Tris(2-Pyridyl)Arsine as a New Platform for Design of Luminescent Cu(I) and Ag(I) Complexes

Yan V. Demyanov 1, Evgeniy H. Sadykov 1, Marianna I. Rakhmanova 1, Alexander S. Novikov 2,3,*, Irina Yu. Bagryanskaya 4 and Alexander V. Artem’ev 1,***

Abstract: The coordination behavior of tris(2-pyridyl)arsine (Py3As) has been studied for the first time on the example of the reactions with CuI, CuBr and AgClO4. When treated with CuI in CH2Cl2 medium, Py3As unexpectedly affords the scorpionate complex [Cu(Py3As)I]·CH2Cl2 only, while this reaction in MeCN selectively leads to the dimer [Cu2(Py3As)2I2]. At the same time, the interaction of CuBr with Py3As exclusively gives the dimer [Cu2(Py3As)2Br2]. It is interesting to note that the scorpionate [Cu(Py3As)I]·CH2Cl2, upon fuming with a MeCN vapor (r.t., 1 h), undergoes quantitative dimerization into the dimer [Cu2(Py3As)2I2]. The reaction of Py3As with AgClO4 produces complex [Ag@Ag4(Py3As)4]Cl2O5 featuring a Ag-centered Ag4 tetrahedral kernel. At ambient temperature, the obtained Cu(I) complexes exhibit an unusually short-lived photoluminescence, which can be tentatively assigned to the thermally activated delayed fluorescence of (M + X) LCT type (M = Cu, L = Py3As; X = halogen). For the title Ag(I) complexes, QTAIM calculations reveal the pronounced argentophilic interactions for all short Ag···Ag contacts (3.209–3.313 Å).

Keywords: tris(2-pyridyl)arsine; Cu(I) complexes; Ag(I) clusters; metallophilic interactions; thermally activated delayed fluorescence; dimerization

1. Introduction

Over the past decade, luminescent Cu(I) and Ag(I) complexes have attracted a considerable attention due to their intriguing structural diversity [1–11] and ability to exhibit efficient phosphorescence or thermally activated delayed fluorescence (TADF) [12–19], or even dual emission [20,21]. Owing to these features, such compounds are now considered as promising emitters for energy-efficient OLEDs of second and third generations (PHOLED and TADF OLED) [22,23], just as for light-emitting electrochemical cells (LEECs) [24]. Moreover, Cu(I) and Ag(I) complexes are reported to be perspective luminescent sensors and X-ray scintillators, as well as “smart” materials, the emission of which is sensitive to the external stimuli (temperature, pressure, chemicals) [25–28].

To design luminescent Cu(I) and Ag(I) complexes, various C-, N-, and P-donor ligands such as carbenes, azaheterocycles, and phosphines are commonly exploited [29–34]. At that, “heavy pnictine(III)”-based ligands, e.g., arsines, remain almost unexplored in this regard. Meanwhile, recent studies [35–37] have demonstrated that the arsine ligands can be preferable over similar phosphines to fabricate Cu(I)-based TADF materials [38]. Indeed, the higher spin-orbital coupling (SOC) strength of arsenic (ζ = 1202 cm⁻¹) [39] against phosphorus (ζ = 230 cm⁻¹) [39] makes the emission rate of Cu(I)-arsine complexes much faster compared to that of similar Cu(I)-phosphate derivatives [38]. Considering that the triplet or TADF emitters with short decay times (<2 µs) are essential for OLED
related applications, the design of new Cu(I)-arsine complexes, just as their Ag(I) congeners, represents a daunting challenge.

Working in this field, we have paid attention to pyridylarsines, “heavy pnictogen” analogs of pyridylyphosphines. The latter are a famous family of ligands which are widely used for the design of Cu(I) and Ag(I) complexes showing very efficient TADF or/and phosphorescence [40–44]. The survey of the literature reveals, however, that the azaheterocyclic-substituted arsines are very limited in number [45–47], and their Cu(I)/Ag(I) derivatives are even scarcer [38,46,47]. Herein, for the first time, we have employed tris(2-pyridyl)arsine as a stabilizing platform for Cu(I) and Ag(I) complexes. The latter have been studied in terms of solid-state luminescence, thermal stability and electronic structure.

2. Results and Discussion
2.1. Synthesis and Characterization

It was reported that tris(2-pyridyl)phosphine (Py3P) reacted with Cu(I) halides to irreversibly give air-stable dimeric complexes [Cu2(Py3P)2X2] (X = Cl, Br, I) in high yields [48]. Therefore, it would be reasonable to expect that Py3As could also give the related complexes. Meanwhile, we have found that the reactivity of Py3As differs from that of Py3P. Namely, CuI easily reacts with Py3As in CH2Cl2 to furnish the unexpected scorpionate [Cu(Py3As)I] (1) only, isolated as a solvate 1·CH2Cl2 in 89% yield (Scheme 1). By contrast, CuBr under similar conditions affords a dimeric complex [Cu2(Py3As)2Br2] (2) in 92% yield. Our numerous attempts to synthesize CuBr-based scorpionate under the varied conditions (different Cu/Py3As ratios, diverse solvents) failed: complex 2 was already formed in all the experiments. Of note, CuCl also easily reacts with Py3As, but a product formed was found to be easily oxidized in air to produce unidentified green Cu(II) complexes.

Scheme 1. Reactions of Py3As with CuBr and Cul.

To explain the different reactivity of Py3As towards CuBr and Cul, the dimerization energies for the equilibriums 2[Cu(Py3As)X] ↔ [Cu2(Py3As)2X2] (X = Br, I) have been assessed at the PBE0/def2-TZVP level of the theory. The performed calculations reveal that the formation of a dimer is indeed thermodynamically more preferable for X = Br by 2.34 kcal·mol⁻¹, whereas scorpionate is favorable for X = I by 0.97 kcal·mol⁻¹ (Supplementary Materials, Figure S10). It should be noted, however, that an additional stabilization of scorpionate [Cu(Py3As)I] in 1·CH2Cl2 is possible through the solvate molecules (vide infra).

Our attempts to transform 2 into scorpionate [Cu(Py3As)Br] using recrystallization from different solvents failed. Meanwhile, we have found that the fuming of 1·CH2Cl2 with MeCN vapor (23 °C, 1 h) results in quantitative and irreversible dimerization into [Cu2(Py3As)2I2] (Figure 1a). The reaction is accompanied by the changing of the parent emission color of 1 (vide infra) to green, which is specific for complexes of [Cu2(Py3As)2X2] type (X = P or As). The powder X-ray diffraction (PXRD) pattern of the product [Cu2(Py3As)2I2], differs from that of [Cu2(Py3As)2Br2] (2), but closely resembles that of a similar phosphine derivative, [Cu2(Py3P)2Br2] (Figure 1b). Since the attempts to grow X-ray quality crystals of 1a met with no success, its structure has been proved by PXRD, mid-IR and 1H NMR data only. Eventually, we have found that complex 1a can be successfully synthesized in an
almost quantitative yield by the straightforward reaction of \(\text{Py}_3\text{As} \) with CuI in MeCN (r.t., 10 min) (Figure 1a). Thus, a noticeable effect of solvents on the reaction outcome has been established for the reaction of \(\text{Py}_3\text{As} \) with CuI.

![Figure 1](image1.jpg)

Figure 1. (a) MeCN-driven dimerization of 1, and direct interaction of \(\text{Py}_3\text{As} \) with CuI in MeCN; (b) associated changing in PXRD patterns: experimental diffractograms of starting complex 1 (down curve), product 1a (middle curve), and simulated PXRD pattern for \([\text{Cu}_2(\text{Py}_3\text{P})_2] \) (top curve).

In the next step, we have examined the complexation of \(\text{Py}_3\text{As} \) with Ag(I) using AgClO\(_4\) as a precursor. The reaction easily occurs in MeCN medium, and the following recrystallization of the product in water produces a fournuclear cluster \([\text{Ag}@\text{Ag}(\text{Py}_3\text{As})_4](\text{ClO}_4)_5 \cdot \text{H}_2\text{O} (3\cdot \text{H}_2\text{O}) \) in high yield (Scheme 2). Of note, the same product is also formed even when the AgClO\(_4\)/\(\text{Py}_3\text{As} \) molar ratio deviates from the stoichiometric one (5:4) being 1:1, 2:1, or 1:2. For comparison, the reaction of bis(2-pyridyl)phenylarsine (Py\(_2\)PhAs) with AgClO\(_4\) under similar conditions has also been implemented to deliver a dinuclear complex \([\text{Ag}_2(\text{Py}_2\text{PhAs})_2(\text{MeCN})_2](\text{ClO}_4)_2 \cdot \text{CH}_3\text{CN} (4\cdot \text{CH}_3\text{CN}) \), the structure of which resembles that of 2. Again, the AgClO\(_4\)/Py\(_2\)PhAs ratio does not affect the reaction outcome: only complex 2 is formed.

![Scheme 2](image2.jpg)

Scheme 2. Reactivity of \(\text{Py}_3\text{As} \) and Py\(_2\)PhAs in reactions with AgClO\(_4\).

The X-ray derived structures of the prepared complexes are displayed in Figure 2, and the selected interatomic distances are listed in Table 1. In the structure of 1-\(\text{CH}_2\text{Cl}_2 \) (Figure 2), the Cu atom is coordinated by \(\text{Py}_3\text{As} \) in a N,N',N"-tripodal manner, and the iodine atom completes a distorted tetrahedral environment of the metal (\(\tau_4 = 0.85 \)) [49]. Note that the iodine atom of 1 deviates from the axis passing from As and Cu atoms by only 0.8°, unlike the similar complex with tris(2-pyridyl)arsine oxide, where such deviation reaches 9.4° [50]. The dihedral angles between averaged pyridine planes of 1 are \(\approx 114.3^\circ, 114.4^\circ \) and 131.2°.
Figure 2. X-ray derived structures of 1·CH₂Cl₂, 2, 3·H₂O (one of three independent parts) and 4·CH₃CN. The aromatic H atoms, solvate molecules and counterions are omitted for clarity.

Table 1. Selected bond lengths (Å) and angles (°) for 1·CH₂Cl₂, 2, 3·H₂O and 4·CH₃CN.

	1·CH₂Cl₂	2	3·H₂O	4·CH₃CN
Cu–N2	2.046(3)	Cu–As		
Cu–N1	2.042(2)	Cu–N1’		
Cu–N1’	2.042(2)	Cu–N2’		
Cu–I	2.5003(6)	Cu–Br		
Symmetry code: (’) x, y, z–1/2.	Symmetry code: (’) 1–x, 1–y, 1–z.			

Complex 2 consists of two CuBr units bridged by two Py₃As ligands (μ₂-As,N,N’) in a head-to-tail manner so that an inversion center is located in the middle of the molecule (Figure 2). Therefore, each Cu atom adopts a distorted tetrahedral [Cu@As₃Br] environment (τ₄ = 0.90). The intramolecular Cu⋯Cu distances (ca. 3.94 Å) are too long for the appearance of metallophilic interactions (cf. twice van der Waals radius of Cu is 2.80 Å [51]). The dihedral angle between planes of the coordinated pyridine rings of 2 is about 124.8°. Overall, the structure of 2 closely resembles that of similar Py₃P-based complex [Cu₂(Py₃P)₂Br₂] [48].

Crystals of 3·H₂O contain three independent [Ag@Ag₄(Py₃As)₄]⁵⁺ cations charge-balanced by non-coordinated ClO₄⁻ anions, as well as the lattice water molecules. The
independent \([\text{Ag@Ag}_4(\text{Py}_3\text{As})_4]^{5+}\) cations have a similar structure, which consists of a \(C_3\)-symmetrical \(\text{Ag@Ag}_4\) tetrahedral kernel supported by four \(\text{Py}_3\text{As}\) ligands. The central Ag atom adopts a slightly distorted tetrahedral geometry \((\tau_4 = 0.98)\) constituted of four As atoms. Each vertex Ag atom of the \(\text{Ag@Ag}_4\) kernel is coordinated by three N atoms of three neighboring \(\text{Py}_3\text{As}\) ligands, thus accepting a trigonal pyramidal geometry \([3 + 1]\). Considering that the average distance between central and vertex Ag atoms of \(\text{Ag@Ag}_4\) kernel \((3.25 \, \text{Å})\) is shorter than twice van der Waals Ag radius \((3.44 \, \text{Å})\) \([51]\), argentophilic interactions could occur \((\text{vide infra})\).

To sum up, \(\text{Py}_3\text{As}\) ligands in 3 exhibit an \(\text{As}_x\text{N}_y\text{N}_z\) coordination manner that is similar to that of \(\text{Py}_3\text{P}\) in \([\text{Ag@Ag}_4(\text{Py}_3\text{P})_4]^{5+}\) complexes \([52]\).

The structure of the cationic part of 4 \(\text{CH}_3\text{CN}, [\text{Ag}_2(\text{Py}_2\text{PhAs})_2(\text{MeCN})_2]^{2+}\), is formed by two Ag(I) cations bridged by two \(\text{Py}_2\text{AsPh}\) ligands in a head-to-tail manner. Both metal cations are also ligated by \(\text{MeCN}\), thereby adopting a distorted trigonal pyramidal geometry. Again, the Ag . . . Ag distance in 4 being 3.2206(4) Å implies argentophilic interaction, which is actually taking pace according to the theoretical calculations \((\text{vide infra})\).

The synthesized compounds are moderately soluble in dichloromethane and acetonitrile \((1\,\text{CH}_2\text{Cl}_2\) and 2), or in water \((3\,\text{H}_2\text{O}\) and 4 \(\text{CH}_3\text{CN}\). All of them are air-stable, except for 4 \(\text{CH}_3\text{CN}\), which quickly loses the coordinated acetonitrile molecules upon storage in air. The \(^1\text{H}\) NMR spectra of 1-4 demonstrate one set of signals from the coordinated arsines and ancillary ligands (Figures S3–S7), indicating the existence of symmetrical species in a solution (closely uninvestigated). The mid-IR spectra of these complexes show characteristic bands of the coordinated pyridyl-containing arsenic ligands (Figure S8). Moreover, complexes 3 \(\text{H}_2\text{O}\) and 4 \(\text{CH}_3\text{CN}\) display a broad band at 1097–1099 cm\(^{-1}\) belonged of \(\nu_\text{Cl-O}\) stretching vibrations of free \(\text{ClO}_4^-\) anions, and specific bands from \(\text{H}_2\text{O}\) and \(\text{MeCN}\) molecules/ligands, respectively, i.e., \(\nu_\text{O-H} = 3610 \, \text{cm}^{-1}\) and \(\nu_\equiv\equiv\equiv = 2268 \, \text{cm}^{-1}\).

The thermal stability of the above complexes has been studied by TGA, DTG and DTA techniques under argon atmosphere (Figure S9). The solvate molecules of 1 \(\text{CH}_2\text{Cl}_2\) are lost at the range of 100–127 °C, but complex 1 itself is stable up to ≈200 °C. A higher stability is inherent in 2, which begins to decompose at about 240 °C. Compounds 3 \(\text{H}_2\text{O}\) and 4 \(\text{CH}_3\text{CN}\) lose the solvate molecules at 120–140 °C and 135–155 °C, respectively, after which they remain stable at least up to 270 °C.

2.2. Theoretical Consideration

The electronic structure of luminescent Cu(I) complexes 1 and 2 has been investigated at the PBE0/def2TZVP level of the theory (for details, see §6 in ESI) to understand electronic transitions responsible for the excitation. For both complexes, the highest occupied molecular orbital (HOMO) and nearby HOMO-n are largely contributed by metal’ d-orbitals and the lone pairs in halogen atoms (Figure 3, Figures S11, S12; Tables S2, S3). The lowest unoccupied molecular orbital (LUMO) and nearby LUMO+n are mainly \(\pi\)-orbitals on the pyridine rings (Figure 3, Figures S11, S12; Tables S2, S3). Interestingly, a lone pair in As atom does not contribute to the highest MOs \((\text{HOMO–HOMO-6})\). The fact that the frontier MOs of 1 and 2 are well separated in the space indicates a quite small energy gap between the lowest singlet \((S_1)\) and triplet \((T_1)\) exited states. Overall, the predicted HOMO/LUMO distribution is very typical for emitting TADF Cu(I) halide complexes.

A detailed consideration of HOMOs of 1 and 2 reveals small energy gaps separation between the HOMO and HOMO-1 levels which are, moreover, populated by d-orbitals with different spatial orientations (Figures S11 and S12). In particular, the HOMO-1/HOMO separation is 140 cm\(^{-1}\) for 2, and it is just 2 cm\(^{-1}\) for 1. According to the literature \([12,13]\), such a scenario demonstrates a strong SOC mixing of the \(S_1\) and \(T_1\) states, which are originated from \(\text{HOMO-1} \rightarrow \text{LUMO and HOMO} \rightarrow \text{LUMO transitions, respectively. This, in turn, accelerates the rates of both } S_1 \rightarrow T_1\) and \(T_1 \rightarrow S_1\) spin-forbidden processes, and hence, increases total rate of the luminescence. The experimental results fully confirm these predictions \((\text{vide infra})\). TD-DFT computations of 1 and 2 testify to the \((M + X)\) LCT character \((X = \text{Br or I})\) of the low-energy absorptions (Tables S4, S5) that is specific for the related complexes. Furthermore, the \((M + X)\) LCT nature of the lowest excited states is
confirmed by a specific spin distribution in the computed T_1 state of 1 (Figure S15). The lowest (LSOMO) and highest (HSOMO) single occupied molecular orbitals of the T_1 state of 1 (Figure S15) closely resemble HOMO and LUMO in its S_0 state (Figure 3). The calculated $\Delta E(T_1 - S_0)$ energy gap for the optimized states of 1 being 1.81 eV reasonably agrees with the emission energy of 1-CH$_2$Cl$_2$ at a pure phosphorescence regime (77 K), i.e., 1.98 eV or 625 nm (vide infra). Therefore, one can expect that the emitting excited states of the compounds discussed should be of the (M + X) LCT type.

![Figure 3](image-url). Frontier orbitals of 1 and 2 calculated at PBE0/def2TZVP level (isosurface = 0.045).

For Ag(I) complexes 3 and 4, which appear to be almost non-emissive, argentophilic interactions have been examined by QTAIM (quantum theory “atoms in molecule”) method at the ωB97XD/DZP-DKH level (for details, see §6.3 in ESI). The QTAIM analysis of model structures reveals the presence of the bond critical points (3, –1) for metallophilic interactions in 3 and 4 (Table 2). The low magnitude of the electron density (0.017–0.021 a.u.), positive values of the Laplacian of electron density (0.028–0.030 a.u.), and negative energy density (from –0.002 to –0.003 a.u.) in the bond critical points (3, –1) for Ag(I)···Ag(I) interactions in 3 and 4 are typical for metallophilic interactions in other metal complexes [53–59]. The balance between the Lagrangian kinetic energy $G(\mathbf{r})$ and potential energy density $V(\mathbf{r})$ at the bond critical points (3, –1) for Ag(I)···Ag(I) interactions in 3 and 4 [viz. $-G(\mathbf{r})/V(\mathbf{r}) < 1$] shows some covalent contribution in these short contacts [60]. The Laplacian of electron density is typically decomposed into the sum of contributions along the three principal axes of maximal variation, giving three eigenvalues of the Hessian matrix (λ_1, λ_2 and λ_3), and the sign of λ_2 can be utilized to distinguish the bonding (attractive, $\lambda_2 < 0$) weak interactions from the non-bonding ones (repulsive, $\lambda_2 > 0$) [61,62]. Thus, the Ag(I)···Ag(I) interactions in 3 and 4 have an attractive character. For illustration, the calculated electron density distribution at the metal atoms of 4 is plotted in Figure 4.
Table 2. Values of the density of all electrons – ρ(r), Laplacian of electron density – ∇²ρ(r) and appropriate λ₂ eigenvalues, energy density – Hₜ, potential energy density – V(r), Lagrangian kinetic energy – G(r), and electron localization function – ELF at the bond critical points (3, –1), corresponding to Ag(I)···Ag(I) interactions in 3 and 4.

Ag···Ag Contact	ρ(r)	∇²ρ(r)	λ₂	Hₜ	V(r)	G(r)	ELF
3.241 Å	0.019 a.u.	0.030 a.u.	−0.019 a.u.	−0.003 a.u.	−0.013 a.u.	0.010 a.u.	0.125 a.u.
3.236 Å	0.019 a.u.	0.029 a.u.	−0.019 a.u.	−0.003 a.u.	−0.013 a.u.	0.010 a.u.	0.129 a.u.
3.226 Å	0.020 a.u.	0.030 a.u.	−0.020 a.u.	−0.003 a.u.	−0.014 a.u.	0.011 a.u.	0.129 a.u.
3.302 Å	0.017 a.u.	0.029 a.u.	−0.017 a.u.	−0.003 a.u.	−0.012 a.u.	0.009 a.u.	0.112 a.u.
3.249 Å	0.019 a.u.	0.029 a.u.	−0.019 a.u.	−0.003 a.u.	−0.013 a.u.	0.010 a.u.	0.124 a.u.
3.252 Å	0.019 a.u.	0.029 a.u.	−0.019 a.u.	−0.003 a.u.	−0.013 a.u.	0.010 a.u.	0.124 a.u.
3.281 Å	0.018 a.u.	0.029 a.u.	−0.018 a.u.	−0.002 a.u.	−0.012 a.u.	0.010 a.u.	0.117 a.u.
3.209 Å	0.020 a.u.	0.030 a.u.	−0.020 a.u.	−0.003 a.u.	−0.014 a.u.	0.011 a.u.	0.136 a.u.
3.222 Å	0.020 a.u.	0.029 a.u.	−0.020 a.u.	−0.003 a.u.	−0.014 a.u.	0.011 a.u.	0.134 a.u.
3.214 Å	0.020 a.u.	0.030 a.u.	−0.020 a.u.	−0.003 a.u.	−0.014 a.u.	0.011 a.u.	0.134 a.u.
3.247 Å	0.019 a.u.	0.030 a.u.	−0.019 a.u.	−0.003 a.u.	−0.013 a.u.	0.010 a.u.	0.125 a.u.
3.313 Å	0.017 a.u.	0.029 a.u.	−0.017 a.u.	−0.002 a.u.	−0.011 a.u.	0.009 a.u.	0.110 a.u.

Complex 4

| 3.221 Å | 0.021 a.u. | 0.028 a.u. | −0.021 a.u. | −0.003 a.u. | −0.014 a.u. | 0.011 a.u. | 0.156 a.u. |

Figure 4. Contour line diagram of the Laplacian of electron density distribution ∇²ρ(r), bond paths, and selected zero-flux surfaces (left panel), visualization of electron localization function (ELF, center panel) and reduced density gradient (RDG, right panel) analyses for metallophilic interactions in complex 4. Bond critical points (3, –1) are shown in blue, nuclear critical points (3, –3)—in pale brown, ring critical points (3, +1)—in orange, bond paths are shown as pale brown lines, length units – Å, and the color scale for the ELF and RDG maps is presented in a.u.

2.3. Photoluminescence of 1 and 2

At ambient temperature, Cu(I) complexes 1, 1a and 2 emit pronounced solid state photoluminescence (PL), whereas Ag(I) derivatives 3 and 4 appear to be almost non-emissive. The recorded emission and excitation spectra of 1, 1a and 2 are shown in Figure 5, and the measured PL properties are given in Table 3. As follows from these data, scorpionate 1 manifests an orange PL, while dimers 1a and 2 emit in a green region. In the terms of PL quantum yields (PLQYs), the emission of the studied compounds is moderate at 298 K (10–14%). All the emission profiles are of broad and structureless shape that is inherent in
PL of the charge transfer origin [14]. The corresponding excitation curves are displayed by typical bands extending from the UV-edge and are sharply falling close at ≈450 nm (1a, 2) or 590 nm (1). The fact that the emission and emission profiles of iodide 1a and bromide 2 are almost superimposable is not confusing; previously, the similar cases were documented for other halide complexes, including the related ones [38,48,63]. The PL lifetimes of 1, 1a and 2 at 298 K are remarkably short (0.8–1.9 μs) compared to the most known Cu(I) complexes. Accordingly, the radiative constants (k_r = PLQY/τ) being (0.53–1.75)×10^5 s^{-1} are relatively high, thereby indicating a strong SOC effect that is also predicted by DFT calculations (vide supra). For comparison, radiative rates (k_r) of the similar Py3P-based complexes [Cu_2(Py3P)_2X_2] at 298 K are much lower: 2.9×10^4 and 2.6×10^4 s^{-1} for X = Br and I, respectively. The acceleration of the emission rates observed in the arsine complexes is obviously attributed to much stronger SOC effect of arsenic compared to that of phosphorus. Previously, this effect was already demonstrated for Cu(I)-arsine complexes [38].

![Figure 5](image)

Figure 5. Emission (a) and excitation (b) spectra of 1·CH_2Cl_2, 2 and 3·H_2O at 300 K. The emission spectra were recorded at λ_ex = 390 nm (for 1a, 2) and 500 nm (1·CH_2Cl_2).

Table 3. Luminescent characteristics of Cu(I) complexes 1, 1a and 2.

Complex	λ_em, nm	PL Lifetime, μs	PLQY, % [298 K]
	298 K	77 K	
1·CH_2Cl_2	605	625	1.9
1a			0.8
2	510	520	0.9

^a λ_em = 500 nm; ^b λ_em = 390 nm.

Temperature-dependent PL spectra of 1 and 2 (Figure 6) demonstrate the significant enhancement of PL intensity upon cooling that is accompanied by a slight bathochromic shift of the bands by 10–20 nm (Table 3). When passing from 298 to 77 K, the PL lifetimes of 1 and 2 increase by 13 and 25 times, thus amounting 25 and 23 μs at 77 K, respectively. Taken together, these observations suggest the TADF manifestation at ambient temperature and phosphorescence at 77 K. According to the DFT and TD-DFT computations, the ^1(M + X) LCT emissive state is responsible for TADF (298 K), and ^3(M + X) LCT state is active at the phosphorescence regime (77 K). It should be underlined that the same emission scheme was previously proved for the related dimeric complexes based on Py3P and PhPy2As ligands. The Δ_E_{ST} energy gaps between the ^1(M + X) LCT and ^3(M + X) LCT states of 1 and 2 can be roughly estimated by the red-shifting of the left flank of emission bands at their half height (Figure S17). The estimated Δ_E_{ST} gaps, being 340 and 890 cm^{-1} for 1 and 2, respectively, fall close to the range of such values (Δ_E_{ST} < 1500 cm^{-1}) for TADF-active Cu(I) complexes [12–14].
Figure 6. Temperature dependent emission spectra of 1·CH₂Cl₂ (a) and 2 (b) recorded at λ_ex = 500 and 380 nm, respectively.

3. Materials and Methods

3.1. General

All synthetic procedures were carried out under an argon atmosphere using the standard Schlenk technique. Cul (≥99%, Sigma, Gillingham, UK), AgClO₄ (97%, Alfa Aesar, Heysham, UK), and MeCN (HPLC grade, Cryochrom, St. Petersburg, Russia) were used as purchased. Prior to use, CuBr was freshly synthesized by the treatment of CuBr₂ with Cu powder in MeCN solution. Tris(2-pyridyl)arsine, [50] and bis(2-pyridyl)phenylarsine (Py₂AsPh) [38] were prepared according to the literature procedures. ¹H NMR spectra were recorded using a Bruker AV-500 spectrometer at 500.13 MHz. Chemical shifts were reported in δ (ppm) relative to residual peaks of protonated CDCl₃, DMSO-d₆, and CD₃CN. FT-IR spectra were recorded on a Bruker Vertex 80 spectrometer. Powder X-ray diffraction patterns were recorded on a Shimadzu XRD-7000 diffractometer (Cu-Kα radiation, Ni – filter, 3–35° 2θ range, 0.03° 2θ step, 5s per point). Thermogravimetric analyses (TGA – c-DTA – DTG) were carried out in a closed Al₂O₃ pan under argon flow at a 10 °C/min⁻¹ heating rate using a NETZSCH STA 449 F1 Jupiter STA. CHN microanalyses were performed on a MICRO cube analyzer.

Emission and excitation spectra were recorded on a Fluorolog 3 spectrometer (Horiba Jobin Yvon) equipped with a cooled PC177CE-010 photon detection module and an R2658 photomultiplier. The absolute PLQYs were determined at 298 K using a Fluorolog 3 Quantaphi integrating sphere. Temperature-dependent excitation and emission spectra as well as emission decays were recorded using an Optistat DN optical cryostat (Oxford Instruments) integrated with the above spectrometer.

3.2. [Cu(Py₃As)]I · CH₂Cl₂ (1·CH₂Cl₂)

A mixture of Cul (16.5 mg, 0.087 mmol) and Py₃As (30 mg, 0.097 mmol) in CH₂Cl₂ (2 mL) was stirred at room temperature for 10 min. To the resulting solution, hexane (1 mL) was added dropwise and a precipitate formed was centrifuged and dried in air. Orange powder. Yield: 39 mg (89%). Single crystals of 1·CH₂Cl₂ were grown by slow evaporation of CH₂Cl₂ solution for overnight. ¹H NMR (500.13 MHz, CDCl₃, ppm), δ: 9.09 (ddd, J = 5.0 Hz, J = 1.9 Hz, J = 0.9 Hz, 3H, H⁶ in Py), 7.90 (dt, J = 7.5 Hz, J = 1.2 Hz, 3H, H⁴ in Py), 7.71 (dt, J = 7.6 Hz, J = 1.8 Hz, 3H, H⁵ in Py), 7.35 (ddd, J = 7.7 Hz, J = 5.0 Hz, J = 1.3 Hz, 3H, H³ in Py), 6.38 (w), 669 (w), 702 (m), 733 (s), 758 (vs), 773 (m), 787 (m), 897 (vw), 1003 (m), 1045 (m), 1088 (w), 1103 (w), 1152 (m), 1227 (w), 1271 (m), 1422 (s), 1447 (vs), 1553 (m), 1572 (s), 1636 (vw), 2955 (w), 3028 (w), 3042 (w). Calculated for C₁₆H₁₄AsCuCl₂N₃ (584.58): C, 32.9; H, 2.4; N, 7.2. Found: C, 33.0; H, 2.5; N, 7.2.
3.3. $[\text{Cu}_2(\text{Py}_3\text{As})_2\text{I}_2] \ (\textbf{1a})$

Method 1: A solid sample of $\text{1-CH}_2\text{Cl}_2 \ (15 \text{ mg, 0.026 mmol})$ was placed in a 3 mL vial, which was then placed in a closed 50 mL weighing bottle containing MeCN (\approx0.5 mL) on a bottom. Exposure of a solid sample $\text{1-CH}_2\text{Cl}_2$ under MeCN vapor at ambient temperature for 1 h results in the formation of $\textbf{1a}$ as an off-white solid. Yield: 99% (12.5 mg).

Method 2: A mixture of $\text{Cul} \ (8.5 \text{ mg, 0.045 mmol})$ and $\text{Py}_3\text{As} \ (15 \text{ mg, 0.049 mmol})$ in $\text{CH}_3\text{CN} \ (1 \text{ mL})$ was stirred at room temperature for 10 min. The formed precipitate was centrifuged and dried in vacuum. White powder. Yield: 40 mg (89%).

$^1\text{H NMR (500.13 MHz, CD}_2\text{CN, ppm)}$, δ: 8.88 (d, $J = 5.0 \text{ Hz, 6H, H}^6 \text{ in Py}$), 8.03 (d, $J = 7.6 \text{ Hz, 6H, H}^5 \text{ in Py}$), 7.85 (t, $J = 7.7 \text{ Hz, 6H, H}^3 \text{ in Py}$), 7.49-7.43 (m, 6H, H1 in Py). FT-IR (KBr, cm$^{-1}$): 405 (w), 419 (m), 459 (w), 474 (m), 484 (s), 617 (w), 637 (m), 741 (w), 756 (vs), 779 (m), 988 (m), 1007 (m), 1049 (m), 1088 (w), 1103 (w), 1119 (w), 1155 (m), 1227 (w), 1275 (m), 1410 (s), 1423 (vs), 1447 (w), 1558 (s), 1570 (s), 1578 (s), 1634 (w), 2974 (m), 3038 (m), 3059 (m). Calculated for $\text{C}_{30}\text{H}_{24}\text{As}_2\text{Cu}_2\text{I}_2\text{N}_6 \ (999.29)$: C, 36.1; H, 2.4; N, 8.4. Found: C, 36.0; H, 2.4; N, 8.3.

3.4. $[\text{Cu}_2(\text{Py}_3\text{As})_2\text{Br}_2] \ (\textbf{2})$

A mixture of CuBr (12 mg, 0.083 mmol) and $\text{Py}_3\text{As} \ (26 \text{ mg, 0.084 mmol})$ in $\text{CH}_3\text{CN} \ (1 \text{ mL})$ was stirred at room temperature for 10 min. The formed precipitate was centrifuged and dried in vacuum. White powder. Yield: 69 mg (92%). Single crystals of $\textbf{2}$ were grown by a diffusion of Et$_2$O vapor into an CH$_3$CN solution for overnight. $^1\text{H NMR (500.13 MHz, CDCl}_3$, ppm), δ: 9.07 (d, $J = 4.8 \text{ Hz, 6H, H}^6 \text{ in Py}$), 7.92-7.86 (m, 6H, H5 in Py), 7.71 (t, $J = 7.9 \text{ Hz, 6H, H}^3 \text{ in Py}$), 7.38-7.32 (m, 6H, H1 in Py). FT-IR (KBr, cm$^{-1}$): 405 (m), 417 (m), 459 (w), 474 (m), 490 (s), 619 (w), 637 (m), 671 (w), 696 (w), 733 (w), 743 (w), 766 (vs), 775 (vs), 889 (vw), 966 (w), 989 (m), 1007 (m), 1045 (m), 1082 (w), 1105 (w), 1121 (w), 1153 (m), 1233 (vw), 1277 (w), 1414 (s), 1427 (s), 1449 (vs), 1558 (m), 1578 (s), 1638 (vw), 2953 (w), 2978 (w), 3032 (m), 3057 (w). Calculated for $\text{C}_{30}\text{H}_{24}\text{As}_2\text{Cu}_2\text{Br}_2\text{N}_6 \ (905.29)$: C, 39.8; H, 2.7; N, 9.3. Found: C, 39.7; H, 2.8; N, 9.3.

3.5. $[\text{Ag}_4(\text{Py}_3\text{As})_4]\text{[ClO}_4]_2\text{·3H}_2\text{O} \ (3\text{-3H}_2\text{O})$

A mixture of AgClO$_4$ (20.5 mg, 0.099 mmol) and $\text{Py}_3\text{As} \ (25 \text{ mg, 0.081 mmol})$ in $\text{CH}_3\text{CN} \ (1 \text{ mL})$ was stirred at room temperature for 10 min. To the resulting solution, diethyl ether (1 mL) was then added, and the precipitate formed was centrifuged and dried in vacuum. White powder. Yield: 156 mg (83%). Single crystals of $\textbf{3}$ were grown by slow evaporation of water solution for few days. $^1\text{H NMR (500.13 MHz, CD}_2\text{CN, ppm)}$, δ: 8.27-8.21 (m, 12H, H6 in Py), 7.89 (t, $J = 7.6 \text{ Hz, 12H, H}^5$ in Py), 7.40 (t, $J = 6.5 \text{ Hz, 12H, H}^3$ in Py), 7.02 (d, $J = 7.8 \text{ Hz, 12H, H}^1$ in Py). FT-IR (KBr, cm$^{-1}$): 405 (m), 467 (s), 507 (m), 621 (vs), 665 (m), 702 (m), 758 (s), 903 (m), 928 (m), 1005 (s), 1047 (vs), 1082 (vs), 1097 (vs), 1165 (m), 1246 (vw), 1287 (w), 1427 (s), 1452 (s), 1558 (m), 1578 (s), 1630 (w), 2995 (w), 3084 (m), 3610 (w). Calculated for $\text{C}_{60}\text{H}_{54}\text{As}_4\text{Ag}_5\text{N}_{12}\text{Cl}_3\text{O}_23 \ (2327.43)$: C, 31.0; H, 2.3; N, 7.2. Found: C, 30.9; H, 2.5; N, 7.2.

3.6. $[\text{Ag}_2(\text{Py}_2\text{AsPh})_2(\text{MeCN})_2]\text{[ClO}_4]_2\text{·CH}_3\text{CN} \ (4\text{-CH}_3\text{CN})$

A mixture of AgClO$_4$ (15 mg, 0.073 mmol) and bis(2-pyridyl)phenylarsine (25 mg, 0.081 mmol) in $\text{CH}_3\text{CN} \ (1 \text{ mL})$ was stirred at room temperature for 10 min. To the resulting solution, diethyl ether (1 mL) was then added, and the precipitate formed was centrifuged and dried in vacuum. White powder. Yield: 72 mg (85%). Single crystals of $\textbf{4}$ were grown by a diffusion of Et$_2$O vapor into an CH$_3$CN solution for overnight. $^1\text{H NMR (500.13 MHz, DMSO-d}_6$, ppm), δ: 8.75 (d, $J = 5.0 \text{ Hz, 4H, H}^6$ in Py), 7.87 (t, $J = 7.8 \text{ Hz, 4H, H}^5$ in Py), 7.56-7.46 (m, 4H, H6 in Py, o-H, m-H and p-H in Ph), 7.43 (d, $J = 7.9 \text{ Hz, 4H, H}^3$ in Py). FT-IR (KBr, cm$^{-1}$): 405 (w), 469 (m), 488 (m), 623 (s), 696 (m), 743 (s), 764 (m), 926 (w), 989 (m), 1001 (m), 1049 (s), 1099 (vs), 1161 (m), 1236 (vw), 1287 (w), 1425 (s), 1437 (m), 1454 (s), 1483 (w), 1560 (m), 1580 (m), 1636 (w), 1973 (vw), 2251 (w), 2268 (w), 3059 (w).
3.7. X-ray Crystallography

The data were collected on a Bruker Kappa Apex II CCD diffractometer using \(\varphi \), \(\omega \)-scans of narrow (0.5\(^\circ\)) frames with Mo K\(\alpha \) radiation (\(\lambda = 0.71073 \) Å) and a graphite monochromator. The structures were solved by direct methods SHELXL97 and refined by a full matrix least-squares anisotropic-isotropic (for H atoms) procedure using the SHELXL-2018/3 programs set [64]. Absorption corrections were applied using the empirical multiscan method with the SADABS program [65]. The positions of the hydrogen atoms were calculated with the riding model. Free solvent accessible volume in compound 3 derived from PLATON routine analysis was found to be 8.5\% (1001.0 Å\(^3\)). This volume is occupied by H\(\cdot \)O molecules, but this structure is based on very weak data (a better dataset cannot be obtained). Therefore, we employed the PLATON/SQUEEZE procedure to calculate the contribution to the diffraction from H\(\cdot \)O molecules and thereby produced a set of H\(\cdot \)O-free diffraction intensities. The final formula of 3, \(\text{C}_{60}\text{H}_{48}\text{Ag}_{5}\text{As}_{4}\text{N}_{12}\text{Cl}_2\text{O}_{10} \), was derived from the SQUEEZE results. The crystallographic data and details of the structure refinements are summarized in Table S1.

CCDC 2090740, 2090741, 2126017 and 2126016 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center at https://www.ccdc.cam.ac.uk/structures/ (accessed on 1 July 2022).

4. Conclusions

In conclusion, the reactions of tris(2-pyridyl)arsine (Py\(_3\)As), an earlier unexplored ligand, with CuI, CuBr, and AgClO\(_4\) have been studied. The interaction with CuI features a remarkable solvent-directing effect on the product structure. This reaction in CH\(_2\)Cl\(_2\) results in the crystallization of mononuclear scorpionate [Cu(Py\(_3\)As)]\(\cdot \)CH\(_2\)Cl\(_2\), whilst MeCN favors the selective formation of the dimer [Cu\(_2\)(Py\(_3\)As)]\(\cdot \)I\(_2\)]. Noteworthy, scorpionate [Cu(Py\(_3\)As)]\(\cdot \)CH\(_2\)Cl\(_2\), when fumed with MeCN vapor, easily (r.t., 1 h) and quantitatively dimerizes into [Cu\(_2\)(Py\(_3\)As)]\(\cdot \)I\(_2\)]. On the contrary, the treatment of Py\(_3\)As with CuBr, regardless of solvent nature, affords the dimer [Cu\(_2\)(Py\(_3\)As)]\(\cdot \)Br\(_2\) only. At ambient temperature, the above Cu(I) complexes manifest visible photoluminescence with noticeably short decay times (0.8–1.9 \(\mu\)s) and moderate quantum yields (10–14\%). Taking into account the results of DFT computations and temperature-dependent photophysical measurements, the emission observed has been tentatively assigned to the thermally activated delayed fluorescence of (M + X) LCT kind (M = Cu, L = Py\(_3\)As; X = halogen).

Complexes of Py\(_3\)As with AgClO\(_4\) 3 results in the assembly of complex [Ag@Ag\(_8\)(Py\(_3\)As)\(_4\)](ClO\(_4\))\(_5\) containing Ag-centered tetrahedron Ag@Ag\(_4\) supported by four Py\(_3\)As ligands. According to QTAIM analysis of this cluster, argentophilic interactions between its central and peripheral Ag(I) cations are observed.

To sum up, our findings reveal that the coordination chemistry of Py\(_3\)As in some cases, e.g., in the reactions with Cu halides, may differ from that of Py\(_3\)P. Moreover, the Py\(_3\)As-derived Cu(I) complexes demonstrate higher emission rates (\(k_{\ell}\)) at 298 K compared to the similar Py\(_3\)P-based analogs, thus highlighting the prospects of employing the arsine ligands for the design of short-lived TADF materials.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules27186059/s1, Table S1. X-ray crystallographic data for 1-CH\(_2\)Cl\(_2\), 2-CH\(_3\)H\(_2\)O and 4-CH\(_3\)CN; Figure S1. Experimental and simulated PXRD patterns of an as-synthesized sample of 1-CH\(_2\)Cl\(_2\); Figure S2. Experimental and simulated PXRD patterns of an as-synthesized sample of 2; Figure S3. \(^1\)H NMR spectrum of 1-CH\(_2\)Cl\(_2\) (CDCl\(_3\), 25 \(^\circ\)C); Figure S4. \(^1\)H NMR spectrum of 1a (CD\(_3\)CN, 25 \(^\circ\)C); Figure S5. \(^1\)H NMR spectrum of 2 (CDCl\(_3\), 25 \(^\circ\)C); Figure S6. \(^1\)H NMR spectrum of 3-CH\(_3\)H\(_2\)O (CD\(_3\)CN, 25 \(^\circ\)C); Figure S7. \(^1\)H NMR spectrum of 4-CH\(_3\)CN (DMSO-d\(_6\), 25 \(^\circ\)C); Figure S8. FT-IR spectra for the complexes 1-CH\(_2\)Cl\(_2\), 1a, 2, 3-CH\(_3\)H\(_2\)O and 4-CH\(_3\)CN.
in the 400–3250 cm\(^{-1}\) region; Figure S9. TGA\&DTG curves for 1-CH\(_2\)Cl\(_2\), 2, 3-3H\(_2\)O and 4 CH\(_3\)CN; Figure S10. Gibbs free energies calculated for the equilibria 2 [Cu(Py\(_3\)As)]\(\text{X}\) ↔ [Cu\(_2\)(Py\(_3\)As)\(_2\)]\(\text{X}\)\(_2\) (X = Br, I) at PBE0/def2TZVP level; Figure S11. Selected frontier molecular orbitals (isovalue = 0.04) calculated for the optimized S\(_0\) state geometry of [Cu(AsPy\(_3\))]\(\text{I}\) (1) at PBE0/def2TZVP level; Figure S12. Selected frontier molecular orbitals (isovalue = 0.04) calculated for the optimized S\(_0\) state geometry of [Cu\(_2\)(Py\(_3\)As)\(_2\)]\(\text{Br}\)\(_2\) (2) at PBE0/def2TZVP level; Figure S13. The UV-Vis spectrum of [Cu(AsPy\(_3\))]\(\text{I}\) (1) (CH\(_2\)Cl\(_2\), 298 K) and absorption patterns (vertical bars) calculated at the TD-PBE0/def2TZVP level; Figure S14. The UV-Vis spectrum of [Cu\(_2\)(Py\(_3\)As)\(_2\)]\(\text{Br}\)\(_2\) (2) (MeCN, 298 K) and absorption patterns (vertical bars) calculated at the TD-PBE0/def2TZVP level; Table S2. Atomic contributions to selected molecular orbitals of [Cu(AsPy\(_3\))]\(\text{I}\) (1) in the ground state (S\(_0\)) geometry according Mulliken population analysis at PBE0/def2TZVP level; Table S3. Atomic contributions to selected molecular orbitals of [Cu\(_2\)(Py\(_3\)As)\(_2\)]\(\text{Br}\)\(_2\) (2) in the ground state (S\(_0\)) geometry according Mulliken population analysis at PBE0/def2TZVP level; Table S4. Calculated (TD-PBE0/def2-TZVP) energies and characters of the main singlet excitations (f > 0.01) of [Cu(AsPy\(_3\))]\(\text{I}\) (1); Table S5. Calculated (TD-PBE0/def2-TZVP) energies and characters of the main singlet excitations (f > 0.01) of [Cu\(_2\)(Py\(_3\)As)\(_2\)]\(\text{Br}\)\(_2\) (2); Figure S15. LSOMO and HSOMO (isovalue = 0.04) calculated for the optimized gas phase T\(_1\) state geometry of [Cu(AsPy\(_3\))]\(\text{I}\) (1) at PBE0/def2TZVP level; Figure S16. Temperature dependent emission spectra of 1-CH\(_2\)Cl\(_2\) (a) and 2 (b) recorded at \(\lambda_{\text{exc}} = 595\) and 520 nm, respectively; Figure S17. Red-shifting emission profile of 1-CH\(_2\)Cl\(_2\) (left) and 2 (right) upon cooling from 298 to 77 K; Figure S18. PL decay kinetics for 1-CH\(_2\)Cl\(_2\) (left) and 2 (right). Citation of reference [66–78].

Author Contributions: Investigation data curation, visualization, Y.V.D.; Photophysical measurements, M.I.R.; DFT calculations, E.H.S. and A.S.N.; Crystallography, I.Y.B.; Project conceptualization, administration, supervision, writing-review and editing, and funding acquisition, A.V.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Russian Science Foundation (Project No. 21-73-10110) and the Ministry of Science and Higher Education of the Russian Federation (projects No. 121031700321-3, No. 121031700313-8, and No. 1021051503141-0-1-4.1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The DFT calculations and topological analysis of the electron density distribution were supported by the RUDN University Strategic Academic Leadership Program. We thank Andrey Baranov (Nikolaev Institute of Inorganic Chemistry) for help in synthesis of 1. The authors would like to acknowledge the Multi-Access Chemical Research Center SB RAS for spectral and analytical measurements.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples used are available from the authors. Crystallographic details, \(^1\)H NMR and FT-IR spectra, TGA\&DTG curves, and computation details.

References
1. Lescop, C. Coordination-Driven Supramolecular Synthesis Based on Bimetallic Cu(I) Precursors: Adaptive Behavior and Luminescence. Chem. Rec. 2020, 21, 544–557. [CrossRef] [PubMed]
2. Marchenko, R.D.; Sukhikh, T.S.; Ryadun, A.A.; Potapov, A.S. Synthesis, Crystal Structure, and Luminescence of Cadmium(II) and Silver(II) Coordination Polymers Based on 1,3-Bis(1,2,4-triazol-1-yl)adamantane. Molecules 2021, 26, 5400. [CrossRef] [PubMed]
3. Moutier, F.; Schiller, J.; Calvez, G.; Lescop, C. Self-assembled luminescent Cu(I) tetranuclear metallacycles based on 3,3′-bipyridine ligands. Org. Chem. Front. 2021, 8, 2893–2902. [CrossRef]
4. Marchenko, R.D.; Lysova, A.A.; Samsonenko, D.G.; Dybtsev, D.N.; Potapov, A.S. Synthesis, structural diversity, luminescent properties and antibacterial effects of cadmium(II) and silver(I) coordination compounds with bis(1,2,3-benzotriazol-1-yl)alkanes. Polyhedron 2020, 177, 114330. [CrossRef]
5. Khisamov, R.; Sukhikh, T.; Bashirov, D.; Ryadun, A.; Konchenko, S. Structural and Photophysical Properties of 2,1,3-Benzothiadiazole-Based Phosph(III)azine and Its Complexes. Molecules 2020, 25, 2428. [CrossRef]
6. Sukhikh, T.S.; Khisamov, R.N. Unexpectedly Long Lifetime of the Excited State of Benzothiadiazole Derivative and Its Adducts with Lewis Acids. Molecules 2021, 26, 2030. [CrossRef]
7. Abramov, P.A.; Komarov, V.Y.; Pishur, D.A.; Sulyaeva, V.S.; Benassi, E.; Sokolov, M.N. Solvatomorphs of (Bu\(_4\)N)\(_2\)[(Ag(N\(_2\)-py))\(_2\)Mo\(_3\)O\(_{28}\)]. Structure, colouration and phase transition. CrystEngComm. 2021, 23, 8527–8537. [CrossRef]
8. Chupina, A.V.; Shayapov, V.; Novikov, A.S.; Volchek, V.V.; Benassi, E.; Abramov, P.A.; Sokolov, M.N. [(AgL)2Mo8O26]− complexes: A combined experimental and theoretical study. *Dalton Trans.* 2020, 49, 1522–1530. [CrossRef]

9. Chupina, A.V.; Mukhacheva, A.A.; Abramov, P.A.; Sokolov, M.N. Complexation and Isomerization of [β-MoO28]− in the Presence of Ag+ and DME. *J. Struct. Chem.* 2020, 61, 299–308. [CrossRef]

10. Shimakova, A.A.; Berezin, A.S.; Abramov, P.A.; Sokolov, M.N. Self-Assembly of Ag+/PW11NbO40− Complexes in Nonaqueous Solutions. *Inorg. Chem.* 2020, 59, 1853–1862. [CrossRef]

11. Li, J.-J.; Liu, C.-Y.; Guan, Z.-J.; Lei, Z.; Wang, Q.-M. Anion-Directed Regulation of Structures and Luminescence of Heterometallic Clusters. *Angew. Chem. Int. Ed.* 2021, 61, e20201549.

12. Leitl, M.I.; Zink, D.M.; Schinabeck, A.; Baumann, T.; Volz, D.; Yersin, H. Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties. *Top Curr. Chem.* 2016, 374, 141–174. [CrossRef]

13. Yersin, H.; Rausch, A.F.; Czerwiencie, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. *TRIPLET*. 2022, 754–760. [CrossRef]

14. Leitl, M.J.; Zink, D.M.; Schinabeck, A.; Baumann, T.; Volz, D.; Yersin, H. Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties. *Top Curr. Chem.* 2016, 374, 141–174. [CrossRef]

15. Zhu, K.; Cheng, Z.; Rangan, S.; Cotlet, M.; Du, J.; Kasaee, L.; Kasaee, L.; Teat, S.J.; Liu, W.; Chen, Y.; et al. A New Type of Hybrid Copper Iodide as Nontoxic and Ultrastable LED Emissive Material. *ACS Energy Lett.* 2021, 6, 2565–2574. [CrossRef]

16. Hei, X.; Liu, W.; Zhu, K.; Teat, S.J.; Jensen, S.; Li, M.; O’Carroll, D.M.; Wei, K.; Tan, K.; Cotlet, M.; et al. Blending Ionic and Coordinate Bonds in Hybrid Semiconductor Materials: A General Approach toward Robust and Solution-Processable Covalent/Coordinate Network Structures. *J. Am. Chem. Soc.* 2020, 142, 4242–4253. [CrossRef]

17. Vinogradova, K.A.; Plyusnin, V.F.; Kupyrakov, A.S.; Rachmanova, M.I.; Pervukhina, N.V.; Naumov, D.Y.; Sheludyakova, L.A.; Nikolaenko, E.B.; Krivopol, V.P.; Bushuev, M.B. Halide impact on emission of mononuclear copper(I) complexes with pyrazolylpyrimidine and triphenylphosphine. *Dalton Trans.* 2014, 43, 2953–2960. [CrossRef]

18. Shekhovtsov, N.A.; Kokina, T.E.; Vinogradova, K.A.; Panarin, A.Y.; Rachmanova, M.I.; Naumov, D.Y.; Pervukhina, N.V.; Nikolaenko, E.B.; Krivopol, V.P.; Czerwiencie, R.; et al. Near-infrared emitting copper(I) complexes with a pyrazolylpyrimidine ligand: Exploring relaxation pathways. *Dalton Trans.* 2022, 51, 2989–2991. [CrossRef] [PubMed]

19. Evariste, S.; El Sayed Moussa, M.; Wong, H.L.; Calvez, G.; Yam, V.W-W.; Lescop, C. Straightforward Preparation of a Solid-state Luminescent Copper(I) Complex as Promising Materials for the Next Generation of Energy-saving OLEDs. *Coord. Chem. Rev.* 2011, 255, 2622–2652. [CrossRef]

20. Shekhovtsov, N.A.; Vinogradova, K.A.; Berezin, A.S.; Sukhikh, T.S.; Krivopol, V.P.; Nikolaenko, E.B.; Bushuev, M.B. Excitation wavelength dependent emission of silver(I) complexes with a pyrimidine ligand. *Inorg. Chem. Front.* 2020, 7, 2212–2223. [CrossRef]

21. Malakhova, Y.A.; Sukhikh, T.S.; Rachmanova, M.I.; Vinogradova, K.A. Effect of polymorphism on the luminescence properties on silver(I) complexes with 2-amino-5-phenylpyrazine. *J. Struct. Chem.* 2022, 63, 485–500. [CrossRef]

22. Dumur, F. Recent advances in organic light-emitting devices comprising copper complexes: A realistic approach for low-cost and highly emissive devices? *Org. Electron.* 2015, 21, 27–39. [CrossRef]

23. Ravaro, L.P.; Zanoni, K.P.; de Camargo, A.S.S. Luminescent Copper(I) complexes as promising materials for the next generation of energy-saving OLED devices. *Energy Rep.* 2020, 6, 37–45. [CrossRef]

24. Housecroft, C.E.; Constable, E.C. TADF: Enabling luminescent copper(I) coordination compounds for light-emitting electrochemical cells. *J. Mater. Chem. C* 2022, 10, 4456–4482. [CrossRef] [PubMed]

25. Cariati, E.; Lucenti, E.; Botta, C.; Giovanella, U.; Marinotto, D.; Righetto, S. Cu(I) hybrid inorganic–organic materials with intriguing stimuli responsive and optoelectronic properties. *Coord. Chem. Rev.* 2016, 306, 566–614. [CrossRef]

26. Kiracci, K.; Fejarová, K.; Martinčík, J.; Nikl, M.; Lang, K. Tetranuclear Copper(I) Iodide Complexes: A New Class of X-ray Phosphors. *Inorg. Chem. Front.* 2017, 56, 4609–4614. [CrossRef]

27. Conesa-Egea, J.; Zamora, F.; Amo-Ochoa, P. Perspectives of the smart Cu-Iodine coordination polymers: A portage to the world of new nanomaterials and composites. *Coord. Chem. Rev.* 2019, 381, 65–78. [CrossRef]

28. Evariste, S.; Khalil, A.M.; Kerneis, S.; Xu, C.; Calvez, G.; Costuas, K.; Lescop, C. Luminescent vapochromic single crystal to single crystal transition in one-dimensional coordination polymer featuring the first Cu(I) dimer bridged by an aqua ligand. *Inorg. Chem. Front.* 2020, 7, 3402–3411. [CrossRef]

29. Paderina, A.V.; Koshevoy, I.O.; Grachova, E.V. Keep it tight: A crucial role of bridging phosphine ligands in the design and optical properties of multinuclear coinage metal complexes. *Dalton Trans.* 2021, 50, 6003–6033. [CrossRef]

30. Conaghan, P.J.; Matthews, C.S.B.; Chotard, F.; Jones, S.T.E.; Greenham, N.C.; Bochmann, M.; Credgington, D.; Romanov, A.S. Highly efficient blue organic light-emitting diodes based on carbene-metal-amides. *Nat. Commun.* 2020, 11, 1758. [CrossRef]

31. Kobayashi, A.; Ebara, T.; Yoshida, M.; Kato, M. Quantitative Thermal Synthesis of Cu(I) Coordination Polymers That Exhibit Thermally Activated Delayed Fluorescence. *Inorg. Chem.* 2020, 59, 9511–9520. [CrossRef]

32. Kirst, C.; Tietze, J.; Meyer, P.; Böttcher, H.C.; Karagiossof, K. Coinage Metal Complexes of Bis(quinoline-2-yl)methylphenylphosphate: Simple Reactions Can Lead to Unprecedented Results. *ChemistryOpen* 2022, 11, e202100224. [CrossRef] [PubMed]

33. Kirst, C.; Zoller, F.; Bräuniger, T.; Meyer, P.; Fattakhova-Rohlfing, D.; Karagiossof, K. Investigation of Structural Changes of Cu(I) and Ag(I) Complexes Utilizing a Flexible, Yet Sterically Demanding Multidentate Phosphine Oxide Ligand. *Inorg. Chem.* 2021, 60, 2437–2445. [CrossRef] [PubMed]
34. Khalil, A.M.; Xu, C.; Delmas, V.; Calvez, G.; Costuas, K.; Haouas, M.; Lescop, C. Coordination-driven supramolecular syntheses of new homo- and heteropolymetallic Cu(I) assemblies: Solid-state and solution characterization. *Inorg. Chem. Front.* 2021, 8, 4887–4895. [CrossRef]

35. Galimova, M.F.; Zueva, E.M.; Dobrynin, A.B.; Samigullina, A.I.; Musin, R.R.; Musina, E.I.; Karasik, A.A. Cu4L4-cubane clusters based on 10-(aryl)phenoxyarsines and their luminescence. *Dalton Trans.* 2020, 49, 482–491. [CrossRef] [PubMed]

36. Galimova, M.F.; Zueva, E.M.; Dobrynin, A.B.; Kolesnikov, L.E.; Musin, R.R.; Musina, E.I.; Karasik, A.A. Luminescent Cu4L4-cubane clusters based on N-methyl-5,10-dihydrophenarsazines. *Dalton Trans.* 2021, 50, 13421–13429. [CrossRef]

37. Kobayashi, R.; Kihara, H.; Kusukawa, T.; Imoto, H.; Naka, K. Dinuclear Rhombic Copper(I) Iodide Complexes with Rigid Bidentate Arsenic Ligands. *Chem. Lett.* 2021, 50, 382–385. [CrossRef]

38. Artem’ev, A.V.; Demyanov, Y.V.; Rakhmanova, M.I.; Bagryanskaya, I.Y. Pyridylarsine-based Cu(I) complexes showing TADF mixed with fast phosphorescence: From speed-uping emission rate using arsine ligands. *Dalton Trans.* 2022, 51, 1048–1055. [CrossRef]

39. Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M.T. *Handbook of Photochemistry*, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006; p. 633.

40. Wallesch, M.; Volz, D.; Zink, D.M.; Schepers, U.; Bräse, S. Bright Coppertunities: Multinuclear Cu(I) complexes with pyridylmethylamide ligands: Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, \(\tau^\circ\). *Dalton Trans.* 2021, 49, 3155–3163. [CrossRef] [PubMed]

41. Hofbeck, T.; Niehaus, T.A.; Fleck, M.; Monkowski, U.; Yersin, H. P?N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. *Molecules* 2021, 26, 3415. [CrossRef] [PubMed]

42. Gneuß, T.; Leitl, M.J.; Finger, L.H.; Rau, N.; Yersin, H.; Sundermeyer, J. A new class of deep-blue emitting Cu(I) compounds—effects of counter ions on the emission behavior. *Dalton Trans.* 2015, 44, 20045–20055. [CrossRef]

43. Plajer, A.J.; Crusius, D.; Jethwa, R.B.; Garcia-Romero, Á.; Bond, A.D.; Garcia-Rodriguez, R.; Wright, D.S. Coordination chemistry of the benz-stable tris-2-pyridyl pnictogen ligands \(E(6\text{-Me}-2\text{-py})_3\) (\(E = \text{As, As=O, Sb}\)). *Dalton Trans.* 2021, 50, 2393–2402. [CrossRef] [PubMed]

44. Bondi, A. van der Waals Volumes and Radii. *J. Phys. Chem.* 1964, 68, 441–451. [CrossRef]

45. Artem’ev, A.V.; Bagryanskaya, I.Y.; Doronina, E.P.; Tolstoy, P.M.; Gushchin, A.L.; Rakhmanova, M.I.; Ivanov, A.Y.; Suturina, A.O. A new family of clusters containing a silver-centered tetracapped \(\text{Ag}[\text{Ag}_4(\mu_3-\text{P})_4]\) tetrahedron, inscribed within a \(\text{N}_{12}\) icosahedron. *Dalton Trans.* 2017, 46, 12425–12429. [CrossRef] [PubMed]

46. Armbruster, M.; Bond, A.D.; García-Romero, Á.; Bond, A.D.; García-Rodriguez, R.; Wright, D.S. Coordination chemistry of the benz-stable tris-2-pyridyl pnictogen ligands \(E(6\text{-Me}-2\text{-py})_3\) (\(E = \text{As, As=O, Sb}\)). *Dalton Trans.* 2021, 50, 2393–2402. [CrossRef] [PubMed]

47. Gneuß, T.; Leitl, M.J.; Finger, L.H.; Yersin, H.; Sundermeyer, J. A new class of deep-blue emitting Cu(I) compounds—effects of counter ions on the emission behavior. *Dalton Trans.* 2015, 44, 20045–20055. [CrossRef]

48. Baranov, A.; Berezin, A.S.; Samsonenko, D.G.; Mazur, A.; Tolstoy, P.; Plyusnin, V.F.; Kolesnikov, I.E.; Artem’ev, A. A New Cu(I) halide complexes showing TADF combined with room temperature phosphorescence: The balance tuned by halogens. *Dalton Trans.* 2020, 49, 3155–3163. [CrossRef] [PubMed]

49. Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridymethylmamide ligands: Structural analysis with a new four-coordinate index, \(\tau^\circ\). *Dalton Trans.* 2007, 955–964. [CrossRef]

50. Gneuß, T.; Leitl, M.J.; Finger, L.H.; Rau, N.; Yersin, H.; Sundermeyer, J. A new class of luminescent Cu(I) complexes with tripodal ligands—TADF emitters for the yellow to red color range. *Dalton Trans.* 2015, 44, 8506–8520. [CrossRef]

51. Bondi, A. van der Waals Volumes and Radii. *J. Phys. Chem.* 1964, 68, 441–451. [CrossRef]

52. Artem’ev, A.V.; Bagryanskaya, I.Y.; Doronina, E.P.; Tolstoy, P.M.; Gushchin, A.L.; Rakhmanova, M.I.; Ivanov, A.Y.; Suturina, A.O. A new family of clusters containing a silver-centered tetracapped \(\text{Ag}[\text{Ag}_4(\mu_3-\text{P})_4]\) tetrahedron, inscribed within a \(\text{N}_{12}\) icosahedron. *Dalton Trans.* 2017, 46, 12425–12429. [CrossRef] [PubMed]

53. Grudova, M.V.; Novikov, A.S.; Kubasov, A.S.; Khrustalev, V.N.; Kirichuk, A.A.; Nenadjenko, V.G.; Tskhovrebov, A.G. Aurophilic Interactions in Cationic Three-Coordinate Gold(I) Bipyridyl/Isocyanide Complex. *Crystals* 2022, 12, 613. [CrossRef]
59. Shmelev, N.Y.; Okubazghi, T.H.; Abramov, P.A.; Rakhmanova, M.I.; Novikov, A.S.; Sokolov, M.N.; Gushchin, A.L. Asymmetric Coordination Mode of Phenanthroline-like Ligands in Gold(I) Complexes: A Case of the Antichelate Effect. Cryst. Growth Des. 2022, 22, 3882–3895. [CrossRef]

60. Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–HF–Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [CrossRef]

61. Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [CrossRef]

62. Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPL0T: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [CrossRef] [PubMed]

63. Kobayashi, A.; Hasegawa, T.; Yoshida, M.; Kato, M. Environmentally Friendly Mechanochemical Syntheses and Conversions of Highly Luminescent Cu(I) Dinuclear Complexes. Inorg. Chem. 2016, 55, 1978–1985. [CrossRef] [PubMed]

64. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. A 2015, 71, 3–8. [CrossRef] [PubMed]

65. Bruker Apex3 Software Suite: Apex3, SADABS-2016/2 and SAINT, version 2018.7-2; Bruker AXS Inc.: Madison, WI, USA, 2017.

66. Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010.

67. Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [CrossRef]

68. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [CrossRef]

69. Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New basis set exchange: An open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model 2019, 59, 4814–4820. [CrossRef]

70. Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [CrossRef]

71. Van Caillie, C.; Amos, R.D. Geometric derivatives of excitation energies using SCF and DFT. Chem. Phys. Lett. 1999, 308, 249–255. [CrossRef]

72. Scalmani, G.; Frisch, M.J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys. 2006, 124, 094107. [CrossRef]

73. Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [CrossRef]

74. Barros, C.L.; De Oliveira, P.P.; Jorge, F.E.; Canal Neto, A.; Campos, M. Gaussian basis set of double zeta quality for atoms Rb through Xe: Application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol. Phys. 2010, 108, 1965–1972. [CrossRef]

75. Jorge, F.E.; Canal Neto, A.; Camiletti, G.G.; Machado, S.F. Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. J. Chem. Phys. 2009, 130, 064108. [CrossRef] [PubMed]

76. Neto, A.C.; Jorge, F.E. All-electron double zeta basis sets for the most fifth-row atoms: Application in DFT spectroscopic constant calculations. Chem. Phys. Lett. 2013, 582, 158–162. [CrossRef]

77. De Berrêdo, R.C.; Jorge, F.E. All-electron double zeta basis sets for platinum: Estimating scalar relativistic effects on platinum (II) anticancer drugs. J. Mol. Struct. Theochem. 2010, 961, 107–112. [CrossRef]

78. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [CrossRef] [PubMed]