Narrow-line magneto-optical trap for erbium

A. Frisch,1 K. Aikawa,1 M. Mark,1 A. Rietzler,1 J. Schindler,1 E. Zupanič,1,2 R. Grimm,1,3 and F. Ferlaino1

1Institut für Experimentalphysik and Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
2Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
3Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria

(Dated: May 5, 2014)

We report on the experimental realization of a robust and efficient magneto-optical trap for erbium atoms, based on a narrow cooling transition at 583 nm. We observe up to $N = 2 \times 10^8$ atoms at a temperature of about $T = 15 \mu$K. This simple scheme provides better starting conditions for direct loading of dipole traps as compared to approaches based on the strong cooling transition alone, or on a combination of a strong and a narrow kHz transition. Our results on Er point to a general, simple and efficient approach to laser cool samples of other lanthanide atoms (Ho, Dy, and Tm) for the production of quantum-degenerate samples.

PACS numbers: 37.10.De, 67.85.-d, 37.10.Vz

Laser cooling of non-alkali atoms has become a very active and challenging field of research. The great appeal of unconventional atomic systems for experiments on ultracold atomic quantum gases stems from the possibility of engineering complex interactions and of accessing rich atomic energy spectra. Both features are at the foundation of a number of novel fascinating phenomena. For instance the energy spectra of two-valence-electron species, as alkaline earth and alkaline-earth-like atoms, feature narrow and ultra-narrow optical transitions, which are key ingredients for ultra-precise atomic clocks [1], efficient quantum computation schemes [2], and novel laser cooling approaches as beautifully demonstrated in experiments with Sr, Yb, and Ca [3–5].

As a next step in complexity, multi-valence-electron atoms with non-S electronic ground state such as lanthanides are currently attracting an increasing experimental and theoretical interest. Among many, one of the special features of lanthanides is the exceptionally large magnetic dipole moment of atoms in the electronic ground state (e.g. $7 \mu_B$ for Er and $10 \mu_B$ for both Dy and Tb), which provides a unique chance to study strongly dipolar phenomena with atoms. Highly magnetic atoms interact with each other not only via the usual contact interaction but also via an anisotropic and long-range interaction, known as the dipole-dipole interaction [6]. Chromium was the first atomic species used for experiments on atomic dipolar quantum gases [7,8], and the even more magnetic lanthanides are nowadays in the limelight thanks to laser cooling experiments on Er and Tm [9,10] and to the recent realization of quantum-degenerate Dy gases [11,12].

Similarly to Yb and the alkaline earth atoms, the atomic energy spectra of magnetic lanthanides include broad, narrow, and ultra-narrow optical transitions. This collection of lines is reflected in a wide choice of possible schemes for laser cooling experiments. However, all experiments on Zeeman slowing and cooling in a magneto-optical trap (MOT) with magnetic lanthanides so far relied on an approach, essentially based on the strongest cycling transition [14,15]. This broad transition typically lies in the blue between 400 and 430 nm and has a linewidth on the order of few tens of MHz. As a consequence, the Doppler temperature is close to a mK. Such a high temperature makes direct loading from a MOT into a dipole trap difficult and inefficient, even when sub-Doppler mechanisms take place [14,15]. To further decrease the temperature of atoms prior to the dipole trap loading, an additional MOT stage based on an ultra-narrow kHz-linewidth transition was applied in Refs. [11,13], making the whole experimental procedure more involved.

Taking advantage of the rich atomic spectrum of lanthanides, we identify a different transition to be the most suitable one for MOT operation towards production of a quantum-degenerate gas. This transition, which for Er lies at 583 nm and has a linewidth of 190 kHz, represents an intermediate case between the broad (blue) and the ultra-narrow (red) transitions available in the lanthanide spectra and has very similar properties to the Yb intercombination line [16,17]. Based on the electronic ground state (e.g. T_1) is the exceptionally large magnetic dipole moment of atoms in the electronic ground state (e.g. $7 \mu_B$ for Er and $10 \mu_B$ for both Dy and Tb), which provides a unique chance to study strongly dipolar phenomena with atoms. Highly magnetic atoms interact with each other not only via the usual contact interaction but also via an anisotropic and long-range interaction, known as the dipole-dipole interaction [6]. Chromium was the first atomic species used for experiments on atomic dipolar quantum gases [7,8], and the even more magnetic lanthanides are nowadays in the limelight thanks to laser cooling experiments on Er and Tm [9,10] and to the recent realization of quantum-degenerate Dy gases [11,12].

Similarly to Yb and the alkaline earth atoms, the atomic energy spectra of magnetic lanthanides include broad, narrow, and ultra-narrow optical transitions. This collection of lines is reflected in a wide choice of possible schemes for laser cooling experiments. However, all experiments on Zeeman slowing and cooling in a magneto-optical trap (MOT) with magnetic lanthanides so far relied on an approach, essentially based on the strongest cycling transition [14,15]. This broad transition typically lies in the blue between 400 and 430 nm and has a linewidth on the order of few tens of MHz. As a consequence, the Doppler temperature is close to a mK. Such a high temperature makes direct loading from a MOT into a dipole trap difficult and inefficient, even when sub-Doppler mechanisms take place [14,15]. To further decrease the temperature of atoms prior to the dipole trap loading, an additional MOT stage based on an ultra-narrow kHz-linewidth transition was applied in Refs. [11,13], making the whole experimental procedure more involved.

Taking advantage of the rich atomic spectrum of lanthanides, we identify a different transition to be the most suitable one for MOT operation towards production of a quantum-degenerate gas. This transition, which for Er lies at 583 nm and has a linewidth of 190 kHz, represents an intermediate case between the broad (blue) and the ultra-narrow (red) transitions available in the lanthanide spectra and has very similar properties to the Yb intercombination line [16,17]. Based on this broad transition typically lies in the blue between 400 and 430 nm and has a linewidth on the order of few tens of MHz. As a consequence, the Doppler temperature is close to a mK. Such a high temperature makes direct loading from a MOT into a dipole trap difficult and inefficient, even when sub-Doppler mechanisms take place [14,15]. To further decrease the temperature of atoms prior to the dipole trap loading, an additional MOT stage based on an ultra-narrow kHz-linewidth transition was applied in Refs. [11,13], making the whole experimental procedure more involved.

Taking advantage of the rich atomic spectrum of lanthanides, we identify a different transition to be the most suitable one for MOT operation towards production of a quantum-degenerate gas. This transition, which for Er lies at 583 nm and has a linewidth of 190 kHz, represents an intermediate case between the broad (blue) and the ultra-narrow (red) transitions available in the lanthanide spectra and has very similar properties to the Yb intercombination line [16,17]. Based on
of the excited level at 401 nm are unknown we could not assign the absorption features to specific hyperfine transitions. We derive the yellow light from a dye laser operating with Rhodamin 6G. By using an intracavity EOM and an external reference cavity, we stabilize the laser to a linewidth of about 50 kHz. By additionally locking the laser to an ultralow-expansion cavity, we achieve a long-term stability better than 30 kHz within a day [25].

Our experimental procedure is as follows. We load the Zeeman slowed atomic beam from an effusive, high-temperature oven directly into the narrow-line MOT. Our commercial oven typically operates at a temperature of 1300°C, which is about 200°C below the Er melting point. Two 3-mm apertures, separated by 50 mm, provide a geometrical collimation of the atomic beam. In addition, the atomic beam is further collimated and transversally cooled by a 2D optical molasses, working on the broad 401-nm transition with a total power of about 100 mW. The beams are elliptically shaped to increase the interaction time between the atoms and the light. Thanks to the transversal cooling stage, we increase the loading flux by almost an order of magnitude.

The atomic beam then enters the Zeeman slower (ZS). Because of the limited capture velocity (a few m/s) imposed by the narrow cooling transition used for the MOT, it is crucial to design a ZS that provides enough atomic flux at low velocities [4]. We build a 360 mm long spin-flip Zeeman slower, which can slow the atoms from 500 m/s to about 5 m/s. The ZS light is focused at the oven position and has a total power of about 60 mW. At the MOT position, we estimate a beam diameter of about 11 mm, corresponding to an intensity of about one \(I_{401}\), where \(I_{401} = 56 \text{ mW/cm}^2\) is the saturation intensity. Our ZS operates with light detuned by about \(-20\Gamma_{401} (-540 \text{ MHz})\) from the unshifted resonance.

The narrow-line MOT is operated in a standard six beam configuration with retro-reflected beams. To increase the capture velocity of the MOT, we use large MOT beam diameters of about 30 mm. Typical MOT loading parameters include a magnetic field gradient \(B'\) (along the symmetry axis) of 4 G/cm, a laser intensity of 12 \(I_{583}\) per beam with \(I_{583} = 0.13 \text{ mW/cm}^2\), and a detuning \(\delta_{583}\) from the atomic transition of \(-50 \Gamma_{583} (-9.5 \text{ MHz})\). To measure the number of atoms in the MOT after loading, we optically compress the MOT by reducing \(\delta_{583}\) to \(-0.5 \Gamma_{583}\) and apply standard absorption imaging on the blue transition.

A special feature of our narrow-line MOT is the large detuning of the MOT light (typically \(-50 \Gamma_{583}\)) needed for optimal loading. At this detuning, we observe a very strong effect of gravity on the position and shape of the atom cloud [3]. The atoms are located well below the center of the magnetic quadrupole field, and the cloud takes the form of a large semi-shell. To elucidate the reason for the large detuning, we monitor the loading dynamics and the lifetime of the MOT; see Fig. 2. Our measurements focus on the \(^{166}\text{Er}\) isotope, but we have observed the same qualitative behavior also for the other isotopes.

Figure 2(a) shows the atom number in the MOT as a func-
tion of the loading time for different values of δ_{583}. We fit our data by using a standard loading rate equation \cite{24}, which includes a capture rate R and a decay rate γ; the latter accounts for both collisions between trapped atoms and collisions with the background gas. For a detuning of $-50\Gamma_{583}$ the atom number approaches its steady state in about 10 s with $N_{\text{ss}} \approx 2 \times 10^8$. For a lower value of the detuning to $-32\Gamma_{583}$ we observe a substantial decrease of the atom number to $N_{\text{ss}} \approx 5 \times 10^7$. This behavior is clearly shown in the inset, where we monitor the number of atoms N_{ss} for a fixed loading time of 10 s as a function of the MOT light detuning. For detunings exceeding $\delta_{583} = -30\Gamma_{583}$ we observe a rapid increase in the atom number. When further increasing the detuning, N_{ss} first stays constant and then rapidly decreases.

We believe that the large detuning of the MOT light serves us to minimize the detrimental effects of off-resonant pumping processes driven by the ZS light. According to the Zeeman shift in the quadrupole field of the MOT, we observe a spatial displacement of the atomic cloud with δ_{583} of about 1.4 mm/MHz \cite{27}. For large detunings, this shift becomes so large that the atoms can no longer be kept in the MOT. For intermediate detunings in the range from -40 to $-55\Gamma_{583}$, the cloud displacement is advantageous for MOT operation since the atoms become spatially separated from the region of interaction with the ZS light. For small detunings, the ZS light leads to substantial losses of atoms.

The effect of the ZS light also shows up in lifetime measurements, where we monitor the number of atoms in the MOT as a function of the holding time with the ZS light being present or absent; see Fig. 2(b). For these measurements we switch off the ZS magnetic field and the atomic beam after 10 s of MOT loading. For large detuning ($\delta_{583} = -50\Gamma_{583}$) the evolution of the atom number is not affected by the ZS light. In both cases, i.e. with the ZS light on and off, we observe faster losses in the earlier stage of the decay, which we attribute to inelastic two-body collisional processes, and a slower decay at a later time, which is finally limited by background collisions. For simplicity we use a double-exponential fit function to estimate the time constants \cite{28}. We extract time constants of 19(3) s and 80(20) s for the fast and slow dynamics, respectively. At lower MOT detuning ($-32\Gamma_{583}$), the ZS light strongly affects the decay. When the blue light is turned off, our observations are qualitatively similar to the ones at $-50\Gamma_{583}$ while with the blue light turned on, the atomic loss dramatically increases. In this case the decay curve is well described by a single exponential function with a time constant $\tau = 9.0(1)$ s. This decay time is consistent with a simple estimate of pumping losses. By considering the absorption rate Γ_a of the 401-nm light at the actual intensity and detuning \cite{29} and the branching ratio b for decay from the excited state to all the possible metastable states \cite{9}, we estimate a decay rate $1/\tau = b\Gamma_a$ of the order of 0.1 s$^{-1}$.

We could also demonstrate trapping of all the other Er isotopes, with the exception of the rare ^{162}Er (0.1% natural abundance). For all the bosonic isotopes we used about the same values for the detuning of the ZS and the MOT light. Figure 3(a) shows the atom number in the MOT for the different isotopes as a function of their natural abundance. For a long loading time of 20 s we observe similar atom numbers exceeding 10^8 for the three most abundant bosonic isotopes, indicating that saturation effects might apply. For a short loading time of 5 s, the atom number increases with the natural abundance. However, we observe a more complicated behavior than the expected linear growth. This might be due to slight differences in the optimal MOT parameters, but may also point to differences in scattering and collisional properties among the different isotopes.

For the fermionic isotope ^{167}Er we observe a MOT with atom number of about 3×10^7, which is substantially lower than the numbers measured for the bosonic isotopes. A simple explanation of this behavior can be that we decelerate and cool only atoms in the $F = 19/2$ hyperfine state, which has a statistical weight of about 20%. Note that a similar behavior has been observed with the fermionic ^{161}Dy MOT, which also shows lower atom numbers than the ones of bosonic MOTs \cite{13}. An additional complication stems from the unknown hyperfine splitting of the 401-nm line.
signal we could not identify a priori where to lock the Zeeman slower light to be resonant with the desired signal we could not identify.

With the optimized parameters the locking point used for the ZS light to produce the points for the ZS light until the MOT was visible. We finally had to proceed blindly by first locking the 583-nm MOT light on the cooling transition and by then trying different locking points for the ZS light for the bosonic isotopes and the HF structure of 167Er. The arrow indicates the locking point used for the ZS light to produce the 167Er MOT.

In conclusion, we have demonstrated an efficient and simple approach for an Er MOT based on a single narrow-line transition. Our scheme works with all abundant Er isotopes and allows for direct loading of an optical dipole trap. In first experiments we were able to load up to 10^7 Er atoms into the dipole trap in a single focused-beam configuration. Optimization of the dipole trap loading and evaporative cooling experiments are under way in our laboratory.

We are grateful to J. J. McClelland and A. J. Berglund for sharing with us their precious knowledge on Er and to S. Kotochigova, O. Dulieu, M. Lepers, and J. F. Wyart for fruitful discussions. We also thank the Sr team in Innsbruck and the Yb team in Tokio for their support. This work is supported by the Austrian Ministry of Science and Research (BMWF) and the Austrian Science Fund (FWF) through a START grant under Project No. Y479-N20 and by the European Research Council under Project No. 259435.

[1] T. Ido and H. Katori, Phys. Rev. Lett. 91, 053001 (2003).
[2] A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Phys. Rev. Lett. 101, 170504 (2008).
[3] H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 1116 (1999).
[4] T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 60, R745 (1999).
[5] E. A. Curtis, C. W. Oates, and L. Hollberg, Phys. Rev. A 64, 031403 (2001).
[6] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, Rep. Prog. Phys. 72, 126401 (2009).
[7] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401 (2005).
[8] Q. Beaufls, R. Chircireau, T. Zanon, B. Laburthe-Tolra, E. Maréchal, L. Vernac, J.-C. Keller, and O. Gorceix, Phys. Rev. A 77, 061601 (2008).
[9] J. J. McClelland and J. L. Hanssen, Phys. Rev. Lett. 96, 143005 (2006).
[10] T. Sukachev, A. Sokolov, K. Chebakov, A. Akimov, S. Kanorsky, N. Kolachevsky, and V. Sorokin, Phys. Rev. A 82, 011405 (2010).
[11] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys. Rev. Lett. 107, 190401 (2011).
[12] M. Lu, N. Q. Burdick, and B. L. Lev, (2012), arXiv:1202.4444.
[13] S. H. Youn, M. Lu, U. Ray, and B. L. Lev, Phys. Rev. A 82, 043425 (2010).
[14] A. J. Berglund, J. L. Hanssen, and J. J. McClelland, Phys. Rev. Lett. 100, 113002 (2008).
[15] D. Sukachev, A. Sokolov, K. Chebakov, A. Akimov, N. Kolachevsky, and V. Sorokin, JETP Lett. 92, 703 (2010).
[16] Y. Takasu, K. Honda, K. Komori, T. Kuwamoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. Lett. 90, 023003 (2003).
[17] Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Phys. Rev. Lett. 91,
040404 (2003).
[18] R. V. Krems, G. C. Groenenboom, and A. Dalgarno, J. Phys. Chem. A 108, 8941 (2004).
[19] C. B. Connolly, Y. S. Au, S. C. Doret, W. Ketterle, and J. M. Doyle, Phys. Rev. A 81, 010702 (2010).
[20] S. Kotochigova and A. Petrov, Phys. Chem. Chem. Phys. 13, 19165 (2011).
[21] Y. Ralchenko, A. Kramida, J. Reader, and N. A. Team, NIST Atomic Spectra Database (2011).
[22] H. Y. Ban, M. Jacka, J. L. Hanssen, J. Reader, and J. J. McClelland, Opt. Express 13, 3185 (2005).
[23] In Ref. [33] a linewidth of $\Gamma_{401}/2\pi = 36$ MHz has been measured via fluorescence spectroscopy on atomic beams while in Ref. [34] a value of $\Gamma_{401}/2\pi = 29.5$ MHz has been obtained from lifetime measurements. We measure a linewidth of 27.5(4) MHz by using absorption imaging technique on magneto-optically trapped atoms in the regime of low saturation parameters.
[24] W. J. Childs, L. S. Goodman, and V. Pfeufer, Phys. Rev. A 28, 3402 (1983).
[25] Although we could clearly observe the spectroscopic signals for the different Er isotopes using a hollow-cathode lamp, we prefer to lock the 583-nm light to an ultralow-expansion cavity in order to reach higher frequency stability.
[26] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999).
[27] The atomic cloud displacement Δ_ν from the trap center is given by $\Delta \mu B'/\Delta_x = \hbar \Delta_{583}$, where $\Delta \mu$ is the difference in magnetic moments between the ground and excited state.
[28] The standard rate equation approach is problematic, because the distorted (semi-shell) shape of the MOT makes it difficult to extract reliable values for the density and because the MOT may be in the high-density limit regime [26].
[29] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).
[30] M. Lu, S. H. Youn, and B. L. Lev, Phys. Rev. A 83, 012510 (2011).
[31] M. Saffman and K. Mølmer, Phys. Rev. A 78, 012336 (2008).
[32] D. Sukachev, K. Chebakov, A. Sokolov, A. Akimov, N. Kolachevsky, and V. Sorokin, Opt. Spectrosc. 111, 633 (2011).
[33] J. J. McClelland, Phys. Rev. A 73, 064502 (2006).
[34] J. E. Lawler, J.-F. Wyart, and E. A. D. Hartog, J. Phys. B: At. Mol. Opt. Phys. 43, 235001 (2010).