Search for the $1/2^+$ intruder state in 35P

M. Salathe,1,2 H. L. Crawford,1 A. O. Macchiavelli,1 B. P. Kay,2 C. R. Hoffman,2 A. D. Ayangeakaa,3,4 C. M. Campbell,1 R. M. Clark,1 M. Cromaz,1 P. Fallon,1 M. D. Jones,1 S. A. Kuvij,5 J. Sethi,6 M. Wiedeking,7,8 J. R. Winkelbauer,9 and A. H. Wuosmaa5

1Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Physics Division, Argonne National Laboratory, Argonne, IL 60438, USA
3Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
4Triangle Universities Nuclear Laboratory, Duke University, Durham, NC 27708, USA.
5Department of Physics, University of Connecticut, Storrs, CT 06269, USA
6Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
7Department of Subatomic Physics, iThemba LABS, Somerset West 7129, South Africa
8School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
9Los Alamos National Laboratory, Los Alamos, NM 87545, USA

(Dated: July 30, 2020)

The excitation energy of deformed intruder states (specifically the $2p_2h$ bandhead) as a function of proton number Z along $N = 20$ is of interest both in terms of better understanding the evolution of nuclear structure between spherical 40Ca and the Island of Inversion nuclei, and for benchmarking theoretical descriptions in this region. At the center of the $N=20$ Island of Inversion, the $npnh$ (where n=2,4,6) neutron excitations across a diminished $N = 20$ gap result in deformed and collective ground states, as observed in 32Mg. In heavier isotones, $npnh$ excitations do not dominate in the ground states, but are present in the relatively low-lying level schemes. With the aim of identifying the expected $2p_2h \otimes s1/2^+$ state in 35P, the only $N = 20$ isotope for which the neutron $2p_2h$ excitation energy is not yet identified, the 36S(d,3He)35P reaction has been revisited in inverse kinematics with the Helical Orbit Spectrometer (HELIOS) at the Argonne Tandem Linac Accelerator System (ATLAS). While a candidate state has not been located, an upper limit for the transfer reaction cross-section to populate such a configuration within a 2.5 to 3.6 MeV energy range, provides a stringent constraint on the wavefunction compositions in both 36S and 35P.

Keywords:

I. INTRODUCTION

The nature of shell structure of nuclei and its evolution with increasing neutron-proton asymmetry remains a fundamental question in nuclear structure research [1]. At the valley of β-stability, the $N = Z = 20$ shell closures are robust, and 40Ca is considered a doubly magic spherical nucleus, although deformed core-excited states have also been known for some time [2, 3]. However, it is also now well-known that as protons are removed from the sd-orbitals below Ca, the monopole shifts induced in the neutron single-particle levels effectively reduce the separation between the $\nu d_{3/2}$ and the $\nu f_{7/2}$ orbitals. This erosion of the $N=20$ $sd - pf$ shell gap, together with pairing and quadrupole correlations, lowers the energetic cost for neutron pair excitations across the shell gap to the extent that multi-particle multi-hole configurations (e.g. $2p_2h$, $4p4h$) become energetically favored. In the Island of Inversion centered around the neutron-rich Ne, Na, and Mg isotopes with $N \sim 20$, collective and deformed ground states have been observed, and are attributed to a dominant contribution of these deformation-driving neutron-pair excitations to the ground-state wavefunction.

Neutron particle-hole $sd - pf$ cross-shell intruder configurations do not dominate the ground state configurations in the heavier $N = 20$ isotones ($Z > 12$) but are still predicted to be present in the low-lying level scheme. The excitation energy of these intruder-dominated states, specifically the $2p_2h$ bandhead, as a function of proton number in the $N=20$ chain, provides information on the evolution of the $sd - pf$ shell gap and thus is a stringent test of theoretical descriptions in this region, particularly in terms of both cross-shell excitations and quadrupole correlations. However, measurements are sparse and often in contradiction.

The current state of affairs is summarized in Fig. 1 with the evolution of the (tentative) experimentally determined $2p_2h$ excitations along the $N = 20$ isotones above Mg shown alongside theoretical predictions based on two different shell-model approaches. The calculated excitation energies for the lowest $2p_2h$-dominated state based on large-scale shell-model calculations with the SDPF-U-MIX effective interaction [4, 5] are shown in the orange dashed lines, while the predictions of Monte-Carlo Shelf Model (MCSM) calculations are shown in the blue-dotted lines [7–9]. The solid black lines in Figure 1 represent the current best experimental candidate for the $2p_2h$ bandhead in each $N = 20$ isotope [10, 11]. Based on this figure, it is clear that while the general trend in behavior of the intruder states is well described by the available state-of-the-art shell model calculations, there...
remain discrepancies and important opportunities for refinement. Indeed, comparison of both level excitation energies and inferred wavefunction composition can be used to inform and improve model descriptions.

Following the initial $^{30}\text{Mg}(t,p)$ measurement of Wimmer et al. [13], the ^{32}Mg ground state was described as having a predominant intruder configuration. This came into question briefly in the context of a two-level mixing model [14], but the ^{32}Mg ground-state is now robustly described as having only very weak ($\sim 4\%$) contributions from the $0p0h$ configuration and roughly equal $2p2h$ and $4p4h$ contributions [15]. In contrast, the ^{34}Si ground-state has been estimated to consist of $\sim 89\%$ $0p0h$ configurations, thus leaving as little as 11% to contributions from states with neutron excitations [4]. The situation is experimentally less certain in ^{36}S. The observation of the 0^+_2 state in (t,p) reactions [12] and the absence of that state in $(d,^3\text{He})$ reactions [16] is a good indication that mixing is small and that the 0^+_2 excited state is strongly dominated by neutron-pair excitations, while the ground state can be considered predominantly spherical. For the odd-A nuclei there is only limited data available. In ^{35}Al possible candidates have been proposed [10 11], however, the spin assignment of both the ground state and the candidate are yet to be confirmed. In ^{35}P a candidate for the $2p2h$ bandhead still remains to be identified. A high-quality measurement clearly identifying the $2p2h$ bandhead in an odd-A $N=20$ isotope would provide an important confirmation for modern shell-model descriptions in this region of the nuclear chart. Moreover, a measurement of spectroscopic factors of the deformed states will allow a critical comparison to the theoretical wave functions.

In the case of ^{35}P, the removal of a proton in the $^{36}\text{S}(d,^3\text{He})$ reaction will only populate the $2p2h$ state if there is non-zero mixing between the ^{35}P ground state and the first $2p2h$ excitation and therefore significant overlap in the wave functions of these states. Previous investigation of this reaction, performed in the 1980s, did not observe any candidates for the $2p2h$ bandhead [17 18]. However, large background due to ^{12}C contaminants in the ^{36}S target dominated the ^3He particle spectra of these experiments in the energy region between 3.0 and 3.5 MeV where the bandhead would be expected (MCSM calculations predict the bandhead at 3.03 MeV, as shown in Figure 1). Thus, these experiments could not be conclusive on the observation or lack thereof for the intruder state.

We report here on a recent measurement of the $^{36}\text{S}(d,^3\text{He})^{35}\text{P}$ reaction studied in inverse kinematics with the Helical Orbit Spectrometer (HELIOS). This approach offers a clean measurement free of the background observed in normal kinematics experiments. Thus, while we did not observe any state consistent with the $2p2h$ bandhead, we are able to set an upper limit on the spectroscopic factor as a function of the energy of the expected intruder state. This in turn provides a constraint on the $0p0h$ and $2p2h$ content of the wavefunctions.

II. EXPERIMENT

The structure of ^{35}P has been studied in inverse kinematics with the Helical Orbit Spectrometer (HELIOS) [19] located at the Argonne National Laboratory. The Argonne Tandem Linac Accelerator System (ATLAS) provided a stable ^{36}S beam at 15.3 MeV/A. The beam impinged on a variety of deuteron targets (81/127/529µg/cm2) located in the bore of the HELIOS solenoid magnet (operated at a magnetic field strength of 2.85 T). Both the ^3He ions and the ^{35}P were emitted at forward on axis lab angles. As illustrated in Fig. 2, the ^3He ions spiral in the magnetic field and are collected on a position sensitive silicon array, placed along the beam axis. Depending on the emission angle and energy, the ^3He particles intercept the silicon array at different positions. The silicon detectors were located approximately 58-93 cm from the target, which covers a maximal angular range of 10-50° in the center-of-mass frame. Due to the poor resolution obtained in some of the silicon detectors, only a subset were included in the present analysis.

The energy loss of ^{35}P and scattered ^{36}S particles, as well as background recoils from fusion-evaporation reactions, was measured with a 65 µm thick silicon detector (recoil detector) installed between the target and the silicon array. The information was used to select $Z=15$ recoils; the observed pulse-height distribution and the $Z=15$-gate are represented in Fig. 3 on the x-axis. A beam blocker with a ~ 10 mm diameter was placed on the recoil detector, centered on the beam axis, to limit the overall rate.

FIG. 1: Experimental (solid black lines) and calculated (dashed orange lines and dotted blue lines) $2p2h$ bandheads for the $N=20$ isotones between $Z=12$ and $Z=16$. The orange dashed lines represent shell-model calculations performed with the SDPF-U-MIX effective interaction [4 10], while the blue dotted lines are the results of MCSM calculations [17 18]. The black solid lines represent data from Refs. [4 10 12].
FIG. 2: Schematic representation of the experimental setup installed in HELIOS. The incoming beam (^{36}S) hits a deuteron target placed in the center of the solenoid. The heavy reaction products are measured with the recoil detector or stopped in the (inactive) beam stop. The light particles (^3He) spin in the magnetic field until they hit the silicon array installed behind the recoil detector.

FIG. 3: A representation of the two main analysis cuts used to filter events. The cyclotron period is proportional to the mass over charge ratio of the light particle and the area between the two horizontal lines is the location of ^3He particles. The recoil energy loss is proportional to the heavy particles Z and the two vertical lines select $Z=15$. The color represents the number of particles in the region between -1 and 6 MeV excitation energy. The red squares indicate the areas used to estimate the background component in the center gate. The background counts were weighted by a factor of $1/3$ to compensate for the larger coverage of the background gate.

The cyclotron period of the outgoing ions can be identified with respect to the radio frequency (RF) structure of the accelerator, for which the beam is delivered in bunches $\sim 1 - 2\text{ ns}$ wide every 82.47 ns. The time delay between the ATLAS RF and detection of an ion in the silicon array is proportional to the mass of the particle hitting the array, divided by its charge. This measure of the cyclotron period allows for selection of ^3He particles detected on the silicon array. The respective distribution and the ^3He-gate is shown in Fig. 3 on the y-axis. This condition along with selection of $Z=15$ heavy recoils allowed the necessary rejection of background in the excitation energy region where the ^{35}P states are observed/expected and are the main cuts applied to the data. Fig. 3 also shows the four nearest neighbor gates symmetrically distributed around the main gate that were used to estimate backgrounds.

The energy of ^3He ions measured on a given silicon detector is related to the location at which the particle hits the detectors. This relationship between energy and return distance z was described in Ref. [20] and is:

$$E_{lab} = E_{cm} - \frac{1}{2}mV_{cm}^2 + \left(\frac{mV_{cm}m}{T_{cyl}}\right)z.$$ \hspace{1cm} (1)

The cyclotron time T_{cyl}, the particle mass m and the velocity of the center-of-mass frame with respect to the laboratory frame V_{cm} are all constants for a given experiment. Thus, for a constant E_{cm} there is a linear relationship between the observed energy and interaction location. Ballistic effects within some of the detectors add distortions that depend on the location at which the particles hit a given detector. The $^{36}\text{S}(d,^3\text{He})^{35}\text{P}$ reaction populates mainly the ground state and the excited $5/2^+\text{ state at } 3860\text{ keV}$. The energy dependence on the position was removed based on a polynomial fit to the ground state. The individual detectors were then gain matched according to the known energies of these two states.

III. RESULTS

The resulting event distribution as a function of center-of-mass angle and energy is shown in Fig. 4 and the projection onto the energy axis is given in Fig. 5. At
an excitation energy between -0.8 and 5.5 MeV the 5 most prominent states have been fit with a functional form that assumes constant background and two Gaussian distributions with identical centroids for each individual peak. The peak-height and width ratios between the two Gaussian distributions were required to be identical for all peaks. A pair of Gaussian distributions was used to accommodate the facts that peaks are composed of counts from multiple detectors of different resolutions and that a single Gaussian distribution did not describe the observed peak shape robustly. The fit was performed with a Poisson maximum-likelihood approach. The constant background was estimated at 304 ± 11 counts/MeV. Additionally, Fig. 4 also shows a background subtracted version of the energy spectrum, that is used to estimate the background subtracted peak counts and the peak positions as summarized in Table I. Fig. 4 illustrates that the energies of the two states with the highest excitation energies have not been corrected of all angular dependencies. This explains why these peaks are observed at a lower energy than described in literature. However, the assignment to each state is not in question. The quoted uncertainties for the peak counts are statistical only. The peak resolutions (defined as σ) varied between 118 ± 1 keV (lowest excitation energy) and 176 ± 8 keV (highest excitation energy). In the background subtracted spectrum there is an excess in counts visible around 5709 keV, which most likely originates from a weakly populated state measured in an earlier publication [22].

This peak was not included in the fit, doing so would slightly reduce the number of events in the 5/2\(^+\) state. A state at 4494 keV was also observed in [22], and may account for the small excess in counts visible in the measured spectrum between the first and second 5/2\(^+\) states. However, due to the resolution in this region, this peak was also not included in the fit.

In the region of interest for a potential 2p2h bandhead candidate, marked blue in Fig. 5, no peak is observed above what would be expected from a flat background.
As discussed previously, the position along the beam axis and the energy of the detected particle can be used to determine the emission angle in the center-of-mass frame [20], yielding the angular distributions shown in Fig. 6 for the ground-state (top panel) and first two excited-states in 35P (middle and bottom panels). Also shown are model predictions based on the distorted-wave Born approximation (DWBA). The calculations were performed with PTOLEMY [29]: the incoming particle (deuteron) optical potentials were taken from Refs. [23–29] and the outgoing particle (3He) potentials from Refs. [20–29]. Data and the DWBA calculation from an earlier measurement conducted at a similar center-of-mass frame [20], yielding the angular distributions shown in Table 1. The points marked with gray error bars were not used in the fit so that all states were fit over a similar angular range.

The relative scaling of the data to the DWBA calculation is directly proportional to the spectroscopic factor. Background subtracted data were weighted by their uncertainties and fit to the DWBA models from [17] to derive relative spectroscopic factors. A similar process was also performed with the PTOLEMY based DWBA calculation; the standard deviation between the different choices for optical potentials was used to estimate the systematic uncertainty. As measurement of the beam current was not made with sufficient accuracy to calculate absolute values, the relative spectroscopic factors in Table 1 are normalized so that the ground state value is 2. The derived spectroscopic factors are in agreement with earlier measurements.

Turning to the region of interest with respect to a potential $2p2h$ bandhead, the experimental sensitivity at a given energy was estimated as the maximum number of counts in a peak added to the statistical fluctuations, such that the minimized model distribution does not exceed a predefined confidence level (90%) when being compared to the observed data. The additional peak was also made up of two Gaussian distributions and its resolution was fixed to a linear interpolated value between the two adjacent peaks resolutions. It was placed in the energy range between 2.5 and 3.6 MeV and the remaining free parameters in the model found by minimizing the Poisson maximum likelihood of the model with respect to the spectrum without background subtraction. For simplicity, Pearson’s χ^2 was used to approximate the p-values of the Poisson maximum likelihood. The number of counts required for a possible observation are shown as a function of energy in the top panel of Fig. 7. The bottom panel uses this information, together with DWBA calculation (based on Refs. [24–28]) to establish an upper limit for the C^2S ratio between ground and excited state.

IV. DISCUSSION

The impact of the upper limit for the ratio of the spectroscopic factors between a potential $2p2h$ bandhead in the region of interest and the ground state can be gauged by considering a simplified 2×2 (two-state) mixing model. Studies of the $^{36}S(d,p)^{37}S$ reaction [17, 31, 32] show the population of a $d_{3/2}$ hole in the ground state of ^{36}S and can provide an assessment of the proportion of $2p2h$ excitations present in the 0^+_1 state. Consider that the ground state wave-function of ^{36}S is described in a simple form 1 as:

$$|0^+_1\rangle = (\alpha \langle 0p0h | + \beta \langle 2p2h |$$

where $|0p0h\rangle \approx d_{3/2}^1$ and $|2p2h\rangle \approx d_{3/2}^3f_{7/2}^2$. The experimental ratio of the neutron spectroscopic factors for the population of the $7/2^-$ and $3/2^+$ in ^{37}S in the (d, p)

\footnote{The corresponding orthogonal 0^+_2 state is $|0^+_2\rangle = -\beta |0p0h\rangle + \alpha |2p2h\rangle$}
reaction can be readily calculated from Eq. 2

\[\frac{C^2S_{3/2^+}}{C^2S_{1/2^-}} = \frac{1}{2} \left(\frac{\beta}{\alpha} \right)^2 \]

(3)

Fig. 8 (left panel) shows the behavior of amplitude \(\alpha^2 \) as a function of this ratio. When compared with the average (and its standard deviation) obtained from the data in Refs. [17, 31, 32] we can determine \(\alpha^2 = 89.5 \pm 1.6\% \) which, as anticipated, corresponds essentially to a \(\alpha = 0 \) configuration for the ground-state of \(^{36}\text{S}\).

Proceeding now to \(^{35}\text{P}\) the ground state \(|1/2^+_1\rangle \) and the excited \(|1/2^+_2\rangle \) can be described in the simple two-level model as:

\[|1/2^+_1\rangle = (A|0p0h\rangle + B|2p2h\rangle) \otimes \pi s_{1/2} \]

(4)

\[|1/2^+_2\rangle = (-B|0p0h\rangle + A|2p2h\rangle) \otimes \pi s_{1/2} \]

(5)

and following from Eqs. 4 and 5 we then estimate the ratio of spectroscopic factors as

\[\frac{C^2S_{1/2^+}}{C^2S_{1/2^-}} \approx \left(\frac{-\alpha B + \beta A}{\alpha A + \beta B} \right)^2 \]

(6)

It is interesting to note that because of the interference in the numerator of Eq. 6 the stringent limits set by HELIOS (see Fig. 7) with the non-observation of a candidate peak, can be applied to establish a meaningful limit on the values of the amplitude \(A^2 \) as shown in the right of Fig. 8 in the energy range expected for the location of the \(1/2^+_2 \) state. Thus, the sensitivity analysis based on the \(2 \times 2 \) model suggests the similarity between \(^{35}\text{P}\) and \(^{36}\text{S}\) in terms of the evolution of shape coexistence towards the center of the \(N = 20 \) Island of Inversion centered at \(^{32}\text{Mg}\).

V. CONCLUSION

In search of the \(2p2h \) bandhead in \(^{35}\text{P}\), the \(^{36}\text{S}(d,^{3}\text{He})^{35}\text{P}\) reaction has been revisited in inverse kinematics with HELIOS. However, no candidate peak was observed in the expected region of interest between approximately 2.5 MeV and 3.6 MeV. Based on studies of the \(^{36}\text{S}(d,p)^{37}\text{S}\) reaction [17, 31, 32] and a \(2 \times 2 \) model the \(0p0h \) waveform amplitude of the \(^{36}\text{S}\) ground state was derived to be \(89.5 \pm 1.6\% \). Based on this result, the non-observation of a candidate peak sets a tight lower limit on the \(2p2h \) waveform amplitude for the (still-to-be-observed) \(1/2^+_2 \) intruder state in \(^{35}\text{P}\).

Given the interference between the unperturbed \(1/2^+ \) states discussed above, it is not clear that an experiment with more statistic and higher sensitivity will result in a positive observation of the intruder state with the \((d,^{3}\text{He})\) reaction. In this regard, a study of the \(^{33}\text{P}(t,p)^{35}\text{P}\) and \(^{37}\text{P}(p,t)^{35}\text{P}\) reactions is suggested. In the former, stripping of 2 neutrons into the \(fp \) shell naturally leads to \(2p2h \) configurations in \(^{35}\text{P}\); in the latter, these states can be populated by the pickup of 2 neutrons from the closed \(sd \) shell. These experiments could be carried-out with the new spectrometer SOLARIS [33] at FRIB, where re-accelerated beams of \(^{33,37}\text{P}\) of adequate intensity will be available on day one [34].

Acknowledgment

This material is based upon work supported by LBNL-LDRD funding under LDRD NS16-128, and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL) and DE-AC02-06CH11357 (ANL). This research used resources of ANL’s ATLAS facility, which is a DOE Office of Science User Facility. M.W. acknowledges support by the National Research Foundation of South Africa under Grant No. 118846. We thank Alfredo Poves for enlightening discussions on the topic of this work and Birger Back for his help during the run. The authors also thank the operations staff of the ATLAS facility.
FIG. 8: Sensitivity analysis in the 2x2 model. Left: Amplitude squared, α^2, of the 2p2h component in the 0^+_2 state of ^{36}S, derived from the $^{36}\text{S}(d,p)^{37}\text{S}$ reaction (black line and grey bands) and the ^2S ratio from Eq. 3 (dashed line). Right: Lower limits on the 2p2h excitation amplitude, A^2, in ^{35}P, derived from the experimental 90% confidence sensitivity as a function of the expected energy of the excited state. The amplitude α^2 is shown at the energy of the 0^+_2 in ^{36}S (blue circle) together with that for ^{34}Si (green square).

[1] O. Sorlin and M.-G. Porquet, Progress in Particle and Nuclear Physics 61, 602 (2008), ISSN 0146-6410, URL http://www.sciencedirect.com/science/article/pii/S0146641006000380
[2] A. M. Bernstein and E. P. Lippincott, Phys. Rev. Lett. 17, 321 (1966), URL https://link.aps.org/doi/10.1103/PhysRevLett.17.321
[3] P. Federman, Nuclear Physics A 124, 363 (1969), ISSN 0375-9474, URL http://www.sciencedirect.com/science/article/pii/0375947469903601
[4] F. Rotaru, F. Negoița, S. Grévy, J. Mazek, S. Lukyanov, F. Nowacki, A. Poves, O. Sorlin, C. Borcea, R. Borcea, et al., Phys. Rev. Lett. 109, 092503 (2012), URL https://link.aps.org/doi/10.1103/PhysRevLett.109.092503
[5] E. Caurier, F. Nowacki, and A. Poves, Phys. Rev. C 90, 014302 (2014), URL https://link.aps.org/doi/10.1103/PhysRevC.90.014302
[6] J. J. Valiente-Dobón, A. Poves, A. Gadea, and B. Fernández-Domínguez, Phys. Rev. C 98, 011302 (2018), URL https://link.aps.org/doi/10.1103/PhysRevC.98.011302
[7] Y. Utsuno, T. Otsubo, T. Mizusaki, and M. Honma, Phys. Rev. C 64, 011301 (2001), URL https://link.aps.org/doi/10.1103/PhysRevC.64.011301
[8] M. Wiedeking, E. Rodríguez-Vieitez, P. Fallon, M. P. Carpenter, R. M. Clark, D. Cline, M. Cromaz, M. Descovich, R. V. F. Janssens, I.-Y. Lee, et al., Phys. Rev. C 78, 037302 (2008), URL https://link.aps.org/doi/10.1103/PhysRevC.78.037302
[9] V. Tripathi, S. L. Tabor, P. F. Mantica, Y. Utsuno, P. Bender, J. Cook, C. R. Hoffman, S. Lee, T. Otsubo, J. Pereira, et al., Phys. Rev. Lett. 101, 142504 (2008), URL https://link.aps.org/doi/10.1103/PhysRevLett.101.142504
[10] A. Mutschler, A. Lemasson, O. Sorlin, D. Bazin, C. Borcea, R. Borcea, Z. Dombrádi, J.-P. Ebran, A. Gade, H. Iwasaki, et al., Nat. Phys. 13, 152 (2016), ISSN 1745-2473, URL http://www.nature.com/doifinder/10.1038/nphys3916
[11] W. Mittig, H. Savajols, D. Baborodin, J.M. Casandjian, C.E. Demonchy, P. Roussel-Chomaz, F. Sarazin, Z. Dlouhý, J. Mazek, A.V. Belozyorov, et al., Eur. Phys. J. A 15, 157 (2002), URL https://doi.org/10.1140/epja/i2001-10245-5
[12] J. W. Olness, W. R. Harris, A. Gallmann, F. Jundt, D. E. Alburger, and D. H. Wilkinson, Phys. Rev. C 3, 233 (1971), URL https://link.aps.org/doi/10.1103/PhysRevC.3.233
[13] K. Wimmer, T. Kröll, R. Krücken, V. Bildstein, R. Gernhäuser, B. Bastin, N. Bree, J. Diriken, P. Van Duppen, M. Huyse, et al., Phys. Rev. Lett. 105, 252501 (2010), URL https://link.aps.org/doi/10.1103/PhysRevLett.105.252501
[14] H. Fortune, Phys. Rev. C 84, 024327 (2011).
[15] A. O. Macchiavelli, H. L. Crawford, C. M. Campbell, R. M. Clark, M. Cromaz, P. Fallon, M. D. Jones, I. Y. Lee, M. Salathe, B. A. Brown, et al., Phys. Rev. C 94, 051303 (2016), URL https://link.aps.org/doi/10.1103/PhysRevC.94.051303
[16] W. Gray, P. Ellis, T. Wei, R. Polichar, and J. Jänecke, Nuclear Physics A 140, 494 (1970), ISSN 0375-9474, URL http://www.sciencedirect.com/science/article/pii/0375947470905762
[17] C. E. Thorn, J. W. Olness, E. K. Warburton, and S. Ramam, Phys. Rev. C 30, 1442 (1984), URL https://link.aps.org/doi/10.1103/PhysRevC.30.1442
[18] S. Khan, T. Kihm, K. Knöpfle, G. Mairle, V. Bechtold, and L. Freidrich, Physics Letters B 156, 155 (1985), ISSN 0370-2693, URL http://www.sciencedirect.com/science/article/pii/0370269385914996
[19] J. Lighthall, B. Back, S. Baker, S. Freeman, H. Lee,
B. Kay, S. Marley, K. Rehm, J. Rohrer, J. Schiffer, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 622, 97 (2010), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/S0168900210014105
[20] A. Wuosmaa, J. Schiffer, B. Back, C. Lister, and K. Rehm, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580, 1290 (2007), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/S0168900207014490
[21] J. Chen, J. Cameron, and B. Singh, Nuclear Data Sheets 112, 2715 (2011), ISSN 0090-3752, URL http://www.sciencedirect.com/science/article/pii/S0090375211000950
[22] A. Mutschler, O. Sorlin, A. Lemasson, D. Bazin, C. Borcea, R. Borcea, A. Gade, H. Iwasaki, E. Khan, A. Lepailleur, et al., Phys. Rev. C 93, 034333 (2016), URL https://link.aps.org/doi/10.1103/PhysRevC.93.034333
[23] W. W. Daehnick, J. D. Childs, and Z. Vrcelj, Phys. Rev. C 21, 2253 (1980), URL https://link.aps.org/doi/10.1103/PhysRevC.21.2253
[24] H. An and C. Cai, Phys. Rev. C 73, 054605 (2006), URL https://link.aps.org/doi/10.1103/PhysRevC.73.054605
[25] Y. Han, Y. Shi, and Q. Shen, Phys. Rev. C 74, 044615 (2006), URL https://link.aps.org/doi/10.1103/PhysRevC.74.044615
[26] H.-J. Trost, P. Lezoch, and U. Strohschuch, Nuclear Physics A 462, 333 (1987), ISSN 0375-9474, URL http://www.sciencedirect.com/science/article/pii/0375947487905513
[27] C.-T. Liang, X.-H. Li, and C.-H. Cai, Journal of Physics G: Nuclear and Particle Physics 36, 085104 (2009), URL http://stacks.iop.org/0954-3899/36/i=8/a=085104
[28] D. Y. Pang, P. Roussel-Chomaz, H. Savajols, R. L. Varner, and R. Wolski, Phys. Rev. C 79, 024615 (2009), URL https://link.aps.org/doi/10.1103/PhysRevC.79.024615
[29] Y. Xu, H. Guo, Y. Han, and Q. Shen, Science China Physics, Mechanics and Astronomy 54, 2005 (2011), ISSN 1869-1927, URL http://www.science.org.cn/gb/kc/11433–011-4488-5
[30] M. H. Macfarlane and S. C. Pieper, Ptolemy - A Program for Heavy-Ion Direct-reaction Calculations, Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (2017), URL http://www.phy.anl.gov/theory/ptolemy/ptolemy_manual.pdf
[31] G. Eckle, H. Käder, H. Clement, F. Eckle, F. Merz, R. Hertenberger, H. Maier, P. Schiemenz, and G. Graw, Nuclear Physics A 491, 205 (1989), ISSN 0375-9474, URL http://www.sciencedirect.com/science/article/pii/0375947489906994
[32] S. Piskoř, P. Franc, J. Křemének, and W. Schäferlingová, Nuclear Physics A 414, 219 (1984), ISSN 0375-9474, URL http://www.sciencedirect.com/science/article/pii/0375947484906419
[33] B. P. Kay, C. R. Hoffman, and A. H. Wuosmaa, Eds., SOLARIS: A Solenoidal Spectrometer Apparatus for Reaction Studies. White Paper (2019), URL https://www.anl.gov/reference/solaris-white-paper
[34] FRIB Estimated Rates, Version 2.01, URL https://groups.nscl.msu.edu/frib/rates/fribrates.html (2020).