Maximum Principle for Forward-Backward Doubly Stochastic Control Systems and Applications

Liangquan Zhang1,2 and Yufeng SHI1 *†

(1.School of Mathematics, Shandong University
2. Laboratoire de Mathématiques Université de Bretagne Occidentale)

May 25, 2010

Abstract

The maximum principle for optimal control problems of fully coupled forward-backward doubly stochastic differential equations (FBDSDEs in short) in the global form is obtained, under the assumptions that the diffusion coefficients do not contain the control variable, but the control domain need not to be convex. We apply our stochastic maximum principle (SMP in short) to investigate the optimal control problems of a class of stochastic partial differential equations (SPDEs in short). And as an example of the SMP, we solve a kind of forward-backward doubly stochastic linear quadratic optimal control problems as well. In the last section, we use the solution of FBDSDEs to get the explicit form of the optimal control for linear quadratic stochastic optimal control problem and open-loop Nash equilibrium point for nonzero sum differential games problem.

AMS subject classifications. 93E20, 60H10.

Key words: Maximum principle, stochastic optimal control, forward-backward doubly stochastic differential equations, spike variations, variational equations, stochastic partial differential equations, nonzero sum stochastic differential game.

*This work was partially Supported by National Natural Science Foundation of China Grant 10771122, Natural Science Foundation of Shandong Province of China Grant Y2006A08 and National Basic Research Program of China (973 Program, No. 2007CB814900)

†E-mail: yfshi@sdu.edu.cn (Y. Shi), Liangquan.Zhang@etudiant.univ-brest.fr(L. Zhang).
1 Introduction

It is well known that optimal control problem is one of the central themes of control science. The necessary conditions of optimal problem were established for deterministic control system by Pontryakin’s group [24] in the 1950’s and 1960’s. Since then, a lot of work has been done on the forward stochastic system such as Kushner [13], Bismut [5], Bensoussan [2, 3], Haussmann [9, 10] and Peng [20] etc.

Peng [20] studied the following type of stochastic optimal control problem. Minimize a cost function

\[
J(v(\cdot)) = E\int_0^T l(x_t, v_t) \, dt + E(h_T),
\]

subject to

\[
\begin{align*}
\text{dx}_t &= g(t, x_t, v_t) \, dt + \sigma(t, x_t, v_t) \, dB_t, \\
x_0 &= x,
\end{align*}
\]

over an admissible control domain which need not be convex, and the diffusion coefficients contain the control variable. In his paper, by spike variational method and the second order adjoint equations, Peng [20] obtained a general stochastic maximum principle for the above optimal control problem. It was just the adjoint equations in stochastic optimal control problems that motivated the famous theory of backward stochastic differential equations (BSDEs in short) (see [18]). Later Peng [21] studied a stochastic optimal control problem where state variables are described by the system of forward and backward SDEs, that is

\[
\begin{align*}
\text{dx}_t &= f(t, x_t, v_t) \, dt + \sigma(t, x_t, v_t) \, dW_t, \\
x_0 &= x, \\
\text{dy}_t &= g(t, x_t, v_t) \, dt + z_t \, dW_t, \\
y_T &= y,
\end{align*}
\]

where \(x\) and \(y\) are given deterministic constants. The optimal control problem is to minimize the cost function

\[
J(v(\cdot)) = E\left[\int_0^T l(t, x_t, y_t, v_t) \, dt + h(x_T) + \gamma(y_0)\right],
\]

over an admissible control domain which is convex. Xu [28] studied the following non-fully coupled forward-backward stochastic control system

\[
\begin{align*}
\text{dx}_t &= f(t, x_t, v_t) \, dt + \sigma(t, x_t) \, dW_t, \\
x_0 &= x, \\
\text{dy}_t &= g(t, x_t, y_t, z_t, v_t) \, dt + z_t \, dW_t, \\
y_T &= h(x_T).
\end{align*}
\]

The optimal control problem is to minimize the cost function

\[
J(v(\cdot)) = E\gamma(y_0),
\]
of time-symmetric forward-backward stochastic differential equations, i.e., so-called fully cases of the Itô-Skorohod integral (for details see [15]). Peng and Shi [22] introduced a type respect to \[\{ \]

Note that the integral with respect to \(\{ \)

backward stochastic system state constraints. Shi and Wu [25] studied the maximum principle for fully coupled forward-backward stochastic system with terminal control domain which is convex. Ji and Zhou [12] obtained a maximum principle for stochastic optimal control of non-fully coupled forward-backward stochastic system with terminal control domain which is convex. The control domain is non-convex but the forward diffusion does not contain the control variable. For more details in this field, see Yong and Zhou [29].

In order to provide a probabilistic interpretation for the solutions of a class of semilinear stochastic partial differential equations (SPDEs in short), Pardoux and Peng [19] introduced the following backward doubly stochastic differential equation (BDSDE in short):

\[
Y_t = \xi + \int_t^T f(s, Y_s, Z_s) \, ds + \int_t^T g(s, Y_s, Z_s) \, \hat{\gamma} B_s - \int_t^T Z_s \, dW_s, \quad 0 \leq t \leq T.
\]

(1.6)

Note that the integral with respect to \(\{ B_t \} \) is a “backward Itô integral” and the integral with respect to \(\{ W_t \} \) is a standard forward Itô integral. These two types of integrals are particular cases of the Itô-Skorohod integral (for details see [15]). Peng and Shi [22] introduced a type of time-symmetric forward-backward stochastic differential equations, i.e., so-called fully coupled forward-backward doubly stochastic differential equations (FBDSEs in short):

\[
\begin{align*}
\begin{cases}
y_t &= x + \int_0^t f(s, y_s, Y_s, z_s, Z_s) \, ds + \int_0^t g(s, y_s, Y_s, z_s, Z_s) \, dW_s - \int_0^t z_s \, \hat{\gamma} B_s, \\
Y_t &= h(y_T) + \int_t^T F(s, y_s, Y_s, z_s, Z_s) \, ds + \int_t^T G(s, y_s, Y_s, z_s, Z_s) \, \hat{\gamma} B_s + \int_t^T Z_s \, dW_s.
\end{cases}
\end{align*}
\]

(1.7)
In FBDSDEs (1.7), the forward equation is “forward” with respect to a standard stochastic integral dW_t, as well as “backward” with respect to a backward stochastic integral dB_t; the coupled “backward equation” is “forward” under the backward stochastic integral $\hat{d}B_t$ and “backward” under the forward one. In other words, both the forward equation and the backward one are types of BDSDE (1.6) with different directions of stochastic integrals. So (1.7) provides a very general framework of fully coupled forward-backward stochastic systems. Peng and Shi [22] proved the existence and uniqueness of solutions to FBDSDEs (1.7) with arbitrarily fixed time duration under some monotone assumptions. FBDSDEs (1.7) can provide a probabilistic interpretation for the solutions of a class of quasilinear SPDEs.

As we have known, stochastic control problem of the SPDEs arising from partial observation control has been studied by Mortensen [9], using a dynamic programming approach, and subsequently by Bensoussan, using a maximum principle method. See [4], [16] and the references therein for more information. Our approach differs from the one of Bensoussan. More precisely, we relate the FBDSDEs to one kind of SPDEs with control variables where the control systems of SPDEs can be transformed to the relevant control systems of FBDSDEs. To our knowledge, this is the first time to treat the optimal control problems of SPDEs from a new perspective of FBDSDEs. It is worth mentioning that the quasilinear SPDEs in [17] Øksendal considered can just be related to our partially coupled FBDSDEs.

Besides, in Section 6 we investigate the nonzero sum stochastic differential game problem. This problem have been considered by Friedman [8], Bensoussan [1] and Eiselle [7]. For stochastic case Hammadene [11] and Wu [27] (for more information see references therein) showed existence result of Nash equilibrium point under some assumptions, respectively. Here, we extend their result to doubly stochastic case in which we can regard the backward filtration as the disturbed information come from outside the "control system".

In this paper, we consider the following fully coupled forward-backward doubly stochastic control system

\[
\begin{align*}
\dot{y}_t &= x + \int_0^t f(s, y_s, Y_s, z_s, Z_s, v_s) \, ds + \int_0^t g(s, y_s, Y_s, z_s, Z_s) \, dW_s - \int_0^t z_s \, \hat{d}B_s, \\
Y_t &= h(y_T) + \int_t^T F(s, y_s, Y_s, z_s, Z_s, v_s) \, ds + \int_t^T G(s, y_s, Y_s, z_s, Z_s) \, d\hat{B}_s + \int_t^T Z_s \, dW_s.
\end{align*}
\]

(1.8)

Our optimal control problem is to minimize the cost function:

\[
J(v(\cdot)) = E \left[\int_0^T l(t, y_t, Y_t, z_t, Z_t, v_t) \, dt + \Phi(Y_T) + \gamma(Y_0) \right]
\]

over an admissible control domain which need not be convex. It is obvious that (1.8) covers (1.3) and (1.5), so (1.8) can describe more intricate control systems. As for the fully coupled forward-backward doubly stochastic control systems such as (1.8) whose diffusion coefficients contain the control variables, this issue will be carried out in our future publications.

The notable difficulties to obtain the maximum principles for the fully coupled forward-backward doubly stochastic control systems within non-convex control domains are how to use the spike variational method to get variational equations with enough high order
estimates and how to use the duality technique to obtain the adjoint equations. On account of the quadruple of variables in the FBDSDEs, we can not directly apply the methods used in [25], [26] and [28]. In this paper, by virtue of the results of FBDSDEs in [22], we can ensure the existence and uniqueness of the solutions for the adjoint FBDSDEs which are obtained by applying the duality technique to the variational equations. Besides, we apply the technique of FBDSDEs to get the enough high order estimates for the solutions of the variational equations.

This paper is organized as follows. In Section 2, we state the problems and some assumptions. In Section 3, we study the variational equations and variational inequalities. In Section 4, a stochastic maximum principle in global form is obtained, subsequently, an example of this kind of control problems is given in this section. As an application, we study the optimal control problem of a kind of SPDEs with control variable by the approach of FBDSDEs in Section 5. Lastly, we give the explicit form of Nash equilibrium point for a kind of stochastic differential game problem.

For the simplicity of notations, we only consider the case where both y and Y are one-dimensional, and the control v is also one-dimensional. While in order to give the general results, we consider the multi-dimensional case in Section 6.

\section{Statement of the problem}

Let (Ω, \mathcal{F}, P) be a complete probability space, and $[0, T]$ be a given time duration throughout this paper. Let $\{W_t; 0 \leq t \leq T\}$ and $\{B_t; 0 \leq t \leq T\}$ be two mutually independent standard Brownian motions defined on (Ω, \mathcal{F}, P), with values respectively in \mathbb{R}^d and in \mathbb{R}^l. Let \mathcal{N} denote the class of P-null elements of \mathcal{F}. For each $t \in [0, T]$, we define

$$\mathcal{F}_t = \mathcal{F}_t^W \vee \mathcal{F}_{t,T}^B$$

where $\mathcal{F}_t^W = \mathcal{N} \vee \sigma \{W_r - W_0; 0 \leq r \leq t\}$, $\mathcal{F}_{t,T}^B = \mathcal{N} \vee \sigma \{B_r - B_t; t \leq r \leq T\}$. Note that the collection $\{\mathcal{F}_t; t \in [0, T]\}$ is neither increasing nor decreasing, and it does not constitute a classical filtration. We introduce the following

Definition 1. A stochastic process $X = \{X_t; t \geq 0\}$ is called \mathcal{F}_t-progressively measurable, if for any $t \geq 0$, X on $\Omega \times [0, t]$ is measurable with respect to $(\mathcal{F}_t^W \times \mathcal{B}([0, t])) \vee (\mathcal{F}_{t,T}^B \times \mathcal{B}([t, T]))$.

Let $M^2(0, T; \mathbb{R}^n)$ denote the space of all (classes of $dP \otimes dt$ a.e. equal) \mathbb{R}^n-valued \mathcal{F}_t-progressively measurable stochastic processes $\{v_t; t \in [0, T]\}$ which satisfy

$$\mathbb{E} \int_0^T |v_t|^2 dt < \infty.$$

Obviously $M^2(0, T; \mathbb{R}^n)$ is a Hilbert space. For a given $u \in M^2(0, T; \mathbb{R}^d)$ and $v \in M^2(0, T; \mathbb{R}^l)$, one can define the (standard) forward Itô’s integral $\int_0^T u_s dW_s$ and the backward Itô’s integral $\int_0^T v_s d\hat{B}_s$. They are both in $M^2(0, T; \mathbb{R})$, (see [14] for details).
Let $L^2(\Omega, \mathcal{F}_T, P; \mathbb{R})$ denote the space of all \mathcal{F}_T-measurable one-valued random variable ξ satisfying $\mathbb{E}|\xi|^2 < \infty$. Under this framework, we consider the following forward-backward doubly stochastic control system.

\[
\begin{cases}
 dy_t = f(t, y_t, Y_t, z_t, Z_t, v_t) \, dt + g(t, y_t, Y_t, z_t, Z_t) \, dW_t - z_t \, dB_t, \\
 dY_t = -F(t, y_t, Y_t, z_t, Z_t, v_t) \, dt - G(t, y_t, Y_t, z_t, Z_t) \, dB_t + Z_t \, dW_t,
\end{cases}
\]

(2.1)

where $(y(\cdot), Y(\cdot), z(\cdot), Z(\cdot), v(\cdot)) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}$, $x \in \mathbb{R}$ is a given constant, $T > 0$,

\[
F : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R},
\]

\[
f : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R},
\]

\[
G : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d,
\]

\[
g : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d,
\]

\[
h : \mathbb{R} \rightarrow \mathbb{R}.
\]

Let \mathcal{U} be a nonempty subset of \mathbb{R}. We define the admissible control set

\[
\mathcal{U}_{ad} = \{ v(\cdot) \in M^2(0, T; \mathbb{R}) ; v_t \in \mathcal{U}, 0 \leq t \leq T, \text{ a.e., a.s.} \}.
\]

Our optimal control problem is to minimize the cost function:

\[
J(v(\cdot)) = \mathbb{E}\left[\int_0^T l(t, y_t, Y_t, z_t, Z_t, v_t) \, dt + \Phi(y_T) + \gamma(Y_0)\right]
\]

(2.2)

over \mathcal{U}_{ad}, where

\[
l : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R},
\]

\[
\Phi : \mathbb{R} \rightarrow \mathbb{R},
\]

\[
\gamma : \mathbb{R} \rightarrow \mathbb{R}.
\]

An admissible control $v(\cdot)$ is called an optimal control if it attains the minimum over \mathcal{U}_{ad}. That is to say, we want to find a $v(\cdot)$ such that

\[
J(v(\cdot)) = \inf_{v(\cdot) \in \mathcal{U}_{ad}} J(v(\cdot)).
\]

(2.1) is called the state equation, the solution (y_t, Y_t, z_t, Z_t) corresponding to $v(\cdot)$ is called the optimal trajectory.

Next we will give some notations:

\[
\zeta = \begin{pmatrix} Y \\ Z \end{pmatrix}, \quad A(t, \zeta) = \begin{pmatrix} -F & f \\ -G & g \end{pmatrix} (t, \zeta).
\]

We use the usual inner product $\langle \cdot, \cdot \rangle$ and Euclidean norm $|\cdot|$ in \mathbb{R}, \mathbb{R}^d and \mathbb{R}^d. All the equalities and inequalities mentioned in this paper are in the sense of $dt \otimes dP$ almost surely on $[0, T] \times \Omega$. We assume that
(H1) For each $\zeta \in \mathbb{R}^{1+1+t+d}$, $A(\cdot, \zeta)$ is an \mathcal{F}_t-measurable process defined on $[0, T]$ with $A(\cdot, 0) \in M^2(0, T; \mathbb{R}^{1+1+t+d})$.

(H2) $A(t, \zeta)$ and $h(y)$ satisfy Lipschitz conditions: there exists a constant $k > 0$, such that
\[
\begin{align*}
 &|A(t, \zeta) - A(t, \tilde{\zeta})| \leq k |\zeta - \tilde{\zeta}|, \\
 &h(y) - h(\tilde{y})| \leq k |y - \tilde{y}|, \quad \forall y, \tilde{y} \in \mathbb{R}.
\end{align*}
\]

The following monotonic conditions introduced in [17], are the main assumptions in this paper.

(H3) \[
\begin{array}{l}
\langle A(t, \zeta) - A(t, \tilde{\zeta}), \zeta - \tilde{\zeta} \rangle \leq -\mu |\zeta - \tilde{\zeta}|^2, \\
\langle h(y) - h(\tilde{y}), y - \tilde{y} \rangle \geq 0, \forall y, \tilde{y} \in \mathbb{R},
\end{array}
\]
or

(H3)' \[
\begin{array}{l}
\langle A(t, \zeta) - A(t, \tilde{\zeta}), \zeta - \tilde{\zeta} \rangle \geq \mu |\zeta - \tilde{\zeta}|^2, \\
\langle h(y) - h(\tilde{y}), y - \tilde{y} \rangle \leq 0, \forall y, \tilde{y} \in \mathbb{R},
\end{array}
\]
where μ is a positive constant.

Proposition 2. For any given admissible control $\nu(t)$, we assume (H1), (H2) and (H3) (or (H1), (H2) and (H3)') hold. Then FBDSDE (2.1) has a unique solution $(y_t, Y_t, z_t, Z_t) \in M^2(0, T; \mathbb{R}^{1+1+t+d})$.

The proof is referred to [17]. We need a farther assumption as follows:

(H4) $F, f, G, g, h, l, \Phi, \gamma$ are continuously differentiable with respect to $(y, Y, z, Z), y$ and Y. They and all their derivatives are bounded by a constant C.

Lastly, we need the following extension of Itô's formula (for details see [14]).

Proposition 3. Let
\[
\alpha \in S^2(0, T; \mathbb{R}^k), \beta \in M^2(0, T; \mathbb{R}^k), \gamma \in M^2(0, T; \mathbb{R}^{k+l}), \delta \in M^2(0, T; \mathbb{R}^{k+d})
\]
satisfy:
\[
\alpha_t = \alpha_0 + \int_0^t \beta_s ds + \int_0^t \gamma_s d\mathbb{B}_s + \int_0^t \delta_s dW_s, \quad 0 \leq t \leq T.
\]

Then
\[
|\alpha_t|^2 = |\alpha_0|^2 + 2 \int_0^t (\alpha_s, \beta_s) ds + 2 \int_0^t (\alpha_s, \gamma_s d\mathbb{B}_s) + 2 \int_0^t (\alpha_s, \delta_s dW_s)
\]
\[
- \int_0^t |\gamma_s|^2 ds + \int_0^t |\delta_s|^2 ds,
\]
\[
\mathbb{E} |\alpha_t|^2 = \mathbb{E} |\alpha_0|^2 + 2 \mathbb{E} \int_0^t (\alpha_s, \beta_s) ds - \mathbb{E} \int_0^t |\gamma_s|^2 ds + \mathbb{E} \int_0^t |\delta_s|^2 ds.
\]
Here \(S^2 (0, T; \mathbb{R}^k) \) denotes the space of (classes of \(dP \otimes dt \) a.e. equal) all \(\mathcal{F}_t \)-progressively measurable \(k \)-dimensional processes \(v \) with
\[
\mathbb{E} \left(\sup_{0 \leq t \leq T} |v_t|^2 \right) < \infty.
\]

3 Variational equations and variational inequalities

Suppose \((y_t, Y_t, z_t, Z_t, u_t)\) is the solution to our optimal control problem. We introduce the following spike variational control:
\[
u^\varepsilon_t = \begin{cases} v, & \tau \leq t \leq \tau + \varepsilon, \\ u_t, & \text{otherwise}, \end{cases}
\]
where \(\varepsilon > 0 \) is sufficiently small, \(\tau \in [0, T] \). \(v \) is an arbitrary \(\mathcal{F}_\tau \)-measurable random variable with values in \(\mathcal{U} \), \(0 \leq t \leq T \), and \(\sup_{\omega \in \Omega} |v(\omega)| < \infty \). Let \((y^\varepsilon_t, Y^\varepsilon_t, z^\varepsilon_t, Z^\varepsilon_t)\) be the trajectory of the control system (2.1) corresponding to the control \(u^\varepsilon_t \).

For convenience, we use the following notations in this paper:
\[
\Xi_y = \Xi_y(t, y_t, Y_t, z_t, Z_t, u_t), \\
\Xi_y(u^\varepsilon_t) = \Xi_y(t, y_t, Y_t, z_t, Z_t, u^\varepsilon_t), \\
\Xi(u_t) = \Xi(t, y_t, Y_t, z_t, Z_t, u_t), \\
\Xi(u^\varepsilon_t) = \Xi(t, y_t, Y_t, z_t, Z_t, u^\varepsilon_t), \\
\text{etc},
\]
where \(\Xi = f, F, g, G \), respectively. We introduce the following variational equations:
\[
\begin{cases}
\mathrm{d}y^1_t = \left[f y^1_t + f_y Y^1_t + f_z z^1_t + f_Z Z^1_t + f (u^\varepsilon_t) - f (u_t) \right] \mathrm{d}t \\
\quad + \left[g y^1_t + g_y Y^1_t + g_z z^1_t + g_Z Z^1_t \right] \mathrm{d}W_t - z^1_t \mathrm{d}B_t, \\
y^1_0 = 0, \\
\mathrm{d}Y^1_t = - \left[F y^1_t + F_y Y^1_t + F_z z^1_t + F_Z Z^1_t + F (u^\varepsilon_t) - F (u_t) \right] \mathrm{d}t \\
\quad - \left[G y^1_t + G_y Y^1_t + G_z z^1_t + G_Z Z^1_t \right] \mathrm{d}B_t + Z^1_t \mathrm{d}W_t, \\
Y^1_T = h_y (y_T) y^1_T.
\end{cases}
\tag{3.1}
\]

Owing to (H4), it is easy to check that the variational equation (3.1) same as (2.1), also satisfies (H1), (H2) and (H3). Thus by Proposition 2, there exists a unique solution \((y^1_t, Y^1_t, z^1_t, Z^1_t) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^l \times \mathbb{R}^d, 0 \leq t \leq T \), satisfying (3.1). The variational inequalities can be derived from the fact \(J \left(u^\varepsilon_{(\cdot)} \right) - J \left(u_{(\cdot)} \right) \geq 0 \). The following lemmas play important roles to establish the inequalities.

Lemma 4. We assume (H1)-(H4) hold. Then we have
\[
\mathbb{E} \int_0^T |y^1_t|^2 \mathrm{d}t \leq C \varepsilon, \tag{3.2}
\]
where $C > 0$ is some constant.

Proof. Using the Itô’s formula to $\langle y_1^t, Y_1^t \rangle$, it follows that

$$
E \left(|y_T^1|^2 \ h_y (y_T) \right) = E \left(\int_0^T \left(f_{y} y_{t}^1 + f_{Y} Y_{t}^1 + f_{z} z_{t}^1 + f_{Z} Z_{t}^1 \right) d t \right)

- E \left(\int_0^T \left(F_{y} y_{t}^1 + F_{Y} Y_{t}^1 + F_{z} z_{t}^1 + F_{Z} Z_{t}^1 \right) dt \right)

- E \left(\int_0^T \left(G_{y} y_{t}^1 + G_{Y} Y_{t}^1 + G_{z} z_{t}^1 + G_{Z} Z_{t}^1 \right) dt \right)

+ E \left(\int_0^T \left(g_{y} y_{t}^1 + g_{Y} Y_{t}^1 + g_{z} z_{t}^1 + g_{Z} Z_{t}^1 \right) dt \right)

+ E \left(\int_0^T \left(f (u_{t}) - f (u_{t}) \right) dt \right)

- E \left(\int_0^T \left(F (u_{t}) - F (u_{t}) \right) dt \right).

(3.6)

Since (3.1) satisfies the monotonic condition (H3), it is easy to see that

$$
E \left(|y_T^1|^2 \ h_y (y_T) \right) + \mu E \left(\int_0^T \left(|y_{t}^1|^2 + |Y_{t}^1|^2 + |z_{t}^1|^2 + |Z_{t}^1|^2 \right) dt \right)

\leq E \left(\int_0^T \left(f (u_{t}) - f (u_{t}) \right) dt \right) - E \left(\int_0^T \left(F (u_{t}) - F (u_{t}) \right) dt \right)

\leq \frac{1}{\mu} E \left(\int_0^T |f (u_{t}) - f (u_{t})|^2 dt \right) + \frac{\mu}{4} E \left(\int_0^T |Y_{t}^1|^2 dt \right)

+ \frac{1}{\mu} E \left(\int_0^T |F (u_{t}) - F (u_{t})|^2 dt \right) + \frac{\mu}{4} E \left(\int_0^T |y_{t}^1|^2 dt \right).

(3.7)

From (H4) and (3.7), it is easy to know that (3.2)-(3.5) hold. The proof is complete. \qed
However, the order of the estimate for \((y_t^1, Y_t^1, z_t^1, Z_t^1)\) is too low to get the variational inequalities. We need to give some more elaborate estimates. For that, we firstly give the following lemma.

Lemma 5. Assuming (H1)-(H4) hold, then we have

\[
\sup_{0 \leq t \leq T} \left(\mathbb{E} \left| y_t^1 \right|^2 \right) \leq C \varepsilon, \tag{3.8}
\]

\[
\sup_{0 \leq t \leq T} \left(\mathbb{E} \left| Y_t^1 \right|^2 \right) \leq C \varepsilon. \tag{3.9}
\]

Proof. Squaring both sides of

\[
y_t^1 + \int_0^t z_s^1 \, dB_s = \int_0^t \left(f_y y_t^1 + f_Y Y_s^1 + f_z z_s^1 + f_Z Z_s^1 + f(u_s^\varepsilon) - f(u_s) \right) \, ds
\]

\[
+ \int_0^t (g_y y_t^1 + g_Y Y_s^1 + g_z z_s^1 + g_Z Z_s^1) \, dW_s,
\]

noting that

\[
\mathbb{E} \left[y_t^1 \int_0^t z_s^1 \, dB_s \right] = \mathbb{E} \left[\mathbb{E}^{F_t} \left(y_t^1 \int_0^t z_s^1 \, dB_s \right) \right] = \mathbb{E} \left[y_t^1 \mathbb{E}^{F_t} \left(\int_0^t z_s^1 \, dB_s \right) \right] = 0,
\]

we have

\[
\mathbb{E} \left| y_t^1 \right|^2 + \mathbb{E} \int_0^t \left| z_s^1 \right|^2 \, ds
\]

\[
= \mathbb{E} \left[\int_0^t \left(f_y y_t^1 + f_Y Y_s^1 + f_z z_s^1 + f_Z Z_s^1 + f(u_s^\varepsilon) - f(u_s) \right) \, ds
\]

\[
+ \int_0^t (g_y y_t^1 + g_Y Y_s^1 + g_z z_s^1 + g_Z Z_s^1) \, dW_s \right]^2
\]

\[
\leq C \mathbb{E} \int_0^t \left(\left| y_s^1 \right|^2 + \left| Y_s^1 \right|^2 + \left| z_s^1 \right|^2 + \left| Z_s^1 \right|^2 \right) \, ds
\]

\[
+ C \mathbb{E} \left(\int_0^t (f(u_s^\varepsilon) - f(u_s)) \, ds \right)^2.
\]

Thus

\[
\sup_{0 \leq t \leq T} \left(\mathbb{E} \left| y_t^1 \right|^2 \right) \leq C \varepsilon.
\]

By the similar argument, we can have

\[
\sup_{0 \leq t \leq T} \left(\mathbb{E} \left| Y_t^1 \right|^2 \right) \leq C \varepsilon.
\]

The proof is complete. □
Lemma 6. Assuming (H1)-(H4) hold, then we have

\[
E \left(\sup_{0 \leq t \leq T} |y_t^1|^2 \right) \leq C \varepsilon, \tag{3.10}
\]

\[
E \left(\sup_{0 \leq t \leq T} |Y_t^1|^2 \right) \leq C \varepsilon. \tag{3.11}
\]

Proof. Squaring both sides of

\[
y_t^1 = \int_0^t \left(f_y y_s^1 + f_Y Y_s^1 + f_z z_s^1 + f_Z Z_s^1 + f (u_s^\varepsilon) - f (u_s) \right) ds
+ \int_0^t \left(g_y y_s^1 + g_Y Y_s^1 + g_z z_s^1 + g_Z Z_s^1 \right) dW_s - \int_0^t z_s^1 d\hat{B}_s,
\]

we have

\[
|y_t^1|^2 \leq 3 \left(\int_0^t \left(f_y y_s^1 + f_Y Y_s^1 + f_z z_s^1 + f_Z Z_s^1 + f (u_s^\varepsilon) - f (u_s) \right) ds \right)^2
+ 3 \left(\int_0^t \left(g_y y_s^1 + g_Y Y_s^1 + g_z z_s^1 + g_Z Z_s^1 \right) dW_s \right)^2
+ 3 \left(\int_0^t z_s^1 d\hat{B}_s \right)^2
\]

\[
\leq 3t \int_0^t \left(f_y y_s^1 + f_Y Y_s^1 + f_z z_s^1 + f_Z Z_s^1 + f (u_s^\varepsilon) - f (u_s) \right)^2 ds
+ 3 \left(\int_0^t \left(g_y y_s^1 + g_Y Y_s^1 + g_z z_s^1 + g_Z Z_s^1 \right) dW_s \right)^2
+ 3 \left(\int_0^t z_s^1 d\hat{B}_s \right)^2
\]

\[
\leq C \int_0^t \left[|y_s^1|^2 + |Y_s^1|^2 + |z_s^1|^2 + |Z_s^1|^2 + |f (u_s^\varepsilon) - f (u_s)|^2 \right] ds
+ 3 \left(\int_0^t \left(g_y y_s^1 + g_Y Y_s^1 + g_z z_s^1 + g_Z Z_s^1 \right) dW_s \right)^2
+ 6 \left(\int_0^t z_s^1 d\hat{B}_s \right)^2,
\]

then

\[
\sup_{0 \leq t \leq T} |y_t^1|^2 \leq C \int_0^T \left[|y_s^1|^2 + |Y_s^1|^2 + |z_s^1|^2 + |Z_s^1|^2 + |f (u_s^\varepsilon) - f (u_s)|^2 \right] ds + 6 \left(\int_0^T z_s^1 d\hat{B}_s \right)^2
+ 3 \sup_{0 \leq t \leq T} \left(\int_0^t \left(g_y y_s^1 + g_Y Y_s^1 + g_z z_s^1 + g_Z Z_s^1 \right) dW_s \right)^2
+ 3 \sup_{0 \leq t \leq T} \left(\int_0^t z_s^1 d\hat{B}_s \right)^2
\]

\[
\leq C \int_0^T \left[|y_s^1|^2 + |Y_s^1|^2 + |z_s^1|^2 + |Z_s^1|^2 + |f (u_s^\varepsilon) - f (u_s)|^2 \right] ds + 6 \left(\int_0^T z_s^1 d\hat{B}_s \right)^2
+ 3 \left(\sup_{0 \leq t \leq T} \int_0^t \left(g_y y_s^1 + g_Y Y_s^1 + g_z z_s^1 + g_Z Z_s^1 \right) dW_s \right)^2
+ 3 \left(\sup_{0 \leq t \leq T} \int_0^t z_s^1 d\hat{B}_s \right)^2,
\]

11
where $C > 0$ is some constant. Hereafter, C will be some generic constant, which can be different from line to line. Taking expectation, by B-D-G inequality and Hölder inequality, it follows that

$$
E \left(\sup_{0 \leq t \leq T} |y_t|^2 \right) \leq C E \int_0^T \left[|y_s|^2 + |Y_s|^2 + |z_s|^2 + |Z_s|^2 + |f(u_s^\varepsilon) - f(u_s)|^2 \right] ds + 6 C \int_0^T |z_s|^2 ds \\
+ CE \int_0^T \left[g_s y_s + g_Y Y_s + g_z z_s + g_Z Z_s \right]^2 ds + CE \int_0^T |z_s|^2 ds
$$

Thus

$$
E \left(\sup_{0 \leq t \leq T} |y_t|^2 \right) \leq C E \int_0^T \left[|y_s|^2 + |Y_s|^2 + |z_s|^2 + |Z_s|^2 \right] ds + CE \int_0^T |f(u_s^\varepsilon) - f(u_s)|^2 ds.
$$

From Lemma 4, (3.10) holds. By the similar argument, we can prove (3.11). Squaring both sides of

$$
Y_t^1 = h_y(y_t) y_T^1 + \int_t^T (F_y y_s^1 + F_Y Y_s^1 + F_z z_s^1 + F_Z Z_s^1 + F(u_s^\varepsilon) - F(u_s)) ds \\
+ \int_t^T (G_y y_s^1 + G_Y Y_s^1 + G_z z_s^1 + G_Z Z_s^1) dB_s - \int_t^T Z_s^1 dW_s,
$$

it follows that

$$
|Y_t^1|^2 \leq 5 |h_y(y_T) y_T^1|^2 + 5 \left(\int_t^T \left(F_y y_s^1 + F_Y Y_s^1 + F_z z_s^1 + F_Z Z_s^1 + F(u_s^\varepsilon) - F(u_s) \right) ds \right)^2
$$

$$
+ 5 \left(\int_t^T \left(G_y y_s^1 + G_Y Y_s^1 + G_z z_s^1 + G_Z Z_s^1 \right) dB_s \right)^2 + 5 \left(\int_0^T Z_s^1 dW_s \right)^2 + 5 \left(\int_0^T Z_s^1 dW_s \right)^2.
$$

Thus

$$
\sup_{0 \leq t \leq T} |Y_t^1|^2 \leq 5 |h_y(y_T) y_T^1|^2 + 5 \left(\int_0^T Z_s^1 dW_s \right)^2 + 5 \sup_{0 \leq t \leq T} \left(\int_0^T Z_s^1 dW_s \right)^2
$$

$$
+ 5 (T - t) \int_t^T \left. F_y y_s^1 + F_Y Y_s^1 + F_z z_s^1 + F_Z Z_s^1 + F(u_s^\varepsilon) - F(u_s) \right|^2 ds
$$

$$
+ 5 \sup_{0 \leq t \leq T} \left(\int_t^T \left(G_y y_s^1 + G_Y Y_s^1 + G_z z_s^1 + G_Z Z_s^1 \right) dB_s \right)^2.
$$

Taking expectation and by B-D-G inequality, it follows that

$$
E \left(\sup_{0 \leq t \leq T} |Y_t^1|^2 \right) \leq 5 E \left| h_y(y_T) y_T^1 \right|^2 + 5 \int_0^T |Z_s|^2 ds + C E \int_0^T |Z_s|^2 ds
$$

$$
+ C E \int_0^T \left(|y_s|^2 + |Y_s|^2 + |z_s|^2 + |Z_s|^2 + |F(u_s^\varepsilon) - F(u_s)|^2 \right) ds
$$

$$
+ C E \int_0^T \left| G_y y_s^1 + G_Y Y_s^1 + G_z z_s^1 + G_Z Z_s^1 \right|^2 ds.
$$
Noting (3.10), from Lemma 4 and Lemma 5, it is easy to see that (3.11) holds. The proof is complete. □

Next, we will give some elaborate estimates for \((y^1_t, Y^1_t, z^1_t, Z^1_t)\) by virtue of the techniques of FBDSDEs.

Lemma 7. Assuming \((H1)-(H4)\) hold, then we have

\[
\mathbb{E} \int_0^T |y^1_t|^2 \, dt \leq C \varepsilon^2, \tag{3.12}
\]

\[
\mathbb{E} \int_0^T |Y^1_t|^2 \, dt \leq C \varepsilon^2, \tag{3.13}
\]

\[
\mathbb{E} \int_0^T |z^1_t|^2 \, dt \leq C \varepsilon^2, \tag{3.14}
\]

\[
\mathbb{E} \int_0^T |Z^1_t|^2 \, dt \leq C \varepsilon^2. \tag{3.15}
\]

Proof. By (3.7), we have

\[
\mathbb{E} \left[|y^\varepsilon_T|^2 h_y(y_T) \right] + \mu \mathbb{E} \int_0^T \left(|y^1_t|^2 + |Y^1_t|^2 + |z^1_t|^2 + |Z^1_t|^2 \right) \, dt \\
\leq \mathbb{E} \int_0^T \left(f(u^\varepsilon_t) - f(u_t) \right) Y^1_t \, dt - \mathbb{E} \int_0^T \left(F(u^\varepsilon_t) - F(u_t) \right) y^1_t \, dt \\
\leq \mathbb{E} \left[\sup_{0 \leq t \leq T} |Y^1_t| \right] \int_0^T |f(u^\varepsilon_t) - f(u_t)| \, dt \\
+ \mathbb{E} \left[\sup_{0 \leq t \leq T} |y^1_t| \right] \int_0^T |F(u^\varepsilon_t) - F(u_t)| \, dt \\
\leq \left[\mathbb{E} \left(\sup_{0 \leq t \leq T} |y^1_t|^2 \right) \right]^{1/2} \left[\mathbb{E} \left(\int_0^T |F(u^\varepsilon_t) - F(u_t)| \, dt \right)^2 \right]^{1/2} \\
+ \left[\mathbb{E} \left(\sup_{0 \leq t \leq T} |Y^1_t|^2 \right) \right]^{1/2} \left[\mathbb{E} \left(\int_0^T |f(u^\varepsilon_t) - f(u_t)| \, dt \right)^2 \right]^{1/2} \\
\leq C \varepsilon^2,
\]

where \(C\) is a sufficiently large positive constant. From (H3), the desired results are obtained. □

In order to obtain variational inequality, we need the following lemma.

Lemma 8. Assuming \((H1)-(H4)\) hold, then we have

\[
\mathbb{E} \int_0^T |y^\varepsilon_t - y_t - y^1_t|^2 \, dt \leq C \varepsilon^2, \tag{3.16}
\]
\[\mathbb{E} \int_0^T |Y_t^\varepsilon - Y_t - Y_t^1|^2 \, dt \leq C\varepsilon^{\frac{3}{2}}, \quad (3.17) \]
\[\mathbb{E} \int_0^T |z_t^\varepsilon - z_t - z_t^1|^2 \, dt \leq C\varepsilon^{\frac{3}{2}}, \quad (3.18) \]
\[\mathbb{E} \int_0^T |Z_t^\varepsilon - Z_t - Z_t^1|^2 \, dt \leq C\varepsilon^{\frac{3}{2}}, \quad (3.19) \]
\[\sup_{0 \leq t \leq T} \left[\mathbb{E} |y_t^\varepsilon - y_t - y_t^1|^2 \right] \leq C\varepsilon^{\frac{3}{2}}, \quad (3.20) \]
\[\sup_{0 \leq t \leq T} \left[\mathbb{E} |Y_t^\varepsilon - Y_t - Y_t^1|^2 \right] \leq C\varepsilon^{\frac{3}{2}}. \quad (3.21) \]

Proof. For notational convenience, we denote

\[\tilde{y}_t = y_t^\varepsilon - y_t - y_t^1, \]
\[\tilde{Y}_t = Y_t^\varepsilon - Y_t - Y_t^1, \]
\[\tilde{z}_t = z_t^\varepsilon - z_t - z_t^1, \]
\[\tilde{Z}_t = Z_t^\varepsilon - Z_t - Z_t^1. \]

We have the following FBDSEs

\[
\begin{align*}
\tilde{y}_t &= \int_0^t \left[\tilde{f}_y \tilde{y}_s + \tilde{f}_Y \tilde{Y}_s + \tilde{f}_z \tilde{z}_s + \tilde{f}_Z \tilde{Z}_s \right] \, ds + \int_0^t V_s^\varepsilon \, ds + \int_0^t H_s \, ds \\
&+ \int_0^t \left[\tilde{g}_y \tilde{y}_s + \tilde{g}_Y \tilde{Y}_s + \tilde{g}_z \tilde{z}_s + \tilde{g}_Z \tilde{Z}_s \right] \, dB_s, \\
\tilde{Y}_t &= h(y_T^\varepsilon) - h(y_T + y_T^1) + \int_t^T \left[\tilde{F}_y \tilde{y}_s + \tilde{F}_Y \tilde{Y}_s + \tilde{F}_z \tilde{z}_s + \tilde{F}_Z \tilde{Z}_s \right] \, ds \\
&+ \int_t^T \left[\tilde{G}_y \tilde{y}_s + \tilde{G}_Y \tilde{Y}_s + \tilde{G}_z \tilde{z}_s + \tilde{G}_Z \tilde{Z}_s \right] \, dB_s + \int_t^T \tilde{V}_s^\varepsilon \, ds + \int_t^T \tilde{H}_s \, ds \\
&+ \int_0^1 \left(h_y(y_T + y_T^1) - h_y(y_T) \right) y_t^1 \, d\lambda - \int_t^T \tilde{Z}_s \, dW_s,
\end{align*}
\]

where

\[
\begin{align*}
\tilde{f}_y &= \int_0^1 f_y \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s, u_s^\varepsilon \right) \, d\lambda, \\
\tilde{f}_Y &= \int_0^1 f_Y \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s, u_s^\varepsilon \right) \, d\lambda, \\
\tilde{f}_z &= \int_0^1 f_z \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s, u_s^\varepsilon \right) \, d\lambda, \\
\tilde{f}_Z &= \int_0^1 f_Z \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s, u_s^\varepsilon \right) \, d\lambda,
\end{align*}
\]
\[\tilde{F}_y = \int_0^1 F_y \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s, u_s^\varepsilon \right) d\lambda, \]
\[\tilde{F}_Y = \int_0^1 F_Y \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s, u_s^\varepsilon \right) d\lambda, \]
\[\tilde{F}_z = \int_0^1 F_z \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s, u_s^\varepsilon \right) d\lambda, \]
\[\tilde{F}_Z = \int_0^1 F_Z \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s, u_s^\varepsilon \right) d\lambda, \]
\[\tilde{g}_y = \int_0^1 g_y \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s \right) d\lambda, \]
\[\tilde{g}_Y = \int_0^1 g_Y \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s \right) d\lambda, \]
\[\tilde{g}_z = \int_0^1 g_z \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s \right) d\lambda, \]
\[\tilde{g}_Z = \int_0^1 g_Z \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s \right) d\lambda, \]
\[\tilde{G}_y = \int_0^1 G_y \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s \right) d\lambda, \]
\[\tilde{G}_Y = \int_0^1 G_Y \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s \right) d\lambda, \]
\[\tilde{G}_z = \int_0^1 G_z \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s \right) d\lambda, \]
\[\tilde{G}_Z = \int_0^1 G_Z \left(y_s + y_s^1 + \lambda \tilde{y}_s, Y_s + Y_s^1 + \lambda \tilde{Y}_s, z_s + z_s^1 + \lambda \tilde{z}_s, Z_s + Z_s^1 + \lambda \tilde{Z}_s \right) d\lambda, \]
\[V_s^\varepsilon = \int_0^1 \left[f_y \left(y_s + \lambda y_s^1, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1, u_s^\varepsilon \right) - f_y \right] y_s^1 d\lambda \]
\[+ \int_0^1 \left[f_Y \left(y_s + \lambda y_s^1, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1, u_s^\varepsilon \right) - f_Y \right] Y_s^1 d\lambda \]
\[+ \int_0^1 \left[f_Z \left(y_s + \lambda y_s^1, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1, u_s^\varepsilon \right) - f_Z \right] z_s^1 d\lambda \]
\[+ \int_0^1 \left[f_Z \left(y_s + \lambda y_s^1, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1, u_s^\varepsilon \right) - f_Z \right] Z_s^1 d\lambda, \]
\[H_s = \int_0^1 \left[g_y (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1) - g_y \right] y_s^1 \lambda \, d\lambda \\
+ \int_0^1 \left[g_Y (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1) - g_Y \right] Y_s^1 \lambda \, d\lambda \\
+ \int_0^1 \left[g_z (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1) - g_z \right] z_s^1 \lambda \, d\lambda \\
+ \int_0^1 \left[g_Z (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1) - g_Z \right] Z_s^1 \lambda \, d\lambda. \]

\[\tilde{V}_s^\varepsilon = \int_0^1 \left[F_y (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1, u_s^\varepsilon) - F_y \right] y_s^1 \lambda \, d\lambda \\
+ \int_0^1 \left[F_Y (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1, u_s^\varepsilon) - F_Y \right] Y_s^1 \lambda \, d\lambda \\
+ \int_0^1 \left[F_z (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1, u_s^\varepsilon) - F_z \right] z_s^1 \lambda \, d\lambda \\
+ \int_0^1 \left[F_Z (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1, u_s^\varepsilon) - F_Z \right] Z_s^1 \lambda \, d\lambda. \]

\[\tilde{H}_s = \int_0^1 \left[G_y (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1) - G_y \right] y_s^1 \lambda \, d\lambda \\
+ \int_0^1 \left[G_Y (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1) - G_Y \right] Y_s^1 \lambda \, d\lambda \\
+ \int_0^1 \left[G_z (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1) - G_z \right] z_s^1 \lambda \, d\lambda \\
+ \int_0^1 \left[G_Z (y_s + y_s^1 \lambda, Y_s + \lambda Y_s^1, z_s + \lambda z_s^1, Z_s + \lambda Z_s^1) - G_Z \right] Z_s^1 \lambda \, d\lambda. \]

It is easy to check that

\[E \int_0^T \left| \tilde{V}_s^\varepsilon \right|^2 \, ds \leq C\varepsilon^{\frac{3}{4}}, \]

\[E \int_0^T \left| \tilde{H}_s \right|^2 \, ds \leq C\varepsilon^{\frac{3}{4}}, \]

\[E \int_0^T \left| V_s^\varepsilon \right|^2 \, ds \leq C\varepsilon^{\frac{3}{2}}, \]

\[E \int_0^T \left| H_s \right|^2 \, ds \leq C\varepsilon^{\frac{3}{4}}. \]
By Lemma 7, applying Itô’s formula to $\langle \tilde{y}_t, \tilde{Y}_t \rangle$ on $[0, T]$, we get

\[
\mathbb{E} \langle h (y_T^\varepsilon) - h (y_T) - h_y (y_T) y_T^1, y_T^\varepsilon - y_T - y_T^1 \rangle + \mu \mathbb{E} \int_0^T \left[|\tilde{y}_s| \epsilon + |\tilde{Y}_s|^2 + |\tilde{z}_s|^2 + |\tilde{Z}_s|^2 \right] ds \\
\leq - \mathbb{E} \int_0^T \langle \tilde{y}_s, \tilde{V}_s^\varepsilon + \tilde{H}_s \rangle ds + \mathbb{E} \int_0^T \langle \tilde{Y}_s, V_s^\varepsilon + H_s \rangle ds \\
\leq \frac{\mathbb{E} \mu}{2} \int_0^T |\tilde{y}_s|^2 ds + \frac{1}{\mu} \mathbb{E} \int_0^T |\tilde{V}_s|^2 ds + \frac{1}{\mu} \mathbb{E} \int_0^T |\tilde{H}_s|^2 ds \\
+ \frac{\mathbb{E} \mu}{2} \int_0^T |\tilde{Y}_s|^2 ds + \frac{1}{\mu} \mathbb{E} \int_0^T |V_s|^2 ds + \frac{1}{\mu} \mathbb{E} \int_0^T |H_s|^2 ds.
\]

Noting that by means of the same arguments in Lemma 5, from Lemma 7, we easily have

\[
\sup_{0 \leq t \leq T} \left(\mathbb{E} |y_t^1|^2 \right) \leq C \varepsilon^\frac{3}{2}, \\
\sup_{0 \leq t \leq T} \left(\mathbb{E} |Y_t^1|^2 \right) \leq C \varepsilon^\frac{3}{2}.
\]

Thus it is obvious that

\[
\mathbb{E} h (y_T + y_T^1) = \mathbb{E} h (y_T) + \mathbb{E} h_y (y_T) y_T^1 + C \varepsilon^\frac{3}{2},
\]

so by (H3) it follows that

\[
\mathbb{E} \langle h (y_T^\varepsilon) - h (y_T) - h_y (y_T) y_T^1, y_T^\varepsilon - y_T - y_T^1 \rangle \\
= \mathbb{E} \langle h (y_T^\varepsilon) - h (y_T + y_T^1) + C \varepsilon^\frac{3}{2}, y_T^\varepsilon - y_T - y_T^1 \rangle \\
\geq \mathbb{E} (y_T^\varepsilon - y_T - y_T^1) \cdot C \varepsilon^\frac{3}{2},
\]

and

\[
\mathbb{E} \mu \int_0^T \left[\frac{1}{2} |\tilde{y}_s|^2 + \frac{1}{2} |\tilde{Y}_s|^2 + |\tilde{z}_s|^2 + |\tilde{Z}_s|^2 \right] ds \\
\leq \frac{\mathbb{E} \mu}{2} \int_0^T |\tilde{V}_s|^2 ds + \frac{1}{\mu} \mathbb{E} \int_0^T |\tilde{H}_s|^2 ds \\
+ \frac{\mathbb{E} \mu}{2} \int_0^T |V_s|^2 ds + \frac{1}{\mu} \mathbb{E} \int_0^T |H_s|^2 ds - \mathbb{E} (\tilde{y}_T) \cdot C \varepsilon^\frac{3}{2}.
\]

It is not difficult to see that $\mathbb{E} (\tilde{y}_T)$ is bounded. Consequently, from that, (3.16)-(3.19) hold. Further using the similar arguments in Lemma 5, we can obtain (3.20) and (3.21). The proof is complete. \qed
Lemma 9. (Variational inequality) Under the assumptions (H1)-(H4), it holds that

\[\mathbb{E} \int_0^T [l_y y_t^1 + l_Y Y_t^1 + l_z z_t^1 + l_Z Z_t^1 + l (u_t^\varepsilon) - l (u_t)] \, dt + \mathbb{E} [\Phi_y (y_T) y_T^1] + \mathbb{E} [\gamma (Y_0) Y_0^1] \geq o (\varepsilon).\]

(3.22)

Proof. According to the definition of \(u_t^\varepsilon \), we have

\[J (u_t^\varepsilon) \geq J (u_t),\]

moreover

\[\mathbb{E} \int_0^T [l (t, y_t^\varepsilon, Y_t^\varepsilon, z_t^\varepsilon, Z_t^\varepsilon, u_t^\varepsilon) - l (t, y_t, Y_t, z_t, Z_t, u_t)] \, dt + \mathbb{E} [\Phi (y_T^\varepsilon) - \Phi (y_T)] + \mathbb{E} [\gamma (Y_0^\varepsilon) - \gamma (Y_0)] \geq 0,\]

or

\[\mathbb{E} \int_0^T [l (t, y_t^\varepsilon, Y_t^\varepsilon, z_t^\varepsilon, Z_t^\varepsilon, u_t^\varepsilon) - l (t, y_t + y_t^1, Y_t + Y_t^1, z_t + z_t^1, Z_t + Z_t^1, u_t^\varepsilon)] \, dt + \mathbb{E} [\Phi (y_T^\varepsilon) - \Phi (y_T + y_T^1)] + \mathbb{E} [\Phi (y_T + y_T^1) - \Phi (y_T)] + \mathbb{E} [\gamma (Y_0^\varepsilon) - \gamma (Y_0 + Y_T^1)] + \mathbb{E} [\gamma (Y_0 + Y_T^1) - \gamma (Y_0)] \geq 0.\]

By Lemma 8, it follows that

\[\mathbb{E} \int_0^T [l (t, y_t^\varepsilon, Y_t^\varepsilon, z_t^\varepsilon, Z_t^\varepsilon, u_t^\varepsilon) - l (t, y_t + y_t^1, Y_t + Y_t^1, z_t + z_t^1, Z_t + Z_t^1, u_t^\varepsilon)] \, dt + \mathbb{E} [\Phi (y_T^\varepsilon) - \Phi (y_T + y_T^1)] + \mathbb{E} [\gamma (Y_0^\varepsilon) - \gamma (Y_0 + Y_T^1)] \leq C \varepsilon^{\frac{3}{2}},\]
\[
0 \leq \mathbb{E} \int_{0}^{T} \left[l(t, y_t + y'_t, Y_t + Y'_t, z_t + z'_t, Z_t + Z'_t, u'_t) - l(t, y_t, Y_t, z_t, Z_t, u_t) \right] dt \\
+ \mathbb{E} \left[\Phi(y_T + y'_T) - \Phi(y_T) \right] + \mathbb{E} \left[\gamma (Y_0 + Y'_0) - \gamma (Y_0) \right] + C \varepsilon \frac{3}{2}
\]

\[
= \mathbb{E} \int_{0}^{T} \left[l(t, y_t + y'_t, Y_t + Y'_t, z_t + z'_t, Z_t + Z'_t, u'_t) - l(t, y_t, Y_t, z_t, Z_t, u_t) \right] dt \\
+ \mathbb{E} \left[\Phi(y_T + y'_T) - \Phi(y_T) \right] + \mathbb{E} \left[\gamma (Y_0 + Y'_0) - \gamma (Y_0) \right] + C \varepsilon \frac{3}{2}
\]

\[
= \mathbb{E} \int_{0}^{T} \left[l y'_t + lY'_t + l z'_t + lZ'_t \right] dt + \mathbb{E} \int_{0}^{T} \left[l (u'_t) - l (u_t) \right] dt \\
+ \mathbb{E} \left[\Phi(y_T + y'_T) - \Phi(y_T) \right] + \mathbb{E} \left[\gamma (Y_0 + Y'_0) - \gamma (Y_0) \right] + C \varepsilon \frac{3}{2}
\]

\[
\leq \mathbb{E} \int_{0}^{T} \left[l y'_t + lY'_t + l z'_t + lZ'_t \right] dt + \mathbb{E} \int_{0}^{T} \left[l (u'_t) - l (u_t) \right] dt \\
+ \mathbb{E} \left[\sup_{0 \leq t \leq T} |y'_t| \right] \mathbb{E} \left[\int_{0}^{T} \left| \Phi(y_T + y'_T) - \Phi(y_T) \right| dt \right] \\
+ \mathbb{E} \left[\sup_{0 \leq t \leq T} |Y'_t| \right] \mathbb{E} \left[\int_{0}^{T} \left| Y (u'_t) - Y (u_t) \right| dt \right] \\
+ \mathbb{E} \left[\Phi(y_T + y'_T) - \Phi(y_T) \right] + \mathbb{E} \left[\gamma (Y_0 + Y'_0) - \gamma (Y_0) \right] + C \varepsilon \frac{3}{2}
\]

\[
\leq \mathbb{E} \int_{0}^{T} \left[l y'_t + lY'_t + l z'_t + lZ'_t \right] dt + \mathbb{E} \int_{0}^{T} \left[l (u'_t) - l (u_t) \right] dt \\
+ \mathbb{E} \left[\sup_{0 \leq t \leq T} |y'_t| \right]^2 \mathbb{E} \left[\int_{0}^{T} \left| \Phi(y_T + y'_T) - \Phi(y_T) \right|^2 dt \right]^{\frac{1}{2}} \\
+ \mathbb{E} \left[\sup_{0 \leq t \leq T} |Y'_t| \right]^2 \mathbb{E} \left[\int_{0}^{T} \left| Y (u'_t) - Y (u_t) \right|^2 dt \right]^{\frac{1}{2}} \\
+ \mathbb{E} \left[\Phi(y_T + y'_T) - \Phi(y_T) \right] + \mathbb{E} \left[\gamma (Y_0 + Y'_0) - \gamma (Y_0) \right] + C \varepsilon \frac{3}{2}
\]

\[
= \mathbb{E} \int_{0}^{T} \left[l y'_t + lY'_t + l z'_t + lZ'_t + l (u'_t) - l (u_t) \right] dt \\
+ \mathbb{E} \left[\Phi(y_T + y'_T) \right] + \mathbb{E} \left[\gamma (Y_0 + Y'_0) \right] + C \varepsilon \frac{3}{2}
\]
From that, the desired result is obtained. □

4 The maximum principle in global form

We introduce the adjoint equations by virtue of dual technique and Hamilton function for our control problem. From the variational inequality obtained in Lemma 9, the maximum principle can be proved by means of Itô’s formula. The adjoint equations are as follows: (4.1)

\[
\begin{aligned}
\frac{dp_t}{dt} &= (F_Y p_t - f_Y q_t + G_Y k_t - g_Y h_t - l_Y)dt \\
&+ (F_Z p_t - f_Z q_t + G_Z k_t - g_Z h_t - l_Z)dW_t - k_t \hat{d}B_t, \\
\frac{dq_t}{dt} &= (F_y p_t - f_y q_t + G_y k_t - g_y h_t - l_y)dt \\
&+ (F_z p_t - f_z q_t + G_z k_t - g_z h_t - l_z)\hat{d}B_t + h_t dW_t, \\
p_0 &= -\gamma_y (Y_0), \\
q_T &= -h_y (y_T) P_T + \Phi_y (y_T), \\
&\quad 0 \leq t \leq T,
\end{aligned}
\]

where \((p_i), (q_i), (k_i), (h_i)\) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^l \times \mathbb{R}^d\). It is easy to verify that FBDSDE (4.1) satisfies (H1), (H2) and (H3)*. From Proposition 2, we know that (4.1) has a unique solution \((p(\cdot), q(\cdot), k(\cdot), h(\cdot)) \in M^2 (0, T; \mathbb{R} \times \mathbb{R} \times \mathbb{R}^l \times \mathbb{R}^d)\). Now we define the Hamilton function as follows:

\[
H(t, y, Y, Z, v, p, q, k, h) \doteq \langle q, f(t, y, Y, Z, v) \rangle - \langle p, F(t, y, Y, Z, v) \rangle \\
- \langle k, G(t, y, Y, Z) \rangle + \langle h, g(t, y, Y, Z) \rangle \\
+ l(t, y, Y, Z, v),
\]

(4.2)

where \(H : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^l \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^l \times \mathbb{R}^d \to \mathbb{R}\). (4.1) can be rewritten as

\[
\begin{aligned}
\frac{dp_t}{dt} &= -H_Y dt - H_Z dW_t - k_t \hat{d}B_t, \\
\frac{dq_t}{dt} &= -H_y dt - H_z \hat{d}B_t + h_t dW_t, \\
p_0 &= -\gamma_y (Y_0), \\
q_T &= -h_y (y_T) P_T + \Phi_y (y_T), \\
&\quad 0 \leq t \leq T.
\end{aligned}
\]

(4.3)

From Lemma 9 and (4.2), we can obtain the main result in this paper.

Theorem 10. Suppose (H1)-(H4) hold. Let \((y(\cdot), Y(\cdot), z(\cdot), Z(\cdot), u(\cdot))\) be an optimal control and its corresponding trajectory of (2.1), \((p(\cdot), q(\cdot), k(\cdot), h(\cdot))\) be the corresponding solution of (4.1). Then the maximum principle holds, that is

\[
\begin{aligned}
H(t, y_t, Y_t, z_t, Z_t, v, p_t, q_t, k_t, h_t) \\
\geq H(t, y_t, Y_t, z_t, Z_t, u_t, p_t, q_t, k_t, h_t),
\end{aligned}
\]

\forall v \in U, \ a.e, \ a.s..

(4.4)
Proof. By applying Itô's formula to \(\langle p_t, Y^1_t \rangle + \langle q_t, y^1_t \rangle \), and noting the variational equation (3.1), the adjoint equation (4.1) and the variational inequality (3.22), we get
\[
\begin{align*}
\mathbb{E} \left[\Phi(y_T) y_T^1 \right] &= \mathbb{E} \left[\gamma_Y (Y_0) Y_0^1 \right] \\
+ \mathbb{E} \int_0^T \left[l_y y_t^1 + l_y Y_t^1 + l_z z_t^1 + l_z Z_t^1 + l (u_t^1) - l (u_t) \right] dt \\
&= \mathbb{E} \int_0^T \left[H \left(t, y_t, Y_t, z_t, Z_t, u_t^1, p_t, q_t, k_t, h_t \right) - H \left(t, y_t, Y_t, z_t, Z_t, u_t, p_t, q_t, k_t, h_t \right) \right] dt \\
&\geq o(\varepsilon).
\end{align*}
\]
Since \(\varepsilon > 0 \) can be arbitrarily small, from the above inequality, (4.4) can be easily obtained. The proof is complete. \(\Box \)

In the last part of this section, we provide a concrete example of forward-backward doubly stochastic LQ control problems. We give the explicit optimal control and validate our major theoretical results in Theorem 10.

Example 11. Let the control domain be \(U = [-1, 1] \). Consider the following linear forward-backward doubly stochastic control system which is a simple case of (2.1). We assume that \(l = d = 1 \).
\[
\begin{align*}
dy_t &= (z_t - Z_t + v_t) \, dW_t - z_t \, dB_t, \\
dY_t &= - (z_t + Z_t + v_t) \, dB_t + Z_t \, dW_t, \\
y_0 &= 0, \quad Y_T = 0, \quad t \in [0, T],
\end{align*}
\]
where \(T > 0 \) is a given constant and the cost function is
\[
J(v_{(\cdot)}) = \frac{1}{2} \mathbb{E} \int_0^T \left(y_t^2 + Y_t^2 + z_t^2 + Z_t^2 + v_t^2 \right) dt + \frac{1}{2} \mathbb{E} y_T^2 + \frac{1}{2} \mathbb{E} Y_T^2. \tag{4.6}
\]

Note that (4.5) are a linear control system. According to the existence and uniqueness for (4.5), it is straightforward to know the optimal control is \(u_{(\cdot)} \equiv 0 \), with the corresponding optimal state trajectory \((y_t, Y_t, z_t, Z_t) \equiv 0 \), \(t \in [0, T] \). Notice that the adjoint equation associated with the optimal quadruple \((y_t, Y_t, z_t, Z_t) \equiv 0 \) are
\[
\begin{align*}
dp_t &= -Y_t dt + (k_t - Z_t) \, dW_t - k_t \, dB_t, \\
dq_t &= -y_t dt + (k_t - z_t) \, dB_t + h_t \, dW_t, \\
p_0 &= 0, \quad q_0 = 0, \quad t \in [0, T].
\end{align*}
\]
Obviously, \((p_t, q_t, k_t, h_t) \equiv 0 \) is the unique solution of (4.7). Instantly, we give the Hamilton function is
\[
H \left(t, y_t, Y_t, z_t, Z_t, v, p_t, q_t, k_t, h_t \right) = \frac{1}{2} \left(y_t^2 + Y_t^2 + z_t^2 + Z_t^2 + v^2 \right) \\
- k_t \left(z_t + Z_t + v \right) \\
+ h_t \left(z_t - Z_t + v \right) \\
= \frac{1}{2} v^2.
\]
\[21\]
It is clear that, for any \(v \in \mathcal{U} \), we always have
\[
H(t, y_t, Y_t, z_t, Z_t, v, p_t, q_t, k_t, h_t) \geq H(t, y_t, Y_t, z_t, Z_t, u_t, p_t, q_t, k_t, h_t) = 0, \quad \text{a.e, a.s.}
\]

5 Applications to optimal control problems of stochastic partial differential equations

Let us first give some notations from [14]. For convenience, all the variables in this section are one-dimensional. From now on \(C^k(\mathbb{R}; \mathbb{R}) \), \(C^k_{l,b}(\mathbb{R}; \mathbb{R}) \), \(C^k_p(\mathbb{R}; \mathbb{R}) \) will denote respectively the set of functions of class \(C^k \) from \(\mathbb{R} \) into \(\mathbb{R} \), the set of those functions of class \(C^k \) whose partial derivatives of order less than or equal to \(k \) are bounded (and hence the function itself grows at most linearly at infinity), and the set of those functions of class \(C^k \) which, together with all their partial derivatives of order less than or equal to \(k \), grow at most like a polynomial function of the variable \(x \) at infinity. We consider the following quasilinear SPDEs with control variable:

\[
\begin{cases}
 u(t, x) = \tilde{h}(x) + \int_t^T [L u(s, x) + f(s, x, u(s, x), (\nabla u \sigma)(s, x), v_s)] \, ds \\
 \quad + \int_t^T g(s, x, u(s, x), (\nabla u \sigma)(s, x)) \, dB_s, \quad 0 \leq t \leq T,
\end{cases}
\]

(5.1)

where \(u : [0, T] \times \mathbb{R} \to \mathbb{R} \) and \(\nabla u(s, x) \) denotes the first order derivative of \(u(s, x) \) with respect to \(x \), and

\[
\mathcal{L}u = \begin{pmatrix}
 Lu_1 \\
 \vdots \\
 Lu_k
\end{pmatrix},
\]

with \(L \phi(x) = \frac{1}{2} \sum_{i,j=1}^d (\sigma \sigma^*)_{ij}(x) \frac{\partial^2 \phi(x)}{\partial x_i \partial x_j} + \sum_{i=1}^d b_i(x, v) \frac{\partial \phi(x)}{\partial x_i} \). In the present paper, we set \(d = k = 1 \), and

\[
\begin{align*}
 b &: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \\
 \sigma &: \mathbb{R} \to \mathbb{R}, \\
 f &: [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \\
 g &: [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \\
 \tilde{h} &: \mathbb{R} \to \mathbb{R}.
\end{align*}
\]

In order to assure the existence and uniqueness of solutions for (5.1) and (5.3) below, we give the following assumptions for sake of completeness (see [14] for more details).

\[(A1)\]

\[
\begin{align*}
 b \in C^3_{l,b}(\mathbb{R} \times \mathbb{R}; \mathbb{R}), \\
 \sigma \in C^3_{l,b}(\mathbb{R}; \mathbb{R}), \\
 \tilde{h} \in C^3_p(\mathbb{R}; \mathbb{R}), \\
 f(t, \cdot, \cdot, \cdot, v) \in C^3_{l,b}(\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}; \mathbb{R}), \\
 f(\cdot, x, y, z, v) \in M^2(0, T; \mathbb{R}), \\
 g(t, \cdot, \cdot, \cdot) \in C^3_{l,b}(\mathbb{R} \times \mathbb{R} \times \mathbb{R}; \mathbb{R}), \\
 g(\cdot, x, y, z) \in M^2(0, T; \mathbb{R}) \\
\end{align*}
\]

\(\forall t \in [0, T], x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}, v \in \mathbb{R}. \)
(A2) There exist some constant $c > 0$ and $0 < \alpha < 1$ such that for all $(t, x, y_i, z_i, v) \in [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$, $(i = 1, 2)$,

\[
\begin{align*}
|f(t, x, y_1, z_1, v) - f(t, x, y_2, z_2, v)|^2 &\leq c \left(|y_1 - y_2|^2 + |z_1 - z_2|^2\right), \\
|g(t, x, y_1, z_1) - g(t, x, y_2, z_2)|^2 &\leq c |y_1 - y_2|^2 + \alpha |z_1 - z_2|^2.
\end{align*}
\]

Let U_{ad} be an admissible control set. The optimal control problem of SPDE (5.1) is to find an optimal control, such that

\[J(v^*_i) \equiv \inf_{v_i \in U_{ad}} J(v_i), \]

where $J(v_i)$ is its cost function as follows:

\[J(v_i) = \mathbb{E} \left[\int_0^T l(s, x, u(s, x), (\nabla u \sigma)(s, x), v_s) \, ds + \gamma (u(0, x)) \right]. \tag{5.2} \]

Here we assume l and γ satisfy (H4). We can transform the optimal control problem of SPDE (5.1) into one of the following FBDSDE with control variable:

\[
\begin{align*}
X^s_{t,x} &= x + \int_t^s b(X^s_{r,x}, v_r) \, dr + \int_t^s \sigma(X^s_{r,x}) \, dW_r, \\
Y^s_{t,x} &= h(X^s_{T,x}) + \int_s^T f(r, X^s_{r,x}, Y^s_{r,x}, Z^s_{r,x}, v_r) \, dr + \int_s^T g(r, X^s_{r,x}, Y^s_{r,x}, Z^s_{r,x}) \, dB_r, \tag{5.3}
\end{align*}
\]

where \((X^x_{t,i}, Y^x_{t,i}, Z^x_{t,i}, v_i) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, x \in \mathbb{R} \). The corresponding optimal control problem of FBDSDE (5.3) is to find an optimal control \(v^*_i \in U_{ad},\) such that

\[J(v^*_i) \equiv \inf_{v_i \in U_{ad}} J(v_i), \]

where $J(v_i)$ is the cost function same as (5.2):

\[J(v^*_i) \equiv \inf_{v_i \in U_{ad}} J(v_i), \]

Now we consider the following adjoint FBDSDEs involving the four unknown processes \((p_t, q_t, k_t, h_t)\):

\[
\begin{align*}
p_t &= (f_{Y} p_t + g_{Y} k_t - l_{Y}) \, dt + (f_{Z} p_t - g_{Z} k_t - l_{Z}) \, dW_t - k_t \, dB_t, \\
q_t &= (f_{X} p_t - b_{X} q_t + g_{X} k_t - \sigma_{X} h_t - l_{X}) \, dt + h_t \, dW_t, \\
p_0 &= -\gamma_{Y}(Y_0), \quad q_T = -\hbar_{X}(X_T) \, p_T, \quad 0 \leq t \leq T.
\end{align*}
\tag{5.4}
\]

It is easy to see that the first equation of (5.4) is a “forward” BDSDE, so it is uniquely solvable by virtue of the result in [14]. The second equation of (5.4) is a standard BSDE, so it is uniquely solvable by virtue of the result in [13]. Therefore we know that (5.4) has a unique
solution \((p^{(i)}, q^{(i)}, k^{(i)}, h^{(i)}) \in M^2 (0, T; \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R})\). Define the Hamilton function as follows:

\[
\bar{H} (t, X, Y, Z, v, p, q, k, h) = H (t, X, Y, 0, Z, v, p, q, k, h) \\
= l (t, X, Y, Z, v) - k \cdot g (t, X, Y, Z) \\
+ q \cdot b (X, v) - p \cdot f (t, X, Y, Z, v) + h \cdot \sigma (X) .
\]

(5.5)

We now formulate a maximum principle for the optimal control system of (5.3).

Theorem 12. Suppose (A1)-(A2) hold. Let \((X^{(i)}, Y^{(i)}, Z^{(i)}, u^{(i)})\) be an optimal control and its corresponding trajectory of (5.3), \((p^{(i)}, q^{(i)}, k^{(i)}, h^{(i)})\) be the solution of (5.4). Then the maximum principle holds, that is, for \(t \in [0, T]\), \(\forall v \in \mathcal{U}\),

\[
\bar{H} (t, X_t, Y_t, Z_t, v_t, p_t, q_t, k_t, h_t) \geq \bar{H} (t, X_t, Y_t, Z_t, v^*_t, p_t, q_t, k_t, h_t) , \ a.e., \ a.s..
\]

Proof. Noting that the forward equation of (5.3) is independent of the backward one, we easily know that it is uniquely solvable. It is straightforward to use the same arguments in Section 3 to obtain the desired results. We omit the detailed proof. \(\square\)

From the results in [14], we easily have the following propositions.

Proposition 13. For any given admissible control \(v^{(i)}\), we assume (A1) and (A2) hold. Then (5.3) has a unique solution \((X^{tx}_{(i)}, Y^{tx}_{(i)}, Z^{tx}_{(i)}) \in M^2 (0, T; \mathbb{R} \times \mathbb{R} \times \mathbb{R})\).

Proposition 14. For any given admissible control \(v^{(i)}\), we assume (A1) and (A2) hold. Let \(\{u (t, x); 0 \leq t \leq T, x \in \mathbb{R}\}\) be a random field such that \(u (t, x) \) is \(\mathcal{F}^{R_x}_{t,T}\)-measurable for each \((t, x)\), \(u \in C^{0,2} ([0, T] \times \mathbb{R}; \mathbb{R})\) a.s., and \(u\) satisfies SPDE (5.1). Then \(u (t, x) = Y^{tx}_{t,x}\).

Proposition 15. For any given admissible control \(v^{(i)}\), we assume (A1) and (A2) hold. \(\{u (t, x) = Y^{tx}_{t,x}; 0 \leq t \leq T, x \in \mathbb{R}\}\) is a unique classical solution of SPDE (5.1).

Set the Hamilton function

\[
\bar{H} (t, x, u, \nabla u \sigma, v, p, q, k, h) = l (t, x, u, \nabla u \sigma, v) - k \cdot g (t, x, u, \nabla u \sigma) \\
+ q \cdot b (x, v) - p \cdot f (t, x, u, \nabla u \sigma, v) + h \cdot \sigma (x) .
\]

Now we can state the maximum principle for the optimal control problem of SPDE (5.1).

Theorem 16. Suppose \(u (t, x)\) is the optimal solution of SPDE (5.1) corresponding to the optimal control \(v^*_t\) of (5.1). Then we have, for any \(v \in \mathcal{U}\) and \(t \in [0, T]\), \(x \in \mathbb{R}\),

\[
\bar{H} (t, x, u (t, x), (\nabla u \sigma) (t, x), v, p_t, q_t, k_t, h_t) \geq \bar{H} (t, x, u (t, x), (\nabla u \sigma) (t, x), v^*_t, p_t, q_t, k_t, h_t) , \ a.e., \ a.s.
\]
Proof. By virtue of Proposition 13, 14 and 15, the optimal control problem of SPDE (5.1) can be transformed into the one of FBDSDE (5.3). Hence, from Theorem 12, the desired result is easily obtained. □

Remark. In Section 5, we study the optimal control problem of a kind of quasilinear SPDE which was similar to the SPDE considered by Øksendal in [12]. It is worth mentioning that the quasilinear SPDEs in [12] can also be related to a class of partially coupled FBDSDEs. Consequently the results in [12] can be obtained by the approach of FBDSDEs.

6 Linear quadratic nonzero sum doubly stochastic differential games

In this section, we investigate linear quadratic nonzero sum doubly stochastic differential games problem. Under the framework of uniqueness and existence result introduced above, we improve similar result in Hamadene [11] and Wu [27]. For notational simplification, we only consider two players, which is similar for \(n \) players. Now the control system is

\[
\begin{aligned}
dx_t^i &= [Ax_t^i + B_1^1 v_t^1 + B_2^2 v_t^2 + Ck_t^i + \alpha_t] \, dt + [Dx_t^i + Ek_t^i + \beta_t] \, dW_t - k_t^i \, dB_t, \\
x_0^i &= a, & & t \in [0, T],
\end{aligned}
\]

where \(A, C, D \) and \(E \) are \(n \times n \) bounded matrices, further, \(E \) satisfies \(0 < |E| < 1 \), \(v_t^1 \) and \(v_t^2, t \in [0, T] \), are two admissible control processes, that is \(\mathcal{F}_t \)-progressively measurable square integrable processes taking values in \(\mathbb{R}^k \). \(B_1^1 \) and \(B_2^2 \) are \(n \times k \) bounded matrices. \(\alpha_t \) and \(\beta_t \) are two adapted squares-integrable processes. We denote by

\[
\begin{aligned}
J^1(v(\cdot)) &= \frac{1}{2} \mathbb{E} \left[\int_0^T (Q^1 x_T^1, x_T^1) + (N^1 v_T^1, v_T^1) + (P^1 k_T^i, k_T^i)) \, dt + (Q x_T^1, x_T^1) \right], \\
J^2(v(\cdot)) &= \frac{1}{2} \mathbb{E} \left[\int_0^T (Q^2 x_T^1, x_T^1) + (N^2 v_T^2, v_T^2) + (P^2 k_T^i, k_T^i)) \, dt + (Q^2 x_T^1, x_T^1) \right].
\end{aligned}
\]

(6.2)

Here \(Q^i, R^i \), and \(P^i, i = 1, 2 \), are \(n \times n \) nonnegative symmetric bounded matrices, \(N^1 \) and \(N^2 \) are \(k \times k \) positive symmetric bounded matrices and inverses \((N^1)^{-1}, (N^2)^{-1} \) are also bounded. We denote \(v(\cdot) = (v^1(\cdot), v^2(\cdot)) \). The problem is to find \((u^1(\cdot), u^2(\cdot)) \in \mathbb{R}^k \times \mathbb{R}^k \) which is called Nash equilibrium point for the game, such that

\[
\begin{aligned}
J^1(u^1(\cdot), u^2(\cdot)) &\leq J^1(v^1(\cdot), v^2(\cdot)), & & v^1(\cdot) \in \mathbb{R}^k; \\
J^2(u^1(\cdot), u^2(\cdot)) &\leq J^2(v^1(\cdot), v^2(\cdot)), & & v^1(\cdot) \in \mathbb{R}^k.
\end{aligned}
\]

(6.3)

Note that the actions of the two players are described by a classical BDSDE in which we indicates that the players should make some strategy to overcome the disturbed information.
In order to introduce the main result, we need the following assumptions:

\[
\begin{align*}
B^i (N^i)^{-1} (B^i)^T A^T &= A^T B^i (N^i)^{-1} (B^i)^T, \quad i = 1, 2, \\
B^i (N^i)^{-1} (B^i)^T C^T &= C^T B^i (N^i)^{-1} (B^i)^T, \quad i = 1, 2, \\
B^i (N^i)^{-1} (B^i)^T D^T &= D^T B^i (N^i)^{-1} (B^i)^T, \quad i = 1, 2, \\
B^i (N^i)^{-1} (B^i)^T E^T &= E^T B^i (N^i)^{-1} (B^i)^T, \quad i = 1, 2, \\
B^i (N^i)^{-1} (B^i)^T P^1 &= P^1 B^i (N^i)^{-1} (B^i)^T, \quad i = 1, 2, \\
B^i (N^i)^{-1} (B^i)^T P^2 &= P^2 B^i (N^i)^{-1} (B^i)^T, \quad i = 1, 2,
\end{align*}
\] (6.4)

Next we give an explicit form of Nash equilibrium point by virtue of solutions of linear FBDSDEs. Hence we have a following theorem.

Theorem 17. The pair of function

\[
\begin{align*}
u^1_t &= - (N^1)^{-1} (B^1)^T y^1_t, \\
u^2_t &= - (N^1)^{-1} (B^1)^T y^2_t, \quad t \in [0, T],
\end{align*}
\]

is one Nash equilibrium point for the above game problem, where \((x_t, y^1_t, y^2_t, k^1_t, k^2_t, h^1_t, h^2_t)\) is the solution of the following differential dimensional FBDSDEs:

\[
\begin{align*}
dx_t &= \left[A x_t - B^1 (N^1)^{-1} (B^1)^T y^1_t - B^2 (N^2)^{-1} (B^2)^T y^2_t + \alpha_t \right] dt \\
&\quad + \left[C x_t + \beta_t \right] dW_t - k_t dB_t, \\
dy^1_t &= - \left[A y^1_t + D^T h^1_t + R^1 x_t \right] dt - \left(C^T y^1_t + E^T h^1_t + P^1 k_t \right) dB_t + h^1_t dW_t, \\
dy^2_t &= - \left[A y^2_t + D^T h^2_t + R^2 x_t \right] dt - \left(C^T y^2_t + E^T h^2_t + P^2 k_t \right) dB_t + h^2_t dW_t, \\
x_0 &= a, \quad y^1_T = Q^1 x_T, \quad y^2_T = Q^2 x_T.
\end{align*}
\] (6.5)

Proof of Lemma 2. At the beginning, we prove the existence of the solution of (6.5). Consider the following FBDSDEs:

\[
\begin{align*}
dX_t &= (AX_t - Y_t + \alpha_t) dt + [C X_t + \beta_t] dW_t - K_t dB_t, \\
dY_t &= - \left(A^T Y_t + \left(B^1 (N^1)^{-1} (B^1)^T R^1 + \left(B^2 (N^2)^{-1} (B^2)^T R^2 \right) \right) X_t + D^T H_t \right) dt \\
&\quad - \left[C^T Y_t + E^T H_t + PK_t \right] dB_t + H_t dW_t, \\
X_0 &= a, \quad Y_T = \left[\left(B^1 (N^1)^{-1} \right) (B^1)^T R^1 + \left(B^2 (N^2)^{-1} \right) (B^2)^T R^2 \right] X_T.
\end{align*}
\] (6.6)

Apparently, if the \((x_t, y^1_t, y^2_t, k^1_t, k^2_t, h^1_t, h^2_t)\) is the solution of (6.5), then \((X_t, Z_t, Y_t)\) satisfies the FBDSDEs (6.6) with (6.4). Here

\[
\begin{align*}
X_t &= x_t, \\
K_t &= k_t, \\
Y_t &= B^1 (N^1)^{-1} (B^1)^T y^1_t + B^2 (N^2)^{-1} (B^2)^T y^2_t, \\
H_t &= B^1 (N^1)^{-1} (B^1)^T h^1_t + B^2 (N^2)^{-1} (B^2)^T h^2_t, \\
P &= P^1 B^1 (N^1)^{-1} (B^1)^T + P^2 B^2 (N^2)^{-1} (B^2)^T.
\end{align*}
\]

26
As matter of fact, it is easy to check that there exists a unique solution \((X_t, Y_t, K_t, H_t)\) of (6.6) according to Proposition 2. Hence we can first solve the FBDSDEs (6.6) to get solution \((X_t, K_t)\) which, obviously, is the forward solution \((x_t, k_t)\) of (6.5), then \((y_1^t, h_1^t)\) and \((y_2^t, h_2^t)\) are obtained. Now consider the following classical backward doubly stochastic differential equations (BDSDEs in short) with four unknown processes \((y_1^t, y_2^t, h_1^t, h_2^t)\):

\[
\begin{align*}
\begin{cases}
&dy_1^t = - \left[A^T y_1^t + C^T h_1^t + R^1 X_t \right] dt - \left(C^T y_1^t + E^T h_1^t + P^1 k_t \right) dB_t + h_1^t dW_t, \\
&dy_2^t = - \left[A^T y_2^t + C^T h_2^t + R^2 X_t \right] dt - \left(C^T y_2^t + E^T h_2^t + P^2 k_t \right) dB_t + h_2^t dW_t,
\end{cases}
\quad y_1^T = Q^1 X_T, \quad y_2^T = Q^2 X_T.
\end{align*}
\]

Set
\[
\begin{align*}
&\hat{Y}_t = B^1 (N^1)^{-1} (B^1)^T y_1^t + B^2 (N^2)^{-1} (B^2)^T y_2^t, \\
&\hat{H}_t = B^1 (N^1)^{-1} (B^1)^T h_1^t + B^2 (N^2)^{-1} (B^2)^T h_2^t,
\end{align*}
\]

after simple computation we have
\[
\begin{align*}
\begin{cases}
&d\hat{Y}_t = - \left[A^T \hat{Y}_t + \left(B^1 (N^1)^{-1} (B^1)^T R^1 + B^2 (N^2)^{-1} (B^2)^T R^2 \right) X_t + D^T \hat{H}_t \right] dt \\
&\quad - \left[C^T \hat{Y}_t + E^T \hat{H}_t + PK_t \right] dB_t + \hat{H}_t dW_t,
\end{cases}
&\hat{Y}_T = \left[B^1 (N^1)^{-1} (B^1)^T R^1 + B^2 (N^2)^{-1} (B^2)^T R^2 \right] X_T.
\end{align*}
\]

Now fixing \(\{X_t\}_{t \geq 0}\), and thanks to 0 < \(|E| < 1\), due to the existence and uniqueness of solution of BDSDE, we immediately have

\[
\begin{align*}
\begin{cases}
&Y_t = \hat{Y}_t = B^1 (N^1)^{-1} (B^1)^T y_1^t + B^2 (N^2)^{-1} (B^2)^T y_2^t, \\
&H_t = \hat{H}_t = B^1 (N^1)^{-1} (B^1)^T h_1^t + B^2 (N^2)^{-1} (B^2)^T h_2^t,
\end{cases}
\end{align*}
\]

No doubt, \((X_t, Y_t, K_t, H_t)\) satisfies the FBDSDEs (6.6) and is the unique solution. Therefore \((x_t, y_1^t, y_2^t, k_1^t, k_2^t, h_1^t, h_2^t)\) is the solution of FBDSDEs (6.5). From now on we prove \((u^1(t), u^2(t))\) is one Nash equilibrium point for our nonzero sum game problem. For that it suffices that

\[
J^1 \left(u^1 \left(\cdot \right) , u^2 \left(\cdot \right) \right) \leq J^1 \left(v^1 \left(\cdot \right) , u^2 \left(\cdot \right) \right), \quad \forall v^1 \left(\cdot \right) \in R^k.
\]

It is similar to give the other inequality by the same argument. Next we give the control system by \(x_t^{v^1}\):

\[
\begin{align*}
\begin{cases}
&dx_t^{v^1} = \left[Ax_t^{v^1} + B^1 v_1^{v^1} + B^2 u_2^{v^1} + C k_t^{v^1} + \alpha_t \right] dt + \left[C x_t^{v^1} + \beta_t \right] dW_t - k_t^{v^1} dB_t, \\
x_0 = a, \quad t \in [0, T],
\end{cases}
\end{align*}
\]

27
We apply Itô’s formula to

\[\frac{1}{2} \mathbb{E} \left[\int_0^T \left(\left\langle R^1 x_t^{v_1}, x_t^{v_1} \right\rangle - \left\langle R^1 x_t, x_t \right\rangle + \left\langle N^1 v_t^1, v_t^1 \right\rangle \right. \right. \]

\[\left. \left. - \left\langle N^1 v_t^1, v_t^1 \right\rangle + \left\langle P^1 k_t^{v_1}, k_t^{v_1} \right\rangle - \left\langle P^1 k_t, k_t \right\rangle \right) \mathrm{d}t \right. \]

\[+ \left\langle Q^1 x_T^{v_1}, x_T^{v_1} \right\rangle - \left\langle Q^1 x_T, x_T \right\rangle \]

\[= \frac{1}{2} \mathbb{E} \left[\int_0^T \left(\left\langle R^1 \left(x_t^{v_1} - x_t \right) , x_t^{v_1} - x_t \right\rangle \right. \right. \]

\[+ \left\langle N^1 \left(v_t^1 - u_t^1 \right), v_t^1 - u_t^1 \right\rangle \]

\[+ \left\langle P^1 \left(k_t^{v_1} - k_t \right), k_t^{v_1} - k_t \right\rangle + 2 \left\langle R^1 x_t, x_t^{v_1} - x_t \right\rangle \]

\[+ 2 \left\langle N^1 v_t^1, v_t^1 - u_t^1 \right\rangle + 2 \left\langle P^1 k_t, k_t^{v_1} - k_t \right\rangle \]

\[\left. \left. \mathrm{d}t \right\rangle + \left\langle Q^1 \left(x_t^{v_1} - x_t \right), x_t^{v_1} - x_t \right\rangle \right. \]

\[+ 2 \left\langle Q^1 x_T, x_T^{v_1} - x_T \right\rangle \].

Note that

\[Q^1 x_T = y_T^1. \]

We apply Itô’s formula to \(\left\langle x_T^{v_1} - x_T, y_T^1 \right\rangle \) on the \([0, T]\) and get

\[\mathbb{E} \left\langle x_T^{v_1} - x_T, y_T^1 \right\rangle = \mathbb{E} \int_0^T \left(- \left\langle R^1 x_t, \left(x_t^{v_1} - x_t \right) \right\rangle + \left\langle B^1 \left(v_t^1 - u_t^1 \right), y_t^1 \right\rangle \right. \]

\[\left. \left. - \left\langle P^1 k_t, k_t^{v_1} - k_t \right\rangle \right) \mathrm{d}t. \]

Under the assumption \(R^1, Q^1 \) and \(P^1 \) being nonnegative, \(N^1 \) being positive, and symmetry of \(B^1 \), we have

\[J^1 \left(v^1 (\cdot), u^2 (\cdot) \right) - J^1 \left(u^1 (\cdot), u^2 (\cdot) \right) \]

\[\geq \mathbb{E} \int_0^T \left(\left\langle N^1 u_t^1, v_t^1 - u_t^1 \right\rangle + \left\langle B^1 \left(v_t^1 - u_t^1 \right), y_t^1 \right\rangle \right) \mathrm{d}t \]

\[= \mathbb{E} \int_0^T \left(\left\langle -N^1 \left(N^1 \right)^{-1} \left(B^1 \right)^T y_t^1, v_t^1 - u_t^1 \right\rangle + \left\langle \left(B^1 \right)^T y_t^1, v_t^1 - u_t^1 \right\rangle \right) \mathrm{d}t \]

\[= 0. \]

Lastly, we claim that

\[
\begin{cases}
 u_t^1 = - (N^1)^{-1} (B^1)^T y_t^1,
 \\
 u_t^2 = - (N^1)^{-1} (B^1)^T y_t^1,
\end{cases}
\quad t \in [0, T],
\]
that is, \((u_1^t, u_2^t)\) is one Nash equilibrium point for our nonzero sum doubly stochastic game problem. □

Remark 2 As matter of fact, in Theorem 17, we use the adjoint equation, the idea is the same as in Theorem 10. Besides, the results of this section are clear and easy to understand. They can be applied in practice directly.

Acknowledgment: The authors would like to thank the referees for their helpful comments and suggestions.

References

[1] A. Bensoussan, Point de Nash dans de cas de fonctionnelles quadratiques et jeux différentiels à N personnes, *SIAM J. Control* 12(3) (1974).

[2] A. Bensoussan, Lectures on stochastic control, in: *Nonlinear Filtering and Stochastic Control*, S. K. Mitter and A. Moro Ed., Lecture Notes in Mathematics 972, Berlin: Springer-verlag (1982).

[3] A. Bensoussan, Stochastic maximum principle for distributed parameter system. *J. Franklin Inst.* 315 (1983) 387–406.

[4] A. Bensoussan, Stochastic Control of Partially Observable Systems. *Cambridge University Press* 1992.

[5] J. M. Bismut, An introductory approach to duality in optimal stochastic control. *SIAM Rev.* 20 (1978) 62–78.

[6] S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight cost. *SIAM J. Control Optim.* 36 (1998) 1685-1702.

[7] T. Eisele, Nonexistence and nonuniqueness of open-loop equilibria in linear-quadratic differential games. *J. Math. Anal. Appl.* 37 (1982) 443-468.

[8] A. Friedman *Differential Games*, Wiley-Interscience, New York (1971).

[9] U. G. Haussmann, General necessary conditions for optimal control of stochastic systems. *Math. Programming Stud.* 6 (1976) 34–48.

[10] U. G. Haussmann, A stochastic maximum principle for optimal control of diffusions. *Pitman Research Notes in Mathematics* 151 (1987).

[11] S. Hamadène, Nonzero sum linear-quadratic stochastic differential games and backward-forward equations. *Stochastic Anal. Appl.* 14(2) (1999).

[12] S. Ji and X. Y. Zhou, A maximum principle for stochastic optimal control with terminal state constraints, and its applications. *Communications in Information and Systems* 6(4) (2006) 321-338.
[13] H. J. Kushner, Necessary conditions for continuous parameter stochastic optimization problems. *SIAM Journal on Control and Optimization* **10**(3) (1972) 550-565.

[14] R. E. Mortensen, Stochastic optimal control with noisy observations. *Int. J. Control* **4** (1966) 455–464.

[15] D. Nualart and E. Pardoux, Stochastic calculus with anticipating integrands. *Probab. Theory Related Fields* **78** (1988) 535–581.

[16] M. Nisio, Optimal control for stochastic partial differential equations and viscosity solutions of Bellman equations. *Nagoya Math. J.* Vol. **123** (1991) 13-37.

[17] B. Øksendal, Optimal Control of Stochastic Partial Differential Equations. Stochastic Anal. Appl. **23** (2005) 165–179.

[18] E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. *Systems Control Letters*. **14** (1990) 55–61.

[19] E. Pardoux and S. Peng, Backward doubly stochastic differential equations and systems of quasilinear SPDEs. *Probab. Theory Relate Fields* **98** (1994) 209-227.

[20] S. Peng, A general stochastic maximum principle for optimal control problem. *SIAM Journal on Control and Optimization* **28** (1990) 966-979.

[21] S. Peng, Backward stochastic differential equations and application to optimal control. *Applied Mathematics and Optimization* **27**(4) (1993) 125-144.

[22] S. Peng and Y. Shi, A Type of Time-Symmetric Forward-Backward Stochastic Differential Equations. *C. R. Acad. Sci. Paris, Ser. I* **336**(9) (2003) 773-778.

[23] S. Peng and Z. Wu, Fully Coupled Forward-Backward Stochastic Differential Equations and Applications to Optimal Control. *SIAM J. Control Optim.* **37** (1999) 825-843.

[24] L. S. Pontryagin, V. G. Boltyanskti, R. V. Gamkrelidze, E. F. Mischenko, *The Mathematical Theory of Optimal Control Processes*. Interscience, John Wiley, New York (1962).

[25] J. Shi and Z. Wu, The maximum principle for fully coupled forward-backward stochastic control system. *Acta Automatica Sinica* **32**(2) (2006) 161-169.

[26] Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems. *Systems Sci. Math. Sci*. **11**(3) (1998) 249-259.

[27] Z. Wu, Forward-backward stochastic differential equation linear quadratic stochastic optimal control and nonzero sum differential games. *Journal of System Science and Complexity* **18**(2) (2005) 179-192.
[28] W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system. *J. Australian Mathematical Society* **B37** (1995) 172-185.

[29] J. Yong and X. Y. Zhou, *Stochastic Controls: Hamiltonian Systems and HJB Equations*. Springer, New York (1999).