Supplementary

In Vitro Simulation and In Vivo Assessment of Tooth Wear: A Meta-Analysis of In Vitro and Clinical Research

Despina Koletsi 1, Anna Iliadi 2, Theodore Eliades 1,* and George Eliades 2

1 Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; d.koletsi@gmail.com
2 Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; annaeliades@gmail.com (A.I.); geliad@dent.uoa.gr (G.E.)
* Correspondence: Theodore.Eliades@zzm.uzh.ch

Table S1. Characteristics of included studies in alphabetical order (n = 27).

Author	Year	Origin	Design	Sample size/enamel teeth type	Analysis Method	Groups under Comparison	Outcomes	Simulation Information/ follow-up
Aldegheishem [1]	2015	Germany	In vitro	21 molars, lingual crown sections	laser scanner	enamel (n = 7 each) vs different zirconia materials: 1. NanoZr (PNANOZR, Panasonic Healthcare), 2. Zeno (Zenostar, Wieland), 3. Cercon (Cercon HT, DeguDent). Subgroups (surface roughness): smooth (S) (Ra = 0.01 μm), moderate (M) (Ra = 0.1 μm), rough (R) (Ra = 1 μm)	1.volumetric wear	1,200,000 cycles thermomechanical fatigue, 98 N load, 1.6 Hz frequency (simulation of 5 years in vivo function)
Reference	Year	Country	Methodology	Sample Size	Surfaces Compared	Test Details	Result	
-----------	------	---------	-------------	-------------	-------------------	--------------	--------	
Al-Hiyasat [2]	1997	Jordan	In vitro	30 mandibular premolars, 60 cusps	enamel (n = 10 each) vs. 1. glazed porcelain, 2. unglazed porcelain, polished porcelain	1. mean wear depth	5000, 15,000, 25,000 cycles of wear testing, 40 N load	
Al-Hiyasat [3]	1998	Jordan	In vitro	25 mandibular premolars, 50 cusps	enamel (n = 10 each) vs. 1. aluminous porcelain Vitadur Alpha, 2. bonded to metal porcelain Omega, 3. Low-fusing hydrothermal ceramic Duceram-LFC, 4. machinable ceramic Vita Mark II, 5. cast type IV gold	1. mean wear	5000, 15,000, 25,000 cycles of wear testing, under a load of 40 N	
Al-Hiyasat [4]	1999	Jordan	In vitro	15 mandibular premolars, 30 cusps	enamel (n = 10 each) vs. 1. conventional porcelain, 2. Low-fusing hydrothermal ceramic Duceram-LFC, 3. machinable ceramic Vita Mark II	1. mean wear	5000, 15,000, 25,000 cycles of wear testing, under a load of 40 N	
Ashtiani [5]	2019	Iran	In vitro	20 maxillary premolars	photography using a stereomicroscope (SF-100B, Lomo, Russia)	enamel (n = 10 each), vs. 1. feldspathic porcelain (VMK 95, Vita), 2. polymer-infiltrated ceramics (Vita Enamies)	1. tooth wear	120,000 cycles, chewing simulator, under a load of 5kg (~49 N) and 1.6 Hz frequency of antagonist movement
Bedini [6]	2012	Italy	In vitro	25 molars	fatigue test by means of the servo-hydraulic 858 MiniBionix, testing machine (MTS)	enamel (n = 5 each), vs. 1. enamel, 2. hybrid microceramic composite, PEX composite, PFS composite	1. volumetric fatigue difference, 2. surface fatigue difference	1,000,000 cycles, compression load ranging from 34 to 340 N at a frequency of 6 Hz (i.e., this is a
Study	Year	Location	Methodology	Materials Description	Simulation/Testing Conditions			
-------------------	--------	----------------	--------------------	--	--			
Chong [7]	2015	Australia	In vitro	Enamel (n = 12 each), vs. 1. enamel (maxillary incosor), 2. Lab-polished zirconia, 3. Lab-polished and glazed zirconia, 4. clinically adjusted zirconia, 5. clinically adjusted and repolished zirconia	Enamel (n = 12 each), vs. 1. enamel (maxillary incosor), 2. Lab-polished zirconia, 3. Lab-polished and glazed zirconia, 4. clinically adjusted zirconia, 5. clinically adjusted and repolished zirconia			
Esquivel-Upshaw	2018	Florida, US	clinical (RCT)	Enamel (n = 30), vs. 1. Zirconia-reinforced lithium silicate glass ceramic (Vita Suprinity)	Enamel (n = 30), vs. 1. Zirconia-reinforced lithium silicate glass ceramic (Vita Suprinity)			
Fathy [9]	2018	Egypt	In vitro	Enamel opposed to steatite ball (n = 8) and compared to: 1. Feldspathic ceramic, 2. composite resin, 3. IPN resin, 4. PMMA resin networks, 5. TCR resin,	Enamel opposed to steatite ball (n = 8) and compared to: 1. Feldspathic ceramic, 2. composite resin, 3. IPN resin, 4. PMMA resin networks, 5. TCR resin,			
Ghazal [10]	2008	Germany	In vitro	Enamel (n = 12 each), vs. 1. enamel (maxillary incosor), 2. Lab-polished zirconia, 3. Lab-polished and glazed zirconia, 4. clinically adjusted zirconia, 5. clinically adjusted and repolished zirconia	Enamel (n = 12 each), vs. 1. enamel (maxillary incosor), 2. Lab-polished zirconia, 3. Lab-polished and glazed zirconia, 4. clinically adjusted zirconia, 5. clinically adjusted and repolished zirconia			

Notes:
- Simulation of 5 years in vivo aging
- Enamel (n = 12 each)
- 120,000 cycles, chewing simulator, under a load of 5 kg (~49 N) and 1.6 Hz frequency of antagonist movement
- 150,000 cycles, chewing simulator, under a load of 5 kg (~49 N) and 1.6 Hz frequency of antagonist movement
- 120,000, 240,000, 480,000, 840,000, and 1,200,000 cycles, chewing simulator (steatite ball), under a load of 5 kg (~49 N) and 1.6 Hz frequency
| Study Reference | Year | Country | Study Type | Number of Teeth | Methodology | Control | Treatment | Parameters | Results |
|-----------------|------|---------|------------|----------------|-------------|---------|-----------|------------|---------|
| Ghazal [11] | 2009 | Germany | In vitro | 24 maxillary first premolars | laser scanner | enamel opposed to zirconia ceramic balls of three different surface roughness (i.e., conventional, abraded with 50-μm alumina particles and 0.5 bar, and abraded with 50-μm alumina particles and 1 bar), compared to: 1. Nano-filled composite resin | 1. vertical substance loss, 2. volume loss | 300,000 cycles, mastication simulator, under a load of 5kg (~49 N) (zirconia ceramic ball) |
| Gundugolli [12] | 2018 | India | In vitro | 60 maxillary first premolars | cycling wear testing, chewing simulator | enamel vs. 1. unpolished unglazed layered zirconia, 2. polished unglazed layered zirconia, 3. polished glazed layered zirconia, 4. unpolished unglazed monolithic zirconia, 5. polished unglazed monolithic zirconia, 6. polished glazed monolithic zirconia | 1. vertical substance loss, 2. volume loss | 250,000 cycles, under load of 5 kg (~49 N), (i.e., this is a simulation of 1-year in vivo chewing) |
| Habib [13] | 2019 | Saudi Arabia | In vitro | 32 premolars | 3D profilometer | enamel (8 each), vs. 1. monolithic zirconia, 2. lithium disilicate, 3. ceramic fused to metal, 4. composite resin | 1. vertical height loss, 2. weight | 240,000 cycles, under a load of 49 N, 0.8 Hz |
| Study | Year | Location | Type | Materials | Methodology | Comparison | Wear Parameters |
|-------|------|----------|------|-----------|-------------|------------|----------------|
| Janyavula [14] | 2013 | Alabama, US | In vitro | 8 mandibular molars | non contact surface profilometer | enamel vs. 1. polished zirconia, 2. glazed zirconia, 3. polished glazed zirconia, 4. veneering porcelain, 5. incisor enamel | 200,000 and 400,000 cycles, under a load of 10 N |
| Jung [15] | 2010 | Korea | In vitro | 60 premolars | 3D profilometer | enamel (n = 20 each) vs. 1. feldspathic porcelain, 2. zirconia polished, 3. zirconia glazed | 250,000 cycles, under load of 5 kg (~49 N), (i.e., this is a simulation of 1-year in vivo chewing) |
| Kim [16] | 2012 | Korea | In vitro | 100 maxillary and mandibular premolars | MTS 3D profiler | enamel (n = 10 each) vs. 600 and 1200 grit of groups: 1. monolithic zirconia Prettau, 2. monolithic zirconia Lava, 3. monolithic zirconia Rainbow, 4. lithium disilicate e.Max Press, 5. feldspathic porcelain Vita-Omega | 300,000 cycles, chewing simulator, under load of 5 kg (~49 N), (i.e., this is a simulation of 1-year in vivo chewing) |
| Lawson [17] | 2014 | Alabama, US | In vitro | 64 molars | Non-contact surface profilometer | enamel (n = 8 each), vs. 1. adjusted zirconia LAVA, 2. adjusted polished zirconia LAVA, 3. adjusted glazed zirconia LAVA, 4. adjusted lithium disilicate e.Max, 5. adjusted polished lithium disilicate e.Max, 6. adjusted glazed | 300,000 cycles, chewing simulator, under load of 10 N |
| Author | Year | Location | Study Type | Description | Comparison | Methodology | Results |
|--------|------|----------|------------|-------------|------------|-------------|---------|
| Lee [18] | 2014 | New Zealand | In vitro | 5 premolars/10 cusps | wear testing apparatus | enamel (n = 5 each), vs. 1. lithium disilicate glass ceramic e.Max, 2. type III gold | 1. friction coefficient for wear (μ) 1100 cycles, 9.8 N and 1.6 Hz |
| Mulay [19] | 2015 | India | In vitro | 60 maxillary first premolars | weight testing machine | enamel (n = 15 each), vs. 1. autoglazed ceramic, 2. overglazed ceramic, 3. ceramic polished with Shofu kit, 4. ceramic polished with DFS wheels | 1. percentage weight loss 5,000-10,000 cycles |
| Mundhe [20] | 2015 | India | clinical (RCT) | 10 patients, 30 teeth | 3D scanner for casts | enamel (10 each), vs. 1. antagonist enamel, 2. metal-ceramic, 3. monolithic zirconia | 1. wear 1 year evaluation |
| Olivera [21] | 2006 | Brazil | In vitro | 80 maxillary premolars | surface analyzer and computer program | enamel (n = 10 each), vs. 1. glazed ceramics, 2. polished ceramics of 5 commercial products (Empress 2, IPS, D-plus, D LFC, Symbio) | 1. total enamel wear 150,000 and 300,000 cycles, under load 20 N, chewing rate 1.3 Hz |
| Rupawala [22] | 2017 | India | In vitro | 60 maxillary first and second premolars | wear testing apparatus | enamel (n = 15 each), vs. 1. glazed zirconia, 2. polished unglazed zirconia, 3. porcelain fused to metal, 4. lithium disilicate | 1. loss of height 10,000 cycles, under load of 5 kg (50 N) |
| Study | Year | Country | Design | Sample Size | Methodology | Materials Compared | Key Results |
|----------------------------|------|--------------|-----------|-------------|---|--|---|
| Sripetchanond [23] | 2014 | Thailand | In vitro | 24 molars | profiler | enamel (n = 6 each), vs. 1. monolithic zirconia, 2. lithium disilicate glass ceramic, 3. composite resin, 4. enamel of occlusal surface of third molar | 1. maximum depth of wear, 2. mean depth of wear 4800 cycles, under load of 25 N |
| Stawarczyk [24] | 2013 | Switzerland | In vitro | 30 maxillary molars | 3D profilometer | enamel (n = 6 each), vs. 1. veneered zirconia, 2. glazed zirconia ceramic, 3. manually polished monolithic zirconia, 4. mechanically polished monolithic zirconia, 5. monolithic base alloy | 1. enamel wear 120,000, 240,000, 640,000, and 1,200,000 masticatory cycles |
| Stober [25] | 2014 | Germany | clinical | 17 participants (mean age 43, SD 14) with corresponding/contralateral molar crowns | 3D laser scanner | enamel (n = 17 each), vs. 1. monolithic zirconia, 2. enamel molar antagonist | 1. mean vertical loss, 2. maximum vertical loss 6-month evaluation |
| Yang [26] | 2019 | Korea | invitro and clinical (RCT) | In vitro: 60 maxillary premolars; RCT: 30 patients requiring implant restoration of 1st/2nd molar | desktop scanner | enamel (n = 15 each), vs. 1. polished Rainbow zirconia, 2. polished Katania zirconia | 1. vertical wear In vitro: 100,000 cycles, under load of 5 kg (~49 N), (i.e., this is a simulation of 6 months in vivo chewing); RCT: 6-month evaluation |
| Zheng [27] | 2016 | China | In vitro | 40 teeth/80 samples | laser scanning microscopy and 3D surface profilometer | enamel (n = 6 each) against silicon carbide ceramic ball, compared: 1. dried, 2. fresh enamel | 1. wear volume 5000, 50,000, 250,000, 550,000, 800,000, and 1,000,000 cycles under load of 20 N |
Table S2. Detailed assessment of the included randomized trials with the RoB 2.0 tool (supplement to Table 1).

Domain	Reference	Esquivel-Upshaw 2018	Mundhe 2015	Yang 2014
1. Randomization process				
1.1	Y	Y	Y	
1.2	PY	NI	NI	
1.3	N	PN	PN	
Judgement	Low	Some concerns	Some concerns	Some concerns
2. Deviations from intended interventions				
2.1	N	NI	NI	
2.2	PY	NI	NI	
2.3	PN	PN	PN	
2.4	NA	NA	NA	
2.5	NA	NA	NA	
2.6	PY	PY	PY	
2.7	NA	NA	NA	
Judgement	Low	Low	Low	Low
3. Missing outcome data				
3.1	Y	Y	Y	
3.2	NA	NA	NA	
3.3	NA	NA	NA	
3.4	NA	NA	NA	
Judgement	Low	Low	Low	Low
4. Measurement of the outcome				
4.1	N	N	N	
4.2	PN	N	N	
4.3	NI	NI	NI	
4.4	PY	PY	PY	
4.5	PN	PN	PN	
Judgement	Some concerns	Some concerns	Some concerns	Some concerns
5. Selection of the reported result				
5.1	NI	NI	NI	
5.2	PN	PN	PN	
5.3	PN	PN	PN	
Judgement	Some concerns	Some concerns	Some concerns	Some concerns
Overall	Judgement	Some concerns	Some concerns	Some concerns

Materials 2019, 12, 3575; doi:10.3390/ma12213575
Y, yes; PY, probably yes; N, no; PN, probably no; NI, no information; NA, not applicable.
Table S3. Detailed assessment of the included non-randomized studies with the ROBINS-I tool (supplement to Table 2).

Domain	Reference	Stober 2014
		1.1 PY
		1.2 N
		1.3 N
		1.4 PY
1. Confounding		1.5 PY
		1.6 N
		1.7 NA
		1.8 NA
Judgement	Moderate	
		2.1 NI
		2.2 NA
2. Selection of participants		2.3 NA
into the study		2.4 NI
		2.5 NA
Judgement	NI	
	Low	
		3.1 Y
3. Classification of		3.2 Y
interventions		3.3 PN
Judgement	Low	
		4.1 PN
		4.2 NA
4. Deviations from intended		4.3 NA
interventions		4.4 NA
		4.5 NA
		4.6 NA
Judgement	Low	
		5.1 PY
5. Missing data		5.2 N
		5.3 NI
	5.4	NA
---	-----	----
	5.5	NA
Judgement	Low	

	6.1	PY
	6.2	NI
6.3	PY	
	6.4	PN
Judgement	Moderate	

	7.1	NI
	7.2	PN
7.3	PN	
Judgement	Moderate	

Overall

Judgement Moderate

Y, yes; PY, probably yes; N, no; PN, probably no; NI, no information; NA, not applicable.
References

1. Aldegheishem, A.; Alfaer, A.; Brezavšček, M.; Vach, K.; Eliades, G.; Att, W. Wear behavior of zirconia substrates against different antagonist materials. Int J Esthet Dent 2015, 10, 468–485.

2. al-Hiyasat, A.S.; Saunders, W.P.; Sharkey, S.W.; Smith, G.M.; Gilmour, W.H. The abrasive effect of glazed, unglazed, and polished porcelain on the wear of human enamel, and the influence of carbonated soft drinks on the rate of wear. Int J Prosthodont 1997, 10, 269–282.

3. Al-Hiyasat, A.S.; Saunders, W.P.; Sharkey, S.W.; Smith, G.McR.; Gilmour, W.H. Investigation of human enamel wear against four dental ceramics and gold. Journal of Dentistry 1998, 26, 487–495.

4. Al-Hiyasat, A.S.; Saunders, W.P.; Smith, G.M. Three-body wear associated with three ceramics and enamel. The Journal of Prosthetic Dentistry 1999, 82, 476–481.

5. Ashtiani, A.H.; Azizian, M.; Rohani, A. Comparison of the degree of enamel wear behavior opposed to Polymer-infiltrated ceramic and feldspathic porcelain. 7.

6. Bedini, R.; Pecci, R.; Notarangelo, G.; Zuppante, F.; Persico, S.; Carlo, F.D. Microtomography evaluation of dental tissue wear surface induced by in vitro simulated chewing cycles on human and composite teeth. Annali dell’Istituto Superiore di Sanità 2012.

7. Chong, B.J.; Thangavel, A.K.; Rolton, S.B.; Guazzato, M.; Klineberg, I.J. Clinical and laboratory surface finishing procedures for zirconia on opposing human enamel wear: A laboratory study. J Mech Behav Biomed Mater 2015, 50, 93–103.

8. Esquivel-Upshaw, J.F.; Kim, M.J.; Hsu, S.M.; Abdullhameed, N.; Jenkins, R.; Neal, D.; Ren, F.; Clark, A.E. Randomized clinical study of wear of enamel antagonists against polished monolithic zirconia crowns. Journal of Dentistry 2018, 68, 19–27.

9. Fathy, S.M.; Swain, M.V. In-vitro wear of natural tooth surface opposed with zirconia reinforced lithium silicate glass ceramic after accelerated ageing. Dental Materials 2018, 34, 551–559.

10. Ghazal, M.; Yang, B.; Ludwig, K.; Kern, M. Two-body wear of resin and ceramic denture teeth in comparison to human enamel. Dental Materials 2008, 24, 502–507.

11. Ghazal, M.; Kern, M. The influence of antagonistic surface roughness on the wear of human enamel and nanofilled composite resin artificial teeth. The Journal of Prosthetic Dentistry 2009, 101, 342–349.

12. Gundugollu, Y.; Yalavarthy, R.; Krishna, Mh.; Kalluri, S.; Pydi, S.; Tedlapu, S. Comparison of the effect of monolithic and layered zirconia on natural teeth wear: An in vitro study. J Indian Prosthodont Soc 2018, 18, 336.

13. Habib, S.R.; Alotaibi, A.; Al Hazza, N.; Allam, Y.; AlGhazi, M. Two-body wear behavior of human enamel versus monolithic zirconia, lithium disilicate, ceramometal and composite resin. J Ado Prosthodont 2019, 11, 23.

14. Janyavula, S.; Lawson, N.; Cakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O. The wear of polished and glazed zirconia against enamel. The Journal of Prosthetic Dentistry 2013, 109, 22–29.

15. Jung, Y.-S.; Lee, J.-W.; Choi, Y.-J.; Ahn, J.-S.; Shin, S.-W.; Huh, J.-B. A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain. J Ado Prosthodont 2010, 2, 111.

16. Kim, M.-J.; Oh, S.-H.; Kim, J.-H.; Ju, S.-W.; Seo, D.-G.; Jun, S.-H.; Ahn, J.-S.; Ryu, J.-J. Wear evaluation of the human enamel opposing different Y-TZP dental ceramics and other porcelains. Journal of Dentistry 2012, 40, 979–988.

17. Lawson, N.C.; Janyavula, S.; Syklawer, S.; McLaren, E.A.; Burgess, J.O. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. Journal of Dentistry 2014, 42, 1586–1591.

18. Lee, A.; Swain, M.; He, L.; Lyons, K. Wear behavior of human enamel against lithium disilicate glass ceramic and type III gold. The Journal of Prosthetic Dentistry 2014, 112, 1399–1405.

19. Mulay, G.; Dugal, R.; Buhanrarpurwala, M. An evaluation of wear of human enamel opposed by ceramics of different surface finishes. J Indian Prosthodont Soc 2015, 15, 111–118.

20. Mundhe, K.; Jain, V.; Pruthi, G.; Shah, N. Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns. The Journal of Prosthetic Dentistry 2015, 114, 358–363.

21. Olivera, A.B.; Matson, E.; Marques, M.M. The Effect of Glazed and Polished Ceramics on Human Enamel Wear. 2.
22. Rupawala, A.; Musani, S.I.; Madanshetty, P.; Dugal, R.; Shah, U.D.; Sheth, E.J. A study on the wear of enamel caused by monolithic zirconia and the subsequent phase transformation compared to two other ceramic systems. *J Indian Prosthodont Soc* 2017, 17, 8–14.

23. Sripetchdanond, J.; Leevailoj, C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: An in vitro study. *The Journal of Prosthetic Dentistry* 2014, 112, 1141–1150.

24. Stawarczyk, B.; Özcan, M.; Schmutz, F.; Trottmann, A.; Roos, M.; Hämmerle, C.H.F. Two-body wear of monolithic, veneered and glazed zirconia and their corresponding enamel antagonists. *Acta Odontologica Scandinavica* 2013, 71, 102–112.

25. Stober, T.; Bermejo, J.L.; Rammelsberg, P.; Schmitter, M. Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use. *J Oral Rehabil* 2014, 41, 314–322.

26. Yang, S.-W.; Kim, J.-E.; Shin, Y.; Shim, J.-S.; Kim, J.-H. Enamel wear and aging of translucent zirconias: In vitro and clinical studies. *J Prosthet Dent* 2019, 121, 417–425.

27. Zheng, J.; Zeng, Y.; Wen, J.; Zheng, L.; Zhou, Z. Impact wear behavior of human tooth enamel under simulated chewing conditions. *Journal of the Mechanical Behavior of Biomedical Materials* 2016, 62, 119–127.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).