THE EXISTENCE OF SUPERSYMMETRIC STRING THEORY WITH TORSION

JUN LI AND SHING-TUNG YAU

1. THE SYSTEM PROPOSED BY STROMINGER

In their proposed compactification of superstrings [4], Candelas, Horowitz, Strominger and Witten took the matrix product of a maximal symmetric four dimensional spacetime M with a six dimensional Calabi-Yau vacua X as the ten dimensional spacetime; they identified the Yang-Mills connection with the SU(3) connection of the Calabi-Yau metric and set the dilaton to be a constant. To make this theory compatible with the standard grand unified field theory, Witten [28] and Horava-Witten [20] proposed to use higher rank bundles for strong coupled heterotic string theory so that the gauge groups can be SU(4) or SU(5). Mathematically, this approach relies on Uhlenbeck-Yau’s theorem on constructing Hermitian-Yang-Mills connections on stable bundles [27]. Many authors, including Friedman, Morgan and Witten [19]; Donagi, Ovrat, Panetev and Reinbacher [12]; Andreas [1], Kachru [21] and others, have worked on this subject since then.

In [24], A. Strominger analyzed heterotic superstring background with spacetime supersymmetry and non-zero torsion by allowing a scalar “warp factor” to multiply the spacetime metric. He considered a ten dimensional spacetime that is the product $M \times X$ of a maximal symmetric four dimensional spacetime M and an internal space X; the metric on $M \times X$ takes the form

$$e^{2D(y)} \begin{pmatrix} b_{ij}(y) & 0 \\ 0 & g_{\mu\nu}(x) \end{pmatrix}, \quad x \in X, \quad y \in M;$$

the connection on an auxiliary bundle is Hermitian-Yang-Mills over X:

$$F \wedge \omega^2 = 0, \quad F^{2,0} = F^{0,2} = 0$$

associated to the hermitian form $\omega = \sqrt{-1} g_{ij} dz^i \wedge d\bar{z}^j$. In this system, following the convention that $d_c = \sqrt{-1}(\bar{\partial} - \partial)$, the physical relevant quantities are

$$h = \frac{1}{2} d_c \omega,$$

$$\phi = \frac{1}{8} \log ||\Omega|| + \phi_0,$$

for a constant ϕ_0 and

$$g_{ij}^0 = e^{2\phi_0} ||\Omega||^2 g_{ij}.$$

The spacetime supersymmetry forces $D(y)$ to be the dilaton field.

In order for such ansatze to provide a supersymmetric configuration, one introduces a Majorana-Weyl spinor ϵ so that

$$\delta \phi_j^0 = \nabla_j^0 \epsilon^0 + \frac{1}{48} e^{2\phi} (\gamma_j^0 H^0 - 12 h_j^0) \epsilon^0 = 0,$$

The first author is supported partially by NSF grants DMS-0200477 and DMS-0244550. The second author is supported partially by NSF grants DMS-0306600 and DMS-0074329.
\[\delta \lambda^0 = \nabla^0 \phi^0 + \frac{1}{24} e^{2\phi} h^0 \epsilon^0 = 0, \]

and

\[\delta \chi^0 = e^{\phi} F_{ij} \Gamma^{0i} \epsilon^0 = 0. \]

Here \(\psi^0 \) is the gravitino, \(\lambda^0 \) is the dilatino, \(\chi^0 \) is the gluino, \(\phi \) is the dilaton and \(h \) is the Kalb-Ramond field strength obeying

\[dh = \text{tr} R \wedge R - \text{tr} F \wedge F. \]

(For details of this discussion, please consult [24, 25].) By suitably transforming these quantities, Strominger showed that in order to achieve space-time supersymmetry the internal six manifold \(X \) must be a complex manifold with a non-vanishing holomorphic three form \(\Omega \); the Hermitian form \(\omega \) must obey

\[\partial \bar{\partial} \omega = \sqrt{-1} \text{tr} F \wedge F - \sqrt{-1} \text{tr} R \wedge R \]

and

\[d^* \omega = d_c \log \| \Omega \|. \]

Accordingly, he proposed to solve the system

(1.1) \[F \wedge \omega^2 = 0; \]

(1.2) \[F^{2,0} = F^{0,2} = 0; \]

(1.3) \[\partial \bar{\partial} \omega = \sqrt{-1} \text{tr} F \wedge F - \sqrt{-1} \text{tr} R \wedge R; \]

and

(1.4) \[d^* \omega = d_c \log \| \Omega \|. \]

These are solutions of superstrings with torsions that allows non-trivial dilaton fields and Yang-Mills fields\(^1\). Here \(\Omega \) is a nowhere vanishing holomorphic three form on the complex threefold \(X \); \(\omega \) is the Hermitian form and \(R \) is the curvature tensor of the Hermitian metric \(\omega \); \(F \) is the curvature of a vector bundle \(E \); and \(\text{tr} \) is the trace of the endomorphism bundle of either \(E \) or \(TX \).

In [24], Strominger found some solutions to this system for U(1) principle bundles. In this paper we shall give the first irreducible non-singular solution of the supersymmetric system of Strominger for U(4) and U(5) principle bundles. We obtain our solutions by perturbing around the Calabi-Yau vacua paired with the gauge field on the tangent bundle of \(X \).

In more concrete term, we take a smooth Calabi-Yau threefold \((X, \omega)\) and a reducible Yang-Mills connection (metric) \(H \) on \(TX \oplus \mathbb{C}^{3r}_X \); \((\omega, H) \) is a reducible solution to Strominger’s system. For any small deformations \(\bar{\partial}_s \) of the holomorphic structure of \(TX \oplus \mathbb{C}^{3r}_X \), we derive a sufficient condition for \((1.1)-(1.4)\) being solvable for \((X, \bar{\partial}_s)\): it is that the Kodaira-Spencer class of the family \(\bar{\partial}_s \) at \(s = 0 \) satisfies certain non-degeneracy condition (see Theorem 4.3). After that, we will construct examples of Calabi-Yau threefolds that admit small deformations of \(TX \oplus \mathbb{C}^{3r}_X \) satisfying this requirement. This provides the first example of regular irreducible solution to Strominger’s system.

In the next paper, we would like to understand the non-perturbative theory and hope to formulate a global structure theorem of the moduli space of these fields.

\(^1\)The equation (1.2) in [24] has \(\frac{1}{30} \text{tr} F \wedge F \); this is because he worked with principle bundles and the trace is that of its adjoint bundle.
2. Solving Hermitian-Einstein equation by perturbation

In this section we will solve the usual Hermitian-Yang-Mills system using perturbation method. Let \((E, D'_s)\) be a smooth family of holomorphic vector bundles on an \(n\)-dimensional Kahler manifold \((X, \omega)\). Suppose \(H_0\) is a Hermitian-Yang-Mills metric on \((E, D'_0)\); we ask under what condition can we extend \(H_0\) to a smooth family of Hermitian-Yang-Mills metrics \(H_s\) on \((E, D''_s)\)? When \(H_0\) is irreducible, the answer is affirmative. The case when \(H_0\) is reducible is more subtle. Let \((E_1, D'_1)\) and \((E_2, D'_2)\) be two degree zero slope-stable vector bundles on \(X\). By a theorem of Uhlenbeck-Yau, both \((E_1, D'_1)\) and \((E_2, D'_2)\) admit Hermitian-Yang-Mills metrics \(H_1\) and \(H_2\). The direct sum of their scalar multiples \(H_1 \oplus e^t H_2\) is a Hermitian-Yang-Mills metric on \((E, D''_s) \triangleq (E_1 \oplus E_2, D''_1 \oplus D''_2)\).

Suppose we are given a smooth deformation of holomorphic structures \(D''_s\) of \(D'_0\), then the Kodaira-Spensor class identifies the first order deformation of the family \(D''_s\) at 0 to an element

\[
\kappa \in H^0_0(X, E^v \otimes E)
\]

in the Dolbeault cohomology of the \(\bar{\partial}\)-operator \(D''_0\). Because \(D''_0 = D'_1 \oplus D'_2\), the above cohomology space decomposes into direct sum

\[
\oplus_{i,j=1}^2 H^0_0(X, E^v_i \otimes E_j).
\]

We let \(\kappa_{ij} \in H^0_0(X, E^v_i \otimes E_j)\) be its associated components under this decomposition.

Theorem 2.1. Suppose \(\kappa_{12}\) and \(\kappa_{21}\) are non-zero, then there is a unique \(t\) so that for sufficiently small \(s\) the metric \(H_0(t) = H_1 \oplus e^t H_2\) extends to a family of Hermitian-Yang-Mills metrics \(H_s\) on \((E, D''_s)\).

We will prove this theorem by applying implicit function theorem to the elliptic system of the Hermitian-Yang-Mills metrics of \((E, D''_s)\).

To begin with, equation \((2.2)\) holds for any hermitian connections of holomorphic vector bundles. Now let \(H\) be a hermitian metric on \(E\) and \(F_{s,H}\) be its the hermitian curvature on \((E, D''_s)\). The Hermitian-Yang-Mills equation for \((E, D''_s)\), which has degree zero, then becomes

\[
F_{s,H} \wedge \omega^{n-1} = 0.
\]

The linearization of \((2.1)\) is self-adjoint and has two-dimensional kernel and cokernel. In case \(\wedge^n (E, D''_s) \cong \mathbb{C}_X\), we can normalize \(H\) so that its induced metric on \(\wedge^n E \cong \mathbb{C}_X\) is the constant one metric. Then the linearization of the restricted system has one dimensional kernel and cokernel. We suppose the cokernel is spanned by \(J \cdot \omega^n\). Then for small \(s\), the implicit function theorem supplies us a one dimensional family of solutions \(H_{s,t}\), of determinant one, to the system \((2.1)\) modulo the linear span of \(J \cdot \omega^n\):

\[
F_{s,H_{s,t}} \wedge \omega^{n-1} \equiv 0 \mod J \cdot \omega^n.
\]

To prove the theorem, it remains to show that we can find a function \(t = \rho(s)\) so that

\[
F_{s,H_{s,\rho(s)}} \wedge \omega^{n-1} = 0.
\]
For this, we will look at the functional
\[r(s, t) = \frac{1}{2} \int \text{tr}(F_{s,H_{x,t}} \cdot J) \wedge \omega^{n-1} \]
and investigate the derivatives \(\dot{r}(0, t) = \frac{d}{dt}r(s, t)|_{s=0} \). Since \(r(0, t) \equiv 0 \), the first order derivatives \(\dot{r}(0, t) \) are independent of the parameterizations \((s, t)\). By a direct calculation, they all vanish. Thus we are forced to work at the second order derivatives \(\ddot{r}(0, t) \); they are of the form
\[\ddot{r}(0, t) = e^{-\alpha t} A - e^{\alpha t} B, \quad A, B \geq 0. \]
In case \(\kappa_{12} \) and \(\kappa_{21} \) are non-zero, \(A \) and \(B \) become positive; hence we can find a function \(t = \rho(s) \) so that \(\lim_{s \to 0} \rho(s) = \frac{1}{2\alpha} \ln(A/B) \) and
\[r(s, \rho(s)) = 0. \]
This shall prove the existence theorem. Since later we will adopt this approach to solve Strominger’s system, we shall provide its detail here as a warm up.

We begin with the basic objects: the vector bundle, its holomorphic structure and its curvature. We let \((X, \omega)\) be a Kahler manifold of dimension \(n \); we let \((E_1, D''_1)\) and \((E_2, D''_2)\) be two degree zero slope stable holomorphic vector bundles of ranks \(r_1 \) and \(r_2 \); we let \((<, >, \cdots)\) be the Hermitian-Yang-Mills metrics of \((E_1, D''_1)\) and \((E_2, D''_2)\). For simplicity, we assume \(\wedge^r E_i \cong \mathbb{C}_X \) and pick \(<, >_i\) so that its induced metric on \(\wedge^r E_i \cong \mathbb{C}_X \) is the constant 1 metric. Under this arrangement the \(<, >_i\) are unique. We then let \(E = E_1 \oplus E_2 \), of rank \(r = r_1 + r_2 \), and endow it with the holomorphic structure \(D''_1 \oplus D''_2 \) and the reference hermitian metric \(<, > = <, >_1 + <, >_2\).

Next we let \(D''_0 \) be a smooth family of holomorphic structures on \(E \) so that \(D''_0 = D''_1 \oplus D''_2 \). \(D''_0 \) relates to \(D''_0 \) by a global section \(A_s \in \Omega^{0,1}(\text{End } E) \):
\[D''_s = D''_0 + A_s; \]
the hermitian connection \(D_s = D'_s + D''_s \) of \((E, D''_0, <, >)\) relates to the hermitian connection \(D_0 \) of \((E, D'_0, <, >)\) via
\[D_s = (D''_s + A_s) + (D'_0 - A_s^*); \]
the hermitian curvature of \(D_s \) becomes
\[F_s = F_0 + (D''_0 + D'_0)(A_s - A_s^*) - (A_s - A_s^*) \wedge (A_s - A_s^*). \]
Here \(A_s^* \) is the hermitian adjoint of \(A_s \) under \(<, >\).

It is instructive to express them in local coordinates. Let \(e_1, \cdots, e_n \) be a (local) orthonormal basis of \((E, <, >)\). We define the connection form \(\Gamma_{s, \alpha \beta} \) of \(D''_s \):
\[D''_s e_\alpha = \Gamma_{s, \alpha \beta} e_\beta; \]
then the matrix
\[A_s = (A_{s, \alpha \beta}) = (\Gamma_{s, \alpha \beta} - \Gamma_{0, \alpha \beta}). \]
For any local section \(v = \sum x_\alpha e_\alpha \), written in the matrix form \(v = x e^t \) with \(x = (x_1, \cdots, x_n) \) and \(e = (e_1, \cdots, e_n) \) being row vectors, the differentiation
\[D''_s v = (\tilde{\partial} x + x(\tilde{\partial} \Gamma_{s, \alpha \beta})) e^t = (\partial x + x(\Gamma_{0, \alpha \beta})) e^t + (x A_s) e^t = D'_0 v + v A_s. \]
In case \(\varphi \) is a section of \(E^* \otimes E \), a local computation shows that
\[D''_s \varphi = D'_0 \varphi + [A_s, \varphi] \quad \text{and} \quad D'_s \varphi = D'_0 \varphi + [A_s^*, \varphi]. \]
This works for endomorphism-valued \(p \) and \(q \)-forms \(A \) and \(B \) if we follow the convention \([A, B] = A \wedge B - (-1)^{pq} B \wedge A\).
Lemma 2.2. Let \((E, D''_s)\) be a family of holomorphic structures on a vector bundle \(E\) over a Kahler manifold \((X, \omega)\). Then there is a family of gauge transformations \(g_s \in \Omega^0(\text{End} E), g_0 = id\), so that the first order derivative \(\frac{d}{ds} g_s^* D''_s\) is \(D''_0\)-harmonic.

Proof. First, we can find \(\mu \in \Omega^0(\text{End} E)\) so that \(D''_0 + D''_0 \mu\) is \(D''_0\)-harmonic. We then choose a family of gauge transformation \(g_s\) so that \(\frac{d}{ds} g_s^* D''_s = D''_0 + D''_0 \mu\). \(g_s\) is the desired family of gauge transformations. \(\square\)

As a corollary, we can choose the family \(D''_s = D''_0 + A_s\) so that \(A_0\) is \(D''_0\)-harmonic with respect to the Kahler form \(\omega\).

Solving Hermitian Yang-Mills connections involves working with other hermitian metrics of \(E\). We let \(\mathcal{H}(E)_1\) be the space of all hermitian metrics on \(E\) whose induced metrics on \(\wedge^r E \cong \mathbb{C}_X\) are constant one metric. Once we have the reference metric \(<,\cdot,>\), the space \(\mathcal{H}(E)_1\) is isomorphic to the space of determinant one pointwise positive definite \(<,\cdot,>\)-hermitian symmetric endomorphisms of \(E\) via

\[
\langle u, v \rangle_H = \langle u H, v \rangle.
\]

In this paper, we shall use such \(H\) to represent its associated hermitian metric.

Given a hermitian metric \(H\), its hermitian connection \(D_{s,H}\) is

\[
D_{s,H} = (D'_s + D'_s H \cdot H^{-1}) + D''_s;
\]

its curvature is

\[
F_{s,H} = F_s + D''_s (D'_s H \cdot H^{-1}).
\]

The Hermitian-Yang-Mills connections of \((E, D''_s)\) are hermitian metrics \(H \in \mathcal{H}(E)_1\) making

\[
\tilde{L}_s(H) = (F_s + D''_s (D'_s H \cdot H^{-1})) \wedge \omega^{n-1}
\]

vanish. Because \(H\) induces the constant one metric on \(\wedge^r E, \text{tr} F_{s,H}\), which is the curvature of \((\wedge^r E, \text{det} H)\), is zero. Hence \(\tilde{L}_s(H)\) is traceless \(H\)-hermitian antisymmetric. To make it \(<,\cdot,>\)-hermitian anti-symmetric instead, we form the operator

\[
(2.5) \quad L_s(H) = H^{-1/2} \cdot \tilde{L}_s(H) \cdot H^{1/2} : \mathcal{H}(E)_1 \longrightarrow \Omega^2_{\mathbb{R}}(\mathfrak{su} E).
\]

It takes value in the vector bundle \(\mathfrak{su} E\) of traceless hermitian anti-symmetric endomorphisms of \((E, <,\cdot,>)\).

Next we let \(I_t\) be the identity endomorphism of \(E_t\), viewed as an endomorphism of \(E\). Because both \(E_1\) and \(E_2\) are degree zero slope stable and \(H_1\) and \(H_2\) are their Hermitian-Yang-Mills metrics, the solutions to \(L_0(H) = 0\) are

\[
(2.6) \quad H_{0,t} = e^{t/2} I_1 \oplus e^{-t/2} I_2, \quad t \in \mathbb{R}.
\]

Further, using \(\delta H = H_{0,t}^{-1/2} \delta h H_{0,t}^{-1/2}\), which is an isomorphism of the tangent space of \(\mathcal{H}(E)_1\) at \(H_{0,t}\) with the space of sections of the vector bundle \(\mathfrak{sy} \mathfrak{t}^0 E\) of traceless hermitian symmetric endomorphisms of \((E, <,\cdot,>)\), the linearization of \(L_0\) at \(H_{0,t}\) becomes

\[
(2.7) \quad \delta L_0(H_{0,t}) = D''_0 D'_0 \delta h \wedge \omega^{n-1} : \Omega^0(\mathfrak{sy} \mathfrak{t}^0 E) \longrightarrow \Omega^2_{\mathbb{R}}(\mathfrak{su} E).
\]

Because \((E, D''_0)\) is a direct sum of two distinct stable vector bundles, the kernel and the cokernel of \(\delta L_0\) are both one-dimensional, of which the cokernel is spanned by

\[
J = \frac{\sqrt{-1}}{r_2} I_1 \cdot \omega^n + \frac{\sqrt{-1}}{r_1} I_2 \cdot \omega^n;
\]

independent of \(t\). To apply the implicit function theorem, we take the projection

\[
P : \Omega^2_{\mathbb{R}}(\mathfrak{su} E) \longrightarrow \Omega^2_{\mathbb{R}}(\mathfrak{su} E)/\mathbb{R} \cdot J
\]
and look at the composite
\[P \circ L_s : \mathcal{H}(E)_1 \longrightarrow \Omega^2_{\mathbb{R}}(\mathfrak{su}E)/\mathbb{R} \cdot J. \]
Because the cokernel of \(P \circ \delta L_0 \) at \(H_{0,t} \) is 0, for small \(s \) the operator \(P \circ L_s \) is an open operator near \(H_{0,t} \). Further because the linearization of \(P \circ L_s \) has index one at \(H_{0,t} \), the solution space \(V_s \) of \(P \circ L_s = 0 \) is a one-dimensional smooth manifold near \(H_{0,t} \) and the union \(\cup_s V_s \) is a smooth two-dimensional manifold near \(H_{0,t} \). Since \(V_0 \) is parameterized by the line \(\mathbb{R} \) via the solutions \(\hat{J} \), we can extend this parameterization to \(V_s \) near \(H_{0,t} \) so that \((s,t) \) provides a coordinate chart of \(\cup_s V_s \). We let \(H_{s,t} \) be the solution to \(P \circ L_s = 0 \) associated to \((s,t) \in V_s \). This way, to solve \(L_s(H) = 0 \) if suffices to find the vanishing loci of the function
\[r(s,t) = \sqrt{-1} \int_X \text{tr}(L_s(H_{s,t}) \cdot I_1) \in \mathbb{R}. \]
We will show that there is a function \(t = \rho(s) \) so that \(r(s, \rho(s)) = 0 \). Because \(r(0,t) = 0 \), the first step is to investigate the sign of the derivatives of \(r(s,t) \) of \(s \) at \(s = 0 \). Recall that
\[D_s'' H_{s,t} = D_{s,0}'' H_{s,t} - [A_s, H_{s,t}] \quad \text{and} \quad D_s' H_{s,t} = D_{s,0}' H_{s,t} + [A_s^*, H_{s,t}]; \]

hence
\[\frac{d}{ds} D_s'' H_{s,t} = \frac{d}{ds} D_{s,0}'' H_{s,t} - [\dot{A}_s, H_{s,t}] \quad \text{and} \quad \frac{d}{ds} D_s' H_{s,t} = \frac{d}{ds} D_{s,0}' H_{s,t} + [\dot{A}_s^*, H_{s,t}]. \]

Therefore, following the convention that \(\dot{f}(s,t) = \frac{d}{ds} f(s,t) \) and \(\dot{f}(0,t) = \frac{d}{ds} f(s,t)|_{s=0} \),
\[\frac{d}{ds} L_s(H_{s,t}) = \dot{F}_s - [\dot{A}_s, D_s H_{s,t} \cdot H_{s,t}^{-1}] + D_s'' \varphi_{s,t} \quad \text{with} \quad \varphi_{s,t} = \frac{d}{ds} (D_s' H_{s,t} \cdot H_{s,t}^{-1}). \]

We have the following useful easy observation:

Lemma 2.3. Let \(\mu_1 \in \Omega^{1,0}(E_1^\vee \otimes E_2) \), let \(\mu_2 \in \Omega^{0,1}(E_1^\vee \otimes E_2) \), and let \(\psi \in \Omega^0(E_2^\vee \otimes E_1) \) be a smooth section.

1. Suppose \(D_0'' \mu_1 = 0 \), then \(\int_X \text{tr}(D_0'' \mu_1 \cdot \psi) \wedge \omega^{n-1} = 0 \).

2. Suppose \(D_0'' \mu_2 = 0 \), then \(\int_X \text{tr}(\mu_2 \cdot D_0' \psi) \wedge \omega^{n-1} = 0 \).

Proof. The two identities follow directly from the Stokes' formula. First, because \(D_0'' \mu_1 = 0 \), because \(\mu \) is a \((1,0)\)-form and because \(\omega \) is a Kähler form on \(X \),
\[\int_X \text{tr}(D_0'' \mu_1 \cdot \psi) \wedge \omega^{n-1} = \int_X \partial(\text{tr}(\mu_1 \cdot \psi) \wedge \omega^{n-1}) = \int_X d(\text{tr}(\mu_1 \cdot \psi) \wedge \omega^{n-1}) = 0. \]

This proves the first part. As to the second part, a direct computation shows that
\[0 = \text{tr}(D_0'' \mu_2 \cdot \phi) \cdot \omega^n = -2n \text{tr}(D_0'' \mu_2 \cdot \phi) \cdot \omega^{n-1}. \]

The identity follows immediately. \(\square \)

We now evaluate \(\dot{r}(0,t) \) and \(\ddot{r}(0,t) \). First, we show that
\[(2.8) \quad \frac{d}{ds} L_s(H_{s,t})|_{s=0} = \frac{d}{ds} \hat{L}_s(H_{s,t})|_{s=0} = 0. \]
Because \(F_{0,H_{0,t}} \wedge \omega^{n-1} = 0 \), the first identity holds automatically. We now look at the second identity. By definition, there is a function \(c(s,t) \) with \(c(0,t) = 0 \) so that
\[c(s,t)J = L_s(H_{s,t}) = H_{s,t}^{-1/2} F_{s,H_{s,t}} H_{s,t}^{1/2}. \]
Taking derivative of s at $s = 0$ gives us
\[
\dot{c}(0, t) J = \frac{d}{ds} \left(H_{s,t}^{1/2} F_s, H_{s,t} H_{s,t}^{1/2} \wedge \omega^{n-1} \right) |_{s=0} = H_{0,t}^{-1/2} \ddot{F}_0, H_{0,t} H_{0,t}^{1/2} \wedge \omega^{n-1}.
\]
Using the explicit form of $H_{0,t}$, $A_0 = 0$, $\ddot{F}_0 = D_0^\nu \dot{A}_0 - D_0^\nu \dot{A}_0$ and $\partial H_{0,t} = 0$, we obtain
\[
\frac{d}{ds} \int_X \text{tr} \left(H_{s,t}^{1/2} F_s, H_{s,t} H_{s,t}^{1/2} \wedge \omega^{n-1} \cdot I_1 \right) |_{s=0} = \int_X \text{tr} \left((D_0^\nu \varphi + D_0^\nu \varphi') \cdot I_1 \right) \wedge \omega^{n-1}
\]
for some smooth sections φ and φ'. The right hand side of the above identity is zero by Lemma 2.3, thus
\[
\int_X \dot{c}(0, t) \text{tr}(J \cdot I_1) = 0,
\]
which forces $\dot{c}(0, t) = 0$. This proves (2.8), and $\dot{r}(0, t) = 0$ for all t.

We next compute $\ddot{r}(0, t)$. Because of (2.8),
\[
\frac{d^2}{ds^2} \tilde{L}_s(H_{s,t}) |_{s=0} = H_{0,t}^{-1/2} \frac{d^2}{ds^2} \ddot{L}_s(H_{s,t}) |_{s=0} H_{0,t}^{1/2}.
\]
A direct computation shows that
\[
(2.9) \quad \frac{d^2}{ds^2} \tilde{L}_s(H_{s,t}) |_{s=0} = \dot{F}_0 - 2 \dot{A}_0 \left[\dot{A}_0^*, [H_{0,t}, H_{0,t}]H_{0,t}^{-1} \right] - 2 \dot{A}_0 \left[D_0^\nu \dot{H}_0, t \cdot H_{0,t} \right] + D_0^\nu \dot{\varphi}_0, t
\]
with
\[
(2.10) \quad \varphi_{s,t} = \frac{d}{ds} \left(D_s H_{s,t}, H_{s,t}^{-1} \right) = (D_s H_{s,t} + D_s \dot{H}_{s,t}) H_{s,t}^{-1} = [\dot{A}_0^*, H_{s,t}] H_{s,t}^{-1} + D_s \dot{H}_{s,t} \cdot H_{s,t}^{-1}.
\]
Because $H_{0,t}$ commutes with I_1,
\[
\ddot{r}(0, t) = \sqrt{-1} \left(\int_X \text{tr}(\dot{F}_0 \cdot I_1) \wedge \omega^{n-1} - 2 \int_X \text{tr} \left([\dot{A}_0, \dot{A}_0^*, [H_{0,t}, H_{0,t}^{-1}]] \cdot I_1 \right) \wedge \omega^{n-1} - 2 \int_X \text{tr} \left([\dot{A}_0, D_0^\nu \dot{H}_{0,t} \cdot H_{0,t}^{-1}] \cdot I_1 \right) \wedge \omega^{n-1} + \int_X \text{tr} \left(D_0^\nu \dot{\varphi}_0, t \cdot I_1 \right) \wedge \omega^{n-1} \right).
\]
To analyze the sign of the above integration, we use the splitting $E = E_1 \oplus E_2$ to express
\[
\dot{A}_0 = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.
\]
Because
\[
H_{0,t} = \begin{pmatrix} \exp \left(\frac{t}{r_2} \right) \cdot I_1 & 0 \\ 0 & \exp \left(\frac{t}{r_2} \right) \cdot I_2 \end{pmatrix},
\]
the second term
\[
-2 \sqrt{-1} \int_X \text{tr} \left([\dot{A}_0, [\dot{A}_0^*, H_{0,t}]H_{0,t}^{-1}] \cdot I_1 \right) \wedge \omega^{n-1}
\]
in $\ddot{r}(0, t)$ is, for $\alpha = \frac{1}{r_1} + \frac{1}{r_2}$,
\[
-2 \sqrt{-1} (1 - e^{-\alpha t}) \int_X \text{tr} \left(C_{12} \wedge C_{12}^* \right) \wedge \omega^{n-1} - 2 \sqrt{-1} (1 - e^{\alpha t}) \int_X \text{tr} \left(C_{21} \wedge C_{21} \right) \wedge \omega^{n-1}.
\]
Similarly, because of (2.8) and $F_{s,0}^2 = F_{s,0}^{0,2} = 0$,
\[
\sqrt{-1} \int_X \text{tr}(\dot{F}_0 \cdot I_1) \wedge \omega^{n-1} = 2 \sqrt{-1} \int_X \text{tr}(C_{12} \wedge C_{12}^*) \wedge \omega^{n-1}.
\]

The last term in $\ddot{r}(0, t)$ is zero because of Lemma 2.3, the next-to-last term is
\[
-2 \sqrt{-1} \int_X \text{tr} \left(\dot{A}_0 \cdot D_0^\nu \dot{H}_{0,t} \cdot H_{0,t}^{-1} \cdot I_1 \right) \wedge \omega^{n-1} + 2 \sqrt{-1} \int_X \text{tr} \left(D_0^\nu \dot{H}_{0,t} \cdot H_{0,t}^{-1} \cdot \dot{A}_0 \cdot I_1 \right) \wedge \omega^{n-1},
\]
which vanishes because $D''_0 A_0 = 0$ and Lemma 3.3. Therefore,
\[\dot{r}(0, t) = \sqrt{-1} e^{-at} \int_X \text{tr}(C_{12} \land C_{12}^*) \land \omega^{n-1} + \sqrt{-1} e^{at} \int_X \text{tr}(C_{21}^* \land C_{21}) \land \omega^{n-1}. \]
Because the associated cohomology class $[C_{ij}] = \kappa_{ij}$ and κ_2 and κ_1 are both non-zero,
\[A = \sqrt{-1} \int_X \text{tr}(C_{12} \land C_{12}^*) \land \omega^{n-1} \quad \text{and} \quad B = -\sqrt{-1} \int_X \text{tr}(C_{21}^* \land C_{21}) \land \omega^{n-1} \]
are positive. Hence for sufficiently small s, the value $r(s, t) > 0$ for $t < \frac{1}{2a} \ln \frac{A}{B}$ and $r(s, t) > 0$ for $t > \frac{1}{2a} \ln \frac{A}{B}$. Hence there is a function $t = \rho(s)$ so that $r(s, \rho(s)) = 0$. This proves that the system $L_s(H) = 0$ is solvable for small s. Here the function $\rho(s)$ is not necessarily continuous, but $\lim_{s \to 0} \rho(s) = \frac{1}{2a} \ln \frac{A}{B}$.

3. Linearization of Strominger’s system

In this section we will study the linearization of Strominger’s system. Before we do this, we will first rephrase the system (1.1)-(1.4) in the form that is easier to handle.

We fix a Calabi-Yau threefold (X, ω_0) and a $(3, 0)$-holomorphic form Ω so that $\Omega \land \bar{\Omega} = \omega_0^3$. We let (E, D') be a rank r holomorphic bundle over X such that $c_1(E) = 0$ and $c_2(E) = c_2(X)$. We then choose a hermitian metric H on E and let $D_H = D_H' \oplus D''$ be the hermitian connection of (E, D', H); its curvature $F_H = D_H \circ D_H$ satisfies
\[F_H^{2,0} = F_H^{0,2} = 0. \]
Thus the second equation of the Strominger’s system follows automatically.

The fourth equation of the system is a non-linear equation of a hermitian form ω involving the adjoint d^\ast of ω. It turns out that this equation is equivalent to
\[d(\|\Omega\|_\omega \omega^3) = 0. \]

We now prove this equivalence. We let $\mathcal{H}(X)$ and $\mathcal{K}(X)$ be the cones of positive definite hermitian forms and Kahler forms on X respectively. Given an $\omega \in \mathcal{H}(X)$, we let \ast_{ω} be the (hermitian) star operator of ω; and let $d_{\ast \omega}$ be the adjoint of d with respect to the metric ω.

The hermitian star operator has an explicit local expression. Given a hermitian form ω on X it induces canonical hermitian metrics on T_X and on $\wedge^k T^\vee_{X, \mathbb{C}}$. Let $(\cdot, \cdot)_\omega$ be the hermitian metric on $\wedge^k T^\vee_{X, \mathbb{C}}$ and $\frac{1}{(2\pi)^3} \omega^3$ its associated volume form on X. The star operator \ast_{ω} is the \mathbb{C}-linear operator defined via
\[(\varphi, \psi)_\omega \cdot \frac{\omega^3}{\sqrt{\omega}} = \varphi \land \ast_{\omega} \psi. \]

Let $p \in X$ be any point and let $\varphi_1, \varphi_2, \varphi_3$ be an $(\cdot, \cdot)_\omega$-orthonormal basis (a moving frame) of the $(1, 0)$-forms near p obeying $(\varphi_i, \varphi_j)_\omega = 2\delta_{ij}$. Then the hermitian form
\[\omega = \frac{\sqrt{-1}}{2} \sum_{i=1}^3 \varphi_i \land \bar{\varphi_i}. \]

For any subset $I = \{i_1, \cdots, i_k\} \subset \{1, 2, 3\}$, we denote by $\varphi_I = \varphi_{i_1} \land \cdots \land \varphi_{i_k}$, and denote by I° the complement $\{1, 2, 3\} - I$. Following this convention,
\[\ast_{\omega}(c \varphi_I \land \varphi_J) = \epsilon_{IJ} \sqrt{-1} 2^{(|I|+|J|)/2} c \varphi_{I^\circ} \land \bar{\varphi}_{J^\circ}, \quad c \in \mathbb{C}, \]
where ϵ_{IJ} is the parity of permuting $(I, J; I^\circ, J^\circ) \mapsto (1, 2, 3; 1', 2', 3')$.

We now re-state and prove the mentioned equivalence.
Lemma 3.1. Let ω_0 be the reference Kahler form as before. Then the equation (3.4) is equivalent to

\begin{equation}
*_{\omega_0} d (||\Omega||_\omega \omega^2) = 0.
\end{equation}

Proof. Let f be a positive real valued function, then

\[d(f \omega^2) = f \, d \omega^2 + df \wedge \omega^2 = 2f \, *_{\omega} \omega + df \wedge \omega^2. \]

Thus

\[*_{\omega} d(f \omega^2) = 2f \, *_{\omega} d \omega + *_{\omega}(df \wedge \omega^2) = -2f \, d_{c*} \omega + 2d_{c}f. \]

Here we have used the identity

\[*_{\omega}(df \wedge \omega^2) = 2d_{c}f, \]

which holds for all hermitian form ω. Replacing f by $||\Omega||$, we obtain

\[*_{\omega}d(||\Omega||_\omega \omega^2) = 2||\Omega||(-d_{c*} \omega + d_{c} \log ||\Omega||_\omega), \]

which vanishes if and only if

\[d_{c*} \omega = d_{c} \log ||\Omega||_\omega. \]

Finally, since $*_{\omega}$ and $*_{\omega_0}$ are both isomorphisms, $*_{\omega}d(||\Omega||^{-1}_\omega \omega^2) = 0$ if and only if

\[*_{\omega_0}d(||\Omega||_\omega \omega^2) = 0. \]

This proves the lemma. \[\square\]

To apply the implicit function theorem, we need to specify the range of the operators associated to Strominger’s system. For that, noting that $2dd_{c} = -1d\partial$, we let $R(dd_{c}) \subset \Omega^{2,2}_{\mathbb{R}}(X)$ and $R(d_{c*}) \subset \Omega^{1,1}_{\mathbb{R}}(X)$ be the range of

\[dd_{c} : \Omega^{1,1}_{\mathbb{R}}(X) \to \Omega^{2,2}_{\mathbb{R}}(X) \quad \text{and} \quad d_{c*} : \Omega^{1,1}_{\mathbb{R}}(X) \to \Omega^{1,1}_{\mathbb{R}}(X). \]

Because (X, ω_0) is a Kahler manifold, by $\partial\bar{\partial}$-lemma, a real form $\alpha \in R(dd_{c})$ if and only if $d\alpha = 0$. Hence, after picking a usual Banach norm on $\Omega^{2,2}_{\mathbb{R}}(X)$, $R(dd_{c})$ is closed in it. As to $R(d_{c*})$, since d_{c*} is part of an elliptic complex, it is also closed. This way, after replacing L_2 by L_2' and omitting the equation (3.4), the Strominger’s system is equivalent to the vanishing of the operator

\begin{equation}
L = L_1 \oplus L_2 \oplus L_3 : \mathcal{H}(E)_{1} \times \mathcal{H}(X) \longrightarrow \Omega^{0}_{\mathbb{R}}(suE) \oplus R(dd_{c}) \oplus R(d_{c*}'),
\end{equation}

defined by

\begin{equation}
L_1(H, \omega) = H^{-1/2}F_H H^{1/2} \wedge \omega^2 \in \Omega^{0}_{\mathbb{R}}(suE);
\end{equation}

\begin{equation}
L_2(H, \omega) = \frac{1}{2} dd_{c} \omega + (\text{tr}(F_H \wedge F_H) - \text{tr}(R_\omega \wedge R_\omega)) \in \Omega^{2,2}_{\mathbb{R}}(X);
\end{equation}

\begin{equation}
L_3(H, \omega) = *_{\omega_0}d(||\Omega||_\omega \omega^2) \in \Omega^{1}_{\mathbb{R}}(X).
\end{equation}

Because $c_2(E) = c_2(TX)$ and X is a Kahler manifold, by $\partial\bar{\partial}$-lemma the image of L_2 lies in $R(P)$. As to L_3, because

\[*_{\omega_0}d = \pm *_{\omega_0}d *_{\omega_0}^{-1} = \mp d_{c*} *_{\omega_0}^{-1}, \]

its image lies in the range of d_{c*}' as well. Therefore the operator L is well-defined.
Proposition 3.2. Suppose \(L(H, \omega_0) = 0 \). Then the three summands of the linearization of \(L \) at \((H, \omega_0)\) are
\[
\delta L_1(H, \omega_0)(\delta h, \delta \omega) = D''D'_H \delta h \wedge \omega_0^2 + 2H^{-1/2}F_H H^{1/2} \wedge \omega_0 \wedge \delta \omega;
\delta L_2(H, \omega_0)(\delta h, \delta \omega) = \frac{1}{2}dd_c \delta \omega + 2(\text{tr}(\delta F_H(\delta h) \wedge F_H)) - \text{tr}(\delta R_{\omega_0}(\delta \omega) \wedge R_{\omega_0});
\delta L_3(H, \omega_0)(\delta h, \delta \omega) = 2d^\ast \omega_0 \delta \omega - d^\ast \omega_0((\delta \omega, \omega_0) \wedge \omega_0).
\]

Here as before we follow the convention \(\delta H = H^{-1/2} \delta h H^{-1/2} \).

Proof. The formula for \(\delta L_1 \) is well-known [27]; the formula for \(\delta L_2 \) in the written form is a tautology; we stop short of finding an explicit form of \(\delta R \) since the current form is sufficient for our purposes.

We now prove the formula for \(\delta L_3 \). Let \(\omega_t \) be a smooth variation of the hermitian form \(\omega_0 \); let \(\varphi_1(t), \varphi_2(t), \varphi_3(t) \) be an orthonormal basis of \((1, 0)\)-forms, smooth in \(t \), expressed in a holomorphic coordinate \((z_1, z_2, z_3)\) near \(p \in X \) by
\[
\varphi_i(t) = \sum_j b_{ij}(t)dz_j, \quad b_{ij}(0)(p) = \delta_{ij} \quad \text{and} \quad (\varphi_i(t), \varphi_j(t))_{\omega_t} = 2\delta_{ij}.
\]

We can compute explicitly \(\frac{d}{dt}(\omega_t^2)_{t=0} \). First,
\[
\omega_t^2 = \frac{1}{2} \sum \varphi \cdot \varphi = \frac{1}{2} \sum c_{ik}(t) \tilde{c}_{il}(t) dz_k \wedge d\bar{z}_l,
\]
where \(c_{ij}(t) \) is the \(ij \)-th minor of the matrix \((b_{ij}(t))_{3 \times 3} \); namely
\[
(c_{ij}(t))^t = \text{det}(b_{ij}(t)) \cdot (b_{ij}(t))^{-1}.
\]

Hence at \(p \),
\[
\frac{d}{dt} \omega_t^2|_{t=0} = \frac{1}{2} \sum (\dot{c}_{ik}(0) + \tilde{c}_{kl}(0)) dz_k \wedge d\bar{z}_l.
\]

Using the identity (3.7) above,
\[
\dot{c}_{kl}(0) + \tilde{c}_{kl}(0) = -b_{kl}(0) - \dot{b}_{kl}(0) + c_{lk}(0) \sum_i \dot{b}_{li}(0) + \bar{c}_{kl}(0) \sum_i \hat{b}_{li}(0).
\]

Therefore at \(p \),
\[
\frac{d}{dt} \omega_t^2|_{t=0} = -\frac{1}{2} \sum_{l,k} (\dot{b}_{kl}(0) + \hat{b}_{lk}(0)) dz_k \wedge d\bar{z}_l + \frac{1}{2} \sum_k (dz_k \wedge d\bar{z}_k) \cdot (\sum_i \dot{b}_{li}(0) + \hat{b}_{li}(0)).
\]

On the other hand, \(\omega_0^2 = \frac{1}{2} \sum dz_k \wedge d\bar{z}_k \). Hence
\[
\frac{d}{dt} \omega_t^2|_{t=0} = -\frac{1}{2} \sum_{l,k} (\dot{b}_{kl}(0) + \hat{b}_{lk}(0)) dz_k \wedge d\bar{z}_l + \omega_0^2(\sum_i \dot{b}_{li}(0) + \hat{b}_{li}(0)).
\]

Next we compute
\[
\frac{d}{dt} \log \|\Omega\|^2_{\omega_t}|_{t=0} = -\frac{d}{dt} \omega_t^2|_{t=0} = -\sum_i \dot{b}_{li}(0) + \hat{b}_{li}(0).
\]

Adding \(\|\Omega\|_{\omega_0} \equiv 1 \), we get
\[
\frac{d}{dt}(\|\Omega\|_{\omega_t} \omega_t^2)|_{t=0} = \left(\frac{1}{2} \omega_0^2 \frac{d}{dt} \log \|\Omega\|_{\omega_t}^2 + \frac{d}{dt} \omega_t^2 \right)|_{t=0}
\]
\[
= -\frac{1}{2} \sum_{l,k} (\dot{b}_{kl}(0) + \hat{b}_{lk}(0)) dz_k \wedge d\bar{z}_l + \frac{1}{2} (\sum_i \dot{b}_{li}(0) + \hat{b}_{li}(0)) \omega_0^2.
\]
On the other hand, at p
\[
\frac{d}{dt} \omega_t |_{t=0} = \frac{\sqrt{-1}}{2} \sum_i (\dot{\varphi}_i \wedge \varphi_i + \varphi_i \wedge \dot{\varphi}_i) = \frac{\sqrt{-1}}{2} \sum_{i,j} (\dot{b}_{ij}(0) + \dot{b}_{ij}(0)) dz_i \wedge d\bar{z}_j.
\]
Hence
\[
*_{\omega_0} \dot{\omega}_0 = \frac{1}{4} \sum_{i,j} (\dot{b}_{ij}(0) + \dot{b}_{ij}(0)) dz_i \wedge d\bar{z}_j.
\]
Combined, we obtain
\[
\frac{d}{dt} (\|\Omega\|_{\omega_t}^2) |_{t=0} = -2 *_{\omega_0} \dot{\omega}_0 + (\sum b_{ij}(0) + \dot{b}_{ij}(0)) \frac{\omega_0^2}{2}.
\]
It remains to treat the term $\sum \dot{b}_{ij}(0) + \dot{b}_{ij}(0)$. From
\[
(\dot{\omega}_0, \omega_0)_{\omega_0} \frac{\omega_0^3}{3!} = \dot{\omega}_0 \wedge *_{\omega_0} \omega_0 \quad \text{and} \quad *_{\omega_0} \omega_0 = \frac{1}{4} \sum_k d\bar{z}_k \wedge d\bar{z}_k,
\]
we get
\[
\dot{\omega}_0 \wedge *_{\omega_0} \omega_0 = \frac{\sqrt{-1}}{8} \sum (\dot{b}_{ij}(0) + \dot{b}_{ij}(0)) dz_i \wedge d\bar{z}_j \wedge dz_k \wedge d\bar{z}_k
\]
\[
= - \frac{\sqrt{-1}}{8} \sum (\dot{b}_{ij}(0) + \dot{b}_{ij}(0)) dz_i \wedge d\bar{z}_j \wedge dz_2 \wedge d\bar{z}_2 \wedge dz_3 \wedge d\bar{z}_3
\]

hence
\[
(\dot{\omega}_0, \omega_0)_{\omega_0} = \frac{\dot{\omega}_0 \wedge *_{\omega_0} \omega_0}{\omega_0^3/3!} = \sum \dot{b}_{ij}(0) + \dot{b}_{ij}(0).
\]
This proves that
\[
\frac{d}{dt} (\|\Omega\|_{\omega_t}^2) |_{t=0} = -2 *_{\omega_0} \dot{\omega}_0 + (\sum b_{ij}(0) + \dot{b}_{ij}(0)) \omega_0^2 = -2 *_{\omega_0} \omega_0 + *_{\omega_0}(\dot{\omega}_0, \omega_0)_{\omega_0} \omega_0.
\]
Finally, Applying $*_{\omega_0} d$ to both sides of this identity, we obtain
\[
\frac{d}{dt} *_{\omega_0} d (\|\Omega\|_{\omega_t}^2) |_{t=0} = 2d^*_{\omega_0} \dot{\omega}_0 - d^*_{\omega_0}(\dot{\omega}_0, \omega_0)_{\omega_0} \omega_0.
\]
This proves the Proposition.

Strominger’s system admits a class of reducible solutions. Let
\[
(E, D_0^f) = C^{0,r}_X \oplus TX
\]
be the direct sum of the trivial holomorphic bundle $C^{0,r}_X$ and the tangent bundle TX. We fix an isomorphism $\Lambda^{r+3} E \cong C_X$; we endow E with the hermitian metric $<,>$ that is a direct sum of a constant metric on $C^{0,r}_X$ and the Calabi-Yau metric ω_0 on TX. We normalize $<,>$ so that its induced metric on $\Lambda^{r+3} E \cong C_X$ is the constant one metric. As before, the metric $<,>$ is identified with the identity endomorphism $I: E \to E$.

Now let H_{rX}^+ be the space of positive definite hermitian symmetric $r \times r$ metrics; let I_1 and I_2 be the identity endomorphisms of $C^{0,r}_X$ and TX respectively. By abuse of notation, for $T \in H_{rX}^+$, we also view it as the constant endomorphism of $C^{0,r}_X$ induced by T, viewed as an endomorphism of E. Then the assignment
\[
T \in H_{rX}^+ \mapsto H_T = T \oplus |T|^{-1/3} I_2 \in H(E)_1, \quad |T| = \det T,
\]
associates each $T \in H_{rX}^+$ to a hermitian metric of E.

\[
\text{THE EXISTENCE OF SUPERSYMMETRIC STRING THEORY WITH TORSION 11}
\]
Obviously, the hermitian curvature F_{H_T} of $(E, <, >_{H_T})$ is $0 \oplus R_{\omega_0}$; hence $F_{H_T} \wedge F_{H_T} = R_{\omega_0} \wedge R_{\omega_0}$. Because ω_0 is d-closed,
\[L_2(H_T, \omega_0) = \frac{1}{2} dd_c \omega_0 + \text{tr}(F_{H_T} \wedge F_{H_T}) = \text{tr}(R_{\omega_0} \wedge R_{\omega_0}) = 0. \]

Further, because $<, >_{H_T}$ is Hermitian-Yang-Mills, and because $d^*_{\omega_0} \omega_0 = 0$ and $\Omega \wedge \bar{\Omega} = \omega_0^3$, $L_1(H_T, \omega_0) = L_3(H_T, \omega_0) = 0$. Therefore (H_T, ω_0) is a solution to $L(H, \omega) = 0$. Indeed, for any constant $c > 0$, the pair $(H_T, c\omega_0)$ is a solution to $L = 0$. These solutions are reducible because the vector bundle E splits under the hermitian connection D_{H_T}. In this paper, we will call such solutions the trivial solutions to Strominger’s system.

To construct irreducible solutions to Strominger’s system, we will first form a family of holomorphic structures D''_p on E that is a smooth deformation of D'_0; we then show that certain trivial solutions to Strominger’s system on (E, D''_p) can be extended to (irreducible) solutions on (E, D''_p). We shall prove this by applying implicit function theorem to the operator L of (3.3).

To this end, we pick an integer k and a large p and endow the domain and the target of L the Banach space structures as indicated:
\[\mathcal{H}(E)_{1,L^p} \times \mathcal{H}(X)_{L^k} \longrightarrow \Omega^p_R(\mathfrak{su}^0 E)_{L^k_{k-2}} \oplus R(\omega^0)_{L^k_{k-2}} \oplus R(d^*_{\omega_0})_{L^k_{k-1}}. \]

L becomes a smooth operator and its linearized operator δL at a solution (H, ω) becomes a linear map
\[\Omega^0(\delta \text{tr}^0 E)_{L^k_{k-2}} \oplus \Omega^1_{R}(X)_{L^k_{k-2}} \longrightarrow \Omega^0_R(\mathfrak{su}^0 E)_{L^k_{k-2}} \oplus R(\omega^0)_{L^k_{k-2}} \oplus R(d^*_{\omega_0})_{L^k_{k-1}}. \]

Here we used the canonical isomorphisms $T_H \mathcal{H}(E)_{1,L^p} \cong \Omega^0(\delta \text{tr}^0 E)_{L^p}$ and $T_\omega \mathcal{H}(X)_{L^k} \cong \Omega^1_{R}(X)_{L^k}$. For simplicity, in the following we will abbreviate $W_1 = \Omega^0_R(\mathfrak{su}^0 E)_{L^k_{k-2}}$ and $W_2 = R(\omega^0)_{L^k_{k-2}} \oplus R(d^*_{\omega_0})_{L^k_{k-1}}$. Thus $\delta L(H, \omega)$ is a linear map
\[\delta L(H, \omega) : \Omega^0(\delta \text{tr}^0 E)_{L^k_{k-2}} \oplus \Omega^1_{R}(X)_{L^k_{k-2}} \longrightarrow W_1 \oplus W_2. \]

To study the kernel and the cokernel of δL at a trivial solution $(H_T, c\omega_0)$ we will first look at the linear map
\[\mathbf{F}(\delta h) = D''_p D'_{0,H_T} (\delta h) \wedge \omega_0^2 : \Omega^0(\delta \text{tr}^0 E)_{L^k_{k-2}} \longrightarrow \Omega^0_R(\mathfrak{su}^0 E)_{L^k_{k-2}}. \]

Here according to our convention, $D_{H_T} = D'_{0,H_T} \oplus D''_0$ is the hermitian connection of (E, D''_p, H_T) for a $T \in \mathcal{H}_p^{+}$. Since $(E, D''_0) = \mathbb{C}^\mathfrak{g}^r \oplus TX$, the above is a linear elliptic operator of index 0 whose kernel is
\[V_0 = \{ M \oplus a I_2 | M \in \text{End}(\mathbb{C}^\mathfrak{g}^r), M = M^*, \text{tr } M + 3a = 0 \} \]
and cokernel is
\[V_1 = \omega_0^3 \cdot V_0 \subset W_1 = \Omega^0_R(\mathfrak{su}^0 E)_{L^k_{k-2}}. \]

We let P be the obvious projection
\[P : W_1 \longrightarrow W_1 / V_1. \]

Proposition 3.3. Let (X, ω_0), Ω, $<, >$ and $T \in \mathcal{H}_p^{+}$ be as before. Then there is a constant C so that for any $c > C$, the linear operator
\[P \circ \delta L_1(H_T, c\omega_0) \oplus \delta L_2(H_T, c\omega_0) \oplus \delta L_3(H_T, c\omega_0) \]
from $\Omega^0(\delta \text{tr}^0 E)_{L^k_{k-2}} \oplus \Omega^1_{R}(X)_{L^k_{k-2}}$ to $W_1 / V_1 \oplus W_2$ is surjective.
Proof. As we shall see, the proof of the Proposition relies on the understanding of the operator
\[T : \Omega^{1,1}_R(X)_{L^2} \rightarrow W_2 \]
defined by, after setting \(P = \frac{1}{2} dd^c = \sqrt{-1} \partial \bar{\partial} \),
\[T\mu = (P\mu, 2d^*\mu - d^*_{\omega}(\mu, \omega_0^\omega)) \].
Before we go on, we remark that since in the proof of this Proposition we will solely work with the Kahler form \(\omega_0 \), for convenience we will abbreviate \(*_{\omega_0} \) and \(d^*_{\omega_0} \) to \(* \) and \(d^* \).

For the starter, we form the linear operator \(S : \)
\[S\mu = 2\mu - (\mu, \omega_0)_{\omega_0} \omega_0 : \Omega^{1,1}_R \rightarrow \Omega^{1,1}_R \]
and its inverse
\[S^{-1}_\phi = \frac{1}{2}(\phi - (*_{\omega_0} \omega_0)). \]
Then by setting \(\phi = S\mu, T\mu \) can be expressed as
\[T\mu = T \circ S^{-1}_\phi = (P \circ S^{-1}_\phi, d^* \phi) . \]
Then applying the Hodge decomposition to \(\phi \in \Omega^{1,1}_R(X) \),
\[\phi = dd^* \psi + d^* d\psi + h \]
for a real \((1,1)\)-form \(\psi \) and harmonic \(h \). By the \(\partial \bar{\partial} \)-lemma, we can rewrite \(d^* d\psi = *P\alpha \) for a real form \(\alpha \).

As to the harmonic \(h \), we check that the pairing \((h, \omega_0)_{\omega_0} \) is constant. Since \((X, \omega_0) \) is Kahler,
\[d^*_c h = d^* h \wedge \omega_0 - d^* (*h \wedge \omega_0); \]
and since \(d^* h = d^*_c h = 0, d^* (*h \wedge \omega_0) = 0. \) Hence the defining identity
\[(h, \omega_0)_{\omega_0} * 1 = *h \wedge \omega_0 \]
forces \((h, \omega_0)_{\omega_0} \) to be a constant. Therefore the space of harmonic forms \(\mathbb{H} \subset \Omega^{1,1}_R(X) \) lies in the kernel of both \(T \) and \(T \circ S^{-1} \).

With this said, to study the surjectivity of \(T \) we only need to look at those \(\phi \) that are orthogonal to \(\mathbb{H} \) under the \(L^2 \)-intersection pairing
\[<u, v> = \int_X (u, v)_{\omega_0} \wedge * 1. \]
In particular, such \(\phi \) has decomposition
\[\phi = *P\alpha + d^* d\psi, \]
and
\[T \circ S^{-1}_\phi = (P \circ S^{-1}_*P\alpha) + P \circ S^{-1}(dd^* \psi, d^* d(d^* \psi)) . \]

To proceed, we look at the operator \(U \):
\[U\alpha = 2 * P \circ S^{-1}_*P\alpha = *P(*P\alpha - (*P\alpha, \omega_0))_{\omega_0} \omega_0. \]
Because
\[\begin{align*}
P^* &= (\sqrt{-1} \partial \bar{\partial})^* = -\sqrt{-1} \partial^* \partial^* = *\sqrt{-1} \partial \bar{\partial} * = *P^*, \\
U\alpha &\text{ can be re-written as} \end{align*} \]
\[\begin{align*}
U\alpha &= P^* P\alpha - *P((*P(\alpha), \omega_0))_{\omega_0} \omega_0. \\
\end{align*} \]
To proceed, we need to simplify the operator \(U \). We first use the identities
\[\begin{align*}
\partial^* \mu \wedge \omega_0 - \partial^* (\mu \wedge \omega_0) &= \sqrt{-1} \partial \bar{\partial} \mu \quad \text{and} \quad \partial^* \mu \wedge \omega_0 - \partial^* (\mu \wedge \omega_0) = -\sqrt{-1} \partial \bar{\partial} \mu, \\
\end{align*} \]
which hold for all Kahler manifolds, to derive
\[\partial^*(f \omega_0^2) = -2\sqrt{-1}\partial f \wedge \omega_0. \]

Using \((*P\alpha,\omega_0)_{\omega_0} = (*P(\alpha \wedge \omega_0))\), which follows from (3.12), we have
\[P((*P\alpha,\omega_0)_{\omega_0} \omega_0) = P(*P(\alpha \wedge \omega_0) \wedge \omega_0) = -\sqrt{-1} * \partial^*(*P(\alpha \wedge \omega_0) \wedge \omega_0). \]

Applying the identities (3.15) further, we obtain
\[\partial^*(P\alpha \wedge \omega_0) = \partial^*P\alpha \wedge \omega - \sqrt{-1}\partial P\alpha = \partial^*P\alpha \wedge \omega \]
and
\[\partial^*(\partial^*P\alpha \wedge \omega_0) = \partial^*(\partial^*P\alpha \wedge \omega_0) = \partial^*P\alpha \wedge \omega_0 + \sqrt{-1}\partial^*P\alpha \wedge \omega_0. \]

Put together, we obtain
\[P((*P\alpha,\omega_0)_{\omega_0} \omega_0) = -\sqrt{-1} * \partial^*P(\alpha \wedge \omega_0) \wedge \omega_0 \]
\[= *P(\alpha \wedge \omega_0) \wedge \omega + *\partial^*P(\alpha \wedge \omega_0) \wedge \omega_0. \]

Because \(\partial \partial^*P\alpha = \square \partial P\alpha\) since \(\partial P\alpha = 0\), the operator \(U\) becomes
\[U(\alpha) = P^*P\alpha - *\left(*P(\alpha \wedge \omega_0) \wedge \omega_0\right) - *\left(*\square \partial P\alpha \wedge \omega_0\right). \]

To continue, recall that for \(\nu \in \Omega^1(X)\) such that \((\nu,\omega_0)_{\omega_0} = 0\), \(*\nu \wedge \omega_0 = -\nu\). Hence
\[(*\nu \wedge \omega_0) = ((\nu - 1/3(\nu,\omega_0)_{\omega_0}/\omega_0) \wedge \omega_0) + 1/3 * ((\nu,\omega_0)_{\omega_0}/\omega_0)^2 = -\nu + (\nu,\omega_0)_{\omega_0}/\omega_0. \]

Therefore by (3.15),
\[U\alpha = P^*P\alpha - *\left(*P(\alpha \wedge \omega_0) \wedge \omega_0\right) - *\left(*\square \partial P\alpha \wedge \omega_0\right) \]
\[= - *\left(*\square \partial P\alpha \wedge \omega_0\right) - (P^*P\alpha,\omega_0)_{\omega_0}/\omega_0. \]

Now we are ready to derive the estimate that for a universal constant \(C\) (in the sense that it only depends on \((X,\omega_0))\),
\[C^{-1}\|T \circ S^{-1}\phi\| \leq \|P\alpha\|_{L^p_k} + \|dd^*\psi\|_{L^p_k} \leq C\|T \circ S^{-1}\phi\|, \quad \forall \phi \perp \mathbb{H}. \]

First note that the first inequality holds because \(T \circ S^{-1}\) is a bounded operator. As to the second, because \(d^*d(d^*\psi) = \square d^*\psi\) and that \(d^*\psi\) is orthogonal to the harmonic forms, the elliptic estimate ensures that for a universal constant \(C_1\),
\[\|d^*\psi\|_{L^p_{k+1}} \leq C_1\|\square d^*\psi\|_{L^p_{k-1}} \leq C_1\|T \circ S^{-1}\phi\|. \]

Then because
\[P \circ S^{-1}(dd^*\psi) = -1/2P(dd^*\psi,\omega_0)_{\omega_0}/\omega_0 \]
and because the right hand side involves the third differentiation of \(d^*\psi\),
\[\|P \circ S^{-1}(dd^*\psi)\|_{L^p_{k-2}} \leq C_2\|d^*\psi\|_{L^p_{k+1}} \leq C_1C_2\|T \circ S^{-1}\phi\| \]
holds for a universal constant \(C_2\). On the other hand,
\[\frac{1}{2} * U\alpha = T \circ S^{-1}\phi + \frac{1}{2} P \circ S^{-1}(dd^*\psi,\omega_0) - d^*d(d^*\psi), \]
the previous estimates ensure that there is a universal constant \(C_3\) so that
\[\|U\alpha\|_{L^p_{k-2}} \leq C_3\|T \circ S^{-1}\phi\|. \]
Because
\[d \ast (\ast \square_{\beta} P \alpha \wedge \omega_0) = 0, \]
the formula of \(U \alpha \) before (3.17) gives
\[d(P^* P \alpha, \omega_0) \wedge \omega_0 = d(U \alpha). \]
Combined with
\[\int_X (P^* P \alpha, \omega_0) \wedge 1 = \int_X (P \alpha, P \omega_0) \wedge 1 = 0, \]
and that wedging \(\omega \) forms an isomorphism from \(\Omega^{1,1}_R(X) \) to \(\Omega^{2,2}_R(X) \) whose inverse has bounded norm, (3.20) and (3.19) implies that
\[\|(P^* P \alpha, \omega_0) \wedge\|_{L_{L_{\omega}}^k} \leq C_4 \|U \alpha\|_{L_{L_{\omega}}^k} \leq C_5 \|T \circ S^{-1} \phi\|. \]
Thus for a universal constant \(C_5 \),
\[\|\square_{\beta} P \alpha\|_{L_{L_{\omega}}^k} \leq C_5 \|T \circ S^{-1} \phi\|. \]
Finally, because \(\square_{\beta} \) is elliptic,
\[\|P \alpha\|_{L_{L_{\omega}}^k} \leq C_6 \|T \circ S^{-1} \phi\|. \]
This proves that the second inequality in (3.17) holds for a universal constant \(C \).

It remains to show that \(T \circ S^{-1} \) is surjective. Because \(d^* \) surjects onto \(R(d^*) \), we only need to verify that restricting to \(\ker d^* \cap \Omega^{1,1}_R(X) \) \(L_{L_{\omega}}^k \) the operator \(T \circ S^{-1} \) surjects onto \(R(dd_c)_{L_{L_{\omega}}^k} \). Because
\[R(*dd_c)_{L_{L_{\omega}}^k} \subset \ker d^* \cap \Omega^{1,1}_R(X)_{L_{L_{\omega}}^k}, \]
it suffices to show that
\[(3.21) \quad T \circ S^{-1}(*P(\cdot)) = \frac{1}{2} U(\cdot) : R(*dd_c)_{L_{L_{\omega}}^k} \rightarrow R(*dd_c)_{L_{L_{\omega}}^k-4} \]
is surjective. For this we note that the estimates derived so far show that (3.21) is injective and has closed range. Hence if we can show that it is self-adjoint, it must be surjective as well. We now show that \(U \) is self-adjoint. Obviously, the first term \(P^* P \) appeared in \(U \) in (3.14) is self-adjoint. As to the second term, we observe that the \(L^2 \)-intersection
\[<*P((P \alpha, \omega_0)_{\omega_0}, \beta_\alpha) = <(P \alpha, \omega_0)_{\omega_0} \ast \omega_0, P \beta_\alpha) = \int_X (P \alpha, \omega_0)_{\omega_0} (*P \beta, \omega_0)_{\omega_0} \ast 1. \]
Because both \(\alpha \) and \(\beta \) are real, the above expression is symmetrical in \(\alpha \) and \(\beta \). Therefore the operator \(U \) is self-adjoint, and hence is surjective.

We are ready to prove the Proposition now. By a change of trivialization of \(C^0_X \), we can assume without lose of generality that \(T = I_{r \times r} \); thus \(H_T = I \). We next let \(\mathfrak{fr}^0_E \) be the \(\mathbb{R} \)-sub-vector bundle of \(\text{End} E \) consisting of traceless pointwise \(<,> \)-hermitian symmetric endomorphisms of \(E \). Clearly, \(T_1, T_2 \) of \((\mathfrak{fr}^0_E)_{L_{L_{\omega}}^k} \oplus \Omega^{1,1}_R(X)_{L_{L_{\omega}}^k} \rightarrow W_2 \) defined linear operators
\[T_1, T_2 : \Omega(\mathfrak{fr}^0_E)_{L_{L_{\omega}}^k} \oplus \Omega^{1,1}_R(X)_{L_{L_{\omega}}^k} \rightarrow W_2 \]
that are
\[T_1(\delta h, \delta \omega) = (P \delta \omega, 2d^*_{\omega_0} \delta \omega - d^*_{\omega_0}((\delta \omega, \omega_0)_{\omega_0} \omega_0)) \]
and
\[T_2(\delta h, \delta \omega) = 2 \text{tr}(\delta F_I(\delta h) \wedge F_I) - 2 \text{tr}(\delta R_{\omega_0}(\delta g) \wedge R_{\omega_0}). \]
Because
\[
\delta L_1(I, c\omega_0)(\delta h, c\delta \omega) = c^2 \delta L_1(I, \omega_0)(\delta h, \delta \omega);
\]
\[
\delta L_2(I, c\omega_0)(\delta h, c\delta \omega) = \sqrt{-1} \partial \bar{\partial} c\delta \omega + 2 \text{tr}(\delta F_1(\delta h) \wedge F_1) - 2 \text{tr}(\delta R_{c\omega_0}(c\delta \omega) \wedge R_{\omega_0})
= cP\delta \omega + 2 \text{tr}(\delta F_1(\delta h) \wedge F_1) - 2 \text{tr}(\delta R_{\omega_0}(\delta \omega) \wedge R_{\omega_0}),
\]
and
\[
\delta L_3(I, c\omega_0)(\delta h, c\delta \omega) = 2d^* c\delta \omega - d^* ((c\delta \omega_0)_{\omega, \omega_0})
\]
\[
(3.22) \quad P \circ \delta L_1(I, c\omega_0) \oplus \delta L_2(I, c\omega_0) \oplus \delta L_3(I, c\omega_0) = c^2 P \circ \delta L_1(I, \omega_0) \oplus c(\text{T}_1 + c^{-1}\text{T}_2)
\]
Hence to prove the Proposition we need to show that the right hand side is surjective. Based on the discussion before,
\[
P \circ \delta L_1(I, \omega_0)(\delta h, 0) = P \circ \delta L_1(I, \omega_0) : \Omega^0(\delta \text{tr}^0 E)|_{L^p} \to W_1/V_1
\]
is surjective and its kernel is \(V_0\). Also, we proved that
\[
\text{T}_1 : \Omega^1_{\mathbb{R}}(X)|_{L^p} \to W_2,
\]
which is the operator \(T\) discussed before, is surjective with kernel \(\mathbb{H} \subset \Omega^1_{\mathbb{R}}(X)\).

Now let \(\mathcal{V} \subset \Omega^0(\delta \text{tr}^0 E)|_{L^p} \oplus \Omega^1_{\mathbb{R}}(X)|_{L^p}\) be the orthogonal complement of \(V_1 \oplus \mathbb{H}\). For simplicity, we abbreviate \(\text{T}_0 = P \circ \delta L_1(I, \omega_0)\). The discussion before shows that
\[
(\text{T}_0 \oplus \text{T}_1)|_\mathcal{V} : \mathcal{V} \to W_1/V_1 \oplus W_2
\]
is surjective and that there is a constant \(C\) so that
\[
(3.23) \quad C^{-1} \|(u_1, u_2)\| \leq \|(\text{T}_0(u_1, u_2), \text{T}_1(u_1, u_2))\| \leq C\|(u_1, u_2)\|, \quad (u_1, u_2) \in \mathcal{V}.
\]
Because \(\text{T}_2\) is a bounded operator, for sufficiently large \(c\),
\[
\text{T}_0 \oplus (\text{T}_1 + c^{-1}\text{T}_2) : \Gamma(\text{End}^0_{\mathbb{R}} E)|_{L^p} \times \Omega^1_{\mathbb{R}}(X) \to W_1/V_1 \oplus W_2
\]
is surjective. In particular, the left hand side of (3.22) is surjective. This proves the Proposition. \(\square\)

4. Irreducible solutions to Strominger’s system

In section two, assuming the existence of a non-degenerate deformation of holomorphic structures of the vector bundle \(E_1 \oplus E_2\) we showed how to use perturbation method to prove the existence of the Hermitian-Yang-Mills connections. In this section, we will construct solutions to Strominger’s system using similar method. We will find an initial trivial solution to the Strominger’s system and show that it can be extended to a family of irreducible solutions.

We continue to work with a Calabi-Yau threefold \((X, \omega_0)\) and the vector bundle
\[
(E, D''_0) = \mathbb{C}^n_X \oplus TX;
\]
we fix a smooth isomorphism \(\wedge^{r+3} E \cong \mathbb{C}_X\) so that the \(D''_0\) induces the standard holomorphic structure on \(\mathbb{C}_X\); we let \(D''\) be a smooth deformation of the holomorphic structure \(D''_0\). As in section two, we write
\[
D''_s = D''_0 + A_s, \quad A_s \in \Omega^{0,1}(\text{End} E)
\]
and write
\[
\hat{A}_0 = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \in \Omega^{0,1}(\text{End} E)
\]
according to the decomposition $E = \mathbb{C}^r_{\mathbb{C}} \oplus TX$. Because of Lemma 2.2 we can assume without lose of generality that C_{ij} are D_0^{0}-harmonic. Since $E_1 = \mathbb{C}^r_{\mathbb{C}}$ and $H^1_\beta(X, \mathbb{C}_X) = 0$, we have

(4.1) \[C_{11} = 0. \]

Because $\text{Pic} X$ is discrete, we can assume further that $\text{tr} A_s = 0$ for all s. This means that under given smooth isomorphism $\wedge^{r+3} E \cong \mathbb{C}_X$, the induced holomorphic structure on $\wedge^{r+3} E$ is the standard holomorphic structure on \mathbb{C}_X.

Next, we let H_1 be the standard constant metric on $\mathbb{C}^r_{\mathbb{C}}$ and let H_2 be induced by the Calabi-Yau metric ω_0 normalized so that $\det (H_1 \oplus H_2)$ is the constant one metric on $\wedge^{r+3} E \cong \mathbb{C}_X$. The pair of $\langle , \rangle = H_1 \oplus H_2$ and ω_0 is a trivial solution of the Strominger’s system on (E, D_0^0). We fix such \langle , \rangle as a reference hermitian metric on E. Following the convention in the previous section, all other determinant one hermitian metrics on E are of the forms $\langle , \cdot \rangle_h = \langle \cdot , H \cdot \rangle$ for some determinant one pointwise positive definite $\langle , \cdot \rangle$-hermitian symmetric endomorphisms of E.

Following this convention, the space of all trivial solutions to Strominger’s system on (E, D_0^0) with Kahler form ω_0 is isomorphic to the space of determinant one positive definite $r \times r$ hermitian symmetric matrices T with the correspondence

$$T \in \mathcal{H}_{r \times r}^+ \mapsto H_T = T \oplus |T|^{-1/3} I_2 \in \mathcal{H}(E)_1.$$

With the chosen Kahler form ω_0 and a hermitian metric H_T, the proposition 3.3 says that for V_1 the cokernel defined in (3.11) and for large enough c, the linearized operator $\delta_{\mathcal{L}}$ at $(H_T, c \omega_0)$ surjects onto

(4.2) \[\Omega^k_{\mathbb{R}}(suE)_{L^p_{k-2}} / V_1 \oplus R(dd_c)^{L^p_{k-2}} \oplus R(d^\omega_0)^{L^p_{k-1}}. \]

With the connection forms A_s, the metric \langle , \rangle and the Kahler form ω_0 so chosen, we can now define operators

$$\mathcal{L}_s = \mathcal{L}_{s,1} \oplus \mathcal{L}_{s,2} \oplus \mathcal{L}_{s,3}$$

between

$$\mathcal{H}(E)_1 \times \mathcal{H}(X)_{L^p_{k-2}} \rightarrow \Omega^k_{\mathbb{R}}(suE)_{L^p_{k-2}} \oplus R(dd_c)^{L^p_{k-2}} \oplus R(d^\omega_0)^{L^p_{k-1}}$$

with $\mathcal{L}_{s,j}$ defined as in (3.11-3.10) of which the curvature form F_H is replaced by the hermitian curvature of (E, D_0^0, H):

$$F_{s,H} = D_{s,H} \circ D_{s,H}.$$

Let \mathcal{P} be the projection from

$$\Omega^k_{\mathbb{R}}(X)(suE)_{L^p_{k-2}} \oplus R(dd_c)^{L^p_{k-2}} \oplus R(d^\omega_0)^{L^p_{k-1}}$$

to (12) and let $\mathcal{H}_\omega(X)_{L^p_k}$ be the space of those L^p_k-hermitian forms whose ω_0-harmonic parts are ω.

Lemma 4.1. For any $T_0 \in \mathcal{H}_{r \times r}^+$, there are constants $a > 0$ and $C > 0$ such that for any $c > C$ there is a neighborhood \mathcal{U}_c of $(H_{T_0}, c \omega_0) \in \mathcal{H}(E)_1 \times \mathcal{H}_{c \omega_0}(X)_{L^p_k}$ such that for each $s \in [0, a)$ the set $S_s = (\mathcal{P} \circ \mathcal{L}_s)^{-1}(0) \cap \mathcal{U}_c$ is a smooth r^2-dimensional manifold and that the union

(4.3) \[S = \coprod_{s \in [0, a)} S_s \times s \subset \mathcal{U}_c \times [0, a) \]

is a smooth $(r^2 + 1)$-dimensional manifold.
Proof. By proposition 3.3, there is a $C > 0$ such that the linearized operator of $P \circ L_0$ is surjective at $(H_{T_0}, c\omega_0)$. Hence by the implicit theorem, for sufficiently small s the solution set to $P \circ L_0 = 0$ is smooth near $(H_{T_0}, c\omega_0)$ and has dimension equal to the index of the linear operator $P \circ \delta L_0$, which is $r^2 + \dim H^{1,1}(X, \mathbb{R})$. By restricting to the slice
\[\mathcal{H}(E)_{1,L_x} \times \mathcal{H}_{c\omega_0}(X)_{L_x} \subset \mathcal{H}(E)_{1,L_x} \times \mathcal{H}(X)_{L_x} \]
that is transversal to the kernel of $P \circ \delta L_0$, the solution set S_s will have the property as stated in the Lemma. This proves the Lemma. □

Following our convention, S_0 consists of all pairs
\[(H_{0,T}, \omega_{0,T}); \quad H_{0,T} = T \oplus |T|^{-1/3} I_2, \quad \omega_{0,T} = c\omega_0. \]
Since S_s and S are smooth, by shrinking U_c if necessary, we can parameterize S smoothly by (s, T) so that (s, T) parameterizes the set S that is consistent with the projection $S \to [0, a]$ and the parameterization of S. By shrinking U_c if necessary, we can assume that under this parameterization, $S \cong [0, a] \times B_c(T_0)$, where $B_c(T_0)$ is the ball of radius c centered at T_0 in $H^+_{T \times T}$. In the following, we denote by
\[(H_{s,T}, \omega_{s,T}) \in S_s, \quad T \in B_c(T_0), \]
the solutions with parameters (s, T). For simplicity, we denote by $F_{s,T}$ the curvature of the hermitian vector bundle $(E, D''_s, H_{s,T})$. By our construction, it satisfies
\[L_{s,1}(H_{s,T}, \omega_{s,T}) \equiv 0 \mod V_1, \quad L_{s,2}(H_{s,T}, \omega_{s,T}) = 0 \quad \text{and} \quad L_{s,3}(H_{s,T}, \omega_{s,T}) = 0. \]
Hence to find solutions to $L_s = 0$ it suffices to investigate the vanishing loci of the functional $r(s, \cdot)$ from $B_c(T_0)$ to the Lie algebra $u(r)$ defined by
\[r(s, T) = \int_X [L_{s,1}(H_{s,T}, \omega_{s,T})]_1, \]
where $[\cdot]_1$ is the projection from $\Omega^1_{\mathbb{R}}(suE)$ to $\Omega^1_{\mathbb{R}}(u(C_X^{\mathbb{R}}))$. Here $u(C_X^{\mathbb{R}})$ is the bundle of $< , >$-hermitian antisymmetric endomorphisms of $C_X^{\mathbb{R}}$.

As in section two, we shall first prove $\bar{r}(0, T) = 0$ for all T. Indeed,
\[\bar{r}(0, T) = \int_X T^{-1/2}[\dot{F}_{0,T}]_1 T^{1/2} \wedge \omega_{0,T}^2 + 2 \int_X T^{-1/2}[F_{0,T}]_1 T^{1/2} \wedge \omega_{0,T} \wedge \dot{\omega}_{0,T}. \]
Because $H_{0,T}$ is a direct sum of a flat metric on $C_X^{\mathbb{R}}$ and a metric on TX, under the decomposition $E = C_X^{\mathbb{R}} \oplus TX$,
\[F_{0,T} = \left(\begin{array}{cc} 0 & 0 \\ 0 & * \end{array} \right) \in \Omega^1_{\mathbb{R}}(suE). \]
What we will actually show is that
\[\dot{F}_{0,T} \wedge \omega_{0,T}^2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & * \end{array} \right) \in \Omega^6_{\mathbb{R}}(suE). \]
Since $(H_{s,T}, \omega_{s,T})$ are solutions to $L_s = 0 \mod V_1$, there is a function $c(s, T)$ taking values in V_1 with $c(0, T) = 0$ so that
\[F_{s,T} \wedge \omega_{s,T}^2 = H_{s,T}^{1/2} c(s, T) H_{s,T}^{-1/2}. \]
Taking derivative of s at $s = 0$, and coupled with $c(0, T) = 0$, we obtain
\[\dot{F}_{0,T} \wedge \omega_{0,T}^2 + 2F_{0,T} \wedge \omega_{0,T} \wedge \dot{\omega}_{0,T} = H_{0,T}^{1/2} c(0, T) H_{0,T}^{-1/2}, \]
which, after projecting to $\Omega^2_{\mathbb{R}}(\mathfrak{su}(E))$, becomes

\[(4.9) \quad [\hat{F}_{0,T} \wedge \omega^2_{0,T}]_1 = T^{1/2} \mathfrak{c}(0,T)T^{-1/2}.\]

Next, we let F_s as in (2.4) be the curvature of (E,D_s^α,I). Because

\[F_{s,T} = F_s + D''_s(D'_sH_{s,T} \cdot H_{s,T}^{-1}),\]

because $D'_sH_{0,T} = 0$, and because D_s is a direct sum of a flat connection on $\mathbb{C}^{\mathfrak{gr}}$ and a Hermitian Yang-Mills connection on TX,

\[[\hat{F}_{0,T}]_1 = [\hat{F}_0]_1 + D''_0[\hat{D}'_0H_{0,T} \cdot H_{0,T}^{-1}]_1 + D''_0[\hat{D}'_0\hat{H}_{0,T} \cdot H_{0,T}^{-1}]_1.\]

Using the expression of F_s in (2.4), and that $C_{11} = 0$ as stated in (2.3),

\[(4.10) \quad [\hat{F}_0]_1 = D''_0C_{11} - D''_0C_{11} = 0.\]

Hence

\[[\hat{F}_{0,T}]_1 = D''_0\varphi_1 + D''_0\varphi_2\]

for some sections φ_1 and φ_2. Therefore, by Lemma 2.8

\[
\int_X T^{1/2} \mathfrak{c}(0,T)T^{-1/2} = \int_X [\hat{F}_{0,T}]_1 \wedge \omega^2_{0,T} = \int_X (D''_0\varphi_1 + D''_0\varphi_2) \wedge \omega^2_{0,T} = 0.
\]

Since $\mathfrak{c}(0,T)/\omega^3$ is a constant section of $\text{End}(\mathbb{C}^{\mathfrak{gr}})$, the above vanishing forces $\mathfrak{c}(0,T) = 0$, which simplifies (4.8) to

\[
\hat{F}_{0,T} \wedge \omega^2_{0,T} + 2\hat{F}_{0,T} \wedge \omega_{0,T} \wedge \omega_{0,T} = 0.
\]

Finally, because $F_{0,T}$ has vanishing entries as shown in (4.7),

\[(4.11) \quad \hat{F}_{0,T} \wedge \omega^2_{0,T} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ * & * & * \end{pmatrix} \in \Omega^2_{\mathbb{R}}(\mathfrak{su}(E)).
\]

The vanishing (4.10) follows from (4.7) and (4.11).

We next compute $\hat{r}(0,T)$. First, because $F_{0,T} = 0$,

\[
(H^{-1/2}_{s,T} F_{s,T} H^{1/2}_{s,T} \cdot \frac{d^2}{ds^2} \omega_{s,T})|_{s=0} = 0
\]

Because $[\hat{F}_{0,T}]_1 = 0$,

\[
[\frac{d}{ds}(H^{-1/2}_{s,T} F_{s,T} H^{1/2}_{s,T}) \wedge \frac{d}{ds}(\omega^2_{s,T})|_{s=0} = 0.
\]

Hence

\[
[\frac{d^2}{ds^2}(H^{-1/2}_{s,T} F_{s,T} H^{1/2}_{s,T} \wedge \omega^2_{s,T})|_{s=0} = [\frac{d^2}{ds^2}(H^{-1/2}_{s,T} F_{s,T} H^{1/2}_{s,T})|_{s=0} \wedge \omega^2_{0,T} = 0.
\]

Taking second order derivative of $H^{-1/2}_{s,T} F_{s,T} H^{1/2}_{s,T}$, we will encounter terms like

\[
\frac{d^2}{ds^2}(H^{-1/2}_{s,T} F_{s,T} H^{1/2}_{s,T})|_{s=0} \cdot F_{0,T} \cdot H^{1/2}_{0,T},
\]

which are all zero because $F_{0,T} = 0$. We will also encounter terms like

\[
\frac{d}{ds}(H^{-1/2}_{s,T})|_{s=0} \cdot \hat{F}_{0,T} \cdot H^{1/2}_{0,T}.
\]
after wedging it with \(\omega_{0,T}^2 \), because \(H_{0,T}^{1/2} \) is diagonal and \(\hat{F}_{0,T} \wedge \omega_{0,T}^2 \) has vanishing shown in (4.11), their projections to \(\Omega^2_{\text{vol}}(\mathbb{C}^r_X) \) are zero also. Hence the only term left is

\[
\left[\frac{d^2}{ds^2}(H_{s,T}^{-1/2}F_{s,T}H_{s,T}^{1/2} \wedge \omega_{s,T}^2) \right]_{s=0} = H_{s,T}^{-1/2}\hat{F}_{0,T}H_{0,T}^{1/2} \wedge \omega_{0,T}^2.
\]

As in the previous section, we compute

\[
\int \left[H_{0,T}^{-1/2}\hat{F}_{0,T}H_{0,T}^{1/2} \right] \wedge \omega_{0,T}^2 = \int_X T^{-1/2}[\hat{F}]_1 T^{1/2} \wedge \omega_{0,T}^2 - 2 \int_X T^{-1/2}[[\hat{A}, [\hat{A}, H_{0,T}^{-1}]]_1] T^{1/2} \wedge \omega_{0,T}^2 - 2 \int_X T^{-1/2}[[\hat{A}, D^0_0\hat{H}_{0,T} \cdot H_{0,T}^{-1}]]_1 T^{1/2} \wedge \omega_{0,T}^2 + \int_X T^{-1/2}[D^0_0\Phi]_1 T^{1/2} \wedge \omega_{0,T}^2
\]

for some form \(\Phi_{0,T} \). We now look at the four terms in the above identity: the last term vanishes because of Lemma 2.23, the next-to-last term is

\[
-2 \int_X T^{-1/2}[[\hat{A}, D^0_0\hat{H}_{0,T} \cdot H_{0,T}^{-1}]]_1 T^{1/2} \wedge \omega_{0,T}^2 + 2 \int_X T^{-1/2}[D^0_0\hat{H}_{0,T} \cdot H_{0,T}^{-1} \cdot \hat{A}]_1 T^{1/2} \wedge \omega_{0,T}^2,
\]

which is zero because \(D^0_0\Phi \hat{A} = 0 \) and Lemma 2.23. Using

\[
\hat{A}_0 = \begin{pmatrix} 0 & C_{12} \\ C_{21} & 0 \end{pmatrix} \quad \text{and} \quad H_{0,T} = \begin{pmatrix} T & 0 \\ 0 & \alpha T^{-1/3} \end{pmatrix}, \quad \alpha = |T|^{-1/3}
\]

one computes

\[
[[\hat{A}, D^0_0\hat{H}_{0,T} \cdot H_{0,T}^{-1}]]_1 = C_{12} \wedge C^*_{12} (J_1 - \alpha T^{-1}) + (J_1 - \alpha^{-1}T)C^*_{21} \wedge C_{21}.
\]

For the same reason,

\[
[\hat{F}]_1 \wedge \omega_{0,T}^2 = [2\hat{A} \wedge \hat{A}^0 + 2\hat{A}^0 \wedge \hat{A}]_1 \wedge \omega_{0,T}^2 = 2(C_{12} \wedge C^*_{12} + C^*_{21} \wedge C_{21}) \wedge \omega_{0,T}^2.
\]

Therefore,

\[
\hat{r}(0, T) = 2 \int_X (\alpha T^{-1/2} C_{12} \wedge C^*_{12} T^{-1/2} + \alpha^{-1} T^{-1/2} C^*_{21} \wedge C_{21} T^{1/2}) \wedge \omega_{0,T}^2.
\]

We now investigate the solvability of \(r(s, T) = 0 \) for small \(s \). For this, we need to make an assumption on the class \(C_{12} \) and \(C_{21} \). Recall that \(C_{12} \) is a column vector \([\alpha_1, \cdots, \alpha_7]^T \) whose components are \(D^0_0\)-harmonic

\[
\alpha_i \in \Omega^0(\mathbb{T}X^\vee \otimes \mathbb{C}_X);
\]

\(C_{21} \) is a row vector \([\beta_1, \cdots, \beta_r] \) whose components are \(D^0_0\)-harmonic

\[
\beta_i \in \Omega^0(\mathbb{C}_X^\vee \otimes \mathbb{T}X).
\]

Since both \(\alpha_i \) and \(\beta_i \) are \((1,0) \)-forms,

\[
(4.12) \quad \sqrt{-1} B = \sqrt{-1} \int_X C_{12} \wedge C^*_{12} \wedge \omega_{0,T}^2 \quad \text{and} \quad \sqrt{-1} B' = -\sqrt{-1} \int_X C^*_{21} \wedge C_{21} \wedge \omega_{0,T}^2
\]

are non-negative definite hermitian symmetric matrices. Because \(\alpha_i \) are \(D^0_0\)-harmonic, \(\sqrt{-1} B \) is positive definite if and only if \([\alpha_1], \cdots, [\alpha_7] \) are linearly independent elements in \(H^1_0(\mathbb{T}X^\vee) \). Similarly, \(\sqrt{-1} B' \) is positive definite if \([\beta_1], \cdots, [\beta_r] \) are linearly independent in \(H^1_0(X, TX) \). Hence the positivity of \(\sqrt{-1} B \) and \(\sqrt{-1} B' \) only depend on the Kodaira-Spencer class \(\kappa \in H^1_0(X, E^\vee \otimes E) \).
We now assume that both matrices $\sqrt{-1} B$ and $\sqrt{-1} B'$ are positive definite. By a GL(r, \mathbb{C}) change of basis of \mathbb{C}^r, we can assume that $\sqrt{-1} B' = I_{r \times r}$. Then

$$\hat{r}(0, T) = 2|T|^{-1/3}T^{-1/2}BT^{-1/2} + 2\sqrt{-1}|T|^{1/3}T \in u(r).$$

Clearly, $\hat{r}(0, T) = 0$ if T is

$$T_0 \triangleq |\sqrt{-1} B|^{1/2(r+3)}(\sqrt{-1} B)^{1/2}.$$

Lemma 4.2. The map $\Phi : \partial B_ε(T_0) \to S(1)$ to the unit sphere $S(1) \subset u(r)$ defined by

$$\Phi(T) = \frac{\hat{r}(0, T)}{||\hat{r}(0, T)||}$$

is a degree one map.

Proof. We define

$$u_t(T) = |T|^{-1/3}(tT + (1 - t)I)^{-1/2}(B + \sqrt{-1}|T|^{1/3}T^2)(tT + (1 - t)I)^{-1/2}$$

and consider

$$\frac{u_t(\cdot)}{||u_t(\cdot)||} : \partial B_ε(T_0) \to S(1).$$

It is well-defined since T and I are positive definite; it is Φ when $t = 1$. Hence it provides a homotopy between Φ and

$$\Phi_1(\cdot) = \frac{u_0(\cdot)}{||u_0(\cdot)||} : \partial B_ε(T_0) \to S(1).$$

Next we consider

$$v_t(T) = B + \sqrt{-1} \left((1 - t)|T|^{2/3} + t|T_0|^{2/3} \right) T^2.$$

We claim that $v_t(T) \neq 0$ for all $t \in [0, 1]$. Suppose for some $t_0 \in [0, 1]$ and $T \in \partial B_ε(T_0)$,

$$B + \sqrt{-1} \left((1 - t_0)|T|^{2/3} + t_0|T_0|^{2/3} \right) T^2 = 0,$$

then $T = \eta (\sqrt{-1} B)^{1/2}$ for some $\eta \in \mathbb{R}^+$. Since $T \in \partial B_ε(T_0)$, η satisfies

$$\|T - T_0\| = \|\eta - |\sqrt{-1} B|^{-1/2(r+3)}|||\sqrt{-1} B|^{1/2}\| = \epsilon.$$

Hence η can only take values

$$\eta_\pm = |\sqrt{-1} B|^{-1/2(r+3)} \pm \epsilon', \quad \epsilon' = \epsilon / ||(\sqrt{-1} B)^{1/2}||.$$

But then $|\eta_+(\sqrt{-1} B)^{1/2}| > |\sqrt{-1} B|^{3/2(r+3)} = |T_0|$; and then

$$(t_0|\eta_+(\sqrt{-1} B)^{1/2}|^{2/3} + (1 - t_0)|T_0|^{2/3})\eta_+^2 > (t_0|T_0|^{2/3} + (1 - t_0)|T_0|^{2/3})(|\sqrt{-1} B|^{-1/2(r+3)} + \epsilon')^2 > 1.$$

Hence $v_{t_0}(\eta_+(\sqrt{-1} B)^{1/2}) \neq 0$. Similarly, $v_{t_0}(\eta_-(\sqrt{-1} B)^{1/2}) \neq 0$. This proves that

$$\frac{v_t(\cdot)}{||v_t(\cdot)||} : \partial B_ε(T_0) \to S(1)$$

are well-defined and is a homotopy between Φ_1 and

$$\Phi_2 : \partial B_ε(T_0) \to S(1); \quad \Phi_2(T) = \frac{B + \sqrt{-1}|T_0|^{2/3}T^2}{||B + \sqrt{-1}|T_0|^{2/3}T^2||}.$$
For ϵ small enough, the degree of Φ_2 is the same as the degree of
\begin{equation}
\Delta T \mapsto \sqrt{-1} \frac{\Delta TT_0 + T_0 \Delta T}{||\Delta TT_0 + T_0 \Delta T||},
\end{equation}
which is the same as
\begin{equation}
\Delta T \mapsto \sqrt{-1} \Delta T.
\end{equation}
Because the map $\partial B_1(0) \subset H_{r \times r} \to S(1) \subset u(r)$ by multiplying $\sqrt{-1}$ has degree one, the map Φ has degree one as well. This proves the Lemma. \qed

We are now ready to prove the theorem

Theorem 4.3. Let (X, ω_0) be a Calabi-Yau threefold; let D'_s be a smooth deformation of the tautological holomorphic structure D'_s on $E = \mathbb{C}^{r \times r} \oplus TX$. Suppose the Kodaira-Spencer class $\kappa \in H^1_2(X, E^\vee \otimes E)$ of the family D'_s at $s = 0$ satisfies the non-degeneracy condition that both $\sqrt{-1} B$ and $\sqrt{-1} B'$ in (4.13) are positive definite. Then for sufficiently large $c \in \mathbb{R}$ and small $a > 0$, there is a family of pairs of hermitian metrics and hermitian forms (H_s, ω_s), not necessarily continuous in $s \in [0, a)$, so that
1. the ω_0-harmonic part of ω_s is $c \omega_0$;
2. the pair (H_s, ω_s) is a solution to Strominger’s system for the holomorphic vector bundle (E, D'_s);
3. $\lim_{s \to 0} \omega_s = c \omega_0$; $\lim_{s \to 0} H_s$ is a Hermitian Yang-Mills connection of E over (X, ω_0).

Proof. First, we pick a basis of $\mathbb{C}^{r \times r}$ so that the matrix $\sqrt{-1} B'$ in (4.13) is the identity matrix. We let B be the other matrix and let $T_0 = (\sqrt{-1} B)^{1/(r+3)}((\sqrt{-1} B)^{1/2})$. By Lemma 4.1 we can choose C so that Lemma 4.1 holds for T_0 chosen. Then for any $c > C$, we form solution set S_s of the system $P \circ L_a = 0$ and parameterize the solutions near $(H_{T_0}, c \omega_0)$ by $(s, T) \in [0, a) \times B_\epsilon(T_0)$. Based in this parameterization, we then form the functional $r(s, T)$ in (4.9). Because $r(0, T) = 0$ and
\begin{equation}
\frac{\tilde{r}(0, \cdot)}{||\tilde{r}(0, \cdot)||} : \partial B_\epsilon(T_0) \to S(1)
\end{equation}
has degree one, for some small $0 < a' < a$ the maps
\begin{equation}
r(s, \cdot) : \partial B_\epsilon(T_0) \to u(r), \quad s \in (0, a')
\end{equation}
does not take the value $0 \in u(r)$. Hence the associated map
\begin{equation}
\frac{r(s, \cdot)}{||r(s, \cdot)||} : \partial B_\epsilon(T_0) \to S(1) \subset u(r), \quad s \in (0, a'),
\end{equation}
has the same degree as that of (4.14), which is one. Hence the map
\begin{equation}
r(s, \cdot) : B_\epsilon(T_0) \to u(r), \quad s \in (0, a'),
\end{equation}
attains value $0 \in u(r)$ for all $s \in (0, a')$ in $B_\epsilon(T_0)$. This proves the first two part of the theorem. The last part is true because we can choose ϵ arbitrarily small. \qed

5. Irreducible Solutions on Quintic Threefolds

So far we have derived a sufficient condition for the existence of irreducible solutions to Strominger’s system. Our next step is to find examples that satisfy this condition. It is the purpose of this section to work out examples for SU(4) and SU(5).

We will first consider the Fermat quintic
\begin{equation}
X = \{z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0\} \subset \mathbb{P}^4;
\end{equation}
will find a deformation of the holomorphic structure of \(\mathbb{C}_X \oplus T_X \) and show that it satisfies
the requirement of theorem [23]. This will provide us SU(4) solutions to Strominger’s system.

We begin with the Euler exact sequence of \(TP^4 \) (the middle column), and the exact
sequence relating \(T_X \) and the restriction to \(X \) of the tangent bundle \(T_X P^4 = TP^4|_X \) (the
top row):

\[
\begin{array}{cccccc}
0 & 0 & \\
\uparrow & \uparrow & \\
0 & \longrightarrow T_X & \varphi_1 & \longrightarrow T_X P^4 & \varphi_2 & \longrightarrow \mathcal{O}_X (5) & \longrightarrow 0 \\
\uparrow & \uparrow & \uparrow & \upharpoonright & \\
\mathcal{O}_X & \longrightarrow \mathcal{O}_X (1) \oplus 5 & \longrightarrow \mathcal{O}_X (5) & \longrightarrow 0 \\
\uparrow & \uparrow & \uparrow & \\
0 & 0 & \\
\end{array}
\]

(5.1)

We take \(F \) be the kernel of \(\mathcal{O}_X (1) \oplus 5 \rightarrow \mathcal{O}_X (5) \) and fill in the remainder entries to make
up the exact diagram as shown above.

We claim that the left column in (5.1) is non-split. Assume not, say \(F = T_X \oplus \mathcal{O}_X \).
Then since \(F \) is a subsheaf of \(\mathcal{O}_X (1) \oplus 5 \) with quotient sheaf \(\mathcal{O}_X (5) \),
\(\mathcal{O}_X (1) \oplus 5 / T_X \) must be locally free and an extension of \(\mathcal{O}_X (5) \) by \(\mathcal{O}_X \). Because \(Ext^1_X (\mathcal{O}_X (5), \mathcal{O}_X) = 0 \), the only
extension of \(\mathcal{O}_X (5) \) by \(\mathcal{O}_X \) is the direct sum \(\mathcal{O}_X (5) \oplus \mathcal{O}_X \). Hence
\[
\mathcal{O}_X (1) \oplus 5 / T_X \cong \mathcal{O}_X \oplus \mathcal{O}_X (5).
\]

In particular, \(\mathcal{O}_X \) becomes a quotient sheaf of \(\mathcal{O}_X (1) \oplus 5 \) that is impossible. This proves that
it does not split.

Next, we will construct a deformation of holomorphic structure of \(\mathbb{C}_X \oplus T_X \) so that its
Kodaira-Spencer class is of the form

\[
(5.2) \quad \kappa = \left(\begin{array}{cc} 0 & 0 \\ \xi & 0 \end{array} \right) \in Ext^1_X (\mathcal{O}_X \oplus T_X, \mathcal{O}_X \oplus T_X)
\]

whose only non-trivial entry is the extension class \(\xi \in Ext^1_X (T_X, \mathcal{O}_X) \) of the left column
exact sequence in (5.1); \(\xi \) is non-trivial because the exact sequence does not split. We let
\[
\pi_1 : X \times \mathbb{A}^1 \longrightarrow X \quad \text{and} \quad \pi_2 : X \times \mathbb{A}^1 \longrightarrow \mathbb{A}^1
\]
be the projections; we let \(t \) be the standard coordinate function on \(\mathbb{A}^1 \). The class
\[
t \cdot \xi \in \Gamma (\mathcal{O}_{\mathbb{A}^1}) \otimes Ext^1_X (T_X, \mathcal{O}_X) = Ext^1_{X \times \mathbb{A}^1} (\pi^*_T T_X, \mathcal{O}_{X \times \mathbb{A}^1})
\]
defines an extension sheaf over \(X \times \mathbb{A}^1 \):

\[
(5.3) \quad 0 \longrightarrow \mathcal{O}_{X \times \mathbb{A}^1} \longrightarrow \mathcal{F} \longrightarrow \pi^*_T T_X \longrightarrow 0.
\]

The extension sheaf \(\mathcal{F} \) is locally free; its restriction to \(X \times t \), which we denote by \(F_t \), form a
one parameter family of holomorphic vector bundles whose special member \(F_0 \cong \mathcal{O}_X \oplus T_X \)
and its general member \(F_t \cong F \) for \(t \neq 0 \). Here by abuse of notation we use \(t \) to denote
the point in \(\mathbb{A}^1 \) having coordinate \(t \). It is a tautology that the Kodaira-Spencer class of this
family at \(t = 0 \) is the \(\kappa \) in (5.2).
In terms of differential geometry, if we fix smooth isomorphisms $F_t \cong \mathbb{C}_X \oplus TX$ that also depend smoothly on t, then the holomorphic structure on F_t induces a family of holomorphic structures D''_t on $E = \mathbb{C}_X \oplus TX$ that is a deformation of the holomorphic structure D''_0 on $\mathbb{C}_X \oplus TX$. Following the convention of the first part of this paper, if we write $D''_t = D''_0 + A_t$ and use the splitting $E = \mathbb{C}_X \oplus TX$, then

\[
\dot{D}''_0 = \dot{A}_0 = \begin{pmatrix} 0 & 0 \\ C_{21} & 0 \end{pmatrix}
\]

and C_{21} represents the class ξ in $H^1(TX^\vee)$; thus $[C_{21}] \neq 0$.

What we aim at is to find a deformation of holomorphic structures D''_t of (E, D''_0) so that the first order deformation

\[
\dot{D}''_0 = \begin{pmatrix} 0 & C_{12} \\ C_{21} & C_{22} \end{pmatrix}
\]

will have $[C_{12}] \neq 0$ and $[C_{21}] \neq 0$. To achieve this, we will construct a smooth family of holomorphic vector bundles (E, D''_u) parameterized by a smooth pointed domain $0 \in U$ so that

1. D''_0 is the holomorphic structure on $\mathbb{C}_X \oplus TX$;
2. there is a path $u = \rho_1(t)$ in U with $\rho_1(0) = 0$ so that $\dot{D}''_{\rho_1(0)} = \begin{pmatrix} 0 & \ast \\ C_{21} & \ast \end{pmatrix}$ and $[C_{21}] \neq 0$;
3. there is another path $u = \rho_2(t)$ in U with $\rho_2(0) = 0$ so that $\dot{D}''_{\rho_2(0)} = \begin{pmatrix} 0 & C_{12} \\ \ast & \ast \end{pmatrix}$ and $[C_{12}] \neq 0$.

As we saw before, for the first path all we need is to have it represent the family F_t constructed in (5.7). We now construct the second family that will represent the path ρ_2 that we need. We will work out the family over U after we have done this.

Using the top row exact sequence of the diagram (5.1), we can fit $O_X \oplus TX$ into the exact sequence

\[
(5.4) \quad 0 \to O_X \oplus TX \to O_X \oplus T_X P^4 \to \pi^* O_X(5) \to 0.
\]

Here $\varphi = (0, \varphi_2)^t$ is 0 when restricted to O_X, and is the φ_2 in the diagram when restricted to $T_X P^4$. We then pick a section $u \in H^0(O_X(5))$, viewed as a homomorphism $O_X \to O_X(5)$, to form a new homomorphism of sheaves over $X \times \mathbb{A}^1$:

\[
\Phi = (tu, \pi_1^* \varphi_2)^t : O_{X \times \mathbb{A}^1} \oplus \pi_1^* T_X P^4 \to \pi_1^* O_X(5)
\]
whose restriction to \(O_{X \times A^1}\) (resp. \(\pi_1^*TP^4\)) is \(tu\) (resp. \(\pi_1^*\phi_2\)). We let \(\mathcal{F}'\) be the kernel of \(\Phi\). \(\mathcal{F}'\) fits into the middle two exact sequence

\[
\begin{array}{ccccccc}
0 & \rightarrow & 0 & \rightarrow & \pi_1^*TX & \rightarrow & \pi_1^*TX \\
\downarrow & & \downarrow & & \psi & & \downarrow^{(0, \pi_1^*\phi_1)} \\
\mathcal{F}' & \rightarrow & O_{X \times A^1} \oplus \pi_1^*TP^4 & \xrightarrow{\Phi} & \pi_1^*O_X(5) & \rightarrow & 0
\end{array}
\]

(5.5)

Because the composite

\[
\Phi \circ (0, \pi_1^*\phi_1) = 0,
\]

(0, \pi_1^*\phi_1) lifts to \(\Psi\), shown in the diagram; its cokernel is \(O_{X \times A^1}\).

We denote the restriction to \(X \times \{t\}\) of \(\mathcal{F}'\) by \(\mathcal{F}'_t\). Clearly, \(\mathcal{F}'_0 \cong O_X \oplus TX\). The Kodaira-Spencer class of the first order deformation of the family \(\mathcal{F}'\) at \(t = 0\) is

\[
\kappa' = \begin{pmatrix} 0 & \kappa'_{12} \\ 0 & 0 \end{pmatrix}.
\]

To show that \(\mathcal{F}'\) is the desired family we need to show that \(\kappa'_{12} \neq 0\). We now prove that this is true. We let \(A_2 = \text{Spec} \mathbb{C}[t]/(t^2)\), which in plain language is the first order infinitesimal neighborhood of \(0 \in A^1\). Suppose \(\kappa'_{12} = 0\), then based on deformation theory of vector bundles, the induced sheaf homomorphism

\[
\psi_2 : \mathcal{F}' \otimes_{O_{X \times A^1}} O_{X \times A_2} \rightarrow O_{X \times A_2},
\]

splits. Namely, there is a homomorphism

\[
(5.6) \quad \tilde{\psi}_2 : O_{X \times A_2} \rightarrow \mathcal{F}' \otimes_{O_{X \times A^1}} O_{X \times A_2}
\]

so that

\[
\psi_2 \circ \tilde{\psi}_2 = \text{id}.
\]

Let \(p : X \times A_2 \rightarrow X\) be the projection. Since \(\mathcal{F}'\) is defined by the exact sequence (5.5), the homomorphism \(\tilde{\psi}_2\) induces a homomorphism

\[
O_{X \times A_2} \rightarrow O_{X \times A_2} \oplus p^*T_X P^4;
\]

because \(\text{Ext}^1_X(O_X, O_X) = 0\) it lifts to a

\[
\mu : O_{X \times A_2} \rightarrow O_{X \times A_2} \oplus p^*O_X(1)^{\oplus 5}.
\]

Let

\[
\lambda : O_{X \times A_2} \oplus p^*O_X(1)^{\oplus 5} \rightarrow p^*O_X(5)
\]

be the restriction of the composite of

\[
O_{X \times A_1} \oplus p^*O_X(1)^{\oplus 5} \rightarrow O_{X \times A_1} \oplus p^*T_X P^4
\]

and \(\Phi\) in (5.3) to \(X \times A_2\). Then by definition

\[
\lambda \circ \mu = 0.
\]
Clearly, that defines an exact sequence over \(X \)

We claim that

\[
\begin{bmatrix}
tu \\
z_0^4 \\
\vdots \\
z_4^4
\end{bmatrix}
\]

Because \(\lambda \circ \mu = 0 \) holds over \(X \times \mathbb{A}_2 \), we have

\[
[1 + at, bz_0 + ta_0, \ldots, bz_4 + ta_4]
\]

After simplification, the above identity reduces to

\[
u + a_0z_0^4 + \cdots + a_4z_4^4 \equiv 0 \mod (z_0^5 + \cdots + z_4^5).
\]

Now we choose \(u = z_0^2z_3^3 \). It is clear that there are no \(\alpha_i \in H^0(\mathcal{O}_X(1)) \) that make the above identity holds. Hence with such choice of \(u \) the lift \(\hat{\psi}_2 \) does not exist. This proves \(\kappa_{12}' \neq 0 \).

It remains to find a family of holomorphic vector bundles that includes the two families \(\mathcal{F} \) and \(\mathcal{F}' \) as its subfamilies. We let \(\eta \in \text{Ext}^1_X(T_x \mathbb{P}^4, \mathcal{O}_X) \) be the extension class of the Euler exact sequence

\[
0 \to \mathcal{O}_X \to \mathcal{O}_X(1)^{\oplus 5} \to T_x \mathbb{P}^4 \to 0.
\]

Then \(t\eta \) is an extension class

\[
t\eta \in \Gamma(\mathcal{O}_{A^1}) \otimes \text{Ext}^1(T_x \mathbb{P}^4, \mathcal{O}_X) = \text{Ext}^1_{X \times A^1}(\pi_1^* T_x \mathbb{P}^4, \mathcal{O}_X \otimes \mathcal{O}_{A^1})
\]

that defines an exact sequence over \(X \times A^1 \):

\[
0 \to \mathcal{O}_{X \times A^1} \to \mathcal{W} \to \pi_1^* T_x \mathbb{P}^4 \to 0.
\]

Clearly, \(\mathcal{W} \otimes \mathcal{O}_{X \times \{0\}} = \mathcal{O}_X \otimes T_x \mathbb{P}^4 \) while \(\mathcal{W} \otimes \mathcal{O}_{X \times \{t\}} = \mathcal{O}_X(1)^{\oplus 5} \) for \(t \neq 0 \). We claim that

\[
(5.8)
\]

is a locally free sheaf of \(\mathcal{O}_{A^1} \)-modules. By base change property, this is true if

\[
H^1(X, (\mathcal{O}_X \otimes T_x \mathbb{P}^4)^{\vee} \otimes \mathcal{O}_X(5)) = 0 \quad \text{and} \quad H^1(X, (\mathcal{O}_X(1)^{\oplus 5})^{\vee} \otimes \mathcal{O}_X(5)) = 0.
\]

Since \(X \subset \mathbb{P}^4 \) is a smooth hypersurface, a standard long exact sequence chasing shows that \(H^1(X, \mathcal{O}_X(a)) = 0 \) for any integer \(a \). To prove the above two identities, we only need to check that \(H^1(X, T_x \mathbb{P}^4 \otimes \mathcal{O}_X(5)) = 0 \). For this, we apply the long exact sequence of cohomologies to the dual of \(\mathcal{O}_X(5) \) tensored with \(\mathcal{O}_X(5) \):

\[
H^0(\mathcal{O}_X(4)^{\oplus 5}) \to H^0(\mathcal{O}_X(5)) \to H^1(T_x \mathbb{P}^4(5)) \to H^1(\mathcal{O}_X(4)^{\oplus 5}).
\]

Because the last term is zero, and because \(H^0(\mathcal{O}_{\mathbb{P}^4}(a)) \to H^0(\mathcal{O}_X(a)) \) is surjective, the first arrow is surjective. This shows that \(H^1(T_x \mathbb{P}^4(5)) = 0 \), and hence \((5.8) \) is locally free.

We now let \(W \) be the total space of the vector bundle \((5.8) \) and let

\[
q: X \times W \to X \times A^1
\]
be the projection. Over $X \times W$ there is a tautological homomorphism

$$q^*W \rightarrow q^*\pi_1^*O_X(5).$$

Let \mathcal{E} be the kernel of the above sheaf homomorphism; for $w \in W$ we denote by E_w the restriction of \mathcal{E} to $X \times w$.

It is now a matter of direct checking that there are two paths $\rho_1(t)$ and $\rho_2(t)$ in W so that $E_{\rho_1(t)}$ and $E_{\rho_2(t)}$ represent F_t and F'_t respectively. First of all, the homomorphism $\varphi : \mathcal{O}_X \oplus TX \to \mathcal{O}_X(5)$ in (5.4) represents a point in W; we designate this point to be the marked point $0 \in W$. The family \mathcal{F}' is constructed as the kernel of Φ in (5.6) with Φ restricting to $X \times \{0\}$ being φ. Hence Φ represents a path ρ_2 in W initiating from 0 and is contained in the fiber of $W \to \mathbb{A}^1$ over $0 \in \mathbb{A}^1$ that satisfies $E_{\rho_2(t)} \cong F'_t$.

As to the first family \mathcal{F} constructed in (5.7), it fits into the exact diagram

$$
\begin{array}{cccccc}
0 & \rightarrow & \mathcal{O}_{X \times \mathbb{A}^1} & \rightarrow & \mathcal{F} & \rightarrow & \pi_1^*TX & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \mathcal{O}_{X \times \mathbb{A}^1} & \rightarrow & \mathcal{W} & \rightarrow & \pi_1^*TX \mathbb{P}^4 & \rightarrow & 0 \\
\psi & & & & & & \pi_1^*O_X(5) & \rightarrow & \pi_1^*O_X(5) \\
\downarrow & & & & & & \downarrow & & \\
0 & & & & & & 0 & & 0
\end{array}
$$

Since Ψ restricting to $X \times \{0\}$ is the φ in (5.3), it represents a path ρ_1 in W with $\rho_1(0) = 0$ so that $E_{\rho_1(t)}$ is the first family F_t constructed before.

From what we know of the families F_t and F'_t, their Kodaira-Spencer classes at $t = 0$ are of the form

$$\left(\begin{array}{cc} 0 & 0 \\ \kappa_{21} & 0 \end{array} \right) \text{ and } \left(\begin{array}{cc} 0 & \kappa'_{12} \\ 0 & 0 \end{array} \right), \quad \kappa_{21} \neq 0, \quad \kappa'_{12} \neq 0.$$

Since W is smooth, there is a path $\rho(t)$ with $\rho(0) = 0$ so that $\dot{\rho}(0) = \dot{\rho}_1(0) + \dot{\rho}_2(0)$; hence the family $E_{\rho(t)}$ has Kodaira-Spencer class at $t = 0$

$$\left(\begin{array}{cc} 0 & \kappa'_{12} \\ \kappa_{21} & 0 \end{array} \right), \quad \kappa_{21} \neq 0, \quad \kappa'_{12} \neq 0.$$

It satisfies the requirement of theorem 5.1. This proves

Theorem 5.1. Let $X \subset \mathbb{P}^4$ be a smooth quintic threefold and ω is a Calabi-Yau form (metric) on X. Then there is a smooth deformation D'_s of $(E, D''_s) = \mathbb{C}_X \oplus TX$ so that for large $c > 0$ and small s there are irreducible regular solutions (H_s, ω_s) to Strominger’s system on the vector bundle (E, D'_s) so that $\lim_{s \to 0} \omega_s = c\omega$ and $\lim_{s \to 0} H_s$ is a regular Hermitian Yang-Mills connection on $\mathbb{C}_X \oplus TX$.

We next state the existence of solutions to SU(5)-strominger’s system.

Theorem 5.2. Let $X \subset \mathbb{P}^3 \times \mathbb{P}^3$ be a smooth Calabi-Yau threefold cut out by three homogeneous polynomials of bi-degrees $(3,0)$, $(0,3)$ and $(1,1)$. Let ω be a Calabi-Yau form on X.

Then there is a smooth deformation D'_s of $(E, D''_s) = \mathbb{C}^{\mathbb{P}^2}_X \oplus TX$ so that for large $c > 0$ and small s there are irreducible regular solution (H_s, ω_s) to Strominger’s system on (E, D'_s).

Proof. We only need to produce a deformation of holomorphic structure of $\mathbb{C}^{\mathbb{P}^2}_X \oplus TX$. Let

$$\pi_1, \pi_2: X \rightarrow \mathbb{P}^3$$

be the composite of the immersion $X \subset \mathbb{P}^3 \times \mathbb{P}^3$ with the projections $\mathbb{P}^3 \times \mathbb{P}^3 \rightarrow \mathbb{P}^3$. Then TX fits into the exact sequence

$$0 \rightarrow TX \rightarrow \pi_1^* TP^3 \oplus \pi_2^* TP^3 \rightarrow \mathcal{O}_X(3, 0) \oplus \mathcal{O}_X(0, 3) \oplus \mathcal{O}_X(1, 1) \rightarrow 0.$$

(5.9)

Here $\mathcal{O}_X(i, j)$ is the restriction to X of $\pi_i^* \mathcal{O}_{\mathbb{P}^3}(i) \oplus \pi_j^* \mathcal{O}_{\mathbb{P}^3}(j)$. Composing the canonical

$$\mathcal{O}_X(1, 0)^{\oplus 4} \oplus \mathcal{O}_X(0, 1)^{\oplus 4} \xrightarrow{\varphi_2} \mathcal{O}_X(3, 0) \oplus \mathcal{O}_X(0, 3) \oplus \mathcal{O}_X(1, 1)$$

with the last arrow in (5.9), we obtain a surjective

$$\mathcal{O}_X(1, 0)^{\oplus 4} \oplus \mathcal{O}_X(0, 1)^{\oplus 4} \xrightarrow{\varphi_2} \mathcal{O}_X(3, 0) \oplus \mathcal{O}_X(0, 3) \oplus \mathcal{O}_X(1, 1)$$

whose kernel, denoted by F_0, is an extension of TX by $\mathcal{O}_X^{\oplus 2}$. Next we vary φ_2 to produce a variation of holomorphic structure of F_0. The bundle F_0 is a small deformation of $\mathbb{C}^{\mathbb{P}^2}_X \oplus TX$; varying φ_2 produces small deformation of F_0. We then mimic the argument in the proof of Theorem 5.1 to show that we can make this small deformation of small deformation into a single small deformation; it is our desired D'_s.

To complete the proof of the theorem, we need to check the non-degeneracy condition on the two matrices B and B' associated to the Kodaira-Spencer class κ of this family. It is routine shall be omitted. This completes the proof of the Theorem. \[\square\]

References

[1] B. Andreas, *On vector bundles and chiral matter in N = 1 heterotic compactifications*, JHEP 011 (1999), p.9901.

[2] K. Becker, M. Becker, K. Dasgupta and P.S. Green, *Compactifications of Heterotic Theory on NonKahler Complex Manifolds I*, JHEP 0304, 007 (2003).

[3] K. Becker, M. Becker, K. Dasgupta, P.S. Green and E. Sharpe, *Compactifications of Heterotic Strings on Non-Kahler Complex Manifolds II*, Nucl. Phys. B 678 (2004) p.19-100.

[4] P. Candelas, G. Horowitz, A. Strominger and E. Witten, *Vacuum Configurations for Superstrings*, Nuclear Physics B, 258 (1985), no.1, p.46-74.

[5] D.E. Diaconescu and G. Ionesci, *Spectral covers, charged matter and bundle cohomology*, J. High Energy Phys. 12, paper 1 (1998).

[6] J. Distler and B. Greene, *Aspects of (2, 0) String Compactifications*, Nucl. Phys. B 304 (1988) p.1.

[7] J. Distler and S. Kachru, *(0, 2) Landau-Ginzburg Theory*, Nucl. Phys. B 413 (1994) p.213.

[8] R. Donagi, *Principle bundles on elliptic fibrations*, Asian J. Math. 1 (1997) p.214-223.

[9] R. Donagi, Y.H. He, B.A. Ovrut and R. Reinbacher, *Holomorphic vector bundles and non-perturbative vacua in M-theory*, J. High Energy Phys. 6, paper 34 (1999), 46 pages (electronic).

[10] R. Donagi, B. A. Lukas, B.A. Ovrut and D. Waldram, *Holomorphic vector bundles and non-perturbative vacua in M-theory*, J. High Energy Phys. 5 (2002), no. 3, p.563-615.

[11] R. Donagi, B. Ovrut, T. Pantev and D. Waldram, *Standard-model bundles*, Adv. Theor. Math. Phys., 5 (2002), no. 3, p.563-615.

[12] R. Donagi, B. Ovrut, T. Pantev and R. Reinbacher, *SU(4) Instantons on Calabi-Yau Threefolds with $\mathbb{Z}_2 \times \mathbb{Z}_2$ Fundamental Group*, J. High Energy Phys. 1, paper 22 (2004), 58 pages (electronic).

[13] S. Donaldson, *Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles*, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26.

[14] S. Donaldson, *Infinite determinants, stable bundles and curvature*, Duke Math. J. 54 (1987), no. 1, 291–247.
[17] R. Friedman, J. Morgan and E. Witten, *Vector bundles over elliptic fibrations*, "1997", alg-geom/9709029.
[18] R. Friedman, J. Morgan and E. Witten, *Vector bundles and F theory*, Commun. Math. Phys. **187** (1997), p.679.
[19] D. Grantcharov, G. Grantcharov and Y.S. Poon, *Calabi-Yau Connections with Torsion on Toric Bundles*, Jun. 2003. 17pp. e-Print Archive: math.dg/0306207.
[20] P. Hořava and E. Witten, * Eleven-Dimensional Supergravity on a Manifold with Boundary*, Nucl. Phys. B, **475** (1996), p.94.
[21] S. Kachru, *Some three generation (0,2) Calabi-Yau Models*, Phys. Lett. B, **349** (1995), p.76.
[22] J. Li and S.T. Yau, *Hermitian-Yang-Mills connection on non-Kahler manifolds*, Mathematical Aspects of String Theory, World Scientific, 1987, 560-573.
[23] J. Louis and A. Micu, *Heterotic String Theory with Background Fluses*, Nucl. Phys. B **626** (2002) p.26-52.
[24] A. Strominger, *Superstrings with Torsion*, Nuclear Physics B, **274** (1986), no.2, p.253-284.
[25] A. Strominger, *Heterotic solutions*, Nuclear Physics B, **343** (1990), no.2, p.167-184.
[26] R.P. Thomas, *Examples of bundles on Calabi-Yau 3-folds for string theory compactifications*, Adv. Theor. Math. Phys., **4** (2000), p.231-247; math.ag/9912179.
[27] S.T. Yau and K. Uhlenbeck, *On the existence of Hermitian-Yang-Mills connections in stable vector bundles*, Comm. Pure Appl. Math. **39** (1986), no. S, suppl., S257–S293.
[28] E. Witten, *New Issues in Manifolds of SU(3) holonomy*, Nuclear Physics B, **268**(1986), no. 1, p.79-112.

Department of Mathematics, Stanford University, Stanford, CA 94305
E-mail address: jli@math.stanford.edu

Department of Mathematics, Harvard University, Cambridge, MA 02138
E-mail address: yau@math.harvard.edu