Trace metal residues in a tropical Watercourse sediment in Nigeria: Health risk implications

Anani, O. A.1*, Olomukoro, J. O.2

1Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
2Applied Biology and Biotechnology Unit, Department of Biological Sciences, Covenant University, Ota, Ogun State

Correspondence: osikemekha.anani@lifesci.uniben.edu

ABSTRACT
This study aims to ascertain the possible health risks on humans to trace metals in Ossiomo River sediment via different exposure pathways. The pollution of river sediments by trace metals has raised countless concern for their potential biological noxiousness, environmental durability, and biological accumulation to humans along the food chain. Selected trace metals were analyzed based on required analytic approaches. Standard statistical tools were used to evaluate the records collected from the field. The outcomes from the field showed that the amount of the trace metals in the sediment were significantly higher in most samples and above set standard limits. The results of the hazard quotient (HQ) of the ingestion and dermal exposure were sourced from only Cd: 78.03, 6.93 and 7.47 for the ingestion pathway and 2840.20, 1445.46 and 1556.65 for the dermal pathway respectively. The hazard index (HI) obtained for Cd were ingestion (78.26, 6.96 and 7.49) and dermal (2841.87, 1446.31 and 1557.56) respectively. With more cumulative interactive effects in the children. The Cancer Risk gotten in this study was far greater in the children [Pb (0.644), Cr (3.35E+01) and Cd (4.76E+02)] than in the male [Pb (1.19E-01), Cr (6.20E+00) and Cd (8.82E+01)] and the female [Pb (0.128), Cr (6.67E+00) and Cd (9.50E+01)]. The TCR (Total Carcinogenic Risk) values obtained were far beyond the set standards with Cd and Cr values of 659.09 and 46.32 respectively. We recommend further studies in this ecosystem in order to monitor the persistent anthropogenic impact and to anticipate any possible ecological risk that may propel human health risk impact.

Keywords: Cancer; Hazard Quotient; Trace metal; Total Carcinogenic Risk; Sediments; Ologbo.

1. INTRODUCTION
The fitness of any ecosystem, reflect the true picture of the activities therein. Anthropogenic impacts of an ecosystem pose an ecological risk which may propel human health risk impact. Most contaminants in a river ecosystem, are found in the benthic region; sediment. The sediments are vital portion of the aquatic ecosystem (Cheng et al., 2016). Trace metals contamination of river sediments have raised great concern for their probable natural noxiousness, ecological stability, and build-up to humans along the food chain (Reddy et al., 2004; Varol, 2011; Jiang et al., 2012; Anani and Olomukoro 2017).

Literature works on the health impacts of trace metals from sediment on humans via ingestion, inhalation and dermal contact have been documented (US EPA, 1989; Tao et al., 2002; Wang et al., 2005; Zabin et al., 2008; Žukowska and Biziuk, 2008; Genthe et al., 2013; Al-Saleh et al., 2014; Sami and Saad 2015; Kamunda et al., 2016).

In this study, the specific objectives are to:

i) assess the levels of trace metals in Ossiomo River sediment,

ii) evaluate the health hazards posed by the sediment on adults (male and female) and children through health risk quantifications.
2. METHDOLOGY

2.1 The area of study

About 2.2 km stretch of Ossiomo River (Ologbo axis), Benin City situated in the South West of Nigeria was surveyed for this study in the following geographical locations; Latitude 6° 03’1’’ N - Longitude 5° 40’3’’ E (Fig. 1).

Four sampling stations in the river stretch were surveyed to reveal the up-stream and the down-stream nature of the river, based on the possible amount of pollution, it received from agricultural and other anthropogenic activities with the following ecological factors and geographical locations in Table 1.
Stations	Location	Latitude (N)	Longitude (E)	Anthropogenic activities and source points.
1	Ologbo	6° 02’.890’’	5° 39’ 599’’	A reference zone free from anthropogenic activities.
2	Ologbo	6° 01’.759’’	5° 38’.344’’	Closed to a timber factory and deck of boats and where human activities are very high; and crude oil exploration and processing.
3	Ologbo	6° 01’.859’’	5° 36’.870’’	Closed to a local distiller, palm oil farm (PRESCO), cassava farm and sawmills.
4	Ologbo	6° 01’.091’’	5° 35’.199’’	Closed to a large cassava farm and sawmill.

Table 1. Sampling locations of Ossiomo River, Edo state Benin City
Fig. 1: Map of the study area showing the sampling stations of Ossiomo River, Edo state, Nigeria.

2.2 Sampling methods and trace metal extraction
Samples were collected from the field from March 2015 – August 2016 and were taken to the laboratory, analyzed in accordance with standard procedures as described by APHA (2005). The metal contents (iron, manganese, zinc, copper, chromium, cadmium, lead, nickel, and vanadium) in the sediment were digested according to the methods adopted from APHA (1998), Radojevic and Bashkin (1999). 1.0 g of the air-dried sediment was weigh up into a 125 ml Erlenmeyer flask pre-washed with perchloric acid and distilled water. Four (4) ml of perchloric acid, 25 ml concentration of HNO₃ and 2 ml concentration of H₂SO₄ were added. The mixture was spun mildly and permitted to digest gradually at low to high heat under a fume hood until dense white fumes appeared. Strong heat (medium to high heat) was finally applied for about thirty seconds (30 seconds) and the mixture was made to calm down. 40-50 ml of distilled water was added to the mixture and boiled for half a minute. The solution was allowed to cool down and was sieved totally with a wash bottle into a 100 ml pyrex volumetric flask. The solution was made up to mark with distilled water and filtered again with Whatman No. 42 filter paper. The filtrate from the digestion of soil samples and the standard solutions for each element was aspirated into the air-acetylene flame of Varian 220 using an Atomic absorption spectrophotometer (Solaar 969 Unicam Series model).

2.3 Data Analysis
The different stations were compared for significant differences using parametric analysis of variance (ANOVA) and Univariate analysis using PAST 3.0 software.

2.4 Health risk evaluation
The estimated chronic daily intake (ECDI) was calculated in accordance with the method of Huang et al., (2014) as designed by US EPA, (1997). The reference dosages (RfDos) for the
ingestion and dermal in mg/kg/d used in this study were gotten from Li and Zhang (2010), Wu et al., (2009), Iqbal and Shah (2012), IRIS and US EPA (2007), ATSDR (2007). The hazard quotient (HQ) was calculated using the modified method of Papadakis et al., (2015). The HI (hazard index) was evaluated using the method of Paustenbach (2002).

To quantify the carcinogenic risk (CR) of the sediment, the methods of US EPA (1989) were employed. The slope factor (SFing) values for Cd, Cr, and Pb used for this study were gotten from US EPA (1989), Vieira et al., (2011) and Yu et al., (2010). The carcinogenic risks standard limits used for the trace metal exposure was by US EPA (2010) guideline. The modified total cancer risk method by Gržetić and Ghariani (2008) was also employed in this study. The assumptions used in this study are highlighted in Table 2.

Table 2: Values used for the calculations of ingestion and dermal pathways in adults and children

Variables	Units	Adults	References	Children	References
Ingestion rate of the sediment (IRsediment)	mg/kg	100 Male	USDOE (2011)	200	USDOE (2011)
		100 Female			
Exposure frequency (EF)	L/day	350 Male	USDOE (2011)	350	USDOE (2011)
		350 Female			
Exposure duration (ED)	Day/year	30 Male	Qu et al., (2014)	6	Qu et al., (2014)
		30 Female	Ezemonye et al., (2015) 45	6	Ezemonye et al., (2015)
			Sami and Saad, 2015 and Gzetric et al., (2008)		
Body weight (BW)	Kg	70 Male	Ezemonye et al., 2015	10	Ezemonye et al., 2015
		65 Female			
Surface area	Cm²/day	5700 Male	USDOE (2011)	2190	Huang et al., 2014
		2800 Female	Huang et al., (2014)	1800,	USDOE (2011)
Average life time (AT)	Day	8760 Male	USDOE (2011)	2190	Huang et al., (2014)
		8760 Female	USDOE (2011)	2190	USDOE (2011)
Dermal surface factor (AF)	mg/cm	0.07 Male	USDOE (2011)	0.2	USDOE (2011)
		0.07 Female			
Dermal absorption factor (ABS)	Unit less	0.13 Male	US EPA (2002)	0.13	US EPA (2002)
		0.13 Female			
Carcinogenic factor (CF)	Unit less	0.001 Male	Ozekeke et al., 2015	0.001	Ozekeke et al., 2015
		0.001 Female			
Elements					
Rflos ingestion (mg/kg/d)		Fe 700			
		Zn 24			
		Mn 300			
		Cu 40			
		Pb 3			
		Cr 0.5			
		Cd 0.001			
		Ni 1.4			
Rflos dermal (mg/kg/d)		140			
		0.96			
		60			
		8	0.075	0.025	0.00001
					0.42
3. RESULTS

3.1 The quantification of the trace metals in Ossiomo River

The trace metals concentrations in the sediment of Ossiomo River are shown in Table 3. Most of the values were above the set standard limits and were considered significant ($P<0.05$); Fe, Mn, Cu, Cr, Cd, Pb, Ni and V exempting Zinc which did not show significant difference at $P>0.05$ across the studied locations.

It was likewise observed from this study that station 2 had the highest impact followed by stations 3, 4 and 1. This was shown by the cumulative impact (CI) of the trace metals in these stations (Table 3).
Table 3: Total concentration in mg/kg of trace metals in the sediments of Ossiomo River

Stations/Metals	Fe	Mn	Zn	Cu	Cr	Cd	Pb	Ni	V	CI
Station 1	156.49	13.33	28.38	4.52	1.99	1.8	1.41	1.08	0.98	23.33
Station 2	329.14	24.5	43.63	10.73	4.89	5.89	6.36	2.65	2.23	47.78
Station 3	284	20.92	39.17	9.84	3.98	5.26	4.86	2.3	1.97	41.37
Station 4	226.8	19.08	34.92	7.2	3.03	3.25	3.1	1.89	1.7	33.44
Mean	249.11	19.46	36.53	8.07	3.47	4.05	3.93	1.98	1.72	
Standard deviation	74.61	4.66	6.49	2.80	1.25	1.88	2.15	0.68	0.54	
Minimum	156.49	13.33	28.38	4.52	1.99	1.8	1.41	1.08	1.08	0.98
Maximum	329.14	24.5	43.63	10.73	4.89	5.89	6.36	2.65	1.84	2.23
Median	255.40	20.00	37.05	8.52	3.51	4.26	3.98	2.10	1.84	
Geometric mean	240.00	19.00	36.08	7.66	3.29	3.67	3.41	1.88	1.64	
FEPA 2003 Limits	0.03	0.03	0.0123	0.3	-	0.04	0.06	-	-	
P-Values	P<0.05	P<0.05	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05

NB: CI: Cumulative Impact
3.2 The results of the CDI (chronic daily intake), HQ (hazard quotient) and HI (hazard index) of Ossiomo River sediment

Tables 4-6 summarize the estimated values of the CDI, HQ and HI for the male, female and children.

The CDI values obtained for this study were generally lower than 1 (CDI < 1) for the adult (male and female) in all the metals. In the quantification of the exposure factor in the male, female and children, it was observed that the HQ of the ingestion and dermal exposure were sourced from only Cd; 78.03, 6.93 and 7.47 for the ingestion pathway and 2840.20, 1445.46 and 1556.65 for the dermal pathway respectively. More so, the quantification of the HI of the oral exposure in the adults and children, Cd also had greater influence individually in the ingestion and dermal pathways. In the children, male and female, the HI obtained for Cd were ingestion (78.26, 6.96 and 7.49) and dermal (2841.87, 1446.31 and 1557.56) respectively.

Table 4: Probable non-carcinogenic risk of trace metals in Ossiomo sediment on the male

Trace metals	C sediment	Rfd ingestion (mg/kg/d)	Rfd dermal (mg/kg/d)	ECDI ingestion	ECDI dermal	HQ Ingestion	HQ Dermal
Fe	249.11	700	140	4.80	1.75	0.01	0.01
Mn	19.46	300	60	0.37	0.14	0.00	0.00
Zn	36.53	24	0.96	0.70	0.26	0.03	0.27
Cu	8.07	40	8	0.16	0.06	0.00	0.01
Cr	3.47	0.5	0.025	0.07	0.02	0.13	0.97
Cd	4.05	0.001	0.00001	0.08	0.03	78.03	2840.20
Pb	3.93	3	0.075	0.08	0.03	0.03	0.37
Ni	1.98	1.4	0.42	0.04	0.01	0.03	0.03
V	1.72	NS	NS	0.03	0.01	0.00	0.00
						HI 78.26	2841.87

Table 5: Probable non-carcinogenic risk of trace metals in Ossiomo sediment on the female

Trace metals	C sediment	Rfd ingestion (mg/kg/d)	Rfd dermal (mg/kg/d)	ECDI ingestion	ECDI dermal	HQ Ingestion	HQ Dermal
Fe	249.11	700	140	0.43	0.89	0.00	0.01
Mn	19.46	300	60	0.03	0.07	0.00	0.00
Zn	36.53	24	0.96	0.06	0.13	0.00	0.14
Cu	8.07	40	8	0.01	0.03	0.00	0.00
Cr	3.47	0.5	0.025	0.01	0.01	0.01	0.50
Cd	4.05	0.001	0.00001	0.01	0.01	6.93	1445.46
Pb	3.93	3	0.075	0.01	0.01	0.00	0.19
Ni	1.98	1.4	0.42	0.00	0.01	0.00	0.02
V	1.72	NS	NS	0.00	0.04	0.00	0.00
						HI 6.96	1446.31

Table 6: Probable non-carcinogenic risk of trace metals in Ossiomo sediment on the children

Trace metals	C sediment	Rfd ingestion (mg/kg/d)	Rfd dermal (mg/kg/d)	ECDI ingestion	ECDI dermal	HQ Ingestion	HQ Dermal
Fe	249.11	700	140	0.46	0.96	0.00	0.01
Trace Metal	Concentration (C)	ECDI	Rfd	HQ	NS	HI	
-------------	-------------------	------	-----	----	----	----	
Mn	19.46	300	60	0.04	0.07	0.00	0.00
Zn	36.53	24	0.96	0.07	0.14	0.00	0.15
Cu	8.07	40	8	0.01	0.03	0.00	0.00
Cr	3.47	0.5	0.025	0.01	0.01	0.01	0.53
Cd	4.05	0.001	0.00001	0.01	0.02	7.47	1556.65
Pb	3.93	3	0.075	0.01	0.02	0.00	0.20
Ni	1.98	1.4	0.42	0.00	0.01	0.00	0.02
V	1.72	NS	NS	0.00	0.01	0.00	0.00

HI 7.49 1557.56

NB: C stands for concentration of trace metal in sediment, ECDI stands for estimated chronic daily intake, Rfd stands for reference dosage, HQ stands for hazard quotient, NS stands for not specified and HI stands for hazard index.
3.3 The results of the carcinogenic risk (CR) and total carcinogenic (TCR) of Ossiomo River sediment

The carcinogenic risk and total carcinogenic values of the additional lifespan cancer risks were computed in Table 7 and Figure 2. For the male, the CR for all metals studied were Pb (1.19E-01), Cr (6.20E+00) and Cd (8.82E+01), the female; Pb (0.128), Cr (6.67E+00) and Cd (9.50E+01) and the children Pb (0.644), Cr (3.35E+01) and Cd (4.76E+02). For the quantification of the TCR, the values gotten after computation were; Pb (0.82), Cr (46.32) and Cd (659.09).

Figure 2 shows the bar chart of the carcinogenic and total carcinogenic and total carcinogenic hazards of the metals in Adult (male and female) and children exposed to Ossiomo sediment. It was noticed that the rank of the carcinogenic increase was in this order; CR children > CR female > CR male. This current findings of this study showed that the quantified sediment concentrations of all the elements studied will produce important carcinogenic lifetime threat consequent of consistent intake of Cd and Cr via ingestion of the sediment.
Table 7: Probable carcinogenic risk of trace metals in Ossiomo sediment on the adults (male and female) and children

Trace metals	ECDI male	ECDI female	ECDI children	S_f	CR male	CR female	CR children	TCR	
Pb	0.01	0.02	0.08	8.50E+0	0	1.19E-01	0.128	0.644	0.89
Cr	0.01	0.01	0.07	5.00E+0	0	6.20E+0	6.67E+0	3.35E+0	46.32
Cd	0.01	0.02	0.08	6.10E+0	0	8.82E+0	9.50E+0	4.76E+0	659.0

NB: SF stands for slope factor, CR stands for carcinogenic risk and TCR stands for total for carcinogenic risk.
Fig. 2: The carcinogenic and total carcinogenic risk factors of trace metals in the adults (male and female) and children exposed to Ossiomo River sediment.
4. DISCUSSIONS

4.1 The characterization of the trace metals contents in Ossiomo River

The variations of the concentrations of the trace metals in the surveyed stations could be accredited to the large-range of man-made activities closed these stations and the environmental circulation of raw materials in the benthic regions of the studied river. The variations in the concentration of the trace metals in this study may be related to the metamorphoses in the sandy features of the benthic sediment.

The high geometric mean and median concentrations also indicated a high anthropogenic impact across the stations which in turn reflect ecosystem pollution by human activities, this was also supported by Zhang et al., (2012 and 2016) and Anani and Olomukoro (2017). Organisms exposed to such deleterious trace metals will have serious health conditions associated with diarrheal diseases and chest pains and even cancer risk factor.

4.2 Non-carcinogenic risk quantifications

The values gotten from the computation of the CDI were considered too low for this study. This is analogous to the works of Wang et al., (2017). However, the CDI value of the children was considered greater than 1 sourced from Fe (1.75). However, Cd showed a high potential hazard risk with value far greater than the US EPA, (1989 and 2004) unity limits (HQ values < 1). This a sign of a non-carcinogenic potential hazard to the adults and children who are exposed to these trace metals (Tables 4-6). Similarly, the great influence of Cd in the ecosystem was also noticed in the HI. This further explains that Cd exposure to individuals may pass different pathways and there is a great probable non-carcinogenic hazard aimed at individuals exposed to the sediment. In accordance with the toxicological profiles of the trace metals, IRIS, (2007), RAIS, (2007) and ATSDR, (2007), confirm the adverse health effects of Cd on humans, and an induced non-carcinogenic and carcinogenic risk factor by this carcinogen. Consequent on this, health effect associated with Cd toxicity may revealed long-lasting effects to exposed individuals especially cancer. The findings of this study revealed a high health risk factor for Cd in this ecosystem.

4.3 Carcinogenic risk (CR) and total carcinogenic (TCR) quantifications

In this study, the CR were far greater in the children than in the male and female. The values were far higher than the slated unity values of the US EPA, (1989, 2010 and 2011). This further revealed that they are more at risk to the carcinogens Cd and Cr. The ingestion pathway appears to be the main route to additional lifespan cancer risk. The values of the carcinogenic dermal pathway were not computed for this study because of the difficulty of dermal permeability of the sediment via the pores of the skin as reported by Kamunda et al., (2016). However, studies by Bryan and Langston (1992) and Tao et al., (2012) stated that lead was the most bio-concentrated element in some water animals in terms of bio transfer into the food chain. The results obtained in this current study is in contrast with theirs. Lead contributed insignificantly in this current ecosystem. However, Cd and Cr were more significant in the ecosystem and might have greater impacts on the exposed individuals via ingestions pathway. Cd has been found to cause adverse health effects on the organs-systems in humans (Zukowska and Biziuk, 2008; Al-Saleh et al., 2014). This is also true for Cr which might also present similar effects and at chronic conditions, become carcinogenic.

The computed values gotten from this study revealed high TCR sourced from cadmium (Cd) and chromium (Cr). These values obtained are not considered acceptable for Cd and Cr according to literatures (Guney et al., 2010; Wu et al., 2015). These values are also considered greater than the cancer-causing risk of 1.0×10^{-6} set by US EPA, (2011). It is evident here in this findings that cancer-causing hazards of trace metals via ingestion are very important in ascertaining likely health risk factor in humans. The findings of this study is
similar to the studies on metals risk of soil by Islam et al. (2017) and Hu et al., (2017a, b). Therefore, the hazard that may likely develop due to contact to trace metals in the sediment of this present ecosystem (Ossiomo River) will contribute more to the overall cancer hazards that it is entirely significant therein. This is contrary to the works of Grzetic et al., (2008) and Sami and Saad, (2015). This current findings of this study showed that the quantify sediment concentrations of all the elements studied will produced important carcinogenic lifetime threat in consequent of consistent intake of Cd and Cr via ingestion of the sediment.

5. CONCLUSION
This work has confirmed that the sediment contamination in Ossiomo River is important. Risk valuation computed for a lifespan contact, showed that the cancer-causing hazard is totally significant, but the non-cancer-causing hazard tends to become important mostly for children, which may likely have the highest impact. There were mainly dangerous trace metals; Cd and Cr and their cumulative effect expressed in the children. Ingestion and dermal hazardous index should be considered highly significant because the results gotten from this study are highly alarming. More works should be done in this area of research in order to monitor the long-term anthropogenic impact on the ecosystem in order to anticipate any possible ecological risk that may propel human health risk impact.

Acknowledgements
The authors deem it fit here to appreciate and thank Mr. Ifeanyi Maxwell Ezenwa and Dr. Abdul-Rahman Dirisu respectively, of the Department of Zoology and Environmental Biology, University of Nigeria, Nsukka and the Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria for their technical support and fair criticism. Special thanks to Macgill Engineering and Technical Services Limited (Division of Martlet Environmental Research Laboratory Limited) Benin City, Nigeria for carrying out an analysis laboratory experimental assessment of all samples collected pro Bono within the specific scope of this study with standard quality control and quality assurance measures.

REFERENCES
[1] Al-Saleh, I. Al-Rouqi, R. Obsum, C.A. Shinwaria, N. Mashhoura, A. Billedoa, G. and Rabbahb, A. (2014). Mercury (Hg) and oxidative stress status in healthy mothers and its effect on birth anthropometric measures. International Journal of Hygiene and Environmental Health, 217: (4) 567–585.
[2] APHA (American Public Health Association), AWWA (American Water Works Association), WPCF (Water Pollution Control Federation). (1998). Standard methods for the examination of water and wastewater. 20th ed. Washington, DC, pp. 1325.
[3] APHA (American Public Health Association). (2005). Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association, Washington DC, pp. 120.
[4] Anani, O.A. and Olomukoro, J.O. (2017). The Evaluation of heavy metal load in benthic sediment using some pollution indices in Ossiomo River, Benin City, Nigeria. Funia Journal of Science and Technology, 3: (2) 103-119. DOI: 10.13140/RG.2.2.22200.85764.
[5] ATSDR (US Agency for Toxic Substances and Disease Registry). (2007). http://www.atsdr.cdc.gov/mrls/ (accessed 19 January 2008).
[6] Bryan, G.W. and Langston, W.J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environmental Pollution, 76: (2) 89–131.
[7] Cheng, P.X. Wang, B. and Sun. Q.Y. (2016). Potential ecological risk assessment of heavy metals in surface sediments of Jiaogang Lake and its inflow rivers. *Wetland Science*, 14: (1) 37–43.

[8] Dong, C.Y. Zhang, W.G. Ma, H.L. Feng, H. Lu, H.H. Dong, Y. and Yu, L.Z. (2014). A magnetic record of heavy metal pollution in the Yangtze Rivers Ubaqueous Delta. *Science of Total Environment*, 476: 368–377.

[9] Eggleton, J. and Thomas, K.V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. *Environmental International*, 30: (7) 973–980.

[10] Ezemonye, L. Ozekeke, O. and Isioma, T. (2015a). Distribution and ecological risk assessment of pesticide residues in surface water, sediment and fish from Ogbesse River Edo State Nigeria. *Journal of Environmental Chemistry and Ecotoxicology*, 7: (2) 20–30.

[11] FEPA (Federal Environmental Protection Agency). (2003). Guidelines and standards for environmental pollution control in Nigeria. Federal Environmental Protection Agency, pp. 238.

[12] Fu, J. Zhao, C.P. Luo, Y.P. Liu, C.S. Kyzas, G.Z. Luo, Y. and Zhu, H.L. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. *Journal of Hazardous Materials*, 270: 102–109.

[13] Genthe, B. Le, Roux, W.J. Schachtschneider, K. *et al.* (2013). Health risk implications from simultaneous exposure to multiple environmental contaminants. *Ecotoxicology and Environmental Safety*, 93: 171–179.

[14] Grzetic, I. and Ghariani, H.R. (2008). Potential health risk assessment for soil heavy metal contamination in the central zone of Belgrade (Serbia). *Serbia Journal of Chemical Society*, 73: (8-9) 23-934.

[15] Guney, M. Zagury, G.J. Dogan, N. and Onay, T.T. (2010). Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. *Journal of Hazardous Material*, 182:656–664. [CrossRef] [PubMed].

[16] Hu, B. Wang, J. Jin, B. Li, Y. and Shi, Z. (2017a). Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River delta. *Environmental Science and Pollution Research*, 7: 1–11. [CrossRef] [PubMed].

[17] Hu, B. Zhou, J. Liu, L. Meng, W. and Wang, Z. (2017). Assessment of Heavy Metal Pollution and Potential Ecological Risk in Soils of Tianjin Sewage Irrigation Region, North China. *Journal of Environmental Analytical Toxicology*, 7:1 DOI: 10.4172 /2161-0525.1000425.

[18] Huang, T. Guo, Q. Tian, H. Mao, X. Ding, Z. Zhang, G. Li, J. Ma, J. and Gao H. (2014). Assessing spatial distribution, sources, and human health risk of organochlorine pesticide residues in the soils of arid and semiarid areas of northwest China. *Environmental Science and Pollution Research*, 21:6124–6135 doi:10.1007/s11356-014-2505-8.

[19] Iqbal, J. and Shah, M.H. (2012). Health Risk Assessment of Metals in Surface Water from Freshwater Source Lakes, Pakistan. *Human Ecological Risk Assessment*, (doi: 10.1080/10807039.2012.716681).

[20] IRIS (Integrated Risk Information System), US EPA (United States Environmental Protection Agency). (2007). http://cfpub.epa.gov/ncea/iris/index.cfm (accessed 19 January 2008).

[21] Islam, M.S. Ahmed, M.K. Habibullah-Al-Mamun, M. and Eaton, D.W. (2017). Human and ecological risks of metals in soils under different land use in an urban environment of Bangladesh. *Pedosphere* [CrossRef].
[22] Jiang, X. Wang, W.W, Wang, S.H. Zhang, B. and Hu, J.C. (2012). Initial identification of heavy metals contamination in Taihu Lake, a eutrophic lake in China. *Journal of Environmental Science*, 24:1539–1548.

[23] Kamunda, C. Mathuthu, M. and Madhuku, M. (2016). Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa. *International Journal of Environmental Research and Public Health*, 13: 663. doi:10.3390/ijerph13070663.

[24] Li, S.Y. and Zhang, Q.F. (2010). Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. *Journal of Hazardous Materials*, 176: (1-3) 579.

[25] Ndimele, P.E. (2012). The effects of water hyacinth (*Eichhornia crassipes* [Mart.] Solms) infestation on the physico-chemistry, nutrient and heavy metal content of Badagry Creek and Ologe Lagoon, Lagos, Nigeria. *Journal of Environmental Science and Technology*, 5: (2) 128–136.

[26] Ozekeke, O. Isioma, T. Enuneku, A. Emmanuel, O. Ezemonye, L. (2015). Human Health Risk Associated with Dietary and Non-Dietary Intake of Organochlorine Pesticide Residues from Rice Fields in Edo State Nigeria. *Expo Health*. DOI 10.1007/s12403-015-0182-6.

[27] Papadakis, E.N. Zisis, V. Athena, K. Katerina, K. Konstantinos, C.M. Euphemia, P.M. (2015). A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. *Ecotoxicological and Environmental Safety*, 116:1–9.

[28] Paustenbach, D.J. (2002). Human and ecological risk assessment: Theory and practice. John Wiley and Sons; New York, NY.

[29] Qu, C. Shihua, Q. Dan, Y. Huanfang, H. Jiaquan, Z. Wei, C. Habtom, K.Y. Edward, H.S. Junhua, Y. and Xinli, X. (2014). Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: a case study from Ningde, southeast China. *Journal of Geochemical Exploration*. doi:10.1016/j.gexeplo.2014.11.002 768.

[30] Radojevic, M. and Bashkin, V.N. (1999). Practical environmental analysis. Royal school of chemistry, Thomas Graham house, science park Cambridge, UK, pp. 645.

[31] RAIS (The Risk Assessment Information System) (2007). http://rais.ornl.gov/tox/rap_toxp.shtml (accessed 15 January 2008).

[32] Reddy, M.S. Basha, S. Kumar, V.G.S. Joshi, H.V. Ramachandraiah, G. (2004). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Alang-Sosiya ship scrapping yard, India. *Marine Pollution Bulletin*, 48: (11) 1055–1059.

[33] Sami, A. Zabin, S. and Howladar, M. (2015). Heavy metals contamination and its health risk assessment in the sediments of water reservoir dams at Al-Baha region, KSA, Environmental Science. An Indian Journal. *ESAIJ*, 10: (6) 224-230. ISSN: 0974 – 7451.

[34] Tao, Y. Yuan, Z. Xiaona, H. and Wei, M. (2012). Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake China. *Ecotoxicological and Environmental Safety*, 81:55–64.

[35] USDOE (United State Department of Energy). (2011). U.S. Department of Energy’s Oak Ridge Operations Office (ORO). The Risk Assessment Information System (RAIS).
[36] US EPA (US Environmental Protection Agency). (1989). Risk Assessment Guidance for Superfund. Vol. I: Human Health Evaluation Manual (Part A); EPA/540/1-89/002.
[37] US EPA (US Environmental Protection Agency). (1997). Exposure Factors handbook. EPA/600/p-a5/002Fa-Washington DC.
[38] US EPA (US Environmental Protection Agency). (2002). Supplemental guidance for developing soil screening levels for superfund sites OSWER 9355. US Environmental Protection Agency, Washington, DC, 4–24.
[39] US EPA (US Environmental Protection Agency). (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); USEPA: Washington, DC, USA.
[40] US EPA (US Environmental Protection Agency). (2010). Risk-Based Concentration Table. United States Environmental Protection Agency. Available at: http://www.epa.gov/reg3hwmd/risk/human/index.htm.
[41] US EPA (US Environmental Protection Agency). (2011). Recommended Use of BW3/4 as the Default Method in Derivation of the Oral Reference Dose. EPA/100/R11/001. Office of the Science Advisor. http://www.epa.gov/raf/publications/pdfs/recommended-use-of-bw34.pdf.
[42] Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195: 355–364.
[43] Vieira, C. Morais, S. Ramos, S. Delerue-Matos, C. and Oliverira, M. (2011). Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: Intra- and inter-specific variability and human health risks for consumption. Food Chemistry and Toxicology, 49: (4) 923.
[44] Wang, G. Liu, H.Q. Gong, Y. Wei, Y. Miao, A.J. Yang, L.Y. and Zhong, H. (2017). Risk Assessment of Metals in Urban Soils from a Typical Industrial City, Suzhou, Eastern China. International Journal of Environmental Research and Public Health, 14:1025.doi: 10.3390/ijerph14091025.
[45] Wang, Y.K. Stevenson, R.J. and Metzmeier, L. (2005). Development and evaluation of a diatom-based index of Biotic Integrity for the Interior Plateau Ecoregion, USA. Journal of North America Benthology Society, 24: (4) 990–1008.
[46] Wu, B. Zhao, D.Y. Jia, H.Y. Zhang, Y. Zhang, X.X. and Cheng, S.P. (2009). Preliminary Risk Assessment of Trace Metal Pollution in Surface Water from Yangtze River in Nanjing Section, China. Bulletin of Environmental Contamination and Toxicology, 82: (4) 405.
[47] Wu, S. Peng, S.Q. Zhang, X.X. Wu, D.L. Luo, W. Zhang, T.B. Zhou, S.G. Yang, G.Y. Wan, H.F. and Wu, L.Q. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148:71–78. [CrossRef].
[48] Yu, F.C. Fang, G.H. and Ru, X.W. (2010). Eutrophication, health risk assessment and spatial analysis of water quality in Gucheng Lake, China. Environmental and Earth Science, 59: (8) 1741.
[49] Zabin, S.A. Foaad, M.A. and Al-Ghamdi, A.Y. (2008). Non-carcinogenic risk assessment of heavy metals and fluoride in some water wells in the Al-Baha region, Saudi Arabia. Human and Ecological Risk Assessment, 14: (6) 1306–1317.
[50] Zhang, H. Wang, Z.F. Zhang, Y.L. and Hu, Z.J. (2012). The effects of the Qinghai–Tibet railway on heavy metals enrichment in soils. Science and Total Environment, 439:240.
[51] Zhang, Z.Y. Juying, L. Mamat, Z. and Qing, F.Y. (2016). Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicology and Environmental Safety, 126: 94–101.

[52] Żukowska, J. and Biziuk, M. (2008). Methodological evaluation of method for dietary heavy metal intake. Journal of Food Science, 73: (2) R21–R29.