Supporting Information

A Specialized Polythioamide-Binding Protein Confers Antibiotic Self-Resistance in Anaerobic Bacteria

F. Gude, E. M. Molloy, T. Horch, M. Dell, K. L. Dunbar, J. Krabbe, M. Groll*, C. Hertweck*}
Table of Contents

Experimental Procedures 2–5

Figure S1. Detailed phylogenetic tree of GyrI-like proteins 6
Figure S2. Multiple sequence alignment of GyrI-like proteins 7–8
Figure S3. Generation of *R. cellulolyticum ΔctaZ* and *R. cellulolyticum ΔctaZ ΔctaA* by CRISPR-nCas9 genome editing 9
Figure S4. Closthiomide agar diffusion assay analyzed by the free and dissipative diffusion models 11
Figure S5. SDS-PAGE analysis of purified CtaZ 12
Figure S6. Influence of sample preparation on CtaZ-CTA binding assays 13
Figure S7. Comparison of the tertiary structures of CtaZ and EcmR 14
Figure S8. Structural comparison of the ligand binding sites of CtaZ and other GyrI-like proteins 15
Figure S9. Complete sequence similarity network for CtaZ homologs and the GyrI-like protein superfamily 16

Table S1. Strains used in this study 17
Table S2. Plasmids used in this study 18
Table S3. Oligonucleotide primers used in this study 219
Table S4. Sequence of the sgRNA cassette for CRISPR-nCas9-based knockout of *ctaZ* 20
Table S5. List of GyrI-like and CtaZ-like proteins used to construct the phylogenetic tree 21
Table S6. Comparison of the diffusion of CTA by the free and dissipative diffusion models 22
Table S7. Crystallographic data collection and refinement statistics 23
Table S8. List of sequences used for genomic survey of CtaZ homologs 24–32

Author Contributions 33

References 33
Experimental Procedures

General materials and methods

Sequencing, oligonucleotide primer synthesis and gene synthesis were performed by Eurofins Genomics (Germany) or GENEWIZ (Germany). All chemicals and media components were purchased from Sigma-Aldrich (USA) and Roth (Germany). Enzymes for molecular cloning were purchased from Thermo Fisher Scientific (USA) and New England Biolabs (NEB, USA).

Bacterial strains and culturing conditions

Escherichia coli strains were grown in lysogeny broth (LB) with agitation or on LB agar plates at 37 °C containing the appropriate antibiotic (25 µg mL⁻¹ chloramphenicol, 50 µg mL⁻¹ kanamycin). Plasmid construction and storage was performed with *E. coli* TOP10, while *E. coli* Rosetta (DE3) was used for heterologous protein overproduction. *Ruminoclostridium cellulolyticum* DSM 5812 was obtained from the Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures GmbH culture collection and maintained under an anaerobic atmosphere (N₂:CO₂: 85:5:10 v/v/v) in a Whitley A35 anaerobic work station (Don Whitley Scientific) operating at 37 °C. Routine cultivation of the wild-type and mutant *R. cellulolyticum* strains was performed in modified CM3 medium with cellobiose (6 g L⁻¹) as previously described. CTA induction conditions involved cultivation in DSMZ medium 165 (M165) as previously described. To allow for gas exchange, all cultures were grown in unsealed test-tubes or glass bottles with a loosened lid.

Phylogenetic analyses

Protein sequence similarity searches were performed with BLASTp (default parameters), and sequences sharing a minimum identity of 46 % were selected for the alignment. The sequences were aligned with ClustalW and trimmed to an overlapping region present in all sequences using MEGA7 (v. 7.0.26). Positions containing gaps and missing data were eliminated from the dataset (complete deletion option). The phylogenetic tree was reconstructed using the neighbor-joining method with 1,000 bootstrap replicates in MEGA7. See Figure S2 for the final alignment.

Plasmid construction for the generation of *R. cellulolyticum ΔctaA* and *R. cellulolyticum ΔctaA ΔctaZ*

For the creation of the in-frame nonsense mutation of ctaZ in the genome of *R. cellulolyticum* and *R. cellulolyticum ΔctaA* (Figure S3), we generated a CRISPR-based knockout plasmid as previously described, with minor changes. In short, we used the webtool CRISPy-web to determine a protospacer flanked by a PAM sequence (NGG) suited for CRISPR-nCas9-based genome editing. A fragment containing the sgRNA under the regulation of the mini-P4 promoter as well as the template for homology-directed repair was obtained by gene synthesis (GENEWIZ) (Table S4). The obtained vector was BsaI-digested, the desired fragment extracted and ligated into BsaI-linearized pCasC using T4 Ligase (Thermo Fisher Scientific) to result in pCasC-ctaZ. For final verification, the plasmid was sequenced by GENEWIZ using primer Cc3263-KO Seq (Table S3). For transformation of *R. cellulolyticum* and *R. cellulolyticum ΔctaA* by electroporation, the plasmid was methylated using the MspI methyltransferase.

Plasmid construction for genetic complementation of *R. cellulolyticum ΔctaZ*, and CtaZ heterologous production in *E. coli*

The gene encoding CtaZ was amplified by PCR from genomic DNA of *R. cellulolyticum* DSM 5812 using the primers CtaZ-F and CtaZ-R for pET28a-ctaZ and gyrP-4 fw and gyrP-CTA rv for pMTL-ctaZ (Table S3). PCR amplifications were performed using the Phusion High-Fidelity DNA Polymerase (NEB) and amplicons were purified using a Monarch PCR & DNA Cleanup Kit (NEB). For genetic complementation, the purified PCR product was assembled with Scal- and FspI-digested pMTL0 vector using NEBuilder HiFi DNA Assembly Master Mix (NEB) according to the manufacturer’s protocol. This yielded pMTL-ctaZ. For heterologous production, the purified PCR product was digested with restriction enzymes NheI and XhoI and ligated with an appropriately digested pET-28a vector using T4 DNA ligase (NEB) according to the manufacturer’s protocol. This yielded pET28a-ctaZ. Assembled or ligated expression vectors were introduced into *E. coli* TOP10 through electroporation and transformants were selected on LB agar plates supplemented with the relevant antibiotic (Table S2). Plasmids were isolated from the transformants using a Monarch Plasmid Miniprep Kit (NEB) and verified by sequencing using the primers T7 Seq F and T7Seq R for pET28a-ctaZ and primers gyrP-4 fw and gyrP-CTA rv for pMTL-ctaZ (Table S3).
The single knock-out mutant R. cellulolyticum ΔctaZ and double knock-out mutant R. cellulolyticum ΔctaA ΔctaZ were created as previously described,[2, 9] with minor changes. Briefly, R. cellulolyticum and R. cellulolyticum ΔctaA[9] were transformed with the plasmid pCasC-Coei_3263. Successful editing of the target gene resulted in the introduction of an in-frame STOP codon and an EcoRV restriction site (5′-TAAGATATC-3′). Colonies that appeared after three days were streaked on selective GS2 agar plates containing 15 µg mL⁻¹ erythromycin. A number of single transformant colonies were screened for incorporation of the desired mutation by colony PCR and restriction analysis as follows. Colony PCR was performed using OneTaq® 2x Master Mix with Standard Buffer (NEB) with primers Cc3263-KO F and Cc3263-KO R (Table S3), resulting in PCR products of the relevant region of ctaZ (565 bp). Colonies that carried the restriction site in ctaZ (corresponding to edited ctaZ) were distinguished from those maintaining the wild-type locus by EcoRV digest of the PCR amplicons for 1 h at 37 °C. The obtained DNA fragments were analyzed on a 2% agarose gel stained with ethidium bromide and visualized with UV light. The PCR amplicons from ΔctaZ strains were digested into two fragments (279 and 289 bp), whereas the PCR amplicons from the unedited strains were not digested. Candidate mutants that resulted in complete digestion in the restriction analysis were verified by DNA sequencing of the relevant region of ctaZ using the primer Cc3263-KO Seq (Table S3).

Once verified, R. cellulolyticum ΔctaZ pCasC-ctaZ and R. cellulolyticum ΔctaA ΔctaZ pCasC-ctaZ were subcultured without antibiotic selection until erythromycin resistance was lost (7 and 5 passages, respectively), then the absence of pCasC-ctaZ was confirmed in each case by colony PCR using primers pUCori-seq-rev and HB1-seq-rev (Table S3).

The cured mutant strains, R. cellulolyticum ΔctaZ and R. cellulolyticum ΔctaA ΔctaZ, were transformed with the relevant plasmids for genetic complementation experiments (Table S2). Transformants were selected on erythromycin-containing plates and verified by colony PCR using primers M13R and pMTLseq-rev (Table S3).

Determination of minimum inhibitory concentration values

To quantify the contribution of CtaZ to CTA immunity, MIC determinations were performed by agar diffusion assay.[10] Inocula (150 µL) from actively growing cultures (optical density at 600 nm (OD₆₀₀) of ~0.6) in VM broth[11] were spread on VM agar plates of uniform thickness (25 mm).[12] Standard 9 mm paper discs[13] were placed on the surface of the agar and 40 µL volumes of the CTA solutions were added. For each biological replicate, CTA was freshly weighed and a 1 mM stock solution in DMSO was prepared, before diluting to the relevant concentrations in DMSO. Two technical replicates were performed for each strain, each consisted of a single plate with a DMSO vehicle control and a range of CTA concentrations depending on the susceptibility of the test strain. In this way, the inhibition zones within each experiment were obtained under the same experimental conditions. After three days incubation, the diameters of the inhibition zones were measured. For each of the three biological replicates performed per strain, the diffusion distances were determined as half of the inhibition zone diameter (mm) taken from the average of the two technical replicates less the disc diameter. The experimental results were analyzed by both the standard free diffusion model (size of inhibition zones increases quadratically with the logarithm of antibiotic concentration) and the dissipative diffusion model (size of inhibition zones increases linearly with the logarithm of antibiotic concentration) (Figure S4).[14] Initial data analysis was performed using a Microsoft Excel spreadsheet and a web tool at http://www.agardiffusion.com. Each biological replicate was analyzed individually to determine the MIC, which was derived from the zero intercept of a linear regression of the zone diameters (mm), or their squared values x^2, plotted against the natural logarithm of the tested CTA concentrations c (µM). The resulting MIC values, together with the corresponding regression coefficients (R^2) from the regression analysis, are summarized in Table S6. In all cases, use of the dissipative diffusion model resulted in R^2 values that were closer to 1, indicating a better linear fit. Therefore, the average values from three biological replicates analyzed by this model were taken in the determination of the final MICs (Figure 2B).

Bioinformatics

The multiple sequence alignment of CtaZ with YtkR7 and C10R6 was performed with the Clustal Omega webtool using the default parameters.[15] The sequences aligned in Figure 3A are marked in Table S5.

The Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST)[16] was used to generate a sequence similarity network (SSN) for the Gyrl-like protein superfamily (PF06445, comprising of 39,345 sequences in September 2021) and CtaZ-like proteins. The sequences were retrieved using the “sequence BLAST” option with default parameters, using CtaZ as a query and the Gyrl-like protein superfamily (PF06445) as additional input. Sequences with ≥ 50 % identity over 80 % of the sequence length (UniRef50) were visualized as a single node resulted in a network composed of 4,318 nodes. The network was constructed at an alignment score of 40 and visualized using Cytoscape (v. 3.8.0).[17] Figure 5A shows selected clusters with nodes containing sequences with characterized cellular functions. Additionally, Figure S9 shows the complete SSN with nodes highlighted containing sequences characterized by protein structure, in vitro or in vivo experiments.

Protein sequences for the genomic analysis of CtaZ homologs (Figure 5B) were retrieved using BLASTp against the non-redundant GenBank database and CtaZ (Coei_3263) as a query. This search returned 200 homologs sharing at least 44 % sequence identity with CtaZ over 82 % of the sequence (Table S8). The local genomic region (15 open reading frames upstream and downstream) surrounding the ctaZ homolog was checked for the presence of genes encoding a peptidyl carrier protein, a CtaC-like thioamide synthetase, transcriptional regulators, transporter proteins and common secondary metabolite biosynthetic enzymes for nonribosomal peptides,
polyketides and ribosomally synthesized and post-translationally modified peptides. Due to the poor annotation status of the sequences, HHpred,[18] BLASTp,[19] and antiSMASH[19] were used to manually check the genomic regions for open reading frames potentially encoding secondary metabolite biosynthetic proteins.

Heterologous production and purification of CtaZ for in vitro analysis

E. coli Rosetta (DE3) cells were transformed with pET28a-ctaZ and transformants were selected on LB agar plates supplemented with the relevant antibiotics. A 500 mL volume of LB medium supplemented with the relevant antibiotics was inoculated with 5 mL of an overnight pre-culture of E. coli Rosetta (DE3) harboring recombinant plasmid, and grown at 37 °C with agitation, until an OD$_{600}$ of 0.5–0.75 was reached. Cultures were then incubated for 10 min before protein overproduction was induced by the addition of isopropyl-β-D-thiogalactopyranoside (IPTG) to a final concentration of 0.4 mM. Following induction, cells were grown at 18 °C with agitation overnight and afterwards harvested by centrifugation at 4,000 × g and 4 °C for 10 min. The resulting pellet was washed with Tris buffered saline (50 mM Tris pH 7.5, 150 mM NaCl) and stored at −20 °C.

Frozen cell pellets were resuspended in 40 mL of lysis-wash buffer (50 mM Tris pH 8.2, 300 mM NaCl, 25 mM imidazole, 1 mM DTT, 5 % glycerol v/v). Cells were sonicated at 4 °C using a SONOPLUS ultrasonic homogenizer with a MST73 microtip (Bandelin) and the following parameters: 30 % power, six 60 s cycles with 5 min breaks between cycles. The lysate was then centrifuged at 4 °C for 30 min at 12,000 × g to pellet insoluble debris. The supernatant was loaded onto a 5 mL HisTrap HP column (Cytiva), which was equilibrated with lysis-wash buffer using an AKTA Pure system (GE Healthcare). Unbound proteins were removed by washing with 150 mL lysis-wash buffer. Bound proteins were eluted with 15 mL elution buffer (50 mM Tris pH 8.2, 300 mM NaCl, 250 mM imidazole, 1 mM DTT, 5 % glycerol v/v). Protein-containing fractions were pooled and diluted 1:1 (15 mL) with gel filtration buffer (GF buffer; 30 mM HEPES pH 8.2, 250 mM NaCl, 0.5 mM TCEP) and 30 U thrombin (bovine, Sigma) was added to remove the His-tag. The solution was dialyzed overnight at 4 °C against 1.5 L GF buffer. To remove thrombin, the dialyzed sample was added to 3 mL of pre-equilibrated benzamidine resin (GE Healthcare) and incubated under rotation for 2 h at room temperature (RT). The resin was removed using a syringe column (MoBiTec) and the eluate was concentrated to 1.5 mL using Amicon Ultra-3kDa MWCO centrifugal filters (Merck Millipore). The concentrated sample was applied to a HiLoad 16/600 Superdex 200 pg column (GE Healthcare) and eluted using GF buffer. Single-peak fractions were concentrated to a volume of 1 mL and dialyzed overnight at 4 °C against 1 L storage buffer (30 mM HEPES pH 8.2, 250 mM NaCl, 0.5 mM TCEP, 20 % glycerol v/v). Protein was stored at −80 °C, and protein concentration was determined by absorbance at 280 nm.

CTA modification assays with CtaZ

Reactions were performed with 15 µM purified CtaZ and 100 µM CTA (1 mM stock in DMSO) in phosphate reaction buffer (50 mM K$_2$HPO$_4$ pH 7.5, 125 mM NaCl). In control reactions, CtaZ was either absent or replaced by heat-inactivated protein. Assays were incubated at 30 °C and were allowed to proceed for 30 min, 24 h or 64 h, and quenched by the addition of one volume of methanol. For HPLC measurements, the samples were dried under vacuum and dissolved in 90 µL methanol, centrifuged for 10 min at RT and 18,000 × g, and filtered (3 mm CHROMAFIL O-20/3 syringe filters, 0.2 µm, PTFE membrane, Macherey-Nagel) prior to analysis. HPLC measurements for the detection of CTA and CTA degradation products were performed with an Accela HPLC system (Thermo Fisher Scientific). Separation was performed with a Betasil C18 column (2.1 × 150 mm, 3 µm, Thermo Fisher Scientific) operating at a flow rate of 200 µL min$^{-1}$, with 0.1 % formic acid (solvent A) and acetonitrile + 0.1 % formic acid (solvent B) and the following gradient: 5 % solvent B for 1 min, 5 % to 98 % solvent B over 15 min, hold 98 % solvent B for 3 min, 98 % to 5 % solvent B over 1 min, hold 5 % solvent B for 13 min. UV-Vis spectra were recorded in a wavelength range from 200 to 600 nm with a bandwidth of 1 nm and are depicted as total scan overlays.

CTA-CtaZ in vitro binding assays

Binding assays were performed with 40 µM purified CtaZ and 40 µM CTA (5 mM stock solution in DMSO) in HEPES reaction buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 20 mM MgCl$_2$, 1 mM TCEP) at RT. In control assays, CtaZ was replaced by buffer or CTA was replaced by DMSO. After 2 h incubation, the assays were centrifuged for 10 min at RT and 18,000 × g. The supernatant was filtered (13 mm Acrodisc syringe filters, 0.45 µm, GHP membrane, Pall) prior to measurement by LC-HR-MS (Figure 3C).

In a control experiment, the influence of precipitate removal by filtration during sample preparation was tested. Therefore, the binding assays described above were repeated with and without filtering samples prior to LC-HR-MS analysis (Figure S6). LC-HR-MS measurements for the detection of CtaZ and CTA were performed with a Thermo Ultimate3000 UHPLC-system coupled to a QExactive HF-X Hybrid-Quadrupole-Orbitrap (Thermo Fisher Scientific) mass spectrometer equipped with an electrospray ion source. Separation was performed with a BioResolve RP mAb Polyphenyl column (2.1 × 100 mm, 45 Å, 2.7 µm, Waters) operating at a flow rate of 300 µL min$^{-1}$, with 0.1 % formic acid (solvent A) and acetonitrile + 0.1 % formic acid (solvent B) and the following gradient: 15 % to 40 % solvent B over 1 min, hold 40 % solvent B for 0.5 min, 40 % to 45 % solvent B over 0.5 min, hold 45 % solvent B for 0.5 min, 45 % to 50 % solvent B over 0.5 min, hold 50 % solvent B for 0.5 min, 50 % to 55 % solvent B over 0.5 min, hold 55 % solvent B for 0.5 min, 55 % to 80 % solvent B over 0.5 min, hold 80 % solvent B for 1.5 min, 80 % to 15 % solvent B over 0.5 min, hold
Heterologous protein production and purification of CtaZ for crystallization

E. coli Rosetta (DE3) pET28a-ctaZ was grown in Fernbach shaking flasks at 37 °C containing 3 L of LB medium supplemented with the relevant antibiotic. At an OD600 of 0.6, IPTG was added to a final concentration of 1 mM and incubation was continued overnight at 20 °C. Cells were harvested by centrifugation, washed with 0.9% (w/v) NaCl and stored at −20 °C. Frozen bacterial cell mass (25 g) was thawed in 50 mL of 100 mM Tris/HCl, pH 7.5, containing 500 mM NaCl, and 20 mM imidazole/HCl (buffer A). The cells were disrupted by sonification (Branson Digital Sonifier 250). The resulting suspension was centrifuged at 40,000 × _g_ for 20 min at 4 °C. The supernatant was applied to a 5 mL HisTrap HP column (GE Healthcare), which had been equilibrated with buffer A (flow rate 5 mL min⁻¹) using an ÄKTA Pure system (GE Healthcare). Unbound or loosely associated proteins were removed by washing with buffer A. CtaZ protein was eluted by applying a 50 mL linear gradient from buffer A to buffer B (100 mM Tris/HCl pH 7.5, 500 mM NaCl, 500 mM imidazole). Fractions were combined and 200 U of thrombin from bovine plasma (Serva) was added. The solution was dialyzed overnight at 4 °C against 20 mM Tris/HCl, pH 7.5, containing 100 mM NaCl and again applied to the HisTrap HP column that was equilibrated with buffer A. The percolate was concentrated to 1 mL and the solution was applied to a HiLoad 16/60 Superdex 75 pg column (GE Healthcare, flow rate 1.5 mL min⁻¹). Single-peak fractions were concentrated to 40 mg mL⁻¹ using Amicon Ultra-10kDa MWCO centrifugal filters (Merck Millipore), and stored at 4 °C.

Crystallization of CtaZ(apo) and CtaZ:CTA

Crystallization experiments of CtaZ (20 mg mL⁻¹) were performed by the sitting drop vapor diffusion method at 20 °C. For co-crystallizing experiments, the natural ligand CTA (100 mM stock solution in DMSO) was added to CtaZ (24 mg mL⁻¹) to a final concentration of 2 mM. Crystallization drops had a maximum volume of 0.4 μL with either a 1:1, 2:1, or 3:1 ratio of protein and reservoir solution. CtaZ(apo) crystals preferentially grew in 2.8 M sodium acetate, pH 7.0, whereas CtaZ:CTA crystals were obtained with 0.2 M zinc acetate, 0.1 M sodium cacodylate, pH 6.5 and 18 % polyethylene glycol 8000. Crystals were cryoprotected by a 7:3 mixture of mother liquor and 100 % v/v glycerol and subsequently vitrified in liquid nitrogen.

Structure determination of CtaZ(apo) and CtaZ:CTA

High resolution datasets of CtaZ(apo) and CtaZ:CTA crystals were recorded using synchrotron radiation of _λ_ = 1.0 Å at the beamline X06SA, Swiss Light Source (SLS), Paul Scherrer Institute, Villigen, Switzerland. Reflection intensities were evaluated with the program package XDS and data reductions were carried out with XSCALE[20] (Table S7). Due to the presence of zinc in the crystallization buffer of CtaZ:CTA crystals, the fluorescence spectrum depicted strong X-ray absorption for this heavy metal. Therefore, we performed a scan at the zinc edge and collected anomalous diffraction data at the peak wavelength (_λ_ = 1.281 Å). A total of two zinc sites were located with SHELXD.[21] Phasing, density modification and initial model building of the CtaZ:CTA complex were carried out with the program CRANK2.[22] With these improved phases, we could unambiguously assign the entire CtaZ sequence, the last missing reductions were carried out with XSCALE.[20] Since the CtaZ:CTA crystal was highly resistant to radiation damage, we also collected a dataset at 2.0 Å to yield anomalous signals for sulfur (Table S7). With the refined CtaZ:CTA model in hands, we were able to depict the anomalous signal for each of the sulfur atoms in the natural product (Figure 4A). Next, we solved the structure of CtaZ(apo) by Patterson search calculations with PHASER[24] using the coordinates of CtaZ:CTA. After model building of CTA(apo) and CtaZ:CTA was completed, water molecules were automatically placed with ARP/wARP solvent,[25] Restrained and TLS (Translation/Libration/Screw) refinements with REFMAC[26] yielded superb _R__{free} and _R__{free} as well as root-mean-square deviation (RMSD) bond and angle values for both datasets (Table S7). Crystal structures have been deposited in the RCSB Protein Data Bank under the accession codes 7ZHE for CtaZ(apo) and 7ZHD for the CtaZ:CTA complex.
Results and Discussion

Figure S1. Detailed phylogenetic tree of GyrI-like proteins. Neighbor-joining phylogenetic tree of diverse GyrI-like domains from multidrug resistance and self-resistance proteins with 1,000 bootstrap replicates. The color-code refers to the cellular function assigned to at least one member of each group (highlighted in bold) except in the case of the CtaZ-like group, which has no characterized members. Protein accession numbers are indicated in brackets. See Figure S2 for the sequence alignment used to generate this tree.
SUPPORTING INFORMATION

Figure S2. Multiple sequence alignment of GyrI-like proteins. The multiple sequence alignment was used for the construction of the phylogenetic tree in Figure 1C and Figure S1. See Table S5 for protein accession numbers. Alignment continues on the next page.
Figure S2. Multiple sequence alignment of Gyr-like proteins (continued).

110	120	130
R. cellulolyticum CtaZ	AIRSYAREKNMLILQPPPPREVYKSPGKGNPNKYITFL	...
C. difficile CtaZ	NIKR1IEKNIDTVGIFWIFIEKSPKGNPKNYITEIVF	...
C. botulinum CtaZ	AIAVAYAKELTVQPPWREVFKSPKGKPNKYTEILP	...
F. necrophorum CtaZ	KIRNY1IEKIEVQVFVFKSPKGKPNKYTEIFV	...
E. coli GyrI	QKFSLLQDSAYELPKFCFVYNLNGARDYWDIEYVAV	...
E. sp. 638 GyrI	SFFSLQDNHYAPKPCFERYLNDGADGWIDEMFV	...
C. sakazakii GyrI	AFFRLQQVRQAAARCPFEIYLRDKGDYWDIEMIVF	...
E. coli Rob	TVYTCMFLNLTRKLDIERFYPEDEQAFPILRCYI	...
K. pneumoniae Rob	TVYTCMFLNLTRKQQDERFPHKHEQPPIQLREYLI	...
S. sp. TP-A2060 YtkR7	GLHAFIESGQAASQTHHEEYLMSPRTAPRLRTI	...
S. ventii YtkR7	ALHAFLDNGQRASSQTEHHEYLMSPRTAPRLRTI	...
S. bohaisens YtkR7	ALHAFLDNGQRASSQTEHHEYLMSPRTAPRLRTI	...
L. innocua Lin2189	EMHQFMETQGKRISKHEIYLYSDPRKANPKMKTLR	...
L. monocytogenes Lin2189	EMHQFMETQGKRISKHEIYLYSDPRKANPKMKTLR	...
S. zelensis C10R6	RMHE1MPFDKFRTHHEIYLYSDARTRPLRNTL	...
S. carminius C10R6	RMHE1MPFDKFRTHHEIYLYSDARTRPLRNTL	...
S. yokosukanensis C10R6	RMHE1MPFDKFRTHHEIYLYSDARTRPLRNTL	...
B. subtilis BmrR	KLIYIDTVSDYELIIPIHYSFKQEEYR-VEMKIRI	...
B. vallismortis BmrR	KLIYIDTVSDYELIIPIHYSFKQEEYR-LBEMKIRI	...
B. halotolerans BmrR	KLIYIDTVSDYELIIPIHYSFKQEEYR-VEMKIRI	...
Figure S3. Generation of \textit{R. cellulolyticum} Δ\textit{ctaZ} and \textit{R. cellulolyticum} Δ\textit{ctaZ} Δ\textit{ctaA} by CRISPR-nCas9 genome editing. (A) The indicated region of the ctaZ (Ccel_3263) gene sequence from wild-type \textit{R. cellulolyticum} is displayed above the corresponding mutated sequence of Δ\textit{ctaZ} (marked in red). The incorporated STOP codon is denoted by a bold “TAA” and an asterisk in the resulting amino acid sequence. The incorporated EcoRV recognition site is italicized. (B) Agarose gel (2\%) showing EcoRV-digested ctaZ-specific PCR products amplified from single colonies of the indicated \textit{R. cellulolyticum} strains. The PCR amplicon from the Δ\textit{ctaZ} strain (565 bp) contains one EcoRV recognition site so is digested to the expected 279 bp and 289 bp fragments by EcoRV, which converge as one band on the agarose gel. The PCR amplicon from the wild type (WT) control (565 bp) does not contain an EcoRV recognition site so is not digested by EcoRV. M, GeneRuler DNA Ladder Mix (Thermo Fisher Scientific); neg., negative control (PCR without template). Restriction analysis for \textit{R. cellulolyticum} Δ\textit{ctaA} Δ\textit{ctaZ} is shown as a representative; data for \textit{R. cellulolyticum} Δ\textit{ctaA} Δ\textit{ctaZ} is analogous. (C) DNA sequence chromatogram confirming the correct insertion of the desired mutated sequence (marked in grey). Sequencing data for \textit{R. cellulolyticum} Δ\textit{ctaA} Δ\textit{ctaZ} is shown as a representative; data for \textit{R. cellulolyticum} Δ\textit{ctaZ} is analogous.
Figure S4. Results of the closthoamide agar diffusion assay analyzed by the free and dissipative diffusion models. Results from the agar diffusion assay showing the susceptibility of the listed strains to closthoamide (CTA). Three biological replicates, each consisting of two technical replicates, were performed. The graphs depict linear regression analyses using quadratic (free diffusion model) or linear (dissipative diffusion model) dependence of zone diameter x (mm) on the natural logarithm (ln) of the tested CTA concentrations c (µM). The minimum inhibitory concentration (MIC) values (derived from the zero intercepts, µM) and corresponding R^2 (regression coefficient) values are summarized in Table S6. Better linear fits (R^2 values closer to 1) are obtained using the dissipative diffusion model; therefore, the average values from the three biological replicates analyzed by this model were used for the determination of the final MICs (Figure 2B).
Figure S5. SDS-PAGE analysis of purified CtaZ. A Coomassie-stained SDS-PAGE protein gel of CtaZ is depicted. The expected size of the protein is indicated.
Figure S6. Influence of sample preparation on CtaZ-CTA binding assays. A control experiment for the CtaZ-CTA binding assay (shown in Figure 3C) is depicted to illustrate the influence of precipitate removal by filtration during sample preparation. HPLC profiles (left) and HPLC-HR-MS profiles (right) are shown; traces correspond to the extracted ion chromatogram of the [M+H]⁺ ionic species for CTA (m/z 695.1453) and are displayed with m/z values ± 5 ppm from the calculated exact mass. (A) Samples were filtered through a GHP membrane (PALL) prior to LC-HR-MS analysis. In an aqueous solution, CTA can pass the filter membrane only when CtaZ is present, presumably due to CTA solubilization caused by binding to CtaZ. (B) Samples were not filtered prior to LC-HR-MS analysis. Unlike in Figure S6A, CTA is detectable in the absence of CtaZ albeit at a lower intensity than in the sample containing both CtaZ and CTA, indicating that CtaZ enhances the solubility of CTA in aqueous solutions. It seems that unbound CTA in aqueous solution is removed by filtration, rendering the compound undetectable in LC-HR-MS analysis in Figure 3C and Figure S6A.
Figure S7. Comparison of the protein structures of CtaZ and EcmrR. (A) Ribbon diagram of CtaZ (PDB ID: 7ZHE). Residues 132–139 (shown as dots) are not resolved in the electron density map. (B) A DALI search\(^{(27)}\) revealed highest similarity of CtaZ (black) to transcriptional regulator EcmrR (residues 112–269) (grey; PDB ID: 6WL5, 1.3 Å root-mean-square deviation (RMSD) for 110 Cα atoms, Z-score 17.4).\(^{(28)}\) Both proteins are depicted adopting the characteristic GyrI-like protein structure.
Figure S8. Structural comparison of the ligand binding sites of CtaZ and other Gyrl-like proteins. Structural superposition of CtaZ:CTA (PDB ID: 7ZHD) with (A) EcmrR (residues 112–269) bound to cetyltrimethylammonium (CMA, cyan; PDB ID: 6WL5, 1.3 Å RMSD for 122 Cα atoms), (B) Lin2189 (residues 20–208) bound to yatakemycin (YTM, gold; PDB ID: 5X5M, 1.5 Å RMSD for 106 Cα atoms), and (C) BmrR (residues 112–207) bound to kanamycin (KAN, tan; PDB ID: 3Q5R, 1.8 Å RMSD for 88 Cα atoms).

A

CtaZ:CTA
EcmrR:CMA

B

CtaZ:CTA
Lin2189:YTM

C

CtaZ:CTA
BmrR:KAN
Figure S9. Complete sequence similarity network for CtaZ homologs and the GyrI-like protein superfamily. GyrI-like protein superfamily: PF06445. Proteins that share ≥ 50% sequence identity over 80% of the sequence length are conflated resulting in a network composed of 39,384 sequences and represented with 4,318 nodes; alignment score 40. Nodes are colored based on a known resistance or self-resistance function. Node outline color indicates the protein domain architecture, while the node shape corresponds to protein activity. Node labels correspond to a representative protein and are colored based on the phylum of the respective organism. Nodes containing sequences common to the genome mining approach shown in Figure 5B are highlighted by an asterisk * (Anaeroviringula multivorans DSM 17722 and Blautia producta DSM 2950) or a cross † (Clostridium botulinum Prevot_594 and Robinsonella peoriensis NRRL B-23885).
Table S1. Strains used in this study.

Strain	Relevant genotype and descriptions	Source
Escherichia coli TOP10	General cloning strain	Laboratory strain
E. coli Rosetta (DE3)	Protein production strain	New England Biolabs
E. coli Rosetta (DE3) pET28a-ctaZ	Strain contains pET28a-ctaZ	This study
Ruminiclostridium cellulolyticum	Wild type (DSM 5812)	DSMZ
R. cellulolyticum ΔctaA	CRISPR-nCas9-inactivated Ccel_3260	[2]
R. cellulolyticum ΔctaA pMTL₀	CRISPR-nCas9-inactivated Ccel_3260, strain contains pMTL₀	This study
R. cellulolyticum ΔctaZ	CRISPR-nCas9-inactivated Ccel_3263	This study
R. cellulolyticum ΔctaA ΔctaZ	CRISPR-nCas9-inactivated Ccel_3260 and Ccel_3263	This study
R. cellulolyticum ΔctaA ΔctaZ pMTL₀	CRISPR-nCas9-inactivated Ccel_3260 and Ccel_3263, strain contains pMTL-ctaZ	This study
R. cellulolyticum ΔctaA ΔctaZ pMTL-ctaZ	CRISPR-nCas9-inactivated Ccel_3260 and Ccel_3263, strain contains pMTL-ctaZ	This study
Table S2. Plasmids used in this study.

Plasmid	Description	Source
pET28a	Expression vector for the production of N-terminally His-tagged proteins, Kan\(^R\)	Novagen
pET28a-ctaZ	N-terminal His-tag on protein product of Ccel_3263 (ctaZ)	This study
pMTL∅	Expression plasmid (pTargetC) for Clostridia carrying P4 promoter, Thia\(^R\)	[2]
pMTL-ctaZ	pMTL∅ with ctaZ	This study
pCasC	pSOS-Cas-Gm with D10A Cas9 mutation; Clostridia-adapted vector for CRISPR/Cas editing in *R. cellulolyticum*, Thia\(^R\)	[2, 9]
pCasC-ctaZ	pCasC-based CRISPR-nCas9 vector for Ccel_3263 (ctaZ) inactivation	This study

Kan\(^R\), kanamycin resistance; Thia\(^R\), thiamphenicol resistance
Table S3. Oligonucleotide primers used in this study.

Primer Name	Sequence (5' → 3')	Use
T7 Seq F	TAATACGACTCTATAGGG	pET28a sequencing
T7 Seq R	CTAGTTATGCTACGCGT	pET28a sequencing
CtaZ-F	AAAGCTAGCATGAATTGAAATGTTAAGGAC	pET28a-c3aZ cloning
CtaZ-R	TTTCTCGAGCTACTCTCTTAATGGGAAAC	pET28a-c3aZ cloning
Cc3263-KO F	CACCGAGAAAAAGATAGAGG	Δc3aZ colony PCR
Cc3263-KO R	CCTCTATTGCAAGCATCGAACACTAC	Δc3aZ colony PCR
Cc3263-KO Seq	GGGCATCTCTGAGGTCTTG	Δc3aZ sequencing
pUC0ri-seq-rev	AACAAGCCATGAAAACCG	pCasC-c3aZ sequencing
HB1-seq-rev	AACAAGCCATGAAAACCG	pCasC-c3aZ sequencing
gyrI-P4-fw	TTTTTAAAGTTAAATAAGGTTATAAGGAGGAAAATC	pMTL-c3aZ cloning and sequencing
gyrI-CTA_rv	CCATTCCGCATCATCAGGCTAAGCCTCTCTCGTTAATGC	pMTL-c3aZ cloning and sequencing
pTargetC-Seq-F	CTTGCGACAGCTGATATG	pMTL-c3aZ sequencing
M13R	CAGGAAACAGCTATGACC	pMTL-c3aZ colony PCR
pMTLseq-rev	CATCTCGTCATAGTACC	pMTL-c3aZ colony PCR
Table S4. Sequence of the sgRNA cassette for CRISPR-nCas9-based knockout of ctaZ. Sequence of the cassette includes the sgRNA cassette (P4 promoter, sgRNA, spy terminator), N20 sequence and mutated homology arms for Ccel_3263. Homology arms are marked in grey, the STOP codon is underlined and the EcoRV recognition site is italicized.

Target	Sequence of gene knockout cassette (5' → 3')
Ccel_3263	ACCCGAGACCATATGGATGCTTGACTTGGACAAATTTTTTTAAAAAGTTAAAGTTGCTATGTTGTCTCTACAGGTTTTAGGC
	TAGAAATAGCAAGGTTAAATAAGGGCTAGTCCCTTATACACTGGAATTCTCTAGAGTCG
	TGGAGCTGTGATTCGGTTAAACACGCAAAAAATAATTATTTTAAAGGGAAGAATCTAATGAATTATGAATTAAATAGGACGTG
	ACACCCATTAGAGTGTCTATGACTTTATGACTATAGGAGGCTGGCTGGCCAGGACATGAAAGGTGGGCACAGGCTAAGGTCAGTACAGGG
	AAAAGCCAAATGGAGACCTTTATATGCTATTATGAGTTAGCTACAGGGAATATGCTATAGGACGTG
	CAGGACCGCGGTTGAGAAAATGATGCGCAAGAATAAAAGCAGATGAGCTACGTATGGAGAAGCTATGGAATAAAGTCCTTTCGGGGAAGTTTTATAAGG
	CCAGTATACAGGGCATTTGAGAATTATGACGTAAAGAATATAGTCTACGTATGGAGAAGCTATGGAATAAAGTCCTTTCGGGGAAGTTTTATAAGG
	CCGGGAATGATGACTAAAAAGTTAACACGCTAATAAGTATATAACTGAAGTTCTGTTTCCATTAAAGGAGGCCTGCAGACATGCAAGCTG
Table S5. List of GyrI-like and CtaZ-like proteins used to construct the phylogenetic tree. Sequences used for the multiple sequence alignment in Figure 3A are marked with an asterisk (*).

Accession number	Organism	Class
CtaZ (Ccel_3263)*	Ruminiclostridium cellulolyticum	CtaZ
WP_022620692.1	Clostridoides difficile	CtaZ
WP_053337826.1	Clostridium botulinum	CtaZ
WP_035914910.1	Fusobacterium necrophorum	CtaZ
P33012	Escherichia coli	GyrI
A4WC16	Enterobacter sp. 638	GyrI
A7MJM9	Cronobacter sakazakii	GyrI
P39075	Bacillus subtilis	BmrR
WP_010328316.1	Bacillus vallismortis	BmrR
WP_202853084.1	Bacillus halotolerans	BmrR
P0AC10	Escherichia coli	Rob
A0A378E9L4	Klebsiella pneumoniae	Rob
E3GAQ7	Enterobacter lignolyticus	Rob
Q929T5	Listeria innocua	Lin2189
WP_031541452.1	Listeria monocytogenes	Lin2189
WP_194349349.1	Listeria welshimeri	Lin2189
I3NN73*	Streptomyces sp. TP-A2060	YtkR7
WP_167933938.1	Streptomyces ventii	YtkR7
WP_168088698.1	Streptomyces bohaisiens	YtkR7
A0A1W6EUW3*	Streptomyces zelensis	C10R6
A0A2MBM633	Streptomyces carminius	C10R6
A0A101P4J0	Streptomyces yokosukanensis	C10R6
Table S6. Comparison of the diffusion of CTA by the free and dissipative diffusion models. The MIC values (derived from the zero intercepts, µM) and corresponding R^2 (regression coefficient) values presented are the averages determined from the analysis of three biological replicates (Figure S4). Diffusion of CTA is better described by the dissipative diffusion model (R^2 values closer to 1), which was therefore used in the determination of the final MIC values (underlined) displayed in Figure 2B.

Model	Value	R. cellulolyticum ΔctaA pMTL∅	R. cellulolyticum ΔctaA ΔctaZ pMTL∅	R. cellulolyticum ΔctaA ΔctaZ pMTL-ctaZ
dissipative diffusion: $x / \ln(c)$	R^2	0.993	0.992	0.973
	MIC (µM)	57	1.6	18
free diffusion: $x^2 / \ln(c)$	R^2	0.957	0.969	0.855
	MIC (µM)	93	2.7	29
Table S7. Crystallographic data collection and refinement statistics.

Crystal parameters	CtaZ	CtaZ:CTA	CtaZ:CTA (ano zinc)	CtaZ:CTA (ano sulfure)
Space group	R32	C2	C2	C2
Cell constants	a = b = 121.3 Å, c = 108.4 Å	a = 104.6 Å, b = 40.9 Å, c = 44.8 Å, β = 91.6°	a = 104.6 Å, b = 40.9 Å, c = 44.8 Å, β = 91.6°	a = 104.6 Å, b = 40.9 Å, c = 44.8 Å, β = 91.6°
Subunits / AU	1	1	1	1
Data collection				
Beam line	X06SA, SLS	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.281	2.0
Resolution range (Å)	30–2.0, (2.1–2.0)	30–1.65, (1.75–1.65)	30–1.85, (1.95–1.85)	30–2.4, (2.5–2.4)
No. observations	87,441	68,561	105,190	78,496
No. unique reflections	20,682	22,520	30,691	14,120
Completeness (%)	99.0 (99.9)	97.9 (99.3)	99.6 (99.7)	97.3 (92.3)
R_merge (%)	4.9 (56.2)	3.3 (50.7)	4.5 (28.1)	6.3 (37.8)
I/σ (I)	16.4 (2.2)	15.9 (2.2)	14.5 (3.8)	18.8 (4.8)
Refinement (REFMAC5)				
Resolution range (Å)	30–2.0	30–1.65		
No. refl. working set	19,640	21,391		
No. refl. test set	1,034	1,125		
No. non hydrogen	1,281	1,282		
No. of ligand atoms	-	43		
Solvent	106	76		
R_work/R_free (%)	18.1 / 20.7	17.4 / 19.9		
r.m.s.d. bond (Å) / angle (°)	0.003 / 1.2	0.003 / 1.2		
Average B-factor (Å²)	45.5	35.7		
Ramachandran Plot (%)	98.0 / 2.0 / 0	100 / 0 / 0		

Notes:
- Asymmetric unit
- The values in parentheses for resolution range, completeness, R_merge and I/σ (I) correspond to the highest resolution shell
- Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections.
- Data reduction was carried out with XDS and from the same CtaZ:CTA crystal. Friedel pairs were treated as different reflections to record anomalous scattering effects.
- Rmerge(l) = Σhkl |I(lhk)| - <l(lhk)> / Σhkl |I(lhk)|, where l(lhk) is the measurement of the intensity of reflection hkl and <l(lhk)> is the average intensity
- R = Σhkl |F_obs| - |F_calc| / Σhkl |F_obs|, where Rwork is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and Rfree is calculated for the remaining reflections.
- Deviations from ideal bond lengths / angles
- Percentage of residues in favored region / allowed region / outlier region
Table S8. List of sequences used for genomic survey of CtaZ homologs. PCP = peptidyl carrier protein; CtaC = thioamide synthetase homolog; NRPS = nonribosomal peptide synthetase; PKS = polyketide synthase; RiPP = ribosomally synthesized and post-translationally modified peptide.

Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RiPP
Anaerovigula multivorans	WP_089285069.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp. CSS11	WP_224035564.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sporogenes	WP_163257497.1	Firmicutes	N	N	Y	Y	N	N
Clostridium botulinum	WP_207130621.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp. CM028	WP_220320532.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sporogenes	WP_072584225.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sporogenes	WP_163224385.1	Firmicutes	N	N	Y	Y	N	N
Clostridium botulinum	WP_030035115.1	Firmicutes	N	N	Y	Y	N	N
Clostridium estertheticum	WP_226137092.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp. CM027	WP_220287615.1	Firmicutes	N	N	Y	Y	N	N
Clostridium estertheticum	WP_226130650.1	Firmicutes	N	N	Y	Y	N	N
Clostridium botulinum	WP_191598774.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sporogenes	WP_096043889.1	Firmicutes	N	N	Y	Y	N	N
Clostridium botulinum strain Mfbjulcb3	WP_061327743.1	Firmicutes	N	N	Y	Y	N	N
Clostridium botulinum	WP_100489189.1	Firmicutes	N	N	Y	Y	N	N
Clostridium estertheticum	WP_216103447.1	Firmicutes	N	N	Y	Y	N	N
Clostridium estertheticum	WP_152753967.1	Firmicutes	N	N	Y	Y	N	Y
Clostridium botulinum	WP_159035817.1	Firmicutes	N	N	Y	Y	N	N
Clostridium estertheticum	WP_220713777.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sporogenes	WP_003493867.1	Firmicutes	N	N	Y	Y	N	N
Thermoanaerobacterium saccharolyticum	WP_048411500.1	Firmicutes	N	N	Y	Y	N	N
Supporting Information

Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RIPI
Clostridium estertheticum	WP_216108708.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp.	WP_003485938.1	Firmicutes	N	N	Y	Y	N	N
Clostridium botulinum	AVP62490.1	Firmicutes	N	Y	Y	Y	N	N
Clostridales bacterium	NLH02048.1	Firmicutes	N	N	Y	Y	N	N
Clostridium jeddahense	WP_198465122.1	Firmicutes	N	N	Y	Y	N	N
Anaerostilbacter massiliensis	WP_042682962.1	Firmicutes	N	N	Y	Y	N	N
Abyssisolbacter fermentans	WP_066497819.1	Firmicutes	N	N	Y	Y	N	N
Clostridium pasteurianum strain GL11	WP_066023457.1	Firmicutes	N	N	Y	Y	N	N
Clostridium minihomine	WP_101696201.1	Firmicutes	N	N	Y	Y	N	N
Clostridium algidicarnis	WP_029452272.1	Firmicutes	N	N	Y	Y	N	N
Clostridium tetani	WP_023438841.1	Firmicutes	N	N	Y	Y	N	N
Clostridium lundense	WP_027626370.1	Firmicutes	N	N	Y	Y	N	N
Hathewayana proteolytica	WP_072904169.1	Firmicutes	N	N	Y	Y	N	N
Lachnoclostridium phytofermentans	WP_029503460.1	Firmicutes	N	N	Y	Y	N	N
Clostridium tetanomorphum	WP_035146273.1	Firmicutes	N	N	Y	Y	N	N
Clostridium tetani	WP_129029858.1	Firmicutes	N	N	Y	Y	N	N
Clostridium oryzae	WP_079422320.1	Firmicutes	N	N	Y	Y	N	N
Clostridium tetani	WP_039261565.1	Firmicutes	N	N	Y	Y	N	N
Ruminococcaceae bacterium BL-4	CAB1245269.1	Firmicutes	N	N	Y	Y	N	N
Clostridaceae bacterium	MW4829480.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp. DMHC 10	WP_053242394.1	Firmicutes	N	N	Y	Y	N	N
Oscillospiraceae bacterium	MBE631230.1	Firmicutes	N	N	Y	Y	N	N
Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RfPP
---------------------------------------	--------------------	---------------	-----	------	----------------------	-----------------------------	-------------	------
Clostridium amylolyticum	WP_073003908.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp. MSJ-11	WP_216438309.1	Firmicutes	N	N	Y	Y	N	N
Clostridium tetani	WP_115605970.1	Firmicutes	Y	N	Y	Y	N	N
Anaerocolumna sedimenticola	WP_161840029.1	Firmicutes	N	N	Y	Y	N	N
Clostridicaceae bacterium	HCJ58251.1	Firmicutes	N	N	Y	Y	N	N
Emergencia timonensis	WP_067542616.1	Firmicutes	N	N	Y	Y	N	N
Robinsoniella sp. KNHs210	WP_027292864.1	Firmicutes	N	N	Y	Y	N	N
Ruminococcus sp. OM05-7	WP_118633935.1	Firmicutes	N	N	Y	Y	N	N
Lachnospiraceae bacterium	GFI46271.1	Firmicutes	N	N	N	Y	N	N
Clostridium botulinum	WP_053337826.1	Firmicutes	Y	Y	Y	Y	N	N
Clostridium tagluense	WP_220322709.1	Firmicutes	N	N	Y	Y	N	N
Robinsoniella peoriensis	WP_138603146.1	Firmicutes	N	N	Y	Y	N	N
Clostridicaceae bacterium strain 1XD21-29	NBH36554.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp. FP2	WP_164952462.1	Firmicutes	N	Y	Y	Y	N	N
Clostridiales bacterium LR776134.1	CAB1245269.1	Firmicutes	N	N	Y	Y	N	N
Robinsoniella peoriensis	WP_070049092.1	Firmicutes	N	N	Y	Y	N	N
Robinsoniella peoriensis	WP_044294841.1	Firmicutes	N	N	Y	Y	N	N
Lachnospiraceae bacterium	WP_117980771.1	Firmicutes	N	N	Y	Y	N	N
Alkalibaculum sporogenes	WP_152802938.1	Firmicutes	N	N	Y	Y	N	N
Anaerosphaera multitolerans	WP_127723140.1	Firmicutes	N	N	Y	Y	N	N
Lachnospiraceae bacterium	GFI04794.1	Firmicutes	N	N	Y	Y	N	N
Tissierella sp. P1	WP_094903040.1	Firmicutes	N	N	Y	Y	N	N
Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RIPP
-----------------------------------	----------------	--------------	-----	------	----------------------	-----------------------------	--------------	------
Tissierella carlieri	WP_216561500.1	Firmicutes	N	N	Y	Y	N	N
Coprobacillus sp. BIOML-A1	MZK55450.1	Firmicutes	N	N	Y	Y	N	N
Clostridiales bacterium	MBSS080537.1	Firmicutes	N	N	Y	Y	N	N
Blautia sp. RD014234	MCA5961946.1	Firmicutes	N	N	Y	Y	N	N
Bacillus sp. WMMC1349	NPC91583.1	Firmicutes	N	N	Y	Y	N	N
Flavonifractor sp. An92	WP_087257743.1	Firmicutes	N	N	Y	Y	N	N
Faecalibacterium faecalis	WP_216241779.1	Firmicutes	N	N	Y	Y	N	N
Lachnospiraceae bacterium AM48-27BH	RHQ12924.1	Firmicutes	N	N	Y	Y	N	N
Firmicutes bacterium	WP_023043102.1	Firmicutes	N	N	Y	Y	N	N
Bacillus sp. WMMC1349	WP_216664710.1	Firmicutes	N	N	Y	Y	N	N
Blautia marasmi	WP_095170587.1	Firmicutes	N	N	Y	Y	Y	N
Clostridium beijerinckii	WP_185670391.1	Firmicutes	N	N	N	N	N	N
Blautia pseudococoides	WP_065542609.1	Firmicutes	N	N	Y	Y	N	N
Streptococcus uberis	WP_203261662.1	Firmicutes	N	N	Y	Y	N	N
Coprobacillus cateniformis	MBM6798211.1	Firmicutes	N	N	Y	Y	N	N
Clostridium cavendishii	WP_072985642.1	Firmicutes	N	N	Y	Y	N	N
Haloimpatiens massiliensis	WP_102399849.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp. KNHs214	WP_035291884.1	Firmicutes	N	N	Y	Y	N	N
Eubacteriales sp.	WP_117596986.1	Firmicutes	N	N	Y	Y	N	N
Tepidanaerobacter acetatoxydans	WP_013777987.1	Firmicutes	N	N	Y	Y	N	N
Sporanaerobacter acetigenes	WP_072744831.1	Firmicutes	N	N	Y	Y	N	N
Enterocloster bolteae	WP_118036403.1	Firmicutes	N	N	Y	Y	N	N
Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RIPP
---------------------------------	-----------------------	--------------	-----	------	----------------------	-----------------------------	--------------	------
Marinisporobacter balticus	WP_132247045.1	Firmicutes	Y	N	Y	Y	Y	Y
Treponema pedis	WP_024469039.1	Spirochaetes	N	N	Y	Y	N	N
Clostridiodae difficile	WP_054276562.1	Firmicutes	Y	N	Y	Y	N	N
Coprobacillus cateniformis	WP_008786319.1	Firmicutes	Y	N	Y	Y	N	N
Blautia cocoides strain NCTC11035	WP_115622679.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp. BL-8	WP_077861566.1	Firmicutes	Y	N	Y	Y	N	N
Clostridiodae difficile	WP_167640986.1	Firmicutes	N	N	Y	Y	N	N
Clostridium saccharoperbutylfaceticum	WP_015392150.1	Firmicutes	N	N	Y	Y	N	N
Clostridium sp. FP1	WP_164946488.1	Firmicutes	N	N	Y	Y	N	N
Clostridium botulinum	WP_045905952.1	Firmicutes	N	N	Y	Y	N	N
Clostridiodae difficile	HBH180654.1	Firmicutes	N	N	Y	Y	N	N
Blautia producta	WP_130183090.1	Firmicutes	N	N	Y	Y	N	N
Clostridiodae bacterium	WP_054270090.1	Firmicutes	N	N	Y	Y	N	N
Vallitalea guaymasensis	WP_212690078.1	Firmicutes	Y	N	Y	Y	Y	N
Clostridiodae difficile	WP_021384377.1	Firmicutes	N	N	Y	Y	N	N
Clostridiodae sp. ZZV15-6598	WP_227849129.1	Firmicutes	N	N	N	Y	N	N
Clostridiodae difficile	WP_107595359.1	Firmicutes	N	N	Y	Y	N	N
Clostridiodae difficile	WP_223195515.1	Firmicutes	N	N	Y	Y	N	N
Clostridiodae difficile	HBG4224319.1	Firmicutes	N	N	Y	Y	N	N
Clostridiodae difficile strain RA09-70	WP_054273608.1	Firmicutes	N	N	Y	Y	N	N
Vallitalea okinawensis	WP_105614688.1	Firmicutes	N	N	Y	Y	N	N
Blautia producta	WP_173724357.1	Firmicutes	Y	N	Y	Y	N	N
Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RRIP
--	--------------------	------------	-----	------	----------------------	-----------------------------	-------------	------
Clostridioides sp. ZZV15-6388	WP_227827463.1	Firmicutes	N	N	Y	Y	N	N
Streptococcus pneumoniae	WP_044727499.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides sp. ZZV15-6597	WP_227840904.1	Firmicutes	N	N	N	Y	Y	N
Blautia marasmi strain SL 2.02	WP_033140923.1	Firmicutes	N	N	Y	Y	Y	N
Clostridioides sp. ZZV15-6383	WP_227825934.1	Firmicutes	N	N	N	Y	Y	N
Clostridioides difficile strain 2021EL-00908	MBY2476754.1	Firmicutes	N	N	N	Y	Y	N
Clostridioides sp. ES-S-0001-03	WP_227482395.1	Firmicutes	N	N	Y	Y	Y	N
Clostridioides sp. ZZV14-5902	WP_227850812.1	Firmicutes	N	N	N	Y	Y	N
Vallitalea guaymasensis	WP_113673400.1	Firmicutes	Y	N	Y	Y	Y	N
Clostridioides difficile	WP_169468134.1	Firmicutes	N	N	Y	Y	N	N
Blautia sp. RD014234	MCA5964481.1	Firmicutes	N	N	N	Y	Y	N
Clostridioides bacterium	WP_227452510.1	Firmicutes	N	N	Y	Y	Y	N
Clostridium sp. D2Q-14	WP_203373103.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	HBG5346294.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	MBH6948933.1	Firmicutes	N	N	N	Y	N	N
Clostridioides sp. ES-S-0006-03	WP_227433052.1	Firmicutes	N	N	N	Y	N	N
Clostridioides difficile	WP_003430201.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_021363516.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_038812121.1	Firmicutes	N	N	N	Y	Y	N
Clostridioides difficile	WP_107598297.1	Firmicutes	N	N	Y	Y	Y	N
Clostridioides difficile	WP_077716979.1	Firmicutes	N	N	N	Y	Y	N
Clostridioides difficile	HBF5456700.1	Firmicutes	N	N	N	Y	N	N
Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RIPP
------------------------	---------------	--------------	-----	------	----------------------	----------------------------	-------------	------
Clostridioides difficile	HBF6357449.1	Firmicutes	N	N	Y	Y	N	N
Blautia wexlerae	WP_207739572.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	MBY1948980.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	HBE9729668.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_045145608.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	MBY2849528.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	EGT3916955.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_021360546.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_009889503.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_021406380.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_016728863.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_095905945.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	HBG3483912.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_021359212.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_003436480.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	MBZ1209411.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	HBF7860643.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	HBG0099204.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_077709975.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	HBF2804837.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_021368671.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_107613022.1	Firmicutes	N	N	Y	Y	N	N
Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RIPP
----------------------------------	-------------------	-----------------	-----	------	----------------------	-----------------------------	-------------	------
Clostridoides difficile	HBG7672763.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	HBG2772691.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	HBF8490363.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	HBBH3928631.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	MBH6866322.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	WP_0139625554.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	WP_021375263.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	HBF0377810.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	VIF98551.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	MBY2486030.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	WP_107615446.1	Firmicutes	N	N	Y	Y	N	N
Clostridoides difficile	WP_003420216.1	Firmicutes	N	N	Y	Y	N	N
Clostridium innocuum	EHU7845026.1	Firmicutes	N	N	Y	Y	N	N
Hydrogenispora ethanolica	WP_132014954.1	Firmicutes	N	N	Y	Y	N	N
Firmicutes bacterium	WP_008818942.1	Firmicutes	N	N	Y	Y	N	N
Erysipelotrichaceae bacterium 2_2_44A	EGX77340.1	Firmicutes	N	N	Y	Y	N	N
Erysipelotrichaceae bacterium 146	ANU69031.1	Firmicutes	N	N	Y	Y	N	N
Erysipelotrichaceae bacterium	MBSS26719.1	Firmicutes	N	N	Y	Y	N	N
Clostridium innocuum	MCC2846297.1	Firmicutes	N	N	Y	Y	N	N
Clostridium innocuum	MBV4067596.1	Firmicutes	N	N	Y	Y	N	N
Clostridium innocuum	KGJ53145.1	Firmicutes	N	N	Y	Y	N	N
Erysipelotrichaceae bacterium	MBG6180612.1	Firmicutes	N	N	Y	Y	N	N
Supporting Information

Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RIPP
Clostridioides difficile DA00065	EQG21184.1	Firmicutes	N	N	Y	Y	N	N
Treponema pedis	WP_194075959.1	Spirochaetes	N	N	Y	Y	N	N
Clostridioides difficile CD9	EQE05482.1	Firmicutes	N	N	Y	N	N	N
Clostridioides difficile	WP_012816159.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_021368997.1	Firmicutes	N	N	Y	Y	N	N
Enterococcus sp.	WP_086349861.1	Firmicutes	N	N	Y	Y	N	N
Enterococcus sp.	OTP14431.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile Y343	EQI65987.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile DA00215	EQH29665.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_021367798.1	Firmicutes	N	N	N	N	N	N
Clostridioides difficile	HBF2339718.1	Firmicutes	N	N	Y	Y	N	N
Clostridioides difficile	WP_059027001.1	Firmicutes	N	N	Y	Y	N	N
Enterococcus hulanensis	WP_137665830.1	Firmicutes	N	N	Y	N	N	N
Enterococcus hulanensis	WP_206921006.1	Firmicutes	N	N	Y	Y	N	N
Sebaldella termidids	WP_012863261.1	Firmicutes	N	N	Y	Y	N	N
Fusobacterium sp.	WP_032840620.1	Fusobacteria	Y	Y	Y	Y	N	N
Fusobacterium necrophorum	WP_035914910.1	Fusobacteria	Y	Y	Y	Y	N	N
Clostridioides difficile	WP_022606962.1	Firmicutes	Y	Y	Y	Y	N	N
Oceanotoga teriensis	WP_109604299.1	Thermotogae	N	N	Y	Y	N	N
Desulfosporosinus sp. Td-M	KGP75389.1	Firmicutes	N	N	N	N	N	N
Vagococcus sp. BWB3-3	WP_209529320.1	Firmicutes	N	N	Y	Y	N	N
Bacterium D16-54	RJK01155.1	unclassified	N	N	Y	Y	N	N
Organism Details

Organism name	Accession ID	Phylum	PCP	CtaC	Upstream DNA-binding	Two downstream transporters	NRPS or PKS	RIPP
Firmicutes bacterium	MTI67946.1	Firmicutes	N	N	Y	Y	N	N
Eubacterium sp.	SCJ76062.1	Firmicutes	N	N	Y	Y	N	N
Lachnospiraceae bacterium TB5	BCN31760.1	Firmicutes	N	N	N	N	N	N
Author Contributions

F.G., E.M.M., K.L.D., M.G., and C.H. designed research; F.G., E.M.M., T.H., M.D., K.L.D., J.K., and M.G. performed research; F.G., E.M.M., T.H., M.D., K.L.D., J.K., and M.G. analyzed data; and F.G., E.M.M., M.G. and C.H. wrote the manuscript.

References

[1] T. Lincke, S. Behnkens, K. Ishida, M. Roth, C. Hertweck, Angew. Chem. Int. Ed. 2010, 49, 2011–2013.
[2] K. L. Dunbar, H. Büttner, E. M. Molloy, M. Dell, J. Kumpfmüller, C. Hertweck, Angew. Chem. Int. Ed. 2018, 57, 14080–14084.
[3] G. M. Boratyn, A. A. Schäffer, R. Nagarwala, S. F. Altschul, D. J. Lipman, T. L. Madden, Biol. Direct 2012, 7, 12.
[4] J. D. Thompson, D. G. Higgins, T. J. Gibson, Nucleic Acids Res. 1994, 22, 4673-4680.
[5] S. Kumar, G. Stecher, K. Tamura, Mol. Biol. Evol. 2016, 33, 1870-1874.
[6] N. Saitou, M. Nei, Mol. Biol. Evol. 1987, 4, 406-425.
[7] K. Blin, E. P. Pedersen, T. Weber, S. Y. Lee, Synth. Syst. Biotechnol. 2016, 1, 118-121.
[8] I. Fedorova, A. Arseniev, P. Selkova, G. Pobegalov, I. Goryanin, A. Vasileva, O. Musharova, M. Abramova, M. Kazakov, T. Zyubko, T. Artamonova, D. Artamonov, S. Shmakov, M. Khodorkovskii, K. Severinov, I. Fedorova, A. Arseniev, P. S. Artamonova, S. Bachas, C. Eginton, D. Gunio, H. Wade, Proc. Natl. Acad. Sci. USA 2011, 108, 11046–11051.