(x)} \right]'$$

is positive for $x \in (1, \infty)$. This means that

$$\frac{\Gamma(x + \alpha + \ell) \zeta(x + \alpha)'}{\Gamma(x + \alpha + \ell) \zeta(x + \alpha)} > \frac{\Gamma(x + \ell) \zeta(x)'}{\Gamma(x + \ell) \zeta(x)},$$

that is, the logarithmic derivative

$$\langle \ln[\Gamma(x + \ell) \zeta(x)] \rangle = \frac{\Gamma(x + \ell) \zeta(x)'}{\Gamma(x + \ell) \zeta(x)}$$

is increasing in $x \in (1, \infty)$. Consequently, for fixed $\ell \in \mathbb{N}$, the function $\Gamma(x + \ell) \zeta(x)$ is logarithmically convex in $(1, \infty)$. The proof of Theorem 3.1 is complete. \hfill \Box

4. A SHORT APPENDIX

In this section, we slightly strengthen [29, Theorem 3] as follows.

Proposition 4.1. For $k \in \{0\} \cup \mathbb{N}$, the ratio

$$\mathcal{F}_k(t) = \frac{\mathcal{F}_{k+1}(t)}{\mathcal{F}_k(t)}$$

is decreasing from $(0, \infty)$ onto $(1, \infty)$, where the function $\mathcal{F}_k(t)$ is defined by (2.2) in Lemma 2.4.

Proof. In [29, Theorem 3], the decreasing property of the ratio $\mathcal{F}_k(t)$ in (4.1) and the limit $\lim_{t \to 1} \mathcal{F}_k(t) = 1$ has been proved.

Making use of the equation (2.1) in Lemma 2.2 for $\vartheta = \theta = 1$ yields

$$\mathcal{F}_k(t) = \frac{(-1)^{k+1}((1-x)^{k+1})}{(-1)^{k}((1-x)^{k})}$$

$$= \frac{\sum_{p=1}^{k+2} (p-1)!S(k+2, p)(\frac{1}{x^{p-1}})^p}{\sum_{p=1}^{k+1} (p-1)!S(k+1, p)(\frac{1}{x^{p-1}})^p}$$

$$= \frac{\sum_{p=1}^{k+2} (p-1)!S(k+2, p)(\frac{1}{x^{p-1}})^p}{\sum_{p=1}^{k+1} (p-1)!S(k+1, p)(\frac{1}{x^{p-1}})^p}$$

$$\to \frac{k!S(k+2, k+1) + (k+1)!S(k+2, k+2) \lim_{t \to 0^+} t^{-1}}{k!S(k+1, k+1)}$$

as $t \to 0^+$. The proof of Proposition 4.1 is thus complete. \hfill \Box

Remark 4.1. This paper is a companion of the papers [10, 24].
5. Declarations and acknowledgements

Acknowledgements: Not applicable.
Funding: Not applicable.
Authors’ contributions: All authors contributed equally to the manuscript and read and approved the final manuscript.
Conflict of interest: The authors declare that they have no conflict of interest.
Data availability statements: Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972.
[2] J. A. Adell and A. Lekuona, Dirichlet’s eta and beta functions: concavity and fast computation of their derivatives, J. Number Theory 157 (2015), 215–222; available online at https://doi.org/10.1016/j.jnt.2015.05.006.
[3] H. Alzer and M. K. Kwong, On the concavity of Dirichlet’s eta function and related functional inequalities, J. Number Theory 151 (2015), 172–196; available online at https://doi.org/10.1016/j.jnt.2014.12.009.
[4] D. S. Bernstein, Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas, Revised and expanded edition, Princeton University Press, Princeton, NJ, 2018.
[5] P. Cerone and S. S. Dragomir, Some convexity properties of Dirichlet series with positive terms, Math. Nachr. 282 (2009), no. 7, 964–975; available online at https://doi.org/10.1002/mana.200610783.
[6] J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compositio Math. 7 (1939), 96–111; available online at http://www.numdam.org/item?id=CM_1940__7__96_0. (French)
[7] B.-N. Guo and F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math. 272 (2014), 251–257; available online at https://doi.org/10.1016/j.cam.2014.05.018.
[8] B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math. 255 (2014), 568–579; available online at http://dx.doi.org/10.1016/j.cam.2013.06.020.
[9] S. Hu and M.-S. Kim, On Dirichlet’s lambda function, J. Math. Anal. Appl. 478 (2019), no. 2, 952–972; available online at https://doi.org/10.1016/j.jmaa.2019.05.061.
[10] D. Lim and F. Qi, Increasing property and logarithmic convexity of two functions involving Dirichlet eta function, J. Math. Inequal. 16 (2022), accepted on 23 November 2021.
[11] D. S. Mitrinovic, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993; available online at https://doi.org/10.1007/978-94-017-1043-5.
[12] F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math. 351 (2019), 1–5; available online at https://doi.org/10.1016/j.cam.2018.10.049.
[13] F. Qi, An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers, Mediterr. J. Math. 13 (2016), no. 5, 2795–2800; available online at https://doi.org/10.1007/s11000-015-0655-7.
[14] F. Qi, Completely monotonic degree of a function involving trigamma and tetragamma functions, AIMS Math. 5 (2020), no. 4, 3391–3407; available online at https://doi.org/10.3934/math.2020219.
[15] F. Qi, Decreasing properties of two ratios defined by three and four polygamma functions, C. R. Math. Acad. Sci. Paris (2022), in press; available online at https://doi.org/10.5802/cratmath.296.
[16] F. Qi, Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind, Math. Inequal. Appl. 19 (2016), no. 1, 313–323; available online at https://doi.org/10.7153/mia-19-23.
[17] F. Qi, Notes on a double inequality for ratios of any two neighbouring non-zero Bernoulli numbers, Turkish J. Anal. Number Theory 6 (2018), no. 5, 129–131; available online at https://doi.org/10.12691/tjant-6-5-1.
[18] F. Qi and B.-N. Guo, From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions, J. Math. Anal. Appl. 493 (2021), no. 1, Article 124478, 19 pages; available online at https://doi.org/10.1016/j.jmaa.2020.124478.
[19] F. Qi, W.-H. Li, S.-B. Yu, X.-Y. Du, and B.-N. Guo, A ratio of finitely many gamma functions and its properties with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 115 (2021), no. 2, Paper No. 39, 14 pages; available online at https://doi.org/10.1007/s13398-020-00988-z.
[20] F. Qi and D.-W. Niu, Monotonicity properties for a ratio of finite many gamma functions, Adv. Difference Equ. 2020, Paper No. 193, 9 pages; available online at https://doi.org/10.1186/s13662-020-02655-4.
[21] F. Qi, D.-W. Niu, D. Lim, and B.-N. Guo, Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions, Appl. Anal. Discrete Math. 14 (2020), no. 2, 512–527; available online at https://doi.org/10.2298/AADM191111033Q.
[22] J. Quaintance and H. W. Gould, Combinatorial Identities for Stirling Numbers. The unpublished notes of H. W. Gould. With a foreword by George E. Andrews. World Scientific Publishing Co. Pte. Ltd., Singapore, 2016.
[23] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions, 2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012; available online at https://doi.org/10.1515/9783110269338.
[24] Y. Shuang, B.-N. Guo, and F. Qi, Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 3, Paper No. 135, 12 pages; available online at https://doi.org/10.1007/s13398-021-00971-x.
[25] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996; available online at https://doi.org/10.1002/9781118032572.
[26] H. van Haeringen, Completely monotone and related functions, J. Math. Anal. Appl. 204 (1996), no. 2, 389–408; available online at https://doi.org/10.1006/jmaa.1996.0443.
[27] K. C. Wang, The logarithmic concavity of \((1 - 2^1^−^r)^\zeta(r)\), J. Changsha Comm. Univ. 14 (1998), no. 2, 1–5. (Chinese)
[28] C.-F. Wei, Integral representations and inequalities of extended central binomial coefficients, Math. Methods Appl. Sci. (2022), in press; available online at https://doi.org/10.1002/mma.163355849.99215800/v1.
[29] C.-F. Wei and B.-N. Guo, Complete monotonicity of functions connected with the exponential function and derivatives, Abstr. Appl. Anal. 2014 (2014), Article ID 851213, 5 pages; available online at https://doi.org/10.1155/2014/851213.
[30] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.
[31] A.-M. Xu and Z.-D. Cen, Qi’s conjectures on completely monotonic degrees of remainders of asymptotic formulas of di- and tri-gamma functions, J. Inequal. Appl. 2020, Paper No. 83, 10 pages; available online at https://doi.org/10.1186/s13660-020-02345-5.
[32] A.-M. Xu and Z.-D. Cen, Some identities involving exponential functions and Stirling numbers and applications, J. Comput. Appl. Math. 260 (2014), 201–207; available online at https://doi.org/10.1016/j.cam.2013.09.077.
[33] Z.-H. Yang and J.-F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math. 364 (2020), 112359, 14 pages; available online at https://doi.org/10.1016/j.cam.2019.112359.
[34] L. Zhu, New bounds for the ratio of two adjacent even-indexed Bernoulli numbers, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 83, 13 pages; available online at https://doi.org/10.1007/s13398-020-00814-6.
[35] L. Zhu and J.-K. Hua, Sharpening the Becker-Stark inequalities, J. Inequal. Appl. 2010 (2010), Article ID 931275, 4 pages; available online at https://doi.org/10.1155/2010/931275.

School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, Henan, China
Email address: bai.ni.guo@gmail.com, bai.ni.guo@hotmail.com
URL: https://orcid.org/0000-0001-6156-2590

School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
Email address: qifeng618@gmail.com, qifeng618@hotmail.com
URL: https://orcid.org/0000-0001-6239-2968