Mir-125a rs12976445 is Associated with Susceptibility to Thyroid Cancer: A Case-control Study

Nima Nima Montazeri-Najafabady
Shiraz University of Medical Sciences

Mohammad Hossein Dabbaghmanesh (✉ dabbaghm@sums.ac.ir)
Shiraz University of Medical Sciences https://orcid.org/0000-0002-4877-0376

Abbas Ghaderi
Shiraz University of Medical Sciences

Nazanin Chatrabnous
Shiraz University of Medical Sciences

Mohammad Reza Arabnezhad
Shiraz University of Medical Sciences

Rajeeh Mohammadian Amiri
Shiraz University of Medical Sciences

Research

Keywords: Thyroid cancer, Polymorphism, Mir-125, RFLP

DOI: https://doi.org/10.21203/rs.3.rs-46114/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Thyroid cancer is the fifth communal cancer type in females and its occurrence rate continues to rise rapidly worldwide. Latest data demonstrated mir-125 is down-regulated in various cancer types.

Methods: a case-control (179 cases, 165 controls) study in order to explore the association of mir-125 rs12976445 with the risk of thyroid cancer in the Iranian population was performed. In order to investigate rs12976445 C/T polymorphisms, polymerase chain reaction restriction–fragment length polymorphism (PCR–RFLP) was done. Logistic regression analyses were done to find the association of mir-125 rs12976445 C/T polymorphisms with thyroid cancer and its stages.

Results: The genotype frequencies for patients was [(CC: 81(45.2%), CT: 75(41.9%), TT: 23 (12.9%)], and for controls was [(CC: 100 (60.1%), CT: 53(32.2%), TT: 12 (6.7%)]. The T allele distribution was significantly altered between patients and controls ($P=0.002$) with the odds ratio of 1.68. In the co-dominant model CC genotype was set as reference and compared with CT, and TT genotypes. In the dominant model, there was a significant difference between CC vs CT genotypes (adjusted OR = 1.69, 95% CI= 1-2.8, $P = 0.026$), and slightly significant differences between CC vs TT genotypes (adjusted OR = 2.18, 95% CI= 1-4.7, $P = 0.047$). we compared CT/TT genotype to the reference genotype (CC) and found a highly significant difference (adjusted OR = 1.78, 95% CI= 1.15-2.74, $P = 0.009$).

Conclusion: as the first study, our findings suggest that miR-125a rs12976445 is a possible prognostic biomarker for thyroid cancer patients.

Introduction

Thyroid cancer is the fifth communal cancer type in females and its occurrence rate continues to rise rapidly worldwide, typically through increased use of diagnostic imaging and observation [1, 2]. In 2017, more than 56,870 novel cases were detected in the United States including 3.4% of all new cancer cases [3]. it is the 7th most prevalent cancer in females, 14th in males and the 11th most frequent malignancy in both genders in Iranian population [4]. Its etiology seems to be multifactorial and mostly triggered by the interfaces between genetic elements and environmental exposures (such as exposure to radiation and lack of iodine in the diet) [5]. Thyroid cancer is classified as differentiated (Papillary Thyroid Cancer: PTC and Follicular Thyroid Cancer: FTC) and undifferentiated or poorly differentiated (Medullary Thyroid Cancer: MTC and Anaplastic Thyroid Cancer: ATC) [6]. PTC, as the most public type of thyroid cancer, accounts for nearly 80% of all cases [7, 8]. PTC has emerged to be even more dominant in recent years [7]. Latest data demonstrated that besides genetic alterations in PTC, like other tumors, which is identified by unfamiliar expression of microRNAs (miRNAs), a class of small noncoding RNAs modulates the gene expression at post-transcriptional level [9]. Previously, several studies have examined miRNA
dysregulation in PTC, and their usefulness as diagnostic and prognostic markers has already been endorsed [10].

MicroRNAs (miRNAs) are endogenous, single-stranded, small non-coding RNAs with about 21–23 nucleotides in length. MiRNA modulates the gene expression by binding to the complementary sequences of target mRNAs and typically functions as a negative regulator at the post-transcriptional level through translational repression or degradation of mRNA targets [11, 12]. It is estimated that miRs altogether regulate around 30% of the human genome, emphasizing their crucial role as global regulators of gene expression. miRs participate in the biological processes such as development, apoptosis, cell proliferation, immune response, and hematopoiesis [13].

MiR-125a is recognized to be a negative regulator of Kruppel-like factor 13 (KLF13), and the tumor necrosis factor-a-induced protein 3 (TNFAIP3) prevents the production of regulated activation of normal T cell and secreted (RANTES), and stimulates the nuclear factor kappa B (NFκB) pathway. The MiR125A gene, which encodes miR-125a, is located on chromosome 19q13.41 [14].

miR-125a expression in the peripheral blood mononuclear cells (PBMCs) is associated with autoimmune thyroid disease (AITD) development and prognosis [15]. In addition, miR-125a is down-regulated in systemic lupus erythematosus (SLE) [16], breast cancer [17], gastric cancer [18], ovarian cancer [19] and verrucous carcinoma [20] although the roles of miR-125a in thyroid cancer still remain unclear. In the nucleus, the Drosha system converts pri-miR-125a into mature hsa-miR-125a [21]. rs12976445 is located in the sequence of pre-mir-125 and disrupts a potential GATA-1 site [15]. A previous study showed that this single nucleotide polymorphism links to the mature hsa-miR-125a serum concentration in breast cancer cells [21]. In this study, we hypothesized that miR-125a may contribute to the risk of thyroid cancer, especially PTC. Thus, we directed a case-control study in order to explore the association of rs12976445 with the risk of thyroid cancer, especially PTC in the Iranian population.

Materials And Methods

Study design and subjects

In the present research, we conducted a case-control study on 179 patients with thyroid cancer including papillary, follicular, medullary, and undifferentiated types, and 165 healthy donors. Cases were newly diagnosed subjects with histological confirmation. The inclusion criteria for the control group were no family history of malignancy and autoimmune disease. Clinical data including the tumor stage and type were obtained from medical records. Blood samples were collected from the subjects for genotyping after receiving an informed written consent from the participants. This study have been reviewed and permitted by the Ethics local committee at Shiraz University of Medical Sciences, Shiraz, Iran and have therefore been performed in accordance with the ethical standards Declaration of Helsinki (as revised in Brazil 2013).
SNP selection criteria

The mir-125 gene single-nucleotide polymorphisms (SNPs) were selected according to the following criteria:

1-it was located in the pre-mir-125 sequence which affects its maturation and leads to an increased risk of autoimmune thyroid conditions. 2. retrospective pathological studies suggested the association between autoimmune thyroid disease and PTC [22–24]. 3- it was a common polymorphism with the minor allele frequency (MAF) of more than 0.1. 4- previous literature indicated its association with several types of cancer. 5- until now, its association with PTC was not investigated. 6. Mir-125a regulates the nuclear factor kappa B (NFkB) pathway which control many aspects of thyroid cancer biology [25, 26]. Based on the evidence mentioned above, we studied the association between rs12976445 polymorphism and risk of PTC in Iranian population.

DNA extraction and genotyping

DNA extraction from the peripheral blood leukocytes was performed using salting out method according to Miller’ instructions [27]. In order to investigate rs12976445 C/T polymorphisms, polymerase chain reaction restriction–fragment length polymorphism (PCR–RFLP) was done. The primers nucleotide sequences were as follow:

Forward primer 5'- TCTCTGTGGCTTCTGTGTCTCTT-3',
Reverse primer 5'- CTCCGCATCCCAACAAACATCT-3'.

PCR settings were 94°C for 5 min (pre-denaturation), 35 cycles of 95°C for 30 (denaturation), 55°C for 30 s (annealing), and 72°C for 60 s (extension), and finished with a 5-minute final extension at 72°C. After PCR, amplified fragments were digested using BaeGI fast digest restriction enzyme (Fermentas).

Statistical analysis

Mean and standard deviations and frequencies of the basic characteristics were calculated. SNP distribution was tested by χ² test to meet the Hardy–Weinberg equilibrium. Variations in the distribution frequencies of age, sex and genotypes concerning cases and controls were calculated by Student t-test or χ². Logistic regression analyses were done to assess adjusted odds ratios (ORs) for the potential interfering factors (age and sex), and 95% confidence intervals (95% CIs) between total patients with thyroid malignancy and controls, and between patients with papillary thyroid malignancy and controls. The major homozygote and allele for the rs12976445 were set as a reference. The statistical analysis was performed by SPSS software package (version 22; SPSS Inc, Chicago, IL, USA). P< 0.05 was considered as significant.
Results

Subject characteristics

The sex distribution in patients and controls was [male: 49 (27.9%), Female: 119 (72.1%)], and [male: 42 (23.5%), female: 137 (76.5%)], respectively. The mean age in patients and controls was 43.08 ± 14.70 and 39.48 ± 15.2, respectively. 120 out of 179 patients were PTC, and 67% of the patients were in stage I of thyroid cancer. The clinical and pathological features of the patients with thyroid cancer are presented in Table 1. There was no significant difference between cases and controls in age ($P=0.1$) and sex ($P=0.35$).

Table 1
Clinic and pathological characteristics of the patients with thyroid cancer

Variables	Patients (n = 179)	Controls (n = 165)
Age	43.08 ± 14.70	39.48 ± 15.2
Sex		
Male	42 (23.5%)	46 (27.9%)
Female	137 (76.5%)	119 (72.1%)
Tumor type		
Papillary	158 (64.2%)	
Follicular	9 (5.0%)	
Medullary	10 (5.6%)	
Undifferentiated	2 (11.2%)	
Papillary tumor subtype		
Classic	142 (89.8%)	
Follicular variant	14 (8.8%)	
Columnar	2 (1.4%)	
Tumor stage		
I	120 (67%)	
II	27 (15%)	
III	18 (10%)	
IV	12 (6.7%)	
Missing	2 (1.3%)	
Genotype frequency

Genotypes and allele frequencies of rs12976445 gene polymorphisms in patients with thyroid cancer are reported in Table 2. Patients and controls’ genotype frequencies were consistent with Hardy–Weinberg equilibrium (P value for patients = 0.39, P value for controls = 0.18). The genotype frequencies for patients were [(TT: 81(45.2%), CT: 75(41.9%), CC: 23 (12.9%)] and for controls [(TT: 100 (60.1%), CT: 53(32.2%), CC: 12 (6.7%)]. The T allele distribution was significantly altered between patients and controls (P = 0.002) with the odds ratio of 1.68.

SNP	Genotype/allele	Patients with thyroid cancer (n = 179)	Controls (n = 165)	Odds ratio (95% CI)	P value
rs12976445 C/T	TT	81	100	(0.170–0.185)	0.177
	CT	75	53	(0.060–0.070)	0.065
	CC	23	12	(0.086–0.097)	0.091
T	237 (66.2%)	253 (76.6%)	1.68 (1.2–2.3)	0.002	
C	121 (33.8%)	77 (23.4%)			

Association of mir-125 rs12976445 C/T polymorphisms with thyroid cancer and its stages

The association between mir-125 rs12976445 C/T polymorphisms and the risk of thyroid cancer was illustrated in Table 3. We first compared the effects of mir-125 rs12976445 C/T polymorphisms on the risk of all types of thyroid cancer in three inheritance models adjusted for age and sex. In the co-dominant model, TT genotype was set as reference and compared with CT, and CC genotypes. There was a significant difference between CT vs TT genotypes (adjusted OR = 1.69, 95% CI = 1.2–2.8, P = 0.026), and slightly significant differences between CC vs TT genotypes (adjusted OR = 2.18, 95% CI = 1.47, P = 0.047). In the dominant model, we compared CT/CC genotype to the reference genotype (TT) and found a highly significant difference (adjusted OR = 1.78, 95% CI = 1.15–2.74, P = 0.009). In the recessive model, TT/CT genotypes were compared to the CC genotype, and no significant variance was observed (adjusted OR = 0.57, 95% CI = 0.27–1.2, P = 0.14).
Table 3
Association of mir-125 rs12976445 C/T polymorphisms with thyroid cancer

mir-125 rs12976445 C/T	Total patients with thyroid cancer (n = 179)	Patients with papillary thyroid cancer (n = 158)		
	Odds ratio (95% CI)	P value	Odds ratio (95% CI)	P value
Co-dominant				
TT	1		1	
CT	1.69 (1-2.8)	0.02	1.5 (0.94–2.4)	0.08
CC	2.18 (1-4.7)	0.04	1.9 (0.88–4.3)	0.10
Dominant				
TT	1		1	
CT + CC	1.78 (1.15–2.74)	0.009	1.6 (1-2.5)	0.04
Recessive				
TT + CT	1		1	
CC	0.57 (0.27–1.2)	0.14	0.6 (0.28–1.3)	0.26

We then compared the association between mir-125 rs12976445 C/T polymorphisms and risk of papillary thyroid cancer. In the co-dominant and recessive models, no significant association was detected, while in the dominant model we identified that CT/CC genotypes significantly ($P = 0.04$) increased the risk of papillary thyroid cancer when compared to CC genotype with the odds ratio (95% CI) of 1.6 (1-2.5).

The association of mir-125 rs12976445 C/T polymorphisms with thyroid cancer stages is shown in Table 4. We first merged the patients with stages 1 and 2 in one group, and stages 3 and 4 in another group. Then, we performed a logistic regression analysis in three models to evaluate the association of mir-125 rs12976445 C/T polymorphisms between these groups. No significant association was found between the patients with stages 1/2 and those with stages 3/4 according to the mir-125 rs12976445 C/T polymorphisms.
Table 4
Association of mir-125 rs12976445 C/T polymorphisms with thyroid cancer stages

mir-125 rs12976445 C/T	Patients with thyroid cancer (n = 179)	Odds ratio (95% CI)	P value
Co-dominant			
TT	1		
CT	0.62 (0.21–1.8)	0.4	
CC	3.1 (0.57-16)	0.2	
Dominant			
TT	1		
CT + CC	0.85 (0.32 – 0.26)	0.75	
Recessive			
TT + CT	1		
CC	0.27 (0.05–1.38)	0.11	

Discussion

To the best of our knowledge, this is the first study to explore the correlation of mir-125 rs12976445 C/T with the risk of thyroid cancer. Initially, we hypothesized that T allele was the risk factor of thyroid cancer in patients when compared to the controls. We found that the rs12976445 CT and CC genotypes increased the risk of thyroid cancer (all types), 1.69-fold and 2.18-fold, respectively. We also found that CT/CC genotypes had a 1.6-fold increased risk of papillary thyroid cancer. Furthermore, regression analysis demonstrated that miR-125a rs12976445 was an independent risk factor for thyroid cancer. In addition, there was no correlation between mir-125 rs12976445 C/T polymorphisms and thyroid cancer stages.

miR-125a plays a critical role both in organ development and in the adult tissues [28]. miR-125a functions as an oncogene or a tumor suppressor depending on the cellular background [28]. Gathering evidence has suggested that miR-125a is associated with the pathogenesis of human cancers, such as lung, gastric, and breast cancer [29]. Furthermore, the effect of miR-125a on the growth, migration and apoptosis of multiple myeloma cells is p53-dependant [30]. The expression level of miR-125a not only is correlated with prognosis of cancer patients, but also makes an influence on the response of cancer cell lines to anticancer drugs [31]. The downregulation of miR-125a was reported in some cancers, such as leukemia [32] and lung cancer [33], where the increased expression suppressed the proliferation of cancer cells and promoted apoptosis. Recent evidence showed that mature miRNA processing and mature miR-125a expression may be interrupted by the T allele of rs12976445, resulting in augmented production of
target genes, including LIFR and ERBB2 [34]. A SNP (rs12976445) is present in the pre-miR-125a gene, and it is involved in the processing of mature miRNA, which leads to an increased risk of autoimmune thyroid disease. It has been stated that miR-125a concentration is reduced in Graves’ disease (GD) [14]. Diminished levels of hsa-miR-125a were detected in correlation with the rs12976445 variant [34]. The mechanism of the rs12976445 gene polymorphisms’ effect on the level of miR-125a remains undecided and it is not clear whether it is the effect of transcriptional regulation, maturation of hsa-miR-125a or transport of hsa-miR-125a [35].

de la Chapelle et al. reviewed the role of mir in thyroid cancer [12]. They showed that mir-125a is a suppressor of the main oncogenes involved in prognosis and susceptibility of thyroid cancer including BRAF and RAS, and also MAPK/ERK pathway [12]. BRAF serine-threonine kinase is a member of the family of RAF proteins, which are intracellular effectors of the MAPK signalling cascade. After activation generated by RAS binding and protein recruitment to the cell membrane, these kinases phosphorylate and activate MEK, which sequentially activates ERK and resultant effectors of the MAPK cascade [36]. In the present study, we observed that subjects with at least one mutant allele (CT or CC) had increased risk of thyroid cancer. The association of C allele with increased risk of cancer was also found in patients with papillary thyroid cancer. Since point mutations of the BRAF gene occur in ∼45% of thyroid papillary carcinomas which result in constitutive activation of BRAF kinase, and mir-125 is a negative regulator of BRAF, it seems that changing T to C in mir-125 results in augmentation of production and activation of its target genes like BRAF in thyroid cancer cells and also cause continuous phosphorylation of MEK [36] which finally leads to cell proliferation, differentiation, and survival. Nishida et al. showed that miRNA-125a-5p had an anti-proliferative effect through decreasing the proliferation of the related genes, including ERBB2, a member of the EGF receptor family of receptor tyrosine kinases, which maintains a key initiator of phosphoinositide-3 kinase (PI3K)-AKT and RAS/RAF/mitogen-activated protein kinase signaling [18]. Therefore, we speculate that this may be an explanation for the role of this polymorphism in the prognosis of thyroid cancer.

Conclusion

As concluding remarks, our findings suggest that miR-125a rs12976445 is a possible prognostic biomarker for thyroid cancer patients. Further larger-scale and well-designed clinical investigations are necessary to confirm these outcomes. Also, more studies are needed to evaluate the effect of this polymorphism on mir-125 expression in thyroid cancer and its influence on expression of target genes related to the pathways involved in prognosis of thyroid cancer to indicate the exact mechanism of mir-125a in thyroid cancer.

Declarations

Ethical Approval and Consent to participate
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.”

Consent for publication
The written informed consent for publication was obtained from each participant

Availability of supporting data
The datasets generated and/or analysed during the current study are not publicly available due [REASON WHY DATA ARE NOT PUBLIC] but are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no conflict of interest.

Funding
This study was funded by project No.33-14214

Authors' contributions
All authors equally involved in conceptualization, design analysis, planning, conduct, data analysis, and manuscript preparation

Acknowledgements
The present manuscript was adapted from project No.33-14214 approved by the Shiraz University of Medical Sciences. The authors would like to thank Dr. Nasrin Shokrpour for editorial assistance.

Authors' information
Nima Montazeri-Najafabady (montazerin@sums.ac.ir)
Mohammad Hossein Dabbaghmanesh (dabbaghm@sums.ac.ir)
Abbas Ghaderi (ghaderia@sums.ac.ir)
References

1. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388(10061):2783–95.
2. Abdolahi F, Dabbaghmanesh MH, Haghshenas MR, Ghaderi A, Erfani N. A gene-disease association study of IL18 in thyroid cancer: genotype and haplotype analyses. Endocrine. 2015;50(3):698–707.
3. Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol Cancer. 2018;17(1):154.
4. Abidi M, Fayaz S, Fard Esfahani P. Association of the Asp1312Gly Thyroglobulin Gene Polymorphism with Susceptibility to Differentiated Thyroid Cancer in an Iranian Population. Asian Pac J Cancer Prev. 2017;18(2):503–6.
5. Ashouri E, Dabbaghmanesh MH, Rowghanirad S, Bakhshayeshkaram M, Ranjbar Omrani G, Ghaderi A. Activating KIR2DS5 receptor is a risk for thyroid cancer. Hum Immunol. 2012;73(10):1017–22.
6. Dong G, Zhang R, Xu J, Guo Y. Association between microRNA polymorphisms and papillary thyroid cancer susceptibility. Int J Clin Exp Pathol. 2015;8(10):13450–7.
7. Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocrine-related Cancer. 2016;23(3):R143-55.
8. Haghshenas MR, Dabbaghmanesh MH, Mira A, Ghaderi A, Erfani N. Association of PD2CD1 gene markers with susceptibility to thyroid cancer. J Endocrinol Investig. 2017;40(5):481–6.
9. Minna E, Romeo P, Dugo M, De Cecco L, Todoerti K, Pilotti S, et al. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget. 2016;7(11):12731–47.
10. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2005;102(52):19075–80.
11. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.
12. de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab. 2011;96(11):3326–36.
13. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122(1):6–7.
14. Inoue Y, Watanabe M, Inoue N, Kagawa T, Shibutani S, Otsu H, et al. Associations of single nucleotide polymorphisms in precursor-microRNA (miR)-125a and the expression of mature miR-125a with the development and prognosis of autoimmune thyroid diseases. Clin Exp Immunol. 2014;178(2):229–35.
15. Cai T, Li J, An X, Yan N, Li D, Jiang Y, et al. Polymorphisms in MIR499A and MIR125A gene are associated with autoimmune thyroid diseases. Molecular cellular endocrinology. 2017;440:106–15.

16. Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis rheumatism. 2010;62(11):3425–35.

17. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer research. 2005;65(16):7065–70.

18. Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clinical cancer research: an official journal of the American Association for Cancer Research. 2011;17(9):2725–33.

19. Cowden Dahl KD, Dahl R, Kruichak JN, Hudson LG. The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia (New York NY). 2009;11(11):1208–15.

20. Odar K, Bostjancic E, Gale N, Glavac D, Zidar N. Differential expression of microRNAs miR-21, miR-31, miR-203, miR-125a-5p and miR-125b and proteins PTEN and p63 in verrucous carcinoma of the head and neck. Histopathology. 2012;61(2):257–65.

21. Lehmann TP, Korski K, Ibb's M, Zawierucha P, Grodecka-Gazdecka S, Jagodzinski PP. rs12976445 variant in the pri-miR-125a correlates with a lower level of hsa-miR-125a and ERBB2 overexpression in breast cancer patients. Oncology letters. 2013;5(2):569–73.

22. Dailey ME, Lindsay S, Skahen R. Relation of thyroid neoplasms to Hashimoto disease of the thyroid gland. AMA archives of surgery. 1955;70(2):291–7.

23. Okayasu I, Fujiwara M, Hara Y, Tanaka Y, Rose NR. Association of chronic lymphocytic thyroiditis and thyroid papillary carcinoma. A study of surgical cases among Japanese, and white and African Americans. Cancer. 1995;76(11):2312–8.

24. Ott RA, McCall AR, McHenry C, Jarosz H, Armin A, Lawrence AM, et al. The incidence of thyroid carcinoma in Hashimoto's thyroiditis. Am Surg. 1987;53(8):442–5.

25. Starenki D, Namba H, Saenko V, Ohtsuru A, Yamashita S. Inhibition of nuclear factor-kappaB cascade potentiates the effect of a combination treatment of anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 2004;89(1):410–8.

26. Pacifico F, Mauro C, Barone C, Crescenzi E, Mellone S, Monaco M, et al. Oncogenic and anti-apoptotic activity of NF-kappa B in human thyroid carcinomas. J Biol Chem. 2004;279(52):54610–9.

27. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research. 1988;16(3):1215.

28. Jiao L, Zhang J, Dong Y, Duan B, Yu H, Sheng H, et al. Association between miR-125a rs12976445 and survival in breast cancer patients. American journal of translational research. 2014;6(6):869–75.

29. Li C, Lei T. Rs12976445 Polymorphism is Associated with Risk of Diabetic Nephropathy Through Modulating Expression of MicroRNA-125 and Interleukin-6R. Medical science monitor: international
medical journal of experimental and clinical research. 2015;21:3490–7.
30. Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA. 2010;107(32):14229–34.
31. Ufkin ML, Peterson S, Yang X, Driscoll H, Duarte C, Sathyanarayana P. miR-125a regulates cell cycle, proliferation, and apoptosis by targeting the ErbB pathway in acute myeloid leukemia. Leukemia research. 2014;38(3):402–10.
32. Shaham L, Binder V, Gefen N, Borkhardt A, Izraeli S. MiR-125 in normal and malignant hematopoiesis. Leukemia. 2012;26(9):2011–8.
33. Zhu WY, Luo B, An JY, He JY, Chen DD, Xu LY, et al. Differential expression of miR-125a-5p and let-7e predicts the progression and prognosis of non-small cell lung cancer. Cancer investigation. 2014;32(8):394–401.
34. Hu Y, Liu CM, Qi L, He TZ, Shi-Guo L, Hao CJ, et al. Two common SNPs in pri-miR-125a alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population. RNA Biol. 2011;8(5):861–72.
35. Lehmann TP, Korski K, Ibbs M, Zawierucha P, Grodecka-Gazdecka S, Jagodziński PP. rs12976445 variant in the pri-miR-125a correlates with a lower level of hsa-miR-125a and ERBB2 overexpression in breast cancer patients. Oncology letters. 2013;5(2):569–73.
36. Nikiforov YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Modern pathology: an official journal of the United States and Canadian Academy of Pathology. Inc. 2008;21(Suppl 2(Suppl 2)):37–43.