Short research communication

Murine Wee1 Plays a Critical Role in Cell Cycle Regulation and Pre-Implantation Stages of Embryonic Development

Yohei Tominaga, Cuiling Li, Rui-Hong Wang and Chu-Xia Deng

National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, NIH, Bethesda, MD 20892, USA

Correspondence to: Dr. Chu-Xia Deng, Tel: (301) 402-7225; Fax: (301) 480-1135; Email: chuxiad@bdg10.niddk.nih.gov

Received: 2006.03.29; Accepted: 2006.05.15; Published: 2006.05.18

Wee1 kinase regulates the G2/M cell cycle checkpoint by phosphorylating and inactivating the mitotic cyclin-dependent kinase 1 (Cdk1). Loss of Wee1 in many systems, including yeast and drosophila, leads to premature mitotic entry. However, the developmental role of Wee1 in mammals remains unclear. In this study, we established Wee1 knockout mice by gene targeting. We found that Wee1−/− embryos were defective in the G2/M cell cycle checkpoint induced by γ-irradiation and died of apoptosis before embryonic (E) day 3.5. To study the function of Wee1 further, we have developed MEF cells in which Wee1 is disrupted by a tamoxifen inducible Cre-loxP approach. We found that acute deletion of Wee1 resulted in profound growth defects and cell death. Wee1 deficient cells displayed chromosome aneuploidy and DNA damage as revealed by γ-H2AX foci formation and Chk2 activation. Further studies revealed a conserved mechanism of Wee1 in regulating mitotic entry and the G2/M checkpoint compared with other lower organisms. These data provide in vivo evidence that mammalian Wee1 plays a critical role in maintaining genome integrity and is essential for embryonic survival at the pre-implantation stage of mouse development.

Key words: Cdk1, Chk2, G2/M, apoptosis, genetic instability

1. Results and Discussion

Cells treated with DNA damaging agents, such as γ-radiation, coordinately arrest their cell cycle progression at varying phases to allow time for repairing the DNA damage. This is achieved by the activation of cell cycle checkpoints, which monitor DNA status and ensure the completion of the previous phase in the cell cycle before advancing to the next phase [4-7]. It was shown that Wee1 and Cdc25 cooperatively regulate G2/M boundary by inhibiting Cdk1 activity [1, 8, 9]. Wee1 and Cdc25 also regulate each other and play a critical role in controlling the transition into mitosis [10]. However, the function of Wee1 in mammalian development is unknown. To investigate this, we have established a Wee1-deficient mouse strain by gene targeting and studied its role in early mouse embryos and cultured mouse embryonic fibroblast (MEF) cells.

Wee1 was mutated by a replacement type gene-targeting vector, ploxPneo-Wee1, which introduced a ploxPneo [11] into intron 10 and the third loxP into intron 8 of the Wee1 locus, respectively (Fig. 1A). The correct targeting of the vector followed by Cre-loxP mediated recombination would delete exons 9 and 10, which encode the kinase domain of Wee1. Three out of 114 G418/FIAUr ES clones had both the ploxPneo and the loxP introduced into the Wee1 locus based on Southern blot analysis (Fig. 1C). After germline transmission, we crossed heterozygous mutant (Wee1+/−neo) mice with Ella-Cre transgenic mice to delete exons 9 and 10 from mouse germline (Fig. 1B).

Our PCR analysis on genomic DNA extracted from mice with various genotypes confirmed the predicted targeting and deletion in the Wee1 locus (Fig. 1D).

Adult Wee1+/+ mice showed no obvious abnormality and were fertile. After interbreeding the Wee1+/− mice, we failed to obtain Wee1−/− mice from 94 mice genotyped at weaning while the wild type and Wee1+/+ mice were presented at a ratio of 1:2.3 (Table 1). As no dead Wee1+/− mice were found after birth, we suspected that Wee1+/− mice died at embryonic development stages. Our analysis of embryos at embryonic (E) 13.5 to E7.5 also did not detect any homozygotes and abnormal deciduas (Table 1), suggesting that the Wee1−/− embryos died at stages prior to implantation. To verify this, we isolated E3.5 embryos derived from Wee1+/− interbreeding. We found 4 Wee1+/− embryos out of 27 embryos analyzed although genotypes of 6 embryos could not be reliably determined due to a technical difficulty in manipulating small embryos. The majority of the Wee1+/− and Wee1−/− embryos were at the blastocyst stage, and possessed a distinct inner cell mass (ICM) and an outer layer of trophoectoderm cells. The Wee1+/− embryos were comprised of fewer cells than their Wee1+/+ and Wee1+/− littermates and remained at the morulae stage (Fig. 2A-C). The mutant cells were disorganized without an obvious compaction. Those observations suggest that the development of Wee1−/− embryos was interrupted before reaching the blastocyst stage.
Because Wee1+/embryos were retarded with abnormal morphology at the blastocyst stage, we investigated whether these embryos would grow if extra time was given. To monitor this process, we inoculated blastocysts isolated from Wee1+/female mice, which were mated with Wee1+/- males, into 24-well culture dishes. Our analysis of 23 blastocysts indicated that all embryos showing obvious cell proliferation were either Wee1+/ or Wee1+/ (Fig. 2D,E). The remaining 7 embryos, which were abnormal initially, did not show any signs of growth and all cells degraded during culture (Fig. 2E). Genotype of these embryos could not be determined as we failed to extract DNA from them. We suspected that most of these embryos would be homozygous for Wee1 mutation based on our earlier observations that Wee1+/- embryos were presented at E3.5 with abnormal morphology (Fig. 2B,C). Thus, Wee1+/embryos failed to grow even when more time is given.

Next, we determined potential causes for the death of Wee1+/ embryos by TUNEL assay. Our analysis revealed that about 50% of cells in Wee1+/- embryos underwent apoptosis while about 5-10% cells in wild type and Wee1+/- embryos were TUNEL positive (Fig. 3A). There was no statistic difference between wild type and Wee1+/- embryos, however the differences between wild type and Wee1+/- embryos (p<0.001), and between Wee1+/- and Wee1+/- embryos (p<0.001) were significant (Fig. 3B). This observation suggests that Wee1+/embryos die at 16-32 cell stages due to apoptosis.

Next, we studied possible causes for the increased apoptosis observed in Wee1+/ embryos. In vitro studies revealed that Wee1 plays an essential role in the G2/M cell cycle checkpoint [1, 8, 9]. Therefore, we investigated whether Wee1 had a similar role in vivo. We isolated embryos at E2.5 and E3.5 from Wee1+/- females after they were mated with Wee1+/- male mice. The mitotic index was determined in these embryos prior to, and after they were irradiated with γ-radiation (10 Gy) using an antibody against phosphorylated histone H3. A significant decrease in the number of mitotic cells was observed in both E2.5 Wee1+/ and Wee1+/ embryos after irradiation while no obvious change was seen in Wee1+/- embryos (Fig. 3C-E). This observation suggests that Wee1+/ embryos were defective in activating the G2/M cell cycle checkpoint induced by DNA damage. The mitotic index of E3.5 embryos declined from 20% to 4% (p=0.048), from 27% to 13% (p=0.056) in Wee1+/- embryos, and from 65% to 60% (p=0.594) in Wee1+/- embryos (Fig. 3C). Thus, compared with Wee1+/-embryos, absence of one wild type copy of Wee1 in E3.5 embryos might result in a partial loss of the G2/M checkpoint induced by γ-irradiation. Of note, Wee1+/ embryos had much more mitotic cells than Wee1+/- and Wee1+/- embryos at both time points prior to irradiation. Thus, although the Wee1+/ embryos appeared morphologically normal at E2.5, some fundamental alterations at cellular level had already started, which might account for the developmental abnormality shown in the blastocyst stage.

To study cellular defects associated with Wee1 deficiency, we established MEF cells allowing for the acute mutation of Wee1 using a 4-hydroxytamoxifen (4-HT) inducible Cre-LoxP system. These cells (Wee1+/;Tm-Cre) carried a conditional Wee1 allele with its exons 9 and 10 and a tamoxifen inducible Cre gene (Tm-Cre) [12]. Treatment with 4-HT in these cells causes nuclear translocalization of Cre, leading to the deletion of the conditional allele (Fig. 4B). Our MIT assay revealed significantly reduced cell quantity after the Wee1+/Tm-Cre cells were exposed to 4-HT compared with untreated or vehicle (ethanol) treated cells (Fig. 5A). In contrast, only slight reduction in cell quantity was observed in control cells (Wee1+/;Tm-Cre, Wee1+/-;Tm-Cre, and Wee1+/-;Tm-Cre) after they were treated with 4-HT compared to untreated or vehicle treated cells (data not shown). Microscopic analysis revealed that many of the 4-HT treated Wee1+/;Tm-Cre cells showed nuclear fragmentation and membrane blebbing, and were rounded up detaching from the culture plate (Fig. 6A). These abnormalities were not seen in untreated cells (Fig. 6B). Staining with annexin-V, we detected increased apoptotic cells 24 hours upon the addition of 4-HT (Fig. 5B), while the fraction of BrdU positive cells maintained unaltered (not shown).

Because our analysis of E2.5-3.5 embryos indicated that the absence of Wee1 impaired the G2/M cell cycle checkpoint, we next studied this cell cycle checkpoint in the cultured MEF cells. Our analysis revealed a sharp reduction of the mitotic index in the ethanol treated Wee1+/;Tm-Cre cells one hour after γ-irradiation, while only a slight reduction of mitotic fraction was observed in the in 4-HT treated cells (Fig. 5C), suggesting a defective G2/M checkpoint in these cells. Based on this observation, we conclude that Wee1 plays a critical role in G2/M cell cycle checkpoint in mouse cells both in vitro and in vivo.

Of note, the growth defects observed in Wee1 deficient cells are much more severe than those observed in many other mutant cells that are defective in the G2/M cell cycle checkpoint, such as BRCA1 [13] or ATM mutant [14] cells, suggesting the phenotypes associated with Wee1 deficiency could also be contributed to other defects in addition to the defective G2/M cell cycle checkpoint. It was shown previously in budding yeast and Drosophila that the absence of Wee1 results in premature entry of mitosis [2, 3]. To investigate whether Wee1 deficiency impairs this function in the mouse, we analyzed the Wee1+/;Tm-Cre cells for a possible defect in this checkpoint in the absence or presence of 4-HT. Using double immunofluorescent staining with antibodies against BrdU and phosphorylated histone H3, we found about 40% of histone H3 positive Wee1+/;Tm-Cre cells were also positive for BrdU when analyzed 24 hours after 4-HT exposure, while only less than 5% of ethanol treated cells were double positive (Fig. 5D-F). To
provide independent confirmation, we had also
stained Wee1fl/++; Tm-Cre cells with PI and an antibody
against phosphorylated histone H3 followed by flow
cytometry analysis. We found that about 50% of
phosphorylated H3 positive cells had a DNA content
less than 4n while this was not found in the untreated
population (Fig. 5G). Thus, like the yeast and
Drosophila, the absence of Weel triggered premature
entry into mitosis.

Because Weel is a negative regulator of Cdk1, the
absence of Weel is predicted to increase Cdk1 activity.
To investigate if the premature mitotic entry observed
in the Weel mutant cells is indeed associated with the
increased Cdk1 activity, we first examined the level of
Cdk1-Tyr15, which is specifically phosphorylated by
Weel [1, 8, 9]. Our data revealed a significant
reduction of Cdk1 phosphorylation at Tyr15 24 hours
after 4-HT treatment (Fig. 5H), indicating that Cdk1 is
activated in the absence of Weel. To test whether the
activation of Cdk1 is responsible for premature mitotic
entry, we treated Weelfl/++; Tm-Cre cells with 4-ht in
the presence or absence of purravalanol A that specifically
inhibits Cdk1 activity. Our data indicated that while
purravalanol A reduced slightly the percentage of BrdU
positive cells (Fig. 5i), it decreased significantly the
fraction of mitotic cells (Fig. 5j), leading to the blocking
of premature mitotic entry of 4-HT treated
Weelfl/++; Tm-Cre cells (Fig. 5K).

Western blot analysis also revealed increased
phosphorylation of Chk2 upon acute deletion of Weel
(Fig. 5H). Because Chk2 is phosphorylated by ATM
upon DNA damage [15], we checked DNA damage in
the 4-HT treated Weelfl/++; Tm-Cre cells using an
antibody against phosphorylated form of H2AX
(γ-H2AX), which relocates to double strand breaks
(DSBs) upon DNA damage [16]. This analysis detected
a robust increase of γ-H2AX nuclear foci in the
Weelfl/++; Tm-Cre cells 24 hours after 4-HT treatment
but not in the ethanol treated cells (Fig. 7A, B).
Correlating with DNA damage, the 4-HT treated Weelfl/++; Tm-Cre
cells 24 hours exhibited increased chromosome
aneuploidy compared with ethanol treated cells (Fig.
7C-E). Because Weel does not play a direct role in DNA
damage repair, we believe that the premature
mitotic entry due to Weel deficiency could be a cause
for DSBs when mutant cells try to initiate mitosis prior
to the completion of semi-conservative DNA
replication. The DSBs and genetic instability in Weel
deficient cells, in turn, trigger the DNA damage
response, leading to the increased cell death.

In conclusion, the analysis on Weel-null embryos
and Weel-conditional mutant MEFs indicates that
Weel plays an essential role in maintaining genetic
stability and embryonic survival at the
pre-implantation stage of mouse development. Our
data revealed that similar to lower organisms [2, 3],
murine Weel controls mitotic entry and the G2/M cell
cycle checkpoint through the regulation of Cdk1
activity. Recent studies reveal that Weel serves as a
downstream mediator of the breast cancer associated
gene 1 (BRCA1) in activating the G2/M cell cycle
checkpoint upon DNA damage [17, 18]. Future studies
should be directed to the relationship between BRCA1
and Weel in breast cancer formation and genomic
integrity. In addition, phenotypes associated with
Weel-deficiency, in terms of embryonic lethality,
premature mitotic entry and defective G2/M cell cycle
checkpoint, are similar to those caused by Chk1-null
mutation [19, 20]. Because activity of Chk1 is also
found to be regulated by BRCA1 [17, 18], the genetic
interplay between Chk1 and Weel should also be
directed in future studies. A recent investigation
indicates that cell division in many mammalian tissues
may be associated with specific times of day and that
regulation of Weel expression by the molecular
components of the circadian clockwork may play a key
role in this process [21]. Conditional mutations of
Weel using a Cre-loxP approach [22-24] to overcome
early embryonic lethality would facilitate functional
study of Weel in all phases of murine development.

2. Experimental Procedures

Establishment of Weel Knockout Mice

To make a targeting vector for Weel, we isolated
mouse Weel genomic DNA from a mouse 129SVEV
genomic library using a 904 bp Weel cDNA fragment
(from 895 to 1799bp) as a probe. A 5.4 kb fragment,
which is 5′ to the exon 11 starting from a XhoI site in
intron 10 of Weel gene, was inserted into the plloxPneo
plasmid [25] that was digested with Notl and XhoI.
The resulting construct was digested with Sall
followed by insertion of a 3 kb fragment, which starts
from the XhoI site in the intron 10 to a Sall site 3′ to
exon 11. A loxP sequence [11] was inserted into a Bbel
site in 5′ arm (Fig. 1A). After electroporation of the
targeting vector into mouse TC-1 ES cells [26], we
analyzed G418 and FLA double resistant clones for
homologous recombination in the Weel locus.
Genomic DNAs from these clones were digested with
EcoRV followed by Southern transfer analysis using a
5′ flanking probe and then a 3′ internal probes. The 5′
flanking probe is a 338 bp fragment obtained by PCR
using the following primers: 5′ GAT ATCAAG CCA
GGG CTT TG 3′ and 5′ GAG AAA GGC TAT ACA
ACT TTG AAG 3′. The 3′ internal probe is a 1,908 bp
fragment obtained by PCR using the following primers:
5′ GCC TTC TTA GAC TCT TCT CA 3′ and 5′ GCT
GGG TTG GAT GTT TAG AG 3′. Two ES clones
containing correct target event were injected into
blastocysts derived from C57B6 mice to generate
chimeric mice, and germline transmissions following a
mating procedure as previously described [11].

To establish the mice carrying Weel mutant allele,
we mated F1 mutant mouse (Weelfl/neo) with the
Ela-Cre transgenic female mice [27]. Genomic DNA
was extracted from the tail of offspring followed by
PCR genotyping. Heterozygous mice containing
predicted deletion of both exons 9 and 10 were named
as Weel+/- and were further interbred to generate
Weel+/+ mice.
PCR Genotyping for Blastocysts

Blastocysts were transferred into eppendorf tubes containing 20 µl of 5X PCR buffer. They were incubated at 60°C for overnight followed by 100°C for 10 min. We performed PCR amplification using these samples with these primers (35 cycles of 94°C for 30 sec., 60°C for 30 sec. and 72°C for 2 min. 30 sec. and following 72°C for 10 min.). We used the following pair of primers (5’ TGT CTA CAA GTT GTC TTG TCA TGA 3’ and 5’ ACT GTG GAG AGC TCT CAA TG 3’) to amplify Wee1 wild type allele (369 bp) and another set of primer (5’ TGT CTA CAA GTT GTC TTG TCA TGA 3’ and 5’ CTG CAG GCA AAC CTG TTT C 3’) for Wee1 mutant allele (253 bp). PCR products were analyzed running into 2% agarose gel.

TUNEL Assay for Blastocysts

Blastocysts were washed with 1% BSA in PBS 2 times at 4°C, and fixed with 4% paraformaldehyde in PBS at room temperature for 30 min. They were then incubated with 0.1% sodium citrate, 0.1% Triton-X 100, 1% BSA in PBS for 2 min at 4°C, washed with 1% BSA in PBS 2 times at 4°C, and incubated in TUNEL reaction mixture (Roche) at 37°C for 60 min in dark. After washing with 1% BSA in PBS 2 times at 4°C and incubated with DAPI in PBS, they were observed with an inverted fluorescent microscope (Model IX81F, Olympus) and photographed by a cooled CCD color camera, CoolSNAP FX (Photometrics) and IPLab Scientific Image Processing 3.6.3 (Scanalytics, Inc) as the software.

Analysis of G2/M Cell Checkpoint in Blastocysts

Blastocysts in Brinster’s BMOC-3 medium (Gibco) were treated with γ-ray (10 Gy) and incubated for three hours at 37°C in CO2 incubator. After incubating them with growth medium containing nocodazole (0.1 ng/ml) for another 3 hours, they were fixed with 4% paraformaldehyde in PBS at room temperature for 30 min followed by the treatment of 0.15% triton-X and 1.5% BSA in PBS for 20 min at room temperature. The embryos were then incubated with a polyclonal antibody to phosphorylated histone H3 at Ser10 (1:300 dilution, Upstate biotechnology) in 1.5% BSA in PBS for 2 min at 4°C, washed with 1% BSA in PBS 2 times at 4°C, and fixed with 4% paraformaldehyde in PBS at room temperature for 30 min. They were then incubated in TUNEL reaction mixture (Roche) at 37°C for 60 min in dark. After washing with 1% BSA in PBS 2 times at 4°C and incubated with DAPI in PBS, they were observed with an inverted fluorescent microscope (Model IX81F, Olympus) and photographed by a cooled CCD color camera, CoolSNAP FX (Photometrics) and IPLab Scientific Image Processing 3.6.3 (Scanalytics, Inc) as the software.

MEF Cells and Treatment

MEF cells were derived from E14.5 embryos generated from intercrosses of Wee1+/Co;Tm-Cre mice. For MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay, we plated 2X10⁴ cells into each well of a 24-well plate and 4-HT at 1mM was added twenty-four hours later. At different time points after further incubation, we removed the medium, added 0.5 ml of 0.1% MTT solution dissolved by PBS in each well. 30 min after in 37°C CO2 incubator, we removed the MTT solution and added 0.4 ml of 2-propanol. After 30 min shaking, we measured OD560 by a plate reader. Analysis for the irradiation induced G2/M cell cycle checkpoint and annexin-V-FITC positive Cells were performed as described by [13] and [28], respectively. For analysis of premature mitotic entry, cells grown on glass slides were paused labeled with BrdU half hours before they were fixed with 70% ethanol for 30 min. The cells were washed with PBS, suspended in 1 ml of 2N HCl, 0.5% Triton X-100 and incubated for 30 min, and in 0.5% Triton X-100 in PBS incubated for 10 min. The cells were stained with antibodies to BrdU (Becton-Dickinson) phosphorlated histone H3 (Upstate biotechnology) followed by secondary antibody.

Immunoblot Analysis

Western blot analysis was accomplished according to standard procedures using ECL detection (Amersham). The following primary antibodies were used: Chk2 (Transduction Laboratories), Wee1 (H-3 Santa Cruz), Cdk1, (SC-54 Santa Cruz), and Phospho-Cdk1 (Tyr-15) (#9111, Cell Signaling), and β-actin (Sigma). Horseradish peroxidase-conjugated anti-rabbit, sheep, and anti-mouse antibodies (Amersham) were used as secondary antibodies.

Acknowledgments

We thank members of Deng lab for critical discussion and reading of the manuscript. This work was supported by the intramural Research Program of National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, USA.

Conflict of interests

The authors have declared that no conflict of interest exists.

References

1. Kellogg DR. Wee1-dependent mechanisms required for coordination of cell growth and cell division. J Cell Sci 2003; 116: 4883-90.
2. Stumpf J, Duncan T, Homola E, et al. Drosophila Wee1 kinase regulates Cdk1 and mitotic entry during embryogenesis. Curr Biol 2004; 14: 2143-8.
3. Harvey SL, and Kellogg DR. Conservation of mechanisms controlling entry into mitosis: budding yeast wee1 delays entry into mitosis and is required for cell size control. Curr Biol 2003; 13: 264-75.
4. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996; 274: 1664-73.
5. Kastan MB, and Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432: 316-23.
6. Kops GJ, Weaver BA, and Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 2005; 5: 773-85.
7. Deng CX. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response, and cancer evolution. Nucleic Acids Res 2006; 34: 1416-26.
8. Dunphy WG, and Kumagai A. The cdc25 protein contains an intrinsic phosphatase activity. Cell 1991; 67: 189-96.
9. Strausfeld U, Labbe JC, Fesquet D, et al. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 1991; 351: 242-5.
10. Harvey SL, Charlet A, Haas W, et al. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 2005; 122: 407-20.
11. Deng CX, and Xu X. Generation and analysis of Brca1 conditional knockout mice. Methods Mol Biol 2004; 280: 185-200.
12. Hayashi S, and McMahon AP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 2002; 244: 305-18.
13. Xu X, Weaver Z, Linke SP, et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isomorph-deficient cells. Mol Cell 1999; 3: 389-95.
14. Chen P, Gaten M, O’Connell MJ, et al. Chk1 complements the G2/M checkpoint defect and radiosensitivity of ataxia-telangiectasia cells. Oncogene 1999; 18: 249-56.
15. Falck J, Mailand N, Syljuasen RG, et al. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410: 842-7.
16. Paull TT, Rogakou EP, Yamazaki V, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000; 10: 886-95.
17. Yarden RI, Pardo-Reoyo S, Sgagias M, et al. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002; 30: 285-9.
18. Yan Y, Spieker RS, Kim M, et al. BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 2005; 24: 3282-96.
19. Liu Q, Guntuku S, Cui XS, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000; 14: 1448-59.
20. Takai H, Tominaga K, Motoyama N, et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev 2000; 14: 1439-47.
21. Matsuo T, Yamaguchi S, Mitsui S, et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003; 302: 255-9.
22. Xu X, Wagner KU, Larson D, et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 1999; 22: 37-43.
23. Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods 1998; 14: 381-92.
24. Nagy A. Cre recombinase: the universal reagent for genome tailoring. Genesis 2000; 26: 99-109.
25. Wang RH, Yu H, and Deng CX. A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Natl Acad Sci U S A 2004; 101: 17108-13.
Figure 2. Abnormal appearance of *Wee1*/*" embryos at pre-implantation stages. (A,B) Images of *Wee1*/*" (A) and *Wee1"* (B) embryos. (C) Genotyping of E3.5 embryos by PCR. (D,E) Morphology (D) of blastocysts after they were cultured after different times as indicated. All embryos showing proliferation were either *Wee1"*/* or *Wee1*/*" embryos. Genotypes (E) were determined by PCR 4 days after culture.
Figure 3. Apoptosis and impaired G2/M cell cycle checkpoint in *Wee1*<sup>−/−</sup> embryos. (A, B) TUNEL assay revealed increased apoptosis in *Wee1*<sup>−/−</sup> embryos. (C,D) Mitotic cells in E2.5 embryos. (E,F) Mitotic index of E2.5 and E3.5 embryos. Each graph bar summarizes data obtained from at least 4 embryos.
Figure 4. Generation of tamoxifen inducible Wee1 knockout MEF cells. (A) Structure of conditional allele (upper) and exons 9/10 deleted allele (lower). (B) PCR based genotyping of $Wee1^{Co^+}$ and $Wee1^{Co^-}$;Tm-Cre MEFs in the presence (+) or absence (-) of 4-ht. The same primers were used for genotyping as shown in Fig. 1.
Figure 5. Increased cell death and impaired cell cycle regulation of Wee1-deficient cells (A) MTT assay of Weel<sup>Cre</sup>-TM-cre MEF cells that were treated with ethanol or no treatment (upper curve), or 1 μM of 4-HT. (B) Apoptotic fraction of Weel<sup>Cre</sup>-TM-cre MEF cells after 4-h treatment revealed by annexin V and EtBr staining. (C) Defective G2/M cell cycle checkpoint of Weel<sup>Cre</sup>-TM-cre MEF cells. Cells were treated with 1 μM 4-HT for 24 hours and fixed at 1-4 hours after they were irradiated with 10 Gy γ-ray. (D,E) Premature entry into mitosis revealed by BrdU and histone H3 double staining. Weel<sup>Cre</sup>-TM-cre MEFs were incubated in the absence (D) or presence (E) of 4-HT for 24 hours prior to the staining. (F) Percentage of BrdU and histone H3 double positive cell. The percentage is calculated by the following formula [(BrdU<sup>+</sup>+H3Pi<sup>+</sup>)/H3Pi<sup>+</sup>]. (G) Flow cytometry analysis of mitotic cells in ethanol or 4-ht treated Weel<sup>Cre</sup>-TM-cre MEFs by PI and H3Pi staining. (H) Western blotting of Weel<sup>Cre</sup>-TM-cre MEFs. The arrow points to the phosphorylated form of Chk2 after lighter exposure of the gel. (I,K) Effect of purvalanol A (10 μM) on mitotic entry of Weel<sup>Cre</sup>-Tm-Cre cells in the absence (-) and presence (+) of 4-HT. Percentages of BrdU (I), H3Pi (J), and double (K) positive cells were shown.
Figure 6. Morphology of Wee1<sup>cre</sup>-<i>Tm-Cre</i> MEFs in the presence (A) and absence (B) of 4-HT for 48 hours.

Figure 7. DNA damage and chromosome instability of Wee1<sup>cre</sup>-<i>Tm-Cre</i> MEF cells. (A,B) Immunofluorescent staining of Wee1<sup>cre</sup>-<i>Tm-Cre</i> MEF cells using an antibody to γ-H2AX in the absence (A) or presence (B) of 1 μM 4-ht for 24 hours. (C,D) Chromosome spread of Wee1<sup>cre</sup>-<i>Tm-Cre</i> MEF cells after they were grown in the absence (C) or presence (D) of 1 μM 4-ht for 24 hours. (E) A summary of chromosomal spreading data from more than 60 cells in the absence (black bar) and presence (open bar) of 4-HT.