Retrospective Study

Risk factors of mortality and severe disability in the patients with cerebrovascular diseases treated with perioperative mechanical ventilation

Jin-Zhu Zhang, Hao Chen, Xin Wang, Kan Xu

Abstract

BACKGROUND

The prognosis of cerebrovascular diseases treated with mechanical ventilation during perioperative has not been clearly reported.

AIM

To analyze mortality and functional disability and to determine predictors of unfavorable outcome in the patients with cerebrovascular diseases treated with mechanical ventilation.

METHODS

A retrospective follow-up study of 111 cerebrovascular disease patients who underwent mechanical ventilation during the perioperative period in the First Hospital of Jilin University from June 2016 to June 2019 was performed. Main measurements were mortality and functional outcome in-hospital and after 3-month follow-up. According to the modified rankin scale (mRS), the functional outcome was divided into three groups: Good recovery (mRS ≤ 3), severe disability (mRS = 4 or 5) and death (mRS = 6). Univariate analysis was used to compare the differences between three functional outcomes. Multivariate logistic regression analysis was used to for risk factors of mortality and severe disability.

RESULTS

The average age of 111 patients was 56.46 ± 12.53 years, 59 (53.15%) were males. The mortality of in-hospital and 3-month follow-up were 36.9% and 45.0%, respectively. Of 71 discharged patients, 46.47% were seriously disabled and 12.67% died after three months follow-up. Univariate analysis showed that preoperative glasgow coma scale, operation start time and ventilation reasons had statistically significant differences in different functional outcomes. Multiple logistic regression analysis showed that the cause of ventilation was related to the
death and poor prognosis of patients with cerebrovascular diseases. Compared with brainstem compression, the risk of death or severe disability of pulmonary disease, status epilepticus, impaired respiratory center function, and shock were 0.096 (95% CI: 0.028-0.328), 0.026 (95% CI: 0.004-0.163), 0.095 (95% CI: 0.013-0.709), 0.095 (95% CI: 0.020-0.444), respectively.

CONCLUSION
The survival rate and prognostic outcomes of patients with cerebrovascular diseases treated with mechanical ventilation during the perioperative period were poor. The reason for mechanical ventilation was a statistically significant predictor for mortality and severe disability.

Key Words: Cerebrovascular diseases; Mechanical ventilation; Perioperative; Mortality; Functional outcome

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We were aimed to analyze mortality and functional disability and to determine predictors of unfavorable outcome in the patients with cerebrovascular diseases treated with mechanical ventilation. Our study indicated that survival and functional outcome in the patients of cerebrovascular diseases who treated with mechanical ventilation during the perioperative period were poor. The reason for mechanical ventilation (pulmonary disease, status epilepticus, shock, impaired respiratory center function and brainstem compression) could be a predictor for mortality and severe disability in these patients.

INTRODUCTION
Cerebrovascular diseases remain major cause of disability in the world. Studies showed that approximately 60% of the stroke patients die during the acute phase of therapy and the majority of the survivors suffered from severe disability[1-3], especially, the patients require intensive care therapy and mechanical ventilation. Patients with intracerebral hemorrhage, arteriovenous malformations, subarachnoid hemorrhage require mechanical ventilation because of pneumonia, pulmonary edema, brainstem ischemia or compression, and status epilepticus[4-6]. Mechanical ventilation often has been shown to be cost-ineffective at extending life with good recovery in the patients with stroke or other cerebrovascular diseases[7,8]. However, the dilemma is that although mechanical ventilation could sustain life in patients with acute respiratory failure[9], the survival rate and functional outcome for the patients of cerebrovascular diseases treated with mechanical ventilation had a poor prognosis. Therefore, identification of risk factors affecting long-term survival and functional outcome in these patients could be useful to improve management after mechanical ventilation, to help family making decision on continuation or withdrawal of care, and to guide orientation after discharge.

Previous studies indicated that mortality of the patients with cerebrovascular disease was 18%-19% and majority of the survivors remained severely disabled[10,11]. Several factors, including age (> 65 years), unconsciousness at admission [glasgow coma scale (GCS) score], intubation, and disappearance of brainstem reflexes, have been identified as independent predictors for the long-term survival and functional outcome in the patients with cerebrovascular diseases who required mechanical ventilation [1,2,12,13]. However, the prognosis of cerebrovascular diseases treated with mechanical ventilation during perioperative has not been clearly reported.

The aim of the current study was to evaluate mortality and severe disability of patients with cerebrovascular diseases who required mechanical ventilation during acute phase of treatment at an intensive care unit (ICU) (in-hospital), and to explore the predictors of death and functional disability of these patients.

MATERIALS AND METHODS
Patients
This cross-sectional study focuses on patients with cerebrovascular disease who underwent ventila-
assisted respiration during perioperative period. 113 patients from the neurovascular surgery ICU of the First hospital of Jilin University were collected from June 2016 to June 2019. The inclusion criteria included: (1) Patients had neurovascular surgery perioperative ventilator assisted breathing; (2) patients were on mechanical ventilation at least for 48 h; and (3) age ≥ 18 years old. The exclusion criteria are the patient’s family members gave up treatment or the patient died of disease. Two patients under the age of 18 were excluded. Finally total of 111 patients were included. The patient diagnoses cerebral hemorrhage, cerebral arteriovenous malformation, subarachnoid hemorrhage, cerebral vascular stenosis or occlusion, cerebral infarction, etc. through head computerized tomography (CT), CT angiography and cerebrovascular angiography. This study was adhered to the strengthening the reporting of observational studies in epidemiology statement for reporting[14].

Ethics statement
The study protocol was approved by the Ethics Committee of the First Hospital of Jilin University. Informed consent was waived due to the retrospective nature of this study.

Information collection and follow-up
Basic demographic information and following clinical information were collected and analyzed: Age, gender, smoking, hypertension, diabetes, diagnosis of cerebrovascular diseases[15], tracheotomy, subarachnoid hemorrhage (SAH) gradings[16]. Preoperative GCS score, surgical operation methods, reason for mechanical ventilation, time from admission to start using ventilator, ventilation initiation, operation hours, mechanical ventilation time, and reason for ventilation.

Outcome
The primary outcome of this study was death or functional outcome in patients with cerebrovascular disease 3 mo after discharge. The secondary outcome was death or functional outcome at discharge. Patient’s outcome was scaled with modified rankin scale (mRS) score[17], mRS ≤ 3 was defined as good recovery; mRS = 4 or 5 as severe disability; mRS = 6 as dead. Functional outcome assessment was carried out by a physician through telephone call.

Statistical analysis
Discrete variables were expressed by frequency (%), χ² test and fisher exact test were used to compare outcomes of the patients with various features. The Kolmogorov-Smirnov test was used to test the normality of the continuous variables. Continuous variables that fit the normal distribution were expressed by either mean ± SD otherwise as median and interquartile range (IQR). Wilcoxon rank sum test or Kruskal-Wallis rank sum test was used to compare outcomes of the patients with various features. We used ordinal Logistic Regression to analyze the association of mortality and functional outcome in patients with cerebrovascular disease and related factors. R software (R version 4.1.2) was used to perform all analysis and P value < 0.05 was considered as significant.

RESULTS

Basic demographic information of the patients
Average age of the 111 patients, who received surgical operation and peri-operative mechanical ventilation at a neurovascular surgical department during the 3-month study period, was 56.46 ± 12.53 years old, the median preoperative GCS was 9 (8, 15), and operation hour was 3.30 h (IQR: 2.14-4.70). Of them, 53.15% were male and 30.63% were smokers. Majority of them had comorbidities with 72.07% of hypertension and 16.22% diabetes

Ethics statement
The study protocol was approved by the Ethics Committee of the First Hospital of Jilin University. Informed consent was waived due to the retrospective nature of this study.

Information collection and follow-up
Basic demographic information and following clinical information were collected and analyzed: Age, gender, smoking, hypertension, diabetes, diagnosis of cerebrovascular diseases[15], tracheotomy, subarachnoid hemorrhage (SAH) gradings[16]. Preoperative GCS score, surgical operation methods, reason for mechanical ventilation, time from admission to start using ventilator, ventilation initiation, operation hours, mechanical ventilation time, and reason for ventilation.

Outcome
The primary outcome of this study was death or functional outcome in patients with cerebrovascular disease 3 mo after discharge. The secondary outcome was death or functional outcome at discharge. Patient’s outcome was scaled with modified rankin scale (mRS) score[17], mRS ≤ 3 was defined as good recovery; mRS = 4 or 5 as severe disability; mRS = 6 as dead. Functional outcome assessment was carried out by a physician through telephone call.

Statistical analysis
Discrete variables were expressed by frequency (%), χ² test and fisher exact test were used to compare outcomes of the patients with various features. The Kolmogorov-Smirnov test was used to test the normality of the continuous variables. Continuous variables that fit the normal distribution were expressed by either mean ± SD otherwise as median and interquartile range (IQR). Wilcoxon rank sum test or Kruskal-Wallis rank sum test was used to compare outcomes of the patients with various features. We used ordinal Logistic Regression to analyze the association of mortality and functional outcome in patients with cerebrovascular disease and related factors. R software (R version 4.1.2) was used to perform all analysis and P value < 0.05 was considered as significant.

RESULTS

Basic demographic information of the patients
Average age of the 111 patients, who received surgical operation and peri-operative mechanical ventilation at a neurovascular surgical department during the 3-month study period, was 56.46 ± 12.53 years old, the median preoperative GCS was 9 (8, 15), and operation hour was 3.30 h (IQR: 2.14-4.70). Of them, 53.15% were male and 30.63% were smokers. Majority of them had comorbidities with 72.07% of hypertension and 16.22% diabetes

Ethics statement
The study protocol was approved by the Ethics Committee of the First Hospital of Jilin University. Informed consent was waived due to the retrospective nature of this study.

Information collection and follow-up
Basic demographic information and following clinical information were collected and analyzed: Age, gender, smoking, hypertension, diabetes, diagnosis of cerebrovascular diseases[15], tracheotomy, subarachnoid hemorrhage (SAH) gradings[16]. Preoperative GCS score, surgical operation methods, reason for mechanical ventilation, time from admission to start using ventilator, ventilation initiation, operation hours, mechanical ventilation time, and reason for ventilation.

Outcome
The primary outcome of this study was death or functional outcome in patients with cerebrovascular disease 3 mo after discharge. The secondary outcome was death or functional outcome at discharge. Patient’s outcome was scaled with modified rankin scale (mRS) score[17], mRS ≤ 3 was defined as good recovery; mRS = 4 or 5 as severe disability; mRS = 6 as dead. Functional outcome assessment was carried out by a physician through telephone call.

Statistical analysis
Discrete variables were expressed by frequency (%), χ² test and fisher exact test were used to compare outcomes of the patients with various features. The Kolmogorov-Smirnov test was used to test the normality of the continuous variables. Continuous variables that fit the normal distribution were expressed by either mean ± SD otherwise as median and interquartile range (IQR). Wilcoxon rank sum test or Kruskal-Wallis rank sum test was used to compare outcomes of the patients with various features. We used ordinal Logistic Regression to analyze the association of mortality and functional outcome in patients with cerebrovascular disease and related factors. R software (R version 4.1.2) was used to perform all analysis and P value < 0.05 was considered as significant.

RESULTS

Basic demographic information of the patients
Average age of the 111 patients, who received surgical operation and peri-operative mechanical ventilation at a neurovascular surgical department during the 3-month study period, was 56.46 ± 12.53 years old, the median preoperative GCS was 9 (8, 15), and operation hour was 3.30 h (IQR: 2.14-4.70). Of them, 53.15% were male and 30.63% were smokers. Majority of them had comorbidities with 72.07% of hypertension and 16.22% diabetes
Characteristic	Number
Age (mean ± SD)	55.46 ± 12.53
Preoperative GCS score, median (IQR)	9 (8, 15)
Male gender, n (%)	59 (53.15)
Smoking, n (%)	34 (30.63)
Hyperension, n (%)	80 (72.07)
Diabetes, n (%)	18 (16.22)
Diagnosis of neurovascular diseases, n (%)	
Ischemic cerebrovascular disease	1 (0.90)
Hemorrhagic cerebrovascular disease	96 (86.48)
Brain tumor	4 (3.60)
Malformed or narrowed intracerebral blood vessels	10 (9.01)
SAH grading, n (%)	
Non-SAH	62 (55.86)
I	12 (10.81)
II	13 (11.71)
III	18 (16.22)
IV	6 (5.41)
Surgical operation methods, n (%)	
Aneurysm clipping	29 (26.13)
Aneurysm embolization	23 (20.72)
Craniotomy for hematoma removal	30 (27.03)
External ventricular drainage	12 (10.81)
Cranial drilling and drainage	8 (7.21)
Others	9 (8.11)
Mechanical ventilation time, median (IQR)	113 (69, 187)
Tracheotomy, n (%)	
Yes	56 (50.45)
Time from admission to start using ventilator (h), median (IQR)	40 (4, 86)
Ventilation initiation, n (%)	
Post-operation	94 (84.68)
Pre-operation	17 (15.32)
Operation hours (h), median (IQR)	3.3 (2.1, 4.7)
Reason for ventilation, n (%)	
Pulmonary disease	55 (49.55)
Status epileptic	9 (8.11)
Impaired respiratory center function	6 (5.41)
Shock	14 (12.61)
Brainstem compression	27 (24.32)
Comparison of mRS score in hospital and 3-month follow up

Figure 1 showed the comparison of mRS score with cerebrovascular disease at discharge and 3 mo after discharge. Of 71 survivors, 46.47% were seriously disabled and 12.67% died after three months of follow-up. Compared with the period of hospitalization, 11 patients with poor prognosis turned to good, and 9 deaths were added. In general, compared with hospitalization, the proportion of patients with good prognosis (MRS ≤ 3) after 3 mo of discharge has increased. However, the number of deaths continues to increase, and the total mortality rate reaches 45.0% after three months.

Patients characteristics of the study population stratified by the functional outcome

After 3 mo of follow-up, 29 (26.1%) of the 111 patients had good recovery, there were 32 (28.8%) patients with poor prognosis and 50 deaths (45.0%). The results of univariate analysis showed that there was also no significant difference in age, gender, smoking, hypertension, diabetes, diagnosis of neurovascular diseases, tracheotomy, SAH gradings, surgical operation methods, ventilation initiation, operation hours, and mechanical ventilation time (P > 0.05). There were significant differences in preoperative GCS score (P = 0.002), time from admission to start using ventilator (P = 0.038) and reason for ventilation (P < 0.001) among different prognostic groups (Table 2).

Analysis of risk factors for mortality and prognosis of patients after mechanical ventilation

Multiple logistic regression analysis showed that preoperative GCS score and time from admission to start using ventilator were not related to the death and prognosis of patients with cerebrovascular diseases (P > 0.05), and the reason of ventilation was related to the death and poor prognosis of patients with cerebrovascular diseases. Compared with brainstem compression, The risk of death or severe disability of pulmonary diseases was 0.096 times (P < 0.001, 95%CI: 0.028-0.328); The risk of death or severe disability of status epilepticus was 0.026 times (P < 0.001, 95%CI: 0.004-0.163), The risk of death or severe disability of impaired respiratory center function was 0.095 times (P = 0.022, 95%CI: 0.013-0.709), The risk of death or severe disability of shock was 0.095 times (P = 0.003, 95%CI: 0.020-0.444) (Table 3).

DISCUSSION

In the current study, we found that mechanical ventilation was required for the patients who underwent surgical operation with various kinds of cerebrovascular diseases. Outcome of mechanical ventilation in these patients, however, revealed that mortality and occurrence of severe disability were high. Prognosis of the patients treated with mechanical ventilation in this study was associated with the comorbidities that required mechanical ventilation. Compared with brainstem compression, the survival and functional outcome of pulmonary disease, status epilepticus, status epilepticus, impaired respiratory center function, and shock are relatively well.

Patients with cerebrovascular diseases requiring ventilator support treatment have poor prognosis with high mortality and severe disability even though they were treated aggressively in the ICU.[18] Cerebrovascular diseases such as intracerebral hemorrhage, subarachnoid hemorrhage, and cerebral arteriovenous malformations often cause severe intracerebral hemorrhage, which blocks normal circulation of cerebrospinal fluid and results in brain herniation and even death. These patients, therefore, often need to be mechanically ventilated before and/or after surgery. Comorbidity rate of surgery in the patients with cerebrovascular diseases were 14% and some of them require mechanical ventilation.[19] In this regard, Mayer et al.[12] reported that 5% of ischemic stroke patients, 26% of intracerebral hemorrhage patients, and 47% of subarachnoid hemorrhage patients required mechanical ventilation, with two third of mortality rate and majority of neuro-dysfunction. In the current study, we found that in-hospital mortality of the patients with cerebrovascular diseases was 36.9% and 45.0% during the 3-month follow-up period, and that 46.8% of them had 4-5 mRS score at discharge from the hospital and 29.7% of them had 4-5 mRS score 3 mo after discharge.

Steiner et al.[2] reported that GCS (< 10) at admission was one of the seven independent factors that influenced 2-month fatality for the stroke patients who received mechanical ventilation. Although our univariate analysis showed that preoperative GSC had statistically significant differences in different prognostic outcomes, considering the confounding factors among multiple variables, further multiple regression analysis did not find a correlation between GSC and poor prognosis. Similarly, Fugate[19] also believe that preoperative GCS score could not predict the patient’s outcome because the intervention of surgical operation could affect the outcome, which could be good recovery, severe disability or even death. It has been reported that mechanical ventilation treatment in the comatose patients resulting from inoperative acute intracerebral hemorrhage, especially patients had brainstem compression due to brain herniation, could only prolong unresponsive life[20]. Brainstem compression
Characteristic	Good recovery (n = 29)	Severe disability (n = 32)	Death (n = 50)	Statistical value	P value
Age, median (IQR)	55 (46, 63)	61 (50.5, 65)	59 (51.2, 66)	2.984	0.225
Male gender, n (%)	17 (58.6)	19 (59.4)	23 (46.0)	1.873	0.409
Smoking, n (%)	10 (34.5)	12 (37.5)	12 (24.0)	1.948	0.407
Hypertension, n (%)	19 (65.5)	20 (62.5)	41 (82.0)	4.524	0.104
Diabetes, n (%)	3 (10.4)	5 (15.6)	10 (20.0)	1.271	0.544
Tracheotomy, n (%)	12 (41.4)	21 (65.6)	23 (46.0)	4.298	0.115
Diagnosis of neurovascular diseases, n (%)	16 (55.2)	19 (59.4)	27 (54.0)	0.690	0.406
Ischemic cerebrovascular disease	1 (3.4)	0 (0.0)	0 (0.0)	1.423	0.197
Hemorrhagic cerebrovascular disease	22 (75.9)	29 (90.6)	45 (90.0)	0.617	0.437
Brain tumor	2 (6.9)	1 (3.1)	1 (2.0)	1.482	0.224
Malformed or narrowed intracerebral blood vessels	4 (13.8)	2 (6.2)	4 (8.0)	1.114	0.292
SAH, n (%)	15 (51.7)	19 (59.4)	27 (54.0)	5.609	0.234
Non-SAH	16 (55.2)	19 (59.4)	27 (54.0)	5.609	0.234
I	5 (17.2)	3 (9.4)	4 (8.0)	1.083	0.343
II	3 (10.3)	2 (6.3)	8 (16.0)	1.305	0.253
III	5 (17.2)	6 (18.8)	7 (14.0)	1.510	0.219
IV	0 (0)	2 (6.3)	4 (8.0)	1.000	0.316
Preoperative GCS score, median (IQR)	11 (9, 15)	9 (9, 10)	9 (8, 10)	12.575	0.002
Surgical operation methods, n (%)				15.956	0.082
Aneurysm clipping	8 (27.6)	13 (40.6)	8 (16.0)	1.788	0.182
Aneurysm embolization	9 (31.0)	2 (6.3)	12 (24.0)	2.845	0.092
Craniotomy for hematoma removal	5 (17.2)	9 (28.1)	16 (32.0)	2.303	0.130
External ventricular drainage	1 (3.4)	3 (9.4)	8 (16.0)	0.557	0.456
Cranial drilling and drainage	3 (10.3)	2 (6.2)	4 (8.0)	1.056	0.306
Others	3 (10.3)	3 (9.4)	2 (4.0)	1.000	0.316
Time from admission to start using ventilator (h), median (IQR)	50 (9, 80)	71.0 (26.2, 102.8)	27.0 (1.0, 74.5)	6.537	0.038
Operation hour (h), median (IQR)	3.5 (2.0, 5.3)	3.5 (2.8, 4.7)	3.1 (2.0, 4.4)	1.694	0.249
Ventilation initiation, n (%)				1.235	0.559
Postoperation	24 (82.8)	29 (90.6)	41 (82.0)	0.881	0.346
Preoperation	5 (17.2)	3 (9.4)	9 (18.0)	1.000	0.316
Mechanical ventilation time (h), median (IQR)	111.5 (64.5, 223.0)	127.0 (75.0, 182.5)	102.5 (69.5, 181.0)	0.98	0.613
Reason for ventilation, n (%)				11.033	< 0.001
Pulmonary disease	13 (44.8)	24 (75.0)	18 (36.0)	1.235	0.559
Status epilepticus	6 (20.7)	2 (6.3)	1 (2.0)	1.000	0.316
Impaired respiratory center function	3 (10.3)	1 (3.1)	2 (4.0)	1.000	0.316
Table 3 Analysis of risk factors for mortality and prognosis of patients after mechanical ventilation

Value	Estimate	Standard error	Wald	P value	OR	95% CI
[Outcome = 1]	-4.692	1.05	20.13	0.000	0.009	0.001 - 0.071
[Outcome = 2]	-3.128	1.00	9.80	0.002	0.044	0.006 - 0.311
Preoperative GCS score	-0.149	0.09	2.89	0.089	0.861	0.725 - 1.023
Time from admission to start using ventilator	0.000	0.00	0.03	0.865	1.000	0.995 - 1.006
Pulmonary disease	-2.345	0.63	13.95	< 0.001	0.096	0.028 - 0.328
Status epilepticus	-3.668	0.94	15.08	< 0.001	0.026	0.004 - 0.163
Impaired respiratory center function	-2.352	1.02	5.27	0.022	0.095	0.013 - 0.709
Shock	-2.359	0.79	8.94	0.003	0.095	0.020 - 0.444
Brainstem compression	-	-	-	-	-	-

GCS: Glasgow coma scale.

Figure 1 Comparison of modified rankin scale score in hospital and 3-month follow up. mRS: Modified rankin scale.
49.5% of the patients were mechanically ventilated due to pulmonary disease. Of them, mortality was 32.7% and severe disability was 43.6%.

It has also been reported that status epilepticus was an independent risk factor for fatality of the patients with spontaneous cerebral hemorrhage,[29] especially, in the patients with refractory and nonconvulsive epilepsy. These patients often require intubation and mechanical ventilation because these patients might stop breathing and heart-beating. In our study, 9 patients had status epilepticus with unexpected unconsciousness, stop breathing, but normal brain CT examination. Of them, 3 patients had status epilepticus before the surgery and the rest 6 patients had it after the surgery. One of the six patients had it 334 h after the surgery. The treatment of status epilepticus is to ensure the airway, maintain circulation, and give benzodiazepines, such as diazepam, lorazepam, midazolam, etc.[30]

We also identified that shock could be a prediction of the outcome for the patients with mechanical ventilation. In the early stage of shock, due to the excitement of the patient's respiratory center and the increase of ventilation, it can cause hypocapnia and respiratory alkalosis. Generally, it can be used as an early indicator of shock before the decrease of blood pressure and the increase of lactate. However, in the late stage of shock, acute respiratory failure often occurs, which is characterized by progressive hypoxemia and dyspnea, which is called shock lung. Those with hypoxemia in the early and late stage of shock need ventilator assisted respiration[31]. In this regard, total 11 patients were ventilated after being diagnosed as shocked. Of them, 4 patients who were diagnosed in early stage of shock and given treatment such as raising blood pressure and improving circulation. The patients recovered well. While 5 patients who were diagnosed at a late stage of shock, died, suggesting identification of shock at its early stage is crucial for the patient’s outcome. Myint et al.[32] reported that shock index at presentation to the emergency department predicts patient-related clinical outcomes in ischemic and hemorrhagic stroke.

There are some limitations in the current study. First, the study design was observational and follow-up period was short. Second, relatively small sample size might limit significant effects for some predictive factors that potentially influence outcome. Third, quality of life in those patients, who had severe disability, was not evaluated. Fourth, the retrospective collection of the data may have introduced bias, especially, patients ventilated for less than 48 h were excluded from this study, and thus, this result may not easily be extrapolated to a general elderly population. Finally, the data was from only one department of single center. In the future, we will include more samples, fully consider various confounding factors, and conduct a prospective cohort study to verify the causal relationship between various ventilation causes and the poor prognosis of patients with cerebrovascular diseases undergoing perioperative mechanical ventilation.

CONCLUSION

Taken together, mortality and severe disability rate were high in the cerebrovascular patients who had perioperative mechanical ventilation. The outcome of these patients was not associated with time-length of mechanical ventilation, primary diagnosis of cerebrovascular diseases, surgical operation method, and whether ventilated before or after the surgery. However, comorbidities that require mechanical ventilation significantly affected mortality and functional outcome of the patients in this study. Compared with brainstem compression, the survival and functional outcome of pulmonary disease, status epilepticus, status epilepticus, impaired respiratory center function, and shock are relatively well.

ARTICLE HIGHLIGHTS

Research background

The dilemma is that although mechanical ventilation could sustain life in patients with acute respiratory failure, the survival rate and functional outcome for the patients of cerebrovascular diseases who treated with mechanical ventilation had a poor prognosis. Therefore, identification of risk factors affecting long-term survival and functional outcome in these patients could be useful to improve management after mechanical ventilation, to help family making decision on continuation or withdrawal of care, and to guide orientation after discharge.

Research motivation

The survival rate and prognostic outcomes of patients with cerebrovascular diseases treated with mechanical ventilation during the perioperative period were poor. The reason for mechanical ventilation was a statistically significant predictor for mortality and severe disability.

Research objectives

The average age of 111 patients was 56.46 ± 12.53 years, 59 (53.15%) were males. The mortality of in-hospital and 3-month follow-up were 36.9% and 45.0%, respectively. Of 71 discharged patients, 46.47%
were seriously disabled and 12.67% died after three months follow-up. Univariate analysis showed that preoperative Glasgow coma scale, operation start time and ventilation reasons had statistically significant differences in different functional outcomes. Multiple logistic regression analysis showed that the cause of ventilation was related to the death and poor prognosis of patients with cerebrovascular diseases. Compared with brainstem compression, the risk of death or severe disability of pulmonary disease, status epilepticus, impaired respiratory center function, and shock were 0.096 (95%CI: 0.028-0.328), 0.026 (95%CI: 0.004-0.163), 0.095 (95%CI: 0.013-0.709), 0.095 (95%CI: 0.020-0.444), respectively.

Research methods
A retrospective follow-up study of 111 cerebrovascular disease patients who underwent mechanical ventilation during the perioperative period in the First Hospital of Jilin University from June 2016 to June 2019 was performed. Main measurements were mortality and functional outcome in-hospital and after 3-month follow-up. The functional outcome was divided into three groups based on the modified Rankin scale. Univariate analysis was used to compare the differences between three functional outcomes. Multivariate logistic regression analysis was used to test risk factors of mortality and severe disability.

Research results
To analyze mortality and functional disability and to determine predictors of unfavorable outcome in the patients with cerebrovascular diseases treated with mechanical ventilation.

Research conclusions
To analyze mortality and functional disability and to determine predictors of unfavorable outcome in the patients with cerebrovascular diseases treated with mechanical ventilation.

Research perspectives
The prognosis of cerebrovascular diseases treated with mechanical ventilation during perioperative has not been clearly reported.

FOOTNOTES
Author contributions: Zhang JZ and Xu K contributed to the study conception and design; all authors collected the data and performed the data analysis; and contributed to the interpretation of the data; and complete of figures and tables; and contributed to the drafting of the article; and final approval of the submitted version.

Institutional review board statement: The study protocol was approved by the Ethics Committee of the First Hospital of Jilin University.

Conflict-of-interest statement: The authors declare that they have no conflict of interest to disclose.

Data sharing statement: The datasets generated and analyzed during the present study are available from the corresponding author on reasonable request.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Jin-Zhu Zhang 0000-0003-0643-0987; Hao Chen 0000-0001-6989-1014; Xin Wang 0000-0003-0663-5579; Kan Xu 0000-0001-5818-1447.

S-Editor: Guo XR
L-Editor: A
P-Editor: Guo XR

REFERENCES
1 Gujjar AR, Deibert E, Manno EM, Duff S, Diringer MN. Mechanical ventilation for ischemic stroke and intracerebral hemorrhage: indications, timing, and outcome. Neurology 1998; 51: 447-451 [PMID: 9710017 DOI: 10.1212/wnl.51.2.447]
Zhang JZ et al. Mortality and disability treated mechanical ventilation

1. Steiner T, Mendoza G, De Georgia M, Schellinger P, Holle R, Hacke W. Prognosis of stroke patients requiring mechanical ventilation in a neurological critical care unit. *Stroke* 1997; 28: 711-715 [PMID: 9099184 DOI: 10.1161/01.str.28.4.711]

2. Wijdicks EF, Scott JP. Causes and outcome of mechanical ventilation in patients with hemispheric ischemic stroke. *Mayo Clin Proc* 1997; 72: 210-213 [PMID: 9070194 DOI: 10.4065/72.3.210]

3. Kolak J, van Saene HK, de la Cal MA, Silvestre L, Peric M. Control of bacterial pneumonia during mechanical ventilation. *Croat Med J* 2005; 46: 183-196 [PMID: 15894838]

4. Hawkes MA, English SW, Mandrekar JN, Rabinstein AA, Hocker S. Causes of Death in Status Epilepticus. *Crit Care Med* 2019; 47: 1226-1231 DOI: 10.1097/CCM.0000000000003365

5. Clark SB, Soos MP. Noncardiogenic Pulmonary Edema. 2021 Nov 1. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan- [PMID: 31194387]

6. Wachter RM. Intensive care for patients with AIDS: clinical and ethical issues. *Schweiz Med Wochenschr* 1995; 125: 1119-1122 [PMID: 7597398]

7. Bouvet P, Murgier M, Pons B, Darmon M. Long-term Outcomes of Critically Ill Patients With Stroke Requiring Mechanical Ventilation. *Am J Crit Care* 2019; 28: 477-480 [PMID: 31676523 DOI: 10.4037/acc2019310]

8. Brochard L, Slutsky A, Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. *Am J Respir Crit Care Med* 1995; 153: 438-442 [PMID: 27626833 DOI: 10.1164/rccm.199510-1081CP]

9. Brossmer G, Helbok R, Lackner P, Mitterberger M, Beer R, Engelhardt K, Brenneis C, Pflauer B, Schmutzhard E. Survival and long-term functional outcome in 1,155 consecutive neurocritical care patients. *Crit Care Med* 2007; 35: 2025-2030 [PMID: 17855816 DOI: 10.1097/01.ccm.0000281449.07719.2b]

10. el-Ad B, Bornstein NM, Fuchs P, Koczyrn AD. Mechanical ventilation in stroke patients—is it worthwhile? *Neurology* 1996; 47: 657-659 [PMID: 8797459 DOI: 10.1212/wnl.47.3.657]

11. Mayer SA, Copeland D, Bernardini GL, Boden-Albala B, Lennihan L, Kossoff S, Sacco RL. Cost and outcome of mechanical ventilation for life-threatening stroke. *Stroke* 2000; 31: 2346-2353 [PMID: 11022062 DOI: 10.1161/01.str.31.10.2346]

12. Burtin P, Bollaert PE, Feldmann L, Nace L, Lelarge P, Bauer P, Larcan A. Prognosis of stroke patients undergoing mechanical ventilation. *Intensive Care Med* 1994; 20: 32-36 [PMID: 8163755 DOI: 10.1007/BF02425052]

13. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. *Int J Surg* 2012; 14: 1495-1499 [PMID: 25046135 DOI: 10.1016/j.ijsu.2014.07.013]

14. Wu J, Yang Y, Rao ML. Chinese Classification of Cerebrovascular Diseases 2015. *Chinese Journal of Neurology 2017; 50*: 168-171 [DOI: 10.3760/cma.j.issn.1006-7876.2017.03.003]

15. Fernandez A, Schmidt JM, Claassen J, Pavlicova M, Huddleston D, Kreiter KT, Ostapkovich ND, Kowalski RG, Parra A, Connolly ES, Mayer SA. Severe subarachnoid hemorrhage: risk factors and impact on outcome. *Neurology 2007; 68*: 1013-1019 [PMID: 17314332 DOI: 10.1212/01.wnl.0000258543.45879.7f]

16. Bamford JM, Sandercoc PA, Warlow CP, Slattery J. Interobserver agreement for the assessment of handicap in stroke patients. *Stroke 1989; 20*: 828 [PMID: 2728057 DOI: 10.1161/01.str.19.5.604]

17. Lahiri S, Mayer SA, Fink ME, Lord AS, Rosengart A, Mangat HS, Segal AZ, Claassen J, Kamel H. Mechanical Ventilation for Acute Stroke: A Multi-state Population-Based Study. *Neurocrit Care 2015; 23*: 28-32 [PMID: 25487123 DOI: 10.1007/s10647-014-0382-9]

18. Fugate JE. Complications of Neurosurgery. *Continuum (Minneap Minn)* 2015; 21: 1425-1444 [PMID: 26426239 DOI: 10.1212/CO.0000000000000227]

19. Fukuhara T, Aoi M, Namba Y. Mechanical ventilation for comatose patients with inoperable acute intracerebral hemorrhage: possible futility of treatment. *PloS One* 2014; 9: e103551 [PMID: 25062014 DOI: 10.1371/journal.pone.0103531]

20. Chang CY, Lin CY, Chen LC, Sun CH, Li TY, Tsai TH, Chang ST, Wu YT. The Predictor of Mortality within Six-Months in Patients with Spontaneous Cerebral Hemorrhage: A Retrospective Study. *PloS One* 2015; 10: e0132975 [PMID: 26186721 DOI: 10.1371/journal.pone.0132975]

21. Doshi VS, Say JH, Young SH, Doraasamy P. Complications in stroke patients: a study carried out at the Rehabilitation Medicine Service, Changi General Hospital. *Singapore Med J 2003; 44*: 643-652 [PMID: 14770260]

22. Wartenberg KE, Schmidt JM, Claassen J, Temes RE, Frontera JA, Ostapkovich N, Parra A, Connolly ES, Mayer SA. Impact of medical complications on outcome after subarachnoid hemorrhage. *Crit Care Med* 2006; 34: 617-23; quiz 624 [PMID: 16521258 DOI: 10.1097/01.ccm.0000201903.46435.35]

23. Guo R, Yang J, Yu Z, Chen R, You C, Li H, Ma L. Risk Factors and Outcomes of Pneumonia After Primary Intraventricular Hemorrhage. *World Neurosurg 2019; 127*: e979-e985 [PMID: 30965165 DOI: 10.1016/j.wneu.2019.04.012]

24. de Montmollin E, Ruckly S, Schwebel C, Philippart F, Adrie C, Mariotte E, Marcotte G, Cohen Y, Sztrymf B, da Silva D, Bruneel F, Gaimnier M, Garroutte-Orgeas M, Sommeville R, Timsit JF; OUTCOMEERea Study Group. Pneumonia in acute ischemic stroke patients requiring invasive ventilation: Impact on short and long-term outcomes. *J Infect 2019; 79*: 220-227 [PMID: 31238051 DOI: 10.1016/j.jinf.2019.06.012]

25. Kuo YW, Huang YC, Lee M, Lee TH, Lee JD. Risk stratification model for post-stroke pneumonia in patients with acute ischemic stroke. *Eur J Cardiovasc Nurs* 2020; 19: 513-520 [PMID: 31733079 DOI: 10.1177/1474515119889977]

26. Namale G, Kamacooko O, Makhoba A, Mugabi T, Ndagire M, Ssanyu P, Ddamulira JBM, Yperzeele L, Cras P, Ddumba E, Seeley J, Newton R. Predictors of 30-day and 90-day mortality among hemorrhagic and ischemic stroke patients in urban Uganda: a prospective hospital-based cohort study. *BMC Cardiovasc Disord* 2020; 20: 442 [PMID: 33035257 DOI: 10.1186/s12872-020-01724-6]

27. Alsumrain M, Melillo N, Debari VA, Kirmani J, Moussavi M, Doraaswamy V, Katapally R, Korya D, Adelman M, Miller R. Predictors and outcomes of pneumonia in patients with spontaneous intracerebral hemorrhage. *J Intensive Care Med* 2013; 28: 118-123 [PMID: 22337709 DOI: 10.1177/0885066612437352]

28. Mehta A, Zusman BE, Shattar LA, Choxi R, Yassin A, Antony A, Thirumala PD. The Prevalence and Impact of Status
Epilepticus Secondary to Intracerebral Hemorrhage: Results from the US Nationwide Inpatient Sample. *Neurocrit Care* 2018; 28: 353-361 [PMID: 29327152 DOI: 10.1007/s12028-017-0489-1]

30 **Seinfeld S**, Goodkin HP, Shinnar S. Status Epilepticus. *Cold Spring Harb Perspect Med* 2016; 6: a022830 [PMID: 26931807 DOI: 10.1101/cshperspect.a02283]

31 **Maccagnan Pinheiro Besen BA**, Tomazini BM, Pontes Azevedo LC. Mechanical ventilation in septic shock. *Curr Opin Anaesthesiol* 2021; 34: 107-112 [PMID: 33470664 DOI: 10.1097/ACO.0000000000000955]

32 **Myint PK**, Sheng S, Xian Y, Matsouaka RA, Reeves MJ, Saver JL, Bhatt DL, Forarow GC, Schwamm LH, Smith EE. Shock Index Predicts Patient-Related Clinical Outcomes in Stroke. *J Am Heart Assoc* 2018; 7: e007581 [PMID: 30371191 DOI: 10.1161/JAHA.117.007581]
