Numerical Investigation of Centrifugal Compressor Radial Inlet

I Gilev¹, Y Kozhukhov¹,², K Gilev¹, E Fateeva¹ and N H Nhan²

¹ Peter the Great Saint-Petersburg Polytechnic University. 29 Polytechnicheskaya street, Saint-Petersburg, Russia, 194064
² PVEP, Ho chi minh city, Vietnam

E-mail: kozhukhov_yv@mail.ru

Abstract. Efficient compressors designs reduce the overall energy consumption of industrial buildings. The inlet chambers for turbocompressors have a significant influence on the whole stage operation. An uneven flow in the inlet of an impeller can turn up to be the cause of stage efficiency drop, and also it is able to narrow down the range of its operational stability which in turn is an essential negative factor. Currently, there is no clear methodology of the design of the inlet radial chambers which makes it difficult to design the compressor. The purpose of this work is to develop recommendations for the designing problem formulation of the centrifugal compressor radial inlet chamber and also modify the existing design method for inlet chambers. During the previous research, the most acceptable model of the inlet chamber was obtained with the help of real and numerical experiment. In this paper, different geometric parameters of the inlet chamber are changed and then calculated by means of numerical experiment. Their influence on the inlet chamber loss coefficient, relative velocity distribution and static pressure coefficient is investigated.

1. Introduction

Compressors are the power machines and they are widely used in different spheres of industry. The more efficient the compressor machine is the more economic effect it can give to the industrial buildings. The centrifugal compressor adiabatic efficiency of the stage for stationary machines it can’t be higher than 0.75 - 0.85 and for transport machines it can’t exceed 0.60-0.80.

According to the latest research the main attention when developing the stage is mainly paid to the dynamic part of the compressor (impeller) and fixed elements such as: a diffuser, reverse direction device. Thus the question of the flow in the inlet chamber is not a widely spread topic for the investigation.

Nevertheless, inlet chambers cause a significant impact on the stage operation of the power machine. For example, the uneven flow in the outlet of the inlet chamber can cause the stage efficiency reduction by 4-5%, and also can lead to the characteristic drop to the lower mass flow area, which, in its turn, decreases the stage pressure. Careful design process of the inlet chamber flowing part can lead to the loss and unevenness of the flow reduction before the stage and, thus, to the whole machine efficiency rise [1-6].

Nowadays there are formulized recommendations on how to design inlet chambers. However, there is no clear method that would be based on the efficiency criteria in order to for it be able to design
these kinds of compressors parts. During the design process a lot of questions on how to design various parts of the inlet chambers appear [7]. In this paper, different geometric parameters of the inlet chamber are changed and then calculated by means of numerical experiment. Their influence on the inlet chamber loss coefficient, relative velocity distribution and static pressure coefficient is investigated. With the help of the received results, the recommendations for the designing problem formulation of the centrifugal compressor radial inlet chamber are formulated.

During the previous research [8-11], the most acceptable model of the inlet chamber was obtained with the help of real and numerical experiment. This chamber became the object of this paper investigation.

2. Investigation
As it was said before, during the inlet chamber design process some geometric parameters of the chamber are accepted approximately, without any recommendations. Such geometric parameters are: the diameter of the nozzle part Dc and the fillet radius of the spiral chamber sections Rf. In this paper we present the investigation of these parameters influence on the chamber efficiency parameters. The solution of grid independence was also investigated in order to determine the minimum number of elements providing an acceptable accuracy of the solution. All numerical studies were carried out using the ANSYS CFX 19 software package [12].

When designing the chamber, it should be divided into three parts: curved axisymmetric nozzle, spiral chamber and inlet channel. The sections where the fillet radius R_f was changed are shown in (see Fig. 1).

![Figure 1. The spiral chamber design sections view](image)

3. Problem statement
The placement of sections 1-1 and 2-2 (see Fig.2), corresponding to the inlet chamber inlet and outlet cross-sections.
3.1 Grid independency investigation

ICEM CFD program was used to build the grid. With its help, 13 variants of computational grids were built. The computational grid is unstructured, the grid cells in the core of the flow were tetrahedral. The elements were condensed near the inlet and outlet edges of the grid edges [13]. 10 layers of prismatic elements were created near the solid walls to describe the boundary layer [14-18]. The variants of grids differed from each other by the number of elements in the grid are presented in table 1. According to these data, the inlet radial chamber loss coefficient dependence from the computational grid density was constructed (see Fig. 3 a).

Number of elements, mln	1	2	2.5	3	3.5	4	4.5	5	6	7.5	8.0	10.5	12.5
ζ_{10^{-2}}	6	5.4	5.4	4.9	5.1	5	5.6	5.6	5.4	5	4.7	4.7	4.7

Figure 2. Cross-sections 1-1 and 2-2 placement

Figure 3. Loss coefficient dependence a) from the number of grid elements; b) from the fillet radius dimensions; c) from the nozzle diameter dimensions
As it can be seen in table 1 and fig. 3, with the increase in the number of elements from over 8 million elements the change of the inlet chamber loss coefficient occurs with a lower intensity. With the improvement in the grid quality, as expected, the values of the resulting residuals fall, indicating better convergence of the calculation. The calculation with very rough grids gives the residuals convergence only by the order of 10^-4, which is insufficient. Finally, the grid with parameters corresponding to the variant with 8.2 million elements was adopted to calculate the inlet chamber characteristics.

3.2 Grid independency investigation

The spiral chamber consists of 6 sections with different fillet radiuses. The sections where the fillet radius \(R_f \) was changed are shown in figure 1. Eight different configurations of the fillet radius dimensions were investigated. The results are shown in table 2 and figure 3.

Table 2: Loss coefficient dependance from the fillet radius dimensions.

\(R_f \), mm	83	84	85	85.5	86	87	88	89
\(\zeta, 10^{-2} \)	5.1	5.3	6.9	5.1	5.3	5.3	5.3	5.3

Table 2 and figure 3 b show that the fillet radius dimensions don’t make a lot of influence on the inlet chamber loss coefficient. But other different forms of inlet chambers should be investigated further.

3.3 The nozzle diameter influence investigation

Seven different configurations of the nozzle diameter \(D_n \) dimensions were investigated. The results are shown in table 3.

Table 3: Loss coefficient dependence from nozzle diameter dimensions.

\(D_n \), mm	182.1	183	185	185.6	186.7	191.1	198.5
\(\zeta, 10^{-2} \)	7.7	7.2	6.7	5.1	6.2	5.6	5.6

The results (see Fig 3 c) show that the nozzle diameter has a significant influence on the inlet chamber loss coefficient. And the more the nozzle diameter dimensions are the less is the loss coefficient. But the nozzle diameter has restricted values because of the geometric dimensions of the chamber, so the maximum affordable value of the nozzle diameter should be chosen. Also other different forms of inlet chambers should be investigated further.

4. Results

To sum up, the investigation of different parameters influence on the chamber efficiency parameters is presented in this work, such as: grid independency, the diameter of the nozzle part \(D_n \) and the fillet radius of the spiral chamber sections \(R_f \) [19-21]. The nozzle diameter has a significant influence on the inlet chamber loss coefficient. And the more the nozzle diameter dimensions are the less is the loss coefficient. But the nozzle diameter has restricted values because of the geometric dimensions of the chamber, so the maximum affordable value of the nozzle diameter should be chosen for each chamber. The fillet radius dimensions don’t have a lot of influence on the inlet chamber loss coefficient [22-27]. The results of the work were obtained using computational resources of Peter the Great Saint-Petersburg Polytechnic University Supercomputer Center.
References
[1] Danilishin A M, Kartashov S V, Kozhukhov Y V and Kozin E G The methodology for the existing complex pneumatic systems efficiency increase with the use of mathematical modeling *IOP Conference Series: Materials Science and Engineering* **232**(1), 012069 DOI:10.1088/1757-899X/232/1/012069 (2017)
[2] Paroubek J and Kynčl J 1998 The Influence of Impeller Flow Channel on Aerodynamic Performance of a Centrifugal Compressor Stage, *ASME Paper 98-GT-40*
[3] Anderson C M, Turan Ö F, Brzek B and Castillo L 2004 Adverse Pressure Gradient Turbulent Boundary Layer Flows: Part 1: Flow Development 15th *Australasian Fluid Mechanics Conference The University of Sydney* Sydney, Australia December
[4] Bet F and Seider G 2014 Numerical optimization of unsteady thermal processes of the turbocompressor *Dynamics magazine* p. 23-26
[5] Kozhukhov Y V, Yun V K, Reshetnikova L V and Prokopovich M V 2015 Numerical Investigation of Different Radial Inlet Forms for Centrifugal Compressor and Influence of the Deflectors Number by Means of Computational Fluid Dynamics Methods with Computational Model Validation *IOP Conf. Ser.: Mater. Sci. Eng.* **90** 012047 DOI: 10.1088/1757-899X/90/1/012047
[6] Danilishin A M, Kozhukhov Y V, Lebedev A A, Malev K G and Mironov Y R 2018 Design optimization opportunity of the end stage output plenum chamber of the centrifugal compressor for gas pumping unit *AIP Conference Proceedings* **2007**, 30044 DOI: 10.1063/1.5051905
[7] Neverov V V, Kozhukhov Y V, Yablokov A M and Lebedev A A 2018 The experience in application of methods of computational fluid dynamics in correction of the designed flow path of a two-stage compressor *AIP Conference Proceedings* **2007**, 30048 DOI: 10.1063/1.5051909
[8] Sravan Kumar G, Azad Dr D and Mohan Laxmi K2016 Valuation of turbulence modelling on low speed centrifugal compressor using computational fluid dynamics *International Journal of Mechanical Engineering and Technology (IJMET)* **7**(6) pp. 634–641 Article ID: IJMET_07_06_063
[9] Liu Z and Hill D L 2000 Issues Surrounding Multiple Frames of Reference Models for Turbo Compressor Applications *International Compressor Engineering Conference* **1369** http://docs.lib.purdue.edu/icec/1369
[10] Zante van D E, Strazisar A J, Wood J R, Hathaway M D and Okishi T D 2000 Recommendations for achieving accurate numerical simulation of tip clearance flows in transonic compressor rotors *Paper TM2000-210347 NASA*
[11] King M P, Wilson M and Owen J M 2005 Rayleigh-Benard Convection in Open and Closed Rotating Cavities *Proc ASME Turbo Expo, paper GT2005-68948*
[12] Yun V 2011 The analysis and assessment of the design methods of the flow path of centrifugal compressor machines *Works of the XV international scientific and technical conference on compressor equipment Part I* Kazan, pp. 362-370
[13] Boldyrev Y, Rubtsov A, Kozhukhov Y, Lebedev A, Cheglakov I and Danilishin 2015 A Simulation of unsteady processes in turbomachines based on nonlinear harmonic NLH-method with the use of supercomputers *CEUR Workshop Proceedings* **1482**, pp. 273-279 1st *Russian Conference on Supercomputing Days 2015, RuSCDays* Moscow, Russian Federation
[14] Rosic B, Denton J D and Pullan G 2005 The importance of shroud leakage modelling in multistage turbine flow calculations *Proc. ASME Turbo Expo, paper GT2005-68459*
[15] Chew J W, Dadkhah S and Turner A B 1992 Rim sealing of rotor-stator wheelspaces in the absence of external flow *ASME J. Turbomachinery* **124** 306-315
[16] Wernet M P, Bright M M and Skoch G J 2002 An investigation of surge in a high-speed centrifugal compressor using digital PIV *Paper TM2002-211832, NASA*
[17] Zhao W, Sheng J, Yang J and Song J 2015 Optimization design and experiment of centrifugal pump based on CFD Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) 6

[18] Zhang F and Baar R 2017 Geometric Optimization of Turbocharger Compressor and Its Influence on Engine Performance ICMAA DOI: 10.1051/71080 8(108), 08012

[19] Rane S, Kovačević A, Stošić N and Kethidi M 2013 CFD grid generation and analysis screw compressor with variable geometry rotors 8th Int conf on compressors and their systems C1390 p. 601

[20] Roberts D A and Steed R 2004 A comparison of steady-state centrifugal stage CFD analysis to experimental rig data Submitted to the 2004 ANSYS CFX conference

[21] Gerolymos G A and Vallet I 2002 Wall-normal-free Reynolds-Stress Model for compressible rotating flows applied to turbomachinery AIAA Journal 40

[22] Fenghui Han, Yijun Mao and Jiajian Tan 2016 Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages Journal of Mechanical Science and Technology 30(10) 4591~4599. DOI 10.1007/s12206-016-0930-y

[23] Saladino A J and Bielecki S J 2002 Streamlining of the Radial Inlet Design Process for Centrifugal Compressors Proceedings of IMECE2002ASME International Mechanical Engineering Congress & Exposition November 17–22, New Orleans, Louisiana. doi:10.1115/imece2002-39590

[24] Kim Y and Koch J 2004 Design and Numerical Investigation of Advanced Radial Inlet for a Centrifugal Compressor Stage Proceedings of IMECE04 2004 ASME International Mechanical Engineering Congress and Exposition November 13-20, , California USA. doi:10.1115/imece2004-60538

[25] Yagi M, Shibata T, Nishida H, Kobayashi H, Tanaka M and Sugimura K 2010 Optimizing a Suction Channel to Improve Performance of a Centrifugal Compressor Stage Turbomachinery, Parts A, B, and C Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air GT2010 June 14-18, Glasgow, UK 7 doi:10.1115/gt2010-23019 (2010)

[26] Tan J, Wang X, Qi D and Wang R 2011 The effects of radial inlet with splitters on the performance of variable inlet guide vanes in a centrifugal compressor stage Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225(9) 2089–2105 doi:10.1177/0954406211407799

[27] Duong V A T, Pushkareva L 2020 Protecting the environment for the sake of sustainable development from the perspective of implementing social responsibilities of Vietnamese enterprises E3S Web of Conferences 164 11011 doi:10.1051/e3sconf/202016411011