Observation of the $B^0_s \to X(3872)\phi$ decay

CMS Collaboration; Canelli, Florencia; Kilminster, Benjamin; Caminada, Lea; Botta, Cristina; Aarrestad, Thea; Brzhechko, Danyil; Cosa, Anna Paola; Del Burgo, Riccardo; Donato, Silvio; Heikkila, Jaana; Huwiler, Marc; Jofrehei, Arash; Leontsinis, Stefanos; Macchiolo, Anna; Meiring, Peter; Mikuni, Vinicius; Missiroli, Marino; Molinatti, Umberto; Neutelings, Izaak; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Takahashi, Yuta; Wertz, Sebastien; Zucchetta, Alberto; et al

DOI: https://doi.org/10.1103/PhysRevLett.125.152001

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-196779
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
CMS Collaboration; Canelli, Florencia; Kilminster, Benjamin; Caminada, Lea; Botta, Cristina; Aarrestad, Thea; Brzhechko, Danyil; Cosa, Anna Paola; Del Burgo, Riccardo; Donato, Silvio; Heikkila, Jaana; Huwiler, Marc; Jofrehei, Arash; Leontsinis, Stefanos; Macchiolo, Anna; Meiring, Peter; Mikuni, Vinicius; Missiroli, Marino; Molinatti, Umberto; Neutelings, Izaak; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Takahashi, Yuta; Wertz, Sebastien; Zucchetta, Alberto; et al (2020). Observation of the $B^0_s \to X(3872)\phi$ decay. Physical Review Letters, 125(15):152001.
DOI: https://doi.org/10.1103/PhysRevLett.125.152001
Observation of the $B_s^0 \rightarrow X(3872)\phi$ Decay

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 10 May 2020; revised 22 June 2020; accepted 27 August 2020; published 7 October 2020)

Using a data sample of proton-proton collisions at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 140 fb$^{-1}$ collected by the CMS experiment in 2016–2018, the $B_s^0 \rightarrow X(3872)\phi$ decay is observed. Decays into $J/\psi\pi^+\pi^-$ and K^+K^- are used to reconstruct, respectively, the $X(3872)$ and ϕ. The ratio of the product of branching fractions $\mathcal{B}[B^+_s \rightarrow X(3872)\phi]\mathcal{B}[X(3872) \rightarrow J/\psi\pi^+\pi^-]$ to the product $\mathcal{B}[B^0_s \rightarrow \psi(2S)\phi]\mathcal{B}[\psi(2S) \rightarrow J/\psi\pi^+\pi^-]$ is measured to be $(2.21 \pm 0.29\text{(stat)} \pm 0.17\text{(syst)})\%$. The ratio $\mathcal{B}[B^0_s \rightarrow X(3872)\phi]/\mathcal{B}[B^0 \rightarrow X(3872)K^0]$ is found to be consistent with one, while the ratio $\mathcal{B}[B^0_s \rightarrow X(3872)\phi]/\mathcal{B}[B^+ \rightarrow X(3872)K^+]$ is two times smaller. This suggests a difference in the production dynamics of the $X(3872)$ in B^0 and B^+_s meson decays compared to B^+. The reported observation may shed new light on the nature of the $X(3872)$ particle.

DOI: 10.1103/PhysRevLett.125.152001

The observed spectrum of $c\bar{c}$ states below the $D\bar{D}$ threshold agrees well with theoretical predictions [1,2]. Since the advent of the BABAR and Belle experiments at the B factories and their discovery of several charmonium-like states, the conventional charmonium model above the $D\bar{D}$ threshold has become the subject of intense discussions. In 2003, the Belle Collaboration observed a new particle in the $B^+ \rightarrow J/\psi\pi^+\pi^-K^+$ decay [3] named $X(3872)$ and decaying to $J/\psi\pi^+\pi^-$, with a very small natural width for a state above the $D\bar{D}$ threshold. Its world-average mass is 3871.69 ± 0.17 MeV, which is extremely close to the $D^0\bar{D}^{*0}$ threshold of 3872.68 \pm 0.07 MeV [4]. With this mass and a total width less than 2 MeV [5,6], the $X(3872)$ particle did not match any of the theoretically predicted charmonium resonances.

The discovery of $X(3872)$ opened a new era of exotic, quarkonium-like spectroscopy. Many new states with unusual properties have been observed, including several charged states [4,7]. At hadron colliders, prompt processes were found to be the dominant $X(3872)$ production mechanism [8–10]. The nature of $X(3872)$, also known as $X_{c1}(3872)$, is still unexplained in spite of the determination of its quantum numbers ($J^{PC} = 1^{++}$) [11–13]. The studies of the dipion mass spectrum [5,9–14] clearly favor the presence of the intermediate $\rho^0(770)$ state in the isospin violating $X(3872) \rightarrow J/\psi\pi^+\pi^-$ decay. Important information about the $X(3872)$ production in weak decays can be extracted by comparing the branching fractions $\mathcal{B}[B \rightarrow X(3872)h]$ for different B mesons, where h denotes a light hadron. More measurements of b hadron decays involving $X(3872)$ production would provide important inputs for understanding its internal structure and creation dynamics.

This Letter reports the first observation of the $B^+_s \rightarrow X(3872)\phi$ decay, where $X(3872) \rightarrow J/\psi\pi^+\pi^-$ and $\phi \rightarrow K^+K^-$ decays are used to reconstruct the intermediate resonances, and the measurement of the following ratio of branching fractions:

$$
R \equiv \frac{\mathcal{B}[B^+_s \rightarrow X(3872)\phi]\mathcal{B}[X(3872) \rightarrow J/\psi\pi^+\pi^-]}{\mathcal{B}[B^0_s \rightarrow \psi(2S)\phi]\mathcal{B}[\psi(2S) \rightarrow J/\psi\pi^+\pi^-]}
= \frac{N[B^+_s \rightarrow X(3872)\phi]}{N[B^0_s \rightarrow \psi(2S)\phi]} \frac{\epsilon_{B^+_s \rightarrow \psi(2S)\phi}}{\epsilon_{B^0_s \rightarrow X(3872)\phi}}.
$$

In this expression, N stands for the measured number of signal events in data, and ϵ stands for the efficiency. The J/ψ and $\phi(1020)$ (referred to as ϕ throughout the Letter) mesons are reconstructed in the $\mu^+\mu^-$ and K^+K^- channels, respectively. The normalization is done via the $B^+_s \rightarrow \psi(2S)\phi$ decay, with a subsequent $\psi(2S) \rightarrow J/\psi\pi^+\pi^-$ decay. The similarity of the decay topology of the signal and normalization channels results in nearly identical kinematics, leading to the cancellation of many systematic uncertainties in the ratio.

The central feature of the CMS apparatus [15] is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. The analysis uses proton-proton (pp)

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
collision data recorded by the CMS detector during the LHC Run 2 in 2016–2018 at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events of interest are selected using a two-tiered trigger system [16]. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a time interval of less than 4 μs. The L1 trigger used in the analysis requires at least two muons. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing that reduces the event rate to around 1 kHz before data storage. The high-level trigger algorithm used in the analysis requires two opposite-sign (OS) muons compatible with the dimuon decay of a J/ψ meson at a significant distance from the beam axis, as well as an additional track with transverse momentum $p_T > 1.2$ GeV, compatible with being produced in the dimuon vertex.

Simulated event samples for the $B_0 \rightarrow X(3872)\phi$ and $B_s^0 \rightarrow \psi(2S)\phi$ decays are generated in the analysis. The PYTHIA 8.230 package [17] is used to simulate the production of the B_0 mesons, which are subsequently decayed with EVTGEN 1.6.0 [18], where the final-state photon radiation is included using PHOTOS 3.61 [19,20]. Generated events are then passed to a detailed GEANT4-based simulation [21] of the CMS detector, followed by the same trigger and reconstruction algorithms as used for the collision data. The simulation includes effects from multiple pp interactions in the same or nearby bunch crossings (pileup) with the multiplicity distribution tuned to match the data.

The event selection begins by requiring two OS muons with $p_T > 4$ GeV passing the soft-muon identification criteria [22] and matching those that triggered the event readout. The dimuon mass is required to be compatible with the world-average J/ψ mass [4], m_{ψ}^{PDG}. The $B_0^0 \rightarrow J/\psi K^+K^-\pi^+\pi^-$ candidates are obtained by combining the selected J/ψ candidate with four high-purity tracks [23] with a total charge of zero that are not matched with the selected muons. At least one of the four tracks is required to have $p_T > 1.2$ GeV and a transverse impact parameter significance greater than 2 to match the trigger requirement. A kinematic vertex fit that constrains the dimuon invariant mass to m_{ψ}^{PDG} is performed on the two muons and four tracks. From all reconstructed pp collision vertices, the primary vertex is chosen as the one with the smallest pointing angle, as done in Refs. [24–29]. The pointing angle is the angle between the B_0^0 candidate momentum and the vector joining the primary vertex and the reconstructed B_0^0 candidate decay vertex. Signal events are eventually selected based on the corrected invariant mass $m(B_0^0) = m(J/\psi K^+K^-\pi^+\pi^-)$

$-m(J/\psi\pi^+\pi^-) + m_{\psi}^{\text{PDG}}_{\psi(2S)/X(3872)}$, where $m_{\psi}^{\text{PDG}}_{\psi(2S)}$ and $m_{\psi}^{\text{PDG}}_{X(3872)}$ are the world-average $\psi(2S)$ and $X(3872)$ masses, respectively. This approach ensures the independence between the reconstructed B_0^0 and $J/\psi\pi^+\pi^-$ masses and improves the B_0^0 mass resolution.

To select the $B_0^0 \rightarrow J/\psi K^+K^-\pi^+\pi^-$ candidates, one must choose which two OS tracks are from kaons, with the other two tracks then being associated with pions. Since the decays of interest have narrow intermediate states $\phi \rightarrow K^+K^-$ and either $\psi(2S)$ or $X(3872) \rightarrow J/\psi\pi^+\pi^-$, the following criteria are used to assign the tracks for the selected $J/\psi K^+K^-\pi^+\pi^-$ candidates: (i) $3.60 < m(J/\psi\pi^+\pi^-) < 3.95$ GeV (ii) $1.00 < m(K^+K^-) < 1.04$ GeV (iii) $5.32 < m(B_0^0) < 5.42$ GeV (iv) if more than one of the mass assignments passes the three selections above, the candidate is discarded.

The selected mass windows are wide enough to allow fits to the mass distributions, while maintaining a selection efficiency above 99%.

The selection criteria are optimized using the Punzi figure of merit [30], which does not rely on the signal normalization. Data sidebands are used to estimate the background, and the $B_0^0 \rightarrow X(3872)\phi$ simulated sample is used to measure the signal efficiency. The resulting selection criteria are as follows: $p_T(B_0^0) > 10$ GeV, vertex χ^2 fit probability $P_{\chi^2}(B_0^0) > 75\%$, $p_T(\pi^\pm) > 0.7$ GeV, $\min[p_T(K^\pm)] > 1.5$ GeV, $\max[p_T(K^\pm)] > 2.2$ GeV, and the decay length of the B_0^0 candidate in the transverse plane $L_{xy}(B_0^0) > 15\sigma_{L_{xy}}(B_0^0)$, where $\sigma_{L_{xy}}$ is the uncertainty in L_{xy}. Additionally, the cosine of the angle between the transverse momentum of the B_0^0 candidate and the displacement vector must satisfy $\cos(p_T, L_{xy}) > 0.999$, and the invariant mass of the two pions is required to be above 0.45[0.70] GeV in the $\psi(2S)[X(3872)]$ channel.

The signal yields of the $B_0^0 \rightarrow X(3872)\phi$ and $B_0^0 \rightarrow \psi(2S)\phi$ decays are extracted using a two-dimensional (2D) maximum likelihood fit to the $m(J/\psi\pi^+\pi^-)$ and $m(K^+K^-)$ distributions for B_0^0 candidates in the range $5.32 < m(B_0^0) < 5.42$ GeV. The numbers of $\psi(2S)\phi$ candidates in the range $75 < m(B_0^0) < 100$ GeV, vertex χ^2 fit probability $P_{\chi^2}(B_0^0) > 75\%$, $p_T(\pi^\pm) > 0.7$ GeV, $\min[p_T(K^\pm)] > 1.5$ GeV, $\max[p_T(K^\pm)] > 2.2$ GeV, and the decay length of the B_0^0 candidate in the transverse plane $L_{xy}(B_0^0) > 15\sigma_{L_{xy}}(B_0^0)$, where $\sigma_{L_{xy}}$ is the uncertainty in L_{xy}. Additionally, the cosine of the angle between the transverse momentum of the B_0^0 candidate and the displacement vector must satisfy $\cos(p_T, L_{xy}) > 0.999$, and the invariant mass of the two pions is required to be above 0.45[0.70] GeV in the $\psi(2S)[X(3872)]$ channel.

The signal yields of the $B_0^0 \rightarrow X(3872)\phi$ and $B_0^0 \rightarrow \psi(2S)\phi$ decays are extracted using a two-dimensional (2D) maximum likelihood fit to the $m(J/\psi\pi^+\pi^-)$ and $m(K^+K^-)$ distributions for B_0^0 candidates in the range $5.32 < m(B_0^0) < 5.42$ GeV. The numbers of $\psi(2S)\phi$ candidates in the range $75 < m(B_0^0) < 100$ GeV, vertex χ^2 fit probability $P_{\chi^2}(B_0^0) > 75\%$, $p_T(\pi^\pm) > 0.7$ GeV, $\min[p_T(K^\pm)] > 1.5$ GeV, $\max[p_T(K^\pm)] > 2.2$ GeV, and the decay length of the B_0^0 candidate in the transverse plane $L_{xy}(B_0^0) > 15\sigma_{L_{xy}}(B_0^0)$, where $\sigma_{L_{xy}}$ is the uncertainty in L_{xy}. Additionally, the cosine of the angle between the transverse momentum of the B_0^0 candidate and the displacement vector must satisfy $\cos(p_T, L_{xy}) > 0.999$, and the invariant mass of the two pions is required to be above 0.45[0.70] GeV in the $\psi(2S)[X(3872)]$ channel.

Figure 1 shows the observed $m(J/\psi\pi^+\pi^-)$ (upper) and $m(K^+K^-)$ (lower) invariant mass distributions for the $\psi(2S)\phi$ candidates with $3.60 < m(J/\psi\pi^+\pi^-) < 3.75$ GeV. Overlaid are the projections of the 2D fit function, which consists of the following four components: (i) $\psi(2S), \phi$, for the signal component (ii) (bkg, ϕ), for events containing genuine $\phi \rightarrow K^+K^-$ decays and background $J/\psi\pi^+\pi^-$ combinations (iii) $\psi(2S)$, bkg, for events containing genuine $\psi(2S) \rightarrow J/\psi\pi^+\pi^-$ decays and background K^+K^- combinations (iv) (bkg, bkg), for the background in both dimensions. Each component is a product of two one-dimensional functions. For the $\phi \rightarrow K^+K^-$ signal, a relativistic Breit-Wigner function
FIG. 1. The observed \(J/\psi \pi^+\pi^- \) (upper) and \(K^+K^- \) (lower) invariant mass distributions for the \(B_s^0 \rightarrow \psi(2S)\phi \) candidates are shown by the points, with the vertical bars representing the statistical uncertainties. The projections of the 2D fit and its various components are shown by the lines.

Convolved with the detector mass resolution is used, where the \(\phi \) natural width is fixed to its known value [4]. The mass resolution is determined from simulated event samples to be about 1.3 MeV. The background in the \(K^+K^- \) mass distribution is modeled with a threshold function multiplied by a first-order polynomial:

\[
(m(K^+K^-) - x_0)^\alpha \cdot \text{Pol}_1[m(K^+K^-)],
\]

where \(x_0 \) is the threshold value equal to twice the kaon mass and \(\alpha \) is a free parameter. The \(\psi(2S) \rightarrow J/\psi \pi^+\pi^- \) signal is described with a double-Gaussian (DG) function with all parameters left free. The background in the \(m(J/\psi \pi^+\pi^-) \) distribution is modeled with a modified threshold function:

\[
(m(J/\psi \pi^+\pi^-) - y_0)^\beta \cdot \text{Pol}_1[m(J/\psi \pi^+\pi^-)],
\]

where \(y_0 \) is the threshold value equal to \(m_{\psi(2S)} + 0.45 \text{ GeV} \) [corresponding to the requirement \(m(\pi^+\pi^-) > 0.45 \text{ GeV} \)], and \(\beta \) is a free parameter.

The following parameters are free in the fit: numbers of events in the four components, \(\phi \) and \(\psi(2S) \) meson masses, \(\psi(2S) \) resolution parameters, and background parameters of \(m(K^+K^-) \) and \(m(J/\psi \pi^+\pi^-) \). The fitted yield for the \(\psi(2S) + \phi \) component is \(N[B_s^0 \rightarrow \psi(2S)\phi] = 15359 \pm 171 \).

For the \(X(3872) \) mass region, defined as \(3.80 < m(J/\psi \pi^+\pi^-) < 3.95 \text{ GeV} \), the same fit function is used as in the \(\psi(2S) \) channel, but additional constraints are made because of the lower number of signal events. The shape of the \(X(3872) \rightarrow J/\psi \pi^+\pi^- \) signal is fixed to the one obtained in data for \(\psi(2S) \rightarrow J/\psi \pi^+\pi^- \), with one floating parameter responsible for the resolution scaling. The \(X(3872) \) mass is left free in the fit, and the returned value is in agreement with the known mass [4]. The threshold value \(y_0 \) is changed to \(m_{\psi(2S)} + 0.7 \text{ GeV} \) to account for the different requirement on the dipion invariant mass applied in the \(X(3872) \) channel. The invariant mass distributions and the projections of the 2D fit are shown in Fig. 2. Additional projections of the 2D fit in different ranges of \(m(J/\psi \pi^+\pi^-) \) and \(m(K^+K^-) \) are presented in the Supplemental Material [31]. The measured signal yield is \(N[B_s^0 \rightarrow X(3872)\phi] = 299 \pm 39 \).

The statistical significance of the \(B_s^0 \rightarrow X(3872)\phi \) signal has been evaluated with the likelihood ratio technique by applying the background-only and signal-plus-background hypotheses. Using the standard asymptotic approximation [32] for the likelihood, since the conditions of the Wilks’ theorem [33] are satisfied, the statistical significance of the \(B_s^0 \rightarrow X(3872)\phi \) signal is over 6 standard deviations (\(\sigma \)) after accounting for the systematic uncertainties discussed later.

To evaluate the background contribution related to the non-\(B_s^0 \) production of \(\psi(2S)\phi \) in the mass range

FIG. 2. The observed \(J/\psi \pi^+\pi^- \) (upper) and \(K^+K^- \) (lower) invariant mass distributions for the \(B_s^0 \rightarrow X(3872)\phi \) candidates are shown by the points, with the vertical bars representing the statistical uncertainties. The projections of the 2D fit and its various components are shown by the lines.
FIG. 3. Background-subtracted $\psi(2S)\phi$ (upper) and $X(3872)\phi$ (lower) invariant mass distributions obtained by χPlot weighting. The result of each fit and its components are shown by the lines.

$5.32 < m(\psi(2S)\phi) < 5.42$ GeV, the mass distribution of $\psi(2S)\phi$ is studied, as shown in Fig 3 (upper). The background-subtraction technique χPlot [34] is used, together with the 2D fit described above, to subtract backgrounds from the nonresonant K^+K^- and $J/\psi\pi^+\pi^-$ combinations. The observed $m(\psi(2S)\phi)$ distribution is fitted with a DG function for the signal and an exponential for the background, as shown in Fig. 3 (upper). The fit returns a non-B^0_s background contribution of 0.5%. The same procedure is repeated in the $X(3872)\phi$ channel, shown in Fig. 3 (lower), and the measured contribution of the non-B^0_s background is 1.7%. Thus, the ratio of the event yields $X(3872)/\psi(2S)$ changes by 1.2% after accounting for this background from the non-B^0_s production of $\psi(2S)\phi$ and $X(3872)\phi$ combinations. The significance of the $B^0_s \rightarrow X(3872)\phi$ signal extracted from the binned fit to the background-subtracted $m(X(3872)\phi)$ distribution exceeds 10σ.

The efficiencies for the signal and normalization channels are calculated using the simulated event samples. The total efficiency includes the detector acceptance, trigger, and candidate reconstruction efficiencies. Only the ratio of the efficiencies for the $\psi(2S)$ and $X(3872)$ decay modes is needed to calculate the ratio R, which eliminates the systematic uncertainties related to the track and muon reconstruction. The obtained efficiency ratio is $e_{B^0_s \rightarrow \psi(2S)\phi}/e_{B^0_s \rightarrow X(3872)\phi} = 1.136 \pm 0.026$. It is larger than unity due to a tighter requirement on the dipion mass $m(\pi^+\pi^-) > 0.7$ GeV applied in the $X(3872)$ channel. The reported uncertainty is related to the size of the simulated samples. The simulated event samples are validated by comparing distributions of variables used in the candidate selection between the background-subtracted data and simulation. As no significant deviation is found, no additional systematic uncertainty in the efficiency ratio is assigned.

Several sources of systematic uncertainty in the measured ratio R are considered. To evaluate the systematic uncertainties related to the choice of the fit model, several alternative functions are tested. Uncertainties related to the choice of the signal and background models are calculated separately.

The systematic uncertainty in the modeling of the $\phi \rightarrow K^+K^-$ signal is estimated by varying the ϕ natural width and the $m(K^+K^-)$ resolution within their uncertainties. The corresponding changes in the ratio R are negligible. The systematic uncertainty in the $m(K^+K^-)$ and $m(J/\psi\pi^+\pi^-)$ background model is estimated by testing alternative models. Instead of the baseline model, either a second-order polynomial or a threshold function multiplied by this polynomial is used. The systematic uncertainty in the $J/\psi\pi^+\pi^-$ signal model is estimated by replacing the DG function with a Student’s t-distribution [35] or, for the $X(3872)$ channel, by conservatively scaling the resolution obtained in the $\psi(2S)$ channel by the ratio of the resolutions of the two channels observed in the simulation.

The systematic uncertainty related to the non-B^0_s background is estimated using the χPlot technique to subtract the contributions from nonresonant K^+K^- and $J/\psi\pi^+\pi^-$ combinations from the $m(B^0_s)$ distribution, as described above and shown in Fig. 3. A systematic uncertainty of 1.2% is assigned, based on the fit results to the background-subtracted $m(\psi(2S)\phi)$ and $m(X(3872)\phi)$ distributions.

The uncertainty related to the simulation sample size is 2.2%, as evaluated above. Changes in the detector and trigger conditions in the course of the 2016–2018 data taking are shown to have a negligible effect on the measured ratio, as the signal and normalization processes are very similar. The ratio R is found to be stable across different years of data taking, therefore no related systematic uncertainty is assigned.

Table I summarizes the systematic uncertainties described above, together with the total systematic uncertainties.

Source	Uncertainty (%)
$m(K^+K^-)$ signal model	< 0.1
$m(K^+K^-)$ background model	2.5
$m(J/\psi\pi^+\pi^-)$ signal model	5.3
$m(J/\psi\pi^+\pi^-)$ background model	4.3
Non-B^0_s background	1.2
Simulated sample size	2.2
Total	7.7
uncertainty, obtained by adding the effects from the different sources in quadrature.

Using Eq. (1), together with the measured signal yields of the $B_0^0 \rightarrow X(3872)\phi$ and $B_0^0 \rightarrow \psi(2S)\phi$ decays and the corresponding efficiency ratio, the product of the branching fractions, with respect to that of the $B_0^0 \rightarrow \psi(2S)\phi$ decay, is measured to be

$$R = [2.21 \pm 0.29 \text{(stat)} \pm 0.17 \text{(syst)}] \%.$$

Multiplying the measured ratio R by the known branching fractions $B[B_0^0 \rightarrow X(3872)\phi] \times B[X(3872) \rightarrow J/\psi \pi^+ \pi^-]$ [4], we obtain $B[B_0^0 \rightarrow X(3872)\phi]/B[X(3872) \rightarrow J/\psi \pi^+ \pi^-] = (4.14 \pm 0.54 \text{(stat)} \pm 0.32 \text{(syst)} \pm 0.46(B)) \times 10^{-6}$, where the last uncertainty is related to the uncertainties in the aforementioned world-average branching fractions.

This branching fraction product can be compared to similar ones in B^0 and B^+ decays [4]: $B[B^0 \rightarrow X(3872)K^0]/B[X(3872) \rightarrow J/\psi \pi^+ \pi^-] = (4.3 \pm 1.3) \times 10^{-6}$ and $B[B^+ \rightarrow X(3872)K^+]\frac{B[X(3872) \rightarrow J/\psi \pi^+ \pi^-]}{B[B^+ \rightarrow \psi(2S)K^+]} = (8.6 \pm 0.8) \times 10^{-6}$. The measured value for B_0^0 is consistent with that for B^0 but about two times smaller than the one for B^+: $B[B_0^0 \rightarrow X(3872)\phi]/B[B^+ \rightarrow X(3872)K^+]$ = 0.482 \pm 0.063(stat) \pm 0.037(syst) \pm 0.070(B). This ratio is significantly lower than the corresponding one for decays to the charmonium state $\psi(2S)$ of $B[B_0^0 \rightarrow \psi(2S)\phi]/B[B^+ \rightarrow \psi(2S)K^+]$ = 0.87 \pm 0.10 [4]. This work was in the journal review, an explanation of the observed difference in the decay branching fractions has been proposed [36] within the tetraquark model of the $X(3872)$ state.

In summary, using a data sample corresponding to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions collected by the CMS experiment at $\sqrt{s} = 13$ TeV in 2016–2018, the $B_0^0 \rightarrow X(3872)\phi$ decay is observed for the first time. The comparison with similar decays of B^0 and B^+ mesons indicates that the $X(3872)$ formation in B meson decays is different from $\psi(2S)$ formation, suggesting that $X(3872)$ is not a pure charmonium state, supporting similar conclusions derived from other experimental measurements [2,5,9–13]. This observation may shed new light on the nature of the $X(3872)$ particle.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RoxAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PICT, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NUSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); and DOE and NSF (USA). Rachada-pisek Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds voor de Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science—EOS”—be.h Project No. 30820817; the Beijing Municipal Science and Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy—EXC 2121 “Quantum Universe”—390833306; the Lundüet (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grant Nos. 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406, the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, Grant No. 14.W03.31.0026 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program and “Nauka” Project No. FSWW-2020-0008 (Russia); the Programa Esdras de Fomento de la Investigación.
Científica y Técnica de Excelencia María de Maeztu, Grant No. MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia program cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kayli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, Contract No. C-1845; and the Weston Havens Foundation (USA).

[1] M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008).
[2] N. Brambilla et al., Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C 71, 1534 (2011).
[3] S. K. Choi et al. (Belle Collaboration), Observation of a Narrow Charmoniumlike State in Exclusive $B^{+} \rightarrow K^{+}\pi^{+}\pi^{-}J/\psi$ Decays, Phys. Rev. Lett. 91, 262001 (2003).
[4] M. Tanabashi et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2018).
[5] S. K. Choi et al. (Belle Collaboration), Bounds on the width and mass difference of $X(3872)\rightarrow \pi^{+}\pi^{-}J/\psi$ decays, Phys. Rev. D 84, 052004 (2011).
[6] LHCB Collaboration, Study of the lineshape of the $X(3872)$ state, arXiv:2005.13419.
[7] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020).
[8] G. Bauer (CDF Collaboration), The $X(3872)$ at CDF II, Int. J. Mod. Phys. A 20, 3765 (2005).
[9] CMS Collaboration, Measurement of the $X(3872)$ production cross section via decays to $J/\psi\pi^{+}\pi^{-}$ in pp collisions at $\sqrt{s} = 7$ TeV, J. High Energy Phys. 04 (2013) 154.
[10] ATLAS Collaboration, Measurements of $\psi(2S)$ and $X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}$ production in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, J. High Energy Phys. 01 (2017) 117.
[11] A. Abulencia et al. (CDF Collaboration), Analysis of the Quantum Numbers J^{PC} of the $X(3872)$, Phys. Rev. Lett. 98, 132002 (2007).
[12] R. Aaij et al. (LHCb Collaboration), Determination of the $X(3872)$ Meson Quantum Numbers, Phys. Rev. Lett. 110, 222001 (2013).
[13] R. Aaij et al. (LHCb Collaboration), Quantum numbers of the $X(3872)$ state and orbital angular momentum in its $\rho^{0}\upsilonJ/\psi$ decay, Phys. Rev. D 92, 011102(R) (2015).
[14] A. Abulencia et al. (CDF Collaboration), Measurement of the Dipion Mass Spectrum in $X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}$ Decays, Phys. Rev. Lett. 96, 102002 (2006).
[15] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, 080004 (2008).
[16] CMS Collaboration, The CMS trigger system, J. Instrum. 12, P01020 (2017).
[17] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015).
[18] D. J. Lange, The EvGen particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[19] E. Barberio, B. van Eijk, and Z. Was, PHOTOS—A universal Monte Carlo for QED radiative corrections in decays, Comput. Phys. Commun. 66, 115 (1991).
[20] E. Barberio and Z. Was, PHOTOS—A universal Monte Carlo for QED radiative corrections: Version 2.0, Comput. Phys. Commun. 79, 291 (1994).
[21] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4—A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[22] CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV, J. Instrum. 7, P10002 (2012).
[23] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014).
[24] A. M. Sirunyan et al. (CMS Collaboration), Search for the $X(5568)$ State Decaying into $B_{s}^{0}\pi^{\pm}$ in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV, Phys. Rev. Lett. 120, 202005 (2018).
[25] CMS Collaboration, Studies of $B_{s}^{0}(5840)^{0}$ and $B_{s}^{0}(5830)^{0}$ mesons including the observation of the $B_{s}^{0}(5840)^{0} \rightarrow B^{0}\overline{K}_{S}^{0}$ decay in proton-proton collisions at $\sqrt{s} = 8$ TeV, Eur. Phys. J. C 78, 939 (2018).
[26] CMS Collaboration, Study of the $B^{+} \rightarrow J/\psi\overline{K}_{S}$ decay in proton-proton collisions at $\sqrt{s} = 8$ TeV, J. High Energy Phys. 12 (2019) 100.
[27] CMS Collaboration, Observation of the $\Lambda_{c}^{0}\rightarrow J/\psi\Lambda$ decay in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B 802, 135203 (2020).
[28] CMS Collaboration, Observation of Two Excited B_{s}^{+} States and Measurement of the $B_{s}^{+}(2S)$ Mass in pp Collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. 122, 132001 (2019).
[29] CMS Collaboration, Study of excited Λ_{c}^{0} states decaying to $\Lambda_{c}^{0}\pi^{+}\pi^{-}$ in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B 803, 135345 (2020).
[30] G. Punzi, Sensitivity of searches for new signals and its optimization, eConf C030908, MODT002 (2003), http://www.arxiv.org/abs/physics/0308063.
[31] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.125.152001 for results of the 2D fit to $m(K^{+}K^{-})$: $m(J/\psi\pi^{+}\pi^{-})$ for the $B_{s}^{0}\rightarrow \psi(2S)\upsilon\phi$ and $B_{s}^{0}\rightarrow X(3872)\upsilon\phi$ channels.
[32] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011); Erratum, Eur. Phys. J. C 73, 2501 (2013).
[33] S. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Stat. 9, 60 (1938).
[34] M. Pivk and F. R. Le Diberder, \texttt{P}lot: A statistical tool to unfold data distributions, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).
[35] S. Jackman, Bayesian Analysis for the Social Sciences (John Wiley & Sons, New Jersey, USA, 2009).
[36] L. Maiani, A. D. Polosa, and V. Riquer, The $X(3872)$ tetraquarks in B and B_{s} decays, Phys. Rev. D 102, 034017 (2020).
G. Iaselli, M. Ince, S. Lezki, G. Maggi, I. Margjeka, J. A. Merlin, S. My.
N. Nuzzo, A. Pompili, G. Pugliese, A. Ranieri, G. Selvaggi, L. Silvestris, F. M. Simone.
R. Venditti, P. Verwilgen, G. Abbiendi, D. Bonacorsi, L. Borgonovi.
S. Braiati-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F. R. Cavallo, C. Ciocca.
M. Cuffiani, G. M. Dallavalle, T. Di Toleati, A. Fabbri, A. Fangani, P. Giacomelli.
C. Grandi, L. Guiducci, F. Ienni, S. Lo Meo, S. Marcellini, G. Masetti, F. L. Navaarr.
A. Perrotta, A. Primavera, A. M. Rossi, T. Rovelli, G. P. Siroli, N. Tosi, S. Albergo.
S. Costa, R. Di Mattia, R. Potenza, A. Tricomi, C. Tuve, G. Barbagli, C. Casese.
R. Ceccarelli, V. Ciulli, C. Civinini, R. D’Alessandro, F. Fiori, E. Focardi, G. Latino.
P. Lenzi, M. Lizzo, M. Meschini, S. Paoletti, R. Seidita, G. Sguazzoni, L. Viliani, L. Benussi.
S. Bianco, D. Piccolo, M. Bozzo, F. Ferro, R. Mulargia, E. Robotti, S. Tosi, A. Benaglia.
A. Beschi, F. Brivio, F. Cetorelli, V. Cirillo, F. De Guio, M. E. Dinardo, P. Dini.
S. Gennai, A. Ghezzi, S. Govoni, L. Guzzi, M. Malberti, S. Malvezzi, D. Menasce.
F. Monti, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, T. Tabarelli de Fatis.
D. Valsecchi, D. Zuolo, S. Buontempo, N. Cavallio, A. De Iorio, F. Fabozzi, F. Fienga.
A. O. M. Iorio, L. Laver, L. Lista, S. Meola, P. Paolucci, B. Rossi, C. Sciacca.
E. Voevodina, P. Azzi, N. Baccetta, D. Bissello, A. Boletti, A. Bradagno, R. Carlin.
P. Checchia, P. De Castro Manzano, T. Dorigo, F. Gasparini, U. Gasparini, S. Y. Hoh.
M. Margoni, A. T. Meneguzzo, M. Presilla, P. Ronchese, R. Rossini, F. Simonetto.
G. Strong, M. Tiko, M. Tosi, M. Zanetti, P. Zotto, A. Zucchetta, G. Zumerle.
A. Braghiroli, S. Calzaferri, D. Fiorini, P. Montagna, S. P. Ratti, V. Re, M. Ressegotti.
C. Riccardi, P. Salvini, L. Vai, P. Vitulo, M. Biasini, J. M. Biele, D. Ciangottini, L. Fanò.
P. Lariccia, J. M. Mantovani, T. I. V. M. Mariani, M. Menichelli, F. Moscatelli, A. Rossi.
A. Santocchia, D. Spiga, T. Tedeschi, K. Androsov, P. Azzurri, G. Bagliesi, V. Bertacchi.
L. Bianchini, T. Bocelli, R. Castaldi, M. A. Ciocci, S. Dell'Orso, M. R. Di Domenico, S. Donato.
L. Giannini, A. Giassi, M. T. Grippi, F. Ligabue, S. Manca, A. Messineo.
F. Palli, G. Ramirez-Sanchez, A. Rizzi, G. Rolandi, S. Roy Chowdhury, A. Scibano.
N. Shafiee, P. Spagnolo, T. Chenini, G. Tonelli, M. Turini, A. Venturi, P. G. Verdini, F. Cavallari.
M. Cipriani, D. Del Re, E. Di Marco, M. Diemoz, E. Longo, P. Meridiani, G. Organtini.
F. Pandolfi, R. Paramatti, C. Quaranta, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi.
R. Tramontano, N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik.
R. Bellan, A. Bellora, C. Biino, A. Cappati, M. Costa, R. Covarelli, M. Demaria, B. Kiani.
G. Manca, F. Legger, C. Mariotti, S. Maselli, E. Migliore.
V. Monaco, E. Monteil, M. Monteno, M. M. Obertino, G. Ortona, L. Pacher, N. Pastrone.
M. Pelliccioni, G. L. Pinna Angioni, M. Ruspa, R. Salvatico, F. Siviero, A. Solano.
D. Soldi, A. Staiato, D. Trocino, S. Belforte, V. Candeline, M. Casarsa, F. Cossutti.
A. Da Rold, G. Della Ricca, F. Vazzoler, S. Dogra, C. Huh, B. Kim, D. H. Kim, G. N. Kim.
J. Lee, S. W. Lee, C. S. Moon, Y. D. Oh, S. I. Pak, S. Sekmen, Y. C. Yang, H. Kim, D. H. Moon.
B. Francois, T. J. Kim, J. Park, S. Cho, Y. Go, H. Ha, H. Hong, S. K. Kim, J. Lim.
J. Park, S. K. Park, J. Yoo, G. Goh, A. Gurtu, H. S. Kim, Y. Kim, I. Almond, J. H. Bhyun.
J. Choi, S. Jeon, J. Kim, J. S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Nam, B. H. Oh, M. Oh.
B. C. Radburn-Smith, H. Seo, U. K. Yang, I. Yoon, D. Jeon, J. H. Kim, B. Ko, J. S. H. Lee, I. C. Park.
Y. Roh, I. D. Song, I. J. Watson, H. D. You, Y. Choi, C. Hwang, Y. Jeong, H. Lee, Y. Lee, I. Yu.
V. Veckalns, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis, W. A. T. Wan Abdullah, M. N. Yusli, Z. Zolkapli.
J. F. Benitez, A. Castaneda Hernandez, J. A. Murillo Quijada, L. Valencia Palomo.
E. De La Cruz-Burelo, A. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez, C. Ordonez.
C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia, I. Eyermanns, I. Pedraza.
H. A. Salazar Ibarquen, C. Uribe Estrada, A. Moroles Pineda, J. Mijuskovic, N. Raicevic, D. Krofcheck.
S. Bheesette, P. H. Butler, A. Ahmad, M. I. Asghar, M. I. M. Awan, Q. Hassan, H. R. Hoorni.
S. Norberg, V. E. Barnes, R. Chawla, S. Das, Gutay, M. Jones, A. W. Jung, B. Mahakud, G. Negro, N. Neumeister, C. C. Peng, S. Piperov, H. Qiu, J. F. Schulte, N. Trevisani, F. Wang, R. Xiao, W. Xie, T. Cheng, J. Dolen, N. Parashar, M. Stojanovic, A. Baty, S. Dildick, K. M. Ecklund, S. Freed, F. J. M. Geurts, M. Kilpatrick, A. Kumar, W. Li, B. P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, A. G. Stahl Leiton, A. Zhang, B.odek, P. de Barbaro, R. Demina, J. L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, E. Wolfe, S. Dasu, E. Hughes, R. Taus, G. Cummings, R. Loveless, S. Freed, C. Fallon, S. Salur, G. Negro, A. G. Delannoy, T. Huang, F. Romeo, A. Safonov, T. Kamon, I. Laffotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. A. Thyall, S. Thomas, H. Wang, H. Acharya, A. G. Delannoy, S. Spanier, O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, L. Pernie, D. Rathjens, A. Safonov, J. Sturdy, N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S. W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck, E. Appelt, S. Greene, A. Gurrola, R. Janjam, W. Johns, S. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij, L. Ang, M. W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia, P. E. Karchin, N. Poudyal, P. Thapa, K. Black, T. Bose, J. Buchanan, C. Caillol, S.Dasu, I. De Bruyn, C. Galloni, H. He, M. Herndon, A. Herva, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Shang, V. Sharma, W. H. Smith, D. Teague, S. Trembath-reichert, W. Vetens

(CMS Collaboration)

1 Yerevan Physics Institute, Yerevan, Armenia
2 Institut für Hochenergiephysik, Wien, Austria
3 Institute for Nuclear Problems, Minsk, Belarus
4 Universiteit Antwerpen, Antwerpen, Belgium
5 Vrije Universiteit Brussel, Brussel, Belgium
6 Université Libre de Bruxelles, Brussels, Belgium
7 Ghent University, Ghent, Belgium
8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
10 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11 Universidade Estadual Paulista, São Paulo, Brazil
12 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
13 University of Sofia, Sofia, Bulgaria
14 Beihang University, Beijing, China
15 Department of Physics, Tsinghua University, Beijing, China
16 Institute of High Energy Physics, Beijing, China
17 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
18 Sun Yat-Sen University, Guangzhou, China
19 Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE)—Fudan University, Shanghai, China
20 Zhejiang University, Hangzhou, China
21 Universidad de Los Andes, Bogota, Colombia
22 Universidad de Antioquia, Medellin, Colombia
23 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
24 University of Split, Faculty of Science, Split, Croatia
25 Institute Rudjer Boskovic, Zagreb, Croatia
26 University of Cyprus, Nicosia, Cyprus
27 Charles University, Prague, Czech Republic
28 Escuela Politecnica Nacional, Quito, Ecuador
29 Universidad San Francisco de Quito, Quito, Ecuador
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

Hanyang University, Seoul, Korea

Kyung Hee University, Department of Physics, Seoul, Republic of Korea

Sejong University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Yonsei University, Department of Physics, Seoul, Korea

Sungkyunkwan University, Seoul, Korea

Riga Technical University, Riga, Latvia

Vilnius University, Vilnius, Lithuania

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

University of Sonora (UNISON), Hermosillo, Mexico

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico

Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

University of Montenegro, Podgorica, Montenegro

University of Auckland, Auckland, New Zealand

University of Canterbury, Christchurch, New Zealand

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC 'Kurchatov Institute', Moscow, Russia

Moscow Institute of Physics and Technology, Moscow, Russia

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

Novosibirsk State University (NSU), Novosibirsk, Russia

Institute for High Energy Physics of National Research Centre 'Kurchatov Institute', Protvino, Russia

National Research Tomsk Polytechnic University, Tomsk, Russia

Tomsk State University, Tomsk, Russia

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

University of Colombo, Colombo, Sri Lanka

University of Ruhuna, Department of Physics, Matara, Sri Lanka
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
Bogazici University, Istanbul, Turkey
Istanbul Technical University, Istanbul, Turkey
Istanbul University, Istanbul, Turkey
Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas, USA
Catholic University of America, Washington, DC, USA
The University of Alabama, Tuscaloosa, Alabama, USA
Boston University, Boston, Massachusetts, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Northwest, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Deceased.

Also at Vienna University of Technology, Vienna, Austria.

Also at Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport.

Also at Université Libre de Bruxelles, Bruxelles, Belgium.

Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.

Also at Universidade Estadual de Campinas, Campinas, Brazil.

Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

Also at UFMS.

Also at Universidad Federal de Pelotas, Pelotas, Brazil.

Also at University of Chinese Academy of Sciences.

Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia.

Also at Joint Institute for Nuclear Research, Dubna, Russia.

Also at Ain Shams University, Cairo, Egypt.

Also at British University in Egypt, Cairo, Egypt.

Also at Purdue University, West Lafayette, Indiana, USA.

Also at Université de Haute Alsace, Mulhouse, France.

Also at Ilia State University, Tbilisi, Georgia.

Also at Erzincan Binali Yıldırım University, Erzincan, Turkey.

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.

Also at University of Hamburg, Hamburg, Germany.

Also at Isfahan University of Technology, Isfahan, Iran.

Also at Brandenburg University of Technology of Technology, Cottbus, Germany.

Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.

Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.

Also at Physics Department, Faculty of Science, Assiut University.

Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

Also at IIT Bhubaneswar, Bhubaneswar, India.

Also at Institute of Physics, Bhubaneswar, India.

Also at G.H.G. Khalsa College, Punjab, India.

Also at Shoolini University, Solan, India.

Also at University of Hyderabad, Hyderabad, India.

Also at University of Visva-Bharati, Santiniketan, India.

Also at Indian Institute of Technology (IIT), Mumbai, India.

Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.

Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran.

Also at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy.

Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development.

Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia.

Also at Riga Technical University, Riga, Latvia.

Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.

Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.

Also at Institute for Nuclear Research, Moscow, Russia.

Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.

Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at University of Florida, Gainesville, Florida, USA.

Also at Imperial College, London, United Kingdom.

Also at P.N. Lebedev Physical Institute, Moscow, Russia.

Also at Moscow Institute of Physics and Technology, Moscow, Russia.

Also at California Institute of Technology, Pasadena, California, USA.
