Benefits of Enhancing Nicotinamide Adenine Dinucleotide Levels in Damaged or Diseased Nerve Cells

ANDREW A. PIEPER1,2,3 AND STEVEN L. MCKNIGHT4

1Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
2Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio 44106, USA
3Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio 44106, USA
4Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA

Correspondence: steven.mcknight@utsouthwestern.edu; andrew.pieper@harringtondiscovery.org

Three unbiased lines of research have commonly pointed to the benefits of enhanced levels of nicotinamide adenine dinucleotide (NAD+) to diseased or damaged neurons. Mice carrying a triplication of the gene encoding the culminating enzyme in NAD+ salvage from nicotinamide, NMNAT, are protected from a variety of insults to axons. Protection from Wallerian degeneration of axons is also observed in flies and mice bearing inactivating mutations in the SARM1 gene. Functional studies of the SARM1 gene product have revealed the presence of an enzymatic activity directed toward the hydrolysis of NAD+. Finally, an unbiased drug screen performed in living mice led to the discovery of a neuroprotective chemical designated P7C3. Biochemical studies of the P7C3 chemical show that it can enhance recovery of NAD+ from nicotinamide by activating NAMPT, the first enzyme in the salvage pathway. In combination, these three unrelated research endeavors offer evidence of the benefits of enhanced NAD+ levels to damaged neurons.

This review covers three independent lines of investigation commonly concluding that the loss of nicotinamide adenine dinucleotide (NAD+) accompanies the demise of damaged or diseased axons. It is likewise argued that the same three lines of investigation predict that pathways facilitating either the preservation of NAD+ or its enhanced biosynthesis may be protective of damaged or diseased axons. The first of these discoveries evolved from studies of a strain of mice that was found to be protected from Wallerian degeneration. The mutational event causative of this protective activity was traced to overexpression of a chimeric protein that includes the entire open reading frame encoding one of the three mammalian isoforms of the nicotinamide mononucleotide adenylyltransferase (NMNAT) enzyme. Enhanced expression of this enzyme facilitates preservation of NAD+ levels in damaged or diseased axons (see Table 1). The second discovery relevant to the relationship between NAD+ and axon health involved description of the fly gene designated dSarm. Inactivation of this gene in flies, or of the mouse ortholog Sarm1, blocks NAD+ decline in injured or diseased axons, thereby helping preserve axon integrity (see Table 1). The third discovery pertinent to these concepts entailed characterization of a synthetic chemical, designated P7C3, that modulates activity of the nicotinamide phosphoribosyltransferase (NAMPT) enzyme. Administration of the P7C3 chemical to mice or rats elicits a protective effect on neuron integrity in several models of axon injury or disease (see Table 1). Each of these three discoveries resulted from serendipitous, unbiased research. That all three lines of investigation commonly identified preservation of NAD+ levels as a means of protecting damaged or diseased axons offers credence to the concept that patients suffering deficits resulting from axon injury might benefit from agents that either preserve existing NAD+ or facilitate enhanced NAD+ synthesis.

DISCOVERY OF WALLERIAN DEGENERATION SLOW (WldS) MICE

Wallerian degeneration is the process by which the portion of an axon degenerates distal to its site of injury. Early events in Wallerian degeneration include breakdown of the axon membrane and cytoskeleton, followed by myelin degeneration and macrophage infiltration (Beuche and Friede 1984). This process is named after Augustus Volney Waller, who discovered in 1850 that degenerating distal axons of transected frog glossopharyngeal nerves coalesced into droplets that could be visualized by cytological staining (Waller 1850). It was by use of this technique of visualizing nerve fiber degeneration that Lunn et al. (1989) discovered a line of mice characterized by delayed axon degeneration after sciatic nerve transection. Known as the C57BL/6J strain and derived from a spontaneous mutation at Harlan-Olac in the United Kingdom, these mice were identified by their unusual ability to continue transmitting nerve impulses in...
The distal portion of severed axons for 2 wk after transection, in contrast to only 2–3 d in control mice (Lunn et al. 1989; Perry et al. 1992). Otherwise, C57BL/Ola mice were indistinguishable from C57BL/6J in appearance, behavior, and histocompatibility.

The resistance to Wallerian degeneration in C57BL/Ola mice was subsequently identified as intrinsic to nerve cells, and not related to Schwann cells (Glass et al. 1993) or circulating monocytes (Perry et al. 1990a). C57BL6/Ola mice also showed a protective effect in the central nervous system, with delayed retinal ganglion cell degeneration following optic nerve transection (Perry et al. 1991). A later observation that motor neuron cell death was similarly delayed in C57BL6/Ola mice after sciatic nerve axotomy confirmed a functional link between axon degeneration and neuronal cell death (Lapper et al. 1994).

These foundational observations prompted interest in discovering the genetic basis for resistance of C57BL/Ola mice to Wallerian degeneration. Crossing C57BL6/Ola mice with BALB/c mice revealed that this property was inherited in single autosomal dominant fashion (Perry et al. 1992). Otherwise, C57BL/Ola mice were stably inherited across divergent breeding colonies of WldS mice (Mi et al. 2003).

In a relatively short time, Conforti et al. (2000) identified a chimeric gene within the 85-kb tandem triplication region that was abundantly expressed in the nervous system and appeared responsible for resistance to Wallerian degeneration in WldS mice. This gene encoded an in-frame 42-kDa fusion protein consisting of the amino-terminal 70 amino acids of the 1173 amino acid-long E4 ubiquitin ligase Ube4b protein, which was joined by an aspartic acid to the protein encoded by D4Cole1e. Given that only a very short region of Ube4b was included, it was of no surprise that the fusion protein lacked ubiquitin ligase activity. In contrast, the entire coding region of D4Cole1e was fully included and quickly identified as being nearly identical to the recently cloned gene for human NMNAT (Emanuelli et al. 2001; Fernando et al. 2002), a metabolic enzyme that catalyzes NAD+ synthesis from nicotinamide mononucleotide (NMN) and adenosine triphosphate (ATP) (Magni et al. 1999). Indeed, sequence alignment with human NMNAT showed that nucleotides 282–1140 of WldS contained the entire NMNAT open reading frame. Although a third gene, retinol binding protein 7 (Rbp7), was also positioned within the 85-kb repeat unit, this gene was expressed predominantly in white adipose and mammary gland tissue, and found to be unrelated to the protective effect of WldS (Conforti et al. 2000).

Within the next year, Mack et al. (2001) confirmed the critical role of NMNAT in the 85-kb region by expressing the Ube4b/Nmat chimeric gene in transgenic mice. They observed NMNAT enzymatic activity and neuroprotective efficacy specified by the fusion protein in sensory and motor axons with respect to nerve conduction, synaptic transmission, vesicle recycling, and nerve terminal mor-

Table 1. Efficacy of nicotinamide adenine dinucleotide–based therapies in preclinical models of the damaged or diseased nervous system

Peripheral nerve disease	WldS	SARM1	P7C3	
Po mouse	Protective	Not tested	Not tested	
Pmp22 rat	Protective	Not tested	Not tested	
Peripheral nerve toxicity	Protective	Protective	Protective	
Paclitaxel-induced peripheral neuropathy	Not tested	Protective	Not tested	
Vincristine-induced peripheral neuropathy	Not tested	Protective	Not tested	
High fat diet/hyperglycemia-induced peripheral neuropathy	Not tested	Protective	Not tested	
Peripheral nerve injury	Not tested	Protective	Not tested	
Sciatic nerve transaction	Not tested	Protective	Not tested	
Sciatic nerve crush	Not tested	Not tested	Protective	
Spinal cord disease	pmn mouse	Protective	Not tested	Not tested
Traumatic brain injury	Controlled cortical impact	Protective	Not tested	Protective
	Weight drop	Not tested	Protective	Not tested
	Blast-mediated injury	Protective	Not tested	Protective
Stroke	Cerebral ischemia/reperfusion	Not tested	Not tested	Protective
Parkinson’s disease	6-hydroxydopamine toxicity	Protective	Not tested	Protective
	MPTP toxicity	Protective	Not tested	Protective
Alzheimer’s disease	TgF344-AD rat	Not tested	Not tested	Protective

WldS, SARM1, and P7C3 pathways converge on augmentation of neuronal NAD+ levels and offer protection across common preclinical models of nervous system damage and disease.
phology. Furthermore, the protective effect was dose-de-
pendently related to protein expression levels. They also
showed that \(Wld^S \) mice display a fourfold increase in
NMNAT enzyme activity in the brain compared to
C57BL/6j mice (Mack et al. 2001). The following year,
a novel human cDNA encoding a 34.4-kDa protein with
significant homology with the 31.9-kDa NMNAT protein
was also discovered. The new protein also had NAD bio-
synthetic activity and was named NMNAT2. The original
NMNAT that had been identified as the human protein
homologous to \(D_{4}C_0l_{e} \) was then renamed NMNAT1 (Raffaelli et al. 2002).

Multiple mechanisms have been proposed for how \(Wld^S \)
mice are protected from Wallerian degeneration (Wishart et
al. 2007; Wang and Barres 2012), including modification
of cell cycle pathways (Wishart et al. 2008), optimi-
zation of mitochondrial function (Avery et al. 2012; Fang
et al. 2012), control of expression of axonal receptors for
glial-mediated engulfment of degenerating axons (Fain-
zilber and Twiss 2006; Hooper et al. 2006; MacDonald
et al. 2006), and a hypothetical role of the Ube4b/NMNAT
fusion protein as a molecular chaperone (Zhai et al. 2008).
The most simple and likely correct explanation, however,
is that \(Wld^S \) mice benefit from the maintenance of steady-
state levels of NAD\(^+\) through increased NAD\(^+\) synthesis in
damaged or diseased nerve cells (Wang et al. 2005; Cole-
man and Freeman 2010). The work by Araki et al. (2004)
showed that NMNAT1 activity alone was sufficient to pro-
tect axons of explanted dorsal root ganglion neurons sub-
jected to either traumatic transection or toxic exposure to
vincristine, a chemotherapeutic drug that blocks tubulin
assembly into microtubules. Subsequent generation of an
additional \(Wld^S \) transgenic mammalian model—the \(Wld^S \)
transgenic rat—further bolstered confidence in the utility
of augmenting NAD\(^+\) synthesis for neuroprotection, as
these animals were resistant to Wallerian degeneration after
sciatic nerve transection (Adalbert et al. 2005). More re-
cently, in vitro studies have shown that extracellular NAD\(^+\)
recapitulates the axonal protection seen in \(Wld^S \) neurons
(Wang et al. 2015), presumably because of transport recep-
tors that facilitate uptake of extracellular NAD\(^+\) into nerve
cells (Bruzzzone et al. 2001).

Although initially found to be most highly abundant in
the nucleus, the \(Wld^S \) fusion protein was later noted to also
be enriched in mitochondria, cytosol, peroxisomes/lyso-
somes, endoplasmic reticulum, and axons (Yahata et al.
2009; Avery et al. 2012; Wang et al. 2015). Indeed, axonal
localization of \(Wld^S \) appears to enable normally nuclear
NMNAT1 to substitute for its axonal paralog NMNAT2,
which is impaired in maintaining NAD\(^+\) synthesis under
conditions of axonal injury or stress. This insufficiency of
NMNAT2 activity has been attributed to its short half-life
and dependence of distal neurites on constant delivery of
NMNAT2 from the soma (Berger et al. 2005; Gilley and
Coleman 2010; Neukomm and Freeman 2014). Sasaki et
al. (2016) have also reported that NMNAT2 inhibits the
NAD hydrolase activity of SARM1 (described below),
and that the NMNAT1 enzymatic domain of \(Wld^S \) some-
how inhibits SARM1 activity during damage-induced loss of axonal
NMNAT2.

In conclusion, although nuances of \(Wld^S \) function will
undoubtedly require further study, it is clear that NAD\(^+\)
synthesis plays a vital role in the resistance of mice to
Wallerian degeneration. Because axonal loss is a promi-
inent feature of neuropathies and other neurodegenerative
diseases (Saxena and Caroni 2007), this discovery has
prompted exploration of the potential benefits of augment-
ing NAD\(^+\) synthesis in neurodegeneration. Indeed, \(Wld^S \)
mice have been used extensively to study the physiology
of reinnervation and peripheral nerve damage, and the
applicability of \(Wld^S \) to peripheral and central nervous
system degeneration has also been explored.

\(Wld^S \) IN NEUROPROTECTION

Because Wallerian degeneration is a prominent feature
of injuries and disease in the peripheral nervous system,
the resistance of \(Wld^S \) mice to peripheral neuropathy has
been investigated in relevant animal models. For example,
Samsam et al. (2003) crossed \(Wld^S \) mice with mice defi-
cient in the peripheral myelin component P0, a model of
human peripheral neuropathy, and observed delayed mo-
tor and sensory axon degradation. Several years later,
Meyer zu Horste et al. (2011) crossed the \(Wld^S \) rat with the
Pmp22 rat, a transgenic model of Charcot–Marie–
Tooth (CMT) disease type 1A, and observed that \(Wld^S \)
reduced axon loss and behavioral deficits. With respect
to the toxicity of anticancer chemicals, Wang et al.
(2002) showed that \(Wld^S \) mice were resistant to paclitax-
el-mediated peripheral neuropathy.

In the central nervous system, axon loss occurs early in
many disorders, including spinal cord injury (Zhang et al.
1996), amyotrophic lateral sclerosis (ALS) (Dal Canto and
Gurney 1995; Fischer et al. 2004; Fischer and Glass
2007), Alzheimer’s and Parkinson’s diseases (Raff et al.
2002; Stokin et al. 2005; Kurowska et al. 2016), and
traumatic brain injury (TBI) (Yin et al. 2014, 2016). Fur-
thermore, the protection of neuronal cell bodies without
preserving axons may be insufficient to prevent neurolog-
ic disease (Sagot et al. 1995; Houseweart and Cleveland
1999). Thus, there is considerable interest in finding ways
to therapeutically protect axons in central nervous system
injury and disease. As described above, the first applica-
tion of \(Wld^S \) mice to the central nervous system was by
Perry et al. (1991) through optic nerve transection exper-
iments in which \(Wld^S \) mice showed delayed degeneration of
retinal ganglion cells and their axons. Later work, how-
ever, showed that \(Wld^S \) rats were protected only from axon
degeneration with no effect on retinal ganglion cell body
derioration after both optic nerve transection and a pho-
tocoagulation model of glaucoma (Beirowski et al. 2008).
More recently, Williams et al. (2017) re-addressed this
question in the DBA/2J (D2) mouse model of glaucoma,
in which ocular hypertension leads to optic nerve degene-
ratio \(\sim 8–9 \text{ mo of age} \), followed by retinal ganglion cell
dearth. Crossing these mice with \(Wld^S \) mice yielded ani-
mals showing increased retinal NAD\(^+\) levels. The optic
nerve axons and retinal ganglion cell bodies of these mice
were protected from ocular hypertension.
With respect to TBI, Wld^S mice display improved performance over wild-type mice in cognitive and motor behavior after controlled cortical impact injury (Fox and Faden 1998). More recently, Yin et al. (2016) reported that Wld^S mice are resistant to both retinal ganglion cell deterioration and axonal degeneration after blast-mediated TBI, and are protected from injury-induced cognitive and motor behavioral deficits. Wld^S has additionally been evaluated in models of Parkinson’s disease because of the known degeneration of substantia nigra dopaminergic neurons. In 2004, Sajadi et al. tested susceptibility of Wld^S mice to the catecholaminergic toxin 6-hydroxydopamine (6-OHDA) model of Parkinson’s disease. Following injection of the toxin into the median forebrain bundle, Wld^S mice were partially protected from dopaminergic axon loss in the striatum. However, protection was restricted to portions of the axons distal to the site of toxin injection. As 6-OHDA is subject to retrograde transport from the site of injection back to the cell body, this selective regional protection presumably reflects unique neuronal processes governing primary and secondary injury after 6-OHDA exposure, with Wld^S being protective of the latter. A possible role of Wld^S for protection in Parkinson’s disease was further examined with another chemical toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Specifically, Hasbani and O’Malley (2006) reported that Wld^S mice were protected from nigrostriatal axon degeneration and striatal neurotransmitter loss in this model. However, as in the case of 6-OHDA (Sajadi et al. 2004), no protection from dopaminergic cell body death was observed in Wld^S mice.

With respect to spinal cord disease, Ferri et al. (2003) evaluated efficacy of Wld^S in progressive motor neuronopathy (pnm) mice, a model of human motor neuron disease. Here, Wld^S blocked axon degeneration and preserved associated motor function. Notably, previous work allowing for the controlled inhibition of apoptosis to protect motor neuron cell bodies without preserving axons in pnm mice did not modify disease progression (Sagot et al. 1995). Last, efficacy of Wld^S has been evaluated in animal models of ALS, based on a variety of mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD1) that have been identified in subsets of families with ALS. Wld^S has been evaluated in three of these models with marginal results. In SOD1G37R and SOD1G93R mouse models, Wld^S conferred no protection in disease onset, axon degeneration, synaptic integrity, or motor neuron death (Velde et al. 2004). In the SOD1G93A mouse model, however, Wld^S modestly prolonged survival and delayed denervation at the neuromuscular junction, but had no effect on motor axon loss (Fischer et al. 2005).

DISCOVERY OF SARM1

Tight conservation of the axonal protective efficacy of Wld^S and NMNAT activity across species, including *Drosophila melanogaster*, prompted Marc Freeman to conduct a loss-of-function genetic screen in the fly with the goal of identifying other genes involved in controlling Wallerian degeneration (Osterloh et al. 2012). This unbiased screen revealed that mutational inactivation of dSarm (*Drosophila* sterile a/armadillo/Toll-interleukin 1 receptor [TIR] homology domain protein) suppressed Wallerian degeneration in a cell-autonomous manner for weeks after axotomy. Elimination of SARM1, the mammalian homolog of dSarm, in mice produced comparable long-term survival of damaged axons in vitro and in vivo. Freeman’s discovery was later confirmed by Jeff Milbrandt, who identified SARM1 in a quantitative, image-based shRNA screen for genes required for axotomy-induced axon degeneration of explanted dorsal root ganglion cells (Gerds et al. 2013). Milbrandt reported similarly reduced axon degeneration following sciatic nerve transection in SARM1 mutant mice, and showed that artificial activation of SARM1 in axons is both necessary and sufficient for Wallerian degeneration (Gerds et al. 2016). Around this same time, others showed that SARM1 ablation in MNAT2-deficient mice completely blocked axon degeneration and perinatal lethality (Gilley et al. 2015), indicating that these two proteins may function in opposition with respect to the physiology of damaged axons.

MECHANISMS OF SARM1 ACTIVITY

Prior to the aforementioned discoveries, SARM1 had been thought to function as an adaptor protein in innate immunity (Mink and Csizsar 2005; O’Neill and Bowie 2007; Peng et al. 2010). Perplexingly, however, SARM1 was found to be unique among TIR-containing proteins in its selective enrichment in the nervous system (Kim et al. 2007). Indeed, before Freeman discovered the role of SARM1 in Wallerian degeneration, physiologic roles for SARM1 had been claimed in neural fate specification (Chuang and Bargmann 2005), dendritic arborization (Chen et al. 2011), and microglial activation (Szretter et al. 2009). To date, much of the mechanistic work to clarify the role of SARM1 in the nervous system has been conducted in the Milbrandt laboratory. They have shown that induced loss of mitochondrial membrane potential in cultured primary mouse sensory neurons induces a form of cell death pharmacologically distinct from apoptosis or necrosis. Without SARM1, the mitochondrial poison cyanide m-chlorophenyl hydrazone (CCCP), an inhibitor of oxidative phosphorylation, elicits ATP depletion, excessive calcium influx, and accumulation of reactive oxygen species, yet fails to lead to axon degeneration or cell death (Summers et al. 2014). These observations, coupled with the finding that SARM1 elimination also protects neurons from prolonged exposure to reactive oxygen species (ROS), suggest that SARM1 acts downstream from ROS generation to induce cell death in times of oxidative stress. Milbrandt has thus proposed a form of programmed cell death in the peripheral nervous system downstream from ROS termed sarmoptosis (Summers et al. 2014).

Architecturally, SARM1 consists of 4 identifiable protein domains, including its MLS (mitochondrial localization signal), ARM (armadillo/HEAT motifs), SAM (sterile α motif), and TIR domains (Gerds et al. 2016). A mutated variant of SARM1 lacking the amino-terminal ARM
domain constitutively triggers axon degeneration, demonstrating that SARM1 may be auto-inhibited by its ARM domain (Gerfts et al. 2013). The SAM domain is required for SARM1 oligomerization and axon degeneration, and the TIR domain is also required for SARM1 to execute its role in axon degeneration (Gerfts et al. 2013; Summers et al. 2016). Indeed, dimerization of the TIR domain alone has been shown to induce rapid axon degeneration (Gerfts et al. 2015).

THE TIR DOMAIN OF SARM1 SPECIFIES AN NAD\(^+\) HYDROLASE ACTIVITY

Numerous observations giving evidence that NAD\(^+\) levels decline in damaged axons, complemented by the observation that forced expression of an activated form of SARM1 was capable of eliciting this same effect (Gerfts et al. 2015), prompted interest in how SARM1 might provide a link between NAD\(^+\) loss and axon degeneration. In a surprising and exciting series of experiments, the Milbrandt laboratory found that the purified TIR domain of SARM1 itself specifies an NAD\(^+\) hydrolase activity (Essuman et al. 2017). Through homology-based modeling of other proteins with related TIR domains, the Milbrandt group identified a glutamic acid residue essential for the TIR domain to hydrolyze NAD\(^+\) (Essuman et al. 2017). The variants of SARM1 mutated at this single-amino-acid position fully eliminate the ability of SARM1 to execute its role in triggering Wallerian degeneration of axons. Most recently, the Milbrandt laboratory has made reference to TIR domains from prokaryotic organisms that also display NAD\(^+\) hydrolase activity, suggesting a new class of TIR-containing proteins as evolutionarily ancient metabolic regulatory enzymes (Essuman et al. 2018).

SARM1 IN NEUROPROTECTION

In studies of the peripheral nervous system, Geisler et al. (2016) exposed SARM1-deficient mice to a model of vincristine toxicity that mimics the neuropathy experienced by up to 80% of patients treated with vincristine (Casey et al. 1973; Verstappen et al. 2005), and is the main dose-limiting side effect of this form of chemotherapy (DeAngelis et al. 1991; Haim et al. 1994; Reinders-Messelink et al. 2000; Lavioie Smith et al. 2015). SARM1-deficient mice were protected in all parameters of vincristine toxicity. More recently, Turkiew et al. (2017) reported that SARM1-deficient mice are also protected from peripheral neuropathy induced by either paclitaxel or a high-fat diet. More recently, Turkiew et al. (2017) reported that SARM1-deficient mice are also protected from peripheral neuropathy induced by either paclitaxel or a high-fat diet. In contrast, animals missing the paralogous NPAS3 transcription factor display impaired hippocampal neurogenesis. Experimental evidence from the laboratory of Rusty Gage had likewise shown that adult neurogenesis in mice can be influenced by environment (Kempermann et al. 1997). Mice availed access to siblings and an enriched environment, such as a running wheel, display substantively enhanced hippocampal neurogenesis relative to mice deprived of these conditions. Recognizing from these various observations that the process of adult neurogenesis might be under dynamic control, we performed an unbiased, in vivo screen in search of proneurogenic chemicals (Pieper et al. 2010).

With help from Patrick Harran, a synthetic organic chemist in the Department of Biochemistry at University of Texas Southwestern Medical Center, a compound file consisting of 200,000 synthetic chemicals was trimmed down to 1000 individual molecules best representative of the diversity of the entire collection. These chemicals were combined into 100 pools of 10 individual compounds and administered directly into the brains of living mice. Continuous infusion for a period of 1 wk was achieved via Alzet mini-pumps implanted beneath the skin of the backs of individual animals. To visualize neurogenesis, bromodeoxyuridine (BrdU) was coadministered along with each pool of compounds. After 1 wk animals were killed, allowing brain tissue to be sectioned and stained for BrdU incorporation into neurons localized to the subgranular zone of the dentate gyrus. The seventh of the 100 pools yielded a twofold enhanced level of hippocampal neurogenesis, and breakdown of this pool assigned proneurogenic activity to the third compound. This compound, designated pool seven compound three (P7C3) corresponded to an aminopropylcarbazole. Analysis of synthetic derivatives of the P7C3 chemical yielded the A20 variant, which showed reliably enhanced proneurogenic activity readily detected upon intraperitoneal or oral administration to either mice or rats (Pieper et al. 2010). It was subsequently shown that P7C3 achieved its proneurogenic effect by augmenting the survival of newborn hippocampal neurons without affecting their initial rate of proliferation.

P7C3 COMPOUNDS FUNCTION AS NAMPT MODULATORS

Subsequent to completion of the target-agnostic in vivo screen that led to the P7C3 chemical, coordinated efforts were initiated with the medicinal chemistry laboratory of Joseph Ready to probe its mechanism of action. A bio-
logically active derivative of P7C3, known as P7C3-S326, was synthesized in the Ready laboratory to contain both a benzophenone for photo-cross-linking and an alkyne for CLICK chemistry (Wang et al. 2014). The observation that P7C3-A20, P7C3-S326, and other active derivatives of P7C3 (MacMillan et al. 2010; Naidoo et al. 2013, 2014), but not inactive variants, protected cultured U2OS cells from doxorubicin-induced toxicity provided a cell culture system for target discovery. The active enantiomer (−)-P7C3-S243 was protective from doxorubicin, whereas the inactive (−)-P7C3-S243 enantiomer was less protective. Incubation of P7C3-S326 in cultured U2OS cells showed that it could be photo-cross-linked to a 70-kDa protein. Cross-linking was competed by coinubcation with 30× excess of P7C3-A20. Roughly 150 P7C3 analogs were assayed for their ability to compete for photo-cross-linking of the 70-kDa protein by P7C3-S326, and comparison of the observed pattern of competition to efficacy of the same compounds in protecting U2OS cells from doxorubicin toxicity yielded a significant correlation (Wang et al. 2014). Through cell fractionation, 2D gel electrophoresis, and mass spectrometry, it was determined that the 70-kDa protein photo-cross-linked by P7C3-S326 was NAMPT, the rate-limiting enzyme in NAD⁺ salvage by which cells sequentially convert nicotinamide into NAD⁺. Administration of14C-labeled nicotinamide to U2OS cells pretreated with doxorubicin showed that toxin-mediated loss of NAD⁺ was dose-dependently restored by cotreatment with P7C3-A20. Correlation was noted between the ability of P7C3 variants to preserve NAD⁺ levels and their ability to protect U2OS cells from doxorubicin-mediated toxicity (Wang et al. 2014). Administration of14C-labeled nicotinamide to U2OS cells pretreated with doxorubicin, and subsequent analysis by thin layer chromatography, revealed enhanced conversion of radiolabeled nicotinamide into NAD⁺ upon exposure to P7C3-A20. A triple-coupled assay was then developed to test the activities of P7C3 variants on a set of recombinant enzymes. The enzymes included NAMPT (which converts nicotinamide to NMN), NMNAT1 (which converts NMN to NAD⁺), and alcohol dehydrogenase (which converts NAD⁺ to NADH). Flux of nicotinamide through this triply coupled enzyme assay was monitored by increase in fluorescence resulting from the production of NADH. By testing a large number of synthetic variants of P7C3 that had already been assayed for proneurogenic activity in mice, and for protection of U2OS cells from doxorubicin, a strong correlative relationship between this triply coupled enzyme assay and the two assays of P7C3 function in living animals or cells was revealed.

P7C3 Compounds Are Neuroprotective

Just as the role of NAD⁺ in WldS, SARM1, and P7C3. The mouse that ended up encoding a triplicated version of the fusion protein linking a small bit of a ubiquitin ligase to the full open reading frame of NMNAT1 did not come from a comprehensive genetic screen, but instead emerged from careful analysis of a random mouse strain. It is remarkable that this one strain carried the aforementioned mutation, and perhaps even more remarkable that the Oxford scientists happened to evaluate the properties of this strain in the context of Wallerian degeneration. Studies pinpointing the product of dSARM1 in the pathway leading to degeneration of damaged axons were carefully conceived and meticulously executed. In this case, serendipity came in the discovery of a protein endowed with an un-
anticipated NAD⁺ hydrolase activity essential for Wallerian degeneration. Finally, the drug screen leading to the discovery of the P7C3 chemical evaluated only 1000 synthetic chemicals. That this small collection included the neuroprotective, NAMPT-modulating aminopropylcarbazole chemical is undoubtedly serendipitous. Most remarkable of all is the apparent fact that all three approaches to the study of axon or neuron health commonly led to the same metabolite—NAD⁺. If these conclusions prove to be correct, they give evidence that the concept of NAD⁺ centrality to axon and neuron health is supported by a three-legged stool (see Fig. 1). It is hoped that the apparent stability of this foundation may properly point toward the utility of therapeutics that either enhance NAD⁺ biosynthesis or prevent SARM1-mediated NAD⁺ hydrolysis.

ACKNOWLEDGMENTS

A.A.P. is supported by the Brockman Medical Research Foundation, the Elizabeth Ring Mather & William Gwinn Mather Fund, the S. Livingston Samuel Mather Trust, and the Department of Veterans Affairs Merit Review 1I01BX002444 to A.A.P. A.A.P. and S.L.M. thank Sandi Estil, Joseph Ready, Gelin Wang, Ting Han, and many other coworkers who have been instrumental in the discovery and characterization of P7C3. Work on the discovery and characterization of the P7C3 neuroprotective molecule was supported by a National Institutes of Health (NIH) Director’s Pioneer Award and the provision of research funds to S.L.M. by an anonymous donor. The contents of this manuscript do not represent the views of the U.S. Department of Veterans Affairs or the U.S. Government.

REFERENCES

Adalbert R, Gillingwater TH, Haley JE, Bridge K, Beirowski B, Berek L, Wagner D, Grumme D, Thomson D, Celik A, et al. 2005. A rat model of slow Wallerian degeneration (Wld⁺) with improved preservation of neuromuscular synapses. *Eur J Neurosci* 21: 271–277. doi:10.1111/j.1460-9568.2004.03833.x

Araki T, Sasaki Y, Milbrandt J. 2004. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. *Science* 305: 1010–1013. doi:10.1126/science.1098014

Avery MA, Rooney TM, Pandya JD, Wishart TM, Gillingwater TH, Geddes JW, Sullivan PG, Freeman MR. 2012. Wld⁺ prevents axon degeneration through increased mitochondrial flux and enhanced mitochondrial Ca²⁺ buffering. *Curr Biol* 22: 596–600. doi:10.1016/j.cub.2012.02.043

Bauman MD, Schumann CM, Carlson EL, Taylor SL, Vasquez-Rosa E, Cintron-Perez CJ, Shin M-K, Williams NS, Pieper AA. 2018. Neuroprotective efficacy of P7C3 compounds in primate hippocampus. *Transl Psychiatry* 8: 202–211. doi:10.1038/s41398-018-0244-1

Berrowski B, Babetto E, Coleman MP, Martin KR. 2008. The Wld⁺ gene delays axonal but not somatic degeneration in a rat glaucoma model. *Eur J Neurosci* 28: 1166–1179. doi:10.1111/j.1460-9568.2008.06426.x

Berger F, Lau C, Dahlman M, Ziegler M. 2005. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenyltransferase isoforms. *J Biol Chem* 280: 36334–36341. doi:10.1074/jbc.M508660200

Beuche W, Friede RL. 1984. The role of non-resident cells in Wallerian degeneration. *J Neurocytol* 13: 767–796. doi:10.1007/BF01148493

Blaya MO, Bramlett HM, Naidoo J, Pieper AA, Dietrich WD. 2014. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. *J Neurotrauma* 31: 476–486. doi:10.1089/neu.2013.3135

Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A. 2001. Connexin 43 hemi channels mediate Ca²⁺-regulated transmembrane NAD⁺ fluxes in intact cells. *FASEB J* 15: 10–12. doi:10.1096/fj.00-0566fje

Figure 1. Three independent and unbiased discoveries have revealed neuroprotective efficacy of preservation or augmentation of NAD⁺ levels in nerve cells.
Casey EB, Jeliffe AM, Le Quesne PM, Millet YL. 1973. Vinca-cristine neuropathy. Clinical and electrophysiological observations. J Neurol Sci 16: 169-176.

Chen CY, Lin CW, Chang CY, Jiang ST, Hsueh YP. 2011. Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J Cell Biol 193: 769–784. doi:10.1083/jcb.201008050

Choi SH, Bylykbashi E, Chatilla ZK, Lee SW, Pulli B, Clemenson LM, Kim E, Rompala A, Oram ML, Asselin C, et al. 2018. Combined Wallerian degeneration and BALB/c mouse exercise affects on cognition in an Alzheimer’s mouse model. Science 361: eaan8821. doi:10.1126/science.aan8821

Chuang CF, Bargmann CI. 2005. AToll-interleukin 1 repeat pro-
ENHANCED NAD LEVELS HEAL DAMAGED NEURONS

Hasbani DM, O’Malley KL. 2006. *Wild* mice are protected against the Parkinsonian mimic MPTP. *Exp Neurol 202*: 165–76.

Hennings N, Bouley J, Sikoglou EM, An J, Moore CM, King JA, Bowser R, Freeman MR, Brown RH Jr. 2016. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking *Sarm1*. *Brain 139*: 1094–1105. doi:10.1093/brain/awv001

Hooper ED, McLaughlin T, Watts RJ, Schuldiner O, O’Leary DM. 1996. *Wild* protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. *Neuron 50*: 883–895. doi:10.1016/j.neuron.2006.05.013

Houseweart MK, Cleveland DW. 1999. Bel-2 overexpression does not protect neurons from mutant neurofilament-mediated motor neuron degeneration. *J Neurosci 19*: 6446–6456. doi:10.1523/JNEUROSCI.19-15-06446.1999

Kemp SWP, Syzmarak M, Stanoulis KN, Wood MD, Liu EH, Willand MP, Morlock L, Naidoo J, Williams NS, Ready JM, et al. 2015. Pharmacologic rescue of motor and sensory function by the neuroprotective compound P7C3 following neonatal nerve injury. *Neuroscience 284*: 202–216. doi:10.1016/j.neuroscience.2014.10.005

Kempermann G, Kuhn HG, Gage FH. 1997. More hippocampal neurogenesis in mouse living in an enriched environment. *Nature 386*: 493–495. doi:10.1038/386493a0

Kim Y, Zhou P, Qian L, Chuang JZ, Lee J, Li C, Iadecola C, Noris ZB, Hynton JR, Pieper AA, Dietrich WD. 2017b. Beneficial effect of the neuroprotective compound P7C3-A20 promotes neurogenesis and improves behavioral outcomes in a mouse model of cerebral ischemia. *Neuroscience 386*: 493. doi:10.1016/j.neuroscience.2017.10.005

Lye MF, Ogunkolade BW, Brown MC, Atherton DJ, Perry VH. 2006. The *Drosophila* cell corpse engulfment receptor Draper mediates glial clearance of severed axons. *Neuron 50*: 869–881. doi:10.1016/j.neuron.2006.04.028

MacMillan KS, Naidoo J, Li J, Leary A, Williams NS, Morlock L, Huntington P, Estill SJ, Longgood J, Becker GL, et al. 2010. Development of proneurogenic, neuroprotective small molecules. *JACS 133*: 1428–1437. doi:10.1021/ja108211m

Mack TGA, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillwatering T, Court F, Conforti L, et al. 2001. Wallerian degeneration following axotomy in neonatal mice occurs more slowly in a mutant strain in which Wallerian degeneration is very slow. *J Neurosci 21*: 1199–1206. doi:10.1038/nn770

Magri G, Amici A, Emanuelli M, Raffaeli N, Ruggeri S. 1999. Enzymology of NAD* synthesis. *Adv Enzymol Relat Areas Mol Biol 73*: 135–182.

Meyer zu Horste G, Miesbach TA, Muller JR, Fiedrich R, Stattard RM, Kieseier BC, Coleman MP, Sereda MW. 2011. The Wild transgene reduces axon loss in a Charcot–Marie–Tooth disease 1A rat model and nicotinamide delays post-traumatic axonal degeneration. *Neurobiol Dis 42*: 1–8. doi:10.1016/j.nbd.2010.12.006

Mi W, Glass JD, Coleman MP. 2003. Stable inheritance of an 85-kb triplication in C57BL/Wld* mice. *Mutat Res 526*: 33–37. doi:10.1016/S0277-9536(02)00113-3

Michaelson JJ, Shin MK, Koh JY, Brueggeman L, Zhang A, Katzman A, McDaniel L, Fang M, Pufall M, Pieper AA. 2017. Neuronal PAS domain proteins 1 and 3 are master regulators of neuroprotective risk genes. *Biol Psychiatry 82*: 213–223.

Mink M, Ciszar K. 2005. *SARM1*: a candidate gene in the onset of hereditary infectious/inflammatory diseases. *Clin Immunol 115*: 333–334. doi:10.1016/j.clim.2005.03.002

Naidoo J, Bembem CJ, Allwein SR, Liang J, Pieper AA, Ready JM. 2013. Development of a scalable synthesis of P7C3-A20, a potent neuroprotective agent. *Tetrahedron Lett 54*: 4429–4431. doi:10.1016/j.tetlet.2013.06.024

Naidoo J, De Jesús-Cortes H, Huntington P, Estill S, Morlock L, Starwalt R, Mangano TJ, Williams NS, Pieper AA, Ready JM. 2014. Discovery of a neuroprotective chemical, ((S)-3-(6-dibrom-9H-carbazol-9-yl)-2-fluoropropyl)-6-methoxy-pyrimidine-2-amine, with improved druglike properties. *J Med Chem 57*: 3746–3754. doi:10.1021/jmc401919a

Neukomm LJ, Freeman MR. 2014. Diverse cellular and molecular modes of axon degeneration. *Trends in Cell Biol 24*: 512–525. doi:10.1016/j.tcb.2014.04.003

O'Neill LA, Bowie AG. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signaling. *Nat Rev Immunol 7*: 353–364. doi:10.1038/nri7209

Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA, Hacket R, Logan MA, et al. 2012. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. *Science 337*: 481–484. doi:10.1126/science.1223899

Peng J, Yuan Q, Lin B, Panneerselvam P, Wang X, Luan XL, Lim JM, Leary A, Leong BP, Ho B, Ding JL. 2010. SARM inhibits both TRIF- and MyD88-mediated AP-1 activation. *Eur J Immunol 40*: 1738–1747. doi:10.1002/eji.200940343

Perry VH, Brown MC, Lunn ER, Tree P, Gordon S. 1990a. Evidence that very slow Wallerian degeneration in C57BL/6J mice is an intrinsic property of the peripheral nerve. *Eur J Neurosci 2*: 802–808. doi:10.1111/j.1465-2448.1990.tb00472.x

Perry VH, Lunn ER, Brown MC, Cahuasac S, Gordon S. 1990b. Evidence that the rate of Wallerian degeneration is controlled by a single autosomal dominant gene. *Eur J Neurosci 2*: 408–415. doi:10.1111/j.1465-2448.1990.tb00433.x

Perry VH, Brown MC, Lunn ER. 1991. Very slow retrograde and Wallerian degeneration in the CNS of C57BL/6J mice. *Eur J Neurosci 3*: 102–105. doi:10.1111/j.1465-2448.1991.tb00815.x

Perry VH, Brown MC, Tsao JW. 1992. The effectiveness of the gene which slows the rate of Wallerian degeneration in C57BL/
Ola mice declines with age.

References

Sajadi A, Schneider BL, Aebischer P. 2004.

Sapsam M, Mew S, Wessig C, Zielasek J, Toyka KV, Coleman AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC, Reescm P, Peters OM, Lewis EA, Osterloh JM, Weiss A, Salameh JS, Mettervile J, Brown RH, Freeman MR. 2018. Loss of Sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis.

Summers DW, DiAntonio A, Millbrandt J, Mettervile J, Brown RH, Freeman MR. 2018. Loss of Sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis.

Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC, Reecem Fincanon S, Dudley CA, Richardson JA, Brat DJ, et al. 2005. The neuronal PAS domain 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice.

Pieper AA, Xie S, Capota E, Estill SJ, Zhong J, Long JM, Becker GL, Huntington P, Goldman SE, Shen S-H, et al. 2010. Discovery of a proneurogenic, neuroprotective chemical.

Peters OM, Lewis EA, Osterloh JM, Weiss A, Salameh JS, Mettervile J, Brown RH, Freeman MR. 2018. Loss of Sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis.

Preiss J, Handler P. 1958. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates.

Raff MC, Whitmore AV, Finn JT. 2002. Axonal self-destruction and neurodegeneration.

Raffaelli N, Sorci L, Amici A, Emanuelli M, Mazzola F, Magni G. 2001. Identification of a novel human nicotinamide mononucleotide adenyltransferase.

Reinders-Messelink HA, van Weerden TW, Fock JM, Gidding MP, Martini R. 2003. The.

Saxena S, Caroni P. 2007. Mechanisms of axon degeneration: From development to disease.

Samsam M, Mi W, Wessig C, Zielasek J, Toyka KV, Coleman MP, Martin R. 2003. The WldS mutation delays robust loss of motor and sensory axons in a genetic model for myelin-related neuropathy.

Sagot Y, Dubois-Dauphin M, Tan SA, de Bilbao F, Aebischer P, Martinou JC, Kato AC. 1995. Bel-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease.

Sajadi A, Schneider BL, Aebischer P. 2004. WldS-mediated protection of dopaminergic fibers in an animal model of Parkinson's disease.

Saunders KJ, Samuel MA, Gillfian S, Fuchs A, Colonna M, Diamond MS. 2009. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis.

Turkiew E, Falconer D, Reed N, Hoke A. 2017. Deletion of Sarm1 is neuroprotective in two models of peripheral neuropathy.

Verstappen CCP, Koeppen S, Heimans JJ, Huijgens PC, Scheulen ME, Strumburg D, Kiburg B, Postma TJ. 2005. Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening.

Walker AK, Rivera PD, Wang Q, Chuang J-C, Tran S, Osborne-Lawrence S, Estill SJ, Starwalt R, Huntington P, Morlock L, et al. 2014. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis.

Waller A. 1850. XX. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres.

Wang JT, Barres BA. 2012. Axon degeneration: where the things are.

Wang J, Zhai Q, Chen Y, McBurney MW, He Z. 2005. A local mechanism regulates NAD-dependent protection of axon degeneration.

Wang G, Han T, Nijhawan D, Theodoropoulos P, Naidoo J, Yadavalli S, Mirzaei H, Pieper AA, Ready JM, McKnight SL. 2014. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage.

Wang JT, Medress ZA, Vargas ME, Barres BA. 2015. Local axonal protection by Wld® as revealed by conditional regulation of protein stability.

Williams PA, Harder JM, Foxworth NE, Cardozo BH, Cochran KE, John SWM. 2017. Nicotinamide and WldS act together to prevent neurodegeneration in glaucoma.

Williams PA, Harder JM, Foxworth NE, Cardozo BH, Cochran KE, John SWM. 2017. Nicotinamide and WldS act together to prevent neurodegeneration in glaucoma.

Williams PA, Harder JM, Foxworth NE, Cardozo BH, Cochran KE, John SWM. 2017. Nicotinamide and WldS act together to prevent neurodegeneration in glaucoma.

Wishart TM, Paterson JM, Short DM, Robertson KA, Sutherland C, Cousin MA, Dutia MB, Gillingwater TH. 2007. Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (WldS) gene.

Wishart TM, Pemberton HN, James SR, McCabe CJ, Gillingwater TH. 2008. Modified cell cycle status in a mouse model of altered neuronal vulnerability (slow Wallerian degeneration; WldS).

Proc Natl Acad Sci 113: E6271–E6280. doi:10.1073/pnas.0610501113
Yahata N, Yuasa S, Araki T. 2009. Nictotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration. J Neurosci 29: 6276–6284. doi:10.1523/JNEUROSCI.4304-08.2009

Yin TC, Britt JK, De Jesús-Cortés H, Lu Y, Genova RM, Khan MZ, Voorhees JR, Shao J, Katzman AC, Huntington P, et al. 2014. P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury. Cell Rep 8: 1731–1740. doi:10.1016/j.celrep.2014.08.030

Yin TC, Voorhees JR, Genova RM, Davis KC, Madison AM, Britt JK, Cintrón-Pérez CJ, McDaniel L, Harper MM, Pieper AA. 2016. Acute axonal degeneration drives development of cognitive, motor, and visual deficits after blast-mediated traumatic brain injury in mice. eNeuro 3: ENEURO.0220-16.2016. doi:10.1523/ENEURO.0220-16.2016

Zhai RG, Zhang F, Hiesinger PR, Cao Y, Hauter CM, Bellen HJ. 2008. NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature 452: 887–891. doi:10.1038/nature06721

Zhang Z, Fujiki M, Guth L, Steward O. 1996. Genetic influences on cellular reactions to spinal cord injury: a wound-healing response present in normal mice is impaired in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration. J Comp Neurol 371: 485–495. doi:10.1002/(SICI)1096-9861(19960729)371:3<485::AID-CNE10>3.0.CO;2-I