The Efficacy and Safety of Selective H₁-Antihistamine versus Leukotriene Receptor Antagonist for Seasonal Allergic Rhinitis: A Meta-Analysis

Yu Xu¹*, Jixiang Zhang²*, Jun Wang²

¹ Department of Otolaryngology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China, ²Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China

Abstract

Background: Both selective H₁-antihistamine (SAH) and leukotriene receptor antagonist (LTRA) have been shown to be effective in treating patients with seasonal allergic rhinitis (SAR), but it is still uncertain which treatment option is optimal. This meta-analysis was aimed to compare the efficacy and safety of SAH and LTRA for SAR.

Materials and Methods: PubMed, EMBASE and the Cochrane Library were searched for all eligible studies that compared the efficacy and safety of SAH and LTRA for SAR up to September 7, 2014. The pooled mean difference (MD), odd ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using a fixed- or random-effects model.

Results: Nine studies with 5781 SAR patients were included. The results showed that SAH is superior to LTRA in terms of the daytime eye symptoms score (DESS) and composite symptoms score (CSS) for SAR (MD = 0.06, 95% CI, 0.03 to 0.10, \(P = 0.000, \ I^2 = 99\%\) MD = 0.03, 95% CI, 0.01 to 0.05, \(P = 0.010, \ I^2 = 98\%\)), whereas LTRA overmatched SAH with respect to the night-time symptoms score (NSS) (MD = −0.04, 95% CI, −0.05 to −0.02, \(P = 0.000, \ I^2 = 97\%\)). Additionally, the results of subgroup analysis indicated that the dose, duration and gender of the patients might impact the comparisons of the effects of SAH and LTRA on their efficacy for SAR.

Conclusion: This meta-analysis suggested that SAH and LTRA have similar effects and safety for SAR, but SAH is more appropriate for daytime nasal symptoms (congestion, rhinorrhea, pruritus and sneezing), while LTRA is better suited for nighttime symptoms (difficulty going to sleep, nighttime awakenings, and nasal congestion on awakening), respectively. Meanwhile, the dose, duration and gender of patients may influence the anti-SAR effects of SAH and LTRA.

Introduction

Seasonal allergic rhinitis (SAR), also known as hay fever, whose symptoms are complex and characterized by rhinorrhea, nasal congestion, sneezing and nasopharyngeal itching, is an inflammatory condition of the upper airways that occurs in response to airborne allergens (typically tree, grass and weed pollens) exposure in sensitized individuals [1,2]. SAR results from the binding of an inhaled aeroallergen to immunoglobulin E (IgE) on the surface of mast cells in the nasal mucosa [3]. Compared to perennial allergic rhinitis (PAR), which accounts for approximately 40% of allergic rhinitis (AR), SAR affects between 30 and 40% of adults and children, and the prevalence is increasing [4]. To date, the treatments for allergic rhinitis include allergen avoidance, pharmacotherapy, and immunotherapy. However, for SAR, total allergen avoidance may be undesirable because it may require limiting the time spent outdoors. Therefore, pharmacotherapy, including selective H₁-antihistamine (SAH), corticosteroids, decongestants, bronchodilators, intranasal mast cell stabilizers and leukotriene receptor antagonists (LTRA), is preferable to allergen avoidance for the symptom relief of SAR [5–7]. Among these drugs, SAH and LTRA have attracted increasing attention.

The mechanism of LTRA in the treatment of SAR involves blocking the cysteinyl leukotriene receptor. Cysteinyl leukotrienes, including leukotriene LTC₄, LTD₄, and LTE₄, which are peptide-conjugated lipids produced by activated basophils, eosinophils, mast cells and macrophages [8], are important mediators of airway inflammation that may also be important in the pathogenesis of allergic rhinitis. Nasal antigen challenge in sensitized individuals leads to high levels of cysteinyl leukotrienes in nasal lavage fluids, whereas nasal challenge with cysteinyl leukotrienes produces nasal obstruction and rhinorrhea [9–11].
Additionally, SAH has long been maintaining a crucial position among the agents used in the pharmacological management of SAR. Histamine, produced from L-histidine through the action of histidine decarboxylase and stored in mast cells and basophils in the nasal mucosa, plays an important role in the immunoregulation of allergic inflammation [12]. There are 4 subtypes of histamine receptors, including histamine 1 receptor (H1R), H2R, H3R and H4R. Mainly located on vascular smooth muscle cells and endothelial cells, H1R mediates the histamine-associated vasopermeability and vasodilation, which are important to the emergence of symptoms of rhinorrhea and congestion [13]. Therefore, antihistamine, especially SAH, may help to alleviate histamine 1 receptor-associated redness, itching, swelling, rhinorrhea, and conjunctivitis [14,15].

Because both of SAH and LTRA can treat SAR, choosing the one that is optimal according to different symptoms and symptom severity remains a challenge for rhinologists. Recently, a number of studies have compared the efficacy and safety of SAH with LTRA for SAR, but the results remain inconclusive. Therefore, to overcome the limitations of these individual studies and obtain a standard to guide the use of these two medicines, we conducted a meta-analysis of the previously published studies, comparing the efficacy and safety of SAH with LTRA for SAR.

Materials and Methods

Search strategy

Two reviewers independently reviewed PubMed, EMBASE and the Cochrane Library up to September 7, 2014. All eligible studies that compared the efficacy and safety of SAH and LTRA for SAR were included. Relevant studies were identified using the following key words and subject terms: “seasonal allergic rhinitis” or “SAR”, “selective H1-antihistamine” or “loratadine” or “desloratadine” or “acrivastine” or “fexofenadine” or “levocetirizine”, and “leukotriene receptor antagonist” or “LTRA” or “montelukast” or “zafirlukast” or “pranlukast”. A hand search of the reference lists in the related studies was also performed. The search was limited to humans and without language limitations.

Inclusion and Exclusion Criteria

Studies were included into the meta-analysis if they met the following criteria: (1) randomized controlled trials or case-control studies; (2) compared the efficacy and safety of SAH with LTRA for SAR; (3) had detailed information on cases and controls; and (4) had specific evaluating standards. Studies were excluded if they met one of the following conditions: (1) did not compare the efficacy and safety of SAH with LTRA; (2) perennial allergic rhinitis; (3) case-only studies, case reports and review articles; (4) lacked sufficient information, and (5) lacked a control group.

Data Extraction

Independently, two investigators extracted data, including the first author, year of publication, country, study duration, age, gender, medication duration, drug dose, treatment methods and primary endpoints. Any encountered discrepancies were resolved by consensus.

Endpoints

The daytime nasal symptoms score (DNSS), which was defined as the mean of four daytime nasal symptoms (congestion, rhinorrhea, pruritus and sneezing), was treated as the primary endpoint. Additionally, the daytime eye symptoms score (DESS, mean of scores for tearing, pruritus, redness and puffiness), composite symptoms score (CSS, mean of daytime nasal and nighttime symptoms scores), nighttime symptoms score (NSS, mean of scores for difficulty going to sleep, nighttime awakenings, and nasal congestion on awakening), rhinoconjunctivitis quality-of-life scores (RQOLS, mean of scores for activity, sleep, nasal symptoms, ocular symptoms, nonnose/non-eye symptoms, prac-
First author Year	Treatment	Dose (mg)	Duration (weeks)	N	Age (M/F)	Race (white%)	History AR (y)	History of asthma (%)	History of AC (%)	DNSS	DESS	CSS	NSS	RQLQ	Adverse events (%)
Mehta [21] 2000	montelukast	10	2	95	33.0	40/55	18±13	94.7	26.3	0.36	0.28	0.39	0.29	–	–
	montelukast	20	2	90	34.5	33/57	18±12	95.6	32.3	0.29	0.14	0.31	0.21	–	10
	montelukast	20	2	90	34.5	33/57	18±12	95.6	32.3	0.29	0.14	0.31	0.21	–	10
	loratadine	10	2	92	34.5	43/49	19±13	94.6	35.9	0.34	0.25	0.32	0.19	–	9.8
Philip [17] 2006	montelukast	10	2	348	37	233/115	18±12	88	27	0.13	0.14	0.13	0.14	–	19
	loratadine	10	2	602	36	390/212	18±12	87	25	0.24	0.20	0.17	0.09	–	21
van Adelsberg (A) [18] 2003	montelukast	10	2	522	36	147/301	19±12	89	22	0.33	0.28	0.30	0.28	–	8.5
	loratadine	10	2	171	39	6/119	21±13	90	24	0.45	0.33	0.36	0.25	–	8.5
	montelukast	10	4	522	36	147/301	19±12	89	22	0.43	0.37	0.40	0.36	–	1.3
	loratadine	10	4	171	39	61/119	21±13	90	24	0.50	0.39	0.42	0.32	–	1.0
van Adelsberg (B) [19] 2003	montelukast	10	2	522	36	196/326	17±12	89	23	0.38	0.28	0.34	0.28	–	9.0
	loratadine	10	2	171	35	71/100	18±12	89	26	0.47	0.40	0.39	0.28	–	9.5
Lu (study1) [20] 2009	montelukast	10	2	112	35.6	42/70	19±11	88.4	22.3	0.36	0.31	–	–	–	–
	loratadine	10	2	116	34.8	41/75	18±11	91.4	27.6	0.53	0.42	–	–	–	–
Lu (study2) [20] 2009	montelukast	10	2	103	31.1	39/64	19±11	72.8	–	0.34	0.24	–	–	–	–
	loratadine	10	2	164	30.6	65/99	17±10	78.0	–	0.29	0.20	–	0.04	–	–
Baena-Cagnani [21]	montelukast	10	4	311	33.5	122/119	79	–	–	–	–	–	–	–	11.9
Desloratadine 5	2007	4	311	32.3	311	116/195	82	–	–	–	–	–	–	158	
Nayak [22] 2007	montelukast	10	2	155	37	102/53	18±13	93	0.23	0.20	0.20	0.17	–	1.09	
	loratadine	10	2	301	37	191/110	19±13	89	0.26	0.23	0.21	0.14	–	1.06	
Patel [23] 2008	montelukast	10	2 days	149	34.6	63/86	78	–	–	–	–	5.90	–	128	

Table 1. Characteristics of Studies Included in the Meta-analysis.
tical problems, and emotions) and safety were treated as the secondary endpoints.

Statistical Analysis

Meta-analysis was performed using the Cochrane Collaboration RevMan 5.1 and STATA package version 12.0 (Stata Corporation, College Station, Texas). The pooled mean difference (MD), odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to compare the efficacy and safety of SAH with LTRA for SAR. Additionally, subgroup analyses were performed based on the gender, treatment duration and dose when adequate data were available. A χ^2-test-based Q statistic was performed to assess the between-study heterogeneity. When $I^2>50\%$ and $P<0.1$, heterogeneity was considered statistically significant, and a random effects model was used to analyze the data. When that was not the case, a fixed effects model was chosen. The Egger’s test was used to assess the publication bias.

Sensitivity analysis was performed to determine the studies that obviously influence the result.

Results

Studies Included in the Meta-analysis

According to the searching strategy, 25 potentially relevant studies were chosen. Based on the inclusion criteria and criteria, 9 studies [16–24] were included into this meta-analysis and 16 were excluded (Fig. 1). Eight studies [16–20,22–24] compared the efficacy of SAH and LTRA for SAR. Among these studies, six [16–20,22] with respect to the DNSS, five [16–19,22] on the DESS, seven [16–20,22,23] on the CSS, six [16–19,22,24] reporting on the NSS and four [17–19,22] examined the RQOLS. Meanwhile, seven studies [16–19,21–23] examined the adverse events for SAH and LTRA (Table 1).

The efficacy of Selective H1-antihistamine and Leukotriene Receptor antagonist for Seasonal allergic rhinitis

A summary of the meta-analysis findings on the efficacy of Selective H1-antihistamine and Leukotriene Receptor antagonist for seasonal allergic rhinitis is shown in Tables 2 and 3.

Six studies [16–20,22] with 9 comparisons, which included a total of 2469 patients who orally took LTRA and 1880 who took SAH, compared the DNSS of SAH and LTRA for SAR. SAH was better than LTRA according to the DNSS for SAR (MD = 0.06, 95% CI, 0.03 to 0.10, $P=0.000$, $I^2=99\%$) (Table 2 and Fig. 2). According to the subgroup analysis by the dose of LTRA, the DNSS of SAH and LTRA are similar for both 10 and 20 mg of LTRA. Additionally, on the basis of subgroup analysis by the treatment duration, there was no significant difference between SAH and LTRA for both 2 and 4 weeks of treatment. Additionally, according to the subgroup analysis by gender, when female $>50\%$, SAH performed better than LTRA according to the DNSS, whereas, when male $>50\%$, SAH is similar to LTRA.

Five studies [16–19,22] with 7 comparisons, including a total of 2254 patients who took LTRA orally and 1600 who took SAH, compared the DESS of SAH and LTRA for SAR. There was no significant difference between SAH and LTRA on the DESS for SAR (MD = 0.04, 95% CI, -0.01 to 0.03, $P=0.090$, $I^2=99\%$) (Table 2 and Fig. 2). According to the subgroup analysis by the dose of LTRA, the DESS of SAH and LTRA are similar. Additionally, on the basis of subgroup analysis according to the treatment duration, SAH is superior to LTRA when the duration is 4 weeks but not 2 weeks. Furthermore, the results of the subgroup analysis by gender showed that, when male $>50\%$, SAH
performed better than LTRA, whereas, when female >50%, SAH is similar to LTRA.

Seven studies [16–20,22,23] with 10 comparisons, involving 2618 patients who took LTRA orally and 2032 who took SAH, compared the CSS of SAH and LTRA for SAR. SAH performed better than LTRA for the CSS for SAR (MD = 0.03, 95% CI, 0.01 to 0.05, \(P = 0.010, I^2 = 98\%\)) (Table 2 and Fig. 3). Based on the subgroup analysis by the dose of LTRA, 10 mg but not 20 mg of SAH, performed better than LTRA. Additionally, according to the subgroup analysis by SAH, both loratadine and levocetirizine advanced over LTRA. On the basis of subgroup analysis by treatment duration, SAH is superior to LTRA when the duration is 4 and 2 weeks. Moreover, the results of subgroup analysis by gender showed that, irrespective of whether male >50% or female >50%, SAH performed better than LTRA.

Six studies [16–19,22,24] with 9 comparisons, including 2023 patients who took LTRA orally and 1734 who took SAH, compared the NSS of SAH and LTRA for SAR. LTRA performed better than SAH with respect to the NSS for SAR (MD = −0.04, 95% CI, −0.05 to −0.02, \(P = 0.000, I^2 = 97\%\)) (Table 2 and Fig 4). According to the subgroup analysis by the dose of LTRA, 20 mg but not 10 mg of SAH performed better than LTRA. Furthermore, on the basis of subgroup analysis by treatment duration, SAH is superior to LTRA when the duration is 4 but not 2 weeks. The subgroup analysis by gender showed that SAH was similar to LTRA for both male >50% and female >50%.

Four [17–19,22] with 5 comparisons, including 2069 patients who took LTRA orally and 1416 who took SAH, compared the RQOLS of SAH and LTRA for SAR. There was no significant difference between SAH and LTRA for SAR (MD = 0.22, 95% CI, −0.10 to 0.54, \(P = 0.180, I^2 = 100\%\)) (Table 2 and Fig S2).

On the basis of subgroup analysis by treatment duration, SAH is superior to LTRA when the duration is 4 but not 2 weeks. However, the subgroup analysis by gender showed that SAH was similar to LTRA for both male >50% and female >50%.

The Safety of Selective H1-antihistamine and Leukotriene Receptor antagonist for Seasonal allergic rhinitis

A summary of the meta-analysis findings involving the safety of Selective H1-antihistamine and Leukotriene Receptor antagonist for seasonal allergic rhinitis is shown in Tables 2 and 3.

Seven studies [16–19,21–23] with 8 comparisons, consisting of 2192 patients who took LTRA orally and 1892 who took SAH, examined the adverse events of SAH and LTRA. There was no significant difference between SAH and LTRA with respect to adverse events (MD = −0.92, 95% CI, 0.76 to 1.11, \(P = 0.380, I^2 = 0\%\)) (Table 2 and Fig S3).

Test of Heterogeneity and Publication Bias

Heterogeneity of the included studies with respect to each outcome is presented in Table 2. Significant heterogeneity was found in most analyses except for adverse events. Though we have tried our best to determine the sources of heterogeneity by subgroup analysis, no obvious sources of heterogeneity were found.

The Egger’s test was used to assess the publication bias. According to the Egger’s Test, there was no evidence of publication bias for any of the analyses (Table 2).

Sensitivity analysis

According to the results of the sensitivity analysis, none of the studies had a significant impact on the pooled analysis.

Table 2. Pooled Analysis for the Effective and Safety of Leukotriene antagonist versus Selective H1 antihistamine for Seasonal allergic rhinitis.

Outcomes comparison (n)	Patients	Test of Effective and Safety	Test of Heterogeneity	Publication Bias		
		MD/OR (95% CI)	\(P \)-value	\(P \)-value	\(I^2 \) (%)	\(P \)-value
LTRA SAH DNSS 9 2469 1880 0.06(0.03, 0.10) 0.000 0.000 99 0.997						
DESS 7 2254 1600 0.04(−0.01, 0.08) 0.090 0.000 99 0.547						
CSS 10 2618 2032 0.03(0.01, 0.05) 0.010 0.000 98 0.426						
NS 9 2023 1734 −0.04(−0.05, −0.02) 0.000 0.000 97 0.605						
RQOLS 5 2069 1416 0.22(−0.10, 0.54) 0.180 0.000 100 0.132						
Adverse events 8 2192 1892 0.92(0.76, 1.11) 0.380 0.690 0 0.304						

LTRA, Leukotriene antagonist; SAH, Selective antihistamine; DNSS, Daytime nasal symptoms score; DESS, Daytime eye symptoms score; CSS, Composite symptoms score; NS, Night-time symptoms score; RQOLS, Rhinoconjunctivitis quality-of-Life score.

doi:10.1371/journal.pone.0112815.t002

Figure 2. Pooled Analysis for DNSS of leukotriene antagonist versus selective H1 antihistamine for Seasonal allergic rhinitis.
doi:10.1371/journal.pone.0112815.g002

Efficacy and Safety of SAH versus LTRA for SAR

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e112815
Table 3. Subgroup Analysis for the Effective and Safety of Leukotriene antagonist versus Selective H₁ antihistamine for Seasonal allergic rhinitis.

Comparison	Subgroup	Test of Association	Test of Heterogeneity	Subgroup difference			
	OR (95% CI)	P-value	I² (%)	P-value	I² (%)		
DNSS							
Dose of LTRA	10 mg	0.07(0.03,0.10)	0.000	99	0.440	0	
	20 mg	0.05(0.04,0.06)	0.000	–	–		
Duration	2 weeks	0.06(0.02,0.10)	0.002	99	0.720	0	
	4 weeks	0.07(0.06,0.08)	0.000	–	–		
Gender	Female >50%	0.06(0.02,0.11)	0.006	99	0.850	0	
	Male >50%	0.07(0.01,0.15)	0.080	99			
DESS							
Dose of LTRA	10 mg	0.02(0.02,0.07)	0.310	99	0.000	91.6	
	20 mg	0.11(0.09,0.13)	0.000	–	–		
Duration	2 weeks	0.04(0.01,0.09)	0.120	99	0.460	0	
	4 weeks	0.02(0.01,0.03)	0.000	–	–		
Gender	Female >50%	0.03(0.04,0.10)	0.360	100	0.720	0	
	Male >50%	0.05(0.02,0.07)	0.002	95			
CSS							
Dose of LTRA	10 mg	0.03(0.01,0.05)	0.010	99	0.150	50.8	
	20 mg	0.01(0.00,0.02)	0.160	–	–		
SAH	loratadine	0.03(0.00,0.05)	0.020	98	0.520	0	
	Levocetirizine	0.02(0.01,0.03)	0.000	–	–		
Duration	2 weeks	0.03(0.00,0.05)	0.020	98	0.520	0	
	4 weeks	0.02(0.01,0.03)	0.010	–	–		
Gender	Female >50%	0.03(0.00,0.06)	0.060	99	0.890	0	
	Male >50%	0.03(0.00,0.05)	0.090	96			
NSS							
Dose of LTRA	10 mg	–0.03(–0.07,0.01)	0.100	100	0.620	0	
	20 mg	–0.02(–0.04,0.00)	0.010	–	–		
Duration	2 weeks	–0.03(–0.07,0.01)	0.150	100	0.700	0	
	4 weeks	–0.04(–0.15,0.03)	0.000	–	–		
Gender	Female >50%	–0.04(–0.06,–0.01)	0.004	97	0.820	0	
	Male >50%	–0.04(–0.06,–0.02)	0.000	92			
RQOLS							
Duration	2 weeks	–0.04(–0.02,0.10)	0.230	99	0.000	99.9	
	4 weeks	0.95(0.94,0.96)	0.000	–	–		
Gender	Female >50%	0.34(–0.25,0.93)	0.260	100	0.320	0	
	Male >50%	0.04(–0.09,0.16)	0.590	–	–		
Adverse events							
Dose of LTRA	10 mg VS. 10 mg	0.99(0.79,1.24)	0.920	0.530	0	0.430	0
	10 mg VS. 5 mg	0.74(0.51,1.10)	0.120	0.850	0		
	20 mg VS. 10 mg	1.02(0.39,2.71)	0.960	–	–		
SAH	loratadine	0.99(0.79,1.24)	0.940	0.680	0	0.190	41.4
	Levocetirizine	0.74(0.51,1.10)	0.120	0.850	0		
Gender	Female >50%	0.92(0.71,1.20)	0.540	0.470	0	0.960	0
	Male >50%	0.91(0.69,1.21)	0.520	0.720	0		

LTRA, Leukotriene antagonist; SAH, Selective antihistamine; DNSS, Daytime nasal symptoms score; DESS, Daytime eye symptoms score; CSS, Composite symptoms score; NSS, Night-time symptoms score; RQOLS, Rhinoconjunctivitis quality-of-Life score.

doi:10.1371/journal.pone.0112815.t003
Discussion

The first major finding of this meta-analysis was that, according to the DNNS, SAH treated SAR better than LTRA. In other words, compared with LTRA, SAH is more appropriate for patients with SAR whose cardinal symptoms are daytime nasal congestion, rhinorrhea, pruritus, and sneezing. This could be explained by the following reasons: firstly, the cardinal symptom during daytime of SAR is rhinorrhea, sneezing, and pruritus, however nasal congestion, which contributes to reduced sleep quality and daytime somnolence, is not the most highlighted symptom during daytime but is the most important symptom during nighttime [25,26]. Meanwhile, SAH has been demonstrated to be able to relieve nasal symptoms of early phase such as rhinorrhea, sneezing, and pruritus but have less effect on nasal congestion, whereas LTRA contributes to the remission of nasal congestion which is the late phase reaction by increasing vascular permeability, tissue edema, and mucus secretion, and are involved in inflammatory cell recruitment [27–29]. So, SAH is more appropriate for daytime nasal symptoms, while LTRA is better suited for nighttime symptoms. Additionally, another possibility is that the time course of being taken and release of LTRA differs from that of SAH in allergic rhinitis (montelukast often being taken at bedtime and rapidly absorbed achieving peak plasma concentration in 3 to 4 hours and effective throughout the 24-hour treatment period), thus leading to a dissimilar time course of response to therapy [18,30,31]. Meanwhile, the results of our meta-analysis showed that the superiority of SAH may disappear in females and the reasons for this are unclear. The possible explanation is that most SAH undergo hepatic metabolism via the (cytochrome P450 system, CYP) and gender differences have been described in the activity of CYP (CYP2D6, CYP3A4, CYP1A1/2 and CYP2C19) [32,33], which may influence the efficacy of SAH and LTRA for SAR patients of different gender, but this supposition should be confirmed by more studies. Additionally, the dose (10 mg or 20 mg) and duration (2 weeks or 4 weeks) did not significantly influence the results.

Meanwhile, the second finding of our meta-analysis was that SAH was superior to LTRA for treating SAR according to the CSS, which means that SAH may be a better choice for SAR patients who have both daytime nasal (nasal congestion, rhinorrhea, pruritus and sneezing by day) and nighttime symptoms (difficulty going to sleep, nighttime awakenings, and nasal congestion on awakening). However, the subgroup analysis showed the type of SAH, duration and gender did not impact the results of pooled analysis. Interestingly, the different doses of SAH may influence the results; 10 or 20 mg SAH is more effective than LTRA according to the CSS. A high level of SAH may decrease the release of histamine in excess, promoting the positive modulation of histamine on sympathetic neurotransmission and resulting in the increased release of histamine. However, this explanation also should be demonstrated in a series of studies.

Furthermore, the third major finding was that LTRA performed better than SAH according to the NSS (difficulty going to sleep, nighttime awakenings, and nasal congestion on awakening) for SAR. The possible explanation is SAH is more appropriate for daytime nasal symptoms, while LTRA is more appropriate for nighttime symptoms. Additionally, the increase in the dose and treatment duration might contribute to the further superiority of LTRA.

The fourth finding of our meta-analysis was that, in terms of the DESS (tearing, pruritus, redness and puffiness during the daytime) and RQOLS (mean of scores for activity, sleep, nasal symptoms, ocular symptoms, nonnose/non-eye symptoms, practical problems, and emotions), SAH and LTRA have a similar effect. However, in males, SAH performed better than LTRA in terms of DESS, which also could be explained by the different superiority of SAH and LTRA for SAR and gender differences in the activity of CYP. However, the dose, gender of the patients and duration of treatment did not significantly influence the results.

Figure 3. Pooled Analysis for CSS of leukotriene antagonist versus selective H1 antihistamine for Seasonal allergic rhinitis.
doi:10.1371/journal.pone.0112815.g003

Figure 4. Pooled Analysis for NSS of leukotriene antagonist versus selective H1 antihistamine for Seasonal allergic rhinitis.
doi:10.1371/journal.pone.0112815.g004
treatment did not influence the results of the comparisons with respect to the DESS and RQOLS.

Additionally, the adverse reactions of SAH and LTRA are the critical problems that could not be ignored. Due to the different distribution of histamine and cysteinyl leukotrienes receptors, the adverse effects of SAH and LTRA are different. H1R is expressed in neurons, airway and vascular smooth muscle cells, hepatocytes, chondrocytes, endothelial cells and inflammatory cells. Therefore, the adverse reactions of SAH include a central nervous system response (sedation, lethargy and fatigue), gastrointestinal reaction (thirst, anorexia, constipation and diarrhea), granulocytopenia and hemolytic anemia [34]. Meanwhile, leukotrienes receptors, which are mainly distributed in airway and vascular smooth muscle cells, monocytes and macrophages may cause adverse effects of different severity, including headache, gastrointestinal disturbances, pharyngitis, upper respiratory tract infection and rash [35]. According to the results of our meta-analysis, the adverse rate of LTRA is 13.8%, whereas that of SAH is 18.5%, but there is no significant difference between them. Additionally, the type of SAH, dose of SAH and LTRA, duration and gender did not impact the results of pooled analysis.

The combination of these agents has a reportedly higher improvement compared to monotherapy with either alone [16,36]. In our study, SAH was more appropriate for patients with SAR whose cardinal symptoms are daytime nasal congestion, rhinorrhea, pruritus and sneezing and LTRA performed better for patients whose cardinal symptoms include difficulty going to sleep, nighttime awakenings, and nasal congestion on awakening. Therefore, the different aspects of the superiority of SAH and LTRA may indirectly support the combination of SAH and LTRA for SAR, but that should be verified by multicenter, random double-blind, controlled trials.

There are three limitations of this meta-analysis should be addressed. First, most pooled analyses have significant heterogeneity, excluding adverse events. Though tried to determine the sources of heterogeneity by subgroup analysis, no obvious sources of heterogeneity were found. Additionally, none of the studies dramatically influenced the results of pooled analysis according to sensitivity analysis, confirming the stability of our results. Second, several relevant studies have been excluded because of incomplete raw data. Third, because substantial important information could not be obtained from most included studies, relevant stratifications could not be performed for many studies.

In conclusion, our meta-analysis suggested that SAH and LTRA have similar effects and safety for SAR, but SAH is more appropriate for daytime nasal symptoms, while LTRA is more appropriate for nighttime symptoms. Meanwhile, the dose, duration and gender of patients may influence the anti-SAR effects of SAH and LTRA. Additionally, genetic and environmental factors should be investigated in the future.

Supporting Information

Figure S1 Pooled Analysis for DESS of leukotriene antagonist versus selective H1 antihistamine for Seasonal allergic rhinitis.

Figure S2 Pooled Analysis for RQOLS of leukotriene antagonist versus selective H1 antihistamine for Seasonal allergic rhinitis.

Figure S3 Pooled Analysis for adverse events of leukotriene antagonist versus selective H1 antihistamine for Seasonal allergic rhinitis.

Checklist S1 PRISMA Checklist.

Checklist S2 MOOSE Checklist.

Author Contributions

Conceived and designed the experiments: YX. Performed the experiments: YX. Analyzed the data: JW. Contributed reagents/materials/analysis tools: YX. JW. Contributed to the writing of the manuscript: YX. JW.

References

1. Leung AK, Hon KL. (2015) Seasonal allergic rhinitis. Recent Pat Inflamm Allergy Drug Discov 7: 187–201.
2. Jacobs RL. (2011) Ciclesonide for the treatment of seasonal allergic rhinitis. Expert Rev Clin Immunol 7: 735–741.
3. Bozek A, Jarzab J. (2015) Epidemiology of IgE-dependent allergic diseases in elderly patients in Poland. Am J Rhinol Allergy 27: e140–145.
4. Dranitsaris G, Ellis AK. (2014) Sublingual or subcutaneous immunotherapy for seasonal allergic rhinitis: an indirect analysis of efficacy, safety and cost. J Eval Clin Pract 20: 225–230.
5. Platt M. (2014) Pharmacotherapy for allergic rhinitis. Int Forum Allergy Rhinol Suppl 2: 335–40.
6. Mygind N. (2014) Allergic rhinitis. Chem Immunol Allergy 100: 62–60.
7. Castillo J, Dimov V. (2014) Investigational drugs for the treatment of allergic rhinitis. Expert Opin Investig Drugs 23: 823–836.
8. Kanaoka Y, Boyle JA. (2014) Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res 6: 289–295.
9. Singh RK, Tandon R, Dastidar SG, Ray A. (2013) A review on leukotrienes and their receptors with reference to asthma. J Asthma 50: 922–931.
10. Shirasaki H, Kanaizumi E, Seki N, Fujita M, Kukuchi M, et al. (2013) Localization and up-regulation of cysteinyl leukotriene-2 receptor in human allergic nasal mucosa. Allergol Int 62: 223–229.
11. Wan GH, Yan DG, Tseng HY, Tung TH, Lin SJ, et al. (2013) Cysteinyl leukotriene levels correlate with 8-isoprostane levels in exhaled breath condensates of asthmatic and healthy children. Pediatr Res 74: 504–509.
12. Simons FE, Simons KJ. (2011) Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol 128: 1139–1150.
13. Simons FE. (2004) Advances in H1-antihistamines. N Engl J Med 351: 2203–2217.
14. O’Malley L, Akidis M, Akdis CA. (2011) Regulation of the immune response and inflammation by histamine and histamine receptors. J Allergy Clin Immunol 128: 1153–1162.
15. Meltzer EO. (2013) Pharmacotherapeutic strategies for allergic rhinitis: matching treatment to symptoms, disease progression, and associated conditions. Allergy Asthma Proc 34: 301–311.
16. Meltzer EO, Malmstrom K, Lu S, Prenner BM, Wei LX, et al. (2000) Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebo-controlled clinical trial. J Allergy Clin Immunol 105: 917–922.
17. Philip G, Malmstrom K, Hampel FC, Weinstein SF, LaForce CF, et al. (2002) Montelukast for treating seasonal allergic rhinitis: a randomized, double-blind, placebo-controlled trial performed in the spring. Clin Exp Allergy 32: 1020–1028.
18. van Adelsberg J, Philip G, Pedrioli AJ, Meltzer EO, Rattner PH, et al. (2003) Montelukast improves symptoms of seasonal allergic rhinitis over a 4-week treatment period. Allergy 58: 1268–1276.
19. van Adelsberg J, Philip G, LaForce CF, Weinstein SF, Menten J, et al. (2003) Randomized controlled trial evaluating the clinical benefit of montelukast for treating spring seasonal allergic rhinitis. Ann Allergy Asthma Immunol 90: 214–222.
20. Lu S, Malice MP, Dase SB, Reis TF. (2009) Clinical studies of combination montelukast and loratadine in patients with seasonal allergic rhinitis. J Asthma 46: 876–883.
21. Barna-Cagnani CE, Berger WE, DuBuske LM, Gurné SE, Stryszak P, et al. (2003) Comparative effects of desloratadine versus montelukast on asthma symptoms and use of beta 2-agonists in patients with seasonal allergic rhinitis and asthma. Int Arch Allergy Immunol 130: 307–313.
22. Nayak AS, Philip G, Lu S, Malice MP, Reis TF, et al. (2002) Efficacy and tolerability of montelukast alone or in combination with loratadine in seasonal allergic rhinitis: a multicenter, randomized, double-blind, placebo-controlled trial performed in the fall. Ann Allergy Asthma Immunol 88: 592–600.
23. Patel P, Patel D. (2008) Efficacy comparison of levocetirizine vs montelukast in ragweed sensitized patients. Ann Allergy Asthma Immunol 101: 287–294.
24. Michele TM, Lu S, Malice MP (2000) Combination of montelukast and loratadine in seasonal allergic rhinitis: A analysis of three spring studies. J Allergy Clin Immunol 105: S387.

25. Meltzer EO, Blaiss MS, Derebery MJ, Mahr TA, Gordon BR, et al. (2009) Burden of allergic rhinitis: results from the Pediatric Allergies in America survey. J Allergy Clin Immunol. Sep; 124(3 Suppl): S43–70.

26. Santos CB, Hanks C, Mccann J, Lehman EB, Pratt E, et al. (2008) The role of montelukast on perennial allergic rhinitis and associated sleep disturbances and daytime somnolence. Allergy Asthma Proc. Mar–Apr; 29(2): 140–5.

27. Ciebiada M, Górska-Ciebiada M, DuBuske LM, Górski P (2006) Montelukast with desloratadine or levocetirizine for the treatment of persistent allergic rhinitis. Ann Allergy Asthma Immunol. Nov; 97(5): 664–71.

28. Nathan RA (2003) Pharmacotherapy for allergic rhinitis: a critical review of leukotriene receptor antagonists compared with other treatments. Ann Allergy Asthma Immunol. Feb; 90(2): 182–90; quiz 190–1, 232.

29. Cobanoglu B, Toskala E, Ural A, Cingi C (2013) Role of leukotriene antagonists and antihistamines in the treatment of allergic rhinitis. Curr Allergy Asthma Rep. Apr; 13(2): 203–8.

30. Van Hoecke H, Vandenbulcke L, Van Cauwenberge P (2007) Histamine and leukotriene receptor antagonism in the treatment of allergic rhinitis: an update. Drugs.; 67(18): 2717–26.

31. Lagos JÁ, Marshall GD (2007) Montelukast in the management of allergic rhinitis. Ther Clin Risk Manag. Jan; 3(2): 327–32.

32. Marazziti D, Baroni S, Picchetti M, Peciani A, Carlini M, et al. (2013) Pharmacokinetics and pharmacodynamics of psychotropic drugs: effect of sex. CNS Spectr 18: 118–127.

33. Spoleini I, Vitale C, Malorni W, Rosano GM (2012) Sex differences in drug effects: interaction with sex hormones in adult life. Handb Exp Pharmacol 214: 91–105.

34. Shakoori AA, Bahna SL. (2013) Hypersensitivity to antihistamines. Allergy Asthma Proc 34: 488–496.

35. Wang K, Birring SS, Taylor K, Fry NK, Hay AD, et al. (2014) Montelukast for postinfectious cough in adults: a double-blind randomised placebo-controlled trial. Lancet Respir Med 2: 33–43.

36. Kurowski M, Kuna P, Górecki P (2004) Montelukast plus cetirizine in the prophylactic treatment of seasonal allergic rhinitis: influence on clinical symptoms and nasal allergic inflammation. Allergy 59: 280–288.