Enablers and barriers in upscaling telemonitoring across geographic boundaries: a scoping review

Harm Gijsbers , Tim M Feenstra, Nina Eminovic, Debora van Dam, Shaikh Azam Nurmohamed, Tom van de Belt, Marlies P Schijven

ABSTRACT

Introduction and objective Telemonitoring is a method to monitor a person’s vital functions via their physiological data at distance, using technology. While pilot studies on the proposed benefits of telemonitoring show promising results, it appears challenging to implement telemonitoring on a larger scale. The aim of this scoping review is to identify the enablers and barriers for upscaling of telemonitoring across different settings and geographical boundaries in healthcare.

Methods PubMed, Embase, Cinahl, Web of Science, ProQuest and IEEE databases were searched. Resulting outcomes were assessed by two independent reviewers. Studies were considered eligible if they focused on remote monitoring of patients’ vital functions and data was transmitted digitally. Using a scoping review methodology, selected studies were systematically assessed on their factors of influence on upscaling of telemonitoring.

Results A total of 2298 titles and abstracts were screened, and 19 articles were included for final analysis. This analysis revealed 89 relevant factors of influence: 26 were reported as enabler, 18 were reported as barrier and 45 factors were reported being both. The actual utilisation of telemonitoring varied widely across studies. The most frequently mentioned factors of influence are: resources such as costs or reimbursement, access or interface with electronic medical record and knowledge of frontline staff.

Conclusion Successful upscaling of telemonitoring requires insight into its critical success factors, especially at an overarching national level. To future-proof and facilitate upscaling of telemonitoring, it is recommended to use this type of technology in usual care and to find means for reimbursement early on. A wide programme on change management, nationally or regionally coordinated, is key. Clear regulatory conditions and professional guidelines may further facilitate widespread adoption and use of telemonitoring. Future research should focus on converting the ‘enablers and barriers’ as identified by this review into a guideline supporting further nationwide upscaling of telemonitoring.

INTRODUCTION

Telemonitoring is the collection, transmission, evaluation and communication of individual health data from a patient to their healthcare provider or extended care team from outside a hospital or clinical office (ie, the patient’s home) using personal health technologies including wireless devices, wearable sensors, implanted health monitors, smartphones, tablets and mobile apps. Pilot studies show that use of telemonitoring supports self-management, for instance, by offering direct feedback to the patient. Furthermore, telemonitoring is believed to improve early detection of disease or clinical deterioration and thereby has the potential to reduce hospitalisation and mortality. In addition, telemonitoring has the potential to monitor patients more frequently or even continuously. As such, use of telemonitoring could improve quality of care, reduce the amount of time a clinician ends up spending to manage patients and increases the frequency of monitoring without increasing workload on healthcare resources. Devices with intelligent and reliable computing sensors in wearables, handheld devices, (smart)phones and implants have become widely available. The WHO, the European Union, national governments and other governing organisations promote use of such technology if proven to be valid, reliable and sustainable, attempting to facilitate care at a distance. However, positive results from the aforementioned small pilot studies are...
difficult to replicate when telemonitoring initiatives are to be implemented on a larger scale.12,13

In this review, following the WHO definition, ‘upscaling’ of telemonitoring is defined as ‘the expansion and replication of good practice of a telemonitoring project in more than one independent organisation or setting and across geographical boundaries’.14

In order to facilitate larger scale implementation of telemonitoring projects using personal health technologies, evidence is needed regarding the barriers and enablers for successful implementation. A preliminary literature search conducted on 6 January 2020 in PubMed, JBI Evidence Synthesis, Open Science Framework registries and the PROSPERO database identified that no systematic reviews, meta-analyses or scoping reviews on scaling up telemonitoring had been performed and that none were underway (online supplemental appendix 1). Indeed, research in the field of telemonitoring is relatively new and lacks high-quality and homogeneous studies on the scaling up of telemonitoring. The purpose is to identify factors of influence on scaling up. Therefore, it was decided to perform a scoping review.15,16 Scoping reviews are a form of knowledge synthesis that incorporate a range of study designs in order to provide a comprehensive summary.16

The aim of this scoping review is to identify current enablers and barriers for upscaling of telemonitoring across various healthcare settings in a structured manner.

METHODS

This scoping review was conducted in accordance with the JBI methodology guidance for scoping reviews, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses – Scoping Reviews checklist, which is an extension of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist.17,18 The scoping review protocol was registered on 29 March 2021, via the Open Science Framework (https://osf.io/mpq9g/).

Patient and public involvement

Patients and/or the public were not directly involved in this study.

Eligibility criteria

Studies were eligible if they focused on remote monitoring of patients‘ vital functions—such as blood pressure, pulse oximetry, temperature and heart rate—by care practitioners or centres, and the monitored data was transmitted digitally via (smart)phone, tablet or internet. Studies had to describe the implementation or adoption of telemonitoring on a larger scale, for instance, in more than one organisation, or in a larger geographical area (larger regions, provinces or nationwide). There were no restrictions on publication year and study design, and only full-text publications were included.

Studies were restricted to humans, the English language and peer-reviewed publications. Therefore, ongoing studies, conference abstracts and posters were excluded. Studies reporting self-monitoring by patients only and studies that solely described the effect of telemonitoring but not the implementation or adoption were also excluded.

Search strategy for scoping review

The preliminary search identified appropriate keywords and Medical Subject Headings (MeSH) terms. Subsequently, a broad search strategy for PubMed was formulated by three reviewers (HG, NE and MPS) and a medical librarian, combining the identified keywords and MeSH terms related to telemedicine, ehealth, (tele)monitoring, implementation and upscauling. No filters were applied in the final search strategy. The complete PubMed search strategy is outlined in online supplemental appendix 2 and was adapted for the other indexed databases. HG performed the literature search of PubMed, EMBASE, Cinahl, Web of Science, ProQuest and IEEE in January 2020 and updated the search on February 1 2022. Included studies were cross-referenced to identify additional studies.

Data extraction and analysis

One reviewer (HG) removed duplicates and led the process of study screening and selection. Study selection was managed using the online reference manager Rayyan.19 The search results were reviewed on two sequential levels. In the initial ‘title and abstract stage’, the article titles and abstracts were screened according to the inclusion and exclusion criteria independently by two researchers (HG and TMF). The lists of included studies and summaries of the collected data constructed by the two researchers were compared. Any disagreements were resolved by discussion and involvement of a third researcher (DvD). In the second ‘full-text stage’, the remaining articles were examined to ensure that they met the inclusion criteria.

Study characteristics were systematically extracted using a structured data collection form that included the following parameters: type of telemonitoring, study location, year of publication, research methods, patient characteristics and outcome measures of adoption. The charted data were verified by a second reviewer (TF or DvD).

Interpretation and analysis using Mendel’s framework

In addition to the extraction of study characteristics, text components from the included articles, relevant to the nationwide implementation of telemonitoring, were extracted by one of the researchers (HG). The extracted text components were uploaded into a qualitative analysis software programme (MAXQDA Analytics Pro, VERBI Software, 2020) and coded to capture all relevant constructs. A second researcher encoded independently of the first researcher 25% of the articles, after which they verified their coding. If there were significant differences
between the first and second researcher, the differences were discussed and the procedure repeated.

The structure of the analysis was based on Mendel’s framework for Building Evidence on Dissemination and Implementation in Health Services Research (online supplemental appendix 3). This framework supports the understanding and assessing of relevant contextual factors and dynamics affecting the dissemination, implementation and sustainability of interventions within communities and healthcare settings. In this scoping review, the ‘diffusion process’ items of Mendel’s framework were used to better understand and generalise the relevant contextual factors from different studies involved with nationwide upscaling of telemonitoring.

RESULTS

The search yielded 2927 records. After the removal of duplicates, 2298 titles and abstracts were screened for inclusion and exclusion. A total of 2250 studies were excluded after title and abstract screening, leaving 48 articles for full-text screening. All numbers were used to create a flow chart (figure 1). Additional details for the reasons of exclusion are presented in table 1. Finally, a total of 19 articles were included for analysis, describing a variety of telemonitoring solutions.21–38

Characteristics of studies

The general characteristics of the included studies are presented in table 2. Eleven out of 19 articles described a survey,21 22 25 26–30 33 34 36–38 four described focus group interviews,27 31 35 39 three were narrative reviews,24 26 32 and one article described the results of a workshop.40 A total of 89 enabler or barrier factors were mentioned 202 times in 19 studies.

Scale and utilisation of telemonitoring

The utilisation of telemonitoring was reported in 13 of the 19 studies. Reported utilisation varied widely from ‘not part of routine care, or not available as standard care’ in Austria, Norway, Lithuania, the UK and Sweden, to ‘90% utilisation of tele-electrocardiography’ in Brazil.21 22 28 33 35

There was significant heterogeneity of the definition of utilisation, which was reported as: number of patients that used telemonitoring,32 36 37 39 percentages of actual use,29 number of clinics that are engaged in telemonitoring,24 36 37 number of hospitals offering telemonitoring for high-risk pregnancies,36 number of projects in a country,22 26 34 37 and total recorded measurements.37

The percentages of the actual use of telemonitoring in patients with heart failure varied from 3% to 77%.25 29 57 In Brazil, a telemonitoring system for the monitoring of heart rhythms with an ECG was implemented in 79 municipalities. This study showed a utilisation ratio higher than 90%.22 In Denmark, all telemedicine projects are mapped to provide a national contemporary overview of telemedicine initiatives. Utilisation is reported by referring to a website on which 16 active telemonitoring projects are registered within the country at this moment.20 41 The enablers and barriers for nationwide upscaling of telemonitoring were structured in three domains using Mendel’s framework: context of diffusion, stages of diffusion and intervention outcomes.

What are the enablers and/or barriers for upscaling of telemonitoring?

Regarding the context of diffusion, the enablers and barriers retrieved were classified into six different categories of contextual factors: being an enabler, a barrier or both according to Mendel’s framework (figure 2). Table 3 gives an overview of factors and online supplemental table 1) describes barriers and/or enablers in more detail.

Norms and attitudes

Primary physicians needed to adapt their standard procedures in order to make an efficient contribution to care using telemonitoring solutions, for example, by using the patients’ self-measurements instead of doctor’s office in-house measurements.27 Healthcare professionals or centres that are aware of the benefits have a more positive attitude regarding telemonitoring.27 31 37 In two studies, healthcare professionals had high expectations of working with telemonitoring, as well as managing caseloads more efficiently.35 36

A common perceived barrier for professionals is that telehealth can increase workload and make planning work more difficult when responding to monitoring alerts.35 Across different studies professionals shared the view that patients may become too dependent on the technology making it a clear barrier for the use of telemonitoring.27 31 Some studies report scepticism or reservations concerning telemonitoring.27 31 35

Another important barrier for the diffusion of telemonitoring is the lack of awareness of the possibilities and opportunities for providing care using remote monitoring among both healthcare management and clinical staff.40

Organisational structure and process

Eleven studies reported on organisational items.21 24–28 32 35–37 40 Adoption of telemonitoring requires an infrastructural investment that will take several years to implement and will involve a complete overhaul of existing practice, clinically, financially and managerially.40 An elaborate programme of change management is described as an enabler in the upscaling and implementation of telemonitoring.24 40 Change management is described as continuous evaluation and assessment in the refining of patient selection criteria for remote monitoring and personalising care pathways.24

Security and privacy aspects influence implementation.24 28 32 37 Setting up appropriate vendor agreements and protocols is described as an enabling factor concerning responsibility for incoming data.21 24 28 35 36 40
Search syntax:
("Telemedicine"[Mesh] OR telemedicine[tiab] OR mhealth[tiab] OR m-health[tiab] OR ehealth[tiab] OR e-health[tiab] OR out-of-office[tiab])
AND
("Monitoring, Physiologic"[Mesh] OR "Monitoring, Ambulatory"[Mesh] OR monitor*[tiab] OR telemonitor*[tiab] OR health care[tiab] OR healthcare[tiab])
AND
("Implementation Science"[Mesh] OR "Health Plan Implementation"[Mesh]
AND
scale up[tiab] OR implement*[tiab] OR adoption[tiab])
AND
("Health Policy"[Mesh] OR "Policy Making"[Mesh] OR "National Health Program"[Mesh] OR policy[tiab] OR survey*[tiab] OR mapping[tiab])

Figure 1 PRISMA flow chart showing the process of including and excluding studies. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
Six studies described reimbursement as among the four most important barriers for the adoption of telemonitoring. A lack of financial resources is described as a barrier for implementation of telemonitoring. According to these studies, a suitable reimbursement solution should be adopted to incentivise and engage all stakeholders and to drive the intended transformation of healthcare delivery. Along with the financial aspects, concern rises for the possible inability to access the telemonitoring system via the electronic medical records. Also, a lack of interoperability generates new tasks to share telehealth data with other clinicians via electronic patient records. This also causes concerns whether the telehealth data entered in a patient’s record are accurate and relevant. This makes interoperability standards crucial to the success of upscaling remote patient monitoring programmes.

Policies and incentives

Three studies indicate that policies governing telehealth may differ at the state level, which forms a barrier for implementation on interstate level. On a national level, professional societies can issue guidelines to enable telemonitoring. European and worldwide policies on innovation friendly, legal and regulatory frameworks may enable upscaling of telemonitoring.

Networks and linkages

Four studies described non-profit or public–private collaborations as enablers for implementation of telemonitoring. For example, a role for professional organisations like the European Society of Cardiology in collaboration with national societies is described in catalysing reimbursement and adoption of telemonitoring in cardiac diseases. A national repository could act as the first port of call where policy makers, clinicians and users could access information of remote monitoring projects. Another approach could be an extended partnership between device companies and healthcare systems involving telemonitoring services.

At a regional level, collaborative efforts may connect hospital and regional health executives to network leaders, focusing on adoption, scale and spread of network monitoring solutions. Collaboration between hospitals and primary care providers, within the Ontario Telemedicine Network, proved to be an important factor for the sustainability of a telehomecare programme in Canada.

Media and change agents

Two studies described media and change agents as enablers for the implementation of telemonitoring. Advocates, early adopters and local champions are described as an important source of information and advice for the introduction of telemonitoring.

Stages of diffusion

Enablers and barriers were reported not to be linked to an implementation stage nor to a specific stage of diffusion. However, based on the reported utilisation and phase of upscaling, it is possible to analyse what stage of diffusion a telemonitoring project is most likely to be in. Eight studies described telemonitoring in the stage of preadoption. Six studies described telemonitoring in the implementation stage. Only two studies described telemonitoring projects in the phase of sustainment. In three studies, it was not possible to analyse the stage of diffusion.

Resources

Financial aspects of telemonitoring are described as an important factor in nine studies. For example, a lack of financial resources is described as among the four most important barriers for the adoption of eHealth. Six studies described reimbursement as a barrier for implementation of telemonitoring. According to these studies, a suitable reimbursement solution should be adopted to incentivise and engage all stakeholders and to drive the intended transformation of healthcare delivery. Along with the financial aspects, concern rises for the possible inability to access the telemonitoring system via the electronic medical records.

Table 1 Reasons for exclusion

# excluded	Reasons
2279	Not describing telemonitoring as defined in the inclusion criteria; but described
569	569 teleconsultation
355	355 mHealth applications (without telemonitoring functionality)
251	251 health informatics topic in general
126	126 implementation of an EHR
105	105 e-mental health
61	61 lifestyle promotion
44	44 internet based therapy
23	23 tele-dermatology
22	22 tele-rehabilitation
19	19 e-perscription
18	18 addiction related
15	15 related to systems and technology
12	12 tele-ICU
12	12 smart home (care)
10	10 teledentistry
9	9 AI related
9	9 tele-ophtalmology
5	5 e-registries
5	5 teleradiology
5	5 blockchain
3	3 background articles
2	2 teleaudiology, 2 internet of things, 2 robotics, 1 RFID, 1 AR/VR
325	325 excluded for not describing telemonitoring with other reasons
146	Articles described a telemonitoring or eHealth project, without describing implementation or adoption.
57	Articles described telemonitoring implementation but not in more than one independent organisation or setting and across geographical boundaries.
26	Study protocol
24	Opinion papers or interviews
15	Non-English

AI, artificial intelligence; AR/VR, augmented reality/virtual reality; EHR, electronic health record; mHealth, mobile Health; RFID, radiofrequency identification; tele-ICU, tele intensive care unit.
#	Study and year	Country	Design	Condition	Type of telemonitoring	Analysis	Outcome measures for adoption		
1	Aamodt et al²¹ 2019	Norway and Lithuania	Cross-sectional survey	Heart failure care	Body weight, blood pressure, heart rate, dyspnoea	Summative content analysis	Reported as not part of routine care/standard care		
2	Alkmim et al²² 2019	Brazil	Survey	Cardiology	Tele-ECG	Descriptive statistics	Utilisation >3 dys per week		
3	Chronaki et al²³ 2013	Europe	Narrative review	Diverse	Tele-ECG	n.a.	Healthcare costs-number of clinics engaging in TM		
4	Cook et al³⁹ 2016	UK	Qualitative semistructured interviews	COPD	Telehealth: Pulse oximetry, temperature, pulse, blood pressure	Framework method	n.a.		
5	Diaz-Skeete et al⁴⁰ 2019	Ireland	Workshop report	Cardiac care	n.a.	n.a.	n.a.		
6	Faber et al²⁵ 2019	Netherlands	Survey	Heart failure +diabetes	n.a.	Structured equation modelling approach	Extent of adoption in percentages		
7	Fraiche et al²⁶ 2017	USA	Narrative review	Heart failure	Blood pressure, weight, ECG	n.a.	n.a.		
8	Hanley et al²⁷ 2018	Scotland	Qualitative interview +focus groups	COPD, hypertension, Blood pressure, after stroke, COPD, heart failure, diabetes	SpO₂, Blood pressure, blood glucose,	Interpretive description approach and thematic analysis	N.a.		
9	Kato et al²⁸ 2015	Japan and Sweden	Cross-sectional survey	Heart failure	Monitoring physical condition and noticing a decline	Descriptive analysis and content analysis methodology	Four domains Reported as not part of routine care		
10	Klack et al²⁹ 2013	Germany	Survey	Heart patient	Weight, temperature, blood pressure, coagulation	Descriptive statistics	Physician and engineers perspectives		
11	Kristensen et al³⁰ 2019	Denmark	Email survey	Chronic heart failure, atrial fibrillation, COPD, ADHD, Pregnant with complications, hypertension, patients with an ICD	Blood pressure, heart rhythm, body weight, heart rate, blood glucose	Number of initiatives in interactive map online	Number of projects registered		
#	Study and year	Country	Design	Condition	Type of telemonitoring	Analysis	Analysis Details	Outcome measures for adoption	
----	----------------	---------------------	-----------------------------	------------------------------------	------------------------	-----------------------------	--	----------------------------------	
12	MacNeill, 2014	UK	Semistructured qualitative interviews	Chronic heart disease, COPD and diabetes	Blood pressure, weight, oxygen, blood glucose	Modified grounded theory	n.a.	n.a.	
13	McGillion et al	Canada	Narrative review	Surgical population	Respiratory rate, blood pressure, heart rate, SpO2, temperature	n.a.	n.a.	n.a.	n.a.
14	Muigg 2019	Austria	Cross-sectional survey	Diabetes	Blood pressure and blood glucose	Qualitative content analysis	Reported as not part of routine care	n.a.	
15	Okazaki et al	Japan and Spain	Survey	Not specified	Not specified	Causal modelling	n.a.	n.a.	
16	Taylor et al	UK	Qualitative interviews	COPD and chronic heart failure	Not specified	Thematic analysis	n.a.	n.a.	
17	de Vries et al	The Netherlands	Survey	Heart failure	Blood pressure, weight, heart frequency, ECG	Descriptive statistics	Usage	n.a.	
18	Van den Heuvel et al 2020	The Netherlands	Survey	Women with pregnancy complications	Cardiotocography	Descriptive statistics	Provision of telemonitoring and perspectives of respondents	n.a.	
19	Gawalko et al	Europe	Survey	Management of atrial fibrillation	Remote PPG or 1-lead ECG	Descriptive statistics	Centre experience and patient experience.	n.a.	

ADHD, Attention Deficit Hyperactivity Disorder; COPD, Chronic Obstructive Pulmonary Disease; ECG, ElectroCardioGram; ICD, Implantable Cardioverter Defibrillator; n.a., not available; PPG, Photoplethysmography; SpO2, peripheral capillary oxygen saturation; TM, Telemonitoring.
Intervention outcomes

Enablers and barriers for implementation may affect outcomes for individuals in the community, as well as local organisations and systems of care. All the expected outcomes for implementation of telemonitoring are described in table 4.

Patient care and health outcomes

Six studies reported outcomes on an individual level and in what way they were expected to be affected by telemonitoring. For example, implementation of telemonitoring was expected to improve self-care or patient empowerment.21 24 27 28 36 40

Organisation and system outcomes

Five studies reported on the expected outcomes on an organisational and system level. For example, when telemonitoring was implemented, it was expected that more patients could be treated, which would reduce admission and visits,21 24 28 33 40 workload would be reduced21 28 33 and costs would be reduced.21 24 28

DISCUSSION

This scoping review provides insight into the enablers and/or barriers that affect upscaling of telemonitoring in healthcare across different settings. All included studies examined large-scale adoption or implementation of telemonitoring. One study described an international and European scale up.37 This review retrieves and identifies important overarching factors, relevant for nationwide upscaling.

One of the most frequently mentioned factors of influence is ‘costs’ or ‘reimbursement’. For example; providing an eHealth infrastructure for free throughout the project duration is a great enabler.37 Reimbursement is mentioned as a solution—’a suitable reimbursement solution should be adopted’24— or as a barrier: ‘there is no financial backing to adopt new systems such as remote monitoring’.40 Economic evaluations of eHealth applications are gaining momentum, and studies have shown considerable variation regarding the costs and benefits that they include.42 Economic studies on telemonitoring in

Table 3	An overview of factors, classified by the ‘diffusion process’ items of Mendel’s framework				
	#Factors	#Described	#Barriers	#Enablers	#Both
1. Norms and attitudes	31	51	12	10	9
2. Structure and process	16	33	3	3	10
3. Resources	19	75	2	2	15
4. Policies and incentives	10	23	0	1	9
5. Networks and linkages	3	8	1	1	1
6. Media and change agents	10	12	0	9	1
Total	89	202	18	26	45

The number of times factors of influence were described in total, and the number of times factors were described as barrier, enabler or both.
heart failure and women at risk of pre-eclampsia describe this duality. The initial cost of the telemonitoring equipment may be an obstacle to widespread use of telemonitoring. Although telemonitoring will require an initial financial investment, economic studies show substantially reduction of costs in the long term. Costs, as a factor of influence, exist in coherence of ‘a lack of evidence’. In the absence of solid empirical evidence, key decision makers may doubt the effectiveness of eHealth which, in turn, limits investment and its long-term integration into the mainstream healthcare system. Exploring alternative payment models, for example, ‘temporary’ funding of telemonitoring by health insurers, could bridge that gap so that the necessary evidence can be collected. Over half of the factors identified are stated both as an enabler and a barrier. Therefore, factors of influence found in this scoping review can be used pragmatically; for example, as a directive to check whether the factor is a barrier or an enabler in projects where upscaling is required. A relatively large number of factors are related to the ‘norms and attitudes’ of users. Although this is an important factor for local implementation, one would expect that proportionately more context-related factors for nationwide scaling up would be found. Resources, attitudes, intrinsic motivation and behaviour of end-users, costs and technical knowledge of healthcare providers are all important factors of influence. These findings are consistent with reviews on implementation of other types of eHealth or telemedicine. The utilisation and upscaling of telemonitoring varied widely across settings and was not reported in 30% of the included studies. Because adoption is not clearly defined in the studies, it is not possible to interpret the enablers and barriers for each phase of adoption. In future studies, it is recommended to give a clear definition of adoption and to report utilisation. Only then is it possible to learn more about barriers and facilitators in various stages of implementation to scale up.

Studies in this scoping review reported expected ‘patient care & health outcomes’. Outcomes were not correlated to certain enablers or barriers. Based on this scoping review, it is not possible to draw conclusions regarding factors of upscaling influence the outcomes of care, nor which outcomes of care influence the upscaling. Although it would be useful to know more about upscaling of telemonitoring in relation to specific patients conditions, this study focused on the possible facilitators and barriers for (nation)wide upscaling regardless of patient conditions.

An untouched topic in this scoping review is the potential change in health (in)equity created or perpetuated by the scale-up of telemonitoring projects. After all, those without access to the technology and/or infrastructure necessary for successful telehealth may be left out of any scale-up efforts. A retrospective cohort during the COVID-19 pandemic shows that inequities in telehealth utilisation persist and require ongoing monitoring. In this review, lack of resources and infrastructure are key factors that impede scale-up and can cause health inequities. Information and education strategies appear to be important enablers for scale-up, but they are also successful strategies for reducing health inequities.

Practical implications

Based on the findings in this study, a coordinated and structured collaborative approach enables the upscaling of telemonitoring, embodying: a wide programme on change management, including policies and protocols on adaption of healthcare processes; implementation coordinators, who set up requirement specifications with particular attention to interoperability standards, telemonitoring access to electronic medical records, security and privacy aspects and appropriate vendor agreements; widespread marketing and recruitment initiatives, for example, social media channels that enable the recruitment of participating centres; collaboration among different hospitals and between primary care

Domain	Contextual factors	Detailed description	Number of publications mentioned
Intervention outcomes	Patient care and	(Improve) self-care or patient empowerment 21 24 27 28 36 40	6
health outcomes	health outcomes	(Improve) quality of care 21 28 36 40	4
		(Improve) patient education 21 28 36 40	3
		(Improve) symptoms of disease 28 36 40	2
		(Improve) quality of life 24	1
	Organisation and	Treat more patients (and reduce admission and visits) 21 24 28 33 36 40	5
system outcomes		(Reduce) workload 21 28 33 36	4
		(Reduce) costs 21 24 28	3
		(Improve) adherence to guidelines 21 36	2
		Contribute to continuity of care 24	1
and hospitals, as a way to overcome organisational and regional differences and to create an economy of scale; and new and innovative ways for reimbursement.

There was disagreement during the selection of studies that required discussion with a third reviewer. There are studies in which blood pressure is measured automatically at home. However, the data of these measurements were not exchanged electronically with the hospital in these studies. Studies investigating this form of home measurement have not been included in this scoping review. Narrowing down the definition of telemonitoring in the search is an important strength of study. A range of terms like ‘remote monitoring’, ‘teleconsultation’, ‘telehealth’ or ‘telecare’ is used interchangeably in the definition of telemonitoring. There are 23 different exclusion reasons for 2015 exclusions due to the terminology of telemonitoring (table 1). For example, teleconsultation, video-consultation and remote monitoring by telephone calls are all described as telemonitoring, and 355 studies used ‘telemonitoring’ as a keyword for a mobile health application without telemonitoring functionality. Using this precise definition of telemonitoring makes it possible to compare the results of this study with future studies on upscaling telemonitoring. Another strength of this study is the use of Mendel’s framework, which provided to be fit for categorising the scoping review results on upscaling of telemonitoring.

This review analysed search results from four well-known research databases. It uses key terms registered with MeSH, and multiple reviewers determined the inclusion and exclusion criteria. A limitation to this study could be the coding of extracted text components by the second reviewer, who coded only a purposeful sample of all studies. However, no significant differences were identified between the first and second reviewer; therefore, it is unlikely that this resulted in bias.

Due to the large amount of heterogeneity in the included studies with regard to study design, types of telemonitoring, and measurement of adoption or utilisation, advice on how to scale up a telemonitoring project within countries has to be made carefully. For future research, it is desirable to use a clear and narrow definition of telemonitoring, utilisation and outcome measures.

Conclusion and recommendations

We live in a world where telemonitoring rapidly integrates into preventive and clinical care and well-being. Successful upscaling of telemonitoring requires insight into the factors of influence in adoption, especially at an overarching national level. To future-proof and facilitate upscaling of telemonitoring, it is recommended to find means for reimbursement to use this type of technology in usual care and to explore alternative payment models early on. A wide programme on change management, national or regional coordinated, is key. Clear regulatory conditions and professional guidelines may further facilitate widespread adoption and use of telemonitoring. The results of this study can be used to help develop a guideline for upscaling.

Author affiliations
1Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
2Rehabilitation, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
3Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands
4Medical Informatics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
5Dutch Hospital Association, Utrecht, The Netherlands
6Internal Medicine (Nephrology), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
7Health Innovations Lab, Radboudumc, Nijmegen, The Netherlands

Twitter Harm Gijsbers @hjgijsbers and Marlies P Schijven @marliesschijven

Acknowledgements
The authors wish to thank Ms F van Etten-Jamaladin, clinical librarian at the research support department of Amsterdam UMC, for her support searching the databases and Mrs Valerie Young, GradDipPhys, MSc, for her critical review on grammatical errors.

Contributors
HG, NE, DvD and MPS were involved with the design of the work. HG and TMF did the screening of titles and abstracts to include studies. HG, TMF and DvD extracted study characteristics. HG and DvD encode extracted text components. HG, TMF, NE, DvD and MPS prepared the original draft of the paper. SN, TvdB and MPS contributed to the refinement of the paper. All authors have read and approved the final paper and agree to be accountable for all aspects of the work. MPS is the guarantor for this study.

Funding
The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests
None declared.

Patient and public involvement
Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication
Not applicable.

Ethics approval
Not applicable.

Provenance and peer review
Not commissioned; externally peer reviewed.

Data availability statement
No data are available.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access
This journal is made up of open access articles distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and/or omissions arising from translation and adaptation or otherwise.

ORCID iDs
Harm Gijsbers http://orcid.org/0000-0001-8065-7683
Tom van de Belt http://orcid.org/0000-0002-5401-8973
Marlies P Schijven http://orcid.org/0000-0001-7013-0116

REFERENCES
1 ATa. Ata telehealth: defining 21st century care. American Telemedicine Association, 2020.
2 Farias FA, Deo FA, Gijsbers H, et al. Remote patient monitoring: a systematic review. Telemed J E Health 2020;26:576-583.
3 Bashir N, Karunamithi M, Fatehi F, et al. Remote monitoring of patients with heart failure: an overview of systematic reviews. *J Med Internet Res* 2017;19:e118.

4 Kitsiou S, Paré G, Jaana M. Effects of home telemonitoring interventions on patients with chronic heart failure: an overview of systematic reviews. *J Med Internet Res* 2015;17:e63.

5 Fazal N, Webb A, Bangoura J, et al. Telehealth: improving maternity services by modern technology. BMJ Open Qual 2020;9:e000895.

6 Shah SS, Gvozdanovic A, Knight M, et al. Mobile App–Based remote patient monitoring in acute medical conditions: prospective feasibility study exploring digital health solutions on clinical workload during the COVID crisis. *JMIR Form Res* 2021;5:e23190.

7 Ong MK, Romano PS, Edginton S, et al. Effectiveness of remote patient monitoring after discharge of hospitalized patients with heart failure: the better effectiveness after transition -- heart failure (BEAT-HF) randomized clinical trial. *JAMA Intern Med* 2016;176:310–9.

8 Bodenheimer T, Sinsky C. From triple to quadruple AIM: care of the patient requires care of the provider. *The Annals of Family Medicine* 2014;12:573–6.

9 Report of the third global survey on eHealth. Global diffusion of eHealth: making universal health coverage achievable. Geneva: World Health Organization, 2016. https://www.who.int/publications/i/item/9789241511780.

10 Communication from the commission to the European Parliament, the council, the European Economic and Social Committee and the Committee of the Regions on enabling the digital transformation of health and care in the Digital Single Market; empowering citizens and building a healthier society Brussels: European Commission; 2018 [cited European Commission]. Available: https://ec.europa.eu/eurostat/ds_view_series_json?json=15524&lang=en&esm=on&nl=en&ds=health&tab=hf&lang=en&area=hf&geofilter=52&data=15501.2

11 Alkmim MB, Silva CBG, Figueira RM, Aamodt IT. Brazilian national service of telemedicine services: an analysis of a paediatric telemedicine service. *J Telemed Telecare* 2013;20:e10362.

12 Kato FP, Johansson P, Okada I, et al. Heart failure Telemonitoring in Japan and Sweden: a cross-sectional survey. *J Med Internet Res* 2015;17:e258.

13 Gijsbers H, et al. BMJ Open 2022;12:e057494. doi:10.1136/bmjopen-2021-057494

14 van Bockel JH, van der Meulen JP, de Vries JC, et al. Cost effectiveness of telehealth in community nursing: identifying the factors affecting frontline staff acceptance and telehealth adoption. *J Adv Nurs* 2015;71:326–37.

15 Ong MK, van der Wal MHL, Nieuwenhuis MMW, et al. Health Professionals’ Expectations Versus Experiences of Internet-Based Telemonitoring: Survey Among Heart Failure Clinics. *J Med Internet Res* 2019;21:e14255.

16 Ahrendt B, Dannahauer T, Philip N. A systematic review of reviews to identify key research opportunities within the field of eHealth implementation. *J Telemed Telecare* 2019;25:276–85.
Scott Kruse C, Karem P, Shifflett K, et al. Evaluating barriers to adopting telemedicine worldwide: a systematic review. *J Telemed Telecare* 2018;24:4–12.

Jaffe DH, Lee L, Huynh S, et al. Health inequalities in the use of telehealth in the United States in the lens of COVID-19. *Popul Health Manag* 2020;23:368–77.
Appendix 1. Preliminary search

Database	Search syntax	Results
Pubmed	("Telemedicine"[Mesh] OR telemedicine[tiab] OR mhealth[tiab] OR m-health[tiab] OR e-health[tiab] OR e-health[tiab]) AND ("Monitoring, Physiologic"[Mesh] OR "Monitoring, Ambulatory"[Mesh] OR telemonitor*[tiab]) AND ("Implementation Science"[Mesh] OR "Health Plan Implementation"[Mesh] AND scale up[tiab] OR implement*[tiab] OR adoption[tiab])	723 of which 156 meta-analysis or reviews. None relevant for upscaling telemonitoring.
JBI Evidence Synthesis	Telemonitoring AND Implementation	14 results, none relevant.
Open Science framework	Telemonitoring OR telemedicine	29 registries, none about upscaling
Prospero database	(telemonitoring [all fields] OR telemedicine [MeSH]) AND Implementation Science [MeSH] OR Regional Health Planning [MeSH] OR Health Plan Implementation [MeSH] OR Implementation [all fields]	102 results, none relevant for upscaling telemonitoring.
Appendix 2. Search syntax

Search syntax:

("Telemedicine"[Mesh] OR telemedicine[tiab] OR mhealth[tiab] OR m-health[tiab] OR ehealth[tiab] OR e-health[tiab] OR out-of-office[tiab])

AND

("Monitoring, Physiologic"[Mesh] OR "Monitoring, Ambulatory"[Mesh] OR monitor*[tiab] OR telemonitor*[tiab] OR health care[tiab] OR healthcare[tiab])

AND

("Implementation Science"[Mesh] OR "Health Plan Implementation"[Mesh]

AND scale up[tiab] OR implement*[tiab] OR adoption[tiab])

AND

("Health Policy"[Mesh] OR "Policy Making"[Mesh] OR "National Health Program "[Mesh] OR policy[tiab] OR survey*[tiab] OR mapping[tiab])
Appendix 3
Framework of dissemination in health services intervention research. From: Mendel et al 2008, Adm Policy Ment Health (2008) 35:21–37. The red lined box indicates the focus in this scoping review.
Supplementary Table 1. Overview of factors – enablers and/or barriers – that influence nationwide upscaling of telemonitoring.

Domain	Contextual factors	Detailed description	Barrier, Enabler or Both	Number of times mentioned in publications
Context of diffusion	Norms & Attitudes	HCP think that patients become too dependent on technology\(^{27,31,39}\)	Barrier	4
		HCP have scepticism or reservations about TM\(^{28,31,35}\)	Barrier	3
		There must be a perceived usefulness and usability of equipment \(^{27,31,39}\)	Both	3
		TM is convenient for patients \(^{27,31,37}\)	Enabler	3
		HCP have a positive attitude (towards usefulness, feasibility, potential) \(^{29,31,37}\)	Enabler	3
		There is concern amongst HCP that acting on the TM data provided could lead to overtreatment \(^{27,31}\)	Barrier	2
		HCP consider use of TM relevant \(^{21,28}\)	Enabler	2
		HCP have high expectations of working with TM\(^{36}\)	Both	2
		TM makes patients anxious \(^{27,31}\)	Barrier	2
		HCP think that TM can increase workload and make planning more difficult\(^{35,36}\)	Barrier	2
		Make patients feel more empowered to take a pro-active approach to their health\(^9\) or should be empowered to engage with technologies for self-management and self-care purposes\(^{40}\)	Enabler	2
		HCP perceive a shift to technology making medical decisions or support in medical decision making\(^{30,37}\)	Both	2
		Although the HCP had high perceptions and expectations of working with TM, these were not positively reflected in the actual experiences.\(^{36}\)	Barrier	1
		HCP expect to manage caseload more efficiently\(^{15}\)	Enabler	1
		Change personal practice\(^{27}\)	Both	1
		Concerns about the impact of telehealth on nursing roles\(^{35}\)	Barrier	1
		HCP experience a lack of advantage\(^{28}\)	Barrier	1
HCP who have the knowledge and experience in TM, tend to have a less positive attitude compared with technical professionals, who might be driven by their greater enthusiasm for technology in general.	Both	1		
HCP think that TM is more expensive than conventional treatment	Barrier	1		
Technical professionals are more confident about patient compliance than HCP	Both	1		
HCP concern about privacy protection	Barrier	1		

HCP concern about the loss of control over the medical treatment	Barrier	1
HCP think that patient acceptance is a factor of influence	Both	1
Use of telehealth is an important new skill for HCP, as was the ability to understand trends in the management of long-term conditions	Enabler	1
HCP see TM as an opportunity for professional career development	Enabler	1
HCP consider “Our centre is innovative”	Enabler	1
Patients need to accept their old age and health condition, before they use TM	Both	1
Reducing the level of face-to-face contact with the patients was a concern for professionals, but this concern was not universally shared by patients, some of whom experienced the non-face-to-face contact as additional and efficient input.	Enabler	1
HCP have concerns about the appropriateness of telehealth for the very severely ill	Barrier	1
Early positive experiences and the sharing of success were identified as key enablers for staff acceptance. Early negative experiences of telehealth have a long-lasting impact on staff acceptance and the predominant view among participants	Both	1
HCP state that telemonitoring provides higher patient satisfaction (related to home-monitoring) and does not require hospital staff to visit patients at home	Enabler	1

Organisational structure & process

Security and privacy aspects that influence implementation	Both	6
Rules and protocols on the implementation of the system and responsibility for incoming data	Both	5
Certain processes / coordination support implementation of TM	Both	4
Use of TM enables clinical decision support and influence adoption of guidelines 24 26 27	Enabler	3
Regular data sharing had a motivating effect on patients, as they were aware that at some point the readings may be reviewed 27 or is a possible limitation 40	Both	2
A wide program of change management to support healthcare transformation and adoption of new working practices 24 40	Both	2
Reduce admissions or readmissions 21 36	Enabler	2
Creating central databases making the transmitted data accessible to the treating physician and serving as data registries that benefit medical research 24	Enabler	1
Set up appropriate vendor agreements and infrastructure 24	Both	1
Protocols on the acceptable length of time between the moment of incoming patient data and the response of the HCP (response-reaction time) 36	Both	1
Difficult to obtain relevant data about patients and ensuring that relevant data –	Barrier	1

Resources
Costs / financing of TM 21 24 26 28 35 38
Knowledge of HCP / training of frontline staff 21 24 28 32 35 37 40
Reimbursement as an element of financial resources 21 24 26 28 33 37 38 40
The TM-system access to the EMR / interfacing of technologies 24 26 27 32 35 37
Design of telemonitoring system / usability 26 27 32 37 39 40
Availability of equipment 21 28 35 37
Sufficient staffing 26 28 32 37 40
Category

Time for implementation TM
Lack of evidence for TM
Engage stakeholders in system design
(Lack of) Cloud access, internet access or cellular access
Organisational readiness
Significant income disparities which impact the ability to enforce guidelines and advance adoption of TM
An externally resourced system for installation, technical support, maintenance and de-installation
Local “champions”
Top management support
Staff to assume monitoring and management responsibilities for patients outside the hospital
On-boarding process to a TM project
(Patient) education to address concerns regarding the use of remote monitoring, specifically for older adults, as an enabler
Assessment of added value should be calculated
Policies & Incentives
A (lack of) vision of an organisation on implementing TM
Worldwide, European and statelevel policies and legal and regulatory frameworks
New or adjusted workflows, care paths or data management
Consensus statements and national guidelines
Reimbursement or alternative payment models as a financial incentive for organisations
Target patients, volume of population, data load and work intensity within organisations
Interoperability standards crucial to the success of scaling remote patient monitoring programs
Policy and practice developments affecting health care services
Importance of TM for health authorities

Networks & Linkages		
Collaboration non-profit or public-private organisations	Both	5
Not being able to collaborate with other hospitals or clinics and primary care providers	Barrier	2
Professional organisations in collaboration with national societies can play an important role in catalysing reimbursement and adoption	Enabler	1

Media & Change Agents		
Advocates, early adopters and local champions enable implementation of TM	Enabler	2
Create (and increase) awareness in the general clinical community of the potential that remote monitoring has	Enabler	2
A standardized initiation video call to inform and instruct each participating centre	Enabler	1
(Lack of) guidelines from health care authorities	Both	1
Device manufacturer that invest in TM	Enabler	1
The dynamics in the COVID-19 pandemic may have impacted the use of TM	Enabler	1
Consensus on the implementation and research agenda can pave the road to the widespread use of digital health services	Enabler	1
A national repository could act as the first port of call where policy makers, clinicians and users could access information on remote monitoring projects	Enabler	1
Information about strategies to educate and empower patients were provided	Enabler	1
Professional societies can review and potentially endorse TM applications that offer valuable decision support and empower the physician’s relationship to the patient	Enabler	1

HCP = Health Care Professional, TM = Telemonitoring