Genome Sequence of Cluster BI1 *Streptomyces griseus* Phage TaidaOne

Nai-Chun Lin,* Chieh-Ling Liao,* Che-Yu Cheng,* Ping-Hua Chen,* Shi-Wing Chen,* Kuang-Chun Cheng,* Marwin Fernandez,†‡ Ting-Kai Hou,* Bo-Chen Jiang,* Nai-Shun Liao,* Tien Pao,* Ying-Ying Wong,* C Hsiang-Yu Yang,* Hui-Min Chung*©

*Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China
†Department of Biology, San Francisco State University, San Francisco, California, USA
‡Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
©Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
©Department of Biology, University of West Florida, Pensacola, Florida, USA

ABSTRACT Bacteriophage TaidaOne was isolated from soil collected in Taipei, Taiwan, using the host *Streptomyces griseus*. It is a siphovirus with a 56,183-bp genome that contains 86 protein-coding genes. Based on gene content similarity, it was assigned to actinobacteriophage subcluster BI1, within which only TaidaOne and GirlPower genomes contain an acetyltransferase homolog gene.

Streptomyces bacteria, which are well known for their production of antibiotics, are of great ecological and biomedical value (1, 2). The isolation and characterization of *Streptomyces* bacteriophages can help in the development of molecular tools to genetically manipulate *Streptomyces* strains (3–5). Here, we report on the isolation of a *Streptomyces* phage, TaidaOne, which was isolated from soil collected on 22 September 2019 from the campus of the National Taiwan University in Taipei, Taiwan (25.01849N, 121.542488E), using standard methods (6). The soil sample was washed with peptone-yeast-calcium (PYCa) liquid medium, and the wash was filtered through a 0.22-µm filter and inoculated with *Streptomyces griseus* (ATCC 10137). After incubation at 30°C for 3 days, the culture was filtered and the filtrate was plated in soft agar containing *S. griseus* (6), which resulted in the isolation of phage TaidaOne. TaidaOne was purified with three rounds of plating and forms clear plaques with a diameter of ~2 mm after 24 h at 30°C. Negative-staining transmission electron microscopy (7) revealed TaidaOne to possess a Siphoviridae morphology (Fig. 1A).

The TaidaOne DNA was isolated from a high-titer lysate and prepared for sequencing using the Norgen Biotek phage DNA isolation kit and the NEBNext Ultra II kit, respectively. Using an Illumina MiSeq system, 1,000,000 single-end 150-base reads were generated, which constituted 200-fold coverage of the genome. Raw reads were assembled using Newbler v2.9, which revealed a genome of 56,183 bp, a G+C content of 59.5%, and 3' single-stranded overhangs (5' -CGCCCGCT-3'). TaidaOne was assigned to phage subcluster BI1 based on gene content similarity (GCS) of at least 35% to phages in the Actinobacteriophage Database (https://phagesdb.org) (9). The genome was annotated using DNA Master v5.23.6 (http://cobamide2.bio.pitt.edu), PECAN (https://blog.kbrinsgd.org), Glimmer v3.02 (10), GeneMark v2.5 (11, 12), BLAST (13), HHpred (14), TMHMM v2.0 (15), TOPCONS v2 (16), ARAGORN v1.2.38 (17), tRNAscan-SE (18), and Phamerator (phamerator.org), all using default parameters. All genes are transcribed rightward. Eighty-six protein-coding genes were identified, 32 of which were assigned functions, including structure and assembly genes across the left half of the genome and DNA metabolism genes across the right half. An endolysin and a holin are encoded by genes 5 and 29, respectively. No immunity repressor or integrase...
functions could be identified, suggesting that TaidaOne is a lytic phage, consistent with other BI1 phages. Among the 22 BI1 phages, a phylogenetic analysis performed using NCBI BLAST revealed TaidaOne to be most closely related to IceWarrior and then to Rima (KX670790), Namo (MK433260), OlympicHelado (KX670789), and TonyStarch (ON108646), with more than 98% nucleotide identity, and most distantly related to GirlPower and Madamato (Fig. 1B). The TaidaOne genome encodes a putative acetyltransferase that is absent in all BI1 phages except GirlPower.

Data availability. The sequence information for TaidaOne is available in GenBank with the accession number MW712736 and Sequence Read Archive (SRA) accession number SRX16259924.

ACKNOWLEDGMENTS

We thank Daniel Russell and Rebecca Garlena for assembling the genome, the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program for providing support on genome annotation and lysate archiving, and Carton Chen, Ting-Wen Chen, and Mei-Shiuan Yu of the Phage Ensemble in Taiwan (PET) program and Chih-Hung Huang for feedback and support.

We thank the National Taiwan University and California State University international programs and the Gilman Scholarship program for hosting and funding the study-abroad experience of M.F. We acknowledge financial support from the Department of Agricultural Chemistry at the National Taiwan University for the Environmental Microbiology Laboratory course. H.-M.C. was supported by NSF grant 1711842.

REFERENCES

1. Hopwood DA. 2019. Highlights of Streptomyces genetics. Heredity (Edinb) 123:23–32. https://doi.org/10.1038/s41437-019-0196-0.
2. Sivalingam P, Hong K, Pote J, Prabakar K. 2019. Extreme environment Streptomyces: potential sources for new antibacterial and anticancer drug leads? Int J Microbiol 2019:5283948. https://doi.org/10.1155/2019/5283948.
3. Gregory M, Till R, Smith M. 2003. Integration site for Streptomyces phage BT1 and development of site-specific integrating vectors. J Bacteriol 185:5320–5323. https://doi.org/10.1128/JB.185.17.5320-5323.2003.
4. Fogg PCM, Haley JA, Stark WM, Smith MCM. 2017. Genome integration and excision by a new Streptomyces bacteriophage, φJoe. Appl Environ Microbiol 83:e02767-16. https://doi.org/10.1128/AEM.02767-16.
5. Baltz RH. 2012. Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biot 39:661–672. https://doi.org/10.1007/s10295-011-1069-6.

6. Poxleitner M, Pope W, Jacobs-Sera D, Sivanathan V, Hatfull GF. 2018. HHMI SEA-PHAGES phage discovery guide. Howard Hughes Medical Institute, Chevy Chase, MD. https://seaphagesphagediscoveryguide.helpdocsonline.com/home.

7. Bradley DE. 1962. A study of the negative staining process. Microbiology 29:503–516.

8. Russell DA, Hatfull GF. 2018. Sequencing, assembling, and finishing complete bacteriophage genomes. Methods Mol Biol 1681:109–125.

9. Russell DA, Hatfull GF. 2017. PhagesDB: the Actinobacteriophage Database. Bioinformatics 33:784–786. https://doi.org/10.1093/bioinformatics/btw711.

10. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. 1999. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641. https://doi.org/10.1093/nar/27.23.4636.

11. Borodovsky M, Mills R, Besemer J, Lomsadze A. 2003. Prokaryotic gene prediction using GeneMark and GeneMark.hmm. Curr Protoc Bioinformatics 1:4.5.1–4.5.16. https://doi.org/10.1002/0471250953.b10405s01.

12. Besemer J, Borodovsky M. 2005. GeneMark web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–W454. https://doi.org/10.1093/nar/gki487.

13. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, Madej T, Marchler-Bauer A, Lanzycycki C, Lathrop S, Lu Z, Thibaud-Nissen F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R, Trawick BW, Pruitt KD, Sherry ST. 2022. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 50: D20–D26. https://doi.org/10.1093/nar/gkab1112.

14. Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Söding J, Lupas AN, Alva V. 2020. Protein sequence analysis using the MPI Bioinformatics Toolkit. Curr Protoc Bioinformatics 72:e108. https://doi.org/10.1002/cpbi.108.

15. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315.

16. Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A. 2015. The TOPCONS web server for combined membrane protein topology and signal peptide prediction. Nucleic Acids Res 43:W401–W407. https://doi.org/10.1093/nar/gkv485.

17. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. https://doi.org/10.1093/nar/gkh152.

18. Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413.