Quantitative stable limit theorems on the Wiener space
Ivan Nourdin, David Nualart, Giovanni Peccati

To cite this version:
Ivan Nourdin, David Nualart, Giovanni Peccati. Quantitative stable limit theorems on the Wiener space. Annals of Probability, 2016, 44 (1), pp.1-41. 10.1214/14-AOP965. hal-00823380

HAL Id: hal-00823380
https://hal.science/hal-00823380
Submitted on 16 May 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantitative stable limit theorems on the Wiener space

by Ivan Nourdin*, David Nualart† and Giovanni Peccati‡

Université de Lorraine, Kansas University and Université du Luxembourg

Abstract: We use Malliavin operators in order to prove quantitative stable limit theorems on the Wiener space, where the target distribution is given by a possibly multi-dimensional mixture of Gaussian distributions. Our findings refine and generalize previous works by Nourdin and Nualart (2010) and Harnett and Nualart (2012), and provide a substantial contribution to a recent line of research, focussing on limit theorems on the Wiener space, obtained by means of the Malliavin calculus of variations. Applications are given to quadratic functionals and weighted quadratic variations of a fractional Brownian motion.

Keywords: Stable convergence, Malliavin calculus, fractional Brownian motion.

2000 Mathematics Subject Classification: 60F05, 60H07, 60G15

1 Introduction and overview

Originally introduced by Rényi in the landmark paper [30], the notion of stable convergence for random variables (see Definition 2.2 below) is an intermediate concept, bridging convergence in distribution (which is a weaker notion) and convergence in probability (which is stronger). One crucial feature of stably converging sequences is that they can be naturally paired with sequences converging in probability (see e.g. the statement of Lemma 2.3 below), thus yielding a vast array of non-central limit results – most notably convergence towards mixtures of Gaussian distributions. This last feature makes indeed stable convergence extremely useful for applications, in particular to the asymptotic analysis of functionals of semimartingales, such as power variations, empirical covariances, and other objects of statistical relevance. See the classical reference [9, Chapter VIII.5], as well as the recent survey [29], for a discussion of stable convergence results in a semimartingale context.

Outside the (semi)martingale setting, the problem of characterizing stably converging sequences is for the time being much more delicate. Within the framework of limit theorems for functionals of general Gaussian fields, a step in this direction appears in the paper [28], by Peccati and Tudor, where it is shown that central limit theorems (CLTs) involving sequences of multiple Wiener-Itô integrals of order \(\geq 2 \) are always stable. Such a result is indeed an immediate consequence of a general multidimensional CLT for chaotic random variables, and of the well-known fact that the first Wiener chaos of a Gaussian field coincides with the \(L^2 \)-closed Gaussian space generated by the field itself (see [16, Chapter 6] for a general discussion of multidimensional CLTs.

*Email: inourdin@gmail.com; IN was partially supported by the french ANR Grant ANR-10-BLAN-0121.
†Email: nualart@math.ku.edu; DN was partially supported by the NSF grant DMS1208625.
‡Email: giovanni.peccati@gmail.com; GP was partially supported by the grant F1R-MTH-PUL-12PAMP (PAMPAS), from Luxembourg University.
on the Wiener space). Some distinguished applications of the results in [28] appear e.g. in the two papers [6, 1], respectively by Corcuera et al. and by Barndorff-Nielsen et al., where the authors establish stable limit theorems (towards a Gaussian mixture) for the power variations of pathwise stochastic integrals with respect to a Gaussian process with stationary increments. See [13] for applications to the weighted variations of an iterated Brownian motion. See [3] for some quantitative analogous of the findings of [28] for functionals of a Poisson measure.

Albeit useful for many applications, the results proved in [28] do not provide any intrinsic criterion for stable convergence towards Gaussian mixtures. In particular, the applications developed in [1, 6, 13] basically require that one is able to represent a given sequence of functionals as the combination of three components – one converging in probability to some non-trivial random element, one living in a finite sum of Wiener chaoses and one vanishing in the limit – so that the results from [28] can be directly applied. This is in general a highly non-trivial task, and such a strategy is technically too demanding to be put into practice in several situations (for instance, when the chaotic decomposition of a given functional cannot be easily computed or assessed).

The problem of finding effective intrinsic criteria for stable convergence on the Wiener space towards mixtures of Gaussian distributions – without resorting to chaotic decompositions – was eventually tackled by Nourdin and Nualart in [11], where one can find general sufficient conditions ensuring that a sequence of \textit{multiple Skorohod integrals} stably converges to a mixture of Gaussian distributions. Multiple Skorohod integrals are a generalization of multiple Wiener-Itô integrals (in particular, they allow for random integrands), and are formally defined in Section 2.1 below. It is interesting to note that the main results of [11] are proved by using a generalization of a characteristic function method, originally applied by Nualart and Ortiz-Latorre in [23] to provide a Malliavin calculus proof of the CLTs established in [24, 28]. In particular, when specialized to multiple Wiener-Itô integrals, the results of [11] allow to recover the ‘fourth moment theorem’ by Nualart and Peccati [24]. A first application of these stable limit theorems appears in [11, Section 5], where one can find stable mixed Gaussian limit theorems for the weighted quadratic variations of the fractional Brownian motion (fBm), complementing some previous findings from [12]. Another class of remarkable applications of the results of [11] are the so-called \textit{Itô formulae in law}, see [7, 8, 20, 21]. Reference [7] also contains some multidimensional extensions of the abstract results proved in [11] (with a proof again based on the characteristic function method). Further applications of these techniques can be found in [31]. An alternative approach to stable convergence on the Wiener space, based on decoupling techniques, has been developed by Peccati and Taqqu in [27].

One evident limitation of the abstract results of [7, 11] is that they do not provide any information about rates of convergence. The aim of this paper is to prove several \textit{quantitative versions} of the abstract results proved in [7, 11], that is, statements allowing one to explicitly assess quantities of the type

\[\left| E[\varphi(\delta^{q_1}(u_1), \ldots, \delta^{q_d}(u_d))] - E[\varphi(F)] \right|, \]

where \(\varphi \) is an appropriate test function on \(\mathbb{R}^d \), each \(\delta^{q_i}(u_i) \) is a multiple Skorohod integral of order \(q_i \geq 1 \), and \(F \) is a \(d \)-dimensional mixture of Gaussian distributions. Most importantly, we shall show that our bounds also yield natural sufficient conditions for stable convergence towards \(F \). To do this, we must overcome a number of technical difficulties, in particular:

- We will work in a general framework and without any underlying semimartingale structure,
in such a way that the powerful theory of stable convergence for semimartingales (see again [9]) cannot be applied.

– To our knowledge, no reasonable version of Stein’s method exists for estimating the distance from a mixture of Gaussian distributions, so that the usual strategy for proving CLTs via Malliavin calculus and Stein’s method (as described in the monograph [16]) cannot be suitably adapted to our framework.

Our techniques rely on an interpolation procedure and on the use of Malliavin operators. To our knowledge, the main bounds proved in this paper, that is, the ones appearing in Proposition 3.1, Theorem 3.4 and Theorem 5.1, are first ever explicit upper bounds for mixed normal approximations in a non-semimartingale setting.

Note that, in our discussion, we shall separate the case of one-dimensional Skorohod integrals of order 1 (discussed in Section 3) from the general case (discussed in Section 5), since in the former setting one can exploit some useful simplifications, as well as obtain some effective bounds in the Wasserstein and Kolmogorov distances. As discussed below, our results can be seen as abstract versions of classic limit theorems for Brownian martingales, such as the ones discussed in [32, Chapter VIII].

To illustrate our findings, we provide applications to quadratic functionals of a fractional Brownian motion (Section 3.3) and to weighted quadratic variations (Section 6). The results of Section 3.3 generalize some previous findings by Peccati and Yor [25, 26], whereas those of Section 6 complement some findings by Nourdin, Nualart and Tudor [12].

The paper is organized as follows. Section 2 contains some preliminaries on Gaussian analysis and stable convergence. In Section 3 we first derive estimates for the distance between the laws of a Skorohod integral of order 1 and of a mixture of Gaussian distributions (see Proposition 3.1). As a corollary, we deduce the stable limit theorem for a sequence of multiple Skorohod integrals of order 1 obtained in [7], and we obtain rates of convergence in the Wasserstein and Kolmogorov distances. We apply these results to a sequence of quadratic functionals of the fractional Brownian motion. Section 4 contains some additional notation and a technical lemma that are used in Section 5 to establish bounds in the multidimensional case for Skorohod integrals of general orders. Finally, in Section 6 we present the applications of these results to the case of weighted quadratic variations of the fractional Brownian motion.

2 Gaussian analysis and stable convergence

In the next two subsections, we discuss some basic notions of Gaussian analysis and Malliavin calculus. The reader is referred to the monographs [22] and [16] for any unexplained definition or result.

2.1 Elements of Gaussian analysis

Let \mathcal{H} be a real separable infinite-dimensional Hilbert space. For any integer $q \geq 1$, we denote by $\mathcal{H}^{\otimes q}$ and $\mathcal{H}^{\circ q}$, respectively, the qth tensor product and the qth symmetric tensor product of \mathcal{H}. In what follows, we write $X = \{X(h) : h \in \mathcal{H}\}$ to indicate an isonormal Gaussian process over \mathcal{H}.

3
This means that X is a centered Gaussian family, defined on some probability space (Ω, \mathcal{F}, P), with a covariance structure given by

$$E[X(h)X(g)] = \langle h, g \rangle_{\mathcal{H}}, \quad h, g \in \mathcal{H}.$$

(2.1)

From now on, we assume that \mathcal{F} is the P-completion of the σ-field generated by X. For every integer $q \geq 1$, we let \mathcal{H}_q be the qth Wiener chaos of X, that is, the closed linear subspace of $L^2(\Omega)$ generated by the random variables \(\{H_q(X(h)), h \in \mathcal{H}, \|h\|_{\mathcal{H}} = 1\} \), where H_q is the qth Hermite polynomial defined by

$$H_q(x) = (-1)^q e^{x^2/2} \frac{d^q}{dx^q}(e^{-x^2/2}).$$

We denote by \mathcal{H}_0 the space of constant random variables. For any $q \geq 1$, the mapping $I_q(h) = q! H_q(X(h))$ provides a linear isometry between $\mathcal{H}^{\otimes q} (\text{equipped with the modified norm } \sqrt{q!} \|\cdot\|_{\mathcal{H}^{\otimes q}})$ and \mathcal{H}_q (equipped with the $L^2(\Omega)$ norm). For $q = 0$, we set by convention $\mathcal{H}_0 = \mathbb{R}$ and I_0 equal to the identity map.

It is well-known (Wiener chaos expansion) that $L^2(\Omega)$ can be decomposed into the infinite orthogonal sum of the spaces \mathcal{H}_q, that is: any square integrable random variable $F \in L^2(\Omega)$ admits the following chaotic expansion:

$$F = \sum_{q=0}^{\infty} I_q(f_q),$$

(2.2)

where $f_0 = E[F]$, and the $f_q \in \mathcal{H}^{\otimes q}$, $q \geq 1$, are uniquely determined by F. For every $q \geq 0$, we denote by J_q the orthogonal projection operator on the qth Wiener chaos. In particular, if $F \in L^2(\Omega)$ is as in (2.2), then $J_q F = I_q(f_q)$ for every $q \geq 0$.

Let $\{e_k, k \geq 1\}$ be a complete orthonormal system in \mathcal{H}. Given $f \in \mathcal{H}^{\otimes p}$, $g \in \mathcal{H}^{\otimes q}$ and $r \in \{0, \ldots, p \wedge q\}$, the rth contraction of f and g is the element of $\mathcal{H}^{\otimes (p+q-2r)}$ defined by

$$f \otimes_r g = \sum_{i_1, \ldots, i_r = 1}^{\infty} \langle f, e_{i_1} \otimes \ldots \otimes e_{i_r} \rangle_{\mathcal{H}^{\otimes r}} \otimes \langle g, e_{i_1} \otimes \ldots \otimes e_{i_r} \rangle_{\mathcal{H}^{\otimes r}}.$$

(2.3)

Notice that $f \otimes_r g$ is not necessarily symmetric. We denote its symmetrization by $f \bar{\otimes}_r g \in \mathcal{H}^{\otimes (p+q-2r)}$. Moreover, $f \otimes_0 g = f \otimes g$ equals the tensor product of f and g while, for $p = q$, $f \otimes_q g = \langle f, g \rangle_{\mathcal{H}^{\otimes q}}$. Contraction operators are useful for dealing with products of multiple Wiener-Itô integrals.

In the particular case where $\mathcal{H} = L^2(A, \mathcal{A}, \mu)$, with (A, \mathcal{A}) is a measurable space and μ a σ-finite and non-atomic measure, one has that $\mathcal{H}^{\otimes q} = L^2_s(A^q, \mathcal{A}^{\otimes q}, \mu^{\otimes q})$ is the space of symmetric and square integrable functions on A^q. Moreover, for every $f \in \mathcal{H}^{\otimes q}$, $I_q(f)$ coincides with the multiple Wiener-Itô integral of order q of f with respect to X (as defined e.g. in [22, Section 1.1.2]) and (2.3) can be written as

$$(f \otimes_r g)(t_1, \ldots, t_{p+q-2r}) = \int_{A^r} f(t_1, \ldots, t_{p-r}, s_1, \ldots, s_r) \times g(t_{p-r+1}, \ldots, t_{p+q-2r}, s_1, \ldots, s_r) d\mu(s_1) \ldots d\mu(s_r).$$
2.2 Malliavin calculus

Let us now introduce some elements of the Malliavin calculus of variations with respect to the isonormal Gaussian process X. Let S be the set of all smooth and cylindrical random variables of the form

$$F = g(X(\phi_1), \ldots, X(\phi_n)).$$

where $n \geq 1$, $g : \mathbb{R}^n \to \mathbb{R}$ is an infinitely differentiable function with compact support, and $\phi_i \in \mathcal{H}$. The Malliavin derivative of F with respect to X is the element of $L^2(\Omega, \mathcal{H})$ defined as

$$DF = \sum_{i=1}^n \frac{\partial g}{\partial x_i}(X(\phi_1), \ldots, X(\phi_n)) \phi_i.$$

By iteration, one can define the qth derivative $D^q F$ for every $q \geq 2$, which is an element of $L^2(\Omega, \mathcal{H} \otimes q)$. For $q \geq 1$ and $p \geq 1$, $\mathbb{D}^{q,p}$ denotes the closure of S with respect to the norm $\| \cdot \|_{\mathbb{D}^{q,p}}$, defined by the relation

$$\|F\|_{\mathbb{D}^{q,p}}^p = E[|F|^p] + \sum_{i=1}^q E\left(\|D^i F\|_{\mathcal{H} \otimes i}^p\right).$$

The Malliavin derivative D verifies the following chain rule. If $\varphi : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable with bounded partial derivatives and if $F = (F_1, \ldots, F_n)$ is a vector of elements of $\mathbb{D}^{1,2}$, then $\varphi(F) \in \mathbb{D}^{1,2}$ and

$$D\varphi(F) = \sum_{i=1}^n \frac{\partial \varphi}{\partial x_i}(F) D F_i.$$

We denote by δ the adjoint of the operator D, also called the divergence operator or Skorohod integral (see e.g. [22, Section 1.3.2] for an explanation of this terminology). A random element $u \in L^2(\Omega, \mathcal{H})$ belongs to the domain of δ, noted Domδ, if and only if it verifies

$$|E(\langle DF, u \rangle_{\mathcal{H}})| \leq c_u \sqrt{E(F^2)}$$

for any $F \in \mathbb{D}^{1,2}$, where c_u is a constant depending only on u. If $u \in \text{Dom} \delta$, then the random variable $\delta(u)$ is defined by the duality relationship (called ‘integration by parts formula’):

$$E(F \delta(u)) = E(\langle DF, u \rangle_{\mathcal{H}}),$$

which holds for every $F \in \mathbb{D}^{1,2}$. The formula (2.5) extends to the multiple Skorohod integral δ^q, and we have

$$E\left(F \delta^q(u)\right) = E\left(\langle D^q F, u \rangle_{\mathcal{H} \otimes q}\right),$$

for any element u in the domain of δ^q and any random variable $F \in \mathbb{D}^{q,2}$. Moreover, $\delta^q(h) = I_q(h)$ for any $h \in \mathcal{H} \otimes q$.

The following statement will be used in the paper, and is proved in [11].
Lemma 2.1 Let $q \geq 1$ be an integer. Suppose that $F \in \mathbb{D}^{q,2}$, and let u be a symmetric element in $\text{Dom}\delta^q$. Assume that, for any $0 \leq r + j \leq q$, $(D^r F, \delta^j(u))_{\mathcal{H}^{q-r}} \in L^2(\Omega, \mathcal{F}^{q-r-j})$. Then, for any $r = 0, \ldots, q - 1$, $(D^r F, u)_{\mathcal{H}^{q-r}}$ belongs to the domain of δ^{q-r} and we have

$$F\delta^q(u) = \sum_{r=0}^{q} \binom{q}{r} \delta^{q-r} ((D^r F, u)_{\mathcal{H}^{q-r}}).$$

(2.7)

(With the convention that $\delta^0(v) = v$, $v \in L^2(\Omega)$, and $D^0 F = F$, $F \in L^2(\Omega)$.)

For any Hilbert space V, we denote by $\mathbb{D}^{k,p}(V)$ the corresponding Sobolev space of V-valued random variables (see [22, page 31]). The operator δ^q is continuous from $\mathbb{D}^{k,p}(\mathcal{F}^{\otimes q})$ to $\mathbb{D}^{k-q,p}$, for any $p > 1$ and any integers $k \geq q \geq 1$, that is, we have

$$\|\delta^q(u)\|_{\mathbb{D}^{k-q,p}} \leq c_{k,p} \|u\|_{\mathbb{D}^{k,p}(\mathcal{F}^{\otimes q})},$$

(2.8)

for all $u \in \mathbb{D}^{k,p}(\mathcal{F}^{\otimes q})$, and some constant $c_{k,p} > 0$. These estimates are consequences of Meyer inequalities (see [22, Proposition 1.5.7]). In particular, these estimates imply that $\mathbb{D}^{q,2}(\mathcal{F}^{\otimes q}) \subset \text{Dom}\delta^q$ for any integer $q \geq 1$.

The following commutation relationship between the Malliavin derivative and the Skorohod integral (see [22, Proposition 1.3.2]) is also useful:

$$D\delta(u) = u + \delta(Du),$$

(2.9)

for any $u \in \mathbb{D}^{2,2}(\mathcal{F})$. By induction we can show the following formula for any symmetric element u in $\mathbb{D}^{j+k,2}(\mathcal{F}^{\otimes j})$

$$D^j \delta^i(u) = \sum_{i=0}^{\lfloor j \rfloor} \binom{k}{l} \binom{j}{i} d\delta^{j-i}(D^k u).$$

(2.10)

Also, we will make sometimes use of the following formula for the variance of a multiple Skorohod integral. Let $u, v \in \mathbb{D}^{2,2}(\mathcal{F}^{\otimes q}) \subset \text{Dom}\delta^q$ be two symmetric functions. Then

$$E(\delta^q(u)\delta^q(v)) = E(\langle u, D^q(\delta^q(v)) \rangle_{\mathcal{H}^{\otimes q}})$$

$$= \sum_{i=0}^{q} \binom{q}{i}^2 dE \left(\langle u, \delta^{q-i}(D^{q-i}v) \rangle_{\mathcal{H}^{\otimes q}} \right)$$

$$= \sum_{i=0}^{q} \binom{q}{i}^2 dE \left(D^{q-i}u \otimes_{2q-i} D^{q-i}v \right),$$

(2.11)

with the notation

$$D^{q-i}u \otimes_{2q-i} D^{q-i}v = \sum_{j,k,\ell=1}^{\infty} \langle D^{q-i}(u, \xi_j \otimes \eta_j)_{\mathcal{F}^{\otimes q-i}}, \xi_k \rangle_{\mathcal{H}^{\otimes q-i}} \langle D^{q-i}(v, \xi_k \otimes \eta_k)_{\mathcal{F}^{\otimes q-i}}, \xi_j \rangle_{\mathcal{H}^{\otimes q-i}},$$

where $\{\xi_j, j \geq 1\}$ and $\{\eta_\ell, \ell \geq 1\}$ are complete orthonormal systems in $\mathcal{F}^{\otimes q-i}$ and $\mathcal{F}^{\otimes i}$, respectively.
The operator L is defined on the Wiener chaos expansion as

$$L = \sum_{q=0}^{\infty} -qJ_q,$$

and is called the \textit{infinitesimal generator of the Ornstein-Uhlenbeck semigroup}. The domain of this operator in $L^2(\Omega)$ is the set

$$\text{Dom}L = \{ F \in L^2(\Omega) : \sum_{q=1}^{\infty} q^2 \| J_q F \|^2_{L^2(\Omega)} < \infty \} = \mathbb{D}^{1,2}. $$

There is an important relationship between the operators D, δ and L (see [22, Proposition 1.4.3]). A random variable F belongs to the domain of L if and only if $F \in \text{Dom}(\delta D)$ (i.e. $F \in \mathbb{D}^{1,2}$ and $DF \in \text{Dom}\delta$), and in this case

$$\delta DF = -LF. \quad (2.12)$$

Note also that a random variable F as in (2.2) is in $\mathbb{D}^{1,2}$ if and only if

$$\sum_{q=1}^{\infty} qq! \| f_q \|^2_{L^2(\Omega)} < \infty,$$

and, in this case, $E(\| DF \|^2_{\mathbb{D}^2}) = \sum_{q=1}^{\infty} qq! \| f_q \|^2_{L^2(\Omega)}$. If $\mathcal{H} = L^2(A, \mathcal{A}, \mu)$ (with μ non-atomic), then the derivative of a random variable F as in (2.2) can be identified with the element of $L^2(A \times \Omega)$ given by

$$D_a F = \sum_{q=1}^{\infty} qI_{q-1}(f_q(\cdot, a)), \quad a \in A. \quad (2.13)$$

2.3 Stable convergence

The notion of stable convergence used in this paper is provided in the next definition. Recall that the probability space (Ω, \mathcal{F}, P) is such that \mathcal{F} is the P-completion of the σ-field generated by the isonormal process X.

Definition 2.2 (Stable convergence) Fix $d \geq 1$. Let $\{ F_n \}$ be a sequence of random variables with values in \mathbb{R}^d, all defined on the probability space (Ω, \mathcal{F}, P). Let F be a \mathbb{R}^d-valued random variable defined on some extended probability space $(\Omega', \mathcal{F}', P')$. We say that F_n \textit{converges stably} to F, written $F_n \overset{\text{st}}{\to} F$, if

$$\lim_{n \to \infty} E \left[Ze^{i(\lambda, F_n)_{\mathbb{R}^d}} \right] = E' \left[Ze^{i(\lambda, F)_{\mathbb{R}^d}} \right], \quad (2.14)$$

for every $\lambda \in \mathbb{R}^d$ and every bounded \mathcal{F}-measurable random variable Z.

Choosing $Z = 1$ in (2.14), we see that stable convergence implies convergence in distribution. For future reference, we now list some useful properties of stable convergence. The reader is referred e.g. to [9, Chapter 4] for proofs. From now on, we will use the symbol $\overset{P}{\to}$ to indicate convergence in probability with respect to P.
Lemma 2.3 Let \(d \geq 1 \), and let \(\{ F_n \} \) be a sequence of random variables with values in \(\mathbb{R}^d \).

1. \(F_n \overset{st}{\to} F \) if and only if \((F_n, Z) \overset{law}{\to} (F, Z) \), for every \(\mathcal{F} \)-measurable random variable \(Z \).

2. \(F_n \overset{st}{\to} F \) if and only if \((F_n, Z) \overset{law}{\to} (F, Z) \), for every random variable \(Z \) belonging to some set \(\mathcal{Z} = \{ Z_\alpha : \alpha \in A \} \) such that the \(P \)-completion of \(\sigma(\mathcal{Z}) \) coincides with \(\mathcal{F} \).

3. If \(F_n \overset{st}{\to} F \) and \(F \) is \(\mathcal{F} \)-measurable, then necessarily \(F_n \overset{D}{\to} F \).

4. If \(F_n \overset{st}{\to} F \) and \(\{ Y_n \} \) is another sequence of random elements, defined on \((\Omega, \mathcal{F}, P) \) and such that \(Y_n \overset{P}{\to} Y \), then \((F_n, Y_n) \overset{st}{\to} (F, Y) \).

The following statement (to which we will compare many results of the present paper) contains criteria for the stable convergence of vectors of multiple Skorohod integrals of the same order. The case \(d = 1 \) was proved in [11, Corollary 3.3], whereas the case of a general \(d \) is dealt with in [7, Theorem 3.2]. Given \(d \geq 1 \), \(\mu \in \mathbb{R}^d \) and a nonnegative definite \(d \times d \) matrix \(C \), we shall denote by \(\mathcal{N}_d(\mu, C) \) the law of a \(d \)-dimensional Gaussian vector with mean \(\mu \) and covariance matrix \(C \).

Theorem 2.4 Let \(q, d \geq 1 \) be integers, and suppose that \(F_n \) is a sequence of random variables in \(\mathbb{R}^d \) of the form \(F_n = \delta^q(u_n) = (\delta^q(u^1_n), \ldots, \delta^q(u^r_n)) \), for a sequence of \(\mathbb{R}^d \)-valued symmetric functions \(u_n \) in \(\mathbb{D}^{2q,2q}(\mathcal{S}^q) \). Suppose that the sequence \(F_n \) is bounded in \(L^1(\Omega) \) and that:

1. \(\langle u^i_n, \bigotimes_{k=1}^m(D^{a_k}F_n^{j_k}) \otimes h \rangle_{\mathcal{S}^q} \) converges to zero in \(L^1(\Omega) \) for all integers \(1 \leq j, j_k \leq d \), all integers \(1 \leq a_1, \ldots, a_m, r \leq q - 1 \) such that \(a_1 + \cdots + a_m + r = q \), and all \(h \in \mathcal{S}^r \).

2. For each \(1 \leq i, j \leq d \), \(\langle u^i_n, D^qF_n^j \rangle_{\mathcal{S}^q} \) converges in \(L^1(\Omega) \) to a random variable \(s_{ij} \), such that the random matrix \(\Sigma := (s_{ij})_{d \times d} \) is nonnegative definite.

Then \(F_n \overset{st}{\to} F \), where \(F \) is a random variable with values in \(\mathbb{R}^d \) and with conditional Gaussian distribution \(\mathcal{N}_d(0, \Sigma) \) given \(X \).

2.4 Distances

For future reference, we recall the definition of some useful distances between the laws of two real-valued random variables \(F, G \).

- The Wasserstein distance between the laws of \(F \) and \(G \) is defined by
 \[
 d_W(F, G) = \sup_{\varphi \in \text{Lip}(1)} |E[\varphi(F)] - E[\varphi(G)]|,
 \]
 where \(\text{Lip}(1) \) indicates the collection of all Lipschitz functions \(\varphi \) with Lipschitz constant less than or equal to 1.

- The Kolmogorov distance is
 \[
 d_{Kol}(F, G) = \sup_{x \in \mathbb{R}} |P(F \leq x) - P(G \leq x)|.
 \]
The total variation distance is
\[d_{TV}(F, G) = \sup_{A \in \mathcal{A}(\mathbb{R})} |P(F \in A) - P(G \in A)|.\]

The Fortet-Mourier distance is
\[d_{FM}(F, G) = \sup_{\varphi \in \text{Lip}(1), \|\varphi\|_\infty \leq 1} |E[\varphi(F)] - E[\varphi(G)]|.\]

Plainly, \(d_W \geq d_{FM}\) and \(d_{TV} \geq d_{Kol}\). We recall that the topologies induced by \(d_W, d_{Kol}\) and \(d_{TV}\), over the class of probability measures on the real line, are strictly stronger than the topology of convergence in distribution, whereas \(d_{FM}\) metrizes convergence in distribution (see e.g. [16, Appendix C] for a review of these facts).

3 Quantitative stable convergence in dimension one

We start by focussing on stable limits for one-dimensional Skorohod integrals of order one, that is, random variables having the form \(F = \delta(u)\), where \(u \in \mathbb{D}^{1,2}(\mathcal{H})\). As already discussed, this framework permits some interesting simplifications that are not available for higher order integrals and higher dimensions. Notice that any random variable \(F\) such that \(E[F] = 0\) and \(E[F^2] < \infty\) can be written as \(F = \delta(u)\) for some \(u \in \text{Dom}\delta\). For example we can take \(u = -DL^{-1}F\), or in the context of the standard Brownian motion, we can take \(u\) an adapted and square integrable process.

3.1 Explicit estimates for smooth distances and stable CLTs

The following estimate measures the distance between a Skorohod integral of order 1, and a (suitably regular) mixture of Gaussian distributions. In order to deduce a stable convergence result in the subsequent Corollary 3.2, we also consider an element \(I_1(h)\) in the first chaos of the isonormal process \(X\).

Proposition 3.1 Let \(F \in \mathbb{D}^{1,2}\) be such that \(E[F] = 0\). Assume \(F = \delta(u)\) for some \(u \in \mathbb{D}^{1,2}(\mathcal{H})\). Let \(S \geq 0\) be such that \(S^2 \in \mathbb{D}^{1,2}\), and let \(\eta \sim \mathcal{N}(0,1)\) indicate a standard Gaussian random variable independent of the underlying isonormal Gaussian process \(X\). Let \(h \in \mathcal{H}\). Assume that \(\varphi : \mathbb{R} \to \mathbb{R}\) is \(C^3\) with \(\|\varphi''\|_\infty, \|\varphi'''\|_\infty < \infty\). Then:

\[
|E[\varphi(F + I_1(h))] - E[\varphi(S\eta + I_1(h))]| \leq \frac{1}{2}\|\varphi''\|_\infty E[2|\langle u, h \rangle_\mathcal{H}|] + |\langle u, DF \rangle_\mathcal{H} - S^2| + \frac{1}{3}\|\varphi'''\|_\infty E[|\langle u, D^2S \rangle_\mathcal{H}|].
\]

Proof. We proceed by interpolation. Fix \(\epsilon > 0\) and set \(S_\epsilon = \sqrt{S^2 + \epsilon}\). Clearly, \(S_\epsilon \in \mathbb{D}^{1,2}\). Let \(g(t) = E[\varphi(I_1(h) + \sqrt{t}F + \sqrt{T - t}S_\epsilon \eta)], t \in [0,1]\), and observe that \(E[\varphi(F + I_1(h))] - E[\varphi(S_\epsilon \eta +
Integrating again by parts with respect to the law of η, we have

$$g'(t) = \frac{1}{2} E \left[\phi'(I_1(h)) + \sqrt{t} F + \sqrt{1-tS_\eta} \left(\frac{F}{\sqrt{t}} - \frac{S_\eta}{\sqrt{1-t}} \right) \right] \quad \text{(4.16)}$$

where we have used the fact that S_η is a complex exponential and using Point 2 of Lemma 2.3 yields the desired conclusion.

Integrating again by parts with respect to the law of η yields

$$g''(t) = \frac{1}{2} E \left[\phi''(I_1(h)) + \sqrt{t} F + \sqrt{1-tS_\eta} \left(\frac{-1/2 F}{\sqrt{t}} + \frac{1/2 \sqrt{1-t} \eta}{\sqrt{1-t}} \right) \right] + \frac{1-t}{4\sqrt{t}} E \left[\phi'''(I_1(h)) + \sqrt{t} F + \sqrt{1-tS_\eta} \right] \left(\eta(h,F)_{\mathcal{B}} + \langle u,D\eta \rangle_{\mathcal{B}} + \sqrt{1-t} \eta(h,D\eta)_{\mathcal{B}} - S_\eta^2 \right) \quad \text{(4.17)}$$

where we have used the fact that $S_\eta D\eta = \frac{1}{2} D\eta^2 = \frac{1}{2} DS^2$. Therefore,

$$|E[\phi(I_1(h) + F)] - E[\phi(I_1(h) + S_\eta)]| \leq \frac{1}{2} \|\phi''\|_\infty E[\left| 2 \langle u,h \rangle_{\mathcal{B}} + \langle u,D\eta \rangle_{\mathcal{B}} - S^2 - \epsilon \right|] + \|\phi'''\|_\infty E[\left| \langle u,D\eta \rangle_{\mathcal{B}} \right|] \int_0^1 \frac{1-t}{4\sqrt{t}} dt,$$

and the conclusion follows letting ϵ go to zero, because $\int_0^1 \frac{1-t}{4\sqrt{t}} dt = \frac{1}{4}$.

The following statement provides a stable limit theorem based on Proposition 3.1.

Corollary 3.2 Let S and η be as in the statement of Proposition 3.1. Let $\{F_n\}$ be a sequence of random variables such that $E[F_n] = 0$ and $F_n = \delta(u_n)$, where $u_n \in \mathbb{D}^{1,2}(\mathcal{H})$. Assume that the following conditions hold as $n \to \infty$:

1. $\langle u_n, D\eta \rangle_{\mathcal{B}} \to S^2$ in $L^1(\Omega)$;
2. $\langle u_n, h \rangle_{\mathcal{B}} \to 0$ in $L^1(\Omega)$, for every $h \in \mathcal{H}$;
3. $\langle u_n, D\eta \rangle_{\mathcal{B}} \to 0$ in $L^1(\Omega)$.

Then, $F_n \overset{d_s}{\to} S\eta$, and selecting $h = 0$ in (3.15) provides an upper bound for the rate of convergence of the difference $|E[\phi(F_n)] - E[\phi(S\eta)]|$, for every ϕ of class C^3 with bounded second and third derivatives.

Proof. Relation (3.15) implies that, if Conditions 1–3 in the statement hold true, then $|E[\phi(F_n + I_1(h))] - E[\phi(S\eta + I_1(h))]| \to 0$ for every $h \in \mathcal{H}$ and every smooth test function ϕ. Selecting ϕ to be a complex exponential and using Point 2 of Lemma 2.3 yields the desired conclusion.

Remark 3.3 (a) Corollary 3.2 should be compared with Theorem 2.4 in the case $d = q = 1$ (which exactly corresponds to [11, Corollary 3.3]). This result states that, if (i) $u_n \in \mathbb{D}^{2,2}(\mathcal{H})$ and (ii) $\{F_n\}$ is bounded in $L^1(\Omega)$, then it is sufficient to check Conditions 1-2 in the statement of Corollary 3.2 for some S^2 in $L^1(\Omega)$ in order to deduce the stable convergence of F_n to $S\eta$. The fact that Corollary 3.2 requires more regularity on S^2, as well as the additional Condition 3, is compensated by the less stringent assumptions on u_n, as well as by the fact that we obtain explicit rates of convergence for a large class of smooth functions.

(b) Corollary 3.2 is a straightforward improvement of Theorem 2.4, when $d = 1$ and $q = 1$. It follows directly from Proposition 3.1, as well as the fact that $\eta(h,F)_{\mathcal{B}}$ is bounded in $L^1(\Omega)$, when $\{F_n\}$ is bounded in $L^1(\Omega)$. The assertion follows immediately.
The statement of [11, Corollary 3.3] allows one also to recover a modification of the so-called asymptotic Knight Theorem for Brownian martingales, as stated in [32, Theorem VIII.2.3]. To see this, assume that X is the isonormal Gaussian process associated with a standard Brownian motion $B = \{B_t : t \geq 0\}$ (corresponding to the case $H = L^2(\mathbb{R}_+, ds)$) and also that the sequence $\{u_n : n \geq 1\}$ is composed of square-integrable processes adapted to the natural filtration of B. Then, $F_n = \delta(u_n) = \int_0^\infty u_n(s)dB_s$, where the stochastic integral is in the Itô sense, and the aforementioned asymptotic Knight theorem yields that the stable convergence of F_n to $S\eta$ is implied by the following: (A) $\int_0^t u_n(s)ds \xrightarrow{P} 0$, uniformly in t in compact sets and (B) $\int_0^\infty u_n(s)^2ds \rightarrow S^2$ in $L^1(\Omega)$.

3.2 Wasserstein and Kolmogorov distances

The following statement provides a way to deduce rates of convergence in the Wasserstein and Kolmogorov distance from the previous results.

Theorem 3.4 Let $F \in \mathbb{D}^{1,2}$ be such that $E[F] = 0$. Write $F = \delta(u)$ for some $u \in \mathbb{D}^{1,2}(\mathcal{F})$. Let $S \in \mathbb{D}^{1,4}$, and let $\eta \sim N(0, 1)$ indicate a standard Gaussian random variable independent of the isonormal process X. Set

$$
\Delta = 3 \left(\frac{1}{\sqrt{2\pi}} E[|\langle u, DF \rangle_\mathcal{F} - S^2|] + \frac{\sqrt{2}}{3} E[|\langle u, DS^2 \rangle_\mathcal{F}|] \right)^{\frac{1}{2}}
$$

$$
\times \max \left\{ \frac{1}{\sqrt{2\pi}} E[|\langle u, DF \rangle_\mathcal{F} - S^2|] + \frac{\sqrt{2}}{3} E[|\langle u, DS^2 \rangle_\mathcal{F}|], \sqrt{\frac{2}{\pi}} (2 + E[S] + E[|F|]) \right\}^{\frac{2}{3}}.
$$

Then $d_W(F, S\eta) \leq \Delta$. Moreover, if there exists $\alpha \in (0, 1]$ such that $E[|S|^{-\alpha}] < \infty$, then

$$
d_{Kol}(F, S\eta) \leq \Delta^{\alpha+1/2} (1 + E[|S|^{-\alpha}]).
$$

Remark 3.5 Theorem 3.4 is specifically relevant whenever one deals with sequences of random variables living in a finite sum of Wiener chaoses. Indeed, in [19, Theorem 3.1] the following fact is proved: let $\{F_n : n \geq 1\}$ be a sequence of random variables living in the subspace $\bigoplus_{k=0}^p H_k$, and assume that F_n converges in distribution to a non-zero random variable F_∞; then, there exists a finite constant $c > 0$ (independent of n) such that

$$
d_{TV}(F_n, F_\infty) \leq c d_{FM}(F_n, F_\infty)^{\frac{1}{1+2\alpha}} \leq c d_W(F_n, F_\infty)^{\frac{1}{1+2\alpha}}, \quad n \geq 1.
$$

Exploiting this estimate, and in the framework of random variables with a finite chaotic expansion, the bounds in the Wasserstein distance obtained in Theorem 3.4 can be used to deduce rates of convergence in total variation towards mixtures of Gaussian distributions. The forthcoming Section 3.3 provides an explicit demonstration of this strategy, as applied to quadratic functionals of a (fractional) Brownian motion.

Proof of Theorem 3.4. It is divided into two steps.
Step 1: Wasserstein distance. Let \(\varphi : \mathbb{R} \to \mathbb{R} \) be a function of class \(C^3 \) which is bounded together with all its first three derivatives. For any \(t \in [0, 1] \), define

\[
\varphi_t(x) = \int_\mathbb{R} \varphi(\sqrt{ty} + \sqrt{1-t}x) d\gamma(y),
\]

where \(d\gamma(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy \) denotes the standard Gaussian measure. Then, we may differentiate and integrate by parts to get

\[
\varphi'_t(x) = \frac{1-t}{\sqrt{t}} \int_\mathbb{R} y \varphi'(\sqrt{ty} + \sqrt{1-t}x) d\gamma(y) = \frac{1-t}{t} \int_\mathbb{R} (y^2 - 1) \varphi'(\sqrt{ty} + \sqrt{1-t}x) d\gamma(y),
\]

and

\[
\varphi''_t(x) = \frac{(1-t)^{3/2}}{t} \int_\mathbb{R} (y^2 - 1) \varphi'(\sqrt{ty} + \sqrt{1-t}x) d\gamma(y).
\]

Hence for \(0 < t < 1 \) we may bound

\[
\| \varphi''_t \|_\infty \leq \frac{1-t}{\sqrt{t}} \| \varphi' \|_\infty \int_\mathbb{R} |y| d\gamma(y) \leq \sqrt{\frac{2}{\pi}} \| \varphi' \|_\infty \tag{3.19}
\]

and

\[
\| \varphi''_t \|_\infty \leq \frac{(1-t)^{3/2}}{t} \| \varphi' \|_\infty \int_\mathbb{R} |y^2 - 1| d\gamma(y) \leq \frac{\| \varphi' \|_\infty}{t} \sqrt{\int_\mathbb{R} (y^2 - 1)^2 d\gamma(y)} = \frac{\sqrt{2} \| \varphi' \|_\infty}{t}. \tag{3.20}
\]

Taylor expansion gives that

\[
|E[\varphi(F)] - E[\varphi_t(F)]| \leq \int_\mathbb{R} E \left[\left| \varphi(\sqrt{ty} + \sqrt{1-t}F) - \varphi(\sqrt{1-t}F) \right| \right] d\gamma(y) + E \left[\left| \varphi(\sqrt{1-t}F) - \varphi(F) \right| \right] \]

\[
\leq \| \varphi' \|_\infty \sqrt{t} \int_\mathbb{R} |y| d\gamma(y) + \| \varphi' \|_\infty \sqrt{1-t - 1} E[|F|] \]

\[
\leq \sqrt{t} \| \varphi' \|_\infty \left\{ \frac{\sqrt{2}}{\pi} + E[|F|] \right\}.
\]

Here we used that \(\sqrt{1-t - 1} = t/(\sqrt{1-t} + 1) \leq \sqrt{t} \). Similarly,

\[
|E[\varphi(S\eta)] - E[\varphi_t(S\eta)]| \leq \sqrt{t} \| \varphi' \|_\infty \left\{ \frac{\sqrt{2}}{\pi} + E[|S\eta|] \right\} = \frac{\sqrt{2}}{\pi} \sqrt{t} \| \varphi' \|_\infty \{ 1 + E[S] \}.
\]

Using (3.15) with (3.19)-(3.20) together with the triangle inequality and the previous inequalities, we have

\[
|E[\varphi(F)] - E[\varphi(S\eta)]| \leq \sqrt{\frac{2}{\pi}} \sqrt{t} \| \varphi' \|_\infty \{ 2 + E[S] + E[|F|] \} + \frac{1}{\sqrt{2\pi}} E\left[\langle u, D\varphi \rangle_{\eta} - S^2 \right] + \sqrt{\frac{2}{3}} E\left[\langle u, DS^2 \rangle_{S} \right]. \tag{3.21}
\]

12
Set
\[\Phi_1 = \sqrt{\frac{2}{\pi}} \{ 2 + E[S] + E[|F|] \}, \]
and
\[\Phi_2 = \frac{1}{\sqrt{2\pi}} E[(\langle u, DF \rangle)_{\Omega} - S^2] + \frac{\sqrt{2}}{3} E[(\langle u, DS^2 \rangle)_{\Omega}]. \]

The function \(t \mapsto \sqrt{t} \Phi_1 + \frac{1}{t} \Phi_2 \) attains its minimum at \(t_0 = (\frac{2\Phi_1}{\Phi_2})^{2/3} \). Then, if \(t_0 \leq 1 \) we choose \(t = t_0 \) and if \(t_0 > 1 \) we choose \(t = 1 \). With these choices we obtain
\[|E[\varphi(F)] - E[\varphi(S\eta)]| \leq \| \varphi' \|_{\infty} \Phi_2^{1/3} (\max((2^{-2/3} + 2^{1/3}) \Phi_1^{2/3}, 3 \Phi_2^{2/3}) \leq \| \varphi' \|_{\infty} \Delta. \] (3.22)

This inequality can be extended to all Lipschitz functions \(\varphi \), and this immediately yields that \(d_W(F, S\eta) \leq \Delta \).

Step 2: Kolmogorov distance. Fix \(z \in \mathbb{R} \) and \(h > 0 \). Consider the function \(\varphi_h : \mathbb{R} \to [0, 1] \) defined by
\[\varphi_h(x) = \begin{cases} 1 & \text{if } x \leq z \\ 0 & \text{if } x \geq z + h \\ \text{linear} & \text{if } z \leq x \leq z + h, \end{cases} \]
and observe that \(\varphi_h \) is Lipschitz with \(\| \varphi_h \|_{\infty} = 1/h \). Using that \(1_{(-\infty, z]} \leq \varphi_h \leq 1_{(-\infty, z + h]} \) as well as (3.22), we get
\[P[F \leq z] - P[S\eta \leq z] \leq E[\varphi_h(F)] - E[1_{(-\infty, z]}(S\eta)] = E[\varphi_h(F)] - E[\varphi_h(S\eta)] + E[\varphi_h(S\eta)] - E[1_{(-\infty, z]}(S\eta)] \leq \frac{\Delta}{h} + P[z \leq S\eta \leq z + h]. \]

On the other hand, we can write
\[
P[z \leq S\eta \leq z + h] = \frac{1}{\sqrt{2\pi}} \int e^{\frac{-x^2}{2}} 1_{[z,z+h]}(sx)dPS(s)dx
\]
\[= \frac{1}{\sqrt{2\pi}} \left(\int_{R_+} dPS(s) \int_{(z+h)/s}^{2/s} e^{-\frac{x^2}{2}} dx + \int_{R_-} dPS(s) \int_{2/s}^{(z+h)/s} e^{-\frac{x^2}{2}} dx \right) \]
\[\leq \frac{|h|^\alpha}{\sqrt{2\pi}} \int |s|^{-\alpha} dPS(s) \left(\int_{R} e^{-\frac{s^2}{2(1-\alpha)}} ds \right)^{1-\alpha} \]
\[\leq |h|^\alpha E[|S|^{-\alpha}], \]

because \(\left(\int_{R} e^{-\frac{y^2}{2(1-\alpha)}} dy \right)^{1-\alpha} = \left(\sqrt{1-\alpha} \int_{R} e^{-\frac{y^2}{2}} dy \right)^{1-\alpha} \leq \sqrt{2\pi}, \) so that
\[P[F \leq z] - P[S\eta \leq z] \leq \frac{\Delta}{h} + |h|^\alpha E[|S|^{-\alpha}]. \]
Hence, by choosing $h = \Delta_{\alpha+1}$, we get that
\[
P[F \leq z] - P[S\eta \leq z] \leq \Delta_{\alpha+1}(1 + E[|S|^{-\alpha}]).
\]
We prove similarly that
\[
P[F \leq z] - P[S\eta \leq z] \geq -\Delta_{\alpha+1}(1 + E[|S|^{-\alpha}]),
\]
so the proof of (3.17) is done.

3.3 Quadratic functionals of Brownian motion and fractional Brownian motion

We will now apply the results of the previous sections to some nonlinear functionals of a fractional Brownian motion with Hurst parameter $H \geq \frac{1}{2}$. Recall that a fractional Brownian motion (fBm) with Hurst parameter $H \in (0, 1)$ is a centered Gaussian process $B = \{B_t : t \geq 0\}$ with covariance function
\[
E(B_sB_t) = \frac{1}{2} (t^{2H} + s^{2H} - |t-s|^{2H}).
\]
Notice that for $H = \frac{1}{2}$ the process B is a standard Brownian motion. We denote by \mathcal{E} the set of step functions on $[0, \infty)$. Let \mathcal{H} be the Hilbert space defined as the closure of \mathcal{E} with respect to the scalar product
\[
\langle 1_{[0,t]}, 1_{[0,s]} \rangle_{\mathcal{H}} = E(B_sB_t).
\]
The mapping $1_{[0,t]} \to B_t$ can be extended to a linear isometry between the Hilbert space \mathcal{H} and the Gaussian space spanned by B. We denote this isometry by $\phi \to B(\phi)$. In this way $\{B(\phi) : \phi \in \mathcal{H}\}$ is an isonormal Gaussian process. In the case $H > \frac{1}{2}$, the space \mathcal{H} contains all measurable functions $\varphi : \mathbb{R}^+ \to \mathbb{R}$ such that
\[
\int_0^\infty \int_0^\infty |\varphi(s)||\varphi(t)||t-s|^{2H-2}dsdt < \infty,
\]
and in this case if φ and ϕ are functions satisfying this integrability condition,
\[
\langle \varphi, \phi \rangle_{\mathcal{H}} = H(2H-1) \int_0^\infty \int_0^\infty \varphi(s)\phi(t)|t-s|^{2H-2}dsdt.
\]
Furthermore, $L^\infty([0, \infty))$ is continuously embedded into \mathcal{H}. In what follows, we shall write
\[
c_H = \sqrt{H(2H-1)\Gamma(2H-1)}, \quad H > 1/2,
\]
and also $c_{\frac{1}{2}} := \lim_{H \downarrow \frac{1}{2}} c_H = \frac{1}{\sqrt{2}}$.

The following statement contains explicit estimates in total variation for sequences of quadratic Brownian functionals converging to a mixture of Gaussian distributions. It represents a significant refinement of [25, Proposition 2.1] and [27, Proposition 18].
Theorem 3.6 Let \(\{B_t : t \geq 0\} \) be a fBm of Hurst index \(H \geq \frac{1}{2} \). For every \(n \geq 1 \), define
\[
A_n := \frac{n^{1+H}}{2} \int_0^1 t^{n-1}(B_t^2 - B_t^1) dt.
\]
As \(n \to \infty \), the sequence \(A_n \) converges stably to \(S\eta \), where \(\eta \) is a random variable independent of \(B \) with law \(\mathcal{N}(0, 1) \) and \(S = c_H|B_1| \). Moreover, there exists a constant \(k \) (independent of \(n \)) such that
\[
d_{TV}(A_n, S\eta) \leq kn^{-\frac{1-H}{15}}, \quad n \geq 1.
\]

The proof of Theorem 3.6 is based on the forthcoming Proposition 3.7 and Proposition 3.8, dealing with the stable convergence of some auxiliary stochastic integrals, respectively in the cases \(H = 1/2 \) and \(H > 1/2 \). Notice that, since \(\lim_{H \downarrow \frac{1}{2}} c_H = \frac{1}{\sqrt{2}} \), the statement of Proposition 3.7 can be regarded as the limit of the statement of Proposition 3.8, as \(H \downarrow \frac{1}{2} \).

Proposition 3.7 Let \(B = \{B_t : t \geq 0\} \) be a standard Brownian motion. Consider the sequence of Itô integrals
\[
F_n = \sqrt{n} \int_0^1 t^n B_t dB_t, \quad n \geq 1.
\]
Then, the sequence \(F_n \) converges stably to \(S\eta \) as \(n \to \infty \), where \(\eta \) is a random variable independent of \(B \) with law \(\mathcal{N}(0, 1) \) and \(S = \frac{|B_1|}{\sqrt{2}} \). Furthermore, we have the following bounds for the Wasserstein and Kolmogorov distances
\[
d_{Kol}(F_n, S\eta) \leq C_n n^{-\gamma},
\]
for any \(\gamma < \frac{1}{12} \), where \(C_n \) is a constant depending on \(\gamma \), and
\[
d_{W}(F_n, S\eta) \leq Cn^{-\frac{1}{12}},
\]
where \(C \) is a finite constant independent of \(n \).

Proof. Taking into account that the Skorohod integral coincides with the Itô integral, we can write \(F_n = \delta(u_n) \), where \(u_n(t) = \sqrt{n}t^n B_t 1_{[0,1]}(t) \). In order to apply Theorem 3.4 we need to estimate the quantities \(E \left(|\langle u_n, DF_n \rangle_S - S^2| \right) \) and \(E \left(|\langle u_n, DS^2 \rangle_S \right) \). We recall that \(\mathcal{S} = L^2(\mathbb{R}_+, ds) \). For \(s \in [0, 1] \) we can write
\[
D_s F_n = \sqrt{ns^n} B_s + \sqrt{n} \int_s^1 t^n dB_t.
\]
As a consequence,
\[
\langle u_n, DF_n \rangle_S = n \int_0^1 s^{2n} B_s^2 ds + n \int_0^1 s^n B_s \left(\int_s^1 t^n dB_t \right) ds.
\]
From the estimates
\[E \left(\left| n \int_0^1 s^{2n} B_s^2 ds - \frac{B_1^2}{2} \right| \right) \leq n \int_0^1 s^{2n} E \left(\left| B_s^2 - B_1^2 \right| \right) ds + \left| \frac{n}{2n+1} - \frac{1}{2} \right| \]
\[\leq 2n \int_0^1 s^{2n} \sqrt{1 - s} ds + \frac{1}{2(2n+1)} \]
\[\leq \frac{2n}{\sqrt{2n+1}} \left(\int_0^1 s^{2n} (1-s) ds + \frac{1}{2(2n+1)} \right) \]
\[\leq \frac{1}{\sqrt{2n}} + \frac{1}{4n}, \]
and
\[nE \left(\left| \int_0^1 s^n B_s \left(\int_s^1 t^n dB_t \right) ds \right| \right) \leq \frac{n}{\sqrt{2n+1}} \int_0^1 s^{n+\frac{1}{2}} \sqrt{1 - s^{2n+1}} ds \]
\[\leq \frac{n}{(n+\frac{3}{2})\sqrt{2n+1}} \leq \frac{1}{\sqrt{2n}}, \]
we obtain
\[E \left(\left| \langle u_n, DF_n \rangle_{S^2} - S^2 \right| \right) \leq \frac{\sqrt{2}}{\sqrt{n}} + \frac{1}{4n}. \] (3.25)

On the other hand,
\[\left| \langle u_n, DS^2 \rangle_{S^2} \right| = \sqrt{n} E \left(\left| B_1 \int_0^1 s^n B_s ds \right| \right) \leq \frac{\sqrt{n}}{n + \frac{3}{2}} \leq \frac{1}{\sqrt{n}}. \] (3.26)

Notice that
\[E(|F_n|) \leq \frac{\sqrt{n}}{\sqrt{2n+2}} \leq \frac{1}{\sqrt{2}}. \] (3.27)

Therefore, using (3.25), (3.26) and (3.27) and with the notation of Theorem 3.4, for any constant \(C < C_0 \), where
\[C_0 = 3 \left(\frac{1}{\sqrt{2\pi}} \left(\sqrt{2} + \frac{1}{4} \right) + \frac{\sqrt{2}}{3} \right)^{\frac{1}{3}} \left(\frac{\sqrt{2}}{\pi} \left(2 + \frac{1}{\sqrt{\pi}} + \frac{1}{\sqrt{2}} \right) \right)^{\frac{2}{3}}, \]
there exists \(n_0 \) such that for all \(n \geq n_0 \) we have \(\Delta \leq Cn^{-\frac{1}{2}} \). Therefore, \(d_{\infty}(F_n, S) \leq Cn^{-\frac{1}{2}} \) for \(n \geq n_0 \). Moreover, \(E[|S|^{-\alpha}] < \infty \) for any \(\alpha < 1 \), which implies that
\[d_{Kol}(F_n, S) \leq C_n^{-\gamma}, \]
for any \(\gamma < \frac{1}{12} \). This completes the proof of the proposition.

As announced, the next result is an extension of Proposition 3.7 to the case of the fractional Brownian motion with Hurst parameter \(H > \frac{1}{2} \).
Proposition 3.8 Let \(B = \{ B_t : t \geq 0 \} \) be fractional Brownian motion with Hurst parameter \(H > \frac{1}{2} \). Consider the sequence of random variables \(F_n = \delta(u_n), \ n \geq 1 \), where

\[u_n(t) = n^H t^n B(t) 1_{[0,1]}(t). \]

Then, the sequence \(F_n \) converges stably to \(S_\eta \) as \(n \to \infty \), where \(\eta \) is a random variable independent of \(B \) with law \(\mathcal{N}(0,1) \) and \(S = c_H |B_1| \). Furthermore, we have the following bounds for the Wasserstein and Kolmogorov distances

\[d_{Kol}(F_n, S_\eta) \leq C_{\gamma,H} n^{-\gamma}, \]

for any \(\gamma < \frac{1-H}{6} \), where \(C_{\gamma,H} \) is a constant depending on \(\gamma \) and \(H \), and

\[d_W(F_n, S_\eta) \leq C_H n^{-\frac{1-H}{3}}, \]

where \(C_H \) is a constant depending on \(H \).

Proof of Proposition 3.8. Let us compute

\[D_s F_n = n^H s^n B_s + n^H \int_s^1 t^n dB_t. \]

As a consequence,

\[\langle u_n, D F_n \rangle_\delta = \|u_n\|_\delta^2 + n^H \left\langle u_n, \int_0^1 t^n dB_t \right\rangle_\delta. \]

As in the proof of Proposition 3.7, we need to estimate the following quantities:

\[\epsilon_n = E \left(\|u_n\|_\delta^2 - S^2 \right), \]

and

\[\delta_n = E \left(n^H \left\langle u_n, \int_0^1 t^n dB_t \right\rangle_\delta \right). \]

We have, using (3.23)

\[\epsilon_n \leq H(2H-1)n^{2H} E \left(2 \int_0^1 \int_0^t s^n t^n B_s B_1(t-s)^{2H-2} ds dt - \Gamma(2H-1) B_1^2 \right) \]

\[\leq H(2H-1)n^{2H} E \left(2 \int_0^1 \int_0^t s^n t^n [B_s B_1 - B_1^2(t-s)^{2H-2} ds dt \right) \]

\[+ H(2H-1) 2n^{2H} \int_0^1 \int_0^t s^n t^n (t-s)^{2H-2} ds dt - \Gamma(2H-1) \]

\[= a_n + b_n. \]

We can write for any \(s \leq t \)

\[E \left(|B_s B_t - B_1^2| \right) = E \left(|B_s B_t - B_s B_1 + B_s B_1 - B_1^2| \right) \leq (1-t)^H + (1-s)^H \leq 2(1-s)^H. \]
Using this estimate we get

\[a_n \leq 4H(2H - 1)n^{2H} \int_0^1 \int_0^t s^n t^n (1 - s)^H (t - s)^{2H - 2} ds dt. \]

For any positive integers \(n, m \) set

\[\rho_{n,m} = \int_0^1 \int_0^t s^n t^m (t - s)^{2H - 2} ds dt = \frac{\Gamma(n + 1)\Gamma(2H - 1)}{\Gamma(n + 2H)(n + m + 2H)}. \] \hspace{1cm} (3.28)

Then, by Hölder’s inequality

\[a_n \leq 4H(2H - 1)n^{2H} \rho_{n,n}^{1-H} \left(\int_0^1 \int_0^t s^n t^n (1 - s)(t - s)^{2H - 2} ds dt \right)^H = 4H(2H - 1)n^{2H} \rho_{n,n}^{1-H} (\rho_{n,n} - \rho_{n+1,n})^H. \]

Taking into account that

\[\rho_{n,n} - \rho_{n+1,n} = \frac{\Gamma(n + 1)(n(2H + 1) + 4H^2)}{\Gamma(n + 2H)(2n + H)(n + 2H)(2n + 1 + 2H)}, \]

and using Stirling’s formula, we obtain that \(\rho_{n,n} \) is less than or equal to a constant times \(n^{-2H} \) and \(\rho_{n,n} - \rho_{n+1,n} \) is less than or equal to a constant times \(n^{-2H-1} \). This implies that \(a_n \leq C_H n^{-H} \), for some constant \(C_H \) depending on \(H \).

For the term \(b_n \), using (3.28) we can write

\[b_n = H(2H - 1)\Gamma(2H - 1) \left| \frac{2n^{2H} \Gamma(n + 1)}{\Gamma(n + 2H)(2n + 2H) - 1} \right|, \]

which converges to zero, by Stirling’s formula, at the rate \(n^{-1} \).

On the other hand,

\[\delta_n = H(2H - 1)n^{2H} E \left(\left(\int_0^1 \int_0^1 s^n B_s \left(\int_t^1 r^n dB_r \right) |t - s|^{2H - 2} ds dt \right)^2 \right) \]

\[\leq H(2H - 1)n^{2H} \int_0^1 \int_0^1 s^{n+H} \left(E \left(\left(\int_t^1 r^n dB_r \right)^2 \right)^{1/2} \right)^{1/2} |t - s|^{2H - 2} ds dt. \] \hspace{1cm} (3.29)

We can write, using the fact that \(L^3([0, \infty)) \) is continuously embedded into \(\mathcal{D} \),

\[E \left(\left(\int_t^1 r^n dB_r \right)^2 \right) \leq C_H \left(\int_t^1 r^n dB_r \right)^{2H} \leq \frac{C_H}{\left(\frac{n}{H} + 1 \right)^{2H}}. \] \hspace{1cm} (3.30)

Substituting (3.30) into (3.29) be obtain \(\delta_n \leq C_H n^{-H} \), for some constant \(C_H \), depending on \(H \).

Thus,

\[E \left(|\langle u_n, DF_n \rangle_{\mathcal{D}} - S^2| \right) \leq C_H n^{-H}. \]
Finally,
\[E \left(\left| \langle u_n, DS^2 \rangle_t \right| \right) = n^H E \left(\left| \int_0^1 \int_0^1 s^n B_s |t-s|^{2H-2} dsdt \right| \right) \leq n^H \int_0^1 \int_0^1 s^{n+H} |t-s|^{2H-2} dsdt \leq C_H n^{H-1}. \]

Notice that in this case \(E \left(\left| \langle u_n, DF_n \rangle_t - S^2 \right| \right) \) converges to zero faster than \(E \left(\left| \langle u_n, DS^2 \rangle_t \right| \right) \). As a consequence, \(\Delta \leq C_H n^{\frac{H}{3}} \), for some constant \(C_H \) and we conclude the proof using Theorem 3.4.

Proof of Theorem 3.6. Using Itô formula (in its classical form for \(H = \frac{1}{2} \), and in the form discussed e.g. in [22, pp. 293–294] for the case \(H > \frac{1}{2} \)) yields that
\[
\frac{1}{2}(B_t^2 - B_s^2) = \delta \left(B_t 1_{[t,1]}(\cdot) \right) + \frac{1}{2}(1 - t^{2H})
\]
(note that \(\delta \left(B_t 1_{[t,1]}(\cdot) \right) \) is a classical Itô integral in the case \(H = \frac{1}{2} \)). Interchanging deterministic and stochastic integration by means of a stochastic Fubini theorem yields therefore that
\[
A_n = F_n + H - \frac{n^H}{2H + n}.
\]

In view of Propositions 3.7 and 3.8, this implies that \(A_n \) converges in distribution to \(S_\eta \). The crucial point is now that each random variable \(A_n \) belongs to the direct sum \(\mathcal{H}_0 \oplus \mathcal{H}_2 \): it follows that one can exploit the estimate (3.18) in the case \(p = 2 \) to deduce that there exists a constant \(c \) such that
\[
d_{TV}(A_n, S_\eta) \leq c d_W(A_n, S_\eta)^\frac{1}{2} \leq c (d_W(F_n, S_\eta) + d_W(A_n, F_n))^\frac{1}{2},
\]
where we have applied the triangle inequality. Since (trivially) \(d_W(A_n, F_n) \leq H \frac{n^H}{2H+n} < n^{H-1} \), we deduce the desired conclusion by applying the estimates in the Wasserstein distance stated in Propositions 3.7 and 3.8.

4 Further notation and a technical lemma

4.1 A technical lemma

The following technical lemma is needed in the subsequent sections.

Lemma 4.1 Let \(\eta_1, \ldots, \eta_d \) be a collection of i.i.d. \(\mathcal{N}(0, 1) \) random variables. Fix \(\alpha_1, \ldots, \alpha_d \in \mathbb{R} \) and integers \(k_1, \ldots, k_d \geq 0 \). Then, for every \(f : \mathbb{R}^d \to \mathbb{R} \) of class \(C^{(k_1, \ldots, k_d)} \) (where \(k = k_1 + \cdots + k_d \)) such that \(f \) and all its partial derivatives have polynomial growth,
\[
E \left[f(\alpha_1 \eta_1, \ldots, \alpha_d \eta_d) \eta_1^{k_1} \cdots \eta_d^{k_d} \right] = \sum_{j_1 = 0}^{[k_1/2]} \cdots \sum_{j_d = 0}^{[k_d/2]} \prod_{l=1}^d \frac{k_l!}{2^{j_l}(k - 2j_l)! j_l!} \eta_1^{k_1-2j_1} \cdots \eta_d^{k_d-2j_d} \times E \left[\frac{\partial^{k_1+\cdots+k_d-2(j_1+\cdots+j_d)}}{\partial x_1^{j_1} \cdots \partial x_d^{j_d}} f(\alpha_1 \eta_1, \ldots, \alpha_d \eta_d) \right].
\]
Proof. By independence and conditioning, it suffices to prove the claim for \(d = 1 \), and in this case we write \(\eta_1 = \eta, k_1 = k \), and so on. The decomposition of the random variable \(\eta^k \) in terms of Hermite polynomials is given by

\[
\eta^k = \sum_{j=0}^{\lfloor k/2 \rfloor} \frac{k!}{2^j (k - 2j)! j!} H_{k-2j}(\eta),
\]

where \(H_{k-2j}(x) \) is the \((k - 2j)\)th Hermite polynomial. Using the relation \(E[f(\alpha \eta)H_{k-2j}(\eta)] = \alpha^{k-2j} E[f^{(k-2j)}(\alpha \eta)] \), we deduce the desired conclusion.

4.2 Notation

The following notation is needed in order to state our next results. For the rest of this section we fix integers \(m \geq 0 \) and \(d \geq 1 \).

(i) In what follows, we shall consider smooth functions

\[
\psi : \mathbb{R}^{m \times d} \to \mathbb{R} : (y_1, ..., y_m; x_1, ..., x_d) \mapsto \psi(y_1, ..., y_m; x_1, ..., x_d).
\]

Here, the implicit convention is that, if \(m = 0 \), then \(\psi \) does not depend on \((y_1, ..., y_m)\). We also write

\[
\psi_x^k = \frac{\partial}{\partial x_k} \psi, \quad k = 1, ..., d.
\]

(ii) For every integer \(q \geq 1 \), we write \(\mathcal{A}(q) = \mathcal{A}(q; m, d) \) (the dependence on \(m, d \) is dropped whenever there is no risk of confusion) to indicate the collection of all \((m + q(1 + d))\)-dimensional vectors with nonnegative integer entries of the type

\[
\alpha^{(q)} = (k_1, ..., k_q; a_1, ..., a_m; b_{ij}, \ i = 1, ..., q, \ j = 1, ..., d),
\]

verifying the set of Diophantine equations

\[
\begin{align*}
k_1 + 2k_2 + \cdots + qk_q &= q, \\
a_1 + \cdots + a_m + b_{11} + \cdots + b_{1d} &= k_1, \\
b_{21} + \cdots + b_{2d} &= k_2, \\
&\quad \vdots \\
b_{q1} + \cdots + b_{qd} &= k_q.
\end{align*}
\]

(iii) Given \(q \geq 1 \) and \(\alpha^{(q)} \) as in (4.32), we define

\[
C(\alpha^{(q)}) := \frac{q!}{\prod_{i=1}^q i! k_i \prod_{i=1}^m a_i! \prod_{i=1}^q \prod_{j=1}^d b_{ij}!}.
\]
(iv) Given a smooth function \(\psi \) as in (4.31) and a vector \(\alpha^{(q)} \in \mathcal{A}(q) \) as in (4.32), we set
\[
\partial^{\alpha^{(q)}} \psi := \frac{\partial^{k_1 + \cdots + k_d}}{\partial y_1^{a_1} \cdots \partial y_m \partial x_1^{b_{11} + \cdots + b_{11}} \cdots \partial x_d^{b_{d1} + \cdots + b_{d1}}} \psi.
\] (4.34)

The coefficients \(C(\alpha^{(q)}) \) and the differential operators \(\partial^{\alpha^{(q)}} \), defined respectively in (4.33) and (4.34), enter the generalized Faa di Bruno formula (as proved e.g. in [10]) that we will use in the proof of our main results.

(v) For every integer \(q \geq 1 \), the symbol \(\mathcal{B}(q) = \mathcal{B}(q; m, d) \) indicates the class of all \((m+q(1+2d))\)-dimensional vectors with nonnegative integer entries of the type
\[
\beta^{(q)} = (k_1, \ldots, k_q; a_1, \ldots, a_m; b'_{ij}, b''_{ij} \, i = 1, \ldots, q, \, j = 1, \ldots, d),
\] (4.35)
such that
\[
\alpha(\beta^{(q)}) := (k_1, \ldots, k_q; a_1, \ldots, a_m; b'_{ij} + b''_{ij} \, i = 1, \ldots, q, \, j = 1, \ldots, d),
\] (4.36)
is an element of \(\mathcal{A}(q) \), as defined at Point (ii). Given \(\beta^{(q)} \) as in (4.35), we also adopt the notation
\[
|b'| := \sum_{i=1}^{q} \sum_{j=1}^{d} b'_{ij}, \quad |b''| := \sum_{i=1}^{q} \sum_{j=1}^{d} b''_{ij}, \quad |b''_{*j}| := \sum_{i=1}^{q} b''_{ij}, \quad j = 1, \ldots, d.
\] (4.37)

(vi) For every \(\beta^{(q)} \in \mathcal{B}(q) \) as in (4.35) and every \((l_1, \ldots, l_d)\) such that \(l_s \in \{0, \ldots, \lfloor |b''_{*s}|/2 \rfloor \} \), \(s = 1, \ldots, d \), we set
\[
W(\beta^{(q)}; l_1, \ldots, l_d) := C(\alpha(\beta^{(q)})) \prod_{i=1}^{q} \prod_{j=1}^{d} \left(\frac{b'_{ij} + b''_{ij}}{b'_{ij}} \right) \prod_{s=1}^{d} \frac{|b''_{*s}|!}{2^{l_s} (|b''_{*s}| - 2l_s)! l_s!},
\] (4.38)
where \(C(\alpha(\beta^{(q)})) \) is defined in (4.33), and
\[
\partial_{x}^{(\beta^{(q)}; l_1, \ldots, l_d)} := \frac{\partial^{|b''| - 2(l_1 + \cdots + l_d)}}{\partial x_1^{b_{11}} \cdots \partial x_d^{b_{d1} - 2l_d}},
\] (4.39)
where \(\alpha(\beta^{(q)}) \) is given in (4.36), and \(\partial^{\alpha(\beta^{(q)})} \) is defined according to (4.34).

(vii) The Beta function \(B(u, v) \) is defined as
\[
B(u, v) = \int_{0}^{1} t^{u-1} (1 - t)^{v-1} \, dt, \quad u, v > 0.
\]

21
5 Bounds for general orders and dimensions

5.1 A general statement

The following statement contains a general upper bound, yielding stable limit theorems and associated explicit rates of convergence on the Wiener space.

Theorem 5.1 Fix integers $m \geq 0$, $d \geq 1$ and $q_j \geq 1$, $j = 1, \ldots, d$. Let $\eta = (\eta_1, \ldots, \eta_d)$ be a vector of i.i.d. $\mathcal{N}(0,1)$ random variables independent of the isonormal Gaussian process X. Define $\hat{q} = \max_{j=1,\ldots,d} q_j$. For every $j = 1, \ldots, d$, consider a symmetric random element $u_j \in \mathbb{D}^{2\hat{q} \cdot \hat{q}}(\mathcal{S}^{2q_j})$, and introduce the following notation:

- $F_j := \delta^{\eta_j}(u_j)$, and $F := (F_1, \ldots, F_d)$;
- (S_1, \ldots, S_d) is a vector of real-valued elements of $\mathbb{D}^{\hat{q} \cdot \hat{q}}$, and

$$S \cdot \eta := (S_1 \eta_1, \ldots, S_d \eta_d).$$

Assume that the function $\varphi : \mathbb{R}^{m \times d} \to \mathbb{R}$ admits continuous and bounded partial derivatives up to the order $2\hat{q} + 1$. Then, for every $h_1, \ldots, h_m \in \mathcal{B}$,

$$|E[\varphi(X(h_1), \ldots, X(h_m); F)] - E[\varphi(X(h_1), \ldots, X(h_m); S \cdot \eta)]| \leq \frac{1}{2} \sum_{k,j=1}^d \left\| \frac{\partial^2}{\partial x_k \partial x_j} \varphi \right\|_{\infty} E \left[\left\| \langle D^q_j F_j, u_k \rangle_{\mathcal{S}\otimes \eta_k} - 1_{j=k} S_j^2 \right\| \right]$$

$$+ \frac{1}{2} \sum_{k=1}^d \sum_{\beta(q_k) \in \mathcal{B}_0(q_k)} \left[|b_{k,1}^{\alpha_1}/2| \cdot \sum_{l_1=0}^{[b_{k,1}^{\alpha_1}/2]} \sum_{l_d=0}^{[b_{k,d}^{\alpha_d}/2]} |W_{\beta(q_k); l_1, \ldots, l_d}| \left\| \bar{\eta}_*^{(\beta(q_k); l_1, \ldots, l_d)} \varphi_{x_k} \right\|_{\infty} \right]$$

$$\times E \left[\prod_{s=1}^d S_s^{b_{s,1}^{\alpha_1}} \cdots \otimes \left(u_k, h_1^{\otimes \alpha_1} \cdots \otimes h_m^{\otimes \alpha_m} \otimes (D^q_j F_j) \otimes (D^q_j S_j) \otimes \eta_k \right) \right],$$

where we have adopted the same notation as in Section 4.2, with the following additional conventions: (a) $\mathcal{B}_0(q)$ is the subset of $\mathcal{B}(q)$ composed of those $\beta(q_k)$ as in (4.35) such that $b_{k,j} = 0$ for $j = 1, \ldots, d$, (b) $W_{\beta(q_k); l_1, \ldots, l_d} := W_{\beta(q_k); l_1, \ldots, l_d} \times B(|b'| + 1/2; |b'| + 1)$, where B is the Beta function.

5.2 Case $m = 0$, $d = 1$

Specializing Theorem 5.1 to the choice of parameters $m = 0$, $d = 1$ and $q \geq 1$ yields the following estimate on the distance between the laws of a (multiple) Skorohod integral and of a mixture of Gaussian distributions.

Proposition 5.2 Suppose that $u \in \mathbb{D}^{2q} (\mathcal{S}^{2q})$ is symmetric. Let $F = \delta^\eta(u)$. Let $S \in \mathbb{D}^{\hat{q} \cdot \hat{q}}$, and let $\eta \sim \mathcal{N}(0,1)$ indicate a standard Gaussian random variable, independent of the underlying
isonormal process \(X \). Assume that \(\varphi : \mathbb{R} \to \mathbb{R} \) is \(C^{2q+1} \) with \(\| \varphi^{(k)} \|_\infty < \infty \) for any \(k = 0, \ldots, 2q+1 \). Then

\[
|E[\varphi(F)] - E[\varphi(S\eta)]| \leq \frac{1}{2} \|\varphi''\|_\infty E[|\langle u, DF \rangle_{B^2} - S^2|]
\]

\[
+ \sum_{(b',b'') \in Q, b''_q = 0} \sum_{j=0}^{[|b''|/2]} c_{q,b',b'',j} \|\varphi^{(1+|b'|+2|b''|-2j)}\|_\infty \times E \left[S^{[b''|-2j]} \left| \langle u, (DF)^{\otimes b'_1} \cdots \otimes (D^{q-1}F)^{\otimes b''_{q-1}} \otimes (DS)^{\otimes b''_q} \otimes \cdots \otimes (D^q S)^{\otimes b''_{q}} \right|_{B^2} \right],
\]

where \(Q \) is the set of all pairs of \(q \)-tuples \(b' = (b'_1, b'_2, \ldots, b'_q) \) and \(b'' = (b''_1, \ldots, b''_q) \) of nonnegative integers satisfying the constraint \(b'_1 + 2b'_2 + \cdots + qb''_q + 2b''_2 + \cdots + qb''_q = q \), and \(c_{q,b',b'',j} \) are some positive constants.

In the particular case \(q = 2 \) we obtain the following result.

Proposition 5.3 Suppose that \(u \in D^{4,8}(S^1) \) is symmetric. Let \(F = \delta^2(u) \). Let \(S \in D^{2,8} \), and let \(\eta \sim N(0,1) \) indicate a standard Gaussian random variable, independent of the underlying isonormal process \(X \). Assume that \(\varphi : \mathbb{R} \to \mathbb{R} \) is \(C^5 \) with \(\| \varphi^{(k)} \|_\infty < \infty \) for any \(k = 0, \ldots, 5 \). Then

\[
|E[\varphi(F)] - E[\varphi(S\eta)]| \leq \frac{1}{2} \|\varphi''\|_\infty E[|\langle u, D^2 F \rangle_{B^2} - S^2|]
\]

\[
+ C \max_{3 \leq i \leq 5} \|\varphi^{(i)}\|_\infty \left(E \left[\left| \langle u, (DF)^{\otimes 2} \right|_{B^2} \right] + E \left[S \left| \langle u, DF \otimes DS \right|_{B^2} \right] \right)
\]

\[
+ E \left[S^2 + 1 \right] \left| \langle u, (DS)^{\otimes 2} \right|_{B^2} \left] + \right. \left. E \left[S \left| \langle u, D^2 S \right|_{B^2} \right] \right),
\]

for some constant \(C \).

Taking into account that \(DS^2 = 2SDS \) and \(D^2 S^2 = 2DS \otimes DS + 2SD^2 S \), we can write the above estimate in terms of the derivatives of \(S^2 \), which is helpful in the applications. In this way we obtain

\[
|E[\varphi(F)] - E[\varphi(S\eta)]| \leq \frac{1}{2} \|\varphi''\|_\infty E[|\langle u, D^2 F \rangle_{B^2} - S^2|]
\]

\[
+ C \max_{3 \leq i \leq 5} \|\varphi^{(i)}\|_\infty \left(E \left[\left| \langle u, (DF)^{\otimes 2} \right|_{B^2} \right] + E \left[\left| \langle u, DF \otimes DS \right|_{B^2} \right] \right)
\]

\[
+ E \left[(S^2 + 1) \left| \langle u, (DS)^{\otimes 2} \right|_{B^2} \right] + E \left[S \left| \langle u, D^2 S \right|_{B^2} \right] \right) \right), \tag{5.42}
\]

Notice that a factor \(S^{-2} \) appears in the right hand of the above inequality.
5.3 Case $m > 0$, $d = 1$

Fix $q \geq 1$. In the case $m > 0$, $d = 1$, the class $B(q)$ is the collection of all vectors with nonnegative integer entries of the type $\beta(q) = (a_1, \ldots, a_m; b'_1, b''_1, \ldots, b'_q, b''_q)$ verifying

$$a_1 + \cdots + a_m + (b'_1 + b''_1) + \cdots + q(b'_q + b''_q) = q,$$

whereas $B_0(q)$ is the subset of $B(q)$ verifying $b'_q = 0$. Specializing Theorem 5.1 yields upper bounds for one-dimensional $\sigma(X)$-stable convergence.

Proposition 5.4 Suppose that $u \in \mathbb{D}^{2q,4q}(\mathbb{Z})$ is symmetric, select $h_1, \ldots, h_m \in \mathcal{H}$, and write $X = (X(h_1), \ldots, X(h_m))$. Let $F = \delta^q(u)$. Let $S \in \mathbb{D}^{q,4q}$, and let $\eta \sim N(0,1)$ indicate a standard Gaussian random variable, independent of the underlying Gaussian field X. Assume that

$$\varphi : \mathbb{R}^m \times \mathbb{R} \to \mathbb{R} : (y_1, \ldots, y_m, x) \mapsto \varphi(y_1, \ldots, y_m, x)$$

admits continuous and bounded partial derivatives up to the order $2q + 1$. Then,

$$\left| E[\varphi(X,F)] - E[\varphi(X,S\eta)] \right|$$

$$\leq \frac{1}{2} \left\| \frac{\partial^2}{\partial x^T} \varphi \right\|_{\infty} E[(u, D^qF)_{S\otimes \eta} - S^2] + \frac{1}{2} \sum_{\beta \in B_0(q)} \sum_{j=0}^{\left| \beta' \right|/2} \hat{W}(\beta(q), j)$$

$$\times \left\| \frac{\partial^{|\beta'|/2}}{\partial y_1^{\beta_{a_1}} \cdots \partial y_m^{\beta_{a_m}}} \frac{\partial^{1+|\beta'|} + 2|\beta'| - 2}{\partial x^{1+|\beta'|} + 2|\beta'| - 2} \varphi \right\|_{\infty}$$

$$\times E \left[\left| \sum_{i=1}^{q} (D^1F)^{\otimes b'_i} \otimes (D^1S)^{\otimes b''_i} \right|_{b'^{\otimes q}} \right]$$

where $|a| = a_1 + \cdots + a_m$.

5.4 Proof of Theorem 5.1

The proof is based on the use of an interpolation argument. Write $X = (X(h_1), \ldots, X(h_m))$ and $g(t) = E[\varphi(X; \sqrt{t} F + \sqrt{1-t} S \cdot \eta)], \ t \in [0,1]$, and observe that $E[\varphi(X; F)] - E[\varphi(X; S\eta)] = g(1) - g(0) = \int_0^1 g'(t)dt$. For $t \in (0,1)$, by integrating by parts with respect either to F or to η, we get

$$g'(t) = \frac{1}{2} \sum_{k=1}^d \left[\varphi_{x_k}(X; \sqrt{t} F + \sqrt{1-t} S \cdot \eta) \left(\frac{F_k}{\sqrt{t}} - \frac{S_k \eta_k}{\sqrt{1-t}} \right) \right]$$

$$= \frac{1}{2} \sum_{k=1}^d \left[\varphi_{x_k}(X; \sqrt{t} F + \sqrt{1-t} S \cdot \eta) \left(\frac{\delta^{2h_k}(u_k)}{\sqrt{t}} - \frac{S_k \eta_k}{\sqrt{1-t}} \right) \right]$$

$$= \frac{1}{2} \sum_{k=1}^d \left[\left(D^{2h_k} \varphi_{x_k}(X; \sqrt{t} F + \sqrt{1-t} S \cdot \eta), u_k \right)_{S^{\otimes q_k}} \right]$$

$$+ \frac{1}{2} \sum_{k=1}^d \left[\frac{\partial^2}{\partial x^2_k} \varphi(X; \sqrt{t} F + \sqrt{1-t} S \cdot \eta) S_k^2 \right].$$
Using the Faa di Bruno formula for the iterated derivative of the composition of a function with a vector of functions (see [10, Theorem 2.1]), we infer that, for every \(k = 1, \ldots, d\),

\[
\langle D^k \varphi_{x_k}(X; \sqrt{t} F + \sqrt{1 - t} S \cdot \eta), u_k \rangle_{\mathcal{Y}^{\otimes q_k}} = \sum_{\alpha(q_k) \in \mathcal{D}(q_k)} C(\alpha(q_k)) \partial^{(\alpha(q_k))} \varphi_{x_k}(X; \sqrt{t} F + \sqrt{1 - t} S \cdot \eta) \\
\times \left\langle h^{\otimes a_1}_1 \otimes \cdots \otimes h^{\otimes a_m}_m \bigotimes_{i=1}^{d} (D^i(\sqrt{t} F_j + \sqrt{1 - t} S_j \eta_j))^{b_{ij}} \otimes u_k \right\rangle_{\mathcal{Y}^{\otimes q_k}}.
\]

(5.43)

For every \(i = 1, \ldots, q_k\), every \(j = 1, \ldots, d\) and every symmetric \(v \in \mathcal{Y}^{\otimes b_{ij}}\), we have

\[
\left\langle (D^i(\sqrt{t} F_j + \sqrt{1 - t} S_j \eta_j))^{b_{ij}} \otimes v \right\rangle_{\mathcal{Y}^{\otimes b_{ij}}} = \sum_{u=0}^{b_{ij}} \binom{b_{ij}}{u} t^{u/2}(1-t)^{(b_{ij}-u)/2} \eta^{(b_{ij}-u)} \left\langle (D^i F_j)^{\otimes u} \otimes (D^i S_j)^{\otimes (b_{ij}-u)} \otimes v \right\rangle_{\mathcal{Y}^{\otimes b_{ij}}}.
\]

(5.44)

Substituting (5.44) into (5.43), and taking into account the symmetry of \(u_k\), yields

\[
E \left[\left\langle D^k \varphi_{x_k}(X; \sqrt{t} F + \sqrt{1 - t} S \cdot \eta), u_k \right\rangle_{\mathcal{Y}^{\otimes q_k}} \right] = \sum_{\beta(q_k) \in \mathcal{D}(q_k)} C(\alpha(q_k)) t^{b'/2}(1-t)^{b''/2} \prod_{i=1}^{q_k} \prod_{j=1}^{d} \left(b'_{ij} + b''_{ij} \right) \\
\times E \left[\partial^{(\beta(q_k))} \varphi_{x_k}(X; \sqrt{t} F + \sqrt{1 - t} S \cdot \eta) \prod_{j=1}^{d} \eta_j^{b'_{ij}} \right] \\
\times \left\langle u_k, h^{\otimes a_1}_1 \otimes \cdots \otimes h^{\otimes a_m}_m \bigotimes_{i=1}^{d} \left\{ (D^i F_j)^{\otimes b'_{ij}} \otimes (D^i S_j)^{\otimes b''_{ij}} \right\} \right\rangle_{\mathcal{Y}^{\otimes q_k}},
\]

and this sum is equal to

\[
\sum_{\beta(q_k) \in \mathcal{D}(q_k)} C(\alpha(q_k)) t^{b'/2}(1-t)^{b''/2} \prod_{i=1}^{q_k} \prod_{j=1}^{d} \left(b'_{ij} + b''_{ij} \right) \\
\times E \left[\partial^{(\beta(q_k))} \varphi_{x_k}(X; \sqrt{t} F + \sqrt{1 - t} S \cdot \eta) \prod_{j=1}^{d} \eta_j^{b'_{ij}} \right] \\
\times \left\langle u_k, h^{\otimes a_1}_1 \otimes \cdots \otimes h^{\otimes a_m}_m \bigotimes_{i=1}^{d} \left\{ (D^i F_j)^{\otimes b'_{ij}} \otimes (D^i S_j)^{\otimes b''_{ij}} \right\} \right\rangle_{\mathcal{Y}^{\otimes q_k}},
\]

\[+ \sum_{i=1}^{d} \sqrt{t} E \left[\frac{\partial^2}{\partial x_k \partial x_i} \varphi(X; \sqrt{t} F + \sqrt{1 - t} S \cdot \eta) D^k F_i, u_k \right]_{\mathcal{Y}^{q_k}} \]

\[:= D(k, t) + F(k, t).\]
Since

\[
\left| \frac{1}{2\sqrt{t}} \sum_{k=1}^{d} F(k,t) - \frac{1}{2} \sum_{k=1}^{d} E \left[\frac{\partial^2}{\partial x_k^2} \varphi(X; \sqrt{tF} + \sqrt{1-tS} \cdot \eta)S_k^2 \right] \right| \leq (5.40),
\]

the theorem is proved once we show that

\[
\frac{1}{2\sqrt{t}} \sum_{k=1}^{d} \int_0^1 |D(k,t)| \, dt
\]

is less than the sum in (5.41). Using the independence of \(\eta \) and \(X \), conditioning with respect to \(X \) and applying Lemma 4.1 yields

\[
E \left[\frac{\partial^{\alpha(\beta,q_k)}}{\partial x_k^{\alpha(\beta,q_k)}} \varphi_{x_k}(X; \sqrt{tF} + \sqrt{1-tS} \cdot \eta) \prod_{j=1}^{d} \eta_j^{\beta_{ij}} \right] \\
\times \left(u_k, h_1^{\otimes a_1} \otimes \cdots \otimes h_m^{\otimes a_m} \bigotimes_{i=1}^{d} \bigotimes_{j=1}^{d} \left((D^iF_j)^{\otimes \beta_{ij}} \otimes (D^iS_j)^{\otimes \beta_{ij}} \right) \right)_{S_{\otimes q_k}}
\]

\[
= \frac{|b_{*k}^{(e)}|/2}{2^{l_s}(|b_{s}^{(e)}| - 2l_s)!} \prod_{s=1}^{d} |b_{s}^{(e)}|! \times E \left[\left(u_k, h_1^{\otimes a_1} \otimes \cdots \otimes h_m^{\otimes a_m} \bigotimes_{i=1}^{d} \bigotimes_{j=1}^{d} \left((D^iF_j)^{\otimes \beta_{ij}} \otimes (D^iS_j)^{\otimes \beta_{ij}} \right) \right)_{S_{\otimes q_k}} \right.
\]

\[
\times \prod_{s=1}^{d} S_k^{(\beta_{s})} - 2l_s \sum_{l_s}^{(\beta_{s})} l_s \cdot \varphi_{x_k}(X; \sqrt{tF} + \sqrt{1-tS} \cdot \eta) \right],
\]

and the desired estimate follows by using the Cauchy-Schwarz inequality, and by integrating \(|D(k,t)|\) with respect to \(t \).

\[\blacksquare \]

6 Application to weighted quadratic variations

In this section we apply the previous results to the case of weighted quadratic variations of the Brownian motion and fractional Brownian motion. Let us introduce first some notation.

We say that a function \(f : \mathbb{R} \rightarrow \mathbb{R} \) has moderate growth if there exist positive constants \(A, B \) and \(\alpha < 2 \) such that for all \(x \in \mathbb{R}, |f(x)| \leq A \exp(B|x|^{\alpha}) \). Consider a fractional Brownian motion \(B = \{ B_t : t \geq 0 \} \) with Hurst parameter \(H \in (0,1) \). We consider the uniform partition of the interval \([0,1]\), and for any \(n \geq 1 \) and \(k = 0, \ldots, n - 1 \) we denote \(\Delta B_{k/n} = B_{(k+1)/n} - B_{k/n} \), \(\delta_{k/n} = 1_{[k/n,(k+1)/n]} \) and \(\epsilon_{k,n} = 1_{[k/n]} \).

Given a function \(f : \mathbb{R} \rightarrow \mathbb{R} \), we define

\[
u_n = n^{2H} \sum_{k=0}^{n-1} f(B_{k/n}) \delta_{k/n}^2.
\]
We are interested in the asymptotic behavior of the quadratic functionals

\[F_n = n^{2H - \frac{1}{2}} \sum_{k=0}^{n-1} f(B_{k/n}) \left[(\Delta B_{k/n})^2 - n^{-2H} \right] = n^{2H - \frac{1}{2}} \sum_{k=0}^{n-1} f(B_{k/n}) I_2(\delta_{k/n}^2). \]
(6.45)

6.1 Weighted quadratic variation of Brownian motion

In the case \(H = \frac{1}{2} \), the process \(B \) is a standard Brownian motion and, taking into account that \(B \) has independent increments, we can write

\[F_n = \delta^2(u_n). \]
(6.46)

Then, applying the estimate obtained in the last section in the case \(d = 1, m = 0 \) and \(q = 2 \), we can prove the following result, which is a quantitative version of a classical weak convergence result that can be obtained using semimartingale methods (see, for instance, [9]).

Proposition 6.1 Consider a function \(f : \mathbb{R} \to \mathbb{R} \) of class \(C^6 \) such that \(f \) and his first 6 derivatives have moderate growth. Consider the sequence of random variables \(F_n \) defined by (6.45). Suppose that \(E[S^{-\alpha}] < \infty \) for some \(\alpha > 2 \), where \(S = \sqrt{2} \int_0^1 f^2(B_s)ds \). Then, for any function \(\varphi : \mathbb{R} \to \mathbb{R} \) of class \(C^5 \) with \(\|\varphi^{(k)}\|_\infty < \infty \) for any \(k = 0, \ldots, 5 \) we have

\[|E[\varphi(F_n)] - E[\varphi(S\eta)]| \leq C \max_{2 \leq i \leq 5} \|\varphi^{(i)}\|_\infty n^{-\frac{3}{2}}, \]

for some constant \(C \) which depends on \(f \), where \(\eta \) is a standard normal random variable independent of \(B \).

Proof. Along the proof \(C \) will denote a constant that may vary from line to line, and might depend on \(f \). Taking into account the equality (6.46) and the estimate (5.42), it suffices to show the following inequalities.

\[E(\langle u_n, D^2 F_n \rangle_{L^2([0,1]^2)} - S^2) \leq \frac{C}{\sqrt{n}}, \]
(6.47)

\[E(\langle u_n, D F_n \otimes D F_n \rangle_{L^2([0,1]^2)}) \leq \frac{C}{\sqrt{n}}, \]
(6.48)

\[E(\langle u_n, D(S^2) \rangle_{L^2([0,1]^2)} \otimes D(S^2)) \leq \frac{C}{\sqrt{n}}, \]
(6.49)

\[E(\langle u_n, D^2(S^2) \rangle_{L^2([0,1]^2)}) \leq \frac{C}{\sqrt{n}}, \]
(6.50)

\[E(\langle u_n, D F_n \otimes D(S^2) \rangle_{L^2([0,1]^2)}) \leq \frac{C}{\sqrt{n}}. \]
(6.51)
The derivatives of F_n and S^2 have the following expressions

\[
D(S^2) = 4 \int_0^1 (ff')(B_s)1_{[0,s]} ds,
\]

\[
D^2(S^2) = 4 \int_0^1 (f'^2 + ff'')(B_s)1_{[0,s]^2} ds,
\]

\[
DF_n = 2\sqrt{n} \sum_{k=0}^{n-1} f(B_{k/n})I_1(\delta_{k/n})\delta_{k/n} + \sqrt{n} \sum_{k=0}^{n-1} f'(B_{k/n})I_2(\delta_{k/n}^2)\epsilon_{k/n},
\]

\[
D^2F_n = 2\sqrt{n} \sum_{k=0}^{n-1} f(B_{k/n})\delta_{k/n}^2 + 4\sqrt{n} \sum_{k=0}^{n-1} f'(B_{k/n})I_1(\delta_{k/n})\delta_{k/n} \otimes \epsilon_{k/n}
\]

\[+ \sqrt{n} \sum_{k=0}^{n-1} f''(B_{k/n})I_2(\delta_{k/n}^2)\epsilon_{k/n}^2.\]

We are now ready to prove (6.47)-(6.51).

Proof of (6.60). We have

\[
E \left[\left(\langle u_n, D^2F_n \rangle_{L^2([0,1]^2)} - S^2 \right) \right] \leq 2 E \left[\frac{1}{n} \sum_{k=0}^{n-1} f^2(B_{k/n}) - \int_0^1 f^2(B_s) ds \right] + E \left[\frac{1}{n} \sum_{0<k<l<n-1} f(B_{k/n})f''(B_{l/n})I_2(\delta_{l/n}^2) \right] =: 2E(|A_n|) + E(|B_n|).
\]

For the second summand we can write

\[
E[B_n^2] = \frac{1}{n^2} \sum_{0<k<l<n-1} \sum_{0<i<j<n-1} E \left[f(B_{k/n})f''(B_{l/n})f(B_{i/n})f''(B_{j/n})I_2(\delta_{l/n}^2)I_2(\delta_{j/n}^2) \right]
\]

\[
= \frac{1}{n^2} \sum_{0<k<l<n-1} \sum_{0<i<j<n-1} E \left[f(B_{k/n})f''(B_{l/n})f(B_{i/n})f''(B_{j/n})I_2(\delta_{l/n}^2)I_2(\delta_{j/n}^2) \right]
\]

\[+ \frac{4}{n^3} \sum_{0<k<l<n-1} E \left[f(B_{k/n})f(B_{l/n})f''(B_{i/n})I_2(\delta_{l/n}^2)^2 \right]
\]

\[+ \frac{2}{n^4} \sum_{0<k<l<n-1} E \left[f(B_{k/n})f(B_{l/n})f''(B_{i/n})I_2^2 \right].\]

The last term is clearly of order n^{-1}, whereas one can apply the duality formula for the first two terms and get a bound of the form Cn^{-2}. To estimate $E(|A_n|)$, we write

\[
\frac{1}{n} \sum_{k=0}^{n-1} f^2(B_{k/n}) - \int_0^1 f^2(B_s) ds = \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} \left[f^2(B_{k/n}) - f^2(B_s) \right] ds.
\]

Using that $E((f^2(B_{k/n}) - f^2(B_s))) \leq \frac{C}{\sqrt{n}}$ for $s \in [k/n, (k+1)/n]$, for some constant C, we easily get that $E(|A_n|) \leq \frac{C}{\sqrt{n}}$.

28
Proof of (6.61). We have
\[
\langle u_n, DF_n^{\otimes 2} \rangle_{L^2([0,1]^2)} = \frac{4}{\sqrt{n}} \sum_{k=0}^{n-1} f^3(B_{k/n}) I_1(\delta_{k/n})^2 \\
+ \frac{2}{\sqrt{n}} \sum_{0 \leq k < l \leq n-1} f^2(B_{k/n}) f'(B_{l/n}) I_1(\delta_{k/n}) I_2(\delta_{l/n}^{\otimes 2}) \\
+ \frac{2}{\sqrt{n}} \sum_{0 \leq k < l \leq n-1} f(B_{k/n}) f'(B_{l/n}) f'(B_{l/n}) I_2(\delta_{l/n}^{\otimes 2}) I_2(\delta_{l/n}^{\otimes 2}).
\]
Similarly as in the previous step, by considering \(E[\langle u_n, DF_n^{\otimes 2} \rangle_{L^2([0,1]^2)}^2] \) and then applying the product and duality formulas, we get that \(E[\langle u_n, DF_n^{\otimes 2} \rangle_{L^2([0,1]^2)}^2] \leq C n^{-1} \), from which (6.61) follows.

Proof of (6.62). We can write
\[
\langle u_n, D(S^2)^{\otimes 2} \rangle_{L^2([0,1]^2)} = 16 \sqrt{n} \sum_{k=0}^{n-1} f(B_{k/n}) \\
\times \int_{[0,1]^2} (f f')(B_s)(f f')(B_t) \langle \delta_{k/n}^{\otimes 2}, 1_{[0,s] \times [0,t]} \rangle_{L^2([0,1]^2]} ds dt.
\]
It is clear that \(\langle 1_{[k/n,(k+1)/n]^2}, 1_{[0,s] \times [0,t]} \rangle_{L^2([0,1]^2]} \leq n^{-2} \), so that (6.62) is well in order.

Proof of (6.63). We have
\[
\langle u_n, D^2(S^2) \rangle_{L^2([0,1]^2)} = 4 \sqrt{n} \sum_{k=0}^{n-1} f(B_{k/n}) \int_0^1 (f f'' + f f'')(B_s) \langle \delta_{k/n}^{\otimes 2}, 1_{[0,s]} \rangle_{L^2([0,1])} ds.
\]
Because \(\langle \delta_{k/n}, 1_{[0,s]} \rangle_{L^2([0,1])} \leq n^{-1} \), estimate (6.63) holds obviously true.

Proof of (6.64). We have
\[
\langle u_n, DF_n \otimes D(S^2) \rangle_{L^2([0,1]^2)}\\n= 8 \sum_{k=0}^{n-1} \int_0^1 (f f')(B_s) f^2(B_{k/n}) I_1(\delta_{k/n}) \langle \delta_{k/n}, 1_{[0,s]} \rangle_{L^2([0,1])} ds \\
+ 4 \sum_{0 \leq k < l \leq n-1} \int_0^1 (f f')(B_s) f(B_{k/n}) f'(B_{l/n}) I_2(\delta_{l/n}^{\otimes 2}) \langle \delta_{l/n}^{\otimes 2}, 1_{[0,s]} \rangle_{L^2([0,1])} ds.
\]
Here again, by considering \(E[\langle u_n, DF_n \otimes D(S^2) \rangle_{L^2([0,1]^2)}^2] \) and then applying the product and duality formulas, we get that \(E[\langle u_n, DF_n \otimes D(S^2) \rangle_{L^2([0,1]^2)}^2] \leq C n^{-2} \), from which (6.64) follows. The proof is now complete.
6.2 Weighted quadratic variation of fractional Brownian motion

Suppose that \(B = \{ B_t : t \geq 0 \} \) is a fractional Brownian motion with Hurst parameter \(H \in (\frac{1}{4}, \frac{1}{2}) \). We make use of the following lemma from [11].

Lemma 6.2 Let \(H < \frac{1}{2} \). Let \(n \geq 1 \) and \(k = 0, \ldots, n - 1 \). We have

\[
(a) \quad \left| \langle 1_{[0,t]}, \partial_{k/n} \rangle \right| \leq n^{-2H} \text{ for any } t \in [0,1].
\]

\[
(b) \quad \sup_{t \in [0,1]} \left| \sum_{k=0}^{n-1} \langle 1_{[0,t]}, \partial_{k/n} \rangle \right| = O(1) \text{ as } n \text{ tends to infinity.}
\]

\[
(c) \quad \text{For any integer } q \geq 1, \text{ we can write}
\]

\[
\sum_{k,j=0}^{n-1} \left| \langle \partial_{j/n}, \partial_{k/n} \rangle \right|^{q} = O(n^{1-2qH}) \text{ as } n \text{ tends to infinity.} \quad (6.52)
\]

The next result is an extension of Proposition 6.1 to the case of a fractional Brownian motion with Hurst parameter \(H \in (\frac{1}{4}, \frac{1}{2}) \) and it represents a quantitative version of the weak convergence proved in [12].

Proposition 6.3 Consider a function \(f : \mathbb{R} \to \mathbb{R} \) of class \(C^9 \) such that \(f \) and his first 9 derivatives have moderate growth. Consider the sequence of random variables \(F_n \) defined by (6.45). Suppose that \(E[S^{-\alpha}] < \infty \) for some \(\alpha > 2 \), where \(S = \sqrt{\int_0^1 f^2(B_s)ds} \). Set

\[
\sigma_H = \frac{1}{2} \sum_{p=-\infty}^{\infty} \left(|p+1|^{2H} + |p-1|^{2H} - 2|p|^{2H} \right)^2.
\]

Then, for any function \(\varphi : \mathbb{R} \to \mathbb{R} \) of class \(C^5 \) with \(\| \varphi^{(k)} \|_\infty < \infty \) for any \(k = 0, \ldots, 5 \) we have

\[
|E[\varphi(F_n)] - E[\varphi(\sigma_H S \eta)]| \leq C \max_{1 \leq i \leq 5} \| \varphi^{(i)} \|_\infty n^{3-2H}, \quad (6.53)
\]

for some constant \(C \) which depends on \(f \) and \(H \), where \(\eta \) is a standard normal variable be independent of \(B \).

Proof. Along the proof \(C \) will denote a generic constant that might depend on \(F \) and \(H \). Notice first that the equality (6.46) is no longer true in the case \(H \neq \frac{1}{2} \). For this reason, we define \(G_n = \delta^2(u_n) \), and we claim that the difference \(F_n - G_n \) is smaller than a constant times \(n^{\frac{1}{2}-2H} \) in \(D^{2,2} \). That is,

\[
E[|F_n - G_n|^2] \leq C n^{1-4H} \quad (6.54)
\]

\[
E[\|DF_n - DG_n\|_H^2] \leq C n^{1-4H} \quad (6.55)
\]

\[
E[\|D^2 F_n - D^2 G_n\|_{H^2}^2] \leq C n^{1-4H}. \quad (6.56)
\]
In order to show these estimates we first deal with $F_n - G_n$ using Lemma 2.1, and we obtain

$$F_n - G_n = n^{2H - \frac{3}{2}} \sum_{k=0}^{n-1} 2 \delta \left(f'(B_{k/n}) \delta_{k/n} \right) \langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{B}} + n^{2H - \frac{3}{2}} \sum_{k=0}^{n-1} f''(B_{k/n}) \langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{B}}^2.$$

Using the equality

$$\delta \left(f'(B_{k/n}) \delta_{k/n} \right) = f'(B_{k/n}) I_1(\delta_{k/n}) - f''(B_{k/n}) \langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{B}},$$

yields

$$F_n - G_n = n^{2H - \frac{3}{2}} \sum_{k=0}^{n-1} 2 f'(B_{k/n}) I_1(\delta_{k/n}) \langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{B}} - n^{2H - \frac{3}{2}} \sum_{k=0}^{n-1} f''(B_{k/n}) \langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{B}}^2 = 2M_n - R_n.$$

Point (a) of Lemma 6.2 implies

$$E[R_n^2] \leq C n^{1 - 4H}. \quad (6.57)$$

On the other hand,

$$E[M_n^2] = n^{4H - 1} \sum_{j,k=0}^{n-1} E[f'(B_{j/n}) f'(B_{k/n}) I_1(\delta_{j/n}) I_1(\delta_{k/n})] \langle \epsilon_{j/n}, \delta_{j/n} \rangle_{\mathcal{B}} \langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{B}},$$

and using the relation

$$I_1(\delta_{j/n}) I_1(\delta_{k/n}) = I_2(\delta_{j/n} \otimes \delta_{k/n}) + \langle \delta_{j/n}, \delta_{k/n} \rangle_{\mathcal{B}}$$

and the duality relationship (2.5) yields

$$E[M_n^2] \leq C n^{4H - 1} \sum_{j,k=0}^{n-1} \left| \langle \delta_{j/n}, \delta_{k/n} \rangle_{\mathcal{B}} \right| + \left| \langle \epsilon_{j/n}, \delta_{j/n} \rangle_{\mathcal{B}} \langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{B}} \right| + \left| \langle \epsilon_{j/n}, \delta_{k/n} \rangle_{\mathcal{B}} \langle \epsilon_{k/n}, \delta_{j/n} \rangle_{\mathcal{B}} \right| \times \left| \langle \epsilon_{j/n}, \delta_{j/n} \rangle_{\mathcal{B}} \langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{B}} \right|.$$

Finally, applying points (a) and (c) of Lemma 6.2, and taking into account that $2H$ is larger than $4H - 1$ because $H < \frac{1}{2}$, we obtain

$$E[M_n^2] \leq C n^{4H - 1} \left(n^{1 - 2H} + n^2 n^{-4H} \right) n^{-4H} = C \left(n^{-2H} + n^{1 - 4H} \right) \leq C n^{1 - 4H}. \quad (6.58)$$
Then, the estimates (6.57) and (6.58) imply (6.54). In a similar way, (6.55) and (6.56) would follow from the expressions

\[
DF_n - DG_n = n^{2H - \frac{1}{2}} \sum_{k=0}^{n-1} 2f''(B_{k/n})I_1(\delta_{k/n})\langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{H}} \epsilon_{k/n}
\]

\[
+ n^{2H - \frac{1}{2}} \sum_{k=0}^{n-1} 2f'(B_{k/n})\langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{H}} \delta_{k/n}
\]

\[
- n^{2H - \frac{1}{2}} \sum_{k=0}^{n-1} f'''(B_{k/n})\langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{H}} \epsilon_{k/n}^2
\]

and

\[
D^2F_n - D^2G_n = n^{2H - \frac{1}{2}} \sum_{k=0}^{n-1} 2f''(B_{k/n})I_1(\delta_{k/n})\langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{H}} \epsilon_{k/n}^2
\]

\[
+ n^{2H - \frac{1}{2}} \sum_{k=0}^{n-1} 2f''(B_{k/n})\langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{H}} \delta_{k/n}^2
\]

\[
- n^{2H - \frac{1}{2}} \sum_{k=0}^{n-1} f^{(4)}(B_{k/n})\langle \epsilon_{k/n}, \delta_{k/n} \rangle_{\mathcal{H}} \epsilon_{k/n}^2
\]

Notice also that from point (c) of Lemma 6.2 we deduce

\[
E\|u_n\|_{\mathcal{H}}^2 = n^{4H-1} \sum_{j,k=0}^{n-1} E[f'(B_{j/n})f'(B_{k/n})] \langle \delta_{j/n}, \delta_{k/n} \rangle_{\mathcal{H}} \leq C.
\]

(6.59)

Taking into account the estimates (6.54), (6.55), (6.56) and (6.59), the estimate (6.53) will follow from (5.42), provided we show the following inequalities for some constant C depending on f and H.

\[
E(\|u_n\|_{\mathcal{H}}^2 - \sigma_H^2 S^2 \rangle_{\mathcal{H}} \leq Cn^{\frac{1}{2} - 2H},
\]

(6.60)

\[
E(\langle u_n, D^2 F_n \rangle_{\mathcal{H}}^2 \leq Cn^{\frac{1}{2} - 2H},
\]

(6.61)

\[
E(\langle u_n, D(S^2)_{\mathcal{H}}^2 \rangle_{\mathcal{H}} \leq Cn^{\frac{1}{2} - 2H},
\]

(6.62)

\[
E(\langle u_n, D^2(S^2)_{\mathcal{H}}^2 \rangle_{\mathcal{H}} \leq Cn^{\frac{1}{2} - 2H},
\]

(6.63)

\[
E(\langle u_n, D^2(F_n \otimes D(S^2))_{\mathcal{H}}^2 \rangle_{\mathcal{H}} \leq Cn^{\frac{1}{2} - 2H}.
\]

(6.64)
As in the case of the Brownian motion, the derivatives of F_n and S^2 are given by the following expressions

\[
D(S^2) = \int_0^1 (ff')(B_s)1_{[0,s]}ds,
\]
\[
D^2(S^2) = \int_0^1 (f'^2 + f''')/(B_s)1_{[0,s]^2}ds,
\]
\[
DF_n = 2n^{2H-\frac{3}{2}} \sum_{k=0}^{n-1} f(B_{k/n})I_1(\delta_{k/n}\delta_{k/n}) + n^{2H-\frac{1}{2}} \sum_{k=0}^{n-1} f'(B_{k/n})I_2(\delta_{k/n}^{\otimes 2}\epsilon_{k,n}),
\]
\[
D^2F_n = 2n^{2H-\frac{3}{2}} \sum_{k=0}^{n-1} f(B_{k/n})\delta_{k/n}^{\otimes 2} + 4n^{2H-\frac{1}{2}} \sum_{k=0}^{n-1} f'(B_{k/n})I_1(\delta_{k/n}\delta_{k/n}^{\otimes 2}\epsilon_{k,n})
\]
\[+ n^{2H-\frac{1}{2}} \sum_{k=0}^{n-1} f''(B_{k/n})I_2(\delta_{k/n}^{\otimes 2}\epsilon_{k,n}^{\otimes 2}).\]

We are now ready to prove (6.60)-(6.64).

Proof of (6.60). We have

\[
\left| \langle u_n, D^2F_n \rangle_{\mathcal{F}^2} - \sigma^2_H S^2 \right| \\
\leq 2n^{4H-1} \sum_{j,k=0}^{n-1} f(B_{j/n})f(B_{k/n})\langle \delta_{j/n}, \delta_{k/n}\rangle_{\mathcal{F}}^2 - \sigma^2_H \int_0^1 f^2(B_s)ds \\
+ 4n^{4H-1} \sum_{j,k=0}^{n-1} f'(B_{j/n})f'(B_{k/n})I_1(\delta_{j/n}, \delta_{k/n})\langle \delta_{j/n}, \delta_{k/n}\rangle_{\mathcal{F}} \\
+ n^{4H-1} \sum_{j,k=0}^{n-1} f''(B_{j/n})f''(B_{k/n})I_2(\delta_{k/n}^{\otimes 2}\langle \delta_{j/n}, \epsilon_{k/n}\rangle_{\mathcal{F}}^2 \\
= |A_n| + 4|B_n| + |C_n|.
\]

We have

\[
E[B_n^2] = n^{8H-2} \sum_{j,k,l=0}^{n-1} E[f(B_{j/n})f'(B_{k/n})f(B_{l/n})f'(B_{l/n})I_1(\delta_{k/n})I_1(\delta_{l/n})] \\
\times \langle \delta_{j/n}, \delta_{k/n}\rangle_{\mathcal{F}} \langle \delta_{j/n}, \epsilon_{k/n}\rangle_{\mathcal{F}} \langle \delta_{l/n}, \delta_{l/n}\rangle_{\mathcal{F}} \langle \delta_{l/n}, \epsilon_{l/n}\rangle_{\mathcal{F}}.
\]

The product formula for multiple stochastic integrals yields

\[
I_1(\delta_{k/n})I_1(\delta_{l/n}) = I_2(\delta_{k/n}^{\otimes \delta_{j/n}}) + \langle \delta_{k/n}, \delta_{l/n}\rangle_{\mathcal{F}}.
\]
As a consequence, using that $|\langle \delta_{j/n}, \epsilon_{k/n} \rangle_{\mathcal{B}}| \leq n^{-2H}$ by point (a) in Lemma 6.2, and applying the duality formula for I_2, we obtain

$$E[B_n^2] \leq C n^{4H-2} \sum_{j,k,i,l=0}^{n-1} |\langle \delta_{j/n}, \delta_{k/n} \rangle_{\mathcal{B}}| \langle \delta_{i/n}, \delta_{l/n} \rangle_{\mathcal{B}}$$

$$\times \left\{ \sup_{s,t \in [0,1]} |\langle \delta_{k/n}, 1_{[0,s]} \rangle_{\mathcal{B}} \langle \delta_{l/n}, 1_{[0,s]} \rangle_{\mathcal{B}}| + |\langle \delta_{k/n}, \delta_{l/n} \rangle_{\mathcal{B}}| \right\}.$$

Finally, from (a) and (c) in Lemma 6.2 we get

$$E[B_n^2] \leq C n^{-2} \left(\sum_{j,k=0}^{n-1} |\langle \delta_{j/n}, \delta_{k/n} \rangle_{\mathcal{B}}|^2 \right)$$

$$+ C n^{4H-2} \sum_{j,k,i,l=0}^{n-1} |\langle \delta_{j/n}, \delta_{k/n} \rangle_{\mathcal{B}}| \langle \delta_{i/n}, \delta_{l/n} \rangle_{\mathcal{B}} \langle \delta_{k/n}, \delta_{l/n} \rangle_{\mathcal{B}}$$

$$\leq C \left(n^{-4H} + n^{-2H} \right).$$

Taking into account that $2H$ is larger than $4H - 1$ because $H < \frac{1}{2}$, we get the desired estimate.

For the second term we have

$$E[C_n^2] = n^{8H-2} \sum_{j,k,i,l=0}^{n-1} E[f(B_{j/n})f''(B_{k/n})f'(B_{i/n})f''(B_{l/n})I_2(\delta_{k/n}^{\otimes 2})I_2(\delta_{l/n}^{\otimes 2})]$$

$$\times |\langle \delta_{j/n}, \epsilon_{k/n} \rangle_{\mathcal{B}}|^{2} \langle \delta_{i/n}, \epsilon_{l/n} \rangle_{\mathcal{B}}^{2},$$

The product formula for multiple stochastic integrals yields

$$I_2(\delta_{k/n}^{\otimes 2})I_2(\delta_{l/n}^{\otimes 2}) = I_4(\delta_{k/n}^{\otimes 2} \otimes \delta_{l/n}^{\otimes 2}) + 4I_2(\delta_{k/n}^{\otimes 2} \otimes \delta_{l/n}) \langle \delta_{k/n}, \delta_{l/n} \rangle_{\mathcal{B}} + 2 \langle \delta_{k/n}, \delta_{l/n} \rangle_{\mathcal{B}}^{2}.$$

As a consequence, by points (a), (b) and (c) in Lemma 6.2 and using the duality relationship we get

$$E[C_n^2] \leq C n^{4H-2} \sum_{j,k,i,l=0}^{n-1} (\langle \delta_{j/n}, \epsilon_{k/n} \rangle_{\mathcal{B}}^{2} \langle \delta_{i/n}, \epsilon_{l/n} \rangle_{\mathcal{B}}^{2} (n^{-8H} + n^{-4H} |\langle \delta_{k/n}, \delta_{l/n} \rangle_{\mathcal{B}}| + |\langle \delta_{k/n}, \delta_{l/n} \rangle_{\mathcal{B}}|^2)$$

$$\leq C n^{4H-2} \left(\sup_{s \in [0,1]} \sum_{j=0}^{n-1} |\langle \delta_{j/n}, 1_{[0,s]} \rangle_{\mathcal{B}}|^{2} \sum_{k,l=0}^{n-1} (n^{-8H} + n^{-4H} |\langle \delta_{k/n}, \delta_{l/n} \rangle_{\mathcal{B}}| + |\langle \delta_{k/n}, \delta_{l/n} \rangle_{\mathcal{B}}|^2)$$

$$\leq C (n^{-4H} + n^{-1-2H} + n^{-1}).$$

This leads to the desired estimate.
To estimate $E(\|A_n\|)$, we write

$$2n^{4H-1} \sum_{j,k=0}^{n-1} f(B_{j/n}) f(B_{k/n}) \langle \delta_j/n, \delta_k/n \rangle^2_{\partial}$$

$$= \frac{1}{2n} \sum_{j,k=0}^{n-1} f(B_{j/n}) f(B_{k/n}) \left(|k - j + 1|^{2H} + |k - j - 1|^{2H} - 2|k - j|^{2H} \right)^2$$

$$= \frac{1}{2n} \sum_{p=-\infty}^{\infty} \sum_{j=0}^{(n-1)\wedge(n-1-p)} f(B_{j/n}) f(B_{(j+p)/n}) \left(|p + 1|^{2H} + |p - 1|^{2H} - 2|p|^{2H} \right)^2.$$

If we replace $f(B_{(j+p)/n})$ by $f(B_{j/n})$ we make an error in expectation of $(p/n)^H$, so this produces a total error of n^{-H}. On the other hand, the series

$$\sum_{|p|>n} \left(|p + 1|^{2H} + |p - 1|^{2H} - 2|p|^{2H} \right)^2$$

converges to zero at the rate n^{-4H-3}. It remains to estimate

$$\frac{1}{n} \sum_{k=0}^{n-1} f^2(B_{k/n}) - \int_0^1 f^2(B_s) ds = \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} \left[f^2(B_{k/n}) - f^2(B_s) \right] ds.$$

Using that $E[|f^2(B_{k/n}) - f^2(B_s)|] \leq C n^{-H}$ for $s \in [k/n, (k+1)/n]$, we easily get the desired estimate for $E(\|A_n\|)$.

Proof of (6.61). We have

$$\langle u_n, DF_n^{\otimes 2} \rangle_{\partial^2} = 4n^{6H-3/2} \sum_{j,k,l=0}^{n-1} f(B_{j/n}) f(B_{k/n}) f(B_{l/n}) I_1(\delta_{k/n}) I_1(\delta_{l/n}) \langle \delta_j/n, \delta_k/n, \delta_l/n \rangle_{\partial}$$

$$+ 4n^{6H-3/2} \sum_{j,k,l=0}^{n-1} f(B_{j/n}) f(B_{k/n}) f'(B_{l/n}) I_1(\delta_{k/n}) I_2(\delta_{l/n}^2) \langle \delta_j/n, \delta_k/n, \epsilon_{l/n} \rangle_{\partial}$$

$$+ n^{6H-3/2} \sum_{j,k,l=0}^{n-1} f(B_{j/n}) f'(B_{k/n}) f'(B_{l/n}) I_2(\delta_{k/n}^2) I_2(\delta_{l/n}^2) \langle \delta_j/n, \epsilon_{k/n}, \epsilon_{l/n} \rangle_{\partial}$$

$$= 4A_n + 4B_n + C_n.$$

Similarly as in the previous step, we have to consider $E[\langle u_n, DF_n^{\otimes 2} \rangle_{\partial^2}]$ and then apply the product and duality formulas. Since the computations are more involved here, we are going to use some helpful notation. Set

$$\Phi_{n,1}^{j,k,l} = f(B_{j/n}) f(B_{k/n}) f(B_{l/n}),$$

$$\Phi_{n,2}^{j,k,l} = f(B_{j/n}) f(B_{k/n}) f'(B_{l/n}),$$
and
\[\Phi_{n,\beta}^{j,k,l} = f(B_{j/n}) f'(B_{k/n}) f'(B_{l/n}). \]

Also set \(\beta_{j,k} = (\delta_{j/n}, \delta_{k/n})_{\delta} \) and \(\alpha_{j,t} = (\delta_{j/n}, 1_{(0,t)})_{\delta} \). The term \(A_n \) can be decomposed as follows:

\[A_n = A_n^1 + A_n^2, \]

where

\[A_n^1 = n^{6H - \frac{3}{2}} \sum_{j,k,l=0}^{n-1} \Phi_{n,1}^{j,k,l} I_2(\delta_{k/n} \otimes \delta_{l/n}) \beta_{j,k} \beta_{j,l}, \]

and

\[A_n^2 = n^{6H - \frac{3}{2}} \sum_{j,k,l=0}^{n-1} \Phi_{n,1}^{j,k,l} \beta_{k,l} \beta_{j,k} \beta_{j,l}. \]

Then,

\[E((A_n^1)^2) = n^{12H - 3} \sum_{j,k,l,j',k',l'=0}^{n-1} E[\Phi_{n,1}^{j,k,l} \Phi_{n,1}^{j',k',l'} I_2(\delta_{k/n} \otimes \delta_{l/n}) I_2(\delta_{k'/n} \otimes \delta_{l'/n})] \beta_{j,k} \beta_{j,l} \beta_{j',k'} \beta_{j',l'}. \]

By the product formula for multiple stochastic integrals, we can write

\[
I_2(\delta_{k/n} \otimes \delta_{l/n}) I_2(\delta_{k'/n} \otimes \delta_{l'/n}) = I_4((\delta_{k/n} \otimes \delta_{l/n}) \otimes (\delta_{k'/n} \otimes \delta_{l'/n}))
\]

\[+ \beta_{k,k'} I_2(\delta_{l/n} \otimes \delta_{l'/n}) + \beta_{k,k'} I_2(\delta_{l/n} \otimes \delta_{k'/n}) + \beta_{l,l'} I_2(\delta_{k/n} \otimes \delta_{k'/n}) + \beta_{l,l'} I_2(\delta_{k/n} \otimes \delta_{l'/n}). \]

As a consequence, we obtain

\[E((A_n^1)^2) \leq C n^{12H - 3} \sum_{j,k,l,j',k',l'=0}^{n-1} |\beta_{j,k} \beta_{j,l} \beta_{j',k'} \beta_{j',l'}| \left\{ \sup_{t \in [0,t]} |\alpha_{k,t} \alpha_{l,t} | \right\}
\]

\[+ |\beta_{k,k'}| \sup_{t \in [0,t]} |\alpha_{l,t} \alpha_{l',t} | + |\beta_{l,l'}| \sup_{t \in [0,t]} |\alpha_{k,t} \alpha_{k',t} | \}
\]

\[\leq C \left(n^{-1 - 4H} + n^{-1 - 2H} + n^{-1} \right). \]

In fact, taking into account that \(\beta_{j,k} = n^{-2H} \rho_H(j - k) \), where

\[\rho_H(j) = \frac{1}{2} (|j + 1|^{2H} + |j - 1|^{2H} - |j|^{2H}), \]

and that \(\sum_{j=-\infty}^{\infty} |\rho_H(j)| < \infty \), because \(H < \frac{1}{2} \), we obtain

\[\sum_{j,k,l,j',k',l'=0}^{n-1} |\beta_{j,k} \beta_{j,l} \beta_{j',k'} \beta_{j',l'}| \leq n^{-8H} \sum_{j,k,l,j',k',l'=0}^{n-1} |\rho_H(j - k) \rho_H(j - l) \rho_H(j' - k') \rho_H(j' - l')| \]

\[\leq C n^{2 - 8H}. \]
So, for the first summand we obtain the power $12H - 3 + 2 - 8H - 8H = -1 - 4H$, for the second one $12H - 3 + 2 - 8H - 6H = -1 - 2H$ and for the third one $12H - 3 + 2 - 8H - 4H = -1$. For the term A_n^2 we obtain

$$E((A_n^2)^2) = n^{12H-3} \sum_{j,k,l,j',k',l'=0}^{n-1} E[\Phi_{n,1}^j,\Phi_{n,1}^{j',l}] |\beta_{j,k}\beta_{j,l}\beta_{k,l}\beta_{j',k'}\beta_{j',l'}|$$

$$\leq Cn^{12H-3} \sum_{j,k,l,j',k',l'=0}^{n-1} |\beta_{j,k}\beta_{j,l}\beta_{k,l}\beta_{j',k'}\beta_{j',l'}| \leq Cn^{-1}.$$ Consider now the term B_n. The product formula for multiple stochastic integrals yields

$$I_1(\delta_{k/n})I_2(\delta_{l/n}^\otms) = I_3(\delta_{k/n}^\otms \delta_{l/n}^\otms) + \beta_{k,l}I_1(\delta_{l/n}).$$

Thus, the term B_n can be decomposed as follows

$$B_n = B_n^1 + B_n^2,$$

where

$$B_n^1 = n^{6H-\frac{3}{2}} \sum_{j,k,l=0}^{n-1} \Phi \beta_{j,k}\alpha_{j,l/n},$$

and

$$B_n^2 = n^{6H-\frac{3}{2}} \sum_{j,k,l=0}^{n-1} \Phi \beta_{j,k}\alpha_{j,l/n}.$$ Then, we can write

$$E((B_n^1)^2) = n^{12H-3} \sum_{j,k,l,j',k',l'=0}^{n-1} E[\Phi \beta_{j,k}\beta_{j,l}\alpha_{j,l/n}]$$

$$\times \beta_{j,k}\alpha_{j,l/n}\beta_{j',k}\alpha_{j',l'/n}.$$ By the product formula for multiple stochastic integrals,

$$I_3(\delta_{k/n}^\otms \delta_{l/n}^\otms) I_3(\delta_{k'/n}^\otms \delta_{l'/n}^\otms) = I_6((\delta_{k/n}^\otms \delta_{l/n}^\otms) \delta_{k'/n}^\otms \delta_{l'/n}^\otms)$$

$$+ \frac{9}{4} \left[\beta_{k,k'}I_4(\delta_{j/n}^\otms \delta_{l/n}^\otms) + \beta_{k,l'}I_4(\delta_{j/n}^\otms \delta_{l'n}^\otms) + \beta_{k,l'}I_4((\delta_{j/n}^\otms \delta_{l/n}^\otms))(\delta_{k'n}^\otms \delta_{l'n}^\otms) \right]$$

$$+ \frac{9}{2} \left[\beta_{k,k'}\beta_{l,l'}I_2(\delta_{j/n}^\otms \delta_{l/n}^\otms) + \beta_{k,l'}\beta_{l,k'}I_2(\delta_{j/n}^\otms \delta_{l'n}^\otms) + \beta_{k,k'}\beta_{l,l'}I_2((\delta_{j/n}^\otms \delta_{l/n}^\otms))(\delta_{k'n}^\otms \delta_{l'n}^\otms) \right]$$

$$+ 9(\beta_{k,k'}\beta_{l,k'}\beta_{l,l'}).$$
We can write the above expression as

\[I_3(\delta_{k/n} \otimes \delta_{l/n}^2) I_3(\delta_{k'/n} \otimes \delta_{l'/n}^2) = \Psi_k^{k,k'} \Psi_l^{l,l'} + 9|\beta_k \beta_{k'} \beta_l \beta_{l'}|, \]

where \(\Psi_k^{k,k'} \) is the sum of the terms that contain multiple integrals. Then, by the duality relationship we obtain

\[|E[\Phi_{n,2}^{k,k'} \Phi_{n,2}^{l,l'} \Psi_n^{k,k',l,l'}]| \leq Cn^{-8H}. \]

Therefore, using points (a) and (c) in Lemma 6.2 we obtain

\[E(B_n^2) \leq Cn^{4H-3} \left(\sum_{j,k} |\beta_{j,k}| \right)^2 \left(\sup_{t \in [0,1]} \sum_{l=0}^{n-1} |\alpha_{l,t}| \right)^2 \]

\[+ Cn^{8H-3} \sum_{j,k,l,j',k',l'=0}^{n-1} \left(|\beta_{j,k} \beta_{j',k'} \beta_{l,l'}| + |\beta_{j,k} \beta_{j',k'} \beta_{l,l'}| \right) \leq C \left(n^{-1} + n^{-2H} \right). \]

On the other hand,

\[E(B_n^2) = n^{12H-3} \sum_{j,k,l,j',k',l'=0}^{n-1} E[\Phi_{n,2}^{k,k'} \Phi_{n,2}^{l,l'} I_1(\delta_{l/n}) I_1(\delta_{l'/n}) \beta_{j,k} \beta_{j',k'} \beta_{l,l'} \alpha_{j,k,l/n} \alpha_{j',k',l'/n}]. \]

From the equality

\[I_1(\delta_{l/n}) I_1(\delta_{l'/n}) = I_2(\delta_{l/n} \otimes \delta_{l'/n}) + \beta_{l,l'}, \]

and applying the duality relationship we obtain

\[|E[\Phi_{n,2}^{k,k'} \Phi_{n,2}^{l,l'} I_1(\delta_{l/n}) I_1(\delta_{l'/n})]| \leq C \left(n^{-4H} + |\beta_{l,l'}| \right). \]

Consequently, using points (a) and (c) in Lemma 6.2 we obtain

\[E(B_n^2) \leq Cn^{4H-3} \left(\sum_{j,k=0}^{n-1} |\beta_{j,k}| \right)^2 \left(\sup_{t \in [0,1]} \sum_{l=0}^{n-1} |\alpha_{l,t}| \right)^2 \]

\[+ Cn^{8H-3} \sum_{j,k,l,j',k',l'=0}^{n-1} |\beta_{j,k} \beta_{j',k'} \beta_{l,l'}| \leq C \left(n^{-1} + n^{-2H} \right). \]

Finally, consider the term \(C_n \). By the product formula for multiple stochastic integrals

\[I_2(\delta_{k/n}^2) I_2(\delta_{l/n}^2) = I_4(\delta_{k/n} \otimes \delta_{l/n}^2) + 4I_2(\delta_{k/n} \otimes \delta_{l/n}) \beta_k + 2 \beta_{k,l}^2, \]

and we make the decomposition

\[C_n = C_n^1 + 4C_n^2 + 2C_n^3, \]
where
\[
C^1_n = n^{6H - \frac{3}{2}} \sum_{j,k,l=0}^{n-1} \Phi_{n,3}^{j,k,l} I_4(\delta_{k/n} \circ \delta_{1/n}) \alpha_{j,k/n} \alpha_{j,l/n},
\]
\[
C^2_n = n^{6H - \frac{3}{2}} \sum_{j,k,l=0}^{n-1} \Phi_{n,3}^{j,k,l} I_2(\delta_{k/n} \circ \delta_{1/n}) \beta_{k,l} \alpha_{j,k/n} \alpha_{j,l/n},
\]

and
\[
C^3_n = n^{6H - \frac{3}{2}} \sum_{j,k,l=0}^{n-1} \Phi_{n,3}^{j,k,l} \beta_{k,l}^2 \alpha_{j,k/n} \alpha_{j,l/n}.
\]

Then,
\[
E((C^1_n)^2) = n^{12H - 3} \sum_{j,k,l,k',l'=0}^{n-1} E[\Phi_{n,3}^{j,k,l} \Phi_{n,3}^{j',k',l'} I_4(\delta_{k/n} \circ \delta_{1/n}) I_4(\delta_{k'/n} \circ \delta_{1/n})]
\times \alpha_{j,k/n} \alpha_{j,l/n} \alpha_{j',k'/n} \alpha_{j',l'/n}.
\]

We can write, using point (c) in Lemma 6.2,
\[
E((C^1_n)^2) \leq n^{8H - 3} \sum_{k,l,k',l'=0}^{n-1} \sup_{j,j'} E[\Phi_{n,3}^{j,k,l} \Phi_{n,3}^{j',k',l'} I_4(\delta_{k/n} \circ \delta_{1/n}) I_4(\delta_{k'/n} \circ \delta_{1/n})].
\]

By the product formula of multiple stochastic integrals and the duality relationship we deduce
\[
\sum_{k,l,k',l'=0}^{n-1} \left| E[\Phi_{n,3}^{j,k,l} \Phi_{n,3}^{j',k',l'} I_4(\delta_{k/n} \circ \delta_{1/n}) I_4(\delta_{k'/n} \circ \delta_{1/n})] \right| \leq C n^{4-12H}
\]
\[
+ C \sum_{k,l,k',l'=0}^{n-1} n^{-4H} (|\beta_{k,k'} \beta_{k,l} | + \beta_{k,k'}^2 |\beta_{l,l'}|)
\]
\[
+ C \sum_{k,l,k',l'=0}^{n-1} (|\beta_{k,k'}^2 \beta_{l,l'}^2 + |\beta_{k,k'} \beta_{k,l'} | + \beta_{k,k'}^2 \beta_{l,l'})^2.
\]

Point (c) of Lemma 6.2 yields
\[
\sum_{k,l,k',l'=0}^{n-1} (|\beta_{k,k'} \beta_{k,l'} | + \beta_{k,k'}^2 |\beta_{l,l'}|) \leq C n^{3-6H}
\]

and
\[
\sum_{k,l,k',l'=0}^{n-1} (|\beta_{k,k'}^2 \beta_{l,l'}^2 | + |\beta_{k,k'} \beta_{k,l'} | + \beta_{k,k'}^2 \beta_{l,l'})^2 \leq C n^{2-8H}
\]
Therefore,
\[E((C_n^1)^2) \leq C \left(n^{-2H} + n^{-1} \right). \]

On the other hand,
\[
E((C_n^2)^2) = n^{12H-3} \sum_{j,k,l,j',k',l'=0}^{n-1} E[\Phi_{n,3}^{j,k,l} \Phi_{n,3}^{j',k',l'} I_2(\delta_{k/n} \tilde{\delta}_{l/n}) I_2(\delta_{k'/n} \tilde{\delta}_{l'/n})] \\
\times \beta_{j,l} \alpha_{j,k/n} \alpha_{j,l/n} \beta_{k,l} \alpha_{k',l'/n} \alpha_{k',l'/n}.
\]

In this case, it suffices to use the Hölder inequality and the equivalence of the \(L^p \) norms on multiple stochastic integrals to obtain
\[
E[\Phi_{n,3}^{j,k,l} \Phi_{n,3}^{j',k',l'} I_2(\delta_{k/n} \tilde{\delta}_{l/n}) I_2(\delta_{k'/n} \tilde{\delta}_{l'/n})] \leq C n^{-4H}.
\]

Then,
\[
E((C_n^2)^2) \leq C n^{4H-3} \left(\sum_{k,l=0}^{n-1} |\beta_{k,l}| \right)^2 \left(\sup_{t \in [0,1]} \sum_{j=0}^{n-1} |\alpha_{j,t}| \right)^2 \leq C n^{-1}.
\]

Finally,
\[
E((C_n^3)^2) = n^{12H-3} \sum_{j,k,l,j',k',l'=0}^{n-1} E[\Phi_{n,3}^{j,k,l} \Phi_{n,3}^{j',k',l'} \beta_{j,k,l}^2 \beta_{j',k',l'}^2 \alpha_{j,k/n} \alpha_{j,l/n} \alpha_{j',k'/n} \alpha_{j',l'/n}]
\leq C n^{8H-3} \left(\sum_{k,l=0}^{n-1} \beta_{k,l}^2 \right)^2 \left(\sup_{t \in [0,1]} \sum_{j=0}^{n-1} |\alpha_{j,t}| \right)^2 \leq C n^{-1}.
\]

Proof of (6.62). We have
\[
\langle u_n, D(S^2) \rangle_{\mathcal{B} \otimes \mathcal{B}} = 16n^{2H-\frac{3}{2}} \sum_{k=0}^{n-1} f(B_{k/n}) \int_0^1 \int_0^1 (f f')(B_s)(f f')(B_t) \times \langle \delta_{k/n}, 1_{[0,s]} \delta \rangle \langle \delta_{k/n}, 1_{[0,t]} \delta \rangle dsdt.
\]

Then, we can write, using points (a) and (b) of Lemma 6.2,
\[
E \left[\langle u_n, D(S^2) \rangle_{\mathcal{B} \otimes \mathcal{B}} \right] \leq C n^{2H-\frac{1}{2}} \sup_{s,t \in [0,1]} \sum_{k=0}^{n-1} |\langle \delta_{k/n}, 1_{[0,s]} \delta \rangle \langle \delta_{k/n}, 1_{[0,t]} \delta \rangle| \leq C n^{-\frac{1}{2}}.
\]

Proof of (6.63). We have
\[
\langle u_n, D(S^2) \rangle_{\mathcal{B} \otimes \mathcal{B}} = 4n^{2H-\frac{3}{2}} \sum_{k=0}^{n-1} f(B_{k/n}) \int_0^1 (f f' + f f'')(B_s) \langle \delta_{k/n}, 1_{[0,s]} \rangle^2 ds.
\]
As a consequence, applying points (a) and (b) of Lemma 6.2 yields

\[E\left[\left| \langle u_n, D^2(S^2) \rangle \right|^2 \right] \leq Cn^{2H-\frac{1}{2}} \sup_{s \in [0,1]} \sum_{k=0}^{n-1} \langle \delta_{k/n}, 1_{[0,s]} \rangle^2 \leq Cn^{-\frac{1}{2}}. \]

Proof of (6.64). We have

\[
\langle u_n, DF_n \otimes D(S^2) \rangle_{\mathcal{H}^2} = 8 \sum_{j,k=0}^{n-1} f(B_{j/n}) f(B_{k/n}) I_1(\delta_{k/n}) \langle \delta_{j/n}, \delta_{k/n} \rangle \int_0^1 (f f')(B_s) \langle \delta_{j/n}, 1_{[0,s]} \rangle \delta_s ds \\
+ 4 \sum_{j,k=0}^{n-1} f(B_{j/n}) f'(B_{k/n}) I_2(\delta_{k/n} \otimes \epsilon_{k/n}) \langle \delta_{j/n}, \epsilon_{k/n} \rangle \int_0^1 (f f')(B_s) \langle \delta_{j/n}, 1_{[0,s]} \rangle \delta_s ds.
\]

Considering \(E\left[\langle u_n, DF_n \otimes D(S^2) \rangle_{\mathcal{H}^2}^2 \right] \) and then applying the product and duality formulas, we get that \(E\left[\langle u_n, DF_n \otimes D(S^2) \rangle_{\mathcal{H}^2}^2 \right] \leq Cn^{1-4H} \), from which (6.64) easily follows. This completes the proof of the proposition. \(\blacksquare \)

References

[1] O. E. Barndorff-Nielsen, J. M. Corcuera and M. Podolskij (2009). Power variation for Gaussian processes with stationary increments. *Stoch. Proc. Appl.* **119**, 1845-1865.

[2] H. Biermé, A. Bonami and J. Léon (2011). Central Limit Theorems and Quadratic Variations in terms of Spectral Density. *Electron. J. Probab.* **16**, 362-395.

[3] S. Bourguin and G. Peccati (2012). Portmanteau inequalities on the Poisson space: mixed regimes and multidimensional clustering. Preprint.

[4] P. Breuer and P. Major (1983). Central limit theorems for non-linear functionals of Gaussian fields. *J. Mult. Anal.* **13**, 425-441.

[5] L. H. Y. Chen, L. Goldstein and Q.-M. Shao (2011). *Normal Approximation by Stein’s Method*. Springer-Verlag, Berlin

[6] J.M. Corcuera, D. Nualart and J.H.C. Woerner (2006). Power variation of some integral fractional processes. *Bernoulli* **12**, no. 4, 713-735.

[7] D. Harnett and D. Nualart (2012). Central limit theorem for a Stratonovich integral with Malliavin Calculus. To appear in: *Ann. Probab.*

[8] D. Harnett and D. Nualart (2012). Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes. *Stoch. Proc. Appl.* **122**, 3460-3505.

[9] Jacod J. and Shiryaev A.N. (1987). *Limit Theorems for Stochastic Processes*. Springer, Berlin.

[10] R.L. Mishkov (2000). Generalization of the formula of Faa di Bruno for a composite function with a vector argument. *Internat. J. Math. & Math. Sci.* **24**, no. 7, 481-491.
[11] I. Nourdin and D. Nualart (2010). Central limit theorems for multiple Skorohod integrals. J. Theoret. Probab. 23, no. 1, 39-64.

[12] I. Nourdin, D. Nualart and C.A. Tudor (2010). Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Ann. I.H.P. 46, no. 4, 1055-1079.

[13] I. Nourdin and G. Peccati (2008). Weighted variations of iterated Brownian motion. The Electronic Journal of Probability 13, no. 43, 1229-1256.

[14] I. Nourdin and G. Peccati (2009). Stein’s method on Wiener chaos. Probab. Theory Relat. Fields 145, no. 1, 75-118.

[15] I. Nourdin and G. Peccati (2010). Stein’s method meets Malliavin calculus: a short survey with new estimates. In the volume: Recent Development in Stochastic Dynamics and Stochastic Analysis, World Scientific, 207-236.

[16] I. Nourdin and G. Peccati (2012). Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality. Cambridge University Press.

[17] I. Nourdin, G. Peccati and M. Podolskij (2011). Quantitative Breuer-Major theorems. Stoch. Proc. Appl. 121, no. 4, 793-812.

[18] I. Nourdin, G. Peccati and A. Réveillac (2010). Multivariate normal approximation using Stein’s method and Malliavin calculus. Ann. I.H.P. 46, no. 1, 45-58.

[19] I. Nourdin and G. Poly (2013+). Convergence in total variation on Wiener chaos. Stochastic Process. Appl., in press.

[20] I. Nourdin and A. Réveillac (2009). Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case $H = 1/4$. Ann. Probab. 37, no. 6, 2200-2230.

[21] I. Nourdin, A. Réveillac and J. Swanson (2010). The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6. Elect. J. Probab. 15, 2117-2162.

[22] D. Nualart (2006). The Malliavin calculus and related topics. Springer-Verlag, Berlin, second edition.

[23] D. Nualart and S. Ortiz-Latorre (2008). Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Proc. Appl. 118, no. 4, 614-628.

[24] D. Nualart and G. Peccati (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33, no. 1, 177-193.

[25] G. Peccati and M. Yor (2004). Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge. In: Asymptotic Methods in Stochastics, AMS, Fields Institute Communication Series, 75-87.

[26] G. Peccati and M. Yor (2004). Hardy’s inequality in $L^2([0,1])$ and principal values of Brownian local times. In: Asymptotic Methods in Stochastics, AMS, Fields Institute Communications Series, 49-74.
[27] G. Peccati and M.S. Taqqu (2008). Stable convergence of multiple Wiener-Itô integrals. *J. Theoret. Probab.* **21**, no. 3, 527-570.

[28] G. Peccati and C.A. Tudor (2004). Gaussian limits for vector-valued multiple stochastic integrals. *Sém. Probab.* **XXXVIII**, 247-262.

[29] M. Podolskij and M. Vetter (2010). Understanding limit theorems for semimartingales: a short survey. *Stat. Neerl.* **64**, no. 3, 329-351.

[30] A. Rényi (1963). On stable sequences of events. *Sankhya A* **25**, 293-302.

[31] A. Réveillac (2009). Convergence of finite-dimensional laws of the weighted quadratic variations process for some fractional Brownian sheets. *Stoch. Anal. Appl.* **27**, no. 1, 51-73.

[32] D. Revuz et M. Yor (1999). *Continuous martingales and Brownian motion*. Springer-Verlag, Berlin Heidelberg New York.