Tuning the quantum oscillations of surface Dirac electrons in the topological insulator Bi$_2$Te$_2$Se by liquid gating

Jun Xiong, Yuehaw Khoo, Shuang Jia, R. J. Cava, and N. P. Ong

Phys. Rev. B 88, 035128 — Published 22 July 2013
DOI: 10.1103/PhysRevB.88.035128
Tuning the quantum oscillations of surface Dirac electrons in the topological insulator Bi$_2$Te$_2$Se by liquid gating.

Jun Xiong1, Yuehaw Khoo1, Shuang Jia2, R. J. Cava2 and N. P. Ong1

Department of Physics1 and Department of Chemistry2, Princeton University, Princeton, NJ 08544

(Dated: June 28, 2013)

In Bi$_2$Te$_2$Se, the period of quantum oscillations arising from surface Dirac fermions can be increased 6-fold using ionic liquid gating. At large gate voltages, the Fermi energy reaches the $N = 1$ Landau level in a 14-Tesla field. This enables the $\frac{1}{2}$-shift predicted for the Dirac spectrum to be measured accurately. A surprising result is that liquid gating strongly enhances the surface mobility. By analyzing the Hall conductivity, we show that the enhancement occurs on only one surface. We present evidence that the gating process is fully reversible (hence consistent with band-bending by the E-field from the anion layer accumulated). In addition to the surface carriers, the experiment yields the mobility and density of the bulk carriers in the impurity band. By analyzing the charge accumulation vs. gate voltage, we also obtain estimates of the depletion width and the areal depletion capacitance C_d/A. The value of C_d/A implies an enhanced electronic polarizability in the depletion region.

PACS numbers: 72.15.Rn, 03.65.Vf, 71.70.Ej, 73.25.+i

I. INTRODUCTION

A Topological Insulator (TI) is characterized by the existence of current-carrying surface states that traverse the bulk energy gap1,2. There is strong interest in the helical nature of the surface states, which results from the locking of the electron's spin transverse to its momentum. In the bismuth-based TI materials, photoemission spectroscopy3 and scanning tunneling microscopy (STM)4 have confirmed the spin-locking feature. In transport experiments, the surface states have been detected by surface Shubnikov de Haas (SdH) oscillations in Bi$_2$Te$_3$5 and (Bi,Sb)$_2$Se$_3$6, and by Aharonov-Bohm oscillations in Bi$_2$Se$_3$ nanowires7.

Among the Bi-based TI materials, Bi$_2$Te$_2$Se currently displays the highest bulk resistivities ($\rho = 1 - 6 \, \Omega \text{cm at } 4 \, \text{K}$)8-11. Despite the large ρ, SdH oscillations may be tracked to temperatures T as high as 38 K9. A persistent problem, however, is that the surface Fermi energy E_F in as-grown crystals is still quite high ($\sim 200 \, \text{meV}$ above the Dirac Point). An in-situ method that demonstrably tunes E_F would greatly facilitate experiments at the Dirac Point, as proposed in Refs.1,2. Several groups have applied conventional electrostatic gating to tune the chemical potential μ in exfoliated crystals$^{12-14}$ and in thin-film samples of Bi$_2$Se$_3$. The newer technique of liquid gating has also been used on Bi-based materials$^{16-20}$. However, in these experiments, SdH oscillations were neither detected at all or poorly resolved14 even if the second derivative is used. Tuning of the quantum oscillations and showing that they arise from surface Dirac electrons remain to be established.

Here we report that the surface SdH oscillations in Bi$_2$Te$_2$Se can be tuned over a broad range using the ionic liquid (DEME-TFSI). In lowering E_F substantially, we access the $N = 1$ Landau level in a magnetic field $B = 14$ T. This allows the $\frac{1}{2}$-shift characteristic of Dirac electrons to be measured with greatly improved resolution.

We find that the intercept remains fixed at $\frac{1}{2}$ even as the surface density is tuned by factors of 3-6. An unexpected finding is that liquid gating leads to strong enhancement of the mobility μ_s of the surface carriers. We attribute the enhancement to the “smoothing” of local potential fluctuations seen by the Dirac fermions. Aside from moving E_F closer to the Dirac Point, the tunability yields direct information on the surface and bulk conduction. The additional information enables us to determine how the surface and bulk mobilities change with gate voltage V_G. We discuss the evidence that the liquid gating in our experiment is causing band bending rather than unwanted chemical reaction. Lastly, thanks to the SdH oscillations, we can measure 5 parameters at each setting of V_G (E_F and μ_s of the surface carriers, the bulk density and mobility, and the total ionic charge Q deposited). The 5 parameters provide cross checks for the gating experiment. In particular, we determine the depletion capacitance C_d which measures the polarizability of the depletion region.

As reported earlier8-11, the resistance $R(T)$ in Bi$_2$Te$_2$Se rises monotonically to very large values as $T \rightarrow 4 \, \text{K}$ (curve at $V_G = 0$ in Fig. 1a). Analysis of the Hall coefficient R_H at 5 K (Fig. 1b) reveals a population of bulk n-type carriers much higher than the population of surface electrons. Nonetheless, a modest, negative gate voltage V_G can increase R by 40% (Fig. 1a) and $|R_H|$ by a factor of 2 at 5 K (Panel b). V_G is applied to the gold electrode (inset in Fig. 1a) at 220 K, and the sample is cooled below the liquid’s glass transition. After the low-T measurements are completed, the sample is warmed to 220 K (at 2 K/min.) and V_G is reset. The “gating” temperature is selected within the optimal window 220-240 K (see below and Appendix A1). At 4 K, the large E-field induced by the surface anion charge Q (1-4 x 1014 cm$^{-2}$) creates a depletion layer that penetrates deep into the bulk (5-20 μm), where e is the electron charge. As shown in Fig. 1b (inset), the induced upward
and -2.1 V (the former is shown amplified by 5
dotted curves are the best fits
11
surface mobility
quency component. From the fits, we may infer how the
(SL) expression for SdH oscillations using only one fre-
the SdH amplitude is strongly enhanced between
V
ρ
displays plots of ∆ρ
oscillations. To focus on the SdH signal, we have sub-
bending of the bands decreases
ρ
xx
G
R
V
E
S
s
LIF
cond.
val.
micro.
Au electrode
DEME-TFSI
Nano.ammeter

FIG. 1: (color online) The resistance R per square (Panel a)
and Hall coefficient RH vs. T (Panel b) in Bi2Te5Se at se-
lected VG in Sample 1. RH is measured at fixed B (3 T).
Changing VG from 0 to -2.8 V increases R by 40% and |RH|
by 2×. The inset (Panel a) shows the cell housing the sample
and the ionic liquid DEME-TFSI. The Au electrode (a circu-
lar plate of radius 1.5 mm) is separated by 0.5 mm from the
sample.7 The inset in (b) is a sketch of the band bending in-
duced by liquid gating. Negative ions deposited on the crystal
leads to upward band-bending. At the surface, this causes EF
to decrease towards the Dirac Point. LLs are shown as solid
half-ovals.

bending of the bands decreases ER.

At each value of VG, the curves of R vs. B display SdH
oscillations. To focus on the SdH signal, we have sub-
tracted off a smooth background RB to isolate the oscil-
latory part of the resistance, ∆ρxx ≡ ρxx − ρB. Figure 3a
displays plots of ∆ρxx in Sample 1 versus 1/B for 5 values
of VG. The period of the SdH oscillations increases mono-
tonically as VG changes from 0 to -4.2 V, in accordance
with our expectation that EF is decreasing. Surprisingly,
the SdH amplitude is strongly enhanced between VG = 0
and -2.1 V (the former is shown amplified by 5×). The
dotted curves are the best fits 11 to the Lifshitz-Kosevich
(LK) expression for SdH oscillations using only one fre-
quency component. From the fits, we may infer how the
surface mobility μs changes with VG (see below). The
same trends are evident in Sample 2, which has a higher
starting surface density ns but is taken to B = 45 T (Fig.
3b). We find that the SdH oscillations are not resolved
at VG = 0, but become prominent at VG = -1.5 V.

II. EXPERIMENTAL DETAILS

In our experiment, the sample is immersed in
the ionic liquid DEME-TFSI, comprised of cations
(CH3CH2)2(CH2CH2OCH3)CH3N+ and anions
(CF3SO2)2N−. The liquid is pumped at 25°C for
2 hours prior to application to minimize water content.
Liquid gating has several pitfalls when used on crystals.
After the gate voltage VG is selected at a “gating tem-
perature” (Appendix A1), the sample is cooled to
5 K for the SdH measurements. The stresses induced
by repeated freezing and thawing of the ionic liquid can
snap the leads or the crystal itself. Also, a large |VG|
can trigger an electrical discharge which invariably leads
to a steep collapse of R (at 5 K). Unlike in thin films,
changes to R with VG are not resolved above ~100 K
(see Fig. 1a). To minimize sample damage, we start
at VG = 0 followed by measurements at increasingly
negative VG until the sample fails (usually by a discharge
event). At 220 K, VG is changed in steps of -0.1 V,
while monitoring the transient current Itrans (1-40 nA).
The time spent at 220 K is typically 300-500 s. We
emphasize that the changes to ρ and nH are reversible
(see below). On returning VG to 0, we recover the same
starting value of R (at 5 K) provided |VG| is kept below
~2 V.

The crystal dimensions of Sample 1 are 0.9×0.75×0.05
mm3. For Sample 2, they are 1.35×0.61×0.026 mm3.
In Sample 2, the steepest change in μs occurs between
VG = 0 and -1.5 V, at which μs = 2,800 cm2/Vs. At
larger gate, it saturates (μs = 3,000 cm2/Vs at -6 V).

The possibility that the strong E-field can induce
chemical doping of the sample is an important concern
in liquid-gating experiments. We note that the effects of
chemical reaction are inherently non-reversible. In par-
icular, let us assume that chemically induced doping oc-
curs at some finite VG leading to changes in ρ and nH
(measured when cooled to 4 K). When the sample is re-
warmed to 240 K and VG is reset to zero, we should not
expect ρ and nH to recover their starting values when
recooled to 4 K (resetting VG to zero cannot reverse
the chemical damage). Hence, we adopt the working assump-
tion that the absence of resolvable hysteresis in ρ and
nH (measured at 4 K) as VG is cycled provides evidence
that band-bending is the dominant effect and chemical
reaction effects are minimal. We have performed a much
broader set of tests (on Sample 3) to investigate details of
the ion-accumulation process over an extended range of
gating temperatures (208 < T < 260 K). Samples 1 and
2, from which the detailed SdH results were obtained,
were not subject to these cycling processes to minimize
stress damage.

Figure 2 shows the variation of ρ (Panel a) and nH in
Sample 3 as VG is changed step-wise from 0 to -1.3
V and back. After the \(V_G \) is set anew (at the gating \(T = 240 \) K), we wait for 800 s to accumulate the anions before cooling to 4 K for the measurements of \(\rho \) and \(n_H \). By monitoring the transient charging current \(I_{trans} \), we have also measured the ion accumulation charge \(Q(t) \) (Appendix A2). The absence of hysteresis, within the experimental uncertainty, is evidence that the changes are fully reversible and hence caused by band-bending effects. The experiment, repeated at 260 K, also shows negligible hysteresis.

Apart from chemical reaction, two other important factors are incomplete melting of the ionic charge configuration when \(T \) is too close to the glass transition and the intrinsic (activated) bulk conductance of the ionic liquid. These additional factors have been investigated using the measured \(Q(t) \). We discuss them in Appendix A1.

III. TUNING THE SURFACE DIRAC STATE DENSITY

In finite \(B \), the surface electronic states are quantized into Landau levels (LLs) with quantum numbers \(N = 0, 1, \ldots \). The index field \(B_n \) is the field at which \(E_F \) falls between two LLs. For Schrödinger states, the integer \(n \) counts the number of occupied LLs (the highest filled LL has \(N_{max} = n - 1 \)). Using the level degeneracy \(Be/h \) per spin, we then have \(1/B_n = ne/(hn_s) \) (\(n_s \) is the surface density, \(e \) the elemental charge and \(h \) is Planck’s constant).

For Dirac electrons, however, we have \(n + \frac{1}{2} \) filled LLs...
when $B = B_n$ (now $N_{\text{max}} = n$). The additional $\frac{1}{2}$ derives from the $N = 0$ LL, or equivalently, from the π-Berry phase intrinsic to each Dirac cone. The relation between $1/B_n$ and n is now $1/B_n = (n + \frac{1}{2})(e/hn_s)$ - a straight line that intercepts the n-axis at $n = -\frac{1}{2}$. In both cases, G_{xx} is a local minimum at B_n.

If resistivity curves are used, B_n should be identified with the maxima in $\Delta \rho_{xx}$. This point is discussed in Refs.11,22 In Fig. 4a, we plot as solid symbols B_n in Sample 1 against the integers n (the open symbols corresponding to the minima are plotted against $n + \frac{1}{2}$).

At each V_G, the slope of the straight lines yields the FS area S_F. As $|V_G|$ increases from 0 to 2.8 V, the slopes of the best-fit lines decrease by a factor of 6.4, reflecting a steep decrease in S_F. This decrease saturates when $|V_G|$ exceeds 2.1 V.

In Fig. 4b, we show the high-field behavior for $|V_G| > 2.1$ V in expanded scale. At these large bias values, the indices cluster around $|e/hn_s| = -\frac{1}{2}$ (-0.46, -0.56 and -0.61). In the corresponding plots for Sample 2 (Panel c), we find that S_F decreases by a factor of 2 between $V_G = -1.4$ and -6 V. In the limit $1/B \to 0$, the intercepts are at $n = -0.35$, -0.40 and -0.42. In both samples, the last feature observed at the highest B (minima in R_{xx}) corresponds to $n_{\min} = \frac{1}{2}$ (as shown in the inset of Panel b), this implies that E_F lies in the middle of the broadened $N = 1$ Dirac LL. With such a small n_{\min}, we may rigorously exclude an intercept at $n = 0$ in the limit $1/B \to 0$.22 Thus the index plots provide rather conclu-
sive evidence that the SdH oscillations arise from surface Dirac fermions.

The ability to reach \(n = \frac{1}{2} \) is important for experimentally determining the Berry phase \(\pi \)-shift. Because the surface SdH oscillations are generally very weak (for \(B < 14 \) T), there is considerable uncertainty in determining the intercept in the limit \(1/B \to 0 \) if the lowest \(n \) achieved at the maximum available \(B \) is 5 or larger. We illustrate the uncertainties incurred in Fig. 5a. In the absence of gating (\(V_G = 0 \)), the uncertainties \(\delta B_0 \) in measuring the index fields are typically \(\pm 5\% \) (circles). As shown, this yields a considerable spread in the allowed intercepts (the lowest datum corresponds to \(n = 5.5 \)). For comparison, at the gate voltage \(V_G = -2.8 \) V (squares), the lowest datum corresponds to \(n = \frac{1}{2} \). This tightens up considerably the spread in the allowed intercepts. The same advantage may be achieved by applying an intense \(B \) (45 T), as was done in Ref. 11.

For convenience, we have converted the values of \(S_F \) inferred from the slopes of the index plots in Fig. 6a,c to the Fermi energy \(E_F = \hbar v_F / \pi \) using the Fermi velocity \(v = 6 \times 10^5 \) m/s.\(^9\) The variation of \(E_F \) vs. \(V_G \) in Sample 1 (Fig. 5b) shows that \(E_F \) decreases by 100 mV as \(V_G \) is changed from 0 to -2 V. Thereafter, it remains at \(\sim 80 \) mV. This is used below to estimate the depletion capacitance. We remark that \(E_F \) stops decreasing when \(|V_G| \) exceeds 2 V. Since the Dirac Point is close to the top of the valence band, we do not reach the limit of band inversion (creating an accumulation layer of holes) in this experiment.

Returning to Fig. 3, we have fitted the SdH oscillations to the LK expressions (shown as dashed curves). The damping of the oscillations versus \(B \) yields the surface mobility \(\mu_s \). As shown in Fig. 6b, \(\mu_s \) in Sample 1 rises from 720 to 2,480 cm\(^2\)/Vs as \(|V_G| \) is increased to 4.2 V. In Fig. 6c, the decrease and eventual saturation in \(S_F \) is plotted as a surface density \(n_s = k_F^2 / (4\pi) \) (per spin). The saturation at large \(|V_G| \) either arises from induced chemical reaction or from \(E_F \) meeting the top of the valence band.

One figure-of-merit in TI crystals is the ratio of the surface to bulk conductances \(\eta \equiv G^s / G^b \) in zero \(B \) (with \(G^s \equiv G^s_{xx}(0) \), \(s = b \)). In Sample 1, \(\eta \sim 0.05 \) is quite small (compared with \(\eta \sim 1 \) obtained in Ref. \(^9\)). However, in the Hall channel, the ratio \(\eta_H = G^s_{xy} / G^b_{xy} \) of the surface and bulk conductances (\(G^s_{xy} \) and \(G^b_{xy} \), respectively) is enhanced by \(\mu_s / \mu_b \), which can be very large. We define \(n_b \) and \(\mu_b \) to be the bulk electron density and mobility, respectively, averaged over the whole crystal.

As shown in Fig. 6a, a distinctive feature of \(\sigma_{xy} \) at low \(T \) is the curvature in weak \(B \), which grows with increasing \(|V_G| \). We may use the semiclassical 2-band expression for \(\sigma_{xy} \):

\[
\sigma_{xy} = n_s e \mu_s \frac{\mu_s B}{t [1 + (\mu_s B)^2]} + n_b e \mu_b^2 B, \tag{1}
\]

where the first term is \(G^s_{xy} / t \), with \(t \) the thickness (50 \(\mu \)m in Sample 1). With \(n_s \) and \(\mu_s \) fixed by analysis of the SdH oscillations, this term is non-adjustable. The second term is the bulk Hall conductivity \(\sigma^b_{xy} \) in the low-mobility limit. With the sole adjustable parameter \(P_0 \equiv n_b \mu_b^2 \), we find that Eq. 1 gives a very good fit (dashed curves). For comparison, we have also plotted \(G^s_{xy} / t \) (inner, faint solid curves). Combining \(P_0 \) with the zero-\(B \) value of \(\mu_b \), we finally obtain \(n_b \) and \(\mu_b \) separately for each value of \(V_G \). These are reported in Figs. 6b and 6c. The small values of \(\mu_b \) (20-30 cm\(^2\)/Vs) result in a large \(\mu_s / \mu_b \sim 100 \) and \(\eta_H \sim 5 \). This accounts for the pronounced low-\(B \) curvatures seen in Fig. 6.

The analysis implies high-mobility Dirac electrons in parallel with a much larger population of bulk electrons.

![FIG. 6: (color online) Panel (a): The observed Hall conductivity \(\sigma_{xy} \) vs. \(B \) in Sample 1, showing weak-\(B \) curvature at 3 values of \(V_G \) (curves displaced for clarity). At each \(V_G \), the outer curves are the data (solid black curve) and the fit to Eq. 1 (superposed blue dashed curve). The inner (red, solid) curve is the surface term \(G^s_{xy} / t \) fixed by \(n_s \) and \(\mu_s \). The difference between the outer and inner curves is the bulk term \(\sigma^b_{xy} \). At \(V_G = -4.2 \) V, \(G^s_{xy} / t \) accounts for 83\% of \(\sigma_{xy} \) in weak \(B \). Panel (b) shows that, with increased gating, \(\mu_s \) increases from 720 to 2,480 cm\(^2\)/Vs while \(\mu_s \) stays very small (20-30 cm\(^2\)/Vs). Panel (c) compares the sharp decrease in \(n_s \) with the mild change in \(n_b \) with gating. When \(|V_G| > 2 \) V, \(n_s \) saturates.](image-url)
Because of the 100-fold difference in mobilities, the Dirac electrons produce 83% of the total weak-B Hall conductance at large $|V_G|$. The fits include the surface Hall conductance from only one surface. Since its G_{xy}^s already accounts for most of the observed σ_{xy}, there is very little room left for a second surface term. We estimate that the Hall contribution from the other surface is less than 2% of σ_{xy}, which implies that its $\mu_s < 300 \text{ cm}^2/\text{Vs}$. This cannot produce resolvable SdH oscillations.

IV. DEPLETION-LAYER CAPACITANCE, SCREENING AND IMPURITY BAND

Our main results are on the tuning of the SdH oscillations of the Dirac surface states. However, the experiment also yields quantitative results on the electronic parameters in the depletion region, which provide detailed picture of what happens under liquid gating. A useful feature of the experiment is that, at each value of the applied gate voltage V_G, we can measure via the SdH oscillations both n_s and E_F of the surface carriers (hence the surface electrostatic potential $\varphi(0)$). In addition, we measure the carrier density and conductivity of the bulk carriers, and the anion charge Q accumulated on the crystals surface. The 5 quantities provide a detailed picture of the band-bending process as well as self-consistency checks in determining the depletion capacitance. We apply the standard analysis of field-effect gating25–27, which is summarized in Appendix A2.

For gating to induce band bending, the chemical potential must already lie inside the bulk gap in zero V_G (the case for Bi$_2$Te$_2$Se). If, instead, E_F lies high in the conduction band (as the case in as-grown Bi$_2$Se$_3$), the applied E-field leads to Thomas Fermi screening26 for which the screening length is $\lambda_{TF} = \sqrt{\pi a_B/4k_F}$ is typically a few Å ($a_B = h^2/m^* e^2$ is the Bohr radius). For a hard gap (impurity band absent), a negative V_G leads to a depletion region. However, despite displaying a very large bulk resistivity ($2-6 \Omega\text{cm}$) at 4 K, the current generation of Bi$_2$Te$_2$Se crystals still have a substantial bulk carrier density ($n_b \sim 2 \times 10^{17} \text{cm}^{-3}$). This implies an impurity band extends across the gap. Nonetheless, band bending over a significant depletion region ($\sim 10 \mu\text{m}$) is observed. We will analyze this situation at the end of this section after we estimate the depletion capacitance (see also Appendix A1).

For $V_G < 0$, the E-field from the anions repels bulk electrons away from the surface, exposing the ionized donors within the depletion width d. Figure 7a shows a sketch of the band bending near the surface exposed to the liquid. For finite V_G, the ionic liquid polarizes to form, in effect, two capacitors each with spacing of the order of the molecular radius a. Each capacitor stores the charge Q. The capacitor at the gate electrode has an area A' much larger than that of the capacitor at the crystal surface A, so that most of the potential drop $V_G - V_s$ falls across the latter (V_s is the voltage corresponding to $\varphi(0)$ and the ground is taken deep in the bulk at $x \to +\infty$). In Sample 1, $A = 2.9 \text{ mm}^2$ and $A' = 30 \text{ mm}^2$. The E-field produced by the anion layer just to the left of the crystal surface is $E(0^+) = Q/A \varepsilon_0$.

In Fig. 7b, we sketch the profiles of the charge density $\rho(x)$ and the electrostatic potential $\varphi(x)$ (the x-axis is normal to the surface). Within the liquid, $\rho(x)$ of the cations and anions are taken to be delta functions of strength $\pm Q$. In the TI, the surface charge density is represented by a delta function (σ_s). Within the bulk, however, $\rho(x)$ is distributed over the depletion layer to a depth d. As a guide, it is convenient to adopt the usual
approximation, whereby \(\rho(x) \) is taken to be uniform for \(0 < x < d \). In the uniform-charge approximation, \(\varphi(x) \) varies as \(- (x - d)^2\) in the depletion region. Its value at the surface is then

\[
\varphi(0) = -N_d \epsilon_d d^2 / (2\epsilon_0 \epsilon_s),
\]

where \(N_d \) is the donor impurity concentration and \(\epsilon_s \) the screening dielectric parameter. The charge \(Q_d \) in the depletion width by \(\varphi(0) \) defines the depletion capacitance \(C_d = N_d \epsilon_d d A / \varphi(0) = \epsilon_0 \epsilon_s A / d \). The surface charge density \(\sigma_s \) induced by \(\varphi(0) \) is represented by the quantum capacitance \(C_q = \sigma_s / \varphi(0) = e^2 (d n_s / d \mu) \). Clearly, \(C_d \) and \(C_q \) are in parallel combination (Fig. 7c).

The large slope change at \(x = 0 \) mainly reflects the strong dielectric screening in the bulk of the TI (\(\sigma_s \)) makes a negligible contribution. Thus the intense \(E \)-field produced by the anions is strongly screened by polarization effects inside the crystal (\(E(0^+) \gg E(0^+) \)). As shown in Fig. 7c, the parallel combination of \(C_d \) and \(C_q \) is in series with \(C_b \), the series combination of the cation and anion capacitances. In all samples, we find that \(C_d \gg C_q \), so we may ignore the quantum capacitance in the discussion below.

Magnitude of \(C_d \)

As shown in Fig. 5b, \(E_F \) in Sample 1 decreases by \(\sim 100 \) mV when the applied \(V_G \) is \(-2 V \). Thus, only a small fraction (\(\sim 1/20 \)) of the applied gate voltage is effective in bending the band (\(V_s = -0.1 \) V). We can use this observation to determine the depletion capacitance \(C_d \). The value of \(C_b / A \) for ionic liquids is \(11-12 \) \(\mu F/cm^2 \). (From the expression, \(C_0 / A = \epsilon_0 \epsilon_{iq} / a \), this corresponds to \(\epsilon_{iq} = 4 \), and \(a = 3 \) \(\AA \).) Using the ratio \(V_s / (V_G - V_s) \sim C_0 / C_d \) (neglecting \(C_q \)), we estimate that \(C_d / A \sim 240 \) \(\mu F/cm^2 \).

Alternatively, we may estimate \(C_d \) by integrating the ionic current to find the charge \(Q \). For Sample 1 with \(V_G = -2 \) V, the ionic charge current deposits a total negative ionic charge at the surface equal to \(-Q / A \sim 2 \times 10^{14} \) \(/cm^2 \). Since \(Q / A \) is stored in \(C_b \) by the voltage \(V_s \sim 0.1 \) V, we have \(C_d / A \sim 320 \) \(\mu F/cm^2 \), which is \(33\% \) larger than the first estimate, but within our uncertainties. The main source of uncertainty is the actual area coated by the anions. Because the ions can coat the silver paint contacts and voltage and current leads, the area can exceed that of the crystal \(A \) by 50 to 100\%.

By equating \(Q / A \) to \(N_d d d \) (see Eq. A8), we may estimate the depletion width \(d \) as a check. The donor density \(N_d \) is roughly equal to the bulk density observed at 4 K, \(n_d \sim 2 \times 10^{17} \) \(/cm^3 \). This gives \(d \sim 10 \) \(\mu m \). The deep penetration of the depletion region into the bulk is consistent (within a factor of 2) with the 40\% change observed in the resistivity and Hall coefficient at 4 K.

Taking the range \(C_d / A = 240-320 \) \(\mu F/cm^2 \), we find that the depletion capacitance is \(5,000-6,000 \times \) larger than the values commonly observed in a Si-MOSFET device (\(C_d, Si / A \simeq 0.05-0.06 \mu F/cm^2 \)). The enhancement points to a very high polarization in the ground state of \(Bi_2Te_2Se \) when \(E_F \) lies inside the energy gap. This is perhaps unsurprising given that the energy gap in high-purity Si is devoid of impurity states. By contrast, \(Bi_2Te_2Se \) at 4 K displays a small, but metallic conductivity arising from a large population of impurity-band electrons.

Here, we resume discussion of the finite DOS in the gap. To create an extended depletion region with significant band bending, as we have here (Fig. 7a), the weak bulk conductivity must be further driven to zero throughout the depletion region in order to sustain a finite \(E \)-field (otherwise one has Thomas-Fermi screening with the very short screening length \(\lambda_{TF} \sim 6 \) \(\mu m \) for \(n_b = 2 \times 10^{17} \) \(/cm^3 \)). To explain how band-bending is sustained over a large depletion region, we need the existence of a mobility edge in the impurity band. Throughout the depletion layer, \(E_F \) lies below the mobility edge so that the conductivity is vanishingly small at 4 K. Because impurity-band states close to the mobility edge have a greatly enhanced polarizability in an \(E \)-field, we expect the electronic contribution to dielectric constant \(\epsilon_s \) to be orders of magnitude larger than the lattice contribution. Measurements of \(C_d / A \) probe directly the electronic polarizability in the depletion region. A possible scenario is described in Appendix A2 and Fig. A4.

V. CONCLUSIONS

Applying the relatively new technique of ionic liquid gating to bulk crystals of \(Bi_2Te_2Se \) with resistivity exceeding 4 \(\Omega \)cm at 5 K, we find that \(E_F \) of the surface Dirac fermions can be tuned over a considerable range. In contrast to previous gating experiments, we readily resolve the surface SdH oscillations at each value of the gate voltage. By measuring the SdH period, we find that the surface Fermi energy \(E_F \) (Sample 1) decreases from 180 mV to 75 mV relative to the Dirac Point as \(V_G \) is changed from 0 to \(-2.8 \) V. In a field of 14 T, the lower limit corresponds to the middle of the broadened \(N = 1 \) Landau Level. Attaining such low Landau levels enables the \(-1/2\) intercept (predicted for Dirac fermions) to be determined with high accuracy. We also find that the intercepts are closely similar for a broad range of \(V_G \) in both Samples 1 and 2.

Using the surface mobility \(\mu_s \) and density \(n_s \) determined from the SdH oscillations, we find that the Dirac fermion Hall conductivity from the surface exposed to the anions accounts for up to 83\% of the total observed weak-B Hall conductivity at 5 K. The analysis allows an accurate determination of the bulk carrier mobility and density at each \(V_G \) (Fig. 6). The picture inferred is that, with gating, the density \(n_s \) of the surface Dirac fermions decreases steeply while their mobility \(\mu_s \) increases to a maximum value of 2,400 \(cm^2/Vs \). The bulk carriers are depleted to a depth of 10 \(\mu m \) from the surface, with \(\mu_b \) remaining at the low value 20 \(cm^2/Vs \).

The large enhancement of \(\mu_s \) by liquid gating (Fig. 6b) is perhaps the most intriguing feature reported here. To
our knowledge, this is the first realization of enhancement of surface SdH amplitudes by an in situ technique. A recent STM experiment reveals that the Dirac Point closely follows spatial fluctuations of the local potential on length scales of 30-50 nm. This could lead to strong scattering of surface electrons. We speculate that, under liquid gating, the anions accumulate at local maxima in the potential, thereby levelling out the strongest spatial fluctuations. The results provide encouragement that alternative routes that even out local potential fluctuations can lead to further improvements in μ_s.

To address the question whether ionic liquid gating actually alters the carrier concentration by chemical reaction (as opposed to simply bending the band), we have performed extensive tests to separate the two effects. By carefully selecting the experimental conditions (e.g. the gating temperature), monitoring charge accumulation Q, and checking for reversibility, we establish that band-bending is the dominant effect in these experiments. Lastly, the 5 quantities measured at each gate voltage setting (E_F, n_s, n_0, ρ and Q) provide a quantitative picture of the gating process. The depletion capacitance measured implies that, within the depletion region, the electronic polarizability is strongly enhanced.

Acknowledgements We thank Joe Checkelsky, Jianting Ye, and Hongtao Yuan for advice on liquid gating. The research is supported by the Army Research Office (ARO W911NF-11-1-0379) and by the US National Science Foundation (Grant No. DMR 0819860). Sample growth and characterization were supported by an award from the Defense Advanced Research Projects Agency under SPAWAR Grant No. N66001-11-1-4110. High-field measurements were performed at the National High Magnetic Field Laboratory which is supported by NSF (Award DMR-084173), by the State of Florida, and by the Department of Energy.

A1. APPENDIX I: GATING TEMPERATURE

We discuss here the factors that dictate our choice of the “gating” temperature. Insight on the ion accumulation process is provided by monitoring the transient current I_{trans} following a step-change in V_G (with T fixed in the interval $208 < T < 260$ K). As the ions flow to adjust to the new potential, $I_{trans}(t)$ decays over a time scale of 10^3 s. As shown in Fig. A1, $I_{trans}(t)$ fits well to the stretched exponential form

$$I_{trans}(t) = I_0 e^{-(t/\tau)^\alpha} + I_b,$$

(A1)

where α varies from 0.35 to 0.50 depending on T and I_b is the long-term steady-state background current. Integrating the transient part, we obtain the ionic charge accumulated at time t, $Q(t) = \int_0^t dt' [I_{trans}(t') - I_b]$.

In our experiment, the optimal temperature falls in the window 220-240 K. As shown in Fig. A1, the background I_b is a factor of 10-100 smaller than the onset value I_0. Raising T above 240 K leads to an exponential increase in I_b. Most of this arises from the finite (if small), thermally-activated bulk conductivity of the ionic liquid. In addition, chemical reaction adds an increasingly important component to I_b when $|V_G|$ exceeds 2 V. For these reasons, we keep T under 240 K.

To minimize possible chemical reaction, it might seem expedient to lower the gating T to as close to the glass transition as feasible (this strongly suppresses I_b). However, we quickly encounter a different problem, namely the failure of the ionic charge configuration to melt completely. As a result, $Q(t)$ fails to attain its equilibrium value as V_G is changed (even if $t \gg 10^3$ s), leading to a different kind of hysteresis.

FIG. A1: (color online) The transient (discharging) current I_{trans} versus time t following a step-change of V_G from 0 to -5 V at $t = 0$ at $T = 212$ K in Sample 3. The observed current fits well to the stretched exponential form Eq. A1 with the parameters $I_0 = -11.1$ nA, $I_b = -0.074$ nA, $\alpha = 0.37$, and $\tau = 10.5$ s. I_b is the long-term steady-state background current.

Figure A2 plots the changes in ρ (Sample 3) as V_G is cycled between 0 and -2.5 V at the relatively low T (208 and 212 K). In contrast to Fig. 2, we observe sizeable hysteretic behavior (also in n_H, not shown). To show that this is not caused by chemical reaction (which should be greatly suppressed at low T), we have measured the accumulated $Q(t)$ and found that it displays the same hysteresis (vs. V_G). When we plot the changes in ρ and n_H against $n_{ion} = Q/eA$ (see Fig. A3), the hysteretic behavior apparent in Fig. A2 is largely removed.

This implies that, at these low T, a significant portion of the ionic “solid” accumulated at the previous value of V_G fails to melt and flow in response to the new V_G. Hence $Q(t)$ never attains its equilibrium value even at long t. This leads to strong hysteresis in Q vs. V_G. However, the near-absence of hysteresis in Fig. A3 shows that ρ and n_H adjust reversibly to the non-equilibrium value of Q. The key parameter that causes ρ and n_H to change...
is the electric-field $E(0^-)$ produced by Q even when it lags the applied V_G. This direct link provides further support for our conclusion that the dominant effect of changing Q is band-bending.

A2. APPENDIX II: DEPLETION AND QUANTUM CAPACITANCES

With reference to Fig. 7, the free-charge density profile $\rho(x)$ is comprised of 4 delta functions $\delta(x)$ and an extended distribution over the depletion width d (which we assume has a flat profile expressed by the step-function $\theta(x)^{26}$, as shown in Fig. 7b). Setting the origin $x = 0$ at the TI surface, we have

$$\rho(x) = -\frac{Q}{A} \delta(x + s) + \frac{Q}{A} \delta(x + s - a) - \frac{Q}{A} \delta(x + a) + \sigma_s \delta(x) + N_d \epsilon d [\theta(x) - \theta(x - d)],$$

(A2)

where σ_s is the surface charge density at the exposed crystal face, and N_d is the density of ionized donor impurities within the depletion width d (we take $e > 0$). The electrostatic potential $\varphi(x)$ is derived from the Poisson equation

$$-\varepsilon(x) \frac{\partial^2 \varphi}{\partial x^2} = \frac{\rho(x)}{\epsilon_0},$$

(A3)

with ϵ_0 the vacuum permittivity. The dielectric function $\varepsilon(x) = \varepsilon_s$ inside the TI $x > 0$. Within the ionic liquid, $\varepsilon(x) = \varepsilon_{liq}$.

![Graph](image)

FIG. A2: (color online) Apparent hysteretic behavior of ρ vs. V_G observed at temperatures close to the glass transition T_G. Varying V_G at T too closer to T_G strongly suppresses the background quasi-steady state I_1 and possibilities of chemical reaction. However, this imparts increased hysteresis in ρ when V_G is cycled (here $T = 208$ and 212 K). The Hall density n_H shows similarly large hysteresis (not shown). As discussed in the text, we show that this apparent low-temperature hysteresis results from incomplete melting of the ionic liquid.

![Graph](image)

FIG. A3: (color online) Absence of low-temperature hysteresis when ρ and n_H are plotted against $n_{con} = Q/\epsilon A$, with $A = 2.9 \text{ mm}^2$. Replotting the data for ρ in Fig. A2 versus n_{con} (instead of V_G) removes the hysteresis apparent in Fig. A2. This shows that the hysteric behavior arises from the variation of Q vs. V_G. The physically relevant quantities inside the crystal ρ and n_H are dependent only on Q, strongly supporting the premise that band-bending produces these changes rather than chemical reaction.

Integration of Eq. A3 gives the profile of $\varphi(x)$ sketched in Fig. 7b. We wish to relate the charge density Q/A to σ_s and d. Setting φ and $\partial \varphi/\partial x$ to 0 deep in the bulk ($x > d$), we have for the E-field just to the right of $x = 0$

$$E(0^+) = -\left(\frac{\partial \varphi}{\partial x}\right)_{0^+} = -\frac{N_d \epsilon d}{\epsilon_0 \epsilon_s}.$$

(A4)

In the flat-profile approximation for $\rho(x)$, Eq. A3 gives the parabolic variation of $\varphi(x)$

$$\varphi(x) = -\frac{N_d \epsilon}{2 \epsilon_0 \epsilon_s} (x - d)^2 \quad (x > 0).$$

(A5)

Next, we integrate Eq. A3 between the limits $x = 0^-$ (bracketing $x = 0$) to get

$$\epsilon_s E(0^+) - E(0^-) = \sigma_s/\epsilon_0.$$

(A6)
We note that Eq. A8 is independent of ε_s. The charge Q induced by the anions is partitioned between two charge reservoirs which see the same potential drop $V_s = \varphi(0)$ relative to the ground at $x = +\infty$. Hence, as shown in Fig. 7c, we regard the two charge reservoirs as two capacitors in parallel, namely the quantum capacitance\(^2\)
\[
C_q = \sigma_s^\infty = e^2 \frac{n_s}{d\mu}, \tag{A9}
\]
and the depletion-layer capacitance
\[
C_d = N_d edA/\varphi(0). \tag{A10}
\]
Whereas in graphene, the quantum capacitance is readily resolved, here it is shunted by the large C_d. The parallel combination $C_q + C_d$ is in series with the ionic-liquid capacitor C_0 (the series combination of the cation and anion capacitors). The voltage drop across C_0 is $V_G - V_s$.

Mobility edge and electronic polarizability
We discuss a scenario in which a strongly enhanced electronic polarizability arises within the depletion layer. Figure A4 is a sketch of the band bending near the surface. As shown, the chemical potential μ in the bulk lies just below the bottom of the conduction band. The right panel plots the density of states $D(\varepsilon)$ in a cut in the bulk. The impurity band is comprised of “tails” of $D(\varepsilon)$ which taper downwards (upwards) from the conduction band (valence band)\(^2\). At 4 K, the mobility edge ε_m sharply divides states that are itinerant (closer to the gap edge) from the states that are localized. Electrons in the itinerant states diffuse with the observed mobility $\mu_b \sim 20 \text{ cm}^2/\text{Vs}$. In an E-field strong enough to cause band bending, ε_m is lifted above μ within the depletion region of width d. Occupied states within this region are strongly localized, so they do not contribute to the observed conductivity or Hall effect. However, because the localization length ξ_{loc} diverges as $\varepsilon \to \varepsilon_m$ from below, the localized states have a greatly enhanced electronic polarizability. The electronic component of the dielectric screening parameter will be much larger than that from the lattice polarizability.

1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
2. Xiao-Liang Qi and Shou-Cheng Zhang, Rev. Mod. Phys. 83, 1057 (2010).
3. D. Hsieh, D. Qian, L. Wray, Y. Xia, and Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 452, 970 (2008).
4. P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature (London) 460, 1106 (2009).
5. Dong-Xia Qu, Y. S. Hor, Jun Xiong, R. J. Cava, and N. P. Ong, Science 329, 821 (2010).
6. James G. Analytis, Ross D. McDonald, Scott C. Riggs,
In general, it is best to convert the resistivity tensor R_{ij} to the conductance tensor G_{ij}, and to identify B_n with the minima in G_{xx}. However, in many experiments (two-terminal measurements or experiments on nanowires), the Hall resistance R_{yx} is unavailable. Because the total conductance in Bi-based TI systems is dominated by low-mobility bulk electrons, we have $|R_{yx}| \ll R_{xx}$. Then R_{xx} has a local maximum whenever G_{xx} has a local minimum, and we should identify B_n with the fields at which R_{xx} attains local maxima. The wrong assignment (identifying B_n with minima in R_{xx}) shifts the intercept by $\pm \frac{1}{2}$. This leads to mis-identifying the SdH oscillations from bulk carriers as arising from Dirac electrons.

Previous gating experiments reported either a decrease in μ_s with finite gating\(^{17}\), or a non-monotonic variation of μ_s that trends downwards with increasing $|V_G|^{20}$. SdH oscillations were not resolved in these studies.

In general, it is best to convert the resistivity tensor R_{ij} to the conductance tensor G_{ij}, and to identify B_n with the minima in G_{xx}. However, in many experiments (two-terminal measurements or experiments on nanowires), the Hall resistance R_{yx} is unavailable. Because the total conductance in Bi-based TI systems is dominated by low-mobility bulk electrons, we have $|R_{yx}| \ll R_{xx}$. Then R_{xx} has a local maximum whenever G_{xx} has a local minimum, and we should identify B_n with the fields at which R_{xx} attains local maxima. The wrong assignment (identifying B_n with minima in R_{xx}) shifts the intercept by $\pm \frac{1}{2}$. This leads to mis-identifying the SdH oscillations from bulk carriers as arising from Dirac electrons.

References

1. Jiu-Haw Chu, G. S. Boebinger and Ian R. Fisher, Nature Physics 6, 960 (2010).
2. Hailin Peng, et al., Nature Materials 9, 225-229 (2009).
3. Zhi Ren, A. A. Taskin, Satoshi Sasaki, Kouji Segawa and Yoichi Ando, Phys. Rev. B 82, 241306(R) (2010).
4. Jun Xiong, A.C.Petersen, Dongxia Qu, Y.S. Hor, R. J. Cava, N.P. Ong, Physica E 44, 917 (2012).
5. Jun Xiong, Yongkang Luo, YueHaw Khoo, Shuang Jia, R. J. Cava, and N. P. Ong, Phys. Rev. B 86, 045314 (2012).
6. J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 106, 196801 (2011).
7. Hadar Steinberg, Dillon R. Gardner, Young S. Lee, and Pablo Jarillo-Herrero, Nano Lett. 10, 5032 (2010).
8. Benjamin Sacepe, Jeroen B. Oostinga, Jian Li, Alberto Ubaldini, Nuno J.G. Couto, Enrico Giannini and Alberto F. Morpurgo, Nature Communications 2, 575 (2011).
9. H. Steinberg, J.-B. Laloe, V. Fatemi, J. S. Moodera and P. Jarillo-Herrero, Phys. Rev. B 84, 233101 (2011).
10. Hongtao Yuan, Hongwen Liu, Hidekazu Shimotani, Hua Guo, Mingwei Chen, Qikun Xue and Yoshihiro Iwasa, Nano Lett. 11, 2601 (2011).
11. Dohun Kim, Sungjae Cho, Nicholas P. Butch, Paul Syers, Kevin Kirshenbaum, Shaffique Adam, Johnpierre Paglione and Michael S. Fuhrer, Nature Physics 8, 459 (2012).
12. Joseph G. Checkelsky, Jiarting Ye, Yoshinori Onose, Yoshihiro Iwasa and Yoshinori Tokura, Nature Physics 8, 729 (2012).
13. Sumao Shimizu, Ryutaro Yoshimi, Takafumi Hatano, Kei S. Takahashi, Atsushi Tsukazaki, Masashi Kawasaki, Yoshihiro Iwasa, and Yoshinori Tokura, Phys. Rev. B 86, 045319 (2012).
14. Kouji Segawa, Zhi Ren, Satoshi Sasaki, Tetsuya Tsuda, Susumu Kuwabata, and Yoichi Ando, Phys. Rev. B 86, 075306 (2012).
15. Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer and Philip Kim, Nature 438, 201 (2005).
16. In general, it is best to convert the resistivity tensor R_{ij} to the conductance tensor G_{ij}, and to identify B_n with the minima in G_{xx}. However, in many experiments (two-terminal measurements or experiments on nanowires), the Hall resistance R_{yx} is unavailable. Because the total conductance in Bi-based TI systems is dominated by low-mobility bulk electrons, we have $|R_{yx}| \ll R_{xx}$. Then R_{xx} has a local maximum whenever G_{xx} has a local minimum, and we should identify B_n with the fields at which R_{xx} attains local maxima. The wrong assignment (identifying B_n with minima in R_{xx}) shifts the intercept by $\pm \frac{1}{2}$. This leads to mis-identifying the SdH oscillations from bulk carriers as arising from Dirac electrons.

Previous gating experiments reported either a decrease in μ_s with finite gating\(^{17}\), or a non-monotonic variation of μ_s that trends downwards with increasing $|V_G|^{20}$. SdH oscillations were not resolved in these studies.

1. Haim Beidenkopf, Pedram Roushan, Jungpil Seo, Lindsay Gorman, Ilya Drozdov, Yew San Hor, R. J. Cava, and Ali Yazdani, Nature Physics 7, 939 (2011).
2. Tsumeya Ando, Alan B. Fowler and Frank Stern, Rev. Mod. Phys. 54, 437 (1982).
3. Solid State Physics, Neil W. Ashcroft and N. David Mermin (Saunders College, 1976), Ch. 29.
4. Physics of Semiconductor Devices, S. M. Sze, (John Wiley & Sons, 1981), Ch. 7.
5. C. Nanjundiah, S.F. McDevitt, V.R. Koch, J. Electrochem. Soc. 144, 3392 (1997).
6. Serge Luryi, Appl. Phys. Lett. 52, 501 (1988).