Elham Maserat1, Zeinab Mohammadzadeh1, Elham Monaghesh2

1 Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
2 Department of Health Information Technology, School of Management and Medical Information, Tabriz University of Medical Sciences, Tabriz, Iran

Background and Objectives

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which individuals have difficulty in emotional processes related to social cognition and other behavioral patterns. The use of technology is increasing in therapeutic and educational interventions for people with ASD - who face ongoing challenges. Therefore, to select the interventions more appropriately and ensure their effectiveness, such interventions need to be evaluated. Thus, this study is an attempt to develop a framework for evaluating IT-based interventions among people with ASD.

Material and Methods

The present study is a descriptive-applied study examining the information technology-based intervention studies in the field of ASD. The search and review of studies continued without any restrictions until an appropriate and complete framework of interventions was obtained. The required data were extracted and collected in a table focusing on the evaluation of ASD interventions. The data were then analyzed to determine an appropriate framework for the objectives of the study. Finally, the evaluation framework was prepared using the one-step Delphi method and sent to 15 experts in the field of autism and health information technology to obtain their views on changing, modifying, approving the framework.

Results

In the framework developed in this study, two aspects of the interventions, including the type of information technology interventions and their outcome are generally presented. Moreover, the technologies used were presented from three main aspects: evaluation methods, technical evaluation cases, and clinical evaluation cases.

Conclusion

The results revealed that technology-based interventions can be of tremendous help in the treatment, education and increasing social interactions of people with ASD and thus bring about significant effects. Therefore, according to experts, the prepared assessment framework of interventions based on information technology leads to identifying the strengths and weaknesses of interventions, improving technologies as well as choosing appropriate interventions and ultimately increasing the quality of life of people with autism spectrum disorder.

Extended Abstract

Background and Objectives

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which individuals have difficulty in emotional processes related to social cognition and other behavioral patterns. The use of technology in therapeutic and educational interventions for people with ASD - who have ongoing challenges - is increasing. Technology-based interventions have demonstrated a variety of skills for people with autism, including the ability to initiate, maintain or end behavior, recognize emotions, improve functional activities of daily living, learn vocabulary, and reading skills. The unique appeal of electronic technology to children and adolescents with autism has greatly motivated their use in clinical and medical services, education and social communication. Therefore, to select interventions better and ensure their effectiveness, they need to undergo an evaluation. Thus, this study develops a framework for evaluating IT-based interventions in people with ASD.

Corresponding author; Elham Monaghesh, E-mail: monaghghesh1997@gmail.com

© 2021 The Author(s). This work is published by Depiction of Health as an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited.
Material and Methods
The present study is a descriptive-applied study that examines the information technology-based intervention studies conducted in Iran and the world in the field of ASD. The data were extracted from Databases including Pubmed, Scopus, Science Direct, Embase, Google scholar, SID, Web of Science, Magiran without any time limitation. The search continued until a complete framework of IT-based interventions was obtained. The data collection tool for data extraction was a table containing items with a focus on evaluating interventions in the field of aASD, which examined any type of technology used in the intervention of people with ASD from two perspectives: evaluation method of intervention and technical and clinical cases. The required data were extracted and collected in a table focusing on the evaluation of ASD interventions. In the third step, the extracted data were examined to determine the appropriate framework for the objectives of the study in two aspects, including the type of interventions based on information technology and the outcome of the interventions. Also, based on the objectives of the study, the technologies were evaluated from three main perspectives including evaluation methods, technical evaluation cases, and clinical evaluation cases. Finally, the prepared evaluation framework was sent to 15 experts in the field of autism and health information technology to get their opinions on changing, modifying, or approving the framework. After obtaining the cooperation of these people through the informed consent form, the opinion poll was conducted in 1 stage of Delphi method by e-mail.

Results
In general, the results showed that the most common IT-based interventions used in the field of autism included virtual reality, mobile phones, serious games, telemedicine, robots, respectively, wearable technologies, computer technologies, video conferencing and music integration technologies. Each of these technologies was used to achieve specific goals. The most important clinical goal in the interventions of patients with autism is to improve their social interaction. It is also important to improve educational skills and their performance and duties. The use of technology is very valuable and effective in removing barriers to patients’ access to the required health interventions. The least common use of IT-based interventions is to achieve the goal of creating a business for patients. Evaluation of IT-based interventions is very important in order to determine the effectiveness of each and select the appropriate intervention. Various methods are used to evaluate interventions. Based on the findings of the study, observation and interview were found to be the most commonly used assessment method used to evaluate almost all technologies while the least commonly used methods for evaluating interventions were related to the specific method of each. Evaluation of IT-based interventions was conducted from two perspectives, which included the evaluation of the technical cases of the technology used and the evaluation of the clinical cases of technology-based interventions. From the point of view of clinical evaluation, the greatest emphasis of the interventions was related to the improvement of communication skills, and from the aspect of technical evaluation, the greatest emphasis was related to the confidentiality and privacy of individuals.

Conclusion
According to the results, technology-based interventions in the treatment, education and increasing social interactions of people with ASD can be of enormous help and bring about significant gains. According to experts, the prepared assessment framework of interventions based on information technology can lead to identifying the strengths and weaknesses of interventions, improving technologies as well as choosing appropriate interventions and ultimately increasing the quality of life of people with autism spectrum disorder. Therefore, given the effectiveness of information technology-based interventions in the recovery of patients with autism, it is better to increase their use in the treatment of patients. Based on the framework prepared in this study, the evaluation of these interventions was done properly, in fact, different aspects of the evaluation were considered to ensure their correct evaluation. As a result, proper evaluation may lead to improving the quality of the technologies used. In addition, medical professionals can easily select the most appropriate intervention using this framework.

Practical implications of research
One of the practical consequences of the present study is to increase the precision of the specialists in selecting an intervention based on appropriate technology to treat patients with autism. Therefore, autism specialists would benefit from the use of the framework presented in this study in the selection of the most appropriate technology.

Ethical considerations
This article has been licensed by the Ethics Committee of Tabriz University of Medical Sciences with ethics code IR.TBZMED.REC.1398.704. Also in the present study, researchers are trustworthy in the use, presentation and publication of scientific materials and all the rights of researchers have been observed.

Conflict of interest
The authors of this article hereby declare that they have no conflict of interest with each other.

Acknowledgement
The authors of this article would like to thank all the experts and specialists participating in this research and all the collaborators who contributed in any way to the implementation of this research.
چکیده
زمینه و اهداف: اختلال طیف اوتیسم (ASD) یک اختلال بیماران محور فردی و خاصیت چندگانه و یک اضطراب اجتماعی و گونه‌ای در جامعه‌ای درمانی و امرزین بی‌میلیان به اختلال طیف اوتیسم - که چالش‌های مداومی دارد - در حال افزایش است. به ویژه در افراد که نرسند و به برنامه‌های اطلاعاتی و تربیتی می‌پردازند، اختلال طیف اوتیسم گردآوری و دانستن می‌شود. سپس داده‌ها جهت تعیین چارچوب مناسب در راستای اهداف مطالعه و بررسی قرار گرفته، نتایجی به تشکیل اختلال غیف اوتیسم (ASD) برای افراد مبتلا به اختلال غیف اوتیسم و خاصیت ماده موردی برای 15 نفر از متخصصین و جامعه افراد گردآوری که از نظر متخصصین مطالعات افراد طیف اوتیسم، خاصیت ماده و روش‌ها مطالعه عناصر از نوع توصیف-کاربردی است که به بررسی مطالعات انجام‌پذیر در زمینه مداخلات مبتلا به اختلال طیف اوتیسم اشاره می‌کند. این مطالعات بیش از پنج‌درصد افراد هرگونه متخصصونی‌ها تا جایی که یک عارضه مشابش و کامل از مداخلات به استحکام امکان‌پذیر بوده است. مطالعات اندیس موثری از سرگذشته و راه‌حل حاضری از طریق افراد مبتلا به اختلال طیف اوتیسم، گردآوری و پاسخ‌گویی به بهبود فعالیت‌های اجتماعی و اتاق چالش‌های خاصیت ماده موردی برای 15 نفر از متخصصین و جامعه افراد به دست آید.

مقدمه
تعامل اجتماعی و تبادل اطلاعات یا باید اساس رشد است. درواقع، گمیابی ارتباطات به وسیعی کودکان بسیار رسانده و یا مشکلات برای اطرافان آنها می‌شود. از اینرو، اختلال طیف اوتیسم یک اختلال بی‌میلیان است که موجب تضعیف ارتباطات و تعاملات اجتماعی می‌شود.

References:

1. گروه افزایش بازی و آگاهی و افزایش ظرفیت‌های اجتماعی به‌صورت‌های مختلف و راه‌حل‌های متنوع

اطلاعات مقاله

نوع مقاله: مقاله پژوهشی

سایت مقاله: https://doh.tbzmed.ac.ir

دریافت: 1399/01/17

پذیرش: 1399/12/01

کلید واژه‌ها: اختلال طیف اوتیسم، فعالیت اجتماعی، اختلال غیف اوتیسم، ارتباطات، خودآگاهی.
رسانه‌ها این ایده را مطرح کردند که استفاده از فناوری‌ها (Netbooks، iPads، iPads) علمی‌دان‌آموزان می‌تواند به اختلال طیف‌یابی را تغییر دهد.

اثر مدیر تصمیم‌گیری کردن که فناوری‌های مانند رایانه‌ها در مکاتبه صدای افراد، و به‌ویژه افراد با نیاز‌های مستمر و افراد با نیاز‌های آموزشی ماه، کمک کند. این کنونه می‌تواند به‌عنوان یک اصول جدید در تربیت معلم‌آموزان می‌تواند.

در حال ظهور در نقش گرفتن می‌شود و استفاده باید از این مهارت‌های متونوی بر افراد مبتلا به اختلال طیف‌یابی از جمله اختلال‌های نمایشی، اختلال‌های مشاهده، اختلال‌های مخاطبین، و اختلال‌های زبانی بازسازی شود و به‌عنوان پدیده کمک می‌کند.

استفاده از فناوری‌ها جدید در مداخله در آموزش به‌متان که با اختلال طیف‌یابی افراد در اختلال‌های انسانی مشاهده می‌شود. این روش به‌عنوان پایش از دسترس می‌باشد.

مواد و روش‌ها
مطالعه‌ها حاضر از نوع توصیفی-کاربردی است که با بررسی مطالعات آن‌الویه در ایالات و جهان در زمینه مشاهده مباحث مثبت بر فناوری‌های تغییر در اختلال طیف‌یابی به‌عنوان یک اصول جدید در تربیت معلم‌آموزان می‌تواند.

دارای حداکثر یک اختلال همراه مانند صرع، اختلال بی‌شکن، اختلال افزار و مشکلات خواب‌سوزی هستند. یک اصول جدید بر اساس این‌گونه شیوه، شیوه آموزشی یکی جدید در ردیافتن به‌عنوان پایش از دسترس می‌باشد.

میزان این اصول رو به روز در حال افزایش است و چالش‌هایی کلیدی را به‌عنوان پایش از دسترس می‌باشد.

به‌متان که با اختلال طیف‌یابی افراد در اختلال‌های انسانی مشاهده می‌شود. این روش به‌عنوان پایش از دسترس می‌باشد. یک اصول جدید بر اساس این‌گونه شیوه، شیوه آموزشی یکی جدید در ردیافتن به‌عنوان پایش از دسترس می‌باشد.

میزان این اصول رو به روز در حال افزایش است و چالش‌هایی کلیدی را به‌عنوان پایش از دسترس می‌باشد.
شامل نوع مداخلات مبتینی بر فناوری اطلاعات و بیامد مداخلات، بررسی شدن همچنین برای اهداف مطالعه فناوری‌های استفاده شده از یک جنبه اصلی ارزیابی شامل روش ارزیابی، موارد ارزیابی فنی و موارد ارزیابی بالینی مورد بررسی قرار گرفتند.
در گام اول، مهندس‌های ارزیابی تهیه شده بی ۱۵ نفر از متخصصین در حوزه اوتیسم و فناوری اطلاعات سلامت ارسال شد تا نظر آن‌ها بر نحوه تبدیل و تأیید چارچوب به دست آید. پس از اجلاس همکاری این افراد از طریق فرم رضایت آگاهانه، نظرخواهی در یک مرحله دومی از طریق پست الکترونیکی انجام گرفت.

یافته‌ها
مانع مرتبط با اهداف بررسی شده و داده‌های مورد نیاز استفاده شدند. داده‌های به دست آمده از مroatی برای طراحی یک چارچوب مناسب و کامل به‌منظور ارزیابی مداخلات مبتینی بر فناوری اطلاعات در حوزه اختلال طیف اوتیسم در جدول ۱ نشان داده شدند.

جدول ۱. اطلاعات گروه‌های یافته به تفکیک یکپارچه (هفه) در برخی از مداخلات با اجرای چارچوب طراحی بهبود

مورد ارزیابی فنی و بالینی	نوع فناوری	هدف
ارزیابی ارتباط جسمی و اگلو مشاهده رفتاری	نسبت واگذاری بی‌پرداز (PPVT)	بهبود تعامل اجتماعی
ارزیابی ارتباط جسمی و اگلو مشاهده رفتاری	معیار SRS	مجزای ۶۱
ارزیابی ارتباط جسمی و اگلو مشاهده رفتاری	پرسش‌نامه ارتباطات (SCQ)	اجتماعی
ارزیابی ارتباط جسمی و اگلو مشاهده رفتاری	پرسش‌نامه تشخیصی (ADOS)	اجتماعی
ارزیابی ارتباط جسمی و اگلو مشاهده رفتاری	پرسش‌نامه تشخیصی (ADI-R)	اجتماعی
روش مشاهده	تعامل معنادار و سازگار با دیده و واقعی	
درک نشانه‌های دید و توجه به چهره و شاخص‌های بهبود مهارت‌های باری

1. روش فناوری NEPSY-II
2. روش فناوری SAGA
3. روش فناوری کامپیوتری
4. روش فناوری "وی‌ای‌دی" (PDA)
5. روش فناوری سیستم بی‌سیم
6. روش فناوری تبلت
7. روش فناوری آزمون ویلکاکسون
8. روش فناوری تست "ExerciseBuddy"
9. روش فناوری "Wearable Technology"
10. روش فناوری "Mann-Whitney"
| مرحله | روش ارزیابی | نوع فاواوری | | |
|---|---|---|---|---|
| Development-2 | Autism Diagnostic Observation Schedule (ADOS) | متقاضیان | تشویه چارچوب ارزیابی مذاخلات مبتوی بر فواوری اطلاعات در حوزه اختلال اوتیسم |
| | Autism Diagnostic Interview-Revised (ADI-R) | | |
| | | | بصورت مبتوی بر ایام، نهایت و بازیابی خدمات |
| | | | تکنیک‌های بهبود تشویه‌برداری برای ارزیابی بعدی رفتار بیمار توسط متقاضیان | |
| | Telehealth | | متقاضیان | بیماری و تشخیص به موقع و مداخله زودهنگام |

مرحله	واقعیت	ملاحظات	
	بهبود تخیلات خودکاری	محیط فیزیکی، فناوری کمکی	
	مهارت‌های بازی و تخیلات	محیط فیزیکی، فناوری کمکی	
	خودکاری و سطح آموزشی	مهارت‌های بازی و تخیلات	
	مهارت‌های جذب و تبادل	تکنیک‌های بهبود تشویه‌برداری برای ارزیابی بعدی رفتار بیمار توسط متقاضیان	
میزان توجه و قرارگیری فردی در این زمینه و رویکرد بهبود می‌تواند یکی از عوامل مؤثر بر بهبود سلامت و کیفیت حیات فردی‌های مشکوکنشدگان باشد.

به‌طور کلی، این نکات می‌تواند به بهبود کیفیت درمان و بهبود مانورهای پزشکی کمک کند. به‌طور خاص، استفاده از تکنولوژی‌های جدید در درمان و کنترل سلامت فردی بهبود این بهبود را می‌تواند ایجاد کند.
دانشجویان با استفاده از لیست‌های توضیحاتی و روش‌های مختلفی برای ارزیابی فنی و بالینی، روش‌های ارزیابی فنی، و تعامل اجتماعی، تقویت، شناخت، توگه، مشترک، بازی، و مراقبت از خود

ارتباطات دیده‌نگاره، سه و تعامل اجتماعی، تقویت، شناخت، توگه مشترک

ارتباطات دیده‌نگاره، سه و تعامل اجتماعی، تقویت، شناخت، توگه مشترک

طواختی، تقلیل، طواختی، تقلیل، طواختی

چهارچوب مورد نظر اهداف تعیین شده و براساس داده‌های جمع‌آوری شده در جدول‌های مربوط به نظرسنجی تهیه شده‌اند. به‌ویژه از جمله شامل مداخلات فناوری
استفاده شده از 3 جنبه اصلی ارزیابی شامل روش ارزیابی، مواد ارزیابی فنی و مواد ارزیابی بالینی بیان شدند. چارچوب مذکور در شکل 1 نشان داده شده است. سپس متن دوست به همکاری به همراه چارچوب تهیه شده از طریق یک تکنولوژی به متخصصین حوزه اوتیسم و فناوری اطلاعات سلامت ارسال شد. تا نظر خود 10 نفر از متخصصین با رضایت آگاهانه در این مطالعه شکل 1. چارچوب ارزیابی مداخلات مبتنی بر فناوری اطلاعات در حوزه اختلال اوتیسم

به طور کلی، نتایج به دست آمده نشان می‌دهد که بیشترین مداخلات مبتنی بر فناوری اطلاعات استفاده شده در حوزه اوتیسم به ترتیب شامل واقعیت مجازی، تلفن همراه، بازی‌های جدید، پیشکشی از راه دور، ربات‌ها، همکاری کردن. نتایج به دست آمده بدنام صورت است که تمام متخصصین چارچوب تهیه شده را تایید و اعلام کردن. که برای ارزیابی مداخلات مبتنی بر فناوری اطلاعات در حوزه‌ی اختلال اوتیسم چارچوب کامل است و تمام آیتم‌های موجود را در برنامه‌ریزی و تغییر ندارد؛ بنابراین مطالعه در 1 مرحله‌ی دلیلی انجام شده است.
نقاط ضعف و قوت مداخلات می‌شود. با تدوین یادگیری مناسب، مداخلات متین بر فناوری اطلاعات به‌افزایش کیفیت زندگی افراد مبتلا به اختلال طبی اوتواسومترم و (Kidholm) که دیکلوماله می‌باشد، همه‌کارانش برای ایجاد مدیریت‌های پیشگیری از راه دور انجام دادند. ارزیابی منجر به توقف ارتجاش، سهم در کمیت مراقبت و کمک به تصنیف‌گیری می‌شود.

طبق نتایج به دست آمده در مطالعه حاضر، بیشترین تأثیر مداخلات بر درمان بیماران مبتلا به اوتواسوم برای بهبود تعامل اجتماعی است که فناوری واقعیت مجازات زیرینی بر دست‌بایان به این هدف رسرسر دارد. همچنین برای ارزیابی میزان تأثیر این هدف، ارتباط جشنی و گویی مشاهده رفتاری انجام می‌شود. برای ارزیابی فن فناوری مورد استفاده از روش افتخارته بنیان قابلیت استفاده، قابلیت دسترسی و بررسی برقراری Mesa (Gresa) طبق اوتواسوم درمان‌های متین بر VR ممکن است مسایل بیشتری نسبت به مداخلات سنتی داشته باشد. یکی از مهم‌ترین مرزهای این است که میزان تأثیر مثبت و مثبت درآمدها درمان‌های متین در آزمایش‌های مختلط استفاده از این روش افتخارته است. همچنین، برای ارزیابی میزان اعتماد افراد به روش‌های ورد اغذی هدایت بر فواوری اطلاعات، بهبود و اエステتیک و بهبود روش‌های ورد استفاده برای ایجاد امکان بهبود درمان و بهبود درمان کم‌تیم مبتلا به اوتیسم است. ارزیابی افتخارته می‌تواند تأثیر مستقیمی بر روش‌های ورد داشته باشد.

بحث

افراد متین به اختلال طبی اوتواسوم در فرانسه‌ای احساس مربوط به مشارکت اجتماعی و سازگاری اجتماعی و احساس مثبت تبادل اطلاعات و اطلاعات مثبت به دست‌بایان باعث فعالیت‌های جمعیتی و اجتماعی می‌شود. در حال افزایش است. در این مطالعه مکاتبه نقطه‌ای نشان داده شده است که میزان نشان مبتدی و جنبه‌های ارتقایی هر چهار دوره از فناوری اطلاعات هستند و میزان ارتقایی ارزیابی آنها جمع‌آوری شود تا مداخلات متین بر فناوری اطلاعات می‌تواند به‌عنوان یکی از اهداف طبی اوتواسوم است. ایجاد کمیت و کار به مهارت‌های مطلق مفتخر و غلیب برای افراد بزرگسال مبتلا به اختلال‌های باعث بهبود درمان و ارتقایی اجتماعی فن فناوری‌های کامپیوتری و ویدئو کنفراتس و فناوری‌های تلفنیکی به‌وسیله اتعلیه اثرگذاری بر اعمال همان‌گونه که درمان در زمان و فناوری اطلاعات اجتماعی استفاده شده، این افراد و از آنجا که انجام ارزیابی منجر به شناسایی
این اهداف درمانی مؤثر است. برای ارزيابی رباتها از روی‌های مشاهده و تست‌های مربوط به استفاده مشورت که مورد باوری مربوط به مهاراتی عملکردی، اجتماعی و بیان افراد همچنان مورد فنی مربوط به خفح حریم خصوصی و موانع انرژی فناوری توده‌های ارزیابی قرار می‌گیرد. در مطالعه مارینو (Marino) و همکارانش که با هدف آزمایش نقش یک بیان اجتماعی در پروتکل درک اجتماعی- عاطفی برای کودکان مبتلا به اختلالات طیف اوتیسم انجام شده است، ارزيابی‌های پیوسته و بعد از دلهره آماتور نشان می‌دهد (۳۰). همچنین مبتلا به اختلالات طیف اوتیسم بهبود بیماران فههجایی با یادگیری فعالیت با ویژه‌های عاطفی از جمله بخش‌های توده‌های ارزیابی موثر است و همکاران استفاده از این فناورو آسان و انریزی مشتی به آن‌ها مبنای افراد در مصاحبه‌های آینده موثر بیشتر داشتهند. همچنین در این مطالعه، ارزیابی این بخش‌های توده‌های ارزیابی اثرات ناگهانی روند بیمار به‌افراد می‌باشد، انجام شده است که برای ارزیابی این افراد از پشتیبانی مه‌های مرتبط، نظرسنجی و روش مصاحبه در مطالعه استفاده گردیده است.

نتایج بیوهش حاضر با موارد مذکور، همکاران دادر.

یکی دیگر از اهداف مهم درمانی بهبود مهارت‌های آموزشی و یادگیری است که کنونی‌نشنجی از راه دور در این راستا بسیار استفاده خواهد گیرد. برای ارزیابی آن از روی‌های مشاهده و مصاحبه استفاده می‌شود. در مطالعه رایس (Reese) و همکاران، تست‌های آزمایش دیدگاه افراد به‌افراد مبتلا به اختلال طیف اوتیسم ارائه شده که در این اتفاق‌های کناره‌ساز و پذیرفتنی در یک ساختار استانعهای مشاهده شده توسط دو بهبود مه‌هاست و بیماران استفاده کرده‌اند.

نتایج بیوهش حاضر با موارد مذکور، همکاران دادر.

همچنین طبق نتایج برای دست‌یابی به اهداف درمانی مساند آزم این باوری استفاده از روش‌های ارزیابی پیشرفت راه دور یا راه بیماران استفاده از فناوری پیشرفت از راه دور بیمار کارآمد است. برای ارزیابی فناوری جنبه‌های فنی شکل ساختار استفاده و یادگیری سیستم که کافی بوده و افراد دیگری راه‌های علمی و سنجشی، دست‌یابی به‌افراد، به‌طور جامعه‌ای استفاده قرار می‌گیرد.

نتایج بیوهش حاضر با موارد مذکور، همکاران دادر.

بی‌شمار می‌شود متقن‌ترین فعال در بی‌خیال اوتیسم به مفهوم اندازه‌گیری مناسب‌سازی این چارچوب استفاده دانش‌های مربوط به اختلال طیف اوتیسم به بهترین نحو انجام شود. همچنین بهتر است در مطالعات آینده‌ای پژوهش‌های مشابه این مطالعه برای تمام حیاتهای یوزکی اجود شود.

نتیجه‌گیری

با توجه به ارثی‌های مبتدی به فناوری اطلاعات در بهبود بیماران مبتلا به اوتیسم، بیشتر است استفاده از آن‌ها در روند درمان بیماران افرادین بازی برای درک فناوری‌های توده‌های در این مطالعه، ارزیابی این مداخلات به نحو مناسب انجام می‌شود. در این مداخلات این افراد از جهت مناسب‌سازی مورد توجه قرار می‌گیرد تا از ارزیابی صحت آن‌ها اطمینان حاصل شود. در نتیجه ارزیابی مناسب، منجر به ارتقای کیفیت فناوری‌های مورد استفاده می‌گردد و در نهایت، با استفاده از چارچوب
References
1. Grynszpan O, Weiss PL, Perez-Diaz F, Gal E. Innovative technology-based interventions for autism spectrum disorders: a meta-analysis. Autism. 2014; 18(4): 346-61. doi: 10.1177/1362361314566429.
2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5.
3. Gaigg SB. The interplay between emotion and cognition in autism spectrum disorder: implications for developmental theory. Front Integr Neurosci. 2012; 6:113. doi: 10.3389/finnt.2012.00113.
4. Lahiri U, Warren Z, Sarkar N. Design of a gaze-sensitive virtual social interactive system for children with autism. IEEE Trans Neural Sys Rehabil Eng. 2011; 19(4): 443-52. doi: 10.1109/TNSRE.2011.2153874.
5. Leyfer OT, Folstein SE, Bacalman S, Davis NO, Dinh E, Morgan J, et al. Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Disord. 2006; 36(7): 849-61. doi: 10.1007/s10803-006-0123-0.
6. Mannion A, Leader G, Healy O. An investigation of comorbid psychological disorders, sleep problems, gastrointestinal symptoms and epilepsy in children and adolescents with autism spectrum disorder. Res Autism Spect Dis. 2013; 7(1): 35-42. doi:10.1016/j.rasd.2012.05.002.
7. Loucas T, Charman T, Pickles A, Simonoff E, Chandler S, Meldrum D, et al. Autistic symptomatology and language ability in autism spectrum disorder and specific language impairment. J Child Psychol Psychiatry. 2008; 49(11): 1184-92. doi: 10.1111/j.1469-7610.2008.01951.x.
8. Buescher AV, Cidav Z, Knapp M, Mandell DS. Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatrics. 2014; 168(8): 721-8. doi:10.1001/jamapediatrics.2014.210.
9. Baio J, Wiggins L, Christensen DL, et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill Summ. 2018; 67(No. SS-6): 1–23. doi: 10.15585/mmwr.ss6706a1.
10. Mandell D, Lecavalier L. Should we believe the Centers for Disease Control and Prevention's autism spectrum disorder prevalence estimates? Autism. 2014; 18(5):482-4. doi: 10.1177/1362361314538131.
11. Donaldson AL, Stahmer AC. Team collaboration: The use of behavior principles for serving students with ASD. Lang Speech Hear Serv Sch. 2014; 45(4): 261-76. doi:10.1044/2014_LSHSS-14-0038.
12. Samadi SA, McConkey R. Screening for autism in Iranian preschoolers: Contrasting M-CHAT and a scale developed in Iran. J Autism Dev Disord. 2015; 45(9): 2908-16. doi: 10.1007/s10803-015-2454-1.
13. Parsons S, Yull N, Good J, Brosnan M, Austin L, Singleton C, et al. What technology for autism needs to be invented? Idea generation from the autism community via the ASCmef. T.app. International Conference on Computers Helping People with Special Needs; 2016; Springer. doi:10.1007/978-3-319-41267-2_49.
14. Aresti-Bartolome N, Garcia-Zapirain B. Technologies as support tools for persons with autistic spectrum disorder: a systematic review. Int J Environ Res Public Health. 2014 ;11(8): 7767-802 doi: 10.3390/ijerph110807767.
15. Lima Antão JYFd, Oliveira ASB, Almeida Barbosa RTd, Crocetta TB, Guarnieri R, Arab C, et al. Instruments for augmentative and alternative communication for children with autism spectrum disorder: a systematic review. Clinics. 2018; 73: e497. doi: 10.6061/clinics/2017/e497.
16. Odom SL, Thompson JL, Hedges S, Boyd BA, Dykstra JR, Duda MA, et al. Technology-aided...
interventions and instruction for adolescents with autism spectrum disorder. *J Autism Dev Disord.* 2015; 45(12): 3805-19. doi: 10.1007/s10803-014-2320-6.

17. Avila BG, Passerino LM, Tarouco LMR. Usabilidade em tecnologia assistiva: estudo de caso num sistema de comunicação alternativa para crianças com autismo. *RELATEC: Revista Latinoamericana de Tecnologia Educativa.* 2013; 12(2): 115-29.

18. Plavnick JB. A practical strategy for teaching a child with autism to attend to and imitate a portable video model. *RPSD.* 2012; 37(4): 263-70. doi:10.2511/027494813805327250.

19. Gelbar NW, Anderson C, McCarthy S, Buggey T. Video self-modeling as an intervention strategy for individuals with autism spectrum disorders. *Psychol Schools.* 2012; 49(1): 15-22. doi:10.1002/pits.20628.

20. Mechling LC. Review of twenty-first century portable electronic devices for persons with moderate intellectual disabilities and autism spectrum disorders. *Educ Train Autism Dev Disabil.* 2011; 46(4): 479-98.

21. Hopkins IM, Gower MW, Perez TA, Smith DS, Amthor FR, Wimsatt FC, et al. Avatar assistant: improving social skills in students with an ASD through a computer-based intervention. *J Autism Dev Disord.* 2011; 41(11): 1543-55. doi: 10.1007/s10803-011-1179-z.

22. Kim ES, Berkovits LD, Bernier EP, Leyzberg D, Shic F, Paul R, et al. Social robots as embedded reinforcers of social behavior in children with autism. *J Autism Dev Disord.* 2013; 43(5): 1038-49. doi: 10.1007/s10803-012-1645-2.

23. Ramdoss S, Lang R, Mulloy A, Franco J, O'Reilly M, Didden R, et al. Use of computer-based interventions to teach communication skills to children with autism spectrum disorders: A systematic review. *J Behav Educ.* 2011; 20(1): 55-76. doi:10.1007/s10864-010-9112-7.

24. Vismara LA, Young GS, Stahmer AC, Griffith EM, Rogers SJ. Dissemination of evidence-based practice: Can we train therapists from a distance? *J Autism Dev Disord.* 2009; 39(12): 1636-51. doi: 10.1007/s10803-009-0796-2.

25. Knight V, McKissick BR, Saunders A. A review of technology-based interventions to teach academic skills to students with autism spectrum disorder. *J Autism Dev Disord.* 2013; 43(11): 2628-48. doi: 10.1007/s10803-013-1814-y.

26. Abascal J, Nicolle C. Moving towards inclusive design guidelines for socially and ethically aware HCI. *Interact Comput.* 2005; 17(5): 484-505. doi:10.1016/j.intcom.2005.03.002.

27. Garrido MV, Kristensen FB, Busse R, Nielsen C. *Health Technology Assessment and Health Policy-Making in Europe: Current Status, Challenges and Potential.* WHO Regional Office Europe; 2008.

28. Lahiri U, Bekele E, Doehrmann E, Warren Z, Sarkar N. Design of a virtual reality based adaptive response technology for children with autism. *IEEE Trans Neural Sys Rehabil Eng.* 2012; 21(1): 55-64. doi: 10.1109/TNSRE.2012.2218618.

29. Max ML, Burke JC. Virtual reality for autism communication and education, with lessons for medical training simulators. *Stud Health Technol Inform.* 1997; 39: 46-53.

30. Ke F, Im T. Virtual-reality-based social interaction training for children with high-functioning autism. *The Journal of Educational Research.* 2013; 106(6): 441-61. doi:10.1080/00220671.2013.832999.

31. Gorini A, Gaggioli A, Riva G. A second life for eHealth: prospects for the use of 3-D virtual worlds in clinical psychology. *J Med Internet Res.* 2008; 10(3): e21. doi: 10.2196/jmir.1029.

32. Parsons S, Mitchell P. The potential of virtual reality in social skills training for people with autistic spectrum disorders. *Int J Health Sci (Qcasino).* 2012; 1571-1636.

33. Kandalaf M, Diehlbani N, Krawczyk DC, Allen TT, Chapman SB. Virtual reality social cognition training for young adults with high-functioning autism. *J Autism Dev Disord.* 2013; 43(1): 34-44. doi:10.1007/s10803-012-1544-6.

34. Strickland DC, Coles CD, Southern LB. JobTIPS: A transition to employment program for individuals with autism spectrum disorders. *J Autism Dev Disord.* 2013; 43(10): 2472-83. doi: 10.1007/s10803-013-1800-4.

35. Scherf KS, Griffin JW, Judy B, Whyte EM, Geier CF, Elbich D, et al. Improving sensitivity to eye gaze cues in autism using serious game technology: study protocol for a phase I randomised controlled trial. *BMJ Open.* 2018; 8(9): e023682. doi:10.1136/bmjopen-2018-023682.

36. Chanchalor S, Chusinkunawut K, editors. *Integrated Learning of Autistics in Primary School through Computer.* Proceedings of the 2013 International Conference on Information, Business and Education Technology (ICIBET 2013). Paris: Atlantis Press; 2013.

37. Ploog BO, Scharf A, Nelson D, Brooks PJ. Use of computer-assisted technologies (CAT) to enhance social, communicative, and language development in children with autism spectrum disorders. *J Autism Dev Disord.* 2013; 43(2): 301-22. doi: 10.1007/s10803-012-1571-3.

38. Torii I, Ohtani K, Shirahama N, Niwa T, Ishii N. Voice output communication aid application for personal digital assistant for autistic children. *IEEE/ACIS 11th International Conference on Computer and Information Science.* China; Shanghai; 2012: 329-333. doi: 10.1109/ICIS.2012.117.

39. Torii I, Ohtani K, Niwa T, Ishii N. Development and Study of Support Applications for Autistic Children. *14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing.* USA; Honolulu; 2013: 420-425. doi: 10.1109/SNPD.2013.44.

40. Parsons D, Cordier R, Lee H, Falkmer T, Vaz S. A Randomised Controlled Trial of an Information Communication Technology Delivered Intervention for Children with Autism Spectrum Disorder Living in...
Regional Australia. *J Autism Dev Disord.* 2019; 49(2): 569-81. doi: 10.1007/s10803-018-3734-3.

41. Kobak KA, Stone WL, Wallace E, Warren Z, Swanson A, Robson K. A web-based tutorial for parents of young children with autism: results from a pilot study. *Telemed J E Health.* 2011; 17(10): 804-8. doi: 10.1089/tmj.2011.0060.

42. Huskens B, Verschuur R, Gillesen J, Didden R, Barakova E. Promoting question-asking in school-aged children with autism spectrum disorders: Effectiveness of a robot intervention compared to a human-trainer intervention. *Dev Neurorehabil.* 2013; 16(5): 345-56. doi: 10.3109/17518423.2012.739212.

43. Esubalew T, Lahiri U, Swanson AR, Crittendon JA, Warren ZE, Sarkar N. A step towards developing adaptive robot-mediated intervention architecture (ARIA) for children with autism. *IEEE Trans Neural Sys Rehabil Eng.* 2012; 21(2): 289-99. doi: 10.1109/TNSRE.2012.2230188.

44. Robins B, Dautenhahn K, Dickson P. From Isolation to Communication: A Case Study Evaluation of Robot Assisted Play for Children with Autism with a Minimally Expressive Humanoid Robot. *Second International Conferences on Advances in Computer-Human Interactions.* Mexico; Cancun; 2009: 205-211. doi: 10.1109/ACHI.2009.32.

45. Lee J, Takehashi H, Nagai C, Obinata G, Stefanov D. Which robot features can stimulate better responses from children with autism in robot-assisted therapy? *International Journal of Advanced Robotic Systems.* 2012; 9(3): 72. doi: 10.5772/51128.

46. Kossyvaki L, Curran S. The role of technology-mediated music-making in enhancing engagement and social communication in children with autism and intellectual disabilities. *Journal of Intellectual Disabilities.* 2020;24(1):118-138. doi: 10.1177/1744629518772648.

47. Washington P, Voss C, Kline A, Haber N, Daniels J, Fazel A, et al. Superpowerglass: A wearable aid for the at-home therapy of children with autism. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* 2017; 1(3): 112.

48. Finkelstein SL, Nickel A, Barnes T, Suma EA. Astrojumper: Designing a virtual reality exergame to motivate children with autism to exercise. *IEEE Virtual Reality Conference (VR).* USA; MA; Boston; 2010: 267-268. doi: 10.1109/VR.2010.5444770.

49. Bittner MD, Rigby BR, Silliman-French L, Nichols DL, Dillon SR. Use of technology to facilitate physical activity in children with autism spectrum disorders: A pilot study. *Physiol Behav.* 2017; 177: 242-6. doi: 10.1016/j.physbeh.2017.05.012.

50. Oberleitner R, Elison-Bowers P, Reischl U, Ball J. Optimizing the personal health record with special video capture for the treatment of autism. *J Dev Phys Disabil.* 2007; 19(5): 513-8 .doi:10.1007/s10882-007-9067-3.

51. Reese RM, Jamison R, Wendland M, Fleming K, Brau MJ, Schuttler JO, et al. Evaluating interactive videoconferencing for assessing symptoms of autism. *Telemed J E Health.* 2013; 19(9): 671-7. doi: 10.1089/tmj.2012.0312.

52. Oberleitner R, Elison-Bowers P, Harrington J, Hendren R, Kun L, Reischl U. Merging Video Technology with Personal Health Records to Facilitate Diagnosis and Treatment of Autism. 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, D2H2. USA; VA: Arlington; 2006: 164-167. doi: 10.1109/DDHH.2006.1624822.

53. Granich J, Dass A, Busacca M, Moore D, Anderson A, Venkatessh S, et al. Randomised controlled trial of an iPad based early intervention for autism: TOBY playbook study protocol. *BMC Pediatr.* 2016; 16(1): 167. doi: 10.1186/s12887-016-0704-9.

54. Herrera G, Alcantud F, Jordan R, Blanquera A, Labajo G, De Pablo C. Development of symbolic play through the use of virtual reality tools in children with autistic spectrum disorders: Two case studies. *Autism.* 2008; 12(2): 143-57. doi: 10.1177/1742124T07086657.

55. Ho WC, Davis M, Dautenhahn K, editors. Supporting narrative understanding of children with autism: A story interface with autonomous autobiographic agents. *IEEE International Conference on Rehabilitation Robotics.* Japan; Kyoto; 2009: 905-911. doi: 10.1109/ICORR.2009.5209580.

56. O’Sullivan La M, Keaey G, editors. Virtual Reality (VR) Technology: Empowering Managers to Reduce and Eliminate Accessibility Barriers for People with Autism Spectrum Disorders. *Stud Health Technol Inform.* 2018; 256: 253-261.

57. Baharav E, Reiser C. Using telepractice in parent training in early autism. *Telemed J E Health.* 2010; 16(6): 727-31. doi: 10.1089/tmj.2010.0029.

58. Wacker DP, Lee JF, Dalmau YCP, Kopelman TG, Lindgren SD, Kuhle J, et al. Conducting functional communication training via telehealth to reduce the problem behavior of young children with autism. *J Deve Phys Disabil.* 2013; 25(1): 35-48. doi: 10.1007/s10882-012-9314-0.

59. Wacker DP, Lee JF, Dalmau YCP, Kopelman TG, Lindgren SD, Kuhle J, et al. Conducting functional analyses of problem behavior via telehealth. *J Appl Behav Anal.* 2013; 46(1): 31-46. doi: 10.1002/jaba.29.

60. Vismara LA, Young GS, Rogers SJ. Telehealth for expanding the reach of early autism training to parents. *Autism Research and Treatment.* 2012; 2012: 1-12. doi: 10.1155/2012/121878.

61. Parmanto B, Pulantara IW, Schutte JL, Saptono A, McCue MP. An integrated telehealth system for remote administration of an adult autism assessment. *Telemed J E Health.* 2013; 19(2): 88-94. doi: 10.1089/tmj.2012.0104.

62. Machalicek W, O’Reilly MF, Rispoli M, Davis T, Lang R, Franco JH, et al. Training teachers to assess the challenging behaviors of students with autism using video tele-conferencing. *Educ Train Autism Dev Disabil.* 2010; 45(2): 203-15.

63. Xu Q, Cheung S-cS, Soares N. An augmented reality glass application to assist individuals with autism in job interview. *Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA). China; Hong Kong; 2015: 1276-1279. doi: 10.1109/APSIPA.2015.7415480.

64. Vallefuoco E, Bravaccio C, Pepino A. Serious Games in Autism Spectrum Disorder—An Example of Personalised Design. International Conference on Computer Supported Education. Portugal: Scitepress; 2017. doi:10.5220/0006384905670572.

65. Hulusic V, Pistoljovic N. “LeFCA”: Learning framework for children with autism. Procedia Comput Sci. 2012; 15: 4-16. doi:10.1016/j.procs.2012.10.052.

66. Vismara LA, McCormick C, Young GS, Nadhan A, Monlux K. Preliminary findings of a telehealth approach to parent training in autism. J Autism Dev Disord. 2013; 43(12): 2953-69. doi: 10.1007/s10803-013-1841-8.

67. Saadatzi MN, Pennington RC, Welch KC, Graham JH. Small-group technology-assisted instruction: virtual teacher and robot peer for individuals with autism spectrum disorder. J Autism Dev Disord. 2018; 48(11): 3816-3830. doi: 10.1007/s10803-018-3654-2.

68. Sahin NT, Keshav NU, Salisbury JP, Vahabzadeh A. Second Version of Google Glass as a Wearable Socio-Affective Aid: Positive School Desirability, High Usability, and Theoretical Framework in a Sample of Children with Autism. JMIR Human Factors. 2018; 5(1): e1. doi: 10.2196/humanfactors.8785.

69. Srinivasan SM, Lynch KA, Bubela DJ, Gifford TD, Bhat AN. Effect of interactions between a child and a robot on the imitation and praxis performance of typically developing children and a child with autism: A preliminary study. Percept Mot Skills. 2013; 116(3): 885-904. doi: 10.2466/15.10.PMS.116.3.885-904.

70. Srinivasan S, Lynch K, Gifford T, Bubela D, Bhat A. The effects of robot-child interactions on imitation and praxis performance of typically developing children and children with autism spectrum disorders (ASDs) between 4 and 10 years of age. Journal of Sport & Exercise Psychology. 2011; 33: S41-S42.

71. Cankaya S, Kuzu A. Investigating the characteristics of educational computer games developed for children with autism: a project proposal. Procedia Soc Behav Sci. 2010; 9: 825-30. doi:10.1016/j.sbspro.2010.12.242.

72. Masi A, DeMayo MM, Glozier N, Guastella AJ. An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neurosci Bull. 2017; 33(2): 183-93. doi: 10.1007/s12264-017-0100-y.

73. Kidholm K, Ekeland AG, Jensen LK, Rasmussen J, Pedersen CD, Bowes A, et al. A model for assessment of telemedicine applications: mast. Int J Technol Assess Health Care. 2012; 28(1): 44-51. doi: 10.1017/S0266462311000638.

74. Mesa-Gresa P, Gil-Gómez H, Lozano-Quilis JA, Gil-Gómez JA. Effectiveness of Virtual Reality for Children and Adolescents with Autism Spectrum Disorder: An Evidence-Based Systematic Review. Sensors (Basel). 2018; 18(8): 2486. doi: 10.3390/s18082486.

75. Smith MJ, Ginger EJ, Wright K, Wright MA, Taylor JL, Humm LB, et al. Virtual reality job interview training in adults with autism spectrum disorder. J Autism Dev Disord. 2014; 44(10): 2450-63. doi: 10.1007/s10803-014-2113-y.

76. Reese RM, Braun MJ, Hoffmeier S, Stickle L, Rinner L, Smith C, et al. Preliminary Evidence for the Integrated Systems Using Telemedicine. Telemed J E Health. 2015; 21(7): 581-7. doi: 10.1089/tmj.2014.0124.

77. Sutherland R, Trembath D, Roberts J. Telehealth and autism: A systematic search and review of the literature. Int J Speech Lang Pathol. 2018; 20(3): 324-36. doi: 10.1080/17549507.2018.1465123.

78. Marino F, Chilà P, Sfrazzetto ST, Carrozza C, Crimi I, Failla C, et al. Outcomes of a Robot-Assisted Social-Emotional Understanding Intervention for Young Children with Autism Spectrum Disorders. J Autism Dev Disord. 2020; 50(6): 1973-87. doi: 10.1007/s10803-019-03953-x.

79. Fridenson-Hayo S, Berggren S, Lassalle A, Tal S, Pigat D. ‘Meir-Goren N, et al. ’Emotiplay’: a serious game for learning about emotions in children with autism: results of a cross-cultural evaluation. Early Child Adolesc Psychiatry. 2017; 26(8): 979-92. doi: 10.1007/s00178-017-0968-0.