Melorheostosis is an uncommon benign sclerotic bone disease that may affect the adjacent soft tissues. It is characterized by periosteal hyperostosis of the cortex of long bones. Melorheostosis is a benign disease that may be asymptomatic for many years. The abnormal os-
Case report

Melorheostosis

Sclerosis in the cortex of the long bone may involve the soft tissues leading to joint contractures and fibrosis. Clinical presentation includes deformity, chronic pain, stiffness, and restricted joint movement in the involved limb, causing significant morbidity associated with the entity. It tends to be segmental and unilateral, and may affect one or multiple bones of the limb, with the lower extremity more commonly involved than the upper. There is a predilection for the diaphyseal and the epiphyseal regions of the long bones in a typical sclerotomal distribution akin to our case. Though long bones of the limbs are more commonly affected, it may rarely involve the spine, skull, and facial bones.

Plain radiographs of melorheostosis show undulating cortical thickening of the involved bone. It is also appreciated on computed tomography (CT) scans with high attenuation. These areas of thickening are seen encroaching on the medullary canal due to the involvement of the endosteum. Marked increase in radionuclide uptake is seen on bone scan. Soft tissue involvements on CT images show a variable degree of mineralization ranging from predominant mineralization with small soft tissue components to nonmineralization with small foci of calcification. MRI reveals hypointensity on all pulse sequences. MRI of these soft tissue masses shows heterogenous signal intensity due to the presence of various types of tissues. The mineralized areas show hypointensity on all sequences, while the non-mineralized areas with fibrovascular tissue and collagen show isointense signals on T1W images and iso- to hyperintense signals on T2W images. Fat-containing areas may show hyperintensity on T1W images and isointensity on T2W images. Extension into the joint can mimic synovial osteochondromatosis on MRI, and plain film correlation may become essential for the correct diagnosis as observed in this case.

Figure 1. T1W MRI of the right knee. A (coronal view), B (axial view), and C (sagittal view) show hypointense lesions of the femur, tibia, and patella (large arrows). Notice synovial thickening of intra-condylar notch and multiple loose bodies mimicking synovial osteochondromatosis (small arrows).

Figure 2. Fat suppressed T2W MRI of the right knee. A (sagittal view) and B and C (axial views) show hypointense lesions of the femur, tibia, and patella (large arrows). Notice synovial thickening of intra-condylar notch and multiple loose bodies mimicking synovial osteochondromatosis (small arrows).
Melorheostosis is an unusual condition characterized by a contiguous distribution of dense sclerotic lesions. These lesions present in a classic “candle dripping” appearance. They can involve the bones of the extremities, particularly the femur, tibia, and patella.

Case Report

Figure 3. Corresponding plain radiographs of the right knee. A (AP view), B (lateral view), and C (skyline view) show dense sclerotic lesions of the femur, tibia, and patella in a classic "candle dripping" appearance in keeping with melorheostosis (large arrows). Notice extension into the intra-articular space mimicking synovial osteochondromatosis (small arrows).

Melorheostosis is has been widely reported to be associated with a multitude of clinical entities, such as osteopoikilosis and osteopathia striata, anomalies of blood vessels or lymphatics, osteosarcoma, fibromatoses, desmoid tumors, multicentric fibromatosis, minimal change nephrotic syndrome, and hypophosphatemic rickets. We did not find any other association in this patient.

Synovial osteochondromatosis is a benign neoplasm of the hyaline cartilage presenting as nodules in the subsynovial tissue of a joint or tendon sheath. The knee is the most commonly involved joint. The usual clinical presentation is pain, swelling, and restriction of joint movement with articular tenderness and crepitus. It is primarily a monoarticular disease with rare cases of polyarticular involvement being reported. A long-standing disease may lead to secondary osteoarthritis and asymmetric joint space reduction with bone erosion. Imaging findings of synovial osteochondromatosis are usually pathognomic. Plain radiographs show multiple intra-articular calcifications distributed throughout the affected joint. This typical punctate mineralization appearance is called “ring-and-arc pattern.” A central focus with a peripheral rim of calcification may give rise to a “target appearance.” Several patterns have been described on MRI of this lesion. Corresponding to regions showing calcification on radiographs or CT scans, there is a homogeneous, intermediate, intra-articular isointensity to muscle on T1W images and hyperintensity on T2W images, with focal areas of low signal intensity on all pulse sequences. Another pattern corresponding to foci of endochondral ossification on CT and radiographs has similar features as discussed in this paragraph; however, it also includes hyperintense foci (isointense to fat) with a peripheral rim of hypointensity.

The management of melorheostosis is difficult due to the formation of joint contractures and fibrosis of joint space. It includes splinting, tendon lengthening, excision of fibrous and osseous tissue, sympathectomy, implant arthroplasty, corrective osteotomy, and amputation, if severe. Surgical release has also been tried with varying degrees of success. The treatment of choice for synovial osteochondromatosis (intra-articular or extra-articular) is surgical resection.

To summarize, melorheostosis can extend into the joint in a contiguous sclerotome distribution and produce intra-articular bodies mimicking synovial osteochondromatosis.

Conflicts of interest

Dr. Chabra has research grants from GE-AUR (GERRAF), Siemens Medical Solutions, and Integra Life Sciences. He also serves as a research consultant with Siemens CAD group.
REFERENCES

1. Suresh S, Muthukumar T, Saifuddin A. Classical and unusual imaging appearances of melorheostosis. Clin Radiol 2010; 65(8):593-600.
2. Nevin NC, Thomas PS, Davis RI, Cowie GH. Melorheostosis in a family with autosomal dominant osteopoikilosis. Am. J. Med. Genet 1999; 82(5):409-14.
3. Hellemans J, Preobrazhenska O, Willet A, Debeer P, Verdonk PC, Costa T, et al. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorf syndrome and melorheostosis. Nature genetics 2004;36(11):1213-8.
4. Greenspan A, Azouz EM. Bone dysplasia series. Melorheostosis: review and update. Canadian Association of Radiologists journal = Journal l’Association canadienne des radiologistes 1999;50(5):324-30.
5. Ewald FC. Unilateral mixed sclerosing bone dystrophy associated with unilateral lymphangiectasia and capillary hemangioma: a case report. J Bone Joint Surg Am 1972;54(4):878-80.
6. Morris JM, Samilson RL, Corley CL. Melorheostosis. Review of the literature and report of an interesting case with a nineteen-year follow-up. J Bone Joint Surg Am 1963;45:1191-1206.
7. Murphy M, Kearns S, Cavanagh M, O’Connell D, Hurson B. Occurrence of osteosarcoma in a melorheostotic femur. J Med J 2003;96(2):55-56.
8. Raby N, Vivian G. Case report 478: Melorheostosis of the axial skeleton with associated intrathecal lipoma. Skeletal Radiol 1988;17(3):216-219.
9. Ippolito V, Mirra JM, Motta C, Chiodera P, Bonetti MF. Case report 771: Melorheostosis in association with desmoid tumor. Skeletal Radiol 1993;22(4):284-98.
10. Rhys R, Davies AM, Mangham DC, Grimer RJ. Sclerome distribution of melorheostosis and multicentric fibromatosis. Skeletal radiology 1999;27(11):633-36.
11. Roger D, Bonnetblanc JM, Leroux-Robert C. Melorheostosis with associated minimal change nephrotic syndrome, mesenteric fibromatosis and capillary haemangiomas. Dermatology 1994;188(2):166-68.
12. Lee SH, Sanderson J. Hypophosphataemic rickets and melorheostosis. Clin Radiol 1989;40(2):209-11.
13. Kalbermatten NT, Vock P, Rufenacht D, Anderson SE. Progressive melorheostosis in the peripheral and axial skeleton with associated vascular malformations: imaging findings over three decades. Skeletal Radiol 2001;30(1):48-52.
14. Judkiewicz AM, Morphy MD, Resnik CS, Newberg AH, Temple HT, Smith WS. Advanced imaging of melorheostosis with emphasis on MRI. Skeletal Radiol 2001;30(8):447-53.
15. Freyschmidt J. Melorheostosis: a review of 23 cases. Eur Radiol 2001;11(3):474-79.
16. Murphey MD, Vidal JA, Fanburg-Smith JC, Gajewski DA. Imaging of synovial chondromatosis with radiologic-pathologic correlation. Radiographics: a review publication of the Radiological Society of North America, Inc. 2007;27(5):1465-88.
17. Roulot E, Le Viet D. Primary synovial osteochondromatosis of the hand and wrist. Report of a series of 21 cases and literature review. Rev Rhum Engl Ed. 1999;66(5):256-66.
18. Crotty JM, Monu JU, Pope TL, Jr. Synovial osteochondromatosis. Radiologic clinics of North America. 1996;34(2):327-42, xi.
19. Kramer J, Recht M, Deely DM, Schweitzer M, Pathria MN, Gentili A, et al. MR appearance of idiopathic synovial osteochondromatosis. JJ Comput Assist Tomogr. 1993;17(5):772-76.
20. Gong HS, Lee KH, Oh JH, Chung JH, Baek GH, Chung MS. Successful elbow contracture release secondary to melorheostosis. A case report. J Bone Joint Surg Am 2008;90(5):1106-11.
21. Maurice H, Crone M, Watt I. Synovial chondromatosis. J Bone Joint Surg Am 1988;70(5):807-11.