Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice

Chen Diling1,*, Guo Yinrui1,*, Qi Longkai1, Tang Xiaocui1, Liu Yadi1,2, Yang Xin3, Hu Guoyan3, Shuai Ou1, Yong Tianqiao1, Wang Dongdong1, Xie Yizhen1, Burton B. Yang4, Wu Qingping1

1State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
2Research and Development Institute of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
3Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
4Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
*Equal contribution

Correspondence to: Burton B. Yang, Wu Qingping; email: byang@sri.utoronto.ca, wuqp203@163.com
Keywords: circular RNA, aging, astrocyte, biological function, autophagy
Received: September 4, 2019 Accepted: November 18, 2019 Published: December 20, 2019

Copyright: Diling et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Recent studies have demonstrated circular RNAs (circRNAs) to be widely expressed and to have important physiological functions. However, the expression, regulation, and function of circRNAs in neuroglial cells are unknown. Herein, we characterized the expression, regulation, and function of circRNAs in astrocytes. Astrocyte circRNAs were identified by computational analysis of newborn SD rat primary astrocytes cultured with 20 g/L D-galactose. In this manner, 7376 circRNAs were identified, among which most circRNAs (5754) were derived from annot_exons, whereas 27 were antisense, 853 were exon/intron, 329 were intergenic, 41 were intronic, and 372 were one exon. Among these, circNF1-419 was demonstrated to regulate autophagy, in over-expressing circNF1-419 transfected astrocytes, through the PI3K-I/Akt-AMPK-mTOR and PI3K-I/Akt-mTOR signaling pathways. An adenovirus associated virus packaging system (virus titer 1 ×10¹²), over-expressing circNF1-419 and injected into mouse cerebral cortex, showed autophagy enhancing activity by binding the proteins Dynamin-1 and Adaptor protein 2 B1. This binding regulated aging markers (p21, p35/25, and p16) and inflammatory factors (TNF-α and NF-κB), and reduced the expression of Alzheimer’s disease marker proteins (Tau, p-Tau, Aβ1-42, and APOE), which delayed senile dementia. Transcriptome analysis of the brain showed that circNF1-419 improved other signaling pathways, especially those related to the synapses of SAMP8 mice. These findings provide novel insights into circNF1-419 and its potential usefulness for the diagnosis and treatment of dementia by regulating Dynamin-1 and AP2B1 mediated autophagy.

INTRODUCTION

As the Chinese population ages, demographics will change such that by the end of 2020 the number of people over 60 years of age will be 19.3 percent and by 2050 greater than 38 percent of the total population. Retirement presents numerous serious problems, which will require intensive investigation into not only age-related disease, but also strategies and measures to serve the elderly.
Aging is a subclinical pathogenesis, which is an interplay between multiple invariant genes and variable environments. Symptoms develop slowly and include; cognitive decline, brain aging, and visceral degenerative diseases. Aging is closely linked to diseases of aging including; hypertension, stroke, diabetes, cancer, and neurodegenerative diseases such as Parkinson's disease and dementia, which are common risk factors for age-related disease [1–5]. Understanding the dynamic changes during the aging of the brain at the cellular and molecular level is one of the most complicated and profound subjects in contemporary life science. The involvement of neurogliocytes in the process of brain aging has been noted [6, 7], although their relationship to ageing and disease is not well established.

Glial cells are widely distributed in the central nervous system, accounting for approximately half of brain weight, if neurons are excluded. Glial cells participate in almost all nervous system activities from the embryonic stage to the aged brain. They are involved in central nervous system functions including; synaptic transmission, nerve tissue repair, regeneration, central nervous system functions including; synaptic formation, and may be dynamic for life activities [19]. This model was used to identify and characterize senescence-regulated astroglial circRNAs by bioinformatics, high-throughput sequencing, and polymerase chain reaction. Further, a targeted circRNA over-expression system was used to assess physiological function and the targeted effects of circRNA on the aging process. In this manner, new targets were assessed for the diagnosis and treatment of age-related brain disease.

RESULTS

Senescent astrocyte establishment and identification

To assess senescence-regulated circRNAs, a senescent cell aging model was required with the following characteristics. First, cells must die only from aging. Second, results must be repeatable. Senescent cells were prepared by continuous passage in culture with D-galactose at different concentration (0, 5, 10, 20, and 30 g/L). Senescent-associated β-galactosidase staining (procedure based on the kit’s instructions, Figure 1A–1D) and single cell gel electrophoresis were used to identify senescent cells [20–22] (Figure 1E, 1F). Cell morphology, by light microscopy, of Giemsa stained cells (Figure 1G) identified large amounts of cavitation and swelling. In a dose dependent manner, D-galactose inhibited cell growth (Figure 1H–1M). Based on previous reports, culture in 20 g/L D-galactose for two generations was chosen as the ideal culture conditions. Even through 20 g/L D-galactose for two generations decreased cellular proliferation, the number of available cells that stained positive met experimental demands (Figure 1G–1J). Cell cycle results are shown in Figure 1N. Expression of aging biomarkers, P21Cip1/Waf1 and P16INK4a, were increased (Figure 1O). These results demonstrate D-galactose to induce the senescence of astrocytes after two generations of cell culture (Figure 1A–1O).

Senescence-regulated astroglial circRNAs

Astroglia circRNAs were identified in astroglia cells of newborn rats by consulting PYTHON scripts provided by circBase. There were 7376 circRNAs identified in this study. Most circRNAs (5754) were derived from annot_exons, 27 were antisense, 853 exon/intron, 329 intergenic, 41 intronic, and 372 exon (Figure 2A). As a biomarker or drug target circRNA may be effective for treatment of neurodegenerative diseases, with evidence that CDR1 is reduced in AD [17]. For brain circRNAs there were are many questions that need to be answered regarding function including their effect on: gene expression, neuroplasticity, neurogenesis, and behavior. Herein, we devised a D-galactose glial cell aging model. This model was used to identify and characterize senescence-regulated astroglial circRNAs

Recent evidence suggests that circular RNA (circRNA) may be important for brain function in that CDR1 is found at high levels in mammalian neurons [17]. Further, circRNA transcripts produced by neurons accumulate in aging Drosophila. Increased levels of many circRNAs are observed when synapses form [18], which suggest that circRNAs may regulate synapse formation, and may be dynamic for life activities [19]. As a biomarker or drug target circRNA may be effective for treatment of neurodegenerative diseases, with evidence that CDR1 is reduced in AD [17]. For brain circRNAs there were are many questions that need to be answered regarding function including their effect on: gene expression, neuroplasticity, neurogenesis, and behavior. Herein, we devised a D-galactose glial cell aging model. This model was used to identify and characterize senescence-regulated astroglial circRNAs
demonstrated these circRNAs to be positively related to the degree of aging. Some circRNAs were down-regulated at D3 (culture in 20 g/L D-galactose for three generations). Based on cell morphology (Figure 1D and Figure 1L–1N), we can conclude that cells at D3 were apoptotic or dead. These results confirm D-galactose induced senescence in astrocytes, treated for no less than two generations.

Figure 1. Senescent astrocyte establishment and identification. (A–D) The astrocyte were treated with 20 g/L of D-galactose for different continuous passage culture time, and the senescent cells rate (blue staining cells) was detected using β-galactosidase staining; (E, F) The cells were treated with 20g/L of D-galactose for continuous passage culture of two generations, and the damaged DNA fragments was detected by single cell gel electrophoresis; (H–K) TUNEL (Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling) staining and DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) staining, DAPI stained all cells blue and TUNEL kits labeled apoptotic cells with green fluorescence; (L) The cell proliferation rate, (M) apoptosis rate and (N) cell cycle measurement after treated with 20 g/L of D-galactose for different continuous passage culture time; (O) Western blotting of P16INK4a and P21Cip1/Waf1 protein expressions; (P) The cell morphology with Giemsa staining at different time on the 20 g/L of D-galactose concentration. D0 (culture without 20 g/L D-galactose), D1 (culture in 20 g/L D-galactose for one generations) and D2 (culture in 20 g/L D-galactose for two generations) (Figure 2C, 2D), D3 (culture in 20 g/L D-galactose for three generations). Data are presented as the means±SD of 3 independent experiments. *p <0.05 and **p <0.01 vs. the control (normal or D0) group by one-way ANOVA, followed by the Holm-Sidak test.
Figure 2. CircRNAs expression in D-galactose-induced deficits astrocyte. (A) 7376 astroglia circRNAs were identified and their types were showed; (B) Different expression of circRNAs in D-galactose induced aging astrocyte; (C) Time series analysis of circRNAs positively correlated to the degree of aging; Different expression of circRNAs in D2 (D); Aging regulates circRNAs as circ_NF1-419 (circ_000978), circ_002671, circ_003172, circ_CTGF-212, circ_SIRT1-395, circ_002276, circ_SIRT1-623, circ_001215, circ_001216 and circ_000987 were validated by reverse transcription polymerase chain reaction in cultured astrocyte (E, F). D0 (culture without 20 g/L D-galactose), D1 (culture in 20 g/L D-galactose for one generations) and D2 (culture in 20 g/L D-galactose for two generations) (Figure 2C, 2D), D3 (culture in 20 g/L D-galactose for three generations). Data are presented as the means ± SD of 3 independent experiments. ** p <0.01 vs. the control group (D0) by one-way ANOVA, followed by the Holm-Sidak test.
To assess the effects of circRNAs on aging, we chose D2 and D0 for analysis. CircRNAs with altered expression, \(p < 0.05 \) and greater than 1.5 folds change, were considered differentially expressed. There were 319 up-regulated (Figure 2D) and 643 down-regulated circRNAs (Supplementary Table 1) at D2.

D-galactose-induced circRNAs were validated by qRT-PCR (PCR primers in Supplementary Table 2) of cultured astrocyte including: circ_NF1-419, circ_000987, circ_001215, circ_00121, circ_002276, circ_002671, circ_003172, circ_CTGF-212, circ_SIRT1-395, and circ_SIRT1-623. All were increased by aging (Figure 2E), suggesting that these circRNAs accelerate the ageing process. We focused on the candidates that had the greatest differential expression between the cancerous and normal groups and matched them with circRNADb (Supplementary Table 1). Among these specific candidates, novel_circNF1-419 (mmu_circ_0003411), which was formed by circularization of chr17: 29483000-29490394 strand: + of the NF1 gene (RPKM 5.97 in D2, while 0 in D0), attracted our attention.

CircNF1-419 enhances autophagy in astrocytes

To validate the essential role of circ_NF1-419 in cell cycle, apoptosis, and cell proliferation, an over-expressing circNF1-419-transfected rat astrocyte was designed as described [23]. An 83bp framework sequence and an AG receptor were added upstream of the 419bp sequence of ro_circ_000978 (Supplementary Figure 4A, 4B). A GT donor and a 57bp frame sequence were added downstream, connecting the full-length sequence 575bps (Supplementary Figure 4Aa) to the pCDH-CMV-MCS-EF1-GFP+Puro (CD513B-1) vector (Supplementary Figure 4A, 4C) by XbaI and BamHI (Supplementary Figure 4A–4C). The sequence is shown in (Supplementary Figure 4A, 4D). A lentivirus packaging protocol was performed and an over-expressing circNF1-419-transfected rat astrocyte was finalized (Supplementary Figure 4B). As shown in Figure 3 circNF1-419 influences on astrocyte proliferation (Figure 3A), apoptosis (Figure 3B), or cell cycle (Figure 3C). Western blot analysis (Figure 3D) showed the levels of Atg12, LC3A, LC3B in normal C57 mice (purchased from the Beijing HFK Bioscience Co., LTD [Certificate No: SCXK (Jing) 2014-0004]) and SAMP8 mice were lower than levels in Balb/c mice. As expected, autophagy levels were significantly increased (LC3A, LC3B I, and LC3B II proteins were detected by western blot [25]. As shown in Figure 5 the levels of Atg12, LC3A, LC3B I, and LC3B II proteins in APP/PS1 and SAMP8 mice were lower than levels in normal C57 mice (p < 0.05), suggesting that the global brain autophagy levels of AD mice were disordered. Further, Ganoderma lucidum extracts (low dose group is LL; high dose group is LH) and Hericium erinaceus extracts (low dose group is HL; high dose group is HH) treated animals had enhanced autophagy levels. Alternatively, activation of autophagy may delay or prevent age-related diseases such as AD.

Next, we designed an AAV viral transduction system with RNA interference (sicircNF1-419-AAV, Supplementary Figure 5A, 5B) and separately an over-expressing circNF1-419 (sicircNF1-419-AAV, Supplementary Figure 5C, 5D). Two μl of the AAV packaging system (virus titer 1 × 10^{12} were injected into the cerebral cortex of mice (SAMP8 mice, two week old new born KunMing mice, and 12 month old Balb/c mice). As expected, autophagy levels were significantly increased (LC3A, LC3B I, and LC3B II) for circNF1-419-OV-AAV injected mouse brains in comparison to control brains (p < 0.05, Figure 6A, Supplementary Figure 6, and Figure 7H). The function of circNF1-419 was assessed in vivo after consideration of autophagy levels in age-related disease animal models. Then global brain tissue was dissected from 28-week-old SAMP8 and APP/PS1 mice (purchased from the Beijing HFK Bioscience Co., LTD [Certificate No: SCXK (Jing) 2014-0004]). Levels of Atg12, LC3A, LC3B I, and LC3B II proteins were detected by western blot [25]. As shown in Figure 5 the levels of Atg12, LC3A, LC3B I, and LC3B II proteins in APP/PS1 and SAMP8 mice were lower than levels in normal C57 mice (p < 0.05), suggesting that the global brain autophagy levels of AD mice were disordered. Further, Ganoderma lucidum extracts (low dose group is LL; high dose group is LH) and Hericium erinaceus extracts (low dose group is HL; high dose group is HH) treated animals had enhanced autophagy levels. Alternatively, activation of autophagy may delay or prevent age-related diseases such as AD.

CircNF1-419 participates in the regulation of astrocyte autophagy

To identify the regulator of circNF1-419 in autophagy, we identified key proteins involved in the autophagy signaling pathway by western blot. As shown in Figure 4 for over-expressing circNF1-419-transfected astrocytes, the level of mTOR was inhibited, levels of PI3Kp85, PI3Kp100, and AMPK were increased, p53 was slightly increased, while Erk1/2 did not change. Signal transduction pathway expressed proteins Atg13,ULK1, Beclin-1, Atg14, Atg5, Atg12, LC3A, LC3B I, and LC3B II were identified. The results show the PI3K/Akt pathway to converge on mTOR as a central regulator of NF1 (gene-symbol for circNF1-419) [24]. Taken together these data suggest circNF1-419 to regulate autophagy through PI3K-I/Akt-AMPK-mTOR and PI3K-I/Akt-mTOR signaling pathways, or possibly through factors upstream of these pathways. Precise targets and pathways will require additional study.

CircNF1-419 delays senile dementia by enhancing autophagy in vivo

The function of circNF1-419 was assessed in vivo after consideration of autophagy levels in age-related disease animal models. Then global brain tissue was dissected from 28-week-old SAMP8 and APP/PS1 mice (purchased from the Beijing HFK Bioscience Co., LTD [Certificate No: SCXK (Jing) 2014-0004]). Levels of Atg12, LC3A, LC3B I, and LC3B II proteins were detected by western blot [25]. As shown in Figure 5 the levels of Atg12, LC3A, LC3B I, and LC3B II proteins in APP/PS1 and SAMP8 mice were lower than levels in normal C57 mice (p < 0.05), suggesting that the global brain autophagy levels of AD mice were disordered. Further, Ganoderma lucidum extracts (low dose group is LL; high dose group is LH) and Hericium erinaceus extracts (low dose group is HL; high dose group is HH) treated animals had enhanced autophagy levels. Alternatively, activation of autophagy may delay or prevent age-related diseases such as AD.
Figure 3. Essential roles of circ-NF1-419 on proliferation, apoptosis, cell cycle and autophagy test. Influence on astrocyte proliferation (A), apoptosis (B), and cell cycle (C); Western blot analysis (D) showed the levels of Atg12, LC3A, LC3B in over-expressing circ-NF1-419-transfected rat astrocytes; (E) Transmission electron microscopic imaging showing autolysosomes (arrows) and autophagosomes with double-membraned autophagic vacuoles (arrowheads) in over-expression circ-NF1-419-transfected rat astrocyte. Scale bar: 5μm and 2μm. Data are presented as the means±SD of 3 independent experiments. **p <0.01 vs. the model group by one-way ANOVA, followed by the Holm-Sidak test.
Figure 4. CircNF1-419 participates in the regulation of autophagy in astrocyte. The expression of PI3Kp85, PI3Kp100, AMPK, Atg13, ULK1, Beclin-1, Atg14, Atg5, Atg12, LC3A, LC3B I and LC3B II proteins in the over-expressing circNF1-419-transfected rat astrocyte were measured by using western blotting. Data are presented as the means±SD of 3 independent experiments. **p < 0.01 vs. the WT by one-way ANOVA, followed by the Holm-Sidak test.
si\textit{circNF1-419}-AAV injected animals were slightly inhibited (Figure 6A), while AD marker proteins such as Tau, p-Tau, Aβ A4, APOE, and BACE1 were inhibited ($p < 0.05$, Figure 6B and Supplementary Figure 6), and the senescence-associated biomarkers p21 and p35 were improved ($p < 0.05$, Figure 6B and Figure 6) after treatment with \textit{circNF1-419-OV-AAV} for 2 months. Neuropathological changes were also improved (Figure 6C), with some inflammatory factors, NF-κB and TNF-α, improved as judged by immunohistochemistry (Supplementary Figure 6, $p < 0.05$). The si\textit{circNF1-419}-AAV showed no improvement and a worsening condition (Figure 6 and Supplementary Figure 6). These results and those derived from astrocytes suggest that \textit{circNF1-419} can enhance autophagy levels and possibly improve AD related regulators.

\textit{CircNF1-419} enhances autophagy by binding Dynamin-1 and Adaptor protein 2 B1 (AP2B1) proteins in vivo

To assess the precise targets and pathways by which \textit{circNF1-419} regulates autophagy, fluorescent \textit{in situ} hybridization (FISH) was used to detect \cite{26} \textit{circNF1-419-OV-AAV} in infected brain tissue (Supplementary Figure 7A and 7B). Results showed that \textit{circNF1-419} was located in the cytoplasm, indicating that \textit{circNF1-419} may bind proteins related to autophagy control. RNA pull down experiments were implemented using biotin-coupled \textit{circNF1-419}. As shown in Figure 7A, binding-proteins were pulled down and identified by LC-MS (Supplementary Table 3). Western blot verified that Dynamin-1 and AP2B1 (two of five tested antibodies) proteins were found (Figure 7B) in both SAMP8 mice and KM mice. RIP using antibody against Dynamin-1 and AP2B1 showed that \textit{circNF1-419} was pulled down (Figure 7C, 7D). By qRT-PCR, results were in agreement with computer-aided molecular simulation as showed in Figure 7E and with more detail, Supplementary Figure 8. Western blot analysis of whole brain tissue demonstrated Dynamin-1 and AP2B1 levels to be influenced by \textit{circNF1-419} (Figure 7F, 7H). These results indicate that \textit{circNF1-419} binds Dynamin-1 and AP2B1, and may influence the splicing of mRNA, polyadenylation, stabilization, localization, and translation (Figure 8). In sum, \textit{circNF1-419} binds two proteins, influencing signal transduction and function.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Figure5.png}
\caption{Autophagy level in the age-related disease model animals. The expression of Atg12 (A, B), LC3A (A, C), LC3B I (A, D) and LC3B II (A, E) protein in the 8 months old APP/PS1 and SAMP8 mice were measured using western blot (A–E). Data are presented as the means ± SD of 3 independent experiments. *$p < 0.05$ vs. the control group, **$p < 0.01$ vs. the model group by one-way ANOVA, followed by the Holm-Sidak test.}
\end{figure}
Figure 6. CircNF1-419 delays senile dementia by enhancing autophagy in vivo. CircNF1-419 up-regulates the autophagy biomarkers including LC3A I, LC3A II, LC3B I and LC3B II (A), and improves the AD related regulators including p-Tau, p-Tau (202), p-Tau (396), Aβ A4, APOE, BACE1, TNF-α, NF-κB and p21 (B); histopathological (C) examination of hippocampus (Ca-b) and cortex (Cc-d); and immunostaining examination (D) of LC3A in hippocampus (De) and cortex (Df). All densitometric data of proteins expression using ImageJ are presented as the mean±SD of 3 independent experiments. **p <0.01 vs. the model group by one-way ANOVA, followed by the Holm-Sidak test.
Figure 7. *CircNF1-419* enhances autophagy by binding dynamin-1 and AP2B1 protein in vivo. *circNF1-419* can pull-down dynamin-1 and AP2B1 protein ([A, B]), the proteins of dynamin-1 and AP2B1 quantified using Wes™ and the Simple Western from ProteinSimple; and RNA binding protein immunoprecipitation assay showed that the dynamin-1 and AP2B1 protein can pull down the *circNF1-419* ([C, D]); the computer-aided molecular simulation demonstrated that the dynamin-1 and AP2B1 protein binds the *circNF1-419* ([E]); the expression of dynamin-1 and AP2B1 protein in the whole brain tissues ([F]); *CircNF1-419* improves the brain transcriptome in AD mice ([G]; *CircNF1-419* levels in AAV viral transduction system with RNA interference and separately an over-expressing *circNF1-419* ([H]). Data are presented as the means±SD of 3 independent experiments. **p < 0.01 vs. the model group by one-way ANOVA, followed by the Holm-Sidak test.
CircNF1-419 improves the brain transcriptome of AD mice

To assess downstream regulatory molecules and/or signaling pathways, RNA-sequencing was performed. The RNA-sequencing analysis of SAMP8 mice showed that circNF1-419-OV-AAV: up-regulated CHRM, ADR, DRD, HTR, AGTR, FPRL, CCKR (Figure 7G and Supplementary Table 4); down-regulated PTGDR, CNR1, GCCR, VIPR, GRM, GRIN, GRI (Figure 7G and Supplementary Table 4); bi-directionally regulated GABR that influences neuroactive ligand-receptor interaction; and regulated others genes (Figure 7G and Supplementary Table 4) that influence other pathways including retrograde endocannabinoid signaling, glutamatergic synapse, calcium signaling pathway, cholinergic synapse, serotoninergic synapse, GABAergic synapse, dopaminergic synapse, nitrogen metabolism, estrogen signaling pathway, circadian entrainment, long-term depression, inflammatory mediator regulation of TRP channels, long-term potentiation, and the PI3K-Akt signaling pathway (Supplementary Figure 9A, 9B, and Supplementary Table 4). All of these can be related to neurodegenerative diseases. These results suggest that circNF1-419 binds Dynamin-1 and AP2B1, influencing multiple signaling pathways especially at the synapse. However, further investigation is necessary to define the mechanisms of regulation.

DISCUSSIONS

Accumulating evidence supports a direct role for autophagy in the aging process, with multiple genetic experiments demonstrating the influence of autophagy-related genes on longevity [27–30]. Macroautophagy/autophagy failure, with the accumulation of autophagosomes, is an early neuropathological feature of AD that directly affects amyloid beta (Aβ) metabolism [31]. Dysfunction of presenilin 1 impairs lysosomal function and prevents autophagosome flux. In this study, we also found that autophagy levels in the brain of 28 weeks old SAMP8 and APP/PS1 mice were abnormal (Figure 5). Previous studies suggested that enhancing autophagy may be a promising new therapeutic strategy for AD [32–34]. Although the etiology and pathogenesis of AD have not been elucidated completely, one of the most characteristic neuropathological changes is the formation of neurofibrillary tangles within senile plaques deposited by β amyloid protein with Tau hyper-phosphorylation within nerve cells, as well as neuronal loss accompanied by neuroglial hyperplasia [35]. Normally, glial cells support and protect neurons and participate in all neural activities, including central nervous system development, synaptic transmission, neural tissue repair and regeneration, neural tissues aging, neural immunity, and a variety of neurological diseases [36–38]. However, in the case of brain injury and/or disease, pathological changes and neuron death are often irreversible. In contrast, glial cells that are capable of division, could quickly respond to nerve damage, divide and form a layer or barrier in the lesion area, preventing the expansion of nerve injury. By this scenario, unfortunately, the central neurons would die and be replaced by glial cells that formed the glial scar, with loss of function. This is a serious problem that urgently needs to be solved [37–39]. Glial cells and neurons should be considered equally important partners within the brain [40]. Further, glial cells can prevent Tau-dependent pathology and cognitive decline [16], suggesting that enhanced glial cell autophagy could be an effective therapeutic strategy for AD.

In this study, we chose to assess circRNA targets in senescent glial cells in order to develop an effective therapeutic strategy for AD. First, a senescent astrocyte model using 20 g/L D-galactose in continuous passage culture was developed (Figure 1). RNA sequencing demonstrated 319 up-regulated and 643 down-regulated circRNA in this model, among which some circRNAs were increased with aging, suggesting that circRNAs could be biomarkers of aging. Next, we chose to assess circNF1-419 for its function and influence on aging. Over-expression of circNF1-419 in astrocytes (Figures 3 and 4), and the over-expression of the circNF1-419 AAV system in 8 months old SAMP8 mice and 12 months old Balb/c mice (Figure 5) indicated that circNF1-419 could enhance autophagy levels. AD marker proteins Tau, p-Tau, Aβ1-42, and APOE were inhibited (Figure 6). Aging related regulators p21, p35/25, and p16 were changed. Inflammatory regulators TNF-α and NF-κB were changed. The sicircNF1-419-AAV showed no improvement. These results indicate that circNF1-419 may delay the progress of AD and defer senility, suggesting that enhanced autophagy could be an effective therapeutic strategy for AD.

Previous studies demonstrated that circRNAs can function as miRNA sponges that reduce levels of the targeted miRNAs [41]. Studies also revealed that circRNAs could bind, store, sort, and sequester proteins to particular subcellular locations, acting as dynamic scaffolding molecules that modulate protein-protein interactions [42], and coding for proteins [43]. In this study, we found no sponge miRNA nor coding protein functions of circNF1-419 (chr17: 29483000-29490394 strand: +). FISH showed that circNF1-419 localized to the cytoplasm, suggesting a protein binding function. The RNA pull down experiments showed that circNF1-419 could bind Dynamin-1 and AP2B1 protein in SAMP8 mice. The RIP experiments confirmed this binding function. In this study, AAV treated KM mice.
provided more evidences that circNF1-419 could bind Dynamin-1 and AP2B1 proteins. Further, the in silico experiments demonstrated that circNF1-419 could also bind Dynamin-1 and AP2B1 proteins. Previously, neurofibromin 1 (NF1) was shown to be a direct effector of GPCR signaling via Gβγ subunits in the striatum, regulating Ras pathways [44]. Dynamin-1 is a 100-kDa GTPase and circNF1-419 could be a direct effector of Dynamin-1. Alternatively circNF1-419 could bind Dynamin-1 and influence its function. Dynamin-1 can also be activated by Akt/GSK3β signaling, which was demonstrated in H1299 non-small lung cancer cells [45]. Dynamin-1 is an essential component of vesicle formation in receptor-mediated endocytosis, synaptic vesicle recycling, caveolae internalization, and vesicle trafficking in and out of the Golgi [46]. Studies also revealed that vesicles coated with clathrin and AP2B1 play an important role in internalization of receptors and their bound ligands during clathrin-dependent endocytosis and the fission of clathrin-coated vesicles (CCVs) from the plasma membrane, which are mediated by dynamin proteins. Dynamin-1 is also thought to provide a source of membranes for autophagosomes by pinching off vesicles from the plasma membrane (Ravikumar et al., 2010). Moreover, Dynamin-1 is required for the regeneration of lysosomes by pinching off membrane from autolysosomes in hepatocytes (Schulze et al., 2013). Dynamin-1 has also been proposed to complete the maturation of autophagosomes, leading to impairment in autophagy in Dynamin-1 mutant mice (Durieux et al., 2012). Hence, circNF1-419 is a direct effector of Dynamin-1 and AP2B1 binding, which is followed by Dynamin-1 and AP2B1 protein mediated autophagy. Autophagy then regulates aging and inflammatory reactions, influencing the downstream expression of AD marker proteins Tau, p-Tau, Aβ1-42, APOE, and BACE1. These in vitro results indicate that circNF1-419 could delay the progress of AD and defer senility by binding Dynamin-1 and AP2B1 and delaying autophagy.

In a four-vessel transient cerebral-ischemia rat model, memory impairment was associated with a decrease in expression of hippocampal Dynamin 1 [47]. In older people with cerebrovascular disease [48] Dynamin-1 was associated with both preserved cognition and regenerative responses. Dynamin-1 pharmacologic

![Diagram](attachment:image.png)

Figure 8. Role of circNF1-419 in regulated astrocyte and delay dementia. Circular RNA NF1-419 has autophagy enhancing activity by binding Dynamin-1 and AP2B1, delaying senile dementia by regulating aging markers (p21, p35/25, p16) and inflammatory factors (IL-6, IL-10, NF-κB), and by reducing the expression of AD marker proteins Tau, p-Tau, Aβ1-42, BACE1 and APOE.
inhibition; impairs hippocampal-dependent associative memory, accentuates synaptic fatigue, reduces long-term potentiation, as well as post-tetanic potentiation, and neurotransmitter release [49]. Hence, Dynamin-1 as a key protein for modulation of memory. Studies also showed that Dynamin-1 could affect amyloid generation through regulation of BACE-1 subcellular localization and its enzymatic activity [50]. Further, soluble oligomeric Aβ, but not fibrillar Aβ, was responsible for sustained calcium influx, calpain activation, Dynamin-1 oligomeric Aβ, but not fibrillar Aβ, was responsible for sustained calcium influx, calpain activation, Dynamin-1 degradation [51], BACE-1 expression of AD marker proteins Tau, p-

This study identified 7376 circRNAs, among which most circRNAs (5754) were derived from annot_exons, whereas 27 were antisense, 853 exon/intron, 329 intergenic, 41 intronic, and 372 of one exon. Further, circNF1-419 was shown to regulate autophagy in over-expressing circNF1-419 transfected astrocytes, likely through PI3K-I/Akt-AMPK-mTOR and PI3K-I/Akt-mTOR signaling pathways. An AAV packaging system (virus titer 1 × 10^12) over-expressing circNF1-419, when injected into mouse cerebral cortex, showed autophagy enhancing activity by binding Dynamin-1 and AP2B1, delaying senile dementia by regulating Dynamin-1 expression and its enzymatic activity [50]. Further, soluble circNF1-419 was shown to regulate autophagy in over-expressing circNF1-419 transfected astrocytes, likely through PI3K-I/Akt-AMPK-mTOR and PI3K-I/Akt-mTOR signaling pathways. An AAV packaging system (virus titer 1 × 10^12) over-expressing circNF1-419, when injected into mouse cerebral cortex, showed autophagy enhancing activity by binding Dynamin-1 and AP2B1, delaying senile dementia by regulating Dynamin-1 expression and its enzymatic activity [50].

Male SAMP8 mice (5 months old, mean body weight 20 ± 5 g) were purchased from Beijing HFK Bioscience Co., LTD (Certificate No: SCXK [Jing] 2014-0004). All animals were allowed to acclimate for at least 1 week prior to the initiation of the experiments. Mice were randomly allocated into 3 groups of 8 animals each: SAMP8 model group, sscircNF1-419-OV-AAV infected group, and shcircNF1-419-OV-AAV infected group. Newborn KM mice and Balb/c mice were obtained from the Center of Laboratory Animals of Guangdong Province of China, (SCXK [Yue] 2008-0020, SYXK [Yue] 2008-0085) and pair-housed in plastic cages in a temperature-controlled (25 ± 2°C) colony room with a 12/12-h light/dark cycle. The animals had free access to food and water. All experimental protocols were approved by the Center of Laboratory Animals of the Guangdong Institute of Microbiology. All efforts were made to minimize the number of animals used.

MATERIALS AND METHODS

Senescent astrocyte preparation

Murine cerebral cortical cells from a 1-day-old rat were dissociated after a 30 min trypsinization (0.15%) in D-Hanks. The cells were centrifuged, washed, and plated in 75 cm² culture flasks (1.5 × 10⁶/cm²) in Dulbecco's Modified Eagle Medium (DMEM)/F12 containing 12% fetal bovine serum (FBS), penicillin (100 U/ml), streptomycin (100 μg/ml), and B27 (Cyagen Biosciences, Suzhou, Jiangsu, China). The medium was replenished every 2 to 3 days after plating. On day 7 of culture, floating microglial cells and oligodendrocytes were removed after shaking at 280 rpm and 37°C for 18 h. Astroglia cells were harvested after trypsinization (0.15 % trypsin in Hank's Balanced Salt Solution, HBSS) for 30 min. After adding FBS (final concentration 12%), centrifugation, and washing, the cells were seeded into new flasks with DMEM/F12 followed by a medium change after 24 h. This subculture procedure was repeated weekly 2 - 3 times to remove residual oligodendrocytes and microglia in order to achieve a highly purified astrocyte culture. The cells were plated into 48-well cell culture plates (1 × 10⁵ cells/well), under normal or 20 g/L D-galactose conditions.

Animals

Total RNA was isolated using Qiazerol and miRNeasy Kits, including additional DNase I digestion. Ribosomal RNA was removed using Ribo-Zero™ Magnetic Gold Kit, with enzymatic degradation of linear RNA by RNase R enzyme. The first chain of cDNA was synthesized with six base random hexamers, with dNTPs, RNase H, and DNA polymerase I used to synthesize the second chain of cDNA. Purification was accomplished with a QiaQuick PCR kit, followed by elution with EB buffer after terminal repair, base A processing, and sequence joining. For next generation sequencing, 0.5 μg of ribosomal RNA-depleted RNA was fragmented and primed. Sequencing libraries were constructed using Illumina TruSeq RNA Sample Preparation Kits and were sequenced with an Illumina HiSeq™ 2500 flowcell.

Computational analysis of circRNAs

The reads were first mapped to the latest UCSC transcript set using Bowtie2 version 2.1.0 [52] and the gene expression level was estimated using RSEM v1.2.15 [53]. For lincRNA expression analysis, we used the transcripts set form Lncipedia (http://www.lncipedia.org). TMM (trimmed mean of M-values) was
used to normalize gene expression. Differentially expressed genes were identified using the edgeR program [54]. Genes showing altered expression with \(p < 0.05 \) and a more than 1.5 folds change was considered differentially expressed. Pathway and network analyses were performed using Ingenuity Pathway Analysis (IPA) software. IPA computes a score for each network according to the fit of the set of supplied focus genes. These scores indicate the likelihood of focus genes belonging to a network versus those obtained by chance. A score > 2 indicates a \(\leq 99\% \) confidence that a focus gene network was not generated by chance alone. The canonical pathways generated by IPA are the most significant for the uploaded data set. Fischer’s exact test with FDR option was used to calculate the significance of the canonical pathway.

For circRNA expression analysis, the reads were mapped to the genome using STAR [55]. DCC [56] was used to identify circRNA and to estimate the circRNA expression. TMM (trimmed mean of M-values) was used to normalize gene expression. Differentially expressed genes were identified using the edgeR program. miRanda [57] was used to predict miRNA targets of the circRNA. R was used to generate the figures.

CircRNA verification by quantitative real-time polymerase chain reaction (qRT-PCR)

To validate the reliability of high-throughput RNA sequencing and to explore the expression of circRNAs during aging, the expression levels of circRNAs were examined by qRT-PCR. With reference to Memczak’s method [58], two sets of primers for each circRNA were designed using Primer Express software version 5.0 (Supplementary Table 2): an outward-facing set which was expected to amplify only the circRNA, and an opposite-directed set to amplify the linear form.

Total RNA was extracted (TRizol® Reagent, Life technologies), digested using RNase R, and purified. cDNA was synthesized using a Geneseeed® II First Strand cDNA Synthesis Kit (Geneseeed, USA). Outward-facing primers were designed to amplify the fragment across the junction from cDNA, then the fragment was sequenced by Sangon Biological Engineering Company (Shanghai China). qRT-PCR was performed using Geneseeed® qPCR SYBR® Green Master Mix (Geneseeed, USA), and PCR-specific amplification was conducted with an ABI 7500 (Applied Biosystems, USA). The expression of circRNAs was defined based on the threshold cycle (Ct), and relative expression levels were calculated via the \(2^{-\Delta\Delta Ct} \) method. GAPDH served as an internal standard control with all reactions performed in triplicate.

Cell cycle, apoptosis, proliferation, and autophagy evaluation

An astrocyte over expressing circNF1-419 was prepared. Its influence on cell cycle, apoptosis, and proliferation was evaluated as described [59], Wang K et al., 2016. Autophagy levels were measured by western blot and confirmed by transmission electron microscopy. Briefly, cells were fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer and stored at 4°C until embedding. The cells were post fixed with 1% OsO4 in 0.1 M cacodylate buffer (pH 7.2) containing 0.1% CaCl2 for 1 h at 4°C. After rinsing with cold distilled water, cells were dehydrated through a graded series of ethanol (30% – 100%). The samples were embedded in Embed-812 (EMS, 14120). After polymerization of the resin at 60°C for 36 h, serial sections were cut using an ultramicrotome (Leica) and mounted on formvar-coated slot grids (EMS, GA300-Cu). Sections were stained with 4% uranyl acetate and lead citrate, and examined with a Tecnai G2 F20 S-TWIN transmission electron microscope (FEI).

Western blotting

Cells were seeded into 6-well culture plates at \(5 \times 10^6 \) cells/well, and were washed twice with D-Hanks solution when the cells reached 80% confluence. The cells were harvested and lysed with protein lysis buffer and the protein concentration determined using a Coomassie Brilliant Blue G250 assay kit (Nanjing JianCheng Bioengineering Institute, China). Levels of PI3Kp85 (Protein, 60225-1-AP), PI3Kp100 (Protein, 60224-1-AP), AMPK (abcam, 80039), p53 (abcam, 66064), Erk1/2 (abcam, 17942), Atg13, ULK1 (abcam, 167139), Beclin-1 (Protein, 11306-1-AP), Atg14 (Protein, 19491-1-AP), Atg5 (Protein, 10458-1-AP), Atg12 (Protein, 1825-1-AP), LC3A (abcam, 128025), LC3B I, and LC3B II proteins were assessed by western blot with band intensity quantified using ImageJ software (NIH) as described previously [25]. Briefly, global brain tissue was dissected from treated mice (purchased from the Beijing HFK Bioscience Co., LTD [Certificate No: SCXK (Jing) 2014-0004]) and proteins extracted with radioimmuno-precipitation assay (RIPA) lysis buffer (Thermo Scientific™ T-PERTM Tissue Protein Extraction Reagent, 78510). The proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred onto polyvinylidene fluoride membranes. After blocking with 5% nonfat dry milk in Tris-buffered saline (20 mM Tris-HCl, 500 mM NaCl, pH 7.4) with 0.2% Tween-20 (Aladdin, T104863), the membranes were probed with antibodies overnight at 4°C, followed by incubation with a horseradish peroxidase-conjugated goat anti-mouse (Servicebio, G2211-1-A) or goat anti-rabbit (Servicebio, G2210-2-A) IgG secondary antibody (1:2000). The
antibodies were as follows; anti-Abeita A4, -APOE, -BACE1, -p53 (abcam, 66064), -p16 (Affinity, AF0228), -p21, -p-Tau-396, -TNF-α (abcam, 9739), -p-Tau-202, obtained from Affinity as well as GAPDH (CST, 2118L) and β-Actin (CST, 4970S). Band intensity was quantified using ImageJ software (NIH).

The differentially expressed proteins were quantified using Wes™ and the Simple Western from ProteinSimple of RNA pull down samples [60].

Histopathology and immunostaining

The brains of animals were dissected. A total of four brains from each group were fixed in 4% paraformaldehyde solution and prepared as paraffin sections. Sections were stained with hematoxylin-eosin (H&E), and immunostained for LC3A, Tau, p-Tau, Aβ A4, APOE, and BACE1 using paraffin-embedded 3 μm sections and a two-step peroxidase conjugated polymer technique (DAKO Envision kit, DAKO, Carpinteria, CA). Slides were observed by light microscopy (Chen et al., 2014; Zeng et al., 2013).

RNA pull-down assay

Based on a previous study [59], interaction between specific proteins and circNF1-419 can be detected using a Biotin RNA probe. Briefly, based on the sequence of the circNF1-419 introns, a biotin-labeled specific pull down probe was designed and synthesized. The biotin-labeled RNA probe (1 μg) was denatured to form secondary structure, and 40 μl of magnetic beads were added to prepare a probe–magnetic bead complex. Brain tissues treated with an RNA interfering system (sscircNF1-419-AAV) and an over-expressing circNF1-419 system (sscircNF1-419-AAV) were collected and whole proteins were extracted for RNA pull-down. After interaction of the RNA-binding proteins with RNA, the samples were washed and the RNA binding protein complexes eluted. The samples were collected and 15 μl of each sample was subjected to liquid chromatography–mass spectrometry (LC-MS) and western blot analysis.

RNA binding protein immunoprecipitation assay (RIP)

After circRNA pull down, the RNA binding protein (RBP) immunoprecipitation (RIP) assay was carried out [59]. Briefly, brain tissues were harvested with RIPA lysis buffer and sheared mechanically using a homogenizer. Biotin-labeled binding protein antibodies were added to cell extracts and incubated overnight at 4°C, followed by the addition of streptavidin-coated magnetic beads, and incubation for a further 4 h at 4°C. The magnetic beads were pelleted, washed and re-suspended in 1 mL Trizol. The isolated RNA was dissolved in 10-20 μl of diethyl pyrocarbonate (DEPC) and circNF1-419 measured by qRT-PCR.

Statistical analysis

Results from this study are presented as means ± SEM. Statistical analysis was performed using a two-tailed Student’s t test. A p-value < 0.05 was considered statistically significant.

Ethics approval

The animal protocols used in this work were approved by the Institutional Animal Care and Use Committee of the Center of Laboratory Animals of the Guangdong Institute of Microbiology.

AUTHOR CONTRIBUTIONS

Chen DL, Xie YZ, Yang BB and Wu QP designed the study, carried out the computational analyses and wrote the manuscript. Lai GX, Tang XC and Guo YR feed the animals and collected the physiological data and fecal samples, and extracted ruminal DNA. Lai GX, Guo YR and Tang XC help collect animal physiological data and brain samples. Chen DL, Shuai O, Wang DD and Yong TQ collected data regarding the microbial metabolic networks and proteomic analysis. Liu YD, Yang X, Hu GY and Lai GX helped the histopathological examination experiment, Tang XC and Guo YR did the western blotting analysis. Xie YZ, Yang BB and Wu QP helped to design the study and to develop the metagenomic analysis tools and reviewed the manuscript. All authors have read and approved the final manuscript.

CONFLICTS OF INTEREST

All the authors have declared no conflicts of interest.

FUNDING

This work was supported through financial support from the National Natural Science Foundation of China (81701086), the Guangdong Science and Technology Plan Projects 2016A050502032, 2016A020215022, 2015A020211021, 2018B020205001 the Guangzhou Science and Technology Plan Projects (201504281708257; 201604020009), the High-level Leading Talent Introduction Program of GDAS (2016GDASRC-0102), the Nanyue Microbial Talents Cultivation Fund of Guangdong Institute of Microbiology (GDIMYET201404203), and the Guangzhou Medical University Research Projects (2016C28).
REFERENCES

1. Sun J, Guo Y, Wang X, Zeng Q. mHealth for aging China: opportunities and challenges. Aging Dis. 2016; 7:53–67. https://doi.org/10.14336/AD.2015.1011 PMID:26816664

2. Rojas M, Mora AL, Kapetanaki M, Weathington N, Gladwin M, Eickelberg O, and Clinical Impact and Cellular and Molecular Pathways. Aging and lung disease. clinical impact and cellular and molecular pathways. Ann Am Thorac Soc. 2015; 12:S222–27. https://doi.org/10.1513/AnnalsATS.201508-484PL PMID:26653202

3. Liu B, Le KK, Park MA, Wang S, Belanger AP, Dubey S, Frost JL, Holton P, Reiser V, Jones PA, Trigg W, Di Carli MF, Lemere CA. In vivo detection of age- and disease-related increases in neuroinflammation by 18F-GE180 TSPO microPET imaging in wild-type and Alzheimer’s transgenic mice. J Neurosci. 2015; 35:15716–30. https://doi.org/10.1523/JNEUROSCI.0996-15.2015 PMID:26609163

4. Cha MY, Kim DK, Mook-Jung I. The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp Mol Med. 2015; 47:e150. https://doi.org/10.1038/emm.2014.122 PMID:25766619

5. Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta. 2014; 1842:1219–31. https://doi.org/10.1016/j.bbadis.2013.09.010 PMID:24071439

6. Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, Zhou QB, Huang YY, Liu YJ, Wawrousek E, Chen T, Li SB, Xu M, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature. 2013; 494:90–94. https://doi.org/10.1038/nature11748 PMID:23242137

7. Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron. 2009; 64:110–22. https://doi.org/10.1016/j.neuron.2009.08.039 PMID:19840553

8. Wu H, Brown EV, Acharya NK, Appelt DM, Marks A, Nagele RG, Venkataraman V. Age-dependent increase of blood-brain barrier permeability and neuron-binding autoantibodies in S100B knockout mice. Brain Res. 2016; 1637:154–167. https://doi.org/10.1016/j.brainres.2016.02.026 PMID:26907191

9. Al-Mashhadi S, Simpson JE, Heath PR, Dickman M, Forster G, Matthews FE, Brayne C, Ince PG, Wharton SB, and Medical Research Council Cognitive Function and Ageing Study. Oxidative glial cell damage associated with white matter lesions in the aging human brain. Brain Pathol. 2015; 25:565–74. https://doi.org/10.1111/bpa.12216 PMID:25311358

10. Robillard KN, Lee KM, Chiu KB, MacLean AG. Glial cell morphological and density changes through the lifespan of rhesus macaques. Brain Behav Immun. 2016; 55:60–69. https://doi.org/10.1016/j.bbi.2016.01.006 PMID:26851132

11. Funes HA, Blas-Garcia A, Esplugues JV, Apostolova N. Efavirenz alters mitochondrial respiratory function in cultured neuron and glial cell lines. J Antimicrob Chemother. 2015; 70:2249–54. https://doi.org/10.1093/jac/dkv098 PMID:25925594

12. Lyons DA, Talbot WS. Glial cell development and function in zebrafish. Cold Spring Harb Perspect Biol. 2014; 7:a020586. https://doi.org/10.1101/cshperspect.a020586 PMID:25395296

13. Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT, Fancy SP, Merkle F, Kessaris N, Alvarez-Buylla A, Richardson WD, Rowitch DH. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science. 2012; 337:358–62. https://doi.org/10.1126/science.1222381 PMID:22745251

14. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kügler S, Ikezu T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci. 2015; 18:1584–93. https://doi.org/10.1038/nn.4132 PMID:26436904

15. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federox HJ, Miller BL, Goetzl EJ. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement. 2015; 11:600–7.e1. https://doi.org/10.1016/j.jalz.2014.06.008 PMID:25130657

16. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018; 562:578–82. https://doi.org/10.1038/s41586-018-0543-v PMID:30232451

17. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, et
al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; 495:333–38.
https://doi.org/10.1038/nature11928 PMID:23464348

18. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015; 18:603–10.
https://doi.org/10.1038/nn.3975 PMID:25714049

19. Hentze MW, Preiss T. Circular RNAs: splicing’s enigma variations. EMBO J. 2013; 32:923–25.
https://doi.org/10.1038/emboj.2013.53 PMID:23463100

20. Sosińska P, Mikuła-Pietrasik J, Ryżek M, Naumowicz E, Książek K. Specificity of cytochemical and fluorescence methods of senescence-associated β-galactosidase detection for ageing driven by replication and time. Biogerontology. 2014; 15:407–13.
https://doi.org/10.1007/s10522-014-9505-4 PMID:24878779

21. Yu KR, Park SB, Jung JW, Seo MS, Hong IS, Kim HS, Seo Y, Kang TW, Lee JY, Kurtz A, Kang KS. HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway. Stem Cell Res. 2013; 10:156–65.
https://doi.org/10.1016/j.scr.2012.11.002 PMID:23276696

22. Duan J, Duan J, Zhang Z, Tong T. Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening. Int J Biochem Cell Biol. 2005; 37:1407–20.
https://doi.org/10.1016/j.biocel.2005.01.010 PMID:15833273

23. Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014; 28:2233–47.
https://doi.org/10.1101/gad.251926.114 PMID:25281217

24. Kaul A, Toonen JA, Cimino PJ, Gianino SM, Gutmann DH. Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth. Neuro Oncol. 2015; 17:843–53.
https://doi.org/10.1093/neuonc/nou329 PMID:25534823

25. Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD. Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina. Autophagy. 2014; 10:822–34.
https://doi.org/10.4161/auto.28148 PMID:24584154

26. Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy. 2018; 14:1164–84.
https://doi.org/10.1080/15548627.2018.1458173 PMID:29938598

27. Martinez-Lopez N, Athonvarangkul D, Singh R. Autophagy and aging. Adv Exp Med Biol. 2015; 847:73–87.
https://doi.org/10.1007/978-1-4939-2404-2_3 PMID:25916586

28. Mouls M, Vindis C. Autophagy in metabolic age-related human diseases. Cells. 2018; 7:E149.
https://doi.org/10.3390/cells7100149 PMID:30249977

29. Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy. 2015; 11:867–80.
https://doi.org/10.1080/15548627.2015.1034410 PMID:25836756

30. Metaxakis A, Ploumi C, Tavernarakis N. Autophagy in age-associated neurodegeneration. Cells. 2018; 7:E37.
https://doi.org/10.3390/cells7050037 PMID:29734735

31. Barbero-Camps E, Roca-Agujetas V, Bartolossi I, de Dios C, Fernández-Checa JC, Mari M, Morales A, Hartmann T, Colell A. Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy. 2018; 14:1129–54.
https://doi.org/10.1080/15548627.2018.1438807 PMID:29862881

32. Shin JY, Park HJ, Kim HN, Oh SH, Bae JS, Ha HJ, Lee PH. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy. 2014; 10:32–44.
https://doi.org/10.4161/auto.26508 PMID:24149893

33. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC. Aβ secretion and plaque formation depend on autophagy. Cell Rep. 2013; 5:61–69.
https://doi.org/10.1016/j.cell.2013.08.042 PMID:24095740

34. Feng Y, Liang J, Zhai Y, Sun J, Wang J, She X, Gu Q, Liu Y, Zhu H, Luo X, Sun X. Autophagy activated by SIRT6 regulates Aβ induced inflammatory response in RPEs. Biochem Biophys Res Commun. 2018; 496:1148–54.
https://doi.org/10.1016/j.bbrc.2018.01.159 PMID:29402409

35. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, et al. Dementia prevention, intervention, and care. Lancet. 2017; 390:2673–734.
https://doi.org/10.1016/S0140-6736(17)31363-6 PMID:28735855
36. Rodríguez JJ, Verkhratsky A. Neuroglial roots of neurodegenerative diseases? Mol Neurobiol. 2011; 43:87–96.
 https://doi.org/10.1007/s12035-010-8157-x
 PMID:21161612
37. Funk GD, Rajani V, Alvares TS, Revill AL, Zhang Y, Chu NY, Biancardi V, Linhares-Taxini C, Katzell A, Reklow R. Neuroglia and their roles in central respiratory control; an overview. Comp Biochem Physiol A Mol Integr Physiol. 2015; 186:83–95.
 https://doi.org/10.1016/j.cbpa.2015.01.010
 PMID:25634606
38. Rodríguez JJ, Butt AM, Gardenal E, Parpura V, Verkhratsky A. Complex and differential glial responses in Alzheimer’s disease and ageing. Curr Alzheimer Res. 2016; 13:343–58.
 https://doi.org/10.2174/156720501366616029112911
 PMID:26923267
39. Verkhratsky A, Rodríguez JJ, Parpura V. Neuroglia in ageing and disease. Cell Tissue Res. 2014; 357:493–503.
 https://doi.org/10.1007/s00441-014-1814-z
 PMID:24652503
40. Dzamba D, Harantova L, Butenko O, Anderova M. Glial Cells - The Key Elements of Alzheimer’s Disease. Curr Alzheimer Res. 2016; 13:894–911.
 https://doi.org/10.2174/156720501366616012909592
 PMID:26825092
41. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013; 495:384–88.
 https://doi.org/10.1038/nature11993
 PMID:23446346
42. Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB. Identifying and characterizing circRNA-protein interaction. Theranostics. 2017; 7:4183–91.
 https://doi.org/10.7150/thno.21299
 PMID:29158818
43. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, Huang S, Xie B, Zhang N. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 2018; 110:304–15.
 https://doi.org/10.1093/jnci/djx166
 PMID:28903484
44. Xie K, Colgan LA, Dao MT, Muntean BS, Sutton LP, Orandi C, Boye SL, Boye SE, Shih CC, Li Y, Xu B, Smith RG, Yasuda R, Martemyanov KA. Martemyanov KA6. NF1 is a direct G protein effector essential for opioid signaling to Ras in the striatum. Curr Biol. 2016; 26:2992–3003.
 https://doi.org/10.1016/j.cub.2016.09.010
 PMID:27773571
45. Reis CR, Chen PH, Srinivasan S, Aguet F, Mettlen M, Schmid SL. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J. 2015; 34:2132–46.
 https://doi.org/10.15252/emboj.201591518
 PMID:26139537
46. Antony B, Burd C, De Camilli P, Chen E, Daumke O, Faebler K, Ford M, Frolov VA, Frost A, Hinshaw JE, Kirchhausen T, Kolozov MM, Lenz M, et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 2016; 35:2270–84.
 https://doi.org/10.15252/emboj.201694613
 PMID:27670760
47. Uchida N, Takasaki K, Sakata Y, Nogami A, Oishi H, Watanabe T, Shindo T, Egashira N, Kubota K, Katsurabayashi S, Mishima K, Fujiwara M, Nishimura R, Iwasaki K. Cholinergic involvement and synaptic dynamin 1 expression in YOKUkansan-mediated improvement of spatial memory in a rat model of early Alzheimer’s disease. Phytother Res. 2013; 27:966–72.
 https://doi.org/10.1002/ptr.4818
 PMID:22888033
48. Mulugeta E, Vallortigara J, Francis PT, Hye A, Kalaria RN, Perry EK, Lovestone S, Ballard CG. Dynamin protein in stroke and vascular dementia. Neurosci Lett. 2014; 563:118–22.
 https://doi.org/10.1016/j.neulet.2014.01.045
 PMID:24486840
49. Fà M, Staniszewski A, Saeed F, Francis YI, Arancio O. Dynamin 1 is required for memory formation. PLoS One. 2014; 9:e91954.
 https://doi.org/10.1371/journal.pone.0091954
 PMID:24643165
50. Zhu L, Su M, Lucast L, Liu L, Netzer WJ, Gandy SE, Cai D. Dynamin 1 regulates amyloid generation through modulation of BACE-1. PLoS One. 2012; 7:e45033.
 https://doi.org/10.1371/journal.pone.0045033
 PMID:23024787
51. Kelly BL, Ferreira A. beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J Biol Chem. 2006; 281:28079–89.
 https://doi.org/10.1074/jbc.M605081200
 PMID:16864575
52. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357–59.
 https://doi.org/10.1038/nmeth.1923
 PMID:22388286
53. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12:323.
 https://doi.org/10.1186/1471-2105-12-323
 PMID:21816040
54. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26:139–40. https://doi.org/10.1093/bioinformatics/btp616 PMID:19910308

55. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. https://doi.org/10.1093/bioinformatics/bts635 PMID:23104886

56. Cheng J, Metge F, Dieterich C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics. 2016; 32:1094–96. https://doi.org/10.1093/bioinformatics/btv656 PMID:26556385

57. Enright AJ, John B, Gaul U, Tuschi T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003; 5:R1. https://doi.org/10.1186/gb-2003-5-1-r1 PMID:14709173

58. Chen I, Chen CY, Chuang TJ. Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA. 2015; 6:563–79. https://doi.org/10.1002/wrna.1294 PMID:26230526

59. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016; 44:2846–58. https://doi.org/10.1093/nar/gkw027 PMID:26861625

60. Gentalen ET, Proctor JM. Using the Peggy Simple Western system for fine needle aspirate analysis. Methods Mol Biol. 2015; 1219:139–55. https://doi.org/10.1007/978-1-4939-1661-0_11 PMID:25308267
Supplementary Figure 1. Senescence-regulated astroglial circRNAs. (A) Base information TAB after filter; (B) Genomic alignment data quality assessment; (C) Length distribution of circRNA; (D) circRNAs distribution on chromosome. Sequencing libraries were constructed using Illumina TruSeq RNA Sample Preparation Kits and were sequenced with an Illumina HiSeq™ 2500 flowcell.
Supplementary Figure 2. The enrichment of different expression circRNAs in the senescence-regulated astrocyte.
Supplementary Figure 3. The KEGG enrichment (A) and reactome enrichment (B) of different expression circRNAs in the senescence-regulated astrocyte.
Supplementary Figure 4. The construction of over-expression circNF1-419-transfected rat astrocyte. (A) vector of over-expression circNF1-419 construction; (B) Lentivirus packaging and circNF1-419- transfected astrocytes.
Supplementary Figure 5. AAV viral transduction system with RNA interference (sicircNF1-419-AAV, A, B) and separately an over-expressing circNF1-419 (sscircNF1-419-AAV, C, D).
Supplementary Figure 6. The AD marker proteins such as Tau, p-Tau, Aβ A4, APOE, and BACE1 were inhibited, and the senescence-associated biomarkers p21 and p35 were improved after treatment with circNF1-419-OV-AAV for 2 months, also some inflammatory factors, NF-κB and TNF-α were inhibited.
Supplementary Figure 7. Fluorescent in situ hybridization (FISH) was used to detect circNF1-419-OV-AAV in infected brain tissue, (A) cortex and (B) hippocampus.
Supplementary Figure 8. The computer-aided molecular simulation demonstrated that the dynamin-1 and AP2B1 protein binds the circNF1-419.
Supplementary Figure 9. CircNF1-419 improves the brain transcriptome of AD mice. The KEGG pathway analysis of different expressed mRNA of brain tissues were showed after injection of an AAV viral transduction system with RNA interference (sicircNF1-419-AAV) and separately an over-expressing circNF1-419 (sscircNF1-419-AAV).
Supplementary Tables

Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. Different expression of circRNAs in D-galactose induced senescent astrocyte (D2 vs. D0, p < 0.05 and more than 1.5 fold changes).

Supplementary Table 2. PCR primers.

Primer name	Sequence (5′->3′)	Product size (bp)
β-actin	β-actin-F1: AGGGAAATCGTGCGTGACAT	
	β-actin-R1: GAACCGCTCATTGCGGATAG	
Cir- SIRT1-623	Cir- SIRT1-623-F3: GAGCAGGTTGCAGGAATCCA	
	Cir- SIRT1-623-R3: ACAAAAGTATATGGACCTGA	
Cir- SIRT1-395	Cir- SIRT1-395-F2: TTCAAGTTTGGCAAAAGGTCCA	
	Cir- SIRT1-395-R2: AATCTGACACAGTGTCAATAT	
Cir-CTGF-212	Cir-CTGF-212-F1: CTAGAGGAAAAACATTAAGCCT	
	Cir-CTGF-212-R2: ACAGGTCTTTAGAACAGGC	
rno_circ_003172	rno_circ_003172-F2: AGCTCGACTTCTACAGC	
	rno_circ_003172-R2: GTCCACACTCCGGGATAG	
rno_circ_002671	rno_circ_002671-F1: CCACCAACAGATCCAGGAA	
	rno_circ_002671-R1: CTCTTGAGTATCTGTTCTG	
rno_circ_002276	rno_circ_002276-F1: ACAAGAAGCTTGCTCAGGTC	
	rno_circ_002276-R1: ATGTCTGTCGCTCGTCTGCT	
rno_circ_001216	rno_circ_001216-F2: GGTCCTCCAAGGAGGTG	
	rno_circ_001216-R2: ACACACCGCCATGCAGTACTC	
rno_circ_001215	rno_circ_001215-F2: GCGGTGCCTCCAAGGTTCC	
	rno_circ_001215-R2: ACGGCTCTCTGTCAGCCTTGG	
rno_circ_000987	rno_circ_000987-F2: CTGGCTGCAAGTAAAGTATT	
	rno_circ_000987-R2: TGAATAGAAGGCTACTCTG	
rno_circ_NF1-419	rno_circ_NF1-419-F2: AGTCTGAATTCTCAAAGCCTTC	
	rno_circ_NF1-419-R3: AGCTTCTCCAAATATCCACTCAT	
Supplementary Table 3. The top 30 possible proteins pulled down by *circNF1-419* were identified using LC-MS in SAMP8-sscircNF1-419 and KM-sscircNF1-419.

NO.	SAMP8-sscircNF1-419	KM-sscircNF1-419								
	Total	% Cov	Accession	Total	% Cov	Accession				
1	80.71	56.94	sp	Q05193	DYN1_HUMAN	89.04	59.95	sp	Q05193	DYN1_HUMAN
2	71.27	25.16	sp	Q13813	SPTN1_HUMAN	66.12	51.71	sp	P04264	K2C1_HUMAN
3	63.97	40.43	sp	Q095782	AP2A1_HUMAN	64.24	20.75	sp	Q13813	SPTN1_HUMAN
4	63.6	56.52	sp	Q16181	SEPT7_HUMAN	62.10	43.09	sp	Q95782	AP2A1_HUMAN
5	60.07	43.22	sp	P63010	AP2B1_HUMAN	60.15	38.53	sp	P63010	AP2B1_HUMAN
6	59.00	43.17	sp	P04264	K2C1_HUMAN	56.32	47.55	sp	Q95782	AP2A1_HUMAN
7	50.11	12.94	sp	Q01484	ANK2_HUMAN	54.03	14.67	sp	Q16181	SEPT7_HUMAN
8	48.02	21.15	sp	Q01082	SPTB2_HUMAN	54.05	56.98	sp	Q95782	AP2A1_HUMAN
9	46.69	55.06	sp	Q13885	TBB2A_HUMAN	47.23	41.07	sp	P04264	K2C1_HUMAN
10	48.07	46.85	sp	Q9NVA2	SEP11_HUMAN	46.93	60.67	sp	Q13885	TBB2A_HUMAN
11	45.24	48.94	sp	P17600	SYN1_HUMAN	42.90	27.60	sp	Q9Y2J2	E41L3_HUMAN
12	43.7	14.06	sp	P46821	MAP1B_HUMAN	42.82	52.70	sp	Q95782	AP2A1_HUMAN
13	40.41	55.11	sp	Q05639	EF1A2_HUMAN	42.48	54.47	sp	Q16181	SEPT7_HUMAN
14	39.54	25.98	sp	Q96F07	CYFP2_HUMAN	41.19	77.07	sp	Q95782	AP2A1_HUMAN
15	39.17	49.52	sp	Q9NVA2	SEP11_HUMAN	39.68	12.64	sp	Q95782	AP2A1_HUMAN
16	38.79	38.47	sp	P23246	SFPQ_HUMAN	37.45	37.77	sp	P11142	HSP7C_HUMAN
17	38.39	44.44	sp	Q99719	SEPT5_HUMAN	37.05	40.92	sp	Q16181	SEPT7_HUMAN
18	38.36	47.39	sp	P21579	SYT1_HUMAN	36.65	21.21	sp	Q9Y2J2	E41L3_HUMAN
19	38.13	43.96	sp	P11142	HSP7C_HUMAN	35.98	48.37	sp	Q96F07	CYFP2_HUMAN
20	37.39	49.52	sp	Q8N4C8	MINK1_HUMAN	34.54	16.58	sp	Q16181	SEPT7_HUMAN
21	35.56	23.35	sp	P10636	TAU_HUMAN	34.39	53.33	sp	Q96F07	CYFP2_HUMAN
22	35.06	65.07	sp	P63261	ACTG_HUMAN	33.85	32.81	sp	Q16181	SEPT7_HUMAN
23	34.20	59.08	sp	Q96CW1	AP2M1_HUMAN	32.43	55.28	sp	Q9NVA2	SEP11_HUMAN
24	32.98	10.67	sp	P78536	PI42B_HUMAN	32.32	45.68	sp	Q96F07	CYFP2_HUMAN
25	30.79	34.95	sp	Q7KZF4	SNDC1_HUMAN	31.97	16.37	sp	Q96F07	CYFP2_HUMAN
26	30.11	50.28	sp	P06576	ATPB_HUMAN	31.79	36.70	sp	Q96F07	CYFP2_HUMAN
27	29.88	39.56	sp	P61764	STXB1_HUMAN	29.88	39.56	sp	Q96F07	CYFP2_HUMAN
28	29.67	49.22	sp	Q71U36	TBA1A_HUMAN	29.67	49.22	sp	Q96F07	CYFP2_HUMAN
29	29.05	39.78	sp	P25705	ATPA_HUMAN	29.05	39.78	sp	Q96F07	CYFP2_HUMAN

Please browse Full Text version to see the data of Supplementary Table 4.

Supplementary Table 4. Different expression of mRNA in SAMP8 and sscircNF-419-OV-AAV infected mice (*p < 0.05* and more than 3 folds changes).