Some combinatorial sequences associated with context-free grammars

Shi-Mei Ma †

School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066004, China

Abstract

The purpose of this paper is to show that some combinatorial sequences, such as second-order Eulerian numbers and Eulerian numbers of type B, can be generated by context-free grammars.

Keywords: Context-free grammars; Combinatorial sequences; Permutations; Partitions

1 Introduction

The grammatical method was introduced by Chen [2] in the study of exponential structures in combinatorics. Let A be an alphabet whose letters are regarded as independent commutative indeterminates. A context-free grammar G over A is defined as a set of substitution rules replacing a letter in A by a formal function over A. Following Chen [2], the formal derivative D is a linear operator defined with respect to a context-free grammar G. For any formal functions u and v, we have

$$D(u + v) = D(u) + D(v), \quad D(uv) = D(u)v + uD(v) \quad \text{and} \quad D(f(u)) = \frac{\partial f(u)}{\partial u} D(u),$$

where $f(x)$ is a analytic function. By definition, we have $D^{n+1}(u) = D(D^n(u))$ for all u. For example, if $G = \{x \to xy, y \to y\}$, then

$$D(x) = xy, \quad D(y) = y, \quad D^2(x) = x(y + y^2), \quad D^3(x) = x(y + 3y^2 + y^3).$$

In [5], Dumont considered chains of general substitution rules on words. It is a hot topic to explore the connection between combinatorics and context-free grammars. The reader is referred to [3, 4, 6, 11] for recent progress on this subject.

*This work is supported by NSFC (11126217) and the Fundamental Research Funds for the Central Universities (N100323013).

†Email address: shimeima@yahoo.com.cn (S.-M. Ma)
We now recall some definitions, and fix some notation, that will be used throughout the rest of this paper. Let $[n] = \{1, 2, \ldots, n\}$. Let S_n denote the symmetric group of all permutations of $[n]$. The Eulerian number $\langle \binom{n}{k} \rangle$ enumerates the number of permutations in S_n with k descents (i.e., $i < n, \pi(i) > \pi(i+1)$) as well as the number of permutations in S_n which have k excedances (i.e., $i < n, \pi(i) > i$) (see [12, A008292]). The numbers $\langle \binom{n}{k} \rangle$ satisfy the recurrence relation

$$\langle \binom{n}{k} \rangle = (k + 1) \langle \binom{n-1}{k} \rangle + (n - k) \langle \binom{n-1}{k-1} \rangle,$$

the initial condition $\langle \binom{0}{0} \rangle = 1$ and boundary conditions $\langle \binom{0}{k} \rangle = 0$ for $k \geq 1$. Let

$$A_n(t) = \sum_{k=0}^{n-1} \langle \binom{n}{k} \rangle t^k$$

be the Eulerian polynomial. The exponential generating function for $A_n(t)$ is

$$A(t, z) = 1 + \sum_{n \geq 1} t A_n(t) \frac{z^n}{n!} = \frac{1 - t}{1 - te^{(1-t)}}.$$ (1)

We now consider a restricted version of Eulerian numbers. Let r be a nonnegative integer. Denote by $P(n, n-r)$ the set of permutations of n numbers taken $n-r$ at a time. Let $\sigma \in P(n, n-r)$. If $\sigma(i) > i$, then we say that σ has an excedance at position i, where $1 \leq i \leq n-r$. The r-restricted Eulerian number, denoted by $\langle \langle \binom{n}{k} \rangle \rangle$, is defined as the number of permutations in $P(n, n-r)$ having k excedances (see [12, A144696, A144697, A144698, A144699] for details).

A Stirling permutation of order n is a permutation of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ such that for each i, $1 \leq i \leq n$, the elements lying between the two occurrences of i are greater than i. The second-order Eulerian number $\langle \langle \binom{n}{k} \rangle \rangle$ is the number of Stirling permutation of order n with k ascents (see [12, A008517]). The combinatorial interpretations for the second-order Eulerian numbers $\langle \langle \binom{n}{k} \rangle \rangle$ have been extensively investigated (see [11][13][19]). It is well known that the numbers $\langle \langle \binom{n}{k} \rangle \rangle$ satisfy the recurrence relation

$$\langle \langle \binom{n+1}{k} \rangle \rangle = (2n - k + 1) \langle \langle \binom{n}{k-1} \rangle \rangle + (k+1) \langle \langle \binom{n}{k} \rangle \rangle,$$ (2)

with initial condition $\langle \langle \binom{1}{0} \rangle \rangle = 1$ and boundary conditions $\langle \langle \binom{n}{k} \rangle \rangle = 0$ for $n \leq k$ or $k < 0$ (see [12, A008517]).

Let B_n denote the set of signed permutations of $\pm[n]$ such that $\pi(-i) = -\pi(i)$ for all i, where $\pm[n] = \{\pm 1, \pm 2, \ldots, \pm n\}$. Let

$$B_n(x) = \sum_{k=0}^{n} B(n,k) x^k = \sum_{\pi \in B_n} x^{\text{des}_B(\pi)},$$

where

$$\text{des}_B = |\{i \in [n] : \pi(i-1) > \pi(i)\}|$$
with $\pi(0) = 0$. The polynomial $B_n(x)$ is called an Eulerian polynomial of type B, while $B(n,k)$ is called an Eulerian number of type B (see [12, A060187]). The first few of these polynomials are listed below:

\[
B_0(x) = 1, B_1(x) = 1 + x, B_2(x) = 1 + 6x + x^2, B_3(x) = 1 + 23x + 23x^2 + x^3.
\]

The numbers $B(n,k)$ satisfy the recurrence relation

\[
B(n + 1, k) = (2n - 2k + 3)B(n, k - 1) + (2k + 1)B(n, k),
\]

with initial condition $B(0,0) = 1$ and boundary conditions $B(0,k) = 0$ for $k \geq 1$. An explicit formula for $B(n,k)$ is given as follows:

\[
B(n, k) = \sum_{i=0}^{k} (-1)^i \binom{n+1}{i} (2k - 2i + 1)^n
\]

for $0 \leq k \leq n$ (see [7] for details).

The unsigned Stirling number of the first kind $\left[\begin{array}{c} n \\ k \end{array} \right]$ is the number of permutations in S_n with exactly k cycles (see [12, A132393]). The Stirling number of the second kind $\left\{ \begin{array}{c} n \\ k \end{array} \right\}$ is the number of ways to partition $[n]$ into k blocks (see [12, A008277]). Let $\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle$ denote the number of ways to partition $[n]$ into k nonempty linearly ordered subsets. The numbers $\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle$ are called the unsigned Lah numbers (see [12, A105278]).

We recall some known results on context-free grammars.

Proposition 1 ([2, Eq. 4.8]). If $G = \{ x \to xy, y \to y \}$, then

\[
D^n(x) = x \sum_{k=1}^{n} \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle y^k.
\]

Proposition 2 ([5, Section 2.1]). If $G = \{ x \to xy, y \to xy \}$, then

\[
D^n(x) = x \sum_{k=0}^{n-1} \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle x^k y^{n-k}.
\]

Proposition 3 ([4]). If $G = \{ x \to x^2y, y \to x^2y \}$, then

\[
D^n(x) = \sum_{k=0}^{n-1} \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle x^{2n-k} y^{k+1}.
\]

Proposition 4 ([11]). If $G = \{ x \to y^2, y \to xy \}$, then

\[
D^n(x) = \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} W_{n,k} x^{n-2k-1} y^{2k+2}, \quad D^n(y) = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} W_{n,k}^l x^{n-2k} y^{2k+1},
\]

where $W_{n,k}$ is the number of permutations in S_n with k interior peaks and $W_{n,k}^l$ is the number of permutations in S_n with k left peaks.

The purpose of this paper is to show that some combinatorial sequences, such as second-order Eulerian numbers and Eulerian numbers of type B, can be generated by context-free grammars.
2 Results

For \(n \geq 0 \), we always assume that

\[
(xD)^{n+1}(x) = (xD)(xD)^n(x) = xd((xD)^n(x)).
\]

The following theorem is in a sense “dual” to Proposition 3.

Theorem 5. If \(G = \{ x \rightarrow xy, y \rightarrow xy \} \), then

\[
(xD)^n(x) = \sum_{k=0}^{n-1} \binom{n}{k} x^{2n-k} y^{k+1} \quad \text{for } n \geq 1.
\]

Proof. For \(n \geq 1 \), we define

\[
(xD)^n(x) = \sum_{k=0}^{n-1} E(n,k) x^{2n-k} y^{k+1}.
\]

Note that

\[
(xD)(x) = x^2 y, (xD)(x^2 y) = x^4 y + 2x^3 y^2.
\]

Then \(E(1,0) = \langle \langle 1 \rangle \rangle = 1 \), \(E(2,0) = \langle \langle 2 \rangle \rangle = 1 \) and \(E(2,1) = \langle \langle 2 \rangle \rangle = 2 \). Using (4), we obtain

\[
(xD)(xD)^n(x) = \sum_{k=0}^{n-1} (2n-k)E(n,k)x^{2n-k+1} y^{k+2} + \sum_{k=0}^{n-1} (k+1)E(n,k)x^{2n-k+2} y^{k+1}.
\]

Therefore,

\[
E(n+1,k) = (2n-k+1)E(n,k-1) + (k+1)E(n,k).
\]

Comparing with (2), we see that the coefficients \(E(n,k) \) satisfy the same recurrence and initial conditions as \(\langle \langle n \rangle \rangle \), so they agree. \(\square \)

Now we present the main result of this paper.

Theorem 6. For \(n \geq 1 \), we have the following results:

\((c_1) \) If \(G = \{ x \rightarrow xy^2, y \rightarrow x^2 y \} \), then

\[
D^n(xy) = xy \sum_{k=0}^{n} B(n,k)x^{2n-2k} y^{2k}.
\]

\((c_2) \) If \(G = \{ x \rightarrow xy^2, y \rightarrow x^2 y \} \), then

\[
D^n(x^2 y^2) = 2^n x^2 y^2 \sum_{k=0}^{n} \binom{n+1}{k} x^{2n-2k} y^{2k}.
\]

\((c_3) \) If \(G = \{ x \rightarrow xy^2, y \rightarrow x^2 y \} \), then

\[
D^n(x) = x \sum_{k=1}^{n} N(n,k)x^{2n-2k} y^{2k},
\]

where the number \(N(n,k) \) enumerates perfect matchings of \([2n]\) with the restriction that only \(k \) matching pairs have odd smaller entries (see [12, A185411]).
(c4) If \(G = \{x \to xy, y \to xy\} \), then
\[
D^n(xy^r) = x \sum_{k=0}^n \binom{n+r}{k} y^{n+r-k}.
\]

(c5) If \(G = \{x \to xy^2, y \to xy\} \), then
\[
D^n(x) = x \sum_{k=0}^{n-1} 2^k \binom{n}{k} x^k y^{2n-2k}.
\]

(c6) Consider the numbers \(T(n, k) \) with generating function
\[
\sqrt{A(2t, z)} = 1 + \sum_{n \geq 1} \sum_{k=1}^n T(n,k) \frac{t^k z^n}{n!},
\]
where \(A(t, z) \) is given by [11] (see [12, A156920]). If \(G = \{x \to xy^2, y \to xy\} \), then
\[
D^n(y) = \sum_{k=1}^n T(n,k) x^k y^{2n-2k+1}.
\]

(c7) If \(G = \{x \to x^2y, y \to y\} \), then
\[
D^n(x) = x \sum_{k=1}^n k! \binom{n}{k} x^k y^k.
\]

(c8) If \(G = \{x \to x^2y, y \to y^2\} \), then
\[
D^n(x) = x \sum_{k=1}^n k! \binom{n}{k} x^k y^n.
\]

(c9) If \(G = \{x \to xy^2, y \to y^2\} \), then
\[
D^n(x) = x \sum_{k=1}^n \left[\binom{n}{k} y^{n+k} \right].
\]

(c10) If \(G = \{x \to xy^3, y \to y^3\} \), then
\[
D^n(x) = x \sum_{k=1}^n b(n,k) y^{2n+k},
\]
where \(b(n,k) \) is the number of forests with \(k \) rooted ordered trees with \(n \) non-root vertices labeled in an organic way (see [12, A035342]).

(c11) For a fixed positive integer \(r \geq 4 \), if \(G = \{x \to xy^r, y \to y^r\} \), then
\[
D^n(x) = x \sum_{k=1}^n a(n,k;r) y^{(r-1)n+k},
\]
where \(a(n,k;r) \) enumerates unordered \(n \)-vertex \(k \)-forests composed of \(k \) plane increasing \(r \)-ary trees (see [12, A035469, A049029, A049385, A092082]).
(c12) If \(G = \{ x \rightarrow x^2 y, y \rightarrow xy \} \), then
\[
D^n(y) = x^n \sum_{k=1}^{n} d(n, k)y^k,
\]
where \(d(n, k) \) is the number of increasing mobiles (circular rooted trees) with \(n \) nodes and \(k \) leaves (see [12, A055356]).

Proof. We only prove \((c_1)\) and the others can be proved in a similar way. Note that \(D(x) = xy^2 \) and \(D(y) = x^2 y \). Then
\[
D(xy) = xy(x^2 + y^2), D^2(xy) = D(D(xy)) = xy(x^4 + 6x^2y^2 + y^4).
\]

For \(n \geq 1 \), we define
\[
D^n(xy) = xy \sum_{k=0}^{n} G(n, k)x^{2n-2k}y^{2k}.
\]
Hence \(G(1, 0) = B(1, 0) \) and \(G(1, 1) = B(1, 1) \). Since
\[
D^{n+1}(xy) = D(D^n(xy)) = \sum_{k=0}^{n} (2n-2k+1)G(n, k)x^{2n-2k+1}y^{2k+3} + \sum_{k=0}^{n} (2k+1)G(n, k)x^{2n-2k+3}y^{2k+1},
\]
there follows
\[
G(n+1, k) = (2n - 2k + 3)G(n, k-1) + (2k + 1)G(n, k).
\]
It follows from \([3]\) that \(G(n, k) \) satisfies the same recurrence and initial conditions as \(B(n, k) \), so they agree.

References

[1] M. Bóna, Real zeros and normal distribution for statistics on Stirling permutations defined by Gessel and Stanley, SIAM J. Discrete Math. 23 (2008), 401–406.
[2] W.Y.C. Chen, Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci. 117 (1993) 113–129.
[3] W.Y.C. Chen, R.X.J. Hao and H.R.L. Yang, Context-free Grammars and Multivariate Stable Polynomials over Stirling Permutations, arXiv:1208.1420v2.
[4] W.Y.C. Chen and A.M. Fu, Context-free grammars, permutations and increasing trees, preprint.
[5] D. Dumont, Grammaires de William Chen et dérivations dans les arbres et arborescences, Sém. Lothar. Combin. 37, Art. B37a (1996) 1–21.
[6] D. Dumont and A. Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Elect. J. Combin., 3 (2) (1996), #R17.
[7] N. Eriksen, H. Eriksson and K. Eriksson, Diagonal checker-jumping and Eulerian numbers for color-signed permutations, Electron. J. Combin. 7 (2000), #R3.

[8] I. Gessel and R.P. Stanley, Stirling polynomials, J. Combin. Theory Ser. A 24 (1978) 24–33.

[9] J. Haglund, M. Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations, Eur. J. Combin. 33 (2012), 477–487.

[10] P.A. MacMahon, The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, Amer. J. Math. 35 (3) (1913), 281–322.

[11] S.-M. Ma, Derivative polynomials and enumeration of permutations by number of interior and left peaks, Discrete Math. 312 (2) (2012) 405–412.

[12] N.J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com/~njas/sequences/.