Study on the proximate and ultimate analyses and calorific value of coal blending between torrefied biomass from coconut (Cocos nucifera) husk and Semirara coal

Rose Ann P. Lomeda-De Mesa1,4, Allan N. Soriano3, Ariziel Ruth D. Marquez1,2, and Adonis P. Adornado1,2,4,5

1 School of Graduate Studies, Mapúa University, Manila 1002, Philippines
2 School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
3 Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
4 General Education Department, Colegio de Muntinlupa, Mayor J. Posadas Avenue, Sucat 1770, Muntinlupa City, Metro Manila, Philippines
E-mail: apadornado@mapua.edu.ph / adonisadornado@yahoo.com

Abstract. Biomass is an important source of energy for the rising energy demand in the Philippines, however it is still a huge untapped resource considering that the Philippines, being an agricultural country generates a huge amount of agricultural by-products and residues. In order to simultaneously reduce the amount of agricultural wastes and improve the quality of indigenous coal reserves in the country to support increasing electricity demand, the present study blends Semirara coal, a sub-bituminous type of coal with torrefied coconut (Cocos nucifera) husk for establishment of recommended blending ratios. Proximate analysis, ultimate analysis, and calorific value were determined to characterize and understand the physical conditions and coal properties during combustion. Test results showed that blending Semirara coal with torrefied coconut (C. nucifera) husk by not less than 50% by weight would generally improve its quality in terms of its combustion properties thereby making these combinations of coal and biomass advantageous.

1. Introduction

One very important issue that the Philippines is facing today including the developing countries in the 21st century is the capability to have a dependable and affordable renewable energy sources and sustainable development of the remaining natural resources [1]. Historically, the Philippines has been heavily dependent on imported fossil fuel for its energy needs, and is expected to become the most coal-dependent country in Southeast Asia by 2030 according to the Asian Development Bank (ADB) [1,2]. In the Philippines, one coal resources is in Semirara Island located in Caluya, Antique, with an estimated total coal reserve of around 170 million metric tons [3]. However, Semirara coals are black in color, dull (not shiny), have higher moisture and volatile matter, and lower sulfur and fixed carbon content compared to other types of coal, referred to as sub-bituminous [4,5]. Moreover, it is classified as second lowest rank of coals due to their lower calorific value [6-8].

The Philippines being an agricultural country growing crops like rice (Oryza sativa), corn (Zea mays), coconut (Cocos nucifera), sugarcane (Saccharum officinarum), banana (Musa), bamboo (Bambusoideae), jatropha (Jatropha curcas), and fruit and tree crops has abundant, abandoned, and
still untapped biomass resources from cellulosic residues of agricultural production and processing. The Philippines has the largest number of coconut (C. nucifera) trees (approximately 500 million) in the world with half a billion of these grow on three million hectares across the islands producing 4.1 million tonnes (35%) coconut (C. nucifera) husk as one of the major coconut (C. nucifera) wastes [1,9].

Utilizing and improving the quality of Philippine indigenous coal is getting more important in order to sustain the country’s high dependence on coal and to ensure that the growing energy demand can also be addressed. Likewise, in recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawing more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste.

In order to simultaneously address these issues, one of the cost-effective methods to develop the indigenous coal reserves is via coal blending with biomass, essentially blending two dissimilar fuels, with one being the dominant fuel and the other its supplement. Typically coal is the dominant fuel, and the principles of blending apply, thereby making some combinations of biomass and coal advantageous. Through this technique, it ensures that the cleaned coal contains minimum ash, sulfur, and also maximum heating value on a timely basis.

Thus, the main purpose of this present work is to study and understand the physical conditions and coal properties during combustion of Semirara coal, torrified biomass from coconut (C. nucifera) husk, and its blends (% w/w) – 25, 50, and 75 through characterization by proximate and ultimate analyses tests, and calorific value determination.

Furthermore, this study would give a valuable introduction on the combustion characterization of Philippine coal and its blends that will enrich the database on properties of Philippine coal and of Philippine coal blends, and would show the potentials and fuel flexibility of the Philippine coal.

2. Materials and methods

2.1. Preparation of coconut (Cocos nucifera) husk

For this study, 3 kilograms of raw coconut (Cocos nucifera) husk were collected from a coconut plantation in the Town of Calaca in the province of Batangas, Philippines. Representative coconut (C. nucifera) samples were taken to the Bureau of Plant Industry (BPI) for plant identification, species authentication, and certification.

The raw coconut (C. nucifera) husk was reduced in size in the range of 1.0 to 1.5 cm, and then dried using a Binder Drying Oven ED 53 at 105°C for 24 hours prior torrefaction. The weights of the raw and the oven-dried coconut (C. nucifera) husk were recorded, and then the percentage of moisture removed from drying was calculated.

2.2. Torrefaction of coconut (Cocos nucifera) husk

Biomass torrefaction is a mild thermochemical process that generally performed in inert atmosphere in the temperature range of 200 to 300°C for several minutes or hours. This treatment gained interest as it promotes an increase in the energy content of biomass to levels equal to and sometimes above that of coal [10], making it a more attractive and competitive source within the primary energy matrix [11].

The oven-dried coconut (Cocos nucifera) husk was torrefied using an electric Ney Vulcan 3-1750 Box Muffle Furnace equipped with thermocouple, slide out heating elements, combined fiber, and firebrick insulation for quick cooling and three-stage programmable system of temperature regulation. The 1,750 cubic inches inner volume capacity of the furnace was connected to the outer atmosphere through a tube that provides access of oxygen into the torrefaction zone and discharge of gaseous pyrolysis products.

For each run, approximately 200 grams of oven-dried coconut (C. nucifera) husk were placed into unsealed 110.45 cubic inches ceramic vessels to provide free access of oxygen. The oven-dried coconut (C. nucifera) husk was torrefied at 300°C (heating rate of 5°C/min) for 30 minutes under normal atmospheric pressure. The torrefied coconut (C. nucifera) husk was grinded using a Wiley mill and then sifted using a stainless steel laboratory test sieve with mesh screen no. 60 equivalent to an approximate size of 250 μm to homogenize the particle size. Finally, the sifted coconut (C. nucifera)
husk were collected in a clean, dry, and sealed bag, and stored in a dessicator until used for blending and characterization. The weights of the oven-dried and the torrifed coconut (C. nucifera) husk were recorded, and then the percentage recovery was calculated.

2.3. Proximate analysis
The proximate analysis performed for the torrifed coconut (Cocos nucifera) husk, Semirara coal, and its blends (% w/w) – 25, 50, and 75 was in accordance to ASTM D3172-13: Standard Practice for Proximate Analysis of Coal and Coke [12]. This practice covers the determination of moisture (MC), volatile matter (VM), and ash (AC) and the calculation of fixed carbon (FC). All measurements performed in this study were carried out in three replicate runs and the mean values were reported.

2.4. Ultimate analysis
The ultimate analysis for the torrifed coconut (Cocos nucifera) husk, Semirara coal, and its blends (% w/w) – 25, 50, and 75 was performed using LECO CHN628 Series Elemental Determinator and CKIC 5E-S3200 Coulomb Sulfur Analyzer operated using S3200 application program to determine the carbon (C) / hydrogen (H) / nitrogen (N) and the total sulfur (S) content, respectively. For C/H/N determination, a 0.10 mg of the torrifed coconut (C. nucifera) husk was placed in a tin capsule, heated at 980°C with a constant flow of helium enriched with oxygen gas [13]. While for the total S, on average, a 50.45 mg of the torrifed coconut (C. nucifera) husk is required, and then covered with a thin layer of tungsten trioxide (WO3) after weighing in temperature rise period. The furnace was heated to 1,150°C for 30 minutes before analyzing the samples. Also, average values of the triplicate runs were reported for all measurements done in this study.

2.5. Calorific value (experimental)
The experimental calorific value (CV) of the torrifed coconut (Cocos nucifera) husk, Semirara coal, and its blends (% w/w) – 25, 50, and 75 was determined using an adiabatic CKIC 5E-AC/PL Calorimeter by completely combusting 1.00 gram of the samples under a pressurized O2 atmosphere [10]. For all combustion experiments, the samples were charged with oxygen at a pressure of 2.80 to 3.00 MPa and a cylinder pressure of ≥ 5 MPa.

2.6. Calorific value (calculated)
The values obtained from the proximate and ultimate analyses were used to calculate the calorific value based on existing correlations taken from the literature which are applicable for both coal and biomass based on parameters for proximate and ultimate analyses as shown in tables 1 and 2, respectively. Thus, it follows that the existing correlations from equations (1) to (11) presented are not specific for coconut (Cocos nucifera) husk alone.

Table 1. Correlations for calorific value applicable for both coal and biomass based on proximate analysis.

Study	Correlation for Calorific Value, MJ·kg⁻¹	Equation
Kavšek et al. [14]	CV = 0.4108FC + 0.1934VM - 0.021AC	(1)
Kieseler et al. [15]	CV = 0.3536FC + 0.1559VM - 0.0078AC	(2)
Majumder et al. [16]	CV = -0.03AC - 0.11MC + 0.33VM + 0.35FC	(3)
Mesroghli et al. [17]	CV = 37.777 - 0.647MC - 0.387AC - 0.089VM	(4)
Parikh et al. [18]	CV = 0.3536FC + 0.1559VM - 0.0078AC	(5)

Table 2. Correlations for calorific value applicable for both coal and biomass based on ultimate analysis.

Study	Correlation for Calorific Value, MJ·kg⁻¹	Equation
Channiwala & Parikh [19]	CV = 0.3491C + 1.1783H + 0.1005S + 0.015A	(6)
Friedl et al. [20]	CV = 0.00355C2 - 0.232C - 2.23H + 0.0512CH + 0.131N + 20.6	(7)
Jenkins et al. [21]	CV = -0.763 + 0.301C + 0.525H + 0.064O	(8)
Sheng & Azevedo et al. [22]	CV = 0.3259C + 3.4597	(9)
Sheng & Azevedo et al. [22]	CV = -1.3675 + 0.3137C + 0.7009H + 0.0318O₆	(10)
Tillman [23]	CV = 0.4373C - 1.6701	(11)

O* is the sum of the contents of oxygen and other elements in the organic matter (O* = 100-C-H-Ash).
3. Results and discussion
The results for the proximate analysis, ultimate analysis, and calorific value for the torrefied coconut (Cocos nucifera) husk, Semirara coal, and its blends (% w/w) – 25, 50, and 75 were summarized in tables 3, 4, and 5, respectively.

Table 3. Results for the proximate analysis – moisture (MC), ash (AC), volatile matter (VM), and fixed carbon (FC) on the basis of concentration (% w/w) of coconut (Cocos nucifera) husk.

Concentration (% w/w) of Biomass	MC (%)	AC (%)	VM (%)	FC (%)
0	13.04	36.03	24.19	26.74
25	11.09	36.66	27.43	24.82
50	7.91	37.06	31.01	24.02
75	5.20	39.57	34.94	20.29
100	2.47	40.21	38.73	18.59

Table 4. Results for the ultimate analysis – carbon (C), hydrogen (H), nitrogen (N), and sulfur (S) on the basis of concentration (% w/w) of coconut (Cocos nucifera) husk.

Concentration (% w/w) of Biomass	C (%)	H (%)	N (%)	S (%)
0	40.22	4.61	9.80	0.77
25	42.94	4.00	9.75	0.69
50	45.46	3.45	9.78	0.47
75	48.90	3.02	9.70	0.37
100	51.46	2.74	9.79	0.31

Table 5. Results for calorific value and energy yield on the basis of concentration (% w/w) of coconut (Cocos nucifera) husk.

Concentration (% w/w) of Biomass	Calorific Value (MJ kg⁻¹)	Energy Yield (%)
0	16.17	-
25	16.87	23.24
50	17.28	23.81
75	17.91	24.68
100	18.53	25.53

3.1. Proximate analysis
Generally, any two coals cannot just be blended. To decide to blend or not, it is very important to understand the composition of the coals that are to be blended. The linear additive rule shown in equation (12) is used to estimate the theoretical composite value of the coal blends to show the relationship of the coal properties and the amount of that coal in the blend, where M is the composite value of the parameter being estimated and x is the weight fraction of the components in the blend.

\[M = x_b M_b + (1 - x_b) M_a \]

A property can be considered additive when the physical property of the blend can be predicted by the relative amounts of component coals and their physical properties. The applicability of the additive property for coal blending was determined using the coefficient of determination, R² value of at least 0.9000 [24]. Based on figure 1, comparing the experimental values from the calculated values for moisture (MC), ash (AC), volatile matter (VM), and fixed carbon (FC) based on the linear additive rule, it showed acceptable results with minimal deviations with overall R² value of 0.9516. Thus, it can be established that Semirara coal blended with coconut (Cocos nucifera) husk were additive based on its proximate analysis parameters.

The proximate analysis involves the quantitative determination of moisture content (MC), ash content (AC), volatile matter (VM), and fixed carbon (FC). The results for the proximate analysis for the torrefied coconut (C. nucifera) husk, Semirara coal, and its blends (% w/w) – 25, 50, and 75 was shown in table 3. The trends of these values were also illustrated in figure 1 on the basis of increasing concentration (% w/w) of coconut (C. nucifera) husk.
It was observed that an increase in the concentration of torrefied coconut \((C. \text{nucifera}) \) husk in the coal blend caused a decrease in the moisture content (MC) by as much as 81.06\%. An increase in the moisture content of coal results in an increase in heat loss due to evaporation and superheating of vapor. Therefore, an increase in the concentration of torrefied coconut \((C. \text{nucifera}) \) husk in the coal blend is a good indication that it averts the presence of fungi and decreases other biological activities upon storing. High moisture content can affect the overall energy conversion upon combustion because it influences the calorific value of the given fuel. The higher moisture content, the less energy per kilogram is released that causes lower calorific value [25]. This claim could be supported by the relationship of moisture content and calorific value shown in Table 5. A decrease in the moisture content in the coal blend corresponds to an increase in the calorific value.

Ash (AC) is the inorganic residue after combustion. One characteristic of a good fuel is having little amount of ash during combustion. Small amount of ash residues signifies the maximum utilization of the fuel used. High amount of ash affects combustion efficiency and boiler efficiency because it causes clinkering and slagging. Looking at Table 3, it can be observed that an increase in the amount of torrefied coconut \((C. \text{nucifera}) \) husk in the coal blend also increases the amount of ash by 11.60\%.

High volatile matter (VM) indicates that the fuel can be easily ignited and subsequently oxidized. High volatile matter also contributes to better efficiency for burning during combustion. It influences the secondary air requirement, distribution aspects, and secondary oil supports. An increase in the amount of torrefied coconut \((C. \text{nucifera}) \) husk in the coal blend corresponds to an increase in volatile matter by 60.11\%.

Fixed carbon (FC) is the solid combustible residue that remains after a biomass particle is heated and the volatile matter is expelled. The amount of fixed carbon and volatile combustible matter directly contribute to the heating value of coal. Fixed carbon acts as a main heat generator during burning. High fixed carbon in biomass increases the char formation [25]. An increase in the amount of torrefied coconut \((C. \text{nucifera}) \) husk in the coal blend caused a decrease in the amount of fixed carbon by 30.48\%.

Lastly, in terms of the coal blending ratios used in this study, the 50 % w/w Semirara coal blended with 50 % w/w torrefied coconut \((C. \text{nucifera}) \) husk is considered to be the most favorable based on the results of the proximate analysis.

3.2. Ultimate analysis

Shown in figure 2 is the comparison of experimental values versus the calculated values based on the linear additive rule for ultimate analysis – carbon (C), hydrogen (H), nitrogen (N), and sulfur (S). Just like in proximate analysis, the values are within the allowable results with slight deviations with overall R^2 value of 0.9715. Thus, it follows that Semirara coal blended with coconut \((Cocos \text{nucifera}) \) husk were also additive based on its ultimate analysis parameters.
The ultimate analysis determines the elemental composition of the coal including moisture, ash, carbon (C), hydrogen (H), nitrogen (N), sulfur (S), and oxygen (O) (by difference). It is valuable in determining the quality of air required for combustion and composition of combustion gases. The results for the ultimate analysis for the torrefied coconut (C. nucifera) husk, Semirara coal, and its blends (% w/w) – 25, 50, and 75 was shown in Table 4. The trends of these values were also illustrated in Figure 2 on the basis of increasing concentration (% w/w) of coconut (C. nucifera) husk.

Carbon content is a good indicative property of coal ranks. The highest rank coals have the highest carbon contents and the lowest oxygen contents. Ratios of these elements can indicate the rank of the coal and its coalification degree [26]. It is also important to measure the sulfur content in coal samples to evaluate the potential sulfur emissions from coal combustion. Increasing the amount of torrefied coconut (C. nucifera) husk in the coal blend increases the carbon content by 27.95%.

Meanwhile, the hydrogen content for all coal blends decreases by 40.56% with increasing amount of torrefied coconut (C. nucifera) husk. The increased content of hydrogen is normally more of a characteristic of low rank coals, while the decreased values are commonly more typical for higher-rank coals [27]. Based on this, it could be said that a decrease in hydrogen content indicates that the quality of Semirara coal blended torrefied coconut (C. nucifera) husk improved to higher rank.

Nitrogen content for all coal blends is approximately the same with 9.76% on average. Nitrogen is an inert and combustible gas and it does not contribute any useful property to the combustion of coal. It is generally found in the organic fraction of the coal wherein upon combustion, it is emitted as nitrogen oxide (NOx) in the flue gas.

Sulfur content for all coal blends decreases by 59.74% with increasing amount of torrefied coconut (C. nucifera) husk. Presence of sulfur in coal is harmful for use in metallurgy as it transfers to the metal and adversely affects the property of metal. Also, oxidation products of sulfur such as sulfur dioxide (SO2) and sulfur trioxide (SO3) have corrosive effect on the equipment and causes atmospheric pollution. Hence the presence of sulfur in coal is undesirable. A decrease in the sulfur content of Semirara coal upon coal blending with torrefied coconut (C. nucifera) husk is an indication that an environment-friendly approach have been taken.

Based on the results of the ultimate analysis, considering the coal blending ratios studied, the 25 % w/w Semirara coal blended with 75 % w/w torrefied coconut (C. nucifera) husk is considered to be the most favorable.

3.3. Calorific value

The calorific value of a fuel is the number of heat units evolved when unit mass (or unit volume in the case of a gas) of a fuel is completely burned and the combustion products are cooled to 298 K. This definition of calorific value includes the provision that the products of combustion are cooled to 298 K which means the sensible heat and the latent heat of condensation of the water produced during combustion are included in the heat liberated. Therefore, the calorific value of the fuel is designated as ‘gross calorific value (GCV)’ or ‘high heating values (HHV)’ [28].
The energy analysis of torrefied coconut (Cocos nucifera) husk, Semirara coal, and its blends (% w/w) – 25, 50, and 75 were studied by determining the calorific value experimentally and calculating the calorific value theoretically using existing correlations found in literature applicable for both coal and biomass based on proximate and ultimate analyses as summarized in tables 6 and 7, respectively. Also presented in these tables are the average absolute deviations (AAD) to describe variation in a data set for experimental and calculated values, and the coefficient of determination, (R^2) to measure the goodness of fit of the experimental values to the model. Here, as shown in equation (13), the AAD is evaluated as

$$\text{AAD} = \frac{1}{n} \sum_{i=1}^{n} \left| \varepsilon_{\text{cald}} - \varepsilon_{\text{exp}} \right|.$$

where n is the number of data points and ($\varepsilon_{\text{cald}}$ and ε_{exp}) are calculated and experimental values, respectively.

The carbon content in ultimate analysis was a predictive basis of the calorific value. And evidently, calorific values and the amount of carbon content show a direct proportionality since the calorific value of blended torrefied coconut (C. nucifera) husk and Semirara coal increases with increasing biomass concentration from 16.17 to 18.53 MJ/kg or by 14.59%.

Table 6. Summary results of the calorific values (experimental) for torrefied coconut (Cocos nucifera) husk, Semirara coal, and its blends (% w/w) – 25, 50, and 75 and calorific values (calculated) from literature correlations based on proximate analysis.

Concentration (% w/w) of Biomass	CV$_{\text{exp}}$ MJ·kg$^{-1}$	Literature Correlations	CV$_{\text{cald}}$, MJ·kg$^{-1}$
0	16.17	[14] 14.91	12.95
25	16.87	[15] 14.73	12.77
50	17.28	[16] 15.09	14.83
75	17.91	[17] 14.26	13.24
100	18.53	[18] 14.28	13.04
OAAD (%)	-		
R^2	-		

| OAAD (%) | 2.70 | 4.68 | 1.03 | 2.17 | 4.68 |
| R^2 | 0.538 | 0.628 | 0.969 | 0.978 | 0.628 |

Table 7. Summary results of the calorific values (experimental) for torrefied coconut (Cocos nucifera) husk, Semirara coal, and its blends (% w/w) – 25, 50, and 75 and calorific values (calculated) from literature correlations based on proximate analysis.

Concentration (% w/w) of Biomass	CV$_{\text{exp}}$ MJ·kg$^{-1}$	Literature Correlations	CV$_{\text{cald}}$, MJ·kg$^{-1}$
0	16.17	[19] 14.03	17.51
25	16.87	[20] 14.45	18.33
50	17.28	[21] 14.83	19.01
75	17.91	[22] 15.76	19.84
100	18.53	[22] 16.54	20.45
OAAD (%)	-		
R^2	-		

| OAAD (%) | 2.23 | 1.68 | 0.16 | 1.03 | 1.11 |
| R^2 | 0.966 | 0.998 | 0.988 | 0.998 | 0.998 |

Considering the calorific values calculated from literature correlations based on for both proximate and ultimate analyses, the model presented by Jenkins et al. [21] has the lowest AAD value of 0.16% among the eleven correlations, at the same time the experimental values best fit with that same model, as shown in figure 3, having an R^2 value of 0.998. The calorific value is the key parameter to evaluate the fuel quality of a special biomass material in energetic application [29]. Higher calorific value is desirable to achieve higher rank of coal. Blended biomass-coal can be predicted to be able to keep pace with pure coal in terms of calorific value.
Figure 3. Plot of experimental (dotted line) calorific values of blended Semirara coal and torrefied coconut (Cocos nucifera) husk fitted to various correlations applicable for both coal and biomass based on: proximate analysis – Kavšek et al. (□), Kieseler et al. (△), Majumder et al. (○), Mesroghli et al. (◇), Parikh et al. (●); and ultimate analysis – Channiwala & Parikh (▲), Friedl et al. (●), Jenkins et al. (●), Sheng & Azevedo (◇), Sheng & Azevedo (×), Tillman (●).

4. Conclusion
This paper aimed to study and understand the physical conditions and coal properties during combustion of Semirara coal, a Philippine indigenous sub-bituminous type of coal from Semirara Island in the province of Antique, torrified biomass from coconut (Cocos nucifera) husk, and its blends (% w/w) – 25, 50, and 75 through characterization by proximate and ultimate analyses tests, and calorific value determination.

Using the linear additive rule, it can be established that Semirara coal blended with coconut (C. nucifera) husk were additive based on its proximate and ultimate analyses parameters. Test results showed that by blending torrefied coconut (C. nucifera) husk with Semirara coal would reduce the moisture content and fixed carbon by 81.06% and 30.48%, respectively, while increasing the volatile matter by 60.11% and the ash content by 11.60%. On the other hand, the carbon content increased by 27.95% which is a good indicative property of coal ranks; the hydrogen and sulfur content decreased by 40.56% and 59.74%, respectively which imply that the coal blend improved to higher rank and became environment-friendly. Remarkably, the calorific value was enhanced by 14.59%.

For the recommended coal blending ratios, the 50 % w/w Semirara coal blended with 50 % w/w torrefied coconut (C. nucifera) husk is considered to be the most favorable based on the results of the proximate analysis. Whereas for the ultimate analysis, it is the 25 % w/w Semirara coal blended with 75 % w/w torrefied coconut (C. nucifera) husk. Among the eleven correlations considered, the model presented by Jenkins et al. [21] best fit with the experimental values with R^2 value of 0.998 and AAD value of 0.16%.

Therefore, blending Semirara coal with torrefied coconut (C. nucifera) husk by not less than 50% by weight would generally improve its quality in terms of its combustion properties thereby making these combinations of coal and biomass advantageous.

5. References
[1] Baconguis SR. Abandoned biomass resource statistics in the Philippines. Research report. 10th National Convention on Statistics (NCS), EDSA Shangri-La Hotel, 2007.
[2] Zhai Y, Mo L, Rawlins M. The impact of nationally determined contributions on the energy sector: implications for ADB and its developing member countries. ADB sustainable development working paper series. Asian Development Bank, 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines, 2018.
[3] Sadullo JR. Semirara mining and power corporation – SEC form 17-A. Annual report. 2nd Floor, DMCI Plaza, 2281 Don Chino Roces Avenue, Makati City, 2016.
[4] Schweinfurth SP, Finkelman RB. (2002). Coal – a complex natural resource: an overview of factors affecting coal quality and use in the United States. [Online]. Available: https://pubs.er.usgs.gov/publication/cir1143

[5] Bartok B, Sarofina AF. Fossil Fuel Combustion: A Source Book. 1st ed. New Jersey: Wiley-Interscience; 1991.

[6] Luo Z, Agraniotis M. Low-rank Coals for Power Generation, Fuel and Chemical Production. 1st ed. Amsterdam: Elsevier Science; 2017.

[7] Lee S, Kim S, Chun D, Choi H, Yoo J. Upgrading and Advanced Cleaning Technologies for Low-rank Coals – Low-rank Coals for Power Generation, Fuel and Chemical Production. 1st ed. Amsterdam: Elsevier Science; 2017.

[8] European Commission – Infrastructure for Spatial Information in Europe (INSPIRE). Fossil fuel: low rank coal. [Online]. Available: http://inspire.ec.europa.eu/codelist/FossilFuelValue/lowRankCoal

[9] Zafar S. (2018). Agricultural wastes in the Philippines. [Online]. Available: https://www.bioenergyconsult.com/agricultural-resources-in-philippines/

[10] Mamvura TA, Pahla G, Muzenda E. Torrefaction of waste biomass for application in energy production in South Africa. South African Journal of Chemical Engineering, 2018; 25:1-12.

[11] da Silva CMS, Carneiro ADCO, Vital BR, Figueiró CG, de Freitas Fialho L, de Magalhães MA, Carvalho AG, Cândido WL. Biomass torrefaction for energy purposes–Definitions and an overview of challenges and opportunities in Brazil. Renewable and Sustainable Energy Reviews, 2018; 82:2426-2432.

[12] ASTM D3172-13, Standard Practice for Proximate Analysis of Coal and Coke. ASTM International, West Conshohocken, PA, 2013, www.astm.org

[13] Singh YD, Mahanta P, Bora U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renewable energy, 2017; 103:490-500.

[14] Kavšek D, Bednárová A, Biro M, Kranvogl R, Vončina DB, Beinrohr E. Characterization of Slovenian coal and estimation of coal heating value based on proximate analysis using regression and artificial neural networks. Central European Journal of Chemistry, 2013; 11(9):1481-1491.

[15] Kieseler S, Neubauer Y, Zobel N. Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids. Energy & Fuels, 2013; 27(2):908-918.

[16] Majumder AK, Jain R, Banerjee P, Barnwal JP. Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel, 2008; 87:3077-3081.

[17] Mesroghli S, Jorjani E, Chelgani SC. Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. International Journal of Coal Geology, 2009; 79(1-2):49-54.

[18] Parikh J, Channiwala SA, Ghosal GK, Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 2005; 84(5):487-494.

[19] SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 2002; 81(8):1051-1063.

[20] Friedl A, Padouvas E, Rotter H, Varmuza K. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta, 2005; 544(1-2):191-198.

[21] Jenkins B, Baxter LL, Miles Jr TR, Miles TR. Combustion properties of biomass. Fuel Processing Technology, 1998; 54(1-3):17-46.

[22] Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 2005; 28(5):499-507.

[23] Tillman DA. Wood as an Energy Resource. 1st ed. Amsterdam: Elsevier; 2012.

[24] Li S, Whitely N, Xu W, Pan WP. Characterization of Coal by Thermal Analysis Methods. 2005.

[25] Sukiran MA, Abnisa F, Daud WMAW, Bakar NA, Loh SK. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management, 2017; 149:101-120.
[26] Karacan CÖ, Olea RA. Mapping of compositional properties of coal using isometric log-ratio transformation and sequential Gaussian simulation–A comparative study for spatial ultimate analyses data. *Journal of Geochemical Exploration*, 2018; 186:36-49.

[27] Rasheed MA, Rao PS, Boruah A, Hasan SZ, Patel A, Velani V, Patel K. Geochemical characterization of coals using proximate and ultimate analysis of Tadkeshwar Coals, Gujarat. *Geosciences*, 2015; 5(4):113-119.

[28] Liu H. Biomass fuels for small and micro combined heat and power (CHP) systems: resources, conversion and applications. In *Small and Micro Combined Heat and Power (CHP) Systems*. Woodhead Publishing; 2011.

[29] Özyuğuran A, Yaman S. Prediction of calorific value of biomass from proximate analysis. *Energy Procedia*, 2017; 107:130-136.

Acknowledgements

This research was supported by the Department of Science and Technology – Engineering Research and Development for Technology (DOST – ERDT) thru a scholarship/research grant coordinated by the Mapúa University – School of Graduate Studies (GS).