Case Report

Cellulitis Caused by *Hirudo orientalis* Bites That Lead to an Allergic reaction

Mohsen Najjari,1 Rahmat Solgi,2 and Amir Tavakoli Kareshk2,3

1Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
3Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran

Correspondence should be addressed to Amir Tavakoli Kareshk; atk9388@gmail.com

Received 14 August 2022; Accepted 17 October 2022; Published 22 October 2022

Academic Editor: A. Mohamed Dkhil

Copyright © 2022 Mohsen Najjari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The allergic reaction due to leech bites is frequently reported due to complications of leech therapy and also unwanted leech infestation [1]. Regularly, the urticarial papules are common, and itching lasts less than 24 h. Dermal infection may be caused by leech gut bacterial flora such as Aeromonas spp. and histamine from leech saliva in the case of leech biting [2]. Leeches belong to the phylum Annelida and the class Clitellata [3]. Their bodies are muscular and pigmented, with a tough cuticle, suckers at both ends, hard jaws, and a muscular pharynx. A large number of leeches live in freshwater environments such as rivers and ponds, while some species can be found in terrestrial and marine environments. Most of them are predominantly bloodsuckers from vertebrate and invertebrate animals [4]. However, severe injuries to the internal viscera by leech bites are uncommon [5, 6]. When they do occur, they can cause serious morbidity and may even have fatal consequences [7]. Leech bites can also involve various organs such as the esophagus, larynx, and pharynx [8]. Leech breeders and employees involved in outdoor water activities are more vulnerable to leech bites. Allergies and cellulitis are common and can be classified as occupational diseases [9]. In some cases, such as diabetics and those with weakened immune systems, the risk of death from anaphylactic shock and sepsis is high [10, 11]. This study identified the risks of leech bites in leech breeders, such as people who sell and handle leeches, as well as leech therapy and unwanted leech infestation.

1. Introduction

An allergic reaction due to leech bites is frequently reported due to complications of leech therapy and unwanted leech infestation [1]. Regularly, the urticarial papules are common, and itching lasts less than 24 h. Dermal infection may be caused by leech gut bacterial flora such as Aeromonas spp. and histamine in leech saliva in the case of leech biting [2]. Leeches belong to the phylum Annelida and the class Clitellata [3]. Their bodies are muscular and pigmented, with a tough cuticle, suckers at both ends, hard jaws, and a muscular pharynx. A large number of leeches live in freshwater environments such as rivers and ponds, while some species can be found in terrestrial and marine environments. Most of them are predominantly bloodsuckers from vertebrate and invertebrate animals [4]. However, severe injuries to the internal viscera by leech bites are uncommon [5, 6]. When they do occur, they can cause serious morbidity and may even have fatal consequences [7]. Leech bites can also involve various organs such as the esophagus, larynx, and pharynx [8]. Leech breeders and employees involved in

2. Case Presentation

In August 2018, a 30-year-old diabetic woman with complaints of inflammation, swelling, pain, redness in the back of her left hand (Figure 1), and chest tightness was referred to Mashhad’s Ghaem Hospital. The patient works in the field of leech breeding and was bitten by *Hirudo orientalis* during breeding. Her clinical signs were inflammation, swelling, pain, and redness in the back of her left hand. A microbiological examination revealed that the isolated leech was infected with *Aeromonas hydrophila*. The risk of death due to anaphylactic shock and sepsis is high in some cases of underlying diabetes and immunocompromised individuals. The study pointed out the hazards of leech bites and proposed preventative measures such as using gloves and boots for farm workers.
out using a stereomicroscope (Leica EZ4, Germany) in accordance with the standard keys [12]. The morphological study was approved by a molecular study. In brief, DNA extraction was performed by using a DNA extraction kit. The partial cytochrome c oxidase subunit 1 (COI) DNA fragment of 709 bp was amplified using the previously published LCO 1490 and HCO 2198 primers [13]. In the Medical Microbiology Laboratory of Mashhad University of Medical Sciences, a microbiological examination was performed to detect the bacterial infectious agent in wound secretions. The isolated leech has a large cylindrical body with a length of 80–90 mm. The anterior sucker was larger than the posterior one, and the dorsal view revealed a strip separated by circular patches. These characteristics were linked to Hirudo orientalis (Figure 2). A molecular study was carried out to determine the morphological finding. Sequencing results from both the forward and reverse strands were obtained. The isolated leech was successfully sequenced, and nucleotide BLAST analysis of 709 bp of the COI gene sequence revealed that it belonged to H. orientalis with 99 percent homology (OL759130). Aeromonas hydrophila was identified through microbiological testing. Ciprofloxacin 500 mg daily (for 2 weeks) and dexamethasone 4 mg/ml injections were prescribed in accordance with the standard protocol.

3. Discussion

Leech infestation is reported regularly due to complications of unwanted leech biting or leech therapy. Some scientists suggested that the medical leeches used in medical fields must be evaluated for pathogen contamination before using. Cellulitis has been the most common clinical manifestation, with an incidence ranging from 4.1 to 36.2 percent [14]. The use of medical leeches to treat human diseases has a long history, especially in Iran [2]. The previous study detected the main medical leeches (Hirudo orientalis, Hirudo medicinalis, and Hirudo verbana) in the field of medicine in Iran [15]. According to our knowledge, leech saliva contains bioactive substances such as hirudin, calin, hyaluronidase, histamine-like substances, and a variety of other proteins [16]. It has been effectively utilized in plastic and reconstructive medical procedures, cardiovascular intricacies, varicose veins, hemorrhoids and different joint infirmities, gastrointestinal problems, dermatology, and gynecological anomalies. Recently, hirudo therapy has found new applications in the treatment of some malignancies and extreme touchiness conditions similar to asthma and diabetes [11–14, 16, 17]. Despite leech’s beneficial properties in the treatment of some human diseases in some cases, accidental leech bites or medical leech therapy can also cause a skin infection. The symptoms are malaise, painless bleeding, bruising, itching, burning, irritation, and redness [18]. It has been established that all leeches carry symbiotic bacteria in their intestines, such as A. hydrophila [19]. The accidental excretion of the intestinal bacteria of the leech during the process of attaching may lead to the onset of an allergic reaction [20]. A. hydrophila can cause severe local skin infections in a variety of patterns. Folliculitis (pustules), abscesses, impetigo-like rash, tarsal gangrene, cellulitis, redness, and swelling affecting the deeper skin, and necrotic fasciitis are some of the clinical signs. [21]. Aeromonas sepsis is potentially dangerous [22]. The cutaneous infections caused by Aeromonas are more likely to cause serious complications in immunocompromised patients [23, 24]. Some strains of A. hydrophila can produce aerolysin toxins, which lead to tissue damage. A. hydrophilic infections occur when bacteria enter damaged areas of the skin, due to razors, abrasions, surgical wounds, insect bites, and leech bites [25]. In this study, the bacterial infection has been isolated from the secretions of the wound and detected as an A. hydrophilic infection by gram stain. A. hydrophilic infection was approved by the culture and molecular techniques. Some Aeromonas strains are multidrug-resistant, so an antibiotic susceptibility test is required before prescribing antibiotics if necessary [15, 26]. Leech breeders and others involved in aquatic activities are more vulnerable to unwanted leech bites. Allergic reactions and cellulitis are common and may
be considered occupational diseases [27]. As previously reported in the literature, the risk of death due to ana-
phylactic shock and sepsis is high in some cases, such as our underlying diabetic case and people with immune deficiency
disorders [11]. The study highlighted the dangers of leech bites and suggested preventative measures such as wearing
gloves and boots in leech breeding facilities to reduce the risk of such allergic reactions. Finally, in emergency situations,
leech detachment is required. Simple methods such as perfuming a strong salt solution, lighting a match, con-
suming alcohol, and others suggested in the articles can be used [5].

Data Availability
No data were used to support the findings of this study.

Ethical Approval
This experimental study was approved by the Ethical
Committee of the Mashhad University of Medical Sciences,
Mashhad, Iran (IR.MUMS.MEDICAL.REC.1398.312).

Consent
Written informed consent was obtained from the legal
guardian of the patient to publish this report in accordance
with the journal’s patient consent policy.

Conflicts of Interest
The authors declare that they have no conflict of interest.

Authors’ Contributions
All authors contributed to the study design. MN was the
leader of the research. RS and ATK carried out experimental
tests and prepared the manuscript. Authors read and ap-
proved the final version of the manuscript.

Acknowledgments
The authors are grateful to the Mashhad University of
Medical Sciences owing to financial support of this project
under grant no (971652).

References
[1] A. Pietrzak, J. Kanitakis, K. Tomasiewicz et al., “Cutaneous
complications of improper leech application,” Annals of
Agricultural and Environmental Medicine, vol. 19, no. 4,
pp. 790–792, 2012.
[2] U. Wollina, B. Heinig, and A. Nowak, “Medical leech therapy
(Hirudotherapy),” Our Dermatology Online, vol. 7, no. 1,
pp. 91–96, 2016.
[3] U. Kutschera and D. Shain, “Hirudinea Lamarck 1818: Evolutionary
origin and taxonomy of the six medicinal
leeches (genus Hirudo) known today,” Biomedical Research
and Reviews, vol. 3, p. 1, 2019.
[4] J. M. Elliott and U. Kutschera, “Medicinal leeches: Historical
use, ecology, genetics and conservation,” Freshwater Reviews,
vol. 4, no. 1, pp. 21–41, 2011.
[5] M. Hasanzadeh, H. Zarrinfar, and M. Najjari, “Unusual
vaginal bleeding due to a leech bite in a girl from a tropical
area,” Revista da Sociedade Brasileira de Medicina Tropical,
vol. 52, Article ID e20180425, 2019.
[6] M. Saha and S. Nagi, “Intrapertioneal leech: A rare complication
of leech bite,” Journal of Indian Association of Pediatric
Surgeons, vol. 16, no. 4, p. 155, 2011.
[7] L. Pulze, M. Capri, A. Grimaldi, S. Salvioi, G. Tettamanti, and
M. Fugilello, “A new cellular type in invertebrates: first evi-
dence of telocytes in leech Hirudo medicinalis,” Journal of
Immunological Sciences, vol. 2, no. 1, pp. 22–25, 2018.
[8] B. Al. M. E. Yenen, and M. Aldemir, “Rectal bleeding due to
leech bite,” Turkish Journal of Trauma and Emergency Surgery,
vol. 17, no. 1, pp. 83–86, 2011.
[9] L. Agata and B. Joanna, “Hirudo verbana is a source of fungal
isolates potentially pathogenic to humans.” African Journal of
Microbiology Research, vol. 7, no. 47, pp. 5358–5363, 2013.
[10] A. M. Butt, A. Ismail, M. Lawson-Smith, M. Shahid, J. Webb,
and D. L. Chester, “Leech therapy for the treatment of venous
congestion in flaps, digital Re-Plants And revascularizations—A two-year review from A regional
centre,” Journal of Ayub Medical College, Abbottabad, vol. 28,
no. 2, pp. 219–223, 2016.
[11] P. A. Green and A. B. Shafritz, “Medicinal leech use in mi-
crosurgery,” The Journal of Hand Surgery, vol. 35, no. 6,
pp. 1019–1021, 2010.
[12] N. Saglam, “Internal and external morphological character-
istics of the medicinal leech species Hirudo sulikui and Hirudo verbana,” Turkiye parazitolojii dergisi,
vol. 43, no. 4, pp. 204–209, 2019.
[13] T. Timm, M. Todorov, S. Grozeva, Z. Hubenov, L. Kenderov,
and T. Trichkova, “Taxonomic status and distribution of
medicinal leeches of the genus Hirudo L.(Hirudinae) in
Bulgaria,” Acta Zoologica Bulgarica, vol. 68, no. 2, pp. 171–182,
2016.
[14] I. S. Whitaker, C. Kamya, E. A. Azzopardi, J. Graf, M. Kon,
and W. C. Lineaweaver, “Preventing infective complications
following leech therapy is practice keeping pace with current research?” Microsurgery, vol. 29, no. 8, pp. 619–625, 2009.
[15] R. Solgi, A. Raz, S. Zakert et al., “Morphological and molecular
description of parasitic leeches (Annelida: Hirudinea) isolated
from rice field of Bandar Anzali, North of Iran,” Gene Reports,
vol. 23, Article ID 101162, 2021.
[16] A. K. Sig, M. Guney, A. Uskudar Guclu, and E. Ozmen,
"Medicinal leech therapy—an overall perspective,” Integrative
medicine research, vol. 6, no. 4, pp. 337–343, 2017.
[17] B. K. Das, “An overview on hirudotherapy/leech therapy,”
Indian Research Journal of Pharmacy and Science, vol. 1, p. 34,
2014.
[18] J. Joslin, A. Bondich, K. Walker, and N. Zanghi, “A com-
prehensive review of hirudiniasis: from historic uses of leeches
to modern treatments of their bites,” Wilderness and envi-
ronmental medicine, vol. 28, no. 4, pp. 355–361, 2017.
[19] P. L. Worthen, C. J. Gode, and J. Graf, “Culture-independent
colorization of the digestive-tract microbiota of the
medicinal leech reveals a tripartite symbiosis,” Applied and
Environmental Microbiology, vol. 72, no. 7, pp. 4775–4781,
2006.
[20] E. Ediriweera, “A review on leech application (jalaukachar-
a) in ayurveda and sri lankan traditional medicine,” Journal of
Ayurveda and Holistic Medicine, vol. 2, pp. 62–77, 2014.
[21] S. M. Schnabl, C. Kunz, F. Unglaub, E. Polyandriotis,
R. E. Horch, and A. Dragu, “Acute postoperative infection
with Aeromonas hydrophila after using medical leeches for
treatment of venous congestion,” Archives of Orthopaedic and Trauma Surgery, vol. 130, no. 10, pp. 1323–1328, 2010.

[22] U. D. Bhowmick and S. Bhattacharjee, “Bacteriological clinical and virulence aspects of Aeromonas-associated diseases in humans,” Polish Journal of Microbiology, vol. 67, no. 2, pp. 137–150, 2018.

[23] S. Spadaro, A. Berselli, E. Marangoni et al., “Aeromonas sobria necrotizing fasciitis and sepsis in an immunocompromised patient: a case report and review of the literature,” Journal of Medical Case Reports, vol. 8, pp. 315-316, 2014.

[24] S. Merino, X. Rubires, S. Knochel, and J. M. Tomás, “Emerging pathogens: Aeromonas spp.” International Journal of Food Microbiology, vol. 28, no. 2, pp. 157–168, 1995.

[25] J. M. Janda and S. L. Abbott, “The genus Aeromonas: Taxonomy, pathogenicity, and infection,” Clinical Microbiology Reviews, vol. 23, no. 1, pp. 35–73, 2010.

[26] R. Tewari, M. Dudeja, S. Nandy, and A. K. Das, “Isolation of Aeromonas salmonicida from human blood sample,” Journal of Clinical and Diagnostic Research, vol. 8, no. 2, pp. 139-140, 2014.

[27] P. Pathak, S. Islam, J. Bam et al., “Distribution of aquatic and terrestrial leeches in assam,” Journal of Entomology and Zoology Studies, vol. 8, 2020.