Effect of oat supplementation interventions on cardiovascular disease risk markers: a systematic review and meta-analysis of randomized controlled trials

Erand Llanaj1,2 · Gordana M. Dejanovic3 · Ezra Valido4 · Arjola Bano9,14 · Magda Gamba9,13 · Lum Kastrati10 · Beatrice Minder11 · Stevan Stojic4 · Trudy Voortman5,6 · Pedro Marques-Vidal7,8 · Jivko Stoyanov4,9 · Brandon Metzger12 · Marija Glisic4,9 · Hua Kern12 · Taulant Muka9

Received: 1 July 2021 / Accepted: 30 November 2021 / Published online: 3 January 2022
© The Author(s) 2021

Abstract

Purpose Oat supplementation interventions (OSIs) may have a beneficial effect on cardiovascular disease (CVD) risk. However, dietary background can modulate such effect. This systematic review assesses the effects of OSIs on CVD risk markers among adults, accounting for different dietary backgrounds or control arms.

Methods We included randomized clinical trials (RCTs) that assessed the effect of oat, oat beta-glucan-rich extracts or avenanthramides on CVD risk markers.

Results Seventy-four RCTs, including 4937 predominantly hypercholesterolemic, obese subjects, with mild metabolic disturbances, were included in the systematic review. Of these, 59 RCTs contributed to the meta-analyses. Subjects receiving an OSI, compared to control arms without oats, had improved levels of total cholesterol (TC) [weighted mean difference and (95% CI) −0.42 mmol/L, (−0.61; −0.22)], LDL cholesterol [−0.29 mmol/L, (−0.37; −0.20)], glucose [−0.25 nmol/L, (−0.36; −0.14)], body mass index [−0.13 kg/m2, (−0.26; −0.01)], weight [−0.94 kg, (−1.84: −0.05)], and waist circumference [−1.06 cm, (−1.85; −0.27)]. RCTs on inflammation and/or oxidative stress markers were scarce and with inconsistent findings. RCTs comparing an OSI to heterogeneous interventions (e.g., wheat, eggs, rice, etc.), showed lowered levels of glycated haemoglobin, diastolic blood pressure, HDL cholesterol and apolipoprotein B. The majority of included RCTs (81.1%) had some concerns for risk of bias.

Conclusion Dietary OSIs resulted in lowered levels of blood lipids and improvements in anthropometric parameters among participants with predominantly mild metabolic disturbances, regardless of dietary background or control. Further high-quality trials are warranted to establish the role of OSIs on blood pressure, glucose homeostasis and inflammation markers.

Keywords Oats · Supplementation · Interventions · Cardiovascular diseases · Risk markers · Cholesterol · Nutrition

Introduction

Cardiovascular diseases (CVDs) represent one of the leading causes of global mortality among adults and lifestyle modifications have emerged as a great opportunity to reduce their health burden [1]. Hence, changes in diet have been encouraged, as they can have a beneficial impact on the prevention, management and disease trajectory of CVDs [2]. Among currently implemented dietary interventions, increased intake of whole grains and in particular oat components, such as oat fibre and oat bioactive constituents, has been suggested to affect CVD risk markers including blood cholesterol, blood glucose and body mass index (BMI), thus reducing the risk of coronary heart disease.
There is growing evidence suggesting that oat products, when compared with similar wheat-based products or a glucose control, can have a positive effect on human glycaemic response [7]. Similar positive effects have been also reported for overall CVD risk [8], satiety [9] and increased gut microbiota diversity [10]. Currently, a considerable number of randomized controlled trials (RCTs) and reviews have documented the health benefits that oat supplementation interventions (OSIs) confer, but such efforts are limited to a basic subset of CVD risk markers [6, 11]. In addition, little attention has been given to the role of background diet and control arm in the interpretation of the relationship between OSIs and CVD markers. Differentiating such effects [12, 13] by type of dietary OSI and/or control arm (e.g., oat-free intervention, low-fat diet, wheat, rice, etc.) can aid in harnessing the potential benefits of small, but consistent dietary changes, such as supplementing one’s diet with oats. With that in mind, we aimed at examining the effect of OSIs on a more extended set of CVD risk markers, while also taking into consideration dietary backgrounds and type of control arms used in the RCTs that explored how OSIs affected CVD risk markers. Following this rationale and based on the available RCTs, three major sub-classes emerged as follows: (i) RCTs comparing an OSI vs. oat-free diet or control product without oats, (ii) intervention group combining an OSI with some type of dietary restriction (e.g., low-fat diet, hypocaloric diet, etc.) vs. the same dietary restriction alone and (iii) an OSI vs. heterogeneous control arms (e.g., rice, eggs, fibre, wheat, etc.). Based on this categorization, we assessed the association of OSIs and CVD risk markers in adults, accounting for each subclass.

Materials and methods

Search strategy and study selection

This work follows an established guide on conducting systematic reviews and meta-analyses for medical research [14], as well as PRISMA [15] guidelines for reporting. An experienced medical librarian systematically searched four electronic databases: EMBASE, MEDLINE (Ovid), Cochrane Central and Web of Science from inception until May 15, 2020 (date last searched); additionally, the first 200 results were downloaded from the Google Scholar search engine. A detailed search strategy is outlined in the supplementary material (section Search strategy). We additionally performed a hand search of the reference lists of included RCTs. Detailed inclusion and exclusion criteria can be found in the review protocol PROSPERO (ID: CRD42020189278). In brief, RCTs were included only if they (i) were conducted in humans and (ii) investigated the associations of oat, oat beta-glucan-rich extracts (OβGREs) and/or avenanthramides dietary supplementation with any of the following outcomes: serum lipid profile, glucose homeostasis parameters, inflammatory and oxidative stress markers, body morphology parameters and/or blood pressure.

Data extraction and assessment of the quality of included studies

Two reviewers, who afterwards assessed the full texts of potentially eligible studies, independently evaluated titles and abstracts. Two reviewers also independently extracted the relevant information using a pre-defined data extraction form. Any disagreement between reviewers was settled by reaching a consensus or by consulting a third reviewer. The quality of included RCTs was assessed by two independent reviewers using the Risk of Bias Tool for Randomized Trials (Rob 2.0) [16]. Detailed information on the assessment of study quality and risk of bias is provided in Table 1.

Statistical analysis

Treatment effects were defined as the pre-post differences in outcomes between OSIs and control arms at the end of a RCT. All outcomes were continuous, therefore, the mean differences [intervention minus control] of the treatment effects in CVD risk markers were presented as summary outcome measures. For data reported as medians, ranges or 95% confidence intervals (CI), means and standard deviations were converted as described elsewhere [17]. Random-effect models were used to obtain estimates of weighted mean differences (WMDs) and 95% CIs. For RCTs with crossover design, we used the data from the first study period only. Due to observed variations between the definition of intervention and control diet across different RCTs, we pooled the effect estimates by grouping the following type of RCTs based on background diet and control arm: (i) an OSI group compared with the same/other intervention groups, but without oats (ii) intervention group combining an OSI with some type of dietary restriction (e.g., low-fat diet, hypocaloric diet, etc.) versus the same DR without oats, and (iii) an OSI compared with other interventions (e.g. rice, eggs, fibre, wheat, etc.). Henceforth these groups will be referred to their short form as (i) OSI vs. no OSI controls, (ii) OSI + DR vs. DR alone and (iii) OSI vs. heterogeneous controls, respectively. Heterogeneity between studies was assessed using the Cochrane χ^2 statistic ($P_Q < 0.05$ was considered as significant) and the I^2 statistic, and was determined as low ($I^2 \leq 25\%$), moderate ($25\% < I^2 < 75\%$), or high ($I^2 \geq 75\%$) [18]. Study characteristics including geographic location, number of participants, duration of intervention, baseline age, health status (healthy individuals vs. those with pre-existing health conditions), and study quality were pre-specified as characteristics for assessment of heterogeneity, and were evaluated using stratified analyses and
Table 1: Study characteristics of the RCTs included in the systematic review

Ref	Lead Author (publication year)	Location	RCT design	Sample size, \(n\)	Male participants, \(n\) (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Iso caloric diet	Different intake or background diet between arms
[56]	Abrahamsen et al. (1994)	Sweden	C	31	0 (0)	Healthy female subjects	26 (6.5)	Two 5-week periods	Oat bran	Wheat bran	SC	–	No
[57]	Adamsson et al. (2015)	Sweden	P	79	31 (39.2)	Mildly hypercholesterolemic and overweight subjects	54.6 (10.8)	12 weeks	Oat bran (porridge or muesli)—40 g per serving (corresponding to 3 g/d oat β-glucans)	Usual breakfast	SC	–	No
[58]	Amundsen AL et al. (2003)	Sweden	C	16	9 (56.3)	Hypercholesterolemic subjects	57 (7.9)	Two 3-week periods	OβGRE corresponding to 5 g/d oat β-glucans	Diet without OβGREs	SC	Yes	No
[59]	Anderson et al. (1990)	USA	P	14	14 (100)	Hypercholesterolemic subjects	58	2 weeks	Oat bran (56 g/d)	Corn flakes (56 g/d)	H	Yes	No
[60]	Anderson et al. (1991)	USA	P	21	21 (100)	Hypercholesterolemic male subjects	61 (2)	3 weeks	Oat bran as cereal and muffins (110 g/d)	Wheat bran (40 g/d)	SC	Yes	No
[61]	Anderson et al. (1984)	USA	P	20	20 (100)	Hypercholesterolemic male subjects	Range (34–66)	3 weeks	Oat-bran – 100 g/d of oat bran (dry wt.) served as cereals and oat bran muffins	Beans – diet containing 115 g of dried bean (dry wt.)	SC	Yes	No
[62]	Ballesteros et al. (2015)	Mexico	C	29	10 (34.5)	Subjects with type 2 diabetes	53.5 (8.3)	2 periods of 5 weeks	40 g/d of oatmeal with 2 cups (472 mL) of lactose-free milk	One egg daily	SC	Yes	No
Ref	Lead Author (publication year)	Location	RCT design	Sample size, \(n\)	Male participants, \(n\) (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms
-----	--------------------------------	----------	------------	-------------------	-----------------------------	--------------------------------	---------------------------	----------	-------------------------------------	-------------------------------	-----------------------	-----------------	---
[63]	Beck et al. (2010)	Australia	P	56	0 (0)	Overweight female subjects	37.4 (5.3)	12 weeks	2 MJ energy-deficit diets with high-fibre products with added OβGREs providing \(\beta\)-glucans at a moderate (5–6 g/d) and at a high (8–9 g/d) level	2 MJ energy-deficit diets with high-fibre products and no oat OβGREs	L	Yes	No
[64]	Berg et al. (2003)	Germany	P	288	288 (100)	Male subjects with increased risk for coronary heart disease	53.6 (6.3)	4 weeks	Group 1: fat-modified diet (NCEP step 2) with caloric restriction to 1,000 kcal/d and in addition a daily intake of 35–50 g of oat bran	Group 2: fat-modified diet (NCEP step 2) with caloric restriction to 1,000 kcal/d	SC	No	Yes
[65]	Biörklund et al. (2005)	Sweden	P	89	44 (49.4)	Hypercholesterolemic subjects	18–70	5 weeks	Beverage with 5 or 10 g \(\beta\)-glucans extract from oats or barley	Control beverage enriched with rice starch	H	No	Yes
[66]	Biörklund et al. (2008)	Sweden	P	43	19 (44.2)	Hyperlipidaemic subjects	58 (8.2)	8 weeks	Soup with OβGREs, providing 4 g/d oat \(\beta\)-glucans	Soup without OβGREs	SC	Yes	No
[67]	Braaten et al. (1994)	USA	C	30	N.R	Hypercholesterolemic subjects	N.R	Two periods of 4 weeks	Oat gum with 2.9 g of \(\beta\)-glucans	Placebo (maltodextrin)	H	Yes	No
Ref	Lead Author (publication year)	Location	RCT design	Sample size, \(n \)	Male participants, \(n \) (\%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms
------	--------------------------------	----------	------------	---------------------	-------------------------------	------------------------------	----------------------------	----------	--------------------------------------	--------------------------------	-----------------	----------------	--
[68]	Bremer et al. (1991)	New Zealand	C	12	5 (41.7)	Hyperlipidaemic subjects	53 (10)	12 weeks	Oat bread—six slices daily for females and 10–12 slices daily for males	Wheat bread—six slices daily for females and 10–12 slices daily for males	SC	Yes	No
[69]	Bridges et al. (1992)	USA	P	20	20 (100)	Hypercholesterolemic male subjects	61 (range 38–73)	3 weeks	Oat bran 110 g/d (dry wt.), served as a bowl of hot cereal and oat bran muffins	Wheat-bran diets provided 40 g/d wheat bran (dry wt.) served as a bowl of ready-to-eat cereal and wheat-bran muffins	SC	Yes	No
[70]	Chang et al. (2013)	USA	P	34	12 (35.3)	Overweight and obese subjects	38.5 (11.3)	12 weeks	\(\beta \)-glucans-containing cereal. One cereal pack (37.5 g) was prescribed to be mixed with 250 mL hot water twice daily	Placebo (cereal without \(\beta \)-glucans)	SC	No	Yes
[71]	Chen et al. (2006)	USA	P	102	41 (40)	Healthy subjects	47.9 (8.4)	12 weeks	60 g of oat bran concentrate as a muffin and 84 g of oatmeal squares	93 g of refined wheat as a muffin and 42 g of corn flakes	L	No	Yes
Ref	Lead Author (publication year)	Location	RCT design	Sample size, n	Male participants, n (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms
-----	--------------------------------	----------	------------	----------------	--------------------------	-------------------------------	-------------------------	----------	-----------------------------------	---------------------------------	-----------------	--------------	--
[72]	Connolly et al. (2016)	England	C	30	11 (36.7)	Subjects with glucose intolerance or mild to moderate hypercholesterolemia	42 (N.R.)	Two 6-week periods	Whole grain oat granola cereal (45 g/d)	Non-whole grain breakfast; 45 g/d	SC	Yes	No
[73]	Davy et al. (2002)	USA	P	36	36 (100)	Overweight male subjects	58 (8.6)	12 weeks	60 g oatmeal and 76 g oat bran ready-to-eat cold cereal and the wheat group consumed 5.5 g β-glucans	60 g whole wheat cereals and 81 g frosted mini-wheats	SC	No	Yes
[74]	De Souza et al. (2016)	Brazil	P	132	44 (33.3)	Hypercholesterolemic subjects	55.8 (10.6)	~ 13 weeks	40 g of oat bran	40 g of corn starch and rice flour	SC	No	Yes
[75]	Dubois et al. (1993)	France	P	6	6 (100)	Normanlipidemic male subjects	Range (20–27)	2 weeks	Usual low-fibre diet and oat bran (40 g/d)	Usual low-fibre diet	SC	No	Yes
[76]	Ferguson et al. (2020)	Australia	P	72	27 (37.5)	Hypercholesterolemic subjects	55.1 (1.4)	6 weeks	Biscuits fortified with 2 g phytosterols (Group 1), 3 g β-glucans (Group 2) and 2 g phytosterols and 3 g β-glucans (Group 3)	Placebo (biscuit without phytosterols and β-glucans)	SC	Yes	No
[77]	Geliebter et al., 2014	USA	P	36	18 (50)	Overweight subjects	33.9 (7.5)	4 weeks	Oat porridge or frosted cornflakes	No-breakfast	SC	Yes	No
Table 1 (continued)

Ref	Lead Author (publication year)	Location	RCT design	Sample size, n	Male participants, n (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms	
[78]	Gerhardt et al. (1998)	USA	P	44	23 (52.3)	Moderately hypercholesterolemic subjects	51.7 (1.5)	6 weeks	Low-fat diet and oat bran; 84 g/d	Low-fat diet and rice starch placebo; 84 g/d	SC	Yes	No	
[79]	Guevara-Cruz et al. (2012)	Mexico	P	67	N.R	Subjects with metabolic syndrome	Range (20–60)	8 weeks	Habitual diet reduced by 500 kcal and 22 g oats	Placebo: habitual diet reduced by 500	H	No	Yes	
[80]	Gulati et al. (2017)	India	P	69	N.R	Mildly hypercholesterolemic subjects	31.2 (6.6)	4 weeks	35 g of oats twice daily (total of 70 g/d in the form of porridge (35 g of oats) for breakfast and a second serving of oats in the form of Upma (35 g of oats) in the afternoon	Usual diet	SC	No	Yes	
[81]	He et al. (2004)	USA	P	102	N.R	Subjects with stage 1 hypertension or increased blood pressure	47.7 (8.5)	12 weeks	High fibre: group received a daily serving of 60 g oat bran concentrate as a muffin and 84 g oatmeal squares	Low fibre: 93 g of refined wheat as a muffin and 42 g corn flakes	L	No	Yes	
[82]	Hegsted et al. (1993)	USA	C	11	10 (90.9)	Mildly hypercholesterolemic subjects	37 (33.2)	Two periods of 3 weeks	100 g/d oat bran	100 g/d stabilized rice bran	SC	Yes	No	
Ref	Lead Author (publication year)	Location	RCT design	Sample size, *n*	Male participants, *n* (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms	
------	--------------------------------	----------	------------	-----------------	----------------------------	-----------------------------	------------------------	----------	---------------------------------	-----------------------------	------------------	---------------	----------------------------------	
[83]	Ibrugger et al. (2013)	Denmark	C	14	6 (42.6)	Healthy subjects	22.9 (2.1)	Four 3-week periods	Beverage of 3.3 g/d oat, barley, and barley mutant β-glucans’ extract of similar molecular mass	Control beverage	SC	Yes	No	
[84]	Johansson-Persson et al. (2014)	Sweden	C	30	12 (34.3)	Healthy subjects	58.6 (1.1)	Two 5-week periods	Oat bran beverage combined with a high-fibre diet, providing 4.4 g total dietary fibre per day (corresponding to 2.8 g β-glucans)	The rice beverage in the low-fibre diet provided 0.4 g fibre daily	SC	Yes	No	
[85]	Kabir et al. (2002)	France	C	13	13 (100)	Subjects with type 2 diabetes	59 (7.2)	Two 4-week periods	Low-glycaemic index breakfast period, the cereal used was based on extruded oat bran concentrate, apple, and fructose (muesli containing 3 g β-glucans). The bread used was pumpernickel	High-glycaemic index breakfast whole wheat grains and whole meal bread (wheat flour)	SC	Yes	No	
[86]	Kamnally et al. (2005)	USA	P	152	49 (32.2)	Healthy subjects	49 (10.6)	11 weeks	Ready-to-eat oat cereal (portion size: 45 g/d)	Corn Cereal	H	No	-	
Table 1 (continued)

Ref	Lead Author (publication year)	Location	RCT design	Sample size, \(n\)	Male participants, \(n\) (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms
[87]	Kashtan et al. (1992)	Canada	P	84	50 (59.5)	Subjects with a history of previous polypectomy and volunteers with normal colon on colonic examination	55.8 (13)	2 weeks	Oat bran twice per day (88.4 g/d)	Wheat bran twice per day (73 g/d)	SC	Yes	No
[88]	Keenan et al. (1991)	USA	C	75	49 (65.3)	Healthy subjects	Range (20–70)	Three periods of 6 weeks	AHA Step I diet and oat bran, 28 g/d	AHA Step I diet and wheat bran	H	Yes	No
[89]	Keenan et al. (2002)	USA	P	18	N.R	Hypertensive and hyperinsulinemic subjects	44 (18)	6 weeks	Oat cereals providing ~5.5 g/d of β-glucans	Low-fibre cereal (<1 g/d total fibre)	SC	Yes	No
[90]	Kerckhoffs et al. (2003)	The Netherlands	P	48	21 (43.8)	Healthy subjects	53 (13.9)	4 weeks	Bread and cookies rich in β-glucans (~1.5 g/d) from >5 g/d oat bran	bread and cookies rich in wheat fibre	SC	No	Yes
[91]	Kirby et al. (1981)	USA	P	8	8 (100)	Hypercholesterolemic subjects	Range (35–62)	2 weeks	Diet containing 100 g of oat-bran daily, provided in form of muffins and cereals	Diet composed of commonly available foods	SC	Yes	No
[92]	Kristensen et al. (2011)	Denmark	C	24	N.R	Healthy subjects	25.2 (2.7)	Two periods of 2 weeks	Low-fibre diet and 102 g/d oat bran	Low-fibre diet	SC	Yes	No
Ref	Lead Author (publication year)	Location	RCT design	Sample size, \(n\)	Male participants, \(n\) (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isoenergetic diet	Different intake or background diet between arms
-----	--------------------------------	----------	------------	---------------------	-----------------------------	-------------------------------	---------------------------	----------	-------------------------------------	---------------------------------	---------------------	----------------	---------------------------------
[93]	Laaksonen et al. (2005)	Finland	P	72	36 (50)	Subjects with metabolic syndrome	55.4 (6.8)	12 weeks	Oat bread (made of 60% whole meal oat flour and 40% wheat flour)	Rye-pasta	SC	Yes	No
[94]	Leadbetter et al. (1991)	USA	P	40	20 (50)	Hypercholesterolemic subjects	Range (25–64)	4 months	30, 60 or 90 g/d oat bran	No supplementation	SC	Yes	No
[37]	Leão et al. (2019)	Brazil	P	154	41 (26.6)	Subjects with metabolic syndrome	47.6 (12.6)	6 weeks	Low-calorie diet plus oat bran (40 g/d)	A low-calorie diet	SC	No	Yes
[10]	Li et al. (2016)	China	P	298	155 (52)	Overweight subjects with type 2 diabetes	59.5 (6)	4 weeks	Diet with the same quantity of cereals replaced by 50 g and 100 g oats respectively	Low-fat and high-fibre diet	SC	No	-
[95]	Liao et al. (2019)	Taiwan	P	74	N.R	Healthy and mildly hypercholesterolemic subjects	Range (55–70)	10 weeks	Oat noodles containing 12 g of \(\beta\)-glucans	Wheat noodles	SC	No	Yes
[96]	Liatis et al. (2009)	Greece	P	41	23 (56.1)	Subjects with type 2 diabetes	62.9 (9.1)	3 weeks	Bread enriched \(\beta\)-glucans (providing 3 g/d \(\beta\)-glucan)	Bread without \(\beta\)-glucans	H	No	Yes
[97]	Liu et al. (2011)	China	P	120	60 (50)	Healthy subjects	N.R	4 weeks	Either 4 capsules containing 1.6 mg of oat avenanthramides or 8 capsules containing oat avenanthramides-enriched extract (3.1 mg)	Placebo capsules (corn oil) or no treatment at all (control group)	H	No	No
Ref	Lead Author (publication year)	Location	RCT design	Sample size, n (n)	Male participants, n (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms
-----	--------------------------------	----------	------------	-------------------	--------------------------	-----------------------------	-----------------------------	----------	-------------------------------------	-----------------------------	-----------------	--------------	----------------------------------
[98]	Lovegrove et al. (2000)	UK	P	62	31 (50)	Healthy subjects	56.6 (9.4)	8 weeks	20 g oat bran concentrate providing 3 g β-glucans	20 g wheat bran	SC	No	No
[99]	Maki et al. (2003)	USA	P	112	49 (43.8)	Hypercholesterolemic subjects	57.3 (9.5)	6 weeks	Cereal, a snack bar and a beverage with 1.8 g oil–based phytosterols and 2.8 g/d β-glucans	Cereals, a snack bar and a beverage with less than 1 g β-glucans daily, and no oil–based phytosterols	SC	No	Yes
[100]	Maki et al., (2007)	USA	P	60	33 (55)	Subjects with elevated blood pressure	59.7 (9.4)	12 weeks	A ready-to-eat cold cereal made with oat bran, oatmeal and a powdered form of β-glucans	(1) A low-fibre ready-to-eat cold wheat-based cereal (2) a low-fibre hot cereal and (3) a control maltodextrin powder	SC	No	Yes
[101]	Maki et al. (2010)	USA	P	144	31 (21.5)	Healthy subjects	48.9 (10.2)	12 weeks	Energy deficit of 500 kcal/d and wholegrain oat cereals containing ~ 3 g/d β-glucans	Energy deficit of 500 kcal/d and low-fibre breakfast/snack foods	SC	No	Yes
Ref	Lead Author (publication year)	Location	RCT design	Sample size, (n)	Male participants, n (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms
----------	--------------------------------	----------	------------	-----------------	--------------------------	-----------------------------	----------------------------	----------	-----------------------------------	-------------------------------	-----------------------	-----------------	---
[102]	Martensson et al. (2005)	Sweden	P	56	24 (42.9)	Moderately hypercholesterolemic subjects	55 (9)	3 weeks run-in, 5 weeks intervention	Fermented oat-based product (3–3.5 g/d native β-glucans) and oat-based product ropy which was co-fermented with an exopolysaccharide-producing strain (*Pediococcus damnosus*)	Fermented dairy-based product	SC No –	–	
[103]	Missimer et al. (2017)	USA	C	50	24 (48)	Healthy subjects	23.3 (3.1)	Two periods of 4 weeks	Oatmeal 35 g/d for breakfast	2 eggs for breakfast, daily	SC Yes No	–	
[104]	Momenizadeh et al. (2014)	Iran	P	60	21 (35)	Hypercholesterolemic subjects	51.1 (9.3)	6 weeks	Five servings of oat bread providing 6 g β-glucans	At least five servings of wheat bread	SC No	Yes	
[105]	Noakes et al. (1996)	Australia	C	23	13 (56.5)	Overweight, obese, dyslipidemic and/or hypertensive subjects	51 (6.7)	Three periods of 4 weeks	Oat bran	Two control diets: high-amylose and low-amylose diet	SC Yes No	–	–
[106]	Önning et al. (1999)	Sweden	C	66	66 (100)	Moderate hypercholesterolemia	Mean age (62.6); Range (52–70)	Two periods of 5 weeks	Oat milk (0.75 L, daily)	Rice milk (0.75 L, daily)	SC Yes No	–	
Ref	Lead Author (publication year)	Location	RCT design	Sample size, \(n \)	Male participants, \(n \) (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isoalloric diet	Different intake or background diet between arms
-----	---------------------------------	----------	------------	----------------	------------------------	-----------------------------	------------------------	----------	----------------------------------	-----------------------------	----------------	----------------	---
[107]	Önning et al. (1998)	Sweden	P	11	6 (54.5)	Healthy, non-smoking subjects	Range (23–54)	4 weeks	Oat milk daily (0.75 L for females and 1 L for males)	Cow’s milk was a medium-fat milk (0.75 L for females and 1 L for males daily)	SC	Yes	No
[20]	Pavadhgul et al. (2019)	Thailand	C	24	N.R	Hypercholesterolemic subjects	Range (30–60)	Two 4-week periods	70 g of instant oat flakes (porridge)	70 g instant white rice flakes (porridge)	SC	Yes	No
[108]	Pins et al. (2002)	USA	P	88	45 (51.1)	Subjects with history of essential mild or moderate hypertension	47.6 (16.1)	Three 4-week periods	60 g Oatmeal and 77 g Oat Squares	65 g wheat cereals and 81 g of rice- and corn-based breakfast cereals	SC	No	-
[109]	Poulter et al. (1994)	UK	C	59	17 (28.8)	Hypercholesterolemic subjects	56.3 (2.5)	2 periods of 4 weeks	Oat-based cereal (50 g)	Usual cereal without oat	SC	Yes	No
[22]	Queenan et al. (2007)	USA	P	75	25 (33.3)	Hypercholesterolemic subjects	44.9 (12.9)	6 weeks	6 g/d concentrated \(\beta \)-glucans (powder form)	6 g/d dextrose monohydrate (powder)	H	-	No
[110]	Reyna-Villasmil et al. (2007)	Venezuela	P	38	38 (100)	Mild to moderate hypercholesterolemic subjects	59.8 (0.6)	8 weeks	AHA Step II diet plus bread containing 6 g/d of oat-derived \(\beta \)-glucans	Same diet as the intervention arm plus whole-wheat bread providing 6 g/d of fibre	SC	Yes	No
Ref	Lead Author (publication year)	Location	RCT design	Sample size, \(n\)	Male participants, \(n\) (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms
---------	--------------------------------	----------	------------	---------------------	-----------------------------	-----------------------------	--------------------------	----------	-----------------------------------	-------------------------------	-------------------	-----------------	----------------------------------
[111]	Robitaille et al. (2005)	Canada	P	34	0 (0)	Normal cycling premenopausal overweight female subjects	38.3 (7.5)	4 weeks trial (2-week run-in phase)	28 g/d of oat bran in form of oat bran-enriched muffins	No supplement	SC	No	No
[112]	Romero et al. (1998)	Mexico	P	46	46 (100)	Sedentary hypercholesterolemic male subjects	Range (20–45)	8 weeks	Oat bran–100 g of cookies daily which is equivalent to 2.8 g of soluble fibre derived from oat bran	Wheat bran–100 g of cookies daily which is equivalent to 0.6 g of soluble fibre derived from wheat bran	SC	Yes	No
[113]	Saltzman et al. (2001)	USA	P	43	20 (46.5)	Healthy subjects	44.6 (27.5)	6 weeks	Hypocaloric diet and oats – 45 g/ (4.2 MJ dietary energy daily)	Hypocaloric diet without oat	SC	No	Yes
[114]	Schweinlin et al. (2018)	Germany	P	36	13 (36.1)	Obese subjects with NAFLD	49.9 (10.3)	2 + 10 weeks intervention	Powdered diet supplement containing 6 g oatmeal, enriched with 1.7 g β-glucans and 5 g oat fibre–3×30 g/d (2 weeks) and 2×30 g/d (10 weeks)	Low-glycaemic and insulinemic diet	SC	No	Yes
[115]	Tabesh et al. (2014)	Iran	P	60	21(35)	Hypercholesterolemic subjects	51.1 (9.3)	4 weeks	Hypocaloric diet with 150 g oat bread rich in β-glucan–corresponding to 18 g/d of β-glucans	Hypocaloric diet with 150 g wheat bread rich in wheat fibre, but no β-glucan	SC	No	No
Ref	Lead Author (publication year)	Location	RCT design	Sample size, (n)	Male participants, n (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms
-------	-----------------------------	------------	------------	-----------------	-------------------------	-----------------------------	--------------------------	----------	------------------------------------	---------------------------------	------------------	---------------	---
[116]	Theuwissen et al. (2009)	The Netherlands	C	42	20 (47.6)	Healthy subjects	52 (11)	2 periods of 4 weeks	β-glucan-containing muesli (4.8 g β-glucan)	Muesli without with 4.8 g fibre	SC	Yes	No
[117]	Thongoun et al. (2013)	Thailand	C	24	2 (8.3)	Hypercholesterolemic subjects	51 (6.9)	2 periods of 4 weeks	Oat bran 70 g (corresponding to 3 g β-glucans)	70 g rice porridge	SC	Yes	No
[23]	Tighe et al. (2010)	UK	P	206	105 (51)	Healthy subjects	51.8 (7.4)	12 weeks intervention	35–40 g whole meal bread plus 60–80 g of whole grain rolled oats daily	70–80 g whole meal bread plus 30–40 g whole grain cereals or 3 servings of refined cereals foods, daily	SC	No	Yes
[118]	Trinidad et al. (2004)	Philippines	C	21	4 (19)	Mildly hypercholesterolemic subjects	48.4 (4.6)	Four 2-week periods, separated by 2 weeks washout	50 g organic oat bran flakes daily	3 comparisons: 50 g corn flakes; 50 g corn flakes with 15% coconut flakes; 50 g 25% coconut flakes	SC	Yes	No
[120]	Uusitupa et al. (1992)	Finland	P	36	20 (55.6)	Hypercholesterolemic subjects	47.8 (7.6)	8 weeks	29.8 g oat bran (corresponding to 10.3 g/d β-glucans)	20.5 g/d wheat bran	SC	-	No
[119]	Uusitupa et al. (1997)	Finland	P	36	20 (55.6)	Hypercholesterolemic subjects	47.8 (7.6)	8 weeks	29.8 g oat bran (corresponding to 10.3 g/d β-glucans)	20.5 g/d wheat bran	H	-	No
[121]	Van Horn L et al. (1991)	USA	P	80	40 (50)	Hypercholesterolemic subjects	42.5 (12.9)	8 weeks	Two packets (56.7 g/d dry wt.) of instant oats	Usual intake	SC	No	-
Ref	Lead Author (publication year)	Location	RCT design	Sample size, \(n \)	Male participants, \(n \) (%)	Health status of study sample	Mean age, in years (SD)*	Duration	Characteristics of intervention arm	Characteristics of control arm	Overall risk of bias	Isocaloric diet	Different intake or background diet between arms
-----	--------------------------------	----------	------------	----------------	-----------------	-----------------------------	-----------------	----------	----------------------------------	----------------------------	-----------------	---------------	-----------------------------------
122	Vuksan et al. (2017)	Canada	P	58	18 (31)	Overweight and obese subjects with type 2 diabetes	60 (2)	26 weeks (6 months)	25.7 g/d oat bran	30 g/1000 kcal of ground Salba-chia	SC	No	Yes
123	Wolever et al. (2010)	Canada	P	367	210 (57.2)	Healthy subjects	53.5 (9.1)	4 weeks	Oat bran containing 3–4 g/d \(\beta \)-glucans	Wheat bran	L	No	Yes
124	Zhang et al. (2012)	China	P	166	65 (39.2)	Subjects with mild to moderate hypercholesterolemia	53.2 (6.5)	6 weeks	100 g/d of instant oat cereal	100 g/d of wheat flour-based noodles	SC	No	Yes

N.R. value not reported or could not be found; *OβGREs* oat beta-glucan-rich extracts; kcal/d kilocalories per day; g/d grams per day *NCEP* National Cholesterol Education Program; *AHA* American Heart Association; *dry wt.* dry weight *NAFLD* Non-alcoholic fatty liver disease; *C* cross-over RCT design; *P* parallel RCT design; *H* High risk of bias; *L* Low risk of bias; *SC* some concerns for bias

Values are given as mean and (standard deviation) unless otherwise indicated
random-effects meta-regression, if eight or more studies were included in the meta-analysis [19]. We performed a leave-one-out sensitivity analysis iteratively by removing one study at a time to explore whether any single study influenced the results. Publication bias was evaluated through visual inspection of funnel plot and Egger’s test. All statistical analyses were conducted with STATA, Release 16 (StataCorp, College Station, Texas, USA). The RCTs that could not be quantitatively pooled were qualitatively summarized.

Results

Included studies

Of 3239 unique citations yielded from the search strategy, 116 relevant full-text articles were retrieved, of which 57 RCTs met all eligibility criteria. We screened the reference lists of those 57 RCTs and identified an additional 17 studies that met all criteria. As a result, a total of 74 RCTs were included in the systematic review, comprising 4,937 individuals. Among the 74 included RCTs, only 59 could be included in the meta-analysis (Fig. 1). Twenty-nine RCTs were conducted in North America, twenty-five in Europe, thirteen in Asia–Pacific and seven in South America. The sample size ranged from 6 to 298 individuals (median 45, interquartile range (IQR): 36–60) and the duration of the interventions from 2 to 26 weeks (median 8 weeks, IQR: 4.25–12). The majority of RCTs \(n = 56, 75.7\% \) included individuals with some form of metabolic disturbance (i.e., type 2 diabetes (T2D), metabolic syndrome, prediabetes, prehypertension, hyperlipidaemia), while only 18 RCTs were conducted in healthy individuals. The majority of the RCTs \(n = 60, 81.1\% \) investigated oat bran, meal or porridge supplementation, 13 RCTs reported on β-glucan- containing oat products and one investigated avenanthramides (Table 1). Only 35 \((47.3\%) \) out of 74 RCTs took energy intake into account between trial arms. The majority of studies \(60 \) out of 74, \(81.1\% \) were evaluated as having some concerns about risk of bias, mostly due to issues linked to randomization, allocation and blinding. Ten studies \((13.5\%) \) had high risk of bias and four studies \((5.4\%) \) had low risk of bias (see Tables 1 and 2). Among the 59 RCTs included in the meta-analysis, 12 contributed to the main meta-analysis (comparing OSI vs. no OSI controls), 12 contributed to the meta-analysis comparing an OSI+DR vs. DR alone, and 35 contributed to the meta-analysis comparing an OSI vs. heterogeneous control arms.

Meta-analysis of RCTs comparing oat supplementation interventions with the same intervention without oat product

Twelve RCTs contributed to the main meta-analysis comparing the effects of an OSI vs. no OSI controls, on CVD risk markers. In this comparison, the OSI was associated with a higher decrease in total cholesterol (TC) \([WMD \text{ and } (95\% \text{ CI}) = 0.42 \text{ mmol/L}, (-0.61; -0.22), I^2 = 96.1\% , \ P_q < 0.001] \) and low-density lipoprotein cholesterol (LDL-C) \([0.29 \text{ mmol/L}, (-0.37; -0.20), I^2 = 72.6\% , \ P_q < 0.001] \) (Table 2). In addition, glucose \([-0.25 \text{ mmol/L}, (-0.36; -0.14), I^2 = 47.9\% , \ P_q = 0.15] \), BMI \([-0.33 \text{ kg/m}^2, (-0.63; -0.03), I^2 = 55.6\% , P_q = 0.09] \), body weight \([-0.94 \text{ kg}, (-1.84; -0.05), I^2 = 52.3\% , P_q = 0.09] \) and waist circumference \((WC) [-1.06 \text{ cm}, (-1.85; -0.27), I^2 = 0\% , \ P_q = 0.61] \) were lower in the OSI group compared to the control arm (Table 2). We found no differences in high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs), or blood pressure (BP) when comparing the OSI arm to that of no OSI controls (Table 2).

Subgroup analysis, leave-one-out analysis and publication bias

Subgroup analyses, meta-regression and analysis of sources of heterogeneity were conducted only if at least 8 studies were available. We identified high heterogeneity across different studies \((I^2 \text{ ranged from } 0 \text{ to } 96.1\%) \). Due to the limited number of studies included in our analyses, we were able to explore sources of heterogeneity only in the meta-analysis of blood lipids (subgroup analyses were not performed if less than 8 studies contributed to meta-analyses). Besides the percentage of male study participants, which was identified as potential source of heterogeneity in case of LDL-C, the heterogeneity in the other meta-analyses of blood lipids was not explained by any individual participant nor study characteristics (e.g., age, health status, number of participants, duration of intervention and location) (Supplemental Table 2). The findings were also supported by regressing continuous variables, such as age, duration of study and number of study participants—showing no evidence for linear association between those variables and WMD of TC, HDL-C, LDL-C and TGs (Supplemental Figs. 8–11). Due to the limited number of studies included, we could not stratify the meta-analyses based on intervention type (oat or OβGREs) or on intervention’s daily dose. The leave-one-out analyses did not show any study to influence the results on TC, HDL-C, LDL-C and TGs (Supplemental Tables 3–6); the leave-one-out analysis was not feasible for other outcomes due to the limited number of studies. We found no evidence for publication bias of RCTs included in meta-analysis comprising five or more estimates; funnel plots were in general symmetrical and Egger’s \(p \) values were higher than 0.05 (Supplemental Figs. 9–16).
Fig. 1 PRISMA flowchart of selection process and included studies

- **Web of Science** (N=1,292)
- **EMBASE** (N=1,506)
- **Cochrane** (N=1,463)
- **MEDLINE Ovid** (N=1,314)
- **Google Scholar** (N=200)

Identification

Records identified through database searching (N=5,775)

Duplicated records have been removed (N=2,536)

Records after duplicates and merging (N=3,239)

Screening

Records screened (N=3,239)

3,123 records excluded based on title and abstract screening

116 full-text articles assessed for eligibility

59 Full-text articles excluded, with reasons:
- Inappropriate study design (N=16)
- Inappropriate outcome (N=28)
- Inappropriate control (N=5)
- Inappropriate intervention (N=3)
- Repeated population (N=1)
- No full text available (N=6)

Studies included in qualitative synthesis (n = 57)

- 642 additional references searched
- 17 studies were additionally included

Eligibility

Included

Studies included in systematic review (n = 74) and Studies contributed to meta-analysis (n = 59):
- RCTs comparing oat supplementation interventions with the same/other intervention groups, but without oat (n = 12)
- RCTs with intervention group combining oat and some type of dietary restriction regime (e.g. low-fat diet or hypocaloric diet) versus the same dietary restriction without oat, and (n = 12)
- RCTs with oat intervention group versus heterogenous comparison group (e.g. rice, eggs, fiber, wheat etc.) (n = 35)
Table 2 Meta-analysis of randomized clinical trials comparing oat supplementation interventions with diet or control product without oats

Outcome	Included studies	Participants	Study quality	Meta-analysis results								
	No. of unique studies	Follow-up duration, median (IQR), weeks	Total, no. of intervention arms	Age, median (IQR), years	No. of studies including healthy individuals, no. (%)	H	SC	L	WMD (95% CI)	I^2 (%)	P value for heterogeneity	
Body morphology												
BMI, kg/m²	5	5 (3.5;9)	249	43 (37.5;65.5)	42 (34.9;60.5)	0 (0)	1	4	0	−0.329 (−0.634; −0.025)	55.6	0.060
Body weight, kg	5	4 (3;12)	250	41 (31;73.5)	38.5 (27.1;58.8)	1 (20)	1	4	0	−0.943 (−1.842; −0.045)	52.3	0.090
Waist circumference, cm	3	4 (n.a.)	144	−	−	0 (0)	1	2	0	−1.058 (−1.845; −0.270)	0.0	0.610
Body fat, %	1	−	−	−	−	−	−	−	−	−	−	−
Blood lipids												
Total cholesterol, mmol/L	12	4.5 (3.3;7.5)	589	38.5 (32.5;67.3)	44.5 (36.5;57.3)	1 (8.3)	1	11	0	−0.415 (−0.607; −0.223)	96.1	<0.001
LDL, mmol/L	12	4.5 (3.3;7.5)	589	38.5 (32.5;67.3)	44.5 (36.5;57.3)	1 (8.3)	1	11	0	−0.286 (−0.372; −0.200)	72.6	<0.001
HDL, mmol/L	12	4.5 (3.3;7.5)	589	38.5 (32.5;67.3)	44.5 (36.5;57.3)	1 (8.3)	1	11	0	−0.015 (−0.041; 0.012)	46.5	0.030
Triglycerides, mmol/L	10	4.5 (3;9)	466	42 (33.5;78.5)	48.6 (33.2;57.8)	1 (10)	1	9	0	−0.022 (−0.096; 0.052)	59.6	0.008
Glucose homeostasis												
Glucose, mmol/L	3	6 (n.a.)	146	−	−	0 (0)	1	2	0	−0.247 (−0.357; −0.136)	47.29	0.150
HbA1c, %	0	−	−	−	−	−	−	−	−	−	−	−
Insulin, pmol/L	2	−	−	−	−	0 (0)	1	1	0	−22.33 (−49.66; 4.95)	66.0	0.090
Blood pressure												
Systolic blood pressure, mmHg	5	8 (3.5;12)	302	69 (37.5;79)	−	0 (0)	1	4	0	−0.56 (−1.68; 0.56)	33.8	0.200
Diastolic blood pressure, mmHg	5	8 (3.5;12)	302	69 (37.5;79)	−	0 (0)	1	4	0	−0.69 (−1.59; 0.22)	42.8	0.140

Significant weighted mean differences are bolded; BMI body mass index; HbA1c Glycated haemoglobin; IQR interquartile range; WMD Weighted mean difference; I^2 variation across studies that is due to heterogeneity rather than chance; n.a. not available; H High risk of bias; L Low risk of bias; SC some concerns for bias.
Meta-analysis of RCTs comparing oat supplementation intervention combined with some type of dietary restriction versus the same dietary restriction alone

Data from 12 RCTs were used to compare changes in CVD risk markers between intervention groups combining an OSI with some type of DR versus DR alone. When pooling the estimates of these RCTs, we found that: (i) BMI [WMD: -0.13 kg/m², 95% CI (-0.26; -0.02), $I^2 = 40\%$, $Q_p = 0.13$], TC [WMD: -0.43 mmol/L, 95% CI (-0.56; -0.30), $I^2 = 91.7\%$, $Q_p < 0.001$], HDL-C [WMD: -0.05 mmol/L, 95% CI (-0.10; -0.006), $I^2 = 97.1\%$, $Q_p < 0.001$], and LDL-C [WMD: -0.26 mmol/L, 95% CI (-0.38; -0.14), $I^2 = 94.1\%$, $Q_p < 0.001$] were lower in the OSI+DR group compared to DR alone arm (Table 3). No differences were seen in apolipoproteins A and B between the two groups. In addition, HbA1c and diastolic BP were lower in OSI + DR group compared to DR alone, with WMD of -0.42 mmol/L [(-0.48; -0.36), $I^2 = 0\%$, $Q_p = 0.76$] and -1.15 mmHg [(-2.03; -0.28), $I^2 = 55.9\%$, $Q_p = 0.06$], respectively (Table 3).

Subgroup analysis, leave-one-out analysis and publication bias

In subgroup analyses and meta-regression, only geographic location and sex were identified as potential sources of heterogeneity for TC and LDL-C analysis, respectively (Supplemental Table 2). The leave-one-out analyses showed that findings on TC, HDL-C, LDL-C, TGs and glucose were not driven by any single study (Supplemental Tables 7–11). Regressing continuous variables, such as age, duration of study and number of study participants, on WMD showed some evidence of linear trends between percentage of male individuals and WMD of HDL-C and LDL-C. With increasing proportions of male participants, WMD of LDL-C ($p = 0.03$) and TC ($p = 0.51$) tended to decrease, but WMD of HDL-C increased ($p = 0.007$), Supplemental Figs. 5–8. No evidence was found for publication bias of RCTs included in meta-analysis comprising five or more estimates (Supplemental Figs. 17–22).

Meta-analysis of RCTs comparing oat supplementation intervention versus heterogeneous control arms

A separate meta-analysis was performed including only 35 RCTs comparing CVD risk marker changes in an OSI vs. heterogeneous controls (e.g., rice, eggs, fibre, wheat, etc.). Results on blood lipid parameters remained similar to the other two meta-analyses, showing lowered TC and LDL-C in an OSI group compared to the control arms (Table 4). In addition, TGs [WMD: -0.06 mmol/L, 95% CI (-0.10; -0.02)] and apolipoprotein B [WMD: -0.03 g/L, 95% CI (-0.05; -0.01)] were significantly lower in the OSI arm compared to the control arm (Table 4). We found no differences for the rest of the investigated risk markers (Table 4).

Qualitative data synthesis

The scarcity of studies and the diversity of control arms across trials did not permit a meta-analysis of inflammation and oxidative stress markers. A summary of these results is available in Table 1.

In one study [20], daily supplementation of the diet with oat porridge containing 3 g of beta-glucan, among hypercholesterolemic adults, for 4 weeks resulted in decreased inflammatory marker levels, including high sensitivity C-reactive protein (hsCRP), interleukin 8 (IL-8), IL-6, and tumour necrosis factor alpha (TNF-α). The OSI also increased antioxidant capacities, by increasing the oxygen radical absorbance capacity and ferric reducing ability of plasma. Consumption of rice porridge did not lead to significant changes in these measures [20]. Oat interventions differ by botanical origin, molar mass, food matrix or degree of purification, and thus may have different effects on inflammatory markers [21]. In a trial including 75 hypercholesterolemic subjects receiving either 6 g/d concentrated OβGREs or 6 g/d dextrose (control) over a 6-week period, hsCRP did not significantly change in response to OβGREs [22]. Similarly, in an RCT comparing a mixture of wheat and oats with wheat only, none of the treatments significantly affected hsCRP or IL-6 [23]. In 43 otherwise healthy men and women with increased cholesterol levels, who consumed a daily ready-meal soup low in energy and fat and high in fibre, but with OβGREs vs. the same soup without OβGREs, there were no statistically significant changes observed in hsCRP between groups [24]. A single study on the antioxidant effects of avenanthamides was found: healthy people were randomized to the OSI group with oats-derived avenanthamides capsules (containing 3.12 mg avenanthamides) or placebo (corn oil capsules) or control group (no avenanthamides) for 1 month. Reported post-treatment serum levels of superoxide dismutase and reduced glutathione were found to significantly increase by 8.4% and 17.9%, respectively ($p < 0.05$) [25]. While malondialdehyde level significantly decreased by 28.1%, TC, TG and LDL-C levels were lowered by 11.1%, 28.1%, and 15.1% compared to no oats and control groups, respectively.

Discussion

In this systematic review and meta-analysis, dietary OSIs were associated with some improvements in a subset of CVD risk markers independently of the dietary background.
Outcome	Included studies	Participants	Study quality	Meta-analysis results								
	No. of unique studies	Follow-up duration, median (IQR), weeks	Total, no. of intervention arm	Age, median (IQR), years	No. of studies including healthy individuals, no. (%)	H	SC	L	WMD (95% CI)	I² (%)	P value for heterogeneity	
Body morphology												
BMI, kg/m²	6	4 (4–6.5)	788	62 (30–79)	59.5 (52.1–59.6)	0 (0)	1	6	0	-0.129 (-0.256; -0.002)	40.0	0.130
Body weight, kg	7	6 (4–10)	739	24 (19–79)	46.1 (37.4–59.5)	2 (28.6)	1	4	2	-0.171 (-0.486; 0.143)	39.2	0.110
Waist circumference, cm	6	7 (4–11.5)	706	31 (19–79)	48.7 (37.4–59.5)	0 (0)	1	5	0	0.146 (-0.438; 0.730)	77.9	<0.001
Body fat, %	2	–	384	–	–	(0)	0	2	0	0.316 (-0.069; 0.701)	69.8	0.040
Blood lipids												
Total cholesterol, mmol/L	8	6 (4–9)	745	21 (16–72.5)	55.3 (39.2–59.5)	1 (12.5)	1	6	1	-0.430 (-0.556; -0.304)	91.7	<0.001
LDL, mmol/L	9	6 (4–10)	804	22 (18.5–59.5)	50.8 (37.4–59.5)	2 (22.2)	1	7	1	-0.260 (-0.381; -0.138)	94.1	<0.001
HDL, mmol/L	10	6 (4–9)	958	23 (19–77)	48.7 (37.4–55.0)	2 (20)	1	8	1	-0.054 (-0.101; -0.006)	97.1	<0.001
Triglycerides, mmol/L	13	6 (4–9)	1,019	21 (17–66.5)	49.9 (41.0–59.2)	2 (15.4)	1	12	0	-0.047 (-0.141; 0.046)	89.1	<0.001
Apo A, g/L	2	–	178	–	–	(0)	0	2	0	0.092 (0.042; 0.142)	0.0	0.780
Apo B, g/L	2	–	178	–	–	(0)	0	2	0	0.066 (-0.257; 0.390)	97.1	<0.001
Glucose homeostasis												
Glucose, mmol/L	9	8 (6–11.5)	717	21 (17.5–77)	54.4 (40.0–59.5)	1 (11.1)	0	9	0	0.021 (-0.155; 0.198)	92.2	<0.001
HbA1c, %	3	–	343	–	–	(0)	0	3	0	-0.423 (-0.483; -0.364)	0.0	0.760
Insulin, pmol/L	4	–	208	–	–	1 (25)	0	4	0	11.325 (-4.220; 26.870)	68.7	0.010
Blood pressure												
Systolic blood pressure, mmHg	5	6 (5–8)	654	30 (20.7–44)	–	1 (20)	1	4	0	0.170 (-2.168; 2.508)	88.3	<0.001
Diastolic blood pressure, mmHg	5	6 (5–8)	654	30 (20.7–44)	–	1 (20)	1	4	0	-1.154 (-2.030; -0.278)	55.9	0.060

Significant weighted mean differences are bolded; BMI body mass index; HbA1c Glycated haemoglobin; IQR interquartile range; WMD Weighted mean difference I^2 variation across studies that is due to heterogeneity rather than chance. H High risk of bias; L Low risk of bias; SC some concerns for bias.
Table 4 Meta-analysis of randomized clinical comparing oat supplementation intervention versus heterogeneous control arms

Outcome	Included studies	Participants	Study quality	Meta-analysis results								
	No. of unique	Follow-up duration, median (IQR), weeks	Age, median (IQR), years	No. of studies including healthy individuals, no. (%)	H	SC	L	WMD (95% CI)	\hat{I}^2 (%)	*P* value for heterogeneity		
	studies	Median sample per intervention arm (IQR)										
Body morphology												
BMI, kg/m²	13	6 (4.5–8)	862	25 (19.7–39.7)	53.2 (49.4–56.2)	2 (15)	1	12	0	-0.014 (-0.220; 0.192)	76.8	< 0.001
Body weight, kg	8	4 (3–9)	344	12 (10.7–28)	58.6 (43–62)	1 (12.5)	0	8	0	0.118 (-0.513; 0.749)	0.0	0.920
Waist circumference, cm	7	6 (4–13)	618	30.5 (24–66)	51.1 (33.9–55.8)	1 (14.3)	0	7	0	0.124 (-1.412; 1.660)	95.8	< 0.001
Body fat, %	3	–	149	–	–	0 (0)	0	3	0	1.020 (-1.957; 3.998)	92.3	< 0.001
Blood lipids												
Total cholesterol, mmol/L	28	5 (3.7–8)	1,922	24 (18–44.5)	53 (47.9–56.9)	6 (21.4)	3	25	0	-0.267 (-0.385; -0.149)	99.0	< 0.001
LDL, mmol/L	26	5 (4–8)	1,823	25 (16.5–47.2)	53 (48.1–56.6)	6 (46.1)	3	23	0	-0.163 (-0.216; -0.109)	95.4	< 0.001
HDL, mmol/L	27	5 (4–8)	1,652	25 (18–48)	53 (48.1–56.6)	5 (18.5)	3	24	0	0.002 (-0.022; 0.025)	95.7	< 0.001
Triglycerides, mmol/L	26	5 (4–8)	1,802	24 (16.5–47.2)	53 (48.4–57.3)	4 (15.4)	3	23	0	-0.084 (-0.153; -0.015)	98.7	< 0.001
Apo A, g/L	6	6 (5–8)	634	36.5 (19.7–74.5)	51.8 (48–54.5)	1 (16.7)	1	5	0	-0.005 (-0.029; 0.018)	89.0	< 0.001
Apo B, g/L	6	7 (5–11.7)	777	50 (20–7)	51.8 (49.0–52.8)	1 (16.7)	1	5	0	-0.031 (-0.052; -0.010)	98.8	< 0.001
Glucose homeostasis												
Glucose, mmol/L	15	6 (4–10)	1,142	21.5 (18.2–79)	59 (37.4–59.5)	1 (6.7)	0	15	0	-0.009 (-0.064; 0.045)	93.6	< 0.001
HbA1c, %	2	–	113	–	–	0 (0)	0	2	0	-0.076 (-0.321; 0.169)	87.7	0.004
Insulin, pmol/L	10	12 (5–12)	644	20 (12–36)	49.4 (41.7–55)	2 (20)	1	9	0	-0.641 (-4.218; 2.935)	82.7	< 0.001
Blood pressure												
Systolic blood pressure, mmHg	7	6 (4–8)	618	48 (19–66)	51.1 (33.9–55.8)	1 (12.5)	0	7	0	0.547 (-0.564; 1.657)	85.3	< 0.001
Diastolic blood pressure, mmHg	7	6 (4–8)	618	48 (19–66)	51.1 (33.9–55.8)	1 (12.5)	0	7	0	0.357 (-1.210; 1.925)	96.8	< 0.001

Significant weighted mean differences are bolded; BMI body mass index; HbA1c Glycated haemoglobin; IQR interquartile range; WMD Weighted mean difference \hat{I}^2 variation across studies that is due to heterogeneity rather than chance; H High risk of bias; L Low risk of bias; SC some concerns for bias
or control arm (Fig. 2). In particular, OSIs showed consistent decreases for BMI, total and LDL-C levels, regardless of the background diet or comparison group. OSIs lowered levels of HbA1c, diastolic BP and HDL-C only when compared to no OSIs. Furthermore, compared to heterogeneous control arms, potential benefits of oat dietary supplementation on apolipoprotein B and TG levels were observed, in addition to improved TC and LDL-C levels. A network meta-analysis has also suggested that OSIs can help regulate TC and LDL-C, indicating that increasing oat sources of whole grain may be recommended for lipid control [26].

Findings of meta-analyses have shown that intake of oat products can lower blood lipids, mainly serum LDL-C concentrations, but with a relatively modest reductions, which were variable within the range of real-world intakes. The role of oat products on lipid profile has been extensively studied in previous meta-analyses of RCTs, involving normal or mildly hypercholesterolaemic adults [6, 11, 27, 28]. Our meta-analysis included a larger number of studies, stratified the effects of an OSI by whether it was combined with another dietary restriction and demonstrated the beneficial effects of an OSI despite background diet or control arm.

Oats can exert health benefits via bioactive phytochemicals with potent antioxidant and anti-inflammatory effects, such as phytosterols, tocols, flavonoids, avenanthramides and soluble fibres such as beta-glucans [29, 30]. The
cholesterol-lowering effects of soluble fibres can be partially explained by the modulating effect on absorption and re-absorption of cholesterol and bile acids due to their binding to fibre [31], or by the increased viscosity [32], which may modify the process of mixing, diffusion and/or emulsification in the gastrointestinal tract [33]. Soluble viscous fibres can influence dietary lipid metabolism in the mildly acidic medium found in the stomach [34]. Further, OβGReS have been shown to lower insulin release, which in turn can lower serum cholesterol levels [35]. Propionates produced by fermentation in the colon may inhibit cholesterol synthesis in the liver [35, 36]. This systemic interplay of oat bioactive phytochemicals and soluble fibres such as beta-glucans could have the potential to influence cardiometabolic health directly and indirectly, which warrants further investigation [4].

Apart from the lowering effect of an OSI on TC and LDL-C, a significant decrease in HDL-C was observed in the meta-analysis of RCTs comparing OSI + DR vs. DR alone. A recent RCT [37] has reported a similar HDL-C-lowering effect among patients with metabolic syndrome, in line with an RCT in 2010 [38]. This decrease in HDL-C may be linked to the background diet in the OSI group, which may have been unfavourable or influenced by confounding factors. Clinical and epidemiologic studies have established the presence of an inverse relationship between HDL-C levels and CVD risk, assuming that increased HDL-C levels are linked to protective effects on CVD [39, 40]. However, there is no sufficient evidence to show cardiovascular benefit of an OSI in patients on cholesterol-lowering therapy (e.g., statins), suggesting that HDL-C increases may not be sufficient to influence CVD risk, when LDL-C is kept in relatively low levels [41–43]. In addition, most research on HDL-C and Mendelian randomization studies have failed to find a direct effect of HDL-C on CVDs [41, 44]. However, it is reasonable to assume that we cannot ascertain the cause of this decrease in HDL-C and the role it may have on assessing the overall impact of oat intake on CVD risk. Future studies should explore how oat intake may affect different types of HDL-C particles, such as small-sized HDL-C, as well as their implications on cardiometabolic health [45].

A growing body of epidemiological studies [46–51] has consistently shown an inverse relationship between dietary fibre intake (such as those found in oats) and body weight. This report found a significant change in BMI, body weight and WC in the main meta-analysis. We observed similar effects and direction for BMI in the pooled analyses of OSIs + DR vs. DR alone. These findings suggest that the extent of health effects of an OSI on body morphology may be highly dependent on the background diet. When considering the effects of OSIs on BMI, body weight and/or WC, it is important to consider EFSA's scientific requirements for health claims related to such parameters [52]. In particular, it should be taken into consideration that the duration of an intervention required to evaluate body weight should be at least 12 weeks and imaging data by established techniques (e.g., dual energy X-ray absorptiometry, magnetic resonance imaging or computed tomography) are generally appropriate to assess changes in body composition in human intervention studies. In our systematic review there were 20 RCTs with a duration of 12 weeks or more. In addition, not all interventions in RCTs were isocaloric, thus limiting our understanding of the impact of OSIs on obesity. Future clinical trials are needed to help address this question.

Effects of an OSI on BP were only observed for diastolic BP, in the case of OSI + DR vs. DR alone. This change (i.e., WMD: −1.15 mm Hg, 95% CI (−2.03; −0.28)) was inconsistent in other types of interventions and not found in case of systolic BP. A similar inconsistency was observed for glucose homeostasis markers, where significant differences were observed for HbA1c only in RCTs comparing OSI + DR versus DR alone and for glucose for RCTs comparing OSIs vs. no OSIs. No significant differences were observed in any other intervention or in interventions comparing an OSI with heterogeneous controls, regarding any glucose homeostasis marker. A meta-analysis of RCTs evaluating the effects of oat products on glycaemic control among diabetic patients indicated that the effects of oats and oat beta-glucans on glycaemic control and insulin sensitivity are inconclusive [5]. In line with our work, a systematic review on oat intake and its association with CVD risk markers did not find convincing evidence of oat influence on insulin sensitivity and emphasized the importance of exploring additional CVD markers [4]. However, it has been proposed that the glycaemic benefits of oats are directly dependent on the structural integrity of the oat kernel, β-glucan's dose, molecular weight and comparison [13, 53–55]. Even though our findings were based on a limited number of studies focused on OSIs and glucose homeostasis, they still suggest some benefits for the later and thus warrant the need for further more rigorous research.

Strengths, limitations and recommendations for future research

To the best of our knowledge, this is the first study to provide a comprehensive analysis on the role of OSI on several CVD risk markers, accounting for background diet and control arms. To identify as many relevant studies as possible and reduce the risk of publication bias, a highly sensitive search strategy was used and additional resources were searched including the reference lists of included trials and relevant systematic reviews. Conventional funnel plots and Egger test estimates showed only a minimal publication bias; still, these methods are limited by their qualitative nature and we cannot exclude the possibility of measured or unmeasured
Supplementation of diet with oat cereals improves CVD risk markers among healthy adults and those with mild metabolic disturbances, particularly by influencing serum total and LDL cholesterol, BMI and WC. The beneficial effects on TC and LDL-C were independent of the dietary background. The role of OSIs on BP, glucose homeostasis or other markers, could not be established.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00394-021-02763-1.

Author contributions All authors provided inputs and agreed on the final version of the manuscript. TM and HK conceptualized the research and supervised the project administration. EL and GD were involved in the screening process of abstracts, assessing full-text articles for eligibility, data extraction and quality assessment of included studies and contributed to writing the first draft of the manuscript. MG and TM were involved in all the phases of the literature search, study selection procedure, interpretation the results and guided the writing of the manuscript. EL, HK, TV, PMV, BeM and AB were involved in reviewing the manuscript and in finalizing it. AB was also involved in quality assessment. EL, HK, EV, MG, LK, SS, JS and BrM participated data extraction, synthesis and interpretation, as well as in providing editorial and medical writing assistance. EL designed the graphical summary.

Funding This research was supported by Standard Process Inc. Brandon Metzger and Hua Kern are scientists at Standard Process Nutrition Innovation Centre. Erand Llanaj was supported by the Hungarian Academy of Sciences (TK2016-78) and the National Research, Development and Innovation Fund of Hungary, financed under the K_20 funding scheme (Project no. 135784). All other authors have nothing to disclose. The sponsor did not participate in the conduct of the study and the collection, management, analysis, and interpretation of the data. Preparation, review, and approval of the manuscript and the decision to submit the manuscript for publication were undertaken by authors. The sponsors did not have the right to veto publication or to control the decision.

Declarations

Conflict of interest Hua Kern and Brandon Metzger were employees of Standard Process Inc. at the time of the manuscript’s development, writing and submission. Standard Process provided support in the form of personal fee for author TM and paid the fee for the publication. All other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval Not applicable.

Consent to participate Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arnett DK, Khera A, Blumenthal RS (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: part 1, lifestyle and behavioral factors. JAMA Cardiol 4(10):1043–1044. https://doi.org/10.1001/jamacardio.2019.2604
2. U. S. Preventive Services Task Force (2020) Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: US preventive services task force recommendation statement. JAMA 324(20):2069–2075. https://doi.org/10.1001/jama.2020.21749
3. Mathews R, Kamil A, Chu Y (2020) Global review of heart health claims for oat beta-glucan products. Nutr Rev 78(Supplement_1):78–97. https://doi.org/10.1093/nutriv/nau069
4. Thies F, Masson LF, Boffetta P, Kris-Etherton P (2014) Oats and CVD risk markers: a systematic literature review. Br J Nutr 112(S2):S19–S30. https://doi.org/10.1017/S0007114514002281
5. Shen XL, Zhao T, Zhou Y, Shi X, Zou Y, Zhao G (2016) Effect of oat β-glucan intake on glycemic control and insulin sensitivity of diabetic patients: A meta-analysis of randomized controlled trials. Nutrients 8(1):39. https://doi.org/10.3390/nu8010039
6. Ho HV, Sievenpiper JL, Zurba A, Blanco Mejia S, Jovanovski E, Au-Yeung F, Jenkins AL, Vukan V (2016) The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br J Nutr 116(8):1369–1382. https://doi.org/10.1017/s000711451600341x
7. Tosh SM (2013) Review of human studies investigating the postprandial blood-glucose lowering ability of oat and barley food products. Eur J Clin Nutr 67(4):310–317. https://doi.org/10.1038/ejcn.2013.25
8. Helnæs A, Kyøø C, Andersen I, Lacoppidian S, Overvad K, Christiansen J, Tjønneland A, Olsen A (2016) Intake of whole grains is associated with lower risk of myocardial infarction: the Danish Diet, Cancer and Health Cohort. Am J Clin Nutr 103(4):999–1007. https://doi.org/10.3945/ajcn.115.124271
9. Rebello CJ, O’Neil CE, Greenway FL (2016) Dietary fiber and satiety: the effects of oats on satiety. Nutr Rev 74(2):131–147. https://doi.org/10.1093/nutrev/nvu063
10. Li X, Cai X, Ma X, Jing L, Gu J, Bao L, Li J, Xu M, Zhang Z, Li Y (2016) Short- and long-term effects of wholegrain oat intake on weight management and glucolipid metabolism in overweight
type-2 diabetics: a randomized control trial. Nutrients. https://doi.org/10.3390/nu8090549

11. Whitehead A, Beck EL, Tosh S, Wolere TMS (2014) Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr 100(6):1413–1421. https://doi.org/10.3945/ajcn.114.086108

12. Marshall S, Petocz P, Duve E, Abbott K, Cassettari T, Blumfield M, Fayet-Moore F (2020) The effect of replacing refined grains with whole grains on cardiovascular risk factors: a systematic review and meta-analysis of randomized controlled trials with GRADE clinical recommendation. J Acad Nutr Diet 120(11):1859-1883.e1831. https://doi.org/10.1016/j.jand.2020.06.021

13. Musa-Veloso K, Noori D, Venditti C, Poon T, Johnson J, Harkness LS, O’Shea M, Cha Y (2020) A systematic review and meta-analysis of randomized controlled trials on the effects of oats and oat processing on postprandial blood glucose and insulin responses. J Nutr. https://doi.org/10.1093/jn/nxa349

14. Muka T, Glisic M, Milic J, Verhoog S, Bohlius J, Bramer W, Chowdhury R, Franco OH (2020) A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur J Epidemiol. https://doi.org/10.1007/s10654-019-00576-5

15. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

16. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Hutton BA, Reeves BC, Whiting PF, JPT H (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

17. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

18. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

19. Thompson SG, Sharp J (1999) Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 18(20):2693–2708

20. Pavadhulg P, Bumrungrupt A, Harjani Y, Kurilich A (2019) Oat porridge consumption alleviates markers of inflammation and oxidative stress in hypercholesterolemic adults. Asia Pac J Clin Nutr 28(2):260–265. https://doi.org/10.6133/apjn.201906_28(2).0008

21. Vetvicka V, Vannucci L, Sima P, Richter J (2019) Beta glucan: supplement or drug? From laboratory to clinical trials. Molecules. https://doi.org/10.3390/molecules24071251

22. Queenan KM, Stewart ML, Smith KN, Thomas W, Fulcher RG, Slavin JL (2007) Concentrated oat beta-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutr J 6:6. https://doi.org/10.1186/1475-2891-6-6

23. Tighe P, Duthie G, Vaughan N, Britenden J, Simpson WG, Duthie S et al (2010) Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. Am J Clin Nutr 92(4):733–740. https://doi.org/10.3945/ajcn.2010.29417

24. Bierkold M, Holm J, Onning G (2008) Serum lipids and postprandial glucose and insulin levels in hyperlipidemic subjects after consumption of an oat beta-glucan-containing ready meal. Ann Nutr Metab 52(2):83–90. https://doi.org/10.1159/000121281

25. Liu S, Yang N, Hou Z-h, Yao Y, Lu L, Zhou X-R, Ren G (2011) Antioxidant effects of oats avenanthramides on human serum. Agr Sci China 10:1301–1305. https://doi.org/10.1016/S1671-2927(11)60122-3

26. Hui S, Liu K, Lang H, Liu Y, Wang X, Zhu X, Doucette S, Yi L, Mi M (2019) Comparative effects of different whole grains and brans on blood lipid: a network meta-analysis. Eur J Nutr 58(7):2779–2787. https://doi.org/10.1007/s00394-018-1827-6

27. Ripsin CM, Keenan JM, Jacobs DR Jr, Elmer PJ, Welch RR, Van Horn L, Liu K, Turnbull WH, Thye FW, Kestin M et al (1992) Oat products and lipid lowering: A meta-analysis. JAMA 267(24):3317–3325

28. Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69(1):30–42. https://doi.org/10.1093/ajcn/69.1.30

29. Bernstein AM, Tigemeyer B, Kirkpatrick K, Golubic M, Roizen MF (2013) Major cereal grain fibers and psyllium in relation to cardiovascular health. Nutrients 5(5):1471–1487. https://doi.org/10.3390/nu5051471

30. Francis Raguindin P, Adam Iodo O, Stoyanov J, Dejanovic GM, Gamba M, Asilanan E, Minder B, Bussler W, Metzger B, Muka T, Glisic M, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, JPT H (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

31. Braaten JT, Wood PJ, Scott FW, Wolynets MS, Love MK, Bradley-White P, Collins MW (1994) Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr 48(7):465–474

32. Sawicki CM, McKay DL, McKeown NM, Dallal G, Chen CYO, Blumberg JB (2016) Phytochemical pharmacokinetics and bioactivity of oat and barley flour: a randomized crossover trial. Nutrients 8(12):813. https://doi.org/10.3390/nu8120813

33. Wood PJ (2010) Oat and rye β-glucan: properties and function. Cereal Chem 87(4):315–330. https://doi.org/10.1094/CCHEM-87-4-0315

34. Pasquier B, Armand M, Castelain C, Guillou F, Borel P, Lafont H, Lainor D (1996) Emulsification and lipolysis of triacylglycerols are altered by viscous soluble dietary fibres in acidic gastric medium in vitro. Biochem J 314(1):269–275. https://doi.org/10.1042/bj3140269

35. Chen J, Raymond K (2008) Beta-glucans in the treatment of diabetes and associated cardiovascular risks. Vasc Health Risk Manag 4(6):1265. https://doi.org/10.2147/VHRM.S3803

36. Joyce SA, Kamili A, Fleigle L, Cahan CGM (2019) The cholesterol-lowering effect of oats and oat beta glucan: modes of action and potential role of bile acids and the microbiome. Front Nutr 6:171. https://doi.org/10.3389/fnut.2019.00171

37. Leão LSCdS, Aquino LAd, Dias JF, Koifman RJ (2019) Addition of oat bran reduces HDL-C and does not potentize effect of a low-calorie diet on remission of metabolic syndrome: a pragmatic, randomized, controlled, open-label nutritional trial. Nutrition 65:126–130. https://doi.org/10.1016/j.nut.2019.03.007

38. Beck EJ, Tapsell LC, Batterham MJ, Tosh SM, Huang XF (2010) Oat beta-glucan supplementation does not enhance the effectiveness of an energy-restricted diet in overweight women. Br J Nutr 103(8):1212–1222. https://doi.org/10.1017/s0007114509992856

39. Gordon DJ, Rifkind BM (1989) High-density lipoprotein: the clinical implications of recent studies. N Engl J Med 321(19):1311–1316. https://doi.org/10.1056/NEJM198911093211907

40. Wilson PW, Abbott RD, Castelli WP (1988) High density lipoprotein- cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis 8(6):737–741. https://doi.org/10.1161/01.atv8.6.737
41. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Babaric M, Jensen MK et al (2012) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380(9841):572–580. https://doi.org/10.1016/S0140-6736(12)60312-2
42. Frikke-Schmidt R, Nordestgaard BG, Stene MC, Sethi AA, Remaley AT, Schnohr P, Grande P, Tybjaerg-Hansen A (2008) Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA 299(21):2524–2532. https://doi.org/10.1001/jama.299.21.2524
43. Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Miljar JS, Cuchel M et al (2016) Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 351(6278):1166–1171. https://doi.org/10.1126/ science.aad3517
44. Lind L, Ingelsson M, Sundstrom J, Ärnlöv J (2021) Impact of overweight/obese counterparts. J Am Diet Assoc 106(6):833–840. https://doi.org/10.1016/j.jada.2006.03.013
45. Duparc T, Ruidavets J-B, Genoux A, Ingueuene C, Najib S, Ferrières J, Perret B, Martinez LO (2020) Serum level of HDL particles are independently associated with long-term prognosis in patients with coronary artery disease: The GENES study. Sci Rep 10(1):8138. https://doi.org/10.1038/s41598-020-65100-2
46. Davis JN, Hodges VA, Gillham MB (2006) Normal-weight adults
47. Koh-Banerjee P, Franz M, Sampson L, Liu S, Jacobs DR Jr, Howarth NC, Saltzman E, Roberts SB (2001) Dietary fiber and weight regulation. Nutr Rev 59(5):129–139. https://doi.org/10.1093/ajcn/54.4.678
48. Anderson JW, Story L, Silling B (1984) Hypocholesterolemic effects of oat bran or bean intake for hypercholesterolemic men. Am J Clin Nutr 40(6):1146–1155. https://doi.org/10.1093/ajcn/40.6.1146
49. Anderson JW, Tapsell LC, Batterham MJ, Tosh SM, Huang XF (2010) Can dietary viscous fiber affect body weight and insulin responses: a systematic review and meta-analysis. Nutrients 7(5):3449–3463. https://doi.org/10.3390/nu7053449
50. Miller WC, Niederpruem MG, Wallace JP, Lindeman AK (1994) Metabolic effects of oat bran and wheat bran in healthy women. Scand J Food Nutr: 38(1):5–10
51. Abrahamsson L, Goranson H, Karlstrom B, Vessby B, Aaman P (1994) Metabolic effects of oat bran and wheat bran in healthy women. Scand J Food Nutr: 38(1):5–10
52. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Guidance on the scientific requirements for health claims related to appetite ratings, weight management, and blood glucose concentrations. EFSA Journal 2021, 10(3):2604 [11 p.]. doi:https://doi.org/10.2903/j.efsa.2012.2604. Available online: www.efsa.europa.eu/efsajournal
53. Zurbau A, Noronha JC, Khan TA, Sievenpiper JL, Wolever TMS (2021) The effect of oat β-glucan on postprandial blood glucose and insulin responses: a systematic review and meta-analysis. Eur J Clin Nutr. https://doi.org/10.1038/s41430-021-00875-9
54. Fung TT, Hu FB, Pereira MA, Liu S, Stampfer MJ, Colditz GA, Willett WC (2002) Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. Am J Clin Nutr 76(3):535–540. https://doi.org/10.1093/ajcn/76.3.535
55. Kyro C, Tjonneland A, Overvad K, Olsen A, Landberg R (2018) Higher whole-grain intake is associated with lower risk of type 2 diabetes among middle-aged men and women: the Danish Diet, Cancer, and Health Cohort. J Nutr 148(9):1434–1444. https://doi.org/10.1093/jn/nxy112
56. Adamssson V, Remark A, Marklund M, Larsson A, Risérus U (2015) Role of a prudent breakfast in improving cardiometabolic risk factors in subjects with hypercholesterolemia: a randomized controlled trial. Clin Nutr 34(1):20–26. https://doi.org/10.1016/j.clnu.2014.04.009
57. Amundsen ÅL, Haugum B, Andresson H (2003) Changes in serum cholesterol and sterol metabolites after intake of products enriched with an oat bran concentrate within a controlled diet. Scand J Food Nutr: 47(2):68–74. https://doi.org/10.1080/10129338.2003.90155-4
70. Chang HC, Huang CN, Yeh DM, Wang SJ, Peng CH, Wang CJ (2013) Oat prevents obesity and abdominal fat distribution, and improves liver function in humans. Plant Foods Hum Nutr 68(1):18–23. https://doi.org/10.1007/s11130-013-0336-2
71. Chen J, He J, Wildman RP, Reynolds K, Streiffer RH, Whelton PK (2006) A randomized controlled trial of dietary fiber intake on serum lipids. Eur J Clin Nutr 60(1):62–68. https://doi.org/10.1038/sj.ejcn.1602268
72. Connolly ML, Tzounis X, Tuohy KM, Lovegrove JA (2016) Hypocholesterolemic and prebiotic effects of a whole-grain oat-based granola breakfast cereal in a cardio-metabolic “at risk” population. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01675
73. Davy BM, Davy KP, Ho RC, Beske SD, Davrath LR, Melby CL (2002) High-fiber oat cereal compared with wheat cereal consumption favorably alters LDL-cholesterol subclass and particle numbers in middle-aged and older men. Am J Clin Nutr 76(2):351–358. https://doi.org/10.1093/ajcn/76.2.351
74. Raimondi de Souza S, Moraes de Oliveira GM, Raggio Luiz R, Rosa G (2016) Effects of oat bran and nutrition counseling on the lipid and glucose profile and anthropometric parameters of hypercholesterolemia patients. Nutr Hosp 33(1):123–130. https://doi.org/10.20960/nh.40
75. Dubois C, Cara L, Borel P, Armand M, Sentf M, Portugal H, Bernard P-M, Lafont H, Lairon D (1993) Cereal dietary fibers affect post-prandial lipoproteins in healthy human subjects. Carbohydr Polym 21(2):189–194. https://doi.org/10.1016/0144-8617(93)90017-X
76. Ferguson JJ, Stojanovski E, MacDonald-Wicks L, Garg ML (2020) High molecular weight oat β-glucan enhances lipid-lowering effects of phytosterols. A randomised controlled trial. Clin Nutr 39(1):80–89. https://doi.org/10.1016/j.clnu.2019.02.007
77. Geliebter A, Astbury NM, Aviram-Friedman R, Yahav E, Hashim F (2013) Oat prevents obesity and abdominal fat distribution, and improves insulin resistance in young healthy adults. J Nutr 143(10):1579–1585. https://doi.org/10.3945/jn.112.173054
78. Johansson-Persson A, Ulmius M, Cloetens L, Karhu T, Herzig KH, Önnen G (2014) A high intake of dietary fiber influences C-reactive protein and fibrinogen, but not glucose and lipid metabolism, in mildly hypercholesterolemic subjects. Eur J Nutr 53(1):39–48. https://doi.org/10.1007/s00394-013-0496-8
79. Kabir M, Opper J, Vidal H, Bruzzo F, Fiquet C, Wursch P, Slama G, Rizkalla SW (2002) Four-week low-glycemic index breakfast with a modest amount of soluble fibers in type 2 diabetic men. Metab Clin Exp 51(7):819–826. https://doi.org/10.1053/meta.2002.33345
80. Karmally W, Monette MG, Palmas W, Martinez W, Branstetter A, Ramakrishnan R, Hollerman SF, et al. (2005) Cholesterol-lowering benefits of oat-containing cereal in Hispanic Americans. J Am Diet Assoc 105(6):967–970. https://doi.org/10.1016/j.jada.2005.03.006
81. Keenan JM, Wenz JB, Myers S, Ripsin C, Huang Z (1991) Randomized, controlled, crossover trial of oat bran in hypercholesterolemic subjects. J Fam Pract 33(6):600–608
82. Keenan JM, Pins JJ, Frazel C, Moran A, Turnquist L (2002) Oat ingestion reduces systolic and diastolic blood pressure in patients with mild or borderline hypertension: a pilot trial. J Fam Pract 51(4):369
83. Kurckhoffs DAJM, Hornstra G, Mensink RP (2003) Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am J Clin Nutr 78(2):221–227. https://doi.org/10.1093/ajcn/78.2.221
84. Kirby RW, Anderson JW, Siebring B (1981) Oat bran intake selectively lowers serum low-density lipoprotein cholesterol concentrations of hypercholesterolemic men. Am J Clin Nutr 34(5):824–829. https://doi.org/10.1093/ajcn/34.5.824
85. Kristensen M, Bügel S (2011) A diet rich in oat bran improves blood lipids and hemostatic factors, and reduces apparent energy digestibility in young healthy volunteers. Eur J Clin Nutr 65(9):1053–1058. https://doi.org/10.1038/ejcn.2011.102
86. Laaksonen DE, Toppinen LK, Juntunen KS, Autio K, Liukkonen KH, Poutanen KS, Niskanen L, Mykkänen HM (2005) Dietary carbohydrate modification enhances insulin secretion in persons with the metabolic syndrome. Am J Clin Nutr 82(6):1218–1227. https://doi.org/10.1093/ajcn/82.6.1218
87. Leadbetter J, Ball MJ, Mann JI (1991) Effects of increasing quanity of oat bran similarly reduce hypercholesterolemia in humans. J Nutr 128(5):865–869. https://doi.org/10.1093/jn/128.5.865
88. Ledbetter J, Ball MJ, Mann JI (1989) High-fiber oat cereal compared with wheat cereal consumption favorably alters LDL-cholesterol subclass and particle numbers in middle-aged and older men. Am J Clin Nutr 55(5):976–980. https://doi.org/10.1093/ajcn/55.5.976
89. Liu S, Yang N, Hou ZH, Yao Y, Lu L, Zhou XR, Ren GX (2011) A high intake of dietary fiber from oats improves metabolic effects on blood lipids and hemostatic factors, and reduces apparent energy digestibility in young healthy volunteers. Eur J Clin Nutr 65(9):1053–1058. https://doi.org/10.1038/ejcn.2011.102
90. Lopez-Novoa JM, Lopez-Mariscal D, Arroyo A, Del Rio N, Carreño-García C (2012) Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am J Clin Nutr 78(2):221–227. https://doi.org/10.1093/ajcn/78.2.221
91. Kirby RW, Anderson JW, Siebring B (1981) Oat bran intake selectively lowers serum low-density lipoprotein cholesterol concentrations of hypercholesterolemic men. Am J Clin Nutr 34(5):824–829. https://doi.org/10.1093/ajcn/34.5.824
92. Kristensen M, Bügel S (2011) A diet rich in oat bran improves blood lipids and hemostatic factors, and reduces apparent energy digestibility in young healthy volunteers. Eur J Clin Nutr 65(9):1053–1058. https://doi.org/10.1038/ejcn.2011.102
93. Kristensen M, Bügel S (2011) A diet rich in oat bran improves blood lipids and hemostatic factors, and reduces apparent energy digestibility in young healthy volunteers. Eur J Clin Nutr 65(9):1053–1058. https://doi.org/10.1038/ejcn.2011.102
94. Leadbetter J, Ball MJ, Mann JI (1991) Effects of increasing quanity of oat bran similarly reduce hypercholesterolemia in humans. J Nutr 128(5):865–869. https://doi.org/10.1093/jn/128.5.865
95. Guevara-Cruz M, Tovar AR, Aguilar-Salinas C, Medina-Vera J, Gil-Zenteno L, Hernández-Viveros I et al. (2012) A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome. J Nutr 142(1):64–69. https://doi.org/10.3945/jn.111.147447
96. Gulati S, Misra A, Pandey RM (2017) Effects of 3 g of soluble fiber from oats on lipid levels of Asian Indians-a randomized controlled, parallel arm study. Lipids Health Dis. https://doi.org/10.1186/s12944-017-0460-3
97. He J, Streiffer RH, Muntner P, Krousel-Wood M, Whelton PK (2004) Effect of dietary fiber intake on blood pressure: a randomized, double-blind, placebo-controlled trial. J Hypertens 22(1):73–80. https://doi.org/10.1097/00004872-200401000-00015
98. Hegsted M, Windhauser MM, Morris SK, Lester SB (1993) Stabilized rice bran and oat bran lower cholesterol in humans. Nutr Res 13(4):387–398. https://doi.org/10.1016/0271-5317(95)80703-1
99. Ibrugger S, Kristensen M, Poulsen MW, Mikkelsen MS, Ejsing J, Jespersen BM, Dragsted LO, Engelsen SB, Bulget S (2013) Extracted oat and barley beta-glucans do not affect cholesterol metabolism in young healthy adults. J Nutr 143(10):1579–1585. https://doi.org/10.3945/jn.112.173054
99. Maki KC, Shinnick F, Seeley MA, Veith PE, Quinn LC, Hallissey PJ, Temer A, Davidson MH (2003) Food products containing free
tall oil-based phytosterols and oat β-glucan lower serum total
and LDL cholesterol in hypercholesterolemic adults (2003). J
Nutr. 133(3):808–813. https://doi.org/10.1093/jn/133.3.808

100. Maki KC, Galant R, Samuel P, Tesser J, Witchger MS, Ribaya-
Mercado JD, Blumberg JB, Geohas J (2007) Effects of consuming
foods containing oat β-glucan on blood pressure, carbohydrate
metabolism and biomarkers of oxidative stress in men and
women with elevated blood pressure. Eur J Clin Nutr 61(6):786–
795. https://doi.org/10.1038/sj.ejn.1602562

101. Maki KC, Beiseigel JM, Jonnalagadda SS, Gugger CK, Reeves
MS, Farmer MV, Kaden VN, Rains TM (2010) Whole-grain
ready-to-eat oat cereal, as part of a dietary program for weight
loss, reduces low-density lipoprotein cholesterol in adults with
overweight and obesity more than a dietary program including
low-fat fiber control foods. J Am Diet Assoc 110(2):205–214.
https://doi.org/10.1016/j.jada.2009.10.037

102. Märtnesson O, Böörklund M, Lambo AM, Dueñas-Chasco M,
Iarostarza A, Holst O et al (2005) Fermented, ropy, oat-based
products reduce cholesterol levels and stimulate the bifidobacte-
ria flora in humans. Nutr Res 25(5):429–442. https://doi.org/10.
1016/j.nutres.2005.03.004

103. Missimer A, Dimarco DM, Andersen CJ, Murillo AG, Vergara-
Irastorza A, Holst O et al (2005) Fermented, ropy, oat-based
products reduce cholesterol levels and stimulate the bifidobacte-
ria flora in humans. Nutr Res 25(5):429–442. https://doi.org/10.
1016/j.nutres.2005.03.004

104. Momenizadeh A, Heidari R, Sadeghi M, Tabesh F, Ekramzadeh
M, Haghghatian Z et al (2014) Effects of oat and wheat bread
consumption on lipid profile, blood sugar, and endothelial
function in hypercholesterolemic patients: a randomized controlled
clinical trial. ARYA Atheroscler 10(5):259

105. Noakes M, Clifton PM, Nestel PJ, Le Leu R, McIntosh G (1996)
Effect of high-amylase starch and oat bran on metabolic variables
and bowel function in subjects with hypertriglyceridemia. Am J
Clin Nutr 64(6):944–951. https://doi.org/10.1093/ajcn/64.6.944

106. Önning G, Wallmark A, Persson M, Åkesson B, Elmståhl S, Oste
R (1999) Consumption of oat milk for 5 weeks lowers serum cho-
olesterol and LDL cholesterol in free-living men with moderate
hypercholesterolemia. Ann Nutr Metab 43(5):301–309. https://
doi.org/10.1159/000012798

107. Önning G, Åkesson B, Oste R, Lundquist I (1998) Effects of con-
sumption of oat milk, soya milk, or cow’s milk on plasma
lipids and antioxidative capacity in healthy subjects. Ann Nutr
Metab 42(4):211–220. https://doi.org/10.1159/000012736

108. Pins JJ, Geleva D, Fazio J, Cramer C, O’Connor PJ, Cherney
LM (2002) Do whole-grain oat cereals reduce the need for anti-
hypertensive medications and improve blood pressure control? J
Fam Pract 51(4):353–359

109. Poultier N, Chang CL, Cuff A, Poultier C, Sever P, Thom S (1994)
Lipid profiles after the daily consumption of an oat-based cereal:
a controlled crossover trial. Am J Clin Nutr 59(1):66–69. https://
doi.org/10.1093/ajcn/59.1.66

110. Reyna-Villasamil N, Bermúdez-Pirela V, Mengual-Moreno E,
Arias N, Cano-Ponce C, Leal-Gonzalez E et al (2007) Oat-
derived β-glucan significantly improves HDLc and diminishes
LDLc and non-HDL cholesterol in overweight individuals with
mild hypercholesterolemia. Am J Ther 14(2):203–212. https://
doi.org/10.1097/pat.0b013e3180689e7

111. Robitaille J, Fontaine-Bisson B, Couture P, Tchernof A, Vohl MC
(2005) Effect of an oat bran-rich supplement on the metabolic
profile of overweight premenopausal women. Ann Nut Metab
49(3):141–148. https://doi.org/10.1159/000086149

112. Romero AL, Romero JE, Galaviz S, Fernandez ML (1998) Cookies
enriched with psyllium or oat bran lower plasma LDL chole-
sterol in normal and hypercholesterolemic men from North-
ern Mexico. J Am Coll Nutr 17(6):601–608. https://doi.org/10.
1080/07315724.1998.10718809

113. Saltzman E, Das SK, Lichtenstein AH, Dallal GE, Corrales A,
Schaefer EJ, Greenberg AS, Roberts SB (2001) An oat-con-
taining hypocaloric diet reduces systolic blood pressure and
improves lipid profile beyond effects of weight loss in men and
women. J Nutr. 131(5):1465–1470. https://doi.org/10.1093/jn.
131.5.1465

114. Schweilin A, Ulbrich S, Stauß S, Teutsch M, Walle H, Basrai M,
Bischoff SC (2018) Comparison of a commercially avail-
able, formula-based nutritional therapy enriched with oats fiber
with a non-formula isocaloric therapy to treat non-alcoholic
fatty liver disease (NAFLD)–a randomized, controlled interven-
tion trial. Z Gastroenterol 56(10):1247–1256. https://doi.org/10.
1055/a-0668-2891

115. Tabesh F, Sanei H, Jahangiri M, Momenizadeh A, Tabesh E,
Pouromohammadi K, Sadeghi M (2014) The effects of beta-glu-
can rich oat bread on serum nitric oxide and vascular endothelial
function in patients with hypercholesterolemia. Biomed Res Int.
https://doi.org/10.1155/2014/481904

116. Theuwissen E, Plat J, Mensink RP (2009) Consumption of oat
β-glucan with or without plant stanols did not influence inflam-
atory markers in hypercholesterolemic subjects. Mol Nutr Food
Res 53(3):370–376. https://doi.org/10.1002/mnfr.200800132

117. Thongou P, Pavadghul P, Bumrungpret A, Sattivapwee P, Har-
jani Y, Kurilich A (2013) Effect of oat consumption on lipid pro-
files in hypercholesterolemic adults. J Med Assoc Thai 96(Suppl
5):S25–32

118. Trinidad TP, Loyola AS, Mallillin AC, Valdez DH, Askali FC,
Castillo JC et al (2004) The cholesterol-lowering effect of cocon-
ut flakes in humans with moderately raised serum cholesterol.
J Med Food 7(2):136–140. https://doi.org/10.1097/009662004
224148

119. Uusitupa MIJ, Miettinen TA, Sarkkinen ES, Ruuskanen E,
Kervinen K, Kesäniemi YA (1997) Lathosterol and other non-
cholesterol sterols during treatment of hypercholesterolaemia
with beta-glucan-rich oat bran. Eur J Clin Nutr 51(9):607–611.
https://doi.org/10.1038/sj.ejn.1600453

120. Uusitupa MIJ, Ruuskanen E, Makinen E, Laitinen J, Toskala E,
Kervinen K, Kesäniemi YA (1992) A controlled study on the
effect of beta-glucan-rich oat bran on serum lipids in hypercho-
lesterolemic subjects: relation to apolipoprotein E phenotype. J
Am Coll Nutr 11(6):651–659. https://doi.org/10.1080/07315724.
1992.10718264

121. Vanhorn L, Moagstalbenn A, Liu K, Ballew C, Ruth K, Hughes
R, Stamler J (1991) Effects on serum-lipids of adding instant
oats to usual American diets. Am J Public Health 81(2):183–188.
https://doi.org/10.2105/ajph.81.2.183

122. Vuksan V, Jenkins AL, Brissette C, Chelewa L, Jovano vski E,
Giibbs AL, Bazinet RP, Au-Yeung F, Zurbau A, Cherney LM et
Al (2004) Comparison of the cholesterol-lowering effect of
commercial oat bran and oat products vs. noodle consumption on
blood lipids of urban Chinese men. J Am Coll Nutr 17(6):601–608.
https://doi.org/10.1080/07315724.1998.10718809
Authors and Affiliations

Erand Llanaj1,2 · Gordana M. Dejanovic3 · Ezra Valido4 · Arjola Bano9,14 · Magda Gamba9,13 · Lum Kastrati10 · Beatrice Minder11 · Stevan Stojic4 · Trudy Voortman5,6 · Pedro Marques-Vidal7,8 · Jivko Stoyanov4,9 · Brandon Metzger12 · Marija Glisic4,9 · Hua Kern12 · Taulant Muka9

Erand Llanaj
erand.llanaj@med.unideb.hu

Gordana M. Dejanovic
dr.dejanovic@yahoo.com

1 Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
2 Present Address: MTA-DE Public Health Research Group, Hungarian Academy of Sciences and University of Debrecen, Debrecen, Hungary
3 Department of Ophthalmology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
4 Swiss Paraplegic Research, Nottwil, Switzerland
5 Department of Epidemiology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
6 Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
7 Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
8 University of Lausanne, Lausanne, Switzerland
9 Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
10 Faculty of Medicine, University of Prishtina “Hasan Prishtina”, Prishtina, Kosovo
11 Public Health and Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
12 Standard Process Nutrition Innovation Centre, Kannapolis, USA
13 Graduate School for Health Sciences, University of Bern, Bern, Switzerland
14 Department of Cardiology, University Hospital of Bern, University of Bern, Bern, Switzerland