Proteomic and Metabolomic Revealed Differences in the Distribution and Synthesis Mechanism of Aroma Precursors in Yunyan 87 Tobacco Leaf, Stem, and Root at the Seedling Stage

Amin Liu, Kailong Yuan, Haiqing Xu, Yonggang Zhang, Jingkui Tian, Qi Li, Wei Zhu,* and He Ye*

Cite This: ACS Omega 2022, 7, 33295−33306

ABSTRACT: Tobacco, as an important cash crop and model plant, has been the subject of various types of research. The quality of flue-cured tobacco products depends on the compound collection of tobacco leaves, including pigments, carbohydrates, amino acids, polyphenols, and alkaloid aroma precursors. The present study investigates tobacco seedling organs (leaf, stem, and root) with the assistance of label-free proteomic technology and untargeted metabolomic technology. We analyzed 4992 proteins and 298 metabolites obtained in the leaf, stem, and root groups and found that there were significant differences in both primary and secondary metabolism processes involved in aroma precursor biosynthesis, such as carbohydrate metabolism, energy metabolism, and amino acid biosynthesis, and phenylpropanoid, flavonoid, and alkaloid biosynthesis. The findings showed that the contents of alkaloid metabolites such as nornicotine, anatabine, anatalline, and myosmine were significantly higher in tobacco roots than in leaves and stems at the seedling stage.

1. INTRODUCTION

Tobacco (Nicotiana tabacum L.), belonging to Solanaceae, is an important economic and model crop with high economic and scientific research value. As a cash crop, the quality of flue-cured tobacco depends on the compound collection of tobacco leaves, including pigments, carbohydrates, amino acids, polyphenols, and alkaloid aroma precursors. The present study investigates tobacco seedling organs (leaf, stem, and root) with the assistance of label-free proteomic technology and untargeted metabolomic technology. We analyzed 4992 proteins and 298 metabolites obtained in the leaf, stem, and root groups and found that there were significant differences in both primary and secondary metabolism processes involved in aroma precursor biosynthesis, such as carbohydrate metabolism, energy metabolism, and amino acid biosynthesis, and phenylpropanoid, flavonoid, and alkaloid biosynthesis. The findings showed that the contents of alkaloid metabolites such as nornicotine, anatabine, anatalline, and myosmine were significantly higher in tobacco roots than in leaves and stems at the seedling stage.

With the continuous application and advancement of omics technologies, it is now possible to study tobacco proteins and metabolites at an in-depth level via proteomics and metabolomic platforms. Dai et al. (2021) studied the changes in protein regulatory pathways in the roots of flue-cured tobacco seedlings treated with high potassium compared with the normal group by using differential proteomics. High potassium stress stimulated the protein synthesis process of roots and enhanced the material metabolism pathway, thus providing a material and energy basis for root growth. Wu et al. (2020) studied the molecular mechanism of chlorophyll metabolism in tobacco leaves by using the iTRAQ proteomics method and found that the upregulation of chlorophyll-like isoform X2 was a key protein regulation mechanism of chlorophyll metabolism and color change. Chang et al. (2020) conducted a combined metabolomic and transcriptomic analysis of leaves of K326 at seven locations and found that the transcription factor NtGATA3 regulated carbon and nitrogen metabolism and chloroplast development by regulating plant hormones during leaf development. In addition, auxin was also studied during leaf...
development of tobacco, and the transcriptional dynamics of
genes related to cytokinin and jasmonic acid biosynthesis and
signaling pathways have greatly expanded the understanding of
the dynamic regulatory network of plant leaf development. Therefore, in this study, we applied label-free proteomics
technology and untargeted liquid chromatography and mass spectrometry-based metabolomics technology to study the
leaves, stems, and roots of seedling tobacco. To obtain new
clues about the early biosynthesis mechanism and distribution
characteristics of tobacco aroma precursors, as well as other
important compounds, 4992 proteins and 298 metabolites were
obtained.

2. RESULTS

2.1. Index Differences in the Leaves, Stems, and Roots
of Tobacco. We first analyzed the differences in the contents of
some aroma precursors of tobacco organs (Table S1). Figure
1A–C suggested that the contents of plastid pigments
(chlorophyll and carotenoid) and anthocyanins were lower in
stems than in leaves, and these compounds were not detected in
tobacco seedling roots. The soluble sugar content in freeze-dried
tobacco seedling stems was the highest (Figure 1D). The
contents of the polyphenols chlorogenic acid and rutin in
different organs were measured, and the results showed that the
chlorogenic acid content was higher in the leaf and stem groups
than in the root group (Figure 1E). Rutin had a high content in
the leaf group, but the rutin content in the stem and root groups
was very low (Figure 1F).

2.2. Identification and Functional Categories of
Proteins. The Proteome Discoverer (PD) software data
analysis results showed that this study had good sample
repeatability (Figure S1). A total of 4992 proteins were
identified in roots, stems, and leaves, which contained 2182
significantly differentially expressed proteins (Table S2 and
Figure 2B). KOBAS 3.0 online software was used to process
KEGG pathways. Figure 2C shows the top 20 enriched pathways
of the differentially expressed proteins. The carbon fixation in
the photosynthetic organism pathway, glycolysis pathway,
biosynthesis of the amino acid pathway, pentose phosphate
pathway, and starch and sucrose metabolism pathway was
significantly enriched. MapMan bin codes and GO terms were
used to process the functional classification of differential
proteins. Figure 3 showed the top five functional classifications
of significantly differentially expressed proteins among the
different organ groups. They were protein folding and protein
activation, stress, photosynthesis, RNA transcription and
binding, and secondary metabolism. Figure S2 showed that
GO term classification was involved in protein folding and
glycolytic process (BP), cytoplasm and cytosol (CC), and
unfolded protein binding and ATP binding (MF).

2.3. Protein–Protein Interaction (PPI) Analysis of
Differentially Expressed Proteins. Protein–protein inter-
action networks of the proteins were obtained using open-access
STRING software. A total of 1577 nodes connected by 1519
interactions in significantly changed proteins were found. Cluster
network analysis in STRING software showed that
most compacts were constituted by significantly changed proteins involved in protein processing in the endoplasmic reticulum; oxidative phosphorylation; ribosome, amino sugar, and nucleotide sugar metabolism; aminoacyl-tRNA biosynthesis; glutathione metabolism; glyoxylate and dicarboxylate metabolism; alanine, aspartate, and glutamate metabolism; glycolysis/gluconeogenesis; and carbon fixation in photosynthetic organism pathways (Figure S3).

2.4. Identification and Analysis of Metabolites. The Compound Discoverer 3.2 (CD) software was used for database search analysis of metabolomics mass spectral data, and then MetaboAnalyst was used for data analysis of the obtained metabolites. A total of 298 metabolites were obtained (Table S2), and the principal component analysis (PCA) results of the metabolites are shown in Figure 4A. The 197 differential metabolites obtained were classified by the PubChem database, and the results showed that most of the differential metabolites were amino acids, organic acids, fatty acids, and alkaloids (Figure 4B). The hierarchical clustering analysis tree (Figure S4A) was shown by MetaboAnalyst software analysis. Pathway enrichment analysis of these differential metabolites was also conducted, which showed that beta-alanine metabolism; isouquinoline alkaloid biosynthesis; alanine, aspartate, and glutamate metabolism; aminoacyl-tRNA biosynthesis; arginine biosynthesis; nicotinate and nicotinamide metabolism; linoleic acid metabolism; biosynthesis of secondary metabolites—unclassified; tyrosine metabolism; and butanoate metabolism were the top 10 enriched pathways of differential metabolites (Figure S4B). Additionally, our correlation analysis results showed that scopoletin, nornicotine, myosmine, anatalline, and anatabine had a significantly positive correlation with DL-phenylalanine, L-(+)-leucine, L-histidine, L-tyrosine, and valine, respectively. A positive correlation of nechlorogenic acid and rutin with DL-arginine and L-aspartic acid, respectively, was observed; however, (S)-nicotine showed a significantly negative correlation with the presence of tyrosine (Figure S5).
2.5. Combined Pathway Analysis of Differentially Expressed Proteins and Metabolites. The KEGG accession numbers of differential proteins and metabolites were submitted for KEGG pathway mapper analysis. Pathway analysis diagrams were drawn for the starch and sucrose metabolism pathways (Figure 5) with PYG, glycogen phosphorylase; malZ, alpha-glucosidase; SUS, sucrose synthase; AMY, alpha-amylase; E3.2.1.2, beta-amylase; GN5_6, glucan endo-1,3-beta-glucosidase 5/6; glgA, starch synthase; UGP2, UTP--glucose-1-phosphate uridylyltransferase; GN1_2_3, glucan endo-1,3-beta-glucosidase 1/2/3; and WAXY, granule-bound starch synthase, being significantly highly expressed in the stem group. HK, hexokinase; TPS, trehalose 6-phosphate synthase/phosphatase; GBE1, 1,4-alpha-glucan branching enzyme; E2.7.1.4, fructokinase; INV, beta-fructofuranosidase; bglX, beta-glucosidase; Pgm, phosphoglucomutase; and glgC, glucose-1-phosphate adenylyltransferase had the highest expression levels in the leaves. Carbon fixation in photosynthetic organisms, glycolysis, biosynthesis of amino acids, and the pentose phosphate pathway were also shown in Figure 6. After enrichment analysis of all of these proteins involved in carbohydrate metabolism and energy metabolism pathways, we found that carbohydrate metabolism and energy metabolism were more active in the stems and leaves of tobacco seedlings than in the roots.

In addition, the different abundances of amino acids involved in the differential metabolites in leaves, stems, and roots were also well demonstrated, such as the synthesis of histidine, valine, leucine, tyrosine, and aspartic acid being significantly high expressed compared with those in the stems and roots.

2.6. There Are Organ Differences in Flavonoid and Alkaloid Secondary Metabolism in Seedling-Period Tobacco. The results of MapMan bin code analysis showed that there were differences in the overall secondary metabolism of tobacco leaves, stems, and roots at the seedling stage, especially in the expression of phenylpropanoid-, flavonoid-, and alkaloid-related proteins (Figure 7A). We performed a cluster analysis of differential proteins related to flavonoid and alkaloid biosynthesis by heat map (Figure 7B,C). Combined with the metabolomics identification results of some key aroma precursor substances in tobacco, we highlighted the differences in the abundance of some flavonoids and alkaloid metabolites in a bar chart in Figure 8.

3. DISCUSSION

3.1. Contents of Some Aroma Precursors Were Different in the Leaves, Stems, and Roots of Tobacco at the Seedling Stage. Since tobacco is an important commercial economic crop, its quality, especially aroma products, greatly impacts business economic benefits. The aroma precursors of tobacco leaves are the material basis of the tobacco aroma style, which is closely related to the sensory smoking quality. 17 Aroma precursors of tobacco leaves mainly referred to carbohydrates, carotenoids, polyphenols, alkaloids, and organic acids. 18 Neophytadiene produced by chlorophyll degradation in tobacco leaves was an important terpene
compound in tobacco leaves and the component with the largest content in neutral volatile aroma substances of flue-cured tobacco, as well as megastigmatrienone, and beta-damascone, the degradation product of carotenoids, which was also an important aroma-producing component in tobacco leaves. As shown in Figure 1A−C, tobacco leaves at the seedling stage contained high levels of chlorophyll, carotenoids, and anthocyanins, while the pigment content in stems was relatively low.

The content of total soluble sugars in tobacco leaves also had varying degrees of influence on the sweetness and flavor of tobacco aroma. However, the detection results of sugar in Figure 1D showed that the soluble sugar content in the seedling tobacco stem group was higher. This result may be related to the organ characteristics of material transport and the main photosynthetic sites and energy storage organs of higher plants.

Secondary metabolites of polyphenols are not only involved in the growth, development, and metabolism of tobacco but also important for the color, aroma, and taste of tobacco leaf products. Polyphenols in tobacco mainly included chlorogenic acid and rutin. Our physiological measurements showed that the contents of chlorogenic acid and rutin were high in tobacco leaves and a small amount in the roots, which was consistent with reports that chlorogenic acid and rutin were synthesized mainly in plant leaves and then transported to other organs.

3.2. Organ Location Differences Affected the Metabolic Profile of Tobacco in Carbohydrate Metabolism, Energy Metabolism, and Biosynthesis of Amino Acids.

The starch and sucrose metabolism pathway, glycolysis, pentose phosphate pathway, and carbon fixation in photosynthetic organs are also the main pathways of carbohydrate and energy metabolism in plants. High-sugar tobacco is usually the first choice of tobacco producers and consumers because the preference for tobacco products is proportional to the level of sugar. In the starch and sucrose metabolism pathway, sucrose metabolism was directly controlled by sucrose phosphate synthase (E2.4.1.14/SPS), SUS, and INV. SPS was the main enzyme involved in sucrose synthesis, and it catalyzed the synthesis of UDP-glucose and fructose-6-phosphate into sucrose 6-phosphate. SUS catalyzed both sucrose synthesis and hydrolysis, and INV in vacuoles was involved in sucrose hydrolysis. In the presence of UDP, SUS reversibly converts sucrose to UDP-glucose, and amylose was then formed under the catalysis of WAXY. Furthermore, GBE1 directly controlled starch production, and AMY catalyzes starch degradation to release considerable amounts of maltose.

The relatively high expression of these key enzymes in starch and sucrose metabolism in tobacco stems and leaves at the seedling stage led us to hypothesize that it contributed to the highest sugar accumulation in tobacco seedling stems.

In our study, the carbon fixation in the photosynthetic organ pathway was the most significantly enriched pathway of differential proteins. From the result of heat-map clustering of differential proteins involved in this pathway, it was found that the expression level of these proteins in leaves and stems was the...
The results showed that photosynthetic carbon fixation activity was more active in the stems and leaves of tobacco during the seedling stage, which was closely related to the leaf and stem as the main sites of photosynthesis. In addition to providing energy, the pentose phosphate pathway mainly provided various raw materials for anabolism, such as providing NADPH for fatty acid biosynthesis, providing 5-phosphate ribose for nucleotide coenzyme and nucleotide synthesis, and providing erythritose 4-phosphate for the synthesis of aromatic amino acids. The C4, C5, and C7 compounds, transketolase, and transaldolase produced by this pathway were also related to photosynthesis. Therefore, the pentose phosphate pathway is an important multifunctional metabolic pathway. Glucose-6-phosphate 1-dehydrogenase (O65856), a key enzyme in the pentose phosphate pathway identified in our study, was also highly expressed in leaves and stems, followed by roots. Glycolysis can use glucose to produce pyruvate and ATP, and then pyruvate in the presence of oxygen enters the tricarboxylic acid cycle and participates in amino acid biosynthesis and metabolism and fatty acid metabolism. PK was identified as a key enzyme in the glycolysis pathway, and IDH1 was identified as a key enzyme in the tricarboxylic acid (TCA) cycle, both of which are characterized by differential expression in organs.

Free amino acids are precursors of the Maillard reaction, and the aroma of flue-cured tobacco is an important material foundation for the later tobacco flavor contribution that cannot be underestimated. The metabolomic result (Figure 4B) also showed abundant amino acid species with it ranked number 1 in the statistical table of differential metabolite classification results, and pathway enrichment analysis of differential metabolites (Figure S4B) showed that alanine, aspartate, and glutamate metabolism, arginine biosynthesis, and tyrosine metabolism pathways were greatly enriched. Then, we mapped the partially significantly differentially abundant amino acid metabolites into KEGG pathways and generated Figure 6. In this pathway, the synthesis of histidine, tyrosine, phenylalanine, valine, and leucine was significantly increased in the root group compared with the leaf and stem groups. However, the contents of aspartic acid and proline were significantly increased in the leaf group compared with the stem and root groups. Amino acids were the synthetic components of many proteins and the precursors of most alkaloids.

3.3. Organ Location Differences Affected the Metabolic Profile of Tobacco in the Biosynthesis of Secondary Metabolites. MapMan bin code analysis showed that the protein expression in secondary metabolism, especially in phenylpropanoid, flavonoid, and alkaloid biosynthesis, was different in the leaf, stem, and root groups of tobacco seedlings. From the phenylpropanoid biosynthesis pathway, 20% of the secondary metabolites in plants were derived. Flavonoids...
are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development. In our study, we identified cinnamyl-alcohol dehydrogenase (CAD), peroxidase (POD), caffeic acid 3-O-methyltransferase/acetylserotonin O-methyltransferase (COMT), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), 5-O-(4-coumaryl)-d-quinate 3′-monooxygenase (CYP98A), and caffeoyl-CoA O-methyltransferase (E2.1.1.104), the key enzymes in the biosynthesis of phenylpropanoids and flavonoids, which had the highest expression levels in the roots of tobacco seedlings. However, feruloyl-CoA ortho-hydroxylase 2-like (F6H) and shikimate O-hydroxycinnamoyltransferase (E2.3.1.133) had higher expression levels in the leaf and stem groups. Under the action of these key enzymes with organ differences, our metabolome identified the key aroma precursors, flavonoid metabolites rutin, (+)-gallocatechin, and sophoraflavanone G, as well as neochlorogenic acid, with the highest abundance in leaves. Scopoletin and procyanidin A2, however, were higher in roots. Among them, the different abundance trends of rutin and neochlorogenic acid in organs were consistent with the different content trends of rutin and chlorogenic acid in leaves, stems, and roots determined at the initial stage.
In this study, differential proteins and differential metabolites were enriched in pathways involving alkaloid biosynthesis. Tropinone reductase I (TR1), bifunctional aspartate aminotransferase (GOT1), and glutamate/aspartate-prephenate aminotransferase are involved in tropane, piperidine, and pyridine alkaloid biosynthesis, and polyphenol oxidase (PPO) is involved in isoquinoline alkaloid biosynthesis. Then, we constructed a bar chart of the alkaloid metabolites, which indicated the differences in the synthesis of metabolites involved in the alkaloid biosynthesis pathway in leaves, stems, and roots. Nicotinamide was involved in the biosynthesis of pyridine alkaloids in KEGG pathways, such as nicotine, nornicotine, anatabine, and anatalline biosynthesis.

Our untargeted metabolomic identification results showed that the nicotine content in the seedling tobacco leaves and stems was higher, while nornicotine, anatabine, and anatalline in the tobacco seedling stage had the highest content in the root group, followed by the stem group and the leaf group. The reason might be that nicotine and other pyridine alkaloids were mainly synthesized in tobacco roots and subsequently transferred to leaves and other aerial plant parts through the xylem. Additionally, our metabolite identification results also found a minor tobacco alkaloid, myosmine, which was structurally related to nicotine and actinidine. It was an unusual monoterpene alkaloid commonly found in the kiwifruit family and the Valerianaceae family plant, and the contents were the highest in the root group. Laurilisine, an aporphine alkaloid; tetramethylpyrazine, a pyrazine alkaloid; and valeroidine, a tropane alkaloid and arecoline, were also found in tobacco seedlings, and they all had the highest identification level in the tobacco seedling root group. The organ difference characteristics of these alkaloid metabolites are interestingly consistent. This result provides new verification of the synthesis and distribution difference in alkaloids, one of the key aroma precursors in tobacco at the seedling stage.

4. CONCLUSIONS

In this study, proteomic and metabolomic analyses were carried out on different organs (leaf, stem, and root) of Yunyan 87 tobacco seedlings, and a total of 2182 significantly different proteins and 298 metabolites were obtained. With the help of KEGG pathway enrichment, MapMan bin codes, MetaboAnalyst online software, and other analysis tools, it was concluded that the differences in proteins and metabolites in seedling tobacco leaves, stems, and roots mainly involve carbohydrate metabolism; energy metabolism; amino acid biosynthesis; and phenylpropanoid, flavonoid, and alkaloid synthesis pathways. In particular, it was also found that the contents of secondary metabolite alkaloids, such as nornicotine, anatabine, and myosmine, were significantly higher in tobacco roots than in leaves and stems at the seedling stage. This study provided a mapping for a better understanding of the underlying metabolic mechanism differences of leaves, stems, and roots in the seedling stage of tobacco. It also provides a research basis for further exploring the synthesis of aroma precursor substances in tobacco leaves. At the same time, it has some reference value for organ-specific studies in other plants.
5. MATERIALS AND METHODS

5.1. Plant Materials. In China, Yunyan 87 is recognized as a flue-cured tobacco variety and has been widely studied due to its excellent product quality characteristics. Therefore, the tobacco variety Yunyan 87 was provided by Anhui Wannan Tobacco Co., Ltd. (Anhui, China) and grown in a greenhouse. Tobacco seedling cultivation was performed in a nursery shed at a temperature of 28 °C and a humidity of approximately 75%. Leaves, stems, and roots from each group were collected from 60-day-old *N. tabacum* seedlings for all the experimental analyses, flash-frozen in liquid nitrogen, and then stored at −80 °C for subsequent analysis.

5.2. Determination of the Aroma Precursor Index. We referred to the method of Wellburn and Lichtenthaler to determine the contents of chlorophyll a (Chl a), chlorophyll b...
Proteins were classified into molecular function, cellular component, and biological process categories by GO terms. The protein–protein interactions were analyzed in STRING (Version 11.5). The required confidence score was set as >0.90 for highly confident interactions. A K-means algorithm in STRING clusters the network. The visualization of some data analysis results including Pearson’s correlation coefficient analysis was completed using the microbial information platform (http://www.bioinformatics.com.cn).

5.7. Metabolite Extraction and Identification. Metabolite extraction was performed in accordance with the methods described by Zhu et al. with five independent biological replicates. Mass spectrometric analysis of metabolome samples referred to the method of Zhong et al. with some modifications. The metabolite samples were analyzed on an UHPLC system (Thermo Scientific) coupled with a Thermo Scientific Orbitrap Exploris 480 mass spectrometer. The separation of all samples was performed on a BEH C18 column (Thermo Scientific, Accucore C18, 100 mm × 2.1 mm, 1.7 μm) at a column temperature of 45 °C. The flow rate was 0.4 mL min⁻¹, and the mobile phase consisted of 0.1% formic acid aqueous as solvent A and 0.1% formic acid in acetonitrile as solvent B with the following gradient program: 0−0.5 min, 0.1% B; 0.5−21.5 min, 40% B; 21.5−23.5 min, 90% B; and 23.5−25.5 min, 90% B. The mass spectrometer conditions were as follows: 50 arbitrary units (arb) of sheath gas, 10 arb of aux gas, 2.5 arb of sweep gas, 300 °C ion transfer tube temperature, 350 °C vaporizer temperature, +3500 V positive ion spray voltage, −2500 V negative ion spray voltage, and an MS scan range of 90−900 m/z. Positive- and negative-mode ionization was employed to acquire fragmentation data that were used for identifying metabolites based on database searching. The precursor isolation window was 1.5 Da, and the activation type was high-energy collision-induced dissociation. The Orbitrap resolution for full MS was 60,000, the maximum injection time was 100 msec, and the automatic gain control target was 1,000,000. For the MS/MS experiments, the resolution was 15,000.

5.8. Metabolomic Data Processing and Analysis. We used Compound Discoverer 3.2 (CD) software from Thermo Fisher Scientific to process untargeted metabolomics data. MetaboAnalyst 5.0 online software evaluated sample repeatability by PCA and performed pathway enrichment analysis of differential metabolites. The identified metabolites were classified by the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). We conducted a simple correlation statistical analysis on the contents of amino acids, polyphenols, and nicotine. Then, the results were presented by the Microbioinformation platform (http://www.bioinformatics.com.cn).

5.9. Statistical Analysis. Statistical significance was evaluated by 'Student’s t-test when only two groups were compared or one-way ANOVA, followed by Fisher’s test when multiple groups were compared. P < 0.05 was considered to be significantly different between groups. All experiments in this study included at least three independent biological replicates.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c03877.

PCA and correlation analysis of proteomics; PCA result of proteomics; sample correlation analysis of proteomics;
result of GO functional classification of differential proteins; PPI analysis of significantly differential proteins; five clusters obtained; the main functional classification of each cluster; phylogenetic tree and pathway enrichment analysis of differential metabolites; phylogenetic tree of differential metabolites; pathway enrichment analysis of differential metabolites; correlation analysis of some amino acids, polyphenols, and alkaloids; aroma precursor index analyses of the leaves, stems, and roots of tobacco; metabolite identification of seedling tobacco leaves, stems, and roots; and differentially expressed proteins identification of seedling tobacco leaves, stems, and roots (PDF)

Accession Codes
Accession code: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD032082. The mass spectrometry metabolomics data can be accessed by https://doi.org/10.5281/zenodo.5804184.

AUTHOR INFORMATION
Corresponding Authors
Wei Zhu — The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, PR China; orcid: orcid.org/0000-0001-9582-3787; Email: zhuwei@ibmc.ac.cn
He Ye — Department of Pharmacy, Zhejiang Hospital, Hangzhou 310013, PR China; Email: yehe20092009@163.com

Authors
Amin Liu — College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
Kailong Yuan — China Tobacco Zhejiang Industrial Company Limited, Hangzhou 310008, PR China
Haiqing Xu — Anhui Wannan Tobacco Company Limited, Xuancheng 242000, PR China
Yonggang Zhang — China Tobacco Zhejiang Industrial Company Limited, Hangzhou 310008, PR China
Jingkui Tian — The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, PR China
Qi Li — China Tobacco Zhejiang Industrial Company Limited, Hangzhou 310008, PR China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c03877

Author Contributions
A.L. and K.Y. contributed equally to this work. A.L. and K.Y.: investigation, data curation, writing—original draft, writing—review and editing, visualization. H.X. and Y.Z.: assisting the sampling. J.T. and Q.L.: supervision, resources. W.Z. and H.Y.: project administration.

Notes
The authors declare no competing financial interest.

REFERENCES
1. Dai, J.; Dong, A.; Xiong, G.; Liu, Y.; Hossain, M. S.; Liu, S.; Gao, N.; Li, S.; Wang, J.; Qu, D. Production of Highly Active Extracellular Amylase and Cellulase From Bacillus subtilis ZIM3 and a Recombinant Strain With a Potential Application in Tobacco Fermentation. Front. Microbiol. 2020, 11, 1539.
2. Banović, M.; Jokić, S.; Aćkar, D.; Blažić, M.; Šubarić, D. Carbohydrates-Key Players in Tobacco Aroma Formation and Quality Determination. Molecules 2020, 25, 1734.
3. Jasbi, A. R.; Zare, S.; Asadollahi, M.; Schuman, M. C. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana. Chem. Rev. 2017, 117, 12227–12280.
4. Popova, V.; Ivanova, T.; Prokopov, T.; Nikolova, M.; Stoyanova, A.; Zheljazkov, V. D. Carotenoid-Related Volatile Compounds of Tobacco (Nicotiana tabacum L.) Essential Oils. Molecules 2019, 24, 3446.
5. Zhang, J. J.; Zhao, C. X.; Chang, Y. W.; Zhao, Y. N.; Li, Q. H.; Lu, X.; Xu, G. W. Analysis of free amino acids in flue-cured tobacco leaves using ultra-high performance liquid chromatography with single quadrupole mass spectrometry. J. Sep. Sci. 2013, 36, 2868–2877.
6. Qin, Y.; Bai, S. L.; Li, W. Z.; Sun, T.; Galbraith, D. W.; Yang, Z. F.; Zhou, Y.; Sun, G. L.; Wang, B. W. Transcriptome analysis reveals key genes involved in the regulation of nicotine biosynthesis at early time points after topping in tobacco (Nicotiana tabacum L.). BMC Plant Biol. 2020, 20, 30.
7. Zhang, L.; Zhang, X. T.; Ji, H. W.; Wang, W. W.; Liu, J.; Wang, F.; Xie, F. W.; Yu, Y. J.; Qin, Y. Q.; Wang, X. Y. Metabolic profiling of tobacco leaves at different growth stages or different stalk positions by gas chromatography-mass spectrometry. Ind. Crop. Prod. 2018, 116, 46–55.
8. Han, Y.; Liu, G. S.; Liu, Y. Y.; Su, X. H.; Zhou, S. M. Study on dynamic changes of aroma components in different growing stages of aromatic tobacco. Chin. Tobac. Sci. 2003, 2, 41–45.
9. Dawson, R. F. Accumulation of nicotine in reciprocal grafts of tomato and tobacco. An. Bot. 1942, 29, 66–71.
10. Hidalgo, D.; Martinez-Márquez, A.; Moyoano, E.; Bru-Martinez, R.; Corchete, P.; Palazon, J. Bioconversion of stilbenes in genetically engineered root and cell cultures of tobacco. Sci. Rep. 2017, 7, 45331.
11. Zhang, K. H.; Zhang, K.; Cao, Y.; Pan, W. P. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses. Bioresour. Technol. 2013, 131, 325–332.
12. Li, L.; Wang, R. L.; Jiang, Z. L.; Li, W. W.; Liu, G. Q.; Chen, C. Anaerobic digestion of tobacco stalk: biomethane production performance and kinetic analysis. Environ. Sci. Pollut. Res. 2019, 26, 14250–14258.
13. Yan, N.; Zhang, H. B.; Zhang, Z. F.; Shi, J.; Timko, M. P.; Du, Y. M.; Liu, X. M.; Liu, Y. H. Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content. Molecules 2016, 21, 1536.
14. Dai, L. J.; Liu, Y. K.; Zhu, C. W.; Zhong, J. Differential proteomics of tobacco seedling roots at high and low potassium concentrations. Sci. Rep. 2021, 11, 9194.
15. Wu, S.; Guo, Y.; Adil, M. F.; Sehar, S.; Cai, B.; Xiang, Z.; Tu, Y.; Zhao, D.; Shamsi, I. H. Comparative Proteomic Analysis by iTRAQ Reveals that Plastid Pigment Metabolism Contributes to Leaf Color Changes in Tobacco (Nicotiana tabacum) during Curing. Int. J. Mol. Sci. 2020, 21, 2394.
16. Chang, W.; Zhao, H.; Yu, S.; Yu, J.; Cai, K.; Sun, W.; Liu, X.; Li, X.; Yu, M.; Ali, S.; Zhang, K.; Qu, C.; Lei, B.; Lu, K. Comparative transcriptome and metabolomic profiling reveal the complex mechanisms underlying the developmental dynamics of tobacco leaves. Genomics 2020, 112, 4009–4022.
17. Qin, G. J.; Zhao, G. J.; Ouyang, C. B.; Liu, J. L. Aroma components of tobacco powder from different producing areas based on gas chromatography ion mobility spectroscopy. Open Chem. 2021, 19, 442–450.
18. Chen, J.; Li, Y.; He, X.; Jiao, F. C.; Xu, M. L.; Hu, B. B.; Jin, Y.; Zou, C. M. Influences of different curing methods on chemical compositions in different types of tobaccos. Ind. Crop. Prod. 2021, 167, 113534.
(19) Wu, Y. J.; Qi, Y.; Zhang, X. Q.; Song, Y. Y.; Xue, G.; Xing, X. X.; Yang, T. Z. Leaf Senescence and Its Relationship with Plastid Pigment Degradation Content and the Degradation Products of Different Varieties of Flue-cured Tobacco. *Acta Agric. Boreali Sin.* 2015, 5, 1000–7091.

(20) Roemer, E.; Schorp, M. K.; Piédade, J. J.; Seemann, J. I.; Leyden, D. E.; Haussmann, H. J. Scientific assessment of the use of sugars as cigarette tobacco ingredients: A review of published and other publicly available studies. *Crit. Rev. Toxicol.* 2012, 42, 244–278.

(21) Koide, E.; Suetsumu, N.; Iwano, M.; Gotoh, E.; Nomura, Y.; Stolze, S. C.; Nakagami, H.; Kohchi, T.; Nishihama, R. Regulation of Photosynthetic Carbohydrate Metabolism by a Raf-Like Kinase in the Liverwort Marchantia polymorpha. *Plant Cell Physiol.* 2020, 61, 631–643.

(22) Gao, Y. B.; Duan, S. J.; Fu, Z. R.; Hu, R. H.; Shi, W. Q.; Cheng, X. Q.; Xiao, R. G.; Ling, P.; Li, Y. C. Research Progress of Polyphenol biosynthesis in Nicotiana tabacum. *Int. J. Mol. Sci.* 2020, 21, 5284.

(23) Zhuo, W. Z.; Zhang, J. S.; Zou, Y.; Liu, J.; Gao, Z. Y.; Yang, P. P. Determination of Chlorogenic Acid, Scopolamine and Rutin in tobacco leaves during the curing process. *Acta Agric. Jiangxiensis* 2019, 31, 66–71.

(24) Talhout, R.; Opperhuizen, A.; van Amsterdam, J. G. C. Sugars as tobacco ingredient: Effects on mainstream smoke composition. *Food Chem. Toxicol.* 2006, 44, 1789–1798.

(25) Chen, T. T.; Zhang, H. J.; Zeng, R. E.; Wang, X. Y.; Huang, L. P.; Wang, L. D.; Wang, X. W.; Zhang, L. Shade Effects on Peanut Yield and Three Commonly Occurring Isoenzymes. *Int. J. Mol. Sci.* 2020, 21, 630.

(26) Yamaguchi, N.; Suzuki, S.; Makino, A. Starch degradation by alpha-amylase in tobacco leaves during the curing process. *Soil Sci. Plant Nutr.* 2013, 59, 904–911.

(27) Dewey, R. E.; Xie, J. H. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. *Phytochemistry* 2013, 94, 10–27.

(28) Dixon, R. A.; Achmone, L.; Kota, P.; Liu, C. J.; Reddy, M. S.; Wang, L. The phenylpropanoid pathway and plant defence-a genomics perspective. *Mol. Plant Pathol.* 2002, 3, 371–390.

(29) Hamberger, B.; Hahlbrock, K. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. *Proc. Natl. Acad. Sci. U.S.A.* 2004, 101, 2209–2214.

(30) Wang, X.; Zhang, X. C.; Hou, H. X.; Ma, X.; Sun, S. L.; Wang, H. W.; Kong, L. R. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). *J. Agric. Food Chem.* 2020, 68, 12252–12258.

(31) Guo, Y. F.; Hiatt, E.; Bonnet, C.; Kudithipudi, C.; Lewis, R. S.; Shi, H. Z.; Patra, B.; Zhao, X.; Dorlac de Borne, F. D.; Gilles, T.; Yang, S. M.; Zhang, H. B.; Zhang, M. Y.; Luzso, M.; Berger, I. J.; Xu, D. M.; Wen, L. Y. Molecular regulation and genetic manipulation of alkaloid accumulation in tobacco plants. *Stud. Nat. Prod. Chem.* 2021, 70, 119–149.

(32) Saunders, J. A. Investigations of Vacuoles Isolated from Tobacco. *Plant Physiol.* 1979, 64, 74–78.

(33) Kaminski, K. P.; Bovet, L.; Laparra, H.; Lang, G.; De Palo, D.; Sierro, N.; Goepfert, S.; Ivanov, N. V. Alkaloid chemogenetics and transcriptomics of the Nicotiana genus. *Phytochemistry* 2020, 177, 112424.

(34) Shi, Q. X.; He, Y. R.; Chen, J.; Lu, L. H. Thermally Induced Actidinimic Production in Biological Samples. *J. Agric. Food Chem.* 2020, 68, 12252–12258.

(35) Omar, H.; Fadaeinasab, M.; Taha, H.; Widyawaryanti, A.; Nafiah, M. A.; Rachmatiah, T. Aporphine alkaloids with in vitro antiproliferative activity from the leaves of Phoebe tavoyana. *J. Asian Nat. Prod. Res.* 2020, 22, 52–60.

(36) Yang, B.; Li, H. W.; Qiao, Y.; Zhou, Q.; Chen, S. P.; Yin, D.; He, H.; He, M. Tetramethylpyrazine Attenuates the Endotheliotoxicity and the Mitochondrial Dysfunction by Doxorubicin via 14-3-3/βC1-2. *Oxid. Med. Cell. Longev.* 2019, 2019, 5820415.