Serum microRNAs as potential new biomarkers for cisplatin resistance in gastric cancer patients

Lei Jin, Nan Zhang, Qian Zhang, Guoqian Ding, Zhenghan Yang, Zhongtao Zhang

1 Department of General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
2 National Clinical Research Center of Digestive Diseases, Beijing, China
3 Department of Radiology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
4 Clinical Epidemiology and EBM Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China

Corresponding Authors: Zhenghan Yang, Zhongtao Zhang
Email address: yangzhenghan@ccmu.edu.cn, zhangzhongtao@ccmu.edu.cn

Background: microRNAs (miRNAs) have been studied for their role in the early detection of several diseases. However, there is no current information on the systematic screening of serum-derived cisplatin resistance biomarkers in gastric cancer (GC).

Methods: Cisplatin-resistant GC cell lines were screened for dysregulated miRNAs using small RNA sequencing (sRNA-seq) and miRNAs were functionally annotated using bioinformatics analyses. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to validate the miRNA-relative transcription levels in GC cells and in 74 GC patients. We analyzed the associations between the clinical characteristics of the patients and their miRNA expression. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic value for serum-derived cisplatin resistance.

Results: 7 miRNAs were identified from 35 differentially expressed miRNAs between the MGC803/DDP and MGC803 cells in a public database. We found four miRNA candidates (miR-9-3p, miR-9-5p, miR-146a-5p, and miR-433-3p) that were significantly associated with chemotherapy responses in GC cells and patients. miR-9-5p (AUC = 0.856, 95%CI: 0.773-0.939, p<0.0001) and a combined group (miR-9-5p + miR-9-3p + miR-433-3p) (AUC = 0.915, 95%CI: 0.856-0.975, P< 0.0001) distinguished chemoresistant GC patients from chemosensitive GC patients.

Conclusions: Our study reveals the potential therapeutic use of 2 serum-based biomarkers, miR-9-5p and a combined group (miR-9-5p + miR-9-3p + miR-433-3p), as indicators for the successful use of cisplatin in GC patients.
Serum microRNAs as potential new biomarkers for cisplatin resistance in gastric cancer patients

Lei Jin¹,²,⁴, Nan Zhang²,⁴, Qian Zhang³,⁴, Guoqian Ding¹,⁴, Zhenghan Yang²,⁴ and Zhongtao Zhang¹,⁴

¹Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
²Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
³Clinical Epidemiology and EBM Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
⁴National Clinical Research Center of Digestive Diseases, Beijing, China

Corresponding Author:
Zhongtao Zhang¹,⁴
95 Yongan Road, Xicheng District, Beijing, 100050, China
Email address: zhangzhongtao@ccmu.edu.cn
Zhenghan Yang²,⁴
95 Yongan Road, Xicheng District, Beijing, 100050, China
Email address: yangzhenghan@ccmu.edu.cn

Abstract

Background: microRNAs (miRNAs) have been studied for their role in the early detection of several diseases. However, there is no current information on the systematic screening of serum-derived cisplatin resistance biomarkers in gastric cancer (GC).

Methods: Cisplatin-resistant GC cell lines were screened for dysregulated miRNAs using small RNA sequencing (sRNA-seq) and miRNAs were functionally annotated using bioinformatics analyses. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to validate the miRNA-relative transcription levels in GC cells and in 74 GC patients. We analyzed the associations between the clinical characteristics of the patients and their miRNA expression. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic value for serum-derived cisplatin resistance.
Results: 7 miRNAs were identified from 35 differentially expressed miRNAs between the MGC803/DDP and MGC803 cells in a public database. We found four miRNA candidates (miR-9-3p, miR-9-5p, miR-146a-5p, and miR-433-3p) that were significantly associated with chemotherapy responses in GC cells and patients. miR-9-5p (AUC = 0.856, 95%CI: 0.773-0.939, \(p<0.0001 \)) and a combined group (miR-9-5p + miR-9-3p + miR-433-3p) (AUC = 0.915, 95%CI: 0.856-0.975, \(P<0.0001 \)) distinguished chemoresistant GC patients from chemosensitive GC patients.

Conclusions: Our study reveals the potential therapeutic use of 2 serum-based biomarkers, miR-9-5p and a combined group (miR-9-5p + miR-9-3p + miR-433-3p), as indicators for the successful use of cisplatin in GC patients.

Introduction

Gastric cancer is the fourth most commonly diagnosed malignant cancer and the second leading cause of tumor-related deaths worldwide (1). Surgery combined with chemotherapy is an emerging and treatment for GC.

Cisplatin (DDP) is recognized as a first-line chemotherapy drug for GC patients in a progressive stage of the disease. The current long-term survival rate of GC patients is poor due to the high prevalence of drug-resistance, metastasis, and recurrence (2). DDP resistance in most patients is inevitable and results in failed treatment, while the long-term use and repeated administration of DDP leads to severe side effects (3). The development of novel biomarkers for chemotherapy-resistant GC is critical for improving the prognostic efficacy in patients.

miRNAs are a discovered class of small noncoding RNAs containing 19–25 nucleotides (4). miRNAs have been identified in many biofluids, including serum, plasma, and urine (5), suggesting that circulating miRNAs could be used as minimally invasive biomarkers for cancer and other diseases (5–7). The use of biomarkers is noninvasive, more comfortable than
endoscopic examination, and may reflect the heterogeneity of the disease. Dysregulation of
miRNAs may lead to DDP resistance in many tumors (8, 9), but the role of miRNAs in the
chemo-response of GC is not fully understood.

miRNAs in human tumor serum specimens may act as markers to predict the treatment
sensitivity and prognosis in many cancer types (10-12). Emerging evidence reveals that specific
miRNAs in serum specimens may aid in the early diagnosis of malignancies (13, 14) and in the
determination of the survival prognosis for cancer patients after surgery (15). However, it is not
understood how specific miRNAs in serum might predict a chemotherapy response in GC
patients.

Small RNA-sequencing was used to analyze the microRNA profiles in GC cells to find the
dysregulated miRNAs. RT-qPCR and correlation analyses were used to validate the results of
sRNA-seq, which was used to select the miRNA candidates. We also attempted to develop
specific biomarkers to determine the chemotherapy response of GC.

Materials & Methods

Cell culture

The MGC803 cell line was obtained from the Chinese Academy of Medical Sciences (Beijing,
China). DDP-resistant GC cells were established by culturing MGC803 cells in a continuous
stepwise fashion with gradually increasing concentrations of DDP from 0.05 to 5 μg/ml over a
period of 15 months. This resulted in a shift towards cell proliferation and an apoptosis
phenotype (16, 17). The cell line was continuously cultured with 2 μg/ml DDP to maintain its
resistance. These two cell lines were cultured following standard culturing procedures and
identified by short tandem repeat (STR) profile data compared with the ATCC, DSMZ, or JCRB
databases (Cobioer Biosciences Co., Ltd, Los Altos, CA).
85 **Patient enrollment and ethics statement**

86 Serum specimens were collected from 74 GC patients who met the following criteria: (1) histologically confirmed gastric adenocarcinoma; (2) DDP-based chemotherapy used as first-line treatment; (3) received at least 2 cycles of neoadjuvant chemotherapy or palliative treatment; (4) chemotherapy efficacy could be evaluated by unenhanced and enhanced computed tomography (CT) after 2 or 3 cycles; (5) serum samples were collected before the first chemotherapy. All patients provided informed consent prior to the collection of a blood sample. This study was approved by the Ethics Committee of Beijing Friendship Hospital, Capital Medical University and met the ethical requirements of the Declaration of Helsinki.

89 Prechemotherapy serum samples were collected between January 2015 and January 2019 from patients who received neoadjuvant chemotherapy or palliative treatment. The serum samples were collected and processed following the standard operating procedure of the Early Detection Research Network. The chemotherapy principle was executed according to the guidelines of the American Society of Clinical Oncology (ASCO). The chemotherapy response effect was evaluated according to CHOI’s principle (18). Treatment resistance was evaluated by the existing progressive disease (PD) in <3 treatment cycles, and the treatment response was evaluated by the existing complete response (CR), stable disease (SD), or partial response (PR) lasting for 2 or 3 cycles. The chemotherapy response-sensitive group included CR and PR patients, whereas the chemotherapy response-resistant group included SD and PD patients.

104 **RNA extraction**

106 Total RNA was isolated from the GC cells using Trizol (Invitrogen, USA). The same amount of Caenorhabditis elegans cel-39-3p miRNA was spiked into each serum sample as an external calibration for RNA extraction, reverse transcription, and miRNA amplification. Total RNA was extracted and purified from serum using the miRNaseasy Serum/Plasma kit (Qiagen, cat. 217184).
The quantity and integrity of the RNA yield was assessed using the Qubit2.0 fluorometer (Life Technologies, USA) and Agilent 2200 TapeStation (Agilent Technologies, USA), separately.

sRNA-seq and data analysis

Total RNA (1 μg) of GC cells were used to prepare small RNA libraries by NEBNext Multiplex Small RNA Library Prep Set for Illumina (NEB, USA) according to the manufacturer’s instructions. The libraries were sequenced by HiSeq 2500 (Illumina, USA) with single-end 50 bp reads at RiboBio Co. Ltd (RiboBio, China). Raw reads were processed by FastQC to get clean reads by filtering out those containing adapter, poly 'N', were of low quality, or were smaller than 17nt reads. Mapping reads were obtained by mapping clean reads to the reference genome from the BWA software. miRDeep2 was used to identify known mature miRNA based on miRBase21 (www.miRBase.org) and to predict novel miRNA. The databases of Rfam12.1 (www.rfam.xfam.org) and piRNABank (www.pirnabank.ibab.ac.in) were used to identify ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and piwi-interacting RNA (piRNA) by BLAST. miRNA expressions were calculated in RPM (reads per million) values (RPM = (number of reads mapping to miRNA/number of reads in clean data) × 10^6). The expression levels were normalized by RPM [(number of reads mapping to miRNA/number of reads in clean data) × 10^6].

Bioinformatics analysis

The differential expression between the two sample sets was calculated using the edgeR algorithm according to the criteria of $|\log_2 \text{Fold Change}| \geq 1$ and $P\text{-value} < 0.05$. TargetScan, miRDB, miRTarBase, and miRWalk were used to predict the target genes of selected miRNA. Patients with different expression levels of miRNAs were determined to have shorter or longer overall survival (OS) times for 10-year OS using the Kaplan–Meier survival curve data according
to the Kaplan–Meier Plotter database (http://kmplot.com) (19, 20), the OncoLnc database (http://www.oncolnc.org/) (21), and the OncomiR database (http://www.oncomir.org/) (22).

RT-qPCR

The primers for miRNA detection were purchased from FulenGene Company (Guangzhou, China) and their sequence is listed in Table 1. Total RNA was reverse transcribed using the All-in-One™ miRNA RT-qPCR Kit (GeneCopoeia, USA) for miRNA analysis. The All-in-One™ miRNA RT-qPCR Detection Kit (GeneCopoeia, USA) was used to measure miRNAs quantitatively. All samples were normalized by the initial biofluid input volume used for RNA extraction and were calibrated by the spike-in cel-39-3p to eliminate the minute bias caused by different RNA isolation efficiencies and PCR efficiencies among samples. U6 or let-7g-5p was used as an endogenous control to normalize the relative number of miRNAs. ABI 7500 real-time fast PCR system (Applied Biosystems, USA) was used to achieve the relative quantitation of miRNA expression and the data was analyzed using the affiliated software. The Ct attenuation value of each type of miRNA in each of the serum samples was corrected by the internal reference cel-39-3p and the two housekeeping genes, U6 and let-7g-5p. The $2^{-\Delta\Delta Ct}$ method was used to calculate the relative expression of each miRNA. Each sample per reaction was performed in triplicate.

Statistical analysis

miRNA expression levels in the serum samples were divided into high and low groups taking the median as the cutoff value by RT-qPCR. Statistical differences for *in vitro* experiments were analyzed using student’s unpaired t tests. Associations between the clinical parameters of the patients and their miRNA expression were analyzed using the Mann–Whitney test. The AUC was used to assess the diagnostic accuracy of the predictors. Logistic regression was used to develop a panel of combined biomarkers to predict the probability of GC chemotherapy.
response. All data were expressed as mean ± SD. Each experiment was repeated independently at least three times. Quantitative data were analyzed and graphed using SPSS 23.0, MedCalc, and GraphPad Prism 7. Differences were considered to be significant at """"P < 0.0001, """"P < 0.001, """"P < 0.01, and 'P < 0.05.

Results

Analysis of sRNA-seq data

The results of sRNA-seq in MGC803/DDP cells (Figure 1A) and MGC803 cells (Figure 1B) showed that the sRNA sequence included miRNA, tRNA, rRNA, snRNA, snoRNA, piRNA, and other RNA. Thirty-five miRNAs were selected and intersected, of which 11 miRNAs were up-regulated, and 24 down-regulated at higher levels in MGC803/DDP cells than the MGC803 cells (Figure 1C). These 35 differentially expressed miRNAs in sRNA-seq data are shown in Table 2.

Bioinformatics analysis of selected miRNA

A large cohort analysis was conducted using Kaplan–Meier survival data according to the Kaplan–Meier Plotter database in order to determine the role of the 35 differentially expressed miRNAs as a potential prognostic factor. We observed that a total of seven differentially expressed miRNAs showed statistical differences (p<0.05) for 10-year overall survival (OS) (Table 2), which indicated that these miRNAs could be used as valid biomarkers for chemotherapy response and overall survival. The differentially expressed miRNAs observed were miR-9 (including miR-9-3p and miR-9-5, Figure 2A), miR-146a (Figure 2B), miR-370 (Figure 2C), miR-433 (Figure 2D), miR-519a (Figure 2E), and miR-522 (Figure 2F). TargetScan, miRDB, miRTarBase, and miRWalk were used to predict the target genes of the seven selected miRNAs, including miR-9-3p (Figure 3A), miR-9-5p (Figure 3B), miR-146a-5p (Figure 3C), miR-370-3p (Figure 3D), miR-433-3p (Figure 3E), miR-519a-5p (Figure 3F), and miR-522-5p (Figure 3G). Supplementary material from four different databases (Supplemental table 1) was added to
the common target genes of the 7 miRNAs (Figure 3). These 7 miRNAs were selected as miRNA candidates.

Validation of sRNA-seq data by RT-qPCR analysis

GC cell results showed that the levels of miR-146a-5p, miR-519a-5p, and miR-522-5p were significantly downregulated in MGC803/DDP cells. The levels of miR-9-3p, miR-9-5p, miR-370-3p, and miR-433-3p were significantly upregulated in MGC803/DDP cells (Table 3, Figure 4A). miR-519a-5p and miR-522-5p changed consistently with sRNA-seq, but the opposite results were seen from the other five miRNAs. miR-519a-5p and miR-522-5p had the same primer and exhibited the same result.

Expression levels and functions of miRNAs in human GC clinical specimens

RT-qPCR tests were run on the serum samples from 74 GC patients to identify 2 potential miRNAs, 2 housekeeping genes (U6 and let-7g-5p), and a spike-in cel-39-3p of the internal references. The clinical parameter findings of 74 patients with neoadjuvant chemotherapy or palliative treatment are shown in Table 4. Using the median ratio as the cutoff for the relative miRNA expression (7 miRNA candidates; Fold Change=0) in serum, patients were classified into two groups: low miRNA (7 miRNA candidates) and high miRNA (7 miRNA candidates). Clinical data was collected and efficacy was evaluated by CT in 2–3 cycles following chemotherapy. Independent measurements were made by 2 radiologists according to CHOI's principle (18). Unenhanced-combined-enhanced CT was applied to accurately evaluate the tumor response using tumor density measurement. RT-qPCR analysis was used to detect miRNA (7 miRNA candidates) levels in 34 chemotherapy response-sensitive (CR and PR) and 40 chemotherapy response-resistant (SD and PD) patients to validate miRNA (7 miRNA candidates) expression levels.
Our results proved that miR-9-3p expression obviously increased in the serum samples of chemotherapy response-resistant GC patients; 67.5% (27 of 40) of the high miR-9-3p samples showed DDP resistance ($p<0.0001$, Figure 4B). miR-9-5p expression increased in the serum samples of chemotherapy response-resistant GC patients; 72.5% (29 of 40) of the high miR-9-5p samples showed DDP resistance ($p<0.0001$, Figure 4C). miR-146a-5p expression was obviously induced in the serum samples of chemotherapy response-resistant GC patients; 62.5% (25 of 40) of the low miR-146a-5p samples showed DDP resistance ($p<0.0001$, Figure 4D). miR-433-3p expression increased in the serum samples of chemotherapy response-resistant GC patients; 67.5% (27 of 40) of the high miR-433-3p samples showed DDP resistance ($p<0.0001$, Figure 4E). However, there was no significant difference between the relative levels of miR-370-3p ($p=0.0611$, Figure 4F), miR-519a-5p ($p=0.4028$, Figure 4G), and miR-522-5p ($p=0.4028$, Figure 4H) in the serum of 34 chemotherapy response-sensitive gastric cancer samples and 40 chemotherapy response-resistant gastric cancer samples.

Our results indicate that miR-9-3p, miR-9-5p, miR-146a-5p, and miR-433-3p may act as potential new biomarkers for the chemotherapy response of DDP treatment. The levels of miR-9-3p, miR-9-5p, miR-146a-5p, and miR-433-3p were not related to gender and age (Table 4).

Receiver operating characteristic (ROC) analysis of miRNAs

Four miRNAs distinguished the GC chemotherapy response-resistant (SD+PD) group from the GC chemotherapy response-sensitive group (CR+PR). The results for the area under the curves (AUC), standard deviation (SD), 95% confidence intervals (CI), P-values, sensitivities (SE), and specificities (SP) of these miRNAs were as follows (Table 5): miR-9-3p (AUC = 0.824, Figure 5A), miR-9-5p (AUC = 0.856, Figure 5B), miR-146a-5p (AUC = 0.799, Figure 5C) and miR-433-3p (AUC = 0.838, Figure 5D), respectively. These four miRNAs provided promising AUC values for differentiating the GC chemotherapy response-resistant groups from the GC chemotherapy response-sensitive groups.
Two of the four candidate miRNAs were combined in a logistic model, with a significantly improved performance compared with the individual miRNA, determined by (Table 5): miR-9-3p + miR-9-5p (AUC = 0.889, Figure 6A). The risk score factors (RSF) were calculated as 0.731 × miR-9-3p + 0.586 × miR-9-5p + 0.192; miR-9-3p + miR-146a-5p (AUC = 0.903, Figure 6B), and RSF = 0.800 × miR-9-3p - 0.772 × miR-146a-5p + 0.392; miR-9-3p + miR-433-3p (AUC = 0.865, Figure 6C), and RSF = 0.574 × miR-9-3p + 0.684 × miR-433-3p + 0.173; miR-9-5p + miR-146a-5p (AUC = 0.901, Figure 6D), and RSF = 0.575 × miR-9-5p + 0.672 × miR-146a-5p + 0.345; miR-9-5p + miR-433-3p (AUC = 0.898, Figure 6E), and RSF = 0.551 × miR-9-5p + 0.847 × miR-433-3p + 0.264; miR-146a-5p + miR-433-3p (AUC = 0.885, Figure 6F), and RSF = -0.637 × miR-146a-5p + 0.802 × miR-433-3p + 0.327.

Three or more of the four candidate miRNAs were combined resulting in a significantly improved performance compared with the individual miRNA. (Table 5 miR-9-3p + miR-9-5p + miR-146a-5p) (AUC = 0.930, Figure 7A). The RSF was calculated as 0.690 × miR-9-3p + 0.515 × miR-9-5p - 0.738 × miR-146a-5p + 0.386; miR-9-3p + miR-9-5p + miR-433-3p (AUC = 0.915, Figure 7B), RSF = 0.514 × miR-9-3p + 0.526 × miR-9-5p + 0.614 × miR-433-3p + 0.240; miR-9-3p + miR-146a-5p + miR-433-3p (AUC = 0.918, Figure 7C), RSF = 0.646 × miR-9-3p - 0.700 × miR-146a-5p + 0.504 × miR-433-3p + 0.388; miR-9-5p + miR-146a-5p + miR-433-5p (AUC = 0.926, Figure 7D), RSF = 0.521 × miR-9-5p - 0.650 × miR-146a-5p + 0.655 × miR-433-3p + 0.376; miR-9-3p + miR-9-5p + miR-146a-5p + miR-433-3p (AUC = 0.937, Figure 7E), RSF = 0.540 × miR-9-3p + 0.480 × miR-9-5p - 0.681 × miR-146a-5p + 0.393 × miR-433-3p + 0.398.

Pairwise comparison of ROC curves

MedCalc software was used to display the data for the different ROC curves and the results of pairwise comparison of all ROC curves (difference between the areas (DBA), standard error (SE), 95% confidence interval for the difference (CI), and P-value) (Table 6).
The ROC curve of miR-9-5p had the best AUC value of the four miRNA candidates. A comparison between the combined group (any different miRNA combination, which contained miR-9-5p), and the miR-9-5p group showed that the two compared areas were significantly different ($p=0.026$, Figure 8A). The compared areas of the combined group (miR-9-5p + miR-9-3p + miR-433-3p) and the miR-9-5p group were significantly different ($p=0.045$, Figure 8B). The compared areas of the combined group (miR-9-5p + miR-146a-5p + miR-433-3p) and the miR-9-5p group were significantly different ($p=0.034$, Figure 8C) and the compared areas of the combined group (miR-9-5p + miR-9-3p + miR-146a-5p + miR-433-3p) and the miR-9-5p group were also significantly different ($p=0.016$, Figure 8D). However, the compared areas of the other combined group and the miR-9-5p group were not significantly different ($P > 0.05$).

Validate selected miRNAs in public database

To determine the role of miR-9-3p, miR-9-5p, miR-146a-5p, miR-433-3p, or their combination as a potential prognostic factor, a large cohort analysis was conducted using Kaplan–Meier survival data according to the Kaplan–Meier Plotter database, the OncoLnc database, and the OncomiR database (Table 7).

We observed that patients with higher miR-9-3p levels had shorter OS times than those with lower miR-9-3p levels in the OncoLnc database ($p=0.00836$, Figure 9A) and the OncomiR database ($p=0.06643$, Figure 9B). Patients with higher miR-9-5p levels had shorter OS times than those with lower miR-9-5p levels in the OncoLnc database ($p=0.00181$, Figure 9C) and the OncomiR database ($p=0.0044$, Figure 9D). Patients with higher miR-433-3p levels had shorter OS times than those with lower miR-433-3p levels in the OncoLnc database ($p=0.0311$, Figure 9E) and the OncomiR database ($p=0.05651$, Figure 9F). These observations indicate that the high expression of miR-9-3p, miR-9-5p, or miR-433-3p are a valid biomarker for chemoresistance and poor survival, especially miR-9-5p.
Patients with higher levels of the combined group (miR-9-5p + miR-9-3p) had shorter OS times than those with lower combined levels in the OncomiR database ($p=0.003421$), Figure 10A). Patients with higher levels of the combined group (miR-9-5p + miR-433-3p) had shorter OS times than those with lower combined levels in the OncomiR database ($p=0.01428$, Figure 10B). Patients with higher levels of the combined group (miR-9-5p + miR-9-3p + miR-433-3p) had shorter OS times than those with lower combined levels in the OncomiR database ($p=0.008066$, Figure 10C). Patients with higher levels of the combined group (miR-9 + miR-433) had shorter OS times than those with lower combined levels in the Kaplan–Meier Plotter database ($p=0.0047$, Figure 10D). These observations indicate that higher levels of the combined groups, especially the combined group (miR-9-5p + miR-9-3p + miR-433-3p) are a valid biomarker for chemoresistance and poor survival.

Discussion

DDP resistance is a barrier to the effective treatment of GC. The identification of unique biomarkers for drug resistance can help to accurately diagnose and treat GC. The involvement of non-coding nucleic acids, such as miRNAs in response to DDP treatment, is not well understood. miRNAs play vital roles in the progression and development of tumors, and may be correlated with resistance to chemotherapeutics in tumor cells (23-25). The downregulation of miR-21 has been shown to alter survival rates by increasing DDP sensitivity in GC cells (26).

Liquid biopsies can identify markers from blood and various body fluids and are minimally invasive, safe, economical, and convenient versus the use of more invasive tests or biopsies for the diagnosis of GC (27). Liquid biopsies are suitable for screening a wide range of people, which can improve the diagnosis and treatment of GC. Several studies have been conducted on the use of miRNAs in GC patients related to the occurrence, development, diagnosis, treatment, and prognosis of the disease. Fang et al. (28) reported that certain carcinogenesis-related
miRNAs (miR-10b, miR-21, miR-223, and miR-338) and tumor suppressor miRNAs (miR-30a-5p, miR-126, and let-7a) can be used as prognosis markers in GC patients. Numerous studies have reported on the use of combinations of circulating miRNAs for greater diagnostic accuracy, which is indicated by an area under the ROC curve larger than 0.8 (28, 29).

Relatively few studies have reported the application of miRNAs in the diagnosis and screening of the chemotherapy response of GC. In this study, the differences in the expression profiles of miRNAs in chemotherapy response-sensitive and chemotherapy response-resistant GC cells were established using sRNA-seq and the potential miRNAs were screened using bioinformatics analyses.

Our results showed that miR-9-3p, miR-9-5p, and miR-433-3p were significantly up-regulated and miR-146a-5p was significantly down-regulated in the MGC803/DDP cells and in chemotherapy response-resistant GC patients. While some of these miRNAs are considered to be diagnostic or prognostic biomarkers in GC, ours is the first study to explore their potential use in determining the chemotherapy response in GC patients.

Numerous studies have shown that a combination of multiple miRNAs could more easily identify early-stage CC patients than a single miRNA biomarker (6, 29). We combined the three miRNAs in our study (miR-9-3p, miR-9-5p and miR-433-3p) to achieve an AUC of 0.915. The equation used in this determination was risk score factor (RSF) = 0.514 × miR-9-3p + 0.526 × miR-9-5p + 0.614 × miR-433-3p + 0.240. There was a significant difference between the two compared areas of the combined group (miR-9-3p + miR-9-5p + miR-433-3p) and the miR-9-5p group (p=0.045), whereas the two compared areas of the other combined group and the miR-9-5p group was not significantly different (p > 0.05). A large cohort analysis was conducted using Kaplan–Meier survival data according to the Kaplan–Meier Plotter database, the OncoLnc database, and the OncomiR database to determine the role of miR-9-3p, miR-9-5p, miR-433-3p or their combination as a potential prognostic factor. The results indicate that the high
expression of miR-9-5p and the combined group (miR-9-5p + miR-9-3p + miR-433-3p) can be used as a valid biomarker for chemoresistance and poor survival. Serum-derived miRNAs have the potential to be used as novel noninvasive tumor markers for the chemotherapy response in GC patients.

Previous studies have shown that miR-9-5p expression may act as a potential tumor suppressor gene and is closely related to the malignant progression of GC (30). miR-9-3p may play an important role in tumor invasion and have potential effects on the prognosis of gastric cancer (31). miR-433-3p may function as a potential diagnostic marker and therapeutic target for glioma (32). These miRNAs serve as biomarkers for tumors and tumor progression.

Conclusions

In conclusion, we reported on the potential for 2 serum-based biomarkers, miR-9-5p and a combined group (miR-9-5p + miR-9-3p + miR-433-3p), to predict the therapeutic benefit of DDP for GC patients. Additional clinical samples should be collected to validate these serum biomarkers.

Acknowledgements

We thank Biobank Resource and Clinical Data of Beijing Friendship Hospital, Capital Medical University for their collection of serum samples and their data processing services.

References

1 Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin 69(1): 7-34, 2019. PMID, DOI: 10.3322/caac.21551
2 Zong L, Abe M, Seto Y and Ji J: The challenge of screening for early gastric cancer in china. The Lancet 388(10060): 2606, 2016. PMID, DOI: 10.1016/s0140-6736(16)32226-7
3 Kovalchuk O, Filkowski J, Meservy J, Il'nytskyi Y, Tryndyak VP, Chekhun VF and Pogribny IP: Involvement of microRNA-451 in resistance of the mcf-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7(7): 2152-2159, 2008. PMID, DOI: 10.1158/1535-7163.MCT-08-0021
4 Bartel, DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2): 281-97, 2004. PMID, DOI: 10.1016/S0092-8674(04)00045-5
5 Etheridge A, Lee I, Hood L, Galas D and Wang K: Extracellular microRNA: A new source of biomarkers. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 717(1-2): 85-90, 2011. PMID, DOI: 10.1016/j.mrfmmm.2011.03.004
6 Vychytilova-Faltejskova P, Radova L, Sachlova M, Kosarova Z, Slaba K, Fabian P, Grolich T, Prochazka V, Kala Z, Svoboda M, Kiss I, Vyzula R and Slaby O: Serum-based microRNA signatures in early diagnosis and prognosis
prediction of colon cancer. Carcinogenesis 37(10): 941-950, 2016. PMID, DOI: 10.1093/carcin/bgw078

7 Schultz NA, Dehlendorff C, Jensen BV, Bjergaard JK, Nielsen KR, Bojesen SE, Calatayud D, Nielsen SE, Yilmaz M, Hollander NH, Andersen KK and Johansen JS: Microrna biomarkers in whole blood for detection of pancreatic cancer. JAMA 311(4): 392-404, 2014. PMID, DOI: 10.1001/jama.2013.284664

8 Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G and Ferlini C: Role of micrornas in drug-resistant ovarian cancer cells. Gynecol Oncol 111(3): 478-486, 2008. PMID, DOI: 10.1016/j.ygyno.2008.08.017

9 Yu ZW, Zhong LP, Ji T, Zhang P, Chen WT and Zhang CP: Micrornas contribute to the chemoresistance of cisplatin in in squamous cancer cells lines. Oral Oncol 46(4): 317-322, 2010. PMID, DOI: 10.1016/j.oraloncology.2010.02.002

10 Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu C-g, Oue N, Yasui K, Sasaki H, Nomura S, Seto Y, Kaminishi M, Calin GA and Croce CM: Relation between microrna expression and progression and prognosis of gastric cancer: A microrna expression analysis. The Lancet Oncology 11(2): 136-146, 2010. PMID, DOI: 10.1016/S1470-2045(09)70343-2

11 Goswami RS, Atenafu EG, Xuan Y, Waldron L, Reis PP, Sun T, Datti A, Xu W, Kuruvilla J, Good DJ, Lai R, Church AJ, Lam WS, Baetz T, Lebrun DP, Sehn LH, Farinha P, Jurisica I, Bailey DJ, Gascogne RD, Crump M and Kamel-lymphomas: Potential prognostic value in mantle-cell lymphoma. J Clin Oncol 31(23): 2903-2911, 2013. PMID, DOI: 10.1200/JCO.2012.45.3050

12 Hur K, Toiyama Y, Schetter AJ, Okugawa Y, Harris CC, Boland CR and Goel A: Identification of a metastasis-specific microrna signature obtained from the comparison of aggressive with indolent non-hodgkin lymphomas: Potential prognostic value in mantle-cell lymphoma. J Clin Oncol 31(23): 2903-2911, 2013. PMID, DOI: 10.1016/j.ijc.2012.04.018

13 Masuda S and Izpisua Belmonte JC: Re: Serum mir-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst 107(3): djt457, 2014. PMID, DOI: 10.1093/jnci/djt457

14 Lin X-J, Chong Y, Guo Z-W, Xie C, Yang X-J, Zhang Q, Li S-P, Xiong Y, Yuan Y, Min J, Jia W-H, Jie Y, Chen M-S, Chen M-X, Fang J-H, Zeng C, Zhang Y, Guo R-P, Wu Y, Lin G, Zheng L and Zhuang S-M: A serum microrna classifier for early detection of hepatocellular carcinoma: A multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study. The Lancet Oncology 16(7): 804-815, 2015. PMID, DOI: 10.1016/s1470-2045(15)00048-0

15 Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, Chen Y, Xu L, Zen K, Zhang C and Shen H: Serum microrna signatures identified in a genome-wide serum microrna expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28(10): 1721-1726, 2010. PMID, DOI: 10.1200/JCO.2009.24.9342

16 Hong W. S., Saijo N., Sasaki Y., Minato K., Nakano H., Nakagawa K., Fujiwara Y., Nomura K., and Twentyman P. R. 1988. Establishment and characterization of cisplatin-resistant sublines of human lung cancer cell lines. Int J Cancer 41:462-467. 10.1002/ijc.2910410325

17 Yu D. S., Ma C. P., and Chang S. Y. 2000. Establishment and characterization of renal cell carcinoma cell lines with multidrug resistance. Urological research 28:86-92. 10.1007/s002400050143

18 Choi H, Charnsangavej C, Faria SdC, Tamm EP, Benjamin RS, Johnson MM, Macapinlac HA and Podoloff DA: Ct evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: A quantitative analysis correlated with fdg pet findings. American Journal of Roentgenology 183(6): 1619-1628, 2004. PMID, DOI: 10.2214/ajr.183.6.01831619

19 Szász AM, Lánczky A, Nagy Á, Förster S, Hark K, Green JE, Boussiotas A, Busuttil R, Szabó A and Győrffy B: Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 7(31): 49322-49333, 2016. PMID, DOI: 10.18632/oncotarget.10337

20 Nagy A, Lánczky A, Menyhart O and Györfy B: Validation of mirna prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 8(1): 9227, 2018. PMID: 6003936, DOI: 10.1038/s41598-018-27521-y

21 Anaya J: OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science 2:e67, 2016. PMID, DOI: 10.7717/peerj-cs.6710.7287/peerj.preprints.1780v1

22 Wong NW, Chen Y, Chen S and Wang X: Oncomir: An online resource for exploring pan-cancer microrna dysregulation. Bioinformatics 34(4): 713-715, 2018. PMID: 5860608, DOI: 10.1093/bioinformatics/btx627

23 Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J and Fan D: Mir-15b and mir-16 module multidrug resistance by targeting bcl2 in human gastric cancer cells. Int J Cancer 123(2): 372-379, 2008. PMID, DOI: 10.1002/ijc.23501
24 Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV and Cheng JQ: Microrna expression profiling in human ovarian cancer: Mir-214 induces cell survival and cisplatin resistance by targeting pten. Cancer Res 68(2): 425-433, 2008. PMID, DOI: 10.1158/0008-5472.CAN-07-2488
25 Li T, Li D, Sha J, Sun P and Huang Y: Microrna-21 directly targets marcks and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383(3): 280-285, 2009. PMID, DOI: 10.1016/j.bbrc.2009.03.077
26 Yang SM, Huang C, Li XF, Yu MZ, He Y and Li J: Mir-21 confers cisplatin resistance in gastric cancer cells by regulating pten. Toxicology 306(162-168, 2013. PMID, DOI: 10.1016/j.tox.2013.02.014
27 Tsujiura M, Ichikawa D, Konishi H, Komatsu S, Shiozaki A and Otsuji E: Liquid biopsy of gastric cancer patients: Circulating tumor cells and cell-free nucleic acids. World journal of gastroenterology 20(12): 3265-3286, 2014. PMID, DOI: 10.3748/wjg.v20.i12.3265
28 Fang Y, Shen H, Li H, Cao Y, Qin R, Long L, Zhu X, Xie C and Xu W: Mir-106a confers cisplatin resistance by regulating pten/akt pathway in gastric cancer cells. Acta Biochim Biophys Sin (Shanghai) 45(11): 963-972, 2013. PMID, DOI: 10.1093/abbs/gmt106
29 Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, Poon TC, Ng SS and Sung JJ: Differential expression of micrornas in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut 58(10): 1375-1381, 2009. PMID, DOI: 10.1136/gut.2008.167817
30 Fan Y, Shi Y, Lin Z, Huang X, Li J, Huang W, Shen D, Zhuang G and Liu W: Mir-9-5p suppresses malignant biological behaviors of human gastric cancer cells by negative regulation of tnfaip8l3. Dig Dis Sci 64(10): 2823-2829, 2019. PMID, DOI: 10.1007/s10620-019-05626-2
31 Meng Q, Xiang L, Fu J, Chu X, Wang C and Yan B: Transcriptome profiling reveals mir-9-3p as a novel tumor suppressor in gastric cancer. Oncotarget 8(23): 37321-37331, 2017. PMID, DOI: 10.18632/oncotarget.16310
32 Sun S, Wang X, Xu X, Di H, Du J, Xu B, Wang Q and Wang J: Mir-433-3p suppresses cell growth and enhances chemosensitivity by targeting creb in human glioma. Oncotarget 8(3): 5057-5068, 2017. PMID, DOI: 10.18632/oncotarget.13789
Figure 1

Analysis for sRNA-seq data of MGC803/DDP and MGC803 groups.

(A, B) Pie charts showing the percentage of different kinds of sRNA to the mapped reads for MGC803 group (A) and MGC803/DDP group (B). (C) A heat map of the 35 differentially expressed miRNAs in MGC803/DDP and MGC803 groups was showed.
Figure 2

The role of 7 selected miRNAs was ascertained using Kaplan–Meier survival data according to Kaplan–Meier Plotter.

(A-F) Kaplan-Meier survival curves suggested that patients with high miR-9 (A), miR-370 (C), miR-433 (D), miR-519a (E) and miR-522 (F) levels had lower OS times for 10-year OS than those with low levels, and patients with high miR-146a (B) levels had higher OS times for 10-year OS than those with those low levels.
Figure 3

Bioinformatics analysis of selected miRNAs.

(A-G) Based on TargetScan, miRDB, miRTarBase and miRWalk, the predict targets gene of miR-9-3p (A), miR-9-5p (B), miR-146a-5p (C), miR-370-3p (D), miR-433-3p (E), miR-519a-5p (F) and miR-522-5p (G) were selected using Venn graphing.
Figure 4

Expression levels and functions of 7 selected miRNAs in human GC cells and clinical specimens.

(A) The relative level (fold change) of these seven selected miRNAs between DDP-resistant MGC803/DDP cells and parental MGC803 cells was analyzed via RT-qPCR. (B-E) The relative levels of miR-9-3p (B), miR-9-5p (C), miR-146a-5p (D), and miR-433-3p (E) between 34 chemotherapy response sensitive gastric cancer serums and 40 chemotherapy response resistant gastric cancer serums were significantly different, which were measured using RT-qPCR. (F-H) The relative levels of miR-370-3p (F), miR-519a-5p (G), and miR-522-5p (H) between 34 chemotherapy response sensitive gastric cancer serums and 40 chemotherapy response resistant gastric cancer serums didn’t show significantly different, which were measured using RT-qPCR. Each assay was conducted in triplicate. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 and mean±SD were utilized to show the data.
Figure 5

ROC curve and AUC value in comparison of the prognostic accuracy for DDP response with single miRNA expression.

(A-D) ROC curves and AUC values of miR-9-3p (A), miR-9-5p (B), miR-146a-5p (C) and miR-433-3p (D) distinguished the GC chemotherapy response-resistant group from the GC chemotherapy response-sensitive group.
Figure 6

ROC curve and AUC value in comparison of the prognostic accuracy for DDP response with two combined miRNAs expression.

(A-F) ROC curves and AUC values of miR-9-3p combined with miR-9-5p (A), miR-9-3p combined with miR-146a-5p (B), miR-9-3p combined with miR-433-3p (C), miR-9-5p combined with miR-146a-5p (D), miR-9-5p combined with miR-433-3p (E) and miR-146a-5p combined with miR-433-3p (F) distinguished the GC chemotherapy response-resistant group from the GC chemotherapy response-sensitive group.
Figure 7

ROC curve and AUC value in comparison of the prognostic accuracy for DDP response with three or more combined miRNAs expression.

(A-E) ROC curves and AUC values of miR-9-3p combined with miR-9-5p and miR-146a-5p (A), miR-9-3p combined with miR-9-5p and miR-433-3p (B), miR-9-3p combined with miR-146a-5p and miR-433-3p (C), miR-9-5p combined with miR-146a-5p and miR-433-3p (D), and miR-9-3p combined with miR-9-5p, miR-146a-5p and miR-433-3p (E) distinguished the GC chemotherapy response-resistant group from the GC chemotherapy response-sensitive group.
AUC values for different combinations of miRNAs:

- A: miR-9-3p + miR-9-5p + miR-146a-5p, AUC = 0.9301
- B: miR-9-3p + miR-9-5p + miR-433-3p, AUC = 0.9154
- C: miR-9-3p + miR-146a-5p + miR-433-3p, AUC = 0.9184
- D: miR-9-5p + miR-146a-5p + miR-433-3p, AUC = 0.9257
- E: miR-9-3p + miR-9-5p + miR-146a-5p + miR-433-3p, AUC = 0.9368
Figure 8

Pairwise comparison of ROC curves by the MedCalc software.

(A) The two compared areas between the miR-9-5p + miR-9-3p + miR-146a-5p group and the miR-9-5p group were significantly different. (B) The two compared areas between the miR-9-5p + miR-9-3p + miR-433-3p group and the miR-9-5p group were significantly different. (C) The two compared areas between the miR-9-5p + miR-146a-5p + miR-433-3p group and the miR-9-5p group were significantly different. (D) The two compared areas between the miR-9-5p + miR-9-3p + miR-146a-5p + miR-433-3p group and the miR-9-5p group were significantly different. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 and mean±SD were utilized to show the data.
Figure 9

Three selected miRNAs were ascertained in two public databases for prognostic analysis.

(A, B) Kaplan-Meier survival curves suggested that patients with high miR-9-3p levels had shorter OS times than those with low miR-9-3p levels in the OncoLnc database (A, P=0.00836) and in the OncomiR database (B, P=0.06643). (C, D) Kaplan-Meier survival curves suggested that patients with high miR-9-5p levels had shorter OS times than those with low miR-9-5p levels in the OncoLnc database (C, P=0.00181) and in the OncomiR database (D, P=0.0044). (E, F) Kaplan-Meier survival curves suggested that patients with high miR-433-3p levels had shorter OS times than those with low miR-433-3p levels in the OncoLnc database (E, P=0.0311) and in the OncomiR database (F, P=0.05651). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 and mean±SD were utilized to show the data.
Different miRNA combinations were ascertained in two public databases for prognostic analysis.

(A) Kaplan-Meier survival curves suggested that patients with high miR-9-3p + miR-9-5p levels had shorter OS times than those with low miR-9-3p + miR-9-5p levels in the OncomiR database ($P=0.003421$). (B) Kaplan-Meier survival curves suggested that patients with high miR-9-5p + miR-433-3p levels had shorter OS times than those with low miR-9-5p + miR-433-3p levels in the OncomiR database ($P=0.01428$). (C) Kaplan-Meier survival curves suggested that patients with high miR-9-3p + miR-9-5p + miR-433-3p levels had shorter OS times than those with low miR-9-3p + miR-9-5p + miR-433-3p levels in the OncomiR database ($P=0.008066$). (D) Kaplan-Meier survival curves suggested that patients with high miR-9 + miR-433 levels had shorter OS times than those with low miR-9 + miR-433 levels in the Kaplan–Meier Plotter database ($P=0.0047$). ****$P < 0.0001$, ***$P < 0.001$, **$P < 0.01$, *$P < 0.05$ and mean±SD were utilized to show the data.
Table 1 (on next page)

Primers of RT-qPCR.
miRNA symbol	Article number	Sequence
miR-9-3p	HmiRQP0824	CCATAAAGCTAGATAACCGAAAGTAA
miR-9-5p	HmiRQP0825	TCTTTGGTTATCTAGCTGTATGAAA
miR-146a-5p	HmiRQP0196	AGAACTGAATTCCATGGGTAAA
miR-370-3p	HmiRQP0456	GCTGGGGGTGGAACCTGGTAA
miR-433-3p	HmiRQP0502	TGATGGGCTCCTCGGTGAAA
miR-519a-5p	HmiRQP0591	TAGAGGGAAGCGCTTTCTGAAA
miR-522-5p	HmiRQP0591	TAGAGGGAAGCGCTTTCTGAAA
let-7g-5p	HmiRQP0015	TGAGGTAGTAGTTGTACAGTTAA
U6	HmiRQP9001	Not available
Table 2 (on next page)

35 differentially expressed miRNAs in sRNA-seq data and Kaplan-Meier Plotter analysis.
35 differentially expressed miRNAs in sRNA-seq data and Kaplan-Meier Plotter analysis.

miRNA	Counts	log₂FC	P-value	Hazard Ratio	P-value
hsa-miR-124-3p	457	-12.2235	1.2576E-16	0.75 (0.55 – 1.02)	0.0610
hsa-miR-9-5p	1155	-7.2625	1.0889E-15	1.56 (1.14 – 2.13)	0.0047**
hsa-miR-204-5p	238	-6.9301	4.0321E-12	0.73 (0.50 – 1.06)	0.0930
hsa-miR-146a-5p	4	6.1991	4.1414E-11	0.70 (0.52 – 0.95)	0.0230*
hsa-miR-129-5p	352	-5.3287	1.9485E-10	1.39 (0.99 – 1.93)	0.0540
hsa-miR-127-3p	84	-6.8789	1.1322E-09	1.30 (0.95 – 1.79)	0.0990
hsa-miR-211-5p	62	-9.3436	1.4691E-08	0.74 (0.53 – 1.04)	0.0810
hsa-miR-486-5p	21	3.1290	3.7724E-05	0.77 (0.55 – 1.07)	0.1200
hsa-miR-9-3p	18	-7.5647	0.0002	1.56 (1.14 – 2.13)	0.0047**
hsa-miR-381-3p	13	-7.0982	0.0010	1.26 (0.90 – 1.75)	0.1700
hsa-miR-3180	0	7.0281	0.0010	0.76 (0.55 – 1.05)	0.0910
hsa-miR-3180-3p	0	7.0281	0.0010	0.76 (0.55 – 1.05)	0.0910
hsa-miR-370-3p	11	-6.8591	0.0029	1.56 (1.14 – 2.13)	0.0053**
hsa-miR-135a-5p	10	-6.7228	0.0042	1.16 (0.85 – 1.58)	0.3500
hsa-miR-146b-5p	78	1.9311	0.0058	1.16 (0.83 – 1.62)	0.3900
hsa-miR-522-5p	9	-6.5723	0.0061	1.38 (1.01 – 1.89)	0.0400*
hsa-miR-519b-5p	9	-6.5723	0.0061	0.79 (0.58 – 1.07)	0.1200
hsa-miR-519a-5p	9	-6.5723	0.0061	1.39 (1.02 – 1.91)	0.0360*
hsa-miR-518c-5p	9	-6.5723	0.0061	0.78 (0.57 – 1.06)	0.1200
hsa-miR-523-5p	9	-6.5723	0.0061	0.77 (0.57 – 1.05)	0.0930
hsa-miR-519c-5p	9	-6.5723	0.0061	0.79 (0.58 – 1.08)	0.1400
hsa-miR-9-3p	18	-7.5647	0.0002	1.56 (1.14 – 2.13)	0.0047**
hsa-miR-381-3p	13	-7.0982	0.0010	1.26 (0.90 – 1.75)	0.1700
hsa-miR-3180	0	7.0281	0.0010	0.76 (0.55 – 1.05)	0.0910
hsa-miR-3180-3p	0	7.0281	0.0010	0.76 (0.55 – 1.05)	0.0910
hsa-miR-370-3p	11	-6.8591	0.0029	1.56 (1.14 – 2.13)	0.0053**
hsa-miR-135a-5p	10	-6.7228	0.0042	1.16 (0.85 – 1.58)	0.3500
hsa-miR-146b-5p	78	1.9311	0.0058	1.16 (0.83 – 1.62)	0.3900
hsa-miR-7977	0	6.5182	0.0061	1.75 (0.54 – 1.05)	0.0900
hsa-miR-543	8	-6.4043	0.0092	0.76 (0.55 – 1.05)	0.0990
hsa-miR-433-3p	8	-6.4043	0.0092	1.62 (1.20 – 2.20)	0.0017**
hsa-miR-1244	16	-2.6460	0.0144	0.74 (0.53 – 1.02)	0.0630
hsa-miR-486-3p	0	6.0391	0.0219	0.77 (0.55 – 1.07)	0.1200
hsa-miR-6724-5p	28	-1.9009	0.0264	0.74 (0.53 – 1.02)	0.0630
hsa-miR-663a	32	-1.8732	0.0287	0.74 (0.53 – 1.02)	0.0630
hsa-miR-124-5p	6	-5.9949	0.0348	0.75 (0.55 – 1.02)	0.0610
hsa-miR-382-5p	6	-5.9949	0.0348	1.31 (0.95 – 1.81)	0.1000
hsa-miR-1306-3p	0	5.8895	0.0348	0.82 (0.60 – 1.13)	0.2300
hsa-miR-1-3p	0	5.7226	0.0348	1.30 (0.95 – 1.76)	0.0980
hsa-miR-1285-5p	30	-1.6819	0.0366	0.74 (0.53 – 1.02)	0.0630
hsa-miR-3913-5p	2	2.5736	0.0382	1.23 (0.88 – 1.72)	0.2300
hsa-miR-181a-2-3p	60	1.4220	0.0429	1.35 (0.99 – 1.84)	0.0530
Table 3 (on next page)

7 selected miRNAs in sRNA-seq data and RT-qPCR verification in GC cells.
7 selected miRNAs in sRNA-seq data and RT-qPCR verification in GC cells.

miRNA	sRNA-seq	RT-qPCR		
	log₂FC	P-value	log₂FC	P-value
hsa-miR-9-3p	-7.5647	0.0002	3.6005	0.0013**
hsa-miR-9-5p	-7.2625	1.0889E-15	3.5865	0.0076**
hsa-miR-146a-5p	6.1991	4.1414E-11	-3.9956 <0.0001****	
hsa-miR-370-3p	-6.8591	0.0029	2.1172	0.0022**
hsa-miR-433-3p	-6.4043	0.0092	3.1024	<0.0001****
hsa-miR-519a-5p	-6.5723	0.0061	-5.2120 <0.0001****	
hsa-miR-522-5p	-6.5723	0.0061	-5.2120 <0.0001****	
Table 4 (on next page)

The correlation between miRNA expression and clinical parameters in GC patients (n=74).
The correlation between miRNA expression and clinical parameters in GC patients (n=74).

miRNA level	Cases(n)	Gender	Age (years)	Chemotherapy response	P-value			
		Male	Female	< 60	≥60	Sensitive	Resistant	
miR-9-3p	74	52	22	23	51	34	40	<0.0001****
low	37	24	13	9	28	24	13	
high	37	28	9	14	23	10	27	
miR-9-5p	74	52	22	23	51	34	40	<0.0001****
low	37	28	9	12	26	26	11	
high	37	24	13	12	25	8	29	
miR-146a-5p	74	52	22	23	51	34	40	<0.0001****
low	37	26	11	12	25	12	25	
high	37	26	11	11	26	22	15	
miR-370-3p	74	52	22	23	51	34	40	
low	37	23	14	13	24	20	17	0.0611
high	37	29	8	10	27	14	23	
miR-433-3p	74	52	22	23	51	34	40	
low	37	24	13	9	28	24	13	<0.0001****
high	37	28	9	14	23	10	27	
miR-519a-5p	74	52	22	23	51	34	40	
low	37	24	13	9	28	18	19	0.4028
high	37	28	9	14	23	16	21	
miR-522-5p	74	52	22	23	51	34	40	
low	37	24	13	9	28	18	19	0.4028
high	37	28	9	14	23	16	21	
Table 5 (on next page)

ROC analysis of miRNAs.
miRNA	AUC	SD	95%CI	SE (%)	SP (%)	P value
miR-9-3p	0.82	4	0.731-0.916	70.6	67.5	<0.0001***
miR-9-5p	0.85	6	0.773-0.939	76.5	72.5	<0.0001***
miR-146a-5p	0.79	9	0.697-0.900	64.7	62.5	<0.0001***
miR-433-3p	0.83	8	0.750-0.925	70.6	67.5	<0.0001***
miR-9-3p + miR-9-5p	0.88	9	0.818-0.960	82.5	76.5	<0.0001***
miR-9-3p + miR-146a-5p	0.90	3	0.836-0.969	80	76.5	<0.0001***
miR-9-3p + miR-433-3p	0.86	5	0.787-0.944	77.5	73.5	<0.0001***
miR-9-5p + miR-146a-5p	0.90	1	0.834-0.967	80	79.4	<0.0001***
miR-9-5p + miR-433-3p	0.89	8	0.830-0.965	77.5	76.5	<0.0001***
miR-146a-5p + miR-433-3p	0.88	5	0.813-0.956	77.5	73.5	<0.0001***
miR-9-3p + miR-9-5p + miR-146a-5p	0.93	7	0.877-0.983	82.5	73.5	<0.0001***
miR-9-3p + miR-9-5p + miR-433-3p	0.91	5	0.856-0.975	80	79.4	<0.0001***
miR-9-3p + miR-146a-5p + miR-433-3p	0.91	8	0.858-0.979	82.5	82.4	<0.0001***
	0.92	0.02	0.871-0.980	85	76.5	<0.0001****
----------------	------	------	-------------	------	------	-------------
miR-9-5p + miR-146a-5p + miR-433-3p	0.92	0.02	0.871-0.980	85	76.5	<0.0001****
miR-9-3p + miR-9-5p + miR-146a-5p + miR-433-3p	0.93	0.02	0.887-0.987	82.5	76.5	<0.0001****
Table 6 (on next page)

Pairwise comparison of ROC curves.
Pairwise comparison of ROC curves.

Compared areas	DBA	SE	95% CI	P value																																
miR-9-5p versus miR-9-5p + miR-9-3p	0.03	0.02	0.019~0.08	0.212																																
miR-9-5p versus miR-9-5p + miR-146a-5p	0.04	0.03	0.021~0.11	0.176																																
miR-9-5p versus miR-9-5p + miR-433-3p	0.04	0.02	0.012~0.09	0.127																																
miR-9-5p + miR-9-3p versus miR-9-5p + miR-9-3p + miR-146a-5p	0.04	0.02	0.007~0.08	0.094																																
miR-9-5p + miR-9-3p versus miR-9-5p + miR-9-3p + miR-433-3p	0.02	0.01	0.009~0.06	0.143																																
miR-9-5p + miR-146a-5p versus miR-9-5p + miR-146a-5p + miR-9-3p	0.02	0.01	0.009~0.06	0.131																																
miR-9-5p + miR-146a-5p versus miR-9-5p + miR-146a-5p + miR-433-3p	0.01	0.03	0.050~0.07	0.654																																
miR-9-5p + miR-433-3p versus miR-9-5p + miR-433-3p + miR-9-3p	0.01	0.01	0.017~0.05	0.314																																
miR-9-5p + miR-433-3p versus miR-9-5p + miR-433-3p + miR-146a-5p	0.02	0.02	0.016~0.07	0.21																																
Comparison	p-value	1	2	3	4	6	7	8	9	0.00	0.01	0.013~0.02	0.018~0.06	0.013~0.03	0.009~0.14	0.001~0.12	0.005~0.13	0.015~0.14	0.003~0.09	0.004~0.07	0.011~0.08	0.514	0.288	0.378	0.026	0.045	0.016	0.066	0.124							
---	---------	-----	-----	-----	-----	-----	-----	-----	-----	------	------	----------------	--------------	--------------	---------------	--------------	---------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------										
miR-9-5p + miR-9-3p + miR-146a-5p versus miR-9-5p + miR-9-3p + miR-146a-5p		0.00	7	0.01	6						0.013~0.02				0.018~0.06		0.013~0.03	0.009~0.14	0.001~0.12	0.005~0.13	0.015~0.14	0.003~0.09	0.004~0.07	0.011~0.08	0.514	0.288	0.378	0.026	0.045	0.016	0.066	0.124				
miR-9-5p + miR-9-3p + miR-433-3p versus miR-9-5p + miR-9-3p + miR-433-3p + miR-146a-5p	0.02	1	0.02	6	0.018~0.06					0.001~0.12			0.013~0.03			0.005~0.13		0.0015~0.14			0.003~0.09		0.004~0.07	0.011~0.08	0.514	0.288	0.378	0.045	0.016		0.066	0.124				
miR-9-5p + miR-146a-5p + miR-433-3p versus miR-9-5p + miR-146a-5p + miR-433-3p + miR-9-3p		0.01	1	0.01	3	0.013~0.03										0.013~0.03								0.009~0.14	0.001~0.12											
miR-9-5p versus miR-9-5p + miR-9-3p + miR-146a-5p	0.07	5	0.03	4	2	0.009~0.14										0.001~0.12									0.005~0.13		0.015~0.14									
miR-9-5p versus miR-9-5p + miR-9-3p + miR-433-3p	0.06	1	0.03	4	2	0.001~0.12										0.001~0.12										0.005~0.13		0.015~0.14								
miR-9-5p versus miR-9-5p + miR-146a-5p + miR-433-3p	0.07	1	0.03	4	7	0.005~0.13										0.005~0.13										0.015~0.14		0.016								
miR-9-5p + miR-9-3p + miR-146a-5p + miR-433-3p	0.08	2	0.03	4	9	0.015~0.14										0.015~0.14										0.016										
miR-9-5p + miR-9-3p + miR-9-3p + miR-146a-5p + miR-433-3p	0.04	8	0.02	6	9	0.003~0.09										0.003~0.09										0.003~0.09		0.066								
miR-9-5p + miR-146a-5p + miR-9-3p + miR-146a-5p + miR-433-3p	0.03	6	0.02	1	7	0.004~0.07										0.004~0.07									0.004~0.07		0.081									
miR-9-5p + miR-433-3p + miR-9-3p + miR-146a-5p	0.03	9	0.02	5	9	0.011~0.08										0.011~0.08										0.011~0.08		0.124								
Table 7 (on next page)

Four selected miRNAs and their combinations in three public database for prognostic analysis.
Four selected miRNAs and their combinations in three public databases for prognostic analysis.

miRNA and Combination	OncoLn P-value	OncomiR P-value	Kaplan-Meier Plotter P-value
miR-9-3p	0.0084**	0.0664	0.0047**
miR-9-5p	0.0018**	0.0044**	0.0047**
miR-146a-5p	0.1460	0.0460*	0.0230*
miR-433-3p	0.0311*	0.0565	0.0017**
miR-9-3p + miR-9-5p	None	0.0034**	0.0047**
miR-9-3p + miR-146a-5p	None	0.6535	0.0017**
miR-9-3p + miR-433-3p	None	0.2405	0.0047**
miR-9-5p + miR-146a-5p	None	0.3989	0.0017**
miR-9-5p + miR-433-3p	None	0.0143*	0.0047**
miR-146a-5p + miR-433-3p	None	0.1278	0.0230*
miR-9-3p + miR-9-5p + miR-146a-5p	None	0.6655	0.0017**
miR-9-3p + miR-9-5p + miR-433-3p	None	0.0081**	0.0047**
miR-9-3p + miR-146a-5p + miR-433-3p	None	0.5808	0.0020**
miR-9-5p + miR-146a-5p + miR-433-3p	None	0.5782	0.0020**
miR-9-3p + miR-9-5p + miR-146a-5p + miR-433-3p	None	0.4551	0.0020**