Umbraulva yunseulla sp. nov. (Ulvaceae, Chlorophyta) from a subtidal habitat of Jeju Island, Korea

Hyung Woo Lee¹, Eun Hee Bae² and Myung Sook Kim¹,³,*

¹Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Korea
²Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea
³Department of Biology, Jeju National University, Jeju 63243, Korea

Specimens of Umbraulva with greenish iridescent were collected in the subtidal zone of Jeju Island, Korea. To investigate these collections, plastid rbcL and tufA sequencing of six greenish iridescent specimens, including four Umbraulva japonica, were analyzed. Phylogenetic analysis of a concatenated multigene alignment found that the greenish iridescent specimens belonged to a yet undescribed taxon in the genus Umbraulva. We herein propose the name Um. yunseulla sp. nov. for this specimens. Juveniles of Um. yunseulla sp. nov. resemble the generitype Um. japonica in appearance, showing globular to subglobular and funnel-shaped habits, but the blades of this new species are not split longitudinally like those of Um. japonica. Although the multigene phylogenetic tree showed the polyphyletic clade of Umbraulva with respect to the genus Ryuguphycus, Um. yunseulla sp. nov. formed a clade with Um. japonica and Um. amamiensis by weak bootstrap support. These findings, Um. yunseulla sp. nov., highlight the importance of studying the biodiversity of subtidal habitats from Jeju Island, Korea and further emphasize the need for investigations of macroalgae in the mesophotic zone around the Korean peninsula.

Key Words: biodiversity; greenish iridescent; phylogeny; rbcL; taxonomy; tufA; Umbraulva yunseulla sp. nov.

INTRODUCTION

The genus Umbraulva was segregated from the genus Ulva by Bae and Lee (2001) and includes three species previously described as U. amaniensis Tanaka (type locality: Amami-Oshima, Japan), U. japonica (Holmes) Papenfuss (type locality: Enoshima, Japan), and U. olivascens Dangeard (type locality: Roscoff, France). Umbraulva is distinguished from Ulva Linnaeus by its distinct olive-green blade, subtidal habitat, and the presence of the pigment siphonaxanthin (Bae and Lee 2001), which pigment can grow in deeper waters because they absorb green light in the 540-nm range (Yokohama 1981). Umbraulva kuaweuweu H. L. Spalding & A. R. Sherwood and Um. kaloakulau H. L. Spalding & A. R. Sherwood were described as new species from specimens collected at depths of 80-125 m in mesophotic ecosystems of the Hawaiian Archipelago based on vegetative morphology and molecular phylogenetic analyses of the internal transcribed spacer (ITS) region, ribulose-1,5-biphosphate carboxylase large subunit (rbcL), and elongation factor Tu (tufA) genes (Spalding et al. 2016). Although it was known that Umbraulva includes five species taxonomically (Guiry and Guiry 2020), the new genus Ryuguphycus H. Kawai, T. Hanyuda & T. Kitayama, which includes R. kuaweuweu (formerly Um. kuaweuweu) as the generi-
depths of 8-15 m in subtidal areas around four annexed islets (Hyeongjeseom, Munseom, Seopseom, and Udo) of Jeju Island, Korea. The fresh samples were photographed using an Olympus TG-4 waterproof digital camera (Olympus, Tokyo, Japan). Thallus fragments of each specimen were dried for molecular analyses using silica gel. Prior to describing morphological characters, the samples were preserved in 5% formalin in seawater and sectioned using a bench-top freezing microtome (NK-101-II; Nippon Optical Works Co., Ltd., Tokyo, Japan). Sectioned materials were stained with 1% aniline blue acidified with 1% HCl after bleaching under sunlight. Sections were mounted in 35% corn syrup and photographed under a microscope (BX43; Olympus) using an EOS 600D digital camera (Canon, Tokyo, Japan). Digitized images were edited for clarity using Adobe Photoshop software (ver. 6.1; Adobe Systems Inc., San Jose, CA, USA). Pressed herbarium specimens were deposited as voucher specimens in the herbaria of Jeju National University (JNUB) and the National Institute of Biological Resources (KB), Incheon, Korea.

Materials and Methods

Using scuba gear, we collected six specimens of a new *Umbralva* candidate and four of *U. japonica* from depths of 8-15 m in subtidal areas around four annexed islets (Hyeongjeseom, Munseom, Seopseom, and Udo) of Jeju Island, Korea. The fresh samples were photographed using an Olympus TG-4 waterproof digital camera (Olympus, Tokyo, Japan). Thallus fragments of each specimen were dried for molecular analyses using silica gel. Prior to describing morphological characters, the samples were preserved in 5% formalin in seawater and sectioned using a bench-top freezing microtome (NK-101-II; Nippon Optical Works Co., Ltd., Tokyo, Japan). Sectioned materials were stained with 1% aniline blue acidified with 1% HCl after bleaching under sunlight. Sections were mounted in 35% corn syrup and photographed under a microscope (BX43; Olympus) using an EOS 600D digital camera (Canon, Tokyo, Japan). Digitized images were edited for clarity using Adobe Photoshop software (ver. 6.1; Adobe Systems Inc., San Jose, CA, USA). Pressed herbarium specimens were deposited as voucher specimens in the herbaria of Jeju National University (JNUB) and the National Institute of Biological Resources (KB), Incheon, Korea.

**Total genomic DNA of two Umbralva species (Table 1) was extracted following the protocol of the LaboPass Tissue Genomic DNA Isolation Kit Mini (Cosmo Genetech, Seoul, Korea). All polymerase chain reaction (PCR) processes were performed using AccuPower PCR Premix (Bioneer, Daejeon, Korea), following the manufacturer’s protocol. We amplified and sequenced the plastid genes *rbcL* and *tufA* and analyzed nuclear 18S rRNA from an unidentified *Umbralva* species. In the present study, the primer combinations for *rbcL*, *tufA*, and 18S rRNA-5P were GrbcLFi (Saunders and Kucera 2010) or RH1 (Manhart 1994) / 1385R (Manhart 1994), tufGF4 / tufGR type, was recently separated from the genus *Umbralva* based on its distinctive morphology, life history, carotenoid composition, and molecular phylogeny (Kawai et al. 2020).

Two *Umbralva* species, *Um. amamiensis* and *Um. japonica*, have been reported from subtidal habitats in Korea (National Institute of Biological Resources 2019); however, it is very difficult to identify species correctly based on a few traditional morpho-anatomical characteristics such as blade shape and thickness, presence / absence of microscopic marginal denticulation, and rhizoidal filament type (Spalding et al. 2016, Kawai et al. 2020). The plastid markers *rbcL* and *tufA* have been used to delimit species boundaries in *Umbralva*, including several new undescribed specimens (Heesch et al. 2009, Kirkendale et al. 2013). Therefore, it is necessary to study the systematics of this genus using molecular phylogenetic information and/or monitor the occurrence of invasive species in subtidal areas. During subtidal zone surveys around Jeju Island, Korea, we discovered a novel *Umbralva* species; this finding is supported by molecular analyses and morphological observations. The objectives of this study were to determine the taxonomic position of this new species, assess its genetic differences from related taxa, and discuss the phylogenetic relationships of *Umbralva* based on the plastid *rbcL* and *tufA* genes.

Table 1. Sequence information of *Umbralva yunseulla* sp. nov. and *Umbralva japonica* analyzed newly in this study

Species	Date	Site	GenBank accession No.		
Umbralva yunseulla					
Voucher No.	Date	Site	*rbcL*	*tufA*	18S rRNA
H. W. Lee, E. H. Bae & M. S. Kim					
MSK-GA00064	Jan 30, 2013	Munseom, Jeju, Korea	-	MT978114	MT978101
MSK-GA00068	Jan 30, 2013	Munseom, Jeju, Korea	-	MT978115	
MSK-GA00069	Jan 30, 2013	Munseom, Jeju, Korea	MT978109	MT978116	-
MSK-GA00070	Jan 30, 2013	Munseom, Jeju, Korea	-	MT978117	-
MSK-GA00071	Jan 30, 2013	Munseom, Jeju, Korea	MT978110	MT978118	-
MSK-GA00072	Jan 30, 2013	Munseom, Jeju, Korea	-	MT978119	-
Umbralva japonica (Holmes)					
Bae & I. K. Lee					
MSK-JDWT24	Dec 27, 2017	Jongdal, Jeju, Korea	MT978123	MT978107	-
MSK-JDWT25	Dec 27, 2017	Jongdal, Jeju, Korea	MT978124	MT978108	-
MSK-SYWT98	Jan 2, 2018	Shinyang, Jeju, Korea	MT978125	MT978105	-
MSK-SYWT99	Jan 2, 2018	Shinyang, Jeju, Korea	MT978126	MT978106	-
RESULTS

We analyzed a set of 53 rbcL gene sequences including two new Umbraulva sp. specimens (MT978109-MT978110; 741-745 bp) and four Um. japonica ones (MT978123-MT978126; 1,263-1,273 bp). Among all sites rbcL, 185 sites (14.5%) were variable and 137 sites (10.8%) were parsimoniously informative. In tufA analysis, a set of 40 tufA gene sequences were analyzed including six new Umbraulva sp. specimens (MT978114-MT978119; 804-859 bp) and four Um. japonica ones (MT978107-MT978106; 848-866 bp). Variable and parsimoniously informative sites were 327 sites (37.8%) and 169 (19.7%), respectively. In addition, a 18S rRNA-5P sequence were obtained from a new Umbraulva sp. specimen (MT978101; 530 bp). Phylogenetic analysis of the plastid rbcL and tufA sequences showed that the six new Umbraulva sp. specimens from Jeju Island were separated from other species within Umbraulva clade in a fully supported clade (BS, 100), with sister to Um. kaloakulau from Hawaii, USA (Figs 1 & 2). The rbcL phylogeny showed that the novel Umbraulva sp. had diverged from the Um. japonica clade from Korea (MT978123, MT978124, MT978125, and MT978126) including the genericity from Japan (AB097612 and LC507134), as well as Um. amamiensis (AB097614 and LC507131), with an interspecific variation of 2.6-3.3% and 2.6%, respectively (Fig. 1). Higher interspecific divergence among Umbraulva species was observed in the tufA phylogenetic analysis compared to the rbcL results. The tufA interspecific variation values for the novel Umbraulva sp. were 1.6% vs. Um. kaloakulau, 6.6-7.0% vs. Um. japonica, and 4.2% vs. Um. amamiensis.

Although the genus Ulva is monophyletic based on the rbcL and tufA genes ML phylogeny, Umbraulva clade was not monophyletic because of the genus Ryuguphycus embedded within this clade. In addition, the concatenated ML phylogeny showed that Umbraulva consists of two clades, one containing Um. japonica, Um. amamiensis, Um. kaloakulau, and the novel Umbraulva sp. (Fig. 3) with weak ML support (BS, 69%), and the other consisting of Um. dangeardii from Ireland and France (EU484411 and LC507133, respectively), Umbraulva sp. specimens from New Zealand (EF110497, EF110504, and EF110288) and Australia (JN029249, rbcL, and JN029348) (Supplementary Table S1), and Ryuguphycus with no support (Fig. 3). Although the clade of Umbraulva is unstable on the basis of the molecular evidence, we propose a new species of Umbraulva, hereby named Um. yunseulla H. W. Lee, E. H. Bae & M. S. Kim sp. nov.

Holotype. MSK-GA00069 (Fig. 4B), vegetative, Munseom (annexed islet), Jeju Island, Korea, Jan 30, 2013, deposited in the JNUB herbarium: GenBank accession No. MT978109, rbcL; MT978116, tufA.

Isotypes. MSK-GA00068, MSK-GA00071, vegetative, Munseom (annexed islet), Jeju Island, Korea, Jan 30, 2013 (deposited in JNUB). MSK-GA00064, MSK-GA00070 (Fig. 4C), MSK-GA00072, vegetative, Munseom, Jeju Island, Korea, Jan 30, 2013 (deposited in KB).

Type locality. Munseom, Jeju Island, Korea (33°13′39″ N, 126°33′57″ E).
Fig. 1. Maximum likelihood phylogenetic tree inferred from the plastid rbcL of Ulvaceae species with *Umbraulva yunseulla* sp. nov. Numbers on the branches indicate the bootstrap values with only ≥50%. Sequences produced in this study are marked in bold font. Branch lengths are proportional to substitution rate.
Fig. 2. Phylogenetic tree inferred from the plastid *tufA* of *Umbraulva yunseull*a sp. nov. constructed by maximum likelihood analysis. Numbers on the branches indicate the bootstrap values with only ≥50%. Sequences produced in this study are marked in bold font. Branch lengths are proportional to substitution rate.
Fig. 3. Maximum likelihood phylogeny of Ulvaceae inferred from five gene regions, rbcL, tufA, 18S rRNA, 28S rRNA, and ITS (total 5,634 bp). Numbers on the branches indicate the bootstrap values with only ≥50%. The GenBank accession numbers of each sequence data set are shown in Supplementary Table S1. Specimens analyzed in this study are marked in bold font. Branch lengths are proportional to substitution rate.
Etymology. The specific epithet, yunseulla, is derived from the Korean traditional noun yunseul, meaning “calm wave glittering with sunshine or moonlight” in reference to the greenish iridescence observed on the underwater thallus surface.

Korean name. 음슬초록갈파래 (국영신청).

Habitat. Attached to hard substrates such as rocks, shells, or nongeniculate corallines in the subtidal zone (generally 8-15 m deep). Distribution. Jeju Island, Korea.

Specimens examined. MSK-GA00064, MSK-GA00068, MSK-GA00069, MSK-GA00070, MSK-GA00071, MSK-GA00072, Jan 30, 2013, Munseom, Jeju Island, Korea; MSK150802-06, Aug 2, 2015, Sagye, Jeju Island, Korea; MSKL160414-14, MSKL160414-15, MSKL160414-16, MSKL160414-17, Apr 14, 2016, Munseom, Jeju Island, Korea; MSKL160419-03, MSKL160419-12, MSKL160419-13, MSKL160419-14, Apr 16, 2016, Munseom, Jeju Island, Korea; MSKL160419-19, MSKL160419-22, Apr 19, 2016, Seopseom (annexed islet), Jeju Island, Korea; MSKL160520-10, May 20, 2016, Munseom, Jeju Island, Korea; MSKL160528-16, MSKL160528-17, May 28, 2016, U-do (annexed islet), Jeju Island, Korea (deposited in JNUB).

DNA sequence data. rbcL: MSK-GA00069 (MT978109), MSK-GA00071 (MT978110), tufA: MSK-GA00064 (MT978114), MSK-GA00068 (MT978115), MSK-GA00069 (MT978116), MSK-GA00070 (MT978117), MSK-GA00071 (MT978118), MSK-GA00072 (MT978119). 18SrRNA: MSK-GA00064 (MT978101).

Habit and morphology. *Umbraulva yunseulla* sp. nov. has a foliose (Fig. 4B & C) and dinstromatic (Fig. 4H & I) thallus with slightly ruffled to curled margins (Fig. 4B & C). Greenish iridescence derived from the natural habitat glitters on the surface radially from the lower part or at the margin of the thallus (Fig. 4A). Thallus green to dark green (Fig. 4B & C). Thallus entirely globular to subglobular and funnel-shaped, growing dorsiventrally decumbent when young to erect when mature (Fig. 4A), 5-7 cm wide and 4-5 cm high, to a maximum of 10 cm (Fig. 4B & C). Thallus apex rounded to slightly emarginated, base cordate to lobate (Fig. 4B & C). Thallus attached by a distinct discoid holdfast without a stipe (Fig. 4B & C) and generally composed of a single or 2-3 (5) blades (Fig. 4B & C). Distromatic thallus is composed of entirely cuboidal to polygonal cells, some subspherical in the upper part of the blade in surface view, 11-26 μm long by 9-16 μm wide (Fig. 4D). In the center of the blade, cells are subspherical, cuboidal to polygonal, 15-35 μm long by 9-18 μm wide, and are larger and more numerous than in the upper blade (Fig. 4E). At the base, subspherical, cuboidal and polygonal cells, 18-55 μm long by 9-26 μm wide, are intermixed (Fig. 4F). Pale cells are greatly expanded, and darker cells are filled with cytoplasm in a compact arrangement (Fig. 4F). Each cell contains 1-2 pyrenoids (Fig. 4E), up to 4 per cell. Cell arrangement throughout the thallus irregular (Fig. 4D-F). Thallus margin entire, plain, and rounded, without microscopic protuberances (Fig. 4G). In transverse section, cell shape is cuboidal throughout the entire blade (Fig. 4H-J). Cell size in transverse section is taller and wider toward basal part, 26-32 μm tall by 11-13 μm wide in upper, 23-28 μm tall by 13-17 μm wide in middle, 40-60 μm tall by 23-37 μm wide in basal, but similar throughout the thallus on both the dorsal and ventral surfaces (Fig. 4H-J). Cell thickness ranges from 50-70 μm in the upper thallus to 100-140 μm in the basal portion of the blade. In transverse section, the basal portion of the blade, fine rhizoidal filaments are observed budding off from cells inward filled with cytoplasmic contents compactly, and are interwoven with longitudinal arrangement and fill between distromatic cell planes densely (Fig. 4J-L). Gametophytes were not observed.

DISCUSSION

Molecular analyses of the genus *Umbraulva* from subtidal areas of Jeju Island, Korea, have expanded our understanding of the phylogenetic affinity between *Umbraulva* and related taxa (Bae and Lee 2001). This approach has facilitated the discovery of the newly recognized species *Um. yunseulla* sp. nov., thus enhancing studies of macroalgal biodiversity. The plastid markers *rbcL* and *tufA* were previously demonstrated to resolve new species and delimit boundaries among *Umbraulva* species (Heesch et al. 2009, Kirkendale et al. 2013). In this study, the morphological delimitation, such as size and thickness of thallus, size and shape of cell, and number of pyrenoids, provide less resolution to identify species definitely because morphological characteristic range is overlapped between *Umbraulva* species (Table 2). However, the phylogenetic analyses inferred *rbcL* and *tufA* are helpful to reveal a new member of *Umbraulva, Um. yunseulla* sp. nov. from Jeju Island, Korea (Figs 1 & 2), which has the smallest and a globular to sub-globular and funnel-shaped thallus with greenish iridescence along dorsal surface (Table 2).

Umbraulva yunseulla sp. nov. was first collected by Bae and Lee (2001) from Munseom, Jeju Island, Korea, but it was identified as *Um. amamiensis*, which is described as
Fig. 4. *Umbraulva yunseulla* H. W. Lee, E. H. Bae & M. S. Kim sp. nov. (A) Natural habit of *Um. yunseulla* sp. nov. from Munseom, Jeju, Apr 14, 2016, glittering with greenish iridescence. Thallus composed of two globular blades having ruffled margins. (B) MSK-GA00069, the holotype specimen, from Munseom, Jeju, Jan 30, 2013. Dorsiventral thallus habit composed a big cordate blade having rounded to slightly emarginate apex partially and another small subglobular blade. Both blades having slightly ruffled margin with curled parts. (C) MSK-GA00070, from Munseom, Jeju, Jan 30, 2013, subglobular and dorsiventral thallus having curled margins. (D) Sub-roundish or cuboidal to polygonal cells at the surface view of upper part with irregular arrangement. (E) Sub-roundish or cuboidal to polygonal cells at the surface view of middle part with irregular arrangement. Each cell containing one to two pyrenoid (arrows). (F) Sub-roundish or cuboidal cells to polygonal at the surface view of basal part with irregular arrangement. (G) Thallus margins plain without marginal denticulations or microscopic protuberances. (H) Upper part transection of blade having solid cell shape, composed of cuboidal cells. (I) Middle part transection of blade having solid cell shape, composed of cuboidal cells. (J-L) Basal part transection of blade having solid cell shape, composed of cuboidal cells with compact and interwoven rhizoids between both dームatic arrangements. Interstitial rhizoids are originated from each cell inward. Rhizoidal filaments are originated from inner part of cells filled with cytoplasmic contents compactly (arrows). Scale bars represent: B & C, 1 cm; D & F-L, 50 μm; E, 25 μm.
Table 2. A comparison of morphological characteristics among *Umbraulva yunseulla* sp. nov. and other *Umbraulva* species

	Umbraulva yunseulla	*Umbraulva japonica*	*Umbraulva amamiensis*	*Umbraulva dangeardii*	*Umbraulva kaloakulau*	*Ryuguphycus kuaweuweu* (Spalding & Sherwood)
Type locality	Munseom, Jeju Island,	Enoshima, Kanagawa,	Amami Islands, Kagoshii	Roscoff, Brittany,	Maui Island, Hawaii, USA	Moloka Island, Hawaii, USA
	Korea	Japan	Japan	France	Subtidal from 15 m deep, attached on the carbonate substrates	Subtidal from 65 to 80 m deep, attached on rhodoliths and carbonate reef
Habitat	Subtidal from 8 to 15 m	Subtidal from 10 to 20 m	Subtidal from 3-13 m deep, growing on rocky bottom	Subtidal up to 15 m deep, attached on rocks	Subtidal from 85 to 125 m deep, attached on the carbonate substrates	
Thallus shape	Globular to sub-globular and funnel-shaped having rounded to slightly emarginate apex and cordate to lobate base	Ellipsoidal to flabellately expanded, often split radially with perforations	Irregularly perforate, linear lanceolate to ovate lanceolate into 2-5 lobes	Slightly perforate, lanceolate to cuneate or irregularly orbicular, expanded and lobed	Irregularly perforate, elliptical to cuneate	Slightly to extensively perforate, elliptical to flabellately expanded
Holdfast	Distinct discoid	Distinct discoid	Distinct discoid	Distinct discoid	Very small, difficult to discern	Distinct
Margin	Entirely, slightly ruffled to heavily curled, sometimes slightly torn in old	Entire, slightly ruffled, laciniate with irregular microscopic protuberances	Entire, smooth, no microscopic protuberances	-	Entire margin	
Color	Olive green to dark green, greenish iridescent along dorsal surface of blades	Dark olive green	Green to dark green	Olive green	Deep green to dark olive green	Light to dark olive green
Height (cm)	4-5 (up to 10)	8-20	20-60 (up to 115)	<30 (up to 100)	12-37	7-21
Width (cm)	5-7	10-26	10-35 (up to 50)	Up to 40	15-20	7-17
Thickness (μm)	50-70 (100-140 at basal)	100-125 (up to 180-400)	100-170 (lower part)	40-95 (100-115 at basal)	30-94 (middle part)	24-98 (middle part)
Structure	Solid	Solid	Solid	Solid	Solid	Solid or hollow
Surface view	Cuboidal to rounded polygon 11-55 μm long by 9-26 μm wide	Roundish to irregularly polygonal	Polygonal with rounded corners 27-40 μm in diameter	Polygonal to rectangular with rounded corners 24-35 μm long by 18-24 μm wide	Polygonal and angular, irregularly arranged 14-42 (-49) μm long by 11-26 μm wide	Polygonal and angular, irregularly arranged 17-49 (-53) μm long by 8-25 (-39) μm wide
Transverse view	Cuboidal with 23-60 μm tall by 11-37 μm wide	Longitudinally rectangular with rounded corners 20-45 μm tall by 15-35 μm wide	Polygonal to oblong 27-40 μm tall	Cuboidal 13-60 μm tall by 11-37 μm wide	Cuboidal to rectilinear 11-39 μm tall by 12-41 μm wide	Cuboidal to rectilinear 9-49 μm tall by 10-50 μm wide
No. of pyrenoids	1-2 per cell (up to 4 per cell)	2-3 per cell (up to 4 per cell)	1 per cell	1 per cell (2-4 per cell at basal)	1-2 per cell	1-2 per cell
Rhizoidal filament	Longitudinally interwoven and dense in basal part	Densely filling inwardly in basal part	Dense between inner part of basal thallus	Closely packed bundles in lower basal region	Lacking rhizoidal filaments	Densely and longitudinally packed rhizoidal filaments
Reference	This study	Bae and Lee (2001), Kawai et al. (2020)	Tanaka (1956)	Hoeksema and van den Hoek (1983), Burrows (1991)	Spalding et al. (2016)	Spalding et al. (2016), Kawai et al. (2020)
having a height of 20-60 cm (to 115 cm) and width of 10-35 cm (to 55 cm), with abundant perforations (Tanaka 1956). *Um. yunseulla* sp. nov. has much smaller thallus, ranged 5-7 cm wide and 4-5 cm high up to a maximum of 10 cm, compared to *Um. amamiensis*, although these two species inhabit the similar depth range of subtidal (Table 2). The specimens of Bae and Lee (2001) were characterized by cordate or funnel-shaped thalli 5-7 cm in height with wavy margins and epifluorescent illumination at the surface of the blade in nature. These characteristics are identical to our specimens of *Um. yunseulla* sp. nov. (Table 2). On the contrary, *Um. amamiensis* is linear lanceolate to ovate-lanceolate with irregular perforation, and the epifluorescent illumination of *Um. amamiensis* specimens was undescribed (Table 2). The iridescent coloration along thallus surface is one of morphological features of *Um. yunseulla* sp. nov. distinguished from other *Umbraulva* species (Table 2). In marine macroalgae, external iridescence is caused by unique nanostructural coloration mechanisms such as intracellular iridescent bodies or multi-layered cuticle reflection (Chandler et al. 2017). Some brown and red seaweeds such as *Cystoseria*, *Dictyota*, *Chondria*, and *Cottoniella* have nanostructural coloration that produces iridescent species (Chandler et al. 2017). In *Um. yunseulla* sp. nov., greenish iridescence appears around the base or middle part of the thallus (Fig. 4A). In surface view, *Um. yunseulla* sp. nov. exhibits larger subspherical and expanded cells than it does cuboidal or polygonal cells; these are mainly distributed at the middle and basal parts of the thallus, and have tiny globules scattered throughout (Fig. 4E & F). Further investigation may show that these tiny globules are iridescent bodies of *Um. yunseulla* sp. nov., which would provide new insight into the mechanism by which iridescent marine macroalgal species adapt to environmental conditions such as radiation intensity and turbidity (Chandler et al. 2017).

The monophyly of *Umbraulva* was not well-supported by *rbcL* and *tufA* phylogenetic analyses (Figs 1 & 2), which is inconsistent with a previous study of the phylogenetic relationship between *Umbraulva* and *Ryuguphycus* (Kawai et al. 2020). Because the generic boundary of *Umbraulva* was delimited by only weak support and the *Ryuguphycus* clade was supported by poor BS support in our concatenated analyses inferred from 18S rRNA, 28S rRNA, ITS, *rbcL*, and *tufA* (Fig. 3), the phylogenetic topology between *Umbraulva* and *Ryuguphycus* presented in this study remains uncertain. The recently established genera *Umbraulva* and *Ryuguphycus* have been subject to fewer phylogenetic analyses than *Ulva*, which has been examined using many molecular approaches (Kirkendale et al. 2013, Spalding et al. 2016). Future studies should attempt to discover new members of *Umbraulva* and *Ryuguphycus* to fill phylogenetic gaps and strengthen generic boundaries among these genera.

Few taxonomic studies have examined ulvacean organisms inhabiting subtidal zones of Korea, with the exception of *Umbraulva* species (Bae and Lee 2001). Recent studies have delimited species boundaries within the genus *Codium* Stackhouse, including five subtidal species, and for *Palmophyllum crassum* (Naccari) Rabenhorst, which inhabits deep marine areas around Jeju (Lee and Kim 2015, 2017). Many red algae species have been discovered in the subtidal zones of Jeju Island, including *Pseudopolynéura hyacinthinia* (J. C. Kang & M. S. Kim) M. J. Wynne (as *Erythroglossum hyacinthinum*, Kang and Kim 2014) and *Pachymeniopsis voluita* M. Y. Yang & M. S. Kim (Yang and Kim 2015). Although Jeju Island has the potential to be named a seaweed genetic and species diversity hotspot (Yang et al. 2020), our knowledge of green seaweeds in subtidal zones remains poor. A few new ulvacean species have been reported in Hawaii and Japan, including *U. oiohiululu*, *Um. kaloakulau*, and *R. kuaweueu* collected from the mesophotic zone, at depths of 30-125 m (Spalding et al. 2016, Kawai et al. 2020). Continuous surveys of green algae in the subtidal zone contribute to the expansion of ecological knowledge, which is essential for habitat conservation and species diversity enrichment. Therefore, we further emphasize the necessity of investigating green macroalgal diversity in the mesophotic zone to discover new species of the ulvacean genera *Ulva*, *Umbraulva*, and *Ryuguphycus*.

ACKNOWLEDGEMENTS

We thank Dr. Kang, J. C. and members of the Molecular Phylgeny of Marine Algae Laboratory at Jeju National University for helping us to collect samples. This study was supported by the 2020 Education, Research and Student guidance grant funded by Jeju National University.

SUPPLEMENTARY MATERIALS

Supplementary Table S1. The representative sequence datasets of *Umbraulva* and *Ulva* from GenBank including outgroups (https://e-algae.org).

https://doi.org/10.4490/algae.2020.35.12.3
REFERENCES

Bae, E. H. & Lee, I. K. 2001. Umbraulva, a new genus based on Ulva japonica (Holmes) Papenfuss (Ulvacaceae, Chlorophyta). Algae 16:217-231.

Burrows, E. M. 1991. Seaweeds of the British Isles. Vol. 2. Chlorophyta. National History Museum Publications, London, pp. 238.

Chandler, C. J., Wilts, B. D., Brodie, J. & Vignolini, S. 2017. Structural color in marine algae. Adv. Opt. Mater. 5:1600646.

Guiry, M. D. & Guiry, G. M. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Jul 30, 2020.

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.

Heesch, S., Broom, J. E. S., Neil, K. F., Farr, T. J., Dalen, J. L. & Nelson, W. A. 2009. Ulva, Umbraulva and Gemina: genetic survey of New Zealand taxa reveals diversity and introduced species. Eur. J. Phycol. 44:143-154.

Kang, J. C. & Kim, M. S. 2014. New red algal species, Erythroglossum hyacinthinum (Delesseriaceae, Rhodophyta) from Korea. Algae 29:1-13.

Kawai, H., Hanyuda, T., Mine, I., Takaichi, S., Terada, R. & Kitayama, T. 2020. Morphology and molecular phylogeny of Umbraulva spp. (Ulvaless, Ulvophyceae), and proposal of Ryuguphyccus gen. nov. and R. kuawuwuwu comb. nov. Eur. J. Phycol. Advanced online publication. https://doi.org/10.1080/09670262.2020.1753815.

Kirkendale, L., Saunders, G. W. & Winberg, P. 2013. A molecular survey of Ulva (Chlorophyta) in temperate Australia reveals enhanced levels of cosmopolitanism. J. Phycol. 49:69-81.

Lee, H. W. & Kim, M. S. 2015. Species delimitation in the green algal genus Codium (Bryopsidales) from Korea using DNA barcoding. Acta Oceanol. Sin. 34:114-124.

Lee, H. W. & Kim, M. S. 2017. Palmophyllum crassum, a new record of an ancient species in green algae from Korea. Korean J. Environ. Biol. 35:319-328.

Manhart, J. R. 1994. Phylogenetic analysis of green plant rbcL sequences. Mol. Phylogenet. Evol. 3:114-127.

Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491-499.

National Institute of Biological Resources. 2019. National species list of Korea. I. Plants, fungi, algae, prokaryotes. National Institute of Biological Resources, Incheon, 924 pp.

Rambaut, A. 2012. FigTree, tree figure drawing tool v1.4.0. Institute of Evolutionary Biology, University of Edinburgh. Available from: http://tree.bio.ed.ac.uk/software/figtree/. Accessed May 30, 2018.

Saunders, G. W. & Kucera, H. 2010. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogam. Algol. 31:487-528.

Spalding, H. L., Conklin, K. Y., Smith, C. M., O’Kelly, C. J. & Sherwood, A. R. 2016. New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian Archipelago. J. Phycol. 52:40-53.

Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: Molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.

Tanaka, T. 1956. Studies on some marine algae from southern Japan, II. Mem. Fac. Fish. Kagoshima Univ. 5:103-108.

Yang, M. Y. & Kim, M. S. 2015. Taxonomy of Grateloupia (Halymeniales, Rhodophyta) by DNA barcode marker analysis and a description of Pachymeniopsis volvita sp. nov. J. Appl. Phycol. 27:1373-1384.

Yang, M. Y., Yang, E. C. & Kim, M. S. 2020. Genetic diversity hotspot of the amphi-Pacific macroalga Gloiopeltis furcata sensu lato (Gigartinales, Florideophyceae). J. Appl. Phycol. 32:2515-2522.

Yokohama, Y. 1981. Distribution of the green light-absorbing pigments siphonoxanthin and siphonein in marine green algae. Bot. Mar. 24:637-640.