Electronic Supplementary Information (ESI)

Ancistrobreveines A-D and Related Dehydrogenated Naphthylisoquinoline Alkaloids with Antiproliferative Activities against Leukemia Cells, from the West African Liana *Ancistrocladus abbreviatus*

Shaimaa Fayez a, Doris Feineis a, Laurent Aké Assi b,1, Ean-Jeong Seo c, Thomas Efferth c and Gerhard Bringmann a,*

*a Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
b Centre National de Floristique, Conservatoire et Jardin Botaniques, Université d’Abidjan, Abidjan 08, Ivory Coast.
c Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, University of Mainz, Staudinger Weg 5, D-55129 Mainz, Germany.

* Corresponding author.

E-mail address: bringman@chemie.uni-wuerzburg.de (G. Bringmann).

1 Deceased on January 14, 2014.
Table of Contents

1. 6-O-Methylhamateine (4)
 (S1) 1H NMR spectrum of 6-O-methylhamateine (4) P-4
 (S2) 13C NMR spectrum of 6-O-methylhamateine (4) P-5
 (S3) 13C DEPT-135 spectrum of 6-O-methylhamateine (4) P-6
 (S4) 1H-1H COSY spectrum of 6-O-methylhamateine (4) P-7
 (S5) 1H-1H NOESY spectrum of 6-O-methylhamateine (4) P-8
 (S6) 1H-13C HSQC spectrum of 6-O-methylhamateine (4) P-9
 (S7) 1H-13C HMBC spectrum of 6-O-methylhamateine (4) P-10
 (S8) HRESIMS spectrum of 6-O-methylhamateine (4) P-11
 (S9) IR spectrum of 6-O-methylhamateine (4) P-12
 (S10) ECD spectrum of 6-O-methylhamateine (4) P-13

2. Ancistrobreveine A (12)
 (S11) 1H NMR spectrum of ancistrobreveine A (12) P-14
 (S12) 13C NMR spectrum of ancistrobreveine A (12) P-15
 (S13) 13C DEPT-135 spectrum of ancistrobreveine A (12) P-16
 (S14) 1H-1H COSY spectrum of ancistrobreveine A (12) P-17
 (S15) 1H-1H NOESY spectrum of ancistrobreveine A (12) P-18
 (S16) 1H-13C HSQC spectrum of ancistrobreveine A (12) P-19
 (S17) 1H-13C HMBC spectrum of ancistrobreveine A (12) P-20
 (S18) HRESIMS spectrum of ancistrobreveine A (12) P-21
 (S19) IR spectrum of ancistrobreveine A (12) P-22
 (S20) ECD spectrum of ancistrobreveine A (12) P-23

3. Ancistrobreveine B (13)
 (S21) 1H NMR spectrum of ancistrobreveine B (13) P-24
 (S22) 13C NMR spectrum of ancistrobreveine B (13) P-25
 (S23) 13C DEPT-135 spectrum of ancistrobreveine B (13) P-26
 (S24) 1H-1H COSY spectrum of ancistrobreveine B (13) P-27
 (S25) 1H-1H NOESY spectrum of ancistrobreveine B (13) P-28
 (S26) 1H-13C HSQC spectrum of ancistrobreveine B (13) P-29
 (S27) 1H-13C HMBC spectrum of ancistrobreveine B (13) P-30
 (S28) HRESIMS spectrum of ancistrobreveine B (13) P-31
 (S29) IR spectrum of ancistrobreveine B (13) P-32
 (S30) ECD spectrum of ancistrobreveine B (13) P-33
4. Ancistrobreveine C (14)
(S31) 1H NMR spectrum of ancistrobreveine C (14)
(S32) 13C NMR spectrum of ancistrobreveine C (14)
(S33) 13C DEPT-135 spectrum of ancistrobreveine C (14)
(S34) 1H-1H COSY spectrum of ancistrobreveine C (14)
(S35) 1H-1H NOESY spectrum of ancistrobreveine C (14)
(S36) 1H-13C HSQC spectrum of ancistrobreveine C (14)
(S37) 1H-13C HMBC spectrum of ancistrobreveine C (14)
(S38) HRESIMS spectrum of ancistrobreveine C (14)
(S39) IR spectrum of ancistrobreveine C (14)
(S40) ECD spectrum of ancistrobreveine C (14)

5. Ancistrobreveine D (6)
(S41) 1H NMR spectrum of ancistrobreveine D (6)
(S42) 13C NMR spectrum of ancistrobreveine D (6)
(S43) 13C DEPT-135 spectrum of ancistrobreveine D (6)
(S44) 1H-1H COSY spectrum of ancistrobreveine D (6)
(S45) 1H-1H NOESY spectrum of ancistrobreveine D (6)
(S46) 1H-13C HSQC spectrum of ancistrobreveine D (6)
(S47) 1H-13C HMBC spectrum of ancistrobreveine D (6)
(S48) HRESIMS spectrum of ancistrobreveine D (6)
(S49) IR spectrum of ancistrobreveine D (6)
(S50) ECD spectrum of ancistrobreveine D (6)

6. Cytotoxic Effects

(S51) Cytotoxic activities of ent-dioncophylleine A (ent-10), the ancistrobreveines A (12), B (13), C (14), and D (6), and 6-O-methylhamateine (4) towards parental drug-sensitive CCRF-CEM leukemia cells and their multidrug-resistant subline, CEM/ADR5000
Figure S1. 1H NMR spectrum of 6-O-methylhamateine (4).
Figure S2. 13C NMR spectrum of 6-O-methylhamateine (4).
Figure S3. 13C DEPT spectrum of 6-O-methylhamateine (4).
Figure S4. COSY spectrum of 6-O-methylhamateine (4).
Figure S5. 1H-1H NOESY spectrum of 6-O-methylhamateine (4).
Figure S6. HSQC spectrum of 6-O-methylhamateine (4).
Figure S7. HMBC spectrum of ancistrolikokine A$_2$ (13).
Figure S8. HRESIMS spectrum of 6-O-methylhamateine (4).
Figure S9. IR spectrum 6-O-methylhamateine (4).
Figure S10a. ECD spectrum of 6-O-methylhamateine (4).

Figure S10b. UV spectrum of 6-O-methylhamateine (4) top left) and ent-dioncophylleine A (ent-10) (left below) and HPLC analysis of 6-O-methylhamateine (4) (top right) and ent-dioncophylleine A (ent-10) (right below) on a chiral phase (Lux Cellulose-1) evidencing that 4 and ent-10 were present in the plant in an enantiopure form (chromatography on a Lux Cellulose-1 column (250 × 4.6 mm, 5 µm, Phenomenex) with H$_2$O (0.05% trifluoroacetic acid) and MeCN (0.05% trifluoroacetic acid) as the eluents.
Figure S11. 1H NMR spectrum of ancistrobreveine A (12).
Figure S12. 13C NMR spectrum of ancistrobreveine A (12).
Figure S13. 13C DEPT spectrum of ancistrobreveine A (12).
Figure S14. COSY spectrum of ancistrobreveine A (12).
Figure S15. 1H-1H NOESY spectrum of ancistrobreveine A (12).
Figure S16. HSQC spectrum of ancistrobreveine A (12).
Figure S17. HMBC spectrum of ancistrobreveine A (12).
Figure S18. HRESIMS spectrum of *ancistrobreveine A* (12).
Figure S19. IR spectrum ancistrobreveine A (12).
Figure S20. ECD spectrum of ancistrobreveine A (12).

Figure S20b. HPLC-ECD analysis of ancistrobreveine A (12) on a chiral phase (Lux Cellulose-1) evidencing that 12 was present in the plant in an enantiopure form, as obvious from the ECD trace of 12 at 258 nm exclusively showing a negative signal: the two chromatograms show an enlarged view of the ECD trace of 12 (chromatography on a Lux Cellulose-1 column (250 × 4.6 mm, 5 µm, Phenomenex) with H₂O (0.05% trifluoroacetic acid) and MeCN (0.05% trifluoroacetic acid) as the eluents.
Figure S21. 1H NMR spectrum of ancistrobreveine B (13).
Figure S22. 13C NMR spectrum of ancistrobreveine B (13).
Figure S23. 13C DEPT-135 spectrum of ancistrobreveine B (13).
Figure S24. COSY spectrum of ancistrobreveine B (13).
Figure S25. 1H-1H NOESY spectrum of ancistrobreveine B (13).
Figure S26. HSQC spectrum of ancistrobreveine B (13).
Figure S27. HMBC spectrum of ancistrobreveine B (13).
Figure S28. HRESIMS spectrum of anciestrobreveine B (13).
Figure S29. IR spectrum ancistrobreveine B (13).
Figure S30. ECD spectrum of ancistrobreveine B (13).
Figure S31. 1H NMR spectrum of ancistrobreveine C (14).
Figure S32. 13C NMR spectrum of ancistrobreveine C (14).
Figure S33. 13C DEPT-135 spectrum of ancistrobreveine C (14).
Figure S34. COSY spectrum of ancistrobreveine C (14).
Figure S35. 1H-1H NOESY spectrum of ancistrobreveine C (14).
Figure S36. HSQC spectrum of ancistrobreveine C (14).
Figure S37. HMBC spectrum of ancistrobreveine C (14).
Figure S38. HRESIMS spectrum of ancistrobreveine C (14).
Figure S39. IR spectrum ancistrobreveine C (14).
Figure S40a. ECD spectrum of ancistrobreine C (14).

Figure S40b. Comparison of the ECD spectrum of ancistrobreine C (14) with that of the structurally closely related 7,1’-coupled, but M-configured alkaloid ent-dioncophylleine A (ent-10).
Figure S40c. HPLC-ECD analysis of ancistrobreveine C (14) on a chiral phase (Lux Cellulose-1, chromatogram A) evidencing 14 to be present in the plant only in a nearly enantiopure form, as obvious from the ECD trace of 14 at 255 nm showing a negative signal at the rising slope of the peak and a huge positive one on the descending side: chromatogram A (enlarged view of A in B and C) obtained on a Lux Cellulose-1 column (250 × 4.6 mm, 5 μm, Phenomenex) with H₂O (0.05% trifluoroacetic acid) and MeCN (0.05% trifluoroacetic acid) as the eluents.
Figure S41. 1H NMR spectrum of ancistrobreveine D (6).
Figure S42. 13C NMR spectrum of ancistrobreveine D (6).
Figure S43. 13C DEPT-135 spectrum of ancistrobreveine D (6).
Figure S44. COSY spectrum of ancistrobreveine D (6).
Figure S45. 1H-1H NOESY spectrum of ancistrobreveine D (6).
Figure S46. HSQC spectrum of ancistrobreveine D (6).
Figure S47. HMBC spectrum of ancistrobreveine D (6).
Figure S48. HRESIMS spectrum of ancistrobreveine D (6).
Figure S49. IR spectrum ancistrobreveine D (6).
Figure S50. ECD spectrum of ancistrobreveine D (6).
Figure S51 (A-F). Cytotoxic activities of *ent*-dioncophylline A (*ent*-10), the ancistrobreveine A (12), B (13), C (14), and D (6), and 6-O-methylhamateine (4) towards parental drug-sensitive CCFR-CEM leukemia cells and their multidrug resistant subline, CEM/ADR5000. Compounds *ent*-10, 12-14, 6, and 4 were dissolved in DMSO (< 1%) and cell culture medium at concentrations of 0.001, 0.003, 0.01, 0.03, 0.12, 0.3, 1, 3, 10, and 50 μM. Cell viability was assessed by the resazurin assay. Mean values and standard deviation of three independent experiments with each six parallel measurements are shown.