On the maximum number of cliques in a graph embedded in a surface

Vida Dujmović a,1, Gašper Fijavž b,2, Gwenaël Joret c,3, Thom Sulanke d, David R. Wood e,4

a School of Computer Science, Carleton University, Ottawa, Canada
b Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
c Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
d Department of Physics, Indiana University, Bloomington, IN, USA
e Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia

Article history:
Received 6 July 2009
Accepted 30 March 2011

Abstract
This paper studies the following question: given a surface \(\Sigma \) and an integer \(n \), what is the maximum number of cliques in an \(n \)-vertex graph embeddable in \(\Sigma \)? We characterise the extremal graphs for this question, and prove that the answer is between \(8(n - \omega) + 2^{\omega} \) and \(8n + \frac{3}{2} 2^{\omega} + o(2^{\omega}) \), where \(\omega \) is the maximum integer such that the complete graph \(K_\omega \) embeds in \(\Sigma \). For the surfaces \(S_0, S_1, S_2, N_1, N_2, N_3, \) and \(N_4 \) we establish an exact answer.

© 2011 David Wood. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A clique in a graph is a set of pairwise adjacent vertices. Let \(c(G) \) be the number of cliques in a graph \(G \). For example, every set of vertices in the complete graph \(K_n \) is a clique, and \(c(K_n) = 2^n \). This paper studies the following question at the intersection of topological and extremal graph theory:

E-mail addresses: vida@cs.mcgill.ca (V. Dujmović), gasper.fijavz@fri.uni-lj.si (G. Fijavž), gjoret@ulb.ac.be (G. Joret), tsulanke@indiana.edu (T. Sulanke), woodd@unimelb.edu.au (D.R. Wood).

1 Supported by the Natural Sciences and Engineering Research Council of Canada.
2 Supported in part by the Slovenian Research Agency, Research Program P1-0297.
3 Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS). Supported in part by the Actions de Recherche Concertées (ARC) fund of the Communauté française de Belgique.
4 Supported by a QEII Research Fellowship from the Australian Research Council.
5 We consider simple, finite, undirected graphs \(G \) with vertex set \(V(G) \) and edge set \(E(G) \). A \(K_3 \) subgraph of \(G \) is called a triangle of \(G \). For background graph theory, see [4].

0195-6698/$ – see front matter © 2011 David Wood. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2011.04.001
given a surface Σ and an integer n, what is the maximum number of cliques in an n-vertex graph embeddable in Σ?

For previous bounds on the maximum number of cliques in certain graph families, see [5,6,13, 14,22,23] for example. For background on graphs embedded in surfaces, see [11,21]. Every surface is homeomorphic to S_g, the orientable surface with g handles, or to N_h, the non-orientable surface with h crosscaps. The Euler characteristic of S_g is $2 - 2g$. The Euler characteristic of N_h is $2 - h$. The orientable genus of a graph H is the minimum integer g such that H embeds in S_g. The non-orientable genus of a graph G is the minimum integer h such that G embeds in N_h. The orientable genus of K_n ($n \geq 3$) is $\left\lceil \frac{1}{2}(n - 3)(n - 4) \right\rceil$, and its non-orientable genus is $\left\lceil \frac{1}{6}(n - 3)(n - 4) \right\rceil$, except that the non-orientable genus of K_3 is 3.

Throughout the paper, fix a surface Σ with Euler characteristic χ. If $\Sigma = S_0$ then let $\omega = 3$, otherwise let ω be the maximum integer such that K_ω embeds in Σ. Thus $\omega = \left\lfloor \frac{1}{2}(7 + \sqrt{49 - 24\chi}) \right\rfloor$ except for $\Sigma = S_0$ and $\Sigma = N_2$, in which case $\omega = 3$ and $\omega = 6$, respectively.

To avoid trivial exceptions, we implicitly assume that $|V(G)| \geq 3$ whenever $\Sigma = S_0$.

Our first main result is to characterise the n-vertex graphs embeddable in Σ with the maximum number of cliques; see Theorem 1 in Section 2. Using this result we determine an exact formula for the maximum number of cliques in an n-vertex graph embeddable in each of the sphere S_0, the torus S_1, the double torus S_2, the projective plane N_1, the Klein bottle N_2, as well as N_3 and N_4; see Section 3. Our third main result estimates the maximum number of cliques in terms of ω. We prove that the maximum number of cliques in an n-vertex graph embeddable in Σ is between $8(n - \omega) + 2^\omega$ and $8n + \frac{3}{2}2^\omega + o(2^\omega)$; see Theorem 2 in Section 4.

2. Characterisation of extremal graphs

The upper bounds proved in this paper are of the form: every graph G embeddable in Σ satisfies $c(G) \leq 8|V(G)| + f(\Sigma)$ for some function f. Define the excess of G to be $c(G) - 8|V(G)|$. Thus the excess of G is at most Q if and only if $c(G) \leq 8|V(G)| + Q$. Theorem 2 proves that the maximum excess of a graph embeddable in Σ is finite.

In this section, we characterise the graphs embeddable in Σ with maximum excess. A triangulation of Σ is an embedding of a graph in Σ in which each facial walk has three vertices and three edges with no repetitions. (We assume that every face of a graph embedding is homeomorphic to a disc.)

Lemma 1. Every graph G embeddable in Σ with maximum excess is a triangulation of Σ.

Proof. Since adding edges within a face increases the number of cliques, the vertices on the boundary of each face of G form a clique.

Suppose that some face f of G has at least four distinct vertices in its boundary. Let G' be the graph obtained from G by adding one new vertex adjacent to four distinct vertices of f. Thus G' is embeddable in Σ, has $|V(G)| + 1$ vertices, and has $c(G) + 16$ cliques, which contradicts the choice of G. Now assume that every face of G has at most three distinct vertices.

Suppose that some face f of G has repeated vertices. Thus the facial walk of f contains vertices u, v, w, v in this order (where v is repeated in f). Let G' be the graph obtained from G by adding two new vertices p and q, where p is adjacent to $\{u, v, w, q\}$, and q is adjacent to $\{u, v, w, p\}$. So G' is embeddable in Σ and has $|V(G)| + 2$ vertices. If $S \subseteq \{p, q\}$ and $S \neq \emptyset$ and $T \subseteq \{u, v, w\}$, then $S \cup T$ is a clique of G' but not of G. It follows that G' has $c(G) + 24$ cliques, which contradicts the choice of G. Hence no face of G has repeated vertices, and G is a triangulation of Σ. \qed

Let G be a triangulation of Σ. An edge vw of G is reducible if vw is in exactly two triangles in G. We say G is irreducible if no edge of G is reducible [2,3,7,9,10,12,17,19,20]. Note that K_3 is a triangulation of S_0, and by the above definition, K_3 is irreducible. In fact, it is the only irreducible triangulation of S_0. We take this somewhat non-standard approach so that Theorem 1 holds for all surfaces.

Let vw be a reducible edge of a triangulation G of Σ. Let vwx and wyv be the two faces incident to vw in G. As illustrated in Fig. 1, let G/\overline{vw} be the graph obtained from G by contracting vw; that is, delete the edges vw, wy, wx, and identify v and w into v. G/\overline{vw} is a simple graph since x and y are the
only common neighbours of \(v\) and \(w\). Indeed, \(G/\{v, w\}\) is a triangulation of \(\Sigma\). Conversely, we say that \(G\) is obtained from \(G/\{v, w\}\) by splitting the path \(xy\) at \(v\). If, in addition, \(xy \in E(G)\), then we say that \(G\) is obtained from \(G/\{v, w\}\) by splitting the triangle \(xuv\) at \(v\). Note that \(xuv\) need not be a face of \(G/\{v, w\}\). In the case that \(xuv\) is a face, splitting \(xuv\) is equivalent to adding a new vertex adjacent to each of \(x, v, y\).

Graphs embeddable in \(\Sigma\) with maximum excess are characterised in terms of irreducible triangulations as follows.

Theorem 1. Let \(Q\) be the maximum excess of an irreducible triangulation of \(\Sigma\). Let \(X\) be the set of irreducible triangulations of \(\Sigma\) with excess \(Q\). Then the excess of every graph \(G\) embeddable in \(\Sigma\) is at most \(Q\), with equality if and only if \(G\) is obtained from some graph in \(X\) by repeatedly splitting triangles.

Proof. We proceed by induction on \(|V(G)|\). By Lemma 1, we may assume that \(G\) is a triangulation of \(\Sigma\). If \(G\) is irreducible, then the claim follows from the definition of \(X\) and \(Q\). Otherwise, some edge \(vw\) of \(G\) is in exactly two triangles \(vwx\) and \(vwy\). By induction, the excess of \(G/\{v, w\}\) is at most \(Q\), with equality if and only if \(G/\{v, w\}\) is obtained from some \(H \in X\) by repeatedly splitting triangles. Hence \(c(G/\{v, w\}) \leq 8|V(G/\{v, w\})| + Q\).

Observe that every clique of \(G\) that is not in \(G/\{v, w\}\) is in \(\{A \cup \{w\} : A \subseteq \{x, v, y\}\}\). Thus \(c(G) \leq c(G/\{v, w\}) + 8\), with equality if and only if \(xuv\) is a triangle. Hence \(c(G) \leq 8|V(G)| + Q\); that is, the excess of \(G\) is at most \(Q\).

Now suppose that the excess of \(G\) equals \(Q\). Then the excess of \(G/\{v, w\}\) equals \(Q\), and \(c(G) = c(G/\{v, w\}) + 8\) (implying \(xuv\) is a triangle). By induction, \(G/\{v, w\}\) is obtained from \(H\) by repeatedly splitting triangles. Therefore \(G\) is obtained from \(H\) by repeatedly splitting triangles.

Conversely, suppose that \(G\) is obtained from some \(H \in X\) by repeatedly splitting triangles. Then \(xuv\) is a triangle and \(G/\{v, w\}\) is obtained from \(H\) by repeatedly splitting triangles. By induction, the excess of \(G/\{v, w\}\) equals \(Q\), implying the excess of \(G\) equals \(Q\).

\(\square \)

3. Low-genus surfaces

To prove an upper bound on the number of cliques in a graph embedded in \(\Sigma\), by Theorem 1, it suffices to consider irreducible triangulations of \(\Sigma\) with maximum excess. The complete list of irreducible triangulations is known for \(S_0, S_1, S_2, N_1, N_2, N_3\) and \(N_4\). In particular, Steinitz and Rademacher [16] proved that \(K_3\) is the only irreducible triangulation of \(S_0\) (under our definition of irreducible). Lavrenchenko [9] proved that there are 21 irreducible triangulations of \(S_1\), each with between 7 and 10 vertices. Sulanke [17] proved that there are 396,784 irreducible triangulations of \(S_2\), each with between 10 and 17 vertices. Barnette [1] proved that the embeddings of \(K_6\) and \(K_7 - K_3\) in \(N_1\) are the only irreducible triangulations of \(N_1\). Sulanke [20] proved that there are 29 irreducible triangulations of \(N_2\), each with between 8 and 11 vertices (correcting an earlier result by Lavrenchenko and Negami [10]). Sulanke [17] proved that there are 9708 irreducible triangulations of \(N_3\), each with between 9 and 16 vertices. Sulanke [17] proved that there are 6,297,982 irreducible triangulations of \(N_4\), each with between 9 and 22 vertices. Using the lists of all irreducible triangulations due to Sulanke [18] and a naive algorithm for counting cliques,\(^6\) we have computed the set \(X\) in Theorem 1 for each of the above surfaces; see Table 1. This data with Theorem 1 implies the following results.

\(^6 \) The code is available from the authors upon request.
Fig. 2. K_7 embedded in the torus, and K_6 embedded in the projective plane.

Table 1
The maximum excess of an n-vertex irreducible triangulation of Σ.

Σ	χ	ω	$n=3$	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	Max
S_0	2	3	-16																		-16
S_1	0	7	72	48	40	32															72
S_2	-2	8	208	160	136	128	120	96	88	80											208
N_1	1	6	16	8																	16
N_2	0	6	48	48	40	32															48
N_3	-1	7	104	96	80	80	72	64	56											104	
N_4	-2	8	216	152	136	136	128	120	112	99	83	75									216

Proposition 1. Every planar graph G with $|V(G)| \geq 3$ has at most $8|V(G)| - 16$ cliques, as proved by Wood [22]. Moreover, a planar graph G has $8|V(G)| - 16$ cliques if and only if G is obtained from the embedding of K_3 in S_0 by repeatedly splitting triangles.

Proposition 2. Every toroidal graph G has at most $8|V(G)| + 72$ cliques. Moreover, a toroidal graph G has $8|V(G)| + 72$ cliques if and only if G is obtained from the embedding of K_7 in S_1 by repeatedly splitting triangles (see Fig. 2).

Proposition 3. Every graph G embeddable in S_2 has at most $8|V(G)| + 208$ cliques. Moreover, a graph G embeddable in S_2 has $8|V(G)| + 208$ cliques if and only if G is obtained from one of the following two graph embeddings in S_2 by repeatedly splitting triangles7:

- graph #1: bcdef,afghdef,abehfgd,acgdfhi,adgcfjib,bcdfebhdh,bfjgec,fghdj
- graph #6: bcdef,afghdef,abehfgd,acgdfhi,adgcfjib,bcdfebhdh,bfjgec,fghdj
- graph #26: bcdef,afghdef,abehfgd,acgdfhi,adgcfjib,bcdfebhdh,bfjgec,fghdj

Proposition 4. Every projective planar graph G has at most $8|V(G)| + 16$ cliques. Moreover, a projective planar graph G has $8|V(G)| + 16$ cliques if and only if G is obtained from the embedding of K_6 in N_1 by repeatedly splitting triangles (see Fig. 2).

Proposition 5. Every graph G embeddable in the Klein bottle N_2 has at most $8|V(G)| + 48$ cliques. Moreover, a graph G embeddable in N_2 has $8|V(G)| + 48$ cliques if and only if G is obtained from one of the following three graph embeddings in N_2 by repeatedly splitting triangles (see Fig. 3):

- graph #3: bcddef,afghdef,abehfgd,acgdfhi,adgcfjib,behdh,bfjgec
- graph #6: bcdef,afghdef,abehfgd,acgdfhi,adgcfjib,behdh,bfjgec,fghdj
- graph #26: bcddef,afghdef,abehfgd,acgdfhi,adgcfjib,behdh,bfjgec,fghdj.

7 This representation describes a graph with vertex set $\{a, b, c, \ldots\}$ by adjacency lists of the vertices in order a, b, c, \ldots. The graph # refers to the position in Sulanke’s file [18].
Proposition 6. Every graph G embeddable in \mathbb{N}_3 has at most $8|V(G)| + 104$ cliques. Moreover, a graph G embeddable in \mathbb{N}_3 has $8|V(G)| + 104$ cliques if and only if G is obtained from one of the following 15 graph embeddings in \mathbb{N}_3 by repeatedly splitting triangles:

- Graph #1: $bcde, aefgdhic, abiegfd, acfbgie, adichgfbl, bdfeicb, beghdb, bgejfh, bhgfdec$
- Graph #2: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #3: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #4: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #5: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #6: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #7: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #8: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #9: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #10: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #11: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #12: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #13: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #14: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #15: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #16: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #17: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #18: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #19: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #20: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #21: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #22: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #23: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #24: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$
- Graph #25: $bcde, aefgdhic, abiehd, achfjobg, adichgbf, begihdb, bdfeicb, beghdb, bhgfdec$

Proposition 7. Every graph G embeddable in \mathbb{N}_4 has at most $8|V(G)| + 216$ cliques. Moreover, a graph G embeddable in \mathbb{N}_4 has $8|V(G)| + 216$ cliques if and only if G is obtained from one of the following three graph embeddings in \mathbb{N}_4 by repeatedly splitting triangles:

- Graph #1: $bcde, afgdheic, abiehd, acgfbhie, adgfbihc, bdechfj, bdfeicb, beghdb, bhgfdec$
- Graph #2: $bcde, afgdheic, abiehd, acgfbhie, adgfbihc, bdechfj, bdfeicb, beghdb, bhgfdec$
- Graph #3: $bcde, afgdheic, abiehd, acgfbhie, adgfbihc, bdechfj, bdfeicb, beghdb, bhgfdec$

Note that the three embeddings in Proposition 7 are of the same graph.

4. A bound for all surfaces

Recall that Σ is a surface with Euler characteristic χ, and if $\Sigma = S_0$ then $\omega = 3$, otherwise ω is the maximum integer such that K_ω embeds in Σ. We start with the following upper bound on the minimum degree of a graph.

Lemma 2. Assume $\Sigma \neq S_0$. Then every graph G embeddable in Σ has minimum degree at most

$$6 + \frac{\omega^2 - 5\omega - 7}{|V(G)|}.$$
Proof. By the definition of ω, the complete graph $K_{\omega+1}$ cannot be embedded in Σ. Thus if $\Sigma = S_g$ then $g = \frac{1}{2}(2 - \chi) \leq \left\lceil \frac{1}{12}(\omega - 2)(\omega - 3) \right\rceil - 1$, and if $\Sigma = N_h$ then $h = 2 - \chi \leq \left\lceil \frac{1}{6}(\omega - 2)(\omega - 3) \right\rceil - 1$. In each case, it follows that $2 - \chi \leq \frac{1}{6}(\omega - 2)(\omega - 3) - \frac{1}{6}$. That is,
\[-6\chi \leq \omega^2 - 5\omega - 7. \] (1)

Say G has minimum degree d. It follows from Euler’s Formula that $|E(G)| \leq 3|V(G)| - 3\chi$. By (1),
\[d \leq \frac{2|E(G)|}{|V(G)|} \leq 6 \frac{|V(G)| - 6\chi}{|V(G)|} \leq 6 + \omega^2 - 5\omega - 7 = 6 + \frac{\omega^2 - 5\omega - 7}{|V(G)|}. \]

For graphs in which the number of vertices is slightly more than ω, Lemma 2 can be reinterpreted as follows.

Lemma 3. Assume $\Sigma \neq S_0$. Let $s := \left\lceil \sqrt{\omega + 11} - 3 \right\rceil \geq 1$. Let G be a graph embeddable in Σ. If G has at most $\omega + 1$ vertices, then G has minimum degree at most $\omega - 1$. If G has at least $\omega + j$ vertices, where $j \in [2, s]$, then G has minimum degree at most $\omega - j + 1$.

Proof. Say G has minimum degree d. If $|V(G)| \leq \omega$, then trivially $d \leq \omega - 1$. If $|V(G)| = \omega + 1$, then G is not complete (by the definition of ω), again implying that $d \leq \omega - 1$. Now assume $|V(G)| \geq \omega + j$ for some $j \in [2, s]$. By Lemma 2,
\[d \leq \frac{\omega^2 - 5\omega - 7}{\omega + j} = \omega - j + 1 + \frac{j^2 + 5j - 7}{\omega + j}. \]

Since $j \leq s < \sqrt{\omega + 11} - 2$, we have $j^2 + 5j - 7 \leq s^2 + 4s - 7 + j < \omega + j$. It follows that $d \leq \omega - j + 1$. □

Now we prove our first upper bound on the number of cliques.

Lemma 4. Assume $\Sigma \neq S_0$. Let $s := \left\lceil \sqrt{\omega + 11} - 3 \right\rceil \geq 1$. Let G be an n-vertex graph embeddable in Σ. Then
\[c(G) \leq \begin{cases} 5 \omega^2 & \text{if } n \leq \omega + s, \\ 5 \omega^2 + (n - \omega - s)2^{\omega-s+1} & \text{otherwise}. \end{cases} \]

Proof. Let v_1, v_2, \ldots, v_n be an ordering of the vertices of G such that v_i has minimum degree in the subgraph $G_i := G - \{v_1, \ldots, v_{i-1}\}$. Let d_i be the degree of v_i in G_i (which equals the minimum degree of G_i). Charge each non-empty clique C in G to the vertex $v_i \in C$ with minimum degree. Charge the clique \emptyset to v_n.

We distinguish three types of vertices. Vertex v_i is type-1 if $i \in [1, n - \omega - s]$. Vertex v_i is type-2 if $i \in [n - \omega - s + 1, n - \omega]$. Vertex v_i is type-3 if $i \in [n - \omega + 1, n]$.

Each clique charged to a type-3 vertex is contained in $\{v_{n-\omega+1}, \ldots, v_n\}$, and there are at most 2^ω such cliques.

Say C is a clique charged to a type-1 or type-2 vertex v_i. Then $C - \{v_i\}$ is contained in $N_{G_i}(v_i)$, which consists of d_i vertices. Thus the number of cliques charged to v_i is at most 2^{d_i}. Recall that d_i equals the minimum degree of G_i, which has $n - i + 1$ vertices.

If v_i is type-2 then, by Lemma 3 with $j = n - \omega - i + 1 \in [1, s]$, we have $d_i \leq \omega - j + 1$, and $d_i \leq \omega - j$ if $j = 1$. Thus the number of cliques charged to type-2 vertices is at most
\[2^{\omega-1} + \sum_{j=2}^{s} 2^{\omega-j+1} \leq 2^{\omega-1} + \sum_{j=1}^{\omega-1} 2^j \leq \frac{3}{2} 2^\omega. \]

If v_i is type-1 then G_i has more than $\omega + s$ vertices, and thus $d_i \leq \omega - s + 1$ by Lemma 3 with $j = \omega$. Thus the number of cliques charged to type-1 vertices is at most $(n - \omega - s)2^{\omega-s+1}$. □
We now prove the main result of this section; it provides lower and upper bounds on the maximum number of cliques in a graph embeddable in Σ.

Theorem 2. Every n-vertex graph embeddable in Σ contains at most $8n + \frac{5}{2}2^{\omega} + o(2^{\omega})$ cliques. Moreover, for each $n \geq \omega$, there is an n-vertex graph embeddable in Σ with $8(n - \omega) + 2^{\omega}$ cliques.

Proof. To prove the upper bound, we may assume that $\Sigma \neq S_0$, and by Theorem 1, we need only consider n-vertex irreducible triangulations of Σ. Joret and Wood [7] proved that, in this case, $n \leq 2^2 - 13\chi$. By Eq. (1),

$$n \leq 2^2 - 13\chi \leq 2^2 + \frac{13}{6}(\omega^2 - 5\omega - 7) < 3\omega^2.$$

If $n \leq \omega + s$ then $c(G) \leq \frac{5}{2}2^{\omega}$ by Lemma 4. If $n > \omega + s$ then by the same lemma,

$$c(G) \leq \frac{5}{2}2^{\omega} + (3\omega^2 - \omega - s)2^{\omega-s+1} < \frac{5}{2}2^{\omega} + 3\omega^22^{\omega-s+1} < \frac{5}{2}2^{\omega} + 2^{\omega-s+2\log\omega + 3}.$$

Since $s \in \Theta(\sqrt{\omega})$, we have $c(G) \leq \frac{5}{2}2^{\omega} + o(2^{\omega})$.

To prove the lower bound, start with K_ω embedded in Σ (which has 2^{ω} cliques). Now, while there are less than n vertices, insert a new vertex adjacent to each vertex of a single face. Each new vertex adds at least 8 new cliques. Thus we obtain an n-vertex graph embedded in Σ with at least $8(n - \omega) + 2^{\omega}$ cliques. \qed

5. Concluding conjectures

We conjecture that the upper bound in Theorem 2 can be improved to more closely match the lower bound.

Conjecture 1. Every graph G embeddable in Σ has at most $8|V(G)| + 2^{\omega} + o(2^{\omega})$ cliques.

If K_ω triangulates Σ, then we conjecture the following exact answer.

Conjecture 2. Suppose that K_ω triangulates Σ. Then every graph G embeddable in Σ has at most $8(|V(G)| - \omega) + 2^{\omega}$ cliques, with equality if and only if G is obtained from K_ω by repeatedly splitting triangles.

By Theorem 1, this conjecture is equivalent to the following.

Conjecture 3. Suppose that K_ω triangulates Σ. Then K_ω is the only irreducible triangulation of Σ with maximum excess.

The results in Section 3 confirm Conjectures 2 and 3 for S_0, S_1 and N_1.

Now consider surfaces possibly with complete graph triangulation. Then the bound $c(G) \leq 8(|V(G)| - \omega) + 2^{\omega}$ (in Conjecture 2) is false for S_2, N_2, N_3 and N_4. Loosely speaking, this is because these surfaces have ‘small’ ω compared to χ. In particular, $\omega = \left\lceil \frac{1}{2}(7 + \sqrt{49 - 24\chi}) \right\rceil$ except for S_0 and N_2, and $\omega = \frac{1}{2}(7 + \sqrt{49 - 24\chi})$ if and only if K_ω triangulates $\Sigma \neq S_0$. This phenomenon motivates the following conjecture.

Conjecture 4. Every graph G embeddable in Σ has at most

$$8|V(G)| - 4(7 + \sqrt{49 - 24\chi}) + 2^{(7 + \sqrt{49 - 24\chi})/2}$$

cliques, with equality if and only if K_ω triangulates Σ and G is obtained from K_ω by repeatedly splitting triangles.
There are two irreducible triangulations of S_2 with maximum excess, there are three irreducible triangulations of N_2 with maximum excess, there are 15 irreducible triangulations of N_3 with maximum excess, and there are three irreducible triangulations of N_4 with maximum excess. This suggests that for surfaces with no complete graph triangulation, a succinct characterisation of the extremal examples (as in Conjecture 3) might be difficult. Nevertheless, we conjecture the following strengthening of Conjecture 3 for all surfaces.

Conjecture 5. Every irreducible triangulation of Σ with maximum excess contains K_ω as a subgraph.

A triangulation of a surface Σ is vertex-minimal if it has the minimum number of vertices in a triangulation of Σ. Of course, every vertex-minimal triangulation is irreducible. Ringel [15] and Jungerman and Ringel [8] together proved that the order of a vertex-minimal triangulation is ω if K_ω triangulates Σ, is $\omega + 2$ if $\Sigma \in \{S_2, N_2, N_3\}$, and is $\omega + 1$ for every other surface.

Triangulations #26 of N_2 and #2464 of N_3 are the only triangulations in Propositions 1–7 that are not vertex-minimal. Triangulation #26 of N_2 is obtained from two embeddings of K_6 in N_1 joined at the face bdf (see Fig. 3). Triangulation #2464 of N_3 is obtained by joining an embedding of K_6 in N_1 and an embedding of K_7 in S_1 at the face bdf (see Fig. 4).

Every other triangulation in Propositions 1–7 is obtained from an embedding of K_ω by adding (at most two) vertices and edges until a vertex-minimal triangulation is obtained. This provides some evidence for our final conjecture.

Conjecture 6. For every surface Σ, the maximum excess is attained by some vertex-minimal triangulation of Σ that contains K_ω as a subgraph. Moreover, if $\Sigma \not\in \{N_2, N_3\}$ then every irreducible triangulation with maximum excess is vertex-minimal and contains K_ω as a subgraph.

We have verified Conjectures 4–6 for $S_0, S_1, S_2, N_1, N_2, N_3$ and N_4.

References

[1] David W. Barnette, Generating the triangulations of the projective plane, J. Combin. Theory Ser. B 33 (3) (1982) 222–230. doi:10.1016/0095-8956(82)90041-7.

[2] David W. Barnette, Allan L. Edelson, All 2-manifolds have finitely many minimal triangulations, Israel J. Math. 67 (1) (1989) 123–128. doi:10.1007/BF02764905.

[3] Siu-Wing Cheng, Tamal K. Dey, Sheung-Hung Poon, Hierarchy of surface models and irreducible triangulations, Comput. Geom. 27 (2) (2004) 135–150. doi:10.1016/j.comgeo.2003.07.001.

[4] Reinhard Diestel, Graph theory, 2nd ed., in: Graduate Texts in Mathematics, vol. 173, Springer, 2000, http://diestel-graph-theory.com/index.html.

[5] Jürgen Eckhoff, The maximum number of triangles in a K_4-free graph, Discrete Math. 194 (1–3) (1999) 95–106. doi:10.1016/S0012-365X(98)00120-4.

[6] Fedor V. Fomin, Sang Il Oum, Dimitrios M. Thilikos, Rank-width and tree-width of H-minor-free graphs, European J. Combin. 31 (7) (2010) 1617–1628. doi:10.1016/j.ejc.2010.05.003.

[7] Gwenael Joret, David R. Wood, Irreducible triangulations are small, J. Combin. Theory Ser. B 100 (5) (2010) 446–455. doi:10.1016/j.jctb.2010.01.004.
[8] Mark Jungerman, Gerhard Ringel, Minimal triangulations on orientable surfaces, Acta Math. 145 (1–2) (1980) 121–154. doi:10.1007/BF02414187.

[9] Serge Lavrenchenko, Irreducible triangulations of a torus, Ukrain. Geom. Sb. 30 (ii) (1987) 52–62. Translation in J. Soviet Math. 51 (5): 2537–2543, 1990.

[10] Serge Lavrenchenko, Seiya Negami, Irreducible triangulations of the Klein bottle, J. Combin. Theory Ser. B 70 (2) (1997) 265–291. doi:10.1006/jctb.1997.9999.

[11] Bojan Mohar, Carsten Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, USA, 2001.

[12] Atsuhiro Nakamoto, Katsuhiro Ota, Note on irreducible triangulations of surfaces, J. Graph Theory 20 (2) (1995) 227–233. doi:10.1002/jgt.3190200211.

[13] Serguei Norine, Paul Seymour, Robin Thomas, Paul Wollan, Proper minor-closed families are small, J. Combin. Theory Ser. B 96 (5) (2006) 754–757. doi:10.1016/j.jctb.2006.01.006.

[14] Bruce Reed, David R. Wood, A linear time algorithm to find a separator in a graph excluding a minor, ACM Trans. Algorithms 5 (4) (2009) #39. doi:10.1145/1597036.1597043.

[15] Gerhard Ringel, Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann, Math. Ann. 130 (1955) 317–326.

[16] Ernst Steinitz, Hans Rademacher, Vorlesungen über die Theorie der Polyeder, Springer, Berlin, 1934.

[17] Thom Sulanke, Generating irreducible triangulations of surfaces, 2006. http://arxiv.org/abs/math/0606687.

[18] Thom Sulanke, Generating triangulations of surfaces, 2006. http://hep.physics.indiana.edu/tsulanke/graphs/surftri/.

[19] Thom Sulanke, Irreducible triangulations of low genus surfaces, 2006. http://arxiv.org/abs/math/0608690.

[20] Thom Sulanke, Note on the irreducible triangulations of the Klein bottle, J. Combin. Theory Ser. B 96 (6) (2006) 964–972. doi:10.1016/j.jctb.2006.05.001.

[21] Arthur T. White, Graphs, Groups and Surfaces, 2nd ed., North-Holland, 1984.

[22] David R. Wood, On the maximum number of cliques in a graph, Graphs Combin. 23 (3) (2007) 337–352. doi:10.1007/s00373-007-0738-8.

[23] Alexander A. Zykov, On some properties of linear complexes, Mat. Sb. (NS) 24 (66) (1949) 163–188.