Factors associated with maternal mortality at advanced maternal age: a population-based case–control study

SJ McCall, M Nair, M Knight

Policy Research Unit in Maternal Health and Care, National Perinatal Epidemiology Unit (NPEU), Nuffield Department of Population Health, University of Oxford, Oxford, UK

Correspondence: S McCall, National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK. Email stephen.mccall@npeu.ox.ac.uk

Accepted 17 May 2016. Published Online 13 July 2016.

Objective This study aimed to examine the factors associated with maternal mortality among women aged ≥35 years.

Design Unmatched population based case–control study.

Setting United Kingdom.

Population Between 2009 and 2012, 105 cases of maternal deaths aged ≥35 years were extracted from the surveillance database of the MBRRACE-UK confidential enquiries into maternal deaths in the UK. In addition, 766 controls aged ≥35 years were identified from the UK Obstetric Surveillance System (2005–2012).

Methods Risk factors known to be associated with maternal mortality and morbidity and for which data were available were examined for their association with maternal mortality among women ≥35 years using logistic regression analysis.

Main outcome measures Odds ratios and 95% confidence intervals associated with maternal death.

Results Five factors were found to be significantly associated with increased odds of death among women aged ≥35 years: smoking during pregnancy (adjusted odds ratio (aOR) 2.06, 95% CI 1.13–3.75), inadequate use of antenatal care (aOR 23.62, 95% CI 8.79–63.45), medical co-morbidities (aOR 5.92, 95% CI 3.56–9.86) and previous pregnancy problems (aOR 2.06, 95% CI 1.23–3.45). The odds associated with death increased by 12% per year increase in age (aOR 1.12, 95% CI 1.02–1.22).

Conclusion Age was associated with maternal mortality even after adjusting for other known risk factors. Importantly, this study showed an association between maternal mortality and smoking among women aged 35 years or older. It emphasises the importance of public health action to reduce smoking levels and address trends in rising maternal age.

Keywords Advanced maternal age, maternal mortality, risk factors, smoking.

Introduction

A number of global studies have highlighted that the maternal mortality ratio (MMR) increases non-linearly with age, in particular after the age of 30 years, and is highest in the oldest age groups. Although only a small proportion of deaths occur in high income settings, maternal mortality is an increasing concern because of an increase in risk factors such as obesity, advanced maternal age and births among migrants. These factors have been reflected in the increase in maternal deaths in the United States of America (USA) and in the Netherlands. In England and Wales there has been a gradual increase in the proportion of women delivering aged 30 years and older and the average age of childbearing has increased from 26.4 in 1973 to 30.0 in 2013. As a result, women at an advanced maternal age represent a larger proportion of maternities; data from the Office for National Statistics shows that 20% of births in England and Wales were to mothers aged 35 years and older in 2013. This is of concern for several reasons. In particular, older women have an increased prevalence of pre-existing medical co-morbidities. Women with co-morbidities have been shown to have poorer maternal outcomes during pregnancy.
However, the low incidence of maternal mortality in high resource countries (10 per 100 000 pregnancies per year in the UK)12 makes it difficult to investigate the risk factors associated with maternal death in a subgroup of women of older maternal age. Previous literature examining maternal mortality among women of advanced maternal age is therefore limited. The aim of this study, therefore, was to examine the factors associated with maternal mortality among women of advanced maternal age on a national population basis.

Methods

Study population and design

This study defined advanced maternal age as women who were aged 35 years or older, therefore the study population comprised of women aged 35 years or older. An unmatched case–control study was conducted using secondary data on maternal deaths occurring between 2009 and 2012 collected through the UK Confidential Enquiry into Maternal Deaths (conducted under the auspices of the Mothers and Babies: Reducing Risk through Audits and Confidential Enquiries across the UK (MBRRACE-UK) collaboration) and data on a nationally representative control group of pregnant women aged 35 years or older collected through the UK Obstetric Surveillance System (UKOSS) between 2005 and 2012.

All maternal deaths within the UK are prospectively identified through mandatory notification to the MBRRACE-UK collaboration.13 The majority of cases are identified by direct notification from death certificates and hospitals; however, other cases are notified through pathologists or coroners and procurators fiscal, midwifery officers, members of the public and inquest reports from the media.12,13 Linkage with birth and death registration records from the Office for National Statistics and National Records of Scotland ensures further quality assurance and case ascertainment.12,13 Anonymised clinical and demographic data were extracted from the case notes for each maternal death.

In brief, UKOSS is a national surveillance system that enables the study of rare complications in pregnancy.14 Case notification cards are returned monthly from consultant-led maternity centres in the UK. In many UKOSS studies, units are asked to return clinical and demographic data on a representative sample of women lacking the specific condition under study (control women). Controls are identified as the two women delivering prior to the woman with the relevant condition under study (case) from a specific obstetric unit. For the purposes of this study, information on all control pregnant women aged 35 and over were extracted from the UKOSS database.

The primary outcome for this study was maternal death: cases were defined as maternal deaths in women aged \(\geq 35\) years and controls were population-level UKOSS controls aged \(\geq 35\) years. Exposure variables were selected \textit{a priori} guided by the findings of a literature review. The exposure variables explored in the analysis were age, ethnicity, BMI, marital status, substance misuse, smoking status during pregnancy, previous pregnancy problems, pre-existing medical problems (further information in Supporting Information Appendix S1), gestational diabetes, previous fetal loss or termination, parity, multiple pregnancy and inadequate use of antenatal care. Continuous variables were tested for departure from linearity. Baseline groups were chosen using standard reference groups, guided by previous literature or the group with the lowest risk of maternal mortality if no standard reference was available.

Previous UKOSS studies have shown that the distribution of missing data across variables is not random;15 for this reason, multiple imputation was considered inappropriate. Thus, to account for missing data, a separate ‘missing’ category was created for each variable with missing data. Sensitivity analyses were undertaken to examine further the impact of missing data by regrouping women with missing information into the extreme categories of the variables; in addition, complete case analysis was also conducted to assess the impact of including a proxy variable.

The cases were the total number of maternal deaths among women aged \(\geq 35\) years in the UK between 2009 and 2012,12 therefore the study population of 105 for the cases was fixed. From the total number of population-based controls in the UKOSS database, 766 were aged 35 years or older, thereby fixing the sample size for the controls. This number of cases and controls gives an estimated study power of 80% at the 5% significance level to detect minimum odds ratios of 2.65 and 1.90 for 5 and 20% prevalences of exposures in the control group, respectively.

Statistical analysis

Univariable unconditional logistic regression analysis was conducted to compare the prevalence of the exposure variables in the cases and the controls. Odds ratios with 95% confidence intervals were calculated. Collinearity was assessed between all plausible linear associations prior to multivariable analysis, using Pearson’s correlation coefficient. Substance misuse was highly correlated with previous pregnancy problems (coefficient = 0.436); thus, substance misuse was excluded from the multivariable analysis. No other independent variables were found to be significantly co-linear. Plausible interactions were tested between pre-existing mental health problems and inadequate use of antenatal care; smoking status and socio-economic group; smoking and pre-existing medical conditions; smoking and pre-existing hypertension; ethnicity and socio-economic...
Maternal mortality among older women

Results
The MBRRACE-UK confidential enquiry identified 105 maternal deaths among women aged 35 years or older. Data were available on 766 control women aged 35 years or older from the UKOSS database.

Table 1 presents the characteristics of cases and controls. Marital status, multiple pregnancy and parity were not statistically significantly associated with maternal death and therefore were not examined in the multivariable analysis.

Table 2 shows the results of the multivariable logistic regression analysis. Five variables were significantly associated with maternal mortality among women of advanced maternal age. The odds of maternal death were two times higher among women who smoked during pregnancy than among those who did not. The presence of pre-existing medical problems was associated with almost a 6-fold increase in the odds of maternal mortality and the presence of pregnancy problems was associated with a two-fold increase in the odds of death. The odds of death were 23 times higher for those with inadequate use of antenatal care than those with adequate use of antenatal care. The adjusted odds of maternal mortality increased by 12% per year increase in age (aOR 1.12, 95% CI 1.02–1.22).

Discussion
Main findings
This study found five factors to be associated with increased likelihood of maternal mortality among women aged 35 years or older: smoking during pregnancy, older maternal age, pre-existing medical comorbidities, previous pregnancy problems and inadequate use of antenatal care. An exploratory analysis examining medical co-morbidities highlighted that cardiac disease, essential hypertension, musculoskeletal disorders, inflammatory conditions, neurological conditions, asthma, mental health disorders and infection.

Table 4 shows the association between the cumulative risk score and maternal mortality among women of advanced maternal age. The odds of maternal death increased with the number of risk factors possessed. Presence of one risk factor was associated with an almost three-fold increased odds of death, which increased to 12 times for the presence of two risk factors and 26 times increased odds of maternal death for the presence of three risk factors.
Table 1. Characteristics of cases and controls at advanced maternal age in the UK

Characteristic	Number (%) of cases (n = 105)	Number (%)* of comparison women (n = 766)	Unadjusted odds ratios (95% Confidence intervals)	P-value
Socio-demographic characteristics				
Age*				
Median (IQR)	38 (36–40)	37 (35–39)	1.10 (1.02–1.19)	0.014
Ethnic group				
White	75 (71.4)	620 (80.9)	1	
Black or other minority ethnic groups	28 (26.7)	132 (17.2)	1.75 (1.09–2.81)	0.020
Missing	2 (1.9)	14 (1.8)	1.18 (0.26–5.30)	0.828
Marital status				
Single	9 (8.6)	52 (6.8)	1.42 (0.67–3.02)	0.362
Married	64 (61.0)	525 (68.5)	1	
Cohabiting	30 (28.6)	183 (23.9)	1.34 (0.84–2.14)	0.212
Missing	2 (1.9)	6 (0.8)	2.73 (0.54–13.83)	0.224
Socio-economic group				
Employed	75 (71.4)	619 (80.8)	1	
Unemployed	10 (9.5)	33 (4.3)	2.50 (1.18–5.28)	0.016
Missing	20 (19.0)	114 (14.9)	1.45 (0.85–2.47)	0.173
BMI, kg/m²				
<18.5–24.9	41 (39.0)	326 (42.6)	1	
25.0–29.9	16 (15.2)	209 (27.3)	0.61 (0.33–1.11)	0.107
>30	36 (34.3)	149 (19.5)	1.92 (1.18–3.13)	0.009
Smoking status				
Never/ex-smoker	68 (64.8)	659 (86.0)	1	
Smoked during pregnancy	25 (23.8)	96 (12.5)	2.52 (1.52–4.19)	<0.001
Missing	12 (11.4)	82 (10.7)	1.16 (0.59–2.31)	0.666
Substance misuse				
No	97 (92.4)	749 (97.8)	1	
Yes	7 (6.7)	1 (0.1)	54.05 (6.58–444.02)	<0.001
Missing	1 (1.0)	16 (2.1)	0.48 (0.06–3.68)	0.482
Previous medical history				
Previous or pre-existing medical condition				
None	41 (39.0)	600 (78.3)	1	
Yes	60 (57.1)	118 (15.4)	7.44 (4.78–11.59)	<0.001
Missing	4 (3.8)	48 (6.3)	1.22 (0.42–3.55)	0.716
Previous pregnancy problems**				
None	50 (47.6)	581 (75.8)	1	
Yes	49 (46.7)	181 (23.6)	3.15 (2.05–4.83)	<0.001
Missing	6 (5.7)	4 (0.5)	17.43 (4.76–63.81)	<0.001
Pregnancy-related characteristics				
Gestational diabetes				
No	88 (83.8)	737 (96.2)	1	
Yes	9 (8.6)	28 (3.7)	2.69 (1.23–5.89)	0.013
Missing	8 (7.6)	1 (0.1)	67.00 (8.28–542.01)	<0.001
Previous fetal loss or termination				
0	49 (46.7)	468 (61.1)	1	
1 or more	51 (48.6)	293 (38.3)	1.66 (1.09–2.53)	0.017
Missing	5 (4.8)	5 (0.7)	9.55 (2.67–34.15)	0.001
Multiple pregnancy				
No	99 (94.3)	754 (98.4)	1	
Yes	4 (3.8)	12 (1.6)	2.54 (0.80–8.02)	0.113
Missing	2 (1.9)	0 (0.0)	Omitted	
Inadequate use of antenatal care***				
No	80 (76.2)	756 (98.7)	1	
Strengths and limitations
The use of a highly robust national surveillance system and the collection of cases over 4 years has enabled the examination of this subset of maternal mortalities in a high resource setting and thus overcomes some of the limitations of previous research. Both prospective population-

Table 1. (Continued)

Characteristic	Number (%) of cases (n = 105)	Number (%) of comparison women (n = 766)	Unadjusted odds ratios (95% Confidence intervals)	P-value
Yes	25 (23.8)	9 (1.2)	26.25 (11.84–58.19)	<0.001
Missing	0 (0.0)	1 (0.1)	Omitted	
Parity				
Nulliparous	22 (21)	208 (27.2)	1	
Multiparous	82 (78.1)	558 (72.8)	1.39 (0.85–2.28)	0.194
Missing	1 (1.0)	0 (0.0)	Omitted	

BMI, body mass index; IQR, interquartile range.
*No missing observations.
**Previous pregnancy problems included a history of a number of conditions in one or more previous pregnancies such as gestational diabetes, hypertensive disorder of pregnancy, thrombotic events, placental problems, infection, haemorrhage and puerperal psychosis.
***Inadequate use of antenatal care indicated that the woman was late in registering their pregnancy, concealed their pregnancy, missed antenatal appointments or did not attend any appointments.

Table 2. Adjusted analysis examining factors associated with maternal death at advanced maternal age

Characteristic	Model A (n = 870)*	P-value	Model B (n = 798)**	P-value	Model C (n = 369)**	P-value
	Adjusted OR (95% CI)		Adjusted OR (95% CI)		Adjusted OR (95% CI)	
Socio-demographic characteristics						
Age****	1.12 (1.02–1.22)	0.013	1.11 (1.01–1.21)	0.025	1.05 (0.95–1.16)	0.326
Smoking status						
Never/ex-smoker	1		1		1	
Smoked during pregnancy	2.06 (1.13–3.75)	0.019	2.04 (1.12–3.74)	0.020	2.03 (0.99–4.14)	0.052
Missing	5.69 (1.54–20.98)	0.009			7.04 (0.96–51.76)	0.055
Previous medical history						
Pre-existing medical conditions						
None	1		1		1	
Yes	5.92 (3.56–9.86)	<0.001	5.50 (3.30–9.16)	<0.001	4.44 (2.48–7.94)	<0.001
Missing	0.27 (0.05–1.43)	0.124			1.22 (0.08–19.61)	0.888
Previous pregnancy problems						
No	1		1		1	
Yes	2.06 (1.23–3.45)	0.006	2.03 (1.20–3.41)	0.008	1.98 (1.09–3.61)	0.025
Missing	3.49 (0.39–30.95)	0.262			0.79 (0.06–11.02)	0.864
Pregnancy-related characteristics						
Inadequate use of antenatal care						
No	1		1		1	
Yes	23.62 (8.79–63.45)	<0.001	15.75 (5.58–44.50)	<0.001	19.92 (4.95–80.20)	<0.001
Missing	Omitted****		Omitted****		Omitted****	

95% CI, 95% confidence intervals; OR, odds ratios.
Each model adjusted for the five variables shown in the table.
*Model A: main model using proxy variables for missing data.
**Model B: sensitivity analysis: using complete case analysis.
***Model C: sensitivity analysis: using UKOSS controls restricted to women delivering between 2009 and 2012.
****No missing observations.
*****Omitted as no missing values in cases.
based surveillance systems use a robust methodology, which reduces any possible impact of selection bias. The cases were the total number of maternal deaths in the UK among women aged 35 years or older. The UKOSS controls may have been higher risk pregnancies, as they are drawn from consultant-led maternity units. As a result, they may have higher complication rates, which may bias our effect estimates towards the null in comparison with a truly representative pregnancy population. This dataset included controls from all but the very smallest consultant maternity units in the UK and thus can be considered nationally representative of the population of women delivering in hospitals with consultant units. The use of national data allowed a valid comparison between the cases and the controls, as they were drawn from the same population. However, the data collection process was not blinded and so may have been susceptible to information bias. Additionally the number of cases were still small, which limited the study power, particularly when investigating rarer exposures. There were some missing data, notably concerning socio-economic status, BMI and smoking status. Missing data impacted the size of the model when complete case analysis was used.

Table 3. Exploratory analysis examining pre-existing medical conditions associated with maternal mortality at advanced maternal age

Characteristic	Number (%) of cases	Number (%) of controls	Unadjusted OR (95% CI)	Adjusted* OR (95% CI)
Cardiac disease				
No	94 (93.1)	710 (98.9)	1	1
Yes	7 (6.9)	8 (1.1)	6.61 (2.34–18.64)	9.98 (3.29–30.23)
Pre-existing diabetes mellitus (Type 1 & 2)				
No	97 (96.0)	714 (99.4)	1	1
Yes	4 (4.0)	4 (0.6)	7.36 (1.81–29.91)	5.04 (0.86–29.61)
Essential hypertension				
No	92 (91.1)	711 (99)	1	1
Yes	9 (8.9)	7 (1.0)	9.94 (3.61–27.32)	6.44 (2.14–19.35)
Haematological disorders				
No	92 (91.1)	704 (98.1)	1	1
Yes	9 (8.9)	14 (1.9)	4.92 (2.07–11.68)	2.48 (0.87–7.09)
Prior thrombotic event				
No	98 (97.0)	715 (99.6)	1	1
Yes	3 (3.0)	3 (0.4)	7.30 (1.45–36.65)	3.28 (0.42–25.72)
Inflammatory conditions				
No	82 (81.2)	716 (99.7)	1	1
Yes	19 (18.8)	2 (0.3)	82.95 (18.98–362.52)	65.05 (14.28–296.37)
Musculoskeletal disorders				
No	92 (91.1)	717 (99.9)	1	1
Yes	9 (8.9)	1 (0.1)	70.14 (8.79–559.96)	63.10 (7.48–532.36)
Asthma				
No	92 (91.1)	692 (96.4)	1	1
Yes	9 (8.9)	26 (3.6)	2.60 (1.18–5.73)	2.72 (1.14–6.46)
Epilepsy				
No	100 (99)	714 (99.4)	1	1
Yes	1 (1)	4 (0.6)	1.79 (0.20–16.13)	Excluded
Mental health problems				
No	83 (82.2)	689 (96)	1	1
Yes	18 (17.8)	29 (4)	5.15 (2.74–9.68)	3.27 (1.53–7.01)
Neurological conditions				
No	95 (94.1)	717 (99.9)	1	1
Yes	6 (5.9)	1 (0.1)	45.28 (5.39–380.22)	17.84 (1.80–177.12)
Infection				
No	93 (92.1)	713 (99.3)	1	1
Yes	8 (7.9)	5 (0.7)	12.27 (3.93–38.28)	11.49 (3.26–40.47)

95% CI, 95% confidence intervals; OR, odds ratio.
Missing data in pre-existing medical problem, n = 52.
See Appendix S1 for more information on included conditions.
Each pre-existing medical problem was modelled separately in the main model using complete case analysis.
*Adjusted for age, smoking status, previous pregnancy problem and inadequate use of antenatal care.
that smoking could have a protective effect against a num-
ever, studies examining maternal morbidities have shown
eclampsia. The protective effect against individual mor-
problems, previous pregnancy problems, smoking
duration of smoking have been shown to be collinear, with the
duration of smoking in each woman; however, age and
Royal College of Obstetricians and Gynaecologists
2016 The Authors.
ª
Interpretation
Previous studies have not reported any significant associa-
tion between smoking and maternal mortality. However, studies examining maternal morbidities have shown that smoking could have a protective effect against a number of maternal morbidities such as haemorrhage and pre-
eclampsia. The protective effect against individual mor-
asures in older women.28 This highlights once again the
association between smoking and pregnancy risk may only present in
most women starting in adolescence.22 Therefore, the
impact of smoking on pregnancy risk may only present in
older women. This would explain the null findings in previ-
uous studies which examined maternal mortality in all
ages. Nonetheless, the association between smoking and
maternal mortality could also be an artefact as a result of
information bias; the reporting of information for the cases
may be more accurate than the reporting for the controls.
However, more cases did not have information about smok-
ing status than the controls. Results of a sensitivity analysis
conducted by re-grouping women with missing information
into smoking and non-smoking groups did not differ mate-
rially from the findings of the main model.

Interestingly, even after adjusting for known risk factors, the association between age and mortality was not attenu-
ated. The literature has previously suggested that the associa-
tion between age and maternal mortality can be fully
explained by medical comorbidities. One possible explana-
tion being that older women undergo cardiovascular ageing and older women are more likely to have symptoms of an
underlying undiagnosed cardiovascular condition that results in an inability to adapt to the normal physiological
changes that occur during pregnancy. Thus, the weakened
vascular system in older women is unable to compensate
fully for the physiological demands that occur during preg-
nancy, which in turn increases the risk of cardiovascular
events, pregnancy-induced hypertension and other compli-
ations. Inadequate antenatal care was the strongest association
found in this study and this finding was similar to previous published studies. It is likely that this relationship may
be partially explained by socio-economic status and
immigration status, which were either not fully adjusted
or not available in this study.

Similar to previously published studies, older women with pre-existing medical conditions were independently at
an increased risk of maternal mortality. A number of
studies have shown that medical co-morbidities such as hypertension, cardiac disease, asthma, inflammatory
disease, mental health problems, infection, musculo-
skeletal disorders and neurological conditions were
associated with maternal morbidity and mortality. In con-
trast to some previous literature this study did not find an
association between obesity and maternal mortality. Obesity has been shown to be associated with maternal compli-
cations in older women. This highlights once again the
importance of high quality pre-pregnancy as well as ante-
natal and post-pregnancy care for women with co-morbid-
ities, particularly among older women.

Similar to previous research, this study highlighted that there was an association between previous pregnancy prob-
lems and maternal mortality. Many of these problems are
associated with an increased risk of complications in subse-
quent pregnancies; for example, previous histories of pre-
eclampsia and postpartum haemorrhage have been shown to
be associated with future morbidity. It has been
suggested that inter-pregnancy care targeted at the manage-
ment of hypertension and diabetes could improve future
pregnancy outcomes. However, research evaluating the
impact on future outcome is lacking.

Conclusions
This study identified five risk factors associated with mater-
nal mortality in women of advanced maternal age. After adjusting for other known risk factors, older age remained
associated with maternal mortality. This result suggests there are other unmeasured factors that are responsible for this association. Importantly, this study showed an association between maternal mortality and smoking among women aged 35 years or older, which may be due to a more lengthy smoking exposure than in younger women. The study emphasises that modifying factors such as smoking and antenatal care access could prevent deaths in this age group. Further research is needed to investigate the social factors associated with older maternal age at childbearing and possible reversal of this trend. Medical co-morbidities were an important risk factor for maternal mortality among women of advanced maternal age, which in turn emphasises the importance or pre-pregnancy care, as well as multidisciplinary antenatal and post-pregnancy care. Further research is needed to identify other factors underlying the maternal mortality risk among older women.

Disclosure of interests
None declared. Completed disclosure of interests form available to view online as supporting information.

Contribution to authorship
SJM analysed and interpreted the data and wrote the first draft of the paper. MN extracted the data, supervised the data analysis and assisted with the writing of the paper. MK designed the study, supervised the analysis and assisted with the writing of the paper.

Details of ethics approval
MBRRACE was sought from the Healthcare Quality Improvement Partnership (HQIP), each study had obtained its required approvals for the primary collection of data. UKOSS gained ethical approval from the London Multicentre Research Ethics Committee (study reference 04/MRE02/45). In England and Wales, MBRRACE-UK has approval from the Secretary of State for Health, attained by request to the Confidentiality Advisory Group of the Health Research Authority (it was formally known as National Information Governance Board) (ECC 5-05 (f)/2012). Permissions were gained from the respective bodies within Scotland and Northern Ireland.

Funding
This paper reports on an independent study which is part-funded by the Policy Research programme in the Department of Health. This work formed part of SJM’s Masters of Science in Global Health Science, which was funded by the Nuffield Department of Population Health, University of Oxford. MK is funded by an NIHR Research Professorship. The Maternal, Newborn and Infant Clinical Outcome Review programme, delivered by MBRRACE-UK, is commissioned by the Healthcare Quality Improvement Partnership (HQIP) on behalf of NHS England, NHS Wales, the Health and Social care division of the Scottish Government, the Northern Ireland Department of Health, Social Services and Public Safety (DHSSPS), the States of Jersey, Guernsey, and the Isle of Man. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, HQIP, the NIHR, or the Department of Health. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the article.

Acknowledgements
None.

Supporting Information
Additional Supporting Information may be found in the online version of this article:
Appendix S1. Included conditions.

References
1. Kassebaum NI, Bertozzi-Villa A, Coggeshall MS, Shackelford KA, Steiner C, Heuton KR, et al. Global, regional, and national levels and causes of maternal mortality during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014;384:980–1004.
2. Blanc AK, Winfrey W, Ross J. New findings for maternal mortality age patterns: aggregated results for 38 countries. PLoS ONE 2013;8: e59864.
3. Heslehurst N, Rannik J, Wilkinson JR, Summerbell CD. A nationally representative study of maternal obesity in England, UK: trends in incidence and demographic inequalities in 619 323 births, 1989–2007. Int J Obes 2010;34:420–8.
4. WHO/Europe. European Health for All database (HFA-DB). 2014 [http://data.euro.who.int/hfadb/inecharts/inechart.php?w=1920&h=1080]. Accessed 2 June 2015.
5. Tromans N, Natamba E, Jefferies J. Have Women Born Outside the UK Driven the Rise in UK Births Since 2001? London: Office for National Statistics, 2007.
6. Berg CJ, Callaghan WM, Syverson C, Henderson Z. Pregnancy-related mortality in the United States, 1998 to 2005. Obstet Gynecol 2010;116:1302–9.
7. Schutte JM, Steegers EAP, Schuitemaker NWE, Santema JG, De Boer K, Pel M, et al. Rise in maternal mortality in the Netherlands. BJOG 2010;117:399–406.
8. Office for National Statistics. Live Births in England and Wales by Characteristics of Mother 1, 2013. London: Office for National Statistics, 2013.
9. van Katwijk C, Peeters LL. Clinical aspects of pregnancy after the age of 35 years: a review of the literature. Hum Reprod Update 1998;4:185–94.
10. Carolan M. The graying of the obstetric population: implications for the older mother. J Obstet Gynecol Neonatal Nurs 2003;32:19–27.
11. Nair M, Kurinczuk JJ, Brocklehurst P, Sellers S, Lewis G, Knight M. Factors associated with maternal death from direct pregnancy complications: a UK national case-control study. BJOG 2014;122:653–62.
Maternal mortality among older women

12 Knight M, Kenyon S, Brocklehurst P, Neilson J, Shakespeare J, Kurinczuk J, et al. Saving Lives, Improving Mothers’ Care: lessons learned to inform future maternity care from the UK and Ireland confidential enquiries into maternal deaths and Morbidity 2009-2012. Oxford: National Perinatal Epidemiology Unit, University of Oxford, 2014.

13 Kurinczuk JJ, Draper ES, Field DJ, Bevan C, Brocklehurst P, Gray R, et al. Experiences with maternal and perinatal death reviews in the UK—the MBRRACE-UK programme. *BJOG* 2014;121:41–6.

14 Knight M, Kurinczuk JJ, Tuffnell D, Brocklehurst P. The UK obstetric surveillance system for rare disorders of pregnancy. *BJOG* 2005;112:263–5.

15 Lindquist A, Knight M, Kurinczuk JJ. Variation in severe maternal morbidity according to socioeconomic position: a UK national case-control study. *BMJ Open* 2013;3 pii: e002742.

16 Wittink DR. *The Application of Regression Analysis*. Boston: Allyn & Bacon, 1988.

17 Kayem G, Kurinczuk J, Lewis G, Golightly S, Brocklehurst P, Knight M. Risk factors for progression from severe maternal morbidity to death: a national cohort study. *PLoS ONE* 2011;6:e29077.

18 Rowe RE, Garcia J. Social class, ethnicity and attendance for antenatal care in the United Kingdom: a systematic review. *J Public Health* 2003;25:113–9.

19 Nair M, Knight M, Kurinczuk J. Risk factors and newborn outcomes associated with maternal deaths in the UK from 2009 to 2013: a national case-control study. *BJOG* doi: 10.1111/1471-0528.13978. [Epub ahead of print].

20 Waterstone M, Wolfe C, Bewley S. Incidence and predictors of severe obstetric morbidity: case-control study. *Br Med J* 2001;322:1089–93.

21 Cnattingius S, Mills JL, Yuen J, Eriksson O, Ros HS. The paradoxical effect of smoking in preeclamptic pregnancies: smoking reduces the incidence but increases the rates of perinatal mortality, abruptio placentae, and intrauterine growth restriction. *Am J Obstet Gynecol* 1997;177:156–61.

22 Centers for Disease Control Prevention. How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. Atlanta: US Department of Health and Human Services, 2010.

23 Care AS, Bourque SL, Morton JS, Hjartarson EP, Davidge ST. Effect of advanced maternal age on pregnancy outcomes and vascular function in the rat. *Hypertension* 2015;65:1324–30.

24 Bray JK, Gorman DR, Dundas K, Sim J. Obstetric care of New European migrants in Scotland: an audit of antenatal care, obstetric outcomes and communication. *Scott Med J* 2010;55:26–31.

25 Bhatia N, Lal S, Behera G, Kriplani A, Mittal S, Agarwal N, et al. Cardiac disease in pregnancy. *Int J Gynaecol Obstet* 2003;82:153–9.

26 Liu S, Wen SW, Demissie K, Marcoux S, Kramer MS. Maternal asthma and pregnancy outcomes: a retrospective cohort study. *Am J Obstet Gynecol* 2001;184:90–6.

27 Aasheim V, Waldenstrom U, Hjelmstedt A, Rasmussen S, Pettersson H, Schytt E. Associations between advanced maternal age and psychological distress in primiparous women, from early pregnancy to 18 months postpartum. *BJOG* 2012;119:1108–16.

28 Montan S. Increased risk in the elderly parturient. *Curr Opin Obstet Gynecol* 2007;19:110–2.

29 Bramham K, Briley AL, Seed P, Poston L, Shennan AH, Chappell LC. Adverse maternal and perinatal outcomes in women with previous preeclampsia: a prospective study. *Am J Obstet Gynecol* 2011;204:512.

30 Ford JB, Roberts CL, Bell JC, Algert CS, Morris JM. Postpartum haemorrhage occurrence and recurrence: a population-based study. *Med J Aust* 2007;187:391.

31 Johnson KA, Gee RE. Interpregnancy care. *Semin Perinatol* 2015;39:310–5.