ORIGINAL ARTICLE

Truncating Variants in OBSCN Gene Associated With Disease-Onset and Outcomes of Hypertrophic Cardiomyopathy

Guixin Wu, MD*; Jie Liu, MD*; Minghao Liu, MD*; Oiya Huang, MD; Jieyun Ruan, MD; Channa Zhang, BS; Dong Wang, MD; Xiaolu Sun, MD; Wen Jiang, MD; Lianming Kang, MD; Jizheng Wang, PhD; Lei Song, PhD, MD

BACKGROUND: The presence of variants in OBSCN was identified to be linked to hypertrophic cardiomyopathy (HCM), but whether OBSCN truncating variants were associated with HCM remained unknown.

METHODS: Whole-exome sequencing was performed in 986 patients with HCM and 761 non-HCM controls to search for OBSCN truncating variants, and the result was tested in a replication cohort consisting of 529 patients with HCM and 307 controls. The association of the OBSCN truncating variants with baseline characteristics and prognosis of patients with HCM were ascertained.

RESULTS: There were 28 qualifying truncating variants in the OBSCN gene detected in 26 (2.6%) patients with HCM and 6 (0.8%) controls. The OBSCN truncating variants were more prevalent in patients with HCM than controls (odds ratio, 3.4, P=0.004). This association was confirmed in the replication cohort (odds ratio, 3.8, P=0.024). The combined effects of the two cohorts estimated the odds ratio to be 3.58 (P<0.001). Patients with or without OBSCN truncating variants shared similar demographic and echocardiographic variables at baseline. During 3.3±2.4 years (4795 patient-years) follow-up, the patients with OBSCN truncating variants were more likely to experience cardiovascular death (adjusted hazard ratio, 3.1 [95% CI, 1.40–6.70], P=0.005) and all-cause death (adjusted hazard ratio, 2.63 [95% CI, 1.21–5.71], P=0.015).

CONCLUSIONS: Our data indicated that OBSCN truncating variants contributed to the disease-onset of HCM, and increased the risk of malignant events in patients with HCM.

Key Words: cardiomyopathy, hypertrophic ◼ OBSCN ◼ prognosis ◼ truncating variants ◼ whole-exome sequencing

Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disease mainly in an autosomal dominant pattern with the genetic transmission, affecting ≈1:500 to 1:200 individuals.1,2 More than 2000 mutations in at least 11 genes, coding for thick, thin, and Z disk protein of sarcomeres, are identified to be responsible for HCM, notwithstanding over 99% mutations in 8 core sarcomeric genes, including MYH7, MYBPC3, TNNT2, TNNI3, MYL2, MYL3, TNNI3, and ACTC1.3,4 Disease-causing variants in sarcomere genes were found in nearly 30% to 60% patients with HCM.5 However, at least 40% of HCM cases are not explained by sarcomeric mutations, suggesting potential genetic factors predispose to patients with established disease.6
Obscurins, encoded by the OBSCN gene, are sarcomeric proteins functioning in myofibrillogenesis and cytoskeletal arrangement. Giant obscurins, including obscurin-A and obscurin-B, modular consisting of a range of immunoglobulin and fibronectin-III domains in addition to an array of singling motifs. The relatively recent study suggested that OBSCN (Obscurins) proteins bound to the thick filament and played structural and regulatory roles, interacting with myosin and myosin-binding protein C. Several missense and truncating variants in the OBSCN gene were reported to be associated with different forms of cardiomyopathy, including HCM, dilated cardiomyopathy, and left ventricular non-compaction. Additionally, the Arg4344Gln variant was found to be linked to the development of HCM and leading to cardiac remodeling and dilation. However, the significance of truncating variants in the OBSCN gene for HCM remained unclear. Here, our study analyzed the spectrum of OBSCN truncating variants in a large HCM case-control cohort and explored the association between OBSCN variants and outcomes of HCM.

METHODS
All data, analytical methods, and study materials supporting this study are available from the corresponding authors on reasonable request. This study was approved by The Ethics Committees of Fuwai Hospital approved this study, which is conducted in conformity to the principles of the Declaration of Helsinki. All subjects provided written informed consent at enrollment. Full methods are available in the Data Supplement.

RESULTS
Study Participants
There were a discovery cohort (986 patients with HCM and 761 non-HCM) and a replication cohort (529 patients and 307 controls) in the final analysis. Of the patients with HCM in the discovery study, the mean (±SD) age was 47.8 (±14.4) years, 64.8% were male, and the maximal ventricular wall thickness was 22.8 (±5.9) mm. There was no significant difference between cases and controls in terms of sex and age distributions (Table I in the Data Supplement). The sarcomere variants were found in 495 (50.2%) patients of the discovery cohort. The information on the subjects in the replication study was previously described. There were 230 (43.5%) patients carrying sarcomere variants in the replication cohort.

OBSCN Truncating Variants Associated With HCM
A total of 28 qualifying truncating variants in the OBSCN gene were found in individuals of discovery cohort, including 8 nonsense variants, 17 frameshift variants, and 3 splice-site variants (Table 1). Among these variants, 11 (39.3%) of them were reported in ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar), whereas 17 (60.7%) truncating variants were novel. In detail, 26 truncating variants were detected in 26 (2.6%) patients with HCM. Comparatively, 6 variants were detected in 6 (0.8%) controls. All these 32 subjects carried one truncating variant. Two variants were found in both patients and controls (Table 1). The OBSCN truncating variants were more prevalent in patients with HCM than controls (odds ratio, 3.4, P=0.004; Table 2).

The association between OBSCN truncating variants and HCM was confirmed in the replication cohort. A total of 20 truncating variants were detected in 19 (3.6%) patients with HCM and 3 variants in 3 (1.0%) controls (Table II in the Data Supplement). The odds ratio was estimated to be 3.8 in the replication cohort (P=0.024; Table 2). The combined effects of the two cohorts estimated the odds ratio to be 3.58 (P<0.001).

Our data found 23 patients with OBSCN truncating variants carried a sarcomere variant. The proportion of patients with OBSCN truncating variants was similar in patients with sarcomere variants (23/725, 3.2%) to those without sarcomere variants (22/790, 2.8%, P=0.657).

Genotype-Phenotype Correlation
We compared clinical characteristics between patients with HCM with and without OBSCN truncating variants in the study population and replication. There were no differences in demographic and echocardiographic findings at baseline between these two groups (Table 3). There were 59 subjects lost to follow-up, including 2 patients with OBSCN truncating variants and 57 without such variants. As 3.3±2.4 years (4795 patient-years) follow-up, there were 99 cases that experienced all-cause death. A total of 85 cases died of cardiovascular causes, including 45 died of sudden cardiac death, 30 of heart failure-related death, and 10 of stroke-related death. In detail, a total of seven patients with OBSCN truncating variants died, and all of them died of cardiovascular death. In detail, a total of seven patients with OBSCN truncating variants died, and all of them died of cardiovascular causes due to sudden cardiac death (n=3) or heart failure-related death (n=4). The OBSCN truncating variants were associated with the cumulative incidence of cardiovascular death (log-rank P=0.015) and all-cause death (log-rank P=0.042) in Kaplan-Meier survival curve analysis from the first enrollment to the last contact (Figure [A] and [B]). Moreover, Kaplan-Meier survival curve analysis from the birth to the last contact displayed the presence of OBSCN truncating variants increased the risk of cardiovascular death (log-rank P=0.013) and
all-cause death (log-rank $P=0.039$; Figure I in the Data Supplement). Univariate analysis showed that \textit{OBSCN} truncating variants significantly increased the risk of cardiovascular death of patients with HCM (hazard ratio, 2.52 [95% CI, 1.16–5.46], $P=0.019$; Table 4). After multivariate adjustment, the \textit{OBSCN} truncating variants were still linked with a higher risk of cardiovascular events (adjusted hazard ratio, 3.1 [95% CI, 1.40–6.70], $P=0.005$; Table 4). Similarly, the \textit{OBSCN} truncating variants increased the risk of all-cause death in patients with HCM (hazard ratio, 2.18 [95% CI, 1.01–4.69], $P=0.048$). After other risk factor–adjusted, the \textit{OBSCN} truncating variants still predicted the risk of all-caused events (adjusted hazard ratio, 2.63 [95% CI, 1.21–5.71], $P=0.015$; Table III in the Data Supplement).

DISCUSSION

Our study for the first time performed whole-exome sequencing in a large case-control cohort consisting of 986

Table 1. Qualifying Truncating Variants of OBSCN Detected in Subjects of the Discovery Cohort

Transcript effect	Protein	Type	SNP	GnomAD* MAF%	ExAC† MAF%	In-house MAF%	Subject ID (phenotype)	Sarcomere gene variants
NM_001271223.2	Gly1150fs	Frameshift	Novel	0	0	0.0286	H1226 (HCM); MYBPC3, p.Leu460fs	
c.3449delG	NA	Splicing	Novel	0	0	0.0286	H7026 (HCM); NA	
c.5611C>T	Gln1871Ter	Nonsense	rs750858801	0.0008	0.0017	0.0286	Y5522 (control)	NA
c.5826delG	Trp1942fs	Frameshift	Novel	0	0	0.0286	H7509 (HCM); NA	
c.6965C>G	Ser2322Ter	Nonsense	Novel	0	0	0.0286	H7180 (HCM); MYBPC3, p.Gln374Ter	
c.7823delG	Gly2608fs	Frameshift	Novel	0	0	0.0286	H8828 (HCM); MYH7, p.Gln1208Lys	
c.10671G>A	Trp3557Ter	Nonsense	Novel	0	0	0.0286	H7140 (HCM); MYH7, p.Ala979Thr	
c.12307C>T	Gln4103Ter	Nonsense	Novel	0	0	0.0286	H1230 (HCM); NA	
c.12825C>G	Tyr4275Ter	Nonsense	rs755214451	0.0008	0.0004	0.0286	H7029 (HCM); NA	
c.13428_13429delAT	Cys4479fs	Frameshift	rs748780851	0.0357	0.0318	0.0572	H9033 (HCM); NA	
c.13999_14000delAG	Arg4667fs	Frameshift	rs756018529	0.0017	0.0032	0.0286	H8032 (HCM); MYBPC3, p.Arg845fs	
c.14484_14485delAT	Val4830fs	Frameshift	rs768971087	0.005	0.0032	0.0286	H1408 (HCM); NA	
c.14662dupG	Ala4888fs	Frameshift	Novel	0	0	0.0286	7071704AT (control)	NA
c.14715dupA	Gln4906fs	Frameshift	Novel	0	0	0.0286	H1223 (HCM); MYBPC3, p.Glu1050Lys	
c.14818C>T	Arg4904Ter	Nonsense	rs766814997	0.0032	0	0.0572	T0108 (HCM); MYH7, p.Arg403Gln	
c.15337+1G>T	NA	Splicing	Novel	0	0	0.0286	A20034 (control)	NA
c.17653C>T	Arg5885Ter	Nonsense	rs758907604	0.0008	0.0022	0.0286	H8165 (HCM); MYH7, p.Arg1420Trp	
c.19288_19291delAGAG	Glu6430fs	Frameshift	Novel	0	0	0.0286	H8150 (HCM); MYBPC3, p.Arg977fs	
c.19603C>T	Arg5853Ter	Nonsense	rs371757599	0.001	0.0012	0.0286	H1443 (HCM); NA	
c.20234dupG	Val6476fs	Frameshift	Novel	0	0	0.0286	H8311 (HCM); NA	
c.21646delA	Arg7216fs	Frameshift	rs753959445	0.0082	0.0096	0.0572	H7315 (HCM); MYH7, p.Glu379Lys	
c.21934+1G>T	NA	Splicing	rs755098840	0.0023	0.0032	0.0286	H7365 (HCM); NA	
c.22713_22714insTG	Ile7571fs	Frameshift	Novel	0	0	0.0286	H8313 (HCM); MYH7, p.Leu957Val	
c.23734delC	His7912fs	Frameshift	Novel	0	0	0.0286	Y3120 (control)	NA
c.23922delT	Gln7975fs	Frameshift	Novel	0	0	0.0286	Y4866 (control)	NA
c.24125delC	Pro8042fs	Frameshift	Novel	0	0	0.0286	H7175 (HCM); MYH7, p.Met357Val	
c.26597delG	Gly8866fs	Frameshift	Novel	0	0	0.0286	H1415 (HCM); MYH7, p.Arg403Gln	
NM_052843.3	Arg8395fs	Frameshift	rs767527000	0.0042	0.0023	0.0858	S130 (HCM); NA	
c.19185_19188delAGAG	Arg8395fs	Frameshift	rs767527000	0.0042	0.0023	0.0858	H8284 (HCM); NA	
							H7604 (HCM); NA	

ExAC indicates Exome Aggregation Consortium; GnomAD, Genome Aggregation; HCM, hypertrophic cardiomyopathy; MAF, minor allele frequency; NA, not available; and SNP, single nucleotide polymorphism.

*GnomAD: https://gnomad.broadinstitute.org/
†ExAC: http://exac.broadinstitute.org
patients with HCM and 761 controls to search for OBSCN variants and identified that the prevalence of OBSCN truncating variants was nearly 3% in patients with HCM and 0.8% in controls. Our data showed OBSCN truncating variants enriched in HCM cases, suggesting that these variants are predisposed to HCM. Furthermore, we found carrying OBSCN truncating variants might be an independent predictor for malignant events in patients with HCM.

Obscurin is one member of the family of giant sarcomeric proteins acting as structural and signaling mediators in muscle cells.\(^{15,16}\) The OBSCN gene contains 117 exons and its large size gives rise to multiple protein isoforms which may deter the variants in OBSCN from linking to cardiomyopathies.\(^{17,18}\) Benefiting from the advanced sequencing technology, the OBSCN gene was included in genetic screens for familial heart diseases, and at least 15 variants were identified to be linked to HCM.\(^{9,19}\) However, it is the first time to explore the relationship of OBSCN truncating variants with HCM in large-size HCM control cohort, and the prevalence was nearly 3-fold in patients with HCM than controls, indicating that OBSCN truncating variants contributed to HCM. The observed prevalence of OBSCN truncating variants were nearly 3% in patients with HCM and 0.8% in controls. Xu et al\(^{19}\) reported the presence of four OBSCN truncating variants in 4 (5.4%) cases of a Chinese HCM cohort consisting of 74 patients with HCM. The prevalence of OBSCN truncating variants in patients of our study was lower than Xu et al\(^{19}\) reported, which might be caused by different sizes of the study population.

The mechanisms of OBSCN truncating variants contributed to HCM might be through several pathways. First, the protein of obscurins functions in thick filament assembly and stabilization, and the truncating protein may result in failure of myosin to assemble into periodic A-bands.\(^{20,21}\) Second, truncating protein lost the multiple adhesion motifs which may play a role for myomesin, titin, and myosin-binding protein C as binding sites. The variants in MYH7 and MYBPC3 accounted for the most genetic HCM.\(^{22-24}\) Third, obscurins interact with signaling proteins, such as a member of the rho family of small GTPases, by rho-guanine nucleotide exchange factor motifs.\(^{25}\) The truncated variants could decrease the number of motifs, and modulate contractility by affecting the activity of a member of the rho family of small GTPases.\(^{25}\) The authentic mechanism of OBSCN truncating variants causing HCM remained to be determined.

There is wide phenotypic heterogeneity observed in the age of onset, disease severity, and prognosis among patients with HCM.\(^{26}\) This heterogeneity in HCM phenotypes may be explained in part by the effects of genetic

Table 2. Association of OBSCN Truncating Variants With Hypertrophic Cardiomyopathy

Study	With truncating variant	Without truncating variant	OR	\(P\) value	
Discovery	n=45	6 (0.8)	755 (99.2)	3.41	0.004
Replication	n=1515	3 (1.0)	304 (99.0)	3.77	0.024
Combined	n=1515	9 (0.8)	1059 (99.2)	3.58	<0.001

\(N\) indicates number of individuals; and OR, odd ratio.

Table 3. Demographic and Clinical Characteristics of Patients With HCM With or Without OBSCN Truncating Variants

Variables	Overall cohort; \(n=1515\)	With truncating variants; \(n=45\)	Without truncating variant; \(n=1470\)	\(P\) values*
Male, n (%)	1010 (66.7)	32 (71.1)	978 (66.5)	0.521
Age at enrollment, y	48.9±14.5	48.2±17.9	48.9±14.4	0.733
Family history of HCM, n (%)	323 (21.3)	9 (20.0)	314 (21.4)	0.826
Family history of SCD, n (%)	190 (12.5)	5 (11.1)	185 (12.6)	0.769
Left atrium diameter, mm	41.3±7.1	40.5±8.5	41.3±7.0	0.443
LVEDD, mm	44.4±6.3	44.6±5.5	44.3±6.4	0.768
MVT, mm	22.1±5.7	21.4±6.0	22.2±5.7	0.401
LVEF, %	67.2±8.4	67.9±7.7	67.2±8.4	0.594
Maximum LVOT gradient, mmHg	43.7±41.7	41.5±48.1	43.7±41.6	0.740
Unexplained syncope, n (%)	177 (11.7)	7 (15.6)	170 (11.6)	0.412
Atrial fibrillation at baseline, n (%)	177 (11.7)	6 (13.3)	171 (11.6)	0.726
NYHA class III or IV, n (%)	277 (18.3)	5 (11.1)	272 (18.5)	0.206

Continuous variables are presented as mean±SD; the categorical variables were presented as number (percentage). HCM indicates hypertrophic cardiomyopathy; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; LVOT, left ventricular outflow tract; MVT, maximal left ventricular wall thickness; NYHA, New York Heart Association; and SCD, sudden cardiac death.

"Continuous variables were compared by Student t test; the categorical variables were compared by \(\chi^2\) test."
modifiers, as recent studies have found pathogenic variants in genes or pathways associated with left ventricular hypertrophy that can function as modifier genetic variants that influence HCM phenotypes. In our study, the frequency of **OBSCN** truncating variants was similar in patients with HCM with or without sarcomere variants, which indicated the function of **OBSCN** truncating variants were not associated with sarcomere variants. Therefore, our data suggested **OBSCN** truncating variants might be genetically modified factors to increase the risk of HCM and the outcomes in patients with HCM, but the mechanism remained unknown.

Some limitations remained to be noticed in our study. First, the pathogenicity of **OBSCN** truncating variants requires to be confirmed by further studies. Second, all subjects were recruited from one center, and the

Table 4. Univariable and Multivariable Cox Regression Analysis of the Association Between **OBSCN** Truncating Variants and Cardiovascular Death in Patients With HCM

Variables	Crude HR (95% CI)	Crude P value	Adjusted HR (95% CI)	Adjusted P value
OBSCN truncating variants	2.52 (1.16–5.46)	0.019	3.06 (1.40–6.70)	0.005
Sarcomere variants	1.22 (0.79–1.89)	0.378		
Male	1.37 (0.89–2.12)	0.155		
Age at enrollment	1.01 (0.99–1.02)	0.456		
Family history of HCM	1.05 (0.98–1.17)	0.135		
Family history of SCD	2.02 (1.22–3.34)	0.006	1.53 (0.91–2.56)	0.107
Left atrium diameter	1.06 (1.04–1.09)	<0.001	1.03 (1.00–1.06)	0.034
LVEDD	1.06 (1.03–1.09)	<0.001	1.02 (0.99–1.05)	0.245
MVT	1.04 (1.01–1.08)	0.034	1.05 (1.01–1.09)	0.016
LVEF	0.95 (0.93–0.97)	<0.001	0.97 (0.95–0.99)	<0.001
Maximum LVOT gradient	1.00 (0.99–1.00)	0.413		
Unexplained syncope	1.62 (0.93–2.83)	0.091		
Atrial fibrillation at baseline	1.61 (0.90–2.86)	0.106		
NYHA class III or IV	3.90 (2.52–6.06)	<0.001	2.87 (1.79–4.60)	<0.001

Variants in 8 core sarcomere genes (**MYH7**, **MYBPC3**, **MYL2**, **MYL3**, **TNNT2**, **TNNI3**, **TPM1**, and **ACTC1**) classified as pathogenic, likely pathogenic, or unknown significance according to the criteria of American College of Medical Genetics and Genomics were defined as sarcomere gene variants. HCM indicates hypertrophic cardiomyopathy; HR, hazard ratio; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; LVOT, left ventricular outflow tract; MVT, maximal left ventricular wall thickness; NYHA, New York Heart Association; and SCD, sudden cardiac death.
findings in present study needed to be tested in other populations. Third, the mechanism of **OBSCN truncating variants** for the disease-onset and malignant outcomes of HCM and remained to be explored. Fourth, the risk score recommended by the European Society of Cardiology and late gadolinium enhancement of patients were not included in the adjusted model because of missing data.

CONCLUSIONS

Our study was the first report that revealed the relationship between **OBSCN truncating variants** and HCM. The **OBSCN truncating variants** might be a predictor for malignant outcomes of patients with HCM and are considered to be included in genetic testing and management of HCM.

ARTICLE INFORMATION

Received March 18, 2021; accepted August 30, 2021.

Affiliations

State Key Laboratory of Cardiovascular Disease (G.W., J.L., Q.H., J.R., C.Z., J.W., L.S.), Cardiomyopathy Ward (G.W., J.L., M.L., Q.H., J.R., D.W., X.S., W.J., L.K., L.S.), and National Clinical Research Center of Cardiovascular Diseases (L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acknowledgments

We are grateful to all patients for their willingness to participate.

Sources of Funding

This work was supported by National Natural Science Foundation of China (81870286) and Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (CAMS-IQM, 2016-IQM-1-015).

Disclosures

None.

Supplemental Materials

Expanded Materials and Methods

Supplemental Tables I–III

Supplemental Figure I

References 7–10

REFERENCES

1. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 1995;92:785–789. doi: 10.1161/01.cir.92.4.785

2. Semsarian C, Ingles J, Maron JS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65:1249–1254. doi: 10.1016/j.jacc.2015.01.019

3. Watkins H, Ashrafan H, Redwood C. Inherited cardiomyopathies. N Engl J Med 2011;364:1643–1656. doi: 10.1056/NEJMra0902932

4. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol 2012;60:705–718. doi: 10.1016/j.jacc.2012.02.068

5. Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142:e558–e631. doi: 10.1161/CIR.0000000000000937

6. Authors/Task Force members, Elliott PM, Anastasakis A, Borger MA, Borggreve M, Coccob, Charbon P, Hagege AA, Laffont A, Limongelli G, Multidisciplinary Guidelines Committee. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2783–2779. doi: 10.1093/eurheartj/ehu284

7. Young P, Ehler E, Gaubert M, Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 2001;154:123–136. doi: 10.1083/jcb.200102110

8. Wang L, Geist J, Grogan A, Hu LR, Kontrogianni-Kostantopoulos A. Thick filament protein network functions, and disease association. Circ Res 2018;63:1–709. doi: 10.1002/circ.170023

9. Anmura T, Matsumoto Y, Okazaki O, Hayashi T, Takakashi M, Inagaki N, Hinohara K, Ashizawa N, Yano K, Kimura A. Structural analysis of obscurin gene in hypertrophic cardiomyopathy, Becherei Biochip Res Commun. 2007;362:281–287. doi: 10.1016/j.jbrc.2007.07.183

10. Marston S, Montgird F, Munster AB, Copeland O, Choi O, Dos Remedios C, Messer AE, Ehler E, Knoll R. OBSCN mutations associated with dilated cardiomyopathy and haptocorrin deficiency. PLoS One. 2015;10:e0138568. doi: 10.1371/journal.pone.0138568

11. Rowland TJ, Graw SL, Sweet ME, Gigli M, Taylor MR, Mastrom L. Obscurin variants in patients with left ventricular noncompaction. J Am Coll Cardiol 2016;68:2237–2238. doi: 10.1016/j.jacc.2016.08.052

12. Hu LR, Ackermann MA, Hecker PK, Prosser BL, King B, O’Connell KA, Grogan A, Meyer LC, Bernstein CE, Wright NT, et al. Deregulated Ca2+ cycling underlies the development of arrhythmia and heart disease due to mutant obscurin. Sci Adv 2017;3:e1603081. doi: 10.1126/sciadv.1603081

13. Wang J, Wang Y, Zou Y, Sun K, Wang Z, Ding H, Yuan J, Wei W, Hou O, Wang H, et al. Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy. Eur J Heart Fail 2014;16:950–957. doi: 10.1002/ejhf.144

14. Richards S, Aziz N, Bale S, Bik D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Sepector E, et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405–424. doi: 10.1038/gim.2015.30.

15. Kontrogianni-Kostantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomereogenesis. Physiol Rev 2009;89:1217–1267. doi: 10.1152/physrev.00017.2009

16. Grogan A, Kontrogianni-Kostantopoulos A. Unraveling obscurin disorders in heart disease. Pflugers Arch. 2019;471:735–743. doi: 10.1007/s00424-018-2191-3

17. Fukuzawa A, Idowu S, Gaultel M. Complete human gene structure of obscurin: implications for isoform generation by differential splicing. J Muscle Res Cell Motil 2005;26:427–434. doi: 10.1007/s10977-005-9295-6

18. Ackermann MA, Shriver M, Kontrogianni-Kostantopoulos A, Shriver M, Perry NA, Hu LR, Kontrogianni-Kostantopoulos A, Obscurins: Goliaths and Davids take over non-muscle tissues. Sci Rep 2014;4:86618. doi: 10.1038/srep.0170029

19. Xu J, Li P, Ren X, Dong M, Li J, Shi X, Zhang Y, Xie W, Sun Z, Liu X, et al. Investigation of pathogenic genes in Chinese sporadic hypertrophic cardiomyopathy patients by whole exome sequencing. Sci Rep. 2015;5:16609. doi: 10.1038/srep16609

20. Kontrogianni-Kostantopoulos A, Catinato DH, Strong J, Sutter S, Borisov AB, Pumplin DW, Russell MW, Bloch RJ. Obscurin modulates the assembly and organization of sarcomeres and the sarcoplasmic reticulum. FASEB J. 2006;20:2102–2111. doi: 10.1096/fj.06-7561com

21. Kontrogianni-Kostantopoulos A, Catinato DH, Strong J, Randall WR, Bloch RJ. Obscurin regulates the organization of myosin into A bands. Am J Physiol Cell Physiol. 2004;287:C209–C217. doi: 10.1152/ajpcell.00947.2003

22. Ingles J, Goldstein J, Thrallton C, Caleshu C, Cory EW, Crowley SB, Dougherty K, Harrison SM, McLaughlin J, Milvo L, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med 2019;12:e002460. doi: 10.1161/CIRCGEN.119.002460

23. Sem-Chowdhry S, Jacoby D, Moon JC, McKenna WJ. Update on hypertrophic cardiomyopathy and a guide to the guidelines. Nat Rev Cardiol 2016;13:651–675. doi: 10.1038/nrcardio.2016.140

24. Walsh R, Buchan R, Wilk A, John S, Felkin LE, Thomson KL, Chiaiw TH, Loong CCW, Pua CJ, Raphael C, et al. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomere genes. Eur Heart J 2017;38:3461–3468. doi: 10.1093/eurheartj/ehx603

25. Ford-Speelman DL, Roche JA, Bowman AL, Bloch RJ. The rho guanine nucleotide exchange factor domain of obscurin activates rhoA.
signaling in skeletal muscle. Mol Biol Cell. 2009;20:3905–3917. doi: 10.1091/mbc.e09-10-1029

26. Marian AJ. Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol. 2002;17:242–252. doi: 10.1097/00001486-200201000-00004

27. Daw EW, Chen SN, Czernuszewicz G, Lombardi R, Lu Y, Ma J, Roberts R, Shete S, Marian AJ. Genome-wide mapping of modifier chromosomal loci for human hypertrophic cardiomyopathy. Hum Mol Genet. 2007;16:2463–2471. doi: 10.1093/hmg/ddm202

28. Zhang C, Zhang H, Wu G, Luo X, Zhang C, Zou Y, Wang H, Hui R, Wang J, Song L. Titin-truncating variants increase the risk of cardiovascular death in patients with hypertrophic cardiomyopathy. Can J Cardiol. 2017;33:1292–1297. doi: 10.1016/j.cjca.2017.05.020

29. Wu G, Liu L, Zhou Z, Liu J, Wang B, Ruan J, Yang Q, Kanchwala M, Dai P, Zhang C, et al. East Asian-Specific common variant in TNNI3 predisposes to hypertrophic cardiomyopathy. Circulation. 2020;142:2086–2089. doi: 10.1161/CIRCULATIONAHA.120.060384

30. Wu G, Ruan J, Liu J, Zhang C, Kang L, Wang J, Zou Y, Song L. Variant spectrum of Formin Homology 2 domain-containing 3 gene in Chinese patients with hypertrophic cardiomyopathy. J Am Heart Assoc. 2021;10:e018236. doi: 10.1161/JAHA.120.018236