Context-Adaptive Document-Level Neural Machine Translation

Linlin Zhang
Zhejiang University / China
11921133@zju.edu.cn

Abstract
Most existing document-level neural machine translation (NMT) models leverage a fixed number of the previous or all global source sentences to handle the context-independent problem in standard NMT. However, the translating of each source sentence benefits from various sizes of context, and inappropriate context may harm the translation performance. This work introduces a data-adaptive method that enables the model to adopt the necessary and helpful context. Specifically, we introduce a light predictor into two document-level translation models to select the explicit context. Experiments demonstrate the proposed approach can significantly improve the performance over the previous methods with a gain up to 1.99 BLEU points.

1 Introduction
Neural machine translation (NMT) based on the encoder-decoder framework has advanced translation performance in recent years (Sutskever et al., 2014; Bahdanau et al., 2015; Wu et al., 2016; Hassan et al., 2018). Instead of translating sentences in isolation, document-level machine translation (DocMT) methods are proposed to capture discourse dependencies across sentences by considering a document as a whole.

Current DocMT systems usually leverage a fixed amount of source or target context sentences while translating (Voita et al., 2018; Zhang et al., 2018; Werlen et al., 2018; Yang et al., 2019; Voita et al., 2019; Zhu et al., 2019; Mansimov et al., 2020; Xu et al., 2020). It is observed in Kang et al. (2020), which evaluates some previous DocMT models using different contexts, and the results shown that less context can get a higher BLEU than a fixed previous context sometimes. Thus, the translation model may need a more flexible context instead of a fixed static context, choosing a proper context becomes vital in DocMT systems (Maruf et al., 2019; Kang et al., 2020; Saunders et al., 2020).

To tackle this problem, Maruf et al. (2019) proposed a selective attention approach that normalizes the attention weights via the sparsemax function instead of the softmax. In their model, the sparsemax converts the low probability in softmax to zero, only keeping the sentences with high probability. However, this method focuses on selective attention weights and cannot handle cases where the source sentence achieves the best translation result without using any context.

In this paper, we propose a novel framework to predict the most appropriate context for model translation. To achieve this goal, we directly utilize a lightweight predictor, which takes encoder outputs as inputs, to predict the probabilities of different context options. We take their corresponding classification losses as training signals to update this lightweight predictor. Based on this, the best context for each source sentence can be selected during inference with only introducing little time cost. Also, the candidate contexts are limited in the most relevant pre-sentence and post-sentence, without searching from the enormous scope like the previous work. Experimental results prove that our proposed approach can significantly outperform the previous baselines with a margin up to 1.99 BLEU points.

Our main contributions can be summarized as follows:

• Our method can select the appropriate context by introducing a lightweight predictor. The predictor and the DocMT are trained jointly with a few additional parameters.

• Our method is applied to two basic DocMT models where one utilizes source context information, and another uses both source and target. The two models gain significant improvements with our proposed method.
2 Context-Adaptive DocMT

In this section, we introduce our Context-adaptive DocNMT by adding a context predictor.

2.1 Document-Level Translation

Compared with sentence-level MT that translates a sentence $X = \{x_1, \cdots x_S\}$ into a target sentence $Y = \{y_1, \cdots y_T\}$, DocMT takes advantage of the contextual information C of the document. The DocMT model can be trained to minimize the negative log-likelihood loss as:

$$L_{DMT} = -\sum_{t=1}^{T} \log P (y_t | y < t, X, C; \theta)$$ \hspace{1cm} (1)

2.2 Context Predictor

To select the appropriate context, we predict context based on the current inputs. As shown in Figure 1, the source sentence is processed by the encoder of the DocMT model. Then we feed the corresponding encoder output to the predictor, to calculate the probability π_i of the i-th choice.

Considering there are N different options for context to choose, including not adopting any context (empty context). Each source sentence has its own preference for some context-added options. We leverage the cross-entropy loss as training signals to learn probability. Therefore, for each context-added option cxt_i, we calculate the probability λ_i of cxt_i, and then weigh the corresponding translation loss L_{MT}^{i} with the selected context.

2.2.1 Training Loss

For each source sentence $X = \{x_1, \cdots x_S\}$, where S is the length of the input, $H = \{h_1, \cdots h_S\}$ is the corresponding output of DocMT encoder. The light predictor or classifier leverages the averaged encoder outputs $H_s = \frac{1}{S} \sum_{k=1}^{S} h_k$ to predict the possibility of context-selected options. Then, uses softmax to calculate the possibility:

$$\pi = \text{softmax} (H_s \times W + b)$$ \hspace{1cm} (2)

where $W \in \mathbb{R}^{d \times N}$ is the projection weight matrix. The weight λ_i of L_{MT}^{i} for each context option cxt_i:

$$\lambda_i = \frac{\exp ((\log (\pi_i) + g_i) / \tau)}{\sum_{j=1}^{N} \exp ((\log (\pi_j) + g_j) / \tau)}$$ \hspace{1cm} (3)

where noise g_i is sampled from Gumbel distribution, and τ is a constant temperature. The cross-entropy loss of training is a weighted combination of confidence λ_i and corresponding loss L_{MT}^{i}, formulated as:

$$L_{MT} = \sum_{i=1}^{N} \lambda_i L_{MT}^{i}$$ \hspace{1cm} (4)

Premium Losses As mentioned above, the predictor is trained in an unsupervised way, which quickly trained to prefer one specific option. To explore the diverse capability of all options, we incorporate the KL-divergence by adding a diversity loss L_{div}:

$$L_{div} = KL(\mathbb{U} || \mathbb{E}[\pi]) = -\frac{1}{N} \sum_{i=1}^{N} \log (\mathbb{E} [\pi_i]) - \log N$$ \hspace{1cm} (5)

But in the inference stage, we hope the predictor can make an unambiguous selection. So we expect the probability to be far away from the uniform distribution \mathbb{U} via adding the L_{uni} loss:

$$L_{uni} = -\mathbb{E} [KL(\mathbb{U} || \pi)] = -\mathbb{E} \left[-\frac{1}{N} \sum_{i=1}^{N} \log \pi_i - \log N \right]$$ \hspace{1cm} (6)

Inspired by the BERT (Devlin et al., 2018), we also use segment embedding and mask strategy on our DocMT models. In this way, the final training objective is to minimize the loss as:

$$L = L_{MT} + \beta_1 L_{div} + \beta_2 L_{uni} + \beta_3 L_{mask}$$ \hspace{1cm} (7)

where L_{mask} is the token masked loss of source sentence, β_1, β_2, and β_3 are the hyper-parameters described in appendix materials.

As a result, the DocMT model and the predictor can be trained jointly.
2.2.2 Inference Prediction
When inferring, we use the trained predictor to choose the most suitable context option according to the averaged encoder output \(H_s\) of source \(X\):

\[
ct_{\alpha} = \text{argmax} (H_s \times W + b) \quad (8)
\]

In this way, the framework can dynamically select the appropriate context by the predictor. All options use the same DocMT model.

3 Experiments
3.1 Datasets and Settings
For a fair comparison with previous works, we conducted experiments on four widely used document-level parallel datasets of two language pairs: (1) TED (ZH-EN/EN-DE): The Chinese-English and English-German TED datasets are from IWSLT 2015 and 2017 evaluation campaigns, respectively. For TED ZH-EN, we take dev2010 as the valid set and tst2010-2013 as the test set. (2) For the EN-DE language pair, we directly use the 3 prepared EN-DE corpora extracted by Maruf et al. (2019).

For a fair comparison, we use the same model configuration and training settings as Ma et al. (2020), and implement our experiments on Fairseq\(^1\), detailed in the appendix materials.

3.2 Two Basic DocMT
We apply the above predictor on two prevalent and straightforward basic DocMT models with mini changes. All options use one DocMT model.

3.2.1 Context-Unit Model
Many previous DocMT models use two encoders (Zhang et al., 2018; Werlen et al., 2018; Yang et al., 2019), one is to process the source sentence, and another is for the context. In a standard Transformer, each layer unit is composed of Multi-head Attention and a point-wise feed-forward network (FFN). The output \(F_i\) of the \(i\)-th layer can be calculated from the input \(X_i\) as:

\[
S_{i}^{\text{src}} = \text{SelfAttn}_{i}^{\text{src}} (X_i) + X_i \quad (9)
\]

\[
F_{i}^{\text{src}} (X_i) = \text{FFN}_{i}^{\text{src}} (S_i) + S_i \quad (10)
\]

We add a context-unit to process the context, the context output of \(i\)-th layer as:

\[
S_{i}^{\text{cxt}} = \text{SelfAttn}_{i}^{\text{cxt}} (C_i) + C_i \quad (11)
\]

\[
F_{i}^{\text{cxt}} (C_i) = \text{FFN}_{i}^{\text{cxt}} (S_{i}^{\text{cxt}}) + S_{i}^{\text{cxt}} \quad (12)
\]

Then add the context-unit output with a cross-attention weighted parameter \(\alpha\). The final output of \(i\) layer as:

\[
F_i (X_i, C_i) = F_i^{\text{src}} (X_i) + \alpha \text{CrossAttn}_i (F_i^{\text{cxt}} (C_i)) \quad (13)
\]

In this model, there are \(N = 3\) different context inputs: previous sentence, next sentence, empty context replaced by the source sentence. The values of \(\alpha\) and last layer’s \(\text{CrossAttn}\) correspond to different options, while other parameters are the same.

3.2.2 Concatenate Model
Concatenating the context and current sentence is a native DocMT model. There are \(N = 4\) context-added options, shown in Table 2.

The target sentence concatenation is the same as the source. Inspired by Li et al. (2020), we assume that the concatenated input of different lengths corresponds to a different number of model layers. We increase the number of encoder layers by one. In the decoder, corresponding to the above four options in respectively: reduce two layers (exit before the last two layers), reduce one layer, reduce one layer, not reduce. All options work on one DocMT model.

3.3 Results
We list the results of experiments in Table 1, comparing with a standard sentence-level Transformer and six previous DocMT baselines. Our method is at the lower part.

As shown in Table 1, our proposed method on the context-unit model and the concatenate model both achieved leading results over other DocMT baselines. With our predictor, the performance of two DocMT models has been significantly improved. For the concatenate model, our method receives 2.30, 1.69, 1.49, 1.15 BLEU (Papineni et al., 2002) gains over the sentence-level Transformer, receives 1.99, 1.41, 1.25, 0.94 over the concatenate baseline, on TED ZH-EN, TED EN-DE, News and Europarl datasets, respectively.

DocMT models can be trained in two stages: first, train a sentence-level base model, then fine-tune from the pre-trained model with document-level data. All our context-adaptive DocMT models adopt two stages training to save training time, as in previous works. Due to the \(N\) different options, similarly, the same model is trained by \(N\) times. Thus, the training time of every epoch increases, but the number of convergence rounds is reduced.

\(^1\)This tool can be accessed via https://github.com/pytorch/fairseq
Table 1: The translation results of the test sets in BLEU score and increments of the number of parameters over Transformer baseline ($\Delta |\theta|$), when compared with several baselines.

Model	ZH-EH	EN-DN
TED	17.56	23.10
News	22.40	29.40
Europarl17	29.98	0.0m

Model	ZH-EH	EN-DN
Sentence Transformer (Vaswani et al., 2017)	18.38	25.08
Sentence Transformer (our implementation)	17.9	24.58
HAN (Werlen et al., 2018)	25.19	22.37
SAN (Maruf et al., 2019)	24.87	23.55
QCN (Yang et al., 2019)	n/a	29.82
Flat-Transformer (Ma et al., 2020)	n/a	30.09
MCN (Zheng et al., 2020)	19.1	25.10
Context-unit (our implementation)	19.12	25.75
Context-unit + Our predictor	19.81	25.36
Concatenate (our implementation)	18.69	25.36
Concatenate + Our predictor	20.68	25.77

Table 2: Statistics of predictor’s selections of concatenate model on the TED EN-DE test set.

Option	num	percentage		
non		non	336	14.80%
pre		non	578	25.45%
non		pos	322	14.18%
pre		pos	1035	45.57%

Table 3: Statistics of models’ decoding time of batch size one on the TED EN-DE test set (total 2271 sentences).

Model	All tokens	All time
sentence-level	48833	659.5s
concatenate	148469	1962.3s
our model	108622	1878.8s

Table 4: Ablation study on the TED dataset.

BLEU	w/o	w/o	w/o
Our predictor	26.77	26.63	26.22
w/o L_{uni}	26.63	26.22	25.79
w/o L_{div}	26.22	25.79	25.79

3.4 Ablation Study

As in Table 3, when inference, the prediction of the context is increased, and the total decoding time increases very little. The last column of Table 1 shows that although the training time increases, the model parameters increase very little. Thus the inference speed is controllable. It indicates that the predictor is indeed light-weight.

In Table 2, there are 4 context options of concatenate model ("non" indicates empty context sentence). 14.80% of the source sentences choose not to use any context, indicating most translations need contextual information. 45.57%, less than half prefer to use the context of both the previous and next sentences. As observed from the translation results, contextual information can increase consistency, such as a unified tense, supplementary pronouns, and conjunctions. Nevertheless, as the qualitative example in appendix materials, the DocMT model prefers the previous sentence’s tense. In contrast, our model selected the tense of the latter sentence instead of unified all sentences into one tense. The experimental results prove our conjecture that the DocMT model may need a more flexible context instead of a fixed static context.

4 Conclusion

In this paper, we proposed a data-driven framework on DocMT for adaptive context. The method introduces a lightweight predictor to select the most appropriate context without increasing many parameters. Moreover, it is not limited by the specific circumstances of different contexts: empty context, source context, or target context. Experimental results show that the proposed DocMT framework can achieve significant improvements on two baseline models and various datasets.
References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015. Conference Track Proceedings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Hany Hassan, Anthony Aue, C. Chen, Vishal Chowdhary, J. Clark, C. Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, W. Lewis, M. Li, Shujie Liu, T. Liu, Renqian Luo, Arul Menezes, Tao Qin, F. Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingshe Xia, Dongdong Zhang, Zhirui Zhang, and M. Zhou. 2018. Achieving human parity on automatic chinese to english news translation. ArXiv, abs/1803.05567.

Xiaomian Kang, Yang Zhao, Jiajun Zhang, and Chenguang Zong. 2020. Dynamic context selection for document-level neural machine translation via reinforcement learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2242–2254.

Xian Li, Asa Cooper Stickland, Yuqing Tang, and Xiaoxiang Kong. 2020. Deep transformers with latent depth. Advances in Neural Information Processing Systems, 33.

Shuming Ma, Dongdong Zhang, and Ming Zhou. 2020. A simple and effective unified encoder for document-level neural machine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3505–3511.

Elman Mansimov, Gábor Melis, and Lei Yu. 2020. Capturing document context inside sentence-level neural machine translation models with self-training. arXiv preprint arXiv:2003.05259.

Sameen Maruf, André FT Martins, and Gholamreza Haffari. 2019. Selective attention for context-aware neural machine translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3092–3102.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pages 311–318.

Danielle Saunders, Felix Stahlberg, and Bill Byrne. 2020. Using context in neural machine translation training objectives. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7764–7770.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, pages 6000–6010.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. When a good translation is wrong in context: Context-aware machine translation improves on deixis, ellipsis, and lexical cohesion. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1198–1212.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan Titov. 2018. Context-aware neural machine translation learns anaphora resolution. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1264–1274.

Lesly Miculicich Werlen, Dhananjay Ram, Nikolaos Pappas, and James Henderson. 2018. Document-level neural machine translation with hierarchical attention networks. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2947–2954.

Y. Wu, Mike Schuster, Z. Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, M. Krikun, Yuan Cao, Q. Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, Taku Kudo, H. Kazawa, K. Stevens, G. Kurian, Nishant Patil, W. Wang, C. Young, J. Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, G. S. Corrado, Macduff Hughes, and J. Dean. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. ArXiv, abs/1609.08144.

Hongfei Xu, Deyi Xiong, Josef van Genabith, and Qihui Liu. 2020. Efficient context-aware neural machine translation with layer-wise weighting and input-aware gating. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pages 3933–3940.

Zhengxin Yang, Jinchao Zhang, Fandong Meng, Shuhao Gu, Yang Feng, and Jie Zhou. 2019. Enhancing context modeling with a query-guided capsule network for document-level translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1527–1537.
Improving the transformer translation model with document-level context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 533–542.

Zaixiang Zheng, Xiang Yue, Shujian Huang, Jiajun Chen, and Alexandra Birch. 2020. Towards making the most of context in neural machine translation. In IJCAI.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, and Tieyan Liu. 2019. Incorporating bert into neural machine translation. In International Conference on Learning Representations.

A Example Appendix

This is an appendix.
And through playing music and talking about music, this man had transformed from the paranoid, disturbed man that had just come from walking the streets of downtown Los Angeles to the charming, erudite, brilliant, Juilliard-trained musician. Music is medicine, Music changes us. And for Nathaniel, music is sanity.