アクティブ流体の混相流*
（石油増進回収における熱力学不安定性の役割）

Multiphase Flow of Active Fluid
(Role of Thermodynamic Instability in Enhanced Oil Recovery)

伴 貴 彦**, † 鈴木 龍 沢*** 長 津 雄一郎****
BAN Takahiko SUZUKI Ryuta X. NAGATSU Yuichiro

Abstract The displacement of more viscous fluids by less viscous fluids in porous media provides not only an industrial application for enhanced oil recovery (EOR) from reservoirs, but also a fundamental study of the phase transition phenomena of fluids, combining fluid mechanics and thermodynamics. Recent studies have shown that the coupling of thermodynamic and hydrodynamic instabilities results in the formation of self-driven active fluid that significantly affects EOR. In this paper, we discuss the phase transition phenomena of the fluid in a porous medium simulating EOR from both hydrodynamic and thermodynamic aspects.

Keywords: Enhanced oil recovery, Active fluid, Viscous fingering, Maximum entropy production principle, Porous media

1. 緒 言

世界中で年間 320 億バレル以上の石油が生産されているが、意外とどのように地中から石油が採取されているのか広く知られていない。石油の回収方法には、大きく分けて三種類の方法が存在する [1]。一次回収とは、地層奥深くに掘削して開けた井戸から、貯留層がもつ自然の圧力によって自噴した石油を生産する方法であり、外部から注入された流体圧力の支持がいらない。日本の温泉のように勝手に噴き出してくれる。しかしながら、貯留層内の岩石は、多数の細孔が存在する多孔質媒体であるため、その細孔に石油が充満し、一次回収で採取できる石油の量は、原始埋蔵量の 10〜20%程度であり、ほとんどが細孔中に取り残された状態にある。一方で取り残された石油を回収する方法として、水や天然ガスなどの低粘性の流体を圧入し、貯留層内の石油を押し出し、置換する二次回収が挙げられる。二次回収によって回収率は 40%程度まで上昇するが、それでも貯留層内には、60〜70%の原油が存在する。

更なる石油の増進回収法として、貯留層内の石油の流体および物理化学的な特性を改変する熱、化学、混和攻法などの三次回収が挙げられる。熱攻法には、高圧の水蒸気を圧入し、沈積した高粘性のパラフィンやアスファルテンを熱で溶かし、凝結した水と共に流動化する方法である。化学攻法は、界面活性剤やアルカリ性物質や高分子などを含んだ水を圧入し、油水界面の界面張力を下げ、多孔質媒体中の石油の浸透率を上昇させ、石油を

* 2022.7.28 受付
** 大阪大学大学院基礎工学研究科
*** 東京農工大学大学院グローバルイノベーション研究院
**** 東京農工大学大学院工学研究院応用化学部門
† Corresponding author: ban.takahiko.es@osaka-u.ac.jp
石油はあと30年で枯渇する

洗い流す方法である。混和攻法は、炭化水素やCO₂を圧入し、混和性を生み出し、石油の体積を増加させ、さらに石油の粘度を変化させて貯留層から石油を回収する方法である。三次回収は石油増進回収（Enhanced Oil recovery, EOR）と呼ばれ、回収率は原始埋蔵量の60%以上にも達する。この二次と三次回収合わせてIOP（Improved Oil Recovery）と呼ばれる。

皆さんはよく（40年以上前）から不安定性IOPを、不安定性パラメータを扱っていること実験を行うことは、化学ポテンシャルは力学特性や制御方法に関する研究は、異なる障害となっている。この指状の変形を扱っている。油面は熱力学的に不安定な状態を示すため、界面に過渡的な自由エネルギーが発生する。実際の計算において、非線形の要素が現実である。流体の混相流における流体置換現象に着目し、石油増進回収という産業的な観点に加え、VF現象をもたらす流体間の混和性の影響とVF発生条件の定性的な評価などの基礎研究に重点をおいて解説したい。

2. 多孔質媒体中の流体現象のモデル化

貯留層内の石油と低粘度流体の界面はどのように可視化し、研究室内で実験するのだろうか？最短では、MRI [14]やX線CTスキャナー [15,16]を用いて、多孔質媒体中の流体を三次元的に可視化することが可能であるが、直接可視化することは困難である。実は、流体力学的な特性を理解すれば、安価な方法で可視化実験することが可能である。

多孔質媒体中の流体の運動は、Darcyの法則に従い、流体速度は圧力勾配に比例する。
洗い流す方法である。混和攻法は、炭化水素やCO2を圧入し、混和性を生み出し、石油の体積を増加させ、さらに石油の粘度を変化させて貯留層から石油を回収する方法である。三次回収は石油増進回収（Enhanced Oil recovery, EOR）の式に従い、流体速度は圧力勾配に比例する。

ここで、\(\mathbf{u} \)は流体速度、\(\kappa \)は多孔質媒体の浸透率、\(\eta \)は粘度、\(p \)は圧力である。一方、高アスペクト比の微小平板間における流体の運動は、Hele-Shawの式に従い、流体速度は圧力勾配に比例する。

ここで、\(b \)は平板間距離である。式の上では両者は同等であるため、多孔質媒体中で起こるVFを、Hele-Shawの式に従う微小平板間（以下Hele-Shawセル）中で模擬でき、両者の類似性は実験的に実証されている [17]。

注入流体が高粘性流体に完全に混溶する完全混和系のVFの支配方程式は、上式に連続の式と移流拡散方程式をカップリングするだけで十分である [18,19]。界面挿入の成長率は、Pe数と低粘性および高粘性流体の粘度比 \(R \)に依存する。注入流体が高粘性流体に全く溶け合わない非混和系の不安定波長は、Ca数の関数となる [3,20]。部分混和系では、液液相分離が界面で発生するため、より複雑なダイナミクスとなる。通常の拡散は、濃度勾配を打ち消すように物質が移動するが、液液相分離が発生する場合、物質は濃度勾配に逆らって移動する。この物質のダイナミクスを記述するには、物質の化学ポテンシャルの勾配を考慮する必要がある [21,22]。

\[
\frac{\partial c}{\partial t} + \mathbf{v} \cdot (c \mathbf{u}) = M \nabla^2 \mu \tag{3}
\]

ここでcは高粘性流体の濃度を表し、相の状態を次式の自由エネルギーによって規定するだけでなく、流体の粘度\(\eta(c) = \eta_0 e^{hc} \)も規定する重要な変数である。化学ポテンシャルは\(\mu = \delta F(c)/\delta c \)となり、Ginzburg-Landau型の自由エネルギー\(F(c) \)の汎関数微分で表される。

\[
F(c) = \int \left\{ \frac{K}{2} |\nabla c|^2 + f(c) \right\} dV, \tag{4}
\]

\[
f(c) = - \frac{r}{2} (c - p)^2 + \frac{\lambda}{4} (c - p)^4. \tag{5}
\]

相分離が発生する際には、大きな濃度勾配が発生するため、境界面は等しい圧力勾配で移動する。Fig.2 Concentration field for (a) fully miscible and (b) partially miscible systems.

Fig.2 Concentration field for (a) fully miscible and (b) partially miscible systems.

するために、界面に過渡的な自由エネルギーが発生し、これが体積力を生み出す原動力となる [23,24]。よってDarcyの法則に従った式 (1)に、化学ポテンシャル由来の体積力が加わられる [25]。

\[
\nabla p = - \frac{\eta(c)}{\kappa} \mathbf{u} + \frac{R_e T}{v_m} \mu \nabla c, \tag{6}
\]

加えられた体積力は、Korteweg力と言われ、界面に蓄えられた余剰な自由エネルギーを最小化するように働く [26,27]。この体積力が流体の自発対流を引き起こし、相分離を促進し、アクティブ流体の推進力となる [28-30]。

液液系の混和性は自由エネルギーの形で規定される。すなわち、自由エネルギーが下に凸\(f''(c) > 0 \)な富物線で表されるときは、熱力学的に安定な完全混和系を表し、一方二重井戸型の関数で表されるときは、熱力学的に不安定\(f''(c) < 0 \)となり、液液相分離が発生する。

上式に連続の式を加え、適切に無次元化を行うと Pe数と体積力の比を表すが、主な流体力学的なパラメータとなる [25]。これらの一連の方程式を用いて数値計算を行い、熱力学的な安定性が異なるときの流体混合現象の計算結果をFig.2に示す。熱力学的に安定な完全混和系では、従来のSaffman-Taylor不安定性が観察され、成長したVF界面は拡散によって徐々にぼやけていく（Fig.2(a)）。一方、熱力学的に不安定な部分混和
系では、成長したVFがくびれ、ついに千切れて液滴が発生するトポロジカルな変化が現れ、その液滴が自発的に動くアクティブ流体の特徴を示した（Fig.2(b)）。これにより、従来の部分混合系の数値シミュレーションでは得られなかった新現象であり、Fig.1(a)と1(c)に示した我々の実験値を見事に再現している。

3. 多孔質媒体中の流体現象のエントロピー生成解析

前章で、相分離を伴うSaffman-Taylor不安定性のダイナミクスを、自由エネルギーを加味した流体力学方程式で再現することに成功した。相分離を伴うSaffman-Taylor不安定性は、熱力学的に非平衡度が増加するにつれて、段階的に界面形態が変化していく。この章では、非平衡熱力学を利用して、この段階的な界面形態変化を解釈してみよう。

非平衡開放系で成立する原理は現在のところ様々なものが取り上げられているが、その中でも有力な原理としてスイスのZieglerが提唱したエントロピー生成速度最大原理（Maximum Entropy Production Principle, MEPP）に基づいて、界面形態変化を定量的に予測している[31]。

平衡では、エントロピーが最大の状態が最も安定であるが、非平衡では、エントロピーを生成する速度が最大となる状態が最も安定となる。エントロピー生成速度の条件は、系内の非可逆過程によって単位時間に発生する単位体積あたりのエントロピーである。このエントロピー生成は、保存量の変化を、非可逆過程で発生するエントロピー生成速度を最大化するように熱力学流束が変化する[34,35]。

おいて、非可逆過程で発生するエントロピー生成速度を最大化するように熱力学流束が変化することを表している[34,35]。

$$\delta J \left[\sigma - \lambda \left(\sigma - \sum_k X_k J_k \right) \right] = 0$$

しかしこの原理を実際の非平衡系に応用すると、$$J_k = LX_k$$で表される線形性のために、どのような状態でも原点を通る直線で表され、それぞれの非平衡状態を区別することができない。この困難を回避するために、系全体にかかわる巨視的な熱力学力$$F$$を用いた新しいMEPPが考案された[31]。場所や時間によって変化する局所熱力学力と異なり、系内の非平衡状態を維持する巨視的な熱力学は常に一定である。

例えば、熱流体現象の場を考えてみよう。この場合、保存量の$$k$$kはエネルギーである。局所熱力学流束はFourierの法則で表される熱流束となり、局所熱力学力は温度の逆数の勾配となる[32]。
視的な熱力学力は、系全体にかかる温度差を用いて、局所熱力学力と同じ次元となるようにする[36]。系に加えた温度差が低いと伝導伝熱によって熱が輸送されるが、温度差がある閾値を超えると流体の密度差もしくは表面張力差によって自発対流が発生する。これら以降、添え字の保存量kは省略し、その代わり熱の伝わり方が異なる各非平衡状態を表す添え字iを使用する。局所熱流束J_iは、Fの関数として記述できる。

$$J_i = L_i(F - \theta_i) \quad (9)$$

L_iは現象論係数であり、系の非平衡状態iによって大きく異なる。θ_iは新しい非平衡状態が表れるのに必要な自由エネルギーに相当するパラメータと解釈されたり[35]、他の非可逆過程との干渉性の強度を示すパラメータと解釈されたりし[36]、非平衡状態を区別するのに重要なパラメータである。同様に、各熱伝導状態のエントロピー生成式a_iも巨視的な熱力学力の関数で表される。

$$\sigma_i = L_i(F - \theta_i)^2 \quad (10)$$

ここで、重要な点は、あくまでJ_iとσ_iは定義から、すなわち局所熱力学力から計算され、その値を巨視的な熱力学力を引数として記述しているだけである。J_iとσ_iをFの関数として表したときの関係性を模式的に表した図をFig.3に示す。伝導伝熱の状態を添え字でaとし、対流伝熱の状態をbとする。系に加えた温度差が小さいときの伝導伝熱状態では、熱流束L_aは小さい傾きL_aを示す。伝導伝熱は、温度差がどんなに小さくても存在すれば、進行する。また、系内では対流による粘性散逸が存在せず、伝導過程と粘性散逸過程が干渉するがない。よって、θ_aはほとんどゼロとなる。温度差が大きいときの対流伝熱状態では、より効率よく熱が輸送されるため、熱流束L_bの傾きL_bは、J_aのそれよりも大きくなる。また自発対流が生成するまでに過剰に熱力学力を加える必要があり、また粘性散逸と伝導過程が干渉するため、θ_bはθ_aよりも大きな値を示す。よって伝熱状態が異なるときの熱流束が、異なる2直線で表されるため、それぞれの状態を識別できるようになる。この表式によって、まるで平衡系の相のように非平衡状態を規定できる。この2つの直線関係によって、それぞれの伝熱状態におけるエントロピー生成が式(10)によって表される。この新しい関数形を用いてMEPPを適用し、非平衡系の状態変化を相転移現象のように扱ってみよう。

Fig.4 (a) Growth rate of the interface as a function of ε during fluid displacement. (b) Calculated entropy production curves during the formation of the circular (C), finger (F, black solid curve), and droplet (D, red solid curve) patterns.

ビー生成が式(10)によって成長できる。この新しい関数形を用いてMEPPを適用し、非平衡系の状態変化を相転移現象のように扱ってみよう。

MEPPによって、非平衡において系は、より高いエントロピーを生成するように熱力学流束を調節し、非可逆過程の形態変化を変化させる。そのため、巨視的な熱力学が低い領域では、伝導伝熱によるエントロピー生成曲線（黒）が、対流によるエントロピー生成曲線（赤）より高い位置に存在するため、この領域では、伝導伝熱による熱輸送が進行する（Fig.3(b)）。しかししながら、両曲線の交点を越えた高い熱力学力領域では、対流によるエントロピー生成曲線の方が、伝導伝熱によるエントロピー生成曲線より高い位置に存在するため、自発対流によって系内の熱輸送が進行する。温度差が小
さときに伝導伝熱が主流となるのは、伝導伝熱の方が対流伝熱よりも、輸送される熱量が大きく、エントロピー生成速度が速いからである。ある程度温度差が大きくなって初めて、対流伝熱の方がより高い熱輸送効率を示すことになる。ここで、熱力学流束の交点ではなく、エントロピー生成の交点が、状態の遷移点を表すことになっていることが注意すべきである。そのため、実際の非平衡系においては、熱力学流束は連続的な変化を示さず、図のような不連続な“飛び”を示すことが多い。この流束の交点には別の物理的な重要な意味がある。流束の交点は、相転移後の各状態の共存状態の開始点を表す。すなわち、流束の交点からエントロピー生成の交点までの間の領域は、双安定状態を示す。不安定性が増加するにつれて、成長界面の変形が用いたジグザグダイナミクスを加味した熱力学的な影響について、結晶の状態の共存状態の開始点を表す。すなわち、流束の交点からエントロピー生成の交点までの間の領域は、双安定状態を示す。不安定性が増加するにつれて、成長界面の変形が用いたジグザグダイナミクスを加味した熱力学的な影響について、結晶の状態の共存状態の開始点を表す。すなわち、流束の交点からエントロピー生成の交点までの間の領域は、双安定状態を示す。3.3.1 マイクロ波を用いたメカニカル・エクストラクション法が導入されるまでは、このテーマを世界中の油田に適用することができれば、莫大な経済効果を産み出すことができるが、ご縁があれば、このテーマは別の視点で紹介したい。

Nomenclature

\begin{align*}
Ca & : \text{capillary number} \quad [-] \\
c & : \text{concentration ratio} \quad [-] \\
F & : \text{global thermodynamic force} \quad [1/mK] \\
F(c) & : \text{free energy} \quad [J] \\
f(c) & : \text{local free energy} \quad [J/m^3] \\
I & : \text{local thermodynamic flux} \quad [J/m^2s] \\
K & : \text{phenomenological coefficient} \quad [m^2] \\
L & : \text{phenomenological coefficient} \quad [J/K] \\
M & : \text{mobility coefficient} \quad [m^2/s] \\
\rho & : \text{pressure} \quad [Pa] \\
p & : \text{symmetry of free energy} \quad [-] \\
Pe & : \text{Péclet number} \quad [-] \\
R_g & : \text{gas constant} \quad [J/K] \\
s & : \text{specific entropy} \quad [J/K] \\
T & : \text{temperature} \quad [K] \\
t & : \text{time} \quad [s] \\
u & : \text{velocity} \quad [m/s] \\
V & : \text{volume} \quad [m^3] \\
V_m & : \text{molar volume} \quad [m^3/mol] \\
X & : \text{local thermodynamic force} \quad [1/mK] \\
\end{align*}

Greek letters

\begin{align*}
\alpha & : \text{conservative quantity} \quad [J], [N \cdot s] \text{ or } [kg] \\
\delta & : \text{nondimensional Korteweg force} \quad [-] \\
\varepsilon & : \text{nondimensional degree} \quad [-] \\
\eta(c) & : \text{viscosity} \quad [Pa \cdot s] \\
\theta & : \text{phenomenological coefficient} \quad [-] \\
\kappa & : \text{permeability} \quad [m^2] \\
\mu & : \text{chemical potential} \quad [-] \\
\lambda & : \text{Lagrange multiplier} \quad [-] \\
\sigma & : \text{local entropy production} \quad [J/m^3sK] \\
\end{align*}

Subscripts

\begin{align*}
i & : \text{type of phases} \\
k & : \text{type of irreversible processes} \\
\end{align*}

参考文献

[1] Sheng, J. J., Modern Chemical Enhanced Oil Recovery, Elsevier (2011).
[2] Alvarado, V. and Manrique, E., Enhanced Oil Recovery, Elsevier (2010).

5. 結 言

貯留層内の石油増進回収（EOR）というテーマで、相分離を伴うSaffman-Taylor不安定性に及ぼす熱力学的な影響について、液液系の自由エネルギーのダイナミクスを加味した流体の運動方程式による数値計算と新しい非平衡熱力学原理を用いた定量評価を行った。液液系の熱力学状態の不安定性が増加するに従い、成長界面の変形が顕著になり、石油の回収率の低下を招くことが分かった。またVFの段階的な状態遷移現象は、MEPPに従うことが分かった。このように説明すると、熱力学不安定性の増加は、EORの観点からは負の要因でしかないように思われるが、熱力学不安定性をうまく利用すると、実は界面が安定し、回収率が20%以上向上することが分かっている。これを見ることで油田に適用することができれば、莫大な経済効果を産み出すことができるが、ご縁があれば、このテーマは別の視点で紹介したい。
さときに伝導伝熱が主流となるのは、伝導伝熱の方が対流伝熱より、輸送される熱量が大きく、エントロピー生成速度が速いからである。ある程度温度差が大きくなって初めて、...

[3] Saffman, P. G. and Taylor, G., The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid, Proc. R. Soc. A, Vol. 245, 312-329 (1958).

[4] Speight, J. G., Enhanced Recovery Methods for Heavy Oil and Tar Sands, Elsevier, (2009).

[5] Fu., X., Cueto-Felgueroso, L. and Juanes, R., Thermodynamic Coarsening Arrested by Viscous Fingering in Partially Miscible Binary Mixtures, Phys. Rev. E, Vol. 94, 033111 (2016).

[6] Fu., X., Cueto-Felgueroso, L. and Juanes, R., Viscous Fingering with Partially Miscible Fluids, Phys. Rev. Fluids, Vol. 2, 104001 (2017).

[7] Suzuki, R. X., Nagatsu, Y., Mishra, M. and Ban, T., Phase Separation Effects on a Partially Miscible Viscous Fingering Dynamics, J. Fluid Mech. Vol. 898, A11 (2020).

[8] Paxton, W. F., Kistler, K. C., Olmeda, C. C., Sen, A., Angelo, S. K. St Cao, Y., Mallouk, T. E., Lampret, P. E. and Crespi, V. H., Catalytic Nanomotors: Autonomous Movement of Striped Nanorods, J. Am. Chem. Soc. Vol. 126, 13424-13431 (2004).

[9] Howse, J. R., Jones, R. A. L.,... Ryan, A. J., Gough, T., Vafabakhsh, R. and Golestanian, R., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk, Phys. Rev. Lett., Vol. 99, 048102 (2007).

[10] Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. and Simha, R. A., Hydrodynamics of soft active matter, Rev. Mod. Phys., Vol. 85, 1143 (2013).

[11] Morozov, A., From Chaos to Order in Active Fluids, Random Flows in an Active Fluid Become Directional under Confinement, Science, Vol. 355, 1262-1263 (2017).

[12] Herminghaus, S., Maass, C. C., Krüger, C., Thutupalli, S., Goehring, L. and Bahr, C., Interfacial Mechanisms in Active Emulsions, Soft Matter, Vol. 10, 7008-7022 (2014).

[13] Maass, C. C., Krüger, C., Herminghaus, S. and Bahr, C., Swimming Droplets, Annu. Rev. Condens. Matter Phys., Vol. 7, 171-193 (2016).

[14] Zhao, Y., Song, Y., Liu, Y., Liang, H. and Dou, B., Visualization and Measurement of CO2 Flooding in Porous Media Using MRI, Ind. Eng. Chem. Res., Vol. 50, 4707-4715 (2011).

[15] Suekane, T., Ono, J., Hyodo, A. and Nagatsu, Y., Three-Dimensional Viscous Fingering of Miscible Fluids in Porous Media, Phys. Rev. Fluids, Vol. 2, 103902 (2017).

[16] Mahardika, M. A., She, Y., Shori, F., Patmonooji, A., Matsushita, S., Suekane, T. and Nagatsu, Y., Enhanced Heavy Oil Recovery by Calcium Hydroxide Flooding with the Production of Viscoelastic Materials: Study with 3-D X-Ray Tomography and 2-D Glass Micromodels, Energy and Fuels, Vol. 35, 11210-11222 (2021).

[17] Habermann, B., The Efficiency of Miscible Displacement as a Function of Mobility Ratio, Trans. AIME, Vol. 219, 264-272 (1960).

[18] Tan, C. T. and Homysy, G. M., Stability of Miscible Displacements in Porous Media: Rectilinear Flow, Phys. Fluids, Vol. 29, 3549 (1986).

[19] Tan, C. T. and Homysy, G. M., Simulation of Nonlinear Viscous Fingering in Miscible Displacement, Phys. Fluids, Vol. 31, 1330 (1988).

[20] Paterson, L., Radial Fingering in a Hele Shaw Cell, J. Fluid Mech., Vol. 113, 513-529 (1981).

[21] Cahn, J. W. and Hilliard, J. E., Free Energy of a Nonuniform System. I. Interfacial Free Energy, J. Chem. Phys. Vol. 28, 258 (1958).

[22] Cahn, J. W., On Spinodal Decomposition, Acta Metall., Vol. 9, 795-801 (1961).

[23] Hohenberg, P. and Halperin, B., Theory of Dynamic Critical Phenomena, Rev. Mod. Phys., Vol. 49, 435 (1977).

[24] Jasnow, D. and Vinales, J., Coarse - Grained Description of Thermo - Capillary Flow, Phys. Fluids, Vol. 8, 660 (1996).

[25] Seya, S., Suzuki, R. X., Nagatsu, Y., Ban, T. and Mishra, M., Numerical Study on Topological Change of Viscous Fingering Induced by a Phase Separation with Korteweg Force, J. Fluid Mech., Vol. 938, A18 (2022).

[26] Korteweg, D. J., On the Form that the Equations of Fluid Motion Take If We Take Into Account the Capillary Forces Caused by Density Variations(密度変化による毛細管力を考慮した場合の流体運動方程式がとるべき形について), Arch. Néerl. Sci. Exactes Nat. Ser. II, Vol. 6, 1-24 (1901).

[27] Vladimirova, N., Malagoli, A. and Mauri, R., Diffusiophoresis of Two-Dimensional Liquid Droplets in a Phase-Separating System, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., Vol. 60, 2037 (1999).

[28] Ban, T., Aoyama, T. and Matsumoto, T., Self-Generated Motion of Droplets Induced by Korteweg Force, Chem. Lett., Vol. 39, 1294-1296 (2010).

[29] Ban, T., Yamada, T., Aoyama, A., Takagi, Y. and Okano, Y., Composition-Dependent Shape Changes of Self-Propelled Droplets in a Phase-Separating System, Soft Matter, Vol. 8, 3908-3916 (2012).

[30] Ban, T., Fukuyama, T., Makino, S., Nawa, E. and Nagatsu, Y., Self-Propelled Vesicles Induced by the Mixing of Two Polymeric Aqueous Solutions through a Vesicle Membrane Far from Equilibrium, Langmuir, Vol. 32, 2574–2581 (2016).

[31] Ziegler, H., An Introduction to Thermomechanics, North Holland, Amsterdam (1977).

[32] De Groot, S. R. and Mazur, P., Non-Equilibrium
Thermodynamics, Dover, New York (1984).
[33] Onsager, L. and Fuoss, R. M., Irreversible Processes in Electrolytes. Diffusion, Conductance and Viscous Flow in Arbitrary Mixtures of Strong Electrolytes, J. Phys. Chem., Vol. 36, 2689-2778 (1932).
[34] Martyushev, L. M. and Seleznev, V. D., Maximum Entropy Production Principle in Physics, Chemistry and Biology, Phys. Rep., Vol. 426, 1-45 (2006).
[35] Hill, A., Entropy Production as the Selection Rule between Different Growth Morphologies, Nature, Vol. 348, 426-428 (1990).
[36] Ban, T. and Shigeta, K., Thermodynamic Analysis of Thermal Convection based on Entropy Production, Sci. Rep., Vol. 9, 10368 (2019).
[37] Ban, T., Thermodynamic Analysis of Bistability in Rayleigh–Bénard Convection, Entropy, Vol. 22, 800 (2020).
[38] Suzuki, R. X., Kobayashi, S., Nagatsu, Y. and Ban, T., Tunable Hydrodynamic Interfacial Instability by Controlling a Thermodynamic Parameter of Liquid–Liquid Phase Separation, J. Phys. Chem. B, Vol. 125, 7508-7514 (2021).