Is the scalar Higgs boson observed at the LHC, a supersymmetric Higgs boson or a standard model one?

Subrata Chakraborty
Department of Physics, Visva Bharati University, Santiniketan 731235, India.
E-mail: subrata502002@yahoo.co.in

Abstract. Recently, a SM-like Higgs particle is reported to be discovered at CMS and ATLAS experiments at CERN with a mass of about 124 GeV. The present paper is related to an attempt to understand a very important question: Is the scalar Higgs boson observed at the LHC, a supersymmetric Higgs boson or a standard model one? Actually, after briefly reviewing the theoretical studies on Higgs mass in the context of Standard Model (SM) and Minimal Supersymmetric Standard Model (MSSM), we compare the values of Higgs mass obtained in several theoretical works on SM and MSSM, including those of the present author. We comment critically as regards the identification of the Higgs boson as SM Higgs or MSSM Higgs. In particular, certain models show that MSSM can give the mass of the lightest Higgs at a value near the observed value of nearly 124 GeV of SM-like Higgs, for a suitable choice of parameters. We suggest that repeated experimental confirmation as well as studies of other distinguishing properties of the discovered Higgs particle can probably discriminate the SM Higgs boson from the lightest MSSM one?

1. Introduction
Recently a Higgs-like particle is discovered in Large Hadron Collider experiment [1] at CERN on July 4, 2012 and this first LHC result suggests that the Higgs mass lies at 125-126 GeV. In fact, the standard model is a very successful model of strong and electroweak interaction and is due to the independent works of Glashow, Weinberg and Salam [2]. All predictions of the model has met with extreme success except that the Higgs particle, required for giving mass to the particles of the standard model other than the photon, is not yet confirmed experimentally. This particle was predicted by Higgs and other scientists [3]. Unfortunately, the Higgs mass is a free parameter in the standard model.

In particle physics, symmetries are believed to permit ultimately a classification of all observed particles. Supersymmetry (SUSY) arises as a symmetry [4] which combines bosons and fermions in the same representation or multiplet of the enlarged group which encompasses both the transformation of the Poincare group and the appropriate transformations, so that every bosonic particle must have a supersymmetric partner and vice versa. Since such a spectrum of particles is not compatible with observations, SUSY must be broken badly at the level of presently available energies. Experimental observation of a Higgs particle of supersymmetry, for example, can help us decide as to whether supersymmetry indeed is inherent in nature.
The purpose of the present paper is to throw light on the identification of the discovered Higgs on the basis of several theoretical studies on SM and MSSM Higgs i.e. whether theory favours it to be SM Higgs or a SUSY Higgs boson. Interpretation of the new particle within SM or within supersymmetric Higgs sector and conclusions about the nature of the Higgs boson (SM or SUSY etc.) are necessary.

The paper is organised as follows: a short introduction to a few theoretical models of SUSY Higgs and the Higgs mass predictions are given in section 2; the problem of discrimination among SM Higgs and MSSM Higgs are analysed in section 3. Discussions are given in section 4, where the role of symmetry, aesthetics and beauty in the theoretical high energy physics are also mentioned. Conclusions are given in section 5.

2. A brief review of theories and theoretical predictions on SUSY Higgs mass

Supersymmetry (SUSY) is one of the most beautiful theoretical ideas that tries to explain the origin of the scale of the electroweak interaction. The minimal supersymmetric standard model (MSSM) is the most economical models and gives physics beyond the standard model (SM). In MSSM every quark, lepton and gauge boson has a supersymmetric partner associated with it. Moreover, the MSSM requires two Higgs doublets so as to give masses to up-type and down-type fermions, by keeping consistency with supersymmetry and by avoiding gauge anomalies due to the fermionic super-partners of the Higgs bosons. In MSSM, after electroweak symmetry breaking there remain a total of five physical Higgs bosons. These can be classified as two neutral CP-even bosons, one neutral CP-odd boson and two charged bosons. The formalism of MSSM and mathematical details of calculations of the tree-level masses of supersymmetric Higgs may be found in a review [5], where the five tree level Higgs masses (the symbols having their usual meaning) satisfy the bounds given as follows

\[m_{H^\pm} \geq M_W, \]
\[m_{H_2^0} \leq m_Z \leq m_{H_1^0}, \]
\[m_{H_3^0} \geq m_{H_2^0}. \]

Although at tree level the condition \(m_{H_3^0} \leq m_Z \) holds, no Higgs has ever been detected at LEP and hence there is necessity of one and two-loop radiative corrections. For models which give 1-loop radiative corrections we refer to the work [6]. For some related works giving the lightest Higgs mass in MSSM to be < 130 GeV one may see [7]. A recent work for Higgs mass in MSSM is given in [8]. For detailed studies on phenomenological aspects of SUSY particle one may see [9].

A compilation of Higgs mass predictions in the standard model and supersymmetric standard model is given in the work of ref. [10]. Out of a list containing 64 Higgs mass predictions mentioned here, supersymmetry is behind 18 of them and with the exception of two, their central values lie between 120 and 160 GeV. Some of these predictions compiled in ref. [10], which lie near the observed value of Higgs mass (125 GeV), are shown in table 1.

3. The problem of discrimination among SM Higgs and MSSM Higgs boson

In an article Jason L. Evans [11] has stated that SUSY prefers light Higgs boson but SM does not care; post LEP bounds are 114 - 600 GeV while SUSY expected mass range is 90 to 130 GeV. This author has posed the question: if the Higgs particle discovered is SM Higgs, why did it fall in the MSSM window? In another article Pran Nath [12] has assumed SUSY Higgs to be the underlying model for explaining the new boson by considering SUSY breaking. He concluded that the Higgs boson mass is less than 150 GeV (130 GeV) in MSSM (mSUGRA). He also concluded that the prospect for SUSY discovery at LHC are brighter as a consequence of the discovery of the Higgs boson. In another article entitled "Consequences of a 125 GeV..."
Table 1. A compilation of Higgs mass (m_H(GeV)) predictions [10], which are near the recent LHC experimental result (125 GeV) are shown here

m_H (GeV)	Authors	Idea	Techniques
120 ± 6	Ellis et al (2005)	Supersymmetry	MSSM
121 ± 6	Feldman et al (2006)	Superstring inspired	RG flow
121.8 ± 11	Froggatt et al (1995)	Degenerate vacua	RGE
122 ± 10	Djouadi (2004)	SUSY SU(5)	RG flow
124 ± 21	Barger et al (2007)	Susy broken	R G flow
124 ± 10	Arbuzov et al (2007)	Condensates etc.	Coleman-Weinberg
124.2 ± 13.2	Codoban et al (1999)	Supersymmetry	MSSM
125 ± 4	Gogoladze et al (2007)	Extra-dimension	R G flow
127.5 ± 7.5	Chankowski et al (2004)	Susy	MSSM

Table 2. Maximum value of lightest Higgs mass M_h in different models of MSSM [13]

M_h^{max} value	mSUGRA	no scale	CNMSSM	VCMSSM
128.0	123.0	123.5	124.5	

Higgs on constrained MSSM scenarios by Mahmoudi [13] the author suggests that SM gives a Higgs mass which is essentially a free parameter, whereas MSSM gives the lightest CP-even Higgs particle as bounded from above. In different models of MSSM, maximum value of lightest MSSM Higgs mass M_h lies near 125 GeV approximately (see table2 [13]). The main purpose of this section has been to mention about the theoretical results on supersymmetric Higgs related to the LHC result. Probably SUSY could be discovered even before the Higgs [14]! The current SUSY Higgs particle mass bounds are given elsewhere [15].

4. Discussions

The present studies are based on predictions of theoretical models of supersymmetry on Higgs mass by different authors including ours. The Higgs boson discovered is also likely to be MSSM Higgs based on the predictions compiled in tables 1 and 2 , although one cannot surely distinguish between SM and MSSM Higgs at this stage.

In the context of LHC result on Higgs mass, we try to pin point the problem by going into details of theories on SM and MSSM. May be the Higgs particle is lightest SUSY Higgs particle, if discrepancy is noticed with respect to SM. The problem of resolving the issue of newly discovered boson may be understood through independent discovery, with caution in accepting new ideas and after critical enquiry into the evidence of discovery of the Higgs particle.

Hence connecting the theoretical models, bounds and constraining the parameters are very important. We may use symmetry to choose the correct option for the theory. Often, the symmetry principles [16] are the most important guides for understanding the unknown domain of nature. The concept of gauge invariance, formal relations between symmetries, unification and conservation laws are found to be very useful. Symmetry should be the guiding principle in the analysis of experimental data with reference to the theoretical models in high energy physics. There is a role of aesthetics in scientific theories [17]. One may use aesthetics in science to choose the most beautiful option in the matter of introduction of new ideas through economy.
simplicity, harmony and unified description giving a connection. The theory should be based on unbiased experimental results [18]. Beauty in particle physics [19] should also be considered.

5. Conclusions
The experimentalist, observation on Higgs-like particle and the analyses of theoretical results on models of SM and MSSM are likely to give feedback to the future search of the particle. Confining our attention to the mass spectra, we give a general survey based on theoretical works of different workers including ours. The MSSM Higgs mass varies with different parameters which are not precisely known as yet. We suggest that symmetry, aesthetics and match with experimental data are to be used for selecting the correct theory in SM and MSSM. If SM-like Higgs is SM Higgs, why does the Higgs mass predicted by many SUSY models lie in the range of values near the LHC value of Higgs Mass?

In this paper we have reviewed the current situation in LHC and Higgs mass to some extent. We think that more exhaustive and systematic studies on both SM and MSSM are necessary. We comment on the value of Higgs mass in LHC vs. predictions of Higgs mass in SM and MSSM [10]. We tabulated the predictions by different workers. On the basis of experimental data in LHC and the present theoretical scenario we come to the conclusion that the Higgs particle discovered is likely to be SM-like MSSM lightest Higgs. Sometimes it may happen that scientists trying to discover one thing fail to do so but they may discover some other new thing by chance. Unfortunately, the Higgs mass bounds in SM is over a large range (114 - 600 GeV). Probably, SUSY is discovered through the LHC experiment in July 2012. Its a great triumph for the experimentalists (CMS and ATLAS in CERN) as well as the theorists who have predicted the Higgs mass in SUSY over this range. It is hoped that more experiments are needed in order to confirm or reject this viewpoint. This study also reveals that there is a confusion regarding the true identity of the particle discovered in LHC experiments in July, 2012. On the basis of a critical analysis we come to the following conclusions:

- undoubtedly the experiment should be repeated at least two more times and the result should be checked
- the detail properties of the discovered (Higgs!) particle should be found out
- once it is firmly established that it is a Higgs particle, the problem remains as to whether it is a SM Higgs, MSSM-Higgs or a new particle
- since supersymmetry is a more complete theory than the standard model and the mass of the lightest Higgs in SUSY is more probable in view of the recent discovery at CERN, there may be a probability that the discovered particle is a Higgs particle of the Supersymmetric Standard Model.

Hence these ideas are useful for successfully connecting the theoretical models and bounds on Higgs mass and constraining the parameters for a true theory compatible with confirmed experimental result. Only those theoretical results matching with experimental data may be given importance which are based on general principles of symmetry, aesthetics, beauty and scientific methodology of research. The Higgs-like particle discovered at CERN in 2012 may be a SM Higgs or a MSSM lightest Higgs. More experiments about the detailed properties of the particle are needed in order to confirm these aspects. All these new experimental results should be reproduced before final conclusion.

6. Acknowledgments
The author would like to express heart felt thanks to Prof. N Nimai Singh, Kalpana Bora, Madhurjya P Bora and other members of the Organising Committee for invitation, partial financial support and excellent hospitality. I would also like to thank the Organising Committee.
members for giving me an opportunity to play ‘Bihu’ tune on Violin in the Cultural Programme arranged for the participants of the conference.

References
[1] Large Hadron Collider - Wikipedia, the free encyclopaedia. wikipedia.org/wiki/Large-Hadron- Higgs-like Particle Discovered at CERN; Kane G, Pierce A (ed.) 2008 Perspectives on LHC physics (Singapore: World Scientific)
[2] Glashow S L 1961 Nucl. Phys. 22 579; Weinberg S 1967 Phys. Rev. Lett. 19 1264 ; Salam A 1968 it Elementary Particle Theory (Stockholm: Almquist and Forlag)
[3] Higgs P W 1964 Phys. Lett. 12 132; Phys. Rev. Lett. 13 508; Englert F and Brout R 1964 Phys. Rev. Lett. 13, 321; Guralnik G S, Hagen C R and Kibble T W B 1964 Phys. Rev. Lett. 13585
[4] Kim J 1991 The Standard Model and Beyond (Singapore: World Scientific)p 304; Nilles H P 1984 Phys. Rep. 110 1; Haber H and Kane G 1985 Phys. Rep. 117 75; Gunion J F, Haber H E, Kane G L and Dawson S 1990 The Higgs Hunter's Guide (Redwood City, CA: Addison-Wesley) erratum, 1992 Report No. SCIPP-2/58 (unpublished); Barbieri R 1988 Riv. Nuovo Cimento 11 1
[5] Simonsen I 1995 A Review of Minimal Supersymmetric Electro Weak Theory Preprint hep-ph/9506369
[6] Haber H E, Hempfling R and Hoang A H 1997 Phys. Rev. D 56 539 ; Haber H E and Hempfling R 1993 Phys. Rev. D 48 1280 and references there in.
[7] Ghosh B and Chakrabarty S 2001 Ind. J. Phys. 75A(6) 651; Ghosh B and Chakrabarty S 2001 Ind. Jour. Pure and Applied Physics 39 481
[8] Chakrabarty S and Pal P P 2010 Journal of Assam Science Society 51 No 1 and 2
[9] Muller-Kirsten H J W and Wiedemann A 1987 Supersymmetry: An Introduction with Conceptual and Calculational Details (Singapore: World Scientific); Drees M, Godbole R M and Roy P 2004 Theory and Phenomenology of Sparticles (Singapore: World Scientific); Baer H A and Tata X R 2006 Weak Scale Supersymmetry: From Superfields to Scattering Events (Cambridge, England: Cambridge University Press)
[10] Schucker T Higgs-mass predictions, Centre de Physique Theorique CNRS preprint No. 0708. 3344
[11] Evans J L 2001 Phys. Rev. D 86 015017; Muhlleiner M M Invited review in Int. J. Mod. Phys A2712300 30 20th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2012); Carena M 2012 Higgs Boson Discovery and Supersymmetry at the LHC SUSY 2012
[12] Nath P 2012 Perspectives on Higgs and Supersymmetry, SUSY 2012 (Beijing, China)
[13] Mahmoudi F 2002 Higgs Physics and SM/BSM in the light of LHC data SUSY 2012
[14] D quoting A 2008 Phys. Rep. 457 p 1-216 459 p 1-241
[15] Haber H E 2002 Higgs Theory and Phenomenology in the Standard Model and MSSM arxiv. org/pdf/hep-ph/0212136; Carena M and Haber H E 2003 Prog. Part. Nucl. Phys. 50 151 arXiv:hep-ph/0208209; Das S P and Drees M 2011 Phys. Rev. D 83 055003 and references there in
[16] Khanna M P 1999 Introduction to Particle Physics (New Delhi: Prentice-Hall of India) Ch. 3, p. 70; Symmetry and Symmetry Breaking, Dec 2, 2004 (Stanford Encyclopedia of Philosophy) http://plato.stanford.edu/entries/symmetry-breaking/
[17] Chandrasekhar S 1987 Truth and Beauty: Aesthetics and Motivations in Science (Chicago, Illinois: The Chicago University Press)
[18] Feynman R P 1970 The Character of Physical Law (Boston: The M. I. T. PRESS, Third Paperback Printing); Gregory Sir R 1949 Discovery (Puffin Story Books, Penguin Books); Osheroff D D 2001 Am. J. Phys. 69 26 ; Kothari C R 1998 Research Methodology (Methods and Techniques) (New Delhi: Wishwa Prakashan)
[19] Chakrabarty S 1996 Beauty in Elementary Particle Physics: Aesthetics and Motivations in Arts and Science Ed. Gupta K C (New Delhi: New Age International Limited) Chap. 13, p. 173-178