Failure to detect *Tritrichomonas foetus* in a cross-sectional survey in the populations of feral cats and owned outpatient cats on St Kitts, West Indies

Chaoqun Yao¹,², Liza Köster²,³*, Brandon Halper¹, James Dundas³† and Rajeev Nair³

Abstract

Objectives For over two decades, feline trichomonosis caused by *Tritrichomonas foetus* has been recognized as a large-bowel protozoan disease of the domestic cat. It has a wide distribution, but no reports exist in the Caribbean. The objectives of this study were to detect the presence of *T foetus* and its prevalence in the domestic cat on St Kitts, West Indies.

Methods A cross-sectional study was performed between September 2014 and December 2015. This study recruited 115 feral cats from a trap–neuter–return program and 37 owned cats treated as outpatients at the university veterinary clinic. Fresh feces were inoculated in InPouch culture medium, as per the manufacturer's instructions. In addition, PCR was performed using primers for *T foetus*. DNA extraction with amplification using primers of a *Felis catus* NADH dehydrogenase subunit 6 was used as a housekeeping gene for quality control.

Results Only two owned cats had reported diarrhea in the preceding 6 months. None of the 152 samples were positive on InPouch culture microscopic examination. Only 35/69 feral cat fecal DNA samples were positive for the housekeeping gene, of which none tested PCR positive for *T foetus*.

Conclusions and relevance *T foetus* was not detected by culture and PCR in feral cats and owned cats on St Kitts. A high proportion of PCR inhibitors in the DNA samples using a commercial fecal DNA kit can lead to underestimating the prevalence, which should be taken into consideration when a survey on gastrointestinal pathogens depends exclusively on molecular detection.

Keywords: Feline trichomonosis, *Tritrichomonas foetus*, feral cat, cell culture, PCR, St Kitts

Accepted: 7 April 2018

¹Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St Kitts, West Indies
²One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St Kitts, West Indies
³Department of Clinical Sciences, Ross University School of Veterinary Medicine, St Kitts, West Indies

*Current address: Davies Veterinary Specialists, Manor Farm Business Park, Higham Gobian SG5 3HR, UK
†Current address: Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada

Corresponding author: Chaoqun Yao, BMed, MMed, PhD, Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, PO Box 334, Basseterre, St Kitts, West Indies
Email: chyao@rossvet.edu.kn
Introduction

Feline trichomonosis presents clinically as chronic large-bowel diarrhea in affected cats. These cats usually shed liquid to semi-formed feces, often with blood and/or mucus. The causative pathogen of the disease is a species of *Tritrichomonas*, although the specific species is debatable. *Tritrichomonas foetus* has been incriminated as the etiological pathogen of feline trichomonosis for almost two decades. However, recently, Walden et al proposed a new species – *Tritrichomonas blagburni* – as the etiological pathogen of feline trichomonosis. Nevertheless, analysis of transcriptomics of the two did not reveal genetic distinctness between them. Furthermore, a proteomic analysis of about 1500 proteins on each using two-dimensional gel electrophoresis coupled with liquid chromatography tandem mass spectrometry revealed an almost identical profile, although 24 proteins did show a more than four-fold difference. It appears more data are needed to confirm the independent species status of *T. blagburni* from *T. foetus*. Consequently, *T. foetus* is used herein.

Feline trichomonosis has a wide geographical distribution. It has been found in 19 countries on four continents. However, it has not been reported in the Caribbean. The main objectives of the current study were, in a cross-sectional study, to detect the presence of *T. foetus* and its prevalence in domestic cats on St Kitts, West Indies.

Materials and methods

Ethics

Animal work was performed under protocols approved by the Institutional Animal Care and Use Committee of Ross University School of Veterinary Medicine. Animal care and use were in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the US National Institutes of Health.

Sample collection

At the Ross University Veterinary Clinic (RUVC), a trap–neuter–return programme entitled the ‘Feral Cat Project’ (FCP) was initiated to control the feral cat population on St Kitts. For the FCP cats, sample collection started in September 2014 and ended in July 2015. For each cat general information such as sex, body weight, breed, reason for presentation, FIV status, antibiotics use and its prevalence in domestic cats on St Kitts, West Indies. 7

Nevertheless, analysis of transcriptomics of the two did not reveal genetic distinctness between them. Furthermore, a proteomic analysis of about 1500 proteins on each using two-dimensional gel electrophoresis coupled with liquid chromatography tandem mass spectrometry revealed an almost identical profile, although 24 proteins did show a more than four-fold difference. It appears more data are needed to confirm the independent species status of *T. blagburni* from *T. foetus*. Consequently, *T. foetus* is used herein.

Feline trichomonosis has a wide geographical distribution. It has been found in 19 countries on four continents. However, it has not been reported in the Caribbean. The main objectives of the current study were, in a cross-sectional study, to detect the presence of *T. foetus* and its prevalence in domestic cats on St Kitts, West Indies.

Molecular detection of *Tritrichomonas foetus*

DNA was extracted from individual feces using the QIAamp DNA Stool Kit (QIAGEN) following the manufacturer’s instructions. DNA quantity and quality were assayed using the Tecan Infinite M200 Pro. DNA was stored at −20°C.

PCR was used to amplify NADH dehydrogenase subunit 6, a housekeeping gene of the domestic cat (*Felis catus*) and a fragment of the ITS1-5.8S rRNA-ITS2 region of *T. foetus*. The primers for NADH dehydrogenase subunit 6 were 5’-TTAATTCGCCACGAGTAACTCCATA-3’ and 5’-ATGATAACATACAATGTATTTTAAG-3’ (accession no.: KP279629), with an expected product of 528 bp. The primers for *T. foetus* were TFR3 and TFR4, which are specific to *Tritrichomonas* species and amplify a 347 bp DNA fragment of ITS1-5.8S rRNA-ITS2, as previously described. All primers were synthesized by IDT. NADH dehydrogenase subunit 6 was used as a quality control to rule out inhibitors in the feces.
interfering with PCR amplification. The sample was re-run if no NADH dehydrogenase subunit 6 fragment was produced. A repeated failure on this PCR suggested the presence of PCR inhibitors and the sample was excluded in data analysis. PCR mix (25 µl) was used for each reaction with a final concentration of each forward and reverse primer at 1.0 µM. HotStart Taq Plus 2 × Master Mix (QIAGEN) was used for samples with a DNA concentration ≥ 20 ng/µl, whereas Taq DNA polymerase (TaKaRa; Clontech) was used for samples with a DNA concentration between 5 and 20 ng/µl. Volumes of DNA solutions used for each PCR were 2.0, 4.0, 8.0 and 15.0 µl for samples with DNA concentration >100.0, ≥ 50.0, ≥ 20.0 and >5.0, respectively. PCR was performed in a thermal cycler (Mastercycler Nexus Gradient) for 35 cycles of 95°C for 30 s, 50°C for 1 min and 72°C for 2 mins, with a final extension at 72°C for 10 mins following an initial cycle at 95°C for 2 mins. PCR products were visualized via electrophoresis in 1.2% agarose gel.

Statistical analysis

Student’s t-test was performed using Microsoft Excel 2016.

Results

In total, 115 FCP cats and 37 RUVC-owned outpatient cats were included in the current study. Of 115 FCP cats, 64 were male and 51 female. In both young and adult age groups, the mean body weight of male cats was significantly higher than that of female cats ($P <0.05$; Table 1). Further, the presence of FIV infection in males was three time higher than in females (Table 2). All 37 owned outpatient cats (19 females, 18 males) presented to RUVC for routine medical care. All were younger than 1 year of age, except for five cats that ranged in age from 1–13 years. Of 23 cats with known FIV status, 17 were negative. Only five had a history of taking antibiotics in the 2 weeks immediately prior to the current visit. Two cats had had diarrhea recorded in their medical history, one current and the second in the previous 6 months.

All 115 FCP cats and 37 RUVC-owned outpatient cats were tested by culture in InPouch. None were microscopically positive for *T. foetus* during the entire culture period of 6 days. Furthermore, 69 fecal samples of FCP cats had a DNA concentration >5.0 ng/µl. They had an average 260/280 ratio of 2.11 ± 0.22 and were tested by PCR. Surprisingly, only 35 were PCR positive for the feline NADH dehydrogenase subunit 6. Among the latter, none were PCR positive for *T. foetus* (Table 3). The average ratio of 260/280 for the 35 positive and 34 negative PCRs for the feline NADH dehydrogenase subunit 6 were 2.10 ± 0.19 and 2.13 ± 0.25, respectively.

Discussion

In this study, we performed a first-of-its-kind in the Caribbean cross-sectional survey of feline trichomonosis on feral and owned outpatient cats on St Kitts. We did

Table 1 Age and body mass of feral cats on St Kitts included in a cross-sectional study between September 2014 and July 2015

Age	Mean ± SD body mass (kg)						
	Young (n)	Adult (n)*	ND (n)*				
Male (n)	64	29	23	12	2.25 ± 0.64 (17)	3.32 ± 0.77 (6)	2.65 ± 0.83 (12)
Female (n)	51	28	10	13	2.00 ± 0.51 (9)	2.39 ± 0.25 (4)	2.16 ± 0.59 (13)
Total	115	57	33	25			

*P <0.05 between males and females
ND = not determined

Table 2 Feline immunodeficiency virus (FIV) status of feral cats on St Kitts included in a cross-sectional study between September 2014 and July 2015

Young	Adult	ND	Total						
FIV positive (%)	FIV negative (%)	FIV positive (%)	FIV negative (%)	FIV positive (%)	FIV negative (%)				
Male (n)	64	2 (6.9)	27	9 (39.1)	14	4 (33.3)	8	15 (23.4)	49
Female (n)	51	4 (14.3)	24	0 (0.0)	10	0 (0.0)	13	4 (7.8)	47
Total	115	6 (10.5)	51	9 (27.3)	24	4 (16.0)	21	19 (16.5)	96

ND = not determined
not detect *T foetus* in 115 feral cats or 37 owned outpa-
tient cats by culture in InPouch. Furthermore, con-
tventional PCR tested 35 samples of fecal DNA from feral
cats for *Trichomonas* species ITS1-5.8S rRNA-ITS2;
none was PCR positive. The 95% confidence interval (CI)
for a combination of 152 samples with zero positive was
calculated using the normal approximation method,
and the upper 95% confidence limit was 0.0%.13 These data
unequivocally showed that *T foetus* was undetected in
the populations of feral cats and owned cats on St Kitts,
which was somewhat surprising given that feline tricho-
omonosis is widely spread worldwide. By 2015, the
disease had been recorded in 19 countries on four continents,
including 13 countries in Europe (Austria, Finland,
France, Germany, Greece, Italy, The Netherlands,
Norway, Poland, Spain, Sweden, Switzerland and the
UK), two in North America (Canada and The USA), two
in Australia/Oceania (Australia and New Zealand) and
two in Asia (Japan and South Korea).2 Since then it has
also been detected in further countries in Asia (Hong
Kong, China)12 and in South America (Brazil).13,14 So far,
in total, 21 countries on five continents have recorded
feline trichomonosis.

It is plausible that the negative finding of the current
study was due to the fact that the study cats presented
for routine medical care or elective neutering. It has been
shown that the prevalence of *T foetus* is highly variable
among various cat populations in Ontario, Canada: ie,
0% (95% CI 0.0–7.7%; n = 46) from the humane society;
0.7% (95% CI 0.0–3.9%; n = 140) from a cat clinic; and
23.6% (95% CI 13.2–37.0%; n = 55) in cat shows.15 Among
the 37 owned cats only two had a history of diarrhea in
the preceding 6 months prior to sampling. A cat with a
history of diarrhea in the past 6 months was three time
more likely to be positive for *T foetus*.2 Unfortunately,
there was no medical history for the 115 feral cats, though
all were deemed healthy enough to undergo general
anesthesia by a licensed veterinarian. These negative
results are consistent with some previous discoveries.
Gookin et al reported that *T foetus* was not recovered
from feces of 100 feral cats and 20 healthy indoor cats.3

A cross-sectional survey was carried out in the Czech
Republic for detecting *T foetus* among 170 cats between
September 2010 and September 2012. The detection
methods included InPouch culture followed by PCR
confirmation of culture positivity for the motile tropho-
zoites of trichomonads. The cats were from: catteries
(32.7%); private owners (35.7%); inpatients at the Small
Animal Clinic, Brno (23.4%); and shelters (8.2%). None
were positive for *T foetus*, although one cat was positive
for *Pentatrichomonas hominis*.16 The same authors further
performed a metadata analysis of studies using PCR for
species identification. In total 1495 cats from nine differ-
ent countries (Australia, the Czech Republic, France,
Germany, the UK, Italy, Greece, the USA and Switzerland)
were included in their metadata analysis for the prev-
ance of *T foetus*. They found a prevalence of 1.1% (95%
CI 0.2–2.0%) and 5.0% (95% CI 3.6–6.4%) in cats without
or with diarrhea, respectively. Nevertheless, the authors
pointed out these combined data were very likely to
underestimate the prevalence of *T foetus*.16 It is noteworthy
that the high prevalence of *T foetus* recorded in the
literature was often associated with diarrheic client-
owned cats rather than cross-sectional sampling. Such a
bias in sampling resulted in an overestimated prevalence
than a cross-sectional survey would have.2

We were surprised by the 49.3% (n = 34/69) PCR fail-
ure rate in amplification of a feline housekeeping gene,
NADH dehydrogenase subunit 6, from DNA isolated
from the feces of the FCP cats. DNA preparations were
obtained using the QIAamp DNA Stool Kit. The average
ratio of 260/280 was 2.11 for all DNA samples, indicating
the high purity of the DNA. It was 2.13 for the samples
that failed to yield positive PCR results for amplifying
feline NADH dehydrogenase subunit 6 in repeated effort,
suggesting that the failure was not due to DNA impurity.
We had previously used the same kit in preparing DNA
from feces of African green monkeys (AGM). A similar
effort was made in amplifying AGM’s housekeeping
gene, *NAHDH1*. In the case of AGM the failure rate was
16.4% (n = 11/67),17 three times lower than that of cats in
the current study. It was reported that the failure rate in
PCR amplification of bacterial 16S rRNA gene was 26.8%
(n = 11/41) in one study and 18.3% (n = 11/60) in another
from feline fecal DNA isolated using the same kit.18,19 In
all these cases, the high failure rate in amplifying a house-
keeping gene or bacterial 16S rRNA gene suggests the
presence of PCR inhibitors. Bilirubin, bile salts, heavy

Table 3 Test results of *Tritrichomonas foetus* in feral cats and outpatients of a veterinary clinic on St Kitts in 2014 and 2015

	InPouch culture	PCR on feline NADH dehydrogenase subunit 6	PCR on *T foetus*			
	Tested (n)	Positive (n)	Tested (n)	Positive (n)	Tested (n)	Positive (n)
Feral cats	115	0	69	35	35	0
RUVC cats	37	0	ND	ND	ND	ND

RUVC = Ross University Veterinary Clinic; ND = not determined
metals, hemoglobin degradation products and complex polysaccharides in feces are PCR inhibitors, even when present in low concentration. Too often DNA prepared from feces of human and various animals are tested for the presence of DNA of certain pathogens by PCR. It is assumed a negative result was due to lack of the targeted pathogen’s DNA in the sample. However, high PCR failure rates in both cats and AGM should serve as a warning that some of those negative PCR findings are due to the presence of PCR inhibitors rather than the absence of the pathogen’s DNA; ie, false negative. This should be considered a significant reason why prevalence is easily underestimated.

Conclusions
A cross-sectional study of 115 feral cats and 37 owned outpatient cats was carried out to detect T foetus using culture and PCR. None of the 152 cats were found to be positive among these cat populations on the island of St Kitts. Surprisingly, PCR inhibitors existed in a high proportion of DNA samples using a commercial fecal DNA kit, which may result in the underestimation of prevalence of microbial pathogens in the gastrointestinal tract.

Acknowledgements
We are very grateful to Kimberly Anne Van Ness, Amanda Landry, Samantha Gerb, Veronica Liquori and Anameri Martin of Ross University School of Veterinary Medicine (RUSVM) for their help in fecal sample collection and/or DNA extraction.

Conflict of interest
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study was supported by an intramural grant from RUSVM (Feline trichomoniasis, to CY and LK). Publication cost of this article was provided by the Center One of RUSVM. The sponsors played no roles in study design; in the collection, analysis or interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

References
1. Gruffydd-Jones T, Addie D, Belak S, et al. Trichomoniasis in cats: ABCD guidelines on prevention and management. J Feline Med Surg 2013; 15: 647–649.
2. Yao C and Koster L. Trichomonas foetus infection, a cause of chronic diarrhea in the domestic cat. Vet Res 2015; 46: 35.
3. Gookin JL, Breitschwerdt EB, Levy MG, et al. Diarrhea associated with trichomonosis in cats. J Am Vet Med Assoc 1999; 215: 1450–1454.
4. Gookin JL, Hanrahan K and Levy MG. The condundrum of feline trichomonosis – the more we learn the ‘trickier’ it gets. J Feline Med Surg 2017; 19: 261–274.
5. Levy MG, Gookin JL, Poore M, et al. Trichomonas foetus and not Pentatrichomonas hominis is the etiologic agent of feline trichomonal diarrhea. J Parasitol 2003; 89: 99–104.
6. Walden H, Dykstra C, Dillon A, et al. A new species of Trichomonas (Sarcomastigophora: Trichomonida) from the domestic cat (Felis catus). Parasitol Res 2013; 112: 2227–2235.
7. Morin-Adeline V, Lomas R, O’Meally D, et al. Comparative transcriptomics reveals striking similarities between the bovine and feline isolates of Trichomonas foetus: consequences for in silico drug target identification. BMC Genomics 2014; 15: 955.
8. Stroud LJ, Šlapeta J, Padula MP, et al. Comparative proteomic analysis of two pathogenic Trichomonas foetus genotypes: there is more to the proteome than meets the eye. Int J Parasitol 2017; 47: 203–213.
9. Felleisen RS, Lambelet N, Bachmann P, et al. Detection of Trichomonas foetus by PCR and DNA enzyme immunoassay based on rRNA gene unit sequences. J Clin Microbiol 1998; 36: 513–519.
10. Parker S, Lun ZR and Gajadhar A. Application of a PCR assay to enhance the detection and identification of Trichomonas foetus in cultured preputial samples. J Vet Diagn Invest 2001; 13: 508–513.
11. Brown LD, Cat TT and DasGupta A. Interval estimation for a proportion. Stat Sci 2001; 16: 101–133.
12. Köster LS, Chow C and Yao C. Trichomonosis in cats with diarrhoea in Hong Kong, China, between 2009 and 2014. JFMS Open Rep 2015; 1: DOI: 10.1177/2055116915623561.
13. Dos Santos CS, De Jesus VLT, McIntosh D, et al. Co-infection by Trichomonas foetus and Pentatrichomonas hominis in asymptomatic cats. Pesq Vet Bras 2015; 35: 980–988.
14. Hora AS, Miyashiro SI, Cassiano FC, et al. Report of the first clinical case of intestinal trichomoniases caused by Trichomonas foetus in a cat with chronic diarrhoea in Brazil. BMC Vet Res 2017; 13: 109.
15. Hosein A, Kruth SA, Pearl DL, et al. Isolation of Trichomonas foetus from cats sampled at a cat clinic, cat shows and a humane society in southern Ontario. J Feline Med Surg 2013; 15: 706–711.
16. Ceplecha V, Svobodova V, Lendon C, et al. A survey of feline trichomonosis suggests a low incidence of Trichomonas blagburni among cats in the Czech Republic. Vet Med 2017; 62: 269–273.
17. Yao C, Walkush J, Shim D, et al. Molecular species identification of Trichuris trichiura in African green monkey on St. Kitts, West Indies. Vet Parasitol 2018; 11: 22–26.
18. Stauffer SH, Birkenheuer AJ, Levy MG, et al. Evaluation of four DNA extraction methods for the detection of Trichomonas foetus in feline stool specimens by polymerase chain reaction. J Vet Diagn Invest 2008; 20: 639–641.
19. Lilly EL and Wortham CD. High prevalence of Toxoplasma gondii oocyst shedding in stray and pet cats (Felis catus) in Virginia, United States. Parasit Vectors 2013; 6: 266.
20. Morgan UM, Pallant L, Dwyer BW, et al. Comparison of PCR and microscopy for detection of Cryptosporidium parvum in human fecal specimens: clinical trial. J Clin Microbiol 1998; 36: 995–998.