Magnetic Resonance Imaging of Neurosarcoidosis

Daniel T Ginat, Gurpreet Dhillon, Jeevak Almast
University of Rochester, Department of Imaging Science, Rochester, NY, USA

Address for correspondence:
Dr. Daniel T Ginat,
601 Elmwood Avenue,
University of Rochester,
Department of Imaging Sciences,
Rochester, NY 14642,
USA

ABSTRACT

Neurosarcoidosis is an uncommon condition with protean manifestations. Magnetic resonance imaging (MRI) is often used in the diagnostic evaluation and follow-up of patients with neurosarcoidosis. Therefore, familiarity with the variety of MRI appearances is important. In this pictorial essay, the range of possible patterns of involvement in neurosarcoidosis are depicted and discussed. These include intracranial and spine leptomeningeal involvement, cortical and cerebral white matter lesions, corpus callosum involvement, sellar and suprasellar involvement, periventricular involvement, cranial nerve involvement, cavernous sinus involvement, hydrocephalus, dural involvement, ischemic lesions, perivascular involvement, orbit lesions, osseous involvement, nerve root involvement, and spinal cord intramedullary involvement. Differential diagnoses for each pattern of involvement of neurosarcoidosis are also provided.

Key words: Brain, MRI, neurosarcoidosis, orbit, skull, spine

INTRODUCTION

Neurosarcoidosis is apparent clinically in only about 5% of patients with sarcoidosis. However, less than 1% of patients have isolated central nervous system involvement. Cranial neuropathy, particularly facial nerve palsy, is the most common presentation. Other presentations of neurosarcoidosis include encephalopathy, peripheral neuropathy, meningitis, seizure, spinal cord dysfunction, and myopathy. Post treatment, up to 87% of neurosarcoidosis cases show resolution on imaging, which also parallels clinical improvement. The goal of this pictorial essay is to present the spectrum of MRI features in biopsy confirmed neurosarcoidosis patients in a pattern-based approach. The differential diagnosis for each pattern of involvement of neurosarcoidosis will also be reviewed.

Leptomeningeal involvement

Leptomeningeal involvement occurs in 40% of patients with neurosarcoidosis. The basilar meninges are most frequently involved. Gadolinium enhancement can be diffuse or nodular on post-contrast T1-weighted magnetic resonance imaging (MRI) [Figure 1]. Perivascular spread can be encountered, producing enhancing foci that are remote from the brain surface [Figure 2]. The MRI differential diagnosis includes the conditions listed in Table 1.

Intraparenchymal mass lesions

Parenchymal mass lesions or granulomas are a fairly common manifestation of neurosarcoidosis, with 35% of cases presenting as multiple supratentorial and/or infratentorial masses and 15% as solitary masses. These lesions are often intimately associated with leptomeningeal involvement and may represent centrifugal spread of
the disease. Intraparenchymal masses typically show enhancement [Figure 3]. Initially, the lesions can be hypointense on T2,[5] but are otherwise hyperintense. Central necrosis is rare.[2] The MRI differential diagnosis includes the conditions listed in Table 2.

Pituitary and hypophyseal involvement
The pituitary gland, infundibulum, or hypothalamus are affected in 18% of patients with neurosarcoidosis.[6] Cystic masses, enhancing masses, or thickening and enhancement of the infundibulum can be encountered on imaging [Figure 4]. These findings may occur in isolation or in combination with basilar leptomeningeal involvement. The MRI differential diagnosis includes the conditions listed in Table 3.

Cavernous sinus involvement
The cavernous sinus is rarely involved in neurosarcoidosis. These lesions can produce cavernous sinus syndrome, which include painful ophthalmoplegia.[7] Lesions enhance and may have a dural tail [Figure 5]. The MRI differential diagnosis includes the conditions listed in Table 4.

Hydrocephalus
Hydrocephalus occurs in 5% to 12% of patients with neurosarcoidosis.[2] The hydrocephalus is usually communicating secondary to leptomeningeal/dural involvement [Figure 6]. However, obstructive hydrocephalus can result secondary to ventricular system adhesions or loculations, which may cause trapped ventricles [Figure 7].[8] There may be altered signal intensities of the cerebrospinal fluid in the isolated ventricle due to elevated protein concentrations.

Dural involvement
Dural involvement occurs in 34% of patients with

Table 1: Leptomeningeal involvement - MRI differential diagnosis

- Lymphomatous meningitis
- Carcinomatous meningitis (i.e., breast carcinoma)
- Infectious meningitis (i.e., tuberculosis)
- Meningoangiomatosis

Table 2: Intraparenchymal mass lesions - MRI differential diagnosis

- Metastatic disease
- Gliomas
- Demyelinating disease
- Hemorrhage
- Infarct

Table 3: Pituitary and hypophyseal involvement - MRI differential diagnosis

- Lymphoma
- Tuberculosis
- Langerhans cell histiocytosis
- Erdheim-Chester disease
- Metastases

Table 4: Cavernous sinus involvement - MRI differential diagnosis

- Meningioma
- Tolosa-Hunt syndrome
- Infection
- Cavernous hemangioma
- Perineural tumor spread
- Thrombophlebitis

Figure 1: Leptomeningeal Involvement. (a) Pre-contrast T1, and (b) post-contrast axial, and (c) coronal sequences show widespread leptomeningeal thickening and enhancement along the convexities of the brain (arrowheads). Both diffuse and nodular patterns are evident.

Figure 2: Perivascular Involvement. There are several enhancing foci in the right hemisphere along a perivascular distribution (arrows).
Figure 3: (a) Axial T2 and (b) post-contrast T1 sequences show numerous cortical and subcortical white matter lesions in the bilateral cerebral hemispheres, which are hyperintense on T2 (arrows) and demonstrate enhancement.

Figure 4: (a) Sagittal and (b) coronal images of pituitary and hypothalamus involvement. There is extensive enhancement of the pituitary gland (arrow) and stalk (arrowhead), which is markedly enlarged.

Figure 5: Leptomeningeal involvement. (a) Pre-contrast T1, and (b) post-contrast axial, and (c) coronal sequences show widespread leptomeningeal thickening and enhancement along the convexities of the brain (arrowheads). Both diffuse and nodular patterns are evident.

neurosarcoidosis. The posterior fossa is most commonly involved. Lesions are usually hypointense or isointense on T2 [Figure 8]. There can be strong enhancement of the thickened dura. The MRI differential diagnosis includes the
Cranial nerve involvement
Cranial nerves are affected in up to 50% of patients with neurosarcoidosis. There is poor correlation between imaging findings and clinical symptoms. While facial nerve deficits are most commonly found clinically, the optic nerve is the most common cranial nerve to appear abnormal on MRI. Affected cranial nerves show enhancement and thickening with or without associated leptomeningeal involvement [Figure 9]. The MRI differential diagnosis includes the conditions listed in Table 6.

Lacrimal gland involvement
The lacrimal gland is rarely involved in sarcoidosis. Imaging features on computed tomography (CT) scan include bilateral, asymmetric enlargement with intense enhancement of the lacrimal gland [Figure 10]. The gland maintains its anatomic configuration. A portion of the gland may extend medially along anterior border of the globe. MR demonstrates hypointense T1 and T2 signal within enlarged glands that also show intense enhancement. The MRI differential diagnosis includes the conditions listed in Table 7.

Osseous involvement
Although osseous involvement occurs in up to 13% of patients, skull and vertebral involvement in neurosarcoidosis is very rare. The intervertebral body disc spaces can also be affected. Lesions are usually lytic with a punched-out appearance, but can also be sclerotic. The osseous lesions can also show increased activity on bone scans. On MRI, bone lesions are typically hyperintense on T2 and post-contrast T1 [Figure 11]. However, sclerotic lesions appear hypointense and may not enhance [Figure 12]. The MRI differential diagnosis includes the conditions listed in Table 8.

Spine intramedullary involvement
Intramedullary involvement occurs in up to 25% patients with neurosarcoidosis. Lesions cause fusiform cord
Dural Involvement. There is (a) hypointense T2 and (b) isointense T1 signal in the (c) symmetrically thickened frontal lobe dura, which avidly enhance on post-contrast T1 MRI (arrowheads).

Cranial nerve involvement. (a) Coronal post-contrast T1-weighted MRI shows peripheral enhancement of the bilateral cisternal segments of cranial nerve II. (b) Axial post-contrast T1-weighted sequences at the level of cranial nerve V, (c) cranial nerves VII and VIII, and (d) cranial nerve IX show thickening and enhancement of multiple cranial nerves (arrowheads).

Lacrimal gland involvement. Coronal post-contrast T1-weighted MRI shows bilateral intensely enhancing enlarge lacrimal glands (arrowheads).

Spinal nerve root enhancement
Infiltration of spinal nerve roots is uncommon in neurosarcoidosis. These lesions can cause polyneuropathies. On MRI, nodularity or diffuse thickening of the affected nerve roots can be encountered [Figure 14]. Nerve root enhancement is also a common feature. The MRI differential diagnosis includes the conditions listed in Table 10.

Diagnostic considerations
Although the base of the brain is characteristically involved in neurosarcoidosis, this pictorial essay demonstrates that the MRI manifestations of neurosarcoidosis overlap with both benign and malignant entities. Thus, MRI

Table 8: Osseous involvement - MRI differential diagnosis

Condition
Intraosseous meningioma
Metastases
Lymphoma
Multiple myeloma
Hemangioma
Langerhans cell histiocytosis
Epidermoid

Typical MRI findings include low T1 signal, high T2 signal, and patchy enhancement on MRI [Figure 13]. The MRI differential diagnosis includes the conditions listed in Table 9.
findings of neurosarcoidosis are not sufficiently specific to render a diagnosis, especially when neurological involvement is the first or only finding with sarcoidosis.[12,13]

Rather, other parameters must be considered, including clinical presentation, other imaging studies, angiotensin-converting enzyme (ACE) assays, the Kveim test, and biopsy, if necessary. Since the majority of patients with neurosarcoidosis have preexisting lung involvement, the presence of hilar and mediastinal adenopathy [12,13]

Table 9: Spine intramedullary involvement - MRI differential diagnosis

- Glioma
- Multiple sclerosis
- Acute disseminated encephalomyelitis (ADEM)
- Radiation necrosis
- Fungal infection

Table 10: Spine nerve root enhancement - MRI differential diagnosis

- Acute/chronic inflammatory demyelinating polyneuropathies
- Ependymoma
- Arachnoiditis
- Drop-metastases
- Lymphoma
- Tuberculosis
- Neurofibroma
- Meningioma
levels tend to be elevated, although this is not specific for neurosarcoïdosis since increased ACE levels can also be encountered with meningitis.\[14\] The Kveim test is a very sensitive and specific test for sarcoïdosis, but is rarely used.\[15\] It involves intradermal injection of spleen or liver extract from a patient with known sarcoïdosis. The test is considered positive if sarcoïd granulomas form several weeks later at the injection site. Histopathology of sarcoïd lesions classically reveals non-caseating granulomas. Finally, patients with neurosarcoïdosis demonstrate improvement in their clinical symptoms when treated with high-dose steroids. Response to steroid treatment can be monitored with MRI [Figure 15].

Conclusion

Neurosarcoïdosis has a wide spectrum of imaging features that mimic both benign and malignant conditions. Virtually any portion of the central nervous system and associated structures can be affected. MRI is highly sensitive for detecting neurosarcoïdosis, but is not specific. Therefore, in the differential diagnosis of this entity the imaging patterns included in this pictorial essay should be considered. Finally, the diagnosis is made by exclusion of other entities using a combination of imaging, diagnostic testing, clinical presentation, and sometimes tissue sampling.

REFERENCES

1. Stern BJ, Krumholz A, Johns C, Scott P, Nissim J. Sarcoïdosis and its neurological manifestations. Arch Neurol 1985;42:909-17.
2. Smith JK, Matheus MG, Castillo M. Imaging manifestations of neurosarcoïdosis. AJR Am J Roentgenol 2004;182:289-95.
3. Lexa FJ, Grossman RI. MR of sarcoïdosis in the head and spine: Spectrum of manifestations and radiographic response to steroid therapy. AJNR Am J Neuroradiol 1994;15:973-82.
4. Nowak DA, Widenka DC. Neurosarcoïdosis: A review of its intracranial manifestation. J Neurol 2001;248:363-72.
5. Urbach H, Kristof R, Zentner J, Brechtlbauer D, Solymosi L, Wolf HK. Sarcoïdosis presenting as an intra- or extra-cranial mass: report of two cases. Neuroradiology 1997;39:516-9.
6. Shah R, Roberson GH, Curé JK. Correlation of MR imaging findings and clinical manifestations in neurosarcoïdosis. AJNR Am J Neuroradiol 2009;30:953-61.
7. Chang CS, Chen WL, Li CT, Wang PY. Cavernous sinus syndrome due to sarcoïdosis: A case report. Acta Neurol Taiwan 2009;18:37-41.
8. Hesselmann V, Wedekind C, Terstegge K, Schulte O, Voges J, Krug B, et al., An isolated fourth ventricle in neurosarcoïdosis: MRI findings. Eur Radiol 2002;12:S1-3.
9. Christofordis GA, Spickler EM, Reccio MV, Mehta BM. MR of CNS sarcoïdosis: Correlation of imaging features to clinical symptoms and response to treatment. AJNR Am J Neuroradiol 1999;20:655-69.
10. Koyama T, Ueda H, Togashi K, Umeoka S, Kataoka M, Nagai S. Radiologic manifestations of sarcoïdosis in various organs. Radiographics 2004;24:87-104.
11. Jelinek JS, Mark AS, Barth WF. Sclerotic lesions of the cervical spine in sarcoïdosis. Skeletal Radiol 1998;27:702-4.
12. Pickuth D, Spielmann RP, Heywang-Köbrunner SH. Role of radiology in the diagnosis of neurosarcoïdosis. Eur Radiol 2000;10:941-4.
13. Pickuth D, Heywang-Köbrunner SH. Neurosarcoidosis: evaluation with MRI. J Neuroradiol 2000;27:185-8.
14. Baudin B, Bénéteau-Burnat B, Vaubourdolle M. Angiotensin I-converting enzyme in cerebrospinal fluid and neurosarcoidosis. Ann Biol Clin (Paris) 2005;63:475-80.
15. Zajicek JP, Scolding NJ, Foster O, Rovaris M, Evanson J, Moseley IF, et al., Central nervous system sarcoidosis: Diagnosis and management. Q J Med 1999;93:103-17.

Source of Support: Nil. Conflict of Interest: None declared.