Gender differences in physical activity and sedentary behavior: Results from over 200,000 Latin-American children and adolescents

Javier Brazo-Sayavera,1,2*, Salomé Aubert,2 Joel D. Barnes2, Silvia A. González2, Mark S. Tremblay2

1 PDU EFISAL, Centro Universitario Regional Noreste, Universidad de la República, Rivera, Uruguay,
2 Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, Ontario, Canada

* jbsayavera@cur.edu.uy

Abstract

More physical activity and less sedentary behavior is beneficial for children and adolescents. Worldwide, gender differences are >8% favorable for men and the Latin-American region presents an even higher level of insufficient physical activity among women, with a lack of information in young population. Thus, the aim of the current study was to describe the gender differences in physical activity and recreational sedentary behavior in children and adolescents from Latin-American countries. The targeted age range was 5 to 17 years and included 219,803 participants (106,698 boys and 113,105 girls) from 33 out of 47 Latin-American countries identified. Physical activity guidelines from the World Health Organization (>60 minutes of moderate-to-vigorous physical activity seven days of the week) and <3 hours recreational sedentary behavior daily were the references. In general, boys showed a higher prevalence of meeting physical activity guidelines in comparison with girls. A higher proportion of girls met the <3 hours recreational sedentary behavior cut-point in only ten countries. Thirty percent of the identified countries had no available data. The majority had data from the Global School-based Student Health Survey with data principally on adolescents and only 11/33 countries reported data in the last 5-year period. In conclusion, gender differences in the compliance with physical activity guidelines and the <3 hours recreational sedentary behavior cut-point are evident among children and adolescents from Latin-American countries, with boys being more active than girls.

Introduction

Approximately a quarter of the general population is estimated to meet the global recommendations for physical activity (PA) [1], with a difference of >8% by gender in favor of men [2]. Similar data have not been published regarding sedentary behaviors (SB).

Latin American adults present the highest prevalence of insufficient PA (39.1%) in comparison with other areas of the world [2]. In particular, Latin-American women were identified as
the adult group with the highest level of insufficient PA in the world (43.7%) and the gap between males and females is up to 9.4 percentage points [2]. This difference between genders has been confirmed in a more recent study across six Latin-American countries, where notable gender differences have been reported [3]. Equity, in terms of achieving PA guidelines, has been studied previously in different countries from South America. Azevedo et al. (2007) [4] studied differences in leisure time PA in the Brazilian population and found that men had higher levels of PA than women. In Uruguay, young male adults were more than twice as likely to meet PA guidelines (72.8%) in comparison with young female adults (27.2%) [5]. Moreover, Colombian males were found more active than their female counterparts, and socioeconomic status was identified as an important factor to explain the observed inequalities [6]. With regard to SB in Latin-America, there were no reported gender differences in sitting time in adults among the analyzed countries (Argentina, Chile, Ecuador, Peru and Surinam) with the exception of Brazil [3].

In the past decade, interest in studying gender differences in movement behaviors at younger ages has emerged, with the intention to strive for a gender-equitable society. Recently, a study including 36 countries around the world concluded that gender inequality exists in adolescents PA [7]. Guthold, Stevens, Riley, & Bull (2020) [8] have presented data from the Global School-based Health Survey (GSHS) from 146 countries around the world (32 countries or overseas colonies in Latin-America and Caribbean), showing the prevalence and trends of insufficient PA among adolescents. The Latin American region had a global prevalence of insufficient PA of 84.3%, being in the middle in comparison with other regions. The gender gap was 9% favorable to male adolescents [8]. Similarly, Aguilar-Farias et al. (2018) [9] studied PA among adolescents from Latin-American and Caribbean countries, finding gender disparities in several countries. However, all of these studies focused only on adolescents, highlighting the need to study what happens in the whole age range of children and adolescents (5–17 years).

In response to the international need for healthy movement behavior surveillance and advocacy in children and youth, the Active Healthy Kids Global Alliance Global Matrix studied the behavioral indicators related with PA [10]. However, it has not yet focused on gender inequalities. Among the Latin-American countries participating in the Global Matrix project (Brazil, Chile, Colombia, Ecuador, Mexico, Venezuela and Uruguay), only Mexico reported the prevalence meeting PA guidelines separately between genders, with a higher prevalence in boys (21.8%) than in girls (12.7%) [11]. None of these countries reported SB results separately by gender.

PA provides several health benefits for children and youth and evidence indicates that the more PA, the greater these benefits [12]. However, it is unclear whether the benefits are the same by gender because the physiological response differs between boys and girls, with the type and intensity of the physical activities chosen as main factors in this response [13]. In addition, SB is known as a separate risk factor for cardiometabolic disease and all-cause mortality [14]. Men and women may engage in different SB, and therefore, potentially face different health consequences [15]. Thus, there is a need for detailed information on PA and SB by gender for the development of tailored healthy active lifestyle promotion actions and policies. Taking into account that the data reported to date is mainly focused on adults and adolescents, the aim of the present study was to describe the gender differences in PA and SB in children and adolescents from Latin-American countries.

Methods

Data sources and participants

The targeted age range was 5 to 17 years, aligning with the age range of the Global Matrix [10]. Territories (countries and dependent territories) from Latin-America and the Caribbean were
identified for the current study following the World Bank classification. The main selection
criterion was to be a country or a dependent territory in Latin-America and the Caribbean;
therefore 47 different territories were identified for the current study: Anguilla, Antigua and
Barbuda, Argentina, Aruba, Bahamas, Barbados, Belize, Bermuda, Bolivia, Brazil, British Vir-
gin Islands, Cayman Islands, Chile, Colombia, Costa Rica, Cuba, Curacao, Dominica, Domini-
can Republic, El Salvador, French Guiana, Grenada, Guadalupe, Guatemala, Guyana,
Haiti, Honduras, Jamaica, Martinique, Mexico, Montserrat, Netherlands Antilles, Nicaragua,
Panama, Paraguay, Peru, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and
Grenadines, Sint Maarten, Suriname, Trinidad and Tobago, Turks and Caicos, Uruguay and
Venezuela.

Multiple sources of information were included to gather as much information as possi-
bile. For the countries that participated in the Global Matrix 3.0 (Brazil, Chile, Colombia,
Ecuador, Mexico, Uruguay, Venezuela), the main sources of information were already
identified [11, 16–21]. For the remaining countries, a first contact was done through email
to the GSHS report contact for each country [22]. Subsequently, government public health
institutions were contacted for the countries without GSHS contacts and for the countries
who did not respond to the email sent in the previous step to identify relevant source of
information.

Most of the data were extracted from the raw data provided by the GSHS reported by the
World Health Organization [22]. This survey has a standardized sample technique and study
protocol, using the same questionnaire for all participating countries. Some of the countries
selected for the present study participated in more than one survey between 2006 and 2017
and in this case the more recent dataset was selected for analysis. Bolivia (only for PA), Brazil,
Colombia, Ecuador and Mexico had data from other nationally representative surveys that
were also included. Dominica did not include all the data necessary for the analysis (only data
for PA analysis). Finally, several countries (Aruba, Bermuda, Cuba, French Guiana, Guada-
lupe, Haiti, Martinique, Netherlands Antilles, Nicaragua, Panama, Puerto Rico, Sint Maarten,
Turks and Caicos and Venezuela) were excluded after several unsuccessful attempts to find a
local contact or source of information. A flow diagram presenting details about the datasets
included is shown in Fig 1.

Outcomes
Data on the compliance with PA guidelines and recreations SB cut-points were extracted by
gender and age from available datasets. GSHS data were extracted from the following question:
"During the past 7 days, on how many days were you physically active for a total of at least 60
minutes per day?", and the reply "7 days" was the identified criteria for meeting the WHO PA
guidelines [23]. Data about time spent in SB daily, assessed principally based on leisure screen
time, were also extracted. Less than three hours of recreational sedentary time daily was the
GSHS cut-point for SB and was selected as the cut-point for our analysis, following previous
studies [24]. The questions used in the GSHS and the other included surveys are presented in
Table 1.

Statistical analysis
Data from countries were pooled into a single dataset for analysis. Generalized linear models
were fitted for each country to estimate the odds of boys meeting PA guidelines and the recrea-
tional SB cut-point compared to girls. Data were adjusted for age. All analyses were performed
in RStudio 1.3.1056.
Table 2 shows the sources of information and characteristics of the included countries. Of the 33 included countries, the majority (n = 28, 85%) had data from the GSHS and only five had other data from nationally representative surveys. Ten countries had information from 2010 or earlier, another twelve countries had data before 2015 and the rest (n = 11) had data from the last 5 years. The response rate was over 70% except in a couple of countries (Antigua and Barbuda and Chile) and other countries with national surveys did not provide the response rate. The age range was between 5 and 17 years, but mostly concentrated within the range of 11 to 17 years. There were more girls (n = 113,105) than boys (n = 106,698) in the final analytical sample.

Prevalence of meeting PA guidelines is presented in the Fig 2 (S1 Table contains the calculated prevalence with 95% confidence intervals). In general, boys showed a higher prevalence of meeting PA guidelines in comparison with girls. The range in boys was between 4.8% (Bolivia) and 37.8% (Mexico), while the range in girls was between 3.5% (Bolivia) and 26.2% (Ecuador). The greatest difference between boys and girls was observed in Uruguay (13.5%) and the lowest in Jamaica (1.8%).

Results for meeting the <3 hours recreational SB cut-point are provided in Fig 3. The ranges of prevalence of meeting the cut-point between boys and girls were similar: from 26.8%
The average odds ratio of meeting PA guidelines for children and adolescents in Latin-America was 2.15 (Fig 4) in favor of boys. Brazil and Uruguay were the countries with the highest odds ratio for boys and girls meeting PA guidelines (3.31 and 2.92, respectively). Montserrat presented the lowest overall odds ratio with 0.88, followed by Jamaica (1.11).

For SB, the overall odds ratio of getting <3 hours of daily recreational sedentary behavior for children and youth in Latin-America was 1.12 (Fig 5), again in favor of boys. Dominica did not report data on SB. Anguilla and Barbados had the highest odds ratio between boys and girls.
girls (1.71 and 1.67, respectively), while Ecuador followed by Saint Vincent and the Grenadines and Montserrat had the lowest odds ratio with 0.68 and 0.88, respectively.

Discussion

Large gender disparities in terms of prevalence of meeting PA guidelines and the recreational SB cut-point were observed among children and adolescents across Latin-American countries. The present results are in accordance with recent studies showing PA gender differences among adolescents in the region of the Americas [2, 9, 27]. Overall, in Latin-America, boys are more likely to meet the PA guidelines than girls (OR = 2.15 on average). Gender inequities...
were especially concerning in six countries (Barbados, Brazil, Chile, Costa Rica, Paraguay and Uruguay) with ORs higher than the average. Previous studies [28] around the world have reported PA differences between genders and these differences have been attributed to lower participation of girls in organized sports [29] as well as socio-ecological factors at the individual (e.g., body weight, fitness, boy’s preferences for higher intensity activities or perceived

Fig 2. Prevalence map of meeting 2010 WHO PA guidelines among Latin-American children and adolescents. Left: Boys; Right: Girls. These maps were rendered in RStudio 1.4.1103 using the rworldmap [25] and ggplot2 [26] R packages.

https://doi.org/10.1371/journal.pone.0255353.g002

Fig 3. Prevalence of meeting the <3 hours recreational SB cut-point among Latin American children and adolescents. Left: Boys; Right: Girls. These maps were rendered in RStudio 1.4.1103 using the rworldmap [25] and ggplot2 [26] R packages.

https://doi.org/10.1371/journal.pone.0255353.g003
(e.g., parent’s support, gender roles, living conditions or family structure), community (e.g., participation in community sport), school (e.g., opportunities for students to be physically active during school lunch breaks) and environmental level (e.g., climate or geography) [30]. Montserrat was the only territory where girls were estimated to be more active than boys. However, this finding was based on a survey with a small number of participants.

Fig 4. Forest plot showing the odds ratios of meeting international PA guidelines by gender in children and adolescents from Latin-America, by country. Reference = girl.

https://doi.org/10.1371/journal.pone.0255353.g004
(n = 205) in comparison with the rest of analyzed countries. To the best of our knowledge, there is not a specific public policy promoting physical activity in Montserrat [31]. The small population and the higher proportion of women in Montserrat could potentially be responsible for this result favorable to girls [32].
SB was analyzed mostly based on the assessment of recreational sedentary time. Overall, boys were more likely to meet the recreational SB cut-point than girls (OR 1.12 on average) in accordance with previous results from other countries [33]. In addition, in ten countries (Bolivia, Colombia, Ecuador, Guyana, Honduras, Mexico, Montserrat, Peru, Saint Lucia, and St. Vincent and the Granadines), girls were more likely to meet the recreational SB cut-point than boys. These differences could potentially be related to the gender difference in the preference of leisure activities as it has been observed in the study by Taavero Ross et al. (2013) [34]. They found that the preferred activities for girls were listening to music or texting or talking on the phone, while boys spent more time playing video games. Further research is needed to understand the drivers of these disparities, since there is a lack of study from Latin-America exploring the factors that could potentially explain the observed gender disparities in recreational sedentary behavior time among children and adolescent in our present analysis [9].

Strengths and limitations

The GSHS was the major source of the data included in our analysis and it was collected using self-reported questionnaires and some of the included data date back to 2007. High-income countries (e.g., USA with the NHANES [35]) often monitor these behaviors using additional methods (i.e., accelerometry) in subsamples. However, even though the use of self-reported data is widely accepted for PA and SB surveillance, this methodology reports more vigorous PA and less sedentary time compared with the accelerometers [36]. In addition, the GSHS focused mostly on adolescents between 13 and 17 years, even though the datasets contain data from younger adolescents too. Some of the included dataset also came from national surveys including various age ranges and sample sizes. The PA and SB assessment methods were not consistent across all the data included in the current study and were collected with surveys using different questionnaires. Furthermore, these questionnaires presented several limitations: it was unclear in some of the questionnaires if school time PA should be included, resulting in the participants potentially excluding it in their report; and not all of these questionnaires have been validated against an objective measurement method or in the particular language/country context it was used. Moreover, some of the included datasets did not allow to assess the proportion of children meeting the <3 hours recreational SB cut-point from the GSHS. In addition, there is a lack of information about the bout duration, which could provide further information about the differences in recreational sedentary behavior between boys and girls.

Nevertheless, this is the first study providing population-level information on gender differences in meeting PA guidelines and recreational SB cut-point in Latin-American children and adolescents based on the compilation of the best available data, identified by a local contact within most included countries. The current study also highlights that the needs in terms of PA and SB promotion are different by gender and by country across Latin-America.

Research gaps and future directions

The current study identifies the paucity of recent data as several countries are still lacking surveillance of PA and SB and/or some of the most recent available datasets were more than 10 years old. Approximately 30% of the countries included in this analysis had no public or available data and only 11/33 countries had available data that was collected in the last 5 years. Furthermore, the accessibility of existing data was also an issue encountered in the development of the current study. Providing a rapid, open and transparent access to public health data should become a priority across Latin-America to support the improvement of research and
the development of adapted efficient health strategies and policies as well as to provide the opportunity of surveillance for preventing non-communicable diseases [37].

With the publication of new global PA and SB guidelines [1], the current analysis could change if the new PA guidelines were employed for active children and adolescents (“at least an average of 60 min/day of moderate- to vigorous-intensity, mostly aerobic, PA across the week”) in comparison to the previous statement (“accumulate at least 60 minutes of MVPA per day”). Therefore, we recommend that future surveillance initiatives should assess the prevalence of meeting the new guidelines to assess PA among children and adolescents at the population level.

This study highlighted the need for the development of a standardized, validated and internationally adopted PA and SB surveillance tool across Latin-America. An improved methodology common for all the Latin-American countries would be essential to study rigorously the differences in meeting PA and SB guidelines among children and adolescents and perform international comparisons, in particular to take into account the new WHO PA and SB guidelines [1]. Currently, to our knowledge, the only multi-country tool validated in some South-American countries is SAYCARE [38, 39].

Finally, the findings presented in this study contribute to concerns about the level of PA and SB among children and adolescents across Latin-America, in particular among girls. Further research is needed to identify the determinants of the gender differences observed across Latin-American countries for the development of strategic and efficient healthy active lifestyle promotion actions and policies.

Conclusion

Gender differences in meeting PA and SB recommendations are evident among children and adolescents from Latin-American countries, where boys are more active than girls. For SB, boys were generally more likely to meet a limit of 3 hours of recreational sedentary activities, however the gap with girls is lower in comparison with PA.

The lack of good quality or current surveillance data capturing gender differences in PA and SB was a major limitation for the study. Significant work is needed to improve the surveillance systems for child and adolescent PA and SB with the development of a standardized, validated and internationally adopted assessment tool across Latin-America, taking into account the new PA recommendations [1].

Supporting information

S1 Table. Prevalence of meeting PA guidelines and <3 hours recreational SB cut-point by gender and country.

(DOCX)

Acknowledgments

The authors would like to thank the Ministry of Health and Social Protection from Colombia for providing access to the national survey dataset.

Author Contributions

Conceptualization: Javier Brazo-Sayavera, Salomé Aubert, Silvia A. González.

Data curation: Javier Brazo-Sayavera, Joel D. Barnes.

Formal analysis: Joel D. Barnes.
Funding acquisition: Javier Brazo-Sayavera.

Investigation: Javier Brazo-Sayavera, Salomé Aubert, Joel D. Barnes, Silvia A. González.

Methodology: Javier Brazo-Sayavera, Salomé Aubert, Joel D. Barnes, Silvia A. González.

Project administration: Javier Brazo-Sayavera.

Resources: Javier Brazo-Sayavera.

Software: Joel D. Barnes.

Supervision: Mark S. Tremblay.

Validation: Mark S. Tremblay.

Visualization: Mark S. Tremblay.

Writing – original draft: Javier Brazo-Sayavera, Salomé Aubert, Joel D. Barnes, Silvia A. González, Mark S. Tremblay.

Writing – review & editing: Javier Brazo-Sayavera, Salomé Aubert, Silvia A. González, Mark S. Tremblay.

References

1. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020; 54(24):1451–1462. https://doi.org/10.1136/bjsports-2020-102955 PMID: 33239350

2. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Heal. 2018; 6(10):e1077–86. https://doi.org/10.1016/S2214-109X(18)30357-7 PMID: 30193830

3. Werneck AO, Baldew SS, Miranda JJ, Díaz Arnesto O, Stubbs B, Silva DR. Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: The South American physical activity and sedentary behavior network (SAPASEN). Int J Behav Nutr Phys Act. 2019; 16(1):68. https://doi.org/10.1186/s12966-019-0839-9 PMID: 31429772

4. Azevedo MR, Araujo CLP, Reichert FF, Siqueira FV, da Silva MC, Hallal PC. Gender differences in leisure-time physical activity. Int J Public Health. 2007; 52(1):8–15. https://doi.org/10.1007/s00038-006-5062-1 PMID: 17966815

5. González S, Sarmiento OL, Lozano Ó, Ramírez A, Grijalba C. Physical activity levels among Colombian adults: Inequalities by gender and socioeconomic status. Biomedica. 2014; 34(3):447–59. PMID: 25504131

6. de Looze M, Elgar FJ, Currie C, Kolip P, Stevens GWJM. Gender Inequality and Sex Differences in Physical Fighting, Physical Activity, and Injury Among Adolescents Across 36 Countries. J Adolesc Heal. 2019; 64(5):657–63. https://doi.org/10.1016/j.jadohealth.2018.11.007 PMID: 30850313

7. Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1-6 million participants. Lancer Child Adolesc Heal. 2020; 4(1):23–35.

8. Aguilar-Farias N, Martino-Fuentetalla P, Carcamo-Oyarzun J, Cortinez-O’Ryan A, Cristi-Montero C, Von Oetinger A, et al. A regional vision of physical activity, sedentary behaviour and physical education in adolescents from Latin America and the Caribbean: Results from 26 countries. Int J Epidemiol. 2018; 47(3):976–86. https://doi.org/10.1093/ije/dyy033 PMID: 29554308

9. Aubert S, Barnes JD, Abdeta C, Nader PA, Adeniyi AF, Aguilar-Farias N, et al. Global Matrix 3.0 physical activity Report Card grades for children and youth: Results and analysis from 49 countries. J Phys Act Heal. 2018; 15(S2):S251–73. https://doi.org/10.1123/jpah.2018-0472 PMID: 30475137

10. Galaviz KI, Garcia GA, Gaytán-González A, González-Casanova I, Villalobos MFG, Jáuregui A, et al. Results from Mexico’s 2018 Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018; 15(S2):S384–S. https://doi.org/10.1123/jpah.2018-0462 PMID: 30475116
12. Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010; 7:40. https://doi.org/10.1186/1479-5868-7-40 PMID: 20459784

13. Cobbold C. Battle of the sexes: Which is better for you, high- or low-intensity exercise? J Sport Heal Sci. 2018; 7(4):429–32. https://doi.org/10.1016/j.jshehs.2018.05.004 PMID: 30450251

14. Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE. Sedentary behavior: Emerging evidence for a new health risk. Mayo Clin Proc. 2010; 85(12):1138–41. PMID: 2123641

15. Liwander A, Pederson A, Boyle E. Why the Canadian sedentary behaviour guidelines should reflect sex and gender. Can J Public Heal. 2013; 104(7):e479–481. https://doi.org/10.17269/cjph.104.4108 PMID: 24495824

16. Silva DAS, Christofaro DGD, De Moraes Ferrari GL, Da Silva KS, Nardo N, Dos Santos Silva RJ, et al. Results from Brazil’s 2018 Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018; 15(S2):S323–5. https://doi.org/10.1123/jpah.2018-0421 PMID: 30475126

17. Aguilar-Farias N, Miranda-Marquez S, Sadarangani KP, Martino-Fuentelaide P, Cristi-Montero C, Carcamo-Oyarzun J, et al. Results from Chile’s 2018 Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018; 15(S2):S331–2. https://doi.org/10.1123/jpah.2018-0553 PMID: 30475142

18. González SA, Triana CA, Abaunza C, Aldana L, Arias-Gómez LF, Bermúdez J, et al. Results from Colombia’s 2018 Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018; 15(S2):S335–7. https://doi.org/10.1123/jpah.2018-0507 PMID: 30475133

19. Andrade S, Ochoa-Avilés A, Freire W, Romero-Sandoval N, Orellana D, Contreras T, et al. Results from Ecuador’s 2018 Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018; 15(S2):S344–6. https://doi.org/10.1123/jpah.2018-0536 PMID: 30475106

20. Bravo-Sayavedra J, Del Campo C, Rodríguez MJ, Da Silva IC, Merellano-Navarro E, Olvares PR. Results from Uruguay’s 2018 Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018; 15(S2):S425–6. https://doi.org/10.1123/jpah.2018-0466 PMID: 30475122

21. Herrera-Cuenca M, Méndez-Pérez B, Landaeza-Jiménez M, Marcano X, Gullart E, Sotillé L, et al. Results from Venezuela’s 2018 Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018; 15(S2):S427–9. https://doi.org/10.1123/jpah.2018-0467 PMID: 30475119

22. WHO. Global Student Health Survey (GSHS) [Internet]. World Health Organization, Department of Chronic Diseases and Health Promotion. 2020 [cited 2020 Oct 10]. https://www.who.int/ncds/surveillance/gshs/en/

23. WHO. Global Recommendations on Physical Activity for Health [Internet]. Geneva: WHO Library Cataloguing-in-Publication. 2010 [cited 2020 Oct 10]. p. 1–58. https://www.ncbi.nlm.nih.gov/books/NBK305057/

24. Uddin R, Lee E-Y, Khan SR, Tremblay MS, Khan A. Clustering of lifestyle risk factors for non-communicable diseases in 304,779 adolescents from 89 countries: A global perspective. Prev Med (Baltimore). 2020; 131:105955. https://doi.org/10.1016/j.ypmed.2019.105955 PMID: 31862205

25. South A. A New R package for Mapping Global Data. R J. 2011; 3(1):35–43.

26. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.

27. Marques A, Henriques-Neto D, Peralta M, Martins J, Demetriou Y, Schönbach DMI, et al. Prevalence of Physical Activity among Adolescents from 105 Low, Middle, and High-Income Countries. Int J Environ Res Public Health. 2020; 17(9):3145.

28. Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002; 34(2):350–5. https://doi.org/10.1097/00005768-200202000-00025 PMID: 11828247

29. Vella SA, Cliff DP, Okely AD. Socio-ecological predictors of participation and dropout in organised sports during childhood. Int J Behav Nutr Phys Act. 2014; 11:62. https://doi.org/10.1186/1479-5868-11-62 PMID: 24885978

30. Telford RM, Telford RD, Olive LS, Cochrane T, Davey R. Why are girls less physically active than boys? Findings from the LOOK longitudinal study. PLoS One. 2016; 11(3):e0150041. https://doi.org/10.1371/journal.pone.0150041 PMID: 26960199

31. Ramírez Varela A, Cruz GIN, Hallal P, Blumenberg C, da Silva SG, Salvo D, et al. Global, regional, and national trends and patterns in physical activity research since 1950: a systematic review. Int J Behav Nutr Phys Act. 2021; 18(1):1–15.

32. Pan American Health Organization. Montserrat. In: Health in the Americas [Internet]. Country Volume. Washington, D.C.: Pan American Health Organization; 2012. p. 456–66. https://www.paho.org/salud-en/las-americas-2012/index.php?option=com_docman&view=download&category_slug=hia-2012-country-chapters-22&alias=138-montserrat-138&Itemid=231&lang=en
33. Ishii K, Shibata A, Adachi M, Nonoue K, Oka K. Gender and grade differences in objectively measured physical activity and sedentary behavior patterns among Japanese children and adolescents: A cross-sectional study. BMC Public Health. 2015; 15:1254. https://doi.org/10.1186/s12889-015-2607-3 PMID: 26679503

34. Taverno Ross SE, Byun W, Dowda M, McIver KL, Saunders RP, Pate RR. Sedentary behaviors in fifth-grade boys and girls: Where, with whom, and why? Child Obes. 2013; 9(6):532–9. https://doi.org/10.1089/chi.2013.0021 PMID: 24147817

35. Belcher BR, Moser RP, Dodd KW, Atienza A, Ballard-Barbash R, Berrigan D. Self-Reported Versus Accelerometer-Measured Physical Activity and Biomarkers Among NHANES Youth. J Phys Act Heal. 2015; 12(5):708–16. https://doi.org/10.1123/jpah.2013-0193 PMID: 24909801

36. Dyrstad SM, Hansen BH, Holme IM, Anderssen SA. Comparison of Self-reported versus Accelerometer-Measured Physical Activity. Med Sci Sport Exerc. 2014; 46(1):99–106. https://doi.org/10.1249/MSS.0b013e3182a0595f PMID: 23793232

37. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet. 2012; 380(9838):247–57. https://doi.org/10.1016/S0140-6736(12)60646-1 PMID: 22818937

38. Nascimento-Ferreira MV, De Moraes ACF, Toazza-Oliveira PV, Forjaz CLM, Aristizabal JC, Santaliesra-Pasias AM, et al. Reliability and Validity of a Questionnaire for Physical Activity Assessment in South American Children and Adolescents: The SAYCARE Study. Obesity. 2018; 26(Suppl 1):S23–30. https://doi.org/10.1002/oby.22116 PMID: 29464922

39. De Moraes ACF, Nascimento-Ferreira MV, De Moraes Forjaz CL, Aristizabal JC, Azzaretti L, Nascimento Junior WV, et al. Reliability and validity of a sedentary behavior questionnaire for South American pediatric population: SAYCARE study. BMC Med Res Methodol. 2020; 20(1):5. https://doi.org/10.1186/s12874-019-0893-7 PMID: 31924168