1.1 Introduction

Materials whose dimensions are in nanoscale generally taken as being 100 nm or less are called nanomaterials. One millimetre is called as millimetre. They are existing in different forms like rod, fibres, particles, tubes etc. chemical composition in bulk form may have different physico-chemical properties compared to the same in nanoscale. i.e. The properties and functions of nanomaterials are totally different to that of in bulk. The nanomaterials are having interesting optical, magnetic and electrical properties which are having significant effects in the fields of electronic medicine. Nanomaterials have been found naturally as well as...
in engineered commercial products like cosmetics, sunscreen materials and some sports goods (Jacobs et al. 2010).

1.1.1 Classifications of Nanomaterials

Based on the composition, nanomaterials are classified as inorganic metal, metal oxide, organic and carbon-based nanomaterials. Metals and metal oxide nanoparticles were obtained from metals like copper (Cu), Cobalt (Co), iron (Fe), Zinc (Zn) etc. (Chavali and Nikolova 2019). These nanoparticles have been prepared with different shapes, surface area and densities which are reflected into their mechanical, electrical, and other properties. Further the efficiency and reactivity of metal nanoparticles may be enhanced by preparation of respective nano sized metal oxide. Some of nano sized organic biocompatible polymer materials have reported for drug delivery applications because of their nontoxicity (Ali and Ahmed 2018). At present carbon-based nano particles like graphene, reduced graphene, carbon nanotube (CNT) have been reported for biomedical applications (Jeong et al. 2018).

1.1.2 Different Methods Used for Preparation for Nanomaterials

(a) **Sol-gel method**

In the sol-gel technique, nanoparticles have obtained through the generation of colloidal suspension followed by gelation. Generally, metals or metalloid elements with various active ligands have been used as a precursor for the preparation of the colloids (Zeng et al. 2016). Initially, the precursor is reacted to generate dispersible oxide and it gives a sol in the presence of water or dilute acid. Later on, the sol has kept on evaporation to yield gel in which the size and shape of particles are controlled to form. Finally, the obtained gel is kept for calcination at various temperature which produces metal oxide nanoparticles. The final size and shape of the nanoparticles may be varied with calcination temperature ranges.

We can explain these techniques by taking preparation of SiO$_2$ nanoparticles in which Si(OEt)$_4$ (tetraethyl orthosilicate, or TEOS) (Azlina et al. 2016). Has taken as precursor. The sol-gel technique involves hydrolysis followed by condensation of metal alkoxides which has explained as below:

\[
\text{MOR} + \text{H}_2\text{O} \rightarrow \text{MOH} + \text{ROH} \quad \text{(hydrolysis)}
\]

\[
\text{MOH} + \text{ROM} \rightarrow \text{M O} \quad \text{M} + \text{ROH} \quad \text{(condensation)}
\]
(b) Gas Phase synthesis of nanomaterials
This synthetic method allowing a simple way to prepare nanomaterials with specific size and chemical composition. It is noteworthy to discuss about homogeneous or heterogeneous reactions which are involved in this conventional chemical vapour deposition (CVD) (Kim et al. 2004). In homogenous CVD, nanoparticles have generated in gas-phase and they have deposited on surface of low temperature substrate which can be scrapped into nano-powders. In the case of heterogenous CVD, nanoparticles are formed on the surface of the substrate which generates a dense film. Generally, this method controls the size, shape and crystallinity of materials into required form. Materials which we have prepared by this method are pure and the mechanism involved is known.

(c) Chemical vapour condensation
It is a coating process in which chemical reactions occurred on the substrate at particular temperature. Reagents and precursors were supplied in gaseous form. Solid nanoparticles are obtained by pyrolysis of gaseous precursors at decomposition temperature. For example, Alumina nanoparticles were synthesized by CVC method in which aluminium chloride have been used as a precursor where carbon-dioxide and hydrogen were used for decomposition reaction (Lee et al. 2005).

Alumina may be deposited by the reaction:

$$\text{Al}_2\text{Cl}_6 + 3\text{CO}_2 + 3\text{H}_2 = \text{Al}_2\text{O}_3 \text{ (solid)} + 3\text{CO} \text{ (gas)} + 6\text{HCl} \text{ (gas)}$$

The advantages of this method include the uniform coating of the nanoparticles or nano film. However, this process has limitations including the higher temperatures required, and it is difficult to scaleup.

(d) Thermolysis
It is an easiest method in which desired nano materials are produced in heat resistant crucible containing required precursors. This method can be applied only those materials which has high vapour pressure at high temperatures (Ranjbar et al. 2011). This can be explained by taking simple example of preparation of lithium nanoparticles from lithium azide which decomposes at 370 °C under nitrogen atmosphere (Tanaka et al. 2016).

(e) Flame assisted ultrasonic spray pyrolysis
In this process precursors are heated to burnt unwanted components to generate required nano materials. SiO₂ nanoparticles were obtained by heating silica tetrachloride in an oxy-hydrogen flame. The white particles are having sizes ranging from 7 to 40 nm (Jang 2001). Acetylene and oxygen gases are supplied to initiate the pyrolysis of precursor compounds.

(f) Hydrothermal/solvothermal Method
In this method, the precursors are taken into sealed vessel containing solvents and reacted under reflux temperature around their critical points with high pressure. If water is used as a solvent then it is called hydrothermal whereas organic solvent is used means that is called as solvothermal process (Nunes et al. 2018). Mostly the reactants have taken in the form of solutions or suspension. With
these organic and inorganic additives are added to increase the homogenous dispersion and to achieve crystalline morphology.

1.1.3 Characterization of Nanomaterials

(a) X-ray diffraction (XRD)
Each and every solid material are having unique diffraction patterns which has been used to identify and characterize the particular nanomaterial. This unique pattern is called characteristic fingerprint region. The principle behind this analysis is diffraction of incident X rays by sample. The diffraction takes place at different directions. Generally, X-ray diffractometer with X-ray diffractometer with Cu-Kα (1.5418 Å) is used to generate X-rays. The X-ray source is kept as stable and the sample to be analysed is kept as mobile which moves by angle theta, the detector moves by 2 theta. The rotation rate is kept at 1°/min and the sample is scanned for 10°–80° scan. The sample is loaded on a soda glass substrate (West et al. 2015).

(b) Scanning Electron Microscope (SEM)
The scanning Electron Microscope technique has been used to analyse surface morphology, chemical composition, size and crystalline structure of the nanomaterials. In this technique electron beams are allowed to fall on the nanomaterials to generate different signals which are characteristics of the surface of the solid nanomaterials. The signal which have been received are more informative which gives more details of the nanomaterials. The signals consist of secondary electrons, backscattered electrons and diffracted backscattered electrons. To imagine the sample, secondary and backscattered electrons are needed. Morphology and topography of nanomaterials have been informed by mostly secondary electrons (Goldstein et al. 2017).

(c) Transmission electron microscopy (TEM)
TEM is a technique in which high energy electron beam is focused through a sample where the interaction between atoms and electrons taken place. The interaction could be useful to know the features such as crystalline structure, grain boundaries etc. This technique is used to find composition, defects. Transmitted portion has to strike phosphor screen where the image is generated. Darker areas of the image represent the transmission of less electrons through while the lighter areas represent transmission of many electrons (Su 2017).

1.1.4 Medicinal Properties of Nanomaterials

(a) Size and Surface Area of the Particle on Toxicity
Nanomaterials with decreased size leads to exponential increase in surface are which plays vital role on their applications in various fields. Oral toxicity of
nanoparticles is directly related to size of nanoparticles (Gatoo et al. 2014). It was observed that copper nanoparticles with decreased size are having low toxicity compared to larger particles which are having moderate toxicity. Nano particles less than 50 nm have diffused quickly to all part of the tissues compared to large particles. Most of the studies on toxicity of nanoparticles have showed that nanoparticles with less than 100 nm causes adverse respiratory health effects compared to larger particles (Chen et al. 2006).

(b) Effect of particle shape

The studies on toxicity of nanoparticles like gold, nickel and CNT have reported based on their shape. It has reported that the nano particle with spherical shape are very easy and fast in endocytosis process (Champion and Mitragotri 2006). The rod or fibre nano particles shows very less effect in the studies. Compared to other shapes spherical nanoparticles are more toxicity even they are in homogenous or heterogenous phase.

(c) Effect of Surface Charge

Charge on the surface of nanoparticles has significant effect on their toxicity on biological systems on various aspects like colloidal behaviour, plasma protein binding and blood brain barrier integrity (Pietroiusti et al. 2011). It is apparent form the reports, that negatively and neutral charged nanoparticles are showing very less cellular uptake compared to positive charged nanoparticles on opsonization by plasma proteins.

1.1.5 Role of Nanotechnology in Medical Field

The recent development of nano technology has applied to various field. Mostly in the case of medicinal field it has been showing significant impact on oncology and cardiovascular medicine (Fymat 2016). Furthermore, Molecular diagnostics, drug discovery and delivery applications has marked the importance of nano materials. Nanotechnology and nano materials play vital role in the development of cancer research. They have been employed to deliver drugs and some particles have been engineered to attract infected cells to remove.

Recently, Worcester polytechnic institute have showed that the CNT act as carrier for antibodies in the form of chips to find infected cancer cells in blood at earlier stage itself (Loelian et al. 2019). In this method, functionalized gold nano rods have engineered to bind to the damaged protein cells where the shift in colour of nano rod is observed. This method is designed to find damaged cells at earlier stage.

The University of Wisconsin designed a bandage which act as nanogenerators to apply electrical pulses on wounds to cure (Long et al. 2018). Chase from Western Reserve University has designed artificial platelets from the bio-compatible polymeric materials to reduce blood loss during surgery or trauma. To repair and treat diseased cells, nanorobots have been designed and programmed to antibodies. As nanotechnology opens new avenues in the field of medicinal research which would be developed even in poor countries for their future economic and social welfare.
1.1.6 What Is Mean by Nanomedicine?

Application of nanotechnology to treat diseases is called nanomedicine. The properties of nanomaterials have been used to treat infected cells. It involves the utilization of bio-compatible nano rods, nanoparticles and nanorobots.

The nanomaterials which induce desired physiological responses with the target cells are called biocompatible materials. The special properties of nanomaterials with less undesirable effect have been utilized to treat infected cells or tissue. It may include nanodevices to manipulate target cell and nano sensors to give information on physiological functions of target tissues.

The biocompatibility of nanomaterials mostly depends on the zeta potential of nanoparticles. The charge, less than 30 mV may helpful to reduce the aggregation of nanoparticles. But maximum surface charge may affects the interaction of nanoparticles.

Further the biocompatibility has enhanced by modification of surface of nanoparticles with poly(ethylene glycol) PEG which would increase the biocompatibility by removing phagocytosis. To increase the bio-compatibility of polyethersulfon as hemodialysis, its surface has to be modified by polyvinyl pyrrodone (Hayama et al. 2004). Various methods to modify the surface of nanoparticles have been reported, but the modification process should have best effect on biocompatibility with biological stream.

1.1.7 Need for Nanomedicine

Nanoparticles have been engineered to carry some particular drug molecules to specific tumour cells. The drug molecules can be bound with the nanoparticles by surface modification so that drug molecules could be delivered at the target cancer cell (Hayama et al. 2004).

To enter the blood stream, drug molecules should be soluble. We can explain this by taking an example of the drug paclitaxel which is not soluble in blood stream which causes severe allergic conditions (El-Readi and Althubiti 2019). This problem has been overcome by the development of biocompatible nanoparticles out of the naturally occurring albumin proteins which carried and dissolved a paclitaxel in bloodstream. Generally, tumour cells are surrounded by leaky blood vessels (Ma and Mumper 2013). The intaking of chemotherapy medicine are very small in size and it could be diffused into the vessels and they have not able to reach target cell instead of this they may attack normal adjacent tissues. This problem may be overcome by application of nanoparticles whose size are larger in size than the chemotherapy drugs. These nanoparticles not only act as a carrier and also streams effectively the path of the arrival of drug into target tumour cell.
Objectives of Nanomedicine

- The main objective of nanomedicine can be defined as to control, construct and improve all the human biological systems by molecular level engineered devices and nanostructures.
- Active components whose size could be varied from 1 to 100 nm has to be taken to achieve medical benefit.
- The aim of nano interactions should be taken within a subcellular or cellular system.
- To develop a new regulatory guideline to ensure safe and reliable medical treatment.
- To develop innovative therapeutics to enable tissue regeneration and repair.

1.1.8 Applications of Nanomedicine

1.1.8.1 Cancer Treatment and Chemotherapy

Cancer is one of the complicated health problems to people to die every year globally. This severe disease has been controlled by applying Radiotherapy and chemotherapy to exterminate solid tumours. Chemotherapy is better when compare to radiotherapy which causes destruction of normal cells. The development of chemotherapy to treat damaged cancer cells have become more attractive field of research. The direct administration of chemicals are drugs can cause lot of disadvantages and side effects so it is important to modify the mode of treatment.

Nowadays the application of nanomaterials to treat tumour cells have been reported. High surface area to volume ratio of nanomaterials have functionalized to bind with some drugs which could be released exactly at targeted tumour cells. Mostly, nanoparticles with different shape, size can be engineered to treat targeted cells or tissue. Nanoparticles prevent the decomposition of attached drugs and increases the absorption of maximum intake of drugs by epithelial diffusion.

The new way of treatment has developed by University of Michigan in which the semiconducting nano materials have been used to destroy the tumour cell by making short-circuiting tumor cell metabolism. An anticancer drug has synthesised when light is illuminated by semiconducting nanoparticle attached with platinum electrode (Kotov et al. 2009).

1.1.8.2 Treatment for Lung Cancer Chronic Obstructive Pulmonary Disease

Nanosized particles have been used to carry chemotherapeutic drugs as inhalers or spray materials for lung cancer. In this treatment, drugs are misted with nanosized fine particles which directly delivers the drug into all parts of the lungs for quick medical effect (Fymat 2016). Recently, some smart nanoparticles employ as carrier
to deliver therapeutic drugs at tumor cells present in the deepest part of lungs. These nanoparticles are processed by using their magnetic properties. Every day, we have inhale air with no of bacteria and viruses.

Chronic obstructive pulmonary disease (COPD) causes irreversible obstruction of lung airways causing which can be treated only by nanomedicine due to potential penetration of drugs by nano sized carrier. These diseases have caused by infection of lungs by some viruses and bacteria. These virus outbreak some of airborne deadliest epidemic diseases like influenza and pneumonia (Kotov et al. 2009). Currently, the Covid-19 outbreak effects lungs very severely in which nasal administration nanomedicine would be very useful to treat. Nanomedicine can be penetrated very easily to the virus surface where it stops their RNA replications.

1.1.8.3 Pancreatic Cancer

One of the most life threatening diseases is pancreatic cancer which can’t be controlled due to lack of diagnosis and some disadvantages in pharmaceutical treatment. Targeted tumour cells produce resistance against anticancer drugs and leads to critical conditions. Now some of nano technology-based carriers have been used for both diagnosis and treatment. Nanosized drug delivery process resists the tumour cells while decreasing toxicity. The nano-drug combined formulations which consist of liposomes polymeric nanomaterials, CNT, hybrid nanooptics and quantum dots, have developed to treat pancreatic cancer (Sielaff and Mousa 2018). Some chitosan functionalized poly(ethylenimine) with amphiphilic poly(allylamine) nano formulations have been used to carry hydrophobic drugs to target cells. Recently it is reported that curcumin filled polymeric nanoparticles have reduced the growth of primary tumour (Manzur et al. 2017; Rebelo et al. 2017).

1.1.8.4 Diabetes

The rate of diabetes is increasing day by day and it affects all the people irrespective of the age group. The application of nanotechnology becomes very significant in the management of diabetes (Gupta 2017). Normally, the oral administration of insulin has destroyed by acid present in the stomach and it makes the objective of the treatment useless. In order to deliver the insulin directly into bloodstream, nanotechnology approach has to be used. In this, the insulin molecules are bound to colloidal nanoparticle which protects the insulin form gastrointestinal tract and transports into systemic circulation. Hydrogels, antiproteases, cyclodextrins are used to encapsulate insulin molecules and the residence duration of insulin has been increased in the vicinity of intestinal cells for successful absorption.

The most effective biocompatible polymeric nanoparticles are being used as a carrier for insulin. Polymeric nanomaterials like N,N-dimethylaminoethyl methacrylate, polyanhydrides, polyurethanes, polyacrylic acids and polyacrylamide have been reported as very good insulin carriers. These polymers are pH sensitive and it
releases the loaded insulin when a desirable pH is achieved (Harsoliya et al. 2012; Cui et al. 2009).

1.1.8.5 Skin Diseases Therapies

Generally, the skin inflammation is a common among people. These inflammations are caused by exposure of skin in UV light. Now a day’s nanotechnology is applied to treat skin related problems. Nano emulsions Nano capsules, nanoliposomes, and nanoparticles are commonly formulated into cosmetic products and body lotions (Basavaraj 2012). These materials diffuse the stratum corneum part of the skin. Currently, sunscreen cosmetic materials have formulated with insoluble titanium dioxide or zinc oxide nanoparticles, which are colourless and reflect/scatter ultraviolet more efficiently than larger particles (Nohynek et al. 2007). Lipid nanoparticles are one of the ingredients is added to enhance the film forming ability of cosmetic products and also to hydrate the dry skin.

1.1.8.6 Cardiovascular Diseases

Hypertension and hypercholesterolemia are two main risk factors lead to cardiovascular diseases like thrombosis, infarction and stroke. Multiple drug therapy has given for treatment however it may show adverse effects. Now the applications of nanotechnology play protective. Carrier to deliver the diversity of active ingredients (Janko et al. 2013). The gold and silica nanoparticles have designed to deliver nitric oxide in the treatment of hypertension where the lowest concentration of nitric oxide has to be increased. It has reported that intravenous injection of CeO$_2$NP with highest antioxidant property, decreases the microvascular dysfunction and hypertension. Size of CeO$_2$NPs should be handled carefully because small variations in its dimension may become toxicity (Minarchick et al. 2015). Blood clots which is formed at the blood vessels are called as thrombosis which leads to block the blood circulation and it makes the patient to get cardiac attack. To treat this, nanoparticle is loaded with tissue plasminogen activator (tPA) which is directed to thrombus site and it removes the blood clots and makes free to blood circulation (Cicha 2015; Torchilin 2014).

1.1.8.7 Antimicrobial Activity of Nanomedicines

Day by day the reports on increased antibiotic resistance becomes challenging to human health. The poor solubility, chemical stability and enhanced side effects are decreasing the efficiency of currently using antibacterial drugs. To overcome this, researchers are using nanomedicines. Natural or synthetic polymers with silver nanoparticles composite materials have been used as effective antibacterial agents since decades.
Silver incorporated silver sulfadiazine has been treated for a decade. Silver sulfadiazine is active when it was used at higher concentrations only (Ullah et al. 2019). The antibacterial agent is more active when silver nanoparticles are incorporated by electrospinning method. The antibacterial activity of polyvinyl alcohol and chitosan is enhanced by incorporation of silver nitrate by electrospinning method. Wide antibacterial applications of silver nanoparticles are increased when they have incorporated with zein, polymethyl methacrylate, chitosan, polyvinylpyrrolidone, polyacrylonitrile (PAN), and other polymers. Recently, CNT and GM are more active than silver nanoparticles against bacteria (GhavamiNejad et al. 2015; Yang et al. 2016; Maharjan et al. 2017).

Another major challenge for public health is fungal infection which develops substantial resistance against most of the drugs. The resistance has overcome by using nanoparticles as related to increased drug efflux from microbial cells, bio film formation. Nanoparticles deliver the required does of drug at infected site in that way it decreases resistance of microbes with less adverse effect. The required drug has entrapped or encapsulated in to the nanoparticle matrix and they are by the drug has reserved until it reaches the infected site or tissue. Because of the small dimensions it can be easily diffused in to the target cells to deliver active drug into the sites where it has supposed to be released.

The existence of the unique physiochemical and biological properties of nanostructures makes them compatible material for biomedical applications. Encapsulation of drugs into some of polymer nanoparticles has been done during their polymerization reaction. The oral administration of the drug would be reserved for long duration at gastrointestinal pathway for complete absorption. Poly-ε-caprolactone (Sinha et al. 2004), polyacrylamide (Sana et al. 2019), polyacrylate (Bilensoy et al. 2009), DNA (Bai et al. 2007), chitosan (Turos et al. 2007; Mao et al. 2001; Rejinold et al. 2011), and gelatin are some of the polymer nanoparticles in which drug has encapsulated during their polymerization reaction.

Antifungal drug delivery system of carbon nanotubes, MNPs, and silica NPs has been reported. Benincasa et al. (2011) showed that AmB conjugated to carbon nanotubes presented an excellent activity against clinical isolates of Candida spp. The antimicrobial activity against bacteria and fungi (C. albicans) was also demonstrated by scanning electron microscopy, showing that microbial cells were wrapped or entrapped by carbon nanotube networks (Olivetti et al. 2013). The reduced graphene oxide nanosheets have antifungal activity against Aspergillus niger, A. oryzae, and Fusarium oxysporum (Sawangphruk et al. 2012). In 2014, Cui et al. (2014) showed graphene oxide as a novel two-dimensional nanomaterial for applications in health biomedical with antifungal properties and low cost. Also, Hussein-Al-Ali et al. (2014) demonstrated the antimicrobial activity of MNPs loaded with ampicillin to form a nanocomposite decreases the activity of C. albicans. Niemirowicz et al. (2015) also reported an inhibition of the growth of C. albicans by using MNPs that can be removed from human plasma, blood, serum, and abdominal and cerebrospinal fluids.
1.1.9 Nanomedicine and Tissue Engineering

Tissue engineering is the branch of science, which studies the development of new tissue and organs starting from a base of cells and scaffolds. Factors that influences the growth of the cell is introduced into the scaffolds to achieve completely functional organs or tissues for implantation. In this field nanoparticles have been used for control drug delivery, DNA probing, for controlled drug delivery (Wilson et al. 2010; Shi et al. 2010), imaging of specific sites, probing of DNA structures (Mironov et al. 2008; Koo et al. 2005), biomolecular sensing, gene delivery, photothermal ablation of cells (Prasad 2009) and, most recently, (Basarkar and Singh 2009; Wang et al. 2008). Additionally, many therapies utilize nanoparticles for the treatment of cancer, diabetes, allergy, infection and inflammation (Panyam and Labhasetwar 2003; Brigger et al. 2012; Kataoka et al. 2012). The nanoparticles plays vital role to improve the biological, electrical and mechanical properties of gene delivery, DNA transfection and viral transduction. Significantly, GNP s and TiO2 nanoparticles have applied to increase the rates of cell proliferation for bone and cardiac tissue reformation. The contribution of GNP s enhances the osteoclast (bone resorbing cell) generation form hematopoietic cells in bone TE. Gene delivery for matured cells or stem cells has become significant field of research in TE. Human mesenchymal stem cells are multipotent cells that show immunoospressive properties and have an intrinsic capacity to differentiate into various types of cells, including chondrocytes, osteoblasts, myocytes and adipocytes.

While nanoparticles have demonstrated promising potential in TE applications such as enhancment of biological, mechanical and electrical properties; antimicrobial effects; gene delivery and construction of engineered tissues, many challenges still lie ahead to introduce them into widespread clinical applications. For example, a compelling need exists, at first, for better assessment tools and methods of nanoparticle toxicity, carcinogenicity and teratogenicity. Second, the toxicity, carcinogenicity and teratogenicity of nanoparticles are all highly dose-dependent and exposure-dependent. In many applications, the nanoparticles are used below their threshold concentrations at which they are considered not harmful. However, bioaccumulation of nanoparticles inside the body over a large period of time is well known. Thus, any nanoparticle used in the human body has the potential to accumulate over a long period of time to reach a concentration that can cause toxicity to cells, cancers or harmful effects on reproductive systems and fetuses before their birth. In addition, even though there are numerous products containing nanoparticles/nanomaterials already in the market there are still some scientific and methodological gaps in the knowledge on specific hazards of nanomaterials. Currently, to the best of our knowledge, there are no international standards yet for nano-specific risk assessments, including specific data requirements and testing strategies. The risk assessments of nanomaterials are laborious and costly. Currently, manufacturers are committed to assess the safety of their nanoparticle-based products and to implement the necessary safety measures (self-supervision). To date, the regulatory tools are not nano-specific; e.g., the data requirements for notification of chemicals,
criteria for classification and labeling requirements for safety data sheets are still not widely available. Thus, there is a need for precautionary measures for applications of nanoparticles wherever there is a possibility of chronic bioaccumulation.

1.2 Conclusion

Nanoparticles exhibit superior biocompatibility and well-established strategies for surface modification, which have made them highly effective in numerous biomedical applications. The electric coupling between decellularized cells and proliferation rates upon several tissues have also been enhanced using nanoparticles. The validity of nanoparticles, when it comes to antibacterial growth, has also been studied with much promise. These nanoparticles have been deposited on biocomposite scaffolds, thus regulating bacterial infection during reconstructive bone surgery. Induction of cell mechanotransduction, which is responsible for many physiological processes in the body, was also stimulated by remotely controlled nanoparticles. This review has mentioned a new method for gene delivery. Specifically, magnetofection, which was accomplished through the use of plasmid DNA cationic lipids with complexes of DNA as they interacted through a magnetic force, thus increasing transfection efficiency. Related to this is the use of nanoparticles for the purpose of cell patterning. Three strategies were investigated for cell patterning: the use of MCLs, RGD motif-containing peptide coupled to the phospholipid of magnetite cationic liposomes and aminosilane modified with PEG and magnetic force.

References

Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286
Azlina H, Hasnidawani J, Norita H, Surip S (2016) Synthesis of SiO₂ nanostructures using sol-gel method. Acta Phys Polon A 129(4):842–844
Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, Chen X (2007) One-pot synthesis of polyacrylamide-gold nanocomposite. Mater Chem Phys 106(2):412–415. https://doi.org/10.1016/j.matchemphys.2007.06.021
Basarkar A, Singh J (2009) Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res 26(1):72–81
Basavaraj K (2012) Nanotechnology in medicine and relevance to dermatology: present concepts. Indian J Dermatol 57(3):169
Benincasa M, Pacor S, Wu W, Prato M, Bianco A, Gennaro R (2011) Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5(1):199–208
Bilensoy E, Sarisozen C, Esendağlı G, Doğan AL, Aktaş Y, Şen M, Mungan NA (2009) Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharm 371(1–2):170–176
Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36
Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934

Chavali MS, Nikolova MP (2019) Metal oxide nanoparticles and their applications in nanotechnology. Biomimetics 1(6):607

Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163(2):109–120

Cicha I (2015) Thrombosis: novel nanomedical concepts of diagnosis and treatment. World J Cardiol 7(8):434

Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C (2009) Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly (methyl methacrylate) nanoparticles. Biomacromolecules 10(5):1253–1258

Cui J, Yang Y, Zheng M, Liu Y, Xiao Y, Lei B, Chen W (2014) Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials. Mater Res Express 1(4):045007

El-Readi MZ, Althubiti MA (2019) Cancer nanomedicine: a new era of successful targeted therapy. J Nanomater

Fymat AL (2016) Recent developments in nanomedicine research. J Nanomed Res 7(4):00096

Gatoo MA, Naseem M, Afart MY, Mahmood Dar A, Qasim K, Zabair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:498420–498428. https://doi.org/10.1155/2014/498420

GhavamiNejad A, Rajan Unnithan A, Ramachandra Kurup Sasikala A, Samarikhalaj M, Thomas RG, Jeong YY, Nesser S, Murugesan P, Wu D, Hee Park C (2015) Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application. ACS Appl Mater Interfaces 7(22):12176–12183

Goldstein JJ, Newbury DE, Michael JR, Ritchie NW, Scott JHJ, Joy DC (2017) Scanning electron microscopy and X-ray microanalysis. Springer, New York

Gupta R (2017) Diabetes treatment by nanotechnology. J Biotechnol Biomater 7:268. https://doi.org/10.4172/2155-952X.1000268

Harsoliya M, Patel V, Modasiya M, Pathan J, Chauhan A, Parihar M, Ali M (2012) Recent advances & applications of nanotechnology in diabet es. Int J Pharm Biol Arch 3(2):255–261

Hayama M, Yamamoto K-i, Kohori F, Sakai K (2004) How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? J Membr Sci 234(1–2):41–49

Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Geilich BM, Webster T (2014) Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int J Nanomedicines 9:3801

Jacobs JF, van de Poel I, Osseweijer P (2010) Sunscreens with titanium dioxide (TiO(2)) nano-particles: a societal experiment. NanoEthics 4(2):103–113. https://doi.org/10.1007/s11569-010-0090-y

Jang HD (2001) Experimental study of synthesis of silica nanoparticles by a bench-scale diffusion flame reactor. Powder Technol 119(2–3):102–108

Janko C, Dürre S, Munoz LE, Lyer S, Chaurio R, Tietze R, Löhneysen SV, Schorn C, Herrmann M, Alexiou C (2013) Magnetic drug targeting reduces the chemotherapeutic burden on circulating leukocytes. Int J Mol Sci 14(4):7341–7355

Jeong H, Nguyen DM, Lee MS, Kim HG, Ko SC, Kwac JK (2018) N-doped graphene-carbon nanotube hybrid networks attaching with gold nanoparticles for glucose non-enzymatic sensor. Mater Sci Eng C 90:38–45

Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64(3):37–48

Kim CS, Okuyama K, Nakaso K, Shimada M (2004) Direct measurement of nucleation and growth modes in titania nanoparticles generation by CVD method. J Chem Eng Jpn 37(11):1379–1389

Koo OM, Rubinstein I, Onyukssel I (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 1(3):193–212

Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, Pathak S, Mazzatenta A, Lieber CM, Prato M, Bellamkonda RV, Silva GA, Kam NWS, Patolsky F, Ballerini L (2009)
Nanomaterials for neural interfaces. Adv Mater 21(40):3970–4004. https://doi.org/10.1002/adma.200801984

Lee DW, Jang TS, Kim D, Tolochko OV, Kim BK (2005) Nanocrystalline iron particles synthesized without chilling by chemical vapor condensation. Glas Phys Chem 31(4):545–548. https://doi.org/10.1007/s10720-005-0096-7

Loeian MS, Aghaei SM, Farhadi F, Rai V, Yang HW, Johnson MD, Aqil F, Mandadi M, Rai SN, Panchapakesan B (2019) Liquid biopsy using the nanotube-CTC-chip: capture of invasive CTCs with high purity using preferential adherence in breast cancer patients. Lab on a Chip 19(11):1899–1915

Long Y, Wei H, Li J, Yao G, Yu B, Ni D, Gibson AL, Lan X, Jiang Y, Cai W (2018) Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. Acs Nano 12(12):12533–12540

Ma P, Mumper R (2013) Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4(2):1000164

Maharjan B, Joshi MK, Tiwari AP, Park CH, Kim CS (2017) In-situ synthesis of AgNPs in the natural/synthetic hybrid fibrous scaffolds: fabrication, characterization and antimicrobial activities. J Mech Behav Biomed Mater 65:66–76

Manzur A, Oluwasanmi A, Moss D, Curtis A, Hoskins CJP (2017) Nanotechnologies in pancreatic cancer therapy. Pharmaceutics 9(4):39

Mao H-Q, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70(3):399–421

Minarchick VC, Stapleton PA, Sabolsky EM, Nurkiewicz TR (2015) Cerium dioxide nanoparticle exposure improves microvascular dysfunction and reduces oxidative stress in spontaneously hypertensive rats. Front Physiol 6:339

Mironov V, Kasyanov V, Markwald RR (2008) Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol 26(6):338–344

Niemirowicz K, Siewicka I, Wielczewska AZ, Markiewicz KH, Surel U, Kulakowska A, Namiot Z, Szymaka B, Bucki R, Car H (2015) Growth arrest and rapid capture of select pathogens following magnetic nanoparticle treatment. Colloids Surf B BioInterfaces 131:29–38

Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37(3):251–277

Nunes D, Pimentel A, Santos L, Barquinha P, Pereira L, Fortunato E, Martins R (2018) Metal oxide nanostructures: synthesis, properties and applications. Elsevier, Amsterdam

Olivi M, Zanni E, De Bellis G, Talora C, Sarto MS, Palleschi C, Flahaut E, Monthioux M, Rapino S, Uccelletti D (2013) Inhibition of microbial growth by carbon nanotube networks. Nanoscale 5(19):9023–9029

Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, Camaioni A, Magrini A, Siracusa G, Bergamaschi A (2011) Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano 5(6):4624–4633

Prasad G (2009) Biomedical applications of nanoparticles. In: Safety of nanoparticles. Springer, New York, pp 89–109

Ranjbar ZR, Morsali A, Retailleau P (2011) Thermolysis preparation of zinc (II) oxide nanoparticles from a new micro-rods one-dimensional zinc (II) coordination polymer synthesized by ultrasonic method. Inorgan Chim Acta 376(1):486–491

Rebelo A, Molpeceres J, Rijo P, Pinto Reis C (2017) Pancreatic cancer therapy review: from classic therapeutic agents to modern nanotechnologies. Curr Drug Metab 18(4):346–359

Rejinold NS, Muthunarayanan M, Muthuchelian K, Chennazhi K, Nair SV, Jayakumar R (2011) Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym 84(1):407–416
Sana SS, Arla SK, Badineni V, Boya VKN (2019) Development of poly (acrylamide-co-diallyldimethylammoniumchloride) nanogels and study of their ability as drug delivery devices. SN Appl Sci 1(12):1716
Sawangphruk M, Srimuk P, Chiochan P, Sangsri T, Siwayapramh PC (2012) Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon 50(14):5156–5161
Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230
Sielaff CM, Mousa SA (2018) Status and future directions in the management of pancreatic cancer: potential impact of nanotechnology. J Cancer Res Clin Oncol 144(7):1205–1217
Sinha V, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ε-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278(1):1–23
Su D (2017) Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ 2(2):70–83. https://doi.org/10.1016/j.gee.2017.02.001
Tanaka M, Kageyama T, Sone H, Yoshida S, Okamoto D, Watanabe T (2016) Synthesis of Lithium metal oxide nanoparticles by induction thermal plasmas. Nanomaterials 6(4):60
Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 213(11):813–827
Turos E, Shim J-Y, Wang Y, Greenhalgh K, Reddy GSK, Dickey S, Lim DV (2007) Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17(1):53–56. https://doi.org/10.1016/j.bmcl.2006.09.098
Ullah S, Hashmi M, Khan MQ, Kharaghani D, Saito Y, Yamamoto T, Kim IS (2019) Silver sulfadiazine loaded zein nanofiber mats as a novel wound dressing. RSC Adv 9(1):268–277
Wang X, Yang L, Chen Z, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110
West M, Ellis AT, Potts PJ, Streli C, Vanhoof C, Wobrauschek P (2015) Atomic spectrometry update—a review of advances in X-ray fluorescence spectrometry and their applications. J Anal Atomic Spectrom 30(9):1839–1889
Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N (2010) Orally delivered thio-ketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 9(11):923–928
Yang C-H, Wang L-S, Chen S-Y, Huang M-C, Li Y-H, Lin Y-C, Chen P-F, Shaw J-F, Huang K-S (2016) Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications. Int J Pharm 510(2):493–500
Zeng D-W, Peng S, Chen C, Zeng J-M, Zhang S, Zhang H-Y, Xiao R (2016) Nanostructured Fe2O3/MgAl2O4 material prepared by colloidal crystal templated sol–gel method for chemical looping with hydrogen storage. Int J Hydrog Energy 41(48):22711–22721. https://doi.org/10.1016/j.ijhydene.2016.09.180