ON REGULARITY THEORY FOR n/p-HARMONIC MAPS INTO MANIFOLDS

FRANCESCA DA LIO AND ARMIN SCHIKORRA

Abstract. In this paper we continue the investigation started in the paper [10] of the regularity of the so-called weak $\frac{n}{p}$-harmonic maps in the critical case. These are critical points of the following nonlocal energy

$$\mathcal{L}_s(u) = \int_{\mathbb{R}^n} |(-\Delta)^{\frac{s}{n}} u(x)|^p \, dx,$$

where $u \in H^{s,p}(\mathbb{R}^n, \mathcal{N})$ and $\mathcal{N} \subset \mathbb{R}^N$ is a closed k dimensional smooth manifold and $s = \frac{n}{p}$. We prove Hölder continuity for such critical points for $p \leq 2$. For $p > 2$ we obtain the same under an additional Lorentz-space assumption. The regularity theory is in the two cases based on regularity results for nonlocal Schrödinger systems with an antisymmetric potential.

Contents

1. Introduction 2
2. Preliminaries: function spaces and the fractional Laplacian 4
3. Rewriting the Euler-Lagrange equations: Proof of Proposition 1.3 5
4. Construction of a good gauge 11
5. The improved Morrey space estimate: Proof of Proposition 1.4 17
Acknowledgment 18
References 18

2010 Mathematics Subject Classification. 58E20, 35J20, 35B65, 35J60, 35S99.
Key words and phrases. Fractional harmonic maps, nonlinear elliptic PDE’s, regularity of solutions, commutator estimates.
1. Introduction

Half-harmonic maps were first studied by Rivièe and the first-named author [9, 8]. The L^2-regularity theory has been extended to higher dimension [17, 21, 4, 25], and to L^p-energies [10, 23, 24]. Compactness and quantization issues have been addressed [5, 6].

Here we extend our analysis of weak n/p-harmonic maps initiated in [10] in the sphere case to general target manifolds.

They are critical points of the energy

\[
\mathcal{L}_p(u) = \int_{\mathbb{R}^n} |(-\Delta)^{\frac{s}{p}} u(x)|^p dx
\]

acting on maps $u \in H^{s,p}(\mathbb{R}^n, \mathbb{R}^N)$ which pointwise map into a smooth, closed (compact and without boundary) k-dimensional manifold $\mathcal{N} \subset \mathbb{R}^N$. This class of maps is commonly denoted by $H^{s,p}(\mathbb{R}^n, \mathcal{N})$. We will refer to Section 2 for the precise definition of such functional spaces. The Euler-Lagrange equation for critical points u can be formulated as follows

\[
\Pi(u)((-\Delta)^{\frac{s}{p}} ((-\Delta)^{\frac{s}{p}} u)^{p-2}(-\Delta)^{\frac{s}{p}} u)) = 0 \quad \text{in} \quad \mathcal{D}'(\mathbb{R}^n)
\]

where $\Pi: U_\delta \to \mathcal{N}$ is the standard nearest point projection of a δ-neighborhood U_δ of \mathcal{N} onto \mathcal{N}. Our first main result is the regularity theory for the case $p < 2$.

Theorem 1.1. Assume that $u \in H^{s,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$, for $\frac{n}{s} \leq 2$, is a solution to (1.2). Then u is locally Hölder continuous.

The case $p > 2$ presents additional difficulties. Here we show, that under the additional assumption that $(-\Delta)^{\frac{s}{p}} u$ belongs to the smaller Lorentz space $L^{(p,2)}$, regularity theory follows. More precisely we have

Theorem 1.2. Assume that $u \in H^{s,\frac{n}{s}}(\mathbb{R}^n, \mathcal{N})$, for $\frac{n}{s} \geq 2$, is a solution to (1.2). If we additionally assume

\[
\|(-\Delta)^{\frac{s}{p}} u\|_{(\frac{n}{s},2)} < \infty,
\]

then u is locally Hölder continuous.

Let us stress that the extra assumption (1.3) is not motivated by geometric arguments, but by pure analytic considerations, and we do not know if (1.3) is a necessary assumption. Indeed this is related to a major open problem, the regularity theory of n-harmonic maps into manifolds and generalized H-systems, see [27]. Also in that case, regularity can only be proven under additional analytic assumptions that cannot be justified geometrically, see [14, 22]. However, these additional assumptions do not a priori rule out the possible singularities such as $\log \log 1/|x|$, so the geometric structure of the Euler-Lagrange equation plays an important role.
Both theorems follow from a reduction to a system with antisymmetric structure, in the spirit of Rivièr e’s seminal work [18] which was adapted to nonlocal equations first by Rivièr e and the first-named author [8], for related arguments see also [4, 16]. Namely we have

Proposition 1.3. Let u satisfy the hypotheses either of Theorem 1.1 or of Theorem 1.2, $p = \frac{n}{s}$. Set $w := \left| (-\Delta)^{\frac{s}{2}} u \right|^{p-2} (-\Delta)^{\frac{s}{2}} u$. Then w satisfies

\[
(-\Delta)^{\frac{s}{2}} w^i = \Omega_{ij} w^j + E_i(w),
\]

where $\Omega_{ij} = -\Omega_{ji}$ belongs to $L^p(\mathbb{R}^n)$ (for $p \leq 2$) or to $L^{(p,2)}(\mathbb{R}^n)$ (for $p > 2$).

Moreover, E_i is so that for any $\varepsilon > 0$ there exists a radius $R = R(\varepsilon)$ and a $K \in \mathbb{N}$ so that for any $k_0 \in \mathbb{N}$, $k_0 > K$, any $x_0 \in \mathbb{R}^n$ and for any radius $r \in (0, 2^{-k_0}R)$ it holds that for any $\varphi \in C_c^\infty(B(x_0, r))$

\[
\int_{\mathbb{R}^n} E_i(w) \varphi \lesssim \varepsilon \left(\| \varphi \|_{\infty} + \| (-\Delta)^{\frac{s}{2}} \varphi \|_{(p,2)} \right) \left(\| w \|_{(p',\infty),B(x_0,2k_0r)} + \sum_{k=k_0}^{\infty} 2^{-k\sigma} \| w \|_{(p',\infty),B(x_0,2^kr)} \right),
\]

if $p > 2$ and

\[
\int_{\mathbb{R}^n} E_i(w) \varphi \lesssim \varepsilon \left(\| \varphi \|_{\infty} + \| (-\Delta)^{\frac{s}{2}} \varphi \|_{p} \right) \left(\| w \|_{(p',\infty),B(x_0,2k_0r)} + \sum_{k=k_0}^{\infty} 2^{-k\sigma} \| w \|_{(p',\infty),B(x_0,2^kr)} \right),
\]

if $p \leq 2$. Here $\sigma > 0$ is a uniform constant only depending on s and n.

Then, Theorem 1.1 and Theorem 1.2 follow from the following result on Schrödinger-type equations and the Sobolev embedding for Sobolev-Morrey spaces [1].

Proposition 1.4. If $w \in L^{\frac{n}{n-s}}(\mathbb{R}^n, \mathbb{R}^N)$ is a solution of

\[
(-\Delta)^{\frac{s}{2}} w^i = \Omega_{ij} w^j + E_i(w) \quad \text{in } \mathbb{R}^n,
\]

where $\Omega_{ij} = -\Omega_{ji} \in L^{(\frac{n}{s},2)}$ and E is as in Proposition 1.3. Then there exists $\alpha > 0$ so that for every $x_0 \in \mathbb{R}^n$ it holds

\[
\sup_{x \in B(x_0,\rho)} \rho^{-\alpha} \| w \|_{(\frac{n}{n-s},\infty),B(x,\rho)} < \infty.
\]

Proposition 1.4 implies in particular, that solutions of

\[
(-\Delta)^{\frac{s}{2}} w^i = \Omega_{ij} w^j
\]

improve their integrability when $\Omega \in L^{(\frac{n}{s},1)}$ without any antisymmetry assumption. Indeed, then $\Omega_{ij} w^j$ satisfies the conditions of E_i. This special case is related to the Lipschitz regularity of solutions of

\[
\text{div}(|\nabla u|^{n-2} \nabla u) = \Omega|\nabla u|^{n-2} \nabla u
\]

under the assumption that $\Omega \in L^{(n,1)}$, which was proven by Duzaar and Mingione, [11].

Let us also remark, that in the local case, i.e. for $s = 2$ and $n = 2$, the assumption of Proposition 1.4 are not optimal: Rivièr e showed in [19] that in that case $\Omega_{ji} \in L^{(\frac{n}{2}, \frac{n}{2})}$
suffices to improve integrability. Nevertheless, observe that for \(n = 1 \) and \(s = \frac{1}{2} \) we recover the regularity Theorem by Rivière and the first author \([8]\). Also, for \(\frac{n}{s} < 2 \) our assumptions are weaker than \(\Omega \in L^{\frac{n}{s}}(\mathbb{R}^n) \).

The paper is organized as follows. In Section 2 we introduce some preliminary definitions and notations. Section 3 is devoted to the proof of Proposition 1.3. In Section 4 we show how to perform a change of gauge in a system of the form (1.4). In Section 5 we prove Proposition 1.4.

2. Preliminaries: function spaces and the fractional Laplacian

In this Section we introduce some notations and definitions that are used in the paper.

For \(n \geq 1 \), we denote respectively by \(\mathcal{S}(\mathbb{R}^n) \) and \(\mathcal{S}'(\mathbb{R}^n) \) the spaces of Schwartz functions and tempered distributions.

Given a function \(v \) we will denote either by \(\hat{v} \) or by \(\mathcal{F}[v] \) the Fourier Transform of \(v : \)

\[
\hat{v}(\xi) = \mathcal{F}[v](\xi) = \int_{\mathbb{R}^n} v(x)e^{-i\langle \xi, x \rangle} \, dx.
\]

We introduce the following topological subspace of \(\mathcal{S}(\mathbb{R}^n) \) :

\[
\mathcal{Z}(\mathbb{R}^n) = \{ \varphi \in \mathcal{S}(\mathbb{R}^n) : (D^\alpha \mathcal{F}[v])(0) = 0, \text{ for every multi-index } \alpha \}. \]

Its topological dual \(\mathcal{Z}'(\mathbb{R}^n) \) can be identified with the quotient space \(\mathcal{S}'(\mathbb{R}^n)/\mathcal{P}(\mathbb{R}^n) \) where \(\mathcal{P}(\mathbb{R}^n) \) is the collection of all polynomials, (see e.g. \([28]\)).

Given \(q > 1 \) and \(s \in \mathbb{R} \) we also set

\[
\dot{H}^{s,q}(\mathbb{R}^n) := \{ v \in \mathcal{Z}'(\mathbb{R}^n) : \mathcal{F}^{-1}[|\xi|^s \mathcal{F}[v]] \in L^q(\mathbb{R}^n) \}.
\]

For a submanifold \(\mathcal{N} \) of \(\mathbb{R}^m \) we can define

\[
\dot{H}^{s,q}(\mathbb{R}^n, \mathcal{N}) = \{ u \in \dot{H}^{s,q}(\mathbb{R}^n, \mathbb{R}^m) : u(x) \in \mathcal{N}, \text{a.e.} \}.
\]

Finally we denote \(\mathcal{H}^1(\mathbb{R}^n) \) the homogeneous Hardy Space in \(\mathbb{R}^n \).

We recall that if \(sp = n \) then

\[
\dot{H}^{s,p}(\mathbb{R}^n) \hookrightarrow BMO(\mathbb{R}^n),
\]

where \(BMO(\mathbb{R}^n) \) is the space of bounded mean oscillation dual to \(\mathcal{H}^1(\mathbb{R}^n) \).

The \(s \)-fractional Laplacian of a function \(u : \mathbb{R}^n \to \mathbb{R} \) is defined as a pseudo differential operator of symbol \(|\xi|^{2s} \):

\[
(-\Delta)^s u(\xi) = |\xi|^{2s} \hat{u}(\xi).
\]
For every $\sigma \in (0, n)$ we denote by I^σ the Riesz Potential, that is
\[I^\sigma f(x) := c_\sigma \int_{\mathbb{R}^n} \frac{f(z)}{|x-z|^{n-\sigma}} \, dz. \]

Finally we introduce the definition of Lorentz spaces (see for instance Grafakos’s monograph [13] for a complete presentation of such spaces). For $1 \leq p < +\infty$, $1 \leq q \leq +\infty$, the Lorentz space $L^{(p,q)}(\mathbb{R}^n)$ is the set of measurable functions satisfying
\[\left\{ \begin{array}{ll}
\int_0^{+\infty} (t^{1/p} f^*(t))^{q \frac{dt}{t}} < +\infty, & \text{if } q < \infty, \ p < +\infty \\
\sup_{t>0} t^{1/p} f^*(t) < \infty & \text{if } q = \infty, \ p < \infty,
\end{array} \right. \]
where f^* is the decreasing rearrangement of $|f|$.

We observe that $L^{p,\infty}(\mathbb{R}^n)$ corresponds to the weak L^p space. Moreover for $1 < p < +\infty$, $1 \leq q \leq +\infty$ the dual space of $L^{(p,q)}$ is $L^{(\frac{p'}{p},\frac{q'}{q})}$ if $q > 1$ and it is $L^{(1,\infty)}$ if $q \leq 1$.

Let us define
\[\dot{H}^{s,(p,q)}(\mathbb{R}^n) = \{ v \in \mathcal{Z}'(\mathbb{R}^n) : \mathcal{F}^{-1} ||\xi|^s \mathcal{F}[v]| \in L^{(p,q)}(\mathbb{R}^n) \}. \]

In the sequel we will often use the H"older inequality in the Lorentz spaces: if $f \in L^{(p_1,q_1)}$, $g \in L^{(p_2,q_2)}$, with $1 \leq p_1,p_2,q_1,q_2 \leq +\infty$. Then $fg \in L^{r,s}$, with $r^{-1} = p_1^{-1} + p_2^{-1}$ and $s^{-1} = q_1^{-1} + q_2^{-1}$, (see for instance [13]).

To conclude we introduce some basic notation.

$B(\bar{x},r)$ is the ball of radius r and centered at \bar{x}. If $\bar{x} = 0$ we simply write B_r. If $x,y \in \mathbb{R}^n$, $x \cdot y$ is the scalar product between x,y.

Given a multiindex $\alpha = (\alpha_1, \ldots, \alpha_n)$, where α_i is a nonnegative integer, we denote by $|\alpha| = \alpha_1 + \ldots + \alpha_n$ the order of α.

Given $q > 1$ we denote by q' the conjugate of q: $q^{-1} + q'^{-1} = 1$.

In the sequel we will often use the symbols $a \lesssim b$ and $a \simeq b$ instead of $a \leq C b$ and $C^{-1} b \leq a \leq C b$, respectively, whenever the multiplicative constants C appearing in the estimates are not relevant for the computations and therefore they are omitted.

3. Rewriting the Euler-Lagrange equations: Proof of Proposition 1.3

For a fixed manifold \mathcal{N} and $p \in \mathcal{N}$ we denote by $\Pi(p)$ the projection onto the tangent plane $T_p \mathcal{N}$, and by $\Pi^\perp(p) = I - \Pi(p)$ the projection onto the normal space $(T_p \mathcal{N})^\perp$.

For $s > 0$ we first introduce the following three-term commutator
\[
H_s(f,g) = (-\Delta)^{\frac{s}{2}} (fg) - (-\Delta)^{\frac{s}{2}} fg - f (-\Delta)^{\frac{s}{2}} g.
\]
Such a commutator has been used for the first time in [9] in the case $s = \frac{1}{2}$ in the context of 1/2-harmonic maps (see also [21]). It represents the error term of the Leibniz rule for $(-\Delta)\hat{\sigma}$. We recall here some estimates of (3.1) for general $s > 0$ that we will use in the sequel, (see e.g. [25, 15]).

Lemma 3.1. Let $s \in (0, 1]$, For any $t \in (0, s)$, $p, p_1, p_2 \in (1, \infty)$, $q, q_1, q_2 \in [1, \infty]$ such that
\[
\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}, \quad \frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2},
\]
it holds that
\[
\|H_s(f, \varphi)\|_{L^{(p,q)}(\mathbb{R}^n)} \lesssim \|(-\Delta)^{\frac{s}{2}} f\|_{L^{(p_1,q_1)}(\mathbb{R}^n)} \|(-\Delta)^{\frac{s}{2}} \varphi\|_{L^{(p_2,q_2)}(\mathbb{R}^n)}.
\]

Lemma 3.2. Let $s \in (0, 1]$, $p \in (1, \infty)$, $p' = \frac{p}{p-1}$, $q \in [1, \infty)$, $q' = \frac{q}{q-1} \in [1, \infty)$. Then, for any $a, b \in C_c^\infty(\mathbb{R}^n)$,
\[
\int_{\mathbb{R}^n} H_s(a, b) (-\Delta)^{\frac{s}{2}} \varphi \lesssim [\varphi]_{BMO} \|(-\Delta)^{\frac{s}{2}} a\|_{L^{(p,q)}(\mathbb{R}^n)} \|(-\Delta)^{\frac{s}{2}} b\|_{L^{(p',q')} (\mathbb{R}^n)}.
\]
In particular, by the duality of Hardy-space H^1 and BMO,
\[
\|(-\Delta)^{\frac{s}{2}} (H_s(a, b))\|_{H^1} \lesssim \|(-\Delta)^{\frac{s}{2}} a\|_{L^{(p,q)}(\mathbb{R}^n)} \|(-\Delta)^{\frac{s}{2}} b\|_{L^{(p',q')} (\mathbb{R}^n)}.
\]

We will recall the following result

Lemma 3.3 (Coifman-Rochberg-Weiss [3]). For any smooth and compactly supported $f, g \in C_c^\infty(\mathbb{R}^n)$ and any $i = 1, \ldots, n$ we define the commutator
\[
[R_i, f](g) = R_i(fg) - fR_i(g)
\]
Then for $p > 1$ there is constant $C > 0$ (depending on p, n) such that
\[
\|R_i, f\|_{L^p(\mathbb{R}^n)} \leq C\|f\|_{BMO(\mathbb{R}^n)}\|g\|_{L^p(\mathbb{R}^n)}.
\]

We will use the following extension of Lemma 3.3.

Lemma 3.4 (Theorem 6.1 in [15]). Let $s \in (0, 1]$ and $p \in (1, \infty)$ and $q, q_1, q_2 \in [1, \infty]$ with
\[
\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}. \quad \text{Then, for } f, g \in C_c^\infty(\mathbb{R}^n), \text{ and for } p, p_1, p_2 \in (1, \infty), \quad \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p}, \quad \sigma \in [s, 1],
\]
\[
\|((-\Delta)^{\frac{s}{2}} g)(f)\|_{L^{(p,q)}(\mathbb{R}^n)} \lesssim \|(-\Delta)^{\frac{s}{2}} g\|_{L^{(p_1,q_1)}(\mathbb{R}^n)} \|I^{\sigma-s} f\|_{L^{(p_2,q_2)}(\mathbb{R}^n)}.
\]
(3.3) remains valid if one replaces $(-\Delta)^{\frac{s}{2}}$ by $R_i(-\Delta)^{\frac{s}{2}}$, where R_i is the ith Riesz transform.

Also, for $p_1, p_2, p \in (1, \infty)$, $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p}$, $\sigma \in [0, 1)$,
\[
\|R_i, g\|_{L^{(p,q)}(\mathbb{R}^n)} \lesssim \|(-\Delta)^{\frac{s}{2}} g\|_{L^{(p_1,q_1)}(\mathbb{R}^n)} \|I^{\sigma-s} f\|_{L^{(p_2,q_2)}(\mathbb{R}^n)}.
\]
(3.4) For a map $u : \mathbb{R}^n \to \mathcal{N}$ any derivative $\partial_\alpha u$ is a tangential vector, i.e. $\partial_\alpha u \in T_u \mathcal{N}$. In particular, $\Pi^\perp(p) \nabla u = 0$. If we replace the gradient ∇u by $(-\Delta)^{\frac{s}{2}} u$ there is no reason for this to be true. However, a certain tangential inclination of $(-\Delta)^{\frac{s}{2}} u$ can be measured in the following sense.
Lemma 3.5. Assume that \(u \in \dot{H}^{s,p}(\mathbb{R}^n, \mathcal{N}) \), where \(p = \frac{n}{s} \in (1, \infty) \). Then
\[
\|\Pi^\perp(u)(-\Delta)^{\frac{s}{2}}u\|_{(p,q)} \lesssim \|(-\Delta)^{\frac{s}{2}}u\|_{(p,q)} \|(-\Delta)^{\frac{s}{2}}u\|_{(p,q)}.
\]
whenever \(\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2} \).
Moreover, for \(p \leq 2 \)
\[
\|\Pi^\perp(u)(-\Delta)^{\frac{s}{2}}u\|_{(p,q)} \lesssim \|(-\Delta)^{\frac{s}{2}}u\|_{(p,q)} \|(-\Delta)^{\frac{s}{2}}u\|_{(p,q)}.
\]
Also the localized versions of the above estimates hold: for some \(\sigma = \sigma(s) > 0 \), for every \(k_0 \in \mathbb{N} \),
\[
\|\Pi^\perp(u)(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,r)} \lesssim \left(\|(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,2^k_0 r)} + \sum_{k=k_0}^{\infty} 2^{-k\sigma} \|(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,2^k r)} \right) \cdot \left(\|(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,2^k_0 r)} + \sum_{\ell=k_0}^{\infty} 2^{-\ell\sigma} \|(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,2^\ell r)} \right),
\]
and
\[
\|\Pi^\perp(u)(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,r)} \lesssim \left(\|(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,2^k_0 r)} + \sum_{k=k_0}^{\infty} 2^{-k\sigma} \|(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,2^k r)} \right) \cdot \left(\|(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,2^k_0 r)} + \sum_{\ell=k_0}^{\infty} 2^{-\ell\sigma} \|(-\Delta)^{\frac{s}{2}}u\|_{(p,q), B(x_0,2^\ell r)} \right).
\]

Proof. The localization arguments are by now standard, we only indicate how to prove the global estimates.

The estimate (3.5) follows for \(s \in (0,1] \) from
\[
\|\Pi^\perp(u)(-\Delta)^{\frac{s}{2}}u(x)\| \lesssim |H_s(u,u)|,
\]
(see e.g. [26, Lemma E.1.], and also Proposition 4.1 in [7], for related properties) and by applying Lemma 3.1. For \(s \geq 1 \) we use that \((-\Delta)^{\frac{s}{2}} = (-\Delta)^{\frac{s-1}{2}} R_\alpha \partial_\alpha \), and thus \(\Pi^\perp(u)\partial_\alpha u = 0 \) implies
\[
\Pi^\perp(u)(-\Delta)^{\frac{s}{2}}u = [\Pi^\perp(u), (-\Delta)^{\frac{s-1}{2}} R_\alpha](\partial_\alpha u) = \Pi^\perp(u)(-\Delta)^{\frac{s-1}{2}} R_\alpha(\partial_\alpha(u)) - (-\Delta)^{\frac{s-1}{2}} R_\alpha(\Pi^\perp(u)\partial_\alpha(u))
\]
The estimate then follows from Lemma 3.4.

For the second estimate (3.6), assume that \(p \in (1,2] \), and observe \(\Pi \in L^\infty(\mathcal{N}, \mathbb{R}^N) \) implies that pointwise
\[
\|(-\Delta)^{\frac{s}{2}}u|^{p-2}\Pi^\perp(u)(-\Delta)^{\frac{s}{2}}u| \lesssim |(-\Delta)^{\frac{s}{2}}u|^{p-1}.
\]
Moreover, in view of (3.7), for \(s \in (0,1) \),
\[
\|(-\Delta)^{\frac{s}{2}}u|^{p-2}\Pi^\perp(u)(-\Delta)^{\frac{s}{2}}u| \lesssim |(-\Delta)^{\frac{s}{2}}u|^{p-2}|H_s(u,u)|.
\]
Pointwise interpolating these two estimates, for any $\beta \in [0, 1]$
\[|((\Delta)^{\frac{1}{2}} u)^{p-2}(\Delta)^{\frac{1}{2}} u| \lesssim |((\Delta)^{\frac{1}{2}} u)^{\beta(p-1)}((\Delta)^{\frac{1}{2}} u)^{(1-\beta)(p-2)}|H_s(u,u)|^{1-\beta}.\]
Since $p \in (1, 2]$, set $\beta = 2 - p \in [0, 1]$. Thus,
\[|((\Delta)^{\frac{1}{2}} u)^{p-2}(\Delta)^{\frac{1}{2}} u| \lesssim |H_s(u,u)|^{p-1}.\]
Thus,
\[|((\Delta)^{\frac{1}{2}} u)^{p-2}(\Delta)^{\frac{1}{2}} u|_{p'} \lesssim |((\Delta)^{\frac{1}{2}} u)^{p-1}||((\Delta)^{\frac{1}{2}} u)^{p-1}|_{(p,\infty)}||((\Delta)^{\frac{1}{2}} u)^{p-1}||_{(p,p)}.\]
The case $s \geq 1$ follows once again from Lemma 3.4.

We have all the ingredients for Proposition 1.3.

Proof of Proposition 1.3. Recall the definition of projections $\Pi(u)$ and $\Pi^\perp(u)$ above. Observe that these are symmetric matrices.

Also observe that for $p < 2$, $|((\Delta)^{\frac{1}{2}} u)^{p-1}|_{(p,2)} \lesssim |((\Delta)^{\frac{1}{2}} u)^{p-1}|.$

From (1.2) and $\Pi(u) + \Pi^\perp(u) = Id$ we have for any $\varphi \in C_c^\infty(\mathbb{R}^n, \mathbb{R}^N)$
\[
\int_{\mathbb{R}^n} |((\Delta)^{\frac{1}{2}} u)^{p-2}((\Delta)^{\frac{1}{2}} u \cdot (\Delta)^{\frac{1}{2}} \varphi
\]
\[= \int_{\mathbb{R}^n} |((\Delta)^{\frac{1}{2}} u)^{p-2}(\Pi(u)((\Delta)^{\frac{1}{2}} u \cdot (\Delta)^{\frac{1}{2}} (\Pi^\perp(u)\varphi)
\]
\[+ \int_{\mathbb{R}^n} |((\Delta)^{\frac{1}{2}} u)^{p-2}(\Pi^\perp(u)((\Delta)^{\frac{1}{2}} u \cdot (\Delta)^{\frac{1}{2}} (\Pi^\perp(u)\varphi).\]

Then with $\Pi(u)\Pi^\perp(u) = 0$ we find
\[\int_{\mathbb{R}^n} |((\Delta)^{\frac{1}{2}} u)^{p-2}((\Delta)^{\frac{1}{2}} u \cdot (\Delta)^{\frac{1}{2}} \varphi
\]
\[= \int_{\mathbb{R}^n} |((\Delta)^{\frac{1}{2}} u)^{p-2}(\Delta)^{\frac{1}{2}} u \cdot \varphi
\]
\[+ \int_{\mathbb{R}^n} |(\Delta)^{\frac{1}{2}} u|^p u \cdot H_s(\Pi^\perp(u), \varphi)
\]
\[+ \int_{\mathbb{R}^n} |(\Delta)^{\frac{1}{2}} u|^p u \cdot (\Delta)^{\frac{1}{2}} (\Pi^\perp(u)\varphi).\]

Now we define $\Omega \in L^p(\mathbb{R}^n, so(N))$,
\[\Omega := ((\Delta)^{\frac{1}{2}} \Pi^\perp(u) \Pi(u) - \Pi(u)(\Delta)^{\frac{1}{2}} \Pi^\perp(u).\]
Observe that for $p > 2$ the extra assumption (1.3) implies $\Omega \in L^{(p,2)}(\mathbb{R}^n, so(N))$. Then we have

$$\int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} (-\Delta)^{\frac{1}{2}} u (-\Delta)^{\frac{1}{2}} \phi$$

$$= \int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} \Omega (-\Delta)^{\frac{1}{2}} u \phi$$

$$+ \int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} \Pi(u) (-\Delta)^{\frac{1}{2}} \Pi^\perp(u) (-\Delta)^{\frac{1}{2}} u \phi$$

$$+ \int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} \Pi(u) (-\Delta)^{\frac{1}{2}} H_s(\Pi^\perp(u), \phi)$$

$$+ \int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} (\Pi^\perp(u)) (-\Delta)^{\frac{1}{2}} \Pi^\perp(u) \phi$$

And again by $\Pi(u)\Pi^\perp(u) = 0$,

$$\int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} (-\Delta)^{\frac{1}{2}} u (-\Delta)^{\frac{1}{2}} \phi$$

$$= \int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} \Omega (-\Delta)^{\frac{1}{2}} u \phi + \int_{\mathbb{R}^n} E \varphi$$

where

$$\int_{\mathbb{R}^n} E \varphi := - \int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} H_s(\Pi(u), \Pi^\perp(u)) (-\Delta)^{\frac{1}{2}} u \varphi$$

$$+ \int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} \Pi(u) (-\Delta)^{\frac{1}{2}} u H_s(\Pi^\perp(u), \varphi)$$

$$- \int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} (-\Delta)^{\frac{1}{2}} \Pi(u) \Pi^\perp(u) (-\Delta)^{\frac{1}{2}} u \varphi$$

$$+ \int_{\mathbb{R}^n} |(-\Delta)^{\frac{1}{2}} u|^{p-2} (\Pi^\perp(u)) (-\Delta)^{\frac{1}{2}} \Pi^\perp(u) \varphi.$$
This is the crucial point where our assumption $\|(−Δ)^{1/2}u\|_{(p,2)} < ∞$ enters (which is only a nontrivial assumption for $p > 2$). In the same spirit,

$$\int_{\mathbb{R}^n} |(−Δ)^{1/2}u|^p \Pi(−Δ)^{1/2} u \ H_s(\Pi^\perp(u), \varphi)$$

$$\lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-1} \|(−Δ)^{1/2}u\|_{(p,2)} \|(−Δ)^{1/2} \varphi\|_{(p,2)}.$$

The remaining terms of E can be estimated by Lemma 3.5.

For $p \leq 2$:

$$\left| \int_{\mathbb{R}^n} |(−Δ)^{1/2}u|^p \Pi(−Δ)^{1/2}u \ (−Δ)^{1/2} u \ \varphi \right|$$

$$\lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-1} \|(−Δ)^{1/2}u\|_{p}^{p-1} \|(−Δ)^{1/2} \Pi(u)\|_{p} \|\varphi\|_{∞}$$

$$\lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-1} \|(−Δ)^{1/2}u\|_{p} \|\varphi\|_{∞}$$

and

$$\int_{\mathbb{R}^n} |(−Δ)^{1/2}u|^p \Pi(−Δ)^{1/2}u \ (−Δ)^{1/2} u \ (−Δ)^{1/2} \Pi^\perp(u) \varphi$$

$$\lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-1} \|(−Δ)^{1/2}u\|_{p}^{p-1} \|(−Δ)^{1/2} \Pi(u)\|_{p} \|\varphi\|_{∞}$$

$$\lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-1} \|(−Δ)^{1/2}u\|_{p} \|\varphi\|_{∞}$$

where to estimate $\|(−Δ)^{1/2} \Pi^\perp(u)\|_{p}$ we use the fact that

$$(−Δ)^{1/2} \Pi^\perp(u) \varphi = H_s(\Pi^\perp(u), \varphi) + (−Δ)^{1/2} (\Pi^\perp(u)) \varphi + \Pi^\perp(u) (−Δ)^{1/2} \varphi$$

Lemma 3.1 and Sobolev embeddings.

For $p > 2$:

$$\left| \int_{\mathbb{R}^n} |(−Δ)^{1/2}u|^p \Pi(−Δ)^{1/2}u \ (−Δ)^{1/2} u \ \varphi \right|$$

$$\lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-2} \|(−Δ)^{1/2} \Pi(u)\|_{(p,∞)} \Pi^\perp(u) \ (−Δ)^{1/2} u \|_{(p,1)} \|\varphi\|_{∞}$$

$$\lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-2} \|(−Δ)^{1/2}u\|_{p} \|\varphi\|_{∞}$$

and

$$\int_{\mathbb{R}^n} |(−Δ)^{1/2}u|^p \Pi(−Δ)^{1/2}u \ (−Δ)^{1/2} u \ (−Δ)^{1/2} \Pi^\perp(u) \varphi$$

$$\lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-2} \|(−Δ)^{1/2} \varphi \Pi^\perp(u)\|_{(p,2)} \Pi^\perp(u) \ (−Δ)^{1/2} u \|_{(p,2)}.$$

$$\lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-1} \|(−Δ)^{1/2}u\|_{(p,2)} \|(−Δ)^{1/2} \varphi\|_{(p,2)} + \|(−Δ)^{1/2} u\|_{(p,2)} \|(−Δ)^{1/2} \varphi\|_{(p,2)} .$$

Therefore we get for $p \leq 2$

$$\int_{\mathbb{R}^n} E \varphi \lesssim \|(−Δ)^{1/2}u\|_{(p,∞)}^{p-1} (1 + \|(−Δ)^{1/2}u\|_{p}) \|(−Δ)^{1/2}u\|_{(p,2)} \|\varphi\|_{∞} + \|(−Δ)^{1/2} \varphi\|_{p} .$$
and for $p > 2$

$$\int_{\mathbb{R}^n} E \varphi \lesssim \|(-\Delta)^{\frac{1}{2}} u\|_{p,\infty}^{p-1} (1 + \|(-\Delta)^{\frac{1}{2}} u\|_p) \|(-\Delta)^{\frac{1}{2}} u\|_{p,2} \left(\|\varphi\|_{\infty} + \|(-\Delta)^{\frac{1}{2}} \varphi\|_{p,2} \right).$$

Consequently if we assume that $\varphi \in C^\infty_c(B(x_0, r))$, the above estimates can be localized and we find for $p \leq 2$

$$\int_{\mathbb{R}^n} E \varphi \lesssim C \left(1 + \|(-\Delta)^{\frac{1}{2}} u\|_{p,\mathbb{R}^n} \right) \left(\|(-\Delta)^{\frac{1}{2}} u\|_{p,\infty, B(x_0, 2^{k_0} r)} + \sum_{k=k_0}^{\infty} 2^{-\sigma k} \|(-\Delta)^{\frac{1}{2}} u\|_{p,\infty, B(x_0, 2^{k} r)} \right)$$

and for $p > 2$ if we additionally assume (1.3),

$$\int_{\mathbb{R}^n} E \varphi \lesssim C \left(1 + \|(-\Delta)^{\frac{1}{2}} u\|_{p,2} \right) \left(\|(-\Delta)^{\frac{1}{2}} u\|_{p,\infty, B(x_0, 2^{k_0} r)} + \sum_{k=k_0}^{\infty} 2^{-\sigma k} \|(-\Delta)^{\frac{1}{2}} u\|_{p,\infty, B(x_0, 2^{k} r)} \right) \left(\|\varphi\|_{\infty} + \|(-\Delta)^{\frac{1}{2}} \varphi\|_{p,2} \right).$$

For all k_0 sufficiently large and $2^{k_0} r$ sufficiently small, we can assume by absolute continuity of the integral that

$$\|(-\Delta)^{\frac{1}{2}} u\|_{p, B(x_0, 2^{k_0} r)} + \sum_{k=k_0}^{\infty} 2^{-\sigma k} \|(-\Delta)^{\frac{1}{2}} u\|_{p, B(x_0, 2^{k} r)} < \varepsilon.$$

and under the assumption (1.3) also

$$\|(-\Delta)^{\frac{1}{2}} u\|_{p, B(x_0, 2^{k_0} r)} + \sum_{k=k_0}^{\infty} 2^{-\sigma k} \|(-\Delta)^{\frac{1}{2}} u\|_{p, B(x_0, 2^{k} r)} < \varepsilon.$$

This proves the localized estimate for E and we conclude the proof of Proposition 1.3. \(\square\)

4. Construction of a good gauge

The next theorem is an adaptation of [8, Theorem 1.2] of Rivière and the first-named author, which is a choice of a good gauge. It follows the strategy developed by Rivière in [18] which was itself inspired by Uhlenbecks construction of Coulomb gauges [29]. For extensions and relations to the moving frame method by Hélein see also [20, 4, 25, 12].

Theorem 4.1 (Choice of gauge). There exists $\varepsilon > 0$ so that the following holds.

Whenever $\Omega \in L^{(\frac{2}{2})}(\mathbb{R}^n, so(N))$ satisfies

$$\|\Omega\|_{(\frac{2}{2},2)} < \varepsilon,$$
then there exists $P \in \dot{H}^{s, (\frac{n}{2}, 2)}(\mathbb{R}^n, SO(N))$ so that
\[\|(-\Delta)^{\frac{s}{2}} P + P\Omega\|_{L^{(\frac{n}{2}, 1)}(\mathbb{R}^n, \mathbb{R}^N \times \mathbb{R}^N)} \lesssim \|\Omega\|_{(\frac{n}{2}, 2)}. \]
Moreover,
\[\|(-\Delta)^{\frac{s}{2}} P\|_{L^{(\frac{n}{2}, 2)}(\mathbb{R}^n, \mathbb{R}^N \times \mathbb{R}^N)} \lesssim \|\Omega\|_{(\frac{n}{2}, 2)}. \]

Theorem 4.1 is a consequence of the following

Theorem 4.2. For any $q \in [1, \infty]$ there exist $\varepsilon > 0$ so that if
\[\|\Omega\|_{(\frac{n}{2}, q)} < \varepsilon, \]
then there exists $P \in \dot{H}^{s, (p, q)}(\mathbb{R}^n, SO(N))$ so that
\[\tag{4.1} P^T (-\Delta)^{\frac{s}{2}} P - (-\Delta)^{\frac{s}{2}} P P^T + 2\Omega = 0 \quad \text{in} \quad \mathbb{R}^n. \]

Proof of Theorem 4.1. From (4.1)
\[(-\Delta)^{\frac{s}{2}} P + P\Omega = \frac{1}{2} \left((-\Delta)^{\frac{s}{2}} PP^T + P(-\Delta)^{\frac{s}{2}} P^T \right) P, \]
that is, since $(-\Delta)^{\frac{s}{2}} (PP^T) \equiv (-\Delta)^{\frac{s}{2}} I \equiv 0$,
\[(-\Delta)^{\frac{s}{2}} P + P\Omega = \frac{1}{2} H_s(P, P^T) P, \]
Since $(-\Delta)^{\frac{s}{2}} P \in L^{(\frac{n}{2}, 2)}(\mathbb{R}^n)$ from the three commutator estimates (see Lemma 3.1) we find that
\[H_s(P, P^T) \in L^{(\frac{n}{2}, 1)}(\mathbb{R}^n, \mathbb{R}^N), \]
and have consequently shown that
\[(-\Delta)^{\frac{s}{2}} P + P\Omega \in L^{(\frac{n}{2}, 1)}(\mathbb{R}^n, \mathbb{R}^N). \]

4.1. **Construction of the optimal gauge: Proof of Theorem 4.2.** In order to establish (4.1) we adapt the strategy from [8, Theorem 1.2]. For notational simplicity we prove this theorem only for $L^{(\frac{n}{2}, 2)}$ (i.e. $q = 2$) the case we need.

For the rest of this section fix $1 < q_1, q_2 < \infty$ exponents so that $1 < q_1 < \frac{n}{s} < q_2 < \infty$.

As in [8, Proof of Theorem 1.2, Step 4], by an approximation argument it suffices to prove the claim under the stronger assumption that $\Omega \in L^{q_1} \cap L^{q_2}(\mathbb{R}^n)$ with good estimates. More precisely, for $\varepsilon > 0$ let
\[U_\varepsilon := \left\{ \Omega \in L^{q_1} \cap L^{q_2}(\mathbb{R}^n, so(N)) : \|\Omega\|_{(\frac{n}{2}, 2)} \leq \varepsilon \right\}, \]
and for constants $\varepsilon, \Theta > 0$ let $\mathcal{V}_{\varepsilon, \Theta} \subset U_\varepsilon$ be the set where we have the decomposition (4.1) with the estimates
\[\|(-\Delta)^{\frac{s}{2}} P\|_{(p, 2)} \leq \Theta \|\Omega\|_{(p, 2)} \]
(4.3) \[\|(-\Delta)^{\frac{1}{2}} P\|_{q_1} \leq \Theta \|\Omega\|_{q_1}, \quad \|(-\Delta)^{\frac{1}{2}} P\|_{q_2} \leq \Theta \|\Omega\|_{q_2}. \]

That is,

\[\mathcal{V}_{\varepsilon, \Theta} := \left\{ \Omega \in \mathcal{U}_\varepsilon : \begin{array}{l} \text{there exists } P \in \dot{H}^{s,q_1} \cap \dot{H}^{s,q_2}(\mathbb{R}^n, SO(N)), \text{ so that} \\ P - I \in L^{\frac{n q}{n-q}}(\mathbb{R}^n, \mathbb{R}^{N \times N}) \text{ and (4.2), (4.3),} \\
\text{and (4.1) holds.} \end{array} \right\} \]

Let us remark a technical detail. The condition \(P - I \in L^{\frac{n q}{n-q}}(\mathbb{R}^n, \mathbb{R}^{N \times N}) \) corresponds to prescribing Dirichlet data at infinity. For our purpose, there is no advantage above, the proof below works also without this Dirichlet assumption which essentially corresponds to a Neumann-type condition at infinity. For our purpose, there is no advantage to either choice. We then need to prove the following

Proposition 4.3. There exist \(\Theta > 0 \) and \(\varepsilon > 0 \) so that \(\mathcal{V}_{\varepsilon, \Theta} = \mathcal{U}_\varepsilon \).

Proposition 4.3 follows from a continuity method, once we show the following four properties

(i) \(\mathcal{U}_\varepsilon \) is connected.

(ii) \(\mathcal{V}_{\varepsilon, \Theta} \) is nonempty.

(iii) For any \(\varepsilon, \Theta > 0 \), \(\mathcal{V}_{\varepsilon, \Theta} \) is a relatively closed subset of \(\mathcal{U}_\varepsilon \).

(iv) There exist \(\Theta > 0 \) and \(\varepsilon > 0 \) so that \(\mathcal{V}_{\varepsilon, \Theta} \) is a relatively open subset of \(\mathcal{U}_\varepsilon \).

Property (i) is clear, since \(\mathcal{U}_\varepsilon \) is starshaped with center 0: for any \(\Omega \in \mathcal{U}_\varepsilon \) we have \(t\Omega \in \mathcal{U}_\varepsilon \) for all \(t \in [0,1] \). Property (ii) is also obvious since \(P := I \) is an element of \(\mathcal{V}_{\varepsilon, \Theta} \). The closedness property (iii) follows almost verbatim from [8, Proof of Theorem 1.2, Step 1, p.1315]: there one replaces \((-\Delta)^{\frac{1}{2}} \) by \((-\Delta)^{\frac{q}{2}} \), \(q \) by \(q_2, q' \) by \(q_1 \), and the \(L^2 \)-norm by the \(L^{(q,2)} \)-norm (for which we still can use the lower semicontinuity). Observe that a uniform bound of the \(L^n \)-norm as in (4.3) implies by Sobolev embedding in particular a uniform bound \(P - I \in L^{\frac{n q}{n-q}}(\mathbb{R}^n, \mathbb{R}^{N \times N}) \).

The main point is to show the openness property (iv). For this let \(\Omega_0 \) be arbitrary in \(\mathcal{V}_{\varepsilon, \Theta} \), for some \(\varepsilon, \Theta > 0 \) chosen below. Let \(P_0 \in \dot{H}^{s,q_1} \cap \dot{H}^{s,q_2}(\mathbb{R}^n, SO(N)) \), \(P_0 - I \in L^{\frac{n q_1}{n-q_1}}(\mathbb{R}^n, \mathbb{R}^{N \times N}) \) so that the decomposition (4.1) as well as the estimates (4.2), (4.3) are satisfied for \(\Omega_0 \).

We introduce the map

\[F(U) := (P_0 \exp(U))^{-T} (-\Delta)^{\frac{1}{2}} (P_0 \exp(U)) - (-\Delta)^{\frac{q}{2}} (P_0 \exp(U))^{-T} (P_0 \exp(U)) \]

Observe that for \(U \in L^{\frac{n q_1}{n-q_1}}(\mathbb{R}^n, so(N)) \),

\[P_0 \exp(U) - I = (P_0 - I) \exp(U) + I - \exp(U) \in L^{\frac{n q_1}{n-q_1}}(\mathbb{R}^n, \mathbb{R}^{N \times N}). \]

Indeed, observe that \(U \in L^\infty \) and thus \((P_0 - I) \exp(U) \in L^{\frac{n q_1}{n-q_1}}(\mathbb{R}^n, \mathbb{R}^{N \times N}). \) Moreover,

\[|I - \exp(U)| \lesssim (1 + \|U\|_\infty)|U|, \]
and thus $I - \exp(U) \in L^{\frac{nq}{n-q_1}}(\mathbb{R}^n, \mathbb{R}^{N\times N})$.

As in [8, Proof of Theorem 1.2, Step 2, p.1316] we can conclude that F is C^1 as a map from

$$F : L^{\frac{nq}{n-q_1}} \cap \dot{H}^{s,q_1} \cap \dot{H}^{s,q_2}(\mathbb{R}^n, so(N)) \to L^{q_1} \cap L^{q_2}(\mathbb{R}^n, so(N)).$$

and that we can compute $DF(0)$ as

$$\frac{d}{dt} \bigg|_{t=0} F(t\eta) = L(\eta),$$

where for $\eta \in L^{\frac{nq}{n-q_1}} \cap \dot{H}^{s,q_1} \cap \dot{H}^{s,q_2}(\mathbb{R}^n, so(N))$,

$$L(\eta) := -\eta P_0^T (-\Delta)^{\frac{1}{2}} P_0 + (-\Delta)^{\frac{1}{2}} (\eta P_0^T) P_0 + P_0^T (-\Delta)^{\frac{1}{2}} P_0 \eta - (-\Delta)^{\frac{1}{2}} P_0^T P_0 \eta$$

In order to use a fixed-point argument for F, we need to show that L is an isomorphism.

Lemma 4.4. For any $\Theta > 0$ there exists a $\varepsilon > 0$ so that the following holds for any Ω_0 and P_0 as above.

For any $\omega \in L^{q_1} \cap L^{q_2}(\mathbb{R}^n, so(N))$ there exists a unique $\eta \in L^{\frac{nq}{n-q_1}} \cap \dot{H}^{s,q_1} \cap \dot{H}^{s,q_2}(\mathbb{R}^n, so(N))$ so that

$$\omega = L(\eta)$$

and for some constant $C = C(\Omega_0, \Theta) > 0$ it holds

$$\|\eta\|_{L^{\frac{nq}{n-q_1}}} + \|(-\Delta)^{\frac{1}{2}} \eta\|_{L^{q_1}(\mathbb{R}^n)} + \|(-\Delta)^{\frac{1}{2}} \eta\|_{L^{q_2}(\mathbb{R}^n)} \leq C \left(\|\omega\|_{L^{q_1}(\mathbb{R}^n)} + \|\omega\|_{L^{q_2}(\mathbb{R}^n)} \right)$$

Proof. We follow the strategy of [8, Lemma 4.1]. First we find η in some $\dot{H}^{s,r}$ for $r \in (q_1, \frac{n}{s})$ and then that it belongs to the right spaces.

Step 1: For $\eta \in L^{\frac{nq}{n-q_1}} \cap \dot{H}^{s,q_1} \cap \dot{H}^{s,q_2}(\mathbb{R}^n, so(N))$ we rewrite

$$L(\eta) = 2(-\Delta)^{\frac{1}{2}} \eta + H(\eta)$$

where

$$H(\eta) := \eta \left(-P_0^T (-\Delta)^{\frac{1}{2}} P_0 + (-\Delta)^{\frac{1}{2}} (P_0^T) P_0 - (-\Delta)^{\frac{1}{2}} P_0^T P_0 \eta \right) + H_s(\eta, P_0).$$

In particular, for any $r \in (1, \frac{n}{s})$, by Hölder’s inequality,

$$\|H(\eta)\|_{L^{(r,2)}(\mathbb{R}^n)} \lesssim \|\eta\|_{L^{\frac{nr}{n+r-4}}(\mathbb{R}^n)} \|(-\Delta)^{\frac{1}{2}} P_0\|_{L^{(r,2)}(\mathbb{R}^n)} + \|H_s(\eta, P_0)\|_{L^{(r,2)}(\mathbb{R}^n)}.$$

By Sobolev embedding,

$$\|\eta\|_{L^{\frac{nr}{n+r-4}}(\mathbb{R}^n)} \lesssim \|(-\Delta)^{\frac{1}{2}} \eta\|_{L^{(r,\infty)}(\mathbb{R}^n)}.$$

By the three-commutator estimates,

$$\|H_s(\eta, P_0)\|_{L^{(r,2)}(\mathbb{R}^n)} \lesssim \|(-\Delta)^{\frac{1}{2}} \eta\|_{L^{(r,\infty)}(\mathbb{R}^n)} \|(-\Delta)^{\frac{1}{2}} P_0\|_{(r,2)}.$$
Consequently, in view of (4.2),
\[\|H(\eta)\|_{L^{(r,2)}(\mathbb{R}^n)} \leq C \Theta \varepsilon \left\| (-\Delta)^{\frac{2}{n}} \eta \right\|_{L^{(r,\infty)}(\mathbb{R}^n)} \leq C \Theta \varepsilon \|(-\Delta)^{\frac{2}{n}} \eta\|_{L^{(r,2)}(\mathbb{R}^n)} \]
Choosing \(\varepsilon \) small enough (depending on \(\Theta \)), we obtain that \(L(\eta) \) is invertible as a map from \(L^{(r,2)}(\mathbb{R}^n, so(N)) \) to \(L^{(\frac{rn}{n+r^2},2)}(\mathbb{R}^n, so(N)) \), whenever \(r \in (q_1, \frac{n}{\theta}) \).

Step 2: For given \(\omega \in L^{q_1} \cap L^{q_2}(\mathbb{R}^n, so(N)) \) and \(r_0 \in (q_1, \frac{n}{\theta}) \) let \(\eta \in L^{(\frac{rn}{n+r^2},2)} \) \(\cap H^{s,(r,2)}(\mathbb{R}^n, so(N)) \) so that
\[\omega = L(\eta). \]
We will show that \((-\Delta)^{\frac{2}{n}} \eta \in L^{q_2}(\mathbb{R}^n)\). Indeed, since \((-\Delta)^{\frac{2}{n}} P_0 \in L^{q_2}(\mathbb{R}^n)\), we can estimate for \(t_1 = \frac{1}{n} - \frac{n}{q_2} + \frac{1}{r_0} \)
\[\|H(\eta)\|_{L^{(1,2)}(\mathbb{R}^n)} \lesssim \left\| (-\Delta)^{\frac{2}{n}} \eta \right\|_{L^{(r,2)}(\mathbb{R}^n)} \left\| (-\Delta)^{\frac{2}{n}} P_0 \right\|_{L^{q_2}(\mathbb{R}^n)}, \]
which itself follows from Sobolev embedding and the following estimate from Lemma 3.1
\[\|H_s(\eta, P_0)\|_{L^{(1,2)}(\mathbb{R}^n)} \lesssim \|\eta\|_{L^{(\frac{rn}{n+r^2},2)}} \left\| (-\Delta)^{\frac{2}{n}} P_0 \right\|_{L^{q_2}(\mathbb{R}^n)}. \]
Since
\[(-\Delta)^{\frac{2}{n}} \eta = \frac{1}{2} \omega - H(\eta) \]
Now either \(t_1 > q_2 \), in which case we use that then \(L^{(1,2)} \cap L^{r_0}(\mathbb{R}^n) \subset L^{q_2}(\mathbb{R}^n) \) (that follows from Step 1) and thus
\[(-\Delta)^{\frac{2}{n}} \eta \in L^{q_2} \cap L^{r_0}(\mathbb{R}^n). \]
Otherwise, we know that \(\frac{1}{r_0} - \frac{1}{t_1} = \frac{s}{n} - \frac{1}{q_2} > 0 \). In this case we repeat the above argument for \(r_1 := t_1 \) and find \(t_2 \) which either is larger than \(q_2 \) or where \(\frac{1}{r_1} - \frac{1}{t_2} = \frac{s}{n} - \frac{1}{q_2} > 0 \). Possible repeating this procedure finitely many times we find that eventually some \(t_i > q_2 \).

Step 3 It remains to show that \((-\Delta)^{\frac{2}{n}} \eta \in L^{q_1}(\mathbb{R}^n)\). Since we already know that \((-\Delta)^{\frac{2}{n}} \eta \in L^{(r,2)} \cap L^{q_2}(\mathbb{R}^n)\) for some \(r \in (q_1, \frac{n}{\theta}) \) arbitrarily small, we find that \(\eta \in L^{\infty}(\mathbb{R}^n) \). In particular,
\[\|\eta (P_0^{T} (-\Delta)^{\frac{2}{n}} P_0 + (-\Delta)^{\frac{2}{n}} P_0^{T} P_0) + (P_0^{T} (-\Delta)^{\frac{2}{n}} P_0 - (-\Delta)^{\frac{2}{n}} P_0^{T} P_0) \eta\|_{q_1, \mathbb{R}^n} \lesssim \|\eta\|_{\infty, \mathbb{R}^n} \|(-\Delta)^{\frac{2}{n}} P_0\|_{q_1, \mathbb{R}^n} < \infty. \]
Moreover, \((-\Delta)^{\frac{2}{n}} \eta \in L^{(r,2)} \cap L^{q_2}(\mathbb{R}^n) \subset L^{\frac{n}{\theta}}(\mathbb{R}^n) \). Thus Lemma 3.1 implies
\[\|H_s(\eta, P_0)\|_{L^{n}(\mathbb{R}^n)} \lesssim \left\| (-\Delta)^{\frac{2}{n}} \eta \right\|_{L^{\frac{n}{\theta}}(\mathbb{R}^n)} \left\| (-\Delta)^{\frac{2}{n}} P_0 \right\|_{L^{\infty}(\mathbb{R}^n)}. \]
Consequently,
\[\omega - H(\eta) \in L^{q_1}(\mathbb{R}^n), \]
and thus \((-\Delta)^{\frac{2}{n}} \eta \in L^{q_1} \cap L^{q_2}(\mathbb{R}^n)\). Moreover, by interpolation, \(\eta \in L^{\frac{mn}{n+1}}_{\infty, \mathbb{R}^n} \). The estimates follow by the above considerations. Lemma 4.4 is proven. \(\square \)
We continue with the proof of Proposition 4.3.

Thus, by Implicit Function Theorem applied to F, if $\varepsilon = \varepsilon(\Theta) > 0$ is chosen small enough, we find for any $\Omega_0 \in V_{\varepsilon, \Theta}$ some $\delta > 0$ such that for any $\Omega \in U_\varepsilon$ with

$$\|\Omega - \Omega_0\|_{L^q(R^n)} + \|\Omega - \Omega_0\|_{L^2(R^n)} < \delta$$

we find $P = P_0 e^U \in \dot{H}^{s,q_1} \cap \dot{H}^{s,q_2}(R^n, SO(N))$, so that $P - I \in L^{n q_1 - q_2}(R^n, R^{N \times N})$ and (4.1) is satisfied. By continuity of the inverse, we can make δ possibly smaller to guarantee that

$$\|(-\Delta)^{\frac{s}{2}} (P - P_0)\|_{q_1, R^n} \leq \|\Omega\|_{q_1, R^n}, \quad \|(-\Delta)^{\frac{s}{2}} (P - P_0)\|_{q_2, R^n} \leq \|\Omega\|_{q_2, R^n}.$$

Observe that this does not right away imply (4.2), (4.3). However the above estimate and the fact that $\Omega \in U_\varepsilon$ imply that for any $\sigma > 0$ we can choose ε small enough so that

$$\|(-\Delta)^{\frac{s}{2}} P\|_{(\frac{q_1}{2}, R^n)} \leq \sigma.$$

The next Lemma shows us that this implies for a small enough choice of $\sigma > 0$ that (4.2), (4.3) hold for a uniform constant Θ.

Lemma 4.5. There exists a $\Theta > 0$ and a $\sigma > 0$ so that whenever $P \in \dot{H}^{s,q_1} \cap \dot{H}^{s,q_2}(R^n, SO(N))$ and $P - I \in L^{n q_1 - q_2}(R^n, R^{N \times N})$ so that (4.1) is satisfied and it holds

(4.4) $$\|(-\Delta)^{\frac{s}{2}} P\|_{(\frac{q_1}{2}, R^n)} \leq \sigma,$$

then (4.2), (4.3) hold.

Proof. In view of (4.1)

$$P^T (-\Delta)^{\frac{s}{2}} P = \frac{1}{2} H_s(P^T, P) - \Omega.$$

In particular, by the three-commutator estimates in Lemma 3.1, for a uniform constant C for any $p \in [q_1, q_2], q \in [1, \infty]$,

$$\|(-\Delta)^{\frac{s}{2}} P\|_{(p, q)} \leq C_1 \|(-\Delta)^{\frac{s}{2}} P\|_{(\frac{q_1}{2}, \infty)} \|(-\Delta)^{\frac{s}{2}} P\|_{(p, q)} + \|\Omega\|_{(p, q)}.$$

Moreover,

$$\|(-\Delta)^{\frac{s}{2}} P\|_{(\frac{q_1}{2}, \infty)} \leq C_2 \|(-\Delta)^{\frac{s}{2}} P\|_{(\frac{q_1}{2}, \infty)} \leq C_2 \sigma$$

for σ small enough we can absorb and find

$$\|(-\Delta)^{\frac{s}{2}} P\|_{(p, q)} \leq \frac{1}{1 - C_1 C_2 \sigma} \|\Omega\|_{(p, q)}.$$

Choosing $\Theta := \frac{1}{1 - C_1 C_2 \sigma}$ we conclude. \(\Box\)

Thus the openness property (iv) is proven, Proposition 4.3 is established, and with the approximation argument in [8, Proof of Theorem 1.2, Step 4] Theorem 4.2 is proven. \(\Box\)
5. The improved Morrey space estimate: Proof of Proposition 1.4

Let \(w \in L^{n/s} (\mathbb{R}^n, \mathbb{R}^N) \) be a solution of
\[
(-\Delta)^{\frac{2}{s}} w^j = \Omega_{ij} w^i + E_i (w) \quad \text{in} \ \mathbb{R}^n,
\]
where \(\Omega_{ij} = -\Omega_{ji} \in L^{(\frac{n}{s}, 2)} \) and \(E \) is as above.

By absolute continuity of the integral there exists \(R > 0 \) so that
\[
\sup_{x_0 \in \mathbb{R}^n} \| \Omega_{ij} \|_{L^{(\frac{n}{s}, 2)} (B(x_0, 10R))} < \delta < \varepsilon
\]
for the \(\varepsilon > 0 \) from Theorem 4.1, and \(\delta \) chosen later. It suffices to prove the claim (1.6) in \(B(x_0, \rho) \subset B(y_0, R) \), where \(y_0 \subset \mathbb{R}^n \) is arbitrary (and the constants will not depend on \(y_0 \), but may depend on \(R \)). Let \(\eta_{B(y_0, 2R)} \in C^\infty_c (B(y_0, 10R)) \) be the generic smooth cutoff function which is constantly one in \(B(y_0, 5R) \). Applying Theorem 4.1 to \(\eta_{B(y_0, 2R)} \Omega \) we find \(P \in \dot{H}^{n/2} (\mathbb{R}^n) \) so that
\[
\| (-\Delta)^{\frac{2}{s}} P \|_{L^{(\frac{n}{s}, 2)}} + \| (-\Delta)^{\frac{2}{s}} P + P \eta_{B(y_0, 2R)} \Omega \|_{L^{(\frac{n}{s}, 1)} (\mathbb{R}^n \times \mathbb{R}^{N \times N})} \lesssim \| \eta_{B(y_0, R)} \Omega \|_{L^{(\frac{n}{s}, 2)}}.
\]

We have
\[
(-\Delta)^{\frac{2}{s}} (P w) = -((-\Delta)^{\frac{2}{s}} P + P \Omega) w + P E (w) + ((-\Delta)^{\frac{2}{s}} (P w) + (-\Delta)^{\frac{2}{s}} P w - P (-\Delta)^{\frac{2}{s}} w)
\]
\[
= -((-\Delta)^{\frac{2}{s}} P + P \eta_{B(y_0, R)} \Omega) w - (1 - \eta_{B(y_0, R)}) \Omega w + P E (w)
\]
\[
+ ((-\Delta)^{\frac{2}{s}} (P w) + (-\Delta)^{\frac{2}{s}} P w - P (-\Delta)^{\frac{2}{s}} w)
\]

In particular, for any \(\varphi \in C^\infty_c (B(x_0, \rho)) \), for \(B(x_0, \rho) \subset B(y_0, R) \), possibly choosing \(R \) even smaller for the estimate of \(E_i \) to take effect (in the following we write the estimates for the case \(n/s > 2 \), the case \(n/s \leq 2 \) is analogous), since \(\Omega \varphi = \eta_{B(y_0, 2R)} \Omega \varphi \), for all sufficiently large \(k_0 \), for some \(\sigma > 0 \)
\[
\int_{\mathbb{R}^n} Pw (-\Delta)^{\frac{2}{s}} \varphi \lesssim \| w \|_{L^{(\frac{n}{s}, \infty)} (\mathbb{R}^n), B(x_0, \rho)} \| \varphi \|_{L^{\infty}}
\]
\[
+ \varepsilon \left(\| P \varphi \|_{L^{\infty}} + \| (-\Delta)^{\frac{2}{s}} (P \varphi) \|_{L^{(\frac{n}{s}, 2)}} \right) \frac{1}{\| w \|_{L^{(\frac{n}{s}, \infty)} (\mathbb{R}^n), B(x_0, 2^k \rho)}} + \sum_{k=0}^{\infty} 2^{-k\sigma} \| w \|_{L^{(\frac{n}{s}, \infty)} (\mathbb{R}^n), B(x_0, 2^{k+1} \rho)}
\]
\[
+ \| w \|_{H^s (P, \varphi)} \|_{L^1}.
\]

Firstly,
\[
\left(\| P \varphi \|_{L^{\infty}} + \| (-\Delta)^{\frac{2}{s}} (P \varphi) \|_{L^{(\frac{n}{s}, 2)}} \right) \lesssim \| (-\Delta)^{\frac{2}{s}} \varphi \|_{L^{(\frac{n}{s}, 1)}} \left(1 + \| (-\Delta)^{\frac{2}{s}} P \|_{L^{(\frac{n}{s}, 2)}} \right).
\]

Moreover, by the three commutator estimates and after localization,
\[
\| w \|_{H^s (P, \varphi)} \|_{L^1} \lesssim \delta \| (-\Delta)^{\frac{2}{s}} \varphi \|_{L^{(\frac{n}{s}, 1)}} \left(\| w \|_{L^{(\frac{n}{s}, \infty)} (\mathbb{R}^n), B(x_0, 2^k \rho)} + \sum_{k=k_0}^{\infty} 2^{-k\sigma} \| w \|_{L^{(\frac{n}{s}, \infty)} (\mathbb{R}^n), B(x_0, 2^{k+1} \rho)} \right)
\]
That is, for any $\varphi \in C^\infty_c(B(x_0, \rho))$ so that $\|(-\Delta)^{\frac{s}{2}} \varphi\|_{(\frac{n}{n-2s}, 1)} \leq 1$, we have

$$\int_{\mathbb{R}^n} P w (-\Delta)^{\frac{s}{2}} \varphi \lesssim (\varepsilon + \delta) \left(\|w\|_{(\frac{n}{n-2s}, \infty), B(x_0, 2k_0 \rho)} + \sum_{k=k_0}^{\infty} 2^{-k\sigma} \|w\|_{(\frac{n}{n-2s}, \infty), B(x_0, 2^k \rho)} \right)$$

Taking the supremum over all such φ, see e.g. [2, Proposition A.3.], we obtain, possibly for a larger k_0,

$$\|w\|_{(\frac{n}{n-2s}, \infty), B(x_0, 2^{-k_0} \rho)} \lesssim (\varepsilon + \delta) \left(\|w\|_{(\frac{n}{n-2s}, \infty), B(x_0, 2k_0 \rho)} + \sum_{k=k_0}^{\infty} 2^{-k\sigma} \|w\|_{(\frac{n}{n-2s}, \infty), B(x_0, 2^k \rho)} \right).$$

Choosing ε and δ small enough this is a decay estimate that can be iterated on smaller and smaller balls, and gives the claim. See e.g. [2, Lemma A.8].

Acknowledgment

A.S. is supported by the German Research Foundation (DFG) through grant no. SCHI-1257-3-1. He receives funding from the Daimler and Benz foundation. A.S. was Heisenberg fellow.

References

[1] D. R. Adams. A note on Riesz potentials. *Duke Math. J.*, 42(4):765–778, 1975.
[2] S. Blatt, P. Reiter, and A. Schikorra. Harmonic analysis meets critical knots. Critical points of the Möbius energy are smooth. *Trans. Amer. Math. Soc.*, 368(9):6391–6438, 2016.
[3] R. R. Coifman, R. Rochberg, and G. Weiss. Factorization theorems for Hardy spaces in several variables. *Ann. of Math. (2)*, 103(3):611–635, 1976.
[4] F. Da Lio. Fractional harmonic maps into manifolds in odd dimension $n > 1$. *Calc. Var. Partial Differential Equations*, 48(3-4):421–445, 2013.
[5] F. Da Lio. Compactness and bubble analysis for 1/2-harmonic maps. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 32(1):201–224, 2015.
[6] F. Da Lio, P. Laurain, and T. Rivièere. A Pohozaev-type formula and Quantization of Horizontal Half-Harmonic Maps. *Preprint, ArXiv:1607.05504*, 2016.
[7] F. Da Lio, P. Laurain, and T. Rivièere. A Pohozaev-type formula and Quantization of Horizontal Half-Harmonic Maps. *ArXiv e-prints*, July 2016.
[8] F. Da Lio and T. Rivièere. Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps. *Adv. Math.*, 227(3):1300–1348, 2011.
[9] F. Da Lio and T. Rivièere. Three-term commutator estimates and the regularity of $\frac{1}{2}$-harmonic maps into spheres. *Anal. PDE*, 4(1):149–190, 2011.
[10] F. Da Lio and A. Schikorra. n/p-harmonic maps: regularity for the sphere case. *Adv. Calc. Var.*, 7(1):1–26, 2014.
[11] F. Duzaar and G. Mingione. Local Lipschitz regularity for degenerate elliptic systems. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 27(6):1361–1396, 2010.
[12] P. Goldstein and A. Zatorska-Goldstein. Remarks on Uhlenbeck’s decomposition theorem. *ArXiv e-prints*, Apr. 2017.
[13] L. Grafakos. *Classical Fourier analysis*, volume 249 of *Graduate Texts in Mathematics*. Springer, New York, third edition, 2014.
[14] S. Kolasiński. Regularity of weak solutions of n-dimensional H-systems. *Differential Integral Equations*, 23(11-12):1073–1090, 2010.

[15] E. Lenzmann and A. Schikorra. Sharp commutator estimates via harmonic extensions. *Preprint, ArXiv:1609.05517*, 2016.

[16] K. Mazowiecka and A. Schikorra. Fractional div-curl quantities and applications to nonlocal geometric equations. *Preprint, ArXiv:1703.00231*, 2017.

[17] V. Millot and Y. Sire. On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres. *Arch. Ration. Mech. Anal.*, 215(1):125–210, 2015.

[18] T. Rivièrè. Conservation laws for conformally invariant variational problems. *Invent. Math.*, 168(1):1–22, 2007.

[19] T. Rivièrè. Sub-criticality of Schrödinger systems with antisymmetric potentials. *J. Math. Pures Appl. (9)*, 95(3):260–276, 2011.

[20] A. Schikorra. A remark on gauge transformations and the moving frame method. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 27(2):503–515, 2010.

[21] A. Schikorra. Regularity of $n/2$-harmonic maps into spheres. *J. Differential Equations*, 252(2):1862–1911, 2012.

[22] A. Schikorra. A note on regularity for the n-dimensional H-system assuming logarithmic higher integrability. *Analysis (Berlin)*, 33(3):219–234, 2013.

[23] A. Schikorra. Integro-differential harmonic maps into spheres. *Comm. Partial Differential Equations*, 40(3):506–539, 2015.

[24] A. Schikorra. L^p-gradient harmonic maps into spheres and $SO(N)$. *Differential Integral Equations*, 28(3-4):383–408, 2015.

[25] A. Schikorra. ε-regularity for systems involving non-local, antisymmetric operators. *Calc. Var. Partial Differential Equations*, 54(4):3531–3570, 2015.

[26] A. Schikorra. Boundary regularity for conformally invariant variational problems with Neumann data. *ArXiv e-prints*, Mar. 2017.

[27] A. Schikorra and P. Strzelecki. Invitation to H-systems in higher dimensions: known results, new facts, and related open problems. *EMS Surv. Math. Sci. (to appear)*, (1), 2017.

[28] H. Triebel. *Theory of function spaces*, volume 78 of *Monographs in Mathematics*. Birkhäuser Verlag, Basel, 1983.

[29] K. K. Uhlenbeck. Connections with L^p bounds on curvature. *Comm. Math. Phys.*, 83(1):31–42, 1982.

(Francesca Da Lio) DEPARTMENT OF MATHEMATICS, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland.

E-mail address: fdalio@math.ethz.ch

(Armin Schikorra) DEPARTMENT OF MATHEMATICS, 301 THACKERAY HALL, UNIVERSITY OF PITTSBURGH, PA 15260, USA

E-mail address: armin@pitt.edu