Behavior of odd-even mass staggering around 132Sn

L. Coraggio 1, A. Covello 1,2, A. Gargano 1, and N. Itaco 1,2

1Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
2Dipartimento di Fisica, Università di Napoli Federico II,
Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

(Dated: May 11, 2014)

We have performed shell-model calculations of binding energies of nuclei around 132Sn. The main aim of our study has been to find out if the behavior of odd-even staggering across $N=82$ is explainable in terms of the shell model. In our calculations, we have employed realistic low-momentum two-body effective interactions derived from the charge-dependent Bonn nucleon-nucleon potential that have already proved quite successful in describing the spectroscopic properties of nuclei in the 132Sn region. Comparison shows that our results fully explain the trend of the experimental staggering.

PACS numbers: 21.60.Cs, 21.30.Fe, 21.10.Dr, 27.60.+j

A fundamental property of an atomic nucleus is its mass. Mass spectrometry studies started more than a century ago and since then have continued achieving higher and higher accuracy. A comprehensive historical overview of mass spectrometry since the very beginning is given in Ref. [1].

Today, the highest accuracy (parts per billion) is reached with ion traps, in particular Penning traps. With this technique, mass measurements on neutron-rich Sn and Xe isotopes were recently performed at CERN On-Line Isotope Mass Separator (ISOLDE) facility by using the mass spectrometer ISOLTRAP. A remarkable result of the study was that the mass measurement of 134Sn revealed a 0.5-MeV discrepancy with respect to previous Q_β measurements. This provided clear evidence of the robustness of the $N=82$ shell closure, ruling out the hypothesis of an $N=82$ shell quenching.

The 132Sn region is currently the focus of great experimental and theoretical interest, especially in view of the production of new neutron-rich nuclear species at the next generation of radioactive ion beam facilities. Very recently, atomic masses of several neutron-rich nuclei around 132Sn have been measured using the JYFLTRAP Penning trap mass spectrometer coupled to the Ion Guide Isotope Separator On-Line (IGISOL) facility at the accelerator laboratory of the University of Jyväskylä. In this study, the masses of some nuclei, as for instance 135Sn and 136Sb, were measured for the first time and the precision of previously measured masses was significantly improved. Attention was also focused on the odd-even staggering (OES) of binding energies for $N=81$ and 83 isotones. In particular, the experimental values for Sn, Te, and Xe were compared with those obtained by performing various state-of-the-art self-consistent calculations with the SLy4 Skyrme energy density functional and contact pairing force. No calculation of Ref. [4], however, was able to reproduce the experimental behavior of the staggering in the $N=83$ isotones. This led the authors to consider this behavior anomalous and attribute it to specific effects beyond the $N=82$ shell gap not accounted for, in their opinion, by current theoretical approaches.

Over the past several years we have conducted several shell-model studies of neutron-rich nuclei around 132Sn by using Hamiltonians with single-particle and single-hole energies taken from experiment and effective interactions derived from the charge dependent (CD-Bonn) nucleon-nucleon (NN) potential renormalized through the $V_{\text{low-k}}$ procedure with a cutoff momentum Λ of 2.2 fm$^{-1}$. All these studies, focused essentially on the energy spectra and electromagnetic properties, led to results in very good agreement with experiment. The findings mentioned above have challenged us to put our realistic shell-model calculations to the test also in this puzzling case.

In our calculations, we assume that the valence protons and the valence neutron holes occupy the five orbits $0g_{7/2}$, $1d_{5/2}$, $1d_{3/2}$, $0h_{11/2}$, and $2s_{1/2}$ of the 50-82 shell while the valence neutrons have available the six orbits $1f_{7/2}$, $2p_{3/2}$, $2p_{1/2}$, $0h_{9/2}$, $1f_{5/2}$, and $0i_{13/2}$ of the 82-126 shell. The adopted values of the single-particle and single-hole energies are reported in Refs. [8] and [9], respectively. They were taken from the experimental spectra of 133Sb [10], 131Sn [11], and 133Sn [10] with the exceptions of the proton $2s_{1/2}$ and the neutron $0i_{13/2}$ energies which were from Refs. [12] and [13], respectively, since the corresponding single-particle levels are still missing in the spectra of 133Sb and 133Sn. We should also point out here that, as in our most recent calculations [8], the experimental energy of [14] is used for the neutron $2p_{1/2}$ level. The needed mass excesses are taken from Ref. [4].

As mentioned above, the two-body effective interaction V_{eff} is derived from the CD-Bonn NN potential, whose short-range repulsion is renormalized by means of the $V_{\text{low-k}}$ potential with $\Lambda = 2.2$ fm$^{-1}$. The obtained low-momentum potential is then used, with the addition of the Coulomb force for protons, to derive V_{eff} within the framework of a perturbative approach based on the Q-box folded-diagram expansion [14, 15]. Some details on the calculation of the two-body interaction above and below $N=82$ can be found in [14] and [15], respectively.
The drop of about 0.5 MeV in the observed OES for Sn when crossing $N = 82$ is accounted for by the different pairing properties of our effective interaction for neutron particles and holes with respect to the $N = 82$ closed shell. In fact, the $J^\pi = 0^+$ matrix elements, which are the only ones entering the calculation of the ground-state energies of 134Sn and 130Sn, are overall less attractive for the former. For instance, the $J^\pi = 0^+$ diagonal matrix element for the $(1f_{7/2})^2$ configuration, which dominates the ground-state wave function of 134Sn, is -0.65 MeV, namely about 0.5 MeV less attractive than that for the $(0h_{11/2})^2$ configuration, whose role is very relevant to the ground state of 130Sn. In previous works [23, 24] we have investigated the microscopic origin of the pairing force above the $N = 82$ shell within our derivation of the effective interaction. We have analyzed the various perturbative contributions and found that the reduction of the pairing component is due to the minor role played by the one-particle-one hole excitations, which are instead responsible for a “normal” pairing below this shell. It is worth mentioning that the difference in the pairing force across $N = 82$ was also shown to be crucial in reproducing the asymmetric behavior of the yrast 2^+ state in tin and tellurium isotopes with respect to $N = 82$ [23, 24].

When going to Te and Xe, the $N = 81$ and 83 lines come closer to each other as a result of the proton-neutron effective interaction. The two lines would be indeed parallel should one ignore this interaction. From Fig. 1 we see that the $p - n$ interaction has an opposite effect on the $N = 81$ and $N = 83$ isotopes, which is clearly related to its repulsive and attractive nature in the particle-hole and particle-particle channel, respectively. On the other hand, this effect is not very large either in $^{133, 135}$Te or in $^{135, 137}$Xe, since it results essentially from the difference between the contributions of the $p - n$ interaction to the energies of the odd and neighboring even isotopes. It makes, however, the OES almost

\[
\Delta^{(3)}(N, Z) = \frac{1}{2}[B(N + 1, Z) + B(N - 1, Z) - 2B(N, Z)],
\]

for the $N = 81$ isotones 131Sn, 133Te, and 135Xe and for the $N = 83$ isotones 133Sn, 135Te, and 137Xe.

In Fig. 1 we compare the calculated OES values with the experimental ones. We see that the agreement between theory and experiment is very good. In particular, our calculations quantitatively describe the gap between the $N = 81$ and 83 lines at $Z = 50$ as well as its decrease when adding two and four protons, which confirms the reliability of the various components of our effective interactions.
equal in 135Xe and 137Xe, as is experimentally observed.

In summary, we have shown that there is no anomaly in the OES of binding energies around 132Sn, as it is fully explained in terms of the shell model with realistic effective interactions which are just the same as those employed in our previous studies \[\text{\[1-7\]}\] in the 132Sn region.

Acknowledgments

This work has been supported in part by the Italian Ministero dell’Istruzione, dell’Universit`a e della Ricerca (MIUR) under PRIN 2009.

[1] K. Blaum, Phys. Rep. \textbf{425}, 1 (2006).
[2] M. Dworschak \textit{et al.}, Phys. Rev. Lett. \textbf{100}, 072501 (2008).
[3] D. Neidherr \textit{et al.}, Phys. Rev. C \textbf{80}, 044323 (2009).
[4] J. Hakala \textit{et al.}, Phys. Rev. Lett. \textbf{109}, 032501 (2012).
[5] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev C \textbf{80}, 021305(R) (2009), and references therein.
[6] A. Covello, L. Coraggio, A. Gargano, and N. Itaco, J. Phys. Conf. Ser. \textbf{267}, 012019 (2011), and references therein.
[7] M. Danchev \textit{et al.}, Phys. Rev. C \textbf{84}, 061306(R) (2011).
[8] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev C \textbf{87}, 034309 (2013).
[9] S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C \textbf{65}, 051301 (2002).
[10] Data extracted using the NNDC On-line Data Service from the ENSDF database version of July 17, 2013.
[11] B. Fogelberg \textit{et al.}, Phys. Rev. C \textbf{70}, 034312 (2004).
[12] F. Andreozzi, L. Coraggio, A. Covello, A. Gargano, T. T. S. Kuo, and A. Porrino, Phys. Rev. C \textbf{56}, R16 (1997).
[13] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev C \textbf{65}, 051306(R) (2002).
[14] K. L. Jones \textit{et al.}, Nature (London) \textbf{465}, 454 (2010).
[15] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Prog. Part. Nucl. Phys. \textbf{62}, 135 (2009).
[16] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Ann. Phys. (NY) \textbf{327}, 2125 (2012).
[17] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev C \textbf{87}, 021301(R) (2013).
[18] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev C \textbf{72}, 057302 (2005).
[19] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev C \textbf{73}, 031302(R) (2006).
[20] W. Satula, J. Dobaczewsky, and W. Nazarewicz, Phys. Rev. Lett. \textbf{81}, 3599 (1998).
[21] G. F. Bertsch, C. A. Bertulani, W. Nazarewicz, N. Schunck, and M. Stoitsov, Phys. Rev. C \textbf{79}, 034306 (2009).
[22] A. Covello, A. Gargano, and T. T. S. Kuo, in Fifty Years of Nuclear BCS: Pairing in Finite Systems, edited by R. A. Broglia and V. Zelevinsky (World Scientific Publishing Company, 2013), pp. 169-178.
[23] J. Terasaki, J. Engel, W. Nazarewicz, and M. Stoitsov, Phys. Rev. C \textbf{66}, 054313 (2002).
[24] N. Shimizu, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev. C \textbf{70}, 054313 (2004).