On fourth Hankel determinant for functions associated with Bernoulli’s lemniscate

Muhammad Arif1, Sadaf Umar1, Mohsan Raza*2, Teodor Bulboacă3, Muhammad Umar Farooq1, Hasan Khan1

1Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan
2Department of Mathematics, Government College University, Faisalabad, Faisalabad, Pakistan
3Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania

Abstract

The aim of this paper is to find an upper bound of the fourth Hankel determinant $H_4(1)$ for a subclass of analytic functions associated with the right half of the Bernoulli’s lemniscate of the form $(x^2 + y^2)^2 - 2(x^2 - y^2) = 0$. The problem is also discussed for 2-fold and 3-fold symmetric functions. The key tools in the proof of our main results are the coefficient inequalities for class P of functions with positive real part.

Mathematics Subject Classification (2010). 30C45, 30C50

Keywords. starlike functions, differential subordination, Bernoulli’s lemniscate, Hankel determinants

1. Introduction

Let A denote the family of all functions f which are analytic in the open unit disc $U := \{z \in \mathbb{C} : |z| < 1\}$ and normalized by $f(0) = f'(0) - 1 = 0$. Therefore, each function $f \in A$ has a power series expansion of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in U. \quad (1.1)$$

Also, let S denote a subclass of A which contains the univalent functions.

If f and g are analytic functions in U, then we say that f is subordinate to g, denoted by $f \prec g$, if there exists an analytic function w in U with $w(0) = 0$ and $|w(z)| < |z|$ such that $f(z) = g(w(z))$. Moreover if the function g is univalent in U, then we have $f(z) \prec g(z) \iff f(0) = g(0)$ and $f(U) \subset g(U)$.

Consider the subclass $\mathcal{S} \mathcal{L}$ of A defined by

$$\mathcal{S} \mathcal{L} := \left\{ f \in A : \left| \left(\frac{zf'(z)}{f(z)} \right)^2 - 1 \right| < 1, \quad z \in U \right\}.$$
The geometrical interpretation of the fact $f \in \mathcal{SL}$ is that, for any $z \in \mathbb{U}$, the ratio $zf'(z) / f(z)$ lies in the region bounded by the right half side of the Bernoulli’s lemniscate by the inequality $|u^2 - 1| < 1$. We can easily see that a function $f \in \mathcal{A}$ belongs to the class \mathcal{SL}, if and only if

$$\frac{zf'(z)}{f(z)} < \sqrt{1 + z},$$ \hspace{1cm} (1.2)

where the square root function is considered at principal branch, that is

$$\sqrt{1 + z} \bigg|_{z=0} = 1.$$ \hspace{1cm} (1.3)

Remark that the class \mathcal{SL} was introduced by Sokól and Stankiewicz [21], and further studied by different authors in [2,11,17-20].

For a function $f \in \mathcal{A}$ of the form (1.1), the q-th Hankel determinant $H_q(n)$, with $q \geq 1$ and $n \geq 1$, was studied by Noonan and Thomas [14] and it is defined by

$$H_q(n) := \begin{vmatrix} a_n & a_{n+1} & \ldots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+q-1} & a_{n+q} & \ldots & a_{n+2q-2} \end{vmatrix}.$$

Remarks 1.1. (i) It is well-known that the Fekete-Szegö functional $|a_3 - a_2^2|$ is $H_2(1)$, and Fekete and Szegö [9] generalized the estimate as $|a_3 - \lambda a_2^2|$ with $\lambda \in \mathbb{R}$ and $f \in \mathcal{S}$.

(ii) Moreover, we also know that the functional $|a_2 a_4 - a_3^2|$ is in fact $H_2(2)$.

(iii) The sharp upper bound of the second Hankel determinant for the familiar classes of starlike and convex functions was studied by Janteng, Halim, and Darus [12]. Thus, for $f \in \mathcal{S}^*$ and $f \in \mathcal{C}$ they obtained that $|a_2 a_4 - a_3^2| \leq 1$ and $8 |a_2 a_4 - a_3^2| \leq 1$, respectively. For second Hankel determinant see also [8].

(iv) In 2010, Babalola [5] considered the third Hankel determinant $H_3(1)$ and obtained the upper bound of the well-known classes of bounded-turning, starlike, and convex functions. Later, in 2013 Raza and Malik [16] investigated the upper bound of $H_3(1)$ for the class \mathcal{SL}, and they obtained that $|H_3(1)| \leq \frac{43}{576}$.

(v) Recently Arif et al. [3,4] have investigated $H_4(1)$ for some subclasses of univalent functions.

In the present investigation, we determine the upper bound of $H_4(1)$ for the subclass \mathcal{SL} of analytic and normalized functions in \mathbb{U}. To prove our main results we need the following definition and lemmas.

We recall the class \mathcal{P} of analytic functions p of the form

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n, \ z \in \mathbb{U},$$ \hspace{1cm} (1.4)

with $\text{Re} p(z) > 0$ in \mathbb{U}. The class \mathcal{P} is known as the class of functions with positive real part.

It is well-known (see, for example, [6] or [10, p. 80]) that, if $p \in \mathcal{P}$ and has the form (1.4), then the following sharp coefficient estimates hold:

$$|c_n| \leq 2, \ n \in \mathbb{N}.$$ \hspace{1cm} (1.5)

Lemma 1.2. If $p \in \mathcal{P}$ and has the form (1.4), then

$$\left| c_2 - \frac{c_1^2}{2} \right| \leq 2 - \frac{|c_1^2|}{2},$$

where the above inequality is proved in [1].
Lemma 1.3. [7] If \(p \in \mathcal{P} \) and has the form (1.4), then
\[
|c_{n+k} - \mu c_n c_k| < 2 \text{ for } 0 \leq \mu \leq 1.
\]
This result is due to Ravichandran and Verma [15].

Lemma 1.4. If \(p \in \mathcal{P} \) and has the form (1.4), then
\[
|Jc_1^3 - Kc_1 c_2 + Lc_3| \leq 2 (|J| + |K - 2J| + |J - K + L|).
\]

Proof. It is easy to see that
\[
|Jc_1^3 - Kc_1 c_2 + Lc_3| = |J(c_3 - 2c_1 c_2 + c_1^3) + (K - 2J)(c_3 - c_1 c_2) + (J - K + L)c_3|
\leq |J||c_3 - 2c_1 c_2 + c_1^3| + |K - 2J||c_3 - c_1 c_2| + |J - K + L||c_3|
\leq 2 (|J| + |K - 2J| + |J - K + L|),
\]
where we have used the Lemma 1.3 for \(\mu = 1, n = 1, k = 2 \), and a result due to Libra and Zlotkiewicz [13].

Lemma 1.5. [16] If \(f \in \mathcal{S} \mathcal{L} \) and has the form (1.1), then
\[
|a_3 - a_2^2| \leq \frac{1}{4}.
\]

Lemma 1.6. If \(f \in \mathcal{S} \mathcal{L} \) and has the form (1.1), then
\[
|a_2| \leq \frac{1}{2}, \quad |a_3| \leq \frac{1}{4}, \quad |a_4| \leq \frac{1}{6}, \quad |a_5| \leq \frac{1}{8}.
\]
These estimates are sharp.

The first three bounds were obtained by Sokól [19] and the bound for \(|a_5| \) was proved in [15].

Lemma 1.7. If \(f \in \mathcal{S} \mathcal{L} \) and has the form (1.1), then
\[
|a_2 a_4 - a_3^2| \leq \frac{1}{16}.
\]
This result was found by Sokól [19].

2. Main results

Theorem 2.1. If \(f \in \mathcal{S} \mathcal{L} \) and of the form (1.1), then
\[
|a_3 a_5 - a_4^2| \leq 0.080574496.
\]

Proof. If \(f \in \mathcal{S} \mathcal{L} \), by using the subordination relation (1.2), it follows that
\[
\frac{zf'(z)}{f(z)} < \Phi(z), \quad (2.1)
\]
where \(\Phi(z) = \sqrt{1 + z} \) is considered at principal branch (1.3). From (2.1), there exists a function \(w \), analytic in the unit disk \(\mathbb{U} \), with \(|w(z)| \leq 1 \) in \(\mathbb{U} \), such that
\[
\frac{zf''(z)}{f'(z)} = \Phi(w(z)), \quad z \in \mathbb{U}. \quad (2.2)
\]

Thus, if we define the function \(p \) by
\[
p(z) := \frac{1 + w(z)}{1 - w(z)} = 1 + c_1 z + c_2 z^2 + \ldots, \quad z \in \mathbb{U}, \quad (2.3)
\]
it follows that \(p \in \mathcal{P} \) and
\[
w(z) = \frac{p(z) - 1}{p(z) + 1}, \quad z \in \mathbb{U}.
\]
From (2.2) and the above relation we obtain
\[\frac{zf'(z)}{f(z)} = \sqrt{\frac{2p(z)}{p(z) + 1}}, \quad z \in \mathbb{U}. \tag{2.4}\]

Now, according to the power series expansions (1.1) and (1.4), a simple computation shows that
\[\sqrt{\frac{2p(z)}{p(z) + 1}} = 1 + \frac{1}{4}c_1z + \left(\frac{1}{4}c_2 - \frac{5}{32}c_1^2\right)z^2 + \left(\frac{1}{4}c_3 - \frac{5}{16}c_1c_2 + \frac{13}{128}c_1^3\right)z^3 + \left(-\frac{141}{2048}c_1c_2 - \frac{39}{128}c_1^2c_2 - \frac{5}{32}c_2^2 + \frac{1}{4}c_4 - \frac{5}{16}c_1c_3\right)z^4 + \ldots, \tag{2.5}\]
and
\[zf'(z) = 1 + az + \left(2a_3 - a_2^2\right)z^2 + \left(3a_4 - 3a_2a_3 + a_2^3\right)z^3 + \ldots, \quad z \in \mathbb{U}. \tag{2.6}\]

By comparing (2.5) and (2.6), we have
\[a_2 = \frac{1}{4}c_1, \tag{2.7}\]
\[a_3 = \frac{1}{8}\left(c_2 - \frac{3}{8}c_1^2\right), \tag{2.8}\]
\[a_4 = \frac{1}{12}\left(c_3 - \frac{7}{8}c_1c_2 + \frac{13}{64}c_1^3\right), \tag{2.9}\]
\[a_5 = \left(-\frac{49}{6414c_1} + \frac{17}{384}c_1^2c_2 - \frac{11}{192}c_1c_3 - \frac{1}{32}c_2^2 + \frac{1}{16}c_4\right), \tag{2.10}\]
\[a_6 = -\frac{223}{7680}c_1^3c_2 - \frac{3}{80}c_1^2c_3 + \frac{77}{1920}c_1c_4 - \frac{3}{64}c_1c_4 - \frac{5}{96}c_2c_3 + \frac{181}{40960}c_1^5 + \frac{1}{20}c_5, \tag{2.11}\]
\[a_7 = \frac{323}{4608}c_1^2c_2c_3 - \frac{17}{384}c_2c_4 - \frac{19}{480}c_1c_5 - \frac{13}{576}c_2^3 + \frac{19}{1536}c_3^2 + \frac{1}{24}c_6 - \frac{32203}{11796480}c_1^6 - \frac{4717}{184320}c_1^3c_3 + \frac{33}{1024}c_1^2c_4 - \frac{7457}{18432}c_1^2c_2 - \frac{30211}{1474560}c_1^4c_2\tag{2.12}.

From (2.8), (2.9), and (2.10), we obtain
\[|a_3a_5 - a_4^2| = \left|\frac{89}{147456}c_2c_1^4 + \frac{31}{18432}c_1^2c_2^2 + \frac{23}{4608}c_2c_1c_3 - \frac{1}{256}c_2^2 + \frac{1}{128}c_2c_4 + \frac{103}{1179648}c_1^6 \right|.

Now, re-arranging the above equation, we have
\[|a_3a_5 - a_4^2| = \left|\frac{89}{589824}c_1^4 \left(c_2 - \frac{c_1^2}{2}\right) + \frac{27}{16384}c_2 \left(\frac{253}{486}c_1^2 - c_2\right) \left(c_2 - \frac{c_1^2}{2}\right)
- \frac{3}{9216}c_1c_3 \left(\frac{5}{92}c_1^2 - c_2\right) + \frac{1}{144}c_3 \left(\frac{23}{64}c_1c_2 - c_3\right)
- \frac{1}{256}c_2 \left(\frac{37}{64}c_1^2 - c_4\right) - \frac{1}{256}c_4 \left(\frac{3}{4}c_1^2 - c_2\right)\right|.

Applying the triangle inequality, Lemma 1.2, and Lemma 1.3, we have
\[|a_3a_5 - a_4^2| \leq \frac{103}{589824} |c_1|^4 \left(2 - \frac{|c_1|^2}{2}\right) + \frac{27}{4096} \left(2 - \frac{|c_1|^2}{2}\right) + \frac{23}{2304} |c_1| + \frac{17}{288}. \tag{2.13}\]
Taking $|c_1| = y \in [0,2]$ in (2.13), it gives
\[
|a_{3a5} - a_4^2| \leq \frac{103}{589824} y^4 \left(2 - \frac{y^2}{2} \right) + \frac{27}{4096} \left(2 - \frac{y^2}{2} \right) + \frac{23}{2304} y + \frac{17}{288}.
\] (2.14)

The above function gets its maximum value at $y = 1.573483035$, in (2.14), we have
\[
|a_{3a5} - a_4^2| \leq 0.080574496.
\]

Theorem 2.2. If $f \in SL$ and of the form (1.1), then
\[
|a_{3a4} - a_{2a5}| \leq \frac{173}{532224} \sqrt{39963} + \frac{1}{24} \approx 0.1066468.
\]

Proof. From (2.7), (2.8), (2.9), and (2.10), we have
\[
|a_{3a4} - a_{2a5}| = \left| -\frac{59}{49152} c_1^5 + \frac{17}{3072} c_1^3 c_2 - \frac{1}{96} c_1^2 c_2 + \frac{1}{64} c_1 c_3 - \frac{1}{96} c_2 c_3 \right|.
\]

Now applying the triangle inequality, Lemma 1.2, and Lemma 1.3, we have
\[
|a_{3a4} - a_{2a5}| \leq \frac{77}{61444} |c_1| \left(2 - \frac{|c_1|^2}{2} \right) + \frac{1}{24} + \frac{1}{32} |c_1|.
\] (2.15)

Let $|c_1| = y \in [0,2]$, then (2.15), becomes
\[
|a_{3a4} - a_{2a5}| \leq \frac{77}{12288} y \left(2 - \frac{y^2}{2} \right) + \frac{1}{24} + \frac{1}{32} y.
\]

The above function has its maximum value at $y = \frac{2}{231} \sqrt{39963}$. This implies that
\[
|a_{3a4} - a_{2a5}| \leq \frac{173}{532224} \sqrt{39963} + \frac{1}{24} \approx 0.1066468.
\]

Theorem 2.3. If $f \in SL$ and of the form (1.1), then
\[
|a_5 - a_{2a4}| \leq \frac{7}{16}.
\]

Proof. From (2.7), (2.9), and (2.10), we obtain
\[
|a_5 - a_{2a4}| = \left| -c_1 \left(\frac{25}{2048} c_1^3 - \frac{1}{16} c_1 c_2 + \frac{5}{64} c_3 \right) - \frac{1}{16} \left(\frac{c_2^2}{2} - c_4 \right) \right|.
\]

Now by using the triangle inequality, Lemma 1.3, and Lemma 1.4, we have
\[
|a_5 - a_{2a4}| \leq \frac{7}{16}.
\]

Theorem 2.4. If $f \in SL$ and of the form (1.1), then
\[
|a_4 - a_{2a3}| \leq \frac{1}{6}.
\]

This result is sharp for the function $f(z) = z \exp \left(\int_0^{\frac{1+t^2}{t}} \right) = z + \frac{1}{6} z^4 - \frac{1}{144} z^7 + \cdots$.
\textbf{Proof.} From (2.7), (2.8), and (2.9), we have
\[|a_4 - a_2a_3| = \left| \frac{11}{384}c_3^3 - \frac{5}{48}c_1c_2 + \frac{1}{12}c_3 \right|.\]
Using Lemma 1.4, we obtain
\[|a_4 - a_2a_3| \leq \frac{1}{6}. \quad \square\]

\textbf{Theorem 2.5.} If \(f \in \mathcal{S}_2\) and of the form (1.1), then
\[|a_3a_7 - a_4a_6| \leq \frac{125999}{589824}.\]

\textbf{Proof.} From (2.8), (2.9), (2.11), and (2.12), we have
\[\begin{align*}
|a_3a_7 - a_4a_6| &= \left| \frac{19}{12288}c_4^2 + \frac{4493}{83886080}c_8 - \frac{1}{240}c_3c_5 - \frac{17}{3072}c_2c_4 + \frac{7}{4608}c_2c_3 \\
&\quad + \frac{1}{192}c_2c_6 - \frac{1}{721}c_4c_2 - \frac{25}{9216}c_2c_3 + \frac{5}{5898240}c_1c_2 \\
&\quad + \frac{1}{31}c_3c_5 - \frac{127}{61440}c_2c_3 - \frac{1}{512}c_1c_6 + \frac{9799}{773}c_5c_3 - \frac{47}{3932160}c_4c_3 \\
&\quad + \frac{1}{184320}c_1c_2c_3 - \frac{1}{125}c_1c_2c_3 - \frac{331}{240}c_1c_2c_3 + \frac{11}{4096}c_2c_4 \\
&\quad + \frac{1}{256}c_1c_3c_4. \end{align*}\]
By re-arranging the above equation, we obtain
\[\begin{align*}
|a_3a_7 - a_4a_6| &= \left| \frac{241}{92160}c_2c_3 \left(\frac{299}{964}c_2c_1 - c_3 \right) + \frac{149}{24576}c_2^2 \left(\frac{299}{2235}c_3c_1 - c_4 \right) \\
&\quad - \frac{149}{49152}c_2^2 \left(\frac{4537}{47680}c_2^2 - c_4 \right) - \frac{1}{768}c_2(c_1c_5 - c_6) \\
&\quad + \frac{331}{1474560}c_1c_3 \left(\frac{2319}{2648}c_1c_2 - c_2 \right) - \frac{31}{30720}c_1c_3 \left(\frac{331}{1488}c_2c_3 - c_5 \right) \\
&\quad - \frac{141439}{188743680}c_1c_3 \left(\frac{40437}{288278}c_1c_2 - c_2 \right) \left(c_2 - \frac{c_3}{2} \right) + \frac{1}{240}c_3 \left(\frac{15}{16}c_1c_4 - c_5 \right) \\
&\quad - \frac{9619}{5242880}c_2^2 \left(\frac{169429}{173142}c_1c_2 - c_2 \right) \left(c_2 - \frac{c_3}{2} \right) + \frac{127}{30720}c_3 \left(\frac{15}{16}c_1c_4 - c_5 \right) \\
&\quad + \frac{41}{16384}c_1c_3 \left(\frac{47}{82}c_1c_2 - c_2 \right) \left(c_2 - \frac{c_3}{2} \right) + \frac{1}{256}c_6 \left(c_2 - \frac{c_3}{2} \right) \right|. \end{align*}\]
Applying the triangle inequality, Lemma 1.2, and Lemma 1.3, the above equation becomes
\[\begin{align*}
|a_3a_7 - a_4a_6| &\leq \frac{144139}{94371840}c_1^4 \left(2 - \frac{|c_1|^2}{2} \right) + \frac{96409}{1966080} \left(2 - \frac{|c_1|^2}{2} \right) \\
&\quad + \frac{215}{73728}c_1^3 + \frac{10649}{92160}. \quad (2.16) \end{align*}\]
Let \(|c_1| = y \in [0, 2]\), then (2.16) becomes
\[|a_3a_7 - a_4a_6| \leq \frac{144139}{94371840}y^4 \left(2 - \frac{y^2}{2} \right) + \frac{96409}{1966080} \left(2 - \frac{y^2}{2} \right) + \frac{215}{73728}y^3 + \frac{10649}{92160}.\]
Clearly, the above function is decreasing so by putting \(y = 2\), we have
\[|a_3a_7 - a_4a_6| \leq \frac{125999}{589824}.\]
Theorem 2.6. If \(f \in SL \) and of the form (1.1), then
\[
|a_4a_7 - a_5a_6| \leq 0.2210481986.
\]

Proof. From (2.9), (2.10), (2.11), and (2.12), it follows that
\[
|a_4a_7 - a_5a_6| = \left| -\frac{1}{2304} c_1 c_3 c_5 + \frac{83}{18432} c_1 c_2 c_3^2 - \frac{1}{2304} c_2 c_3 c_4 - \frac{7}{2304} c_1 c_2 c_6 \\
+ \frac{583}{73728} c_1^2 c_2 c_4 + \frac{669}{655360} c_3 c_4^2 + \frac{1}{112} c_5^2 - \frac{3}{18432} c_3 c_2^2 \\
- \frac{184320}{3} c_1 c_2 c_3^2 - \frac{184320}{c_2^2 c_4} - \frac{3}{1280} c_1 c_2 c_4 + \frac{737280}{46080} c_1 c_2^3 c_5 \\
+ \frac{3}{1024} c_1^3 c_4 - \frac{20131}{181939328} c_1^9 - \frac{1}{320} c_4 c_5 - \frac{1310720}{137} c_1^3 c_4 + \frac{259}{c_1 c_2^2} c_1^2 \\
- \frac{6912}{13} c_3^3 + \frac{18432}{5} c_1^4 c_5 + \frac{18432}{c_2^2 c_6} - \frac{1105920}{c_1^3 c_3^2} - 23592960 c_1^2 c_2 \\
+ \frac{439633}{4529848320} c_1^7 c_2 - \frac{3}{8192} c_1 c_2 c_3^2 - \frac{515}{4718592} c_1 c_3 + \frac{1}{288} c_3 c_6 \right|.
\]

This implies that
\[
|a_4a_7 - a_5a_6| = \left| \frac{18934}{11796480} c_1^2 c_3 \left(\frac{2575}{18934} c_1^2 - c_2 \right) \left(c_2 - \frac{c_1^2}{2} \right) \\
+ \frac{1}{3840} c_2 \left(\frac{2167}{256} c_3 c_2 - c_5 \right) \left(c_2 - \frac{c_1^2}{2} \right) + \frac{3}{1024} c_1 c_4 \\
+ \frac{3}{4096} c_1^2 c_3 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{13}{9216} c_1 \left(\frac{5}{13} c_1 c_5 - c_6 \right) \left(c_2 - \frac{c_1^2}{2} \right) \\
+ \frac{332519}{566231040} c_1^3 c_2 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{10739}{56623104} c_1^3 \left(c_2 - \frac{c_1^2}{2} \right) \\
+ \frac{3431}{2949120} c_1 c_4 \left(\frac{1233}{6862} c_1^2 - c_2 \right) \left(c_2 - \frac{c_1^2}{2} \right) \\
+ \frac{169489}{1132462080} c_1^5 \left(\frac{100655}{677956} c_1^2 - c_2 \right) \left(c_2 - \frac{c_1^2}{2} \right) + \frac{3}{640} c_3 c_4 \left(c_2 - \frac{c_1^2}{2} \right) \\
- \frac{1}{288} c_5 \left(\frac{13}{24} c_3^2 - c_6 \right) + \frac{793056}{283115520} c_1 c_2 - c_3 \\
+ \frac{59}{11520} c_2 c_3 \left(\frac{965}{944} c_1 c_4 - c_4 \right) + \frac{1}{320} c_5 \left(\frac{7}{12} c_2^2 - c_4 \right) \\
+ \frac{5}{3072} c_1 c_2 \left(\frac{413}{1600} c_2 c_4 - c_6 \right) - \frac{1}{2304} c_3 c_1 c_5 \right|.
\]

Using the triangle inequality, Lemma 1.2, and 1.3, we have
\[
|a_4a_7 - a_5a_6| \leq \frac{9467}{1474560} |c_1|^2 \left(2 - \frac{|c_1|^2}{2} \right) + \frac{15109}{368640} \left(2 - \frac{|c_1|^2}{2} \right) \\
+ \frac{322063}{35389440} |c_1| \left(2 - \frac{|c_1|^2}{2} \right) + \frac{323519}{141557760} |c_1|^3 \left(2 - \frac{|c_1|^2}{2} \right) \\
+ \frac{169489}{566231040} |c_1|^5 \left(2 - \frac{|c_1|^2}{2} \right) + \frac{23}{1152} |c_1| + \frac{20677}{184320}. \tag{2.17}
\]
Let \(|c_1| = y \in [0, 2]\), then (2.17) becomes

\[
|a_4a_7 - a_5a_6| \leq \frac{9467}{1474560}y^2 \left(2 - \frac{y^2}{2}\right) + \frac{15109}{368640} \left(2 - \frac{y^2}{2}\right) + \frac{322063}{3539440}y \left(2 - \frac{y^2}{2}\right)
+ \frac{323519}{14557760}y^3 \left(2 - \frac{y^2}{2}\right) + \frac{169489}{56621040}y^5 \left(2 - \frac{y^2}{2}\right) + \frac{23}{1152}y + \frac{20677}{184320}.
\]

As the above function attains its maximum value at \(y = 1.082047787\), so the above equation becomes

\[
|a_4a_7 - a_5a_6| \leq 0.2210481986.
\]

\(\square \)

Theorem 2.7. If \(f \in S_L\) and of the form (1.1), then

\[
|H_3(1)| \leq \frac{43}{576}.
\]

Proof. Since

\[
|H_3(1)| = \begin{vmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \\ a_3 & a_4 & a_5 \end{vmatrix} = |a_3| |a_2a_4 - a_3^2| + |a_4| |a_4 - a_2a_3| + |a_5| |a_3 - a_2^2|.
\]

Using Lemma 1.6, Lemma 1.5, and Lemma 1.7, we get

\[
|H_3(1)| \leq \frac{43}{576}.
\]

\(\square \)

Theorem 2.8. If \(f \in S_L\) and of the form (1.1), then

\[
|H_4(1)| \leq 0.06786551485.
\]

Proof. Since

\[
|H_4(1)| \leq |a_2a_4 - a_3^2| |a_3a_7 - a_4a_6| + |a_2a_3 - a_4| |a_4a_7 - a_5a_6|
+ |a_5| \left\{ |a_3| |a_3a_5 - a_2^2| + |a_5| |a_5 - a_2a_4| + |a_6| |a_4 - a_2a_3| \right\}
+ |a_4| \left\{ |a_4| |a_3a_5 - a_2^2| + |a_5| |a_2a_5 - a_3a_4| + |a_6| |a_2a_4 - a_3^2| \right\}.
\]

Using Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4, Theorem 2.7, Theorem 2.5, Theorem 2.6, and Lemma 1.6, we have

\[
|H_4(1)| \leq 0.06786551485.
\]

\(\square \)

3. **Bounds of \(|H_{4,1}(f)|\) for the sets \(SL^{(2)}\) and \(SL^{(3)}\)**

Let \(m \in \mathbb{N} = \{1, 2, \ldots\}\). A domain \(\Lambda\) is said to be \(m\)-fold symmetric if a rotation of \(\Lambda\) about the origin through an angle \(2\pi/m\) carries \(\Lambda\) on itself. It is easy to see that, an analytic function \(f\) is \(m\)-fold symmetric in \(\mathbb{U}\), if

\[
f \left(e^{2\pi i/m}z\right) = e^{2\pi i/m}f \left(z\right), \quad (z \in \mathbb{U}).
\]

By \(S^{(m)}\), we mean the set of \(m\)-fold univalent functions having the following Taylor series form

\[
f \left(z\right) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1}, \quad (z \in \mathbb{U}). \quad (3.1)
\]
The sub-family $SL^{(m)}$ of $S^{(m)}$ is the set of m-fold symmetric starlike functions associated with lemniscate of Bernoulli. More intuitively, an analytic function f of the form (3.1) belongs to the family $SL^{(m)}$, if and only if
\[
\frac{zf'(z)}{f(z)} = \sqrt{\frac{2p(z)}{p(z) + 1}} \text{ with } p \in \mathcal{P}^{(m)},
\]
where the set $\mathcal{P}^{(m)}$ is defined by
\[
\mathcal{P}^{(m)} = \left\{ p \in \mathcal{P} : p(z) = 1 + \sum_{k=1}^{\infty} c_{mk} z^{mk}, \ (z \in \mathbb{U}) \right\}.
\]

(3.2)

Now we can prove the following theorem.

Theorem 3.1. Let $f \in SL^{(2)}$ be of the form (3.1). Then
\[
|H_{4,1}(f)| \leq \frac{13}{3072}.
\]

Proof. Since $f \in SL^{(2)}$, therefore there exists a function $p \in \mathcal{P}^{(2)}$ such that
\[
\frac{zf'(z)}{f(z)} = \sqrt{\frac{2p(z)}{p(z) + 1}}.
\]
For $f \in SL^{(2)}$, using the series form (3.1) and (3.2) when $m = 2$, we can write
\[
a_3 = \frac{1}{8} c_2, \ a_5 = -\frac{1}{32} c_2^2 + \frac{1}{16} c_4, \ a_7 = \frac{19}{1536} c_2^3 - \frac{17}{384} c_4 c_2 + \frac{1}{24} c_6.
\]
It is clear that for $f \in SL^{(2)}$,
\[
H_{4,1}(f) := a_3 a_5 a_7 - a_3^3 a_7 + a_5^2 a_5^2 - a_5^3.
\]
Therefore
\[
H_{4,1}(f) = -\frac{4}{786432} \left(\frac{1}{4} c_2^2 - c_4 \right) \left(20 \left(\frac{7}{20} c_2^2 - c_4 \right) c_2^2 + \left(16 c_2 c_6 + 48 \left(c_2 c_6 - c_4^2 \right) \right) \right).
\]
Using Lemma 1.3 and the triangle inequality, we get
\[
|H_{4,1}(f)| \leq \frac{8}{786432} \left(160 + 64 + 192 \right) = \frac{13}{3072}.
\]
Hence the proof is complete.

Theorem 3.2. If $f \in SL^{(3)}$ be of the form (3.1), then
\[
|H_{4,1}(f)| \leq \frac{8}{3456}.
\]

Proof. Since $f \in SL^{(3)}$, therefore there exists a function $p \in \mathcal{P}^{(3)}$ such that
\[
\frac{zf'(z)}{f(z)} = \sqrt{\frac{2p(z)}{p(z) + 1}}.
\]
For $f \in SL^{(3)}$, using the series form (3.1) and (3.2) when $m = 3$, we can write
\[
a_4 = \frac{1}{12} c_3, \ a_7 = -\frac{13}{576} c_2^3 + \frac{1}{24} c_6.
\]
It is clear that for $f \in SL^{(3)}$,
\[
H_{4,1}(f) := -a_4^2 a_7 + a_4^4.
\]
Therefore
\[H_{4,1}(f) = \frac{17}{82944} c_3^4 - \frac{1}{3456} c_3^2 c_6 = -\frac{c_3^2}{3456} \left(c_6 - \frac{58752}{82944} c_3^2 \right). \]

Using Lemma 1.3 and triangle inequality, we get
\[|H_{4,1}(f)| \leq \frac{8}{3456}. \]

Hence the proof is complete. \(\square \)

References

[1] R.M. Ali, *Coefficients of the inverse of strongly starlike functions*, Bull. Malays. Math. Sci. Soc. 26 (1), 63–71, 2003.
[2] R.M. Ali, N.E. Cho, V. Ravichandran and S.S. Kumar, *First order differential subordination for functions associated with the lemniscate of Bernoulli*, Taiwanese J. Math. 16 (3), 1017–1026, 2012.
[3] M. Arif, L. Rani, M. Raza and P. Zaprawa, *Fourth Hankel determinant for a family of functions with bounded turning*, Bull. Korean Math. Soc. 55 (6), 1703-1711, 2018.
[4] M. Arif, L. Rani, M. Raza and P. Zaprawa, *Fourth Hankel determinant for a set of starlike function*, submitted.
[5] K.O. Babalola, *On $H_3(1)$ Hankel determinant for some classes of univalent functions*, Inequal. Theory Appl. 6, 1–7, 2007.
[6] C. Carathéodory, *Über den variabilitätsbereich der koeffizienten von potenzreihen die gegebene werte nicht annehmen*, Math. Ann. 64, 95–115, 1907.
[7] C. Carathéodory, *Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen*, Rend. Circ. Mat. Palermo, 32, 193–127, 1911.
[8] E. Deniz and L. Budak, *Second Hankel determinat for certain analytic functions satisfying subordinate condition*, Math. Slovaca, 68 (2), 463–471, 2018.
[9] M. Fekete and G. Szegö, *Eine bemerkung über ungerade schlichte funktionen*, J. London Math. Soc. 8, 85–89, 1933.
[10] A.W. Goodman, Univalent Functions, Mariner Publications, Tampa, FLorida, 1983.
[11] S.A. Halim and R. Omar, *Applications of certain functions associated with lemniscate Bernoulli*, J. Indones. Math. Soc. 18 (2), 93–99, 2012.
[12] A. Janteng, S.A. Halim and M. Darus, *Hankel determinant for starlike and convex functions*, Int. J. Math. Anal. 1 (13), 619–625, 2007.
[13] R.J. Libera and E.J. Zlotkiewicz, *Early coefficients of the inverse of a regular convex function*, Proc. Amer. Math. Soc. 85, 225–230, 1982.
[14] J.W. Noonan and D.K. Thomas, *On second Hankel determinant of a really mean p-valent functions*, Trans. Amer. Math. Soc. 223 (2), 337–346, 1976.
[15] V. Ravichandran and S. Verma, *Bound for the fifth coefficient of certain starlike functions*, C. R. Math. Acad. Sci. Paris, 353 (6), 505–510, 2015.
[16] M. Raza and S.N. Malik, *Upper bound of the third Hankel determinant for a class of analytic functions related with the lemniscate of Bernoulli*, J. Inequal. Appl. (2013), art. 412, 2013.
[17] J. Sokół, *On application of certain sufficient condition for starlikeness*, J. Math. Appl. 30, 40–53, 2008.
[18] J. Sokół, *Radius problem in the class SL^**, Appl. Math. Comput. 214, 569–573, 2009.
[19] J. Sokół, *Coefficient estimates in a class of strongly starlike functions*, Kyungpook Math. J. 49, 349–353, 2009.
[20] J. Sokół and D.K. Thomas, *Further results on a class of starlike functions related to the Bernoulli lemniscate*, Houston J. Math. 44, 83–95, 2018.
[21] J. Sokól and J. Stankiewicz, *Radius of convexity of some subclasses of strongly starlike functions*, Folia Scient. Univ. Tech. Resoviensis, **147**, 101–105, 1996.