Review Article

Application and Pharmacological Properties of Chinese Herb Danggui: A System Review

Wen-xiu Li1,2, Ai-hua Zhang3, Jian-hua Miao1, Hui Sun3, Ying Han2, Guang-li Yan2, Fang-fang Wu1, Xi-jun Wang1,2*

1National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
2National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmaecochemistry, Engineering Research Center of Efficacy Evaluation and Industrial Development of TCM Classic Formulas of the Ministry of Education, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China

ARTICLE INFO

Article history:
Received: 19 February, 2020
Accepted: 2 March, 2020
Published: 23 March, 2020

Keywords:
Angelica sinensis (Oliv.) Diels
chemical components
pharmacological activities
targets
clinical application

ABSTRACT

History of the usage of Angelica sinensis (Danggui in Chinese) is glorious, it often acts as monarch drug compatible in various classical formulations. Angelica sinensis can be widely used in treatment of gynecologic diseases and all kinds of blood-deficiency fever by tonifying blood and repairing vitality. It contains abundant volatile oil, organic acid and Angelica sinensis polysaccharide, coumarin, trace elements and amino acids, which possesses extensive pharmacological activities include resistant to cancer and tumour, regulation of blood system, hepatoprotective effects, anti-inflammatory action, antioxidant activity, protection of nervous system, as well as cardioprotective effects. Based on numerous reports and the published scientific literature recent years, an extensive review of research on chemical components, pharmacological activities and the compatibility application of Angelica sinensis were conducted. The relationship between active ingredients and the corresponding pharmacological effects, as well as commonly used couplet medicines and the utility in clinic were simultaneously summarized.

© 2020 Xi-jun Wang, Hosting by Science Repository. All rights reserved

Introduction

Angelica sinensis (Oliv.) Diels (AS) is one of the perennial herbs of Chinese medicine, which derived from the root of Angelica sinensis belonging to Umbelliferae. It was first recorded in Sheng Nong's herbal classic (200-300 AD) [1]. Living cool and humid environment, it is a special variety of high-altitude seedling raising and low-altitude transplanting. Angelica sinensis slices shows cylindrical shape slightly, flexible, epidermis with yellowish brown and oily embellish, yellow-white cross-section and strong odor are preferred, as showed in (Figure 1) [2, 3]. Angelica sinensis has been commonly used by the ancient physicians for more than two thousand years. It has the effect of tonifying and invigorating blood system, regulating menstruation and alleviating pain, relaxing bowels and relieving constipation, with remarkable curative effect. As a kind of the most frequently used drugs in prescriptions, Angelica sinensis has been widely used to treat many diseases, including all kinds of symptoms associated with blood deficiency, blood stasis, dizziness, palpitation, irregular menstruation, asthenia cold abdominalgia, bruises, carbuncle sore, rheumatic arthralgia, intestinal dryness with constipation, etc. For thousands of years in China and other Asian countries, Angelica sinensis has been used as a representative herbal medicine for traditional treatment of anemia, gynecological disorder and cardiovascular diseases. Many domestic and overseas scholars have carried out the research on the chemical components and pharmacology of Angelica sinensis, by means of literature research, and the techniques of phytochemistry, molecular biology, biochemistry, pharmacology, which made considerable progress and provide a basis for the application of Angelica sinensis. From the perspective of traditional Chinese medicine theory, Angelica sinensis can soothe the five viscera of body, strengthen the...
physique, regulate emotions, and effective for both asthenic disease and Stasis diseases. In terms of chemistry and modern pharmacological research to understand, *Angelica sinensis* contains volatile oil, polysaccharides, organic acids, coumarin, trace elements, amino acids, flavonoids, vitamins etc. It has many pharmacological effects, such as anti-tumor, anti-oxidation, regulating immunity, anti-inflammation and so on. In this paper, the chemical constituents and pharmacological effects of *Angelica sinensis* in recent years were concluded, which is of great significance to reveal its mechanism in a more comprehensive way.

Chemical Composition

I Volatile Oil

Angelica sinensis contains a variety of volatile oil compounds (Figure 2), which is a kind of the most important active ingredients, with functions of relaxing smooth muscle, anti-platelet aggregation, improve cerebral ischemia, neuroprotection, improve immune function, analgesic anti-inflammatory and so on [4-10]. According to the property, the volatile oil of Angelica can be divided into neutral, phenolic and acidic. And the content of neutral oil is the highest, include principally E-ligustilide and Z-ligustilide, (3Z, 3'Z)-6, 8', 7, 3'-diligustilide, senkyunolide G, senkyunolide H, senk -unolide I, senkyunolide J, E-butyldiendephalthalide (2), 3 and Z-butyldiendephalthalide, bergapten, α-angelicala ctone, conifery ferulate, 3-N-buty- phthalide, triligustilides A, triligustilides B, levistolide A,angesinenolides A and B [6, 9]. Phenolic volatile oil contains 4-Methylbenzyl alcohol, guaiacol, Vanillin, 4-methyl-phenol, 2,4-Dihydroxyacetophenone, 4-(2-hydroxy-1-methoxyethyl) -phenol, o-Hydroxyvalerphenone, Isoeugenol, 4-hydroxy-2- methylacetophenone eugenol, m-cresol. The components of acid oil are such as dimethyl phthalate, dimethyl azelate, dimethyl sebacate, glutaric acid hexadecyl pent-4-en-1-y1 esterbutylidene dihydro-phthalide, butyldiene phthalide [9-15].

Figure 1: A) *Angelica sinensis* (Oliv.) Diels (AS), B) Aboveground parts of AS C. Roots of AS D Prepared AS.

![Figure 1](image1.png)

Figure 2: Structural formulae of representative components of various compounds in *Angelica sinensis*.

II Organic Acids

There are abundant and diverse organic acids in *Angelica sinensis*. As the most representative organic acid, ferulic acid is often used as one of key indicator to evaluate the quality of *Angelica sinensis* [16]. It has many functions such as antioxidant, anti-inflammatory, anti-coagulation, hepatic protection, dilatation of micro vessels, lowering cholesterol and improving immunity [17-20]. Chlorogenic acid, caffeic acid, vanilla acid, 3-O-feruloylquic acid, phthalic acid, succinic acid, niacin, cetane carboxylic acid, anisic acid, azelaic acid, palmitic acid, linoleic acid, stearic acid, p-hydroxybenzoic acid, protocatechuic acid and other acidic components [21-24].
III Angelica sinensis Polysaccharide

Angelica sinensis contains plentiful of polysaccharides, which are the main components of water-soluble extracts of Angelica sinensis. Angelica sinensis polysaccharides (ASP) have lots of physiological activities, not only have obvious effects on the body's blood system, but also have function of hematopoiesis, regulating immunity and material metabolism, anti-tumor, anti-oxidation, anti-radiation and other effects [25-30]. Therefore, more and more attention has been paid to the study of ASP. ASP is a β-D-pyranoid polysaccharide, which the average molecular weight is 72,900 Da, heteropolysaccharide is the main form of existence [31]. The configurations of sugars in ASP consists of α-glycosidic and β-glycosidic bonds, and the main monosaccharide components of ASP include glucose (Glc), arabinose (Ara), galactose (Gal), mannose (Man), rhamnose (Rha), xylose, fucose, galacturonic acid, glucuronic acid, etc. [32-35].

IV Coumarin

Angelica sinensis contains four kinds of coumarins, including simple coumarins, furanocoumarins, pyran coumarins and dicoumarins, which plays vital beneficial roles in anti-oxidation, anti-inflammatory, anti-platelet aggregation, osteoporosis, analgesia, reactive oxygen species, neuroprotection, ischemia, anti-arrhythmic, anti-tumor and cytotoxicity [36-39]. 14 coumarin components were identified by HPLC-Q-TOF-MS/MS, respectively, 8-Oxymethyl isoimperatorin, phellopterin, pabulenol, osthenol, alloisoimperatorin, xanthotoxol, xanthotoxin, Isopimpinellin, marmesin, bergapten, oxypeucedanin, imperatorin, isodon, and psoralen [40].

V Trace Elements and Amino Acids

Trace elements in TCM act as a role of enhancing the efficacy of medicinal, they are involved in various biochemical reactions in the body with highly biological activity, which is crucial to maintain normal metabolism [1]. According to the result of determination by ICP-OES with Microwave Digestion, suggest that the contents were K, P, Ca, Mg, Fe, Al, Na, Zn, Cu, Mn, Sr, B, Ba, Cr, Ni, Pb, Cd, as in descending order [41]. Besides, Si, Mo, Sn, Re, Sc, Ti and V also be found in Angelica sinensis [42, 43]. Angelica sinensis is rich in various amino acids, especially the arginine, which possess multiple biological properties, as anti-inflammation, anti-fatigue, anti-cancer, platelet protection, myocardial protection, etc. [44-46]. Many components have been reported, such as tryptophan, aspartic acid, threonine, serine, glutamic acid, glycine, alanine, proline, methionine, isoleucine, dermatine, glutamic acid, phenylalanine, histidine, valine, lysine, γ-aminobutyric acid, leucine [32, 45, 47]. And uracil, adenine, Vitamin B12, Vitamin E, β-sitosterol, folinic acid also be found in Angelica sinensis [44, 48].

Pharmacologic Effects

I Anti-Carcinogenic and Anti-Neoplastic Activity

The incidence and mortality of cancer are still increasing by years, which is the main cause of death nowadays. As a natural ethical medicine resources with potential anti-cancer activity, TCM has been widely studied and applied for its low side effects [49]. Among them, the anti-carcinogenic and anti-tumorigenic research of Angelica sinensis is also fairly extensive. Phthalides-enriched Angelica sinensis extract is able to inhibit metastasis and growth of bladder carcinoma, by antagonizing HIF-1α/ WSB-1/pVHL/VEGF signaling [50]. N-butylidenephallide

Figure 3: Chemical constituents of Angelica sinensis and the corresponding pharmacological effects.
(BP), an active ingredient of phthalides in Angelica sinensis, has been exhibited cancer-resistant properties in various cancers. BP can suppress the growth of gastric cancer cells, via induction of the REDD1 expression to lead inhibition in mTOR signal pathway [51]. BP can inhibit the migration of cancer cells, and induce the cancer cells apoptosis, such as bladder cancer cells and breast cancer cells, by activating PARP, caspase-9 and caspase-3, respectively [52, 53]. In addition, it can regulate the ER stress and mitochondria-intrinsic pathway, causing prostate cancer cells apoptosis [54]. Moreover, research indicated that Z-ligustilide may function as a kind of adjuvant chemotherapy for resist chemoresistance, though interrupting the autophagosome-lysosome fusion [55]. Angelica sinensis polysaccharide (ASP) can reduce the expression of hepcidin, thus suppressing tumor growth in liver [56]. APS effectively stimulating the apoptosis of glioma cells and prohibiting their growth, by promoting E-cadherin in expression and suppressed the TGF (transforming growth factor-β) signaling pathway [57].

II Effects on Hematological System

Angelica sinensis is widely recognized for treatment against various of blood diseases, anemia is the most typical one. Alcohol extract of Angelica sinensis (contains Z-ligustilide, n-butylidenephthalide and ferulic acid) caused the level of red blood cells increase remarkably, as well as hemoglobin concentrations in anaemia model [58, 59]. Furthermore, ASP has an enforced effect on hematological parameters, such as increased the level of Hb and RBCs, and it’s also involved in elevating ferroprotein expression and serum EPO, meanwhile inhibiting NF-κB p65 activation and inflammatory hepcidin [60-62].

ASP can enhance the JAK2/STAT5 signaling pathway mediated by EPO and sensitized K562 cells to EPO dramatically, moreover, it can decrease the level of interferon-γ, interleukin-2 and plasma tumor necrosis factor [63, 64]. ASP showed obvious effects in hampering the growth of K562 cell and arrested the cells in G0/G1 phase, and up-regulated the P16-Rb signaling pathways, thereby accelerating leukemia cell senescence [63, 65, 66]. These results propose that Angelica sinensis might be a potential agent for anti-leukemia.

III Hepatoprotective Effects

Hepatic Stellate Cells (HSCs), as the main cell group in the synthesis of extracelluar matrix in the liver, the treatment of HSC is the core link to prevent the fibrosis process of liver diseases [67]. Studies have shown that Levistilide A can inhibit HSCs proliferation and angiogenesis in CC14-induced fibrotic rats. The mechanism of Levistilide A against liver fibrosis is related to reducing the expression of VEGF-R2, VEGF and CD31 [68]. ASP also be used as a potential hepatoprotective agent for relieve liver the injury. ASP significantly alleviated liver damage by increasing the level of GSH and curbing hepatic apoptosis [69]. Furthermore, ASP attenuated the hepatic apoptosis though Caspase-8 and JNK-mediated pathway and suppressed the activation of NF-κB and IL-6/STAT3 signaling pathways in concanavalin A-induced liver damage [70]. Volatile oils of Angelica sinensis also exhibits liver protection effects by its anti-inflammatory properties [71].

IV Anti-Inflammatory Effects

V Antioxidant and Antiaging Effects

Studies indicated that ferulic acid and ASP have certain antioxidant activities, which increased with the increasing concentration of the ASP solution [78, 79, 80]. ASP acts as a protective role against H2O2-induced damage in H9c2 cells via activating the ATF6 (transcription factor 6) pathway, to ameliorating oxidative stress [81]. Furthermore, a kind of exopolysaccharide isolated from Angelica sinensis, exerted strong antioxidant activity [82]. ASP had an extraordinary antiaging effect, via prevented oxidative damage and reduced the levels of ROS, 8-OHdG, and 4-HNE, as well as lowered the expression of γ-H2A. X and inhibited the signaling pathway of P19 Arf -Mdm2-p53-p21 Cip1/Waf1 to preventing DNA damage [83].

VI Other Effects

The essential oil of Angelica sinensis has been proven to possess obvious neuroprotective effects, such as ligustilide, Z-butylidenephthalide and tokinolide A and so on [84]. Ligustilide exhibited notably neuroprotective effects on rats of chronic cerebral hypoperfusion, which may be ascribed to its anti-apoptosis of neuron and anti-proliferation of astrocyte [85]. Researches still demonstrated that combination treatment with sodium ferulate and n-butylidene phthalide, enhances expression of astrocyte-derived VEGF and BDNF though raising protein kinase B/mammalian target of rapamycin (AKT/mTOR) expression in an oxygen-and glucose-deprived (OGD) circumstances, and significantly ameliorated neurological damage after stroke [86].

The cardioprotective role of Angelica sinensis has been explored in previous research, ASP against the ischemic injury by activating ATF6 and AMPK-PGC1α pathway to ameliorate the detrimental ER stress [87]. The PI3K/AKT and JAK1/STAT3 pathways were activated by ASP pretreatment via miR-22 in hypoxia-treated cells, by reducing the expression of miR-22 [88]. Ferulic acid is a phenolic compound with strong antioxidant activity, it has protective effect on myocardial toxicity.
induced by doxorubicin in rats by adjusting the expression of ANP and BNP [78].

Analytical Methods

Single herb of TCM contains abundant chemical constituents and various active ingredients, which are also the basis condition to let it reduce the pharmaceutical action. However, TCM has the characteristics of integrity, multi-target and synergy. It is impossible to scientifically interpret the complex system of TCM by evaluating the quality/effectiveness of medicinal materials only from the level of single chemical composition. So how to integrate effective ingredients with pharmacological action and the target is a key issue.

New progress has been achieved in evaluation of overall pharmacodynamic material basis of TCM, with the development of network pharmacology and metabolomics (include chinmedomics) [89]. And the related technology platform mainly includes by nuclear magnetic resonance (NMR), gas-mass spectrometry (GC-MS) and liquid-mass spectrometry (LC-MS).at the same time combined with multivariate statistical methods, they are more in line with the integral characteristics of TCM [90]. Chan et al. has measured glucose, fructose, threonine and ferulic acid by 1H-NMR metabolic profiling and got qualitative information of Angelica sinensis [91]. Volatile oil is important index assessing the quality of Angelica sinensis, Zhong et al. associated the anti-inflammatory mechanism with essential oils via GC-MS-based metabolomics [92]. Wu et al. applied LC-ESI-MS to analyze the differential composition and quality of different medicinal parts of Angelica sinensis, to explain the therapeutic effects of different parts of it [93].

Network pharmacology is based on the theory of system biology, which emphasizes the multi-channel regulation of signal pathway and selects specific signal nodes for multi-target drug molecular design [94]. Sun Hui et al. utilized method network pharmacology combined with chinmedomics demonstrated the mechanism of mirabible in inhibiting colorectal cancer, which mainly involved in regulating bile acid metabolism [95]. Niu et al. constructed the constituent-target-disease network and screen the major targets of Angelica sinensis for the treatment of acute myocardial by methodology of network pharmacology [87].

Chinmedomics integrates the theory and technology of system biology and serum pharmacocohemy of TCM, forms the biomarkers for identifying syndromes, establishes the evaluation system of prescription effectiveness, and discovers the applied science of pharmacodynamic substance basis [96]. Han et al. used the approach of chinmedomics to investigate 13 potential biomarkers associated with multiple metabolic pathways and illuminated effectiveness of Acanthopanax senticosus Harms against acute promyelocytic leukemia [97].

Clinical Application

As a relatively fixed minimum prescription unit in TCM compound prescription, the couplet medicines are the basic form of TCM compatibility application. It can not only improve curative effect, but also reduce toxicity and side effects, which is of special significance in clinical practice. Yang et al. investigated the prescription regularity of formulas contained Angelica sinensis, and analyzed the main indications, syndrome distribution and common pharmaceutical compositions of Angelica-containing prescriptions, based on the Traditional Chinese Medicine Inheritance Assistant Platform [98]. The results showed that the main symptoms of Angelica sinensis were stagnation of Qi and blood and deficiency of Qi and blood. Angelica sinensis is often used in combination with drugs of invigorating qi and replenish blood, especially the compatible with Radix Paeoniae Alba, Astragalus membranaceus, Rhizoma Chuanxiong are used in high frequency, it can achieve different therapeutic purposes in combination with different drugs, so it is widely used in clinical practice [99].

I Compatibility of Angelica and Paeonia

Angelica Paeoniae Powder (APP) is kind of blood regulating agent, originated from Synopsis of the Golden Chamber, has the functions of nourishing blood and regulating liver. It is mainly used in gynecology and analgesia, such as pregnancy-associated diseases and woman abdominal pain [100, 101]. Shi taked 44 cases of dysmenorrhea and 44 cases of pelvic inflammation as the observation group, the symptom score after treatment and PGF2α/PGF2 were used as indicators. Results indicate that the clinical effect of APP in treating dysmenorrhea and pelvic inflammation is remarkable [102]. Wang et al. investigated the molecular mechanisms of APP based on Biological Network, pointed out that APP mainly affects the release of corticotropin-releasing hormone in the central nervous system and influence peripheral IL and PGF2α to improve dysmenorrhea symptoms [103].

II Compatibility of Angelica Sinensis and Astragalus Membranaceus

Angelica and Astragalus are common couplet medicines for supplementing both qi and blood in traditional Chinese medicine. Cell culture experiments proved that the active ingredients of Angelica sinensis could enhance the membrane permeability of formononetin and isoflavone in Astragalus membranaceus [104]. Danggui Buxue Decotion (DBD) is a typical representative prescription, which mainly used for relevant symptoms caused by blood deficiency and gynecological disease [105]. In the enrichment analysis of KEGG pathways for the selected targets based on Network Pharmacology, the pathways for the treatment of anemia by angelica buxue decoction were selected, Li et al. screened out the main pathways of DBD in the treatment of anemia, including cell cycle, P53 signaling pathway, thyroid hormone signaling pathway, FoxO signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, JAK-STAT signaling pathway. DBD used for alleviating menopausal symptoms, the mechanism may be related to regulating the immune system, accelerating osteoblast proliferation and differentiation, and activating the NF-kB signaling [106, 107].

III Compatibility of Angelica Sinensis and Ligusticum Chuanxiong

American Journal of Medicinal Chemistry doi:10.31487/j.AJMC.2020.01.03 Volume 2(1): 5-10
Angelica sinensis and Ligusticum Chuanxiong are both good at nourishing and invigorating blood, the two drugs combined is often used to promote blood circulation and remove blood stasis. Study based on systematic pharmacology show that Ligusticum chuanxiong can treat cardiovascular diseases mainly by regulating four signal transduction pathways, namely calcium signaling pathway, P3K-Akt signaling pathway, cGMP-PKG signaling pathway and vascular endothelial growth factor signaling pathway [107]. Li et al. set up a database to summarize 792 prescriptions regarding Danggui-Chuanxiong herb pair, found that brain diseases coincided with characteristic and action of the two drugs [109]. Encephalopathy is closely related to the abnormalities of hemodynamics and hemorheology, they can improve the hemorheology and coagulation function parameters of the organism in the state of blood stasis. Angelica sinensis still plays a major role in nourishing and activating blood in the prescription.

Conclusion

As a traditional medicinal plant with a long history, Angelica sinensis is rich in volatile oils, organic acids, polysaccharides, coumarin, various amino acids and trace elements. The chemical constituents of Angelica sinensis polysaccharide have been studied comprehensively, but the corresponding pharmacological effects of the chemical constituents have not been researched sufficiently. Studies of volatile oil and Angelica sinensis polysaccharide are extensively and adequately, anti-cancer and anti-inflammatory effects are mainly exerted by volatile oil, Angelica sinensis polysaccharide has the function of antioxidant, liver protection, regulation and improvement of blood system, etc. The other components of Angelica sinensis, by contrast, have been less studied, especially the coumarins in Angelica sinensis, and the target and mechanism of action are not clear enough. In addition, most studies on organic acids of Angelica sinensis are mainly concentrated on ferulic acid, while the pharmacological and pharmacodynamic effects of other organic acids remain to be further studied.

Because of the complexity and diversity of the components of TCM, as well as the multi-target, multi-channel and multi-effect of pharmacological action, it is difficult to directly relate the active ingredients to clinical efficacy, which is the key problem hindering the research of pharmacodynamic substances basic of TCM. The development of network pharmacology and metabolomics has provided a strong support to solve this problem, but it still faces challenges. The database resources are limited, and the existing technology is still difficult to fully analyze all metabolites and the pathways of action. Therefore, the related technologies need to be developed and matured constantly, and how to accurately correlate the complex active ingredients in TCM with the target is still worthy of further study.

Acknowledgments

This work was supported by grants from the Key Program of Natural Science Foundation of State (Grant No. 81830110, 81861168037, 81973745, 81430093), National Key Research and Development Program of China (2018YFC1706103), National Key Subject of Drug Innovation (Grant No. 2015ZX09101043-005, 2015ZX09101043-011), TCM State Administration Subject of Public Welfare (Grant No. 2015468004), Major Projects of Application Technology Research and Development Plan in Heilongjiang Province (GA18C004, GX16C003), Natural Science Foundation of Heilongjiang Province (YQ2019H030, LH2019H056, QC2018117, H2016056), Chinese Postdoctoral Science Foundation (2017M62139B), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015118, UNPYSCT-2016213, UNPYSCT-2016212), Returned Oversea Scholars Program of Heilongjiang Province (2017QD0025), Young Talent Lift Engineering Project of China Association of Traditional Chinese Medicine (QNRC2-B06), Foundation of Heilongjiang University of Chinese Medicine (2018jc01, 2018bs02, 2018bs05, 201809), Nursing Program for Young Scholars with Creative Talents of Heilongjiang University of Chinese Medicine (2018RCQ13, 2018RCD21), Longjiang Scholar Program of Education Department of Heilongjiang Province (Q201916), Heilongjiang Touyan Innovation Team Program.

Conflicts of Interest

None.

REFERENCES

1. The Compile Commission of Zhonghua Bencao of the State Administration of Traditional Chinese Medicine of the People’s Republic of China. Zhonghua Bencao [M]. Vol. 5. Shanghai: Science and Technology Press 1999: 893-894.
2. Pharmaceutical botany[M] (2016) Peking: China Traditional Medicine Press 10.
3. Chinese botany editorial committee (1992). Flora of China[M]. Peking: Science Press 55: 41.
4. Zhong LJ, Hua YL, Ji P, Yao WL, Zhang WQ et al. (2016) Evaluation of the anti-inflammatory effects of volatile oils from processed products of Angelica sinensis radix by GC-MS-based metabolomics. J Ethnopharmacol 191: 195-205. [Crossref]
5. Zhang WQ, Hua YL, Zhang M, Ji P, Li JX et al. (2015) Metabonomic analysis of the anti-inflammatory effects of volatile oils of Angelica sinensis on rat model of acute inflammation. Biomed Chromatogr 29: 902-910. [Crossref]
6. Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S (2017) A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Sci Pharm 85. [Crossref]
7. Liao KF, Chiu TL, Huang SY, Hsieh TF, Chang SF et al. (2018) Anti-Cancer Effects of Radix Angelica Sinensis (Danggui) and N-Butylidenephthalide on Gastric Cancer: Implications for REDD1 Activation and mTOR Inhibition. Cell Physiol Biochem 48: 2231-2246. [Crossref]
8. Hua YL, Ma Q, Zhang XS, Yao WL, Ji P et al. (2019) Urinary metabolomics analysis reveals the effect of volatile oil from Angelica sinensis on LPS-induced inflammation rats. Biomed Chromatogr 33: e4402. [Crossref]
9. Li J, Hua Y, Ji P, Yao W, Zhao H et al. (2016) Effects of volatile oils of Angelica sinensis on an acute inflammation rat model. Pharm Biol 54: 1881-1890. [Crossref]
10. Quyue SY, Yingbo FU, Jiang Liu et al. (2011) HanLi Chemical constituents from Angelica sinensis. Chinese Herbal Medicines 42: 1900-1904.
11. Zou J, Chen GD, Zhao H, Huang Y, Luo X et al. (2018) Trilignostilides A and B: Two Pairs of Phthalalide Trimers from Angelica sinensis with a Complex Polycyclic Skeleton and Their Activities. *Org Lett* 20: 884-887. [Crossref]

12. Lu GH, Chan K, Chan CL, Leung K, Jiang ZH et al. (2004) Quantification of lignostilides in the roots of Angelica sinensis and related umbelliferous medicinal plants by high-performance liquid chromatography and liquid chromatography-mass spectrometry. *J Chromatogr A* 1046: 101-107. [Crossref]

13. Chen D, Du Z, Lin Z, Su P, Huang H et al. (2018) The Chemical Compositions of Angelica pubescens Oil and Its Prevention of UV-B Radiation-Induced Cutaneous Photaging. *Chem Biodivers* 15: e1800235. [Crossref]

14. Gui Q, Zheng J (2019) Simultaneous determination of eight components in Angelica sinensis based on UHPLC-ESI-MS/MS method for quality evaluation. *Biomed Chromatogr* 33: e4326. [Crossref]

15. Zhang LB, Lv LJ, Liu JW (2016) Phthalalide Derivatives with Anticoagulation Activities from Angelica sinensis. *J Nat Prod* 79: 1857-1861. [Crossref]

16. Wang K, Wu J, Xu J, Gu S, Li Q et al. (2018) Correction of Anemia in Chronic Kidney Disease With Angelica sinensis Polysaccharide via Restoring EPO Production and Improving Iron Availability. *Front Pharmacol* 9: 803. [Crossref]

17. Wang J, Ge B, Li Z, Guan F, Li F (2016) Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. *Carbohydr Polym* 140: 6-12. [Crossref]

18. Zhang Y, Zhou T, Wang H, Cui Z, Cheng F et al. (2016) Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels. *Carbohydr Polym* 147: 401-408. [Crossref]

19. Younas F, Aslam B, Muhammad F, Mohsin M, Raza A et al. (2017) Haematopoietic effects of Angelica sinensis root cap polysaccharides against lisinopril-induced anaemia in albino rats. *Pharm Biol* 55: 108-113. [Crossref]

20. Tian S, Hao C, Xu G, Yang J, Sun R (2017) Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. *J Food Drug Anal* 25: 766-775. [Crossref]

21. Wang J, Ge B, Li Z, Guan F, Li F (2016) Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. *Carbohydr Polym* 140: 6-12. [Crossref]

22. Wang K, Song Z, Wang H, Li Q, Cui Z et al. (2016) Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice. *Int Immunopharmacol* 31: 140-148. [Crossref]

23. Zhang Y, Zhou T, Wang H, Cui Z, Cheng F et al. (2016) Structural characterization and in vitro antitumor activity of an acidic Polysaccharid from Angelica sinensis (Oliv.). *Diets. Carbohydr Polym* 147: 401-408. [Crossref]

24. Renviu Peng, Jiang le, Weiquin Tian (2004) Isolation, purification and partial properties of polysaccharides from Angelica sinensis. *West China Journal of Pharmaceutical Sciences* 6: 412-414.

25. Chen XP, Li W, Xiao XF, Zhang LL, Liu CX (2013) Phytochemical and pharmacological studies on Radix Angelica sinensis. *Chin J Nat Med* 11: 577-587. [Crossref]

26. Jin M, Zhao K, Huang Q Xu C, Shang P (2012) Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.). *Diets: a review. Carbohydr Polym* 89: 713-722. [Crossref]

27. Lu GH, Chan K, Leung K, Chan CL, Zhao ZZ et al. (2005) Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis. *J Chromatogr A* 1068: 209-219. [Crossref]

28. Gong AG, Huang YY, Wang HY, Lin HQ, Dong TT et al. (2016) Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach. *PLoS One* 11: e0165486. [Crossref]

29. Ma Y, Chen K, Lv L, Wu S, Guo Z (2019) Ferulic acid ameliorates nonalcoholic fatty liver disease and modulates the gut microbiota composition in high-fat diet fed ApoE−/− mice. *Biomed Pharmacother* 113: 108753. [Crossref]

30. Park HJ, Cho JH, Hong SH, Kim DH, Jung HY et al. (2018) Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells. *J Nat Med* 72: 127-135. [Crossref]

31. Yin ZN, Wu WJ, Sun CZ, Liu HF, Chen WB et al. (2019) Antioxidant and Anti-inflammatory Capacity of Ferulic Acid Released from Wheat Bran by Solid-state Fermentation of Aspergillus niger. *Biomed Environ Sci* 32: 11-21. [Crossref]

32. Zhou SS, Xu J, Tsang CK, Yip KM, Yeung WP et al. (2018) Comprehensive quality evaluation and comparison of Angelica sinensis radix and Angelica acutiloba radix by integrated metabolomics and glycomics. *J Food Drug Anal* 26: 1122-1137. [Crossref]

33. Ma JP, Guo ZB, Jin L, Li YD (2015) Phytochemical progress made in investigations of Angelica sinensis (Oliv.) Diels. *Chin J Nat Med* 13: 241-249. [Crossref]

34. Chen XP, Li W, Xiao XF, Zhang LL, Lau CX (2013) Phytochemical and pharmacological studies on Radix Angelica sinensis. *Chin J Nat Med* 11: 577-587. [Crossref]

35. Wei WL, Zeng R, Gu CM, Qu Y, Huang LF (2016) Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. *J Ethnopharmacol* 190: 116-141. [Crossref]

36. Reddy CS, Kim SC, Hur M, Kim YB, Park CG et al. (2017) Natural Korean Medicine Dang-Gui: Biosynthesis, Effective Extraction and Formulations of Major Active Pyranocoumarins, Their Molecular Action Mechanism in Cancer, and Other Biological Activities. *Molecules* 22. [Crossref]

37. Di Zhou, Yuhua Zhang, Zhe Jiang (2017) Biotransformation of free ferulic acid and total ferulic acid in human liver metastasis colon cancer cells. *J Ethnopharmacol* 207: 19-29. [Crossref]

38. Bartnik M, A Slawinska Brych A, Zurek A, Kandefer Szerszyn M, Zdziezińska B (2017) 8-methoxypsoralen reduces AKT phosphorylation,induces intrinsic and extrinsic apoptotic pathways, and suppresses cell growth of SK-N-AS neuroblastoma and SW620 metastatic colon cancer cells. *J Ethnopharmacol* 207: 19-29. [Crossref]

39. Franklin C, Cesko E, Hillen U, Schilling B, Brandau S (2017) Modulation and apoptosis of neutrophil granulocytes by extracorporeal photopheresis in the treatment of chronic graft-versus-host disease. *PLoS One* 10: e0134518. [Crossref]

40. Hugang Jiang, Xinke Zhao, Wenyen Lin (2019) Qualitative Analysis of Multiple Cumarins in Angelicae Sinensis Radix Based on HPLC-Q-TOF-MS/MS. *Chin J Exper Trad Med Form 1*1-10.

41. Zhiyuan Cao, Jianhui Fang, Wei Lu (2011) Determination of Trace Elements for Angelica Sinensis by ICP-OES with Microwave Digestion. *Stud Trace Elements Health* 28: 18-20.
42. Wang YP, Fang Y, Gu ZR, Wang YL (2016) [Research on the Correlation Between Soil Mineral Elements and NIR Fingerprint of Angelica sinensis], Zhong Yao Cai 39: 1201-1206. [Crossref]
43. Zhaolin Zhang, Zhi Liu, Xiaowen Cai (1983) Determination of trace metal elements in Angelica sinensis. Chin Trad Herb Drugs 14: 15-16.
44. Zhu S, Guo S, Duan JA, Quin D, Yan H et al. (2017) UHPLC-TQ-MS Coupled with Multivariate Statistical Analysis to Characterize Nucleosides, Nucleobases and Amino Acids in Angelica Sinensis Radix Obtained by Different Drying Methods. Molecules 22: E918. [Crossref]
45. Qu C, Yan H, Zhu SQ, Qian YY, Zhou GS et al. (2019) Comparative analysis of nucleosides, nucleobases, and amino acids in different parts of Angelicae Sinensis Radix by ultra high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry. J Sep Sci 1122-1132. [Crossref]
46. Anfossi G, Russo I, Massucco P, Mattiello L, Cavalot F et al. (2002) Adenosine increases human platelet levels of cGMP through nitric oxide: possible role in its antiaggregating effect. Thromb Res 105: 71-78. [Crossref]
47. Yingxia Liu (2006) Study on chenical components of danggui Blood-supplementing Decoction. Nanchang University 5: 3.
48. Zhongshan Jia, Tianying Guan, Guojun Cao (1992) Content analysis of trace elements and amino acids in Angelica sinensis. Biotic Resources 1992: 49.
49. Lin YJ, Liang WM, Chen CJ, Tsang H, Chiou JS et al. (2019) Network analysis and mechanisms of action of Chinese herb related natural compounds in lung cancer cells. Phytomedicine 58:152893. [Crossref]
50. Chen MC, Hsu WL, Chang WL, Chou TC (2017) Antiangiogenic activity of phthalides-enriched Angelica Sinensis extract by suppressing WSB-1/pVHL/HIF-1α/VEGF signaling in bladder cancer. Sci Rep 7: 5376. [Crossref]
51. Liao KF, Chiu TL, Huang SY, Hsieh TF, Chang SF et al. (2018) Anti-Cancer Effects of Radix Angelica Sinensis (Danggui) and N-Butylidenephthalide on Gastric Cancer: Implications for REDD1 Activation and mTOR Inhibition. Cell Physiol Biochem 48: 2231-2246. [Crossref]
52. Chiu SC, Chiu TL, Huang SY, Chang SF, Chen SP et al. (2017) Potential therapeutic effects of N-butylidenephthalide from Radix AngelicaSinensis (Danggui) in human bladder cancer cells. BMC Complement Altern Med 17: 523. [Crossref]
53. Su YJ, Huang SY, Ni YH, Liao KF, Chiu SC (2018) Anti-Tumor and Radiosensitization Effects of N-Butylidenephthalide on Human Breast Cancer Cells. Molecules 23: E240. [Crossref]
54. Pang CY, Chiu SC, Harn HJ, Zhai W, Lin SZ et al. (2013) Proteomic-based identification of multiple pathway underlying n-butylidenephthalide-induced apoptosis in LNCaP human prostate cancer cells. Food Chem Toxicol 59: 281-288. [Crossref]
55. Qi H, Jiang Z, Wang C, Yang Y, Li L et al. (2017) Sensitization of tamoxifen-resistant breast cancer cells by Z-ligustilide through inhibiting autophagy and accumulating DNA damages. Oncotarget 8: 29300-29317. [Crossref]
56. Ren F, Li J, Wang Y, Wang Y, Feng S et al. (2018) The Effects of Angelica Sinensis Polysaccharide on Tumor Growth and Iron Metabolism by Regulating Hepcidin in Tumor-Bearing Mice. Cell Physiol Biochem 47: 1084-1094. [Crossref]
57. Zhang WF, Yang Y, Li X, Xu DY, Yan YL et al. (2017) Angelica polysaccharides inhibit the growth and promote the apoptosis of U251 glioma cells in vitro and in vivo. Phytotherapy 33: 21-27. [Crossref]
58. Gong W, Zhu S, Chen C, Yin Q, Li X et al. (2019) The Anti-depression Effect of Angelicae Sinensis Radix Is Related to the Pharmacological Activity of Modulating the Hematological Anomalies. Front Pharmacol 10: 192. [Crossref]
59. Chang CW, Chen YM, Hsu YJ, Huang CC, Wu YT et al. (2016) Protective effects of the roots of Angelica sinensis on strenuous exercise-induced sports anemia in rats. J Ethnopharmacol 193: 169-178. [Crossref]
60. Younas F, Aslam B, Muhammad F, Mohsin M, Raza A et al. (2017) Haematopoietic effects of Angelica sinensis root cap polysaccharides against linsopritil-induced anaemia in albino rats. Pharm Biol 55: 108-113. [Crossref]
61. Wang K, Wu J, Cheng F, Huang X, Zeng F et al. (2017) Acidic Polysaccharide from Angelica sinensis Reverses Anemia of Chronic Disease Involving the Suppression of Inflammatory Hepcidin and NF-κB Activation. Oxid Med Cell Longev 2017: 7601592. [Crossref]
62. Liu JY, Zhang Y, You RX, Zeng F, Guo D et al. (2012) Polysaccharide isolated from Angelica sinensis inhibits hepcidin expression in rats with iron deficiency anemia. J Med Food 15: 923-929. [Crossref]
63. Wang L, Jiang R, Song SD, Hua ZS, Wang JW et al. (2015) Angelica sinensis polysaccharides induces erythroid differentiation of human chronic myelogenous leukemia K562 cells. Asian Pac J Cancer Prev 16: 3715-37121. [Crossref]
64. Liu W, Li W, Sui Y, Li XQ, Liu C et al. (2019) Structure characterization and anti-leukemia activity of a novel polysaccharide from Angelica sinensis (Oliv.) Diels. Int J Biol Macromol 121: 161-172. [Crossref]
65. Xu CY, Gong S, Liu J, Zhu JH, Zhang XP et al. (2014) Experimental study on aging effect of Angelica sinensis polysaccharides combined with cytarabine on human leukemia KG1alpha cell lines. Zhongguo Zhong Yao Za Zhi 39: 1260-1264. [Crossref]
66. Liu J, Xu CY, Cai SZ, Zhou Y, Li J et al. (2014) Senescence effects of Angelica sinensis polysaccharides on human acute myelogenous leukemia stem and progenitor cells. Asian Pac J Cancer Prev 14: 6549-6556. [Crossref]
67. DeLeve LD (2015) Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 61: 1740-1746. [Crossref]
68. Zhi Min Zhao, Hong Liang Liu, Xin Sun et al. (2017) Levistilide A inhibits angiogenesis in liver fibrosis via vascular endothelial growth factor signaling pathway. Experimental Biology and Medicine 242: 974-985. [Crossref]
69. Cao P, Sun J, Sullivan MA, Huang X, Wang H et al. (2018) Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro. Int J Biol Macromol 111: 1133-1139. [Crossref]
70. Wang K, Song Z, Wang H, Li Q, Cui Z et al. (2016) Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice. Int Immunopharmacol 31: 140-148. [Crossref]
71. Li J, Hua Y, Ji P, Yao W, Zhao H et al. (2016) Effects of volatile oils of Angelica sinensis on an acute inflammation rat model. Pharm Biol 54: 1881-1890. [Crossref]
72. Hua YL, Ma Q, Zhang XS, Yao WL, Ji P et al. (2019) Urinary metabolomics analysis reveals the effect of volatile oil from Angelica
sinensis on LPS-induced inflammation rats. **Biomed Chromatogr** 33: e4402. [Crossref]

73. Choi ES, Yoon JJ, Han BH, Jeong DH, Lee YJ et al. (2018) Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and NO synthesis in HUVECs. **Phytomedicine** 38: 12-23. [Crossref]

74. Lu X, Wu G, Li B, Xu C, Wu J et al. (2018) The anti-inflammatory NHE-06 restores antitumor immunity by targeting NF-κB/IL-6/STAT3 signaling in hepatocellular carcinoma. **Biomed Pharmacother** 102: 420-427. [Crossref]

75. Kim YJ, Lee JY, Kim HJ, Kim DH, Lee TH et al. (2018) Anti-Inflammatory Effects of Angelica sinensis (Oliv.) Diels Water Extract on RAW 264.7 Induced with Lipopolysaccharide. **Nutrients** 10: E647. [Crossref]

76. Xie Y, Zhang H, Zhang Y, Wang C, Duan D et al. (2018) Chinese Angelica Polysaccharide (CAP) Alleviates LPS-Induced Inflammation and Apoptosis by Down-Regulating COX-1 in PC12 Cells. **Cell Physiol Biochem** 49: 1380-1388. [Crossref]

77. Chowdhury S, Ghosh S, Das AK, Sil PC et al. (2019) Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy. **Front Pharmacol** 10: 27. [Crossref]

78. Aswar U, Mahajan U, Kandhare A, Aswar M (2019) Ferulic acid ameliorates doxorubicin-induced cardiac toxicity in rats. **Naunyn Schmiedebers Arch Pharmacol** 392: 659-668. [Crossref]

79. Zhuang C, Wang Y, Zhang Y, Xu N (2018) Oxidative stress in osteoarthritis and antioxidant effect of polysaccharide from angelica sinensis. **Int J Biol Macromol** 115: 281-286. [Crossref]

80. Tian S, Hao C, Xu G, Yang J, Sun R (2017) Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. **J Food Drug Anal** 25: 766-775. [Crossref]

81. Niu X, Zhang J, Ling C, Bai M, Peng Y et al. (2018) Polysaccharide from Angelica sinensis protects H9c2 cells against oxidative injury and endoplasmic reticulum stress by activating the ATF6 pathway. **J Int Med Res** 46: 1717-1733. [Crossref]

82. Wang Y, Li Y, Li S, Li Q, Fan W et al. (2019) Extracellular polysaccharides of endophytic fungus Alternaria tenuissima F1 from Angelica sinensis: Production conditions, purification, and antioxidant properties. **Int J Biol Macromol** 133: 172-183. [Crossref]

83. Mu X, Zhang Y, Li J, Xia J, Chen X et al. (2017) Angelica Sinensis Polysaccharide Prevents Hematopoietic Stem Cells Senescence in D-Galactose-Induced Aging Mouse Model. **Stem Cells Int** 2017: 3508907. [Crossref]

84. Gong W, Zhou Y, Li X, Gao X, Tian J et al. (2016) Neuroprotective and Cytotoxic Phthalides from Angelica Sinensis Radix. **Molecules** 21: E549. [Crossref]

85. Feng Z, Lu Y, Wu X, Zhao P, Li J et al. (2012) Ligustilide alleviates brain damage and improves cognitive function in rats of chronic cerebral hypoperfusion. **J Ethnopharmacol** 144: 313-321. [Crossref]

86. Zhang Q, Chen ZW, Zhao YH, Liu BW, Liu NW et al. (2017) Bone Marrow Stromal Cells Combined With Sodium Furoate and n-Butylidenephthalide Promote the Effect of Therapeutic Angiogenesis via Advancing Astrocyte-Derived Trophic Factors After Ischemic Stroke. **Cell Transplant** 26: 229-242. [Crossref]

87. Niu X, Zhang J, Ni J, Wang R, Zhang W et al. (2018) Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. **Biosci Rep** 38: BSR20180519. [Crossref]

88. Pan H, Zhu L (2018) Angelica sinensis polysaccharide protects rat cardiomyocytes H9c2 from hypoxia-induced injury by down-regulation of microRNA-22. **Biomed Pharmacother** 106: 225-231. [Crossref]

89. Ai hua Zhang, Hui Sun, Xi jun Wang (2018) Chinmedomics: A Powerful Approach Integrating Metabolomics with Serum Pharmacology to Evaluate the Efficacy of Traditional Chinese Medicine Engineering 11: 008.

90. Ren JL, Zhang AH, Wang XJ (2018) Advances in mass spectrometry-based metabolomics for investigation of metabolites. **RSC Adv** 8: 22335.

91. Chan PH, Zhang WL, Lau CH, Cheung CY, Keun HC et al. (2014) Metabonomic analysis of water extracts from different angelica roots by 1H-nuclear magnetic resonance spectroscopy. **Molecules** 19: 3460-3470. [Crossref]

92. Zhong LJ, Hua YL, Ji P, Yao WL, Zhang WQ et al. (2016) Evaluation of the anti-inflammatory effects of volatile oils from processed products of Angelica sinensis radix by GC-MS-based metabolomics. **J Ethnopharmacol** 191: 195-205. [Crossref]

93. Yanyan Wu, Lu Wang, Guangxue Liu (2014) Characterization of principal compositions in the roots of Angelica sinensis by HPLC-ESI-MSn and chemical comparison of its different parts. **J Chin Pharm Sci** 23: 393-402.

94. Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. **Chin J Nat Med** 11: 110-120. [Crossref]

95. Hui Sun, Hong lian Zhang, Ai hua Zhang (2018) Network pharmacology combined with functionalmetabolomics discover bile acid metabolism asa promising target for mirablitig against colorectal cancer. **RSC Adv** 8: 30061-30070.

96. Wang XJ, Zhang AH, Sun H (2016) Chinmedomics: Newer theory and application. **Chinese Herbal Medicines** 8: 299-307.

97. Yue Han, Ai Hua Zhang, Xi jun Wang (2018) Chemical metabolomics for investigating the protective effectiveness of Acanthopanax senticosus Harms leaf against acute promelyocytic leukemia. **RSC Adv** 8: 11983-11990.

98. Shen D, Tang S, Lu P (2014) An Analysis of Prescription Rules of Formulas Contained Danggui in Chinese Prescription Preparations Based on Association Rules Algorithm. **J Trad Chin Med** 55: 608-611.

99. Jin Y, Qu C, Tang Y, Pang H1, Liu L et al. (2016) Herb pairs containing Angelicae Sinensis Radix (Danggui): A review of bio-active constituents and compatibility effects. **J Ethnopharmacol** 181: 158-171. [Crossref]

100. Yin JB, Zhou KC, Wu HH, Hu W, Ding T et al. (2016) Algogenic Effects of Danggui-Shaoyao-San on Various “Phenotypes” of Nociception and Inflammation in a Formalin Pain Model. **Mol Neurobiol** 53: 6835-6848. [Crossref]

101. (Han) Zhang Zhongjing; Yu Zhixian, Zhang Zhijai collated Synopsis of Golden Chamber [M]. Beijing: Traditional Chinese Medicine Ancient Books Press. 1997: 55.

102. Mei Shi (2017) Pharmacology and Clinical Application Analysis of Angelicae Paeoniae Powder. **Smart Healthcare** 3: 17-18.

103. Wang YL, Ru SY, Fang Q, Li GQ, Pan YF et al. (2015) [Mechanism Study on Danggui Shaoyao San and Guizhi Fuling Wan For Treating Primary Dysmenorrheal Based on Biological Network]. **Zhong Yao Cai** 38: 2348-2352. [Crossref]
104. Zheng KY, Choi RC, Guo AJ, Bi CW, Zhu KY et al. (2012) The membrane permeability of Astragali Radix-derived formononetin and calycosin is increased by Angelicae Sinensis Radix in Caco-2 cells: a synergistic action of an ancient herbal decoction Danggui Buxue Tang. J Pharm Biomed Anal 70: 671-679. [Crossref]

105. Ji Li (2011) Formulaology. Beijing: Higher Education Press. 2011: 85.

106. Yang Li, Junjie Hao (2018) Network Pharmacology-based Study on Mechanism of DangGuiBuXue Decoction in Treating Anemia. J Dali University 3: 1-6.

107. Lin HQ, Gong AG, Wang HY, Duan R, Dong TT et al. (2017) Danggui Buxue Tang (Astragali Radix and Angelicae Sinensis Radix) for menopausal symptoms: A review. J Ethnopharmacol 199: 205-210. [Crossref]

108. Xiumei Liu, Shuwei Zhang, Yan Li (2019) Study on the mechanism of action of Ligusticum chuanxiong in treating cardiovascular diseases from a system pharmacology perspective. Liaon J Trad Chin Med 4: 1-8.

109. Li WX, Zhang H, Tang JF, Meng XL, Liu P et al. (2016) [Clinical application characteristics of Danggui-Chuanxiong herb pair in Chinese medicines on basis of real-world]. Zhongguo Zhong Yao Za Zhi 41: 1338-1341. [Crossref]