Microbiome profiling of the onion thrips, *Thrips tabaci* Lindeman (Thysanoptera: Thripidae)

Suresh J. Gawande1*, Sivalingam Anandhan1, Ashish Ingle1, Praveen Roylawar1, Kiran Khandagale1, Tushar Gawai1, Alana Jacobson2, Ramasamy Asokan3, Major Singh1

1 ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India, 2 Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America, 3 ICAR-Indian Institute of Horticultural Research, Hessarghatta Lake, Bengaluru, India

* sureshgawande76@gmail.com

Abstract

The gut microbial community structure of adult *Thrips tabaci* collected from 10 different agro-climatically diverse locations of India was characterized by using the Illumina MiSeq platform to amplify the V3 region of the 16S rRNA gene of bacteria present in the sampled insects. Analyses were performed to study the bacterial communities associated with *Thrips tabaci* in India. The complete bacterial metagenome of *T. tabaci* was comprised of 1662 OTUs of which 62.25% belong to known and 37.7% of unidentified/unknown bacteria. These OTUs constituted 21 bacterial phyla of 276 identified genera. Phylum *Proteobacteria* was predominant, followed by *Actinobacteria*, *Firmicutes*, *Bacteroidetes* and *Cyanobacteria*. Additionally, the occurrence of the reproductive endosymbiont, *Wolbachia* was detected at two locations (0.56%) of the total known OTUs. There is high variation in diversity and species richness among the different locations. *Alpha*-diversity metrics indicated the higher gut bacterial diversity at Bangalore and lowest at Rahuri whereas higher bacterial species richness at *T. tabaci* samples from Imphal and lowest at Jhalawar. *Beta* diversity analyses comparing bacterial communities between the samples showed distinct differences in bacterial community composition of *T. tabaci* samples from different locations. This paper also constitutes the first record of detailed bacterial communities associated with *T. tabaci*. The location-wise variation in microbial metagenome profile of *T. tabaci* suggests that bacterial diversity might be governed by its population genetic structure, environment and habitat.

Introduction

Bacterial communities in insects play an important role in their growth, development, immunological, physiological and morphological functioning. The majority of insects are believed to harbour heritable bacterial symbionts [1] that can be pathogenic, mutualist, or commensal, with some required for survival while others are not. Across Insecta, microorganisms have been reported to positively influence many functions, including the production of essential amino acids from nutrient poor diets [2], protection against toxic agents [3–5], aide in the
production of honey [6], protection against parasitoids [7], virus transmission [8], insecticide resistance [9], degradation of phytotoxins and pesticides [10]. Conversely, some are reported to negatively impact insects by causing sterility and distorting sex ratios [11,12]. Despite their influence on important metabolic processes in the host, they have not been accurately profiled due to the difficulty in isolating and culturing many of the symbionts. Identification of symbionts has been improved with the availability of next generation sequencing technology, which, bypasses the need of isolating and culturing, can detect microbes present in very low amounts, and facilitates the study of the microbial community in its natural habitat with accurate taxonomic identification and their relative abundances [13]. Characterizing the diversity of symbionts is an important first step towards understanding their importance in the life history of organisms.

There is a growing area of interest regarding the presence and influence of heritable endosymbionts on the biology and ecology of economically important insects, and on the phenotypes that influence pest status. Several studies on endosymbionts have targeted pest species that damage crops by feeding on plants and transmitting plant pathogens such as aphids [14], whiteflies [15], and thrips [16]. The studies have identified endosymbionts that influence fitness [17], virus transmission [8], host plant preferences [18], protection from biological control agents [7], and insecticide resistance [9]. Endosymbionts are also of interest as targets for future pest control strategies that could be achieved by disturbing the essential symbionts of insect pests and symbionts which contribute to their pest status [19].

Onion thrips, *Thrips tabaci* Lindeman (Thysanoptera: Thripidae), is a globally important polyphagous insect pest. It has been collected from approximately 300 plant species that includes economically important crops such as leek, garlic, tobacco, cabbage, pea, melon, lettuce, potato, tomato, carnation, and cotton [20,21], and causes more than $1 billion losses worldwide to onion alone [22]. In addition to damaging crops through direct feeding, *T. tabaci* is a vector of the Orthotospoviruses *Iris yellow spot virus* (IYSV) and *Tomato spotted wilt virus* (TSWV) [23,24]. Onion thrips exhibits three different reproductive modes (thelytoky, arrhenotoky and deuterotoky) [25], host-associated lineages, variation in virus (TSWV) vector competence [26], heteroplasmy of *mtCOI* haplotypes [27] and develop resistance to insecticides quickly. Variation in these phenotypes may be due to selection on standing genetic variation but could be influenced by their microbiome. Insect bacterial communities may also influence their reproduction [28,29] and virus transmission efficiency of thrips [30].

To date, limited information is available regarding the endosymbiont profiles of this species; there is one study that examined one population using culturing methods [30] or only one bacteria species was examined [25]. The objectives of this study were to identify bacterial microbiota present in *T. tabaci* from ten distinct locations of India using the Illumina MiSeq platform to sequence the V3 region of 16s rRNA, and examine patterns of bacterial diversity within and among these locations.

Materials and methods

Ethics statement

Thrips tabaci has not been notified under any act or laws and rules thereof of the Government of India as an endangered or threatened species restricting or regulating its collection and observation. Therefore, permits were not required for collecting *T. tabaci* for the present study.

Insect sampling

Adult *T. tabaci* were collected from 10 different states in India during rabi season (December-June) of the year 2013–2014. The states sampled encompassed different climatic zones in India, including temperate, tropical, and subtropical zones of the country (Fig 1).
Approximately 500 thrips were collected from each state (50 thrips from each field, 10 fields per location), and were sampled within 1–2 days from each other. Adult thrips were dislodged from onion leaves with a fine brush into a 2 ml Eppendorf tubes containing 95% ethanol. To make certain offspring from different adults were collected, a distance of 1.5 m was kept between sampled plants. Voucher specimens are located at plant protection section, ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune.
DNA extraction

Adult *T. tabaci* were surface sterilized by rinsing them with 100% ethanol. Genomic DNA was extracted from pool of 500 adult thrips from each location using a standard phenol-chloroform and ethanol precipitation method [31].

Bacterial 16S rRNA gene amplification, library preparation and sequencing

16S rRNA gene sequencing was performed at SciGenom Labs Private Limited (Cochin, India) on an Illumina MiSeq 2 x 151 platform (Illumina, Inc., San Diego, CA, USA). Base quality score distributions, average base content per read and GC distribution in the reads were used as quality check parameters for sequences obtained from the sequencer (Illumina MiSeq).

Bioinformatics and statistical analysis

To identify bacteria present in the samples sequence data needed to be filtered for quality, aligned into contigs, and blasted against existing bacterial sequence databases. An average of 361,241 paired end sequences with a length of 151bp were obtained from sequencing 10 samples (minimum 218,538; maximum: 499,241). Gut microbiome analysis was performed with QIIME2 2017.9 framework [32]. Raw sequences were quality filtered and denoised followed by chimera filtering with DADA2 [33] to obtain amplicon sequence variants (ASV). Low abundant ASVs with a total frequency less than ten were filtered out of the dataset. Taxonomy assignment was performed with a pre-trained Silva 132 99% OTUs based naïve Bayes classifier and confidence threshold of 0.7 using q2-feature-classifier plugin [34]. ASVs matching with chloroplast, mitochondria and eukaryotic sequences were removed from the database for downstream analysis. A taxonomic summary table was generated for each level of taxonomy for phylotype abundance.

Sequence alignment using MAFFT [35] was performed for all ASVs and used for the construction of phylogeny with fasttree2 [36]. Alpha rarefaction plotting was performed with a minimum and a maximum depth of 100 and 10000 respectively to identify an ideal sampling depth for further analysis. Three alpha diversity indices namely, Shannon, chao1, and simpson_e at ideal sampling depth have been estimated. The similarity of bacterial communities between samples (beta diversity) was quantified using a metric based on phylotype abundances. The distance matrix was generated using weighted UniFrac approach [37], and a jackknife test with 100 iterations was performed to construct a consensus UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree. Principal Coordinates Analysis (PCoA) was performed to generate a 3D PCoA plot in EMPeror [38].

ANCOM compares the log ratio of the abundance of each taxon to the abundance of all the remaining taxa one at a time [39]. ANCOM (ANalysis of Composition Of Microbiomes) was performed to identify taxa with differential abundance among sample groups. ANCOM is now incorporated into the QIIME suite for metagenome analyses. For ANCOM analysis samples were grouped into four climatic zones according to Köppen classification viz; (Monatne (MON): Shrinagar; Humid subtropical (HST): Hisar, Imphal, Jabalpur, Samastipur; Tropical wet and dry (TWD): Pune, Rahuri, Chiplima and Semi-arid (SA): Bangalore and Jhalawar.

Results

Sequencing data

The Illumina MiSeq sequencing of the V3 region of 16S rRNA gene of onion thrips from ten different locations yielded 218,538–499,241 raw reads per location. Nearly 80% of the total reads had Phred scores greater than 30 (>Q30; error-probability > = 0.001) indicating good
quality of data. GC content of the reads ranged from 40 to 60% and after filtering contig length (~150bp). After quality filtering 39,976–140,603 reads per sample remained. Pre-processed reads from all samples were pooled for a total of 962,166 reads, and from them, a total of 1662 OTUs were identified (Table 1).

Microbiome profile of T. tabaci

A total of 21 phyla, which constitute 62.25% of the total 16S rRNA gene data set, were detected from *T. tabaci* in this study (S1 File). The majority of bacterial contigs were of unknown origin (33%) while 4.7% were unknown bacteria. The contigs that do not have any alignment against the taxonomic database were categorized as “Unassigned”. From the identifiable bacterial sequences, the majority belonged to phylum *Proteobacteria*, followed by *Firmicutes*, *Actinobacteria*, *Bacteroidetes* and *Cyanobacteria* (Fig 2, Fig 3). Across all locations, these five phyla comprised more than 60% of the total microbiome and more than 96% of identified microbiome of *T. tabaci*.

At the bacterial class level, the *Proteobacteria* were comprised of 26 Gamma-, 7.1% Alpha-*proteobacteria*. In *Firmicutes*, classes *Bacilli* and *Clostridia* represented 14.1% and 10%, respectively. In the phylum *Actinobacteria*, classes *Actinobacteria* and *Coriobacteria* represented 16.8% and 3.5%, respectively. Class *Bacteroidia* of phylum *Bacteroidetes* constituted 10.6% of total identified microbiome and classes *Oxyphotobacteria* and *Melainabacteria* of phylum *Cyanobacteria* represented 3.4%, and 0.2%, respectively. At the genus level, a total 276 genera were identified from the present study. The highest number of genera are from phylum *Proteobacteria* (69) followed by *Firmicutes* (61), *Actinobacteria* (44), *Bacteroidetes* (29) and *Chloroflexi* (13). Among them, the genus *Streptococcus* (phylum *Firmicutes*) was most prevalent and comprised 8.03% of contigs, followed by *Pseudomonas* (5.4%) (phylum *Proteobacteria*), *Rosenbergiella* (4.5%) (phylum *Proteobacteria*), *Alistipes* (2.7%) (phylum *Bacteroidetes*) and *Saccharopolyspora* (2.05%) (phylum *Cyanobacteria*). In addition, reproductive endosymbiont *Wolbachia* was recorded at 0.56% of the total OTUs. A few plant endophytes were also identified from gut of onion thrips in the present study such as *Actinomyces*, *Microbacterium*, and *Burkholderia* at very low levels.

Microbiome diversity of T. tabaci at different location

Alpha-diversity indices (Shannon, Simpson-e) describe the diversity of the microbial community at each sampling location and showed that bacterial diversity is higher in Bangalore, followed by Jabalpur and that the lowest bacterial diversity is observed in Rahuri. Another alpha

Sample	Latitude/Longitude	No. of Reads	OTUs
Bangalore	13.135/77.496	112995	317
Chiplima	21.345/83.91	70134	122
Hisar	29.1491/75.7216	89733	185
Imphal	24.8170/93.9368	140603	234
Jabalpur	23.2072/79.9539	102781	221
Jhalawar	24.5399/76.1430	39976	39
Pune	18.8430/73.8848	139747	146
Rahuri	19.3490/74.6460	73581	45
Samastipur	25.9844/85.6744	101007	225
Srinagar	33.9842/74.7990	91609	128

https://doi.org/10.1371/journal.pone.0223281.t001
diversity index (Chao1) describes the species richness at each sampling location. Among ten locations, bacterial richness is found to be highest in Bangalore and lowest in the Jhalawar (Table 2). Beta diversity considers the variations in bacterial community composition for different environments. Bacterial diversity among locations was assessed using both the weighted and unweighted UniFrac approach. UniFrac distances are based on the fraction of branch length of the 16S rRNA phylogenetic tree shared between two communities. The UPGMA tree and PCoA plots were constructed using the weighted UniFrac distance matrix. Locations were clustered based on the bacterial community structure. From PCoA plot it has been seen that there is high diversity among the bacterial communities of T. tabaci from different geographical location (Fig 4). PC-1 and PC-2 explain 61.87% and 22.1% cumulative variance in the microbiome of the T. tabaci, respectively. ANCOM analyses reveals two genera in Montane zone Chryseobacterium and Exiguobacterium found to be higher in Shrinagar location (S2 File, S3 File).

Fig 2. The relative abundance of dominant bacterial Phyla represented in T. tabaci samples collected from all ten locations across India.

https://doi.org/10.1371/journal.pone.0223281.g002

Fig 3. The abundance of different phyla of bacterial community of T. tabaci from ten different locations of India.

https://doi.org/10.1371/journal.pone.0223281.g003
Microorganisms exhibit a variety of interactions with their hosts and most of the time these interactions are beneficial to the insect [40]. Despite being an economically important pest, the information on insect-microbe interactions of *T. tabaci* is very limited. Recently, NGS has become the method of choice for insect microbiome analyses due to the ability to detect both culturable and non-culturable bacteria. The present study constitutes the first detailed examination of bacterial communities in *T. tabaci* using sequencing methods. In this study phyla *Proteobacteria*, *Actinobacteria*, *Firmicutes* and *Bacteroidetes* together constituted more than 90% of the total *T. tabaci* identified microbiome. These phyla are also reported to be the predominant in the microbiomes of other thrips species [16,41,42], several insects [43,44,45], and amphibians [46].

Phylum *Proteobacteria* was predominant at four of the ten reported locations. *Proteobacteria* plays an important role in carbohydrate degradation in Wood Borer, *Saperda vestita* [47], vitamins synthesis [48] and detoxification of pesticides fruit fly *Bactrocera dorsalis* [49,10]. The phylum *Actinobacteria*, was abundant at two locations and is reported to increase metabolic versatility and the ability to exploit the wide range of nutritional resources e.g. polysaccharides like cellulose [50] and hemicelluloses in termites [51] and production of secondary metabolites with antibiotic properties [52]. The third most prevalent phylum was *Firmicutes*, which predominated at three locations. Bacteria in *Firmicutes* were also abundant in guts of termites and honeybees [53,54]. Several studies in insects and animals have shown that *Firmicutes* increased the ability to metabolize food resources to increase energy conversion from diet [55], and assist in the digestion of cellulose and hemicelluloses [56]. *Bacteroidetes* were the fourth predominant phylum in present16S rDNA data set. The members of this phyla are known for their role in the production of enzymes such as glucanase, mannanase and xylanase that aid in complex carbohydrate metabolism [57,58]. Phylum *Cyanobacteria* was prevalent in one location, and these bacteria are associated with high levels of protein, vitamins, and microelements. They are known to release toxins during their life that lead to concentration dependent, and species-specific negative effects on animal feeders [59]. These five phyla were also found to be predominant in the microbiome of the other thrips species *Scirtothrips dorsalis* and *Hoplothrips campathicus* [16,42].

We detected the genus *Wolbachia*, in two out of ten locations. *Wolbachia* infects over 40% of all arthropods [60] and is known to manipulate sex determination mechanisms and sex ratio by cytoplasmic factors, cytoplasmic incompatibility [61,62]. This is the first report of *Wolbachia* in *T. tabaci*. Studies have looked presence of *Wolbachia* in different thrips species.

Sample/Locations	Shannon	Chao1	Simpson_e
Bangalore	7.82	319.49	0.59
Chiplima	5.01	123.39	0.08
Hisar	6.49	189.44	0.20
Imphal	6.82	237.65	0.21
Jabalpur	7.17	227.70	0.49
Jhalawar	4.00	39.00	0.28
Pune	5.74	146.45	0.13
Rahuri	2.88	46.10	0.11
Samastipur	7.00	234.14	0.33
Shrinagar	5.56	131.25	0.14

https://doi.org/10.1371/journal.pone.0223281.t002

Discussion

Microorganisms exhibit a variety of interactions with their hosts and most of the time these interactions are beneficial to the insect [40]. Despite being an economically important pest, the information on insect-microbe interactions of *T. tabaci* is very limited. Recently, NGS has become the method of choice for insect microbiome analyses due to the ability to detect both culturable and non-culturable bacteria. The present study constitutes the first detailed examination of bacterial communities in *T. tabaci* using sequencing methods. In this study phyla *Proteobacteria*, *Actinobacteria*, *Firmicutes* and *Bacteroidetes* together constituted more than 90% of the total *T. tabaci* identified microbiome. These phyla are also reported to be the predominant in the microbiomes of other thrips species [16,41,42], several insects [43,44,45], and amphibians [46].

Phylum *Proteobacteria* was predominant at four of the ten reported locations. *Proteobacteria* plays an important role in carbohydrate degradation in Wood Borer, *Saperda vestita* [47], vitamins synthesis [48] and detoxification of pesticides fruit fly *Bactrocera dorsalis* [49,10]. The phylum *Actinobacteria*, was abundant at two locations and is reported to increase metabolic versatility and the ability to exploit the wide range of nutritional resources e.g. polysaccharides like cellulose [50] and hemicelluloses in termites [51] and production of secondary metabolites with antibiotic properties [52]. The third most prevalent phylum was *Firmicutes*, which predominated at three locations. Bacteria in *Firmicutes* were also abundant in guts of termites and honeybees [53,54]. Several studies in insects and animals have shown that *Firmicutes* increased the ability to metabolize food resources to increase energy conversion from diet [55], and assist in the digestion of cellulose and hemicelluloses [56]. *Bacteroidetes* were the fourth predominant phylum in present16S rDNA data set. The members of this phyla are known for their role in the production of enzymes such as glucanase, mannanase and xylanase that aid in complex carbohydrate metabolism [57,58]. Phylum *Cyanobacteria* was prevalent in one location, and these bacteria are associated with high levels of protein, vitamins, and microelements. They are known to release toxins during their life that lead to concentration dependent, and species-specific negative effects on animal feeders [59]. These five phyla were also found to be predominant in the microbiome of the other thrips species *Scirtothrips dorsalis* and *Hoplothrips campathicus* [16,42].

We detected the genus *Wolbachia*, in two out of ten locations. *Wolbachia* infects over 40% of all arthropods [60] and is known to manipulate sex determination mechanisms and sex ratio by cytoplasmic factors, cytoplasmic incompatibility [61,62]. This is the first report of *Wolbachia* in *T. tabaci*. Studies have looked presence of *Wolbachia* in different thrips species.
but did not find it in T. tabaci [25,29]. Wolbachia has been reported in other thrips species such as Echinothrips americanus, Gynaikothrips ficorum, Suocerathrips linguis [29], Thrips palmi [63] and Hoplothrips carpathicus [42] but their role in T. tabaci is unclear.
Few plant origin endophytes such as *Actinomyces*, *Microbacterium*, and *Burkholderia* were recorded in the microbiome of *T. tabaci*. Theses endophytes might have been acquired by the insect during feeding on plants. Their occurrence in insects gut has been well documented in previous studies \[64,65\].

Streptococcus, *Saccharopolyspora*, *Phormidium*, *Pseudomonas*, *Prevotella*, *Serratia*, *Erwinia* and *Propionibacterium* were the most predominant genera in the microbiome of *T. tabaci*, and were also reported to be predominant in the microbiome of several other thrips species \[16,66,67,30,68,42\].

This study marks the first attempt to document the endosymbiont diversity associated with *T. tabaci* in India. Diversity indices showed that *T. tabaci* from Bangalore has the highest bacterial diversity and Imphal has the highest species richness. Further UPGMA and PCoA analyses showed bacterial communities structured by location. This spatial variation in the microbiome *T. tabaci* might be due to geographical location, climatic conditions and host phylogeny. In several insects, variation in the microbiome with respect to climatic conditions, the geography of habitat, and phylogeny of the insect have been documented \[69,42,14\].

Conclusion

This paper described the microbiome of *T. tabaci* collected from the different geographical locations of India using NGS approach. Findings of the present study increased understanding of microbiome of *T. tabaci* as well as its variation with respect to geography and climatic conditions. Though it is first report of its kind in *T. tabaci*, for more in depth study of *T. tabaci* microbiome needs to be done at different developmental stages for better understanding of its role in development and growth of *T. tabaci*.

Supporting information

S1 File. Microbiome profile of *T. tabaci*.
(XLSX)

S2 File. Volcano plot of ANCOM analysis.
(PNG)

S3 File. Percentile abundances of taxa across the groups.
(TSV)

Acknowledgments

The authors are grateful to the Indian Council of Agricultural Research (ICAR) for funding.

Author Contributions

Conceptualization: Suresh J. Gawande, Ramasamy Asokan.

Data curation: Sivalingam Anandhan.

Formal analysis: Sivalingam Anandhan, Kiran Khandagale, Tushar Gawai.

Funding acquisition: Suresh J. Gawande.

Investigation: Ashish Ingle, Praveen Roylawar, Kiran Khandagale, Tushar Gawai.

Methodology: Ashish Ingle, Praveen Roylawar.

Project administration: Suresh J. Gawande.
References

1. Duron O, Hurst GD. Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biology. 2013 Dec; 11(1):45.

2. Hansen AK, Moran NA. Aphid genome expression reveals host–symbiont cooperation in the production of amino acids. Proceedings of the National Academy of Sciences. 2011 Feb 15; 108(7):2849–54.

3. Douglas AE. The ecology of symbiotic micro-organisms. In Advances in Ecological Research 1995 Jan 1 (Vol. 26, pp. 69–103). Academic Press.

4. Dillon RJ, Vennard CT, Charnley AK. Pheromones: exploitation of gut bacteria in the locust. Nature. 2000 Feb; 403(6772):851.

5. Houk EA, Griffiths GW. Intracellular symbionts of the Homoptera. Annual review of entomology. 1980 Jan; 25(1):161–87.

6. Lee FJ, Miller KI, McKinlay JB, Newton IL. Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS microbiology ecology. 2018 Jun 6; 94(8):fyf113.

7. Vorburger C. Symbiont-conferring resistance to parasitoids in aphids–challenges for biological control. Biological Control. 2018 Jan 1; 116:17–26.

8. Su Q, Pan H, Liu B, Chu D, Xie W, Wu Q, Wang S, Xu B, Zhang Y. Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus. Scientific Reports. 2013 Mar 4; 3:1367.

9. Zhao Y, Zhang S, Luo JY, Wang CY, Lv LM, Cui JJ. Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China. Scientific reports. 2016 Apr 15; 6:22958. https://doi.org/10.1038/srep22958 PMID: 27079679

10. Dickey AM, Trease AJ, Jara-Cavieiras A, Kumar V, Christenson MK, Potluri LP, Morgan JK, Shatters RG Jr, Mckenzie CL, Davis PH, Osborne LS. Estimating bacterial diversity in Scirtothrips dorsalis (Thysanoptera: Thripidae) via next generation sequencing. The Florida entomologist. 2014 Jun; 97(2):362. PMID: 25382863

11. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehly TJ, Zchori-Fein E, Hunter MS. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. science. 2011 Apr 8; 332(6026):254–6. https://doi.org/10.1126/science.1199410 PMID: 21474763
18. Ferrari J, Scarborough CL, Godfray HC. Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia. 2007 Aug 1; 153(2):323–9. https://doi.org/10.1007/s00442-007-0730-2 PMID: 17415589

19. Douglas AE. Symbiotic microorganisms: untapped resources for insect pest control. TRENDS in Biotechnology. 2007 Aug 1; 25(8):338–42. https://doi.org/10.1016/j.tibtech.2007.06.003 PMID: 17576018

20. Lewis T. Thrips as crop pests. Cab International; 1997.

21. Díaz-Montano J, Fuchs M, Nault BA, Fail J, Shelton AM. Onion thrips (Thysanoptera: Thripidae): a global pest of increasing concern in onion. Journal of Economic Entomology. 2011 Feb 1; 104(1):1–3. https://doi.org/10.1603/ec10269 PMID: 21404832

22. Gent DH, du Toit LJ, Fichtner SF, Mohan SK, Pappu HR, Schwartz HF. Iris yellow spot virus: an emerging threat to onion bulb and seed production. Plant Disease. 2006 Dec; 90(12):1468–80. https://doi.org/10.1094/ PD-90-1468 PMID: 30780964

23. Rotenberg D, Jacobson AL, Schneweis DJ, Whitfield AE. Thrips transmission of tospoviruses. Current Opinion in Virology. 2015 Dec 1; 15:80–9. https://doi.org/10.1016/j.coviro.2015.08.003 PMID: 26340723

24. Riley DG, Joseph SV, Srinivasan R, Diffie S. Thrips vectors of tospoviruses. Journal of Integrated Pest Management. 2011 Apr 1; 2(1):1–0.

25. Nault BA, Shelton AM, Gangloff-Kaufmann JL, Clark ME, Werren JL, Cabrera-la Rosa JC, Kennedy GG. Reproductive modes in onion thrips (Thysanoptera: Thripidae) populations from New York onion fields. Environmental Entomology. 2006 Oct 1; 35(5):1264–71.

26. Jacobson AL, Kennedy GG. Specific insect-virus interactions are responsible for variation in competency of different Thrips tabaci isolines to transmit different Tomato spotted wilt virus isolates. PLoS One. 2013 Jan 24; 8(1):e54567. https://doi.org/10.1371/journal.pone.0054567 PMID: 23358707

27. Gawande SJ, Anandhan S, Ingle AA, Jacobson A, Asokan R. Heteroplasmy due to coexistence of mtCOI haplotypes from different lineages of the Thrips tabaci cryptic species group. Bulletin of entomological research. 2017 Aug; 107(4):534–42. https://doi.org/10.1017/S0007485317000025 PMID: 28137324

28. Koivisto RK, Braig HR. Microorganisms and parthenogenesis. Biological Journal of the Linnean Society. 2003 May 1; 79(1):43–58.

29. Kumm S, Moritz G. First detection of Wolbachia in arrhenotokous populations of thrips species (Thysanoptera: Thripidae and Phlaeothripidae) and its role in reproduction. Environmental Entomology. 2008 Dec 1; 37(6):1422–8. https://doi.org/10.1603/0046-225x-37.6.1422 PMID: 19161685

30. De Vries EJ, Van der Wurff AW, Jacobs G, Breeuwer JA. Onion thrips, Thrips tabaci, have gut bacteria that are closely related to the symbionts of the western flower thrips, Frankliniella occidentalis. Journal of Insect Science. 2008 Jan 1; 8(1):23.

31. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold spring harbor laboratory press; 1989.

32. Bolyen E, Jia Ram R, Matthew RD, Nicholas AB, Christian CA, Gabriel A, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. (2019): 1.

33. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nature methods. 2016 Jul; 13(7):581. https://doi.org/10.1038/nmeth.3869 PMID: 27224823

34. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Caporaso JG. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018 Dec; 6(1):90. https://doi.org/10.1186/s40168-018-0470-z PMID: 29773078

35. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013 Jun 1; 30(4):772–80. https://doi.org/10.1093/molbev/ms3010 PMID: 23329890

36. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS one. 2010 Mar 10; 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490 PMID: 20224823

37. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005 Dec 1; 71(12):8228–35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005 PMID: 16332807

38. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPorer: a tool for visualizing high-throughput microbial community data. Gigascience. 2013 Dec 2; 2(1):16. https://doi.org/10.1186/2047-217X-2-16 PMID: 24280061

39. Mandal S, Van Treuren W, White RA, Eggesbo M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microbial ecology in health and disease. 2015 Dec 1; 26(1):27663.
40. Engel P, Moran NA. The gut microbiota of insects–diversity in structure and function. FEMS microbiology reviews. 2013 Sep 1; 37(5):699–735. https://doi.org/10.1111/1574-6976.12025 PMID: 23692388

41. Powell CM, Montiel AL, Beddingfield B, Hanson JD, Bextine BR. Comparison of Bacterial Communities of Flower Thrips (Frankliniella tritici) and Potato Psyllid (Bactericera cockerelli). Southwestern Entomologist. 2015 Dec; 40(4):765–74.

42. Kaczmarczyk A, Kucharczyk H, Kucharczyk M, Kapusta P, Seil J, Zielińska S. First insight into microbiome profile of fungivorous thrips Hoplopterus carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis. Scientific reports. 2018 Sep 26; 8(1):14376 https://doi.org/10.1038/s41598-018-32747-x PMID: 30258200

43. Jones RT, Sanchez LG, Fierer N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS one. 2013 Apr 16; 8(4):e61218. https://doi.org/10.1371/journal.pone.0061218 PMID: 23613815

44. Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 2014 Sep 1; 80(17):5254–64. https://doi.org/10.1128/AEM.01226-14 PMID: 24928884

45. Kim JM, Choi MY, Kim JW, Lee SA, Ahn JH, Song J, Kim SH, Weon HY. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). Journal of Microbiology. 2017 Jan 1; 55(1):21–30.

46. McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. The ISME journal. 2012 Mar; 6(3):588. https://doi.org/10.1038/ismej.2011.129 PMID: 21955991

47. Delalibera I Jr, Handelsman JO, RaffaKF. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environmental Entomology. 2005 Jun 1; 34(3):541–7.

48. McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proceedings of the National Academy of Sciences. 2007 Dec 4; 104(49):19392–7.

49. Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome. 2017 Dec; 5(1):13. https://doi.org/10.1186/s41068-017-0236-z PMID: 28413582

50. Pasti MB, Belli ML. Cellulolytic activity of actinomycetes isolated from termites (Termitidae) gut. FEMS microbiology letters. 1985 Jan 1; 26(1):107–12.

51. Schäfer A, Konrad R, Kühnigk T, Kämpfer P, Hertel H, König H. Hemicellulose-degrading bacteria and yeasts from the termite gut. Journal of Applied Bacteriology. 1996 May; 80(5):471–8. https://doi.org/10.1111/j.1365-2672.1996.tb03245.x PMID: 9072518

52. Kaltenpoth M. Actinobacteria as mutualists: general healthcare for insects?. Trends in microbiology. 2009 Dec 1; 17(12):529–35. https://doi.org/10.1016/j.tim.2009.09.006 PMID: 19853457

53. Auer L, Lazaika S, Sillam-Dussès D, Miambi E, O’Donohue M, Hernandez-Raquet G. Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors. Frontiers in microbiology. 2017 Dec 22; 8:2623. https://doi.org/10.3389/fmicb.2017.02623 PMID: 29312279

54. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tinglek S, Moran NA. A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology. 2011 Feb; 20(3):619–28. https://doi.org/10.1111/j.1365-294X.2010.04959.x PMID: 21175905

55. Chen B, Teh BS, Sun C, Hu S, Lu X, Boland W, Shao Y. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Scientific reports. 2016 Jul 8; 6:29505. https://doi.org/10.1038/srep29505 PMID: 27389097

56. Brown SD, Lamed R, Morag E, Borovok I, Shoham Y, Klingeman DM, Johnson CM, Yang Z, Land ML, Uytturkar SM, Keller M. Draft genome sequences for new insights from genomic analysis. Nature Reviews Microbiology. 2008 Feb; 6(2):121. https://doi.org/10.1038/nrmicro1817 PMID: 18180751

57. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology. 2008 Feb; 6(2):121. https://doi.org/10.1038/nrmicro1817 PMID: 18180751

58. Dai X, Zhu Y, Luo Y, Song L, Liu D, Liu L, Chen F, Wang M, Li J, Zeng X, Dong Z. Metagenomic insights into the fibrolytic microbiome in yak rumen. PloS one. 2012 Jul 13; 7(7):e40430. https://doi.org/10.1371/journal.pone.0040430 PMID: 22808161

59. Krivosheina MG. On insect feeding on cyanobacteria. Paleontological Journal. 2008 Oct 1; 42(6):596–9.
60. Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PloS one. 2012 Jun 7; 7(6):e38544. https://doi.org/10.1371/journal.pone.0038544 PMID: 22685581

61. Zug R, Hammerstein P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews. 2015 Feb; 90(1):89–111. https://doi.org/10.1111/brv.12098 PMID: 24618033

62. Beukeboom LW, Perrin N. The evolution of sex determination. Oxford University Press, USA; 2014.

63. Saurav GK, Daimei G, Rana VS, Popli S, Rajagopal R. Detection and Localization of Wolbachia in Thrips palmi Karny (Thysanoptera: Thripidae). Indian journal of microbiology. 2016 Jun 1; 56(2):167–71. https://doi.org/10.1007/s12088-016-0567-7 PMID: 27570308

64. Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R. Host plant induced variation in gut bacteria of Helicoverpa armigera. PloS one. 2012 Jan 26; 7(1):e30768. https://doi.org/10.1371/journal.pone.0030768 PMID: 22292034

65. López-Fernández S, Mazzoni V, Pedrazzoli F, Pertot I, Campisano A. A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants. Frontiers in microbiology. 2017 May 15; 8:834. https://doi.org/10.3389/fmicb.2017.00834 PMID: 28555131

66. De Vries EJ, Jacobs G, Sabelis MW, Menken SB, Breeuwer JA. Diet–dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2004 Oct 22; 271(1553):2171–8.

67. Chanbusarakum L, Ullman D. Characterization of bacterial symbionts in Frankliniella occidentalis (Pergande), Western flower thrips. Journal of invertebrate pathology. 2008 Nov 1; 99(3):318–25. https://doi.org/10.1016/j.jip.2008.09.001 PMID: 18809409

68. Ranjith MT, Harish ER, Girija D, Nazeem PA. Bacterial communities associated with the gut of tomato fruit borer, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) based on Illumina Next-Generation Sequencing. Journal of Asia-Pacific Entomology. 2016 Jun 1; 19(2):333–40.

69. Pan H, Li X, Ge D, Wang S, Wu Q, Xie W, Jiao X, Chu D, Liu B, Xu B, Zhang Y. Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PloS one. 2012 Feb 23; 7(2):e30760. https://doi.org/10.1371/journal.pone.0030760 PMID: 22383972