Research Article

Evidence Theory in Picture Fuzzy Set Environment

Harish Garg, R. Sujatha, D. Nagarajan, J. Kavikumar, and Jeonghwan Gwak

1School of Mathematics, Thapar Institute of Engineering and Technology, Deemed University, Patiala, Punjab, India
2Department of Mathematics, SSN College of Engineering, Chennai, India
3Department of Mathematics, Hindustan Institute of Technology & Science, Chennai, India
4Fuzzy Mathematics & Applications, Faculty of Applied Sciences & Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
5Department of Software, Korea National University of Transportation, Chungju 27469, Republic of Korea
6Department of Biomedical Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
7Department of AI Robotics Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
8Department of IT & Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea

Correspondence should be addressed to Jeonghwan Gwak; james.han.gwak@gmail.com

Received 29 March 2021; Accepted 7 May 2021; Published 19 May 2021

Academic Editor: Sami Ullah Khan

Copyright © 2021 Harish Garg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Picture fuzzy set is the most widely used tool to handle the uncertainty with the account of three membership degrees, namely, positive, negative, and neutral such that their sum is bound up to 1. It is the generalization of the existing intuitionistic fuzzy and fuzzy sets. This paper studies the interval probability problems of the picture fuzzy sets and their belief structure. The belief function is a vital tool to represent the uncertain information in a more effective manner. On the other hand, the Dempster–Shafer theory (DST) is used to combine the independent sources of evidence with the low conflict. Keeping the advantages of these, in the present paper, we present the concept of the evidence theory for the picture fuzzy set environment using DST. Under this, we define the concept of interval probability distribution and discuss its properties. Finally, an illustrative example related to the decision-making process is employed to illustrate the application of the presented work.

1. Introduction

Decision making is based on experts opinion, and often experts have to take decisions based on limited data or knowledge. Thus, in any decision-making process, two types of uncertainties arise. Epistemic uncertainties occur due to lack of knowledge, insufficient data, and ambiguity, whereas aleatory uncertainty is due to the randomness of the physical system under study [1–6]. Probability theory is proposed to deal with randomness and is not effective in dealing with epistemic uncertainties. Theoretical evidence on how to handle uncertainty is Dempster–Shafer theory [7, 8]. It has vast applications [9]. In a finite discrete space, Dempster–Shafer theory can be interpreted as a generalization of probability theory where probabilities are assigned to sets as opposed to mutually exclusive singletons. In traditional probability theory, evidence is associated with only one possible event. In Dempster–Shafer theory, evidence can be associated with multiple possible events, in contrast to one single event. DST theory was extended to fuzzy sets by Zadeh [10, 11]. DS theory in fuzzy sets is presented in [12–16]. DS theory in intuitionistic domain was introduced by Grzegorzewski and Mrowka in [17]. Representation theorem was proved by Riecan [18, 19]. Gerstenkorn and Manko defined intuitionistic probability in two ways [20]. Also, Feng et al. [21] used intuitionistic fuzzy lower and upper approximation operators. Fuzzy clustering based on DS theory was applied for breast cancer cell detection in [22]. Pavement condition distress index was calculated using DS theory in [23], and the combination of quantum theory and DS theory has been
investigated in [24]. Belief degrees and belief structures are required for Dempster–Shafer theory.

Cong and Kreinovich [25] introduced picture fuzzy sets and developed some operations and relations on them. Temporal picture fuzzy soft set and related concepts were developed in [26]. Picture fuzzy geometric operators were proposed, and using it, the multiple attribute decision-making problem was addressed in [27]. P-order and R-order union and the intersection of internal (external) cubic picture fuzzy sets were discussed in [28]. In the interval-valued picture fuzzy domain, the similarity measures are developed in [29]. Einstein information-based aggregation operators applied in group decision-making problem were dealt in [30]. Distance measure and dissimilarity measure are defined in [31]. Generalized weighted distance measure, the generalized weighted Hausdorff distance measure, and the generalized hybrid weighted distance measure between LPFSs and their properties are discussed and applied to TOPSIS [32]. Decomposition theorems for PFS are proved in [33].

The estimation of the probability of belief function in the environment of fuzzy events and intuitionistic fuzzy events exist in literature. Dempster–Shafer theory is based on belief degrees and structures with precision, but in decision-making situations, the data are incomplete, and there is a lack of information. In face recognition, when two persons have highly similar features, a classifier may be unable to give a precise decision. In such situations, its belief degree may be imprecise. Thus, in the decision-making process involving elucidation of multiple experts’ opinion, interval-valued belief degree is appropriate. Interval probability distribution based on Dempster–Shafer evidence theory in fuzzy and intuitionistic fuzzy environment is discussed by the authors. Fuzzy theory takes into account membership function, in contrast to intuitionistic fuzzy which accommodates non-membership. In some decision-making situations, some experts prefer neutral membership. Picture fuzzy sets are more appropriate in decision making, indicating the need for extension of evidence theory for picture fuzzy sets. The main motivation of this paper is to frame probability distribution based on evidence theory for picture fuzzy sets and illustrate it through a suitable example.

2. Background

Dempster–Shafer theory of evidence is based on a finite set of mutually exclusive elements, called the frame of discernment denoted by \(\Omega \). \(2^\Omega \) is the power set of \(\Omega \), and it contains all possible unions of the sets in \(\Omega \). Atomic sets are the singleton sets in a frame of discernment.

DS theory can express and deal with uncertainty in crisp sets. However, it fails to handle vague information and linguistic terms. Thus, fuzzy evidence theory was developed, and it was extended to intuitionistic fuzzy sets. In this paper, we define evidence theory using picture fuzzy sets. The probability distribution is expressed as an interval. The following definitions are provided as background for this paper.

1. **Definition [7, 8]:** let \(\Omega = A_1, A_2, \ldots, A_n \) be the frame of discernment. A basic belief assignment or basic probability assignment (BPA) is a function \(m : 2^\Omega \to [0, 1] \) satisfying the conditions: \(m(\emptyset) = 0 \). For each subset \(A \subseteq \Omega \), the value taken by the BPA at \(A \) is called the basic probability assigned to \(A \) and denoted by \(m(A) \). A subset \(A \) of \(\Omega \) is called the focal element of a belief function \(m \) if \(m(A) > 0 \).

2. **Dempster’s rule of combination** [7, 8]: let \(m_1 \) and \(m_2 \) be two basic probability assignments (BPAs) on the frame of discernment \(\Omega \), where the BPAs \(m_1 \) and \(m_2 \) are independent. The orthogonal sum based on Dempster’s rule of combination defined by \(m = m_1 \oplus m_2 \) is \(m(A) = (1/1 - K) \sum_{B \subseteq A} m_1(B)m_2(C) \) where \(K = \sum_{B \subseteq C=\emptyset} m_1(B)m_2(C) \).

3. **Definition** [25]: a picture fuzzy set \(A \) on a universe \(X \) is of the form \(A = x, P_A(x), N_A(x), N_{g_A}(x) \mid x \in X \) where \(P_A(x) \in [0, 1] \) is the degree of positive membership of \(x \) in \(A \), \(N_A(x) \in [0, 1] \) is the degree of neutral membership of \(x \) in \(A \), and \(N_{g_A}(x) \in [0, 1] \) is the degree of negative membership of \(x \) in \(A \). These memberships satisfy the condition \(P_A(x) + N_A(x) + N_{g_A}(x) = 1 \). Further, the refusal degree of \(x \) in \(A \) is \(R_A(x) = 1 - (P_A(x) + N_A(x) + N_{g_A}(x)) \).

4. **Arithmetic operations on intervals:** consider \([a_1, a_2] \) and \([b_1, b_2] \), with \(a_1, b_1 > 0 \). Then, the arithmetic operations on these intervals are given by

 a. **Addition:** \([a_1, a_2] + [b_1, b_2] = [a_1 + b_1, a_2 + b_2] \)
 b. **Subtraction:** \([a_1, a_2] - [b_1, b_2] = [a_1 - b_2, a_2 - b_1] \)
 c. **Multiplication:** \([a_1, a_2] \cdot [b_1, b_2] = [a_1 \cdot b_1, a_2 \cdot b_2] \)
 d. **Division:** \(([a_1, a_2] / [b_1, b_2]) = ([a_1 / b_2], [a_2 / b_1]) \)

3. **Picture Fuzzy Interval Probability (PFIP)**

Probability distribution in the framework of picture fuzzy sets is introduced in this section. The probability distribution is in the form of an interval. The validation of this interval probability distribution is examined. Further, this definition coincides with fuzzy and intuitionistic interval probabilities when the negative, neutral, and refusal degrees are zero for the former and neutral membership is zero for the latter. Let \(X = x_1, x_2, \ldots, x_n \) be a universe of discourse and \(F \) be the set of all focal elements. A picture fuzzy belief function \(m \) is given as \(\{ (A_{\text{PF}}^F, m(A_{\text{PF}}), P_{A_{\text{PF}}}(x_j), N_{g_{A_{\text{PF}}}}(x_j), N_{g_{A_{\text{PF}}}}(x_j)) \mid A_{\text{PF}}^F \in F, x_j \in X \} \) where \(A_{\text{PF}}^F \in F, x_j \in X \). Then, the probability of the event \(x_j, j = 1, 2, \ldots, n \) is defined as \(P(x_j) = [\tilde{a}_j, \tilde{b}_j] \), where \(\tilde{a}_j \) and \(\tilde{b}_j \) are given by
\[\bar{a}_j = \sum_{A_i^P \in F} \frac{m(A_i^P)P_{\lambda_i}^P(x_j)}{\sum_{k=1}^{n} (1 - Nu_{A_j}^P(x_k) - Ng_{A_j}^P(x_k)) - R_{A_j}^P(x_j)}, \]

(1)

\[\bar{b}_j = \sum_{A_i^P \in F} \frac{m(A_i^P)(1 - Nu_{A_j}^P(x_j) - Ng_{A_j}^P(x_j))}{\sum_{j=1}^{n} (P_{\lambda_i}^P(x_j)) + R_{A_j}^P(x_j)}. \]

(2)

Theorem 1. The picture fuzzy set interval probability estimation \(\bar{P}(x_i) = [\bar{a}_j, \bar{b}_j], j = 1, 2, \ldots, n \) forms a valid interval-valued probability distribution in \(X = x_1, x_2, \ldots, x_n \).

Proof. To prove that \(\bar{P}(x_i) = [\bar{a}_j, \bar{b}_j], j = 1, 2, \ldots, n \) is a valid interval-valued probability distribution, we need to prove that \(\sum_{j=1}^{n} \bar{a}_j \) is a valid interval-valued probability distribution in \(X = x_1, x_2, \ldots, x_n \).

Consider equation (1):

\[\bar{a}_j = \sum_{A_i^P \in F} \frac{m(A_i^P)P_{\lambda_i}^P(x_j)}{\sum_{k=1}^{n} (1 - Nu_{A_j}^P(x_k) - Ng_{A_j}^P(x_k)) - R_{A_j}^P(x_j)}, \]

(3)

where \(\bar{a}_j \) can be rewritten as

\[\bar{a}_j = \sum_{A_i^P \in F} \frac{m(A_i^P)P_{\lambda_i}^P(x_j)}{\sum_{k=1}^{n} (1 - Nu_{A_j}^P(x_k) - Ng_{A_j}^P(x_k)) - R_{A_j}^P(x_j)} \]

(4)

Now,

\[\bar{b}_j = \sum_{A_i^P \in F} \frac{m(A_i^P)(1 - Nu_{A_j}^P(x_j) - Ng_{A_j}^P(x_j))}{\sum_{j=1}^{n} (P_{\lambda_i}^P(x_j)) + R_{A_j}^P(x_j)} \]

(5)

\[= \sum_{A_i^P \in F} \frac{m(A_i^P)(1 - Nu_{A_j}^P(x_j) - Ng_{A_j}^P(x_j))}{\sum_{j=1}^{n} (P_{\lambda_i}^P(x_j)) + (1 - P_{\lambda_i}^P(x_j) - Nu_{A_j}^P(x_j) - Ng_{A_j}^P(x_j))} \]

(6)
Consider

\[\sum_{j=1}^{n} \frac{p_{\Lambda}^{PF}(x_j)}{\sum_{k \neq j}^{n} \left(1 - N u_{\Lambda}^{PF}(x_k) - N g_{\Lambda}^{PF}(x_k)\right) + p_{\Lambda}^{PF}(x_j)} \]

\[\leq \sum_{j=1}^{n} \frac{p_{\Lambda}^{PF}(x_j)}{1 - p_{\Lambda}^{PF}(x_q) + \sum_{k \neq q}^{n} (p_{\Lambda}^{PF}(x_k))} = \frac{\sum_{j=1}^{n} p_{\Lambda}^{PF}(x_j)}{1 - p_{\Lambda}^{PF}(x_q) + \sum_{k \neq q}^{n} n(p_{\Lambda}^{PF}(x_k))} \tag{7} \]

\[= 1 - \frac{1 - p_{\Lambda}^{PF}(x_q)}{1 - p_{\Lambda}^{PF}(x_q) + \sum_{k \neq q}^{n} \left(1 - p_{\Lambda}(x_k)\right)} \]

Again, for \(\forall q \in \{1, 2, \ldots, n\} \),

\[\sum_{j=1}^{n} p_{\Lambda}^{PF}(x_j) \]

\[\leq \sum_{j=1}^{n} \frac{p_{\Lambda}^{PF}(x_j)}{1 - p_{\Lambda}^{PF}(x_q) + \sum_{k \neq q}^{n} (p_{\Lambda}^{PF}(x_k))} = \frac{\sum_{j=1}^{n} p_{\Lambda}^{PF}(x_j)}{1 - p_{\Lambda}^{PF}(x_q) + \sum_{k \neq q}^{n} n(p_{\Lambda}^{PF}(x_k))} \tag{7} \]

\[= 1 - \frac{1 - p_{\Lambda}^{PF}(x_q)}{1 - p_{\Lambda}^{PF}(x_q) + \sum_{k \neq q}^{n} \left(1 - p_{\Lambda}(x_k)\right)} \]

Consider
\[
\sum_{j=1}^{n} \frac{1 - N u_{A_i}^{PF}(x_j) - N g_{A_i}^{PF}(x_j)}{\sum_{k=1}^{n} \left(P_{A_i}^{PF}(x_k) \right) + (1 - N u_{A_i}^{PF}(x_j) - N g_{A_i}^{PF}(x_j))} \geq \sum_{j=1}^{n} \frac{1 - N u_{A_i}^{PF}(x_j) - N g_{A_i}^{PF}(x_j)}{\sum_{k=1}^{n} \left(P_{A_i}^{PF}(x_k) \right) + (1 - N u_{A_i}^{PF}(x_j) - N g_{A_i}^{PF}(x_j))} + P_{A_i}^{PF}(x_j)
\]
\[
= 1 - \frac{m(A_i^{PF}) P_{A_i}^{PF}(x_j)}{1 - N u_{A_i}^{PF}(x_j) - N g_{A_i}^{PF}(x_j) + \sum_{j=1}^{n} \left(P_{A_i}^{PF}(x_j) \right)}
\]

(9)

\[
\sum_{j=1}^{n} \tilde{a}_q = \sum_{j=1}^{n} \frac{m(A_i^{PF}) P_{A_i}^{PF}(x_j)}{1 - N u_{A_i}^{PF}(x_j) - N g_{A_i}^{PF}(x_j) + \sum_{j=1}^{n} \left(P_{A_i}^{PF}(x_j) \right)}
\]

(10)

\[
\sum_{j=1}^{n} \tilde{b}_q = \sum_{j=1}^{n} \frac{m(A_i^{PF}) (1 - N u_{A_i}^{PF}(x_j) - N g_{A_i}^{PF}(x_j))}{1 - N u_{A_i}^{PF}(x_j) - N g_{A_i}^{PF}(x_j) + \sum_{j=1}^{n} \left(P_{A_i}^{PF}(x_j) \right) + (1 - N u_{A_i}^{PF}(x_j) - N g_{A_i}^{PF}(x_j))}
\]

Hence, finally by equations (9) and (10),
In intuitionistic fuzzy set, the neutral membership function is given by
\[
\overline{A}_j = \frac{m(A_j^{PF})P_j^{PF}(x)}{\sum_{j=1}^n [1 - N_j^{PF}(x) - g_j^{PF}(x)] - R_j^{PF}(x)}
\]

In fuzzy sets, \(N_j^{PF}(x) = 0 = R_j^{PF}(x)\):
\[
\overline{A}_j = \frac{m(A_j^{PF})P_j^{PF}(x)}{\sum_{j=1}^n P_j^{PF}(x)}
\]
\[
\overline{B}_j = \frac{m(A_j^{PF})P_j^{PF}(x)}{\sum_{j=1}^n P_j^{PF}(x)}
\]

The interval probability estimation based on evidence theory for picture fuzzy sets is established. The similarities and contrasts against the fuzzy and intuitionistic fuzzy sets are provided in Table 1.

3.1. Example 1
Submarines form a significant and crucial part of the navy of any country. The overall cost of the submarine includes the cost of paint used to coat it. Properly formulated protective coatings are important to the durability and performance of the submarine. Coating systems for the underwater parts of a ship should be corrosion-inhibiting, antifouling, abrasion-resistant, smooth, and compatible with cathodic protection. To minimise bunker (fuel) costs, the underwater hull should remain smooth during service. Consequently, a coating system should be applied as evenly as possible, and it should provide long-term protection against corrosion and fouling. Increased hull friction due to fouling can result in up to 40% more fuel consumption compared to a clean hull and greater air pollution because of the extra fuel burned to maintain a ship’s speed. Systems for the underwater hull/bootop areas consist of anticorrosive paint and antifouling paint on top of it. Thus, choosing a cost-effective paint with anticorrosive and antifouling properties is important. Often the estimated cost is based on experts’ opinion as it decides the cost of the submarine. Let the universe of discourse be \(X = \{80, 90, 100\}\).

The assessment result from some experts is that the probability of “assigning about 90 thousand rupees for paint” is 0.5, the probability of “assigning a small amount of money for paint” is 0.3, and the probability of “assigning a large amount of money for paint” is 0.2. The linguistic terms “about 90 thousand,” “small amount of money,” and “large amount of money” can be captured using picture fuzzy sets, as the opinion of experts often differs and uncertainty is involved. Let these linguistic terms be expressed by three picture fuzzy events A, B, and C, respectively. These focal elements can be expressed as

\[
A = \{(80, 0.7, 0.1, 0.1), (90, 1, 0, 0), (100, 0.7, 0.1, 0.1)\},
\]
\[
B = \{(80, 0.7, 0.2, 0.1), (90, 0.5, 0.1, 0.3), (100, 0.3, 0.3, 0.3)\},
\]
\[
C = \{(80, 0.5, 0.2, 0.2), (90, 0.6, 0.1, 0.1), (100, 1, 0, 0)\}.
\]

The picture fuzzy interval probability distribution is calculated using the proposed approach as
\[
\mathcal{P}(80) = \{0.307, 0.3545\},
\]
\[
\mathcal{P}(90) = \{0.34055, 0.40915\},
\]
\[
\mathcal{P}(100) = \{0.27955, 0.3302\}.
\]

To make a decision on the assigning money to paint is obtained by comparing the picture fuzzy interval probability distribution. Based on comparison of intervals using their centers, \(\mathcal{P}(100) \leq \mathcal{P}(80) \leq \mathcal{P}(90)\). Thus, the decision of assigning 90 thousand for paint can be inferred.

3.2. Example 2
Let us continue with the previous case study of choosing suitable paint for the submarine. Decision is often based on more than one variety of paints. For each paint variety, more than one expert opinion is obtained to take a decision as the cost of paint for the submarine is higher. Suppose the independent opinion of two experts for a variety of paint is obtained based on four main factors of corrosion-inhibiting, antifouling, abrasion-resistant, and smoothness. These factors can be taken as the frame of discernment. Let this frame of discernment be
Table 2: Basic probability assignments by two experts.

S. no.	BPA m_1	BPA m_2
1	$[x_1, x_2] = [0.045, 0.514]$	$[x_1, x_3] = [0.181, 0.25]$
2	$[x_1] = [0.081, 0.172]$	$[x_1, x_2, x_3] = [0.016, 0.28]$
3	$[x_1, x_2, x_3] = [0.46, 0.57]$	$[x_1, x_4] = [0.2, 0.25]$
4	$[x_1, x_4] = [0.32, 0.48]$	$[x_1, x_2, x_3, x_4] = [0.21, 0.38]$

Table 3: Midpoint of combined IPFP.

S. no.	Combined IPFP m_{12}	Midpoints
1	$[x_1, x_2] = [0.0736, 0.159605]$	0.1166025
2	$[x_1, x_3] = [0.08326, 0.14250456]$	0.11288228
3	$[x_2, x_4] = [0.0512, 0.1344043]$	0.09280215
4	$[x_1, x_2, x_3] = [0.0966, 0.216606]$	0.156603

$\Omega = \{x_1, x_2, x_3, x_4\}$. Let m_1 and m_2 be two BPAs defined on Ω, given by Table 2.

By Dempster rule of combination, the combined opinion of the two experts can be estimated. The combined opinion of interval picture fuzzy probability is given by

$$m_{12}(x_1) = 0.092, 0.1425],$$
$$m_{12}(x_2) = [7.2000072E-3, 0.1439246],$$
$$m_{12}(x_3) = [0.22806, 0.171505],$$
$$m_{12}(x_4) = [0.064, 0.12],$$
$$m_{12}(x_1, x_2) = [0.0736, 0.159605],$$
$$m_{12}(x_1, x_3) = [0.08326, 0.14250456],$$
$$m_{12}(x_2, x_4) = [0.0512, 0.1344043],$$
$$m_{12}(x_1, x_2, x_3) = [0.0966, 0.216606].$$

The decision of selecting this variety of paint is suitable for submarine is decided based on the interval picture fuzzy probability distribution by comparison of these interval values with more than one characteristic. The midpoints of the intervals are given in Table 3.

Based on Table 3, the paint has three attributes, namely, corrosion-inhibiting, anti fouling, and abrasion-resistant, but it lacks smoothness. Thus, the paint variety can be used with less smoothness in the finish.

4. Conclusion

In this paper, we have utilized the picture fuzzy set to address the uncertainty and vagueness in the data. The picture fuzzy set captures the uncertainty of the element with respect to the three membership degrees such that their sum is bounded by 1. In this paper, we reviewed the definition and properties of the interval probability distribution for the picture fuzzy information using the belief function and DST. The proof of their validation is also given in the work. By employing the belief functions on picture fuzzy information systems, the interval probability can be estimated and hence ranking of the number can be accessed. The functionality of the structure is also explained with two numerical examples.

Also, the combined IPFP is used to compare two experts’ opinions of the choice of paint.

In the future, we will utilize the belief function to address the decision-making problems arising under the different environmental issues such as greenhouse gas emissions, healthcare, green supplier selection, and so on. Also, we have established some generalized measures to combine the different preference values, and therefore, in the future work, we will try to develop different information measures for determining the nature of the decision-making process [36–38].

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant no. NRF-2020R1I1A3074141), the Brain Research Program through the NRF funded by the Ministry of Science, ICT and Future Planning (grant no. NRF-2019M3C7A1020406), and “Regional Innovation Strategy (RIS)” through the NRF funded by the Ministry of Education.

References

[1] R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, and B. Veitch, “Analyzing system safety and risks under uncertainty using a bow-tie diagram: an innovative approach,” Process Safety and Environmental Protection, vol. 91, pp. 1–18, 2013.
[2] R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, and B. Veitch, “Handling and updating uncertain information in bowtie analysis,” Journal of Loss Prevention in the Process Industries, vol. 25, p. 819, 2012.
[3] A. S. Markowski and M. S. Mannan, “Fuzzy risk matrix,” Journal of Hazardous Materials, vol. 159, p. 1527, 2008.
[4] M. Yazdi, “The application of bow-tie method in hydrogen sulfide risk management using layer of protection analysis (LOPA),” Journal of Failure Analysis and Prevention, vol. 17, pp. 291–303, 2017.
[5] Y. Hong, H. J. Pasman, S. Sachdeva, A. S. Markowski, and M. S. Mannan, “A fuzzy logic and probabilistic hybrid approach to quantify the uncertainty in layer of protection analysis,” Journal of Loss Prevention in the Process Industries, vol. 43, p. 1017, 2016.
[6] A. S. Markowski and A. Kotynia, “Bow-tie” model in layer of protection analysis,” Process Safety and Environmental Protection, vol. 89, pp. 205–213, 2011.
[7] A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,” The Annals of Mathematical Statistics, vol. 38, no. 2, pp. 325–339, 1967.
[8] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ, USA, 1976.
[9] Y. Song and X. Wang, “Probability estimation in the framework of intuitionistic fuzzy evidence theory,”
C. Wang, X. Zhou, H. Tu, and S. Tao, “Some geometric aggregation operators based on picture fuzzy sets and their applications in multiple attribute decision-making,” *Italian Journal of Pure and Applied Mathematics*, vol. 37, pp. 477–492, 2017.

S. Ashraf, S. Abdullah, and A. Qadir, “Novel concept of cubic picture fuzzy sets,” *Journal of New Theory*, vol. 24, pp. 59–72, 2018.

P. Liu, M. Munir, T. Mahmood, and K. Ullah, “Some similarity measures for interval-valued picture fuzzy sets and their applications in decision-making,” *Information (Switzerland)*, vol. 10, no. 12, pp. 1–23, 2019.

S. Khan, S. Abdullah, and S. Ashraf, “Picture fuzzy aggregation information based on Einstein operations and their application in decision making,” *Mathematical Sciences*, vol. 13, no. 3, pp. 213–229, 2019.

N. Van Dinh and N. Xuan Thao, “Some measures of picture fuzzy sets and their application in multi-attribute decision making,” *International Journal of Mathematical Sciences and Computing*, vol. 4, no. 3, pp. 23–41, 2018.

D. Liu, Y. Luo, and Z. Liu, “The linguistic picture fuzzy set and its application in multi-criteria decision-making: an illustration to the topsis and todim methods based on entropy weight,” *Symmetry*, vol. 12, no. 1170, pp. 1–27, 2020.

P. Dutta and S. Ganju, “Some aspects of picture fuzzy set,” *Transactions of A. Razmadze Mathematical Institute*, vol. 172, pp. 164–175, 2018.

E. S. Lee, “An interval dempster-shafer approach,” *Computers & Mathematics with Applications*, vol. 24, no. 7, pp. 89–95, 1992.

C. Lucas and B. Nadjar Araabi, “Generalization of the dempstershafer theory: a fuzzy-valued measure,” *IEEE Transactions On Fuzzy Systems*, vol. 7, no. 3, pp. 255–270, 1999.

L. Wang, H. Garg, and N. Li, “Pythagorean fuzzy interactive Hamacher power aggregation operators for assessment of express service quality with entropy weight,” *Soft Computing*, vol. 25, no. 2, pp. 164–175, 2021.

A. Devraj and P. Chellamani, “Picture fuzzy labelling graphs with an application,” *Annals of Optimization Theory & Practices*, vol. 3, no. 3, pp. 117–132, 2020.

P. A. Ejegwa, I. C. Onyekw, and V. Adah, “An algorithm for an improved intuitionistic fuzzy correlation measure with medical diagnostic application,” *Annals of Optimization Theory & Practices*, vol. 3, no. 3, pp. 51–68, 2020.