The complete chloroplast genome sequence of three medicinal species; *Curcuma longa*, *Curcuma wenyujin*, and *Curcuma phaeocaulis* (Zingiberaceae)

Min-Kyeoung Kim, Woo Kyu Lee, Yoo Rae Choi, Jonghwan Kim, Ilhyun Kang and Juhye Kang

Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea

ABSTRACT

Curcuma longa, *C. wenyujin* and *C. phaeocaulis* are important herbal medicine which of rhizomatous herbaceous perennial plant of the family Zingiberaceae. This study generated a complete chloroplast genome sequence of three medicinal species were characterized by de novo assembly with whole genome sequencing data. The length of complete chloroplast genome were 162,180 bp (*C. longa*), 162,266 bp (*C. wenyujin*), and 162,133 bp (*C. phaeocaulis*), respectively, with four structures that were included in large single copy region (87,001 bp, 87,042 bp, and 87,013 bp), small single copy region (15,681 bp, 15,710 bp, and 15,622 bp), and duplicated inverted regions (29,749 bp, 29,757 bp and 29,749 bp of each). Based on phylogenetic trees, *C. longa*, *C. wenyujin*, and *C. phaeocaulis* were grouped by high bootstrap value with *Curcuma* species. This result approved that *C. longa*, *C. wenyujin* and *C. phaeocaulis* were comprised in *Alpinia* and *Wurfbainia*. Therefore, this chloroplast genome data firstly generated valuable genetic resource in discrimination of herbal materials, phylogeny and development DNA marker.

CONTACT
Juhye Kang
rudia926@korea.kr
Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea

2021, VOL. 6, NO. 4, 1363–1364
https://doi.org/10.1080/23802359.2020.1768917

ARTICLE HISTORY
Received 2 April 2020
Accepted 9 May 2020

KEYWORDS
Chloroplast; genome sequencing; *C. longa*; *C. wenyujin*; *C. phaeocaulis*
of ten taxa, consisting of genus *Curcuma*, *Alpinia*, and *Wurfbainia*. These sequences were aligned using MAFFT (http://mafft.cbrc.jp/alignment/software/, Katoh and Standley 2013). The Phylogenetic relationship was constructed by eight species, and 1000 bootstrap replications in MEGA6 (Tamura et al. 2013). Phylogenetic analysis was conducted with chloroplast genome sequences of *Curcuma longa*, *C. wenyujin*, and *C. phaeocaulis* with eight species belonging to the family Zingeraceae (Figure 1). This chloroplast genome data could be supported to discriminate between three similar medicinal species for herbal medicine and adulterations, analyze the relation of closely related taxa, and study phylogeny and identification marker.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported by a grant [16171MFDS228] from the Ministry of Food and Drug Safety of the Republic of Korea in 2018.

Data availability statement

The data that support the findings of this study are openly available in NCBI, National Center for Biotechnology Information at https://www.ncbi.nlm.nih.gov/nuccore/MK109020.1/, and https://www.ncbi.nlm.nih.gov/nuccore/MK109018.1/, reference number [accession No. MK109018, MK109019, and MK109020].

References

Jurenka S. 2009. Anti-inflammatory properties of curcumin, a major constituent of *Curcuma longa*: a review of preclinical and clinical research. Altern Med Rev. 14:141–153.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Li S, Yuan W, Deng G, Wang P, Yang P, Aggarwal B. 2011. Chemical composition and product quality control of turmeric (*Curcuma longa* L.). TOPHARMcj. 5(1):28–54.

Lohse M, Drechsel O, Bock R. 2007. OrganelarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 52(S–6):267–274.

Remadevi R, Surendran E, Kimura T, 2007. Turmeric in traditional medicine. In: Ravindran PN, Nirmal Babu K, Sivaraman K, editors. Turmeric: the genus *Curcuma*. Boca Raton, London, New York: CRC Press; p. 409–436.

Sasikumar B. 2005. Genetic resources of *Curcuma*: diversity, characterization and utilization. Plant Genet Resour. 3(2):230–251.

Sigrist MS, Pinheiro JB, Filho JAA, Zucchi ML. 2011. Genetic diversity of turmeric germplasm (*Curcuma longa*; Zingiberaceae) identified by microsatellite markers. Genet Mol Res. 10(1):419–428.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2729.

Wu D, Larsen K. 2000. *Curcuma* Linnaeus. In: Wu ZY, Raven PH, editors. Flora of China. Beijing: Science Press; p. 359.

Figure 1. Maximum-likelihood analysis of *C. longa*, *C. wenyujin*, and *C. phaeocaulis* with related species in Zingiberaceae based on complete chloroplast genome sequences. Numbers on branch indicated bootstrap values.