Excess thermodynamic and acoustic properties for the binary mixtures of Methyl Benzoate at \(T = (303, 308, 313, 318 \text{ and } 323) \) K

S. Sreehari Sastry\(^*\), Babu Shaik\(^a\), T. Vishwan\(^b\) and Sie Tiong Ha\(^c\)

\(^a\)Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar – 522 510, India;
\(^b\)Department of Engineering Physics, Gitam University, Hyderabad Campus – 502 239, India;
\(^c\)Faculty of Science, Department of Chemical Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

(Received 25 April 2013; final version received 25 June 2013)

Density and speed of sound data for (Methyl Benzoate + 1-Propanol), (Methyl Benzoate + 1-Butanol) and (Methyl Benzoate + 1-Pentanol) have been determined at temperatures = (303, 308, 313, 318 and 323) K. From this data, excess parameters like excess volume, \(V^E \), excess isentropic compressibility, \(K_s^E \), and excess intermolecular free length, \(L_f^E \), have been computed. The variations of these parameters with composition and temperature of the mixtures are discussed in terms of molecular interactions in these mixtures. The values of \(K_s^E \) and \(L_f^E \) for all the systems under study are negative.

Keywords: density; speed of sound; excess molar volume; excess isentropic compressibility

1. Introduction

In recent years, ultrasonic investigations find extensive applications in characterising the thermodynamic and physico-chemical aspects of binary and ternary liquid mixtures [1]. The thermodynamic and transport properties [2–4] of liquid mixtures provide important information with which to speculate the molecular liquid structure. These properties have been widely used to study the intermolecular interactions between various species present in the liquid mixtures. The excess thermodynamic functions [5] are sensitively dependent not only on the differences in intermolecular forces, but also on the differences in the size of the molecules. Several researchers [6–11] have measured the density, viscosity and velocity of sound for a wide range of binary mixtures containing alcohols as one of the components, and these properties were interpreted in terms of specific or nonspecific interactions. The study of excess values provides important information on molecular forces existing in the binary liquid mixtures. The variation of these excess values with temperatures and composition for mixtures containing polar molecules and hydrogen-bonded components may be complex due to a decrease or an increase in hydrogen-bonding interaction due to mixing; depending upon the nature of the liquids, whether they are polar or non-polar, the signs and magnitudes of these excess values can throw light on the strength of interactions. In continuation of our dielectric work [12–14], we report the values of density and speed of sound for (Methyl Benzoate + 1-Propanol), (Methyl Benzoate + 1-Butanol) and (Methyl Benzoate + 1-Pentanol) at temperatures \(T \) of 303, 308, 313, 318 and 323 K. Even though considerable work has been reported on

\(^*\)Corresponding author. Email: sreeharisastry@yahoo.com
the physicochemical properties of alcohols as one of the component in binary and ternary mixtures, the data on binary mixtures of alcohols with alkyl benzoates with temperature variation is scanty. The molecules with –OH group form associative liquids due to hydrogen bonding. The effect shown by the molecules with other functional groups on these molecules plays a vital role in understanding the behaviour of hydrogen bonding. Alcohols are strongly associated in solution because of dipole–dipole interaction and hydrogen bonding. They are of great importance for their vital role in chemistry, biology and studies on hydrogen bonding in liquid mixtures. Alcohols are widely used as solvents. On the other hand, alkyl benzoates are non-associated in solution, but are good hydrogen-bonding acceptors. They are widely used in perfumery, preservatives and pesticides. So in our present study, we have selected Methyl Benzoate as non-associative liquid and propanol, butanol and pentanol as associative liquid. Considering these aspects, the authors have made an attempt to report the influence of non-associative molecule on associative molecule in liquid state by calculating the excess properties of binary mixtures involving alcohols and Methyl Benzoate. The values of excess molar volume, V^E, excess isentropic compressibility, K_s^E, and excess intermolecular free length, L_f^E, were evaluated. The excess volumes, V^E, were correlated using the Redlich–Kister [15] equation to estimate the binary interaction parameters and standard errors.

2. Experimental procedure

2.1. Materials

Methyl Benzoate, 1-Propanol, 1-Butanol and 1-Pentanol of analytical reagent (AR) grade were obtained from Merck Co. Inc., Germany, with purities of >99% and were further purified by double distillation under reduced pressure and only middle fractions were collected. Before use, the chemicals were stored over 0.4 nm molecular sieves for 72 hours to remove water content and were then degassed. Further the purity of the chemicals was confirmed by gas–liquid chromatography (GLC) single sharp peaks. The density and viscosity were determined at a temperature of 303 K to evaluate the samples for the presence of large quantities of impurities.

2.2. Methods

All binary mixtures were prepared gravimetrically in air-tight bottles. The mass measurements were performed on a digital electronic balance (Mettler Toledo AB 135, Greifensee, Switzerland) with an uncertainty of ±0.00001 g. The binary mixtures were prepared just before use. The uncertainty in mole fraction was estimated to be less than ±0.0001. Caution was taken to prevent the evaporation of the solutions after preparation. The densities of the pure compounds and their mixtures were determined accurately using 10 ml specific gravity bottles. The overall accuracy in the density measurement was ±0.0001 kg m$^{-3}$. The speed of sound was measured with a single-crystal variable path interferometer (Mittal Enterprises, New Delhi, India) operating at a frequency of 2 MHz that had been calibrated with water and benzene. The uncertainty in the speed of sound was found to be ±0.5 m s$^{-1}$. In all property measurements, the temperature was controlled within ±0.1 K using a constant temperature bath (M/s Sakti Scientific Instruments Company, Chennai, India) by circulating water from the thermostat.

The measured values of density and speed of sound along with the literature data are given in Table 1. There is fairly good agreement between our data and the previously reported values.
Table 1. Experimental densities (ρ) and speed of sound (U) data for pure components with available literature values at 303 K, thermal expansion coefficients (α) and specific heat capacity (C_p) values for the systems under study.

Liquid	T (K)	Exp.	Literature	Exp.	Literature	α (k K^{-1})	C_p (J mol$^{-1}$ K$^{-1}$)	C_p (J mol$^{-1}$ K$^{-1}$)
1-Propanol	303	0.7981	0.7956a	1195.2	1190.2b	1.237c	149d	143.9e
1-Butanol	303	0.8102	0.8018a	1217.4	1225.8f	1.228c	179d	177.2e
1-Pentanol	303	0.8126	0.8127g	1248.4	1254.9f	1.215c	209d	208.1e
Methyl Benzoate	303	1.0775	1.0787h	1399.4	1392.0i	1.045e	222d	221.3j 214 ± 45k

Notes: aNikam et al. [16].
bPalani et al. [17].
cDerived from density data.
dEstimated from group contribution method of Chueh–Swanson [18].
eD.R. Lide et al. [19].
fPalani et al. [20].
gRiddick et al. [21].
hMadhu Mohan et al. [22].
iAminabhavi et al. [23].
jY. Marcus et al. [24].
kCarl Caleman et al. [25].
3. Results and discussion

The experimentally measured values of density, ρ, and speed of sound, U, at temperatures of (303, 308, 313, 318 and 323) K for (Methyl Benzoate + 1-Propanol), (Methyl Benzoate + 1-Butanol) and (Methyl Benzoate + 1-Pentanol) systems as a function of mole fraction of Methyl Benzoate are shown in Figures 1 and 2. For further information, please see the supplementary material.

The density values have been used to calculate the excess volumes, V^E, using the following equation:

$$V^E = \frac{X_1 M_1 + X_2 M_2}{\rho} - \left(\frac{X_1 M_1}{\rho_1} + \frac{X_2 M_2}{\rho_2} \right)$$

where ρ is the density of the mixture and X_1, M_1 and ρ_1 and X_2, M_2 and ρ_2 are the mole fraction, molar mass and density of pure components 1 and 2, respectively. The density, ρ, and speed of sound, U, were used to calculate the isentropic compressibility, K_s, using the following relation:

$$K_s = \frac{1}{\rho U^2}$$

The excess values of isentropic compressibility were computed using

$$K_s^E = K_s - K_s^{id}$$

where K_s^E is its excess value and K_s represents the calculated value for the mixture; K_s^{id} for an ideal mixture was calculated from the relation recommended by Benson and Kiyohara [26] and Douheret et al. [27]

$$K_s^{id} = \sum \phi_i \left(K_{s,i}^{o} + \frac{TV_i^{o} (a_i^{o})^2}{C_{p,i}^{o}} \right) - T \left(\sum x_i V_i^{o} \left(\frac{\sum \phi_i a_i^{o2}}{\sum x_i C_{p,i}^{o}} \right) \right)$$

in which V_i^{o}, a_i^{o}, $C_{p,i}^{o}$ are the molar volume, isobaric thermal expansion coefficient and molar isobaric heat capacity of pure component i, and ϕ_i is the volume fraction of i in the mixture. The thermal expansion coefficient values were derived from the density data and the specific heat capacities were estimated from the group contribution method of Chueh–Swanson [18].

The excess values of free length, L_f^E, were calculated by using the expression

$$L_f^E = L_f - K_T (K_s^{id})^{1/2}$$

where L_f represents the calculated value of free length for the mixture and K_T represent a temperature dependent constant [28] whose value is $K_T = (91.368 + 0.3565T) \times 10^{-8}$.

The excess volumes, V^E, were fitted by the method of non-linear least-squares to a Redlich–Kister type polynomial [15].
Figure 1. Variation of density with respect to mole fraction at various temperatures for (a) Methyl Benzoate + propanol; (b) Methyl Benzoate + Butanol; and (c) Methyl Benzoate + Pentanol system.

\[V^E = x_1(1-x_1)\sum_{i=1}^n A_i(2x_1 - 1)^{i-1} \] \hspace{1cm} (6)
The values of coefficient A_i were determined by a regression analysis based on the least-squares method and are reported along with the corresponding standard deviations between the experimental and the calculated values of the respective functions in Table 2.
It is observed from Figures 1 and 2 that the speed of sound and density values increase with increasing concentration of Methyl Benzoate in all the systems under study. This behaviour at such concentrations is different from the ideal mixtures behaviour and can be attributed to intermolecular interactions in the systems studied. Figures 3–11 show the dependence of V^E, K_s^E and L_f^E on composition. The values of K_s^E and L_f^E are negative for all the systems over the entire mole fraction range and their magnitude decreases with rise in temperature from 303 K to 323 K.

Figure 3. Variation of excess volumes with respect to mole fraction at various temperatures for Methyl Benzoate + Propanol system.
Alkanols are liquids which are associated through hydrogen bonding and in the pure state they exhibit equilibrium between multimer and monomer species. In order to understand the nature of interactions between the components of liquid mixtures, it is of interest to discuss the same in terms of excess parameter rather than actual values. Non-ideal liquid mixtures show considerable deviation from linearity in their physical behaviour with respect to concentration and these have been interpreted as arising from the presence of interaction forces between the components of the mixture.

Figure 4. Variation of excess volumes with respect to mole fraction at various temperatures for Methyl Benzoate + Butanol system.

Figure 5. Variation of excess volumes with respect to mole fraction at various temperatures for Methyl Benzoate + Pentanol system.
of strong or weak interactions. The effect of deviation depends upon the nature of constituents and composition of mixtures.

The deviations observed in the excess parameters indicate the strength of interactions present between the component molecules of the binary mixtures under study. In general, the values of excess thermodynamic functions are influenced by the following reasons:

Figure 6. Variation of excess isentropic compressibility with respect to mole fraction at various temperatures for Methyl Benzoate + Propanol system.

Figure 7. Variation of excess isentropic compressibility with respect to mole fraction at various temperatures for Methyl Benzoate + Butanol system.
The specific forces that exist between the molecules, like the charge transfer complexes and existence of hydrogen bonds, result in the negative excess values. Physical contributions comprised non-specific physical interactions like dispersion forces or weak dipole–dipole interactions. Structural characteristics, like the differences in the size and shape of the component molecules and their free volumes, cause the geometrical fitting of one component into the other.

Figure 8. Variation of excess iperatures for Methyl Benzoate + Pentanol system.

Figure 9. Variation of excess free length with respect to mole fraction at various temperatures for Methyl Benzoate + Propanol system.
The variation of excess molar volume, V^E, with respect to mole fraction, x_1, is shown in Figures 3–5 over the entire composition range and at different $T = (303, 308, 313, 318$ and $323)$ K. The V^E values are negative mostly in the case of 1-propanol but the trend changed to positive as the alcohol chain increases, because when the alcohol chain increases, it has less proton donating ability, the self aggregates break easily resulting in positive values of molar volume. Similar behaviour of V^E was observed by Garcio et al. [29] while experimenting with alkanols and alkyl benzoate systems at 298.15 K, considering the effect of temperature, the calculated values of V^E are in good agreement. This
kind of behavior of V^E can be attributed to the formation of H-bond, disruption of alcohol self-associations and the structural characteristics like geometrical fitting of one component into the other. It is clear from Figures 3–5 that the positive values of V^E are in the following order: (Methyl Benzoate + Pentanol) > (Methyl Benzoate + Butanol) > (Methyl Benzoate + Propanol). Similar results were observed by earlier workers [29,30]. The expansion in molar volume can be attributed to the presence of weak intermolecular forces of attraction [30,31]. The values of V^E decrease with the rise in temperature for the binary liquid mixtures under study as the interactions between unlike molecules become weaker due to rise in thermal motions.

Benson and Kiyohara [26] stated that the thermodynamic properties of an ideal mixture must be mutually related in the same way as those of pure substances and real mixtures. Douheret et al. [27] suggested that the interpretation of the nature of molecular interactions in mixtures requires a correct calculation of a thermodynamic property of the ideal liquid mixtures by the application of correct ideal mixing rules. So the excess values of isentropic compressibility were calculated by using the relation proposed by them.

Figures 6–8 display the variation of excess isentropic compressibility, K^E_s, for the binary liquid mixtures of Methyl Benzoate with Propanol or Butanol or Pentanol over the entire mole fraction range and at different $T = (303, 308, 313, 318, 323)$ K. It is clear from Figures 6–8 that the K^E_s values are negative over the entire mole fraction range and the changes in K^E_s values with respect to temperature are small in all the mixtures. The negative values of K^E_s are of the order (Methyl Benzoate + Propanol) > (Methyl Benzoate + Butanol) > (Methyl Benzoate + Pentanol). The negative values of K^E_s suggest that the mixtures are less compressible than the corresponding ideal mixtures, which signifies the H-bond formation, and other chemical effects like charge transfer forces and complex forming interactions. As the alkanol chain increases, the methylene group increases, which produces greater steric hindrance to the formation of hydrogen bonds between the Methyl Benzoate and alkanol molecule. So, a relatively weaker hydrogen bonding is expected in Methyl Benzoate + Butanol and Methyl Benzoate + Pentanol systems which are reflected from the less negative values of K^E_s in these mixtures. It is observed that there is a decrease in magnitude of negative K^E_s and V^E with the rise in temperature. This suggests that the interactions between unlike components tend to reduce due to increase in thermal motions.

Fort and Moore [32] suggested that the liquids having different molecular sizes and shapes mix well thereby reducing the volume which causes the values of K^E_s to be negative. It also suggests that the liquids are less compressible when compared with their ideal mixtures signifying the chemical effects including charge transfer forces, formation of H-bond and other complex forming interactions. It can also be said that the molecular interactions are strong in these binary liquid mixtures and that the medium is highly packed. Similar results were obtained by earlier workers [33,34].

The sign of excess isentropic compressibility plays a vital role in assessing the compactness due to molecular interaction in liquid mixtures through charge transfer, dipole–dipole interactions and dipole-induced dipole interactions, interstitial accommodation and orientational ordering [35] leading to a more compact structure-making, which enhances the excess isentropic compressibility to have negative values. The negative excess value of isentropic compressibility in the present investigation is an indication of strong interaction in the liquid mixtures [36].

It can be observed from Figures 9–11 that the L^E_f values have a negative trend similar to what we have observed in case of the K^E_s at all the temperatures under study. The negative values of L^E_f suggest that specific interactions are present between unlike
molecules in these binary systems [37,38]. Considering the excess values, it is clear that the strength of specific interactions between unlike molecules varies in the order (Methyl Benzoate + Propanol) > (Methyl Benzoate + Butanol) > (Methyl Benzoate + Pentanol).

4. Conclusions

The excess molar volume is negative mostly in case of 1-propanol but the trend changed to positive as the alcohol chain increases and excess values of isentropic compressibility and excess free length are found to be negative for all the binary systems over the entire range of composition and at all the temperatures considered in the present study. This is a clear indication of the presence of specific interactions between component molecules through hydrogen bonding between these unlike molecules. The strength of interaction is decreasing with increase in chain length of alcohol in the binary mixtures.

Acknowledgements

The authors gratefully acknowledge the financial assistance from UGC DRS LEVEL III program No. F.530/1/DRS/2009 (SAP-1), dated 9 February 2009, and DST FIST program No. DST/FIST/PSI – 002/2011, dated 20 December 2011, New Delhi, to the Department of Physics, Acharya Nagarjuna University.

References

[1] Paredes MLL, Reis RA, Silva AA, Santos RNG, Santos GJ. Densities, sound velocities, and refractive indexes of Tetralin + n-Hexadecane at (293.15, 303.15, 313.15, 323.15, 333.15, and 343.15) K. J Chem Eng Data. 2011;56:4076–4082.
[2] Hernandez VG, Gimenez PG, Embid JM, Artal M, Velasco I. Temperature and pressure dependence of the volumetric properties of binary liquid mixtures containing 1-propanol and dihaloalkanes. Phys Chem Liq. 2005;43:523–533.
[3] Glinski J, Chavepeyer G, Platten JK. Surface properties of diluted solutions of n-heptane, n-octanol and n-octanoic acid in nitromethane. Chem Phys. 2001;272:119–126.
[4] Salgado DG, Tovar CA, Cerdeirina CA, Carballo E, Romani L. Second-order excess derivatives for the 1, 3-dichloropropene + n-dodecane system. Fluid Phase Equilib. 2002;199:121–134.
[5] Sharma S, Jasmin B, Ramani J, Patel R. Density, excess molar volumes and refractive indices of β-pinene with α, m, p-xylene and toluene at 303.15, 308.15 and 313.15 K. Phys Chem Liq. 2011;49:765–776.
[6] Zorebski E, Waligora A. Densities, excess molar volumes, and isobaric expansibilities for 1, 2-Ethanediol + 1-Butanol, or 1-Hexanol, or 1-Octanol in the Temperature Range from (293.15 to 313.15) K. J Chem Eng Data. 2008;53:591–595.
[7] Saleh MA, Akhtar S, Begum S, Ahmed MA, Begum SK. Density and viscosity of 1-Alkanols. Phys Chem Liq. 2004;42:615–623.
[8] Dash SK, Pradhan SK, Dalai B, Moharana L, Swain BB. Studies on molecular interaction in binary mixtures of diethyl ether with some alkanols – an acoustic approach. Phys Chem Liq. 2012;50:735–749.
[9] Venkatesu P, Chandrasekhar G, Prabhakararao MV. Ultrasonic studies of N, N-dimethylformamide + cyclohexaneone + 1-alkanols at 303.15 K. Phys Chem Liq. 2006;44:287–291.
[10] Yu ZH, Gao HY, Wang H, Chen L. Densities, excess molar volumes, and refractive properties of the binary mixtures of the amino acid ionic liquid [bmim][Gly] with 1-Butanol or Isopropanol at T = (298.15 to 313.15) K. J Chem Eng Data. 2011;56:4295–4300.
[11] Savaroogl I, Aral E. Speeds of sound and isentropic compressibilities in binary mixtures of 2-Propanol with several 1-Alkanols at 298.15 K. Int J Thermophys. 2005;26(5):1525–1535.
[12] Mohan TM, Sastry SS, Murthy VRK. Microwave dielectric relaxation, thermodynamic and conformational studies of hydrogen bonded mixtures of propan-1-ol with methyl benzoate and ethyl benzoate. Indian J Pure Appl Phys. 2010;48:668–675.
[13] Mohan TM, Sastry SS, Murthy VRK. Conformational and dielectric relaxation studies of hydrogen bonded binary mixture of isopropyl alcohol in methyl benzoate and ethyl benzoate. J Mol Struct. 2010;973:157–162.

[14] Mohan TM, Sastry SS, Murthy VRK. Correlations among dielectric and thermodynamic parameters in hydrogen bonded binary mixtures of alcohol and alkyl benzoates. J Mol Liq. 2011;159:173–179.

[15] Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–348.

[16] Nikam PS, Mahale RT, Hasan M. Density and viscosity of binary mixtures of ethyl acetate with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol at (298.15, 303.15, and 308.15) K. J Chem Eng Data. 1996;41:1055–1058.

[17] Palani R, Saravanan S, Kumar R. Ultrasonic studies on some ternary organic liquid mixtures at 303, 308 and 313 K. Rasayan J Chem. 2009;2(3):622–629.

[18] Reid RC, Prausnitz JM, Poling BE. The properties of gases and liquids. 4th ed. New York (NY): McGraw Hill; 1987.

[19] Lide DR. Hand book of chemistry and physics. 90th ed. Cleveland (OH): CRC Press; 2009.

[20] Palani R, Balakrishnan S. Acoustical properties of ternary mixtures of 1-alkanols in diisopropyl ether and 2, 2, 2-trifluoroethanol mixed solvent. Indian J Pure Appl Phys. 2010;48:644–650.

[21] Riddick JA, Bunger WB, Sakano TK. Organic solvents: physical properties and method of purification. Vol. II. New York (NY): Wiley-InterScience; 1986.

[22] Mohan TM, Sastry SS, Murthy VRK. Thermodynamic, dielectric and conformational studies on hydrogen bonded binary mixtures of propan-1-ol with methyl benzoate and ethyl benzoate. J Solution Chem. 2011;40:131–146.

[23] Aminabhavi TM, Phayde TSM, Khinnavar SR, Gopalakrishna B, Keith CH. Densities, refractive indices, speeds of sound, and shear viscosities of diethylene glycol dimethyl ether with ethyl acetate, methyl benzoate, ethyl benzoate, and diethyl carbonate in the temperature range from 298.15 to 318.15 K. J Chem Eng Data. 1994;39:251–260.

[24] Marcus Y. The properties of solvents. Chichester: Wiley; 1998.

[25] Caleman C, Maaren PJV, Hong M, Hub JS, Costa LT, Spoel DV. Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theor Comput. 2012;8:61–74.

[26] Benson GC, Kiyohara O. Evaluation of excess isentropic compressibilities and isochoric heat capacities. J Chem Thermodyn. 1979;11:1061–1064.

[27] Douheret G, Pal A, Davis MI. Ultrasonic speeds and isentropic functions of (a 2-alkoxyethanol + water) at 298.15 K. J Chem Thermodyn. 1990;22:99–108.

[28] Jacobson B. Intermolecular free lengths in the liquid state. I. Adiabatic and isothermal compressibilities. Acta Chem Scand. 1952;6:1485–1498.

[29] Garcia B, Aparicio S, Navarro AM, Alcalde R, Leaf JM. Measurements and modeling of thermophysical behavior of (C1 – C4) Alkylbenzoate/(C1 – C11) alkan-1-ol mixed solvents. J Phys Chem B. 2004;108:15841–15850.

[30] Narendra K, Srinivasu Ch, Fakruddin Sk, Narayananmurthy P. Excess parameters of binary mixtures of anisaldehyde with o-cresol, m-cresol and p-cresol at T = (303.15, 308.15, 313.15, and 318.15) K. J Chem Thermodyn. 2011;43:1604–1611.

[31] Bhatia SC, Rani R, Bhatia R, Anand H. Volumetric and ultrasonic behaviour of binary mixtures of 1-nanolin with o-cresol, m-cresol, p-cresol and anisole at T = (293.15 and 313.15) K. J Chem Thermodyn. 2011;43:479–486.

[32] Fort RJ, Moore WR. Adiabatic compressibilities in binary liquid mixtures. Trans Faraday Soc. 1965;61:2102–2110.

[33] Gupta M, Vibhu I, Shukla JP. Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol. Fluid Phase Equilib. 2006;244:26–32.

[34] Iloukhani H, Zoorasna N, Sloeimani R. Excess molar volumes and speeds of soundof tetrahydrofuran with chloroethanes or chloroethenes at 298.15 K. Phys Chem Liq. 2005;43:391–401.

[35] Kiyohara O, Benson GC. Ultrasonic speeds and isentropic compressibilities of n-alkanol + n-heptane mixtures at 298.15 K. J Chem Thermodyn. 1979;11:861–873.

Physics and Chemistry of Liquids 285
[36] Rai RD, Shukla RK, Shukla AK, Pandey JD. Ultrasonic speeds and isentropic compressibilities of ternary liquid mixtures at (298.15 ± 0.01) K. J Chem Thermodyn. 1989;21:125–129.
[37] Oswal SL, Pandiyan V, Kumar BK, Vasantharani P. Thermodynamic and acoustic properties of binary mixtures of oxolane with aniline and substituted anilines at 303.15, 313.15 and 323.15 K. Thermochimica Acta. 2010;507:27–34.
[38] Sastry SS, Babu S, Vishwam T, Parvateesam K, Tiong HS. Excess parameters for binary mixtures of ethyl benzoate with 1-propanol, 1-butanol and 1-pentanol at T = 303, 308, 313, 318, and 323 K. Phys B. 2013;420:40–48.