Pesticide application rates and their toxicological impacts: why do they vary so widely across the U.S.?

Mengya Tao1,2, Paul R Adler3, Ashley E Larsen1 and Sangwon Suh1

1 Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, United States of America
2 Amazon.com, Inc. The work was done prior to joining Amazon
3 United States Department of Agriculture, Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA, United States of America

E-mail: suh@bren.ucsb.edu

Keywords: pesticide use, toxicological impacts, spatial heterogeneity

Supplementary material for this article is available online

Abstract

Pesticide usage in the U.S. has more than doubled since 1960, raising concerns on its human and ecological health implications. The literature indicates that pesticide application rates for the same crop vary widely across geographies, while the magnitude of variation and its underlying drivers are poorly understood. Here, we present a new dataset on farm-level pesticide application for maize in the U.S. Using the dataset, we derived four human and ecological health impact metrics, (1) environmental impact quotient, (2) acute hazard quotient, (3) chronic hazard quotient, and (4) freshwater ecotoxicity, and analyzed their relationships with various climatic and biophysical factors including precipitation, growing degree days (GDD), soil conductivity, and irrigation practices. Our results show that the potential human and ecological health impact of pesticide use per unit maize harvested vary by 5–7 orders of magnitude across the 891 maize-producing counties in the U.S. All four best-fitted models are statistically significant, explaining 21% to 28% of the variations in the impact intensities across counties. Among the climatic and biophysical factors examined, GDD was the most significant variable for all four metrics. This suggests that climate change may adversely affect human and ecological health impact intensities of pesticide use for maize, which may increase 22%–471% by 2100 under the 2 °C warming scenario. Besides, electrical conductivity and the percentage of cropland irrigated were significant for multiple impacts. The large remaining variability unexplained by our analysis suggests that behavioral and management factors, which were not captured in our model, play a crucial role in pesticide use, calling for the interventions targeting them.

1. Introduction

The use of pesticides is recognized as one of the main human and ecological health concerns [1–3]. Nearly 2.7 million metric tons of pesticides are used globally, of which U.S. alone accounts for 0.5 million metric tons [4]. In the U.S., pesticide use in terms of the total mass applied has been more than doubled since 1960 [5]. Exposure to pesticides has been linked to human health impacts, such as adverse birth outcomes, neurotoxicity, and risk for certain cancers [2, 3], as well as ecological health impacts, such as biodiversity loss [1, 6–8]. Toxic impact intensities of chemicals are materialized in a local context, where location-specific parameters such as climatic conditions, geospatial factors, and population play important roles in determining the magnitude of the impact [9–12]. Among others, the amount of pesticide use by mass is known to vary widely across locations and farms. Using fine-resolution pesticide use data available in California, Larsen et al, for example, showed that spatial heterogeneity of pesticides use and associated birth defect outcomes are both high [3].

Although crop-specific pesticide use data are sampled at farm-level to represent farm-level usages in the U.S., they are weighted and aggregated at state-level when made available to the public—with a notable exception for California, where more detailed
data are publicly available [13]. Existing nation-wide studies, therefore, evaluated the spatial heterogeneity of pesticide use and associated toxic impact intensities at state-level. Yang et al., for example, evaluated the spatial disparity of toxicity impacts of producing the same amount of crops in the U.S. and found that the human cancer and non-cancer health impacts and freshwater ecotoxicity from herbicide vary over one order of magnitude across states [14]. Larsen A.E. (2013) analyzed the relationship between landscape simplification and insecticide use by mass in the Midwestern U.S. and found that the insecticide use vary by over two orders of magnitude at county-level [15]. Several other studies on the spatial heterogeneity of pesticide use and its impacts in the U.S. either quantified toxicity impacts at state-level [16, 17] or conducted county-level analysis by only using the total amount of pesticide use by mass without considering the differences in pesticides’ fate, transport, exposure, or toxicity [18, 19].

In this study, we compiled a new dataset on human and ecological health impact intensities of pesticide use for maize based on farm-level pesticide use data. This new dataset allowed us to analyze the spatial heterogeneity of pesticide use, associated human and ecological health impact intensities, and their biophysical predictors at an unprecedented resolution. Due to confidentiality concerns, the farm-level data were aggregated into county-level under the guidance from the National Agricultural Statistics Service (NASS). We calculated the human and ecological health impact intensities of pesticide use at the NASS site using multiple metrics at county-level resolution and examined their spatial patterns and the biophysical predictors of their variabilities.

The objectives of our study are, first, to understand the variabilities of human and ecological health impact intensities of pesticides use for maize in the U.S. using active ingredient-specific impact metrics, and, second, to identify the biophysical and climatic drivers behind the variabilities.

2. Materials and methods

We estimated the potential human and ecological health impacts of pesticides per tonne of maize for all surveyed farms (n = 1977) and aggregated them per county. We analyzed the spatial patterns of human and ecological health impact intensities across counties and identified significant predictors that explain the variability using multiple regression analysis.

2.1. Human and ecological health impact intensities calculation

In this study, active ingredient-specific pesticide use data from individual farms were aggregated into human and ecological health impact intensities using four metrics: environmental impact quotient (EQI) [20], acute hazard quotient (Acute HQ) [21], chronic hazard quotient (Chronic HQ) [21], and freshwater ecotoxicity (Ecotox) [22]. They are elaborated here: (1) EIQ value for each active ingredient is calculated by a formula that considers both the potential environmental and human health impacts of pesticides [23]. (2) Acute HQ is represented by acute rat oral median lethal dose (LD50) in mg kg−1, while (3) Chronic HQ is represented by 24-month rat oral No Observed Adverse Effect Level (NOAEL) in mg kg−1 d−1. (4) Ecotox value for each active ingredient is represented by freshwater ecotoxicity characterization factor (CF) in the unit of PAF-m3-day/kg-emitted, which is the potentially affected fraction of species in the freshwater per day by per kg of a chemical emitted. Ecotox CF considers each chemical’s fate, exposure and effect on freshwater species [22]. To estimate the fate of pesticides, we adopted the approach by Berthoud et al., using a chemical’s vapor pressure to estimate its fraction emitted to air [24]. Furthermore, we assumed 0.5% of the chemical emitted to water, while the remaining emitted to soil [14]. It should also be noted that Hazard Quotation (HQ) approaches focus solely on the relative hazard of chemicals and do not consider fate, transport, and exposure.

The approaches to calculate these four toxic impact intensities of pesticide use are shown in equations 1–4, where N is the total number of active ingredients (ai) applied to one tonne of maize in a year, Amount is the total weight of each active ingredient applied in kg, and j is the environmental compartment of air, water, and soil.

\[
\text{EIQ Impact} = \sum_{ai}^{N} \text{Amount}_{ai} \times \text{EIQ}_{ai} \quad (1)
\]

\[
\text{Acute HQ Impact} = \sum_{ai}^{N} \frac{\text{Amount}_{ai}}{\text{LD}_{50ai}} \quad (2)
\]

\[
\text{Chronic HQ Impact} = \sum_{ai}^{N} \frac{\text{Amount}_{ai}}{\text{NOAEL}_{ai}} \quad (3)
\]

\[
\text{Ecotox Impact} = \sum_{j}^{N} \sum_{ai}^{N} \text{Amount}_{ai} \times \text{emission} \% \times \text{CF}_{ai} \quad (4)
\]

Across all surveyed farms, a total of 94 types of active ingredients were used as pesticides in 2010 for maize production, the majority of which were herbicides (66.0%), followed by insecticides (23.4%), fungicides (7.5%), and others (3.1%). Toxicity values were not available for a few active ingredients: six active ingredients for EIQ values, one for rat oral LD50, three for rat NOAEL, and 15 for freshwater ecotoxicity (table S1). To fill in the data gap, we used appropriate median toxicity values of the available active
ingredients applied to maize production [25]. The pesticide human and ecological health impact intensities were first computed at farm-level, and then averaged at county-level.

2.2. Identifying the predictors for spatial patterns
Pesticide use varies widely due to the various underlying factors including, but not limited to, climate, soil properties, irrigation level, farmer’s income and percent of land in crop [18, 26–29]. A multiple regression model can analyze the relationship between these factors and human and ecological health impact intensities of pesticide use.

Two major climate variables that influence maize growth and pesticide use are temperature and precipitation [26, 30–34]. Maize is particularly sensitive to high temperatures during growing season, with temperatures above 29 °C being harmful to maize yield [31, 35–39]. Further, increasing temperature decreases pesticide effectiveness due to increased volatilization and degradation rates of certain pesticides, therefore resulting in increased application of pesticides [40–43]. Warm temperature could also accelerate insect population growth as well as weed growth, which may further raise the application rate of pesticides and decrease crop yields [44–47]. Growing degree days (GDD) is used to reflect the effect of temperatures on maize yield [26, 48]. The values of GDD were computed following equation 5 [49], where N is the total number of days during the maize growing season, and T_{base} was set to 9 °C [49]. The growing season is from 1st May to 30th September for maize [39]. GDD is in the unit of °C day.

$$\text{GDD} = \sum_{i=1}^{N} \text{GDD}_i = \sum_{i=1}^{N} \frac{T_{\text{min}} + T_{\text{max}}}{2} - T_{\text{base}} \quad (5)$$

The total precipitation (in mm) and the average soil moisture (in mm) during the growing season are our metrics for precipitation and soil moisture, respectively. Maize can be produced under precipitation levels ranging from 200 mm to 2000 mm, within which precipitation has been generally found to be positively correlated with yield [50, 51]. In addition, shifting rainfall patterns, which result in precipitation extremes (i.e. excess rainfall or drought), can affect maize yield and pesticide use. Excess rainfall can result in a reduced yield partly due to delayed fieldwork, decreased fertilizer response, soil erosion, root anoxia, prevalence of leaf fungal pathogens, and spread of foliar diseases [50, 52, 53]. Increased precipitation also favors hydromorphic weeds and plant pathogens, which may lead to additional weed pressure and herbicides costs [30, 41, 54]. On the opposite side of the rainfall spectrum, drought can be a main constraint to maize production, particularly in rain-fed regions [55, 56]. Summer droughts can affect weed management and lessen the effectiveness of pesticides because of the low levels of soil moisture [57, 58]. Water irrigation level is another important factor, as it can be applied to reduce the adverse effect of extreme heat and low precipitation [26].

Several other soil parameters, including percent of silt, percent of clay, percent of organic matter, electrical conductivity (EC) (in mS m$^{-1}$), and pH, may also play a role in maize yield [28, 29, 59, 60]. Furthermore, farm-related income at county-level and the percent of land in maize may also influence pesticide use. Farm-related income can affect farmers’ educational level and farm efficiency [27]. The percent of county land in maize can be considered as an indicator of land simplification, which was shown to be positively correlated with insecticide use in the Midwestern U.S. [18]. Finally, we included state dummy variables (γ_s) to control for state-specific unobserved factors that are shared by all counties within a state such as pest management policy.

In this study, we evaluated the relationship between the four impact intensities and 12 variables that include climatic, technological, geological, and economic states: GDD, precipitation, Palmer Drought Severity Index (PDSI), percent of irrigation (the percentage of cropland irrigated), farm-related income, percent of land in maize per county, and soil properties (soil moisture, percent of silt, percent of clay, percent of organic matter, EC, and pH) (equation 6). Due to missing observations on farm-level income and maize percentage of total land, 747 out of 891 maize-growing counties were left to build the regression models. Variance inflation factor (VIF) values were computed in R to check multi-collinearity between independent variables. All of the covariates were acceptable, with VIF values ranging from 1.5 to 8.3, and 10 was used as a threshold [61]. Spatial autocorrelation was checked using Moran’s I test and p-values were all greater than 0.1, indicating no spatial autocorrelation in the models [62]. We employed the log-transformation of those four impact intensities in our regression models to decrease the data variability and make them conform more closely to the normal distribution.

We estimate the following model for county, i, in state, s,

$$\ln(\text{toxicity impact})_{is} = \beta_0 + \gamma_s + \beta_1 \cdot \text{GDD} + \beta_2 \cdot \text{Precipitation} + \beta_3 \cdot \text{PDSI} + \beta_4 \cdot \text{Soil Moisture} + \beta_5 \cdot \text{Percent of Silt} + \beta_6 \cdot \text{Percent of Clay} + \beta_7 \cdot \text{Organic Matter Content} + \beta_8 \cdot \text{Electrical Conductivity} + \beta_9 \cdot \text{pH} + \beta_{10} \cdot \text{Percent of Irrigation} + \beta_{11} \cdot \text{Farmer Income} + \beta_{12} \cdot \text{Percent of Land in Corn} + \epsilon_{is} \quad (6)$$
2.3. Data

EIQ values for each chemical were obtained from Eshenaur et al. [23], as updated in 2012. Rat oral LD$_{50}$ and NOAEL were compiled from Kniss’s study [21] and ChemIDPlus [63] was searched to fill in the data gap. Ecotox CFs were downloaded from USEtox 2.0 [64]. Data on maize production and pesticide use for year 2010 came from the Agricultural Resource Management Survey (ARMS), sponsored by the U.S. Department of Agriculture Economic Research Service and NASS [65]. For surveyed farms, the amount of each active ingredient use was computed per tonne of maize produced. In total, this includes data for 1977 farms, across 891 counties and 19 states. The number of surveyed farms differs among counties to reflect U.S. farm distribution. Some counties may have more than three surveyed farms, while others may only have one or two surveyed farms.

The climate data of daily minimum and maximum air temperature and daily precipitation came from the GRIDMET dataset, and the monthly soil moisture and PDSI came from TERRACLIMATE, both of which were developed in the Climatology Lab at the University of Idaho [66, 67]. The data for 2010 during the growing season were gathered and averaged at county-level based on area through the ‘climatER’ package in R [68]. The county-level irrigation data came from the Census of Agriculture by the USDA NASS [69]. We used irrigation data in 2012 as a proxy for 2010 since that is the closest year available. The raw soil data were from USDA STATSGO2 database [70] and averaged at county-level by area in ArcGIS [71]. Farm-related income and maize planted acres were downloaded from USDA NASS Quick Stats from the 2010 survey [13]. The percent of land in maize was calculated by dividing each county’s maize planted acres by its land area in county and then multiplying by 100.

3. Results

3.1. Disparity in pesticide use and its potential human and ecological impacts

Pesticide use among farms was highly variable according to the types of active ingredients as well as applied amounts. Figure 1 shows the top 20 pesticides used by the largest number of farms among the surveyed farms. Among them are 18 herbicides, one insecticide (tefluthrin), and one fungicide (pyraclostrobin). Glyphosate isopropylamine salt is the most frequently applied pesticide by farms (71.3%), followed by atrazine (29.1%), s-metolachlor (19.8%), and acetochlor (19.6%). Even for farms using the same pesticide, the amount applied per tonne of harvest varies 2–4 orders of magnitude.

The potential human and ecological health impacts of pesticides are also highly variable (figure S1 (available online at https://stacks.iop.org/ERL/15/124049/mmedia)), with EIQ values range from 9.4 to 88 (1.0–2.0 on a log scale), freshwater ecotoxicity CF values range from 6.4 to 250 000 (0.8–6.4 on a log scale) in PAF-m3-day/kg-emitted, rat oral median lethal dose (LD$_{50}$) values range from 1.3 to 8800 (0.1–3.9 on a log scale) in mg kg$^{-1}$, and rat oral NOAEL values range from 0.06 to 20 000 (−1.2–4.3 on a log scale) in mg kg$^{-1}$ d$^{-1}$. EIQ values for each active ingredient were used to calculate EIQ impact intensities, rat oral LD$_{50}$ values were used to calculate Acute HQ impact intensities, rat oral NOAEL values were used to calculate Chronic HQ impact intensities, and freshwater ecotoxicity CF values were used to calculate Ecotox impact intensities. For LD$_{50}$ and NOAEL values, the lower the values, the more toxic the chemicals are [21].

3.2. Spatial disparity in the impact intensities of pesticide use

Coefficient of variation (CV) values were used to evaluate the variations of human and ecological health impact intensities among farms within a county. CV values were computed for 479 counties that has more than one farm by dividing the standard deviation by the county mean [72]. A CV value less than 1 is considered low-variance, and a CV value greater than 1 is considered as high-variance [72]. The average CV across those counties is 0.76 for EIQ impact, 0.98 for Ecotox impact, 0.87 for Acute HQ impact, and 1.21 for Chronic HQ impact. Therefore, the overall variance of the human and ecological health impacts of the farms within a county is not high, except for Chronic HQ impact which is slightly larger than 1. However, the variations within a state are higher with the average CVs for all impacts being greater than 1 (1.42 for EIQ impact, 2.96 for Ecotox impact, 1.99 for Acute HQ impact, and 2.24 for Chronic HQ impact).

Figure 2 shows the overall variations of human and ecological health impact intensities of maize production at county-level for (a) EIQ impact, (b) Ecotox impact, (c) Acute HQ impact, and (d) Chronic HQ impact. The four human and ecological health metrics used exhibited high level of correlation but not without meaningful differences among them. Across all 891 counties, a broad range was found in all four impact intensities: seven orders of magnitude for Chronic HQ impact, six orders of magnitude for Acute HQ impact, and five orders of magnitude for EIQ impact and Ecotox impact. To produce one tonne of maize, EIQ impact intensities vary from 7.5 × 10$^{-4}$ to 55 across the U.S. counties, Ecotox impact intensities vary from 4.8 × 10$^{-2}$ to 3.1 × 104 in unit of PAF-m3-day, Acute HQ impact intensities vary from 6.8 × 10$^{-6}$ to 2.6 × 103, and Chronic HQ impact intensities vary from 9.3 × 10$^{-7}$ to 3.1 (figure 2).

Figure 3 shows the distribution of county-level EIQ impact intensities for each of the 19 states and for all states combined. As shown in figure 3, the
Figure 1. The top 20 pesticides used by the largest number of farms and the range of use amounts per unit of maize produced among farms across the United States in 2010. The percentages of farms represented by the data are shown in the parenthesis on the vertical axis.

Figure 2. Average human and ecological health impact intensities of maize production at the county-level for (a) EIQ impact, (b) Ecotox impact, (c) Acute HQ impact, and (d) Chronic HQ impact. Quantile classification method is implemented.

distribution of county-level impact intensities generally resembles the shape of a flat-bottomed lab flask characterized by a wide base and an elongated bottleneck toward the top. In other words, the intensities of human and ecological health impacts remain relatively low in most counties, while a few counties exhibit extremely high values. While the counties at the top bottleneck of the distribution are few,
Figure 3. The distribution of EIQ impact intensities at county-level for each state and all states. The orange line indicates the mean value among counties in a certain state. The shapes of these violin plots indicate the density of data points, the wider the shape, the more data points locating there.

due to the sheer intensities that are often several orders of magnitude higher than the average, those counties may dominate the overall potential human and ecological health impacts of pesticide use for maize in each state.

It is also notable that some states exhibit higher intra-state variability in impact intensity values (see e.g. Iowa and Illinois). The highest county-level EIQ impact intensities are found in counties in North Carolina, Kansas and Pennsylvania, and the lowest EIQ impact intensities are found in counties in Illinois, Indiana, and North Dakota (figure 3). Similar high-variance can be found for Ecotox impact, Acute HQ impact and Chronic HQ impact (see figures S2–S4). While the states where the counties with highest and lowest impact intensities are located vary across the impact metrics tested (figures S2–S4), North Carolina is often among the states with highest county-level impact intensity and North Dakota is often the one with the lowest.

3.3. Predictors of inter-county variability
We applied linear regression to relate the four human and ecological health impact intensities of pesticide use (EIQ, Ecotox, Acute HQ, Chronic HQ) to GDD, precipitation, PDSI, percent of irrigation, farm-related income, percent of land in maize per county, and soil properties (soil moisture, percent of silt, percent of clay, percent of organic matter, EC, and pH). State was used as a dummy variable to control for state-specific variations. The best-fit model results after model selection based on Akaike information criterion (AIC) values are shown in table 1 and the full model results are shown in table S2. All four best-fitted models are statistically significant, and they explain 21% to 28% of the variation in human and ecological health impact intensities across counties in the U.S.

Table 1 shows that all four human and ecological health impact intensities of pesticide use are negatively related to EC and pH values. Those
correlations are quite strong at the 0.05 significance level, except for EC in Acute HQ ($p < 0.1$) and pH in Chronic HQ ($p > 0.1$). The negative correlations are partly due to the positive correlations between yield and EC, and yield and soil pH [73, 74]. Regions with a higher EC indicate a higher clay content, a higher organic matter content, and a higher yield potential [75]. The negative effect of pH may be due to low soil pH levels reducing nutrients availability to crops and increasing the solubility of toxic metals, resulting in a low crop yield [76].

Precipitation and PDSI are not statistically significant ($p > 0.1$). The percent of irrigation is statistically positive correlated with the potential human and ecological health impacts of Ecotox ($p < 0.001$) and Chronic HQ ($p < 0.01$), and soil moisture is statistically positive correlated with Ecotox impact ($p < 0.05$). PDSI can range from −10 (extreme drought) to 10 (extreme wet) [77], however, PDSI values in our dataset only vary from −2.7 to 7.4 (figure S5). This indicates that no severe drought event happened in the maize producing counties in 2010. A high percent of irrigation is mostly in counties in Colorado, Nebraska, Kansas, Texas, and Georgia (figure S6), and the high precipitation is more concentrated in counties in Wisconsin, Iowa, Missouri, and North Carolina (figure S7). Irrigation is usually applied to counterbalance the adverse effects of high heat and low precipitation. The positive effect of irrigation may be caused by counties with sufficient precipitation and a relatively high irrigation rate, as the resulting excessive soil water would favor hydromorphic weeds and increase herbicide use [30, 41]. The percent of county land in maize has a significantly moderate positive correlation with Chronic HQ impact ($p < 0.05$). After accounting for several covariates, there are significant and positive relationships between all four human and ecological health impact intensities of pesticide use and GDD. This indicates that counties with higher GDD values during the growing season tend to have higher impact intensities in all four impacts.

Table 1. Best-fit model results from regression of toxic impact intensities maize production from 747 counties in 19 states of the U.S. The dependent variables of those four toxic impact intensities are log-transformed. In each cell, the regression coefficient is the top value.

Coefficient	Log EQI	Log Ecotox	Log Acute HQ	Log Chronic HQ
Intercept	−0.5690	−0.9914	−11.2194***	−9.3228***
	(1.1688)	(1.7046)	(1.3495)	(2.7893)
GDD	0.0014***	0.0024***	0.0014***	0.0038***
	(0.0003)	(0.0004)	(0.0003)	(0.0007)
Soil Moisture	—	0.0019*	—	—
		(0.0008)		
Percent of Silt	—	—	—	0.0226*
				(0.0119)
Percent of Organic Matter	—	—	—	0.0288
				(0.0203)
Electrical Conductivity	−0.1792**	−0.3583**	−0.1578.	−0.4415**
	(0.0684)	(0.1109)	(0.0806)	(0.1619)
pH	−0.2973*	−0.3672*	−0.3119*	−0.6318
	(0.1268)	(0.1859)	(0.1453)	(0.3017)
Percent of Irrigation	—	0.01588***	0.0062.	0.0201**
		(0.0040)	(0.0032)	(0.0065)
Farmer-related Income	—	—	0.0322	—
			(0.0227)	
Percent of Land in Corn	−0.7191	—	—	2.7598*
	(0.4689)			(1.0971)
N = 747	N = 747	i = 747	N = 747	
R2 = 0.28	R2 = 0.28	R2 = 0.27	R2 = 0.21	

4. Discussion and conclusion

In this paper, we quantified the human and ecological health impact intensities of maize production in the U.S. at county-level, using four metrics including EIQ impact, freshwater ecotoxicity (Ecotox impact), Acute HQ impact, and Chronic HQ impact. Acute HQ impact intensities vary by six orders of magnitude, and EIQ impact intensities and Ecotox impact intensities vary by five orders of magnitude. North Carolina and Pennsylvania have relatively high impact intensities for all impact categories, while Nebraska and Minnesota have relatively low impact intensities for Ecotox, EIQ, and Acute HQ. However, across 891 maize producing counties, Chronic HQ impact has the largest variability, and the maximum value is seven orders of magnitude larger than the minimum value.

The underlying biophysical and climatic drivers of the variabilities in human and ecological health impact intensities of pesticide use for maize were
analyzed using a multiple regression model. Consistently significant and positive correlations are found between all four impact intensities of pesticide use and GDD, with no significant effects of precipitation and PDSI. The positive effect of GDD is partly because of the accelerating growth of weeds and pest populations due to the warm temperature and increasing CO2 concentration [47], and partly because of a lower yield under the extreme warm temperature [48]. Maize is sensitive to high temperatures and temperatures above 29 °C are harmful to maize yield [48]. Moreover, high temperature can not only decrease pesticide effectiveness by increasing volatilization and degradations rates of pesticides [40–43], but also accelerate insect and weed growth rates [44–47].

The significant influence of GDD on the variability of the potential human and ecological health impacts of pesticides suggests that climate change may affect toxicity impacts of pesticide use for maize. Under the 2 °C warming scenario, Butler et al showed that GDDs in the U.S. are expected to increase by 285–335 °C·day [26]. In that case, EIQ impact intensity, Ecotox impact intensity, Acute HQ impact intensity, and Chronic HQ impact intensity are expected to increase by 26%–95%, 53%–202%, 22%–102% and 104%–471%, respectively, under the 2 °C warming scenario.

Although our study developed statistically significant models with more detailed data, there is still 70% to 80% of the variation in the impact values that could not be explained by the variables included in our models. The unexplained variation may be caused by various factors including human and managerial factors. For example, agricultural extension and technology service staffs, pesticide formulators, and retailers play an important role in farmers’ decision on the choice of pesticide and the quantity of use [78, 79]. Retailers may influence some pesticide overuse, and farmers who choose to consult advisors may use lesser amount or less toxic pesticides. In particular, the literature indicated that the influence of pesticide retailers was associated with pesticide overuse [79]. Other behavioral factors in pesticide use include farmers’ knowledge level, awareness of pesticide use and its associated potential environmental and health impacts, and the willingness to pay for safer pesticides [78–80]. Previous studies found that training retailers, educating farmers, and the use of agricultural extension programs may reduce the use of pesticides and associated toxic impacts [78, 79]. Furthermore, Tang et al, observed that farmers who perceive climate risk tend to increase the quantity of pesticide use, indicating that farmers’ perceptions of climate risk alone may exacerbate the impacts of pesticides [81].

Future research can further improve our study in a number of fronts. First, our models were built upon county-level aggregated data for both dependent variables of the potential human and ecological health impacts and explanatory variables. However, pesticide use can be very locality-specific and depends on the needs at farm-level, and this aggregation step may have reduced or removed some distinct effects of locality-specific variables such as soil types and organic matter content. Second, despite the fact that we used state as a dummy variable to control for the state-level pest management or conservation programs in agricultural systems, those programs rely primarily on voluntary action by farmers who can make their own decisions on the adoption of those practices [82, 83], and this may have an impact on farmer pesticide use at the county-level. Third, toxicity data were unavailable for some of the active ingredients included in our analysis, and therefore we used an imputation approach based on median values. This can be further improved by using other more advanced approaches, including structural similarity methods such as the Chemical Life Cycle Collaborative (CLiCC) tool [84]. Finally, we acknowledge that the metrics such as LD50 used in these calculations, though widely practiced and accepted in the literature, address only part of the entire toxicological landscape, and that other indicators, toxicological and epidemiological, would further enrich the evaluation.

Acknowledgments

This work was developed under Assistance Agreement No. 83557901 awarded by the U.S. Environmental Protection Agency to the University of California, Santa Barbara. The summaries were derived using data collected in the 2012 Census of Agriculture by the National Agricultural Statistics Service, U.S. Department of Agriculture. It has not been formally reviewed by the U.S. EPA and USDA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of U.S. EPA and USDA. U.S. EPA and USDA do not endorse any products or commercial services mentioned in this publication.

Data availability

The data that support the findings of this study are available upon reasonable request from the authors. Due to confidentiality requirements, the farm-level data collected in the Census of Agricultural by the National Agricultural Statistics Service (NASS) analyzed in the current study are not publicly available. It can be obtained via application from USDA’s NASS using form ADM-042.

The data that support the findings of this study are available upon reasonable request from the authors.
References

[1] Beketov M A, Kefford B J, Schäfer R B and Liess M 2013 Pesticides reduce regional biodiversity of stream invertebrates Proc. Natl Acad. Sci. 110 11039–43
[2] Dich J, Zahm S H, Hanberg A and Adami H O 1997 Pesticides and cancer Cancer Causes Control 8 420–43
[3] Larsen A E, Gaines S D and Deschênes O 2017 Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California Nat. Commun. 8 302
[4] US EPA 2015 Pesticides industry sales and usage 2008–2012 market estimates US EPA (available at: www.epa.gov/pesticides-industry-sales-and-usage-2008-2012-market-estimates)
[5] Fernandez-Conrojo J et al 2014 Pesticide use in U.S. agriculture: 21 selected crops, 1960–2008 (available at: https://ides.repec.org/p/ags/ersus/178462.html)
[6] Mann F S H, van den Brink P J and Reinier M 2011 Ecological Impacts of Toxic Chemicals (Sharjah: Bentham Science Publishers) (https://doi.org/10.2174/978160805121110101)
[7] Dale V H and Polasky S 2007 Measures of the effects of agricultural practices on ecosystem services Ecol. Econ. 64 286–96
[8] Geiger F et al 2010 Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland Basic Appl. Ecol. 11 97–105
[9] Gay J R and Korre A 2006 A spatially-evaluated methodology for assessing risk to a population from contaminated land Environ. Pollut. 142 227–34
[10] Linkov I, Burmistrov D, Cura J and Bridges T S 2002 Risk-based management of contaminated sediments: consideration of spatial and temporal patterns in exposure modeling. Environ. Sci. Technol. 36 238–47
[11] Kooistra L, Huijbregts M A J, Raga A M J, Wehrens R, Leuven R S E W and Variability S 2005 Uncertainty in ecological risk assessment: a case study on the potential risk of cadmium for the little owl in a Dutch river flood plain Environ. Sci. Technol. 39 2177–87
[12] Ward M H et al 2000 Identifying populations potentially exposed to agricultural pesticides using remote sensing and a geographic information system Environ. Health Perspect. 108 5–12
[13] USDA NASS USDA/NASS QuickStats Ad-hoc Query Tool (available at: https://quickstats.nass.usda.gov/(2010))
[14] Yang Y, Tao M and Suh S 2018 Geographic variability of agriculture requires sector-specific uncertainty characterization Int. J. Life Cycle Assess. 23 1581–9
[15] Larsen A E 2013 Agricultural landscape simplification does not consistently drive inverteicide use Proc. Natl Acad. Sci. 110 15390–5
[16] Xue X, Hawkins T R, Ingwersen W W and Smith R L 2015 Demonstrating an approach for including pesticide use in life-cycle assessment: estimating human and ecosystem toxicity of pesticide use in Midwest corn farming Int. J. Life Cycle Assess. 20 1117–26
[17] Yang Y and Suh S 2015 Land cover change from cotton to corn in the USA relieves freshwater ecotoxicity impact but may aggravate other regional environmental impacts Int. J. Life Cycle Assess. 20 196–203
[18] Meehan T D, Werling B P, Landis D A and Gratton C 2011 Agricultural landscape simplification and insecticide use in the Midwestern United States Proc. Natl Acad. Sci. 108 11305–5
[19] Meehan T D and Gratton C 2013 A consistent positive association between landscape simplification and insecticide use across the Midwestern US from 1997 through 2012 Environ. Res. Lett. 10 114001
[20] Perry E D, Giliberto F, Hennessy D A and Moschini G 2016 Genetically engineered crops and pesticide use in U.S. maize and soybeans Sci. Adv. 2 e1600850
[21] Kniss A R 2017 Long-term trends in the intensity and relative toxicity of herbicide use Nat. Commun. 8 14865
[22] Rosenbaum R K et al 2008 USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment Int. J. Life Cycle Assess. 13 532
[23] Kovach J, Petzdold C, Degni J and Tette J 1992 Environmental impact quotient: “a method to measure the environmental impact of pesticides” New York’s Food and Life Sciences Bulletin N. Y. State Integ. Pest Manag. Program Cornell Coop. Ext. Cornell Univ. 1–8 (https://eecommons.cornell.edu/handle/1813/55750)
[24] Berthoud A, Maupu P, Huet C and Pourpart A 2011 Assessing freshwater ecotoxicity of agricultural products in life cycle assessment (LCA): a case study of wheat using French agricultural practices databases and USEtoc model Int. J. Life Cycle Assess. 16 841
[25] Muhor J F and Rueda M 2009 New imputation methods for missing data using quantiles J. Comput. Appl. Math. 232 305–17
[26] Butler E F and Huybers P 2013 Adaptation of US maize to temperature variations Nat. Clim. Change 3 68–72
[27] Jamison T, Lau L J and Lockheed M E 1980 Farmer Education and Farm Efficiency: A Survey Economic Development and Cultural Change 37–76
[28] Oguntunde P G, Fousi M, Ajayi A E and van de Giesen N 2004 Effects of charcoal production on maize yield, chemical properties and texture of soil Biol. Fertil. Soils 39 295–9
[29] Reeves D W 1997 The role of soil organic matter in maintaining soil quality in continuous cropping systems Soil Tillage Res. 43 131–67
[30] Hatfield J L, Boote K J, Kimball B A, Ziska L H, Iraurralde R C, Ort D, Thomson A M and Wolfe D 2011 Climate Impacts on Agriculture: Implications for Crop Production Agronomy Journal 103 370–79
[31] Lobell D B, Bänziger M, Magorokosho C and Vivek B 2011 Nonlinear heat effects on African maize as evidenced by historical yield trials Nat. Clim. Change 1 42–45
[32] Ray D K, Gerber J S, MacDonald G K and West P C 2015 Climate variation explains a third of global crop yield variability Nat. Commun. 6 5989
[33] Zhang Y W, McClar B A, Luan Y and Kleinewechter U 2018 Climate change effects on pesticide usage reduction efforts: a case study in China Mitigation Adapt. Strateg. Glob. Change 23 685–701
[34] Ziska L H, Blumendahl D M, Runion G B, Hunt E R and Diaz-Soltero H 2011 Invasive species and climate change: an agronomic perspective Clim. Change 105 13–42
[35] Mueller N D, Butler E E, McKinnon K A, Rhines A, Tingley M, Holbrook N M and Huybers P 2016 Cooling of US Midwest summer temperature extremes from cropland intensification Nat. Clim. Change 6 317–22
[36] Sanchez-Gomez S et al 2011 Structural features governing the activity of lactoferrin-derived peptides that act in synergy with antibiotics against Pseudomonas aeruginosa in vitro and in vivo Antimicrob. Agents Chemother. 55 218–28
[37] Schlenker W and Roberts M J 2009 Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change Proc. Natl Acad. Sci. 106 15594–8
[38] Ummenhofer C C, Xu H, Twine T E, Girvetz E H, McCarthy H R, Chhetri N and Nicholas K A 2015 How climate change affects extremes in maize and wheat yield in two cropping regions J. Clim. 28 4653–87
[39] Zhang T, Lin X and Sassenrath G F 2015 Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat Sci. Total Environ. 508 131–42
[40] McDowell W R, Condon L M, Main B E and Dastgheb F 1997 Dissipation of imazapyr, flumetsulam and thifensulfuron in soil Weed Res. 37 381–9
[41] Ramesh K, Matloob A, Aslam F, Florentine S K and Chauhan B S 2017 Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management Frontiers Plant Sci. 8 95
[42] Ziska L H, Teasdale J R and Bunce J A 1999 Future atmospheric CO₂ may increase tolerance to glyphosate Weed Sci. 47 608–15
[43] Ziska L H and Teasdale J R 2000 Sustained growth and increased tolerance to glyphosate observed in a C₃ perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide Funct. Plant Biol. 27 159–66
[44] Baker M B, Venugopal P D and Lamp W O 2015 Climate change and phenology: empoasca fabae (hemiptera: cicadellidae) migration and severity of impact Plos One 10 e0124915
[45] Bale J S et al 2002 Herbivory in global climate change research: direct effects of rising temperature on insect herbivores Glob. Change Biol. 8 1–16
[46] Heeb L, Jennen E and Cock M J W 2019 Climate-smart pest management: building resilience of farms and landscapes to changing pest threats J. Pest Sci. 92 951–969
[47] Porter J H, Parry M L and Carter T R 1991 The potential effects of climatic change on agricultural insect pests Agric. For. Meteorol. 57 221–40
[48] Butler E E and Huybers P 2015 Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase Environ. Res. Lett. 10 034009
[49] Kukul M S and Irmak S 2018 U.S. agro-climate in 20 th century: growing degree days, first and last frost, growing season length, and impacts on crop yields Sci. Rep. 8 6977
[50] Nagy J and Huzsvai L 1996 The effect of precipitation on the yield of maize (Zea mays L.) Cereal Research Communications 24 93–100
[51] Ramirez-Cabrals N Y Z, Kumar L and Shabani F 2017 Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX) Sci. Rep. 7 9949
[52] Garrett K A, Dendy S P, Frank E E, Rouse M N and Schlenker W 2012 Relationship between pesticide usage and climate change Glob. Change Biol. 18 169–171
[53] Rosenzweig C, Iglesias A, Yang X B, Epstein P R and Chivan E 2001 Climate change and extreme weather events: implications for food production, plant diseases, and pests Glob. Change Hum. Health 23 99–104
[54] Chen C-C and McCarl B A 2001 An investigation of the relationship between pesticide usage and climate change Clim. Change 50 475–87
[55] Andresen J, Hillberg S, Kunkel K and Center M R C 2012 Historical climate and climate trends in the Midwestern USA US Natl Clim. Assess. Midwest Tech. Input Rep. 1–18 (http://gisla.umich.edu/media/Files/NCA/MTIT_Historical.pdf)
[56] Lobell D B, Roberts M J, Schlenker W, Braun N, Little B B, Rejesus R M and Hammer G L 2014 Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest Science 344 516
[57] Carter E S 1978 The effect of the drought on British agriculture Proc. R. Soc. A 363 43–54
[58] Morley N J and Lewis W J 2014 Extreme climatic events and host–pathogen interactions: the impact of the 1976 drought in the UK Ecol. Complexity 17 1–19
[59] Wichern J, Wichern F and Joergensen R G 2006 Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils Geoderma 137 100–8
[60] Boldán A, Salinas-García J R, Algascull M M and Caravaca F 2007 Soil sustainability indicators following conservation tillage practices under subtropical maize and bean crops Soil Tillage Res. 93 273–82
[61] Jeong-Y, Huang C-C L and Cho H-J 2014 A VIF-based optimization model to alleviate collinearity problems in multiple linear regression Comput. Stat. 29 1515–41
[62] Bivand R S, Pebesma E J, Gomez-Rubio V and Pebesma E J 2008 Applied Spatial Data Analysis with R vol 747248717 (Berlin: Springer)
[63] NIH ChemIDplus Advanced - Chemical information with searchable synonyms, structures, and formulas (available at: https://chem.nlm.nih.gov/chemidplus/)
[64] USEtoto Welcome to USEtoto® ! USEtoto® (available at: https://usetoto.org/)
[65] USDA ERS 2019 USDA ERS - Documentation (available at: www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/documentation.aspx)
[66] Abatzoglou J T 2013 Development of gridded surface meteorological data for ecological applications and modelling Int. J. Climatol. 33 121–31
[67] Abatzoglou J T, Dobrowski S Z, Parks S A and Hegewisch K C 2018 TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1950–2015 Sci. Data 5 170191
[68] Johnson M and Clarke K C 2019 climateR - an R for Getting Point and Gridded Climate Data by AOl (01 04 201) (https://github.com/mikejohnson51/climateR)
[69] USDA NASS Census of agriculture, Ag Census Web Maps (available at: www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Ag_Census_Web_Maps/Overview/index.php/(2012))
[70] NRCS 2016 U.S. General Soil Map (STATSGO2) (available at: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm)
[71] ESRI 2004. ArcGIS. N. Y.
[72] Abdi H 2010 Coefficient of variation Encyclopedia of Research Design 1 169–171
[73] Bernardi A C D C, Tupy O, Santos K E L, Mazzuco G G, Bettiol G M, Rabello L M and Inamasu R Y 2018 Mapping of yield, economic return, soil electrical conductivity, and management zones of irrigated corn for silage Pesqui. Agropecuária Bras. 53 1289–98
[74] Guo W, Maas S J and Bronson K F 2012 Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery Precis. Agric. 13 678–92
[75] Moral F I, Terrón J M and Da Silva J M 2010 Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geo-statistical techniques Soil Tillage Res. 106 335–43
[76] Beukes D J, Mapumulo T C, Fyfield T P and Jezile G G 2012 Effects of liming and inorganic fertiliser application on soil properties and maize growth and yield in rural agriculture in the Mbizana area, Eastern Cape province, South Africa S Afr. J. Plant Soil 29 127–33
[77] Alley W M 1984 The palmer drought severity index: limitations and assumptions J. Clim. Appl. Meteorol. 23 1109–1110 (available at: https://github.com/mikejohnson51/climateR)
[78] Lan L, Niu H, Yang X, Qin W, Bento C P M, Ritsema C J and Geissen V 2015 Factors affecting farmers' behaviour in pesticide use: insights from a field study in northern China Sci. Total Environ. 537 360–8
[79] Jallow M F A, Awadhl D G, Albahar M S, Devi Y Y and Thomas B M 2017 Pesticide risk behaviors and factors
influencing pesticide use among farmers in Kuwait Sci. Total Environ. 574 490–8

[80] Khan M and Damalas C A 2015 Farmers’ willingness to pay for less health risks by pesticide use: A case study from the cotton belt of Punjab, Pakistan Sci. Total Environ. 530–531 297–303

[81] Tang L, Zhou J, Bobojonov I, Zhang Y and Glauben T 2018 Induce or reduce? The crowding-in effects of farmers’ perceptions of climate risk on chemical use in China Clim. Risk Manage. 20 27–37

[82] Reimer A P, Gramig B M and Prokopy L S 2013 Farmers and conservation programs: explaining differences in environmental quality incentives program applications between states J. Soil Water Conserv. 68 110–9

[83] Reimer A P and Prokopy L S 2014 Farmer participation in U.S. farm bill conservation programs Environ. Manage. 53 318–32

[84] Chemical Life Cycle Collaborative UC Santa Barbara (available at: https://clicc.net/welcome?next=/)