Non-coding RNAs: a key to future personalized molecular therapy?

Marco Galasso, Maria Elena Sana and Stefano Volinia

Abstract
Continual discoveries on non-coding RNA (ncRNA) have changed the landscape of human genetics and molecular biology. Over the past ten years it has become clear that ncRNAs are involved in many physiological cellular processes and contribute to molecular alterations in pathological conditions. Several classes of ncRNAs, such as small interfering RNAs, microRNAs, PIWI-associated RNAs, small nucleolar RNAs and transcribed ultra-conserved regions, are implicated in cancer, heart diseases, immune disorders, and neurodegenerative and metabolic diseases. ncRNAs have a fundamental role in gene regulation and, given their molecular nature, they are thus both emerging therapeutic targets and innovative intervention tools. Next-generation sequencing technologies (for example SOLID or Genome Analyzer) are having a substantial role in the high-throughput detection of ncRNAs. Tools for non-invasive diagnostics now include monitoring body fluid concentrations of ncRNAs, and new clinical opportunities include silencing and inhibition of ncRNAs or their replacement and re-activation. Here we review recent progress on our understanding of the biological functions of human ncRNAs and their clinical potential.

Introduction
A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. Members of this class of molecule are involved in many cellular processes and include highly abundant and functionally important RNAs, such as transfer RNA (tRNA) and ribosomal RNA (rRNA), as well as small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-associated RNAs (piRNAs), small nucleolar RNAs (snoRNAs), promoter-associated RNAs (PARs) and the recently identified telomere specific small RNAs (tel-sRNAs). Moreover, the recent demonstration that other ncRNAs, the ultraconserved genes or transcribed ultraconserved regions (T-UCRs) [1], are involved in human carcinogenesis suggests that the broad family of ncRNAs contributes to molecular alterations in several pathological conditions.

miRNAs are a conserved class of non-coding RNAs that regulate the translation of mRNAs (messenger RNAs) by inhibiting ribosome function, decapping the 5' cap structure, deadenylating the poly(A) tail and degrading target mRNAs [2]. miRNAs are involved in mechanisms of gene regulation in both normal and diseased conditions and have a role during development, regulation of cell proliferation and apoptosis. The first miRNAs were identified in the nematode Caenorhabditis elegans as small RNAs that interacted with the 3' untranslated region (UTR) of the lin-14 mRNA to inhibit its expression [3]. miRNAs are single-stranded RNAs 19 to 24 nucleotides in length generated through a complex maturation process [4,5] (Figure 1). miRNAs bind mostly to mRNA segments originating from the 3' UTRs of genes [6], but the mechanism of translational repression is only partially understood.

siRNAs are small RNAs, 21 to 22 nucleotides long, produced by Dicer cleavage of complementary dsRNA duplexes. siRNAs form complexes with Argonaute proteins and are involved in gene regulation, transposon control and defense against viruses.

piRNAs, 24 to 30 nucleotides in length, are produced by a Dicer-independent mechanism, associate with Piwi-class Argonaute proteins and are principally restricted to the germline and bordering somatic cells. piRNAs are important for transposon control [7,8] and regulate chromatin state [9]. A recent study suggests that an antisense RNA may trigger transcriptional silencing of a partner sense tumor suppressor gene; this effect occurs both in cis and in trans and is Dicer-independent. The biochemical mediators of this silencing involve a Piwi-like protein, and their role in mammals is just beginning to be understood [5,10]. In zebrafish, piRNAs have been implicated in germ cell maintenance and many of them were mapped to transposons, suggesting that they have a role in silencing repetitive elements in vertebrates [11].
At the moment, no relationships between piRNAs and diseases have yet been discovered.

snoRNAs are small RNA molecules, approximately 60 to 300 nucleotides long, which generally serve as guides for the catalytic modification of selected ribosomal RNAs [12,13]. In vertebrates, most snoRNAs have been shown to reside in introns of protein-coding host genes and are processed out of the excised introns. Many snoRNAs have been described as retrogenes [14]. Some snoRNA is processed to a small RNA that can function like a miRNA [15].

PARs encompass a suite of long and short RNAs, including promoter-associated small RNAs (PASRs) and transcriptional initiation RNAs, that overlap promoter regions. Their function is so far unknown but they may possibly regulate transcription, as exogenous PASRs have been observed to reduce expression of genes with homologous promoter sequences [16].

tel-sRNAs in mouse embryonic stem cells are approximately 24 nucleotides long, Dicer-independent, and 2'-O-methylated at the 3' terminus. They are asymmetric, with specificity for G-rich telomere strands, are evolutionarily conserved from protozoa to mammals, and they may have a role in telomere maintenance [17].

Ultraconserved region (UCR) sequences are longer than 200 nucleotides in the genomes of human, mouse and rat. These are DNA sequences absolutely conserved, showing 100% homology among species with no insertions nor deletions [18]. UCRs can be located at fragile sites and genomic regions affected in various cancers called cancer-associated genomic regions. Genome-wide profiling has revealed that UCRs are differentially expressed in cancer and leukemia [1,19].

Here, we discuss the basic mechanisms of action of human ncRNAs and review their clinical impact, including their emerging roles in the pathogenesis of cancer, leukemia and other diseases. We then focus on recent progress and future directions in drug development using the ‘ncRNA strategy’. The identification of ncRNAs, in particular miRNAs and their respective targets, provides a host of potential biomarkers and novel therapeutic molecular tools.

snORNA and disease

Several studies have shown an association between snORNA and various diseases, including cancer. Prader-Willi syndrome (PWS) is a congenital disease that is caused by the loss of paternal gene expression from a maternally imprinted region on chromosome 15. The SNORD115 snoRNA (also called HBII-52) shows sequence complementarities to the alternatively spliced exon Vb of the serotonin receptor 5-HT2C, located on chromosome X. HBII-52 regulates alternative splicing of 5-HT2C by binding to a silencing element in exon Vb. PWS patients do not express HBII-52, so in this case the snoRNA seems to regulate the processing of an mRNA.
Table 1. Relevant miRNAs associated with leukemia

Blood malignancy	miRNA	Regulation	References
CLL	miR-15a, miR-16-1, miR-181a, let-7a, miR-30d, miR-150, miR-92	Downregulation	[28, 29]
Pediatric Burkitt’s lymphoma, Hodgkin’s lymphoma, diffuse large B cell lymphoma	miR-155, miR-17-92	Upregulation	[28, 29, 72]
Hodgkin’s disease, Burkitt lymphoma cells	miR-9, let-7a	Upregulation	[73, 74]
B cell malignancies	miR-143, miR-145	Downregulation	[75]
AML	miR-127, miR-154, miR-299, miR-323, miR-368, miR-370	Upregulation	[30, 76]
AML	miR-221, miR-222	Downregulation	[31, 32]
Hematopoietic malignancies	miR-203	Downregulation	[33]

located on a different chromosome [20]. Furthermore, another study related to PWS [21] demonstrated that deletion of Snord116 (also called Pwcr1 or MBII-85) causes growth deficiency and hyperphagia in mice, revealing a novel role for an ncRNA in growth and feeding regulation. snorRNAs have also been implicated in cancer development. The U50 snoRNA acts as a tumor suppressor in human prostate cancer [22] and in the development and/or progression of breast cancer [23].

Ultraconserved regions

There are 481 UCRs longer than 200 bases in the genomes of human, mouse and rat [18]. Many of these elements have been shown to have tissue-specific enhancer activity [24, 25], and another subset of ultraconserved elements has been shown to be associated with control of splicing regulators by alternative splicing and nonsense-mediated decay [26]. The functional importance of UCRs has been emphasized by genome-wide profiling, which revealed distinct UCR signatures in human leukemias and carcinomas. Calin et al. [1] have shown that some UCRs, whose expression may be regulated by miRNAs, are abnormally expressed in human chronic lymphocytic leukemia (CLL), and that the inhibition of an overexpressed UCR induces apoptosis in colon cancer cells. The correlation between the expression of UCRs and miRNAs in CLL patients raised the possibility of functional pathways in which two or more types of ncRNAs interact. This implication may support a model in which both coding and non-coding genes are involved and cooperate in human tumorigenesis.

miRNAs and disease

miRNAs in leukemia

The role of miRNA in cancer was first discovered in leukemia. Calin et al. [27] reported evidence for the role of miRNAs in the pathogenesis of CLL: deletions and/or downregulation of miR-15a and miR-16-1 at 13q14 were associated with CLL. Cimmino et al. [28] demonstrated that this cluster can regulate the expression of the B-cell lymphoma 2 (BCL-2) oncogene. Other relevant alterations of miRNAs in CLL include downregulation of miR-181a, let-7a, miR-30d, miR-150 and miR-92 [29] and overexpression of miR-155. In Table 1 are shown the most important miRNAs associated with leukemia and hematological diseases. For example, miRNAs in the miR17-92 cluster are commonly amplified in B-cell lymphoma patients and, together with miR-155, they were among the earliest ncRNAs to be linked with cancer [28].

miRNA expression signatures have revealed differences between acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) [30]. Recently, specific miRNA signatures were correlated with karyotype alterations in AML: the main observation was that the t(15;17) translocation had a distinctive signature including the upregulation of a subset of miRNAs located in the human 14q32 imprinted domain. In another study, Garzon and colleagues [31] reported miRNA signatures associated with cytogenetics and prognosis of AML, with molecular abnormalities such as t(11q23), trisomy 8 and internal tandem duplications in the FLT3 receptor tyrosine kinase gene. Downregulation of miR-221 and miR-222 was observed in AML [32]. Bueno et al. [33] revealed a new dimension to the regulation of v-Abl Abelson murine leukemia viral oncogene homolog 1 (ABL1) expression by demonstrating that ABL1 is a direct target of miR-203. miR-203 is silenced by genetic and epigenetic mechanisms in hematopoietic malignancies expressing either ABL1 or BCR-ABL1. Restoration of miR-203 expression reduces ABL1 and BCR-ABL1 levels and inhibits cell proliferation. Venturini and co-workers [34] have shown the expression of the miR-17-92 polycistron in CD34+ cells in chronic myelogenous leukemia and the regulation of this cluster by BCR-ABL1 and c-MYC.

miRNAs in solid cancers

Immediately after the first reports on the involvement of miRNAs in leukemia and lymphoma, a flurry of reports unveiled a role for miRNAs in solid cancers. The availability of high-throughput techniques for miRNA profiling allowed a detailed investigation of many cancer types. These studies immediately showed that miRNAs are
differentially expressed in normal and tumor samples and can be used to classify tumors of different origins [35,36]. Table 2 shows a summary of known miRNAs correlated with solid cancers.

Some miRNAs that had been earlier characterized in leukemia were found to be commonly overexpressed in solid cancers: miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, miR-107, miR-146, miR-155, miR-181 and miR-221/222 [36]. Other miRNAs were characterized in relation to specific tumor types. For example, miR-21 was highly expressed in breast tumors [37] and a risk variant of a miR-125b binding site in the bone morphogenetic protein receptor type IB gene (BMPR1B) was also associated with breast cancer pathogenesis [38,39]. The overexpressed miR-106b/93/25 cluster modulated an anti-apoptotic response after TGF-β stimulation mediated by BCL2-like 11 (BIM) [40]. Various studies on pancreatic cancer highlighted significant differences between tumors and chronic pancreatitis, normal pancreas and pancreatic cell lines. Pancreatic tumors have a characteristic miRNA profile; a pancreatic ductal adenocarcinoma-related miRNA signature was defined [41]. In a study on 65 resected pancreatic ductal adenocarcinomas with matched benign adjacent pancreas by Bloomston et al. [42], miR-196a was associated with poor survival. Several studies have shown that specific miRNAs are aberrantly expressed in malignant hepatocellular carcinoma compared with normal hepatocytes [43,44]. The altered expression of some miRNAs has been associated with particular risk factors, such as hepatitis B virus infection or alcohol use [44]. Many of these miRNAs are upregulated in hepatocellular carcinoma as compared with normal thyroid cells and hyperplastic nodules [45].

miRNAs as oncogenes and tumor suppressors

By targeting and controlling the expression of mRNA, miRNAs can control highly complex signal-transduction pathways and other biological pathways. The biological roles of miRNAs in cancer suggest a correlation with prognosis and therapeutic outcome. A study [46] demonstrated that more than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, suggesting that miRNAs may be more important in the pathogenesis of human cancers than previously thought. miRNAs are also involved in advanced stages of tumor progression, which underlines their roles as metastasis activators or suppressors.

There is emerging evidence that some miRNAs can function as either oncogenes or tumor suppressors. Those miRNAs whose expression is increased in tumors may be considered as oncogenes - also called ‘oncomiRs’ - which promote tumor development by inhibiting tumor suppressor genes and/or genes controlling cell differentiation or apoptosis.

The miR-17-92 cluster is an miRNA polycistron located at chromosome 13q31, a genomic locus that is amplified in lung cancer and in several kinds of lymphoma, including diffuse large B-cell lymphoma. This cluster has been found to be regulated by c-MYC, an important transcription factor that is overexpressed in many human cancers [47].

Microarray analysis revealed that miR-221, miR-21 and miR-181a/b/c are strongly upregulated in glioblastoma samples compared with normal brain controls [48]. The data suggested that these miRNAs may act as anti-apoptotic factors in human malignant disease. In several types of lymphomas, including Burkitt’s lymphoma, the expression of miR-155 is increased [49]. Furthermore, miR-155 is located in the only phylogenetically conserved region of the B-cell receptor inducible (BIC) gene, suggesting that miR-155 may be responsible for BIC’s oncogenic activity [50].

Conversely, underexpressed miRNAs in cancers, such as some members of the let-7 family, may function as tumor suppressor genes by regulating oncogenes and/or

Table 2. Overview of prominent miRNAs associated with solid cancers

Type of solid cancer	miRNA	Function	References
Breast cancer	miR-21, miR-125b	oncomiR	[37]
Breast cancer metastasis	miR-335, miR-206, miR-126	Metastasis suppressor	[77,78]
Lung adenocarcinoma	let-7a, miR-143, miR-145	Tumor suppressor	[32,39]
Lung adenocarcinoma	miR-17-92 cluster, miR-106b/93/25 cluster	oncomiR	[32,40]
Pancreatic ductal carcinoma	miR-196a, miR-196b	oncomiR	[41,42]
Ovarian carcinoma	miR-199a/b, miR-140, miR-145, miR-204, miR-125a/b	Tumor suppressor	[79]
Ovarian carcinoma	miR-141, miR-200a/b/c	oncomiR	[79]
Hepatocellular carcinoma	miR-21, miR-224, miR-34a, miR-221/222, miR-106a, miR-203	oncomiR	[43,44]
Hepatocellular carcinoma	miR-122a, miR-422b, miR-145, miR-199a	Tumor suppressor	[43,44]
Thyroid papillary cancer	miR-146b, miR-221, miR-222, miR-181b, miR-155, miR-224	oncomiR	[45,78,80]
genes that control cell differentiation or apoptosis. Several studies indicate that the RAS oncogene is a direct target of let-7, which negatively regulates RAS by pairing to its 3’ UTR for translational repression, and some recent studies have focused on let-7 miRNA binding site polymorphisms in the KRAS 3’ UTR that have been associated with reduced survival in oral cancers [51]. Other miRNAs that have a potential role as tumor suppressors include miR-15 and miR-16, which induce apoptosis by targeting the mRNAs for the anti-apoptotic gene B-cell lymphoma 2 (BCL-2) [28], myeloid cell leukemia sequence 1 (MCL1), cyclin D1 (CCND1) and wingless-type MMTV integration site family member 3A (WNT3A) [52]. Downregulation of these miRNAs has been reported in CLL, pituitary adenomas and prostate carcinoma. Restoration of miR-29b in AML cells induces apoptosis and dramatically reduces tumorigenicity in a xenograft leukemia model; this study also indicated that miR-29b targets apoptosis, cell cycle and proliferation pathways [31].

miR-221 and miR-222 are two highly similar miRNAs whose upregulation has been recently described in several types of human tumors and for which an oncogenic role was explained by the discovery of their target p27, a key cell cycle regulator. The ectopic overexpression of miR-221 is able, on its own, to confer a high growth advantage to tumors derived from the LNCaP cell line in severe combined immunodeficient mice [53]. In line with these results, treatment of established subcutaneous tumors derived from the highly aggressive PC3 cell line with the anti-miR-221/222 antagoniR (an anti-miRNA conjugated to cholesterol) reduced tumor growth by increasing expression of the cyclin-dependent kinase inhibitor p27 [53]. These findings suggest that modulating levels of let-7, miR-15, miR-16, miR-221/222 or miR-29b might be of therapeutic potential in various different types of cancers.

miRNAs in tumor invasion and metastasis

The first description of a miRNA in relation to tumor invasion and metastasis was by Ma et al. [54], who identified miR-10b upregulation in metastatic breast cancer cells with respect to the primary tumors. miR-10b was expressed in breast cancer in the following way: downregulated in cancer when compared with normal breast [32] but overexpressed in metastatic cancer when compared with non-metastatic tumors [54]. Subsequently, Huang and colleagues [55] identified two miRNAs, miR-373 and miR-520c, that promote cancer cell migration and invasion in vitro and in vivo by blocking the adhesion molecule CD44. A significant up-regulation of miR-373 and negative correlation with CD44 expression was found in breast cancer patients with metastasis.

Recently, much interest has been focused on the role of miRNAs in the maintenance of the so-called ‘cancer stem cells’. Human breast tumors contain a breast cancer stem cell (BCSC) population with properties reminiscent of normal stem cells. Three miRNA clusters, miR-200c/141, miR-200b/200a/429 and miR-183/96/182, are downregulated in human BCSCs, normal human and murine mammary stem/progenitor cells and embryonic carcinoma cells. miR-200c modulates expression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1), an essential protein for the self-renewal of adult stem cells. miR-200c suppresses normal mammary outgrowth in vivo and tumorigenicity of human BCSCs. The coordinated downregulation of these miRNA clusters, and the analogous regulation of clonal expansion by miR-200c, provides a molecular link that connects BCSCs to normal stem cells [56].

From in vitro findings to clinical biomarkers and therapies

Because of their links to pathological conditions and, in particular, cancer development and progression, miRNAs and other ncRNAs might become useful biomarkers for diagnostic purposes. ncRNA expression levels can be determined by in situ hybridization, for example on a tumor section and its normal adjacent counterparts. Mature-miRNA-specific stem loop RTPCR is an alternative detection system for very short ncRNAs. Recently, deep-sequencing technologies, such as SOLiD (Applied Biosystems, Foster City, USA) or Genome Analyzer (Illumina, San Diego, USA), have become available for high-throughput detection of ncRNAs.

The key question is how to translate the molecular signatures determined in the laboratory to the clinical setting. As described above, several studies have identified associations of miRNA with disease prognosis, survival and mortality in biopsies (in pancreatic cancer [42] and colon cancer [57]). A possible innovative approach for early detection is represented by the determination of circulating miRNAs in plasma [58] or urine. In an application of this approach, Tanaka et al. [58] have shown that miR-92a levels are decreased in the plasma of leukemia patients and suggested the ratio in plasma of miR-92a to miR-638 (the latter is stably expressed in human plasma) as a tool for the clinical detection of leukemia. Differential expression of miRNAs in plasma of patients with colorectal cancer has also been proposed as a basis for screening [59].

Non-oncological disciplines could also benefit from measuring circulating ncRNAs. For example, the plasma concentration of miR-208 might be a useful indicator of myocardial injury [60]. Plasma miRNAs and other circulating or secreted ncRNAs therefore represent
potential novel biomarkers for early detection of various pathological conditions.

Therapeutic silencing and inhibition of ncRNAs

The fundamental roles of miRNAs in development, differentiation and malignancy suggest that this class of molecules are potential targets for novel therapeutics. Antisense oligonucleotide approaches, used for inhibition, and siRNA-like technologies, used for replacement, are currently being explored for therapeutic modulation of miRNAs.

There are currently several approaches to silencing ncRNAs (Table 3). Most of these methods have been applied to miRNAs, the class of ncRNAs that currently holds the highest potential for clinical applications. Specific knockdown of miRNAs by anti-miRNA oligonucleotides (AMOs), double-strand miRNA mimetics and overexpression of miRNA duplexes have been conducted in vitro and in vivo (Table 4). AntagomiRs have been found capable of inhibiting specific miRNAs in mouse models. RNase H-based AMOs, which work primarily in the nucleus, may be useful for targeting polycistronic pri-miRNAs, such as the miR-17-92 cluster [61]. Elmen et al. [62] showed that systemic administration of 16-nucleotide unconjugated locked nucleic acid (LNA)-AMO complementary to the 5' end of miR-122 leads to specific, dose-dependent silencing of miR-122 with no hepatotoxicity in mice. Another study from the same group demonstrated that the simple systemic delivery of an unconjugated LNA-AMO effectively antagonizes the liver-expressed miR-122 in non-human primates. Acute administration by intravenous injections of 3 or 10 mg/kg LNA-AMO to African green monkeys resulted in uptake of the LNA-AMO in the cytoplasm of primate hepatocytes and formation of stable heteroduplexes between the LNA-AMO and miR-122 [63]. This route seems attractive for in vivo applications that are inaccessible to RNA interference technology, such as inhibition of oncogenic miRNAs.

Strategies based on synthetic miRNAs may also open interesting avenues. Recently, Tsuda et al. [64,65]
designed and developed synthetic miRNAs corresponding to duplex miRNAs by introducing 3-nucleotide loops in GU-rich regions of the 3’ UTR sequence of the glioma-associated antigen-1 (Gli-1) gene. They found that one of these (Gli-1-miRNA-3548) and its corresponding duplex (Duplex-3548) inhibited proliferation of Gli-1+ ovarian and pancreatic tumor cells.

An alternative to chemically modified anti-ncRNA oligonucleotides is offered by de novo engineered ncRNA inhibitors that can be exogenously expressed in cells. These ‘miRNA sponges’ are competitive inhibitors to transcripts expressed from strong promoters, containing multiple, tandem binding sites of an miRNA of interest. Sponges inhibit miRNAs with a complementary heptameric seed, such that a single sponge can be used to block an entire miRNA family with the same seed. Fluorescent reporter genes can be used to identify and sort the treated cells [66]. Another route to therapeutic targeting of ncRNAs, in particular miRNAs, could be represented by inhibition of Drosha, Dicer or other components in the maturation pathway. This method, stepping into a pleiotropic physiological pathway, may, however, be difficult to make specific in its therapeutic effect.

Therapeutic replacement or re-activation of ncRNAs

When ncRNA activity is lost in affected cells, an alternative therapeutic strategy is needed. Here the approach is represented by the ‘replacement’ of defective or absent RNA effectors. An example of such an approach is the use, as described earlier for the miR-29b tumor suppressor, of synthetic oligonucleotides, in this particular case aimed at improving treatment response in AML [31]. Gene therapy approaches for therapeutic miRNA replacement hold considerable potential. Modified adenovirus or adeno-associated virus vectors have been effective for gene delivery into tissues. Nevertheless, a study [67] has also shown that such an approach can cause fatality in mice, possibly resulting from over-saturation of the cellular miRNA/short hairpin RNA pathway (shRNA; a short sequence of RNA that makes a tight hairpin turn and can be used to silence gene expression). Lentiviral delivery of short hairpin RNAs is another system for the delivery of shRNA constructs (controlled by either RNA polymerase II or III promoters) designed to mimic the pri-miRNA by including the miRNA flanking sequence into the shRNA stem [68,69].

The multi-inlet focusing technique used for the Bcl-2 antisense deoxyoligonucleotide [70] can be extended to

Table 4. Overview of in vivo delivery systems for snoRNAs and miRNAs*

miRNA	Disease state	Biological target	In vivo model	Delivery system	References
miR-100	Nasopharyngeal cancer	Plk1	6- to 8-week-old SCID BALB/c female mice	siRNA and ionizing radiation and potential miRNAs that might regulate Plk1 expression	[88]
Synthetic miR-16	Metastatic prostate cancer	CDK1 and CDK2	Bone metastasis mode mice	Retroviral delivery of a miR-155-formatted siRNA against SHIP1	[89]
miR-155	Myeloproliferative disorder	SHIP1	Mice, specific knockdown of SHIP1 in the hematopoietic system	Injected into tail veins	[90]
SNORD116 (PWCR1/HBII-85)	Prader-Willi syndrome	Bioinformatic screen located 23 possible targets	CS7BL/6 mice	Snord116del mice	[21]
miR-147	Inflammation	Cytokine expression in macrophages stimulated with ligands to Toll-like receptors: TLR2, TLR3, TLR4	LPS-stimulated mouse	Peritoneal macrophages were transfected with 40 nM control miRNA mimics or mouse miR-147 mimics	[91]
LNA-antimiR-122	Hypercholesterolemia	miR-122 liver specific	Normal and hypercholesteremic mice; normal African green monkeys	Intravenous injections unconjugated	[62]
LNA-antimiR-21	Glioma	miR-21	Athymic nude mice	Intracranial cell implantation	[92]
miR-34a	Normal	E2F family	Nude mice	Subcutaneous administration of miR-34a/collagen complexes	[93]
miR-17-92 cluster	Normal	c-Myc	Mice reconstituted with hematopoietic stem cells expressing miR-17-19b	Perfusion cells treated by retroviral vector	[94]

*Abbreviations: CDK, cyclin-dependent kinase; E2F, E2 transcription factor; LPS, lipopolysaccharide; Plk1, Polo-like kinase 1; SCID, severe combined immunodeficient; SHIP1, Src homology-2 domain-containing inositol 5-phosphatase 1; TLR, Toll-like receptor.
condense miRNA and overcome the challenge of limited transfection efficiency faced by delivery of ‘naked’ miRNAs. Moreover, epigenetic modifications of miRNAs, such as methylation, suggest the use of epigenetic therapy with drugs that modulate DNA methylation or histone deacetylation. Activation of tumor suppressor miRNAs, such as miR-127, by chromatin-modifying drugs may inhibit tumor growth through downregulation of their target oncogenes [71].

Conclusions and perspectives
ncRNAs represent a novel kind of human post-transcriptional regulatory tool. They can specifically target different genes, often in a one-to-many manner. Fine-tuning the level of a single ncRNA might therefore affect many pathways in a pleiotropic manner. Several studies have contributed to our understanding of the functions of ncRNAs and of their impact on the pathogenesis of complex diseases. Abnormal miRNA expression is now regarded as an intrinsic feature of cancer growth and progression. These observations highlight the clinical potential of ncRNAs as biomarkers for diagnosis, prognosis and prediction of therapeutic outcome. Because of the significant impact of miRNAs, it would be useful to develop a personalized expression dataset such as a ‘molecular diagnostic database’. The new deep sequencing technologies might here provide the ability to translate laboratory potential into clinical practice. Inhibition and re-activation of ncRNAs will then be the final steps in this discovery chain, leading to a therapeutic approach. Engineered synthetic miRNAs could be custom-applied to specifically regulate gene expression based on the patient’s genomic profile.

Acknowledgements
SV is supported by AIRC (IG 8588), PRIN MIUR 2008 and Regione Emilia Romagna FRRIT BioPharmaNet grants.

References
1. Calin GA, Liu CG, Ferracin M, Hyslop T, Spazza R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, Shimizu M, Tii E, Rossi S, Taccioli C, Pichiorri F, Liu X, Zupo S, Herlea V, Gramantieri L, Lanza G, Alder H, Rassenti L, Volinia S, Schmittgen TD, Kipps TJ, Negrini M, Croce CM: Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 2007, 12:215-229.
2. Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008, 9:102-114.
3. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75:843-854.
4. Rana TM: Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007, 8:23-36.
5. Peters L, Meister G: Argonaute proteins: mediators of RNA silencing. Mol Cell 2007, 26:611-623.
6. Doench JG, Sharp PA: Specificity of microRNA target selection in translational repression. Genes Dev 2004, 18:504-511.
7. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007, 128:1089-1103.
8. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HW, King N, Degnan BM, Reikhsaar DS, Bartel DP: Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008, 455:1193-1197.
9. Malone CD, Hannon GJ: Small RNAs as guardians of the genome. Cell 2009, 136:656-668.
10. Yu W, Gus D, Ouyang P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H: Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 2008, 451:202-206.
11. Houwing S, Kammenga LM, Berezikov E, Cronembold D, Girard A, van den Elst R, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF: A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish, Cell 2007, 129:859-862.
12. Kiss T: Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 2002, 109:145-148.
13. Barchielle IP, Cavaille J, Huttererhalter A: The expanding snoRNA world. Biochimie 2002, 84:775-790.
14. Luo Y, Li S: Genome-wide analyses of retrogenes derived from the human box H/ACA snoRNAs. Nucleic Acids Res 2007, 35:559-571.
15. Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G: A human snoRNA with microRNA-like functions. Mol Cell 2008, 32:519-528.
16. Taft RJ, Kaplan CD, Simons C, Mattick JS: Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle 2009, 8:2332-2338.
17. Fao F, Li X, Hiew S, Brady H, Liu Y, Dou Y: Dicer independent small RNAs associate with telomorphic heterochromatin. RNA 2009, 15:1274-1281.
18. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D: Ultraconserved elements in the human genome. Science 2004, 304:1321-1325.
19. Rosi S, Sevignani C, Nnadi SC, Siracusa LD, Calin GA: Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm Genome 2008, 18:526-540.
20. Kishore S, Stamm S: The snoRNA H182-52 regulates alternative splicing of the scerotonin receptor 2C. Science 2006, 313:230-232.
21. Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, Betran JS, Li Q, Vessella RL, Kibel AS, Stevens VL, Calle EE, Dong JT: snoRNA USO is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 2008, 17:1031-1042.
22. Dong XY, Guo P, Boyd J, Sun X, Li Q, Zhou W, Dong JT: Implication of snoRNA USO in human breast cancer. J Genet Genomics 2009, 36:447-454.
23. Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD, Plajzer-Frick I, Akiyama J, De Val S, Afzal V, Black BL, Couronne O, Eisen MB, Visel A, Rubin EM: In vivo enhancer analysis of human conserved non-coding sequences. Nature 2006, 444:499-502.
25. Bejarano G, Lowe CB, Ahtun H, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D: A distal enhancer and an ultracorexon are derived from a novel retroposon. Nature 2006, 441:87-90.

26. Ni JZ, Grate L, Donohue JP, Preston C, Nobida N, O'Brien G, Shiue L, Clark TA, Blume JE, Aris M: Ultracorexons are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev 2007, 21:708-718.

27. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Alder H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Croce CM: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005, 102:12573-12578.

28. Cimmino A, Calin GA, Ferracin M, Iorio MV, Shimizu M, Wojcik SE, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Alder H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Croce CM: MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 2007, 104:19133-19138.

29. Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Castellano L, Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Zupo S, Noch E, Alder H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Croce CM: MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 2007, 104:19133-19138.

30. Mi S, Liu J, Sun M, Li Z, Zhang H, Nelli MB, Wang Y, Qian Z, Jin J, Zhang Y, Boehler SK, Le Beau MM, Larson RA, Golub TR, Rowley JD, Chen J: MicroRNA expression patterns accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 2007, 104:19133-19138.

31. Garzon R, Liu S, Fabbri M, Liu Z, Hayeey C, Caligari PC, Schwendt S, Pang Y, Ju M, Muthusamy N, Havelange V, Solina S, Blum W, Rush Li, Perrotti D, Andreffe M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marucci G: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009, 113:396-418.

32. Spizzo R, Nicolosi MS, Croce CM, Calin GA: SnapShot: microRNAs in cancer. Cell 2009, 137:586-586 e1.

33. Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC, Croce CM, Fernandez-Figueras J. Malumbres M: Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL oncogene expression. Cancer Cell 2008, 13:496-506.

34. Venturini L, Battler K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, Ganser A, Eder M, Morsch M: Expression of the miR-17-92 polycistron in chronic lymphocytic leukemia (CML) CD34+ cells. Blood 2007, 109:4399-4405.

35. Lu J, Getz G, Mintke-Avaia EA, Lamb E, Peck D, Small-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human tumors. Nature 2005, 438:834-838.

36. Volinia S, Calin GA, Liu CG, Shimizu M, Mikati R, Ferracin M, Broccoli D, Costantini A, Guadagnoli M, Bonanno E, Muto G, Frajese GV, De Maria R, Spagnoli GL, Farace MG, Croce CM: miR-15a-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. PLoS Biol 2007, 5:e332.

37. Wu H, Lima WF, Zhang H, Fan A, Crooke ST: Antagonism of microRNA-122 in mice by systemically administered LNA-antimiRs leads to up-regulation of a large set of microRNA targets. Cancer Cell 2008, 13:357-366.

38. Zhan G, Zhang Y, Yu Y, Zhang J, Wang X, Zhang L, Liu W, Chi Y, Zhang C, Li Y, Wang L, Zhang C: Therapeutic targeting of microRNA-122 using LNA-antimiRs. Nature Biotechnol 2008, 26:377-382.

39. Blasi F, Zuffardi O, Serraino D, Croce CM: miR-155 expression is increased in primary bile duct carcinoma. Cancer Res 2007, 67:4599-4606.

40. Bloomston M, Frankel WL, Petruca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhat R, Taccioli C, Croce CM: MicroRNA expression patterns differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007, 297:1901-1908.

41. Pamme P, Volinia S, Mckinl检疫 K, Marchio A, Battiston C, Tens B, Maaffeiro V, Low SW, Croce CM, Dejean A: miR-223 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA 2009, 106:264-269.

42. Kikofforinova MN, Chiose SI, Kikofforinov Y: MicroRNA expression profiles in thyroid tumors. Endocr Pathol 2009, 20:88-91.

43. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Vandenom A, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004, 101:2999-3004.

44. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K: MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2009, 113:396-402.

45. Cigudosa JC, Croce CM, Fernandez-Piqueras J, Malumbres M: Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer pathogenesis. Proc Natl Acad Sci USA 2005, 102:12573-12578.

46. Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF: Distal enhancer and an ultraconserved exon are derived from a novel retroposon. Oncogene 2006, 25:2537-2545.

47. Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Alder H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Croce CM: MicroRNA expression patterns accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 2007, 104:19133-19138.
predicted target mRNAs in the liver. Nucleic Acids Res 2008, 36:1153-1162.
63. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtmann M, Hansen HF, Berger U, Gußans S, Kearney P, Sarnow P, Stauraup EM, Kauppinen S. LNA-mediated microRNA silencing in non-human primates. Nature 2008, 452:896-899.
64. Tsuda N, Ishiyama S, J.L.Y., Ioannides CG, Abbruzzese JL, Chang DZ. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin Cancer Res 2006, 12:6557-6564.
65. Tsuda N, Mine T, Ioannides CG, Chang DZ. Synthetic microRNA targeting glioma-associated antigen-1 protein. Methods Mol Biol 2009, 487:435-449.
66. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007, 4:721-726.
67. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006, 441:537-541.
68. Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 2003, 22:138-146.
69. Chang K, Elledge SJ, Hannon GJ. Lessons from Nature: microRNA-based shRNA libraries. Nat Methods 2006, 3:707-714.
70. Koh CG, Zhang X, Liu S, Golan S, Yu B, Yang X, Guan J, Jin Y, Talmon Y, Muthusamy N, Chan KK, Byrd JC, Lee RJ, Marcucci G, Lee LJ. Delivery of antisense oligodeoxyribonucleotide lipopolysaccharide nanoparticles assembled by microfluidic hydrodynamic focusing. J Control Release 2009, 141:62-69.
71. Grunweller A, Hartmann RK. Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 2007, 21:235-243.
72. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM: Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006, 103:7024-7029.
73. Nie K, Gomez M, Landgraf P, Garcia JF, Liu Y, Tan LH, Chadburn A, Tusche T, Knowles DM, Tam W. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenic lesion in Hodgkin lymphomas. Am J Pathol 2007, 173:242-252.
74. Sampson V8, Rong NH, Han J, Yang Q, Anis V, Sotopoulos P, Petrelli NJ, Dunn SP, Krueger LJ. MicroRNA let-7a down-regulates MYC and reverses MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007, 67:9762-9770.
75. Akaoy N, Nakagawa Y, Itade Y, Kinoshita T, Nace T. Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 2007, 98:1914-1920.
76. Diao-McViter A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, Andrew Lister SP, Krueger LJ. Antibody against antisense oligodeoxynucleotides are highly selectively taken up by the liver. Mol Cell 2003, 11:807-815.
77. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002, 294:550-553.
78. Miyagiishi M, Tara K. U6 promoter-driven shRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 2002, 20:507-509.
79. Soutschek J, Akinc A, Bramlage B, Chariote K, Constien R, Donoghue M, Elbashir S, Geick A, Haddow JM, Harborth J, John M, Kesselman L, Levine G, Pandey RK, Racine T, Rajeev KG, Roh T, Toudjarska I, Wang G, Wuschko S, Burnout D, Koteliyansky V, Limmer S, Mantaray M, Vornoche HP. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432:173-178.
80. Shi W, Alaje NM, Bastanuto C, Hui AB, Luo L, Lo KW, Ng R, Waldron J, O'Sullivan B, Liu FF. Significance of PIK1 regulation by mir-100 in human nasopharyngeal cancer. Int J Cancer 2009, in press.
81. Takeshita F, Patrawala L, Osaki M, Takahashi Y, Kosaka N, Kawamura M, Kelinar K, Bader AG, Brown D, Otsuka T. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 2009, 18:181-187.
82. O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Single-stranded DNA produced by the mouse RNase H1 null allele as a model for the RNase H1 knockout. J Biol Chem 2002, 277:51673-51677.
83. Bijsterbosch MK, Rump ET, De Vrueh RL, Dorland R, Van Veggel R, Tivel KL, Abraham E. Delivery of modified siRNAs. Biotechniques 2004, 36:15819-15824.
84. Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, Crouch RJ. Synthetic microRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 2007, 67:8079-8087.
85. Liu G, Friggeri A, Yi R, Park YJ, Tsuruta Y, Abraham E. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 2009, 106:15819-15824.
86. Consten MF, Miranda R, Kasmieh R, Kiechvsky AM, Weissleder R, Shah K. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 2007, 67:8994-9000.
87. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Transcriptional profiling reveals a role of miR-34a in skeletal muscle hypertrophy. Proc Natl Acad Sci USA 2007, 104:15472-15477.
88. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Gordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature 2005, 435:828-833.