The Comparison of the adverse events of Pentavalent and DPT vaccines in 2-6 months infants in Iran: A national study

CURRENT STATUS: POSTED

Ghobad Moradi
Kurdistan University of Medical Sciences

Zaher Khazaei
Kurdistan University of Medical Sciences

Seyed Mohsen Zahraei
ministry of health and medical education, tehran

Fateme Yaghini
ministry of health and medical education, tehran

Mohiadin Amjadian
Kurdistan University of Medical Sciences

Daem Roshani
Kurdistan University of Medical Sciences

Corresponding Author
daemroshani@gmail.com
ORCiD: https://orcid.org/0000-0003-4746-1114

DOI:
10.21203/rs.2.10951/v1

SUBJECT AREAS
Immunology

KEYWORDS
Vaccination, adverse events comparison, Pentavalent, DPT
Abstract
Background
Vaccination is the most remarkable intervention in public health and is an effective strategy in order to control infectious diseases among infants. This study attempted to compare the adverse events of Pentavalent and DPT vaccines together.
Methods
This is a cross sectional (analytical-descriptive) study in which the 2-6 months healthy infants, having received DPT in 2013 and Pentavalent in 2015, were studied for their experienced adverse events related to these vaccines. Percentage, mean, standard deviation and chi-square tests were used to describe and analyze the data.
Results
The results showed that 10464 and 17561 adverse events, which are associated with DPT and Pentavalent respectively, were recorded in the infants who received these vaccines throughout Iran. Mazandaran, Qazvin and Golestan provinces reported the highest number of adverse events, respectively (15.74%, 11.25%, and 9.12%). Moreover, Pentavalent seemed to have more recorded adverse events compared to DPT, high fever had the highest record rate for DPT (47.4%) and mild localized complications was the highest for Pentavalent (31.68%). There was a significant relationship between the kind of vaccine and the type of reaction, adverse event categorization, the country produced the vaccine and the infants' place of residence (p<0.05).
Conclusion
Severe localized adverse events including high fever, vomiting, diarrhea and restlessness seemed to be less in Pentavalent compared to DPT vaccine. Therefore, substituting Pentavalent for DPT in infants seems to reduce the adverse events among them.
Background
World Health Organization (WHO) considers vaccination in infants as the most influential health intervention for promoting the society health in the world(1). Infants’ vaccination program has been merged into public health service networks from their starting point in Iran and having 98% of infants
vaccinated, it has brought a great success in eradicating, removing and controlling preventable
diseases(2-4). Although modern and new vaccines used throughout the country are supposed to be
safe, there is no vaccine without adverse effects. Each vaccine has got its own side-effects which
might appear following their use(5). Based on the World Health Organization and Iran's care guide
recommendations, regardless of any causal relationship, every side-effect observed in the vaccinated
person who is assigned to the vaccination procedure by physicians, family members or the person
himself is known as an adverse event following immunization(6). Immunization adverse events can be
due to errors in vaccination program, reactions due to the nature of the vaccine, reactions to injection
or unknown factors. Sometimes there might be some adverse events temporarily assigned to
vaccination because of their concurrency(5, 7).
Furthermore, Pentavalent immunization program, used to prevent hepatitis B, Diphtheria, anthrax,
Tetanus and Haemophilus influenzae type b (Hib) flu and injected in three different time intervals(2,4
and 6 months), started in October 2014 in Iran(8). This vaccine is used broadly in more than 100
countries for preventing DPT (Diphtheria, Tetanus, and Pertussis), Hepatitis B and Hib in recent years.
A study in the USA showed that fever (25.8%), injection site sensitivity (15.8%) and injection site
edema (10.8%) were the most remarkable adverse events of Pentavalent vaccine(9, 10). Some of the
Pentavalent vaccine advantages includes reducing the number of injections and syringe usages, less
pain and restlessness in infants, decreasing the complications of injection, ease of planning, cost of its
effectiveness and increasing the immunization coverage(11).
However, no national study has been done on the possible adverse events of this vaccine in Iran since
its merging into the country's national vaccination program in November 22nd 2014(10). This study
attempted to broadly compare the possible adverse events of Pentavalent as a new vaccine in
comparison to DPT vaccine in infants of 2-6 months in Iran in 2016.
Methods
This is a cross sectional (analytical-descriptive) study. All healthy infants (male and female of 2-6
months), who visited health centers to receive DPT from the 18th of April to the 25th of March in 2013
as well as those who received Pentavalent from April 30th to March 25, 2015 and having experienced
adverse events following vaccination were studied. Those infants with allergic reactions or convulsions prior to vaccines and those who received immunosuppressive and neurological disorder medications were excluded from the study. Pentavalent and DPT vaccines used in this study had been produced in Iran, Korea, India, Indonesia, France and Belgium and they are used broadly in the world. To perform vaccination, 0.5 ML of them was injected into the anterior part of the quadriceps muscle of the infants.

Moreover, according to the medical guidelines of the Islamic Republic of Iran, if a person reports any adverse symptom after vaccination, that symptom is supposed and reported as an adverse event of the vaccination(9). Immediate adverse events including any mortality due to vaccination, hospitalization due to any complications assigned to vaccination, all injection site abscesses and other worrying adverse events should be immediately reported not later than 24 hours after noticing. Vaccination adverse events are recorded in immunization part in care information form in http://port.health.gov.ir/mfdc/epi/immunization.

The recorded information includes; The name of the province and medical university in the area, the date of the report, the city, the patients' gender, type of report(urgent vs. non-urgent), hospitalization status (outpatient vs. inpatient), type of reporting health center (urban vs. rural), infants' age, her/his birth weight, birth date, immunization date, type of reaction to vaccination , the vaccine name, vaccine serial number, date of receiving the vaccine, the name of the institute or factory producing the vaccine , adverse event incidence date, the patients' visit date ,their mothers' age in the time of pregnancy , treatment procedure (recovery, being treated, lasting adverse event, death, others), final diagnosis and adverse event categorization (vaccine reaction, error in the vaccination program, simultaneous injection response, unknown). Since infants' recording information form was used to gather the required data and the data analysis was done in groups, there was not any ethical problem in this study; moreover, the researchers considered themselves to be committed to research ethics as well.

Finally, STATA version 12 used to analyze the data. After all, percentage, mean standard deviation and chi-square test were used to describe the data and to investigate the studied variables.
Significance level was considered to be $p<0.05$.

Results

The results showed that among 4249050 infants who received DPT in 2013, 10464 adverse events (about 0.3%) and among 4230870 infants received Pentavalent in 2015, 17561 adverse events (about 0.3%) were reported throughout the country. The results also showed that more than half of the infants who experienced DPT adverse events (53.36%) were male and about 61.53% lived in rural areas (Table 1). In addition, the results showed that the average birth weight of these infants were $3160\pm 487g$ and $3202\pm 455.2g$ and their average gestational age were 38.4 ± 1.51 and 38.5 ± 1.31 weeks for DPT and Pentavalent vaccines, respectively.

Moreover, the results showed that Mazandaran (15.74%), Ghazvin (11.25%), Golestan (9.12%) and Zanjan (8.44%) have reported the highest and Chaharmahal & Bakhtiari (0.08%), Hormozgan & Bushehr (0.21%), Kurdistan and South Khorasan (0.023%) have reported the least number of vaccination adverse events, respectively. The highest number of DPT adverse events was reported from Mazandaran (17.27%), (13.47%) and Qazvin (11.55%) and the lowest one was reported from Chaharmahal & Bakhtiari (0.03%), South Khorasan (0.11%), Bushehr and Kurdistan (0.16%), respectively. Moreover, the highest number of Pentavalent adverse events was reported from Mazandaran (14.83%), Qazvin (11.05%). And Zanjan (8.01%) and the lowest one was reported from Chaharmahal & Bakhtiari (0.11%) Hormozgan (0.22%), Bushehr and Kurdistan (0.27%), respectively (Table 2).

The dispersion of the DPT and Pentavalent adverse events in different parts of the country is shown using geographical information system in figures 1 & 2.

The results also showed that high fever (47.4%) and mild localized complications (31.68%) were reported to be the most frequent events for DPT and Pentavalent respectively. Therefore, although more adverse events were reported for Pentavalent (17561 vs. 10464 cases) compared to DPT, most
of Pentavalent reported adverse events were mild, whereas those of DPT were mostly high fever (Fig3).

Last but not the least, according to the results, only 3% of the adverse events in both vaccines led to the infants’ hospitalization. Vaccine adverse event categorization in both DPT and Pentavalent showed that the largest category belonged to vaccine reaction (about 95%). The results also indicated that there was a significant relationship between the kind of vaccine and the type of reaction, adverse event categorization and the infants’ place of residence (p<0.05). However, there was no significant relationship between the kind of vaccine and the infants' gender or their hospitalization status. (P<0.05) (Table3).

Discussion
Although vaccines used in the country immunization program are safe and very effective, no vaccine is completely safe and there might be some adverse events following immunization using any of them (12). On the whole, the amount of adverse events following immunization are low in Iran and most of which are reported to be mild and temporary and are mostly removed without any medical treatment (13). The results showed that the general incidence of adverse events in DPT and Pentavalent were 0.2% and 0.3%, respectively. The high fever and mild localized complication were reported to have the highest incidence in DPT (47.7%) and Pentavalent (31.68%) among other adverse events.

Firstly, it seemed that Pentavalent adverse events number was more than the DPT ones (0.3% vs. 0.2%), but a closer look at the results revealed that most of the Pentavalent reported adverse events were localized and mild, whereas those related to DPT were mostly associated to high and severe fever. On the other hand, the increase in the Pentavalent adverse events reported in 2015 compared to DPT ones reported in 2013 could be justified through the general increase in the number of adverse events reported throughout the country and increasing the ability of the care and health system in identifying and recording more vaccine adverse events in 2015 compared to 2013. Moreover, the results showed that the most frequent adverse events reported were high fever (47.4%) and localized
mild events (31.68%) for DPT and Pentavalent and the highest number of adverse events (about 95%) was associated to reactions to the vaccines in general. The study also showed that there was a significant relationship between the kind of vaccine with the type of reaction, adverse events categorization, the infants’ gender and place of residence (p<0.05).

In fact, at least one out of four infants having received the vaccines showed some kinds of adverse events which were mostly associated to fever (14). Fever could generally be produced after receiving all kinds of vaccines. This study showed that high fever was the most common adverse event of DPT (%47.4) whereas it was 28.15% for Pentavalent. Severe localized events were reported to be 13.16% in DPT whereas this was half for Pentavalent (about 7.83%). The convulsion cases due to high fever reported to be similar in both vaccines; but vomiting and diarrhea were reported to be much more in DPT compared to Pentavalent. (8.2% vs. 1.58%). Moreover, injection site abscess was reported to be more in Pentavalent than DPT (3.28% vs. 1.58%).

Similarly, in studies by Sharifi et al. (9) and Ayatollahi et al. (15) High fever was reported to be the most frequent adverse event of DPT vaccine. Mansour et al. in Newzeland reported longtime crying among infants who had received DPT (16). Al-Jadiryinin Iraq reported pain and inflammation as the most common events of DPT (17). Barkin et al. reported that 54% of the infants received the vaccine showed fever as the most common event (18). In a study by Suser et al, localized pain, redness, fever and edema were reported to be the most common adverse events of DPT (19). The benefits of childhood vaccines far outweigh any potential risks. Significant global data on vaccination showed that lack of Hib vaccination caused a significant amount of disease and mortality among infants. Therefore, WHO strongly recommends global Hib Vaccination (20). Pentavalent vaccination automatically increased the coverage of Hepatitis B and Hib immunization (11).

In addition, the results of different studies show that pentavalent vaccine was safe and tolerable and possessed a high level of immunizing for all molecular antigens and some biological reactions (21-24). This vaccine was tested for 10 years from 2002 (when its use started in Ghana) to 2012 (when its use started in India) in some Asian countries (24). The results of these studies showed that the most common reported adverse event of Pentavalent was localized mild events. A study by Indian Institute
of Serology showed that local reactions to Pentavalent vaccine included pain, redness and edema in the injection site and its general systematic reactions reported to be fever, unusual crying and irritability(25) . Hatami et al. in Tehran, reported fever as the most common adverse event of Pentavalent (71.2%)(13). In a study in the United States of America, high fever was reported to be the most common adverse event of Pentavalent(26) whereas Cunha et al reported hypo-tony as the most common adverse event for DPT and Pentavalent vaccines(27).

Finally, it should be noted that most parents were aware of the fever following vaccination and they preventively gave Acetaminophen to their infants which could decrease their fever and prevent high fever among them; therefore, the incidence rate of this event might be changed due to the parents' interventions(14) . Categorizing the vaccine adverse events showed that most of the reported events were associated to the reaction to the vaccine which was in line with Raisi et al. in Shahre Kurd(28) and Parisay et al. findings in Kohkiloye va Boir Ahmad(29). In addition, the findings of the study showed that there was not any significant relationship between the infants’ gender with DPT and Pentavalent adverse events. However, the possible complications of the vaccines seemed to be more among males compared to the females. This finding was in line with the findings of Reisi et al. in which there wasn't a significant relationship between the gender of the infants and the vaccines' adverse events(28). Moreover, in studies by Paisay et al.(29) and Ayatollahi et al(30). Although there was not a significant relationship between the infants’ gender and the vaccines' adverse events, the possible adverse events were reported to be more among males compared to the female which was in line to the findings of this study. However, Nabavi et al. reported that the vaccines' adverse events seemed to be more among females than the male which is in contradiction to the findings of this study(31) (32).

However, sever cases associated with the vaccine adverse events lead to hospitalization which included a very small percentage of the vaccinated infants in comparison to the total number of vaccinated ones. The findings of the study show that only 1.5%of all reported complications in vaccinated infants by DPT and Pentavalent led to their hospitalization and the hospitalized cases numbers were almost the same in both vaccines. In fact, many hospitalization cases can be due to
other factors contemporarily existing with vaccination procedure.

Conclusions
Since Pentavalent Vaccination has been started recently in Iran, there were few studies on its associated adverse events. The goal of this study was to compare the adverse events of DPT and Pentavalent Vaccines. The findings showed that some adverse events such as severe localized events, high fever, vomiting and diarrhea and restlessness were less in Pentavalent compared to DPT. Therefore, Pentavalent fewer adverse events, reducing the number of injections and the required injection equipment and finally significant decrease in adverse events following its use showed that this vaccine outweighs DPT and it seems to be more efficient than DPT while considering its costs.

Abbreviations
WHO: World Health Organization DPT: Diphtheria Pertussis Tetanus

Declarations
Ethics approval and consent to participate
The study protocol was approved by the Ethics Committee of Kurdistan University of Medical Sciences. The approval number is: IR.MUK.REC.1395.307. We used the patients’ recorded information as our source of data and therefore, did not need consent for participation.

Consent for publication
Not applicable

Availability of data and material
The data sets used during the study are available from the corresponding author on reasonable request.

Funding
Not applicable

Authors’ contribution
SMZ, FY led data collection. DR, ZKH analyzed data, and GM, ZKH, FY and DR interpreted data. ZKH, GM, and DR drafted the initial manuscript. FY, SMZ and DR were major contributors in writing the manuscript, with critical revisions from ZKH, GM and MA. All authors read and reviewed the final manuscript.
Acknowledgement

This study was a research project in Kurdistan University of Medical Sciences. We would like to thank the dear colleagues for providing this data, as well as all those who were involved in the project and helped us to collect the data throughout the country.

Conflicts of interests

This study doesn't include any conflict of interest for the authors.

References

1. Black CL, Yue X, Ball SW, Donahue SM, Izrael D, de Perio MA, et al. Influenza Vaccination Coverage Among Health Care Personnel - United States, MMWR Morb Mortal Wkly Rep 2016; 30;65(38):1026-31.

2. Control CfD, Prevention. Vaccine preventable deaths and the Global Immunization Vision and Strategy, 2006-2015. MMWR Morbidity and mortality weekly report. 2006;55(18):511.

3. Khazaei S, Rezaeian S, Razani M, Zahiri A, Saatchi M, Khazaei S, et al. Adverse events following immunization (AEFI) in children under 7-year of Age during 2014 in Hamedan Province, Iran. International Journal of Pediatrics. 2016;4(5):1697-703.

4. Moradi-Lakeh M, Esteghamati A: National Immunization Program in Iran: whys and why nots. Human vaccines & immunotherapeutics 2013, 9:112-4.

5. Agergaard J, Nante E, Poulstrup G, Nielsen J, Flanagan K, Østergaard L, et al. Diphtheria-tetanus-pertussis vaccine administered simultaneously with measles vaccine is associated with increased morbidity and poor growth in girls. A randomised trial from Guinea-Bissau. Vaccine. 2011;29(3):487-500.

6. Organization WH. WHO vaccine-preventable diseases: monitoring system: 2009 global summary. Geneva: World Health Organization, 2009.

7. Gabutti G, Valente N, Kuhdari P, Lupi S, Stefanati A. Prevention of herpes zoster and its complications: from the clinic to the real-life experience with the vaccine. J Med
8. Watson JC, LeBaron CW, Hutchins SS, Hadler SC, Williams WW. General Recommendations on Immunization: Recommendations of the Advisory Committee on Immunization Practices (ACIP). Morbidity and Mortality Weekly Report: Recommendations and Reports. 1994;i-38.

9. Sharafi R, Mortazavi J, Heidarzadeh A. Comparison of complications of pentavalent and DTP vaccination in infants aged 2-6 months in Anzali, Iran. Iranian Journal of Neonatology IJN. 2016;7(2):1-6.

10. Shakib JH, Korgenski K, Sheng X, Varner MW, Pavia AT, Byington CL: Tetanus, diphtheria, acellular pertussis vaccine during pregnancy: pregnancy and infant health outcomes. The Journal of pediatrics 2013, 163:1422-6. e4.

11. Sreedhar S, Antony A, Poulose N. Study on the effectiveness and impact of pentavalent vaccination program in India and other south Asian countries. Human vaccines & immunotherapeutics. 2014;10(7):2062-5. 12. Oliveira CR, Baltimore RS. Complications of Vaccination With Bacille Calmette-Guérin. Clinical pediatrics. 2014;53(9):914-6

12. Hatami H, Arshi S, Sarikhani R. The relationship between side effects of the Pentavalent vaccine and mother's education level in areas under the auspices of Shahid Beheshti University of Medical Sciences in 2015. Journal of Health in the Field. 2016;3(4).

13. Karami M, Ameri P, Bathaei J, Berangi Z, Pashaei T, Zahiri A, et al. Adverse events following immunization with pentavalent vaccine: experiences of newly introduced vaccine in Iran. BMC immunology. 2017;18(1):42.

14. Ayatollahi J, Zare A. Short Course Adverse Events following DTP vaccination in Yazd during 2005. Iran J Pediatr. 2006;16:332-4.
15. Mansoor O, Pillans P. Vaccine adverse events reported in New Zealand 1990-5. The New Zealand medical journal. 1997;110(1048):270-2.

16. Savoy M: ACIP Releases 2016 Childhood Immunization Recommendations. American family physician 2016, 93:317-22. 18. Barkin RM, Pichichero ME. Diphtheria-pertussis-tetanus vaccine: reactogenicity of commercial products. Pediatrics. 1979;63(2):256-60.

17. Key S. Whooping Cough: A Study in Immunization. The American Journal of the Medical Sciences. 1933;185(4):586.

18. Malik A. Pentavalent Vaccine and Adverse Events Following Immunization—Untangling the Misinterpretations. The Indian Journal of Pediatrics. 2014;81(12):1353-7.

19. Eskola J, Käyhty H, Gordon LK, Hovi T, Stenvik M, RöNNBERG P-R, et al. Simultaneous administration of Haemophilus influenzae type b capsular polysaccharide-diphtheria toxoid conjugate vaccine with routine diphtheria-tetanus-pertussis and inactivated poliovirus vaccinations of childhood. The Pediatric infectious disease journal. 1988;7(7):480-4.

20. Guerra FA, Blatter MM, Greenberg DP, Pichichero M, Noriega FR. Safety and immunogenicity of a pentavalent vaccine compared with separate administration of licensed equivalent vaccines in US infants and toddlers and persistence of antibodies before a preschool booster dose: a randomized, clinical trial. Pediatrics. 2009;123(1):301-12.

21. Ferreccio C, Clemens J, Avendano A, Horwitz I, Flores C, Avila L, et al. The clinical and immunologic response of Chilean infants to Haemophilus influenzae type b polysaccharide-tetanus protein conjugate vaccine coadministered in the same syringe with diphtheria-tetanus toxoids-pertussis vaccine at two, four and six months
of age. The Pediatric infectious disease journal. 1991;10(10):764-71.

22. Folb PI, Bernatowska E, Chen R, Clemens J, Dodoo AN, Ellenberg SS, et al. A global perspective on vaccine safety and public health: the Global Advisory Committee on Vaccine Safety. American journal of public health. 2004;94(11):1926-31.

23. Sharma HJ, Yadav S, Lalwani SK, Kapre SV, Jadhav SS, Chakravarty A, et al. Immunogenicity and safety of an indigenously manufactured reconstituted pentavalent (DTwP-HBV+ Hib) vaccine in comparison with a foreign competitor following primary and booster immunization in Indian children. Human vaccines. 2011;7(4):451-7.

24. Faingezicht I, Avila-Aguerro ML, Cervantes Y, Fourneau M, Clemens SAC. Primary and booster vaccination with DTPw-HB/Hib pentavalent vaccine in Costa Rican children who had received a birth dose of hepatitis B vaccine. Revista Panamericana de Salud Pública. 2002;12:247-57.

25. Cunha MP, Dórea JG, Marques RC, Leão RS. Vaccine adverse events reported during the first ten years (1998–2008) after introduction in the state of Rondonia, Brazil. BioMed research international. 2013;2013.

26. raeeisi a MM, Karimi F, Saberinejad F. Assessment of Diphteria, Tetanus and Pertusis Vaccine-associated Complications in the Infants under 7 Years Old in Shahrekord in 2010-1012. Journal of Ilam University of Medical Sciences. 2014;22(1).

27. Parisae Z, Esteghamati A, Ghashghaei KZ, Jabarnejad A. Adverse Effects of DPT Vaccine in Children below 7 Years of Age in Rural and Urban Areas of Kohgiloye and Boyerahmad Province In 1385. Armaghane Danesh Bimonthly Journal. 2008;13(2):105-14.

28. Ayatollahi J, Zare A. Evaluation of the side effects of triple vaccine in Yazd in 2005. Iranian Journal of Pediatrics. 2006;16(3):332-6.
29. Nabavi M JJ, Ghorbani R, Khaleghi Hashemian M, Shojaee H, Maherbonabi S,. The incidence of complications of vaccination in infants and infants of Semnan, Iran. . Koomesh 2010;11(4):245-54.

Tables

Table 1: Demographic variables of infants with vaccine complications

Vaccine	Gender	Location
Pentavalent	9137 (52.1)	8773 (49.96)
DPT	5584 (53.36)	643961.53

Table 2: The frequency of adverse events DPT vaccine and Pentavalent in different provinces of Iran
Total	Frequency of vaccination complications (%)	Province	
	Pentavalent	DPT	
4412(15.74)	2605(14.83)	1807(17.27)	Mazandarana
3152(11.25)	1941(11.05)	1211(11.57)	Qazvin
2555(9.12)	1146(6.53)	1409(13.47)	Golestan
2365(8.44)	1407(8.01)	958(9.16)	Zanjan
2202(7.86)	1183(6.74)	1019(9.74)	Khuzestan
1676(5.99)	838(4.77)	84(8.04)	Gilan
1463(5.22)	994(5.66)	469(4.48)	Fars
1457(5.2)	877(4.99)	580(5.54)	Isfahan
1346(4.8)	1202(6.84)	144(1.38)	Alborz
1109(3.96)	819(4.66)	290(2.77)	East Azerbaijan
1087(3.88)	756(4.3)	331(3.16)	Khorasan Raz
937(3.34)	682(3.88)	255(2.44)	Tehran
585(2.09)	423(2.41)	162(1.55)	Sistan & Baluch
500(1.78)	401(2.28)	99(0.95)	Lorestan
412(1.47)	250(1.42)	162(1.55)	West Azerbaijan
396(1.41)	379(2.16)	17(0.16)	Ardebil
382(1.36)	221(1.26)	161(1.54)	Ilam
295(1.05)	193(1.1)	102(0.97)	Yazd
272(0.97)	179(1.02)	93(0.89)	Hamedan
205(0.73)	157(0.89)	48(0.46)	Kermansha
182(0.65)	143(0.81)	39(0.37)	North Khoras
182(0.65)	136(0.77)	46(0.44)	Semnan
179(0.64)	126(0.72)	53(0.51)	Kerman
165(0.59)	121(0.69)	44(0.42)	Markazi
124(0.44)	83(0.47)	41(0.39)	Qom
108(0.39)	95(0.54)	13(0.12)	Kohgiluyeh & Boye
64(0.23)	47(0.27)	17(0.16)	Bushehr
64(0.23)	53(0.3)	12(0.11)	Southern Khor
64(0.23)	47(0.27)	17(0.16)	Kurdistan
59(0.21)	38(0.22)	21(0.2)	Hormozgan
108(0.39)	95(0.54)	13(0.12)	Chaharmahal & B
28025(100)	1756(100)	10464(100)	Total count

Table 3: The relationship between DPT and Pentavalent vaccine characteristics and their adverse events
P-value	Chi-2	Type Vaccine	Variable
0.0001	3.8	1375(7.83)	Severe localized condition
		1377(13.16)	
		4944(28.15)	High fever *
		4960(47.4)	
		1997(11.37)	Fever
		120(1.15)	
		5564(31.68)	Mild localized condition
		2018(19.29)	
		576(3.28)	Lyme abscess
		170(1.62)	
		287(1.63)	Seizures caused by fever
		186(1.78)	
		614(3.5)	Screaming constantly
		605(5.78)	
		91(0.52)	Loss of consciousness
		45(0.43)	
		3(0.02)	Paralysis of the limb
		2(0.02)	
		277(1.58)	Diarrhea and vomiting
		858(8.2)	
		1833(10.44)	Others
		123(1.18)	
0.0001	263.1	718(4.4)	Programming error
		298(2.85)	
		15099(92.47)	Reactions to Vaccines
		10110(96.63)	
		287(1.76)	Reaction to the injection
		4890.46	
		139(0.85)	Concurrency
		4(0.04)	
		85(0.52)	Unknown
		3(0.03)	
0.7	0.11	420(2.39)	Yes
		157(1.5)	
		17141(61.97)	Hospitalization
		10307(98.5)	No
0.0001	13.19	966(5.5)	Immediate
		472(4.51)	
		16595(94.5)	Non-Immediate
		9992(95.49)	
0.05	4.2	9137(52.1)	Male
		5584(53.36)	
		8399(52.1)	Female
		4880(46.64)	
0.0001	354	8788(47.9)	Urban
		4025(38.47)	
		8773(49.96)	Rural
		6439(61.53)	

*High fever is defined as higher than 39°C

Figures
Figure 1

Prevalence of vaccine complications DTP
Figure 2

Prevalence Adverse Events Following Immunization Pentavalent
Figure 3

Comparison of reported adverse events in DPT and Pentavalent Vaccines. *High fever is defined as higher than 39°C