DATA NOTE

The genome sequence of *Aplidium turbinatum* (Savigny 1816), a colonial sea squirt [version 1; peer review: 2 approved]

John Bishop¹, Joanna Harley¹, Robert Mrowicki²¹,², Marine Biological Association Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹Marine Biological Association, Plymouth, Devon, UK
²Natural History Museum, London, UK

Abstract
We present a genome assembly from an individual *Aplidium turbinatum* (Chordata; Asciidae; Aplousobranchia; Polyclinidae). The genome sequence is 605 megabases in span. The majority of the assembly (99.98%) is scaffolded into 18 chromosomal pseudomolecules. The complete mitochondrial genome was also assembled and is 18.4 kilobases in length.

Keywords
Aplidium turbinatum, sea squirt, genome sequence, chromosomal, Asciidae

This article is included in the Tree of Life gateway.
Species taxonomy
Eukaryota; Metazoa; Chordata; Tunicata; Asciidae; Aplousobranchia; Polyclinidae; Aplidium; *Aplidium turbinatum* (Savigny 1816) (NCBI:txid2771288).

Background
The polyclinid ascidian *Aplidium turbinatum* (formerly known as *Sidnyum turbinatum* – see (Monniot & Monniot, 1987)) has a European distribution from Norway to the Mediterranean. It is frequently encountered in shallow water around the coasts of Great Britain and Ireland.

Colonies comprise a number of lobes or ‘heads’ with flat tops, tapering towards their common attached base. Up to 12 (rarely 25) zooids approximately 5 mm long are embedded vertically in each colony lobe, with their separate eight-lobed inhalant openings in the flat upper surface, arranged around a single exhalant opening. The colonial tunic in which the zooids are embedded is unusually thin for a polyclinid and transparent, meaning that the zooids inside can be seen clearly. Pigmentation in a variety of possible colours picks out the endostyle and the structure of the branchial basket of the zooids, while the inhalant openings are often also pigmented.

A cytotoxic substance, turbinamide, has been isolated from *A. turbinatum* (Aiello et al., 2001). The cytotoxic effect was found to be selective, acting against neuronal cells but not immune-system cells.

Genome sequence report
The genome was sequenced from a single monoecious hermaphrodite *A. turbinatum* clonal colony (Figure 1) collected from Queen Anne’s Battery Marina visitors’ pontoon, Plymouth, UK. A total of 65-fold coverage in Pacific Biosciences single-molecule HiFi long reads and 85-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 37 missing/misjoins and removed 10 haplotypic duplications, reducing the assembly size by 0.54%, the scaffold number by 43.48%, and the scaffold N50 by 0.71%.

The final assembly has a total length of 605 Mb in 26 sequence scaffolds with a scaffold N50 of 34.0 Mb (Table 1). The majority, 99.88%, of the assembly sequence was assigned to 11 chromosomal-level scaffolds, representing 18 autosomes (numbered by sequence length) (Figure 2–Figure 5; Table 2). The assembly was curated to 18 chromosomes and oriented with the centromere on the left. Of note, telomere regions on chromosomes are all at half coverage. A few small scaffolds remain unlocalised due to lack of Hi-C signal.

Table 1. Genome data for *Aplidium turbinatum*, kaAplTurb1.1.

Project accession data	
Assembly identifier	kaAplTurb1.1
Species	Diadumene lineata
Specimen	kaAplTurb1
NCBI taxonomy ID	2771288
BioProject	PRJEB45189
BioSample ID	SAMEA7536566
Isolate information	kaAplTurb1, monoecious hermaphrodite clonal colony

Raw data accessions	
PacificBiosciences SEQUEL II	ERR6412042, ERR6412043
10X Genomics Illumina	ERR6286724-ERR6286727
Hi-C Illumina	ERR6286728
PolyA RNA-Seq Illumina	ERR6745738, ERR6745739

Genome assembly	
Assembly accession	GCA_918807975.1
Accession of alternate haplotype	GCA_918843895.1
Span (Mb)	605
Number of contigs	79
Contig N50 length (Mb)	14.9
Number of scaffolds	26
Scaffold N50 length (Mb)	34.0
Longest scaffold (Mb)	64.3
BUSCO* genome score	C:93.1%;S:88.8%;D:4.3%;F:3.4%;M:3.6%;n:954

*BUSCO scores based on the metazoa_odb10 BUSCO set using v5.1.2. C= complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/kaAplTurb1.1/dataset/CAKKNH01/busc.

Figure 1. Image of the *Aplidium turbinatum* specimen taken during preservation and processing.
The assembly has a BUSCO v5.1.2 (Manni et al., 2021) completeness of 93.1% (single 88.8%, duplicated 4.3%) using the metazoa_odb10 reference set (n=954). While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Methods

Sample acquisition and DNA extraction

A single monoecious hermaphrodite *A. turbinatum* clonal colony (kaAplTurb1) was collected by hand from Queen Anne’s Battery Marina visitors’ pontoon, Plymouth, UK (latitude 50.3644, longitude -4.1320) by John Bishop, Joanna Harley (both Marine Biological Association) and Rob Mrowicki (Natural History Museum). The specimen was identified by John Bishop and snap-frozen in liquid nitrogen.

DNA was extracted at the Tree of Life laboratory, Wellcome Sanger Institute. The kaAplTurb1 sample was weighed and dissected on dry ice with tissue set aside for Hi-C and RNA sequencing. Tissue was disrupted using a Nippi Powermasher fitted with a BioMasher pestle. Fragment size analysis of 0.01–0.5 ng of DNA was then performed using an Agilent FemtoPulse. High molecular weight (HMW) DNA was extracted using the Qiagen MagAttract HMW DNA extraction kit. Low molecular weight DNA was removed from a 200-ng aliquot of extracted DNA using 0.8X AMPure XP purification kit prior to 10X Chromium sequencing; a minimum of 50 ng DNA was submitted for 10X sequencing. HMW DNA was sheared into an average fragment size between 12–20 kb in a Megaruptor 3 system with speed setting 30. Sheared DNA was purified by solid-phase reversible immobilisation using AMPure PB beads with a 1.8X ratio of
beads to sample to remove the shorter fragments and concentrate the DNA sample. The concentration of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and Qubit Fluorometer and Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.

RNA was extracted from kaAplTurb1 in the Tree of Life Laboratory at the WSI using TRIzol, according to the manufacturer’s instructions. RNA was then eluted in 50 µl RNase-free water and its concentration RNA assessed using a Nanodrop spectrophotometer and Qubit Fluorometer using the Qubit RNA Broad-Range (BR) Assay kit. Analysis of the integrity of the RNA was done using Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Sequencing
Pacific Biosciences HiFi circular consensus and 10X Genomics Chromium read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi), Illumina NovaSeq 6000 (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were generated in the Tree of Life laboratory from remaining tissue of kaAplTurb1 using the Arima v2 kit and sequenced on a NovaSeq 6000 instrument.

Genome assembly
Assembly was carried out with Hifiasm (Cheng et al., 2021); haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination as described previously (Howe et al., 2021). Manual curation was performed using HiGlass (Kerpedjiev et al., 2018) and Pretext.
Figure 4. Genome assembly of *Aplidium turbinatum*, kaAplTurb1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/kaAplTurb1.1/dataset/CAKKNH01/cumulative.

Figure 5. Genome assembly of *Aplidium turbinatum*, kaAplTurb1.1: Hi-C contact map. Hi-C contact map of the kaAplTurb1.1 assembly, visualised in HiGlass. Chromosomes are arranged in size order from left to right and top to bottom. The interactive Hi-C map can be viewed here.
Table 2. Chromosomal pseudomolecules in the genome assembly of Aplidium turbinatum, kaAplTurb1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
OU974069.1	1	42.01	35.3
OU974070.1	2	33.73	35.3
OU974071.1	3	23.14	35.6
OU974072.1	4	19.48	35.2
OU974073.1	5	18.71	35.4
OU974074.1	6	18.65	35.3
OU974075.1	7	17.67	35.4
OU974076.1	8	15.82	35.3
OU974077.1	9	15.30	35.3
OU974078.1	10	14.93	35.3
OU974079.1	11	14.14	35.2
OU974080.1	12	14.10	35.2
OU974083.1	13	13.13	35.1
OU974081.1	14	13.25	35.3
OU974082.1	15	13.16	35.4
OU974084.1	16	12.63	35.0
OU974085.1	MT	0.02	37.4
-	Unplaced	13.14	33.4

The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021), which performs annotation using MitoFinder (Allio et al., 2020). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.

Ethics/compliance issues
The materials that have contributed to this genome note have been supplied by a Darwin Tree of Life Partner. The submission of materials by a Darwin Tree of Life Partner is subject to the Darwin Tree of Life Project Sampling Code of Practice. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of Life Partner agrees they will meet the legal and ethical requirements and standards set out within this document in respect of all samples acquired for, and supplied to, the Darwin Tree of Life Project. Each transfer of samples is further undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Darwin Tree of Life Partner, Genome Research Limited (operating as the Wellcome Sanger Institute), and in some circumstances other Darwin Tree of Life collaborators.

Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.14-r312	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	2.0	Uliano-Silva et al., 2021
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.2.x	https://github.com/wtsi-hpag/PretextView
BlobToolKit	3.0.5	Challis et al., 2020

Data availability
European Nucleotide Archive: Aplidium turbinatum (a colonial sea squirt). Accession number PRJEB4518; https://identifiers.org/ena.embl/PRJEB4518.

The genome sequence is released openly for reuse. The A. turbinatum genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated using the RNA-Seq data and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Author information
Members of the Marine Biological Association Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.5913830.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.5744972.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.6125027.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.6125046.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.5638618.
References

Aiello A, Carbonelli S, Esposito G, et al.: Turbinamide, a New Selective Cytotoxic Agent from the Mediterranean Tunicate Sidnyum Turbinatum. Org Lett. 2001; 3(19): 2941–4. PubMed Abstract | Publisher Full Text

Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: Efficient Automated Large-Scale Extraction of Mitogenomic Data in Target Enrichment Phylogenomics. Mol Ecol Resour. 2020; 20(4): 892–905. PubMed Abstract | Publisher Full Text | Free Full Text

Challis R, Richards E, Rajan J, et al.: BlobToolKit--Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361–74. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat Methods. 2021; 18(2): 170–75. PubMed Abstract | Publisher Full Text | Free Full Text

Ghurye J, Rise A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273. PubMed Abstract | Publisher Full Text | Free Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2896–98. PubMed Abstract | Publisher Full Text | Free Full Text

Howe K, Chow W, Collins J, et al.: Significantly Improving the Quality of Genome Assemblies through Curation. Gigascience. 2021; 10(1): giaa153. PubMed Abstract | Publisher Full Text | Free Full Text

Kerpedjiev P, Abdennur N, Lekschas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125. PubMed Abstract | Publisher Full Text | Free Full Text

Manni M, Berkeley MR, Seppey M, et al.: BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021; 38(10): 4647–54. PubMed Abstract | Publisher Full Text | Free Full Text

Monniot C, Monniot F: Discussion Sur La Valeur de Deux Genres d'Ascidies à Propos D'espèces Nouvelles En Méditerranée. Annales de l'Institut Océanographique. 1987; 63(2): 119–129. Reference Source

Rao SSP, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 159(7): 1665–80. PubMed Abstract | Publisher Full Text | Free Full Text

Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.: marcelauliano/MitoHiFi: mitohifi_v2.0. 2021. Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Version 1

Reviewer Report 06 June 2022

https://doi.org/10.21956/wellcomeopenres.19684.r50737

© 2022 Le Moan A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Alan Le Moan
Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden

I went through the manuscript by Bishop et al. presenting the reference genome of the tunicate Aplidium turbinatum. The manuscript is clear and present a high quality reference genome. Overall, I think the reference genome looks really good and that the article can be Approved for indexing.

I have identified a couple of points that could be clarify in the text:

1. What was the purpose of sequencing 65-fold coverage in Pac Bio HiFi and 85-fold in 10X Genomic and not relying only on PacBio HiFi?

2. I think that the following sentence could benefits from some “The assembly was curated to 18 chromosomes and oriented with the centromere on the left.“:
 a) How was the curation performed? Manually with PretextView?
 b) Was the “real” number of chromosome known from previous studies? Was this information used for the curation?

3. Same with the following sentence: “Of note, telomere regions on chromosomes are all at half coverage”:
 a) How to explain these differences in coverage?
 b) Perhaps a link to a figure or a table would help here.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Population genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

MINOR COMMENTS
1. "Colonies comprise a number of lobes or ‘heads’ with flat tops, tapering towards their common attached base. Up to 12 (rarely 25) zooids, approximately 5 mm long are embedded vertically in each colony lobe, with their separate eight-lobed inhalant openings in the flat upper surface, arranged around a single exhalant opening."

This description is a little unclear. Are there multiple inhalent openings, each of eight lobes? Approx. how many in total? "A number" is a bit too vague. "Up to 12 (rarely 25)" also does not make sense. 25 is greater than 12. Maybe give the typical number "(up to 25)"?
2. For comparison purposes, BUSCO analysis needs to specify whether Augustus or Metaeuk was used for the gene prediction, as it can change the results quite substantially.

3. Whilst it is implied, it is not explicitly stated whether the software used for genome assembly, scaffolding, and polishing were run with default settings.

4. Given the 65X coverage of HiFi data and its random error profile, versus the biased error profile of the 10x Genomics (Illumina) reads, I wonder whether more accurate polishing would have been achieved using the HiFi data alone? Was 10x data used primarily to repair indel errors? Or were single base variants also "corrected". Ideally, Merqury kmer analysis using the HiFi reads would be used to assess the ideal polishing strategy.

5. I would like to see a little more detail regarding the manual curation and correction of misassemblies. The method implies that this was done solely on the basis of the Hi-C contact maps. Is this right? It is clear that seven misjoins were corrected to generate the 18 autosomes from 11 scaffolds. What was the nature of the other 30 corrections? Were these all correcting "missing joins" to improve the chromosome scaffolding?

6. Was any effort made to gap-fill the scaffolded assembly once the false duplications were removed?

7. "Of note, telomere regions on chromosomes are all at half coverage." Please expand on this. What exactly is meant by "telomere region"? Is this more than just the telomeres? Why is it of note and what are the implications? (Are they very heterozygous and thus only covered by one haplotype's reads?) Are all the autosomes telomere-to-telomere, or are any telomeres missing?

8. Table 2 appears to be missing two autosomes (17 and 18).

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genome assembly, genome curation, evolutionary genomics and bioinformatics.
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.