Na4.25Mo15S19: a novel ternary reduced molybdenum sulfide containing Mo6 and Mo9 clusters
Diala Salloum, Patrick Gougeon, Philippe Gall

To cite this version:
Diala Salloum, Patrick Gougeon, Philippe Gall. Na4.25Mo15S19: a novel ternary reduced molybdenum sulfide containing Mo6 and Mo9 clusters. Acta Crystallographica Section E: Structure Reports Online, International Union of Crystallography, 2014, 70 (Pt 6), pp.E70, i30. <10.1107/S160053681401201X>. <hal-01016047>
Na$_{4.25}$Mo$_{15}$S$_{19}$: a novel ternary reduced molybdenum sulfide containing Mo$_6$ and Mo$_9$ clusters

D. Salloum, P. Gougeon and P. Gall

Acta Cryst. (2014). E70, i30

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The average publication time is less than one month. Articles are published in a short-format style with enhanced supplementary materials. Each publication consists of a complete package – the published article, HTML and PDF supplements, CIF, structure factors, graphics, and any other submitted supplementary files.

Crystallography Journals Online is available from journals.iucr.org
Na$_{4.25}$Mo$_{15}$S$_{19}$: a novel ternary reduced molybdenum sulfide containing Mo$_6$ and Mo$_9$ clusters

D. Salloum,a P. Gougeonb and P. Gallb

aFaculty of Science III, Lebanese University, PO Box 826, Kobbeh–Tripoli, Lebanon, and bUnité Sciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes 1 – INSA Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France

Received 21 May 2014; accepted 23 May 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean occupancy of Mo–S = 0.001 Å; disorder in solvent or counterion; R factor = 0.030; wR factor = 0.079; data-to-parameter ratio = 22.7.

The structure of Na$_4$Mo$_{15}$S$_{19}$, isotypic with Na$_{3.96}$Mo$_{15}$Se$_{19}$ [Salloum et al. (2013)]. Acta Cryst. E69, i67–i68. It is characterized by Mo$_6$S$_6$O$_6$ and Mo$_9$S$_{11}$O$_6$ (where i represents inner and a apical atoms) cluster units that are present in a 1:1 ratio. The cluster units are centered at Wyckoff positions 2a and 2c, and have point-group symmetry 3 and 6, respectively. The clusters are interconnected through additional Mo–S bonds. The Na$^+$ cations occupy interunit voids formed by six or seven S atoms. One Mo, one S and one Na site (full occupancy) are situated on mirror planes, and two other S atoms. One Mo$_9$ cluster, one S and one Na site are situated on mirror planes, and two other S atoms and one Na site (full occupancy) are situated on threefold rotation axes.

Related literature

For previous reports on the crystal structure of the In$_{3-x}$Mo$_{15}$S$_{19}$ compounds, see: Grüttnner et al. (1979). For physical properties of this type of compounds, see: Seeber et al. (1979). The crystal structures of the substituted selenides H$_{0.76}$In$_{1.68}$Mo$_{15}$Se$_{19}$ and In$_{0.87}$K$_2$Mo$_{15}$Se$_{19}$ were reported by Salloum et al. (2006; 2007). For the isotypic sulfides In$_{3.7}$Mo$_{15}$S$_{19}$, In$_{1.6}Rb$_2Mo_{15}S_{19}$, In$_{2.2}$CsMo$_{15}S_{19}$, Sc$_3Tl_2Mo_{15}S_{19}$, Na$_3Mo_{15}S_{19}$ and Na$_{3.9}$Mo$_{15}$Se$_{19}$, see: Salloum et al. (2004a,b). For $V_{1.42}$In$_{1.83}$Mo$_{15}$Se$_{19}$, see: Gougeon et al. (2010). For details of the i- and a-type ligand notation, see: Schäfer & von Schnering (1964).

Experimental

Crystal data

Na$_{4.25}$Mo$_{15}$S$_{19}$

$M_r = 2145.95$

Hexagonal, $P6_3/m$

$a = 9.5340$ (1) Å

$c = 18.9803$ (3) Å

$V = 1494.11$ (3) Å3

Absorption correction: analytical

$R_{	ext{int}} = 0.085$

$T = 293$ K

$\mu = 7.44$ mm$^{-1}$

ω scans

2850 measured reflections

1500 independent reflections

$R_{	ext{1}} = 0.030$

$R_{	ext{2}} = 0.079$

$S = 1.13$

Data collection

Nonius KappaCCD diffractometer

$R_{	ext{int}} = 0.085$

Absorption correction: analytical

$R_{	ext{1}} = 0.030$

$R_{	ext{2}} = 0.079$

$S = 1.13$

1500 reflections

Supporting information for this paper is available from the IUCr electronic archives (Reference: RU2060).

References

Salloum, D., Gougeon, P. & Potel, M. (2013). Acta Cryst. E69, i67–i68.

Gougeon, P., Gall, P., Salloum, D. & Potel, M. (2010). Acta Cryst. E66, i73.

Salloum, D., Gautier, R., Gougeon, P. & Potel, M. (2007). Acta Cryst. B63, 285–292.

Meulenaer, J. & Tompa, H. (1965). Acta Cryst. A19, 1014–1018.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Salloum, D., Gougeon, P. & Gall, P. (2013). Acta Cryst. E69, i67–i68.

Salloum, D., Gougeon, P. & Potel, M. (2006). Acta Cryst. E62, i83–i85.

Salloum, D., Gougeon, P. & Potel, M. (2007). Acta Cryst. E63, i8–i80.

Salloum, D., Gougeon, P., Roisnel, T. & Potel, M. (2004a). J. Alloys Compd. 383, 57–62.

Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833–845.

Seeber, B., Decroux, M., Fisher, Ø., Chevrel, R., Sergent, M. & Grüttnner, A. (1979). Solid State Commun. 29, 419–423.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Na$_{4.25}$Mo$_{15}$S$_{19}$: a novel ternary reduced molybdenum sulfide containing Mo$_6$ and Mo$_9$ clusters

D. Salloum, P. Gougeon and P. Gall

1. Comment

The reduced molybdenum compounds In$_{1+x}$Mo$_{15}X_{19}$ (X = S, Se) (Grüttner et al., 1979; Salloum et al., 2004a) crystallize in an interesting structural type characterized by an equal mixture of Mo$_6$ and Mo$_9$ clusters and by In atoms that occupy two or three different crystallographically positions depending on their formal oxidation state of +1 or +3. Subsequently, isomorphous compounds such as Ho$_{0.76}$In$_{1.68}$Mo$_{15}$Se$_{19}$ (Salloum et al., 2006), In$_{0.71}$K$_2$Mo$_{15}$Se$_{19}$ (Salloum et al., 2007), V$_{1.42}$In$_{1.83}$Mo$_{15}$Se$_{19}$ (Gougeon et al., 2010), In$_{1.7}$Mo$_{15}$S$_{19}$ (Salloum et al., 2004a), In$_{1.8}$Rb$_2$Mo$_{15}$S$_{19}$, In$_{1.2}$CsMo$_{15}$S$_{19}$ and ScTl$_2$Mo$_{15}$S$_{19}$ (Salloum et al., 2004b) have been synthesized. In the latter compounds, the Ho, V and Sc atoms replace the trivalent indium and the K, Cs, and Tl atoms the monovalent one. Recently, we described the crystal structure of Na$_{3.9}$Mo$_{15}$Se$_{19}$ (Salloum et al., 2013) in which the sodium replaces the monovalent as well as the trivalent indium for the first time. We present here the sulfide analogue Na$_{4.25}$Mo$_{15}$S$_{19}$. The Mo—S framework of the title compound consists of the cluster units Mo$_6$S$_8$S$_6^a$ and Mo$_9$S$_{11}$S$_6^a$ in a 1:1 ratio (for details of the i- and a-type ligand notation, see Schäfer & von Schnering (1964)). Both components are interconnected through additional Mo—Se bonds (Figs. 1 and 2). The first unit can be described as an Mo$_6$ octahedron surrounded by eight face-capping inner Si and six apical Sa ligands. The Mo$_6$ cluster is surrounded by 11 Si atoms capping one or two faces of the biocathedron and six Sa ligands above the apical Mo atoms. The Mo$_6$S$_8$S$_6^a$ and Mo$_9$S$_{11}$S$_6^a$ units are centered at Wyckoff positions 2b and 2c and have point-group symmetry 32 and 6, respectively. The Mo—Mo distances within the Mo$_6$ cluster are 2.6900 (5) Å for the distances of the Mo triangles formed by the Mo1 atoms related through the threefold axis, and 2.7098 (6) Å for the distances between these triangles. The Mo—Mo distances within the Mo$_9$ clusters are 2.6349 (5) and 2.6756 (7) Å in the triangles formed by the atoms Mo2 and Mo3, respectively, and 2.7081 (4) and 2.7303 (4) Å for those between the Mo2$_3$ and Mo3$_3$ triangles. All the latter Mo—Mo distances are close to those observed in the selenide analogue indicating that the cationic charge transfer towards the Mo$_6$ and Mo$_9$ clusters are similar in both compounds. The S atoms bridge either one (S1, S2, S4 and S5) or two (S3) triangular faces of the Mo clusters. Moreover, atoms S1 and S2 are linked to an Mo atom of a neighboring cluster. The Mo—S bond distances range from 2.4184 (14) to 2.5624 (10) Å within the Mo$_6$S$_8$S$_6^a$ unit, and from 2.4033 (13) to 2.5947 (8) Å within the Mo$_9$S$_{11}$S$_6^a$ unit. In both cases, the shortest bonds involve the S4 and S5 terminal atoms and the longest ones correspond to the interunit Mo1—S2 and Mo2—S1 bonds. Each Mo$_6$S$_8$S$_6^a$ cluster is thus interconnected to six Mo$_9$S$_{11}$S$_6^a$ units (and vice versa) via Mo2—S1 bonds (and Mo1—S2 bonds, respectively), forming the three-dimensional Mo—S framework, the connective formula of which is Mo$_6$S$_8$S$_6^a$S$^i_{6}$S$^i_{6}$, Mo$_9$S$_{11}$S$_6^a$S$^i_{6}$S$^i_{6}$. It results from this arrangement that the shortest intercluster Mo1—Mo2 distance is 3.5202 (6) Å, indicating only weak metal-metal interactions between the Mo clusters. The Na$^{1+}$ cations are surrounded by seven S atoms forming a distorted tricapped tetrahedron. The S5 and S2 atoms forming the tetrahedron are at 2.699 (5) and 3.1669 (13) Å from the Na1 atom, and the capping S1 atoms are at 3.3609 (19) Å. The Na$^{2+}$ cations...
occupy partially at 75.1% a triangular group of distorted octahedral cavities around the threefold axis, which are formed by two Mo₆S₆S₆ and three Mo₉S₁₁S₆ units. The Na2—S distances are in the 2.538 (4) - 3.055 (4) Å range.

2. Experimental

Single crystals of Na₄.₂₅Mo₁₅S₁₉ were prepared from an ion exchange reaction on single crystals of InₓMo₁₅S₁₉ with an excess of NaI at 1073 K. The mixture was sealed under vacuum in a long silica tube. The end of tube containing the crystals of InₓMo₁₅S₁₉ and InI was placed in a furnace with about 5 cm of the other end out from the furnace, at about the room temperature. The furnace was heated at 1073 K for 48 h. After reaction, crystals of InI were observed at the cool end of the tube. The black crystals of the title compound were subsequently washed with water to remove the excess of InI. Qualitative microanalyses using a Jeol JSM 6400 scanning electron microscope equipped with a Oxford INCA energy- dispersive-type X-ray spectrometer did not reveal the presence of indium in the crystals and indicated roughly stoichiometries comprised between 3.8 and 4.4 for the Na content.

3. Refinement

No significant deviation from full occupancy was observed for Na1. The site occupation factor of Na2 was refined freely leading to the final stoichiometry Na₄.₂₅(4)Mo₁₅S₁₉.

Figure 1

View of Na₄.₂₅Mo₁₅S₁₉ along [110]. Displacement ellipsoids are drawn at the 97% probability level.
Figure 2
Plot showing the atom-numbering scheme and the interunit linkage of the Mo₉S₁₁S₆ and Mo₆S₈S₆ cluster units. Displacement ellipsoids are drawn at the 97% probability level.

Tetrasodium pentadecamolybdenum nonadecasulfide

Crystal data

\[\text{Na}_{4.25}\text{Mo}_{15}\text{S}_{19} \]
\[M_r = 2145.95 \]
Hexagonal, \(P6_3/m \)
\[a = 9.5340 (1) \, \text{Å} \]
\[c = 18.9803 (3) \, \text{Å} \]
\[V = 1494.11 (3) \, \text{Å}^3 \]
\[Z = 2 \]
\[F(000) = 1962 \]
\[D_x = 4.770 \, \text{Mg m}^{-3} \]
Mo \(K\alpha \) radiation, \(\lambda = 0.71069 \, \text{Å} \)

Cell parameters from 16576 reflections
\[\theta = 2.2–30.0^\circ \]
\[\mu = 7.44 \, \text{mm}^{-1} \]
\[T = 293 \, \text{K} \]
Multi-faceted crystal, black
\[0.18 \times 0.14 \times 0.08 \, \text{mm} \]

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
\(\phi \) scans \((\kappa = 0) + \) additional \(\omega \) scans

Absorption correction: analytical
(de Meulenaar & Tompa, 1965)
\[T_{\text{min}} = 0.363, \ T_{\text{max}} = 0.591 \]
16576 measured reflections
1500 independent reflections
supplementary materials

1322 reflections with $I > 2\sigma(I)$

$R_{int} = 0.085$

$\theta_{max} = 30.0^\circ$, $\theta_{min} = 2.2^\circ$

Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.030$

$wR(F^2) = 0.079$

$S = 1.13$

1500 reflections

66 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Extinction correction: SHELXL97 (Sheldrick, 2008), $F_c^* = kF_c[1 + 0.001xF_c^2\lambda^3/\sin(2\theta)]^{1/4}$

Extinction coefficient: 0.00266 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	y	z	U_{iso}/U_{eq}	Occ. (<1)
Mo1	0.84424 (3)	0.01344 (3)	-0.058496 (18)	0.01072 (12)	
Mo2	0.50077 (4)	-0.18303 (4)	0.131678 (19)	0.01177 (12)	
Mo3	0.34797 (5)	-0.16448 (5)	0.2500	0.01301 (13)	
S1	0.71650 (10)	0.02755 (11)	0.05118 (5)	0.01268 (18)	
S2	0.36949 (11)	-0.01601 (11)	0.13948 (5)	0.01344 (19)	
S3	0.05126 (16)	-0.30754 (17)	0.2500	0.0171 (3)	
S4	0.0000	-0.0000	-0.15617 (9)	0.0184 (3)	
S5	0.3333	-0.3333	0.03365 (9)	0.0156 (3)	
Na2	0.7703 (5)	-0.0623 (4)	-0.2500	0.0283 (12)	0.751 (12)
Na1	0.3333	-0.3333	-0.1085 (3)	0.0789 (17)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.01252 (16)	0.01051 (16)	0.00816 (19)	0.00050 (11)	0.00061 (10)	-0.00031 (9)
Mo2	0.01434 (17)	0.01410 (17)	0.00778 (19)	0.00078 (12)	-0.00017 (10)	-0.00005 (10)
Mo3	0.0153 (2)	0.0159 (2)	0.0075 (2)	0.00754 (17)	0.000	0.000
S1	0.0121 (4)	0.0138 (4)	0.0121 (4)	0.0064 (3)	0.0013 (3)	0.0005 (3)
S2	0.0154 (4)	0.0143 (4)	0.0112 (4)	0.0079 (3)	0.0001 (3)	0.0008 (3)
S3	0.0185 (6)	0.0198 (6)	0.0133 (7)	0.0098 (5)	0.000	0.000
S4	0.0228 (5)	0.0228 (5)	0.0095 (8)	0.0114 (2)	0.000	0.000
S5	0.0187 (4)	0.0187 (4)	0.0093 (7)	0.0094 (2)	0.000	0.000
Na2	0.040 (2)	0.0256 (19)	0.026 (2)	0.0218 (16)	0.000	0.000
Na1	0.0333	-0.3333	-0.1085 (3)	0.0789 (17)		
Geometric parameters (Å, °)

Bond	Distance (Å)	Angle (°)	Distance (Å)
Mo1—S4	2.4184 (14)	S2—Mo1	2.5624 (10)
Mo1—S1	2.4492 (10)	S2—Na2	2.781 (2)
Mo1—S1\(\text{ii}\)	2.4565 (9)	S2—Na1\(\text{iv}\)	3.1669 (13)
Mo1—S1\(\text{iii}\)	2.4830 (9)	S3—Mo3\(\text{iii}\)	2.4419 (14)
Mo1—S2\(\text{iv}\)	2.5624 (10)	S3—Na2\(\text{ii}\)	2.538 (4)
Mo1—Mo1\(\text{v}\)	2.6900 (5)	S3—Mo2\(\text{v}\)	2.5947 (8)
Mo1—Mo1\(\text{vi}\)	2.6900 (5)	S3—Mo2\(\text{iii}\)	2.5947 (8)
Mo1—Mo1\(\text{iii}\)	2.7098 (6)	S3—Na2\(\text{iv}\)	3.055 (4)
Mo1—Mo1\(\text{ii}\)	2.7098 (6)	S4—Mo1\(\text{viii}\)	2.4184 (14)
Mo1—Na2	3.7042 (8)	S4—Mo1\(\text{ix}\)	2.4184 (14)
Mo2—S5	2.4033 (13)	S4—Mo1\(\text{iii}\)	2.4184 (14)
Mo2—S2	2.4733 (9)	S4—Na2\(\text{iv}\)	2.649 (3)
Mo2—S2\(\text{v}\)	2.5070 (9)	S4—Na2\(\text{iii}\)	2.649 (3)
Mo2—S1	2.5429 (10)	S4—Na2\(\text{iv}\)	2.649 (3)
Mo2—S2\(\text{vii}\)	2.5947 (8)	S5—Mo2\(\text{ix}\)	2.4033 (13)
Mo2—Mo2\(\text{vii}\)	2.6349 (5)	S5—Mo2\(\text{v}\)	2.4033 (13)
Mo2—Mo2\(\text{viii}\)	2.6349 (5)	S5—Na1	2.699 (5)
Mo2—Mo3\(\text{v}\)	2.7081 (4)	Na2—S3\(\text{iv}\)	2.538 (4)
Mo3—S3\(\text{vii}\)	2.4419 (14)	Na2—S4\(\text{i}\)	2.649 (3)
Mo3—S3	2.4504 (14)	Na2—S4\(\text{v}\)	2.649 (3)
Mo3—S3\(\text{v}\)	2.4810 (10)	Na2—S4\(\text{viii}\)	2.781 (2)
Mo3—S2\(\text{v}\)	2.4810 (10)	Na2—S4\(\text{iv}\)	2.781 (2)
Mo3—Mo3\(\text{v}\)	2.6756 (7)	Na2—S3\(\text{v}\)	2.896 (3)
Mo3—Mo3\(\text{vii}\)	2.6756 (7)	Na2—S3\(\text{v}\)	3.055 (4)
Mo3—Mo3\(\text{viii}\)	2.7081 (4)	Na2—S3\(\text{v}\)	3.397 (6)
Mo3—Mo2\(\text{v}\)	2.7081 (4)	Na2—S3\(\text{v}\)	3.397 (6)
Mo3—Mo2\(\text{vii}\)	2.7303 (4)	Na2—S3\(\text{v}\)	3.7042 (8)
Mo3—Na2\(\text{v}\)	2.896 (3)	Na1—S2\(\text{v}\)	3.1669 (13)
S1—Mo1\(\text{v}\)	2.4565 (9)	Na1—S2\(\text{v}\)	3.1669 (13)
S1—Mo1\(\text{ii}\)	2.4830 (9)	Na1—S2\(\text{v}\)	3.1669 (13)
S1—Na1\(\text{v}\)	3.3609 (19)	Na1—S1\(\text{v}\)	3.3609 (19)
S2—Mo2\(\text{viii}\)	2.5070 (9)	Na1—S1\(\text{v}\)	3.3609 (19)

Bond	Distance (Å)	Distance (Å)			
S4—Mo1—S1	171.81 (4)	Mo1—S1—Mo1\(\text{ii}\)	66.65 (3)		
S4—Mo1—S1\(\text{ii}\)	90.83 (2)	Mo1—Mo1—S1\(\text{ii}\)	134.06 (4)		
S1—Mo1—S1	89.17 (2)	Mo1—Mo1—S1\(\text{ii}\)	134.06 (4)		
S4—Mo1—S1\(\text{iii}\)	90.20 (2)	Mo1—Mo1—S1\(\text{iii}\)	134.06 (4)		
S1—Mo1—S1\(\text{iii}\)	88.56 (2)	Mo1—S1—Mo1\(\text{iii}\)	130.92 (4)		
S1—Mo1—S1\(\text{iv}\)	171.12 (4)	Mo1—S1—Mo1\(\text{iv}\)	127.79 (8)		
S4—Mo1—S2\(\text{v}\)	93.04 (8)	Mo1—S1—Mo1\(\text{v}\)	97.39 (3)		
S1—Mo1—S2\(\text{v}\)	95.15 (3)	Mo1—S1—Mo1\(\text{v}\)	153.45 (7)		
S1—Mo1—S2\(\text{vii}\)	91.20 (3)	Mo2—S1—Na1\(\text{iv}\)	94.64 (6)		
S1—Mo1—S2\(\text{v}\)	97.55 (3)	Mo2—S2—Mo3	66.88 (3)		
S4—Mo1—Mo1\(\text{v}\)	56.21 (2)	Mo2—S2—Mo2\(\text{v}\)	63.88 (2)		
S1—Mo1—Mo1\(\text{v}\)	116.82 (2)	Mo3—S2—Mo2\(\text{v}\)	65.76 (2)		
Bond	Distance (Å)	Standard Deviation (Å)	Bond	Distance (Å)	Standard Deviation (Å)
-------	--------------	-------------------------	-------	--------------	-------------------------
S1⁵—Mo1—Mo1⁴	117.37 (2)	Mo2—S2—Mo1⁴	129.13 (4)		
S1⁴—Mo1—Mo1⁴	56.53 (2)	Mo3—S2—Mo1⁴	132.33 (4)		
S2⁴—Mo1—Mo1⁴	135.73 (2)	Mo2³⁻—S2—Mo1⁴	82.07 (3)		
S4—Mo1—Mo1⁴	56.21 (2)	Mo2—S2—Na2⁴	133.09 (7)		
S1—Mo1—Mo1⁴	117.46 (2)	Mo3—S2—Na2⁴	66.52 (6)		
S1⁰—Mo1—Mo1⁴	57.48 (2)	Mo2Ⅲ—S2—Na2⁴	100.94 (8)		
S1Ⅲ—Mo1—Mo1⁴	116.43 (2)	Mo1Ⅳ—S2—Na2⁴	87.68 (6)		
S2Ⅲ—Mo1—Mo1⁴	131.85 (2)	Mo2—S2—Na1⁴	101.03 (3)		
Mo1Ⅲ—Mo1—Mo1⁴	60.0	Mo3—S2—Na1⁴	122.15 (9)		
S4—Mo1—Mo1Ⅲ	116.37 (2)	Mo2Ⅲ—S2—Na1⁴	160.14 (7)		
S1—Mo1—Mo1Ⅲ	56.60 (2)	Mo1Ⅳ—S2—Na1⁴	100.15 (7)		
S1Ⅲ—Mo1—Mo1Ⅲ	115.84 (3)	Na2Ⅳ—S2—Na1⁴	98.88 (10)		
S1Ⅲ—Mo1—Mo1Ⅲ	56.08 (2)	Mo3Ⅲ—S3—Mo3	66.31 (4)		
S2Ⅲ—Mo1—Mo1Ⅲ	138.14 (2)	Mo3Ⅲ—S3—Na2Ⅳ	157.19 (11)		
Mo1Ⅴ—Mo1—Mo1Ⅲ	60.241 (8)	Mo3Ⅲ—S3—Na2Ⅳ	136.50 (11)		
S4—Mo1—Mo1Ⅱ	90.0	Mo3Ⅲ—S3—Mo2Ⅳ	65.57 (3)		
S1—Mo1—Mo1Ⅱ	116.37 (2)	Na2Ⅳ—S3—Mo2Ⅳ	119.39 (3)		
S1Ⅲ—Mo1—Mo1Ⅱ	57.27 (2)	Mo3Ⅲ—S3—Mo2Ⅳ	119.39 (3)		
S1Ⅲ—Mo1—Mo1Ⅱ	56.34 (2)	Mo3Ⅲ—S3—Mo2Ⅳ	119.39 (3)		
S2Ⅲ—Mo1—Mo1Ⅱ	115.54 (3)	Mo3Ⅲ—S3—Mo2Ⅳ	119.39 (3)		
Mo1Ⅴ—Mo1—Mo1Ⅱ	134.12 (2)	Mo3Ⅲ—S3—Mo2Ⅳ	119.39 (3)		
Mo1Ⅳ—Mo1—Mo1Ⅱ	60.241 (8)	Mo3Ⅲ—S3—Na2Ⅳ	128.66 (8)		
Mo1Ⅳ—Mo1—Mo1Ⅱ	59.518 (16)	Mo3Ⅲ—S3—Na2Ⅳ	62.35 (7)		
S4—Mo1—Na2	45.53 (6)	Na2Ⅳ—S3—Na2Ⅳ	74.15 (16)		
S1—Mo1—Na2	142.51 (6)	Mo2Ⅳ—S3—Na2Ⅳ	91.26 (5)		
S1Ⅲ—Mo1—Na2	83.36 (6)	Mo2Ⅳ—S3—Na2Ⅳ	91.26 (5)		
S1Ⅲ—Mo1—Na2	103.55 (6)	Mo1Ⅴ—S4—Mo1Ⅷ	67.58 (5)		
S2Ⅲ—Mo1—Na2	48.59 (6)	Mo1Ⅴ—S4—Mo1Ⅷ	67.58 (5)		
Mo1Ⅴ—Mo1—Na2	99.04 (6)	Mo1Ⅴ—S4—Na2Ⅲ	151.15 (7)		
Mo1Ⅳ—Mo1—Na2	88.97 (5)	Mo1Ⅴ—S4—Na2Ⅲ	93.82 (5)		
Mo1Ⅲ—Mo1—Na2	156.07 (6)	Mo1Ⅴ—S4—Na2Ⅲ	93.82 (5)		
Mo1Ⅲ—Mo1—Na2	137.75 (5)	Mo1Ⅴ—S4—Na2Ⅲ	93.82 (5)		
S5—Mo2—S2	91.79 (2)	Mo1Ⅴ—S4—Na2Ⅲ	127.12 (7)		
S5—Mo2—S2Ⅲ	90.96 (2)	Mo1Ⅴ—S4—Na2Ⅲ	127.12 (7)		
S2—Mo2—S2Ⅲ	172.09 (4)	Mo1Ⅴ—S4—Na2Ⅲ	151.15 (7)		
S5—Mo2—S1	92.26 (3)	Na2Ⅳ—S4—Na2Ⅲ	79.75 (9)		
S2—Mo2—S1	89.86 (3)	Mo1Ⅴ—S4—Na2Ⅲ	93.82 (5)		
S2Ⅲ—Mo2—S1	97.44 (3)	Mo1Ⅴ—S4—Na2Ⅲ	127.12 (7)		
S5—Mo2—S3Ⅷ	170.70 (4)	Mo1Ⅴ—S4—Na2Ⅲ	151.15 (7)		
S2—Mo2—S3Ⅷ	86.62 (4)	Na2Ⅳ—S4—Na2Ⅲ	79.75 (9)		
S2Ⅲ—Mo2—S3Ⅷ	89.47 (4)	Na2Ⅳ—S4—Na2Ⅲ	79.75 (9)		
S1—Mo2—S3Ⅷ	96.89 (3)	Mo2Ⅴ—S5—Mo2Ⅹ	66.48 (4)		
S5—Mo2—Mo2Ⅶ	56.76 (2)	Mo2Ⅴ—S5—Mo2Ⅹ	66.48 (4)		
S2—Mo2—Mo2Ⅶ	118.56 (2)	Mo2Ⅴ—S5—Mo2Ⅹ	66.48 (4)		
S2Ⅲ—Mo2—Mo2Ⅶ	57.44 (2)	Mo2Ⅴ—S5—Na1	140.73 (3)		
S1—Mo2—Mo2Ⅶ	136.00 (2)	Mo2Ⅴ—S5—Na1	140.73 (3)		
S3Ⅲ—Mo2—Mo2Ⅶ	116.29 (3)	Mo2Ⅴ—S5—Na1	140.73 (3)		
S5—Mo2—Mo2Ⅷ	56.76 (2)	S3Ⅹ—Na2—S4Ⅰ	89.92 (9)		
Bond	Structure	Bond Angle	Standard Deviation		
------	-----------	------------	-------------------		
S2—Mo2—Mo2viii	58.68 (2)	S3iv—Na2—S4v	89.92 (9)		
S2viii—Mo2—Mo2viii	117.32 (2)	S4—Na2—S4v	84.49 (12)		
S1—Mo2—Mo2viii	131.42 (2)	S3iv—Na2—S2vii	112.74 (10)		
S3vii—Mo2—Mo2viii	115.08 (3)	S4—Na2—S2vii	154.21 (15)		
Mo2vii—Mo2—Mo2viii	60.0	S4v—Na2—S2vii	83.46 (4)		
S5—Mo2—Mo3vii	118.14 (2)	S3iv—Na2—S2iv	112.74 (10)		
S2—Mo2—Mo3vii	115.63 (3)	S4—Na2—S2iv	83.46 (4)		
S2viii—Mo2—Mo3vii	56.66 (2)	S4v—Na2—S2iv	154.21 (15)		
S1—Mo2—Mo3vii	137.83 (3)	S2vi—Na2—S2iv	97.94 (11)		
S3vii—Mo2—Mo3vii	54.99 (3)	S3iv—Na2—Mo3iv	145.61 (16)		
Mo2vii—Mo2—Mo3vii	61.444 (11)	S4v—Na2—Mo3iv	114.79 (9)		
Mo2v—Mo2—Mo3vii	90.670 (10)	S4v—Na2—Mo3iv	114.79 (9)		
S5—Mo2—Mo3	117.29 (2)	S2vi—Na2—Mo3iv	51.78 (6)		
S2—Mo3—Mo3	117.29 (2)	S4v—Na2—Mo3iv	51.78 (6)		
S2viii—Mo2—Mo3	58.940 (16)	S3iv—Na2—S3iv	165.85 (15)		
S1—Mo2—Mo3	133.65 (3)	S4—Na2—S3iv	79.65 (9)		
S3vii—Mo2—Mo3	54.52 (3)	S4v—Na2—S3iv	79.65 (9)		
Mo2vii—Mo2—Mo3	90.184 (10)	S2vi—Na2—S3iv	75.81 (8)		
Mo2v—Mo2—Mo3	60.600 (11)	S4v—Na2—S3iv	75.81 (8)		
Mo3vii—Mo2—Mo3	58.69 (2)	Mo3v—Na2—S3iv	48.54 (6)		
S3vii—Mo3—S3	173.69 (4)	S3iv—Na2—Na2v	119.90 (13)		
S3vii—Mo3—S2x	89.88 (3)	S4—Na2—Na2v	50.13 (5)		
S3—Mo3—S2x	93.48 (3)	S4v—Na2—Na2v	50.13 (5)		
S3vii—Mo3—S2	93.48 (3)	S2vi—Na2—Na2v	105.50 (12)		
S3—Mo3—S2	115.45 (4)	S2iv—Na2—Na2v	105.50 (12)		
S3vii—Mo3—Mo3viii	117.00 (4)	Mo3v—Na2—Na2v	94.49 (15)		
S3—Mo3—Mo3viii	56.69 (4)	S3iv—Na2—Na2v	45.95 (11)		
S2viii—Mo3—Mo3viii	118.47 (2)	S4—Na2—Na2v	59.90 (13)		
S2—Mo3—Mo3viii	118.47 (2)	S4v—Na2—Na2v	50.13 (5)		
S3vii—Mo3—Mo3viii	57.00 (4)	S2vi—Na2—Na2v	130.76 (6)		
S3—Mo3—Mo3viii	116.69 (4)	S2iv—Na2—Na2v	130.76 (6)		
S2viii—Mo3—Mo3viii	115.45 (4)	Mo3v—Na2—Na2v	154.49 (15)		
S2—Mo3—Mo3viii	116.54 (2)	S3iv—Na2—Na2v	105.50 (11)		
Mo3v—Mo3—S3	60.0	Na2v—Na2—Na2v	60.0		
Mo3v—Mo3—Mo3vii	117.827 (15)	S3iv—Na2—Mo1	97.96 (5)		
S3—Mo3—Mo2viii	60.149 (14)	S4—Na2—Mo1	40.65 (3)		
S2viii—Mo3—Mo2viii	150.01 (3)	S4v—Na2—Mo1	124.10 (12)		
S2—Mo3—Mo2viii	57.58 (2)	S2vi—Na2—Mo1	139.27 (11)		
Mo3v—Mo3—Mo2viii	60.944 (12)	S2iv—Na2—Mo1	43.72 (2)		
Mo3v—Mo3—Mo2x	89.804 (10)	Mo3v—Na2—Mo1	87.79 (5)		
S3vii—Mo3—Mo2x	117.827 (15)	S3iv—Na2—Mo1	80.39 (5)		
S3—Mo3—Mo2x	60.149 (14)	Na2v—Na2—Mo1	79.33 (6)		
S2viii—Mo3—Mo2x	57.58 (2)	Na2vi—Na2—Mo1	87.34 (5)		
S2—Mo3—Mo2x	150.01 (3)	S3iv—Na2—Mo1xvii	97.96 (5)		
Mo3v—Mo3—Mo2x	60.944 (12)	S4—Na2—Mo1xvii	124.10 (12)		
Mo3v—Mo3—Mo2x	89.804 (10)	S4v—Na2—Mo1xvii	40.65 (3)		
S2viii—Mo3—Mo2x	112.05 (2)	S2vi—Na2—Mo1xvii	43.72 (2)		
S2—Mo3—Mo2x	59.911 (14)	S2iv—Na2—Mo1xvii	139.27 (11)		
Bond	Bond Angle (deg)	Symmetry Code			
----------------------	------------------	---------------			
S3—Mo3—Mo2\(^ix\)	117.957 (16)				
S2\(^v\)—Mo3—Mo2\(^ix\)	56.42 (2)				
S2—Mo3—Mo2\(^ix\)	146.91 (3)				
Mo3\(^vii\)—Mo3—Mo2\(^ix\)	89.333 (10)				
Mo3\(^vii\)—Mo3—Mo2\(^ix\)	60.116 (12)				
Mo2\(^viii\)—Mo3—Mo2\(^ix\)	146.475 (18)				
Mo2\(^vii\)—Mo3—Mo2\(^ix\)	57.956 (12)				
S3\(^vii\)—Mo3—Mo2	59.911 (14)				
S3—Mo3—Mo2	117.957 (16)				
S2\(^v\)—Mo3—Mo2	146.91 (3)				
S2—Mo3—Mo2	56.42 (2)				
Mo3\(^viii\)—Mo3—Mo2	89.333 (10)				
Mo3\(^vii\)—Mo3—Mo2	60.116 (12)				
Mo2\(^viii\)—Mo3—Mo2	146.475 (18)				
Mo2\(^vii\)—Mo3—Mo2	57.956 (12)				
S3\(^vii\)—Mo3—Mo2	59.911 (14)				
S3—Mo3—Na2\(^iv\)	69.11 (8)				
S2\(^v\)—Mo3—Na2\(^iv\)	61.70 (3)				
S2—Mo3—Na2\(^iv\)	61.70 (3)				
Mo3\(^viii\)—Mo3—Na2\(^iv\)	125.80 (8)				
Mo3\(^vii\)—Mo3—Na2\(^iv\)	174.20 (8)				
Mo2\(^viii\)—Mo3—Na2\(^iv\)	93.43 (4)				
Mo2\(^vii\)—Mo3—Na2\(^iv\)	93.43 (4)				
Mo2\(^v\)—Mo3—Na2\(^iv\)	117.90 (3)				
Mo2—Mo3—Na2\(^iv\)	117.90 (3)				
Mo1—S1—Mo1\(^iii\)	67.06 (3)				

Symmetry codes: (i) x+1, y, z; (ii) x-y, x-1, -z; (iii) y+1, -x+y+1, -z; (iv) -x+1, -y, -z; (v) -x+y+2, -x+1, z; (vi) -y+1, x-y-1, z; (vii) -x+y+1, -x, z; (viii) -y, x-y-1, z; (ix) x, y, -z+1/2; (x) -x, x+y, z+1/2; (xi) x-y-1, x-1, -z; (xii) -x+y+1, -x+1, z; (xiii) x-1, y, z; (xiv) y+1, -x+y, -z; (xv) x+1, y, -z-1/2; (xvi) -x+1, -y, z-1/2; (xvii) x, y, -z+1/2; (xviii) y, -x+y, -z.