Non-invertible transformations of differential–difference equations

R N Garifullin1,2, R I Yamilov1 and D Levi3,4

1 Institute of Mathematics, Ufa Scientific Center, Russian Academy of Sciences, 112 Chernyshevsky Street, Ufa 450008, Russian Federation
2 Bashkir State University, 32 Zaki Validi Street, Ufa 450074, Russian Federation
3 Department of Mathematics and Physics, Roma Tre University and Sezione INFN Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy

E-mail: rustem@matem.anrb.ru, RvlYamilov@matem.anrb.ru and decio.levi@roma3.infn.it

Received 20 April 2016, revised 7 July 2016
Accepted for publication 29 July 2016
Published 24 August 2016

Abstract
We discuss aspects of the theory of non-invertible transformations of differential–difference equations and, in particular, the notion of Miura type transformation. We introduce the concept of non-Miura type linearizable transformation and we present techniques that allow one to construct simple linearizable transformations and might help one to solve classification problems. This theory is illustrated by the example of a new integrable differential–difference equation depending on five lattice points, interesting from the viewpoint of the non-invertible transformation, which relate it to an Itoh–Narita–Bogoyavlensky equation.

Keywords: differential–difference equations, transformations, integrable equations, linearizable equations

1. Introduction

The generalized symmetry method uses the existence of generalized symmetries as an integrability criterion and allows one to classify certain integrable equations. Using this method, the classification problem has been solved for some important classes of Partial Differential equations (PDEs) \cite{21,22}, of differential–difference equations \cite{8,37}, and of Partial Difference equations (PΔEs) \cite{14,20}. Classification is usually carried out in two steps: at first one finds all integrable equations of a certain class up to (usually point) invertible
transformations, then one searches for non-invertible transformations that relate different resulting equations. For this reason, a theory of non-invertible transformations is necessary.

This is not the only integrability criterion introduced to produce integrable partial difference equations. Using the Compatibility Around the Cube technique introduced in [9, 26, 27], Adler et al [5] obtained a class of integrable equations on a quad graph. More results on this line of research can be found in [6, 12].

Let us consider autonomous differential–difference equations of the form:

$$\dot{u}_n = f(u_{n+k}, u_{n+k-1}, \ldots, u_{n+m}), \quad k > m,$$

where $n \in \mathbb{Z}$ is a discrete variable, $u_n = u_n(t)$ is the unknown function, \dot{u}_n is its derivative with respect to the continuous variable t. In (1) we can find integrable equations of Volterra type, corresponding to the case $k = -m = 1$. They have been well-studied and a complete list of such equations has been obtained—see e.g. the review article [37]. In other cases only some integrable examples are known [1, 7, 10, 11, 14, 23, 28].

Let us consider the existence of explicit in one direction non-invertible transformations of the form:

$$v_n = \phi(u_{n+q}, u_{n+q-1}, \ldots, u_{n+s}), \quad +\infty > q > s > -\infty,$$

which relate two equations of the form (1). An example of such a transformation is provided by the following well-known relation [32]

$$v_n = (1 + u_n)(1 - u_{n+1}),$$

which transforms the modified Volterra equation

$$\dot{u}_n = (1 - u_n^2)(u_{n+1} - u_{n-1})$$

into the Volterra one

$$\dot{v}_n = v_n(v_{n+1} - v_{n-1}).$$

This is a discrete analogue of the Miura transformation [24]

$$v = u_x - u^2,$$

which relates the Korteweg-de Vries (KdV) equation to the modified KdV one:

$$v_t = v_{xxx} + 6vv_x, \quad u_t = u_{xxx} - 6u^2u_x,$$

where the indices t and x denote t- and x-derivatives. The Miura transformation (6) is locally non-invertible.

Differential substitutions in the class $v = \phi(u, u_x)$ of Miura type for evolutionary scalar PDEs have been classified by Startsev [30] and are, up to point transformations

$$v = u_x, \quad v = u_x + u^2, \quad v = u_x + e^u, \quad v = u_x + e^u + e^{-u},$$

see also [31, 35]. The first of the differential substitutions presented by Startsev in (7) is in effect a potentiation, locally non-invertible, but whose inverse is given by an integration. Transformations involving potentiations and point transformations can be very involved and sometimes difficult to distinguish from Miura transformations.

The notion of Miura type transformation on the lattice is more complicated, not yet well understood, and it is difficult to decide whether a given transformation is of Miura type. Sometimes in the literature complicated transformations (2) are called of Miura type even if their inversion requires just discrete potentiations. On the other hand, there are simple non-invertible transformations that look of Miura type.

To be able to define a Miura type transformation on the lattice we introduce and discuss the rather wide concept of linearizable transformation not of Miura type. We also present
some techniques to construct simple linearizable transformations which help us to solve the problem of recognizing Miura type transformations.

In this paper we consider an example which belongs to the class (1) with $k = -m = 2$,

$$\dot{u}_n = f(u_{n+2}, u_{n+1}, u_n, u_{n-1}, u_{n-2}).$$ \hfill (8)

Equations of this form (8) are currently relevant, as their Bäcklund transformations are completely discrete partial difference equations [1, 14, 17, 18, 23, 28] whose classification is very difficult to perform. Study of equations (8) is in progress, see e.g. [2–4, 13].

Let us consider here the equation

$$\dot{u}_n = (u_{n+1} - u_n)(u_n - u_{n-1})\left(\frac{u_{n+2}}{u_{n+1}} - \frac{u_{n-2}}{u_{n-1}}\right).$$ \hfill (9)

It has been found by generalized symmetry classification of some particular cases of (8). Currently this classification is in progress, see [13]. It turns out that (9) is transformed by

$$v_n = u_{n+1} + u_{n-1} - u_n - u_{n+1}u_{n-1}/u_n$$ \hfill (10)

into the equation

$$\dot{v}_n = v_n(v_{n+2} + v_{n+1} - v_{n-1} - v_{n-2}),$$ \hfill (11)

a well-known integrable equation of the Itoh–Narita–Bogoyavlensky class (8) [10, 16, 25].

In section 2 we will present the notions of Miura type and linearizable transformations and present some techniques to construct simple linearizable transformations. Then in section 3 we will apply our results to the case of (10), showing that it is linearizable and, therefore, not of Miura type. Section 4 is devoted to some concluding remarks.

2. Theory

In this section we discuss the notions of Miura type and linearizable transformations and present some techniques necessary to the construction of simple linearizable transformations.

2.1. Miura type and linearizable transformations

The Miura transformation (6) is a Riccati equation if we consider (6) as an equation for the unknown function u with v a given function. As is known, the Riccati equation with x-dependent coefficients cannot be solved by quadrature, i.e. by a simple integration. Inversion of the discrete Miura transformation (3) is also equivalent to solving the discrete Riccati equation [15]. From our point of view, Miura type transformations must be of the same type, i.e. their inversion is somehow reduced to solving a Riccati equation with x-dependent coefficients and cannot be done by a simple integration.

On the other hand, in case of KdV type partial differential equations, we find many transformations of the form

$$v = \psi(u, u_x, u_{xx}, \ldots),$$ \hfill (12)

which are a superposition of point transformations $v = \psi(u)$ and a potentiation $v = u^s$. In this case finding u in (12) is reduced to integrations.

In the case of Volterra type equations (1) with $k = -m = 1$, many transformations of the form of (2) are superpositions [37] of linear transformations of the form

$$v_n = u_{n+1} - u_n, \quad v_n = u_{n+1} + u_n$$ \hfill (13)
which are solved by a summation, a discrete potentiation and point transformations as $v_n = \psi(u_n)$. Transformations of the form

$$v_n = u_{n+1} u_n, \quad v_n = u_{n+1}/u_n$$

are also obviously transformed into equations of the form (13), as

$$v_n = (\exp \sigma(T \pm 1) \circ \log) u_n,$$

where T is the shift operator $Th_n = h_{n+1}$. So (14) are solved by a summation and point transformations. Thus, in these cases, finding the unknown function u_n is reduced to solving a number of linear equations with constant coefficients, i.e. it contains discrete poteniations and point transformations.

Let us pass to the general case of (1) and the non-invertible transformations (2). We see that such transformations are explicit in one direction. If an equation A is transformed into B by a transformation (2), we will say that this transformation has the direction from A to B and we will write $A \rightarrow B$ as in this direction it is explicit.

In the general case (1) let us consider the most general form of linear transformations

$$v_n = v_k u_{n+k} + v_{k-1} u_{n+k-1} + \ldots + v_m u_{n+m} + v_r, \quad k > m,$$

with constant coefficients. Then we can introduce the following definition:

Definition 2.1. A transformation of the form (2) is called linearizable if it can be represented as a superposition of linear transformations (15) and point transformations $v_n = \psi(u_n)$. In this superposition we allow linear transformations acting in different directions.

The linearizable transformation so defined is decomposed into linear transformations (up to point ones) and thus it is not of Miura type. In an example below we will show in (51) that a decomposition of the transformation $A \rightarrow B$ of the form (2) is possible

$$A \leftarrow C \rightarrow D \rightarrow B,$$

and it consists of transformations acting in different directions.

There are two other representations for linearizable transformations that may sometimes be useful. For complex constants and functions entering in the transformations we can represent (15) as:

$$v_n - \nu = v_k(T - \eta_1)(T - \eta_2) \ldots (T - \eta_{k-m+1})T^m u_n.$$

So, any linearizable transformation is a superposition of elementary transformations of the form:

$$v_n = \psi(u_n), \quad v_n = (T - \eta)u_n, \quad v_n = T^m u_n.$$

The second of the transformations presented in (16) can be simplified further as

$$v_n = (T - \eta)u_n = \eta^{m+1}(T - 1)\eta^{-m} u_n,$$

i.e. it can be reduced to a superposition of transformations of the form:

$$v_n = \eta u_n, \quad v_n = \alpha^n u_n, \quad v_n = (T - 1)u_n.$$

In conclusion any linearizable transformation is reduced, up to a shift, to a combination of autonomous point transformations, elementary non-autonomous point transformations and only one concrete non-invertible linear transformation solvable by discrete potentiation.
Let us consider as an example the equation
\[\dot{u}_n = (u_n^2 + au_n)(u_{n+2}u_{n+1} - u_{n-1}u_{n-2}), \tag{17} \]
with \(a \) constant. Equation (17) is transformed into (11) by the transformation
\[v_n = (u_n + a)u_{n+1}u_{n+2}. \tag{18} \]
When \(a = 0 \) the transformation (18) is linearizable, as it is analogous to (14):
\[v_n = (\exp(\sigma(T^2 + T + 1)) \cdot \log u_n). \]

In the case when \(a = 0 \) (17) is a well-known modification of (11), see e.g. [11].

The ambiguity in the use of the wording Miura transformation is present in many researches in this field. For example in [23] the transformation
\[v_n = \frac{1}{u_{n+1}u_nu_{n-1} - 1} \tag{19} \]
is called a Miura transformation. However, up to a point transformation and a shift, (19) coincides with (18) with \(a = 0 \).

In case \(a = 1 \), (17) and the transformation (18) are considered in [7, 23]. It is shown in [7] that the transformation (18) is an analogue, from the viewpoint of the L−A pair, to (3) and therefore it is a transformation of Miura type.

There is the following analogy between the discrete transformations (3), (18) and the Miura transformation (6). It is known that the Riccati equation (6) can be rewritten by using the transformation \(u = -z_n/z \) as a second order homogeneous linear equation with a non-constant coefficient \(v \):
\[z_{xx} + vz = 0. \tag{20} \]

In case of (3) we introduce \(z_n \) by the definition \(u_n = 1 - z_n/z_{n+1} \) and obtain a discrete linear equation of the same type as (20):
\[v_nz_n + 2z_{n+1} + z_n = 0. \]

Equation (18) with \(a = 1 \) can be written in terms of \(z_n \) by the definition \(u_n = z_n/z_{n+1} \).

Equation (18) with \(a = 1 \) then takes the form of a third order linear discrete equation:
\[v_nz_n + z_{n+1} - z_n = 0. \]

So the transformation (18) with \(a = 1 \) is not linearizable, in the sense of definition 2.1.

As far we know, the equations produced by linearizable transformations and Miura type transformations do not have essentially different properties. There is, however, a difference in the ease of the construction of solutions by using these different types of transformations. In case of a linearizable transformation, one get solutions of a modified equation by solving a number of linear problems while in case of a Miura type transformation we have to solve a Riccati equation.

We do not know of any algorithmic way to establish the nature of a given non-invertible lattice transformation, i.e. to distinguish linearizable and Miura type transformations. We can only assert that a transformation is not of Miura type if we manage to show that it is linearizable.

2.2. Linearizable transformations, point symmetries and conservation laws

In this subsection we will explain how to construct simple autonomous linearizable—according to definition 2.1—transformations of the form
\[v_n = \phi(u_{n+1}, u_n) \]
(21)

by using point symmetries and conservation laws. This result may be useful in solving classification problems and will allow us to analyze in detail the case of example (9) the transformation (10). In the case of KdV type partial differential equations, such a theory exists, see e.g. [29]. For both partial differential and differential–difference equations a different theory for the construction of non-invertible transformations, in particular of Miura type, has been developed in [34–36].

For an equation of the form (1) we can describe all non-autonomous point symmetries of the form

\[\partial_t u_n = \sigma_n(u_n), \quad \sigma_n(u_n) \neq 0, \quad \forall n \]
(22)

by solving the determining equation:

\[\sigma'_n(u_n) f = \sum_{j=m}^{k} \frac{\partial f}{\partial u_{n+j}} \sigma_{n+j}(u_{n+j}), \]
(23)

where by a ′ we mean the derivative of the function with respect to its argument. If we introduce the point transformation:

\[\hat{u}_n = \eta_n(u_n), \quad \eta'_n(u_n) = \frac{1}{\sigma_n(u_n)}, \]

then the point symmetry (22) turns into

\[\partial_t \hat{u}_n = 1 \]
(24)

and (1) into an equation of the form:

\[\partial_t \hat{u}_n = \hat{f}_n(\hat{u}_{n+k}, \hat{u}_{n+k-1}, \ldots, \hat{u}_{n+m}). \]
(25)

As (25) admits the symmetry (24) the determining equation (23) reduces to

\[\sum_{j=m}^{k} \frac{\partial \hat{f}_n}{\partial \hat{u}_{n+j}} = 0. \]
(26)

This shows that

\[\hat{f}_n = g_n(\hat{u}_{n+k} - \hat{u}_{n+k-1} - \hat{u}_{n+k-2} - \ldots - \hat{u}_{n+m+1} - \hat{u}_{n+m}), \]

as (26) is a simple first order linear PDE for the function \(\hat{f}_n \) which can be solved on the characteristics. So we can use the non-invertible linearizable transformation \(v_n = \hat{u}_{n+1} - \hat{u}_n \), to reduce (1) to the equation

\[\dot{v}_n = (T-1)g_n(v_{n+k-1}, v_{n+k-2}, \ldots, v_{n+m}). \]
(27)

We can summarize the previous results in the following theorem:

Theorem 2.1. If (1) has a point symmetry (22) with \(\sigma_n(u_n) \neq 0 \) for all \(n \), then it admits the following non-invertible and linearizable transformation

\[v_n = (T-1)\eta_n(u_n), \quad \eta'_n(u_n) = \frac{1}{\sigma_n(u_n)} \]
(28)

which allows us to construct a modified equation (27).

We are mainly interested in autonomous linearizable transformations of the form (2), therefore, primarily in autonomous point symmetries (22). However, sometimes a non-
autonomous point symmetry of the form (22) may also lead to an autonomous result. This is the case when there exists a non-autonomous point transformation
\[\tilde{v}_n = \psi_n(v_n) \]
which turns the transformation (28) into an autonomous one. In this case the resulting equation for \(\tilde{v}_n \) turns out also to be autonomous.

Indeed, the autonomous equation (1) is transformed by the autonomous transformation (21) into (27), i.e.
\[\dot{v}_n = G_n(v_{n+k}, v_{n+k-1}, \ldots, v_{n+m}). \]
Differentiating (21) with respect to the continuous variable \(t \) we get
\[G_n(\phi(u_{n+k+1}, u_{n+k}), \phi(u_{n+k}, u_{n+k-1}), \ldots, \phi(u_{n+m+1}, u_{n+m})) = \frac{\partial \phi(u_{n+1}, u_n)}{\partial u_n} f(u_{n+k}, \ldots, u_{n+m}) + \frac{\partial \phi(u_{n+1}, u_n)}{\partial u_{n+1}} f(u_{n+k+1}, \ldots, u_{n+m+1}). \]

This shows that \(G_n \) cannot have any explicit dependence on \(n \), i.e. the equation for \(v_n \) is autonomous.

Even if (27) is autonomous we can also simplify the result by applying (29) with an autonomous function \(\psi \).

Let us write down in table 1 the four most typical examples of point symmetries, two of which are not autonomous, together with corresponding autonomous transformations (21).

We can construct simple autonomous linearizable transformations also starting from conservation laws. Let us now show how. From (1) we can look for conservation laws of the form
\[\partial_\rho \rho_n(u_n) = (T - 1)h_n, \quad \rho_n'(u_n) \neq 0, \quad \forall n, \]
where \(h_n = h_n(u_{n+k-1}, \ldots, u_{n+m}) \) with \(k > m \). The conserved density \(\rho_n \) is found using the criterion introduced in [19]. A function \(\rho_n(u_n) \) is a conserved density of (1) iff
\[\frac{\delta (\partial_\rho \rho_n(u_n))}{\delta u_n} = \frac{\delta (\rho_n'(u_n)f)}{\delta u_n} \equiv \sum_{j=m}^{k} T^{-j} \frac{\partial (\rho_n'(u_n)f)}{\partial u_{n+j}} = 0. \]

Let us introduce a variable \(w_n \), so that \(\rho_n(u_n) = w_{n+1} - w_n \). It follows from (31) that
\[\dot{w}_n = h_n(\rho_n'(w_{n+k-1}), \ldots, \rho_n'(w_{n+m+1} - w_{n+m})) \]
and we can enunciate the following theorem:

Theorem 2.2. If (1) has a conservation law (31) with \(\rho_n'(u_n) \neq 0 \) for all \(n \), then it admits the following non-autonomous non-invertible linearizable transformation:
\[u_n = \rho_n^{-1}(w_{n+1} - w_n), \]

Table 1. Examples of point symmetries (22), corresponding autonomous linearizable transformations (21) and point transformations (29).

\(\sigma_n(u_n) \)	1	\((-1)^n\)	\(u_n \)	\((-1)^n u_n \)
\(\phi(u_{n+1}, u_n) \)	\(u_{n+1} - u_n \)	\(u_{n+1} + u_n \)	\(u_{n+1}/u_n \)	\(u_{n+1}u_n \)
\(\psi_n(v_n) \)	\(v_n \)	\((-1)^{n+1}v_n \)	\(\exp v_n \)	\(\exp\{(-1)^{n+1}v_n\} \)
which allows us to construct a modified equation (33).

As we are looking for linearizable transformations of form (2) then we need
\[u_n = \psi(w_{n+1}, w_n), \]
(35)
i.e. we are concerned primarily with autonomous conservation laws. However, sometimes a
non-autonomous conservation law may also lead to an autonomous result. This is the case
when a non-autonomous point transformation
\[\tilde{w}_n = \mu_n(w_n) \]
(36)
makes transformation (34) autonomous, i.e. of form (35). In this case introducing (36) into
(33) and renaming \(\tilde{w}_n \) as \(w_n \) to simplify the notation, we get:
\[\tilde{w}_n = H_n(w_{n+k}, w_{n+k-1}, \ldots, w_{n+m}). \]
(37)
In this case we can only show that (37) for \(w_n \) is close to an autonomous one as we have:
\[\partial_tw_n = \tilde{H}(w_{n+k}, \ldots, w_{n+m}) + Q_n(w_n). \]
(38)
In all cases we have considered up to now we can pass to the autonomous equation
\[\partial_tw_n = \tilde{H}(w_{n+k}, \ldots, w_{n+m}) \]
(39)
as \(\partial_tw_n = Q_n(w_n) \) is a point symmetry of (38), and (35) transforms both (38) and (39) into
the same equation (1).

Let us see the passage from (37) to (38) in more detail: let us assume that
(37) is transformed into (1) by the transformation (35). Then we can differentiate (35) with respect to
the continuous variable \(t \) and we get:
\[f(\psi(w_{n+k+1}, w_{n+k}), \psi(w_{n+k}, w_{n+k-1}), \ldots, \psi(w_{n+m+1}, w_{n+m})) = \frac{\partial\psi(w_{n+1}, w_n)}{\partial w_n} H_n + \frac{\partial\psi(w_{n+1}, w_n)}{\partial w_{n+1}} H_{n+1}. \]
(40)
If \(k > 0 \) and \(m < 0 \) then we can differentiate with respect to \(w_{n+k+1} \) and \(w_{n+m} \) and we get:
\[\frac{\partial f}{\partial w_{n+k}} T^k \frac{\partial \psi}{\partial w_n} = \frac{\partial \psi}{\partial w_{n+1}} \frac{\partial H_{n+1}}{\partial w_{n+k+1}}, \]
(41)
\[\frac{\partial f}{\partial w_{n+m}} T^m \frac{\partial \psi}{\partial w_n} = \frac{\partial \psi}{\partial w_{n+1}} \frac{\partial H_n}{\partial w_{n+m}}. \]
(42)
From (41), (42) we deduce that \(\frac{\partial H_n}{\partial w_{n+k}} \) and \(\frac{\partial H_n}{\partial w_{n+m}} \) are autonomous and consequently
\[H_n = \tilde{H}(w_{n+k}, \ldots, w_{n+m}) + \tilde{H}_n(w_{n+k-1}, \ldots, w_{n+m+1}). \]
(43)
Substituting (43) into (40) we get an expression indicating that \(\frac{\partial}{\partial w_{n+1}} \tilde{H}_n + \frac{\partial}{\partial w_{n+1}} \tilde{H}_{n+1} \) is also
autonomous and we can repeat the procedure. At the end we get
\[H_n = \tilde{H}(w_{n+k}, \ldots, w_{n+m}) + Q_n(w_n), \]
(44)
where \(Q_n \) is such that \(\frac{\partial}{\partial w_{n+1}} Q_n + \frac{\partial}{\partial w_{n+1}} Q_{n+1} = 0 \). This shows that on the rhs of (40) \(H_n \) can be
replaced by \(\tilde{H} \). Consequently (37) and \(\tilde{w}_n = \tilde{H} \) are transformed by the same transformation
(35) into the same equation (1).

In the particular case when
\[\rho_n(u_n) = (-1)^{n}p(u_n) \]
(45)
this procedure is more obvious. In this case we have the representation

$$\partial p(u_n) = (T + 1)\hat{h}_n,$$

where $\hat{h}_n = (-1)^{n+1}h_n$. As the left-hand side of (46) is autonomous, we can easily prove that

$$\hat{h}_n = \hat{h}(u_{n+k-1}, \ldots, u_{n+m}) + (-1)^n c, \quad c \in \mathbb{C},$$

and $(-1)^n c$ is in the null space of $T + 1$. So, there is a representation (46) with the autonomous function \hat{h} instead of h_n. In this case the autonomous linearizable transformation and the new equation can be defined as follows:

$$\partial p(u_n) = w_{n+1} + w_n, \quad \partial \delta w_n = \hat{h}.$$

Let us write down in Table 2 the four most typical examples of conserved densities together with the corresponding autonomous transformations (35). Two of these conserved densities are non-autonomous and have the special form (45).

For a given conserved density $\rho_n(u_n)$, if the representation (31) contains instead of $-T$ a higher order linear difference operator with constant coefficients, we can get more linearizable transformations. For instance, for the Volterra equation given in (5), one has the following conservation law

$$\partial \log v_n = (T^2 - 1)v_{n-1} = (T - 1)(T + 1)v_{n-1}.$$

In this case we can construct three linearizable transformations in a quite similar way:

$$v_n = \frac{u_{n+1}}{u_n}, \quad v_n = u_{n+1}u_n, \quad v_n = \frac{u_{n+2}}{u_n},$$

with the corresponding modified Volterra equations. For instance, from the last of the transformations in (47) we get the following modified Volterra equation

$$\partial u_n = \frac{u_{n+1}u_n}{u_{n-1}}.$$

A further example is provided by (11). Considering the conserved density $\rho_n(u_n)$ we get:

$$\partial \log v_n = (T^4 + T^3 - T - 1)v_{n-2} = (T - 1)(T + 1)(T - c_1)(T - c_2)v_{n-2},$$

where $c_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$. Here we have more possibilities. If we start from the operator $T - c_1$ instead of $T - 1$, we can construct the transformation $v_n = u_{n+1}u_n^{-c_1}$. Another possibility is provided by the operator

$$(T - c_1)(T - c_2) = T^2 + T + 1$$

which leads to the known transformation (18) with $a = 0$. It is clear that this transformation is the superposition of the following ones:

$$v_n = z_{n+1}z_n^{-c_1}, \quad z_n = u_{n+1}u_n^{-c_2}.$$
As a final example we consider (17). In this case one has
\[\partial_t \int \frac{du_n}{u_n^2 + au_n} = (T^3 - 1)u_{n-1}u_{n-2}. \] (48)
Equation (48) provides a number of possibilities, too.

3. Discussion of example (9)

A transformation of the form (2) transforming (9) into (11) can be found by a straightforward investigation [37]. We can fix \(s = -1 \) and \(q = 1 \) in (2) and then we find the explicit transform (10).

Let us try to find (10) as a chain of linearizable transformations relating (9) and (11) by applying the theory presented in section 2. Let us start from (9) and find a conservation law of density \(\rho_n(u_n) = (-1)^n \log u_n \). According to table 2 this gives the transformation \(u_n = w_{n+1}w_n \) which relates (9) to
\[w_n = (w_{n+2} - w_n)(w_{n+1} - w_n)(w_n - w_{n-2}). \] (49)
We can now apply the obvious transformation \(z_n = w_{n+1} - w_{n-1} \). This is the superposition of the first two transformations of table 1, which are provided by the point symmetry
\[\partial_z w_n = \alpha + \beta(-1)^n. \]
The resulting equation reads:
\[\dot{z}_n = z_n(z_{n+2}z_{n+1} - z_{n-1}z_{n-2}). \] (50)
This is the well-known modification of (11). The transformation of (50) into (11) is \(v_n = z_{n+1}z_n \) and it corresponds to the symmetry \(\partial_z z_n = (-1)^n z_n \).

We can construct the same chain of linearizable transformations, moving in the opposite direction, i.e. starting from (11). We are led to the following picture:
\[C: (49) \xrightarrow{\eta_j} z_n = w_{n+1} - w_{n-1} \xrightarrow{\eta_j} D: (50) \]
\[\eta_j: u_n = w_{n+1}w_n \quad \eta_j: v_n = z_{n+1}z_n \]
\[A: (9) \xrightarrow{\eta_j (10)} B: (11) \]
\[\eta_j: \dot{v}_n = z_{n+1}z_n \]
It turns out that the superposition of the three linearizable transformations shown in the picture can be rewritten as (10) which is of form (2): \(\eta = \eta_3 \circ \eta_2 \circ \eta_1^{-1} \).

We see that in order to find the unknown function \(u_n \) in the non-autonomous nonlinear discrete equation (10), one has to find \(w_n \) by solving two linear problems \(v_n = z_{n+1}z_n \) and \(z_n = w_{n+1} - w_{n-1} \) and then to construct \(u_n \) using the explicit formula \(u_n = w_{n+1}w_n \).

4. Conclusions

In this article we discuss the transformations necessary to classify differential–difference equations. By a definition 2.1 we introduce what we call a linearizable transformation, e.g. a
transformation, linear in one direction, which in the other direction corresponds to one of the many kinds of discrete potentiations. This is not a transformation of Miura type as its inversion is also simple, being usually of discrete potentiation type. Using this definition we are able to introduce two theorems, 2.1 and 2.2, which allow us to construct transformations to a new differential–difference equation, if the first has point symmetries or conservation laws. These two theorems are used in section 3 to show that (9) and (11) are related by a linearizable transformation.

This result is the starting point for a subsequent work [13] in progress on the classification of a class of differential–difference equations of form (1) with \(k = 2 \) and \(m = -2 \) which extends the classification of Volterra type equations, corresponding to \(k = 1 \) and \(m = -1 \), carried out with great success in [33].

Acknowledgments

RIY has been partly supported by the Russian Foundation for Basic Research (grant no. 14-01-97008-r-povolzhie-a). DL has been partly supported by the Italian Ministry of Education and Research, 2010 PRIN Continuous and discrete nonlinear integrable evolutions: from water waves to symplectic maps and by INFN IS-CSN4 Mathematical Methods of Nonlinear Physics.

References

[1] Adler V E 2011 On a discrete analog of the Tzitzeica equation arXiv:1103.5139
[2] Adler V E 2014 Necessary integrability conditions for evolutionary lattice equations Teoret. Mat. Fiz. 181 276–95
Adler V E 2014 Theoretical and Mathematical Physics 181 1367–82 (Engl. transl.)
[3] Adler V E 2016 Integrability test for evolutionary lattice equations of higher order J. Symb. Comput. 74 125–39
[4] Adler V E 2016 Integrable Möbius invariant evolutionary lattices of second order arXiv:1605.00018 [nlin.SI]
[5] Adler V E, Bobenko A I and Suris Yu B 2003 Classification of integrable equations on quadgraphs. The consistency approach Comm. Math. Phys. 233 513–43
[6] Adler V E, Bobenko A I and Suris Yu B 2009 Discrete nonlinear hyperbolic equations. Classification of integrable cases Funct. Anal. Appl. 43 3–17
[7] Adler V E and Postnikov V V 2014 On discrete 2D integrable equations of higher order J. Phys. A: Math. Theor. 47 045206
[8] Adler V E, Shabat A B and Yamilov R I 2000 Symmetry approach to the integrability problem Teoret. Mat. Fiz. 125 355–424 (in Russian)
Adler V E, Shabat A B and Yamilov R I 2000 Theor. Math. Phys 125 1603–61 (Engl. transl.)
[9] Bobenko A I and Suris Y B 2002 Integrable systems on quad-graphs Int. Math. Res. Not. 2002 573–611
[10] Bogoyavlensky O I 1988 Integrable discretizations of the KdV equation Phys. Lett. A 134 34–8
[11] Bogoyavlenskii O I 1991 Algebraic constructions of integrable dynamical systems-extensions of the Volterra system Uspekhi Mat. Nauk 46 3–48
Bogoyavlenskii O I 1991 Russian Mathematical Surveys 46 1–64 (Engl. transl.)
[12] Boll R 2011 Classification of 3D consistent quad-equations J. Nonlinear Math. Phys. 18 337–65
[13] Garifullin R N, Levi D and Yamilov R I 2016 Classification of five-point differential–difference equations work in progress
[14] Garifullin R N and Yamilov R I 2012 Generalized symmetry classification of discrete equations of a class depending on twelve parameters J. Phys. A: Math. Theor. 45 345205
[15] Hirota R 1979 Nonlinear partial difference equations. V. Nonlinear equations reducible to linear equations J. Phys. Soc. Jpn. 46 312–9
[16] Itoh Y 1975 An H-theorem for a system of competing species Proc. Japan Acad. 51 374–9
[17] Levi D 1981 Nonlinear differential difference equations as Bäcklund transformations J. Phys. A: Math. Gen. 14 1083–98
[18] Levi D and Benguria R 1980 Bäcklund transformations and nonlinear differential difference equations Proc. Nat. Acad. Science USA 77 5025–7
[19] Levi D and Yamilov R 1997 Conditions for the existence of higher symmetries of evolutionary equations on the lattice J. Math. Phys. 38 6648–74
[20] Levi D and Yamilov R I 2011 Generalized symmetry integrability test for discrete equations on the square lattice J. Phys. A: Math. Theor. 44 145207
[21] Mikhailov A V, Shabat A B and Sokolov V V 1991 The symmetry approach to classification of integrable equations What is Integrability? ed V E Zakharov (Springer) pp 115–84
[22] Mikhailov A V, Shabat A B and Yamilov R I 1987 The symmetry approach to the classification of nonlinear equations, complete lists of integrable systems Uspekhi Mat. Nauk 42 3–53
[23] Mikhailov A V and Yamilov R I 1987 Russian Math. Surveys 42 1–63 (Engl. transl.)
[24] Mikhailov A V and Xenitidis P 2014 Second order integrability conditions for difference equations: an integrable equation Lett. Math. Phys. 104 431–50
[25] Miura R M 1968 Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation J. Math. Phys. 9 1202
[26] Narita K 1982 Soliton solution to extended Volterra equation J. Phys. Soc. Japan 51 1682–5
[27] Nijhoff F W 2002 Lax pair for the Adler (lattice Krichever-Novikov) system Phys. Let. A. 297 49–58
[28] Nijhoff F W and Walker A J 2001 Glasgow Math. J. A 43 109
[29] Scimiterna C, Hay M and Levi D 2014 On the integrability of a new lattice equation found by multiple scale analysis J. Phys. A: Math. Theor. 47 265204
[30] Sokolov V V 1988 On the symmetries of evolution equations Uspekhi Mat. Nauk 43 133–63
[31] Sokolov V V 1988 Russian Math. Surveys 43 165–204 (Engl. transl.)
[32] Startsev S Y 1998 Differential substitutions of the Miura transformation type Theor. Math. Phys. 116 1001–10
[33] Svinolupov S I, Sokolov V V and Yamilov R I 1983 On Bäcklund transformations for integrable evolution equations Dokl. Akad. Nauk SSSR 271 802–5 (in Russian)
[34] Svinolupov S I, Sokolov V V and Yamilov R I 1983 Soviet Math. Dokl. 28 165–8
[35] Wadati M 1976 Transformation theories for nonlinear discrete systems Prog. Theor. Phys. Supplement 59 36–63
[36] Yamilov R I 1983 Classification of discrete evolution equations Uspekhi Mat. Nauk 38(6) 155–6 (in Russian)
[37] Yamilov R I 1990 Invertible changes of variables generated by Bäcklund transformations Teoret. Mat. Fiz. 85 368–75 (in Russian)
[38] Yamilov R I 1991 Theor. Math. Phys. 85 1269–75 (Engl. transl.)
[39] Yamilov R I 1993 On the construction of Miura type transformations by others of this kind Phys. Lett. A 173 53–7
[40] Yamilov R I 1994 Construction scheme for discrete Miura transformations J. Phys. A: Math. Gen. 27 6839–51
[41] Yamilov R 2006 Symmetries as integrability criteria for differential difference equations J. Phys. A: Math. Gen. 39 R541–623