The General Induction Functors for the Category of Entwined Hom-Modules

Shuangjian Guoa, Xiaohui Zhangb, Yuanyuan Kec

aSchool of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, P. R. China
bSchool of Mathematical Sciences, Qufu Normal University, Qufu, 273165, P. R. China
cSchool of Mathematics and Computer Science, Jianghan University, Wuhan, 430056, P. R. China

Abstract. We find a sufficient condition for the category of entwined Hom-modules to be monoidal. Moreover, we introduce morphisms between the underlying monoidal Hom-algebras and monoidal Hom-coalgebras, which give rise to functors between the category of entwined Hom-modules, and we study tensor identities for monodial categories of entwined Hom-modules. Finally, we give necessary and sufficient conditions for the general induction functor from $\mathcal{H}(M_k)(\psi)$ to $\mathcal{H}(M_k)(\psi')$ to be separable.

1. Introduction

Entwining modules were introduced in \cite{1}, which arise from noncommutative geometry, are modules of an algebra and comodules of a coalgebra such that the action and the coaction satisfy a certain compatibility condition. Unlike Doi-Hopf modules, entwined modules are defined purely using the properties of an algebra and a coalgebra combined into an entwining structure. There is no need for a “background” bialgebra, which is an indispensable part of the Doi-Hopf construction. Entwining modules are more general and easier to deal with, and provide new fields of applications. It is well-known that entwining modules unify modules, comodules, Sweedler’s Hopf modules, Takeuchi’s relative Hopf modules, graded modules, modules graded by G-sets, Long dimodules, Yetter-Drinfeld modules and Doi-Hopf modules \cite{4}.

Hom-algebras and Hom-coalgebras were introduced by Makhlouf and Silvestrov in \cite{16} as generalizations of ordinary algebras and coalgebras in the following sense: the associativity of the multiplication is replaced by the Hom-associativity and similar for Hom-coassociativity. They also described the structures of Hom-bialgebras and Hom-Hopf algebras, and extended some important theories from ordinary Hopf algebras to Hom-Hopf algebras in \cite{17} and \cite{18}. Recently, many more properties and structures of Hom-Hopf algebras have been developed, see \cite{5}, \cite{6}, \cite{7}, \cite{8}, \cite{9}, \cite{10}, \cite{11}, \cite{12} and references cited therein.

Caenepeel and Goyvaerts studied in \cite{3} Hom-bialgebras and Hom-Hopf algebras from a categorical view point, and called them monoidal Hom-bialgebras and monoidal Hom-Hopf algebras respectively, which are slightly different from the above Hom-bialgebras and Hom-Hopf algebras. In \cite{15}, Makhlouf...
and Panaite defined Yetter-Drinfeld modules over Hom-bialgebras and shown that Yetter-Drinfeld modules over a Hom-bialgebra with bijective structure map provide solutions of the Hom-Yang-Baxter equation. Also Liu and Shen [13] studied Yetter-Drinfeld modules over monoidal Hom-bialgebras and called them Hom-Yetter-Drinfeld modules, and shown that the category of Hom-Yetter-Drinfeld modules is a braided monoidal categories. Chen and Zhang [7] defined the category of Hom-Yetter-Drinfeld modules in a slightly different way to [13], and shown that it is a full monoidal subcategory of the left center of left Hom-module category. We have defined in [9] the category of Doi Hom-Hopf modules and we prove there that the category of Hom-Yetter-Drinfeld modules is a subcategory of our category of Doi Hom-Hopf modules.

As a generalization of entwining modules in a Hopf algebra setting, entwined Hom-modules were introduced by Karacuba [11]. It is natural to ask the following question: can we prove a Maschke type theorem for entwined Hom-modules under more general assumptions? This is the motivation of this paper.

In this paper, we discuss the following questions: how do we make the category of entwined Hom-modules into monoidal? We show in Section 3 that it is sufficient that \((A, \beta)\) and \((C, \gamma)\) are monoidal Hom-bialgebras with some extra conditions. As an example, we consider the category of Doi Hom-Hopf modules [9], which is well known to be a monoidal category, this category is a special of our theory.

In Section 4, we first give the maps between the underlying Hom-comodule algebras and Hom-module coalgebras, which give rise to functors between the category of entwined Hom-modules. Moreover, we study tensor identities for monoidal categories of entwined Hom-modules. As an application, we prove that the category of entwined Hom-modules has enough injective objects.

In Section 5, let \((\Phi, \Psi): (A, C, \psi) \to (A', C', \psi')\) be a morphism of (right-right) Hom-entwining structures. The results of [9] can be extended to the general induction functor

\[
F : \mathcal{H}(A_1)(\psi)_A^C \to \mathcal{H}(A_1)(\psi')_{A'}^{C'}.
\]

In order to avoid technical complications, we will assume that the Hom-entwining map \(\psi\) is bijective, and write \(\psi^{-1} = \delta\).

2. Preliminaries

Throughout this paper we work over a commutative ring \(k\), we recall from [3] and [9] for some informations about Hom-structures which are needed in what follows.

Let \(C\) be a category. We introduce a new category \(\mathcal{H}(C)\) as follows: objects are couples \((M, \mu)\), with \(M \in C\) and \(\mu \in \text{Aut}_C(M)\). A morphism \(f : (M, \mu) \to (N, \nu)\) is a morphism \(f : M \to N\) in \(C\) such that \(\nu \circ f = f \circ \mu\).

Let \(\mathcal{M}_k\) denotes the category of \(k\)-modules. \(\mathcal{H}(\mathcal{M}_k)\) will be called the Hom-category associated to \(\mathcal{M}_k\). If \((M, \mu) \in \mathcal{M}_k\), then \(\mu : M \to M\) is obviously a morphism in \(\mathcal{H}(\mathcal{M}_k)\). It is easy to show that \(\mathcal{H}(\mathcal{M}_k) = (\mathcal{H}(\mathcal{M}_k), \otimes, (1, 1), \alpha, I, \tau)\) is a monoidal category by Proposition 1.1 in [3]: the tensor product of \((M, \mu)\) and \((N, \nu)\) in \(\mathcal{H}(\mathcal{M}_k)\) is given by the formula \((M, \mu) \otimes (N, \nu) = (M \otimes N, \mu \otimes \nu)\).

Assume that \((M, \mu), (N, \nu), (\rho, \pi) \in \mathcal{H}(\mathcal{M}_k)\). The associativity and unit constraints are given by the formulas

\[
\begin{align*}
\alpha_{MN, P}((m \otimes n) \otimes p) &= \mu(m) \otimes (n \otimes \pi^{-1}(p)), \\
\tau_M(x \otimes m) &= \tau_M(m \otimes x) = x\mu(m).
\end{align*}
\]

An algebra in \(\mathcal{H}(\mathcal{M}_k)\) will be called a monoidal Hom-algebra.

Definition 2.1. A monoidal Hom-algebra is an object \((A, \alpha) \in \mathcal{H}(\mathcal{M}_k)\) together with a \(k\)-linear map \(m_A : A \otimes A \to A\) and an element \(1_A \in A\) such that

\[
\begin{align*}
\alpha(ab) &= \alpha(a)\alpha(b); & \alpha(1_A) &= 1_A, \\
\alpha(a)(bc) &= (ab)\alpha(c); & a1_A &= 1_A a = a(a),
\end{align*}
\]

for all \(a, b, c \in A\). Here we use the notation \(m_A(a \otimes b) = ab\).
Definition 2.2. A monoidal Hom-coalgebra is an object $(C, \gamma) \in \mathcal{H}(\mathcal{M}_k)$ together with k-linear maps $\Delta : C \rightarrow C \otimes C$, $\varepsilon : C \rightarrow k$ such that
\[
\Delta(\gamma(c)) = \gamma(c_{(1)}) \otimes \gamma(c_{(2)}), \quad \varepsilon(\gamma(c)) = \varepsilon(c),
\]
and
\[
\gamma^{-1}(c_{(1)}) \otimes c_{(2)(3)} \otimes c_{(2)(3)} = c_{(1)(1)} \otimes c_{(1)(2)} \otimes \gamma^{-1}(c_{(2)}), \quad \varepsilon(c_{(1)})c_{(2)} = \varepsilon(c) = \gamma^{-1}(c)
\]
for all $c \in C$.

Definition 2.3. A monoidal Hom-bialgebra $H = (H, \alpha, m, \eta, \Delta, \varepsilon)$ is a bialgebra in the symmetric monoidal category $\mathcal{H}(\mathcal{M}_k)$. This means that (H, α, m, η) is a monoidal Hom-algebra, $(H, \alpha, \Delta, \varepsilon)$ is a monoidal Hom-coalgebra and that Δ and ε are morphisms of Hom-algebras, that is,
\[
\Delta(ab) = a_{(1)}b_{(1)} \otimes a_{(2)}b_{(2)}; \quad \Delta(1_H) = 1_H \otimes 1_H,
\]
\[
\varepsilon(ab) = \varepsilon(a)\varepsilon(b), \quad \varepsilon(1_H) = 1_H.
\]

Definition 2.4. A monoidal Hom-Hopf algebra is a monoidal Hom-bialgebra (H, α) together with a linear map $S : H \rightarrow H$ in $\mathcal{H}(\mathcal{M}_k)$ such that
\[
S \ast I = I \ast S = \eta \varepsilon, \quad S \alpha = \alpha S.
\]

Definition 2.5. Let (A, α) be a monoidal Hom-algebra. A right (A, α)-Hom-module is an object $(M, \mu) \in \mathcal{H}(\mathcal{M}_k)$ consists of a k-module and a linear map $\mu : M \rightarrow M$ together with a morphism $\psi : M \otimes A \rightarrow M, \psi(m \cdot a) = m \cdot a$, in $\mathcal{H}(\mathcal{M}_k)$ such that
\[
(m \cdot a) \cdot \alpha(b) = \mu(m) \cdot (ab); \quad m \cdot 1_A = \mu(m),
\]
for all $a \in A$ and $m \in M$. The fact that $\psi \in \mathcal{H}(\mathcal{M}_k)$ means that
\[
\mu(m \cdot a) = \mu(m) \cdot \alpha(a).
\]

A morphism $f : (M, \mu) \rightarrow (N, \nu)$ in $\mathcal{H}(\mathcal{M}_k)$ is called right A-linear if it preserves the A-action, that is, $f(m \cdot a) = f(m) \cdot a$. $\mathcal{H}(\mathcal{M}_k)^A$ will denote the category of right (A, α)-Hom-modules and A-linear morphisms.

Definition 2.6. Let (C, γ) be a monoidal Hom-coalgebra. A right (C, γ)-Hom-comodule is an object $(M, \mu) \in \mathcal{H}(\mathcal{M}_k)$ together with a k-linear map $\rho_M : M \rightarrow M \otimes C$ notation $\rho_M(m) = m_{[0]} \otimes m_{[1]}$ in $\mathcal{H}(\mathcal{M}_k)$ such that
\[
m_{[0][0]} \otimes (m_{[0][1]} \otimes \gamma^{-1}(m_{[1]}))) = \mu^{-1}(m_{[0]}) \otimes \Delta_C(m_{[1]}); \quad m_{[0]}\varepsilon(m_{[1]}) = \mu^{-1}(m),
\]
for all $m \in M$. The fact that $\rho_M \in \mathcal{H}(\mathcal{M}_k)$ means that
\[
\rho_M(\mu(m)) = \mu(m_{[0]}) \otimes \gamma(m_{[1]}).
\]
Morphisms of right (C, γ)-Hom-comodules are defined in the obvious way. The category of right (C, γ)-Hom-comodules will be denoted by $\mathcal{H}(\mathcal{M}_k)^C$.

Definition 2.7. A right-right Hom-entwining structure is a triple (A, C, ψ), where (A, β) is a monoidal Hom-algebra and (C, γ) is a monoidal Hom-coalgebra with a linear map $\psi : C \otimes A \rightarrow A \otimes C$ such that $\psi \circ (\gamma \otimes \beta) = (\beta \otimes \gamma) \circ \psi$ satisfying the following conditions:
\[
(ab)_{(\psi)} \otimes c_{(\psi)} = a_{(\psi)}b_{(\psi)} \otimes \gamma((\gamma^{-1}(c_{(\psi)})))_{(\psi)}),
\]
\[
\psi(c \otimes 1_A) = 1_A \otimes c_{(\psi)},
\]
\[
a_{(\psi)} \otimes \Delta(c_{(\psi)}) = \beta(\beta^{-1}(a_{(\psi)})) \otimes (c_{(1)}_{(\psi)} \otimes c_{(2)}_{(\psi)}),
\]
\[
\varepsilon(c_{(\psi)})a_{(\psi)} = \varepsilon(c)a_{(\psi)}.
\]
Over a Hom-entwining structure \((A, C, \psi)\), a right-right entwined Hom-module \((M, \mu)\) is both a right \((C, \gamma)\)-Hom-comodule and a right \((A, \beta)\)-Hom-module such that
\[
\rho_M(m \cdot a) = \mu(m_{[0]} \cdot \psi(m_{[1]} \otimes \beta^{-1}(a))) = m_{[0]} \cdot \beta^{-1}(a)_{[0]} \otimes \gamma(m_{[1]}^{\psi}),
\]
for all \(a \in A\) and \(m \in M\). \(\overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A\) will denote the category of right entwined Hom-modules and morphisms between them.

A morphism between right-right entwined Hom-modules is a \(k\)-linear map which is a morphism in the categories \(\overline{\mathcal{H}}(\mathcal{M}_k)_A\) and \(\overline{\mathcal{E}}(\mathcal{M}_k)^C\) at the same time. \(\overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A\) will denote the category of right-right entwined Hom-modules and morphisms between them.

3. Making the Category of Entwined Hom-Modules into a Monoidal Category

Now suppose that \((A, \beta)\) and \((C, \gamma)\) are both monoidal Hom-bialgebras.

Proposition 3.1. Let \((M, \mu) \in \overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A\), \((N, \nu) \in \overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A\). Then we have \(M \otimes N \in \overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A\) with structures:
\[
(m \otimes n) \cdot a = m \cdot a_{(1)} \otimes n \cdot a_{(2)},
\]
\[
\rho_{M \otimes N}(m \otimes n) = m_{[0]} \otimes n_{[0]} \otimes m_{[1]}^{\mu} n_{[1]}^{\nu},
\]
if and only if the following condition holds:
\[
a_{(1)}^{\psi} \otimes a_{(2)}^{\psi} \otimes e^{cd} = a_{\psi(1)} \otimes a_{\psi(2)} \otimes (cd)^{\psi},
\]
(3.1)
for all \(a \in A\) and \(c, d \in C\). Furthermore, the category \(C = \overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A\) is a monoidal category.

Proof. It is easy to see that \(M \otimes N\) is a right \((A, \beta)\)-module and that \(M \otimes N\) is a right \((C, \gamma)\)-comodule. Now we check that the compatibility condition holds:
\[
\rho_{M \otimes N}((m \otimes n) \cdot a) = (m \cdot a_{(1)})_{[0]} \otimes (n \cdot a_{(2)})_{[0]} \otimes (m \cdot a_{(1)})_{[1]} (n \cdot a_{(2)})_{[1]}
\]
\[
= m_{[0]} \cdot \beta^{-1}(a_{(1)})_{[0]} \otimes n_{[0]} \cdot \beta^{-1}(a_{(2)})_{[0]} \otimes (\gamma(m_{[1]}^{\psi} n_{[1]}^{\psi}))
\]
\[
= m_{[0]} \cdot \beta^{-1}(a_{(1)})_{[0]} \otimes n_{[0]} \cdot \beta^{-1}(a_{(2)})_{[0]} \otimes \gamma((m_{[1]}^{\mu} n_{[1]}^{\nu}))
\]
\[
= (m_{[0]} \otimes n_{[0]}) \cdot \beta^{-1}(a_{[0]})_{[0]} \otimes \gamma((m_{[1]}^{\mu} n_{[1]}^{\nu})).
\]
(3.1)
So \(M \otimes N \in \overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A\).

Conversely, one can easily check that \(A \otimes C \in \overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A\), let \(m = 1 \otimes c\) and \(n = 1 \otimes d\) for any \(c, d \in C\) and easily get (3.1).

Furthermore, \(k\) is an object in \(\overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A\) with structures:
\[
x \cdot a = \varepsilon_A(a)x, \quad \rho(x) = x \otimes 1_C,
\]
for all \(x \in k\) if and only if the following condition holds:
\[
\varepsilon_A(a) 1_C = \varepsilon_A(\beta^{-1}(a)_{[0]} \gamma(1^C_{[0]})),
\]
(3.2)
for all \(a \in A\). Then it is easy to get that \((C = \overline{\mathcal{H}}(\mathcal{M}_k)(\psi)^C_A) \otimes (k, \alpha, \tilde{r})\) is a monoidal category, where \(\alpha, \tilde{r}\) are given by the formulas:
\[
\alpha_{M,N,P}(m \otimes n) \cdot p = \mu(m) \otimes (n \otimes \pi^{-1}(p)),
\]
Example 3.3. Let \(\mathcal{M} \) be a monoidal Hom-bialgebra, and \(A, C \) are monoidal Hom-bialgebras with the additional compatibility relations (3.1) and (3.2). If \((A, C, \psi) \) is a monoidal Hom-entwining structure, then \((A, \beta) \) and \((C, \gamma) \) can be made into objects of \(\mathcal{H} (\mathcal{M}_k)(\psi)^C_A \) and \(\mathcal{H} (\mathcal{M}_k)(\psi)^A_C \). Proposition 3.2. Let \((A, C, \psi) \) be a monoidal Hom-entwining structure. On \((A, \beta) \) and \((C, \gamma) \), we consider the following right \((A, \beta) \)-action and right \((C, \gamma) \)-coaction:

\[
 b \cdot a = ba \quad \text{and} \quad \rho^r(b) = \psi(1_C \otimes b) = \beta^{-1}(b) \otimes 1^C, \\
 c \cdot a = \varepsilon_A(a_{(1)}) \gamma(c^0) \quad \text{and} \quad \rho^r(c) = c_{(1)} \otimes c_{(2)}.
\]

Then \((A, \beta) \) and \((C, \gamma) \) are entwined Hom-modules.

Proof. We will show \((A, \beta) \in \mathcal{H} (\mathcal{M}_k)(\psi)^C_A \) and leave the other statement to the reader. First, \((A, \beta) \) is a right \((C, \gamma) \)-comodule, since

\[
 (id_A \otimes \varepsilon_C) \rho^r(b) = \varepsilon_C(1^C) \beta^{-1}(b) = \varepsilon_C(1_C) \beta^{-1} = b,
\]

\[
 (\beta^{-1} \otimes \Delta_C) \rho^r(b) = \beta^{-2}(b_{\psi})(1_C \otimes \Delta_C(1^C)) = \beta^{-2}(b_{\psi}) \otimes 1^C = (\rho^r(b) \otimes \gamma^{-1}) \rho^r(b),
\]

and

\[
 b_{(1)} \beta^{-1}(a_{(1)}) \otimes \gamma(b_{(1)}^r) = \beta^{-1}(b_{\psi}) \beta^{-1}(a_{(1)}) \otimes \gamma(1^C_{(1)}) = \beta^{-1}(ba_{(1)}) \otimes \gamma(1^C_{(1)}) = \rho^r(ba).
\]

Thus \((A, \beta) \in \mathcal{H} (\mathcal{M}_k)(\psi)^C_A \). Example 3.3. Let \((H, \alpha) \) be a monoidal Hom-Hopf algebra, \((C, \gamma) \) a right \((H, \alpha) \)-Hom module bialgebra, and that \((H, \alpha) \) acts on \((C, \gamma) \) in such a way that \((C, \gamma) \) is an \((H, \alpha) \)-Hom module algebra and \((H, \alpha) \)-Hom module coalgebra. Now let \((A, \beta) \) be a monoidal Hom-bialgebra and a right \((H, \alpha) \)-Hom comodule algebra such that the following compatibility relation holds, for all \(a \in A \):

\[
 a_{(1)[0]} \otimes a_{(1)[1]} \otimes a_{(2)[1]} \otimes a_{(2)[2]} = a_{(0)[0]} \otimes a_{(0)[1]} \otimes a_{(1)[1]} \otimes a_{(1)[2]}.
\]

We know that \((H, A, C) \) is a right-right Doi Hom-Hopf datum in \(\mathcal{D} \), and we have a corresponding right-right Hom-entwining structure \((A, C, \psi) \). It is straightforward to check that \((A, C, \psi) \) is monoidal.

4. Tensor Identities

Theorem 4.1. Given two Hom-entwining structures \((A, C, \psi) \) and \((A', C', \psi') \), suppose that two maps \(\Phi : A \rightarrow A' \) and \(\Psi : C \rightarrow C' \) which are respectively monodial Hom-algebra and monodial Hom-coalgebra maps satisfying

\[
 \Phi(a_{(1)}) \otimes \Psi(c_{(1)}) = \Phi(a_{(1)}) \otimes \Psi(c_{(1)}', \psi'),
\]

then the induction functor \(F : \mathcal{H} (\mathcal{M}_k)(\psi)^C_A \rightarrow \mathcal{H} (\mathcal{M}_k)(\psi)^C_{A'} \), defined as follows:

\[
 F(M) = M \otimes_A A',
\]

where \((A', \beta') \) is a left \((A, \beta) \)-module via \(\Phi \) and with structure maps defined by

\[
 (m \otimes a') \cdot b' = m \otimes a' \beta^{-1}(b'),
\]

\[
 \rho_F(m \otimes a') = m_{(0)} \otimes (\beta^{-1}(a'))_{\psi'} \otimes \Psi(\gamma^{-1}(m_{(1)})),
\]

for all \(a', b' \in A' \) and \(m \in M \).
Proof. Let us show that $M \otimes_A A'$ is an object of $\widetilde{\mathcal{H}}(\mathcal{M}_k)(\psi')^C$. It is routine to check that $F(M)$ is a right (A', β')-module. For this, we need to show that $M \otimes_A A'$ is a right (C', γ')-comodule and satisfy the compatible condition, for any $m \in M$ and $a', b' \in A'$, we have

$$\rho_{F(M)}((m \otimes_A a') \cdot b') = \rho_{F(M)}(\mu(m) \otimes_A a' \beta^{-1}(b'))$$

$$= \mu(m_{[0]}) \otimes_A (\beta^{-1}((a' \beta^{-1}(b'))))_{\psi} \otimes \Psi(m_{[1]}'_{\psi})$$

$$= [m_{[0]} \otimes_A (\beta^{-1}(a'))_{\psi} \otimes \Psi(\gamma^{-1}(m_{[1]}'_{\psi})))b'$$

$$= \rho_{F(M)}(m \otimes_A a')b',$$

i.e., the compatible condition holds. It remains to prove that $M \otimes_A A'$ is a right (C', γ')-comodule. For any $m \in M$ and $a' \in A'$, we have

$$(\rho_{F(M)} \otimes \text{id}_C)\rho_{F(M)}(m \otimes_A a')$$

$$= (\rho_{F(M)} \otimes \text{id}_C)(m_{[0]} \otimes_A (\beta^{-1}(a'))_{\psi} \otimes \Psi(\gamma^{-1}(m_{[1]}'_{\psi})))$$

$$= m_{[0]} \otimes_A (\beta^{-2}(a'))_{\psi_{\psi'}} \otimes \Psi(\gamma^{-1}(m_{[1]}'_{\psi})) \otimes \Psi(\gamma^{-1}(m_{[1]}_{\psi}))$$

$$= [m_{[0]} \otimes_A (\beta^{-1}(a'))_{\psi} \otimes \Psi(\gamma^{-1}(m_{[1]}'_{\psi}))) \otimes \Psi(\gamma^{-1}(m_{[1]}_{\psi}))_{(1)}$$

$$= \rho_{F(M)}(m \otimes_A a'),$$

as desired. This completes the proof. \qed

Theorem 4.2. Under the assumptions of Theorem 4.1, we have a functor $G : \widetilde{\mathcal{H}}(\mathcal{M}_k)(\psi')^C \rightarrow \widetilde{\mathcal{H}}(\mathcal{M}_k)(\psi')^C$ which is right adjoint to F. G is defined by

$$G(M') = M' \Box_C C,$$

with structure maps

$$(m' \otimes c) \cdot a = m' \cdot \beta^{-1}(a)_{\psi} \otimes \gamma(c_{\psi}), \quad (4.3)$$

$$\rho_{G(M')}(m' \otimes c) = \mu^{-1}(m') \otimes c_{(1)} \otimes \gamma(c_{(2)}), \quad (4.4)$$

for all $a \in A$.

Proof. We first show that $G(M')$ is an object of $\widetilde{\mathcal{H}}(\mathcal{M}_k)(\psi')^C$. It is not hard to check that $G(M')$ is a right (A', β')-module. Now we check that $G(M')$ is a right (C, γ)-comodule and satisfy the compatible condition. For any $m' \in M'$ and $a, c \in C$, we have

$$\rho_{G(M')}(m' \otimes c) \cdot a = \rho_{G(M')}(m' \cdot \beta^{-1}(a)_{\psi} \otimes \gamma(c_{\psi}))$$

$$= \mu^{-1}(m') \cdot \beta^{-2}(a_{\psi}) \otimes \gamma(c_{(1)}) \otimes \gamma(\gamma(c_{(2)}))$$

$$= (\mu^{-1}(m') \otimes c_{(1)} \otimes \gamma(c_{(2)}))a$$

$$= \rho_{G(M')}(m' \otimes c)a,$$

i.e., the compatible condition holds. It remains to prove that $M' \Box_C C$ is a right (C, γ)-comodule. For any
\[m' \in M' \text{ and } a \in A, \text{ we have} \]
\[
(\rho_{GM} \otimes id_C)\rho_{GM}(m' \otimes_A c) \\
= (\rho_{GM} \otimes id_C)(\mu^{-1}(m') \otimes (c(1) \otimes \gamma(c(2)))) \\
= \mu^{-2}(m') \otimes (c(1(1)) \otimes \gamma(c(1(2)) \otimes \gamma(c(2))) \\
= \mu^{-1}(m') \otimes c(1) \otimes \gamma(c(2(1))) \otimes \gamma^2(c(2(2))) \\
= (id_{GM} \otimes \Delta_C)\rho_{GM}(m' \otimes c),
\]
and
\[
(id_{GM} \otimes \iota)\rho_{GM}(m' \otimes c) \\
= (id_{GM} \otimes \iota)(\mu^{-1}(m') \otimes (c(1) \otimes \gamma(c(2)))) \\
= \mu^{-1}(m') \otimes c(1) \otimes \gamma^2(c(2)) \otimes 1_C = m' \otimes c,
\]
as required.

\(G(M') \in \hat{H}(\mathcal{M}_k)(\psi)^C_A\) and the functorial properties can be checked in a straightforward way. Finally, we show that \(G\) is a right adjoint to \(F\). Take \((M, \mu) \in \hat{H}(\mathcal{M}_k)(\psi)^C_A\), define \(\eta_M : M \to GF(M) = (M \otimes_A A') \Box C\) as follows: for all \(m \in M\),
\[
\eta_M(m) = m_{[0]} \otimes_A 1_A' \otimes m_{[1]}.
\]
It is easy to see that \(\eta_M \in \hat{H}(\mathcal{M}_k)(\psi)^C_A\). Take \((M', \mu') \in \hat{H}(\mathcal{M}_k)(\psi)^C_{A'}\), define \(\delta_M : FG(M') \to M'\), where \(\delta_M((m' \otimes c) \otimes_A a') = \epsilon_C(c)\mu'(m') \cdot a'\).

It is easy to check that \(\delta_M\) is \((A, \beta)\)-linear and therefore \(\delta_M \in \hat{H}(\mathcal{M}_k)(\psi)^C_{A'}\). We can also verify \(\eta\) and \(\delta\) defined above are all natural transformations and satisfy
\[
G(\delta_M) \circ \eta_{GM} = \text{Id}, \quad \delta_{GM} \circ F(\eta_M) = \text{Id},
\]
for all \(M \in \hat{H}(\mathcal{M}_k)(\psi)^C_A\) and \(M' \in \hat{H}(\mathcal{M}_k)(\psi')^C_{A'}\). And this completes the proof. \(\square\)

A morphism \((\Phi, \Psi)\) between two monoidal Hom-entwining structures is called monoidal if \(\Phi\) and \(\Psi\) are monoidal Hom-bialgebra maps. We now consider the particular situation where \(A = A'\) and \(\Phi = I_A\). The following result is a generalization of [4].

Theorem 4.3. Let \((I_A, \Psi) : (A, C, \psi) \to (A, C', \psi')\) be a monoidal morphism of monoidal Hom entwining structures. Then
\[
G(C') = C. \tag{4. 5}
\]
Let \((M, \mu) \in \hat{H}(\mathcal{M}_k)(\psi)^C_A\) be flat as a k-module, and take \((N, v) \in \hat{H}(\mathcal{M}_k)(\psi')^C_{A'}\). If \((C, \gamma)\) is a monoidal Hom-Hopf algebra, then
\[
M \otimes_G N = G(F(M) \otimes N) \text{ in } \hat{H}(\mathcal{M}_k)(\psi')^C_{A'} \tag{4. 6}
\]
If \((C, \gamma)\) has a twisted antipode \(\tilde{S}\), then
\[
G(N) \otimes M = G(N \Box_F M) \text{ in } \hat{H}(\mathcal{M}_k)(\psi)^C_A \tag{4. 7}
\]
Proof. We know that \(\epsilon_C \otimes id_C : C' \Box_C C \to C\) is an isomorphism; the inverse map is \((\Psi \otimes id_C)\Delta_C : C \to C' \Box_C C\). It is clear that \(\epsilon_C \otimes id_C\) is \((A, \beta)\)-linear and \((C, \gamma)\)-colinear. And this prove (4.5).

Now we define the map
\[
\Gamma : M \otimes G(N) = M \otimes (N \Box_C C) \to G(F(M) \otimes N) = (F(M) \otimes N) \Box_C C,
\]
which is given by
\[\Gamma(m \otimes (n_i \otimes c_i)) = (m_{[0]} \otimes n_i) \otimes m_{[1]} c_i. \]
Recall that \(F(M) = M \) as an \((A, \beta)\)-module, with \((C', \gamma')\)-coaction given by
\[\rho_{F(M)}(m) = m_{[0]} \otimes \Psi(m_{[1]}). \]

(1) \(\Gamma \) is well-defined, we have to show that
\[\Gamma(m_i \otimes (n_i \otimes c_i)) \in (F(M) \otimes N) \otimes'_C C. \]

This may be seen as follows: for any \(m \in M \) and \(n_i \otimes c_i \in N \otimes C \), we have
\[
\begin{align*}
(\rho_{F(M) \otimes N} \otimes \text{id}_C)(m_{[0]} \otimes n_i) & \otimes m_{[1]} c_i \\
= (m_{[0][0]} \otimes n_{[0]}) & \otimes \Psi(m_{[0][1]} n_{[1]} \otimes m_{[1]} c_i) \\
= (\mu(m_{[0]}) \otimes \nu(n_i)) & \otimes \Psi(m_{[0][1]} \Psi(c_{[1]}) \otimes \gamma^{-1}(m_{[1]} c_{[2]})) \\
= (m_{[0]} \otimes n_i) & \otimes [\phi(m_{[0][1]}) \Psi(c_{[1]}) \otimes m_{[1]} c_{[2]}] \\
= (\text{id}_{F(M) \otimes N} \otimes \rho_C)(m_{[0]} \otimes n_i) & \otimes m_{[1]} c_i.
\end{align*}
\]

(2) \(\Gamma \) is \((A, \beta)\)-linear. Indeed, for any \(a \in A, m \in M \) and \(n_i \otimes c_i \in N \otimes C \), we have
\[
\begin{align*}
\Gamma((m \otimes (n_i \otimes c_i)) \cdot a) & = \Gamma(m \cdot a_{(1)} \otimes (n_i \cdot \beta^{-1}(a_{(2)} \otimes \gamma(c_i^{(2)}))) \\
& = (m_{[0]} \cdot \beta^{-1}(a_{(1)}^{(0)}) \otimes n_i \cdot \beta^{-1}(a_{(2)}^{(0)}) \otimes \gamma(m_{[1]}^{(1)} \gamma(c_i^{(2)})) \\
& = (m_{[0]} \cdot \beta^{-1}(a_{(1)}^{(0)}) \otimes n_i \cdot \beta^{-1}(a_{(2)}^{(0)}) \otimes \gamma(m_{[1]}^{(1)} c_i^{(1)})) \\
& = (m_{[0]} \otimes n_i) \cdot \beta^{-1}(a_{(0)}) \otimes \gamma((m_{[1]} c_i)^{(0)}) \\
& = \Gamma((m \otimes (n_i \otimes c_i)) \cdot a).
\end{align*}
\]

(3) \(\Gamma \) is \((C, \gamma)\)-colinear. Indeed, for any \(m \in M \) and \(n_i \otimes c_i \in N \otimes C \), we have
\[
\begin{align*}
\rho \circ \Gamma & = \rho((m \otimes (n_i \otimes c_i)) \\
& = \rho((m_{[0]} \otimes n_i) \otimes m_{[1]} c_i) \\
& = (\mu^{-1}(m_{[0]}) \otimes \nu^{-1}(n_i) \otimes m_{[1]}^{(1)} c_{[1]} \otimes \gamma(m_{[1]}^{(1)} \gamma(c_{[2]}))) \\
& = (m_{[0]} \otimes n_i) \otimes m_{[0][1]}^{(1)} c_{[1]} \otimes m_{[1]}^{(1)} \gamma(c_{[2]})) \\
& = (\Gamma \otimes \text{id}_C)(m_{[0]} \otimes (\nu^{-1}(n_i) \otimes c_{[1]})) \otimes m_{[1]} \gamma(c_{[2]}) \\
& = (\Gamma \otimes \text{id}_C) \circ \rho(m \otimes (n_i \otimes c_i)).
\end{align*}
\]

Assume \((C, \gamma)\) has an antipode and define
\[
\begin{align*}
\Theta : (F(M) \otimes N) \otimes C & \rightarrow M \otimes (N \otimes C), \\
\Theta((m_i \otimes n_i) \otimes c_i) & = \mu^2(m_{[0]}) \otimes (n_i \otimes S(m_{[1]})) \gamma^{-2}(c_i).
\end{align*}
\]

We have to show that \(\Psi \) is well-defined. \((M, \mu)\) is flat, so \(M \otimes (N \otimes C) \) is the equalizer of the maps
\[id_M \otimes id_N \otimes \rho_C : M \otimes N \otimes C \rightarrow M \otimes N \otimes C' \otimes C, \]
and
\[id_M \otimes \rho_N \otimes id_C : M \otimes N \otimes C \rightarrow M \otimes N \otimes C' \otimes C. \]

Now take \((m_i \otimes n_i) \otimes c_i \in (F(M) \otimes N) \otimes C\), then
\[(m_{[0]} \otimes n_{[0]}) \otimes \phi(m_{[1]}) n_{[1]} \otimes c_i = (\mu^{-1}(m_i) \otimes \nu^{-1}(n_i)) \otimes \Psi(c_{[1]}) \otimes \gamma(c_{[2]}). \quad (4.8) \]
Therefore, we get
\[
\begin{align*}
\text{id}_M \otimes \text{id}_N \otimes \rho_C (\mu^2(m_{00}) \otimes (n_i \otimes S(m_{11}))^{-2}(c_i)) \\
= \mu^2(m_{00}) \otimes (n_i \otimes \Psi(S(m_{11})^{-2}(c_{i1})) \otimes S(m_{11}))^{-2}(c_{i2}) \\
= m_{00} \otimes \nu^{-1}(n_i) \otimes \Psi(S(\gamma(m_{11}))^{-1}(c_{i1})) \otimes S(\gamma^2(m_{11}))c_{i2},
\end{align*}
\]
and
\[
\begin{align*}
\text{id}_M \otimes \rho_N \otimes \text{id}_C (\mu^2(m_{00}) \otimes (n_i \otimes S(m_{11}))^{-2}(c_i)) \\
= \mu^2(m_{00}) \otimes (n_i \otimes \Psi(S(m_{11})^{-2}(c_{i1})) \otimes S(m_{11}))^{-2}(c_{i2}) \\
= m_{00} \otimes \nu^{-1}(n_i) \otimes \Psi(\gamma(m_{11}))^{-1}(c_i).
\end{align*}
\]

Applying \((\text{id}_M \otimes \Psi \otimes \text{id}_C) \circ (\text{id}_M \otimes (\Delta_C \otimes S_C)) \circ \rho_M\) to the first factor of (4.8), we obtain
\[
\begin{align*}
m_{00} \otimes \Psi(S(m_{11})) \otimes S(m_{11}) \otimes n_{00} \otimes \Psi(m_{11})n_{11} \otimes c_i \\
= \mu^{-1}(m_{00}) \otimes \Psi(S(\gamma^{-1}(m_{11})) \otimes S(\gamma^{-1}(m_{11})) \otimes \nu^{-1}(n_i) \otimes \phi(c_{i1}) \otimes \gamma(c_{i2}).
\end{align*}
\]

Applying \(\text{id}_M \otimes S^2 \otimes \text{id}_C \otimes \text{id}_N \otimes \nu^{-1} \otimes \gamma^{-1} \otimes \gamma^{-1}\) to the above identity, we have
\[
\begin{align*}
m_{00} \otimes \Psi(S(\gamma^2(m_{11})) \otimes S(m_{11}) \otimes n_{00} \otimes \gamma^{-1}(\phi(m_{11})n_{11}) \otimes \gamma^{-1}(c_i) \\
= \mu^{-1}(m_{00}) \otimes \Psi(S(\gamma^2(m_{11})) \otimes S(\gamma^{-1}(m_{11})) \otimes \nu^{-1}(n_i) \otimes \phi(\gamma^{-1}(c_{i1})) \otimes \gamma(c_{i2}).
\end{align*}
\]

Multiplying the second and the fifth factor, and also the third and sixth factor, we have
\[
\begin{align*}
\mu(m_{00}) \otimes n_{00} \otimes \gamma(n_{11}) \otimes \gamma^{-1}(c_i) \\
= \mu(m_{00}) \otimes \nu^{-1}(n_i) \otimes \Psi(S(\gamma^{-1}(m_{11})) \otimes \gamma^{-1}(c_{i1})) \otimes \gamma^{-1}(m_{11})c_{i2},
\end{align*}
\]
and applying \(\mu^{-1} \otimes \text{id}_N \otimes \text{id}_C \otimes \text{id}_C\) to the above identity, we obtain
\[
\begin{align*}
m_{00} \otimes n_{00} \otimes \gamma(n_{11}) \otimes S(\gamma(m_{11}))^{-1}(c_i) \\
= m_{00} \otimes \nu^{-1}(n_i) \otimes \Psi(S(\gamma^{-1}(m_{11})) \otimes \gamma^{-1}(c_{i1})) \otimes S(\gamma^2(m_{11}))c_{i2},
\end{align*}
\]
or
\[
\text{id}_M \otimes \rho_N \otimes \text{id}_C \circ (\Theta((m_i \otimes n_i) \otimes c_i)) = \text{id}_M \otimes \text{id}_N \otimes \rho_C \circ (\Theta((m_i \otimes n_i) \otimes c_i)).
\]

Let us point out that \(\Gamma\) and \(\Theta\) are each other’s inverses. In fact,
\[
\begin{align*}
\Theta \circ \Gamma(m_i \otimes n_i) \otimes c_i) \\
= \Theta((m_i \otimes n_i) \otimes S(m_{11}))^{-2}(c_i)) \\
= (\mu^2(m_{00}) \otimes n_i) \otimes \gamma^2(m_{11})S(m_{11}))^{-2}(c_i)) \\
= (\mu^2(m_{00}) \otimes n_i) \otimes [\gamma^{-1}(m_{11})^{-2}(c_{i1})] \\
= \mu(m_{00}) \otimes n_i) \otimes [\gamma^{-1}(m_{11})^{-2}(c_{i1})] \\
= (m_i \otimes n_i) \otimes c_i,
\end{align*}
\]
and
\[
\begin{align*}
\Theta \circ \Gamma(m_i \otimes n_i) \otimes c_i) \\
= \Theta((m_i \otimes n_i) \otimes S(m_{11}))^{-2}(c_i)) \\
= (\mu^2(m_{00}) \otimes n_i) \otimes [\gamma^2(m_{11})S(m_{11}))^{-2}(c_i)) \\
= \mu(m_{00}) \otimes n_i) \otimes [\gamma^{-1}(m_{11})^{-2}(c_{i1})] \\
= m \otimes n_i \otimes c_i.
\end{align*}
\]

The proof of (4.7) is similar and left to the reader. □
Corollary 4.4. Let \((A, C, \psi)\) be a monoidal Hom-entwining structure, \(\Lambda : \mathcal{H}(\mathcal{M}_k)(\psi)_A^C \to \mathcal{H}(\mathcal{M}_k)\) the functor forgetting the \((C, \gamma)\)-coaction. For any flat entwined Hom-module \((M, \mu)\), we have an isomorphism
\[
M \otimes C \cong \Lambda(M) \otimes C
\]
in \(\mathcal{H}(\mathcal{M}_k)(\psi)_A^C\). If \(k\) is a field, then \(\mathcal{H}(\mathcal{M}_k)(\psi)_A^C\) has enough injective objects, and any injective object in \(\mathcal{H}(\mathcal{M}_k)(\psi)_A^C\) is a direct summand of an object of the form \(I \otimes C\), where \(I\) is an injective \((A, \beta)\)-module.

We have already proved that the category of Doi Hom-Hopf modules may be viewed as the category of entwined Hom-modules corresponding to a monoidal Hom-entwining structure. Then we have the following corollary.

Corollary 4.5. Let \((H, A, C)\) be a monoidal Doi Hom-Hopf Datum. If \(k\) is a field, then \(\mathcal{H}(\mathcal{M}_k)(H)_A^C\) has enough injective objects, and any injective object in \(\mathcal{H}(\mathcal{M}_k)(H)_A^C\) is a direct summand of an object of the form \(I \otimes C\), where \(I\) is an injective \((A, \beta)\)-module.

We continue with the dual version of Theorem 4.3.

Theorem 4.6. Let \((\Phi, I_c) : (A, C, \psi) \to (A', C, \psi)\) be a monoidal morphism of monoidal Hom-entwining structures. Then
\[
F(A) = A'.
\]
(4.9)

Let \((M, \mu) \in \mathcal{H}(\mathcal{M}_k)(\psi)_A^C\) be flat as a \(k\)-module, and take \((N, \nu) \in \mathcal{H}(\mathcal{M}_k)(\psi)_A^C\). If \((A', \beta')\) is a monoidal Hom-Hopf algebra, then
\[
F(M) \otimes N \cong F(M \otimes G(N)) \text{ in } \mathcal{H}(\mathcal{M}_k)(\psi)_A^C.
\]
(4.10)

If \((A', \beta')\) has a twisted antipode \(\bar{S}\), then
\[
N \otimes F(M) \cong F(G(N) \otimes M) \text{ in } \mathcal{H}(\mathcal{M}_k)(\psi)_A^C.
\]
(4.11)

Proof. We only prove (4.10) and similar for (4.9) and (4.11). Assume that \((A', \beta')\) is a monoidal Hom-Hopf algebra and define
\[
\Gamma : F(M \otimes G(N)) = M \otimes G(N) \otimes_A A' \to F(M) \otimes N = (M \otimes_A A') \otimes N
\]
by
\[
\Gamma((m \otimes n) \otimes a') = (m \otimes a'_1) \otimes n \cdot a'_{(2)},
\]
for all \(a' \in A', m \in M\) and \(n \in N\). \(\Gamma\) is well-defined since
\[
\Gamma((m \otimes n) \otimes \Phi(a)a') = (m \otimes \Phi(a_1)a'_1) \otimes n \cdot \Phi(a_2)a'_2
\]
\[
= (m \cdot a_1 \otimes a'_1) \otimes n \cdot \Phi(a_2) a'_2
\]
\[
= \Gamma((m \cdot a_1) \otimes n \cdot \Phi(a_2)) \otimes a'
\]
\[
= \Gamma((m \otimes n) \cdot a \otimes a').
\]

It is easy to check that \(\Gamma\) is \((A', \beta')\)-linear. Now we shall verify that \(\Gamma\) is \((C, \gamma)\)-colinear based on (3.1). For any \(a' \in A', m \in M\) and \(n \in N\), we have
\[
\rho(\Gamma((m \otimes n) \otimes a')) = \rho((m \otimes a'_1) \otimes n \cdot a'_{(2)})
\]
\[
= \rho((m_0 \otimes \beta'^{-1}(a'_1)) \otimes (n_0 \cdot \beta'^{-1}(a'_{(2)})) \otimes \gamma(m_1)_\psi \gamma(n_1)_\psi
\]
(3.1)
\[
= (m_0 \otimes \beta'^{-1}(a'_1)) \otimes (n_0 \cdot \beta'^{-1}(a'_{(2)})) \otimes \gamma(m_1\cdot n_1)_\psi
\]
\[
= (\Gamma \otimes id_c)((m_0 \otimes n_0) \otimes \beta'^{-1}(a'_{(2)}) \otimes \gamma(m_1\cdot n_1)_\psi)
\]
\[
= (\Gamma \otimes id_c)\rho((m \otimes n) \otimes a').
\]
The inverse of Γ is given by
\[
\Pi((m \otimes a') \otimes n) = (m \otimes v^{-2}(n)S^{-1}(a'_{(2)})) \otimes \beta^2(a'_{(1)})
\]
for all $a' \in A'$, $m \in M$ and $n \in N$. One can check that Π is well-defined similar to Γ. Finally, we have
\[
\Pi(\Gamma((m \otimes n) \otimes a')) = \Pi((m \otimes a'_{(1)}) \otimes n \cdot a'_{(2)})
= (m \otimes v^{-2}(n \cdot a'_{(2)})S(a'_{(1)(2)})) \otimes \beta^2(a'_{(1)})
= (m \otimes v^{-1}(n) \cdot [\beta^{-1}(a'_{(2)(2)})S^{-1}(\beta^{-1}(a'_{(2)(1)}))] \otimes \beta^2(a'_{(1)}))
= (m \otimes n) \otimes a',
\]
and
\[
\Gamma(\Pi((m \otimes a') \otimes n)) = \Gamma(m \otimes v^{-2}(n)S^{-1}(a'_{(2)})) \otimes \beta^2(a'_{(1)})
= (m \otimes \beta^2(a'_{(1)(1)})) \otimes v^{-2}(n) \cdot S^{-1}(a'_{(2)})) \otimes \beta^2(a'_{(1)(2)})
= ([\beta^2(a'_{(1)}) \otimes m] \otimes v^{-1}(n) \cdot [S^{-1}(\beta^2(a'_{(2)(2)}))] \otimes \beta^2(a'_{(2)(1)}))
= (m \otimes a') \otimes n,
\]
as needed. The proof is completed.

\section{The General Induction Functor}

Let $\left(\Phi, \Psi\right) : (A, C, \psi) \to (A', C', \psi')$ be a morphism of (right-right) Hom-entwining structures. The results of \cite{9} can be extended to the general induction functor

\[
F : \mathcal{H}(A, \Psi) \rightarrow \mathcal{H}(A', \Psi')
\]
and its right adjoint G (see Theorem 4.2). In order to avoid technical complications, we will assume that the Hom-entwining map ψ is bijective, and write $\psi^{-1} = \delta$.

\textbf{Proposition 5.1.} Let $(\Phi, \Psi) : (A, C, \psi) \rightarrow (A', C', \psi')$ be a morphism of (right-right) Hom-entwining structures. With ψ invertible, and $\delta : A \otimes C \rightarrow C \otimes A$ its inverse. Let V_2 consist of all left and right (A, β)-linear maps $\lambda : GF(C \otimes A) \rightarrow A$ satisfying

\[
\lambda((\gamma^{-1}(c_i) \otimes a') \otimes d_{(1)}) \otimes \gamma(d_{(2)}) = \sum f_i \lambda(c_i \otimes a') \otimes \gamma^{-1}(d_i) \otimes \gamma^2(c_i)
\]
(5. 1)
for all $(c_i \otimes a') \otimes d_i \in GF(C \otimes A)$. We have a k-linear isomorphism

\[
f_1 : V_1 = GF(C \otimes A) \rightarrow V_2, \quad f_1(\overline{\psi}) = (\varepsilon \otimes I_A) \circ \overline{\psi}.
\]

\textbf{Proof.} $\lambda = f_1(\overline{\psi})$ is left and right (A, β)-linear since $\overline{\psi}$ and $\varepsilon \otimes I_A$ are left and right (A, β)-linear. Take $\sum (c_i \otimes a'_i) \otimes d_i \in GF(C \otimes A)$, and we write

\[
\overline{\psi}(\sum (c_i \otimes a'_i) \otimes d_i) = \sum c_j \otimes a_j.
\]
Using the left (C, γ)-co-linearity of $\overline{\psi}$, we have

\[
\gamma^2(c_{i(1)}) \otimes \overline{\psi}(\sum (c_{i(2)} \otimes \beta^{-1}(a'_i)) \otimes \gamma^{-1}(d_i)) = \sum \gamma(c_{j(1)}) \otimes (c_{j(2)} \otimes \beta^{-1}(a_j)),
\]
and applying ε_C to the second factor

$$\gamma^2(c_{(1)}) \otimes \overline{\lambda}(\sum_i (c_{(2)} \otimes \beta^{-1}(a'_i)) \otimes \gamma^{-1}(d_i)) = \sum_i c_i \otimes \beta^{-1}(a_i),$$

$\overline{\varepsilon}$ is also right (C, γ)-colinear, hence

$$\overline{\varepsilon}(\sum_i (\gamma^{-1}(c_i) \otimes \beta^{-1}(a'_i)) \otimes d_{(1)}) \otimes \gamma(d_{(2)}) = \sum_i [c_{(1)} \otimes \beta^{-1}(a_{(a'_i)})] \otimes \gamma(c_{(2)}).$$

Applying ε_C to the first factor, we obtain

$$\overline{\lambda}(\sum_i (\gamma^{-1}(c_i) \otimes \beta^{-1}(a'_i)) \otimes d_{(1)}) \otimes \gamma(d_{(2)}) = \sum_i \beta^{-1}(a_{(a'_i)}) \otimes c_{(2)}^{\psi},$$

and we have shown that $\overline{\lambda}$ satisfies (5.1), and f_1 is well-defined. The inverse of f_1 is given by

$$g_1(\sum_i (c_i \otimes a'_i) \otimes d_i) = \sum_i \gamma^2(c_{(1)}) \otimes \lambda(\sum_i (c_{(2)} \otimes \beta^{-1}(a_{(a'_i)})) \otimes \gamma^{-1}(d_i)).$$

It is obvious that $\overline{\varepsilon} = g_1(\lambda)$ is left (C, γ)-colinear and right (A, β)-linear. $\overline{\varepsilon}$ is right (C, γ)-colinear since

$$\overline{\varepsilon}(\sum_i (\gamma^{-1}(c_i) \otimes \beta^{-1}(a'_i) \otimes d_{(1)}) \otimes \gamma(d_{(2)}))$$

$$= \sum_i \gamma(c_{(1)}) \otimes \overline{\lambda}(\sum_i (\gamma^{-1}(c_{(2)}) \otimes \beta^{-1}(a'_i)) \otimes \gamma^{-1}(d_{(1)}) \otimes \gamma(d_{(2)}))$$

$$= \sum_i \gamma(c_{(1)}) \otimes \overline{\lambda}(\sum_i (c_{(2)(2)} \otimes \beta^{-1}(a'_i)) \otimes \gamma^{-2}(d_{(1)}) \otimes \gamma^2(c_{(2)(1)}))$$

$$= \rho(\sum_i \gamma^2(c_{(1)}) \otimes \overline{\lambda}((c_{(2)} \otimes \beta^{-1}(a'_i)) \otimes \gamma^{-1}(d_{(1)})))$$

$$= \rho(\overline{\varepsilon}(c_i \otimes a'_i \otimes d_i)),$$

and $\overline{\varepsilon}$ is left (A, β)-linear since

$$\overline{\lambda}(\sum_i (c_i \otimes a'_i) \otimes d_i))$$

$$= \overline{\lambda}(\sum_i (\gamma(c_{(1)}) \otimes \Phi(\beta^{-2}(a_{(a'_i)})) \otimes \gamma(d_i)))$$

$$= \gamma^3(c_{(1)}) \otimes \lambda((\gamma(c_{(2)}) \otimes \Phi(\beta^{-3}(a_{(a'_i)})) \otimes \gamma(d_i)))$$

$$= \gamma^3(c_{(1)}) \otimes \lambda((\gamma(c_{(2)}) \otimes \Phi(\beta^{-3}(a_{(a'_i)})) \otimes \gamma(d_i)))$$

$$= \gamma^3(c_{(1)}) \otimes \lambda((\gamma(c_{(2)}) \otimes \Phi(\beta^{-3}(a_{(a'_i)})) \otimes \gamma(d_i)))$$

$$= \rho(\overline{\varepsilon}(c_i \otimes a'_i \otimes d_i)),$$

We have it to the reader to show that $g_1 = f_1^{-1}$.

Theorem 5.2. Let $(\Phi, \Psi) : (A, C, \psi) \to (A', C', \psi')$ be a morphism of (right-right) Hom-entwining structures. With ψ invertible, and $\delta : A \otimes C \to C \otimes A$ its inverse. Define the A-action on $C \otimes A'$ by

$$a \cdot (c \otimes b') = \sum \gamma^{-1}(c_{(a)} \otimes \beta^{-1}(a_{(a'_i)})) \otimes b', \quad \text{where } a \in A, \ c \in C, \ b' \in B'.$$

If (C, γ) is left (C', γ')-coflat, then V_1 and V_2 are isomorphic as k-modules.
Proof. In view of the previous results, it suffices to show that \(f \circ f_1 : V \to V_2 \) is surjective. Starting from \(\lambda \in V_2 \), we have to construct a natural transformation \(v \), that is, for all \((M, \mu) \in \mathcal{H}(\mathcal{M})(\psi)_{A}^{C}\), we have to construct a morphism

\[
v_{M} : GF(M) = (M \otimes_{A} A') \square_{C} C \to M.
\]

First we remark that the map

\[
\phi : M \otimes_{A} A' \to M \otimes_{A} (C \otimes A'), \quad \phi(m \otimes_{A} a') = \mu(m_{[0]} \otimes (m_{[1]} \otimes \beta^{-1}(a')))
\]

is well-defined. Indeed,

\[
\phi(ma \otimes_{A} a') = \mu((ma)_{[0]} \otimes ((ma)_{[1]} \otimes \beta^{-1}(a'))) \\
= \sum \mu(m_{[0]}) \cdot \beta(\beta^{-1}(a')_{\psi}) \cdot \gamma(m_{[1]} \psi) \otimes \beta^{-1}(a') \\
= \sum \mu(m_{[0]}) \otimes_{A} \beta(\beta^{-1}(a')_{\psi}) \cdot (\gamma(m_{[1]} \psi) \otimes \beta^{-1}(a')) \\
= \mu(m_{[0]}) \otimes_{A} (m_{[1]} \otimes \beta^{-1}(aa')) = \phi(m \otimes_{A} aa').
\]

From the fact that \((C, \gamma)\) is left \((C', \gamma')\)-coflat, so we have

\[
(M \otimes_{A} (C \otimes A')) \square_{C} C \cong M \otimes_{A} ((C \otimes A') \square_{C} C),
\]

and we consider the map

\[
v_{M} = (I_{M} \otimes_{A} \lambda) \circ \tilde{a} \circ (\phi \square_{C} I_{C}) : GF(M) \to M \otimes_{A} A \cong M
\]

given by

\[
v_{M}(\sum (m_{i} \otimes a'_{i} \otimes c_{i})) = \sum \mu^{2}(m_{[0]}) \cdot \lambda((m_{[1]} \otimes \beta^{-1}(a'_{i})) \otimes \gamma^{-1}(c_{i})).
\]

Let us first show that \(v \) is right \(A \)-linear.

\[
v_{M}(\sum (m_{i} \otimes a'_{i} \otimes c_{i}) \cdot a) \\
= v_{M}(\sum (\mu(m_{i}) \otimes a'_{i} \beta^{-1}(a(\beta^{-1}(a'_{i})))) \otimes \gamma(c_{i})) \\
= \sum \mu^{2}(m_{[0]}) \cdot \lambda((\gamma(m_{[1]} \otimes \beta^{-1}(a'_{i})) \beta^{-2}(a(\beta^{-1}(a'_{i})))) \otimes \gamma^{-1}(c_{i})) \\
= \sum \mu^{2}(m_{[0]}) \cdot \lambda((\gamma(m_{[1]} \otimes \beta^{-1}(a'_{i})) \beta^{-1}(a(\beta^{-1}(a'_{i})) \otimes \gamma(\gamma^{-1}(c_{i})))) \\
= \sum \mu^{2}(m_{[0]}) \cdot \lambda((m_{[1]} \otimes \beta^{-1}(a'_{i})) \otimes \gamma^{-1}(c_{i})) \cdot \beta^{-1}(a) \\
= v_{M}(\sum (m_{i} \otimes a'_{i} \otimes c_{i}) \cdot a) \\
= v_{M}(\sum (m_{i} \otimes a'_{i} \otimes c_{i}) \cdot a).
\]
Let us show that ν is natural. Let $g : (M, \mu) \to (N, \nu)$ be a morphism in $\mathcal{H}(\mathcal{M})(\psi)_A^C$, and take $x = \sum (m_i \otimes a'_i) \otimes c_i \in (M \otimes A') \otimes C$. Then
\[
\nu_N(GF(g))(x) = \sum \nu_N((g(m_i) \otimes a'_i) \otimes c_i) = \sum \mu^2(g(m_{i0})) \cdot \lambda((m_{i1} \otimes \beta^{-1}(a'_i) \otimes \gamma^{-1}(c_i))) = \sum g(\mu^2(m_{i0}) \cdot \lambda((m_{i1} \otimes \beta^{-1}(a'_i) \otimes \gamma^{-1}(c_i))) = \sum g(\nu_M(x)).
\]

Finally, we have to show that $f_1(\nu) = \lambda$. Indeed, we have
\[
(\overline{I}_A \circ (\epsilon_C \otimes I_A))(\nu_{\mathcal{C} \mathcal{C} A}(\sum (c_i \otimes 1_A) \otimes d_i)) = (\overline{I}_A \circ (\epsilon_C \otimes I_A))(\sum (\gamma^2(c_{i1}) \otimes 1_A) \cdot \lambda((c_{i2} \otimes \beta^{-1}(a'_i) \otimes \gamma^{-1}(d_i)))) = \sum 1_A \lambda((\gamma^{-1}(c_i) \otimes \beta^{-1}(a'_i) \otimes \gamma^{-1}(d_i))) = \sum \lambda((c_i \otimes a'_i) \otimes d_i)),
\]
as needed.

Corollary 5.3. Let $(\Phi, \Psi) : (A, C, \psi') \to (A', C', \psi')$ be a morphism of (right-right) Hom-entwining structures. with ψ invertible, and $\mathcal{A} : A \otimes C \to C \otimes A$ its inverse. If (C, γ) is left (C', γ')-coflat, then induction functor $F : \mathcal{H}(\mathcal{M})(\psi)_A^C \to \mathcal{H}(\mathcal{M})(\psi')_{A'}^C$ is separable if and only if there exists $\lambda \in V_2$ such that
\[
\lambda((\gamma^{-1}(c_{i1}) \otimes 1_{A'}) \otimes c_{i2}) = \epsilon(c)1_A
\]
for all $c \in C$ and $a \in A$. F is full and faithful if and only if $\eta_{\mathcal{C} \mathcal{C} A}$ is an isomorphism.

Proof. If F is separable, then there exists $\nu \in V$ such that $\nu \circ \eta$ is the identity natural transformation, in particular
\[
\nu_{\mathcal{C} \mathcal{C} A} \circ \eta_{\mathcal{C} \mathcal{C} A} = I_{\mathcal{C} \mathcal{C} A}.
\]
Write $\overline{\nu} = f(\nu)$ and $\lambda = f_1(\overline{\nu})$, and apply both sides to $c \otimes 1_A$:
\[
\overline{\nu}((\gamma^{-1}(c_{i1}) \otimes \Phi((1_A)^\psi)) \otimes c_{i2}) = c \otimes 1_A.
\]
and (5.2) follows after we apply ε to the first factor. Conversely, if $\lambda \in V_2$ satisfies (5.2), and v is the natural transformation corresponding to λ, then

$$
v_M(\eta_M(m)) = v_M((\mu^{-1}(m_{[0]} \otimes 1_A) \otimes m_{[1]}))
= \mu(m_{[0]0}) \otimes \lambda((\gamma^{-1}(m_{[0]11}) \otimes 1_A) \otimes \gamma^{-1}(m_{[1]}))
= m_{[0]} \otimes \lambda((\gamma^{-1}(m_{[11]}1) \otimes 1_A) \otimes m_{[1]}2))
= m_{[0]} \cdot \lambda((\gamma^{-1}(m_{[1]}1) \otimes 1_A) \otimes m_{[1]}2))
= m_{[0]} \cdot \epsilon(m_{[1]}1)1_A = m.
$$

The second statement is proved in the same way.

References

[1] T. Brzeziński, S. Majid, Coalgebra bundles, Comm. Math. Phys. 191 (1998) 467–492.
[2] T. Brzeziński, Frobenius properties and Maschke-type theorems for entwined modules, Proc. Amer. Math. Soc. 128 (2000) 2261–2270.
[3] S. Caenepeel, I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011) 2216–2240.
[4] S. Caenepeel, G. Militaru, S. Zhu, (2002). Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations, Lecture Notes in Mathematics, 1787. Berlin: Springer Verlag.
[5] Y. Y. Chen, Z. W. Wang, L. Y. Zhang, Integrals for monoidal Hom-Hopf algebras and their applications, J. Math. Phys. 54 (2013) 073515.
[6] Y. Y. Chen, Z. W. Wang, L. Y. Zhang, The FRT-type theorem for the Hom-Long equation, Comm. Algebra 41 (2013) 3931–3948.
[7] Y. Y. Chen, L. Y. Zhang, The category of Yetter-Drinfeld Hom-modules and the quantum Hom-Yang-Baxter equation, J. Math. Phys. 55 (3) (2014) 031702.
[8] S. J. Guo, X. L. Chen, A Maschke type theorem for relative Hom-Hopf modules, Czech. Math. J. 64 (2014) 783–799.
[9] S. J. Guo, X. H. Zhang, Separable functors for the category of Doi Hom-Hopf modules, Colloq. Math. 143 (1) (2016) 23–38.
[10] S. J. Guo, X. H. Zhang, S. X. Wang, Braided monoidal categories and Doi Hopf modules for monoidal Hom-Hopf algebras, Colloq. Math. 143 (1) (2016) 79–103.
[11] S. Karacuha, Hom-entwining structures and Hom-Hopf-type modules, arXiv:1412.2002v2 [math.QA] 8 May 2015.
[12] H. Li, T. Ma, A construction of Hom-Yetter-Drinfeld category, Colloq. Math. 137 (2014) 43–65.
[13] L. Liu, B. L. Shen, Radford’s biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras, J. Math. Phys. 55 (2014) 031701.
[14] T. Ma, H. Li, T. Yang, Cobraided Hom-smash product Hopf algebra, Colloq. Math. 134 (2014) 75–92.
[15] A. Makhlouf, F. Panaite. Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55 (1) (2014) 013501.
[16] A. Makhlouf, S. Silvestrov, Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, J. Gen. Lie Theory in Mathematics, and beyond. Springer-Verlag, Berlin, 2009, pp. 189–206.
[17] A. Makhlouf, S. Silvestrov, Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, J. Gen. Lie Theory in Mathematics, Physics and beyond. Springer-Verlag, Berlin, 2009, pp. 189–206.
[18] A. Makhlouf, S. D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (2010) 553–589.
[19] M. E. Sweedler, Hopf Algebras, New York, Benjamin, 1969.
[20] S. X. Wang, S. J. Guo, Symmetries and the u-condition in Hom-Yetter-Drinfeld categories, J. Math. Phys. 55 (2014) 081708.