Unique Epitopes Recognized by Antibodies Induced in Chikungunya Virus-Infected Non-Human Primates: Implications for the Study of Immunopathology and Vaccine Development

Yiu-Wing Kam1,8, Wendy W. L. Lee1,2,9, Diane Simarmata1, Roger Le Grand3,4, Hugues Tolou5, Andres Merits6, Pierre Roques3,4,7*, Lisa F. P. Ng1,7*

1 Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore, 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore, 3 CEA, Division of ImmunoVirology (SIV), Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses, France, 4 Université Paris-Sud 11, UMR E1, Orsay, France, 5 Groupe d’Etude en Préventologie (GEP), Villenave d’Ornon, France, 6 Institute of Technology, University of Tartu, Tartu, Estonia, 7 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Abstract

Chikungunya virus (CHIKV) is an Alphavirus that causes chronic and incapacitating arthralgia in humans. Although patient cohort studies have shown the production of CHIKV specific antibodies, the fine specificity of the antibody response against CHIKV is not completely defined. The macaque model of CHIKV infection was established due to limitations of clinical specimens. More importantly, its close relation to humans will allow the study of chronic infection and further identify important CHIKV targets. In this study, serum samples from CHIKV-infected macaques collected at different time-points post infection were used to characterize the antibody production pattern and kinetics. Results revealed that anti-CHIKV antibodies were neutralizing and the E2 glycoprotein, Capsid, nsP1, nsP3 and nsP4 proteins were targets of the anti-CHIKV antibody response in macaques. Furthermore, linear B-cell epitopes recognized by these anti-CHIKV antibodies were identified, and mapped to their structural localization. This characterizes the specificity of anti-CHIKV antibody response in macaques and further demonstrates the importance of the different regions in CHIKV-encoded proteins in the adaptive immune response. Information from this study provides critical knowledge that will aid in the understanding of CHIKF infection and immunity, vaccine design, and pre-clinical efficacy studies.

Citation: Kam Y-W, Lee WWL, Simarmata D, Le Grand R, Tolou H, et al. (2014) Unique Epitopes Recognized by Antibodies Induced in Chikungunya Virus-Infected Non-Human Primates: Implications for the Study of Immunopathology and Vaccine Development. PLoS ONE 9(4): e95647. doi:10.1371/journal.pone.0095647

Introduction

Chikungunya virus (CHIKV) was first described during an epidemic in 1952 in Tanzania, East Africa as the causative agent of Chikungunya fever (CHIKF) [1,2]. CHIKV belongs to the genus Alphavirus of the family Togaviridae and is an enveloped virus with a single-stranded positive-sense RNA genome [3]. The 12kb RNA genome is capped at the 5’ end and polyadenylated at the 3’ end and consists of two open reading frames coding for four non-structural proteins (nsP1–4), three major structural proteins (Capsid, E1, and E2) and two small cleavage products (E3 and 6K) [3,4]. The E1 and E2 glycoproteins form heterodimers that associate as trimeric spikes on the virion surface while E3 and 6K were demonstrated to act as helper proteins in the budding and maturation process of the virion envelope [5–7].

In the last decade, multiple CHIKF epidemics have occurred in East Africa, the Indian Ocean Islands, and many parts of South East Asia [8–13]. More recently, new episodes of CHIKF have been reported in the Americas, further broadening the geographical spread of the disease [14]. The Aedes species of mosquito has been the major arthropod vector associated with CHIKV transmission to humans [15]. CHIKV infection usually leads to the development of CHIKF and is characterized by an abrupt onset of fever, headache, fatigue, nausea, vomiting, rash, myalgia, and severe arthralgia. Similar to other arthralgia-causing arbovirus infections, a fraction of patients developed chronic symptoms lasting from several weeks to months [1,2,13].

Currently, there are no licensed vaccines or antiviral drugs against CHIKV infection for human use. Therapy for CHIKV infection is often limited to supportive care [4]. Despite the development of several animal models, few have met the requirement to be used in pre-clinical study to assess potential therapeutics.
Recent epidemiological data showed the increasing importance of antibody-mediated protection against CHIKV [16–19], highlighting the feasibility of using anti-CHIKV antibodies as therapeutics or as a prophylactic treatment [20]. However, information about the exact target of the adaptive immune response either in human or in animal models remains limited, although B-cell epitopes have been identified within the E1/E2 glycoproteins [17,21].

Due to the close lineage relationship between humans and macaques, macaque models of CHIKV infection have been developed [22–24]. These models allow comparison of the adaptive immunity between humans and macaques. Furthermore, information obtained from macaque studies will be valuable for the design of future therapeutics.

In this study, we aimed to investigate the kinetics and specificity of anti-CHIKV antibodies induced after experimental infection in cynomolgus macaques (*Macaca fascicularis*). In addition to the anti-E2 glycoprotein responses, we also identified new linear B-cell epitopes that were recognized by anti-CHIKV antibodies from CHIKV-infected macaques. These epitopes can potentially be used for future development of vaccine candidates.

Materials and Methods

Ethics Statement

All animals were handled in strict accordance with good animal practice as defined by the European directive 63/2010/EU and in accordance with recommendations of the Weatherall report. Four to six-year-old cynomolgus macaques (*Macaca fascicularis*) used for future development of vaccine candidates.

Cells and Virus Isolates

HEK 293T cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, Invitrogen). CHIKV isolates (LR2006 OPY-1, IMT and SGP11) used in this study were originally isolated from two French patients returning from Reunion Island during the 2006 CHIKF outbreak [25,26], and from a Singaporean admitted to a BSL3 facility (Permit Number A 92-032-02), in accordance with Office for Laboratory Animal Welfare (OLAW, USA; #A5826-01) standards at the CEA in accordance with the French national regulation under the number B-92-032-02 for animal use, under the number 2005-69 for macaque breeding. Animals are fed daily and monitored closely by caretakers reporting directly to the veterinarians in charge of the animal facilities. All studies were reviewed and approved by the regional animal care and use committee in accordance with European directive 63/2010/EU: “Comité régional d’éthique pour l’expérimentation animale Ile-de-France Sud”, Fontenay aux Roses, decision #07_012.

Cell lines originally purchased from American Tissue Culture Collection (ATCC), such as human embryonic kidney (HEK 293T, ATCC CRL-3216) and baby hamster kidney (BHK21, ATCC CCL-10) cells, were adhered to recommended ethics approvals and standards.

In vitro Neutralization

Neutralizing activity of antibodies from CHIKV-infected macaque sera were tested in triplicates and analyzed by immunofluorescence-based cell infection assay in HEK 293T cells. Amount of CHIKV virions corresponding to MOI 10 were mixed with heat-inactivated macaque serum (1:100–1:800 dilutions), and incubated for 2 hours at 37°C with gentle agitation in a thermostirrer. Virus-antibody mixtures were then added to HEK 293T cells seeded in 96-well plates and incubated for 1.5 hours at 37°C. Medium was removed, and cells were replenished with DMEM medium supplied with 5% FBS and incubated for 6 hours at 37°C before fixation with 4% paraformaldehyde followed by immunofluorescence quantification using the Cellomics ArrayScan V. Percentage of infectivity was calculated according to the equation: % Infectivity = 100 × (% responder from zero-neutralization group/% responder from virus infection group).

CHIKV Immunoblot

Proteins from CHIKV virions were detected using modified techniques previously described [29,30]. For reducing samples preparation, sample containing IMT and SGP11 virions were boiled for 5 minutes at 100°C in Laemmli buffer supplemented with 2% SDS and 1 mM DTT. Non-reducing samples were prepared in Laemmli buffer supplemented with 2% SDS but without DTT and were not boiled. SDS migration buffer was used for electrophoresis.

Proteins from CHIKV virions were separated by 10% SDS-PAGE respectively, and transferred to nitrocellulose membrane at 180 mA for 45 min in transfer buffer (24 mM Tris, 77 mM glycine, 20% methanol) using semi-dry transfer method. The membranes were blocked overnight in blocking buffer (TBST supplemented with 5% dry milk and 3% BSA), followed by 1 hour incubation at room temperature with either antigen-specific rabbit serum (1:2000), or macaque serum samples diluted (1:2000) in blocking buffer. Antibigen-specific sera against nsP1, nsP2, nsP3, nsP4, Capsid, E2 and E1 proteins were raised in rabbits by passive immunization. The appropriate HRP-conjugated anti-rabbit IgG or anti-monkey IgG secondary antibodies were then added and incubated for 1 hour, followed by chemiluminescence detection using ECL Plus detection reagents (Amersham Biosciences). Blots were exposed to films (Pierce, Thermo Scientific) and developed.

Virion-based ELISA

Polystyrene 96-well microtiter plates (MaxiSorp, Nunc) were coated with purified CHIKV (20,000 infectious virions per μl in PBS, 50 μl per well). Wells were blocked with PBS containing 0.05% Tween-20 and 5% non-fat milk (PBST-milk), and plates were incubated for 1.5 hours at 37°C. Serum samples were then
diluted 1:2,000 in PBST-milk and incubated 1 hour at 37°C. HRP-conjugated rabbit anti-monkey IgG (Alpha Diagnostic) antibodies were used to detect macaque antibodies bound to virus-coated wells respectively. Reactions were developed using TMB substrate (Sigma-Aldrich) and terminated by Stop reagent (Sigma-Aldrich). Absorbance was measured at 450 nm. Non-infected macaque serum was used as negative controls. ELISA readings were done in duplicates and the values were plotted as mean ± standard error mean (SEM).

Peptide-based ELISA

Biotinylated peptide library consisting of 18-mer overlapping peptides (Mimotopes) were generated from sequence alignments of different CHIKV amino acid sequences as previously described [17,29]. Peptides were dissolved in dimethyl sulphoxide (DMSO) to obtain a stock concentration of approximately 15 μg/mL. All the peptides were screened in triplicates. Briefly, streptavidin-coated plates (Pierce) were first blocked with 1% sodium caseinate (Sigma-Aldrich) diluted in 0.1% PBST and incubated at room temperature for 1 hour on a rotating platform. Plates were then rinsed with 0.1% PBST before incubation with CHIKV-infected macaque serum samples (1:2,000) diluted with 0.1% PBST for 1 hour. Plates were rinsed and then followed by incubation with the respective anti-monkey IgG antibodies conjugated to HRP diluted in 0.1% blocking buffer for 1 hour at room temperature to detect for peptide bound antibodies. Reaction was detected with TMB substrate solution (Sigma-Aldrich) and terminated with sulphuric acid (Sigma-Aldrich). Absorbance was read at 450 nm in a microplate autoreader (Tecan). Peptides are considered positive if absorbance values are higher than the mean ± 3 standard deviation (SD) values of non-infected macaque serum controls. Data are presented as mean ± SEM.

Computational Modeling

Structural data of the E2 glycoproteins were retrieved from PDB (id: 3N44) and visualized using the UCSF CHIMERA software [31]. Solvent excluded molecular surfaces were generated with the help of MSMS package [32]. Structures of Capsid, nsP1, nsP3 and nsP4 sequences were predicted separately using individual I-TASSER queries, and visualized using UCSF CHIMERA software [33,34].

Statistics

All data are presented as mean ± SEM or SD. Differences in responses among groups at various time points and between groups and controls were analyzed using appropriate tests (Mann-Whitney U tests). A two-sided P value of less than 0.05 was considered to be statistically significant.

Figure 1. Antibody profiles of sera from CHIKV-infected macaques. A, Virus-specific IgG and IgM antibody titers in serum samples, at a dilution of 1:2,000 were determined by ELISA using purified CHIK virions. Serum samples from CHIKV-infected macaques (n = 1–3) were collected at 16 and 180 dpi and subjected to ELISA, using 96-well plates pre-coated with purified CHIKV (IMT) virions. Sera from non-infected macaques were used as negative controls. Data are presented as mean ± SD and representative of 2 independent experiments with similar results. B, Visualization of CHIKV by immunofluorescence in CHIKV-infected cultures after seroneutralization. Virus samples were pre-incubated with heat-inactivated sera from CHIKV-infected macaques collected at 16 and 180 dpi, before being added to HEK 293T cells. Infection without pre-incubation with sera (No sera) was used as a control. Analysis was performed at 6 hours post-infection (hpi). Scale bar in white: 50 μm. Representative microscopic images for each treatment condition (macaque sera dilution at 1:800) are shown. C, In vitro neutralizing activity of sera from CHIKV-infected macaques. Samples (Healthy macaque sera, 16 and 180 dpi) were tested against IMT or SGP11 viruses, in triplicates at a dilution 1:800 for healthy macaque sera; between 1:100 and 1:800 for CHIKV-infected macaque sera. Results are representative of 3 independent experiments, presented as mean ± SD, and expressed as percentage of control infection. *p<0.05, Mann-Whitney U test.

doi:10.1371/journal.pone.0095647.g001

Results

Antigen Recognition by CHIKV-infected Macaques

In order to characterize the CHIKV antibody response, we obtained serum samples taken at two post-infection time-points from CHIKV (LR2006 OPY-1)-infected macaques. The total IgG present in the serum was quantified by a virion-based ELISA assay using CHIKV isolate from La Reunion (IMT) [25,29]. High levels of CHIKV-specific IgG antibody responses were detected at 16 dpi (Figure 1A) confirming previous observations [17]. Even though the IgG levels decreased over time, they were still detectable at 180 dpi (Figure 1A). To determine if the anti-CHIKV antibodies were neutralizing, in vitro infection of HEK 293T cells with different CHIKV isolates (IMT and SGP11) was carried out in the presence of sera from CHIKV-infected macaques (Figure 1B and 1C) [29]. Serum samples from CHIKV-infected macaques contained antibodies that displayed neutralizing activity when assessed in sero-neutralization assays [16,17] with the highest neutralizing efficiency for samples taken at 16 dpi (Figure 1C). Interestingly, a stronger neutralizing activity against IMT was observed when compared to SGP11 for samples at 16 dpi, at a dilution of 1:800 (Figure 1C). This is not unexpected as these macaques were experimentally infected with the LR2006 OPY-1 isolate that is more closely related to the IMT isolate. The presence of neutralizing antibodies in the sera of CHIKV-infected macaques was sustained till 180 dpi, although less efficiently than sera at 16 dpi (Figure 1C).

To better define the antigenic recognition profile of the antibodies from CHIKV-infected macaques, we used CHIKV-infected cell lysates to determine which CHIKV antigens were recognized by the macaque antibodies (Figure 2A). None of the non-structural proteins (nsPs) were recognized by antibodies in the serum samples taken at 16 or 180 dpi (Figure 2B). The serum contained antibodies against E2 glycoprotein and Capsid protein (Figure 2B and S1). Anti-E2 and anti-Capsid antibodies persisted till 180 dpi. In addition, CHIKV virions were purified from supernatant of cells infected with CHIKV from Reunion Island (IMT) [25], or from Singapore (SGP11) [27]. Protein extracts were prepared under reducing or non-reducing conditions as described [29,30], and were then assessed by immunoblot assays using serum samples from CHIKV-infected macaques (Figure 2C). This first screen revealed that these serum samples contained antibodies recognizing multiple proteins from two isolates of CHIKV. A stronger reactivity against proteins prepared under non-reducing conditions compared to proteins prepared under reducing conditions indicated that the serum samples contained antibodies recognizing both linear and disulfide bonds dependent conformational epitopes (Figure 2C) [35]. Similar reactivity was observed between two closely related CHIKV isolates (IMT and SGP11) that have more than 99% amino acid sequence similarity [36], suggesting that the two isolates present epitopes that are common or similar in part and are recognized by a fraction of the
antibodies from macaques infected with the third closely related isolate of CHIKV.

Mapping of CHIKV Protein Regions Recognized by the Macaque Antibodies

ELISA assays were performed using a biotinylated peptide library (Mimotopes) with minimized non-specific binding. The library consisted of 18-mer overlapping peptides covering the whole CHIKV proteome. Pooled peptides were screened with pooled serum samples taken at two different time-points [17,29]. Several peptide pools were identified that contained linear CHIKV B-cell epitopes recognized by the serum antibodies (Figure 3, peptide pools that positively bound serum antibodies are marked with *). Results showed that there were two such peptide pools for the Capsid protein (Figure 3A), five for the E2 glycoprotein (Figure 3B), one for the nsP1 protein (Figure 3C), three for the nsP3 protein (Figure 3D) and one for the nsP4 protein (Figure 3E). The recognition pattern of antibodies from the two different time-points was not identical. No peptide pools containing linear B-cell epitopes were detected for the remaining proteins (nsP2, E3, 6K and E1) (data not shown).

To study the kinetics of the establishment of the adaptive immunity in CHIKV-infected macaques, serum samples from macaques infected intravenously with the Reunion Island strain of CHIKV were analyzed for their ability to recognize CHIKV antigens by ELISA. The sera were diluted 1:2,000 and subjected to peptide-based ELISA with a peptide library covering the CHIKV proteome, using pooled peptides (named P1, P2, etc) from the structural (Capsid, E2) and non-structural (nsP1, nsP3 and nsP4) proteins. Sera from non-infected macaques were used as negative controls. *Pooled peptides were considered to contain positive linear B-cell epitopes when OD values obtained with sera from CHIKV-infected macaques were above mean +3 SD of the OD values obtained with sera from non-infected macaques. Data are presented as OD values obtained using sera from infected macaques, minus the OD values obtained using sera from non-infected macaques, for the corresponding pooled peptides. Data represent an average of two independent experiments (mean ± SD).
(LR2006 OPY-1) were collected over a 6-month period [22]. Anti-CHIKV antibody profiles were followed longitudinally through different post-infection phases (Figure 4). All the macaques presented with fever, rash and lymphopenia, and exhibited signs of inflammation as indicated by cytokine patterns and biochemistry assays, from 1 to 6–8 dpi [22]. The 9 dpi time point in the acute phase was the earliest time point when specific anti-CHIKV antibodies were detected (Figure 4). At 9 dpi, 90% of the total signal came from IgM that was no longer detectable at 16 dpi, in the early convalescent phase. Furthermore, at 16 dpi, the first detectable levels of IgG were also observed. Importantly, the later time-points of 100 and 180 dpi in the recovery phase allowed the plateau and persistence of the IgG specific response to be assessed, while levels of IgM were no longer detectable (data not shown).

Next, to define the location of the linear B-cell epitopes, the complete set of single peptides from each of the antibody-binding peptide pools identified in Figure 3, was screened with serum samples. The positions of the epitope sequences within the non-structural and structural proteins are illustrated in the schematic diagrams (Figure 4A). The two recognized regions for the Capsid protein are located at the N- and C-terminus of the protein while the epitopes for the E2 glycoprotein are distributed along the entire protein. On the other hand, antibodies from the macaque serum samples failed to recognize any regions in the 6K protein and E1 glycoprotein. Comparison of the reactivity between the two time-points showed that antibodies recognized the linear epitopes in Capsid, and in the immunodominant E2 region in a concerted manner (Figure 4B).

Taken together, results from the peptide-based ELISA assay were consistent with the immunoblot assays, confirming the recognized regions in the E2 glycoprotein, and the Capsid protein.

Structural Localization of the Antigenic Regions Recognized by Macaque Antibodies

Epitope-containing sequences were mapped onto the available three-dimensional (3D) crystal structure of the E2 glycoprotein (PDB number 3N44), or predicted 3D structures of the Capsid, nsP1, nsP3 and nsP4 proteins as described previously (Figure 5) [29]. One of the epitope-containing regions of the Capsid protein (amino acids 2561–2586) was located on the surface of the protein, while the other was concealed in the folded protein (Figure 5A). Furthermore, the two recognized regions of the nsP3 protein were located on the surface of the protein (Figure 5A).

Similar analyzes for the E2 glycoprotein revealed that one out of four recognized regions mapped onto the surface of the protein (Figure 5B). Majority of the epitopes clustered in the middle of the protein and were embedded in the E2 glycoprotein.

Discussion

Defining an ideal animal model for CHIKV studies remains a constant challenge. In order to understand the immunology and
pathophysiology of CHIKV infections, an animal model with disease presentations closely similar to humans is preferred. In order to study the temporal pattern of CHIKV B-cell epitopes in detail, experimental infections were performed in macaques with serum samples collected over 6 months. Linear determinants were targeted since they are more easily identifiable in a medium-throughput approach. Although conformational epitopes could also contribute to the anti-CHIKV antibody response, these determinants are not explored due to the limitation of detection by the linear peptides screen described here. Results showed two structural proteins (Capsid protein and E2 glycoprotein) and three nonstructural proteins (nsP1, nsP3 and nsP4 proteins) contained linear epitopes that were recognized by macaque anti-CHIKV antibodies. Experimental infection of macaques induced antibodies not only against the structural proteins, but also against several non-structural proteins. The important role of antibodies against structural proteins has been previously demonstrated in sero-neutralization and protection assays [17,18,29]. Whether antibodies targeted against the non-structural proteins also offer protection during CHIKV infection will require further investigation.

Table 1. Comparison of human and macaque CHIKV B-cell epitopes.

CHIKV protein	Identified B-cell epitope (human)a	Amino acidb	Identified B-cell epitope (macaque)	Amino acidb		
nsP1	AEEERELTREALPLQLQ	497–514				
nsP2						
nsP3	GVNSVAIP LLTGGYSGG	1433–1450	IQMRTQVELLDEHISIDC	1489–1506		
	FGASSETPITGF		1801–1867	TVPVAPPRRRRR		1729–1746
	DGFNEGEIESLS		WSTSCSDDTDE			
	SELLTGDFPGEVD			DLDDRRAG		
	WSTCSDDTD			DRAGYIFS		
nsP4	AAIQRLKGRCLRLYS		1937–1962	E2EP3	1729–1746	
Capsid	KDIV		2721–2735	PPKK		2561–2586
	TPPG			QA		
	EAEI			W		
E3	LQS		2785–2799	RRRR		2689–2706
E2	STKDN		2800–2818	NVYKATRPYL		2961–2978
	TDGLTK		2841–2882	QVSLQ		
	WTKL			RYMDN		
	HMPA			D		
	AER			GL		
NHRKW	LT		3009–3034	N		
	HKV			N		
	QV			Q		
	NS			NS		
	PV			PV		
	RN			RN		
E1						

*aRegions of B cell epitopes found that are common to both human and macaque are underlined.

*bThe numbers correspond to the amino acid positions along the CHIKV viral genome. The first amino acid from nsP1 is annotated as 1.

*K – Amino acid lysine at position 252 within the CHIKV E2 glycoprotein.

doi:10.1371/journal.pone.0095647.t001
suggests that the ASR could be a target for neutralizing antibodies [39]. Our previous results showed that natural CHIKV infection induced antibodies against only one ASR epitope (amino acids 3025–3058, Table 1). These antibodies were detected during the recovery phase (2 to 3 months post illness onset) [29]. However, anti-CHIKV antibodies against two ASR epitopes (amino acids 2961–2978, and 3025–3066, Table 1) were detected in the sera of experimentally infected macaques. Furthermore, these two ASR epitopes were immunodominant from the early convalescent to recovery phase, contrary to the immunodominance of the E2EP3 epitope observed in natural human CHIKV infection [17,29]. The observation that one of the ASR epitopes (amino acids 3025–3058) is important in both natural human infection and experimental macaque infection, suggests that this epitope could be useful for vaccine development.

In addition, our results showed that antibody recognition of the E2 glycoprotein changes throughout the course of disease in the experimentally infected macaques. This could be due to the spatial positions of the B-cell epitopes on the native form of the E1/E2 glycoprotein complex. Differential induction of neutralizing antibodies against exposed or hidden B-cell epitopes could contribute to antibody-mediated clearance during the entire course of disease [40]. This is important in CHIKV vaccinology since it underscores the importance of eliciting a broad antibody response targeting exposed and hidden B-cell epitopes that would be sufficient to cover most of the important antigens for virus neutralization.

It has been established that patient antibodies from a Singapore cohort have stronger binding capacity to the CHIKV SGP11 isolate than the IMT isolate due to different epitope sequences between the two isolates, which influences epitope-antibody binding capacity [29]. Here, we further demonstrated this phenomenon in the non-human primate model. Infection of macaques with the LR2006-OPY1 isolate, which encodes K252 in the E2 glycoprotein, strongly induced anti-CHIKV antibodies against a particular linear B-cell epitope (amino acids 3025–3066) at 16 dpi. In line with this, we observed significantly stronger neutralizing activity against the IMT isolate (encoding K252 in E2) compared to the SGP11 isolate (encoding Q252 in E2) (Figure 1C). These data complement a separate study that showed stronger neutralizing antibody response in animals infected with the ECSA strain (DHS-4263) compared to animals infected with the West African strain (37997) [24]. Paradoxically, the difference in neutralizing capacity observed here was lost in macaque sera taken at 180 dpi. Incidentally, sera taken at this time point also had relatively low levels of anti-CHIKV antibodies against the same B-cell epitope (amino acids 3025–3066). These observations highlight the importance of incorporating various components in antigen preparation for CHIKV vaccine development. Epitope sequences covering all the relevant isolates from various geographical regions will be favored in order to offer complete coverage against CHIKV infections globally.

Only four common linear B-cell epitopes in the E2 glycoprotein could be identified by antibodies obtained from patients and CHIKV-infected mice [18], while two epitopes were common between patients and CHIKV-infected macaques (Table 1, underlined sequences). Recent studies have also demonstrated that CHIKV-infected patients reacted sero-positively to the E2 glycoprotein [17,29,41]. These observations were further supported by other studies with B-cell epitopes identified along the E2 glycoprotein by mouse and human monoclonal antibodies [21,42–44]. Contrastingly, linear epitopes along the E1 glycoprotein were detected only by antibodies from CHIKV-infected mice. Comparatively, antibodies obtained from experimentally-infected mouse models in other alphaviruses have also identified epitopes from both the E1 and E2 glycoproteins [18,40,45–48]. Divergence in epitope recognition in the various animal models suggests the existence of species-related differences in the humoral response upon virus infection.

Only a few vaccine candidates against CHIKV have been tested in macaques [49,50]. All other studies were assessed in mouse models [31–54]. In these models, the protective effect was closely associated to the generation of neutralizing antibodies, but only few have reported on the exact epitopes involved [50,52]. Our previous work in CHIKV-infected macaques showed that natural infection led to viral persistence in all macaques tested up to 90 dpi [22] despite a robust innate immune response that was protective in vitro. As such, a comprehensive study on the exact targets of infection- versus vaccination-induced antibodies will provide more information about antibody-mediated protection against the chronic CHIKV infection observed in macaques.

Supporting Information

Figure S1. (PDF)

Acknowledgments

We are grateful to Laurent Renia for critical discussions of this study and to Kai Er Eng from SlgN, ASTAR for manuscript editing. We wish to thank Benoit Delache and Christophe Joubert from CEA for technical assistance, and Marc Grandadam for providing us with the virus isolate IMT from La Reunion.

Author Contributions

Conceived and designed the experiments: YWK PR LFPN. Performed the experiments: YWK WWLL DS. Analyzed the data: YWK WWLL DS. Contributed reagents/materials/analysis tools: WWLL AM,PR LFPN. Contributed reagents/materials/analysis tools: WWLL AM. Performed the experiments: WWLL AM,PR LFPN. Contributed reagents/materials/analysis tools: WWLL AM,PR LFPN. Contributed reagents/materials/analysis tools: WWLL AM. Performed the experiments: YWK WWLL AM,PR LFPN. Contributed reagents/materials/analysis tools: WWLL AM. Performed the experiments: YWK WWLL AM,PR LFPN. Contributed reagents/materials/analysis tools: WWLL AM. Performed the experiments: YWK WWLL AM,PR LFPN. Contributed reagents/materials/analysis tools: WWLL AM. Performed the experiments: YWK WWLL AM,PR LFPN. Contributed reagents/materials/analysis tools: WWLL AM. Wrote the paper: YWK HT AM PR LFPN.

References

1. Lumden WH (1953) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. I. General description and epidemiology. Trans R Soc Trop Med Hyg 49: 33–57.
2. Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53 I. Clinical features. Trans R Soc Trop Med Hyg 49: 28–32.
3. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58: 491–562.
4. Tang TS, Kam YW, Tan JL, Ng LF (2011) Host responses to Chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709–712.
5. Munasinghe DR, Amarasekera PJ, Fernando CF (1966) An epidemic of dengue-like fever in Ceylon (chikungunya–a clinical and haematological study. Ceylon Med J 11: 129–142.
6. Parrot MM, Sitarski SA, Arnold RJ, Picton LK, Hill RB, et al. (2010) Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709–712.
7. Renault P, Solet JL, Sissoko D, Balleydier E, Larrieu S, et al. (2007) A major epidemic of Chikungunya virus infection on Reunion Island, France, 2005–2006. Am J Trop Med Hyg 77: 727–731.
12. Duong V, Andriani AC, Nga N, Sot T, Richner B, et al. (2012) Re-emergence of Chikungunya virus in Cambodia. Emerg Infect Dis 18: 2066–2069.
13. Ansumana R, Jacobsen KH, Lecky TA, Covington AL, Bangura U, et al. (2013) Re-emergence of chikungunya virus in Bo, Sierra Leone. Emerg Infect Dis 19: 1108–1110.
14. Lepere-Goffart I, Nougarede A, Casadou S, Prat C, de Lambarle E (2014) Chikungunya in the Americas. Lancet 383: 514.
15. Powers AM, Logue CH (2007) Changing patterns of chikungunya virus re-emergence of a zoonotic arbovirus. J Gen Virol 89: 2363–2377.
16. Kam YW, Simarrata D, Chom A, Her Z, Teng TS, et al. (2012) Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. J Infect Dis 205: 1147–1154.
17. Kam YW, Lam FM, Teo TH, Lee WW, Simarrata D, et al. (2012) Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol Med 4: 330–343.
18. Pohjala L, Utt A, Varjak M, Lulla A, Merits A, et al. (2011) Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon human blood monocytes by Chikungunya virus triggers an innate immune response. J Virol Methods 176: 516–523.
19. Pal P, Dosed KA, Brien JD, Edeling MA, Gorlovits S, et al. (2013) Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog 9: e1003312.
20. Labadie K, Larcher T, Joubert C, Mannioui A, Delache B, et al. (2010) Comparative pathogenesis of epidemic and enzootic Chikungunya viruses in a pregnant Rhesus macaque model. Am J Trop Med Hyg 83: 1249–1258.
21. Messaoudi I, Vomaske J, Totonchy T, Kreklywich CN, Haberthur K, et al. (2011) A DNA vaccine against chikungunya virus is protective in mice and primates against infection. Nat Med 16: 334–338.
22. Chen CI, Clark DC, Pastoreno P, Leche NW, Luciw PA, et al. (2010) A neutralizing monoclonal antibody targeting the acid-sensitive region in Chikungunya envelope E2 glycoprotein. J Virol Methods 176: 516–523.
23. Chua CL, Chen YF, Sam IC (2014) Characterization of mouse monoclonal antibodies targeting linear epitopes on Chikungunya virus E2 glycoprotein. J Virol Methods 195: 126–133.
24. Selvarajah S, Seshon NR, Kahi KM, Fong RH, Matta KA, et al. (2013) Monoclonal antibodies that cross-react with the E1 glycoprotein of different alphavirus serogroups: characterization including passive protection in vivo. Vaccine Res 13: 101–112.
25. Hernandez R, Paredes A, Brown JD (2008) Sindbis virus conformational changes induced by a neutralizing anti-E1 monoclonal antibody. J Virol 82: 5750–5760.
26. Davies JM, Capl YP, Weir RC, Rowley MJ (2000) Characterization of epitopes for virus-neutralizing monoclonal antibodies to Ross River virus E2 using phage-displayed random peptide libraries. Virology 275: 67–76.
27. Efimov S, Jiang Z, Tao Y, Qiu X, Wang W, et al. (2013) Analysis of murine B-cell epitopes on Eastern equine encephalitis virus glycoprotein E2. Appl Microbiol Biotechnol 97: 6359–6372.
28. Akahata W, Yang YZ, Andersen H, Sun S, Holdaway HA, et al. (2010) A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates from infection. PLoS Negl Trop Dis 4: e7219.
29. Muñoz C, Nunez C, Ortega M, Mejía P, Riobó D, et al. (2014) Protective Immune Response in Mice. J Infect Dis. In press.