Relationship between Serum Soluble Suppression of Tumorigenicity (ST) 2 and Global Longitudinal Strain in Pre-eclampsia at Delivery and 1 Year After

Mohammad Rizki Akbar*, Muhammadnur Rachim Enoch, Rien Afrianti, Prameswari Hawani Sasmaya, Achmad Fitrah Khalid, Dewi Anggraeni, Michael Aditya Lesmana

Department of Cardiology, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, West Java, Indonesia

Abstract

BACKGROUND: Pre-eclampsia is characterized by severe inflammatory response and endothelial dysfunction that could lead to myocardial injury and remodeling. Biomarker examination such as soluble Suppression of Tumorigenicity 2 (sST2), which has been used as a marker for myocardial fibrosis and Global Longitudinal Strain (GLS) by echocardiography could be used to predict mortality and detect subclinical myocardial dysfunction.

AIM: The purpose of this study was to determine the correlation between serum levels of sST2 and GLS in patients with pre-eclampsia 1 year postpartum.

METHODS: This was a cross-sectional study with correlation analysis. GLS examination was done using EchoPAC workstation. Maternal plasma of sST2 was measured using the Presage ST2 Assay. Rank-Spearman correlation analysis was conducted to analyze the correlation between GLS and sST2 at delivery and 1 year postpartum.

RESULTS: There were 30 subjects with pre-eclampsia who fulfilled the criteria. Average age was 33 ± 6 years and majority were multipara (76.7%) and early onset pre-eclampsia (76.7%) with sST2 value of 66.1 ± 7.7 ng/mL and GLS of −17 ± 0.4%. One year after delivery, the sST2 value is 22 ± 1.4 ng/mL and an average value GLS is −19.7 ± 0.4%. Analysis showed moderate positive correlation between sST2 and GLS at delivery (r = 0.439, p = 0.015), but there was no correlation between sST2 and GLS 1 year after delivery (r = 0.036, p = 0.961).

CONCLUSIONS: This study demonstrates a significant correlation between sST2 and GLS at delivery in patients with pre-eclampsia but not in 1 year after delivery.

Introduction

Pre-eclampsia is one of the leading causes of death in women worldwide, causing 50,000 deaths every year [1]. The prevalence in Indonesia was 5.3% [2]. Abnormal placentation would lead to release of angiogenic factor giving rise to endothelial dysfunction and systemic vasospasm [3]. Patients with history of pre-eclampsia had been shown to have an increased risk of myocardial infarction, heart failure, and stroke [4].

Subclinical cardiac dysfunction in pre-eclampsia was thought to be the underlying pathophysiology, in which subsequent cardiovascular event occurs. Strain echocardiography assessment using Global Longitudinal Strain (GLS) could identify subclinical cardiac dysfunction with high accuracy and also describes global and segmental LV function [5]. Several studies have shown worse GLS in pre-eclampsia and return to normal after delivery [6], [7], [8], [9].

Biomarker also plays an important role in myocardial injury, fibrosis, and cardiac remodeling. Soluble ST2 (sST2) is a novel biomarker that correlates with the degree of ventricular hypertrophy and fibrosis [10], [11], [12]. sST2 could predict cardiovascular morbidity and mortality and proved better compared to other similar biomarker in predicting cardiovascular events [13]. The previous studies also showed an increase in sST2 either before sign and symptoms of pre-eclampsia were found, and its values were higher compared to normal pregnancy and return to normal 1 year after delivery [14], [15], [16]. Therefore, we sought to examine the relation between GLS and sST2 in pre-eclampsia and 1 year after delivery.

Materials and Methods

Subject recruitment and ethics statement

This study was approved by the West Java Research Ethics Committee, and written consent was obtained from each participant. Patients considered...
eligible for this study met the following criteria: The patient (1) must be within the third trimester of pregnancy (> 30 weeks), (2) must have a history of at least one visit to the designated hospital (Dr. Hasan Sadikin General Hospital and Bandung’s General Hospital), (3) must be diagnosed with pre-eclampsia by a certified obstetrician, and (4) must have no history or signs of valvular heart disease, congenital heart disease, myocarditis, left ventricular ejection fraction < 50%, asthma, sepsis, malignancy, obesity, and autoimmune disease. Pre-eclampsia was defined as the new onset of a systolic blood pressure (BP) > 140 mmHg or diastolic blood pressure > 90 mmHg after 20th week of gestation accompanied with new onset proteinuria > 300 mg in a 24 h urine collection, 50 mg/mmol protein/creatinine ratio, or at least 2+ on dipstick testing on two consecutive measurements [3]. We included all subjects that meet the inclusion and exclusion criteria, a total of 30 patients were included after applying the exclusion criteria.

Sample collection and detection of sST2 by ELISA

Blood samples were collected from the cubital vein of the left arm by an expert nurse, 3 ml of blood were taken into tubes containing Ethylene diamine tetra-acetic acid (EDTA). The samples then stored and transported to the Department of Clinical Pathology of RSUP Dr. Hasan Sadikin Bandung within 30 min with a cooler box at 4°C and were centrifuged for 15 min at 4°C and stored at 2−8°C. Maternal plasma of sST2 was measured using the Presage® ST2 Assay according to the manufacturer’s instruction.

Global longitudinal strain measurement

Detailed echocardiographic evaluation was performed at admission. The examination was done using Vivid 7 (GE Vingmed Ultrasound AS, Horten, Norway). Echocardiographic calculations of chamber quantification were performed in accordance with the recommendations of the American Society of Echocardiography 2015 [17]. Cardiac images were scanned at long-axis apical three chambers, two chambers, and four chambers view. The mean frame rate was 60 frames/s (range 50–70). Data were stored on the hard disk of the echocardiographic machine and transferred to a workstation (EchoPAC PC, GE Vingmed) for offline analysis. The system calculates mean global strain and strain rate values for all predetermined LV segments. All echocardiography images and strain values measurement were performed by one cardiologist specialized in echocardiography to minimize variability.

Statistical analysis

The Saphiro–Wilk test was used to assess the distribution of the data. Normally distributed data will be analyzed using Pearson test and for those whose data not normally distributed, we used the Spearman test to correlate variables between the groups. Correlation coefficient was deemed very low, low, moderate, strong, and very strong according to r value (0–0.199, 0.2–0.399, 0.4–0.599, 0.6–0.799, and 0.8–1.0, respectively) with p < 0.05 was considered as statistically significant. Variables at antepartum period will be compared with postpartum period using paired t-test when data were normally distributed that Wilcoxon test will be used when data were non-normally distributed [18]. Statistical analyses were performed with STATA, version 24.0 (STATA Corp LCC, Texas, USA).

Results

This study included a total of 30 subjects at antepartum and four subjects were lost to follow-up during 1 year follow-up. The characteristics of this study population are listed in Table 1.

Table 1: Baseline characteristics

Variables	Antepartum (n = 30)	Postpartum (n = 26)
Age (years)*	33 (6)	34 (6)
Gestational age (weeks)**	33 (30–39)	33 (50–39)
Parity, (%)	7 (23.3)	7 (23.3)
Primipara	7 (23.3)	7 (23.3)
Multipara	23 (76.7)	23 (76.7)
BMI before pregnancy (kg/m²)**	25.6 (18.3–30.5)	25.6 (18.3–30.5)
BMI (kg/m²)**	30.6 (21.0–38.8)	26.2 (4.1)
Onset of pre-eclampsia, n (%)*	Early	Later
	23 (76.7)	7 (23.3)
Blood pressure (mmHg)**, median (range)	163 (150–210)	130 (110–180)
Systole (mmHg)	102 (90–190)	88 (70–120)
Diastole (mmHg)	23.7 (5.4)	21.5 (5.6)
Echocardiography parameters LVMI Simpson’s (%)	89.3 (21.2)	89.3 (21.2)

*Data was shown as mean ± SD. **Data was shown as median (minimum–maximum). BMI: Body mass index, LAVI: Left atrial volume index, LVEF: Left ventricular ejection fraction, LVMI: Left ventricular mass index, SD: Standard deviation, BP: Blood pressure.

Table 2 showed a comparison of sST2 and GLS at delivery and 1 year after. The analysis showed there are significant differences from both parameters. Mean differences of antepartum and postpartum are between −2.7 ± 0.4 with improvement of GLS value of 1.5–3.9 points (CI 95%).

As listed at Table 3, correlation analysis showed moderate positive correlation between parameters sST2 with GLS at antepartum (r = 0.439, p = 0.015), but not 1 year after delivery (r = 0.010; p: 0.961).

Table 2: Soluble suppression of tumorigenicity 2 and global longitudinal strain levels at delivery and 1 year postpartum

Variables	Antepartum	Postpartum	p
sST2 (ng/ml)	66.1 ± 7.7	22.0 ± 1.4	< 0.001*
GLS (%)	−17.0 ± 0.4	−19.7 ± 0.4	< 0.001 **

*Analysis using paired t-test. **Analysis using Wilcoxon test. GLS: Global longitudinal strain, sST2: Soluble suppression of tumorigenicity 2; SD: Standard deviation.
Elevation of sST2 in pre-eclampsia population and especially in third trimester, and significantly increased in pre-eclampsia condition (38.3 ng/ml and 85.89 ng/ml; p <0.001). Hawani et al. also found that pre-eclampsia is the most contributing factor in the elevation of sST2 in pregnancy [20]. Another study conducted by Maharani et al. also showed abnormal elevation of sST2 in pre-eclampsia population and the level of sST2 is different between those with and without complication (124.76 ng/ml and 227.93 ng/ml; p <0.001) [21].

This study result demonstrated lower mean values for GLS (−17 ± 0.4%) compared to normal reference value. Previous studies also found similar results with significantly worse GLS compared to normal population [6], [22]. This results were similar to a study conducted by Abdel et al. who stated that worse GLS in pre-eclampsia patients caused by biochemical alteration and the increase of afterload in pre-eclampsia [7]. Our study showed that GLS increased 1 year after delivery. Similar with our study, Paudel et al. showed that GLS increased 6 months after delivery. They suggested that with normalization of blood pressure and afterload, LV functions returned to normal values [9]. On the other hand, there is six people still with reduced GLS in our study. Studies by Amarial suggested that renal insufficiency, endothelial dysfunction, and chronic inflammation contribute into long-term pathology for the previous pre-eclamptic patients. Residual hypertension also contributed into reduced GLS [23], [24].

To the best of our knowledge, there has not been any study evaluating relation between sST2 and GLS in pre-eclampsia and 1 year after delivery. Our study demonstrates positive correlation between GLS and sST2 level at delivery but not 1 year after delivery. This means that the higher of sST2 during antepartum period associates with higher GLS, meaning there was subclinical LV dysfunction during this period. This may be caused by several things. First, serum levels of sST2, apart from being produced by cardiomyocytes, can also be produced by the placenta during pregnancy. This was potentially caused by active transportation of sST2, originating from amniotic fluid, across the placenta to the maternal circulation. Evidence suggests that sST2 originating from amniotic fluid participates in the pathogenesis of pre-eclampsia, while the underlying mechanism of this transport remains unclear. However, the placenta is unlikely to be the sole source of sST2 in pre-eclamptic pregnancies [20]. Normalization of blood pressure and lower level of inflammatory response could explain why sST2 and GLS were not associated during 1 year postpartum period as GLS and sST2 were affected by blood pressure and inflammatory response [20]. Another studies conducted by Fabiani et al. and Weir et al. also showed that sST2 has a negative correlation with GLS and systolic function, although the study population was those with aortic stenosis and myocardial infarction. The result of this study encourages the usage of sST2 as a biomarker to detect subclinical systolic dysfunction in pre-eclampsia patients [25]. However, this result should be interpreted cautiously, as this study did not measure the presence of complications of pre-eclampsia and did not include those with residual hypertension after delivery, as those condition could lead to different results based on different studies [21], [23], [24], [25].

This study has a few limitations. First, we did not measure the presence of complications of pre-eclampsia, as it could cause higher sST2 level that may lead to different results. Second, some exclusion criteria in this study were only based on history taking, which could bias the results. Third, the relatively small sample size and recruitments of patients due to pandemic of COVID-19 may not represent whole population.

Discussions

Patients with pre-eclampsia has higher risks for cardiovascular events in the future despite the pregnancy has been terminated or complete recovery of blood pressure. Theoretically, severe myocardial and endothelial injury could be caused by initial event and lead to cardiovascular event in the future [4], [19]. The degree of myocardial injury depends on the onset and severity of pre-eclampsia. Elevated average level of sST2 in this study is consistent with theory as sST2 is a marker of fibrosis [14]. Elevated level of sST2 has also been linked with endothelial dysfunction, severe elevation of blood pressure, and non-cardiac source like severe immunological response from endothelial cells and villous surface in pregnancy conditions. In after delivery condition, sST2 should decrease because the condition is resolved [16]. In this study, mean sST2 was found significantly elevated (66.1 ng/ml) compared with normal value. This result is consistent with study conducted by Hawani et al. that stated sST2 was elevated in normal pregnancy, especially in third trimester, and significantly increased in pre-eclampsia condition (38.3 ng/ml and 85.89 ng/ml; p <0.001). Hawani et al. also found that pre-eclampsia is the most contributing factor in the elevation of sST2 in pregnancy [20]. Another study conducted by Maharani et al. also showed abnormal elevation of sST2 in pre-eclampsia population and the level of sST2 is different between those with and without complication (124.76 ng/ml and 227.93 ng/ml; p <0.001) [21].

This study result demonstrated lower mean values for GLS (−17 ± 0.4%) compared to normal reference value. Previous studies also found similar results with significantly worse GLS compared to normal population [6], [22]. This results were similar to a study conducted by Abdel et al. who stated that worse GLS in pre-eclampsia patients caused by biochemical alteration and the increase of afterload in pre-eclampsia [7]. Our study showed that GLS increased 1 year after delivery. Similar with our study, Paudel et al. showed that GLS increased 6 months after delivery. They suggested that with normalization of blood pressure and afterload, LV functions returned to normal values [9]. On the other hand, there is six people still with reduced GLS in our study. Studies by Amarial suggested that renal insufficiency, endothelial dysfunction, and chronic inflammation contribute into long-term pathology for the previous pre-eclamptic patients. Residual hypertension also contributed into reduced GLS [23], [24].

To the best of our knowledge, there has not been any study evaluating relation between sST2 and GLS in pre-eclampsia and 1 year after delivery. Our study demonstrates positive correlation between GLS and sST2 level at delivery but not 1 year after delivery. This means that the higher of sST2 during antepartum period associates with higher GLS, meaning there was subclinical LV dysfunction during this period. This may be caused by several things. First, serum levels of sST2, apart from being produced by cardiomyocytes, can also be produced by the placenta during pregnancy. This was potentially caused by active transportation of sST2, originating from amniotic fluid, across the placenta to the maternal circulation. Evidence suggests that sST2 originating from amniotic fluid participates in the pathogenesis of pre-eclampsia, while the underlying mechanism of this transport remains unclear. However, the placenta is unlikely to be the sole source of sST2 in pre-eclamptic pregnancies [20]. Normalization of blood pressure and lower level of inflammatory response could explain why sST2 and GLS were not associated during 1 year postpartum period as GLS and sST2 were affected by blood pressure and inflammatory response [20]. Another studies conducted by Fabiani et al. and Weir et al. also showed that sST2 has a negative correlation with GLS and systolic function, although the study population was those with aortic stenosis and myocardial infarction. The result of this study encourages the usage of sST2 as a biomarker to detect subclinical systolic dysfunction in pre-eclampsia patients [25]. However, this result should be interpreted cautiously, as this study did not measure the presence of complications of pre-eclampsia and did not include those with residual hypertension after delivery, as those condition could lead to different results based on different studies [21], [23], [24], [25].

This study has a few limitations. First, we did not measure the presence of complications of pre-eclampsia, as it could cause higher sST2 level that may lead to different results. Second, some exclusion criteria in this study were only based on history taking, which could bias the results. Third, the relatively small sample size and recruitments of patients due to pandemic of COVID-19 may not represent whole population.

Conclusions

There was a moderate positive correlation between sST2 and GLS at delivery in pre-eclampsia but not 1 year after delivery. Further, investigation with larger population was needed to explore the possibilities of recovery of GLS and sST2 in pre-eclampsia.

Table 3: Correlation between soluble suppression of tumorigenicity 2 and global longitudinal strain at delivery and 1 year postpartum

Parameters	GLS (means)	Coefficient r (95% IK)	p
sST2 (antepartum)	0.438 (−0.105–0.691)	0.055	
sST2 (postpartum)	0.010 (−0.559–0.241)	0.961	

sST2: Soluble suppression of tumorigenicity 2; GLS: Global longitudinal strain.
References

1. Gathiram P, Moodley J. Pre-eclampsia: Its pathogenesis and pathophysiology. Cardiovascular J Africa. 2016;27:71-8. https://doi.org/10.5830/CVJA-2016-009 PMid:27213853

2. Wantania J, Attamami A, Siswishanto R. A comparison of 2-methoxyestradiol value in women with severe preeclampsia versus normotensive pregnancy. J Clin Diagn Res. 2017;11:QC35-8. https://doi.org/10.5830/CVJA-2016-009 PMid:28511459

3. Cunningham G, Leveno K, Bloom S, Dashe J, Hoffman B, Casey B, et al. Williams Obstetrics. 25th ed. New York: McGraw-Hill Education; 2018.

4. Melchiorre K, Sharma R, Thilaganathan B. Cardiovascular implications in preeclampsia: An overview. Circulation. 2014;130:703-14. https://doi.org/10.1161/CIRCULATIONAHA.113.003664 PMid:25135127

5. Fabiani I, Pugliese NR, Santini V, et al. Speckle-tracking imaging, principles and clinical applications: A review for clinical cardiologists. In: Echocardiography in Heart Failure and Cardiac Electrophysiology. London: InTech; 2016.

6. Shahul S, Rhee J, Hacker MR, Gulati G, Mitchell JD, Hess P, et al. Subclinical left ventricular dysfunction in preeclamptic women with preserved left ventricular ejection fraction: A 2D speckle-tracking imaging study. Circ Cardiovasc Imaging. 2012;5:734-9. https://doi.org/10.1161/CIRCIMAGING.112.973818 PMid:22891044

7. Nouh S, al Deftar-Maged H, Sisi M. Assessment of left atrial size and function in women with normal vs. high risk for preeclampsia at 20 weeks of pregnancy. Am J Obstet Gynecol. 2015;212:403.e1-9. https://doi.org/10.1016/j.ajog.2015.01.009 PMid:26111424

8. Paudel A, Tigen K, Yoldemir T, Guclu M, Yildiz I, Cincin A, et al. Maternal plasma-soluble ST2 concentrations are elevated prior to the development of early and late onset preeclampsia – A longitudinal study. J Maternal Fetal Neonatal Med. 2018;31:418-32. https://doi.org/10.1080/14767058.2017.1286319 PMid:28114842

9. Shahul S, Rhee J, Hacker MR, Gulati G, Mitchell JD, Hess P, et al. Subclinical left ventricular dysfunction in preeclamptic women with preserved left ventricular ejection fraction: A 2D speckle-tracking imaging study. Circ Cardiovasc Imaging. 2012;5:734-9. https://doi.org/10.1161/CIRCIMAGING.112.973818 PMid:22891044

10. Gruson D, Ahn S, Rousseau M. Biomarkers of inflammation and cardiac remodeling: The quest of relevant companions for the risk stratification of heart failure patients is still ongoing. Biochem Med (Zagreb). 2011;21:254-63. http://doi.10.1161/CIRCIMAGING.112.973818 PMid:22891044

11. Melchiorre K, Thilaganathan B. Maternal cardiac function in preeclampsia. Curr Opin Obstet Gynecol. 2011;23:440-7. https://doi.org/10.1097/GCO.0b013e32834cb7a4 PMid:21986727

12. Mukaka MM. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research; 2012. http://www. mmj.medcol.mw. [Last accessed on 2022 Mar 15].

13. Maharani L, Wibowo N. Soluble growth stimulation gene-2 level in women with severe preeclampsia patients without and with complications. JSAFOG. 2018;10:123-6.

14. Revesz T, Algazi H, Patkai A, Zsakai Z, Szilagyi G, Neszmélyi B, et al. Elevated soluble ST2 concentrations are elevated prior to the development of early and late onset preeclampsia – A longitudinal study. J Maternal Fetal Neonatal Med. 2018;31:418-32. https://doi.org/10.1080/14767058.2017.1286319 PMid:28114842

15. Mugerli S, Ambrozij I, Geršak K, Lučovnik M. Elevated soluble-ST2 concentrations in preeclampsia correlate with echocardiographic parameters of diastolic dysfunction and return to normal values one year after delivery. J Maternal Fetal Neonatal Med. 2021;34:379-85. https://doi.org/10.1080/14767058.2019.1609934 PMid:31056999

16. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003 PMid:25559473

17. Akbar et al. Relationship between serum sST2 and global longitudinal strain in preeclampsia at delivery and one year after delivery. J Maternal Fetal Neonatal Med. 2021;34:379-85. https://doi.org/10.1080/14767058.2019.1609934 PMid:31056999

18. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003 PMid:25559473

19. Melchiorre K, Thilaganathan B. Maternal cardiac function in preeclampsia. Curr Opin Obstet Gynecol. 2011;23:440-7. https://doi.org/10.1097/GCO.0b013e32834cb7a4 PMid:21986727

20. Sasmaya PH, Khalid AF, Anggraeni D, Irianti S, Akbar MR. Differences in maternal soluble ST2 levels in the third trimester of normal pregnancy versus preeclampsia. Eur J Obstet Gynecol Reprod Biol X. 2021;13:100140. https://doi.org/10.1016/j.eurox.2021.100140 PMid:34917932

21. Maharani L, Wibowo N. Soluble growth stimulation gene-2 level in women with severe preeclampsia patients without and with complications. JSAFOG. 2018;10:123-6.

22. Cho Ki, Kim SM, Shin MS, Kim EJ, Cho EJ, Seo HS, et al. Impact of gestational hypertension on left ventricular function and geometric pattern. Circ J. 2011;75:1170-6. https://doi.org/10.1253/circj.cj-10-0763 PMid:21389638

23. Aamaral LM, Cunningham MW, Cornelius DC, LaMarca B. Preeclampsia: Long-term consequences for vascular health. Vascu Health Risk Manag. 2015;11:403-15. https://doi.org/10.2147/VHRM.S64798 PMid:26203257

24. Cheng S, Shah AM, Albisu JP, Desai AS, Hilkert RJ, Izzo J, et al. Reversibility of left ventricular mechanical dysfunction in patients with hypertensive heart disease. J Hypertens. 2014;32:2479-87. http://doi.10.1097/HJH.0000000000000340 PMid:25232755

25. Fabiani I, Conte L, Pugliese NR, Calogero E, Barletta V, Di Stefano R, et al. The integrated value of sST2 and global longitudinal strain in the early stratification of patients with severe aortic valve stenosis: A translational imaging approach. Int J Cardiovasc Imaging. 2017;33:1915-20. https://doi.org/10.1007/s10554-017-1203-2 PMid:28664478