Hardness results for rainbow disconnection of graphs

Zhong Huang, Xueliang Li

1Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
2School of Mathematics and Statistics
Qinghai Normal University
Xining, Qinghai 810008, China
2120150001@mail.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be a nontrivial connected, edge-colored graph. An edge-cut S of G is called a rainbow cut if no two edges in S are colored with a same color. An edge-coloring of G is a rainbow disconnection coloring if for every two distinct vertices s and t of G, there exists a rainbow cut S in G such that s and t belong to different components of $G\setminus S$. For a connected graph G, the rainbow disconnection number of G, denoted by $rd(G)$, is defined as the smallest number of colors such that G has a rainbow disconnection coloring by using this number of colors. In this paper, we show that for a connected graph G, computing $rd(G)$ is NP-hard. In particular, it is already NP-complete to decide if $rd(G) = 3$ for a connected cubic graph. Moreover, we prove that for a given edge-colored (with an unbounded number of colors) connected graph G it is NP-complete to decide whether G is rainbow disconnected.

Keywords: edge-coloring; rainbow disconnection (coloring) number; complexity; NP-hard (complete).

AMS subject classification 2010: 05C15, 05C40, 68Q17, 68Q25, 68R10.

*Supported by NSFC No.11871034, 11531011 and NSFQH No.2017-ZJ-790.
1 Introduction

All graphs in this paper are simple, finite and undirected. We follow [1] for graph theoretical notation and terminology not described here. Let G be a graph. We use $V(G)$, $E(G)$, $n(G)$, $m(G)$, $\delta(G)$ and $\Delta(G)$ to denote the vertex-set, edge-set, number of vertices, number of edges, minimum degree and maximum degree of G, respectively. Let $c : E(G) \rightarrow [k] = \{1, 2, ..., k\}$, $k \in \mathbb{N}$ be an edge-coloring of G, where adjacent edges may be colored with a same color. When adjacent edges of G receive different colors under c, the edge-coloring c is called proper. The chromatic index of G, denoted by $\chi'(G)$, is the minimum number of colors needed in a proper coloring of G. By a famous theorem of Vizing [8] we have

$$\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$$

for every nonempty graph G. And, if $\chi'(G) = \Delta(G)$, then G is of Class 1; if $\chi'(G) = \Delta(G) + 1$, then G is of Class 2.

A path of an edge-colored graph G is said to be a rainbow path if no two edges on the path have the same color. The graph G is called rainbow connected if every pair of distinct vertices of G is connected by a rainbow path in G. An edge-coloring of a connected graph is a rainbow connection coloring if it makes the graph rainbow connected. This concept of rainbow connection of graphs was introduced by Chartrand et al. [5] in 2008. For a connected graph G, the rainbow connection number $rc(G)$ of G is defined as the smallest number of colors that are needed in order to make G rainbow connected. The reader who are interested in this topic can see [6, 7] for a survey.

An edge-cut of a nontrivial connected graph G is a set S of edges of G such that $G \setminus S$ is disconnected. The minimum number of edges in an edge-cut of G is defined as the edge-connectivity $\lambda(G)$ of G. We then have the well-known inequality $\lambda(G) \leq \delta(G)$. For two distinct vertices s and t of G, let $\lambda(s, t)$ denote the minimum number of edges in an edge-cut S of G such that s and t lie in different components of $G \setminus S$. The so-called upper edge-connectivity $\lambda^+(G)$ of G is defined by

$$\lambda^+(G) = \max \{\lambda(s, t) : s, t \in V(G)\}.$$

$\lambda(G)$ denotes the global minimum edge-connectivity of a graph, while $\lambda^+(G)$ denotes the local maximum edge-connectivity of a graph.

An edge-cut S of a nontrivial connected graph G is called a rainbow cut if no two edges in S are colored with a same color. A rainbow cut S is said to separate two vertices s and t if s and t belong to different components of $G \setminus S$. Such a rainbow cut is called
a $s - t$ rainbow cut. An edge-colored graph G is called a rainbow disconnected if for every two vertices s and t of G, there exists an $s - t$ rainbow cut in G. In this case, the edge-coloring c is called a rainbow disconnection coloring of G. Similarly, we define the rainbow disconnection number of G, denoted by $rd(G)$, as the smallest number of colors such that G has a rainbow disconnected coloring by using this number of colors. A rainbow disconnection coloring with $rd(G)$ colors is called an rd-coloring of G. This concept of rainbow disconnection of graphs was introduced by Chartrand et al. \cite{2} very recently in 2018.

In this paper, we show that for a connected graph G computing $rd(G)$ is NP-hard. In particular, it is already NP-complete to decide if $rd(G) = 3$ for a connected cubic graph G. Moreover, we show that for a given edge-colored (with an unbounded number of colors) connected graph G it is NP-complete to decide whether G is rainbow disconnected.

\section{Hardness results}

At the very beginning, we state some fundamental results on the rainbow disconnection of graphs, which will be used in the sequel.

\begin{lemma} \cite{2} If G is a nontrivial connected graph, then
\[\lambda(G) \leq \lambda^+(G) \leq rd(G) \leq \chi'(G) \leq \Delta(G) + 1. \]
\end{lemma}

Next result is due to Holyer \cite{3}, which is on the complexity of the chromatic index of a cubic graph.

\begin{lemma} \cite{3} It is NP-complete to determine whether the chromatic index of a cubic graph is 3 or 4.
\end{lemma}

At first we should show that our problem is in NP for a fixed integer k.

\begin{lemma} For a fixed positive integer k, given a k-edge-colored graph G, deciding whether G is rainbow disconnected is in P.
\end{lemma}

\textit{Proof.} Let n, m be the number of vertices and edges of G respectively. Let s, t be two vertices in G. Since G is k-edge-colored, any rainbow cut set S contains at most k edges, and so, we have no more than $\binom{k}{m}$ choices of S. Given a set S of edges, it is easy to check whether s and t lie in different components of $G \setminus S$. And there are
at most \(C_2^2 \) pairs of vertices in \(G \). Then, we can deduce that deciding whether \(G \) is rainbow disconnected can be checked in polynomial-time.

Next lemma is crucial for proof of our main result.

Lemma 2.4 Let \(G \) be a 3-edge-connected cubic graph. Then \(\chi'(G) = 3 \) if and only if \(rd(G) = 3 \).

Proof. Assume that \(\chi'(G) = 3 \), and let us show that \(rd(G) = 3 \). Noticing that \(G \) is 3-edge-connected, we have that \(rd(G) \geq 3 \). Since \(rd(G) \leq \chi'(G) \) by Lemma 2.1, we then have \(rd(G) = 3 \).

Assume that \(rd(G) = 3 \). Let \(S = \{u_1v_1, u_2v_2, u_3v_3\} \) be a rainbow 3-edge cut of \(G \), and \(G \setminus S \) has two non-trivial component (which means the component is not a singleton) \(C_1 \) and \(C_2 \). If all the edges of \(S \) share a common vertex, then one of \(C_1 \) of \(C_2 \) is a singleton, a contradiction. If two edges of \(S \) are adjacent, say \(u_1 = u_2 \), let \(e \) be the third edge which is adjacent to \(u_1 \), then \(S' = \{e, u_3v_3\} \) is a 2-edge cut of \(G \), a contradiction. If non edges of \(S \) are adjacent, then we employ a new vertex \(x_1 \) which is adjacent to \(u_1, u_2, u_3 \) in \(C_1 \), and \(u_i x_1 \) receive the same color as \(u_i v_i \) for \(i = 1, 2, 3 \). Similarly, we employ a new vertex \(x_2 \) which is adjacent to \(v_1, v_2, v_3 \) in \(C_2 \), and \(x_2 v_i \) receive the same color as \(u_i v_i \) for \(i = 1, 2, 3 \). Now we get 3-edge connected cubic graphs \(C'_1 \) and \(C'_2 \). Repeat the operation on \(C'_1 \) and \(C'_2 \), and finally we get a graph sequence \(T = \{T_1, T_2 \cdots T_r\} \). Let \(s, t \) be two vertices in \(T_j \in T \), and \(S_{s,t} \) be the rainbow cut, we then have that \(|S_{s,t}| = 3 \) and the three edges of \(S_{s,t} \) are incident with one of \(s, t \). Next, we deduce that every vertex of \(T_j \) is incident with three rainbow colored edges except for one vertex, say \(s_0 \). Let the number of edges with color \(i \) incident with \(s_0 \) be \(k_i \), and \(T_{12} \) be the subgraph induced by the set of edges of \(T_j \) which are colored with colors 1 or 2. Let \(s_{12} \neq s_0 \) be a vertex of \(T_{12} \), then \(d(s_{12}) = 2 \). Since the degree sum of \(T_{12} \) is an even number, we have \(k_1 + k_2 = 0 \) (mod 2), which gives \(k_1 = k_2 \) (mod 2). Similarly, \(k_2 = k_3 \) (mod 2). So, we have that \(k_1 = k_2 = k_3 = 1 \) and \(s_0 \) is incident with three rainbow colored edges. So, \(T_j \) is properly colored for \(1 \leq j \leq r \). Now we consider the original graph \(G \), the coloring satisfies that \(rd(G) = 3 \) is also a proper edge-coloring. Then, \(\chi'(G) = 3 \).

In the proof of the following result, we will use the graph \(G_\phi \) which contains some copies of Figures 1, 2 and 3 employed in Holyer’s paper [3].

Theorem 2.5 It is NP-complete to determine whether the rainbow disconnection number of a cubic graph is 3 or 4.

Proof. Clearly, the problem is in NP by Lemma 2.3. We prove that it is NP-complete by reducing 3-SAT to it. Given a 3CNF formula \(\phi = \bigwedge_{i=1}^n C_i \) over \(n \) variables
Figure 1: The inverting component and its symbolic representation.

Figure 2: The variable-setting component made from 8 inverting components and having 4 output pairs of edges. More generally, it is made from $2n$ inverting components and has n output pairs ($n \geq 2$).

x_1, x_2, \ldots, x_n, we use the cubic graph G_ϕ that was used by Holyer in Lemma 2.2, such that $rd(G_\phi) = 3$ if and only if ϕ is satisfiable.
Noticing that $G(\phi)$ is 3-edge-connected, we then can verify that $rd(G_\phi) = 3$ if and only if ϕ is satisfiable by Lemma 2.4.

Deciding whether a k-edge-colored graph G, where k is a constant, is rainbow disconnected is in P. However, it is NP-complete to decide whether a given edge-colored (with an unbounded number of colors) graph is rainbow disconnected. The proof of the following result uses a similar technique of [5].

Theorem 2.6 Given an edge-colored graph G and two vertices s, t of G, deciding whether there is a rainbow cut between s and t is NP-complete.

Proof. Clearly, the problem is in NP. We prove that it is NP-complete by reducing 3-SAT to it. Given a 3CNF formula $\phi = \land_{i=1}^m c_i$ over n variables x_1, x_2, \ldots, x_n, we construct a graph G_ϕ with two special vertices s, t and a coloring $c : E(G_\phi) \to [E(G_\phi)]$ such that there is a rainbow cut between s and t in G_ϕ if and only if ϕ is satisfiable.

We define G_ϕ as follows:

$$V(G_\phi) = \{c_i, c_i^1, c_i^2, c_i^3 : i \in [m]\} \cup \{x_i^0, x_i^1 : i \in [n]\} \cup \{s, t\}$$
The coloring c is defined as follows:

- the edges $\{s, t\}$ are colored with a special color r_0;
- the edges $\{s, x_i^0\}, \{s, x_i^1\}$ are colored with a special color r_i, $i \in [n]$;
- the edge $\{x_j^0, c_i\}$ or $\{x_j^1, c_i\}$ is colored with a special color r_i^k when $x_j \in c_i$ is positive or negative in ϕ respectively, $i \in [m], k \in [1, 2, 3]$;
- the edge $\{c_i^k, x_j^0\}$ or $\{c_i^k, x_j^1\}$ is colored with a special color r_i^4 when $x_j \in c_i$ is positive or negative in ϕ respectively, $i \in [m], k \in [1, 2, 3]$;
- the edges $\{c_i, c_j^l\}$ are colored with a special color r_i^5, $i \in [m]$.

Now we can verify that there is a rainbow cut between s and t in G_ϕ if and only if ϕ is satisfiable.

Assume that there is a rainbow cut S between s and t in G_ϕ under c, and let us show that ϕ is satisfiable. At first, we consider the color r_0. Since s and t are adjacent in $G(\phi)$, then the edge $\{s, t\}$ is in S. Clearly, S separates s and the set $\{t\} \cup \{c_i : i \in [m]\}$. Next, the color r_i appears twice in $G(\phi)$. Without loss of generality, we can assume that there is exactly one of $\{s, x_i^0\}$ and $\{s, x_i^1\}$ in S, which corresponds to the value of variable x_i, $i \in [n]$. At last, we consider the colors r_i^4 and r_i^5, $i \in [m]$. There are at most two edges that have color r_i^4 or r_i^5 in S, which means that c_i (a clause in ϕ) is satisfiable, $i \in [m]$. As a result, ϕ is satisfiable.

Assume that ϕ is satisfiable, and let us construct a rainbow cut S between s and t in G_ϕ under c. At first, the edges $\{s, x_i^{[x_j]}\}, i \in [n]$ and $\{s, t\}$ are in S. If the vertex $x_j^{[x_j]}$ is adjacent to c_i, then we choose one edge colored with r_i^4 or r_i^5 corresponding to variable x_j. If the vertex $x_j^{[x_j]}$ is adjacent to c_i^k, then we choose the edge $\{c_i, x_j^{[x_j]}\}$ that is colored with r_i^k and corresponds to variable x_j. Notice that ϕ is satisfiable and no more than two edges colored with r_i^4 or r_i^5 are chosen. Add these chosen edges to S, and now S is a rainbow cut between s and t in G_ϕ under c. ■
References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi, P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38(2018), 1007–1021.

[3] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Computing 10(4)(1981), 718–720.

[4] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim. 21 (2011), 330–347.

[5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85–98.

[6] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs & Combin. 29(2013), 1–38.

[7] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.

[8] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. 3(1964), 25–30, in Russian.