Dengue-2 and Guadeloupe Mosquito Virus RNA Detected in Aedes (Stegomyia) spp. Collected in a Vehicle Impound Yard in Santo André, SP, Brazil

Marina E. O. Rangel 1, Luana P. R. Oliveira 2, Aline D. Cabral 2, Katharyna C. Gois 3, Marcos V. M. Lima 1, Beatriz C. A. A. Reis 3, Fernando L. A. Fonseca 3,4, Marcia A. Sperança 2, Flavia S. Gehrke 5,6,7 and Gabriel Z. Laporta 1,8

Abstract: In 2018–2019, we conducted mosquito collections in a municipal vehicle impound yard, which is 10 km from the Serra do Mar Environmental Protection Area in Santo André, SP, Brazil. Our aim is to study arboviruses in the impound yard, to understand the transmission of arboviruses in an urban environment in Brazil. We captured the mosquitoes using human-landing catches and processed them for arbovirus detection by conventional and quantitative RT-PCR assays. We detected DENV-2 RNA in Aedes albopictus and Guadeloupe mosquito virus RNA in Aedes aegypti.

Keywords: arbovirus; mosquito-borne diseases; surveillance

1. Introduction

The transmission dynamics of arboviruses of public health importance are currently not well understood in urban areas of Brazil [1–3]. Arboviral outbreaks periodically occur, causing widespread morbidity and mortality in human populations and other vertebrates [4–6]. Accumulated deforestation is a major driver of arbovirus spillover [7–9]. Human land-use activities bring humans into close contact with the sylvatic vectors, which
may lead to spillover events in both humans and domestic animals [10,11]. This was what public health authorities were afraid of during the yellow fever (YF) outbreak, which lasted from 2016 to 2019 in Brazil [12]. This outbreak was caused by mutant strains of yellow fever virus (YFV) (Family Flaviviridae, Genus Flavivirus) [13]. These strains are highly virulent and caused death in 750 humans and thousands of new world monkeys [13]. Fortunately, Aedes (Stegomyia) aegypti (L.) has not shown competence to transmit these strains, which would have led to urban YF [14].

The danger of urban YF has been highlighted by the recent outbreaks of Zika virus (ZIKV) and chikungunya virus (CHIKV) [15,16]. There is currently an increased potential for disseminating YFV and other arboviruses of public health importance due to urban crowding conditions, rapid national and international air travel, and favorable climatic conditions [17–19]. The manifestation of clinical outcomes such as the newborn microcephaly associated with zika infections in pregnant women [20] further highlights the public health importance of Ae. aegypti, which is the primary vector for ZIKV, CHIKV, and dengue virus (DENV) [17]. The closely related Aedes (Stegomyia) albopictus (Skuse) is the primary vector of DENV in the United States [21] and in China [22] and of CHIKV in Europe [21], but has not been implicated as a vector in arboviral outbreaks in Brazil, so far [5].

Habitats for immature stages of Ae. aegypti and Ae. albopictus are artificial recipients in urbanized area of Santo André county, São Paulo state [23], where 3,356 dengue cases were confirmed from 2014 to 2017 [23]. Three YF human cases and four YF epizootics with dead monkeys were reported in 2018 [23]. Human cases caused by ZIKV and CHIKV infections have not been detected, so far. Because molecular surveillance techniques are not routinely used for arbovirus detection in mosquito vectors [24,25], ZIKV and CHIKV could be circulating undetected.

The success of the current arbovirus surveillance and control programs in Brazilian cities is limited by the limited availability of funds [18]. This problem is further compounded by a lack of specific therapeutics and the paucity of the licensed vaccines for most arboviral diseases [17]. It is increasingly important to develop novel vector surveillance and control strategies, with the primary goal of preventing spillover events initiating large-scale outbreaks [12]. One such strategy is to initiate and sustain molecular surveillance of RNA arboviruses in field-collected Ae. aegypti and Ae. albopictus populations, in order to effectively monitor potential vector-borne arboviral outbreaks in the future [14,24,25]. Arboviral molecular detection in mosquitoes relies on the use of reverse transcription (RT) PCR-based techniques, which are preferable to time-consuming in vitro cell culturing and more sensitive than serological testing [11,26,27]. The Sanger sequencing approach can quickly yield genetic sequences for arboviruses [28], which can be compared with the known sequences in GenBank [29]. Such comparison provides a powerful bioinformatics tool for quickly identifying the arboviral agents detected in field-collected mosquito vectors [28,30]. In this manuscript, we used the molecular surveillance technique to screen for arboviruses in mosquitoes collected in a vehicle impound yard, Santo André, SP, Brazil, from August 2018 to July 2019.

2. Materials and Methods
2.1. Study Area

Santo André is an industrial municipality within the metropolitan region of São Paulo, state of São Paulo, southeastern Brazil. More than 700 thousand people live in this municipality, and half of its 175 km² territory is covered by the Atlantic rainforest (Figure 1A,B). DENV has been endemic to this area since the 2000s [23]; in addition, CHIKV, ZIKV, and YFV have recently been detected in the region [4,31,32].

The study area was a vehicle impound yard (−46.49 W, −23.63 S; see Figure 1C,D). The vehicle impound yard was an ideal location to monitor Aedes infestation. Impounded vehicles provide a wide variety of larval habitats, as well as resting sites for adult mosquitoes (Figure 1D).
Figure 1. Study area: (A) Brazilian Atlantic rainforest; (B) municipality of Santo André (white borders) in the metropolitan region of São Paulo, state of São Paulo, southeastern Brazil; (C) vehicle impound yard in the Ana Maria Garden district; and (D) 1—3 are the sites where we collected mosquitoes. Sources: IBGE (biomes), USGS (Landsat 8OLI), SEMASA (aerophotogrammetric image), and ArcGIS v. 10.3.1.

2.2. Field Collections

Human-landing catches with small battery-powered aspirators were conducted bi-weekly for a one-year period from August 2018 to July 2019. Two catchers were used on each sampling occasion; the collections started at 9AM and ended at 1PM. The catchers wore trousers and long socks to minimize contact with wild mosquitoes [33]. The sampling sites were rotated every two weeks to eliminate collection site bias. All specimens (male or female) were transported live to the laboratory, chilled in a −20 °C freezer for 5 min, morphologically identified to species using the keys of Forattini [34], sorted by sex and collection date, and individually stored in microtubes in a −80 °C freezer.

2.3. RNA Extraction

The single-insect non-destructive RNA extraction method was used, following Molina et al. [28]. With this method, chitinous exoskeleton is preserved intact and the proteinaceous tissues are dissolved with proteinase K. The RNA can then be extracted from the solution [35]. To each individual mosquito, 200 µL of lysis buffer [200 mM Tris HCl (pH 7.5), 250 mM NaCl, 25 mM EDTA 372 (pH 8.0), 0.5% SDS, and 400 µg/mL proteinase K] were added, following incubation for 16 h at 56 °C. Total RNA was purified by using Invitrogen PureLink RNA Mini Kits (ThermoFisher Scientific, Waltham, MA, USA), following the manufacturer’s instructions, and eluted in 60 µL of RNase free water. The concentration of the extracted RNA was evaluated by spectrophotometry using BioDrop µLITE (Biochrom, Harvard Bioscience, Holliston, MA, USA).
2.4. Arbovirus Detection

To screen the mosquitoes for arboviruses, cDNA from 5.5 µL total RNA of each specimen was synthesized using the MMLV reverse transcriptase purchased from ThermoFisher Scientific (Waltham, MA, USA) according to manufacturer’s instructions, using two different approaches: one with specific arboviruses oligonucleotides and the other with random hexamers. The reverse transcription reactions were set up at 42 °C for one hour, followed by enzyme inactivation at 80 °C for 5 min.

The cDNA synthesized with specific oligonucleotides were used to detect arboviruses by endpoint PCR in order to detect flaviviruses, South American alphaviruses, and CHIKV, according to methods previously described [28,36–39]. The primer sequences, cycling condition, target regions, and expected DNA fragment size we used are outlined in Table S1. PCR was performed with Platinum Taq DNA polymerase purchased from ThermoFisher Scientific according to manufacturer’s instructions and the obtained products were subjected to 1.5% agarose gel electrophoresis in 0.5 × TBE buffers after staining with SafeBlue. All PCR fragments with the expected size were ligated into pGEM-T vector (Promega)—transformed into Mach1-TiR chemical competent Escherichia coli strain (ThermoFisher Scientific). Ampicillin-resistant colonies were selected. From each amplicon, two to three recombinant plasmids were purified using the Thermo Scientific GeneJET plasmid Purification Kit (ThermoFisher Scientific, Waltham, MA, USA) and sequenced by Sanger methodology [28] with BigDye v3.1 (Applied Biosystems) and oligonucleotides M13F and M13R, complementary to vector sequence. Sequence cycle conditions were 96 °C for 1 min, 39 cycles at 96 °C for 15 s, 50 °C for 15 s, and 60 °C for 4 min. Sequencing reactions were loaded in an ABI PRISM 3130XL Genetic Analyzer/HITACHI (16 capillaries) (ThermoFisher Scientific, Waltham, MA, USA). The source and specificity of the obtained sequences were evaluated by BLAST in GenBank [29,30].

The cDNA synthesized with random hexamers was used to detect the arboviruses by three multiplex real time PCR (RT-qPCR) reactions according to the methodology approved by the Sociedade Brasileira de Patologia Clínica, division of Laboratorial Medicine and routinely used in the diagnosis of DENV serotypes 1–4, CHIKV, ZIKV, and YFV of human samples, in the Clinical Laboratory of the Faculdade de Medicina do ABC (Gehrke et al., unpublished data). The primers and probes used in the reactions are summarized in Table S2 and each reaction was divided into: multiplex 1 (DENV-1, DENV-2, and YFV); multiplex 2 (DENV-3 and DENV-4); and multiplex 3 (CHIKV and ZIKV). The RT-qPCR reactions were carried out in an ABI Prism 7500 Fast thermal cycler (Applied Biosystems, Foster City, CA, USA), using the RT-qPCR expression kit purchased from ThermoFisher Scientific, with an initial cycle of 95 °C for 3 min, followed by 45 cycles of 95 °C for 15 s and 60 °C for 30 s, in a final volume of 15 µL. To identify the positive and negative samples, positive and negative controls were vector sequence. Sequence cycle conditions were 96 °C for 1 min, 39 cycles at 96 °C for 15 s, 50 °C for 15 s, and 60 °C for 4 min. Sequencing reactions were loaded in an ABI PRISM 3130XL Genetic Analyzer/HITACHI (16 capillaries) (ThermoFisher Scientific, Waltham, MA, USA). The source and specificity of the obtained sequences were evaluated by BLAST in GenBank [29,30].

The minimum infection rate (MIR) was calculated by the number of positive pools/total mosquitoes tested × 1000. Confidence intervals of 95% were calculated as the sample proportion ± 1.96 times the standard deviation of the sample proportion × 1000. If MIR > 0, the CI95% lower limit was assumed as 1.

3. Results and Discussion

The total human-landing catch sampling effort was 192 man-hours (12 months × 2 collections per month × 2 collectors × 4 h per collection). We captured two species: Ae. aegypti, 73 specimens (18♀, 55♂) and Ae. albopictus, 34 specimens (27♀ and 7♂). RNA
extraction from individual mosquitoes was successful, resulting in a total of 107 samples for arbovirus screening testing.

3.1. Endpoint PCR

We tested all 107 samples in endpoint PCR, resulting in fragments of expected sizes after agarose gel electrophoresis. Considering results from these fragments, we could detect 14 Flavivirus NS5 encoding gene, 3 Alphavirus nonstructural protein 1 gene, and 6 CHIKV E2 gene in 21 mosquito specimens (Table 1). After cloning and sequencing, however, these amplicons resulted in unspecific sequences in BLAST analysis, except in one case.

Table 1. Results of virus RNA testing of Aedes (Stegomyia) spp. in endpoint PCR and RT-qPCR assays.

ID	Sex	Species	Sample	Site	NS5	Chik1/4	M2W/cM3W	Multiplex 1	Multiplex 2	Multiplex 3
1	F	albopictus	1	1	-	-	-	ND	ND	ND
2	F	aegypti	2	1	X	GMV	-	-	-	-
3	F	albopictus	3	1	-	-	-	ND	ND	ND
4	M	aegypti	5	2	-	-	-	-	-	-
5	M	aegypti	6	2	-	X	-	-	-	-
6	F	aegypti	7	1	-	-	-	ND	ND	ND
7	F	albopictus	8	1	-	-	-	ND	ND	ND
8	F	albopictus	10	1	-	-	ND	ND	ND	ND
9	F	albopictus	9	3	-	-	-	-	-	-
10	F	albopictus	9	3	-	-	-	-	-	-
11	M	aegypti	4	1	-	-	-	-	-	-
12	M	aegypti	4	1	-	-	-	-	-	-
13	M	aegypti	4	1	-	X	-	-	-	-
14	F	aegypti	11	1	X	-	-	-	-	-
15	F	aegypti	11	1	-	-	-	-	-	-
16	F	aegypti	11	1	X	X	-	-	-	-
17	F	aegypti	11	1	X	-	-	-	-	-
18	M	aegypti	12	1	-	-	-	-	-	-
19	M	aegypti	12	1	-	-	-	-	-	-
20	M	aegypti	12	1	-	-	-	-	-	-
21	M	aegypti	12	1	-	-	-	-	-	-
22	M	aegypti	12	1	-	-	-	-	-	-
23	M	aegypti	12	1	-	-	-	-	-	-
24	F	aegypti	23	2	X	-	-	-	-	-
25	F	aegypti	13	3	X	-	-	-	-	-
26	F	aegypti	13	3	X	-	-	-	-	-
27	F	aegypti	13	3	X	-	-	-	-	-
28	F	aegypti	13	3	X	-	-	-	-	-
29	F	aegypti	13	3	-	-	-	ND	ND	ND
30	F	aegypti	13	3	X	-	-	-	-	-
31	F	aegypti	13	3	X	-	-	-	-	-
32	F	aegypti	13	3	X	-	-	-	-	-
33	F	albopictus	14	3	-	-	-	ND	ND	ND
34	F	albopictus	14	3	-	-	-	ND	ND	ND
35	F	albopictus	14	3	-	-	-	ND	ND	ND
36	F	albopictus	14	3	-	-	-	ND	ND	ND
37	F	albopictus	14	3	-	-	-	-	-	-
38	F	albopictus	14	3	-	-	-	ND	ND	ND
39	F	albopictus	14	3	-	-	-	DENV-2	-	-
40	F	aegypti	21	3	X	-	-	-	-	-
41	F	aegypti	21	3	X	-	-	-	-	-
42	F	aegypti	21	3	-	-	-	ND	ND	ND
43	F	albopictus	22	3	-	-	-	ND	ND	ND
44	F	albopictus	22	3	-	-	-	ND	ND	ND
45	F	albopictus	22	3	-	-	-	ND	ND	ND
ID	Sex	Species	Sample	Site	NS5	Chik1/4	M2W/cM3W	Multiplex 1	Multiplex 2	Multiplex 3
----	-----	-----------	--------	------	-----	---------	----------	-------------	-------------	-------------
46	F	Albopictus	22	3	-	-	-	ND	ND	ND
47	F	Albopictus	22	3	-	-	-	-	-	-
48	F	Albopictus	22	3	-	-	-	ND	ND	ND
49	M	Aegypti	16	3	-	-	-	-	-	-
50	M	Aegypti	16	3	-	-	-	ND	ND	ND
51	M	Aegypti	16	3	-	-	-	-	-	-
52	M	Aegypti	16	3	-	-	-	-	-	-
53	M	Aegypti	16	3	-	-	-	-	-	-
54	M	Aegypti	16	3	-	-	-	ND	ND	ND
55	M	Aegypti	16	3	-	-	-	-	-	-
56	M	Aegypti	16	3	-	-	-	-	-	-
57	M	Aegypti	16	3	-	-	-	-	-	-
58	M	Aegypti	16	3	-	-	-	ND	ND	ND
59	M	Aegypti	16	3	-	-	-	-	-	-
60	M	Aegypti	16	3	-	-	-	ND	ND	ND
61	M	Aegypti	18	3	-	-	-	ND	ND	ND
62	M	Aegypti	18	3	-	-	-	ND	ND	ND
63	M	Aegypti	18	3	-	-	-	ND	ND	ND
64	M	Aegypti	18	3	-	-	-	-	-	-
65	M	Aegypti	18	3	-	-	-	ND	ND	ND
66	M	Aegypti	18	3	-	-	-	-	-	-
67	M	Aegypti	18	3	-	-	-	-	-	-
68	M	Aegypti	18	3	-	-	-	ND	ND	ND
69	M	Aegypti	18	3	-	-	-	-	-	-
70	M	Aegypti	18	3	-	-	-	ND	ND	ND
71	M	Aegypti	18	3	-	-	-	ND	ND	ND
72	M	Aegypti	18	3	-	-	-	-	-	-
73	M	Aegypti	15	3	-	-	-	ND	ND	ND
74	M	Aegypti	15	3	-	-	-	-	-	-
75	M	Aegypti	15	3	-	-	-	ND	ND	ND
76	M	Aegypti	15	3	-	-	-	-	-	-
77	M	Aegypti	15	3	-	-	-	ND	ND	ND
78	M	Aegypti	15	3	-	-	-	-	-	-
79	M	Aegypti	15	3	-	-	-	ND	ND	ND
80	M	Aegypti	15	3	-	-	-	ND	ND	ND
81	M	Aegypti	15	3	-	-	-	-	-	-
82	F	Albopictus	17	3	-	-	-	-	-	-
83	F	Albopictus	17	3	-	-	-	-	-	-
84	F	Albopictus	17	3	-	-	-	-	-	-
85	F	Albopictus	17	3	-	-	-	-	-	-
86	F	Albopictus	17	3	-	-	-	-	-	-
87	F	Albopictus	17	3	-	-	-	-	-	-
88	F	Albopictus	17	3	-	-	-	ND	ND	ND
89	M	Aegypti	24	2	-	-	-	-	-	-
90	M	Aegypti	24	2	-	-	-	ND	ND	ND
91	M	Aegypti	24	2	-	-	-	ND	ND	ND
92	M	Aegypti	24	2	-	-	-	-	-	-
93	M	Aegypti	19	3	-	-	-	-	-	-
94	M	Aegypti	19	3	-	-	-	ND	ND	ND
95	M	Aegypti	19	3	-	-	-	-	-	-
96	M	Aegypti	19	3	-	-	-	-	-	-
97	M	Aegypti	19	3	-	-	-	-	-	-
98	M	Aegypti	19	3	-	-	-	ND	ND	ND
99	M	Aegypti	19	3	-	-	-	-	-	-
100	M	Aegypti	19	3	-	-	-	ND	ND	ND
Table 1. Cont.

ID	Sex	Species	Sample	Site	NS5	Chik1/4	M2W/cM3W	Multiplex 1	Multiplex 2	Multiplex 3
101	M	albopictus	20	3	-	X	-	-	-	-
102	M	albopictus	20	3	-	-	X	-	-	-
103	M	albopictus	20	3	-	X	-	-	-	-
104	M	albopictus	20	3	-	-	-	-	-	-
105	M	albopictus	20	3	-	-	-	-	-	-
106	M	albopictus	20	3	-	-	-	-	-	-
107	M	albopictus	20	3	-	X	-	-	-	-

RT-qPCR: multiplex 1, DENV-1, DENV-2, and YFV; multiplex 2, DENV-3 and DENV-4; multiplex 3, CHIKV and ZIKV. GMV: Guadeloupe mosquito virus RNA detection; X: unspecific sequence detection; -: no detection; ND: not done.

Amplions with expected size for Flavivirus NS5-encoding gene in 14 Ae. aegypti specimens (Table 1) resulted in unknown sequences or in sequences with similarity to Ae. aegypti glycogen debranching enzyme (GenBank: XM_021853942.1) or to Ae. aegypti unknown mRNA sequence (GenBank: AY433243.1). Amplions with expected size for Alphavirus nonstructural protein 1 gene in one female Ae. aegypti and two males Ae. albopictus (Table 1) showed no similarity to known GenBank sequences.

Amplons with expected size for CHIKV E2 gene were obtained from six specimens (Table 1). While amplions of five specimens showed unspecific sequences in BLAST analysis, two clones of an ampliton obtained from a female of Ae. aegypti (Table 1; ID 2) were identified as an unclassified virus belonging to the Riboviria group. Nucleotide sequence of this ampliton (341 bp) corresponded to the bases from 64 to 387 of the gene ORF2, which encodes an RNA-dependent RNA polymerase. This nucleotide sequence was 98% like Guadeloupe mosquito virus (GenBank: MN053797). Its amino acid sequence was 99% to the amino acid sequence from 22 to 129, of the RNA-dependent RNA polymerase of Guadeloupe mosquito virus. The nucleotide sequence of the obtained cDNA fragment (ampliton 341 bp) was deposited in GenBank under the accession number MW414904.

Guadeloupe mosquito virus is a newly discovered virus [40]. This virus does not infect vertebrate cells; however, it has been suggested that the origin of human pathogenic viruses may be tied to the evolution of arthropod-specific viruses [41,42]. With the growing number of mosquito-specific viruses identified in recent years, one question that arises is how—if at all—these viruses can have a specific influence on the transmission of pathogenic arboviruses to humans and animals. The closest relatives to the newly identified Guadeloupe mosquito virus are Wenzhou sobemo-like virus-4 (WSLV4) and Hubei mosquito virus-2 (HMV2) [40]. Another interesting point is that this virus could also be used in phylogenetic studies of Ae. aegypti. The Euclidean distance from the first detection of this virus in Guadeloupe Island in the Caribbean [40] to our study site is 3000 miles. This virus may be widely distributed in Ae. aegypti populations, suggesting that genetic variance among this virus population could be associated with the genetic variation among Ae. aegypti populations in the Americas.

3.2. RT-qPCR Assay

Considering unconfirmed positivity detection in endpoint PCR (Table 1), we sought to further test them using specific primers for DENV-1–4, CHIKV, ZIKV, and YFV. A total of 87 out of 107 specimens were screened for arbovirus RNA (Table 1). One pool containing 8 Ae. aegypti females and 2 Ae. albopictus was positive for DENV-2 with a Ct < 39 (Table 1; ID 26–28, 30–32, 37, 39–41). This pool was opened, and specimens were tested individually. Female Ae. albopictus (ID 39) went positive for DENV-2 testing (Table 1), which showed reaction curve of Ct = 38.7 in amplification plot (Figure S1).

The minimum infection rate for DENV-2 was 11.5 ([1/87] × 1000; CI95%: 1–33.9), which corresponds to 1% of infected mosquitoes. This result suggests that DENV-2 is hyperendemic in the vehicle impound yard, in urban area of Santo André. Other studies have
found comparable DENV minimum infection rates in other endemic areas in Brazil [43,44] and abroad [45,46]. The minimum infection rate for DENV has been estimated to be 19.8 per 1000, considering both *Ae. aegypti* and *Ae. albopictus*, in northeastern Brazil [43] and ranged between 0 and 5.5 per 1000 in *Ae. albopictus* in Indonesia [47]. The minimum infection rate (11.5/1000) for DENV-2 reported here is considerably high, but was not surprising because dengue cases have been detected every year in Santo André [6,23].

We did not detect YFV, ZIKV, and CHIKV in our samples. This result was not surprising either. Yellow fever virus has not been detected in *Ae. aegypti* in Brazil in the recent past including the re-emergence from 2016–2019 [13,14,31]. Thus, urban YF, YFV-transmitted by *Ae. aegypti*, is unlikely. ZIKV and CHIKV have spread from the northeast to all over Brazil [4,16,32], but the incidence in southern Brazil has been very low, particularly in São Paulo [48]. However, there is the possibility that these viruses are circulating but at exceptionally low levels and thus difficult to detect in small sample sizes. As with other methods, the sensitivity of molecular surveillance increases with sample size.

Testing of the *Ae. albopictus* specimen (Table 1, ID 39) went positive for DENV-2 when RT-qPCR was employed; however, it went negative when we applied endpoint PCR targeting *Flavivirus* NS5-encoding gene. This discrepancy can be explained by comparative studies that showed higher sensitivity of RT-qPCR to detect DENV than that of endpoint PCR [49–51].

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4450/12/3/248/s1, Table S1, Oligonucleotides and target regions in endpoint PCR assay; Table S2, Oligonucleotides, probes, and targets in RT-qPCR assay; Figure S1, Reaction curve of *Ae. albopictus* female specimen (39) in amplification plot in RT-qPCR.

Author Contributions: M.E.O.R.: designed and performed research, writing original draft, funding acquisition. L.P.O.: methodology, funding acquisition. A.D.C.: methodology, supervision. K.C.G.: methodology. M.V.M.L.: writing. B.C.A.R.: methodology, funding acquisition. F.L.A.F.: methodology, supervision, funding acquisition. M.A.S.: methodology, supervision, validation, writing. F.S.G.: methodology, supervision, validation, funding acquisition. G.Z.L.: writing—review and editing, designed research, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: São Paulo Research Foundation (FAPESP grant n. 16/14457-0 to FSG and n.16/14514-4 to MAS). MEOR was supported by a PIBIC scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq process n. 800308/2018-2). LPRO was supported by a FAPESP scholarship (process n. 2019/11384-0). GZL is a CNPq fellow (307432/2019-0). This work was partially funded by the Acre project, multi-institutional agreement 007/2015 SESACRE—UFAC—FMABC.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data is available on the article and on its supplementary material.

Acknowledgments: The controls for the DENV (1-4), ZIKV, CHIKV, and YFV were kindly provided by the Laboratory of Clinical and Molecular Virology of the Institute of Biomedical Sciences II of the University of São Paulo (ICB II—USP), under the responsibility of Edison Luiz Durigon. The controls for the ROCV, WNV, MAYV, and SLEV viruses were donated by the laboratory of Virology Research Center of the Ribeirão Preto Medical School of the University of São Paulo, under the responsibility of Luiz Tadeu Moraes Figueiredo. Furthermore, the authors want to thank the following: (1) Rodolfo Andreani Sobrinho (CCZ-PMSA) for information on sites of *Ae. aegypti*, (2) Luiz Pretextato Vasconcelos Alves (SEMASA) for the vehicle impound yard aerophotogrammetric image, and (3) Ricardo Borrachina Rangel for helping in the field collections.

Conflicts of Interest: The authors declare no conflict of interest.
25. Kraemer, M.U.G.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and Future Spread of the Arbovirus Vectors Aedes Aegypti and Aedes Albopictus. Nat. Microbiol. 2019, 4, 854–863. [CrossRef] [PubMed]

26. Patel, P.; Landt, O.; Kaiser, M.; Faye, O.; Koppe, T.; Lass, U.; Sall, A.A.; Niedrig, M. Development of One-Step Quantitative Reverse Transcription PCR for the Rapid Detection of Flaviviruses. Virol. J. 2013, 10, 58. [CrossRef] [PubMed]

27. Eshoo, M.W.; Whitehouse, C.A.; Zoll, S.T.; Massire, C.; Pennella, T.-D.D.; Blyn, L.B.; Sampath, R.; Hall, T.A.; Ecker, J.A.; Desai, A.; et al. Direct Broad-spectrum Detection of Alphaviruses in Mosquito Extracts. Virolology 2007, 368, 286–295. [CrossRef] [PubMed]

28. Molina, J.S.; Ribeiro, G.C.; Cabral, A.B.; Sperança, M.A. Novel Single Hematophagous Insect RNA Detection Method Supports Its Use as Sentinels to Survey Flaviviruses Circulation. In Dengue Fever in a One Health Perspective; Aparecida Sperança, M., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-202-8.

29. Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [CrossRef]

30. Mount, D.W. Using the Basic Local Alignment Search Tool (BLAST). Cold Spring Harb. Protoc. 2007, 2007, pdb.top17. [CrossRef] [PubMed]

31. Hill, S.C.; de Souza, R.; Thézé, J.; Claro, I.; Aguiar, R.S.; Abade, L.; Santos, F.C.P.; Cunha, M.S.; Nogueira, J.S.; Salles, F.C.S.; et al. Genomic Surveillance of Yellow Fever Virus Epizootic in São Paulo, Brazil, 2016–2018. PLoS Pathog. 2020, 16, e1008699. [CrossRef]

32. Grubaugh, N.D.; Faria, N.R.; Andersen, K.G.; Pybus, O.G. Genomic Insights into Zika Virus Emergence and Spread. Cell 2015, 161, 1128–1138. [CrossRef] [PubMed]

33. Lima, A.C.; Galardo, A.K.R.; Volmir, M.Z.; Gomes, M.; Roux, E. Indicadores Entomológicos para o controle de Dengue na Baixada Fluminense. In Entomologia: Avanços e Perspectivas; Edusp: São Paulo, Brazil, 2002; ISBN 978-85-314-0699-7.

34. Santos, D.; Ribeiro, G.C.; Cabral, A.B.; Sperança, M.A. A Non-Destructive Enzymatic Method to Extract DNA from Arthropod Specimens: Implications for Morphological and Molecular Studies. PLoS ONE 2018, 13, e0192200. [CrossRef]

35. Lanciotti, R.S.; Calisher, C.H.; Gubler, D.J.; Chang, G.J.; Vonredam, A.V. Rapid Detection and Typing of Dengue Viruses from Clinical Samples by Using Reverse Transcriptase-polymerase Chain Reaction. J. Clin. Microbiol. 1992, 30, 545–551. [CrossRef] [PubMed]

36. Pfeffer, M.; Linssen, B.; Parker, M.D.; Kinney, R.M. Specific Detection of Chikungunya Virus Using a RT-PCR/Nested PCR Combination. J. Vet. Med. Ser. B 2002, 49, 49–54. [CrossRef]

37. De Morais Bronzoni, R.V.; Baleotti, F.G.; Ribeiro Nogueira, R.M.; Nunes, M.; Moraes Figueiredo, L.T. Novel Single Hematophagous Insect RNA Detection Method Supports Its Use as Sentinels to Survey Flaviviruses Circulation. Virol. J. 2013, 10, 58. [CrossRef] [PubMed]

38. Barbosa, P.P.; Guedes, D.R.D.; Melo-Santos, M.A.V.; Cordeiro, M.T.; Acioli, R.V.; Batista, C.A.V.; Gonalves, L.S.M.; Souza, M.F.M.; Araujo, Y.V.; Magalhães, F.J.R.; et al. Vector Surveillance for Dengue Virus Detection in the Archipelago of Fernando de Noronha, Brazil. J. Med. Entomol. 2016, 53, 613–619. [CrossRef]

39. Schultz, M.J.; Frydman, H.M.; Connor, J.H. Dual Insect Specific Virus Infection Limits Arbovirus Replication in Aedes Mosquito Cells. Virolage 2018, 518, 406–413. [CrossRef]

40. Markleowitz, M.; Zirkel, F.; Kurth, A.; Drosten, C.; Junglen, S. Evolutionary and Phenotypic Analysis of Live Virus Isolates Suggests Arthropod Origin of a Pathogenic RNA Virus Family. Proc. Natl. Acad. Sci. USA 2015, 112, 7536–7541. [CrossRef]

41. Medeiros, A.S.; Costa, D.M.P.; Branco, M.S.D.; Sousa, D.M.C.; Monteiro, J.D.; Galvão, S.P.M.; Azevedo, P.R.M.; Fernandez, J.V.; Jeronimo, S.M.B.; Araujo, J.M.G. Dengue Virus in Aedes Aegypti and Aedes Albopictus in Urban Areas in the State of Rio Grande Do Norte, Brazil: Importance of Virological and Entomological Surveillance. PLoS ONE 2018, 13, e0194108. [CrossRef]

42. Shi, C.; Beller, L.; Debutou, W.; Yinda, K.C.; Delang, L.; Vega-Rúa, A.; Failloux, A.-B.; Matthijssens, J. Stable Distinct Core Eukaryotic Viromes in Different Mosquito Species from Guadeloupe, Using Single Mosquito Viral Metagenomics. Microbiome 2019, 7, 121. [CrossRef]

43. Pfeffer, M.; Linssen, B.; Parker, M.D.; Kinney, R.M. Specific Detection of Chikungunya Virus Using a RT-PCR/Nested PCR Combination. J. Vet. Med. Ser. B 2002, 49, 49–54. [CrossRef]

44. De Morais Bronzoni, R.V.; Baleotti, F.G.; Ribeiro Nogueira, R.M.; Nunes, M.; Moraes Figueiredo, L.T. Duplex Reverse Transcription-PCR Followed by Nested PCR Assays for Detection and Identification of Brazilian Alphaviruses and Flaviviruses. J. Clin. Microbiol. 2005, 43, 696–702. [CrossRef] [PubMed]

45. Scaramozzino, N.; Crance, J.-M.; Jouan, A.; DeBriel, D.A.; Stoll, F.; Garin, D. Comparison of Flavivirus Universal Primer Pairs and Identification of Brazilian Alphaviruses and Flaviviruses. J. Clin. Microbiol. 2001, 39, 1922–1927. [CrossRef] [PubMed]

46. Shi, C.; Beller, L.; Debutou, W.; Yinda, K.C.; Delang, L.; Vega-Rúa, A.; Failloux, A.-B.; Matthijssens, J. Stable Distinct Core Eukaryotic Viromes in Different Mosquito Species from Guadeloupe, Using Single Mosquito Viral Metagenomics. Microbiome 2019, 7, 121. [CrossRef]
50. Chakravarti, A.; Chauhan, M.; Banerjee, S.; Roy, P. Comparison of Multiplex RT-PCR and Real-Time HybProbe Assay for Serotyping of Dengue Virus Using Reference Strains and Clinical Samples from India. *Indian J. Pathol. Microbiol.*, 2016, 59, 330. [CrossRef] [PubMed]

51. Gurukumar, K.R.; Priyadarshini, D.; Patil, J.A.; Bhagat, A.; Singh, A.; Shah, P.S.; Cecilia, D. Development of Real Time PCR for Detection and Quantitation of Dengue Viruses. *Virol. J.*, 2009, 6, 10. [CrossRef] [PubMed]