Chiral Rings of Deconstructive $[SU(n_c)]^N$ Quivers

Edoardo Di Napoli$^{(1a)}$, Vadim S. Kaplunovsky$^{(1b)}$ and Jacob Sonnenschein$^{(2)}$

(1) Theory Group, Physics Department, University of Texas at Austin, Austin, TX 78712, USA
(a) edodin@physics.utexas.edu
(b) vadim@physics.utexas.edu

(2) School of Physics and Astronomy, The Raymond and Beverly Sackler Faculty of Natural Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
cobi@post.tau.ac.il

Abstract

Dimensional deconstruction of 5D SQCD with general n_c, n_f and k_{CS} gives rise to 4D $\mathcal{N} = 1$ gauge theories with large quivers of $SU(n_c)$ gauge factors. We construct the chiral rings of such $[SU(n_c)]^N$ theories, off-shell and on-shell. Our results are broadly similar to the chiral rings of single $U(n_c)$ theories with both adjoint and fundamental matter, but there are also some noteworthy differences such as nonlocal meson-like operators where the quark and antiquark fields belong to different nodes of the quiver.
And because our gauge groups are $SU(n_c)$ rather than $U(n_c)$, our chiral rings also contain a whole zoo of baryonic and antibaryonic operators.

* Article based on research supported by the US National Science Foundation (grant PHY–0071512), by the Robert A. Welsh foundation, by the Israel Science Foundation, and by the German–Israeli Foundation for Scientific Research (GIF).
Contents

1 Introduction 3

2 Deconstructive Quiver Theories and their Classical Vacua 9
 2.1 Deconstruction Summary 9
 2.2 The Classical Vacua 13
 2.3 Deforming the Superpotential 16

3 The Non–Baryonic Chiral Ring 20
 3.1 Generating the Chiral Ring 21
 3.2 Anomalous Equations of Motion and their Solutions 28
 3.3 Analytic Considerations 40

4 Baryons and Other Determinants 49
 4.1 Φ–Baryons in the Single SU(n_c) Theory 50
 4.2 Baryonic Operators of the [SU(n_c)]^N Quiver 58
 4.3 Determinants of Link Chains 67

5 Open Questions 78

A Appendix 83
1. Introduction

Regardless of their applicability to the weak scale phenomenology, supersymmetric gauge theories are important from the abstract QFT point of view because they allow for exact calculation of some non-perturbative data. In a 4D, $\mathcal{N} = 1$ theory, the exactly-computable non-perturbative data form a mathematical structure known as the chiral ring. Physically, this ring contains invariant combinations of the scalar VEVs, gaugino condensates and abelian gauge couplings; usually, these data are sufficient to completely determine the phase structure of the theory and its moduli spaces, if any.

Two recent discoveries excited much interest in the chiral rings of gauge theories with adjoint and fundamental matter fields: First, Dijkgraaf and Vafa [1, 2, 3] found that the gaugino condensates and the abelian gauge couplings of 4D, $\mathcal{N} = 1$ gauge theories correspond to perturbative amplitudes of matrix models without any spacetime or SUSY at all. Second, Cachazo, Douglas, Seiberg and Witten [4, 5, 6, 7] evaluated the entire on-shell chiral ring of an $U(N_c)$ theory with adjoint and fundamental matter using generalized Konishi anomaly equations [8, 9]. In the process, they verified the Dijkgraaf–Vafa conjecture by showing that the loop equation of the matrix model is identical to the anomaly equation for a particular resolvent $R(X)$ summarizing the gaugino condensates. Both approaches — the matrix models and the anomaly equations — are readily extended to the quiver theories with multiple gauge group factors “connected” by the bi-fundamental matter fields. Thus far, most work on this subject concerned the non-chiral quivers where the bi-fundamental fields come in $(\bar{n}, m) + (n, \bar{m})$ conjugate pairs; This is an natural limitation of the matrix correspondence\(^{(1)}\) but the anomaly-equations technology has no particular difficulties with 4D chirality [10, 11, 12, 13].

\(^{(1)}\) An un-constrained complex $n \times m$ matrix corresponds to a whole $\mathcal{N} = 2$ hypermultiplet in the bi-fundamental (\bar{n}, m) representation of the $SU(n) \times SU(m)$, or in $\mathcal{N} = 1$ terms to a conjugate pair $(\bar{n}, m) + (n, \bar{m})$ of chiral multiplets. A chiral bi-fundamental (\bar{n}, m) multiplet not accompanied by its (n, \bar{m}) conjugate corresponds to a matrix subject to non-linear constraints, which makes for a much more complicated matrix model. In particular, the chiral $[SU(n_c)]^N$ quiver theory presented in this article corresponds to a model of N unitary $SU(n_c)$ matrices. This matrix model — and its implications for the gaugino condensates — will be presented in a separate article [14].
In this article we analyze the inherently chiral \hat{A}_n quivers of one-way arrows

which means that all the bi-fundamental fields are chiral (n_i, \bar{n}_{i+1}) multiplets not accompanied by their (\bar{n}_i, n_{i+1}) conjugates. Also, our quivers do not have any adjoint matter fields — although the cyclic product of all the bi-fundamental fields does act as some kind of a collective adjoint multiplet. Finally, the individual gauge groups corresponding to our quivers’ nodes are of the $SU(n_c)$ rather than $U(n_c)$ type, and this adds all kinds of baryonic generators to the chiral ring of the theory.

Specifically, our chiral quiver theories follow from the dimensional deconstruction of the 5D SQCD [15, 16, 18, 19, 20, 21, 22], hence the name deconstructive quivers. In general, dimensional deconstruction [15, 16, 17] relates simple gauge theories in spaces of higher dimension to more complicated theories in fewer dimensions of space: The extra dimensions of space are ‘deconstructed’ into quiver diagrams of the ‘theory space’. For example, starting in 4+1 dimensions, we deconstruct the extra space dimension by discretizing the x^4 coordinate into a lattice of small but finite spacing a and then interpreting the result as a 4D gauge theory with a large quiver of gauge groups. In order to have a finite number of 4D fields, the x^4 is also compactified to a large circle of length $2\pi R = Na$ (hence N lattice points), but eventually one may take the $N \to \infty$ limit and recover the uncompacted 5D physics. In this limit, the lattice spacing a remains finite and serves as UV regulator which breaks part of the 5D Lorentz symmetry as well as 4 out of 8 supercharges but preserves the (latticized) 5D gauge symmetry of the theory.

The deconstruction of SQCD$_5$ will be discussed in detail in a separate paper [22] (see also [21] for the quarkless case). From the 4D point of view, the result is an $\mathcal{N} = 1$ supersymmetric gauge theory with a quiver diagram
Each green circle of this diagram corresponds to a simple $SU(n_c)_\ell$ factor of the net 4D gauge group

$$G_{4D} = \prod_{\ell=1}^{N} [SU(n_c)]_\ell$$

while the red and blue arrows denote the chiral superfields:

- Green arrows: quarks $Q_{\ell,f} = (\square_\ell)$,
- Blue arrows: antiquarks $\tilde{Q}^{\dagger}_\ell = (\square^{\dagger}_\ell)$,
- Red arrows: bifundamental link fields $\Omega_\ell = (\square_{\ell+1}, \square_\ell)$,

where $f = 1, 2, \ldots, F$ and $\ell = 1, 2, \ldots, N$ is understood modulo N. From the 4D point of view, N is a fixed parameter of the quiver theory; in our analysis we shall assume N to be large but finite.

Similar to many other deconstructed theories, the quiver (1.1) can be obtained by orbifolding a simple 4D gauge theory with higher SUSY, namely $\mathcal{N} = 2$ SQCD with F flavors...
and $N \times n_c$ colors: The \mathbb{Z}_N twist removes the extra supercharges and reduces the gauge symmetry from $SU(N \times n_c)$ down to

$$S([U(n_c)]^N) = [SU(n_c)]^N \times [U(1)]^{N-1}. \quad (1.4)$$

However, the abelian photons of the orbifold theory suffer from triangular anomalies and therefore must be removed from the effective low-energy theory. In string theory such removal is usually accomplished via the Green–Schwarz terms [23], but at the field theory level we simply discard the abelian factors of the orbifolded symmetry (1.4) and interpret the nodes (green circles) of the quiver diagram (1.1) as purely non-abelian $SU(n_c)_\ell$ factors.

In this article we study chiral rings of deconstructed SQCD$_5$ theories with generic numbers of colors and flavors, Chern–Simons levels, and sizes of the compact fifth dimension. In 4D terms, this means $[SU(n_c)]^N$ theories with quiver diagrams of the general form (1.1), but with most general numbers n_c, F, N, as well as generic quark masses; for the sake of 4D chirality we assume $N \geq 3$ quiver nodes. We shall see that the chiral rings of such theories resemble the rings of refs. [4, 5, 6, 7] but also have two novel features: First, our rings have meson-like generators involving the quark and the antiquark fields belonging to different nodes of the quiver. Such operators are non-local from the 5D point of view, but in 4D terms they are legitimate generators of the chiral ring. Second, in the absence of abelian gauge fields, all kinds of baryonic and antibaryonic operators are gauge-invariant and thus also belong to the chiral ring; in fact, there is a whole zoo of such operators.

The main part of this paper (after this introduction) is organized as follows: In section §2 we study the deconstructive $[SU(n_c)]^N$ quiver theories at the classical level. First, in §2.1 we spell out the superpotentials and explain how the 4D quiver theories deconstruct the 5D SQCD. Next, in §2.2 we survey the classical vacua of the quiver theories and find that they form the same Coulomb, mesonic, and baryonic moduli spaces as the 5D theories compactified on a large circle. And then in §2.3 we break the correspondence by deforming the 4D superpotentials in order to trigger the gaugino condensation at the quantum level. This deformation is similar to the adjoint field’s superpotential in the single–$U(n_c)$ theory and has similar consequences for the classical vacua of a quiver theory: The Coulomb moduli space breaks up into a large discrete set of isolated vacua.
In section §3 we study the fully-quantum \([SU(n_c)]^N\) quiver theories and derive their chiral rings, or rather the non-baryonic sub-rings. In §3.1 we construct the off-shell chiral rings \((\text{un-constrained by the anomalous equations of motion})\). Similar to the single–\(U(n_c)\) theory of \([4, 5, 6, 7]\), the non-baryonic generators of the quivers’ off-shell rings combine into several resolvents where the cyclic-ordered product \(\Omega_N\Omega_{N-1}\cdots\Omega_2\Omega_1\) of the bi-fundamental link fields plays the role of the adjoint field \(\Phi\). The main difference from the single–\(U(n_c)\) theory is a much richer set of mesonic generators and hence resolvents: In a quiver theory, the quark and the antiquark fields of a meson-like chiral operator may belong to different quiver nodes as long as they are connected by a chain of link fields which maintain the gauge invariance. From the 5D point of view such operators are non-local and they create / annihilate un-bound \(\bar{q}q\) pairs, but in 4D they are local, chiral and gauge invariant and thus do belong to the chiral ring.

In §3.2 we turn to the on-shell chiral rings: We calculate the generalized Konishi anomalies for suitable variations of the quark, antiquark and link fields of the quiver theories and derive the anomalous equations of motions for all the resolvents. We solve the equations in terms of a few polynomials and find that all the on-shell resolvents are single-valued on the same hyperelliptic Riemann surface \(\Sigma\) defined by the quadratic equation \((3.61)\) for the gaugino-bilinear resolvent. Physically, \(\Sigma\) is the Seiberg–Witten curve \([24]\) of the theory, and in §3.3 we use analytic considerations to show that it indeed looks like the SW curve of the SQCD\(_5\) compactified on a circle \([25, 26]\). We also find that this curve is completely determined at the level of one diagonal instanton, that is one instanton of the \(SU(n_c)_{\text{diag}} \equiv \text{diag}[SU(n_c)^N]\) or equivalently one instanton in each and every \(SU(n_c)_\ell\) factor of the total 4D gauge group. Finally, we study the vacua of the quantum quiver theories and show that in the weak coupling limit we have exactly the same Coulomb, Higgs, pseudo-confining, etc., vacua as expected in a semiclassical theory, but in the strong coupling regime all vacua with similar numbers of massless photons are interchangeable by the monodromies in the parameter space of the theory.

In section §4 we complete the chiral rings by adding all kinds of baryonic, antibaryonic and other generators with non-trivial \([U(1)_B]^N\) quantum numbers. In §4.1 we warm up by studying baryon-like generators in a theory with a single \(SU(n_c)\) gauge group, \(n_f\) quarks and
antiquarks and an adjoint field Φ: Because the gauge group is $SU(n_c)$ rather than $U(n_c)$, the chiral baryon operators are gauge invariant, and so are the Φ–baryons comprised of n_c quarks plus any number of adjoint fields Φ. Off-shell, such operators exist for any $n_f \geq 1$, and we summarize them in baryonic resolvents. On-shell however, the Φ–baryons follow from the ordinary baryons, hence no baryonic VEVs whatsoever for $n_f < n_c$, and even for $n_f \geq n_c$ baryonic VEVs exist only for the classical-like branches of the moduli space.

In §4.2 we analyze the baryonic generators of the $[SU(n_c)]^N$ quiver theory. Off-shell, we find a whole zoo of baryon-like generators comprised of n_c quarks belonging to different quiver nodes and connected to each other by chains of link fields — and each chain may wrap a few times around the whole quiver to emulate the Φ fields of Φ–baryons. Again, there is a big pile of independent baryon-like operators for any $n_f \geq 1$, but only off-shell. On-shell, we tame the zoo by solving the equations of motions for the baryonic resolvents and showing that all baryon-like VEVs follow from those of ordinary baryonic operators (all quarks at the same node and no link fields). Consequently, all baryonic VEVs of the quantum theory follow the classical rules: They require $n_f \geq n_c$ as well as overdetermined Coulomb moduli of the baryonic branch. However, the precise constraint on the quark masses due to baryonic branch’s existence is subject to quantum corrections at the one-diagonal-instanton level.

In §4.3 we calculate quantum corrections to the determinants of link chains,

$$\det(\Omega_{\ell_2} \cdots \Omega_{\ell_1}) = \det(\Omega_{\ell_2}) \times \cdots \times \det(\Omega_{\ell_2}) + \text{corrections}. \quad (1.5)$$

We find that for chains of less than N links the corrections come from instantons in the individual $SU(n_c)_\ell$ gauge groups rather than the diagonal instantons, but the determinant $\det(\Omega_N \cdots \Omega_1)$ of the whole quiver is subject to separate individual-instanton and diagonal-instanton corrections. We evaluate the corrections and summarize their effect on the Coulomb moduli space of a deconstructive quiver theory. A particularly technical part of our analysis is removed to the Appendix of this paper.

Finally, in section §5 we discuss the open questions related to the present research.
2. Deconstructive Quiver Theories and their Classical Vacua

Deconstruction of SQCD\(_5\) with general numbers of colors and flavors will be explained in much detail in the companion paper [22]. In this section, we summarize the salient features of the deconstructed theory from the 4D point of view. In the immediately following §2.1 we write down the superpotential of the 4D theory and briefly explain how deconstruction works for the most symmetric vacuum of the 5D theory. Of course, the \([SU(n_c)]^N\) quiver theory has many other classical vacua, and we describe them in §2.2. Finally, in §2.3 we deform the quiver’s superpotential in order to trigger some kind of a gaugino condensation and describe the effects of this deformation on the quiver’s vacua. (The gaugino condensates themselves will be discussed in the later section §3).

2.1 Deconstruction Summary

The 4D gauge theory of the deconstructed SQCD\(_5\) is

\[G_{4D} = \prod_{\ell=1}^{N} [SU(n_c)]_{\ell} \]

with equal gauge couplings \(g_{\ell} \equiv g\) for all the factors to assure discrete translation invariance in the \(x^4\) direction. The chiral superfields comprise the quarks, the antiquarks, and the bilinear link fields specified in the table (1.3), and also singlets \(s_{\ell}\) (one for each \(\ell = 1, 2, \ldots, N\)). The superpotential has two distinct parts, \(W = W_{\text{hop}} + W_{\Sigma}\), where

\[W_{\text{hop}} = \gamma \sum_{\ell=1}^{N} \sum_{f=1}^{F} \left(\tilde{Q}_{\ell+1}Q_{\ell,f} - \mu_f \tilde{Q}_{\ell}Q_{\ell,f} \right) \]

facilitates the propagation of the (anti) quark fields in the \(x^4\) direction, while

\[W_{\Sigma} = \beta \sum_{\ell=1}^{N} s_{\ell} (\det \Omega_{\ell} - v^{nc}) \]
sets up an $SL(n_c, \mathbb{C})$ (AKA complexified $SU(n_c)$) linear sigma model at each link of the latticized 5D theory.\(^{(2)}\) Disregarding the massive “radial” mode, we have

$$\Omega_\ell(x) = v \times \exp_{\text{Path ordered}} \left(\int_{a^\ell}^{a^{(\ell+1)}} dx^4 \left(i A_4(x) + \phi(x) \right) \right) + \text{fermionic terms} \quad (2.4)$$

where $A_\mu(x)$ and $\phi(x)$ are the 5D vector fields and their scalar superpartners. The simplest 5D vacuum with $\phi \equiv A^4 \equiv 0$ corresponds to the 4D field configuration

$$\langle \Omega_\ell \rangle \equiv v \times 1_{n_c \times n_c} \quad (2.5)$$

which Higgses the 4D gauge symmetry $[SU(n_c)]^N$ down to its diagonal subgroup $SU(n_c)_{\text{diag}} = \text{diag}(\prod_\ell SU(n_c)_\ell)$. The rest of the 4D vectors acquire masses

$$M^2(k) = 4g^2|v|^2 \sin^2 \frac{\pi k}{N} = \frac{4}{a^2} \sin^2 \frac{a P_4}{2} \quad (2.6)$$

where the second equality follows from identifying the lattice spacing a as

$$a = \frac{1}{g|v|} \quad (2.7)$$

and the lattice momentum P_4 as

$$P_4 = \frac{2\pi k}{Na}, \quad k = 1, 2, \ldots \text{ modulo } N. \quad (2.8)$$

In the large N limit, the bottom end of the spectrum (2.6) becomes a Kaluza–Klein tower

$$M^2 \approx P_4^2 = \left(\frac{2\pi k}{Na} \right)^2 \quad (2.9)$$

of a massless relativistic 5D vector field (compactified on a circle of length $2\pi R = Na$); this is the momentum-space view of the dimensional deconstruction.

\(^{(2)}\) Although the β coupling is non-renormalizable for $n_c > 2$, all the resulting divergences can be regularized via higher-derivative Lagrangian terms for the singlet fields s_ℓ without disturbing the chiral ring of the theory.
Similarly, the low-energy end of the 4D quark spectrum comprises Kaluza–Klein towers for relativistic 5D hypermultiplets of masses \(m_f \ll (1/a) \). Indeed, for a quark flavor of 4D mass \(\gamma \mu_f \), the mass matrix for the \(Q_{\ell,f} \) and \(\tilde{Q}^\ell_f \) fields \((\ell = 1, 2, \ldots, N)\) has eigenvalues

\[
M^2(f, k) = |\gamma|^2 \left| ve^{2\pi ik/N} - \mu_f \right|^2,
\]

and for \(|\mu_f| \approx |v|\), the bottom end of this spectrum becomes (in the large \(N \) limit)

\[
M^2 \approx m_{5D}^2 + P_4^2
\]

where

\[
m_{5D} = |\gamma| \times \left(|\mu_f| - |v| \right) \ll \frac{1}{a},
\]

\[
P_4 = \frac{2\pi k}{Na} + \text{constant (Wilson line)},
\]

and

\[
a = \frac{1}{|\gamma| v}.
\]

The 4D quarks with \(|\mu_f| \not\approx |v|\) do not have low-mass \(M^2 \ll (1/a)^2 \) modes and do not deconstruct any 5D particles. For \(\mu_f \gg v \), the 4D quark decouples above the deconstruction threshold \((1/a)\) and has no low-energy effect whatsoever, but quarks with \(\mu_f \ll v \) decouple at the threshold itself and modify the Chern–Simons interactions of the deconstructed SQCD. Since the Chern–Simons level \(k_{cs} \) affects the moduli space geometry and even the phase structure of the 5D theory, it must be deconstructed correctly. Thus, the deconstructive quiver should have

\[
F = n_f + \Delta F \geq n_f
\]

4D flavors, where \(n_f \) is the number flavors in 5D,

\[
\Delta F = n_c - \frac{n_f}{2} - k_{cs}, \quad 0 \leq \Delta F \leq 2n_c - n_f,
\]

and

\[
\mu_f = v \times \exp(am_f^{5D}) \sim v \quad \text{for} \ f \leq n_f \quad \text{but} \mu_f \ll v \quad \text{for} \ f > n_f.
\]

However, from the holomorphic, purely-4D point of view, there is no qualitative difference between \(\mu_f \sim v \) and \(\mu_f \ll v \), but there is a difference between \(\mu_f \neq 0 \) and between \(\mu_f = 0 \).
Hence, for the purposes of this article, we shall assume

\[\text{generic } \mu_f \neq 0 \text{ for } f = 1, 2, \ldots, n_f \text{ but } \mu_f = 0 \text{ for } f = (n_f + 1), \ldots, F. \quad (2.18) \]

Note that consistency between eqs. (2.7) and (2.14) requires equal gauge and Yukawa couplings, \(g = |\gamma| \). In a quantum theory, this means equality of the renormalized physical couplings,

\[g_{\text{phys}} = |\gamma|_{\text{phys}}, \quad (2.19) \]

or in non-perturbative terms, in the very low energy limit \(E \ll (1/Na) \) the effective theory (the diagonal \(SU(n_c) \) with an adjoint field \(\Phi \) and several quark flavors) should be \(\mathcal{N} = 2 \) supersymmetric. Without this condition, the deconstructed theory would have quarks and gluons with different effective speed of light in the \(x^4 \) direction. This is a common problem in lattice theories with some continuous dimensions (e.g. Hamiltonian lattice theories with continuous time but discrete space), and the common solution is fine-tuning of the lattice parameters. For the deconstructed SQCD\(_5\), the fine tuning involves the Kähler parameters (such as coefficients of the quarks’, antiquarks’ and links’ kinetic-energy Lagrangian terms) and does not affect any of the holomorphic properties of the quiver such as its chiral ring. Consequently, in the present article we may disregard eq. (2.19) and treat the holomorphic \(\gamma \) and the gauge coupling \(g \) (or rather its dimensional transmutant \(\Lambda \)) as free parameters of the quiver theory.

We conclude this section by acknowledging that there are many ways to skin a cat or to deconstruct SQCD\(_5\) with given \(n_c, n_f \) and \(k_{cs} \). For example, one can pack several 5D quark flavors into a single 4D flavor with a complicated dispersion relation \(M_{4D}(P_4) \) by generalizing the hopping superpotential (2.2) to allow the quark to hop over several lattice spacing at once. Indeed,

\[W_{\text{hop}} = \sum_{q=0}^{p} \Gamma_p \sum_{\ell=1}^{N} \tilde{Q}_\ell + q \Omega_{\ell+q-1} \cdots \Omega_\ell Q_\ell \quad (2.20) \]

endows a single 4D flavor with \(p \) light modes when the polynomial

\[H_p(x) = \sum_{q=0}^{p} \Gamma_p x^p \quad (2.21) \]
has all p of its roots μ_1, \ldots, μ_p located close to the circle $|x| = |v|$. We found however that such p-fold quarks are pretty much equivalent to p ordinary flavors with masses μ_1, \ldots, μ_p. Consequently, we shall henceforth stick to the $p = 1$ model (2.2) because of its twin virtues of relative simplicity and renormalizability.

2.2 The Classical Vacua.

As explained in [22], the classical moduli space of the $[SU(n_c)]^N$ quiver theory has exactly the same Coulomb, Higgs and mixed branches as the un-deconstructed SQCD$_5$. The Coulomb branch is distinguished by zero classical values of the quark and antiquark scalars while the link fields have non-zero VEVs subject to D/F term constraints

$$\forall \ell: \langle \Omega_{\ell} \rangle \dagger \langle \Omega_{\ell} \rangle - \langle \Omega_{\ell-1} \rangle \langle \Omega_{\ell-1} \rangle^\dagger \propto 1_{n_c \times n_c}, \quad \text{Det} \langle \Omega_{\ell} \rangle = v^{n_c}. \quad (2.22)$$

Consequently, all the $\langle \Omega_{\ell} \rangle$ matrices are equal and diagonal modulo an ℓ-dependent gauge transform:

$$\forall \ell: \langle \Omega_{\ell} \rangle = \text{diag}(\omega_1, \omega_2, \ldots, \omega_{n_c}) \quad (2.23)$$

for some complex moduli $(\omega_1, \omega_2, \ldots, \omega_{n_c})$ satisfying $\prod_j \omega_j = v^{n_c}$. Note that each ω_j is gauge-equivalent to $\omega_j \times \sqrt{N}$, hence the $(\omega_1^N, \omega_2^N, \ldots, \omega_{n_c}^N)$ makes a better coordinate system for the moduli space, although it’s still redundant with respect to permutations of the ω_j^N.

Generically, all the ω_j^N are distinct and the 4D gauge symmetry is broken all the way down to the Cartan $(U(1))^{n_c-1}$ subgroup of the $SU(n_c)_{\text{diag}} = \text{diag} \left[\prod_{\ell} SU(n_c)_{\ell} \right]$, but a non-abelian subgroup $SU(k) \subset SU(n_c)_{\text{diag}}$ survives un-Higgsed when k of the ω_j^N happen to coincide.

According to the deconstruction map (2.4),

$$\omega_j = v \times \exp(a(\phi_j + iA_{j}^4)) \quad (2.24)$$

where ϕ_j are the real 5D moduli scalars and $A_{j}^4 \times Na$ are the Wilson lines of the diagonal gauge fields around the deconstructed dimension. Of course, the deconstruction works only for $\phi_j \ll (1/a) \implies \omega_j \sim v$, but this restriction does not affect the 4D theory as such.
Unlike the Coulomb branch which exists for any quark masses, the Higgs and the mixed branches require coincidences between the μ_f or rather among the non-zero μ^N_f. For example, for $\mu^N_1 = \mu^N_2 \neq 0$ there is a mixed mesonic branch where one of the ω^N_j is frozen at the same value. Indeed, let

$$\omega_1 = e^{2\pi i k_1/N} \mu_1 = e^{2\pi i k_2/N} \mu_2$$

(2.25)

for some integer (k_1, k_2); then the quark mass matrix due to the superpotential (2.2) allows for the squark VEVs

$$\langle Q^f_{\ell,j} \rangle = e^{2\pi i k_f \ell/N} Q^f, \quad \langle \tilde{Q}^f_{\ell,j} \rangle = e^{-2\pi i k_f \ell/N} \tilde{Q}^f$$

for $j = 1 \& f = 1, 2$ only, (2.26)

subject to F-term and D-term constraints

$$Q_1 \tilde{Q}^1 + Q_2 \tilde{Q}^2 = 0,$$

$$|Q_1|^2 - |	ilde{Q}^1|^2) + (|Q_2|^2 - |	ilde{Q}^2|^2) = 0.$$

(2.27) (2.28)

These VEVs Higgs the $(SU(n_c))^N$ symmetry down to $(SU(n_c-1))^N$, which is further broken by the link VEVs $\langle \Omega_\ell \rangle$ down to a subgroup of the $SU(n_c-1)_{\text{diag}} = \text{diag} \left[\prod_\ell SU(n_c-1)_\ell \right]$. For generic values of the un-frozen Coulomb moduli $(\omega^N_2, \ldots, \omega^N_{n_c})$, the surviving gauge symmetry is $U(1)^{n_c-2}$, but coincidences among these moduli allow for un-Higgsing of a non-abelian $SU(k) \subset SU(n_c - 1)_{\text{diag}}$.

The mesonic branch of the quiver deconstructs the mesonic branch of the SQCD$_5$ where $\phi_1 = m^{5D}_1 = m^{5D}_2$. Although the deconstruction requires $\phi_1 \ll (1/a)$ and hence $m^{5D}_{1,2} \ll (1/a)$, this restriction does not affect the 4D theory as such. In 4D, a coincidence $\mu^N_1 = \mu^N_2$ gives rise to a mesonic branch regardless of whether $\mu_{1,2}$ is larger, smaller, or similar to v, as long as $\mu^N_{1,2} \neq 0$. On the other hand, having two or more exactly massless 4D flavors (i.e., $\Delta F \geq 2$) does not lead to a mesonic branch of the $[SU(n_c)]^N$ quiver because the link eigenvalues ω_j cannot vanish. (Note the constraint $\det(\Omega_\ell) = v^{n_c} \neq 0$.)

Further coincidences among the μ^N_f allow for multi-mesonic mixed branches with more squark VEVs, more frozen Coulomb moduli ω^N_j (e.g., $\omega^N_1 = \mu^N_1 = \mu^N_2$, $\omega^N_2 = \mu^N_3 = \mu^N_4$), and a lower rank of the un-Higgsed gauge symmetry. Such multi-mesonic branches work similarly to the single-meson mixed branch, so we need not discuss them any further. Instead, let us
consider the purely-Higgs baryonic branch which exists for \(n_f \geq n_c \) when \(n_c \) of the 5D quark masses add to zero, or in 4D terms, when the product of \(n_c \) of the \(\mu_f^N \) happens to equal to the \((v^{n_c})^N\). Indeed, for \(\mu_1^N \times \mu_2^N \times \cdots \times \mu_{n_c}^N = v^{n_c} \) we may freeze all of the Coulomb moduli at
\[
\omega_j = e^{2\pi i k_j/N} \mu_j \quad \forall j = 1, 2, \ldots, n_c, \quad k_j \in \mathbb{Z},
\]
which gives zero modes to all quark colors \(j = 1, \ldots, n_c \) for \(f = j \) and allows non-zero VEVs
\[
\langle Q_{\ell,j}^f \rangle = \delta_j^f e^{2\pi i k_j \ell/N} Q^j, \quad \langle \tilde{Q}_{\ell,j}^f \rangle = \delta_j^f e^{-2\pi i k_j \ell/N} \tilde{Q}_{\ell,j}^f
\]
subject to the D term constraint
\[
\text{same (}|Q^j|^2 - |\tilde{Q}_j|^2| \forall j
\]
and the F-term constraint
\[
\frac{\partial W}{\partial \Omega_{\ell,j}^j} = \gamma e^{-2\pi i k_j/N} Q^j \tilde{Q}_j + \beta s_{\ell} v^{n_c} = 0.
\]
The simplest solutions to these constraints are either \(\tilde{Q}_j \equiv 0 \), same \(Q^j \equiv Q \ \forall j \) (baryonic VEVs only) or vice versa \(Q^j \equiv 0 \), same \(\tilde{Q}_j \equiv \tilde{Q} \ \forall j \) (antibaryonic VEVs only), but thanks to the singlet fields \(s_{\ell} \) enforcing the \(\det \Omega_{\ell} = v^{n_c} \) constraints, there are other solutions where both baryonic and antibaryonic VEVs are present at the same time. In the deconstruction limit \(\phi_j = m_j^{5D} \ll (1/a) \implies \omega_j \approx v \) (up to a phase) in eq. (2.32), we have \(Q^j \equiv Q \), \(\tilde{Q}_j \equiv \tilde{Q} \) and hence
\[
\langle Q_{\ell,j}^f \rangle = \delta_j^f e^{2\pi i k_j \ell/N} \times Q, \quad \langle \tilde{Q}_{\ell,j}^f \rangle = \delta_j^f e^{-2\pi i k_j \ell/N} \times \tilde{Q}
\]
for some arbitrary pair \((Q, \tilde{Q})\) of complex moduli which deconstruct the baryonic hypermodulus of the SQCD$_5$. Outside the deconstruction limit, the 4D baryonic branch exists anyway, albeit with more complicated anti/squark VEVs. In any case, there are two complex moduli and the \([SU(n_c)]^N\) gauge symmetry is completely Higgsed down.

This completes our survey of the classical moduli space of the \([SU(n_c)]^N\) quiver. The bottom line is, all the classical vacua of this quiver are deconstructive, i.e. correspond to the SQCD$_5$’s vacua according to the deconstruction map (2.4) and the zero modes of the massless 5D gauge bosons match all the massless 4D vector fields.
2.3 Deforming the Superpotential.

In the extreme infrared limit $E \ll (1/ \Lambda)$, the $\mathcal{N} = 1$ quiver theory reduces to the $\mathcal{N} = 2$ SQCD$_4$ with several flavors, and thanks to this extra supersymmetry, the gauginos do not form bilinear condensates. According to Cachazo, Douglas, Seiberg and Witten [4, 6, 5, 7], the gaugino condensates play a key role in the chiral ring of the $U(n_c)$ theory with an adjoint chiral field Φ. Indeed, the best way for understanding the $\mathcal{N} = 2$ SQCD$_4$ involves deforming the theory to $\mathcal{N} = 1$ (via superpotential $W(\Phi)$ for the adjoint field) in order to turn on the gaugino condensation, although eventually, after solving the anomaly equations of the chiral ring of the deformed theory (including the chiral gaugino condensates) one may turn off the deformation and return to $\mathcal{N} = 2$ SUSY.

In the quiver theory, the role of the adjoint field Φ is played by the quiver-ordered product $(\Omega_1 \Omega_2 \cdots \Omega_N)$ of the link fields. Hence, to study the chiral ring of the quiver, we need to temporarily deform the superpotential according to

$$W = W_{\text{hop}} + W_\Sigma \longrightarrow W = W_{\text{hop}} + W_\Sigma + W_{\text{def}}$$

where

$$W_{\text{def}} = \text{tr} \mathcal{W}(\Omega_N \Omega_{N-1} \cdots \Omega_2 \Omega_1) \overset{\text{def}}{=} \sum_{k=1}^d \frac{\nu_k}{k} \text{tr} \left((\Omega_N \Omega_{N-1} \cdots \Omega_2 \Omega_1)^k \right).$$

Although this deformation does not make any sense from the 5D point of view — indeed, it is utterly non-local in the x^4 direction — as well as grossly non-renormalizable in 4D, it does lead to non-zero gaugino condensates which will help us later in §3. But before we study such non-perturbative effects, we need to know the effect of the deformation (2.34) on the classical vacua of the theory.

The general effect is similar to the deformed $\mathcal{N} = 2$ SQCD$_4$. The Coulomb branch collapses to a discrete set of isolated vacua where each Coulomb modulus ω_j^N takes one of d possible values ($\varphi_1, \varphi_2, \ldots, \varphi_d$), namely the roots of the polynomial

$$\tilde{W}(X) = \sum_{k=1}^d \nu_k X^k + \beta \langle s \rangle v^{n_c}$$

(2.36)
where \(\langle s \rangle \equiv \langle s_\ell \rangle \) is the common expectation value of the singlet fields \(s_\ell \) which adjusts itself to assure \(\prod_j \omega_j = v^{n_c} \). Indeed, given the Coulomb VEVs (2.23),
\[
\frac{\partial W}{\partial \omega_j} = \frac{N}{\omega_j} \tilde{W}(\omega_j^N) \implies \forall j : \tilde{W}(\omega_j^N) = 0.
\]
(2.37)

Note that each root \(\wp_i \) of the \(\tilde{W} \) polynomial may capture several moduli \(\omega_j^N \), or just one, or even none at all. The individual Coulomb vacua of the quiver are distinguished by the 'occupation numbers' \(n_i = \# \{ j : \omega_j^N = \wp_i \} \) for \(i = 1, \ldots d \); altogether, \(\sum_i n_i = n_c \). For any given set of the \(n_i \), the surviving gauge symmetry of the \([SU(n_c)]^N\) quiver theory is
\[
G_{\text{unbroken}} = S \left[\prod_i U(n_i) \right] \subset SU(n_c)_{\text{diag}}
\]
(2.38)
where each \(n_i \geq 2 \) gives rise to a nonabelian factor \(SU(n_i) \). In the quantum theory, such nonabelian factors develop mass gaps due to pseudo-confinement\(^{(3)}\) and the ultimate low-energy limit of the theory has only the abelian photons. The net number of such surviving photons is
\[
n_{\text{Abel}} = \# \{ i : n_i \neq 0 \} - 1 \leq n_c - 1.
\]
(2.39)

Besides the purely–Coulomb vacua, the deformed quiver also has discrete mesonic vacua where the squark VEVs are determined by the deformation (2.35). In such vacua, some of the Coulomb moduli \(\omega_j^N \) are frozen at non-zero, non-degenerate \(\mu_j^N \) while the rest follow the roots \(\wp_i \) of the deformation polynomial (2.36). For example, let \(\omega_1^N = \mu_1^N \neq 0 \) while the \((\omega_2^N, \ldots, \omega_{n_c}^N) \) are captured by the \(\wp_i \). Then at this point, the D/F term constraints require non-zero squark and antisquark VEVs for \(j = f = 1 \) only:
\[
\langle Q_{\ell,1}^1 \rangle = e^{2\pi i k_1/N} Q, \quad \langle \tilde{Q}_{\ell,1}^1 \rangle = e^{-2\pi i k_1/N} \tilde{Q}, \quad |Q|^2 = |\tilde{Q}|^2, \quad Q \tilde{Q} = -\frac{\tilde{W}(\mu_1^N)}{\gamma_{\mu_1}} \neq 0.
\]
(2.40)

In this vacuum \(\sum_i n_i = n_c - 1 < n_c \), which reduces the unbroken gauge symmetry according to eq. (2.38). Likewise, we may have fixed squark VEVs for several distinct \((j, f) \) pairs when

\(^{(3)}\) Following the terminology of ref. [7] we call an \(SU(n_i) \) gauge factor pseudo-confining rather than confining because the overall quiver theory contains fields with anti/fundamental quantum numbers (with respect to the \(SU(n_i) \)) which prevent the complete confinement. In this terminology, the ordinary QCD with finite-mass quarks is also pseudo-confining rather than confining.
the corresponding moduli ω_j^N are trapped at the $\mu_j^N \neq 0$ instead of the roots φ_i; this results in even lower $\sum_i n_i \leq n_c - 2$ and hence further Higgsing down of the gauge symmetry.

In the quantum theory, the Higgs mechanism is complementary to pseudo-confinement and the two types of vacua are continuously connected in the overall parameter/moduli space of the theory. The way this duality works in the deformed $\mathcal{N} = 2$ SQCD$_4$ is explained in detail in [5, 7], and the same arguments apply to the deconstructive quiver theories under discussion. The bottom line is, all the Higgs and the pseudo-confining Coulomb vacua (of the same theory) which have the same abelian rank n_{Abel} are continuously connected to each other in the quantum quiver theory. The purely-abelian Coulomb vacua with no non-abelian factors at all form a separate class because they have higher abelian rank than any Higgs or pseudo-confining vacuum.

Eventually, we shall un-deform the quiver theory by taking the limit $\nu_k \to 0$ in the deformation superpotential (2.35). We should be careful to maintain finite roots φ_i with $n_i > 0$ and to allow them to move all over the complex plane (subject to the constraint $\prod_i \varphi_i^n = v^{Nn_c}$ in the $[SU(n_c)]^N$ case) while the overall scale of the polynomial $\tilde{W}(X)$ diminishes away. In this limit, the purely-Coulomb vacua where each root φ_i captures a single modulus ω_i^N span the whole Coulomb moduli space of the un-deformed quiver while each individual vacuum state adiabatically recovers its un-deformed properties. At the same time, the Higgs and the pseudo-confining vacua asymptote to the Coulomb vacua we already have while losing their distinguishing features. For example, the Higgs vacuum (2.40) loses the squark VEVs in the $\tilde{W}(X) \to 0$ limit and becomes indistinguishable from a Coulomb vacuum which simply happens to have $\omega_i^N = \mu_i^N$ and hence a massless quark mode with $j = f = 1$. Likewise, the pseudo-confining vacuum with $\omega_1^N = \omega_2^N = \varphi_1$ becomes indistinguishable from the ordinary Coulomb vacuum with $\varphi_1 \approx \varphi_2$ when the $SU(2)$ sector loses its mass gap in the un-deformed limit of the quiver.

Therefore, as far as the un-deformed deconstructive quiver theory is concerned, the pseudo-confining and the isolated-Higgs vacua are artifacts of the deformation and we should focus on the abelian Coulomb vacua with $n_i = 1$ (or 0) only. Nevertheless, the very existence of the pseudo-confining and isolated-Higgs vacua of the deformed theory affects its chiral ring, and so we will take them into consideration in §3.
We conclude this section by discussing the mesonic and baryonic branches of the deformed quiver theories, assuming the quark masses allow their existence in the first place. The mesonic branches are of mixed Coulomb+Higgs type, and the two kinds of moduli subspaces are affected in two different ways: The Coulomb subspace of a mesonic branch (the ω^N_j which are not frozen by the squark VEVs) becomes discretized similarly to the main Coulomb branch, but the Higgs subspace remains continuous, although its complex structure may be deformed. For example, the mesonic Higgs branch (2.26) which exists for $\nu_1^N = \mu_1^N = \mu_2^N \neq 0$ has its F-term constraint (2.27) for the squark and antisquark VEVs deformed to

$$Q_1 \tilde{Q}^1 + Q_2 \tilde{Q}^2 = -\frac{\tilde{W}(\mu_1^N)}{\gamma \mu_1},$$

(2.41)

but despite this deformation, we still have continuously variable anti/squark VEVs governed by two independent complex Higgs moduli. On the other hand, the un-frozen Coulomb moduli ($\omega^N_2, \ldots, \omega^N_{n_c}$) of the deformed quiver are no longer continuously variable but restricted to the discrete set of the \wp_i roots.

The multi-mesonic Coulomb+Higgs branches suffer similar effects: The Coulomb moduli become discretized but the Higgs moduli remain continuously variable, although the complex structure of the mesonic moduli space suffers a deformation. Likewise, a baryonic Higgs branch of the $[SU(n_c)]^N$ quiver survives as a continuous moduli space with two complex moduli, but its complex structure is deformed as the F-term constraint (2.32) becomes

$$\gamma e^{2\pi i k_j/N} Q_j \tilde{Q}_j + \frac{\beta \langle s \rangle v^{n_c}}{\omega_j} + \sum_k \nu_k \omega^{kN-1}_j = 0 \quad \forall j.$$

(2.42)

This completes our summary of the classical quiver theories. The quantum theories and their chiral rings will be addressed in the following sections §§3–4.
3. The Non–Baryonic Chiral Ring

The main subject of this paper is the quantum chiral ring of the $[SU(n_c)]^N$ quiver theory from the purely $D = 4, \mathcal{N} = 1$ point of view. Thus, we consider the size N of the quiver as a fixed, finite parameter of the theory and allow the superpotential deformation (2.35) despite its non-locality in the x^4 direction. Using the techniques of Cachazo, Douglas, Seiberg and Witten [4, 6, 5, 7], we package the chiral ring’s generators into several resolvent functions of an auxiliary complex variable X, and then derive and solve the anomaly equations for these resolvents.

The new aspects of the present work (compared to Cachazo et al.) are due to a more complicated object of study: A whole quiver of N gauge groups instead of just one, and each gauge group is $SU(n_c)$ rather than $U(n_c)$. In this section we focus on the quiver issues and study the non-baryonic generators of the chiral ring. The baryons and other generators allowed by the $SU(n_c)$ rather than $U(n_c)$ symmetries will be addressed in the following section §4.

Let us start with a brief review of the chiral ring basics. Most generally, the chiral ring of a 4D $\mathcal{N} = 1$ gauge theory is the \overline{Q} cohomology in the algebra of local gauge-invariant operators $\mathcal{O}(x)$ of the theory. That is, we consider chiral operators $\{\overline{Q}^\alpha, \mathcal{O}\} = 0$ and identify them modulo \overline{Q} commutators,

$$\mathcal{O}_1 \equiv \mathcal{O}_2 \iff \mathcal{O}_1 - \mathcal{O}_2 = \left[\overline{Q}^\alpha, \mathcal{O}'\right]$$ \hspace{1cm} (3.1)

where the operator $\mathcal{O}'(x)$ is also local and gauge invariant. In the superfield formalism we may use the \overline{D}^α super-derivative instead of the \overline{Q}^α supercharges, thus chiral operators $\mathcal{O}(z)$ satisfy $\overline{D}^\alpha \mathcal{O} = 0$ and in the chiral ring

$$\mathcal{O}_1 \equiv \mathcal{O}_2 \iff \mathcal{O}_1 - \mathcal{O}_2 = \overline{D}^\alpha \left(\text{gauge-invariant } \mathcal{O}'\right).$$ \hspace{1cm} (3.2)

In the chiral ring the spacetime location of an operator is irrelevant,

$$\partial_\alpha \mathcal{O} = \frac{1}{2i} \overline{D}_\alpha (D_\alpha \mathcal{O}) \equiv 0 \implies \forall x_1, x_2 : \mathcal{O}(x_1) \equiv \mathcal{O}(x_2),$$ \hspace{1cm} (3.3)
and therefore all operator products are also position independent,
\[O_1(x_1)O_2(x_2)\cdots O_n(x_n) \equiv \text{same} \quad \forall x_1, x_2, \ldots, x_n. \tag{3.4} \]

This position independence distinguishes the chiral ring from the more general operator algebra of the quantum theory and makes it exactly solvable. It also makes it a bona-fide ring, which simplifies the analysis: Once we construct all the independent generators from the fundamental fields of the theory, the operator products (3.4) follow from the ring structure without any further work.

Finally, note the distinction between the off-shell and the on-shell chiral rings of the same theory: In the off-shell chiral ring the equivalence relations (3.2) must be operatorial identities of the quantum theory, but in the on-shell chiral ring we use both the identities and the equations of motion. Classically
\[\frac{\partial W}{\partial \phi} = \frac{1}{4} \mathcal{D}^2 \left(\frac{\partial K}{\partial \phi} \right) \equiv 0 \tag{3.5} \]

for any independent chiral field \(\phi \), but at the quantum level eqs. (3.5) are corrected by the generalized Konishi anomalies, cf. eq. (3.32) on page 29.

3.1 Generating the Chiral Ring

In this subsection we generate (i.e., construct independent generators of) the off-shell chiral rings of the \([SU(n_c)]^N\) quiver theories. Or rather the almost off-shell rings where the operatorial identities of the theory are supplemented by the anomaly-free equations of motion for the singlet fields \(s_\ell \):
\[\forall \ell : \quad \frac{\partial W}{\partial s_\ell} \equiv 0 \implies \det(\Omega_\ell) \equiv v^{n_c}. \tag{3.6} \]

We group these particular equations of motion with the operatorial identities because the \(s_\ell \) fields do not do anything interesting besides imposing the constraints (3.6) on the link fields to set up the \(SL(n_c, \mathbb{C})_\ell \) sigma models.

We begin with the chiral ring generators made from the link fields \(\Omega_\ell \) and nothing else. Because of eqs. (3.6) we cannot form chiral gauge invariants from the individual link fields;
instead, we have to take traces $\text{tr}(\Omega_N \Omega_{N-1} \cdots \Omega_2 \Omega_1)^k$ of whole chains of links wrapped several times around the quiver. Also, thanks to $\det(\Omega_\ell) \neq 0$ the matrix inverses Ω^{-1}_ℓ are well-defined chiral operators; this allows us to take traces $\text{tr}(\Omega^{-1}_1 \Omega^{-1}_2 \cdots \Omega^{-1}_N)^k$ of the inverse link chains wrapped around the quiver in the opposite direction. Conveniently, both types of traces can be summarized via a single resolvent

$$
T(X) = \text{tr} \left(\frac{1}{X - \Omega_N \cdots \Omega_1} \right) \\
= \sum_{k=0}^{\infty} \frac{1}{X^{k+1}} \times \text{tr} (\Omega_N \Omega_{N-1} \cdots \Omega_2 \Omega_1)^k \\
= - \sum_{k=1}^{\infty} X^{k-1} \times \text{tr} (\Omega^{-1}_1 \Omega^{-1}_2 \cdots \Omega^{-1}_{N-1} \Omega^{-1}_N)^k.
$$

Classically, this resolvent has simple poles at the Coulomb moduli of the quiver

$$
T(X) = \sum_{j=1}^{n_c} \frac{1}{X - \omega_j^N}
$$

and we may use contour integrals

$$
n(C) = \oint_C \frac{dX}{2\pi i} T(X)
$$

as gauge-invariant counts of the Coulomb moduli inside any particular contour C; for example, $n_i = n(C_i)$ for a sufficiently small contour C_i surrounding the deformation root φ_i.

In the quantum theory of the quiver, the resolvent (3.7) behaves similarly to its $\text{tr} \left(\frac{1}{X - \varphi} \right)$ analogue in the deformed $\mathcal{N} = 2$ SQCD$_4$: The poles at φ_i become $\sqrt{\pi}$ branch cuts, but the n_i — defined as $n(C_i)$ for suitable contours C_i — remain exactly integer. And since the monodromies in the parameter space of the deformed quiver theory can entangle a C_i with any other cycle of the Riemann surface of the $T(X)$, it follows that all closed-contour integrals (3.9) of the link resolvent (3.7) must have integer values. Indeed, consider the differential

$$
T(X) dX = d \text{tr} \log(X - \Omega_N \cdots \Omega_1) = d \log \det(X - \Omega_N \cdots \Omega_1).
$$
Regardless of any quantum corrections to the determinant $\det(X - \Omega_N \cdots \Omega_1)$, its logarithm will always have exactly integer $\times 2\pi i$ differences between its branches. Consequently, the quantum quiver theory has exactly integer contour integrals (3.9) for all contours \mathcal{C} which are closed on the Riemann surface of the $T(X)$.

The readers who find the above argument too heuristic are referred to Cachazo et al for a rigorous proof; the arguments of ref. [7] apply equally well to the present case and we don’t see the need of repeating them here almost verbatim.

\[\star \quad \star \quad \star \]

Next, let us add the quark and antiquark fields to the picture and form all kinds of chiral operators with mesonic quantum numbers. Besides the true mesons

\[
[M_{\ell}]^{f'}_f = \tilde{Q}^{f'}_{\ell} Q_{\ell,f}
\]

which are local in 5D as well as in 4D, there are other meson-like chiral gauge-invariant operators where the quark and the antiquark are located at different quiver nodes $\ell \neq \ell'$ but are connected to each other by a chain of link fields, e.g., $\tilde{Q}^{f'}_{\ell} \Omega_{\ell'-1} \cdots \Omega_{\ell} Q_{\ell,f}$. From the 5D point of view, these are bi-local operators which create/annihilate un-bound pairs of quarks and antiquarks, while the link chains deconstruct the un-physical Wilson strings which allow for manifest gauge invariance of such bi-local operators:

\[
[M(x_2, x_1)]^{f'}_f = \tilde{Q}^{f'}(x_2) \times \exp_{\text{Path ordered}} \left(i \int_{x_1}^{x_2} dx^\mu A_\mu(x) \right) \times Q_f(x_1)
\]

\[\rightarrow \tilde{Q}^{f'}_{\ell'} \Omega_{\ell'-1} \Omega_{\ell'-2} \cdots \Omega_{\ell+1} \Omega_\ell Q_{\ell,f}
\]

for $x_{1,2,3}^{0,1,2,3} = x_2^{0,1,2,3}$, $x_1^4 = a\ell$ and $x_2^4 = a\ell'$.

From the 4D point of view however, these operators are local, chiral and gauge invariant —
and therefore belong to the chiral ring of the quiver.\(^{(4)}\)

Besides the “split mesons” (3.12) where the link chain runs directly from the quark to the antiquark, we may have the chain going several times around the whole quiver, thus \(\tilde{\mathcal{Q}}_{\ell}^{f} \Omega_{e}^{-1} \Omega_{e+1}^{-1} \cdots \Omega_{1}^{-1} \cdots \Omega_{N}^{-1} \cdots \Omega_{\ell-1}^{-1} \cdots \Omega_{\ell+1}^{-1} \cdots \Omega_{\ell} Q_{\ell,f},\) or in reverse direction (via inverse links), thus \(\tilde{\mathcal{Q}}_{\ell}^{f} \Omega_{e}^{-1} \Omega_{e+1}^{-1} \cdots \Omega_{1}^{-1} \cdots \Omega_{N}^{-1} \cdots \Omega_{\ell-1}^{-1} \cdots \Omega_{\ell+1}^{-1} \cdots \Omega_{\ell} Q_{\ell,f}^{-1}\).

To summarize all these meson-like operators, we define mesonic resolvents

\[M_{\ell',\ell}(X) = \tilde{\mathcal{Q}}_{\ell}^{f} \frac{\Omega_{\ell-1} \cdots \Omega_{\ell}}{X - \Omega_{\ell-1} \cdots \Omega_{1} \cdots \Omega_{\ell}} Q_{\ell} \]

where the flavor indices of the quarks and antiquarks are suppressed for notational simplicity (or in other words, each \(M_{\ell',\ell}(X)\) is an \(F \times F\) matrix), the quiver indices are understood modulo \(N\), and the \(\frac{\Omega_{\ell-1} \cdots \Omega_{\ell}}{X - \Omega_{\ell-1} \cdots \Omega_{1} \cdots \Omega_{\ell}}\) is a short-hand for

\[\Omega_{\ell-1} \cdots \Omega_{\ell} \times \frac{1}{X - \Omega_{\ell-1} \cdots \Omega_{1} \cdots \Omega_{\ell}} = \frac{1}{X - \Omega_{\ell-1} \cdots \Omega_{1} \cdots \Omega_{\ell}} \times \Omega_{\ell-1} \cdots \Omega_{\ell}. \]

The resolvents (3.13) with \(\ell \leq \ell' < \ell + N\) suffice to generate all the meson-like operators; for \(\ell' = \ell + N\) there is a periodicity equation

\[M_{\ell+N,\ell}(X) = X \times M_{\ell',\ell}(X) - M_{\ell} \]

where the last \((X\)-independent\) term on the right hand side is the matrix of the true mesons (3.11). Classically, the resolvents (3.13) have simple poles at \(X = \mu_{N}^{f}\), but only for mesonic vacua with \(\langle Q_{f} \rangle, \langle \tilde{Q}_{f} \rangle \neq 0\). In the quantum theory, such poles exist for all vacua, but only the mesonic vacua have them on the “physical sheet” of the quiver’s spectral curve; we shall explain this issue the following subsection §3.2.

\(^{(4)}\) Actually, to make the chiral operator on the second line of eq. (3.12), the Wilson string on the top line must be modified to incorporate the 5D scalar field \(\phi(x)\) along with the gauge field \(A_{4}(X)\). Indeed, according to the deconstruction map (2.4),

\[\tilde{\mathcal{Q}}_{\ell}^{f} \Omega_{e}^{-1} \Omega_{e+1}^{-1} \cdots \Omega_{\ell-1} \cdots \Omega_{1}^{-1} \cdots \Omega_{\ell+1}^{-1} \cdots \Omega_{\ell} Q_{\ell,f} = \tilde{\mathcal{Q}}_{\ell}^{f} \times \exp_{\text{path ordered}} \left(\int_{a_{\ell}}^{a'_{\ell}} dx^{4} (\phi(x) + i A_{4}(x)) \right) \times Q_{\ell,f}. \]

Despite this correction, the Wilson string remains un-physical and the quark-antiquark pair remains unbound.
Meanwhile, consider the chiral gaugino superfields $W^\alpha_\ell = \lambda^\alpha_\ell + F^\alpha_\beta_\ell \theta^\beta_\ell + \cdots \in \text{Adj}(SU(n_c)_\ell)$ and their gauge-invariant combinations with the other chiral fields of the quiver. Although there is a great multitude of such combinations, most of them turn out to be total D^2 super-derivatives and thus do not belong to the chiral ring. This follows from the appearance of the tensor sum of all gaugino superfields

$$W^\alpha = \bigoplus_{\ell=1}^N W^\alpha_\ell \quad (3.16)$$

in the anti-commutation algebra of the gauge-covariant spinor derivatives ∇^α and ∇^β:

$$[\nabla^\alpha, \{\nabla^\beta, \nabla^\gamma\}] = 4\epsilon^\alpha_\beta_\gamma \nabla_\gamma \quad \Rightarrow \forall \text{ chiral } \Phi : \quad -\frac{1}{8}\nabla^2 \nabla^\alpha \Phi = W^\alpha \Phi, \quad (3.17)$$

thus

$$-\frac{1}{8}\nabla^2 \nabla^\alpha Q^f_\ell = W^\alpha_\ell Q^f_\ell, \quad -\frac{1}{8}\nabla^2 \nabla^\alpha \tilde{Q}^f_\ell = -\tilde{Q}^f_\ell W^\alpha_\ell, \quad (3.18)$$

$$-\frac{1}{8}\nabla^2 \nabla^\alpha \Omega_\ell = W^\alpha_\ell \Omega^\ell_\ell - \Omega_\ell W^\alpha_\ell,$$

$$-\frac{1}{8}\nabla^2 \nabla^\alpha W^\beta_\ell = -\frac{1}{8}\nabla^2 \nabla^\beta W^\alpha_\ell = \{W^\alpha_\ell, W^\beta_\ell\}.$$

Therefore, any gauge invariant combination of chiral superfields which includes both gauginos and quarks or antiquarks is a total D^2 super-derivative — which does not belong to the chiral ring. For example,

$$\tilde{Q}^f_\ell \Omega^\ell_{-1} \cdots \Omega^e_\ell W^\alpha_\ell \Omega^{\alpha}_{-1} \cdots \Omega_\ell Q_\ell = -\frac{1}{8} \tilde{D}^2 \left((\tilde{Q}^f_\ell \Omega^\ell_{-1} \cdots \Omega^e_\ell) \nabla^\alpha (\Omega^{\alpha}_{-1} \cdots \Omega_\ell Q_\ell) \right) \equiv 0. \quad (3.19)$$

Furthermore, for any gauge-covariant combination $\Xi_{\ell, \ell'}$ of gaugino and link fields which transforms as $(\Box_\ell, \Box_{\ell'})$, we have

$$\text{tr} \left(\Xi_{\ell, \ell'} W^\alpha_\ell \Omega_\ell^\alpha \Omega^\ell_{-1} \cdots \Omega_\ell \right) - \text{tr} \left(\Xi_{\ell, \ell'} \Omega_{-1} \cdots \Omega_\ell W^\alpha_\ell \right) = -\frac{1}{8} \tilde{D}^2 \left(\Xi_{\ell, \ell'} \nabla^\alpha (\Omega_{-1} \cdots \Omega_\ell) \right) \equiv 0. \quad (3.20)$$
In particular, for any ℓ and ℓ',

$$\text{tr} \left(W^\alpha_\ell \left(\Omega_{\ell-1} \cdots \Omega_{\ell+1} \right)^k \right) \overset{\alpha}{=} \text{tr} \left(W^\alpha_{\ell'} \left(\Omega_{\ell'-1} \cdots \Omega_{\ell'+1} \right)^k \right) \quad (3.21)$$

and likewise

$$\text{tr} \left(W^\alpha_\ell \left(\Omega_{\ell}^{-1} \Omega_{\ell+1}^{-1} \cdots \Omega_{\ell-1}^{-1} \right)^k \right) \overset{\alpha}{=} \text{tr} \left(W^\alpha_{\ell'} \left(\Omega_{\ell'}^{-1} \Omega_{\ell'+1}^{-1} \cdots \Omega_{\ell'-1}^{-1} \right)^k \right), \quad (3.22)$$

which means that all chiral ring’s generators which involve a single gaugino operator are summarized in a single ℓ–independent gaugino resolvent

$$\Psi^\alpha(X) \overset{\text{def}}{=} \frac{1}{4\pi} \text{tr} \left(\frac{W^\alpha}{X - \Omega \cdots \Omega} \right) \equiv \frac{1}{4\pi} \text{tr} \left(W^\alpha_\ell \times \frac{1}{X - \Omega_{\ell} \cdots \Omega_{\ell-1}} \right) \langle \langle \text{same } \forall \ell \rangle \rangle. \quad (3.23)$$

Physically, this resolvent encodes the exactly massless abelian photinos of the $[SU(n_c)]^N$ quiver. Indeed, contour integrals of the $\Psi(X)$ yield traces of the diagonal gaugino fields of the $SU(n_c)_{\text{diag}}$ over a subspace where the Coulomb moduli ω_j^N happen to lie inside the integration contour:

$$\oint_{\mathcal{C}_i} \frac{dX}{2\pi i} \Psi^\alpha(X) = \frac{1}{4\pi} \text{tr} \left(W^\alpha |_{\omega_j^N \text{ inside } c} \right) \quad (3.24)$$

where the W^α can be thought as belonging to the $SU(n_c)_{\text{diag}}$ because any W^α_ℓ would yield the same generator of the chiral ring regardless of ℓ. In particular, for the \mathcal{C}_i contour surrounding a deformation root φ_i (or in the fully quantum theory, surrounding the branch cut near an φ_i), the integral (3.24) restricts the gaugino fields W^α to the $U(n_i)$ subgroup of the unbroken gauge symmetry (2.38) — and then the trace extracts the abelian photino W^α_i in the $U(1)_i$ center of the $U(n_i)$:

$$4\pi \oint_{\mathcal{C}_i} \frac{dX}{2\pi i} \Psi^\alpha(X) = \text{tr} \left(W^\alpha|_{U(n_i)} \right) = W^\alpha_i. \quad (3.25)$$

Note that for the whole $SU(n_c)_{\text{diag}}$, $\text{tr}(W^\alpha) = 0$ and hence $\sum_i W^\alpha_i = 0$; in terms of the gaugino resolvent $\Psi^\alpha(X)$, it means no residue at $X = \infty$ and $\Psi^\alpha(X) = O(1/X^2)$ rather than $O(1/X)$.

26
Next, consider the chiral ring generators involving two gaugino operators $W^\alpha_{\ell_1}$ and $W^\beta_{\ell_2}$ inserted into a closed chain $\text{tr}(\Omega_N \cdots \Omega_1)^k$ of link operators. Again, the specific points of insertion do not matter: For any ℓ_1 and ℓ_2 and any $k_1 + k_2 = k - 1$,

$$\text{tr} \left(W^\alpha_{\ell_1} (\Omega_{\ell_1-1} \cdots \Omega_{\ell_1})^{k_1} \Omega_{\ell_1-1} \cdots \Omega_{\ell_2} W^\beta_{\ell_2} (\Omega_{\ell_2-1} \cdots \Omega_{\ell_2})^{k_2} \Omega_{\ell_2-1} \cdots \Omega_{\ell_1} \right)$$

$$\equiv \text{tr} \left(W^\alpha_{\ell_1} W^\beta_{\ell_1} (\Omega_{\ell_1-1} \cdots \Omega_{\ell_1})^{k_1} \right)$$

$$\equiv \text{tr} \left(W^\alpha_{\ell} W^\beta_{\ell} (\Omega_{\ell-1} \cdots \Omega_{\ell})^{k_1} \right) \forall \text{ other } \ell$$

$$\equiv -\frac{1}{2} \epsilon^{\alpha\beta} \times \text{tr} \left(W^2_{\ell} (\Omega_{\ell-1} \cdots \Omega_{\ell})^{k_1} \right)$$

(3.26)

where the last equality follows from the fourth eq. (3.18). Thanks to reversibility of the link matrices Ω_ℓ in the $[SU(n_c)]^N$ quiver theory, eqs. (3.26) extend to negative k_1, k_2; in particular, for $k_1 + k_2 + 1 = k = 0$ we have

$$\forall \ell_1, \ell_2 : \ \text{tr} \left(W^2_{\ell_1} \right) \equiv \text{tr} \left(W^2_{\ell_2} \right)$$

(3.27)

without any link fields being involved at all (except at the intermediate stages).\(^{(5)}\) Consequently, all generators involving two gauginos are summarized in a single ℓ–independent “gaugino bilinear” resolvent

$$R(X) \equiv \frac{1}{32\pi^2} \text{tr} \left(\frac{W^2}{X - \Omega \cdots \Omega} \right) \equiv \frac{1}{32\pi^2} \text{tr} \left(W^\alpha W^\beta \times \frac{1}{X - \Omega \cdots \Omega} \right) \langle \text{same } \forall \ell \rangle.$$

(3.28)

The contour integrals of this resolvent encode the “gaugino condensates” of the non-abelian factors $SU(n_i)$ of the unbroken gauge symmetry (2.38):

$$S_i \equiv \oint_{c_i} \frac{dX}{2\pi i} R(X) = \frac{1}{32\pi^2} \text{tr} \left(W^\alpha W^\beta |_{U(n_i)} \right).$$

(3.29)

Or rather, the “gaugino condensation” in the $SU(n_i)$ factor is the leading contribution to the S_i for $n_i \geq 2$, in which case $S_i \sim e^{-8\pi^2/n_ig_{\text{link}}^2}$ develops at the fractional instanton level $1/n_i$.

\(^{(5)}\) Strictly speaking, the identities (3.27) depend on the on-shell equations (3.6). The off-shell operatorial identities of the quiver’s chiral ring have form

$$\det(\Omega_\ell) \times (\text{tr}(W^2_\ell) - \text{tr}(W^2_{\ell+1})) \equiv 0$$

and imply eqs. (3.27) if and only if all $\det(\Omega_\ell) \neq 0$.

27
For $n_i = 1$ there is no gaugino condensation per se, but the \mathcal{S}_i “condensate” develops anyway at the one-whole-instanton level $\mathcal{S}_i \sim e^{-8\pi^2/g^2_{\text{diag}}}$, thanks to coset instantons in the broken $SU(n_c)_{\text{diag}}/U(1)_i$. In any case, we count instanton levels with respect to the diagonal $SU(n_c)$ subgroup of the quiver; in terms of the whole $[SU(n_c)]^N$ gauge group, one diagonal instanton means one instanton in each $SU(n_c)$ factor according to

$$\exp \left(-\frac{8\pi^2}{g^2_{\text{diag}}} \right) = \prod_{\ell} \exp \left(-\frac{8\pi^2}{g^2_{\ell}} \right),$$

or in un-deconstructed 5D terms, one Euclidean $0^{\text{time}} + 1^{\text{space}}$ instanton brane wrapped around the compactified x^4 dimension. However, apart from this quiver-specific instanton counting, the gaugino bilinear resolvent (3.28) behaves similarly to its $tr(\frac{W}{X}W\cdots)$ analogue in the deformed $\mathcal{N} = 2$ SQCD$_4$.

Finally, the quiver’s chiral ring does not have any generators involving three or more gaugino fields. Indeed, let us insert $W^\alpha_{\ell'}, W^\beta_{\ell''}, \ldots, W^\gamma_{\ell'''}$ into a closed chain $tr(\Omega_1 \cdots \Omega_k)$ of the link operators. Applying eq. (3.20) several times, we can move all the gaugino operators to the same quiver node ℓ, thus $tr \left(W^\alpha_{\ell'} W^\beta_{\ell'} \cdots W^\gamma_{\ell'} (\Omega_{\ell-1} \cdots \Omega_{\ell})^k \right)$, but then the fourth eq. (3.18) implies $W^\alpha_{\ell'} W^\beta_{\ell'} \cdots W^\gamma_{\ell'} = \nabla_2 (\text{something})$ and therefore, the whole shmeer = $D^2 (\text{something else}) \equiv 0$ and does not belong to the chiral ring.

Altogether, we have constructed all the generators of the $[SU(n_c)]^N$ quiver’s chiral ring, except for the baryons, the antibaryons, and their multi-local cousins comprised of n_c quarks or antiquarks located at different quiver nodes connected by chains of link operators. The $[SU(n_c)]^N$ quiver has a whole zoo of such multi-local baryon-like chiral operators, and we prefer to discuss them in a separate section §4.2.

3.2 Anomalous Equations of Motion and their Solutions

Thus far, we generated the (almost) off-shell chiral ring of the $[SU(n_c)]^N$ quiver. In this section, we focus on the on-shell chiral ring in which the resolvents $T(X)$, $\mathcal{M}_{\ell'}(X)$, $\Psi^\alpha(X)$ and $R(X)$ satisfy the equations of motion of the quantum quiver theory. Generically, such equations follow from infinitesimal gauge-covariant field-dependent variations of the fundamental
chiral fields of the theory

\[\Phi \to \Phi + \delta \Phi (\Phi, \text{other chiral operators}). \]

(3.31)

Classically, \(\delta W_{\text{tree}} \equiv \frac{\partial W_{\text{tree}}}{\partial \Phi} \times \delta \Phi \overset{\text{ct}}{=} 0 \), but in the quantum theory generalized Konishi anomalies change this equation to

\[\frac{\partial W_{\text{tree}}}{\partial \Phi} \times \delta \Phi \overset{\text{ct}}{=} \frac{1}{32\pi^2} \text{Tr} \left(\frac{W_\alpha^\alpha W_\alpha}{\partial \Phi} \partial \delta \Phi \right) \]

(3.32)

where the trace on the right hand side is taken with respect to all indices of the field \(\Phi \), color and flavor. As a specific example in the quiver context, let \(\Phi \) be the quark field \(Q \ell' \) and consider the variation

\[\delta Q \ell' = \Omega \ell' - 1 \Omega \ell' - 2 \cdots \Omega X - \Omega \cdots \Omega \times Q \ell \times \varepsilon \]

(3.33)

where \(\varepsilon \) is an infinitesimal \(F \times F \) matrix in the flavor space. For this variation,

\[\delta W_{\text{tree}} = \delta W_{\text{hop}} = \gamma \left[\text{tr} \left(\tilde{Q}_{\ell+1} \Omega \times \delta Q_{\ell} \right) - \text{tr} \left(\mu \times \tilde{Q}_{\ell} \times \delta Q_{\ell} \right) \right] \]

\[= \gamma \left[\text{tr} \left(\frac{\tilde{Q}_{\ell+1} \times \Omega_{\ell+1} \Omega_{\ell} \cdots \Omega X - \Omega \cdots \Omega}{X - \Omega \cdots \Omega} \times Q \ell \times \varepsilon \right) \right. \]

\[- \text{tr} \left(\mu \times \tilde{Q}_{\ell} \times \frac{\Omega_{\ell+1} \Omega_{\ell} \cdots \Omega X - \Omega \cdots \Omega}{X - \Omega \cdots \Omega} \times Q \ell \times \varepsilon \right) \left. \right] \]

\[= \gamma \text{tr} \left((M_{\ell+1,\ell}(X) - \mu \times M_{\ell,\ell}(X)) \times \varepsilon \right) \]

(3.34)

while the Konishi anomaly exists only for \(\ell' = \ell \) (otherwise \(\delta Q_{\ell} \) does not depend on the \(Q_{\ell} \) itself) and amounts to

\[\frac{1}{32\pi^2} \text{Tr} \left(W_\alpha^\alpha W_{\ell',\alpha} \frac{\delta_{\ell',\ell}}{X - \Omega_{\ell-1} \cdots \Omega_{\ell'}} \otimes \varepsilon \right) \overset{\text{ct}}{=} \delta_{\ell',\ell} R(X) \times \text{tr}(\varepsilon). \]

(3.35)

Substituting these formulæ into the generic eq. (3.32), we arrive at the anomalous equations of motion for the on-shell mesonic resolvents: In \(F \times F \) matrix notations,

\[M_{\ell+1,\ell}(X) - \mu \times M_{\ell,\ell}(X) \overset{\text{ct}}{=} \delta_{\ell',\ell} \gamma^{-1} R(X) \times 1_{F \times F}. \]

(3.36)
Consequently,

\[\mathcal{M}_{\ell,\ell}(X) \equiv \mu^{\ell-\ell} \times \mathcal{M}_{\ell,\ell}(X) = \gamma^{-1} \mu^{\ell-\ell-1} \times R(X) \quad \text{for } \ell < \ell' \leq \ell + N, \tag{3.37} \]

and hence in light of the periodicity equation (3.15),

\[
\begin{align*}
\mathcal{M}_{\ell=\ell}(X) &= \frac{1}{X - \mu^N} \times (\gamma^{-1} \mu^{N-1} R(X) + M_\ell), \\
\mathcal{M}_{\ell>\ell}(X) &= \frac{\mu^{\ell-\ell-1}}{X - \mu^N} \times (\gamma^{-1} X R(X) + \mu \times M_\ell).
\end{align*}
\tag{3.38}
\]

Thus, we have solved for all of the on-shell mesonic resolvents in terms of the ordinary mesons \(M_\ell \) and the gaugino bilinear resolvent \(R(X) \).

Likewise, starting with the infinitesimal antiquark variation

\[\delta \tilde{Q}_\ell = \varepsilon \times \tilde{Q}_\ell \times \frac{\Omega_{\ell-1} \Omega_{\ell-2} \cdots \Omega_\ell}{X - \Omega \cdots \Omega} \tag{3.39} \]

we also arrive at anomalous equations of motion for the on-shell mesonic resolvents, but this time we have

\[\mathcal{M}_{\ell,\ell-1}(X) - \mathcal{M}_{\ell,\ell}(X) \times \mu \equiv \delta_{\ell,\ell} \gamma^{-1} R(X) \times 1_{F \times F} \tag{3.40} \]

and consequently

\[
\begin{align*}
\mathcal{M}_{\ell=\ell}(X) &= (\gamma^{-1} \mu^{N-1} R(X) + M_\ell) \times \frac{1}{X - \mu^N}, \\
\mathcal{M}_{\ell>\ell}(X) &= (\gamma^{-1} X R(X) + M_\ell \times \mu) \times \frac{\mu^{\ell-\ell-1}}{X - \mu^N}.
\end{align*}
\tag{3.41}
\]

Note that eqs. (3.40–41) are just as valid as eqs. (3.36–38), and to assure mutual consistency of the two equation systems, all meson matrices \(M_\ell \) — and hence all the mesonic resolvent matrices \(\mathcal{M}_{\ell,\ell}(X) \) — must commute with the \(\mu^N \) matrix and therefore must be block-diagonal in its eigenbasis. Furthermore, if \(\mu_f = \mu_f \) whenever \(\mu_f^N = \mu_f^N \), then all the \(M_\ell \) matrices must be equal to each other, \(M_\ell \equiv M_\ell \); otherwise \(M_\ell = \mu^{\ell} \times M \times \mu^{-\ell} \). In terms of
the matrix elements, we have

\[
[\mathcal{M}_f^\ell f'] = \mathcal{M}_f^\ell f' \times \left(\frac{\mu_{f'}}{\mu_f} \right)^\ell \quad \text{for } \mu_{f'} = \mu_f \neq 0 \text{ only}; \quad \text{otherwise, } [\mathcal{M}_f^\ell f'] = 0. \tag{3.42}
\]

In particular, the matrix elements with \(\mu_{f'} = \mu_f = 0 \) must vanish because the on-shell mesonic resolvents of the \([SU(n_c)]^N\) quiver cannot have poles at \(X = 0 \). Indeed,

\[
\text{for } X \to 0, \quad \mathcal{M}_{\ell', \ell}(X) \to \bar{Q}_{f'} \Omega_{\ell'}^{-1} \Omega_{\ell+1}^{-1} \cdots \Omega_{\ell-1}^{-1} Q_{\ell} \neq \infty \tag{3.43}
\]

because on shell \(\det \Omega_{\ell} \neq 0 \) and the inverse links are well-defined chiral operators.

Next, let us vary a link field \(\Omega_{\ell} \) according to

\[
\delta \Omega_{\ell} = \varepsilon \frac{\Omega_{\ell}}{X - \Omega \cdots \Omega} \quad \tag{3.44}
\]

where \(\varepsilon \) is now an infinitesimal number rather than a matrix. For this variation,

\[
d\delta \Omega_{\ell} = \frac{\varepsilon}{X - \Omega_{\ell} \cdots \Omega_{\ell+1}} \times d\Omega_{\ell} \times \frac{X}{X - \Omega_{\ell-1} \cdots \Omega_{\ell}} \tag{3.45}
\]

while

\[
\mathcal{W}^\alpha_{\ell+1} \mathcal{W}_{\ell+1, \alpha} d\delta \Omega_{\ell} = W^\alpha_{\ell+1} d\delta \Omega_{\ell} - 2W^\alpha_{\ell+1} d\delta \Omega_{\ell} W_{\ell, \alpha} + d\delta \Omega_{\ell} W^\alpha_{\ell} W_{\ell, \alpha}, \tag{3.46}
\]

hence the Konishi anomaly comes up to

\[
\frac{1}{32\pi^2} \text{Tr} \left(\frac{\mathcal{W}^\alpha_{\ell+1} \mathcal{W}_{\ell+1, \alpha} d\delta \Omega_{\ell}}{d\Omega_{\ell}} \right) = \frac{\varepsilon X}{32\pi^2} \text{Tr} \left(\frac{W^\alpha_{\ell+1} W_{\ell+1, \alpha}}{X - \Omega \cdots \Omega} \times \frac{1}{X - \Omega \cdots \Omega} - 2 \frac{W^\alpha_{\ell+1}}{X - \Omega \cdots \Omega} \times \frac{W_{\ell, \alpha}}{X - \Omega \cdots \Omega} \right) + \frac{1}{X - \Omega \cdots \Omega} \times \frac{W^\alpha_{\ell} W_{\ell, \alpha}}{X - \Omega \cdots \Omega}
\]

\[
= \varepsilon X \left(R(X) \times T(X) - \Psi^\alpha(X) \times \Psi_{\alpha}(X) + T(X) \times R(X) \right). \tag{3.47}
\]
At the same time, the classical superpotential varies according to

\[\delta W_{\text{hop}} = \varepsilon \gamma \text{tr} \left(\tilde{Q}_{\ell+1} \frac{\Omega_{\ell}}{X - \Omega \cdots \Omega} \right) \equiv \varepsilon \gamma \text{tr} \left(\mathcal{M}_{\ell+1,\ell}(X) \right), \]
(3.48)

\[\delta W_{\Sigma} = \varepsilon \beta s_{\ell} \text{tr} \left(\frac{\det \Omega_{\ell}}{X - \Omega \cdots \Omega} \right) = \varepsilon \beta s_{\ell} \left(\det \Omega_{\ell} = v_{nc} \right) \times T(X), \]
(3.49)

\[\delta W_{\text{def}} = \varepsilon \sum_{k=1}^{d} v_{k} \text{tr} \left(\frac{(\Omega \cdots \Omega)^{k}}{X - \Omega \cdots \Omega} \right) = \varepsilon \left[X W'(X) T(X) \right]_. \]
(3.50)

where following the notations of [4], the \([X W'(X) T(X)]_\) stands for the negative-power part of the \(X W'(X) T(X) \) with respect to the power series expansion around \(X = \infty \). Thus, we arrive at an anomalous equation of motion

\[\left[\tilde{W}(X) T(X) \right]_\) + \gamma \text{tr} \left(\mathcal{M}_{\ell+1,\ell}(X) \right) \overset{\text{cr}}{=} 2X R(X) T(X) - X \Psi^\alpha(X) \Psi_\alpha(X) \]
(3.51)

where \(\tilde{W}(X) = X W'(X) + \beta v_{nc}s_{\ell} \) according to eq. (2.36) — and all singlets are equal on shell, \(s_{\ell} \equiv s \). Solving eq. (3.51) for the on-shell link resolvent, we have

\[T(X) = \frac{t(X) - \gamma \text{tr} \mathcal{M}_{\ell+1,\ell}(X) - X \Psi^2(X)}{\tilde{W}(X) - 2X R(X)} \]
(3.52)

for some polynomial \(t(X) = [\tilde{W}(X) T(X)]_\) of degree \(\leq (d - 1) \); we shall derive a more specific formula later in this section.

The anomalous equation of motion for the gaugino resolvent \(\Psi^\alpha(X) \) also follows from varying a link field \(\Omega_{\ell} \), but this time we have

\[\delta \Omega_{\ell} = \frac{\Omega_{\ell}}{X - \Omega \cdots \Omega} \times \frac{W_{\ell}^\alpha \varepsilon_\alpha}{4\pi} \]
(3.53)

where \(\varepsilon_\alpha \) is an infinitesimal spinor. Consequently, \(\delta W_{\text{hop}} \overset{\text{cr}}{=} 0 \) (because of anti/quark and gaugino operators present in the same expression) and

\[\delta W_{\text{tree}} \overset{\text{cr}}{=} \delta W_{\text{def}} + \delta W_{\Sigma} = \left[\tilde{W}(X) \Psi^\alpha(X) \varepsilon_\alpha \right]_\]
(3.54)
while the Konishi anomaly is

\[
\frac{1}{32\pi^2} \Tr \left(\frac{\mathcal{W}^\alpha \mathcal{W}_\alpha d\delta \Omega_\ell}{d\Omega_\ell} \right) = \frac{X}{128\pi^3} \Tr \left(\frac{W^{\prime \beta} W_{\ell+1}^{\prime \alpha} W_{\ell+1}^{\prime \beta} X - \Omega \cdots \Omega}{X - \Omega \cdots \Omega} \otimes \frac{W_{\ell+1}^{\prime \alpha} \varepsilon_\alpha W_{\ell+1}^{\prime \beta} X - \Omega \cdots \Omega}{X - \Omega \cdots \Omega} - 2 \frac{W_{\ell+1}^{\prime \beta} X - \Omega \cdots \Omega}{X - \Omega \cdots \Omega} \otimes \frac{W_{\ell}^{\prime \alpha} \varepsilon_\alpha W_{\ell}^{\prime \beta} X - \Omega \cdots \Omega}{X - \Omega \cdots \Omega} + \frac{1}{X - \Omega \cdots \Omega} \otimes \frac{W_{\ell}^{\prime \alpha} \varepsilon_\alpha W_{\ell}^{\prime \beta} W_{\ell+1}^{\prime \beta} X - \Omega \cdots \Omega}{X - \Omega \cdots \Omega} \right)
\]

\[
\equiv X \left(R(X) \times \Psi^\alpha(X) \varepsilon_\alpha + \Psi^\beta(X) \times R(X) \varepsilon_\beta + T(X) \times 0 \right),
\]

(3.55)

and hence

\[
\left[\tilde{W}(X) \Psi^\alpha(X) \right]^- \equiv 2X R(X) \Psi^\alpha(X).
\]

(3.56)

This anomalous equation of motion has a particularly simple solution for the on-shell gaugino resolvent:

\[
\Psi^\alpha(X) = \frac{\zeta^\alpha(X)}{W(X) - 2XR(X)}
\]

(3.57)

where \(\zeta^\alpha(X) = \left[\tilde{W}(X) \Psi^\alpha(X) \right]^+ \) is a spinor-valued polynomial of \(X \) of degree \(\leq (d - 2) \). (Note \(\Psi^\alpha(X) = O(1/X^2) \) for \(X \to \infty \) because \(\text{tr}(W^\prime_\ell) \equiv 0 \).)

Finally, consider yet another link variation

\[
\delta \Omega_\ell = \frac{\Omega_\ell}{X - \Omega \cdots \Omega} \times \frac{W_{\ell}^{\prime \alpha} W_{\ell+1}^{\prime \alpha} \times \varepsilon}{32\pi^2}
\]

(3.58)

where \(\varepsilon \) is once again an infinitesimal c-number. This time, the Konishi anomaly comes up to

\[
\frac{1}{32\pi^2} \Tr \left(\frac{\mathcal{W}^\alpha \mathcal{W}_\alpha d\delta \Omega_\ell}{d\Omega_\ell} \right) \equiv \varepsilon X \left(R(X) \times R(X) + 0 + 0 \right)
\]

(3.59)

while

\[
\delta W_{\text{tree}} \equiv \left[\tilde{W}(X) R(X) \varepsilon \right]^-,
\]

(3.60)

and therefore, the on-shell gaugino bilinear resolvent \(R(X) \) satisfies the quadratic equation

\[
X \left[R(X) \right]^2 = \left[\tilde{W}(X) R(X) \right]^- \equiv \tilde{W}(X) \times R(X) - F(X)
\]

(3.61)
where $F(X) = \left[\tilde{W}(X) R(X) \right]_+$ is yet another polynomial of X of degree $\leq (d - 1)$. Consequently,

$$
R(X) = \frac{\tilde{W}(X) \pm \sqrt{\tilde{W}^2(X) - 4XF(X)}}{2X}
$$

(3.62)

and according to eqs. (3.38), (3.41), (3.52) and (3.57), all the on-shell resolvents of the quiver theory — $M_{e,\ell}(X), T(X), \Psi^\alpha(X)$ and $R(X)$ — are meromorphic functions of the coordinates X and Y of the hyperelliptic Riemann surface Σ of

$$
Y^2 = \tilde{W}^2(X) - 4XF(X).
$$

(3.63)

In particular,

$$
\Psi^\alpha(X, Y) = \frac{\zeta^\alpha(X)}{Y}
$$

(3.64)

which means that Σ is the Seiberg–Witten spectral curve encoding the abelian gauge couplings of the quantum quiver theory modulo the $Sp(n_{\text{Abel}}, \mathbb{Z})$ electromagnetic duality group.

The sign choice in eq. (3.64) corresponds to

$$
R(X, Y) = \frac{\tilde{W}(X) - Y}{2X}.
$$

(3.65)

In the $X \to \infty$ limit $Y \approx \pm \tilde{W}(X)$ depending on the sheet of the Riemann surface Σ; on the $Y \approx +\tilde{W}(X)$ sheet, the gaugino bilinear resolvent behaves physically as $R \approx \frac{F(X)}{\tilde{W}(X)} = O(1/X)$ while on the other sheet we have un-physical divergence $R \approx \frac{\tilde{W}(X)}{X} = O(X^{d-1})$. Likewise, for $X \to 0$ R is regular on the first sheet but has an unphysical pole on the second sheet,

$$
R(X, Y) \xrightarrow{X \to 0} \begin{cases} \text{finite} & \text{on the } Y \approx +\tilde{W}(X) \text{ sheet,} \\ \frac{\beta e_{n<s}}{X} & \text{on the } Y \approx -\tilde{W}(X) \text{ sheet,} \end{cases}
$$

(3.66)

so following Cachazo et al we shall refer to the two sheets of Σ “the physical sheet” and “the unphysical sheet”. As in [5, 7], the distinction between the two sheets is clear over most of the X plane in the weakly coupled regime of the quiver but becomes blurred in the strongly coupled regime (except for $X \to \infty$ or $X \to 0$).

* * *
By this point, we have solved the anomalous equations of motion for the whole on-shell chiral ring of the quiver in terms of the three polynomials \(t(X), \zeta^\alpha(X) \) and \(F(X) \) and one \(X \)-independent meson matrix \(M_f^I \). However, there are additional constraints on these parameters following from a yet another anomalous equation of motion due to quark-dependent variation of the link field

\[
\delta \Omega_\ell = \frac{Q_{\ell+1} \varepsilon \bar{Q}_\ell}{X - \Omega \cdots \Omega}
\]

(3.67)

where \(\varepsilon \) is an infinitesimal \(F \times F \) matrix in the flavor space. This time, the Konishi anomaly is

\[
\frac{1}{32\pi^2} \text{Tr} \left(\frac{W^\alpha W_\alpha d\delta \Omega_\ell}{d\Omega_\ell} \right) \equiv \frac{1}{32\pi^2} \text{Tr} \left(0 + \frac{Q_{\ell+1} \varepsilon \bar{Q}_\ell \Omega_{\ell-1} \cdots \Omega_{\ell+1}}{X - \Omega \cdots \Omega} \otimes \frac{W^\alpha W_{\ell,\alpha}}{X - \Omega \cdots \Omega} \right) = \text{tr} \left(\varepsilon M_{\ell+N,\ell+1}(X) \right) \times R(X)
\]

(3.68)

while the tree-level superpotential varies according to

\[
\delta W_{\text{hop}} = \gamma \text{tr} \left(\varepsilon M_{\ell,\ell}(X) \times M_{\ell+1} \right),
\]

(3.69)

\[
\delta W_{\text{def}} = \left[W'(X) \right. \text{tr} \left(\varepsilon M_{\ell+N,\ell+1}(X) \right) \left. \right],
\]

(3.70)

\[
\delta W_\Sigma = \beta v^{ne} s \text{tr} \left(\varepsilon M_{\ell,\ell+1}(X) \right)
\]

(3.71)

\[
= \beta v^{ne} s \frac{X}{X} \text{tr} \left(\varepsilon \times \left(M_{\ell+N,\ell+1}(X) - \bar{Q}_\ell \Omega^{-1} \Omega_{\ell+1} \right) \right).
\]

This gives us an anomalous equation

\[
R(X, Y) \times M_{\ell+N,\ell+1}(X, Y) \equiv \gamma M_{\ell,\ell}(X, Y) \times M_{\ell+1} + \frac{\bar{W}(X)}{X} \times M_{\ell+N,\ell+1}(X, Y) - C(X)
\]

(3.72)

where \(C(X) \) is yet another degree \(\leq d - 1 \) polynomial of \(X \). When combined with the on-shell equations (3.38), (3.41) and (3.62) for the mesonic and gaugino-bilinear resolvents,
eq. (3.72) yields a quadratic equation for the meson matrix M, namely

$$
(\gamma \mu M)^2 + \frac{\mu N}{X} \tilde{W}(X) \times (\gamma \mu M) + \mu^N F(X) = \gamma \mu^2 \frac{X - \mu^N}{X} C(X).
$$

(3.73)

In the eigenbasis of the quark mass matrix μ (or rather of the μ^N) we may sequentially substitute $X = \mu^N f$ and apply all the resulting equations at once since the M matrix does not depend on X. Consequently, the right hand side of eq. (3.73) vanishes regardless of the $C(X)$ polynomial, while the left hand side yields a matrix equation:

$$
(\gamma \mu M)^2 + \tilde{W}(\mu^N) \times (\gamma \mu M) + \mu^N F(\mu^N) = 0.
$$

(3.74)

Now consider a quark flavor f with a non-degenerate $\mu^N f$. According to eq. (3.74), the on-shell value of the meson operator M_f^f satisfies a quadratic equation which has two solutions

$$
M_f^f = \frac{-\tilde{W}(\mu^N_f) \mp \sqrt{\tilde{W}^2(\mu^N_f) - 4\mu^N_f F(\mu^N_f)}}{2\gamma \mu_f} = -\frac{XR(X, \mp Y_{\text{phys}})}{\gamma \mu_f} \bigg|_{X=\mu^N_f}
$$

(3.75)

corresponding to two different vacua of the quiver. The physical identities of these vacua become apparent in the weakly coupled regime of the theory where $XF(X) \ll \tilde{W}^2(X)$ over most of the complex X plane\(^\text{(6)}\): For the upper-sign solution of eq. (3.75) we have

$$
M_f^f \equiv \bar{Q}^f Q_f \approx -\frac{\tilde{W}(\mu^N_f)}{\gamma \mu_f}
$$

(3.76)

precisely as in eq. (2.40) — which strongly suggest that this is the discrete mesonic vacuum with one of the Coulomb moduli frozen at $\omega^N_j = \mu^N_j$ by the squark VEVs eq. (3.76).

To confirm the frozen Coulomb modulus in the fully-quantum language of the chiral ring we turn to the link resolvent $T(X, Y)$ and check its analytic structure near $X = \mu^N$: According to eq. (3.9), a frozen Coulomb modulus will manifest itself via a simple pole of residue exactly +1; more generally, k Coulomb moduli frozen at the same value yield a pole

\(^\text{(6)}\) We shall see later in this section that $F(X) = O(\Lambda^{N(2n_c-F)})$.\]
of residue k. According to eq. (3.52), the poles of $T(X,Y)$ at finite X follow from the poles of the mesonic resolvent $\mathcal{M}_{\ell+1,\ell}(X,Y)$ at $X = \mu^N_f$ and have residues

$$\text{Res}_{x=\mu^N_f} \left[T(X,Y) \right] = -\frac{\gamma}{Y} \times \text{Res}_{x=\mu^N_f} \left[\text{tr} \mathcal{M}_{\ell+1,\ell}(X) \right].$$

(by eq. (3.38))

$$= -\left. \frac{\gamma\mu_f M^I_f + XR(X,Y)}{Y} \right|_{x=\mu^N_f}$$

(by eq. (3.75))

$$= \begin{cases} +1 & \text{on the physical sheet of } \Sigma, \\ 0 & \text{on the unphysical sheet.} \end{cases}$$

Note that in terms of the spectral curve Σ, $X = \mu^N$ describes two distinct points but only one of them carries a pole of the link resolvent. For the upper-sign solution (3.75) the pole is on the physical sheet, but it moves to the unphysical sheet for the lower-sign solution where

$$\text{Res}_{x=\mu^N_f} \left[T(X,Y) \right] = \begin{cases} 0 & \text{on the physical sheet of the } \Sigma, \\ +1 & \text{on the unphysical sheet.} \end{cases}$$

(3.79)

Only the physical sheet of Σ is visible at the classical and perturbative levels of the string theory, so the upper-sign solution (3.75) indeed has a Coulomb modulus frozen at $X = \mu^N_f$ but the lower-sign solution does not have any frozen moduli. Classically, this goes along with the zero meson VEV, but the quantum corrections generate $M^I_f \neq 0$; however, in the weak coupling regime

$$M^I_f \equiv \tilde{Q}^I Q_f \approx -\frac{\mu^{N-1}_f F(\mu^N_f)}{\gamma \tilde{W}(\mu^N_f)} \propto \Lambda^{N(2n_e-F)} \rightarrow 0.$$

(3.80)

Now consider a degenerate pair of quark flavors, say $\mu^1_1 = \mu^2_2 \neq 0$. In this case, the corresponding 2×2 block M_2 of the meson matrix M satisfies the quadratic equation (3.74) as a matrix, so each of the two block’s eigenvalue may independently choose either root (3.75). This gives us two discrete solutions plus continuous family:
1. Both eigenvalues pick the bigger root (the upper sign in eq. (3.75)). This is a discrete mesonic vacuum where two Coulomb moduli are frozen at the same value $\omega^N_1 = \omega^N_2 = \mu^N_{1,2}$ by two quark flavors.

2. One eigenvalue picks the bigger root and the other picks the smaller root — which gives us a continuous family of solutions parameterizing the spontaneous breakdown $SU(2) \rightarrow U(1)$ of the flavor symmetry. This is the continuous mesonic branch of the quiver where two degenerate flavors freeze one Coulomb modulus at $\omega^N_1 = \mu^N_{1,2}$. Classically, the M_2 block of the meson matrix satisfies $\text{rank}(M_2) = 1$ as well as the trace condition (2.41); in the quantum theory, the M_2 has two non-zero eigenvalues but one of them is much smaller than the other (in the weak coupling regime) while the trace condition remains unchanged.

3. Both eigenvalues pick the smaller root (the lower sign in eq. (3.75)). This is a discrete Coulomb vacuum where none of the ω^N_j are frozen at $X = \mu^N_{1,2}$, and in the weakly coupled regime, the whole M_2 meson block becomes small according to eq. (3.80).

To confirm our identification of the above vacua we calculate the poles of the link resolvent $T(X, Y)$ at $X = \mu^N_{1,2}$ and find

$$\text{Res}_{X = \mu^N_{1,2} \left[T(X, Y) \right]} = \left. -\frac{\gamma_{1,2} \text{tr}(M_2) + 2X R(X, Y)}{Y} \right|_{X = \mu^N_j}$$

$$= \begin{cases} k & \text{on the physical sheet}, \\ 2 - k & \text{on the unphysical sheet}, \end{cases}$$

(3.81)

where $k = 0, 1, 2$ is the number of eigenvalues of M_2 equal to the bigger root of eq. (3.74). Again, the pole count on the physical sheet gives us the correct number of frozen Coulomb vacua for each of the three solutions.

Likewise, for $m > 2$ degenerate flavors we have two discrete solutions plus $m - 1$ continuous families distinguished by the number $k = 0, 1, 2, \ldots, m$ of meson eigenvalues which pick the bigger root of the quadratic equation. The residue calculation yields

$$\text{Res}_{X = \mu^N_{1,2} \left[T(X, Y) \right]} = \begin{cases} k & \text{on the physical sheet}, \\ m - k & \text{on the unphysical sheet}, \end{cases}$$

(3.83)
which confirms the physical meaning of k as the number of Coulomb moduli frozen at $X = \mu_n$. Classically, up to m moduli can be frozen at this point, and this is exactly what we see in the quantum theory as well.

Note that all poles of the link resolvent $T(X,Y)$ on both sheets of the spectral curve Σ have non-negative integer residues. (cf. eqs. (3.79–83)). For the poles on the physical sheet this follows from the physical meaning of the poles as frozen Coulomb moduli, the residue being the number of such moduli frozen at the same point. The poles on the unphysical sheet do not have a clear physical meaning — indeed the whole unphysical sheet of Σ does not exist at the perturbative level of the quiver theory — but their residues are subject to the same rules as the physical poles by reasons of analytic continuation: As one wanders around the parameter space of the quiver theory — and in particular changes the roots φ_i of the deformation $\tilde{W}(X)$ — the point $X = \mu_1^N$ may cross the branch cut of the Riemann surface Σ and move the pole from the unphysical sheet to the physical sheet or vice versa. Thus any pole is physical somewhere in the parameter space of the theory — and that’s why in eq. (3.83) the residue $m - k$ on the unphysical sheet has the same spectrum of values as the physical sheet’s residue k, namely $m - k = 0, 1, 2, \ldots, m$.

Actually, for the $[SU(n_c)]^N$ quiver theory with some exactly massless quark flavors (i. e., for $\Delta F > 0$), the link resolvent $T(X,Y)$ has a pole stuck to the unphysical sheet at $X = 0$. Indeed, because of the unphysical pole (3.66) of the $R(X,Y)$ at $(X = 0, Y_{\text{unphys}})$, the massless block of the mesonic resolvent $\mathcal{M}_{\ell+1,\ell}$ also have a pole of residue $(+\beta v^{n_c}s = -Y)\gamma^{-1}\delta_f'$ at this point (cf. eqs. (3.38) and (3.41)), and consequently

$$T(X,Y) \xrightarrow{X \to 0} \begin{cases} \text{finite} & \text{on the physical sheet,} \\ \frac{\Delta F}{X} & \text{on the unphysical sheet.} \end{cases} \quad (3.84)$$

Note that despite its unphysical nature, this pole has a non-negative integer residue anyway. Again, this is related to our ability to move the poles all over the spectral curve Σ — including the physical sheet — by changing the parameters of the theory. Indeed, having ΔF exactly massless quark flavors is simply a choice of parameters $\mu_{n_f+1}, \ldots, \mu_{n_f+\Delta F}$, and once we change these parameters to $\mu' \neq 0$, the pole (3.84) moves away from zero to $X = \mu'^N$, which may end up on the physical sheet when μ'^N crosses a branch cut of the spectral curve.
3.3 Analytic Considerations

Having learned what we could from the anomaly equations of the quiver, let us now consider the analytic properties of the link resolvent $T(X, Y)$. As in [5, 7], the differential $T(X, Y)dX$ is meromorphic, and has exactly integer periods (in units of $2\pi i$) for all closed contours on the Riemann surface Σ, including the little contours around the poles at $X = \mu_f^N$ as well as big contours around the branch cuts of Σ over the X plane. Consequently,

$$T(X, Y) \, dX = \frac{d\Xi}{\Xi}$$

(3.85)

for some meromorphic function $\Xi(X, Y)$, and since all poles of T at finite X have positive residues, it follows that $\Xi(X, Y)$ has zeros rather than poles at $X \neq \infty$. Furthermore, the product $\Xi(X, +Y) \times \Xi(X, -Y)$ is a single-valued function of X, has a simple zero at each $X = \mu_f^N$ (regardless of the corresponding pole of $T(X, Y)$ being on the physical or the unphysical sheet), and has no essential singularity at $X = \infty$, which immediately implies polynomial behavior

$$\Xi(X, +Y) \times \Xi(X, -Y) = \alpha B(X) \equiv \alpha \prod_{f=1}^{F}(X - \mu_f^N) = \alpha X^{\Delta F} \prod_{f=1}^{n_f}(X - \mu_f^N)$$

(3.86)

for some constant (i.e. X–independent) α. Also, for $X \to \infty$ on the physical sheet $T(X, Y) \approx n_e X^{-1}$, which translates to $\Xi(X, Y) \propto X^{n_e}$ — and therefore on the unphysical sheet, $\Xi(X, Y) \propto X^{F-n_e}$. For $F \leq 2n_e$ this means that the sum $\Xi(X, +Y) + \Xi(X, -Y)$ — which is also a single-valued holomorphic function of X — grows like X^{n_e} at $X \to \infty$, hence

$$\Xi(X, +Y) + \Xi(X, -Y) = P(X) \equiv \prod_{j=1}^{n_e}(X - \omega_j)$$

(3.87)

is another polynomial of X of degree n_e with some roots $\omega_1, \ldots, \omega_{n_e}$ — and therefore

$$\Xi(X, Y) = \frac{1}{2} \left(P(X) \pm \sqrt{P^2(X) - 4\alpha B(X)} \right).$$

(3.88)

Finally, to assure that this function is single-valued on Σ, the ratio

$$\frac{\sqrt{P^2(X) - 4\alpha B(X)}}{Y} = \sqrt{\frac{P^2(X) - 4\alpha B(X)}{W^2(X) - 4XF(X)}}$$
must be a rational function of X — which means polynomial factorization

$$
\tilde{W}^2(X) - 4XF(X) = H(X) \times K^2(X), \quad (3.89)
$$

$$
P^2(X) - 4\alpha B(X) = H(X) \times G^2(X), \quad (3.90)
$$

where $H(X)$, $K(X)$ and $G(X)$ are three more polynomials of X of respective degrees $2h$, $(d-h)$ and (n_c-h) where $d = \deg(\tilde{W})$ and $h = 1, 2, \ldots, \min(d, n_c)$ depending on a particular vacuum of the quantum quiver theory. Specifically, a vacuum which supports $n_{\text{free}}^{\text{photon}}$ free massless photon abelian gauge fields should have $h = n_{\text{free}}^{\text{photon}} + 1$ and the $H(X)$ polynomial should have $2h$ distinct simple roots. Indeed, according to eqs. (3.89) and (3.64), these are conditions for the gaugino resolvent $\Psi(X)$ to have precisely h branch cuts and therefore $h - 1 = n_{\text{free}}^{\text{photon}}$ independent zero modes corresponding to $h - 1$ species of free massless photons.\(^{(7)}\)

But regardless of a particular solution, eqs. (3.89–90) allow us to rewrite the Seiberg–Witten curve of the quiver in terms of the parameters of the link resolvent $T(X)$ rather than gaugino condensate resolvent. Specifically, for $\hat{Y} = \frac{G(X)}{2K(X)}Y + \frac{\tilde{W}(X)}{2}$ we have

$$
\Sigma = \{(X, \hat{Y}) : \hat{Y}^2 - P(X) \times \hat{Y} + \alpha B(X) = 0\}, \quad (3.91)
$$

which looks exactly like the SW curve \cite{25, 26} of the $\mathcal{N} = 2$ SQCD\(_4\) with n_c colors and F flavors. This similarity is no accident but a reflection of the ultra-low energy limit of the quiver theory: For finite N, energies $E \ll 1/(Na)$ are governed by the dimensional reduction of the deconstructed SQCD\(_5\) to 4D — which is nothing but the $\mathcal{N} = 2$ SQCD\(_4\) whose gauge symmetry is the diagonal $SU(n_c)$ subgroup of the $[SU(n_c)]^N$ quiver. In this effective $\mathcal{N} = 2$ SQCD\(_4\), the α parameter in eq. (3.91) is generated at the one-instanton level of the diagonal $SU(n_c)$; in terms of the whole quiver, this means one instanton in each and every $SU(n_c)_x$

\(^{(7)}\) In terms of the contour integrals $\oint_C \Psi^\alpha(X) dX$, contours around branch cuts yield free photons while contours around poles (if any) yield photons interacting with massless quarks and antiquarks (or monopoles and antimonopoles, dyons and antidyons, etc., etc. In the deformed quiver theory, such massless quarks, etc., generally develop non-zero VEVs, so only the free photons remain exactly massless. In terms of the resolvent $\Psi^\alpha(X)$ it means no poles but only branch cuts, hence in eq. (3.64) the spinor-valued polynomial $\zeta^\alpha(X)$ must factorize as $\zeta^\alpha(X) = K(X) \times \hat{\zeta}^\alpha(X) \implies \Psi^\alpha(X) = \pm \frac{\hat{\zeta}^\alpha(X)}{\sqrt{H(X)}}$ where $\hat{\zeta}^\alpha(X)$ has rank $h - 2$ and hence $h - 1 = n_{\text{free}}^{\text{photon}}$ independent spinor-valued coefficients \implies zero modes.
factor according to eq. (3.30). Indeed, it is easy to see that were we to turn off quantum
effects in a single $SU(n_c)_\ell$ factor (by turning off $\Lambda_\ell \rightarrow 0$), then the low-energy limit of the
whole quiver theory would become that classical $SU(n_c)_\ell$ gauge theory with F quark flavors
and an adjoint chiral field Φ_ℓ made from $\Omega_{\ell-1} \cdots \Omega_1 \Omega_N \cdots \Omega_\ell$, and without the IR-visible
quantum effects we would have $\alpha = 0$. Hence, in the fully-quantum quiver

$$\alpha \sim \exp \left(-\frac{8\pi^2}{g^2_{\text{diag}}} \right) \sim \prod_\ell \Lambda_\ell^{2n_c-F} = \left(\Lambda^{2n_c-F} \right)^N$$ \hspace{1cm} (3.92)

where the last equality assumes $\Lambda_\ell \equiv \Lambda$, as required by the discretized translational invar-
ance of the deconstructed SQCD$_5$.

To verify that $\alpha \neq 0$ is indeed generated at the one-diagonal-instanton level — and also
to determine the pre-exponential factors in eq. (3.92) — we use the anomalous $U(1)_A \times
U(1)_\Omega \times U(1)_R$ symmetry of the quiver which transforms both the chiral fields and the
couplings according to the following charge table:

FIELDS & PARAMETERS	CHARGES		
	q_A	q_Ω	q_R
Q_ℓ	1	0	0
\tilde{Q}_ℓ	1	0	0
Ω_ℓ	0	1	0
W_ℓ^α	0	0	1
μ_f	0	1	0
γ	-2	-1	2
$\Lambda_\ell^{2n_c-F}$	$2F$	$2n_c$	$-2F$
X	0	N	0
$\tilde{W}(X)$	0	0	2
$F(X)$	0	$-N$	4
α	0	$(2n_c-F)N$	0

In light of these charges, the only allowed formula for α of the type $\alpha = \Lambda^{\text{power}} \times$ something
else is
\[
\alpha = (\Lambda^{2n_c-F} \gamma^F)^N \times \text{a numeric constant,}
\]
(3.94)
so the one-diagonal-instanton level of eq. (3.92) is indeed correct.

Finally, the numeric factor in eq. (3.94) follows from the decoupling of ultra-heavy quark flavors from the low-energy chiral ring of the quiver. Indeed, suppose one of the \(n_f\) massive quark flavors of the quiver theory becomes ultra-heavy, eg. \(\gamma \mu_1 \to \infty\). In this limit, the chiral ring equations should approximate those of the theory without the ultra-heavy flavor; in particular, in eq. (3.86) we should have
\[
\forall \text{fixed finite } X: \alpha B(X)_{n_f} \to \alpha' B'(X)_{n_f=n_f-1} \implies \alpha' = \alpha \times (-\mu_1^N).
\]
(3.95)
At the same time, for each \(SU(n_c)\) gauge factor of the quiver we decouple one ultra-heavy quark flavor of mass \((-\gamma \mu_a) \to \infty\) out of \(n_c + F\) effective flavors altogether, hence
\[
\forall \ell: (\Lambda'_\ell)^{2n_c-F+1} = (\Lambda_\ell)^{2n_c-F} \times (-\gamma \mu_a).
\]
(3.96)
Consequently, mutual consistency of eqs. (3.94–96) completely determines
\[
\alpha = (-1)^F ((-\gamma)^F \Lambda^{2n_c-F})^N.
\]
(3.97)

⋆ ⋆ ⋆

For the \(N = 2\) SQCD, roots of the \(P(X)\) polynomial in eq. (3.91) are the Coulomb moduli of the theory; classically, \(P = \det(X - \Phi)\) and the roots are the eigenvalues of the adjoint field. The same holds true for the \([SU(n_c)]^N\) quiver theory: In the weak coupling limit \(\alpha \to 0\), eq. (3.88) yields \(\Xi(X, Y) \approx P(X)\) on the physical sheet of the spectral curve \(\Sigma\) — and therefore
\[
T(X)|_{\text{physical sheet}} \approx \sum_{j=1}^{n_c} \frac{1}{X - \bar{\omega}_j},
\]
(3.98)exactly as in the classical formula (3.8), with the roots \(\bar{\omega}_j\) of the \(P(X)\) polynomial playing the role of the classical Coulomb moduli \(\omega_j^N\). In other words, classically \(\bar{\omega}_j \equiv \omega_j^N\) and \(P(X) = \det(X - \Omega_N \cdots \Omega_1)\). In the quantum theory, we need to redefine the Coulomb
moduli because the link eigenvalues ω_j are no longer chiral gauge-invariant operators; in light of eq. (3.98), we define the Coulomb moduli of the quantum quiver as the roots of the $P(X)$,

$$\omega_j^N \overset{\text{def}}{=} \omega_j \ i.e. \ P(X) \equiv \prod_{j=1}^{n_c} (X - \omega_j^N).$$

(3.99)

For $F < n_c$, this is equivalent to identifying $P(X)$ with the $\det(X - \Omega_N \cdots \Omega_1)$ operator in the quantum theory, but for $F \geq n_c$ the relation is more complicated; we shall return to this issue in section §4.3.

For a deformed quiver with $\tilde{W}(X) \neq 0$, the Coulomb moduli (3.99) are constrained by the need to satisfy both eqs. (3.89–90) at the same time as well as

$$\prod_{j=1}^{n_c} \omega_j^N \equiv (-1)^{n_c} P(X = 0) = V^{Nn_c} = \left[v^{n_c} + \text{quantum corrections}\right]^N$$

(3.100)

which translates the determinant constraint (3.6) into the language of the Coulomb moduli (3.99). Consequently, the continuous moduli space of the un-deformed deconstructive quiver breaks into a discrete set of solutions describing different vacua of the deformed quiver. For example, let us consider the $[SU(2)]^N$ quiver with one quark flavor and degree $d = 2$ deformation superpotential $\tilde{W}(X) = \nu_2(\frac{1}{2}X^2 + AX)$. For this quiver, we have one $h = 2$ solution and five $h = 1$ solutions. The $h = 2$ solution

$$P(X) = X^2 + AX + V^{2N},$$

$$B(X) = X - \mu^N,$$

$$G(X) \equiv 1, \quad K(X) \equiv \nu_2,$$

$$\beta v^{n_c} \cdot s = \nu_2 \sqrt{V^{4N} + 4\alpha \mu^N},$$

(3.101)

$$\downarrow$$

$$\tilde{W}(X) = \nu_2 \left(X^2 + AX + \sqrt{V^{4N} + 4\alpha \mu^N}\right),$$

$$F(X) = \frac{\nu_2^2}{2} \left((\sqrt{V^{4N} + 4\alpha \mu^N} - V^{2N}) \times (X + A) + 2\alpha\right),$$

describes the unique discrete Coulomb vacuum with unbroken $U(1) \subset SU(2)_{\text{diag}}$. Classically,

(8) According to eq. (4.118) in §4.3, $V^{Nn_c} = V_1^{Nn_c} + V_2^{Nn_c}$, where $V_{1,2}^{n_c}$ are the two roots of eq. (4.84).
this calls for \(n_1 = n_2 = 1 \) ‘occupation numbers’ for the two roots \(\varphi_{1,2} \) of the \(\tilde{W}(X) \) polynomial — and indeed, in the weak coupling limit \(\alpha \to 0 \) we have \(\tilde{W}(X) \approx \nu_2 P(X) \) and hence \(\omega_1^N \approx \varphi_1 \) and \(\omega_2^N \approx \varphi_2 \). Also, in this limit

\[
F(X) \propto \alpha \implies \text{gaugino condensates } S_{1,2} \propto \alpha \tag{3.102}
\]
as expected for a purely abelian Coulomb vacuum where gaugino bilinears are generated by the coset instantons of the \(SU(2)_{\text{diag}}/U(1) \). Outside the weak coupling limit, the Coulomb moduli \(\omega_1^N, \omega_2^N \) move away from the roots \(\varphi_{1,2} \) of the \(\tilde{W}(X) \) polynomial and the occupation numbers \(n_{1,2} \) become ill-defined. Nevertheless, me may identify the \(h = 2 \) solution with the Coulomb vacuum of the quiver simply because \(h = 2 \) implies a Seiberg–Witten curve of genus \(g = 1 \) and hence a single exactly massless photon of the unbroken \(U(1) \subset SU(2)_{\text{diag}} \).

The \(h = 1 \) solutions describe mesonic and pseudo-confining vacua without any massless photons whatsoever. The general form of these solutions is given by

\[
\begin{align*}
P(X) &= X^2 - (c + 2d)X + V^{2N}, \\
B(X) &= X - \mu^N, \\
G(X) &= X - (c + d), \\
H(X) &= (X - d)^2 + 4e, \\
K(X) &= \nu_2(X + A + d), \\
\beta v^{ns} &= -\nu_2(A + d)\sqrt{d^2 + 4e}, \\
\end{align*}
\]

\[
\begin{align*}
\tilde{W}(X) &= \nu_2 \left[X^2 + AX - (A + d)\sqrt{d^2 + 4e} \right], \\
F(X) &= -\nu_2^2 e \left[\frac{2(A + d)}{d + \sqrt{d^2 + 4e}}(X + A) + X + 2(A + d) \right], \\
\end{align*}
\]

where the parameters \(c, d, e \) satisfy a quintic equation system

\[
c + d - \frac{e}{c} = \mu^N, \quad ce = \alpha, \quad 2e + cd + d^2 = V^{2N}, \tag{3.104}
\]
hence five solutions. In the weak coupling limit $\alpha \to 0$, four solutions

$$d \approx \pm V^N, \quad c \approx \pm \sqrt{\frac{\alpha}{\pm V^N - \mu^N}}, \quad e \approx \pm \sqrt{\alpha (\pm V^N - \mu^N)},$$

\begin{align}
P(X) & \approx (X \mp V^N)^2 \mp 4\sqrt{\alpha (\pm V^N - \mu^N)}, \\
\tilde{W}(X) & \approx \nu_2 (X \mp V^N)(X + A \pm V^N),
\end{align}

(3.105)

describe two pairs of pseudo-confining vacua (i.e., two classical vacua solutions denoted by the un-primed \pm signs, each giving rise to two quantum vacuum states denoted by the primed signs \pm'), while the fifth solution

$$c \approx \frac{\mu^N - V^{2N}}{\mu^N}, \quad d \approx \frac{V^{2N}}{\mu^N}, \quad e \approx \frac{\alpha \mu^N}{\mu^N - V^{2N}},$$

\begin{align}
P(X) & \approx \left(X - \frac{V^{2N}}{\mu^N} \right) \times \left(X - \mu^N \right), \\
\tilde{W}(X) & \approx \nu_2 \left(X - \frac{V^{2N}}{\mu^N} \right) \times \left(X + A + \frac{V^{2N}}{\mu^N} \right),
\end{align}

(3.106)

describes a discrete mesonic vacuum of the quiver. Indeed, the solutions (3.105) has both Coulomb moduli / roots of $P(X)$ captured by the same deformation root, $\varpi_1 \approx \varpi_2 \approx \varphi_1 \implies$ classically unbroken pseudo-confining $SU(2)_{\text{diag}}$, but the (3.106) solution has only one Coulomb modulus $\varpi_1 \approx \varphi_1$ captured by the deformation root while the other modulus is frozen at the quark mass, $\varpi_2 \approx \mu^N$ regardless of the deformation superpotential. Also, for the fifth solution (3.106), $T(X, Y)$ has a pole at $X = \mu^N$ on the physical sheet — and hence large mesonic VEV $\langle M \rangle$ according to eq. (3.76) — while the first four solutions (3.105) have this pole on the un-physical sheet — and hence small mesonic VEVs according to eq. (3.80).

For all five $h = 1$ solutions, the $R(X)$ resolvent has a single branch cut near the first deformation root $\varphi_1 \approx d$ while the second deformation root φ_2 remains unoccupied. In the weak coupling limit the branch cut becomes a pole, and indeed all five solutions have

$$R(X) \bigg|_{\text{physical sheet}} \approx \frac{F(X)}{\tilde{W}(X)} \approx -\frac{\nu_2 e (2 + A/d)}{X - d},$$

(3.107)
with a single pole of residue

$$S = -\nu_2 (2 + A/d) e = \begin{cases} O(\sqrt{\alpha}) & \text{for the first four solutions (3.105), and} \\ O(\alpha) & \text{for the fifth solution (3.106).} \end{cases}$$ (3.108)

This gives us yet another way of distinguishing between the mesonic and the pseudo-confining vacua of a weakly coupled quiver: The solutions with $S \propto \alpha^{1/2}$ describe the pseudo-confining vacua with classically unbroken $SU(2)_{\text{diag}}$ which produces the gaugino condensate at the half-instanton level, while the solution with $S \propto \alpha^1$ describes the discrete mesonic vacuum where the $SU(2)_{\text{diag}}$ is broken at the classical level and it takes a whole (diagonal) instanton to generate $S \neq 0$.

For the strongly coupled quiver theory, the distinction between the mesonic and the pseudo-confining $h = 1$ solutions becomes moot. Indeed, for large α all five solutions have both Coulomb moduli / roots of $P(X)$ nowhere near deformation roots $\wp_{1,2}$ or the quark mass μ^N, so the occupation numbers are of no use. Likewise, all five solutions have large mesonic VEVs as well as large gaugino condensates S which depend on α in a complicated way. Furthermore, all five solutions are permuted into each other by monodromies of the (μ^N, α, V^{2N}) parameter space around the discriminant locus of eqs. (3.104), hence it’s mathematically impossible to find any global distinction which remains valid for all parameter values. Physically, this means that the difference between the pseudo-confining and the mesonic vacua of the quantum quiver theory is an artifact of the weak coupling approximation. At strong coupling, there are simply five photon-less vacua, without any meaningful way of telling which is mesonic and which is pseudo-confining: This is an example of the confinement \leftrightarrow Higgs duality which shows up in all kinds of supersymmetric gauge theories.

Other quiver theories with more colors and/or flavors exhibit the same general behavior: In the weak coupling regime of the deformed quiver, the solutions of eqs. (3.89–90) and (3.100) approximate the classical vacua discussed in section §2.4; in the $\alpha \to 0$ limit, the approximation becomes exact. When the coupling becomes strong we still have exactly the same number of solutions, but their physical identities become blurred and only the net abelian rank $n_{\text{Abel}} = h - 1$ and the number n_{mes} of continuous mesonic moduli remain clear. Generally, all vacua of the same n_{Abel} and n_{mes} are connected by the monodromies of the parameter space and thus cannot be physically told apart in the strongly coupled regime.
Finally, consider what happens when we un-deform a deconstructive quiver by removing the deformation superpotential (2.35). Specifically, let us take to zero the leading coefficient ν_d of the polynomial $\widetilde{W}(X)$ while keeping its roots $\varphi_1, \ldots, \varphi_d$ finite. In this limit, eq. (3.89) yields $K(X) \propto \nu_d$, $F(X) \propto \nu_d^2$, hence $Y \propto \nu_d$, $R(X) \propto \nu_d$ and therefore all gaugino condensates diminish as $O(\nu_d)$. And according to eq. (3.75), all discrete mesonic VEVs also diminish as $O(\nu_d)$. Thus, in the undeformed limit $\nu_d = 0$, the pseudo-confining and the discrete mesonic vacua lose their characteristic VEVs and become indistinguishable from the Coulomb vacua which just happen to have similar moduli $(\omega_{N1}^N, \ldots, \omega_{Nc}^N)$.

Ultimately, for $\nu_d = 0$ eq. (3.89) becomes a trivial $0 = 0$ identity and the roots (3.99) become free moduli of the continuous Coulomb moduli space. For generic values of these moduli, the Seiberg–Witten spectral curve (3.91) has maximal genus $g = n_c - 1$ describing a purely-Coulomb vacuum with a maximal number $n_{\text{Abel}} = n_c - 1$ of massless photons. There are also interesting curves of reduced genus, eg. $g = n_c - 2$ when $B(X)$ has a double zero and $P(X)$ has a simple zero at exactly the same point — physically, this corresponds to a mesonic vacuum family with a frozen Coulomb modulus at a degenerate quark mass, $\omega_1^N = \mu_1^N = \mu_2^N$.

Finally, there are reduced-genus curves at special loci in the Coulomb moduli space where some roots of the $P^2(X) - 4\alpha B(X)$ just happen to coincide. In this case, the low-energy theory retains it full complement of $n_{\text{Abel}} = n_c - 1$ photons but in addition some electrically or magnetically charged particles become exactly massless, and the spectral curve has a reduced rank $g < n_{\text{Abel}}$ because some photons are no longer free in the infrared limit. This works exactly as in the $\mathcal{N} = 2$ SQCD$_4$ — and indeed the very-low-energy limit of the $[SU(n_c)]^N$ quiver theory is the $\mathcal{N} = 2$ SQCD$_4$ with the $SU(n_c)_{\text{diag}}$ gauge symmetry.$^{(9)}$

This completes our study of the $[SU(n_c)]^N$ quiver’s chiral ring — or rather its sub-rings generated by the non-baryonic operators. The baryonic and the anti-baryonic generators are presented in the following section §4.

$^{(9)}$ From the deconstruction point of view, this effective very-low-energy theory is the Kaluza–Klein reduction of the SQCD$_3$ on a circle of size $2\pi R = Na$, and any 4D non-perturbative effects at $E < (Na)^{-1}$ are artifacts of the finite-size compactification. However, as far as a finite–N quiver is concerned, the non-perturbative effects associated with the low-energy $SU(n_c)_{\text{diag}}$ are just as important as any other non-perturbative effect in the theory.
4. Baryons and Other Determinants

In this section we complete the chiral ring of the $[SU(n_c)]^N$ quiver theory by adding all kinds of baryonic and antibaryonic generators. Note that besides the ordinary baryonic operators $B_{f_1,\ldots,f_{n_c}}^{(\ell)} = \epsilon_{j_1,\ldots,j_{n_c}} Q_{\ell,f_1}^{j_1} \cdots Q_{\ell,f_{n_c}}^{j_{n_c}}$ comprised of n_c quarks at the same quiver node ℓ, there is a great multitude of baryon-like gauge-invariant operators where the quarks sit at different nodes $\ell_1, \ell_2, \ldots, \ell_{n_c}$ but are connected to each other via chains of link fields. Or rather each quark is connected by a link chain $\Omega_{\ell-1} \Omega_{\ell-2} \cdots \Omega_{\ell}$ to a common node ℓ where n_c quark indices of the $SU(n_c)_{\ell}$ are combined into a gauge singlet,

$$B_{f_1,f_2,\ldots,f_{n_c}}(\ell; \ell_1, \ell_2, \ldots, \ell_{n_c}) = \epsilon_{j_1,j_2,\ldots,j_{n_c}} \left(\Omega_{\ell-1} \cdots \Omega_{\ell_1} Q_{\ell_1,f_1} \right)^{j_1} \left(\Omega_{\ell-1} \cdots \Omega_{\ell_2} Q_{\ell_2,f_2} \right)^{j_2} \cdots \left(\Omega_{\ell-1} \cdots \Omega_{\ell_{n_c}} Q_{\ell_{n_c},f_{n_c}} \right)^{j_{n_c}} .$$ (4.1)

From the 5D point of view, these are multi-local operators which create/annihilate un-bound sets of n_c quarks while the link chains deconstructs the un-physical Wilson strings which allow for manifest gauge invariance of such multi-local operators

$$[B(x;x_1,\ldots,x_{n_c})]_{f_1,\ldots,f_{n_c}} = \epsilon_{j_1,\ldots,j_{n_c}} \prod_{i=1}^{n_c} \exp_{\text{Path ordered}} \left(i \int_{x_i}^x dx^\mu A_\mu(x) \right)^{j_i} Q_{\ell_1,f_i}^{j_i} \quad \longrightarrow \quad \epsilon_{j_1,\ldots,j_{n_c}} \prod_{i=1}^{n_c} \left(\Omega_{\ell-1} \cdots \Omega_{\ell_i} Q_{\ell_i,f_i} \right)^{j_i}$$ (4.2)

for $x_i^{0,1,2,3} \equiv x^{0,1,2,3}, \quad x^4 = a\ell$ and $x_i^4 = a\ell_i$.

However, just like their mesonic counterparts (3.12), from the 4D point of view these are local chiral gauge-invariant operators and we must include them in the $[SU(n_c)]^N$ quiver’s chiral ring.

Note that each of the n_c link chains $\Omega_{\ell-1} \cdots \Omega_{\ell}$ may wrap a few times around the whole quiver $(\Omega_{\ell-1} \cdots \Omega_1 (\Omega_N \cdots \Omega_1)^3 \Omega_N \cdots \Omega_{\ell})$, or go in reverse direction $(\Omega^{-1}_{\ell} \Omega^{-1}_{\ell+1} \cdots \Omega^{-1}_{\ell_{i+1}}$ for $\ell_i > \ell$), or both, and all these possibilities give rise to a whole zoo of baryonic generators. To make sure the readers do not get lost in this big zoo, we would like to begin our presentation
with a smaller menagerie of baryonic operators in a single $SU(n_c)$ gauge theory with an adjoint field Φ as well as quarks and antiquarks. Once we explore this menagerie in section §4.1 below, we shall return to the baryonic and antibaryonic operators of the $[SU(n_c)]^N$ quiver in section §4.2. Finally, in section §4.3 we shall study quantum corrections to determinants of link chains (as in $\det(\Omega_{\ell} \cdots \Omega_1) = \det(\Omega_{\ell}) \cdots \det(\Omega_1) + \text{corrections}$). Of particular importance is the determinant $\det(\Omega_N \cdots \Omega_1)$ of the whole quiver: It governs quantum corrections to $V^{n_c} = v^{n_c} + \cdots$ in eq. (3.100) and affects the origin of the quivers’ baryonic Higgs branch in the Coulomb moduli space.

4.1 Φ–Baryons in the Single $SU(n_c)$ Theory

Consider the chiral ring of the $N = 1$ $SU(n_c)$ gauge theory with n_f chiral quark and antiquark fields Q^f and \tilde{Q}^f, a single adjoint field Φ, and the superpotential

$$ W = \text{tr} \left(W(\Phi) \right) + \tilde{Q}^f m^f_j(\Phi) Q^f $$ (4.3)

where $m^f_j(\Phi)$ is a matrix-valued polynomial of Φ of degree $p \geq 1$. The non-baryonic generators of this ring are exactly as in the $U(n_c)$ theory with the same chiral fields: According to Cachazo et al [4, 6, 5, 7], all of these generators are encoded in just four resolvents

$$ T(X) = \text{tr} \left(\frac{1}{X - \Phi} \right), \quad \Psi^\alpha(X) = \frac{1}{4\pi} \text{tr} \left(\frac{W^\alpha}{X - \Phi} \right), $$

$$ R(X) = \frac{1}{32\pi^2} \text{tr} \left(\frac{W^\alpha W^\alpha}{X - \Phi} \right), \quad M^f_j(X) = \tilde{Q}^f \frac{1}{X - \Phi} Q^f. $$ (4.4)

Un-gauging the $U(1)$ factor of the $U(n_c)$ makes all kinds of (anti) baryonic chiral operators gauge-invariant and hence adds them to the chiral ring of the $SU(n_c)$ theory. Note that besides the ordinary baryons $B_{f_1,\ldots,f_{n_c}} = \epsilon_{j_1,\ldots,j_{n_c}} Q^{j_1}_{f_1} \cdots Q^{j_{n_c}}_{f_{n_c}}$ made of n_c quarks and nothing else, there are baryonic generators comprising n_c quarks plus any number of the adjoint operators Φ:

$$ B_{f_1,f_2,\ldots,f_{n_c}}(k_1, k_2, \ldots, k_{n_c}) = \epsilon_{j_1,j_2,\ldots,j_{n_c}} \left(\Phi^{k_1} Q^j_{f_1} \right)^{j_1} \left(\Phi^{k_2} Q^j_{f_2} \right)^{j_2} \cdots \left(\Phi^{k_{n_c}} Q^j_{f_{n_c}} \right)^{j_{n_c}}; \quad (4.5) $$

50
henceforth, we shall call such operators Φ–baryons. Likewise, the anti-baryonic operators include the ordinary antibaryons as well as Φ–antibaryons

$$B^{f_1,f_2,\ldots,f_{n_c}}(k_1,k_2,\ldots,k_{n_c}) = \epsilon^{j_1,j_2,\ldots,j_{n_c}} \left(\bar{Q}^{f_1} \phi^{k_1} \right)_{j_1} \left(\bar{Q}^{f_2} \phi^{k_2} \right)_{j_2} \left(\bar{Q}^{f_{n_c}} \phi^{k_{n_c}} \right)_{j_{n_c}}. \quad (4.6)$$

Note that the Φ–baryons and the Φ–antibaryons are antisymmetric with respect to simultaneous permutations of the flavor indices $f_1, f_2, \ldots, f_{n_c}$ and the Φ–numbers $k_1, k_2, \ldots, k_{n_c}$, but there is no antisymmetry with respect to the flavor indices only. Consequently, the Φ–baryons and the Φ–antibaryons exist as non-trivial generators of the (off-shell) chiral ring for any number of flavors $n_f \geq 1$, unlike the ordinary baryons and antibaryons which exist only when $n_f \geq n_c$. Indeed, even for a single flavor we can build Φ–baryons such as

$$B(0, 1, 2, \ldots, n_c - 1) = \epsilon^{j_1,j_2,\ldots,j_{n_c}} (Q)^{j_1} (\Phi)Q^{j_2} \Phi^{j_3} \cdots (\Phi^{n_c-1}Q)^{j_{n_c}}, \quad \text{etc., etc.} \quad (4.7)$$

However, we shall see that all the baryonic and antibaryonic operators vanish on shell unless $n_f \times p \geq n_c$. For the simplest case of (deformed) $\mathcal{N} = 2$ SQCD with linear quark masses $m_f' = \delta_f' (\Phi - \mu_f)$, this means no on-shell baryonic or antibaryonic generators unless $n_f \geq n_c$, and furthermore, all the on-shell Φ–baryons are completely determined by the ordinary baryons of similar flavors, and ditto for the Φ–antibaryons.

Similarly to the mesonic resolvent $\mathcal{M}_f'(X)$ encoding both the ordinary mesons and the Φ–mesons $\bar{Q}^{f'} \phi^{k} Q_f$, we define the baryonic and antibaryonic resolvents

$$B_{f_1,f_2,\ldots,f_{n_c}}(X_1,X_2,\ldots,X_{n_c}) = \epsilon^{j_1,j_2,\ldots,j_{n_c}} \prod_{i=1}^{n_c} \left(\frac{1}{X_i - \Phi} \right)^{j_i} \quad (4.8)$$

$$\bar{B}_{f_1,f_2,\ldots,f_{n_c}}(X_1,X_2,\ldots,X_{n_c}) = \epsilon^{j_1,j_2,\ldots,j_{n_c}} \prod_{i=1}^{n_c} \left(\bar{Q}^{f_i} \frac{1}{X_i - \Phi} \right)^{j_i} \quad (4.9)$$

encoding all kinds of baryonic and antibaryonic operators. Unlike the mesonic resolvent, the (anti) baryonic resolvents depend on n_c independent complex variables $X_1, X_2, \ldots, X_{n_c}$. —
this is necessary to encode the (anti) baryonic operators with arbitrary independent numbers $k_1, k_2, \ldots, k_{n_c}$ attached to each (anti) quark. By construction, the (anti) baryonic resolvents (4.8–9) are antisymmetric with respect to simultaneous permutations of the flavor indices $f_1, f_2, \ldots, f_{n_c}$ and the arguments $X_1, X_2, \ldots, X_{n_c}$ but not under the separate permutations; this allows for the non-trivial off-shell (anti) baryonic resolvents for any flavor number $n_f \geq 1$.

The on-shell baryonic resolvents are subject to equations of motion stemming from the quark-dependent variations of the antiquark fields, namely

$$
\delta \widetilde{Q}_j^f = \left(\frac{1}{X_1 - \Phi} \right)^{j_1}_j \times \varepsilon^{f, f_2, \ldots, f_{n_c}} \epsilon_{j_1, j_2, \ldots, j_{n_c}} \left(\frac{1}{X_2 - \Phi} Q_{f_2} \right)^{j_2}_2 \cdots \left(\frac{1}{X_{n_c} - \Phi} Q_{f_{n_c}} \right)^{j_{n_c}}_{n_c} (4.10)
$$

where $\varepsilon^{f, f_2, \ldots, f_{n_c}}$ is an infinitesimal tensor in the flavor space (n_c indices, no particular symmetry). This variation is anomaly free since the $\delta \widetilde{Q}_j^f$ does not depend on the antiquark field \widetilde{Q}_j^f itself, hence the equation is simply

$$
\delta W_{\text{tree}} = \delta \widetilde{Q}_j^f \times [m_{f_1}^{f_1}(\Phi)]^j_j \widetilde{Q}_{f_1}^{f_1}
$$

where the subscript ‘$- \text{wrt} \ X_1$’ means ‘the negative-power part of the power series with respect to the $X_1 \to \infty$, but only with respect to the X_1’. Hence,

$$
m_{f_1}^{f_1}(X_1) \times B_{f_1, f_2, \ldots, f_{n_c}}(X_1, X_2, \ldots, X_{n_c}) \overset{\text{wrt} \ X_1}{=} \left[m_{f_1}^{f_1}(X_1) B_{f_1, f_2, \ldots, f_{n_c}}(X_1, X_2, \ldots, X_{n_c}) \right]_{\text{wrt} \ X_1} \overset{\text{Polynomial}(X_1) \text{ of degree } \leq p - 1}{=} \text{Polynomial}(X_1) \text{ of degree } \leq p - 1
$$

where the subscript ‘$- \text{wrt} \ X_1$’ means ‘the negative-power part of the power series with respect to the $X_1 \to \infty$, but only with respect to the X_1’. Hence,

$$
m_{f_1}^{f_1}(X_1) \times B_{f_1, f_2, \ldots, f_{n_c}}(X_1, X_2, \ldots, X_{n_c}) \overset{\text{wrt} \ X_1}{=} \left[m_{f_1}^{f_1}(X_1) B_{f_1, f_2, \ldots, f_{n_c}}(X_1, X_2, \ldots, X_{n_c}) \right]_{\text{wrt} \ X_1} \overset{\text{Polynomial}(X_1) \text{ of degree } \leq p - 1}{=} \text{Polynomial}(X_1) \text{ of degree } \leq p - 1
$$

with coefficients depending on X_2, \ldots, X_{n_c}.

Furthermore, the X_2 dependence of these coefficients is restricted in exactly the same way as the X_1 dependence of the baryonic resolvent itself, thus

$$
m_{f_1}^{f_1}(X_1) m_{f_2}^{f_2}(X_2) \times B_{f_1, f_2, \ldots, f_{n_c}}(X_1, X_2, \ldots, X_{n_c}) \overset{\text{Polynomial}(X_1, X_2)}{=} \text{Polynomial}(X_1, X_2)
$$

(4.13)
with coefficients depending on the X_3, \ldots, X_{n_c}. Iterating this argument, we arrive at

$$m_{f_1}^{f_1}(X_1) m_{f_2}^{f_2}(X_2) \cdots m_{f_{n_c}}^{f_{n_c}}(X_{n_c}) \times B_{f_1,f_2,\ldots,f_{n_c}}(X_1, X_2, \ldots, X_{n_c})$$ \hspace{1cm} (4.14)

being a polynomial of degree $\leq p - 1$ with respect to each of the variables $X_1, X_2, \ldots, X_{n_c}$; in other words, the on-shell baryon resolvent has form

$$B_{f_1,\ldots,f_{n_c}}(X_1, \ldots, X_{n_c}) \equiv m^{-1}(X_1)^{f_1} \cdots m^{-1}(X_{n_c})^{f_{n_c}} \times \sum_{k_1=0}^{p-1} \cdots \sum_{k_{n_c}=0}^{p-1} b_{f_1,\ldots,f_{n_c}}(k_1, \ldots, k_{n_c}) X_1^{k_1} \cdots X_{n_c}^{k_{n_c}}$$ \hspace{1cm} (4.15)

for some coefficients $b_{f_1,\ldots,f_{n_c}}(k_1, \ldots, k_{n_c})$. Likewise, the on-shell antibaryonic resolvent has form

$$\bar{B}_{f_1,\ldots,f_{n_c}}(X_1, \ldots, X_{n_c}) \equiv m^{-1}(X_1)^{f_1} \cdots m^{-1}(X_{n_c})^{f_{n_c}} \times \sum_{k_1=0}^{p-1} \cdots \sum_{k_{n_c}=0}^{p-1} \bar{b}_{f_1,\ldots,f_{n_c}}(k_1, \ldots, k_{n_c}) X_1^{k_1} \cdots X_{n_c}^{k_{n_c}}$$ \hspace{1cm} (4.16)

for some coefficients $\bar{b}_{f_1,\ldots,f_{n_c}}(k_1, \ldots, k_{n_c})$.

The total antisymmetry of the baryonic and antibaryonic resolvents under simultaneous permutations of the flavor indices and the variables X_1, \ldots, X_{n_c} translates into the total antisymmetry of the $b_{f_1,\ldots,f_{n_c}}(k_1, \ldots, k_{n_c})$ and $\bar{b}_{f_1,\ldots,f_{n_c}}(k_1, \ldots, k_{n_c})$ coefficient under simultaneous permutation of the flavors and the power indices k_1, \ldots, k_{n_c}. But each power index k_i has only p allowed values $k_i = 0, 1, \ldots, (p - 1)$ and hence each (k_i, f_i) index combination can take only $p \times n_f$ distinct values, which means we cannot possibly antisymmetrize n_c such index pairs unless $n_c \leq p \times n_f$. Thus, the baryonic and the antibaryonic resolvents — and hence all the baryonic and the antibaryonic generators of the chiral ring — vanish on shell unless $p \times n_f \geq n_c$. In particular, in the (deformed) $\mathcal{N} = 2$ SQCD with linear quark masses we have

$$B_{f_1,f_2,\ldots,f_{n_c}}(X_1, X_2, \ldots, X_{n_c}) \equiv \frac{B_{f_1,f_2,\ldots,f_{n_c}}}{(X_1 - \mu_{f_1})(X_2 - \mu_{f_2}) \cdots (X_{n_c} - \mu_{f_{n_c}})},$$ \hspace{1cm} (4.17)

$$\bar{B}_{f_1,f_2,\ldots,f_{n_c}}(X_1, X_2, \ldots, X_{n_c}) \equiv \frac{\bar{B}_{f_1,f_2,\ldots,f_{n_c}}}{(X_1 - \mu_{f_1})(X_2 - \mu_{f_2}) \cdots (X_{n_c} - \mu_{f_{n_c}})},$$ \hspace{1cm} (4.18)
where $B_{f_1,f_2,...,f_{n_c}}$ and $\tilde{B}_{f_1,f_2,...,f_{n_c}}$ are the ordinary, Φ-less baryon and antibaryon. And therefore, all the on-shell baryonic and antibaryonic generators vanish unless $n_f \geq n_c$.

Note that from the baryonic point of view, a theory with non-renormalizable $\tilde{Q}\Phi^pQ$ interactions of order $p \geq 2$ behaves as an effective $\mathcal{N} = 2$ SQCD with $n_f^{\text{eff}} = n_f \times p$ flavors. Likewise, Cachazo et al showed [7] that the Seiberg–Witten curve of a $p \geq 2$ theory —

$$Y^2 - Y \times P(X) + \Lambda^{2n_c-pn_f} B(X) = 0$$

(4.19)

where $P(X)$ is a polynomial of degree n_c and $B(X) = \det(m(X))$ is a polynomial of degree $p \times n_f$ — looks exactly like the $\mathcal{N} = 2$ SQCD curve for the same number n_c of colors but $n_f^{\text{eff}} = p \times n_f$ flavors. Altogether, as far as the chiral ring is concerned, a single quark flavor with $\tilde{Q}\Phi^pQ$ interactions of order $p > 1$ is physically equivalent to p ordinary quark flavors. And since many formulæ look much more complicated for $p \geq 2$ we shall henceforth limit our presentation to the $p = 1$ case.\(^{(10)}\)

Classically, the baryonic branches of the moduli space have overdetermined Coulomb moduli:

$$B_{f_1,...,f_{n_c}} \neq 0 \text{ or } \tilde{B}_{f_1,...,f_{n_c}} \neq 0 \text{ requires } (\varpi_1,\ldots,\varpi_{n_c}) = (\mu_{f_1},\ldots,\mu_{f_{n_c}}),$$

(4.21)

which in turn requires $\mu_{f_1} + \cdots + \mu_{f_{n_c}} = 0$ because $\varpi_1 + \cdots + \varpi_{n_c} = \text{tr}(\Phi) = 0$. In the quantum theory, a non-zero on-shell value of a baryonic or an antibaryonic operator also over-determines the Coulomb moduli, although their exact values receive quantum corrections.

\(^{(10)}\) In the quiver theory we have a similar situation where a single quark flavor with a p-node hopping superpotential (2.20) acts as p ordinary flavors with nearest-neighbor hopping (2.2). Indeed, classically such a p-node-hopping flavor deconstructs up to p light 5D flavors, and in the fully-quantum chiral ring of the quiver it is physically equivalent to p ordinary quark flavors, although many formulæ become more complicated. For example, eq. (3.86) for the $B(X)$ becomes

$$\alpha B(X) = \Lambda^{N(2n_c-pF)} \times \text{Det} \left(X^{1/N} \delta_{\ell',\ell} \delta_{f',f} - (\Gamma_{\ell'-\ell})_{f'}^{f} \right)$$

with respect to both ℓ', ℓ and f', f indices

(4.20)

(this is actually a polynomial of X of degree pF because of the translational \mathbb{Z}_N invariance of the quiver), while formulæ for the on-shell mesonic and baryonic resolvents would take pages simply to write down, never mind the derivations. Consequently, we have limited our presentation to the simpler case of the nearest-neighbor hopping.
To see how this works, consider a baryonic resolvent $B_{f_1,\ldots,f_{n_c}}(X_1,\ldots,X_{n_c})$ at a point where the variables X_1,\ldots,X_{n_c} are all equal to each other. By construction (4.8),

$$B_{f_1,\ldots,f_{n_c}}(X_1=\cdots=X_{n_c}) = \varepsilon_{j_1,\ldots,j_{n_c}} \prod_{i=1}^{n_c} \left(\frac{1}{X-\Phi}Q_{f_i} \right)^{j_i} = \det \left(\frac{1}{X-\Phi} \times Q_{f_1,\ldots,f_{n_c}} \right)$$

(4.22)

where X denotes $X_1 = X_2 = \cdots = X_{n_c}$ and $Q_{f_1,\ldots,f_{n_c}}$ is the $n_c \times n_c$ block of the color \times flavor quark matrix corresponding to flavors f_1,\ldots,f_{n_c}. Note $\det(Q_{f_1,\ldots,f_{n_c}}) = B_{f_1,\ldots,f_{n_c}}$ and therefore

$$\det \left(\frac{1}{X-\Phi} \times Q_{f_1,\ldots,f_{n_c}} \right) = \det \left(\frac{1}{X-\Phi} \right) \times B_{f_1,\ldots,f_{n_c}} + \text{instantonic corrections}$$

(4.23)

$$\overset{\text{cr}}{=} \langle \langle \text{quantum corrected} \rangle \rangle \det \left(\frac{1}{X-\Phi} \right) \times B_{f_1,\ldots,f_{n_c}}$$

(4.24)

where the second equality follows from the fact that any instantonic term on the first line must involve a baryonic operator with appropriate flavor indices and all such operators are proportional to the $B_{f_1,\ldots,f_{n_c}}$. Consequently,

$$B_{f_1,\ldots,f_{n_c}}(X_1=\cdots=X_{n_c}) \overset{\text{cr}}{=} \langle \langle \text{quantum corrected} \rangle \rangle \det \left(\frac{1}{X-\Phi} \right) \times B_{f_1,\ldots,f_{n_c}}$$

(4.25)

and comparing this equation with the on-shell formula (4.17) we immediately see that a non-zero on-shell baryon $B_{f_1,\ldots,f_{n_c}} \neq 0$ requires

$$\langle \langle \text{quantum corrected} \rangle \rangle \det \left(\frac{1}{X-\Phi} \right) = \prod_{i=1}^{n_c} \frac{1}{X-\mu_{f_i}}.$$

(4.26)

Likewise, the antibaryonic resolvents satisfy

$$\tilde{B}^{f_1,\ldots,f_{n_c}}(X_1=\cdots=X_{n_c}) \overset{\text{cr}}{=} \langle \langle \text{quantum corrected} \rangle \rangle \det \left(\frac{1}{X-\Phi} \right) \times \tilde{B}^{f_1,\ldots,f_{n_c}}$$

(4.27)

and hence in light of eq. (4.18), a non-zero on-shell antibaryon $\tilde{B}^{f_1,\ldots,f_{n_c}}$ requires exactly the same determinant condition (4.26) as a non-zero on-shell baryon $B_{f_1,\ldots,f_{n_c}}$. In other words, eq. (4.26) is the quantum-corrected version of the classical eq. (4.21) for the Coulomb moduli of the baryonic branches.
The trouble with eq. (4.26) is that in the quantum theory a determinant of an operator-valued matrix has several definitions yielding different results. For example, the definition

\[
\text{(1) } \det_1 \left(\frac{1}{X - \Phi} \right) \overset{\text{def}}{=} \exp \left(\text{tr} \left(\log \frac{1}{X - \Phi} \right) \right)
\]

yields on-shell (for the \(T(X) \) resolvent given by eqs. (3.85) and (3.88))

\[
\det_1 \left(\frac{1}{X - \Phi} \right) = \frac{1}{\Xi(X)}, \tag{4.29}
\]

but another definition

\[
\text{(2) } \det_2 \left(\frac{1}{X - \Phi} \right) \overset{\text{def}}{=} D_{nc} \left(\text{tr} \left(\frac{1}{X - \Phi} \right), \text{tr} \left(\frac{1}{X - \Phi} \right)^2, \ldots, \text{tr} \left(\frac{1}{X - \Phi} \right)^n \right)
\]

(\text{where } D_n(t_1, t_2, \ldots, t_n) \text{ is the Newton’s polynomial formula for the determinant of an ordinary } n \times n \text{ matrix } A \text{ in terms of the traces } t_1 = \text{tr}(A), t_2 = \text{tr}(A^2), \ldots, t_n = \text{tr}(A^n)\text{)}

yields

\[
\det_2 \left(\frac{1}{X - \Phi} \right) = \frac{1}{\Xi(X)} \times \frac{1}{n_c!} \frac{d^{n_c} \Xi}{dX^{n_c}}, \tag{4.31}
\]

and yet another definition

\[
\text{(3) } \det_3 \left(\frac{1}{X - \Phi} \right) \overset{\text{def}}{=} \frac{1}{\det(X - \Phi)} \tag{4.32}
\]

\[
\overset{\text{def}}{=} \frac{1}{D_{nc} \left(\text{tr}(X - \Phi), \text{tr}(X - \Phi)^2, \ldots, \text{tr}(X - \Phi)^n \right)}
\]

yields

\[
\det_3 \left(\frac{1}{X - \Phi} \right) = \frac{1}{[\Xi(X)]^+}. \tag{4.33}
\]

However, all such definitions yields exactly the same on-shell determinant when \(\Xi(X) \) happens to be a polynomial, and in light of \(1/\text{polynomial}(X) \) expression on the right hand side.
of eq. (4.26) it is clear that

\[B_{f_1,\ldots,f_{nc}} \neq 0 \text{ and/or } \tilde{B}_{f_1,\ldots,f_{nc}} \neq 0 \] requires \(\Xi(X) = \prod_{i=1}^{nc} (X - \mu_{f_i}) \). (4.34)

Now consider the Seiberg–Witten curve (4.19) of the (deformed) \(\mathcal{N} = 2 \) SQCD. In a classical baryonic vacuum, the \(SU(n_c) \) is Higgsed down to nothing by the quark and antiquark VEVs and there are no massless gluons or photons whatsoever. In the quantum theory we likewise have no massless photons at all, which means a Seiberg–Witten curve of zero genus. In other words,

\[\Xi(X, Y) = Y = \frac{1}{2} \left(P(X) + \sqrt{P^2(X) - 4\Lambda^2 n_c - n_f} B(X) \right) \] (4.35)

should have at most one branch cut over the complex \(X \) plane. Furthermore, the spectral curves with \(h \geq 1 \) branch cuts belong to the mesonic vacua with non-zero classical VEVs of \(n_c - h \) quark flavors (or to the non-classical pseudo-confining vacua), but in the baryonic vacua all \(n_c \) quark flavors develop non-zero classical VEVs. This suggests \(h = 0 \) for the baryonic vacua, i.e. no branch cuts whatsoever; in other words,

\[P^2(X) - 4\Lambda^2 n_c - n_f B(X) = K^2(X) \] (4.36)

for some polynomial \(K(X) \), and \(\Xi(X) = \frac{1}{2}(P(X) + K(X)) \) is also a polynomial function of \(X \). Of course, this whole argument is rather heuristic, but it serves as a qualitative explanation why eq. (4.34) imposes a polynomial formula on the \(\Xi(X) \).

It remains to solve eq. (4.34) for the Coulomb moduli of a baryonic vacuum. Let us factorize

\[B(X) \equiv \prod_{f=1}^{n_f} (X - \mu_f) = \prod_{f=1}^{n_f} (X - \mu_f) = B_1(X) \times B_2(X) \] (4.37)

where

\[B_1(X) = \prod_{f=f_1,\ldots,f_{nc}} (X - \mu_f) \text{ and } B_2(X) = \prod_{f\neq f_1,\ldots,f_{nc}} (X - \mu_f). \] (4.38)

Eq. (4.34) amounts to \(\Xi(X) = B_1(X) \) while eq. (4.35) implies

\[P^2(X) - 4\Lambda^2 n_c - n_f B_1(X) B_2(X) = (2\Xi(X) - P(X))^2 = (2B_1(X) - P(X))^2 \] (4.39)
and therefore
\[P(X) = B_1(X) + \Lambda^{2n_c-n_f} B_2(X). \] (4.40)

Thus, in the quantum theory, the Coulomb moduli of a baryonic vacuum with \(B_{f_1,\ldots,f_{n_c}} \neq 0 \) and/or \(\tilde{B}_{f_1,\ldots,f_{n_c}} \neq 0 \) are given by
\[\prod_{i=1}^{n_c} (X - \omega_i) = \prod_{f=f_1,\ldots,f_{n_c}} (X - \mu_f) + \Lambda^{2n_c-n_f} \prod_{f \neq f_1,\ldots,f_{n_c}} (X - \mu_f) \] (4.41)

where the first term on the right hand side is the classical formula (4.21) while the second term is due to single-instanton quantum effects. Remarkably, there are no higher-order instantonic corrections.

Similar to its classical counterpart (4.21), eq. (4.41) over-determines the Coulomb moduli \((\omega_i, \ldots, \omega_{n_c})\) because of the tracelessness constraint
\[\text{tr}(\Phi) = \oint \frac{dX}{2\pi i} XT(X) = \oint \frac{X d \Xi(X)}{2\pi i \Xi(X)} = 0. \] (4.42)

The Coulomb moduli (4.41) provide for \(\Xi(X) = B_1(X) \) and hence the integral (4.42) evaluates to simply \(\sum_i \mu_{f_i} \). In other words, the existence of a baryonic branch with
\[B_{f_1,\ldots,f_{n_c}} \neq 0 \quad \text{or} \quad \tilde{B}_{f_1,\ldots,f_{n_c}} \neq 0 \quad \text{requires} \quad \mu_{f_1} + \mu_{f_2} + \cdots + \mu_{f_{n_c}} = 0 \] (4.43)

exactly as in the classical theory.

This completes our study of the baryonic aspects of the single \(SU(n_c) \) theory. In the following section §4.2 we shall see that the baryons of the \([SU(n_c)]^N\) quiver theory behave in a similar way.

4.2 Baryonic Operators of the \([SU(n_c)]^N\) Quiver

At this point, we are ready to face the whole zoo of chiral baryonic and antibaryonic operators of the \([SU(n_c)]^N\) quiver, so let us begin with the zoo’s inventory. Most generally, a chiral baryonic operator of the quiver comprises \(n_c \) quarks \(Q_1, \ldots, Q_{n_c} \) located at arbitrary quiver nodes \(\ell_1, \ldots, \ell_{n_c} \) connected by link chains to yet another quiver node \(\ell \) where the color indices
of the $SU(n_c)_\ell$ are combined together into a gauge singlet. Each of the n_c quarks Q_i has an independent flavor index $f_i = 1, \ldots, F$, and each chain connecting the i^{th} quark node ℓ_i to the combination node ℓ can wrap any number of times around the quiver in either direction independently on any other chain. Altogether, this gives us a very large family of chiral baryonic operators

$$B_{f_1,\ldots,f_{n_c}}(\ell; \ell_1, \ldots, \ell_{n_c}; k_1, \ldots, k_{n_c}) = \epsilon_{j_1,\ldots,j_{n_c}} \prod_{i=1}^{n_c} \left((\Omega_{\ell_i-1} \Omega_{\ell_i-2} \cdots \Omega_{\ell_i})^{k_i} \Omega_{\ell_i-1} \Omega_{\ell_i-2} \cdots \Omega_{\ell_i} Q_{\ell_i,f_i} \right)^{j_i}$$

(4.44)

where each k_i runs from $-\infty$ to $+\infty$: A positive k_i means the link chain from ℓ_i to ℓ wraps k_i times around the quiver in the forward direction while a negative k_i means the chain wraps backwards,

$$(\Omega_{\ell_i-1} \Omega_{\ell_i-2} \cdots \Omega_{\ell_i})^{(k_i<0)} \times \Omega_{\ell_i-1} \Omega_{\ell_i-2} \cdots \Omega_{\ell_i} = (\Omega_{\ell_i}^{-1} \Omega_{\ell_i+1}^{-1} \cdots \Omega_{\ell_i-1}^{-1})^{(-1-k_i\geq0)} \times \Omega_{\ell_i}^{-1} \Omega_{\ell_i+1}^{-1} \cdots \Omega_{\ell_i-1}^{-1}. \quad (4.45)$$

Note that the set of all possible baryonic operators (4.44) is redundant in several ways. First, $B_{f_1,\ldots,f_{n_c}}(\ell; \ell_1, \ldots, \ell_{n_c}; k_1, \ldots, k_{n_c})$ is totally antisymmetric with respect to permutations of the (f_i, ℓ_i, k_i) index triplets, i.e. with respect to simultaneous permutations of the flavor, quark-node and chain-wrap indices. This follows from the Bose statistics of the squark and link operators and from the totally antisymmetric contraction of the color indices j_1, \ldots, j_{n_c}. Nevertheless, there is no antisymmetry with respect to permutations of the flavor indices alone, apart from the ℓ_i and k_i indices, and therefore the off-shell chiral baryonic operators (4.44) exist for any non-zero flavor number F. However, similarly to the Φ–baryons of the single $SU(n_c)$ theory, all the baryonic operators (4.44) of the $[SU(n_c)]^N$ quiver with $n_f < n_c$ vanish on-shell; we shall prove this statement later in this section.

The second redundancy is due to quark locations ℓ_i being defined modulo N, hence in a baryonic operator, changing $\ell_i \rightarrow \ell_i \pm N$ is equivalent to changing the wrap number $k_i \rightarrow k_i \mp 1$. Finally, letting the k_i run from $-\infty$ to $+\infty$ is redundant because any backward-wrapping link chain (4.45) is a linear combination of all the forward-wrapping chains, and vice versa, any forward-wrapping chain is a linear combination of the backward-wrapping
chains. This follows from the fact that a single meromorphic resolvent

\[
\frac{\Omega_{\ell-1} \cdots \Omega_{\ell_i}}{X_i - \Omega \cdots \Omega} = \sum_{k_i \geq 0} \left(\frac{1}{X_i} \right)^{k_i+1} \times (\Omega_{\ell-1} \Omega_{\ell-2} \cdots \Omega_{\ell})^{k_i} \Omega_{\ell-1} \Omega_{\ell-2} \cdots \Omega_{\ell_i} \tag{4.46}
\]

\[
= - \sum_{k_i < 0} X_i^{-1-k_i} \times (\Omega_{\ell-1} \Omega_{\ell+1} \cdots \Omega_{\ell-1})^{1-k_i} \Omega_{\ell}^{-1} \Omega_{\ell+1}^{-1} \cdots \Omega_{\ell_i-1}^{-1}. \tag{4.47}
\]

summarizes both types of link chains but can be decomposed into a convergent power series in terms of either only the forward-wrapping chains or else only the backward-wrapping chains.

In light of the above redundancies, we can encode all the chiral baryonic operators of the quiver in a family of baryonic resolvents

\[
B_{f_1, \ldots, f_{n_c}}(\ell; \ell_1, \ldots, \ell_{n_c}; X_1, \ldots, X_{n_c}) = \epsilon_{j_1, \ldots, j_{n_c}} \prod_{i=1}^{n_c} \left(\frac{\Omega_{\ell-1} \cdots \Omega_{\ell}}{X_i - \Omega \cdots \Omega} Q_{\ell_i, f_i} \right)^{j_i} \tag{4.48}
\]

where \(X_1, \ldots, X_{n_c} \) are independent complex numbers, and the resolvents are totally anti-symmetric with respect to simultaneous permutations of the flavor indices \(f_i \), the quiver indices \(\ell_i \), and the arguments \(X_i \). Similar to the mesonic resolvents (3.13), the baryonic resolvents (4.48) of the quiver theory trade the wrapping numbers \(k_1, \ldots, k_{n_c} \) for the complex arguments \(X_1, \ldots, X_{n_c} \), but now we also have to contend with the quiver indices \(\ell_1, \ldots, \ell_{n_c} \) and \(\ell \). The independent resolvents have all \(\ell_i \) running from \(\ell \) down to \(\ell - N + 1 \); for the \(\ell_i \) outside of this range, there is a periodicity condition

\[
B(\ell; \ldots, \ell_i = \ell - N, \ldots; X_1, \ldots, X_{n_c}) = X_i \times B(\ell; \ldots, \ell_i = \ell, \ldots; X_1, \ldots, X_{n_c})
\]

\[
= -\epsilon_{j_1, \ldots, j_{n_c}} Q^{j_i}_{\ell_i, f_i} \times \prod_{i' \neq i} \left(\frac{\Omega_{\ell-1} \cdots \Omega_{\ell_i}}{X_i' - \Omega \cdots \Omega} Q_{\ell_i', f_i'} \right)^{j_i'}
\]

which does not depend on the \(X_i \).

\[
\tag{4.49}
\]

The antibaryonic chiral operators of the quiver theory comprise \(n_c \) antiquarks located at independent quiver nodes \(\ell_i \) and connected by link chains to yet another quiver node \(\ell \) where the color indices are combined into a gauge singlet. The most general operator of this kind
has form
\[
\tilde{B}^{f_1, \ldots, f_{n_c}}(\ell; \ell_1, \ldots, \ell_{n_c}; k_1, \ldots, k_{n_c}) = \epsilon^{j_1, \ldots, j_{n_c}} \prod_{i=1}^{n_c} \left(\tilde{Q}^{f_i}_{\ell_i} \Omega_{\ell_i-1} \Omega_{\ell_i-2} \cdots \Omega_{\ell_i} \left(\Omega_{\ell_i} - \Omega_{\ell_i-2} \cdots \Omega_{\ell_i-1} \right)^{j_i} \right)
\]
(4.50)

for some flavor indices \(f_1, \ldots, f_{n_c}\), quiver-node indices \(\ell_1, \ldots, \ell_{n_c}\) and \(\ell\), and wrapping numbers \(k_1, \ldots, k_{n_c}\). The antibaryonic operators (4.50) are subject to the same redundancy conditions as the baryonic operators (4.44), thus we may encode them in a similar family of the antibaryonic resolvents
\[
\tilde{B}^{f_1, \ldots, f_{n_c}}(\ell; \ell_1, \ldots, \ell_{n_c}; X_1, \ldots, X_{n_c}) = \epsilon^{j_1, \ldots, j_{n_c}} \prod_{i=1}^{n_c} \left(\tilde{Q}^{f_i}_{\ell_i} \frac{\Omega_{\ell_i-1} \cdots \Omega_{\ell_i}}{X_i - \Omega_{\ell_i} \cdots \Omega_{\ell_i}} \right)_{j_i}
\]
(4.51)

Again, the \(X_1, \ldots, X_{n_c}\) are independent complex numbers, and the resolvents are totally antisymmetric with respect to simultaneous permutations of the flavor indices \(f_i\), the quiver indices \(\ell_i\), and the arguments \(X_i\). The independent antibaryonic resolvents have all the \(\ell_i\) running from \(\ell\) up to \(\ell + N - 1\); for the \(\ell_i\) outside of this range, there is a periodicity condition
\[
\tilde{B}(\ell; \ldots, \ell_i = \ell + N, \ldots; X_1, \ldots, X_{n_c}) - X_i \times \tilde{B}(\ell; \ldots, \ell_i = \ell, \ldots; X_1, \ldots, X_{n_c}) = -\epsilon^{j_1, \ldots, j_{n_c}} \tilde{Q}^{f_i}_{\ell_i} \prod_{j' \neq i} \left(\tilde{Q}^{f_{i'}}_{\ell_{i'}} \frac{\Omega_{\ell_{i'}-1} \cdots \Omega_{\ell_{i'}}}{X_{i'} - \Omega_{\ell_{i'}-1} \cdots \Omega_{\ell_{i'}}} \right)_{j_i'_{i'}}
\]
which does not depend on the \(X_i\).

(4.52)

Thus far, we summarized the baryonic and antibaryonic generators of the off-shell chiral ring of the \([SU(n_c)]^N\) quiver. Note that the resolvents (4.48) and (4.51) are totally antisymmetric with respect to simultaneous permutations of the \(f_i\), the \(\ell_i\) and the \(X_i\), but there is no antisymmetry with respect to flavor indices alone. Consequently, there are non-trivial off-shell (anti) baryonic generators for any flavor number \(F \geq 1\).

The on-shell baryonic operators are constrained by equations of motions stemming from quark-dependent variations of the antiquark fields. Generalizing eq. (4.10) from the single \(SU(n_c)\) theory to the \([SU(n_c)]^N\) quiver, consider
\[
\delta \tilde{Q}^{f_i}_{\ell_i} = \varepsilon \left(\frac{\Omega_{\ell_i-1} \cdots \Omega_{\ell_i}}{X_i - \Omega_{\ell_i-1} \cdots \Omega_{\ell_i}} \right)_{j_i} = \epsilon^{j_1, \ldots, j_{n_c}} \prod_{i=2}^{n_c} \left(\frac{\Omega_{\ell_i-1} \cdots \Omega_{\ell_i}}{X_i - \Omega_{\ell_i} \cdots \Omega_{\ell_i}}Q_{\ell_i}^{f_i} \right)_{j_i}
\]
(4.53)
for an arbitrary combination of (anti) quark flavors f and f_2, \ldots, f_{n_c}. This variation is anomaly-free since the $\delta \tilde{Q}_{\ell_1,j}^f$ does not depend on the antiquark field $\tilde{Q}_{\ell_1,j}^f$ itself, hence the resulting equation of motion is simply $\delta W_{\text{tree}} \equiv 0$. Or not so simply,

$$
\delta W_{\text{tree}} = \gamma \delta \tilde{Q}_{\ell_1,j}^f \times \left[\left(\Omega_{\ell_1-1} Q_{\ell_1-1,f} \right)^j - \mu_f Q_{\ell_1,j}^f \right]
$$

$$
= \gamma \varepsilon \times \epsilon_{j_1,j_2,\ldots,j_{n_c}} \prod_{i=2}^{n_c} \left(\frac{\Omega_{\ell_1-1} \cdots X_i \cdots \Omega Q_{\ell_i,f_i}}{X_1 \cdots \Omega} \right)^{j_i} \times
$$

$$
\times \left[\left(\frac{\Omega_{\ell_1-1} \cdots \Omega_{\ell_1-1} Q_{\ell_1-1,f}}{X_1 \cdots \Omega} \right)^{j_1} - \mu_f \left(\frac{\Omega_{\ell_1-1} \cdots \Omega Q_{\ell_1,f}}{X_1 \cdots \Omega} \right)^{j_1} \right]
$$

$$
= \gamma \varepsilon \times \left[\mathcal{B}_{f_1,f_2,\ldots,f_{n_c}} (\ell; \ell_1-1, \ell_2, \ldots, \ell_{n_c}; X_1, X_2, \ldots, X_{n_c})
$$

$$
- \mu_f \mathcal{B}_{f_1,f_2,\ldots,f_{n_c}} (\ell; \ell_1, \ell_2, \ldots, \ell_{n_c}; X_1, X_2, \ldots, X_{n_c}) \right]
$$

$$
\equiv 0. \quad (4.54)
$$

In other words, in the on-shell chiral ring, decreasing the ℓ_1 index of a baryonic resolvent $\mathcal{B}_{f_1,\ldots,f_{n_c}} (\ell; \ell_1, \ldots, \ell_{n_c}; X_1, \ldots, X_{n_c})$ by 1 simply multiplies the resolvent by μ_f, regardless of the X_1, \ldots, X_{n_c} arguments. And since all n_c quarks of a baryon have equal status, decreasing any of the ℓ_i indices by 1 multiplies the resolvent by the i^{th} quark mass, namely μ_{f_i}. Hence, by iteration

$$
\mathcal{B}_{f_1,\ldots,f_{n_c}} (\ell; \ell_1, \ldots, \ell_{n_c}; X_1, \ldots, X_{n_c}) \equiv \prod_{i=1}^{n_c} \mu_{f_i}^{-\ell_i} \times \mathcal{B}_{\text{same } f_i} (\text{all } \ell_i = \ell; \text{ same } X_i) \quad (4.55)
$$

for any $\ell_i \leq \ell$, and consequently, in light of the periodicity conditions (4.49),

$$
\mathcal{B}_{f_1,\ldots,f_{n_c}} (\ell; \ell_1, \ldots, \ell_{n_c}; X_1, \ldots, X_{n_c}) \equiv \prod_{i=1}^{n_c} \frac{\mu_{f_i}^{\ell-\ell_i}}{X_i - \mu_{f_i}^N} \times \mathcal{B}_{f_1,\ldots,f_{n_c}} (\ell) \quad (4.56)
$$

where

$$
\mathcal{B}_{f_1,\ldots,f_{n_c}} (\ell) = \epsilon_{j_1,\ldots,j_{n_c}} Q_{\ell,f_1}^{j_1} \cdots Q_{\ell,f_{n_c}}^{j_{n_c}} \quad (4.57)
$$

is the ordinary, local baryon at the quiver node ℓ. Thus, on shell, all the baryonic resolvents (4.44) of the quiver — and hence all the non-local baryon-like chiral operators — are proportional to the ordinary local baryons (4.57).
Likewise, on-shell
\[
\overline{B}_{f_1,\ldots,f_{nc}}(\ell,\ell_1,\ldots,\ell_{nc};X_1,\ldots,X_{nc}) \equiv \prod_{i=1}^{nc} \frac{\mu_{f_i}^{\ell_1-\ell} - X_i - \mu_{f_i}^N}{X_i - \mu_{f_i}^N} \times \overline{B}_{f_1,\ldots,f_{nc}}(\ell)
\]
(4.58)
and all the antibaryonic resolvents (4.50) are proportional to the ordinary antibaryons. And since the ordinary baryons and antibaryons have antisymmetrized flavor indices, it follows that similarly to the deformed \(\mathcal{N} = 2 \) SQCD theory, all the baryonic and antibaryonic generators of the quiver’s chiral ring vanish on shell unless \(F \geq n_c \). Furthermore, we shall see momentarily that baryonic branches of the quiver theory do not involve massless quark flavors, so it takes at least \(n_f \geq n_c \) massive quark flavors (cf. eqs. (2.15) and (2.18) to get any anti/baryonic VEVs at all.

Indeed, similarly to the single \(SU(n_c) \) theory of the previous section, baryonic branches of the \([SU(n_c)]^N\) quiver have overdetermined Coulomb moduli. To derive this result, we again focus on the anti/baryonic resolvents with equal arguments \(X_1 = X_2 = \cdots = X_{nc} \), but this time we also use equal quiver indices \(\ell_1 = \ell_2 = \cdots = \ell_{nc} = \ell \). Thus,
\[
B_{f_1,\ldots,f_{nc}}(\text{all } \ell_i = \ell; \text{ all } X_i = X) = \\
\epsilon_{j_1,\ldots,j_{nc}} \prod_{i=1}^{nc} \left(\frac{1}{X - \Omega \cdots \Omega} Q_{f_i} \right)^{\bar{j}_i} \quad \langle \text{cf. eq. (4.48)} \rangle
\]
\[
= \det \left(\frac{1}{X - \Omega \cdots \Omega} \times Q_{f_1,\ldots,f_{nc}}(\ell) \right) \quad \langle \text{on shell} \rangle
\]
\[
\equiv \det \left(\frac{1}{X - \Omega \cdots \Omega} \right) \times \left[\det \left(Q_{f_1,\ldots,f_{nc}}(\ell) \right) \equiv B_{f_1,\ldots,f_{nc}}(\ell) \right] \quad \langle \text{quantum corrected} \rangle \\
+ \text{instantonic corrections}
\]
\[
= B_{f_1,\ldots,f_{nc}}(\ell) \times \langle \text{quantum corrected} \rangle \det \left(\frac{1}{X - \Omega \cdots \Omega} \right),
\]
and comparing this result with the on-shell formula (4.56) for the same baryonic resolvent, we immediately see that a non-trivial baryonic VEV \(\langle B_{f_1,\ldots,f_{nc}}(\ell) \rangle \neq 0 \) requires
\[
\langle \text{quantum corrected} \rangle \det \left(\frac{1}{X - \Omega \cdots \Omega} \right) = \prod_{i=1}^{nc} \frac{1}{X - \mu_{f_i}^N}.
\]
(4.60)
Likewise, for an antibaryonic resolvent with the same indices and arguments we have

\[
\tilde{B}^{f_1, \ldots, f_{nc}}(\text{all } \ell_i = \ell; \text{ all } X_i = X) = \\
= e^{j_1, \ldots, j_{nc}} \prod_{i=1}^{nc} \left(\tilde{Q}^{f_i}_{\ell} \frac{1}{X - \Omega \cdots \Omega} \right)_{ji} \quad \langle \text{cf. eq. (4.48)} \rangle \\
= \det \left(\tilde{Q}^{f_1, \ldots, f_{nc}}(\ell) \times \frac{1}{X - \Omega \cdots \Omega} \right) \\
\langle \text{on shell} \rangle \\
\equiv \left[\det (\tilde{Q}^{f_1, \ldots, f_{nc}}(\ell)) \equiv \tilde{B}^{f_1, \ldots, f_{nc}}(\ell) \right] \times \det \left(\frac{1}{X - \Omega \cdots \Omega} \right) \\
\quad + \text{ instantonic corrections} \\
= \tilde{B}^{f_1, \ldots, f_{nc}}(\ell) \times \langle \text{quantum corrected} \rangle \det \left(\frac{1}{X - \Omega \cdots \Omega} \right),
\]

(4.61)

and comparing this result with the on-shell formula (4.58) we see that a non-trivial antibaryonic VEV \(\langle \tilde{B}^{f_1, \ldots, f_{nc}}(\ell) \rangle \neq 0 \) requires exactly the same determinant condition (4.60) as the baryonic VEV \(\langle B^{f_1, \ldots, f_{nc}}(\ell) \rangle \neq 0 \).

From the Coulomb moduli’s point of view, the determinant constraint (4.60) of the quiver theory is precisely analogous to the determinant constraint (4.26) of the single \(SU(n_c) \) theory, and its solution is precisely analogous to eqs. (4.34) and (4.41). Specifically,

\[
B^{f_1, \ldots, f_{nc}} \neq 0 \quad \text{and/or} \quad \tilde{B}^{f_1, \ldots, f_{nc}} \neq 0 \quad \text{requires} \quad \Xi(X) = \prod_{i=1}^{nc} \left(X - \mu^N_i \right),
\]

(4.62)

which means the Seiberg–Witten curve (3.91) of the quiver should have no branch cuts at all, and the Coulomb moduli \(\varpi_i \equiv \omega_i^N \) are given by

\[
\prod_{i=1}^{nc} (X - \varpi_i) = \prod_{f=f_1, \ldots, f_{nc}} (X - \mu_f^N) + \alpha \prod_{f \neq f_1, \ldots, f_{nc}} (X - \mu_f^N)
\]

(4.63)

where the first term on the right hand side describes the classical location of the quiver’s baryonic branch \((\omega_1^N = \mu_1^N, \ldots, \omega_{nc}^N = \mu_{nc}^N) \) while the second term is the instantonic correction. Note that all \(F \) quark flavors, massive or massless alike, must appear in either product.
on the right hand side of eq. (4.63). However, eq. (4.62) implies

$$T(X) = \frac{1}{X} \frac{d\Xi}{dX} = \sum_{i=1}^{n_c} \frac{1}{X - \mu_f^N}$$ \hspace{1cm} (4.64)$$

without any quantum corrections, and whereas the link resolvent of the $[SU(n_c)]^N$ quiver must be regular at $X = 0$ on the physical sheet, it follows that the quark flavors f_1, \ldots, f_{n_c} involved in any anti/baryonic VEV must all be massive, hence the $n_f \geq n_c$ requirement rather than just $F \geq n_c$.

Eq. (4.63) over-determines the Coulomb moduli of a baryonic branch because only $n_c - 1$ of these moduli are independent while their product is constrained according to eq. (3.100). Consequently, the baryonic branch involving quark flavors f_1, \ldots, f_{n_c} exists if and only if

$$\prod_{f=f_1, \ldots, f_{n_c}} \mu_f^N + \alpha(-1)^F \prod_{f \neq f_1, \ldots, f_{n_c}} \mu_f^N = V^{Nn_c} \equiv V_1^{Nn_c} + V_2^{Nn_c}$$ \hspace{1cm} (4.65)$$

where on the right hand side $V_1^{n_c}$ and $V_2^{n_c}$ are the two roots of eq. (4.84) as we shall explain in the following section §4.3. Physically, $V^{n_c} = v^{n_c} + \text{quantum corrections}$, and we shall see that the corrections vanish if the quiver has massless quarks: For $\Delta F > 0$, $V_1^{n_c} = v^{n_c}$ while $V_2 = 0 \implies V^{n_c} = v^{n_c}$ exactly. At the same time, any $\mu_f = 0$ kills the second product on the left hand side of eq. (4.65), which leads us to the un-modified classical condition

$$\prod_{f=f_1, \ldots, f_{n_c}} \mu_f^N = v^{Nn_c}.$$ \hspace{1cm} (4.66)$$

For $\Delta F = 0$ (massive flavors only) the situation is more complicated: Both products on the left hand side of eq. (4.65) have non-zero values, and likewise both $V_1 \neq 0$ and $V_2 \neq 0$ on the right hand side. However, taking the second eq. (4.84) to the N^th power we have

$$V_1^{Nn_c} \times V_2^{Nn_c} = \left(\Lambda^{2n_c - F} (-\gamma)^F \prod_{\text{all } f} \mu_f \right)^N = \left(\prod_{f=f_1, \ldots, f_{n_c}} \mu_f^N \right) \times \left(\alpha(-1)^F \prod_{f \neq f_1, \ldots, f_{n_c}} \mu_f^N \right)$$ \hspace{1cm} (4.67)$$

(cf. eq. (3.97) for the α), and comparing this equation with eq. (4.65) we immediately obtain
a much simpler formula
\[\prod_{f = f_1, \ldots, f_{n_c}} \mu_f^N = V_1^{Nn_c} \text{ or } V_2^{Nn_c}. \] (4.68)

In any case, the baryonic branch involving quark flavors \(f_1, \ldots, f_{n_c} \) exists if and only if the masses of these flavors satisfy the classical product condition (4.66) for \(\Delta F > 0 \) or the quantum-corrected product condition (4.68) for \(\Delta F = 0 \).

This almost concludes our presentation of the baryonic aspects of the \([SU(n_c)]^N\) quiver theory, except for one minor point. Classically, a baryonic branch of the quiver has \(\ell \)-independent VEVs \(\langle B_{f_1, \ldots, f_{n_c}} \rangle \) and \(\langle \tilde{B}_{f_1, \ldots, f_{n_c}} \rangle \), modulo an \(e^{2 \pi i k \ell / N} \) phase factor, but in the quantum theory eqs. (4.56) and (4.58) seem to allow for arbitrary \(\ell \)-dependence of the ordinary baryons and antibaryons. To plug this loophole, consider the baryonic resolvent with equal arguments \(X_1 = X_2 = \cdots = X_{n_c} \) and quiver indices \(\ell_1 = \ell_2 = \cdots = \ell_{n_c} = \ell - 1 \):

\[B_{f_1, \ldots, f_{n_c}}(\ell; \text{all } \ell_i = \ell - 1; \text{all } X_i = X) = \epsilon_{j_1, \ldots, j_{n_c}} \prod_{i=1}^{n_c} \left(\frac{\Omega_{\ell-1} \cdots \Omega}{X - \Omega} \right)^{j_i} \]

\[= \det \left(\Omega_{\ell-1} \times \frac{1}{X - \Omega} \times Q_{f_1, \ldots, f_{n_c}}(\ell) \right) \langle \text{on shell} \rangle \]

\[= \det(\Omega_{\ell-1}) \times \det \left(\frac{1}{X - \Omega} \times Q_{f_1, \ldots, f_{n_c}}(\ell - 1) \right) + \text{instantonic corrections} \]

\[= \langle \text{quantum corrected} \rangle \det(\Omega_{\ell-1}) \times B_{f_1, \ldots, f_{n_c}}(\ell - 1; \text{all } \ell_i = \ell - 1; \text{all } X_i = X), \] (4.69)

and comparing this formula with eq. (4.56), we arrive at

\[B_{f_1, \ldots, f_{n_c}}(\ell) = \frac{\mu_{f_1} \times \mu_{f_2} \times \cdots \times \mu_{f_{n_c}}}{\langle \text{quantum corrected} \rangle \det(\Omega_{\ell-1})} \times B_{f_1, \ldots, f_{n_c}}(\ell - 1). \] (4.70)

Likewise, for the antibaryons we have

\[\tilde{B}_{f_1, \ldots, f_{n_c}}(\ell; \text{all } \ell_i = \ell + 1; \text{all } X_i = X) = \tilde{B}_{f_1, \ldots, f_{n_c}}(\ell + 1; \text{all } \ell_i = \ell + 1; \text{all } X_i = X) \times \]

\[\times \langle \text{quantum corrected} \rangle \det(\Omega_{\ell}), \] (4.71)
and therefore
\[B^f_1,\ldots,f_{n_c}(\ell) = \frac{\mu_{f_1} \times \mu_{f_2} \times \cdots \times \mu_{f_{n_c}}}{\langle \text{quantum corrected} \rangle \det(\Omega_\ell)} \times B^f_1,\ldots,f_{n_c}(\ell + 1). \] (4.72)

In both eqs. (4.70) and (4.72) we have a quantum-corrected link determinant, and while it may be hard to calculate the quantum corrections here, they obviously do not depend on a particular link \(\Omega_\ell \). Consequently,

\[\forall \ell : \ B^f_1,\ldots,f_{n_c}(\ell) = C \times B^f_1,\ldots,f_{n_c}(\ell - 1) \quad \text{and} \quad \tilde{B}^f_1,\ldots,f_{n_c}(\ell) = C \times \tilde{B}^f_1,\ldots,f_{n_c}(\ell + 1) \] (4.73)

for some \(\ell \)-independent constant \(C \), and by periodicity of the quiver we must have \(C^N = 1 \implies C = e^{2\pi i k/N} \). In other words, the anti/baryonic VEVs of the quantum quiver do follow the classical rule of

\[B^f_1,\ldots,f_{n_c}(\ell) = e^{2\pi i k \ell/N} B^f_1,\ldots,f_{n_c} \quad \text{and} \quad \tilde{B}^f_1,\ldots,f_{n_c}(\ell) = e^{-2\pi i k \ell/N} \tilde{B}^f_1,\ldots,f_{n_c}. \] (4.74)

And this does complete our presentation of the baryonic issues.

4.3 Determinants of Link Chains.

In this section we complete our study of the \([SU(n_c)]^N\) quiver’s chiral ring by calculating the quantum corrections to the determinants of link chains \(\det(\Omega_{\ell_2} \cdots \Omega_{\ell_1}) \), especially the \(\det(\Omega_{N} \cdots \Omega_{1}) \) which controls the parameter \(V^{n_c} = v^{n_c} + \cdots \) in eqs. (3.100) and (4.65). For simplicity, we focus on the un-deformed deconstructive quivers.

In the quarkless case \(F = 0 \), the corrections follow from ‘local’ instantons in the individual \(SU(n_c)_{\ell} \) gauge factors rather than the ‘global’ instantons of the whole quiver. Iterating the Seiberg formula [27]

\[\det(\mathcal{M}) = B\tilde{B} + \Lambda^{2n_c} \] (4.75)

for the ordinary SQCD with \(n_f = n_c \), Rodríguez [28] and later Chang and Georgi [29] found
for an open link chain
\[
\det(\Omega_{\ell_2} \cdots \Omega_{\ell_1}) = \text{Poly} \left[\prod_{\ell=\ell_1}^{\ell_2} \det(\Omega_{\ell}) \times \prod_{\ell=\ell_1+1}^{\ell_2} \left(1 + \frac{\Lambda_{\ell}^{2nc}}{\det(\Omega_{\ell}) \det(\Omega_{\ell-1})} \right) \right] \tag{4.76}
\]

where \text{Poly}[\cdots] denotes the polynomial part of the expression in the square brackets, that is, the terms without any net \(\det(\Omega_{\ell})\) factors in the denominator. For example,
\[
\det(\Omega_4 \Omega_3 \Omega_2 \Omega_1) = \det(\Omega_4) \det(\Omega_3) \det(\Omega_2) \det(\Omega_1) + \det(\Omega_4) \det(\Omega_3) \Lambda_2^{2nc} \\
+ \frac{\det(\Omega_4) \Lambda_3^{2nc} \det(\Omega_1)}{\det(\Omega_2)} + \frac{\Lambda_4^{2nc} \det(\Omega_2) \det(\Omega_1)}{\det(\Omega_3)} + \frac{\Lambda_4^{2nc} \Lambda_3^{2nc} \det(\Omega_3)}{\det(\Omega_2) \det(\Omega_1)} \tag{4.77}
\]

Likewise, the closed link chain wrapped around the whole quiver has determinant
\[
\det(\Omega_N \cdots \Omega_1) = \text{Poly} \left[\prod_{\ell=1}^{N} \det(\Omega_{\ell}) \times \prod_{\ell=1}^{N} \left(1 + \frac{\Lambda_{\ell}^{2nc}}{\det(\Omega_{\ell}) \det(\Omega_{\ell-1})} \right) \right] ; \tag{4.78}
\]

for the \(\ell\)-independent \(\Lambda_\ell \equiv \Lambda\) and \(\det(\Omega_{\ell}) \equiv \nu^{nc}\), this expression evaluates to \[21\]
\[
\det(\Omega_N \cdots \Omega_1) = V_1^{Nnc} + V_2^{Nnc} \tag{4.79}
\]

where \(V_1^{nc}\) and \(V_2^{nc}\) are the two roots of the quadratic equation system
\[
V_1^{nc} + V_2^{nc} = \nu^{nc}, \quad V_1^{nc} \times V_2^{nc} = \Lambda^{2nc}. \tag{4.80}
\]

In the deconstruction limit \(N \to \infty\) the right hand side of eq. (4.79) is dominated by the larger root, hence the quantum corrections may be summarized as \(\nu \to V = \max(V_1, V_2)\); as discussed in \[21\], this leads to \((1/g_5^2) \geq 0\) in the deconstructed theory and prevents phase transitions. However, for the present purposes we are interested in fixed–\(N\) quivers and exact holomorphic relations in the chiral ring, so both roots of eqs. (4.80) are equally important.

In the quiver theories with quarks, the link chain determinants are affected by both local and global instantonic effects. The local effects follow from integrating out the massive
(mass = \gamma \mu_f) quark-antiquark pairs from each individual \(SU(n_c)\) gauge group factor, thus

\[
\Lambda_{\ell}^{2n_c} \to \Lambda_{\ell}^{2n_c-F} \times \prod_{f=1}^{F} (-\gamma \mu_f),
\]

and then proceeding exactly as in the quarkless case, hence

\[
\det(\Omega_{\ell_2} \cdots \Omega_{\ell_1}) = \text{Poly} \left[\prod_{\ell=\ell_1}^{\ell_2} \det(\Omega_{\ell}) \times \prod_{\ell=\ell_1+1}^{\ell_2} \left(1 + \frac{\Lambda_{\ell}^{2n_c} \prod_{f=1}^{F} (-\gamma \mu_f)}{\det(\Omega_{\ell}) \det(\Omega_{\ell-1})} \right) \right] + \cdots, \tag{4.82}
\]

\[
\det(\Omega_{1} \cdots \Omega_{N}) = \text{Poly} \left[\prod_{\ell=1}^{N} \det(\Omega_{\ell}) \times \prod_{\ell=1}^{N} \left(1 + \frac{\Lambda_{\ell}^{2n_c} \prod_{f=1}^{F} (-\gamma \mu_f)}{\det(\Omega_{\ell}) \det(\Omega_{\ell-1})} \right) \right] + \cdots
\]

\[
= V_1^{Nn_c} + V_2^{Nn_c} + \cdots \tag{4.83}
\]

where

\[
V_1^{n_c} + V_2^{n_c} = v^{n_c}, \quad V_1^{n_c} \times V_2^{n_c} = \Lambda^{2n_c-F} \prod_{f=1}^{F} (-\gamma \mu_f) \tag{4.84}
\]

and the ‘\(\cdots\)’ stand for the non-local quantum corrections, if any. Note that the products of quark masses in eqs. (4.81–84) involves all \(F\) quark flavors. *When some of the flavors are exactly massless (i.e., \(\Delta F > 0\)) the local instanton corrections to the determinants eqs. (4.76–78) go away.*

The non-local effects arise from the quark and the antiquark fields propagating between different quiver nodes according to the hopping superpotential (2.2). In a moment, we shall see that all such effects must be completely global and involve all \(N\) quiver nodes at once, thus eg.

\[
\det(\Omega_{N} \cdots \Omega_{1}) = V_1^{Nn_c} + V_2^{Nn_c} + V_{\text{global}}^{Nn_c} \text{ where } V_{\text{global}}^{Nn_c} = O\left((\Lambda^{2n_c-F} \gamma F)^N\right) \equiv O(\alpha). \tag{4.85}
\]

Indeed, let us temporarily promote the gauge and the superpotential couplings of the quiver theory to \(\ell\)-dependent background fields and allow for generic flavor dependence of the
quarks’ couplings and masses, thus separate Λ_ℓ for each $SU(n_c)_{\ell}$ factor and

$$W_{\text{tree}} = \sum_{\ell=1}^{N} \left(\text{tr}(\bar{Q}_{\ell+1}\Omega_\ell Q_\ell) - \text{tr}(m_\ell \bar{Q}_\ell Q_\ell) + \beta s_\ell (\det \Omega_\ell - v_{n_c}^\ell) \right). \quad (4.86)^{(11)}$$

The promoted theory has a separate $[U(F) \times U(F) \times U(1)]_\ell$ flavor symmetry for each quiver node: For any $2N U(F)$ matrices U_ℓ and \tilde{U}_ℓ and any N unimodular complex numbers η_ℓ we may transform

$$Q'_\ell = Q_\ell U_\ell, \quad \tilde{Q}'_\ell = \tilde{U}_\ell \tilde{Q}_\ell, \quad \Omega'_\ell = \eta_\ell \Omega_\ell, \quad s'_\ell = \eta_{n_c}^{-1} s_\ell, \quad (4.87)$$

$$m'_\ell = \tilde{U}_\ell^{-1} m_\ell U_\ell^{-1}, \quad \Gamma'_\ell = \eta_\ell^{-1} \tilde{U}_{\ell+1}^{-1} \Gamma_\ell U_\ell^{-1}, \quad v'_\ell = \eta_\ell v_\ell, \quad (4.88)$$

$$(\Lambda_\ell^{2n_c-F'}) = \Lambda_\ell^{2n_c-F} \times \eta_{n_c}^{n_c} \eta_{n_c-1} \det(U_\ell) \det(\tilde{U}_\ell). \quad (4.89)$$

All quantum effects in the promoted theory must transform covariantly under this exact $[U(F) \times U(F) \times U(1)]_\ell$ symmetry, and this is a very strong constraint on the holomorphic equations of the chiral ring. Indeed, there are only $N + F$ independent holomorphic invariant combinations of the background fields$^{(12)}$, for example

$$y_\ell = \frac{\Lambda_\ell^{2n_c-F} \det(m_\ell)}{v_{n_c}^\ell v_{n_c-1}^\ell}, \quad \ell = 1, \ldots, N, \quad \text{and} \quad (4.92)$$

$$C_k = \frac{\alpha b_k}{(v_1 \cdots v_\ell)^{2n_c-k}}, \quad k = 1, \ldots, F, \quad (4.93)$$

where

$$\alpha = (-1)^F \prod_{\ell=1}^{N} \Lambda_\ell^{2n_c-F} \times \prod_{\ell=1}^{N} \det(-\Gamma_\ell) \quad (4.94)$$

$^{(11)}$ Note the Yukawa coupling γ being promoted to the matrices $[\Gamma_\ell]_f$, and the quark masses $\gamma \mu_f$ to $[m_\ell]_f$.

$^{(12)}$ Generally,

$$\#(\text{invariants}) = \#(\text{fields}) - \#(\text{symmetries}) + \#(\text{generically unbroken symmetries}). \quad (4.90)$$

The $[U(F) \times U(F) \times U(1)]_\ell^N$ symmetry of the promoted theory is mostly spontaneously broken by the non-zero values of the background fields $m_\ell, \Gamma_\ell, v_\ell$ and Λ_ℓ. Generically, only the $U(1)^F \subset U(F)_{\text{diag}} = \text{diag}([U(F)]^{2N})$ flavor symmetry remains unbroken, hence

$$\#(\text{invariants}) = N(F^2 + F^2 + 1 + 1) - N(F^2 + F^2 + 1) + F = N + F. \quad (4.91)$$
and b_k are coefficient of the characteristic polynomial

$$B(X) \equiv \sum_{k=0}^{F} b_k X^k = \det \left(X - m_1 \Gamma_1^{-1} m_2 \Gamma_2^{-1} \cdots m_N \Gamma_N^{-1} \right). \quad (4.95)$$

Eventually, we will let the background fields take their usual values $\Gamma_\ell \equiv \gamma_1^{F \times F}$ and $m_\ell \equiv \gamma \mu$, and consequently eq. (4.94) would reduce to the good old eq. (3.97) while the polynomial (4.95) would become exactly as in eq. (3.86), thus

$$b_F = 1, \quad b_{F-1} = -\sum_{f=1}^{F} \mu_f^N, \quad b_{F-2} = +\sum_{f<f'} \mu_f^N \mu_{f'}^N, \quad etc., \quad etc. \quad (4.96)$$

For the moment, however, we need to keep the background fields completely generic, and it is important to note that despite the appearance of Γ_ℓ^{-1} in eq. (4.95), the products αb_k are actually polynomial in all the Γ_ℓ fields as well as in the m_ℓ fields.

In general, the quantum corrections to link chain determinants may depend on the Coulomb moduli ϖ_j of the quiver theory. The symmetry (4.87) acts on the moduli according to $\varpi_j' = \varpi_j \times (\eta_1 \cdots \eta_N)$, hence most generally

$$\det(\Omega_{\ell_2} \cdots \Omega_{\ell_1}) = \varpi_1^{nc} \cdots \varpi_N^{nc} \times \left[1 + \mathcal{F} \left(y_\ell, C_\kappa, \frac{\varpi_j}{v_1 v_2 \cdots v_N} \right) \right] \quad (4.97)$$

for some analytic function \mathcal{F}. Actually, \mathcal{F} has to be a polynomial of its arguments because of the following considerations:

- In the un-deformed quiver theory there is no (pseudo) confinement or gaugino condensation, hence the determinants (4.97) should be single-valued functions of the Λ_ℓ^{2nc-F} and the v_ℓ^{nc} as well as of the Γ_ℓ and m_ℓ matrices.

- The determinants should not diverge for any finite values of the background fields m_ℓ, Γ_ℓ, v_ℓ^{nc} and Λ_ℓ^{2nc-F} — and this includes regular behavior for $m_\ell \rightarrow 0$, $\Gamma_\ell \rightarrow 0$, $\Lambda_\ell^{2nc-F} \rightarrow 0$ and especially $v_\ell^{nc} \rightarrow 0$.

- Likewise, the moduli dependence of the determinants (4.97) should be regular throughout the Coulomb moduli space.
Furthermore, every term in $v_{\ell_2}^{n_c} \cdots v_{\ell_1}^{n_c} \times F$ must carry a non-negative integer power of every $v_{\ell}^{n_c}$ parameter. Consequently, for open link chains of length $\ell_2 - \ell_1 + 1 < N$

$$\text{det}(\Omega_{\ell_2} \cdots \Omega_{\ell_1}) = v_{\ell_2}^{n_c} \cdots v_{\ell_1}^{n_c} \times \left[1 + F(y_{\ell} \text{ only}) \right], \quad (4.98)$$

while for the closed chain of length N (once around the quiver)

$$\text{det}(\Omega_N \cdots \Omega_1) = (v_1 \cdots v_N)^n_c \times \left[1 + F_1(y_{\ell}) + F_2 \left(\frac{\alpha b_k}{(v_1 \cdots v_N)^{2n_c-k}}, \frac{\overline{\omega}_j}{(v_1 \cdots v_N)} \right) \right]. \quad (4.99)$$

Physically, the $O(y_{\ell})$ effects due to ‘local’ instantons in the individual $SU(n_c)_{\ell}$ factors, while the $O(\alpha)$ effects are due to ‘globally coordinated’ instanton effects in all the $SU(n_c)_{\ell}$ factors at once — or equivalently, due to the ‘diagonal’ instantons in the $SU(n_c)_{\text{diag}}$. Thus, all quantum corrections to the determinant (4.98) are solely due to the local instanton effects \Rightarrow the explicit part of eq. (4.76) (without the ‘$+$· · ·’ part) is actually exact. By comparison, the determinant (4.99) suffers from two completely separate sets of quantum corrections, one purely local and the other purely global. The local corrections should be exactly as in eq. (4.78), hence in terms of eq. (4.85) the V_1 and V_2 are exactly as in eq. (4.84) the global correction is given by

$$V_{n_c}^{\text{global}} = (v_1 \cdots v_N)^n_c \times F_2 \left(\frac{\alpha b_k}{(v_1 \cdots v_N)^{2n_c-k}}, \frac{\overline{\omega}_j}{(v_1 \cdots v_N)} \right)$$

$$= \alpha \sum_{k \geq n_c} b_k \times \mathcal{H}^{(1)}_k(\overline{\omega}) + \alpha^2 \sum_{k_1+k_2 \geq 3n_c} b_{k_1}b_{k_2} \times \mathcal{H}^{(2)}_{k_1,k_2}(\overline{\omega})$$

+ $\alpha^3 \sum_{k_1+k_2+k_3 \geq 5n_c} b_{k_1}b_{k_2}b_{k_3} \times \mathcal{H}^{(3)}_{k_1,k_2,k_3}(\overline{\omega}) + \cdots \quad (4.100)$

where $\mathcal{H}^{(1)}_k$, $\mathcal{H}^{(2)}_{k_1,k_2}$, $\mathcal{H}^{(3)}_{k_1,k_2,k_3}$, etc., are symmetric homogeneous polynomials of the Coulomb moduli $(\overline{\omega}_1, \ldots, \overline{\omega}_{n_c})$ of respective degrees $(k-n_c)$, $(k_1+k_2-3n_c)$, $(k_1+k_2+k_3-5n_c)$, etc.

Since the b_k coefficients exist only for $k \leq F$ (cf. eqs. (4.95–96)), the flavor number F puts an upper limit on the sums in eq. (4.100), which immediately gives us several general rules:

(A) For $F < n_c$ all sums are empty and $V_{n_c}^{\text{global}} = 0$, i.e. there is no global correction.
(B) For \(F = n_c \) there is only one valid term

\[
V_{\text{global}}^{Nn_c} = \alpha \times b_F \times \mathcal{H}^{(1)}_{F=n_c} = \alpha \times 1 \times \text{a numeric constant,}
\]

hence the global correction exists but does not depend on the moduli \(\varpi_j \).

(C) For \(F > n_c \) there are several valid terms and the global correction becomes moduli dependent.

(D) For \(n_c \leq F < \frac{3}{2} n_c \) only the first sum (in eq. (4.100)) has valid terms, hence \(\Delta V^{Nn_c} \propto \alpha^1 \) \(\Rightarrow \) the global corrections arises at the one diagonal instanton level only.

(E) For \(\frac{3}{2} n_c \leq F < 2n_c \) several instanton levels contribute to the global correction \(V_{\text{global}}^{Nn_c} \), up to the maximum of \(\left\lfloor \frac{n_c}{2n_c-F} \right\rfloor \) diagonal instantons.

(F) Finally, for \(F = 2n_c \) all instanton levels contribute to the global correction and eq. (4.100) becomes an infinite power series rather than a finite polynomial.

To understand the physical significance of these rules we need to take a closer look at the closed link chain \(\Omega_N \cdots \Omega_1 \). As a composite chiral field, the closed chain has adjoint-like gauge quantum numbers, so the precise definition of its determinant is somewhat ambiguous in the quantum theory. To understand and resolve this ambiguity, consider the characteristic “polynomial”

\[
\chi(X) = \det(X - \Omega_N \cdots \Omega_1),
\]

which may actually be a non-polynomial function of \(X \), depending on the specific definition of the determinant on the right hand side. For example, adapting the definitions (4.28–33) to the present situation, we have

\[
det_1(X - \Omega \cdots \Omega) \overset{\text{def}}{=} \exp\left[\text{tr} \left(\log(X - \Omega \cdots \Omega) \right) \right], \tag{4.103}
\]

\[
det_2(X - \Omega \cdots \Omega) \overset{\text{def}}{=} \mathcal{D}_{n_c} \left(\text{tr}(X - \Omega \cdots \Omega), \ldots, \text{tr}(X - \Omega \cdots \Omega)^{n_c} \right), \tag{4.104}
\]

\[
det_3(X - \Omega \cdots \Omega) \overset{\text{def}}{=} \left[\det_2 \left(\frac{1}{X - \Omega \cdots \Omega} \right) \right]^{-1} \overset{\text{def}}{=} \mathcal{D}_{n_c} \left(\frac{1}{X - \Omega \cdots \Omega}, \ldots, \frac{1}{(X - \Omega \cdots \Omega)^{n_c}} \right)^{-1}, \tag{4.105}
\]
which respectively yield on shell

\[
\begin{align*}
\text{the non-polynomial} & \quad \det_1(X - \Omega \cdots \Omega) = \Xi(X), \\
\text{the polynomial} & \quad \det_2(X - \Omega \cdots \Omega) = \left[\Xi(X)\right]_+, \\
\text{and the non-polynomial} & \quad \det_3(X - \Omega \cdots \Omega) = \frac{n_c! \Xi(X)}{(d/dX)^{n_c} \Xi(X)}.
\end{align*}
\] (4.106-4.108)

However, expanding the three functions (4.106–108) in power series of \(X \to \infty\), we obtain exactly the same polynomial parts for all three functions

\[
\left[\det_1(X - \Omega \cdots \Omega)\right]_+ = \left[\det_2(X - \Omega \cdots \Omega)\right]_+ = \left[\det_3(X - \Omega \cdots \Omega)\right]_+ = \left[\Xi(X)\right]_+
\] (4.109)

and only the negative-power parts are different. Although it’s dangerous to generalize from just three data points, we believe eq. (4.109) should work for all sensible definitions of the quantum determinant, and this gives us an unambiguous formula for the polynomial part of the characteristic “polynomial” (4.102), namely

\[
\left[\chi(X)\right]_+ = \left[\Xi(X)\right]_+ = P(X) - \sum_{d \geq 1} \frac{(2d - 2)!}{d!(d - 1)!} \alpha^d \left[\frac{[B(X)]^d}{[P(X)]^{2d - 1}}\right]_+
\] (4.110)

where the second equality comes from expanding eq. (3.88) for the \(\Xi(X)\) in powers of \(\alpha\). Physically, the \(P(X)\) term is the classical characteristic polynomial of the quiver and the \(\sum_d\) adds quantum corrections, the \(d\text{th}\) term representing the effect of \(d\) diagonal instantons. Note that for \(F < 2n_c\) the sum stops at a finite instanton level \(d_{\text{max}} = \left\lfloor \frac{n_c}{2n_c - F} \right\rfloor\), and for \(F < n_c\) there are no quantum corrections at all and \(\chi(X) = P(X)\).

Classically,

\[
(-1)^{n_c} \det(\Omega_N \cdots \Omega_1) = \text{free term of } \chi(X) \triangleq \chi(0)
\] (4.111)

but in the quantum theory we should reinterpret the free part of \(\chi(X)\) as the free part of the polynomial part \([\chi(X)]_+\) because only the polynomial part is unambiguous. Or equivalently, we may identify the free term of \(\chi(X)\) as the coefficient of the \(X^0\) term in the power series.
expansion around $X \to \infty$, thus

$$(-1)^{nc} \det(\Omega_N \cdots \Omega_1) = \left[\chi(X) \right]_{+} - \left[\chi(X) \right]_{0} = \int \frac{dX \chi(X)}{2\pi i X}$$ \hspace{1cm} (4.112)

where the integration contour is a very large circle on the physical sheet of the Seiberg–Witten curve (3.91). Hence, following the instanton expansion (4.110), we write

$$(-1)^{nc} \det(\Omega_N \cdots \Omega_1) = P(0) - \alpha \int \frac{dX B(X)}{2\pi i X P(X)} - \alpha^2 \int \frac{dX B^2(X)}{2\pi i X P^3(X)} - 3\alpha^3 \int \frac{dX B^3(X)}{2\pi i X P^5(X)} - \cdots$$ \hspace{1cm} (4.113)

$$= P(0) - \sum_{k \geq nc} \alpha b_k \times \hat{H}_k(\varpi) - \sum_{k_1 + k_2 \geq 3nc} \alpha^2 b_{k_1} b_{k_2} \times \hat{H}_{k_1,k_2}(\varpi)$$ \hspace{1cm} (4.114)

$$- \sum_{k_1 + k_2 + k_3 \geq 5nc} \alpha^3 b_{k_1} b_{k_2} b_{k_3} \times \hat{H}_{k_1,k_2,k_3}(\varpi) - \cdots$$

where

$$\hat{H}_k(\varpi) = \oint \frac{dX X^{k-1}}{2\pi i P(X)},$$

$$\hat{H}_{k_1,k_2}(\varpi) = \oint \frac{dX X^{k_1+k_2-1}}{2\pi i P^3(X)},$$

$$\hat{H}_{k_1,k_2,k_3}(\varpi) = 3 \oint \frac{dX X^{k_1+k_2+k_3-1}}{2\pi i P^5(X)},$$

are homogeneous symmetric polynomial of the quiver’s moduli ($\varpi_1, \ldots, \varpi_{nc}$) of respective degrees $(k - nc)$, $(k_1 + k_2 - 3nc)$, $(k_1 + k_2 + k_3 - 5nc)$, etc. And because these degrees are exactly as for the $H_k(\varpi)$, H_{k_1,k_2}, etc., polynomials appearing in the expansion (4.100), the instanton expansion (4.114) must satisfy exactly the same general rules (A) through (F). In particular,

(A) For $F < nc$,

$$(-1)^{nc} \det(\Omega_N \cdots \Omega_1) = P(0)$$ \hspace{1cm} (4.116)
without any instantonic corrections whatsoever, and therefore

\[(-1)^{n_c} P(0) = V_1^{Nn_c} + V_2^{Nn_c}. \quad (4.117) \]

In other words, the quantum-corrected constraint on the \(n_c \) redundant Coulomb moduli \(\omega_i^N \equiv \varpi_i \) of the quiver is

\[\prod_{i=1}^{n_c} \varpi_i = V_1^{Nn_c} + V_2^{Nn_c}, \text{ exactly.} \quad (4.118) \]

(B) For \(F = n_c \) there is a quantum correction at the one-diagonal-instanton level but this correction is moduli independent,

\[(-1)^{n_c} \det(\Omega_N \cdots \Omega_1) = P(0) - \alpha. \quad (4.119) \]

This formula exactly parallels eq. (4.101) up to an unknown numerical constant in the latter, and if that constant happens to be equal to \((-1)^{n_c-1} \) then eq. (4.118) would remain valid for \(F = n_c \) as well as for \(F < n_c \).

(C) For \(F > n_c \) the instantonic corrections become moduli dependent according to the polynomials (4.115). Comparing eqs. (4.100) and (4.114) we find

\[(-1)^{n_c} P(0) = V_1^{Nn_c} + V_2^{Nn_c} + \alpha \sum_{k \geq n_c} b_k \left[\mathcal{H}_k^{(1)}(\varpi) + (-1)^{n_c} \hat{\mathcal{H}}_k^{(1)}(\varpi) \right] \]

\[+ \alpha^2 \sum_{k_1 + k_2 \geq 3n_c} b_{k_1} b_{k_2} \left[\mathcal{H}_{k_1,k_2}^{(2)}(\varpi) + (-1)^{n_c} \hat{\mathcal{H}}_{k_1,k_2}^{(2)}(\varpi) \right] \]

\[+ \cdots, \quad (4.120) \]

and if we are lucky and

\[\mathcal{H}_{k_1,\ldots,k_d}^{(d)}(\varpi) \equiv -(-1)^{n_c} \hat{\mathcal{H}}_{k_1,\ldots,k_d}^{(d)}(\varpi) = (-1)^{n_c-1} \frac{(2d-2)!}{d!(d-1)!} \oint dX X^{(k_1+\cdots+k_d-1)} \frac{1}{2\pi i} \left[P(X) \right]^{(2d-1)} \]

\[(4.121) \]

then eq. (4.118) continues to hold true for \(F > n_c \).
We wanted to conclude this section by proving that the \(\mathcal{H}_{k_1,\ldots,k_d}(\varpi) \) polynomials are indeed given by eqs. (4.121) and therefore eq. (4.118) does hold true for any \(F < 2n_c \) and maybe for \(F = 2n_c \) as well,\(^{(13)}\) but as of this writing our proof is only 95% complete 😅. It is also longer than it ought to be, so we present it in the Appendix to this paper rather than here.

\(^{(13)}\) To be precise, we believe that for \(F = 2n_c \) eqs. (4.121) hold for the \(\mathcal{H}_k^{(1)}(\varpi) \) polynomials controlling the one-instanton-level corrections, but we are not at all sure about the higher instanton levels \(d \geq 2 \). The trouble with the \(F = 2n_c \) case is that the ultraviolet gauge couplings \(\tau_\ell \) of the \([SU(n_c)]^N \) quiver are asymptotically finite rather than asymptotically free, so we don’t really know what happens to the theory beyond the weak coupling approximation. And even in the weak coupling limit, the sub-leading quantum corrections are liable to depend on the ultraviolet completion of the theory.
5. Open Questions

Having analyzed the chiral rings of deconstructive $[SU(n_c)]^N$ quivers in much detail, we would like to conclude this paper by discussing the implications of the present research and the open questions it raises.

The most immediate implication of our rings concerns the quantum effects in deconstructed SQCD$_5$; this will be discussed at length in ref. [22], but we would like to present a few highlights here. From the deconstruction point of view, our most important results are the Seiberg–Witten curve (3.91) and the quantum-corrected constraint (4.118) on the Coulomb moduli of the quiver. In the large quiver size limit $N \to \infty$ governed by the $4D \leftrightarrow 5D$ map of moduli and parameters\(^{(14)}\)

\[
\begin{align*}
\varpi_i &= V^N \times \exp(Na\phi_i), \\
\mu_f &= V \times \exp(am_f), \\
\alpha &= \frac{V^{2n_cN}}{\prod_f \max(\mu_f^N, V^N)} \times \exp\left(-Na\frac{8\pi^2}{g_{5D}^2}\right)
\end{align*}
\]

the 4D abelian gauge couplings encoded in the Seiberg–Witten curve (3.91) behave precisely as in a 5D gauge theory compactified on a large circle of size $2\pi R = Na$. The 5D abelian couplings implied by this procedure — using dimensional deconstruction as a UV completion of SQCD$_5$ — are in perfect agreement with those of SQCD$_5$ embedded in string or M theory, which means they are intrinsic properties of the 5D theory.

Furthermore, thanks to eq. (4.118), the V parameter in eqs. (5.1–3) is the greater of V_1, V_2 roots of eq. (4.84). Consequently, for $\Delta F = 0$ there is a lower limit on the V/Λ ratio and hence according to eq. (5.3) the inverse 5D gauge coupling also has a finite lower limit; on the other hand, for $\Delta F > 0$ there are no limits and the g_{5D}^2 ranges all the way from $+\infty$ to $-\infty$. In 5D terms this means that SQCD$_5$ theories with maximal Chern–Simons levels $k_{cs} = n_c - \frac{1}{2}n_f$ have only the positive-coupling phase (see ref. [21] for the $n_f = 0$,

\(^{(14)}\) In the following eqs. (5.1–3), the ϕ_i denote the Coulomb moduli of the 5D SQCD, the m_i are the 5D quark masses, and the g_{5D}^2 is the 5D gauge coupling at the origin of the Coulomb moduli space.
$k_{cs} = n_c$ case), but for lower Chern–Simons levels there are both positive-coupling and negative-coupling phases.

We would like to extend our techniques from the deconstructed SQCD$_5$ to other deconstructed 5D gauge theories, but this remains an open question. Naively, the simplest extension is promoting the $SU(n_c)$ gauge theory to the $U(n_c)$: Classically, all one has to do in 4D is to promote each $[SU(n_c)]_\ell$ factor to a $[U(n_c)]_\ell$, dispense with the s_ℓ singlet fields and the W_Σ part of the superpotential (cf. eq. (2.3)), and expand the theory around a vacuum with non-zero link VEVs $\langle \Omega_\ell \rangle \propto 1_{n_c \times n_c}$. Unfortunately, the abelian gauge fields of such a $[U(n_c)]^N$ quiver suffer from triangular anomalies

\begin{equation}
\begin{aligned}
A_\ell & = \begin{pmatrix} (\Box_\ell, (1^{-n_c})_{\ell+1}) \\
B_\ell & = \begin{pmatrix} (\Box_\ell, (1^{+n_c})_{\ell-1}) \\
C_\ell & = \begin{pmatrix} (1^{-n_c})_\ell, (1^{+n_c})_{\ell+1}
\end{aligned}
\end{equation}

(5.4)

and the quantum theory does not work. To cancel the anomalies we need additional chiral superfields (cf. [30, 31] for the $[U(1)]^N$ quiver) with non-trivial $SU(n_c)_\ell$, $U(1)_\ell$ and $U(1)_{\ell \pm 1}$ quantum numbers, for example

\begin{equation}
\begin{aligned}
A_\ell & = \begin{pmatrix} (\Box_\ell, (1^{-n_c})_{\ell+1}) \\
B_\ell & = \begin{pmatrix} (\Box_\ell, (1^{+n_c})_{\ell-1}) \\
C_\ell & = \begin{pmatrix} (1^{-n_c})_\ell, (1^{+n_c})_{\ell+1}
\end{aligned}
\end{equation}

(5.5)

Then we need to endow all these fields with suitable superpotential couplings and find a vacuum state of the theory where all the light particles correspond to Kaluza–Klein modes of the 5D $U(n_c)$ theory compactified on a circle, and nothing else. There will be of course all kinds of particles with $O(V)$ masses, and we need to find their effects on the Chern–Simons interactions of the 5D theory and perhaps adjust the number ΔF of massless quark flavors. At this point we have a complicated 4D $[U(n_c)]^N$ theory which is no longer described by a simple quiver diagram (1.1), and now the real work begins: Evaluating the chiral ring of the theory and its implications for the quantum deconstruction.
A bigger open question concerns quantum deconstruction of other types of 5D gauge theories, for example $SO(n)$ or $Sp(n)$. Again, one must first deconstruct the 5D theory at the classical level and verify the quantum consistency of the resulting 4D quiver theory, and then one must study the chiral ring in all its glorious details. But the really big challenge comes from deconstructing 2 extra dimensions at once: Start with a 6D SYM theory with 16 supercharges, discretize the x^4 and x^5 coordinates into a 2D lattice, and interpret the result as a 4D, $\mathcal{N} = 1$ gauge theories with a complicated quiver. Classically, the procedure is well known [32]; for example the $SU(n)$ SYM theory in 6D deconstructs to the $[SU(n)]^N$ theory in 6D with a quiver diagram forming a 2D triangular lattice

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{quiver.png}
\caption{}
\end{figure}

But at the quantum level, the chiral ring of this quiver poses a formidable challenge because every closed loop on the lattice gives rise to an independent generator of the ring, eg. $\text{Tr}(\Omega_9\Omega_8\cdots\Omega_2\Omega_1)$ for the loop of 9 links on the following picture:

\begin{figure}[h]
\centering
\includegraphics[width=0.3\textwidth]{loop.png}
\caption{}
\end{figure}
Another open question is finding a simple string model of the deconstructed SQCD_5 and investigating the string origin of the quantum effects discussed in this paper at the 4D field theory level. Ironically, while some complicated quiver theories do have simple string models — for example the lattice quiver (5.6) deconstructing the 6D SYM obtains via $n_c \times N^2$ fractional D3 branes at a $\mathbb{C}^3/\mathbb{Z}_N \times \mathbb{Z}_N$ orbifold point [32] — the simplest known string model of the $[SU(n_c)]^N$ quiver (1.1) involves brane webs on an orbifold [33]. The issue is not 5D versus 6D, and other, more complicated deconstructed 5D gauge theories do have web-less string models. For example, $2N \times n$ fractional D3 branes at the $\mathbb{C}^3/\mathbb{Z}_{2N}[1, 1, -2]$ orbifold point give rise to the 4D theory with the

\[
\begin{array}{c}
\includegraphics[width=0.5\textwidth]{quiver_diagram.png}
\end{array}
\]

quiver diagram which deconstructs an $SU(n) \times SU(n)$ theory in 5D. But this theory has a very different chiral ring than the rings discussed in §§3–4 of this paper, and it needs to be worked out in detail before we can analyze its implications for the string theory.

Finally, there is an open question concerning Dijkgraaf–Vafa matrix models of the chiral quiver theories. For the deconstructive $[SU(n_c)]^N$ quiver theories discussed in this article, we found a matrix model where the bi-fundamental link fields Ω_ℓ correspond to unitary complex matrices integrated over the $SU(n_c)$ group manifolds instead of the usual \mathbb{C}^{n^2} linear spaces. The details of this model will be presented in a forthcoming article [14]. At the same opportunity, we shall also derive the effective superpotential for the gaugino condensates (3.29) of the quiver theory.
Acknowledgments: We would like to thank Ofer Aharoni, Yaron Oz, Jan Louis and Stefan Theisen for interesting conversations on the subject. V. K. thanks the hospitality of the Tel Aviv University’s High–Energy dept. during his multiple visits there.

This article is based on research supported by the US National Science Foundation (grant PHY–0071512), the Robert A. Welsh foundation, the Israeli Science Foundation, and the German–Israeli Foundation for Scientific Research (GIF). However, none of these funding agencies should be held responsible for any errors or deficiencies of this paper. All the blame — or hopefully the praise — belongs to the authors and nobody else.
In this appendix we (almost) prove that the $H_{k_1,\ldots,k_d}^{(d)}(\varpi)$ polynomials in eq. (4.100) are indeed given by eqs. (4.121) and therefore eq. (4.118) does hold true for any $F < 2n_c$ and maybe for $F = 2n_c$. Specifically we shall prove that (1) the polynomials $H_{k_1,\ldots,k_d}^{(d)}(n_c; \varpi_1, \ldots, \varpi_{n_c})$ have the same form for all quivers with the same color number n_c regardless of the quiver’s size N or the flavor number F (as long as $k_1, \ldots, k_d \leq F \leq 2n_c$ and $N \geq 2$), and (2) they are recursively related to the $H_{k'_1,\ldots,k'_d}^{(d)}(n'_c; \varpi_1, \ldots, \varpi_{n'_c})$ polynomials for smaller values of the k'_1, \ldots, k'_d indices and/or color numbers n'_c. These relations are consistent with eqs. (4.121) and could be used to prove them all by mathematical induction from a few special cases. Alas, verifying those special cases remains a loophole; we hope to close it soon, but we have not done it yet.

We begin by proving the N independence of the $H_{k_1,\ldots,k_d}^{(d)}$ polynomials. Consider what happens when one of the v_ℓ parameters of the promoted quiver theory becomes very large, say $v_1 \gg$ any other mass scale of the theory. Physically, in the $v_1 \to \infty$ limit we have a high-energy threshold due to the large semiclassical VEV $\langle \Omega_1 \rangle = v_1 \times 1_{n_c \times n_c}$ (modulo gauge transforms): The $SU(n_c)_1 \times SU(n_c)_2$ gauge symmetry is Higgsed down to a single $SU(n_c)_{1+2}$ factor, the Ω_1 chiral field is eaten up, and the Q_1 quarks and \tilde{Q}_2 antiquarks field become massive. Integrating out these heavy fields we see that the effective low-energy theory has the same quiver structure as the high-energy theory — except for the $N_{\text{low}} = N_{\text{high}} - 1$ — and the same coupling parameters except for the

$$\Lambda^{2n_c-F}_{1+2} = \Lambda_1^{2n_c-F} \Lambda_2^{2n_c-F} \frac{\det(v_1 \Gamma_1)}{v_1^{2n_c}} \quad \text{and} \quad m_{1+2} = m_1 \times \frac{1}{v_1 \Gamma_1} \times m_2.$$ \tag{A.1}$$

In terms of the α and b_k parameters this means

$$\alpha_{\text{low}} = \frac{\alpha_{\text{high}}}{v_1^{2n_c-F}} \quad \text{and} \quad b^*_k = \frac{b^*_{k_1}}{v_1^{F-k}} \text{.}$$ \tag{A.2}$$

while the Coulomb moduli of the low-energy and the high-energy theories are related ac-

\(\text{(15)}\) The quarks $Q_{1+2,f} \approx Q_{2,f}$ and the antiquarks $\tilde{Q}_{1+2}^{f'} \approx \tilde{Q}_{1}^{f'}$ of the low energy theory acquire small masses $[m_{1+2}]_f^{f'}$ via the see-saw mechanism when the heavy fields $Q_{1,f}$ and $\tilde{Q}_{2}^{f'}$ are integrated out.
according to
\[\omega_j^{\text{high}} = v_1 \times \omega_j^{\text{low}}. \] (A.3)

Consequently, eq. (4.100) of the low-energy theory becomes
\[
\begin{align*}
\left[V_{N_{nc}}^{\text{low}} \right]_{\text{global}} &= \sum_d (\alpha^{\text{low}})^d \sum_{k_1, \ldots, k_d} b_{k_1}^{\text{low}} \cdots b_{k_d}^{\text{low}} \times H_{k_1, \ldots, k_d}^{(d) \text{low}}(\omega_j^{\text{low}}) \\
&= \sum_d (\alpha^{\text{high}})^d \sum_{k_1, \ldots, k_d} b_{k_1}^{\text{high}} \cdots b_{k_d}^{\text{high}} \times v_1^{\sum k - 2d n_c} \times H_{k_1, \ldots, k_d}^{(d) \text{low}}(v_1^{-1} \omega_j^{\text{high}}) \\
&= \frac{1}{v_1^{n_c}} \times \sum_d (\alpha^{\text{high}})^d \sum_{k_1, \ldots, k_d} b_{k_1}^{\text{high}} \cdots b_{k_d}^{\text{high}} \times H_{k_1, \ldots, k_d}^{(d) \text{low}}(\omega_j^{\text{high}})
\end{align*}
\] (A.4)

where the last equality follows from the \(H_{k_1, \ldots, k_d}^{(d) \text{low}}(\omega_j) \) being homogeneous polynomials of respective degrees \(\sum k - (2d - 1)n_c \). By comparison, the high energy theory has
\[
\left[V_{N_{nc}}^{\text{high}} \right]_{\text{global}} = \sum_d (\alpha^{\text{high}})^d \sum_{k_1, \ldots, k_d} b_{k_1}^{\text{high}} \cdots b_{k_d}^{\text{high}} \times H_{k_1, \ldots, k_d}^{(d) \text{high}}(\omega_j^{\text{high}})
\] (A.5)

regardless of the \(v_1 \) parameter being large or small because the global correction is completely independent of any of the \(v_\ell \). On the other hand, in the \(v_1 \to \infty \) limit quantum effects associated with the \(\Omega_1 \) link field become small because of asymptotic freedom (assuming \(F < 2n_c \)), hence
\[
\det(\Omega_N \cdots \Omega_2 \Omega_1) \to \det(\Omega_N \cdots \Omega_2) \times v_1^{n_c}
\] (A.6)

and therefore the global corrections to these determinants should obey the same scaling law
\[
\left[V_{N_{nc}}^{\text{high}} \right]_{\text{global}} = \left[V_{N_{nc}}^{\text{low}} \right]_{\text{global}} \times v_1^{n_c}.
\] (A.7)

Consequently, substituting eqs. (A.4) and (A.5) into this formula and comparing the moduli-dependent coefficients of similar \((\alpha^{\text{high}})^d b_{k_1}^{\text{high}} \cdots b_{k_d}^{\text{high}} \) we see that we must have
\[
H_{k_1, \ldots, k_d}^{(d) \text{high}}(\omega_j) = H_{k_1, \ldots, k_d}^{(d) \text{low}}(\omega_j) \quad \forall k_1 + \cdots + k_d \geq (2d - 1)n_c.
\] (A.8)

And therefore by induction, the polynomials \(H_{k_1, \ldots, k_d}^{(d)}(\omega) \) have exactly the same form for all quiver sizes \(N \geq 2 \). \(\square \)
Next, let us show that the flavor number F also does not affect the form of the $H_{k_1,\ldots,k_d}(\varpi)$ polynomials (as long as $F \geq k_1, \ldots, k_d$). For this purpose we no longer need the ℓ–dependent matrices of quark masses and Yukawa couplings, so let $[\Gamma^\ell]_f' \equiv \gamma_\ell \delta_f'$ and $[m^\ell]_f' \equiv \gamma_\ell \delta_f'$, and consider the limit in which one of the quark flavors becomes very heavy, say $\mu_1 \to \infty$. Again, we integrate out the heavy fields and derive the low-energy effective theory which has $F_{\text{low}} = F_{\text{high}} - 1$ and

$$\Lambda^{2n_{c}-F}_{\ell}^{{\text{low}}} = [\Lambda^{2n_{c}-F}_{\ell}^{{\text{high}}} \times (-\gamma \mu_1) \implies \alpha_{\text{low}} = -\mu_1^N \times \alpha_{\text{high}}]. \quad (A.9)$$

Let us keep the low-energy physics fixed while $\mu_1 \to \infty$, thus fixed α_{low} and fixed $\mu_2, \ldots, \mu_F \implies$ fixed $B_{\text{low}}(X)$. In terms of the high-energy theory, this means

$$[\alpha B(X)]_{\text{high}} = \frac{X - \mu_1^N}{-\mu_1^N} \times [\alpha B(X)]_{\text{low}} \implies [\alpha b_k]_{\text{high}} \xrightarrow{\mu_1 \to \infty} [\alpha b_k]_{\text{low}} \quad (A.10)$$

and therefore

$$[V_{N_{c_{\text{global}}}}^X]^{{\text{high}}} \xrightarrow{\mu_1 \to \infty} \sum_d (\alpha_{\text{low}})^d \sum_{k_1,\ldots,k_d} b_{k_1}^{\text{low}} \cdots b_{k_d}^{\text{low}} \times H_{k_1,\ldots,k_d}^{(d)}(\varpi_{j}^{{\text{high}}}]. \quad (A.11)$$

On the other hand, decoupling of the heavy quark flavor implies

$$[V_{N_{c_{\text{global}}}}^X]^{{\text{high}}} \xrightarrow{\mu_1 \to \infty} [V_{N_{c_{\text{global}}}}^X]^{{\text{low}}} \quad \text{for } \varpi_j^{{\text{low}}} \equiv \varpi_j^{{\text{high}}} \quad (A.12)$$

Comparing eqs. (A.11–12) we immediately see that we should have

$$H_{k_1,\ldots,k_d}(\varpi_j) = H_{k_1,\ldots,k_d}(\varpi_j) \quad \forall F \geq k_1, \ldots, k_d \quad (A.13)$$

and therefore by induction, the polynomials $H_{k_1,\ldots,k_d}(\varpi)$ have exactly the same form for all sufficiently large flavor numbers. $Q.E.D.$

Now let us relate quiver theories with different color numbers. To integrate out a color we need each link field Ω_ℓ to have one very large eigenvalue $\omega_1 \to \infty$, or in gauge invariant terms we need a very large Coulomb modulus $\varpi_1 = \omega_1^N \to \infty$. To make sure this modulus
stays large, we trap it on a mesonic branch of the moduli space where \(\omega_1 = \mu_1^N = \mu_2^N \) and then take the degenerate mass to infinity. Integrating out all fields which become superheavy in this limit, we arrive at the effective low-energy theory which now has

\[
F^{\text{low}} = F^{\text{high}} - 2, \quad n_c^{\text{low}} = n_c^{\text{high}} - 1, \quad \text{and} \quad \alpha^{\text{low}} = \alpha^{\text{high}}. \tag{A.14}
\]

Classically

\[
\det(\Omega_N \cdots \Omega_1)^{\text{high}} \equiv \omega_1^N \times \det(\Omega_N \cdots \Omega_1)^{\text{low}}, \tag{A.15}
\]

but the quantum corrections may also have sub-leading contributions, thus we look for

\[
[V_{\text{global}}^{N_n_c}]^{\text{high}} = \omega_1 \times [V_{\text{global}}^{N_n_c}]^{\text{low}} + \cdots \tag{A.16}
\]

where the ‘\(\cdots \)’ denote terms which do not grow in the \(\omega_1 = \mu_1^N = \mu_2^N \to \infty \) limit. To be precise, eq. (A.16) holds when we identify \((\omega_2, \omega_2, \ldots, \omega_{n_c})^{\text{high}} = (\omega_1, \omega^{\text{low}}) \) and

\[
B^{\text{high}}(X) = (X - \omega_1)^2 \times B^{\text{low}}(X) \implies b_k^{\text{high}} = b_k^{\text{low}} - 2\omega_1 b_{k-1}^{\text{low}} + \omega^2 b_k^{\text{low}}. \tag{A.17}
\]

Let us plug these identifications and the respective eqs. (4.100) for both the high-energy and the low energy theories into eq. (A.16). The result looks rather messy, but grinding through the algebra and matching similar powers of \(\alpha^{\text{high}} = \alpha^{\text{low}} \) and similar products \(b_{k_1}^{\text{low}} \cdots b_{k_d}^{\text{low}} \) on both sides we arrive at

\[
H_k^{(1)}^{\text{high}}(\omega_1, \omega^{\text{low}}) - 2\omega_1 H_{k-1}^{(1)}^{\text{high}}(\omega_1, \omega^{\text{low}}) + \omega_1^2 H_{k-2}^{(1)}^{\text{high}}(\omega_1, \omega^{\text{low}}) = \omega_1 \times H_{k-2}^{(1)}^{\text{low}}(\omega^{\text{low}}) + \cdots \tag{A.18}
\]

for the one-diagonal-instanton level, and more generally

\[
\sum_{q_1, \ldots, q_d=0,1,2} \left(\begin{array}{c} 2 \\ q_1 \\ \vdots \\ q_d \end{array} \right) (-\omega_1)^{q_1 + \cdots + q_d} \times H_{k_1-q_1, \ldots, k_d-q_d}^{(d)}(\omega_1, \omega^{\text{low}}) = \omega_1 \times H_{k_1-2, \ldots, k_d-2}^{(d)}(\omega^{\text{low}}) + \cdots \tag{A.19}
\]

where the ‘\(\cdots \)’ denotes terms independent of the \(\omega_1 \) modulus.
Eqs. (A.19) give us recursive relations between the \mathcal{H} polynomials of quiver theories with different color numbers. It is easy to see that these relations are consistent with eqs. (4.121): Since the $\tilde{\mathcal{H}}_{k_1,\ldots,k_d}^{(d)}$ polynomials do not depend on how the index sum $K = k_1 + \cdots + k_d$ is partitioned into individual k_1, \ldots, k_d indices, the left hand side of eq. (A.19) becomes

$$\sum_{Q=0}^{2d} \binom{2d}{Q} (-\varpi_1)^Q \times \left[\mathcal{H}_{K-Q}^{(d)}(\varpi_1, \varpi_{\text{low}}) = (-1)^{n_c-1} c_d \int \frac{dX}{2\pi i} \frac{X^{K-Q-1}}{[P_{\text{high}}(X)]^{(2d-1)}} \right]$$

$$= (-1)^{n_c-1} c_d \int \frac{dX}{2\pi i} \frac{X^{K-2d-1} \times (X - \varpi_1)^{2d}}{[P_{\text{high}}(X)]^{(2d-1)}}$$

$$= (-1)^{n_c-2} c_d \int \frac{dX}{2\pi i} \frac{\varpi_1 X^{K-2d-1} - X^{k-21}}{[P_{\text{low}}(X)]^{(2d-1)}}$$

$$= \varpi_1 \times \mathcal{H}_{K-2d}^{(d)}(\varpi_{\text{low}}) - \mathcal{H}_{K-2d+1}^{(d)}(\varpi_{\text{low}})$$

where $c_d = \frac{(2d-2)!}{d!(d-1)!}$, the third line follows from $P_{\text{high}}(X) = (X - \varpi_1) \times P_{\text{low}}(X)$, and the second term on the last line does not depend on the ϖ_1 modulus in perfect agreement with the right hand side of eq. (A.19).

Working in the other direction, the recursive formulæ (A.19) allow us to completely determine all of the $\mathcal{H}_{k_1,\ldots,k_d}^{(d)}(n_c; \varpi)$ polynomials for all color numbers n_c provided we already know a few of these polynomials. Indeed, consider the one-instanton level and suppose we already know the $\mathcal{H}_k^{(1)}(n_c - 1, \varpi)$ polynomials for the $n_c - 1$ colors. Then for the n_c colors, eqs. (A.18) consecutively determine all but one of the $\mathcal{H}_k^{(1)}(n_c; \varpi)$ polynomials according to

$$\mathcal{H}_{n_c+1}^{(1)}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c}) = 2\varpi_1 \times \mathcal{H}_{n_c+1}^{(1)}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c})$$

$$+ \varpi_1 \times \mathcal{H}_{n_c}^{(1)}(n_c - 1; \varpi_2, \ldots, \varpi_{n_c}) + \varpi_1\text{-independent},$$

$$\mathcal{H}_{n_c+2}^{(1)}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c}) = 2\varpi_1 \times \mathcal{H}_{n_c+1}^{(1)}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c})$$

$$- \varpi_1^2 \times \mathcal{H}_{n_c}^{(1)}(n_c - 1; \varpi_2, \varpi_3, \ldots, \varpi_{n_c})$$

$$+ \varpi_1 \times \mathcal{H}_{n_c}^{(1)}(n_c - 1; \varpi_2, \ldots, \varpi_{n_c}) + \varpi_1\text{-indep},$$

$$\mathcal{H}_{n_c+3}^{(1)}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c}) = 2\varpi_1 \times \mathcal{H}_{n_c+2}^{(1)}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c})$$

$$- \varpi_1^2 \times \mathcal{H}_{n_c+1}^{(1)}(n_c - 1; \varpi_1, \varpi_2, \ldots, \varpi_{n_c})$$

$$+ \varpi_1 \times \mathcal{H}_{n_c+1}^{(1)}(n_c - 1; \varpi_2, \ldots, \varpi_{n_c}) + \varpi_1\text{-indep},$$

87
\[\mathcal{H}^{(1)}_{2n_c}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c}) = 2\varpi_1 \times \mathcal{H}^{(1)}_{2n_c-1}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c}) \]
\[- \varpi_1^2 \times \mathcal{H}^{(1)}_{2n_c-2}(n_c - 1; \varpi_1, \varpi_2, \ldots, \varpi_{n_c}) \]
\[+ \varpi_1 \times \mathcal{H}^{(1)}_{2n_c-2}(n_c - 1; \varpi_2, \ldots, \varpi_{n_c}) + \varpi_1\text{-indep}, \]

where the \(\varpi_1\)-independent term on the right hand side of each equation is uniquely determined by the requirement that the polynomial on the left hand side is homogeneous and totally symmetric in all of the Coulomb moduli \((\varpi_1, \varpi_2, \ldots, \varpi_{n_c})\). For example, suppose we already know that

\[\mathcal{H}^{(1)}_3(n_c = 2) = - (\varpi_2 + \varpi_3), \quad \mathcal{H}^{(1)}_3(n_c = 3) = +1, \quad \mathcal{H}^{(1)}_4(n_c = 3) = +(\varpi_1 + \varpi_2 + \varpi_3); \]

then eq. (A.22) tells us

\[\mathcal{H}^{(1)}_5(n_c = 3) = \varpi_1^2 + \varpi_2(\varpi_2 + \varpi_3) + \varpi_1\text{-independent} \]

and the only homogeneous symmetric polynomial of this form is

\[\mathcal{H}^{(1)}_5(n_c = 3) = (\varpi_1^2 + \varpi_2^2 + \varpi_3^2) + (\varpi_1\varpi_2 + \varpi_1\varpi_3 + \varpi_2\varpi_3). \]

The one exception to this method is the zero-degree case of \(k = n_c\) where eq. (A.18) reduces to a triviality

\[\mathcal{H}^{(1)}_{n_c}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c}) = \varpi_1\text{-independent} \]

and there is no symmetry argument to determine the numerical constant \(\mathcal{H}^{(1)}_{n_c}\). To plug this hole we need a separate recursive relation

\[\mathcal{H}^{(1)}_{n_c}(n_c) = - \mathcal{H}^{(1)}_{n_c-1}(n_c - 1), \]

so let us cook up yet another integrating-out scheme. Consider the quiver theory with \(F = n_c\)
in the limit of $\varpi_1 = \mu_1^N \to \infty$ while the remaining moduli and quark masses remain finite.\(^{(16)}\)

Integrating out the fields which become superheavy in this limit we arrive at the low-energy theory with

$$ F^{\text{low}} = n_c^{\text{low}} = F^{\text{high}} - 1 = n_c^{\text{high}} - 1 \quad \text{and} \quad \alpha^{\text{low}} = \frac{-1}{\mu_1^N} \times \alpha^{\text{high}}. \quad (A.30) $$

Consequently, according to eq. (4.101) for the low energy theory

$$ [V_{Nn_c}^{\text{global}}]^{\text{low}} = \alpha^{\text{low}} \times [H^{(1)}_{n_c}(n_c)]^{\text{low}} \quad (A.31) $$

and therefore

$$ [V_{Nn_c}^{\text{global}}]^{\text{high}} = \varpi_1 \times [V_{Nn_c}^{\text{global}}]^{\text{low}} + O(1) = -\alpha^{\text{high}} \times [H^{(1)}_{n_c}(n_c)]^{\text{low}} + O(\varpi_1^{-1}). \quad (A.32) $$

On the other hand, we may apply eq. (4.101) to the high-energy theory itself since it also has $F = n_c$, thus

$$ [V_{Nn_c}^{\text{global}}]^{\text{high}} = \alpha^{\text{high}} \times [H^{(1)}_{n_c}(n_c)]^{\text{high}}, \quad (A.33) $$

and comparing this formula to eq. (A.32) we immediately see that the $H^{(1)}_{n_c}$ constants of the two theories must be related according to eq. (A.29).

Altogether, eqs. (A.29) and (A.21–24) allow us to derive all of the $H^{(1)}_{k}(\varpi)$ polynomials for n_c colors from the similar polynomials for $n_c - 1$ colors. Hence by induction in n_c, once we verify the induction base

$$ H^{(1)}_{2}(n_c = 2) = -1, \quad H^{(1)}_{3}(n_c = 2) = -(\varpi_1 + \varpi_2), \quad H^{(1)}_{4}(n_c = 2) = -\varpi_1^2 + \varpi_2^2 + \varpi_1 \varpi_2 \quad (A.34) $$

then all of the $H^{(1)}_{k}$ polynomials for all color numbers must be exactly as in eqs. (4.121).

\(^{(16)}\) We may force $\varpi_1 \equiv \mu_1^N$ while $\mu_1 \to \infty$ by working with discrete Higgs vacua (2.40) of the theory with a slightly deformed superpotential. We should allow for generic roots of the deformation polynomial $\tilde{W}(X)$ in order to keep the remaining Coulomb moduli $\varpi_2, \ldots, \varpi_{n_c}$ generic, but the overall magnitude of the deformation should be kept infinitesimal to assure that the quantum corrections to the link chain determinants remains as in the undeformed theory.
At the higher instanton levels $d \geq 2$ we have a similar situation: Once we know the $H_{k_1 \ldots k_d}(n_c-1, \varpi)$ polynomials for n_c-1 colors, eqs. (A.19) let us sequentially construct most of the $H_{k_1 \ldots k_d}(n_c, \varpi)$ polynomials for n_c colors according to formulæ similar to eqs. (A.21–24). Again, the ϖ_1–independent terms can be uniquely determined by the total symmetry of the polynomials in all n_c Coulomb moduli $(\varpi_1, \varpi_2, \ldots, \varpi_{n_c})$. And once again, in the zero-degree cases of $k_1 + \cdots + k_d = (2d - 1)n_c$ the symmetry argument does not work and we need an additional recursive formula like (A.29) to obtain the numerical constants

$$H_{k_1 \ldots k_d}(n_c; \varpi_1, \varpi_2, \ldots, \varpi_{n_c}) = (-1)^{n_c-1} \frac{(2d-2)!}{d!(d-1)!} \forall k_1 + \cdots + k_d = (2d-1)n_c. \quad (A.35)$$

Once we verify these constants we may use induction in n_c, and given the induction base

$$H_{3,4,\ldots,4}(n_c = 2) = -\frac{(2d-1)!}{d!(d-1)!} (\varpi_1 + \varpi_2),$$

$$H_{4,4,\ldots,4}(n_c = 2) = -\frac{(2d-1)!}{d!(d-1)!} \left(d(\varpi_1 + \varpi_2)^2 - \varpi_1 \varpi_2\right), \quad (A.36)$$

all of the $H_{k_1 \ldots k_d}$ for all n_c must be exactly as in eqs. (4.121) and eq. (4.118) must hold true for all numbers of colors and flavors.

This completes our argument. To complete the proof we would need to close the remaining loopholes, namely (A) verify the zero-degree formulæ (A.35) for $d \geq 2$ instantons, and (B) verify the induction base eqs. (A.34) and (A.36). This work is in progress, but we have not yet finished it.
References

[1] Robbert Dijkgraaf and Cumrun Vafa, “Matrix Models, Topological Strings, and Supersymmetric Gauge Theories,” Nucl. Phys. B 644, 3 (2002) [arXiv:hep-th/0206255].

[2] Robbert Dijkgraaf and Cumrun Vafa, “On Geometry and Matrix Models,” Nucl. Phys. B 644, 21 (2002) [arXiv:hep-th/0207106].

[3] Robbert Dijkgraaf and Cumrun Vafa, “A Perturbative Window Into Non–Perturbative Physics,” arXiv:hep-th/0208048.

[4] F. Cachazo, M. R. Douglas, N. Seiberg and E. Witten, “Chiral Rings and Anomalies in Supersymmetric Gauge Theory,” JHEP 0212, 071 (2002) [arXiv:hep-th/0211170].

[5] F. Cachazo, N. Seiberg and E. Witten, “Phases of $\mathcal{N} = 1$ Supersymmetric Gauge Theories and Matrices,” JHEP 0302, 042 (2003) [arXiv:hep-th/0301006].

[6] Nathan Seiberg, “Adding Fundamental Matter to 'Chiral Rings and Anomalies in Supersymmetric Gauge Theory','” JHEP 0301, 061 (2003) [arXiv:hep-th/0212225].

[7] F. Cachazo, N. Seiberg and E. Witten, “Chiral Rings and Phases of Supersymmetric Gauge Theories,” JHEP 0304, 018 (2003) [arXiv:hep-th/0303207].

[8] Kenichi Konishi, “Anomalous Supersymmetry Transformation Of Some Composite Operators In SQCD,” Phys. Lett. B 135, 439 (1984).

[9] Kenichi Konishi and Kenichi Shizuya, “Functional Integral Approach To Chiral Anomalies In Supersymmetric Gauge Theories,” Nuovo Cim. A 90, 111 (1985).

[10] D. Amati, K. Konishi, Y. Meurice, G. C. Rossi and G. Veneziano, “Nonperturbative Aspects In Supersymmetric Gauge Theories,” Phys. Rept. 162, 169 (1988).

[11] A. Brandhuber, H. Ita, H. Nieder, Y. Oz and C. Romelsberger, “Chiral Rings, Superpotentials and the Vacuum Structure of $\mathcal{N} = 1$ Supersymmetric Gauge Theories,” Adv. Theor. Math. Phys. 7, 269 (2003) [arXiv:hep-th/0303001].
[12] K. Landsteiner, C. I. Lazaroiu and R. Tatar, “Chiral Field Theories, Konishi Anomalies and Matrix Models,” JHEP 0402, 044 (2004) [arXiv:hep-th/0307182].

[13] R. Argurio, G. Ferretti and R. Heise, “Chiral SU(N) Gauge Theories and the Konishi Anomaly,” JHEP 0307, 044 (2003) [arXiv:hep-th/0306125].

[14] Edoardo Di Napoli and Vadim S. Kaplunovsky, “Matrix Models of Chiral $[SU(n_c)]^N$ Quiver Theories,” in preparation.

[15] N. Arkani–Hamed, A. G. Cohen and H. Georgi, “(De)Constructing Dimensions,” Phys. Rev. Lett. 86 4757, (2001) [arXiv:hep-th/0104005].

[16] C. T. Hill, S. Pokorski and J. Wang, “Gauge invariant effective Lagrangian for Kaluza-Klein modes,” Phys. Rev. D 64, 105005 (2001) [arXiv:hep-th/0104035].

[17] For earlier versions of dimensional deconstruction see:

M. B. Halpern and W. Siegel, “Electromagnetism as a Strong Interaction”, Phys. Rev. D 11 (1975) 2967;

O. J. Ganor, “Six–Dimensional Tensionless Strings in the Large–N Limit”, Nucl. Phys. B 489 (1997) 95 [arXiv:hep-th/9605201];

O. J. Ganor and S. Sethi, “New Perspectives on Yang–Mills Theories with Sixteen Supersymmetries”, JHEP 01 (1998) 007 [arXiv:hep-th/9712071].

[18] N. Arkani-Hamed, A. G. Cohen and H. Georgi, “Electroweak Symmetry Breaking from Dimensional Deconstruction,” Phys. Lett. B 513, 232 (2001) [arXiv:hep-ph/0105239].

[19] C. Csaki, J. Erlich, V. V. Khoze, E. Poppitz, Y. Shadmi and Y. Shirman, “Exact Results in 5D from Instantons and Deconstruction,” Phys. Rev. D 65, 085033 (2002) [arXiv:hep-th/0110188].

[20] C. Csaki, J. Erlich, C. Grojean and G. D. Kribs, “4D Constructions of Supersymmetric Extra Dimensions and Gaugino Mediation,” Phys. Rev. D 65, 015003 (2002) [arXiv:hep-ph/0106044].
[21] Amer Iqbal and Vadim S. Kaplunovsky, “Quantum Deconstruction of a 5D SYM and its Moduli Space,” JHEP 0405, 013 (2004) [arXiv:hep-th/0212098].

[22] Edoardo Di Napoli and Vadim S. Kaplunovsky, “Quantum Deconstruction of 5D SQCD Theories with General n_c, n_f and k_{cs} and their Moduli Space,” in preparation.

[23] Michael B. Green and John H. Schwarz, “Anomaly Cancellation In Supersymmetric D=10 Gauge Theory and Superstring Theory,” Phys. Lett. B 149, 117 (1984).

[24] Nathan Seiberg and Edward Witten, “Electric–Magnetic Duality, Monopole Condensation, and Confinement in $\mathcal{N} = 2$ Supersymmetric Yang–Mills Theory,” Nucl. Phys. B 426, 19 (1994) [Erratum: ibid. B 430, 485 (1994)] [arXiv:hep-th/9407087].

[25] Amihay Hanany and Yaron Oz, “On the Quantum Moduli Space of Vacua of $\mathcal{N} = 2$ Supersymmetric SU(n_c) Gauge Theories”, Nucl. Phys. B 452, 283–312 (1995), [arXiv:hep-th/9506075].

[26] Philip C. Argyres, M. Ronen Plesser and Alfred D. Shapere, “The Coulomb Phase of $\mathcal{N} = 2$ Supersymmetric QCD”, Phys. Rev. Lett. 75 1699–1702 (1995), [arXiv:hep-th/9505100].

[27] Nathan Seiberg, “Exact Results on the Space of Vacua of Four Dimensional SUSY Gauge Theories,” Phys. Rev. D 49, 6857 (1994) [arXiv:hep-th/9402044].

[28] Jose M. Rodríguez, “Vacuum Structure of Supersymmetric SU(N)K Theories,” Ph. D. Thesis (1997), UMI–98–25065–mc (microfiche).

[29] Spenser Chang and Howard Georgi, “Quantum Modified Mooses” Nucl. Phys. B 672, 101 (2003) [arXiv:hep-th/0209038].

[30] E. Dudas, A. Falkowski and S. Pokorski, “Deconstructed $U(1)$ and Supersymmetry Breaking,” Phys. Lett. B 568, 281 (2003) [arXiv:hep-th/0303155].

[31] A. Falkowski, H. P. Nilles, M. Olechowski and S. Pokorski, “Deconstructing 5D Supersymmetric $U(1)$ Gauge Theories on Orbifolds,” Phys. Lett. B 566, 248 (2003) [arXiv:hep-th/0212206].
[32] N. Arkani-Hamed, A. G. Cohen, D. B. Kaplan, A. Karch and L. Motl, “Deconstructing (2, 0) and Little String Theories,” JHEP 0301, 083 (2003) [arXiv:hep-th/0110146].

[33] J. Lykken, E. Poppitz and S. P. Trivedi, “Chiral gauge theories from D-branes,” Phys. Lett. B 416, 286 (1998) [arXiv:hep-th/9708134].