ドットパターンにおける凸点の形状・間隔と粗さ感の関係

相澤 淳平*, 上條 正義**
* 長野県工業技術総合センター，** 信州大学

Relationship between Shape and Spacing of Convex Points and Roughness Sensation in Dot Pattern Texture

Junpei AIZAWA* and Masayoshi KAMIJO**
* Nagano Prefecture General Industrial Technology Center, 1-18-1 Wakasato, Nagano-shi, Nagano 380-0928, Japan
** Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan

Abstract : As factors determining roughness sensation of dot pattern, both spacing and curvature of dot are assumed. In this study, the relationship between these two dimensional parameters and the roughness sensation was investigated. We used a 3D printer to produce various types of samples with different combinations of curvature and spacing, and conducted sensory evaluation to select combinations with the same sense of roughness from among them. As a result of the experiment, the dot curvature is larger (smaller), the smaller (larger) dot spacing is selected, and a contour map of roughness sensation is created on these two dimensional planes. It was found that roughness sensation is proportional to logarithm of dot curvature, assuming that roughness sensation is proportional to logarithmic value of dot spacing. By this experiment, the magnitude of the influence of dot shape in roughness perception and its individual difference were found.

Keywords : Texture design, Roughness sensation, Curvature

1. はじめに

製品表面のテクサチャは、視覚や触覚を通じて受容され、製品の印象を決定する重要な要素である。射出成形で作られる樹脂製品においては、素材や加工法による表面形状は存在せず、シボ加工や塗装により人為的にテクサチャを付与される。シボ加工は幾何学模様や皮沢等を模したパターンをエッチングにより金型に転写する方法であるが、近年では微細加工によるデジタルショートが実用化されている他、エッチング多層化が進むなど、加工技術の高度化に伴い微細形状のコントロールが可能になっている。加工技術の面で形状の設計値により質感をコントロールする環境が整ったことから、テクサチャを設計する立場から、任意の触感を発現するための具体的な設計指針が求められている。

触感から印象が決定する構造について、岡本 [1] は、過去に行われた研究を分析し、素材の物理的特性から高次の印象が決定するまでの構造を明らかにした。触感によるブロの印象評価の過程は階層的であり、素材の知覚の階層の上に感性の階層があり、さらに上位の嗜好の階層を含めて印象が決定される。最下層の素材の触知感は、2 種類の粗さ感・硬軟感・摩耗感・温冷感の5次元空間で表現される。この構造に従うと、テクサチャの形状により製品の印象を制御するためには、テクサチャの物理的寸法がプリミティブな5次元の触感因子にどのように関与するかを知る必要がある。

樹脂製品開発の視点から、テクサチャの形状に着目して触感因子の制御を行った近年の事例として、伴ら [2] やる硬軟感のコントロールを企図したソフトフィールシボや、米原ら [3] による凹凸のグラデーションをなぞり動作の位置決め精度の向上に利用した例、川崎ら [4-6] による微細加工によって形成した金型を用いて風合い表現を可能にした例等が挙げられるが、具体的な寸法値によって示された実施例は多くない。

相澤らは、凹凸パターンを一般化したものとして表面に半球状の凸点が格子状に配置されたドットパターンを対象に、樹脂製テクサチャの粗さ感と寸法パラメータの関係について調査した。その結果、視覚と触覚では粗さ感の決定要因が異なり、視覚ではドットの大きさを、触覚ではドットの間隔で粗さ感が決定されることが示された [7]。また、ドット間の平面に皮膚が接触する条件においてのみドット高さの違いが粗さの違いとして知覚されること、それが成立する寸法要件などを示した [8]。

粗さ感の知覚は、触動作を必要とせず、接触面の圧力分布によって知覚されるマクロな粗さ知覚と、触動作に伴って皮膚表面に生じる振動によって知覚されるミクロな粗さ知覚に分けられる。両者は刺激の周期により切り替わり、その境界は数百マイクロメートルから 1 mm 程度とされている [9]。

本研究で対象とするドット間隔が 1 mm 以下のドットパターンについては、ミクロとマクロの両方の粗さ知覚が混在すると考えられる。ミクロ的には皮膚の振動の振幅と周波数が、マクロ的には皮膚表面に生じる圧力の大きさとその分布密度が粗さ感の判断材料になると考えられ、いずれの場合においてもドットパターンの形状要因としてはドット高さが無視できる領域ではドットの形状とドット間隔の 2 つが決定要因

Received: 2018.12.13 / Accepted: 2019.01.17
なり得る。我々がひとつの触感として評価している「粗さ」は、この両者が何らかの重み付けをもって評価された結果と考えることができる。本研究では2つの寸法パラメータの組合せと粗さの関係を調査し、これからどのように粗さ感が決定するかを検討した。

粗さ感を構成する多次元構造に着目した例として、野呂ら[10, 11]は、旋削加工面を対象に、表面粗さ（Rq）、ピッチ、うねり、先端角度の4つの物理量を組み合わせた18種の試料による官能検査実験を行い、多次元尺度構成法を適用することで、物理的測度から1次元の粗さ感が決定する構造とその個人差を明らかにした。三編ら[12]は、同様にRzとピッチを変化させた旋削加工面を対象に官能検査を行い、Rzとピッチの両方によって粗さ感は増加するが、Rzの影響が強い試料群とピッチの影響が強い試料群のタイプが分かれて、粗さの変化量に相当するピッチの変動量についても示している。

凹凸の形状を着目した研究として、Blakeら[13]は円柱形のドットパターンを用いた実験から、ドット頂部の直径（0.25～2.5mm）と高さ（0.28～0.62mm）を変化させ、粗さ感が高さにより増加し、直径により減少することを示した。近年の例で川原ら[5]は、より微細な周波0.1mm以下の領域において、三角波状の綱パターンの頂部の形状を変化させ、触感が変化することを示している。粗さ感以外に、稲田ら[14]は、特有な電車のキーに付けられた凸点の高さと先端の曲率半径が操作性に及ぼす影響について、具体的な寸法パラメータとの関係を示した。

本研究では3Dブリンクを使用することで、ドットの形状（曲率）とドット間隔の組合せが異なる多種類のドットパターンを作成し、これらの中から同等の粗さ感を示す組合せを探す方法で、ドット曲率とドット間隔の2次元空間における粗さ感の等高線を求めた。これを手掛かりに2つのパラメータと粗さ感の関係を推定した。本手法によりドット間隔（0.4～0.9mm）、ドット曲率（2～8mm²）程度の寸法領域において、粗さ感とドット曲率・ドット間隔との間の定量的な関係を示すことができた。

2. 方法

2.1 ドットパターンにおける粗さ感のモデル

先行研究から、ドット間隔を広ければ粗さ感は増加するが、ドットを失せた場合に粗さ感が増加することも自明といえる。図1において、あるパターン（O）を起点に、ドット間隔を広げた場合（A）とドットを失せた場合（B）のどちらでも粗さ感は増大する。逆にドット間隔を狭めた場合（a）とドットを失せた場合（b）のどちらでも粗さ感は減少する。これらを組み合わせると、ドット間隔を広げドットを失せた場合（Ab）と、ドット間隔を狭めドットを失せた場合（aB）に、元のパターン（O）と同等の粗さ感が得られる組合せが存在するはずである。何らかの方法で粗さ感が同等となる組み合わせを探索できれば、図2のようにドット間隔とドット曲率の2次元のパラメータ空間における粗さ感の等高線を描くことができると考えられる。

図2の等高線は、粗さ感を判断する過程で2つのパラメータがどのような重み付けをもって評価されるかを表すといえる。さらにこれまで不明だったドットの形状（曲率）と粗さ感の関係を知ることがとなり。

2.2 官能検査実験

（1）粗さ感の等高線の探索

寸法値と感覚の関係を定量的に示すには、対象となる寸法領域を網掛け的に探索する必要がある。しかしながら多種類の試料で一対比較法により感覚値を測定するのは実用上難しく、そこで本研究ではより容易に全体像を捉える方法として、3Dブリンクで製作した寸法パラメータの異なる多種類の試料のなかから、等価の粗さ感を持つドット間隔・ドット曲率の組み合わせを選出することで、感覚の等高線を描く方法を試みた。図3のようにドット間隔が異なる4種の試料（以下、基準試料とする）と、これとは異なる曲率を持つ比較対象群（以下、対照試料とする）を用意し、対照試料の中から基準試料と同等の粗さ感を持つ試料を選択させた。
ドットパターンにおける凸点の形状・間隔と相関の関係

対象試料は曲率を変えて4セット作成し、それぞれA系列、B系列、C系列、D系列とした。曲率は基準試料を含め5等水準となり、1つの基準試料から等高線に位置する5点のドット間隔・曲率の組が得られる。基準試料が4等水準であれば、4本の等高線が得られる。等高線の数や対象試料の水準を増やすことで探索範囲を容易に拡大できる。

(2) 実験手順

基準試料4枚を左から右に向かって挿くるようドット間隔順に並べた。その手順に対象試料を左から右に向かって挿くるようドット間隔順に並べた。被験者に試料を触察して比較させ、4枚の基準試料の相関感がそれぞれ対象試料のどれに最も近いかを回答させた。2枚の対象試料の中間の回答も認めた。これをA系列からD系列まで4回繰り返した。右手指示で左右に揺れる指示とした以外は、同額、時間、接触力を含む任意とし、被験者が最も比較した方法で触察させた。

すべての回答に要した時間は5-15分程度で、被験者は20-50代の男女30名（男性23名、女性7名）だった。

試料を見ながら触れる場合、テクスチャの視覚的特徴が相関を評価に影響する可能性がある。柳澤ら[15, 16]は、試料表面に異なるテクスチャの画像を合成した状態で触覚感を評価する実験により、視覚が相関感に及ぼす期待効果を定量的に評価し、視覚による予測と触覚との差が大きいほど、相関がより強く感じられることを示している。本稿では、物全体を見ながら手に取る一般的なコンシューマ向け製品を想定したため、視覚については制限しなかった。

2.3 試料

(1) ドット形成の原理

インクジェット式3Dプリンタを使用してドットパターン試料を作成した。インクジェット式の3Dプリンタでは、微小な凸点を形成すると、設計が直方体であっても形状形状を表面に近いような扁平な状態になる。図4に微小な直方体テクスチャを形成した場合の形状の例を示す。柳澤ら[17]は多数の微小直方体の造形実験によって得られた設計手法と造形結果の関係から、積層工程におけるインの着弾点のばらつきを考慮したモデルを用いることで、造形結果の断面曲線を定量的に説明できることができた。この性質を応用して

図4 設計データと3Dプリンタによる造形結果

プリンタの造形解像度の数値～数十倍程度の微小領域で、曲率や高さがコントロールされた滑らかなドットを形成することができる。この方法で作成されたドットの再現性については、上記の研究[15]において確認しており、官能検査実験の実用化問題はないと判断した。

(2) ドットパターンの寸法パラメータ

ドット単体の設計データは、一辺の長さが造形解像度（水平方向0.0423 mm、高さ方向0.016 mm）の整数倍の四角柱とした。データの角柱の長さ（データ幅）によって試験の曲率を変化させる。ドット高さは、皮膚がドット間の平面に接触しないよう造形面に0.16 mmとなるよう設計した。ドット間隔も造形解像度の整数倍とした。基準試料についてはデータ幅を造形解像度の8倍（0.338 mm）、ドット間隔を造形解像度の12、14、16、18倍の4種類とした、それぞれR12、R14、R16、R18と称した。対象試料はデータ幅を4、6、10、12倍とした。データの角柱の面積が小さい場合、隣接するドットの影響を受けてドット高さや曲率が減少するため、造形可能な最小のドット間隔はデータ幅の制約を受ける。本造形例では、データ間の隙間が0.085 mm以下では形状の崩れが大きくなくなった。表1に実験に使用したドットパターンの設計値を示す。

試料全体の形状は48×48 mm、厚さ2.5 mmの板で、中央部の22×34 mmの領域にドットパターンを形成した。

(3) 造形条件

表面が上になる姿勢で、表面にサポート材を付けない条件で造形した。使用した3Dプリンタの主な仕様と材料を示す。

- 機種：Stratasys社 EDEN260VS
- 造形解像度 X,Y軸：600 dpi （0.0423 mm）
 Z軸：1600 dpi （0.016 mm）
- 造形樹脂：VeroWhitePlus RDG38（硬度アクリル系）

表1 ドットパターンの名称と寸法値（設計値）

ドット幅（mm）	ドット間隔	0.38	0.42	0.47	0.51	0.55	0.59	0.63	0.68	0.72	0.76	0.8	0.85	0.89
A系列	0.17	A0	A1											
B系列	0.25	B1												
基準試料	0.34	R1												
C系列	0.42	C1												
D系列	0.51	D1												
3. 結果および考察

3.1 試料の形状
レーザー顕微鏡（オリンパス社，OLS-4100）で測定したドット頂部付近（直径の1/3程度）の曲率を図5に示す。ドット間隔が狭い場合，隣接するドットの影響を受けて曲率は小さくなる。この影響はドット間隔に対数形に現れるため，影響を受ける範囲については曲率は線形近似式で示すものとみなした。影響を受けない範囲については平均値で近似した。以下，各系列の曲率としてこの近似値を用いた。

3.2 官能検査結果
(1) 平均値の有意差の検定
図6に全被験者30名による官能検査結果の平均値を示す。これは各対象試料において基準試料と官感が同等とされたドット間隔の平均値である。基準試料より曲率が大きい系列（A, B）では基準より小さい間隔が選択され，基準試料より曲率が小さい系列（C, D）では基準より大きな間隔が選択された。2.1節の予想通り，同等の官感を得るためにはドット曲率の変化がドット間隔の変化により補償されたことがわかる。
A～Dの4系列および基準試料の5群の回答結果の平均値に有意差があるか否かを検定するため，R12 ～ R18 のドット間隔別に5群間の多重比較検定を行った。この結果，図中および試料の系列

(2) 平均値による等高線
前項の結果をドット間隔とドット曲率の散布図で示すと図7のようになる。等高線上の点の配置は波曲した形状になり，曲率が大きい領域では線縁，小さい領域では横縁になる傾向がみられた。多重比較検定では5群で有意差がみられなかった理由は，曲率の変化に対するドット間隔の変化が小さい領域で，かつ2群間の曲率が近かったためと考えられる。

図6 試料の系列と選択されたドット間隔の関係

図7 指数近似による官感の等高線と近似式

(3) 等高線の値付け
前項で等高線の形状を示したが，各等高線が示す官感の大きさ（等高線の高さ）がわからなければ3次元的な分布はわからない。この官感領域で類似のドットパターンについて1対比較法による官感評価を行った結果 [8] では，曲率が高い場合，曲率はドット間隔の対数値に比例する傾向がみられた。これに従い，本実験の基準試料においても官感がドット間隔の対数値に比例すると仮定すると，基準試料の
図8 等高線から描いた粗さの3次元分布

ドット間隔からR_{12}, R_{16}の4本の等高線の粗さ感の大きさを決めることができる。そこで各等高線の粗さ感の値を基準試料（曲率4.51 mm^{-1})のドット間隔（単位mm）の対数値で値付けすることとした。ドット間隔が狭い試料R_{12}だけはドット曲率が高くなるため、図7におけるR_{12}を通る等高線の近似式から曲率4.51 mm^{-1}に対応するドット間隔（0.457mm）を求め、粗さ感の値をlog（0.457）とした。このように値付けした粗さ感の分布を3次元的に表すと、図8のようになった。

（i）ドット間隔と粗さ感の関係

曲率別にドット間隔と粗さ感の関係を示すと図9のようになった。ここでは横軸のドット間隔を対数で示している。基準試料と異なる曲率でも、粗さ感はドット間隔の対数値と概ね線形の関係になった。（ii）ドット曲率と粗さ感の関係

同様にドット間隔別にドット曲率と粗さ感の関係を求めると図10のようになった。横軸のドット曲率は対数値である。ドット間隔と同様に、粗さ感は対数値と概ね線形の関係になった。このことから、間隔が一定の場合には粗さ感はドット曲率の対数値に比例すると予想される。

（4）粗さ感の推定式

図7の等高線の近似式と前項の値付けを踏まえると、ドット間隔（対数）・ドット曲率（対数）・粗さ感を3軸とする3次元空間では、図8の曲面は平面に近くなると予想される。したがってこの近似平面を表す関数

\[z = f(x, y) = f\left(\log(\text{Dot spacing}), \log(\text{Dot curvature})\right) \]

を求めるで、ドット間隔とドット曲率から粗さ感を推定することができる。平面の場合、\(z \)は\(x, y \)の線形和の形で表されるため、ドット間隔（対数）とドット曲率（対数）の実験値（全被験者平均値）に対して重回帰分析を行い、粗さ感の推定式（1）を得た。

Roughness sensation

\[= 1.06 \times \log(\text{Dot spacing}) + 0.30 \times \log(\text{Dot curvature}) + 0.82 \]
この結果について既知の知見との関連性を検討する。触覚受容器による粗さ知覚に関する先行研究は多く、刺激の時間列変化に対する各受容器の応答特性などが明らかにされてい
る。近年の例では、田中ら[18]は、指腹部に振動子を当て、振動や周波数を変化させる実験により、粗さ感のビークがマイナースー小体の感度域(50 Hz 前後)とパッチ小体の感度
域(200 Hz 前後)に現れることを示すとともに、ビークが現れ
る帯域は被験者により異なる(前者のみ/後者ののみ/両方)。

粗さの判断に個人差があることを示した。また田中ら[19]
は、受容器の応答に似た高周波の圧電効果のもつ二重化
ビニデンフィルムによる触覚センサを開発し、これを布の
評価に適用した実験[20]では、マイナースー小体の応答に
相当する 20 ～100 Hz(波長 0.75 ～3.75 mm)に相当する
パワースペクトル密度の大きさが、粗さの官能評価結果と強く相
関をもつことを示した。数値計算によるアプローチとして、
白河ら[21]は、有限要素法により観察時に皮膚内に生じる
ひずみエネルギーの分布を求め、触覚受容器の位置における
その時空間分布パターンから、低周波の凹凸情報をパルケ
ル小体、凹凸パターンはマイナースー小体、高周波の粗さ
や摩擦感はパッチ小体によって検出させることを示した。

このモデルで入力側の周波数を変化させた場合、本稿の
実験範囲が含まれる数 10 ～100 Hz の帯域では凹凸を感じる
マイナースー小体の応答が周波数の対数値に対して線形に
減少する。

本実験結果を刺激の時系列変化の視点から検討すると、
周波数はドット間隔と逆関係の関係になる。式(1)にお
いては係数の正負が逆転し、粗さ感は周波数の対数値に対し
負の線形性を持つことになる。これは上記解析によるこの
帯域のマイナースー小体の応答特性と一致する。また定量的な
評価は難しいが、ドット曲率は皮膚表面の形状を通じて振動
の曲線に影響すると考えられ、式(1)における各項は、受容
器への物理的入力としては、それぞれ周波数成分と振幅成分
に対応すると考えられる。

以上のように、線形で近似したことによる誤差が含まれる
ものの、本実験の範囲においては、ドット頂部の曲率とドッ
ト間隔のそれぞれ対数値の線形和の形で粗さ感の経験は表現
できると考えられる。

(5) 個人差の検討

被験者により回答結果に差がみられ、ドット曲率の違いに
対してドット間隔が大きく変化する被験者との差が小さい
被験者、さらに回答の傾向にばらつきがみられる被験者が
あった。そこで全ての回答結果にクラスター分析を行い、
被験者を4つのグループに分類した、グループ別に平均
値の等高線を求めると図12のようなになった。グループによ
り等高線の形状が異なり、Aグループ(8名)は曲率変化に対
してドット間隔の変化が小さいグループ、Cグループ(5名)
は曲率変化に対してドット間隔の変化が大きいグループ、
最も人数が少ないBグループ(10名)はAとCの中間と思われる。
Dグループ(7名)については回答結果が不規則で、対
象試料の系列間の順位の逆転が多くみられた。これは粗さ
感の決定基準が安定していないものと考えられる。A, B, C
の違いはバラメータの重み付けの違いによると思われる。
Aグループは粗さ感を評価する過程でドット間隔の違いを重
視する間数重視型、Bグループの間中間型と考えられるこ
とができる。大きな傾向は、間隔主導型と中間型がそれぞれ
すきより約半、形成主導型が約2倍で、残りの約2割が不安定
型である。同じドットパターンであっても異なる基準で粗さ
が知覚されていると考えられ、これがより上の位の触覚評価
の個人差につながる可能性がある。

この傾向の違いは数値で表すため、各グループの平均値に
ついて前項と同様な方法で粗さ感の回帰式を求めた。考
える、どのグループもほぼ1であるのに対し、ドット曲率の係数は
グループA→B→Cの順に大きくなっている。これらの値か
らも、粗さ感が決定する過程で、CグループはAグループより
ドット曲率を重視していると考えることができる。この違い
は、曲率の違いを検知できる能力の個人差による可能性も考
えられる。

本実験では同一被験者による繰り返しを行っていないた
め、ここでみられた被験者の間の違いが試行毎のばらつきに
起因するのか、被験者固有のものの有無は判明できない。

被験者固有の要因としては、皮膚の物理的特性(厚さ、指紋
の形状、柔軟性等)の違いが前項で挙げた皮膚表面における
感覚受容メカニズムに与える影響や、田中らが示した粗さ感
の判断基準の波長数の違い、触覚方法(接触力、速度)に
よる接触条件の違いなどが考えられる。本稿では検出感度を
重視して触覚方法は自由としたが、接触力や速度により寸法
ドットパターンにおける凸点の形状・間隔と粗さ感の関係

本検討により、ドット間隔とドット曲率の組合せがどのような粗さ感を生じさせるかを明らかにできた。ここで得られた知見は、ドットパターンやこれに類似するテクスチャの設計指針として活用できと考えられる。

謝 辞
本研究の一部は、文部科学省科学研究費補助金（基盤研究（B）No.16H02888）の助成により行われた。

参考文献
[1] Okamoto, S., Nagano, H., and Yamada, Y.: Psychophysical dimensions of tactile perception of textures, IEEE Transactions on Haptics, 6(1), pp.81-93, 2012.
[2] 伴阿香, 田村誠彦, 竹内貴誠, 蔵田順一, 佐野原明人, 稲葉望洋, 武原直行, 田中由浩: 特開2010-120399 乗車用内装部品, 2010.
[3] 米原教子, 樹野淳也, 中村一美, 竹原伸, 藤井登志, 福本知輝: グラデーションパターンが触覚操作の位置精度に与える影響, 人間工学, 49(6). pp.279-288. 2013.
[4] Kawasegi, N., Fujii, M., Shimizu, T., Sekiguchi, N., Sumioka, J., and Doi, Y.: Evaluation of the human tactile sense on microtexturing on plastic molding surfaces, Precision Engineering, 37(2), pp.433-442, 2013.
[5] Kawasegi, N., Fujii, M., Shimizu, T., Sekiguchi, N., Sumioka, J., and Doi, Y.: Physical properties and tactile sensory perception of microtextured molded plastics, Precision Engineering, 38(2), pp.292-299, 2014.
[6] 川原宜宜, 藤井美里, 清水孝晃, 関口雅朗, 住岡淳司, 土肥義治: マイクロ加工を利用したプラスチック成型品の触覚感覚制御 - 各種テクスチャの特性評価 -, 精密工学会誌, 80(7), pp.692-698. 2014.
[7] 相澤淳平, 平出真一郎, 北野哲和, 藤沢健士, 上土正義: 射出成形金型設計のための樹脂線テクスチャにおける目視と触覚による粗さ感評価, 日本感性工学会論文誌, 14(4), pp.457-464, 2015.
[8] 相澤淳平, 藤沢健士, 上土正義: 射出成形金型設計のための樹脂線テクスチャにおける粗さ感と接触状態の関係, 日本感性工学会論文誌, 16(1), pp.163-169, 2017.
[9] 下条誠, 前野隆司, 稲田裕之, 佐野明人: 触覚認識メカニズムと応用技術（増補版）, S&T出版, pp.12-15, 2014.
[10] 野呂勇, 鳥句英男, 青森孝子: 表面粗さ感における個人差の解析, 問題工学, 12(6), pp.227-234, 1976.
[11] 野呂勇: 表面粗さ感覚計測における個人差情報処理, 精密機械, 43(5), pp.530-535, 1977.
[12] 三橋雅子, 中野健一: 機械的計測を基本とした感覚的な表面粗さの解析, 精密機械, 42(12), pp.1102-1108, 1976.
[13] Blake, D.T., Hsiao, S.S., and Johnson, K.O.: Neural coding mechanisms in tactile pattern recognition: the relative
contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness, The Journal of Neuroscience, 17(19), pp.7480-7489, 1997.

[14] 豊田恵, 齋藤健太郎, 土井幸輝, 藤本浩志: 凸点の高さと先端部の曲率半径が携帯電話の操作性に及ぼす影響, 日本機械学会論文集 (C編), 78(794), pp.3495-3503, 2012.

[15] 柳澤秀吉, 高辻賢司: 視覚による事前予測の影響を考慮したテクスチャの感性評価手法, 日本機械学会論文集 (C編), 78(796), pp.3830-3841, 2012.

[16] 柳澤秀吉, 高辻賢司: テクスチャの触感における視覚的期待効果の抽出法 (プラスチック・シボの粗さ感における視覚的期待効果), 日本機械学会論文集 (C編), 79(807), pp.4028-4038, 2013.

[17] 相澤淳平, 淵沢隆一: 3Dプリンタによって形成される微細凸形状の特徴, 長野県工業技術総合センター研究報告, 13, pp.51-55, 2018.

[18] Tanaka, M., Tsuchimi, D., and Okuyama, T.: Mechanism of haptic perception – influence of amplitude and frequency for smoothness –, Proceedings of the Tohoku University Global Center of Excellence Programme, pp.368-377, 2012.

[19] 田中由浩, 田中真美, 長南征二: 手触り感計測用センサシステムの開発, 日本機械学会論文集 (C編), 72(724), pp.3818-3825, 2006.

[20] 田中由浩, 田中真美, 長南征二: 手触り感計測用センサシステムを用いた触覚感性計測, 日本機械学会論文集 (C編), 73(727), pp.169-176, pp.817-824, 2007.

[21] 白土奨史, 桑原雅司, 前野隆司: ヒトの触感認識機構のモデル構築, 日本機械学会論文集 (C編), 73(733), pp.2514-2522, 2007.

[22] Lederman, S. J.: The perception of surface roughness by active and passive touch, Bulletin of the Psychonomic Society, 18(5), pp.253-255, 1981.

[23] Yoshioka, T., Craig, J. C., Beck, G. C., and Hsiao, S. S.: Perceptual constancy of texture roughness in the tactile system, Journal of Neuroscience, 31(48), pp.17603-17611, 2011.

相澤淳平（学生会員）
1999年度慶應義塾大学大学院理工学研究科修士課程修了, 2000年度長野県情報技術試験場ソフト開発部. 2009年度長野県工業技術総合センター設計支援部. 2018年度主任研究員. 感性工学, 精密測定等に関する研究に従事.

上条 正義（正会員）
1989年度信州大学大学院を修了後, 東京理科大学講師短期大学助手を経て, 1996年度信州大学繊維学部感性工学科助手, 2009年度同大教授となり現在に至る. 博士（工学), 感性工学における計測評価の研究に従事. 特に入ロの快適感を心身反応計測から見えるかの研究に興心を持つ. IEEE, 繊維学会, 日本繊維製品消費科学会, 照明学会, 自動車技術会, 電子情報通信学会, 計測自動制御学会, 人間工学会各会会員.