A Note on the Spectral Area of Toeplitz Operators

Cheng Chu and Dmitry Khavinson

Abstract. In this note, we show that for hyponormal Toeplitz operators, there exists a lower bound for the area of the spectrum. This extends the known estimate for the spectral area of Toeplitz operators with an analytic symbol.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane. Let L^2 denote the Lebesgue space of square integrable functions on the unit circle $\partial \mathbb{D}$. The Hardy space H^2 is the subspace of L^2 of analytic functions on \mathbb{D}. Let P be the orthogonal projection from L^2 to H^2. For $f \in L^\infty$, the space of bounded Lebesgue measurable functions on $\partial \mathbb{D}$, the Toeplitz operator T_f and the Hankel operator H_f with symbol f are defined on H^2 by

$$T_fh = P(fh),$$

and

$$H_fh = U(I - P)(fh),$$

for $h \in H^2$. Here U is the unitary operator on L^2 defined by

$$Uh(z) = \overline{z}h(\overline{z}).$$

Recall that the spectrum of a linear operator T, denoted as $sp(T)$, is the set of complex numbers λ such that $T - \lambda I$ is not invertible; here I denotes the identity operator. Let $[T^*, T]$ denote the operator $T^*T - TT^*$, called the self-commutator of T. An operator T is called hyponormal if $[T^*, T]$ is positive. Hyponormal operators satisfy the celebrated Putnam inequality [11]

Theorem 1.1. If T is a hyponormal operator, then

$$\| [T^*, T] \| \leq \frac{\text{Area}(sp(T))}{\pi}.$$
Notice that a Toeplitz operator with analytic symbol ϕ is hyponormal, and by the Spectral Mapping Theorem (cf. [12, p. 263]), $sp(T_\phi) = \phi(\mathbb{D})$. The lower bounds of the area of $sp(T_\phi)$ were obtained in [9] (see [2],[1] [13] and [14] for generalizations to uniform algebras and further discussions). Together with Putnam’s inequality such lower bounds were used to prove the isoperimetric inequality (see [4],[5] and the references there). Recently, there has been revived interest in the context of analytic Topelitz operators on the Bergman space (cf. [3], [10] and [7]). Together with Putnam’s inequality, the latter lower bounds have provided an alternative proof of the celebrated St. Venant’s inequality for torsional rigidity.

In the general case, Harold Widom [15] proved the following theorem for arbitrary symbols.

Theorem 1.2. Every Toeplitz operator has a connected spectrum.

The main purpose of this note is to show that for a rather large class of Topelitz operators on H^2, hyponormal operators with a harmonic symbol, there is still a lower bound for the area of the spectrum, similar to the lower bound obtained in [9] in the context of uniform algebras.

We shall use the following characterization of the hyponormal Toeplitz operators given by Cowen in [6]

Theorem 1.3. Let $\varphi \in L^\infty(\partial \mathbb{D})$, where $\varphi = f + \bar{g}$ for f and g in H^2. Then T_φ is hyponormal if and only if

$$g = c + T_h f,$$

for some constant c and $h \in H^\infty$ with $\|h\|_\infty \leq 1$.

2. Main Results

In this section, we obtain the lower bound for the area of the spectrum for hyponormal Toeplitz operators by estimating the self-commutators.

Theorem 2.1. If

$$\varphi = f + T_h f,$$

for $f, h \in H^\infty$, $\|h\|_\infty \leq 1$ and $h(0) = 0$. Then

$$\| [T_\varphi^*, T_\varphi] \| \geq \int |f - f(0)|^2 \frac{d\theta}{2\pi} = ||P(\varphi) - \varphi(0)||_2^2.$$

Proof. Let

(2.1)

$$g = T_h f.$$

For every p in H^2,

$$\langle [T_\varphi^*, T_\varphi]p, p \rangle = (T_\varphi p, T_\varphi p) - (T_\varphi^* p, T_\varphi^* p)$$

$$= (fp + P(gp), fp + P(gp)) - (gp + P(f\bar{p}), gp + P(f\bar{p}))$$

$$= ||fp||^2 - ||P(f\bar{p})||^2 - ||gp||^2 + ||P(gp)||^2$$

$$= ||f\bar{p}||^2 - ||P(f\bar{p})||^2 - ||gp||^2 + ||P(gp)||^2$$

$$= ||H_f p||^2 - ||H_g p||^2,$$
where $|| \cdot ||$ means the $|| \cdot ||_{L^2(\mathbb{D})}$. The third equality holds because

$$\langle fp, P(\bar{g}p) \rangle = \langle fp, \bar{g}p \rangle = \langle gp, \bar{f}p \rangle = \langle gp, P(\bar{f}p) \rangle.$$

By the computation in [6, p. 4], (2.1) implies

$$H_{\beta} = T_k H_f,$$

where $k(z) = \overline{h(z)}$. Thus

$$(2.2) \quad \langle [T_k^*, T_\varphi]p, p \rangle = ||H_f p||^2 - ||T_k H_f p||^2,$$

for $k \in H^\infty$, $||k||_\infty \leq 1$ and $k(0) = 0$.

First, we assume k is a Blaschke product vanishing at 0. Then

$$|k| = 1 \text{ on } \partial \mathbb{D}.$$

Let $u = H_f p \in H^2$. By (2.2) we have

$$(2.3) \quad \langle [T_k^*, T_\varphi]p, p \rangle = ||u||^2 - ||T_k u||^2 = ||u||^2 - ||\bar{k} u||^2 + ||H_k u||^2 = ||H_k u||^2.$$

Then

$$||H_k u|| = ||(I - P) \overline{k u}|| = ||\overline{k u} - \overline{P(k u)}|| \geq \sup_{m(0) = 0} \frac{|(\overline{\overline{k u} - \overline{P(k u)}}, m)|}{||m||} \geq \sup_{m(0) = 0} \frac{1}{||m||} \int |\overline{\overline{k u} m}| \frac{d\theta}{2\pi}.$$

The last equality holds because $m(0) = 0$ implies that \overline{m} is orthogonal to H^2. Since $k(0) = 0$, taking $m = k$, we find

$$(2.4) \quad ||H_k u|| \geq \int |u(0)| d\theta = ||u||.$$

Next, suppose k is a convex linear combination of Blaschke products vanishing at 0, i.e.

$$k = \alpha_1 B_1 + \alpha_2 B_2 + ... + \alpha_l B_l,$$

where B_j’s are Blaschke products with $B_j(0) = 0$, $\alpha_j \in [0, 1]$ and $\sum_{j=1}^{l} \alpha_j = 1$.

By (2.3) and (2.4), for each j

$$||u||^2 - ||T_{B_j} u||^2 = ||H_{B_j} u||^2 \geq ||u(0)||^2 \Rightarrow ||T_{B_j} u|| \leq \sqrt{||u||^2 - ||u(0)||^2} = ||u - u(0)||.$$

Then

$$(2.5) \quad ||u||^2 - ||T_k u||^2 = ||u||^2 - \left|\alpha_1 T_{B_1} u + \alpha_2 T_{B_2} u + ... + \alpha_l T_{B_l} u \right|^2 \geq ||u||^2 - \left(\alpha_1 ||T_{B_1} u|| + \alpha_2 ||T_{B_2} u|| + ... + \alpha_l ||T_{B_l} u|| \right)^2 \geq ||u||^2 - ||u - u(0)||^2 = ||u(0)||^2.$$
In general, for \(k \) in the closed unit ball of \(H^\infty \), vanishing at 0, by Carathéodory’s Theorem (cf. [8, p. 6]), there exists a sequence \(\{B_n\} \) of finite Blaschke products such that
\[
B_n \longrightarrow k \quad \text{pointwise on } D.
\]
Since \(B_n \)'s are bounded by 1 in \(H^2 \), passing to a subsequence we may assume
\[
B_n \longrightarrow k \quad \text{weakly in } H^2.
\]
Then by [12, Theorem 3.13], there is a sequence \(\{k_n\} \) of convex linear combinations of Blaschke products such that
\[
k_n \longrightarrow k \quad \text{in } H^2.
\]
Since \(k(0) = 0 \), we can let those \(k_n \)'s be convex linear combinations of Blaschke products vanishing at 0.

Then
\[
||T_{k_n^*} u - T_k u|| = ||P(\tilde{k}_n u - \tilde{k} u)|| \leq ||k_n - k|| \cdot ||u|| \rightarrow 0.
\]
Since (2.5) holds for every \(k_n \), we have
\[
\langle [T_{\varphi^*}, T_{\varphi}] p, p \rangle = ||u||^2 - ||T_k u||^2 = \lim_{n \to \infty} (||u||^2 - ||T_k u||^2) \geq ||u(0)||^2 = ||(H_{f^*} p)(0)||^2.
\]
By the definition of Hankel operator (1.1),
\[
||(H_{f^*} p)(0)|| = ||\langle \bar{p} \bar{f}, \bar{z} \rangle|| = \left| \int \bar{f} \bar{z} p \frac{d\theta}{2\pi} \right|.
\]
From the standard duality argument (cf. [8, Chapter IV]), we have
\[
\sup_{||p|| = 1, p \in H^2} \left| \int \bar{f} \bar{z} p \frac{d\theta}{2\pi} \right| = \sup \left\{ \left| \int \bar{f} \bar{p} \frac{d\theta}{2\pi} \right| : p \in H^2, ||p|| = 1, p(0) = 0 \right\} = \text{dist}(\bar{f}, H^2) = ||f - f(0)||.
\]
Hence
\[
||[T_{\varphi^*}, T_{\varphi}]|| = \sup_{||p|| = 1, p \in H^2} ||\langle [T_{\varphi^*}, T_{\varphi}] p, p \rangle|| \geq ||f - f(0)||^2.
\]

Remark 2.1. For arbitrary \(h \) in the closed unit ball of \(H^\infty \), it follows directly from (2.2) that \(T_{\varphi} \) is normal if and only if \(h \) is a unimodular constant. So we made the assumption that \(h(0) = 0 \) to avoid these trivial cases. Of course, Theorem 2.1 implies right away that \(T_{\varphi} \) is normal if and only if \(f = f(0) \), i.e., when \(\varphi \) is a constant, but under more restrictive hypothesis that \(h(0) = 0 \).

Applying Theorem 1.1 and 1.3, we have
Corollary 2.1. If
\[\varphi = f + T_{\overline{h}} f, \]
for \(f, h \in H^\infty, \|h\|_\infty \leq 1 \) and \(h(0) = 0 \). Then
\[\text{Area}(\text{sp}(T_\varphi)) \geq \pi \|P(\varphi) - \varphi(0)\|_2^2. \]

Remark 2.2. Thus, the lower bound for the spectral area of a general hyponormal Toeplitz operator \(T_\varphi \) on \(\partial D \) still reduces to the \(H^2 \) norm of the analytic part of \(\varphi \). For analytic symbols this is encoded in [9, Theorem 2] in the context of Banach algebras. In other words, allowing more general symbols does not reduce the area of the spectrum.

Acknowledgments

The first author gratefully acknowledges hospitality of the Department of Mathematics and Statistics at the University of South Florida during the work on the paper.

References

[1] H. Alexander, B. A. Taylor, and J. L. Ullman, Areas of projections of analytic sets, Inventiones Math. 16 (1972), 335–341.
[2] S. Axler and J. H. Shapiro, Putnam’s theorem, Alexander’s spectral area estimate and VMO, Math. Ann. 271 (1985), 161–183.
[3] S. R. Bell, T. Ferguson, and E. Lundberg, Self-commutators of Toeplitz operators and isoperimetric inequalities, Proc. Royal Irish Acad. 114 (2014), 1–18.
[4] C. Bénéteau and D. Khavinson, Selected problems in classical function theory. To appear in CRM Proceedings and Lecture Notes.
[5] ______, The isoperimetric inequality via approximation theory and free boundary problems, Comput. Methods Funct. Theory 6 (2006), no. 2, 253–274.
[6] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809–812.
[7] M. Fleeman and D. Khavinson, Extremal domains for self-commutators in the Bergman space, Complex Anal. Oper. Theory 9 (2015), no. 1, 99–111.
[8] John B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[9] D. Khavinson, A note on Toeplitz operators, Banach spaces (Columbia, Mo., 1984) Lecture Notes in Math., vol. 1166, Springer, Berlin, 1985.
[10] J-F. Olsen and M. Reguera, On a sharp estimate for Hankel operators and Putnam’s inequality, arXiv:1305.5193v2 (2014).
[11] C.R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323–330.
[12] W. Rudin, Functional analysis, McGraw-Hill, New York, 1991.
[13] C. Stanton, Counting functions and majorization for Jensen measures, Pacific J. Math. 125 (1986), no. 2, 459–468.
[14] ______, Isoperimetric inequalities and \(H^p \) estimates, Complex Var. Theory Appl. 12 (1989), no. 1-4, 17–21.
[15] H. Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365–375.
A NOTE ON THE SPECTRAL AREA OF TOEPLITZ OPERATORS

Department of Mathematics, Washington University in Saint Louis, Saint Louis, Missouri
E-mail address: chengchu@math.wustl.edu

Department of Mathematics, University of South Florida, Tampa, Florida
E-mail address: dkhavins@usf.edu