NON-COMMUTATIVE q-EXPANSIONS

MAHESH KAKDE

King’s College London

Abstract. In this short note we partially answer a question of Fukaya and Kato by
constructing a q-expansion with coefficients in a non-commutative Iwasawa algebra
whose constant term is a non-commutative p-adic zeta function.

Contents

Notations and Set up 1
1. Introduction 2
2. $Λ$-adic modular Eisenstein series 3
3. The Möbius-Wall congruences for the Eisenstein series 4
4. K_1 of some Iwasawa algebras 5
5. Non-commutative q-expansions 7
References 8

Notations and Set up

We use the following notation and set up throughout the paper. Fix an odd prime p.
For a pro-finite group G we define the Iwasawa algebra $Λ(G) := \lim_{\leftarrow} Ζ_p[G/U]$, where
U runs through open normal subgroups of G. If G is a compact p-adic Lie group with
a closed normal subgroup H such that $G/H ∼= Ζ_p$, the additive group of p-adic integers
then we have the canonical Ore set of $[3]$ defined as

$$S := \{ f ∈ Λ(G) : Λ(G)/Λ(G)f \text{ is a f.g. } Λ(H) - \text{module} \}.$$

Put $\widehat{Λ(G)}_S$ for the p-adic completion of the localisation $Λ(G)_S$.

The extension $Q(μ_p\infty)$ of Q obtained by adjoining all p-power roots of 1 contains a
unique extension of Q with Galois group isomorphic to $Ζ_p$. We denote this extension by
Q_{cycl}, the cyclotomic $Ζ_p$-extension of Q. If L is any number field, then the cyclotomic
$Ζ_p$-extension of L is defined as $L_{cycl} := LQ_{cycl}$. For any number field L, the ring of
integers of L is denoted by O_L.

E-mail address: mahesh.kakde@kcl.ac.uk.
Date: version 2.
Throughout F will denote a totally real number field of degree $r := r_F := [F : \mathbb{Q}]$. Let $\Sigma := \Sigma_F$ denote a finite set of finite places of F. If L is an extension of F, then we put Σ_L for the set of places of L above Σ. If there is no confusion we will often write Σ for Σ_L. For any subset O of F, we write O^+ for the set of totally positive elements of O. Throughout F_∞ will denote a totally real Galois extension of F such that

1. $F_{\text{cyc}} \subset F_\infty$.
2. F_∞ is unramified outside Σ.
3. $G := \text{Gal}(F_\infty/F)$ is a p-adic Lie group.

We put $A_F(G)$ (often written simply as $A(G)$, where F is clear from the context) for the ring $\hat{\Lambda}(G)\lbrack \lbrack q \rbrack \rbrack$ of all formal power series

$$a_0 + \sum_{\mu \in O_F^+} a_\mu q^\mu.$$

1. Introduction

The theory of p-adic modular forms essentially began with the paper of Serre [15]. It was generalised by Katz [11] and Deligne-Ribet [4] and used to construct p-adic L-functions for CM and totally real number fields respectively. The theory of Λ-adic modular forms was systematically developed by Hida. Since then they have formed a central tool in number theory and have most notably been used to prove main conjectures of commutative Iwasawa theory (Wiles [18], Skinner-Urban [17] etc.). The main conjecture of non-commutative Iwasawa theory was formulated by Coates-Fukaya-Kato-Sujatha-Venkakob [3] for elliptic curves without complex multiplication and more generally in Fukaya-Kato [6]. In an unpublished manuscript Kato [10] proved a case of non-commutative main conjecture for totally real fields by computing $K_1(\Lambda(G))$ and $K_1(\Lambda(G)_S)$ for a certain group G and then proving congruences between certain between abelian p-adic zeta functions by proving the congruences first between Λ-adic Hilbert Eisenstein series. Abelian p-adic zeta functions appear in constant terms of these Eisenstein series (see theorem 1). At the end of the paper Kato mentions the following question of Fukaya - Is there a Λ-adic modular form, with non-commutative ring Λ, whose constant term is the non-commutative p-adic L-function. We cannot answer this question completely but we do construct a q-expansion (in certain cases; see theorem 13 for a precise statement) whose constant term is a non-commutative p-adic zeta function. The evaluation of this q-expansion at Artin characters is closely related to Hilbert Eisenstein series (see corollary 14).

The content of the article are as follows: in section 2 we recall the result of Deligne and Ribet on Hilbert Eisenstein series. In section 3 we prove the M"{o}bius-Wall congruences for the Eisenstein series from section 2. As well as giving a slight generalisation of the congruences proven by Ritter-Weiss [14] this section simplifies the exposition. As usual the congruences are actually proven directly for non-constant coefficients of the standard q-expansion of the Eisenstein series in theorem 1. The congruence for the constant terms, i.e. p-adic zeta functions, can then be deduced from the q-expansion principal for Hilbert modular forms. These congruences are used in [14], [9] (generalising [10]) to construct non-commutative p-adic zeta function and prove the main conjecture for totally real number fields. In any case, we get the M"{o}bius-Wall congruences for the
Λ-adic Eisenstein series in theorem [11]. In section [12] we give a description of $K_1(A_\mathbb{Q}(G))$ for certain G (see [13] for details). For simplicity we work only over \mathbb{Q} but the result should hold over other totally real number fields. In section [14] we use this description along with the Möbius-Wall congruences for Λ-adic Eisenstein series to construct an element in $K_1(A_\mathbb{Q}(G))$ whose constant term equals the non-commutative p-adic zeta function.

2. Λ-adic modular Eisenstein series

In this section we assume that G is commutative i.e. F_∞/F is an abelian extension. Recall the following result of Deligne and Ribet.

Theorem 1 (Deligne-Ribet [4], theorem 6.1). There exists a $\Lambda(G)$-adic Hilbert modular Eisenstein series $E(F_\infty/F)$ with standard q-expansion given by

$$2^{-r} \zeta(F_\infty/F) + \sum_{\mu \in O_F^+} \left(\sum_{\sigma_a \in G} \frac{\sigma_a}{N_F a} \right) q^\mu,$$

where $\zeta(F_\infty/F)$ is the p-adic zeta function, a runs through all ideals of O_F coprime to Σ, $\sigma_a \in G$ is the Artin symbol of a, $N_F a \in \mathbb{Z}_p$ is the norm of a and $q^\mu = e^{2\pi i r_F/ \mathbb{Q}(\mu)}$.

In particular, for any finite order character χ of G and any positive integer k divisible by $p - 1$, the evaluation of $E(F_\infty/F)$ at $\chi \kappa^k$ (here κ is the cyclotomic character of F) has standard q-expansion

$$2^{-r} L_{\Sigma}(\chi, 1 - k) + \sum_{\mu \in O_F^+} \left(\sum_{\sigma_a \in G} \chi(\sigma_a) N_F a^{k-1} \right) q^\mu.$$

Proposition 2. If $\beta \in O_F^+$ divisible only by primes in Σ, then there exists a Hecke operator U_β such that the action of U_β on the standard q-expansion of $\Lambda(G)$-adic forms is as follows: if the standard q-expansion of f is

$$c_0 + \sum_{\mu \in O_F^+} c(\mu) q^\mu,$$

then the standard q-expansion of $f|_{U_\beta}$ is

$$c_0 + \sum_{\mu \in O_F^+} c(\beta \mu) q^\mu.$$

Proof. See [13] lemma 6].

Let K be a subfield of F. Then the Hilbert modular variety of K can be diagonally embedded in that of F. Restricting Hilbert modular forms on F along this diagonal gives Hilbert modular forms over K. We denote this map by $\text{Res}_{F/K}$.

Proposition 3. If the standard q-expansion of f is $c_0 + \sum_{\mu \in O_F^+} c(\mu) q^\mu$, then the standard q-expansion of $\text{Res}_{F/K}(f)$ is

$$c_0 + \sum_{\eta \in O_K^+} \left(\sum_{\mu : \tau_{F/K}(\mu) = \eta} c(\mu) \right) q^\eta,$$
3. The Möbius-Wall congruences for the Eisenstein series

In this section we assume that G is a p-adic Lie group. Let

$$S^0(G) := \{U : U \text{ is an open subgroup of } G\}$$

Put $F_U := F^{U\infty}_\infty$, the field fixed by U and put $K_U := F^{U\infty}_\infty$, the field fixed by the commutator subgroup of U. Therefore $\text{Gal}(K_U/F_U) = U^{ab}$, the abelianisation of U. For $V, U \in S^0(G)$, with $V \subset U$, the transfer homomorphism $\text{ver} : U^{ab} \to V^{ab}$ induces a ring homomorphism

$$\text{ver} : A(U^{ab}) \to A(V^{ab}),$$

which is identity on the coefficients and q. If V is a normal subgroup of U, then we can define a map

$$\sigma^U_V : A(U^{ab}) \to A(V^{ab}),$$

given by

$$x \mapsto \sum_{g \in U/V} gxg^{-1}.$$

Recall the definition of Möbius function on finite groups. It takes value 1 on the trivial group and then defined recursively as

$$\sum_{P' \subset P} \mu(P') = 0.$$

Theorem 4. For every $V, U \in S^0(G)$, with V a normal subgroup of U we put

$$\mathcal{G} := \sum_{V \subset W \subset U} \mu(W/V) \text{ver} \left(\text{Res}_{F_W/F_U} \left(E(K_W/F_W) \right) \right) |u_{[W:V]}|.$$

Then the standard q-expansion of \mathcal{G} lies in $\text{Im}(\sigma^U_V)$.

Proof. We follow the proof in [14, lemma 6]. Let $\mu \in O^+_F$. Then the μth coefficient of the standard q-expansion of \mathcal{G} is

$$\sum_{V \subset W \subset U} \mu(W/V) \text{ver} \left(\sum_{(\alpha, a)} \frac{\sigma_a}{N_{F_W} a} \right),$$

where α in the second summation runs through all element of O^+_F such that $tr_{F_W/F_U}(\alpha) = [U : W] \mu$ and a runs through integral ideals of F_W coprime to Σ and containing α. Take M to be the set of all pairs (α, a) with $\alpha \in O^+_F$, such that $tr_{F_U/F_V}(\alpha) = [U : V] \mu$ and a an integral ideal of F_V coprime to Σ and containing α. Then U acts on M and the above sum can be written as

$$\sum_{V \subset W \subset U} \mu(W/V) \left(\sum_{(\alpha, a) \in M | W} \frac{\sigma_a}{N_{F_W} a^{1/[W:V]}} \right).$$

Now fix $(\alpha, a) \in M$ and let W_0 be the stabiliser of (α, a). Then the coefficient of σ_a in the above sum is

$$\sum_{V \subset W \subset W_0} \mu(W/V) \frac{1}{(N_{F_V} a)^{1/[W:V]}} = \sum_{V \subset W \subset W_0} \mu(W/V) (N_{F_W} a)^{-[W_0:W]}.$$
We get the coefficient of $\sigma_{\varpi(a)}$ for every $g \in U/W_0$. Hence to show the congruence it suffices to show that for any finite group P and any unit r in \mathbb{Z}_p we have

$$\sum_{P' \subseteq P} \mu(P') r^{[P:P']} \equiv 0 \pmod{|P|\mathbb{Z}_p}.$$

We use [7, corollary 3.9]. Let $|P| = p^k \cdot t$ with t an integer co-prime to p. Let t' be a divisor of t. By taking $n = p^k \cdot t'$, the subgroup H to be the identity we deduce from loc. cit. that $\sum_{|P'|} \mu(P')$ is divisible by p^k, where P' runs through all subgroups of P whose order divides $p^k \cdot t'$. Since this holds for arbitrary t' we deduce that the sum $\sum_{P'} \mu(P')$ is divisible by p^k, where P' runs through all subgroups of P whose order is divisible by t' and divides $p^k \cdot t'$. Now by [7, corollary 4.9] we have that p^k divides $p \cdot \mu(P')$, where p^k is the largest power of p dividing $|P'|$. Therefore $\mu(P') r^{[P:P']} \equiv \mu(P') z'^t \pmod{|P|\mathbb{Z}_p}$ for any subgroup P' of P or order $p^k \cdot t'$ and where z is the $(p-1)$st root of 1 in \mathbb{Z}_p congruence to r modulo p. Therefore

$$\sum_{P'} \mu(P') r^{[P:P']} \equiv z'^t \left(\sum_{P'} \mu(P')\right) \equiv 0 \pmod{|P|\mathbb{Z}_p},$$

where the P' runs through all subgroups P' of P whose is divisible by t' and divides $p^k \cdot t'$. This proves congruence in equation (11) and hence the theorem.

\[\square\]

Remark 5. We may replace G by $\text{Res}_{F_1/F}(G)$ and the conclusion of the theorem still clearly holds. Though this is not important here, in cases of Eisenstein series over other groups (i.e. other than GL_2) this may be useful because there are cases when q-expansion principal may be known to hold over F but not over extensions of F.

4. K_1 of some Iwasawa algebras

Detailed proofs of results in this section will appear in [2]. From now on we also assume that $F = \mathbb{Q}$. Let G be a compact p-adic Lie group of the form $H \times \Gamma$, where $H \cong \mathbb{Z}_p^d$ and Γ is an open subgroup of \mathbb{Z}_p^\times and containing $1 + p\mathbb{Z}_p$. Furthermore, we assume that the action of Γ on H is diagonal. Put $\Gamma_0 := \Gamma$ and $\Gamma_i := 1 + p^i\mathbb{Z}_p \subset \mathbb{Z}_p^\times$ for $i \geq 1$. We put $\delta := [\Gamma : \Gamma_1]$. Put $G_i := H \times \Gamma_i$ for $i \geq 0$. Let $A(G)$ be the free abelian group generated by absolutely irreducible finite order (Artin) representations of G. Then we have a natural map

$$\text{Det} : K_1(A(G)) \to \text{Hom}(A(G), A(\Gamma)^\times).$$

Define $SK_1(A(G)) := \text{Ker}(\text{Det})$. Put $K'_1(A(G)) := K_1(A(G))/SK_1(A(G))$.

Remark 6. We expect $SK_1(A(G))$ to be trivial in this case but make no attempt to prove it here. This would be in analogy with the fact that $SK_1(A(G))$ is trivial ([12 proposition 12.7]).

Definition 7. Define a map

$$\theta := \prod_{i \geq 0} \theta_i : K'_1(A(G)) \to \prod_{i \geq 0} A(G_i^\times)^\times,$$
where each θ_i is the composition $K'_1(A(G)) \to K'_1(A(G_i)) \to A(G_i^ab)^\times$ of the norm map and the natural surjection.

Some more maps: Let $0 \leq j \leq i$. We have two natural maps

$$N := N_{i,j} : A(G_j^{ab})^\times \to A(G_i/[G_j,G_j])^\times$$

and the natural projection

$$\pi := \pi_{i,j} : A(G_i^{ab}) \to A(G_i/[G_j,G_j]).$$

We have the transfer homomorphism $\text{ver} : G_j^{ab} \to G_i^{ab}$ which induces a ring homomorphism, again denoted by ver

$$\text{ver} : A(G_j^{ab}) \to A(G_i^{ab}),$$

which acts as identity on q. We have a \mathbb{Z}_p-linear map from section \[\sigma_i : A(G_i^ab) \to A(G_i^ab), \]

The image of the map σ_i lies in the subring $A(G_i^{ab})^G$, the part fixed by G. In fact, the image σ_i is an ideal in this ring (but not in the ring $A(G_i^{ab})$).

Definition 8. Let $\hat{\Phi} \subset \prod_{i \geq 0} (A(G_i^{ab})^\times)^G$ consisting of all tuples $(x_i)_i$ satisfying the congruence

$$(C) \quad \text{ver}(x_{i-1}) \equiv x_i (\text{mod } \text{Im}(\sigma_i))$$

Definition 9. Let $\Phi \subset \hat{\Phi}$ consisting of all tuples $(x_i)_i$ satisfying the functoriality

$$(F) \quad \text{For all } 0 \leq j \leq i \quad N_{i,j}(x_j) = \pi_{i,j}(x_i).$$

We define one more map before stating the main theorem of this section. We define $\eta_0 : A(G_0^{ab}) \to A(G_0^{ab})$ to be

$$\eta_0(x) = \frac{x^\delta}{\prod_{k=0}^{p-1} \bar{\omega}^k(x)},$$

where ω is a character of G_0^{ab} inflated from an order δ character of Γ and $\bar{\omega}$ is the map induced by $g \mapsto \omega(g)g$. For every $i \geq 1$, we define

$$\eta_i : A(G_i^{ab}) \to A(G_i^{ab})$$

by

$$x \mapsto \frac{x^p}{\prod_{k=0}^{p-1} \bar{\omega}_i^k(x)},$$

where ω_i is a character of G_i^{ab} inflated from an order p character of Γ_i and $\bar{\omega}_i$ is the map on $A(G_i^{ab})$ induced by $g \mapsto \omega_i(g)g$. We put

$$\eta := \prod_{i \geq 0} \eta_i : \prod_{i \geq 0} A(G_i^{ab}) \to A(G_i^{ab})$$

Theorem 10. (1) θ induces an isomorphism between $K'_1(A(G))$ and Φ.

(2) The inclusion $\Phi \hookrightarrow \hat{\Phi}$ has a natural section.
Proof. We give a rough idea of the proof with details and more general results appearing in [2].

(1) By definition of K'_i and the fact that every irreducible Artin representation of G is induced from a one dimensional Artin representation of G_i for some i ([16, proposition 25]) it is clear that the map θ is injective. It is also easy to show that the image of θ lies in Φ. Let $(x_i)_i \in \Phi$. Then the inverse image of $(x_i)_i$ in $K'_i(A(G))$ is constructed as follows: firstly we may and do assume that $x_0 = 1$ since the map $K_1(A(G)) \to A(G_{ab})^\times$ is surjective. For every $i \geq 1$ put $y_i := \frac{x_i}{\text{ver}(x_{i-1})}$. Define

$$X := \prod_{i \geq 1} \eta_i(y_i)^{(i-1)p^i} \in K'_i(A(G)).$$

There are several points that need explaining - firstly, $\eta_i(y_i)$ lies in $A(G_{ab})^\times$. However, it can be show that the map $K'_1(A(G_i)) \to A(G_{ab})^\times \xrightarrow{\text{Res}} \eta_i(A(G_{ab})^\times)$ splits and hence $\eta_i(y_i)$ makes sense as an element of $K'_1(A(G))$. It can be shown using conditions (F) and (C) that $\eta_i(y_i)$ is a $(p-1)p^i = p[G_i : G]$th power in $K'_1(A(G))$. Using the fact that $x_0 = 1$, we can show that $\eta_i(y_i)$ actually lies in the image, denoted by $K'_1(A(G), J)$ of $K_1(A(G), J)$ in $K_1(A(G))$ and that it has a unique $(p-1)p^i$th root in $K_1'(A(G), J)$. Here J is the kernel of $A(G) \to A(C_{ab})$. Lastly, one needs to show that the infinite product converges. Each of this step is non-trivial and crucially uses integral logarithm map (or rather it generalisation to rings like $A(G)$) of R. Oliver and M. Taylor.

(2) By the above we may define the natural section as follows: Let $(x_i)_i \in \Phi$ and we may again assume that $x_0 = 1$. Define $z_0 = 1$ and for $i \geq 1$ define

$$z_i = \prod_{j \geq i} \eta_j(y_j)^{p^{j-i}} \in A(G_{ab})^\times,$$

with y_i defined as above. Then one can check that $(z_i)_i \in \Phi$ and gives a natural section of the inclusion.

Definition 11. We define the natural section of the inclusion $\Phi \subset \tilde{\Phi}$ given by the above theorem by s.

Corollary 12. If $(x_i)_i \in \tilde{\Phi}$, then there is a unique element $x \in K'_1(A(G))$ such that $\theta(x) = s((x_i)_i)$.

5. NON-COMMUTATIVE q-EXPANSIONS

We continue with the notation of the previous section. Therefore $F = \mathbb{Q}$. Let $F_1 := F_{G_i}^\infty$ and $K_1 := F_{F_{G_i}^\infty}^{G_i,G_i}$. We put \mathcal{E}_i for the standard q-expansion of the $\Lambda(G_{ab})$-adic Hilbert modular form $\text{Res}_{F_1/F}(\mathcal{E}(K_i/F_i))|_{U_{q_p}}$ from section 2. As F_1 is an abelian extension of \mathbb{Q} and G_1 is pro-p we know by the theorem of Ferrero-Washington [5] that $\mathcal{E}_i \in A(G_{ab})^\times$ (it is enough to show that the constant term, i.e. the p-adic zeta functions $\zeta(K_i/F_i)$, of \mathcal{E}_i are units in $\Lambda(G_{ab})_S$. This is well-known, for example see [3] lemma 1.7 and 1.14).

Theorem 13. The tuple $(\mathcal{E}_i)_i$ lies in $\tilde{\Phi}$. Hence there exists $\mathcal{E} \in K'_1(A(G))$ such that $\theta(\mathcal{E}) = s((\mathcal{E}_i)_i)$. The “constant term” of \mathcal{E}, i.e. its image under the map $K'_1(A(G)) \to K'_1(A(G) |_S)$ mapping q to 0, takes \mathcal{E} to the p-adic zeta function for F_{∞}/F.

Proof. It is clear from the explicit expression that each E_i is fixed under the conjugation action of G. The congruence condition (C) follows from the Möbius-Wall congruences as follows: taking $V = G_i$ and $U = G_1$ and noting that $\mu(\mathbb{Z}/p^n\mathbb{Z})$ is zero unless $0 \leq n \leq 1$, we get that the standard q-expansion of

\begin{equation}
\text{ver}(\text{Res}_{F_i/F_1}(\mathcal{E}(K_i/F_1))/U_{p_i}) - \text{Res}_{F_i/F_1}(\mathcal{E}(K_i/F_1))/U_{p_i}
\end{equation}

lies in $\text{Im}(\sigma_{G_1}^{G_i})$ by theorem 3. Now $\text{ver}(\mathcal{E}_{i-1}) - \mathcal{E}_i$ is obtained by applying $\text{Res}_{F_1/Q}$ and U_δ to (2) and taking its standard q-expansion. Hence $\text{ver}(\mathcal{E}_{i-1}) - \mathcal{E}_i \in \text{Im}(\sigma_1)$. The second assertion follows from corollary 12.

The last assertion follows from the commutative diagram

$K_i'(A(G)) \xrightarrow{\theta} K_i'(\Lambda(G))$

\[\prod_{i \geq 0} A(G_i^{ab}) \xrightarrow{\theta} \prod_{i \geq 0} \Lambda(G_i^{ab}),\]

where the horizontal maps are $q \mapsto 0$.

The following corollary tells us something about evaluation of \mathcal{E} at elements of $A(G)$.

Corollary 14. Let $\rho \in A(G)$. Then there exist i and a one dimensional character χ of G_i such that $\rho = \text{Ind}_{G_1}^{G_i} \rho$. Then

$$\rho(\mathcal{E}) = \prod_{j \geq i} \left(\chi(\eta_j(\mathcal{E}_j))^{[\Gamma_j:\Gamma_i]} \right).$$

Remark 15. There are many examples of the totally real extensions of \mathbb{Q} with Galois group G whose form is as in the previous section. For example if p is an irregular prime, then the maximal abelian pro-p extension of $\mathbb{Q}(\mu_p\infty)$ is isomorphic to \mathbb{Z}_p^d for some positive integer d. If Vandiver’s conjecture is true for p then the action of $\text{Gal}(\mathbb{Q}(\mu_p\infty)^+/\mathbb{Q})$ on \mathbb{Z}_p^d is diagonal.

Remark 16. Even though the modifications we have to make to the Λ-adic Eisenstein series to get a lift to the non-commutative case are somewhat complicated, the result is rather formal i.e. if a “q-expansion” satisfies a congruence, then its modification given above can be lifted. The congruences seem to hold for Eisenstein series over other groups (see for example [1]). Hence their modifications should also have a lift. Is there a more conceptual description of these lifts?

Remark 17. We also remark that $(\mathcal{E}_i)_i$ does not lie in Φ because they do not satisfy the functoriality condition (F).

References

[1] Bouganis, T. Non-abelian p-adic L-functions and Eisenstein series of unitary groups; the constant term method. In preparation.

[2] Burns, D. and Kakde, M. Congruences in non-commutative Iwasawa theory. In preparation.
[3] Coates, J. and Fukaya, T. and Kato, K. and R. Sujatha and Venjakob, O. The GL_2 main conjecture for elliptic curves without complex multiplication. *Publ. Math. IHES*, (1):163–208, 2005.

[4] Deligne, P and Ribet, Kenneth A. Values of abelian L-functions at negative integers over totally real fields. *Inventiones Math.*, 59:227–286, 1980.

[5] Ferrero, B. and Washington, L.C. The Iwasawa invariant μ_p vanishes for abelian number fields. *Ann. of Math.*, 109:377–395, 1979.

[6] Fukaya, T and Kato, K. A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory. In N. N. Uraltseva, editor, *Proceedings of the St. Petersburg Mathematical Society*, volume 12, pages 1–85, March 2006.

[7] Hawkes, T. and Isaacs, I.M. and ÖZaydin, M. On the Möbius function of a finite group. *Rocky Mountain Journal of Mathematics*, 19(4):1003–1034, 1989.

[8] Kakde, M. Proof of the main conjecture of noncommutative Iwasawa theory for totally real number fields in certain cases. *J. Algebraic Geom.*, 20:631–683, 2011.

[9] Kakde, Mahesh. The main conjecture of Iwasawa theory for totally real fields. *Invent. Math.*, 193(3):539–626, 2013.

[10] Kato, K. Iwasawa theory of totally real fields for Galois extensions of Heisenberg type. Very preliminary version, 2006.

[11] Katz, N. M. p-adic L-functions for CM fields. *Inventiones Math.*, 49:199–297, 1978.

[12] Oliver, R. *Whitehead Groups of Finite Groups*. Number 132 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1988.

[13] Ritter, J. and Weiss, A. Congruences between abelian pseudomeasures. *Mathematical Research Letters*, 15(4):715–725, July 2008.

[14] Ritter, J. and Weiss, A. On the ‘main conjecture’ of equivariant Iwasawa theory. *Journal of the AMS*, 24:1015–1050, 2011.

[15] Serre, J-P. Formes modulaires et fonctions zêta p-adiques. In *Modular functions of one variable, III*, volume LNM 350, pages 191–268, 1973.

[16] Serre, J-P. *Linear Representation of Finite Groups*. Number 42 in Graduate Text in Mathematics. Springer-Verlag, 1977.

[17] Skinner, Christopher and Urban, Eric. The Iwasawa Main Conjecture for GL_2. *Invent. Math.*, 195:1–277, May 2014.

[18] Wiles, A. The Iwasawa conjecture for totally real fields. *Ann. of Math.*, 131(3):493–540, 1990.