SAGA with Arbitrary Sampling

Xun Qian
Zheng Qu
Peter Richtárik
The Problem
The Problem: Regularized Empirical Risk Minimization

\[
\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)
\]
The Problem: Regularized Empirical Risk Minimization

\[
\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)
\]
The Problem: Regularized Empirical Risk Minimization

\[
\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)
\]
The Problem: Regularized Empirical Risk Minimization

\[
\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)
\]

- \(f(x) \): Training data
- \(\lambda_i \): Regularization parameters
- \(\psi(x) \): Regularizer
- \# training data

Regularizer
The Problem: Regularized Empirical Risk Minimization

\[
\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)
\]

- \(\lambda_i \): Weight associated with data point \(i \)
- \(f_i(x) \): Loss associated with data point \(i \)
- \(\psi(x) \): Regularizer
- \# training data
The Problem: Regularized Empirical Risk Minimization

$$\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)$$

- # training data
- Weight associated with data point i
- Loss associated with data point i
- Parameters describing the model
- Regularizer

$f(x)$
Arbitrary Sampling
SGD with Arbitrary Sampling
SGD with Arbitrary Sampling

1. In iteration k, we have x^k available
In iteration k, we have x^k available

Sample a random set $S_k \subseteq \{1, 2, \ldots, n\}$
SGD with Arbitrary Sampling

1. In iteration k, we have x^k available
2. Sample a random set $S_k \subseteq \{1, 2, \ldots, n\}$
3. Compute the gradients $\nabla f_i(x^k)$ for $i \in S_k$ only
SGD with Arbitrary Sampling

1. In iteration k, we have x^k available
2. Sample a random set $S_k \subseteq \{1, 2, \ldots, n\}$
3. Compute the gradients $\nabla f_i(x^k)$ for $i \in S_k$ only
4. Approximate the gradient $\nabla f(x^k)$ using $\{\nabla f_i(x^k) : i \in S_k\}$
SGD with Arbitrary Sampling

1. In iteration k, we have x^k available
2. Sample a random set $S_k \subseteq \{1, 2, \ldots, n\}$
3. Compute the gradients $\nabla f_i(x^k)$ for $i \in S_k$ only
4. Approximate the gradient $\nabla f(x^k)$ using $\{\nabla f_i(x^k) : i \in S_k\}$
5. Take a stochastic gradient descent step to obtain x^{k+1}
SGD with Arbitrary Sampling

1. In iteration k, we have x^k available
2. Sample a random set $S_k \subseteq \{1, 2, \ldots, n\}$
3. Compute the gradients $\nabla f_i(x^k)$ for $i \in S_k$ only
4. Approximate the gradient $\nabla f(x^k)$ using $\{\nabla f_i(x^k) : i \in S_k\}$
5. Take a stochastic gradient descent step to obtain x^{k+1}

Arbitrary sampling paradigm (R. & Takáč 2013): want to be able to sample from any distribution over all 2^n subsets of $\{1, 2, \ldots, n\}$

- $p_i \overset{\text{def}}{=} \text{Prob}(i \in S_k)$
- $p_i > 0$ for all $i = 1, 2, \ldots, n$
Arbitrary Sampling: Examples for $n = 3$

$S_k = \{1, 2, 3\}$ with prob 1
Arbitrary Sampling: Examples for $n = 3$

GD

$S_k = \{1, 2, 3\}$ with prob 1

SAGA

$S_k = \{1\}$ with prob $1/3$

$S_k = \{2\}$ with prob $1/3$

$S_k = \{3\}$ with prob $1/3$
Arbitrary Sampling: Examples for $n = 3$

GD

\[S_k = \{1, 2, 3\} \text{ with prob } 1 \]

SAGA

\[S_k = \{1\} \text{ with prob } \frac{1}{3} \]
\[S_k = \{2\} \text{ with prob } \frac{1}{3} \]
\[S_k = \{3\} \text{ with prob } \frac{1}{3} \]

SAGA with nonuniform sampling

\[S_k = \{1\} \text{ with prob } p_1 \]
\[S_k = \{2\} \text{ with prob } p_2 \]
\[S_k = \{3\} \text{ with prob } p_3 \]
Arbitrary Sampling: Examples for $n = 3$

GD

$S_k = \{1, 2, 3\}$ with prob 1

SAGA

$S_k = \{1\}$ with prob $1/3$
$S_k = \{2\}$ with prob $1/3$
$S_k = \{3\}$ with prob $1/3$

Minibatch SAGA (with 2-nice sampling)

$S_k = \{1, 2\}$ with prob $1/3$
$S_k = \{2, 3\}$ with prob $1/3$
$S_k = \{3, 1\}$ with prob $1/3$

SAGA with nonuniform sampling

$S_k = \{1\}$ with prob p_1
$S_k = \{2\}$ with prob p_2
$S_k = \{3\}$ with prob p_3
Arbitrary Sampling: Examples for $n = 3$

GD

$S_k = \{1, 2, 3\}$ with prob 1

SAGA

$S_k = \{1\}$ with prob $1/3$

$S_k = \{2\}$ with prob $1/3$

$S_k = \{3\}$ with prob $1/3$

SAGA with nonuniform sampling

$S_k = \{1\}$ with prob p_1

$S_k = \{2\}$ with prob p_2

$S_k = \{3\}$ with prob p_3

Minibatch SAGA (with 2-nice sampling)

$S_k = \{1, 2\}$ with prob $1/3$

$S_k = \{2, 3\}$ with prob $1/3$

$S_k = \{3, 1\}$ with prob $1/3$

Interpolation between GD and SAGA

$S_k = \{1, 2, 3\}$ with prob $1/2$

$S_k = \{1\}$ with prob $1/6$

$S_k = \{2\}$ with prob $1/6$

$S_k = \{3\}$ with prob $1/6$
A Brief History of Arbitrary Sampling
#	Paper	Algorithm	Comment
1	R. & Takáč (OL 2016; arXiv 2013) On optimal probabilities in stochastic coordinate descent methods	NSync	Arbitrary sampling (AS) first introduced Analysis of coordinate descent under strong convexity
2	Qu, R. & Zhang (NeurIPS 2015) Quartz: Randomized dual coordinate ascent with arbitrary sampling	QUARTZ	First AS SGD method for min P Primal-dual stochastic fixed point method; variance reduced
3	Csiba & R. (arXiv 2015) Primal method for ERM with flexible mini-batching schemes and non-convex losses	Dual-free SDCA	First primal-only AS SGD method for min P Variance-reduced
4	Qu & R. (OMS 2016) Coordinate descent with arbitrary sampling I: algorithms and complexity	ALPHA	First accelerated coordinate descent method with AS Analysis for smooth convex functions
5	Qu & R. (OMS 2016) Coordinate descent with arbitrary sampling II: expected separable overapproximation		First dedicated study of ESO inequalities needed for analysis of AS methods
6	Chambolle, Ehrhardt, R. & Schoenlieb (SIOPT 2018) Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications	SPDHGM	Chambolle-Pock method with AS
7	Hanzely, Mishchenko & R. (NeurIPS 2018) SEGA: Variance reduction via gradient sketching	SEGA	Variance-reduce coordinate descent with AS
8	Hanzely & R. (AISTATS 2019) Accelerated coordinate descent with arbitrary sampling and best rates for minibatches	ACD	First accelerated coordinate descent method with AS Analysis for smooth strongly convex functions Importance sampling for minibatches
9	Horváth & R. (ICML 2019) Nonconvex variance reduced optimization with arbitrary sampling	SARAH, SVRG, SAGA	First non-convex analysis of an AS method First optimal mini-batch sampling
10	Gower, Loizou, Qian, Sailanbayev, Shulgin & R. (ICML 2019) SGD: general analysis and improved rates	SGD-AS	First AS variant of SGD (without variance reduction) Optimal minibatch size
11	Qian, Qu & R. (ICML 2019) SAGA with arbitrary sampling	SAGA-AS	First AS variant of SAGA
The Algorithm
New Method: SAGA-AS (high level)

The Problem

\[
\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)
\]
New Method: SAGA-AS (high level)

Sample fresh $S_k \subseteq \{1, 2, \ldots, n\}$

The Problem

\[
\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)
\]
New Method: SAGA-AS (high level)

1. Sample fresh $S_k \subseteq \{1, 2, \ldots, n\}$

2. $J^{k+1}_{::i} = \begin{cases} \nabla f_i(x^k) & i \in S_k \\ J^k_{::i} & i \notin S_k \end{cases}$

The Problem

\[
\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)
\]

Arbitrary Sampling

Jacobian Sketch, i.e., a random matrix approximating the Jacobian:

\[
J^{k+1} \approx G(x^k) \overset{\text{def}}{=} [\nabla f_1(x^k), \ldots, \nabla f_n(x^k)] \in \mathbb{R}^{d \times n}
\]
New Method: SAGA-AS (high level)

1. Sample fresh $S_k \subseteq \{1, 2, \ldots, n\}$

2. $J_{k+1}^{i} = \begin{cases} \nabla f_i(x^k) & i \in S_k \\ J_{k}^{i} & i \notin S_k \end{cases}$

3. Use J_{k+1}^{i}, J_{k}^{i} to build an unbiased estimator g^k of $\nabla f(x^k)$

The Problem

$$\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)$$

Jacobian Sketch, i.e., a random matrix approximating the Jacobian:

$$J_{k+1}^{i} \approx G(x^k) \overset{\text{def}}{=} [\nabla f_1(x^k), \ldots, \nabla f_n(x^k)] \in \mathbb{R}^{d \times n}$$
New Method:

SAGA-AS (high level)

1. Sample fresh $S_k \subseteq \{1, 2, \ldots, n\}$

2. $J_{k+1}^i = \begin{cases} \nabla f_i(x^k) & i \in S_k \\ J_k^i & i \notin S_k \end{cases}$

3. Use J_{k+1}, J_k to build an unbiased estimator g^k of $\nabla f(x^k)$

4. $x^{k+1} = \text{prox}_{\alpha \psi} \left(x^k - \alpha g^k \right)$

The Problem

$$\min_{x \in \mathbb{R}^d} P(x) \overset{\text{def}}{=} \left(\sum_{i=1}^{n} \lambda_i f_i(x) \right) + \psi(x)$$

Arbitrary Sampling

Jacobian Sketch, i.e., a random matrix approximating the Jacobian:

$$J_{k+1} \approx G(x^k) \overset{\text{def}}{=} [\nabla f_1(x^k), \ldots, \nabla f_n(x^k)] \in \mathbb{R}^{d \times n}$$

Proximal SGD step with fixed step size

$$\text{prox}_{\psi}(x) \overset{\text{def}}{=} \arg \min_y \left\{ \frac{1}{2} \| y - x \|^2 + \psi(y) \right\}$$
Convergence Theory
Convergence Theory

Regime	Arbitrary sampling	Thm
Smooth	\[
\begin{align*}		
\psi & \equiv 0 \\		
\text{f}_i \text{ is } L_i\text{-smooth, } f \text{ is } \mu\text{-strongly convex}		
\end{align*}		
\]	max \[
\max_{1 \leq i \leq n} \left\{ \frac{1}{p_i} + \frac{4(1 + B) L_i A_i \lambda_i}{\mu}, \frac{2B(1 + 1/B)L}{\mu} \right\} \log \left(\frac{1}{\epsilon} \right)		
\]	3.3	
Nonsmooth	\[
\begin{align*}		
P & \text{satisfies } \mu\text{-growth condition (19) and Assumption 4.3} \\		
f_i(x) & = \phi_i(A_i^T x), \phi_i \text{ is } 1/\gamma\text{-smooth, } f \text{ is } L\text{-smooth}		
\end{align*}		
\]	\[
2 + \max_{1 \leq i \leq n} \left\{ \frac{6L}{\mu}, 3 \max_{1 \leq i \leq n} \left\{ \frac{1}{p_i} + \frac{4v_i \lambda_i}{p_i \mu \gamma} \right\} \right\} \log \left(\frac{1}{\epsilon} \right)		
\]	4.4	
Nonsmooth	\[
\begin{align*}
\psi & \text{ is } \mu\text{-strongly convex} \\
f_i(x) & = \phi_i(A_i^T x), \phi_i \text{ is } 1/\gamma\text{-smooth}
\end{align*}
\] | max \[
\max_{1 \leq i \leq n} \left\{ 1 + \frac{1}{p_i} + \frac{3v_i \lambda_i}{p_i \mu \gamma} \right\} \log \left(\frac{1}{\epsilon} \right)
\] | 4.5 |

Table 1. Iteration complexity results for SAGA-AS. We have \(p_i := \mathbb{P}(i \in S) \), where \(S \) is a sampling of subsets of \([n]\) utilized by SAGA-AS. The key complexity parameters \(A_i, B, \) and \(v_i \) are defined in the sections containing the theorems.

Expected Separable Over-approximation (ESO):

\[
\mathbb{E}_S \left[\left\| \sum_{i \in S} A_i h_i \right\|^2 \right] \leq \sum_{i=1}^{n} p_i v_i \| h_i \|^2
\]

\(p_i \overset{\text{def}}{=} \text{Prob}(i \in S_k) \)
Contributions
	SAGA (Defazio et al 2014)	QUARTZ (Qu et al 2015)	JacSketch (Gower et al 2018)	SAGA-AS (THIS WORK)
PRIMAL / DUAL	Primal	Primal-dual	Primal	Primal
SAMPLING	Uniform sampling of single data points	Arbitrary sampling (first AS method for min P)	A general sketching mechanism, but does not cover arbitrary sampling	Arbitrary sampling
IMPORTANCE SAMPLING?	NO	YES	YES (first SAGA-IS, but not for minibatches)	YES (also for minibatches)
REGULARIZER	Support for any convex regularizer	Support for strongly convex regularizer	No support for a regularizer	Support for any convex regularizer
RATE	Linear	Linear	Linear	Linear (same or better)
ASSUMPTIONS	Each f_i strongly convex	strongly convex regularizer	Each f_i strongly convex	P satisfying quadratic growth
HANDLING BIAS	Scaling	Built in	Bias-correcting random variable	Bias-correcting random vector
Experiments
SDCA vs SAGA

![Graph showing SDCA vs SAGA](image1)

![Graph showing SDCA vs SAGA](image2)
Uniform vs Importance Sampling

- ijcnn1
- w8a
What’s Next?
where L_y is a smooth and convex, A_i is twice differentiable, and $v^T(x-x^*)$ is closed and convex.

Sampling

A random set valued mapping F with online being subsets of $[1, \ldots, n]$. A sampling is uniquely defined by sampling probabilities p_i. Let $\tau \subseteq \{1, \ldots, n\}$ denote the sampling set.

The Expectations are computed with respect to F.

Assumptions:
- $f(x, y) = f(x) + y^T A_i x$ is smooth and convex.
- A_i is twice differentiable.
- $v^T(x-x^*)$ is closed and convex.

Algorithm

Step 1 (Sampling):

- Let τ be a properly chosen random set.
- Let $\tau = \emptyset$.

Step 2 (Updating):

- For $i = 1, 2, \ldots,$
- Sample $k_i \sim P_i$.
- Compute $x_{k_i} = \arg\min_x f(x, y) + \frac{\beta}{2} \|x - k_i\|^2$.
- Update x_k using a method of choice.

Step 3 (Termination):

- Stop when $\|x_k - x^{k-1}\| < \epsilon$.

References:

[1] Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss. *J. Mach. Learn. Res.*, 18:483–514, 2017.

[2] Zheng Qu, Peter Richtárik, and Tong Zhang. Linear speedup in stochastic gradient descent. In *Advances in Neural Information Processing Systems 29*, pages 1662–1670. 2016.
The End