Give Me Convenience and Give Her Death: Who Should Decide What Uses of NLP are Appropriate, and on What Basis?

Kobi Leins Jey Han Lau Timothy Baldwin
School of Computing and Information Systems, The University of Melbourne
{kleins, laujh, tbaldwin}@unimelb.edu.au

Abstract

As part of growing NLP capabilities, coupled with an awareness of the ethical dimensions of research, questions have been raised about whether particular datasets and tasks should be deemed off-limits for NLP research. We examine this question with respect to a paper on automatic legal sentencing from EMNLP 2019 which was a source of some debate, in asking whether the paper should have been allowed to be published, who should have been charged with making such a decision, and on what basis. We focus in particular on the role of data statements in ethically assessing research, but also discuss the topic of dual use, and examine the outcomes of similar debates in other scientific disciplines.

1 Introduction

NLP tools are increasingly being deployed in the wild with potentially profound societal implications. Alongside the rise in technical capabilities has been a growing awareness of the moral obligation of the field to self-assess issues including: dataset and system bias (Zhao et al., 2017), dataset ethics (Bender and Friedman, 2018), and dual use (Hovy and Spruit, 2016). More recently, there has also been vigorous debate on whether it is ethical for the community to work on certain topics or data types. This paper aims to investigate this issue, focused around the examination of a paper recently published at EMNLP 2019 on automatic prison term prediction by Chen et al. (2019). Specifically, the paper in question proposes a neural model which performs structured prediction of the individual charges laid against an individual, and the prison term associated with each, which can provide an overall prediction of the prison term associated with the case. This model was constructed using a large-scale dataset of real-world Chinese court cases.

The primary question we attempt to address in this paper is on what basis a given paper satisfies basic ethical requirements for publication, in addition to examining the related question of who should make this judgement.

Note that our intention is in no way to victimise the authors of the paper in question, but rather to use it as a test case to objectively ground an ethical assessment. The authors did highlight potential ethical concerns of its application, but missed the point that there are data ethics issue in the first place. Note also that, given the topic of the paper, we will focus somewhat on NLP applications in the legal domain, but the majority of the findings/recommendations generalise and will be of equal relevance to other domains.

2 Case Study in Ethical NLP Publication

2.1 Data ethics

The first dimension to consider is data ethics: the data source and procedure used to construct a dataset have an immediate impact on the generalisability/interpretation of results based on that dataset, as well as the ability for real-world harm to happen (intentionally or otherwise) through its use. A number of proposals have recently been made regarding documentation procedures when releasing datasets to assist here, in particular data statements (Bender and Friedman, 2018) and datasheets (Gebru et al., 2018). Amalgamating the two, relevant questions to the specific case are the following, each of which we discuss briefly.¹

Which texts were included and what were the goals in selecting texts? The dataset was constructed from published records of the Supreme People’s Court of China, following work by Xiao

¹Note that many other important questions are covered in the respective frameworks, and our presentation here is biased towards the specific paper of interest.
et al. (2018) in the context of a popular shared task on automatic legal judgement prediction. The reason for constructing this particular dataset is to “improve the accuracy of prison term prediction by decomposing it into a set of charge-based prison term predictions”.

Why was the dataset created? To enhance the structure and granularity of earlier datasets, and achieve empirical gains in predictive accuracy.

Were the people represented in the dataset informed about the data collection? There is no mention of interaction with either the defendants or court officials about the use of the data. The documents are in the public domain.

Was there any ethical review? No ethical review is mentioned in the paper.

Could this dataset expose people to harm or legal action? Yes, the defendants are identifiable and the dataset directly pertains to legal action.

Does it unfairly advantage or disadvantage a particular social group? The dataset does not include explicit metadata regarding the demographics of the defendants, and the data has first names removed, but not surnames or other named entities. It is easy to imagine instances where the surname and location references could make the individual identifiable or could expose demographic information, esp. for ethnic minorities or areas of lower population density.

Were the people represented in the dataset provided with privacy guarantees? No, no steps were taken other than removing their first names.

Does the dataset contain information that might be considered sensitive or confidential? Yes, given that the labels represent prison time served by real-world individuals, and having personally identifying information enтомbed in a dataset that potentially has longevity (cf. the notoriety of Pierre Vinken from the Penn Treebank) could potentially have direct or indirect consequences for those individuals and their families or group.

Does the dataset contain information that might be considered inappropriate or offensive? Many of the cases are criminal in nature, so there are potentially personal and confronting details in the court cases, including information about the victims.

How was the data annotated, and what are the demographic characteristics of the annotators and annotation guideline developers? The “annotation” of the data is via court officials in terms of their legal findings, rather than via third-party annotations. No details are provided of the presiding court officials and their demographics, despite there being ample evidence of demographic bias in legal decision-making in other countries (Schanzenbach, 2005; Rachlinski et al., 2008; Yourstone et al., 2008).

Will the dataset be updated? We highlight this particular question because cases can be overturned or appealed and new evidence can come to light. In this particular case, the Supreme People’s Court in China has no legal avenue for appeal, but it is still presumably possible for a case to be reopened on the basis of fresh evidence and a different finding made, or overturned completely if a miscarriage of justice is found to have occurred. On the one hand, this doesn’t immediately affect the labels in the dataset, as the sentencing is based on the facts that were available at the time, but it could lead to situations where a legal case which was ultimately annulled is inappropriately preserved in the dataset in its original form, implying guilt of the individuals which was later disproven.

Of these, which are relevant to whether the paper is ethically sound, or could have made the paper less ethically questionable? Carrying out the research with the involvement of relevant legal authorities would certainly have helped, in terms of incorporating domain interpretation of the data, getting direct input as to the ultimate use of any model trained on the data (noting that the paper does return to suggest that the model be used in the “Review Phase” to help other judges post-check judgements of presiding judges). The lack of any mention of ethics approval is certainly troubling given the sensitivity of the data/task. The paper does briefly mention the possibility of demographic bias, without making any attempt to quantify or ameliorate any such bias. Privacy is an interesting question here, as we return to discuss under “data misuse” in Section 2.2, in addition to discussing the legality of using court documents for NLP research.

Having said this, we acknowledge that similar datasets have been constructed and used by others (esp. Xiao et al. (2018)), including in major NLP conferences (e.g. Zhong et al. (2018), Hu et al. (2018)). However, this should never be taken as a waiver for data ethic considerations. Also notable here are court proceeding datasets such as that of Aletras et al. (2016), where the use case is
the prediction of the violation of human rights (focusing on torture/degrading treatment, the right to a fair trial, and respect for privacy), which is more clearly aligned with “social good” (although there is more dataset documentation that could have been provided in that paper, along the lines described above). The conversation of what social good is, though, remains an open one (Green, 2019).

In sum, there is a level of ethical naivety and insensitivity in the paper, with the lack of ethics approval, end-user engagement, and consideration of the privacy of the defendants all being of immediate concern, but also long-term concerns including whether NLP should be used to such ends at all.

2.2 Dual Use

Dual use describes the situation where a system developed for one purpose can be used for another. An interesting case of dual use is OpenAI’s GPT-2. In February 2019, OpenAI published a technical report describing the development GPT-2, a very large language model that is trained on web data (Radford et al., 2019). From a science perspective, it demonstrates that large unsupervised language models can be applied to a range of tasks, suggesting that these models have acquired some general knowledge about language. But another important feature of GPT-2 is its generation capability: it can be used to generate news articles or stories.

Due to dual-use concerns, e.g. fine-tuning GPT-2 to generate fake propaganda, OpenAI released only the “small” version of the pre-trained models. It was, however, not received well by the scientific community, with some attributing this decision to an attempt to create hype around their research. The backlash ultimately made OpenAI reconsider their approach, and release the models in stages over 9 months. During these 9 months, OpenAI engaged with other organisations to study the social implications of their models (Solaiman et al., 2019), and found minimal evidence of misuse, lending confidence to the publication of the larger models. In November 2019 OpenAI released their final and largest model.6

OpenAI’s effort to investigate the implications of GPT-2 during the staged release is commendable, but this effort is voluntary, and not every organisation or institution will have the resources to do the same. It raises questions about self-regulation, and whether certain types of research should be pursued. A data statement is unlikely to be helpful here, and increasingly we are seeing more of these cases, e.g. GROVER (for generating fake news articles; Zellers et al. (2019)) and CTRL (for controllable text generation; Keskar et al. (2019)).

All of that said, for the case under consideration it is not primarily a question of dual use or misuse, but rather its primary use: if the model were used to inform the Supreme Court, rather than automate decision-making, what weight should judges give the system? And what biases has the model learned which could lead to inequities in sentencing? It is arguable that decisions regarding human freedom, and even potentially life and death, require greater consideration than that afforded by an algorithm, that is, that they should not be used at all.

Although no other governments appear to be automating legal decision-making per se, many governments are embracing algorithms to analyse/inform judicial decisions. In countries such as the United States and Australia, there has been analysis of legal decisions to understand factors such as the race/ethnicity of the defendant or the time of the day when the judge make a decision, and how this impacts on decision-making (Zatz and Hagan, 1985; Stevenson and Friedman, 1994; Snowball and Weatherburn, 2007; Kang et al., 2011). The French government has, however, under Article 33 of the Justice Reform Act made it illegal to analyse algorithmically any decision made by a judge, with what some argue is the harshest possible penalty for misconduct involving technology: a five-year sentence.7

Two decades ago, Helen Nissenbaum sounded the alarm about automating accountability (Nissenbaum, 1996). She expressed concerns that can be summarised in four categories. First, computerised systems are built by many hands and so lines of responsibility are not clear. Secondly, bugs are inevitable. Third, humans like to blame the com-

6https://www.middlebury.edu/institute/academics/centers-initiatives/ctec/ctec-publications-0/industrialization-terrorist-propaganda.

7https://www.legifrance.gouv.fr/eli/loi/2019/3/23/2019-222/jo/article_33.

2https://www.middlebury.edu/institute/academics/centers-initiatives/ctec/ctec-publications-0/industrialization-terrorist-propaganda.

3https://thergradient.pub/openai-please-open-source-your-language-model/.

4https://towardsdatascience.com/openais-gpt-2-the-model-the-hype-and-the-controversy-110f94bf5e8.

5https://openai.com/blog/gpt-2-6-month-follow-up/#fn1.

6https://openai.com/blog/gpt-2-1-5b-release/.

7https://www.legifrance.gouv.fr/el/loi/2019/3/23/2019-222/jo/article_33.
puter, which is problematic because of her fourth observation: that software developers do not like to be held responsible for their tools that they create. Nissenbaum is not the only author who questions whether there should be limitations on certain uses of computer science (Leins, 2019).

3 Comparable Concerns in the Biological Sciences

We have consultations, which of the inventions and experiences which we have discovered shall be published, and which not; and take all an oath of secrecy for the concealing of those which we think fit to keep secret; though some of those we do reveal sometime to the State, and some not.

Sir Francis Bacon, New Atlantis, 1626

The work of Ron Fouchier, a Dutch virologist, is informative in considering publication practices in the NLP community. Fouchier discovered a way to make the bird flu H5N1 transmissible between ferrets, and therefore potentially very harmful to humans. Fouchier’s research extended the potential scope of the virus beyond its usual avian transmission routes and extended the reach of his research beyond his laboratory when he submitted his paper to a US journal. The Dutch government objected to this research being made public, and required Fouchier to apply for an export licence (later granted). The situation raised a lot of concerns, and a lot of discussion at the time (Enserink, 2013), as well as a series of national policies in response.8 That said, Fouchier’s work was not the first or last to be censored. Self-censorship was mentioned as early as the 17th-century by British philosopher Bacon, often credited with illuminating the scientific method (Grajzl and Murrell, 2019). Most recently, similar questions not about how research should be done, but whether it should be done at all, have arisen in the recent Chinese CRISPR-Cas 9 case, where HIV immunity in twins was allegedly increased, without prior ethical approval or oversight.9

As the capabilities of language models and computing as a whole increase, so do the potential implications for social disruption. Algorithms are not likely to be transmitted virally, nor to be fatal, nor are they governed by export controls. Nonetheless, advances in computer science may present vulnerabilities of different kinds, risks of dual use, but also of expediting processes and embedding values that are not reflective of society more broadly.

4 Who Decides Who Decides?

Questions associated with who decides what should be published are not only legal, as illustrated in Fouchier’s work, but also fundamentally philosophical. How should values be considered and reflected within a community? What methodologies should be used to decide what is acceptable and what is not? Who assesses the risk of dual use, misuse or potential weaponisation? And who decides that potential scientific advances are so socially or morally repugnant that they cannot be permitted? How do we balance competing interests in light of complex systems (Foot, 1967). Much like nuclear, chemical and biological scientists in times past, computer scientists are increasingly being questioned about the potential applications, and long-term impact, of their work, and should at the very least be attuned to the issues and trained to perform a basic ethical self-assessment.

5 Moving Forward

Given all of the above, what should have been the course of action for the paper in question? It is important to note that the only mentions of research integrity/ethics in the Call for Papers relate to author anonymisation, dual submissions, originality, and the veracity of the research, meaning that there was no relevant mechanism for reviewers or PC Chairs to draw on in ruling on the ethics of this or any other submission. A recent innovation in this direction has been the adoption of the ACM Code of Ethics by the Association for Computational Linguistics, and explicit requirement in the EMNLP 2020 Calls for Papers for conformance with the code.10

Where a paper may raise ethical issues, we ask that you include in the paper an explicit discussion of these issues, which will be taken into account in the review process. We reserve the right to reject papers on ethical grounds, where the authors are judged to have operated

8https://www.jst.go.jp/crds/en/publications/CRDS-FY2012-SP-02.html.
9https://www.technologyreview.com/s/614761/nature-jama-rejected-he-jiankui-crispr-baby-lulu-nana-paper/.
10https://2020.emnlp.org/call-for-papers
counter to the code of ethics, or have inadequately addressed legitimate ethical concerns with their work.

This is an important first step, in providing a structure for the Program Committee to assess a paper for ethical compliance, and potentially reject it in cases of significant concerns. Having said this, the ACM Code of Ethics is (deliberately) abstract in its terms, with relevant principles which would guide an assessment of the paper in question including: 1.2 Avoid harm; 1.4 Be fair and take action not to discriminate; 1.6 Respect privacy; 2.6 Perform work only in areas of competence; and 3.1 Ensure that the public good is the central concern during all professional computing work. In each of these cases, the introspection present in a clearly-articulated data statement would help ameliorate potential concerns.

What could an ethics assessment for ACL look like? Would an ethics statement for ACL be enough to address all concerns? As argued above, it is not clear that ACL should attempt to position itself as ethical gatekeeper, or has the resources to do so. And even if ACL could do so, and wanted to do so, the efficacy of ethics to answer complex political and societal challenges needs to be questioned (Mittelstadt, 2019).

There certainly seems to be an argument for a requirement that papers describing new datasets are accompanied by a data statement or datasheet of some form (e.g. as part of the supplementary material, to avoid concerns over this using up valuable space in the body of the paper). This still leaves the question of what to do with pre-existing datasets: should they all be given a free pass; or should there be a requirement for a data statement to be retrospectively completed?

The GDPR provides some protection for the use of data, but its scope and geographic reach are limited. Further, the term “anonymised” is often a misnomer as even data that is classified by governments and other actors as “anonymous” can often easily be reidentified (Culnane and Leins, 2020).

What about code and model releases? Should there be a requirement that code/model releases also be subject to scrutiny for possible misuse, e.g. via a central database/registry? As noted above, there are certainly cases where even if there are no potential issues with the dataset, the resulting model can potentially be used for harm (e.g. GPT-2). One could consider this as part of an extension of data statements, in requiring that all code/model releases associated with ACL papers be accompanied with a structured risk assessment of some description, and if risk is found to exist, some management plan be put in place. Looking to other scientific disciplines that have faced similar issues in the past may provide some guidance for our future.

Finally, while we have used one particular paper as a case study throughout this paper, our intent was in no way to name and shame the authors, but rather to use it as a case study to explore different ethical dimensions of research publications, and attempt to foster much broader debate on this critical issue for NLP research.

6 Acknowledgements

This research was supported in part by the Australian Research Council (DP200102519 and IC170100030). The authors would like to thank Mark Dras, Sarvnaz Karimi, and Karin Verspoor for patiently engaging in rambling discussions which led to this hopefully less rambling paper, and to the anonymous reviewers for their suggestions and insights.

References

Nikolaos Aletras, Dimitrios Tsarapatsanis, Daniel Preotiuc-Pietro, and Vasileios Lampos. 2016. Predicting judicial decisions of the european court of human rights: a natural language processing perspective. PeerJ Computer Science, 2.

Emily M. Bender and Batya Friedman. 2018. Data statements for natural language processing: Toward mitigating system bias and enabling better science. Transactions of the Association for Computational Linguistics, 6:587–604.

Huajie Chen, Deng Cai, Wei Dai, Zehui Dai, and Yadong Ding. 2019. Charge-based prison term prediction with deep gating network. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6361–6366, Hong Kong, China.

Chris Culnane and Kobi Leins. 2020. Misconceptions in privacy protection and regulation. Law in Context, 36.

Martin Enserink. 2013. Dutch H5N1 ruling raises new questions. Science, 342(6155):178–178.

Philippa Foot. 1967. The problem of abortion and the doctrine of double effect. Oxford Review, 5:5–15.
Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal Daumé III, and Kate Crawford. 2018. Datasheets for datasets. In Proceedings of the 5th Workshop on Fairness, Accountability, and Transparency in Machine Learning, Stockholm, Sweden.

Peter Grajzl and Peter Murrell. 2019. Toward understanding 17th century English culture: A structural topic model of Francis Bacon’s ideas. Journal of Comparative Economics, 47:111 – 135.

Ben Green. 2019. “Good” isn’t good enough. In NeurIPS Joint Workshop on AI for Social Good, Vancouver, Canada.

Dirk Hovy and Shannon L. Spruit. 2016. The social impact of natural language processing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 591–598, Berlin, Germany. Association for Computational Linguistics.

Zikun Hu, Xiang Li, Cunchao Tu, Zhiyuan Liu, and Maosong Sun. 2018. Few-shot charge prediction with discriminative legal attributes. In Proceedings of the 27th International Conference on Computational Linguistics, pages 487–498, Santa Fe, USA.

Jerry Kang, Mark Bennett, Devon Carbado, Pam Casey, and Justin Levinson. 2011. Implicit bias in the courtroom. UCLA L. Rev., 59:1124–1187.

Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong, and Richard Socher. 2019. CTRL – a conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858.

Kobi Leins. 2019. AI for better or for worse, or AI at all? Future Leaders.

Brent Mittelstadt. 2019. Principles alone cannot guarantee ethical AI. Nat Mach Intell, 1:501–507.

Helen Nissenbaum. 1996. Accountability in a computerized society. Science and Engineering Ethics, 2:25–42.

Jeffrey J Rachlinski, Sheri Lynn Johnson, Andrew J Wistrich, and Chris Guthrie. 2008. Does unconscious racial bias affect trial judges? Notre Dame Law Review, 84:1195–1246.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. Technical report, OpenAI.

Max Schanzenbach. 2005. Racial and sex disparities in prison sentences: The effect of district-level judicial demographics. The Journal of Legal Studies, 34(1):57–92.

Lucy Snowball and Don Weatherburn. 2007. Does racial bias in sentencing contribute to indigenous overrepresentation in prison? Australian & New Zealand Journal of Criminology, 40(3):272–290.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, Miles McCain, Alex Newhouse, Jason Blazakis, Kris McGuffie, and Jasmine Wang. 2019. Release strategies and the social impacts of language models. arXiv preprint arXiv:1908.09203.

Bryan A Stevenson and Ruth E Friedman. 1994. Deliberate indifference: Judicial tolerance of racial bias in criminal justice. Wash. & Lee L. Rev., 51:509–528.

Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Zhiyuan Liu, Maosong Sun, Yansong Feng, Xi-anpei Han, Zhen Hu, Heng Wang, and Jianfeng Xu. 2018. CAIL2018: A large-scale legal dataset for judgment prediction. CoRR, abs/1807.02478.

Jenny Yourstone, Torun Lindholm, Martin Grann, and Ola Svenson. 2008. Evidence of gender bias in legal insanity evaluations: A case vignette study of clinicians, judges and students. Nordic Journal of Psychiatry, 62(4):273–278.

Marjorie S Zatz and John Hagan. 1985. Crime, time, and punishment: An exploration of selection bias in sentencing research. Journal of Quantitative Criminology, 1(1):103–126.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and Yejin Choi. 2019. Defending against neural fake news. In Advances in Neural Information Processing Systems 32.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. 2017. Men also like shopping: Reducing gender bias amplification using corpus-level constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2979–2989, Copenhagen, Denmark. Association for Computational Linguistics.

Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Chaojun Xiao, Zhiyuan Liu, and Maosong Sun. 2018. Legal judgment prediction via topological learning. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3540–3549, Brussels, Belgium.