Observation of single top quark production in association with a Z boson in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

The observation of single top quark production in association with a Z boson and a quark (tZq) is reported. Events from proton-proton collisions at a center-of-mass energy of 13 TeV containing three charged leptons (either electrons or muons) and at least two jets are analyzed. The data were collected with the CMS detector in 2016 and 2017, and correspond to an integrated luminosity of 77.4 fb$^{-1}$. The increased integrated luminosity, a multivariate lepton identification, and a redesigned analysis strategy improve significantly the sensitivity of the analysis compared to previous searches for tZq production. The tZq signal is observed with a significance well over five standard deviations. The measured tZq production cross section is $\sigma(pp \rightarrow tZq \rightarrow t\ell^+\ell^-q) = 111 \pm 13$ (stat)$^{+11}_{-9}$ (syst) fb, for dilepton invariant masses above 30 GeV, in agreement with the standard model expectation.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.122/132003.
The CERN LHC has delivered proton-proton (pp) collisions with an unprecedented luminosity at a center-of-mass energy of 13 TeV over the last few years. The large number of high-energy collisions recorded to date allows the probing of very rare standard model (SM) processes. One such process is electroweak (EW) production of a single top quark in association with a Z boson and a quark, \(pp \rightarrow tZq \) (charge conjugation in the final state is implied throughout this Letter). This process is sensitive to a multitude of SM interactions described via the WWZ triple-gauge coupling, the ttZ and tbW couplings, and the \(bW \rightarrow tZ \) scattering amplitude \[1\].

Because of unitary cancellations in SM tZq production, the tZq process might be affected by modified interactions even when neither top quark pair production in association with the Z boson (ttZ), nor inclusive single top quark production would be affected in a visible manner \[2\]. In addition, modified tZq production could indicate the presence of flavor changing neutral currents \[3-5\]. These unique features, and the addition of complementary information to the global constraints on modified top quark interactions, make the tZq production cross section an important quantity to measure.

This Letter presents the observation of tZq production and its cross section measurement, using the leptonic tZq decay channel in events with three charged leptons, either electrons or muons (including a small contribution from sequential \(\tau \) lepton decays), and at least two additional jets, one of which is identified as originating from a b quark. The analysis is performed using pp collision data at \(\sqrt{s} = 13 \) TeV collected with the CMS detector in 2016 and 2017, corresponding to an integrated luminosity of 77.4 fb\(^{-1}\). Previous searches for tZq production by the ATLAS \[6\] and CMS \[7\] Collaborations at 13 TeV, based on an integrated luminosity of approximately 36 fb\(^{-1}\), resulted in observed significances of 4.2 and 3.7 standard deviations, respectively, from the background-only hypothesis. More than doubling the integrated luminosity by adding the 2017 data, and improvements to the lepton identification techniques and the analysis strategy, significantly increase the sensitivity of the present analysis in comparison to previous searches.

The central feature of the CMS apparatus \[8\] is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Silicon pixel and strip trackers, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections, reside within the solenoid. Forward calorimeters extend the pseudorapidity (\(\eta \)) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Events of interest are recorded with several trigger algorithms \[9\], requiring the presence of one, two, or three electrons or muons, resulting in an efficiency of almost 100% for events passing the analysis selection.

Samples of Monte Carlo (MC) simulated events are used to determine the tZq signal acceptance and to estimate the yields for most of the background processes. Separate MC samples, matching the data taking conditions in 2016 and in 2017, are used. The tZq events are simulated with the \textsc{MadGraph5_aMC@NLO} program \[10,11\] at next-to-leading order (NLO) in perturbative quantum chromodynamics (QCD). The \textsc{MadGraph5_aMC@NLO} generator is also used for the simulation of the main background processes with at least one top quark (tHW, tHq, tWZ, ttW, ttV, tVVV) or three gauge bosons (VVV), where \(V = W \) or \(Z\), and \(H \) is the Higgs boson, either at leading order (LO) or at NLO in QCD. The most important of these backgrounds, namely tW and ttZ, are simulated at NLO in QCD. Version 2.2.2 (2.4.2) of \textsc{MadGraph5_aMC@NLO} is used for the simulation of 2016 (2017) collisions. Samples of diboson as well as \(t\bar{t}H \) events are produced at NLO precision, using the \textsc{Powheg v2} \[12-16\] generator.

The NNPDF3.0 \[17\] (NNPDF3.1 \[18\]) parton distribution function (PDF) sets \[19\] are used for simulation of 2016 (2017) data, with the perturbative order in QCD matching that used in the
sample generation. The simulation of parton showering, hadronization, and the underlying event is performed with PYTHIA 8.212 (8.230) [20] for simulated samples matching 2016 (2017) conditions, using the CUETP8M1 [21, 22] (CP5 [23]) underlying event tune. Double counting of partons generated with MADGRAPH5_aMC@NLO and PYTHIA is eliminated using the FxFx (MLM [25]) matching scheme for the NLO (LO) samples.

The effects of additional pp collisions in the same or adjacent bunch crossings (pileup) are taken into account by overlaying each simulated event with a number of inelastic collisions, simulated with PYTHIA. The generated distribution of the number of events per bunch crossing is matched to that observed in data. Simulated events include a full GEANT4-based simulation of the CMS detector and are reconstructed using the same software employed for data.

The particle-flow (PF) algorithm [27] aims to reconstruct and identify each individual particle in an event, with an optimized combination of information from the various elements of the CMS detector, and determine the pp interaction primary vertex (PV) [7]. Reconstructed particles (PF candidates) are classified as charged or neutral hadrons, photons, electrons, or muons.

The PF candidates are clustered into jets using the anti-k_T clustering algorithm [28] with a distance parameter of 0.4, implemented in the FASTJET package [29, 30]. Jets are required to pass several quality criteria, designed to remove jet candidates that are likely to originate from anomalous energy deposits in the calorimeters [31]. Jet energies are corrected for nonlinearity and nonuniformity of the detector response using a combination of simulated samples and pp collision data [32, 33]. Jets are retained for further analysis if they have a transverse momentum $p_T > 25$ GeV, $|\eta| < 5$, and are separated by $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.4$ from any identified leptons, where $\Delta \eta$ and $\Delta \phi$ are the pseudorapidity and azimuthal angle differences, respectively, between the directions of the jet and the lepton. High-$|\eta|$ jets are included to account for forward jets produced by the quark in tZq events. Because of an increased level of noise in the very forward ECAL region in 2017 data, the minimum p_T threshold for jets in the $2.7 < |\eta| < 3.0$ range was raised to 60 GeV for this data set and for the corresponding simulated event samples.

Jets with $|\eta| < 2.4$ originating from the hadronization of b quarks are identified with the DEEPCSV algorithm [34]. They are considered b tagged, and referred to as b jets, if they pass a working point of this algorithm, which has a typical efficiency of 68% for correctly identifying b quark jets, with a misidentification probability of 12 (1)% for c quark (light-flavor) jets.

The missing transverse momentum vector \vec{p}_T^{miss} is defined as the negative vector p_T sum of all PF candidates in the event, taking into account the jet energy corrections [35]. Its magnitude is referred to as p_T^{miss}.

Electron reconstruction is based on the combination of tracker and ECAL measurements [36]. Each electron candidate must fulfill several quality requirements on the ECAL shower shape and have no more than one missing hit in the tracker. Muons are reconstructed by combining information from the tracker, the muon spectrometers, and the calorimeters in a global fit [37]. Muon candidates must meet criteria on the geometric matching between the signals in different subdetectors and the quality of the global fit. To be considered in the analysis, electron and muon candidates must be consistent with coming from the PV and pass prerequisite selection criteria on their relative isolation, defined as the scalar p_T sum of all PF candidates inside a cone around the lepton, divided by the lepton p_T. The angular radius of the cone in (η, ϕ) space is given by $\Delta R(p_T(\ell)) = 10 \text{ GeV/min} \max \{p_T(\ell), 50 \text{ GeV}, 200 \text{ GeV}\}$, thus taking into account the increased particle collimation at high p_T values [38]. The relative isolation for electrons and
muons is required to be below 0.4.

The search crucially depends on efficiently distinguishing leptons originating from the decay of EW bosons from both genuine leptons produced in hadron decays, and photon conversions or jet constituents incorrectly reconstructed as leptons. The first category is referred to as prompt leptons, while the last two are collectively labeled as nonprompt leptons. The reach of the previous analysis of tZq production by CMS [7] was largely limited by the relative contribution from the nonprompt-lepton background and by the uncertainty in its prediction. Taking this into consideration, gradient boosted decision trees (BDTs) are set up to maximally discriminate between prompt and nonprompt leptons. The BDTs exploit the properties of the jet closest to the lepton in terms of ΔR, the relative isolation defined above, the relative isolation inside a fixed cone size of ΔR = 0.3, the impact parameters of the leptons with respect to the PV, and the lepton p_T and |η|. Additionally, the BDTs have access to variables related to the ECAL shower shape of electrons and the geometric matching between the silicon tracker and muon system measurements of muons. The BDT discriminants are trained using the TMVA package [39]. As a cross-check, fully connected feed-forward neural networks are trained using KERAS [40] with TENSORFLOW [41] as backend, which lead to nearly identical performance.

A stringent requirement is placed on the BDT output, resulting in a selection efficiency of 85 (92)% per prompt electron (muon) with p_T > 25 GeV passing the prerequisite selection criteria, as measured in simulated tZq events. The corresponding misidentification probability for simulated nonprompt leptons from f̄f events is about 1.5%. Compared to the non-BDT-based lepton identification used in the previous analysis [7], the selection efficiency for prompt electrons (muons) improves by up to 12 (8)%, while rejecting more nonprompt leptons by a factor of approximately 2 (8) in simulated events.

The analysis uses two definitions for the lepton selection. Leptons that pass the aforementioned BDT selection criteria are referred to as “tight leptons”. “Loose leptons” are the combined set of tight leptons and leptons that pass, on top of the prerequisite ones, loose selection criteria based on the attributes of the closest jet, and in the case of electrons, on a multivariate discriminant based on the ECAL shower shape [36]. The loose selection is optimized to provide a reliable prediction of the nonprompt-lepton background, as explained below.

To be considered in the analysis, events must contain exactly three loose leptons, two of which form a pair of opposite sign and same flavor (OSSF) with an invariant mass within a window of 30 GeV width centered on the world-average Z boson mass [42]. All three selected leptons must pass the tight selection requirements in order for the event to enter the final selection. Events in which at least one of the leptons fails to pass the tight criteria are used to estimate the nonprompt-lepton background. The three leptons, ordered from highest to lowest p_T, are required to have p_T values greater than 25, 15, and 10 GeV, respectively.

Events are divided into three categories, collectively referred to as signal regions (SRs), based on the number of jets they contain. Events with a total of two or three jets, exactly one of which is b tagged, make up SR-2/3j-1b, which contains most tZq events. Events with four or more jets, exactly one of which is b tagged, form SR-4j-1b, while SR-2b contains events with two or more b-tagged jets. Events without b-tagged jets, or with one b-tagged jet and no additional jets, have a very low signal-to-background ratio and are rejected.

In each of these categories, a dedicated BDT is trained to extract the tZq signal from the total background on several discriminating variables, using the TMVA package. Half of the simulated signal and background events are randomly selected and used for training, while the rest are used for testing. The most significant difference between the tZq signal and background...
events is the tendency of the tZq events to have a forward jet. Simulated signal events show that at least one jet has a high $|\eta|$ value and produces a large dijet invariant mass when combined with another jet in the event. The b-tagged jet yielding the invariant mass closest to the top quark mass \cite{42}, when combined with the p_T^{miss} and the lepton (ℓ_W) not forming the Z boson candidate, is considered as originating from the top quark decay. The remaining jet with the highest p_T in the event, typically found in the forward region of the detector, is labeled the "recoiling jet".

The following variables are used to construct the BDT discriminants: the $|\eta|$ of the recoiling jet, the maximum dijet invariant mass among all pairs of jets in the event, the sums of leptonic and hadronic transverse momenta in the event, the transverse mass of the combination of $p_T^{\ell_W}$ and p_T^{miss} ($\sqrt{2 p_T^{\ell_W} p_T^{\text{miss}} \{1 - \cos(\Delta \phi(p_T^{\ell_W}, p_T^{\text{miss}}))\}}$), the $|\eta|$ of ℓ_W multiplied by its charge, the highest DEEPCSV discriminant value among all jets in the event, the maximum azimuthal separation between any two of the leptons, and the minimum ΔR separation between any lepton and b-tagged jet. For events in SR-2/3j-1b, the maximum p_T of any dijet system is used as an additional input variable, while for SR-4j-1b and SR-2b, the invariant mass of the three-lepton system and the $|\eta|$ of the most forward jet are included to improve the BDT performance. In addition, for SR-4j-1b, the ΔR separation between ℓ_W and the b-tagged jet, and between this jet and the recoiling jet are added as BDT inputs. The modeling of each BDT input variable in simulation was validated in data. The tZq cross section measurement and signal significance are obtained from a binned maximum-likelihood fit to the distributions of the resulting BDT discriminants.

The background contributions to the three SRs are divided into two groups: those that have three or more prompt leptons, and those containing at least one nonprompt lepton. The contribution from the former group is estimated from simulation, while the contribution from the latter is predicted directly from data.

The largest background in SR-2/3j-1b comes from WZ production. It is estimated from simulation and its normalization is measured in a control data sample enriched in WZ events. The control sample consists of events passing the same selection as the SR events, but with no requirements on the number of jets and with an explicit veto on events with a b-tagged jet. Additionally, $p_T^{\text{miss}} > 50$ GeV is required. A prior uncertainty of 10% is assumed in the WZ normalization, and an additional extrapolation uncertainty of 8% is assigned to WZ events with one or more b jets. The latter uncertainty is based on dedicated studies in data events enriched in Z bosons accompanied by the gluon splitting process yielding a pair of b jets.

The t\bar{t}Z process has a large branching fraction to three prompt leptons and is the dominant background in SR-4j-1b and SR-2b. The contribution from t\bar{t}Z events is estimated from simulation, and its shape and normalization are further constrained in the final fit via the bins at low BDT values, whose contents are dominated by t\bar{t}Z events. A prior uncertainty of 15% is assigned to the t\bar{t}Z normalization.

Other processes involving a top quark pair or a single top quark produced in association with additional particles (t\bar{t}X / tX) also contribute to the background. These contributions are estimated using simulation and mainly come from t\bar{t}H, t\bar{t}W, and tWZ production. These processes are normalized to their predicted cross sections, accounting for theoretical uncertainties.

Events with four or more prompt leptons enter the selection if at least one of the leptons fails to be identified. This background consists mainly of ZZ and t\bar{t}Z events, and is largely reduced by applying a veto on the presence of a loose fourth lepton. The ZZ background normalization is constrained via a control data sample of four-lepton events, in which there are two OSSF pairs.
with invariant masses close to that of the Z boson. A prior uncertainty of 10% is assumed in the normalization of ZZ.

Internal and external conversions of photons could result in additional leptons in an event. This typically occurs through an asymmetric conversion, in which one of the leptons coming from the conversion has very low p_T and fails to be reconstructed. This background ($X\gamma^{(*)}$, where X stands for any combination of massive EW bosons or top quarks), dominated by $t\bar{t}\gamma^{(*)}$ and $Z\gamma^{(*)}$ events, is obtained from simulation. A control data sample of three-lepton events is enriched in $Z\gamma^{(*)}$ events by requiring the invariant mass of the three-lepton system to be within a 30 GeV window centered at the nominal Z boson mass, while no lepton pair is allowed to have an invariant mass within this window. This control sample is used to validate the simulation of conversions, and the data and simulation were found to agree within the uncertainties.

The final background contribution with three prompt leptons comes from rare processes involving multiple massive EW bosons. Such processes have very small cross sections and branching fractions to multiple leptons, so their contribution is minimal. This background is estimated using simulation scaled to the respective predicted cross sections, taking into account theoretical uncertainties.

Events with nonprompt leptons that enter the SRs mainly consist of $t\bar{t}$ and Drell–Yan events with an additional nonprompt lepton. Their contribution is estimated directly from data using the “tight-to-loose” ratio method, as described in Ref. [38]. The probability for a loose nonprompt lepton to pass the tight selection requirements is measured as a function of its p_T and $|\eta|$ in a control data sample of QCD multijet events, rich in nonprompt leptons. The measured probability is then applied to data events in which one or more leptons fail the tight selection, while passing the loose selection. The method is validated in both simulation and control data samples enriched in $t\bar{t}$ and Drell–Yan events. The agreement between the predicted and observed yields is found to be within 30% in the most relevant kinematic distributions, and an uncertainty of 30% is therefore assigned to the prediction of this background. Owing to the high performance of the BDT-based lepton selection used in the analysis, the contribution of this background is small compared to that with three prompt leptons.

A number of sources of experimental uncertainty affect each of the simulated samples. These sources include pileup modeling, jet energy scale, b tagging, trigger and lepton identification efficiencies, p_T^{miss} resolution, and the integrated luminosity. Theoretical uncertainties in the fixed-order cross section calculations used to normalize the simulated samples are an additional source of systematic uncertainty. The effects of each of these sources, except the ones associated with the integrated luminosity and trigger efficiency, vary across the BDT distribution.

The uncertainty in the simulated distribution of the number of events per bunch crossing is estimated by varying the total pp inelastic cross section by $\pm 4.6\%$ [43]. This causes variations in the simulated event yields of 0.7–5.0% across the BDT bins. The integrated luminosity, used to normalize the simulated event yields, is measured with a precision of 2.5 (2.3)% in the data collected in 2016 [44] (2017 [45]).

The uncertainty from the jet energy scale is estimated by varying the scale up and down within its uncertainty for all jets in the event [33]. The effect of this variation is propagated through all steps of the analysis. The resulting variations across the BDT bins range from 1.5–15% (1.8–38%) in 2016 (2017) data. Corrections applied to account for the differences between data and simulation in the b tagging efficiency and misidentification rate lead to an uncertainty of 0.1–4.4% in the simulated event yields per bin.
The trigger efficiency is measured by selecting events with three leptons in an unbiased data sample, triggered on the p_T^{miss} or hadronic activity in the event. Statistical uncertainties in this measurement lead to a 2% uncertainty in the trigger efficiency. The lepton identification efficiencies are measured in data using the “tag-and-probe” technique [36,37], and corresponding corrections are applied to simulation. For muons the efficiency corrections are typically around 1%, and go up to 5% in the forward region. For electrons the typical efficiency corrections are 5%, and are as high as 20% for forward, low-p_T electrons. Uncertainties in the efficiency measurements lead to a total uncertainty of 2.5–4.9% in the simulated event yields per BDT bin.

Uncertainties from the choice of the renormalization and factorization scales used in simulation are assessed by simultaneously varying these scales up and down by a factor of two, resulting in uncertainties of 0.8–9.6% in the simulated yields per BDT bin. The limited knowledge of the proton PDFs is taken into account using a set of NNPDF3.0 (NNPDF3.1) replicas [46] in the simulation of 2016 (2017) collisions and leads to uncertainties of 0.04–1.4%. These theoretical uncertainties are taken into account for all simulated samples, and cause changes in both the predicted cross section and the detector acceptance for simulated events, which are treated independently. For $WZ, t\bar{t}Z, ZZ, \text{and } tZq$ production, theoretical uncertainties in the cross section are not taken into consideration, and prior nuisance parameters are assigned to their normalizations that are constrained by data. For all other processes, such as $t\bar{t}W, t\bar{t}H, tWZ$, and triple gauge boson production, theoretical uncertainties in the predicted cross sections are included. Similarly, the uncertainty in the parton shower simulation is estimated by varying the renormalization scales for both initial- and final-state radiation up and down by a factor of 2 [21]. This source of uncertainty is only considered for simulated tZq and $t\bar{t}Z$ processes and ranges from 0.1–6.5% (0.3–7.3%) across the BDT bins for the description of initial-(final-)state radiation.

A simultaneous binned maximum-likelihood fit to the BDT distributions, and to the event yields in the WZ and ZZ control regions, is performed to measure the tZq signal strength. The best fit value of the signal strength and the 68% confidence interval are extracted following the procedure described in Section 3.2 of Ref. [47]. All sources of systematic uncertainties are taken into account as nuisance parameters in the fit. The appropriate correlation pattern of the nuisance parameters between the 2016 and 2017 data sets is taken into account; the nuisance parameters associated with the integrated luminosity, b tagging, trigger efficiency, and jet energy scale modeling are considered to be fully uncorrelated between the two data taking periods, while all others are considered to be fully correlated.

The observed (expected) statistical significance of the signal is determined using the asymptotic approximation of the distribution of the profile likelihood test statistic [48,49] and found to be 8.2 (7.7) standard deviations from the background-only hypothesis. The analyses based on the 2016 and 2017 data sets result in observed (expected) signal significances of 7.2 (5.7) and 5.4 (6.0) standard deviations, respectively. The tZq cross section is measured to be

$$\sigma(pp \rightarrow tZq \rightarrow t\ell^+\ell^- q) = 111 \pm 13 \text{ (stat)} \pm 11 \text{ (syst)} \text{ fb}, \quad (1)$$

where ℓ refers to an electron, muon, or τ lepton, for invariant masses of the dilepton pair larger than 30 GeV. The theoretical cross section in the same fiducial volume is $\sigma^{SM}(pp \rightarrow tZq \rightarrow t\ell^+\ell^- q) = 94.2 \pm 3.1 \text{ fb}$, which is computed at NLO in perturbative QCD using the NNPDF3.0 PDF set in the five-flavor scheme [7]. The measured signal strength is

$$\mu = \frac{\sigma(pp \rightarrow tZq \rightarrow t\ell^+\ell^- q)}{\sigma^{SM}(pp \rightarrow tZq \rightarrow t\ell^+\ell^- q)} = 1.18^{+0.14}_{-0.13} \text{ (stat)}^{+0.11}_{-0.10} \text{ (syst)}^{+0.04}_{-0.04} \text{ (theo)}, \quad (2)$$
consistent with the SM expectation. The quoted theoretical uncertainty stems from the uncertainty in $\sigma^{SM}(pp \rightarrow tZq \rightarrow t\ell^+\ell^-q)$. The signal strengths measured separately in the 2016 and 2017 data sets are found to be consistent with the combined measurement, and are $1.36^{+0.22}_{-0.20} (\text{stat})^{+0.14}_{-0.12} (\text{syst})^{+0.04}_{-0.04} (\text{theo})$ and $1.03^{+0.18}_{-0.17} (\text{stat})^{+0.14}_{-0.12} (\text{syst})^{+0.03}_{-0.03} (\text{theo})$, respectively. The systematic uncertainties with the largest contribution to the final measurement are those associated with the nonprompt-lepton background prediction, the lepton selection efficiency, the modeling of final-state radiation, and the jet energy scale. The uncertainty in the jet energy scale is constrained by the fit to be approximately twice smaller than its input value, while the other aforementioned uncertainties are not significantly constrained. A table showing the impact of the most important uncertainty sources on the measurement is presented in Appendix A.

The observed and expected BDT distributions in each of the SRs are shown in Fig. 1. A table with the observed and expected event yields in the SRs and the control regions, and the distributions in SR-2/3j-1b of the maximum dijet mass among all pairs of jets in the event, the $|\eta|$ of the recoiling jet, and the reconstructed Z boson p_T in events with a BDT discriminant value greater than 0.5 can be found in Appendix A. The first two observables are the most discriminant input variables to the BDTs used for signal extraction, while the last one is highly sensitive to the presence of new physics phenomena. The distribution of the number of jets in the event in the WZ and ZZ control regions can also be found in Appendix A.

Figure 1: Observed (points) and post-fit expected (shaded histograms) BDT distributions for events in SR-2/3j-1b (left), SR-4j-1b (middle), and SR-2b (right). The vertical bars on the points represent the statistical uncertainties in data. The hatched regions show the total uncertainties in the background. The lower panels display the ratio of the observed data to the predictions, including the tZq signal, with inner and outer shaded bands, respectively, representing the statistical and total uncertainties in the predictions.

In summary, we have reported the observation of single top quark production in association with a Z boson and a quark, tZq, using the leptonic tZq decay mode. The tZq signal is observed with a significance of well over five standard deviations. The tZq production cross section is measured to be $\sigma(pp \rightarrow tZq \rightarrow t\ell^+\ell^-q) = 111 \pm 13 (\text{stat})^{+11}_{-13} (\text{syst}) \text{ fb}$, where ℓ refers to an electron, muon, or τ lepton, for dilepton invariant masses in excess of 30 GeV, in agreement with the standard model prediction.
Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); INFN and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MINECO and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] J. Campbell, R. K. Ellis, and R. Röntsch, “Single top production in association with a Z boson at the LHC”, Phys. Rev. D 87 (2013) 114006, doi:10.1103/PhysRevD.87.114006, arXiv:1302.3856

[2] C. Degrande et al., “Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation”, JHEP 10 (2018) 005, doi:10.1007/JHEP10(2018)005, arXiv:1804.07773

[3] J. A. Aguilar-Saavedra, “Top flavor-changing neutral interactions: theoretical expectations and experimental detection”, Acta Phys. Polon. B 35 (2004) 2695, arXiv:hep-ph/0409342

[4] J.-L. Agram et al., “Probing top anomalous couplings at the LHC with trilepton signatures in the single top mode”, Phys. Lett. B 725 (2013) 123, doi:10.1016/j.physletb.2013.06.052, arXiv:1304.5551

[5] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron symmetry”, Phys. Rev. D 2 (1970) 1285, doi:10.1103/PhysRevD.2.1285

[6] ATLAS Collaboration, “Measurement of the production cross-section of a single top quark in association with a Z boson in proton-proton collisions at 13 TeV with the ATLAS detector”, Phys. Lett. B 780 (2018) 557, doi:10.1016/j.physletb.2018.03.023, arXiv:1710.03659

[7] CMS Collaboration, “Measurement of the associated production of a single top quark and a Z boson in pp collisions at $\sqrt{s} = 13$ TeV”, Phys. Lett. B 779 (2018) 358, doi:10.1016/j.physletb.2018.02.025, arXiv:1712.02825
[8] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[9] CMS Collaboration, “The CMS trigger system”, *JINST* **12** (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[10] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* **07** (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[11] S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton shower simulations”, *JHEP* **06** (2002) 029, doi:10.1088/1126-6708/2002/06/029, arXiv:hep-ph/0204244.

[12] T. Melia, P. Nason, R. Röntsch, and G. Zanderighi, “W^+W^-, WZ and ZZ production in the POWHEG BOX”, *JHEP* **11** (2011) 078, doi:10.1007/JHEP11(2011)078, arXiv:1107.5051.

[13] P. Nason and G. Zanderighi, “W^+W^-, WZ and ZZ production in the POWHEG-BOX-V2”, *Eur. Phys. J. C* **74** (2014) 2702, doi:10.1140/epjc/s10052-013-2702-5, arXiv:1311.1365.

[14] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, *JHEP* **11** (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.

[15] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, *JHEP* **11** (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.

[16] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, *JHEP* **06** (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[17] NNPDF Collaboration, “Parton distributions for the LHC Run II”, *JHEP* **04** (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.

[18] NNPDF Collaboration, “Parton distributions from high-precision collider data”, *Eur. Phys. J. C* **77** (2017) 663, doi:10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.

[19] A. Buckley et al., “LHAPDF6: parton density access in the LHC precision era”, *Eur. Phys. J. C* **75** (2015) 132, doi:10.1140/epjc/s10052-015-3318-8, arXiv:1412.7420.

[20] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* **191** (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[21] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 tune”, *Eur. Phys. J. C* **74** (2014) 3024, doi:10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.

[22] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* **76** (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
[23] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA 8 tunes from underlying event measurements”, CMS Physics Analysis Summary CMS-PAS-GEN-17-001, 2018.

[24] R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, doi:10.1007/JHEP12(2012)061, arXiv:1209.6215

[25] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569

[26] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[27] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965

[28] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\(k_T\) jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189

[29] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097

[30] M. Cacciari and G. P. Salam, “Dispelling the \(N^3\) myth for the \(k_T\) jet-finder”, Phys. Lett. B 641 (2006) 57, doi:10.1016/j.physletb.2006.08.037, arXiv:hep-ph/0512210

[31] CMS Collaboration, “Jet performance in pp collisions at \(\sqrt{s} = 7\) TeV”, CMS Physics Analysis Summary CMS-PAS-JME-10-003, 2010.

[32] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, JINST 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277

[33] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663

[34] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158

[35] CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2016.

[36] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at \(\sqrt{s} = 8\) TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701

[37] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at \(\sqrt{s} = 13\) TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528

[38] CMS Collaboration, “Search for new physics in same-sign dilepton events in proton-proton collisions at \(\sqrt{s} = 13\) TeV”, Eur. Phys. J. C 76 (2016) 439, doi:10.1140/epjc/s10052-016-4261-z, arXiv:1605.03171
[39] H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt, “TMVA, the toolkit for multivariate data analysis with ROOT”, in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), p. 40. 2007. arXiv:physics/0703039 [PoS(ACAT)040]. doi:10.22323/1.050.0040

[40] F. Chollet et al., “Keras”, 2015. Software available from https://keras.io

[41] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous systems”, (2016). arXiv:1603.04467. Software available from https://www.tensorflow.org/

[42] Particle Data Group, M. Tanabashi et al., “Review of particle physics”, Phys. Rev. D 98 (2018) 030001, doi:10.1103/PhysRevD.98.030001

[43] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 13$ TeV”, JHEP 07 (2018) 161, doi:10.1007/JHEP07(2018)161, arXiv:1802.02613

[44] CMS Collaboration, “CMS luminosity measurements for the 2016 data-taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[45] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.

[46] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865

[47] CMS Collaboration, “Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV”, Eur. Phys. J. C 75 (2015) 212, doi:10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662

[48] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].

[49] The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.
Table A.1: Post-fit expected background and tZq signal event yields with their total uncertainties, and observed number of events in data in each of the signal regions.

Source	2–3 jets, 1 b-tagged	≥ 4 jets, 1 b-tagged	≥ 2 b jets	WZ enriched	ZZ enriched
Exp. background	357 ± 34	278 ± 32	228 ± 25	6308 ± 478	847 ± 69
Exp. tZq	103 ± 5.1	38 ± 5.3	37 ± 1.8	67 ± 2.8	0.01 ± 0.004
Total exp.	460 ± 37	316 ± 35	265 ± 25	6375 ± 478	847 ± 69
Observed	475	310	278	6373	852

Figure A.1: Observed (points) and post-fit expected distributions (shaded histograms) in SR-2/3j-1b events for the two most discriminating variables used in the BDT discriminant, the maximum dijet invariant mass among all pairs of jets in the event (left), and the |η| of the recoiling jet (middle). The right plot shows the p_T of the Z boson, reconstructed from its leptonic decay products, for events with BDT discriminant values in excess of 0.5 in SR-2/3j-1b. This observable is highly sensitive to the presence of new physics phenomena. The vertical bars on the points give the statistical uncertainty in data, and the hatched regions display the total uncertainty in the prediction. The lower panels display the ratio of the observed data to the predictions, including the tZq signal, with inner and outer shaded bands, respectively, representing the statistical and total uncertainties in the predictions.
Figure A.2: Observed (points) and pre-fit expected distributions (shaded histograms) of the number of jets in the event for the WZ (left), and ZZ (right) control regions. The vertical bars on the points give the statistical uncertainty in data, and the hatched regions display the total uncertainty in the prediction. The lower panels display the ratio of the observed data to the predictions, including the tZq signal, with inner and outer shaded bands, respectively, representing the statistical and total uncertainties in the predictions.

Table A.2: Average impact on the measured tZq signal strength for major sources of systematic uncertainty. The impact of a particular nuisance parameter on the signal strength is computed by shifting the nuisance parameter by one standard deviation up and down from its post-fit value and recomputing the signal strength. All other nuisances are profiled as in the nominal fit when doing this computation.

Uncertainty	Impact (%)
Experimental	
lepton selection	3.2
trigger efficiency	1.4
jet energy scale	3.3
b-tagging efficiency	1.7
nonprompt normalization	4.1
tfZ normalization	1.0
luminosity	1.7
pileup	1.9
other	1.3
Theoretical	
final-state radiation	2.0
tZq QCD scale	2.0
tfZ QCD scale	1.4
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, P. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth1, V.M. Ghete, J. Hrubec, M. Jeitler1, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, H. Rohringer, J. Schieck1, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, A. Lelek, M. Pieters, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, J. D’Hondt, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, A. Grebenyuk, A.K. Kalsi, J. Luetic, A. Popov2, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vranjes, D. Vannerom, Q. Wang

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov3, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
O. Bondu, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, K. Piotrzkowski, A. Saggio, M. Vidal Marono, P. Vischia, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
F.L. Alves, G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, E. Coelho, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote4, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulistaa, Universidade Federal do ABCb, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesa, L. Calligarisa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesb, SandraS. Padulaa

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang, X. Gao, L. Yuan

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, S.M. Shaheen, A. Spiezia, J. Tao, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang

Tsinghua University, Beijing, China
Y. Wang

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
H. Abdalla, Y. Assran, A. Mohamed

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
C. Amendola, F. Beaudette, P. Busson, C. Charlot, B. Diab, R. Granier de Cassagnac, I. Kucher, A. Lobanov, J. Martin Blanco, C. Martin Perez, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, V. Cherepanov, C. Collard, E. Conte, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, S. Ghosh, T. Hebbeker, C. Heidemann, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, A. Novak, T. Pook, A. Pozdnyakov, M. Radziej, H. Reithler, M. Rieger, A. Schmidt, A. Sharma, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, O. Hlushchenko, T. Kress, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, I. Babounikau, H. Bakhshiansohi, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras17, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, V. Danilov, A. De Wit, M.M. Defranchis, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, T. Eichhorn, A. Elwood, E. Eren, E. Gallo18, A. Geiser, J.M. Grados Luyando, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, N.Z. Jomhari, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Leonard, K. Lipka, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, U. Misra, S.K. Pflitsch, D. Pitzl, A. Raspereza, A. Saibel, M. Savitskyi, P. Saxena, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, M. Van De Klundert, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kastl, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup, M. Niedziela, C.E.N. Niemeyer, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, M. Giffels, M.A. Harrendorf, F. Hartmann16, U. Husemann, I. Katkov2, S. Kudella, S. Mitra, M.U. Mozer, Th. Müller, M. Musich, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Weber, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki

National and Kapodistrian University of Athens, Athens, Greece
A. Agapitos, G. Karathanasis, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Vellidis

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsimpidis

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manitara, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók20, M. Csanad, N. Filipovic, P. Major, K. Mandal, A. Mehta, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath21, A. Hunyadi, F. Sikler, T.Á. Vámi, V. Veszpremi, G. Vesztergombi1

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi20, A. Makovec, J. Molnar, Z. Szillasi
Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati23, C. Kar, P. Mal, A. Nayak24, S. Roy Chowdhury, D.K. Sahoo23, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhygira, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumar, M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi, G. Walia

University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj25, M. Bharti25, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep25, D. Bhowmik, S. Dey, S. Dutta25, S. Dutta, S. Ghosh, M. Maity26, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy, G. Saha, S. Sarkar, T. Sarkar26, M. Sharan, B. Singh25, S. Thakur25

Indian Institute of Technology Madras, Madras, India
P.K. Behera, A. Muhammad

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla, P. Suggisetti

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, Ravindra Kumar Verma

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, N. Sahoo

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani27, E. Eskandari Tadavani, S.M. Etesarim27, M. Khakzad, M. Mohammad Najarabadi, M. Nasiri, F. Rezaei Hosseinabadi, B. Safarzadeh28, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b, C. Calabriaa,b, A. Colaloea, D. Creanzaa,c, L. Cristellaa,b, N. De Filippisa,c, M. De Palmaa,b, A. Di Florioca,b, F. Erricoca,b, L. Fiorea, A. Gelmi a,b, G. Iasellia,c, M. Incsa,b, S. Lezki a,b, G. Maggia,c, M. Maggia, G. Minniola,b, S. Mya,b, S. Nuzzoa,b, A. Pompili a,b, G. Pugliesea,c, R. Radognaa, A. Ranieri a, G. Selvagga,b, L. Silvestrissa, R. Vendittia, P. Verwilligena
INFN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
L. Baronea,b, F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa,b, M. Diemoza, S. Gellia,b, E. Longoa,b, B. Marzocchia,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, F. Preiatoa,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b

INFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, C. Biinoa, A. Cappatia,b, N. Cartigliaa, F. Cennaa,b, S. Comettia, M. Costaa,b, R. Covarellia,b, N. Demariaa, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, R. Salvaticoa,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, D. Soldia,b, A. Staianoa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b, A. Zanettia

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, D.C. Son, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh

Hanyang University, Seoul, Korea
B. Francois, J. Goh33, T.J. Kim

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Sejong University, Seoul, Korea
H.S. Kim

Seoul National University, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, S. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.H. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea
D. Jeon, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu

Riga Technical University, Riga, Latvia
V. Veckalns34

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Z.A. Ibrahim, M.A.B. Md Ali35, F. Mohamad Idris36, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli
Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castillo-Valdez, E. De La Cruz-Burelo, M.C. Duran-Osuna, I. Heredia-De La Cruz, R. Lopez-Fernandez, J. Mejia Guisao, R.I. Rabadan-Trejo, G. Ramirez-Sanchez, R. Reyes-Almanza, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarquen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, J. Seixas, G. Strong, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermeney, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, A. Shabanov, D. Tlisov, A. Toropin
Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, P. Parygin, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Klyukhin, O. Kodolova, N. Korneeva, I. Lokhtin, S. Obraztsov, M. Perfilov, V. Savrin

Novosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov, V. Blinov, T. Dimova, L. Kardapoltsev, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitski, M. Sobol, O. Skovpen, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, S. Baidali, A. Izuhakov, V. Okhotnikov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, J.M. Vizan García

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, J. García-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorra, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte
University of Ruhuna, Department of Physics, Matara, Sri Lanka
N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, E. Brondolin, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, G. Cucciati, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, N. Deelen, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, F. Fallavollita, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, M. Gruchalla, M. Guilbaud, D. Gulhan, J. Hegeman, C. Heideggger, Y. Iiyama, V. Innocente, G.M. Innocenti, A. Jafari, P. Janot, O. Karacheban, J. Kieseler, A. Kornmayer, M. Krammer, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, S. Nourdakhsh, S. Orfanelli, L. Orsini, F. Panteleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas, A. Stakia, J. Steggemann, D. Treille, A. Tsirou, A. Vartak, M. Verzetti, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T.A. Gómez Espinosa, C. Grab, D. Hits, T. Klijnsma, W. Lustermann, R.A. Manzoni, M. Marionneau, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, M. Reichmann, C. Reissel, T. Reitenspiess, D. Ruini, D.A. Sanz Becerra, M. Schönberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amssler, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, S. Leontsinis, V.M. Mikuni, I. Neutelings, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, S. Wertz, A. Zucchetta

National Central University, Chung-Li, Taiwan
T.H. Doan, C.M. Kuo, W. Lin, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, S. Cerci, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, G. Gokbulut, Emine Gurpinar Guler, Y. Guler, I. Hos, C. Isik, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir, S. Ozturk, D. Sunar Cerci, B. Tali, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek
J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B.R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, D. Olivito, S. Padhi, M. Pieri, V. Sharma, M. Tadel, J. Wood, F. Würtzwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, C. Campagnari, M. Citron, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, H. Mei, A. Ovcharova, H. Qu, J. Richman, D. Stuart, S. Wang, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, J.M. Lawhorn, N. Lu, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J. Monroy, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrown, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. BauerDick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahm, V. O’Dell, K. Pedro, C. Pena, O. Prokofyev, G. Rakness, F. Ravera, A. Reinsvold, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Stробб, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes,
D. Curry, R.D. Field, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K.H. Lo, P. Ma, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang, X. Zuo

Florida International University, Miami, USA
Y.R. Joshi, S. Linn

Florida State University, Tallahassee, USA
T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, C. Schiber, R. Yohay

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopathkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani, T. Roy, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, C. Mills, M.B. Tonjes, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, O.K. Koseyan, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehting, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao

The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Enyo, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, S. Nabi, F. Ricci-Tam, M. Seidel, Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, A. Baty, R. Bi, S. Brandt, W. Busza, J.A. Cali, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. McGinn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, S. Kalafut, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, R. Rusack, M.A. Wadud
University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, R. Gonzalez Suarez,
R. Kamalieddin, I. Kravchenko, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA
A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker,
S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, D.M. Morse,
T. Orimoto, A. Tishelman-charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Trovato,
M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard,
K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko39, M. Planer,
R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji, A. Lefeld,
T.Y. Ling, W. Luo, B.L. Winer

Princeton University, Princeton, USA
S. Cooperstein, G. Dezoort, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham,
A. Kalogeropoulos, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo,
J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland, C. Tully, Z. Wang

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Mahakud,
D.H. Miller, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao,
W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, Arun Kumar, W. Li, B.P. Padley,
J. Roberts, J. Rorie, W. Shi, Z. Tu, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti,
A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, E. Ranken, P. Tan, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiariito, J.P. Chou, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan,
S. Kyriacou, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur,
S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen
University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, J. Heideman, G. Riley, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali\(^74\), A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon\(^75\), S. Luo, D. Marley, R. Mueller, D. Overton, L. Pernière, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, S. Kunori, K. Lamicchane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA
J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, I. De Bruyn, L. Dodd, B. Gomber\(^76\), M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, K. Long, R. Loveless, T. Ruggles, A. Savin, V. Sharma, N. Smith, W.H. Smith, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
3: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at University of Chinese Academy of Sciences, Beijing, China
8: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
9: Also at Joint Institute for Nuclear Research, Dubna, Russia
10: Also at Cairo University, Cairo, Egypt
11: Also at Suez University, Suez, Egypt
12: Now at British University in Egypt, Cairo, Egypt
13: Also at Zewail City of Science and Technology, Zewail, Egypt
14: Also at Purdue University, West Lafayette, USA
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
24: Also at Institute of Physics, Bhubaneswar, India
25: Also at Shoolini University, Solan, India
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
29: Also at ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT, Bologna, Italy
30: Also at CENTRO SICILIANO DI FISICA NUCLEARE E DI STRUTTURA DELLA MATERIA, Catania, Italy
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
33: Also at Kyunghee University, Seoul, Korea
34: Also at Riga Technical University, Riga, Latvia
35: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
36: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
37: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
38: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
39: Also at Institute for Nuclear Research, Moscow, Russia
40: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
41: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
42: Also at University of Florida, Gainesville, USA
43: Also at P.N. Lebedev Physical Institute, Moscow, Russia
44: Also at California Institute of Technology, Pasadena, USA
45: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
46: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
47: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
48: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
49: Also at National and Kapodistrian University of Athens, Athens, Greece
50: Also at Universität Zürich, Zurich, Switzerland
51: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Sırnak University, Sırnak, Turkey
54: Also at Beykent University, Istanbul, Turkey
55: Also at Istanbul Aydın University, Istanbul, Turkey
56: Also at Mersin University, Mersin, Turkey
57: Also at Piri Reis University, Istanbul, Turkey
58: Also at Gaziosmanpasa University, Tokat, Turkey
59: Also at Ozyegin University, Istanbul, Turkey
60: Also at Izmir Institute of Technology, Izmir, Turkey
61: Also at Marmara University, Istanbul, Turkey
62: Also at Kafkas University, Kars, Turkey
63: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
64: Also at Istanbul Bilgi University, Istanbul, Turkey
65: Also at Hacettepe University, Ankara, Turkey
66: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
67: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
68: Also at Monash University, Faculty of Science, Clayton, Australia
69: Also at Bethel University, St. Paul, USA
70: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
71: Also at Bingol University, Bingol, Turkey
72: Also at Sinop University, Sinop, Turkey
73: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
74: Also at Texas A&M University at Qatar, Doha, Qatar
75: Also at Kyungpook National University, Daegu, Korea
76: Also at University of Hyderabad, Hyderabad, India