Influence of Densification Temperature on Some Physical and Mechanical Properties of Pterocarya Fraxinifolia Wood

Utjecaj temperature pri ugušćivanju drva Pterocarya fraxinifolia na njegova fizikalna i mehanička svojstva

ABSTRACT • This study has been conducted to investigate the influence of temperature levels in the densification process by hot-press methods on the physical and mechanical properties of false walnut wood (Pterocarya fraxinifolia). For this purpose, wood specimens from five standing trees were compressed at different densification temperatures (110, 140 and 170 °C). Then, the data of oven dry density, modulus of rupture, modulus of elasticity in bending and withdrawal strength of nail of compressed wood were analyzed by SPSS software. Analysis of variance (ANOVA) indicated that the densification temperature had significant effects on the physical and mechanical properties. The most suitable temperature level was 140 °C for a higher density, modulus of rupture, modulus of elasticity in bending, and withdrawal strength of nail in the densification of false walnut wood. Increase of 27 % in the density, 80 % in the modulus of elasticity (MOE), 252 % in the modulus of rupture (MOR) and 215 % in the withdrawal strength of nail were obtained after densification.

Keywords: false walnut wood, densification temperature, physical properties, mechanical properties

SAŽETAK • Studija je provedena kako bi se istražio utjecaj temperature na fizikalna i mehanička svojstva drva „lažnog“ oraha (Pterocarya fraxinifolia) u procesu njegova ugušćivanja metodom toplog prešanja. Za tu namjenu izrađeni su drvni uzorci od pet stabala te su podvrgnuti procesu ugušćivanja pri različitim temperaturama (110, 140 i 170 °C). Nakon toga određena je i analizirana gustoća drva u apsolutno suhom stanju, modul loma, modul elasticnosti pri savijanju i čvrstoće držanja čavala ugušćenog drva. Analiza varijance (ANOVA) pokazala je da temperatura procesa ugušćivanja ima znatan utjecaj na fizikalna i mehanička svojstva drva. Najboljom temperaturom procesa povećanja gustoće drva, modula loma, modula elasticnosti pri savijanju i čvrstoće držanja čavala ugušćenog drva „lažnog“ oraha pokazala se ona od 140 °C. Nakon ugušćivanja zabilježeno je povećanje gustoće drva od 27 %, modula elasticnosti od 80 %, modula loma od 252 % i čvrstoće držanja čavala od 215 %.

Ključne riječi: „lažno“ drvo oraha, temperatura ugušćivanja, fizikalna svojstva drva, mehanička svojstva drva

1 Authors are associate professor and associate professor at Department of Wood and Paper Science and Technology, Chalou Branch, Islamic Azad University, Chalou, Iran. 2 Author is young Ph.D. student at Young Researcher and Elites Club, Chalou Branch, Islamic Azad University, Chalou, Iran.

1 Autori su izvanredni profesori Odjela za znanost i tehnologiju drva i papira, Chalou Branch, Islamsko sveučilište Azad, Chalou, Iran. 2 Autor je Ph.D. student Young Researcher and Elites Club, Chalou Branch, Islamsko sveučilište Azad, Chalou, Iran.
1 INTRODUCTION
1. UVOD

False walnut wood (*Pterocarya fraxinifolia*) is a species of Juglandaceae family. The height of these trees reaches 35 m and diameter at breast height 130 cm. This species grows in northern Iran from Astara (Guilan province) to Minoodashat (Golestan province). It grows in mixed stands with alder, maple, hornbeam, ash, etc. Approximately 0.33 % of northern forests in Iran are covered with false walnut wood. It is a species of wood with low density (Ebrahimi *et al*., 2004). Thermo-mechanical modification is a technique of wood densification that combines heat treatment with mechanical compression. In the mentioned modification, densification occurs with buckling of cell walls, which reduces pore-volume (Kutnar *et al*., 2009; Can-
dan *et al*., 2013). In order to ensure suitable properties of the modified wood, modification should occur at an ideal temperature, in which the amorphous polymers of wood (lignin and hemicelluloses) pass from the glassy state to the rubbery state (Akerholm and Salmén, 2004). It is defined as the glass transition temperature (\(T_g\)) and it varies with species and moisture content used. To this point, wood can be compressed without collapse in the cell wall structure (Sözbir and Bektas, 2017; Esteves *et al*., 2017; Tu *et al*., 2014).

There are widespread reports on wood densification. Madhoushi *et al.* (2012) indicated that the percentage of densification significantly influence the density of poplar wood, especially at higher compression percentages (50 %). Also, the amount of densification has significant influence on the withdrawal strength of nails (up to 220 %) and screws (up to 120 %). Compared with control specimens, MOR and MOE were increased by 70 % and 40 %, respectively.

Edalat *et al.* (2008) investigated the densification of paulownia wood by hot-press method. They indicated significant influence of densification temperature and compression percentage on the mechanical properties. The highest mechanical properties of wood specimens were found in 50 % compression.

Ulcer *et al.* (2012) reported that the increase in densification temperature decreased strength properties of Scots pine wood. The most suitable densification temperature for increasing bending, shear and compression strength was 120 °C, and 140 °C for increasing radial and tangential hardness. Allen *et al.* (2009) stated that, at temperatures above 100 °C, the intermolecular and intramolecular chemical bonds begin to break with a rate that would intensify as the heating time increases. This phenomenon could be due to thermal softening and loss of amorphous polysaccha-rides, which are responsible for a tight combination of cellulose fibers and amorphous matrix including lignin. Bond breakage can also be attributed to the possibility of lignin relocation. Jiang *et al.* (2009) reported that treatment at 160 °C is probably enough to cause lignin molecules, which are located between the fibril aggregates, to change their position and damage the adhesive linkage of lignin with cellulose fibrils.

According to relative investigations, the densifica-
tion temperature level is one of the most important factors in wood densification. This study aims to en-
hance thermo-mechanically the density of false walnut wood by pressing it in a stable pressure and heat at different temperatures. The main objective of this re-
search was to determine the impact of densification temperature on the physical and mechanical properties of false walnut wood.

2. MATERIALS AND METHODS
2. MATERIJALI I METODE

For the present study, 5 logs of *Pterocarya frax-
inifolia* tree were cut from Sari forests. Then speci-
mens were made to determine their density and mois-
ture content. Densification temperature was the variable factor of the present study and it was tested at three different levels of 110, 140 and 170 °C with 6 repetitions. To have similar sample dimensions for mechanical properties, length and width (400 × 80 mm) of all samples were considered equal. However, the thickness of specimens corresponded to compres-
sion percentage in order to reach 20 mm thickness for all samples after compression. Therefore, according to 30 % compression, the primary thickness of sam-
"
2.2 MOR and MOE

2.2. Modul loma (MOR) i modul elastičnosti (MOE)

Modulus of rupture (MOR) and modulus of elasticity (MOE) were determined according to ISO 3133 standard (370 × 20 × 20 mm). Specimens were conditioned at temperature of 20 °C and 65±5 % relative humidity until they reached equilibrium moisture content of about 12 %. The load was applied in the tangential direction. Bending of specimens was applied on Instron (model 4486). 24 specimens were examined for each mechanical property (18 specimens for densified wood and 6 specimens for control).

2.3 Withdrawal strength of nail

2.3. Čvrstoča držanja čavala

Examination of withdrawal strength of nail was carried out with a mechanical test system connected to a computer equipped with strength data analysis software. Length and Penetration depth of nails were 30 and 1.6 mm, respectively, according to the BS EN 1383-1999 (50×50×20 mm) standards. This property was calculated by dividing the maximum force (N) and the nail penetration length (mm).

2.4 Statistical analysis

2.4. Statistička analiza

In this study, the influence of densification temperature on oven dry density, modulus of rupture (MOR), modulus of elasticity (MOE) and withdrawal strength of nail on densification of false walnut wood were analyzed by analysis of variance (ANOVA) and SPSS statistical software (IBM SOFTWARE, Armonk, New York, version 21), and a Duncan multi domain test was conducted to compare the means at a 95 % confidence level.

Table 1. Descriptive statistical analysis of density and mechanical properties of densified false walnut wood

Wood properties / Svojstvo drva	Mean Srednja vrijednost	Standard deviation Standardna devijacija	Variation coefficient Koeficijent varijacije
Oven dry density, g/m³ / gustoća u apsolutno suhom stanju, g/m³	Control 445 39 8.76	110 532 11 2.06	170 519 36 6.93
Modulus of elasticity, N/mm² / modul elastičnosti, N/mm²	Control 3195.49 131.21 4.11	110 5359.30 140.15 2.62	140 5740.74 548.82 9.56
Modulus of rupture, N/mm² / modul loma, N/mm²	Control 5245.62 208.77 3.98	110 5193 36 6.93	170 5245.62 208.77 3.98
Withdrawal strength of nail, N/mm / čvrstoča držanja čavala, N/mm	Control 7.80 1.66 21.28	110 15.86 2.39 15.06	140 24.52 4.72 19.24
170 13.80 1.88 3.45	170 54.42 36 6.93	110 15.86 2.39 15.06	140 24.52 4.72 19.24
170 13.80 2.49 18.04	170 54.42 36 6.93	110 15.86 2.39 15.06	140 24.52 4.72 19.24

Table 2. Analysis of variance (ANOVA) related to the effect of temperature level on some physical and mechanical properties of densified wood

Variables / Svojstva	F	p-value	Significant Značajno (p<0.05)
Oven dry density, g/m³ / gustoća u apsolutno suhom stanju, g/m³	10.689	0.001	×
Modulus of elasticity, N/mm² / modul elastičnosti, N/mm²	55.084	0.001	×
Modulus of rupture, N/mm² / modul loma, N/mm²	41.184	0.001	×
Withdrawal strength of nail, N/mm / čvrstoča držanja čavala, N/mm	9.798	0.002	×
densed specimens appeared in separate homogeneity groups, the densification process was judged to be significantly affected by oven dry density. There are no significant differences among density values of the densified specimens heated to 110, 140 and 170 °C.

After the process of densification, MOE of false walnut increased from 3195 to 5740 N/mm² at all temperature levels, and 80 % increase in MOE was achieved. Control specimens and densified specimens appeared in separate homogeneity groups according to Duncan’s tables. There are no significant differences among the MOE values of the densified specimens heated to 110, 140 and 170 °C. The differences in the MOE between densified specimens at the temperature of 110 and 170 °C was not significant. The differences in the MOE between densified specimens at the temperature of 110 and 140 °C, and the modulus of elasticity (MOE) of the densified specimens at 140 and 170 °C were significant.

Since the lowest MOR (21.17 N/mm²) was obtained in the control specimens of false walnut wood, the densification process increased MOR. The highest mean value of MOR was found in densified specimens at the temperature of 140 °C (24.52 N/mm²). Control specimens and densified specimens at the temperature of 110 °C and 140 °C appeared in separate homogeneity groups according to Duncan’s tables.

The increase of temperature in the densification process affected all the strength properties of false walnut wood. The increase of the densification temperature level from 110 °C to 140°C in the false walnut wood affected the MOE (5359.30 and 5740.74 N/mm²), MOR (59.47 and 74.55 N/mm²) and withdrawal strength of nail (15.86 and 24.52 N/mm²). The raising of the densification temperature to 170 °C decreased the MOE value to 5245.62 N/mm², the MOR value to 54.42 N/mm² and withdrawal strength of nail value to 13.80 N/mm. The reason for the reduction of mechanical strength at 170 °C can be the change in chemical properties, change of wood cell wall, and the increase of intercellular space (Ülker et al., 2012; Jiang et al., 2009; Alen et al., 2002).

4 CONCLUSIONS

The main conclusions of this study are summarized below:
1. Densification process at temperatures of 110 °C, 140 °C and 170 °C affected the investigated physical and mechanical properties of false walnut wood.
2. By increasing the densification temperature to 140 °C, oven dry density and mechanical properties increased, but there was a reduction when the densification temperature increased to 170 °C.
3. The most suitable temperature level for densification of false walnut wood is 140 °C considering higher oven dry density, MOR, MOE, and withdrawal strength of nail.

Table 3 Homogeneity tests related to the determination of temperature levels that create a difference based on the values of oven dry density, MOE, MOR and withdrawal strength of nail

Variables	Densification temperature	Homogeneity group			
	Temperature ugušivanja °C	Number of specimens	Grupa homogenosti		
		Broj uzoraka	A	B	C
Oven dry density, g/m³		Control 6	645		
		170	6	519	
		110	6	532	
		140	6	564	
Modulus of elasticity, N/mm²		Control 6	3195.49		
		170	6	5245.62	
		110	6	5359.30	
		140	6	5740.74	
Modulus of rupture, N/mm²		Control 6	21.17		
		170	6	54.42	
		110	6	59.47	
		140	6	74.55	
Withdrawal strength of nail, N/mm²		Control 6	7.80		
		170	6	13.80	
		110	6	15.86	
		140	6	24.52	

The highest mean value of withdrawal strength of nail was found in densified specimens at the temperature of 140 °C (24.52 N/mm). Control specimens and densified specimens at the temperature of 110 °C and 140 °C appeared in separate homogeneity groups according to Duncan’s tables.

4. ZAKLJUČAK

The main conclusions of this study are summarized below:
1. Densification process at temperatures of 110 °C, 140 °C and 170 °C affected the investigated physical and mechanical properties of false walnut wood.
2. By increasing the densification temperature to 140 °C, oven dry density and mechanical properties increased, but there was a reduction when the densification temperature increased to 170 °C.
3. The most suitable temperature level for densification of false walnut wood is 140 °C considering higher oven dry density, MOR, MOE, and withdrawal strength of nail.

DRVNA INDUSTRIJA 69 (3) 283-287 (2018)
Influence of Densification Temperature on Some Physical Properties of Wood

5 REFERENCES

5. LITERATURA

1. Akerholm, M.; Salmen L., 2004: Softening of wood polymers induced by moisture studied by dynamic FTIR spectroscopy. Journal of Applied Polymer Science, 94: 2032-2040. https://doi.org/10.1002/app.21133
2. Alen, R.; Kotilainen, R.; Zaman, A., 2002: Thermochemical behavior of Norway spruce (Picea abies) at 180 – 225 ºC. Wood Science and Technology, 3 (2): 163-171. https://doi.org/10.1007/s00226-001-0133-1
3. Candan, Z.; Korkut, S.; Unsal, Ö., 2013: Thermally compressed poplar wood (TCW): Physical and Mechanical Properties. Drvena industrija, 64 (2): 107-211. https://doi.org/10.5552/drind.2013.1216
4. Ebrahimi, E. A.; Sagheb Talebi, K. H.; Gorj Bahri, Y., 2004: Site demands of false walnut (Pterocarya fraxinifolia) in Vaz experimental forest of Mazandaran province. Iranian Journal of Forest and Poplar, 12 (4): 481-507.
5. Edalat, H. R.; Tabarsa, T.; Reisi, M., 2008: Densification of Paulownia wood by using of hot-press. Iranian Journal of Wood and Paper Science Research, 23 (2): 136-148.
6. Esteves, B.; Ribeiro, F.; Cruz-Lopes, L.; Domingos, J. F. L., 2017: Densification and heat treatment of maritime pine wood. Wood Research, 62 (3): 373-388.
7. Jiang, J.; Lu, J.; Huang, R.; Li, X., 2009: Effect of time and temperature on the viscoelastic properties of Chinese fir wood. Drying Technology, 27: 1229-1234. https://doi.org/10.1080/07373930903266726
8. Kutnar, A.; Kamke, F. A.; Sernek, M., 2009: Density Profile and Morphology of viscoelastic Thermally Compressed Wood. Wood Science and Technology, 43 (1-2): 57-68. https://doi.org/10.1007/s00226-008-0198-1
9. Madhoushi, M.; Grey, M.; Tabarsa, T.; Rafighi, A., 2012: Nail and Screw Withdrawal Strength, MOE and MOR in Densified Poplar Wood. Journal of Wood and Forest Science and Technology, 18 (4): 45-58.
10. Tu, D.; Su, X.; Zhang, T.; Fan, W.; Zhou, Q., 2014: Thermo-mechanical densification of Populus tomentosa var. tomentosa with low moisture content. Bioresources, 9 (3): 3846-3856. https://doi.org/10.15376/biores.9.3.3846-3856
11. Sozibir, G. D.; Bektas I., 2017: The effect of heat Modification and densification on physical properties of poplar wood. Drvena industrija, 68 (4): 315-321. https://doi.org/10.5552/drind.2017.1719
12. Ulker, O.; Imirzi, O.; Burdurlu, E., 2012: The effect of densification temperature on some physical and mechanical properties of scots pine (Pinus sylvestris L.). BioResources, 7 (4): 5581-5592. https://doi.org/10.15376/biores.7.4.5581-5592
13. ISO 3131. 1975: Standard Test Method for Density of Regular Solids. International Organization for Standardization, Geneva, Switzerland.
14. ISO 3133. 1975: Wood- Determination of ultimate strength in static bending, International Organization for Standardization, Geneva, Switzerland.
15. British Standards Institution BS EN 1383:1999: Timber structures. Test methods. Pull-through resistance of timber fasteners.

Corresponding address:
Assoc. Prof. MAJID KIAEI, Ph.D.
Department of Wood and Paper Science and Technology
Chaloos Branch, Islamic Azad University
Chaloos, IRAN
e-mail: Mjd_kia59@yahoo.com, Mjd-kia59@iauc.ac.ir