CD44 and vimentin, markers involved with epithelial-mesenchymal transition: A proteomic analysis of sequential proteins extraction of triple-negative breast cancer cells after treatment with all-trans retinoic acid

Dana Strouhalova, Dana Macejova, Marketa Lastovickova, Julius Brtko and Janette Bobalova

Abstract. This work aimed to provide, in one isolation and separation step, an overview of the content of proteins with different solubility after treatment with all-trans retinoic acid, which is considered to be an important therapeutic agent, predominantly in acute promyelocytic leukemia. Breast, ovarian, bladder, and skin cancers have been demonstrated to be suppressed by retinoic acid, as well. The bottom-up proteomic strategies were applied for the analysis of proteins extracted from triple-negative breast cancer MDA-MB-231 cells utilizing a commercially manufactured kit. The gel electrophoresis followed by MALDI-TOF MS analysis was used for protein determination. By employing PDQuest™ software, we identified several proteins affected by all-trans retinoic acid. Two proteins, vimentin and CD44, which are associated with the epithelial-mesenchymal transition, were selected for a detailed study. We have found that all-trans retinoic acid results in significantly reduced levels of vimentin and CD44 in both the cytoplasmic and membrane fractions. A significant effect was particularly evident in CD44, where protein level in the cytoplasmic fraction was almost completely suppressed.

Key words: Breast cancer — All-trans retinoic acid — Proteins — Biomarker — Sequential protein extraction
research groups analyzing the same neoplastic disease came to conflicting conclusions about the correlation between CD44 expression and disease prognosis, probably due to differences in methodology (Eibl et al. 1995; Naor et al. 2002). These problems need to be solved and further studies are needed to determine the prognostic value of CD44 and its variant isoforms.

MDA-MB-231, a triple-negative breast cancer model, was used in this study to evaluate and compare membrane and cytoplasmic proteins after retinoic acid isomer treatment. Proteins were extracted using a commercially available kit, separated on SDS-PAGE, and characterized by MALDI-TOF/TOF MS/MS.

The cancer cell culture was purchased from the HPACC (Salisbury, Great Britain). Cells were grown and passaged routinely as monolayer culture. For experiments, the cells were seeded into Petri dishes (6 cm diameter, TPP, Switzerland) at 1.2 × 10^6 cells/dish density in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), antibiotics (penicillin, streptomycin, gentamicin) and treated for 48 h with 1 μmol/l all-trans retinoic acid (ATRA) in a humidified atmosphere of 5% CO2 and 95% air at 37°C. A stock solution of ATRA was originally dissolved in ethanol, and an equal volume of ethanol (final concentration < 0.02%) was added to the control cells. Then cells were washed twice with ice-cooled PBS. The sequential protein extraction was made according to an instruction manual of ReadyPrep™ Protein Extraction Kit Bio Rad.

Proteomic analysis of membrane proteins is challenged by the protein solubility and detergent incompatibility with MS analysis. Here, we used the ReadyPrep protein extraction kit which is a simple, rapid, and reproducible method to prepare protein fractions highly enriched in the membrane and cytoplasmic proteins. This approach makes it possible to reduce the complexity of the sample in order to improve the chances of identifying low-occurring proteins and to simplify proteomic studies. The advantage of this procedure is that the kit does not require the use of ultracentrifugation, as the kit does not require the use of ultracentrifugation. Its variant isoforms.

In this work, we analyzed and compared the protein profiles of the membrane and cytoplasmic fractions of MDA-MB-231 cells after treatment with ATRA.

Our previous studies have shown that the natural retinoid ATRA, a cognate ligand of nuclear retinoic acid receptors (RARs), is a promising agent that affects the proteomic profile of cancer cells (Fiodrova et al. 2015, 2017). ATRA belongs to a class of retinoids that are known to have a wide range of functions (Alizadeh et al. 2014). Breast, lung, prostate, ovarian, bladder, and skin cancers have been demonstrated to be suppressed by ATRA (Chen et al. 2014). ATRA is known for several decades for its therapeutic effects due to antiproliferative and apoptosis-inducing action, and thus to act in the treatment or prevention of cancer (Carlberg et al. 1993). Furthermore, they inhibit carcinogenesis and suppress tumour growth and invasion in various tissues (Shi et al. 2019), which was the main reason, why ATRA has been used in our studies. The presented study consists of several aims: i) to perform a basic comparison of the membrane and cytoplasmic fractions of MDA-MB-231 cells based on SDS-gels protein profiles; ii) to identify the major proteins related to EMT; iii) to quantify VIME and CD44 after treatment of ATRA.
First, we compared the membrane and cytoplasmic fractions of both control cells and cells after treatment. Figure 1A shows the protein profiles of the non-treated (control) fractions. Visual inspection of the protein pattern indicated that the membrane and the cytoplasmic fraction share some similarities. On the other hand, significant differences in the electrophoretic profiles of both fractions were observed at molecular weights of approximately 30–50 kDa (Fig. 1A, B). In addition, considerable changes between fractions after treatment in the higher molecular masses (80–110 kDa) were observed (Fig. 1B). The bands showing differences between fractions were cut off and used for further proteomic evaluation including gel tryptic digestion, MALDI-TOF MS. Additional MS/MS analysis of individual peptides and following database searching resulted in the identification of the proteins summarized in Table 1 and Table 2. Selected important proteins are indicated on the SDS gels and are also listed in bold in the tables.

Among proteins with regard to EMT, of importance are predominantly VIME and CD44. As expected, these well-known human breast cancer markers were identified in mass area about 55 kDa (VIME) and about 85 kDa (CD44) in our experiment. In addition, a high molecular weight form of VIME (VIME HMW) has also been identified, the occur-

Figure 1. SDS-PAGE separation of the membrane and cytoplasmic proteins of MDA-MB-231 cells. A. Non-treated sample (control sample). B. Sample after 48-h treatment with ATRA. The bands showing differences between fractions were cut off and used for further proteomic evaluation including gel tryptic digestion, MALDI-TOF MS. Selected important proteins are listed on the SDS gel and are shown in bold in the tables. MW, molecular weight.
Table 1: Summary of identified proteins found in non-treated sample in individual cell fraction

Region I	MEMBRANE FRACTION	CYTOPLASMIC FRACTION			
Accession	Mass (Da)	Description	Accession	Mass (Da)	Description
TASO2_HUMAN	271697	Protein TASOR 2	KI21B_HUMAN	184316	Kinesin-like protein KIF21B
ITA2_HUMAN	130468	Integrin alpha-2	ARHG1_HUMAN	103056	Rho guanine nucleotide exchange factor 1
SMCA1_HUMAN	123211	Probable global transcription activator SNF2L1	ENPL_HUMAN	92696	Endoplasmin
GANAB_HUMAN	107263	Neutral alpha-glucosidase AB	CD44_HUMAN	82001	CD44 antigen
ITB1_HUMAN	91664	Integrin beta-1	SFPQ_HUMAN	76216	Splicing factor, proline- and glutamine-rich
CD44_HUMAN	82001	CD44 antigen	GRP75_HUMAN	73920	Stress-70 protein, mitochondrial
BIP_HUMAN	72402	Endoplasmic reticulum chaperone BiP	BIP_HUMAN	72402	Endoplasmic reticulum chaperone BiP
GRP75_HUMAN	73920	Stress-70 protein, mitochondrial	HSP7C_HUMAN	71082	Heat shock cognate 71 kDa protein
CALX_HUMAN	67982	Calnexin	VIME_HUMAN	53676	Vimentin
H90B3_HUMAN	68624	Putative heat shock protein HSP 90-beta-3	TBA1A_HUMAN	50788	Tubulin alpha-1A chain
ACTB_HUMAN	42052	Actin, cytoplasmic 1	ROA1_HUMAN	38837	Heterogeneous nuclear ribonucleoprotein A1
1A02_HUMAN	41181	HLA class I histocompatibility antigen, A-2 alpha chain	TCP10_HUMAN	38358	T-complex protein 10A homolog
HLAC_HUMAN	41136	HLA class I histocompatibility antigen, C alpha chain	ROA2_HUMAN	37464	Heterogeneous nuclear ribonucleoproteins A2/B1
HLAA_HUMAN	41100	HLA class I histocompatibility antigen, A alpha chain	G3P_HUMAN	36201	Glyceraldehyde-3-phosphate dehydrogenase
MPCP_HUMAN	40525	Phosphate carrier protein, mitochondrial	MDHM_HUMAN	35937	Malate dehydrogenase, mitochondrial
STML2_HUMAN	38624	Stomatin-like protein 2, mitochondrial	HNRPC_HUMAN	33707	Heterogeneous nuclear ribonucleoproteins C1/C2
CY1_HUMAN	35741	Cytochrome c1, heme protein, mitochondrial	NPM_HUMAN	32726	Neolipin
C1QBP_HUMAN	31742	Complement component 1Q subcomponent-binding protein			
NB5R3_HUMAN	34441	NADH-cytochrome b5 reductase 3 OS=Homo sapiens			
PHB2_HUMAN	33276	Prohibitin			
VDAC1_HUMAN	30868	Voltage-dependent anion-selective channel protein			
NDKB_HUMAN	31724	Voltage-dependent anion-selective channel protein			

Selected important proteins are listed on the SDS gel and are shown in bold in the table.
Table 2. Summary of identified proteins found after ATRA treatment in individual cell fraction

Accession	Mass (Da)	Description	Accession	Mass (Da)	Description
MEMBRANE FRACTION			**CYTOPLASMIC FRACTION**		
PRR36_HUMAN	132748	Proline-rich protein 36	ENPL_HUMAN	92469	Endoplasmnin
ITA2_HUMAN	129925	Integrin alpha-2	MTSS2_HUMAN	80460	Protein MTSS2
GANAB_HUMAN	107263	Neutral alpha-glucosidase A	CALX_HUMAN	67990	Calnexin
CD44_HUMAN	82009	CD44 antigen			
CALX_HUMAN	67990	Calnexin			
Region I.					
5NTD_HUMAN	63908	5’-nucleotidase	K2C1_HUMAN	66173	Keratin, type II cytoskeletal 1
VIME_HUMAN	53677	Vimentin	MED26_HUMAN	65446	Mediator of RNA polymerase II transcrip
TBA1A_HUMAN	50800	Tubulin alpha-1A chain	EIF2D_HUMAN	65304	Eukaryotic translation initiation factor 2D
ACTB_HUMAN	42058	Actin, cytoplasmic 1	K2C1B_HUMAN	62154	Keratin, type II cytoskeletal 1 b
PHB2_HUMAN	33276	Prohibitin-2	K1C10_HUMAN	59024	Keratin, type I cytoskeletal 10
VDAC2_HUMAN	32069	Voltage-dependent anion-selective protein 2	VIME_HUMAN	53677	Vimentin
PHB_HUMAN	29804	Prohibitin	TBA1A_HUMAN	50800	Tubulin alpha-1A chain
Region II.			KPSH2_HUMAN	43027	Serine/threonine-protein kinase H2
			ROA1_HUMAN	38837	Heterogeneous nuclear ribonucleoprotein A1
			ROA2_HUMAN	38542	Heterogeneous nuclear ribonucleoproteins A2/B1
			G3P_HUMAN	36201	Glyceraldehyde-3-phosphate dehydrogenase
			HNRPC_HUMAN	33708	Heterogeneous nuclear ribonucleoproteins C1/C2
Region III.			SODM_HUMAN	24906	Superoxide dismutase [Mn], mitochondrial
PRDX3_HUMAN	27693	Thioredoxin-dependent peroxide reductase	CALL3_HUMAN	16891	Calmodulin-like protein 3
COX2_HUMAN	25722	Cytochrome c oxidase subunit 2	H2A1A_HUMAN	14225	Histone H2A type 1-A
RAB5C_HUMAN	23696	Ras-related protein Rab-5C	H2B1B_HUMAN	13950	Histone H2B type 1-B
RAB7A_HUMAN	23490	Ras-related protein Rab-7a	H4_HUMAN	11360	Histone H4
H2A1A_HUMAN	14225	Histone H2A type 1-A			
H4_HUMAN	11360	Histone H4			

Selected important proteins are listed on the SDS gel and are shown in bold in the table.
rence of which may explain its ability to form a dimer and possible modifications (Qin and Buehler 2010).

For deeper analysis, the obtained 1D maps were processed by PDQuest software™ and compared with a focus on quantitative and qualitative changes. The changes were monitored in the control samples and the samples after treatment. The comparative data were obtained from three independent replicates from each sample (control and ATRA treated) where the chosen spots were used for the pairwise comparisons of relative protein amount. The quantification of chosen proteins in spots was then expressed as the sum of pixel intensities in a given spot. To eliminate some of the image differences caused by the gel staining and de-staining process, the normalization between individual gel images was performed. Obtained data based on PDQuest software analyses were presented as mean ± SD (standard deviation) from three independent experiments. Statistical analyses were performed with Student’s t-test. Differences between more than two groups were assessed by one-way analysis of variance (ANOVA) followed by the Student Newman-Keuls method. Differences with \(p < 0.05 \) were considered as statistically significant.

Based on the results obtained, the identified proteins were compared according to their expression influenced by ATRA. Significant effects were seen mainly in VIME as well as in its HMW form, where the protein levels in the membrane and cytoplasmic fraction were almost completely suppressed after treatment with ATRA (see Fig. 2).

The reduction effects of ATRA were also visible in cases of CD44. The obtained PDQuest data report the most significant decrease of cytoplasmic CD44 level for treatment by the ATRA, where the amount of protein was almost impossible to identify. However, this finding does not correspond to the results obtained with membrane CD44 of which concentration was decreased only partially (Fig. 2).

Recently, several types of treatment with ATRA were carried out on the cell lysis of human triple-negative MDA-MB-231 cells. ATRA, 9-cis retinoic acid, and a mixture of these two retinoic receptor ligands were tested by Flodrova et al. (2017). The treatment of MDA-MB-231 cells with triorganotin compounds together with ATRA resulted in an additional reduction of annexin 5, nucleoside diphosphate kinase B and VIME (Strouhalova et al. 2019, 2020). In this work, the hypothesis of these studies which stated that ATRA led to a significant reduction in VIME as well as CD44 protein level was confirmed. Moreover, our findings verified that although alternative splicing can produce a large number of different isoforms of CD44, they all retain a common transmembrane and cytoplasmic domain (Thorne et al. 2004) and therefore it is important to study its presence in both the membrane and cytoplasmic fractions obtained by sequential protein extraction.

In conclusion, this work provides first insights into the presentation of VIME and CD44 in the cytoplasmic and membrane protein fraction in the MDA-MB-231 cells after ATRA treatment. Some types of cancer can become more invasive and malignant after undergoing the EMT process. VIME is one of the types of protein markers of EMT that is present in mesenchymal cells and is involved in cancer progression (Kalluri and Weinberg 2009; Zeisberg and Neilson 2009). Also, some findings suggest that CD44 may provide some growth benefits to some neoplastic cells and therefore could be used as a cancer treatment target (Naor et al. 1997). We are convinced that the present data can help reveal additional aspects of the mechanism of action of all-trans retinoic acid in breast cancer, which we consider a highly desirable.

Acknowledgements. The present study was supported by institutional support RVO:68081715 of the Institute of Analytical Chemistry of the CAS, SAV-18-16, APVV-15-0372 and VEGA2/0171/17 grants.

References

Ahrens T, Sleeman JP, Schempp CM, Howells N, Hofmann M, Ponta H, Herrlich P, Simon JC (2001): Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene 20, 3399-3408

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003): Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983-3988

https://doi.org/10.1038/sj.onc.1204435

https://doi.org/10.1073/pnas.0530291100
Alizadeh F, Bolhassani A, Khavari A, Bathaie SZ, Naji T, Bidgoli SA (2014): Retinoids and their biological effects against cancer. Int. Immunopharmacol. 18, 43–49
https://doi.org/10.1016/j.intimp.2013.10.027

Bordier C (1981): Phase-separation of integral membrane-proteins in triton X-114 solution. J. Biol. Chem. 256, 1604-1607

Carlborg C, Saurat JH, Siegenthaler G (1993): 9-cis-retinoic acid is a natural antagonist for the retinoic acid receptor response pathway. Biochem. J. 295, 343-346
https://doi.org/10.1042/bj2950343

Chen Ch, Zhao S, Karnad A, Freeman JW (2018): The biology and role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 11, 64
https://doi.org/10.1186/s13045-018-0605-5

Chen MC, Hsu SL, Lin H, Yang TY (2014): Retinoic acid and cancer treatment. Biomedicine (Taipei) 4, 22
https://doi.org/10.7603/s40681-014-0022-1

Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005): Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946-10951
https://doi.org/10.1158/0008-5472.CAN-05-2018

Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al. (2007): Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA 104, 10158-10163
https://doi.org/10.1073/pnas.0703478104

Eibl RH, Pietsch T, Moll J, Schrock-Angel P, Heider K-H, von Andrian UH (2019): The role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 11, 64
https://doi.org/10.1186/s13045-018-0605-5

Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y (2002): CD44 in cancer. Crit. Rev. Clin. Lab. Sci. 39, 527-579
https://doi.org/10.1080/10408360290795574

Neagu M, Constantini C, Bostan M, Caruntu C, Ignat SR, Dinescu S, Costache M (2019): Technology „Lens” for epithelial-mesenchymal transition process identification in oncology. Anal. Cell Pathol. 2019, 3565970
https://doi.org/10.1155/2019/3565970

Qin Z, Buclher MJ (2010): Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models. J. Mol. Model. 17, 37-48
https://doi.org/10.1007/s10909-010-0696-6

Santoni V, Molloy M, Rabilloud T (2000a): Membrane proteins and proteomics: Un amour impossible? Electrophoresis 21, 1054-1070
https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054-3.0.CO;2-8

Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T (2000b): Membrane proteomics: Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21, 3329-3344
https://doi.org/10.1002/1521-388x(20000401)21:6<3329::AID-ELPS3329-3.0.CO;2-F

Satelli A, Li S (2011): Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. 68, 3033-3046
https://doi.org/10.1007/s00018-011-0735-1

Shi G, Zheng X, Wu X, Wang S, Wang Y, Xing F (2019): All-trans retinoic acid reverses epithelial-mesenchymal transition in paclitaxel-resistant cells by inhibiting nuclear factor kappa B and upregulating gap junctions. Cancer Sci. 110, 379-388
https://doi.org/10.1111/cas.13855

Strouhalova D, Toporova L, Lastovickova M, Macejova D, Bobalova J, Brtko J (2019): Novel insights into the combined effect of trioroganolins and all-trans retinoic acid on expression of selected proteins associated with tumor progression in breast cancer cell line MDA-MB-231: proteomic approach. Gen. Physiol. Biophys. 38, 135-144
https://doi.org/10.4149/gpb_2018042

Strouhalova D, Macejova D, Mosna B, Bobal P, Otevrel J, Lastovickova M, Brtko J, Bobalova J (2020): Down-regulation of vimentin by trioroganolins isothiocyanates-nuclear retinoic X receptor agonists: A proteomic approach. Toxicol. Lett. 318, 22-29
https://doi.org/10.1016/j.toxlet.2019.10.004

Thorner RF, Legg JW, Isacke CM (2004): The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J. Cell Sci. 117, 373-380
https://doi.org/10.1242/jcs.00954

Zeisberg M, Neilson EG (2009): Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429-1437
https://doi.org/10.1172/JCI36183

Received: May 18, 2020
Final version accepted: July 7, 2020