The Unruh effect states an accelerated particle detector registers a thermal response when moving through the Minkowski vacuum, and its thermal feature is believed to be inseparable from Lorentz symmetry: Without the latter, the former disappears. Here we propose to observe analogue circular Unruh effect using an impurity atom in a quasi-two-dimensional Bose-Einstein condensate (BEC) with dominant dipole-dipole interactions between atoms or molecules in the ultracold gas. Quantum fluctuations in the condensate possess a Bogoliubov spectrum \(\omega_k = c_0 |k| / (\hbar c_0 |k| / M_c) \), working as an analogue Lorentz-violating quantum field with the Lorentz-breaking scale \(M_c \), and the impurity acts as an effective Unruh-DeWitt detector thereof. When the detector travels close to the sound speed, observation of the Unruh effect in our quantum fluid platform becomes experimentally feasible. In particular, the deviation of the Bogoliubov spectrum from the Lorentz-invariant case is highly engineerable through the relative strength of the dipolar and contact interactions, and thus a viable laboratory tool is furnished to experimentally investigate whether the thermal characteristic of Unruh effect is robust to the breaking of Lorentz symmetry.

Introduction. — One of the surprising fundamental consequences of relativistic quantum field theory is that the concept of particle number is observer dependent. A prominent paradigm is the so-called Unruh effect [1]: In the view of an uniformly accelerating observer, the Fock vacuum state of quantum field in the Minkowski spacetime appears as a thermal state rather than a zero-particle state. The corresponding characteristic temperature is proportional to the observer’s acceleration \(a \), given by \(k_B T_U = \frac{h a}{2 \pi} \). To produce a measurable temperature for fundamental quantum fields, extremely huge accelerations are required (e.g., smaller than 1 Kelvin even for accelerations as high as \(10^{20} \text{ m/s}^2 \)), and thus until now, the direct experimental confirmation of the Unruh effect still remains elusive.

Analogue gravity [2, 3] opens up a new route to study various phenomenas predicted by relativistic quantum field theory, e.g., Hawking effect [4–21], cosmological particle production [22–34], and dynamical Casimir effect [35–43], in a variety of electronic, acoustic, optical and even magnetic and superconducting settings. Recently, analogue gravity program for observing the Unruh effect has been successfully theoretically put forward [44–56], and through a BEC system Hu et al. experimentally realized the analogue Unruh effect relied on functional equivalence (i.e., simulating two-mode squeezed mechanics) [57]. Furthermore, in the quantum field theory, the contributions from the trans-Planckian modes as seen by an inertial observer are indispensable for deriving the Unruh effect with Bogoliubov transformation method. This particular feature makes the Unruh effect a potentially important arena for understanding and exploring implications of trans-Planckian physics [58–66], and even detecting means to probe some candidate theories of quantum gravity that may modify the trans-Planckian modes significantly. This modification usually accompanied by the breaking of Lorentz symmetry may even challenge the equivalence between Unruh effect and Hawking effect since the latter appears to be robust to high energy modifications of the dispersion relation [67] while the former is not so immune and will lose its conventional thermal interpretation [58–60, 62, 64] (see more details in the following). It is thus of great interest to experimentally investigate the consequences of trans-Planckian physics in a microscopically well-understood setup in a regime, that is inaccessible for quantum fields in real relativistic scenarios.

In this paper, we propose to study the interplay between the Unruh effect and trans-Planckian physics with an expermentally accessible platform consisting of a dipolar BEC [68] and an immersed impurity [25, 69]. From the perspective of analog, the density fluctuations in the condensate possessing trans-Planckian spectra leading to strong departures from Lorentz invariance [31, 70, 71], resemble Lorentz-violating quantum field (LVQF), while the impurity, analogously dipole coupled...
to the density fluctuations, is modeled as an Unruh-DeWitt detector coupled to the LVQF. We will show that for the Lorentz-invariant (LI) spectrum the Unruh-DeWitt detector for an accelerated circular path indeed experiences a similar thermal response, while yields significant changes of this standard thermal feature when the spectra strongly deviate from Lorentz invariance. As far as we know, this represents the first example within analogue gravity where Unruh effect without thermality caused by the breaking of Lorentz symmetry can become experimentally manifest.

Lorentz-violating quantum field and analogue Unruh-DeWitt detector in dipolar BEC.— As schematically shown in Fig. 1, we establish the connection between an impurity immersed in a quasi-two-dimensional (quasi-2D) dipolar BEC with the Unruh-DeWitt detector model [1, 72], inspired by the seminal atomic quantum dot idea introduced in Refs. [25, 69, 73].

We begin with the Lagrangian density of an interacting Bose gas comprising atoms or molecules of mass \(m \),

\[
\mathcal{L} = \frac{i\hbar}{2m} (\Psi^* \partial_t \Psi - \partial_t \Psi^* \Psi) - \frac{\hbar^2}{2m} |\nabla \Psi|^2 - V_{\text{ext}} |\Psi|^2 - \frac{1}{2} |\Psi|^2 \int d^3\mathbf{r}' V_{\text{int}}(\mathbf{r} - \mathbf{r}') |\Psi(\mathbf{r}')|^2,
\]

(1)

where \(\mathbf{R} = (r, z) \) are spatial 3D coordinates. The interaction reads \(V_{\text{int}}(\mathbf{R} - \mathbf{R}') = g_d \delta^3(\mathbf{R} - \mathbf{R}') + g_3 \delta^3(1 - 3(z - z')^2/|\mathbf{R} - \mathbf{R}'|^2)/|\mathbf{R} - \mathbf{R}'|^3 /4\pi \), where \(g_d = 4\pi\hbar^2 a_c/m_B \) represents the contact interaction strength, with \(a_c \) being the s-wave scattering length; the dipole-dipole interaction (DDI) strength \(g_d = \mu_0 \mu_m^2/3 \), with \(\mu_0 \) and \(\mu_m \) being the permeability of vacuum and the magnetic dipole moment that is polarized to the \(z \) direction, respectively. Moreover, the gas is trapped by an external potential, \(V_{\text{ext}}(\mathbf{R}) = m_B \omega_z^2 z^2/2 + m_B \omega_y^2 y^2/2 \), and is strongly confined along the \(z \) axis, with aspect ratio \(\kappa = \omega_z/\omega_y \gg 1 \) over the whole time evolution. As a result of that, the motion of the Bose gas along the \(z \) axis is frozen to the ground state with a Gaussian form, \(\rho(z) = (\pi d_z^2)^{-1/2} \exp[-z^2/d_z^2] \), with \(d_z = \sqrt{\hbar/m_B \omega_z} \).

Therefore, the whole system effectively reduces to a quasi-2D one which can ensure stability in the DDI-dominated regime [70]. Finally, we may assume that the Bose gas is condensed to the zero-momentum state with an area density \(\rho_0 \).

Within the Bogoliubov theory of small excitations on top of the condensate [74, 75], density fluctuations in Heisenberg representation can be written as \(\delta \rho(t, \mathbf{r}) = \sqrt{\rho_0} \int d^2k/(2\pi)^2 \rho_k e^{\text{i}kr} + \rho_k^* e^{-\text{i}kr} \) which closely resemble the quantum field in terms of bosonic commutation rules \([\hat{b}_k, \hat{b}_k^\dagger] = (2\pi)^2\delta(k - k') \). Note that \(\rho_k = (\sqrt{\mathcal{H}_k} - \sqrt{\mathcal{H}_k + 2A_k})/2(\mathcal{H}_k^2 + 2\mathcal{H}_k A_k)^{1/4} \) and \(\rho_k = (\sqrt{\mathcal{H}_k} - \sqrt{\mathcal{H}_k - 2A_k})/2(\mathcal{H}_k^2 - 2\mathcal{H}_k A_k)^{1/4} \) are Bogoliubov parameters, and the quasiparticle frequency \(\omega_k = \sqrt{\mathcal{H}_k^2 + 2\mathcal{H}_k A_k} \) with \(\mathcal{H}_k = k^2/2m \) and \(A_k = \rho_0 V_{\text{int}}(0)(k) \) [71]. Here \(k = |\mathbf{k}| \) and the Fourier transformation of DDI \(V_{\text{int}}(0)(k) = g_d^\text{eff}(1 - 3m_k k d_w(kd_w/\sqrt{\pi})) \), with \(w[x] = \exp[x^2](1 - \text{erf}[x]) \), an effective contact coupling \(g_d^\text{eff} = g_d^\text{eff}(g_c + 2g_d) \), and the dimensionless ratio \(R_0 = \pi^2/(1 + g_c/2g_d) \). The parameter \(R_0 \) could be tunable via Feshbach resonance [76–79] and rotating polarizing field [80, 81], ranging from \(R_0 = 0 \) (when \(g_d/g_c \to 0 \), i.e., contact dominance), to \(R_0 = \pi/2 \) (when \(g_d/g_c \to \infty \), i.e., DDI dominance).

The density fluctuations described above closely resemble a LVQF with a explicit dispersion relation given by

\[
\omega_k = c_0 k \sqrt{1 - 3R_0 \sqrt{A} \omega_c w[\sqrt{A}/2 \zeta] + \xi^2/4} = c_0 k f(\zeta)(2)
\]

where \(\zeta = \hbar c_0 k/M_\star \), \(c_0 = \sqrt{g_d^\text{eff}/\rho_0/M_\star} \) is the speed of sound, \(A = g_d^\text{eff}\rho_0/\hbar \omega_z \) represents the effective chemical potential as measured relative to the transverse trapping, and \(M_\star = m_B c_0^2 \) is the analog energy scale of Lorentz violation. This dispersion relation (2) is approximately Lorentz invariant \(f(\zeta) \approx 1 \) for \(\zeta \ll 1 \). By appropriately setting the relevant parameters \(A \) and \(R_0 \), the dispersion could be analogously superluminal \(f(\zeta) \gg 1 \) and subluminal \(f(\zeta) < 1 \). In Fig. 1, we plot the function \(f(\zeta) \) shown in (2) to see how the Lorentz invariance is violated in this dispersion. For the DDI dominance, \(R_0 = \sqrt{\pi/2} \), the analogous subluminal spectrum develops a roton minimum for sufficiently large \(A \), and the Lorentz invariance is strongly broken near \(\zeta \approx 0.94 \) [71].

In order to probe the analogue LVQF in the dipolar BEC, we use an impurity as the analogue Unruh-DeWitt detector, which consists of a two-level atom (1 and 2)
and its motion is supposed to be externally imposed by a tightly confining and relatively moving trap potential, so that its only degrees of freedom are the internal ones. Furthermore, the impurity is assumed to be controlled by a driving of a monochromatic external electromagnetic field at the frequency \(\omega_L \) close to resonance with \(1 \to 2 \) transition \(\omega \approx \omega_1 \), with a Rabi frequency \(\omega_0 \). Then the Hamiltonian of the whole system can be written as

\[
H(t) = \int d^3k \hat{\psi}^\dagger k \hat{\pi}^k \hat{\psi} + \hbar \omega_{21}|2\rangle\langle 2| - \left(\frac{\hbar \omega_0}{2} e^{-i\omega_0 t} |2\rangle\langle 1| \right) + H.c. + \sum_{s=1,2} g_s \hat{\rho}(r_A(t))|s\rangle\langle s|,
\]

(3)

where the last term denotes the coupling collisional between the impurity and Bose gas, and \(\hat{\rho}(r_A) = \hat{\psi}^\dagger(r_A)\hat{\psi}(r_A) \approx \rho_0 + \delta \hat{\rho}(r_A) \) represents the field density operator of the Bose gas with \(r_A(t) \) being the time-dependent position of the impurity.

In the rotated \(|g,e\rangle = (|1\rangle \pm |2\rangle)/\sqrt{2} \) basis, the Rabi frequency \(\omega_0 \) determines the splitting between the \(|g,e\rangle \) states, while the detuning \(\delta = \omega_{21} - \omega_{21} \) gives a coupling terms. In such case, the impurity immersed in the condensate is collisionally coupled to the Bose gas via two channels [48, 82, 83]: The first term resembles the interaction of a static charge to an external scalar potential and can be canceled through proper tuning of the interaction constants \(g_{1,2} \) (e.g., via Feshbach resonance [76–79]), while the second term resembles a standard electric-dipole coupling. Choosing proper detuning \(\delta \) to exactly compensate the coupling to the average density, we can finally find the impurity-fluctuations interaction Hamiltonian

\[
H_{\text{int}} = g_{\text{a}}(e^{i\omega_0 t} \rho^+ e^{-i\omega_0 t} \sigma_-) \delta \hat{\rho}(r_A(\tau), t_A(\tau)),
\]

(4)

reproducing the usual Unruh-DeWitt detector-field interaction with \(g_{\text{a}} = (g_1 - g_2)/2 \) satisfying \(h \delta/2 + g_{\text{a}} \rho_0 = 0 \). However, here the LVQF is coupled to the detector.

Note that when \(\zeta = \hbar c\omega_0 M_k \ll 1 \) the density fluctuations resemble massless scalar field with spectrum, \(\omega_k \approx c_0 k \), the linearly moving impurity remains unexcited when its velocity satisfying \(v < c_0 \), while behaves dramatically different when moving at a supersonic speed \(v \gtrsim c_0 \). Specifically, although the “charge neutrality” of the impurity rules out Bogoliubov-Cherenkov emission [84, 85], the anomalous Doppler effect may induce it to be excited from its ground state while emitting Bogoliubov phonon and still conserving energy. This is the analogue Ginzburg emission for superluminal moving particles [86, 87], occurring in BEC. When the spectrum breaks the Lorentz symmetry satisfying \(\omega_k = c_0 f(\zeta) \): If \(0 < f(\zeta) < 1 \) for an interval of \(\zeta \), the impurity would get excited when its velocity exceeds the critical \(v_c = c_0 f_c(\zeta) \) with \(f_c(\zeta) = \inf f(\zeta) \) [83]. This particular property provides us a potential effective tool to constrain on the possible families of modified dispersion relations with the experimental results of the Relativistic Heavy Ion Collider [88]. We will in the following consider a circularly moving impurity to observer the circular Unruh effect [89–91], and in particular examine whether the circular Unruh effect is robust to the breaking of Lorentz symmetry.

Spontaneous excitation of the circularly moving detector.— If the detector moves with a circular trajectory \((\eta(t), x(\tau)) = (c_0 \gamma, R \cos(\Omega \gamma t), R \sin(\Omega \gamma t), 0) \), with constant radius \(R \), the angular velocity \(\Omega \), the usual relativistic factor \(\gamma = 1/\sqrt{1 - R^2 \Omega^2 / c^2} \), and the corresponding acceleration \(a = \Omega^2 / c^2 R \), we find the transition rate of the detector from its ground state to excited state [92]

\[
\mathcal{P}(\omega_0) = \frac{g_{\text{a}}^2 \rho_0 m_B 2 \hbar^3}{2 \hbar^3} \int_0^\infty d\zeta \frac{\zeta^2}{\gamma f(\zeta)} \sum_{m=-\infty}^{\infty} J_m^2(\tilde{M} \zeta) \delta \left(\zeta f(\zeta) - \frac{1}{M} (mv - \tilde{E}) \right)
\]

(5)

where \(\tilde{M} = RM_k / h c_0, \tilde{E} = E_0 c_0, \) and \(v = R \Omega / c_0 \) are dimensionless parameters. Note that we focus on the detector’s speed in the preferred Lorentz frame satisfying \(0 < v < 1 \).

For the LI scenario where \(R_0 = 0 \) and \(\omega_k = c_0 k \sqrt{1 + \gamma^2 / 4} \approx c_0 k \) for \(k / c_0 \ll 1 \), we find in the ultrarelativistic limit, \(\gamma \gg 1 \), the equilibrium population of the upper level relative to the lower is [92]

\[
\mathcal{P}(\omega_0) \mathcal{P}(-\omega_0) = \frac{12 \gamma^2 c_0^2 \cos^2}{5a^2 \tilde{E}^2} \exp \left(- \sqrt{\frac{24 c_0 \omega_0}{a}} \right)
\]

(6)

when the energy splitting of the detector is not too small \(\omega_0 > a / c_0 \) [89], which leads to an effective temperature

\[
T_{\text{eff}} = \frac{\sqrt{5} \hbar a}{2 \sqrt{c_0 k B}}.
\]

(7)

This temperature is higher by a factor \(\sqrt{5}/6\pi \) than the Unruh temperature for the linear acceleration, and higher by a factor \(\sqrt{5}/2 \) than the Unruh temperature for the real massless scalar field case as a result of the Bogoliubov transformation for the quasiparticles.

If \(f(\zeta) > 0 \), we can find in the limit, \(\tilde{M} \to \infty \), the transition rate (5) behaves quite differently for \(0 < v < f_c \) and \(f_c \ll v < 1 \), where \(f_c = f(\zeta_c) \) is a global minimum at \(\zeta = \zeta_c > 0 \). Specifically, for the former, the transition rate \(\mathcal{P}(\omega_0) \mathcal{P}(-\omega_0) \), given by

\[
\mathcal{P}(\omega_0) = \Gamma_0 \sum_{m=\lfloor \frac{\tilde{E}}{\gamma} \rfloor}^\infty \frac{1}{\gamma} \left(\frac{mv - \tilde{E}}{\gamma} \right)^2 J_m^2(m \gamma v - \tilde{E} / \gamma)
\]

(8)
where $\Gamma_0 = \frac{g_0^2 \rho_0 m_B}{2 \hbar M^2 R^2}$. Note this is the response for the analogue massless scalar field, and thus no low-energy Lorentz violation can been seen when $v < f_c$. While for the latter there is a correction to the former case, $\mathcal{P}(\omega_0) \rightarrow \mathcal{P}(\omega_0) + \Delta \mathcal{P}$, with

$$\Delta \mathcal{P} = \frac{g_0^2 \rho_0 m_B}{2 \pi \hbar^3 \gamma} \int_{\zeta_-}^{\zeta_+} d\zeta \frac{\zeta}{f(\zeta)\sqrt{\omega^2 - f^2(\zeta)}}$$

(9)

where $\zeta_- \in (0, \zeta_c)$ and $\zeta_+ \in (\zeta_c, \infty)$ are unique solutions to $f(\zeta) = v$ in the respective intervals. This correction means the detector sees a low-energy Lorentz violation when $v > f_c$, and alternatively the departure from the standard prediction of Unruh effect appears as a consequence of the Lorentz violation.

Experimental implementation.— Recent experimental advances have allowed for groundbreaking observations of strongly dipolar BEC, its excitation spectrum displaying roton minimum, and dynamics of impurity immersed in BEC [93–104]. These experiments hold promise to realize our experimental scenario proposed above. Specifically, we can consider a single 87Rb atom immersed in a BEC of Dy atom [93, 95, 98] which possesses a magnetic dipole moment of $10 \mu_B$ with μ_B being the Bohr magneton. The condensate density is assumed to be $\rho_0 \sim 4.4 \times 10^3 \mu m^{-2}$; The observer trajectory radius $R \sim 10 \mu m$: A typical trap frequency $\omega_z = 2\pi \times 10^3$Hz, the corresponding harmonic oscillator width is $\Delta \omega_z \sim 0.25 \times 10^{-4}$Hz. Fig. 2 displays the transition rate in (5), and clearly shows the spontaneous excitation of the detector as a result of the circular acceleration in a Minkowski vacuum. This would be viewed as the circular Unruh effect: Thermal bath is predicted for an accelerated detector moving through the inertial vacuum. In addition, the transition rates clearly show the deviation from the LI field case, occurring for strongly dipolar interactions. Specifically, when the field slightly deviates from the LI case, e.g., $A = 0.1$ case, their corresponding transition rates share similar behaviors. When this deviation becomes stronger, the excitation rates increase and behave sharply differently compared with the LI case, especially in the high velocity and low energy spacing regimes. However, for the low velocity case and large energy spacing of the detector, the excitation rates change slightly in the presence of Lorentz violation (i.e., they are not so sensitive to the breaking of Lorentz symmetry), since in such cases the detector is harder to excite.

To further check whether the Unruh effect is robust to the breaking of Lorentz symmetry, we naively define the Unruh temperature T to estimate the fluctuations sampled by the impurity, using the Einstein’s detailed balanced condition,

$$T = \hbar \omega_0 k_B^{-1} \ln^{-1} \left(\frac{\mathcal{P}(-\omega_0)}{\mathcal{P}(\omega_0)} \right).$$

(10)

This temperature is independent of ω_0 for uniformly linearly accelerated detectors, given by $T_U = \frac{\hbar \omega_0}{2 \pi \hbar c}$, since whose response function satisfies the Kubo-Martin-Schwinger condition [105–107]. For the circular acceleration cases, such definition of T may depend on ω_0, however, keeps monotonous increase via the effective acceleration parameter for the LI case [108]. We here plot this temperature registered by the impurity coupled to the analogue LVQF as shown in Fig. 3. For the LI case, the temperature increases monotonously with the increase of the detector’s speed v as expected. If the spectrum of
the field deviates from the LI case slightly, e.g., $A = 0.1$ case, the present temperature behaves similarly as the LI case but with a larger magnitude. Remarkably, when the spectra of the analogue LVQF strongly deviate from the LI spectrum, the temperature first increases with the increase of the detector’s speed and then oscillates if the detector’s speed exceeds a critical value which depends on the degree of the deviation. The counterintuitive oscillation phenomenon means that Lorentz violation may break the thermal characteristic of Unruh effect, and even cause the analogue anti-Unruh effect [109]: Unruh temperature decreases with the increase of acceleration. Besides, the effective negative temperature [110, 111] occurs during the oscillation, which implies that as a result of Lorentz violation, the corresponding detector’s state is characterized by an inverted occupation distribution, where excited state is populated more than ground state.

Conclusions.— We present a concrete experimental proposal to test how the Lorentz violation affects the circular Unruh effect using an impurity immersed in a dipolar BEC. We find that if the spectra of quantum field deviate from the LI case strongly, the transition rates and the predicted temperature of the analogue Unruh-DeWitt detector behave quite differently compared with the LI case, and the Lorentz violation even more may induce the counter-intuitive anti-Unruh effect on certain conditions. Our preliminary estimates indicate that the proposed experimental implementation of the analogue circular Unruh effect and its interaction with the Lorentz-breaking physics is within reach of current state-of-the-art ultracold-atom experiments.

Our proposed quantum fluid platform may also allow us in the experimentally accessible regime to explore open questions concerning Unruh effect [47], and why its robustness to high energy modifications of the dispersion relation [64] behaves differently from that of its equivalence principle dual—Hawking effect [67]. In addition, two impurities could be used as detectors to explore correlations derived from the quantum vacuum of analogue quantum fields [112].

This work was supported by the National Key R&D Program of China (Grant No. 2018YFA0306600), and Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000). ZT was supported by the National Natural Science Foundation of China under Grant No. 11905218, and the CAS Key Laboratory for Research in Galaxies and Cosmology, Chinese Academy of Science (No. 18010203).

* tianzh@ustc.edu.cn
† djf@ustc.edu.cn
[1] W. G. Unruh, “Notes on black-hole evaporation,” Phys. Rev. D 14, 870–892 (1976).
[2] W. G. Unruh, “Experimental black-hole evaporation?” Phys. Rev. Lett. 46, 1351–1353 (1981).
[3] Carlos Barceló, Stefano Liberati, and Matt Visser, “Analogue gravity,” Living Reviews in Relativity 14, 3 (2011).
[4] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, “Sonic analog of gravitational black holes in bose-einstein condensates,” Phys. Rev. Lett. 85, 4643–4647 (2000).
[5] P. D. Nation, M. P. Blencowe, A. J. Rimberg, and E. Buks, “Analogue hawking radiation in a dc-squid array transmission line,” Phys. Rev. Lett. 103, 087004 (2009).
[6] Oren Lahav, Amir Itah, Alex Blumkin, Carmit Gordon, Shahar Rinott, Alona Zayats, and Jeff Steinhauer, “Realization of a sonic black hole analog in a bose-einstein condensate,” Phys. Rev. Lett. 105, 240401 (2010).
[7] Jeff Steinhauer, “Observation of self-amplifying hawking radiation in an analogue black-hole laser,” Nature Physics 10, 864–869 (2014).
[8] Silke Weinfurtner, Edmund W. Telford, Matthew C. J. Penrice, William G. Unruh, and Gregory A. Lawrence, “Measurement of stimulated hawking emission in an analogue system,” Phys. Rev. Lett. 106, 021302 (2011).
[9] B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac, “Hawking radiation from an acoustic black hole on an ion ring,” Phys. Rev. Lett. 104, 250403 (2010).
[10] L.-P. Euvé, F. Michel, R. Parentani, T. G. Philbin, and G. Rousseaux, “Observation of noise correlated by the hawking effect in a water tank,” Phys. Rev. Lett. 117,
A. Roldán-Molina, Alvaro S. Nunez, and R. A. Duine, M. Človečko, E. Gažo, M. Kupka, and P. Skyba, Jonathan Drori, Yuval Rosenberg, David Bermudez, Zehua Tian and Jiangfeng Du, “Analogue hawking radiation and quantum soliton evaporation in a superconducting circuit,” The European Physical Journal C 79, 994 (2019).

Juan Ramón Muñoz de Nova, Katrine Golubkov, Victor I. Kolobov, and Jeff Steinhauer, “Observation of thermal hawking radiation and its temperature in an analogue black hole,” Nature 569, 688–691 (2019).

Victor I. Kolobov, Katrine Golubkov, Juan Ramón Muñoz de Nova, and Jeff Steinhauer, “Observation of stationary spontaneous hawking radiation and the time evolution of an analogue black hole,” Nature Physics 17, 362–367 (2021).

Jonathan Drori, Yuval Rosenberg, David Bermudez, Yaron Silberberg, and Ulf Leonhardt, “Observation of stimulated hawking radiation in an optical analogue,”Phys. Rev. Lett. 122, 010404 (2019).

M. Človečko, E. Gažo, M. Kupka, and P. Skyba, “Magnonic analog of black- and white-hole horizons in superfluid 3He−4He,” Phys. Rev. Lett. 123, 161302 (2019).

Yaron Kedem, Emil J. Bergholtz, and Frank Wilczek, “Black and white holes at material junctions,” Phys. Rev. Research 2, 043285 (2020).

Run-Qiu Yang, Hui Liu, Shining Zhu, Le Luo, and Rong-Gen Cai, “Simulating quantum field theory in curved spacetime with quantum many-body systems,” Phys. Rev. Research 2, 023107 (2020).

Caio C. Holanda Ribeiro, Sang-Shin Baak, and Uwe R. Fischer, “Existence of steady-state black hole analogs in finite quasi-one-dimensional bose-einstein condensates,” Phys. Rev. D 105, 124066 (2022).

Zehua Tian, Yiheng Lin, Uwe R. Fischer, and Jianfeng Du, “Testing the upper bound on the speed of scrambling with an analogue of hawking radiation using trapped ions,” The European Physical Journal C 82, 212 (2022).

Petr O. Fedichev and Uwe R. Fischer, “’cosmological’ quasiparticle production in harmonically trapped superfluid gases,” Phys. Rev. A 69, 033602 (2004).

Chen-Lung Hung, Victor Guranie, and Cheng Chin, “From cosmology to cold atoms: Observation of sakharov oscillations in a quenched atomic superfluid,” Science 341, 1213–1215 (2013), https://www.science.org/doi/pdf/10.1126/science.1237557.

Angus Prain, Serena Fagnocchi, and Stefano Liberati, “Analogue cosmological particle creation: Quantum correlations in expanding bose-einstein condensates,” Phys. Rev. D 82, 105018 (2010).

Petr O. Fedichev and Uwe R. Fischer, “Gibbons-hawking effect in the sonic de sitter space-time of an expanding bose-einstein-condensed gas,” Phys. Rev. Lett. 91, 240407 (2003).

Paul M. Alsing, Jonathan P. Dowling, and G. J. Milburn, “Ion trap simulations of quantum fields in an expanding universe,” Phys. Rev. Lett. 94, 220401 (2005).

Zehua Tian, Jiliang Jing, and Andrzej Dragan, “Analogue cosmological particle generation in a superconducting circuit,” Phys. Rev. D 95, 125003 (2017).

Ralf Schützhold, Michael Uhlmann, Lutz Petersen, Hector Schmitz, Axel Friedenauer, and Tobias Schätz, “Analogue of cosmological particle creation in an ion trap,” Phys. Rev. Lett. 99, 201301 (2007).

S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman, and G. K. Campbell, “A rapidly expanding bose-einstein condensate: An expanding universe in the lab,” Phys. Rev. X 8, 021021 (2018).

Sascha Lang and Ralf Schützhold, “Analogue of cosmological particle creation in electromagnetic waveguides,” Phys. Rev. D 100, 065003 (2019).

Seok-Yeong Chai and Uwe R. Fischer, “Probing the scale invariance of the inflationary power spectrum in expanding quasi-two-dimensional dipolar condensates,” Phys. Rev. Lett. 118, 130404 (2017).

Matthias Wittemer, Fredericck Hakelberg, Philip Kiefer, Jan-Philipp Schröder, Christian Fey, Ralf Schützhold, Ulrich Warring, and Tobias Schaez, “Phonon pair creation by inflating quantum fluctuations in an ion trap,” Phys. Rev. Lett. 123, 180502 (2019).

Anshuman Bhardwaj, Dzmitry Vaido, and Daniel E. Sheehy, “Inflationary dynamics and particle production in a toroidal bose-einstein condensate,” Phys. Rev. A 103, 023322 (2021).

S. Banik, M. Gutierrez Galan, H. Sosa-Martinez, M. Anderson, S. Eckel, I. B. Spielman, and G. K. Campbell, “Accurate determination of hubble attenuation and amplification in expanding and contracting cold-atom universes,” Phys. Rev. Lett. 128, 090401 (2022).

J. R. Johansson, G. Johansson, C. M. Wilson, and Franco Nori, “Dynamical casimir effect in a superconducting coplanar waveguide,” Phys. Rev. Lett. 103, 147003 (2009).

Toshiyuki Fujii, Shigemasu Matsuo, Noriyuki Hatakeyama, Susumu Kurihara, and Anton Zeilinger, “Quantum circuit analog of the dynamical casimir effect,” Phys. Rev. B 84, 174521 (2011).

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011).

J.-C. Jaskula, G. B. Partridge, M. Bonneau, R. Lopes, J. Ruaudel, D. Boiron, and C. I. Westbrook, “Acoustic analog to the dynamical casimir effect in a bose-einstein condensate,” Phys. Rev. Lett. 109, 220401 (2012).

Pasi Lihteenmäki, G. S. Paraoanu, Juha Hassel, and Pertti J. Hakonen, “Dynamical casimir effect in a josephson metamaterial,” Proceedings of the National Academy of Sciences 110, 4234–4238 (2013), https://www.pnas.org/content/110/11/4234.full.pdf.

Vincenzo Macrì, Alessandro Ridolfo, Omar Di Stefano, Anto Frisk Kockum, Franco Nori, and Salvatore Savasta, “Nonperturbative dynamical casimir effect in optomechanical systems: Vacuum casimir-rabi splittings,” Phys. Rev. X 8, 011031 (2018).

Selma Koghee and Michiel Wouters, “Dynamical casimir emission from polariton condensates,” Phys. Rev. Lett. 112, 036406 (2014).

Viktor Dodonov, “Fifty years of the dynamical casimir effect,” Physics 2, 67–104 (2020).

B. H. Schneider, A. Bengtsson, I. M. Svensson, T. Aref, G. Johansson, Jonas Bylander, and P. Delsing, “Ob-
servation of broadband entanglement in microwave radiation from a single time-varying boundary condition,” Phys. Rev. Lett. 124, 140503 (2020).
[44] Pisin Chen and Toshi Tajima, “Testing unruh radiation with ultraintense lasers,” Phys. Rev. Lett. 83, 256–259 (1999).
[45] Kinjalk Lochan, Hendrik Ulbricht, Andrea Vinante, and Sandeep K. Goyal, “Detecting acceleration-enhanced vacuum fluctuations with atoms inside a cavity,” Phys. Rev. Lett. 125, 241301 (2020).
[46] Ralf Schützhold, Gernot Schaller, and Dietrich Habs, “Tabletop creation of entangled multi-kev photon pairs and the unruh effect,” Phys. Rev. Lett. 100, 091301 (2008).
[47] A. Retzker, J. I. Cirac, M. B. Plenio, and B. Reznik, “Methods for detecting acceleration radiation in a bose-einstein condensate,” Phys. Rev. Lett. 101, 110402 (2008).
[48] Jamir Marino, Gabriel Menezes, and Iacopo Carusotto, “Zero-point excitation of a circularly moving detector in an atomic condensate and phonon laser dynamical instabilities,” Phys. Rev. Research 2, 042009 (2020).
[49] Cico Gooding, Steffen Biemann, Sebastian Erne, Jorma Louko, William G. Unruh, Jörg Schmiedmayer, and Silke Weinertner, “Interferometric unruh detectors for bose-einstein condensates,” Phys. Rev. Lett. 125, 213603 (2020).
[50] Tianze Sheng, Jun Qian, Xiaolin Li, Yueping Niu, and Shangqing Gong, “Quantum simulation of the unruh effect with a rydberg-dressed bose-einstein condensate,” Phys. Rev. A 103, 013301 (2021).
[51] Suraj S. Hegde, Varsha Subramanyan, Barry Bradlyn, and Smitha Vishveshwara, “Quasinormal modes and the hawking-unruh effect in quantum hall systems: Lessons from black hole phenomena,” Phys. Rev. Lett. 123, 156802 (2019).
[52] Xiaodong Zeng and M. Suhail Zubairy, “Graphene plasmon excitation with ground-state two-level quantum emitters,” Phys. Rev. Lett. 126, 117401 (2021).
[53] Gabriel Cozzella, André G. S. Landulfo, George E. A. Matsas, and Daniel A. T. Vanzella, “Proposal for observing the unruh effect using classical electrodynamics,” Phys. Rev. Lett. 118, 161102 (2017).
[54] Guilherme B. Barros, João P. C. R. Rodrigues, André G. S. Landulfo, and George E. A. Matsas, “Traces of the unruh effect in surface waves,” Phys. Rev. D 101, 065015 (2020).
[55] T. L. M. Guedes, M. Kizmann, D. V. Seletskiy, A. Leitensforfer, Guido Burkard, and A. S. Moskalenko, “Spectra of ultrabroadband squeezed pulses and the finite-time unruh-davies effect,” Phys. Rev. Lett. 122, 053604 (2019).
[56] Eugene Adjei, Kevin J. Resch, and Agata M. Brańczyk, “Quantum simulation of unruh-dewitt detectors with nonlinear optics,” Phys. Rev. A 102, 033506 (2020).
[57] Jiashong Hu, Lei Feng, Zhendong Zhang, and Cheng Chin, “Quantum simulation of unruh radiation,” Nature Physics 15, 785–789 (2019).
[58] Piero Nicolini and Massimiliano Rinaldi, “A minimal length versus the unruh effect,” Physics Letters B 695, 303–306 (2011).
[59] Iván Aguilló, José Navarro-Salas, Gonzalo J. Olmo, and Leonard Parker, “Two-point functions with an invariant planck scale and thermal effects,” Phys. Rev. D 77, 124032 (2008).
[60] Golam Mortuza Hossain and Gopal Sardar, “Violation of the kubo-martin-schwinger condition along a rindler trajectory in polymer quantization,” Phys. Rev. D 92, 024018 (2015).
[61] Nirmalya Kajuri, “Polymer quantization predicts radiation in inertial frames,” Classical and Quantum Gravity 33, 055007 (2016).
[62] Golam Mortuza Hossain and Gopal Sardar, “Is there unruh effect in polymer quantization?” Classical and Quantum Gravity 33, 245016 (2016).
[63] Natalia Alkofer, Giulio D’Odorico, Frank Saueressig, and Fleur Versteegen, “Quantum gravity signatures in the unruh effect,” Phys. Rev. D 94, 104055 (2016).
[64] Raúl Carballo-Rubio, Luis J. Garay, Eduardo Martínez, and José de Ramón, “Unruh effect without thermality,” Phys. Rev. Lett. 123, 041601 (2019).
[65] F. Hamnad, A. Landry, and D. Dijamco, “Influence of the dispersion relation on the unruh effect according to the relativistic doppler shift method,” Phys. Rev. D 103, 085010 (2021).
[66] Jorma Louko and Samuel D. Upton, “Low-energy lorentz violation from high-energy modified dispersion in inertial and circular motion,” Phys. Rev. D 97, 025008 (2018).
[67] W. G. Unruh, “Sonic analogue of black holes and the effects of high frequencies on black hole evaporation,” Phys. Rev. D 51, 2827–2838 (1995).
[68] M.A. Baranov, “Theoretical progress in many-body physics with ultracold dipolar gases,” Physics Reports 464, 71–111 (2008).
[69] A. Recati, P. O. Fedichev, W. Zwerger, J. von Delft, and P. Zoller, “Atomic quantum dots coupled to a reservoir of a superfluid bose-einstein condensate,” Phys. Rev. Lett. 94, 040404 (2005).
[70] Uwe R. Fischer, “Stability of quasi-two-dimensional bose-einstein condensates with dominant dipole-dipole interactions,” Phys. Rev. A 73, 031602 (2006).
[71] Zehua Tian, Seok-Yeong Chá, and Uwe R. Fischer, “Roton entanglement in quenched dipolar bose-einstein condensates,” Phys. Rev. A 97, 063611 (2018).
[72] N. D. Birrell and P. C. W. Davies, “Quantum fields in curved space,” Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, England, 1982).
[73] Petr O. Fedichev and Uwe R. Fischer, “Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a bose-einstein condensate,” Phys. Rev. D 69, 064021 (2004).
[74] Christopher J Pethick and Henrik Smith, Bose–Einstein Condensation and Superfluidity (Cambridge University Press, 2008).
[75] Lev Petrovich Pitaevskii and Sandro Stringari, Bose–Einstein Condensation and Superfluidity, Vol. 164 (Oxford University Press, 2016).
[76] Ph. Courtile, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar, “Observation of a feshbach resonance in cold atom scattering,” Phys. Rev. Lett. 81, 69–72 (1998).
[77] S. Inouye, M. R. Andrews, J. Stenger, H. J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, “Observation of feshbach resonances in a bose-einstein condensate,” Nature 392, 151–154 (1998).
[78] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite
Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225–1286 (2010).
[79] Eddy Timmermans, Paolo Tommasini, Mahir Hussein, and Arthur Kerman, “Feshbach resonances in atomic bose–einstein condensates,” Physics Reports 315, 199–230 (1999).
[80] Stefano Giovanazzi, Axel Görlich, and Tilman Pfau, “Tuning the dipolar interaction in quantum gases,” Phys. Rev. Lett. 89, 130401 (2002).
[81] Yijun Tang, Wil Kao, Kuan-Yu Li, and Benjamin L. Lev, “Tuning the dipole-dipole interaction in a quantum gas with a rotating magnetic field,” Phys. Rev. Lett. 120, 230401 (2018).
[82] Jamir Marino, Alessio Recati, and Iacopo Carusotto, “Casimir forces and quantum friction from ginzburg radiation in atomic bose-einstein condensates,” Phys. Rev. Lett. 118, 045301 (2017).
[83] Zehua Tian and Jiangfeng Du, “Probing low-energy lorentz violation from high-energy modified dispersion in dipolar bose-einstein condensates,” Phys. Rev. D 103, 085014 (2021).
[84] I. Carusotto, S. X. Hu, L. A. Collins, and A. Smerzi, “Bogoliubov–Čerenkov radiation in a bose-einstein condensate flowing against an obstacle,” Phys. Rev. Lett. 97, 260403 (2006).
[85] G. E. Astrakharchik and L. P. Pitaevskii, “Motion of a heavy impurity through a bose-einstein condensate,” Phys. Rev. A 70, 013608 (2004).
[86] V. L. Ginzburg and V. P. Frolov, “Excitation and emission of a “detector” in accelerated motion in a vacuum or in uniform motion at a velocity above the velocity of light in a medium,” ZhETF Pisma Redaktsiiu 43, 265–267 (1986).
[87] Vitalii L Ginzburg, “Radiation by uniformly moving sources (vavilov–cherenkov effect, transition radiation, and other phenomena),” Uspekhi Fizicheskikh Nauk (UFN) Journal 39, 973–982 (1996).
[88] Viqar Husain and Jorma Louko, “Low energy lorentz violation from modified dispersion at high energies,” Phys. Rev. Lett. 116, 061301 (2016).
[89] J.S. Bell and J.M. Leinaas, “Electrons as accelerated thermometers,” Nuclear Physics B 212, 131–150 (1983).
[90] J.S. Bell and J.M. Leinaas, “The unruh effect and quantum fluctuations of electrons in storage rings,” Nuclear Physics B 284, 488–508 (1987).
[91] W.G. Unruh, “Acceleration radiation for orbiting electrons,” Physics Reports 307, 163–171 (1998).
[92] See Supplemental Material for detailed calculations of the detector’s transition rate.}
[93] Mingwu Lu, Nathaniel Q. Burdick, Seo Ho Youn, and Benjamin L. Lev, “Strongly dipolar bose-einstein condensate of dysprosium,” Phys. Rev. Lett. 107, 190401 (2011).
[94] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[95] Matthew A. Norcia, Claudia Politi, Lauritz Klaus, Elena Poli, Maximilian Söhmen, Manfred J. Mark, Russell N. Bisset, Luis Santos, and Francesca Ferlaino, “Two-dimensional supersolidity in a dipolar quantum gas,” Nature 596, 357–361 (2021).
[96] L. Chomaz, R. M. W. van Bijnen, D. Petter, G. Faraoeni, S. Baier, J. H. Becher, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, “Observation of roton mode population in a dipolar quantum gas,” Nature Physics 14, 442–446 (2018).
[97] D. Petter, G. Natale, R. M. W. van Bijnen, A. Patscheider, M. J. Mark, L. Chomaz, and F. Ferlaino, “Probing the roton excitation spectrum of a stable dipolar bose gas,” Phys. Rev. Lett. 122, 183401 (2019).
[98] J.-N. Schmidt, J. Hertkorn, M. Guo, F. Böttcher, M. Schmidt, K. S. H. Ng, S. D. Graham, T. Langen, M. Zwierlein, and T. Pfau, “Roton excitations in an oblate dipolar quantum gas,” Phys. Rev. Lett. 126, 193002 (2021).
[99] G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J. Mark, L. Chomaz, and F. Ferlaino, “Excitation spectrum of a trapped dipolar supersolid and its experimental evidence,” Phys. Rev. Lett. 123, 050402 (2019).
[100] J. Hertkorn, J.-N. Schmidt, F. Böttcher, M. Guo, M. Schmidt, K. S. H. Ng, S. D. Graham, H. P. Büchler, T. Langen, M. Zwierlein, and T. Pfau, “Density fluctuations across the superfluid-supersolid phase transition in a dipolar quantum gas,” Phys. Rev. X 11, 011037 (2021).
[101] Michal Tomza, Krzysztof Jachymski, Rene Gerritsma, Antonio Negretti, Tommaso Calarco, Zbigniew Idziasek, and Paul S. Julienne, “Cold hybrid ion-atom systems,” Rev. Mod. Phys. 91, 035001 (2019).
[102] Pascal Weckesser, Fabian Thielemann, Dariusz Wiater, Agata Wojciechowska, Leon Karpa, Krzysztof Jachymski, Michal Tomza, Thomas Walker, and Tobias Schaeetz, “Observation of feshbach resonances between a single ion and ultracold atoms,” Nature 600, 429–433 (2021).
[103] Magnus G. Skov, Thomas G. Skov, Nils B. Jørgensen, Kristian K. Nielsen, Arturo Camacho-Guardiano, Thomas Pohl, Georg M. Bruun, and Jan J. Arlt, “Nonequilibrium quantum dynamics and formation of the Bose polaron,” Nature Physics 17, 731–735 (2021).
[104] T. Dieterle, M. Berrgruber, C. Hözl, R. Löw, K. Jachymski, T. Pfau, and F. Meinert, “Transport of a single cold ion immersed in a Bose–Einstein condensate,” Phys. Rev. Lett. 126, 033401 (2021).
[105] Ryogo Kubo, “Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems,” Journal of the Physical Society of Japan 12, 570–586 (1957), https://doi.org/10.1143/JPSJ.12.570.
[106] Paul C. Martin and Julian Schwinger, “Theory of many-particle systems. i,” Phys. Rev. 115, 1342–1373 (1959).
[107] R. Haag, N. M. Hugenholtz, and M. Winnink, “On the equilibrium states in quantum statistical mechanics,” Communications in Mathematical Physics 5, 215–236 (1967).
[108] Steffen Biermann, Sebastian Erne, Cisco Gooding, Jorma Louko, Jörg Schmiedmayer, William G. Unruh, and Silke Weinfurtner, “Unruh and analogue unruh temperatures for circular motion in 3 + 1 and 2 + 1 dimensions,” Phys. Rev. D 102, 085006 (2020).
[109] W.G. Brenna, Robert B. Mann, and Eduardo Martin-Martínez, “Anti-unruh phenomena,” Physics Letters B 757, 307–311 (2016).
[110] E. M. Purcell and R. V. Pound, “A nuclear spin system at negative temperature,” Phys. Rev. 81, 279–280 (1951).
[111] Norman F. Ramsey, “Thermodynamics and statistical
mechanics at negative absolute temperatures,” Phys. Rev. 103, 20–28 (1956).

[112] Alejandro Pozas-Kerstjens and Eduardo Martín-Martínez, “Harvesting correlations from the quantum vacuum,” Phys. Rev. D 92, 064042 (2015).
Supplementary Material

UNRUIH EFFECT OF ACCELERATED DETECTOR

We here simply review the Unruh effect corresponding to the linear acceleration and circular motion cases. In quantum field theory, usually quantum field is probed with a linearly coupled Unruh-DeWitt detector [1, 72], which is described by a localized system with internal levels |g⟩ and |e⟩ = σ⁺|g⟩ and the energy gap ω₀, moving along a trajectory (t(τ), x(τ)) with τ being the detector’s proper time. The detector couples with a scalar field φ, initially in its vacuum state, through

\[H_{\text{int}} = g \chi(\tau)|e⟩(e^{iω₀τ}σ⁺e^{-iω₀τ}σ_−)|φ(x(τ), t(τ))⟩, \]

(S1)

where g is the coupling parameter and χ(τ) is a real-valued smooth switching function that specifies how the interaction is turned on and off. In the first-order perturbation theory, the probability for the detector to be excited from its ground |g⟩ to the excited state |e⟩ is proportional to the response function,

\[F(ω₀) = \frac{g^2}{\hbar^2} \int \int dτ' dτ' \chi(τ)χ(τ')e^{-iω₀(τ-τ')}W(τ, τ'), \]

where \(W(τ, τ') = ⟨0|φ(t(τ), x(τ))φ(t(τ'), x(τ'))|0⟩ \) denotes the Wightman function evaluated along the detector’s trajectory. If we consider the scenario where the detectors’ trajectories and quantum field state are stationary, in this sense that \(W(τ, τ') \) depends on its arguments only through the difference \(s = τ - τ' \). We may then calculate the transition probability per unit time (or the transition rate) by dividing \(F(ω₀) \) with respective to the total interaction time and letting this interaction time tend to infinity, finally find

\[P(ω₀) = F_{\text{rate}}(ω₀) = \frac{g^2}{\hbar^2} \int_{-∞}^{∞} ds e^{-iω₀s}W(s, 0). \]

(S2)

Note (S2) denotes the excitation rate from the detector’s ground state to its excited state.

The Wightman function for a massless scalar field in Minkowski spacetime is analytically \(W(τ, τ') = \frac{h}{4π^2}(c_0τ - c_0τ')\frac{1}{(τ-τ')^2 - (x(τ) - x(τ'))^2} \). For the linearly accelerated trajectory, \(x(τ) = \frac{c_0^2}{a} \cosh \frac{aτ}{c_0}, t(τ) = \frac{c_0}{a} \sinh \frac{aτ}{c_0} \), it reduces to

\[W_i(τ, τ') = -\frac{g^2h}{16\pi^2c_0^3} \left\{ \sinh \left[\frac{a}{2c_0}(τ - τ') \right] \right\}^{-2} \]

\[= -\frac{h}{4π^2c_0}(τ - τ')^{-2} \left(1 + \frac{a}{12} \frac{c_0}{a}(τ - τ') \right)^2 + \frac{1}{360} \left[\frac{a}{c_0}(τ - τ') \right]^4 + \ldots \]

(S3)

Together with (S2), one can find that the accelerated detector becomes thermalized with the transition probabilities satisfying \(P_{\text{excitation}}/P_{\text{de-excitation}} = P(ω₀)/P(-ω₀) = e^{-\hbarω₀/kT_U} \), where \(T_U = \frac{h a}{2π c_0 k_B} \) is the Unruh temperature.

Note that observation of Unruh effect in the practice remains a challenged problem because of the extreme requirement of high linearity acceleration for typical detector’s transition.

Going beyond the linear acceleration scenario, the circular motion with a constant radial acceleration could also produce an approximately thermal spectrum [89–91], presenting the circular Unruh effect. Specifically, if the detector moves along a circular trajectory \(c_0l(τ), x(τ) = (c_0γτ, R \cos(Ωτγ), R \sin(Ωτγ), 0) \), with constant radius R, the usual relativistic factor \(γ = (1 - v^2/c_0^2)^{-1/2} = (1 - β^2)^{-1/2} \), the angular velocity \(Ω = v/R \) and the corresponding acceleration \(a = v^2γ^2/R = Ω^2γ^2R \), one can find the corresponding Wightman function

\[W_c(τ, τ') = -\frac{h}{4π^2c_0} \left\{ γ^2(τ - τ')^2 - \left(\frac{2c_0}{a} β^2γ^2 \right)^2 \sin \left[\frac{a}{2c_0} (τ - τ') \right] \right\}^{-1} \]

\[= -\frac{h}{4π^2c_0}(τ - τ')^{-2} \left(1 + \frac{a}{12} \frac{c_0}{a}(τ - τ') \right)^2 - \frac{1}{360} \frac{a}{c_0}(τ - τ')^4 + \ldots \]

(S4)

Comparing the Wightman function (S4) with (S3), there is distinct difference: an extra parameter, β or γ, appears in the circular motion case. This is because for circular motion the radius of the circle can be varied independently of the acceleration. Unlike the linear accelerated case, the Fourier transformation of (S4) is not analytical. However,
it, in the ultrarelativistic limit, $\gamma \gg 1$, can be simplified. Then the corresponding equilibrium transition probabilities yields \cite{89}

$$\frac{\mathcal{P}_{\text{excitation}}}{\mathcal{P}_{\text{de-excitation}}} \approx \frac{a}{4\sqrt{3}\omega_0} e^{-2\sqrt{\pi}\omega_0 a \tau}$$

(S5)

for the $a/c_0\omega_0 \ll 1$ case. It leads to an effective temperature $T_{\text{eff}} = \frac{\hbar a}{\sqrt{3}k_Bc_0}$, which is higher by a factor $\pi/\sqrt{3}$ than the Unruh temperature for the linear acceleration.

Note that compared with the linear acceleration case, circular motion allows the accelerating system to remain within a finite-size laboratory for an arbitrarily long interaction time. Furthermore, unlike what happens in uniform linear acceleration, the proper and coordinate time for the circular motion are related by a time-independent gamma faction, which will be crucial when estimating the experimental feasibility for detecting the analogue circular Unruh effect.

DERIVATION OF THE TRANSITION RATE

The density fluctuations of dipolar BEC is of the form,

$$\delta \hat{\rho}(t, \mathbf{r}) = \sqrt{\rho_0} \int \frac{d^2k}{(2\pi)^2} (u_k + v_k)(|\hat{b}_k(t)e^{i\mathbf{k}\cdot\mathbf{r}} + \hat{b}_k^\dagger(t)e^{-i\mathbf{k}\cdot\mathbf{r}}|)$$

(S6)

We can use it to calculate the analogue correlation function of the density fluctuations

$$\langle 0|\delta \hat{\rho}(t, \mathbf{r})\delta \hat{\rho}(t', \mathbf{r}')|0\rangle = \frac{\rho_0}{(2\pi)^4} \int \int d^2k d^2k' (u_k + v_k)(u_{k'} + v_{k'}) e^{-i\omega_k t - i\omega_{k'} t'} e^{-i\mathbf{k}'\cdot\mathbf{r}' - i\mathbf{k}\cdot\mathbf{r}} \delta^2(\mathbf{k} - \mathbf{k}')$$

$$= \frac{\rho_0}{(2\pi)^2} \int \int d^2k d^2k' (u_k + v_k)(u_{k'} + v_{k'}) e^{-i\omega_k (t-t')} e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')}
$$

$$= \frac{\rho_0}{(2\pi)^2} \int_0^\infty dk \int_0^{2\pi} d\theta (u_k + v_k)^2 e^{-i\omega_k (t-t')} J_0(|k||\mathbf{r}-\mathbf{r}'|) \cos \theta$$

where $J_0(x)$ is the Bessel function of the first kind. For the uniform circular motion case, the trajectory is $t(\tau) = (\gamma\tau, R\cos(\gamma\Omega\tau), R\sin(\gamma\Omega\tau))$, and it is easy to find $t - t' = \gamma(\tau - \tau') = \gamma s$ and $|\mathbf{r} - \mathbf{r}'| = 2R\sin\frac{\gamma}{2} s$. Inserting this trajectory into the above correlation function of the density fluctuations, we can calculate the transition rate

$$\mathcal{P}(\omega_0) = \frac{g^2\rho_0}{2\pi\hbar^2} \int ds \int_0^\infty dk (u_k + v_k)^2 J_0 \left(2Rk\sin\frac{\gamma\Omega}{2} s\right) e^{-i(\omega_0 + \gamma\omega_k)s}$$

$$= \frac{g^2\rho_0}{2\pi\hbar^2} \int ds \int_0^\infty dk (u_k + v_k)^2 \sum_{m=-\infty}^\infty J_m^2(Rk)e^{im\gamma s} e^{-i(\omega_0 + \gamma\omega_k)s}$$

$$= \frac{g^2\rho_0}{\hbar^2 \gamma} \int_0^\infty dk (u_k + v_k)^2 \sum_{m=-\infty}^\infty J_m^2(Rk)e^{i(\omega_0 + \gamma\omega_k)}$$

$$= \frac{g^2\rho_0\hbar M}{2\hbar^2} \int d\zeta \frac{\zeta^2}{\gamma f(\zeta)} \sum_{m=-\infty}^\infty J_m^2(\tilde{M}\zeta)e^{-i\tilde{M}(mv - \frac{\tilde{E}}{\gamma})},$$

(S8)

where $\zeta = h c_0 k/M_s$, $\tilde{M} = \tilde{R} M_s/c_0$, $\tilde{E} = \tilde{R}\omega_0/c_0$, and $v = \tilde{R} \Omega/c_0$ are dimensionless parameters. Note that to derive the second equality the identity, $J_0(2a \sin x) = \sum_{m \in \mathbb{Z}} J_m^2(a) e^{2imx}$, has been used.

Thermal circular Unruh effect

If $R_0 = 0$, it means only contact interaction happens between atoms or molecules in Bose gas, we can find the excitation spectrum has the form, $\omega_k = c_0 k\sqrt{1 + \zeta^2/4}$, which is “relativistic” \cite{47}. $\omega_k \approx c_0 k$, for $k \ll k_c = M_s/c_0\hbar$.

Then, (S8) reduces to,

$$\mathcal{P}(\omega) = \frac{g^2 \rho_0}{2\pi h^2} \int ds \int_0^\infty dk k (u_k + v_k)^2 J_0 \left(2RK \sin \frac{\gamma \Omega}{2} s \right) e^{-i(\omega_0 + \gamma \omega_0)s}$$

$$= \frac{g^2 \rho_0}{2\pi h^2} \int ds \int_0^\infty dk k \frac{h^2 k^2}{2m_B} J_0 \left(2RK \sin \frac{\gamma \Omega}{2} s \right) e^{-i\gamma c_0 ks} e^{-i\omega_0 s}$$

$$= \frac{g^2 \rho_0}{4\pi h m_B c_0} \int ds \int_0^\infty dk k^2 J_0 \left(2RK \sin \frac{\gamma \Omega}{2} s \right) e^{-i\gamma c_0 ks} e^{-i\omega_0 s}$$

$$= \frac{g^2 \rho_0}{4\pi h m_B c_0} \int ds \frac{-2\gamma^2 c_0^2 s^2 - 4R^2 \sin^2 \frac{\gamma \Omega}{2} s}{(\gamma^2 c_0^2 s^2 + 4R^2 \sin^2 \frac{\gamma \Omega}{2} s)^{3/2}} e^{-i\omega_0 s}. \quad (S9)$$

In the ultrarelativistic limit, $\gamma \gg 1$, we can do the same process as in [89] to further calculate the above transition rate, which is given by

$$\mathcal{P}(\omega_0) = \frac{g^2 \rho_0}{4\pi h m_B c_0} \int ds \frac{24i(-1+3\gamma^2)}{24c_0^3 s^3 + 5a^2 c_0 s^5} e^{-i\omega_0 s}$$

$$= \frac{5g^2 \rho_0}{96\pi h m_B c_0} (3\gamma^2 - 1)a^2 \left[1 - \exp \left(-\sqrt{\frac{24}{5}} \frac{c_0 \omega_0}{a} \right) + \frac{12c_0^2 \gamma^2}{5a^2} \right]. \quad (S10)$$

Furthermore, assuming the energy splitting of the detector to be not too small $\omega_0 \gg a/c_0$, we can find the equilibrium population of the upper level relative to the lower is

$$\frac{\mathcal{P}(\omega_0)}{\mathcal{P}(-\omega_0)} = \frac{12c_0^2 \gamma^2}{5a^2} \exp \left(-\sqrt{\frac{24}{5}} \frac{c_0 \omega_0}{a} \right), \quad (S11)$$

leading to an effective temperature

$$T_{\text{eff}} = \frac{\sqrt{5} h a}{2\sqrt{6} k_B c_0}. \quad (S12)$$

Correction to the LI case

As shown above, the transition rate of the detector from its ground state to excited state is

$$\mathcal{P}(\omega) = \frac{g^2 \rho_0 m_B}{2\pi h^3} \int_0^\infty d\zeta \frac{\zeta^2}{J(\zeta)} \sum_{m=-\infty}^{\infty} J_m^2(\tilde{M}\zeta) \delta \left(\zeta f(\zeta) - \frac{1}{\tilde{M}} \left(mv - \frac{\tilde{E}}{\gamma} \right) \right), \quad (S13)$$

where $\tilde{M} = R M_s / h c_0$, $\tilde{E} = R \omega_0 / c_0$, and $v = R \Omega / c_0$ are dimensionless parameters.

We consider the stable dipolar BEC and thus $f(\zeta)$ is smooth and strictly positive, and $f(\zeta) \to 1$ as $\zeta \to 0$. We also consider the scenario where the only stationary point of f is a global minimum at $g = g_c > 0$, written as $f_c = f(g_c)$ with $0 < f_c < 1$. In such case, $f'(\zeta) < 0$ for $0 < \zeta < \zeta_c$ and $f'(\zeta) > 0$ for $\zeta > \zeta_c$. In addition to that, we also assume that $\zeta f(\zeta)$ is a monotonely increasing function of ζ, which means $(\zeta f(\zeta))' = \zeta f'(\zeta) + f(\zeta) > 0$ for $\zeta > 0$. Then we can perform the integral in Eq. (S13), and find

$$\mathcal{P}(\omega) = \frac{g^2 \rho_0 m_B}{2\pi h^3} \sum_{m=\left[\frac{E}{\gamma} \right]}^{\infty} \frac{\zeta_m^2/f(\zeta_m)}{(\zeta f(\zeta))'|_{\zeta=\zeta_m}} J_m^2(\tilde{M}\zeta_m), \quad (S14)$$

where ζ_m is the unique solution to $\zeta f(\zeta) = \frac{1}{\tilde{M}} \left(mv - \frac{\tilde{E}}{\gamma} \right)$. In the limit $\tilde{M} \to \infty$, we find that the limit is qualitatively different for $0 < v < f_c$ and $f_c < v < 1$, as found in Refs. [66]:

$$\mathcal{P}_0(\omega_0) = \frac{g^2 \rho_0}{2 h M_s R^2 \gamma} \sum_{m=\left[\frac{E}{\gamma} \right]}^{\infty} \left(mv - \frac{\tilde{E}}{\gamma} \right)^2 J_m^2 \left(mv - \frac{\tilde{E}}{\gamma} \right), \quad (S15)$$
for the $0 < v < f_c$ case. Note that in this case the detector sees no low-energy Lorentz violation: the corresponding response is the same as that for the usual massless scalar field. For $f_c < v < 1$, $\mathcal{P}(\omega_0) \to \mathcal{P}_0(\omega_0) + \Delta \mathcal{P}$ as $\dot{M} \to \infty$, where

$$\Delta \mathcal{P} = \frac{g^2 \rho_0 m_B}{2\pi \hbar^3 \gamma} \int_{\zeta_-}^{\zeta_+} d\zeta \frac{\zeta}{f(\zeta) \sqrt{v^2 - f^2(\zeta)}},$$

(S16)

and $\zeta_- \in (0, g_c)$ and $\zeta_+ \in (g_c, \infty)$ are unique solutions to $f(\zeta) = v$ in the respective intervals.

Note that when $v > f_c$ and \dot{M} is large, the Lorentz-breaking contribution to the sum in Eq. (S14) comes from values of m that are comparable to \dot{M}. In conclusion, Lorentz violation of quantum fields would affect the transition rate of the Unruh-DeWitt detector: The detector in circular motion in the preferred inertial frame sees a large low-energy Lorentz violation when its orbital speed exceeds the critical value f_c.

