Mental distress in stroke rehabilitation

Béla Hegedűs*

Ss Cosmas and Damian Rehabilitation Institute, Visegrád, Hungary

*Corresponding Author: Béla Hegedűs, MD, Ss Cosmas and Damian Rehabilitation Institute, 2025 Visegrád, Gizella telep, Hungary. Tel: +(36-70) 31-69-344; Email: arthrodent@freemail.hu

Received Date: Mar 30, 2019 / Accepted Date: Apr 08, 2019 / Published Date: Apr 10, 2019

Abstract
The most common psychological consequence is depression. Post-stroke depression may hinder rehabilitation and may exercise a negative effect on the course of the disease. In this study, changes were measured in joint function, activities of daily living (Functional Independence Measure and Barthel Index) and psychological state in our own patients.

Setting: Physiotherapy Center, Ss. Cosmas and Damian Rehabilitation Institute, Visegrád, Hungary.

Methodology: 30 clients who had suffered an ischaemic stroke and showed prevalent unilateral symptoms in the upper limbs were selected at random. Rehabilitation was started 10±3 days after the acute event. The following measurements were taken before and after rehabilitation: joint function ("global joint function" [%]), the functional independence measure (FIM), the Barthel Index, the Beck Depression Inventory (BDI) and the Mini-Mental State Examination (MMSE). Changes in individual parameters due to treatments (paired t-test; p<0.05) were studied as well as correlations between joint function, activities of daily living and psychological state (correlation analysis; p<0.05).

Results: Significant changes were found due to treatments for all the parameters under investigation compared to the before-treatment state (joint function before treatment [BT]: 63.22%, after treatment [AT]: 93.41%; FIM BT: 89.83, AT: 118.4; Barthel Index BT: 61.36, AT: 88.8; BDI BT: 20.33, AT: 10.5; MMSE BT: 11.83, AT: 22.16; p<0.05). There were strong correlations (r) between changes in joint function, activities of daily living and psychological state (joint function and MMSE: 0.796; FIM and MMSE: 0.655; Barthel Index and MMSE: 0.601; joint function and BDI: -0.786; FIM and BDI: -0.685; Barthel Index and BDI: -0.623; p<0.05).

Conclusion: Based on our results, favourable changes in joint function and activities of daily living in the case of stroke rehabilitation are likely to have a positive effect on clients’ psychological state, thus improving their life changes.

Keywords: Stroke; Depression; Joint function; Activities of daily living

Cite this article as: Béla Hegedűs. 2019. Mental distress in stroke rehabilitation. Global J Physiother Rehabil. 1: 17-23.

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2019; Béla Hegedűs

Introduction

Stroke is one of the most common causes of death and a major cause of chronic disability

[1]. According to a German study, the direct cost per first-year survivor of ischaemic stroke was 18,517 euros [2]. Depression after stroke is common [3]. Effective treatments exist, but they are probably underutilized. Increased
efforts should be made to utilize these methods effectively because they would not only be likely to improve patient symptoms, but also promote functional recovery, decrease mortality and reduce post-stroke health care utilization [4]. The various examination methods suggest that 25–40% of clients suffer from post-stroke depression, with half of them experiencing severe depression and the other half facing other depressive disorders [5-8]. Post-stroke depression may increase the risk of stroke and stroke mortality [9].

Objective

The main objective of this study was to determine the extent to which an early rehabilitation program affects joint function, ADLs, and psychological state, in patients with acute stroke. A secondary objective was to determine the extent of the association between joint function, ADLs, and psychological state.

Patients and methodology

30 clients who had suffered an ischaemic stroke and showed prevalent unilateral symptoms in the upper limbs were selected at random (10 women, 20 men; average age: 62.66). Rehabilitation was started 10±3 days after the acute event. The following comorbidities were identified: high blood pressure (hypertension) (in 22 clients), hyperlipidaemia (in 20), diabetes mellitus (in 10), CHD (8) and hyperuricaemia (in 6).

In each case, the treatment consisted of 15 sessions involving physiotherapy (passive motion, guided active exercises, improving joint mobility, strength training and relearning to walk; 30 minutes), massage (brush massage and connective tissue massage; 30 minutes) and descending galvanic therapy (bipolar; 10 minutes). Clients were not given any antidepressants, and they received no psychotherapy. Several measurements were taken before and after rehabilitation. First, joint function (“global joint function” [%]) was measured. To express the functioning of the joint using a single parameter that best represents that functioning and at the same time can be used well in mathematical analysis, a so-called “global joint function” was developed. For every single joint and for all ranges of motion, the percentage of the maximum range of motion was calculated for the value currently being measured. These values were added up, the average calculated and that value obtained as a percentage. Other measures were also employed: functional independence measure (FIM),[10] the Barthel Index, [11,12] the Beck Depression Inventory (BDI) [13] and the Mini-Mental State Examination (MMSE) [14].

Changes in individual parameters due to the treatments (paired t-test; p<0.05) were studied as well as correlations between joint function, activities of daily living and psychological state (correlation analysis; p<0.05) [15]. Permission for this study was granted by the Institute’s Research Ethics Committee.

Results

Because of the rehabilitation program:
A significant improvement was found in joint function (before treatment [BT]: 63.22%; after treatment [AT]: 93.41%) (p<0.05) (Graph 1).
The functional independence measure (FIM) indicated significant improvement (BT: 89.83; AT: 118.4) (p<0.05) (Graph 2).
The Barthel Index showed significant improvement (BT: 61.36; AT: 88.8) (p<0.05) (Graph 3).
The Beck Depression Inventory (BDI) also indicated significant improvement (BT: 11.83; AT: 22.16) (p<0.05) (Graph 4).
The Mini-Mental State Examination (MMSE) also indicated significant improvement (BT: 11.83; AT: 22.16) (p<0.05) (Graph 5).

There were strong correlations (r) between changes in joint function, activities of daily living and psychological state (p<0.05) (Table 1).
Graph 1: Change in joint function.

![Graph 1: Change in joint function.](image1)

Graph 2: Change in Functional Independence Measure (FIM).

![Graph 2: Change in Functional Independence Measure (FIM).](image2)
Graph 3: Change in Barthel Index.

Graph 4: Change in Mini-Mental State Examination (MMSE).
Graph 5: Change in Beck Depression Inventory (BDI).

Table 1: Correlations between joint function, activities of daily living and psychological state

	p<0.05	Correlation (r)
Joint function and MMSE	0.007	0.796
FIM and MMSE	0.014	0.655
Barthel and MMSE	0.030	0.601
Joint function and BDI	0.008	-0.786
FIM and BDI	0.021	-0.685
Barthel and BDI	0.037	-0.623

Discussion

Post-stroke depression can be caused by sudden disability, severe neurological symptoms and psychological reaction to unfavourable social changes affecting clients. Cerebral damage can affect areas of the brain that are directly connected to processes that cause depression [16]. After a cerebrovascular accident (stroke), clients’ status in the family, among friends, at work and in leisure-time activities may also deteriorate [17]. Returning to work after a stroke is also considered an important policy and welfare issue [18-19]. Post-stroke depression may have a negative effect on activities of daily living (ADL) [20] as well as on rehabilitation outcomes [21]. In an article published in 2011, the authors compared various ADL tests used in stroke rehabilitation [22]. Mansur et al. found that rehabilitation interventions may reduce disability after stroke, thus possibly improving mood [23].

Our results show that there was no significant functional damage. With regard to activities of daily living, no significant loss was found either with the Barthel Index or FIM, even on examination of the initial values. Therefore, it
was easier to achieve significant improvement with the rehabilitation program from an already favourable condition. This favourable initial state and the improvement due to treatment may have been the reason further improvement was observed with both the MMSE and BDI, but it was also important to note that the initial values were not particularly poor either. This may explain why it was not necessary for patients to take antidepressants or to undergo psychotherapy in the period under examination. It seems that the significant improvement in function and activities of daily living brought about the significant improvement in psychological factors. The changes in function and activities of daily living and the corresponding changes in psychological state strongly correlated.

Conclusion

Based on our results, it is believed that favourable changes in joint function and activities of daily living are likely to have a positive effect on clients’ psychological state, reducing the risk of post-stroke depression and limiting its severity. However, post-stroke depression should not be taken lightly or considered a natural phenomenon. If clients do experience post-stroke depression, it needs to be treated with antidepressants and psychotherapy, as this improves their life chances.

List of Abbreviations

ADL - Activities of daily living
FIM - Functional independence measure
BDI - Beck depression inventory
MMSE - Mini-mental state examination
CHD - Coronary heart disease

References

1. Foulkes MA, Wolf PA, Price TR, et al. 1988. The Stroke Data Bank: design, methods and baseline characteristics. Stroke. 547-54. Ref.: https://bit.ly/2OSsafA
2. Kolominsky-Rabas Pl, Heuschmann PU, Marschall D, et al. 2006. Lifetime cost of ischemic stroke in Germany: results and national projections from a population-based stroke registry: the Erlangen Stroke Project. Stroke. 37: 1179-1183. Ref.: https://bit.ly/2UoAojcb
3. Andersen G, Vestergaard K, Riis JO, Lauritzen L. 1994. Incidence of post stroke depression during the first year in a large unselected stroke population determined using a valid standardized rating scale. Acta Psychiatr Scand. 90: 190-195. Ref.: https://bit.ly/2OPvO9W
4. Linda S, Williams. 2005. Depression and Stroke: Cause or Consequence?; Semin Neurol. 25 :396-409.
5. Herrmann N, Black SE, Lawrence J, et al. 1998. The Sunnybrook Stroke Study: a prospective study of depressive symptoms and functional outcomes. Stroke. 29: 618-624. Ref.: https://bit.ly/2GlUyc8
6. Kotila M, Numminen H, Waltimo O, et al. 1998. Depression after stroke: results of the FINNSTROKE study. Stroke. 29: 368-372. Ref.: https://bit.ly/2UiyPFz
7. Pohjasvaara T, Leppavuori A, Siira I, et al. 1998. Frequency and clinical determinants of poststroke depression. Stroke. 29: 2311-2317. Ref.: https://bit.ly/2IcZ5Kh
8. Toso V, Gandolfi C, Paolucci S, et al. 2004. DESTRO Study Group. Post-stroke depression: research methodology of a large multicentre observational study (DESTRO). Neurol Sci. 25: 138-144. Ref.: https://bit.ly/2CTPNzh
9. Gump BB, Matthews KA, Eberly LE, et al. 2005. Depressive symptoms and mortality in men: results from the Multiple Risk Factor Intervention Trial. Stroke. 36: 98-102. Ref.: https://bit.ly/2UgsydK
10. Hamilton B, Granger C, Sherwin F, et al. 2003. A uniform national data system for medical rehabilitation. In: Furher M (ed.): Rehabilitation outcomes: analysis and measurements. Baltimore: Brookes. 137-147. Ref.: https://bit.ly/2TZ4vej
11. Mahoney FI, Barthel D. 1965. Functional evaluation: the Barthel Index” Maryland
State Medical Journal. 14: 56-61. Ref.: https://bit.ly/2FUj6E4
12. Gert Kwakkel, Janne M, Veerbeek, et al. 2011. Diagnostic Accuracy of the Barthel Index for Measuring Activities of Daily Living Outcome After Ischemic Hemispheric Stroke Does Early Poststroke Timing of Assessment Matter?. Stroke. 42: 342-346. Ref.: https://bit.ly/2U07zXH
13. Beck AT, Steer RA, Carbin MG. 1988. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clin Psychol Rev. 8: 77-100. Ref.: https://bit.ly/2GQEGtS
14. Folstein MF, Folstein SE, McHugh PR. 1975. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 12: 189-198. Ref.: https://bit.ly/2MCQ3Xo
15. Lehmann EL. 1991. Testing statistical hypotheses. Wadsworth&Brooks/cole Advanced Books, Pacific Grove, Pal.
16. Rajashekar P, Pai K, Thunga R, et al. 2013. Post-stroke depression and lesion location: A hospital based cross-sectional study. Indian J Psychiatry. 55: 343-348. Ref.: https://bit.ly/2YSf5an
17. Lynch EB, Butt Z, Heinemann AW, et al. 2008. Stroke-related quality of life: insight from focus groups with patients and caregivers. J Rehabil Med. 40: 518-23. Ref.: https://bit.ly/2CyATN3
18. Vestling M, Tufvesson B, Iwarsson S. 2003. Indicators for return to work after stroke and the importance of work for subjective well-being and life satisfaction. J Rehabil Med. 35: 127-31. Ref.: https://bit.ly/2UEBh93
19. Taylor TN, Davis PH, Torner JC, et al. 1996. Life-time cost of stroke in the United States. Stroke. 27: 1459-1466. Ref.: https://bit.ly/2OxyWud
20. Kenji Tsuchiya, Takaaki Fujita, Daisuke Sato, et al. 2016. Post-stroke depression inhibits improvement in activities of daily living in patients in a convalescent rehabilitation ward. J Phys. Ther. Sci. 28: 2253-2259. Ref.: https://bit.ly/2UI5r1F
21. Wu CY, Chuang LL, Lin KC, et al. 2011. Clin Rehabil. 25: 175-83. Ref.: https://bit.ly/2G1nbq7
22. Mansur A, Kutlubaev, Maree L, et al. 2014. Part II: predictors of depression after stroke and impact of depression on stroke outcome: an updated systematic review of observational studies. Int J Stroke. 9: 1026-1036. Ref.: https://bit.ly/2UyBGK2
23. De Ryck, Brouns R, Fransen M, et al. 2013. A Prospective Study on the Prevalence and Risk Factors of Post stroke Depression. Cerebrovasc Dis Extra. 3: 1-13. Ref.: https://bit.ly/2uOKBb1