SCHRÖDINGER TYPE OPERATORS WITH UNBOUNDED DIFFUSION
AND POTENTIAL TERMS

A. CANALE, A. RHANDI, AND C. TACELLI

Abstract. We prove that the realization A_p in $L^p(\mathbb{R}^N)$, $1 < p < \infty$, of the Schrödinger type operator $A = (1 + |x|^\alpha)\Delta - |x|^{\beta}$ with domain $D(A_p) = \{ u \in W^{2,p}(\mathbb{R}^N) : Au \in L^p(\mathbb{R}^N) \}$ generates a strongly continuous analytic semigroup provided that $N > 2$, $\alpha > 2$, and $\beta > \alpha - 2$. Moreover this semigroup is consistent, irreducible, immediately compact and ultracontractive.

1. Introduction

In this paper we study the generation of analytic semigroups in L^p-spaces of Schrödinger type operators of the form

(1.1) \quad Au(x) = a(x)\Delta u(x) - V(x)u(x), \quad x \in \mathbb{R}^N,

where $a(x) = 1 + |x|^\alpha$ and $V(x) = |x|^\beta$ with $\alpha > 2$ and $\beta > \alpha - 2$. We investigate also spectral properties of such semigroups. In the case when $\alpha \in [0,2]$ and $\beta \geq 0$, generation results of analytic semigroups for suitable realizations A_p of the operator A in $L^p(\mathbb{R}^N)$ have been proved in [4].

For $\beta = 0$ and $\alpha > 2$, the generation results depend upon N as it is proved in [7]. More specifically, if $N = 1, 2$ no realization of A in $L^p(\mathbb{R}^N)$ generates a strongly continuous (resp. analytic) semigroup. The same happens if $N \geq 3$ and $p \leq N/(N-2)$. On the other hand, if $N \geq 3$ and $p > N/(N-2)$, then the maximal realization A_p of the operator A in $L^p(\mathbb{R}^N)$ generates a positive analytic semigroup, which is also contractive if $\alpha \geq (p-1)(N-2)$.

Generation results concerning the case where $\beta = 0$ and with drift terms of the form $|x|^\alpha - 2 x$ were obtained recently in [8].

Here we consider the case where $\alpha > 2$ and assume that $N > 2$. Let us denote by A_p the realization of A in $L^p(\mathbb{R}^N)$ endowed with its maximal domain

(1.2) \quad D_{p,max}(A) = \{ u \in L^p(\mathbb{R}^N) \cap W^{2,p}_{loc}(\mathbb{R}^N) : Au \in L^p(\mathbb{R}^N) \}.

In the main result of the paper we prove that, for any $1 < p < \infty$, the realization A_p of A in $L^p(\mathbb{R}^N)$, with domain

$D(A_p) = \{ u \in W^{2,p}(\mathbb{R}^N) : Au \in L^p(\mathbb{R}^N) \},$

generates a positive strongly continuous and analytic semigroup $(T_p(t))_{t \geq 0}$ for any $\beta > \alpha - 2$. This semigroup is also consistent, irreducible, immediately compact and ultracontractive.

The paper is structured as follows. In Section 2 we study the invariance of $C_0(\mathbb{R}^N)$ under the semigroup generated by A in $C_b(\mathbb{R}^N)$ and show its compactness. In Section 3 we use
It is well-known that equations (2.1) admit at least a solution in $L^p(\mathbb{R}^N)$. Then, in Section 4 we prove the generation results.

Notation. For any $k \in \mathbb{N} \cup \{\infty\}$ we denote by $C^k_c(\mathbb{R}^N)$ the set of all functions $f : \mathbb{R}^N \to \mathbb{R}$ that are continuously differentiable in \mathbb{R}^N up to k-th order and have compact support (say $\text{supp}(f)$). The space $C_b(\mathbb{R}^N)$ is the set of all bounded and continuous functions $f : \mathbb{R}^N \to \mathbb{R}$, and we denote by $\|f\|_\infty$ its sup-norm, i.e., $\|f\|_\infty = \sup_{x \in \mathbb{R}^N} |f(x)|$. We use also the space $C_0(\mathbb{R}^N) := \{f \in C_b(\mathbb{R}^N) : \lim_{|x| \to \infty} f(x) = 0\}$. If f is smooth enough we set
\[
|\nabla f(x)|^2 = \sum_{i=1}^N |D_i f(x)|^2, \quad |D^2 f(x)|^2 = \sum_{i,j=1}^N |D_{ij} f(x)|^2.
\]

For any $x_0 \in \mathbb{R}^N$ and any $r > 0$ we denote by $B(x_0, r) \subset \mathbb{R}^N$ the open ball, centered at x_0 with radius r. We simply write $B(r)$ when $x_0 = 0$. The function χ_E denotes the characteristic function of the (measurable) set E, i.e., $\chi_E(x) = 1$ if $x \in E$, $\chi_E(x) = 0$ otherwise.

For any $p \in [1, \infty)$ and any positive measure $d\mu$, we simply write L^p_μ instead of $L^p(\mathbb{R}^N, d\mu)$. The Euclidean inner product in L^2_μ is denoted by $(\cdot, \cdot)_\mu$. In the particular case when μ is the Lebesgue measure, we keep the classical notation $L^p(\mathbb{R}^N)$ for any $p \in [1, \infty)$. Finally, by $x \cdot y$ we denote the Euclidean scalar product of the vectors $x, y \in \mathbb{R}^N$.

2. Generation of semigroups in $C_0(\mathbb{R}^N)$

In this section we recall some properties of the elliptic and parabolic problems associated with A in $C_b(\mathbb{R}^N)$. We prove the existence of a Lyapunov function for A in the case where $\alpha > 2$ and $\beta > \alpha - 2$. This implies the uniqueness of the solution semigroup $(T(t))_{t \geq 0}$ to the associated parabolic problem. Using a dominating argument, we show that $T(t)$ is compact and $T(t)C_0(\mathbb{R}^N) \subset C_0(\mathbb{R}^N)$.

First, we endow A with its maximal domain in $C_b(\mathbb{R}^N)$
\[
D_{\text{max}}(A) = \{u \in C_b(\mathbb{R}^N) \cap W^{2,p}_{\text{loc}}(\mathbb{R}^N), \ 1 \leq p < \infty : Au \in C_b(\mathbb{R}^N)\}.
\]

Then, we consider for any $\lambda > 0$ and $f \in C_b(\mathbb{R}^N)$ the elliptic equation
\[
(2.1) \quad \lambda u - Au = f.
\]

It is well-known that equations (2.1) admit at least a solution in $D_{\text{max}}(A)$ (see [3] Theorem 2.1.1). A solution is obtained as follows.

Take the unique solution to the Dirichlet problem associated with $\lambda - A$ into the balls $B(0, n)$ for $n \in \mathbb{N}$. Using an Schauder interior estimates one can prove that the sequence of solutions so obtained converges to a solution u of (2.1). It is also known that a solution to (2.1) is in general not unique. The solution u, which we obtained by approximation, is nonnegative whenever $f \geq 0$.

As regards the parabolic problem
\[
(2.2) \quad \begin{cases} u_t(t,x) = Au(t,x) & x \in \mathbb{R}^N, \ t > 0, \\
\ t(t, x) = f(x) & x \in \mathbb{R}^N, \end{cases}
\]
where \(f \in C_b(\mathbb{R}^N) \), it is well-known that one can associate a semigroup \((T(t))_{t \geq 0}\) of bounded operator in \(C_b(\mathbb{R}^N) \) such that \(u(t, x) = T(t)f(x) \) is a solution of (2.2) in the following sense:

\[
u \in C([0, +\infty) \times \mathbb{R}^N) \cap C^{1+\frac{\gamma}{2}+\sigma}_{loc}(0, +\infty) \times \mathbb{R}^N)\]

and \(u \) solves (2.2) for any \(f \in C_b(\mathbb{R}^N) \) and some \(\sigma \in (0, 1) \). Uniqueness of solutions to (2.2) in general is not guaranteed. Moreover the semigroup \((T(t))_{t \geq 0}\) is not strongly continuous in \(C_b(\mathbb{R}^N) \) and do not preserve in general the space \(C_b(\mathbb{R}^N) \). For more details we refer to Section 2.

Uniqueness is obtained if there exists a positive function \(\varphi(x) \in C^2(\mathbb{R}^N) \), called Lyapunov function, such that \(\lim_{|x| \to \infty} \varphi(x) = +\infty \) and \(A\varphi - \lambda \varphi \leq 0 \) for some \(\lambda > 0 \).

Proposition 2.1. Let \(N > 2, \alpha > 2 \) and \(\beta > \alpha - 2 \). Let \(\varphi = 1 + |x|^\gamma \) where \(\gamma > 2 \) then there existence constant \(C > 0 \) such that

\[A\varphi \leq C\varphi \]

Proof. An easy computation gives

\[A\varphi = \gamma(N + \gamma - 2)(1 + |x|^\alpha)|x|^\gamma - 2 - (1 + |x|^\gamma)|x|^\beta, \]

then since \(\beta > \alpha - 2 \) there existence \(C > 0 \) such that

\[\gamma(N + \gamma - 2)(1 + |x|^\alpha)|x|^\gamma - 2 \leq (1 + |x|^\gamma)|x|^\beta + C(1 + |x|^\gamma). \]

Then we can assert that problem (2.2) admits an unique solution in \(C([0, \infty) \times \mathbb{R}^N) \cap C^{1,2}((0, \infty) \times \mathbb{R}^N) \) and problem (2.1) admits an unique solutions in \(D_{max}(A) \).

In order to investigate the compactness of the semigroup and the invariance of \(C_0(\mathbb{R}^N) \) we check the behaviour of \(T(t) \). We use the following result (see Theorem 5.1.11).

Theorem 2.2. Let us fix \(t > 0 \). Then \(T(t) \in C_0(\mathbb{R}^N) \) if and only if \(T(t) \) is compact and \(C_0(\mathbb{R}^N) \) is invariant for \(T(t) \).

Let \(A_0 \) be the operator defined by \(A_0 := a(x)\Delta \). By Example 7.3 or Proposition 2.2 (iii), we have that the minimal semigroup \((S(t))\) is generated by \((A_0, D_{max}(A_0)) \cap C_0(\mathbb{R}^N) \). Moreover the resolvent and the semigroup map \(C_0(\mathbb{R}^N) \) into \(C_0(\mathbb{R}^N) \) and are compact.

Set \(v(t, x) = S(t)f(x) \) and \(u(t, x) = T(t)f(x) \) for \(t > 0, x \in \mathbb{R}^N \) and \(0 \leq f \in C_0(\mathbb{R}^N) \). Then the function \(w(t, x) = v(t, x) - u(t, x) \) solves

\[
\begin{align*}
 w(t, x) &= A_0w(t, x) + V(x)u(t, x), \quad t > 0, \\
 w(0, x) &= 0, \quad x \in \mathbb{R}^N.
\end{align*}
\]

So, applying Theorem 4.1.3, we have \(w \geq 0 \) and hence \(T(t) \leq S(t) \). Thus, \(T(t) \in C_0(\mathbb{R}^N) \), since \(S(t) \in C_0(\mathbb{R}^N) \) for any \(t > 0 \) (see Proposition 2.2 (iii)). Thus, \(T(t) \) is compact and \(C_0(\mathbb{R}^N) \) is invariant for \(T(t) \) (cf. Theorem 5.1.11)). Then we have proved the following proposition

Proposition 2.3. The semigroup \((T(t))\) is generated by \((A, D_{max}(A)) \cap C_0(\mathbb{R}^N) \), maps \(C_0(\mathbb{R}^N) \) into \(C_0(\mathbb{R}^N) \), and is compact.
3. Solvability of the elliptic problem in $L^p(\mathbb{R}^N)$

In this section we study the existence and uniqueness of the elliptic problem $\lambda u - A_p u = f$ for a given $f \in L^p(\mathbb{R}^N)$, $1 < p < \infty$ and $\lambda \geq 0$. Let us consider first the case $\lambda = 0$.

We note that the equation $(1 + |x|^\alpha)\Delta u - V u = f$ is equivalent to the equation

$$\Delta u - \frac{V}{1 + |x|^\alpha}u = \frac{f}{1 + |x|^\alpha} =: \tilde{f}.$$

Therefore we focus our attention to the L^p-realization \tilde{A}_p of the Schrödinger operator

$$\tilde{A} = \Delta - \frac{V}{1 + |x|^\alpha} = \Delta - \tilde{V}.$$

Here $0 \leq \tilde{V} \in L^1_{\text{loc}}(\mathbb{R}^N)$. So, by standard results, it follows that $0 \in \rho(\tilde{A}_p)$ and

$$(-\tilde{A}_p)^{-1}\tilde{f}(x) = \int_{\mathbb{R}^N} G(x,y)\tilde{f}(y)dy,$$

where G denotes the Green function of \tilde{A}_p which is given by its heat kernel \tilde{p}

$$G(x,y) = \int_0^\infty \tilde{p}(t,x,y)dt.$$

Thus the function $u = \int_{\mathbb{R}^N} G(x,y)\frac{f(y)}{1 + |y|^\alpha}dy \in D_{\text{p,max}}(A)$ and solves $A_p u = f$ for every $f \in L^p(\mathbb{R}^N)$. So we have to study the operator

$$u(x) = Lf(x) := \int_{\mathbb{R}^N} G(x,y)\frac{f(y)}{1 + |y|^\alpha}dy.$$

To this purpose, we use the bounds of $G(x,y)$ obtained in [11] when the potential of \tilde{A}_p belongs to the reverse Hölder class B_q for some $q \geq N/2$.

We recall that a nonnegative locally L^q-integrable function V on \mathbb{R}^N is said to be in B_q, $1 < q < \infty$, if there exists $C > 0$ such that the reverse Hölder inequality

$$\left(\frac{1}{|B|} \int_B V^q(x)dx \right)^{1/q} \leq C \left(\frac{1}{|B|} \int_B V(x)dx \right)$$

holds for every ball B in \mathbb{R}^N. A nonnegative function $V \in L^\infty_{\text{loc}}(\mathbb{R}^N)$ is in B_∞ if

$$\|V\|_{L^\infty(B)} \leq C \left(\frac{1}{|B|} \int_B V(x)dx \right)$$

for any ball B in \mathbb{R}^N.

One can easily verify that

$$\tilde{V} \in \begin{cases}
B_\infty & \text{if } \beta - \alpha \geq 0 \\
B_q & \text{if } \beta - \alpha > -\frac{N}{q} \\
B_{\frac{q}{2}} & \text{if } \beta - \alpha > -2 \\
B_{N} & \text{if } \beta - \alpha > -1
\end{cases}$$
for some \(q > 1 \). So, it follows from \([11\), Theorem 2.7\] that, if \(\beta - \alpha > -2 \) then for any \(k > 0 \) there is some constant \(C_k > 0 \) such that for any \(x, y \in \mathbb{R}^N \)

\[
|G(x, y)| \leq C_k \frac{1}{(1 + m(x)|x - y|)^k} \cdot \frac{1}{|x - y|^{N-2}},
\]

where the function \(m \) is defined by

\[
\frac{1}{m(x)} := \sup_{r > 0} \left\{ r : \frac{1}{r^{N-2}} \int_{B(x, r)} \tilde{V}(y) dy \leq 1 \right\}, \quad x \in \mathbb{R}^N.
\]

Due to the importance of the auxiliary function \(m \) we give a lower bound.

Lemma 3.1. Let \(\alpha - 2 < \beta < \alpha \). There exists \(C = C(\alpha, \beta, N) \) such that

\[
m(x) \geq C (1 + |x|) \frac{2\alpha}{\alpha - \beta}.
\]

Proof. Fix \(x \in \mathbb{R}^N \), and set \(f_x(r) = \frac{1}{r^{N-2}} \int_{B(x, r)} \tilde{V}(y) dy, r > 0 \). Since \(\tilde{V} \in B_{N/2} \) implies \(V \in B_q \) for some \(q > \frac{N}{2} \), by \([11\, Lemma 1.2]\), we have

\[
\lim_{r \to 0} f_x(r) = 0 \quad \text{and} \quad \lim_{r \to \infty} f_x(r) = \infty.
\]

Thus, \(0 < m(x) < \infty \).

In order to estimate \(\frac{1}{m(x)} \) we need to find \(r_0 = r_0(x) \) such that \(r \in [r_0, \infty[\) implies \(f_x(r) \geq 1 \).

In this case we will have \(\frac{1}{m(x)} \leq r_0 \).

Since \(\tilde{V} \in B_{N/2} \), there exists a constant \(C_1 \) depending only \(\alpha, \beta, N \) such that

\[
\left(\frac{1}{|B|} \int_B \tilde{V}^{N/2}(y) dy \right)^{2/N} \leq C_1 \left(\frac{1}{|B|} \int_B \tilde{V}(y) dy \right)
\]

for any ball \(B \) in \(\mathbb{R}^N \). Then we have

\[
f_x(r) = \frac{\sigma_{N-2}^2}{|B(x, r)|} \int_{B(x, r)} \tilde{V}(y) dy \\
\geq \frac{\sigma_{N-2}^2}{C_1} \left(\frac{1}{|B(x, r)|} \int_{B(x, r)} \tilde{V}(y)^{N/2} dy \right)^{2/N} \\
= \frac{\sigma_{N-2}^2}{C_1} \left(\int_{B(x, r)} \tilde{V}(y)^{N/2} dy \right)^{2/N}.
\]

Hence, if

\[
\int_{B(x, r)} \tilde{V}(y)^{N/2} dy > C_2 \geq 0,
\]

then \(f_x(r) \geq 1 \), where \(C_2 = C_2(\alpha, \beta, N) = \frac{C_{N/2}^{N/2}}{\sigma_{N-2}^{N-2}} \). Note that \(\tilde{V} \geq \tilde{V}^* \) in \(\mathbb{R}^N \setminus B(0, 1) \) with \(\tilde{V}^*(x) = \frac{1}{4} |x|^\beta - \alpha \). Hence,

\[
\int_{B(x, r)} \tilde{V}(y)^{N/2} dy \geq \int_{B(x, r) \setminus B(0, 1)} \tilde{V}(y)^{N/2} dy \geq \int_{B(x, r) \setminus B(0, 1)} \tilde{V}^*(y)^{N/2} dy
\]
\[
\int_{B(x,r)} \tilde{V}^*(y)^{N/2} dy \geq \int_{B(x,r) \cap B(0,1)} \tilde{V}^*(y)^{N/2} dy
\]

\[
\int_{B(x,r)} \tilde{V}^*(y)^{N/2} dy - \int_{B(0,1)} \tilde{V}^*(y)^{N/2} dy
\]

\[
= \int_{B(x,r)} (V^*)^N dy - \frac{2^{1-N/2} \sigma_{N-1}}{N(2-\alpha+\beta)}
\]

\[
(3.8)
\]

\[
\geq \sigma_{N-1} r_N \inf_{B(x,r)} (\tilde{V}^*)^N/C_3(\alpha, \beta, N)
\]

\[
(3.9)
\]

Let \(\eta = \frac{\alpha-\beta}{2} < 1 \) and \(\delta > 0 \) a parameter to be choose later, and set

\[
r_0 = \delta(1 + |x|)^\eta.
\]

By (3.8) condition (3.7) became

\[
\int_{B(x,r_0)} \tilde{V}^*(y)^{N/2} dy - C_2 \geq \sigma_{N-1} r_0^N \frac{\alpha-\beta}{N} - C_2 - C_3
\]

\[
= \sigma_{N-1} \frac{\delta^N (1 + |x|)^\eta \alpha-\beta}{(1 + |x| + \delta(1 + |x|)^\eta)^{\alpha-\beta}} - C_4
\]

\[
\geq \sigma_{N-1} \frac{\delta^N (1 + |x|)^\eta \alpha-\beta}{(1 + |x| + \delta(1 + |x|)^\eta)^{\alpha-\beta}} - C_4
\]

\[
\geq \sigma_{N-1} \frac{\delta^N (1 + |x|)^\eta \alpha-\beta}{((\delta + 1)(1 + |x|)^\eta)^{\alpha-\beta}} - C_4
\]

\[
= \sigma_{N-1} \frac{\delta}{(1 + \delta)^{\alpha-\beta}} - C_4.
\]

Since \(\frac{\alpha-\beta}{2} < 1 \) we can choose \(\delta > 0 \) such that \(\sigma_{N-1} \left(\frac{\delta}{(1 + \delta)^{\alpha-\beta}} \right)^N - C_4 \geq 0 \).

So, (3.7) is satisfied for \(r = r_0 \) and hence it is satisfied for any \(r > r_0 \). Thus, \(f_\infty(r) > 1 \) for \(r > r_0 \), and, hence, \(\frac{1}{m(x)} \leq r_0 = \delta(1 + |x|)^\eta \).

The same lower bound holds in the case \(\beta \geq \alpha \) as the following lemma shows.

Lemma 3.2. Let \(\beta \geq \alpha \). There exists \(C = C(\alpha, \beta, N) \) such that

\[
m(x) \geq C (1 + |x|)^{\frac{\beta-\alpha}{2}}.
\]

Proof. From [11] Lemma 1.4 (c)], there exist \(C_1 > 0 \) and \(0 < \eta_0 < 1 \) such that

\[
m(x) \geq \frac{C_1 m(y)}{(1 + |x - y|m(y))^{\eta_0}}.
\]
In particular,
\[m(x) \geq \frac{C_1 m(0)}{(1 + |x| m(0))^{\eta_0}}, \]
where \(\frac{1}{m(0)} = \sup_{r > 0} \{ r : f_0(r) \leq 1 \} \) with
\[f_0(r) = \frac{1}{r^{N-2}} \int_{B(0,r)} \frac{|z|^\beta}{1 + |z|^\alpha} \, dz = \frac{\sigma_{N-1}}{r^{N-2}} \int_0^r \frac{\rho^{\beta + N-1}}{1 + \rho^\alpha} \, d\rho. \]
We have \(\frac{\sigma_{N-1}}{(\beta + N)(1 + r^\alpha)} r^{\beta+2} \leq f_0(r) \leq \frac{\sigma_{N-1}}{\beta + N} r^{\beta+2} \). Since \(\beta > 0 \) and \(\beta - \alpha + 2 > 0 \) it follows that \(\lim_{r \to 0} f_0(r) = 0 \) and \(\lim_{r \to \infty} f_0(r) = \infty \). Consequently,
\[0 < \sup_{r > 0} \{ r : f_0(r) \leq 1 \} < \infty \]
and, hence, \(m(0) = C_2 \) for some constant \(C_2 > 0 \). Then
\[(3.11) \quad m(x) \geq \frac{C_1 C_2}{(1 + C_2 |x|)^{\eta_0}} \geq \frac{C_3}{(1 + |x|)^{\eta_0}} \]
for some constant \(C_3 > 0 \).

On the other hand, since \(\beta \geq \alpha \), we obtain by (3.3) that \(\tilde{V} \in B_{\infty} \). Then, by [11, Remark 2.9], we have
\[(3.12) \quad m(x) \geq C_3 \tilde{V}^{1/2}(x) \geq C_6 |x|^{\frac{\beta}{2}} (1 + |x|)^{-\frac{\alpha}{2}}. \]
The thesis follows taking into account (3.11) and (3.12).

Applying the estimate (3.4) and the previous lemma we obtain the following upper bounds for the Green function \(G \).

Lemma 3.3. Let \(G(x, y) \) denotes the Green function of the Schrödinger operator \(\Delta - \frac{|x|^\beta}{1 + |x|^\alpha} \) and assume that \(\beta > \alpha - 2 \). Then,
\[(3.13) \quad G(x, y) \leq C_k \frac{1}{1 + |x - y|^k} \frac{1}{(1 + |y|)^{\frac{\beta - \alpha}{2} - k}} \frac{1}{|x - y|^{N-2},} \quad x, y \in \mathbb{R}^N \]
for any \(k > 0 \) and some constant \(C_k > 0 \) depending on \(k \).

Using the above lemma we have the following estimate.

Lemma 3.4. Assume that \(\alpha > 2 \), \(N > 2 \) and \(\beta > \alpha - 2 \). Then there exists a positive constant \(C \) such that for every \(0 \leq \gamma \leq \beta \) and \(f \in L^p(\mathbb{R}^N) \)
\[(3.14) \quad \| |x|^\gamma L f \|_p \leq C \| f \|_p, \]
where \(L \) is defined in (3.2).

Proof. Let \(\Gamma(x, y) = \frac{G(x, y)}{1 + |y|} \), \(f \in L^p(\mathbb{R}^N) \) and
\[u(x) = \int_{\mathbb{R}^N} \Gamma(x, y) f(y) \, dy. \]
We have to show that
\[\| |x|^\gamma u \|_p \leq C \| f \|_p. \]
Let us consider the regions $E_1 := \{|x - y| \leq (1 + |y|)\}$ and $E_2 := \{|x - y| > (1 + |y|)\}$ and write

$$u(x) = \int_{E_1} \Gamma(x, y) f(y) dy + \int_{E_2} \Gamma(x, y) f(y) dy =: u_1(x) + u_2(x).$$

In E_1 we have

$$1 + |x| \leq 1 + |x - y| + |y| \leq 2.$$

So, by Lemma 8.2,

$$||x|^\gamma u_1(x)| \leq |x|^\gamma \int_{E_1} \Gamma(x, y)|f(y)|dy \leq \frac{1 + |x|^{\beta}}{1 + |y|^\alpha} \int_{E_1} |G(x, y)|f(y)dy \leq C(1 + |x|)^{\beta - \alpha} \int_{\mathbb{R}^N} G(x, y)|f(y)|dy \leq Cm^2(x)\tilde{u}(x),$$

where $\tilde{u}(x) = \int_{\mathbb{R}^N} G(x, y)|f(y)|dy$. By (3.3) we have $\tilde{V} \in B_{\frac{3}{2}}$. So applying Corollary 2.8, we obtain $||m^2\tilde{u}_p|| \leq C||f||_p$ and then $|||x|^\gamma u_1||_p \leq C||f||_p$.

In the region E_2, we have, by Hölder’s inequality,

$$||x|^\gamma u_2(x)| \leq |x|^\gamma \int_{E_2} \Gamma(x, y)|f(y)|dy = \int_{E_2} (|x|^\gamma \Gamma(x, y))^\frac{1}{p} (|x|^\gamma \Gamma(x, y))^{\frac{1}{p}} |f(y)|dy \leq \bigg(\int_{E_2} |x|^\gamma \Gamma(x, y)dy \bigg)^\frac{1}{p} \bigg(\int_{E_2} |x|^\gamma \Gamma(x, y)|f(y)|^p dy \bigg)^\frac{1}{p}. (3.15)$$

We propose to estimate first $\int_{E_2} |x|^\gamma \Gamma(x, y)dy$. In E_2 we have $1 + |x| \leq 1 + |y| + |x - y| \leq 2|x - y|$, then from (3.13) it follows that

$$|x|^\gamma \Gamma(x, y) \leq |x|^\gamma G(x, y) \leq \frac{1 + |x|^{\beta}}{|x - y|^k (1 + |y|)^{k - \beta N - 2} |x - y|^{N - 2}} \leq C \frac{1}{|x - y|^k (1 + |y|)^{k - \beta N - 2} |x - y|^{N - 2}}.$$

For every $k > \beta - N + 2$, taking into account that $\frac{1}{|x - y|} < \frac{1}{1 + |y|}$, we get

$$|x|^\gamma \Gamma(x, y) \leq \frac{1}{(1 + |y|)^{k - \beta N - 2} |x - y|^{N - \beta}}.$$

Since $\beta - \alpha + 2 > 0$ we can choose k such that $\frac{k}{2}(\beta - \alpha + 2) + N - 2 - \beta > N$, then

$$\int_{E_2} |x|^\gamma \Gamma(x, y)dy \leq \int_{E_2} |x|^\gamma G(x, y)dy \leq C \int_{\mathbb{R}^N} \frac{1}{(1 + |y|)^{k - \beta N - 2} |x - y|^{N - \beta}} dy < C.$$

Moreover by the symmetry of G we have

$$|x|^\gamma \Gamma(x, y) \leq |x|^\gamma G(x, y) \leq \frac{1 + |x|^{\beta}}{|x - y|^k (1 + |x|)^{k - \beta N - 2} |x - y|^{N - 2}}.$$
Taking into account that \(\frac{1}{|x-y|} \leq 2 \frac{1}{1+|x|} \), arguing as above we obtain

\[
\int_{E_2} |x|^\gamma \Gamma(x,y) dx \leq C.
\]

Hence (3.15) implies

\[
|||x|^\gamma u_2(x)|^p \leq C \int_{E_2} |x|^\gamma \Gamma(x,y) f(y)^p dy.
\]

Thus, by (3.17) and (3.16), we have

\[
\left\| \frac{1}{|x|^\alpha} \right\| \| | \frac{1}{|x|^\beta} \| \leq C \int_{E_2} |x|^\gamma \Gamma(x,y) f(y)^p dy dx
\]

\[
= C \int_{E_2} f(y)^p \left(\int_{E_2} |x|^\gamma \Gamma(x,y) dx \right) dy \leq C \| f \|_p^p.
\]

\[\Box\]

We are now ready to show the invertibility of \(A_p \) and \(D(A_p) \subset D(V) \).

Proposition 3.5. Assume that \(N > 2 \), \(\alpha > 2 \) and \(\beta > \alpha - 2 \). Then the operator \(A_p \) is closed and invertible. Moreover there exists \(C > 0 \) such that, for every \(0 \leq \gamma \leq \beta \), we have

\[
|| | \cdot | \cdot | u \|_p \leq C \| A_p u \|_p, \quad \forall u \in D_{p,\max}(A).
\]

Proof. Let us first prove the injectivity of \(A_p \). Let \(u \in D_{p,\max}(A) \) such that \(A_p u = 0 \), in particular \(\tilde{A}_p u = 0 \). It follows that \(u \in D_{p,\max}(\tilde{A}) = D(\Delta) \cap D \left(\frac{|x|^{\beta}}{1+|x|} \right) \), see [9] (see [4, Theorem 2.5]). Then multiplying \(A_p u \) with \(u|u|^{p-2} \) and integrating over \(\mathbb{R}^N \) we obtain, by [6],

\[
0 = \int_{\mathbb{R}^N} u|u|^{p-2} \Delta u dx - \int_{\mathbb{R}^N} \frac{|x|^\beta}{1+|x|^{\alpha}} |u|^p dx
\]

\[
= -(p-1) \int_{\mathbb{R}^N} |u|^{p-2} |\nabla u|^2 dx - \int_{\mathbb{R}^N} \frac{|x|^\beta}{1+|x|^{\alpha}} |u|^p dx,
\]

from which we have \(u \equiv 0 \). So, by (3.12) we obtain the invertibility of \(A_p \).

By elliptic regularity one deduces that \(A_p \) is closed on \(D_{p,\max}(A) \). Finally, the estimate (3.18) follows from (3.14). \[\Box\]

The previous Theorem gives in particular the \(A_p \)-boundedness of the potential \(V \) and the following regularity result.

Corollary 3.6. Assume that \(N > 2 \), \(\alpha > 2 \) and \(\beta > \alpha - 2 \). Then

(i) there exists \(C > 0 \) such that for every \(u \in D_{p,\max}(A) \)

\[
\| V u \|_p \leq C \| A_p u \|_p;
\]
Theorem 3.7. Assume that

\[D_{p,\text{max}}(A) = \{ u \in W^{2,p}(\mathbb{R}^N) \mid Au \in L^p(\mathbb{R}^N) \} , \]

Proof. We have only to prove the inclusion \(D_{p,\text{max}}(A) \subset \{ u \in W^{2,p}(\mathbb{R}^N) \mid Au \in L^p(\mathbb{R}^N) \} \). Let \(u \in D_{p,\text{max}}(A) \). Then, by (i), \(Vu \in L^p(\mathbb{R}^N) \) and hence

\[\Delta u = \frac{Au + Vu}{1 + |x|^\alpha} \in L^p(\mathbb{R}^N) . \]

So, the thesis follows from the Calderon-Zygmund inequality. \(\square \)

We can now state the main result of this section

Theorem 3.7. Assume that \(N > 2, \beta > \alpha - 2 \) and \(\alpha > 2 \). Then, \([0, +\infty) \subset \rho(A_p) \) and \((\lambda - A_p)^{-1} \) is a positive operator on \(L^p(\mathbb{R}^N) \) for any \(\lambda \geq 0 \). Moreover, if \(f \in L^p(\mathbb{R}^N) \cap C_0(\mathbb{R}^N) \), then \((\lambda - A_p)^{-1}f = (\lambda - A)^{-1}f \).

Proof. Let us first prove that if \(0 \leq \lambda \in \rho(A_p) \), then \((\lambda - A_p)^{-1} \) is a positive operator on \(L^p(\mathbb{R}^N) \). To this purpose, take \(0 \leq f \in L^p(\mathbb{R}^N) \) and set \(u = (\lambda - A_p)^{-1}f \). Then, by Corollary 3.6, \(u \in D(\tilde{A}_p) \) and

\[-(\tilde{A}_p - \lambda q)u = qf =: \tilde{f} , \]

where \(q(x) = \frac{1}{1 + |x|^\alpha} \). Since \(\tilde{A}_p \) generates an exponentially stable and positive \(C_0 \)-semigroup \((\tilde{T}_p(t))_{t \geq 0}\) on \(L^p(\mathbb{R}^N) \) (see [1] Theorem 2.5), it follows that the semigroup \((e^{-t\lambda q\tilde{T}_p(t)})_{t \geq 0}\) generated by \(\tilde{A}_p - \lambda q \) is positive and exponentially stable. Hence, \(u = (\lambda q - \tilde{A}_p)^{-1}\tilde{f} \geq 0 \).

We show that \(E = [0, +\infty) \cap \rho(A_p) \) is an non-empty open and closed set in \([0, +\infty)\). By Proposition 3.5 we have \(0 \in \rho(A_p) \) and hence \(E \neq \emptyset \). On the other hand, using the above positivity property and the resolvent equation we have \((\lambda - A_p)^{-1} \leq (A_p)^{-1} = L \) for any \(\lambda \in E \) and therefore

\[\| (\lambda - A_p)^{-1} \| \leq \| L \| , \]

it follows that the operator norm of \((\lambda - A_p)^{-1} \) is bounded in \(E \) and consequently \(E \) is closed. Finally, since \(\rho(A_p) \) is an open set, it follows that \(E \) is open in \([0, +\infty)\). Thus, \(E = [0, +\infty) \).

Now in order to show the last statement we may assume \(f \in C_c^\infty \), the thesis will follow by density. Setting \(u := (\lambda - A_p)^{-1}f \), we obtain, by local elliptic regularity (cf. [2] Theorem 9.19)), that \(u \in C^{2+\sigma}_{\text{loc}}(\mathbb{R}^N) \) for some \(0 < \sigma < 1 \). On the other hand, \(u \in W^{2,p}(\mathbb{R}^N) \), by Corollary 3.6. If \(p \geq \frac{N}{2} \), then by Sobolev’s inequality, \(u \in L^q(\mathbb{R}^N) \) for all \(q \in [p, +\infty) \). In particular, \(u \in L^q(\mathbb{R}^N) \) for some \(q > \frac{N}{2} \) and hence \(Au = -f + \lambda u \in L^q(\mathbb{R}^N) \). Moreover, since \(u \in C^{2+\sigma}_{\text{loc}}(\mathbb{R}^N) \), it follows that \(u \in W^{2,q}_{\text{loc}}(\mathbb{R}^N) \). So, \(u \in D_{q,\text{max}}(A) \subset W^{2,q}(\mathbb{R}^N) \subset C_b(\mathbb{R}^N) \), by Corollary 3.6 and Sobolev’s embedding theorem, since \(q > \frac{N}{2} \).

Let us now suppose that \(p < \frac{N}{2} \). Take the sequence \((r_n)\), defined by \(r_n = 1/p - 2n/N \) for any \(n \in \mathbb{N} \), and set \(q_n = 1/r_n \) for any \(n \in \mathbb{N} \). Let \(n_0 \) be the smallest integer such that \(r_{n_0} \leq 2/N \) noting that \(r_{n_0} > 0 \). Then, \(u \in D_{p,\text{max}}(A) \subset L^{q_1}(\mathbb{R}^N) \cap L^p(\mathbb{R}^N) \), by the Sobolev embedding theorem. As above we obtain that \(u \in D_{q_1,\text{max}}(A) \subset L^{q_1}(\mathbb{R}^N) \). Iterating this
argument, we deduce that \(u \in D_{q_{\alpha,0},\max}(A) \). So we can conclude that \(u \in C_b(\mathbb{R}^N) \) arguing as in the previous case. Thus, \(Au = -f + \lambda u \in C_b(\mathbb{R}^N) \). Again, since \(u \in C^{2+\sigma}(\mathbb{R}^N) \), it follows that \(u \in W^2_{\text{loc}}(\mathbb{R}^N) \) for any \(q \in (1, +\infty) \). Hence, \(u \in D_{\max}(A) \). So, by the uniqueness of the solution of the elliptic problem, we have \((\lambda - A_p)^{-1}f = (\lambda - A)^{-1}f \) for any \(f \in C^\infty_c(\mathbb{R}^N) \).

\[\square \]

4. Generation of semigroups

In this section we show that \(A_p \) generates an analytic semigroup on \(L^p(\mathbb{R}^N) \), \(1 < p < \infty \), provided that \(N > 2, \alpha > 2 \) and \(\beta > \alpha - 2 \).

We start by proving a weighted gradient estimate. To this purpose we need the following covering result from, see [11 Proposition 6.1], to prove a weighted gradient estimate.

Proposition 4.1. For every \(0 \leq k < 1/2 \) there exists a natural number \(\zeta = \zeta(N,k) \) with the following property: Given \(F = \{ B(x, \rho(x)) \}_x \in \mathbb{R}^N \), where \(\rho : \mathbb{R}^N \to [0, \infty) \) is a Lipschitz continuous function with Lipschitz constant \(k \). Then there exists a countable subcovering \(\{ B(x_n, \rho(x_n)) \}_{n \in \mathbb{N}} \) of \(\mathbb{R}^N \) such that at most \(\zeta \) among the double balls \(\{ B(x_n, 2\rho(x_n)) \}_{n \in \mathbb{N}} \) overlap.

To prove the main result of this section we need the following weighted gradient estimate.

Lemma 4.2. Assume that \(N > 2, \alpha > 2 \) and \(\beta > \alpha - 2 \). Then there exists a constant \(C > 0 \) such that for every \(u \in D_{p,\max}(A) \) we have

\[
\|(1 + |x|^{\alpha-1})\nabla u\|_p \leq C(\|A_pu\|_p + \|u\|_p). \tag{4.1}
\]

Proof. Let \(u \in D_{p,\max}(A) \). We fix \(x_0 \in \mathbb{R}^n \) and choose \(\vartheta \in C^\infty_c(\mathbb{R}^N) \) such that \(0 \leq \vartheta \leq 1 \), \(\vartheta(x) = 1 \) for \(x \in B(1) \) and \(\vartheta(x) = 0 \) for \(x \in \mathbb{R}^N \setminus B(2) \). Moreover, we set \(\vartheta_p(x) = \vartheta \left(\frac{x-x_0}{\rho} \right) \), where \(\rho = \frac{1}{4}(1 + |x_0|) \). We apply the well-known inequality

\[
\|\nabla v\|_{L^p(B(R))} \leq C\|v\|_{L^p(B(R))}^{1/2} \|\Delta v\|_{L^p(B(R))}^{1/2}, \quad v \in W^{2,p}(B(R)) \cap W^{1,p}_0(B(R)), \quad R > 0
\]

to the function \(\vartheta_p u \) and obtain for every \(\varepsilon > 0 \),

\[
\|(1 + |x|^{\alpha-1})\nabla u\|_{L^p(B(x_0,\rho))} \leq \|(1 + |x|^{\alpha-1})\nabla(\vartheta_p u)\|_{L^p(B(x_0,2\rho))} \leq C\|(1 + |x|^{\alpha})\Delta(\vartheta_p u)\|_{L^p(B(x_0,2\rho))}^{1/2} \|(1 + |x|^{\alpha-2})\vartheta_p u\|_{L^p(B(x_0,2\rho))}^{1/2}
\]

\[
\leq C \left(\varepsilon\|(1 + |x|^{\alpha})\Delta(\vartheta_p u)\|_{L^p(B(x_0,2\rho))} + \frac{1}{4\varepsilon}\|(1 + |x|^{\alpha-2})\vartheta_p u\|_{L^p(B(x_0,2\rho))} \right)
\]

\[
\leq C \left(\varepsilon\|(1 + |x|^{\alpha})\Delta u\|_{L^p(B(x_0,2\rho))} + \frac{2M}{\rho}\varepsilon\|(1 + |x|^{\alpha-2})u\|_{L^p(B(x_0,2\rho))} \right)
\]

\[
\leq C \left(\varepsilon\|(1 + |x|^{\alpha})\Delta u\|_{L^p(B(x_0,2\rho))} + \frac{M}{\rho^2}\varepsilon\|(1 + |x|^{\alpha-2})u\|_{L^p(B(x_0,2\rho))} \right)
\]

\[
\leq C \left(\varepsilon\|(1 + |x|^{\alpha})\Delta u\|_{L^p(B(x_0,2\rho))} + 8M\varepsilon\|(1 + |x|^{\alpha-2})u\|_{L^p(B(x_0,2\rho))} \right)
\]

\[
+ \left(16M + \frac{1}{4\varepsilon} \right) \|(1 + |x|^{\alpha-2})u\|_{L^p(B(x_0,2\rho))}
\]
\[
\begin{align*}
&\leq C(M) \left(\varepsilon \|(1 + |x_0|)^{\alpha} \Delta u\|_{L^p(B(x_0, 2\rho))} + \varepsilon \|(1 + |x_0|)^{\alpha - 1} \nabla u\|_{L^p(B(x_0, 2\rho))} \right) \\
&\quad + \frac{1}{\varepsilon} \|(1 + |x_0|)^{\alpha - 2} u\|_{L^p(B(x_0, 2\rho))},
\end{align*}
\]

where \(M = \|\nabla \vartheta\|_{\infty} + \|\Delta \vartheta\|_{\infty} \). Since \(2\rho = \frac{1}{2}(1 + |x_0|) \) we get

\[
\frac{1}{2}(1 + |x_0|) \leq 1 + |x| \leq \frac{3}{2}(1 + |x_0|), \quad x \in B(x_0, 2\rho).
\]

Thus

\[
\|(1 + |x|)^{\alpha - 1} \nabla u\|_{L^p(B(x_0, \rho))} \leq \left(\frac{3}{2} \right)^{\alpha - 1} \|(1 + |x_0|)^{\alpha - 1} \nabla u\|_{L^p(B(x_0, \rho))}
\]

\[
\leq C \left(\varepsilon \|(1 + |x_0|)^{\alpha} \Delta u\|_{L^p(B(x_0, 2\rho))} + \varepsilon \|(1 + |x_0|)^{\alpha - 1} \nabla u\|_{L^p(B(x_0, 2\rho))} \right) \\
\quad + \frac{1}{\varepsilon} \|(1 + |x_0|)^{\alpha - 2} u\|_{L^p(B(x_0, 2\rho))} \\
\leq C \left(2^\alpha \varepsilon \|(1 + |x|)^{\alpha} \Delta u\|_{L^p(B(x_0, 2\rho))} + 2^{\alpha - 1} \varepsilon \|(1 + |x|)^{\alpha - 1} \nabla u\|_{L^p(B(x_0, 2\rho))} \right)
\]

\[(4.3)
\]

Let \(\{B(x_n, \rho(x_n))\} \) be a countable covering of \(\mathbb{R}^N \) as in Proposition 4.1 such that at most \(\zeta \) among the double balls \(\{B(x_n, 2\rho(x_n))\} \) overlap.

We write \((4.3)\) with \(x_0 \) replaced by \(x_n \) and sum over \(n \). To the limit as \(n \) tends to infinity, taking into account the covering result above, we get

we get

\[
\|(1 + |x|)^{\alpha - 1} \nabla u\|_p \leq C \left(\varepsilon \|(1 + |x|)^{\alpha} \Delta u\|_p + \varepsilon \|(1 + |x|)^{\alpha - 1} \nabla u\|_p \right)
\]

\[
\quad + \frac{1}{\varepsilon} \|(1 + |x|)^{\alpha - 2} u\|_p.
\]

Choosing \(\varepsilon \) such that \(\varepsilon C < 1/2 \) we have

\[
\frac{1}{2} \|(1 + |x|)^{\alpha - 1} \nabla u\|_p \leq \frac{1}{2} \|(1 + |x|)^{\alpha} \Delta u\|_p + \frac{C}{\varepsilon} \|(1 + |x|)^{\alpha - 2} u\|_p.
\]

It follows from Corollary 3.6 that \(\|x\|^{\alpha - 2} u\|_p \leq \|(1 + |x|^\beta) u\|_p \leq \|u\|_p + \|V u\|_p \leq \|u\|_p + C\|A_p u\|_p \) for every \(u \in D_{p,\max}(A) \) and some \(C > 0 \). Hence,

\[
\|(1 + |x|)^{\alpha - 1} \nabla u\|_p \leq C(\|A_p u\|_p + \|u\|_p)
\]

for all \(u \in D_{p,\max}(A) \). This ends the proof of the lemma.

The following lemma shows that \(C_c^\infty(\mathbb{R}^N) \) is a core for \(A_p \).

Lemma 4.3. Assume \(N > 2, \alpha > 2 \) and \(\beta > \alpha - 2 \). The space \(C_c^\infty(\mathbb{R}^N) \) is dense in \(D_{p,\max}(A) \) with respect to the graph norm.

Proof. Let us first observe that \(C_c^\infty(\mathbb{R}^N) \) is dense in \(W_c^{2,p}(\mathbb{R}^N) \) with respect to the operator norm. Let \(u \in W_c^{2,p}(\mathbb{R}^N) \) and consider \(u_n = \rho_n \ast u \), where \(\rho_n \) are standard mollifiers.
We have \(u_n \in C^\infty_c(\mathbb{R}^N) \), \(u_n \to u \) in \(L^p(\mathbb{R}^N) \) and \(D^2 u_n \to D^2 u \) in \(L^p(\mathbb{R}^N) \). Moreover, \(\text{supp} \, u_n \subseteq \text{supp} \, u + B(1) := K \) for any \(n \in \mathbb{N} \). Then

\[
\| A_p u - A u_n \|_p = \| A_p u - A u_n \|_{L^p(K)} \\
\leq \|(1 + |x|^\alpha)\Delta (u - u_n)\|_{L^p(K)} + \| |x|^\beta (u - u_n)\|_{L^p(K)} \\
\leq \|(1 + |x|^\alpha)\Delta (u - u_n)\|_{L^p(K)} + \| |x|^\beta \|_{L^\infty(K)} \| (u - u_n)\|_{L^p(K)} \to 0 \text{ as } n \to \infty.
\]

Now, let \(u \in D_{p,\text{max}}(A) \) and let \(\eta \) be a smooth function such that \(\eta = 1 \) in \(B(1) \), \(\eta = 0 \) in \(\mathbb{R}^N \setminus B(2) \), \(0 \leq \eta \leq 1 \) and set \(\eta_n(x) = \eta \left(\frac{x}{n} \right) \). Then consider \(u_n = \eta_n u \in W^{2,p}_c(\mathbb{R}^N) \). First we have \(u_n \to u \) in \(L^p(\mathbb{R}^N) \) by dominated convergence. As regard \(A_p u_n \) we have

\[
A_p u_n(x) = (1 + |x|^\alpha)\Delta (\eta_n u)(x) - |x|^\beta \eta_n(x) u(x) \\
= \eta_n(x) A_p u(x) + 2(1 + |x|^\alpha)\nabla \eta_n(x) \nabla u(x) + (1 + |x|^\alpha)\Delta \eta_n(x) u(x) \\
= \eta_n(x) A_p u(x) + \frac{2}{n} (1 + |x|^\alpha) \nabla \eta \left(\frac{x}{n} \right) \nabla u(x) + \frac{1}{n^2} (1 + |x|^\alpha) \Delta \eta \left(\frac{x}{n} \right) u(x),
\]

and

\[
\eta_n A_p u \to A_p u \quad \text{in} \quad L^p(\mathbb{R}^N)
\]

by dominated convergence. As regards the last terms we consider that \(\nabla \eta(x/n) \) and \(\Delta \eta(x/n) \) can be different from zero only for \(n \leq |x| \leq 2n \), then we have

\[
\frac{1}{n} (1 + |x|^\alpha) \left| \nabla \eta \left(\frac{x}{n} \right) \right| \left| \nabla u \right| \leq C(1 + |x|^\alpha - 1) |\nabla u| \chi_{\{n \leq |x| \leq 2n\}},
\]

and

\[
\frac{1}{n^2} (1 + |x|^\alpha) \left| \Delta \eta \left(\frac{x}{n} \right) \right| \left| u \right| \leq C(1 + |x|^\alpha - 2) |u| \chi_{\{n \leq |x| \leq 2n\}}.
\]

The right hand side tends to 0 as \(n \to \infty \), since by Proposition 3 and Lemma 1 we have

\[
\| (1 + |x|^\alpha - 2) u \|_p \leq C(\| A_p u \|_p + |u|_p) \quad \text{and} \quad \| (1 + |x|^\alpha - 1) \nabla u \|_p \leq C(\| A_p u \|_p + |u|_p).
\]

Let us give now the main result of this section.

Theorem 4.4. Assume \(N > 2 \), \(\alpha > 2 \) and \(\beta > \alpha - 2 \). Then the operator \(A_p \) with domain \(D_{p,\text{max}}(A) \) generates an analytic semigroup in \(L^p(\mathbb{R}^N) \).

Proof. Let \(f \in L^p, \rho > 0 \). Consider the operator \(\tilde{A}_p := A_p - \omega \) where \(\omega \) is a constant which will be chosen later. It is known that the elliptic problem in \(L^p(B(\rho)) \)

\[
\begin{cases}
\lambda u - \tilde{A}_p u = f & \text{in } B(\rho) \\
u = 0 & \text{on } \partial B(\rho),
\end{cases}
\]

admits a unique solution \(u_\rho \) in \(W^{2,2}(B(\rho)) \cap W^{1,2}_0(B(\rho)) \) for \(\lambda > 0 \), (cf. [2] Theorem 9.15). Let us prove that that \(e^{i\theta \tilde{A}_p } \) is dissipative in \(B(\rho) \) for \(0 \leq \theta \leq \theta_\alpha \) with suitable \(\theta_\alpha \in (0, \frac{\pi}{2}) \). To this purpose observe that

\[
\tilde{A}_p u_\rho = \text{div} \left((1 + |x|^\alpha) \nabla u_\rho \right) - \alpha |x|^\alpha \frac{x}{|x|} \nabla u_\rho - |x|^\beta u_\rho - \omega u_\rho.
\]
Set \(u^* = \overline{u}_\rho |u_\rho|^{p-2} \) and recall that \(a(x) = 1 + |x|^\alpha \). Multiplying \(\widetilde{A}_\rho u_\rho \) by \(u^* \) and integrating over \(B(\rho) \), we obtain

\[
\int_{B(\rho)} \widetilde{A}_\rho u_\rho u^* \, dx = -\int_{B(\rho)} a(x) |u_\rho|^{p-4} |\text{Re}(\overline{u}_\rho \nabla u_\rho)|^2 \, dx
- \int_{B(\rho)} a(x) |u_\rho|^{p-4} |\text{Im}(\overline{u}_\rho \nabla u_\rho)|^2 \, dx - (p-2) \int_{B(\rho)} a(x) |u_\rho|^{p-4} \overline{u}_\rho \nabla u_\rho \text{Re}(\overline{u}_\rho \nabla u_\rho) \, dx
- \alpha \int_{B(\rho)} \overline{u}_\rho |u_\rho|^{p-2} |x|^{\alpha-1} \frac{x}{|x|} \nabla u_\rho \, dx - \int_{B(\rho)} (|x|^{\beta} + \omega) |u_\rho|^p \, dx.
\]

We note here that the integration by part in the singular case \(1 < p < 2 \) is allowed thanks to [6]. By taking the real and imaginary part of the left and the right hand side, we have

\[
\text{Re} \left(\int_{B(\rho)} \widetilde{A}_\rho u_\rho u^* \, dx \right) = -(p-1) \int_{B(\rho)} a(x) |u_\rho|^{p-4} |\text{Re}(\overline{u}_\rho \nabla u_\rho)|^2 \, dx - \int_{B(\rho)} a(x) |u_\rho|^{p-4} |\text{Im}(\overline{u}_\rho \nabla u_\rho)|^2 \, dx
- \alpha \int_{B(\rho)} |u_\rho|^{p-2} |x|^{\alpha-1} \frac{x}{|x|} \nabla |u_\rho|^p \, dx - \int_{B(\rho)} \left(|x|^{\beta} + \omega \right) |u_\rho|^p \, dx
= -(p-1) \int_{B(\rho)} a(x) |u_\rho|^{p-4} |\text{Re}(\overline{u}_\rho \nabla u_\rho)|^2 \, dx - \int_{B(\rho)} a(x) |u_\rho|^{p-4} |\text{Im}(\overline{u}_\rho \nabla u_\rho)|^2 \, dx
- \alpha \int_{B(\rho)} |x|^{\alpha-2} |x|^\beta - |x|^{\beta - \omega} |u_\rho|^p \, dx
+ \int_{B(\rho)} \left(\frac{\alpha(N - 2 + \alpha)}{\rho} |x|^{\alpha-2} - \omega \right) |u_\rho|^p \, dx
\]

and

\[
\text{Im} \left(\int_{B(\rho)} \widetilde{A}_\rho u_\rho u^* \, dx \right) = -(p-2) \int_{B(\rho)} a(x) |u_\rho|^{p-4} \text{Im}(\overline{u}_\rho \nabla u_\rho) \text{Re}(\overline{u}_\rho \nabla u_\rho) \, dx
- \alpha \int_{B(\rho)} |u_\rho|^{p-2} |x|^{\alpha-1} \frac{x}{|x|} \text{Im}(\overline{u}_\rho \nabla u_\rho) \, dx.
\]

We can choose \(\tilde{c} > 0 \) and \(\omega > 0 \) (depending on \(\tilde{c} \)) such that

\[
\frac{\alpha(N - 2 + \alpha)}{\rho} |x|^{\alpha-2} - |x|^{\beta} - \omega \leq -\tilde{c} |x|^{\alpha-2}.
\]

So, we obtain

\[
-\text{Re} \left(\int_{B(\rho)} \widetilde{A}_\rho u_\rho u^* \, dx \right) \geq (p-1) \int_{B(\rho)} a(x) |u_\rho|^{p-4} |\text{Re}(\overline{u}_\rho \nabla u_\rho)|^2 \, dx
\]
Using a weak compactness and a diagonal argument, we can construct a sequence $(\rho_n)_{n\in\mathbb{N}}$. Moreover, there exists a constant θ such that the functions (ρ_n) converge weakly in $W^{2,p}_{loc}$ to a function u which satisfies

$$
\int_{B(\rho)} a(x)|u_\rho|^p dx - \int_{B(\rho)} \text{Im}(\overline{u}_\rho \nabla u_\rho)^2 dx + \int_{B(\rho)} |u_\rho|^p |x|^\alpha dx = (p-1)B^2 + C^2 + cD^2.
$$

Moreover,

$$
\left| \text{Im} \left(\int_{B(\rho)} \tilde{A}_p u_\rho u^* dx \right) \right| \leq |p-2| \left(\int_{B(\rho)} |u_\rho|^{p-4} a(x) |\text{Re}(\overline{\nabla} u_\rho)|^2 dx \right)^{\frac{1}{2}} \left(\int_{B(\rho)} |u_\rho|^{p-4} a(x) |\text{Im}(\overline{\nabla} u_\rho)|^2 dx \right)^{\frac{1}{2}} + \alpha \left(\int_{B(\rho)} |u_\rho|^{p-4} |x|^\alpha |\text{Im}(\overline{\nabla} u_\rho)|^2 dx \right)^{\frac{1}{2}} \left(\int_{B(\rho)} |u_\rho|^p |x|^\alpha dx \right)^{\frac{1}{2}}
$$

$$
= |p-2| BC + \alpha CD,
$$

where

$$
B^2 = \int_{B(\rho)} |u_\rho|^{p-4} a(x) |\text{Re}(\overline{\nabla} u_\rho)|^2 dx,
$$

$$
C^2 = \int_{B(\rho)} |u_\rho|^{p-4} a(x) |\text{Im}(\overline{\nabla} u_\rho)|^2 dx,
$$

$$
D^2 = \int_{B(\rho)} |u_\rho|^p |x|^\alpha dx.
$$

Let us observe that, choosing $\delta^2 = \frac{|p-2|^2}{4(p-1)} + \frac{\alpha^2}{4e}$ (which is independent of ρ), we obtain

$$
\left| \text{Im} \left(\int_{B(\rho)} \tilde{A}_p u_\rho u^* dx \right) \right| \leq \delta \left\{ -\text{Re} \left(\int_{B(\rho)} \tilde{A}_p u_\rho u^* dx \right) \right\}.
$$

If $\tan \theta_\alpha = \delta$, then $e^{\pm i\delta} \tilde{A}_p$ is dissipative in $B(\rho)$ for $0 \leq \theta \leq \theta_\alpha$. From [10] Theorem I.3.9] follows that the problem (4.4) has a unique solution u_ρ for every $\lambda \in \Sigma_\theta$, $0 \leq \theta < \theta_\alpha$ where

$$
\Sigma_\theta = \{ \lambda \in \mathbb{C} \setminus \{0\} : |\text{Arg} \lambda| < \pi/2 + \theta \}.
$$

Moreover, there exists a constant C_θ which is independent of ρ, such that

$$
(4.5) \quad \|u_\rho\|_{L^p(B(\rho))} \leq \frac{C_\theta}{|\lambda|} \|f\|_{L^p}, \quad \lambda \in \Sigma_\theta.
$$

Let us now fix $\lambda \in \Sigma_\theta$, with $0 < \theta < \theta_\alpha$ and a radius $r > 0$. We apply the interior L^p estimates (cf. [2] Theorem 9.11) to the functions u_ρ with $\rho > r + 1$. So, by (4.5) we have

$$
\|u_\rho\|_{W^{2,p}(B(r))} \leq C_1 \left(\|\lambda u_\rho - \tilde{A}_p u_\rho\|_{L^p(B(r+1))} + \|u_\rho\|_{L^p(B(r+1))} \right) \leq C_2 \|f\|_{L^p}.
$$

Using a weak compactness and a diagonal argument, we can construct a sequence $(\rho_n) \to \infty$ such that the functions (u_{ρ_n}) converge weakly in $W^{2,p}_{loc}$ to a function u which satisfies
\[\lambda u - \widetilde{A}_p u = f \]

and

\[\|u\|_p \leq \frac{C_\theta}{|\lambda|} \|f\|_p, \quad \lambda \in \Sigma_\theta. \]

Moreover, \(u \in D_{p,\text{max}}(A_p) \). We have now only to show that \(\lambda - \tilde{A}_p \) is invertible on \(D_{p,\text{max}}(A_p) \) for \(\lambda \in \Sigma_\theta \). Consider the set

\[E = \{ r > 0 : \Sigma_\theta \cap C(r) \subset \rho(\tilde{A}_p) \} \]

where \(C(r) := \{ \lambda \in \mathbb{C} : |\lambda| < r \} \). Since, by Theorem 3.7, 0 is in the resolvent set of \(\tilde{A}_p \), then \(R = \sup E > 0 \). On the other hand, the norm of the resolvent is bounded by \(C_\theta/|\lambda| \) in \(C(R) \cap \Sigma_\theta \), consequently it cannot explode on the boundary of \(C(R) \), then \(R = \infty \) and this ends the proof of the theorem.

\[\square \]

Remark 4.5. Since \(A_p \) generates an analytic semigroup \(T_p(\cdot) \) on \(L^p(\mathbb{R}^N) \) and the semigroups \(T_q(\cdot), q \in (1, \infty) \) are consistent, see Theorem 3.7, one can deduces (as in the proof of [4, Proposition 2.6]) using Corollary 3.6 that \(T_p(t)L^p(\mathbb{R}^N) \subset C^{1+\nu}(\mathbb{R}^N) \) for any \(t > 0, \nu \in (0,1) \) and any \(p \in (1, \infty) \).

We end this section by studying the spectrum of \(A_p \). We recall from Proposition 3.5 that

\[\| |x|^{\beta} u \|_p \leq C\|A_p u\|_p, \quad \forall u \in D_{p,\text{max}}(A). \]

So, arguing as in [4] we obtain the following results

Proposition 4.6. Assume \(N > 2, \alpha > 2 \) and \(\beta > \alpha - 2 \) then

(i) the resolvent of \(A_p \) is compact in \(L^p \);

(ii) the spectrum of \(A_p \) consists of a sequence of negative real eigenvalues which accumulates at \(-\infty \). Moreover, \(\sigma(A_p) \) is independent of \(p \);

(iii) the semigroup \(T_p(\cdot) \) is irreducible, the eigenspace corresponding to the largest eigenvalue \(\lambda_0 \) of \(A \) is one-dimensional and is spanned by strictly positive functions \(\psi \), which is radial, belongs to \(C^{1+\nu}(\mathbb{R}^N) \cap C^2(\mathbb{R}^N) \) for any \(\nu \in (0,1) \) and tends to 0 when \(|x| \to \infty \).

References

[1] G. Cupini, S. Fornaro, Maximal regularity in \(L^p \) for a class of elliptic operators with unbounded coefficients, *Diff. Int. Eqs.* 17 (2004), 259-296.

[2] D. Gilbarg, N. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Second edition, Springer, Berlin, (1983).

[3] L. Lorenzi, M. Bertoldi, *Analytical Methods for Markov Semigroups*, Chapman & Hall/CRC, (2007).

[4] L. Lorenzi, A. Rhandi, On Schrödinger type operators with unbounded coefficients: generation and heat kernel estimates, (submitted). Available on ArXiv [http://arxiv.org/abs/1203.0734], 2012.

[5] G. Metafune, D. Pallara, M. Wacker, Feller Semigroups on \(\mathbb{R}^N \), *Semigroup Forum* 65 (2002), 159-205.

[6] G. Metafune, C. Spina, An integration by parts formula in Sobolev spaces, *Mediterranean Journal of Mathematics* 5 (2008), 359-371.

[7] G. Metafune, C. Spina, Elliptic operators with unbounded coefficients in \(L^p \) spaces, *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11* (2012), no. 2, 303-340.

[8] G. Metafune, C. Spina, C. Tacelli, Elliptic operators with unbounded diffusion and drift coefficients in \(L^p \) spaces, *Adv. Diff. Equat.* 19 (2014), no. 5-6, 473-526.
[9] N. Okazawa, An L^p theory for Schr"{o}dinger operators with nonnegative potentials, *J. Math. Soc. Japan* 36 (1984), 675-688.

[10] A. Pazy, *Semigroups of linear operators and applications to partial differential equations*, Applied mathematical sciences 44, Springer-Verlag, 1983.

[11] Z. Shen, L_p estimates for Schr"{o}dinger operators with certain potentials, *Annales de l'institut Fourier* 45 (1995), 513-546.

Dipartimento di Matematica, Universitá degli Studi di Salerno, Via Giovanni Paolo II, 132, I 84084 FISCIANO (SA), Italy.

E-mail address: acanale@unisa.it

Dipartimento di Ingegneria dell’Informazione, Ingegneria Elettrica e Matematica Applicata, Universitá degli Studi di Salerno, Via Giovanni Paolo II, 132, I 84084 FISCIANO (SA), Italy.

E-mail address: arhandi@unisa.it

Dipartimento di Ingegneria dell’Informazione, Ingegneria Elettrica e Matematica Applicata, Universitá degli Studi di Salerno, Via Giovanni Paolo II, 132, I 84084 FISCIANO (SA), Italy.

E-mail address: ctacelli@unisa.it