Abstract

In this paper, we prove an unique existence theorem of globally in time strong solutions to free boundary problem for the Navier-Stokes equations in an exterior domain in the case that initial data are small enough. The key step is to prove decay properties of locally in time solutions, which is derived by combination of maximal $L^r_t L^q_x$ regularity with $L^r_t L^q_x$ decay estimates for solutions of slightly perturbed Stokes equations with free boundary condition in an exterior domain.

Keywords: Navier-Stokes equations; Free boundary problem; Global wellposedness; Exterior domain; Polynomial decay; Maximal $L^r_t L^q_x$ regularity

Introduction

This paper deals with global well-posedness of the following free boundary problem for the Navier-Stokes equations. Let Ω be an exterior domain in the N dimensional Euclidean space \mathbb{R}^N occupied by an incompressible viscous fluid. Let Γ be the boundary of Ω that is a C^2 compact hyper surface with the unit outer normal n. Let Ω evolve the boundary of Ω with the unit outer normal n. Let ρ and μ be positive numbers denoting the mass density and the viscosity coefficient, respectively. Let $\Gamma_0 = \Gamma_t \cap \{t = 0\}$ be the transposed Γ, and by $\nabla \Gamma$ the normal vector field on Γ. Let T be the time. Moreover, for any matrix field K with (i,j) component K_{ij} the quantity $\text{Div} K$ is an N vector of functions whose i^{th} component is $\sum_{j=1}^N K_{ij}$ and for any N vector of function $\mathbf{w} = (w_1, \ldots, w_N)$, $\text{Div} \mathbf{w} = \sum_{j=1}^N \partial_j w_j$ and the quantity $\nabla \cdot \mathbf{w}$ is an N-vector of functions whose i^{th} component is $\sum_{j=1}^N \partial_j w_i$.

One phase problem for the Navier-Stokes equations formulated in (1) with $\mu D\left(\frac{\partial \mathbf{u}}{\partial t}\right) = c_\sigma H_n \mathbf{u}$ in place of $\mu D\left(\frac{\partial \mathbf{u}}{\partial t}\right) = 0$ has been received wide attention for many years, where H is the doubled mean curvature of Γ_t and c_σ is a non-negative constant describing the coefficient of surface tension. In particular, the following two cases have been studied by many mathematicians: (1) the motion of an isolated liquid mass and (2) the motion of a viscous incompressible fluid contained in an ocean of infinite extent. In case (1), the initial domain Ω_0 is bounded and local well posedness in the case that $c_\sigma > 0$ was proved by Solonnikov [1-4] in the L_2 Sobolev-Slobodetskii space, by Schweizer [5] in the semi group setting, and by Mogilevskii and Solonnikov [6] in the Holder spaces. And, in the case that $c_\sigma = 0$, local well posedness was proved by Solonnikov [7], Mucha and Zajačkowski [8,9] in the L_2 Sobolev-Slobodetski space, and by Shibata and Shimizu [10,11] in the L_2 in time and L_2 in space setting. Global wellposedness in the case that $c_\sigma > 0$ for small initial data by Solonnikov [4,7] in the L_2 Sobolev-Slobodetski space and by Shibata and Shimizu [12] in the L_2 in time and L_2 in space setting. Global wellposedness in the case that $c_\sigma > 0$ was proved under the assumption that the initial domain Ω_0 is sufficiently close to a ball and initial data are very small by Solonnikov [13] in the L_2 Sobolev-Slobodetski space, by Padula and Solonnikov [14] in the Holder spaces, and by Shibata [15] in the L_2 in time and L_2 in space setting.

In case (2), the initial domain Ω_0 is a perturbed layer like: $\Omega_0 = \{x \in \mathbb{R}^3 \mid -b < x_3 < \eta(x') , x' = (x_1, x_2) \in \mathbb{R}^2\}$ and local wellposed was proved by Allain [16], Beale [17] and Tani [18] in the L_2 Sobolev-Slobodetski space when $c_\sigma > 0$ and by Abels [19] in the L_2 Sobolev-Slobodetski space when $c_\sigma = 0$.

Global wellposedness for small initial velocity was proved in the L_2 Sobolev-Slobodetski space by Beale [20] and Tani and Tanaka [21] in the case that $c_\sigma > 0$ and by Sylvester [22] in the case that $c_\sigma = 0$. The decay rate was studied by Beale and Nishida [23], Sylvestre [24], Hayata [25], and Hayata and Kawashima [26]. In the case of the Ocean problem without bottom, $\Omega_0 = \{x \in \mathbb{R}^3 \mid x_3 < \eta(x') , x' = (x_1, x_2) \in \mathbb{R}^2\}$.
In this case, global well posedness for small initial data and the decay properties of solutions have been studied by Saito and Shibata [28,29]. Recently, local well-posedness for the one phase problem of the Navier-Stokes equations was proved in the general unbounded domain case by Shibata [12] in the $c\sigma=0$ case and by Shibata [29,30] in the case $c\sigma > 0$.

We remark that two phase problem of the Navier-Stokes equations has been studied by many math-ematicians, [31-46], and references therein. Although many papers dealt with global well-posed, as far as the author knows, global well-posedness of free boundary problem for the Navier-Stokes equations in an exterior domain has never betreated, and the purpose of this paper is to prove global well-posedness of problem (1) in the L_2 in time and L_∞ in space setting. Since only polynomial decays are obtained for solutions of Stokes equations with free boundary conditions in the exterior domain case; [47,48], it is necessary to choose a large exponent p to guarantees L_p integrability of solutions, so that the maximal $L_p - L_{\infty}$ regularity for the Stokes equations with free boundary condition is proved in Shibata [30,49,50] and also in Pruess and Simonett [40] in the different p and q case are one of essential tools.

Now we consider the transformation that transforms Ω_1 to a fixed domain. If Ω is a bounded domain, then we have the exponential stability of the corresponding Stokes equations with free boundary conditions in some quotient space, so that we can use the Lagrange transformation to transform Ω to Ω_e [7,12]. But, is now an exterior domain, so that solutions of the Stokes equations with free boundary conditions decay polynomially as mentioned above. Thus, the Lagrange transformation is not available, because the polynomial decay does not seem to be enough to control the term $\int_0^T \mathcal{A}(\mathcal{L}^2) ds$. Another known transformation is the Hanzawa one. But, this transformation requires at least the $W^{1,\mathcal{L}}(N < q)$ regularity of the height function representing Γ, and such regularity is usually derived from surface tension. In our case, surface tension is not taken into account, so that such regularity is unable to be obtained. To overcome such difficulty, our idea is to use the Lagrange transformation only near Γ.

Let R be a positive number such that $O = \mathbb{R}^3 \setminus \Omega \subset B_{2R} = B_{R^3}$, where $B_{2R} = \{x \in \mathbb{R}^3 \mid |x| < 2R\}$, and let κ be a C^∞ function such that $\kappa(\xi) = 1$ for $|\xi| < R$ and $\kappa(\xi) = 0$ for $|\xi| > 2R$. Let $\mathbf{v}(\xi,t)$ and $\mathbf{g}(\xi,t)$ be the velocity field and the pressure field in Lagrange coordinates ξ. Let us consider a transformation, $\mathbf{x} = \mathbf{L}(\xi,t) := \xi + \int_0^t \kappa(\xi) \mathbf{v}(\xi,s) ds,$

\begin{equation}
\mathbf{x} = \mathbf{L}(\xi,t) := \xi + \int_0^t \kappa(\xi) \mathbf{v}(\xi,s) ds.
\end{equation}

Let δ be a positive number such that the transformation: $\mathbf{x} = \mathbf{L}(\xi,t)$ is bijective from $O\Omega$ on to $O\Omega = \{\mathbf{x} = \mathbf{L}(\xi,t) | \xi \in \Omega\}$ for each $t \in (0,T)$ provided that

\begin{equation}
\int_0^T \|\mathbf{v}(\kappa(\cdot) \mathbf{v}(\cdot,s))\|_{L_2(\Omega)} ds \leq \delta.
\end{equation}

Since δ will be chosen as a small positive number eventually, we may assume that $0 < \delta \leq 1$. Let $t(\ell) = \delta_0 + \int_0^\ell \frac{1}{\kappa^2(\xi)} (\kappa(\xi) \mathbf{v}(\xi,s) ds = v_{\ell}(\ell) + \cdots + v_{\ell}(s) \big]$, $A(t)(\ell) = A(t)(\ell)$

\begin{equation}
t(\ell) = \delta_0 + \int_0^\ell \frac{1}{\kappa^2(\xi)} (\kappa(\xi) \mathbf{v}(\xi,s) ds = v_{\ell}(\ell) + \cdots + v_{\ell}(s) \big], \quad A(t)(\ell) = A(t)(\ell),
\end{equation}

where δ_0 are the Kronecker delta symbols, that is $\delta_0 = 1$ and $\delta_{j} = 0$ for $i \neq j$. Here and hereafter, a function $a = a(\xi)$ is written simply by $a(t)$ and (a_t) denotes the $N \times N$ matrix whose (i,j) component is a_{ij} unless confusion may occur. For a while, we assume that the $N \times N$ matrix $(a(\xi))$ is invertible.

\[\mathbf{v} \mathbf{-} \operatorname{Div} (\mathbf{D}(\mathbf{v}) - q) = \mathbf{f}(\mathbf{v}), \quad \text{in } \Omega \times (0,T), \]

\[\mathbf{D}(\mathbf{v}) - q \mathbf{I} = \mathbf{h}(\mathbf{v}) \quad \text{on } \Gamma \times (0,T), \]

\[\mathbf{v}_t = 0 \quad \text{in } \Omega. \]

Here, $\mathbf{f}(\mathbf{v})$ is consisting of some linear combinations of nonlinear functions of the forms

\begin{equation}
V_{\ell,m}^i j(a(\mathbf{v})) d\Omega \mathbf{v}, \quad V_{\ell,n}^i j(a(\mathbf{v})) d\Omega \mathbf{v}, \quad \text{and } \mathbf{v} \mathbf{D}(\mathbf{v}) - q \mathbf{I} = \mathbf{h}(\mathbf{v}) \quad \text{are nonlinear functions of the forms of the}\end{equation}

\begin{equation}
g(\mathbf{v}) \mathbf{v}, \quad g(\mathbf{v}) \mathbf{D}(\mathbf{v}) g(\mathbf{v}) \mathbf{v}, \quad \mathbf{h}(\mathbf{v}) = V_{\ell,n}^i j(a(\mathbf{v})) d\Omega \mathbf{v}, \quad \text{and } \mathbf{h}(\mathbf{v}) \mathbf{v} \mathbf{v}, \quad \text{are the Kronecker delta symbols, that is}
\end{equation}

\[\text{with some nonlinear functions } V_{\ell,n}^i j, \text{such that } V_{\ell,n}^i j = 0 \text{ except for } i = 2. \]

The main result of this paper is the following theorem that shows the unique existence theorem of global in time solutions of Eq. (5) and asymptotics as $t \to \infty$.

Theorem 1

Let $N \geq 3$ and let q_1 and q_2 be exponents such that

\[\max \left\{ \frac{N}{N-2}, \frac{2N}{N-2} \right\} < q_1 < \infty \quad \text{and} \quad 1/q_1 = 1/q_2 + 1/N. \]

Let b and p be numbers defined by

\[b = \frac{3N}{2q_1} + \frac{1}{2}, \quad p = \frac{2q_2(1 + \sigma)}{q_2 - N} \]

with some very small positive number σ. Then, there exists an $\varepsilon > 0$ such that if initial data $u_0 \in B_{q_1,p}^1(\Omega)$, $\mathcal{N} \cong B_{q_1,p}^1(\Omega)$ satisfies the compatibility condition:

\[\mathbf{D}(u_0) \mathbf{n} < \mathbf{D}(u_0) \mathbf{n} \mathbf{n} > \mathbf{n} = 0 \quad \text{on } \Gamma \]

and the smallness condition: with $I = \|u_0\| B_{q_1,p}^1 + \|u_0\| B_{q_1,p}^1$, then Eq. (5) admits unique solutions v and q with
Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain

\[v \in L^p((0,T)H^2(\Omega)^N) \cap H^1_t((0,T)L_q(\Omega)^N), \quad q \in L^p((0,T)H^1(\Omega)^N) \cap H^1_s(\Omega)^N, \]

possessing the estimate \[\|v\|_\infty \leq C \varepsilon \]

\[\left[\frac{1}{p'} - \frac{1}{p} \right] \leq -\frac{1}{N} \left(\frac{2 - 1}{1} \right) \]

Let \(h = h(x) \), \(q' \) is an \(N \times N \) matrix of functions \(q'' \) is an \(N \) vector whose \(i \) component is \(\partial_i h \). Given exponent \(1 < q < \infty \), let \(q' = q/(q-1) \).

Let \(L^q(\Omega), H^m_q(\Omega) \) and \(B^r_{q,p}(\Omega) \) be the standard Lebesgue, Sobolev, and Besov spaces on \(\Omega \), while \(\| \cdot \| L^q(\Omega), \| \cdot \| H^m_q(\Omega), \| \cdot \| B^r_{q,p}(\Omega) \) denote their norms, respectively. For a Banach space \(X \) with norm \(\| \cdot \| X \),

\[w \in L^q((0,T)H^1(\Omega))^N \cap H^1_t((0,T)L_q(\Omega))^N, \quad q \in L^p((0,T)H^1(\Omega))^N \cap H^1_s(\Omega)^N, \]

Finally, in Sect. 5, we prove Theorem 1 by using maximal \(L^{q_1}_t L^{q_2}_x \) regularity and \(L^{q_1}_x L^{q_2}_t \) decay estimates for solutions of the perturbed Stokes equations with free boundary condition in an exterior domain, which was proved in Shibata [30, 47].

Another formulation of Eq. (5)

Let \(T > 0 \) and let

\[v \in H^1_t((0,T)L_q(\Omega)^N) \cap H^1_s((0,T)L_q(\Omega)^N), \quad q \in L^p((0,T)H^1(\Omega)^N) \cap H^1_s(\Omega)^N, \]

be solutions of Eq. (5) satisfying the condition (3). In what follows, we rewrite Eq. (5) in order that the nonlinear terms have suitable decay properties.

We can choose \(\delta > 0 \) so small that \(x = L^s(\xi, t) \) is a diffeomorphism with suitable regularity from \(\Omega \) onto \(\Omega_* \), so that the original problem (1) is globally well-posed.

Finally, we explain several symbols used in this paper. We use bold small letters to denote \(N \)-vectors of functions and bold capital letters to denote \(N \times N \) matrix of functions. For a scalar function \(h = h(x) \), \(\forall x \in \Omega \) is an \(N \) vector whose \(i \) component is \(\partial_i h \).

\[\frac{1}{q_1} + \frac{1}{q_2} = \frac{1}{q_3} + \frac{1}{q_4} + \frac{1}{q_5}. \]

And the condition: \(q_2 > 2N/N-2 \) implies that \(q_2 > 2 \) and \(q_1 > 1 \) which is necessary to prove Theorem 1.

Thus, we assume that \(\max \{ N, 2N/N-2 \} < q_2 < \infty \).

Remark 4

We can choose \(\delta > 0 \) so small that \(x = L^s(\xi, t) \) is a diffeomorphism with suitable regularity from \(\Omega \) onto \(\Omega_* \), so that the original problem (1) is globally well-posed.

Finally, we explain several symbols used in this paper. We use bold small letters to denote \(N \)-vectors of functions and bold capital letters to denote \(N \times N \) matrix of functions. For a scalar function \(h = h(x) \), \(\forall x \in \Omega \) is an \(N \) vector whose \(i \) component is \(\partial_i h \).

\[\frac{1}{q_1} + \frac{1}{q_2} = \frac{1}{q_3} + \frac{1}{q_4} + \frac{1}{q_5}. \]

And the condition: \(q_2 > 2N/N-2 \) implies that \(q_2 > 2 \) and \(q_1 > 1 \) which is necessary to prove Theorem 1.

Thus, we assume that \(\max \{ N, 2N/N-2 \} < q_2 < \infty \).

Remark 4

We can choose \(\delta > 0 \) so small that \(x = L^s(\xi, t) \) is a diffeomorphism with suitable regularity from \(\Omega \) onto \(\Omega_* \), so that the original problem (1) is globally well-posed.
Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain

Let \mathbf{b}_y and K defined on $(\mathbf{w} / |\mathbf{w}| \leq 1)$ such that $b_y(0) = k(0) = 0$, where \mathbf{w} is the corresponding variable to $(v(x(s), s)ds$. Let $u(x, t) = \mathbf{v}(x, t)$ and $p(x, t) = q(\mathbf{v}, t)$ and then u and p satisfy Eq. (1). By (14),

$$\sum_{j=1}^{\infty} \frac{\partial u_j}{\partial x_j} + \sum_{j=1}^{\infty} J(t)a_{yj}(\mathbf{v}) = \sum_{j=1}^{\infty} \frac{\partial}{\partial x_j} \left(J(t)a_{yj}(\mathbf{v}) \right)$$

which implies that

$$\sum_{j,k=1}^{\infty} \frac{\partial a_{yj}(\mathbf{v})}{\partial x_j} = \sum_{j,k=1}^{\infty} \frac{\partial}{\partial x_k} \left(a_{yj}(\mathbf{v}) + J(t)a_{yj}(\mathbf{v}) \right)$$

And then, Eq. (5) is written as follows:

$$\sum_{j,k=1}^{\infty} \frac{\partial a_{yj}(\mathbf{v})}{\partial x_j} = \sum_{j,k=1}^{\infty} \frac{\partial}{\partial x_k} \left(a_{yj}(\mathbf{v}) + J(t)a_{yj}(\mathbf{v}) \right)$$

Where \mathbf{v} runs from 1 through N. Here, we have used the fact that $(\ell_y) = A^\dagger$ which follows from (4).

In order to get some decay properties of the nonlinear terms, we write

$$\int_0^T (V(\mathbf{v}(x(s), s)ds) = \int_0^T \int_0^T (V(\mathbf{v}(x(s), s)ds$$

In (16), by the Taylor formula we write

$$a_{yj}(T) = a_{yj}(T) + A_{yj}(t), \quad \ell_{yj}(t) = \ell_{yj}(T) + L_{yj}(t),$$

$$D_{yj} = D_{yj}(T + D_{yj}(t)\Delta v)$$

With

$$A_{yj}(t) = \int_0^t \int_0^s (V(\mathbf{v}(x(s), s)ds$$

Where b_{yj} and K are derivatives of b_y and K with respect to w. By the relation:

$$\sum_{j=1}^{\infty} a_{yj}(T) = \delta_{yj}$$

the first equation in (20) is rewritten as follows:

$$\partial_T v_j - \mu \sum_{j,k=1}^{\infty} \frac{\partial}{\partial x_j} \left(a_{yj}(T) \frac{\partial}{\partial x_k} (v_j) - \delta_{yj} q = f_w(v)$$

With

$$f_w(v) = \sum_{j=1}^{\infty} a_{yj}(T) \frac{\partial}{\partial x_j} \left(a_{yj}(T) v_j \right)$$

Next, by (18)

$$\partial_T v = g(v) = \partial_T g$$

With

$$\partial_T G = \sum_{j=1}^{\infty} a_{yj}(T) \frac{\partial}{\partial x_j} \left(a_{yj}(T) v_j \right)$$

Finally, we consider the boundary condition. Let \mathbf{n} be an N - vector defined on \mathbf{R}^N such that $\mathbf{n} = \mathbf{n}$ on Γ and $\parallel \mathbf{n} \parallel H^1_\Gamma(\mathbf{R}^N) \leq C$. In what follows, $\hat{\mathbf{n}}$ is simply written by $\mathbf{n} = (n_1, \ldots, n_N)$. By (14) and (22)

$$\sum_{j=1}^{\infty} a_{yj}(T) (\mu M_{yj}(v) - \delta_{yj} q)n_j = h_{w}(v)$$

with

$$h_{w}(v) = -\mu \sum_{j=1}^{\infty} a_{yj}(T) (\mu M_{yj}(v) - \delta_{yj} q)n_j = -\mu \sum_{j=1}^{\infty} a_{yj}(T) D_{yj}(T)(\mu M_{yj}(v) - \delta_{yj} q)n_j$$

By (18),

$$\sum_{j=1}^{\infty} a_{yj}(T) (\mu M_{yj}(v) - \delta_{yj} q) = \partial_T \sum_{j=1}^{\infty} \frac{\partial}{\partial x_j} \left(a_{yj}(T) D_{yj}(T)(\mu M_{yj}(v) - \delta_{yj} q) \right)$$

And...
Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain

\[
\sum_{j=1}^{N} a_{ij}(T) D_{ij}(v) (v) a_{ij}(T) (v) = \sum_{j=1}^{N} a_{ij}(T) (v) a_{ij}(T) (v) - \delta_{ij} a_{ij}(T) (v)
\]

Thus, letting

\[
S_{nk}(v, q) = \sum_{j=1}^{N} J(T) a_{ij}(T) (\mu D_{ij}(v) (v) - \delta_{ij} q), \quad \tilde{S}(v, q) = \left\{ S_{nk}(v, q) \right\},
\]

\[
t(v) = \left(f_1(v), \ldots, f_N(v) \right), \quad h(v) = \left(h_1(v), \ldots, h_N(v) \right),
\]

and using (18), we see that \(v \) and \(q \) satisfy the following equations:

\[
\begin{cases}
\partial_t v - J(T) \nabla \tilde{S}(v, q) = f(v) & \text{in } \Omega \times (0, T), \\
\text{div } v = g(v) = \text{div } g & \text{in } \Omega \times (0, T), \\
\tilde{S}(v, q) n = h(v) & \text{on } \Gamma \times (0, T), \\
\n v |_{t=0} = u_0 & \text{in } \Omega.
\end{cases}
\]

Estimates for the Nonlinear Terms

Let \(f(v), g(v), \) and \(h(v) \) are functions defined in Sect. 2. In this section, we estimate these functions. In what follows, we write

\[
\begin{align*}
&\sup_{v \in B^{1+\beta}(\mathbb{R}^N)} \| f(t) \|_{L_p(0, T)} \leq C \| u_0 \|_{L_p}^{1+\beta}, \\
&\| f(t) \|_{L_p(0, T)} \leq C \| u_0 \|_{L_p}^{1+\beta}.
\end{align*}
\]

First, we prove that

\[
\| f(t) \|_{L_p(0, T)} \leq C \| u_0 \|_{L_p}^{1+\beta} \cdot
\]

with \(I = \| f(t) \|_{L_p(0, T)} \). Here and in what follows, \(C \) denotes generic constants independent of \(I, v, \delta, \) and \(T \).

The value of \(C \) may change from line to line. Since we choose \(I \) small enough eventually, we may assume that \(0 < I \leq 1 \). Especially, we use the estimates:

\[
I^{1/2} \leq I, \quad I \left[v \right]_{L_p}^{1/2} \leq \frac{1}{2} \left[I \left[v \right]_{L_p}^{1/2} \right] \leq I + \left[v \right]_{L_p}^{1/2}
\]

Since

\[
\int_a^b \| \nabla (\kappa v) \|_{L_1(\Omega)} ds \leq C(1 + a) \left[\int_a^b \| v \|_{L_1(\Omega)} ds \right]^{1/ \alpha},
\]

\[
\int_a^b \| \nabla^2 (\kappa v) \|_{L_1(\Omega)} ds \leq C(1 + a) \left[\int_a^b \| v \|_{L_1(\Omega)} ds \right]^{1/ \alpha}
\]

for any \(0 < \alpha < T \), where \(q \in \left[1, q_2 \right] \), we have

\[
\begin{align*}
\int_a^b \| \nabla (\kappa v) \|_{L_1(\Omega)} ds & \leq C \| v \|_{L_1(\Omega)} \left(1 + \alpha \right) , \\
\int_a^b \| \nabla^2 (\kappa v) \|_{L_1(\Omega)} ds & \leq C \| v \|_{L_1(\Omega)}
\end{align*}
\]

for any \(0 < \alpha < T \), where \(q \in \left[1, q_2 \right] \), because

\[
h > \frac{N}{2q_2} + \frac{1}{q_2}
\]

as follows from (11). By real interpolation, theorem, we have

\[
sup_{v \in B^{1+\beta}(\mathbb{R}^N)} \| f(t) \|_{L_p(0, T)} \leq C \| u_0 \|_{L_p}^{1+\beta}
\]

To prove (29), we introduce an operator \(T(t) \) acting of \(g \in B^{1+\beta}(\mathbb{R}^N) \) defined by

\[
T(t) = F^{-1} e^{-i t \tilde{g}} F [\tilde{g}(\tilde{\xi})],
\]

where \(F \) and \(F^{-1} \) denote the Fourier transform in \(\mathbb{R}^N \) and its inverse transform. We have

\[
e^{it} T(t) \| L_p(0, T) L_2(\Omega) \| \leq C \| g \|_{L_p(0, T) L_2(\Omega)}^{1+\beta}
\]

(30)

Given \(f(t) \) defined on \(0, T \) with \(f \mid_{t=0} = 0 \), let

\[
\begin{align*}
[e_r, f(t)] = \begin{cases} 0 & (t < 0), \\
f(t) & (0 < t < T), \\
(f(2T - t) - f(t)) & (T < t < 2T), \\
0 & (2T < t),
\end{cases}
\]

and then \([e_r, f(t)] = [f(t)] \) for \(t \in 0, T \) and

\[
\begin{align*}
\partial_t [e_r, f(t)] = \begin{cases} 0 & (t < 0), \\
\partial_t f(t) & (0 < t < T), \\
(\partial_t f(T - t)) & (T < t < 2T), \\
0 & (2T < t),
\end{cases}
\]

Let \(\tilde{u}_0 \) be an \(N \)-vector of functions in \(B^{1+\beta}(\mathbb{R}^N) \) such that

\[
\| \tilde{u}_0 \|_{B^{1+\beta}(\mathbb{R}^N)} \leq C \| u_0 \|_{L_p}^{1+\beta}.
\]

Let \(z = e_r, \; \tilde{u}_0 \) be a function in \(0 \in \mathbb{R} \) by (31), (32), and (33),

\[
\| z \|_{L_p(0, \infty), H_0^1(\Omega)} + \| z \|_{L_p(0, \infty), L_2(\Omega)} \leq C \left(\frac{N}{2q_2} + \frac{1}{q_2} \right) \| L_p(0, \infty), H_0^1(\Omega) \| + \left(\frac{N}{2q_2} + \frac{1}{q_2} \right) \| L_p(0, \infty), L_2(\Omega) \|
\]

(34)

It is known (Tanabe [51]) that

\[
L_p \left(0, \infty \right) \cap H_0^1 \left(0, \infty \right) \text{ is continuously imbedded into } BUC \left(0, \infty \right), \quad \left(E_0, E_1 \right),
\]

where \(E_0 \) and \(E_1 \) are two
Banach spaces such that E_1 is a dense subset of E_∞, and BUC denotes the set of all uniformly bounded continuous functions. Noting that
\[z \left(\frac{t}{N} + \frac{N}{2q_2} \right) \quad \text{for} \quad t \in \left(0, T \right), \text{we have} \]
\[\sup_{0 < t < T^*} \left\| v(t) \right\|_{L^2(0, \Omega)} \leq \sup_{0 < t < T^*} \left\| \nabla v(t) \right\|_{L^2(0, \Omega)} \leq C \left\| \int_{\Gamma_{0}(0, \Omega)} \frac{\partial v}{\partial n} \right\|_{L^2(0, \Omega)} + \left\| T \right\|_{L^2(0, \Omega)} \]
which, combined with (34), furnishes (29).

Since
\[\frac{2}{p'} + \frac{N}{q_2} < 1, \quad B^{2(1-\frac{1}{p})} \quad \text{is continuously imbedded into} \quad H^1_\infty \quad \text{so that by (29)} \]
\[\left\| v(t) \right\|_{L^p(0, T^*)} \leq C \left[1 + \left\| v \right\|_{L^p(0, T^*)} \right] \]

(35)

Applying (3), (28) and (29) to the formulas in (15) and (16) and using the fact that
\[-b + \frac{1}{p'} \frac{N}{2q_2} \leq -\frac{N}{2q_2} \quad \text{and} \quad -b + \frac{N}{2q_2} \leq -\frac{N}{2q_2} \]
which follows from (11), give
\[\left\| (a_{ij}(t), J(t), \ell_{ij}(t), A_{ij}(t), J(t), L_{ij}(t)) \right\|_{L^P_\infty(\Omega)} \leq C, \]
\[\left\| (A_{ij}(t), J(t), L_{ij}(t)) \right\|_{L^p_{\infty}(\Omega)} \leq C \int_{\Omega} \left[\nabla (xv(\cdot, t)) \right]_{2(1-\frac{1}{p})} \leq C \left\| v \right\|_{L^p_{\infty}(\Omega)} \]
\[\left\| \nabla (a_{ij}(t), J(t), \ell_{ij}(t), A_{ij}(t), J(t), L_{ij}(t)) \right\|_{L^p_{\infty}(\Omega)} \leq C \int_{\Omega} \left[\nabla (xv(\cdot, t)) \right]_{2(1-\frac{1}{p})} \leq C \left\| v \right\|_{L^p_{\infty}(\Omega)} \]
\[\leq C \int_{\Omega} \left[\nabla (xv(\cdot, t)) \right]_{2(1-\frac{1}{p})} \leq C \left[1 + \left\| v \right\|_{L^p_{\infty}(\Omega)} \right] \quad \text{for any} \quad t \in \left(0, T \right), \text{where} \quad q \in \left[1, q_2 \right]. \]

Moreover, we have
\[(a_{ij}(t), J(t), \ell_{ij}(t), A_{ij}(t), J(t), L_{ij}(t)) = 0 \quad \text{for} \quad x \notin B_{2R} \quad \text{and} \quad t \in [0, T] \]

(37)

By (36) and (37),
\[\left\| (a_{ij}(T), L_{ij}(t), \ell_{ij}(t), a_{ij}(t), J(t), L_{ij}(t)) \right\|_{L^P_{\infty}(\Omega)} \leq C \left\| v \right\|_{L^p_{\infty}(\Omega)} \]
for any $q \in \left[1, q_2 \right]. Since \quad \frac{1}{p'} < b + \frac{N}{2q_2} \text{ as follows from (11), we have}
\[\left\| v(t) \right\|_{L^p_{\infty}(\Omega)} \leq C \left[1 + \left\| v \right\|_{L^p_{\infty}(\Omega)} \right] \quad \text{for any} \quad q \in \left[1, q_2 \right]. \]

Next, by Holder’s inequality,
\[\left\| v(t) \right\|_{L^p_{\infty}(\Omega)} \leq C \left[1 + \left\| v \right\|_{L^p_{\infty}(\Omega)} \right] \quad \text{for any} \quad q \in \left[1, q_2 \right]. \]

(36)

so that by (36), we have
\[\left\| v(t) \right\|_{L^p_{\infty}(\Omega)} \leq C \left[1 + \left\| v \right\|_{L^p_{\infty}(\Omega)} \right] \quad \text{for any} \quad q \in \left[1, q_2 \right]. \]

Since
Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain

\[
\begin{align*}
< t >^b \left\| \mathbf{v} \mathbf{v}(t) \right\|_{L^2_p(\Omega)} &\leq t >^b \left\| \mathbf{v}(t) \right\|_{L^\infty_p(\Omega)} < t >^b \left\| \mathbf{v}(t) \right\|_{L^2_p(\Omega)}, \\
&\text{by (36)}
\end{align*}
\]

Since

\[
\frac{\partial}{\partial z_k} (D_{ij}(\mathbf{v})) = \sum_{m=1}^N (a_m(T) \frac{\partial^2 v_i}{\partial z_k \partial z_m} + a_m(T) \frac{\partial^2 v_j}{\partial z_k \partial y_m}) + \sum_{m=1}^N \left(\frac{\partial}{\partial z_k} a_m(T) \frac{\partial v_i}{\partial z_m} + \frac{\partial}{\partial z_k} a_m(T) \frac{\partial v_j}{\partial y_m} \right), \text{ by (36)}
\]

\[
< t >^b \left\| a_m(T) \mathbf{v}(t) \right\|_{L^2_p((0,T),L^2_q(\Omega))} \leq C[\mathbf{v}]^2_{T}
\]

for any \(q \in \left[1, q_2 \right] \) and therefore

\[
\left\|< t >^b a_m(T) \mathbf{v}(t) \right\|_{L^2_p((0,T),L^2_q(\Omega))} \leq C[\mathbf{v}]^2_{T}
\]

for any \(q \in \left[1, q_2 \right] \). Since

so that

\[
< t >^b \left\| a_m(T) \mathbf{v}(t) \right\|_{L^2_p((0,T),L^2_q(\Omega))} \leq C[\mathbf{v}]^2_{T}
\]

for any \(q \in \left[1, q_2 \right] \). Analogously, we have

\[
< t >^b a_m(T) \mathbf{v}(t) \right\|_{L^2_p((0,T),L^2_q(\Omega))} \leq C[\mathbf{v}]^2_{T}
\]

for any \(q \in \left[1, q_2 \right] \). Summing up, we have obtained (27).

Next, we consider \(g \) and \(g \). To estimate the \(H^2_p(\Omega) \) norm, we use the following lemma.

Lemma 5.

Let \(f \in H^1_p(\mathbb{R}, L^\infty_p(\Omega)) \) and \(g \in H^2_p(\mathbb{R}, L^2_q(\Omega)) \). Assume that \(f(x, t) = 0 \) for \((x, t) \not\in B^e \times \mathbb{R} \).

Then,

\[
\left\| f \mathcal{g} \right\|_{H^2_p(\mathbb{R}, L^2_q(\Omega))} \leq C \left\| f \right\|_{H^1_p(\mathbb{R}, L^\infty_p(\Omega))} \left\| \mathcal{g} \right\|_{H^2_p(\mathbb{R}, L^2_q(\Omega))}
\]

Proof: To prove the lemma, we use the fact that

\[
H^2_p(\mathbb{R}, L^2_q(\Omega)) = L^p(\mathbb{R}, L^\infty_p(\Omega), H^2_p(\mathbb{R}, L^2_q(\Omega))
\]

Citation: Shibata Y (2017) Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain. Fluid Mech Res Int 1(2): 00008. DOI: 10.15406/fmrij.2017.01.00008
where \((\cdot, \cdot)_{q_2} \) denotes a complex interpolation functor. Let \(q \in \left[1, q_2 \right] \). Noting that \(f(x, t) = 0 \) for \((x, t) \not\in B_x \times \mathbb{R} \), we have
\[
\left\| \tilde{f} \right\|_{L^{q_2}(\Omega)} \leq \left\| f \right\|_{L^{q_2}(\Omega)} + \right\| \mathcal{G} f \right\|_{L^{q_2}(\Omega)},
\]
and therefore
\[
\left\| \tilde{f} \right\|_{L^{p}(\mathbb{R}, L^{q_2}(\Omega))} \leq C \left\| \mathcal{G} f \right\|_{L^{p}(\mathbb{R}, L^{q_2}(\Omega))}.
\]
for any \(q \in [1, 1] \). Moreover, we easily see that
\[
\left\| \tilde{f} \right\|_{L^{p}(\mathbb{R}, L^{q_2}(\Omega))} \leq C \left\| \mathcal{G} f \right\|_{L^{p}(\mathbb{R}, L^{q_2}(\Omega))}.
\]
Thus, by (40), we have (39), which completes the proof of Lemma 5.

To use the maximal \(L^{p} - L^{q} \) estimate, we have to extend \(f, g \) and \(h \) to \(\mathbb{R} \). For this purpose, we introduce an extension operator \(\tilde{e}_r \). Let \(f \) be a function defined on \((0, T) \) such that \(f_{|_{t=T}} = 0 \), and then \(\tilde{e}_r \) is an operator acting on \(f \) defined by
\[
[\tilde{e}_r f(t)] = \begin{cases} 0 & (t > T), \\ f(t) & (0 < t < T), \\ f(-t) & (-T < t < 0), \\ 0 & (t < -T). \end{cases}
\]

Lemma 6

Let \(1 < p < \infty, 1 \leq q \leq q_2 \) and \(0 \leq a < b \). Let \(f \in H^1_{\mathcal{Q}}((0, T), L^{q_2}(\Omega)) \) and \(g \in H^1_{\mathcal{Q}}((0, T), L^{q_2}(\Omega)) \cap L^p((0, T), H^2_q(\Omega)) \). Assume \(f_{|_{t=T}} = 0 \) and \(f = 0 \) for \((x, t) \not\in B_2 \times \mathbb{R} \). Let \(t > (1 + t^2)^{1/2} \). Then we have
\[
\left\| \tilde{e}_r (t > a)^{-a} f \nabla g \right\|_{H^1_{\mathcal{P}}(\mathbb{R}, L^{q_2}(\Omega))} \leq C \left\| f \right\|_{H^1_{\mathcal{Q}}((0, \infty), L^{q_2}(\Omega))}
\]
\[
\times \left\{ \left\| g \right\|_{L^p((0, T), H^2_q(\Omega))} + \left\| g \right\|_{L^p((0, T), L^{q_2}(\Omega))} \right\} \left\| \nabla [g_{|_{t=0}} = 0] \right\|_{B_{q_2,p}^{2(1-1/p)}}(\Omega).
\]

Proof: Let \(f_0(t) = t > a^{b-n} \) \(f(t) \) and \(g_0(t) = t > a^{b-n} \) \(g(t) \), and then \(t > a^{b-n} \) \(f \nabla g = f_0 \nabla g_0 \). Let \(T \) \(f \) be the operator given in (30) and let \(h \) be a function in \(B_{q_2,p}^{2(1-1/p)}(\mathbb{R}^N) \) such that \(h = g \) \(f_{|_{t=0}} = 0 \) in \(\Omega \) and \(h = g \) \(f_{|_{t=0}} = 0 \) in \(\Omega \). Let \(\tilde{g}(t) = e_r [g_0 - T (t) h] (t) + T (t) h \)

for \(t > 0 \) and let
\[
[g(t)] = \begin{cases} \tilde{g}(t) & (t > 0), \\ \tilde{g}(-t) & (t < 0). \end{cases}
\]

Since \(\tilde{g}(t) = g_0(t) \) for \(0 < t < T \), we have
\[
[\tilde{e}_r (t > a)^{-a} f \nabla g(t)] = \begin{cases} f_0(t) \nabla g_0(t) & (t > T), \\ f_0(t) \nabla g_0(-t) & (0 < t < T), \\ f_0(-t) \nabla g_0(t) & (-T < t < 0), \\ f_0(-t) \nabla g_0(-t) & (t < -T). \end{cases}
\]

By Lemma 5,
\[
\left\| \tilde{e}_r (t > a)^{-a} f \nabla g \right\|_{H^1_{\mathcal{P}}(\mathbb{R}, L^{q_2}(\Omega))} \leq C \left\| \nabla [g_{|_{t=0}} = 0] \right\|_{B_{q_2,p}^{2(1-1/p)}}(\Omega).
\]
Since, \(f_0 \big|_{t=T} = 0 \) we have

\[
\|f\|_{H^1_0(\mathbb{R}, L^q_2(\Omega))} = 2\|f_0\|_{L^1((0,T),L^\infty_2(\Omega))} \lesssim T^{\frac{N}{4}} \int_0^T \|H^1_0((0,T),L^\infty_2(\Omega))\,dt.
\]

Because \(a - b \leq 0 \).

To estimate \(\|\nabla (\varepsilon g)\|_{H^1_p(\mathbb{R}, L^q_2(\Omega))} \), we use the fact that \(H^1_p(\mathbb{R}, L^q_2(\Omega)) \cap L^p(\mathbb{R}, H^2_2(\Omega)) \) is continuously embedded into \(H^2_2(\mathbb{R}, L^q_2(\Omega)) \) which was proved by Meyries and Schnaubelt [52] in case of \(p = q \), and by Shibata [30] for any \(1 < p, q < \infty \). Using this fact and (31), we have

\[
\|\nabla (\varepsilon g)\|_{H^1_p(\mathbb{R}, L^q_2(\Omega))} \lesssim C \left(\|\varepsilon g\|_{L^p(\mathbb{R}, L^q_2(\Omega))} + \|\varepsilon g\|_{L^p(\mathbb{R}, H^2_2(\Omega))} \right)
\]

\[
\lesssim C \left(\|g\|_{H^1_p((0,T),L^q_2(\Omega))} + \|g\|_{L^p(\mathbb{R}, H^2_2(\Omega))} \right) + \|T\|_{L^p(\mathbb{R}, H^1_p(\mathbb{R}, L^q_2(\Omega)))} + \|T\|_{L^p(\mathbb{R}, H^1_p(\mathbb{R}, L^q_2(\Omega)))}
\]

\[
\lesssim C \left(\|g\|_{L^p(\mathbb{R}, L^q_2(\Omega))} + \|g\|_{L^p(\mathbb{R}, H^2_2(\Omega))} \right) + \|g\|_{L^p(\mathbb{R}, H^2_2(\Omega))} + \|\varepsilon g\|_{L^p(\mathbb{R}, H^2_2(\Omega))}
\]

This completes the proof of Lemma 6.

Recall the definitions of \(g(v) \) and \(h_m(v) \) given in (24) and (25). By Lemma 6 and (36)

\[
\|\varepsilon_t (t > a) g(v)\|_{H^1_2(\mathbb{R}, L^q_2(\Omega))} \lesssim C \sum_{j=1}^{\infty} \|T(A_{ij}(\cdot) + T(\cdot)A_{ij}(\cdot))\|_{H^1_2(\mathbb{R}, L^q_2(\Omega))}
\]

\[
\times \left(\|T|_{L^p(\mathbb{R}, H^1_2(\Omega))} \right) + \|T|_{L^p(\mathbb{R}, H^1_2(\Omega))} \right)
\]

\[
\lesssim C |\|v\|_T^2|
\]

for any \(a \in [0, b) \) and \(q \in [1, q_2] \). Analogously, we have

\[
\|\varepsilon_t (t > a) h(v)\|_{H^1_2(\mathbb{R}, L^q_2(\Omega))} \leq C |\|v\|_T^2|
\]

for any \(a \in [0, b) \) and \(q \in [1, q_2] \). Analogously, we have

Next, by (36), (37) and (41),

\[
\|\varepsilon_t (t > a) g(v)\|_{L^p(\mathbb{R}, H^1_2(\Omega))} \lesssim C \sum_{j=1}^{\infty} \|T(A_{ij}(\cdot) + T(\cdot)A_{ij}(\cdot))\|_{L^p(\mathbb{R}, L^q_2(\Omega))}
\]

\[
\times \left(\|T|_{L^p(\mathbb{R}, H^1_2(\Omega))} \right) + \|T|_{L^p(\mathbb{R}, H^1_2(\Omega))} \right)
\]

\[
\lesssim C |\|v\|_T^2|
\]

Citation: Shibata Y (2017) Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain. Fluid Mech Res Int 1(2): 00008. DOI: 10.15406/fmrij.2017.01.00008
for any \(a \in [0, b) \) and \(q \in \left[1, q_s\right] \). Analogously, we have

\[
\|\tilde{z}_t\|_{L^p(0,T;H^s(Q))}^2 \leq C\|v\|_{T}^2
\]

(46)

for any \(a \in [0, b) \) and \(q \in \left[1, q_s\right] \). Since

\[
\tilde{z}_t(g(v)) = -\sum_{i=1}^{n} \int \left(\partial_v \psi_i(v) + \partial_t \alpha_i(v) + \sum_{j=1}^{n} \partial_v \psi_i(v) \right) \psi_i(v) \partial_t v
\]

and since

\[
\|\tilde{z}_t(g(v))\|_{L^p(0,T;L^q(Q))} \leq C(v)\|v\|_{T}^2
\]

(47)

for any \(a \in [0, b) \) and \(q \in \left[1, q_s\right] \).

Prolongation of Local in Time Solutions

Before proving Theorem 1, we state a unique existence theorem of locally in time solutions to Eq. (5), which can be proved by a standard argumentation based on maximal \(L^q - L^q \) regularity theorem for the Stokes equations with free boundary condition [29, 40].

Theorem 7

Let \(N < q_s < \infty \) and \(2 < p < \infty \). Assume that \(2/p + N/q_s < 1 \).

Then, given \(T > 0 \), there exists an \(\epsilon_0 > 0 \) depending on \(T \) such that if initial data \(u_0 \in \mathcal{B}^{2(1-p)}_{q_s,p}(Q) \) satisfies the condition:

\[
\|u_0\|_{\mathcal{B}^{2(1-p)}_{q_s,p}(Q)} \leq \epsilon_0
\]

(48)

and the compatibility condition (9), then Eq. (5) admits unique solutions \(v \) and \(q \) with \(v \in H^s((0,T), L^q(Q)) \cap L^q((0,T), H^s(Q)) \), \(q \in L^q((0,T), H^s(Q)) \) for any \(\epsilon_0 > 0 \).

Let \(\Sigma \) be a positive number > 2 and let \(v \) and \(q \) be solutions of Eq. (5) satisfying (13) and (3). In view of Theorem 7, such solutions \(v \) and \(q \) exist uniquely provided that

\[
\|u_0\|_{\mathcal{B}^{2(1-p)}_{q_s,p}(Q)} \leq \epsilon_0
\]

(49)

Thus, we assume that \(0 < \epsilon \leq \epsilon_0 \) in Theorem 1. Let \([v]\) and \(\mathcal{T} \) be the quantities defined in Theorem 1.

In Sect. 1 Introduction. And then, if we prove that there exists a constant \(M > 0 \) independent of \(\epsilon \) and \(T \) such that

\[
[v]_{\mathcal{T}} \leq M(I + [v]_{\mathcal{T}}^{2/1})
\]

(50)

then we can prolong \(v \) and \(q \) beyond \(T \). Namely, there exist \(v_1 \) and \(q_1 \) with

\[
v_1 \in H^s((0,T \cdot 1), L^q(Q)) \cap L^q((0,T \cdot 1), H^s(Q)), \quad q_1 \in L^q((0,T \cdot 1), H^s(Q))
\]

such that \(v_1 \) and \(q_1 \) are solutions to the equations:

\[
\begin{cases}
\frac{\partial}{\partial t} v_1 - \text{Div}(\mathbf{D}(v_1) - q_1) = f(v_1) & \text{in } \Omega \times (T, T + 1), \\
\text{Div} v_1 = \text{div} g(v_1) = \text{div} h(v_1) & \text{on } \Gamma \times (0, T), \\
v_1|_{T = T} = v(T) & \text{in } \Omega.
\end{cases}
\]

(51)

Here, \(f(v_1) \) is consisting of some linear combinations of nonlinear terms of the forms

\[
\begin{aligned}
&\int \mathcal{F}(v)\mathbf{v} \cdot \mathbf{v} = \int \mathcal{G}(v) - \mathcal{G}(v_1) + \int \mathcal{H}(\mathbf{v} - \mathbf{v}_1) - \int \mathcal{I}(\mathbf{v} - \mathbf{v}_1) + \int \mathcal{J}(\mathbf{v} - \mathbf{v}_1) + \int \mathcal{K}(\mathbf{v} - \mathbf{v}_1)
\end{aligned}
\]

and \(g(v_1), g(v) \) and \(h(v) \) have the following forms:

\[
\begin{aligned}
g(v_1) &= \int \mathcal{F}(v)\mathbf{v} \cdot \mathbf{v}, \\
&= \int \mathcal{G}(v) - \mathcal{G}(v_1) + \int \mathcal{H}(\mathbf{v} - \mathbf{v}_1) - \int \mathcal{I}(\mathbf{v} - \mathbf{v}_1) + \int \mathcal{J}(\mathbf{v} - \mathbf{v}_1) + \int \mathcal{K}(\mathbf{v} - \mathbf{v}_1),
\end{aligned}
\]

where \(\mathcal{V} \) are the same nonlinear functions as in (6) and (7).

In fact, the inequality (50) yields that there exists a small constant \(\epsilon \in (0, \epsilon_0) \) such that if \(\mathcal{H} \leq \epsilon \), then

\[
[v]_{\mathcal{T}} \leq 2M - 2 \sqrt{2M^2 - 1} = 2M + O(\epsilon^2).
\]

Thus, we may assume that

\[
[v]_{\mathcal{T}} \leq 3M
\]

(52)

By (29) and (52) we have

\[
[v(T)]_{\mathcal{B}^{2(1-p)}_{q_s,p}(Q)} \leq M \mathcal{G}
\]

with some positive constant \(M_i \) independent of \(T \) and \(\mathcal{G} \), thus, noting that

\[
\int_0^T \|\nabla v\|^2 \, dt \leq C\left[\int_0^T \|v\|^2 \, dt\right]^{1/2} \leq M_2 \mathcal{G}
\]

with some positive constant \(M_3 \) independent of \(T \) choosing \(\mathcal{G} > 0 \) smaller if necessary, we can show the existence of \(v_1 \) and \(q_1 \). Thus, setting

\[
\begin{aligned}
v_2(t) &= [v(t)], \quad 0 < t < T, \\
v_1(t) &= [v(t)], \quad T < t < T + 1, \\
q_2(t) &= [q(t)], \quad 0 < t < T, \\
q_1(t) &= [q(t)], \quad T < t < T + 1,
\end{aligned}
\]

we see that \(v_2 \) and \(q_2 \) satisfy the regularity condition:

\[
v_2 \in H^s((0,T-1), L^q(Q)) \cap L^q((0,T-1), H^s(Q)), \quad q_2 \in L^q((0,T-1), H^s(Q)) \cap L^q((0,T-1), H^s(Q))
\]
and Eq. (5) replacing T by $T+1$. Repeating this argument, we can prolong v to time interval $(0, \infty)$.

This completes the proof of Theorem 1. Therefore, we prove (50).

A Proof of Theorem 1

Let v and q be the same N-vector of functions and the function as in Sect. 4. We prove that v satisfies (50). And, we recall that $T > 2$. As was seen in Sect. 2, v and q satisfy Eq. (26). To estimate v, we write v by $v = w + u$ where w is a solution to the equations:

\[
\begin{align*}
\dot{w} + \lambda w - J^{-1} \text{Div} \tilde{S}(w,x) &= f(v) \quad \text{in } \Omega \times (0,T), \\
\text{Div } w &= \tilde{c}(v) = \text{Div } \tilde{c}(v) \quad \text{in } \Omega \times (0,T), \\
\tilde{S}(w,x) &= \tilde{c}(h) \quad \text{on } \Gamma \times (0,T), \\
w_{|t=0} &= u_0 \quad \text{in } \Omega.
\end{align*}
\]

with some pressure term r, and u is a solution to the equations:

\[
\begin{align*}
\dot{u} + J^{-1} \text{Div} \tilde{S}(u,p) &= -\lambda w \quad \text{in } \Omega \times (0,T), \\
\text{Div } u &= 0 \quad \text{in } \Omega \times (0,T), \\
\tilde{S}(u,p) &= 0 \quad \text{on } \Gamma \times (0,T), \\
u_{|t=0} &= 0 \quad \text{in } \Omega.
\end{align*}
\]

To estimate w, we quote the maximal L_p-L_q regularity theorem due to Shibata [33]. Let us consider the equations:

\[
\begin{align*}
\dot{w} + \lambda w - J^{-1} \text{Div} \tilde{S}(w,x) &= f(v) \quad \text{in } \Omega \times (0,T), \\
\text{Div } w &= \tilde{c}(v) = \text{Div } \tilde{c}(v) \quad \text{in } \Omega \times (0,T), \\
\tilde{S}(w,x) &= \tilde{c}(h) \quad \text{on } \Gamma \times (0,T), \\
w_{|t=0} &= w_0 \quad \text{in } \Omega.
\end{align*}
\]

And then, we have

Theorem 8

Let Ω be an exterior domain in \mathbb{R}^N whose boundary Γ is a C_2 hyper surface. Let $1 < p, q < \infty$ and $T > 0$. Assume that $w = \mathcal{B}^{1-(1/p)}_{q,p}(\Omega)$, $f \in L^q_p((0,T), L^q_\eta(\Omega))$, $g \in H^1_q(\Omega)$, $h \in H^2_q(\Omega)$ and $w_0 \in \mathcal{B}^{1-(1/p)}_{q,p}(\Omega)$, $w_1 \in H^1_q(\Omega)$, $w_2 \in H^2_q(\Omega)$ and that w_0 satisfies the compatibility condition:

\[
w_0 - g \big|_{t=0} \in \mathcal{B}^{1-(1/p)}_{q,p}(\Omega),
\]

and in addition

\[
(\mu D(w_0) - h) \big|_{t=0} = 0 \quad \text{on } \Gamma.
\]

If $2/p + 1/q < 1$, where $d = d - < d$, $n > n$. Then, there exists a positive number λ_0 such that Eq. (55) admits unique solutions w and r with

\[
w \in L^\infty_p((0,T), H^1_q(\Omega)), H^2_q((0,T), L^\infty_q(\Omega)) \cap L^q_p((0,T), H^1_q(\Omega)), \quad h \in L^\infty_p((0,T), H^1_q(\Omega)) \cap L^q_p((0,T), H^2_q(\Omega))
\]

Possessing the estimate:

\[
\begin{align*}
\|w\|_{L^p(0,T), L^q(\Omega)} &\leq C \left(\|w_0\|_{\mathcal{B}^{1-(1/p)}_{q,p}(\Omega)} + \|f\|_{L^q_p(0,T), L^q_\eta(\Omega)} \right), \\
\|r\|_{L^q_p(0,T), L^\infty_q(\Omega)} &\leq C \left(\|w_0\|_{\mathcal{B}^{1-(1/p)}_{q,p}(\Omega)} + \|f\|_{L^q_p(0,T), L^q_\eta(\Omega)} \right),
\end{align*}
\]

where C is a constant that depends on q but is independent of T. Applying Theorem 8 yields that there exists a large $\lambda > 0$ such that Eq. (53) admits unique solutions w and r with

\[
w \in H^1_p((0,T), L^\infty_q(\Omega)) \cap L^q_p((0,T), H^2_q(\Omega)) \quad \text{where } q \in \left[\frac{1}{2}, q_2 \right]
\]

Possessing the estimate:

\[
\|w\|_{L^p(0,T), L^q(\Omega)} \leq C \left(\|w_0\|_{\mathcal{B}^{1-(1/p)}_{q,p}(\Omega)} + \|f\|_{L^q_p(0,T), L^q_\eta(\Omega)} \right) (56)
\]

In fact, $f(v), \tilde{c}(v)$, $\tilde{c}(v)$ and $\tilde{c}(v)$ satisfy (27), (43), (44), (45), (46), and (47), so that we know the existence of w possessing the estimate:

\[
w \in L^\infty_p((0,T), L^\infty_q(\Omega)) \cap L^q_p((0,T), H^2_q(\Omega)) \quad \text{with constant } C \text{ depending on } q_2 \text{ and } q_2.
\]

Let $a = \min(1, b)$, and then $\dot{w} + \lambda a \dot{w} - J^{-1} \text{Div} \tilde{S}(w,x) - f(v)$ satisfies the equations:

\[
\begin{align*}
\dot{w} + \lambda a \dot{w} - J^{-1} \text{Div} \tilde{S}(w,x) &= f(v) \quad \text{in } \Omega \times (0,T), \\
\text{Div } w &= \tilde{c}(v) = \text{Div } \tilde{c}(v) \quad \text{in } \Omega \times (0,T), \\
\tilde{S}(w,x) &= \tilde{c}(h) \quad \text{on } \Gamma \times (0,T), \\
w_{|t=0} &= w_0 \quad \text{in } \Omega.
\end{align*}
\]

Since

\[
\left\| w \right\|_{L^p(0,T), L^q(\Omega)} \leq C \left(\left\| f \right\|_{L^q_p(0,T), L^q_\eta(\Omega)} \right) \leq C (1 + |v|^2) (57)
\]

as follows from the fact that $a - 1 \leq 0$, we have

\[
\|w\|_{L^p(0,T), L^q(\Omega)} \leq C (1 + |v|^2) (58)
\]

Next, we consider u. Let $\left\{ T(t) \right\}_{t \geq 0}$ be a C_0 analytic semigroup associated with problem (54). Shibata [33] proved the existence of $\left\{ T(t) \right\}_{t \geq 0}$ satisfying the estimates:

\[
\left\| T(t) \right\|_{L^q(\Omega)} \leq C (t + \frac{1}{t} + \frac{1}{t^2}) (59)
\]

for any $t > 0$ and $f \in L^q(\Omega)$ provided that $1 < q < p \leq \infty$ and $q \leq q_2$. To represent u by using
we introduce the solenoidal space \(J_q(\Omega) \) defined by
\[
J_q(\Omega) = \left\{ f \in L_q(\Omega)^2 \left| \left\langle f, J \nabla \phi \right\rangle_{L_q(\Omega)} = 0 \text{ for any } \phi \in H_0^1(\Omega) \right. \right\}.
\] (60)

Here, \(J \) is the matrix defined in (4) and \(f \) the function given in (15), and \(H_0^1(\Omega) \) is the variational equation
\[
(\mathbf{A} \nabla \psi, J \mathbf{A} \phi)_{\Omega} = \left(f, J \nabla \psi \right)_{\Omega} \quad \text{for any } \psi \in H^1(\Omega), \quad \phi \in H^1(\Omega).
\] (61)

As was proved by Shibata [30], we know that for any \(f \in L_q(\Omega)^2 \) there exists a unique solution \(\psi \in H^1(\Omega) \) of the variational equation
\[
(\nabla \psi, J \nabla \phi)_{\Omega} = \left(f, J \nabla \phi \right)_{\Omega} \quad \text{for any } \phi \in H_0^1(\Omega).
\] (62)

which possesses the estimate \(\| \nabla \psi \|_{L_q(\Omega)} \leq C_q \| f \|_{L_q(\Omega)} \).
Here, \(C_q \) is a constant that is independent of \(v \) and \(T \). By Proposition 21 in Shibata [33], we have
\[
\mathbf{u}(t) = -\frac{1}{\rho} \int_0^t T(t-s) \left(\mathbf{P}(t-s) \right) \mathbf{w}(s) ds.
\] (63)

Combining (59) and (62) yields that
\[
\| \nabla \mathbf{u}(\cdot) \|_{L_q(\Omega)} \leq C_q \int_0^1 (t-s)^{\frac{1}{2}} \| \mathbf{w}(s) \|_{L_q(\Omega)} ds,
\] (64)

for \(j = 0, 1 \) for any \(t > 1 \) and for any indices \(r, \tilde{q}_1 \) and \(\tilde{q}_2 \) such that \(0 < \tilde{q}_1, \tilde{q}_2 < r \leq \infty \) and \(q_1, q_2 \leq q_r \), where \(\nabla^r \mathbf{u} = \mathbf{u} \) and \(\nabla^r \mathbf{u} = \nabla \mathbf{u} \).

Recall that \(T > 2 \). In what follows, we prove that
\[
\left(\int_0^T \left(t > \frac{1}{t} \right) \mathbf{u}(t) \| H^1_{q_1}(\Omega) \| ds \right)^{\frac{1}{p}} \leq C(1 + |v|^T_1).
\] (65)

By (64) with \(r = \infty \), \(\tilde{q}_1 = q_r/2 \) and \(\tilde{q}_2 = q_r/2 \),
\[
\| \mathbf{u}(\cdot) \|_{H^1_{q_1}(\Omega)} \leq C \int_0^T \| f(t) \|_{W^1(\cdot,s)} H^1_{q_1}(\Omega) ds = C(1 + H_{q_1}(\Omega)).
\] (66)

With
\[
I_\infty(t) = \int_0^T (t-s)^{\frac{1}{2}} \| \mathbf{w}(s) \|_{L^2_{q_2}(\Omega)} ds,
\] (67)
\[
II_\infty(t) = \int_0^T (t-s)^{-\frac{1}{2}} \| \mathbf{w}(s) \|_{L^2_{q_2}(\Omega)} ds,
\] (68)
\[
III_\infty(t) = \int_0^T (t-s)^{-\frac{1}{2}} \| \mathbf{w}(s) \|_{L^2_{q_2}(\Omega)} ds.
\] (69)

Since
\[
\| \mathbf{w}(\cdot) \|_{L^2_{q_2}(\Omega)} \leq C(1 + |v|^T_1).
\] (70)

as follows from the condition: \(bp^2 > 1 \) in (11), by the condition:
\[
\int_0^T (t-s)^{-\frac{1}{2}} \| \mathbf{w}(s) \|_{L^2_{q_2}(\Omega)} ds \leq C(1 + |v|^T_1).
\] (71)

Because \(N/q_1 = N/q_2 + 1 > 1 \), the change of integration order and (56),
\[
\int_0^T (t-s)^{\frac{1}{2}} \| \mathbf{w}(s) \|_{L^2_{q_2}(\Omega)} ds \leq C(1 + |v|^T_1).
\] (72)

Since \(N/2 q_2 + 1/2 < 1 \) as follows from \(q_2 > N \), by Holder’s inequality,
Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain

\[\int_{t^*}^{\infty} \|H_{q_1}(t)\|_{L^q(D)} \leq C \int_{t^*}^{\infty} \left(\int_0^t (\|w(s)\|_{L^q(D)}^q) \, ds \right)^{\frac{1}{q}} \, dt \]

\[\leq C \left(\int_0^\infty \left(\int_0^t (\|w(s)\|_{L^q(D)}^q) \, ds \right)^{\frac{1}{q}} \, dt \right)^{\frac{1}{q}} \]

By the change of integration order, we have

\[\int_0^t (\|H_{q_1}(t)\|_{L^q(D)}^q) \, dt \leq \int_0^\infty \left(\int_0^t (\|w(s)\|_{L^q(D)}^q) \, ds \right)^{\frac{1}{q}} \, dt \]

Summing up, we have obtained (65). Next, we prove (66). By (64), with \(r = \frac{q_1}{2}, \ \tilde{q} = q / 2\) and \(\tilde{q}_2 = q, \)

\[\|v(t)\|_{L^q(D)} \leq C \int \int \left(\|w(s)\|_{L^q(D)}^q \right)^{\frac{1}{q}} \, ds \, dt \]

With (66), Next, we prove (67). By (56),

\[\|H_{q_1}(t)\|_{L^q(D)} \leq C \int \|w(s)\|_{L^q(D)} \, ds \]

\[\|H_{q_1}(t)\|_{L^q(D)} \leq C \int \|w(s)\|_{L^q(D)} \, ds \]

Summing up, we have obtained (66). Next, we prove (67). By (64),

\[\|u(t)\|_{H^k(D)} \leq C (\int (\|w(s)\|_{L^q(D)}^q) \, ds)^{\frac{1}{q}} \]

with

\[I_{q_1}(t) = \int_0^t (\|w(s)\|_{L^q(D)}^q) \, ds \]

Summing up, we have obtained (66). Next, we prove (67). By (64),

\[\|u(t)\|_{H^k(D)} \leq C (\int (\|w(s)\|_{L^q(D)}^q) \, ds)^{\frac{1}{q}} \]

By Holder’s inequality,

\[\|H_{q_1}(t)\|_{L^q(D)} \leq C \int \|w(s)\|_{L^q(D)} \, ds \]

\[\|H_{q_1}(t)\|_{L^q(D)} \leq C \int \|w(s)\|_{L^q(D)} \, ds \]

since \(\frac{q_1}{2} < q_2 \), we have

\[\|H_{q_1}(t)\|_{L^q(D)} \leq C \int \|w(s)\|_{L^q(D)} \, ds \]

because \(b > \frac{1}{p} \). Finally, by (56),

\[\|H_{q_1}(t)\|_{L^q(D)} \leq C \int \|w(s)\|_{L^q(D)} \, ds \]

Let \(\alpha = \frac{q_2}{N+q_2} \) and \(\beta = \frac{N+q_2}{N+2q_2} \) then \(\alpha + \beta = 1 \), so that by (56) and Holder’s inequality
Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain

\[\|B^\alpha \|_{L_p((0,T),L\omega_p(\Omega))} \]

\[\leq \left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} \right)^{1/2} \left(\int_0^T \left(\int_\Omega |w(x)|^2 dx \right) \frac{1}{\theta_p} \right)^{1/2} dt \]

\[\leq \left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \left(\int_0^T \left(\int_\Omega |w(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \]

\[\leq C \left(1 + \|v\|^2 \right) \]

(69)

Since

\[\left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \leq \left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \]

by the change of integration order, we have

\[\left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \leq \left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \]

which, combined with (69), furnishes that

\[\left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \leq C \left(1 + \|v\|^2 \right) \]

Summing up, we have obtained (67).

Finally, we prove (68). By (64) with \(r = q_2, \bar{q}_1 = q_1 / 2 \) and \(\bar{q}_2 = q_2 \),

\[\|v(x,t)|_{L_{2}^{q_2}(\Omega)} \leq C \left(1 + \|v(x,t)|_{L_{2}^{q_2}(\Omega)} \right) \]

with

\[I_{q_2}(t) = \int_{\Omega} \left(1 + \|v(x,t)|_{L_{2}^{q_2}(\Omega)} \right) \]

\[II_{q_2}(t) = \int_{\Omega} \left(1 + \|v(x,t)|_{L_{2}^{q_2}(\Omega)} \right) \]

\[III_{q_2}(t) = \int_{\Omega} \left(1 + \|v(x,t)|_{L_{2}^{q_2}(\Omega)} \right) \]

By Holder's inequality,

\[I_{q_2}(t) \leq \frac{1}{2} \left(\int_{\Omega} \left(1 + \|v(x,t)|_{L_{2}^{q_2}(\Omega)} \right) \right)^{1/2} \left(\int_{\Omega} \left(1 + \|v(x,t)|_{L_{2}^{q_2}(\Omega)} \right) \right)^{1/2} \]

\[\leq C \left(1 + \|v\|^2 \right) \]

for \(t \geq 2 \). Since

\[\frac{2}{q_1} - \frac{1}{q_2} - \frac{N}{q_1} - b \]

by the condition: \(\left(\frac{N}{q_1} - b \right) > 1 \) in (11),

\[\left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \leq C \left(1 + \|v\|^2 \right) \]

Since

\[\frac{N}{2} \left(\frac{1}{q_1} + \frac{1}{q_2} \right) - \frac{N}{2} q_2 > 1 \]

by Holder's inequality

\[\left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \leq C \left(1 + \|v\|^2 \right) \]

so that by the change of integration order and (56)

\[\left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \leq C \left(1 + \|v\|^2 \right) \]

Analogously, by Holder's inequality

\[\left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \leq C \left(1 + \|v\|^2 \right) \]

so that by the change of integration order and (56)

\[\left(\int_0^T \left(\int_\Omega |v(x)|^2 dx \right) \frac{1}{\theta_p} dt \right)^{1/2} \leq C \left(1 + \|v\|^2 \right) \]

Summing up, we have obtained (68).

Recalling that \(T \geq 2 \), applying the maximal \(L_p \)-regularity theorem due to Shibata [33] to Eq. (54) and using (56) give that

\[\|v\|_{L_p((0,T),L^2(\Omega))} \leq C \|v\|_{L_p((0,T),L^2(\Omega))} \]

(70)

For any \(q \in \left[q_1 / 2, q_2 \right] \). Employing the same argumentation as that in proving (29), by real interpolation,
we have
\[
\sup_{0 < t < 2} \| u(t, \cdot) \|_{L^2_{x,t}((0, T); L^q_y(\Omega))} \leq C \left(1 + \| v \|_{L^p(\Omega)}^2 \right)^{1/2} \tag{71}
\]
for any \(q \in \left[q_1/2, q_2 \right] \). Combining (65), (66), (67), (68), (70), (71) and the Sobolev imbedding theorem,

we have
\[
\begin{align*}
& \left\| u \right\|_{L^p_{x,t}((0, T); L^q_y(\Omega))}^2 + \left\| \partial_t u \right\|_{L^p_{x,t}((0, T); L^q_y(\Omega))}^2 \\
& \leq C \left(1 + \| v \|_{L^p(\Omega)}^2 \right)^{1/2} \tag{72}
\end{align*}
\]
From (54), \(u \) satisfies the equations:
\[
\begin{align*}
\partial_t u + \lambda \nu - J(T)^{-1} \text{Div} \tilde{S}(u, p) &= -\lambda \nu w + \lambda \nu u & \text{in } \Omega \times (0, T), \\
\text{div} u &= 0 & \text{in } \Omega \times (0, T), \\
\tilde{S}(u, p) &= 0 & \text{on } \Gamma \times (0, T), \\
u \mathbf{t} &= 0 & \text{in } \Omega
\end{align*}
\]
so that by Theorem 8,
\[
\begin{align*}
\left\| u \right\|_{L^p_{x,t}((0, T); L^q_y(\Omega))}^2 + \left\| \partial_t u \right\|_{L^p_{x,t}((0, T); L^q_y(\Omega))}^2 \\
& \leq C \left(1 + \| v \|_{L^p(\Omega)}^2 \right)^{1/2} \tag{73}
\end{align*}
\]
which, combined with (72), furnishes that
\[
\sup_{0 < t < 2} \left\| u(t, \cdot) \right\|_{L^2_{x,t}((0, T); L^q_y(\Omega))} \leq C \left(1 + \| v \|_{L^p(\Omega)}^2 \right)^{1/2} \tag{74}
\]
Since \(v = w + u \), by (58) and (73), we see that \(v \) satisfies the inequality (50), which completes the proof of Theorem 1 [53-56].

Acknowledgement

None.

Conflict of Interest

None.

References

1. Solonnikov VA (1984) Solvability of the problem of evolution of an isolated amount of a viscous incom-pressible capillary fluid: Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI 140: 179-186.
2. Solonnikov VA (1990) On nonstationary motion of a finite isolated mass of self-gravitating fluid. Algebra i Analiz 1 (1): 207-249.
3. Solonnikov VA (1991) Solvability of the problem of evolution of a viscous incompressible fluid bouded by a free surface on a finite time interval, Algebra i Analiz 3 (1): 222-257.
4. Solonnikov VA (2003) Lectures on evolution free boundary problems: classical solutions. Mathematical aspects of evolving interfaces, Lecture Notes in Math 1812: 123-175.
5. Schweizer B (1997) Free boundary fluid systems in a semigroup approach and oscillatory behavior. SIAM J Math Anal 28 (5): 1135-1157.
6. Mogilevskii SH, Solonnikov VA (1991) On the solvability of a free boundary problem for the Navier-Stokes equations in the Holder space of functions. Nonlinear Analysis Sc Norm Super di Pisa Quaderni Scuola Norm, pp. 257-271.
7. Solonnikov VA (1988) On the transient motion of an isolated volume of viscous incompressible fluid, Math. USSR Izvestiya 31 (2): 381-405.
8. Mucha PB, Zajączkowski W (2000) On the existence for the Cauchy-Neumann problem for the Stokes system in the Lp-framework. Studia Math 143 (1): 75-101.
9. Mucha PB, Zajączkowski W (2000) On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion. Appl Math 27(3): 319-333.
10. Shibata Y, Shimizu S (2007) On a free boundary problem for the Navier-Stokes equations. Differential Integral Equations 20 (3): 241-276.
11. Shibata Y, Shimizu S (2008) On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J Reine Angew Math 61: 157-209.
12. Shibata Y (2015) On some free boundary problem of the Navier-Stokes equations in the maximal Lp-Lq regularity class. J Differential Equations 259 (12): 4127-4155.
13. Solonnikov VA (1986) Unsteady flow of a finite mass of a fluid bounded by a free surface, Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI 152: 137-157.
14. Padula M, Solonnikov VA (2002) On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation. Quad Mat 10: 165-218.
15. Shibata Y (2002) Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface, Submitted.
16. Allain G (1987) Small-time existence for Navier-Stokes equations with a free surface. Appl Math Optim 16 (1): 37-50.
17. Beale JT (1981) The initial value problem for the Navier-Stokes equations with a free surface. Commun Pure Appl Math 34 (3): 359-392.
18. Tani A (1996) Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface. Arch Rational Mech Anal 133 (4): 299-331.
19. Abels H (2005) The initial-value problem for the Navier-Stokes equations with a free surface in Lq-Sobolev spaces. Adv Differential Equations 10 (1): 45-64.
20. Beale T (1984) Large-time regularity of viscous surface waves. Arch Rational Mech Anal 84 (4): 307-352.
21. Tani I, Tanaka N (1995) Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch Rational Mech Anal 130 (4): 303-314.
22. Donna Lynn, Gates Sylvester (1990) Large time existence of small viscous surface waves without surface tension, Commun. Partial Differential Equations 15 (6): 925-930.

Citation: Shibata Y (2017) Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain. Fluid Mech Res Int 1(2): 00008. DOI: 10.15406/fmrj.2017.01.00008
Global Wellposedness of a Free Boundary Problem for the Navier-Stokes Equations in an Exterior Domain

23. Beale J, Nishida T (1985) Large-time behaviour of viscous surface waves. Recent topics in nonlinear PDE, North-Holland Math. Stud, Amsterdam, Netherlands, p. 1-14.

24. Sylvester DLG (1996) Decay rate for a two-dimensional viscous ocean of finite depth. J Math Anal Appl 202(0340): 659-666.

25. Hataya Y (2009) Decaying solution of a Navier-Stokes flow without surface tension. J Math Kyoto Univ 49(4): 691-717.

26. Hataya Y, Kawasaki S (2009) Decaying solution of the Navier-Stokes flow of infinite volume without surface tension. Nonlinear Analysis 71: 2535-2539.

27. Saito H, Shibata Y (2016) On decay properties of solutions to the Stokes equations with surface tension and gravity in the half space. J Math Soc Japan 68(4): 1559-1614.

28. Saito H, Shibata Y (2002) Global existence and large-time behavior of solutions to the Navier-Stokes equations with a free surface. Submitted.

29. Shibata Y (2016) Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete and Continuous Dynamical Systems Series 59(1): 315-342.

30. Shibata Y (2002) Local well-posedness for the free boundary problem of the Navier-Stokes equations in an exterior domain. Submitted.

31. Abels H (2007) On generalized solutions of two-phase flows for viscous incompressible fluids. Interfaces Free Bound 9(1): 31-65.

32. Denisova V (1991) A priori estimates for the solution of the linear nonstationary problem connected with the motion of a drop in a liquid medium. Proc Steklov Inst Math 188: 1-24.

33. Denisova V (1994) Problem of the motion of two viscous incompressible fluids separated by a closed free interface. Acta Appl Math 37(1-2): 31-40.

34. Denisova V, Solonnikov VA (1996) Classical solvability of the problem on the motion of two viscous incompressible fluids. St. Petersburg Math 7(5): 755-786.

35. Giga Y, Takahashi SH (1994) On global weak solutions of the nonstationary two-phase Stokes flow. SIAM J Math Anal 25(3): 876-893.

36. Köhne M, Pruess J, Wille M (2013) Qualitative behavior of solutions for the two-phase Navier-Stokes equations with surface tension. Math Ann 356(2): 737-792.

37. Maryani S, Saito H (2017) On the R-boundedness of solution operator families for two-phase Stokes resolvent equations. Diff Int Eqs 30 (1/2): 1-52.

38. Nouri A, Poupaud F (1995) An existence theorem for the multifluid Navier-Stokes problem. J Differential Equations 122: 71-88.

39. Pruess J, Simonett G (2010) On the two-phase Navier-Stokes equations with surface tension, Interfaces and Free Boundaries 12(3): 311-345.

40. Pruess J, Simonett G (2011) Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity, Progress in Nonlinear Differential Equations and Their Applications 80: 507-540.

41. Pruess J, Simonett G (2016) Moving Interfaces and Quasilinear Parabolic Evolution Equations. Birkhauser Monographs in Mathematics, Springer International Publishing, USA, pp. 609.

42. Shibata Y, Shimizu S (2003) On the resolvent estimate of the interface problem for the Stokes system in a bounded domain. J Differential Equations 191: 408-444.

43. Shibata Y, Shimizu S (2011) Maximal Lp-Lq regularity for the two-phase Stokes equations; Model problems. J Differential Equations 251(2): 373-419.

44. Simonett G, Wilke V (2017) Stability of equilibrium shapes in some free boundary problems involving fluids. Handbook of Mathematical Analysis in Mechanics Viscous Fluids, pp. 1-46.

45. Takahashi SH (1995) On global weak solutions of the nonstationary two-phase Navier-Stokes flow. Adv Math Sci Appl 5(1): 321-342.

46. Tanaka N (1995) Two-phase free boundary problem for viscous incompressible thermocapillary convection. Japan J Math (New Series) 21(1): 1-42.

47. Shibata Y (2001) On Lp-Lq decay estimate for Stokes equations with free boundary condition in an exterior domain. Submitted.

48. Shibata Y, Shimizu S (2007) Decay properties of the Stokes semigroup in exterior domains with Neumann boundary condition. J Math Soc Japan 59(1): 1-34.

49. Shibata Y (2014) On the R-boundedness of solution operators for the Stokes equations with free boundary condition. Diff Int Eqns 27(3/4): 313-368.

50. Shibata Y (2016) On the R-bounded operator and the maximal Lp-Lq regularity of the Stokes equations with free boundary condition. Mathematical Fluid Dynamics, Present and Future 183: 203-285.

51. Tanabe H (1997) Functional Analytic Methods for Parital Differential Equations. Pure and Applied Mathematics, A Series of Monographs and Textbooks, Marcel Dekker, New York, USA, pp. 414.

52. Meyries M, Schnaubelt R (2012) Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights. J Funct Anal 262: 1200-1229.

53. Shibata Y, Shimizu S (2012) On the maximal Lp-Lq regularity of the Stokes problem with first order boundary condition; model problems. J Math Soc Japan 64(2): 561-626.

54. Shimizu S (2011) Local solvability of free boundary problems for two-phase Navier-Stokes equations with surface tension in the whole space. Progr Nonlinear Differential Equations Appl 80: 647-686.

55. Solonnikov VA (1976) Estimates of solutions of an initial-boundary value problem for the linear non-stationary Navier-Stokes system. Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI 59: 178-254.

56. Solonnikov VA (1986) Unsteady flow of a finite mass of a fluid bounded by a free surface, Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI 152: 137-157.