Integrated mRNA, sRNA, and degradome sequencing reveal oilseed rape complex responses to *Sclerotinia sclerotiorum* (Lib.) infection

Hongju Jian, Jinqi Ma, Lijuan Wei, Pu Liu, Aoxiang Zhang, Bo Yang, Jiana Li, Xinfu Xu & Liezhao Liu

Sclerotinia stem rot (SSR), caused by the fungal pathogen *Sclerotinia sclerotiorum*, is a devastating disease resulting in yield losses and decreases in seed quality in oilseed rape (*Brassica napus*) worldwide. However, the molecular mechanisms underlying the response of oilseed rape to *S. sclerotiorum* infection at the transcriptional and post-transcriptional levels are poorly understood. Here, we used an integrated omics approach (transcriptome, sRNAome, and degradome sequencing) on the Illumina platform to compare the RNA expression and post-transcriptional profiles of oilseed rape plants inoculated or not with *S. sclerotiorum*. In total, 7,065 differentially expressed genes (DEGs) compared with the mock-inoculated control at 48 hours post inoculation were identified. These DEGs were associated with protein kinases, signal transduction, transcription factors, hormones, pathogenesis-related proteins, secondary metabolism, and transport. In the sRNA-Seq analysis, 77 known and 176 novel miRNAs were identified; however, only 10 known and 41 novel miRNAs were differentially expressed between the samples inoculated or not with *S. sclerotiorum*. Degradome sequencing predicted 80 cleavage sites with 64 miRNAs. Integrated mRNA, sRNA and degradome sequencing analysis reveal oilseed rape complex responses to *S. sclerotiorum* infection. This study provides a global view of miRNA and mRNA expression profiles in oilseed rape following *S. sclerotiorum* infection.

Oilseed rape (*Brassica napus* L.), one of the most economically important crops worldwide, is a valued source of vegetable oil, animal feed, and bioenergy. Among the fungal diseases affecting oilseed rape, *Sclerotinia* stem rot, caused by *Sclerotinia sclerotiorum* (Lib.) de Bary, poses a significant threat to yield and seed quality. *S. sclerotiorum* is a necrotrophic pathogen, which causes severe disease in over 400 plant species, such as soybean (*Glycine max*), sunflower (*Helianthus annuus*), and chickpea (*Cicer arietinum*). Infection occurs through senescing or injured plant tissues, lower stems, and flower petals. Necrotic lesions develop quickly throughout the stem and leaves, resulting in wilting, necrosis, stem breakage, yield losses, and decreases in seed quality. *S. sclerotiorum* can persist in the soil for many years and it is not a good way to suppress the pathogen using fungicides and biocontrol agents. Breeding of resistant oilseed rape cultivars is the most viable option for controlling the disease; however, the molecular mechanisms underlying the interaction between *S. sclerotiorum* and *B. napus* are not clear.

Forward genetic approaches, such as quantitative trait loci (QTL) and genome-wide association studies (GWAS), have been used to map candidate genes for *S. sclerotiorum* resistance, and pathogen-resistant QTLs have been identified on almost every chromosome. Genes encoding mitogen-activated protein kinases (MAPKs) and WRKY transcription factors (TFs) have been shown to play important roles in the resistance to *S. sclerotiorum*. RNA sequencing (RNA-Seq) is a powerful tool for characterizing the pathogen response pathways and genes involved in resistance in many crops, including *Oryza sativa* (rice), *Triticum aestivum* (wheat), and *Sorghum bicolor*.
(sorghum)20, sugarcane21, and cucumber22. Transcriptome studies have shown that \textit{B. napus} genes involved in the response to pathogen invasion (e.g., genes encoding receptor-like kinases, proteins harboring nucleotide binding site leucine-rich repeats, proteins that function in mitogen-activated protein kinase cascades, G-proteins, calcium binding proteins, hormones, TFs, pathogenesis-related (PR) proteins, proteins involved in phenylpropanoid and glucosinolate metabolism, and transport proteins) were significantly altered following infection16,32,34.

MicroRNAs (miRNAs) are endogenous, non-coding RNAs that play crucial roles in various biological processes at the transcriptional and post-transcriptional level by negatively regulating gene expression35. miRNAs act as key components in gene regulatory pathways associated with many processes, such as germination25, development26, organ maturation27, signal transduction38, and stress responses28. Moreover, several studies have shown that miRNAs function in responses to pathogen invasion29,30. miR393 contributed to the defense response in \textit{Arabidopsis thaliana} against \textit{Pseudomonas syringae pv. tomato} (Pst) by suppressing target genes, including auxin receptors, transport inhibitor response 1 (TIR1), auxin signaling F-box protein 2 (AFB2), and AFB3, which negatively regulate auxin signaling35. Furthermore, miR393 acts as a key regulator in the glucosinolate pathway, which is involved in plant responses to pathogens31. In \textit{Brassica rapa}, miR158 and miR1885 were induced after infection by \textit{Turnip mosaic virus} (TuMV) and suppressed disease resistance protein genes - Nucleotide-binding site leucine-rich repeat32. MiR396 from \textit{A. thaliana} functions as a positive regulator during cyst nematode infection33. In \textit{Nicotiana tabacum} (tobacco), miR6019 and miR6020 guided to incise N genes, which increases resistance to the \textit{Tobacco mosaic virus} (TMV)34.

Several studies have been conducted to identify miRNAs in oilseed rape. Xie \textit{et al}.35 first identified 21 potential \textit{B. napus} miRNAs using computational methods. Later, next generation sequencing technologies were used to identify miRNAs in different tissues or in response to different stresses36–41. There are only 92 mature miRNA sequences of \textit{B. napus} in the miRBase database (version: 21.0). Compared with the number of miRNAs that have been identified in other species, such as \textit{A. thaliana}, \textit{Arabidopsis lyrata}, and \textit{Oryza sativa}. It is likely that there are many \textit{B. napus} miRNAs that have not yet been discovered.

The molecular mechanisms underlying the interaction between \textit{S. sclerotiorum} and \textit{B. napus} are only partially understood, due to the lack of resistant lines. We identified five relatively resistant lines in a previous study10. To investigate the response of oilseed rape to \textit{S. sclerotiorum} infection at the mRNA and miRNA levels, we performed RNA-Seq, sRNA-Seq, and degradome deep sequencing on both mock-inoculated and \textit{S. sclerotiorum} inoculated stems at 48 hours post-inoculation (hpi). We identified differentially expressed genes associated with protein kinases, signal transduction (CDPKs, G proteins, and MAPKs), TFs, hormones, PR proteins, secondary metabolism, and transport proteins. In sRNA-Seq analysis, 10 known and 41 novel miRNAs were differentially expressed at 48 hpi with \textit{S. sclerotiorum}. Furthermore, 80 cleavage sites with 64 miRNAs were predicted by degradome sequencing. Our data provide a broad view of gene expression changes after \textit{S. sclerotiorum} infection in oilseed rape.

Results

Overview of transcriptome sequencing and analysis of gene expression

To identify the expression levels of \textit{B. napus} genes, cDNA libraries were constructed from the stems of the inoculated plants (48 hours after inoculation with \textit{S. sclerotiorum} (T48)) and the mock-inoculated control (CK) and paired-end (PE150) sequenced by HiSeqTM 2500. After filtering low quality reads and removing sequences with N, 44,817,708 reads from the T48 and 42,143,988 reads from the CK libraries were obtained. Furthermore, 67.37% of the reads (30,192,484 reads) from the T48 library and 70.26% of the reads (29,611,119 reads) from the CK library were uniquely mapped to the \textit{B. napus} genome (Table 1).

In total, 39,628 and 43,150 genes were detected in the T48 and CK libraries, respectively, using a FPKM (fragments per kilobase of transcript per million fragments mapped) value ≥ 1 with 37,261 genes in common between the two libraries, and 2,367 and 5,889 unique genes detected in the T48 and CK libraries, respectively (Fig. 1A). Moreover, almost all of the genes in the libraries showed moderate expression levels with only a small percentage of the genes expressed in high levels (Fig. 1B).

Transcriptomic changes in response to \textit{S. sclerotiorum} infection

In total, 7,065 genes were identified as DEGs with 4,950 down-regulated and 2,115 up-regulated genes between the inoculated and mock-inoculated samples with a cut-off FDR (false discovery rate) value of <0.001 and |log2 (fold change) | ≥ 1 (Fig. 1C). As shown in Fig. 1D, more than 92% of the DEGs had a fold change ≤32 and only a few DEGs had a fold change ≥128.

Transcription factors (TFs) play important roles in plant biotic stress responses44. To further analyze the function of the DEGs, we aligned all DEGs against known TFs in the \textit{A. thaliana} genome. In total, 602 DEGs belonging to 39 TF families were identified with 434 being down-regulated and 168 being up-regulated and the [log2 (fold change)] of most TF genes were between 1 and 5 (Fig. 1E). The TF family members were unevenly

Sample	Total Reads	Uniq Map	Multiple Map	Pair Map	Single Map	Only Map Plus	Only Map Minus Strand
T48	44817708	32180724	30192484	1988240	27463572	4717152	15775761
CK	42143988	31191889	29611119	1580770	27143836	4048053	15276040

Table 1. Summary of Illumina transcriptome sequencing data mapping on \textit{B. napus} reference genome for CK and T48 libraries.
distributed; five TF families, ERF (116), MYB (74), NAC (62), bHLH (60), and WRKY (51) accounted for more than 60% (363/602) of all TFs. Furthermore, most members of ERF (84/116), MYB (49/74), WRKY (32/51), bHLH (49/60), bZIP (16/22), and HD-ZIP (24/26) were down-regulated. Plant hormones, such ethylene (ET), jasmonic acid (JA), and salicylic acid (SA), play vital roles in biotic stresses. In total, 685 DEGs belonging to eight classifications of plant hormones were detected with 469 being down-regulated and 216 being up-regulated. Almost all of the ABA (151/204), IAA (105/138), JA (74/95), SA (36/55), GA (26/37), and CK (22/30) genes were down-regulated and the ET and BR genes were up- and down-regulated to similar extents (Fig. 1F).

Functional classifications of the DEGs. To further explore the functions of the DEGs in response to S. sclerotiorum infection, Gene Ontology (GO) enrichment analysis was conducted on the down- and up-regulated DEGs. We found 10, 11, and 20 functional groups in cellular components (CC), molecular functions (MF), and biological processes (BP), respectively (Fig. 2). Moreover, the dominant functions in each of the three main categories were cellular processes (GO: 0009987) and metabolic processes (GO: 0008152) in the BP category, cell (GO: 0005623), cell part (GO: 0044464), and organelle (GO: 0043226) in the CC category, and binding (GO: 0005488) and catalytic activity (GO: 0008152) in the MF category (Fig. 2). In addition, the DEGs were aligned against the KEGG pathways database to identify pathways that were responsive to S. sclerotiorum infection. In total, 50 pathways were detected in our study including five branches: cellular processes, environmental information processing, genetic information processing, metabolism, and organismal systems. The most abundant pathway in each branch was peroxisome (34), plant hormone signal transduction (184), ribosome (40), carbon metabolism (96), and plant-pathogen interaction (51), respectively (Fig. 3 and Table S1).

To decipher the mechanisms of the resistance response to S. sclerotiorum infection in B. napus, MapMan software was used to classify and determine the metabolic pathways of the DEGs. As shown in Fig. 4, photosynthesis, glyoxalic acid, and carbon metabolism were suppressed, while cell wall, lipids, and metabolism (sulphur metabolism and amino acid metabolism) were mostly activated. An overview of the DEGs represented in the different processes is provided in Fig. 5 and Table S2.

Validation of RNA-Seq results by qRT-PCR. qRT-PCR was used to validate the data from RNA-Seq. In total, 55 genes (hormones, TFs, MAPKs, NBS-LRRs, MLO, and lignin synthesis) were selected for the qPCR assays (Table S3). High correlations were obtained between qPCR and RNA-Seq techniques. The correlation coefficient between qPCR and RNA-Seq data obtained from resistant lines or ZS11 were 0.921 and 0.770 (Fig. 6), emphasizing the reproducibility and reliability of the RNA-Seq data.
sRNA library construction. To elucidate the regulatory roles of the miRNAs responsive to *S. sclerotiorum* infection, two sRNA libraries were constructed using total RNA isolated from the inoculated and mock-inoculated samples. After sequencing, a total of 42,806,114 and 32,205,058 high-quality, raw sequence reads were obtained from the T48 and CK libraries, respectively. After removing adapters, poly-A sequences, and short RNA reads smaller than 18 nucleotides (nt), 26,570,562 and 23,051,268 clean reads were obtained from the T48 and CK libraries, respectively. After further filtering the RFam and Repbase sequences, 15,459,745 (58.18%) and 17,767,719 (77.08%) small RNA sequences from the T48 and CK libraries, respectively, were mapped to the *B. napus* genome using SOAP2 (Table 2). Similar patterns of length distribution of the sRNAs between the two libraries are shown in Fig. 7, which revealed that the majority of the reads were 21–24 nt in length, and 24-nt reads were the most abundant (Fig. 7). Furthermore, the common and specific of total and unique small RNA sequences were compared between the two libraries, showing that 63.87% and 10.07% of the total sRNAs and unique sRNA were shared, respectively.

Figure 2. Gene Ontology (GO) classification of DEGs identified at 48 hpi after *S. sclerotiorum* infection.

Figure 3. KEGG pathways of DEGs identified at 48 hpi after *S. sclerotiorum* infection.
Identification of known and novel miRNAs in *B. napus*. To identify known miRNAs in the two libraries, sRNA sequences obtained from each library were aligned with mature sequences of *B. napus* miRNAs deposited in miRBase v21.0. A total of 77 known miRNAs belonging to 30 families were identified in the T48 (68 miRNAs) and CK (76 miRNAs) libraries (Table 3); among them, 67 (87.01%) were detected in both libraries. Among the 30 families, bna-miR156 and bna-miR171 had seven members in both libraries, comprising the largest groups, followed by bna-miR166 and bna-miR395 with six members (Fig. 8A). In our study, 33.82% (23 miRNAs) and 38.16% (29 miRNAs) of the miRNAs had more than 100 reads in the T48 and CK libraries, respectively, and 16.18% (11 miRNAs) and 17.11% (13 miRNAs) of the miRNAs had more than 1,000 reads in the T48 and CK libraries.
libraries, respectively. Among them, bna-miR159 had the highest expression level in both libraries (48,352 and 71,828 reads in the T48 and CK libraries, respectively, Table 3).

To predict novel miRNAs in B. napus from the two libraries, “unannotated” reads were aligned with the B. napus genome. A total of 176 novel miRNA candidates were obtained from the T48 (175 miRNAs) and CK (176 miRNAs) libraries; among them, Novel_miR_74 was expressed only in the CK library. The mature miRNAs were 20–25 nt in length with 21-nt reads being the most abundant (Table S4). The minimal folding energy (MFE) of these predicted pre-miRNAs ranged from −30.4 kcal/mol to −208.3 kcal/mol (Table S4). Among them, 36

Table 2. Distribution of small RNAs among different categories.

Types	T48	CK		
	Number	Percentage	Number	Percentage
Total	26570562	100.00%	23051268	100.00%
rRNA	8767858	33.00%	4296731	18.64%
scRNA	0	0.00%	0	0.00%
snRNA	0	0.00%	0	0.00%
snoRNA	21392	0.08%	27068	0.12%
tRNA	2231675	8.40%	844134	3.66%
Repbase	89892	0.34%	115616	0.50%
Unannotated	15459745	58.18%	1776719	77.08%

Figure 6. Correlation of gene expression between qPCR and RNA-seq approaches. The qPCR log2 value of the expression ratio (inoculated/mock-inoculated) (y-axis) was plotted against the value from the RNA-seq (x-axis). a, data from resistant lines; b, data from ZS11. All qPCR data were collected from three biological replicates and three technical replicates for each sample.

Figure 7. Length distribution of sRNAs detected in two libraries.
Name of miRNAs	Read Counts	Expression Normalization	Mature Sequence
bna-miR1140	3 7	21 2.69 3.46	ACAGCCCTAAACCAATCGGAGC
bna-miR156a	25 19	21 22.41 9.40	TTGACAGAAGAGGGATAGGACAC
bna-miR156b	55 48	21 49.29 23.74	TGACAGAAGAGAGGATAGGACAC
bna-miR156c	55 48	21 49.29 23.74	TGACAGAAGAGAGGATAGGACAC
bna-miR156d	21 17	20 18.82 8.41	TGACAGAAGAGAGGATAGGACAC
bna-miR156e	21 17	20 18.82 8.41	TGACAGAAGAGAGGATAGGACAC
bna-miR156f	21 17	20 18.82 8.41	TGACAGAAGAGAGGATAGGACAC
bna-miR159	48352 71828	21 43334.40 35518.82	TTGGATGTTGAGAGGAGGCTGCTA
bna-miR160a	42 116	21 37.64 57.36	TGACAGAAGAGAGGATAGGACAC
bna-miR160b	42 116	21 37.64 57.36	TGACAGAAGAGAGGATAGGACAC
bna-miR160c	42 116	21 37.64 57.36	TGACAGAAGAGAGGATAGGACAC
bna-miR160d	42 116	21 37.64 57.36	TGACAGAAGAGAGGATAGGACAC
bna-miR161	7 10	21 6.27 4.94	TGAATGCACTGAAATAGGACTA
bna-miR162a	1 1	21 0.90 0.49	TGACATAACCTGAGCCACAG
bna-miR164a	1075 3252	21 963.44 1608.11	TGACAGAAGAGGAGGCTGCTA
bna-miR164b	235 744	21 210.61 367.91	TGACAGAAGAGGAGGCTGCTA
bna-miR164c	235 744	21 210.61 367.91	TGACAGAAGAGGAGGCTGCTA
bna-miR166a	5126 10238	21 4594.06 5062.67	TGACAGAAGAGGAGGCTGCTA
bna-miR166b	5126 10238	21 4594.06 5062.67	TGACAGAAGAGGAGGCTGCTA
bna-miR166c	5126 10238	21 4594.06 5062.67	TGACAGAAGAGGAGGCTGCTA
bna-miR166d	5126 10238	21 4594.06 5062.67	TGACAGAAGAGGAGGCTGCTA
bna-miR166e	5126 10238	21 4594.06 5062.67	TGACAGAAGAGGAGGCTGCTA
bna-miR166f	94 80	21 84.25 39.56	TGAATGCACTGAAATAGGACTA
bna-miR166g	44 89	22 39.43 44.01	TGACAGAAGAGGAGGCTGCTA
bna-miR166h	44 89	22 39.43 44.01	TGACAGAAGAGGAGGCTGCTA
bna-miR166i	43 89	21 38.54 44.01	TGACAGAAGAGGAGGCTGCTA
bna-miR166j	30 77	20 26.89 38.08	TGACAGAAGAGGAGGCTGCTA
bna-miR166k	1088 1681	21 975.10 831.25	TGACAGAAGAGGAGGCTGCTA
bna-miR166l	0 3	21 0.00 1.48	TGACAGAAGAGGAGGCTGCTA
bna-miR166m	0 1	21 0.00 0.49	TGACAGAAGAGGAGGCTGCTA
bna-miR166n	0 1	21 0.00 0.49	TGACAGAAGAGGAGGCTGCTA
bna-miR166o	24 83	21 21.51 41.04	TGACAGAAGAGGAGGCTGCTA
bna-miR166p	10 6	21 8.96 2.97	TGACAGAAGAGGAGGCTGCTA
bna-miR166q	3 17	21 2.69 8.41	TTGAAGCTGGCAATCTCAG
bna-miR166r	3 17	21 2.69 8.41	TTGAAGCTGGCAATCTCAG
bna-miR166s	3 17	21 2.69 8.41	TTGAAGCTGGCAATCTCAG
bna-miR166t	3 17	21 2.69 8.41	TTGAAGCTGGCAATCTCAG
bna-miR166u	5 4	21 4.48 1.98	TGAATGCACTGACCGAGCAG
bna-miR166v	5 4	22 4.48 1.98	TGAATGCACTGACCGAGCAG
bna-miR172a	1024 2651	21 917.74 1310.91	TGACAGAAGAGGAGGCTGCTA
bna-miR172b	78 204	21 69.91 100.88	TGACAGAAGAGGAGGCTGCTA
bna-miR172c	78 204	21 69.91 100.88	TGACAGAAGAGGAGGCTGCTA
bna-miR172d	290 836	21 259.91 413.40	TGACAGAAGAGGAGGCTGCTA
bna-miR2111a-3p	0 1	21 0.00 0.49	TGACAGAAGAGGAGGAGGCTT
bna-miR2111a-5p	3 3	21 2.69 1.48	TGAATGCACTGACCGAGCAG
bna-miR2111b-3p	2 9	21 1.79 4.45	TGAATGCACTGACCGAGCAG
bna-miR2111b-5p	3 3	21 2.69 1.48	TGAATGCACTGACCGAGCAG
bna-miR2111d	3 3	21 2.69 1.48	TGAATGCACTGACCGAGCAG
bna-miR390a	202 328	21 181.04 162.20	TGACAGAAGAGGAGGAGGAG
bna-miR390b	202 328	21 181.04 162.20	TGACAGAAGAGGAGGAGGAG
bna-miR390c	202 328	21 181.04 162.20	TGACAGAAGAGGAGGAGGAG
bna-miR393	1 6	21 0.90 2.97	TGAATGCACTGACCGAGCAG
bna-miR394a	935 1948	20 837.97 963.28	TTGAAGCTGGCAATCTCAG

Continued
(20.6%) and 55 (31.3%) miRNA candidates had more than 1,000 reads in the T48 and CK libraries, respectively. Most of these novel miRNAs were more highly expressed than the known miRNAs. Information about the miRNA candidates identified from the two libraries is summarized in Table S4 and the hairpin structures for the precursors of eight novel miRNAs were chosen as examples and are shown in Fig. 9.

Table 3. The information of known miRNAs identified in CK and T48 libraries.

Name of miRNAs	Read Counts	Length	Expression Normalization	Mature Sequence
bna-miR394b	935	20	837.97	TTGGCATTCTGTCCACCTCC
bna-miR395a	4	21	3.58	CTGAAGTGTTGGGGGAACCTC
bna-miR395b	4	21	3.58	CTGAAGTGTTGGGGGAACCTC
bna-miR395c	5	21	4.48	CTGAAGTGTTGGGGGAACCTC
bna-miR395d	5	21	4.48	CTGAAGTGTTGGGGGAACCTC
bna-miR395e	5	21	4.48	CTGAAGTGTTGGGGGAACCTC
bna-miR395f	5	21	4.48	CTGAAGTGTTGGGGGAACCTC
bna-miR396a	1193	21	1069.20	TTCCACAGCTCTTGAACTT
bna-miR397a	0	22	0.00	TCATTGAGTGCAGCGTTGATGT
bna-miR397b	0	22	0.00	TCATTGAGTGCAGCGTTGATGT
bna-miR399a	0	21	0.00	TGCCAAAGGAGATTTGCCCGG
bna-miR399b	0	21	0.00	TGCCAAAGGAGATTTGCCCGG
bna-miR403	3727	21	3340.24	TTAGATTCAGGCGCAAACTCG
bna-miR6028	0	21	0.00	TGAGGACTAAGGACATTCAGA
bna-miR6029	295	21	264.39	TGAGGGTGTTGATTGACGTT
bna-miR6030	145	22	129.95	TCCACCCAATCACATACAGACC
bna-miR6031	27	24	24.20	AAGAGGTTCGGAGGGTGTTACG
bna-miR6035	3	21	2.69	TGGAGTAAATGGCACTGCTG
bna-miR6036	1	24	0.90	ATAGTACTGATGCTGATGATCA
bna-miR824	270	21	241.98	TAGACCATTGAGAAGGGGA
bna-miR860	7	21	6.27	TCAATCATGAGGACATCATAT

Figure 8. The number of known miRNAs members and differentially expressed miRNAs between CK and T48 libraries. (A) Number of family members per miRNA family detected in the two libraries. (B) expressed differentially of known miRNAs; (C) expressed differentially of novel miRNAs.
Differentially expressed miRNAs after *S. sclerotiorum* infection. To screen for *S. sclerotiorum*-responsive miRNAs, differential expression analysis of the miRNAs was performed between the T48 and CK libraries, based on the normalized read count for each identified miRNA. In our study, 10 known and 41 novel miRNAs were identified as differentially expressed (DE) miRNAs based on the following criteria: fold change (≥ -2 or ≤ 2) and FDR-value (≤ 0.001). Among them, only one known (bna-miR6028) and six novel (Novel_miR_34, Novel_miR_46, Novel_miR_49, Novel_miR_74, Novel_miR_129, and Novel_miR_167) DE miRNAs were down-regulated after *S. sclerotiorum* infection. To confirm the reliability of the data produced through deep sequencing, qRT-PCR was conducted. Fifteen miRNAs including two conserved miRNAs (miR6028 and miR156f) and 13 novel miRNAs (Novel_miR_7, Novel_miR_11, Novel_miR_13, Novel_miR_44, Novel_miR_45, Novel_miR_52, Novel_miR_76, Novel_miR_93, Novel_miR_119, Novel_miR_140, Novel_miR_167, Novel_miR_172, and Novel_miR_176) from miRNAs detected in our study were selected (Fig. 10). As expected, the qRT-PCR results were consistent with the deep sequencing results.

Target prediction of DE miRNAs. To gain insights into functions of DE miRNAs, corresponding target genes were predicted using bioinformatics analysis. Among these target genes, only 15 genes were DEG in our RNA-Seq analysis (Table 4). Of them, eight targets (encoding squamosa promoter-like proteins and
phototropic-responsive NPH3 family protein) were targeted by miR156, four genes (encoding revolute and homeobox gene 8 proteins) were targeted by miR166f and the rest three were novel miRNAs (Novel_miR_87/126/158). Interestingly, all 15 targets were reverse expression patterns with corresponding miRNAs but Novel_miR_158 3.32 BnaC02g06060D

Novel miRNAs and their target genes associated with Sclerotinia stem rot infection in the relatively resistant lines. Our data showed that a coordination among different pathways is involved in the resistance response in oilseed rape at the transcriptional and post-transcriptional levels and further analysis is needed regarding candidate genes, miRNAs, or targets identified in our study.

Previous studies on the transcriptomic changes in oilseed rape in response to *S. sclerotiorum* infection were primarily conducted using oligonucleotide microarrays. More than 300 DEGs involved in JA biosynthesis and signaling, reactive oxygen species metabolism, and cell wall structure and function were identified using microarrays. Later, 686 and 1,547 DEGs in resistant and susceptible *B. napus* genotypes, respectively, associated with *S. sclerotiorum* infection using an *Arabidopsis* microarray were detected. Changes in the expression of PR proteins, kinases, transporters, JA, ET, cell wall proteins, and unknown proteins were identified. Researchers further investigated altered gene expression in *Zhongyou 821* (ZY821, a partially resistant line) and *Westar* (a susceptible line) in inoculated and mock-inoculated samples (Tables S6–S13).
In other plant-pathogen interactions, such as flax-

Fusarium oxysporum 45, banana-

F. oxysporum 46 and cabbage-

F. oxysporum 47, the defense proteins or pathways discussed above were also changed.

Protein kinase genes involved in the recognition of

S. sclerotiorum. The receptor-like kinase (RLK) family plays important roles in the

B. napus-

S. sclerotiorum interaction. More than 1,200 RLK homologs genes in

B. napus were identified using 300 _AtRLKs_ (http://www.arabidopsis.org/browse/genefamily/Receptor_kinase.jsp) as queries 24. In our study, the expression of 214 _BnRLK_ genes was altered after inoculation with

S. sclerotiorum, with 158 genes being down-regulated and 56 genes being up-regulated (Table S6). Nucleotide binding site leucine-rich repeat (NBS-LRR) genes, characterized as R genes, have been found to be involved in plant-pathogen interactions 48. In our study, the expression of 29 NBS-LRR genes was altered after inoculation with _S. sclerotiorum_, with 21 genes being down-regulated and 8 genes being up-regulated (Table S6).

Signal transduction is involved in _B. napus-S. sclerotiorum_ interactions. Mitogen-activated protein kinase (MAPK) cascades, which consist of the MAPKKK-MAPKK-MAPK module, have been characterized in the response to pathogen infection 49. In the current study, 28 MAPKK, one MAPKK, and five MAPK genes were induced at 48 hours after inoculation with _S. sclerotiorum_. Among these, 21 MAPKK and five MAPK genes were down-regulated, and one MAPKK (_BnaC02g22230D_) gene was up-regulated by more than 16-fold at 48 hpi with _S. sclerotiorum_ (Table S7). G-proteins transduce detection signals from RLKs 50. In our study, seven G-protein transcripts were up-regulated at 48 hpi with _S. sclerotiorum_ (Table S7). Calcium (Ca^{2+}), acting as an essential second messenger, is involved in the plant’s response to abiotic and biotic stresses 51. In our study, 91 calcium-related genes, such as calcium-binding EF-hand family proteins, calcium-dependent protein kinase (CDPK), and calmodulin binding protein (CAM), showed differential expression (most of them were down-regulated) (Table S7). In another gene family, _MILDEW RESISTANCE LOCUS O_ (MLO), _MLO2_, _MLO8_, and _MLO12_ were down regulated, while three copies of _MLO6_ were up regulated in the _S. sclerotiorum_-inoculated samples. (Table S7).

Transcriptional regulation. TFs play crucial roles in response to pathogen attack 52, and 602 TFs belonging to 39 families were identified in this study (Fig. 1E). In total, 51 WRKY genes were differently expressed after _S.
sclerotiorum infection. Among these, 18 genes (one WRKY3, three WRKY6s, one WRKY14, two WRKY28s, two WRKY29s, two WRKY42s, one WRKY57, one WRKY61, one WRKY72, and four WRKY75s) were up-regulated (Table S8). MYB TFs, which comprise a large TF family, have central roles in pathogen responses53. In this study, 67 MYB TF transcripts were differentially expressed at 48 hpi. Of them, 25 MYBs genes were up-regulated in the S. sclerotiorum-inoculated plants (Table S8).

Hormone regulation. Besides their functions in plant growth and development, plant hormone-regulated genes have important roles in plant biotic stress response54. The biosynthesis or signal transduction of hormones, such as CK, IAA, BR, SA, JA, ET, ABA, and GA, were affected at 48 hpi with S. sclerotiorum (Fig. 1F). As a positive regulator, JA plays important roles in plant disease resistance55. In this study, several transcripts encoding proteins involved in JA biosynthesis, including jasmonic acid carboxyl methyltransferase (JMT), allene oxide synthase (AOS), allene oxide cyclase 2 (AOC2), fatty acid desaturase (FAD), and lipoxygenase (LOX) family proteins, were differently expressed in the S. sclerotiorum infected samples (Table S9). Five transcripts encoding jasmonate-zim-domain protein 3 (JAZ3), which negatively regulates JA transcriptional activity, were down-regulated at 48 hpi with S. sclerotiorum (Table S9). ET, which is involved in the regulation of

![Figure 12. Target plots (t-plots) of miRNAs targets confirmed by degradome sequencing. In t-plots, the red lines indicate the miRNA-directed cleaved transcript. The X axis indicates the nucleotide position in target cDNA. The Y axis indicates the number of reads of cleaved transcripts detected in the degradome cDNA library. “alignment score” is the score for mismatch. Score = 0 represents perfect match and G:U = 0.5.](image-url)
growth and development, acts synergistically with JA in responses to environmental stresses. In our study, key enzymes involved in ET biosynthesis, including 1-aminoacyclopropane-1-carboxylatesynthase (ACS) and 1-aminoacyclopropane-1-carboxylateoxidase (ACO), were up-regulated in the S. sclerotiorum-inoculated samples, except for one copy (BnaC02g15560D) of ACS12. Moreover, ET signaling pathway genes, including ethylene response sensor (ERS), ethylene response factor (ERF), and octadecanoid-responsive Arabidopsis AP2/ERF 59 (ORA39), and their regulated genes, such as pathogenesis-related 4 (PR4) and plant defensin 1.2 (PDF1.2), were detected in our study (Table S9).

PR proteins

Pathogenesis-related genes (PRs) play central roles in disease resistance. In our study, the expression of 19 genes encoding pathogenesis-related 4 (PR4), pathogenesis-related family protein, pathogenesis-related gene 1 (PR1), and pathogenesis-related thaumatin superfamily proteins, was altered. Of them, eight genes encoding pathogenesis-related thaumatin superfamily proteins were down-regulated and the rest were up-regulated in the S. sclerotiorum-inoculated samples (Table S10). Chitinase degrades chitin, which is the primary structural component of fungal cell walls. Seventeen genes encoding chitinase proteins were induced after S. sclerotiorum infection (Table S10). Among these, two genes (BnaC07g30330D and BnaA06g26630D) encoding chitinase A (CHIA) and one gene (BnaA05g03440D) encoding a chitinase family protein were down-regulated at 48 hpi, while the other 14 genes encoding chitinase family proteins were up-regulated.

Secondary metabolism

Secondary metabolites play crucial roles in plant defense against pathogen attack. Phenylpropanoids are one of the most important secondary metabolites involved in stress-defense. Forty-three genes encoding components of phenylpropanoid metabolism were detected and 12 of them were up-regulated at 48 hpi with S. sclerotiorum. In addition, 21 genes involved in lignin formation (including cinnamic-acid 3-hydroxylase (C3H), cinnamaldehyde 4-hydroxylase (C4H), cyanamoyl-CoA reductase (4CL), cinnamyl alcohol dehydrogenase (CAD), caffeoyl-CoA O-Methyltransferase (CCoAOMT), cyanamyl-CoA reductase1 (CCR1), caffeic acid O-methyltransferase (COMT), ferulate 5-hydroxylase (F5H), and shikimate quinatehydroxycinnamoyltransferase (HCT)) were differentially expressed in our study (Table S11).

Owing to their high antioxidant capacity, flavonoids have been used in transgenic engineering to increase resistance to pathogen attack. Forty-two key genes encoding proteins related to flavonoid biosynthesis, including flavonol synthase, chalcone synthase, flavonoid 3′-monooxygenase, caffeic acid isomerase, anthocyanin 5-aromatic acyltransferase, and dihydro flavonol reductase (DFR), were differentially expressed in the S. sclerotiorum-infected samples. Ten out of 14 genes involved in anthocyanin biosynthesis were up-regulated in the S. sclerotiorum-infected samples, and two genes, BnaA04g03230D and BnaC04g25200D, were jasmonate-regulated gene 21 (JRG21) genes with a 5.65 and 9.35 log2-fold increase, respectively. Interestingly, all seven chalcones synthesis genes and all eight dihydroflavonols genes, including TRANSPARENT TESTA, DFR, and F3H, were down-regulated at 48 h after S. sclerotiorum infection. Furthermore, six out of 13 genes associated with flavonol biosynthesis were increased in the S. sclerotiorum-inoculated plants (Table S11).

Isoprenoids, which are involved in plant growth and development, have specialized functions in response to pathogen attack. Thirty-five genes related to the metabolism of carotenoids, terpenoids, and tocopherol biosynthesis were differentially expressed at 48 hpi with S. sclerotiorum. Most of them, including terpene synthase 21 (TPS21), LUTEIN DEFICIENT 2 (LUT2), and zeta-carotene desaturase (ZDS), were down-regulated in the S. sclerotiorum-inoculated plants. Three copies of phytoene desaturation 1 (PDS1), involved in tocopherol biosynthesis, had a 3.05 to 4.32 log2-fold increase (Table S11).

Genes related to glucosinolate synthesis, another secondary metabolite, were found to be differentially expressed in our study. Two genes involved in glucosinolate synthesis were induced while 19 genes were suppressed at 48 hpi with S. sclerotiorum infection. Of the multidrug transporter genes, seven MATE efflux family proteins, nine multidrug resistance-associated proteins (MRPs), eight pleiotropic drug resistance proteins (PDR), nine ATP-binding cassette proteins (ABC), two ABC transporter family proteins, and 11 ABC-2-type transporter family proteins aid in secondary metabolite transport to resist pathogens (Table S12).

Transport

Altered expression was observed in genes involved in transport pathways, such as ABC transporters, major intrinsic proteins (MIPs), and amino acid transporters/permeases at 48 hpi with S. sclerotiorum. Multidrug transporters, comprised of MATE efflux proteins and ABC transporters, remove noxious compounds from cells. Fifty-five multidrug transporter genes were found to have altered expression in this study, including 26 with increased abundance after S. sclerotiorum infection. Of the multidrug transporter genes, seven MATE efflux family proteins, nine multidrug resistance-associated proteins (MRPs), eight pleiotropic drug resistance proteins (PDR), nine ATP-binding cassette proteins (ABC), two ABC transporter family proteins, and 11 ABC-2-type transporter family proteins aid in secondary metabolite transport to resist pathogens (Table S12).

MIPs, including NOD26-like intrinsic protein (NIPs), plasma membrane intrinsic proteins (PIMs), and tonoplast intrinsic proteins (TIPs), play crucial roles in water and solute transport and plant stress responses. Seventeen NIPs, 16 PIPs, and seven TIPs were differentially expressed at 48 hpi with S. sclerotiorum (Table S12), with most of these genes being down-regulated. These expression changes may be regulated by the pathogen to improve invasion into plant tissues; alternatively, these membrane proteins could promote the conduction of hydrogen peroxide (H_2O_2) to support defense signaling.

In our study, 28 differentially expressed amino acid transporter genes were detected, including amino acid permeases (AAPs), bidirectional amino acid transporter 1 (BAT1), cationic amino acid transporter (CAT), and transmembrane amino acid amino acid transporter family proteins (Table S12). Two transcripts encoding AAP3 (BnaC06g38080D and BnaA07g33510D) were up-regulated at 48 hpi with S. sclerotiorum.
Other genes. Differential expression of numerous other gene groups involved in the response to pathogen attack were identified in our study. Many cytochrome family protein (CYP) P450 genes, a large group of genes involved in diverse metabolic processes, were up-regulated (about 50%) at 48 hpi with S. sclerotiorum (Table S13). Many UDP-glucosyl transferase family proteins (UGTs), which transfer UDP-glucose to diverse secondary metabolites or hormones, were up-regulated at 48 hpi with S. sclerotiorum. One transcript, BnaA01g03020D encoding UGT73B3, which is involved in abscisic acid glucosyltransferase, was the most up-regulated of the UGTs with a 6.59 log 2-fold change (Table S13). Groups of genes involved in modifying or degrading other proteins were found to be differently expressed. These transcripts encode enzymes including 11 aspartate proteases, 20 cysteine proteases, 16 serine proteases, 14 subtilases, and 168 ubiquitin genes. Most of these genes were down-regulated in the S. sclerotiorum-infected samples (Table S13). Finally, DEGs encoding enzymes involved in lipid metabolism were also observed. For example, seven transcripts encoding alpha beta hydrolases were up-regulated while all five SHAVEN 3 (SHV3) genes were down-regulated at 48 hpi with S. sclerotiorum (Table S13).

As post-transcriptional gene regulators, miRNAs are involved in plant development and various stress responses, including plant–fungus interactions, by suppressing corresponding target genes76. Using next generation sequencing technologies, several fungi-responsive miRNAs were identified in A. thaliana78, Paulownia79, wheat80, and oilseed rape81. However, only several studies to date have reported using deep sequencing approaches to identify miRNAs and their expression in B. napus in response to S. sclerotiorum infection. What noteworthy is that 280 B. napus miRNA candidates small RNAs from both normal and S. sclerotiorum inoculated leaves were identified using high-throughput deep sequencing technologies and over-expression of AGO1 and AGO2 could decrease resistance to S. sclerotiorum in oilseed rape71. In the current study, sRNA-seq approach was used to identify the miRNAs responsive to S. sclerotiorum infection and degradome sequencing was performed to identify the targets of corresponding miRNAs. In our study, 77 known and 176 novel miRNAs were detected (Tables 2, S4), and 10 known and 41 novel miRNAs were considered as differentially expressed miRNAs after S. sclerotiorum infection (Fig. 8B,C).

In plants, miRNAs play key roles in many biological processes and in the response to various stresses by regulating their corresponding target genes82. Many of the target genes of miRNAs are TFs72. In our degradome sequencing data, miRNA393, an important miRNA which is involved in many processes, cleaved seven genes encoding auxin signaling F-box 2/3 (AFB2/3), TRANSPORT INHIBITOR RESPONSE 1 (TIR1), and basic helix-loop-helix (bHLH) DNA-binding superfamily proteins with diverse functions. A previous study on the interactions between auxin signaling and miR393 showed that over-expression of miR393 in A. thaliana lines resulted in greater susceptibility to necrotrophic pathogens, and that auxin signaling repressed SA levels and signaling83. Furthermore, higher glucosinolate contents and lower camalexin levels were also detected in the miR393 over-expression lines31. In B. napus–V. longisporum interactions, modulation of the miR168–Argonaute 1 (AGO1) interaction played key regulatory roles84. Unfortunately, miR168 was not differentially expressed in our study, and its target, AGO1, was not detected. bna-miR6028, which targets receptor like protein 27 (RLP27) and jasmonate–zim-domain protein 10, which are responsive to stress and wounding85, was significantly down-regulated at 48 hpi with S. sclerotiorum. The target genes of bna-miR164 and bna-miR395, which encode NAC proteins and AOC2, respectively, were responsive to oxidative stress86, cold87, and salt stress88. Taken together, the results illustrated that cross-talk exists between miRNAs and target gene pathways, thereby regulating the response to fungal pathogens and other stresses in B. napus.

Materials and Methods

Fungal and plant materials. A strain of S. sclerotiorum 1980 was provided by Dr. Jiaqin Mei, Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, and was cultured on potato dextrose agar media (PDA, Becton Dickinson, Sparks, MD, USA) at 22 °C in darkness. Five relatively resistant B. napus lines used in this experiment were identified and selected in our previous study10. Three plants per line and two sites per plant were used to detect the response to S. sclerotiorum infection and bulked for mRNA, sRNA and degradome analysis. Pathogen inoculation and tissue harvest were conducted following the procedures described in our previous study89. For verifying its accuracy, ZS11 was used to detect genes response to S. sclerotiorum infection. Stem tissues from inoculated (48 hpi) and control plants were obtained, frozen immediately in liquid nitrogen, and stored at −80 °C.

RNA isolation and high-throughput sequencing. Total RNA was extracted from stems of each treatment (inoculated and mock-inoculated controls) using TRIZOL reagent (TianGen, China) according to the manufacturer's instructions. At least five plants per treatment and two sites per plant (10 sites) were mixed for each sample. DNA contamination was removed from the total RNA using RNA-free DNase I (Promega). A Qubit Fluorometer was used to determine the RNA quantity and quantity and an Agilent 2100 Bioanalyzer was used to detect the RNA purity and integrity. Two RNA samples were sent to Beijing Biomarker Technologies Co., Ltd. (Beijing, China) for mRNA, sRNA, and degradome sequencing using Illumina HiSeqTM 2500. The original mRNA, sRNA, and degradome sequencing data were deposited in the NCBI Sequence Read Archive with accession nos. SRP096626, SRR096847, and SRR096850, respectively.

mRNA sequencing data analysis. After removal of the adapter sequences and low quality sequences, clean reads were mapped to the B. napus reference genome (http://www.genoscope.cns.fr/brassicaneupus/) and were then assembled using TopHat 2.0.0 and DEGseq. Gene expression levels were estimated using the FPKM (fragments per kilobase of exon per million mapped fragments) values and DEGs were identified with Cuffdiff using the following two criteria: (i) false discovery rate (FDR) p-value correction of <0.05 and (ii) log2 (fold change) >1. To screen for possible TF and plant hormone genes, the DEGs were aligned to known TF and plant hormone genes, which were downloaded from The Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/index.php) and the Arabidopsis Hormone Database 2.0 (http://ahd.cbi.pku.edu.cn/), respectively.
Identification of known and novel miRNAs in *B. napus*. The clean reads were obtained after removing low-quality reads, contaminants, and adaptors using the SOAPnuke software (http://soap.genomics.org.cn)\(^4\). The length distribution of the clean reads was categorized and then the clean reads were immediately used to search GenBank and the Rfam 11.0 database (http://rfam.sanger.ac.uk/) to annotate the noncoding RNAs. Subsequently, the sRNAs were aligned to miRNA precursors of rapeseed in miRBase 21.0 to obtain known miRNAs based on the criteria of our previous publication\(^5\). The remaining unannotated reads were used to predict novel miRNAs using criteria described before\(^7\).

Analysis of differential expression conserved and novel miRNAs and target prediction. The expression of each miRNA was normalized using the formula: normalized expression = actual miRNA count/total count of clean reads (×1,000,000). The fold change of each miRNA after inoculation was calculated as (fold change = log2 (miRNA\(_{\text{inf}}$/miRNA\(_{\text{con}}$)). miRNAs with fold changes ≥ 1 or ≤ −1 and with P ≤ 0.01 were regarded as up-regulated or down-regulated, respectively. The TargetFinder software was used for target prediction of significantly differentially expressed miRNAs in response to *S. sclerotiorum* infection using the previously described scoring system and criteria\(^8\).

Degradome sequencing data analysis. For degradome sequencing, two library constructions were performed on an Illumina HiSeq2500 sequencing system according to the manufacturer’s instructions. Clean reads were filtered from the raw data and sRNAs were aligned to GenBank and Rfam 11.0 databases for annotation of the cleaved target genes. Furthermore, CleaveLand v3.0.1 (August 26, 2011)\(^2\) was used to predict the miRNA cleavage sites and T-plot figures were drawn.

Functional annotation of DEGs and target genes. For annotation of gene function, GOatools (https://github.com/tanghaibao/GOatools) was used to analyze Gene Ontology (GO) term enrichment for the DEGs and the predicted targets identified above, and enriched terms, in which the FDR was less than 0.01, were displayed using the online tool WEGO (Web Gene Ontology annotations Plot, http://wego.genomics.org.cn). The KOBS2.0 website (http://kobas.cbi.pku.edu.cn/home.do) was used to analyze the enrichment of the DEGs in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and MapMan software was used to analyze the metabolic pathways and functional classifications of the DEGs.

Validation of sequencing data by qRT-PCR. To validate the reliability of the sequencing data, 55 and 15 randomly selected DEGs and significantly differentially expressed miRNAs, respectively, were selected for qRT-PCR analysis. Total RNA was used for library construction and the qRT-PCR procedures for the DEGs and miRNAs were described in previous papers\(^10,25\). Actin7 and U6 snRNA of *B. napus* were used as the references for genes and miRNAs, respectively. All primers used for qRT-PCR are listed in Table S1. Three technical replicates were performed for each reaction.

References
1. Liu, L. Z. et al. A High-Density SNP Map for Accurate Mapping of Seed Fibre QTL in Brassica napus L. *Plos One* 8, https://doi.org/10.1371/journal.pone.0083052 (2013).
2. Bolton, M. D., Thomma, B. P. & Nelson, B. D. *Sclerotinia sclerotiorum* (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. *Mol Plant Pathol* 7, 1–16, https://doi.org/10.1111/j.1364-3703.2005.00316.x (2006).
3. Garg, H., Li, H., Sivasithamparam, K., Kuo, J. & Barbetti, M. J. The infection processes of *Sclerotinia sclerotiorum* in cotyledon tissue of *Arabidopsis thaliana*. *Ann Bot* 106, 897–908, https://doi.org/10.1093/aob/mcq196 (2010).
4. Behla, R. S., Fernando, W. G. D. & Li, G. Identification of quantitative trait loci for resistance against *Sclerotinia stem rot* in *Brassica rapa* L. *Theor Appl Genet* 120, 909–919, https://doi.org/10.1007/s00122-010-1171-2 (2010).
5. Wei, D. Y. et al. Quantitative trait loci analysis for resistance to *Sclerotinia sclerotiorum* and flowering time in *Brassica napus*. *Mol Breeding* 34, 1797–1804, https://doi.org/10.1007/s11032-014-0199-7 (2014).
6. Wu, J. et al. Identification of QTLs for Resistance to *Sclerotinia Stem Rot* and BnaC.IGTM5 as a Candidate Gene of the Major Resistant QTL SRC6 in *Brassica napus*. *Plos One* 8, https://doi.org/10.1371/journal.pone.0067740 (2013).
7. Yin, X. R. et al. Mapping of QTLs detected in a *Brassica napus* DH population for resistance to *Sclerotinia sclerotiorum* in multiple environments. *Euphytica* 173, 25–35, https://doi.org/10.1007/s10681-009-0095-1 (2010).
8. Zhao, J. W. & Meng, J. L. Genetic analysis of loci associated with partial resistance to *Sclerotinia sclerotiorum* in rapeseed (*Brassica napus* L.). *Theor Appl Genet* 106, 759–764, https://doi.org/10.1007/s00122-002-1171-2 (2003).
9. Zhao, J. W. et al. Quantitative trait loci for resistance to *Sclerotinia sclerotiorum* and its association with a homeologous non-reciprocal transposition in *Brassica napus* L. *Theor Appl Genet* 112, 509–516, https://doi.org/10.1007/s00122-005-0154-5 (2006).
10. Wei, L. et al. Genome-wide association analysis and differential expression analysis of resistance to *Sclerotinia stem rot* in *Brassica napus*. *Plant Biotechnol J* 14, 1388–1380, https://doi.org/10.1111/pbj.12501 (2016).
11. Givwali, S. et al. Microsatellite markers used for genome-wide association mapping of partial resistance to *Sclerotinia sclerotiorum* in a world collection of *Brassica napus*. *Mol Breeding* 36, https://doi.org/10.1007/s11032-016-0496-5 (2016).
12. Wang, Z. et al. Overexpression of *Brassica napus* MPK4 Enhances Resistance to *Sclerotinia sclerotiorum* in Oilseed Rape. *Mol Plant Microbe In* 22, 235–244, https://doi.org/10.1094/MPmi-22-3-0235 (2009).
13. Chen, X. T. et al. Overexpression of AtWRKY28 and AtWRKY75 in *Arabidopsis* enhances resistance to oxalic acid and *Sclerotinia sclerotiorum*. *Plant Cell Rep* 32, 1589–1599, https://doi.org/10.1007/s00299-013-1469-3 (2013).
14. Wang, Z. et al. Overexpression of *Brassica napus* HvWRKY33 in oilseed rape enhances resistance to *Sclerotinia sclerotiorum*. *Molecular Plant Pathology* 15, 677–689, https://doi.org/10.1111/mpp.12123 (2014).
15. Rietz, S., Bernsdorff, F. E. M. & Cai, D. G. Members of the germin-like protein family in *Brassica napus* are candidates for the initiation of an oxidative burst that impedes pathogenesis of *Sclerotinia sclerotiorum*. *J Exp Bot* 63, 5507–5519, https://doi.org/10.1093/jxb/eru203 (2012).
16. Novakova, M., Sasek, V., Dobrev, P. I., Valentova, O. & Burketova, L. Plant hormones in defense response of *Brassica napus* to *Sclerotinia sclerotiorum* - re-easing the role of salicylic acid in the interaction with a necrotroph. *Plant Physiol Biochem* 80, 308–317, https://doi.org/10.1016/j.plaphy.2014.04.019 (2014).
17. Zhao, J. W. et al. Patterns of differential gene expression in *Brassica napus* cultivars infected with *Sclerotinia sclerotiorum*. *Molecular Plant Pathology* 10, 635–649, https://doi.org/10.1111/j.1364-3730.2009.00558.x (2009).
57. Sels, J., Mathys, J., De Coninck, B. M. A., Cammue, B. P. A. & De Bolle, M. E. C. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. *Plant Physiol Bioch.* **46**, 941–950, https://doi.org/10.1016/j.phyto.2008.06.011 (2008).
58. Pusztahelyi, T., Holb, I. J. & Pocsí, I. Secondary metabolites in fungus-plant interactions. *Front Plant Sci.* https://doi.org/10.3389/FPs.2015.00573 (2015).
59. Ferrer, J. L., Austin, M. B., Stewart, C. & Noe, J. P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. *Plant Physiol Bioch.* **46**, 356–370, https://doi.org/10.1016/j.phyto.2007.12.009 (2008).
60. Lorenz-Kukula, K. et al. Engineering Flax with the GT1 Family 1 Solanum pogongurum Glycosyltransferase SgGT1 Confers Increased Resistance to Fusarium Infection. *J Agr Food Chem* **57**, 6698–6705, https://doi.org/10.1021/jf900833k (2009).
61. Tholl, D. Biosynthesis and Biological Functions of Terpenoids in Plants. *Adv Biochem Eng/Biotechnol* **148**, 63–106, https://doi.org/10.1007/10_2014_295 (2015).
62. Mikkelsen, M. D., Naur, P. & Halkier, B. A. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. *Plant* **137**, 770–777, https://doi.org/10.1111/j.1365-311X.2004.02022.x (2004).
63. Kosaka, A., Manickavelu, A., Kajihara, D., Nakagawa, H. & Ban, T. Altered Gene Expression Profiles of Wheat Genotypes against Fusarium Head Blight. *Toxins* **7**, 604–620, https://doi.org/10.3390/toxins7020604 (2015).
64. Afzal, Z., Howton, T. C., Sun, Y. L. & Mukhtar, M. S. The Roles of Aquaporins in Plant Stress Responses. *J Dev Bio* https://doi.org/10.1007/jdb10010 (2016).
65. Casassola, A. et al. Changes in gene expression profiles as they relate to the adult plant leaf rust resistance in the wheat cv. Toropi. *Physiol Mol Plant* **89**, 49–54, https://doi.org/10.1016/j.pmpp.2014.12.004 (2015).
66. Dynowski, M., Schaaf, G., Loque, D., Moran, O. & Ludewig, U. Plant plasma membrane water channels conduct the signalling molecule H2O2. *Biochem J* **414**, 53–61, https://doi.org/10.1042/Bj20080287 (2008).
67. Sarkar, R., Li, Y. F. & Jagadeeswaran, G. Functions of microRNAs in plant stress responses. *Trends Plant Sci* **17**, 196–203, https://doi.org/10.1016/j.tplants.2012.01.010 (2012).
68. Li, Y. et al. Identification of MicroRNAs Involved in Pathogen-Associated Molecular Pattern-Triggered Plant Innate Immunity. *Plant Physiol* **152**, 2222–2231, https://doi.org/10.1104/pp.109.151803 (2010).
69. Fan, G. Q. et al. Plant-Pathogen Interaction-Related MicroRNAs and Their Targets Provide Indicators of Phytoplasma Infection in Paulownia tomentosa & Paulownia fortunei. *PloS One* **10**, https://doi.org/10.1371/journal.pone.0140590 (2015).
70. Zhang, H. et al. Genome-wide identification and functional prediction of novel and fungus-responsive lincRNAs in Triticum aestivum. *Bmc Genomics* **17**, https://doi.org/10.1186/S12864-016-2570-0 (2016).
71. Cao, J. Y., Xu, Y. P., Zhao, L., Li, S. S. & Cai, X. Z. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. *Plant Biol* **92**, 39–55, https://doi.org/10.1111/nph.14094-3 (2016).
72. Candar-Cakir, B., Arican, E. & Zhang, B. H. Small RNA and degradome deep sequencing reveals drought-and tissue-specific microRNAs and their important roles in drought-sensitive and drought-tolerant tomato genotypes. *Plant Biotechnology Journal* **14**, 1727–1746, https://doi.org/10.1111/pbi.12533 (2016).
73. Yan, Y. X. et al. A downstream mediator in the growth repression limb of the jasmonate pathway. *Plant Cell* **19**, 2470–2483, https://doi.org/10.1105/tpc.107.050708 (2007).
74. Woo, H. R., Kim, J. H., Nam, H. G. & Lim, P. O. The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. *Plant Cell Physiol* **45**, 923–932, https://doi.org/10.1093/pcp/pcn110 (2004).
75. Goulas, E. et al. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. *Plant J* **47**, 720–734, https://doi.org/10.1111/j.1365-311X.2006.02821.x (2006).
76. He, X. J. et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. *Plant J* **44**, 903–916, https://doi.org/10.1111/j.1365-313X.2005.02375.x (2005).
77. Wang, L. W., Liu, H. H., Li, D. T. & Chen, H. B. Identification and characterization of maize microRNAs involved in the very early stage of seed germination. *Bmc Genomics* **12**, 164–164, https://doi.org/10.1186/1471-2164-12-154 (2011).
78. Liu, N. A. et al. Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense. *Plant J* **80**, 331–344, https://doi.org/10.1111/tpj.12636 (2014).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31371655), the Chongqing Science and Technology Commission (cstc2016shmszx80083), and 973 Program (2015CB150201).

Author Contributions

Conceived and designed the experiments: L.L. Performed the experiments: H.J., J.M., L.W. Analyzed the data: L.W., A.Z., P.L., B.Y., H.J. Contributed reagents/materials/analysis tools: X.X., J.L., J.M. Wrote the paper: H.J.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-29365-y.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018