q-Euler Numbers and Polynomials Associated with Basic Zeta Functions

TaeKyun Kim

Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, S. Korea
e-mail: tkkim@kw.ac.kr

Abstract. We consider the q-analogue of Euler zeta function which is defined by

$$\zeta_{q,E}(s) = [2]_q \sum_{n=1}^{\infty} \frac{(-1)^n q^n}{[n]_q^s}, \quad 0 < q < 1, \quad \Re(s) > 1.$$

In this paper, we give the q-extension of Euler numbers which can be viewed as interpolating of the above q-analogue of Euler zeta function at negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some identities of the q-extension of the Euler numbers by using fermionic p-adic q-integration on \mathbb{Z}_p.

1. Introduction

Throughout this paper \mathbb{Z}_p, \mathbb{Q}_p, \mathbb{C} and \mathbb{C}_p will respectively denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of algebraic closure of \mathbb{Q}_p.

The p-adic absolute value in \mathbb{C}_p is normalized so that $|p|_p = \frac{1}{p}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$ or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, then we normally assume $|q| < 1$, and when $q \in \mathbb{C}_p$, then we normally assume $|q-1|_p < 1$. We use the notation:

$$[x]_q = [x : q] = \frac{1 - q^x}{1 - q}, \quad \text{and} \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q}.$$

2000 Mathematics Subject Classification 11S80, 11B68
Key words and phrases: q-Bernoulli number, p-adic q-integrals, zeta function, Dirichlet series

Typeset by AMS-TEX
Note that \(\lim_{q \to 1} [x]_q = x \) for \(x \in \mathbb{Z}_p \) in presented \(p \)-adic case.

Let \(UD(\mathbb{Z}_p) \) be denoted by the set of uniformly differentiable functions on \(\mathbb{Z}_p \).

For \(f \in UD(\mathbb{Z}_p) \), let us start with the expression

\[
\frac{1}{[p^N]_q} \sum_{0 \leq j < p^N} (-q)^j f(j) = \sum_{0 \leq j < p^N} f(j) \mu_{-q}(j + p^N \mathbb{Z}_p)
\]

representing analogue of Riemann’s sums for \(f \), cf.\([1-30]\).

The fermionic \(p \)-adic \(q \)-integral of \(f \) on \(\mathbb{Z}_p \) will be defined as the limit \((N \to \infty)\) of these sums, which it exists. The fermionic \(p \)-adic \(q \)-integral of a function \(f \in UD(\mathbb{Z}_p) \) is defined as

\[
\int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{0 \leq j < p^N} f(j)(-q)^j, \quad \text{(see [5, 6, 16])}.
\]

For \(d \) a fixed positive integer with \((p, d) = 1\), let

\[
X = X_d = \lim_{N} \mathbb{Z}/dp^N \mathbb{Z}, \quad X_1 = \mathbb{Z}_p,
\]

\[
X^* = \bigcup_{0 < a < dp \atop (a, p) = 1} a + dp \mathbb{Z}_p,
\]

\[
a + dp^N \mathbb{Z}_p = \{ x \in X \mid x \equiv a \pmod{dp^N} \},
\]

where \(a \in \mathbb{Z} \) lies in \(0 \leq a < dp^N \), (see [1-30]).

Let \(\mathbb{N} \) be the set of positive integers. For \(m, k \in \mathbb{N} \), the \(q \)-Euler polynomials \(E_{m,k}^{(-m,k)}(x, q) \) of higher order in the variables \(x \) in \(\mathbb{C}_p \) by making use of the \(p \)-adic \(q \)-integral , cf.\([5, 6]\), are defined by

\[
(1) \quad E_{m,q}^{(-m,k)}(x) = \int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_1 + x_2 + \cdots + x_k]_q^m
\]

\[
\cdot q^{-x_1(m+1) - x_2(m+2) - \cdots - x_k(m+k)} d\mu_{-q}(x_1) d\mu_{-q}(x_2) \cdots d\mu_{-q}(x_k).
\]

Now, we define the \(q \)-Euler numbers of higher order as follows:

\[
E_{m,q}^{(-m,k)} = E_{m,q}^{(-m,k)}(0).
\]
From (1), we can derive

\[
E_{m,q}^{(-m,k)} = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x_1=0}^{p^N-1} \cdots \sum_{x_k=0}^{p^N-1} [x_1 + \cdots + x_k]_q^{m} (-1)^{x_1 + \cdots + x_k} q^{-x_1 m - \cdots - x_k (m+k-1)} \]

\[
= \frac{[2]^k}{(1-q)^m} \sum_{i=0}^{m} \binom{m}{i} (-1)^i \frac{1}{(1+q^{i-m})(1+q^{i-m-1}) \cdots (1+q^{i-m-k+1})},
\]

where \(\binom{m}{i}\) is binomial coefficient.

Note that \(\lim_{q \to 1} E_{m,q}^{(-m,k)} = E_{m}^{(k)}\) where \(E_{m}^{(k)}\) are ordinary Euler numbers of order \(k\), which are defined as

\[
\left(\frac{2}{e^t + 1} \right)^k = \sum_{n=0}^{\infty} E_{m}^{(k)} \frac{t^n}{n!}.
\]

By (1), (2), it is easy to see that

\[
E_{m,q}^{(-m,1)}(x) = \sum_{i=0}^{m} \binom{m}{i} q^i E_{i,q}^{(-m,1)}[x]^{m-i} = \frac{[2]_q}{(1-q)^m} \sum_{j=0}^{m} q^j x \binom{m}{j} (-1)^j \frac{1}{1+q^{j-m}}.
\]

We define the \(q\)-analogue of Euler zeta function which is defined as

\[
\zeta_{q,E}(s) = [2]_q \sum_{n=1}^{\infty} \frac{(-1)^n q^n}{[n]_q s^n}, \quad q \in \mathbb{R} \text{ with } 0 < q < 1 \text{ and } s \in \mathbb{C}.
\]

The numerator ensures the convergence. In (4), we can consider the following problem:

“Are there \(q\)-Euler numbers which can be viewed as interpolating of \(\zeta_{q,E}(s)\) at negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers”?

In this paper, we give the value \(\zeta_{q,E}(-m)\), for \(m \in \mathbb{N}\), which is a answer of the above problem and construct a new complex \(q\)-analogue of Hurwitz’s type Euler zeta function and \(q\)-L-series related to \(q\)-Euler numbers. Also, we will treat some interesting identities of \(q\)-Euler numbers.
2. SOME IDENTITIES OF \(q\)-EULER NUMBERS \(E_{m,q}^{(-m,1)}\).

In this section, we assume \(q \in \mathbb{C}_p\) with \(|1 - q|_p < 1\). By (1), we see that

\[
E_{n,q}^{(-n,1)}(x) = \int_X q^{-(n+1)t} [x + t]^n d\mu_q(t)
= \frac{[2]_q}{[2]_q^n} [d]_q^n \sum_{i=0}^{d-1} (-1)^i q^{-ni} \int_{\mathbb{Z}_p} q^{(n+1)dt} \left[\frac{x + t}{d}\right]^n d\mu_q(t).
\]

Thus we have

\[
E_{n,q}^{(-n,1)}(x) = \frac{[2]_q}{[2]_q^n} [d]_q^n \sum_{i=0}^{d-1} (-1)^i \int_{\mathbb{Z}_p} q^{(n+1)dt} \left[\frac{x + t}{d}\right]^n d\mu_q(t),
\]

where \(d, n\) are positive integers with \(d \equiv 1(\mod 2)\).

If we take \(x = 0\), then we have

\[
E_{m,q}^{(-m,1)} = \frac{[2]_q}{[2]_q^n} \sum_{k=0}^{m} \left(\begin{array}{c} m \\ k \end{array}\right) [n]_q^k E_{k,q^n}^{(-m,1)} \sum_{j=0}^{n-1} (-1)^j q^{-(m-k)j} [j]_q^{m-k}, \quad \text{where } n \equiv 1(\mod 2).
\]

From (6), we can easily derive the following equation (7).

\[
E_{m,q}^{(-m,1)} - \frac{[2]_q}{[2]_q^n} [n]_q^m E_{m,q^n}^{(-m,1)} = \frac{[2]_q}{[2]_q^n} \sum_{k=0}^{m-1} \left(\begin{array}{c} m \\ k \end{array}\right) [n]_q^k E_{k,q^n}^{(-m,1)} \sum_{j=1}^{n-1} (-1)^j q^{-(m-k)j} [j]_q^{m-k}.
\]

It is easy to see that \(\lim_{q \to 1} E_{m,q}^{(-m,1)} = E_m\), where \(E_m\) are the \(m\)-th ordinary Euler numbers, cf. [5]. From (7), we note that

\[
(1 - n^m)E_m = \sum_{k=0}^{m-1} \left(\begin{array}{c} m \\ k \end{array}\right) n^k E_k \sum_{j=1}^{n-1} (-1)^j j^{m-k}.
\]

Let \(F_q(t, x)\) be generating function of \(E_{n,q}^{(-n,1)}\) as follows:

\[
F_q(t, x) = \sum_{k=0}^{\infty} E_{k,q}^{(-k,1)}(x) \frac{t^k}{k!}.
\]
By (3), (8), we easily see:

$$F_q(t, x) = [2]_q \sum_{k=0}^{\infty} \left(\frac{1}{(q-1)k} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} \frac{q^{jx}}{1+q^{j-k}} \right) \frac{t^k}{k!}$$

(9)

$$= \sum_{k=0}^{\infty} \left([2]_q \sum_{n=0}^{\infty} (-1)^n q^{-kn} [n+x]_q^k \right) \frac{t^k}{k!}$$

Differentiating both sides with respect to t in (5), (6) and comparing coefficients, we obtain the following:

Theorem 1. For $m \geq 0$, we have

$$E_{m,q}^{(-m,1)}(x) = [2]_q \sum_{n=0}^{\infty} q^{-nm} [n+x]_q^m (-1)^n.$$

(10)

Corollary 2. Let $m \in \mathbb{N}$. Then there exists

$$E_{m,q}^{(-m,1)} = [2]_q \sum_{n=1}^{\infty} q^{-nm}[n]_q^m (-1)^n, \text{ and } E_{0,q}^{(0,1)} = \frac{[2]_q}{2}.$$

(11)

Note that Corollary 2 is a q-analogue of $\zeta_E(m)$, for any positive integer m. Let χ be a primitive Dirichlet character with conductor $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$. For $m \in \mathbb{N}$, we define

$$E_{m,\chi,q}^{(-m,1)} = \int_X q^{-(m+1)x} \chi(x) [x]^m \mu_{-q}(x), \text{ for } m \geq 0.$$

(12)

Note that

$$E_{m,\chi,q}^{(-m,1)} = \frac{[2]_q}{[2]_q^d [d]_q^m} \sum_{i=0}^{d-1} q^{-mi} (-1)^i \chi(i) \int_{\mathbb{Z}_p} q^{-d(m+1)} \left(\frac{i}{d} + x \right)_q^m \mu_{-q^d}(x)$$

(13)

$$= \frac{[2]_q}{[2]_q^d [d]_q^m} \sum_{i=0}^{d-1} \chi(i) (-1)^i q^{-mi} E_{m,q}^{(-m,1)} \left(\frac{i}{d} \right).$$
3. **q-ANALOGS OF ZETA FUNCTIONS**

In this section, we assume \(q \in \mathbb{R} \) with \(0 < q < 1 \). Now we consider the \(q \)-extension of the Euler zeta function as follows:

\[
\zeta_{q,E}(s) = [2]_q \sum_{n=1}^{\infty} \frac{(-1)^n q^{ns}}{[n]^s_q}, \quad \text{where } s \in \mathbb{C}.
\]

By (11), we obtain the following theorem.

Theorem 3. For \(m \in \mathbb{N} \), we have

\[
\zeta_{q,E}(-m) = E_{m,q}^{(-m,1)}.
\]

From Theorem 1, we can also define the \(q \)-extension of Hurwitz’s type Euler \(\zeta \)-function as follows: For \(s \in \mathbb{C} \), define

\[
\zeta_{q,E}(s, x) = [2]_q \sum_{n=0}^{\infty} \frac{(-1)^n q^{sn}}{[n + x]^s_q}.
\]

Note that \(\zeta_{q,E}(s, x) \) is an analytic continuation in whole complex \(s \)-plane.

By (14) and Theorem 1, we have the following theorem.

Theorem 4. For any positive integer \(k \), we have

\[
\zeta_{q,E}(-k, x) = E_{k,q}^{(-k,1)}(x, q).
\]

For \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod{2} \), let \(\chi \) be Dirichlet character with conductor \(d \). By (13), the generalized \(q \)-Euler numbers attached to \(\chi \) can be defined as

\[
E_{m,\chi,q}^{(-m,1)} = \frac{[2]_q}{[2]_d} \frac{d}{d_q^m} \sum_{i=0}^{d-1} \chi(i) q^{-mi} (-1)^i E_{m,d_q^i}(\frac{i}{d}).
\]

For \(s \in \mathbb{C} \), we define

\[
L_{q,E}(s, \chi) = [2]_q \sum_{n=1}^{\infty} \frac{\chi(n)(-1)^n q^{sn}}{[n]^s_q}.
\]

It is easy to see that

\[
L_{q,E}(\chi, s) = \frac{[2]_q}{[2]_d} \frac{d}{d_q^s} \sum_{a=1}^{d} \chi(a)(-1)^a q^{sa} \zeta_{q,d,E}(s, \frac{a}{d}).
\]

By (16), (17), (18), we obtain the following theorem.
Theorem 5. Let \(k \in \mathbb{N} \). Then there exists
\[
L_{q,E}(-k, \chi) = E_{k, \chi, q}^{(-k, 1)}.
\]

Let \(a \) and \(F \) be integers with \(0 < a < F \). For \(s \in \mathbb{C} \), we consider the functions \(H_q(s, a, F) \) as follows:
\[
H_{q,E}(s, a, F) = [2]_q \sum_{m \equiv a(F), m > 0} q^{ns} (-1)^m \left[\frac{[2]_q}{[2]_{qF}} \right] (-1)^a q^a \zeta_{qF}(s, \frac{a}{F}).
\]

Then we have
\[
H_{q,E}(-n, a, F) = (-1)^a q^a \left[\frac{[2]_q}{[2]_{qF}} \right] [F]_q^n E_{n, qF}^{(-n, 1)} (\frac{a}{F}),
\]
where \(n \) is any positive integer .

In the recent paper, the \(q \)-analogue of Riemann zeta function related to twisted \(q \)-Bernoulli numbers was studied by Y. Simsek (see [1, 26, 30]). In [30], Y. Simsek have studies the twisted \(q \)-Bernoulli numbers which can be viewed as an interpolating of the \(q \)-analogue of Riemann zeta function at negative integers. In this paper, we have shown that the \(q \)-analogue of Euler zeta function interpolates the \(q \)-Euler numbers at negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers, cf. [5, 6, 30].

References

1. M. Cenkci, Y. Simsek, V. Kurt, *Further remarks on multiple \(p \)-adic \(q \)-L-function of two variables*, Adv. Stud. Contemp. Math. 14 (2007), 49-68.
2. M. Cenkci, *The \(p \)-adic generalized twisted \((h, q) \)-Euler-l-function and its applications*, Adv. Stud. Contemp. Math. 15 (2007), 37-47.
3. M. Cenkci, M. Can, *Some results on \(q \)-analogue of the Lerch zeta function*, Adv. Stud. Contemp. Math. 12 (2006), 213-223.
4. M. Cenkci, M. Can, V. Kurt, *\(p \)-adic interpolation functions and Kummer-type congruences for \(q \)-twisted and \(q \)-generalized twisted Euler numbers*, Adv. Stud. Contemp. Math. 9 (2004), 203-216.
5. T. Kim, *Euler Numbers and Polynomials Associated with Zeta Functions*, Abstract and Applied Analysis 2008 (2008), Article ID 581582, 11 pages.
6. T. Kim, *\(q \)-Euler numbers and polynomials associated with \(p \)-adic \(q \)-integrals*, Journal of Nonlinear Mathematical Physics 14 (2007), 15-27.
7. T. Kim, *\(q \)-Volkenborn Integration*, Russian J. Math. Phys. 9 (2002), 288-299.
8. T. Kim, *q*-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russian J. Math. Phys. **15** (2008), 51-57.

9. T. Kim, *q*-extension of the Euler formula and trigonometric functions, Russian J. Math. Phys. **14** (2007), 275-278.

10. T. Kim, J. y. Choi, J. Y. Sug, Extended *q*-Euler numbers and polynomials associated with fermionic *p*-adic *q*-integral on *Z*_p, Russian J. Math. Phys. **14** (2007), 160-163.

11. T. Kim, *q*-generalized Euler numbers and polynomials, Russian J. Math. Phys. **13** (2006), 293-298.

12. T. Kim, Multiple *p*-adic *L*-function, Russian J. Math. Phys. **13** (2006), 151-157.

13. T. Kim, Power series and asymptotic series associated with the *q*-analog of the two-variable *p*-adic *L*-function, Russian J. Math. Phys. **12** (2005), 186-196.

14. T. Kim, Analytic continuation of multiple *q*-zeta functions and their values at negative integers, Russian J. Math. Phys. **11** (2004), 71-76.

15. T. Kim, On Euler-Barnes multiple zeta functions, Russian J. Math. Phys. **10** (2003), 261-267.

16. T. Kim, The modified *q*-Euler numbers and polynomials, Adv. Stud. Contemp. Math. **16** (2008), 161-170.

17. T. Kim, A note on *p*-adic *q*-integral on *Z*_p associated with *q*-Euler numbers, Adv. Stud. Contemp. Math. **15** (2007), 133-137.

18. T. Kim, A note on *p*-adic invariant integral in the rings of *p*-adic integers, Adv. Stud. Contemp. Math. **13** (2006), 95-99.

19. H. Ozden, Y. Simsek, S.-H. Rim, I. N. Cangul, On interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math. **15** (2007), 187-194.

20. H. Ozden, Y. Simsek, I. N. Cangul, Multivariate interpolation functions of higher-order *q*-Euler numbers and their applications, Abstract and Applied Analysis **2008** (2008), Art. ID 390857, 16 pages.

21. H. Ozden, Y. Simsek, I. N. Cangul, Euler polynomials associated with *p*-adic *q*-Euler measure, General Mathematics **15** (2007), 24-37.

22. Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions, Adv. Stud. Contemp. Math. **16** (2008), 251-278.

23. Y. Simsek, Y. Osman, V. Kurt, On interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math. **15** (2007), 187-194.

24. Y. Simsek, Hardy character sums related to Eisenstein series and theta functions, Adv. Stud. Contemp. Math. **12** (2006), 39-53.
25. Y. Simsek, *Remarks on reciprocity laws of the Dedekind and Hardy sums*, Adv. Stud. Contemp. Math. 12 (2006), 237-246.

26. Y. Simsek, *Theorems on twisted L-function and twisted Bernoulli numbers*, Adv. Stud. Contemp. Math. 11 (2005), 205-218.

27. Y. Simsek, D. Kim, S.-H. Rim, *On the two-variable Dirichlet q-L-series*, Adv. Stud. Contemp. Math. 10 (2005), 131-142.

28. Y. Simsek, A. Mehmet, *Remarks on Dedekind eta function, theta functions and Eisenstein series under the Hecke operators*, Adv. Stud. Contemp. Math. 10 (2005), 15-24.

29. Y. Simsek, Y. Sheldon, *Transformation of four Titchmarsh-type infinite integrals and generalized Dedekind sums associated with Lambert series*, Adv. Stud. Contemp. Math. 9 (2004), 195-202.

30. Y. Simsek, *On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers*, Russian J. Math. Phys. 13 (2006), 340-348.