How to compute the rank of a Delaunay polytope

Mathieu DUTOUR SIKIRIĆ Viatcheslav GRISHUKHIN
Institut Rudjer Bosković, Zagreb CEMI RAN, Russia

Abstract

Roughly speaking, the rank of a Delaunay polytope (first introduced in [2]) is its number of degrees of freedom. In [3], a method for computing the rank of a Delaunay polytope P using the hypermetrics related to P is given. Here a simpler more efficient method, which uses affine dependencies instead of hypermetrics is given. This method is applied to classical Delaunay polytopes.

Then, we give an example of a Delaunay polytope, which does not have any affine basis.

1 Introduction

A lattice L is a set of the form $v_1\mathbb{Z} + \cdots + v_n\mathbb{Z} \subset \mathbb{R}^n$. A Delaunay polytope P is inscribed into an empty sphere S such that no point of L is inside S and the vertex-set of P is $L \cap S$. The Delaunay polytopes of L form a partition of \mathbb{R}^n.

The vertex-set $V = V(P)$ of a Delaunay polytope P is the support of a distance space (V, d_P). For $u, v \in V(P)$, the distance $d_P(u, v) = \|u - v\|^2$ is the Euclidean norm of the vector $u - v$. A distance vector $(d(v, v'))$ with $v, v' \in V$ is called a hypermetric on the set V if it satisfies $d(v, v') = d(v', v)$, $d(v, v) = 0$ and the following hypermetric inequalities:

$$H(b)d = \sum_{v, v' \in V} b_v b_v' d(v, v') \leq 0 \quad \text{for any } b = (b_v) \in \mathbb{Z}^V \quad \text{with} \quad \sum_{v \in V} b_v = 1. \quad (1)$$

The set of distance vectors, satisfying (1) is called the hypermetric cone and denoted by $HYP(V)$.

The distance d_P is a hypermetric, i.e., it belongs to the hypermetric cone $HYP(V)$. The rank of P is the dimension of the minimal by inclusion face F_P of $HYP(V)$ which contains d_P.

It is shown in [3] that d_P determines uniquely the Delaunay polytope P. When we move d_P inside F_P, the Delaunay polytope P changes, while its affine type remain the same. In other words, like the rank of P, the affine type of P is an invariant of the face F_P.

The above movement of d_P inside F_P corresponds to a perturbation of each basis of L, and, therefore, of each Gram matrix (i.e., each quadratic form) related to L. In this paper, we show that there is a one-to-one correspondence between the space spanned by F_P and the space $B(P)$ spanned by the set of perturbed quadratic forms. Hence, those two spaces have the same
dimension. It is shown here, that if one knows the coordinates of vertices of \(P \) in a basis, then it is simpler to compute \(\dim(\mathcal{B}(P)) \) than \(\dim(F_P) \). This fact is illustrated by computations of ranks of cross polytope and half-cube.

In the last section, we describe a non-basic repartitioning Delaunay polytope recently discovered by the first author.

\section{Equalities of negative type and hypermetric}

A sphere \(S = S(c, r) \) of radius \(r \) and center \(c \) in an \(n \)-dimensional lattice \(L \) is said to be an \textit{empty sphere} if the following two conditions hold:

(i) \(\|a - c\|^2 \geq r^2 \) for all \(a \in L \),

(ii) the set \(S \cap L \) contains \(n + 1 \) affinely independent points.

A Delaunay polytope \(P \) in a lattice \(L \) is a polytope, whose vertex-set is \(L \cap S(c, r) \) with \(S(c, r) \) an empty sphere.

Denote by \(L(P) \) the lattice generated by \(P \). In this paper, we can suppose that \(P \) is \textit{generating} in \(L \), i.e., that \(L = L(P) \). A subset \(V \subseteq V(P) \) is said to be \textit{\(\mathbb{K} \)-generating}, with \(\mathbb{K} \) being a ring, if every vertex \(w \in V(P) \) has a representation \(w = \sum_{v \in V} z(v)v \) with \(1 = \sum_{v \in V} z(v) \) and \(z(v) \in \mathbb{K} \). If \(|V| = n + 1 \), then \(V \) is called an \textit{\(\mathbb{K} \)-affine basis}; the Delaunay polytope \(P \) is called \textit{\(\mathbb{K} \)-basic} if it admits at least one \(\mathbb{K} \)-affine basis. In this work \(\mathbb{K} \) will be \(\mathbb{Z} \), \(\mathbb{Q} \) or \(\mathbb{R} \) and if the ring is not precised, it is \(\mathbb{Z} \). Furthermore, let

\[
Y(P) = \{ y \in \mathbb{Z}^{|V(P)|} : \sum_{v \in V(P)} y(v)v = 0, \quad \sum_{v \in V(P)} y(v) = 0 \} \tag{2}
\]

be the \(\mathbb{Z} \)-module of all integral dependencies on \(V(P) \). If the Delaunay polytope \(P \) is a simplex, then \(Y(P) = \{0\} \).

A dependency on \(V(P) \) implies some dependencies between distances \(d_P(u, v) \) as follows. Let \(c \) be the center of the empty sphere \(S \) circumscribing \(P \). Then all vectors \(v - c, v \in V(P) \), have the same norm \(\|v - c\|^2 = r^2 \), where \(r \) is the radius of the sphere \(S \). Hence,

\[
d_P(u, v) = \|u - v\|^2 = \|u - c - (v - c)\|^2 = 2(r^2 - \langle u - c, v - c \rangle) \tag{3}
\]

Multiplying this equality by \(y(v) \) and summing over \(v \in V(P) \), we get

\[
\sum_{v \in V(P)} y(v)d_P(u, v) = 2r^2 \sum_{v \in V(P)} y(v) - 2\langle u - c, \sum_{v \in V(P)} y(v)(v - c) \rangle.
\]

Since \(y \in Y(P) \), we obtain the following important equality

\[
\sum_{v \in V(P)} y(v)d_P(u, v) = 0, \text{ for any } u \in V(P) \text{ and } y \in Y(P). \tag{4}
\]
Denote by $\mathcal{S}_{\text{dist}}(P)$ the system of equations (1) for all integral dependencies $y \in Y(P)$ and all $u \in V(P)$, where the distances $d_P(u,v)$ are considered as unknowns.

Multiplying the equality (1) by $y(u)$ and summing over all $u \in V(P)$, we obtain

$$
\sum_{u,v \in V(P)} y(u) y(v) d_P(u,v) = 0.
$$

(5)

This equality is called an equality of negative type and the system of such equality is denoted $\mathcal{S}_{\text{neg}}(P)$. Hence, the equalities of $\mathcal{S}_{\text{neg}}(P)$ are implied by the one of $\mathcal{S}_{\text{dist}}(P)$.

Each integral dependency $y \in Y(P)$ determines the following representation of a vertex $w \in V(P)$ as an integer combination of vertices from $V(P)$:

$$
w = w + \sum_{v \in V(P)} y(v)v = \sum_{v \in V(P)} y^w(v)v,
$$

where

$$
y^w(v) = \begin{cases} y(v) & \text{if } v \neq w, \\ y(w) + 1 & \text{if } v = w \end{cases} \quad \text{and} \quad \sum_{v \in V(P)} y^w(v) = 1.
$$

Let δ_w be the indicator function of $V(P)$: $\delta_w(v) = 0$ if $v \neq w$, and $\delta_w(w) = 1$. Obviously, δ_w is y^w for the trivial representation $w = w$. We have $y^w = y + \delta_w$. Conversely, every representation $w = \sum_{v \in V(P)} y^w(v)v$ provides the dependency $y = y^w - \delta_w \in Y(P)$. Substituting $y = y^w - \delta_w$ in (5), we obtain the following equality

$$
\sum_{u,v \in V(P)} y(u) y(v) d_P(u,v) = \sum_{u,v \in V(P)} y^w(u) y^w(v) d_P(u,v) - 2 \sum_{v \in V(P)} y^w(v) d_P(w,v).
$$

Since $d_P(w,w) = 0$, we can set $y^w = y$ in the last sum. For any $w \in V(P)$, we use this equality in the following form using equations (1) and (5)

$$
\sum_{u,v \in V(P)} y^w(u) y^w(v) d_P(u,v) = \sum_{u,v \in V(P)} y(u) y(v) d_P(u,v) + 2 \sum_{v \in V(P)} y(v) d_P(w,v) = 0.
$$

(6)

The equality

$$
\sum_{u,v \in V(P)} z(u) z(v) d_P(u,v) = 0, \quad \text{where} \quad \sum_{v \in V(P)} z(v) = 1, \quad z(v) \in \mathbb{Z},
$$

is the hypermetric equality. Denote by $\mathcal{S}_{\text{hyp}}(P)$ the system of all hypermetric equalities which hold for $d_P(u,v)$, considering the distances $d_P(u,v)$ as unknowns.

In [3], the following lemma is proved. For the sake of completeness, we give its short proof.

Lemma 1 Let P be a Delaunay polytope with vertex-set $V(P)$. Let $y^w \in \mathbb{Z}^{V(P)}$, such that $\sum_{v \in V(P)} y^w(v) = 1$. Then the following assertions are equivalent

(i) a vertex $w \in V(P)$ has the representation $w = \sum_{v \in V(P)} y^w(v)v$;
(ii) the distance \(d_P \) satisfies the hypermetric equality
\[
\sum_{u,v \in V(P)} y^w(u)y^w(v)d_P(u,v) = 0.
\]

Proof. (i)⇒(ii) Obviously, \(y = y^w - \delta_w \) is a dependency, i.e. \(y \in Y(P) \). Hence, this implication follows from the equalities (i)3, (i)1 and (i)5.

(ii)⇒(i) Substituting the expression (i)6 for \(d_P \) in the hypermetric equality of (ii) we obtain the equality
\[
2r^2 - 2\| \sum_{v \in V(P)} y^w(v)(v - c) \|^2 = 0.
\]

Obviously, \(\sum_{v \in V(P)} y^w(v)c = c \) and \(\sum_{v \in V(P)} y^w(v)v \) is a point of \(L(P) \). Denote this point by \(w \). Then the above equality takes the form \(\| w - c \|^2 = r^2 \). Hence, \(w \) lies on the empty sphere circumscribing \(P \). Therefore, \(w \in V(P) \) and (i) follows. \(\square \)

According to Lemma 11 each hypermetric equality of the system \(S_{hyp}(P) \) corresponds to a representation \(y^w \) of a vertex \(w \in V(P) \). Since the relation \(y = y^w - \delta_w \) gives a one-to-one correspondence between dependencies on \(V(P) \) and non-trivial representations \(y^w \) of vertices \(w \in V(P) \), we can prove the following assertion:

Lemma 2 The systems of equations \(S_{dist}(P) \) and \(S_{hyp}(P) \) are equivalent, i.e., their solution sets coincide.

Proof. The equality (i)3 shows that each equation of the system \(S_{hyp}(P) \) is implied by equations of the system \(S_{dist}(P) \).

Now, we show the converse implication. Suppose the unknowns \(d(u,v) \) satisfy all hypermetric equalities of the system \(S_{hyp}(P) \). The equality (i)6 implies the equality
\[
2 \sum_{v \in V(P)} y(v)d(w,v) = - \sum_{u,v \in V(P)} y(u)y(v)d(u,v),
\]
where \(y = y^w - \delta_w \). This shows that, for the dependency \(y \) on \(V(P) \), \(\sum_{v \in V(P)} y(v)d(w,v) \) does not depend on \(w \); denote it by \(A(y) \). Hence, we have
\[
-2A(y) = \sum_{u,v \in V(P)} y(u)y(v)d(u,v) = A(y) \sum_{u \in V(P)} y(u).
\]

According to equation (i)4, the last sum equals zero. This implies the equalities (i)5 and hence the equalities of the system \(S_{dist}(P) \). \(\square \)

Obviously, the space determined by the system \(S_{hyp}(P) \) (and also of the system \(S_{dist}(P) \)) is a subspace \(X(P) \) of the space spanned by all distances \(d(u,v) \), \(u,v \in V(P) \). The dimension of \(X(P) \) is the rank of \(P \). According to Lemma 22 in order to compute the rank of \(P \), we can use only equations of the system \(S_{dist}(P) \).

Let \(V_0 = \{ v_0, v_1, \ldots, v_n \} \) be an \(\mathbb{R} \)-affine basis of \(P \). Then each vertex \(w \in V(P) \) has a unique representation through vertices of \(V_0 \) as follows
\[
w = \sum_{v \in V_0} x(v)v, \quad \sum_{v \in V_0} x(v) = 1, \quad x(v) \in \mathbb{R}.
\]
Since the vertices of \(P \) are points of a lattice, in fact, \(x(v) \in \mathbb{Q} \). Hence, the above equation can be rewritten as an integer dependency

\[
y(w)w + \sum_{v \in V_0} y(v)v = 0, \quad y(w) + \sum_{v \in V_0} y(v) = 0, \text{ with } y(w) \in \mathbb{Z}.
\]

One sets \(y_u = 0 \) for \(u \in V(P) - (V_0 \cup \{w\}) \) and gets \(y_u \in Y(P) \). Any dependency \(y \in Y(P) \) is a rational combination of dependencies \(y_w, \ w \in V(P) - V_0 \). Hence, the following equality holds:

\[
\beta y = \sum_{w \in V(P) - V_0} \beta_w y_w, \text{ with } \beta_w \in \mathbb{Z} \text{ and } 0 < \beta \in \mathbb{Z}
\]

Since the equalities \(\beta \) are linear over \(y \in Y(P) \), the dependencies \(y_w, \ w \in V(P) - V_0 \) provide the following system, which is equivalent to \(S_{\text{dist}}(P) \)

\[
y(w)d_P(u, w) + \sum_{v \in V_0} y(v)d_P(u, v) = 0, \text{ with } u \in V(P) \text{ and } w \in V(P) - V_0. \tag{7}
\]

We see that, for \(u \in V(P) - V_0 \), the distance \(d_P(u, w), \ w \in V(P) - V_0 \), is also expressed through distances between \(u \) and \(v \in V_0 \). But for \(u \in V_0 \), the distance \(d_P(u, w) \) is expressed through distances between \(u, v \in V_0 \). This implies that the distance \(d_P(u, w) \) for \(u, w \in V(P) - V_0 \) can be also represented through distances \(d_P(u, v) \) for \(u, v \in V_0 \). Hence, the dimension of \(X(P) \) does not exceed \(\frac{n(n+1)}{2} \), where \(n + 1 = |V_0| \), which is the dimension of the space of distances between the vertices of \(V_0 \).

In order to obtain dependencies between \(d_P(u, v) \) for \(u, v \in V_0 \), we use equation (7) for \(u = w \). Since \(d_P(w, w) = 0 \), we obtain the equations

\[
\sum_{v \in V_0} y(w)(v)d_P(v, w) = 0, \ w \in V(P) - V_0.
\]

Multiplying the above equation by \(y(w) \) and using equation (7), we obtain

\[
0 = \sum_{u \in V_0} y(w)(u)(y(w)(d_P(u, w))) = -\sum_{u \in V_0} y(w)(u) \sum_{v \in V_0} y(v)d_P(u, v).
\]

So, we obtain the following main equations for dependencies between \(d_P(u, v) \) for \(u, v \in V_0 \)

\[
\sum_{u, v \in V_0} y(u)y(v)d_P(u, v) = 0, \ w \in V(P) - V_0. \tag{8}
\]

Note, that if \(V_0 \) is an affine basis of \(L(P) \), then one can set \(y(w) = -1 \). In this case, the equation \(y(w) + \sum_{v \in V_0} y(v) = 0 \) takes the form \(\sum_{v \in V_0} y(v) = 1 \). This implies that the above equations are hypermetric equalities for a \(\mathbb{Z} \)-basic Delaunay polytope \(P \). If \(P \) is \(\mathbb{Z} \)-basic, then the distance \(d_P \) restricted to the set \(V_0 \) lies on the face of the cone \(HY P(V_0) \) determined by the hypermetric equalities (8). But if \(P \) is not \(\mathbb{Z} \)-basic, then the equations (8) are not hypermetric, and the distance \(d_P \) restricted on the set \(V_0 \) lies inside the cone \(HY P(V_0) \). On the other hand,
the distance d_P on the whole set $V(P)$ lies on the boundary of the cone $HYP(V(P))$. This implies that, in this case, the rank of d_P restricted to V_0 is greater than the rank of d_P on $V(P)$.

This can be explained as follows. We can consider the cone $HYP(V_0)$ as a projection of $HYP(V(P))$ on a face of the positive orthant \mathbb{R}^N_+, where $N = |V(P)|$. This face is determined by the equations $d(u, v) = 0$ for $v \in V(P) - V_0$ or/and $u \in V(P) - V_0$. By this projection, the distance d_P, lying on the boundary of the cone $HYP(V(P))$, is projected into the interior of the cone $HYP(V_0)$. This hypermetric space corresponds to a wall of an L-type domain, which lies inside the cone $HYP(V_0)$.

But, in order to compute the rank of P, it is sufficient to find the dimension of the space determined by the system (8).

3 Dependencies between lattice vectors

Now we go from affine realizations to linear realizations. Take $v_0 \in V_0$ as origin of the lattice $L(P)$ and choose the lattice vectors $a_i = a(v_i) = v_i - v_0$, $1 \leq i \leq n$ such that $\{a_i : 1 \leq i \leq n\}$ forms a \mathbb{Q}-basis of $L(P)$. If P is basic, we can choose v_i such that $\{a_i : 1 \leq i \leq n\}$ is a \mathbb{Z}-basis of $L(P)$. Using the expressions $d_P(v_i, v_j) = ||a_i - a_j||^2$, it is easy to verify that there is the following relation between distances $d_P(v_i, v_j)$, $u, v \in V_0$, and inner products $\langle a_i, a_j \rangle$:

$$d_P(v_i, v_0) = ||a_i||^2, \quad d_P(v_i, v_j) = ||a_i||^2 - 2\langle a_i, a_j \rangle + ||a_j||^2.$$

And conversely,

$$||a_i||^2 = d_P(v_i, v_0), \quad \langle a_i, a_j \rangle = \frac{1}{2}(d_P(v_i, v_0) + d_P(v_j, v_0) - d_P(v_i, v_j)).$$

This shows that there is a one-to-one correspondence between the set of distances $d_P(v_i, v_j)$, $0 \leq i < j \leq n$, and the set of inner products $\langle a_i, a_j \rangle$, $1 \leq i \leq j \leq n$.

We substitute the above expressions for $d_P(v_i, v_j)$, $0 \leq i, j \leq n$, into the equations (8), where we set $y_w(i) = y_w(v_i)$, and use the equality $\sum_{i=0}^n y_w(i) = -y_w(w)$. We obtain the following important equations

$$-y_w(w) \sum_{i=1}^n y_w(i)||a_i||^2 = ||\sum_{i=1}^n y_w(i)a_i||^2, \quad w \in V(P) - V_0. \quad (9)$$

We can obtain the equation (8) directly, as follows. For $v \in V(P)$, the vector $a(v) = v - v_0$ is a lattice vector of $L(P)$. For $y \in Y(P)$, we have obviously $\sum_{v \in V(P)} y(v)a(v) = 0$. In particular, for $y = y_w$, this equation has the form

$$y_w(w)a(w) + \sum_{i=1}^n y_w(i)a_i = 0$$

and allows to represent the vectors $a(w)$ in the \mathbb{Q}-basis $\{a_i : 1 \leq i \leq n\}$.

Recall that the lattice vector $a(w)$ of each vertex $w \in V(P)$ of a Delaunay polytope P satisfies the equation $||a(w) - c||^2 = r^2$. Since $v_0 \in V$, $a(v_0) = 0$, which implies $||c||^2 =
\[\|0 - c\|^2 = r^2. \] The vertex-set of \(P \) provides the following system of equations \(\|a(w) - c\|^2 = \|c\|^2, \ w \in V(P), \) i.e.,
\[
2\langle c, a(w) \rangle = \|a(w)\|^2, \ w \in V(P).
\]
Since \(y_w(w)a(w) = -\sum_{i=1}^{n} y_{i_1}(i)a_i, \) the above equations take the form
\[
-y_w(w)\sum_{i=1}^{n} y_{i_1}(i)2\langle c, a_i \rangle = \|\sum_{i=1}^{n} y_{i_1}(i)a_i\|^2. \tag{11}
\]
Recall that \(a_i = a(v_i). \) Hence, the vertices \(v_i \) give \(2\langle c, a_i \rangle = \|a_i\|^2, \) and the above equation takes the form of equation (10).

We will use the equations (10) mainly for basic Delaunay polytopes. In this case, we can set \(y_w(w) = -1, \) and \(a_i = b_i, \ 1 \leq i \leq n, \) where \(B = \{b_i : 1 \leq i \leq n\} \) is the basis of \(L(P) \) consisting of lattice vectors of the basic Delaunay polytope \(P. \)

For a given \(\mathbb{Q} \)-affine basis \(V_0 \subseteq V(P) \) of a Delaunay polytope \(P, \) the set of affine dependencies \(\{y_w \in Y(P) : w \in V(P) - V_0\} \) is uniquely determined up to integral multipliers and form a \(\mathbb{Q} \)-basis of the \(\mathbb{Z} \)-module \(Y(P). \) This implies that the equations (10) determine a subspace
\[
\mathcal{A}(P) = \{a_{ij} : -y_w(w)\sum_{i=1}^{n} y_{i_1}(i)a_i = \sum_{1 \leq i, j \leq n} y_w(i)y_w(j)a_{ij}, \ w \in Y(P), w \in V(P) - V_0\}
\]
in the \(\frac{n(n+1)}{2} \)-dimensional space of all symmetric \(n \times n \)-matrices \(a_{ij} = a_{ji}, \ 1 \leq i < j \leq n, \)

Since there is a one-to-one correspondence between distances \(d(v_i, v_j), \ 0 \leq i < j \leq n, \) and inner products \(a_{ij} = \langle a_i, a_j \rangle, \ 1 \leq i \leq j \leq n, \) the dimension of the subspace \(\mathcal{A}(P) \) is equal to the rank of \(P. \) So, in order to compute the rank of \(P, \) we have to find the dimension of \(\mathcal{A}(P). \)

4 The space \(\mathcal{B}(P) \) and our computational method

Fix a basis \(B = \{b_i : 1 \leq i \leq n\} \) of the lattice \(L. \) Every lattice vector \(a(v), \ v \in V(P), \) has a unique representation \(a(v) = \sum_{i=1}^{n} z_i(v)b_i. \) Define \(Z_B(P) = \{z_i(v) : 1 \leq i \leq n, v \in V(P)\}. \)

Recall that the cone \(\mathcal{P}_n \) of all positive semi-definite forms on \(n \) variables is partitioned into \(L \)-type domains. Each \(L \)-type domain is an open polyhedral cone of dimension \(k, \) where \(1 \leq k \leq \frac{n(n+1)}{2}. \) It consists of form having affinely equivalent partitions into Delaunay polytopes, i.e. Delaunay partitions. More exactly, an \(L \)-type domain is the set of quadratic forms \(f(x) = \|\sum_{i=1}^{n} x_ib_i\|^2 \) having the same set of matrices \(Z_B(P) \) for all non-isomorphic Delaunay polytopes \(P \) of its Delaunay partition. So, this set is not changed when the basis \(B \) changes such that the form \(f(x) \) belongs to the same \(L \)-type domain. In other words, \(Z_B(P) \) is an invariant of this \(L \)-type domain.

We set \(z_{ij} = z_i(v_j) \) for \(v_j \in V_0 - \{v_0\}, \ 1 \leq j \leq n. \) The matrix \(Z_B = (z_{ij})_i^l \) is non-degenerate and gives a correspondence between the linear bases of \(P \) and bases of \(L(P). \) In particular, this correspondence maps the space \(\mathcal{A}(P) \) in the space \(\mathcal{B}(P) \) of matrices \(b_{ij} = \langle b_i, b_j \rangle \) of the quadratic form \(f(x). \) If \(P \) is basic and \(b_i = a_i, \ 1 \leq i \leq n, \) then \(Z_B \) is the identity matrix \(I, \) and \(\mathcal{A}(P) = \mathcal{B}(P). \)
Substituting in the equations (10) the above representations of the vectors \(a(v), v \in V(P)\), in the basis \(B\), we obtain explicit equations, determining the space \(B(P)\). In fact, we have

\[
2 \sum_{i=1}^{n} z_i(v)\langle c, b_i \rangle = \sum_{1 \leq i, j \leq n} z_i(v)z_j(v)b_{ij}, \; v \in V(P). \tag{12}
\]

We have the following \(\frac{n(n+1)}{2} + n = \frac{n(n+3)}{2}\) parameters in the equations (12):

\[
b_{ij} = \langle b_i, b_j \rangle, \; 1 \leq i \leq j \leq n, \quad \text{and} \quad \langle c, b_i \rangle, \; 1 \leq i \leq n,
\]

Hence, all these parameters can be represented through a number of independent parameters. This number is just the rank of \(P\). Recall that a Delaunay polytope is called extreme if \(\text{rk}(P) = 1\). Hence, in order to be extreme, a Delaunay polytope should have at least \(\frac{n(n+3)}{2}\) vertices.

Note that, for \(v = v_0\), the equation (12) is an identity, since \(a(v_0) = 0\) and therefore \(z_i(v_0) = 0\) for all \(i\). So, we have \(|V(P)| - 1\) equations (12). For \(v = v_i, 1 \leq i \leq n\), one gets \(n\) equations that give a representation of the parameters \(\langle c, b_i \rangle, 1 \leq i \leq n\) in terms of the parameters \(\langle b_i, b_j \rangle, 1 \leq i \leq j \leq n\). Hence, the equations (12), for \(v \in V(P) - V_0\), allow to find dependencies between the main parameters \(\langle b_i, b_j \rangle\). Now, we write out explicitly dependencies between \(\langle b_i, b_j \rangle\).

Since the basic vectors \(b_i \in B\) are mutually independent, a dependency \(\sum_{v \in V} y(v)a(v) = 0\) implies the dependencies \(\sum_{v \in V} y(v)z_i(v) = 0\) between the coordinates \(z_i(v), 1 \leq i \leq n\).

Multiplying equation (12) by \(y(v)\), and summing over all \(v \in V(P)\), we obtain that the \(\mathbb{Z}\)-module \(Y(P)\) determines the following subspace of the space of parameters \(b_{ij} = \langle b_i, b_j \rangle\):

\[
B(P) = \{b_{ij} : \sum_{i,j=1}^{n} (\sum_{v \in V} y(v)z_i(v)z_j(v))b_{ij} = 0, \; y \in Y(P)\}.
\]

In the Delaunay partition of the lattice \(L(P)\), there are infinitely many Delaunay polytopes equivalent to \(P\). Each of them has the form \(a \pm P\), where \(a = \sum_{i=1}^{n} z_i^a b_i\) is an arbitrary lattice vector of \(L(P)\). Now, we show that the space \(B(P)\) is independent on a representative of \(P\) in \(L(P)\), i.e., that \(B(P) = B(a \pm P)\).

Let \(v_a = a \pm v\) be the vertex of the polytope \(a \pm P\) corresponding to a vertex \(v\) of \(P\). Obviously, \(z_i(v_a) = z_i^a \pm z_i(v)\). Substituting these values of \(z_i(v_a)\) into the equations determining \(B(a \pm P)\), we obtain

\[
\sum_{v_a} y(v_a)z_i(v_a)z_j(v_a) = \sum_{v \in V(P)} y(v)(z_i^a z_j^a \pm z_i^a z_j(v) + z_i(v)z_j(v)).
\]

Since \(y\) is a dependency between vertices of \(P\), the sums with \(z_i^a\) equal zero. This shows that \(B(P)\) does not depend on a representative of \(P\).

Since the equalities determining the space \(B(P)\) are linear in \(y\), we can consider these equalities only for basic dependencies \(y_w, w \in V(P) - V_0\). We obtain the following main system of equations describing dependencies between the parameters \(b_{ij}\):

\[
\sum_{i,j=1}^{n} (\sum_{v \in V} y_w(v)z_i(v)z_j(v))b_{ij} = 0, \; w \in V(P) - V_0. \tag{13}
\]
A unimodular transformation maps a basis of $L(P)$ into another basis. This transformation generates a transformation which maps the space $B(P)$ into another space related to P. The dimension of the space $B(P)$ is an invariant of the lattice $L(P)$ generated by P.

In [1], a non-rigidity degree of a lattice was defined. In terms of this paper, the non-rigidity degree of a lattice L is the dimension of the intersection of spaces $B(P)$ related to all non-isomorphic Delaunay polytopes of a star of Delaunay polytopes of L. Hence,

$$\text{nrd}(L) = \dim(\cap_P B(P)).$$

In fact, the space $\cap_P B(P)$ is the supporting space of the L-type domain of the lattice L.

5 Centrally symmetric construction

In many cases, the computation of the rank of a Delaunay polytope P using the equations [12] is easier than by using the hypermetric equalities generated by P. We demonstrate this by giving a simpler proof of Lemma 15.3.7 of [3]. Recall that a Delaunay polytope is either centrally symmetric or asymmetric. Let c be the center of the empty sphere circumscribing P. For any $v \in V(P)$, the point $v^* = 2c - v$ is centrally symmetric to v. If P is centrally symmetric, then $v^* \in V(P)$ for all $v \in V(P)$. If P is asymmetric, then $v^* \not\in V(P)$ for all $v \in V(P)$.

Lemma 3 Let P be an n-dimensional basic centrally symmetric Delaunay polytope of a lattice L with the following properties:

1. The origin $0 \in V(P)$ and the vectors e_i, $1 \leq i \leq n$, are basic vectors of L, whose endpoints are vertices of P.

2. The intersection $P_1 = P \cap H$ of P with the hyperplane H generated by the vectors e_i, $1 \leq i \leq n - 1$, is an asymmetric Delaunay polytope of the lattice $L_1 = L \cap H$.

3. If the endpoint v_n of the basic vector e_n is v^* for some $v \in V(P_1)$, then there is a vertex $u \in V(P)$ such that $u \neq v, v^*$ for all $v \in V(P_1)$.

Then $\text{rk}(P) \leq \text{rk}(P_1)$.

Proof. It is sufficient to prove that the n parameters $\langle e_i, e_n \rangle$, $1 \leq i \leq n$, can be expressed through the parameters $a_{ij} = \langle e_i, e_j \rangle$, $1 \leq i \leq j \leq n - 1$.

Let c be the center of P. Obviously, $2c = 0^* \in V(P)$. Since P_1 is asymmetric, $2c \not\in L_1$. It is easy to see that $2c = a_0 + ze_n$, with $a_0 = \sum_{i=1}^{n-1} y_i e_i \in L_1$ and $0 \neq z \in \mathbb{Z}$. Hence, the equation $2\langle c, e_i \rangle = \|e_i\|^2$ takes the form $\langle a_0 + ze_n, e_i \rangle = \|e_i\|^2$, and the parameters $\langle e_i, e_n \rangle$ are represented through the parameters $\langle e_i, e_j \rangle$ as follows

$$\langle e_i, e_n \rangle = \frac{1}{z}(\|e_i\|^2 - \langle a_0, e_i \rangle), \quad 1 \leq i \leq n - 1.$$

Now, using the equation $2\langle c, e_n \rangle = \|e_n\|^2$, we obtain $\langle a_0 + ze_n, e_n \rangle = \|e_n\|^2$, i.e., $\|e_n\|^2(1 - z) = \langle a_0, e_n \rangle = \sum_{i=1}^{n-1} y_i \langle e_i, e_n \rangle$. Hence, if $z \neq 1$, we can represent $\|e_n\|^2$ through $\langle e_i, e_j \rangle$.

1 \leq i \leq j \leq n - 1$, too. But if $z = 1$, then the endpoint v_n of e_n belongs to $(V(P_1))^*$. In this case there is a vertex u such that $u = \sum_{i=1}^n z_i e_i = u_0 + z_n e_n$, where $u_0 \in L_1$ and $z_n \neq 0, 1$. Using the equation $2\langle c, u \rangle = \|u\|^2$, where now $2c = a_0 + e_n$, we have $\langle a_0 + e_n, u_0 + z_n e_n \rangle = \|u_0 + z_n e_n\|^2$. This equation gives

$$\|e_n\|^2 = \frac{1}{z_n(z_n-1)}[(a_0 - u_0, u_0) + \langle z_n a_0 + (1 - 2z_n)u_0, e_n \rangle].$$

The strict inequality $\text{rk}(P) < \text{rk}(P_1)$ is possible if some vertices of the set $V(P) - V(P_1)$ provide additional relations between the parameters $\langle e_i, e_j \rangle$, $1 \leq i \leq j \leq n - 1$.

Examples, where $\text{rk}(P) < \text{rk}(P_1)$, can be given by some extreme Delaunay polytopes.

Corollary 1 Let P be a basic centrally symmetric Delaunay polytope satisfying the conditions of Lemma 3. P is extreme if P_1 is extreme.

6 Computing the rank of simplexes, cross-polytopes and half-cubes

Simplexes. Let Σ be an n-dimensional simplex with vertices $0, v_i$, $1 \leq i \leq n$. The vertex v_i is the end-point of the basic vector e_i, $1 \leq i \leq n$. We have only n equations $2\langle c, e_i \rangle = \|e_i\|^2$ determining only the coordinates of the center c of Σ in the basis $\{e_i : 1 \leq i \leq n\}$. Since there is no relation between the $\frac{n(n+1)}{2}$ parameters $\langle e_i, e_j \rangle = a_{ij}$, all these parameters are independent. Hence,

$$\dim(B(\Sigma)) = \frac{n(n+1)}{2}, \text{ i.e., \text{rk}(\Sigma) = \frac{n(n+1)}{2}}.$$

Cross-polytopes. An n-dimensional cross-polytope β_n is a basic centrally symmetric Delaunay polytope. It is the convex hull of $2n$ end-points of n linearly independent segments intersecting in the center c of the circumscribing sphere. The set $V(\beta_n)$ is partitioned into two mutually centrally symmetric n-subsets each of which is the vertex-set of an $(n-1)$-dimensional simplex Σ. So, $V(\beta_n) = V(\Sigma) \cup V(\Sigma^*)$. Let $V(\Sigma) = \{0, v_i : 1 \leq i \leq n - 1\}$. All \mathbb{Z}-affine bases of β_n are of the same type: $n - 1$ basic vectors e_i, $1 \leq i \leq n - 1$, with end vertices v_i, are basic vectors of the simplex Σ, and $e_n = 2c$, which is the segment which connects the vertex 0 with its opposite vertex 0^*. Let a_i be the lattice vector endpoint of which is the vertex $v_i^* \in \Sigma^*$. Obviously, $a_i = 2c - e_i = e_n - e_i$. The equality $2\langle c, a_i \rangle = \|a_i\|^2$ gives $\langle e_i, e_n \rangle = \|e_i\|^2$, $1 \leq i \leq n - 1$. So, we obtain $n - 1$ independent relations between the parameters $\langle e_i, e_j \rangle$, and they are the only relations. Hence,

$$\text{rk}(\beta_n) = \frac{n(n+1)}{2} - (n-1).$$

(Cf., the first formula on p.232 of [3].)

Half-cubes. Take $N = \{1, 2, \ldots, n\}$, a basis $(e_{i})_{i \in N}$ and defines $e(T) = \sum_{i \in T} e_i$ for any $T \subseteq N$. Call a set $T \subseteq N$ even if its cardinality $|T|$ is even. A half-cube $h\gamma_n$ is the convex hull
of endpoints of all vectors $e(T)$ for all even $T \subseteq N$. Note that $h\gamma_3$ is a simplex, and $h\gamma_4$ is the cross-polytope β_4. Hence,

$$\text{rk}(h\gamma_3) = \frac{3(3+1)}{2} = 6, \quad \text{and} \quad \text{rk}(h\gamma_4) = \frac{4(4+1)}{2} - 3 = 7.$$

The rank of $h\gamma_n$ is computed from the following system of equations:

$$2\langle c, e(T) \rangle = \|e(T)\|^2, \quad T \subseteq N, \quad T \text{ is even.} \tag{14}$$

Let T_1 and T_2 be two disjoint even subsets of N. Since the set $T = T_1 \cup T_2$ is even, we have

$$2\langle c, e(T_1 \cup T_2) \rangle = 2\langle c, e(T_1) + e(T_2) \rangle = \|e(T_1) + e(T_2)\|^2 = \|e(T_1)\|^2 + \|e(T_2)\|^2 + 2\langle e(T_1), e(T_2) \rangle.$$

Comparing this equation with the equations (14) for $T = T_1$ and $T = T_2$, we obtain that for any two disjoint even subsets the following orthogonality conditions hold:

$$\langle e(T_1), e(T_2) \rangle = 0, \quad \text{if} \quad T_1 \cap T_2 = \emptyset, \quad T_i \subset N, \quad \text{and} \quad T_i \text{ is even,} \quad i = 1, 2.$$

Note that, for $n = 3$, we have no orthogonality condition. If $n \geq 4$, take 4 elements i, j, k and l and write three equalities corresponding to three partitions:

$$\langle e_i + e_j, e_k + e_l \rangle = 0, \quad \langle e_i + e_k, e_j + e_l \rangle = 0, \quad \langle e_i + e_l, e_j + e_k \rangle = 0.$$

It is easy to verify that these equalities are equivalent to the following three equalities

$$\langle e_i, e_j \rangle + \langle e_k, e_l \rangle = 0, \quad \langle e_i, e_k \rangle + \langle e_j, e_l \rangle = 0, \quad \langle e_i, e_l \rangle + \langle e_j, e_k \rangle = 0. \tag{15}$$

In the particular case $n = 4$, we conclude again that $\text{rk}(h\gamma_4) = \frac{4(4+1)}{2} - 3 = 7$.

We show that, for $n \geq 5$, the orthogonality conditions are equivalent to mutual orthogonality of all vectors $e_i, i \in N$. To this end, it is sufficient to consider even subsets of cardinality two and use equation (15) for each quadruple $\{i, j, k, l\} \subseteq N$. Considering arbitrary subsets of N of cardinality 4, we obtain that, for $n \geq 5$, the system of equalities (15) for all quadruples has the following unique solution

$$\langle e_i, e_j \rangle = 0, \quad 1 \leq i < j \leq n, \quad \text{for} \quad n \geq 5.$$

So, all the basic vectors are mutually orthogonal. Obviously, the orthogonality of basic vectors implies the orthogonality conditions. Hence, the only independent parameters are the n parameters $\|e_i\|^2, i \in N$. This implies that

$$\text{rk}(h\gamma_n) = n \quad \text{if} \quad n \geq 5.$$

Note that we use a basis of $h\gamma_n$, which is not a basis of the lattice generated by $h\gamma_n$. But the spaces $B(P)$ have the same dimension for all bases. See another proof in [4].
7 A non-basic repartitioning Delaunay polytope

The example P_0 given in this section is 12 dimensional; its 14 vertices belong to two disjoint sets of vertices of regular simplexes Σ_i^2, $i = 1, 2$, of dimension 2, and two disjoint sets of vertices of regular simplexes Σ_i^3, $i = 1, 2$, of dimension 3.

Let $V(\Sigma_i^q)$ be the vertex-set of the four simplex Σ_i^q, $i = 1, 2$, $q = 2, 3$. Then $V = \cup V(\Sigma_i^q)$ is the vertex-set of P_0. The distances between the vertices of P_0 are as follows

$$d(u, v) = \begin{cases}
7 & \text{if } u, v \in \Sigma_i^q, \quad i = 1, 2, \quad q = 2, 3; \\
6 & \text{if } u \in \Sigma_i^2, \quad v \in \Sigma_i^3, \quad i = 1, 2; \\
10 & \text{if } u \in \Sigma_i^2, \quad v \in \Sigma_i^3; \\
12 & \text{if } u \in \Sigma_i^3, v \in \Sigma_i^3 \text{ or } u \in \Sigma_i^2, v \in \Sigma_i^3, \text{ or } u \in \Sigma_i^2, v \in \Sigma_i^3.
\end{cases}$$

We show that, for every $u \in V$, the set $V - \{u\}$ is an \mathbb{R}-affine basis of P_0. In fact, let $V - \{u\} = \{v_i : 0 \leq i \leq 12\}$ and let $a_i = v_i - v_0$, $1 \leq i \leq 12$. For the Gram matrix $a_{ij} = \langle a_i, a_j \rangle$, we have $a_{ii} = \|a_i\|^2 = \|v_i - v_0\|^2 = d(v_i, v_0)^2$. The relations between a_{ij} and $d(v_i, v_j)$ are $a_{ij} = \frac{1}{2}(d(v_i, v_0) + d(v_j, v_0) - d(v_i, v_j))$. Now, one can verify that the Gram matrix (a_{ij}) is not singular. Hence, $\{a_i : 1 \leq i \leq n\}$ is a basis, i.e. the dimension of P_0 is, in fact, 12.

The space $Y(P_0)$ of affine dependencies of vertices of P_0 is one-dimensional. For $v \in V$, let

$$y(v) = \begin{cases}
3 & \text{if } v \in \Sigma_1^2, \\
-3 & \text{if } v \in \Sigma_2^2, \\
2 & \text{if } v \in \Sigma_2^3, \\
-2 & \text{if } v \in \Sigma_3^3.
\end{cases}$$

Obviously, $\sum_{v \in V} y(v) = 0$. It is easy to verify that for any $u \in V$ the following equality holds

$$\sum_{v \in V} y(v)d(u, v) = 0. \tag{16}$$

Let $S(c, r)$ be the sphere circumscribing P_0. Then $\|v - c\|^2 = r^2$ for all $v \in V$. We have $d(u, v) = \|u - v\|^2 = \|(u - c) - (v - c)\|^2 = 2(r^2 - (u - c, v - c))$. Since $\sum_{v \in V} y(v) = 0$, the equality (16) takes the form

$$\langle u - c, \sum_{v \in V} y(v)(v - c) \rangle = 0,$$

i.e., $\langle u - c, \sum_{v \in V} y(v)(v - c) \rangle = \langle u - c, \sum_{v \in V} y(v)v \rangle = 0.$

Since this equality holds for all $u \in V$, and $\{u - c \mid u \in V\}$ span \mathbb{R}^{12}, we obtain $\sum_{v \in V} y(v)v = 0$, i.e., $y \in Y(P_0)$. Since $Y(P_0)$ is one dimensional and the coefficient of y have greatest common divisor 1, one has $Y(P_0) = y\mathbb{Z}$.

Using the basis $\{a_i : 1 \leq i \leq 12\}$, for non-basic $a(w)$, we obtain $a(w) = -\frac{1}{y(w)} \sum_{i=1}^{12} y(v_i)a_i$. Since there exist an i such that $\frac{y(v_i)}{y(w)} \notin \mathbb{Z}$ for any choice of $w \in V$, the polytope P_0 is not basic and the \mathbb{Q}-basis $\{a_i : 1 \leq i \leq n\}$ is not a \mathbb{Z}-basis of any lattice L having P_0 as a Delaunay polytope.
Remark that we can put the vector y in equation (9), we obtain the following equation
\[-y(w) \sum_{i=1}^{12} y(v_i) ||a_i||^2 = || \sum_{i=1}^{12} y(v_i) a_i ||^2.\]

which implies that $rk(P_0) = rk(V,d) = \frac{12 \times 13}{2} - 1 = 77$.

It is useful to compare the above computation of $rk(P)$ with the following computations using distances. Recall that $rk(V(P_0),d)$ is equal to the dimension of the face of the hypermetric cone $HYP(V(P_0)) = HYP(V)$, where the distance d lies. The dimension of $HYP(V)$ is $N = \frac{|V||V|-1}{2} = \frac{14 \times 13}{2} = 91$.

As in Section 2, we obtain that, for every $w \in V = V(P_0)$, the equality (16) implies the following hypermetric equality
\[
\sum_{v,v' \in V} y^w(v)y^w(v')d(v,v') = 0,
\]
where $y^w(v) = y(v) + \delta_w$. It is easy to see that the 14 equalities (17) for 14 vertices $w \in V$ are mutually independent. In fact, these 14 equalities are equivalent to the 14 equalities (16) for the 14 vertices $u \in V$. The two equations (16) corresponding to two vertices $u,w \in V$ have only one common distance $d(u,w)$. The intersection of the corresponding 14 facets is a face of dimension $91 - 14 = 77$.

But, for every $u \in V$, the hypermetric space $(V - \{u\},d)$ has rank $\frac{(|V| - |\{u\}|)(|V| - |\{u\}|-1)}{2} = 78$, which is greater than $rk(V,d) = 77$.

References

[1] E.P. Baranovskii, V.P. Grishukhin, *Non-rigidity degree of a lattice and rigid lattices*, Europ. J. Combinatorics, 22 (2001) 921–935.

[2] M. Deza, V.P. Grishukhin, and M. Laurent, *Extreme hypermetrics and L-polytopes*, in G.Hálaš et al. eds, *Sets, Graphs and Numbers, Budapest (Hungary), 1991*, 60 Colloquia Mathematica Societatis János Bolyai, (1992) 157–209.

[3] M. Deza, M. Laurent, *Geometry of Cuts and Metrics*, Springer Verlag (1997), Berlin – Heidelberg.

[4] M. Dutour, *The six dimensional Delaunay polytopes*, Proc. Int. conference on Arithmetics and Combinatorics (CIRM–Marseille, 2002), European Journal of Combinatorics, 25-4 (2004) 535–548.