POZ-, AT-hook-, and Zinc Finger-containing Protein (PATZ) Interacts with Human Oncogene B Cell Lymphoma 6 (BCL6) and Is Required for Its Negative Autoregulation*

Raffaela Pero¹, Dario Palmieri¹⁵, Tiziana Angrisano¹, Teresa Valentino¹, Antonella Federico⁵, Renato Franco⁵, Francesca Lembo⁶, Andres J. Klein-Szanto⁷, Luigi Del Vecchio¹⁵⁵, Donatella Montanaro⁵⁵, Simona Keller⁵⁵, Claudio Arra⁶, Vasiliki Papadopoulou⁴, Simon D. Wagner⁴, Carlo M. Croce⁵, Alfredo Fusco⁴, Lorenzo Chiarotti³¹¹, and Monica Fedele¹²

From the¹ Dipartimento di Biologia e Patologia Cellulare e Molecolare and the Istituto di Endocrinologia ed Oncologia Sperimentale, Università di Napoli “Federico II” and Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy, the ²Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, the ³Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy, the ⁴Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, 80131 Naples, Italy, the ⁵Department of Pathology, Fox-Chase Cancer Center, Philadelphia, Pennslyvania 19111, the ⁶Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Naples, Italy, the ⁷Department of Pathology, University of Leicester, Leicester LE1 7RH, United Kingdom

Background: PATZ, the POZ-, AT-hook-, and Zinc Finger-containing Protein (PATZ), is a tumor suppressor that acts by cooperating with BCL6 in its negative autoregulation.

Results: PATZ interacts with BCL6 and negatively modulates its expression. Consistently, disruption of one or both BCL6 alleles may favor lymphomagenesis by activating the BCL6 pathway.

Conclusions: PATZ interacts with BCL6 and negatively modulates its expression. Consistently, disruption of one or both BCL6 alleles may favor lymphomagenesis by activating the BCL6 pathway.

Significance: The PATZ1 gene encodes four main alternative proteins ranging from 537 to 687 amino acids that contain an N-terminal POZ domain, one or two AT-hooks in the central region, and four to six C2H2 zinc finger motifs at the C terminus (1–3). Both the AT-hooks and the POZ domain are characteristic of protein factors involved in gene transcription by interacting with a number of other protein factors. Indeed, PATZ protein, also known as MAZR, ZNF278, or ZSG, is a transcriptional regulatory factor that may function either as activator or as repressor depending upon the cellular context; it has been reported to either activate or repress c-Myc (1, 2), to activate mast cell protease 6 (4), and to repress androgen receptor (5) and CD8 (6) genes.

Different functional and genetic evidences suggest that PATZ might be directly involved in human tumors. Indeed, PATZ1 is rearranged and deleted in small round cell sarcoma (3), and the chromosomal region where it is located (22q12) is included in the human fragile site FRA22B, which suffers loss of heterozygosity in tumors (7). Increased expression of PATZ1 mRNA has been observed in human malignant neoplasias, including colorectal (8), breast (9), and testicular (10) tumors. Moreover, PATZ knockdown by siRNA either blocks the growth or induces apoptosis of cell lines derived from colorectal cancer or gliomas, respectively (8, 11). However, in testicular tumors alone, PATZ protein expression has been analyzed.

This article has been withdrawn by the authors. Figs. 2D and 6E did not accurately represent experimental conditions. Additionally, the journal raised concerns with regards to Fig. 1C. The authors were not able to provide the original data for this figure. The authors state that these inaccuracies in figure representation did not affect any of the scientific conclusions of the paper.

© 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
demonstrating that it was mislocalized to cytoplasm (10, 12). Therefore, although PATZ1 is strongly suggested to be a cancer-related gene, its role as tumor suppressor or oncogene is still controversial.

In the present study, starting from a yeast two-hybrid screening using PATZ1 full-length cDNA as bait, we demonstrate that PATZ associates with BCL6,3 a protein that shares with PATZ the N-terminal POZ domain, responsible for such interaction, and is involved in B and T cell development and lymphomagenesis (13–15, 38). We show that PATZ participates in BCL6 function by enhancing its activity of transcriptional repressor on BCL6 promoter in GC-derived lymphoma B cells. We also show that the knock-down of PATZ in mice causes BCL6-expressing lymphomas in Patz1 knockdown mice indicates a potential haploinsufficient tumor suppressor role for the PATZ1 gene, whose disruption may lead to the lymphomas by activating the BCL6 pathway.

EXPERIMENTAL PROCEDURES

Two-hybrid Analysis—Two-hybrid screens were performed in yeast using full-length PATZ1 (isoform 4) cDNA as a bait. Human heart and placenta cDNA libraries (Clontech) were simultaneously analyzed. A total of about 2×10^6 clones were tested for each library, and the specificity of interaction was assessed as described previously (16).

Plasmids—Full-length and truncated (devoid of POZ domain) cDNAs for the human PATZ protein (isoform 4) were Myc-tagged at their 3′-end, were subcloned into the HindIII sites of the pcDNA3.1 plasmid, and used for the human BCL6 protein (isoform 2) containing the N-terminal POZ domain (of the pCEFL-HA vector (17)).

Protein Extraction, Immunoprecipitation, and Immunoblot Analysis—Tissues and cells were lysed in buffer containing 1% Nonidet P-40, 1 mmol/liter EDTA, 50 mmol/liter Tris-HCl (pH 7.5), and 150 mmol/liter NaCl supplemented with Complete protease inhibitors (Roche Applied Science). Total proteins were immunoprecipitated, in the presence or absence of 100 ng/ml ethidium bromide, as described previously (19), or they were directly resolved in a 10% polyacrylamide gel under denaturing conditions and transferred to nitrocellulose filters for Western blot analyses. Membranes were blocked with 5% BSA in TBS and incubated with the primary antibodies. The antibodies used were: anti-HA (sc-805), anti-Myc (sc-40), anti-BCL6 (sc-858), anti-tubulin (sc-5546), anti-vinculin (sc-7649) (Santa Cruz Biotechnology, Santa Cruz, CA), and anti-PATZ (polyclonal antibody raised against a conserved peptide recognizing all PATZ isoforms of mouse and human origin).

Cell Cultures and Transcriptional Activity Assays—Raji cells, originally derived from a Burkitt lymphoma, were cultured in RPMI 1640 medium adjusted to contain 1.5 g/liter sodium bicarbonate, 4.5 g/liter glucose, 10 mm HEPES, 1.0 mm sodium pyruvate, penicillin/streptomycin (Invitrogen/Life Technologies Italia, Monza, Italy), and 10% FBS (JRH Biosciences, Lenexa, KS). They were transfected by using the Amaxa Nucleofector kit V (Lonza, Cologne, Germany) following the manufacturer’s instructions. COS-1 cells were cultured in DMEM with 10% FBS (JRH Biosciences). They were transfected using Lipofectamine Plus reagents (Invitrogen/Life Technologies Italia) according to the manufacturer’s instructions and harvested 42 h after transfection. Cell lysates were extracted as described below and analyzed for luciferase activity. For transcriptional activity assays, a total of 2×10^6 cells (Raji) were seeded into each well of a 12-well plate and transiently transfected with 4 μg of BCL6i-luc, 5 μg of HA-BCL6, and 0.25–0.5 μg of PATZ-Myc, together with 1 μg of Renilla and various amounts of the backbone vectors to keep the total DNA concentration constant. Transfection efficiency, normalized for Renilla expression, was assayed with the Dual-Luciferase system (Promega Corp., Madison, WI). All transfection experiments were repeated at least three times. Aliquots of the same lysates were resolved on SDS-PAGE, transferred to nitrocellulose, and incubated with anti-BCL6, anti-PATZ, and anti-vinculin antibodies, as above described.

Chromatin Immunoprecipitation—Chromatin immunoprecipitation (ChIP) of Raji cells (polyclonal antibody raised against a conserved peptide recognized by the anti-PATZ antibody) was performed as described.

We also used real-time quantitative PCR to amplify the BCL6 exon 1, as described below. Primers specific for the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene were used for normalization of real-time quantitative PCR data. The following primers were used: qBcl6 exon 1, forward, 5′-CTCTTACTCGCTTCTCTAA-3′; BCL6 exon 1 reverse, 5′-CCGCCGGCGACACACACACATCAC-3′; LPL pr, forward, 5′-ACCAGGTGTCAAGGGCAA-3′; and LPL pr, reverse, 5′-ATTCCCTAAACCAGCATC-3′.

We used real-time quantitative PCR to amplify the BCL6 exon 1, as described below. Primers specific for the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene were used for normalization of real-time quantitative PCR data. The following primers were used: qBcl6 exon 1, forward, 5′-TAAACCACACCAACTTGCCAAAAG-3′; qBcl6 exon 1 reverse, 5′-CTCTTCTGACACACACACATCAC-3′; LPL pr, forward, 5′-TGA-CTCTTATCTGGAACACTCA-3′; and LPL pr, reverse, 5′-TTGGAAATGTGCGACCAAGCG-3′.

Generation of Patz1-Knock-out Mice—The Patz1 gene targeting vector was derived from a λΦXIII phage library of a 129SvJ mouse strain (Stratagene, La Jolla, CA). It was designed to delete a 2317-bp PstI-XhoI fragment, including the start codon, the coding regions for the POZ domain, the AT-hook, and the first four zinc fingers. It was constructed by subcloning the 5′-flanking region (the Spel-PstI 3-kb fragment), the neo cassette, and the 3′-flanking region (the XhoI-XbaI 3.2-kb fragment) into the Bluescript plasmid (Stratagene) that contained a PacI digestion site inserted at a distance from the multicloning site. The targeting vector was linearized with PacI before electroporation into embryonic stem (ES) cells (Incyte Genomics,

3 The abbreviations used are: BCL6, B cell lymphoma 6 protein; BCL, B type lymphoma; GC, germinal center; ES, embryonic stem.
PATZ Is Crucial for BCL6 Negative Autoregulation

Palo Alto, CA). Among 700 G418-resistant ES clones examined, 10 (1.4%) underwent homologous recombination. Two correctly targeted ES cell lines were injected into C57Bl/6J blastocysts. Both ES cell lines gave rise to germ line chimeras that were backcrossed to C57Bl/6J females to allow PATZ1 heterozygous offspring. For Southern blot analysis, tail DNA samples were digested with StuI and probed with an external 5’ genomic fragment that would detect 9.3- or 8-kb fragments, corresponding to the wild-type and mutant alleles, respectively. The mice were maintained under specific pathogen-free conditions, and all studies were conducted in accordance with Italian regulations for experimentations on animals.

Isolation of mRNA and Quantitative RT-PCR—Total RNA was extracted using TRI-reagent solution (Sigma) according to the manufacturer’s protocol, treated with DNase I (Invitrogen/Life Technologies Italia), and reverse-transcribed using random hexanucleotides as primers and MuLV reverse transcriptase (PerkinElmer Life Sciences) following the manufacturer’s protocol. Total RNA isolated from tumor masses or normal tissues from control mice, and Southern blotting was performed with the 32P-labeled DNA probe corresponding to the JH4 region of the IgH locus (21). Analysis of the Gapdh gene was used for standard procedures. Mounted sections (5 μm thick) were stained for FACS analysis on a FACSCalibur flow cytometer (BD Biosciences, Buccinasco, Italy) as described previously (22). All the antibodies used were obtained from Pharmingen.

RESULTS

PATZ Interacts with BCL6—To identify PATZ interacting proteins, two-hybrid screenings of human heart and placenta pretransformed libraries were performed. A total of 87 positive clones (61 and 26 from heart and placenta, respectively) were isolated. Fourteen clones from heart and two from placenta libraries contained most of the coding sequence of the BCL6 gene (data not shown). To confirm the interaction between PATZ and BCL6 in mammalian cells, co-immunoprecipitation experiments were performed. To this aim, total cell extracts from COS-1 cells transiently transfected with constructs encoding Myc-tagged PATZ, Myc-tagged PATZ-ΔPOZ (devoid of the BTB/POZ domain), and HA-tagged BCL6 (Fig. 1A) were subjected to immunoprecipitation using anti-Myc antibody. As shown in Fig. 1B, co-precipitation of the BCL6 protein was observed when constructs for BCL6 and full-length PATZ were co-transfected, and not when BCL6 was transfected together with PATZ-ΔPOZ or with the backbone vector. Therefore, PATZ and BCL6 form a complex in mammalian cells, and the POZ domain of PATZ is necessary for such interaction.

Histology and Immunohistochemistry—Dissected tissues were fixed in 10% formalin and embedded in paraffin by standard procedures. Mounted sections (5 μm thick) were stained with hematoxylin and eosin or incubated in a 750-watt microwave oven for 15 min in EDTA (10 mM, pH 8.0) and processed for immunohistochemistry using the avidin-biotin-peroxidase LSAB+ kit (Dako, Glostrup, Denmark). Endogenous peroxidase was quenched by incubation in 0.1% sodium azide with 0.3% hydrogen peroxide for 30 min at room temperature. Non-specific binding was blocked by incubation with nonimmune serum. The antisera were directed toward B220 (RA3-6B2; SouthernBiotec, Birmingham, AL), CD3 (ab5690; Abcam, Cambridge, UK), CD79a (ab3121; Abcam), BCL6 (sc-858; Santa Cruz Biotechnology), and PATZ (described above).

IgH Gene Rearrangement Analysis—Genomic DNA was isolated from tumor masses or normal tissues from control mice, and Southern blot analysis was performed with the 32P-labeled DNA probe corresponding to the JH4 region of the IgH locus (21). Analysis of the Gapdh gene was used for form a complex in mammalian cells, and the POZ domain of PATZ is necessary for such interaction.
PATZ Is Crucial for BCL6 Negative Autoregulation

FIGURE 2. Role of PATZ on BCL6 promoter. A, ChIP analysis performed on Raji cells using α-PATZ and α-BCL6 polyclonal antibodies to detect the endogenous (in vivo) binding of PATZ and BCL6 to exon 1 of BCL6. The recovered DNA was used as a template for PCR with primers that specifically amplify exon 1 of BCL6 or the promoter region of the LPL gene (negative control). Input represents DNA without immunoprecipitation. Nonspecific IgG was used as a negative control. B, ChIP assay, revealed binding of PATZ and BCL6 proteins to exon 1 of Bcl6 DNA. The percentage of immunoprecipitated DNA with respect to the input is reported. C, luciferase activity of the BCL6 promoter (−4.9 to +2.0 kb) in Raji cells. Where indicated, backbone vectors were co-transfected with the BCL6i-luc plasmid. Where required, backbone vectors were co-transfected with the BCL6i-luc plasmid for each experimental point. Data express mean ± S.D. of three independent experiments. Asterisks indicate the statistical results of a multiple comparison test versus promoter basic activity. **, p < 0.01; ***, p < 0.001. D, representative Western blot analysis of BCL6 expression plasmid in cells transfected or not with increasing amounts of PATZ expression plasmid, as in C. As a control for equal loading, the same blot was incubated with antibodies against vinculin. E, Western blot analysis of BCL6 expression in mouse embryonic fibroblasts from Patz1-null mouse embryonic fibroblasts and Patz1+/+ mouse embryonic fibroblasts transfected with BCL6 expression plasmid. Western blot analysis of Raji cells transfected or not with increasing amounts of PATZ expression plasmid, as in Fig. 2C, further demonstrates that PATZ and BCL6 interact in vivo.

PATZ Is Involved in BCL6 Negative Autoregulation—To study the functional consequences of the interaction between PATZ and BCL6, we investigated whether PATZ and BCL6 associate on a BCL6 endogenous target promoter. Previous experiments demonstrated that the BCL6 gene contains two non-STAT6 functional BCL6 binding sites located within exon 1 (23). Thus, we examined whether PATZ could bind exon 1 of the BCL6 gene in vivo. Endogenous PATZ and BCL6 bind to exon 1 of BCL6, as determined by ChIP experiments in Raji cells (Fig. 2A). This result was further confirmed in vivo using mouse spleens, a tissue that harbors GC cells, where both PATZ and BCL6 proteins were immunoprecipitated on BCL6 exon 1 (Fig. 2B). Interestingly, BCL6 binding to its own promoter was enhanced (Fig. 2B) in spleens lacking PATZ (obtained from Patz1 knockout mice described below). The absence of immunoprecipitated PATZ in Patz1−/− mouse spleens confirmed the binding of PATZ to BCL6 exon 1 observed in the wild-type mice.

It is known that BCL6, by binding to its exon 1 and recruiting the distal cis-acting factor ZEB1, represses its own transcription, thus establishing a circuit of negative autoregulation (23, 24). To further investigate the role of PATZ in such a function of BCL6, we used a reporter construct driving luciferase gene expression under control of a BCL6 genomic sequence of 6.9 kb, including the ZEB1-responsive element, exon 1, and 1.5 kb of intron 1 (BCL6i-luc) (18). Raji cells were co-transfected with BCL6i-luc and plasmids expressing PATZ, BCL6, or both proteins (Fig. 2C). As expected, BCL6 expression resulted in down-regulation of the BCL6 promoter activity. A similar, but less strong, activity was also achieved by PATZ, leading to a dose-dependent repression of this BCL6 promoter region. Interestingly, PATZ and BCL6 co-transfection resulted in the enhancement of the BCL6-dependent repression (Fig. 2C). Western blot analysis of Raji cells transfected or not with increasing amounts of PATZ expression plasmid, as in Fig. 2C, confirmed the negative dose-dependent effect of PATZ on BCL6 expression (Fig. 2D). To finally assess the dependence of BCL6 expression from PATZ, we analyzed, by Western blot, the BCL6 protein levels in mouse embryonic fibroblasts from Patz1+/+ and Patz1−/− mice (described below). As shown in Fig. 2E, Patz1−/− mouse embryonic fibroblasts showed a significant increase in BCL6 expression, which confirms the negative regulatory role of PATZ on it.

Disruption of Mouse Patz1 Gene Causes Thymus B Cell Expansion, Which Eventually Leads to B Cell Lymphomas—To gain insights into the physiological role of PATZ in vivo, we targeted vector was designed to knock out the mouse Patz1 gene

JOURNAL OF BIOLOGICAL CHEMISTRY 18311
PATZ Is Crucial for BCL6 Negative Autoregulation

FIGURE 3. Generation of Patz1 knock-out mice. A, schematic representation of the wild-type and mutant alleles and the targeting vector. St, StuI; Sp, SpeI; P, PstI; Ex, exon; Xb, XbaI. B and C, quantitative RT-PCR (B) and Western blot analysis (C) in tissues from Patz1+/−, Patz1−/−, and Patz1−/− mice, to detect PATZ expression and confirm its knock-out at both RNA and protein levels. Data express mean ± S.D. of three independent experiments.

By 2–3 months of age, with a similar frequency (75%), Patz1+/− and Patz1−/− mice develop thymus hyperplasias characterized by focal expansion of an intramedullary B cell population (Fig. 4A). B cells are the minority cell type (0.82 ± 0.50%) in the thymus of wild-type animals, as confirmed by FACS analysis in a cohort of 20 animals, but significantly increase to an average of 5.94 ± 4.42 (p < 0.05) in an equal number of Patz1+/− mice (Fig. 4B). A similar increase of B cells was also observed in Patz1−/−, where, for the limited number of available animals, we could only do a qualitative analysis (data not shown). To exclude that this B cell expansion could be due to formation of intrathymic reactive B cell follicles possibly induced by an altered CD4 helper versus cytotoxic subset ratio (25), we analyzed CD4+ and CD8+ lymphocyte populations by FACS in Patz1+/− thymi showing B cell hyperplasia, without finding any differences in comparison with wild-type controls (data not shown). Interestingly, in 4 out of 75 Patz1+/− mice sacrificed at an advanced age (17–22 months old), we also found thymus B cell lymphomas, characterized by large cells with marked cell-to-cell variation in size and shape and abundant pale cytoplasm, which were diagnosed as diffuse large B cell lymphomas by our pathologists (Fig. 4C and data not shown).

Thymus B Cell Lesions in Patz1 Knock-out Mice Are Dependent on Bcl6 Expression—Pathological thymus B cells are considered to originate from the GC (26). Accordingly, focal expression of BCL6 was detected in Patz1−/− knock-out thymus lesions (either hyperplasia or lymphomas) but was absent in the wild-type controls (Fig. 5A). Western blot analyses on thymus tissues from Patz1+/− mice confirmed the expression of BCL6, which was absent in Patz1−/− controls (Fig. 5B). Up-regulation of BCL6 in these cells is consistent with the role of PATZ in BCL6 autoregulation (see above), which leads us to suggest that decreased or null levels of PATZ causes up-regulation of BCL6 expression, which in turn would be responsible for the thymus pathological phenotype. To validate our hypothesis of a role for increased BCL6 in the development of certain phenotypes, we crossed Patz1+/− with Bcl6+/− mice to generate double mutants. Patz1−/−;Bcl6−/− mice died normally, because we observed the thymus pathological phenotype even in controls when we analyzed Patz1−/−;Bcl6+/− mice, we analyzed the histological features of the 41 available heterozygous Patz1/Bcl6 mutants. Patz1−/−;Bcl6−/− mice were equally distributed by gender and sacrificed at 12 months of age. Their thymus was analyzed by histological, immunohistochemical, and FACS assays. As shown in Fig. 5C, where representative FACS analyses are shown, 100% of the Patz1−/−;Bcl6−/− mice analyzed do not show any significant thymus B cell expansion as compared with the Patz1−/−;Bcl6+/− controls. Immunohistochemical analyses confirmed this result in 80% of the cases, whereas in the remaining 20% of double heterozygous mice, an aberrant thymus B cell hyperplasia was observed, but it was strongly reduced as compared with that observed in Patz1−/−;Bcl6−/− mice (Fig. 5D). These results confirm a key role for the up-regulation of BCL6 in the pathological thymus phenotype of Patz1 knock-out mice.

Increased Tumorogenesis in Patz1 Knock-out Mice—Although initially healthy, many adult Patz1−/− and most of the few available Patz1−/− mice developed signs of morbidity and displayed visible tumors as they aged. As evident in the survival curves in Fig. 6A, Patz1−/− and Patz1−/− mice showed an increased incidence of neoplastic lesions at ~17 or 21 months of age, respectively. Only 12% of the Patz1−/− and 67% of the Patz1−/− animals were tumor-free at 20 months, in contrast to the 95% of wild-type mice that were tumor-free at the same age.

The histological analyses revealed that 43 of 75 (57%) Patz1−/− and 9 of 11 (82%) Patz1−/− mice developed malignant tumors, versus only 7 of 63 (11%) wild-type mice. Patz1 knock-out tumors were mainly lymphomas, but hepatocellular carcinomas and rare sarcomas and lung adenocarcinomas were also detected. Wild-type animals developed lymphomas and

4 T. Valentino, D. Palmieri, M. Vitiello, A. Simeone, G. Palma, C. Arra, P. Chieffi, L. Chiariotti, A. Fusco, and M. Fedele, manuscript submitted.
one hepatocellular carcinoma (Fig. 6B and data not shown). Lymphomas from wild-type mice were all of the B cell lineage but did not show BCL6 expression nor PATZ down-regulation as compared with normal controls (data not shown).

To determine whether the tumors in Patz1^{−/−} mice occurred via loss of heterozygosity or haploinsufficiency, PATZ protein expression and Patz1 gene sequence were analyzed in the tumor tissues from Patz1^{−/−} mice. Western blot (Fig. 6C) and immunohistochemical analysis (data not shown) revealed that PATZ was present in all of the tumors examined. Furthermore, sequence analysis of Patz1 cDNA isolated from eight Patz1^{−/−} tumors showed no mutation or rearrangement (data

FIGURE 4. Thymus neoplasias in Patz1 knock-out mice. A, immunohistochemical analysis in representative thymus sections of Patz1^{+/+} and Patz1^{+/−} mice. B220 staining shows the presence of a focal B cell hyperplasia in the medulla of the mutant sample, whereas only scattered B cells were present in the wild-type control. Scale bars, 100 μm. B, flow cytometry dot blots of the thymi showed in B stained with CD19 and CD5 antibodies. A distinct population of cells that positively stains with CD19-PE antibody in the Patz1^{+/−} (lower panel) is evident. No appreciable CD19⁺ cell population was found in the wild-type control (upper panel). For each analysis, 10,000 events were counted. The relative percentage of CD19⁺ cells (B lymphocytes) was indicated in the right-bottom corner of each dot plot. PE, Phycoerythrin. C, representative sample of a thymus B cell lymphoma developed by a Patz1^{−/−} mouse. Left panels, hematoxylin and eosin staining; right panels, immunostaining for B220. Scale bars, 100 μm.
FIGURE 5. Key role of BCL6 in thymus B cell expansion of *Patz1* knock-out mice. A, immunohistochemical staining of BCL6 in representative thymus samples from *Patz1*+/+ (left panel) and *Patz1*+/- (right panel) mice. Scale bar, 100 μm. B, Western blot analysis for BCL6 expression in a pool of three *Patz1*+/+ and three *Patz1*+/- thymi. C, flow cytometry of representative thymi from *Patz1*+/+, *Bcl6*+/+, *Patz1*+/-, *Bcl6*+/-, *Patz1*+/-, *Bcl6*+/-, and *Patz1*+/-, *Bcl6*+/- mice. The thymocytes were double-stained for specific B (CD19) and T cell (CD5) surface antigens. For each analysis, 10,000 events were counted. The relative percentage of CD19+ cells (B lymphocytes) was indicated in the right-bottom corner of each dot plot. CD19-PE, CD19-Phycoerythrin staining. D, immunohistochemical analysis of the thymi shown in C to detect B cells (stained with anti-B220). Only scattered positive cells were detected in *Patz1*+/+, *Bcl6*+/- (α, β) and most *Patz1*+/-, *Bcl6*+/- thymi (γ, ζ). Large focal hyperplasias of B cells were detected in *Patz1*+/-, *Bcl6*+/- (η, θ) thymi, and small focal positivity was detected in some *Patz1*+/-, *Bcl6*+/- thymi (ε, ι). Scale bars, 100 μm.
not shown). These results indicate that haploinsufficiency, rather than loss of heterozygosity, accounts for the tumor occurrence in \(Patz1^{+/+}/H11001/H11002 \) mice, thus suggesting \(Patz1 \) as a haploinsufficient tumor suppressor gene.

Spleen lymphomas were the most representative malignant diseases in \(Patz1 \) knock-out mice, and they were further characterized to determine the mechanism by which reduced \(Patz1 \) expression induces such neoplasias. Tumor sections from \(Patz1^{+/+} \) mice were stained with antibodies raised against T cell- and B cell-specific markers to determine the cell type of origin of the lymphoma. Interestingly, we found both B type and T type lymphomas with a prevalence of B (28%) versus T lymphomas (17%). The B type lymphoma (BCL) subtypes, as defined by Morse et al. (28), were as follows: (a) diffuse large B cell (16.8%), (b) follicular B cell (5.6%), (c) pre-B cell (2.8%), and (d) small B cell lymphomas (2.8%) (Fig. 6D). Flow cytometry analysis confirmed the immunohistochemical data (data not shown). To further characterize lymphoid neoplasias, \(IgH \) gene rearrangements were analyzed by Southern blot on EcoRI-digested spleen DNA. Control (+/+) is the wild-type mouse with the genomic 6.5-kb fragment representing the gene in its germ line configuration. All hyperplastic (Hy) and B cell lymphoma samples from \(Patz1^{+/+} \) mice, and normal spleen from a \(Patz1^{-/-} \) mouse, show rearranged extra bands (asterisks). The histological diagnoses of the spleens are indicated above.

FIGURE 6. Increased lymphomagenesis in \(Patz1 \) knock-out mice. A, Kaplan-Meyer tumor incidence analysis of \(Patz1^{+/+} \), \(Patz1^{+/-} \), and \(Patz1^{-/-} \) mice. Cohorts of 63 wild-type, 75 heterozygous, and 11 homozygous \(Patz1 \) knock-out mice were monitored and harvested when they exhibited symptoms of disease. The curves were significantly different \((p < 0.0001) \) as determined by log rank test. B, the lymphoid phenotype, as a function of the relative percentage, in mice homozygous and heterozygous for the \(Patz1 \)-null mutation versus wild-type controls was plotted as pie charts. The number of mice analyzed for each genotype is the same as in A. C, Western blot analysis showing expression of BCL6 and PATZ in spleen samples from \(Patz1^{+/+} \) and \(Patz1^{+/-} \) mice. \(\alpha \)-Tubulin expression was evaluated as a loading control. N, normal; Hy, hyperplasia; Ly, lymphoma. D, immunohistochemical staining for the phenotypic characterization of lymphomas in \(Patz1 \) knock-out mice. Representative \(Patz1^{+/+} \) spleen samples of all types of lymphomas observed are shown (for the percentage of each type, see under "Results"). Antibodies used for the staining are indicated on the top. H&E, hematoxylin and eosin staining; DLBCL, diffuse large cell B cell lymphoma; TCL, T cell lymphoma; pre-BCL, pre-B cell lymphoma; FBL, follicular B cell lymphoma; SBL, small B cell lymphoma. Scale bars, 100 \(\mu \)m. E, \(IgH \) gene rearrangements were analyzed by Southern blot on EcoRI-digested spleen DNA. Control (+/+) is the wild-type mouse with the genomic 6.5-kb fragment representing the gene in its germ line configuration. All hyperplastic (Hy) and B cell lymphoma samples from \(Patz1^{+/+} \) mice, and normal spleen from a \(Patz1^{-/-} \) mouse, show rearranged extra bands (asterisks). The histological diagnoses of the spleens are indicated above.
early stage in the development of BCLs. The same Southern blot was also probed for \textit{gapdh}, which gave rise to a unique band for all loaded samples (data not shown). Both BCLs and lymphoproliferative diseases expressed BCL6, whereas it was not detectable in wild-type controls or normal spleens from \textit{Patz1} knock-out mice (Fig. 6C), suggesting a key role for this oncoprotein in development of such neoplasias.

DISCUSSION

Previous studies suggest a cancer-related role for \textit{Patz} (3, 8–11), but the mechanisms by which \textit{Patz} is involved in the process of carcinogenesis are still controversial. Our data indicate that \textit{Patz} acts as a tumor suppressor in lymphomagenesis by inhibiting BCL6 expression. We first showed that \textit{Patz} and BCL6 bind to each other. This finding is consistent with the notion that POK proteins, such as \textit{Patz} and BCL6, commonly aggregate in large nuclear complexes by self-interaction, as heterodimers with other POK proteins and in association with unrelated partners, such as transcriptional corepressors, as a way to extend the repertoire of their target genes and/or the ways they act on their expression (29). BCL6 is the most commonly altered proto-oncogene in non-Hodgkin lymphomas, the majority of which derive from normal GC B cells (30). In fact, its sustained expression causes malignant transformation of GC B cells (31). Nearly half of human diffuse large B cell lymphomas, the most common form of non-Hodgkin lymphomas, express BCL6 constitutively, mainly as a consequence of BCL6 gene rearrangements and activating point mutations that target the 5’ regulatory region of this gene (13, 14, 36). Transcription of the BCL6 gene is repressed by Patz1, which acts together with BCL6 in its autoregulation. However, we cannot exclude that \textit{Patz} can also act without BCL6, thus contributing to keep BCL6 expression off when BCL6 is not expressed at all. Consistent with a role of \textit{Patz} in BCL6 negative regulation, we also show that mice carrying a null mutation of the \textit{Patz} gene develop an aberrant expansion of thymus B cells, in which BCL6 expression is up-regulated. We believe that this phenotype, which we demonstrated to be dependent on BCL6 expression, is also responsible for the development of BCLs that we observe in both thymi and spleens of \textit{Patz1} knock-out mice at a later age.

In conclusion, our data indicate a haploinsufficient tumor suppressor role for \textit{Patz} that would act in lymphomagenesis by down-regulating BCL6 expression.

Acknowledgments—We are grateful to Riccardo Dalla-Favera for providing us with the Bcl6+/− mice. We also thank Vincenzo Fidanza, Rosa Visone, Ivana De Martino, Ida Pellegrino, Michela Vitiello, Giuseppe Scognamiglio, and Giuseppe Palma for helpful contributions under “Experimental Procedures” and animal care.

REFERENCES

1. Fedele, M., Benvenuto, G., Battista, S., Lemo, F., Pero, R., Bruni, C. B., Gualandri, L., Bruni, C. B., Fusco, A., and Igarashi, K. (2000) A combinatorial code for gene expression generated by transcription factor Bach2 and MAZR (MAZ-related factor) through the BTB/POZ domain. Mol. Cell Biol. 20, 4746–4756.
2. Stranganelo, T., Modena, P., Tornelli, S., Bullrich, F., Testi, M., Azzarelli, A., Pilotti, S., Croce, C. M., Pierotti, M. A., and Sozzi, G. (2000) A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 19, 3799–3804.
3. Morii, E., Oboki, K., Kataoka, T. R., Igashira, K., and Kitamura, Y. (2002) Interaction and cooperation of mi transcription factor (MITF) and myc-associated zinc-finger protein-related factor (MAZR) for transcription of mouse mast cell protease 6 gene. J. Biol. Chem. 277, 8566–8571.
4. Pero, R., Lemo, F., Palmieri, E. A., Vitiello, C., Fedele, M., Fusco, A., and Igarashi, K. (2002) PATZ attenuates the RNF4-mediated enhancement of androgen receptor-dependent transcription. J. Biol. Chem. 277, 3280–3285.
5. Bilić, I., Koesters, C., Unger, B., Sekimata, M., Hertweck, A., Maschek, R., Wilson, C. B., and Ellmeier, W. (2006) Negative regulation of CD8 expression via Cd8 enhancer-mediated recruitment of the zinc finger protein MAZR. Nat. Immunol. 7, 392–400.
6. Burrow, A. A., Williams, L. E., Pierce, L. C., and Wang, Y. H. (2009) Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites. BMC Genomics 10, 59.
7. Tian, X., Sun, D., Zhang, Y., Zhao, S., Xiong, H., and Fang, J. (2008) Zinc finger protein 278, a potential oncogene in human colorectal cancer. Acta Biochim. Biophys. Sin. 40, 289–296.
8. Yang, W. L., Ravaud, R., Kudoh, K., Alabanza, L., and Chin, K. V. (2010) Interaction of the regulatory subunit of the cAMP-dependent protein kinase with \textit{Patz1} (ZNF278). Biochem. Biophys. Res. Commun. 391, 1318–1323.
9. Fedele, M., Franco, R., Salvatore, G., Paronetto, M. P., Barbagallo, F., Pero, R., Chiarotti, L., Sette, C., Tramontano, D., Chieffi, G., Fusco, A., and Chieffi, P. (2008) \textit{Patz1} gene has a critical role in the spermatogenesis and testicular tumors. J. Pathol. 215, 39–47.
10. Tritz, R., Mueller, B. M., Hickey, M. J., Lin, A. H., Gomez, G. G., and Advier, S.
Ichii, H., Sakamoto, A., Kuroda, Y., and Tokuhisa, T. (2004) Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J. Immunol. 173, 883–891

Cattoretti, G., Pasqualucci, G., Ballon, G., Tam, W., Nandula, S. V., Shen, Q., Mo, T., Murty, V. V., and Dalla-Favaera, R. (2005) Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455

Lemio, F., Poro, R., Angrisano, T., Vitillo, C., Juliano, R., Bruni, C. B., and Chiariotti, L. (2003) MBD2, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Mol. Cell Biol. 23, 1656–1665

Melillo, R. M., Piersantoni, G. M., Scala, S., Battista, S., Fedele, M., Stella, A., De Biasio, M. C., Chiappetta, G., Fidanza, V., Condorelli, G., Santoro, M., Croce, C. M., Viglietto, G., and Fusco, A. (2001) Critical role of the HMG1(Y) proteins in adipocytic cell growth and differentiation. Mol. Cell Biol. 21, 2485–2495

Papadopoulou, V., Postigo, A., Sánchez-Tilló, E., Porter, A. C., and Wagner, S. D. (2010) ZEB1 and CTBP form a repressive complex at a distal promoter element of the BCL6 locus. Biochem. J. 427, 541–550

Fedele, M., Visone, R., De Martino, I., Troncone, G., Palmieri, D., Botta, S., Ciaramello, A., Pallante, P., Arra, C., Melillo, R. M., Hantscher, C. M., and Fusco, A. (2006) HMGA2 induces p53-dependent cell death by enhancing EZF1 activity. Cancer Cell 9, 459–470

Lavik, K. J., and Schmittgen, T. (2001) An integrated data analysis using real-time quantitative PCR. Forensic Sci. Int. 110, 11–20

Bichi, R., Shinton, S. A., Martin, I., Russo, G., Hardy, R. R., and Croce, C. M. (2000) Targeting murine myelogenous leukemia modeled in mouse by siRNA. Proc. Natl. Acad. Sci. U.S.A. 99, 6955–6960

Fedele, M., Fidanza, V., Battista, S., Pentimalli, F., Klein-Szanto, A. J., Visone, R., De Martino, I., Curcio, A., Morisco, C., Vecchio, L., Baldassarre, G., Arra, C., Viglietto, G., Indolfi, C., Condorelli, G., and Fusco, A. (2006) Haploinsufficiency of the Hmgal gene causes cardiac hypertrophy and myelo-lymphoproliferative disorders in mice. Cancer Res. 66, 2536–2543

Wang, X., Li, Z., Naganuma, A., and Ye, B. H. (2002) Negative autoregulation of BCL6 is bypassed by genetic alterations in diffuse large B cell lymphomas. Proc. Natl. Acad. Sci. U.S.A. 99, 15018–15023

Pasqualucci, L., Migliazza, A., Basso, K., Hoodsworth, J., Chaganti, R. S., and Dalla-Favaera, R. (2003) Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101, 2914–2923

Sakaguchi, S., Hombauer, M., Bilic, I., Naoe, Y., Schebesta, A., Taniuchi, I., and Ellmeier, W. (2010) The zinc-finger protein MAZ12 is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nat. Immunol. 11, 442–448

Csernus, B., Timár, B., Fülöp, Z., Bognár, A., Szepesi, A., László, T., Jákó, P., Warnke, R., Kopper, L, and Matolcsy, A. (2004) Mutational analysis of IgV, and BCL-6 genes suggests thymic B-cells originate of mediastinal (thymic) B-cell lymphoma. Leuk. Lymphoma 45, 2105–2110

Ye, B. H., Cattoretti, G., Shen, Q., Zhang, J., Hawe, N., de Waard, R., Leung, C., Nouri-Shirazi, M., Orazzi, A., Chaganti, R. S., Rothman, P., Stall, A. M., Pandolfi, P. P., and Dalla-Favaera, R. (1997) The BCL6 proto-oncogene controls germinal-center formation and TH2-type inflammation. Nat. Genet. 16, 161–170

Morse, M. H., 3rd, Anver, M. R., Fredrickson, T. N., Haines, D. C., Harris, A. W., Harris, N. L., Jaffe, E. S., Kogan, S. C., MacLennan, I. C., Pattengale, P. K., and Ward, I. M. (2002) Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 100, 246–258

Davies, J. M., Hawe, N., Kabarowski, J., Huang, Q. H., Zhu, J., Brand, N. J., Leprince, D., Dharadain, P., Cook, M., Morris-Kay, G., and Zelent, A. (1999) Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ3/BCL6 oncogene. Oncogene 18, 365–375

Fearon, D. T., Manders, P., and Wagner, S. D. (2001) Arrested differentiation, the self-renewing memory lymphocyte, and vaccine. Science 293, 248–250

Cl, W., Polo, J. M., Ci, W., Shaknovich, R., Wang, L., Yang, S. N., Ye, K., Basso, K., Gascoyne, R. D., Elemento, O., and Mel- lon program features repression of MBD2 and is deregulated in DLBL. Blood 119, 3517–3527

Leprince, D., Dhordain, P., Cook, M., Morriss-Kay, G., and Zelent, A. (2009) The BCL6 transcriptional program features repression of proto-oncogene dis-rupting down-regulation of BCL6. Cancer Cell 17, 2175–2186

Mendez, L. M., Polo, J. M., Yu, J. J., Krupski, M., Ding, B. B., Melnick, A., Melnick, A., Saito, M., Gao, J., Basso, K., Kitagawa, Y., Smith, P. M., Bhagat, G., Pernis, A., Pasqualucci, L., and Dalla-Favaera, R. (1994) Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin’s lymphoma. Hum. Pathol. 30, 803–808

Skinnider, B. F., Horsman, D. E., Dupuis, B., and Gascoyne, R. D. (1999) BCL6 and B-cell protein expression in diffuse large B-cell lymphomas and follicular lymphomas: correlation with IgVH and 18q21 chromosomal abnormalities. Hum. Pathol. 30, 803–808

Saito, M., Gao, J., Basso, K., Kitagawa, Y., Smith, P. M., Bhagat, G., Pernis, A., Pasqualucci, L., and Dalla-Favaera, R. (2007) A signaling pathway mediating down-regulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 12, 280–292

Mendez, L. M., Polo, J. M., Yu, J. J., Krupski, M., Ding, B. B., Melnick, A., Ye, B. H. (2008) CtBP is an essential co-repressor for BCL6 autoregulation. Mol. Cell Biol. 28, 2175–2186

Dent, A. L., Stafler, A. L., Yu, X., Allman, D., and Staudt, L. M. (1997) Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592
POZ-, AT-hook-, and zinc finger-containing protein (PATZ) interacts with human oncogene B cell lymphoma 6 (BCL6) and is required for its negative autoregulation.

Raffaela Pero, Dario Palmieri, Tiziana Angrisano, Teresa Valentino, Antonella Federico, Renato Franco, Francesca Lembo, Andres J. Klein-Szanto, Luigi Del Vecchio, Donatella Montanaro, Simona Keller, Claudio Arra, Vasiliki Papadopoulou, Simon D. Wagner, Carlo M. Croce, Alfredo Fusco, Lorenzo Chiarotti, and Monica Fedele

PAGE 18315:

Western blot images representing PATZ, BCL6, and tubulin in Fig. 6C did not accurately represent the experimental results. Different lanes were erroneously duplicated. Lane 3 of the PATZ panel was duplicated in lane 7; lane 4 of the PATZ panel was duplicated in lanes 5 and 6; lane 1 of the BCL6 panel was duplicated in lane 2; lane 4 of the tubulin panel was duplicated in lane 7; and lane 5 of the tubulin panel was duplicated in lane 6. The authors have provided an image from a replicate experiment. This correction does not affect the interpretation or conclusions of this work.
