Undifferentiated carcinoma with osteoclast-like giant cells of pancreas

A case report with review of the computed tomography findings

Yun-lei Guo, MDa,*, Li-tao Ruan, PhDa, Qiu-ping Wang, PhDb, Jie Lian, MDc

Abstract
Rationale: Undifferentiated carcinoma with osteoclast-like giant cells (UC-OGCs) of the pancreas is an extremely rare and aggressive pancreatic malignancy. To our knowledge, the computed tomography (CT) findings of this disease have rarely been analyzed.

Patient concerns: A 65-year-old man who experienced weight loss of about 4 kg over 3 months presented to our clinic. The abdominal ultrasound (US) detected a 5.8 × 5.5 cm well-defined, cystic-solid mass in the head of the pancreas, which had been present for 1 month.

Diagnosis: A benign pancreatic tumor was initially suspected on the basis of the US findings. The patient then received serum tumor markers and CT examinations for further diagnosis, including carbohydrate antigen 199 (CA199), carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA125), contrast-enhanced CT (CECT) and CT angiography (CTA). His CA199, CEA, and CA125 marker levels were normal, which supported the diagnosis of a benign tumor. CECT showed a well-defined cystic-solid mass in the head of the pancreas, with a slightly enhanced solid portion and pancreatic ductal dilatation, which led us to consider the possibility of a malignant tumor. CTA revealed that the tumor nourishing arteries emitted from the pancreaticoduodenal superior and inferior arteries into the mass. Then, the patient underwent a pancreaticoduodenectomy. Finally, postoperative pathology and immunohistochemistry confirmed UC-OGC of the pancreas.

Interventions: The patient has been treated by a pancreaticoduodenectomy alone.

Outcomes: The operation had no complications, and the patient recovered well after surgery. Ten months after surgery, the patient reviewed the CECT, and no recurrence or metastasis was noted.

Lessons: Old patients with cystic-solid lesions in the pancreas should be aware of UC-OGC. CT findings usually show a clear boundary and a slightly enhanced mass with pancreatic duct expansion.

Abbreviations: CA199 = carbohydrate antigen 199, CEA = carcinoembryonic antigen, CECT = contrast-enhanced computed tomography, CTA = computed tomography angiography, IPMN = intraductal papillary mucinous neoplasm, MCT = mucinous cystic tumor, OGCC = osteoclast-like giant cell carcinoma, PGCC = pleomorphic giant cell carcinoma, SPN = solid pseudopapillary neoplasm, UC-OGC = undifferentiated carcinoma with osteoclast-like giant cells, US = ultrasound.

Keywords: giant cell, osteoclast like, pancreas, undifferentiated carcinoma

1. Introduction
Pancreatic undifferentiated carcinoma is a rare and aggressive pancreatic malignancy that is divided into 2 categories by the

WHO: osteoclast-like giant cell carcinoma (OGCC) and pleomorphic giant cell carcinoma (PGCC); of these, OGCC is more rare.[1] Undifferentiated carcinoma with osteoclast-like giant cells (UC-OGCs) of the pancreas was first described by Rosai in 1968.[2] Less than 100 cases have been reported in English papers so far. The neoplasm is mainly composed of 2 cellular components: osteoclast-like giant cells (OGCs) and ovoid-to-spindle-shaped mononuclear tumor cells.[3] Due to the lack of typical clinical symptoms and the manifestation of a large cystic-solid mass, these tumors are easily misdiagnosed as mucinous cystic tumors (MCTs) or solid pseudopapillary neoplasms (SPNs). Most existing reports in the literature discuss pathologic findings, while imaging findings have been rarely reviewed. In this article, we reported the case of a patient with pancreatic UC-OGC and review clinical and computed tomography (CT) data from prior articles.

2. Case report
Written informed consent was obtained from the patient, and the data had been de-identified. The case report was approved by the
A 65-year-old man with weight loss of about 4kg over 3 months presented to our clinic. A pancreatic mass was discovered by abdominal ultrasound (US), which had been present 1 month. He denied any other discomfort, including abdominal pain, bloating, nausea, vomiting, diarrhea, constipation, and fever. He had a medical history of diabetes, was treated with insulin, and his glycemia was well controlled. The physical examination found no jaundice of the skin and sclera, mild tenderness in upper abdomen without rebound pain, and a palpable mass. The tumor markers, including carbohydrate antigen 199 (CA199), carcinoembryonic antigen (CEA), and carbohydrate antigen 125 (CA125) were normal.

The abdominal US showed a 5.8 × 5.5 cm well-defined, round-like, mixed cystic and solid mass in the head of the pancreas. Numerous capsules of varying sizes, thick spacers, and solid ingredients were observed in the mass. Color Doppler flow imaging showed no significant flow signal (Fig. 1). US findings were indicative of a benign tumor.

The upper abdominal CT revealed a 6.0 × 5.5 cm heterogeneous mass lesion that arose from the head of the pancreas, with a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form. Contrast-enhanced CT (CECT) showed a peripheral and internal solid portion that was slightly enhanced at the arterial phase and continuously enhanced at the portal venous and delayed phases. The pancreatic duct was dilated, which supported a malignant tumor. While the biliary dilatation was not observed, the pancreatic head tumor showed a peripheral and internal solid portion that was slightly enhanced and had a clear margin and regular form.

Figure 1. The ultrasound revealed a 5.8 × 5.5 cm mixed cystic and solid mass in the head of pancreas. Color Doppler flow imaging showed no significant flow signal.
total of 17 cases were included (including our case). We focused on clinical features and imaging findings. Two researchers analyzed the CT images and descriptions independently. When the opinions were inconsistent, a 3rd radiologist intervened; and finally, a consensus was achieved. A tumor with complete pseudo-envelope or clear demarcation from the surrounding tissues was defined as a clear margin. A round or oval shape was defined as regular form. Otherwise, the tumor

Figure 2. The computed tomography (CT) showed a 6.0 × 5.9cm heterogeneous mass in the head of the pancreas (long arrow). The contrast-enhanced CT revealed a solid portion with a slightly enhanced arterial phase and continuously enhanced portal venous and delayed phases (A, C, D). The pancreatic duct was dilated (B, short arrows).

Figure 3. The computed tomography angiography revealed that nourishing arteries emitted from the superior and inferior pancreaticoduodenal arteries into the mass (A, arrows). In the 3-dimensional revascularization, the mass was poorly developed (B). m = mass.
was defined as having an obscure boundary and irregular form. The internal manifestations of these tumors were divided into 5 categories: solid (liquid-free), solid based (solid mass with little liquid), mixed (mixed cystic-solid mass that were difficult to classify as cystic or solid based), cystic based (cystic mass with few separation and/or nodular protrusion), and cystic (pure cystic without spacers or nodular protrusion) (Tables 1 and 2).

Pancreatic UC-OGC is more common in middle-aged and elderly patients, 94% of whom are over 50 years of age, and the average age is 63 years. Most patients are females (male:female = 7:10). The clinical symptoms are atypical, and mostly manifest as upper abdominal pain and/or weight loss. Loss of appetite, abnormal taste, nausea, steatorrhea, and some other gastrointestinal symptoms have also been reported in some cases.[24] Jaundice and anemia have been reported occasionally. In our case, the patient presented only with weight loss, without any other discomforts. Seven of 14 patients had elevated CA199 levels (range 41.26–392U/mL) and 2/8 presented with elevated CEA (range 29.6–196 ng/mL). UC-OGC is invasive and usually has a poor prognosis. Previous reports showed an average postoperative survival of 10 to 20 months,[5,10] compared to 24 months in our review. However, the survival time span is very large, ranging from 3 to 84 months, which may be related to the histologic heterogeneity of the tumor and the extent of the lesion at the time of discovery.[17] There were 2 female patients who survived >6 years after surgery, one patient had UC-OGC alone and another had UC-OGC combined with PGCC. They both underwent radical surgery and gemcitabine chemotherapy.[13,20] Two patients with postoperative survivals <5 months had extensive lesions that could not be radically resected.[11,12] Therefore, early radical resection is essential. Chemotherapy and radiation therapy may be effective in some advanced cases,[13,14,16,20,23] however, experience and objective evidence are lacking throughout the literature.

The neoplasms are mostly located in the body and tail of the pancreas (13/17 cases). Previous studies confirmed the incidence in the pancreas body and tail to be about 70%,[18,25] The tumor is usually found in a large volume, with an average diameter of 8 cm. The tumor mostly manifests as a cystic-based or mixed cystic-solid mass (14/17 cases), and only 1 small tumor with a maximum diameter of 1.0 cm appeared to be solid in our

Table 1: Literature review of pancreatic UC-OGC, showing clinical features and pathologic types.

First Author	Year	Age, y/gender	Symptoms	Serum tumor markers	Treatment	Survival, mo	Pathology
Nai GA[10]	2005	69/M	UAP, WL, jaundice	/	Surg.	12	UC-OGC + MCN
Pan ZG[10]	2007	70/F	WL, abnormal taste, anemia, anorexia	/	Surg.	>4	UC-OGC + MCN
Singhil A[1]	2010	62/M	UAP, nausea	CA199(−)	Surg.	>6	UC-OGC
Hur YH[1]	2011	77/F	UAP, anorexia	CA199(−)	Surg.	3	UC-OGC
Wada[12]	2011	59/M	Anorexia	CA199(+)	Surg.	4	UC-OGC + MCN
Kobayashi S[13]	2014	37/F	UAP	CA199(+)	Surg.+ Chem.	84	UC-OGC
Ternessgen VM[14]	2014	57/F	UAP	CA199(+)	Surg.+ Chem.+ RT	>6	UC-OGC
Jo S[15]	2014	67/F	UAP, WL	CA199(+)	Surg.	9	UC-OGC
Chiarelli M[16]	2015	68/F	Abdominal discomfort	CA199(+)	Surg.+ Chem.	10	UC-OGC + PGC + MCN
Yang KY[17]	2015	58/M	UAP, WL	CA199(−)	Surg.	/	UC-OGC
Sah SK[18]	2015	54/F	UAP, WL	CA199(−)	Surg.	/	UC-OGC
Georgios K[19]	2016	75/F	UAP, WL, steatorrhea	CA199(+)	Surg.	10	UC-OGC
Saiki H[20]	2016	61/F	UAP	CA199(−)	Surg.+ Chem.	72	UC-OGC + PGC
Sakhi R[21]	2017	69/M	–	CA199(−)	Surg.	/	UC-OGC
Fu LP[22]	2017	66/F	UAP	CA199(−)	Surg.	10	UC-OGC
Zhang L[23]	2018	57/M	UAP, WL	CA199(−)	Surg.+ Chem.	/	UC-OGC
This case	2018	65/M	WL	CA199(+)	Surg.	>10	UC-OGC

(−) = negative, (+) = positive, / = not mentioned in the literature, CA199 = carbohydrate antigen 199, CEA = carcinoembryonic antigen, Chem = chemotherapy, F = female, M = male, MCN = mucinous cystic neoplasm, PGC = polymorphic giant cell, RT = radiation therapy, Surg = surgery, UAP = upper abdominal pain, UC-OGC = carcinoma with osteoclast-like giant cells of pancreas, WL = weight loss.
in the liver, lung, and bone. Magnetic resonance metastases may occur in advanced stages and are most common stroma. SPN is more common in young women and usually and local in duct expansion. SPN is a borderline tumor with good prognosis, tumor. Tron-emission tomography-CT revealed high uptake within the peripheral solid tissue. 18 F-fluorodeoxyglucose positron-emission tomography-CT usually shows a slight clear (13/17 cases), and most tumors have a regular form that is round or oval like (10/17 cases). CECT usually shows a slight peripheral enhancement, internal solid parts in the arterial phase, and continuous enhancement at portal venous and delayed phases. We found the mass to be poorly developed in 3-dimensional revascularization, suggesting low blood supply. Tumors in the head and neck of the pancreas tend to cause dilatation of the pancreatic duct, which is characteristic of malignant tumors. UC-OGCs are nodular and promote marginal growth. Despite the large volume, tissue infiltration and lymph node metastases are not common in CT images. Distant metastases may occur in advanced stages and are most common in the liver, lung, and bone. Magnetic resonance (MR) T1-weighted imaging shows low signal intensity with or without patchy high signals. T2-weighted imaging shows a high-intensity central cystic portion with low-intensity septa and peripheral solid tissue. The UC-OGC of the pancreas needs to be differentiated from pancreatic MCT, SPN, and intraductal papillary mucinous neoplasm (IPMN). MCT is more common in older females and often occurs in the tail of the pancreas, with large cystic cavities, thick septa, and nodular protuberances in the mass. Image identification is difficult, and the pathology shows ovarian-type stroma. SPN is more common in young women and usually manifests as a solid-based, soft texture mass without pancreatic duct expansion. SPN is a borderline tumor with good prognosis, and local infiltration or distant metastases are extremely rare. IPMN is more common in older men and often occurs in the head of the pancreas and may cause jaundice. The mass is connected to the pancreatic duct.

In conclusion, UC-OGC of the pancreas is a rare pancreatic undifferentiated carcinoma with a complex tissue origin. It is more common in elderly female patient, and about 50% of patients have elevated CA199. The disease progresses rapidly; however, there are still reports of postoperative survival for more than 6 years. Surgery combined with chemotheray is effective. It is more common in the body and tail of the pancreas and is usually found as large cystic-solid mass with a clear boundary. Tumors in the head or neck of the pancreas tend to cause dilatation of the pancreatic duct. CECT reveals slight enhancement of the solid parts. CT is a sensitive imaging method for detecting the neoplasm, and histologic examination can confirm the diagnosis.

Author contributions

Conceptualization: Yun-lei Guo.
Formal analysis: Yun-lei Guo.
Investigation: Qiu-ping Wang.
Methodology: Yun-lei Guo.
Project administration: Li-tao Ruan.
Resources: Qiu-ping Wang, Jie Lian.
Supervision: Li-tao Ruan.
Writing – original draft: Yun-lei Guo.
Writing – review & editing: Li-tao Ruan.

References

[1] Bosman FT, Carneiro F, Hruban RH, et al. WHO Classification of Tumours of the Digestive System. 4th ed;IARC, Lyon:2010.
[2] Rosai J. Carcinoma of pancreas simulating giant cell tumor of bone: electron-microscopic evidence of its acinar cell origin. Cancer 1968;22:333–44.
[3] Loya AC, Ramakar KS, Shastrey RA. Combined osteoclastic giant cell and pleomorphic giant cell tumor of the pancreas: a rarity. An immunohistochemical analysis and review of the literature. JOP 2004;5:220–4.
[4] Lewandrowski KB, Weston L, Dickersin GR, et al. Giant cell tumor of the pancreas of mixed osteoclastic and pleomorphic cell type: evidence for a histogenetic relationship and mesenchymal differentiation. Hum Pathol 1990;21:1184–7.
[5] Muraki T, Reid MD, Basturk O, et al. Undifferentiated carcinoma with osteoclastic giant cells of the pancreas: clinicopathological analysis of 38 cases highlights a more protracted clinical course than currently appreciated. Am J Surg Pathol 2016;40:1203–16.
[6] Sinhal A, Shroff SS, Li SF, et al. Giant cell tumor of the pancreas: a pathological diagnosis with poor prognosis. Hepatobiliary Pancreat Dis Int 2010;9:433–7.
[7] Muraki T, Reid MD, Basturk O, et al. Undifferentiated carcinoma with osteoclastic giant cells of the pancreas: clinicopathologic analysis of 38 cases highlights a more protracted clinical course than currently appreciated. Am J Surg Pathol 2016;40:1203–16.

[8] Nai GA, Amico E, Gimenez VR, et al. Osteoclast-like giant cell tumor of the pancreas associated with mucus-secreting adenocarcinoma. Case report and discussion of the histogenesis. Pancreatology 2005;5:279–84.

[9] Reid MD, Muraki T, Hoo Kim K, et al. Cytopathologic features and clinical implications of undifferentiated carcinoma with osteoclastic giant cells of the pancreas: an analysis of 15 cases. Cancer Cytopathol 2017;125:563–75.

[10] Pan ZG, Wang B. Anaplastic carcinoma of the pancreas associated with a mucinous cystic adenocarcinoma. A case report and review of the literature. JOP 2007;8:775–82.

[11] Hur YH, Kim HH, Seoung JS, et al. Undifferentiated carcinoma of the pancreas with osteoclast-like giant cells. J Korean Surg Soc 2011;81:146–50.

[12] Wada T, Itano O, Oshima G, et al. A male case of an undifferentiated carcinoma with osteoclast-like giant cells originating in an indeterminate mucin-producing cystic neoplasm of the pancreas. A case report and review of the literature. World J Surg Oncol 2011;9:100.

[13] Kobayashi S, Nakano H, Ooike N, et al. Long-term survivor of a resected undifferentiated pancreatic carcinoma with osteoclast-like giant cells who underwent a second curative resection: a case report and review of the literature. Oncol Lett 2014;8:1499–504.

[14] Temesgen WM, Wachtel M, Dissnaja S. Osteoclast giant cell tumor of the pancreas. Int J Surg Case Rep 2014;5:175–9.

[15] Jo S. Huge undifferentiated carcinoma of the pancreas with osteoclast-like giant cells. World J Gastroenterol 2014;20:2725–30.

[16] Chiarelli M, Guttadauro A, Gerosa M, et al. An indeterminate mucin-producing cystic neoplasm containing an undifferentiated carcinoma with osteoclast-like giant cells: a case report of a rare association of pancreatic tumors. BMC Gastroenterology 2015;15:161.

[17] Yang KY, Choi JI, Choi MH, et al. Magnetic resonance imaging findings of undifferentiated carcinoma with osteoclast-like giant cells of pancreas. Clin Imaging 2016;40:148–51.

[18] Sah SK, Li Y, Li Y. Undifferentiated carcinoma of the pancreas with osteoclast-like giant cells: a rare case report and review of the literature. Int J Clin Exp Pathol 2015;8:11785–91.

[19] Georgiou GK, Balasi E, Siozopoulou V, et al. Undifferentiated carcinoma of the head of pancreas with osteoclast-like giant cells presenting as a symptomatic cystic mass, following acute pancreatitis: case report and review of the literature. Int J Surg Case Rep 2016;19:106–8.

[20] Saito H, Kashiyama H, Murohashi T, et al. Case of six-year disease-free survival with undifferentiated carcinoma of the pancreas. Case Rep Gastroenterol 2016;10:472–8.

[21] Sakhi R, Hamza A, Khurram MS, et al. Undifferentiated carcinoma of the pancreas with osteoclast-like giant cells reported in an asymptomatic patient: a rare case and literature review. Autops Case Rep 2017;7:51–7.

[22] Fu LP, Cheng AP, Wang XG, et al. 18F-FDG PET/CT in the detection of undifferentiated carcinoma with osteoclast-like giant cells of the pancreas. Clin Nucl Med 2017;42:615–6.

[23] Zhang L, Lee JM, Yoon JH, et al. Huge and recurrent undifferentiated carcinoma with osteoclast-like giant cells of the pancreas. Quant Imaging Med Surg 2018;8:457–60.

[24] Rustagi T, Rampurwala M, Rai M, et al. Recurrent acute pancreatitis and persistent hyperamylasemia as a presentation of pancreatic osteoclastic giant cell tumor: an unusual presentation of a rare tumor. Pancreatology 2011;11:12–5.

[25] Muraki T, Reid MD, Basturk O, et al. Undifferentiated carcinoma with osteoclastic giant cells of the pancreas. Am J Surg Pathol 2016;40:1203–16.

[26] Huffman BM, Westin G, Alsadawi S, et al. Survival and prognostic factors in patients with solid pseudopapillary neoplasms of the pancreas. Pancreas 2018;47:1003–7.