REVIEW

Nanotechnology-based strategies for treatment of ocular disease

Yuhua Wenga,b, Juan Liub,c, Shubin Jinb,c, Weisheng Guob,c,*, Xingjie Liangb,c,*, Zhongbo Hua,*

aCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
bLaboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience; and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
cUniversity of Chinese Academy of Sciences. Beijing 100049, China

Received 20 March 2016; revised 24 May 2016; accepted 6 July 2016

\begin{abstract}
Ocular diseases include various anterior and posterior segment diseases. Due to the unique anatomy and physiology of the eye, efficient ocular drug delivery is a great challenge to researchers and pharmacologists. Although there are conventional noninvasive and invasive treatments, such as eye drops, injections and implants, the current treatments either suffer from low bioavailability or severe adverse ocular effects. Alternatively, the emerging nanoscience and nanotechnology are playing an important role in the development of novel strategies for ocular disease therapy. Various active molecules have been designed to associate with nanocarriers to overcome ocular barriers and intimately interact with specific ocular tissues. In this review, we highlight the recent attempts of nanotechnology-based systems for imaging and treating ocular diseases, such as corneal diseases, glaucoma, retina diseases, and choroid diseases. Although additional work remains, the progress described herein may pave the way to new, highly effective and important ocular nanomedicines.
\end{abstract}

© 2016 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ocular diseases directly affect human vision and quality of life. A survey from 39 countries estimated that 285 million people suffer visual impairment. Of these, 65% are over 50 years old, and 82% of blind patients are over 50\(^{1}\). Significant achievements have been made in the discovery of ocular pathological mechanisms and management of ocular disease. However, due to the special physiological barriers and anatomical structures of the human eye, diagnoses and treatments of these disorders can suffer from low efficiency and lack of specificity. The current therapeutic methods seldom can completely restore vision loss or detect severe ocular diseases at an early stage\(^{2}\). Therefore, the development of improved diagnostics and therapeutics for ocular diseases is receiving intense attention.

Emerging nanotechnology and nanoscience methods are increasingly being applied to biopharmaceutics. Nanoscience is an interdisciplinary field that combines material science, physics, chemistry and biology, whereas nanotechnology involves the design and fabrication of different materials in nanometer scale at least in one dimension\(^{3-6}\). Several nanotechnology-based strategies have been developed and aimed at management of ocular diseases: bioadhesive enhancement, sustainable release, stealth function, specifically targeted delivery, and stimuli responsive release, etc\(^{7,8}\). Therefore, many attempts have been focused on fabrication of multi-functional nanosystems for ocular diseases therapy by improving drug (or gene) delivery to both the anterior and posterior segments of the eye.

In this review, we have focused on advances in development of nanotechnology-based systems for ocular diseases therapy and imaging. First, the specific anatomy and the attendant constraints in ocular drug administration are introduced. Some conventional and alternative drug administration routes are summarized and compared as well. Second, for a deeper insight of nanosystems mechanism, several examples of nanosystems for management of ocular disease are highlighted and reviewed. Then, some typical studies are summarized. Finally, we summarize the perspective of nanotechnology and existing challenges in ocular diseases therapy and diagnosis. This review will provide both inspiration and impetus for better design and development of intractable ocular disease managements.

2. Ocular anatomy and constraints to ocular drug delivery

The human eye is a globular structure organ with size of about 24 mm, and consists of two main parts: the anterior and posterior segments\(^{9}\) (Fig. 1). The both parts have various biological barriers to protect the eye from foreign substances. The anterior portion includes the corneal, iris, lens, and aqueous humor. The posterior portion consists of the vitreous body, retina, choroid, and back of the sclera. The cornea is transparent and contains five layers: epithelium, Bowman’s membrane, stroma, Descemet’s membrane, and endothelium\(^{10,11}\). The human corneal epithelium is the most important part of corneal barrier since it has multilayers of corneal epithelial cells which interconnect by tight junctions. These tight junctions can severely limit ocular penetration of drugs, especially many types of hydrophilic molecules. The corneal stroma is mostly composed of charged and highly organized hydrophilic collagen which hinders passage of hydrophilic molecules\(^{12-14}\). In recent studies, various efflux transporters on epithelial cells were proved to be of importance in preventing permeation of anti-viral and anti-glaucoma drugs\(^{15-18}\).

Figure 1 Ocular anatomy and administration routes of both traditional drugs and nanosystems: the black arrows show different eye structures and the red arrows show various administration routes.

The intraocular environment contains two main barriers: blood–aqueous and blood–retina barrier. The blood–aqueous barrier is composed of the nonpigmented epithelium of the ciliary body, which specifically includes the iris epithelium, iris vessel endothelium with tight junction, and Schlemm’s canal endothelium. The tight junctions of cells control both active and paracellular transport\(^{14,19,20}\). The blood–retinal barrier is divided into inner and outer blood–retinal barriers. The former one is composed of retinal vascular endothelium with tight junctions. The latter includes a monolayer of retinal pigment epithelium (RPE) with tight junctions\(^{19,21}\). These two components restrict penetration of molecules into the intraocular chamber, resulting in inefficient therapy on intraocular tissues.

In addition, topical drug administration to the anterior segment of the eye is often limited by clearance mechanisms of the corneal surface and other precorneal factors, including eye blinking, tear film, tear turnover, solution drainage and lacrimation\(^{22}\). Human tear film has a rapid restoration time of only 2–3 min. Thus, most topically administered drugs are washed away within a few seconds after instillation. When topical drug solution volume is more than 30 μL (the upper limit volume that can be accommodated in the cul-de-sac), most of the drug is wasted by either nasolacrimal drainage or gravity-induced drainage\(^{23}\). Hampered by these factors and ocular barriers, the efficacy of the total administered drugs is less than 5%, suggesting the poor bioavailability of ocular drugs\(^{23,24}\).

3. Benefits and limitations of ocular delivery routes

3.1. Systemic administrations

Intravenous injection and oral dosing are known systemic administration methods for ocular drug delivery. Since the choroid of the eye has a vascular choroid plexus structure, drugs can easily enter the choroid through blood vessels. However, the outer blood–retinal barrier of RPE cells governs the entry of drugs from the choroid into the retina. The tight junctions of RPE cells hamper most of the drugs and only 1%–2% of administrated drugs can...
access to the retina and vitreous body. Thus, a difficult challenge remains to deliver drugs into the deep inner side of the eye by systemic administration.

3.2. **Topical administration**

3.2.1. **Eye drops**

Eye drops are the main form of topical administration due to good patient compliance and economical considerations. Drugs dissolved in eye drops are usually adsorbed by two routes: the corneal route (cornea, aqueous humor, intraocular tissue), and the conjunctiva route (conjunctiva, sclera, choroid, retina, vitreous body). Due to the corneal barrier and pre-corneal factors, less than 5% of totally administered drugs can reach the aqueous humor. As a result, eye drops have to be frequently administered to maintain therapeutic drug concentrations. Eye drops are proven to be efficient in treating corneal diseases, iris diseases and glaucoma. However, they are less efficient in treating posterior eye diseases, including intraocular cancers and retina diseases, even when following frequent dosage regimens.

3.2.2. **Topical injections**

Among various topical injections, intravitreal injection is the most common administration route by injection of drug solution or suspension into the vitreous cavity through a 27- or 30-gauge needle. Usually a 20–100 μL volume solution can be directly injected into the vitreous cavity without discomfort. Intravitreal injections, which result in high local drug concentrations in the vitreous body and retina, can serve as an efficient route of administration for treating posterior eye diseases. However, drug distribution patterns in the vitreous are heterogeneous because of the gel-like structure. Molecular distribution is greatly dependent on the drug's molecular weight and the vitreous pathophysiological condition. It is reported that small molecules can rapidly spread out in the vitreous, whereas linear molecules with molecular weight more than 40 kDa or globular molecules larger than 70 kDa, have a longer retention time in the vitreous body. In addition, one of the most important compositions in the vitreous body—hyaluronan, is prone to interact with cationic nanoparticles and liposomal gene complexes through electrostatic interaction, leading to nanoparticle aggregation and reduction of the efficiency of gene delivery.

Furthermore, intravitreal injection is an invasive method which has to penetrate all the layers of the ocular globe and can result in series of side effects such as retinal detachment, uveitis, cataract, endophthalmitis, and intraocular hemorrhage. Repeated injections increase the incidence of these complications.

Periodocul injection includes a series of topical injections which are employed to overcome drawbacks of systemic administration and to increase the drug concentration in intraocular tissues. Periodocul deliveries through retrobulbar, peribulbar, sub-tenon and subconjunctival injection are less invasive than intravitreous injection. Drugs administered by periodocul delivery routes can reach the posterior segment of the eye by penetration of either corneal choroid or scleral. However, most of these routes suffer from great drawbacks such as inefficiency in prolonging the drug retention time.

4. **Types of nanosystems available for treatment and diagnosis of ocular diseases**

During the past decades, nanotechnology seems to offer new perspectives in management of ocular diseases by either realizing controlled release, ensuring low eye irritation, improving drug bioavailability or enhancing ocular tissue compatibility. Various nanosystems have been designed to deliver their payloads into both anterior and posterior segment of the eye. These nanosystems are mainly made from natural or synthetic polymeric materials. Many colloidal systems such as micelles, liposomes, niosomes, dendrimers, in situ hydrogels, and cyclodextrins are of this type. Other forms, including nanoparticles, implants, nanoparticle-contained contact lens, films, as well as other delivery systems, have also been intensely exploited to deliver drug and gene to the inner side of eye via appropriate administration routes. To date, many efforts have been made on both carrier design and...
Table 1 Typical nanotechnology-based strategies for ocular anterior diseases application.

Formulation	Material type	Payload	Size (nm)	Functions	Clinical stage	Ref.
Nanowafer	Polymer	Axitinib	500	The drug loaded nanowafer was nontoxic and could treat corneal neovascularization more efficiently compared to the commercial eye drop even at a lower dosage.	Preclinical	44
Nanoparticle	Chitosan	Gene	~200	The nanoparticle showed superior transfection efficiency in anterior segment of the eye.	Preclinical	45
Hydrogel (Virgan)	Polymer	Ganciclovir	–	Topical treatment drug for herpes simplex virus infection in the eye.	Market	46–49
Nanosuspension	Polymer	Diclofenac	105	Enhanced penetration and retention effect in corneal tissues was achieved through topical administration.	Preclinical	50
Nanoparticle	Polymer	Flurbiprofen	200–300	Following topical administration of the formulation, an enhanced anti-inflammation effect was achieved towards to a built animal model.	Preclinical	51
Nanoparticle	Polymer	Dexamethasone sodium phosphate	100–500	The drug loaded nanoparticles could not cause inflammation in the eye and improved the efficacy for prevention of corneal graft rejection.	Preclinical	52
Nanoscale dispersed oilment	Polymer	–	100	The formulation not only retained the advantages of eye ointment, but also showed better efficacy in repairing the tear film and restoring the corneal surface.	Preclinical	53
Hydrogel	Polymer	Diclofenac	–	The micellar supramolecular hydrogel could extend the retention time on corneal surface and improve drug bioavailability in the eye.	Preclinical	54
Nanoparticle	Polymer	Flurbiprofen	100	Nanoparticle formulation showed an inhibition effect of anti-inflammation in a rabbit trauma model with a lower concentration of drugs. More drugs from the nanoparticles penetrated into the aqueous humor compared to commercial eye drops.	Preclinical	55
Nanoparticle	Polymer	Pilocarpine	83	Studies showed that the duration of miotic response had increased by 40% for the nanoparticle formulation.	Preclinical	56
Liposome	Polymer	Coenzyme-Q10	100–200	The liposomes exhibited a markedly anti-catarrhal effect and could increase the activities of superoxide dismutase and reduced glutathione.	Preclinical	57

–Data not found.

exploring the mechanisms of their biological actions. Meanwhile, much attention is being focused on the fabrication and modification of multi-functional nanocarriers for ocular target therapy.

5. Nanosystems for ocular anterior disease therapy

Eye drops are the most accessible and common formulations for treatment of common ocular anterior diseases, such as corneal injury, dry-eye, keratitis, conjunctivitis and cataract. However, this route of administration suffers from poor bioavailability due to the corneal barrier and pre-corneal factors. Experimental and clinical research has shown that frequent and long-term use of eye drops can result in tear film instability, corneal surface impairment, and cornea and conjunctiva inflammation. Alternatively, considerable effort is being directed towards prolonging drug retention time on the ocular surface and improving drug penetration. Nanosystems are an emerging part of this strategy.

During the past decades, some typical nanosystems have been developed for ocular anterior disease application, as summarized in Table 1. For example, flurbiprofen-loaded PLGA nanoparticles with a size distribution around 200 nm have demonstrated a burst release and an ensuing gradual release profile in vitro. Therapy with this approach showed an improved anti-inflammatory effect as compared to commercial flurbiprofen eye drops on the rabbit ocular inflammation model. In addition, flurbiprofen-loaded nanoparticles with a uniform size around 100 nm showed an equivalent inhibitory effect on the miotic response in a rabbit surgical trauma model even at a lower dosage than commercial eye drops. This effect was attributed to the increased release of drugs from the nanoparticles and subsequent penetration into the aqueous humor. Such progress indicates the great impact of colloidal nanocarriers on the enhanced bioavailability of ocular drugs such as flurbiprofen. However, some concerns exist regarding the possible rapid clearance of these formulations from the eye surface.

Recently, the in situ gel system is becoming a research hotspot, especially stimuli-responsive hydrogel such as pH-, thermo-, and ion-sensitive hydrogels. Moreover, there are commercial products such as Timoptic-XE and Virgan, which are ion-activated and pH sensitive hydrogel, respectively. Once the hydrogel is instilled onto the eye surface, the loaded drugs or nanoparticles can escape from the hydrogel upon eye blinking and then release drugs in a sustainable way. Recently, a micellar supramolecular hydrogel was fabricated with methoxy poly (ethylene glycol) block polymer and α-cyclodextrin. In vivo distribution results showed that the hydrogel could significantly enhance penetration and retention of the anti-inflammatory drug diclofenac, as compared with the micelle formulation. Similar to hydrogel, nanoparticles loaded contact lens is a kind of polymeric nanodevice encapsulated with drugs.
Wearers of contact lens can benefit from long drug retention time on the corneal surface. As expected, a nanowafer containing arrays of drugs could withstand eye blinking and remain on the corneal surface for several hours. This formulation not only sustained a controlled drug release for hours to days, but also provided enhanced therapeutic efficacy in treating corneal neovascularization in a murine model (Fig. 3).

Although many studies have applied nanosystems to ocular drug delivery, the mucoadhesive and penetration mechanisms between nanoparticles and corneal barrier deserve more understanding. Corneal epithelium has been shown to be the major barrier for penetration and permeation, which can prevent particles even smaller than 21 nm in penetrating into the intraocular space. However, the significance of nanoparticle size and surface chemistry during the penetration process are still controversial. In an earlier study of bovine eyes with removed epithelium, the surface chemistry-dependent penetration characteristics were investigated on two nanoparticles with the same size and different numbers of thiolated groups (SH). Results showed that the interaction between functional groups and collagen of corneal stroma other than the particle size is a major resistance factor during the penetration process. Better penetration into cornea stroma was observed by PEGylation with polyethylene glycol of higher molecular weight (for example 5000 Da) other than the low molecular polyethylene glycol (750 Da) (Fig. 4).

6. Nanosystems for ocular posterior disease therapy

In contrast to diseases of the anterior eye, posterior diseases occur most commonly in the retina and choroid. Examples include age-related macular degeneration (AMD), choroidal neovascularization (CNV), glaucoma, retinoblastoma (Rb) and posterior uveitis. Generally speaking, eye drops present less drug bioavailability in posterior ocular tissues than in the anterior segment, due to the long diffusion distance from corneal surface to the retina or choroid. Moreover, frequent intraocular injections will lead to potential undesired side effects and poor patient compliance.

Thus, many efforts during the past decades have been made to improve delivery systems for the treatment of ocular posterior disease. Progress has focused on improving the controlled long-term delivery systems to reduce frequency of injections, including hydrogel, nanoparticles, nanoimplants and nanosized vesicles (Fig. 5). Light-activated solution made from polycaprolactone dimethacrylate (PCM) and hydroxyethyl methacrylate (HEMA) has been successfully fabricated and injected into the suprachoroidal space of rabbit eye.
Figure 4 Fluorescence images of bovine cornea with removed epithelium after exposed to silica nanoparticles of 0.5 h (A) and 1 h (B). The nanoparticles had a consistent size distribution and were functioned by thiolated groups and PEGylated 5000 Da, respectively\(^6\). Reproduced with permission from ACS article. (direct link: http://pubs.acs.org/doi/full/10.1021/mp500332m).

Figure 5 (A) Schematic illustration of a multifunctional nanoparticle modified with a nuclear localization signaling peptide (NLS) and cell permeable peptide (TAT) to deliver gene to the posterior segment of the eye for blinding eye disease treatment\(^6\). The strategy includes three functions: (1) A biocompatible lipid molecule was used to pack DNA along with another biocompatible protamine molecule together as a non-viral nanoparticle carrier; (2) The modified peptides have both cell penetrating and nuclei targeting functions thus leading to the gene delivery to eye cells; (3) DNA was used to carry target gene and promote the cell-specific gene expression. (B) A light-activated, in situ forming hydrogel system was designed to realize sustainable release of bevacizumab for age-related macular degeneration (CNV) therapy\(^6\). Reproduced with permission from ACS articles (direct links: http://pubs.acs.org/doi/full/10.1021/nl502275s; http://pubs.acs.org/doi/abs/10.1021/mp300716t).
for CNV therapy. Following the rapid light-activated cross-linking, the solution could form in situ hydrogel for a sustained delivery of bevacizumab (an anti-VEGF antibody used to treat CNV) over 60 days63 (Fig. 5B). However, this system is limited due to the toxicity of the photoinitiator to eyes. Natarajan et al.74 developed a drug-loaded nano unilamellar vesicle which could obviously reduce the intraocular pressure and realize a sustainable release of drug over 120 days via a single subconjunctival injection (Fig. 6). These inspiring results have catalyzed the development of similar systems for glaucoma therapy.

Retina pigment epithelial (RPE) cells are of great importance for vision. They are not only the main forces of blood–retina barrier, but also centrally involved in the pathogenesis of retinal disorders65,66. CD44 is overexpressed in the surface of RPE and hence can be used as a key target for a number of drugs and gene-based therapeutics67,68. In Martens’s work, a nonviral polymeric gene can be used as a key target for a number of drugs and gene-based therapeutics. Mitra et al.75 prepared polyethyleneimine (PEI) capped gold nanoparticles (AuNPs) which were also conjugated with a novel epithelial cell adhesion molecule (EpCAM) antibody and siRNA molecules. They found these gene delivery systems were significantly internalized by Rb cells resulting in cytotoxicity. Despite great efforts devoted to the intraocular cancer therapy, the current studies are mainly limited in the stage of in vitro assessment, due to the lack of mature intraocular cancer animal models.

Photodynamic therapy (PDT) is an emerging therapeutic strategy which has been widely used for numerous disease treatments. PDT consists of three functional modules: a light-activated photosensitizer, an energy laser beam to induce activation, and a surrounding oxygen environment with the ability to produce a toxic compound. One commercial drug Visudyne® used for AMD treatment is a typical PDT product. The active ingredient of Visudyne® is a photoactivated drug-verteporfin. Upon a 689 nm laser depositing with a proper intensity, the drug can generate reactive oxygen species (ROS) and induce neovascular endothelial cell death, resulting in vessel occlusion and ending the growth of choroidal neovascular cells76,77. Recently, researchers have designed carbohydrate-targeted mesoporous silica nanoparticles (MSN) encapsulated with both anti-cancer drug camptothecin (CPT) and one-photon or two-photon photosensitizers. Encouraging results were achieved showing that the MSN nanoparticles presented an interesting therapeutic property by killing Rb cells efficiently in vitro78. Similar results were found in Wang et al.’s work, in which dendrimeric nanocarriers were developed with excellent cellular uptake, significant photoefficiency, and superior phototoxicity in Rb cells79,80. Although PDT showed great promising potential in some cancer treatments, more efforts are required on the development of delivery nanosystems to implement PDT in ocular applications. Some current nanosystems applied in ocular posterior disease treatments are given in Table 2.

7. Nanotechnology in ocular disease diagnostics

There are several approaches employed for clinical ocular disease diagnoses, such as optical coherence tomography (OCT), fundus photography, fluorescein angiography, positron emission...
Nanotechnology has been proven to be a powerful and effective tool for treatment and detection of ocular diseases by fabricating nanosystems. In this review, we have focused on advances in design and development of nanosystems for various ocular diseases.

8. Challenges and perspective

8.1. Challenges

Nanotechnology-based strategies for ocular posterior disease applications.

Formulation	Material type	Payload	Function	Clinical stage	Ref.
Hydrogel	Bevacizumab		Sustained release in suprachoroidal space of SD rats	Preclinical	63
Liposome	Bevacizumab		Sustained release in RPE cells	Preclinical	44
Micelle	Triamcinolone acetonide	200	Sustained release for one year after intravitreal injection	Preclinical	45
Dendrimer	Gene	50	Effective gene transfection in RPE cells	Preclinical	80
Peptide	Gene	180	Rescue the retina degeneration in a mouse model	Preclinical	82
Liposome	Gene	130	Target RPE cells and had increased siRNA delivery	Preclinical	83,84

Data not found.

In this study, peptide targeted phage particles, heat sensitive–based liposome (HSL), mesoporous silica nanoparticles (MSNPs), and photon-to-heat conversion were integrated into a hydrogel system. The HSL and MSNPs could generate heat after NIR laser illumination. The heat induced release of hydrogel contents and meanwhile the loaded drugs were controlled to release at tumor site. Techniques referred in this study offered a nanoplatform that allowing design of different formulations with specific ligands (such as antibodies, peptides and aptamers) and nanocarriers for different types, size and growth rate tumors. Nanoplatforms referred here exhibited great potential for clinical application or diagnostic therapeutic monitoring and targeted delivery to malignant tumors and ocular diseases. Some potential nanotechnology-based strategies in ocular diseases diagnostics are summarized in Table 3.
Several nanosystems with different payloads have shown great potential in ocular delivery either in vitro or in vivo. However, several challenges still remain to be addressed in future studies, including: (1) Among numerous studies of ocular disorder therapy by nanotechnology, many studies are focused on in vitro studies, and less in vivo studies have been accomplished. In the future, more efforts should be made in this area and animal models especially the ocular cancers model should be established. (2) Although the rabbit is most commonly used animal because of the comparable size of human eye, rabbit eye has a higher surface sensitivity, higher mucus production and lower blinking frequency, lower tear production. These differences would lead to a better result of bioadhesion and retention in the ocular surface thus made the effect of nanosystems unauthentic to human beings. (3) For targeted delivery, the biomarkers are the most common types of target. As a result the ocular disease related biomarkers should be fully understood as well as the cellular and molecular mechanism of their functions. (4) It is reported that nanoparticles seem to grow in size and aggregate inside the tissues after intravitreous injection or other administration route. This phenomenon could decrease the delivery efficiency and affect drug distribution. Further studies need to improve our understanding of the fundamentals of nanoparticles and facilitate development of proper delivery routes for application.

8.2. Perspective

Considering the above aspects which deserve more efforts, nanotechnology has great application potential in ocular disease therapy and diagnosis. As a unique and relatively closed organ, the eye is always considered to be a perfect research object for gene and drug delivery because the systemic circulation is usually omitted. Data from wiley website revealed that more than 1500 gene therapy clinical trials for ophthalmology are underway. There are various nanomaterials used for nanosystem fabrication. However, their toxicities are not completely understood in the eye, especially for those repeated dosage materials. It seems that colloidal carriers and some FDA approved materials have more potential in application. In addition to delivery systems, future non-invasive delivery routes will be emphasized for ocular diseases in both segments. Finally, all-in-one systems which might combine diagnostic and therapeutic functions may be introduced to enable visual tracking during the ocular disease treatment.

Table 3 Potential nanotechnology-based strategies for ocular disease diagnostics.

Formulation	Material type	Size (nm)	Target	Functions	Clinical stage	Ref.
Nanoparticle	Gd	~260	Corneal neovascularization	The agent showed contrast enhancement of angiogenic vessels in a rabbit corneal neovascularature model.	Preclinical	90
Nanoparticle	Silver	80	Retina	Silver nanoparticles coated with calcium indicator showed minimal damage to retinal cells and could apply for mouse retina imaging.	Preclinical	96
Nanocage	Gold	35	Retina	Gold nanocages exhibited strong optical resonance of 5 orders of magnitude larger than conventional dyes by OCT imaging.	Preclinical	92
Nanoparticle	Quantum dots	3–6	Intraocular cancer	The nanoparticles showed enhanced fluorophores in eye imaging.	Preclinical	94.97
Nanoparticle	Magnetic nanoparticles (Fe3O4)	10	Retinal detachment	Magnetically guided diffusion of nanoparticles was found in an in vitro model of human vitreous humor.	Preclinical	98

References

1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol 2011;96:614–8.
2. Schoenfeld ER, Greene JM, Wu SY, Leske MC. Patterns of adherence to diabetes vision care guidelines: baseline findings from the diabetic retinopathy awareness program. Ophthalmology 2001;108:563–71.
3. Raghava S, Goel G, Kompella UB. Ophthalmic applications of nanotechnology. In: Phd JT, Dphil CJ, editors. Ocular transporters in ophthalmic diseases and drug delivery. Totowa: Humana Press; 2008. p. 415–35.
4. Bell AT. The impact of nanoscience on heterogeneous catalysis. Science 2003;299:1688–91.
5. Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small 2005;1:172–9.
6. Meyer E, Gyalog T, Overney RM, Dransfeld K. Nanoscience: friction and rheology on the nanometer scale. Singapore: World Scientific; 1998.
7. Zarbin MA, Montemagno C, Leary JF, Ritch R. Nanotechnology in ophthalmology. Can J Ophthalmol 2010;45:457–76.
8. Bucolo C, Maltese A, Drago F. When nanotechnology meets the medical retina. Expert Rev Ophthalmol 2006;3:325–32.
9. Idetra R, Tasaka F, Jing WD, Nishiyama N, Zhang GD, Harada A, et al. Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 2005;5:2426–31.
10. Todd TW, Beecher H, Williams GH, Todd AW. The weight and growth of the human eyeball. Hum Biol 1940;12:1–20.
11. Dingledein SA, Klyce SD. The topography of normal corneas. Arch Ophthalmol 1989;107:512–8.
12. Klyce SD, Beuerman RW. Structure and function of the cornea. In: Kaufman HE, Barron BA, McDonald MB, Waltman SR, editors. The cornea. New York: Churchill Livingstone Inc; 1988. p. 3–54.
13. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 1998;87:1479–88.
14. Yi X, Wang Y, Yu FS. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci 2000;41:4093–100.
15. Jue B, Maurice DM. The mechanical properties of the rabbit and human cornea. J Biomech 1986;19:847–53.
16. Karla PK, Earla R, Boddu SH, Johnston TP, Pal D, Mitra A. Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr Eye Res 2009;34:1–9.
17. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 2006;58:1136–63.
18. Katragadda S, Talluri RS, Mitra AK. Modulation of P-glycoprotein-mediated efflux by an approach diverging on the mechanism of transport. J Ocul Pharmacol Ther 2006;22:110–20.
19. Cunha-Vaz J. The blood–ocular barrier. Surv Ophthalmol 1979;23:279–96.
20. Furuchi M, Chiba T, Abe K, Kogure S, Iijima H, Tsukahara S, et al. Cystoid macular edema associated with topical latanoprost in glaucomatous eyes with a normally functioning blood–ocular barrier. J Glaucoma 2001;10:233–6.
21. Cunha-Vaz JG. The blood–ocular barriers: past, present, and future. Doc Ophthalmol 1997;93:149–57.
22. Gipson IK, Argüeso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol 2003;231:1–49.
23. Gaudana R, Jwala, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res 2009;26:1197–216.
24. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Del 2008;5:567–81.
25. Occhiutto ML, Freitas FR, Maranhao RC, Costa VP. Breakdown of the blood–ocular barrier as a strategy for the systemic use of nanosystems. Pharmaceutica 2012;4:252–75.
26. Weijtsen O, Schoemaker RC, Romijn FP, Cohen AF, Lentjes EG, van Meurs JC. Intracorneal penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmology 2002;109:1887–91.
27. Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res 2010;29:312–34.
28. Ahmed I. The noncorneal route in ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. 2nd ed New York: Marcel Dekker; 2003. p. 335–63.
29. Ward AH, Siegwart Jr JT, Frost MR, Norton TT. The effect of intravitreal injection of vehicle solutions on form deprivation myopia in tree shrews. Exp Eye Res 2016;145:289–96.
30. Rivers HM, Ray CS, Shah JC, Mittal S. A new vision for unmet ocular drug delivery needs. Pharm Res 2015;32:284–23.
31. Uitti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Del Rev 2006;58:1311–5.
32. Ambati J, Canakis CS, Miller JW, Gragoudas ES, Edwards A, Weissgold DJ, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci 2000;41:1181–5.
33. Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Exp Eye Res 1985;40:687–96.
34. Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 2005;57:1555–63.
35. Cheruvu N, Amrite AC, Kompella UB. Effect of eye pigmentation on transcellular drug delivery. Invest Ophthalmol Vis Sci 2008;49:333–41.
36. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv 2003;6:275–87.
37. Raghava S, Hammond M, Kompella UB. Pericorneal routes for retinal drug delivery. Expert Opin Drug Deliv 2004;1:99–114.
38. Amrite AC, Edelhauser HF, Singh SR, Kompella UB. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after pericorneal administration. Mol Vis 2008;14:150–60.
39. Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 2010;29:596–609.
40. Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci 2012;12:688–20.
41. del Pozo-Rodríguez A, Delgado D, Gascón AR, Solínis MÁ. Lipid nanoparticles as drug/gene delivery systems to the retina. J Ocul Pharmacol Ther 2013;29:173–88.
42. Chaurasia SS, Lim RR, Lakshminarayanan R, Mohan RR. Nanomedicine approaches for corneal diseases. J Funct Biomater 2015;6:277–98.
43. Chung SH, Lim SA, Tchach H. Efficacy and safety of carbon-based lipid-containing artificial tear formulations in patients with dry eye syndrome. Cornea 2016;35:181–6.
44. Yuan X, Marcano DC, Shin CS, Hua X, Isenhart LC, Pflugfelder SC, et al. Ocular drug delivery nanoformulation with enhanced therapeutic efficacy. ACS Nano 2015;9:1749–58.
45. Jiang M, Gular L, Zhe C, Dong Y, Liu J, Gan Y. Cationic core-shell lipopolyplex nanoparticles for ocular gene delivery. Biomaterials 2012;33:7621–30.
46. Colin J. Ganciclovir ophthalmic gel, 0.15%: a valuable tool for treating ocular herpes. Clin Ophthalmol 2007;1:441–53.
47. Foster CS. Ganciclovir gel-a new topical treatment for herpetic keratitis. US Ophthal Rev 2008;3:52–6.
48. Kaufman HE, Haw WH. Ganciclovir ophthalmic gel 0.15%: safety and efficacy of a new treatment for herpes simplex keratitis. Curr Eye Rev 2012;37:654–60.
49. Chou TY, Hong BY. Ganciclovir ophthalmic gel 0.15% for the treatment of acute herpetic keratitis: background, effectiveness, tolerability, safety, and future applications. Ther Clin Risk Manag 2014;10:665–81.
50. Shi S, Zhang Z, Luo Z, Yu J, Liang R, Li X, et al. Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Sci Rep 2015;5:11337.
51. Vega E, Egea MA, Valls O, Espina M, Garcia ML. Flurbiprofen loaded biodegradable nanoparticles for ophthalmic administration. J Pharm Sci 2006;95:29–40.
52. Pan Q, Xu Q, Boyle NJ, Lamb NW, Emmert DG, Yang JC, et al. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J Control Release 2015;201:32–40.
53. Zhang W, Wang Y, Lee BT, Liu C, Wei G, Lu W. A novel nanoscale-dispersed eye ointment for the treatment of dry eye disease. Nanotechnology 2014;25:125101.
54. Zhang Z, He Z, Liang R, Ma Y, Huang W, Jiang R, et al. Fabrication of a micellar supramolecular hydrogel for ocular drug delivery. Biomacromolecules 2016;17:798–807.
55. Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 2002;23:3247–55.
56. Kao HJ, Lo YL, Lin HR, Yu SP. Characterization of picolcarbone-loaded chitosan/Carbolip nanoparticles. J Pharm Pharmacol 2006;58:179–86.
57. Zhang J, Wang S. Topical use of Coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm 2009;372:66–75.
58. Vega E, Egea MA, Calpena AC, Espina M, García ML. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and γ-irradiated PLGA and PLGA-PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int J Nanomed 2012;7:1357–71.
59. Quinteros DA, Tártara LI, Palma SD, Manzo RH, Allemandt DA. Ocular delivery of flurbiprofen based on Eudragit® El-flurbiprofen complex dispersed in aqueous solution: preparation, characterization, in vitro corneal penetration, and ocular irritation. J Pharm Sci 2014;103:3859–68.
60. Elshaer A, Mustafa S, Kasar M, Thapa S, Ghatora B, Alany RG. Nanoparticle-laden contact lens for controlled ocular delivery of prednisolone: formulation optimization using statistical experimental design. Pharmaceutics 2016;8:14.
61. Mun EA, Morrison PW, Williams AC, Khutoryanskii VV. On the barrier properties of the cornea: a microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein. Mol Pharm 2014;11:3556–64.
62. Chew EY, Glassman AR, Beck RW, Bessler NM, Fish GE, Ferris FL, et al. Ocular side effects associated with peribulbar injections of triamcinolone acetonide for diabetic macular edema. Retina 2011;31:284–9.
63. Tyagi P, Barros M, Stansbury JW, Kompella UB. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol Pharm 2013;10:2858–67.
64. Natarajan JV, Darwatan A, Barathi VA, Ang M, Hoon HM, Boey F, et al. Sustained drug release in nanomdecene: a long-acting nanocarrier-based formulation for glaucoma. ACS Nano 2014;8:419–29.
65. Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, et al. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 2012;31:121–35.

Please cite this article as: Weng Yuhua, et al. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharmaceutica Sinica B (2016), http://dx.doi.org/10.1016/j.apsb.2016.09.001.
Nanotechnology-based strategies for treatment of ocular disease

66. Fuhrmann S, Zhou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2014;123:141–50.
67. Liu NF, Roberts WL, Hale LP, Levesque MC, Patel DL, Lu CL, et al. Expression of CD44 and variant isoforms in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1997;38:2027–37.
68. Al-Hussaini H, Kilarkaje N, Shahabi G, Al-Mulla F. Proliferation and migration of peripheral retinal pigment epithelial cells are associated with up-regulation of wingless-related integration and bone morphogenetic protein signaling in dark agouti rats. Med Prim Pract 2016. Available form: 10.1159/000446480.
69. Martens TF, Renaut K, Deschout H, Engbersen JF, Hennink WE, van Steenbergen MJ, et al. Coating nanocarriers with hyaluronic acid facilitates intravitreal delivery for retinal gene therapy. J Control Release 2015;202:83–92.
70. Jwala J, Vadlapatla RK, Vadlapudi AD, Boddu SH, Pal D, Mitra AK. Differential expression of folate receptor-α, sodium-dependent multivitamin transporter, and amino acid transporter (B0,+ ASC1) in human retinoblastoma (Y-79) and retinal pigment epithelial (ARPE-19) cell lines. J Ocul Pharmacol Ther 2012;28:237–44.
71. Kansara V, Paturi D, Luo S, Gaudiana R, Mitra AK. Folic acid transport via high affinity carrier-mediated system in human retinoblastoma cells. Int J Pharm 2008;355:210–9.
72. Hayashi T, Onodera R, Tahara K, Takeuchi H. Novel approaches for posterior segment ocular drug delivery with folate-modified liposomal formulation. Asian J Pharm Sci 2016;11:201–2.
73. Parveen S, Sahoo SK. Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma. Cancer Nanotechnol 2010;1:47–62.
74. Gupta J, Boddu SH, Pal D, Mitra AK. Targeted delivery of doxorubicin for the treatment of retinoblastoma. Invest Ophthalmol Vis Sci 2009;50:5976.
75. Mitra M, Kandalam M, Rangasamy J, Shankar B, Maheshwari UK, Swaminathan S, et al. Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. Mol Vis 2013;19:1029–38.
76. Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 2008;53:R61-109.
77. Laville I, Pigaglio S, Blais JC, Doz F, Loock B, Maillard P, et al. Photodynamic efficiency of diethylen glycol–linked glycoconjugated porphyrins in human retinoblastoma cells. J Med Chem 2006;49:2588–67.
78. Galtud A, Da Silva A, Maynadier M, Basile I, Simon F, Cyndie L, et al. Functionalized nanoparticles for drug delivery, one- and two-photon photodynamic therapy as a promising treatment of retinoblastoma. J Clin Exp Ophthalmol 2013;4:288.
79. Wang ZI, Chauvin B, Maillard P, Hammerer F, Carez D, Crosay A, et al. Glycodendrimer phenylporphyrins as new candidates for retinoblastoma PDT: blood carriers and photodynamic activity in cells. J Photochem Photobiol B 2012;115:16–24.
80. Mastorakos P, Kambhampati SP, Mishra MK, Wu T, Song E, Hanes J, et al. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells. Nanoscale 2015;7:3845–56.
81. Read SP, Cashman SM, Kumar-Singh R. POD nanoparticles expressing GDNP provide structural and functional rescue of light-induced retinal degeneration in an adult mouse. Mol Ther 2010;18:1917–26.
82. Rajalaa A, Wang Y, Zhu Y, Ranjo-Bishop M, Ma JX, Mao C, et al. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett 2014;14:5257–63.
83. Chen CW, Yeh MK, Shiau CY, Chiang CH, Lu DW. Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery. Int J Nanomed 2013;8:2613–27.
84. Chen CW, Lu DW, Yeh MK, Shiau CY, Chiang CH. Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomed 2011;6:2567–80.
85. Yang MS, Hu YJ, Lin KC, Lin CC. Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. Magn Reson Imaging 2002;20:173–9.
86. Townsend KA, Wolfstein G, Schuman JS. Clinical application of MRI in ophthalmology. NMR Biomed 2008;21:997–1002.
87. De Potter P, Shields CL, Shields JA, Flanders AE, Rao VM. Role of magnetic resonance imaging in the evaluation of the hydroxyapatite orbital implant. Ophthalmology 1992;99:824–30.
88. Finger PT, Kurlt M, Reddy S, Tena LB, Pavlick AC. Whole body PET/CT for initial staging of choroidal melanoma. Brit J Ophthalmol 2005;89:1270–4.
89. Kiyosawa M, Inoue C, Kawasaki T, Tokoro T, Ishii K, Ohyama M, et al. Functional neuroanatomy of visual object naming: a PET study. Graefe Arch Clin Exp Ophthalmol 1996;234:110–5.
90. Anderson SA, Rader RK, Westfin WL, Null C, Jackson D, Lanza GM, et al. Magnetic resonance contrast enhancement of neovascularization with αβγ-targeted nanoparticles. Magn Reson Med 2000;44:433–9.
91. Zagaynova EV, Sharmanova MV, Kirilliny MY, Khlbetov BN, Orlova AG, Balalaeva IV, et al. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 2008;53:4995–5009.
92. Cang H, Sun T, Li ZY, Chen J, Wiley BJ, Xia Y, et al. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt Lett 2005;30:3048–50.
93. Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC. Quantum dots in bio-imaging: revolution by the small. Biochem Biophys Res Commun 2005;329:1173–7.
94. Schachar RA, Chen W, Woo BK, Pierscionek BK, Zhang X, Ma L. Nanoarchitecture of functionalized dye-labeled gadolinium magnetic nanoparticles for use in MRI of ophthalmology using fuzzy clustering algorithms. Magn Reson Imaging 2008;26:3487–94.
95. Roizenblatt R, Weiland JD, Carcieri S, Qiu G, Behrend M, Humayun MS. Balalaeva IV, et al. Contrasting properties of gold nanoparticles in vivo significantly improves the vision of blind mice. Invest Ophthalmol Vis Sci 2011;52:2351–9.
96. Arujo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomaterials for ocular NSAIDs: safety on drug delivery. Acta Pharmaceutica Sinica B (2016), http://dx.doi.org/10.1016/j.apsb.2016.09.001
97. Schachar RA, Chen W, Woo BK, Pierscionek BK, Zhang X, Ma L. Nanoarchitecture of functionalized dye-labeled gadolinium magnetic nanoparticles for use in MRI of ophthalmology using fuzzy clustering algorithms. Magn Reson Imaging 2008;26:3487–94.