Prevalence and Associated Factors of under-five Mortality in Ethiopia: Further Analysis of Ethiopian Mini Demographic and Health Surveys 2019

Girma Gilano*

Assistant Professor and researcher at Arba Minch University, College of Medicine and Health Sciences, School of Public Health Department of Health Informatics, Ethiopia.

*Corresponding Author

Girma Gilano. Assistant Professor and researcher at Arba Minch University, College of Medicine and Health Sciences, School of Public Health Department of Health Informatics, Ethiopia.

Submitted: 2024, Oct 05; Accepted: 2024, Oct 20; Published: 2024, Nov 11

Abstract

Introduction

Over decades, the efforts to tackle under-five mortality have not adequately addressed the problem in underdeveloped countries such as Ethiopia. Ethiopia developed transformation plan targets based on UNICEF and sustainable development goals. However, under-five mortality remained the major cause of loss of lives in the country due to inadequate evidence to trigger large-scale intervention. The current study aims to identify the associated factors of under-five mortality to enhance future policy decisions.

Methods

According to the study criteria, we extracted and cleaned data in STATA v. 15.0. The data was then weighted as per the sampling weight, primary sampling unit, and strata before analyzing in STATA 15.0. Data management consisted of descriptive (mean, standard deviation, and proportion or percent) and association statistics. Binary logistic regression was deliberated for this analysis and we checked each variable at 0.25 p-values to include in the model. The final p-value to declare association was p < 0.05 and AOR with 95% CI was also applied to describe the results. The data source was the Ethiopian Mini Demographic Health Survey (EMDHS) 2019. EMDHS collected the data from 8,885 in a face-to-face manner with a 99% response rate.

Results

From 5,527 numbers of weighted women under-five analyzed in this study, the proportion of under-five mortality was 277.23(5.02%). Factors like 2nd birth order 0.52(0.35, 0.79), 3rd-4th 0.49(0.28, 0.84), 1-2 ANC visits 0.24(0.12, 0.49, ANC visit three' 0.14(0.07, 0.28), ANC visit four and above 0.22(0.14, 0.36), in marriage mother 0.43(0.19, 0.96), '1-2 under-five children 0.02(0.011, 0.03), and greater than three under-five children 0.007(0.0007, 0.004) were all negatively associated with under-five mortality rate.

Conclusion

To obtain the exalted outcome out of this study, the government might need to increase antenatal care, women's education, institutional delivery, and modern contraceptive methods use through enhanced community mobilization, health education using community health workers, increasing access to essential cares of mothers and children, and birth interval.

Keywords: Under-Five, Mortality, Demographic Health Survey Data, Ethiopia

1. Introduction

According to the Sustainable Development Goal (SDG) target 3.2, the under-five mortality is 25 deaths or below per 1,000 live births and 12 deaths or below per 1000 live births for neonatal by 2030 [1]. Previously from 1990 to 2015, Ethiopia has done very well with millennium development goals and can reduce child mortality by 67%; This proportion is still very high, despite the change [2-4]. For the commencement of the current United Nations Children's Fund (UNICEF) plan, the country appeared not good enough as per the recent status. Ethiopia as a developing African country has many limitations to achieving the UNICEF plan including resource availabilities, access to service, and attitude of the service takers, knowledge, and health-seeking behaviors [3,4]. Struggling with these problems, the country has been working very hard to achieve the plans. As analysis of the Ethiopian Demographic Health Survey (EDHS) 2016
indicated, child mortality in the country was 46.7%. Factors like Vaccination; currently using contraceptives; antenatal care; fathers whose level of education is secondary or above; mothers who completed their primary school; mothers who have birth interval greater than 36 months and age of the mother at first birth is greater than of the 16 years incur less mortality [6]. A machine learning prediction indicated the under-five mortality ranges between 46.3 and 67.2% and it was non-random throughout the country. Family size, distance from water, breastfeeding status, births birth in the preceding 5 years, child sex, birth intervals, antenatal care, birth order, type of water source, and mother’s body mass index played an influencing role [7,8]. The risk of under-five mortality increases as household size approaches seven. The higher wealth index and age of the mother decreased child deaths [8].

A multilevel negative binomial analysis indicated that mothers attained higher education, female-headed household, age of household head, preceding birth interval ≥48 months, a child who had a history of diarrhea, multiple birth type, mothers who delivered in the health facility, residents of Addis Ababa, and Amhara region had impacted under-five mortality [9]. According to a study conducted in Tigray, most deaths of the child occurred in early the time of neonates. Primipara, prematurity, low birth weight, perinatal asphyxia, respiratory distress syndrome, congenital anomalies, neonatal sepsis, and duration of hospital stay increased the deaths [7,8]. Maternal age, rural residence, ever-terminated pregnancy, and place of delivery were increased perinatal deaths, while husband education, higher wealth index, longer birth interval, female household leader, and the number of antenatal care (ANC) are inversely related [12]. The under-five mortality showed clustering in the country in Benishangul-Gumuz, Afar, Gambella, and the South Nation Nationality and People (SNNP) Regions until the year 2016 [13]. In the rural part of the country similar factors like region differences, education of parents, singleton, health facility delivery, occupation of parents, mothers age >16 at first birth, breastfeeding, use of a contraceptive method, child vaccination, high family size, repeated antenatal visits, and preceding birth interval played the role [14].

In another study, children with 2-3 years and 3 years and above preceding birth interval showed less death before their fifth, all other factors remained the same [15]. In the high under-five mortality region of the country, it was 74 per 1000 live births and the highest amongst twin births (262 per 1000 live births) [16]. Under-five mortality was experienced by 27.2% of women in another study and there was not much difference in associated factors from the aforementioned studies [17]. The residential inequality spatial analysis in 2016 indicated that the under-five mortality was decreased by 3.2% in the previous years [18].

In Africa, the impact and the exact reason for the magnitude for the problem was poorly understood because of the fragmented evidence in the literature. Ethiopia as one country in the continent has impact-level targets of HSTP (Ethiopian Health Sector Transformation Plan) to reduce under-five year, infant, and neonatal mortality rates 30, 20, and 10 per 1,000 live births by 2020 [2]. Thus, as the time limit of the plan was completed, it was worth a detailed assessment of the magnitude and associated factors of the under-five mortality in the country.

2. Methods and Materials
2.1 Data Source and Participants
We used Ethiopia Interim Demographic Health Survey (EIDHS) 2019 cross-sectional data; the country is located at (3°-14°N, 33° – 48°E). EIDHS is carried out between EDHSSs and has a country-representative sample. Data collection used the nine regions and two city administrations. Contextually, these regions were categorized as agrarian (Benishangul-Gumuz Amhara, Southern Nations, Nationalities, and People (SNNP), Gambela, Oromia, Harari, and Tigray Regions); pastoralists (Afar and Somali); city administrations (Addis Ababa and Dire-Dawa). We salvaged the data from the DHS website: www.dhsprogram.com after we were allowed to do so by the measure program. The sampling procedure for EMDHS was carried out similarly to EDHS by EPHI (Ethiopian Public Health Institute) in coordination with CSA. The 9 regions and 2 city administrations were stratified into rural and urban to yield 21 strata where enumeration areas (EA) were sampled independently in each stratum. Probability proportional allocation was carried out before selecting the sample as per the size of units. In the first stage, 305 EAs were selected with probability proportional to EA size and the household listing was carried out in each EA. In the second stage, 30 households per cluster were selected with equal probability of systematic selection. Of the 9,012 eligible women for the interview, 8,885 women have completed the interview to make the response rate of 99%. The interview was conducted with the respondents who were either permanent residents or visitors who stayed the last day in residence in a face-to-face manner [19]. We extracted 5,527 numbers of weighted women with children aged 0-4 years from the dataset. Socio-demographic characteristics, reproductive healthcare variables, child vaccination, death, and illness were included in the questionnaire.

2.2 Study Variables
The outcome variable for this study was the death of under-five children. We coded it as “0” if the child is alive and “1” if the child has died.

2.3 Independent (covariates) Variable
sex of the child, type of birth, mother’s age at first birth of the child, family size, breastfeeding status, preceding birth interval, mother’s education, father’s education, area of residence, vaccination, ANC, marital status, income of the mother relative to her husband, and source of drinking water, region, and type of place of residence.

2.4 Data Management and Analysis
Statistics were presented as descriptive (weighted frequencies, mean, standard deviations, and percentage or proportions. Since we used a large dataset with many variables, we also checked multi-collinearity using the mean Variance inflation factor (VIF) which was 4.64 indicating within-range inflation.

2.5 Data Processing and Analysis
According to the study criteria, we cleaned data in STATA v. 15.0. The data was then weighted as per sampling weight,
primary sampling unit, and strata before analyzing in STATA 15.0. Data management consisted of descriptive and association statistics using STATA 15. As the data were collected from different regions, initially we planned to conduct multilevel logistic regression with spatial analysis. However, we discovered that there was insufficient cluster variation (ICC=0.13) and a discrepancy between initial and final deviance negatively which formed unstable models. Thus, a binary logistic regression was deliberated for this analysis and we checked each variable at 0.25 p-values to include in the model. The final p-value to declare association was p<0.05 and AOR with 95% CI was also applied to describe the results.

2.6 Ethical Considerations
We kept all information regarding respondents confidential and no household or individual information was identified during analysis or publication. For the EMDHS data collection, permission was acquired from the Ethiopian Health Nutrition and Research Institute (EHNRI) Review Board and the National Research Ethics Review Committee (NRERC) at the Ministry of Science and Technology. After clearing the purpose of the study, verbal informed consent for participation was collected.

3. Result
3.1 Descriptive Statistics
We pooled 5,527 numbers of weighted women with under-five children from the EMDHS dataset. The socio-demographic characteristics of the respondents are presented in Table 1. The proportion of under-five mortality was 277.23(5.02%). The average age of the children was 29.24±0.23 months, while the larger age of the respondents was 25-29 and 30-34 years with 31.72% and 21.57% proportions respectively. The 57.46% birth interval reported by the respondents was over 30 months followed by 34.27% 15-30 months, while most of the participants were from Oromo (40%), SNNP (20%), and Amhara (19%). The educational achievements of the participants were no education (53.66%) and primary education (35.32%). The poor wealth index magnitude accounted for 45.53% and 75.27% of participants were also from rural residences. Women who reported no ANC and contraceptive uses were 47.31% and 59.94% respectively, while the proportion of home delivery was 52.46% among the respondents; (table 1)

Variables	Weighted frequency (%)
Age in 5yrs group	
15-19	1,027.40(18.59)
20-24	1,753.31(31.72)
25-29	1,191.98(21.57)
30-34	814.93(14.74)
35-39	368.62(6.67)
40-44	107.38(1.94)
45-49	263.58(4.77)
Highest educational level	
No education	1,952.34(35.32)
Primary	415.04(7.51)
Secondary & Higher	193.98(3.51)
Above higher	
Marital status	
Single	22(0.41)
Married	5,292.07(95.75)
Divorced	65.58(1.19)
Region	
Tigray	371.30(6.72)
Afar	85.93(1.55)
Amhara	1,049(19.00)
Oromia	2,210(40.00)
Somali	408.51(7.39)
Benishangul	67.26(1.22)
SNNPR	1,105.91(20.01)
Gambela	24.70(0.45)
Harari	16.38(0.30)
Addis Ababa	156.21(2.83)
Dire Dawa	29.83(0.54)
Religion	
Orthodox	1,859.77(33.65)
Protestant	1,469.30(26.58)
Muslim	2,100.47(38.00)
Others	97.38(1.76)

ANC visits	Weighted frequency (%)
No visit	2,614.60(47.31)
1-2 visit	422.43(7.64)
3 visit	801.14(14.50)
≥4 visits	11,688(30.55)
Table 1: The Sociodemographic Factors of the Participants in under-Five Mortality in Ethiopia, EMDHS 2019

Factor	Value	95% CI	95% CI
Divorced	146.82(2.66)		
Contraceptive methods	3,312.93(59.94)		
No	2,214.00(40.06)		
Yes			
Place of delivery			
Home	2,899.56(52.46)		
Health facility	2,627.37(47.54)		
Child alive			
No	2,739.23(47.61)		
Yes	3,014 (52.39)		
Source of drinking water			
Improved	1,986 (35.94)		
Unimproved	3,540.72(64.06)		
Types of toilet facility			
Improved	4,640.58(83.96)		
Unimproved	886.35(16.04)		
Birth interval			
<15	277.53(6.45)		
15-30	1,431.48(33.25)		
>30	2,596.63(60.31)		
Number of U5 children			
No <5 child	200.52(3.63)		
1-2	4,587.16(83.00)		
≥3	739.24(13.38)		
Wealth status			
Poor	2,519.04(45.58)		
Middle	1,041.19(18.84)		
Rich	1,966.69(35.58)		
Sex of the child			
Male	2,842.10(51.42)		
Female	2,684.83(48.58)		

3.2 Factors Associated with Under-Five Mortality

During binary logistics analysis: birth order, the current age of the child, antenatal care (ANC), marital status, number of under-five children, and birth interval were linked with under-five child mortality. Compared to the first birth, children of birth order 2nd and 3rd-4th had 51% and 48% reduced odds of death before the fifth birthday with AOR of 0.49(0.28, 0.84) and 0.52(0.35, 0.79) respectively. The odds of death among children whose mothers followed ANC were significantly decreased compared to ‘no ANC’ with AOR of 0.24(0.12, 0.49) for ‘visit 1-2’; 0.14(0.07, 0.28) for ‘visit three’; 0.22(0.14, 0.36) for ‘visit four and above’. Compared to any other marital status, the odds of death were decreased by 57% for children whose mother was in a marriage with an AOR of 0.43(0.19, 0.96). The odds of death of under-five children for families with ‘1-2 children’ was decreased by 98% and by 99% for families who had greater than three under-five children with AOR of 0.02(0.011, 0.03) and 0.007(0.0007, 0.004) respectively. Children with birth interval within 15-30 months had 62% reduced under-five mortality, while those with birth interval >30 months had 81% reduced under-five mortality with AOR of 0.38(0.24, 0.60) and 0.19(0.12, 0.31) respectively compared to those who have no under-five children.
4. Discussion

4.1 Descriptive Statistics

From the total 5,527 study population extracted and weighted from the EMDHS dataset, we found that the under-five mortality was 5.02%. The finding was completely different from previous results where the proportion was 67% from EDHS 2016 [7,20]; 27.2% from another study of EDHS(18); and 46.7% from the additional study in the country [6]; however, it is consistent with 5.1% of machine learning prediction in 2016. The reason might be the issues related to sampling, area differences, and study criteria. The proportion was 55 per 1,000 live births in 8,885 total participants from the report of EMDHS itself indicating the sampling reduction factor mattered [19]. The educational achievement of the participants was dominated by ‘no education’ (53.66%) followed by 35.32% ‘primary education’. Despite all efforts made in previous decades and reports of amplified educational status in the country [2], women’s education remained lagging behind expectations. The finding is consistent with the studies conducted in the country with 66.08% of participants lacking formal education from EDHS 2016 and poor educational achievement identified in the whole sub-Saharan countries [21,22,23]. It might mean that educational achievements cannot be affected in a short time. And enlighten the need for a long time to have a visible impact on the socio-demographic characteristics of the mothers. Studies associate maternal education as one of the factors to increase under-five mortality [6,15,24]. Educational status might be critically affected by the economic status of the households and the behavioral factors could play a larger portion of its limitations.

In the last 20 years, Ethiopia put forth all available resources to increase ANC and family planning proportions; however, from the current analysis, we found that ‘no ANC’ and ‘no contraceptive’ uses accounted for 47.31% and 59.94% fraction of the participants respectively. Our study had a better ANC than the finding in Northeast Ethiopia (29.3%) in 2016 and 42.8% in Ambo Town in 2014 [25,26]; however, it is lower than 72.6% in the Geode zone and 78.5% in Debre Berhane [27,28]. Similarly, contraceptive use was higher than 34.7% in EDHS 2016 [14,29] and lower than that of 60% in South African [30]. In all cases, access, availability, and awareness might be played advanced roles that need consideration. The worrying fact was the proportion of home delivery which was 52.46%. Despite the lack of sufficient evidence to show its relationship in the current

Table 2: Factors Associated with Under-Five Mortality in Ethiopia, Data From EMDHS 2019

Variable	p-value	AOR	Lower 95%	Upper 95%	
Birth order					
1st birth		1	0.49	0.28	0.84
2nd birth	0.01	0.49	0.28	0.84	
3-4 birth	0.002	0.52	0.35	0.79	
>4 birth					
Current age of the child (age since death)	0.012	0.98	0.97	0.997	
Antenatal care visits		0.53	0.29	0.97	
No ANC	1				
1-2 visits	0.000	0.24	0.12	0.49	
3rd visit	0.000	0.14	0.07	0.28	
>4th visit	0.000	0.22	0.14	0.36	
Marital status					
Single	1				
Married	0.037	0.43	0.19	0.96	
Divorced	0.41	0.50	0.10	2.56	
Divorced					
Number of U5 children					
No <5 child	1	0.02	0.01	0.03	
1-2	0.000	0.007	1	0.004	
≥3	0.000	0.00	0.00	0.07	
Birth interval					
<15	1	0.38	0.24	0.60	
15-30	0.000	0.19	0.12	0.31	
>30	0.000				
study, the proportion must draw the attention of policymakers for more cutting-edge interventions. Previous studies also reported an average of greater than 50% home deliveries [31] and it was contributing to more than half of the child deaths [6].

4.2 Factors Associated with Under-Five Mortality
Higher birth order child carries a lower risk of under-five death from our analysis. This is relatively consistent with EDHS 2011 [8] and EDHS 2016 [20] findings that showed the risk decreased as birth order increased. Advancing experience and learning from past events as well as increasing the skill of handling child issues while the problems still exist from mothers as their age increase could be the possible reasons. As the age of the child increased, the chance to survive to the fifth birthday increased. This finding was also evidenced by the study in Nigeria which showed that at any age from gestation to less than 5 years after birth, mortality of children decreased [32]. The reason might be an advancement in immunity and the ability of children to indicate their needs and problems might reduce mortality.

The children whose mothers followed ANC had a decreased risk of dying before the fifth birthday as many other studies also confirmed the same findings [16]. The reason might be the exposure to health professionals' advice and their position to access treatments. In other words, households with a higher number of under-five children had a very limited risk of child death before five years of age. There was not enough evidence to support this finding as it was insignificant in most literatures in the country [33]. As the birth interval increased, the risk of death before the fifth birthday was significantly abridged and was also supported by the EDHS 2016 finding [17]. Finding time and space to care with full attention to the timely born child might be the reason for the reduction in death. Although the findings of this study are crucial for policy decisions, using third-party data, disproportionate sampling, and cross-sectional nature of the study was the limitation of the study. We weighted the data before the application and tried to search for more literature to minimize the limitations.

5. Conclusion
The prevalence of the under-five child death was very low below the reports of the same year; however, the finding cannot be for granted as the small sample size used here. On that occasion, a better sample size like EDHS is necessary to declare the status of the country. Antenatal care, marital status, number of under-five children, birth order, age of the child, and birth interval were all inversely associated with under-five mortality. A low proportion was also observed in contraceptive method use, educational achievements, and home delivery. To acquire the exalted outcome, the government might need to increase antenatal care, women's education, institutional delivery, and modern contraceptive methods use through enhanced community mobilization, health education using community health workers, increasing access to essential care of mothers and children, and the policy commitment for the issues related to family size, birth order, and birth interval were required.

Acknowledgments
The authors are thankful for the EMDHS program personnel for the permission to use the data, and all other stakeholders involved directly or indirectly including the people who responded to questions presented to them during the survey.

Funding
We received no funds for this work.

Availability of Data and Materials
The data used in this study are the third-party data which is Demographic and Health Survey available at (http://www.dhsprogram.com). To access the data, someone needs to follow the steps and protocol outlined under the methods section.

Authors’ contributions
GG developed the proposal, wrote the results, and drafted the manuscript while SH was involved in the conception, analysis, and reviewing of the document.

Consent for publication
Not applicable

Disclosure
The authors declare that they have no competing interests.

References
1. Jemal, A., Ward, E. M., Johnson, C. J., Cronin, K. A., Ma, J., Ryerson, A. B., ... & Weir, H. K. (2017). Annual report to the nation on the status of cancer, 1975–2014, featuring survival. JNCI: Journal of the National Cancer Institute, 109(9), dxj030.
2. FMoH. (2015). Ethiopian health sector transformation plan. 2015/16-2019/20. Fed Democr Repub Ethiop Minist Heal, 20(May), 50
3. Susuman, A. S. (2012). Child mortality rate in Ethiopia. Iranian journal of public health, 41(3), 9.
4. Clausen, L. B. (2015). Taking on the challenges of health care in Africa. Insights by Stanford Business.
5. Harris, B., Goudge, J., Ataguba, J. E., McIntyre, D., Nxumalo, N., Jikwana, S., & Chersich, M. (2011). Inequities in access to health care in South Africa. Journal of public health policy, 32, S102-S123.
6. Fenta, S. M., & Fenta, H. M. (2020). Risk factors of child mortality in Ethiopia: application of multilevel two-part model. PloS one, 15(8), e0237640.
7. Bitew, F. H., Nyarko, S. H., Potter, L., & Sparks, C. S. (2020). Machine learning approach for predicting under-five mortality determinants in Ethiopia: evidence from the 2016 Ethiopian Demographic and Health Survey. Genus, 76, 1-16.
8. Ayele, D. G., Zewotir, T. T., & Mwambi, H. G. (2015). Structured additive regression models with spatial correlation to estimate under-five mortality risk factors in Ethiopia. BMC public health, 15, 1-12.
9. Geremew, B. M., Gelaye, K. A., Melesse, A. W., Akalu, T. Y., & Baraki, A. G. (2020). Factors affecting under-five mortality in Ethiopia: a multilevel negative binomial model. Pediatric health, medicine and therapeutics, 525-534.
10. Hadgu, F. B., Gebretsadik, L. G., Mihretu, H. G., & Berhe, A. H. (2020). Prevalence and factors associated with...
neonatal mortality at Ayder Comprehensive Specialized Hospital, Northern Ethiopia. A cross-sectional study. *Pediatric Health, Medicine and Therapeutics*, 29-37.

11. Mekonnen, Y., Tensou, B., Telake, D. S., Degefie, T., & Bekele, A. (2013). Neonatal mortality in Ethiopia: trends and determinants. *BMJ public health*, 13, 1-14.

12. Yadeta, T. A., Mengistu, B., Gobena, T., & Regassa, L. D. (2020). Spatial pattern of perinatal mortality and its determinants in Ethiopia: data from Ethiopian demographic and health survey 2016. *PLoS One*, 15(11), e0242499.

13. Liyew, A. M., Kassie, A., Teshale, A. B., Alem, A. Z., Yeshaw, Y., & Tesema, G. A. (2021). Exploring spatiotemporal distribution of under-five mortality in Ethiopia: further analysis of Ethiopian Demographic and Health Surveys 2000, 2005, 2011 and 2016. *BMJ paediatrics open*, 5(1).

14. Gebremichael, S. G., & Fenta, S. M. (2020). Under-Five Mortality and Associated Risk Factors in Rural Settings of Ethiopia: Evidences from 2016 Ethiopian Demographic and Health Survey. *Advances in Public Health*, 2020(1), 8430246.

15. Gebretsadik, S., & Gabreyohannes, E. (2016). Determinants of Under-Five Mortality in High Mortality Regions of Ethiopia: An Analysis of the 2011 Ethiopia Demographic and Health Survey Data. *International Journal of Population Research*, 2016(1), 1602761.

16. Worku, M. G., Teshale, A. B., & Tesema, G. A. (2021). Determinants of under-five mortality in the high mortality regions of Ethiopia: mixed-effect logistic regression analysis. *Archives of Public Health*, 79, 1-9.

17. Woldeamanuel, B. T., & Aga, M. A. Count models analysis of factors associated with under-five mortality in Ethiopia. *Global Pediatric Health*. 2021; 8: 2333794X21989538.

18. Tesema, G. A., & Teshale, A. B. (2021). Residential inequality and spatial patterns of infant mortality in Ethiopia: evidence from Ethiopian Demographic and Health Surveys. *Tropical Medicine and Health*, 49, 1-15.

19. Hailegebreel, S., Gilano, G., Seboka, B. T., Ahmed, M. H., Simegn, A. E., Tesfa, G. A., & Yehualashet, D. E. (2021). Prevalence and associated factors of caesarian section in Ethiopia: a multilevel analysis of the 2019 Ethiopia Mini Demographic Health Survey. *BMJ pregnancy and childbirth*, 21, 1-9.

20. Mehretie Adinew, Y., Feleke, S. A., Mengesha, Z. B., & Workie, S. B. (2017). Childhood mortality: trends and determinants in Ethiopia from 1990 to 2015—a systematic review. *Advances in Public Health*, 2017(1), 7479295.

21. Teshale, A. B., Alem, A. Z., Yeshaw, Y., Kebede, S. A., Liyew, A. M., Tesema, G. A., & Agegnehu, C. D. (2020). Exploring spatial variations and factors associated with skilled birth attendant delivery in Ethiopia: geographically weighted regression and multilevel analysis. *BMJ Public Health*, 20, 1-19.

22. Okedo-Alex, I. N., Akamike, I. C., Ezeanosike, O. B., & Uneke, C. J. (2019). Determinants of antenatal care utilisation in sub-Saharan Africa: a systematic review. *BMJ open*, 9(10), e031890.

23. Tusa, B. S., Weldesenbet, A. B., & Kebede, S. A. (2020). Spatial distribution and associated factors of underweight in Ethiopia: an analysis of Ethiopian demographic and health survey, 2016. *Plos one*, 15(12), e0242744.

24. Tessema, Z. T., & Tiruneh, S. A. (2020). Spatio-temporal distribution and associated factors of home delivery in Ethiopia. Further multilevel and spatial analysis of Ethiopian demographic and health surveys 2005–2016. *BMJ pregnancy and childbirth*, 20, 1-16.

25. Tadesse, E. (2020). Antenatal care service utilization of pregnant women attending antenatal care in public hospitals during the COVID-19 pandemic period. *International journal of women's health*, 1181-1188.

26. Bala, E. T., & Ifa, M. (2017). Determinants of Antenatal Care Utilization in Ambo Town, Central Ethiopia: Community Based Cross Sectional Study. *Methods*, 36.

27. Muluneh, A. A., Kassa, Z. Y., Mamo, Z. B., & Hadra, N. (2021). Utilization of antenatal care and associated factors in Gedeo zone, Southern Ethiopia. *Ethiopian Journal of Reproductive Health (EJRH) January*, 13(1).

28. Tizazu, M. A., Asefa, E. Y., Muluneh, M. A., & Haile, A. B. (2020). Utilizing a minimum of four antenatal care visits and associated factors in Debre Berhan town, North Shewa, Amhara, Ethiopia, 2020. *Risk Management and Healthcare Policy*, 2783-2791.

29. Fenta, S. M., & Fenta, H. M. (2020). Risk factors of child mortality in Ethiopia: application of multilevel two-part model. *Plos one*, 15(8), e0237640.

30. Ordman, David* & Jones, F. R. (1940). Some clinical aspects of tick relapsing fever in natives in South Africa. *South African Medical Journal*, 14(4), 81-83.

31. Tesema, G. A., Gezie, L. D., & Nigatu, S. G. (2020). Spatial distribution of stillbirth and associated factors in Ethiopia: a spatial and multilevel analysis. *BMJ open*, 10(10), e034562.

32. Stevens, G. A., Finucane, M. M., & Paciorek, C. J. (2016). Levels and Trends in Low Height-for-Age. Reproductive, Maternal, Newborn, and Child Health, 85.

33. Nandaprakash, P. (2005). Assessment of knowledge and practices among mothers of under five children regarding prevention of protein energy malnutrition at selected area of gavipuram guttaballi, bangalore, with a view to develop an information guide sheet for mothers (Master's thesis, Rajiv Gandhi University of Health Sciences (India)).

Copyright: ©2024 Girma Gilano. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.