Tattoo-Associated Cutaneous *Mycobacterium mageritense* Infection: A Case Report and Brief Review of the Literature

Yolanka Loboa Karyn Luna, b, c

aSouth Bank Day Hospital, Brisbane, QLD, Australia; bCordelia Dermatology, Brisbane, QLD, Australia; cLavarack East Health Centre, Townsville, QLD, Australia

Keywords
Cutaneous · Infection · *Mycobacterium mageritense* · Nontuberculous mycobacteria · Tattoo

Abstract
There have been increasing reports of tattoo-associated mycobacterial infections in recent years, with a number of outbreaks documented worldwide. This has therefore become a public health concern. Nontuberculous mycobacteria (NTM) are capable of producing skin and soft tissue infections typically via inoculation during surgery, trauma, and cosmetic procedures. We present a case of tattoo-associated cutaneous infection caused by *Mycobacterium mageritense*, a rare species of rapidly growing NTM. A 25-year-old man developed a rash on his left lower leg 4 weeks after he underwent professional tattooing. A skin swab identified *M. mageritense* complex. Based on susceptibility testing, a course of oral ciprofloxacin and trimethoprim/sulfamethoxazole was initiated, with significant improvement observed after 5 weeks. We speculate that the mechanism of inoculation was a result of either the artist using nonsterile water to dilute black ink to gray or from use of contaminated prediluted gray ink. The Therapeutic Goods Administration does not have regulatory authority over the sterility of tattoo inks or practices in Australia. Instead, tattoo practices are regulated by local government jurisdictions. Because of the variability seen in clinical presentation and challenges associated with organism identification, a high index of suspicion is required to diagnose mycobacterial infections. Infection caused by NTM should be considered in the differential diagnosis of tattoo-associated dermatological complications, particularly in patients who have chronic lesions, negative bacterial cultures, and fail to respond to standard antibiotic therapy. Mandatory regulations for safe tattoo practices should be considered to prevent outbreaks and ensure public safety.

© 2021 The Author(s). Published by S. Karger AG, Basel
Introduction

Complications resulting from tattoos are uncommon, but the incidence is rising due to the increased popularity of body art seen in recent years [1]. Although rare, nontuberculous mycobacteria are capable of producing skin and soft tissue infections typically via inoculation during surgery, trauma, tattooing, and other cosmetic procedures. There have been increasing reports of tattoo-associated mycobacterial infections with a number of outbreaks documented in the USA, United Kingdom, Germany, and France. This has therefore become a public health concern [2]. Rapidly growing nontuberculous mycobacteria including Mycobacterium chelonae, Mycobacterium abscessus, and Mycobacterium fortuitum account for the majority of tattoo-associated infections in both sporadic cases and outbreak settings [3–7]. Herein, we report a case of tattoo-associated cutaneous infection caused by a rare species of rapidly growing mycobacteria, Mycobacterium mageritense.

Case Report

A 25-year-old man presented for evaluation of an erythematous papulopustular rash of 2 months duration, localized within tattooed areas of the left lower leg. The skin eruption developed 4 weeks after he underwent tattooing by a professional tattoo artist in Townsville, Australia, and had not responded to treatment with topical corticosteroids. The patient had no complications with prior or subsequent tattoos. He reported no medical comorbidities and had no systemic symptoms. On examination, there were multiple scaling erythematous papules and pustules scattered within the tattooed areas of the left lower leg (shown in Fig. 1). The lesions were confined predominantly to areas of the skin tattooed with gray ink, sparing the black-ink portions of the tattoo. There was no associated regional lymphadenopathy.

A skin swab from a pustule was obtained and sent for typical and atypical bacterial and fungal culture. Acid-fast bacilli with features of mycobacteria species were grown at 2 weeks. At 4 weeks, M. mageritense complex was identified. Drug-susceptibility testing revealed sensitivity to ciprofloxacin, moxifloxacin, co-trimoxazole, and linezolid, and resistance to clarithromycin.
tobramycin, and amikacin. Punch biopsies were obtained for tissue culture and proven negative for infection. Histopathology findings were nonspecific, and showed dermal scarring and a mixed chronic and granulomatous inflammatory reaction (shown in Fig. 2).

Based on clinical history, histopathological findings, and culture results, a diagnosis of tattoo-associated cutaneous *M. mageritense* infection was made. After consultation with an infectious disease specialist, a 3-month course of oral ciprofloxacin (750 mg twice daily) and trimethoprim/sulfamethoxazole (160/800 mg twice daily) was initiated. Significant clinical improvement was observed after 5 weeks of treatment.

Discussion

In recent years, decorative tattoos have become increasingly more popular in Australia among both men and women [8]. Three large national studies in 1998, 2001–2002, and 2004–2005 have reported prevalences of 10% [9], 13% [10], and 15% [8], respectively, in Australians aged 14 years or older. Dermatological complications associated with tattoos are uncommon and predominantly include hypersensitivity reactions, acute and chronic infections, inflammatory dermatoses, localization of skin disorders to the tattoo, and neoplasms [1, 11, 12]. The authors from one study, in their series of 234 tattooed patients, estimated the prevalence of tattoo-associated dermatological complications to be 2.1% [1].

Nontuberculous mycobacteria encompass all mycobacterial species other than *Mycobacterium tuberculosis* and *Mycobacterium leprae*. They are ubiquitous in the environment and can be found in water, soil, animals, and plant matter. Tap water is the primary reservoir for human transmission. Nontuberculous mycobacteria can be found in large urban water distribution systems in Australia. As reported by one study which sampled approximately 220 sites across Brisbane, nontuberculous mycobacteria were grown from 40.21% of sites in summer and 82.05% of sites in winter [13]. Rapidly growing nontuberculous mycobacteria, despite their low pathogenicity in humans, can cause a wide range of clinical diseases including skin and soft tissue infections; respiratory, endocardial, meningeal, or bone infections; catheter infections; and disseminated disease [14]. Skin and soft tissue infections have varying clinical presentations including papules, pustules, nodules, ulcers, plaques, folliculitis, abscesses, cellulitis, and panniculitis [5, 7, 15]. Immunocompromized patients tend to present with disseminated cutaneous infection, while immunocompetent patients generally present with localized lesions on the extremities at sites of trauma, or previous surgical and cosmetic procedures [16].

M. mageritense, a recently identified rapidly growing nontuberculous mycobacterium, is a rare clinical pathogen that exhibits a wide spectrum of disease, predominantly skin and soft tissue infections, but also pulmonary infections, osteomyelitis, prosthetic valve
endocarditis, prosthetic joint infections, parotitis, and catheter-related bloodstream infections [17–23]. A review of the literature identified only one other case of tattoo-associated \textit{M. mageritense} infection, as summarized in Table 1 [15]. Our patient's presentation is very similar to the case described by Park et al. [15] with regard to morphology and onset of symptoms.

Tattoo-associated cutaneous nontuberculous mycobacterial infection has several etiologies, including the contamination of tattoo inks either during the manufacturing process or from dilution of ink with nonsterile tap water by tattoo artists, contamination of equipment responsible for the introduction of pigment, and inadequate hygienic practices [3–7, 24]. The purpose of diluting tattoo inks with water is to produce desired gradations of color. In the present case, and a significant number of previously reported cases of tattoo-associated nontuberculous mycobacterial infections, localization of lesions to gray tattoo pigment has been described. We therefore speculate that the mechanism of inoculation was likely a result of either the artist using nonsterile water to dilute black ink to gray or from the use of prediluted gray ink that was contaminated during the manufacturing process.

Intradermal introduction of nonsterile tattoo ink can pose a significant health risk and is therefore a public health concern [2]. Tattoo inks are not considered to be therapeutic goods, and as such, the Therapeutic Goods Administration does not have regulatory authority over tattoo safety nor does it specifically mandate sterility of tattoo inks or practices. Instead, the practice of tattooing in Australia is regulated by local government jurisdictions. The \textit{Tattoo Industry Act 2013} outlines occupational licensing and regulatory framework for the Queensland tattoo industry, and the \textit{Public Health (Infection Control for Personal Appearance Services) Act 2003} aims to minimize the risk of infection that may result from the provision of skin penetration services [25, 26]. The Queensland Government Infection Control Guidelines for Personal Appearance Services 2012 recommends that tattoo artists only use liquids which are free of contamination for ink dilution, such as treated drinking water or ethyl alcohol [27].

While biopsy with culture is the gold standard for primary species identification of nontuberculous mycobacteria, it often requires long incubation periods which may cause delays in patient care [28, 29]. New diagnostic techniques such as DNA probes, polymerase chain reaction assays, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can provide rapid and reproducible ways of identifying nontuberculous mycobacteria species within a few days from growth, although they do not provide antimicrobial susceptibility information [28, 29]. Matrix-assisted laser desorption ionization-time of flight mass spectrometry has emerged as a rapid and reliable tool that is increasingly being used for the identification of mycobacterial species. This technique allows for the identification of nontuberculous mycobacteria through unique spectral fingerprints produced by extracted proteins [28]. Viable organisms isolated from a culture plate are required, as well as a MALDI-TOF instrument with a validated database of mycobacterial spectra [29]. Due to the limited availability of databases, this system has yet to be utilized by many laboratories [29]. Furthermore, due to the paucity of evidence for the identification of minor nontuberculous mycobacteria such as \textit{M. mageritense} by MALDI-TOF MS, the result must be corroborated by other techniques such as DNA sequencing of 16S ribosomal RNA and other gene regions [23]. Further data are needed to warrant the use of MALDI-TOF MS as a stand-alone method for the identification of \textit{M. mageritense} [23].

In nontuberculous mycobacterial skin and soft tissue infections, prolonged treatment with combination therapy including at least 2 susceptible antimicrobials is recommended to minimize the risk of antibiotic resistance [30]. The current recommended duration of therapy for skin and soft tissue infections caused by rapidly growing mycobacteria is usually 4 months for mild disease and 6–12 months for severe disease [6, 30]. Macrolide antibiotics are considered
Table 1. Summary of cases describing tattoo-associated cutaneous Mycobacterium mageritense infection

First author	Location of cases	Location of tattoo parlor	Age in years, sex	Latency	Clinical appearance	Tattoo color	Postulated source of infection	Treatment	Outcome
Park et al. [15]	California, USA	Philippines	48, M	3 wk	Monomorphous erythematous papules and pustules coalescing into plaques, located on the shaded portions of ink with sparing of the main outline of the tattoo	Black, gray	Not postulated	Minocycline, 100 mg BD, and moxifloxacin, 400 mg OD (3 mo)	Complete resolution after 3 mo of dual antibiotic therapy
Present case	Queensland, AUS	Townsville, AUS	25, M	4 wk	Scaling erythematous papules and pustules coalescing into plaques, localized to areas of gray tattoo pigment with sparing of the blank ink portions of the tattoo	Black, gray	Ink dilution with nonsterile water or use of contaminated prediluted gray ink	Ciprofloxacin, 750 mg BD, and trimethoprim/sulfamethoxazole, 160/800 mg BD (3 mo)	Significant clinical improvement after 5 wk of dual antibiotic therapy

USA, United States of America; M, male; wk, weeks; mg, milligrams; BD, twice daily; OD, once daily; mo, months; AUS, Australia.
a standard treatment for patients with nontuberculous mycobacteria infections [30]. Clarithromycin is often included in combination therapy for tattoo-associated nontuberculous mycobacterial infections involving *M. chelonae, M. abscessus,* and *M. fortuitum* [6, 7]. However, *M. mageritense* is known to be resistant to macrolides due to the erythromycin ribosomal methlylase gene, which confers resistance to macrolide antibiotics [17]. *M. mageritense* is generally susceptible or intermediate to amikacin, imipenem, cefoxitin, fluoroquinolones, and sulfonamides, but resistant to clarithromycin [17]. Antibiotic therapy, however, should always be guided by susceptibility testing [15].

Conclusion

To our knowledge, this is the first case of tattoo-associated cutaneous *M. mageritense* infection reported in Australia. Cutaneous infection with rapidly growing nontuberculous mycobacteria has emerged as a rare but increasingly prevalent complication of decorative tattooing worldwide. Because of the variability seen in clinical presentation, nonspecific histopathological features, and challenges associated with organism identification, a high index of suspicion is required to accurately and promptly diagnose mycobacterial infections. Infection caused by *M. mageritense* and other rapidly growing nontuberculous mycobacteria should be considered in the differential diagnosis of tattoo-associated dermatological complications, particularly in patients with chronic lesions who have negative routine bacterial cultures and fail to respond to standard antibiotic therapy. Consultation with infectious disease specialists is encouraged since treatment can be challenging and often requires multidrug regimens for extended periods of time. Mandatory regulations for safe tattoo practices should be considered in order to prevent outbreaks and ensure public safety.

Acknowledgement

The authors wish to thank Histopathologist Dr. Colin Ades (MBBS, FRCPA, FFOP [RCPA]) for providing the photomicrograph used in this article.

Statement of Ethics

Written informed consent was obtained from the patient for publication of this case report and accompanying images in accordance with the World Medical Association Declaration of Helsinki. Ethical approval was not required for this study in accordance with local/national guidelines.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

The authors received no financial support or sponsorship for the research and/or authorship of this case report.
Author Contributions

Yolanka Lobo contributed to conception of the work, design of the work, acquisition and analysis of data, drafting the work, revising the work for important intellectual content, and final approval of the version to be published, and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Karyn Lun contributed to conception of the work, design of the work, acquisition and analysis of data, drafting the work, revising the work for important intellectual content, and final approval of the version to be published, and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Data Availability Statement

All data generated or analyzed during this study are included in this article. Further inquiries can be directed to the corresponding author.

References

1. Kazandjieva J, Tsankov N. Tattoos: dermatological complications. Clin Dermatol. 2007 Jul–Aug;25(4):375–82.
2. Frew JW, Nguyen RT. Tattoo-associated mycobacterial infections: an emerging public health issue. Med J Aust. 2015 Sep;203(5):223–1.
3. Binic I, Jankovic A, Ljubenovic M, Gligorijevic J, Jancic S, Jankovic D. Mycobacterium chelonae infection due to black tattoo ink dilution. Am J Clin Dermatol. 2011 Dec 1;12(6):404–6.
4. Kennedy BS, Bedard B, Younge M, Tuttle D, Ammerman E, Ricci J, et al. Outbreak of Mycobacterium chelonae infection associated with tattoo ink. N Engl J Med. 2012 Sep;13:367(11):1020–4.
5. Conaglen PD, Laurensen IF, Sergeant A, Thorn SN, Rayner A, Stevenson J. Systematic review of tattoo-associated skin infection with rapidly growing mycobacteria and public health investigation of a cluster in Scotland, 2010. Euro Surveill. 2013 Aug 8;18(32):20553.
6. Gonzalez-Santiago TM, Drage LA. Nontuberculous Mycobacteria: skin and soft tissue infections. Dermatol Clin. 2015 Jul;33(3):563–77.
7. Muddella S, Avendano EE, Raman G. Non-tuberculous mycobacterium skin infections after tattooing in healthy individuals: a systematic review of case reports. Dermatol Online J. 2015 Jun 16;21(6):13030/qt8mr3840.
8. Heywood W, Patrick K, Smith AM, Simpson JM, Pitts MK, Richters J, et al. Who gets tattoos? Demographic and behavioral correlates of ever being tattooed in a representative sample of men and women. Ann Epidemiol. 2012 Jan;22(1):51–6.
9. Makkai T, McAllister I. Prevalence of tattooing and body piercing in the Australian community. Commun Dis Intell Q Rep. 2001 Apr;25(2):67–72.
10. Grulich AE, de Visser RO, Smith AM, Rissel CE, Richters J. Sex in Australia: injecting and sexual risk behaviour in a representative sample of adults. Aust N Z J Public Health. 2003;27(2):242–50.
11. Islam PS, Chang C, Selmi C, Generali E, Hunley A, Teuber SS, et al. Medical complications of tattoos: a comprehensive review. Clin Rev Allergy Immunol. 2016 Apr;50(2):273–86.
12. Kluger N. An update on cutaneous complications of permanent tattooing. Expert Rev Clin Immunol. 2019 Nov;15(11):1135–43.
13. Thomson RM, Carter R, Tolson C, Coulter C, Huygens F, Hargreaves M. Factors associated with the isolation of nontuberculous mycobacteria (NTM) from a large municipal water system in Brisbane, Australia. BMC Microbiol. 2013 Apr 22;13:89.
14. Esteban J, Martín-de-Hijas NZ, Fernandez AI, Fernandez-Roblas R, Gadea I, Madrid Study Group of Mycobacteria. Epidemiology of infections due to nontuberculated rapidly growing mycobacteria diagnosed in an urban area. Eur J Clin Microbiol Infect Dis. 2008 Oct;27(10):951–7.
15. Park AM, Hathaway NE, Wright KT. Mycobacterium mageritense tattoo infection: a known complication with a novel species. Dermatol Online J. 2020 Apr 15;26(4):13030/qt40j588q.
16. Li JJ, Beresford R, Fyfe J, Henderson C. Clinical and histopathological features of cutaneous nontuberculous mycobacterial infection: a review of 13 cases. J Cutan Pathol. 2017 May;44(5):433–43.
17. Wallace RJ, Brown-Elliott BA, Hall L, Roberts G, Wilson RW, Mann LB, et al. Clinical and laboratory features of Mycobacterium mageritense. J Clin Microbiol. 2002;40(8):2930–5.
Gira AK, Reisenauer AH, Hammock L, Nadiminti U, Macy JT, Reeves A, et al. Furunculosis due to Mycobacterium mageritense associated with footbaths at a nail salon. J Clin Microbiol. 2004;42(4):1813–7.

Ali S, Khan FA, Fisher M. Catheter-related bloodstream infection caused by Mycobacterium mageritense. J Clin Microbiol. 2007;45(1):273.

Appelgren P, Farnebo F, Dotevall L, Studahl M, Jönsson B, Petrini B. Late-onset posttraumatic skin and soft-tissue infections caused by rapid-growing Mycobacteria in tsunami survivors. Clin Infect Dis. 2008;47(2):e11–6.

Gordon Huth R, Brown-Elliott BA, Wallace RJ. Mycobacterium mageritense pulmonary disease in patient with compromised immune system. Emerg Infect Dis. 2011;17(3):556–8.

Appelgren P, Farnebo F, Dotevall L, Studahl M, Jönsson B, Petrini B. Late-onset posttraumatic skin and soft-tissue infections caused by rapid-growing Mycobacteria in tsunami survivors. Clin Infect Dis. 2008;47(2):e11–6.

Gordon Huth R, Brown-Elliott BA, Wallace RJ. Mycobacterium mageritense pulmonary disease in patient with compromised immune system. Emerg Infect Dis. 2011;17(3):556–8.

Owde T, Murata T, Honda T, Nakano S, Kabashima K. A case of subcutaneous infection with Mycobacterium mageritense identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Acta Derm Venereol. 2018;98(10):987–8.

Wu CH, Thong HY, Huang CC, Chen PH. Report of two cases of cutaneous Mycobacterium abscessus infection complicating professional decorative tattoo. Dermatol Sin. 2016;35(1):40–3.

Tattoo Industry Act 2013 (Qld). Available from: https://www.legislation.qld.gov.au/view/pdf/inforce/current/act-2013-046.

Public health (infection control for personal appearance services) Act 2003 (Qld). Available from: https://www.legislation.qld.gov.au/view/pdf/inforce/current/act-2003-081.

Queensland Health. Infection control guidelines for personal appearance services. 2012 [cited 2020 Nov 28]. Available from: https://www.health.qld.gov.au/__data/assets/pdf_file/0019/430642/infectcontrolguide.pdf.

Wang SH, Pancholi P. Mycobacterial skin and soft tissue infection. Curr Infect Dis Rep. 2014 Nov;16(11):438.

Chung J, Ince D, Ford BA, Wanat KA. Cutaneous infections due to nontuberculosis Mycobacterium: recognition and management. Am J Clin Dermatol. 2018 Dec;19(6):867–78.

Wi YM. Treatment of extrapulmonary nontuberculous mycobacterial diseases. Infect Chemother. 2019 Sep; 51(3):245–55.