Calculation of fission product yields for some nuclei with TALYS code

Mourad Sabri1 and Meriem Haddad2,a

1 Faculté des Sciences, Département de Physique, Université Mouloud Mammeri, Tizi Ouzou, Algérie
2 Faculté de Physique, Université U.S.T.H.B., BP 32 El Alia, Bab Ezzouar 16111, Alger, Algérie

\textbf{Abstract.} We have carried out a calculation of the transmission coefficients per fission mode and determined the fission product yields for some nuclei using the Talys-0.72 version of the code[1]. For fission, this code uses a statistical approach based on a revised version of the multi-modal random neck-rupture model (MM-RNRM). The transmission coefficient is given by the Hill and Wheeler [6] expression taking into account the relevant transition states. The shell and pairing corrections are introduced in the level density parameter according to the Ignatyuk[2] formula. The calculated transmission coefficients values per fission mode are compared with the existing values. First, we reproduced the fragment mass distributions obtained using the Talys-0.64 version of the code for the fission of ^{238}U induced by 1.6 and 5.5 MeV neutrons with the 'constant temperature model' of Gilbert and Cameron[3], then we extended the calculations to other actinides with other level density models[4][5]. Finally, these calculated values of fission yields are compared with the experimental data.

1 Introduction

The calculation of the fission products yields requires the knowledge of two determining factors: level density and transmission coefficient. The level density is described in different ways with excitation energy. Indeed, at low excitation energy, this is given by the experiments given discrete levels, whereas at high energy, it is given by the Fermi gas model. At intermediate energy, various phenomenological models can be used in TALYS code. The transmission coefficient is given by the Hill and Wheeler [6] expression with the assumptions of existence of the transition states.

2 Calculation of the transmission coefficients and fission modes SL, STI and STII probabilities

In the case of actinides, in their way towards fission, the nuclei meet a double (resp. triple) humped barriers. Several fission modes can be followed by these nuclei through the valleys of potential energy surface. Moreover, between the fission barriers, resonance states known as classes I or II (respectively, in the first and second well) can be built. These states increase the transmission through the barrier. The transmission coefficient per fission mode evaluated with the Hill-Wheeler[6] penetrability through parabolic barriers and using temperature-dependent barrier parameters is given by:

$$T_{f,FM}(Z_{FS},A_{FS},E_x) = \int \rho_{gs}(Z_{FS},A_{FS},\epsilon) d\epsilon \frac{1}{1 + \exp \left[\frac{2\pi B_{f,FM}(Z_{FS},A_{FS},\epsilon) + E_x - \epsilon}{k_B T_{f,FM}(Z_{FS},A_{FS},\epsilon)} \right]}$$

(1)

ρ_{gs} is the the ground state level density. E_x is the excitation energy. $B_{f,FM}$ is the fission mode barrier height.

The contribution of each fission mode is then given by:

$$W_{SL}(Z_{FS},A_{FS},E_x) = \frac{T_{f,SL}^B}{T_{f,SL}^B + T_{f,STI}^B + T_{f,STII}^B}$$

(2)

Figures 1, 2 and 3 show the fission mode probabilities of SL, STI and STII modes as function of the excitation energy (total energy of compound system) calculated using TALYS code respectively for the systems $^{232}\text{Th}(n, f)$ and $^{235}\text{U}(n, f)$ and $^{232}\text{Pu}(n, f)$.

3 Fission fragment mass distribution

In order to determine the fission mode mass yield Y_{FM}, TALYS code uses a new version of the random neck-rupture model (RNRM) of Brosa[7] developed by Duijvestijn et al.[8], it includes the temperature in the calculation of the potential energy landscape of the nucleus. Finally the mass distribution is the result of the contribution of these three fission modes:

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly cited.
Fig. 1. Fission mode probability as a function of excitation energy, deduced from transmission coefficient for 232Th(n,f).

Fig. 2. Fission mode probability as a function of excitation energy, deduced from transmission coefficient for 238U(n,f).

Fig. 3. Fission mode probability as a function of excitation energy, deduced from transmission coefficient for 242Pu(n,f).

$$Y(A_{FF};Z_{FS},A_{FS};E_s) = \sum_{FM=STI,STII} W_{FM}(Z_{FS},Z_{FS},Z_s) Y_{FM}(A_{FF};Z_{FS},A_{FS};E_s)$$ \hspace{1cm} (3)

TALYS code enables us to calculate fission product yields in (mb). The yields normalized to 100 fission obtained for monenergetic neutrons induced fission of 238U and 232Th are given respectively on figures 4, 5. Three phenomenological level density models, namely the Constant Temperature Model (CTM)[3], the Back-shifted Fermi gas Model (BFM)[4] and Generalized Super fluid Model (GSM)[5] are carried out. CTM and BFM models seem to gives very close results for these nuclei and neutrons energy whereas GSM model overestimates the mass yields. Further, we used the CTM model for all the others calculations.

4 Comparison with the experimental results:

We obtained using TALYS code the mass yield distributions in (mb) and in (%) for some nuclei. The calculations were undertaken with the assumption of CTM level density model. All the experimental data are extracted from those used by M.C.Duijvestijn et al [8] for comparison with the calculations they carried out using the ALICE code. In figure 6, we present in logarithm scale the preneutron emission mass distribution for the fission of 232Th by 1.21 MeV neutrons obtained with TALYS code and compared with experimental data[9]. The agreement is rather good both for the position of the most probable heavy mass and the width of the distribution. For the calculations of the post-neutron mass distributions, we took account of phenomenological correction for evaporated neutrons. The mass yield distributions for the fission of 232Th by 1-10 MeV neutrons obtained with TALYS code are compared with those obtained by Glendenin et al.[10] (fig.7). The...
predictions made for the postneutron emission mass distribution of 235Th do not agree well with the experimental data particularly the light and heavy group positions. However, the width for light and heavy group seems to be in agreement with the experimental data. In figures 8,9(a),9(b) and 10, we show the preneutron emission mass yields for the fission of 237Np, 238U, and 242Pu by neutrons and 236Ra and 197Au by protons. In the case of 5.5 MeV neutrons on 238U, the symmetric fission portion is overestimated. The group of heavy fragments is described nicely for the 237Np except the structure in the heavy peak around mass 135. Examples of proton induced fission of 236Ra and 197Au are presented in the figures 11 and 12. The agreement with the calculations is very good for 197Au. In fact, for these nuclei, the contribution of STI and STII modes is zero. In the case of 236Ra, the calculations predict a triple humped distribution in accordance with experimental observations, but a dissension appears in the position of the asymmetric peaks and the estimation of the contributions of fission modes. Note that the calculations made with TALYS code does not predict any fine structure in mass distribution.
Fig. 11. Preneutron mass yields for the fission of 226Ra by 1.0MeV energy neutrons. The lines correspond to the calculations with TALYS code and the experimental data are taken from [14].

Fig. 12. Preneutron mass yields for the fission of 197Au by 1.0MeV energy neutrons. The lines correspond to the calculations with TALYS code and the experimental data are taken from [15].

5 Conclusion

The results obtained on the calculation of the transmission coefficient seem to be in agreement with the data of the literature and confirm the fact that the fission mode STI and STII have a more important contribution than SL modes for the studied nuclei, except in the case of 197Au where the contribution of asymmetric modes STI and STII is null which is in quite agreement with the experimental data. The obtained results, although they find an asymmetrical distribution of the fission products whose amplitude is comparable with that of the experimental results, they show a dissension with regard to the position of the light and heavy mass groups. Moreover, TALYS code gave smooth curves for mass yield distribution and does not predict any fine structure which is essentially due to the shell effects. These effects such as introduced in level density parameter do not reproduce any fine structure. At the excitation around neutron separation energy, the competition between fission and neutron evaporation plays an important role in favor of the asymmetric fission. We propose to try to reproduce better the mass distribution by testing the microscopic level density from Hartree-Fock calculations based only on the nucleon- nucleon-interaction, without any parameter to be adjusted.

References

1. A.J. Koning, S. Hilaire, and M. Duijvestijn, TALYS-0.72: A nuclear reaction program (USER MANUAL, 2006).
2. A.V. Ignatyuk, G.N. Smirenkin and A.S. Tishin, Sov. J. Nucl. Phys. 21, no. 3, (1975) 255.
3. A. Gilbert and A.G.W. Cameron, Can. J Phys. 43, (1965) 1446.
4. W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A217, 269 (1973).
5. A.V. Ignatyuk, K.K. Istokov, and G.N. Smirenkin, Sov. J. Nucl. Phys. 29, no. 4, (1979) 450.
6. D. L. Hill and J. A. Wheeler, Phys. Rev. 89, (1953) 1102.
7. U. Brosa, S. Grossmann and Müller, Phys. Reference mark. (1990) 197, 167.
8. M.C. Duijvestijn, A.J. Koning, and F-J Hambsch, Phys. rev. C 64, (2001) 014607.
9. N. P. D’jacenko, B. D. Kuz'minov, V. F. Mitrofanov, and A. I. Sergachjov, Fourth All Union Conference on Neutron Physics, Vol. 3, Kiev, USSR, (1977) 171.
10. L.E. Glendenin, J.E. Gindler, I Ahmad, D.J. Henderson and J.W. Meadows, Phys. rev. C22, 1 (1980) 152.
11. L. Koch, NEANDC(E)-182 (1977) 5.
12. F. Vivès, F.-J. Hambsch, H. Bax, and S. Oberstedt, Nucl. Phys. A662, (2000) 63.
13. W. J. Maeck, R. L. Eggleston, A. L. Erikson, and R. L. Tromp, Symposium on Neutron Standards and Applications (1977), p. 186.
14. D. G. Perry and F. W. Fairhall, Phys. Rev. C 4, (1971). 977.
15. M. G. Itkis, V. N. Okolovich, A. Ya. Rusanov, and G. N. Smirenkin, Yad. Fiz. 41, (1985) 849[Sov. J. Nucl. Phys. 41, (1985) 544.