GENERATE DELTA MATROIDS FROM MATROIDS

RÉMI COCOU AVOHOU, BRIGITTE SERVATIUS, AND HERMAN SERVATIUS

Abstract. We give necessary and sufficient conditions for two matroids on the same ground set to be the upper and lower matroid of a \(\Delta\)-matroid.

1. Matroids and \(\Delta\)-matroids

A matroid \(M\) is a finite set \(E\) and a collection \(\mathcal{B}\) of subsets of \(E\) satisfying the condition that if

\[(MB) \text{ If } B_1 \text{ and } B_2 \text{ are in } \mathcal{B} \text{ and } x \in B_1 \setminus B_2 \text{ then there exists a } y \in B_2 \setminus B_1 \text{ such that } (B_1 \cup \{y\}) \setminus \{x\} = B_1 \triangle \{x, y\} \in \mathcal{B}\]

Axiom \((MB)\) is called the basis exchange axiom. Sets in \(\mathcal{B}\) are called bases of \(M\). Subsets of bases are called independent sets, sets which are not independent are called dependent, minimal dependent sets are called cycles, and sets containing a basis are called spanning.

Matroids were introduced by Whitney [18] in 1935. Since then many texts on matroid theory have appeared; see [16], or the standard text for the graph theorist [17], the standard resource for the geometer/algebraist [13], an applied approach [15], or a new text [14].

Replacing the set difference in Axiom \((MB)\) by the symmetric difference we obtain the symmetric exchange axiom \((\Delta F)\) used by Bouchet [3] to define \(\Delta\)-matroids. A more recent combinatorics formulation introduced in [1] may be of interest to an interested reader.

A \(\Delta\)-matroid \(D\) is a finite set \(E\) and a collection \(\mathcal{F}\) of subsets of \(E\) satisfying the condition that if

\[(\Delta F) \text{ If } F_1 \text{ and } F_2 \text{ are in } \mathcal{F} \text{ and } x \in F_1 \Delta F_2 \text{ then there exists a } y \in F_2 \Delta F_1 \text{ such that } F_1 \Delta \{x, y\} \in \mathcal{F}\]

Axiom \((\Delta F)\) is called the symmetric exchange axiom and the sets in \(\mathcal{F}\) are called the feasible sets of \(D\). It is important to note that \(y\) may equal \(x\), so \(|F_1 \Delta \{x, y\}| - |F_1| \in \{0, \pm 1, \pm 2\}\).

\(\Delta\)-matroids were independently introduced by Dress and Havel [11] as matroids, and by Chandasekaran and Kabadi [10] as pseudometroids. Bouchet developed the properties of \(\Delta\)-matroids and related structures in a series of papers on multimatroids [6, 7, 8, 9].

It was observed by Bouchet that the bases of every matroid are the feasible sets of \(\Delta\)-matroid, and, since \((MB)\) forces all bases of \(M\) to be equicardinal, which in some literature is listed as an axiom, not all \(\Delta\)-matroids arise in this fashion. He also noted that there are two obvious matroids associated with every \(\Delta\)-matroid: \(M_u\), the upper matroid, whose bases are the feasible sets with largest cardinality, and \(M_l\), the lower matroid, whose bases are the feasible sets with least cardinality, [4].
It is the point of view of this paper study the ∆-matroid specifically with regard to the relation it bears to its upper and lower matroids.

If you regard the bases of a matroid to be feasible, then the upper and lower matroids of the resulting ∆-matroid are the same. For an example where they are distinct, let E be a set on n elements, $0 < k < n$, and let \mathcal{F} consist of all subsets of E that have either $k - 1$ or $k + 1$ elements. Then it is easy to check that \mathcal{F} is the collection of feasible sets of a ∆-matroid on E. The upper matroid M_u is the uniform matroid $U_{k+1,n}$, and lower matroid is $U_{k-1,n}$. However, we also have the following extreme examples.

Theorem 1.1. Let M be a matroid and let \mathcal{I} be the collection of independent sets of M. Then \mathcal{I} satisfies the symmetric exchange axiom.

Proof. Let $I_1, I_2 \in \mathcal{I}$ and let $x \in I_1 \Delta I_2$.

If $x \in I_1 \setminus I_2$, then $I_1 \Delta \{x,x\} = I_1 - x$ is independent as required, so assume that $x \in I_2 \setminus I_1$. If $I_1 + x$ is independent, then set $y = x$, so that $I_1 \Delta \{x,y\} = I_1 + x$ is independent. If, on the other hand, $I_1 + x$ is dependent, then $I_1 + x$ contains a unique cycle containing x, which is not contained in I_2, so there exists $y \in I_1 \setminus I_2$, so that $I_1 \Delta \{x,y\} = I_1 - x + y$ is independent. \hfill \Box

So \mathcal{I} are the feasible sets of a ∆-matroid with upper-matroid M and lower matroid with only the empty basis. And, not surprisingly, the dual result also holds.

Theorem 1.2. Let M be a matroid and let \mathcal{S} be the collection of spanning sets of M. Then \mathcal{S} satisfies the symmetric exchange axiom.

Proof. Let $S_1, S_2 \in \mathcal{S}$ and let $x \in S_1 \Delta S_2$.

If $x \in S_2 \setminus S_1$, then $S_1 \Delta \{x,x\} = S_1 + x$ is spanning as required, so assume that $x \in S_1 \setminus S_2$. If $S_1 - x$ is spanning, then set $y = x$, so that $S_1 \Delta \{x,x\} = S_1 - x$ is spanning. If, on the other hand, $S_1 - x$ is not spanning, then since S_2 is spanning it contains an element $y \notin S_1$ so that $S_1 - x + y = S_1 \Delta \{x,y\}$ spans. \hfill \Box

So any matroid M may be naturally viewed as a ∆-matroid in three different ways, namely by considering $\mathcal{F} = \mathcal{B}$ where $M_u = M_l = M$, or $\mathcal{F} = \mathcal{I}$, where $M_u = M$ and the lower matroid has rank zero, or \mathcal{F} equals the collection of spanning sets of M where $M_l = M$ and the upper matroid has rank $|E|$.

The feasible sets of cardinality between the ranks of M_l and M_u can also be related to the upper and lower matroids.

Theorem 1.3. If D is a ∆-matroid and F is a feasible set of D, then F is spanning in the lower matroid and independent in the upper matroid.

Proof. Let F be a feasible set and let L be the basis of M_l with the largest possible intersection with F. If $L \nsubseteq F$, there exists $x \in L \setminus F$. By the symmetric exchange axiom, there must be a $y \in L \Delta F$ such that $L \Delta \{x,y\}$ is feasible. If $y \notin L \setminus F$, then $|L \Delta \{x,y\}| < |L|$, which is impossible, so $y \in F \setminus L$ and $L \Delta \{x,y\}$ is a basis of M_l which intersects U in more elements than L does, a contradiction. Therefore $L \subseteq F$, that is, F is spanning in M_l.

For independence, let F be a feasible set and let U be a basis of M_u with largest possible intersection with F. If $|F| \nsubseteq |U|$, there exists $x \in F \setminus U$. By the symmetric exchange axiom, there must be a $y \in F \Delta U$ such that $U \Delta \{x,y\}$ is feasible. If $y \in F \setminus U$, then $|U \Delta \{x,y\}| > |U|$, which is impossible, so $y \in U \setminus F$ and $U \Delta \{x,y\}$
is a basis of M_u which intersects F in more elements than U does, a contradiction. Therefore F is contained in some basis of M_u and is independent in M_u. □

In particular, Theorem [1,3] leads to a necessary condition on two matroids of different ranks on a set E to be the upper and lower matroids of a Δ-matroid.

Corollary 1.4. If D is a Δ-matroid on a set E with upper matroid M_u and lower matroid M_l, then every basis of M_u is a spanning set of M_l and every basis of M_l is independent in M_u.

The converse of Corollary [1,4] is the topic of the next section.

2. Characterizing upper and lower matroids

If we wanted to study a Δ-matroid D, and were given its upper and lower matroids, M_u and M_l, it would be convenient if we could simply compute the rest of the feasible sets from these extreme classes, but that is impossible, as the simple feasible collections $\{\{a, b\}, \{a\}, \{b\}, \emptyset\}$ and $\{\{a, b\}, \emptyset\}$ demonstrate, since they have the same upper and lower matroids.

In general, if the rank functions satisfy $\text{rk}(M_u) - \text{rk}(M_l) > 2$, it is impossible for there to be no feasible sets of intermediate cardinality, since symmetric exchange will force the existence of feasible sets both of cardinality one or two greater than minimum, and of cardinality one or two less than maximum. It is more likely to find a general construction by declaring as many of the sets of intermediate cardinality to be feasible as possible, within the restrictions of Theorem [1,3]. This construction works in the examples of Theorems [1,1] and [1,2] as well as in the following theorem relating the cycle matroid of a simple graph $G = (V, E)$ on the ground set E and its (2-dimensional generic) rigidity matroid, where a set $F \subseteq E$ of edges is independent if $|F| \leq 2|V(F)| - 3$ holds for all non-empty subsets $F' \subseteq F$. The set $V(F)$ here denotes set of endpoints of edges in F. Edge sets violating this inequality are called overbraced. For an introduction to combinatorial rigidity see [12].

Theorem 2.1. Let $G = (V, E)$ be a connected graph and consider the connectivity-or cycle-matroid M_c and the 2-dimensional generic rigidity matroid M_r on the edge set E of G. Let \mathcal{F} denote the collection of edge sets which induce graphs containing a spanning tree, but are not over-braced. Then \mathcal{F} satisfies the symmetric exchange property.

Proof. Let $F, F' \in \mathcal{F}$ and let $x \in F \setminus F'$. If $(V, F - x)$ is connected, then choose $y = x$, and $F \triangle \{x, x\} = F \setminus \{x\}$ contains a spanning tree and is not over-braced. Otherwise, $F - x$ is disconnected, and x is a bridge of (V, F). Since (V, F') contains a spanning tree, and does not contain x, it contains an edge y so that every spanning tree of $(V, F - x + y)$ contains y. Moreover, $G(V, F - x + y)$ cannot be over-braced, since $G(V, F - x)$ is not over-braced and no rigidity cycle can contain a bridge.

Now we must consider the case when $x \in F' \setminus F$. If $(V, F + x)$ is not over-braced, we can choose $y = x$, and $F \triangle \{x, y\} = F + \{x\}$ has the desired property. Otherwise, $(V, F + x)$ contains a unique rigidity cycle, which is necessarily edge 2-connected. Since the set of edges of that rigidity cycle is not contained in F', there is an edge $y \in F - F'$ whose deletion does not disconnect it, and so does not increase the number of connected components of $(V, F + y)$, but whose deletion does leave $(V, F + y)$ no longer over-braced. So $F + y - x$ has the desired property. □
This proof depended on the fact that the graph of a rigidity cycle must be a 2-connected graph, or, equivalently, that the cycle matroid on those edges is connected. This is not true in general, even if M_u and M_l are the upper and lower matroids of a Δ-matroid, as the following example shows. Consider $E = \{1, 2, 3, a, b, c\}$, $M_u = U_{5,6}(E)$, $M_l = U_{2,3}(\{1, 2, 3\}) \oplus U_{2,3}(\{a, b, c\})$. Then it is easy to check that M_u, M_l are the upper and lower matroids of a delta-matroid D, with feasible sets $\{B_1 \cup B_2 \mid B_1 \in \mathcal{B}(M_u), B_2 \in \mathcal{B}(M_l)\}$. Here the upper matroid is a cycle, and the lower matroid is disconnected.

We would like to have that every cycle in M_u is a union of cycles in M_l, which is not necessarily the case even if M_u and M_l are matroids such that every basis of M_l is independent in M_u, and every basis of M_u is spanning in M_l, as the following example demonstrates. Consider the cycle matroids of multigraphs of Figure 1. Every basis of M_u, the matroid for the graph on the left, contains a and so spans the matroid M_l, for the graph on the right; and each of the bases of M_l have one element and so are independent in M_u, which has no loops. However the cycle $\{d, b\}$ of M_u is not a union of cycles of M_l. Moreover, M_u and M_l cannot be the upper and lower matroids of any Δ-matroid. Consider $\{a, d, e\}$ and $\{b\}$. Then $a \in \{a, d, e\} \triangle \{b\}$, and, if there was a Δ-matroid, there would exist a $y \in \{a, d, e\} \triangle \{b\} = \{a, b, d, e\}$ so that $\{a, d, e\} \Delta \{a, y\}$ is feasible. But $y \notin \{a, d, e\}$ since $\{d, e\}$ is not lower spanning, and $y \neq b$ since $\{b, d, e\}$ is not upper-independent. So no choice of y could give a feasible set.

But we do have the following result, which gives us a new necessary condition and will allow us to characterize upper and lower matroids of Δ-matroids.

Theorem 2.2. Let D be a delta matroid with ground set E, with upper matroid M_u and lower matroid M_l. Then every cycle in M_u is a union of cycles in M_l.

Proof. Let C be a cycle in M_u, and consider the restriction of D to C, see [5]. In this restriction, the upper matroid is a single cycle C. If the lower matroid is not a union of lower cycles, then there is an edge e which is contained in no lower cycle, so $C \setminus \{e\}$ which is an upper basis, hence feasible, is not lower spanning, a contradiction. \[\square\]

It is easy to show that this necessary condition is stronger than the earlier necessary conditions, since if every cycle in M_u is a union of cycles in M_l then every basis of M_l is independent in M_u, and every basis of M_u is spanning in M_l. In fact, we have necessary and sufficient conditions for two matroids to be the upper and lower matroids of a Δ-matroid.

![Figure 1. Two graphs on the same edge set.](image-url)
Theorem 2.3. Let M_u and M_l be matroids on the same ground set E. Then M_u and M_l are the upper and lower matroids of a Δ-matroid if and only if every cycle in M_u is a union of cycles in M_l.

Proof. We only have to show sufficiency. Suppose that every cycle in M_u is a union of cycles in M_l, so that every basis of M_l is independent in M_u, and every basis of M_u is spanning in M_l. We will construct a Δ-matroid realizing M_u and M_l as the upper and lower matroids. Set \mathcal{F} to be the collection of all subsets of E which are both upper independent and lower spanning. So, in particular, the bases of M_l and M_u are contained in \mathcal{F}.

Let $F, F' \in \mathcal{F}$ and let $x \in F \setminus F'$. If x is an element of a lower-cycle in F, then chose $y = x$, and $F - x$ is both lower-spanning and upper independent, so feasible. So suppose that x belongs to no lower-cycle in F. Then $F - x$ is not lower spanning, and, since F' is lower spanning, there exists an element $y \in F'/F$ so that $F - x + y$ is lower spanning. Moreover, y is contained in no lower cycle in $F - x + y$. We know that F is upper independent, and so $F - x + y$ is either upper independent, or contains a unique upper-cycle, which contains y. That upper-cycle is a union of lower-cycles, contradicting the fact that y is contained in no lower cycle in $F - x + y$. So $F - x + y$ is lower-spanning and upper-independent.

Now we must consider the case when $x \in F' \setminus F$. If $F + x$ is upper-independent, we can choose $y = x$, and $F \triangle \{x, y\} = F + \{x\}$ is upper-independent and lower-spanning, as required. So suppose that $F + x$ is not upper-independent, and so has an unique upper-cycle C containing x. Since $C \not\subseteq F'$, there exists an element $y \in F' \setminus F$ so that $F + x - y$ is upper independent. Moreover, since y is contained in a lower-cycle C' contained in the lower-spanning set $F + x$, $F + x - y$ is also lower spanning.

So \mathcal{F} is the collection of feasible sets of a Δ-matroid on E. □

Consider a Δ-matroid D on a ground set E. From the symmetric exchange axiom it is clear that replacing the feasible sets F with their complements $E \setminus F$, yields another delta matroid D^\ast with feasible sets $F^\ast = \{ E \setminus F | F \in \mathcal{F} \}$. Note that $(M_l)^\ast = (M^\ast)_u$ and $(M_u)^\ast = (M^\ast)_l$. For a subset X of the ground set which is contained in some feasible set F, we define a Δ-matroid $D \setminus X$, on the ground set $E \setminus X$, whose feasible sets are $\{ F \setminus X | F \in \mathcal{F} \}$ and a Δ-matroid $D/X = (D^\ast \setminus X)^\ast$.

Oxley [13] defines a matroid Q to be a quotient of a matroid M if there is a matroid N and a subset X of the ground set of N such that $M = N \setminus X$ and $Q = N/X$ and proves that Q is a quotient of M if and only if every circuit of M is a union of circuits of Q, so we have the following.

Corollary 2.4. Let M_u and M_l be matroids on the same ground set E. Then M_u and M_l are the upper and lower matroids of a Δ-matroid if and only if M_l is a quotient of M_u.

There may be many matroids N on $E \cup X$ with the property that $M_l = N \setminus X$ and $M_u = N/X$. For our Δ-matroid example on the edge set of a graph $G = (V, E)$ with upper matroid the 2-dimensional generic rigidity matroid of G and lower matroid the cycle matroid of G, Corollary [24] implies that the connectivity matroid of a graph must be a quotient of its 2-dimensional generic rigidity matroid. Geometrically, this does not seem obvious, however the following is a realization of this relationship. Given $G = (V, E)$, the cone of G, $G_c = (V \cup \{x_0\}, E \cup X)$ is
obtained by adding a new vertex \(x_0\) and \(|V|\) new edges connecting the \(x_0\) to each vertex in \(V\), so \(X = \{(x, v) | v \in V\}\). See Figure 2.

Figure 2. A graph \(G\) and its cone \(G_c\).

Theorem 2.5. Given a graph \(G\), then its 2-dimensional generic rigidity matroid is \(M_r(G) = M_r(G_c) \setminus X\) and its connectivity matroid is \(M_c(G) = M_r(G_c)/X\).

Proof. Clearly \(M_r(G) = M_r(G_c) \setminus X\), so we need only show \(M_c(G) = M_r(G_c)/X\).

The circuits of \(M_r(G_c)/X\) are the minimal sets in
\[
D = \{C \setminus N | C \in \mathcal{C}(M_r(G_c))\},
\]

Since the cone of every connectivity cycle is a circuit in the 2-dimensional generic rigidity matroid, the minimal sets in \(D\) can contain at most the edges of a single connectivity cycle.

On the other hand, since the cone of an acyclic graph is independent in the 2-dimensional generic rigidity matroid, every edge set in \(D\) contains at least one connectivity cycle.

So the minimal elements of \(D\) are exactly the connectivity cycles of the graph \(G = (V, E)\), and \(M_c(G) = M_r(G_c)/X\). \(\square\)

If we are given the upper and lower matroids \(M_l\) and \(M_u\) of a \(\Delta\)-matroid \(D\), we may wonder if there is a way to construct a \(\Delta\)-matroid \(D_{\text{max}}\) (resp \(D_{\text{min}}\)) with the least (resp maximum) number of feasibles and the same upper and lower matroids as \(D\).

Here we consider the special cases where the upper or lower matroid is the uniform matroid. Let \(F_{\text{max}} = B_l \cup I_{\text{max}}(D)\), \(F_{\text{max}}' = B_l \cup I'_{\text{max}}(D)\) with
\[
I_{\text{max}}(D) = \{A \subseteq E | \text{rk}(M_l) < |A| \leq \text{rk}(M_u), \text{ \(A\) is spanning in \(M_l\)}\};
\]
\[
I'_{\text{max}}(D) = \{A \subseteq E | \text{rk}(M_l) \leq |A| < \text{rk}(M_u), \text{ \(A\) is independent in \(M_u\)}\}.
\]

Theorem 2.6. Let \(D = (E, F(D))\) be a \(\Delta\)-matroid.

- If the upper matroid of \(D\) is uniform, \(D_{\text{max}} = (E, F_{\text{max}})\) is the \(\Delta\)-matroid with maximum number of feasibles satisfying \(M_l(D_{\text{max}}) = M_l\).
- If the lower matroid of \(D\) is uniform, \(D'_{\text{max}} = (E, F'_{\text{max}})\) is the \(\Delta\)-matroid with maximum number of feasibles satisfying \(M_u(D'_{\text{max}}) = M_u\).
Proof. We will only prove the first assertion of this theorem because duality can recover the second.

Let $F_1, F_2 \in \mathcal{F}_{\max}$, $x \in F_1 \Delta F_2$ and let us search for $y \in F_1 \Delta F_2$ such that the (AF) axiom holds. There is nothing to prove if $F_1, F_2 \subseteq B_1$; $F_1, F_2 \subseteq B_2$ or $F_1 \subseteq B_1, F_2 \subseteq B_2$ since the (AF) axiom is satisfied on elements of the set $\mathcal{F}(D)$.

Assume that $F_1 \in B_1, F_2 \subseteq \mathcal{I}_{\max}(D) \setminus B_2$ and $x \in F_1 \setminus F_2$. From Theorem 1.3 there exists $K_1^2 \subseteq E$ and $F_1^2 \subseteq B_1$ such that $F_2 = F_1^2 \cup K_1^2$. As a result, $x \in F_1 \setminus F_1^2$ will yield an $x' \in F_1^2 \setminus F_1$ such that $F_1 - x + x' \in B_1$ according to the (MB) axiom and then $x' \in F_2 \setminus F_1$ allows to take $y = x'$. Since $|F_2| < \text{rk}(M_u)$, $F_2 + x \in \mathcal{I}_{\max}(D)$, we can take $y = x \in F_1 \Delta F_2$ such that $F_2 \Delta \{x\} \in \mathcal{I}_{\max}(D)$. Assume we begin by picking $x \in F_2 \setminus F_1$. We can clearly take $y = x$ to get $F_1 + x \in \mathcal{I}_{\max}(D)$. We can still use $y = x$ in case $x \in K_1^2$ to obtain $F_2 - x = F_1^2 \cup (K_1^2 - x) \in \mathcal{I}_{\max}(D)$. If $x \in F_1^2$ then $x \in F_1^2 \setminus F_1$ which according to the (MB) axiom will give an $x' \in F_1 \setminus F_1^2$ such that $F_1^2 - x + x' \in B_1$. If $x' \notin K_1^2$, we can simply take $y = x'$ because $x' \in F_1 \setminus F_2$ and $F_2 - x + x' = (F_1^2 - x + x') \cup K_1^2 \in \mathcal{I}_{\max}(D)$. If $x' \in K_1^2$, $F_2 - x = (F_1^2 - x + x') \cup (K_1^2 - x') \in \mathcal{I}_{\max}(D)$ and we can choose $y = x$.

Assume that $F_1, F_2 \in \mathcal{I}_{\max}(D)$. Applying again Theorem 1.3 we can write $F_1 = F_1^1 \cup K_1^1, F_2 = F_2^1 \cup K_2^1$; for $F_1^1, F_2^1 \in B_1$ and K_1^1, K_2^1 subsets of E.

If $x \in K_1^1$, we can take $y = x$ since $F_1^1 \Delta \{x\} = F \setminus x = F_1^1 \cup (K_1^1 \setminus x) \in \mathcal{I}_{\max}(D)$. Otherwise, $x \in F_1^1 \setminus F_2$ and this implies that $x \in F_1^1 \setminus F_1^2$ which by the (MB) axiom gives $x' \in F_1^2 \setminus F_1^1$ such that $F_1^1 - x + x' \in B_1$. In the case $x' \in K_1^1$, we can take $y = x$ as $F_1 - x = (F_1^1 - x + x') \cup K_1^1 \in \mathcal{I}_{\max}(D)$ and if $x' \notin K_1^1$ then $x' \in F_2 \setminus F_1$ and we take $y = x'$. Furthermore if $|F_2| < \text{rk}(M_u)$ we can take $y = x$ as $|F_2 \cup \{x\}| \leq \text{rk}(M_u)$ and then $F_2 \Delta \{x\} \in \mathcal{I}_{\max}(D)$.

Assume that $|F_2| = \text{rk}(M_u)$. In this case, $F_2 \in B_u$, and because $|F_1| \leq \text{rk}(M_u)$ there is a subset K of E such that $F_1 \cup K \subseteq B_u$ and $x \in (F_1 \cup K) \setminus F_2$ implies that there is $x' \in F_2 \setminus (F_1 \cup K)$ such that $F_2 - x' + x \in B_u$ from the (MB) axiom. We have just found $y = x' \in F_2 \setminus F_1$ such that $F_2 - x' + x \in B_u$.

We now use an example to illustrate the previous theorem. Let $E = \{a, b, c, d\}$ and \mathcal{F} be the subset of the power set of E containing $M_u = \{(a, b, c, d)\}$ and all the one element and two element subsets of E. Clearly $D = (E, \mathcal{F})$ is a Δ-matroid. Adding to \mathcal{F} all the three elements subsets of E gives the maximal Δ-matroid having the same lower matroid and upper matroid with D.

We now wonder what happens if we remove the requirement that the lower and upper matroids be uniform. This is a question that will be investigated further in the future. Furthermore, the question of how to find D_{\min} remains unanswered. If the matroids D_{\min} and D_{\max} exist, are they uniquely defined?

References

[1] R. C. Avohou, B. Servatius and H. Servatius “Maps and Δ-matroids revisited”, The Art of Discrete and Applied Mathematics 4 (2021).
[2] A. Bouchet, “Representability of Δ-matroids”, in Proceedings of the 6th Hungarian Colloquium of Combinatorics, Colloq. Math. Soc. János Bolyai, 167–182 (1987).
[3] A. Bouchet, “Greedy algorithm and symmetric matroids”, Math. Program. 38, 147–159 (1987).
[4] A. Bouchet, “Maps and delta-matroids”, Discrete Math. 78, 59–71 (1989).
[5] A. Bouchet and A. Duchamp, “Representability of Δ-Matroids Over $GF(2)$,” Linear algebra and its applications 146, 67–78 (1991).
[6] André Bouchet, “Multimatroids. I. Coverings by independent sets,” SIAM J. Discrete Math., 146(4): 626–646, (1997).
[7] André Bouchet, “Multimatroids. II. Orthogonality, minors and connectivity,” Electron. J. Combin., 5: Research Paper 8, 25, (1998).
[8] André Bouchet, “Multimatroids. IV. Chain-group representations” Linear Algebra Appl, 277(1-3): 271–289, (1998).
[9] André Bouchet, “Multimatroids. III. Tightness and fundamental graphs,” European J. Combin., 22(5): 655–677, (2001). Combinatorial geometries (Luminy, 1999).
[10] A. Chandrasekaran and Santosh N. Kabadi, “Pseudomatroids,” Discrete Math., 71(3): 205–217, (1988).
[11] Andreas Dress and Timothy F. Havel, “Some combinatorial properties of discriminants in metric vector spaces,” Adv. in Math., 62(3): 285–312, (1986).
[12] Jack Graver, Brigitte Servatius, and Herman Servatius, “Combinatorial rigidity,” volume 2 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, (1993).
[13] James Oxley, “Matroid theory,” volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition, (2011).
[14] Leonidas S. Pitsoulis, “Topics in matroid theory,” SpringerBriefs in Optimization. Springer, New York, (2014).
[15] András Recski, “Matroid theory and its applications in electric network theory and in statistics,” volume 6 of Algorithms and Combinatorics. Springer-Verlag, Berlin; Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest, (1989).
[16] W. T. Tutte, “Introduction to the theory of matroids,” Modern Analytic and Computational Methods in Science and Mathematics, No. 37. American Elsevier Publishing Co., Inc., New York, (1971).
[17] D. J. A. Welsh, “Matroid theory,” Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, (1976). L. M. S. Monographs, No. 8.
[18] H. Whitney, “On the abstract properties of linear dependence,” Amer. J. Math. 57, 509–533 (1935).

(Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany, & ICMPA-UNESCO Chair, 072BP50, Cotonou, Rep. of Benin, & Ecole Normale Supérieure, B.P 72, Natitingou, Benin
Email address: avohou.r.cocou@mpim-bonn.mpg.de

(B.S. in Mathematical Sciences, Worcester Polytechnic Institute, Worcester MA 01609-2280
Email address: bservat@wpi.edu

(B.S. in Mathematical Sciences, Worcester Polytechnic Institute, Worcester MA 01609-2280
Email address: hservat@wpi.edu)