THE OBSERVED MASS PROFILES OF DARK HALOS AND THE FORMATION EPOCH OF GALAXIES

SHINJI SATO, FUMIE AKIMOTO, AKIHIRO FURUZAWA, YUZURU TAWARA, AND MANABU WATANABE

Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

AND

YASUKI KUMAI

Kumamoto Gakuen University, 2-5-1 Oe, Kumamoto, Japan

Received 2000 April 12; accepted 2000 May 18; published 2000 July 6

ABSTRACT

We have determined the mass profiles of dark halos in 83 objects observed by ASCA. The point-spread function of the X-ray telescope was deconvolved by the Richardson-Lucy algorithm, and the temperature profiles were calculated to obtain the mass profiles. The derived mass profiles are consistent with the Navarro, Frenk, & White model in (0.01–1.0)rvir. We found a good correlation between the scale radius r_s and the characteristic mass density δ_c, which indicates the self-similarity of dark halos. The spectrum index of primordial mass density fluctuation, \(P(k) \approx k^{-2} \), was determined from the slope of the \(r_s/\delta_c \) relation. For \(M_{200} = 10^{12} - 10^{15} M_\odot \), our analysis gives \(n = -1.2 \pm 0.3 \) with a confidence level of 90%. The mass density of dark halos is a good indicator of the mean mass density of the universe at the time when the halos were assembled, \(z = z_f \). Assuming \(\delta_c \approx (1 + z_f)^3 \), we have determined the epoch when each dark halo was assembled. Our analysis indicates that the field elliptical galaxies and groups of galaxies formed approximately at \(1 + z_f = 15 \) and at \(1 + z_f = 7 - 10 \), respectively.

Subject headings: cosmology: observations — dark matter — galaxies: clusters: general — galaxies: formation — galaxies: halos — X-rays: galaxies

1. INTRODUCTION

Early on, the density fluctuation grows linearly as the universe expands, \(\Delta \rho / \rho \propto (1 + z)^{-1} \). Once a density enhancement of a spherical region approaches \(\Delta \rho / \rho \sim 1 \), the sphere begins to turn around from the Hubble flow and collapse rapidly to form a virialized halo. The overdensity of virialized halos reaches \(178\rho_0(1 + z_c)^3 \), where \(z_c \) is the collapse redshift and \(\rho_0 \) is the critical mass density in the present (Kaiser 1986). As the universe expands, the virial radius expands gradually by steady mass accretion. N-body simulations show that the accreting dark matter forms an extended envelope, while the density profile of the original halo remains unchanged. The mass profile of a dark halo is rearranged only by a major merger through violent relaxation. A halo formed by a major merger at \(z_m \) is characterized by the mass density of \(178\rho_0(1 + z_m)^3 \), and it is preserved until the next major merger takes place (Salvador-Solé, Solanes & Manrique 1998; Raig, González-Casado, & Salvador-Solé 1998; Henriksen & Widrow 1999). By this means, the density profile of a dark halo can be a good indicator of the redshift at which the last merger took place.

Navarro, Frenk, & White (1996, hereafter NFW) suggested that all of the dark halos have the self-similar mass profile described as

\[
\rho(\rho) = \frac{\rho_0 \delta_c}{(r_s/r)(1 + r_s/r)^3},
\]

where \(\rho_0 \), \(r_s \), and \(\delta_c \) are the critical mass density of universe, the scale radius, and the characteristic density, respectively. In this case, the \(\delta_c \) would be a direct indicator of the formation epochs of dark halos.

In this Letter, we will present the mass profiles of dark halos over the mass range of \(10^{12} - 10^{15} M_\odot \) using a sample of 83 objects observed with ASCA. This furnishes us with a possible way to determine the formation epochs of galaxies and clusters of galaxies.

Throughout the Letter, we assume \(\Omega = 1 \), \(\Lambda = 0 \), and \(H_0 = 75 \) km s\(^{-1}\) Mpc\(^{-1}\).

2. SAMPLE AND ANALYSIS

Our sample consists of rich clusters, poor clusters, groups of galaxies, and elliptical galaxies. The spectrum analysis was performed by the standard method using the XSELECT and the XSPECK software to determine the H\(I \) absorption, the metal abundance, and the luminosity-weighted temperature. The results of spectrum analysis are described in a forthcoming paper along with a full description of our sample objects (F. Akimoto, A. Furuzawa, Y. Kumai, S. Sato, Y. Tawara, & M. Watanabe 2000, in preparation).

The point-spread function (PSF) of the ASCA telescope is characterized by a sharp central peak (FWHM \(\sim 15" \)) and a significant scattering tail extending to \(\sim 3" \). We have deconvolved this scattering tail by the Richardson-Lucy algorithm (Lucy 1974). The observed images of 3C 273 were employed as the PSFs. The deconvolutions were performed in the three energy bands (0.5–1.5, 1.5–3.0, and 3.0–10 keV) separately, since the PSF has a weak dependence on the photon energy. All of the observed images went through 100 iterations.

We have calculated the X-ray brightness profiles from the deconvolved images, masking the bright subpeaks and obvious subclusters. The brightness profiles obtained in the lowest energy band, \(kT = 0.5–1.5 \) keV, were compared to those from ROSAT PSPC in the energy band of \(kT = 0.5–2.0 \) keV, and good agreements were found in these independent observations.

The temperature profiles are calculated from the brightness ratio of the X-ray profiles in the three energy bands, \(kT = 0.5–1.5, 1.5–3.0, \) and \(3.0–10 \) keV. We assumed that there were no radial gradients in metal abundance and H\(I \) absorption. The typical temperature profiles of our sample are shown in Fig-
ure 1, together with a comparison with the previous measurements.

3. CALCULATION OF MASS PROFILE

The total mass of a dark halo can be calculated from the gas density and the temperature profiles of intracluster medium (ICM), assuming the hydrostatic equilibrium. If the observed

$$M_{\text{vir}} = \frac{3 \beta k T c^2}{G \mu m_p} r c_{\text{vir}} (rlr^2) 1 + (rlr^2)^2,$$

where T, k, μm_p, and r_c are the gas temperature, Boltzmann’s constant, the mean molecular weight of the hot gas, and the core radius, respectively.

We found that r_c, β, and kT were not constant in a single cluster, but changed slowly with radius. The angular profiles of two parameters, r_{max} and β_{min} were calculated by fitting the β-model to the local brightness profiles of $\theta \pm 0.3\theta$. Although the angular profiles r_{max}, β_{min}, and kT_{max} are the luminosity-weighted properties of the hot gas along the line of sight, these are nearly equal to the radial profiles r_{max}, β_{min}, and kT_{max} if the radial gradient of gas density is much larger than those of r_c, β, and kT. In our sample, r_{max}, β_{min}, and kT_{max} change by a factor of 2 at most, while the S_{max} changes 2 or 3 orders of magnitude. We therefore assumed that the observed angular profiles represented the radial profiles of these parameters. The local gas density profile was therefore given by $n_{\text{max}} = n_0 [1 + [rlr_{\text{max}}(i)]^{-3/2}]$, and the total mass M_{max} was calculated from equation (2). The mass density ρ_{max} was obtained from M_{max} and M_{vir}, keeping $dr = 26'$. We have constructed the models of gas halos bound by the NFW dark halos to evaluate the systematic errors in our method. The mass profiles were calculated from the model profiles—which correspond to typical galaxies, poor clusters, and rich clusters—by applying the same method. The best-fit
 profiles drop more quickly at larger radii, the NFW model gives fitted to these composite profiles. Since the composite mass illustrated in the upper portion of Figure 2 by the solid lines.

d_r and r_s are then calculated by fitting the NFW model to the mass profiles. Comparing the calculated d_r and r_s with the original values, we have confirmed that the systematic errors of our method were much smaller than the typical photon noise of our sample objects.

In our analysis, the brightness profiles within $\theta < 0.5$ were excluded to avoid the contribution of the cooling flow component. The maximum radii were extending up to 10^{1-40} depending on the photon number available. We define r_{200} as the radius at which the mean interior density becomes 200 times the critical mass density of the universe and M_{200} as the total mass within r_{200}. In this Letter, we consider r_{200} and M_{200} as the virial radius and the virial mass (Cole & Lacey 1996), respectively.

4. THE OBSERVED MASS PROFILES

The NFW model was fitted to our mass profiles to determine d_r, r_s, r_{200}, and M_{200}. The mass profiles of several objects, which have similar characteristic radius, are co-added to improve the signal-to-noise ratio. The composite mass profiles, scaled by r_s, are shown in Figure 2 by the shaded lines. The widths of lines correspond to the $\pm 1 \sigma$ errors. The average scale radii are $(r_s) = 24, 59, 150, 200$, and 460 kpc in Figures 2a, 2b, 2c, and 2d, respectively. The NFW model and the β-model were fitted to these composite profiles. Since the composite mass profiles drop more quickly at larger radii, the NFW model gives a better fit to the observations. The χ^2/degrees of freedom of the NFW model are $3.0/4, 4.3/5, 5.5/5$, and $3.6/5$ in Figure 2a, 2b, 2c, and 2d, while those of the β-model are $2.0/4, 24/5$, $23/5$, and $14/5$. To illustrate a similarity of mass profile, we have normalized the composite density profiles by $\rho_{crit}/10^3$ and illustrated in the upper portion of Figure 2 by the solid lines. It is remarkable that these halos have very similar mass profiles.

The brightness profiles scaled by $kT^{1/2}(1+z)^{9/2}$ can be a good indicator of mass profiles. Ponman, Cannon, & Navarro (1999) illustrated the scaled brightness profiles of 25 clusters, normalized by the virial radius, and pointed out the systematic change of profiles with $kT^{1/2}(1+z)^{9/2}$. Our measurements, however, do not conflict with this result. Since the observed dark halos have different concentration parameters $c = r_{200}/r_s$ with M_{200} as shown in the upper panel of Figure 3, the virial radius is not an adequate scale to illustrate the similarity of mass profiles. If our results are scaled by r_{200} we see the same systematic trend as found by Ponman et al. (1999).

The correlation between the M_{200} and the luminosity-weighted temperature kT is shown in the lower panel of Figure 3. Our measurements give $kT \propto M_{200}^{0.5 \pm 0.1}$ with a confidence level of 90%. This result supports our assumption that the ICM of dark halos are in the hydrostatic equilibrium (Evrard, Metzler, & Navarro 1996).

We have found a good correlation between d_r and r_s in our 83 objects as shown in Figure 4. Our result is essentially the same as the $c-M_{vir}$ and d_r-M_{vir} correlations found by Wu & Xue (2000), but have larger dynamic ranges and smaller errors. The upper panel indicates residuals from the best-fit model. The rms scattering of d_r shown by the dashed lines ($\pm 45\%$) is significantly larger than the 1σ errors of measurements. Our results indicate that the mass profile of a dark halo is described by a single parameter, such as r_s, d_r, or M_{200}.

5. THE SPECTRUM INDEX OF PRIMORDIAL FLUCTUATION AND THE FORMATION EPOCH OF GALAXIES

The amplitude of primordial density fluctuation $P(k) \propto k^n$ is characterized by the spectrum index n. In the cold dark matter universe, the radius and the mass density of dark halo are connected to n as $\rho \propto r^{-(\chi+9/2)n+5}$ (Peebles 1980). The slope of r_s-d_r relation shown in Figure 4 is therefore the direct indicator of the power spectrum. If the $P(k)$ is described by a single power in the mass range of our sample $M_{200} = 10^{12-10^{15}} M_\odot$, the r_s-d_r relation gives $n = -1.2 \pm 0.3$ with a confidence level of 90%. The error is calculated from the intrinsic scattering of the objects. When the objects of $M_{200} < 2 \times 10^{13} M_\odot$ are excluded, we get $n = -0.8 \pm 0.7$ (90%), which is consistent with the result of Wu & Xue (2000), $n = -0.7 \pm 0.3 (1 \sigma)$.

We assume that the characteristic density d_r is preserved during the steady accretion phase as N-body simulations suggest. In that case, d_r should be proportional to the mean mass.
density of the universe when the halo was assembled, $\delta_i = f(1 + z_f) = f(1 + z_{obj}) \frac{(1 + z_f)}{(1 + z_{obj})}$, where f, $1 + z_f$, and $1 + z_{obj}$ are a proportional constant, the formation epoch, and the observed redshift of object, respectively. Since $1 + z_f \geq 1 + z_{obj}$, $\delta_i \frac{(1 + z_f)}{(1 + z_{obj})} \geq f$. If our sample includes the zero-age clusters $z_f = z_{obj}$, the $\delta_i \frac{(1 + z_f)}{(1 + z_{obj})} \geq f$. Applying this equation to individual objects, we get $1 + z_f = 1.3 - 17$ for the formation epochs of three elliptical galaxies in our sample (NGC 1399, NGC 3923, and NGC 4636). Our results are nearly independent of the cosmological parameters as illustrated in Wu & Xue (2000).

We are grateful to the ASCA team for their efforts on the design and operation of ASCA hardware and software.

REFERENCES

Cole, S., & Lacey, C. 1996, MNRAS, 281, 716
Evrard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494
Fukazawa, Y., et al. 1996, PASJ, 48, 395
Henriksen, R. N., & Widrow, L. M. 1999, MNRAS, 302, 321
Kaiser, N. 1986, MNRAS, 222, 323
Kikuchi, K., Furusho, T., Ezawa, H., Yamasaki, N., & Ohashi, T. 1999, PASJ, 51, 301
Lucy, L. B. 1974, AJ, 79, 745
Markevitch, M., Forman, W. R., Sarazin, C. L., & Vikhlinin, A. 1998, ApJ, 503, 77
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563 (NFW)
Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe (Princeton: Princeton Univ. Press)
Ponman, T. J., Cannon, D. B., & Navarro, J. F. 1999, Nature, 397, 135
Raig, A., González-Casado, G., & Salvador-Solé, E. 1998, ApJ, 508, L129
Salvador-Solé, E., Solanes, J. M., & Manrique, A. 1998, ApJ, 499, 542
White, D. A. 2000, MNRAS, 312, 663
Wu, X.-P., & Xue, Y.-J. 2000, ApJ, 529, L5