On the evolution of environmental and mass properties of strong lens galaxies in COSMOS *

C. Faure¹, T. Anguita², D. Alloin⁴, K. Bundy⁵, A. Finoguenov⁶, A. Leauthaud⁷, C. Knobel⁹, J.-P. Kneib¹⁰, E. Jullo¹¹, O. Ilbert¹⁰, A. M. Koekemoer¹², P. Capak¹³, N. Scoville¹⁴, and L.A.M. Tasca¹⁰

¹ Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
² Centro de Astro-Ingeniería, Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
³ Max Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg, Germany
⁴ Laboratoire Aim, CEA/DSM-CNRS-Universités Paris Diderot, IRFU/SEDI-SAP, Service d’Astrophysique, CEA Saclay, Orme des Menisiers, 91191 Gif-sur-Yvette, France
⁵ Hubble Fellow, Department of Astronomy, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411, USA
⁶ Max-Planck Institut für Extraterrestrische Physik, Giessenbachstrasse, 85748, Garching, Germany
⁷ Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720
⁸ Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720, USA
⁹ Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
¹⁰ Laboratoire d’Astrophysique de Marseille, CNRS Université de Provence, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France
¹¹ Jet Propulsion Laboratory, MS 169-327,4800 Oak Grove Drive, Pasadena, CA 91109, USA
¹² Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
¹³ California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125, USA

Received 20 October 2009 / Accepted 09 February 2011

ABSTRACT

Context. Nearly 100 new strong lens candidates have been discovered in the COSMOS field. Among these, 20 lens candidates with $0.34 \leq z_{\text{lens}} \leq 1.13$ feature multiple images of background sources.

Aims. Using the multi-wavelength coverage of the field and its spectroscopic follow-up, we characterize the evolution with redshift of the environment and of the dark-matter (DM) fraction of the lens galaxies.

Methods. We present spectroscopic and new photometric redshifts of the strong lens candidates. The lens environment is characterized in the following way: we account for the projected 10 closest galaxies around each lens and for galaxies with a projected distance less than 1 Mpc at the lens galaxy redshift. In both cases, we perform similar measurements on a control sample of "twin" non-lens early type galaxies (ETGs). In addition, we identify group members and field galaxies in the X-ray and optical catalogs of galaxy groups and clusters. From those catalogs, we measure the external shear contribution of the groups/clusters surrounding the lens galaxies.

The systems are then modeled using a SIE for the lens galaxies plus the external shear due to the groups/clusters.

Results. We observe that the average stellar mass of lens galaxies increases with redshift. In addition, we measure that the environment of lens galaxies is compatible with that of the twins over the whole redshift range tested here. During the lens modeling, we notice that, when left free, the external shear points in a direction which is the mean direction of the external shear due to groups/clusters and of the closest galaxy to the lens. We also notice that the DM fraction of the lens galaxies measured within the Einstein radius significantly decreases as the redshift increases.

Conclusions. Given these, we conclude that, while the environment of lens galaxies is compatible with that of non-lens ETGs over a wide range of redshifts, their mass properties evolves significantly with redshift: it is still not clear whether this advocates in favor of a stronger lensing bias toward massive objects at high redshift or is simply representative of the high proportion of massive and high stellar density galaxies at high redshift.

Key words. Cosmology: Gravitational lensing

1. Introduction

In the field of gravitational lensing, studies of strong galaxy-lens galaxies have recently become possible on statistical grounds. Indeed, within just a few years, searches in the SDSS (SLACS: Bolton et al. 2006, 2008, Allam et al. 2007), in COSMOS (Faure et al. 2008, hereafter Paper I; Jackson 2008) and in the CFHT-LS surveys (SL2S: Cabanac et al. 2007, Limousin et al. 2009b) have delivered more than two hundred new strong galaxy-galaxy lenses, spanning a wide range in redshift and image angular separation. The reasons for this interest are several. First, strong lens galaxies provide measurements of the total mass distribution on galaxy scales, bringing additional information about the processes of galaxy formation and evolution (e.g. Ofek et al. 2003, Chae et al. 2006, Koopmans et al. 2006, Tortora et al. 2010). Second, from a statistical point of view, strong lensing occurrences trace the abundance and concentration of matter in the universe, providing another test for cosmological models (e.g. Keeton 2001, Bartelmann et al. 2003).
Studies of the physical and environmental properties of low redshift strong lens galaxies (z \leq 0.3) have shown that they are bona-fide massive ETGs (Treu et al. 2006, 2009 -T09 hereafter-, Gavazzi et al. 2007, Grillo et al. 2009). The strong lens sample in the COSMOS field (Paper I), spans a higher redshift range (0.33 \leq z \leq 1.13) and previous work on this sample has shown that the projected distribution of lens galaxies in COSMOS is comparable to that of ETGs, whether in rich environments such as cosmic filaments, or in the field (Faure et al. 2009, hereafter Paper II). Interestingly, this result means that multiple-mass-sheets do not contribute significantly to make more efficient lenses, contrary to results found in ray tracing through numerical simulations (Wambsganss et al. 2005, Hilbert et al. 2007, 2008). In Paper II we also demonstrate that the presence of large scale structures (LSS) in the lens galaxy environment increases the angular separation of the lensed images of a source, as noticed earlier by Oguri et al. (2005).

In addition, analyses of the mass density profiles of strong lens galaxies from hydrodynamical N-body simulations (Dobke et al. 2007, Limousin et al. 2009a) and lens samples (Limousin et al. 2007, Auger 2008, Natarajan et al. 2009) show that the mass distribution in galaxies depends on their environment. For example, compared to galaxies centrally placed in their group or cluster, some skewing of the total mass density slope appears in galaxies located at the edges of a group or cluster. This is consistent with tidal stripping of their dark matter halo (T09).

Therefore, it is important to explore the local environment of the COSMOS strong lenses rather than LSS as in Paper II. We also want to learn about the lens galaxy mass properties, in particular to derive information relative to their DM fraction and mass scale than in the other 20 systems, and the lens potential is more complex than a single lens galaxy: this target has been dropped from the present analysis.

The paper is organized as follows. In § 2 we provide improved redshifts and stellar masses of the COSMOS lens galaxies. In § 3 we examine and discuss the lens environment. In § 4 we present results from our strong lens mass models for the sub-sample of triple and quadruple image systems. Discussion and conclusions appear in § 5. Throughout this paper, we assume a WMAP5 ΛCDM cosmology with \(\Omega_m = 0.258, \Omega_\Lambda = 0.742, H_0 = 72 \text{ km s}^{-1} \text{ Mpc}^{-1} \).

2. The COSMOS sample of strong lenses: new redshifts and stellar masses

By visual inspection of stamp images of 10'' × 10'' around ~9500 early photometric type galaxies (with redshifts : 0.2 \leq z \leq 1.0, and absolute magnitude: M_v < -20) in the COSMOS field, we have discovered 60 strong lens candidates (Paper I). In addition, in the same study, 7 lens candidates were found serendipitously across the field. Among the whole sample, 19 systems display long curved arcs or multiple images with similar colors (based on Subaru images, by Taniguchi et al. 2007) around a bright lens galaxy, and with an image arrangement around the lens galaxy which is consistent with the lensing hypothesis, as probed by lens modeling.

Independently, Jackson (2008) inspected the complete set of galaxies in the COSMOS field, without discrimination. He has discovered two additional convincing strong lens candidates producing multiple images: J095930.93+023427.7 and J100140.12+020040.9. The lens galaxies both appear to be ETGs.

Among the 21 multiple image lenses now available, one system (COSMOS 5921+0638) – being the only confirmed lensed quasar of the sample – has been studied separately by Anguita et al. (2009, hereafter Paper III). Another system, COSMOS 5737+3424, is a galaxy cluster that is lensing a set of background galaxies. In such a case, the lens covers a different mass scale than in the other 20 systems, and the lens potential is more complex than a single lens galaxy: this target has been dropped from the present analysis.

2.1. Spectroscopic follow-up

![Fig. 1. VLT/FORS1 spectra of three strong lens candidates. The spectral resolution is 5.52 Å per pixel, and has been smoothed by a 3 pixels box to improve the quality of the display. Flux is in arbitrary units.](image1)

![Fig. 2. Keck/DEIMOS spectrum of COSMOS 0018+3845. The spectrum is smoothed by 2.3Å and binned down to 7.5Å per pixel, taking the wavelength dependent noise into account, to improve the apparent signal-to-noise. Flux is in arbitrary units.](image2)
On March 3rd and April 25-26th 2006, we have successfully obtained spectra for five of the strong lenses in the COSMOS field (PI: Faure) using the FORS1 instrument (ESO/VLT) in multi-object spectroscopic mode with 19 slits. For each target, the central slit was located on the lens candidate with an orientation intersecting both the lens galaxy and the brightest lensed image. The other 18 slits in the ~7’x7’ field around the lens, were preferentially positioned on galaxies with colors similar to that of the lens galaxy (likely at the same redshift). Leaving aside COSMOS 5921+0638 (discussed in Paper III) and the lens cluster COSMOS 5737+3424, we display the spectra of the other three lens galaxies in Fig. 1. Regarding the source redshifts, from this dataset we could extract only one source redshift, in COSMOS 5921+0638 (Paper III). Positions and redshifts of secondary targets around COSMOS 0012+2015, COSMOS 0013+2249 and COSMOS 0049+5128 are given in Table 2.

In addition, several COSMOS lens candidates have been observed with the Keck telescopes. Using the Deep Extragalactic Imaging Multi-Object Spectrograph (DEIMOS) a spectrum of COSMOS 0018+3845 has been obtained on February 11, 2010 (Fig. 2). The data were collected in 7×1800s exposures under photometric conditions with 0.5-0.7″ seeing. We used a 1″ slit together with the 830 line/mm grating tilted to 7860Å and the OG550 blocking filter. The resulting spectral resolution is < 3.3Å, depending on seeing and object morphology. The objects were dithered along the slit by ±3” between exposures to improve background subtraction, as described in Capak et al. (2009). The redshift of the lens has been identified using the CalH & K absorption lines and G-band. The source redshift is estimated based on the Lyman break which is somewhere in the Subaru IA624-band (λ_{\text{effective}}=6226 Å, FWHM=299Å), putting constraints on the source redshift: 3.9<z_s<4.1. From there, we find that for z_s=3.96±0.02, SiIV and CII would align with spectral absorption features of the lens. This estimation of the source redshift is used throughout the paper.

Moreover, with the Low Resolution Imaging Spectrometer (LRIS), Lagattuta et al. (2010) measured the redshifts for seven lens galaxies and two sources. Finally, from the z-COSMOS catalog (Lilly et al. 2009) we have retrieved the redshifts of seven strong lens candidates from our list (based on the G-band and MgI absorption lines). Two of them, re-observed with Keck/LRIS, benefit from a second redshift determination from a higher signal-to-noise spectrum. Both redshifts are in agreement.

A summary of the spectroscopic observations available for this sample is given in Table 1 while the lenses’ redshifts are provided in Table 2.

2.2. Improved photometric redshifts

Recently a new set of photometric redshifts for galaxies in the COSMOS field has been derived by Ilbert et al. (2009), using the code Le Phare (S. Arnouts & O. Ilbert) and the photometric dataset by Capak et al. (2007a and 2009). Compared to the previous set of COSMOS photometric redshifts by Mobasher et al. (2007), which relied on 8 broad bands, the main improvement is the use of 30 bands: the 8 broad bands plus 12 intermediate bands, 2 narrow bands, 7 bands in the near-infrared and 1 band in the ultra-violet. In Fig. 3 we have displayed a comparison between the new photometric redshifts and spectroscopic redshifts for the 17 lens galaxies in our sample for which we have

Table 1. Summary of the VLT (FORS1 and VIMOS) and Keck (DEIMOS and LRIS) observations: target name, instrument and exposure time (in ks).

Name	Instr.	E.T.
COSMOS 0012+2015	FORS1	1.8
COSMOS 0013+2249	FORS1	1.2
COSMOS 0049+5128	FORS1	1.2
COSMOS 0056+0638	FORS1	1.2
COSMOS 0050+4901	VIMOS	3.6
COSMOS 0056+1226	VIMOS	3.6
COSMOS 5947+4752	VIMOS	3.6
J095930.93+023427.7	VIMOS	3.6
COSMOS 5857+5949	VIMOS	3.6
COSMOS 0124+5121	VIMOS	3.6
COSMOS 0227+0451	VIMOS	3.6
COSMOS 0018+3845	DEIMOS	12.6
COSMOS 0038+4123	LRIS	3.6
COSMOS 0050+4901	LRIS	5.4
COSMOS 0056+1226	LRIS	5.4
COSMOS 0211+1139	LRIS	5.4
COSMOS 0216+2955	LRIS	3.6
COSMOS 0254+1430	LRIS	1.2
J100140.12+020040.9	LRIS	5.4

Notes. The dispersion is 5.52 Å per pixel for FORS1/150I and 2.50 Å per pixel for VIMOS/MR/OS-red. The VIMOS redshifts were obtained from the z-COSMOS follow-up of the field (Lilly et al. 2007). The Keck/DEIMOS observations were taken with the 830 line/mm grating, and using the OG550 blocking filter, leading to a dispersion of 0.47 Å per pixel. The Keck/LRIS targets were simultaneously observed with both blue grating (300/50000, dispersion: 2.55 Å per pixel) and red grating (600/7500, dispersion: 1.28 Å per pixel) (see Lagattuta et al. 2010).

We have derived a first set of stellar masses using the Bayesian code described in Bundy et al. (2006). In brief, a data couple, made of the observed galaxy spectral energy distribution (SED) and its redshift, is referenced to a grid of models constructed using the Bruzual & Charlot (2003) synthesis code. The grid includes models that vary in age, star formation history, dust content and metallicity. At each grid point, the probability that the observed SED fits the model is calculated: the corresponding stellar mass and the stellar mass to K-band luminosity ratio are stored. By minimizing over all parameters in the grid, the stellar mass probability distribution is obtained. The median of this distribution is taken as the stellar mass estimate, while the width of the distribution encodes the error bar resulting from degeneracies and uncertainties in the model parameter space. The final error bar on the stellar mass

1 Available at www.oamp.fr/people/arnouts/LE_PHARE.html
Table 2. Position and redshift of galaxies in the FORS1 field around COSMOS 0012+2015, COSMOS 0013+2249, and COSMOS 0049+5128. The error on the redshifts is ±0.001.

RA	DEC	z
COSMOS 0012+2015	150.01554 2.3103542 0.492	
150.05263 2.3377222 0.378		
150.07391 2.3256596 0.222		
150.07463 2.3485102 0.217		
150.07239 2.3679651 0.344		
150.08564 2.3641732 0.340		
150.10210 2.3524922 0.220		
150.11477 2.3328146 0.373		
COSMOS 0013+2249	150.10193 2.3900368 0.218	
150.09001 2.3836205 0.530		
150.08210 2.3904710 0.351		
150.07843 2.3895686 0.352		
150.07239 2.3679506 0.347		
150.06510 2.3855444 0.343		
150.05808 2.3804333 0.346		
150.05235 2.3837337 0.350		
150.03149 2.3745112 0.220		
150.02774 2.378948 0.222		
150.00332 2.4075260 0.347		
COSMOS 0049+5128	150.23256 1.8862956 0.673	
150.23365 1.8704970 0.283		
150.21829 1.8847159 0.621		
150.20779 1.8823028 0.026		
150.20284 1.8753444 1.146		
150.20526 1.8578028 0.337		
150.19758 1.8606685 0.267		
150.18165 1.8552841 0.168		

also includes the K-band photometric uncertainty as well as the expected error on the luminosity distance that results from the uncertainty on the photometric redshift. The stellar masses and uncertainties are provided in Table 3 and plotted in Fig. 4.

From the ACS-F814W images (Koekemoer et al. 2007) we infer the contamination due to the light coming from the background lensed images in the stellar mass measurements. In an aperture of 3″ radius, the lensed images are 3 to 7 magnitudes fainter than their respective lensing galaxy: in all cases this contamination generates an error on the stellar mass $\lesssim 0.01$ dex.

In order to appreciate the reliability of our estimates of the stellar mass (and uncertainties), we have retrieved among the 3.6 μIRAC catalog of the Spitzer-COSMOS survey (Sanders et al. 2007) 18 of the 20 strong lenses; the other two lens galaxies were not detected with Spitzer. For these lenses we have compared our estimates of the stellar masses to those inferred by Ilbert et al. (2010): they are in reasonable agreement (see Fig. 3). The typical difference between the two mass estimators (~0.2 dex) is widely discussed in Ilbert et al. (2010). Both distributions show a tendency of increasing lens stellar mass with redshift. This feature will be discussed in more detail in the discussion (§5.1).

3. The environment of the lens galaxies

Having now more accurate redshift measurements for the lens galaxies and the galaxies in the COSMOS field, we can take a study of the local environments of lens galaxies. Indeed, to understand whether high redshift lensing galaxies (z ≥0.3) are representative of the ETG population at their redshift, as the low redshift lens galaxies are (T09, Auger 2008), we study their environment in comparison to the environment of a population of non-lensing ETGs. Our first analysis of the lens environment with regard to LSS (Paper II) led to the conclusion that lens galaxies are indeed evolving in the same environment than their parent population. Let’s now zoom into a more local environment for the lens, using neighbor density measurements as defined and used by T09 for the SLACS sample.

\[\text{http://irsa.ipac.caltech.edu/data/cosmos} \]
We define a control sample of "twins" for each lens galaxy. Those twins have the upper or lower bounds, \(\z_{\text{min}} \), of their photometric redshift such as: \(\z_{\text{ens}} - \delta z < \z_{\text{twins}} < \z_{\text{ens}} + \delta z \) with \(\delta z \approx 0.05 \), and the upper or lower bounds, \(\z_{\text{twins}} \), of their magnitude such as: \(I_{\text{ens}} - \delta I < I_{\text{twins}} < I_{\text{ens}} - \delta I \) with \(\delta I \approx 0.05 \) mag. The dispersion authorized around the value of the lens redshift and lens magnitude ensures that the sample of twins is large enough for the results to be statistically reliable (between 22 and 140 twins, see Table A.1). In addition, the range in redshift is small enough to avoid possible biases due to galaxy evolution and the range in magnitude ensures that the flux difference between a lens and its twins remains lower than 5%. We then measure the average number density of neighbors \(< \Sigma_{10} > \) and the average projected number of galaxies in a circle with radius 1 Mpc: \(< D_1 > \) for the control "twin" sample.

We notice that, for an obvious lack of spectroscopic information, the twins cannot be selected according to their velocity dispersion as it is the case in the analysis by T09. Yet our match in magnitude and redshift mimics, up to a certain level of accuracy, a match in mass between the lens galaxies and their twins.

3.1. Error measurements on the neighbor number densities

In building the photometric catalog of galaxies, masks were necessary to hide bright objects disturbing the galaxy extraction procedure (see Capak et al. 2007a). From these masks we have measured, at each lens and twin location, the surface that was hidden for the extraction. The hidden surface is typically of a few percents of the total surface used to determine \(\Sigma_{10} \) or \(D_1 \). It only gives a positive contribution to the total error budget on the neighbor density estimates: indeed, the surface covered by the circle of radius \(R_{10} \) would be smaller if the ninth closest galaxy was behind the mask, and if one more galaxies are hidden behind the mask, the number of galaxies in a circle of radius \(D_1 \) would be larger. Therefore, for a fixed number of galaxies, the surface has to be smaller. In summary, for a lens galaxy, the tool.
the lens neighbor number densities, while the dispersion largely dominates the error budget for the twins.

3.1.3. Results
The values of Σ_{10}, D_{10}, $<\Sigma_{10}>$, and $<D_{10}>$, depend on the redshift bin and magnitude limit. To circumvent these effects, we only interpret the results in term of ratios: $\frac{\Sigma_{\text{env}}}{\Sigma_{\text{gal}}}$ and $\frac{D_{\text{env}}}{D_{\text{gal}}}$. These ratios quantify the richness of the environment of the lens galaxies in comparison to the environment of their respective twins. They are provided in Table 3. The average distance encompassing the 9 closest galaxies to the lens is $<R_{10}> = 1.2$ Mpc with a 1σ standard deviation of 0.5 Mpc, hence comparable to the radius of 1 Mpc used to calculate D_1. In Fig. 5, we have displayed the ratios $\frac{\Sigma_{\text{env}}}{\Sigma_{\text{gal}}}$ and $\frac{D_{\text{env}}}{D_{\text{gal}}}$ for the COSMOS lenses and for the SLACS lenses (using data from T09), as a function of redshift. A-priori, the two distributions cannot be directly compared as they may have different normalization factors (due to their different lens selection function, source redshift distribution and survey sensitivity). Yet, we notice that in the redshift range common to the SLACS and COSMOS samples ($z\sim[0.33,0.50]$), the levels of the distributions for $\frac{\Sigma_{\text{env}}}{\Sigma_{\text{gal}}}$ and $\frac{D_{\text{env}}}{D_{\text{gal}}}$ are similar, suggesting that the normalizations are not drastically different. However, in order to avoid any misinterpretation due to intrinsic sample differences, the SLACS sample and the COSMOS sample distributions are analyzed separately.

The number density ratios displayed in Fig. 5 indicate whether the lens galaxies reside in a typical environment in comparison to the twin galaxy population. Would this be true, the number density ratios should be of the order of 1 at every redshift. This is indeed the case in average for the lenses in the redshift range studied here.

3.2. X-ray and optically detected galaxy groups and clusters
The validity of the estimators used to characterize the environments of lens galaxies in §3.1 can be checked using the distribution of groups and clusters in the field based on X-ray and spectroscopic data analysis. Indeed, we can access two supplementary pieces of information: (a) the distribution of X-ray emitting gas in the COSMOS field (XMM-Newton survey: Hasinger et al. 2007 and C-COSMOS with Chandra: Elvis et al. 2009), which traces galaxy groups and clusters in the field (Finoguenov et al. 2007 and in prep.), and (b) the identification of optical groups or clusters (Knobel et al. 2009) from the z-COSMOS spectroscopic program (Lilly et al. 2007).

Moreover, as the presence of groups in the direction to the source generates a different lensing potential in comparison to that of a single lens galaxy, it is important, in preparation of the mass modeling in §3.2, to know: 1) If the lens galaxies are group members. If this is indeed the case, the group has to be modeled as an individual potential in the lens modeling. 2) What contribution in terms of shear is produced by the groups and clusters towards and around the lens galaxy. Most of the time this contribution is simply represented by an “external shear” whose parameters are optimized while adjusting the lens model. In this paper, we rather intent to measure independently the external shear using the rich dataset that covers the COSMOS field.

In the framework of our lensing analysis, each of the group catalogs (X-ray selected versus spectroscopically selected) has certain advantages and disadvantages. The entire COSMOS region has been mapped through 54 overlapping XMM-Newton
pointsing while additional Chandra observations have mapped the central region (0.9 square degrees). A composite XMM-Newton and Chandra mosaic has been used to detect and measure the fluxes of groups and clusters to a 4σ detection limit of 1.0 × 10^{-15} erg cm^{-2} s^{-1} over 96% of the ACS field. The general data reduction process can be found in Finoguenov et al. (2007, 2009) and the cluster catalog and weak-lensing analysis are presented in Leauthaud et al. (2010). Therefore, the catalog of X-ray selected groups and clusters is homogeneous and covers the entire COSMOS field. However, it is affected by the sensitivity threshold of the X-ray survey, which is different from the sensitivity cut of the optical dataset. Therefore, groups of modest mass could be missing from the X-ray selected catalog, especially around galaxies at high redshift.

Conversely, the catalog of optically selected groups in COSMOS has the advantage of spanning the same brightness range as the optical imaging dataset from which the strong lens candidates and the arcs have been extracted. Even though the faintest galaxies seen on deep images will remain undetected in the shallower spectroscopic z-COSMOS survey, groups can still be traced and assessed from their central brightest galaxies. Then, the parameters of the galaxy groups can be derived by comparing these detections to a catalog of mock-groups subject to the same detection criteria (see Knobel et al. 2009 for an extensive description of the group catalog). The first data release of the z-COSMOS survey (Lilly et al. 2007) covers a fraction of the full COSMOS field, which leaves some of our COSMOS lens candidates outside the coverage of the group catalog.

Let us establish now whether the lens galaxies are group or cluster members (§ 3.2.1) and measure the external shear contribution of the groups and clusters at the lens galaxy position (§ 3.2.2).

3.2.1. Lens galaxy group members

We cross-correlate the X-ray cluster catalog (Leauthaud et al. 2010) with the sample of strong lenses. We define as a group member, a lens galaxy located within r_{200} (radius where the matter density is 200 times the critical density) of the group center, and with redshift identical to the group redshift (within error bars). We have found 4 matches and there is a galaxy cluster detected at a lower-redshift in direction to J095930.93+023427.7 (see Table 5).

Using the group catalog built from the optical dataset, we do not identify any new groups associated in redshift and observational plane with lens galaxies than those already identified using the X-ray catalog. In Table 5 we give the probability that galaxies in a 2′×2′ field around the lens galaxy are included in the z-COSMOS catalog. This figure establishes roughly the “completeness” of the survey at every lens location and tells us if the z-COSMOS group catalog can be used to characterize the environment of the lens.

3.2.2. Comparison: galaxy group members and projected number density of neighbors

In principle, lens galaxies which are group members are expected to have large neighbor number densities. This should be visible in the ratio measured in § 3.1. This is indeed the case with the first estimator for the lens in COSMOS 0013+2249 (ratio = 6.2±0.2) and COSMOS 0216+2955 (ratio = 4.6±0.3), and it is unclear for COSMOS 0056+1226 and COSMOS 0227+0451 because of the large error bar on the measured density ratios. With the second estimator, the ratio are in average lower than with
and it is therefore more difficult to identify correctly an over-dense field. On the contrary, COSMOS 0038+4133 shows a large density ratio ($\Delta n/\langle n \rangle=5.5\pm0.9$) without being associated to any known galaxy group in X-ray or optical.

3.2.3. The external shear due to clusters and groups

We estimate the shear and convergence produced by the groups (either X-ray or optical) detected around the lens galaxies in order to characterize the contribution of the environment to the total lens potential in future lens models (§[4]). To do so we followed the method described in Paper III. In short, we compute the convergence and shear produced by all groups closer in projection than a given radius (5′, as in Paper III), and at any redshift up to that of the source. We assume that the mass profile of every group follows a truncated isothermal sphere (TIS). The choice of this profile is motivated by the fact that the shear and convergence produced by an isothermal sphere are easy to compute (Keeton 2003, Momcheva et al. 2006). Moreover, as we will consider only groups and clusters which do not cross the line-of-sight to the source, estimations of their total masses rather than of their mass distributions are sufficient for the accuracy of the result. We selected a truncated profile to avoid to give unrealistically too much weight to the most distant groups.

The three-dimensional density distribution of the TIS can be written:

$$\rho \propto \frac{1}{r^2} \frac{1}{r_c^2 + r^2}$$

where r_c is the truncation radius. The convergence, κ, and shear, γ, produced by this profile are respectively:

$$\kappa = \frac{\tilde{b}}{2} \left(\frac{1}{\sqrt{r^2 + r_c^2}} - \frac{1}{\sqrt{r_c^2 + r^2}} \right)$$

$$\gamma = \frac{\tilde{b}}{2} \left[\frac{1}{\sqrt{r^2 + r_c^2}} + \frac{1}{\sqrt{r_c^2 + r^2}} - \frac{2r_c}{r^2} \left(\frac{r_c^2 + r^2}{r_c^2} - 1 \right) \right]$$

where \tilde{b} is the impact parameter of the TIS, which relates to the Singular Isothermal Sphere (SIS) impact parameter b_{SIS} as:

$$\frac{b_{SIS}}{\tilde{b}} = 1 + \frac{r_c}{b_{SIS}} - \sqrt{1 + \left(\frac{r_c}{b_{SIS}} \right)^2}$$

In the limit where $r_c \to \infty$ these quantities match those of the SIS.

To compute the external shear produced by the groups and clusters we proceed as follows. Whenever $P<0.3$ in Table[4] (column 2), we only consider the catalog of X-ray detected groups and clusters. The groups mass potentials are modeled as TIS using the value M_{200} and r_{200} (used as the truncature radius).

The error on the X-ray mass comes from the scatter in the relation used to derive the mass from the luminosity (Leauthaud et al. 2010): it is of the order of $\pm20\%$ of M_{200} (Vikhlinin et al. 2009). Whenever $P\geq0.3$ in Table[4] (column 2), we also consider the optical catalog in addition to the X-ray group catalog. We first correlate the optical and X-ray group catalogs to identify and remove optical groups that might already be accounted as an X-ray group. Then, we model as TIS the remaining optical groups using the "mock" virial mass, M_{vir}, and the "mock" virial radius, r_{vir} (used as the truncature radius). The upper and lower error on the virial mass are $+100\%$ and -50% of M_{vir} (Knobel et al. 2009). These "mock" quantities are the theoretical values associated with the detected groups when subjecting a mock sample of groups to the same selection function and same survey criteria as the observations (see Knobel et al. 2009 for details).

The external shear and associated convergence are calculated for each group individually. They are then re-scaled to the redshift of the lens using the scaling relation given in Momcheva et al. (2006). For a given lens, external shear and convergence are summed up following the procedure described in Keeton (2003) and Momcheva et al. (2006). The results are summarized in Table[4]. A first set of errors on the shear and on the convergence results from the propagation of the group mass errors.

As mentioned already, in the special case where a galaxy group or cluster has an impact parameter smaller than r_{200} or r_{vir} (in 5 cases, see Table[4]), the shear and convergence calculated under this simple approximation are incorrect (Keeton 2003). Hence, we have systematically removed these groups when computing the external shear. Instead, they will have to be accounted for additional lens potential when performing the lens modeling.

Regarding the source redshift, it is either known spectroscopically for some lenses (see Table[4]), or assumed to be at $z_s=2$ for lenses with $z_s<1,$ or at $z_s=3$ for lenses with $z_s>1.$ The convergence and shear contributions depend on the number of groups taken into account, which in turn may depend on the source redshift and on the cut-radius considered. Hence, an error on the source redshift generates an error on the external shear parameter. We have estimated this error assuming an uncertainty $\delta z_s=\pm0.5$ on the source redshift when unknown, and using the error on the source redshift in Table[4] when measured (see Table[4]). To estimate the error introduced by an arbitrary cut-radius at 5′, we have also probed two other radii (7′ and 10′). We find that the incidence of the radius selection on the final lensing contribution is $\delta \kappa \approx \delta \gamma \sim 0.001$ and is negligible on the orientation of the shear ($\delta PA \lesssim 0.5^\circ$). Then we calculate the total error on the external shear as the sum in quadrature of the error produced by the group mass uncertainty, the source redshift uncertainty and the error produced by the choice of aperture.

We have also analyzed the error on the external shear parameters generated when using a single catalog of groups (X-ray) instead of the combination of the two catalogs (X-ray and optical). The comparison is possible for 7 systems. We notice that, while the convergence is different when using a single catalog instead of two, the external shear strength and direction are in agreement within their respective error bars. This means that our calculation realistically associates the largest source of shear with the more massive groups and clusters. It also means that the probable incompleteness of our catalogs in low mass groups has a minimal impact on the shear measurement: what matters is the completeness of the catalog in large mass groups and clusters. However, the technique is limited for high redshift sources, as there is no X-ray cluster detected above $z=1.3$ in the COSMOS field.

4. The strong lens modeling

In this section, we focus on the 12 lens galaxies offering the largest number of observational constraints: the triple and quadruple image systems and the Einstein rings.

4.1. Lens galaxy light profiles
We have re-computed the 2-dimensional fit of the galaxy surface brightness distribution of the COSMOS lenses using GIM2D (Simard 1998, Marleau & Simard 1998) in order to include error bars that were not presented in Paper I. For that purpose, we adopt, as in Paper I, a Sersic bulge plus an exponential disk parametrization to describe the two-dimensional surface brightness distribution of the lens galaxy light profile. The Sersic profile is parametrized by means of the total flux in the bulge, the Sersic index, n, the bulge ellipticity, $ε = 1 - b/a$, the position angle of the bulge, PA, and the effective radius of the bulge, R_e. The exponential profile depends on the photometric disc total flux, the disc scale-length, the disc position angle and the disc inclination. The software gives the best fitting values for all of these parameters. The parameters of the Sersic bulges are summarized in Table 5. The error bars correspond to the 68% confidence level. For most systems, the results are consistent with the surface brightness parameters measured in Paper I. But for others, such as COSMOS 5921+0638, the best fit parameters are different in Paper I, Paper III and here. Indeed, the presence of a ring or bright arcs close to the lens galaxy center makes difficult to produce a robust fit of the lens galaxy surface brightness density profile; this remains the case even when more complex fitting and deconvolution methods are used (see Chantry & Magain 2007).

The relative image positions to the lens galaxies are the main constraints for the lens models. For images which are point like objects, the determination of their positions only depends on the image resolution. This is the case for COSMOS 5921+0638. For this system the error on the relative position is 0.014 arcsec (see Paper III). For the other multiple images systems, we determine the position of the brightest peak in each image. For these systems, the error on the relative position of the images is typically 0.05 arcsec. For the perfect rings that do not display any peak we place the image arbitrarily around the ring, in a symmetric way around the lens center and we assume that the error on the relative position of the images is 0.05 arcsec. In Table 6 we provide the lens galaxy central coordinates as well as the position of the multiple images relative to the lens galaxy location used in the lens modeling. For J100140.12+020040.9 and J095930.93+032427.7, we have retrieved the image position from Jackson 2009.

Name	Ellipticity	Position Angle	Effective Radius, R_e	Effective Radius, R_e	Sersic index, n
COSMOS 0049+5128	0.24±0.02	25°±1°	5.15±0.03	1.10±0.03	1.92±0.01
COSMOS 5947+4752	0.05±0.05	4°±6°	2.49±0.03	0.52±0.11	1.38±0.03
COSMOS 5921+0638	0.14±0.05	97°±18°	2.88±0.01	0.46±0.07	1.00±0.05
COSMOS 0038+4133	0.25±0.02	32°±6°	5.25±0.01	1.74±0.03	4.30±0.03
COSMOS 0124+5121	0.23±0.01	52°±6°	1.82±0.01	0.24±0.02	1.89±0.01
COSMOS 0047+5023	0.19±0.04	33°±2°	5.40±0.01	0.72±0.08	1.25±0.03
J100140.12+020040.9	0.16±0.05	21°±6°	2.42±0.02	0.32±0.02	2.59±0.01
COSMOS 5941+3628	0.24±0.04	5°±15°	5.89±0.02	0.78±0.03	1.18±0.03
J095930.93+032427.7	0.21±0.05	77°±16°	1.62±0.06	0.21±0.09	1.90±0.03
COSMOS 0050+4901	0.30±0.06	27°±3°	2.85±0.03	0.37±0.14	5.58±0.01
COSMOS 0018+3845	0.22±0.01	22°±1°	2.32±0.01	0.30±0.17	5.60±0.03
COSMOS 5914+1219	0.13±0.02	14°±6°	2.21±0.01	0.27±0.01	1.40±0.02

Notes. (1) Lens name. Parameters of the Sersic light profile fit: (2) ellipticity, (3) position angle, (4) effective radius in kpc and (5) in arc-seconds and (6) index, with associated error bars (from GIM2D, 68% confidence limit).
90°, 90°), hence letting the external shear parameters free. The χ² of these second lens models are reported in Table 7 (column 4) and referred as χ².

For COSMOS 0050+4901, we have modeled the group in direction to the lens by a SIE which position is fixed to the position of the group in the X-ray catalog. Hence, the only parameter allowed to vary is the velocity dispersion of the profile. The best fit model in Table 7 is obtained for a group with velocity dispersion: σ_g = 380 ± 50 km s⁻¹, if it was at the lens galaxy redshift.

For those lenses, we have arbitrarily chosen the image positions: they are symmetrically distributed around the lens. In addition, the SIE ellipticity is allowed to be null. Hence we are artifically correctly fitting the image positions, whatever the external shear values are (as long as the shear strengths are not too large). For those systems, only the Einstein ring and associated mass are reliable measurements in Table 7.

For COSMOS 0049+5128, the fit is not good (χ²=35.3). If we let the external shear free, the best fit shear parameters are different than the one measured in § 3.2.3. If we subtract the shear vector given in Table 4 to the best fit shear vector in Table 7 (column 4), we find the direction pointing toward the galaxy closest to the lens (Galaxy 2 in Fig. 7). Galaxy 2 is at a projected distance ~13″ to the lens galaxy. Would it be at the lens redshift, it would need to have a velocity dispersion σ_v = 174 km s⁻¹ to create the shear necessary to obtain χ² while fixing the shear parameters to the measured values.

For COSMOS 0124+5121, the fit is not good (χ²=35.3). If we let the external shear free, the best fit shear parameters are different than the one measured in § 3.2.3. If we subtract the shear vector given in Table 4 to the best fit shear vector in Table 7 (column 4), we find the direction pointing toward the galaxy closest to the lens (Galaxy 2 in Fig. 7). Galaxy 2 is at a projected distance ~13″ to the lens galaxy. Would it be at the lens redshift, it would need to have a velocity dispersion σ_v = 174 km s⁻¹ to create the shear necessary to obtain χ² while fixing the shear parameters to the measured values.

We notice that systems with perfect Einstein rings are mostly those systems, only the Einstein ring and associated mass are reliably measured in Table 7. For COSMOS 0049+5128, the fit is not good (χ²=35.3). If we let the external shear free, the best fit shear parameters are different than the one measured in § 3.2.3. If we subtract the shear vector given in Table 4 to the best fit shear vector in Table 7 (column 4), we find the direction pointing toward the galaxy closest to the lens (Galaxy 2 in Fig. 7). Galaxy 2 is at a projected distance ~13″ to the lens galaxy. Would it be at the lens redshift, it would need to have a velocity dispersion σ_v = 174 km s⁻¹ to create the shear necessary to obtain χ² while fixing the shear parameters to the measured values.

It is the same for the other lenses: if fixed in the lens model, the external shear due to the groups leads to χ² >> 1. If we set the external shear parameters free, the best fit shear will point in a direction which correspond to the vectorial summed orientation of the shear due to the groups and of the shear due to a secondary (and third in the case of COSMOS 0038+4133) galaxy. In Table 8 we have reported the projected distance between the lens galaxy and the secondary (third) galaxy, as well as the the velocity dispersion of the secondary (third) galaxy that is needed to obtain χ² when fixing the external shear parameters to the one due to the groups. In the case of COSMOS 0050+4901, the velocity dispersion derived for the main lens and for the secondary galaxy are that of groups rather than that of galaxies: indeed, when we look at the image of the lens (Fig. 10), we see that the field is crowded with galaxies. However, the shear and velocity ratio measured in § 4 do not show any evidence for the presence of a structure at the lens redshift. Therefore if there is actually a group intervening in this system, it should be at a different redshift than that of the main lens galaxy. For the other systems, the velocity dispersion associated with the secondary lens can be associated with a galaxy mass. For COSMOS 0047+5023, we see in Fig. 9 that the field around the lens is crowded with galaxies: an improved version of the present mass model should take them into account, preferentially using a measurement of their redshift and velocity dispersion.

We conclude that our efforts at measuring the external shear were not in vain as, when using it in the lens model, we clearly identify the missing element: the best fit will point at the closest galaxy to the lens or indicate the realistic presence of a galaxy group in the line-of-sight. We come back to this result in § 5.3.

The Einstein radius of the lens galaxy and corresponding mass have been calculated for the best models and are displayed in Table 7.

4.2.2. The proportion of DM in the Einstein radius

We integrate the galaxy light profile density up to the Einstein radius, and use the stellar mass of the lens galaxy, identifying the effective radius to the half stellar mass radius, to determine the stellar mass within the Einstein radius, M_*(<R_E). Doing so, we can compare it to the total mass within the Einstein radius, M(<R_E), obtained during the lens modeling. This gives us a measurement of the lens galaxy projected DM fraction within the Einstein radius: f_{DM(<R_E)} = 1 - M_*(<R_E) / M(<R_E). These values are reported in Table 7. The errors come from the propagation of the uncertainties in M_*, R_E, M(<R_E) and R_E.
The negative DM fraction for COSMOS 0038+4133 may indicate that the stellar mass of the lens galaxy is overestimated. This is surprising as for this system the photometric and spectroscopic redshifts agree, hence making us confident that the SED, hence the stellar mass, is reliable as well. Another possible explanation is that the light profile fit is not correct and that we measure too large an effective radius. This is indeed a possible explanation as a bright ring surrounds the lens galaxy and may bias the determination of the light profile. Finally, it is also possible that the source redshift is lower than the one considered here ($z_{\text{sim}}=1.5$). Indeed, would $z_s=0.9$, the total mass in the Einstein radius would be $M(<R_e)=4.88\times10^{11}M_\odot$, and the corresponding DM fraction: $f_{\text{DM}}(<R_e)=0.6$. Because of all these intergations, which requires further investigation, we do not keep this system for the rest of the analysis.

Table 6. Position of the lensing galaxy (in degree) and relative position (in arc-second) of the images used as constraints for the lens mass model.

Lens Image	RA	DEC
COSMOS 0049+5128	130.2092807	1.8578028
A1	2.05	0
A2	0	2.05
A3	0	-2.05
A4	-2.05	0
COSMOS 5947+4752	149.59055	2.7979802
A1	2.28	0
A2	-2.28	0
A3	0	2.28
A4	0	-2.28

Table 8. Parameters for Galaxy 2.

Name	Distance $''$	σ_{Galaxy} km s^{-1}	Fig.
COSMOS 0049+5128	1.2	114	7
COSMOS 5921+0638	1.6	70	8
COSMOS 0038+4133	3.5	195	8
COSMOS 0447+5023	3.9	264	8
J001012.0+020040.9	1.1	94	8
J095930.93+023427.7	4.9	275	11
COSMOS 0050+4901	7.4	366	10
COSMOS 0018+3845	3.5	119	10
COSMOS 5914+1219	3.0	209	10

Notes. (1) Lens Name. (2) Distance between the lens galaxy and Galaxy 2 (or Galaxy 3 in the case of COSMOS 0038+4133). (3) Velocity dispersion of Galaxy 2 (or Galaxy 3) as explained in § 4.2.1. (4) Figure number where the lens model is displayed and the Galaxy 2 and 3 are labelled.

For the 11 remaining systems, the fraction of DM varies between 0.58±0.00 (COSMOS 5921+0638) and 0.95±0.06 (COSMOS 5947+4752).

In Fig. 6 we have reported the evolution of $f_{\text{DM}}(<R_e)$ with the redshift. The evolution of $f_{\text{DM}}(<R_e)$ is then a lower limit of the total f_{DM}. On the contrary, if (2) $R_e >> R_e$: we are measuring a $f_{\text{DM}}(<R_e)$ which is getting close to the total f_{DM}, and therefore it is expected to be larger, in average, than the one determined in case (1). This is indeed the case (see Fig. 6, top right panel): $f_{\text{DM}}(<R_e)$ increases slowly when R_e/R_e increases. From the same Fig. 6 (bottom left panel) we see that the ratio R_e/R_e increases quickly with redshift, meaning that as redshift grows we are measuring $f_{\text{DM}}(<R_e)$ getting closer to the total f_{DM} of the galaxy. The fact that $f_{\text{DM}}(<R_e)$ is slightly decreasing or "at best" constant when the redshift grows suggest that the "total" fraction of dark matter is genuinely lower in high redshift lens galaxies, than in the low redshift lens galaxies.

Interestingly, we observe the same tendency if we consider the lens sample from Jiang and Kochanek (2007, JK07 hereafter): they measure the DM fraction (assuming or not adiabatic compression in their galaxy models and Salpeter initial mass function (IMF)) in the Einstein radius of 22 galaxies spanning a lens redshift $z_l=[0.0808,1.004]$. If we look at the 18 galaxies with $R_e/R_e < 10$ as in our sample (see Fig. 6), we notice that, similarly to our sample: (i) $f_{\text{DM}}(<R_e)$ decreases slightly with redshift with the same slope than for our sample (-0.18), (ii) the radius R_e/R_e increases with redshift and (iii) $f_{\text{DM}}(<R_e)$ slightly increases when R_e/R_e increases.

We add that, even if the two samples show similar behavior, we chose not to mix them for the display and slope calculations in order to avoid misinterpretations due to possible systematics affecting the measurement of the DM fraction in the two different methods (e.g. different IMFs).
5. Discussion and conclusions

From the analysis of the COSMOS strong lenses in the redshift range 0.34 to 1.13, we get three major results: (1) the lens galaxy stellar masses increases with the redshift, (2) the lens galaxy environments are compatible with those of ETGs in this redshift range and (3) the DM fraction of the lens galaxies in the Einstein radius slightly decreases with the redshift, when the ratio between the Einstein radius versus the effective radius strongly increases with redshift. Let us discuss each one of these trends.

5.1. Increase of the lens stellar mass with redshift

In § 2.3, we have measured that the lens galaxy stellar mass increases with redshift. Is this a result of the selection method used to built the lens sample? At $z \sim 0.4$, one of our lenses has an effective radius of $\sim 0.3''$ and at $z \sim 0.9$, the smallest lens galaxy effective radius is $\sim 0.2''$ (see Table 5). The effective radius is a lower limit for the Einstein radius. These “lower limit Einstein radii” correspond to lower limits in mass within the Einstein radius that are in our case: $10^{10.9} \, M_\odot$ at $z=0.4$ and $10^{11.0} \, M_\odot$ at $z=0.9$, assuming a source at $z=1.5$. Hence, for a given source redshift, the minimal lens galaxy mass should increase with the lens redshift in order to be visually detected; hence, most probably, the minimal stellar mass might increase as well with redshift. Following this reasoning, we expect the sample average stellar mass to increase with the redshift. While this reasoning is simplistic as the source redshifts are different for every lens, it still explains partially the increasing stellar mass with increasing redshift of the lens galaxies. So far, it is not clear whether this “detection bias” effect is the only reason for the lens galaxy stellar mass increase with redshift. This result should be investigated in dedicated nu-

Fig. 7. Mass models on top of ACS images for (top to bottom) COSMOS 0049+5128 and COSMOS 5947+4752. The left column displays the best mass model corresponding to the χ^2 given in Table 7 (column 4 or column 3 if no other). The right panel shows a zoom of the central region of the lens models, where the source can be seen. North is to the top and East to the left. Color code: the red circles are the observed images, which radii correspond to the position uncertainty used in the modeling. In orange are the images produced by the best lens model (in case of perfect fit, the orange and red crosses superimpose). The navy blue lines describe the potential. The caustic lines are in yellow an the critical lines are in cyan. The green ellipses show the position of the source as seen through the best mass model (one source for each image, when a good fit is reached the four sources are partially superimposed). We indicate the position of Galaxy 2 (see § 4.2.1 and Table 8).
for COSMOS and with the SLACS sample (T09 and Auger 2008). It is particularly interesting as the COSMOS and SLACS samples have very different measurements made in the redshift range \([0.068; 0.513]\).

5.2. Evolution of the lens galaxy environment

Our study of the environments of COSMOS lens galaxies, via the projected galaxy number density in \(\S 5.1\) indicates that the environment of lens galaxies is similar to that of ETGs across the whole range of redshifts tested here. This result extends the previous measurements made in the redshift range \([0.068; 0.513]\) with the SLACS sample (T09 and Auger 2008). It is particularly interesting as the COSMOS and SLACS samples have very different selection criteria: hence this result is most probably a genuine characteristic of strong lens galaxies rather than a selection bias.

We also notice that both neighbor density estimator tested here appear to be reliable estimators of the environment of galaxies, as X-ray groups and clusters are actually detected around lenses with high \(\frac{\Sigma_{\text{X-ray}}}{\Sigma_{\text{D}}}<1\) and high \(\frac{\rho_{\text{X-ray}}}{\rho_{\text{D}}}<1\) ratios.

5.3. The decreasing dark matter fraction with redshift

We have measured the lens galaxy DM fraction in the Einstein radius by combining the total mass in the Einstein radius, the light density profile and the stellar mass in the galaxy. The projected DM fraction decreases with redshift even though the ratio between the Einstein radius and the effective radius increases with the redshift (see Fig. 6). A similar trend is seen in the lens galaxy dataset of JK07 which covers a similar redshift range.

Using toy models and a \(\Lambda\)CDM cosmology and the SLACS lenses, Napolitano et al. (2010) and Tortora et al. (2010) first notice that, for a fixed stellar mass and age, the DM fraction is similar for high and low redshift galaxies. They also notice that the slope of the distribution of \(f_{\text{DM}}\) versus age is steeper than explained by their model and they invoke different scenarios to interpret the discrepancy (including adiabatic compression and different IMF for different galaxy ages). Another possible effect responsible for the DM fraction decrease with redshift is the increasing stellar density of ETGs with redshift as discussed by Bezanson et al. (2009). But to understand if the results are affected by one of these effects, \(f_{\text{DM}}\) need to be measured in comparable radius, not different for each galaxy, contrary to the Einstein radius. In order to conclude on the favorite ongoing processes on ETGs since \(z<1\) as a function of their age and stellar mass, a joint analysis of the three lens galaxy samples would certainly be a first step towards a better understanding.

5.4. Some words on the lens models

Using lens modeling we measure the Einstein radii and related total masses for the lens galaxies. Doing so, we were able to measure their DM fractions within their Einstein radius. In addition, the lens models were used to test the calculation of the external shear due to the groups around the lens galaxies. We observe that, in every lens model, the difference between the best fit external shear and the shear due to the groups points towards the closest galaxy to the lens. We calculate that, those secondary galaxies need to have realistic velocity dispersions for the lens models to provide good fits.

Moreover, we have measured that a catalog of high mass groups and clusters modeled by TIS is giving very similar total shear strengths and orientations than a combination of high mass and low mass group catalogs. Therefore we conclude that a measurement of the global external shear affecting the lens potential at the lens galaxy location could be made if one could combine: 1) a measurement of the redshift and velocity dispersion of the lens galaxy closest neighbor(s) plus 2) the locations, masses and radii of the most massive groups and clusters (such as the one provided by the X-ray observations in the COSMOS field) in a \(\gtrsim 5'\) radius around the lens galaxy. By fixing the external shear one would break an important source of degeneracy in the lens models.

5.5. Conclusions

On one hand, we have measured that the environment of lens galaxies is similar to that of non ETGs over a wide redshift range: between \(0.068 \text{ and } 1.13\) if we put together results from the SLACS sample (T09, Auger 2008) and from the COSMOS sample (this paper). On the other hand, we have built up an ensem-
ble of clues suggesting that the mass properties of lens galaxies evolve with redshift.

Indeed, we note that at high redshift, lens galaxies have a large stellar mass and a total dark matter fraction \(< f_{DM} > \approx 0.7\) (for \(z > 0.8\)). On the contrary, at low redshifts, lens galaxies have lower stellar mass and their DM fraction is \(< f_{DM} > > 0.8\).

This result advocates in favor of high stellar density of high redshift ETGs in comparison to low redshift ETGs as suggested by the results of Bezanson et al. (2009). Or it could be that the difference between low and high redshift lens galaxy population is a consequence of the stellar population aging and different IMFs at different ages (see Napolitano et al. 2010). It could be that the effects measured here are related to the lensing efficiency, which in this case would be a complex combination of (1) the lens population number density, (2) the source population distribution in space, redshift and luminosity, (3) the survey properties (sensitivity, band, size, angular resolution), (4) biases in the lens sample selection.

To disentangle between an evolutionary or a pure lensing origin of the effects discovered in this study, the evolution of lens galaxy properties with redshift needs to be studied in dedicated numerical simulations (e.g. van de Ven et al. (2009), Mandelbaum et al. (2009)). Whether the effects are intrinsic to the massive early type galaxy population or to the lensing efficiency, they must be fully understood if one wants to study properly the galaxy properties gathered from lens galaxy populations.

Acknowledgements. We acknowledge the anonymous referee for providing a detailed and very useful report. We are gratefully indebted to M. Limousin and R. Gavazzi for enlightening discussions. DA thanks CNRS and CEA for support and visits to the Geneva observatory where this work was finalized. JPK thanks support from CNRS and SL2S ANR-06-BLAN-0067 and DESIR ANR-10-BLAN-06.

References

Allam, S. S., Tucker, D. L., Lin, H., Diehl, H. T., Annis, J., Buckley-Geer, E. J., & Frieman, J. A. 2007, ApJ, 662, L51
Anguita, T., Faure, C., Kneib, J.-P., Wambsganss, J., Knobel, C., Koekebroe, A. M., & Limousin, M. 2009, A&A, 507, 35
Auger, M.W. 2008, MNRAS, 383, L40
Bartelmann, M., Meneghetti, M., Perrotta, F., Baccigalupi, C., & Moscardini, L. 2003, A&A, 409, 449
Bezanson, R., van Dokkum, P. G., Tal, T., Marchesini, D., Kriek, M., Franx, M., & Coppi, P. 2009, ApJ, 697, 1290
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T., & Moustakas, L. A. 2006, ApJ, 638, 703
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T., Gavazzi, R., Moustakas, L. A., Wayth, R., & Schlegel, D. J. 2008, ApJ, 682, 964
Brualdi, G. & Charlot, S. 2003, MNRAS, 344, 1000
Bundy, K. et al. 2006, ApJ, 651, 120
Cabanela, R. A., et al. 2007, A&A, 461, 813
Capak, P., et al. 2007a, ApJS, 172, 99
Capak, P., Abraham, R. G., Ellis, R. S., Mobasher, B., Scoville, N., Sheth, K., & Koo, E. 2007b, ApJS, 172, 284
Capak, P., et al. 2009, arXiv:0911.0414
Chae, K.-H., Mao, S., & Kang, X. 2006, MNRAS, 373, 1369
Chantry, V. & Magain, P. 2007, A&A, 470, 467
Dobke, B. M., King, L. J., & Fellhauer, M. 2007, MNRAS, 377, 1503
Elvis, M., et al. 2009, ApJS, 184, 158
Faure, C., et al. 2008, ApJS, 176, 19
Faure, C., et al. 2009, ApJ, 695, 1233
Finoguenov, A., et al. 2007, ApJS, 172, 182
Finoguenov, A., et al. 2009, ApJ, 704, 564
Gavazzi, R., Treu, T., Rhodes, J. D., Koopmans, L. V. E., Bolton, A. S., Burles, S., Massey, R. J., & Moustakas, L. A. 2007, ApJ, 667, 176
Grillo, C., Gobat, R., Lombardi, M., & Rosati, P. 2009, A&A, 501, 461
Hasinger, G., et al. 2007, ApJS, 172, 29
Hilbert, S., White, S. D. M., Hartlap, J., & Schneider, P. 2007, MNRAS, 382, 121
Fig. 8. Suite: Mass models on top of ACS images for (top to bottom) COSMOS 5921+0638, COSMOS 0038+4133 and COSMOS 0124+5121. The color code for the labels is given in Fig. 7. North is to the top and East to the left.
Fig. 9. Suite: Mass models on top of ACS images for (top to bottom) COSMOS 0047+5023, J100140.12+020040.9 and COSMOS 5941+3628. The color code for the labels is given in Fig. 7. North is to the top and East to the left.
Fig. 10. Suite: Mass models on top of ACS images for (top to bottom) COSMOS 0050+490, COSMOS 0018+3845 and COSMOS 5914+1219. The color code for the labels is given in Fig. 7. North is to the top and East to the left.
Fig. 11. Suite: Mass models for the J095930.93+023427.7. Top left panel: the navy blue circle located North of the image surrounds the group central galaxy. Top right panel: zoom on the lens galaxy and on the images. Bottom panel: zoom on the caustic (yellow curves) and on the favorite source position (green ellipses). The color code for the labels is given in Fig. 7. North is to the top and East to the left.