STUDY OF SECONDARY ALTERATIONS OF VISEAN RESEVOIR ROCKS OF SOLIKAMSK DEPRESSION IN CONDITION OF STABILIZATION OF ANCIENT OIL-WATER CONTACTS

Sergey V. Galkin, Igor Yu. Kolychev, Denis V. Potekhin, Pavel Yu. Ilyushin

Perm National Research Polytechnic University (21 Akademika Koroleva st., Perm, 614013, Russian Federation) 1PermNIPIneft branch of LUKOIL-Engineering LLC in Perm (29 Sovetskoy Armii st., Perm, 614066, Russian Federation) 2SIE “PrognozRNM” LLC (21 Akademiya Kiroleva st., Perm, 614013, Russian Federation)

IZUZHENIE VTOYICHNYKH IZMENENII VIZEISKÝX KOLLEKTOROV SOLIKAMSKÝX DEPRESSIY V USLOVIYAX STABILIZACII DRENVÝX VODONEFTEYNYX KONTAKTÓV

С.В. Галькин, И.Ю. Колчев, Д.В. Потехин, П.Ю. Илюшин

Пермский национальный исследовательский политехнический университет (614990, Россия, г. Пермь, Комсомольский проспект, 29) 1Филиал ООО “ЛУКОЙЛ-Инжиниринг “ПермНИПИнефть”” (614066, Россия, г. Пермь, ул. Советской Армии, 29) 2ООО “МИП “Прогноз РНМ”” (614013, Россия, г. Пермь, ул. Академика Королева, 21)

Keywords:
bituminous sandstone, wettability, porosity, specific resistivity, hydrophobic reservoir, ancient oil-water contact, X-ray core tomography, microscopic analysis of thin sections.

A model of multi-stage formation of Visean oil deposits in Solikamsk depression in condition of stabilization of ancient oil-water contacts is provided. When reservoir rocks stay in condition of oil-water zones for extended periods of time, oxidizing processes actively develop, as result of which oil saturated reservoirs undergo non-reversible changes in rock wettability. After inflow of new portions of hydrocarbons and formation of modern oil-water contact residual products of oil oxidation are formed as solid bitumen. Cases of absence of reservoir bitumen distribution in ranges of ancient oil-water contacts are explained by active fluid exchange in reservoirs.

It is established that high specific resistance values in terrieneous reservoirs of Visean deposits in Solikamsk depression, exceeding 600 Ohm·m, are related to their hydrophobization in conditions of ancient oil-water contacts. Electrical laterolog results are compared with evaluation of rock wettability based on X-ray core tomography and microscopic analysis of thin sections.

For Visean high-ohmic reservoirs of Shershnevskoe deposit statistically significant excess of rock porosity comparing to evaluation of rock wettability based on X-ray core tomography and microscopic analysis of thin sections. This is explained by active fluid exchange in reservoirs.

For Visean operational objects of Shershnevskoe deposit geologosical model is built on basis of resistivity data, separating zones (volumes) of different wettability type reservoir development. In general, the established zones of development of hydrophilic and hydrophobic reservoirs are of regular spatial arrangement. Geological models built with regard to rock wettability may be used to optimize reservoir management technologies at oil operational objects.

ОБОСНОВАННОЕ ПРИМЕНЕНИЕ РЕЗЕРВОРОВ СОЛИКАМСКОЙ ДЕПРЕССИИ В УСЛОВИЯХ СТАБИЛИЗАЦИИ ДРЕВНИХ ВОДОНЕФТЯНЫХ КОНТАКТОВ

Павел Юриьевич Илюшин

Сержь Галкин

Павел Илюшин

Сергей Галкин

Сергей Галкин (AuthorID in Scopus: 3671675500) – Professor, Doctor of Geology and Mineralogy, Dean of the Mining and Oil Faculty. (mob. tel.: +007 902 631 20 13, e-mail: doc_galkin@mail.ru). The contact person for correspondence.

Igor Yu. Kolychev (AuthorID in Scopus: 5612262900) – PhD in Engineering, Head of the Department of Geological and Geophysical Modeling (mob. tel.: +007 902 631 20 13, e-mail: Denis.Potekhin@pm.lukoil.com).

Denis V. Potekhin (AuthorID in Scopus: 5612262900) – PhD in Engineering, Head of the Department of Geological and Geophysical Modeling (mob. tel.: +007 902 631 20 13, e-mail: Denis.Potekhin@pm.lukoil.com).

Pavel Yu. Ilyushin (AuthorID in Scopus: 52563735500) – Associate Professor, PhD in Engineering, Director (mob. tel.: +007 902 631 20 13, e-mail: ilushin-pavel@yandex.ru).

Sergey V. Galkin (AuthorID in Scopus: 3671675500) – Professor, Doctor of Geology and Mineralogy, Dean of the Mining and Oil Faculty. (mob. tel.: +007 902 631 20 13, e-mail: doc_galkin@mail.ru). The contact person for correspondence.

Galkin Sergey Vladislavovich – профессор, доктор геолого-minerалогических наук, доцент горно-геотехнического факультета (тел.: +007 902 631 20 13, e-mail: doc_galkin@mail.ru). Контактное лицо для переписки.

Kolychev Igor Yuryevich – ведущий инженер (тел.: +007 902 631 20 13, e-mail: igorkolychev@gmail.com).

Potekhin Denis Vladimirovich – кандидат технических наук, начальник управления геолого-геофизического моделирования (тел.: +007 902 631 20 13, e-mail: Denis.Potekhin@pm.lukoil.com).

Ilyushin Pavel Yuryevich – доктор, кандидат технических наук, директор (тел.: +007 902 631 20 13, e-mail: ilushin-pavel@yandex.ru).

Galkin Sergey Vladislavovich – профессор, доктор геолого-minerалогических наук, доцент горно-геотехнического факультета (тел.: +007 902 631 20 13, e-mail: doc_galkin@mail.ru). Контактное лицо для переписки.

Kolychev Igor Yuryevich – ведущий инженер (тел.: +007 902 631 20 13, e-mail: igorkolychev@gmail.com).

Potekhin Denis Vladimirovich – кандидат технических наук, начальник управления геолого-геофизического моделирования (тел.: +007 902 631 20 13, e-mail: Denis.Potekhin@pm.lukoil.com).

Ilyushin Pavel Yuryevich – доктор, кандидат технических наук, директор (тел.: +007 902 631 20 13, e-mail: ilushin-pavel@yandex.ru).

Galkin Sergey Vladislavovich – профессор, доктор геолого-minerалогических наук, доцент горно-геотехнического факультета (тел.: +007 902 631 20 13, e-mail: doc_galkin@mail.ru). Контактное лицо для переписки.

Kolychev Igor Yuryevich – ведущий инженер (тел.: +007 902 631 20 13, e-mail: igorkolychev@gmail.com).

Potekhin Denis Vladimirovich – кандидат технических наук, начальник управления геолого-геофизического моделирования (тел.: +007 902 631 20 13, e-mail: Denis.Potekhin@pm.lukoil.com).

Ilyushin Pavel Yuryevich – доктор, кандидат технических наук, директор (тел.: +007 902 631 20 13, e-mail: ilushin-pavel@yandex.ru).
Introduction

For a number of regions of Volga-Ural oil and gas province (OGP) (Bashkortostan, Tatarstan, etc.) multiple occurrences of bituminous sandstones are established [1–4]. In these cases rocks are naphtides (maltha, asphalts and asphaltites) practically not recoverable by modern methods. Presence of bitumen colors rocks in black, referred to in the literature as «black sandstones». Bitumenosity of «black sandstones» is commonly explained by oil oxidation at ancient oil-water contacts (OWC). Discovery of bituminous sandstones in terrigenous reservoirs at Pashian horizon of Romashkinskoe deposit as long as since 60-ies of XX century was explained by V. A. Retush (1965) as manifestation of traces of ancient OWC in section.

To the fullest extent process of ancient OWC influence is studied in works of R. S. Sakhibgareev [1, 5, 6]. According to his opinions, taken as basis for this work, two contrary processes – rock deconsolidation (dissolution) and cementation – take place at levels of OWC stabilization. Immediately at OWC place in general rock decomposition prevails, as dissolved components do not fully precipitate from bottom waters. As result, at place of ancient OWC formation of residual oil oxidation products in the form of solid bitumen is taking place.

Bituminous oil oxidation products may be extracted by the following portions of hydrocarbons, while this extraction takes place in selective manner. To the maximal degree bitumenosity signs are lost by the most permeable reservoirs, for which signs of initial bitumenosity are preserved in dead-end micro portions of pores. Less permeable rocks, to the contrary, contrast in geological section in the form of dark lenticular and striped compartments, due to preservation of bitumen.

Irregular bitumen extraction may result in layered bitumen pigmentation of rock in zones of ancient OWC, and in case of intense extraction in the whole geological section – lead to complete rock bleaching. Exactly such conditions, to opinion of the authors, prevail in case of Visean reservoirs in Solikamsk depression. For these producing facilities distribution of bituminous «black sandstones» with reservoir properties higher than cutoff values is not characteristic in general. At the same time for oil-saturated zones of Visean reservoirs abnormally high specific resistance values are noted, in number of cases exceeding 1000 Ohm*m. Reservoirs with abnormally high resistivity mainly are found within Solikamsk depression, though there are singular examples in other regions of Perm Territory. According to core data high-ohmic oil-saturated reservoirs are practically not distinguished in geological section, and usually are presented by light gray sandstones. Due to absence of evident signs of Visean reservoirs bitumenosity in Perm Territory, formation of such deposits have not been earlier viewed in relation to ancient OWC.

Works [7–9] give results of X-ray tomography core studies, showing that in conditions of abnormally high resistivity intervals rocks absolutely do not take water. This is regarded as consequence of manifestation of high hydrophobization of reservoirs [7–10]. According to modern views full hydrophobization of collectors is extremely rare and usually is characteristic for oil source rocks [11, 12]. It is evident that Visean highly permeable layers could not be viewed as oil source rock. To the authors opinion, reservoir hydrophobization is residual consequence of deposit reformation at ancient OWC. Absence of bitumen in the reservoirs is related to active reservoir fluid exchange in results of several stages of hydrocarbons inflow.

As for Visean producing facilities of Solikamsk depression, according to modern views, at least two main stages of hydrocarbons input are presumed [13, 14]. First, in the end of late Carboniferous period, oil and gas rock of Domanic age, being the main in the studied territory, came to main zone of oil and gas generation. As result, initial (ancient) OWC was formed, which existed for a long geological time. This has led to development of oxidation processes in water-oil transition zone reservoirs. Then in early Permian period (Asselian-Sakmarian age), along with intensive downwarping of Solikamsk depression, shale deposits of lower Carboniferous age, rich with organic substances, lowered to depths necessary to achieve sourcing potential. As result, new portion of hydrocarbons entered the deposit, forming OWC being close to the modern one. Implementation of this process was significantly aided by large amplitudes of local positive structures in Solikamsk depression, which provided for separation of secondary non-uniformities, related to stabilization of ancient OWC, in conditions of multi-stage input of hydrocarbons into traps.

It is necessary to note that issue of studying ancient OWC in the given conditions is of not only great theoretical, but also practical importance. It is
wettability factor which plays its especially great role in optimizing deposit development by water flooding [11, 15–17]. For Visean producing facilities in Solikamsk depression problem of insufficiently effective water flooding is especially pressing. For some areas reduction of intake capacity is observed already in first month of production, resulting in failure to reach design degree of oil withdrawal compensation by water flooding [18].

Except that, zones of hydrophilic and hydrophobic reservoirs significantly differ in oil production parameters, which determines its key role in determining methods to increase oil recovery [19–22]. So, detailed elaboration of this issue shall permit (in relation to Visean producing facilities) to approach, in a more substantiated way, determination of optimal solutions during operation.

Formation of deconsolidation and cementation zones in conditions of stabilization of ancient OWC

An issue of influence of ancient OWC on the modern oil and gas occurrence was first brought about by G. I. Teodorovich (1944), who linked rock pyritization to sig of stabilization of OWC of Buguruslan deposit. O.A. Radchenko and V.A. Uspensky (1952) showed that oil in result of anaerobic oxidation may gradually transform to maltha and further to asphalt.

In zone of development of ancient OWC are established changes of feldspar in direction to processes of their caolinization [23] and especially pelitization [24]. Meanwhile high degree of feldspar change usually is accompanied by their pigmentation by bitumen substance. Analysis of pelitization coefficient [25] made in work [1] shows that for deposits in West Siberian oil and gas province maximum of pelitization is observed near to modern OWC. Significantly smaller changes are characteristic to sandstones both of edge water zone farthest from OWC and oil part unaffected by influence of OWC.

Main reason of intense rock alteration is formation of components aggressive to minerals in OWC stabilization zones. Many studies have established joined presence of sulfate-reducing and methane-producing microbial flora. Sulfate-draining microbial flora, by oxidizing organic substances and reducing sulfates, provides energy substrates (CO2, organic acids, etc.) for methane-forming bacteria. Meanwhile, due to decreasing pH in aqueous media, favorable conditions for development of methane-producing bacteria [1]. Except that, deposit bottom waters may have considerable aggressive potential, even though due to increased content of organic solvents, which, together with newly formed aggressive components, while oxidizing hydrocarbons at OWC, may dissolve minerals.

In conditions of bacterial methane production at OWC heavy oil thickening with precipitation of resinous-asphaltenic components may happen even without additional input of hydrocarbons. Meanwhile increase of deposit volume presumes increase of bitumen-containing substances, significantly leached due to participation of acid metabolic products of sulfate-reducing microorganisms.

At temperatures less than 100 °C two diverse processes may develop. On one side, minerals precipitation happens due to environment alkalization as result of consumption of organic acids and carbon dioxide by methane-producing microbial flora. Work [26] gives laboratory experimentations proving, for carbonate minerals, possibility of system equilibrium shift to calcite precipitation side during oxidation of organic substances. In situ this may lead to secondary calcite precipitation from dissolved waters with partial filling of reservoir voids. So, for number of deposits in Volga-Ural OGP examples of link between authigenic calcite and solid bitumen in border zone are established [27]. Examples of calcite cementation of terrigenous reservoirs in OWC zones are described by Yu. V. Schepetkin (1966, 1968, 1976), O. A. Chernikov (1969), V. F. Kozlov (1974).

In contrast with minerals precipitation they are dissolved due to excretion of acid metabolic products by sulfate-draining bacteria (CO2, organic acids, etc.). Work [28] gives examples of dissolution of anhydrite cement in conditions of activity of sulfate-reducing bacteria for terrigenous reservoirs of deposits in Volga-Ural OGP in OWC zone. In such a way, both rock dissolution and cementation happen simultaneously in OWC area. Degree of manifestation of rock decomposition and cementation zones depends on character of OWC development.

As result of input of additional hydrocarbons volumes OWC shifts down section, which leads to capacitive reservoir growth (progressive type of OWC alteration). In this case not all dissolved minerals, and not to the full extent, precipitate in corresponding cementation zone. Very compact
quartzitic sandstones happen to be impermeable by aggressive components, which penetrate into less silicified areas, and in case of intense fluid exchange turn them into highly capacitive loose varieties. Most demonstrably selective quartz cement dissolution manifests itself in bitumen-containing dissolution zone. Intensely silicified areas are distinguished by light color against background of dark grey or nearly black bitumen-containing varieties. Latter before deconsolidation differed from quartzitic varieties by somewhat greater porosity, which value increased due to dissolution by 1,2–2,0 times.

At partial trap deforming OWC shifts up section (regressive type). In this case cementation processes explicitly prevail over dissolution. In general silicification processes in cementation zone are slowed by clay material, but at content of clay cement less than 5 % inhibitory effect scarcely appear [1].

Secondary reservoir alteration at ancient OWC in process of oil deposit formation

In case of fast oil deposits formation minerals dissolution processes at ancient OWC are less expressed. The maximal oxidizing effect is observed in conditions of continuous and slow hydrocarbons input. Most aggressive environments, judging by secondary rock alterations, were created in conditions when not only sulfates and carbonates have been dissolving, but also quartz have been dissolving directly. In zones of stabilization of ancient OWC intense corrosion of various rock-forming minerals is observed. Abundant signs of quartz grains corrosion are observed in zones containing solid bitumen.

Silica mobilized into solutions at ancient OWC, as a rule, is not moved beyond structure limits. In result of multistage deposit formation quartz redistribution is observed within traps, which is determined by water exchange troubles at ancient OWC. Formation of secondary varieties in this case happens at significant distance from fold of anticlinal trap due to deficit of input hydrocarbon.

The issue of secondary rock alterations at modern OWC in most details is studied by R. S. Sakhibgareev (1989) for terrigenous deposits of South Baltic. As result following vertical rock zones model in geological section is achieved.

To higher section part (above OWC) usually pertain cemented low-porous oil-saturated sandstones without signs of etching. For these rocks even in conditions of full quartz grains regeneration (5–8 %) relatively high volume of capacitance space is preserved.

Lower, immediately in transition zone of OWC, rocks are being deconsolidated. In its upper part bitumen-containing sandstones rest, which due to uneven asphalt pigmentation obtain spotty dark gray and sometimes black color. Open porosity of bitumen sandstones comparing to oil-saturated dark gray varieties increases by 1,5 time, and permeability – by an order. Bitumen zone thickness is 2–3 m, sometimes more, depending on conditions of downward spreading of aggressive products of oil oxidation and water exchange, providing for withdrawal of dissolved substances.

Below OWC surface follow light gray, almost loose water-saturated sandstones (thickness not exceeding 2 m), by degree of quartz grains etching similar to bituminous sandstones. For deconsolidation zone reduction of regenerated quartz content to 1 % is characteristic, silicification stays only at hardly permeable micro areas.

Lower than deconsolidation zone (going away from OWC transition zone) concentration of aggressive components in bottom waters reduces, and hard to dissolve components reach oversaturation phase. This leads to cementation and formation of compact quartzitic sandstones (thickness not exceeding 2 m) with porosity less than 3 %. Contents of regenerated quartz in these may exceed 15 %, which practically excludes effective rock capacity. These sandstones, except for maximal input of silica, may differ by intense pyritization (isometric pyrite aggregates size up to 0,5 mm).

Even lower down section degree of silicification reduces, and rocks by content of regenerated quartz come closer to same type of oil-saturated rocks. Parallel to reduction of sandstones silicification degree down section, signs of pyritization also disappear [1].

Evaluation of reservoir wettability by core study and well logging

Conclusions stated in the previous section are obtained on basis of analysis of modern OWC conditions. Diagnostics of ancient OWC is hindered by the fact that layers of bituminous sandstones, as a rule, does not lay strictly horizontally in geological section [29]. Except that, in high capacity bit
relatively low-amplitude traps, due to merger of dissolution zones of several ancient OWC during multi-stage deposit formation, almost all oil-saturated medium may be involved, except for hardly permeable rock. To the greater extent analysis is complicated in case of partial bitumen extraction depending on reservoir permeability. So in study of ancient OWC complex analysis is necessary, based first of all on geophysical well logging and core material data.

Most informational in study of bituminous oil and respectively rock wettability in well logging is nuclear magnetic resonance logging (NMR) [30–36]. But in the Perm Territory intense reservoir bitumenosity is relatively rare. Due to this NMR studies are made in general on basis core only [37], and in wells are of a sporadic character.

In distinction from NMR electric methods are included into standard well logging complex, entirely describing geophysical section of all wells. Most credible in evaluation of resistance laterlog method is considered. Due to usage of guard electrodes for laterlogging reduction of influence is achieved, masking effects are reduced, permitting to study thin layers [38, 39]. Suitable for evaluation of layer resistance by laterlogging are data on well filled with aqueous mud having specific resistivity ρ_s from 0.03 to 3 Ohm*m.

During core studies it is necessary to combine data of standard studies (determination of porosity K_p, water saturation K_w, permeability k, etc.), special methods of wettability evaluation (X-ray core tomography, etc.) and microscopic analysis of thin sections. Complex analysis of these data with specific resistivity correlation to logging for Visean oil-saturated reservoirs is given in work [40]. Summarizing the results, it is possible to distinguish four types of oil-saturated reservoirs: highly porous hydrophobic; bituminous low porous with strong signs of hydrophobicity; with signs of hydrophobicity and hydrophilic.

Core samples being hydrophobic according to tomography data are met within high-ohmic section with resistivity > 600 Ohm*m. Light samples without bitumenosity have $K_p > 20\%$, and samples with bitumen cement $- K_p$ within 11–13 %. Meanwhile permeability of light highly porous samples is by an order higher than that of bituminous samples. Samples with hydrophobicity signs are met in areas with resistivity from 120 to 600 Ohm*m; for hydrophilic reservoirs resistivity < 100 Ohm*m is characteristic [40].

For more detailed study of rocks the present work gives microscopic analysis of thin sections made from central part of the cores. Mineral composition of rocks and inclusions is studied on basis of thin sections, and also textural and structural features of the rocks. Photographs of thin sections for reservoirs with different wettability type are given in fig. 1.

As shown above, one of associated signs of ancient OWC is rocks pyritization. Pyrite formation is related to activity of sulfate-reducing bacteria, due to interaction of iron-containing aqueous solutions with hydrogen sulfide, usually evolved as result of decomposition of organic remains. Pyritization is related to abundant water exchange, where iron precipitates from bottom waters.

Analysis of mineral composition of Visean reservoirs showed presence of pyrite in 75 % thin sections made of hydrophilic core samples, having moderate (according to tomography data) hydrophobicity signs, while pyrite is absent in hydrophobic samples. This correlates well with data of R. S. Sakhibgareev (1989), according to which pyrite is instable in oxidation zone and in presence of free oxygen easily transforms to iron sulfate. The latter decomposes into insoluble ferrous hydroxide (limonite) and free sulfuric acid passing into solution. Except that absence of pyrite in bituminous media in dissolution zones may be related to formation of iron-organic complexes, which may show resistance to action of hydrogen sulfide [1].

Fig. 1. Photographs of thin sections of core with crossed nicols: a – hydrophobic sample (cylinder 84911); b – bituminized sample with strong signs of hydrophobicity (cylinder 66541); c – sample with signs of hydrophobicity (cylinder 101116); d – hydrophilic sample (cylinder 108484)
Characterizing the studied thin sections, we may say that in general quartz grains are observed (from 69 to 89 %), other minerals are obviously subordinate. In theory redistribution of quartz should happen in process of multi-stage deposit formation by reduction of quartz concentration in zone of ancient OWC influence and sedimentation in edge water zones in direction of bottom waters flow. But here, though, it is possible to evaluate rather scales of quartz dissolution during deposit formation process, but not scales of its sedimentation beyond ancient OWC influence contour. That is why absence of significant differences in quartz content for studied reservoir types could not be viewed as a controversy. More important is that, according to thin section analysis data, quartz in cores with hydrophobicity signs has significantly more relief grain boundaries, which probably points to traces of its dissolution.

Incorporative contacts are characteristics for all thin sections from samples with hydrophobicity signs (see fig. 1, а–с), meanwhile specifically for hydrophobic highly porous sample (resistivity = 1800 Ohm*m) there observed most relief microstylolitic type of intergranular contacts (see fig. 1, а). It is necessary to note that for the most highly porous loose samples ($Kp > 20 \%$) thin sections characterize the most compact core part. For example, Kp evaluation based on thin section (see fig. 1, а) is not more than 10 %; during evaluation of Kp at standard 30 millimeter core $Kp = 21.4 \%$. This permits to suppose even greater actual differences of this core type from the other types.

Significantly less porous ($Kp = 13.5 \%$) and by an order less permeable ($k = 0.055$ mm2) is hydrophobic sample (resistivity = 620 Ohm*m). Contents of clay bitumen aggregate in thin section is 10 %, next to quartz grains black clay bitumen pugs are observed (see fig. 1, b). At the same time, taking into account rather low density of solid bitumen, decompactification effect for this type of rocks to a great extent also continues. Difficult water exchange paths in thin section are determined in the form of small microstylolite contacts made in clay bitumen substance. Stylolite elements present in thin section probably reflect rock dissolution processes in paths of aggressive media filtration. It would be incorrect to view their formation in relation to migration of bitumen substance on them, as bitumens in stylolite seams are formed mainly by passive concentration similar to insoluble constituent of rock [1].

For hydrophilic samples in thin sections most characteristic are linear and conformal contacts, incorporative contacts are less common. Grains for hydrophilic samples are most rounded which may be regarded as sign of absence of minerals dissolution (see fig. 1, d). Except other, minimal contents of organic matters is established for hydrophilic samples.

So, microscopic analysis of thin sections demonstrated significant differences in core samples for various wettability types. Also, for all samples considered to be hydrophobic according to tomography data, signs of decompactification are established. Such signs become less evident with the reduction of hydrophobization degree and are least characteristic for hydrophilic samples. This conforms to theoretical concepts on secondary reservoir changes in conditions of ancient OWC.

Allocation of secondary reservoir alterations at ancient OWC for Visean deposits of Shershnevskoe oil deposit

As shown above, in case of progressive character of ancient OWC development reservoir decompactification processes prevail over their cementation. Then, accepting cause and effect relationship of abnormally high specific resistivity values and ancient OWC, capacity parameters in zones of abnormally high resistivity should be statistically different from standard conditions. First of all this should pertain to reservoir porosity (Kp). Let study this issue with the assistance of statistical data processing at the example of Visean producing facilities (layers T1, Bb, Ml) of Shershnevskoe oil deposit.

Parameter	Resistivity range, Ohm*m
$Kp, \%$	14.0 14.0 15.0 14.7 No data 16.0 16.1 17.0 16.5 17.5 18.2 17.5
n	15 34 36 22 32 26 14 22 24 25 33

Distribution of average values Kp
The table shows distribution of average values of K_p according to logging data in various resistivity ranges. Analysis of table data permits to separate three ranges of rock resistivity values, for which K_p values are fundamentally different. First reservoir type in range of average values K_p from 14 to 15 % is limited by resistivity values < 120 Ohm*m. Average value K_p and standard deviation for this type correspond to $14,5 \pm 2,8$ % at number of determinations $n = 107$.

Starting from resistivity > 200 Ohm*m, an abrupt increase of K_p values is noted, with their stabilization in resistivity range up to 600 Ohm*m. For this reservoir type K_p in average is notably higher: $16,3 \pm 2,2$ % at $n = 94$. Next abrupt leap is observed at resistivity > 600 Ohm*m, without further growth at large resistivity values (see table). For high-ohmic reservoir type $K_p = 17,7$ % $\pm 2,3$ % at $n = 82$.

To establish statistical differences of capacity parameters of reservoirs depending on resistivity statistical analysis of average values K_p of separated classes on Student’s t-criterion was performed. As results it is established that acceptance of zero hypothesis is absolutely improbable. Probabilities of equality of means for classes correspondingly are: during comparison of low-ohmic reservoirs with intermediate class – 0,0001 %, with high-ohmic classes – less than 0,00005 %, intermediate class with high-ohmic classes – 0,0033 %.

It is obvious that average values in classes do not fully characterize variety of geological settings in oil deposit. In conditions of stabilization of ancient OWC porosity should increase to the utmost extent in relatively high capacity and permeable intervals, and K_p values should grow less in less permeable areas. With regard to this K_p distribution histograms for separated classes are built (fig. 2).

To establish statistical differences of capacity parameters of reservoirs depending on resistivity statistical analysis of average values K_p of separated classes on Student’s t-criterion was performed. As results it is established that acceptance of zero hypothesis is absolutely improbable. Probabilities of equality of means for classes correspondingly are: during comparison of low-ohmic reservoirs with intermediate class – 0,0001 %, with high-ohmic classes – less than 0,00005 %, intermediate class with high-ohmic classes – 0,0033 %.

It is obvious that average values in classes do not fully characterize variety of geological settings in oil deposit. In conditions of stabilization of ancient OWC porosity should increase to the utmost extent in relatively high capacity and permeable intervals, and K_p values should grow less in less permeable areas. With regard to this K_p distribution histograms for separated classes are built (fig. 2).

Fig. 2. Distribution of porosity coefficients depending on rock resistivity ranges for Shershnevskoe oil deposit

Fig. 3. Distribution of Visean reservoirs with various resistivity values in geological sections of Shershnevskoe oil deposit in directions south – north (a); west – east (b)
From fig. 2 is clear that for intervals with resistivity < 120 Ohm*m, at generally uniform distribution of K_p maximum is observed in range from 12 to 16 %. In high-ohmic section for resistivity ranges from 200 to 600 Ohm*m maximal porosity frequency is established in range of 16–18 %, while reservoirs with $K_p < 12 \%$ are observed in less than 5 % of cases. For intervals with resistivity > 600 Ohm*m reservoirs with $K_p < 12 \%$ are absent, and at $K_p < 14 \%$ their frequency is 6 %. Prominent maximum of frequency $K_p (54 \%)$ for the most high-ohmic section is observed at $K_p > 18 \%$.

Conclusions

So, definitely significant statistical differences in rock porosity depending on specific resistivity are established. This, in the authors opinion, is direct consequence of reservoir decompactification processes in rock hydrophobicity zones, which in its turn is related to oxidation processes at ancient OWC. For Visean reservoirs of Shershnevskoe deposit average K_p value of low-ohmic section (14,5 %) may be considered most typical for areas where OWC influence was minimal. Then an increase of 3,2 % relative to it for high-ohmic reservoirs ($K_p = 17,7 \%$) may be regarded as averaged increase due to decompactification in areas of ancient OWC.

At the final stage, for Visean reservoirs of Shershnevskoe deposit a geological model was built on basis of resistivity values, separating zones (volumes) of development of reservoirs with different wettability types (fig. 3). The model equates hydrophobic reservoirs with areas with resistivity > 600 Ohm*m, and hydrophilic reservoirs – with areas with resistivity < 120 Ohm*m.

The established zones of development of hydrophilic and hydrophobic reservoirs have regular spatial arrangement (see fig. 3). Development of hydrophilic reservoirs in general is associated with slope reservoir areas. In roof reservoir area predominantly spread are hydrophobic reservoirs, while in a number of cases immediately next to them zones of reservoir substitution with compact rocks (cementation areas) are adjacent, which is especially characteristic for MI layer.

In general, issue of correlation of modern oil and gas content to ancient OWC for Visean reservoirs in Solikamsk depression seems to be a priority task related to improved development of the such. Geological models built with regard to rock wettability surely further detail geological setting of reservoirs. They may be useful in detailing reservoir capacity characteristics, and also may be used to optimize reservoir management technologies at oil operational objects.

Acknowledgment

The study sponsored by Perm Territory Administration. Agreement № S-26/174.7 (MIG-№ 28).

References

1. Sakhibgareev R.S. Vtorichnye izmeneniia kollektorov v protsesse formirovaniia i razrusheniia neftianykh zalezhei [Secondary reservoir changes in the process of formation and destruction of oil deposits]. Leningrad, Nedra, 1989, 260 p.
2. Mukhametshin R.Z. Rol i znachenie bituminoznykh peschanikov v produktivnykh plastakh [The role and importance of tar sands in reservoirs]. Prirodnye bitumy i tiazhelye nefti. Mezhdunarodnaia nauchno-prakticheskaia konferentsiia k stoletiu prof. V.A. Uspenskogo. Ed. M.D. Belonin. Saint Petersburg, Nedra, 2006, pp.231-245.
3. Mukhametshin R.Z., Galeev A.A. Diagnostika drevnikh vodoneftianykh kontaktov instrumentalnymi metodami [Diagnostics of ancient oil-water contacts by instrumental methods]. Oil industry, 2014, no.10, pp.28-33.
4. Berezin V.M., Gizatullina V.V., larygina V.O. Nepodvizhnaya neft v produktivnykh plastakh mestorozhdenii Bashkirii [Stationary oxidized oil in the productive strata of the fields of Bashkiria]. Trudy BashNIPIneft, 1983, iss.65, pp.43-52.
5. Sakhibgareev R.S. Etapnost formirovaniia i razrusheniia zalezhei po vtorichnym izmeneniiam kollektorov na drevnikh VNK [Staging of the formation and destruction of deposits of secondary reservoir changes in the ancient OWC]. Proiskhozhdenie i prognozirovanie skoplenii gaza, nefti i bitumov. Leningrad, Nedra, 1983, pp.130-143.
6. Sakhibgareev R.S. Izmenenie kollektorov na vodoneftianykh kontaktakh [Change of collectors on oil
water contacts]. Doklady Akademii nauk SSSR, 1983, vol.271, no.6, pp.1456-1460.

7. Efimov A.A., Galkin S.V., Savitckii Ia.V., Galkin V.I. Estimation of heterogeneity of oil & gas field carbonate reservoirs by means of computer simulation of core x-ray tomography data. Ecology, Environment and Conservation, 2015, vol.21, pp.79-85.

8. Efimov A.A., Savitckii Ia.V., Galkin S.V., Shapiro S. Experience of study of core from carbonate deposits by X-ray tomography. Perm Journal of Petroleum and Mining Engineering, 2016, vol.15, no.18, pp.23-32. DOI: 10.15593/2224-9923/2016.18.3

9. Efimov A.A., Savitski Ia.V., Galkin S.V., Soboleva E.V., Gurbanov V.Sh. Issledovanie smachivayemosti kollektorov neftegazovykh mestorozhdenii metodom rentgenovskogo tomografii kerna [Study of wettability of reservoirs of oil fields by the method of X-ray tomography core]. Nauchnye trudy NIPI Neftegaz GNK, 2016, vol.4, no.4, pp.55-63. DOI: 10.5510/OGP20160400298

10. Kolychev I.Iu., Galkin S.V., Lekomtsev A.V. Issledovanie gidrofobizatsii terrigennykh kollektorov kompleksirovaniem metodov elektricheskogo karotazha i rentgenovskoi tomografii kerna [Investigation of hydrophobization of terrigenous reservoirs by the complexing of electrical logging and x-ray tomography methods]. Dostizheniya, problemy i perspektivy razvitiia neftegazovoi otrazi. Sbornik materialov mezhdunarodnoi nauchno-prakticheskoi konferentsii, 2018, vol.2, pp.68-72.

11. Abdalla V., Bakli D.S., Kamegi E., Edvards D., Kherold V., Fordem E., Graue A., Khabashi T., Seleznev N., Siner K., Khusein Kh., Montaron B., Khabashi T., Graue A., Kholodtsev A., Kherold B., Fordem E., Grozov D.B. Influence of wettability on oil displacement efficiency. Petroleum and Mining Engineering, 2016, vol.15, no.4, pp.10-22.

12. Akhmetov R.T., Mukhamezhitin V.V., Andreev A.V. Interpretatsiia krivykh kapillarnogo davleniia pri smeshannoi smachivayemosti [Interpretation of capillary pressure curves in the case of mixed-wettability]. Geologiya, geofizika i razrabotka neftei i gazovikh mestorozhdenii, 2017, no.4, pp.37-40.

13. Krivoshechek S.N., Kozlova I.A., Sannikov I.V. Otsenka perspektivy neftegazonosnosti zapadnoi chasti solikamskoi depressii na osnove geokhimicheskikh i geodinamicheskikh dannykh [Estimate of the petroleum potential of the western Solikamsk depression based on geochemical and geodynamic data]. Oil industry, 2014, no.6, pp.12-15.

14. Galkin V.I., Kozlova I.A., Nosov M.A., Krivoshchekov S.N. Reshenie regionalnykh zadach prognozirovaniia neftegazovikh mestorozhdenii po dannym geologo-geokhimicheskogo analiza rasseiannogo organicheskogo veshchestva [Problems of forecasting oil bearing according to geodetic and geochemical analysis of dispersed organic matter of Domanic type rocks]. Oil industry, 2015, no.1, pp.21-24.

15. Akhmetov R.T., Mukhamezhitin V.V. Modelirovanie protsesssa nefteizvletsheniia s ispolzovaniem opyta razrabotki mestorozhdenii, zhiznennosti i zhidkosti na mestorozhdeniakh s razlichnymi geologo-tekhnologicheskimi usloviami [Simulation of the effectiveness of cyclic fluid injection application in various geological and technological conditions of oil fields development]. Oil industry, 2014, no.9, pp.96-99.

16. Chumakov G.N., Zotev I.V., Kolychev I.Iu., Galkin S.V. Analiz effektivnosti primeneniia tisicheskoi zhidkosti na mestorozhdeniakh s razlichnymi geologo-tekhnologicheskimi usloviami [Analysis of the effectiveness of cyclic fluid injection application in various geological and technological conditions of oil fields development]. Oil industry, 2013, no.6, pp.47-50.

17. Akhmetov R.T., Mukhamezhitin V.V. Vodouderzhivaiushchshiaia sposobnost i smachivayemost produktivnykh plastov [Water-retaining power and wettability of productive formation]. Neftegazovoe delo, 2016, vol.14, no.2, pp.34-37.

18. Soboleva E.V., Efimov A.A., Galkin S.V. Analiz geologo-geofizicheskihkh kharakteristik terrigennykh kollektorov pri prognoze priemistosti skvazhim mestorozhdenii Solikamskoi depressii [The analysis of geological and geophysical characteristics of terrigenous reservoirs at the forecast injectability of wells of Solikamskaya depression]. Oil industry, 2014, no.6, pp.20-22.

19. Mikhailov N.N., Sechina L.S., Gurbatova I.P. Pokazateli smachivayemosti v poristoi srede i zavisimost mezhdinst nimi [Indicators of wettability in a porous medium and the relationship between them]. Aktualnye problemy nefti i gaza, 2011, no.1 (3), pp.10.

20. Zhihnyak G.P., Amirov A.M., Mosheva A.M., Melekin S.V., Chizhov D.B. Influence of wettability on oil displacement efficiency. Perm Journal of Petroleum and Mining Engineering, 2013, vol.12, no.6, pp.54-63. DOI: 10.15593/2224-9923/2013.6.6

21. Mikhailov N.N., Motorova K.A., Sechina L.S. Geologicheskie faktory smachivayemosti porod-
kollektorov nefti i gaza [Geological factors of oil and gas reservoir rocks wettability]. Delovoi zhurnal Neftegas.ru, 2016, no.3, pp.80-90.

22. Mikhailov N.N., Gurbatova I.P., Motorova K.A., Sechina L.S. Novye predstavleniia o smachivaemosti kollektorov nefti i gaza [New representations of wettability of oil and gas reservoirs]. Oil industry, 2016, no.7, pp.80-85.

23. Perozio G.N. Vtorichnye izmeneniia mezoozoiskikh otlozhenii tsentralnoi i iugovoostochnoi chastei Zapadno-Sibirskoi nizmennosti [Secondary changes in the Mesozoic deposits of the central and southeastern parts of the West Siberian Lowland]. Postsedimentatsionnye preobrazovaniia osadochnykh porod Sibiri. Novosibirsk, Nauka, 1967, pp.5-89.

24. Iliasova E.N., Sakhibgareev R.S. Vliahnie usloviy formirovaniia neftianykh zalezhei na stepen izmeneniia polevykh shpatov [The influence of the formation of oil deposits on the degree of change of feldspar]. Vliianie vtorichnykh izmenenii porod osadochnykh kompleksov na ikh neftegazonosnost. Leningrad, VNIGRI, 1982, pp.103-115.

25. Prozorovich G.E., Valiuzhanin Z.L. Regeratsiia kvartsa i pelitizatsii polevykh shpatov [Regeneration of quartz and pelitization of feldspar] in oil-bearing and aquifer sandstones of the Ust-Balyksky oil field (Western Siberia). Doklady Akademii nauk SSSR, 1959, vol.125, no.5, pp.1097-1099.

26. Germanov A.I., Borzenkov I.A., Iusupova I.F. Preobrazovanie karbonatnykh porod na uchastakh razvitiia biogennykh sulfatreduktii i metano-obrazovaniia [Conversion of carbonate rocks in areas of development of biogenic sulfate reduction and methane formation]. Izvestiiia Akademii nauk SSSR, Seriia geologii, 1981, no.5, pp.106-113.

27. Ashirov K.B. Tsmentatsiia prikonturnogo sloia neftianykh zalezhei v karbonatnykh kollektorakh i vliianie ee na razrabotku [Cementation of the marginal layer of oil deposits in carbonate reservoirs and its influence on the development]. Trudy Giprovostoknefti, 1959, iss.2, pp.163-174.

28. Chepikov K.R., Emrloka E.P., Orlova N.A. Epigennye mineraly kak pokazateli vremeni prikhoda nefti v peschanye promyshlennye kollektory [Epigenic minerals as indicators of the time of arrival of oil in industrial sandy reservoirs]. Doklady Akademii nauk SSSR, 1959, vol.125, no.5, pp.1097-1099.

29. Mukhametshin R.Z., Punanova S.A. Prirodnye bitumy v otlozheniakh paleozoia Tatarstana: sostav, svoistva i vozmozhnosti izvlecheniia [Natural bitumens in Paleozoic sediments of Tatarstan: composition, properties, and extraction capabilities]. Vysokoviazkie nefti i prirodnye bitumy: problemy i povyshenie effektivnosti razvedki i razrabotki mestorozhdenii. Mezhunarodnaia nauchno-prakticheskaia konferentsia. Kazan, FEN, 2012, pp.95-99.

30. Eriksson S., Lasic S., Topgaard D. Isotropic diffusion weighting in PGSE NMR by magnetic – angle spinning of q-vector. Journal of Magnetic Resonance, 2013, vol.226, pp.13-18. DOI: 10.1016/j.jmr.2012.10.015

31. Lee J.H., Okuno Y., Cavagnero S. Sensitivity enhancement in solution NMR: Emerging ideas and new frontiers. Journal of Magnetic Resonance, 2014, vol.241, iss.1, pp.18-31. DOI: 10.1016/j.jmr.2014.01.005

32. Martin R.W., Kelly J.E., Collier K.A. Spatial reorientation experiments for NMR of solids and partially oriented liquids. Progress in Nuclear Magnetic Resonance Spectroscopy, 2015, vol.90-91, pp.92-122. DOI: 10.1016/j.pnmrs.2015.10.001

33. Haouas M., Taulelle F., Martineau Ch. Recent advances in application of 27Al NMR spectroscopy to material science. Progress in Nuclear Magnetic Resonance Spectroscopy, 2016, vol.94-95, pp.11-36. DOI: 10.1016/j.pnmrs.2016.01.003

34. Krivdin L.B. Calculation of 15N NMR chemical shifts: Recent advances and perspectives. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, vol.102-103, pp.98-119. DOI: 10.1016/j.pnmrs.2017.08.001

35. Vugmeyster L., Ostrovsky D. Static solid-state 2H NMR methods in studies of protein side chain dynamics. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, vol.101, pp.1-17. DOI: 10.1016/j.pnmrs.2017.02.001

36. Pileio G. Singlet NMR methodology in two-spin - 1/2 systems. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, vol.98-99, pp.1-19. DOI: 10.1016/j.pnmrs.2016.11.002

37. Zlobin A.A., Iushkov I.R. Opredelenie smachivaemosti poverkhnosti porovvykh kanalov neekstragirovanlykh porod-kollektorov [Definition of pore samples surface wettability in non-extracting rock-collectors]. Geology, Geophysics and Development of Oil and Gas Fields, 2009, no.10, pp.29-32.
38. Губина А.И., Костливых Л.Н., Зричик Е.С., Шумилов А.В. Компьютерная интерпретация данных геофизических исследований скважин [Computer interpretation of geophysical well data]. Перм', Издательство Пермского государственного нефтяного государственного политехнического университета, 2018, 428 с.

40. Колчев И.Л. Изучение зональности распределения показателей смачиваемости по данным бокового каротажа для нефтенасыщенных визеизских коллекторов силурийского депрессии. Пермский журнал нефтяного и газового машиностроения, 2017, т.16, №4, с.331-341. DOI: 10.15593/2224-9923/2017.4.4

Библиографический список

1. Сахибгареев Р.С. Вторичные изменения коллекторов в процессе формирования и разрушения нефтяных залежей. — Ленинград: Недра, 1989. — 260 с.

2. Мухаметшин Р.З. Роль и значение битуминоznых песчаников в продуктивных пластах // Природные битумы и тяжелые нефти: международная научно-практическая конференция к столетию проф. В.А. Успенского / под. ред. М.Д. Белонина. — Санкт-Петербург: Недра, 2006. — С. 231–245.

3. Мухаметшин Р.З., Галеев А.А. Диагностика древних водонефтяных контактов инструментальными методами // Нефтяное хозяйство. — 2014. — № 10. — С. 28–33.

4. Березин В.М., Гиатуллина В.В., Ярьяна В.О. Неподвижная окисленная нефть в продуктивных пластах месторождений Башкирии // Труды ГННПИНефть. — 1983. — Вып. 65. — С. 43–52.

5. Сахибгареев Р.С. Этапность формирования и разрушения залежей по вторичным изменениям коллекторов на древних ВНК // Происхождение и диагностика скоплений газа, нефти и битумов. — Ленинград: Недра, 1983. — С. 130–143.

6. Сахибгареев Р.С. Изменение коллекторов на водонефтяных контактах // Доклады Академии наук СССР. — 1983. — Т. 271, № 6. — С. 1456–1460.

7. Estimation of heterogeneity of oil & gas field carbonate reservoirs by means of computer simulation of core x-ray tomography data / A.A. Efimov, S.V. Galkin, Ia.V. Savitkii, V.I. Galkin // Ecology, Environment and Conservation. — 2015. — Vol. 21. — P. 79–85.

8. Опыт исследования карбонатных отложений методом геофизической томографии / А.А. Ефимов, Я.В. Савицкий, С.В. Галкин, С.А. Шапиро // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. — 2016. — Т. 15, № 18. — С. 23–32. DOI: 10.15593/2224-9923/2016.18.3

9. Исследование смачиваемости коллекторов нефтяных месторождений методом рентгеновской томографии керна / А.А. Ефимов, Я.В. Савицкий, С.В. Галкин, Е.В. Соболева, В.Ш. Гурбанов // Научные труды НИИП Нефтегаз ГНКАР. — 2016. — T. 4, № 4. — С. 55–63. DOI: 10.5510/OGP20160400298

10. Кольчев И.Ю., Галкин С.В., Лекомцев А.В. Исследование гидрофобизации терригенных коллекторов комплексированием методов электрического каротажа и рентгеновской томографии керна // Достижения, проблемы и перспективы развития нефтегазовой отрасли: сборник материалов международной научно-практической конференции / Альметьевский государственный нефтяной институт. — Альметьевск, 2018. — Т. 2. — С. 68–72.

11. Основы смачиваемости / В. Абдалла, Д.С. Бакли, Э. Карнеги, Д. Эвардс, Б. Меркерт, Э. Фордэм, А. Грауз, Т. Хабаш, Н. Селезнев, К. Синьер, Х. Хусейн, Б. Монтанри, М. Зиуаддин // Нефтегазовое обозрение. — 2007. — T. 19, № 2. — С. 54–75.

12. Ахметов Р.Т., Мухаметшин В.Б., Андреев А.В. Интерпретация кривых капиллярного давления при смешанной смачиваемости // Геология, геофизика и разработка нефтяных месторождений. — 2017. — № 4. — С. 37–40.

13. Крывошеев С.Н., Козлова И.А., Савинков И.В. Оценка перспектив нефтегазоносности западной части Соликамской депрессии на основе геохимических и геодинамических данных // Нефтегазовое хозяйство. — 2014. — № 6. — С. 12–15.

14. Решение региональных задач прогнозирования нефтегазоносности по данным геолого-геохимического анализа рассеянного органического вещества пород домановского типа / В.И. Галкин, И.А. Козлова, М.А. Носов, С.Н. Крывошеев // Нефтегазовое хозяйство. — 2015. — № 1. — С. 21–24.
15. Ахметов Р.Т., Мухаметшин В.Ш. Моделирование процесса нефтезагрязнения с использованием опыта разработки месторождений, находящихся длительное время в эксплуатации // Нефтегазовое дело. – 2011. – Т. 9, № 4. – С. 47–50.

16. Анализ эффективности применения циклической закачки жидкости на месторождениях с различными геолого-технологическими условиями / Г.Н. Чумаков, В.И. Зотиков, И.Ю. Кольчев, С.В. Галкин // Нефтяное хозяйство. – 2014. – № 9. – С. 96–99.

17. Ахметов Р.Т., Мухаметшин В.В. Водоудерживающая способность и смачиваемость продуктивных пластов // Нефтегазовое дело. – 2016. – Т. 14, № 2. – С. 34–37.

18. Соболева Е.В., Ефимов А.А., Галкин С.В. Анализ геолого-геофизических характеристик терригенных коллекторов при прогнозе приемистости скважин месторождений Соликамской депрессии // Нефтяное хозяйство. – 2014. – № 6. – С. 20–22.

19. Михайлов Н.Н., Севича Л.С., Гурбатова И.П. Показатели смачиваемости в пористой среде и зависимость между ними // Актуальные проблемы нефти и газа. – 2011. – № 1 (3). – С. 10.

20. Влияние смачиваемости на коэффициент вытеснения нефти / Г.П. Хижняк, А.М. Амиров, А.М. Мощева, С.В. Мелехин, Д.Б. Чижов // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2013. – Т. 12, № 6. – С. 54–63. DOI: 10.15593/2224-9923/2013.6.6

21. Михайлов Н.Н., Мотова К.А., Севича Л.С. Геологические факторы смачиваемости пород-коллекторов нефти и газа // Деловой журнал Neftegas.ru. – 2016. – № 3. – С. 80–90.

22. Новые представления о смачиваемости коллекторов нефти и газа / Н.Н. Михайлов, И.П. Гурбатова, К.А. Мотова, Л.С. Севича // Нефтяное хозяйство. – 2016. – № 7. – С. 80–85.

23. Перозио Г.Н. Вторичные изменения мезозойских отложений центральной и юго-восточной частей Западно-Сибирской низменности // Постседиментационные преобразования осадочных пород Сибири. – Новосибирск: Наука, 1967. – С. 5–89.

24. Ильясова Е.Н., Сашибареев Р.С. Влияние условий формирования нефтяных залежей на степень изменения полевых шпатов // Влияние вторичных изменений пород осадочных комплексов на их нефтегазоносность. – Ленинград: ВНИГРИ, 1982. – С. 103–115.

25. Прозорович Г.Э., Валюжанин З.Л. Регрессия квадри и пелитизация полевых шпатов и нефтеносных и водоносных песчаников Усть-Балыкского месторождения нефти (Западная Сибирь) // Доклады АН СССР. – 1966. – Т. 168, № 4. – С. 893–895.

26. Германов А.И., Борзенков И.А., Юсупова И.Ф. Преобразование карбонатных пород на участках развития биогенных сульфатредукций и метанообразования // Известия Академии наук СССР. Серия: Геология, 1981. – № 5. – С. 106–113.

27. Аширпов К.Б. Цементация приконтурного слоя нефтяных залежей в карбонатных коллекторах и влияние ее на разработку // Труды Гипровостокнефть. – 1959. – Вып. 2. – С. 163–174.

28. Чепиков К.Р., Ермолева Е.П., Орлова Н.А. Эпигенные минералы как показатели времени прихода нефти в песчаные промышленные коллекторы // Доклады Академии наук СССР. – 1959. – Т. 125, № 5. – С. 1097–1099.

29. Мухаметшин Р.З., Пунанова С.А. Природные битумы в отложениях палеозоя Татарстана: состав, свойства и возможности извлечения // Высоковязкие нефти и природные битумы: проблемы и повышение эффективности разведки и разработки месторождений: международная научно-практическая конференция. – Казань: ФЭН, 2012. – С. 95–99.

30. Eriksson S., Lasic S., Topgaard D. Isotropic diffusion weighting in PGSE NMR by magnetic – angle spinning of q-vector // Journal of Magnetic Resonance. – 2013. – Vol. 226. – P. 13–18. DOI: 10.1016/j.jmr.2012.10.015

31. Lee J.H., Okuno Y., Cavagnero S. Sensitivity enhancement in solution NMR: Emerging ideas and new frontiers // Journal of Magnetic Resonance. – 2014. – Vol. 241, iss. 1. – P. 18–31. DOI: 10.1016/j.jmr.2014.01.005

32. Martin R.W., Kelly J.E., Collier K.A. Spatial reorientation experiments for NMR of solids and partially oriented liquids // Progress in Nuclear Magnetic Resonance Spectroscopy. – 2015. – Vol. 90–91. – P. 92–122. DOI: 10.1016/j.pnmrs.2015.10.001

33. Haouas M., Taulelle F., Martineau Ch. Recent advances in application of 27Al NMR spectroscopy to material science // Progress in Nuclear Magnetic Resonance Spectroscopy. – 2016. – Vol. 94–95. – P. 11–36. DOI: 10.1016/j.pnmrs.2016.01.003
34. Krivdin L.B. Calculation of 15N NMR chemical shifts: Recent advances and perspectives // Progress in Nuclear Magnetic Resonance Spectroscopy. – 2017. – Vol. 102–103. – P. 98–119. DOI: 10.1016/j.pnmrs.2017.08.001

35. Vugmeyster L., Ostrovsky D. Static solid – state 2H NMR methods in studies of protein side chain dynamics // Progress in Nuclear Magnetic Resonance Spectroscopy. – 2017. – Vol. 101. – P. 1–17. DOI: 10.1016/j.pnmrs.2017.02.001

36. Pileio G. Singlet NMR methodology in two – spin – 1/2 systems // Progress in Nuclear Magnetic Resonance Spectroscopy. – 2017. – Vol. 98–99. – P. 1–19. DOI: 10.1016/j.pnmrs.2016.11.002

37. Злобин А.А., Юшков И.Р. Определение смачиваемости поверхности поровых каналов неэкстрагированных пород-коллекторов // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2009. – № 10. – С. 29–32.

38. Компьютерная интерпретация данных геофизических исследований скважин / А.И. Губин, Л.Н. Костылев, Е.С. Зрячих, А.В. Шумилов; Перм. гос. нац. исслед. ун-т. – Пермь, 2016. – 218 с.

39. Костицын В.И., Хмелевская В.К. Геофизика / Перм. гос. нац. исслед. ун-т. – Пермь, 2018. – 428 с.

40. Кольчев И.Ю. Изучение зональности распределения показателей смачиваемости по данным бокового каротажа для нефтенасыщенных визейских коллекторов Соликамской депрессии // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2017. – Т. 16, № 4. – С. 331–341. DOI: 10.15593/2224-9923/2017.4.4

Please cite this article in English as:
Galkin S.V., Kolychev I.Yu., Potekhin D.V., Ilyushin P.Yu. Study of secondary alterations of visean resevoir rocks of Solikamsk Depression in condition of stabilization of ancient oil-water contacts. Perm Journal of Petroleum and Mining Engineering, 2019, vol.19, no.2, pp.104-116. DOI: 10.15593/2224-9923/2019.2.1

Просьба ссылаться на эту статью в русскоязычных источниках следующим образом:
Изучение вторичных изменений визейских коллекторов Соликамской депрессии в условиях стабилизации древних водонефтяных контактов / С.В. Галкин, И.Ю. Кольчев, Д.В. Потехин, П.Ю. Илюшин // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2019. – Т.19, №2. – С.104–116. DOI: 10.15593/2224-9923/2019.2.1