Original Research Article

Soil Microflora as Influenced by Pre and Post Emergence Herbicide in Sweet Corn Grown in Vertisols

R. K. Rathod, V. P. Bhalerao, P. B. Margal* and B. M. Kamble

Department of Soil Science and Agricultural Chemistry, College of Agriculture, Dhule Maharashtra, India

*Corresponding author

ABSTRACT

Field experiment was conducted at Department of Agronomy, College of Agriculture, Dhule during Kharif 2019 to study the effect of pre and post emergence herbicides on soil microflora in sweet corn. The per cent decrease in the bacterial, fungal and actinomycetes count was in the range of 8.26 to 9.22 % in the weed free treatment (two hand weeding), 18.57 to 24.94 % in the treatment of weedy check (T1) and 22.48 to 30.10 % in the treatments of pre and post emergence herbicides (T3 to T10) over the initial values of 24.5 x 10^7 cfu g^-1 soil, 8.6 x 10^4 cfu g^-1 soil and 19 x 10^6 cfu g^-1 soil, respectively. Application of tembotrione @ 120 g ha^-1 as post emergence herbicide (T9) showed less adverse effect on soil bacterial population at harvest than the other herbicides treatments. Application of 2,4 D ethyl ester @ 1000 g ha^-1 as post emergence herbicide (T10) showed less adverse effect on soil fungal population than the other herbicides treatments. Application of halosulfuron-methyl @ 90 g ha^-1 as post emergence herbicide (T8) showed less adverse effect on soil actinomycetes population than the other herbicides treatments under study.

Keywords
Bacteria, Fungi and Actinomycetes

Introduction

In India, sweet corn is cultivated on very small area to meet the demands of many industries. The demand for eating roasted cobs in cities and towns is increasing day by day. Sweet corn is gaining popularity among the urban masses in terms of nutrition and health consciousness in India.

Heavy weed infestation is one of the major constraints that limit the productivity of sweet corn crop. Wider spacing and slow growing nature of the crop during the first 3-4 weeks provide enough opportunity for weeds to invade and offer severe competition resulting in 30-100 % yield reduction (Dey et al., 2017). Weeds emerge fast and grow rapidly competing with the crop for growth viz., nutrients, moisture, sunlight and space during entire vegetative and early reproductive stages of sweet corn.

In the modern era of urbanization, labour component in agriculture is becoming scarce, not available at time and prohibitive cost. Chemical weed control is a better supplement to conventional methods and forms an
integral part of the modern crop production. Herbicides are toxic agrochemicals, which have being used to control the weeds in the agricultural farms and gardens. These herbicides are rampantly used to some extent, by farmers without considering the long or short term effects in soil medium. It is evident that most of these herbicides may cause the reduction of sensitive populations of certain groups of biota in soil medium.

Biological properties are critically important to the ecosystem functioning since they are involved in soil organic matter decomposition, nutrient cycling, and degradation of pesticides, such as herbicides (Araujo et al., 2003). Therefore, studies assessing the effect of herbicides on soil biological properties are important for evaluating soil quality and health. In addition, soil biological properties are more effective as indicators of soil quality than physical and chemical properties as they often show a faster response to an environmental impact (Nannipieri and Badalucco 2003). As important and responsive biological properties, soil microbial biomass and enzyme activities are frequently recommended for evaluating the effects of herbicides on the soil environment (Juan et al., 2017).

Soil microbial biomass represents the active part of soil organic matter and is involved in several functions in soil, presenting a rapid turnover of soil C, N, and P; while enzymes are a suitable indicator of the catabolic activity of soil microorganism (Nannipieri and Badalucco 2003). These biological properties are highly sensitive to detect soil disturbance after the application of chemicals, such as herbicides (Pertile et al., 2020).

Considering the paramount importance of soil biological properties, the experiment was conducted to study the effect of pre and post emergence herbicides on soil microflora in sweet corn.

Materials and Methods

Field experiment was conducted at Department of Agronomy, College of Agriculture, Dhule during Kharif 2019 to study the effect of pre and post emergence herbicides on soil enzymes in sweet corn. The experiment was laid out in randomized block design with ten treatments replicated three times. Treatments composed of T1: weedy check, T2: weed free (two hand weeding), T3: atrazine @ 1000 g ha\(^{-1}\) (PE) \(\times\) halosulfuron methyl @ 90 g ha\(^{-1}\) (PoE), T4: atrazine @ 1000 g ha\(^{-1}\) (PE) \(\times\) 2,4 D ethyl ester @ 1000 g ha\(^{-1}\) (PoE), T5: pendimethalin @ 1000 g ha\(^{-1}\) (PE) \(\times\) halosulfuron-methyl @ 90 g ha\(^{-1}\) (PoE), T6: pendimethalin @ 1000 g ha\(^{-1}\) (PE) \(\times\) tembotrione @ 120 g ha\(^{-1}\) (PoE), T7: pendimethalin @ 1000 g ha\(^{-1}\) (PE) \(\times\) 2,4 D ethyl ester @ 1000 g ha\(^{-1}\) (PoE), T8: halosulfuron-methyl @ 90 g ha\(^{-1}\) (PoE), T9: tembotrione @ 120 g ha\(^{-1}\) (PoE) and T10: 2,4 D ethyl ester @ 1000 g ha\(^{-1}\) (PoE). The pre emergence (PE) herbicides were applied on next day after sowing of sweet corn, however, the post emergence (PoE) herbicides were applied 30 days after sowing of sweet corn.

The soil of experimental site was medium black with the following chemical properties: pH 8.01, electrical conductivity (EC) 0.32 dS m\(^{-1}\), organic carbon (5.60 g kg\(^{-1}\)), calcium carbonate (49 g kg\(^{-1}\)), available N (202.34 kg ha\(^{-1}\)), available (Olsen-P) P (17.32 kg ha\(^{-1}\)), available (NH\(_4\)OAc-K) K (402.25 kg ha\(^{-1}\)), bacterial count (24.5 x 10\(^7\)cfu g\(^{-1}\) soil), fungal count (8.6 x 10\(^8\) cfu g\(^{-1}\) soil) and actinomycetes count (19.0 x 10\(^6\) cfu g\(^{-1}\) soil).

Representative moistened soil samples were collected from each plot before sowing, at 7, 15, 21, 30 and 45 DAS as well as at harvest. The fungal, bacterial and actinomycetes count
was determined by serial dilution plate method (Dhingra and Sinclair 1993).

Results and Discussion

Bacterial count

The periodical bacterial count in soil was significantly influenced at 7, 15, 21, 30 and 45 days after application by pre and post emergence herbicides during the field experiment (Table 1). Significantly higher bacterial count was observed in the weed free (two hand weeding) treatment (T2) as compared to rest of the treatments. In the weed free (two hand weeding) treatment (T2) the bacterial count was increased at 7, 15, 21, 30 and 45 DAS (27.61, 29.06, 29.11, 29.29 and 27.56 x 10^7 cfu g^-1 soil, respectively) as compared to initial value (24.5 x 10^7 cfu g^-1 soil), however, the magnitude of increase of bacterial count was higher at 21 DAS (18.81 %) and 30 DAS (19.55 %), which might be due to the top dressing of nitrogen to sweet corn at these stages. In the weedy treatments (T1) the bacterial count was increased slightly at 7 DAS (25.75 x 10^7 cfu g^-1 soil) and 15 DAS (28.06 x 10^7 cfu g^-1 soil), however, it was decreased at 21 DAS, 30 DAS and 45 DAS. The bacterial count at 45 DAS was 21.72 x 10^7 cfu g^-1 soil with 11.34 % decrease over initial value.

In the treatments of pre-emergence and post emergence application of herbicides, the bacterial count was slightly increased (7.26 to 8.40 %) over initial value at 7 DAS, there after, it was reduced gradually at 15 DAS, 21 DAS, 30 DAS and 45 DAS. The magnitude of reduction of bacterial count was higher in the treatment of pendimethalin @ 1000 g ha^-1 (PE) followed by 2,4 D ethyl ester @ 1000 g ha^-1 (PoE), which recorded significantly lower bacterial count of 17.31 x 10^7 cfu g^-1 soil at 45 DAS. However, this treatment was statistically at par with all the treatments of herbicide application. In the treatments of post emergence application of herbicides, the bacterial count was slightly increased from 7.79 to 9.10 % over initial value at 7 DAS and increased 4.65 to 8.28 % at 15 DAS, thereafter it was gradually reduced at 21 DAS, 30 DAS and 45 DAS. It was also observed that soil bacterial count was considerably decreased with advanced period of field experimentation due to application of pre and post emergence herbicides.

The weed free treatment (two hand weeding) recorded significantly higher bacterial count 22.24 x 10^7 cfu g^-1 soil at harvest of sweet corn with 9.22 % decrease in bacterial count over initial value of 24.5 x 10^7 cfu g^-1 soil. It was followed by the treatment of weedy check (T1), which recorded the bacterial count of 19.95 x 10^7 cfu g^-1 soil with the decrease of 18.57 % over initial value. The treatment of pendimethalin @ 1000 g ha^-1 (PE) fb halosulfuron-methyl @ 90 g ha^-1 (PoE) recorded significantly lower bacterial count of 17.85 x 10^7 cfu g^-1 soil with the decrease of 27.14 % over initial value. The results revealed that an application of Tembotrione @ 120 g ha^-1 as post emergence herbicide (T9) has less adverse effect on soil bacterial population at harvest than the other herbicides treatments under study.

The reduction in bacterial count due to application of herbicides was also reported by Abbas *et al.*, (2014) and Patel *et al.*, (2019). The reduction in periodical soil bacterial count due to pre and post emergence herbicides are associated with disruption in the amino acid assimilation abilities of soil bacteria leading to their death (Allievi and Gigliotti 2001). The reduction in periodical soil bacterial count might be because of the adverse effect of pre and post emergence herbicides on metabolic activities of soil bacteria (Milosevic and Govedarica 2000).
Fungal count

The periodical fungal count in soil was significantly influenced at 7, 15, 21, 30 and 45 days after application by pre and post emergence herbicides during the field experiment (Table 2). The weed free (two hand weeding) treatment (T₂) recorded significantly higher fungal count as compared to rest of the treatments. In the weed free (two hand weeding) treatment (T₂) the fungal count was increased at 7, 15, 21, 30 and 45 DAS (9.59, 10.02, 10.13, 9.93 and 9.70 x 10⁴ cfu g⁻¹ soil, respectively) as compared to initial value (8.6 x 10⁴ cfu g⁻¹ soil). In the weedy treatments (T₁) the fungal count was increased slightly at 7 DAS (8.84 x 10⁴ cfu g⁻¹ soil) and 15 DAS (8.79 x 10⁴ cfu g⁻¹ soil), however, it was decreased at 21 DAS, 30 DAS and 45 DAS. The fungal count at 45 DAS was 7.47 x 10⁴ cfu g⁻¹ soil with 13.13 % decrease over initial value of 8.6 x 10⁴ cfu g⁻¹ soil.

In the treatments of pre-emergence and post emergence application of herbicides (T₃ to T₇), the fungal count was slightly increased (2.44 to 4.18 %) over initial value at 7 DAS, thereafter, it was reduced gradually at 15 DAS, 21 DAS, 30 DAS and 45 DAS. Significantly lower value of fungal count (5.81 x 10⁴ cfu g⁻¹ soil) was recorded in the treatment of pendimethalin @ 1000 g ha⁻¹ (PE) followed by 2,4 D ethyl ester @ 1000 g ha⁻¹ (PoE) at 45 DAS. However, this treatment was statistically at par with all the treatments of herbicide application (T₂ to T₆ and T₈ to T₇). In the treatments of post emergence application of herbicides (T₈ to T₁₀), the fungal count was slightly increased from 4.18 to 5.89 % over initial value at 7 DAS and increased 1.74 to 5.81 % at 15 DAS, thereafter it was gradually decreased at 21 DAS, 30 DAS and 45 DAS. The soil fungal count was considerably decreased with advanced period of field experimentation due to application of pre and post emergence herbicides.

Table 1 Bacterial count in soil as influenced by application of herbicides

Sr. No	Treatments	Bacterial count (x 10⁷ cfu g⁻¹ soil)	At harvest				
1	Weedy	25.75⁰	19.95⁰				
2	Weed free (two hand weedings)	27.61ᵃ	22.24ᵃ				
3	Atrazine @ 1000 g ha⁻¹ (PE) f/b halosulfuron methyl @ 90 g ha⁻¹ (PoE)	26.28ᵇ	23.91ᵇ	17.68ᵇ	18.71ᵇ		
4	Atrazine @ 1000 g ha⁻¹ (PE) f/b 2,4 D ethyl ester @ 1000 g ha⁻¹ (PoE)	26.36ᵇ	23.67ᵇ	19.55ᵇ	18.68ᵇ	17.54ᵇ	18.82ᵇ
5	Pendimethalin @ 1000 g ha⁻¹ (PE) f/b halosulfuron-methyl @ 90 g ha⁻¹ (PoE)	26.34ᵇ	23.64ᵇ	19.62ᵇ	19.31ᵇ	18.23ᵇ	17.85ᵇ
6	Pendimethalin @ 1000 g ha⁻¹ (PE) f/b tembotrione @ 120 g ha⁻¹ (PoE)	26.39ᵇ	23.66ᵇ	20.50ᵇ	17.04ᵇ	17.49ᵇ	18.26ᵇ
7	Pendimethalin @ 1000 g ha⁻¹ (PE) f/b 2,4 D ethyl ester @ 1000 g ha⁻¹ (PoE)	26.56ᵃ	23.79ᵇ	19.51ᵇ	17.86ᵈ	17.31ᵇ	18.15ᵇ
8	Halosulfuron-methyl @ 90 g ha⁻¹ (PoE)	26.41ᵇ	25.64ᵇ	20.90ᵇ	20.61ᵇ	18.35ᵇ	18.65ᵇ
9	Tembotrione @ 120 g ha⁻¹ (PoE)	26.58ᵇ	26.53ᵇ	22.46ᵇ	20.69ᵇ	18.16ᵇ	18.99ᵇ
10	2,4 D ethyl ester @ 1000 g ha⁻¹ (PoE)	26.73ᵇ	26.43ᵇ	20.85ᵇ	20.54ᵈ	18.37ᶜ	18.91ᶜ

SE(m) ±

CD at 5 %
Table.2 Fungal count in soil as influenced by application of herbicides

Sr. No.	Treatments	Fungal count (x 10^4 cfu g^-1 soil)					
		7 DAS	15 DAS	21 DAS	30 DAS	45 DAS	At harvest
1.	Weedy	8.84c	8.79bc	8.10b	8.16b	7.47b	6.78b
2.	Weed free (two hand weeding)	9.59a	10.02a	10.13b	9.93a	9.70a	7.86a
3.	Atrazine @ 1000 g ha^-1 (PE) fb halosulfuron methyl @ 90 g ha^-1 (PoE)	8.81	8.53bc	6.60c	6.53cd	6.06c	6.35b
4.	Atrazine @ 1000 g ha^-1 (PE) fb 2,4 D ethyl ester @ 1000 g ha^-1 (PoE)	8.86b	8.25c	6.70c	6.41cd	5.97c	6.27b
5.	Pendimethalin @ 1000 g ha^-1 (PE) fb halosulfuron-methyl @ 90 g ha^-1 (PoE)	8.86b	8.10c	6.78c	6.52cd	6.06c	6.23b
6.	Pendimethalin @ 1000 g ha^-1 (PE) fb tembotrione @ 120 g ha^-1 (PoE)	8.88b	8.10c	7.03c	6.62cd	6.02c	6.31b
7.	Pendimethalin @ 1000 g ha^-1 (PE) fb 2,4 D ethyl ester @ 1000 g ha^-1 (PoE)	8.96b	8.22c	6.64c	6.20d	5.81c	6.22b
8.	Halosulfuron-methyl @ 90 g ha^-1 (PoE)	8.93b	8.75bc	7.35bc	7.10c	6.18c	6.42b
9.	Tembotrione @ 120 g ha^-1 (PoE)	8.96b	9.10d	7.65bc	7.08c	6.00c	6.41b
10.	2,4 D ethyl ester @ 1000 g ha^-1 (PoE)	9.04b	8.92c	7.27c	7.04c	6.30c	6.43b

SE(m)+ | 0.065 | 0.21 | 0.27 | 0.25 | 0.26 | 0.22 |
CD at 5% | 0.19 | 0.64 | 0.81 | 0.77 | 0.79 | 0.67 |

Table.3 Actinomycetes count in soil as influenced by application of herbicides

Sr. No.	Treatments	Actinomycetes (x 10^6 cfu g^-1 soil)					
		7 DAS	15 DAS	21 DAS	30 DAS	45 DAS	At harvest
1.	Weedy	19.35b	19.47bc	18.47bc	18.48b	16.85b	14.26b
2.	Weed free (two hand weeding)	21.17a	22.59a	23.91a	24.33a	21.59a	17.43a
3.	Atrazine @ 1000 g ha^-1 (PE) fb halosulfuron methyl @ 90 g ha^-1 (PoE)	19.66b	18.96c	15.73c	15.14c	13.63c	13.39b
4.	Atrazine @ 1000 g ha^-1 (PE) fb 2,4 D ethyl ester @ 1000 g ha^-1 (PoE)	19.68b	18.78c	15.42c	15.12c	13.61c	13.52b
5.	Pendimethalin @ 1000 g ha^-1 (PE) fb halosulfuron-methyl @ 90 g ha^-1 (PoE)	19.65b	18.59c	18.98b	15.22c	13.80c	13.28b
6.	Pendimethalin @ 1000 g ha^-1 (PE) fb tembotrione @ 120 g ha^-1 (PoE)	19.76b	18.59c	16.13c	15.51c	14.13c	13.33b
7.	Pendimethalin @ 1000 g ha^-1 (PE) fb 2,4 D ethyl ester @ 1000 g ha^-1 (PoE)	19.86b	18.76c	15.94c	15.00c	13.28c	13.37b
8.	Halosulfuron-methyl @ 90 g ha^-1 (PoE)	19.88b	19.59bc	16.93bc	16.14c	13.79c	13.51b
9.	Tembotrione @ 120 g ha^-1 (PoE)	19.84b	20.14b	17.37bc	15.91c	13.49c	13.39b
10.	2,4 D ethyl ester @ 1000 g ha^-1 (PoE)	20.00b	19.86bc	16.63bc	16.08c	13.78c	13.44b

SE(m)+ | 0.24 | 0.32 | 1.04 | 0.47 | 0.48 | 0.36 |
CD at 5% | 0.72 | 1.08 | 3.12 | 1.41 | 1.44 | 1.09 |

The fungal count was significantly higher (7.86 x 10^4 cfu g^-1 soil) in the treatment of weed free treatment (two hand weeding) at harvest of sweet corn. It was followed by the treatment of weedy check (T_1), which recorded the fungal count 6.78 x 10^4 cfu g^-1 soil. The results revealed that an application of 2,4 D ethyl ester @ 1000 g ha^-1 as post emergence herbicide (T_{10}) has less adverse effect on soil fungal population than the other herbicides treatments under study. The percent decrease in the fungal count was 8.60%,
21.16 % and 25.23 to 27.67 % in the weed free treatment (two hand weeding), weedy check (T₁) and treatments of pre and post emergence herbicides (T₃ to T₁₀), respectively over the initial value of 8.6 x 10⁴ cfu g⁻¹ soil. The reduction in fungi count due to application of herbicides was also reported by Abbas et al., (2014) and Patel et al., (2019). The reduction in soil fungi population due to pre and post emergence herbicides are associated with suppress cell division as a consequence of disturbing nucleic acid metabolism and protein synthesis (Askif 2004).

Actinomycetes count

The weed free (two hand weeding) treatment (T₂) recorded significantly higher actinomycetes count as compared to rest of the treatments (Table 3). In the weed free (two hand weeding) treatment (T₂) the actinomycetes count was increased at 7, 15, 21, 30 and 45 DAS (19.35, 19.47, 18.47, 18.48 and 16.65 x 10⁶ cfu g⁻¹ soil, respectively) as compared to initial value (19 x 10⁶ cfu g⁻¹ soil). Higher value of actinomycetes count was reported at 21 DAS (23.91 x 10⁶ cfu g⁻¹ soil) and 30 DAS (24.33 x 10⁶ cfu g⁻¹ soil). The actinomycetes count was increased slightly initially at 7 DAS (19.35 x 10⁶ cfu g⁻¹ soil) and 15 DAS (19.47 x 10⁶ cfu g⁻¹ soil) in the weedy treatments (T₁), however, reduction in the actinomycetes count was observed at 21 DAS, 30 DAS and 45 DAS. The actinomycetes count at 45 DAS was 16.85 x 10⁶ cfu g⁻¹ soil with 11.31 % decrease over initial value.

The actinomycetes count was slightly increased (3.47 to 4.52 %) over initial value at 7 DAS, thereafter, it was reduced gradually at 15 DAS, 21 DAS, 30 DAS and 45 DAS in the treatments of pre-emergence and post emergence application of herbicides (T₃ to T₇). The treatment of pendimethalin @ 1000 g ha⁻¹ (PE) followed by 2,4 D ethyl ester @ 1000 g ha⁻¹ (PoE) recorded significantly lower actinomycetes count of 13.28 x 10⁶ cfu g⁻¹ soil at 45 DAS. However, this treatment was statistically at par with all the treatments of herbicide application. In the treatments of post emergence application of herbicides (T₈ to T₁₀), the actinomycetes count was slightly increased from 3.10 to 6.0 % over initial value (19 x 10⁶ cfu g⁻¹ soil) at 7 DAS and at 15 DAS, thereafter it was gradually reduced at 21 DAS, 30 DAS and 45 DAS.

The weed free treatment (two hand weeding) recorded significantly higher actinomycetes count (17.43 x 10⁶ cfu g⁻¹ soil) at harvest of sweet corn. It was followed by the treatment of weedy check (T₁), which recorded the actinomycetes count 14.26 x 10⁶ cfu g⁻¹ soil. The results revealed that an application of pendimethalin @ 1000 g ha⁻¹ as pre emergence followed by tembotrione @ 120 g ha⁻¹ as post emergence herbicide (T₆) has less adverse effect on soil actinomycetes population than the other herbicides treatments under study. In general, the detrimental effect of pre and post emergence herbicides on actinomycetes count in soil was in the order of pendimethalin(PE) fb 2,4 D ethyl ester (PoE) > tembotrione (PoE) > atrazine (PE) fb 2,4 D ethyl ester (PoE) > halosulfuron methyl (PoE) > 2,4 D ethyl ester (PoE) > halosulfuron-methyl (PoE) > pendimethalin (PE) fb halosulfuron-methyl (PoE) > pendimethalin (PE) fb tembotrione (PoE).

The per cent decrease in the actinomycetes count was 8.26 %, 24.94 % and 30.10 % in the weed free treatment (two hand weeding), weedy check (T₁) and treatments of pre and post emergence herbicides (T₃ to T₁₀), respectively over the initial value of 19 x 10⁶ cfu g⁻¹ soil. The reduction in actinomycetes population may be due to degradation of herbicides into secondary metabolites, which
can be more hazardous to the soil actinomycetes population than the herbicide itself. Similar results were also reported by Latha and Gopal (2010) and Adhikary et al., (2014).

In conclusion the application of tembotrione @ 120 g ha\(^{-1}\) as post emergence herbicide (T\(_5\)) showed less adverse effect on soil bacterial population at harvest than the other herbicides treatments. Application of 2,4 D ethyl ester @ 1000 g ha\(^{-1}\) as post emergence herbicide (T\(_{10}\)) showed less adverse effect on soil fungal population than the other herbicides treatments. Application of halosulfuron-methyl @ 90 g ha\(^{-1}\) as post emergence herbicide (T\(_8\)) showed less adverse effect on soil actinomycetes population than the other herbicides treatments under study.

Acknowledgement

The authors are grateful to the I/c. Professor, Department of Agronomy, College of Agriculture, Dhule for providing necessary facilities for conduct of the experiment.

References

Abbas, Z., Akmal, M., Khan, K. S. and Hassan, F. (2014) Effect of Bructril Super (Bromoxynil) herbicide on soil microbial biomass and bacterial population. *Brazilian Archives of Biology and Technology* 57(1), 9-14.

Adhikary, P., Shil, S. and Patra, P. S. (2014) Effect of herbicides on soil microorganisms in transplanted chilli. *Global Journal of Biology, Agriculture and Health Science* 2, 15-17.

Allievi, L. and Gigliotti, C. (2001) Response of the bacteria and fungi of two soils to the sulfonylurea herbicide cinosulfuron. *Journal of Environmental Science Part B36*, 161-175.

Araujo, A. S. F., Monteiro, R. T. R. and Abarkeli, R. B. (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. *Chemosphere* 52, 799–804.

Askif, P. (2004) Effect of alachlor and glyphosate on development of *Glomus mosseae* and its symbiotic association with peanut. *Ph.D. thesis submitted to Kurukshetra University, Kurukshetra (Haryana), India.*

Dey, P., Pratap, T., Singh V.P., Singh, R. and Singh, S.P. (2017) Weed management options for spring sweet corn. ISWS Golden Jubilee International Conference on "Weeds and Society: Challenges and Opportunities", ICAR-Directorate of Weed Research, Jabalpur, India during 21-24 November 2018: 297.

Dhingra, O.D and Sinclair, J.B., (1993) *Basic Plant Pathology Methods*, CBS Pub., New Delhi.

Juan, P.E., Igual, J. M., Sánchez-Martín, M. J. and Rodríguez-Cruz, M. S. (2017) Influence of herbicide triasulfuron on soil microbial community in an unamended soil and a soil amended with organic residues. *Frontiers in Microbiology* 8, 378.

Latha, P. C. and Gopal, H. (2010) Effect of herbicides on soil micro-organisms. *Indian Journal of Weed Science*, 42(3 & 4), 217-222.

Milosevic, N. A. and Govedarica, M. M. (2000) Effect of herbicides on microbial properties of soil. *Proceedings of the 1st European Conferences on Pesticides and related organic, Micropollutants in the Environment (T. Albanised), Ioanniva, Greece*, 61-66.

Nannipieri, P. and Badalucco, L. (2003) Biological processes. In: Benbi, D. K., Nieder, R. (Eds.), *Handbook of Processes and Modeling in the Soil-Plant System*. Haworth Press, Binghamton, NY, pp. 57-82.
Patel, B.D., Chaudhari, D.D., Patel, V.J., Patel, H.K. and Mishra, A. (2019) Effect of herbicides applied to Kharif maize on soil physio-chemical properties, microbial population and their residual effect on succeeding wheat crop. *International Journal of Chemical Studies* 7(2), 705-708.

Pertile, M., Antunes, J.E.L., Araujo, F.F., Mendes, L.W., Van den Brink, P.J. and Araujo, A.S.F. (2020) Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. *Scientific Reports* 10, 1-9.

How to cite this article:

Rathod, R. K., V. P. Bhalerao, P. B. Margal and Kamble, B. M. 2021. Soil Microflora as Influenced by Pre and Post Emergence Herbicide in Sweet Corn Grown in Vertisols. *Int.J.Curr.Microbiol.App.Sci.* 10(01): 2794-2801. doi: https://doi.org/10.20546/ijcmas.2021.1001.323