Combining Independent Modules to Solve Multiple-choice Synonym and Analogy Problems

Peter D. Turney
Inst. of Information Tech.
National Research Council of Canada
Ont., Canada, K1A 0R6
peter.turney@nrc.ca

Jeffrey Bigham
Dept. of Computer Science
Princeton University
Princeton, NJ 08544
jbigham@cs.princeton.edu

Michael L. Littman
Dept. of Computer Science
Rutgers University
Piscataway, NJ 08854-8019
mlittman@cs.rutgers.edu

Abstract
Existing statistical approaches to natural language problems are very coarse approximations to the true complexity of language processing. As such, no single technique will be best for all problem instances. Many researchers are examining ensemble methods that combine the output of successful, separately developed modules to create more accurate solutions. This paper examines three merging rules for combining probability distributions: the well known mixture rule, the logarithmic rule, and a novel product rule. These rules were applied with state-of-the-art results to two problems commonly used to assess human mastery of lexical semantics—synonym questions and analogy questions. All three merging rules result in ensembles that are more accurate than any of their component modules. The differences among the three rules are not statistically significant, but it is suggestive that the popular mixture rule is not the best rule for either of the two problems.

1 Introduction
Asked to articulate the relationship between the words broad and road, you might consider a number of possibilities. Orthographically, the second can be derived from the first by deleting the initial letter, while semantically, the first can modify the second to indicate above-average width. Many possible relationships would need to be considered, depending on the context. In addition, many different computational approaches could be brought to bear, leaving a designer of a natural language processing system with some difficult choices. A sound software engineering approach is to develop separate modules using independent strategies, then to combine the output of the modules to produce a unified solver.

The concrete problem treated here is predicting the correct answers to multiple-choice questions. Each instance consists of a context and a finite set of choices, one of which is correct. Modules produce a probability distribution over the choices and a merging rule is used to combine these distributions into one. This distribution, along with relevant utilities, can then be used to select a candidate answer from the set of choices. The merging rules we considered are parameterized, and we set parameters by a maximum likelihood approach on a collection of training instances.

Many problems can be cast in a multiple-choice framework, including optical digit recognition (choices are the 10 digits), word sense disambiguation (choices are a word’s possible senses), text categorization (choices are the classes), and part-of-speech tagging (choices are the grammatical categories). This paper looks at multiple-choice synonym questions (part of the Test of English as a Foreign Language) and multiple-choice verbal analogy questions (part of the SAT1). Recent work has demonstrated that algorithms for solving multiple-choice synonym questions can be used to determine the semantic orientation of a word; that is, whether the word conveys praise or criticism [Turney and Littman in press, 2003]. Other research has shown that algorithms for solving multiple-choice verbal analogy questions can be used to determine the semantic relation in a noun-modifier expression; for example, in the noun-modifier expression “laser printer”, the

1The College Board has announced that analogies will be eliminated from the SAT in 2005 (http://www.collegeboard.com/about/newsat/newsat.html) as part of a shift in the exam to reflect changes in the curriculum. The SAT was introduced as the Scholastic Aptitude Test in 1926, its name was changed to Scholastic Assessment Test in 1993, then changed to simply SAT in 1997.
The paper offers two main contributions. First, it introduces and evaluates several new modules for answering multiple-choice synonym questions and verbal analogy questions; these may be useful for solving problems in lexical semantics such as determining semantic orientation and semantic relations. Second, it presents a novel product rule for combining module outputs and compares it with other similar merging rules.

Section 2 formalizes the problem addressed in this paper and introduces the three merging rules we study in detail: the mixture rule, the logarithmic rule, and the product rule. Section 3 presents empirical results on synonym and analogy problems. Section 4 summarizes and wraps up.

2 Module Combination

The following synonym question is a typical multiple-choice question: hidden:: (a) laughable, (b) veiled, (c) ancient, (d) revealed. The stem, hidden, is the question. There are 4 choices, and the question writer asserts that exactly one (in this case, (b)) has the same meaning as the stem word. The accuracy of a solver is measured by its fraction of correct answers on a set of testing instances.

In our setup, knowledge about the multiple-choice task is encapsulated in a set of n modules, each of which can take a question instance and return a probability distribution over the k choices. For a synonym task, one module might be a statistical approach that makes judgments based on analyses of word co-occurrence, while another might use a thesaurus to identify promising candidates. These modules are applied to a training set of m instances, producing probabilistic “forecasts”: \(p_{ij}^h \geq 0 \) represents the probability assigned by module 1 \(\leq i \leq n \) to choice 1 \(\leq j \leq k \) on training instance 1 \(\leq h \leq m \). The estimated probabilities are distributions of the choices for each module \(i \) on each instance \(h \): \(\sum_j p_{ij}^h = 1 \).

2.1 Merging Rules

The merging rules we considered are parameterized by a set of weights \(w_i \), one for each module. For a given merging rule, a setting of the weight vector \(w \) induces a probability distribution over the choices for any instance. Let \(D_{j}^{h,w} \) be the probability assigned by the merging rule to choice \(j \) of training instance \(h \) when the weights are set to \(w \). Let \(1 \leq a(h) \leq k \) be the correct answer for instance \(h \). We set weights to maximize the likelihood of the training data: \(w = \arg\max_w \prod_h D_{a(h)}^{h,w} \). The same weights maximize the mean likelihood, the geometric mean of the probabilities assigned to correct answers.

We focus on three merging rules in this paper. The mixture rule combines module outputs using a weighted sum and can be written \(M_j^{h,w} = \sum_i w_i p_{ij}^h \), where

\[
D_{j}^{h,w} = \frac{M_j^{h,w}}{\sum_j M_j^{h,w}}
\]

is the probability assigned to choice \(j \) of instance \(h \) and \(0 \leq w_i \leq 1 \). The rule can be justified by assuming each instance’s answer is generated by a single module chosen via the distribution \(w_i / \sum_i w_i \).

The logarithmic rule combines the logarithm of module outputs by \(L_j^{h,w} = \exp(\sum_i w_i \ln p_{ij}^h) = \prod_i (p_{ij}^h)^{w_i} \), where

\[
D_{j}^{h,w} = \frac{L_j^{h,w}}{\sum_j L_j^{h,w}}
\]

is the probability the rule assigns to choice \(j \) of instance \(h \). The weight \(w_i \) indicates how to scale the module probabilities before they are combined multiplicatively. Note that modules that output zero probabilities must be modified before this rule can be used.

The product rule can be written in the form \(P_j^{h,w} = \prod_i (w_i p_{ij}^h + (1 - w_i)/k) \), where

\[
D_{j}^{h,w} = \frac{P_j^{h,w}}{\sum_j P_j^{h,w}}
\]

is the probability the rule assigns to choice \(j \). The weight \(0 \leq w_i \leq 1 \) indicates how module \(i \)'s output should be mixed with a uniform distribution (or a prior, more generally) before outputs are combined multiplicatively. As with the mixture and logarithmic rules, a module with a weight of zero has no influence on the final assignment of probabilities. Note that the product and logarithmic rules coincide when weights are all zeroes and ones, but differ in how distributions are scaled for intermediate weights. We do not have strong evidence that the difference is empirically significant.
2.2 Derivation of Product Rule

In this section, we provide a justification for combining distributions multiplicatively, as in both the product and logarithmic rules. Our analysis assumes modules are calibrated and independent. The output of a calibrated module can be treated as a valid probability distribution—for example, of all the times the module outputs 0.8 for a choice, 80% of these should be correct. Note that a uniform distribution—the output of any module when its weight is zero for both rules—is guaranteed to be calibrated because the output is always 1/k and 1/k of these will be correct. Modules are independent if their outputs are independent given the correct answer. We next argue that our parameterization of the product rule can compensate for a lack of calibration and independence.

Use of Weights. First, module weights can improve the calibration of the module outputs. Consider a module i that assigns a probability of 1 to its best guess and 0 to the other three choices. If the module is correct 85% of the time, setting $w_i = 0.8$ in the product rule results in adjusting the output of the module to be 85% for its best guess and 5% for each of the lesser choices. This output is properly calibrated and also maximizes the likelihood of the data.\(^2\)

Second, consider the situation of two modules with identical outputs. Unless they are perfectly accurate, such modules are not independent and combining their outputs multiplicatively results in “double counting” the evidence. However, assigning either module a weight of zero renders the modules independent. Once again, such a setting of the weights maximizes the likelihood of the data.

Multiplicative Combination. We now argue that independent, calibrated modules should be combined multiplicatively. Let A^h be the random variable representing the correct answer to instance h. Let $p^h_i = (p^h_{i1}, \ldots, p^h_{ik})$ be the output vector of module i on instance h. We would like to compute the probability the correct answer is j given the module outputs, $Pr(A^h = j | p^h_1, \ldots, p^h_n)$, which we can rewrite with Bayes rule as

$$Pr(p^h_1, \ldots, p^h_n | A^h = j) Pr(A^h = j).$$

Assuming independence, and using Z as a normalization factor, Expression (1) can be decomposed into

$$Pr(p^h_1 | A^h = j) \cdots Pr(p^h_n | A^h = j) Pr(A^h = j).$$

Applying Bayes rule to the individual factors, we get

$$Pr(A^h = j | p^h_i) \cdots Pr(A^h = j | p^h_n)$$

by collecting constant factors into the normalization factor Z^i. Using the calibration assumption $Pr(A^h = j | p^h_i) = p^h_{ij}$, Expression (2) simplifies to $\prod_i p^h_{ij} / Pr(A^h = j)^{n-1} Z^i$. Finally, we precisely recover the unweighted product rule using a final assumption of uniform priors on the choices, $Pr(A^h = j) = 1/k$, which is a natural assumption for standardized tests.

2.3 Weight Optimization

For the experiments reported here, we adopted a straightforward approach to finding the weight vector w that maximizes the likelihood of the data. The weight optimizer reads in the output of the modules\(^3\), chooses a random starting point for the weights, then hillclimbs using an approximation of the partial derivative. The entire optimization procedure is repeated 10 times from a new random starting point to minimize the influence of local minima. Although more sophisticated optimization algorithms are well known, we found that the simple discrete gradient approach worked well for our application.

2.4 Related Work

Merging rules of various sorts have been studied for many years, and have gained prominence recently for natural language applications.

Use of the mixture rule and its variations is quite common. Recent examples include the work of Brill and Wu \cite{Brill:98} on part-of-speech tagging, Littman et al. \cite{Littman:02} on crossword-puzzle clues and Florian and Yarowsky \cite{Florian:02} on a word-sense

\(^2\)The logarithmic rule can also calibrate this module, as long as its output is renormalized after adding a small constant, say, $\varepsilon = 0.00001$, to avoid logarithms of $-\infty$. In this case, $w_i \approx 0.461$ works, although the appropriate weight varies with ε.

\(^3\)For the reasons suggested in the previous footnote, for each question and module, the optimizer adds 0.00001 to each output and renormalizes the distribution (scales it to add to one). We found this necessary for both the logarithmic and mixture rules, but not the product rule. Parameters were set by informal experimentation, but the results did not seem to be sensitive to their exact values.
disambiguation task. In all of these cases, the authors found that the merged output was a significant improvement on that of the powerful independently engineered component modules. We use the name “mixture rule” by analogy to the mixture of experts model (Jacobs et al. 1991), which combined expert opinions in an analogous way. In the forecasting literature, this rule is also known as the linear opinion pool; Jacobs (1995) provides a summary of the theory and applications of the mixture rule in this setting.

The logarithmic opinion pool of Heskes (1998) is the basis for our logarithmic rule. The paper argued that its form can be justified as an optimal way to minimize Kullback-Leibler divergence between the output of an ensemble of adaptive experts and target outputs. Boosting (Schapire 1999) also uses a logistic-regression-like rule to combine outputs of simple modules to perform state-of-the-art classification. The product of experts approach also combines distributions multiplicatively, and Hinton (1999) argues that this is an improvement over the “vaguer” probability judgments commonly resulting from the mixture rule. A survey by Xu et al. (1992) includes the equal-weights version of the mixture rule and a derivation of the unweighted product rule.

An important contribution of the current work is the product rule, which shares the simplicity of the mixture rule and the probabilistic justification of the logarithmic rule. We have not seen an analog of this rule in the forecasting or learning literatures.

3 Experimental Results

We applied the three merging rules to synonym and analogy problems, as described next.

3.1 Synonyms

We constructed a training set of 431 4-choice synonym questions and randomly divided them into 331 training questions and 100 testing questions. We created four modules, described next, and ran each module on the training set. We used the results to set the weights for the mixture, logarithmic, and product rules and evaluated the resulting synonym solver on the test set.

Module outputs, where applicable, were normalized to form a probability distribution by scaling them to add to one before merging.

LSA. Following Landauer and Dumais (1997), we used latent semantic analysis to recognize synonyms. Our LSA module queried the web interface developed at the University of Colorado (http://lsa.colorado.edu), which has a 300-dimensional vector representation for each of tens of thousands of words. The similarity of two words is measured by the cosine of the angle between their corresponding vectors.

PMI-IR. Our Pointwise Mutual Information–Information Retrieval module used the AltaVista search engine to determine the number of web pages that contain the choice and stem in close proximity. PMI-IR used the third scoring method (near each other, but not near not) designed by Turney (2001), since it performed best in this earlier study.

Thesaurus. Our Thesaurus module also used the web to measure stem–choice similarity. The module queried the Wordsmyth thesaurus online at www.wordsmyth.net and collected any words listed in the “Similar Words”, “Synonyms”, “Crossref. Syn.”, and “Related Words” fields. The module created synonym lists for the stem and for each choice, then scored them according to their overlap.

Connector. Our Connector module used summary pages from querying Google (google.com) with pairs of words to estimate stem–choice similarity (20 summaries for each query). It assigned a score to a pair of words by taking a weighted sum of both the number of times they appear separated by one of the symbols [, ”, ::, =, /, \, (,], means, defined, equals, synonym, whitespace, and and and the number of times dictionary or thesaurus appear anywhere in the Google summaries.

Results. Table I presents the result of training and testing each of the four modules on synonym problems. The first four lines list the accuracy and mean likelihood obtained using each module individually (using the product rule to set the individual weight). The highest accuracy is that of the Thesaurus module at 69.6%. All three merging rules were able to leverage the combination of the modules to improve performance to roughly 80%—statistically significantly better.
Table 1: Comparison of results for merging rules on synonym problems.

Synonym Solvers	Accuracy	Mean likelihood
LSA only	43.8%	.2669
PMI-IR only	69.0%	.2561
Thesaurus only	69.6%	.5399
Connector only	64.2%	.3757
All: mixture	80.2%	.5439
All: logarithmic	82.0%	.5977
All: product	80.0%	.5889

Table 2: Published TOEFL synonym results. Confidence intervals computed via exact binomial distributions.

Reference	Accuracy	95% confidence
L & D (1997)	64.40%	52.90–74.80%
non-native speakers	64.50%	53.01–74.88%
Turney (2001)	73.75%	62.71–82.96%
J & S (2002)	78.75%	68.17–87.11%
T & C (2003)	81.25%	70.97–89.11%
Product rule	97.50%	91.26–99.70%

Related Work and Discussion.

Landauer and Dumais (1997) introduced the Test of English as a Foreign Language (TOEFL) synonym task as a way of assessing the accuracy of a learned representation of lexical semantics. Several studies have since used the same data set for direct comparability; Table 2 presents these results.

The accuracy of LSA (Landauer and Dumais 1997) is statistically indistinguishable from that of a population of non-native English speakers on the same questions. PMI-IR (Turney 2001) performed better, but the difference is not statistically significant. Jarmasz and Szpakowicz (in press, 2003) give results for a number of relatively sophisticated thesaurus-based methods that looked at path length between words in the heading classifications of Roget’s Thesaurus. Their best scoring method was a statistically significant improvement over the LSA results, but not over those of PMI-IR. Terra and Clarke (2003) studied a variety of corpus-based similarity metrics and measures of context and achieved a statistical tie with PMI-IR and the results from Roget’s Thesaurus.

To compare directly to these results, we removed the 80 TOEFL instances from our collection and used the other 351 instances for training the product rule. Unlike the previous studies, we used training data to set the parameters of our method instead of selecting the best scoring method post hoc. The resulting accuracy was statistically significantly better than all previously published results, even though the individual modules performed nearly identically to their published counterparts. In addition, it is not possible to do significantly better than the product rule on this dataset, according to the Fisher Exact test. This means that the TOEFL test set is a “solved” problem—future studies along these lines will need to use a more challenging set of questions to show an improvement over our results.

3.2 Analogies

Synonym questions are unique because of the existence of thesauri—reference books designed precisely to answer queries of this form. The relationships exemplified in analogy questions are quite a bit more varied and are not systematically compiled. For example, the analogy question *cat:meow:* (a) *mouse:scamper*, (b) *bird:peck*, (c) *dog:bark*, (d) *horse:groom*, (e) *lion:scratch* requires that the reader recognize that (c) is the answer because both (c) and the stem are examples of the relation “X is the name of the sound made by Y”. This type of common sense knowledge is
rarely explicitly documented.

In addition to the computational challenge they present, analogical reasoning is recognized as an important component in cognition, including language comprehension [Lakoff and Johnson 1980] and high level perception [Chalmers et al. 1992]. French (2002) surveys computational approaches to analogy making.

To study module merging for analogy problems, we collected 374 5-choice instances. We randomly split the collection into 274 training instances and 100 testing instances.

We next describe the novel modules we developed for attacking analogy problems and present their results.

Phrase Vectors. We wish to score candidate analogies of the form $A:B::C:D$ (A is to B as C is to D). The quality of a candidate analogy depends on the similarity of the relation R_1 between A and B to the relation R_2 between C and D. The relations R_1 and R_2 are not given to us; the task is to infer these relations automatically. One approach to this task is to create vectors r_1 and r_2 that represent features of R_1 and R_2, and then measure the similarity of R_1 and R_2 by the cosine of the angle between the vectors: $\cos(\theta) = \frac{r_1 \cdot r_2}{\|r_1\| \|r_2\|}$.

We create a vector, r, to characterize the relationship between two words, X and Y, by counting the frequencies of 128 different short phrases containing X and Y. Phrases include “X for Y”, “Y with X”, “X in the Y”, and “Y on X”. We use these phrases as queries to AltaVista and record the number of hits (matching web pages) for each query. This process yields a vector of 128 numbers for a pair of words X and Y. In experiments with our development set, we found that accuracy of this approach to scoring analogies improves when we use the logarithm of the frequency. The resulting vector r is a kind of signature of the relationship between X and Y.

For example, consider the analogy traffic:street::water:riverbed. The words traffic and street tend to appear together in phrases such as “traffic in the street” and “street with traffic”, but not in phrases such as “street on traffic” or “traffic for street”. Similarly, water and riverbed may appear together as “water in the riverbed”, but “riverbed on water” would be uncommon. Therefore, the cosine of the angle between the 128-vector r_1 for traffic:street and the 128-vector r_2 for water:riverbed would likely be relatively large.

Thesaurus Paths. Another way to characterize the semantic relationship, R, between two words, X and Y, is to find a path through a thesaurus or dictionary that connects X to Y or Y to X.

In our experiments, we used the WordNet thesaurus [Fellbaum 1998]. We view WordNet as a directed graph and the Thesaurus Paths module performed a breadth-first search for paths from X to Y or Y to X. The directed graph has six kinds of links, hypernym, hyponym, synonym, antonym, stem, and gloss. For a given pair of words, X and Y, the module considers all shortest paths in either direction up to three links. It scores the candidate analogy by the maximum degree of similarity between any path for A and B and any path for C and D. The degree of similarity between paths is measured by their number of shared features: types of links, direction of the links, and shared words.

For example, consider the analogy defined by evaporate:vapor::petrify:stone. The most similar pair of paths is: evaporate → (gloss: change into a vapor) vapor and petrify → (gloss: change into stone) stone. These paths go in the same direction (from first to second word), they have the same type of links (gloss links), and they share words (change and into). Thus, this pairing would likely receive a high score.

Lexical Relation Modules. We implemented a set of more specific modules using the WordNet thesaurus. Each module checks if the stem words match a particular relationship in the database. If they do not, the module returns the uniform distribution. Otherwise, it checks each choice pair and eliminates those that do not match. The relations tested are: Synonym, Antonym, Hypernym, Hyponym, Meronym:substance, Meronym:part, Meronym:member, Holonym:substance, and also Holonym:member. These modules use some heuristics including a simple kind of lemmatization and synonym expansion to make matching more robust.

Similarity. Dictionaries are a natural source to use for solving analogies because definitions can express many possible relationships and are
Table 3: Comparison of results for merging rules on analogy problems.

Analogy Solvers	Accuracy	Likelihood
Phrase Vectors	38.2%	.2285
Thesaurus Paths	25.0%	.1977
Synonym	20.7%	.1890
Antonym	24.0%	.2142
Hypernym	22.7%	.1956
Hyponym	24.9%	.2030
Meronym:substance	20.0%	.2000
Meronym:part	20.8%	.2000
Meronym:member	20.0%	.2000
Holonym:substance	20.0%	.2000
Holonym:member	20.0%	.2000
Similarity:dict	18.0%	.2000
Similarity:wordsmyth	29.4%	.2058
all: mixture	42.0%	.2370
all: logarithmic	43.0%	.2354
all: product	45.0%	.2512
no PV: mixture	31.0%	.2135
no PV: logarithmic	30.0%	.2063
no PV: product	37.0%	.2207

We once again examined the result of deducting 1/2 point for each wrong answer. The full set of modules scored 31, 33, and 43 using the mixture, logarithmic, and product rules. As in the synonym problems, the logarithmic and product rules assigned probabilities more precisely. In this case, the product rule appears to have a major advantage, although this might be due to the particulars of the modules we used in this test.

The TOEFL synonym problems proved fruitful in spurring research into computational approaches to lexical semantics. We believe attacking analogy problems could serve the research community even better, and have created a set of 100 previously published SAT analogy problems [Claman 2000]. Our best analogy solver from the previous experiment has an accuracy of 55.0% on this test set. We hope to inspire others to use the same set of instances in future work.

4 Conclusion

We applied three trained merging rules to a set of multiple-choice problems and found all were able to produce state-of-the-art performance on a standardized synonym task by combining four less accurate modules. Although all three rules produced comparable accuracy, the popular mixture rule was consistently weaker than the logarithmic and product rules at assigning high probabilities to correct answers. We provided first results on a challenging verbal analogy task with a set of novel modules that use both lexical databases and statistical information.

In nearly all the tests that we ran, the logarithmic rule and our novel product rule behaved similarly, with a hint of an advantage for the product rule. One point in favor of the logarithmic rule is that it has been better studied so its theoretical properties are better understood. It also is able to “sharpen” probability distributions, which the product rule cannot do without removing the upper bound on weights. On the other hand,

7Although less accurate than our synonym solver, the analogy solver is similar in that it excludes 3 of the 5 choices for each instance, on average, while the synonym solver excludes roughly 3 of the 4 choices for each instance. Note also that an accuracy of 55% approximately corresponds to the mean verbal SAT score for college-bound seniors in 2002 [Turney and Littman 2003].
the product rule is simpler, executes much more rapidly (8 times faster in our experiments), and is more robust in the face of modules returning zero probabilities. We feel the strong showing of the product rule on lexical multiple-choice problems proves it worthy of further study.

Acknowledgments

The research was supported in part by a grant from NASA. We'd like to thank the students and TAs of Princeton’s COS302 in 2001 for their pioneering efforts in solving analogy problems; Douglas Corey Campbell, Brandon Braunstein, and Paul Simbi, who provided the first version of our Thesaurus module; Yann LeCun for scanning help, and Haym Hirsh, Philip Resnik, Rob Schapire, Matthew Stone, and Kagan Tumer who served as sounding boards on the topic of module merging.

References

Eric Brill and Jun Wu. Classifier combination for improved lexical disambiguation. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, volume 1, pages 191–195, 1998.

David J. Chalmers, Robert M. French, and Douglas R. Hofstadter. High-level perception, representation, and analogy: a critique of artificial intelligence methodology. Journal of Experimental and Theoretical Artificial Intelligence, 4:185–211, 1992.

Cathy Claman. 10 Real SATs. College Entrance Examination Board, 2000.

Christianne Fellbaum. WordNet: An Electronic Lexical Database. The MIT Press, 1998.

Radu Florian and David Yarowsky. Modeling consensus: Classifier combination for word sense disambiguation. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), pages 25–32, 2002.

Robert M. French. The computational modeling of analogy-making. Trends in Cognitive Sciences, 6(5):200–205, 2002.

Tom Heskes. Selecting weighting factors in logarithmic opinion pools. In Advances in Neural Information Processing Systems, 10, pages 266–272, 1998.

Geoffrey E. Hinton. Products of experts. In Proceedings of the Ninth International Conference on Artificial Neural Networks (ICANN 99), volume 1, pages 1–6, 1999.

Robert A. Jacobs. Methods for combining experts’ probability assessments. Neural Computation, 7(5):867–888, 1995.

Robert A. Jacobs, Michael I. Jordan, Steve J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures of experts. Neural Computation, 3:79–87, 1991.

Mario Jarmasz and Stan Szpakowicz. Roget’s thesaurus and semantic similarity. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP-03), in press, 2003.

George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago Press, 1980.

Thomas K. Landauer and Susan T. Dumais. A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104(2):211–240, 1997.

Michael L. Littman, Greg A. Keim, and Noam Shazeer. A probabilistic approach to solving crossword puzzles. Artificial Intelligence, 134(1–2):23–55, 2002.

Robert E. Schapire. A brief introduction to boosting. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pages 1401–1406, 1999.

Egidio Terra and C. L. A. Clarke. Frequency estimates for statistical word similarity measures. In Proceedings of the Human Language Technology and North American Chapter of Association of Computational Linguistics Conference 2003 (HLT/NAACL 2003), pages 244–251, 2003.

Peter D. Turney. Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In Proceedings of the Twelfth European Conference on Machine Learning (ECML-2001), pages 491–502, 2001.

Peter D. Turney and Michael L. Littman. Learning analogies and semantic relations. Technical Report ERB-1103, National Research Council, Institute for Information Technology, 2003.

Peter D. Turney and Michael L. Littman. Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems, in press, 2003.

Lei Xu, Adam Krzyzak, and Ching Y. Suen. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man and Cybernetics, 22(3):418–435, 1992.