Energy balance-related factors and risk of colorectal cancer based on \textit{K\textsc{RAS}}, \textit{PIK\textsc{3CA}}, and \textit{BRAF} mutations and MMR status

Josien C. A. Jenniskens1 1 \cdot Kelly Offermans1 1 \cdot Colinda C. J. M. Simons1 1 \cdot Iryna Samarska2 2 \cdot Gregorio E. Fazzi2 2 \cdot Jaleesa R. M. van der Meer2 2 \cdot Kim M. Smits2 2 \cdot Leo J. Schouten1 1 \cdot Matty P. Weijenberg1 1 \cdot Heike I. Grabsch2,3 2 \cdot Piet A. van den Brandt1,4 1

Received: 13 January 2022 / Accepted: 6 April 2022 / Published online: 11 May 2022
© The Author(s) 2022

Abstract
Introduction \textit{K\textsc{RAS}} mutations (\textit{K\textsc{RAS}\textsubscript{mut}}), \textit{PIK\textsc{3CA}\textsubscript{mut}}, \textit{BRAF\textsubscript{mut}} and mismatch repair deficiency (dMMR) have been associated with the Warburg-effect. We previously observed differential associations between energy balance-related factors (BMI, clothing-size, physical activity) and colorectal cancer (CRC) subtypes based on the Warburg-effect. We now investigated whether associations between energy balance-related factors and risk of CRC differ between subgroups based on mutation and MMR status.

Methods Information on molecular features was available for 2349 incident CRC cases within the Netherlands Cohort Study (NLCS), with complete covariate data available for 1934 cases and 3911 subcohort members. Multivariable-adjusted Cox-regression was used to estimate associations of energy balance-related factors with risk of CRC based on individual molecular features (\textit{K\textsc{RAS}\textsubscript{mut}}; \textit{PIK\textsc{3CA}\textsubscript{mut}}; \textit{BRAF\textsubscript{mut}}; dMMR) and combinations thereof (all-wild-type + MMR-proficient (pMMR); any-mutation/dMMR).

Results In men, BMI and clothing-size were positively associated with risk of colon, but not rectal cancer, regardless of molecular features subgroups; the strongest associations were observed for \textit{PIK\textsc{3CA}\textsubscript{mut}} colon cancer. In women, however, BMI and clothing-size were only associated with risk of \textit{K\textsc{RAS}\textsubscript{mut}} colon cancer (\textit{p}-heterogeneity \textit{K\textsc{RAS}\textsubscript{mut}} versus all-wild-type+pMMR = 0.008). Inverse associations of non-occupational physical activity with risk of colon cancer were strongest for any-mutation/dMMR tumors in men and women, and specifically for \textit{PIK\textsc{3CA}\textsubscript{mut}} tumors in women. Occupational physical activity was inversely associated with both combination subgroups of colon cancer in men.

Conclusion In men, associations did not vary according to molecular features. In women, a role of \textit{K\textsc{RAS}} mutations in the etiological pathway between adiposity and colon cancer is suggested, and of \textit{PIK\textsc{3CA}} mutations between physical activity and colon cancer.

Keywords Prospective cohort study · Energy balance · Colorectal cancer · Mutations · Mismatch repair/microsatellite instability · Etiological heterogeneity

Heike I. Grabsch and Piet A. van den Brandt are co-last author.

1 Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD Maastricht, The Netherlands

2 Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ Maastricht, The Netherlands

3 Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK

4 Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+, Maastricht, The Netherlands
Introduction

Colorectal cancer (CRC) risk was shown to be affected by energy balance-related factors (Moghaddam et al. 2007; Robsahm et al. 2013; Wolin et al. 2009; Samad et al. 2005). Adiposity measures, such as body mass index (BMI) and waist circumference, have been associated with an increased risk of CRC (Moghaddam et al. 2007; Robsahm et al. 2013), whereas physical activity has been associated with a decreased risk of CRC (Robsahm et al. 2013; Wolin et al. 2009; Samad et al. 2005). One of the proposed mechanisms underlying these associations is activation of the so-called Warburg-effect through upregulated PI3K/Akt-signaling (Huang and Chen 2009; Levine and Puzio-Kuter 2010; Feron 2009; Schwartz et al. 2017; Hanahan and Weinberg 2011). We have previously observed differential associations between energy balance-related factors (i.e. BMI; clothing-size, as a proxy for waist circumference; physical activity) and CRC subtypes expressing different levels of proteins involved in the Warburg-effect (Jenniskens et al. 2021a).

The Warburg-effect is a metabolic phenotype first discovered in the 1920s by Otto Warburg and colleagues (Warburg 1925). This phenotype is characterized by increased aerobic glycolysis (Levine and Puzio-Kuter 2010; Feron 2009) and is considered an important step in carcinogenesis (Schwartz et al. 2017; Hanahan and Weinberg 2011). Mutations in well-known oncogenes KRAS, PIK3CA, and BRAF have been reported to drive metabolic reprogramming towards the Warburg-effect (Levine and Puzio-Kuter 2010; Kimmelman 2015; Hutton et al. 2016; Jiang et al. 2018). Furthermore, we have previously shown in CRC that DNA mismatch repair deficiency (dMMR), a surrogate for microsatellite instability (MSI), was associated with the Warburg-effect (Offermans et al. 2021).

MSI and KRAS, PIK3CA, and BRAF mutations (KRASmut, PIK3CAmut, and BRAFmut, respectively) are common molecular features in CRC (Li et al. 2020; Haluska et al. 2007; Boland and Goel 2010). Associations between energy balance-related factors (i.e. BMI, waist circumference, physical activity) and risk of CRC in relation to KRASmut, PIK3CAmut, and/or dMMR status have been reported previously (Carr et al. 2018, 2020; Myte et al. 2019; Brändstedt et al. 2013, 2014; Slattery et al. 2000, 2001, 2007; Hughes et al. 2012; Campbell et al. 2010; Hoffmeister et al. 2013; Hanyuda et al. 2016). However, results thus far are inconsistent. To the best of our knowledge, there are no studies that have investigated associations between energy balance-related factors and risk of CRC in relation to PIK3CAmut status.

The aim of the current study was to investigate the associations of BMI, lower body clothing-size (as a proxy for waist circumference), and physical activity with risk of CRC subgroups based on KRASmut, PIK3CAmut, BRAFmut and MMR status. First, we compared CRC subgroups based on a combination of these molecular features: I) all-wild-type+pMMR — cases wild-type for all genes (KRAS, PIK3CA, and BRAF) and MMR-proficient (pMMR); II) any-mutation/dMMR — cases with a mutation in any of the genes (KRAS, PIK3CA, and/or BRAF) and/or dMMR. Second, we investigated subgroups of these molecular features individually: KRASmut, PIK3CAmut, BRAFmut, and dMMR. The all-wild-type+pMMR subgroup served as the reference group for all other subgroups.

We hypothesized that associations between energy balance-related factors and risk of CRC differ between subgroups based on KRASmut, PIK3CAmut, BRAFmut, and MMR status, which could indicate involvement of the Warburg-effect in etiological associations. We reasoned that associations with subgroups of individual molecular features (%KRASmut, %PIK3CAmut, %BRAFmut and dMMR) and/or with the any-mutation/dMMR subgroup, but not the all-wild-type+pMMR subgroup, give an indication of involvement of the Warburg-effect in the etiological pathway between the exposure of interest and CRC.

Methods

Design and study population

Data from the Netherlands Cohort Study (NLCS), a large prospective cohort study, was used. At baseline (1986), 120,852 subjects aged 55–69 years completed a mailed, self-administered questionnaire on cancer risk factors (Brandt et al. 1990a). By completing and returning the questionnaire, participants agreed to participate in the study. The NLCS was approved by institutional review boards from Maastricht University and the Netherlands Organization for Applied Scientific Research. Ethical approval was obtained from the Medical Ethical Committee of Maastricht University Medical Center+. For data processing and analysis, a case-cohort approach was used (Prentice 1986). A subcohort (n = 5000) was randomly sampled from the total cohort immediately after baseline, and accumulated person-years were estimated from this subcohort. Vital status information of subcohort members was obtained biennially by active follow-up and by linkage with municipal population registries. Incident cancer cases from the total cohort were detected through annual record linkage with the Netherlands Cancer Registry and PALGA, the nationwide Dutch Pathology Registry (Brandt et al. 1990b), covering 20.3 years of follow-up (September 17, 1986 until January 1, 2007). Completeness of cancer follow-up by the Netherlands Cancer Registry and PALGA was estimated to be over 96% (Goldbohm et al. 1994). After
excluding cases and subcohort members who reported a history of cancer (except skin cancer) at baseline, a total of 4,597 incident CRC cases and 4,774 subcohort members were available (Fig. 1). As described previously (Jenniskens et al. 2021a), formalin-fixed paraffin-embedded (FFPE) tissue blocks from primary tumor and matched normal colon tissue from 3,872 CRC cases were requested from participating laboratories as part of the Rainbow-TMA project during

Fig. 1 Flow diagram of the number of CRC cases and subcohort members; NLCS, 1986–2006. CRC colorectal cancer; NA not applicable; PALGA Dutch Pathology Registry; FFPE formalin-fixed paraffin-embedded; TMA tissue microarray; QC quality control; H&E Hematoxylin & Eosin; pan-CK pan-cytokeratin; MMR mismatch repair
2012–2017. Tissue blocks from 3,021 CRC cases were successfully collected from 43 pathology laboratories throughout the Netherlands (78% retrieval rate) (Fig. 1).

Mismatch repair status

From the FFPE blocks, 78 tissue microarrays (TMAs) were constructed sampling three 0.6 mm tumor cores from 2,694 CRC cases (Fig. 1). Information on TMA construction has been published previously (Jenniskens et al. 2021a). All TMA sections were scanned using an Aperio scanner (Leica Microsystems, Milton Keynes, UK) at 40 × magnification at the University of Leeds (UK) ScanScope Aperio scanner (Leica Microsystems, Milton Keynes, UK) at 40× magnification at the University of Leeds (UK) Scanning Facility or at the Department of Pathology, Aachen University Hospital (Germany).

H&E-stained TMA sections combined with pan-cytokeratin stained sections (if necessary) were reviewed to confirm presence of adenocarcinoma for each core. Requiring at least one core per case with adenocarcinoma, 2,497 cases passed the criteria. Tumors were classified as MMR-deficient (dMMR), and those expressing complete loss of either MLH1 or MSH2 were classified as MMR-proficient (pMMR). MMR status information was available for 2,455 CRC cases (Fig. 1).

DNA isolation and mutation detection

For DNA extraction, two 20 µm thick sections were cut from FFPE blocks containing primary tumor. Sections were deparaffinized manually using the Buffer ATL (Cat. No. 939011, Qiagen, Hilden, Germany), Proteinase K (Cat. No. 19131, Qiagen), and the Deparaffinization Solution (Cat. No. 19093, Qiagen), using an adapted version of the manufacturer’s protocol (Supplementary Methods). The QIAsymphony® DSP DNA Mini Kit (Cat. No. 937236, Qiagen) and the QIAsymphony® (Qiagen) instrument were used for DNA isolation following the manufacturer’s protocol (Tissue_HC_200 protocol). The Quantus™ Fluorometer (Promega, Madison, WI, USA) with a QuantiFluor® dsDNA system (Promega) was used to determine the double-stranded DNA concentrations. Mutations in tumor DNA were analyzed at Institut für Immunologie und Genetik (Kaiserslautern, Germany) with the ColoCarta panel (Agena Bioscience, Hamburg), which screens for 32 mutations in 6 genes (BRAF, HRAS, KRAS, MET, NRAS, PIK3CA; see Supplementary Table S1 for specific mutations) using Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) mass spectrometry. To ensure valid mutation information, the following cut-offs were used: Z-score ≥ 4.00; spectrum quality ≥ 0.750; typer peak probability ≥ 0.850; primer extension rate cut-off ≥ 0.200. Detection of mutations at a frequency of ≥ 7.5% for any of the alleles was considered evidence of a mutation in the corresponding gene. A failed reaction at a single nucleotide position resulted in missing data for the corresponding gene status only if the reactions at all other positions were wild-type.

No mutations were observed in HRAS, and NRAS mutations were found in a total of 86 cases. NRAS mutations were not included in the current analyses as after stratification on sex and tumor location, subgroups would have less than 50 cases (range 10–42 cases). This would have led to empty cells or cells with less than five cases for models based on categories of exposures. Complete information on KRAS, PIK3CA, and BRAF mutation status as well as MMR status was available for 2,349 CRC cases (Fig. 1). Supplementary Table S2 shows baseline characteristics of CRC cases by availability of mutation and MMR status.

Subgroups of molecular features

The following subgroups were used for statistical analyses: (I) all-wild-type + pMMR — cases wild-type for all genes (KRAS, PIK3CA, and BRAF) and pMMR; (II) any-mutation/dMMR — cases with a mutation in any of the genes (KRAS, PIK3CA, and BRAF) and/or dMMR; (III) KRAS(mut) — cases with a (non-exclusive) KRAS mutation; (IV) BRAF(mut); (V) PIK3CA(mut); and (VI) dMMR. Note: subgroups of individual mutation and MMR status might overlap since multiple mutations and/or dMMR can occur within the same tumor.

Energy balance-related factors

Baseline questionnaires provided information on anthropometry, physical activity, diet, and other risk factors (Brandt et al. 1990a). BMI at baseline (kg/m²) was calculated using baseline weight (kg) divided by height squared (m²). Lower body clothing-size (trouser/skirt) was used as a proxy for waist circumference (Hughes et al. 2009). Non-occupational physical activity included leisure activities like walking, cycling, or doing sports, as described in more detail previously (Simons et al. 2013). Occupational energy expenditure and sitting time were estimated for the longest held job, which was self-reported at baseline. Jobs were classified...
as low, moderate, or high activity, as described previously (Simons et al. 2013). Energy expenditure was classified as <8, 8–12, and >12 kJ/minute, and sitting time as sitting for >6, 2–6, and <2 working hours/day. Data on occupational physical activity were only available for the subcohort and for cases until 17.3 years of follow-up, since funding for later data-entry and classification of occupations was unavailable. Furthermore, we did not analyze occupational physical activity measures in women because many did not have paid jobs (Simons et al. 2013).

Statistical analyses

After exclusion of participants with incomplete or inconsistent data on exposure variables or confounders, 3911 subcohort members and 1934 CRC cases were available for analyses (Fig. 1). Descriptive statistics and frequency distributions were calculated for subgroups based on molecular features and cohort characteristics. Differences of molecular features between men and women and between colon and rectum were evaluated using Chi-square. Associations between energy balance-related factors and CRC subgroups based on molecular features were investigated stratified on sex and tumor location. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations between CRC and BMI (according to sex-specific quartiles, and per 5 kg/m² increase), clothing-size (according to sex-specific quartiles, and per 2 sizes increase), non-occupational physical activity (in categories of <30, 30–60, 60–90, >90 min per day, and per 30 min/day increase), and, for men, occupational physical activity (energy expenditure in categories of <8, 8–12, >12 kJ/minute; sitting time in categories of >6, 2–6, and <2 working hours/day). Standard errors of the HRs were estimated using the Huber-White sandwich estimator to account for additional variance introduced by sampling from the cohort (Lin and Wei 1989). The proportional hazard assumption was tested using the scaled Schoenfeld residuals (Schoenfeld 1982) and by introducing time-covariate interactions into the models.

All multivariable models were adjusted for age, family history of CRC (yes/no), alcohol intake (0; 0.1–4; 5–14; >15 g/day), energy intake at baseline (kcal/day), red meat consumption (g/day), and processed meat consumption (g/day), as used previously (Jenniskens et al. 2021a). In addition, BMI and clothing-size models were adjusted for non-occupational physical activity (minutes/day), and BMI models for height (cm). All physical activity models were adjusted for BMI. Moreover, an additional analysis was conducted with mutual adjustment for clothing-size and BMI, where clothing-size adjusted for BMI represents a proxy for abdominal fatness, and BMI adjusted for clothing-size a proxy for subcutaneous fatness (Hughes et al. 2009; Janssen et al. 2002). Sensitivity analyses were performed excluding the first two years of follow-up.

Heterogeneity in associations between energy balance-related factors and CRC subgroups based on molecular features was evaluated using an adapted version of the competing risks procedure in Stata developed specifically for the case-cohort design (Vogel et al. 2008). The original procedure assumes independence of both estimated HRs, which underestimates the standard error and thus overestimates the p-values for their difference. Therefore, the p-values and associated CIs were estimated based on a bootstrapping method developed specifically for the case-cohort design (Wacholder et al. 1989). Each bootstrap analysis was based on 1000 replications. The all-wild-type + pMMR subgroup was the reference group for heterogeneity tests of all subgroups. Since our analyses were hypothesis-driven and exposures reflect different aspects of energy balance, we did not correct for multiple testing. All analyses were conducted in Stata Statistical Software: Release 15 (StataCorp., 2017, College Station, TX).

Results

Frequencies of molecular features

In total, 1142 (59.1%) tumors had a mutation in at least one of the genes (KRAS, PIK3CA, or BRAF) and/or were classified as dMMR (Table 1, Fig. 2a). The overall frequency of mutations and/or presence of dMMR was higher in women compared to men (66.4% vs 53.6%, respectively; p-value: <0.001), and higher in tumors located in the colon compared to the rectum (64.7% vs 43.9%, respectively; p-value: <0.001) (Table 1).

KRASmut-tumors were observed in 673 (34.8%) cases, PIK3CAmut-tumors in 334 (17.3%) cases, BRAFmut-tumors in 298 (15.4%) cases, and dMMR-tumors in 206 (10.7%) cases (Table 1, Fig. 2b). The frequency of BRAFmut-tumors and dMMR-tumors was higher in women compared to men (BRAFmut: 22.1 vs 10.5%, p-value: <0.001; dMMR: 16.3% vs 6.5%, p-value: <0.001, respectively). PIK3CAmut−, BRAF−mut−, and dMMR-tumors were more often observed in colon compared to rectum (PIK3CAmut−: 19.2% vs 12.7%, p-value: 0.004; BRAF−mut−: 20.1% vs 3.9%, p-value: <0.001; dMMR: 14.5% vs 0.9%, p-value: <0.001, respectively) (Table 1).

Within the any-mutation/dMMR subgroup, exclusive KRASmut-tumors were observed in 505 (44.2%), exclusive PIK3CAmut-tumors in 125 (11.0%), exclusive BRAFmut−tumors in 132 (11.6%), and exclusive dMMR-tumors in 44 (3.9%) cases (Fig. 2c). Combinations of KRASmut and PIK3CAmut and of BRAFmut and dMMR were most common (13.0% and 10.3%, respectively). Other combinations...
Cohort characteristics in subgroups based on molecular features

Information on cohort characteristics of CRC cases, overall and according to subgroups based on molecular features, is provided in Table 2. Cases in the any-mutation/dMMR subgroup were older than those in the all-wild-type + pMMR subgroup. Furthermore, cases in the any-mutation/dMMR subgroup were more often overweight compared to those in the all-wild-type + pMMR subgroup, with the exception of men with colon cancer. In general, overweight was most frequently observed amongst cases with KRAS mut- and/or PIK3CA mut-tumors. Similarly, the any-mutation/dMMR subgroup showed a larger mean clothing-size compared to the all-wild-type + pMMR subgroup, with the exception of men with colon cancer. The mean clothing-size was largest for the KRAS mut subgroup, again with the exception of men with colon cancer. Non-occupational physical activity was higher amongst the all-wild-type + pMMR subgroup than amongst the any-mutation/dMMR subgroup, with the exception of women with rectal cancer. In men, cases with a PIK3CA mut-tumor in the colon were least physically active, whereas in women cases with dMMR- or BRAF mut-tumors in the colon were least physically active. Colon cancer cases in the any-mutation/dMMR subgroup showed a higher occupational energy expenditure than those in the all-wild-type + pMMR subgroup. In particular, dMMR colon cancer cases showed the highest occupational energy expenditure and lowest occupational sitting time. In contrast, rectal cancer cases showed lower occupational energy expenditure compared to those in the all-wild-type + pMMR subgroup.

Associations of energy balance-related factors and CRC subgroups based on molecular features

Multivariable-adjusted Cox-regression models on energy balance-related factors and risk of CRC subgroups based on molecular features are shown in Tables 3, 4, 5, and 6. Age-adjusted Cox-regression models are shown in Supplementary Tables S3–S6. Results of associations between energy balance-related factors and risk of CRC wild-type and MMR-proficient subgroups separately are additionally presented in Supplementary Tables S7–S8. Age was included as a time-varying covariate in all models, because of violation of the proportional hazards assumption.

Table 1 Frequenciesa [n (%)] of subgroups based on mutation and MMR status in CRC cases, by tumor location and sex; NLCS, 1986–2006

	Colon	Rectum		
	Men	Women	Men	Women
Total n	1384	355	224	131
Men n	754	156	145	135
Women n	630	199	79	64

(d/p)MMR mismatch repair (deficient/proficient); CRC colorectal cancer; NLCS Netherlands Cohort Study; mut mutated

aPercentages might not add up because multiple molecular characteristics (e.g. BRAF mutation and MMR deficiency) can occur per individual

bThis group excludes cases with mutations in any of the genes (KRAS, PIK3CA, or BRAF), as well as MMR deficient cases

cThis group includes cases with mutations in any of the genes (KRAS, PIK3CA, or BRAF) and/or cases that are MMR deficient

dDifference between men and women, based on total CRC, evaluated using Chi-square

eDifference between colon and rectum, based on men and women combined, evaluated using Chi-square
Fig. 2 Graphical presentation of KRAS_{mut}, $\text{PIK3CA}_{\text{mut}}$, BRAF_{mut}, and MMR status in CRC cases from the NLCS. a Pie chart showing the distribution of the all-wild-type+pMMR and any-mutation/dMMR subgroups (based on all CRC cases; $n=1934$). b Bar chart showing frequencies of KRAS_{mut}, $\text{PIK3CA}_{\text{mut}}$, BRAF_{mut}, and dMMR (based on all CRC cases; $n=1934$). c Venn diagram showing combinations of KRAS_{mut}, $\text{PIK3CA}_{\text{mut}}$, BRAF_{mut}, and dMMR (based on any-mutation/dMMR subgroup; $n=1142$). The color intensity indicates the frequency: a darker color indicates more cases; a lighter color indicates fewer cases. d/pMMR mismatch repair deficiency/proficiency; mut mutation; CRC colorectal cancer; NLCS Netherlands Cohort Study
Adiposity

BMI and clothing-size were both associated with an increased risk of overall colon cancer in men (Table 3). Associations were similarly positive for the all-wild-type + pMMR subgroup [BMI: HR_{5kg/m²} (95%-CI): 1.34 (1.08–1.67), p-trend_{quartiles}: 0.038; clothing-size: HR_{two sizes}: 1.32 (1.11–1.55), p-trend_{quartiles}: 0.002]. Although positive associations were found across all subgroups of individual molecular features (Table 4), associations were strongest for the PIK3CA_{mut} subgroup [BMI: HR_{5kg/m²} (95%-CI): 1.38 (1.05–1.82), p-trend_{quartiles}: 0.007; clothing-size: HR_{two sizes}: 1.31 (1.01–1.70), p-trend_{quartiles}: 0.094], and weakest for the BRAF_{mut} subgroup [BMI: HR_{5kg/m²} (95%-CI): 1.23 (0.87–1.72), p-trend_{quartiles}: 0.603; clothing-size: HR_{two sizes}: 1.18 (0.85–1.64), p-trend_{categories}: 0.360]. In women, BMI and clothing-size were not associated with risk of overall

Table 2 Characteristics [mean (SD) or %] of CRC cases in subgroups based on mutation and MMR status, by sex and tumor location; NLCS, 1986–2006

	Total	Wild-type + pMMR	Any-mutation/dMMR	KRAS_{mut}	PIK3CA_{mut}	BRAF_{mut}	dMMR	
Men—colon	N	754	309	445	256	150	105	70
Age (years)	61.6 (4.2)	61.2 (4.2)	61.9 (4.2)	62.0 (4.2)	61.5 (4.3)	62.2 (4.1)	62.7 (4.1)	
Overweight/obesity (%)	52.4	52.8	52.1	52.7	56.7	48.6	54.3	
Clothing size	52.2 (2.6)	52.2 (2.5)	52.2 (2.7)	52.1 (2.7)	52.1 (2.7)	52.2 (2.9)	52.3 (2.8)	
Non-occupational PA > 60 min/day (%)	50.4	53.7	48.1	51.6	42.0	49.5	55.7	
Occ. energy expenditure (>12 kJ/min)c	11.6	8.8	13.4	13.2	13.9	11.2	17.0	
Occ. sitting time (<2 h/day)f	23.2	23.5	22.9	23.5	27.1	20.2	28.8	
Men—rectum	N	224	135	89	68	30	8	1
Age (years)	60.8 (3.9)	60.4 (4.0)	61.4 (3.9)	61.7 (3.9)	61.5 (4.3)	62.2 (4.1)	62.6 (4.1)	
Overweight/obesity (%)	48.2	46.7	50.6	52.9	52.3 (2.8)			
Clothing size	51.7 (2.5)	51.6 (2.3)	51.8 (2.8)	52.3 (2.8)				
Non-occupational PA > 60 min/day (%)	59.4	60.0	58.4	54.4	54.4			
Occ. energy expenditure (>12 kJ/min)c	11.0	12.1	9.3	8.8				
Occ. sitting time (<2 h/day)f	30.4	31.0	29.3	29.8				
Women—colon	N	630	179	451	222	116	173	131
Age (years)	62.0 (4.1)	61.1 (3.9)	62.3 (4.1)	62.2 (4.1)	62.2 (4.2)	62.6 (4.1)	62.3 (4.0)	
Overweight/obesity (%)	44.8	39.7	46.8	52.7	49.1	43.4	38.2	
Clothing size	43.6 (3.4)	43.4 (4.1)	43.6 (3.0)	43.9 (3.2)	43.5 (2.9)	43.6 (2.8)	43.3 (3.0)	
Non-occupational PA > 60 min/day (%)	41.8	46.4	39.9	40.1	38.8	38.7	41.2	
Women—rectum	N	131	64	67	55	15	6	2
Age (years)	61.5 (4.2)	60.9 (4.3)	62.0 (4.0)	61.7 (4.0)				
Overweight/obesity (%)	49.6	48.4	50.8	52.7				
Clothing size	43.5 (2.7)	43.3 (2.7)	43.8 (2.7)	43.9 (2.8)				
Non-occupational PA > 60 min/day (%)	42.8	37.5	47.8	47.3				

SD standard deviation; CRC colorectal cancer; (d/p)MMR mismatch repair (deficient/proficient); NLCS Netherlands Cohort Study; PA physical activity; Occ occupational

a Body mass index ≥ 25

b Lower body clothing size. Based on fewer participants due to extra missings

c Based on fewer participants due to shorter follow-up (17.3 years), only available for men

d This group excludes cases with mutations in any of the genes (KRAS, PIK3CA, or BRAF), as well as MMR deficient cases

e This group includes cases with mutations in any of the genes (KRAS, PIK3CA, or BRAF) and/or cases that are MMR deficient

f Analyses for subgroups with < 50 cases were not performed
Table 3 Multivariable-adjusted HRs and 95%-CIs for associations between adiposity measures and CRC in subgroups based on mutation and MMR status, by sex and tumor location; NLCS, 1986–2006

BMI quartiles (kg/m²): range (median)	Person-years at risk	Total	Wild-type + pMMR	Any-mutation/dMMR	p-het
Men—colon					
< 23.4 (22.2)	7993	167	1.00 (ref.)	66	1.00 (ref.)
23.4–24.9 (24.2)	8343	188	1.06 (0.82–1.37)	79	1.10 (0.76–1.57)
25.0–26.6 (25.7)	7683	200	1.21 (0.93–1.56)	77	1.13 (0.78–1.64)
> 26.6 (27.8)	7003	199	1.41 (1.09–1.83)	87	1.47 (1.03–2.11)
p-trend	0.005	0.038	0.710		
per 5 kg/m²	31,022	754	1.30 (1.12–1.51)	309	1.34 (1.08–1.67)
Men—rectum					
< 23.4 (22.2)	7993	58	1.00 (ref.)	34	1.00 (ref.)
23.4–24.9 (24.2)	8343	54	0.86 (0.57–1.28)	35	0.95 (0.58–1.57)
25.0–26.6 (25.7)	7683	65	1.15 (0.78–1.69)	42	1.29 (0.80–2.09)
> 26.6 (27.8)	7003	47	0.93 (0.61–1.43)	24	0.82 (0.47–1.44)
p-trend	0.851	0.870	0.458		
per 5 kg/m²	31,022	224	1.02 (0.81–1.28)	135	0.95 (0.71–1.26)
Women—colon					
< 22.8 (21.5)	9014	181	1.00 (ref.)	56	1.00 (ref.)
22.8–24.7 (23.8)	8914	146	0.81 (0.63–1.05)	43	0.78 (0.51–1.19)
24.8–27.0 (25.7)	8141	147	0.92 (0.71–1.20)	36	0.73 (0.47–1.16)
> 27.0 (29.2)	8158	156	1.01 (0.77–1.31)	44	0.91 (0.59–1.41)
p-trend	0.805	0.595	0.636		
per 5 kg/m²	34,228	630	1.04 (0.92–1.18)	179	0.88 (0.69–1.11)
Women—rectum					
< 22.8 (21.5)	9014	37	1.00 (ref.)	16	1.00 (ref.)
22.8–24.7 (23.8)	8914	26	0.69 (0.41–1.17)	15	0.90 (0.43–1.89)
24.8–27.0 (25.7)	8141	32	0.91 (0.55–1.53)	18	1.16 (0.58–2.34)
> 27.0 (29.2)	8158	36	1.04 (0.63–1.72)	15	0.93 (0.45–1.90)
p-trend	0.691	0.973	0.548		
per 5 kg/m²	34,228	131	1.08 (0.86–1.34)	64	1.05 (0.77–1.42)
Clothing size: range (median)					
Men—colon					
≤ 50 (50)	10,903	211	1.00 (ref.)	90	1.00 (ref.)
52 (52)	9750	247	1.30 (1.03–1.62)	104	1.29 (0.94–1.77)
54 (54)	5156	136	1.36 (1.04–1.77)	53	1.26 (0.86–1.84)
≥ 56 (56)	2619	90	1.80 (1.31–2.46)	39	1.87 (1.22–2.86)
p-trend	< 0.001	0.008	0.897		
per 2 sizes	28,428	684	1.33 (1.16–1.52)	286	1.34 (1.12–1.61)
Men—rectum					
≤ 50 (50)	10,903	78	1.00 (ref.)	46	1.00 (ref.)
52 (52)	9750	69	1.00 (0.70–1.41)	46	1.12 (0.73–1.72)
54 (54)	5156	43	1.20 (0.80–1.80)	28	1.17 (0.70–1.96)
≥ 56 (56)	2619	16	0.90 (0.51–1.59)	7	0.67 (0.29–1.51)
p-trend	0.801	0.760	0.454		
per 2 sizes	28,428	206	0.98 (0.81–1.20)	124	0.95 (0.75–1.21)
Women—colon					
≤ 40 (40)	6574	128	1.00 (ref.)	46	1.00 (ref.)
42 (42)	8582	150	0.88 (0.67–1.17)	34	0.58 (0.36–0.93)
p-het					

Note: Cases are per 5 kg/m² for BMI and per 2 clothing sizes for clothing size.
colon cancer, nor with the all-wild-type + pMMR or any-mutation/dMMR subgroups (Table 3). For individual molecular features, both BMI and clothing-size were associated with an increased risk of \(\text{KRAS} \) mut [BMI: HR5kg/m2 (95% CI): 1.31 (1.10–1.57), \(p \)-trend quartiles: 0.031; clothing-size: HRtwo sizes : 1.26 (1.03–1.53), \(p \)-trend quartiles : 0.229], but not with \(\text{PIK3CA} \) mut, \(\text{BRAF} \) mut, or dMMR colon cancer in women (Table 4). No associations between BMI or clothing-size and risk of overall rectal cancer were observed in men or in women, and stratification on subgroups did not lead to clear associations (Tables 3, 4). None of the models with mutual adjustment for BMI and clothing-size showed clear associations of BMI or clothing-size with CRC subgroups based on molecular features (Supplementary Tables S9–S10).

Non-occupational physical activity

Non-occupational physical activity was not associated with overall colon cancer risk in men (Table 5). However, a borderline significant inverse association was found between non-occupational physical activity and risk of the any-mutation/dMMR subgroup [HR\(>90\text{vs} \leq 30 \text{ min/day} \) (95% CI): 3.32 (1.28–8.60), \(p \)-trend categories: 0.033], whereas no clear association was found for the all-wild-type + pMMR or \(\text{KRAS} \) mut subgroups (Tables 5, 6). However, it should be noted that the reference group (\(\leq 30 \text{ min/day} \)) in the any-mutation/dMMR and \(\text{KRAS} \) mut subgroups had a limited number of cases (\(n = 5 \)). In women, non-occupational physical activity was associated with a decreased risk of overall colon cancer (Table 5). Although inverse associations were found for all subgroups, most did not reach statistical significance (Tables 5, 6). Only the any-mutation/dMMR subgroup [HR\(>90\text{vs} \leq 30 \text{ min/day} \) (95% CI): 0.71 (0.51–0.98), \(p \)-trend categories: 0.024] and the subgroup with a \(\text{PIK3CA} \)-mut-tumor [HR\(>90\text{vs} \leq 30 \text{ min/day} \) (95% CI): 0.51 (0.28–0.93), \(p \)-trend categories: 0.042] showed statistically significant inverse associations. Non-occupational physical activity was not associated with overall rectal cancer in women, and stratification on subgroups did not lead to clear associations (Tables 5, 6).

Occupational physical activity

Occupational energy expenditure was associated with a decreased risk of overall colon cancer in men (Table 5). Even though inverse associations were observed for both combination subgroups, only the association with the all-wild-type + pMMR subgroup reached statistical
Table 4 Multivariable-adjusted HRs and 95%-CIs for associations between adiposity measures and CRC for individual mutations and MMR status, by sex and tumor location; NLCS, 1986–2006

BMI quartiles (kg/m²): range (median)	Person-years at risk	KRAS^a mut	PIK3CA^b mut	BRAF^b mut	dMMR^b
	n_{cases} HR (95% CI)				
Men—colon					
<23.4 (22.2)	7993	61 1.00 (ref.)	27 1.00 (ref.)	25 1.00 (ref.)	19 1.00 (ref.)
23.4–24.9 (24.2)	8343	58 0.89 (0.60–1.32)	38 1.37 (0.81–2.30)	28 1.11 (0.62–1.96)	13 0.68 (0.33–1.42)
25.0–26.6 (25.7)	7683	69 1.12 (0.76–1.65)	42 1.66 (0.98–2.81)	29 1.22 (0.68–2.20)	21 1.21 (0.63–2.34)
>26.6 (27.8)	7003	68 1.30 (0.88–1.92)	43 1.97 (1.17–3.32)	23 1.14 (0.61–2.14)	17 1.17 (0.59–2.31)
p-trend		0.007	0.603	0.378	
per 5 kg/m²	31,022	256 1.25 (1.00–1.57)	150 1.38 (1.05–1.82)	105 1.23 (0.87–1.72)	70 1.51 (1.01–2.26)
Men—rectum					
<23.4 (22.2)	7993	18 1.00 (ref.)			
23.4–24.9 (24.2)	8343	13 0.67 (0.31–1.44)			
25.0–26.6 (25.7)	7683	19 1.06 (0.53–2.15)			
>26.6 (27.8)	7003	18 1.21 (0.59–2.47)			
p-trend		0.415			
per 5 kg/m²	31,022	68 1.17 (0.79–1.73)			
Women—colon					
<22.8 (21.5)	9014	52 1.00 (ref.)	30 1.00 (ref.)	53 1.00 (ref.)	43 1.00 (ref.)
22.8–24.7 (23.8)	8914	46 0.88 (0.58–1.35)	27 0.89 (0.52–1.53)	40 0.76 (0.49–1.19)	34 0.78 (0.49–1.26)
24.8–27.0 (25.7)	8141	65 1.48 (0.99–2.20)	30 1.08 (0.64–1.84)	39 0.82 (0.52–1.29)	24 0.61 (0.36–1.03)
>27.0 (29.2)	8158	59 1.37 (0.90–2.08)	29 1.01 (0.60–1.73)	41 0.90 (0.57–1.41)	30 0.78 (0.48–1.30)
p-trend		0.031	0.798	0.678	0.221
per 5 kg/m²	34,228	222 1.31 (1.10–1.57)*	116 1.09 (0.84–1.42)	173 0.99 (0.81–1.22)	131 0.90 (0.70–1.15)
Women—rectum					
<22.8 (21.5)	9014	18 1.00 (ref.)			
22.8–24.7 (23.8)	8914	7 0.40 (0.17–0.98)			
24.8–27.0 (25.7)	8141	9 0.57 (0.24–1.33)			
>27.0 (29.2)	8158	21 1.46 (0.72–2.96)			
p-trend		0.312			
per 5 kg/m²	34,228	55 1.21 (0.87–1.67)			
Clothing size: range (median)					
Men—colon					
≤50 (50)	10,903	73 1.00 (ref.)	40 1.00 (ref.)	30 1.00 (ref.)	18 1.00 (ref.)
52 (52)	9750	84 1.26 (0.89–1.78)	52 1.45 (0.94–2.24)	29 1.04 (0.61–1.78)	23 1.37 (0.71–2.64)
54 (54)	5156	48 1.33 (0.88–2.02)	22 1.20 (0.69–2.09)	21 1.40 (0.77–2.55)	12 1.37 (0.64–2.95)
≥56 (56)	2619	29 1.63 (1.00–2.65)	17 1.80 (0.98–3.31)	9 1.19 (0.54–2.61)	7 1.55 (0.63–3.81)
p-trend		0.040	0.094	0.360	0.280
per 2 sizes	28,428	234 1.24 (1.01–1.54)	131 1.31 (1.01–1.70)	89 1.18 (0.85–1.64)	60 1.33 (0.90–1.96)
Men—rectum					
≤50 (50)	10,903	21 1.00 (ref.)			
52 (52)	9750	17 0.90 (0.45–1.77)			
54 (54)	5156	17 1.71 (0.86–3.40)			
≥56 (56)	2619	9 1.78 (0.78–4.06)			
p-trend		0.073			
per 2 sizes	28,428	64 1.17 (0.80–1.73)			
Women—colon					
≤40 (40)	6574	35 1.00 (ref.)	24 1.00 (ref.)	29 1.00 (ref.)	32 1.00 (ref.)
42 (42)	8582	54 1.13 (0.72–1.78)	25 0.75 (0.42–1.34)	47 1.23 (0.75–2.03)	35 0.82 (0.49–1.37)
significance \([HR_{>12 \text{ kJ/min}} (95\% \text{ CI}): 0.51 (0.30–0.84), \ p_{-\text{trend categories}}: 0.006] \). Furthermore, lower occupational sitting time was associated with a decreased risk of overall colon cancer in men (Table 5), and associations were slightly stronger for the all-wild-type + pMMR subgroup \([HR_{<2 \text{ h/day}} (95\% \text{ CI}): 0.56 (0.38–0.81), \ p_{-\text{trend categories}}: 0.003] \) compared to the any-mutation/dMMR subgroup \([HR_{<2 \text{ h/day}} (95\% \text{ CI}): 0.70 (0.50–0.97), \ p_{-\text{trend categories}}: 0.034] \). No associations were observed for occupational physical activity measures and subgroups of individual molecular features in colon cancer (Table 6). Occupational physical activity measures were not associated with risk of rectal cancer in men, and stratification on subgroups did not lead to clear associations (Tables 5, 6).

Heterogeneity testing

For heterogeneity analyses, the all-wild-type + pMMR subgroup served as the reference group for all other subgroups (i.e. any-mutation/dMMR, \(KRAS_{\text{mut}} \), \(PIK3CA_{\text{mut}} \), \(BRAF_{\text{mut}} \), and dMMR). Statistically significant heterogeneity was observed only for BMI associations between \(KRAS_{\text{mut}} \) versus all-wild-type + pMMR colon cancer in women \((p = 0.008) \), but not for any other subgroup.

Sensitivity analyses

Sensitivity analyses excluding the first two years of follow-up did not lead to essential changes \((\text{data not shown})\).

Discussion

In this large prospective cohort study, we investigated associations between energy balance-related factors and risk of CRC subgroups based on \(KRAS_{\text{mut}} \), \(PIK3CA_{\text{mut}} \), \(BRAF_{\text{mut}} \), and MMR status. Associations between energy balance-related factors and risk of CRC varied by abovementioned molecular features, as well by sex and tumor location. A statistically significant difference in associations was only found between all-wild-type + pMMR and \(KRAS_{\text{mut}} \) subgroups of colon cancer in women regarding BMI associations. In women, we observed positive associations for BMI and clothing-size with risk of \(KRAS_{\text{mut}} \) colon cancer, but not with any other subgroup. In men, BMI and clothing-size were positively associated with risk of colon, but not rectal cancer, regardless of molecular features subgroups. While positive associations of BMI and clothing-size with risk of colon cancer were observed in men for all individual molecular features, associations were strongest for
Table 5: Multivariable-adjusted HRs\(^a\) and 95% CIs for associations between physical activity measures and CRC in subgroups based on mutation and MMR status, by sex and tumor location; NLCS, 1986–2006

Physical Activity Measure	Person-years at risk	Total	Wild-type + pMMR\(^b\)	Any-mutation/dMMR\(^c\)	p-het			
Non-occupational physical activity (min/day): range (median)								
Men—colon								
≤ 30	4997	132	1.00 (ref.)	49	1.00 (ref.)	83	1.00 (ref.)	
31–60	10,100	242	0.89 (0.69–1.16)	94	0.95 (0.64–1.39)	148	0.86 (0.63–1.17)	
61–90	6001	156	0.99 (0.75–1.32)	62	1.08 (0.71–1.63)	94	0.95 (0.67–1.33)	
> 90	9925	224	0.85 (0.65–1.11)	104	1.10 (0.76–1.60)	120	0.71 (0.51–0.97)	0.232
p-trend				0.356	0.402	0.050		
per 30 min/day	31,022	754	0.99 (0.95–1.03)	309	1.02 (0.97–1.07)	445	0.97 (0.92–1.02)	0.204
Men—rectum								
≤ 30	4997	18	1.00 (ref.)	13	1.00 (ref.)	5	1.00 (ref.)	
31–60	10,100	73	1.92 (1.12–3.30)	41	1.49 (0.78–2.85)	32	3.03 (1.16–7.89)	
61–90	6001	57	2.57 (1.47–4.47)	38	2.33 (1.21–4.47)	19	3.13 (1.15–8.52)	
> 90	9925	76	2.09 (1.22–3.59)	43	1.62 (0.85–3.08)	33	3.32 (1.28–8.60)	0.450
p-trend				0.012	0.104	0.033		
per 30 min/day	31,022	224	1.04 (0.98–1.09)	135	1.04 (0.96–1.11)	89	1.03 (0.96–1.11)	0.850
Women—colon								
≤ 30	7756	169	1.00 (ref.)	52	1.00 (ref.)	117	1.00 (ref.)	
31–60	10,923	198	0.83 (0.65–1.06)	44	0.58 (0.38–0.89)	154	0.94 (0.71–1.25)	
61–90	8000	148	0.84 (0.64–1.09)	47	0.85 (0.56–1.30)	101	0.83 (0.61–1.13)	
> 90	7550	148	0.70 (0.53–0.93)	36	0.69 (0.44–1.08)	79	0.71 (0.51–0.98)	0.145
p-trend				0.021	0.344	0.024		
per 30 min/day	34,228	630	0.97 (0.91–1.03)	179	0.98 (0.88–1.10)	451	0.96 (0.89–1.03)	0.623
Women—rectum								
≤ 30	7756	31	1.00 (ref.)	14	1.00 (ref.)	17	1.00 (ref.)	
31–60	10,923	44	1.03 (0.63–1.67)	26	1.30 (0.66–2.56)	18	0.78 (0.39–1.55)	
61–90	8000	34	1.06 (0.64–1.75)	12	0.79 (0.36–1.76)	22	1.27 (0.67–2.39)	
> 90	7550	22	0.72 (0.41–1.26)	12	0.83 (0.38–1.82)	10	0.61 (0.28–1.37)	0.214
p-trend				0.285	0.325	0.563		
per 30 min/day	34,228	131	1.00 (0.88–1.14)	64	1.07 (0.89–1.28)	67	0.93 (0.79–1.08)	0.206
Occupational energy expenditure (kJ/min)								
Men—colon								
< 8	25,073	564	1.00 (ref.)	226	1.00 (ref.)	338	1.00 (ref.)	
8–12	15,144	365	1.00 (ref.)	152	1.00 (ref.)	213	1.00 (ref.)	
> 12	6368	133	0.83 (0.65–1.05)	54	0.80 (0.57–1.12)	79	0.86 (0.64–1.15)	
p-trend				0.017	0.006	0.274		
Men—rectum								
< 8	25,073	185	1.00 (ref.)	114	1.00 (ref.)	71	1.00 (ref.)	
8–12	15,144	107	1.00 (ref.)	65	1.00 (ref.)	42	1.00 (ref.)	
> 12	6368	57	1.35 (0.95–1.91)	35	1.38 (0.89–2.13)	22	1.30 (0.75–2.24)	
p-trend				0.905	0.746	0.801		
Occupational sitting time (h/day)								
Men—colon								
> 6	25,073	564	1.00 (ref.)	226	1.00 (ref.)	338	1.00 (ref.)	
2–6	6511	187	1.00 (ref.)	85	1.00 (ref.)	102	1.00 (ref.)	
< 2	11,617	244	0.70 (0.55–0.88)	87	0.55 (0.39–0.77)	157	0.82 (0.62–1.09)	
p-trend				0.001	0.003	0.034		
Men—rectum								
> 6	25,073	185	1.00 (ref.)	114	1.00 (ref.)	71	1.00 (ref.)	
Table 5 (continued)

Person-years at risk	Total	Wild-type + pMMRb	Any-mutation/dMMRc	p-het			
	ncases	HR (95% CI)	ncases	HR (95% CI)	ncases	HR (95% CI)	p-het
> 6	6511	60 1.00 (ref.)	39	1.00 (ref.)	21	1.00 (ref.)	
2–6	11,617	69 0.62 (0.43–0.89)	40	0.55 (0.35–0.87)	29	0.75 (0.42–1.33)	0.730
<2	6944	56 0.88 (0.60–1.30)	35	0.84 (0.52–1.37)	21	0.96 (0.52–1.79)	
p-trend	0.541	0.500		0.912			

HR: hazard ratio; CI: confidence interval; CRC: colorectal cancer; (d/p)MMR: mismatch repair (deficient/proficient); NLCS: Netherlands Cohort Study; p-het: p-heterogeneity

"Hazard Ratios were adjusted for age (years; continuous), BMI (kg/m²; continuous), total energy intake (kcal/day; continuous), family history of CRC (yes/no), alcohol consumption (0; 0.1–4; 5–14; > 15 g/day), processed meat intake (g/day; continuous), red meat intake (g/day; continuous). Age was included as a time-varying covariate"

This group excludes cases with mutations in any of the genes (KRAS, PIK3CA, or BRAF), as well as MMR deficient cases

This group includes cases with mutations in any of the genes (KRAS, PIK3CA, or BRAF) and/or cases that are MMR deficient

PIK3CAmut tumors and weakest for BRAFmut tumors. Non-occupational physical activity was inversely associated with any-mutation/dMMR colon cancer in men and women, but not with all-wild-type + pMMR colon cancer. In men, no clear associations were observed between non-occupational physical activity and individual molecular features in colon cancer. In women, inverse associations were observed for all individual molecular features, but associations were strongest for PIK3CAmut colon cancer. Occupational physical activity was associated with a decreased risk of colon cancer for both combination subgroups in men, but associations were strongest for all-wild-type + pMMR tumors.

Several studies have focused on investigating associations between energy balance-related factors (i.e., BMI, waist-circumference, physical activity) and risk of CRC in relation to specific (individual) mutations and/or MSI/MMR status, but results have been inconsistent (Carr et al. 2018, 2020; Myte et al. 2019; Brändstedt et al. 2014; Slattery et al. 2000, 2001; Hughes et al. 2012; Campbell et al. 2010; Hoffmeister et al. 2013). To our knowledge, the current study is the first to combine cases into subgroups based on KRASmut, PIK3CAmut, BRAFmut, and MMR status, and study potential etiological differences between these subgroups. Instead of comparing wild-type versus mutated tumors for individual genes and proficient versus deficient tumors for MMR, as done in previous studies, the all-wild-type + pMMR subgroup served as the reference group for all other subgroups in the current study. Combining mutation and MMR status into subgroups has some advantages. First, it has been suggested that mutations in KRAS, PIK3CA, and BRAF drive metabolic reprogramming toward the Warburg-effect (Levine and Puzio-Kuter 2010; Kimmelman 2015; Hutton et al. 2016; Jiang et al. 2018), and we have shown previously that MMR deficiency is associated with presence of the Warburg-effect (Offermans et al. 2021). Combining these molecular features, presumed to be involved in the same metabolic phenotype, thus results in a cleaner reference group compared to groups based on individual features (e.g., KRAS mutated versus wild-type). Our results show that co-occurrence of KRASmut and PIK3CAmut is relatively common, as is co-occurrence of BRAFmut and dMMR. Using the all-wild-type + pMMR subgroup as the reference for all subgroups of individual mutations and MMR status, this reference group is less heterogeneous compared to, e.g., the KRAS wild-type (KRASwt) group, which still contains a large number of cases with a PIK3CA mutation. Second, differentiating subgroups on the basis of the combination of presence or absence of mutations and/or dMMR leads to increased statistical power, since most individual molecular features occurred in < 20% of CRC cases (e.g., MMR deficiency: 10.7%).

Previous studies on adiposity and risk of CRC in relation to molecular features mainly focused on BMI (Carr et al. 2018, 2020; Myte et al. 2019; Brändstedt et al. 2013, 2014; Slattery et al. 2000, 2001, 2007; Hughes et al. 2012; Campbell et al. 2010; Hoffmeister et al. 2013; Hanyuda et al. 2016), though some used additional adiposity measures like waist circumference (Brändstedt et al. 2013, 2014; Hughes et al. 2012). Two cohort studies (Myte et al. 2019; Brändstedt et al. 2014) and two case–control studies (Carr et al. 2020; Slattery et al. 2001) investigated adiposity in relation to KRASmut status in CRC. Our results are in line with those of Slattery et al. (2001), which showed positive associations of adiposity with KRASmut but not KRASwt colon cancer in women, whereas similar associations were observed for KRASmut and KRASwt in men. A study by Brändstedt et al. (2014) also reported positive associations between adiposity and KRASmut but not KRASwt CRC, but in men, not women. These and our results are in contrast with those of Carr et al. (2020) and Myte et al. (2019), who reported positive associations of adiposity with KRASwt CRC (note: KRASwt + BRAFwt in the study by Myte et al.) but no or
Table 6 Multivariable-adjusted HRs and 95%-CIs for associations between physical activity measures and CRC for individual mutations and MMR status, by sex and tumor location; NLCS, 1986–2006

Person-years at risk	KRAS^a mut	PIK3CA^b mut	BRAF^b mut	dMMR^b					
	n_{cases}	HR (95% CI)	n_{cases}	HR (95% CI)	n_{cases}	HR (95%-CI)	n_{cases}	HR (95% CI)	
Non-occupational physical activity (min/day): range (median)									
Men—colon									
≤ 30 (21.4)	4997	41	1.00 (ref.)	24	1.00 (ref.)	19	1.00 (ref.)	13	1.00 (ref.)
31–60 (42.9)	10,100	83	0.97 (0.64–1.46)	63	1.30 (0.79–2.13)	34	0.87 (0.49–1.55)	18	0.66 (0.31–1.40)
61–90 (73.6)	6001	63	1.31 (0.85–2.02)	28	0.97 (0.55–1.72)	19	0.83 (0.43–1.61)	16	1.00 (0.47–2.15)
> 90 (130.0)	9925	69	0.84 (0.55–1.28)	35	0.73 (0.42–1.26)	33	0.82 (0.46–1.48)	23	0.80 (0.39–1.64)
p-trend			0.575	0.041	0.548	0.548	0.925		
per 30 min/day	31,022	256	0.95 (0.89–1.01)	150	0.96 (0.87–1.06)	105	1.02 (0.94–1.11)	70	1.02 (0.92–1.13)
Men—rectum									
≤ 30 (21.4)	4997	5	1.00 (ref.)	36	1.00 (ref.)	47	1.00 (ref.)	32	1.00 (ref.)
31–60 (42.9)	10,100	26	2.38 (0.90–6.31)	28	0.97 (0.47–1.32)	32	0.70 (0.44–1.44)	20	0.64 (0.36–1.14)
> 90 (130.0)	9925	21	2.04 (0.76–5.45)	17	0.51 (0.28–0.93)	32	0.70 (0.44–1.14)	20	0.64 (0.36–1.14)
p-trend			0.372						
per 30 min/day	31,022	68	0.98 (0.89–1.08)						
Women—colon									
≤ 30 (19.3)	7756	55	1.00 (ref.)	36	1.00 (ref.)	47	1.00 (ref.)	32	1.00 (ref.)
31–60 (42.9)	10,923	78	1.01 (0.69–1.47)	35	0.73 (0.45–1.20)	59	0.91 (0.60–1.37)	45	1.00 (0.63–1.61)
61–90 (75.0)	8000	48	0.84 (0.56–1.27)	28	0.79 (0.47–1.32)	35	0.72 (0.45–1.16)	34	1.00 (0.60–1.67)
> 90 (115.7)	7550	41	0.80 (0.52–1.23)	17	0.51 (0.28–0.93)	32	0.70 (0.44–1.14)	20	0.64 (0.36–1.14)
p-trend			0.197	0.042	0.095	0.150			
per 30 min/day	34,228	222	0.98 (0.90–1.08)	116	0.90 (0.77–1.04)	173	0.94 (0.84–1.05)	131	0.97 (0.85–1.09)
Women—rectum									
≤ 30 (19.3)	7756	14	1.00 (ref.)	36	1.00 (ref.)	47	1.00 (ref.)	32	1.00 (ref.)
31–60 (42.9)	10,923	15	0.79 (0.37–1.68)	28	0.79 (0.47–1.32)	35	0.72 (0.45–1.16)	34	1.00 (0.60–1.67)
61–90 (75.0)	8000	20	1.40 (0.71–2.78)	17	0.51 (0.28–0.93)	32	0.70 (0.44–1.14)	20	0.64 (0.36–1.14)
> 90 (115.7)	7550	6	0.45 (0.17–1.18)	17	0.51 (0.28–0.93)	32	0.70 (0.44–1.14)	20	0.64 (0.36–1.14)
p-trend			0.366						
per 30 min/day	34,228	55	0.86 (0.74–0.99)						
Occupational energy expenditure (kJ/min)									
Men—colon									
≤ 8	15,144	115	1.00 (ref.)	72	1.00 (ref.)	59	1.00 (ref.)	32	1.00 (ref.)
8–12	6368	50	1.04 (0.72–1.49)	26	0.81 (0.50–1.32)	18	0.68 (0.38–1.20)	16	1.08 (0.56–2.08)
> 12	3561	25	0.93 (0.58–1.49)	16	0.84 (0.47–1.50)	10	0.65 (0.32–1.33)	10	1.02 (0.45–2.27)
p-trend			0.855	0.425	0.139	0.919			
Men—rectum									
≤ 8	15,144	31	1.00 (ref.)	17	1.43 (0.77–2.64)	14	1.00 (ref.)	14	1.00 (ref.)
> 12	3561	5	0.70 (0.27–1.82)	17	1.43 (0.77–2.64)	14	1.00 (ref.)	14	1.00 (ref.)
p-trend			0.892						
Occupational sitting time (h/day)									
Men—colon									
≤ 6	6511	57	1.00 (ref.)	34	1.00 (ref.)	22	1.00 (ref.)	14	1.00 (ref.)
2–6	11,617	87	0.81 (0.56–1.17)	48	0.76 (0.48–1.20)	47	1.15 (0.67–1.96)	27	0.98 (0.49–1.94)
< 2	6944	46	0.75 (0.49–1.14)	32	0.84 (0.51–1.39)	18	0.73 (0.37–1.41)	17	0.99 (0.46–2.13)
p-trend			0.181	0.508	0.325	0.992			
weak associations with $KRAS_{mut}$ CRC. Three cohort studies (Myte et al. 2019; Brändstedt et al. 2014; Hughes et al. 2012), including one study that used data from the NLCS with 7.3 years of follow-up (Hughes et al. 2012), and two case–control studies (Carr et al. 2020; Slattery et al. 2007) studied adiposity in relation to $PIK3CA_{mut}$ CRC. Our results are in line with all but one of these studies (Myte et al. 2019; Brändstedt et al. 2014; Hughes et al. 2012; Slattery et al. 2007), as these reported either a weaker positive association of adiposity with $BRAF_{mut}$ compared to $BRAF_{wt}$ CRC (Brändstedt et al. 2014; Hughes et al. 2012), or no association with $BRAF_{mut}$ CRC (Myte et al. 2019; Slattery et al. 2007). Even though Carr et al. (2020) observed this same difference in associations for men, associations between adiposity and CRC were stronger for $BRAF_{mut}$ CRC than $BRAF_{wt}$ CRC in women. For MSI/MMR status, our results are in line with those of a recent meta-analysis by Carr et al. (2018), in which no difference in associations was observed between adiposity and MSI status in CRC. Our study is the first to investigate the association between adiposity and CRC risk in relation to $PIK3CA_{mut}$ status, and therefore cannot be compared to any previous data.

To our knowledge, associations between physical activity and colon cancer risk in relation to molecular features have only been investigated in a case–control study by Slattery et al. for $KRAS_{mut}$ status (Slattery et al. 2001), $BRAF_{mut}$ status (Slattery et al. 2007), and MSI (Slattery et al. 2000) status. Our results are partly in line with these studies, which showed stronger positive associations between physical inactivity and risk of $KRAS_{mut}$ colon cancer compared to $KRAS_{wt}$ colon cancer in men, whereas associations did not differ according to $KRAS_{mut}$ status in women (Slattery et al. 2001). For $BRAF$, they observed no association between physical activity and $BRAF_{mut}$ colon cancer (Slattery et al. 2007). Lastly, physical activity was associated with both MSS and MSI colon cancer in men, but only with MSS colon cancer in women (Slattery et al. 2000). Our results for $PIK3CA_{mut}$ CRC cannot be compared to any previous data, since studies investigating associations between physical activity and $PIK3CA_{mut}$ status in CRC are currently lacking.

The contradicting results across molecular pathological epidemiology (MPE) studies regarding associations of energy balance-related factors with risk of CRC according to $KRAS_{mut}$, $BRAF_{mut}$, and/or MSI/MMR status might be attributed to several factors. For example: use of different methods for assessing molecular features (e.g. assessment of different mutations or MSI versus MMR status); different timing and method of exposure measurements (i.e. BMI, waist circumference, physical activity); different study designs (i.e. cohort versus case–control); different approaches for (outcome) stratification (for example stratification on sex and tumor location); and/or chance findings due to multiple testing, caused by repeatedly splitting CRC into different molecular pathological subgroups. We therefore believe it is important that large prospective cohort studies replicate the current analyses, preferably stratified on tumor location and sex.

The current results suggest a role of $KRAS$ mutations in the etiological pathway between adiposity and colon cancer risk in women (adiposity was only associated with $KRAS_{mut}$ colon cancers). In contrast, our results do not indicate a clear role of one of the molecular features in the etiological pathway between adiposity and colon cancer in men (adiposity was associated with all subgroups of molecular features in colon cancer). As mentioned above, the molecular features used in the current study have all been associated with the Warburg-effect (Levine and Puzio-Kuter 2010; Kimmelman 2015; Hutton et al. 2016; Jiang et al. 2018; Offermans...
et al. 2021). Associations with the all-wild-type + pMMR group indicate a low likelihood of Warburg-effect involvement, whereas associations with the any-mutation/dMMR subgroup or subgroups of individual molecular features indicate a higher likelihood of Warburg-effect involvement. Therefore, the current results indicate a potential role of the Warburg-effect in the etiological pathway between adiposity and colon cancer in women through KRAS mutations, but not other molecular features. In men, a role of the Warburg-effect in the etiological pathway between adiposity and colon cancer is not indicated by the current results. In a previous study, we investigated associations between energy balance-related factors and risk of Warburg-subtypes in CRC, based IHC expression of proteins involved in the Warburg-effect (Jenniskens et al. 2021a). The results of this previous study indicated involvement of the Warburg-effect in associations between adiposity and colon cancer risk in both men and women, though additional mechanisms could be at play in women as well.

For physical activity, the current results indicate a role of molecular features (KRAS*PIK3CA* B*RAF* and/or MMR deficiency) in the etiological pathway between physical inactivity and colon cancer risk in women (physical activity was associated with any-mutation/dMMR colon cancer), and it seems that in particular PIK3CA mutations are involved in this association (strongest association observed with PIK3CA* colon cancer). In men, the current results do not give a clear indication of involvement of molecular features in the association between physical activity and colon cancer. While non-occupational physical activity was inversely associated with the any-mutation/dMMR subgroup, occupational physical activity was mainly associated with the all-wild-type + pMMR subgroup. It is assumed that occupational physical activity gives a better indication of physical activity for men than non-occupational physical activity. That is, while occupational physical activity represents long-term physical activity (median duration of longest held job: 29 years), non-occupational physical activity probably reflects the last few years before baseline. Therefore, the current results suggest that the molecular features studied here are not involved in the etiological pathway between physical inactivity and colon cancer risk in men. All in all, the current results indicate involvement of the Warburg-effect in associations between physical activity and colon cancer risk in women, but not men. Results of our previous study on Warburg-subtypes in CRC indicated that inverse associations between physical activity and colon cancer risk are explained by mechanisms other than the Warburg-effect (Jenniskens et al. 2021a).

Altogether, results from our previous study on Warburg-subtypes in CRC are only partly in line with the current results. Although the molecular features that were considered in the current study have been associated with the Warburg-effect (Levine and Puzio-Kuter 2010; Kimmelman 2015; Hutton et al. 2016; Jiang et al. 2018; Offermans et al. 2021), they are additionally known for their involvement in numerous diverse (oncogenic) cellular pathways for cell growth, differentiation, proliferation, and survival (Li et al. 2020; Haluska et al. 2007; Boland and Goel 2010). Therefore, the molecular features used in the current study might not always be a good reflection of the Warburg-effect. Furthermore, tumors of cases in the all-wild-type + pMMR subgroup might express other molecular features, possibly also associated with the Warburg-effect, that were not assessed in the current study. This may have potentially influenced our results. Still, combining these molecular features into all-wild-type + pMMR and any-mutation/dMMR subgroups seemed to be a straightforward way of subgrouping CRC cases, especially for physical activity associations.

A major strength of the current study is the prospective cohort design with long follow-up (20.3 years) and availability of DNA from FFPE tumor material from a large number of incident CRC cases. Another strength was the detection of mutations using MassARRAY technology, which has been shown to be a suitable technique for mutation typing in (older) FFPE material (Fleitas et al. 2016). The ColoCarta panel that was used includes assays for most of the KRAS (99%) and B*RAF (98%) mutations, but it identifies only 78% of known PIK3CA mutations (Fumagalli et al. 2010). However, the most common PIK3CA mutations are included (Gray et al. 2017). This makes it unlikely that additional detection of less common mutations would alter the current results, since the number of additional cases with a PIK3CA mutation would be rather small. As an indicator of MSI status, we used IHC expression of MLH1 and MSH2, which might have led to misclassification of some of the cases. However, it has been shown that loss of MLH1 or MSH2 expression was observed in ~90% of MSI cases (Lanza et al. 2002).

In conclusion, results from this large prospective cohort study provide further insights in the associations between energy balance-related factors and CRC risk according to KRAS*PIK3CA* B*RAF* and MMR status. Associations between energy balance-related factors and risk of CRC varied by these molecular features, as well by sex and tumor location. Our results suggest a role of KRAS mutations in the etiological pathway between adiposity and colon cancer in women. For men, our results do not indicate a role of one of the molecular features in the etiological pathway of adiposity and colon cancer. Furthermore, the current results indicate a role of mutations in KRAS, PIK3CA, and/or B*RAF, and/or MMR deficiency in the etiological pathway between physical inactivity and colon cancer risk in women, but not men, and it seems that in particular PIK3CA mutations are involved in this association. Our findings need to be replicated in additional large-scale MPE-studies.
Acknowledgements The authors would like to thank the participants of the Netherlands Cohort Study (NLCS), the Netherlands Cancer Registry, and the Dutch Pathology Registry. They are grateful to Ron Alofs and Harry van Montfort for data management and programming assistance; and to Jaleesa van der Meer, Edith van den Boezem, and Peter Moerkerk for TMA construction; and Jakob Kather (University Hospital Aachen, Germany) for scanning of slides. The Rainbow-TMA consortium was financially supported by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007, to P.A. van den Brandt), and Maastricht University Medical Center, University Medical Center Utrecht, and Radboud University Medical Centre, the Netherlands. The authors would like to thank all investigators from the Rainbow-TMA consortium project group [P.A. van den Brandt, A. zur Hausen, H. Grabsch, M. van Engeland, L.J. Schouten, J. Beckvordersandforth (Maastricht University Medical Center, Maastricht, Netherlands); P.H.M. Peeters, P.J. van Diest, H.B. Bueno de Mesquita (University Medical Center Utrecht, Utrecht, Netherlands); J. van Krieken, I. Nagtegaal, B. Siebers, B. Kiememey (Radboud University Medical Center, Nijmegen, Netherland); F.J. van Kemenade, C. Steegers, D. Boomsmma, G.A. Meijer (VU University Medical Center, Amsterdam, Netherlands); F.J. van Kemenade, B. Stricker (Erasmus University Medical Center, Rotterdam, Netherlands); L. Overbeek, A. Gijsbers (PALGA, the Nationwide Histopathology and Cytopathology Data Network and Archive, Houten, Netherlands)] and collaborating pathologists [Amongst others: A. de Bruïne (VieCuri Medical Center, Venlo); J.C. Beckvordersandforth (Maastricht University Medical Center, Maastricht, Netherlands); J. van Krieken, I. Nagtegaal (Radboud University Medical Center, Nijmegen); W. Timens (University Medical Center Groningen, Groningen); F.J. van Kemenade (Erasmus University Medical Center, Rotterdam); M.C.H. Hogenes (Laboratory for Pathology OostNederland, Hengelo); P.J. van Diest (University Medical Center Utrecht, Utrecht); R.E. Kibbeelaar (Pathology Friesland, Leeuwarden); A.F. Hamel (Stichting Samenwerkende Ziekenhuizen Oost-Groningen, Winschoten); A.T.M.G. Tiebosch (Martini Hospital, Groningen); C. Meijers (Reinier de Graaf Gasthuis/ S.S.D.Z., Delft); R. Natté (Haga Hospital Leyenburg, The Hague); G.A. Meijer (VU University Medical Center, Amsterdam); J.J.T.H. Roelofs (Academic Medical Center, Amsterdam); R.F. Hoedemaeker (Pathology Laboratory Pathan, Rotterdam); S. Sastrowijoto (Orbis Medical Center, Sittard); M. Nap (Atrium Medical Center, Heerlen); H.T. Shirango (Deventer Hospital, Deventer); H. Doornewaard (Gelre Hospital, Apeldoorn); J.E. Boers (Isala Hospital, Zwolle); J.C. van der Linden (Jeroen Bosch Hospital, Den Bosch); G. Burger (Symbiant Pathology Center, Alkmaar); R.W. Rouse (Meander Medical Center, Amersfoort); P.C. de Bruin (St. Antonius Hospital, Nieuwegein); P. Drillenburg (Onze Lieve Vrouwe Gasthuis, Amsterdam); C. van Krimpen (Kennemer Gasthuis, Haarlem); J.F. Graaft van Roggen (Diaconessenhuis, Leiden); S.A.J. Loysen (Bronovo Hospital, The Hague); J.D. Rupa (Laurentius Hospital, Roermond); H. Kliffen (Maasstad Hospital, Rotterdam); H.M. Hazel-bag (Medical Center Haaglanden, The Hague); K. Schelfout (Stichting Pathologisch en Cytologisch Laboratorium West-Brabant, Bergen op Zoom); J. Stavast (Laboratorium Klinische Pathologie Centraal Brabant, Tilburg); I. van Lijnshoeten (PAMM laboratory for Pathology and Medical Microbiology, Eindhoven); K. Duthoi (Amphia Hospital, Breda)].

Author contributions Conceptualization: JCAJ, KO, CCJMS, HIG. PAvbB: Methodology: PAvbB: Formal analysis and investigation: JCAJ; Writing—original draft preparation: JCAJ, KO, CCJMS, HIG. PAvbB: Writing—review and editing: IS, GEF, JRMvdM, KMS, LJS, MPW; Funding acquisition: PAvbB, HIG; Supervision: PAvbB.

Funding This project was funded by The Dutch Cancer Society (KWF 11044 to P.A. van den Brandt).

Declarations

Conflicts of interest H. I. Grabsch: Honorarium from Astra Zeneca and BMS for scientific advisory board activities not related to the current study.

Ethics approval Ethical approval was obtained from Medical Ethical Committee MUMC.

Consent to participate Individuals consented to participate in the NLCS by completing and returning the questionnaire.

Consent to publish Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073-2087.e3
Brändstedt J, Wangejford S, Borgquist S, Nosin B, Eberhard J, Manjer J, Jirström K (2013) Influence of anthropometric factors on tumour biological characteristics of colorectal cancer in men and women: a cohort study. J Transl Med 11(1):1–13
Brändstedt J, Wangejford S, Nosin B, Eberhard J, Sundström M, Manjer J, Jirström K (2014) Associations of anthropometric factors with KRAS and BRAF mutation status of primary colorectal cancer in men and women: a cohort study. PLoS ONE 9(6):e98964
Campbell PT, Jacobs ET, Ulrich CM, Figueiredo JC, Poynter JN, McLaughlin JR, Haile RW, Jacobs EL, Newcomb PA, Potter JD (2010) Case–control study of overweight, obesity, and colorectal cancer risk, overall and by tumor microsatellite instability status. J Natl Cancer Inst 102(6):391–400
Carr P, Alwers E, Bienert S, Weberpals J, Kloor M, Brenner H, Hoffmeister M (2018) Lifestyle factors and risk of sporadic colorectal cancer by microsatellite instability status: a systematic review and meta-analyses, Ann Oncol 29(4):825–834
Carr PR, Amitay EL, Jansen L, Alwers E, Roth W, Herpel E, Kloor M, Schneider M, Bläker H, Chang-Claude J (2020) Association of BMI and major molecular pathological markers of colorectal cancer in men and women. Am J Clin Nutr 111:562–569
De Vogel S, Bongaerts BW, Wouters KA, Kester AD, Schouten LJ, de Goeij AF, de Bruïne AP, Goldbohm RA, van den Brandt PA, van Engeland M (2008) Associations of dietary methyl donor intake with MLH1 promoter hypermethylation and related molecular phenotypes in sporadic colorectal cancer. Carcinogenesis 29(9):1765–1773

Springer
Fleitas T, Ibarrola-Villava M, Ribas G, Cervantes A (2016) MassAR - Feron O (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 92(3):329–333

Fumagalli D, Gavin PG, Taniyama Y, Kim S-I, Choi H-J, Paik S, Pogue-Geile KL (2010) A rapid, sensitive, reproducible and cost-effective method for mutation profiling of colon cancer and metastatic lymph nodes. BMC Cancer 10(1):101

Goldbohm RA, van den Brandt PA, Dorant E (1994) Estimation of the coverage of Dutch municipalities by cancer registries and PALGA based on hospital discharge data. Tijdschr Soc Gezondheidszorg 72(7):80–84

Gray RT, Cantwell MM, Coleman HG, Loughrey MB, Bankhead P, McQuaid S, O’neill RF, Arthur K, Bingham V, McGreedy C (2017) Evaluation of PTGS2 expression, PIK3CA mutation, aspirin use and colorectal cancer survival in a population-based cohort study. Clin Transl Gastroenterol 8(4):e91

Haluska F, Pemberton T, Ibrahim N, Kalinsky K (2007) The RTK/RAS/ BRAF/PI3K pathways in melanoma: biology, small molecule inhibitors, and potential applications. Semin Oncol 34(6):546–554

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

Hanyuda A, Ogino S, Qian ZR, Nishihara R, Song M, Mima K, Inamura K, Masugi Y, Wu K, Meyerhardt JA (2016) Body mass index and risk of colorectal cancer according to tumor lymphocytic infiltrate. Int J Cancer 139(4):854–868

Hoffmeister M, Bläker H, Kloor M, Roth W, Toth C, Herpel E, Frank B, Schirmacher P, Chang-Claude J, Brenner H (2013) Body mass index and microsatellite instability in colorectal cancer: a population-based study. Cancer Epidemiol Prev Biomarkers 22(12):2303–2311

Huang XF, Chen JZ (2009) Obesity, the PI3K/Akt signal pathway and the risk of colorectal cancer by KRAS and BRAF mutation status. Int J Cancer 145(2):327–337

Offermans K, Jenniskens JC, Simons CC, Samarska I, Fazzi GE, Smits KM, Schouten LJ, Weijenberg MP, Grabsch HI, van den Brandt PA (2021) Expression of proteins associated with the Warburg-effect and survival in colorectal cancer. J Pathol Clin Res. 8(2):169–180

Hanyuda A, Ogino S, Qian ZR, Nishihara R, Song M, Mima K, Inamura K, Masugi Y, Wu K, Meyerhardt JA (2016) Body mass index and risk of colorectal cancer according to tumor lymphocytic infiltrate. Int J Cancer 139(4):854–868

Hoffmeister M, Bläker H, Kloor M, Roth W, Toth C, Herpel E, Frank B, Schirmacher P, Chang-Claude J, Brenner H (2013) Body mass index and microsatellite instability in colorectal cancer: a population-based study. Cancer Epidemiol Prev Biomarkers 22(12):2303–2311

Huang XF, Chen JZ (2009) Obesity, the PI3K/Akt signal pathway and colorectal cancer. Obes Rev 10(6):610–616

Hughes LA, Schouten LJ, Goldbohm RA, van den Brandt PA, Weijenberg MP (2009) Self-reported clothing size as a proxy for body size. Epidemiology 20(5):673–676

Hughes LA, Williamson EL, van Engelund M, Jenkins MA, Giles GG, Hopper JL, Southey MC, Young JP, Buchanan DL, Walsh MD (2012) Body size and risk for colorectal cancers showing BRAF mutations or microsatellite instability: a pooled analysis. Int J Epidemiol 41(4):1060–1072

Hutton JE, Wang X, Zimmerman LJ, Slebos RJ, Trenary IA, Young LJ, Wei L-J (1989) The robust inference for the Cox proportional hazards model. J Am Stat Assoc 84(408):1074–1078

Kim K, Masugi Y, Wu K, Meyerhardt JA (2016) Body mass index and colorectal cancer risk in the Netherlands cohort study. Am J Epidemiol 226(4):492–505

Kimmelman AC (2015) Metabolic dependencies in RAS-driven cancers. Clin Cancer Res 21(8):1828–1834

Lanza G, Gafà R, Maestro I, Santini A, Matteuzzi M, Cavazzini L (2002) Immunohistochemical pattern of MLH1/MSH2 expression is related to clinical and pathological features in colorectal adenocarcinomas with microsatellite instability. Mod Pathol 15(7):741

Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344

Li W, Qu T, Dong L, Zhang F, Guo L, Ying J (2020) Prevalence and characteristics of PIK3CA mutation in mismatch repair-deficient colorectal cancer. J Cancer 11(13):3827

Lin DY, Wei L-J (1989) The robust inference for the Cox proportional hazards model. J Am Stat Assoc 84(408):1074–1078

Moghaddam AA, Woodward M, Huxley R (2007) Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Prev Biomarkers 16(12):2533–2547

Myte R, Gylling B, Häggström J, Häggström C, Zingmark C, Löfgren Burstrom A, Palmqvist R, Van Guelpen B (2019) Metabolic factors and the risk of colorectal cancer by KRAS and BRAF mutation status. Int J Cancer 145(2):327–337

Offermans K, Jenniskens JC, Simons CC, Samarska I, Fazzi GE, Smits KM, Schouten LJ, Weijenberg MP, Grabsch HI, van den Brandt PA (2021) Expression of proteins associated with the Warburg-effect and survival in colorectal cancer. J Pathol Clin Res. 8(2):169–180

Prentice RL (1986) A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73(1):1–11

Richtman SD, Adams R, Quirke P, Butler R, Hennings G, Chambers P, Roberts H, James MD, Wozniak S, Bathia R (2016) Pre-trial interdisciplinary analytical validation of the FOCUS4 personalised therapy trial. J Clin Pathol 69(1):35–41

Robasch TE, Aagnes B, Hjortáker A, Langseth H, Bray FI, Larsen IK (2013) Body mass index, physical activity, and colorectal cancer by anatomical subsites: a systematic review and meta-analysis of cohort studies. Eur J Cancer Prev 22(6):492–505

Samad A, Taylor R, Marshall T, Chapman MA (2005) A meta-analysis of the association of physical activity with reduced risk of colorectal cancer. Colorectal Dis 7(3):204–213

Schoenfeld D (1982) Partial residuals for the proportional hazards regression model. Biometrika 69(1):239–241

Schwartz L, Supuran C, Alfarouck K (2017) The Warburg effect and the hallmarks of cancer. Anti-Cancer Agents Med Chem 17(2):164–170

livier PC, Robasch TE, Aagnes B, Hjortáker A, Langseth H, Bray FI, Larsen IK (2013) Body mass index, physical activity, and colorectal cancer by anatomical subsites: a systematic review and meta-analysis of cohort studies. Eur J Cancer Prev 22(6):492–505

Sato H, Samowitz WS (2001) Lifestyle factors and Ki-ras mutations in colon cancer tumors. Mutat Res 483(1–2):73–81

Schaffer D, Potter J, Leppert M, Samowitz WS (2000) Association between cigarette smoking, lifestyle factors, and microsatellite instability in colon tumors. J Natl Cancer Inst 92(22):1831–1836

Slattery ML, Curtin K, Anderson K, Ma K-N, Ballard L, Edwards S, Schaffer D, Potter J, Leppert M, Samowitz WS (2000) Associations between cigarette smoking, lifestyle factors, and microsatellite instability in colon cancers. J Natl Cancer Inst 92(22):1831–1836

Slattery ML, Curtin K, Anderson K, Ma K-N, Ballard L, Edwards S, Schaffer D, Potter J, Leppert M, Samowitz WS (2000) Associations between cigarette smoking, lifestyle factors, and microsatellite instability in colon cancers. J Natl Cancer Inst 92(22):1831–1836

Slattery ML, Curtin K, Anderson K, Ma K-N, Ballard L, Edwards S, Schaffer D, Potter J, Leppert M, Samowitz WS (2000) Associations between cigarette smoking, lifestyle factors, and microsatellite instability in colon cancers. J Natl Cancer Inst 92(22):1831–1836

Sturmans F (1990a) A large-scale prospective cohort study on diet and lifestyle factor associations with colorectal cancer. Int J Cancer 120(3):656–663

Sturmans F (1990b) Development of a record linkage protocol for use in the Dutch Cancer Registry for Epidemiological Research. Int J Epidemiol 19(3):555–558
Wacholder S, Gail MH, Pee D, Brookmeyer R (1989) Alternative variance and efficiency calculations for the case-cohort design. Biometrika 76(1):117–123

Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res 9(1):148–163

Wolin KY, Yan Y, Colditz GA, Lee I (2009) Physical activity and colon cancer prevention: a meta-analysis. Br J Cancer 100(4):611–616

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.