POLYNOMIAL MAPS ON VECTOR SPACES OVER A FINITE FIELD

MICHIEL KOSTERS

Abstract. Let l be a finite field of cardinality q and let n be in $\mathbb{Z}_{\geq 1}$. Let $f_1, \ldots, f_n \in l[x_1, \ldots, x_n]$ not all constant and consider the evaluation map $f = (f_1, \ldots, f_n) : l^n \to l^n$. Set $\deg(f) = \max_i \deg(f_i)$. Assume that $l^n \setminus f(l^n)$ is not empty. We will prove

$$|l^n \setminus f(l^n)| \geq \frac{n(q-1)}{\deg(f)}.$$

This improves previous known bounds.

1. Introduction

The main result of [MWW12] is the following theorem.

Theorem 1.1. Let l be a finite field of cardinality q and let n be in $\mathbb{Z}_{\geq 1}$. Let $f_1, \ldots, f_n \in l[x_1, \ldots, x_n]$ not all constant and consider the map $f = (f_1, \ldots, f_n) : l^n \to l^n$. Set $\deg(f) = \max_i \deg(f_i)$. Assume that $l^n \setminus f(l^n)$ is not empty. Then we have

$$|l^n \setminus f(l^n)| \geq \min\left\{ \frac{n(q-1)}{\deg(f)} , q \right\}.$$

We refer to [MWW12] for a nice introduction to this problem including references and historical remarks. The proof in [MWW12] relies on p-adic liftings of such polynomial maps. We give a proof of a stronger statement using different techniques.

Theorem 1.2. Under the assumptions of Theorem 1.1 we have

$$|l^n \setminus f(l^n)| \geq \frac{n(q-1)}{\deg(f)}.$$

We deduce the result from the case $n = 1$ by putting a field structure k on l^n and relate the k-degree and the l-degree. We prove the result $n = 1$ in a similar way as in [Tur95].

2. Degrees

Let l be a finite field of cardinality q and let V be a finite dimensional l-vector space. By $V^\vee = \text{Hom}(V, l)$ we denote the dual of V. Let v_1, \ldots, v_f be a basis of V. By x_1, \ldots, x_f we denote its dual basis in V^\vee, that is, x_i is the map which sends v_j to δ_{ij}. Denote by $\text{Sym}_l(V^\vee)$ the symmetric algebra of V^\vee over l. We have an isomorphism $l[x_1, \ldots, x_f] \to \text{Sym}_l(V^\vee)$ mapping x_i to x_i. Note that $\text{Map}(V, l) = l^V$.

Date: April 29, 2014.

2010 Mathematics Subject Classification. 11T06.

This article is part of my PhD thesis written under the supervision of Hendrik Lenstra.
is a commutative ring under the coordinate wise addition and multiplication and it is a l-algebra. The linear map $V^\lor \to \text{Map}(V,l)$ induces by the universal property of $\text{Sym}_l(V^\lor)$ a ring morphism $\varphi : \text{Sym}_l(V^\lor) \to \text{Map}(V,l)$. When choosing a basis, we have the following commutative diagram, where the second horizontal map is the evaluation map and the vertical maps are the natural isomorphisms:

$$\begin{array}{ccc}
\text{Sym}(V^\lor) & \longrightarrow & \text{Map}(V,l) \\
\downarrow & & \downarrow \\
l[x_1, \ldots, x_n] & \longrightarrow & \text{Map}(l^n,l).
\end{array}$$

Lemma 2.1. The map φ is surjective. After a choice of a basis as above the kernel is equal to $(x_i^q - x_i : i = 1, \ldots, f)$ and every $f \in \text{Map}(V,l)$ has a unique representative $\sum_{m=(m_1, \ldots, m_n) : 0 \leq m_i \leq q-1} c_{m} x_1^{m_1} \cdots x_n^{m_n}$ with $c_m \in l$.

Proof. After choosing a basis, we just consider the map $l[x_1, \ldots, x_f] \to \text{Map}(l^n,l)$.

For $c = (c_1, \ldots, c_f) \in l^f$ set

$$f_c = \prod_i (1 - (x_i - c_i)^q).$$

For $c' \in l^f$ we have $f_c(c') = \delta_{cc'}$. With these building blocks one easily shows that φ is surjective.

For $i \in \{1,2,\ldots,f\}$ the element $x_i^q - x_i$ is in the kernel of φ. This shows that modulo the kernel any $g \in l[x_1, \ldots, x_f]$ has a representative

$$f = \sum_{m=(m_1, \ldots, m_n) : 0 \leq m_i \leq q-1} c_{m} x_1^{m_1} \cdots x_r^{m_n}.$$

The set of such elements has cardinality q^{rf}. As $\# \text{Map}(V,l) = q^{rf}$, we see that the kernel is $(x_i^q - x_i : i = 1, \ldots, r)$. Furthermore, any element has a unique representative as described above. \hfill \Box

Note that $\text{Sym}_l(V^\lor)$ is a graded l-algebra where we say that 0 has degree $-\infty$. For $f \in \text{Map}(V,l)$ we set

$$\deg_l(f) = \min \{ \deg(g) : \varphi(g) = f \}.$$

Note that $\deg_l(f_1 + f_2) \leq \max(\deg_l(f_1), \deg_l(f_2))$, with equality if the degrees are different. In practice, if $f \in l[x_1, \ldots, x_n]$, then $\deg_l(f)$ is calculated as follows: for all i replace x_i^q by x_i until $\deg_{x_i}(f) < q$. Then the degree is the total degree of the remaining polynomial.

Let W be a finite dimensional l-vector space. Then we have $\text{Map}(V,W) = W \otimes_l \text{Map}(V,l)$. For $f \in \text{Map}(V,W)$ we set

$$\deg_l(f) = \max \{ \deg_l(g \circ f) : g \in W^\lor \}.$$

If g_1, \ldots, g_n is a basis of W^\lor, then $\deg_l(f) = \max (\deg_l(g_i \circ f) : i = 1, \ldots, n)$. This follows from the identity $\deg_l(\sum_i c_i g_i) \leq \max_i (\deg_l(g_i))$ for $c_i \in l$. Note that the degree is bounded above by $(q-1) \cdot \dim_l(V)$.

For $i \in \mathbb{Z}_{\geq 0}$ and a subset S of $\text{Sym}_l(V^\lor)$ we set

$$S_i^l = \text{Span}(s_1 \circ \cdots \circ s_i : s_i \in S) \in \text{Sym}_l(V^\lor).$$
Lemma 2.2. Let $f \in \text{Map}(V,W)$. For $i \in \mathbb{Z}_{\geq 0}$ one has: $\deg_f \leq i \iff f \in W \otimes_l (l + V^i)_l$.

Proof. Suppose first that $W = l$. The proof comes down to showing the following identity for $i \in \mathbb{Z}_{\geq 0}$:

$$l + V^i + \ldots + (V^i)_l = (l + V^i)_l.$$

The general case follows easily. □

3. Relations between degrees

Let k be a finite field and let l be a subfield of cardinality q. Set $h = [k : l]$. Let V and W be finite dimension k-vector spaces. Let $f \in \text{Map}(V,W)$. In this section we will describe the relation between the k-degree and the l-degree.

Let us first assume that $W = k$. Let v_1, \ldots, v_r be a basis of V over k. Let $R = k[x_1, \ldots, x_r]/(x_1^h - x_1, \ldots, x_r^h - x_r)$. We have the following diagram where all morphisms are ring morphisms. Here ψ is the map discussed before, τ is the natural isomorphism, φ is the isomorphism discussed before, and σ is the isomorphism, depending on the basis, discussed above.

$$k \otimes_l \text{Map}(V,l) \xrightarrow{\tau} \text{Map}(V,k) \xrightarrow{\psi} \text{Sym}_l(\text{Hom}_l(V,l)) \xrightarrow{\varphi} \text{Sym}_k(\text{Hom}_k(V,k))/\ker(\varphi) \stackrel{\rho}{\longrightarrow} R.$$

Consider the ring morphism $\rho = \sigma \circ \varphi^{-1} \circ \tau \circ \psi: k \otimes_l \text{Sym}_l(\text{Hom}_l(V,l)) \rightarrow R$. Lemma 2.2 suggest that to compare degrees, we need to find $\rho(k \otimes_l (l + \text{Hom}_l(V,l))_l^i)$.

The following lemma says that it is enough to find $k + k \otimes_l \text{Hom}_l(V,l)$.

Lemma 3.1. For $i \in \mathbb{Z}_{\geq 0}$ we have the following equality in $k \otimes_l \text{Sym}_l(V)$:

$$k \otimes_l (l + \text{Hom}_l(V,l))_l^i = (k + k \otimes_l \text{Hom}_l(V,l))_k^i.$$

Proof. Both are k-vector spaces and the inclusions are not hard to see. □

The following lemma identifies $k + k \otimes_l \text{Hom}_l(V,l)$.

Lemma 3.2. One has

$$\rho(k + k \otimes_l \text{Hom}_l(V,l)) = \text{Span}_k \left(\{ x_j^q : 1 \leq j \leq r, \ 0 \leq s < h \} \cup \{ 1 \} \right).$$

Proof. Note that $\tau \circ \psi(k + k \otimes_l \text{Hom}_l(V,l)) = k \oplus \text{Hom}_l(V,k) \subseteq \text{Map}(V,k)$. Note that

$$\sigma^{-1} \left(\text{Span}_k \left(\{ x_j^q : 1 \leq j \leq r, \ 0 \leq s < h \} \right) \right) \subseteq \text{Hom}_l(V,k).$$

As both sets have dimension $\dim(V) = r \cdot h$ over k, the result follows. □

For $m, n \in \mathbb{Z}_{\geq 1}$ we set $s_m(n)$ to be the sum of the digits of n in base m.

Lemma 3.3. Let $m \in \mathbb{Z}_{\geq 2}$ and $n, n' \in \mathbb{Z}_{\geq 0}$. Then the following hold:

i. $s_m(n + n') \leq s_m(n) + s_m(n')$;

ii. Suppose $n = \sum_i c_i m^i, c_i \geq 0$. Then we have $\sum_i c_i \geq s_m(n)$ with equality iff for all i we have $c_i < m$.

Proof. i. This is well-known and left to the reader.

ii. We give a proof by induction on \(n \). For \(n = 0 \) the result is correct. Suppose first that \(n = c_m m^s \) and assume that \(c_s \geq m \). Then we have \(n = (c_s - m)m^s + m^{s+1} \).

By induction and ii we have

\[
c_s > c_s - m + 1 \geq s_m((c_s - m)m^s) + s_m(m^{s+1}) \geq s_m(c_s m^s).
\]

In general, using i, we find

\[
\sum_i c_i \geq \sum_i s_m(c_i m^i) \geq s_m(n).
\]

Also, one easily sees that one has equality iff all \(c_i \) are smaller than \(m \). \(\square \)

Proposition 3.4. Let \(f \in k[x_1, \ldots, x_r] \) nonzero with the degree in all \(x_i \) of all the monomials less than \(q^h \). Write \(f = \sum_{s=(s_1, \ldots, s_r)} c_s x_1^{s_1} \cdots x_r^{s_r} \). Then the \(l \)-degree of \(\tau^{-1} \circ \varphi(f) \in k \otimes_l \operatorname{Map}(V,l) \) is equal to

\[
\max\{s_q(s_1) + \cdots + s_q(s_r) : s = (s_1, \ldots, s_r) \text{ s.t. } c_s \neq 0\}.
\]

Proof. Put \(g = \tau^{-1} \circ \varphi \circ \sigma^{-1}(f) \). From Lemma 2.2, Lemma 3.1 and Lemma 3.2 we obtain the following. Let \(i \in \mathbb{Z}_{\geq 0} \). Then \(\deg_i(g) \leq i \) iff

\[
g \in \rho(k \otimes_l (l + \operatorname{Hom}(V,l))^i_l) = \rho((k + k \otimes_l \operatorname{Hom}(V,l))^i_k)
\]

\[
= \left(\operatorname{Span}_k \left\{ x_j^{q^r} : 1 \leq j \leq r, \ 0 \leq s < h \cup \{1\} \right\} \right)^i_k.
\]

The result follows from Lemma 3.3. \(\square \)

The case for a general \(W \) just follows by decomposing \(W \) into a direct sum of copies of \(k \) and then taking the maximum of the corresponding degrees.

4. Proof of main theorem

Lemma 4.1. Let \(m, q, h \in \mathbb{Z}_{>0} \) and suppose that \(q^h - 1 \mid m \). Then we have: \(s_q(m) \geq h(q - 1) \).

Proof. We do a proof by induction on \(m \).

Suppose that \(m < q^h \). Then \(m = q^h - 1 \) and we have \(s_q(m) = h(q - 1) \).

Suppose \(m \geq q^h \). Write \(m = m_0 q^h + m_1 \) with \(0 \leq m_1 < q^h \) and \(m_0 \geq 1 \). We claim that \(q^h - 1 \mid m_0 + m_1 \). Note that \(m_0 + m_1 \equiv m_0 q^h + m_1 \equiv 0 \pmod{q^h - 1} \). Then by induction we find

\[
s_q(m) = s_q(m_0) + s_q(m_1) \geq s_q(m_0 + m_1) \geq h(q - 1).
\]

\(\square \)

Lemma 4.2. Let \(k \) be a finite field of cardinality \(q \). Let \(R = k[X_a : a \in k] \) and consider the action of \(k^* \) on \(R \) given by

\[
k^* \mapsto \operatorname{Aut}_{k-\text{alg}}(R)
\]

\[
c \mapsto (X_a \mapsto X_{ca}).
\]

Let \(F \in R \) fixed by the action of \(k^* \) with \(F(0, \ldots, 0) = 0 \) and such that the degree of no monomial of \(F \) is a multiple of \(q^r - 1 \). Then for \(w = (a)_a \in k^k \) we have \(F(w) = 0 \).
Proof. We may assume that F is homogeneous with $d = \deg(F)$ which is not a multiple of $q' - 1$. Take $\lambda \in k^*$ a generator of the cyclic group. As F is fixed by k^* we find:

$$F(w) = F(\lambda w) = \lambda^d F(w).$$

As $\lambda^d \neq 1$, we have $F(w) = 0$ and the result follows. \square

Finally we can state and prove a stronger version of Theorem 1.2.

Theorem 4.3. Let k be a finite field. Let $l \subseteq k$ be a subfield with $[k : l] = h$ and let V be a finite dimensional k-vector space. Let $f \in \text{Map}(V, V)$ be a non-constant and non-surjective map. Then f misses at least

$$\frac{\dim_k(V) \cdot h \cdot (\#l - 1)}{\deg_l(f)}$$

values.

Proof. Set $\#l = q$. Put a k-linear multiplication on V such that it becomes a field. This allows us reduce to the case where $V = k$. Assume $V = k$. After shifting we may assume $f(0) = 0$. Put an ordering \leq on k. In $k[T]$ we have

$$\prod_{a \in k} (1 - f(a)T) = 1 - \sum_a f(a)T + \sum_{a < b} f(a)f(b)T^2 - \ldots = \sum_i a_i T^i.$$

For $1 \leq i < \frac{h(q-1)}{\deg_l(f)}$ we claim that $a_i = 0$. Put $f_0 \in k[x]$ a polynomial of degree at most $q^h - 1$ inducing $f : k \to k$. Consider $g_i = \prod_{a_1 < \ldots < a_i} f_0(X_{a_1}) \cdots f_0(X_{a_i})$ in $k[X_a : a \in k]$, which is fixed by k^*. We have a map

$$\varphi : k[X_a : a \in k] \to \text{Map}(k^k, k).$$

Proposition 3.4 gives us that $\deg_l(\varphi(g_i)) = i \cdot \deg_l(f) < h(q - 1)$. We claim that there is no monomial in g_i with degree a multiple of $q^h - 1$. Indeed, suppose that there is a monomial $c X_{r_1} \cdot \ldots X_{r_i} \neq 0$ in g_i (note that not all r_i are zero) and suppose that $q^h - 1 | \sum_i r_i$. Then by Lemma 4.1 and Proposition 3.4 we have

$$h(q - 1) \leq s_q(\sum_j r_j) \leq \sum_j s_q(r_j) \leq i \cdot \deg_l(f) < h(q - 1),$$

contradiction. Hence we can apply Lemma 4.2 to conclude that $a_i = 0$.

Hence we conclude

$$\prod_{a \in k} (1 - f(a)T) \equiv 1 \pmod{T^{\frac{h(q-1)}{\deg_l(f)}}}.$$
Combining this gives:
\[
\prod_{a \in k \setminus f(k)} (1 - aT) = \frac{\prod_{a \in k}(1 - aT)}{\prod_{b \in f(k)}(1 - bT)} = \prod_{a \in k}(1 - aT) \prod_{c \in k}(1 - f(c)T) \pmod{T^{\frac{h(b-1)}{\deg(f)}}}
\]
\[
= \prod_{b \in f(k)} (1 - bT)^{\#f^{-1}(b)-1} \pmod{T^{\frac{h(b-1)}{\deg(f)}}}.
\]

Note that the polynomials \(\prod_{a \in k \setminus f(k)} (1 - aT)\) and \(\prod_{b \in f(k)} (1 - bT)^{\#f^{-1}(b)-1}\) have degree bounded by \(s = k \setminus f(k)\) and are different since \(s \geq 1\). But this implies that \(s \geq \frac{h(q-1)}{\deg(f)}\).

\[\square\]

Remark 4.4. Different \(l\) in Theorem 4.3 may give different lower bounds.

5. Examples

In this section we will give examples which meet the bound from Theorem 4.2.

Example 5.1 \((n = \deg(f))\). Let \(l\) be a finite field of cardinality \(q\). In this example we will show that for \(n, d \in \mathbb{Z}_{\geq 2}\) there are functions \(f_1, \ldots, f_n \in l[x_1, \ldots, x_n]\) such that the maximum of the degrees is equal to \(d\) such that the induced map \(f : l^n \to l^n\) satisfies \(|l^n \setminus f(l^n)| = \frac{n(q-1)}{d} = q - 1\). For \(i = 1, \ldots, n - 1\) set \(f_i = x_i\). Let \(l_{n-1}\) be the unique extension of \(l\) of degree \(n - 1\). Let \(v_1, \ldots, v_{n-1}\) be a basis of \(l_{n-1}\) over \(l\). Then \(g = \text{Norm}_{l_{n-1}/l}(x_1 v_1 + \ldots + x_{n-1} v_{n-1})\) is a homogeneous polynomial of degree \(n - 1\) in \(x_1, \ldots, x_{n-1}\). Put \(f_n = x_n \cdot g\). As the norm of a nonzero element is nonzero, one easily sees that \(l^n \setminus f(l^n) = \{0\} \times \ldots \times \{0\} \times l^*\) has cardinality \(q - 1\).

Example 5.2 \((n = \frac{\deg(f)}{q-1})\). Let \(l\) be a finite field and let \(n \in \mathbb{Z}_{\geq 1}\). Let \(f_1, \ldots, f_n \in l[x_1, \ldots, x_n]\) such that the combined map \(f : l^n \to l^n\) satisfies \(|l^n \setminus f(l^n)| = 1\) (Lemma 2.4). From Theorem 4.2 and the upper bound \(n(q - 1)\) for the degree we deduce that \(\deg(f) = n(q - 1)\).

References

[MWW12] Gary L. Mullen, Daqing Wan, and Qiang Wang. Value sets of polynomial maps over finite fields. http://arxiv.org/abs/1210.8119 2012. preprint.

[Tur95] Gerhard Turnwald. A new criterion for permutation polynomials. *Finite Fields Appl.*, 1(1):64–82, 1995.

Mathematisch Instituut

P.O. Box 9512
2300 RA Leiden
The Netherlands

E-mail address: mkosters@math.leidenuniv.nl

URL: www.math.leidenuniv.nl/~mkosters