X-Lap: A Systems Approach for Cross-Layer Profiling and Latency Analysis for Cyber-Physical Networks
RTN 2017

Stefan Reif, Timo Hönig, Wolfgang Schröder-Preikschat
Department of Computer Science 4 (Distributed Systems and Operating Systems)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Andreas Schmidt, Thorsten Herfet
Telecommunications Lab
Saarland Informatics Campus - Saarbrücken

June 27, 2017
Cyber-Physical Networks (CPNs)
Cyber-Physical Networks (CPNs)
Cyber-Physical Networks (CPNs)
Existing Solutions

Single-Host Evaluation Tools	Network Evaluation Tools
▶ Local evaluation	▶ Network protocol evaluation
▶ Network-oblivious	▶ Abstract from host-related delays
Existing Solutions

Single-Host Evaluation Tools
- Local evaluation
- Network-oblivious

Network Evaluation Tools
- Network protocol evaluation
- Abstract from host-related delays

Need for Cross-Layer-Analysis of communication stacks
Outline

Introduction

X-LAP

PRRT

Evaluation

Conclusion
Outline

Introduction

X-LAP

PRRT

Evaluation

Conclusion
Introduction

- Packet creation
- Error correction
- ...

- Inter-process communication (IPC)
- Resource management
- ...

- Transmission delay
- Propagation delay
- ...

X-LAP | Operating system
X-LAP | Transport protocol
X-LAP | Application
X-LAP | Channel
X-LAP | Architecture

Run-time evaluation
- Timestamping functions
- ⇒ Timestamps
- C code

Off-line analysis
- Data analysis
- ⇒ Latency and jitter
- Python code
X-Lap | Architecture

Run-time evaluation
- Timestamping functions
- Timestamps
- C code

Off-line analysis
- Data analysis
- Latency and jitter
- Python code

- Trace every packet
- Minimize run-time interference
- Embedded into protocol source code
Run-time evaluation

- Timestamping functions
 - Timestamps
- C code

Off-line analysis

- Data analysis
 - Latency and jitter
- Python code

Collect traces
Combine trace data

*.csv
Run-time evaluation

- Timestamping functions
- \(\Rightarrow \) Timestamps
- C code

Off-line analysis

- Data analysis
- \(\Rightarrow \) Latency and jitter
- Python code

*.csv

- Single-packet traces
- Jitter amongst packets
- Outlier analysis
- Correlation analysis
Outline

Introduction

X-LAP

PRRT

Evaluation

Conclusion
Predictably Reliable Real-time Transport (PRRT)

Protocol	Features
UDP	- Data integrity checks
 | - No timeliness guarantees |
| **TCP** | - Error control
 | - No timeliness guarantees |

Not suitable for reliable real-time networks.
Predictably Reliable Real-time Transport (PRRT)

UDP
- Data integrity checks
- No timeliness guarantees

TCP
- Error control
- No timeliness guarantees

Not suitable for reliable real-time networks
Predictably Reliable Real-time Transport (PRRT)

UDP
- Data integrity checks
- No timeliness guarantees

TCP
- Error control
- No timeliness guarantees

PRRT
- Error correction
- Latency-awareness

⚠️ Not suitable for reliable real-time networks
Automated Repeat reQuest (ARQ)

Forward Error Correction (FEC)
Automated Repeat reQuest (ARQ)

Forward Error Correction (FEC)

Hybrid Error Correction (HEC)
Automated Repeat reQuest (ARQ)

Forward Error Correction (FEC)

Hybrid Error Correction (HEC)

Application Constraints

Channel State Information (CSI)
PRRT | Error Control and Timeliness

- **Automated Repeat reQuest (ARQ)**
- **Forward Error Correction (FEC)**
- **Hybrid Error Correction (HEC)**
- **Adaptive HEC (AHEC)**
- **Application Constraints**
- **Run-time CSI**

Channel State Information (CSI)
Automated Repeat reQuest (ARQ)
Forward Error Correction (FEC)
Hybrid Error Correction (HEC)
Adaptive HEC (AHEC)
Application Constraints
System Information
Run-time CSI
Automated Repeat reQuest (ARQ)
Forward Error Correction (FEC)
Application Constraints
System Information
Adaptive HEC (AHEC)
Jitter
Run-time CSI
Benefits from X-LAP

- Obtain system information
- Analyse jitter

Goals: Latency and jitter ...

- ... avoidance
 → Eliminate causes of latency and jitter
- ... hiding
 → Preparatory/Clean-up tasks
 → Optimise resource management
- ... tolerance
 → Parameters for AHEC
Evaluation focus

- PRRT
- Interaction with OS

Future work

- Application delays
- Network transmission time
PRRT | Results: Packet Trace

The graph shows the breakdown of time spent on various packet transmission stages:
- **Feedback**: 80us
- **ReceiverIPC**: 80us
- **HandlePacket**: 60us
- **ReceiverTotal**: 80us
- **LinkTransmit**: 60us
- **PrrotTransmit**: 60us
- **SenderEnqueued**: 20us
- **Enqueue**: 20us
- **SenderIPC**: 20us
- **Submit**: 20us
- **Send**: 20us
- **SenderTotal**: 80us
- **EndToEnd**: 160us

The x-axis represents time in microseconds (us), ranging from 0 to 160.
PRRT | Results: Trace Jitter
PRRT | Results: Outliers

![Bar chart showing frequency of various events]

- ReceiverIPC
- HandlePacket
- SenderEnqueued
- PrrtTransmit
- SenderIPC
- LinkTransmit
- Feedback
- Decoding
- Enqueue
- Send
- Submit

Frequency
PRRT | Results: Correlation SenderTotal

![Graph showing correlation between SenderTotal and EndToEnd]
Outline

Introduction

X-LAP

PRRT

Evaluation

Conclusion
Conclusion

X-LAP
- Cross-layer, inter-host timing analysis tool
- Evaluation of real-time network protocols

PRRT Analysis

	Sender	Receiver	Network-related
Latency	PrrtTransmit	SendFeedback	LinkTransmit
Jitter	SenderEnqueue	ReceiverIPC	LinkTransmit

Source Code available at: http://xlap.larn.systems

X-LAP

- Cross-layer, inter-host timing analysis tool
- Evaluation of real-time network protocols

PRRT Analysis

	Sender	Receiver	Network-related
Latency	PrrtTransmit	SendFeedback	LinkTransmit
Jitter	SenderEnqueue	ReceiverIPC	LinkTransmit

Source Code available at: http://xlap.larn.systems

Thank you for your attention. Questions?