Crystal structure of a copper–mefenamate complex solvated with diglyme and water

Magdalene W. S. Chong, a,b* Sara Ottoboni, a,c Alan R. G. Martin, a Deborah Bowering, a Chris J. Price, a,c Alison Nordon, a,b Iain D. H. Oswald a,d and Martin R. Ward a,d*

Received 29 August 2022
Accepted 4 November 2022

Edited by J. Ellena, Universidade de Sao Paulo, Brazil

Keywords: crystal structure; copper(II); mefenamic acid; diglyme; paddlewheel.

CCDC reference: 2217265
Supporting information: this article has supporting information at journals.iucr.org/e

1. Chemical context

Mefenamic acid is a non-steroidal anti-inflammatory drug (NSAID) that is synthesized through reaction of 2-chlorobenzoic acid and 2,3-dimethylaniline in the presence of a copper catalyst (Trinus et al., 1977). Subsequently, pharmacopoeia specifications for mefenamic acid specify a maximum limit of 10 ppm for the quantity of copper present in the final drug product (British Pharmacopoeia, 2017). In exploring strategies to ensure removal of copper from the crude reaction mixture, a new copper–mefenamate complex was isolated. The crystal structure of a copper–mefenamate complex solvated with water and diglyme is reported.

2. Structural commentary

The complex [Cu₂(mefenamate)₄(H₂O)₂]·2(diglyme) crystallizes in the space group P2₁/n, with a [Cu₂(RCO₂)₄(H₂O)₂]
The paddlewheel motif that is typical for coordination of four carboxylate groups to two CuII cations (Chong et al., 2022). Within the asymmetric unit (Fig. 1a), the planes of the 2,3-dimethylphenyls from the two mefenamate molecules are 42.61 (1)° apart. A water molecule occupies each of the apical positions of the paddlewheel motif, which is hydrogen bonded to a diglyme molecule (Fig. 1a). The diglyme molecule is oriented such that it fits between the 2,3-dimethylphenyl units of the two mefenamate molecules in the asymmetric unit and is hydrogen bonded to the coordinated water via the diglyme outer oxygen positions (Fig. 1a). A distorted square-pyramidal geometry is adopted by each CuII cation in the paddlewheel motif (Fig. 1b), with equatorial Cu—O distances of 1.968 (1), 1.961 (1), 1.954 (1), and 1.969 (1) Å between CuII and the carboxylate moieties. The axial Cu—O distance, between the copper(II) cation and water molecule, is 2.108 (1) Å. The distance between the two CuII cations is 2.6126 (4) Å. There is an intramolecular bond between the amine and carboxylate groups of the mefenamate, with O—C distances of 1.86 (3) and 1.87 (2) Å for mefenamate units A and B, respectively (Table 1).

3. Supramolecular features
There are no obvious interactions, such as π–π stacking, between neighbouring paddlewheel units within the packed structure. The paddlewheel units interact through edge-to-face interactions of the phenyl groups of the mefanamate ligands (Fig. 1c). In the global packing of the structure, the paddlewheel units are arranged as 2D sheets along the crystallographic ab plane, with symmetry-equivalent sheets repeating throughout the crystallographic c axis at a distance corresponding to c. A second 2D arrangement is intercalated halfway between the symmetry-equivalent sheets.

4. Database survey
There are three other similar copper–mefenamate paddlewheel structures in the CSD (version 5.43, November 2021; Groom et al., 2016), with different solvents occupying the apical positions. Two entries, MPANCU10 (Yatsimirskii et al., 1979) and MPANCU20 (Mys‘kiv et al., 1982), are with N,N-dimethylformamide (DMF) and one entry, SUTPIG (Facchin et al., 1998), has dimethyl sulfoxide (DMSO) occupying the apical position. The DMF analogue also crystallizes in a monoclinic space group (Table 2). The cell volume of [Cu2(mefenamate)4(H2O)2]·2H2O is larger than the DMF analogue (3026.535 Å³), to accommodate the larger diglyme molecule. The axial Cu—O distance in [Cu2(mefenamate)4(H2O)2]·2diglyme is shorter than those

D—H—A	D—H	H—A	D—A	D—H—A
N10A—H10DE2A	0.86 (3)	1.86 (3)	2.604 (2)	143 (2)
N10B—H10CE2B	0.89 (2)	1.87 (2)	2.6065 (18)	139 (2)

Table 1
Hydrogen-bond geometry (Å, °).

Figure 1
Views of [Cu2(mefenamate)4(H2O)2]·2diglyme as an ORTEP representation with ellipsoids set to 50% probability: (a) asymmetric unit with hydrogen bonds highlighted (dashed blue lines), (b) a single paddlewheel unit of the complex, and (c) neighbouring units with edge-to-face interactions highlighted (dashed red lines).
in structures MPANCU20 and SUTP1G (Table 2). This may be attributed to the higher polarity of water (1.000) compared to DMF and DMSO (0.386 and 0.444, respectively; Reichardt & Welton, 2011). In the DMSO analogue, the 2,3-dimethylphenyls from the two mefenamate molecules within the asymmetric unit are almost coplanar, the planes are 9.06° apart, and the methyl groups of the DMSO point away from the 2,3-dimethylphenyls. For the DMF analogue, the two 2,3-dimethylphenyls are 70.22° apart, and the methyl groups of the DMSO point away from the 2,3-dimethylphenyls.

Three polymorphic forms are known for mefenamic acid, with significant differences between the forms in the C9−N10−C16 torsion angle \(\tau_3 \) (Fig. 1a; SeethaLekshmi & Guru Row, 2012). The larger torsion angle \(\tau_3 \) observed with the copper complex (Table 2) is more consistent with those of XYANAC03 (Yang et al., 2017). The increased torsional angle can be explained by the location of the dimethylphenyl group with respect to the diglyme group. The phenyl group needs to rotate to ensure a more planar packing arrangement with the diglyme molecule. In comparison to other polymorphs, the metastable form II suffers from significant disorder around the diglyme molecule. In comparison to other polymorphs, the 2,3-dimethylphenyls from the two mefenamate molecules within the asymmetric unit are almost coplanar, the planes are 9.06° apart, and the methyl groups of the DMSO point away from the 2,3-dimethylphenyls. For the DMF analogue, the two 2,3-dimethylphenyls are 70.22° apart.

Three polymorphic forms are known for mefenamic acid, with significant differences between the forms in the C9−N10−C16 torsion angle \(\tau_3 \) (Fig. 1a; SeethaLekshmi & Guru Row, 2012). The larger torsion angle \(\tau_3 \) observed with the copper complex (Table 2) is more consistent with those of XYANAC03 (Yang et al., 2017). The increased torsional angle can be explained by the location of the dimethylphenyl group with respect to the diglyme group. The phenyl group needs to rotate to ensure a more planar packing arrangement with the diglyme molecule. In comparison to other polymorphs, the metastable form II suffers from significant disorder around the diglyme molecule. In comparison to other polymorphs, the 2,3-dimethylphenyls from the two mefenamate molecules within the asymmetric unit are almost coplanar, the planes are 9.06° apart, and the methyl groups of the DMSO point away from the 2,3-dimethylphenyls. For the DMF analogue, the two 2,3-dimethylphenyls are 70.22° apart.

5. Synthesis and crystallization

Chemicals were purchased from commercial suppliers and used as received without further purification. Deionized water was obtained from an in-house Milli-Q (Millipore) purification system. A solution was prepared comprising mefenamic acid (25.0 g), diglyme (281.6 g), water (74.7 g) and copper (II) acetate (7.3 g). An aliquot (4 mL) of this solution was removed and mefenamic acid (0.4 g) added to generate a slurry. The mixture was filtered and the filtrate stored in the dark at room temperature for two weeks, after which large green block-shaped crystals of the complex had formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The diglyme moiety was found to be disordered over two positions. Initial isotropic refinement of the diglyme allowed the residual electron density to be observed. Using the functionality in OLEX2, the atoms were moved to ensure that they overlapped the electron density in a

Table 2

Comparison of selected geometries (Å, °).

Coordinates are unavailable for entry MPANCU10. There are two values per structure, corresponding to the two mefenamate units in the asymmetric unit as denoted \(A \) and \(B \) in our atom-numbering scheme.

	This work	MPANCU20	SUTP1G
Space group	\(P2_1/n \)	\(P2_1/n \)	\(P2_1/n \)
\(O1−C3−C4−C9 \)	171.1 (2)	170.98	153 (1)
\(C4−C9−N10−C11 \)	174.3 (2)	171.2 (2)	171 (1)
\(O1−C3−C4−C9 \)	171.1 (2)	-166.40	171 (1)
\(C4−C9−N10−C11 \)	174.3 (2)	-155.25	172 (1)
\(Cu−O_mefenanmate \)	1.961 (1)	1.9737	107 (2)
\(Cu−O_{solvent} \)	2.108 (1)	1.954 (1)	135 (2)
\(Cu−..Cu \)	2.6126 (4)	2.1561	1.949 (7)

Table 3

Experimental details.

Crystal data	Chemical formula	\([\text{Cu}_2(C_15H_{14}NO_2)_4(H_2O)_2] \cdot 2C_6H_{14}O_3 \)
\(M_w \)	1392.54	
Crystal system, space group	Monoclinic, \(P2_1/n \)	
Temperature (K)	105	
\(\beta (°) \)	94.791 (1)	
\(V (A^3) \)	3539.25 (12)	
\(Z \)	2	
Radiation type	Cu Kα	
\(\mu (mm^{-1}) \)	0.2 × 0.15 × 0.1	
Crystal size (mm)	1.30	

Data collection	Diffractometer	Absorption correction
	Bruker Photon100 CMOS	Multi-scan (SADABS; Bruker, 2016)

\(T_{\text{min}}, T_{\text{max}} \)	0.781, 0.881	209288, 6424, 5989	
No. of measured, independent and observed \(F > 2\sigma(F) \)	reflections	0.039
\(R_{\text{int}} \) (\(sin \theta/\lambda_{\text{max}} \) (Å⁻¹))	0.603		

Refinement	\(R(F^2 > 2\sigma(F^2)) \), \(wR(F^2) \), \(S \)	0.033, 0.089, 1.06
No. of reflections	6424	
No. of parameters	477	
No. of restraints	410	
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	
\(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \) (e Å⁻³)	0.28, −0.40	

Computer programs: APEX3 and SAINST (Bruker, 2016), SHELXTL (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Chong et al. (2022). Acta Cryst. (2022). E78, 1209–1212

zigzag bonding pattern usually observed for alkyl chains. Distance restraints were applied to ensure the molecular integrity. Using the SPLIT function, the alkyl chain was duplicated and rotated to align with the remaining electron density. This model was refined isotropically before applying EADP restraints to the atoms and refining anisotropically. This provided a stable refined structure. The water hydrogen atoms were added from the difference map and refined with ideal DFIX restraints in place. C-bound hydrogen atoms were placed geometrically and a riding model applied [C—H = 0.95–0.99 Å; \(U_{	ext{iso}}(H) = 1.2–1.5 U_{eq}(C) \)].

All data underpinning this publication are openly available from the University of Strathclyde KnowledgeBase at https://doi.org/10.15129/39f97ad1-8173-4999-b0b6-41c6ae923fe6.

Acknowledgements
The authors acknowledge that the experimental work presented was carried out in the CMAC National Facility, housed within the University of Strathclyde’s Technology and Innovation Centre.

Funding information
Funding for this work was provided by: Engineering and Physical Sciences Research Council (EPSRC) Future Continuous Manufacturing and Advanced Crystallization Research Hub (Grant Ref: EP/P006965/1 for MWSC, SO, ARGM, DB, CJP and AN); EPSRC Early Career Fellowship (Grant Ref: EP/N015401/1 for IDHO and MRW); UK Research Partnership Institute Fund (UKRPIF) capital award (Scottish Funding Council ref. H13054, from the Higher Education Funding Council for England).

References
Abbas, N., Oswald, I. D. H. & Pulham, C. R. (2017). Pharmaceutics, 9, 16.
British Pharmacopoeia (2017). Part III. London: Medicines and Healthcare products Regulatory Agency; mefenamic acid (Ph. Eur. Monograph 1240).
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chong, M. W. S., Argent, S. P., Moreau, F., Trenholme, W. J. F., Morris, C. G., Lewis, W., Easun, T. L. & Schröder, M. (2022). Chem. Eur. J. 28, e202201188. https://doi.org/10.1002/chem.202201188.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
Facchin, G., Torre, M. H., Kremer, E., Piro, O. E. & Baran, E. J. (1998). Z. Naturforsch. B, 53, 871–874.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Mague, J. & Ouzidan, Y. (2017). CSD Communication (refcode XYANAC06). CCDC, Cambridge, England.
McConnell, J. F. & Company, F. Z. (1976). Cryst. Struct. Commun. 5, 861.

Mys’kiv, M. G., Olijnik, V. V., Kriss, E. E., Konakhovich, N. F. & Grigor’eva, A. S. (1982). Koord. Khim. (Russ.), 8, 1415.
Reichardt, C. & Welton, T. (2011). Editors. Solvents and Solvent Effects in Organic Chemistry, 4th ed., p. 550. Weinheim: Wiley-VCH.

SeethaLekshmi, S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4283–4289.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Trinus, F. P., Mokhort, N. A., Yagupolskii, L. M., Fadeicheva, A. G., Danilenko, V. S., Ryabukha, T. K., Fialkov, Yu. A., Kirichek, L. M., Endel’man, E. S. & Get’man, G. A. (1977). Pharm. Chem. J. 11, 1706–1711.
Yang, X., Sarma, B. & Myerson, A. S. (2012). Cryst. Growth Des. 12, 5521–5528.

Yatsimirskii, K. B., Mys’kiv, M. G., Grigor’eva, A. S., Kris, E. E. & Gladyshevskii, E. I. (1979). Dokl. Akad. Nauk, 247, 1204.
supporting information

Acta Cryst. (2022). E78, 1209-1212 [https://doi.org/10.1107/S2056989022010647]

Crystal structure of a copper–mefenamate complex solvated with diglyme and water

Magdalene W. S. Chong, Sara Ottoboni, Alan R. G. Martin, Deborah Bowering, Chris J. Price, Alison Nordon, Iain D. H. Oswald and Martin R. Ward

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetrakis[µ-2-(2,3-dimethylanilino)benzoato-κ²O:O’]bis[aquacopper(II)]–1-methoxy-2-(2-methoxyethoxy)ethane (1/2)

Crystal data

\[\text{[Cu}_2\text{C}_{15}\text{H}_{14}\text{NO}_2\text{][H}_2\text{O} \cdot 2\text{C}_6\text{H}_{14}\text{O}_3] \]

\[M_r = 1392.54 \]

Monoclinic, \(P_2_1/n\)

\(a = 15.5420 (3) \ \AA\)

\(b = 14.0010 (3) \ \AA\)

\(c = 16.3217 (3) \ \AA\)

\(\beta = 94.791 (1)\)°

\(V = 3539.25 (12) \ \AA^3\)

\(Z = 2\)

\(F(000) = 1468\)

\(D_{\text{c}} = 1.307 \ \text{Mg m}^{-3}\)

Copper \(K\alpha\) radiation, \(\lambda = 1.54178 \ \AA\)

Cell parameters from 9398 reflections

\(\theta = 4.9–68.2°\)

\(\mu = 1.30 \ \text{mm}^{-1}\)

\(T = 105 \ \text{K}\)

Block, clear green

\(0.2 \times 0.15 \times 0.1 \ \text{mm}\)

Data collection

Bruker Photon100 CMOS diffractometer

Radiation source: Incoatec microfocus Cu source

\(\phi\) and \(\omega\) scans

Absorption correction: multi-scan (SADABS; Bruker, 2016)

\(T_{\text{min}} = 0.781, T_{\text{max}} = 0.881\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.033 \)

\(wR(F^2) = 0.089\)

\(S = 1.06\)

6424 reflections

477 parameters

410 restraints

Primary atom site location: dual

Hydrogen site location: mixed

\(H\) atoms treated by a mixture of independent and constrained refinement

\(w = 1/[(\sigma^2(F^2) + (0.0435P)^2 + 2.0003P)]\)

where \(P = (F_o^2 + 2F_c^2)/3\)
$\langle \Delta / \sigma \rangle_{\text{max}} = 0.001$
$\Delta \rho_{\text{max}} = 0.28\ \text{e}\ \text{Å}^{-3}$

Special details

Experimental. The X-ray intensities were collected on a Bruker D8 Venture diffractometer using a Photon 100 Detector. The data were reduced using APEX3 and absorption correction applied using SADABS (Bruker, 2016). The crystal structure was solved and refined using SHELXT and SHELXL via the Olex2 refinement package (Dolomanov et al., 2009). Non-hydrogen atom positions were refined anisotropically.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. RIGU restraint applied. Diglyme disorder modelled using DFIX and SADI restraints. The ADPs for both diglyme parts were constrained using EADP constraint.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

	x (Å)	y (Å)	z (Å)	U(eq)/Å²	Occ. (<1)
Cu1	0.54253 (2)	0.42405 (2)	0.48032 (2)	0.02442 (8)	
O1B	0.51049 (8)	0.45091 (8)	0.36430 (7)	0.0329 (3)	
O2B	0.43845 (8)	0.58088 (8)	0.39902 (7)	0.0326 (3)	
O1A	0.43605 (8)	0.35049 (8)	0.48736 (7)	0.0351 (3)	
O2A	0.36511 (7)	0.48032 (8)	0.52427 (7)	0.0331 (3)	
O10S	0.62229 (8)	0.30515 (9)	0.46326 (8)	0.0376 (3)	
N10B	0.37240 (10)	0.69540 (10)	0.28457 (9)	0.0362 (3)	
O2S1	0.7835 (9)	0.2813 (9)	0.5321 (12)	0.0540 (12)	0.666 (3)
C3B	0.46922 (10)	0.52671 (11)	0.34617 (9)	0.0265 (3)	
C9B	0.41162 (10)	0.63824 (11)	0.22997 (9)	0.0285 (3)	
C3A	0.37072 (10)	0.39031 (11)	0.51303 (9)	0.0284 (3)	
C4A	0.29745 (11)	0.32888 (12)	0.53288 (10)	0.0308 (3)	
C4B	0.45728 (10)	0.55460 (11)	0.25802 (9)	0.0269 (3)	
O5S1	0.73581 (16)	0.15001 (18)	0.40989 (17)	0.0438 (6)	0.666 (3)
C11B	0.33426 (11)	0.78619 (12)	0.27016 (10)	0.0312 (3)	
C8B	0.40932 (11)	0.65984 (13)	0.14555 (10)	0.0345 (4)	
H8B	0.39274	0.7152	0.1250	0.041	
C5B	0.49629 (11)	0.49735 (13)	0.20199 (10)	0.0348 (4)	
H5B	0.5262	0.4414	0.2212	0.042	
C5A	0.30263 (12)	0.23152 (12)	0.51507 (10)	0.0349 (4)	
H5A	0.3501	0.2088	0.4875	0.042	
N10A	0.21962 (12)	0.45875 (13)	0.59054 (14)	0.0588 (5)	
C16A	0.17474 (12)	0.58519 (13)	0.67658 (11)	0.0367 (4)	
O8S1	0.5611 (3)	0.1715 (4)	0.3438 (5)	0.0604 (14)	0.666 (3)
C16B	0.36286 (11)	0.86224 (12)	0.32109 (10)	0.0322 (3)	
C15A	0.10932 (12)	0.64349 (13)	0.70386 (11)	0.0388 (4)	
C6B	0.49276 (13)	0.51950 (15)	0.11960 (11)	0.0447 (4)	
H6B	0.5192	0.4792	0.0821	0.054	
C7B	0.44963 (13)	0.60229 (15)	0.09242 (11)	0.0429 (4)	
H7B	0.4481	0.6193	0.0360	0.052	
C17A	0.26827 (12)	0.60465 (15)	0.70369 (12)	0.0441 (4)	
	x	y	z	U (10^4)	
-----	-------	-------	-------	----------	
H17A	0.2948	0.6400	0.6605	0.066	
H17B	0.2987	0.5440	0.7139	0.066	
H17C	0.2720	0.6426	0.7543	0.066	
C6A	0.24089(12)	0.16743(13)	0.53636(11)	0.0400(4)	
H6A	0.2446	0.1018	0.5222	0.048	
C9A	0.22586(11)	0.36315(13)	0.57261(12)	0.0395(4)	
C17B	0.43678(13)	0.85116(14)	0.38602(11)	0.0418(4)	
H17D	0.4145	0.8498	0.4404	0.063	
H17E	0.4766	0.9051	0.3830	0.063	
H17F	0.4674	0.7914	0.3770	0.063	
C11A	0.15206(12)	0.50948(14)	0.62317(13)	0.0453(4)	
C12B	0.26720(12)	0.79882(15)	0.20959(12)	0.0439(4)	
H12B	0.2476	0.7465	0.1760	0.053	
C14A	0.02351(12)	0.62150(15)	0.68039(12)	0.0447(4)	
H14A	−0.0210	0.6595	0.7002	0.054	
C18A	0.13044(14)	0.72995(17)	0.75676(13)	0.0536(5)	
H18A	0.1576	0.7096	0.8103	0.080	
H18B	0.0773	0.7651	0.7647	0.080	
H18C	0.1703	0.7714	0.7297	0.080	
C15B	0.32210(14)	0.95162(14)	0.30921(12)	0.0453(4)	
C14B	0.25653(16)	0.96269(16)	0.24775(13)	0.0561(6)	
H14B	0.2299	1.0234	0.2395	0.067	
C7A	0.17319(12)	0.20009(14)	0.57892(11)	0.0422(4)	
H7A	0.1319	0.1567	0.5964	0.051	
C8A	0.16519(13)	0.29586(15)	0.59604(13)	0.0473(5)	
H8A	0.1177	0.3170	0.6243	0.057	
C13A	0.22881(14)	0.88734(18)	0.19800(13)	0.0561(6)	
H13B	0.1835	0.8962	0.1559	0.067	
C6S1	0.6846(5)	0.0737(6)	0.3762(5)	0.0517(16)	0.666(3)
H6SA	0.6530	0.0435	0.4196	0.062	
H6SB	0.7220	0.0247	0.3535	0.062	
C13A	0.00184(13)	0.54565(16)	0.62903(15)	0.0534(5)	
H13A	−0.0572	0.5313	0.6143	0.064	
C12A	0.06577(13)	0.49027(16)	0.59881(16)	0.0569(6)	
H12A	0.0509	0.4395	0.5617	0.068	
C3S1	0.8407(4)	0.2105(3)	0.5096(3)	0.0564(12)	0.666(3)
H3SA	0.8808	0.1936	0.5577	0.068	
H3SB	0.8753	0.2356	0.4661	0.068	
C7S1	0.6224(2)	0.1110(2)	0.3099(2)	0.0487(8)	
H7SA	0.6538	0.1472	0.2697	0.058	
H7SB	0.5922	0.0570	0.2808	0.058	
C18B	0.3508(2)	1.03494(17)	0.36428(18)	0.0787(8)	
H18D	0.3400	1.0200	0.4212	0.118	
H18E	0.3182	1.0922	0.3463	0.118	
H18F	0.4126	1.0464	0.3609	0.118	
C1S1	0.8212(6)	0.3611(4)	0.5730(4)	0.0698(15)	0.666(3)
H1SA	0.8572	0.3952	0.5361	0.105	
H1SB	0.8571	0.3400	0.6219	0.105	

* indicates that the final parameter is anisotropic.
Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03002 (14)	0.02114 (13)	0.02236 (13)	0.00405 (8)	0.00367 (9)	-0.00087 (8)
O1B	0.0443 (6)	0.0296 (6)	0.0245 (5)	0.0110 (5)	0.0006 (5)	-0.0010 (4)
O2B	0.0447 (7)	0.0288 (6)	0.0245 (5)	0.0108 (5)	0.0040 (5)	0.0000 (4)
O1A	0.0371 (6)	0.0271 (6)	0.0420 (6)	0.0001 (5)	0.0089 (5)	-0.0062 (5)
O2A	0.0346 (6)	0.0259 (6)	0.0394 (6)	-0.0001 (5)	0.0078 (5)	-0.0027 (5)
O10S	0.0403 (7)	0.0311 (6)	0.0403 (7)	0.0141 (5)	-0.0020 (5)	-0.0086 (5)
N10B	0.0532 (9)	0.0289 (7)	0.0262 (7)	0.0110 (6)	0.0012 (6)	0.0013 (6)
O2S1	0.045 (4)	0.046 (2)	0.066 (2)	0.0094 (16)	-0.020 (2)	-0.0047 (19)
C3B	0.0281 (7)	0.0246 (7)	0.0268 (7)	-0.0014 (6)	0.0016 (6)	-0.0018 (6)
----	-----	-----	-----	-----	-----	-----
C9B	0.0307 (8)	0.0270 (8)	0.0273 (7)	−0.0023 (6)	−0.0005 (6)	−0.0005 (6)
C3A	0.0351 (8)	0.0281 (8)	0.0213 (7)	0.0004 (6)	−0.0015 (6)	−0.0016 (6)
C4A	0.0350 (8)	0.0298 (8)	0.0272 (8)	−0.0032 (6)	0.0004 (6)	−0.0011 (6)
C4B	0.0295 (7)	0.0265 (7)	0.0243 (7)	−0.0008 (6)	0.0000 (6)	−0.0008 (6)
O5S1	0.0477 (11)	0.0355 (14)	0.0483 (16)	0.0125 (10)	0.0050 (10)	−0.0008 (10)
C11B	0.0338 (8)	0.0309 (8)	0.0296 (8)	0.0056 (6)	0.0063 (6)	0.0038 (6)
C8B	0.0415 (9)	0.0342 (9)	0.0269 (8)	0.0021 (7)	−0.0024 (7)	0.0022 (7)
C5B	0.0409 (9)	0.0349 (9)	0.0281 (8)	0.0064 (7)	0.0003 (7)	−0.0022 (7)
C5A	0.0436 (9)	0.0321 (8)	0.0397 (9)	−0.0008 (6)	0.0000 (6)	−0.0008 (6)
N10A	0.0418 (9)	0.0365 (9)	0.1029 (16)	−0.0080 (7)	0.0353 (10)	−0.0175 (9)
C16A	0.0372 (9)	0.0356 (9)	0.0461 (11)	0.0061 (8)	0.0093 (8)	−0.0007 (9)
C11A	0.0384 (9)	0.0359 (9)	0.0645 (12)	−0.0005 (8)	0.0205 (9)	−0.0007 (9)
C12B	0.0419 (10)	0.0491 (11)	0.0396 (10)	0.0082 (8)	−0.0038 (8)	−0.0009 (8)
C14A	0.0396 (10)	0.0490 (11)	0.0474 (10)	0.0120 (8)	0.0141 (8)	0.0103 (9)
C18A	0.0523 (12)	0.0632 (13)	0.0456 (11)	0.0199 (10)	0.0059 (9)	−0.0103 (10)
C15B	0.0596 (12)	0.0338 (9)	0.0444 (10)	0.0148 (8)	0.0160 (9)	0.0014 (8)
C14B	0.0713 (14)	0.0515 (12)	0.0467 (11)	0.0362 (11)	0.0115 (10)	0.0074 (9)
C7A	0.0441 (10)	0.0414 (10)	0.0403 (10)	−0.0143 (8)	−0.0004 (8)	0.0007 (8)
C8A	0.0400 (10)	0.0432 (10)	0.0604 (12)	−0.0096 (8)	0.0142 (9)	−0.0069 (9)
C13B	0.0518 (12)	0.0723 (14)	0.0433 (11)	0.0313 (11)	−0.0020 (9)	0.0054 (10)
C6S1	0.071 (2)	0.033 (2)	0.051 (3)	0.0145 (16)	0.006 (2)	−0.0009 (9)
C13A	0.0347 (10)	0.0564 (13)	0.0707 (14)	−0.0004 (9)	0.0128 (9)	0.0044 (11)
C12A	0.0415 (10)	0.0480 (12)	0.0837 (16)	−0.0075 (9)	0.0195 (10)	−0.0120 (11)
C3S1	0.0391 (17)	0.053 (3)	0.075 (3)	0.0136 (18)	−0.0069 (19)	0.0068 (19)
C7S1	0.067 (2)	0.0370 (16)	0.042 (2)	0.0056 (13)	0.0058 (14)	−0.0119 (14)
C18B	0.123 (2)	0.0385 (12)	0.0743 (17)	0.0224 (14)	0.0046 (16)	−0.0143 (11)
C1S1	0.0702 (18)	0.057 (3)	0.076 (4)	0.001 (3)	−0.032 (3)	−0.005 (2)
C4S1	0.058 (2)	0.041 (2)	0.067 (3)	0.0176 (15)	−0.0042 (19)	0.0105 (18)
C9S2	0.057 (2)	0.0484 (16)	0.059 (4)	0.0007 (19)	−0.001 (2)	−0.009 (3)
O2S2	0.045 (4)	0.046 (2)	0.066 (2)	0.0094 (16)	−0.020 (2)	−0.0047 (19)
C3S2	0.0391 (17)	0.053 (3)	0.075 (3)	0.0136 (18)	−0.0069 (19)	0.0068 (19)
C1S2	0.0702 (18)	0.057 (3)	0.076 (4)	0.001 (3)	−0.032 (3)	−0.005 (2)
C4S2	0.058 (2)	0.041 (2)	0.067 (3)	0.0176 (15)	−0.0042 (19)	0.0105 (18)
O5S2	0.0477 (11)	0.0355 (14)	0.0483 (16)	0.0125 (10)	0.0050 (10)	−0.0008 (10)
C6S2	0.071 (2)	0.033 (2)	0.051 (3)	0.0145 (16)	0.006 (2)	−0.0009 (2)
C7S2	0.067 (2)	0.0370 (16)	0.042 (2)	0.0056 (13)	0.0058 (14)	−0.0119 (14)
O8S2	0.057 (2)	0.045 (2)	0.075 (2)	0.0121 (18)	−0.018 (2)	−0.0332 (19)
C9S1	0.057 (2)	0.0484 (16)	0.059 (4)	0.0007 (19)	−0.001 (2)	−0.009 (3)
Geometric parameters (Å, °)

Bond/Distance	Value (Å, °)
Cu1—Cu1i	2.6126 (4)
Cu1—O1B	1.9539 (11)
Cu1—O2B'	1.9682 (11)
Cu1—O1A	1.9608 (12)
Cu1—O2A'	1.9689 (11)
Cu1—O10S	2.1078 (11)
O1B—C3B	1.2624 (19)
O2B—Cu1i	1.9682 (11)
O2B—C3B	1.2715 (19)
O1A—C3A	1.260 (2)
O2A—Cu1i	1.9690 (11)
O2A—C3A	1.278 (2)
O10S—H10A	0.956 (3)
O10S—H10B	0.956 (3)
N10B—C9B	1.377 (2)
N10B—C11B	1.414 (2)
N10B—H10C	0.88 (2)
O2S1—C3S1	1.401 (10)
O2S1—C1S1	1.404 (10)
C3B—C4B	1.487 (2)
C4B—C5B	1.392 (2)
C3A—C4A	1.484 (2)
C4A—C5A	1.397 (2)
C4A—C9A	1.418 (2)
C4B—C5B	1.392 (2)
O5S1—C6S1	1.416 (8)
O5S1—C4S1	1.428 (5)
C11B—C16B	1.400 (2)
C11B—C12B	1.387 (2)
C8B—H8B	0.9500
C8B—C7B	1.373 (3)
C5B—H5B	0.9500
C5B—C6B	1.377 (2)
C5A—H5A	0.9500
C5A—C6A	1.379 (3)
N10A—C9A	1.375 (2)
N10A—C11A	1.409 (2)
N10A—H10D	0.86 (2)
C16A—C15A	1.405 (2)
C16A—C17A	1.509 (3)
C16A—C11A	1.399 (3)
O8S1—C7S1	1.421 (7)
O8S1—C9S1	1.383 (8)
C16B—C17B	1.505 (2)
C16B—C15B	1.409 (2)
Supporting Information

Bond / Angle / Distance	Value (with errors)	Description		
C15A—C14A	1.391 (3)	C1S2—H1SF	0.9800	
C15A—C18A	1.507 (3)	C4S2—H4SC	0.9900	
C6B—H6B	0.9500	C4S2—H4SD	0.9900	
C6B—C7B	1.393 (3)	C4S2—O5S2	1.397 (12)	
C7B—H7B	0.9500	O5S2—C6S2	1.407 (17)	
C17A—H17A	0.9800	C6S2—H6SC	0.9900	
C17A—H17B	0.9800	C6S2—H6SD	0.9900	
C17A—H17C	0.9800	C6S2—C7S2	1.471 (17)	
C6A—H6A	0.9500	C7S2—H7SC	0.9900	
C6A—C7A	1.388 (3)	C7S2—H7SD	0.9900	
C9A—C8A	1.408 (3)	C7S2—O8S2	1.426 (14)	
C17B—H17D	0.9800	C9S1—H9SA	0.9800	
C17B—H17E	0.9800	C9S1—H9SB	0.9800	
C17B—H17F	0.9800	C9S1—H9SC	0.9800	
O1B—Cu1—Cu1i	89.34 (3)	C9B—N10B—C11B	128.08 (14)	109.5
O1B—Cu1—O2B	168.92 (5)	C9B—N10B—C11B	128.08 (14)	109.5
O1B—Cu1—O1A	90.57 (5)	C9B—N10B—C11B	128.08 (14)	119.6
O1B—Cu1—O2A	87.70 (5)	C9B—N10B—C11B	128.08 (14)	119.6
O1B—Cu1—O10S	97.42 (5)	C9B—N10B—C11B	128.08 (14)	120.5
O2B—Cu1—Cu1i	79.58 (3)	C9B—N10B—C11B	128.08 (14)	119.4
O2B—Cu1—O2A	90.74 (5)	C9B—N10B—C11B	128.08 (14)	121.2
O2B—Cu1—O10S	93.65 (5)	C9B—N10B—C11B	128.08 (14)	119.4
O1A—Cu1—Cu1i	88.07 (3)	C9B—N10B—C11B	128.08 (14)	119.6
O1A—Cu1—O2B	88.85 (5)	C9B—N10B—C11B	128.08 (14)	120.6
O1A—Cu1—O2A	168.82 (5)	C9B—N10B—C11B	128.08 (14)	119.6
O1A—Cu1—O10S	95.82 (5)	C9B—N10B—C11B	128.08 (14)	119.3
O2A—Cu1—Cu1i	80.87 (3)	C9B—N10B—C11B	128.08 (14)	121.4
O2A—Cu1—O10S	95.36 (5)	C9B—N10B—C11B	128.08 (14)	119.3
O10S—Cu1—Cu1i	172.15 (4)	C9B—N10B—C11B	128.08 (14)	120.1
C3B—O1B—Cu1	118.18 (10)	C9B—N10B—C11B	128.08 (14)	119.7
C3B—O2B—Cu1	128.64 (10)	C9B—N10B—C11B	128.08 (14)	120.1
C3A—O1A—Cu1	119.63 (10)	C9B—N10B—C11B	128.08 (14)	119.8
C3A—O2A—Cu1	127.34 (10)	C9B—N10B—C11B	128.08 (14)	119.8
Cu1—O10S—H10A	128.2 (12)	C9B—N10B—C11B	128.08 (14)	109.8
Cu1—O10S—H10B	126.1 (13)	C9B—N10B—C11B	128.08 (14)	108.3
H10A—O10S—H10B	104.9 (7)	C9B—N10B—C11B	128.08 (14)	109.8
C9B—N10B—C11B	128.08 (14)	C9B—N10B—C11B	128.08 (14)	109.8
C9B—N10B—H10C	113.6 (14)	C9B—N10B—C11B	128.08 (14)	119.9
C11B—N10B—H10C	116.1 (15)	C9B—N10B—C11B	128.08 (14)	120.1
C3S1—O2S1—C1S1	116.0 (10)	C9B—N10B—C11B	128.08 (14)	119.9
O1B—C3B—O2B	123.71 (14)	C9B—N10B—C11B	128.08 (14)	120.2
O1B—C3B—C4B	117.85 (13)	C9B—N10B—C11B	128.08 (14)	119.6
O2B—C3B—C4B	118.43 (13)	C9B—N10B—C11B	128.08 (14)	120.2
N10B—C9B—C4B	120.34 (14)	C9B—N10B—C11B	128.08 (14)	119.6
N10B—C9B—C8B	122.13 (15)	C9B—N10B—C11B	128.08 (14)	120.4
C8B—C9B—C4B	117.53 (15)	C9B—N10B—C11B	128.08 (14)	119.6
O1A—C3A—O2A	123.41 (15)	C9B—N10B—C11B	128.08 (14)	120.4

Acta Cryst. (2022). E78, 1209-1212 sup-7
Bond	Angle (°) (RMS)	Bond	Angle (°) (RMS)
O1A—C3A—C4A	118.05 (14)	C4S1—C3S1—H3SA	109.4
O2A—C3A—C4A	118.53 (14)	C4S1—C3S1—H3SB	109.4
C5A—C4A—C3A	117.47 (15)	O8S1—C7S1—C6S1	110.1 (5)
C5A—C4A—C9A	119.10 (16)	O8S1—C7S1—H7SA	109.6
C9B—C4B—C3B	123.33 (15)	O8S1—C7S1—H7SB	109.6
C5B—C4B—C3B	117.28 (14)	C6S1—C7S1—H7SB	109.6
C5B—C4B—C9B	119.64 (14)	H7SA—C7S1—H7SB	108.1
C6S1—O5S1—C4S1	113.8 (4)	C15B—C18B—H18D	109.5
C16B—C11B—N10B	118.49 (15)	C15B—C18B—H18E	109.5
C12B—C11B—N10B	120.86 (16)	C15B—C18B—H18F	109.5
C12B—C11B—C16B	120.58 (16)	H18D—C18B—H18E	109.5
C9B—C8B—H8B	119.5	H18D—C18B—H18F	109.5
C7B—C8B—C9B	121.08 (16)	O2S1—C1S1—H1SA	109.5
C7B—C8B—H8B	119.5	C3S1—C4S1—H3SA	109.5
C6B—C5B—H5B	121.86 (16)	C3S1—C4S1—H3SB	109.5
C6B—C5B—C4B	119.1	C3S1—C4S1—H3SC	109.5
C4A—C5A—H5A	119.0	C3S1—C4S1—H3SD	109.5
C6A—C5A—C4A	121.92 (17)	O5S1—C4S1—C3S1	108.0 (4)
C6A—C5A—H5A	119.0	O5S1—C4S1—C3S2	112.4 (15)
C9A—N10A—C11A	129.73 (17)	O2S2—C3S2—C4S2	112.4 (15)
C9A—N10A—H10D	111.9 (16)	O2S2—C3S2—H3SC	109.1
C11A—N10A—H10D	118.3 (16)	H3SC—C3S2—H3SD	107.9
C15A—C16A—C17A	120.49 (17)	C3S2—C4S2—H4SC	109.5
C11A—C16A—C15A	119.10 (17)	C3S2—C4S2—H4SD	109.5
C11A—C16A—C17A	120.41 (16)	H9SD—C9S2—H9SE	109.5
C9S1—O8S1—C7S1	112.6 (8)	H9SD—C9S2—H9SF	109.5
C11B—C16B—C17B	121.71 (15)	H9SE—C9S2—H9SF	109.5
C11B—C16B—C15B	118.49 (16)	O8S2—C9S2—H9SD	109.5
C15B—C16B—C17B	119.78 (17)	O8S2—C9S2—H9SE	109.5
C16A—C15A—C18A	121.28 (17)	O8S2—C9S2—H9SF	109.5
C14A—C15A—C16A	119.14 (18)	C3S2—O2S2—C1S2	121 (2)
C14A—C15A—C18A	119.57 (17)	O2S2—C3S2—H3SC	109.1
C5B—C6B—H6B	120.7	O2S2—C3S2—H3SD	109.1
C5B—C6B—C7B	118.52 (17)	O2S2—C3S2—C4S2	112.4 (15)
C7B—C6B—H6B	120.7	H3SC—C3S2—H3SD	107.9
C8B—C7B—C6B	121.35 (16)	C4S2—C3S2—H3SC	109.1
C8B—C7B—H7B	119.3	C4S2—C3S2—H3SD	109.1
C6B—C7B—H7B	119.3	O2S2—C1S2—H1SD	109.5
C16A—C17A—H17A	109.5	O2S2—C1S2—H1SE	109.5
C16A—C17A—H17B	109.5	O2S2—C1S2—H1SF	109.5
C16A—C17A—H17C	109.5	H1SD—C1S2—H1SE	109.5
H17A—C17A—H17B	109.5	H1SD—C1S2—H1SF	109.5
H17A—C17A—H17C	109.5	C3S2—C4S2—H4SC	109.5
H17B—C17A—H17C	109.5	C3S2—C4S2—H4SD	109.5
C5A—C6A—H6A	120.6	C3S2—C4S2—H4SD	109.5
C5A—C6A—C7A	118.74 (17)	H4SC—C4S2—H4SD	108.1
Bond	Angle (°)	Bond	Angle (°)
------	----------	------	----------
C7A—C6A—H6A	120.6	O5S2—C4S2—C3S2	110.6 (9)
N10A—C9A—C4A	119.92 (16)	O5S2—C4S2—H4SC	109.5
N10A—C9A—C8A	122.18 (17)	O5S2—C4S2—H4SD	109.5
C8A—C9A—C4A	117.82 (17)	O5S2—C6S2—C7S2	111.7 (14)
C16B—C17B—H17D	109.5	O5S2—C6S2—H6SC	109.3
C16B—C17B—H17E	109.5	O5S2—C6S2—H6SD	109.3
C16B—C17B—H17F	109.5	C4S2—O5S2—C6S2	114.8 (10)
H17D—C17B—H17E	109.5	C4S2—O5S2—C6S2	114.8 (10)
H17D—C17B—H17F	109.5	C4S2—O5S2—C6S2	114.8 (10)
H17E—C17B—H17F	109.5	C4S2—O5S2—C6S2	114.8 (10)
C16A—C11A—N10A	117.43 (17)	C4S2—O5S2—C6S2	114.8 (10)
C12A—C11A—N10A	121.68 (19)	C4S2—O5S2—C6S2	114.8 (10)
C12A—C11A—C16A	120.71 (18)	C4S2—O5S2—C6S2	114.8 (10)
C11B—C12B—H12B	119.9	C4S2—O5S2—C6S2	114.8 (10)
C13B—C12B—C11B	120.15 (19)	C4S2—O5S2—C6S2	114.8 (10)
C13B—C12B—H12B	119.9	C4S2—O5S2—C6S2	114.8 (10)
C15A—C14A—H14A	119.4	C4S2—O5S2—C6S2	114.8 (10)
C13A—C14A—C15A	121.22 (18)	C4S2—O5S2—C6S2	114.8 (10)
C13A—C14A—H14A	119.4	C4S2—O5S2—C6S2	114.8 (10)
C15A—C18A—H18A	109.5	C4S2—O5S2—C6S2	114.8 (10)
C15A—C18A—H18B	109.5	C4S2—O5S2—C6S2	114.8 (10)
C15A—C18A—H18C	109.5	C4S2—O5S2—C6S2	114.8 (10)
H18A—C18A—H18B	109.5	C4S2—O5S2—C6S2	114.8 (10)

Cu1—O1B—C3B—O2B | −8.6 (2) | C5B—C6B—C7B—C8B | −1.7 (3) |
Cu1—O1B—C3B—C4B | 170.41 (10) | C5A—C4A—C9A—N10A | −179.92 (18) |
Cu1—O2B—C3B—O1B | 9.2 (2) | C5A—C4A—C9A—C8A | 3.2 (3) |
Cu1—O2B—C3B—C4B | −169.80 (10) | C5A—C6A—C7A—C8A | 3.2 (3) |
Cu1—O1A—C3A—O2A | 10.2 (2) | N10A—C9A—C8A—C7A | −178.9 (2) |
Cu1—O1A—C3A—O4A | −168.37 (10) | N10A—C9A—C8A—C7A | −178.9 (2) |
Cu1—O2A—C3A—O1A | −8.7 (2) | C16A—C15A—C14A—C13A | −2.0 (3) |
Cu1—O2A—C3A—C4A | 169.93 (10) | C16A—C15A—C14A—C13A | −2.0 (3) |
O1B—C3B—C4B—C9B | 179.72 (14) | C16B—C15B—C14B—C13B | 1.0 (3) |
O1B—C3B—C4B—C5B | −3.1 (2) | C16B—C15B—C14B—C13B | 1.0 (3) |
O2B—C3B—C4B—C9B | −1.2 (2) | C15A—C16A—C11A—N10A | 173.66 (18) |
O2B—C3B—C4B—C5B | 176.01 (15) | C15A—C16A—C11A—N10A | 173.66 (18) |
O1A—C3A—C4A—C5A | −5.4 (2) | C15A—C14A—C13A—C12A | −0.8 (3) |
O1A—C3A—C4A—C9A | 171.06 (16) | C17A—C16A—C15A—C14A | −177.50 (17) |
O2A—C3A—C4A—C5A | 175.93 (14) | C17A—C16A—C15A—C14A | −177.50 (17) |
O2A—C3A—C4A—C9A | −7.6 (2) | C17A—C16A—C15A—C14A | −177.50 (17) |
N10B—C9B—C4B—C3B | −3.1 (2) | C17A—C16A—C15A—C14A | −177.50 (17) |
N10B—C9B—C4B—C5B | 179.74 (15) | C6A—C7A—C8A—C9A | −1.2 (3) |
N10B—C9B—C8B—C7B | 179.34 (15) | C6A—C7A—C8A—C9A | −1.2 (3) |
N10B—C11B—C16B—C17B | 4.4 (2) | C9A—C10A—C11A—C12A | 144.7 (2) |
N10B—C11B—C16B—C15B | −177.08 (16) | C9A—C10A—C11A—C12A | 144.7 (2) |
N10B—C11B—C12B—C13B | 177.97 (18) | C17B—C16B—C15B—C14B | 177.61 (19) |
O2S1—C3S1—C4S1—O5S1 | 58.7 (11) | C17B—C16B—C15B—C14B | 177.61 (19) |
C3B—C4B—C5B—C6B | −176.76 (17) | C11A—C10A—C9A—C4A | 174.3 (2) |
Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N10A—H10D···O2A	0.86 (3)	1.86 (3)	2.604 (2)	143 (2)
N10B—H10C···O2B	0.89 (2)	1.87 (2)	2.6065 (18)	139 (2)

Symmetry code: (i) −x+1, −y+1, −z+1.

C9B—N10B—C11B—C16B

-124.92 (18) C11A—N10A—C9A—C8A -8.9 (4)

C9B—N10B—C11B—C12B

58.1 (3) C11A—C16A—C15A—C14A 3.2 (3)

C9B—C4B—C5B—C6B

0.5 (3) C11A—C16A—C15A—C18A -175.80 (18)

C9B—C8B—C7B—C6B

1.3 (3) C12B—C11B—C16B—C17B -178.61 (17)

C3A—C4A—C5A—C6A

175.39 (15) C12B—C11B—C16B—C15B -0.1 (3)

C3A—C4A—C9A—N10A

3.7 (3) C14A—C13A—C12A—C11A 2.4 (4)

C3A—C4A—C9A—C8A

-173.24 (17) C18A—C15A—C14A—C13A 177.00 (19)

C4A—C5A—C6A—C7A

-2.0 (3) C15B—C14B—C13B—C12B 0.0 (4)

C4A—C9A—C8A—C7A

-2.0 (3) C6S1—O5S1—C4S1—C3S1 -178.1 (5)

C4B—C9B—C8B—C7B

0.0 (3) C18B—C15B—C14B—C13B -179.0 (2)

C4B—C5B—C6B—C7B

0.8 (3) C1S1—O2S1—C3S1—C4S1 171.1 (12)

O5S1—C6S1—C7S1—O8S1

-67.3 (7) C4S1—O5S1—C6S1—C7S1 175.2 (4)

C11B—N10B—C9B—C4B

171.23 (16) O2S2—C3S2—C4S2—O5S2 -64 (2)

C11B—N10B—C9B—C8B

-8.1 (3) C3S2—C4S2—O5S2—C6S2 176.1 (11)

C11B—C16B—C15B—C14B

-0.9 (3) C1S2—O2S2—C3S2—C4S2 -163 (3)

C11B—C16B—C15B—C18B

179.1 (2) C4S2—O5S2—C6S2—C7S2 -164.7 (10)

C11B—C12B—C13B—C14B

-1.0 (3) O5S2—C6S2—C7S2—O8S2 68.1 (17)

C8B—C9B—C4B—C3B

176.22 (15) C6S2—C7S2—O8S2—C9S2 171.6 (16)

C8B—C9B—C4B—C5B

-0.9 (2) C9S1—O8S1—C7S1—C6S1 172.0 (6)