Functions

jean-jacques.levy@inria.fr
August 5, 2013

Plan

• functions and λ-notation
• higher-order functions
• data types
• notation in Coq
• enumerated sets
• pattern-matching on constructors

Functional calculus (1/6)

\((\lambda x. x + 1)3 \rightarrow 3 + 1 \rightarrow 4 \)
\((\lambda x. 2 * x + 2)4 \rightarrow 2 * 4 + 2 \rightarrow 8 + 2 \rightarrow 10 \)
\((\lambda f.f3)(\lambda x. x + 2) \rightarrow (\lambda x. x + 2)3 \rightarrow 3 + 2 \rightarrow 5 \)
\((\lambda x.\lambda y.x + y)3 \rightarrow (\lambda y.3 + y)2 \rightarrow (\lambda y.3 + y)2 \rightarrow 3 + 2 \rightarrow 5 \)
\((\lambda f.\lambda x.f(f x))(\lambda x.x + 2) \rightarrow \ldots \)
Functional calculus (2/6)

\[(\lambda f. \lambda x. f(fx))(\lambda x. x + 2) \rightarrow \ldots\]

Functional calculus (3/6)

\[(\lambda f. \lambda x. f(fx))(\lambda x. x + 2)^3 \rightarrow \ldots\]

Functional calculus (5/6)

Fact(3)

\[\text{Fact} = Y(\lambda f. \lambda x. \text{if} \ x \ \text{then} \ 1 \ \text{else} \ x \ * \ f(x - 1))\]

Thus following term:

\[(\lambda \text{Fact}. \text{Fact}(3))\]

\[(Y(\lambda f. \lambda x. \text{if} \ x \ \text{then} \ 1 \ \text{else} \ x \ * \ f(x - 1)))\]

also written

\[(\lambda \text{Fact}. \text{Fact}(3))\]

\[((\lambda Y. Y(\lambda f. \lambda x. \text{if} \ x \ \text{then} \ 1 \ \text{else} \ x \ * \ f(x - 1)))\]

\[(\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))) \]
Pure lambda-calculus

- **lambda-terms**

 \[M, N, P \ ::= \ x, y, z, \ldots \quad \text{(variables)} \]
 \[| \quad \lambda x. M \quad \text{(M as function of x)} \]
 \[| \quad M (N) \quad \text{(M applied to N)} \]

- **Computations “reductions”**

 \[(\lambda x. M)(N) \rightarrow M[x := N]\]

Examples of reductions (1/2)

- **Examples**

 \[(\lambda x. x) N \rightarrow N\]
 \[(\lambda f. N)(\lambda x. x) \rightarrow (\lambda x. x) N \rightarrow N\]
 \[(\lambda x. x) N(\lambda y. y) \rightarrow (\lambda y. y) N \rightarrow N \quad \text{(name of bound variable is meaningless)}\]
 \[(\lambda x. x)(\lambda x. x) N \rightarrow (\lambda x. x) N \rightarrow N \rightarrow NN\]
 \[(\lambda x. x)(\lambda x. x) \rightarrow \lambda x. x\]

Let \(I = \lambda x. x \), we have \(I(x) = x \) for all \(x \).
Therefore \(I(I) = I \). [Church 41]

Examples of reductions (2/2)

- **Examples**

 \[(\lambda x. x)(\lambda x. x) N \rightarrow (\lambda x. x) N \rightarrow (\lambda x. x) N \rightarrow NN\]
 \[(\lambda x. x)(\lambda x. x) \rightarrow (\lambda x. x)(\lambda x. x) \rightarrow \cdots\]

- **Possible to loop inside applications of functions ...**

 \[Y_f = (\lambda x. f(x)(x)) \rightarrow f((\lambda x. f(x)(x))(\lambda x. f(x)(x))) = f(Y_f)\]
 \[f(Y_f) \rightarrow f(f(Y_f)) \rightarrow \cdots \rightarrow f^n(Y_f) \rightarrow \cdots\]

- **Every computable function can be computed by a \(\lambda \)-term**

 \[\rightarrow \text{Church’s thesis. [Church 41]} \]
Fathers of computability

Alonzo Church
Stephen Kleene

The Giants of computability

Hilbert → Gödel → Church → Turing
Kleene → Post → Curry
von Neumann

Typed lambda-calculus (1/5)

- In Coq, all λ-terms are *typed*
- In Coq, following λ-terms are typable

 \[
 (\lambda x. x + 1)3 \rightarrow 3 + 1 \rightarrow 4 \\
 (\lambda x. 2 * x + 2)4 \rightarrow 2 * 4 + 2 \rightarrow 8 + 2 \rightarrow 10 \\
 (\lambda f.f3)((\lambda x. x + 2) \rightarrow (\lambda x. x + 2)3 \rightarrow 3 + 2 \rightarrow 5 \\
 (\lambda x. \lambda y.x + y)3 2 = \\
 ((\lambda x. \lambda y.x + y)3 2 \rightarrow (\lambda y.3 + y)2 \rightarrow (\lambda y.3 + y)2 \rightarrow 3 + 2 \rightarrow 5 \\
 (\lambda f.\lambda x.f(f x))(\lambda x.x + 2) \rightarrow ...
 \]

 these terms are allowed

Typed lambda-calculus (2/5)

- In Coq, all λ-terms have only finite reductions
 (strong normalization property)
- In Coq, all λ-terms have a (unique) normal form.
- In Coq, the following λ-terms are not typable

 \[
 (\lambda x.x)(\lambda x.x) \\
 (\lambda \text{Fact.Fact}(3)) \\
 ((\lambda Y.Y(\lambda f.\text{if} z \text{ then } 1 \text{ else } x * f(x - 1))) \\
 (\lambda x.\text{if}(x)(\lambda x.f(x)))
 \]

 these terms are not allowed
Typed lambda-calculus (3/5)

- The Coq laws for typing terms are quite complex
 [Coquand-Huet 1985]

- In first approximation, they are the following (1st-order) rules:

 Basic types: \(N \) (nat), \(B \) (bool), \(Z \) (int), \ldots

 If \(x \) has type \(\alpha \), then \((\lambda x. M) \) has type \(\alpha \to \beta \)

 If \(M \) has type \(\alpha \to \beta \), then \(M(N) \) has type \(\beta \)

Example

\[1 : \text{nat} \]
\[x : \text{nat} \implies x + 1 : \text{nat} \]
\[(\lambda x. x + 1) : \text{nat} \to \text{nat} \]
\[3 : \text{nat} \]
\[(\lambda x. x + 1)3 : \text{nat} \]

Typed lambda-calculus (4/5)

Example

\[x : \text{nat} \vdash x : \text{nat} \]
\[x : \text{nat} \vdash x : \text{nat} \]
\[x : \text{nat} \vdash x + 1 : \text{nat} \]
\[\vdash (\lambda x. x + 1) : \text{nat} \to \text{nat} \]
\[\vdash (\lambda x. x + 1) : \text{nat} \to \text{nat} \]
\[\vdash 3 : \text{nat} \]
\[\vdash (\lambda x. x + 1)3 : \text{nat} \]
lambda-terms (1/3)

three equivalent definitions:
Definition plusOne (x: nat) : nat := x + 1.
Check plusOne.

Definition plusOne := fun (x: nat) => x + 1.
Check plusOne.

Definition plusOne := fun x => x + 1.
Check plusOne.

Compute (fun x:nat => x + 1) 3.

higher-order definitions:
Definition plusTwo (x: nat) : nat := x + 2.

Definition twice := fun f => fun (x:nat) => f (f x).

Compute twice plusTwo 3.

lambda-terms (2/3)

• Coq tries to guess the type, but could fail.
(type inference)

• but always possible to give explicit types.

• Types can be higher-order
(see later with polymorphic functions)

• Types can also depend on values
(see later the constructor cases)

lambda-terms (3/3)

• Coq treats with an extension of the λ-calculus with inductive data types. It’s a programming language.

• the typed λ-calculus is also used as a trick to make a correspondence between proofs and λ-terms and propositions and types for constructive logics (see other lectures).
(Curry-Howard correspondence)