The complete mitochondrial genome of small narrow-mouthed frog, *Glyphoglossus yunnanensis* (Boulenger, 1919) (Amphibia: Anura: Microhylidae)

Shuang Huang and Yan Huang

Address: aCollege of Life Science, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China; bCollege of Life Science, Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, China

ABSTRACT

The complete mitochondrial genome (mtDNA) of *Glyphoglossus yunnanensis* (Anura: Microhylidae) consists of a circular DNA molecule of 16,710 bp and encoded 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and non-coding regions of an L-strand replication origin and a D-loop region. All PCGs use ATN as the start codon, except for ND2, ATP8, ND4L, and Cytb uses the typical stop codon TAA/TAG; COI, ND6 use AGG; the other PCGs stop with a single T. The length of tRNAs ranged from 66 bp to 73 bp. The Bayesian phylogenetic analysis recovers *Glyphoglossus* and *Microhyla* as sister taxa, corroborating previous results.

The genus *Glyphoglossus* Günther, 1869 (Anura: Microhylidae) is a clade of fossorial frogs which mainly found in the range from Southern China to Indo-Malaya. Ten species of this genus have been found, two species recorded in China (Frost 2019; Zhang et al. 2021). *Glyphoglossus yunnanensis* Boulenger, 1919 mainly distributed in southwest China and north Vietnam which live in mountainous areas with an average elevation of over 1700 m, the adults breed in May (Fei et al. 2012). In this study, we present the first complete mitochondrial genomes of the genus *Glyphoglossus*.

The sample (SAMN20166212) of *G. yunnanensis* was collected in Wulong Fairy Mountain National Forest Park (29°27’25.87”N,107°42’45.51”E), Chongqing, China, at an altitude of 1795 m. The mtDNA sequences were obtained by next-generation sequencing (Illumina NovaSeq 6000; Sangon Biotech Co., Ltd., Shanghai, China) for PE 2 × 150 BP sequencing. Protein-coding genes (PCGs) and ribosomal RNA (rRNA) genes were mainly determined by alignment with the mitochondrial genomes of existing species *Microhyla heymonsii* (AY458596), *Kaloula rugifera* (KT878719), *Microhyla ornata* (DQ512876), and *Kaloula verrucosa* (MG962359) in GenBank using Geneious 11.0.2. Transfer RNA (tRNA) gene was predicted and determined by tRNAscan-SE server v 1.21 (Lowe and Eddy 1997) and MITOS WebSever (Bernt et al. 2013). The voucher specimen was deposited at the College of Life Science, China West Normal University (https://life.cwnu.edu.cn, Yan Huang and sunflower-hy@126.com).

The complete and circular mtDNA sequence is 16,710 bp in size. The overall nucleotide composition of this genome was 29.16% A, 27.03% C, 14.19% G, and 29.62% T, with a total A + T content of 58.76%. The sequence characteristic of A + T rich is similar to *Fejervarya limnocharis* and *Rana nigromaculata* (Sumida et al. 2001; Liu et al. 2005). Among the 37 mitochondrial genes, eight tRNA genes and ND6 genes were encoded by the L-strand, while the remaining genes including 12 PCG, 14 tRNA genes, and two rRNA genes were encoded by the H-strand. The absolute length of the 13 PCGs was 11,290 bp, with most PCGs beginning with a conventional ATG codon, except for COI with ATA; AGG was found as a stop codon in ND6 and COI, and TAG as a stop codon in ND2; TAA/TAG was found as a stop codon in ATP6, ND4L, Cytb, and ND1, COII, ATP6, COIII, ND3, ND4, and ND5 terminated with a separate T, apparently completed as TAA by post-transcriptional polyadenylation (Anderson et al. 1981). The size of the 22 tRNA masses changed from 65 bp to 73 bp. The two rRNA masses were 941 bp (125) and 1583 bp (165), respectively. Comparing *G. yunnanensis* with the 12 mitochondrial genomes identified in Microhylidae revealed that *Glyphoglossus*, *Microhyla*, and *Kaloula* mitochondrial genes are in the same order as in previous studies (Lin and Liu 2017).

Mitochondrial PCGs and 16S rRNA genes of 27 species were downloaded from NCBI in PhyloSuite (Zhang et al. 2020) and used for phylogenetic analyses. In PhyloSuite, Batch alignment of the 28 sequences was performed using MAFFT (Katoh and Standley 2013). Best parceling plan and developmental models for 28 pre-characterized allotments were chosen utilizing PartitionFinder2 (Lanfear et al. 2017), with covetous calculation and AICc criteria. A Bayesian inference phylogeny was derived using MrBayes 3.2.6 (Ronquist
et al. 2012). The phylogenetic tree recovered *Glyphoglossus* as the sister taxon of *Microhyla* (Figure 1) corroborating previous phylogenetic studies (Matsui et al. 2011; Gorin et al. 2020).

Acknowledgements

We would like to thank Dr. Weizhao Yang and Dr. Zhonghua Wei for teaching us to analyze data. Also thank Prof. Mengling Wang for her assistance with language and grammatical editing on the manuscript.

Author contributions

Yan Huang conceived and designed the research; Yan Huang and Shuang Huang were involved in the analysis and interpretation of the data; Shuang Huang wrote the drafting of the paper and revised the manuscript. Yan Huang critically reviewed the article regarding its intellectual content. All authors agree to be accountable for all aspects of the work.

Ethical approval

The specimen for this paper was approved by the Animal Ethics Committee at China West Normal University. All animals handling and processing by the Law of the People's Republic of China on the Protection of Wildlife and approved by the Animal Care Committee of CIB, CAS.

Disclosure statement

The creators report no irreconcilable circumstance. The writers are liable for the substance and composing of the article.

Figure 1. Bayesian phylogenetic tree of *G. yunnanensis* and other species of Amphibia based on 13 mitochondrial PCGs and 16S rRNA genes. *Hoplobatrachus chinensis* were selected as outgroups. Number nodes are bootstrap supports.
Data availability statement

The complete mitochondrial genome sequence of *Glyphoglossus yunnanensis* is deposited in the GenBank database under the accession number MZ542769 (https://www.ncbi.nlm.nih.gov/nuccore/MZ542769). The associated BioProject, SRA, and BioSample numbers are PRJNA745446, SRR15097471, and SAMN20166212, respectively.

Funding

This work was financially supported by the National Natural Sciences Foundation of China (2020-2022) [No. 31901234] and the Key Fund Project of Sichuan Provincial Department of Education [No.18ZA0473]

References

Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, et al. 1981. Sequence and organization of the human mitochondrial genome. Nature. 290(5806): 457–465.

Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2): 313–319.

Fei L, Ye CY, Jiang JP. 2012. Colored atlas of Chinese amphibians and their distributions. Chengdu: Sichuan Publishing House of Science and Technology; p. 1–620.

Frost D. 2019. Amphibian species of the world: an online reference. Version 6.0. New York (NY): American Museum of Natural History.

Gorin VA, Solovyeva EN, Hasan M, Okamiya H, Karunarathna D, Pawangkhanant P, de Silva A, Juthong W, Milto KD, Nguyen LT, et al. 2020. A little frog leaps a long way: compounded colonizations of the Indian Subcontinent discovered in the tiny Oriental frog genus *Microhyla* (Amphibia: Microhylidae). PeerJ. 8:e9411.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 34(3):772–773.

Lin JS, Liu FR. 2017. The complete mitochondrial genome of *Microhyla fissipes* (Amphidia, Anura, Microhylidae) from Taiwan. Mitochondrial DNA B Resour. 2(2):930–931.

Liu ZQ, Wang YQ, Su B. 2005. The mitochondrial genome organization of the rice frog, *Fejervarya limnocharis* (Amphibia: Anura): a new gene order in the vertebrate mtDNA. Gene. 346:145–151.

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25(5):955–964.

Matsui M, Hamidy A, Belabut DM, Ahmad N, Panha S, Sudin A, Khonsue W, Oh HS, Yong HS, Jiang JP, et al. 2011. Systematic relationships of Oriental tiny frogs of the family Microhylidae (Amphibia, Anura) as revealed by mtDNA genealogy. Mol Phylogenet Evol. 61(1):167–176.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.

Sumida M, Kanamori Y, Kaneda H, Kato Y, Nishioka M, Hasegawa M, Yonekawa H. 2001. Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frog *Rana nigromaculata*. Genes Genet Syst. 76(5):311–325.

Zhang DR, Hui H, Yu GH, Song XQ, Liu S, Yuan SQ, Xiao H, Rao DQ. 2020. Shared response to changes in drainage basin: phylogeography of the Yunnan small narrow-mouthed frog, *Glyphoglossus yunnanensis* (Anura: Microhylidae). Ecol Evol. 10(3):1567–1580.

Zhang DR, Liu S, Zhang LX, Hui H, Xiao H, Rao DQ. 2021. A new species of Glyphoglossus Gunther, 1869 (Anura: Microhylidae) from Western Yunnan, China. Asian Herpetol Res. 12(4):371–380.