Confined: a real-time visualization

Zi Cai,1 Congjun Wu,1 and U. Schollwöck2

1Department of Physics, University of California, San Diego, California 92093, USA
2Ludwig-Maximilians-Universität München, D-80333 München, Germany

Due to the mechanism of confinement, as known from quantum chromodynamics, it is difficult to observe individual particles carrying fractional quantum number (e.g. quark with fractional electric charge). A condensate matter example of fractionalized particles is spinons in quasi-one-dimensional spin systems, which are domain walls in the background of Neel configurations carrying spin-$\frac{1}{2}$. Using the time-evolving block decimation algorithm, we visualize the nontrivial spinon dynamics induced by the confine mechanism in a two-leg spin-$\frac{1}{4}$ ladder. It can be illustrated by a simple single-particle picture of Bloch oscillation, not only qualitatively but also quantitatively. We propose the experimental realization and the real time detection of the spinon dynamics in the ultra-cold boson systems of 87Rb.

PACS numbers: 75.10.Pq, 05.70.Ln, 75.78.Fg

I. INTRODUCTION

In quantum chromodynamics, quarks are fundamental particles carrying fractional electric charges. However, interactions between quarks grow linearly with distance due to the mechanism of confinement arising from the SU(3) color gauge theory. Consequently, quarks are confined into color singlet bound states of baryons and mesons, and thus are difficult to observe. In various condensed matter systems, there also exist excitations carrying fractional quantum numbers, such as the spinon and holon excitations in 1D Luttinger liquids, the solitons with half-fermion charge in one dimensional conducting polymers, and the quasi-particle and hole excitations in fractional quantum Hall systems, and the monomer excitations in the dimer model in the triangular lattice. In these systems, fractional excitations are deconfined. Some of them have been experimentally detected.

The phenomenon of confinement emerges in quasi-1D strongly correlated systems such as spin ladders. The “quark” in this case is known as spinon, which is the domain wall interpolating between different ordered regions and usually carries fractionalized spin (spin-$1/2$). Take an antiferromagnetic spin chain with Ising-like exchange anisotropy for an example, the ground state in this case would be a Neel state with two-fold degeneracy, while the spinon can be considered as the elementary excitation separating these two degenerate ground states with opposite staggered magnetization. In a single spin chain, no confinement occurs because a pair of spinons could be separated as far from each other as possible without costing energy. For a two-leg ladder system, even an infinitesimal interchain coupling would induce a potential which increases linearly with distance between the spinons. Therefore a pair of fractionalized spinon excitations would be confined into an integral spin-1 excitation: a magnon. Recently, a finite temperature confined-deconfined crossover has been observed in neutron scattering experiments for a weakly coupled ladder material CaCu$_2$O$_2$. The signature of the confinement of spinons can be observed from the energy absorption spectrum for spin-flips at various wavevectors. In this paper, we reexamine this old concept from a novel perspective, which enables us to visualize the confinement directly through the non-equilibrium dynamics in a cold atom system.

Due to the low dissipation rate and the long coherence times, ultracold atoms in optical lattices have opened exciting possibilities for studying non-equilibrium quantum dynamics of many-body systems. On the other hand, it also provides a perfect platform to reexamine classic concepts in condensed matter or particle physics from a different perspective. One example is the spin-charge separation, which plays a central role in strongly correlated systems. Recently, Kollath et al. have used the adaptive t-DMRG to study the time evolution of a 1D fermionic Hubbard model in real time, and observed the splitting of local perturbation into separate wave packets carrying charge and spin. In this paper, we study the time evolution of a pair of spinons in a two-leg spin ladder model, and find that the confinement mechanism would lead to nontrivial dynamics of the spinons, which enables us to visualize confinement in real time.

II. CONFINEMENT IN A TWO-LEG SPIN LADDER

Our departure point is a two-leg spin-$\frac{1}{4}$ ladder with easy axis anisotropy along the z-axis defined as

$$H = \sum_{i,a} J_{a,||}(S_{i,a}^+ S_{i+1,a}^- + h.c. + J_{a,\perp}^z S_{i,a}^z S_{i+1,a}^z - J_{a,\perp} S_{i,1}^z S_{i,2}^z) .$$

(1)

where $a = 1, 2$ is the leg index; $||$ and \perp denote the couplings on the leg and across the rung, respectively. The couplings within legs are antiferromagnetic with the Ising anisotropy ($J_{a,||}^z > 2 J_{a,||} > 0$). The rung coupling is chosen as Ising-like and ferromagnetic. The experimental realization of Eq. (1) in ultra-cold atom systems will be
discussed later. Below we will focus on the case of early increasing with the mismatch length.

FIG. 1: Confinement on the two-leg spin-${\frac{1}{2}}$ ladder with Ising anisotropy described by Eq. (1). (a) The classic ground state with Neel ordering along the leg and ferromagnetic ordering along the rung. (b) The classic configuration with spinon_1 and spinon_2 located at the same position. (c) The mismatch of the locations of spinon_1,2 gives rise to the energy cost linearly increasing with the mismatch length.

III. CONFINEMENT-INDUCED DYNAMICS OF SPINONS

In our numerical simulation, we use the open boundary condition (OBC) and prepare the initial state as both spinons located at the left end of the ladder, i.e., between the first and second sites. Right after the beginning of the evolution, the spinons will be rebounded by the left boundary and propagate towards the left end with a velocity proportional to J_a,\parallel. The length of the ladder is set to $L = 20$, long enough for the time scales simulated to exclude finite-size effects. Utilizing the time-evolving block decimation (TEBD) algorithm, we study the time evolution of the many-body wavefunction from the initial state. Total S^z conservation is used to reduce the computational effort. In the course of real time evolution we take the truncation dimension $\chi = 80$ and time step $\Delta \tau = 0.05$. The convergence is checked by taking larger χ.

The calculated time evolution for the case of $J^z_\perp = 0$ is shown in Fig. 2 in which two spinons are decoupled. The parameter values are taken as $J_1,\parallel = J, J_2,\parallel = 0.5J$, and $J^z_1,\parallel = J^z_2,\parallel = 5J$. To visualize the spinon dynamics, we present the time-evolution of the configuration of the expectation value of S_z. The spinons are located at the bonds connecting two sites with the same sign of S_z. During the evolution, two spinons become separated due to their different velocities determined by J_a,\parallel. For a clear presentation of the spinon, we define the rectified magnetization $S_{i,a}$ for each leg as

$$S_{i,a} = -S^z_{i,a} \times (-1)^i. \quad (3)$$

The location of spinon_1 or spinon_2 is determined at the bond across which $S_{i,a}$ changes the sign. The time evolution of the spatial distributions of $S_{i,a=1,2}$ at $J^z_\perp = 0$ is depicted in Fig. 2 (a). Both legs exhibit the propagation of spinons at uniform speeds. The speed of the first leg is larger than the that of the second one because $J_1,\parallel > J_2,\parallel$.

Now we turn on the coupling along the rung, a confinement potential emerges between two spinons. It acts like a “constant” force connecting these two spinons. If we view the spinons as particles, the dynamics of the spinons can be qualitatively understood from a simple two-body picture as follows. Two particles with different initial velocities and masses move in a 1D lattice system...
and interact with each other via a linear potential. Each particle oscillates around the center of mass (COM) of the system, which continues to do uniform linear motion until it reaches the boundary. This simple picture could be verified qualitatively by our numerical simulation of the spinon dynamics. The time evolution of spatial distribution of $S_{i,x=1,2}$ at $J_2^z = J$ is presented at Fig. 3(b). An oscillation of the spinon$_{1}$ is observed, while that of spinon$_{2}$ is not as clear as spinon$_{1}$. The effective mass of spinon$_{2}$ is larger than that of spinon$_{1}$, thus its oscillation amplitude is too small to be visible.

To further verify the two-particle picture quantitatively, we choose $J_{2,\parallel} = 0$, which means spinon$_{2}$ is localized in its initial position at the boundary. In this case, the two-body problem reduces to a one-body problem of spinon$_{1}$ in a lattice system under a static magnetic field, which is provided by the rectified spins in the second leg. The time evolution of a spinon within a ferromagnetic spin chain under a constant magnetic field has been studied previously, the dynamics turns out to be a perfect Bloch oscillation. In our case, the confinement ‘constant’ force provided by the static spinon$_{2}$ plays a similar role of the constant electric field ($E \propto J_2^z$), and we expect a similar Bloch oscillation dynamics. It implies that the frequency of the oscillation of spinon$_{1}$ should be proportional to the interaction strength: $1/T \propto J_1^z$, where T is the oscillation period. This relation can be verify numerically, as shown in Fig. 4, where we can find a linear relation between $1/T$ and J_1^z for both $J_{1,\parallel} = J$ and $1.5J$. Simulation times were long enough to observe the stability of the oscillation phenomenon.

In a perfect Bloch oscillation, the frequency is determined by the strength of the external field (J_1^z in our case), and should be independent of the bandwidth ($J_{1,\parallel}$ in our case). However, we find that the oscillation frequency not only depends on J_1^z, but is also slightly dependent on $J_{1,\parallel}$, especially for large values of J_1^z. There are two possible factors contributing to the imperfection of Bloch oscillation. One is the boundary effect. Considering the quantum nature of spinons (wave packets), the boundary begins to influence the dynamics even before the centers of spinons reach the boundary. For larger J_1^z, the amplitude of the Bloch oscillation A is smaller ($A \propto J_{1,\parallel}/J_1^z$), which indicates the motion of the spinon$_{1}$ is confined to the boundary, therefore the boundary effect becomes more obvious. This can explain why the deviation becomes larger for bigger $J_{1,\parallel}/J_1^z$. The other reason comes from deviations from the linear relations of Eq. (2), which can be considered as a zero-order approximation of the exact interaction between spinons. Actually, on a long length scale, it is possible that higher order nonlinear modifications such as $1/|r|$ emerge due to the quantum nature of spinons.8

IV. EXPERIMENTAL REALIZATION

For an experimental realization of our two-leg spin ladder system in an ultracold atomic superlattice system, one first has to create Neel-ordered chains along the x-direction, for example by using 87Rb atoms with two internal spin states $|F = 1, m_F = \pm 1\rangle$. The necessary superexchange interactions of the ultra cold atoms can be achieved by the use of a superlattice system.$^{25,26,28–30}$ In the optical lattice, a typical energy scale for the superexchange coupling J is in the order of kHz, which implies a ms time-scale real-time dynamics in our case. By modifying the bias between neighboring lattice sites, both ferromagnetic and antiferromagnetic superexchange interaction can be realized.22 The orientation of the setup would be as shown in Fig. 5. The two-leg ladder structure is achievable by applying another laser along the y-direction to construct a second superlattice structure. In addition, the easy-axis anisotropy is realizable by tuning the interaction $U_{\uparrow\uparrow} = U_{\downarrow\downarrow} \neq U_{\uparrow\downarrow}$ or by a periodically modulated lattice.26 Local addressing techniques as developed recently33 would be used to create domain walls, e.g. by a global spin-flip on one half of the system, as well as for the read-out procedure. These techniques,
while advanced, are now experimentally established. The arguably most difficult part of the experiment would be to adjust the exchange interaction separately along two different legs. As mentioned above, the exchange interaction can be adjusted by superlattices but to do this separately on legs 1 and 2, an additional superlattice structure is needed. In fact, antiferromagnetic spin chains have already successfully been simulated, albeit in a different context, namely the Bose-Hubbard model in a tilted optical lattices, where a magnetic domain wall has been observed.

V. DISCUSSION AND CONCLUSION

In the context of condensed matter physics, the study of domain wall motion in magnetic nanowires has attracted considerable theoretical and experimental attentions recently due to its potential industrial applications. Manipulation and control the domain wall dynamics in magnetic nanowires is known to play an important role in nanomagnetism. Most of the theoretical studies in this field are based on the Landau-Lifshitz-Gilbert (LLG) equation. Our work is different from previous work in three aspects: (i) we provide a quasi-exact calculation of the dynamics of the strongly correlated system by TEBD instead of a semi-classic mean-field approximation; (ii) different from condensed matter system where the domain wall dynamics is closely related with dissipation rate, there is little energy dissipation in our system; (iii) we account for the strong confined interaction between domain walls, which leads to nontrivial dynamics.

Whether in condensed matter or ultracold atom physics, the control and manipulation of the particles or quasiparticles in the quantum system are of central interest. In this paper, confinement is visualized in real space and its properties are studied via a non-equilibrium process, showing a possible way to investigate and manipulate the motion and interaction of quasiparticles in a dissipationless strongly correlated system. Our work could be helpful for the study of phenomena involving the domain wall dynamics, such as Walker breakdown and current-driven domain wall motion.

We are grateful to S. Trotzky for intensive discussions about the experimental realization. Z.C. thanks Lei Wang for numerical help. This work was supported in part by the NBRPC (973 program) 2011CBA00300 (2011CBA00302). Z.C. and C.W. are supported by NSF DMR-1105945, and the AFOSR-YIP program. U.S. is supported by DFG through FOR801.

1. D. Sénéchal, arXiv:cond-mat/9908262 (1999).
2. A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. -P. Su Rev. Mod. Phys. 60, 781 (1988).
3. R. B. Laughlin, Rev. Mod. Phys. 71, 863 (1999).
4. R. Moessner, S. L. Sondhi, Phys. Rev. Lett 86, 1881 (2001).
5. E. Dagotto and T. M. Rice, Science 271, 618 (1996).
6. D. G. Shelton, A. A. Nersesyan, and A. M. Tsvelik, Phys. Rev. B 53, 8521 (1996).
7. M. Greiter, Phys. Rev. B 66, 054505 (2002).
8. M. J. Bhaeen and A. M. Tsvelik, arXiv:cond-mat/0409602 (2004).
9. B. Lake, A. M. Tsvelik, S. Notbohm, D. A. Tennant, T. G. Perring, M. Reehuis, C. Sekar, G. Krabbes and B. Büchner, Nature Phys. 6, 50 (2010); M. Greiter, Nature Phys. 6, 5 (2010).
10. T. Kinoshita, T. Wenger, D. S. Weiss, Nature. 440, 900 (2006).
11. K. Winkler et al., Nature. 441, 853 (2006); A. J. Daley et al., arXiv:cond-mat/0608721
12. S. Trotzky, Y. A. Chen, A. Fleisch, I. P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch, arXiv:cond-mat/1101.2659
13. K. A. Al-Hassanieh, F. A. Reboredo, A. E. Feiguin, I. González, and E. Dagotto, Phys. Rev. Lett. 100, 166403 (2008).
14. C. L. Hung, X. B. Zhang, N. Gemelke, and C. Chin, Phys. Rev. Lett. 104, 160403 (2010).
15. D. Chen, M. White, C. Borries, B. DeMarco, arXiv:11034662
16. C. Kasztsel, S. Trotzky, Y. A. Chen, I. Bloch, I. P. McCulloch, U. Schollwöck, G. Orso, Phys. Rev. Lett. 106, 155302 (2011).
17. E. H. Lieb, F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
18. G. Baskaram, Z. Zou, P.W. Anderson, Solid State Commun. 63, 973 (1987).
19. C. Kollath, U. Schollwöck, and W. Zwerger, Phys. Rev. Lett. 95, 176401 (2005); A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck, Phys. Rev. A 77, 013607 (2008).
20. T. Giamarchi, Quantum Physics in One Dimensions, (Clarendon Press, Oxford, 2004).
21. A. J. Daley et al., J. Stat. Mech. (2004) P04005; S. R. White and A. Feiguin, Phys. Rev. Lett. 93, 076401 (2004); U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005); U. Schollwöck, Ann. Phys. (N.Y.) 326, 96 (2011).
22. D. Gobert, C. Kollath, U. Schollwöck and G. Schütz, Phys. Rev. E 71, 036102 (2005).
23. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003); Phys. Rev. Lett. 93, 040502 (2004).
24 Z. Cai, L. Wang, X. C. Xie, U. Schollwöck, X.R. Wang, M. Di Ventra, and Y.P. Wang, Phys. Rev. B 83, 155119 (2011).
25 S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger, A.M. Rey, A. Polkovnikov, E.A. Demler, M.D. Lukin, and I. Bloch, Science. 319, 295 (2008).
26 Y. A. Chen, S. Nascimbène, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, Phys. Rev. Lett. 107, 210405 (2011).
27 S. Trotzky, Y. A. Chen, U. Schnorrberger, P. Cheinet, and I. Bloch, Phys. Rev. Lett. 105, 265303 (2010).
28 J. J. García-Ripoll, M. A. Martin-Delgado, and J. I. Cirac, Phys. Rev. Lett. 93, 250405 (2004).
29 L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91, 090402 (2003).
30 A. B. Kuklov and B.V. Svistunov, Phys. Rev. Lett. 90, 100401 (2003).
31 C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, S. Kuhr, Nature 471, 319 (2011).
32 J. Simon, W. S. Bakr, R.C. Ma, M. E. Tai, P. M. Preiss, M. Greiner, Nature 472, 307 (2011).
33 S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
34 G. S. D. Beach, et al., Nat. Mater. 4, 741 (2005).
35 M. Kläui, C. A. F. Vaz, J. A. C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, L. J. Heyderman, F. Nolting, and U. Rüdiger, Phys. Rev. Lett. 94, 106601 (2005).
36 N. L. Schryer and L. R. Walker, J. of Appl. Phys. 45, 5406 (1974).
37 X. R. Wang, P. Yan, J. Lu, C. He, Annals of Physics 324, 1815 (2009).