Temperature-induced changes in wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms

Lam Dai Vu1,2,3,4,*, Tingting Zhu1,2,3,4,*, Inge Verstraeten1,2,§, Brigitte van de Cotte1,2, IWGSC5, Kris Gevaert3,4,#, Ive De Smet1,2,#,$

1Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
2VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
3Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
4VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium
5Lee’s Summit, Missouri, USA

§Current address: Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria

*Equal contribution
#Equal contribution
$Corresponding author
ABSTRACT

Wheat (Triticum ssp.) is one of the most important human food sources. However, this crop is very sensitive to temperature changes. Specifically, processes during wheat leaf, flower and seed development and photosynthesis, which all contribute to the yield of this crop, are affected by high temperature. While this has to some extent been investigated on physiological, developmental and molecular levels, very little is known about early signalling events associated with an increase in temperature. Phosphorylation-mediated signalling mechanisms, which are quick and dynamic, are associated with plant growth and development, also under abiotic stress conditions. Therefore, we probed the impact of a short-term increase in temperature on the wheat leaf and spikelet phosphoproteome. The resulting data set provides the scientific community with a first large-scale plant phosphoproteome under the control of higher ambient temperature, which will be valuable for future studies. Our analyses also revealed a core set of common proteins between leaf and spikelet, suggesting some level of conserved regulatory mechanisms. Furthermore, we observed temperature-regulated interconversion of phosphoforms, which likely impacts protein activity.

KEYWORDS

Wheat, Temperature, Phosphorylation, Signalling, Leaf, Spikelet, Phosphoproteomics
INTRODUCTION

Wheat (*Triticum* ssp.) is one of the most important staple food crops around the world (Hawkesford *et al.*, 2013). However, the current production of wheat is predicted to be not sufficient to satisfy the future demands of the increasing world’s population (Hawkesford *et al.*, 2013; Mochida and Shinozaki, 2013; International Wheat Genome Sequencing Consortium (IWGSC), 2014). In addition, the global temperature is predicted to rise throughout the 21st century (IPCC, 2014); and it has been estimated that for each degree (°C) of temperature increase, global wheat production will reduce by 6% impacting food security (Asseng *et al.*, 2015).

Wheat is sensitive to heat stress during all stages of its growth and development (Barber *et al.*, 2015; Akter and Rafiqul Islam, 2017). During wheat vegetative development, traits affected by high temperature include plant height, specific leaf weight, leaf width, relative water content, chlorophyll content and secondary metabolites (Akter and Rafiqul Islam, 2017). Furthermore, generative wheat growth and development are also very susceptible to increased temperatures (Bennett *et al.*, 1971; Sainiab *et al.*, 1983; Saini *et al.*, 1984; Draeger and Moore, 2017). Specifically, when wheat flowers are exposed to heat stress (10°C above the optimum condition) at the stage between ear initiation and anthesis (when anther development goes through meiosis) this causes abnormal development of the pollen grains in the anther and subsequently results in grain yield reduction (Sainiab *et al.*, 1983; Saini *et al.*, 1984; Fischer, 1985; Wardlaw *et al.*, 1989).

So far, transcriptome and proteome profiles were investigated in wheat under heat stress, revealing differences in gene expression and protein levels, respectively (Liu *et al.*, 2015; Wang *et al.*, 2016; Zhang *et al.*, 2017). Often, changes in gene expression for enzymes were in line with changes in the metabolite profiles upon stress (Rizhsky, 2004). Different
metabolites, including organic acids, amino acids, polyols and lipidic compounds, which are beneficial for the plant during heat stress and known to protect the photosynthesis system, are enhanced in conditions of elevated temperature (Guy et al., 2008; Scalabrin et al., 2015; Qi et al., 2017).

Several protein post-translational modifications (PTMs) are linked with plant stresses; but, these PTMs are hardly investigated in the context of temperature stress (Wu et al., 2016; Hashiguchi and Komatsu, 2016). For example, protein phosphorylation is involved in the regulation of a large number of processes, including abiotic stress signalling (Kline et al., 2010; Bonhomme et al., 2012; Nguyen et al., 2012; Zhang et al., 2014a,b; Kanshin et al., 2015). However, little is known about the phosphoproteome differences in the important crop wheat in vegetative and reproductive organs and during development under high temperature (Kumar et al., 2017). Nevertheless, understanding PTM-mediated signalling cascades associated with an elevated temperature response is essential to gain insight in temperature tolerance and to facilitate future breeding (Rampitsch and Bykova, 2012).

Here, we monitored phosphorylation events in leaves of wheat seedlings and wheat spikelets exposed for 1h to higher temperature, and further analysed the data for biological processes potentially affected by phosphorylation. The information presented here not only improved our understanding about the role of protein phosphorylation in wheat under high temperature stress, but also provided a large number of phosphorylation sites for potentially critical proteins in this process. Furthermore, we observed temperature-regulated interconversion of phosphoforms, especially of neighbouring phosphosites, which likely impacts protein activity.
MATERIAL AND METHODS

Wheat Plant Materials and Growth Conditions
The seeds used in this study were from two bread wheat (T. aestivum, AABBDD, 2n = 6x = 42) cultivars, Fielder and Cadenza. The seeds were put on wet paper enclosed by plastic wrap and vernalized as such at 4°C for 3-4 days, and then transferred to room temperature for germination. Seeds that germinated uniformly were selected and grown in plastic pots containing soil at 21°C (Cadenza) or 24°C (Fielder) under 16 h light/8 h dark (100 μE m⁻²s⁻¹ photosynthetically active radiation, supplied by cool-white fluorescent tungsten tubes, Osram), and 65–75% air humidity.

Temperature Treatment
Temperature treatment was performed 8 h after the start of the light period. For the leaf material, Fielder plants at 7 days post germination growing in separate pots were transferred to two incubators and grown at 34°C (high temperature treatment) or 24°C (control temperature) under constant light (100 μE m⁻²s⁻¹ photosynthetically active radiation) for 60 min. For the spikelet samples, Cadenza plants were cultivated in the greenhouse until the booting stage (stage 45 in Zadoks Decimal Code), then transferred to two incubators at respectively 34°C (high temperature treatment) and 21°C (control temperature) under constant light (100 μE m⁻²s⁻¹ photosynthetically active radiation) for 60 min. The leaves of seedlings from Fielder and the spikelets in the middle section of the ears from Cadenza were collected and frozen in liquid nitrogen.

qRT-PCR
Three biological replicates were used per time point. RNA was extracted and purified with the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instruction for plant RNA extraction. DNA digestion was done on columns with RNase-free DNase I (Promega). The iScript cDNA Synthesis Kit (Biorad) was used for cDNA synthesis from 1 μg of RNA. qRT-PCR was performed on a LightCycler 480 (Roche Diagnostics) in 384-well plates with LightCycler 480 SYBR Green I Master (Roche) according to the manufacturer's instructions. Two housekeeping genes, ACTIN (GenBank locus AB181991.1) and the CELL DIVISION CONTROL PROTEIN (CDC, GenBank locus Ta.46201) were used for normalization of the expression level of the HEAT SHOCK PROTEINs. All the primers are listed in Supplemental Table S1.

Protein Extraction and Phosphopeptide Enrichment
Total protein extraction was conducted on three biological replicate samples (leaf and spikelet material from independent plants) per wheat cultivar according to our previously described procedure with minor modifications (Vu et al., 2017). Details can be found in the Supplementary Information. Phosphopeptides were enriched as previously described (Vu et al., 2017).

LC-MS/MS Analysis
Each sample was analysed via LC-MS/MS on an Ultimate 3000 RSLC nano LC (Thermo Fisher Scientific, Bremen, Germany) in-line connected to a Q Exactive mass spectrometer (Thermo Fisher Scientific). The peptides were first loaded on a trapping column (made in-house, 100 μm internal diameter (I.D.) × 20 mm, 5 μm beads C18 Reprosil-HD, Dr. Maisch, Ammerbuch-Entringen, Germany). After flushing the trapping column, peptides were loaded in solvent A (0.1% formic acid in water) on a reverse-phase column (made in-house, 75 μm
I.D. x 250 mm, 1.9 µm Reprosil-Pur-basic-C18-HD beads, Dr. Maisch, packed in the needle) and eluted by an increase in solvent B (0.1% formic acid in acetonitrile) using a linear gradient from 2% solvent B to 55% solvent B in 120 min, followed by a washing step with 99% solvent B, all at a constant flow rate of 300 nl/min. The mass spectrometer was operated in data-dependent, positive ionization mode, automatically switching between MS and MS/MS acquisition for the 5 most abundant peaks in a given MS spectrum. The source voltage was set at 4.1 kV and the capillary temperature at 275°C. One MS1 scan (m/z 400−2,000, AGC target 3 × 10^6 ions, maximum ion injection time 80 ms), acquired at a resolution of 70,000 (at 200 m/z), was followed by up to 5 tandem MS scans (resolution 17,500 at 200 m/z) of the most intense ions fulfilling predefined selection criteria (AGC target 5 × 10^4 ions, maximum ion injection time 80 ms, isolation window 2 Da, fixed first mass 140 m/z, spectrum data type: centroid, under-fill ratio 2%, intensity threshold 1.3xE4, exclusion of unassigned, 1, 5-8, >8 positively charged precursors, peptide match preferred, exclude isotopes on, dynamic exclusion time 12 s). The HCD collision energy was set to 25% Normalized Collision Energy and the polydimethylcyclosiloxane background ion at 445.120025 Da was used for internal calibration (lock mass).

Database Searching

MS/MS spectra were searched against the unpublished IWGSC RefSeq v1.0 database for *Triticum aestivum* (137052 entries) (wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies) with the MaxQuant software (version 1.5.4.1). For comparison, a second search against the earlier version of IWGSC PopSeq PGSB/MIPS v2.2 database (100344 entries), downloaded from wheatproteome.org, was performed. Detailed MaxQuant settings can be found in Supplementary Information. All MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2014;
Vizcaíno et al., 2016) with the dataset identifier PXD008703. Next, the ‘Phospho(STY).txt’ output file generated by the MaxQuant search was loaded into the Perseus (version 1.5.5.3) data analysis software available in the MaxQuant package. Proteins that were quantified in at least two out of three replicates from each temperature were retained. Log2 protein ratios of the protein LFQ intensities were centered by subtracting the median of the entire set of protein ratios per sample. A two-sample test with a p-value cut-off $p<0.01$ was carried out to test for differences between the temperatures. Besides, phosphopeptides with 3 valid values in one condition and none in the other were also retained and designated “unique” for that condition.

In Silico Analyses

For Gene Ontology (GO) analysis, the protein sequences of all identified phosphoproteins were loaded in the BLAST2GO software and blasted against the NCBI non-redundant protein sequence database of green plants (Viridiplantae) with a cut-off E-Value of 10^{-5}. Afterwards, the results were examined for GO annotation and a Fisher’s exact test ($p<0.05$) was performed to extract enriched GO terms in the regulated phosphosite dataset. For Motif-X analyses, the Motif-X algorithm (Chou and Schwartz, 2011) was used to extract significantly enriched amino acid motifs surrounding the identified phosphosites. The sequence window was limited to 13 amino acids and foreground peptides were pre-aligned with the phosphosite in the centre of the sequence window. All identified proteins were used as the background dataset. The occurrence threshold was set at the minimum of 20 peptides and the P-value threshold was set at $< 10^{-6}$. Structural modelling of the WD40 domain of TaSPIRRIG was performed in SWISS-MODEL (Arnold et al., 2006; Biasini et al., 2014). The templates for the modelling studies were identified in the automated mode against the SWISS-MODEL template library (PDB: 5HYN). Structure representations were generated using the PyMOL Molecular Graphics System, Version 1.7.4, Schrödinger, LLC (www.pymol.org).
RESULTS AND DISCUSSION

Experimental Set-up for Early Leaf and Spikelet Phosphoproteome Analyses

So far, our knowledge on changes in the wheat proteome upon elevated temperature is largely limited to long-term exposures (day- or week-long treatments) (Majoul et al., 2003; Laino et al., 2010; Farooq et al., 2011). We were interested in early signalling associated with a milder increase in ambient temperature, and therefore we wanted to profile changes in the phosphoproteome. To determine a suitable time point for proteome sampling, we first probed the expression levels of two HEAT SHOCK PROTEINS, since early thermal sensing is largely reflected in the transcription of HEAT SHOCK PROTEINS (Xu et al., 2011). Here, we exposed 7 days old wheat seedlings (Fielder) grown at 24°C for a short-term treatment of 34°C and harvested whole shoots at different incubation times (Figure 1A). Recent evidence in cereal crop plants has demonstrated a link between high temperature sensitivity at booting stage and seed yield (Hedhly et al., 2009; Draeger and Moore, 2017). Hence, we used booting wheat plants (Cadenza) grown at 21°C and exposed to increased ambient temperature (34°C), after which we harvested spikelets at different incubation times (Figure 1B). Since developmental stages differ in optimal growth temperature (Porter and Gawith, 1999), we chose different optimal growth temperatures as the control condition for our experiment. We analysed the transcription of TaHSP70d and TaHSP90.1, which are markers for temperature response (Xue et al., 2014), in both leaf and spikelet samples. We found that the transcriptional response of TaHSP70d and TaHSP90.1 peaks in both samples at 60 min, indicating a maximum of early high temperature response (Figure 1C-D). Therefore, to identify early phosphorylation-controlled signalling components associated with a mild
increased temperature in wheat, we subjected both leaf and spikelet samples from the 60 min
time point to our phosphoproteomic workflow (Vu et al., 2016).

New wheat reference sequence improves protein identification

Advances in the wheat reference sequence assembly provide a solid basis for proteome
studies in wheat (Brenchley et al., 2012; International Wheat Genome Sequencing
Consortium (IWGSC), 2014; Luo et al., 2017). Through Ti-IMAC enrichment and subsequent
LC-MS/MS analysis, we identified 3822 phosphopeptides containing 5178 phosphorylated
amino acids, representing 2213 phosphoproteins in the leaf samples using the unpublished
IWGSC RefSeq v1.0 assembly (Figure 2 and Supplementary Table S2). In spikelet
samples, our workflow led to the identification of 5581 phosphopeptides containing 7023
phosphosites located on 2696 proteins (Figure 2 and Supplementary Table S3). As a
comparison, we performed a second search using the earlier published protein sequence
database based on the draft genome sequences of bread wheat (International Wheat Genome
Sequencing Consortium (IWGSC), 2014). The new protein database, based on the
unpublished IWGSC RefSeq v1.0 assembly, resulted in an increase of 30% and 34% of
identifications compared to the search using the previous search database that identified 3975
and 5234 phosphosites for leaf and spikelet samples, respectively. This seems to correlate
with the increase of 36.5% in the number of entries in the new database compared to the old
database, supporting the quality of the new wheat reference sequence assembly. To our
knowledge, this is currently the largest set of identified phosphosites in the *Triticum* family.
The identified phosphosites in this study were added to our PTMViewer
(bioinformatics.psb.ugent.be/webtools/ptm_viewer/) (Vu et al., 2016). In addition, we found
several phosphosites that were differentially regulated between normal (21 or 24°C) and increased ambient temperature (34°C) in wheat leaves and spikelets (Figure 2).

A Temperature-regulated Wheat Leaf Phosphoproteome

Phosphosites that exhibited valid values in one condition and none in the other indicate a massive change in phosphorylation levels. For the wheat leaves, we could identify 13 phosphosites that only occurred in the 34°C samples and 32 phosphosites unique for the 24°C condition (Figure 2 and Supplementary Table S4). On the rest of the wheat leaf dataset, we performed a Student’s t-test (p<0.01) on phosphosites with at least 2 valid values in any condition (2810 phosphosites), and this resulted in 33 significantly upregulated phosphosites and 63 significantly downregulated phosphosites at high temperature (Supplementary Table S5). Proteins with phosphosites uniquely identified in either conditions and significantly deregulated phosphoproteins from the statistical test were combined and analysed for overrepresented GO terms in biological processes (Figure 3) and molecular function (Supplementary Figure S2). As expected, upregulated phosphoproteins are highly enriched in the GO terms of stress-induced processes such as response to heat, protein folding (Zhu, 2016), response to hydrogen peroxide (Gupta et al., 2016) and glucose transport (Ruan et al., 2010). On the other hand, downregulated phosphoproteins were mainly enriched in positive regulation of translational elongation/termination, and ribosome biogenesis (Cherkasov et al., 2015).

Expression of HSPs is rapidly induced in the leaf by increased temperature (Figure 1C), as the resulting proteins play crucial roles when plants are exposed to increased temperature (Sun et al., 2002; Kotak et al., 2007). In our leaf data set, we furthermore identified several differential phosphorylation sites of HSPs at 34°C (Supplementary Table
S4-5), namely HSP90 (TraesCS2A01G033700.1, TaHSP90) and HSP60-3A (TraesCSU01G009200.1, TaHSP60-3A) were 10.4-fold and 4.6-fold upregulated at S224 and S577, respectively. However, for both proteins, another phosphosite, namely S93 of TaHSP90 and T420 of TaHSP60-3A, was not differentially phosphorylated after 1 h exposure to 34 °C. This suggested that HSP90 and HSP60-3A protein abundance is likely not the basis for the increase in S224 and S577 phosphopeptide increase, respectively.

Noticeably, our dataset indicated that the phosphoproteome of the photosynthesis machinery in wheat leaves is severely affected by high temperature (Supplementary Tables S4 and S5). For example, phosphorylation of T33, T37 and T39 of the subunit P of photosystem I (TraesCS2A01G235000.1) was 3.2-fold downregulated after 1 h exposure to 34°C (Supplementary Table S5). In addition, an actin-binding protein (TraesCS1D01G422700.2), whose homologue in Arabidopsis (CHUP1) is important for proper chloroplast positioning (Oikawa et al., 2008), was found to be considerably less phosphorylated at S157 upon high temperature (Supplementary Table S4). Besides, a kinesin-like protein (TraesCS7D01G176200.1, homologous to Arabidopsis KAC1) is highly phosphorylated in its kinesin motor domain (S444) in response to high temperature (Supplementary Table S4). Both CHUP1 and KAC1 regulate the accumulation of chloroplast actin filaments in Arabidopsis, thus facilitating the anchorage of chloroplasts on the plasma membrane. Last, phosphorylation of kinases involved in chloroplast movement such as the phototropin homologues TraesCS5D01G389200.2 and TraesCS2B01G290500.3 (S525 and S294, respectively) was also elevated by heat (Supplementary Table S4 and S5).

The post-translational import of chloroplast proteins is a highly regulated process (Strittmatter et al., 2010). Our dataset shows several components of this process to be affected by high temperature. Increased temperature also highly induced the phosphorylation of a wheat homologue (TraesCS5D01G132600.1) of Arabidopsis STY46 kinase at S31
In Arabidopsis, STY46 and its homologues STY8 and STY17 facilitate import of chloroplast preproteins by phosphorylation of their N-terminal transit peptide (Lamberti et al., 2011). On the other hand, many chloroplast proteins are integrated into the chloroplast outer membrane (COM) without any cleavable signal sequence (Hofmann and Theg, 2005). The ANKYRIN REPEAT-CONTAINING PROTEIN 2 (AKR2) interacts with chloroplast specific lipid markers and facilitates the insertion of COM proteins into the chloroplast outer membrane (Kim et al., 2014). It is speculated that the regulatory mechanism of this process involves conformational changes of AKR2 via PTMs (Kim et al., 2014). Here, we showed that phosphorylation of the AKR2 homologue in wheat (TraesCS4A01G328600.1) at S404 is two-fold upregulated in response to higher temperature (Supplementary Table S5). While protein import in chloroplasts has been shown to be altered under stress conditions (Dutta et al., 2009; Ling and Jarvis, 2016), our dataset indicated that this response, especially to high temperature, is highly regulated by phosphorylation.

In conclusion, our temperature-mediated leaf phosphoproteome pinpointed photosynthesis as a central target of higher temperature and identified several phosphorylated residues on key components for further functional characterization.

A Temperature-regulated Wheat Spikelet Phosphoproteome

For the wheat spikelet, we identified 79 phosphosites that are only present in the 34°C samples and 51 phosphosites that are unique for 21°C samples (Figure 2 and Supplementary Table S6). A Student’s t-test (p<0.01) was performed on the rest of the wheat spikelet dataset (phosphosites with at least 2 valid values in temperature condition; 3949 phosphosites), and this resulted in 114 significantly upregulated phosphosites and 110...
significantly downregulated phosphosites at elevated temperature (Supplementary Table S7). Proteins with phosphosites uniquely identified in either condition and significantly deregulated phosphoproteins from the statistical test were combined and GO analysis was performed similarly as for the leaf samples (Figure 4 and Supplementary Figure S3). The biological processes enriched in leaf samples were also increased here, such as protein folding, response to heat, response to hydrogen peroxide. Similar to the leaf GO enrichment (Figure 3), terms associated with translation were predominantly enriched for downregulated phosphoproteins.

Reproductive development in plants is known to be greatly dependent on the epigenetic control of expression of flowering genes (Gan et al., 2013). This often involves histone modifications such as (de)acetylation, methylation and ubiquitination (Lawrence et al., 2016). Here, we found that the phosphorylation of several histone-modifying enzymes was deregulated in response to heat. For example, the phosphoserine 297 of the histone deacetylase TraesCS1A01G445700.3 was 7.1-fold downregulated and the phosphorylation of S762 S763 in the histone-lysine N-methyltransferase TraesCS2A01G262600.1 was 2.4-fold decreased (Supplementary Table S7). In contrast, an ubiquitin protease, TraesCS4D01G266600.3, was 2.2-fold more phosphorylated at S31 and T32. Its Arabidopsis homologue, UBP26, deubiquitinates the histone H2B to regulate floral transition by control the expression of FLOWERING LOCUS C (FLC) (Schmitz et al., 2008). Furthermore, it has been demonstrated that phosphorylation is crucial for the activity of histone-modifying enzymes (Pflum et al., 2001; Schmitz et al., 2008; Xu et al., 2015).

Another important step in epigenetic control of gene expression is the ATP-dependent restructuring of nucleosomes (Vignali et al., 2000). Phosphorylation of two homologous SWI2/SNF2 class of chromatin remodelling ATPases, TraesCS7D01G206700.3 (at T2492) and TraesCS7B01G110600.1 (at S1668 and S1671), was massively induced by heat.
The Arabidopsis homologue, SPLAYED (SYD), is known to be a co-repressor during floral transition (Wagner and Meyerowitz, 2002). In contrast, phosphorylation of S1728 in the SNF2 ATPase TraesCS6B01G048200.2 is 1.7-fold downregulated (Supplementary Table S7). Its homologue in Arabidopsis, BRAHMA (BRM) plays a pivotal role in controlling flowering time by regulating the expression of FLC and inflorescence architecture, mainly via interaction with the transcription factor KNAT1 (Zhao et al., 2015). Interestingly, a wheat homologue of KNAT1, TraesCS5B01G410600.1, was also less phosphorylated at high temperature (Supplementary Table S7).

In conclusion, our data suggested that an increase in ambient temperature can alter phosphorylation status of chromatin remodelling proteins as an important mechanism to control gene expression during the reproductive stage. Further, other proteins involved in pollen, pistil or gametophyte development (Supplementary Tables S6 and S7) also exhibit altered phosphorylation in response to increased temperature.

Comparison of Leaf and Spikelet Phosphoproteome

In total, we identified 2491 identical phosphosites in both organs, which account for 48% and 35% of all identified phosphosites in leaf and spikelet samples, respectively (Figure 5). Only 7 phosphosites were found commonly upregulated at high temperature in both organs and 8 were commonly downregulated in both organs (Figure 5 and Supplementary Table S8). Notwithstanding the considerable overlap between the phosphosites identified in both organs, the limited overlap between similarly regulated phosphosites indicated distinct responses in the leaf and spikelet phosphoproteomes at the early stages of thermal signalling.

Among the common higher temperature-induced phosphosites, phosphorylation of S464 of the pseudouridine synthase TraesCS2B01G177000.1 was increased 1.6-fold and 1.9-
fold in leaf and spikelet samples, respectively. Pseudouridylation of mRNA as well as of non-coding RNAs can be induced in stress conditions and is important for the regulation of gene expression, and involved in splicing, translation and decay of mRNA (Karijolich et al., 2015). On the other hand, three different translation initiation factors are present among the commonly regulated proteins with downregulated phosphosites (Supplementary Table S8). This is in agreement with heat stress-triggered overall pausing of translation elongation, and with heat-induced HSP70 protecting cells from heat shock-induced pausing (Shalgi et al., 2014; Merret et al., 2015). Especially, dephosphorylation of translation initiation factors correlates with the reprogramming of translation following thermal stress in wheat (Gallie et al., 1997).

Leaf and Spikelet Phosphoproteome Motif-X Analyses Reveal Distinct Regulation of Phosphorylation Motifs

So far, little is known about the protein kinases and phosphatases involved in temperature signalling (Ding et al., 2015; Yu et al., 2017; Li et al., 2017; Zhao et al., 2017). Therefore, we used the identified phosphosites to reveal potential phosphorylation motifs and associated kinases that may act in a high-temperature responsive manner. The Motif-X algorithm was applied on the set of regulated phosphosites in leaf and spikelet samples separately, using the sequences of all identified phosphoproteins in either organ as reference (Figure 6). In the spikelet, the common SP motif was enriched in both upregulated as well as downregulated phosphosites. This suggested that kinases (and phosphatases) targeting those sites are tightly regulating the protein phosphorylation signatures (meaning the specific combination of phosphorylated and non-phosphorylated residues), which impacts on overall protein behaviour, such as protein activity and localization (Salazar and Höfer, 2009). The acidic SD
motif was significantly overrepresented among the upregulated phosphosites (3.61-fold). In contrast, the downregulated phosphosites showed an enrichment in the basic RxxS motif (4.37-fold) (Figure 6). This latter trend was also found in the leaf samples (Figure 6). Despite that no motif enrichment was obtained for the upregulated phosphosites in leaf, due to the small size of the data set, we identified six SD motifs among these sites, which account for 13% of the upregulated phosphosites in leaves. This was comparable with 14% of the upregulated phosphosites in the spikelet samples which also shows the SD motif. This possibly indicated a common molecular mechanism of higher temperature response via phosphorylation across different organs and different growth stages. While local intracellular parameters such as the pH can slightly vary in a temperature-dependent manner and thus affect the property of amino acid residues around the phosphosites (Wilkinson, 1999; Schönichen et al., 2013), we do not rule out the possibility that certain phosphosites are targeted by a specific set of higher temperature-activated kinases. The acidic motif SD is known to be targeted by MAP kinases (MPKs), receptor-like kinases (RLKs) and calcium-dependent protein kinases (CDPKs), while RxxS is a motif commonly targeted by MAP kinase kinases (M2Ks) (van Wijk et al., 2014). In support of this, we found 6 RLKs among 10 kinases with a higher phosphorylation level at 34°C in the ear, whereas 3 out of 7 kinases with decreased phosphorylation level are predicted to have MAP3K or MAP4K activity (Supplementary Table S9).

Phosphoproteins with multiple deregulated phosphosites

Since the protein phosphosignature will determine protein behaviour (Salazar and Höfer, 2009), we probed the leaf and spikelet phosphoproteome data for proteins that displayed a combination of up and down-regulated phosphosites. We found 13 phosphoproteins in the
spikelet samples and one in the leaf samples that contained both significantly up and
downregulated phosphosites (Table 1). It is thus very likely that the status of these
phosphosites is not affected by changes in the protein level, but rather by higher temperature-
dependent activity of associated kinases and phosphatases. These protein phosphatases and
kinases might be activated by higher temperature and target the phosphosites independently to
generate different phosphoforms of the target protein (Figure 7A). However, the
phosphorylation and dephosphorylation events might also occur in an interdependent manner
upon higher temperature (Figure 7B) (Salazar and Höfer, 2009; Nishi et al., 2015). Crosstalk
between different or the same type of PTMs is very common (Beltrao et al., 2013; Nishi et al.,
2015), but is still not widely explored in plants.

A complex example is the putative protein kinase TraesCS6B01G377500.3 (Table 1),
which exhibited two phosphosites S711 and S762 that are, respectively, 2.6- and 2.1-fold
upregulated in the spikelet samples treated at 34°C. In contrast, a doubly phosphorylated
peptide (DFPlpSPSpSAR, S227 and S230) was detected 2.5-fold higher in the 21°C samples.
Further, a single peptide (pSSGIEETTPAEAEALSK or SpSSGIEETTPAEAEALSK) could only
be detected for all 21°C samples, albeit the phosphosite could not be exactly localized (either
S768 or S769).

In addition, we also found proteins with multiple phosphosites that showed the same
deregulation across different temperature (Supplementary Table S10). A large portion of
these sites are detected together on the multi-phosphorylated peptides. These phosphosites
may work synergistically to control the protein function at elevated temperature or may
generate a phosphorylation code for crosstalk between different protein kinases or
phosphatases as discussed above. However, in this case, a change in protein level may result
in a general change in abundance of phosphopeptide pool. Hence, studying the co-regulation
of these phosphosites will require additional investigation on the abundance of the proteins, e.g. by analysing intact proteins or rather the different proteoforms.

Altogether, our data indicated that multiple phosphorylation/dephosphorylation events of a single protein induced by stress are common and add another level of complexity to our understanding of stress signalling mechanisms in plants.

Temperature-induced interconversion of neighbouring phosphorylation residues

Interestingly, in the spikelet samples, TraesCS5B01G387800.1 (Table 1), which is a homologue of the WD40/BEACH domain protein SPIRRIG in *Arabidopsis thaliana*, exhibited two phosphosites in close proximity with opposite differential regulation upon high temperature. The phosphosite S3236 (pSPTYGGPGGLDVQTLEYR) could only be detected at 34°C, whereas the phosphosite T3238 (pPTTTYGGPGGLDVQTLEYR) could only be detected at 21°C (Supplementary Figure 4). The phosphosites are located in the WD40-repeat domain (Figure 8A), which is crucial for interaction of SPIRRIG with the decapping protein DCP1 to regulate mRNA decay upon salt stress in *Arabidopsis* (Steffens *et al.*, 2015).

Inspecting the protein sequence, we found the two phosphorylation sites localized in a sequence window of 10 amino acids of which four are either Ser or Thr (Figure 8B). Neither phosphorylation of the two other Thr residues or a hyper-phosphorylated species of the same peptide could be detected. Hence, a combined effect of phosphorylation of individual sites is likely not relevant. While S3236 was conserved and T3238 not conserved among SPIRRIG homologues, we could also find high frequency of Ser and Thr residues in the same sequence windows in other seed plants (Figure 8B). While the high occurrence of phosphorylatable sites might help to preserve the functional phosphorylation pool of a particular sequence during evolution, we suspect that the conformational change of the protein upon stimuli such
as heat could lead to the preference for one phosphosite over the other by the same kinase. This might provide a buffering mechanism to maintain the function of the protein by differential phosphorylation of neighbouring amino acid residues depending on the environmental conditions. However, we also do not rule out allostERIC or orthostERIC regulation between the two phosphosites that might affect the activity of the protein (Nussinov et al., 2012).

For the splicing factor TraesCS2D01G281200.1 (Table 1) the phosphorylated peptide containing only S12 (ASAETLARSP\textit{pS} REPSSDPPR) is uniquely detected at 34°C, while the doubly phosphorylated peptide of S10 and S12 (ASAETLAR\textit{pSP}\textit{pS} REPSSDPPR) was 3.4-fold downregulated at the same temperature in the spikelets. We speculate that the phosphoforms of TraesCS2D01G281200.1 may coexist in a temperature-dependent stoichiometry.

Such interconversion of neighbouring phosphorylation residues (Figure 8C) has until now seldom been observed. One example can be found in the cyanobacteria \textit{Synechococcus elongates}, where the circadian clock is controlled by the oscillating phosphorylation equilibrium between a neighbour serine and threonine in the protein kinase KaiC (Rust et al., 2007). This phosphorylation switch between the two residues is modulated by the stoichiometric interaction of KaiC with KaiA and KaiB, in which the pS-KaiC form antagonize KaiA activity, whereas the pT-KaiC form does not. Similarly, a dual phosphorylation switch has been studied in human (Kilisch et al., 2016). To our knowledge, similar phosphorylation modules have not been reported in plants, especially not in the context of stress responses. It is possible that temperature serves as a signalling switch for such a phosphorylation toggle via regulated interaction with at least a protein kinase and/or phosphatase.
CONCLUSION

In conclusion, we provide the scientific community with the first large scale phosphoproteome in plants under the control of higher ambient temperature across different temperature-sensitive organs. An in-depth analysis showed that the photosynthetic machinery in the leaf is highly responsive to increased temperature, while epigenetic regulation in the spikelets seems to be tightly regulated by higher temperature in a phosphorylation-dependent manner during reproductive development. Furthermore, we observed a core set of common proteins between both leaf and spikelet, suggesting some conserved mechanisms in these organs when responding the higher temperature. Nevertheless, we also observed a large portion of organ-specific regulation. Finally, we exposed a, so far, not reported mechanism of interconversion of neighbouring phosphorylation residues, which likely plays a key role in temperature signalling. Taken together, our data set increases the understanding of temperature signalling in plants.

SUPPLEMENTARY DATA

Table S1 Primers used in this study

Table S2 Phosphosites identified in wheat leaves

Table S3 Phosphosites identified in wheat spikelets

Table S4 Phosphosites uniquely present at either 24 °C or 34 °C in wheat leaves

Table S5 Phosphosites significantly deregulated at 34 °C (Students' t-test p<0.01) in wheat leaves

Table S6 Phosphosites uniquely present at either 21 °C or 34 °C in wheat spikelets
Table S7 Phosphosites significantly deregulated at 34 °C (Students' t-test p<0.01) in wheat spikelets

Table S8 Phosphosites that is commonly upregulated or downregulated at 34 °C in both leaves and spikelets

Table S9 Kinases with deregulated phosphosites in this study

Table S10 List of proteins with multiple upregulated or multiple downregulated phosphosites

Figure S1 Histograms show normal distribution of Log2 Intensity of quantifiable proteins (proteins present in only one of two temperatures or having at least 2 valid values per temperature) in leaf (A) and spikelet (B)

Figure S2 Overpresented GO terms for molecular functions among leaf proteins with (A) upregulated or (B) downregulated phosphosites. Fold-changes are indicated.

Figure S3 Overpresented GO terms for molecular functions among spikelet proteins with (A) upregulated or (B) downregulated phosphosites. Fold-changes are indicated.

Figure S4 Mass spectrum of phosphopeptides containing S3236 (A) and T3238 (B) in SPIRRIG homologue TraesCS5B01G387800.1.

ACKNOWLEDGEMENTS

We thank Michiel Van Bel for assistance in depositing the data in the PTMViewer. We thank Natalia Nikonorova for fruitful discussions on MS data analyses. L.D.V. is the recipient of a
VIB International PhD program fellowship. T.Z. is supported by a grant from the Chinese Scholarship Council.

REFERENCES

Akter N, Rafiqul Islam M. 2017. Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development 37, 37.

Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201.

Asseng S, Ewert F, Martre P, et al. 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5, 143–147.

Barber HM, Carney J, Alghabari F, Gooding MJ. 2015. Decimal growth stages for precision wheat production in changing environments? Annals of Applied Biology 166, 355–371.

Beltrao P, Bork P, Krogan NJ, Van Noort V. 2013. Evolution and functional cross-talk of protein post-translational modifications. Molecular Systems Biology 9, 1–13.

Bennett MD, Chapman V, Riley R. 1971. The duration of meiosis in pollen mother cells of wheat, rye and Triticale. Proceedings of the Royal Society London. Sereis B, Biological Sciences 178, 259–275.

Biasini M, Bienert S, Waterhouse A, et al. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 42, W252–W258.

Bonhomme L, Valot B, Tardieu F, Zivy M. 2012. Phosphoproteome Dynamics Upon Changes in Plant Water Status Reveal Early Events Associated With Rapid Growth Adjustment in Maize Leaves. Molecular & Cellular Proteomics 11, 957–972.
Brenchley R, Spannagl M, Pfeifer M, et al. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705–710.

Cherkasov V, Grousl T, Theer P, et al. 2015. Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress. FEBS Letters 589, 3654–3664.

Chou MF, Schwartz D. 2011. Biological Sequence Motif Discovery Using motif-x. Current Protocols in Bioinformatics, 1–24.

Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Developmental cell 32, 278–89.

Draeger T, Moore G. 2017. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics 130, 1785–1800.

Dutta S, Mohanty S, Tripathy BC. 2009. Role of Temperature Stress on Chloroplast Biogenesis and Protein Import in Pea. Plant Physiology 150, 1050–1061.

Farooq M, Bramley H, Palta JA, Siddique KHM. 2011. Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Critical Reviews in Plant Sciences 30, 491–507.

Fischer RA. 1985. Number of kernels in wheat crops and the influence of solar radiation and temperature. J. agric. Sci., Camb 105, 447–461.

Gallie DR, Le H, Tanguay RL, Hoang NX, Browning KS, Caldwell C. 1997. Molecular Genetics: The Phosphorylation State of Translation Initiation Factors Is Regulated Developmentally and following Heat Shock in Wheat. Journal of Biological Chemistry 272, 2–10.

Gan E-S, Huang J, Ito T. 2013. Functional Roles of Histone Modification, Chromatin Remodeling and MicroRNAs in Arabidopsis Flower Development. International Review of Cell and Molecular Biology 305, 115–161.
Gupta K, Sengupta A, Chakraborty M, Gupta B. 2016. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses. Frontiers in plant science 7, 1343.

Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK. 2008. Metabolomics of temperature stress. Physiologia Plantarum 132, 220–235.

Hashiguchi A, Komatsu S. 2016. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress. Proteomes 4.

Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MAJ. 2013. Prospects of doubling global wheat yields. Food and Energy Security 2, 34–48.

Hedhly A, Hormaza JI, Herrero M. 2009. Global warming and sexual plant reproduction. Trends in Plant Science 14, 30–36.

Hofmann NR, Theg SM. 2005. Chloroplast outer membrane protein targeting and insertion. Trends in Plant Science 10, 450–457.

International Wheat Genome Sequencing Consortium (IWGSC). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science (New York, N.Y.) 345, 1251788.

International Wheat Genome Sequencing Consortium (IWGSC). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome Ancient hybridizations among the ancestral genomes of bread wheat Genome interplay in the grain transcriptome of hexaploid bread wheat Structural and functional pa. Science (New York, N.Y.) 345, 1250092.

Kanshin E, Kubiniok P, Thattikota Y, D’Amours D, Thibault P. 2015. Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress. Molecular systems biology 11, 813.

Karijolich J, Yi C, Yu YT. 2015. Transcriptome-wide dynamics of RNA pseudouridylation.
Kilisch M, Lytovchenko O, Arakel EC, Bertinetti D, Schwappach B. 2016. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1. Journal of Cell Science 129, 831–842.

Kim DH, Park M-J, Gwon GH, et al. 2014. An Ankyrin Repeat Domain of AKR2 Drives Chloroplast Targeting through Coincident Binding of Two Chloroplast Lipids. Developmental Cell 30, 598–609.

Kline KG, Barrett-Wilt GA, Sussman MR. 2010. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proceedings of the National Academy of Sciences 107, 15986–15991.

Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD. 2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10, 310–316.

Kumar V, Khare T, Sharma M, Wani S. 2017. Engineering Crops for Future: A Phosphoproteomics Approach. Current Protein & Peptide Science 18, 1–1.

Laino P, Shelton D, Finnie C, De Leonardis AM, Mastrangelo AM, Svensson B, Lafiandra D, Masci S. 2010. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics 10, 2359–68.

Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S. 2011. The Cytosolic Kinases STY8, STY17, and STY46 Are Involved in Chloroplast Differentiation in Arabidopsis. Plant Physiology 157, 70–85.

Lawrence M, Daujat S, Schneider R. 2016. Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends in Genetics 32, 42–56.

Li H, Ding Y, Shi Y, Zhang X, Zhang S, Gong Z, Yang S. 2017. MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance.
in Arabidopsis. Developmental cell 43, 630–642.e4.

Ling Q, Jarvis P. 2016. Analysis of Protein Import into Chloroplasts Isolated from Stressed Plants. Journal of Visualized Experiments.

Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q. 2015. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biology 15, 1–20.

Luo MC, Gu YQ, Puiu D, et al. 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502.

Majoul T, Bancel E, Triboï E, Ben Hamida J, Branlard G. 2003. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from total endosperm. PROTEOMICS 3, 175–183.

Merret R, Nagarajan VK, Carpentier MC, et al. 2015. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. Nucleic Acids Research 43, 4121–4132.

Mochida K, Shinozaki K. 2013. Unlocking triticeae genomics to sustainably feed the future. Plant and Cell Physiology 54, 1931–1950.

Nguyen THN, Brechenmacher L, Aldrich JT, et al. 2012. Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum. Molecular & Cellular Proteomics 11, 1140–1155.

Nishi H, Demir E, Panchenko AR. 2015. Crosstalk between Signaling Pathways Provided by Single and Multiple Protein Phosphorylation Sites. Journal of Molecular Biology 427, 511–520.

Nussinov R, Tsai CJ, Xin F, Radivojac P. 2012. Allosteric post-translational modification codes. Trends in Biochemical Sciences 37, 447–455.

Oikawa K, Yamasato A, Kong S-G, Kasahara M, Nakai M, Takahashi F, Ogura Y,
Kagawa T, Wada M. 2008. Chloroplast Outer Envelope Protein CHUP1 Is Essential for Chloroplast Anchorage to the Plasma Membrane and Chloroplast Movement. Plant Physiology 148, 829–842.

Plum MKH, Tong JK, Lane WS, Schreiber SL. 2001. Histone Deacetylase 1 Phosphorylation Promotes Enzymatic Activity and Complex Formation. Journal of Biological Chemistry 276, 47733–47741.

Porter JR, Gawith M. 1999. Temperatures and the growth and development of wheat: a review. European Journal of Agronomy 10, 23–36.

Qi X, Xu W, Zhang J, Guo R, Zhao M, Hu L, Wang H, Dong H, Li Y. 2017. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma 254, 1017–1030.

Rampitsch C, Bykova N V. 2012. The beginnings of crop phosphoproteomics: exploring early warning systems of stress. Frontiers in Plant Science 3, 1–15.

Rizhsky L. 2004. When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiology 134, 1683–1696.

Ruan Y-L, Jin Y, Yang Y-J, Li G-J, Boyer JS. 2010. Sugar Input, Metabolism, and Signaling Mediated by Invertase: Roles in Development, Yield Potential, and Response to Drought and Heat. Molecular Plant 3, 942–955.

Rust MJ, Markson JS, Lane WS, Fisher DS, O’Shea EK. 2007. Ordered Phosphorylation Governs Oscillation of a Three-Protein Circadian Clock. Science 318, 809–812.

Sainiab HS, Sedgleyc M, Aspinalla D. 1983. Effect of Heat Stress during Floral Development on Pollen Tube Growth and Ovary Anatomy in Wheat (Triticum aestivum L.). Australian Journal of Physiology 10, 137–144.

Saini HS, Sedgley M, Aspinall D. 1984. Developmental Anatomy in Wheat of Male Sterility...
Induced by Heat Stress, Water Deficit or Abscisic Acid. Aust. J. Plant Physiol 11, 243–253.

Salazar C, Höfer T. 2009. Multisite protein phosphorylation - from molecular mechanisms to kinetic models. FEBS Journal 276, 3177–3198.

Scalabrin E, Radaelli M, Rizzato G, Bogani P, Buiatti M, Gambaro A, Capodaglio G. 2015. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: Unraveling metabolic responses. Analytical and Bioanalytical Chemistry 407, 6357–6368.

Schmitz RJ, Tamada Y, Doyle MR, Zhang X, Amasino RM. 2008. Histone H2B Deubiquitination Is Required for Transcriptional Activation of FLOWERING LOCUS C and for Proper Control of Flowering in Arabidopsis. PLANT PHYSIOLOGY 149, 1196–1204.

Schönichen A, Webb BA, Jacobson MP, Barber DL. 2013. Considering Protonation as a Posttranslational Modification Regulating Protein Structure and Function. Annual Review of Biophysics 42, 289–314.

Shalgi R, Hurt JA, Krykbaeva I, Taipale M, Lindquist S, Burge CB. 2014. Widespread inhibition of posttranscriptional splicing shapes the cellular transcriptome following heat shock. 49, 439–452.

Steffens A, Bräutigam A, Jakoby M, Hülskamp M. 2015. The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization (X Chen, Ed.). PLOS Biology 13, e1002188.

Strittmatter P, Soll J, Bölter B. 2010. The chloroplast protein import machinery: a review. Methods in molecular biology 619, 307–21.

Sun W, Van Montagu M, Verbruggen N. 2002. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1577, 1–9.

Thingholm TE, Jensen ON, Larsen MR. 2009. Analytical strategies for
phosphoproteomics. Proteomics 9, 1451–1468.

Vignali M, Hassan AH, Neely KE, Workman JL. 2000. ATP-Dependent Chromatin-Remodeling Complexes. Molecular and Cellular Biology 20, 1899–1910.

Vizcaíno JA, Csordas A, Del-Toro N, et al. 2016. 2016 update of the PRIDE database and its related tools. Nucleic Acids Research 44, D447–D456.

Vizcaíno et al. 2014. ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination. 32, 223–226.

Vu LD, Stes E, Van Bel M, Nelissen H, Maddelein D, Inzé D, Coppens F, Martens L, Gevaert K, De Smet I. 2016. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. Journal of proteome research 15, 4304–4317.

Vu LD, Verstraeten I, Stes E, Van Bel M, Coppens F, Gevaert K, De Smet I. 2017. Proteome Profiling of Wheat Shoots from Different Cultivars. Frontiers in Plant Science 8, 1–11.

Wagner D, Meyerowitz EM. 2002. SPLAYED, a Novel SWI/SNF ATPase Homolog, Controls Reproductive Development in Arabidopsis. Current Biology 12, 85–94.

Wang X, Xin C, Cai J, Zhou Q, Dai T, Cao W, Jiang D. 2016. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Frontiers in Plant Science 7, 1–12.

Wardlaw IF, Dawson I a., Munibi P, Fewster R. 1989. The Tolerance of Wheat to High Temperatures Survey Procedures and General Response Patterns. Australian Journal of Agriculture Research 40, 1–13.

van Wijk KJ, Friso G, Walther D, Schulze WX. 2014. Meta-Analysis of Arabidopsis thaliana Phospho-Proteomics Data Reveals Compartmentalization of Phosphorylation Motifs. The Plant cell 26, 2367–2389.
Wilkinson S. 1999. pH as a stress signal. Plant Growth Regulation 29, 87–99.

Wu X, Gong F, Cao D, Hu X, Wang W. 2016. Advances in crop proteomics: PTMs of proteins under abiotic stress. Proteomics 16, 847–65.

Xu D, Shan B, Lee B-H, et al. 2015. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. eLife 4.

Xu Y, Zhan C, Huang B. 2011. Heat Shock Proteins in Association with Heat Tolerance in Grasses. International Journal of Proteomics 2011, 1–11.

Xue G-P, Sadat S, Drenth J, McIntyre CL. 2014. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. Journal of Experimental Botany 65, 539–557.

Yu J, Han J, Kim Y-J, et al. 2017. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proceedings of the National Academy of Sciences of the United States of America 114, 12327–12332.

Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y. 2014a. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). Journal of Proteomics 109, 290–308.

Zhang M, Ma CY, Lv DW, Zhen SM, Li XH, Yan YM. 2014b. Comparative phosphoproteome analysis of the developing grains in bread wheat (Triticum aestivum L.) under well-watered and water-deficit conditions. Journal of Proteome Research 13, 4281–4297.

Zhang Y, Pan J, Huang X, et al. 2017. Differential effects of a post-anthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ. Scientific Reports 7, 3468.

Zhao C, Wang P, Si T, et al. 2017. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability. Developmental cell 43, 618–629.e5.
Zhao M, Yang S, Chen C-Y, Li C, Shan W, Lu W, Cui Y, Liu X, Wu K. 2015. Arabidopsis BREVIPEDICELLUS Interacts with the SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA to Regulate KNAT2 and KNAT6 Expression in Control of Inflorescence Architecture (X Chen, Ed.). PLOS Genetics 11, e1005125.

Zhu JK. 2016. Abiotic Stress Signaling and Responses in Plants. Cell 167, 313–324.
FIGURE LEGENDS

Figure 1. Different wheat cultivars and organs used in this study. (A) Fielder seedlings are depicted at 7 days after germination. Scale bar, 2.2 cm. (B) Cadenza spikelet (inset) is depicted from plants at the booting stage. Red asterisk indicates representative ear used for sampling. Scale bar, 7.5 cm. (C-D) Analysis of HSP70 and HSP90 expression in both leaf and ear as a proxy for the heat sensing shows a maximum increase at 60 min after transferring to high temperature.

Figure 2. Summary of the phosphoproteome analysis in wheat leaf and ear. T-test significant hits and phosphosites with valid values reproducibly present in only one condition in each organ are collectively analyzed and called as upregulated or downregulated phosphosites.

Figure 3. GO enrichment for biological process in upregulated (A) and downregulated (B) phosphoproteins in leaf samples. All identified leaf phosphosites were used as the background dataset. Fold change is indicated.

Figure 4. GO enrichment for biological process in upregulated (A) and downregulated (B) phosphoproteins in ear samples. All identified ear phosphosites were used as the background dataset. Fold change is indicated.

Figure 5. Venn diagrams showing the number of common identified phosphosites as well as deregulated phosphosites in leaf and ear samples.
Figure 6. Motif-X analysis show an enrichment of an acidic phosphomotif among upregulated phosphosites and of a basic motif among downregulated phosphosites in leaf and ear. Fold-change of the enrichment compared to the background dataset are indicated. N/A, not available.

Figure 7. Heat-dependent phosphorylation and dephosphorylation on a single target protein. (A) Heat activates both the kinase and the phosphatase to target different Ser or Thr residues simultaneously, generating different phosphoforms of the protein. (B) First, heat activates the phosphatase or kinase. The dephosphorylation or phosphorylation of the protein serves as a crosstalk signal for a second kinase or phosphatase to operate, generating one single phosphoform of the protein.

Figure 8. (A) Structural model of the WD40 domain of Triticum aestivum SPIRRIG (TraesCS5B01G387800.1). The Ser/Thr rich sequence is highlighted in green showing the two phosphosites detected in the study. (B) Alignment of SPIRRIG homologues from different plant species. The Ser/Thr-rich window is marked with the Ser/Thr residues highlighted in yellow. Domain prediction was performed in Interpro (www.ebi.ac.uk/interpro/). (C) Model of temperature-induced interconversion of neighboring phosphosites.
Wheat ID	Upregulated	Fold change (upregulation)	Downregulated	Fold-change (downregulation)	Arabidopsis homologues	Arabidopsis homologue description
TraesCS2A01G209100.1	T1371	5.5	S969	2.7	AT3G60240	CUM2, protein synthesis initiation factor 4G
TraesCS2D01G281200.1	S12*	Unique for 34 °C	S12*	3.4	AT5G51300	ATSF1, nuclear localized splicing factor, involved in alternative splicing of some mRNAs.
TraesCS3A01G538200.1	S1297	Unique for 34 °C	S1126	2.4	AT3G09670	Tudor/PWWP/MBT superfamily protein
TraesCS3B01G212100.3	S771	Unique for 34 °C	T606	Unique for 21 °C	AT5G21160	LARP1a, involved in mRNA degradation in response to heat stress.
TraesCS3D01G178100.1	S5	Unique for 34 °C	S203	5.1	AT3G62330	OXS2, zinc finger family protein
	S6	Unique for 34 °C				
TraesCS3D01G205900.4	S648	Unique for 34 °C	S672	1.6	AT3G06670	SMEK1, forms complex with PP4 proteins to target and dephosphorylate HYL1 which in turn promotes miRNA biogenesis.
TraesCS3D01G230600.1	T4	Unique for 34 °C	S210	Unique for 21 °C	AT1G60690	NAD(P)-linked oxidoreductase
TraesCS4D01G034300.1	S152	1.5	S575	3.5	AT2G41900	CCCH-type zinc finger protein
TraesCS5B01G387800.1	S3236	Unique for 34 °C	T3238	Unique for 21 °C	AT1G03060	SPIRRIG, WD/BEACH domain protein
TraesCS6B01G208900.5	S363	2.0	S439	1.5	AT3G63400	Cyclophilin-like peptidyl-prolyl cis-trans isomerase
	T360	2.0				
TraesCS6B01G377500.3	S711	2.6	S768/S769	Unique for 21 °C	AT5G57610	kinase superfamily protein
	S762	2.1	S227	2.5		
			S230	2.5		
TraesCS6D01G167200.1	S791	13.9	S424	1.5	AT3G63400	Cyclophilin-like peptidyl-prolyl cis-trans isomerase
	S794	13.9				
	S348	2.0				
	T345	2.0				
TraesCS7B01G002900.1	S460	Unique for 34 °C	S249	3.41	AT5G43310	COP1-interacting protein-like protein
TraesCS5A01G291600.1	S572	Unique for 34 °C	S485	1.38	AT2G33490	hydroxyproline-rich glycoprotein family protein
			S486	1.38		

Table 1. List of phosphoproteins exhibit multiple upregulated and downregulated phosphosites. For TraesCS2D01G281200.1, the peptide containing only phosphorylated S12 is upregulated and the doubly phosphorylated peptide (S12 and S10) is down regulated.
FIGURE 1

Panel A: Image of a plant in a pot.

Panel B: Image of a plant with a red flower and an inset of a green leaf or flower structure.

Panel C: Bar graph showing relative expression over time for two groups: TaHSP70d and TaHSP90-1.

Panel D: Bar graph showing relative expression over time for two groups: TaHSP70d and TaHSP90-1.
FIGURE 3
A

LEAF

2687

2491

EARB

4532

B

LEAF

39

7

87

8

EAR

186

151

FIGURE 5
FIGURE 6

UPREGULATED

DOWNREGULATED

EAR

LEAF

N/A
FIGURE 7
FIGURE 8