Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise

Hee-Tae Roh a, Su-Youn Cho b, Wi-Young So c,*

a Department of Physical Education, Dong-A University, Busan 604-714, Republic of Korea

b School of Taekwondo, College of Creative Human Resources, Yangsan University, Yangsan-si 626-790, Republic of Korea

c Sports and Health Care Major, College of Humanities and Arts, Korea National University of Transportation, Chungju-si 380-702, Republic of Korea

Received 6 November 2015; revised 25 March 2016; accepted 6 April 2016

Available online 27 June 2016

Abstract

Purpose: The purpose of this study was to investigate the effects of obesity and high-intensity acute exercise on oxidant-antioxidant status, neurotrophic factor expression, and blood-brain barrier (BBB) disruption.

Methods: Twenty-four healthy, untrained men (12 non-obese (mean 14.9% body fat) and 12 obese subjects (mean 29.8% body fat)) performed 20 min of continuous submaximal aerobic exercise at 85% maximal oxygen consumption. Blood sampling was performed to examine the oxidant-antioxidant status (reactive oxygen species (ROS) and superoxide dismutase (SOD)), neurotrophic factors (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)), and BBB disruption (S100β and neuron-specific enolase) before and after acute exercise.

Results: The obese group showed significantly higher pre-exercise serum ROS levels and significantly lower pre-exercise serum SOD levels than the non-obese group (p < 0.05). Serum ROS, SOD, BDNF, NGF, and S100β levels were significantly increased post-exercise compared with pre-exercise levels in both the non-obese and the obese groups (p < 0.05). The obese group showed significantly higher serum ROS, BDNF, NGF, and S100β levels post-exercise compared to the non-obese group (p < 0.05).

Conclusion: Our study suggests that episodic vigorous exercise can increase oxidative stress and blood neurotrophic factor levels and induce disruption of the BBB. Moreover, high levels of neurotrophic factor in the blood after exercise in the obese group may be due to BBB disruption, and it is assumed that oxidative stress was the main cause of this BBB disruption.

© 2017 Production and hosting by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Antioxidant enzyme; Blood-brain barrier; Exercise; Neurotrophic factor; Obesity; Oxidative stress

1. Introduction

Cerebral vessels have a structure called the blood-brain barrier (BBB) composed of tight endothelial cell junctions, pericytes, astrocyte end-feet, and a basal lamina. The selective permeability of the BBB restricts the passage of harmful substances that can threaten normal brain function into the brain parenchyma from the extracerebral blood. Thus, the BBB provides a protective function for the brain against rapid changes in blood components. On the other hand, a breakdown of the BBB caused by aging or other factors can induce cognitive impairment. In addition, almost all the factors that contribute to the deterioration of the BBB’s protective function have been reported to contribute to the pathogenesis of neurologic diseases such as epilepsy, multiple sclerosis, and Alzheimer’s disease.

The main factors involved in BBB disruption are endoplasmic reticulum stress, glutamate excitotoxicity, and formation of reactive oxygen species (ROS). Increased oxidative stress caused by excessive ROS production and compromised intrinsic antioxidant defense contribute to BBB disruption through several mechanisms, including oxidative damage to cellular molecules, cytoskeletal reorganization, and upregulation of inflammatory mediators. When BBB disruption occurs, high concentrations of S100β and neuron-specific enolase (NSE), brain-specific proteins circulating inside the brain, are observed in the peripheral blood. The concentrations of these proteins have been reported as an index for estimating the extent of the increase in BBB permeability and brain damage.

Obesity not only causes diabetes, high blood pressure, and cardiovascular disease but also has recently been reported to...
be closely associated with the onset of neurodegenerative disorders. A suggested cause of such diseases is an obesity-induced high oxidative stress level in the body. According to Vincent et al., obesity was accompanied by chronically high oxidative stress levels because of the imbalance between tissue ROS and antioxidants. Oslus also reported that compared to obese subjects with a body mass index (BMI) ≥ 40 kg/m², healthy subjects showed significantly lower plasma malondialdehyde concentrations and significantly higher activities of the antioxidant enzymes erythrocyte superoxide dismutase (SOD) and glutathione peroxidase. In addition, it was reported that the brain was less resistant to oxidative stress-induced damage than other tissues because of its relatively lower content of antioxidant enzymes against ROS; therefore, oxidative stress-induced damage to the brain could lead to neuronal apoptosis, triggering the onset of neurodegenerative disorders. All these reports suggest a role for obesity in BBB disruption and the pathogenesis of neurodegenerative disorders.

Not only is participation in regular exercise effective for prevention and alleviation of obesity, but it can also reduce oxidative stress levels that have been elevated because of obesity. It has also been reported that both regular exercise training and acute exercise were effective for maintaining and enhancing brain function by increasing the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), regardless of the presence of a variety of diseases. However, excessively intense acute exercise can metabolically impair dynamic cerebral autoregulation by overproducing free radicals, leading to the mechanical disruption of the BBB. It is also possible that high oxidative stress levels damage the microtubule cytoskeleton, interfering with vesicular transport and inducing the downregulation of neurotrophic factors. In addition, according to a report by Vincent et al., the concentrations of plasma hydroperoxides and thiobarbituric acid reactive substances were significantly higher after acute exercise in obese subjects than in non-obese subjects. This suggests that the oxidative stress level of an obese individual can be higher than that of a healthy individual, not only at rest but also immediately after exercise.

Thus, compared to a non-obese individual, in an obese individual it is considered to be a higher risk that acute exercise will decrease the brain protective function of the BBB by increasing the oxidative stress level in the body while also affecting neurotrophic factor expression. However, there have been no reports concerning the effect of obesity and acute high-intensity exercise on oxidative stress levels in the body, neurotrophic factor expression, and BBB disruption. Accordingly, the present study aimed to examine the changes in antioxidant status, neurotrophic factor expression, and BBB disruption in non-obese and obese subjects performing high-intensity acute exercise.

2. Methods

2.1. Subjects

Twenty-four healthy untrained men volunteered as subjects for the present study. All subjects met the following criteria before enrollment in the study: (1) no participation in regular physical activity, (2) no chronic health problems or smoking, (3) no history of cardiovascular, metabolic, or respiratory disease, and (4) no consumption of antioxidant supplements within the past 3 months. Subjects attended a brief orientation meeting before data collection, and each subject read and signed a written informed consent statement consistent with Yonsei university guidelines. Subjects were placed into 1 of 2 groups based on BMI and % body fat. Subjects with ≥25% body fat and a BMI ≥25 kg/m² were placed into the “obese” group, and those who had <25% body fat and BMI <25 kg/m² were placed into the “non-obese” group (Table 1). All study procedures were approved by the National Research Foundation of Korea (NRF-2013S1A5B5A07049580).

2.2. Anthropometric measurements

Anthropometric measures taken 1 week before beginning exercise testing included the measurement of height, body composition, resting blood pressure (BP), and maximal oxygen consumption (VO₂max). Height and body composition were measured using a stadiometer (seca 213; seca GmbH, Hamburg, Germany) and a bioimpedance analysis device (InBody 220; BioSpace, Seoul, Korea), respectively. BP was measured in a seated position using standard auscultation procedures and a mercury sphygmomanometer (TRIMLINE; PyMaH, Somerville, NJ, USA). VO₂max was measured on a treadmill (Q65; Quinton, Seattle, WA, USA) according to the Bruce protocol based on the breath-by-breath method, with each participant wearing a gas analyzer (METAMAX 3B; Cortex, Leipzig, Germany).

2.3. Acute exercise test

The exercise test was carried out by means of a treadmill run of 20 min at an intensity of 85% of the anthropometrically measured VO₂max. According to the Bruce protocol, with each subject wearing a gas analyzer, VO₂ measurement began with exercise onset and continued until each subject’s VO₂ reached the target value of 85%VO₂max. At that point, exercise intensity was controlled by adjusting the speed and slope of the treadmill to maintain a steady state of VO₂ at 85%VO₂max.

Table 1

Variable characteristics and anthropometric measures (mean ± SD).	Non-obese (n = 12)	Obese (n = 12)	p
Age (year)	22.9 ± 2.2	22.9 ± 2.2	1.000
Height (cm)	174.5 ± 3.9	173.2 ± 4.6	0.461
Weight (kg)	65.6 ± 4.2	87.9 ± 10.4	<0.001**
Fat mass (kg)	9.8 ± 2.3	26.1 ± 5.8	<0.001**
BMI (kg/m²)	21.5 ± 1.6	29.3 ± 3.0	<0.001**
Body fat (%)	14.9 ± 3.2	29.8 ± 3.6	<0.001**
Resting SBP (mmHg)	116.5 ± 4.8	123.1 ± 6.3	0.009*
Resting DBP (mmHg)	74.2 ± 5.6	82.9 ± 7.3	0.003*
VO₂max (mL/kg/min)	54.3 ± 3.8	41.8 ± 6.8	<0.001**

*p < 0.01, **p < 0.001, as determined using the independent t test. Abbreviations: BMI = body mass index; DBP = diastolic blood pressure; SBP = systolic blood pressure; VO₂max = maximal oxygen consumption.
2.4. Blood sampling and analyses

Using a 22-gauge needle and a serum separator tube (Becton Dickinson, Franklin Lakes, NJ, USA), 10 mL of blood was collected from the antecubital vein of each subject immediately pre- and post-exercise. Collected blood samples were centrifuged for 15 min at 3000 rpm and were then stored at −80°C until analysis. The analysis of serum ROS was performed using an OxiSelect in vitro ROS/RNS Assay Kit (cat. no. STA-347; Cell Biolabs, San Diego, CA, USA), which is based on the conversion of 2′,7′-dichlorodihydrofluorescein diacetate to 2′,7′-dichlorodihydrofluorescein by ROS; a fluorescence plate reader (LS 55 Luminescence spectrometer; Perkin Elmer, Wellesley, MA, USA) was used to measure the absorbance of fluorescence at 480 nm (excitation) and 530 nm (emission). The analysis of serum SOD was performed using a superoxide dismutase assay kit (cat. no. CM706002; IBL-International, Hamburg, Germany); a microplate reader (GENios; TECAN, Grödig, Austria) was used to measure absorbance at 450 nm. The analyses of serum BDNF and NGF were carried out using a human BDNF enzyme-linked immunosorbent assay (ELISA) kit (cat. no. DBD000; R&D Systems, Minneapolis, MN, USA) and an NGF sandwich ELISA kit (cat. no. CYT304; Chemicon, Temecula, CA, USA), respectively; a microplate reader (EMax; Molecular Devices, Sunnyvale, CA, USA) was used to measure absorbance at 450 nm for quantification. The analyses of serum S100β and neuronspecific enolase (NSE) were performed using an S100B (human) ELISA kit (cat. no. KA0037; Abnova, Jhungli, Taiwan, China) and a human NSE ELISA kit (cat. no. M-0050; Alpha Diagnostic International, San Antonio, TX, USA), respectively; a microplate reader (EMax) was used to measure absorbance at 450 nm for quantification.

2.5. Statistical analyses

Statistical analyses were performed with SPSS statistics for Windows Version 21.0 (IBM Corp., Armonk, NY, USA). Data are presented as the mean ± SD and coefficient of variation, unless otherwise stated. Independent t tests were conducted to compare baseline levels of all variables between non-obese and obese groups. Two groups (non-obese and obese) by time point (pre- and post-exercise) repeated measures analysis of variance (ANOVA) was used to examine the effect of exercise on serum ROS, SOD, BDNF, NGF, S100β, and NSE levels. When significant group by time interactions occurred, simple main effects were assessed using independent and paired t tests. Levels of significance were set at 0.05.

3. Results

3.1. Subject characteristics

Table 1 shows the subject characteristics. The obese group had significantly greater weight, fat mass, BMI values, % body fat, resting BP, and lower VO2max levels compared with the non-obese group (p < 0.05). Baseline variables of age and height were similar between the groups.

3.2. Changes in serum oxidant-antioxidant status

After exercise, repeated-measures ANOVA demonstrated a significant difference across the group by time interaction for serum ROS (F(1, 11) = 8.346, p = 0.015) and SOD (F(1, 11) = 4.947, p = 0.048) levels. Serum ROS and SOD levels were significantly increased in post-exercise compared with pre-exercise levels in both the non-obese and the obese groups (p < 0.05). In addition, pre- and post-exercise serum ROS levels were significantly higher in the obese group than in the non-obese group (p < 0.05). Pre-exercise serum SOD levels were significantly lower in the obese group than in the non-obese group (p < 0.05) (Table 2).

3.3. Changes in serum neurotrophic factor levels

After exercise, repeated-measures ANOVA demonstrated a significant difference across the group by time interaction for serum BDNF (F(1, 11) = 5.973, p = 0.033) and NGF (F(1, 11) = 8.030, p = 0.016) levels. Serum BDNF and NGF levels were significantly increased in post-exercise compared with pre-exercise levels in both the non-obese and the obese groups (p < 0.05). In addition, post-exercise serum BDNF and NGF levels were significantly higher in the obese group than in the non-obese group (p < 0.05) (Table 2).

3.4. Changes in serum BBB disruption indices

After exercise, repeated-measures ANOVA demonstrated a significant difference across the group by time interaction for

Table 2

Variable	Non-obese	Obese		
ROS (mmol)	1.48 ± 0.32	4.75 ± 1.21*	1.93 ± 0.33*	6.05 ± 0.85**
SOD (U/mL)	2.65 ± 0.54	3.06 ± 0.71*	2.13 ± 0.66*	3.24 ± 1.00*
BDNF (pg/mL)	27.656.17 ± 5758.55	34,082.00 ± 5420.95*	26,661.25 ± 6217.93	39,387.73 ± 5799.72**
NGF (pg/mL)	348.83 ± 67.94	406.05 ± 26.68*	344.88 ± 61.58	449.35 ± 37.43*
S100β (ng/L)	52.75 ± 13.79	65.59 ± 18.58*	59.25 ± 16.35	92.47 ± 22.14*
NSE (µg/L)	6.23 ± 1.17	6.86 ± 1.36*	6.48 ± 1.21	7.70 ± 1.12

* p < 0.05, compared with pre-exercise; † p < 0.05, compared with non-obese.
Abbreviations: BDNF = brain-derived neurotrophic factor; NGF = nerve growth factor; NSE = neuron-specific enolase; ROS = reactive oxygen species; SOD = superoxide dismutase.
serum S100β levels ($F(1, 11) = 7.422$, $p = 0.020$). Post-exercise serum S100β levels were significantly higher than pre-exercise levels in both the non-obese and the obese groups ($p < 0.05$). In addition, post-exercise serum S100β levels were significantly higher in the obese group than in the non-obese group ($p < 0.05$). In contrast, serum NSE levels were not significantly different among any groups or time points ($F(1, 11) = 1.530$, $p = 0.242$) (Table 2).

4. Discussion

Obesity increases oxidative stress by inducing excessive ROS production through hyperglycemia, excessive blood lipids (free fatty acids), and excessive fat stores in white adipose tissue. Obesity also induces inadequate antioxidant defenses. Regular exercise can reduce the elevated oxidative stress levels caused by obesity. High-intensity acute exercise, however, has been shown to cause either a decrease or an increase in oxidative stress levels. The present study analyzed serum ROS and SOD levels to examine the effect of obesity and high-intensity acute exercise on oxidant-antioxidant status. According to the results, the obese group showed significantly higher baseline ROS levels and significantly lower SOD levels than the non-obese group. This is considered a consequence of a pro-oxidant/antioxidant imbalance promoted by obesity. This is supported by previous studies that have demonstrated an increase in ROS levels, which reflects a high oxidative stress level in the body, when pro-oxidant production prevails over the antioxidant defense system. Additionally, Vincent and Taylor suggested that microglial activation, upregulation of proinflammatory cytokines, and high oxidative stress levels can damage the BBB through increased oxidative stress in obese subjects. This increased stress induces a disruption of tight junctions and exacerbates the neuroinflammatory response, despite the presence of protective mechanisms.

With regard to NSE, however, the present research showed no significant differences in NSE concentration. This is in accordance with the preceding report that showed a >80% increase in S100β levels after acute aerobic exercise but no significant difference between pre- and post-exercise NSE levels. This may also be because changes in serum NSE levels are a good index of brain damage but not of BBB disruption. This interpretation is supported by a previous study showing an elevation of serum S100β levels with BBB disruption rather than with neuronal damage. Other studies have proposed that NSE is a peripheral marker for neuronal damage even in the absence of increased BBB disruption.

In addition, it is possible that the changes in S100β in this study are caused by damage to the skeletal muscles, because S100β levels increased after intense exercise without a significant increase in serum NSE levels. S100 proteins regulate intracellular processes such as cell growth and motility, cell cycle regulation, and transcription and differentiation in various peripheral tissues, and previous studies have reported that vigorous exercise can induce muscular damage with elevated S100β blood levels from skeletal muscle damage. S100β also stimulates myogenic differentiation and myoblast proliferation, assisting effective muscle regeneration. Future studies are needed to examine the significance of S100β as a marker of muscle damage.

Many preceding studies reported that increased neurotrophic factor expression plays a positive role in brain function improvement through involvement in proliferation, migration, survival, and differentiation of neurons as well as in the regulation of synaptic plasticity. The present study analyzed serum BDNF and NGF levels to examine the effect of obesity and high-intensity acute exercise on neurotrophic factor expression. The results showed that high-intensity acute exercise sig-
significantly increases BDNF and NGF concentrations in both the obese and the non-obese groups. This supports previous studies that reported a significant increase in peripheral BDNF and NGF levels after submaximal acute exercise. Gold et al. reported a significant increase in serum BDNF and NGF concentrations after 30 min of aerobic exercise at 60% VO₂max. Slusher et al. also reported that acute aerobic exercise at 75% VO₂max could significantly increase BDNF levels in both normal-weight and obese subjects. On the other hand, it has been reported that elevated oxidative stress levels are involved in the downregulation of neurotrophic factors and that high oxidative stress levels have a negative correlation with BDNF levels but a positive correlation with antioxidant capacity. Interestingly, however, the results of the present study showed that BDNF and NGF levels immediately after exercise were significantly higher in the obese group, which showed higher ROS levels, than in the non-obese group. It is possible that high oxidative stress in obese subjects is linked to an increase in BBB permeability, resulting in the release of BDNF and NGF from the brain into the blood. Obesity increases the production of H₂O₂ in the mitochondria, leading to oxidative stress and resulting in increased permeability of the BBB with vigorous exercise. This interpretation is supported by reports showing that BDNF and NGF produced in the brain can pass through the BBB and also by a study by Goekint et al. that showed that one of the mechanisms responsible for an increase in serum BDNF levels after acute exercise might be an increase in BBB permeability. In addition, because blood BDNF levels are related to central and peripheral neuronal activity, we cannot exclude the possibility that increased BDNF levels seen with vigorous exercise in this study were not caused by an increased recruitment of motor units. Additional studies are necessary.

This study has several limitations. Even though our findings suggest that increased serum S100β levels found in the obese group after vigorous exercise reflect BBB disruption, we were not able to examine serum S100β levels in the post-exercise recovery period and do not know if this change was temporary or long lasting. Also, this study evaluated the relationship between high oxidative stress and BBB disruption, but we were unable to evaluate for pathologic changes in the nervous system because this was not an animal study. Furthermore, the study sample size was small; therefore, further studies are necessary to validate these results.

5. Conclusion

Our study suggests that episodic vigorous exercise can induce oxidative stress, increase the levels of blood neurotrophic factors, and induce BBB disruption. It also suggests that increased blood neurotrophic factor levels immediately after exercise in obese subjects are the result of BBB disruption and oxidative stress.

Acknowledgment

This work was supported by the Dong-A University (Busan, Korea) research fund.

Authors’ contributions

HTR participated in study design, subject recruitment, data collection, data processing, data analysis, and drafted the manuscript; SYC participated in data analysis, and drafted the manuscript; WYS conceived of the study, participated in its design and coordination, and helped to draft the manuscript. All authors have read and approved the final version of the manuscript, and agree with the order of presentation of the authors.

Competing interests

The authors declare that they have no competing interests.

References

1. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004;16:1–13.
2. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013;19:1584–96.
3. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015;85:296–302.
4. Stolp HB, Dziegielewska KM. Review: role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 2009;35:132–46.
5. Lucke-Wold BP, Logsdon AF, Turner RC, Rosen CL, Huber JD. Aging, the metabolic syndrome, and ischemic stroke: redefining the approach for studying the blood-brain barrier in a complex neurological disease. Adv Pharmacol 2014;71:411–49.
6. Pan W, Banks WA, Kastin AJ. Permeability of the blood-brain barrier to neurotransphins. Brain Res 1998;788:87–94.
7. Ding M, Haglid KG, Hamberger A. Quantitative immunochemistry on neuronal loss, reactive gliosis and BBB damage in cortex/striatum and hippocampus/amygdala after systemic kainic acid administration. Neurochem Int 2000;36:313–8.
8. Erşahin M, Toklu HZ, Erzik C, Cetinel S, Akakin D, Veliog˘lu-Og˘ünç A, et al. The anti-inflammatory and neuroprotective effects of ghrelin in subarachnoid hemorrhage-induced oxidative brain damage in rats. J Neurotrauma 2010;27:1143–55.
9. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015;14:388–405.
10. van Dijk G, van Heijningen S, Reijne AC, Nyakas C, van der Zee EA, Eisel UL. Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration. Front Neurosci 2015;9:173.
11. Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci 2013;14:21255–50.
12. Vincent HK, Innes KE, Vincent KR. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab 2007;9:813–39.
13. Olusi SO. Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotective enzymes in humans. Int J Obes Relat Metab Disord 2002;26:1159–64.
14. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 2008;9:505–18.
15. Reynolds A, Laurie C, Mosley RL, Gendelman HE. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 2007;82:297–325.
16. Oh S, Tanaka K, Warabi E, Shoda J. Exercise reduces inflammation and oxidative stress in obesity-related liver diseases. Med Sci Sports Exerc 2013;45:2214–22.
17. Youn JY, Suu KL, Lob HE, Itani H, Harrison DG, Cai H. Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes 2014;63:2344–55.
18. Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity—
exercise-induced response of peripheral brain-derived neurotrophic factor: a
systematic review of experimental studies in human subjects. Sports Med
2010;40:765–801.

19. Bailey DM, Evans KA, McEneny J, Young IS, Hullin DA, James PE, et al.
Exercise-induced oxidative-nitrosative stress is associated with impaired
dynamic cerebral autoregulation and blood-brain barrier leakage. Exp
Physiol 2011;96:1196–207.

20. Dohbale M. Neurotrophins: role in adverse pregnancy outcome. Int J Dev
Neurosci 2014;37:8–14.

21. Vincent HK, Morgan JW, Vincent KR. Obesity exacerbates oxidative stress
levels after acute exercise. Med Sci Sports Exerc 2004;36:772–9.

22. Bruce RA, Blackmon JR, Jones JW, Strait G. Exercising testing in adult
normal subjects and cardiac patients. Pediatrics 1963;32:742–56.

23. Vincent HK, Taylor AG. Biomarkers and potential mechanisms of
obesity-induced oxidant stress in humans. Int J Obes (Lond) 2006;30:
400–18.

24. Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in
humans: cause and consequences. Free Radic Biol Med 2011;51:942–
50.

25. Fisher-Wellman K, Bell HK, Bloomer RJ. Oxidative stress and antioxidant
defense mechanisms linked to exercise during cardiopulmonary and
metabolic disorders. Oxid Med Cell Longev 2009;2:43–51.

26. Konukoglu D, Serin O, Erkan M, Turhan MS. Plasma homocysteine levels
in obese and non-obese subjects with or without hypertension; its
relationship with oxidative stress and copper. Clin Biochem 2003;36:
405–8.

27. Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, et al.
Increased oxidative stress and hypozincemia in male obesity. Clin Biochem
2002;35:627–31.

28. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J,
Morales-González A, Esquivel-Chirino C, et al. Inflammation, oxidative
stress, and obesity. Int J Mol Sci 2011;12:3117–32.

29. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, et al.
Mitochondrial H2O2 emission and cellular redox state link excess fat intake
to insulin resistance in both rodents and humans. J Clin Invest 2009;119:
573–81.

30. Koh SX, Lee JK. S100β as a marker for brain damage and blood-brain
barrier disruption following exercise. Sports Med 2014;44:369–85.

31. Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, et al.
Seizure-promoting effect of blood-brain barrier disruption. Epilepsia
2007;48:732–42.

32. Tüskel Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A,
et al. Obesity in aging exacerbates blood-brain barrier disruption,
neuroinflammation, and oxidative stress in the mouse hippocampus: effects
on expression of genes involved in beta-amyloid generation and Alzheimer’s
disease. J Gerontol A Biol Sci Med Sci 2014;69:1212–26.

33. Kapural M, Krizanac-Bengez Lj, Barnett G, Perl J, Masaryk T, Apollo D,
et al. Serum S-100β as a possible marker of blood-brain barrier disruption.
Brain Res 2002;940:102–4.

34. Herrmann M, Curio N, Jost S, Grubic H, Ebert AD, Fork ML, et al.
Release of biochemical markers of damage to neuronal and glial brain
tissue is associated with short and long term neuropsychological outcome
after traumatic brain injury. J Neurol Neurosurg Psychiatry 2001;70:
95–100.

35. Heizmann CW, Fritz G, Schäfer BW. S100 proteins: structure, functions
and pathology. Front Biosci 2002;7:d1356–68.

36. Schulte S, Podlog LW, Hamson-Utley JJ, Stratham FG, Strüder HK. A
systematic review of the biomarker S100β: implications for sport-related
concussion management. J Athl Train 2014;49:830–50.

37. Sorci G, Ruizzi F, Arcuri C, Tubaro C, Bianchi R, Giambanco I, et al.
S100β protein in tissue development, repair and regeneration. World J Biol
Chem 2013;4:1–12.

38. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF, and
BDNF as therapeutics options for neurodegeneration. Pharmacol Ther
2013;138:155–75.

39. Bartkowska K, Turekski K, Djavadian RL. Neurotrophins and their
receptors in early development of the mammalian nervous system. Acta
Neurolith Exp (Wars) 2010;70:454–67.

40. Gold SM, Schulz KH, Hartmann S, Mladek M, Lang UE, Hellweg R, et al.
Basal serum levels and reactivity of nerve growth factor and brain-derived
neurotrophic factor to standardized acute exercise in multiple sclerosis and
controls. J Neuroimmunol 2003;138:99–105.

41. Slusher AL, Whitehurst M, Zoeller RF, Mock JT, Maharaj A, Huang CJ.
Brain-derived neurotrophic factor and substrate utilization following acute
aerobic exercise in obese individuals. J Neuroendocrinol 2015;27:370–6.

42. Eraldemir FC, Ozsoy D, Bek S, Kir H, Dervisoglu E. The relationship
between brain-derived neurotrophic factor levels, oxidative and nitrosative
stress and depressive symptoms: a study on peritoneal dialysis. Ren Fail
2015;37:722–6.

43. Jain S, Banerjee BD, Ahmed RS, Arora VK, Medratta PK. Possible role of
oxidative stress and brain derived neurotrophic factor in triazophos induced
cognitive impairment in rats. Neurochem Res 2013;38:2136–47.

44. Pun PB, Lu J, Mochchhala S. Involvement of ROS in BBB dysfunction. Free
Radic Res 2009;43:348–64.

45. Goekint M, Roelands B, Heyman E, Njemini R, Meeusen R. Influence of
citalopram and environmental temperature on exercise-induced changes in
BDNF. Neurosci Lett 2011;494:150–4.

46. Greenberg ME, Xu B, Lu B, Hempstead BL. New insights in the biology of
BDNF synthesis and release: implications in CNS function. J Neurosci
2009;29:12764–7.

47. Kuczewski N, Porcher C, Lessmann V, Medina I, Gaiarsa JL.
Activity-dependent dendritic release of BDNF and biological consequences.
Mol Neurobiol 2009;39:37–49.