Almost Medium-Free Measurement of the Hoyle State
Direct-Decay Component With a TPC

Jack Bishop
Postdoctoral Research Associate
Cyclotron Institute
Texas A&M University

Previews of the Future in Low-Energy Experimental Nuclear Physics

National Postdoctoral Seminar Series

February 18th 2021
1. The Hoyle state
 - Alpha-particle condensates

2. TexAT TPC
 - Overview
 - Past experiments

3. β-delayed particle decay
 - Experimental parameters
 - Analysis
 - Results
 - Conclusion

4. Future projects
 - Studies of 13N
 - Neutron-induced reactions with a TPC
 - TeBAT detector upgrade

5. Conclusion
The Hoyle state

Alpha-particle condensates

TexAT TPC

Overview
Past experiments

β-delayed particle decay

Experimental parameters
Analysis
Results
Conclusion

Future projects

Studies of 14N
Neutron-induced reactions with a TPC
TeBAT detector upgrade

Conclusion

Additional Slides
The Hoyle state

Hoyle state:
- Second-excited state in ^{12}C
- Sits just above α-threshold
- Vitally important for the triple-alpha process

Energy	State
7.65 MeV	0_2^+
4.44 MeV	2_1^+
0 MeV	0_1^+

3α threshold
Triple alpha process

Hoyle state enhances triple alpha process by seven orders of magnitude!
Why do we care?!

Internal structure of the Hoyle state has an impact on this branching ratio → How do we think about the structure of the Hoyle state? Highly 3α clustered - yes, but how so?

Breathing mode of triangular arrangement of α-particles (D_{3h} symmetry [1])?

More general 'bent-arm' 8Be + α structure (from AMD calculations [2])?

Dilute gas of α-particles [3]?

[1] D. J. Marín-Lambárri et al. Phys. Rev. Lett. 113, 012502 (2014)
[2] Y. Kanada-En'yo Prog. Theor. Phys. 117, 4 (2007)
[3] Tohsaki, Horiuchi, Schuck and Röpke, Phys. Rev. Lett. 87, 192501 (2001)
Alpha-particle condensates

- Transition from a fermionic to bosonic system
- Large occupation of 0s orbital
- Different phase of nuclear matter where the density drops below $\sim \frac{\rho_0}{4}$
- Experimental evidence so far inconclusive [1 – 3] - Hoyle state only well-studied candidate state
- Decays to other α-condensates should be enhanced [4]
- For 16O, 20Ne, ... Coulomb barrier suppresses these signature decays

Dilute gas of α-particles: α-condensate would have an enhanced direct 3α decay

[1] J.A. Schwartz et al. Phys. Rev. C 91, 034317 (2015)
[2] M. Barbui et al. Phys. Rev. C 98, 044601 (2018)
[3] JB et al. Phys. Rev. C 100, 034320 (2019)
[4] Tz. Kokalova et al. Phys. Rev. Lett. 96, 192502 (2006)
Aim of this measurement to measure Hoyle decay branching ratio directly to 3α rather than via $^{8}\text{Be}(\text{g.s})$.

Current limits $<0.019\%$ 95\% C.L. [1-3].

Factor of 10 or more improvement needed for model rejection [4], i.e. 1 in 40,000.

[1] R. Smith et al., PRL 119, 132502 (2017)
[2] D. Dell’Aquila et al., PRL 119, 132501 (2017)
[3] T.K. Rana et al., Phys. Lett. B, 793 130-133 (2019)
[4] H. Zheng et al., PLB 779 460-3 (2018)
TexAT TPC
How a TPC works
TexAT overview
Micromegas

- Micromegas-based readout
- Amplify and measure electron drift signals
- 128-µm gap
- Central region pads 1.75 x 3.5 mm
- Side regions require multiplexing into ‘strips’ and ‘chains’ parallel and perpendicular to beamline
 - Future TeBAT upgrade eliminates this necessity
- THGEMs (1.25-mm thick) provide additional gain factor of 10-100
TexAT overview

TexAT TPC - TEXas Active Target Time Projection Chamber

- 224 x 240 x 130 mm sensitive area
- Segmented readout using Micromegas, 1024 channels, pos. res. \(\approx 1.5 \) mm in beam direction
- Gas Electron Multipliers (GEMs) provide additional gain. Low dE/dx particle tracks possible
- General Electronics for TPCs (GET) system digitizes waveforms. 512 time buckets at 10 MHz
- Ancillary Si+CsI telescope wall (not used in this work)

NIM paper: E. Koshchiy et al. - NIMA 957, 163398 (2020)
Past experiments

Nuclear structure/exotic nuclei

- $^8\text{B}(p, p)$
 - J. Hooker et al. Phys. Rev. C 100, 054618 (2019)

- $^{10}\text{C}/^{14}\text{O}(\alpha, \alpha)$
- $^{12}\text{Be}(p, p)$
- $^9\text{Li}(p, p)$

Direct fusion measurement

- $^8\text{B} + ^{40}\text{Ar}$
 - Under review PLB

Transfer reactions

- $^{12}\text{B}(d, ^3\text{He})$
- $^1\text{H}(^6\text{He}, t^*)$

β-delayed particle decay

- $(^{12}\text{N}, \beta3\alpha)$
 - JB et al., NIMA 964, 163773 (2020)
 - JB et al., PRC 102, 041303(R) (2020)
 - JB et al., Under review PRL

Neutron-induced measurements

- $^{12}\text{C}(n, n_2)3\alpha$ and $^{16}\text{O}(n, \alpha)$
β-delayed particle decay
Performed Sep 2018/Mar 2019

Using TexAT, can measure both the implant and decay of a radioactive nucleus ‘one at a time’ at Cyclotron Institute, Texas A&M.

- Beam of 12N from 3He(10B, 12N)n using MARS + K500
- Slowed down by aluminum degrader to 25 MeV entering chamber
- Stop further implantations
- Completely stopped by 20 Torr CO$_2$ gas
- Implant and then subsequent decay ($t_{1/2} = 11.0$ ms) tracks recorded by TPC
- Ready for further events
- Sensitive to 12C* → 3α; total BR ≈ 2%
- Want to measure this direct 3α BR

JB et al., NIMA 964, 163773 (2020)
GET 2p-mode

GET system allows for 2 half-triggers.

- First trigger, L1A. Second trigger, L1B
- L1B required within 30 ms of L1A or else ‘half-event’ written to disk
- L1A implant then if 2% which decay to 3α then can correlate these events
- After 30 ms or L1B, beam can be sent back into TexAT
α-bound population
α-unbound population
Selecting Hoyle decays

- Correlate implant location to decay vertex
- Hoyle decays are selected by the energy from the decay
- Escaping events excluded
Differentiating Hoyle decays breakup mode

Measuring the angle of the decay arms gives signature of direct decay.

‘Y’ shape vs. equilength shape

Experimental data vs sequential locus (magenta) and direct locus (red)
Differentiating Hoyle decays breakup mode

Looking at energy partition of final-state α-particles

Dalitz plot

\[\varepsilon_3 \approx 0.5 \]
Results

Formulate χ^2 for sequential and direct from θ_{23} and Dalitz plot for each event.

$$\chi^2_\theta = \min\{(\theta_2 - \theta_{2,\text{theory}})^2 + (\theta_3 - \theta_{3,\text{theory}})^2\} / \sigma_\theta^2,$$

$$\chi^2_D = \begin{cases} (y - y_{\text{seq}})^2 / \sigma_D, & \text{for sequential} \\ (x^2 + y^2) / \sigma_D^2, & \text{for direct} \end{cases},$$

Extract p-value (p_{χ}) for sequential and direct

Likelihood formulation:

$$P_{\text{seq}} = p_{\chi_{\text{seq}}} (1 - \delta),$$

$$P_{\text{dir}} = p_{\chi_{\text{dir}}} \delta,$$

where δ is the 3α branching ratio.

$$\mathcal{L}(\delta) = \sum_{n} \log\left(p_{\chi_{\text{seq}}} (1 - \delta) + p_{\chi_{\text{dir}}} \delta\right),$$
Results

95% C.L.: 0.0058% < BR < 0.043%, Most-likely BR ∼ 0.01%

For the first time, have demonstrated sensitivity to the direct-decay component
Conclusion

Direct 3α BR of 0.01% → what does this imply about an α-condensate?

Complications:
- Contributions from the ‘ghost peak’ in $^8\text{Be} \rightarrow 0.01\% = \text{actual direct } 3\alpha + \text{ghost peak}$
- Final-state Coulomb interactions + identical boson symmetrization effects

Predictions for direct 3α BR:
- WKB phase-space prediction: 0.18 % [1]
- R-Matrix $+$ FSCI: 0.0017% $\rightarrow 1.1\%$ [2]
- Faddeev: 0.014 % $\rightarrow 0.05\%$ [3]
- Exp: From 2_2^+ state in ^{12}C: 0.00057%[4]

Exhausted the experimental limits of this study - more theory needed

[1] R. Smith, JB et al., Few-Body Systems 61, 14 (2020)
[2] J. Refsgaard et al. J. Refsgaard et al., Phys. Lett. B 779, 414 (2018)
[3] S. Ishikawa. Phys. Rev. C 90 061604 (2014)
[4] R. Smith et al., Phys. Rev. C 101 021302(R) (2020)
Collaborators

J. Bishop, G.V. Rogachev, E. Koshchiy, S. Ahn, B.T. Roeder, A. Saastamoinen, E. Aboud, A. Bosh, M. Barbui, C. Hunt, J. Hooker, H. Jayatissa, R. O'Dwyer, S. Upadhyayula

Cyclotron Institute, Texas A&M University, College Station, USA

L.G. Sobotka, C. Pruitt

Department of Chemistry, Washington University, St. Louis, USA

S.T. Marley, R. Malecek

Department of Physics and Astronomy, Louisiana State University, USA

E. Pollacco

IRFU, CEA Saclay, Gif-sur-Yvette, France
This material is based upon work supported by the Department of Energy under award no. DE-FG02-93ER40773 and by the National Nuclear Security Administration through the Center for Excellence in Nuclear Training and University Based Research (CENTAUR) under grant number DE-NA0003841.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Future projects

- Studies of 14N
- Neutron-induced reactions with a TPC
- TeBAT detector upgrade
Studies of 13N

- Extending β-delayed charged-particle technique to study 13N
- $\alpha + \alpha + \alpha + p$
- States populated decay to both 9B* and 12C*
Neutron-induced reactions with a TPC

Scientific American Article: March 19, 2020
Carbon Conundrum: Experiment Aims to Re-create Synthesis of Key Element

Studying $^{12}\text{C}(n, n_2)3\alpha$ with TexAT at Ohio University, Edwards Laboratory
Exciting experimental results coming soon*! Watch this space *Terms and conditions apply
Upgrade to TexAT as collaboration between Cyclotron Institute and University of Birmingham, UK
Moving to resistive Micromegas design

Deliberate dispersion of charge → position resolution down to ∼ 200 µm
Conclusion
Conclusions

TexAT - general purpose TPC capable of measuring different reaction mechanisms

Beta-delayed charged-particle decay in a TPC allows for extremely high-sensitivity measurements of few-body decays

Sensitivity to direct-decay component demonstrated for the first time for the Hoyle state

More theory input is needed but no evidence to support postulate that Hoyle state is an α-condensate
Branching ratios from 12N

40,000 Hoyle decays that safely stop inside Micromegas
Each 12N measured with Micromegas and ion counter scalar
Branching ratios extracted in comparison to KVI result - S. Hyldegaard
(PLB 678 459–464 (2009))

Table: Branching ratios for states in 12N in this work against those from KVI.

State	KVI(%)	Current work(%)
7.65 MeV - 0^+_2	1.44 ± 0.03	1.58 ± 0.01 (stat.) ± 0.11 (sys.)
7.3-16.3 MeV - 3α	2.11± 0.03	2.54 ± 0.01 (stat.) ± 0.18 (sys.)
$0^+_2/3\alpha$	68 ± 2	62.1 ± 0.4 (stat.) ± 0.2 (sys.)
Decay time of ^{12}N

From time between L1A and L1B trigger (implant of ^{12}N) and decay (3α) - get decay time

Literature:
$t_{1/2} = 11.000 \pm 0.016$ ms
Agrees well with literature with **no background** terms included showing cleanliness of selection.

TexAT:
$t_{1/2} = 10.92 \pm 0.11$ (stat.) ± 0.01 (sys.) ms
Additional ‘radiative’ decay mechanisms available! Particle-induced upscattering
Enhancements from neutron/proton upscattering

High-density environment, large neutron enhancements at low temperature (≈ 0.2 GK)
Neutrino wind following a supernova explosion/in an x-ray burster

[M. Beard et al. Phys. Rev. Lett. 119, 112701]
Time-reversal symmetry

Experimental case

Time-reversed astrophysical case

Higher-energy neutron \rightarrow Low-energy neutron \rightarrow Higher-energy neutron

Low-energy neutron \rightarrow Low-energy neutron \rightarrow High-energy neutron
Resonances in proton inelastic channel, large effect on XS if neutron resonances also present

No data on gs → HS from 8 to 16 MeV, higher E data deviate from HF OMP predictions

\[\Gamma_{rad} = \Gamma_{\gamma} + \Gamma_{\pi} + \Gamma_{n20} + \Gamma_{p20} + \Gamma_{n21} + \Gamma_{p21} \]