For regulon reconstruction we started from collections of known TFs in *Escherichia coli* and *Shewanella* species and identification of their orthologs. Collections of TFs were obtained from RegulonDB (Gama-Castro, et al. 2016) for *E. coli* and the RegPrecise (Novichkov et al., 2013) for *Shewanella* spp. For subsequent reconstruction steps we used genomes from MicrobesOnline (Dehal, et al. 2010) database because the RegPredict platform for reconstruction of transcription regulation is linked with genomes in MicrobesOnline. In each taxonomic group, from 4 to 16 representative genomes were selected based on the MicrobesOnline species tree. Closely related strains were eliminated from our analysis to
avoid skews in the consistency check approach and to simplify the simultaneous analysis in the RegPredict web server. At that we preferably selected most well studied genome representative in each set of closely-related genomes. Next we searched for orthologous TFs in the selected genomes using the bidirectional best hits approach and protein BLAST server at NCBI (Altschul, et al. 1997).

For regulon reconstruction in each group of genomes possessing TF orthologs we used standard comparative genomics approach (Rodionov 2007) that consists of the next steps:

1. Obtain training set of potential TFBS;
2. Build positional weight matrix (PWM);
3. Whole-genomic search for additional TFBSs and regulon members;
4. False positive filtering;
5. PWM refinement and continue from step 2.

For collection of training sets we used two strategies. (i) For studied known regulons we collected upstream regions of known to be regulated genes with attention for more precise information about location of TFBSs (as electrophoretic mobility shift assay or DNase footprinting assay). (ii) For novel TF regulons, we used genomic context analysis where we predicted regulation of neighborhood genes by their conservative co-localization in one locus mapped to phylogenetic tree of TF. Another approach is functional analysis based on assumption that genes from one metabolic pathway or one process should be regulated simultaneously. Based on this approach we taken upstreams of genes from one process. Association of TF with regulation was made by conservative co-localization of TF gene with genes from this pathway.

Collected upstream regions were used to identify a common DNA motif using the Discover Profiles tool in the RegPredict platform (Novichkov et al., 2010). We searched for DNA motifs either palindromic or tandem repeat symmetry. Sequences of identified DNA motif sites were used to build PWM. The constructed PWMs were further used to search for additional potential TFBSs across upstreams of all genes in genomes using the RegPredict server. Typically we searched the regions beginning 400 nt upstream to and ending 50 nt downstream to the translational start of each gene. Typical threshold for site search procedure was selected as 10% less of the lowest site score from the training set.

The whole genomic searches in RegPredict result in construction of a set of CRONs (Clusters of co-Regulated Orthologous operoNs). Each CRONs in RegPredict was built by the following algorithm: 1) PWM found potential TFBSs above threshold; 2) operon predicted by taking gene with potential TFBS as the first gene of operon and prolong operon to all genes with the same direction and intergenic distance less than 200 nt; 3) identification of orthologs and paralogs for each gene in this operon based on Orthologous Groups in MicrobesOnline database; 4) steps 2 and 3 repeated until convergence. Automatic construction of CRONs and manual curation of the obtained CRONs in the RegPredict server allowed us to filter out false positive site predictions by utilizing the consistency check approach. The consistency check approach is based on the assumption that true sites are conserved in evolution. It should be noted that the cases of operon gene content rearrangement are also taken into consideration in the course of CRON analysis and curation. On next step, the identified true positive TFBSs were added to refine PWM and further repeat the genomic site searches.

At the final step of the manual regulon annotation, gene functions are assigned using the existing gene annotations in Genbank and SEED databases (Overbeek, et al. 2005), annotations of homologous proteins in SwissProt / UniProt database (UniProt 2015) and analysis of Pfam domains (Finn, et al. 2016). All reconstructed regulons were finally deposited in the latest release of the RegPecise database (http://regprecise.lbl.gov) (Novichkov, et al. 2013).
TF	α-proteobacteria	γ-proteobacteria	β-proteobacteria	δ-proteobacteria	TOTAL regulons	
ArgR	+	12 10 9 16 9 6	0 0 0 0 0	0 0 0	6 62	
BirA	+	12 10 9 16 9 6	11 8 0 3 0	8 0 0	7 10 11 94	
FabR	+	12 10 8 16 9 4	6 8 2 3 0	0 0 0	0 0 3 8 10 78	
FadP	-	0 0 0 0 0	0 0 0 0 6	8 11 0 0 0	0 0 2 25 3 25	
FadR	+	12 10 9 16 9 5	0 0 0 0 0	0 0 0	0 0 6 61	
GlcC	+	1 0 0 0 0	0 3 6 0 0	4 0 2 6 1	0 0 7 23	
HexR	+	11 10 0 16 5 6	6 16 0 6 8 9 2	0 0 0	0 0 13 95	
HmgQ	-	0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 2 17	
HmgR	-	0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 1 5	
HmgS	-	0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 1 3	
HutC	-	8 10 0 16 8 4	3 6 2 3 6 8 7 1	10 10 5 2	4 0 18 113	
Hypr	-	1 1 0 16 3 3 2 1	1 0 0 1 3 0 6 8	1 0 0	0 0 13 46	
LiuQ	-	0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 3 14	
LiuR	+	0 6 0 16 8 2	6 8 0 0 6 2	10 5 9 13 3 6 4	0 0 16 104	
LidR	+	5 0 0 0 0	0 4 7 2 1	4 8 3 5 0 2 4 0	6 4 13 55	
MetJ	+	12 10 9 16 9 6	0 0 0 0 0	0 0 0	0 0 6 62	
MetR	+	12 10 8 16 4 5	12 8 0 3 6 7 5 8	0 13 0 0	0 0 14 117	
NadQ	-	0 0 0 0 0	0 0 0 0 2	0 2 1 2 2 7 0 4	0 0 7 30	
NadR	+	11 0 0 0 0	0 0 0 0 0	0 0 0	0 0 1 11	
NagC	+	12 10 2 0 6	1 0 0 0 0	0 0 0	0 0 5 31	
NagQ	-	0 0 0 0 0	0 3 2 0 2 1 7 0	1 7 4 1 0 3 0 0	0 0 10 31	
NagR	-	0 0 0 15 3 0	3 0 0 4 0	0 0 0	0 0 4 25	
NrdR	+	12 10 9 16 9 6	12 8 4 4 6 8 11	12 15 15 9 7 4 0	9 20 186	
NrtC	-	1 4 0 3 0	3 2 4 2 0	0 0 4 2 2 1	0 0 11 28	
PdhR	+	12 10 0 16 9 6	2 0 0 0 0	0 0 0	0 0 6 55	
PsrA	-	8 0 0 16 4 3	8 8 0 3 6 8 0 5	3 0 0 4 0	0 0 12 76	
RutR	+	7 2 0 0 5	1 8 20 2 0 4 7	0 0 9 13 1 0 2 0	0 0 17 81	
SahR	-	0 0 0 0 0	0 9 8 0 0	0 0 0	0 0 10 2 7 7 4	9 6 9 62
SamR	-	0 0 0 0 0	0 0 0 4 0	0 0 0	0 0 0 0 0 0 1 4	
TrpR	+	12 10 8 16 0 2 2	0 2 1 0 0	0 0 0	0 0 0 0 8 53	
TyrR	+	12 10 9 16 9 4	0 7 0 0 0	0 0 0	0 0 0 0 8 67	
TOTAL regulons	17 20 19 9 19 21 19 21 22 9 12 13 14 12 13 13 15 10 5 9 3 5	283	189 160 71 290 124 84 115 139 22 35 62 94 75 61 110 104 46 28 33 18 36 1896			

Figure S52. Taxonomic distribution of studied TF regulons and regulogs in 21 taxonomic groups of Proteobacteria

21 TFs are present in E. coli and/or Shewanella spp. and are conserved in five or more taxonomic groups of Proteobacteria.

12 TFs that represent non-orthologous replacements of the initial set of TFs in some taxonomic groups are marked by asterisk (*).

Each cell represents a TF regulon; each number corresponds to the number of TF regulons per regulon.

Numbers in red font highlight TFs/taxonomic groups that have multiple regulogs represented by paralogous TFs.
Figure S3. Conservation of regulatory interactions in the reconstructed regulons. Core, Taxonomy-specific and Genome-specific groups are highlighted with red, green and blue color respectively. Regulon member names are connected with respective dots by dashes. Functional belonging of regulon members is listed in table S3.
Average conservation of regulatory interaction

Number of taxonomic groups with regulatory interaction

Conservation groups
- Core
- Taxonomy
- Genome

ArgR

BirA
Conservation groups
- Core
- Taxonomy
- Genome

Average conservation of regulatory interaction
Number of taxonomic groups with regulatory interaction

LiuR

LldR
Table S1. Studied genomes and taxonomic groups of Proteobacteria.

Tax ID	Phylum / Class / Taxonomic collection / Genome	Number of genomes
Phylum	Proteobacteria	196
Class	Gammaproteobacteria	90
	Enterobacteriales	12
511145	Escherichia coli str. K-12 substr. MG1655	
99287	Salmonella typhimurium LT2	
290338	Citrobacter koseri ATCC BAA-895	
272620	Klebsiella pneumoniae subsp. pneumoniae MGH 78578	
399742	Enterobacter sp. 638	
716540	Erwinia amylovora ATCC 49946	
187410	Erwinia amylovora ATCC 49946	
399741	Serratia proteamaculans 568	
218491	Erwinia carotovora subsp. atroseptica SCRI1043	
498217	Edwardsiella tarda EIB202	
529507	Proteus mirabilis HI4320	
243265	Photobacterium luminescens subsp. laumondii TTO1	
Pasteurellales		9
71421	Haemophilus influenzae Rd KW20	
634176	Aggregatibacter aphrophilus NJ8700	
272843	Pasteurella multocida subsp. multocida str. Pm70	
221988	Mannheimia succiniciproducens MBEL55E	
339671	Actinobacillus succinogenes 130Z	
228400	Haemophilus hominis 2336	
537457	Actinobacillus pleuropneumoniae serovar 7 str. AP76	
233412	Haemophilus ducreyi 35000HP	
557723	Haemophilus parasuis SH0165	
Vibrionales		10
243277	Vibrio cholerae O1 biovar eltor str. N16961	
216895	Vibrio vulnificus CMCP6	
338187	Vibrio harveyi ATCC BAA-1116	
223926	Vibrio parahaemolyticus RIMD 2210633	
391591	Vibrio shilonii AK1	
575788	Vibrio splendidus LGP32	
312309	Vibrio fischeri ES114	
316275	Vibrio salmonicida LFI1238	
314292	Vibrio angustum S14	
298386	Photobacterium profundum SS9	
Psychromonadaceae/Aeromonadales		6
357804	Psychromonas ingrahamii 37	
314282	Psychromonas sp. CNPT3	
58051	Moritella sp. PE36	
380703	Aeromonas hydrophila subsp. hydrophila ATCC 7966	
382245	Aeromonas salmonicida subsp. salmonicida A449	
595494	Tolumonas auensis DSM 9187	
Shewanellaceae		16
211586	Shewanella oneidensis MR-1	
319224	Shewanella putrefaciens CN-32	
351745	Shewanella sp W3-18-1	
94122 Shewanella sp ANA-3
60480 Shewanella sp MR-4
60481 Shewanella sp MR-7
325240 Shewanella baltica OS155
318161 Shewanella denitrificans OS217
318167 Shewanella frigidimarina NCIMB 400
326297 Shewanella amazonensis SB2B
323850 Shewanella loihica PV-4
398579 Shewanella pealeana ATCC 700345
458817 Shewanella halifaxensis HAW-EB4
225849 Shewanella piezotolerans WP3
425104 Shewanella sediminis HAW-EB3
392500 Shewanella woodyi ATCC 51908

Alteromonadales

9

342610 Pseudoalteromonas atlantica T6c
314275 Alteromonas macleodii 'Deep ecotype'
455436 Glaciecola sp. HTCC2999
167879 Colwellia psychrerythraea 34H
156578 Alteromonadales bacterium TW-7
326442 Pseudoalteromonas haloplanktis TAC125
87626 Pseudoalteromonas tunicata D2
314276 Idiomarina baltica OS145
283942 Idiomarina loihica L2TR

Oceanospirillales/Alteromonadales

12

349521 Hahella chejuensis KCTC 2396
351348 Marinobacter aqueolei
270374 Marinobacter sp. ELB17
207949 Oceanobacter sp. RED65
207954 Oceanospirillum sp. MED92
400668 Marinomonas sp. MWYL1
203122 Saccharophagus degradans 2-40
377629 Teredinibacter turnerae T7901
498211 Cellvibrio japonicus Ueda107
290398 Chromohalobacter salexigens DSM 3043
314283 Reinekea sp. MED297
393595 Alcanivorax borkumensis SK2

Pseudomonadaceae

8

208964 Pseudomonas aeruginosa PAO1
384676 Pseudomonas entomophila L48
160488 Pseudomonas putida KT2440
223283 Pseudomonas syringae pv. tomato str. DC3000
220664 Pseudomonas fluorescens Pf-5
399739 Pseudomonas mendocina ymp
379731 Pseudomonas stutzeri A1501
322710 Azotobacter vinelandii AvOP

Moraxellaceae

4

62977 Acinetobacter sp. ADP1
480119 Acinetobacter baumannii AB0057
259536 Psychrobacter arcticum 273-4
349106 Psychrobacter sp. PRwf-1

Xanthomonadales

4
Xylella fastidiosa 9a5c
Xanthomonas axonopodis pv. citri str. 306
Xanthomonas campestris pv. campestris ATCC 33913
Stenotrophomonas maltophilia K279a

Class Betaproteobacteria **37**

Ralstonia **6**
- Ralstonia eutropha H16
- Cupriavidus taiwanensis
- Ralstonia metallidurans CH34
- Ralstonia eutropha JMP134
- Ralstonia solanacearum GMI1000
- Ralstonia pickettii 12J

Burkholderia **8**
- Burkholderia pseudomallei K96243
- Burkholderia mallei ATCC 23344
- Burkholderia sp. 383
- Burkholderia cepacia AMMD (Burkholderia ambifaria AMMD)
- Burkholderia vietnamiensis G4
- Burkholderia glumae BGR1
- Burkholderia xenovorans LB400
- Burkholderia phymatum STM815

Comamonaceae **11**
- Acidovorax avenae subsp. citrulli AAC00-1
- Acidovorax sp. JS42
- Comamonas testosteroni KF-1
- Delftia acidovorans SPH-1
- Polaromonas naphthalenivorans CJ2
- Polaromonas sp. JS666
- Rhodoferax ferrireducens DSM 15236
- Variovorax paradoxus S110
- Verminephrobacter eiseniae EF01-2
- Methylobium petroleiphilum PM1
- Leptothrix cholodnii SP-6

Various betaproteobacteria **12**
- Azoarcus sp. EbN1
- Thauera sp. MZ1T
- Dechloromonas aromatica RCB
- Nitrosomonas europaea ATCC 19718
- Nitrosospira multiformis ATCC 25196
- Thiobacillus denitrificans
- Chromobacterium violaceum ATCC 12472
- Neisseria meningitidis MC58
- Laribacter hongkongensis HLHK9
- Methylobacillus flagellatus KT
- Methylotenera mobilis JLW8
- Methylphilales bacterium HTCC2181

Class Alphaproteobacteria **50**

Rhizobiales **15**
- Sinorhizobium meliloti 1021
- Rhizobium sp. NGR234
- Rhizobium leguminosarum bv. viciae 3841
| Number | Species | |
|---|---|---|
| 347834 | Rhizobium etli CFN 42 |
| 176299 | Agrobacterium tumefaciens str. C58 (Cereon) |
| 266779 | Mesorhizobium sp. BNC1 |
| 266835 | Mesorhizobium loti MAFF303099 |
| 224914 | Brucella melitensis 16M |
| 283165 | Bartonella quintana str. Toulouse |
| 258594 | Rhodopseudomonas palustris CGA009 |
| 224911 | Bradyrhizobium japonicum USDA 110 |
| 288000 | Bradyrhizobium sp. BTAi1 |
| 323098 | Nitrobacter winogradskyi Nb-255 |
| 438753 | Azorhizobium caulinodans ORS 571 |
| 78245 | Xanthobacter autotrophicus Py2 |
| | **Rhodobacterales** |
| 272943 | Rhodobacter sphaeroides 2.4.1 |
| 318586 | Paracoccus denitrificans PD1222 |
| 290400 | Jannaschia sp. CCS1 |
| 314271 | Rhodobacterales bacterium HTCC2654 |
| 314256 | Oceanicola granulosus HTCC2516 |
| 314232 | Loktanella vestfoldensis SKA53 |
| 252305 | Oceanicola batsensis HTCC2597 |
| 89187 | Roseovarius nubinhibens ISM |
| 314264 | Roseovarius sp. 217 |
| 52598 | Sulfitobacter sp. EE-36 |
| 292414 | Silicibacter TM1040 |
| 246200 | Silicibacter pomeroyi DSS-3 |
| 314262 | Roseobacter sp. MED193 |
| 228405 | Hyphomonas neptunium ATCC 15444 |
| 314254 | Oceanicaulis alexandrii HTCC2633 |
| | **Rhodospirillales** |
| 269796 | Rhodospirillum rubrum ATCC 11170 |
| 342108 | Magnetospirillum magneticum AMB-1 |
| 272627 | Magnetospirillum magnetotacticum MS-1 |
| 137722 | Azospirillum sp. B510 |
| 414684 | Rhodospirillum centenum SW |
| 272568 | Gluconacetobacter diazotrophicus PAI 5 |
| 634452 | Acetobacter pasteurianus IFO 3283-01 |
| 290633 | Gluconobacter oxydans 621H |
| 391165 | Granulibacter bethesdensis CGDNIH1 |
| | **Sphingomonadales** |
| 314225 | Erythrobacter litoralis HTCC2594 |
| 237727 | Erythrobacter sp. NAP1 |
| 279238 | Novosphingobium aromaticivorans DSM 12444 |
| 317655 | Sphingopyxis alaskensis RB2256 |
| 452662 | Sphingobium japonicum UT265 |
| 392499 | Sphingomonas wittichii RW1 |
| 264203 | Zymomonas mobilis subsp. mobilis ZM4 |
| | **Caulobacterales** |
| 190650 | Caulobacter crescentus CB15 |
| 509190 | Caulobacter segnis ATCC 21756 |
| 366602 | Caulobacter sp. K31 |
| 450851 | Phenyllobacterium zucineum HLK1 |
| Class | Proteobacteria/Delta | 19 |
|---------------------|------------------------------|----|
| **Desulfovibrionales** | 10 | |
| 882 | Desulfovibrio vulgaris Hildenborough | |
| 883 | Desulfovibrio vulgaris str. Miyazaki F | |
| 207559 | Desulfovibrio desulfuricans G20 | |
| 525146 | Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774 | |
| 411464 | Desulfovibrio piger ATCC 29098 | |
| 526222 | Desulfovibrio salexigens DSM 2638 | |
| 573370 | Desulfovibrio magneticus RS-1 | |
| 363253 | Lawsonia intracellularis PHE/MN1-00 | |
| 525897 | Desulfomicrobium baculatum DSM 4028 | |
| 485915 | Desulfohalobium retbaense DSM 5692 | |
| **Desulfuromonadales** | 9 | |
| 269799 | Geobacter metallireducens GS-15 | |
| 243231 | Geobacter sulfurreducens PCA | |
| 351605 | Geobacter uraniumreducens Rf4 | |
| 316067 | Geobacter sp. FRC-32 | |
| 443144 | Geobacter sp. M21 | |
| 398767 | Geobacter lovleyi SZ | |
| 338966 | Pelobacter propionicus DSM 2379 | |
| 338963 | Pelobacter carbinolicus str. DSM 2380 | |
| 281689 | Desulfuromonas acetoxidans DSM 684 | |

1 Taxonomic collections are according to the standartized genomic collections in the RegPrecise database.
Table S2. Examples of experimentally studied TFs analyzed in this work.

TF	Genome	Reference
ArgR	*Escherichia coli*	(Tian et al., 1992; Caldara et al., 2007; Paul et al., 2007; Cho et al., 2015)
	Salmonella typhimurium	(Lu and Abdelal, 1999)
BioR	*Brucella melitensis*	(Feng et al., 2013)
	Paracoccus denitrificans	(Feng et al., 2015)
BirA	*Escherichia coli*	(Bower et al., 1995; Xu et al., 1995)
FabR	*Escherichia coli*	(Zhang et al., 2002; Fujita et al., 2007)
FadR	*Escherichia coli*	(Di Russo et al., 1992; Fujita et al., 2007)
GlcC	*Escherichia coli*	(Pellicer et al., 1999)
HexR	*Shewanella oneidensis*	(Leyn et al., 2011)
	Pseudomonas putida	(del Castillo et al., 2008; Daddaoua et al., 2009)
HmgR	*Pseudomonas putida*	(Arias-Barrau et al., 2004)
HucC	*Salmonella typhimurium*	(Hagen et al., 1975)
HypR	*Sinorhizobium meliloti*	(White et al., 2012)
LldR	*Pseudomonas aeruginosa*	(Gao et al., 2012)
	Escherichia coli	(Agullera et al., 2008)
MetJ	*Escherichia coli*	(Merlin et al., 2002)
MetR	*Escherichia coli*	(Cai et al., 1989)
	Vibrio cholerae	(Bogard et al., 2012)
NadR	*Salmonella typhimurium*	(Foster et al., 1990)
NagC	*Escherichia coli*	(Plumbridge, 1995; 2001)
NagQ	*Xanthomonas campestris*	(Boulanger et al., 2010)
NagR	*Xanthomonas campestris*	(Boulanger et al., 2010)
	Shewanella oneidensis	(Rodionov et al., 2011)
NrdR	*Escherichia coli*	(Torrents et al., 2007)
	Salmonella typhimurium	(Panosa et al., 2010)
	Pseudomonas aeruginosa	(Crespo et al., 2015)
NrtR	*Shewanella oneidensis*	(Rodionov et al., 2008)
NtrC	*Escherichia coli*	(Muse and Bender, 1998; Zimmer et al., 2000)
PdhR	*Escherichia coli*	(Quail and Guest, 1995; Ogasawara et al., 2007)
PsrA	*Pseudomonas putida*	(Kojic et al., 2002; Fonseca et al., 2014)
	Pseudomonas aeruginosa	(Kang et al., 2009)
RutR	*Escherichia coli*	(Shimada et al., 2007; Nguyen Ple et al., 2010; Nguyen Le Minh et al., 2015)
SahR	*Desulfovibrio alaskensis*	(Novichkov et al., 2014)
TrpR	*Escherichia coli*	(Czernik et al., 1994; Jeeves et al., 1999)
TyrR	*Escherichia coli*	(Camakaris and Pittard, 1982; Yang et al., 2002; Yang et al., 2004; Pittard et al., 2005)
	Enterobacter cloacae	(Coulson and Patten, 2015)
TyrR	*Citrobacter freundii*	(Smith and Somerville, 1997)
PhhR	*Pseudomonas aeruginosa*	(Palmer et al., 2010)
PhhR	*Pseudomonas putida*	(Herrera et al., 2009; Herrera et al., 2010)
References:

Aguilera, L., Campos, E., Gimenez, R., Badia, J., Aguilar, J., and Baldoma, L. (2008). Dual role of LldR in regulation of the lldPRD operon, involved in L-lactate metabolism in Escherichia coli. *J Bacteriol* 190, 2997-3005.

Arias-Barrau, E., Olivera, E.R., Luengo, J.M., Fernandez, C., Galan, B., Garcia, J.L., Diaz, E., and Minambres, B. (2004). The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. *J Bacteriol* 186, 5062-5077.

Bogard, R.W., Davies, B.W., and Mekalanos, J.J. (2012). MetR-regulated Vibrio cholerae metabolism is required for virulence. *MBio* 3.

Boulanger, A., Dejean, G., Lautier, M., Glories, M., Zischek, C., Amlal, M., and Lauber, E. (2010). Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. *J Bacteriol* 192, 1487-1497.

Bower, S., Perkins, J., Yocum, R.R., Serror, P., Sorokin, A., Rahaim, P., Howitt, C.L., Prasad, N., Ehrlich, S.D., and Pero, J. (1995). Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. *J Bacteriol* 177, 2572-2575.

Cai, X.Y., Maxon, M.E., Redfield, B., Glass, R., Brot, N., and Weissbach, H. (1989). Methionine synthesis in Escherichia coli: effect of the MetR protein on metE and metH expression. *Proc Natl Acad Sci U S A* 86, 4407-4411.

Caldara, M., Minh, P.N., Bostoen, S., Massant, J., and Charlier, D. (2007). ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12. *J Mol Biol* 373, 251-267.

Camakaris, H., and Pittard, J. (1982). Autoregulation of the tyrR gene. *J Bacteriol* 150, 70-75.

Cho, S., Cho, Y.B., Kang, T.J., Kim, S.C., Palsson, B., and Cho, B.K. (2015). The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli. *Nucleic Acids Res* 43, 3079-3088.

Coulson, T.J., and Patten, C.L. (2015). The TyrR transcription factor regulates the divergent akr-ipdC operons of Enterobacter cloacae UW5. *PLoS One* 10, e0121241.

Crespo, A., Pedraz, L., and Torrents, E. (2015). Function of the Pseudomonas aeruginosa NrdR Transcription Factor: Global Transcriptomic Analysis and Its Role on Ribonucleotide Reductase Gene Expression. *PLoS One* 10, e0123571.

Czernik, P.J., Shin, D.S., and Hurlburt, B.K. (1994). Functional selection and characterization of DNA binding sites for trp repressor of Escherichia coli. *J Biol Chem* 269, 27869-27875.

Daddaoua, A., Krell, T., and Ramos, J.L. (2009). Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. *J Biol Chem* 284, 21360-21368.

Del Castillo, T., Duque, E., and Ramos, J.L. (2008). A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. *J Bacteriol* 190, 2331-2339.

Dirusso, C.C., Heimert, T.L., and Metzger, A.K. (1992). Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. *J Biol Chem* 267, 8685-8691.

Feng, Y., Kumar, R., Ravcheev, D.A., and Zhang, H. (2015). Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism. *Microbiologyopen* 4, 644-659.

Feng, Y., Xu, J., Zhang, H., Chen, Z., and Srinivas, S. (2013). Brucella BioR regulator defines a complex regulatory mechanism for bacterial biotin metabolism. *J Bacteriol* 195, 3451-3467.

Fonseca, P., De La Pen, F., and Prieto, M.A. (2014). A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440. *Int J Biol Macromol* 71, 14-20.

Foster, J.W., Park, Y.K., Penfound, T., Fenger, T., and Spector, M.P. (1990). Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon. *J Bacteriol* 172, 4187-4196.
Fujita, Y., Matsuoka, H., and Hirooka, K. (2007). Regulation of fatty acid metabolism in bacteria. *Mol Microbiol* 66, 829-839.

Gao, C., Hu, C., Zheng, Z., Ma, C., Jiang, T., Dou, P., Zhang, W., Che, B., Wang, Y., Lv, M., and Xu, P. (2012). Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa. *J Bacteriol* 194, 2687-2692.

Hagen, D.C., Gerson, S.L., and Magasanik, B. (1975). Isolation of super-repressor mutants in the histidine utilization system of Salmonella typhimurium. *J Bacteriol* 121, 583-593.

Herrera, M.C., Duque, E., Rodriguez-Herva, J.J., Fernandez-Escamilla, A.M., and Ramos, J.L. (2010). Identification and characterization of the PhhR regulon in Pseudomonas putida. *Environ Microbiol* 12, 1427-1438.

Herrera, M.C., Krell, T., Zhang, X., and Ramos, J.L. (2009). PhhR binds to target sequences at different distances with respect to RNA polymerase in order to activate transcription. *J Mol Biol* 394, 576-586.

Jeeves, M., Evans, P.D., Parslow, R.A., Jaseja, M., and Hyde, E.I. (1999). Studies of the Escherichia coli Trp transcriptional regulator: a case study in Shewanella oneidensis. *J Biol Chem* 286, 35782-35794.

Kang, Y., Lunin, V.V., Skarina, T., Savchenko, A., Schurr, M.J., and Hoang, T.T. (2009). The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the III secretion exsCEBA operon in Pseudomonas aeruginosa. *Mol Microbiol* 73, 120-136.

Kojic, M., Aguilar, C., and Venturi, V. (2002). TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters. *J Bacteriol* 184, 2324-2330.

Leyn, S.A., Li, X., Zheng, Q., Novichkov, P.S., Reed, S., Romine, M.F., Fredrickson, J.K., Yang, C., Osterman, A.L., and Rodionov, D.A. (2011). Control of proteobacterial central carbon metabolism by the HexR transcriptional regulator: a case study in Shewanella oneidensis. *J Biol Chem* 286, 35782-35794.

Lu, C.D., and Abdelal, A.T. (1999). Role of ArgR in activation of the ast operon, encoding enzymes of the arginine succinyltransferase pathway in Salmonella typhimurium. *J Bacteriol* 181, 1934-1938.

Merlin, C., Gardiner, G., Durand, S., and Masters, M. (2002). The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). *J Bacteriol* 184, 5513-5517.

Muse, W.B., and Bender, R.A. (1998). The nac (nitrogen assimilation control) gene from Escherichia coli. *J Bacteriol* 180, 1166-1173.

Nguyen Le Minh, P., De Cima, S., Bervoets, I., Maes, D., Rubio, V., and Charlier, D. (2015). Ligand binding specificity of RutR, a member of the TetR family of transcription regulators in Escherichia coli. *FEBS Open Bio* 5, 76-84.

Nguyen Ple, M., Bervoets, I., Maes, D., and Charlier, D. (2010). The protein-DNA contacts in RutR*carAB operator complexes. *Nucleic Acids Res* 38, 6286-6300.

Novichkov, P.S., Li, X., Kuehl, J.V., Deutschbauer, A.M., Arkin, A.P., Price, M.N., and Rodionov, D.A. (2014). Control of methionine metabolism by the SahR transcriptional regulator in Proteobacteria. *Environ Microbiol* 16, 1-8.

Ogasawara, H., Ishida, Y., Yamada, K., Yamamoto, K., and Ishihama, A. (2007). PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. *J Bacteriol* 189, 5534-5541.

Palmer, G.C., Palmer, K.L., Jorth, P.A., and Whiteley, M. (2010). Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. *J Bacteriol* 192, 2722-2728.

Panosa, A., Rocia, I., and Gibert, I. (2010). Ribonucleotide reductases of Salmonella typhimurium: transcriptional regulation and differential role in pathogenesis. *PLoS One* 5, e11328.

Paul, L., Mishra, P.K., Blumenthal, R.M., and Matthews, R.G. (2007). Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IFF, Crp, and ArgR. *BMC Microbiol* 7, 2.

Pellicer, M.T., Fernandez, C., Badia, J., Aguilar, J., Lin, E.C., and Baldom, L. (1999). Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. *J Biol Chem* 274, 1745-1752.
Pittard, J., Camakaris, H., and Yang, J. (2005). The TyrR regulon. *Mol Microbiol* 55, 16-26.

Plumbridge, J. (1995). Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. *EMBO J* 14, 3958-3965.

Plumbridge, J. (2001). DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglicosamine-specific transporter in Escherichia coli. *Nucleic Acids Res* 14, 3958-3965.

Quail, M.A., and Guest, J.R. (1995). Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhR-aceEF-lpd operon of Escherichia coli. *Mol Microbiol* 15, 519-529.

Rodionov, D.A., De Ingeniis, J., Mancini, C., CIMadmore, F., Zhang, H., Osterman, A.L., and Raffaelli, N. (2008). Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. *Nucleic Acids Res* 36, 2047-2059.

Shimada, T., Hirao, K., Kori, A., Yamamoto, K., and Ishihama, A. (2007). RutR is the uracil/thymine-sensing master regulator of a set of genes for synthesis and degradation of pyrimidines. *Mol Microbiol* 66, 744-757.

Smith, H.Q., and Somerville, R.L. (1997). The tpl promoter of Citrobacter freundii is activated by the TyrR protein. *J Bacteriol* 179, 5914-5921.

Xu, Y., Nenortas, E., and Beckett, D. (1995). Evidence for distinct ligand-bound conformational states of the multifunctional Escherichia coli repressor of biotin biosynthesis. *Biochemistry* 34, 16624-16631.

Yang, J., Camakaris, H., and Pittard, J. (2002). Molecular analysis of tyrosine-and phenylalanine-mediated repression of the tyrB promoter by the TyrR protein of Escherichia coli. *Mol Microbiol* 45, 1407-1419.

Yang, J., Hwang, J.S., Camakaris, H., Irawaty, W., Ishihama, A., and Pittard, J. (2004). Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli. *Mol Microbiol* 52, 243-256.

Zhang, Y.M., Marrakchi, H., and Rock, C.O. (2002). The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in Escherichia coli. *J Biol Chem* 277, 15558-15565.

Zimmer, D.P., Soupene, E., Lee, H.L., Wendisch, V.F., Khodursky, A.B., Peter, B.J., Bender, R.A., and Kustu, S. (2000). Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. *Proc Natl Acad Sci U S A* 97, 14674-14679.
Table S3. Reconstructed regulatory interactions and functional annotations for the analyzed TF regulons of Proteobacteria.

Regulon	Target gene	RI	Taxa	Functional role	
ArgR	argH	57	6	Argininosuccinate lyase (EC 4.3.2.1)	Arginine biosynthesis
ArgR	argB	54	6	Acetylglutamate kinase (EC 2.7.2.8)	Arginine biosynthesis
ArgR	argC	53	6	N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38)	Arginine biosynthesis
ArgR	argG	52	5	Argininosuccinate synthase (EC 6.3.4.5)	Arginine biosynthesis
ArgR	argF	52	5	Ornithine carbamoyltransferase (EC 2.1.3.3)	Arginine biosynthesis
ArgR	argA	51	6	Arginine biosynthesis transcription regulator ArgR, ArgR family	
ArgR	argE	42	6	Acetylornithine deacetylase (EC 3.5.1.16)	Arginine biosynthesis
ArgR	artI	41	5	Arginine ABC transporter, substrate-binding protein	Arginine transport
ArgR	artQ	39	5	Arginine ABC transporter, permease protein 1	Arginine transport
ArgR	artM	39	5	Arginine ABC transporter, permease protein 2	Arginine transport
ArgR	astD	37	4	Succinylglutamic semialdehyde dehydrogenase (EC 1.2.1.71)	Arginine degradation
ArgR	astA	37	4	Arginine N-succinyltransferase (EC 2.3.1.109)	Arginine degradation
ArgR	astC	31	3	Acetylornithine aminotransferase (EC 2.6.1.11) / N-succinyl-L,L-diaminopimelate aminotransferase (EC 2.6.1.81)	Arginine degradation
ArgR	astB	21	2	Succinylarginine dihydratase (EC 3.5.3.23)	Arginine degradation
ArgR	artP	28	4	Arginine ABC transporter, ATP-binding protein	Arginine transport
ArgR	carA	25	4	Carbamoyl-phosphate synthase small chain (EC 6.3.5.5)	Arginine and pyrimidine biosynthesis
ArgR	carB	24	4	Carbamoyl-phosphate synthase large chain (EC 6.3.5.5)	Arginine and pyrimidine biosynthesis
ArgR	argD	22	3	Acetylornithine aminotransferase (EC 2.6.1.11)	Arginine biosynthesis
ArgR	gltB	34	3	Glutamate synthase [NADPH] large chain (EC 1.4.1.13)	Glutamate biosynthesis
ArgR	gltD	33	3	Glutamate synthase [NADPH] small chain (EC 1.4.1.13)	Glutamate biosynthesis
ArgR	argW	17	2	Predicted arginine uptake transporter, COG3314 family	Arginine transport
ArgR	SO0620	15	1	Conserved hypothetical protein	
ArgR	ilvM	14	1	Acetolactate synthase small subunit (EC 2.2.1.6)	Branched-chain amino acid biosynthesis
ArgR	SO3392	14	1	NADH-dependent flavin oxidoreductase, Oye family	
ArgR	ivG	14	1	Acetolactate synthase large subunit (EC 2.2.1.6)	Branched-chain amino acid biosynthesis
ArgR	ivD	14	1	Dihydroxy-acid dehydratase (EC 4.2.1.9)	Branched-chain amino acid biosynthesis
ArgR	ivA	14	1	Threonine dehydratase biosynthetic (EC 4.3.1.19)	Branched-chain amino acid biosynthesis
ArgR	artJ	10	1	arginine ABC transporter, substrate-binding protein	Arginine transport
ArgR	yfC	7	1	Conserved hypothetical protein	
ArgR	omp	14	1	Toli-dependent outer membrane transporter	Arginine transport ?
ArgR	oadA	12	1	Oxaloacetate decarboxylase, alpha chain (EC 4.1.1.3)	Pyruvate metabolism
ArgR	oadB	12	1	Oxaloacetate decarboxylase, beta chain (EC 4.1.1.3)	Pyruvate metabolism
ArgR	oadG	12	1	Oxaloacetate decarboxylase gamma chain (EC 4.1.1.3)	Pyruvate metabolism
ArgR	potF	12	1	Putrescine ABC transporter, substrate-binding protein (TC 3.A.1.11.2)	Putrescine transport
ArgR	potG	12	1	Putrescine ABC transporter, ATP-binding protein (TC 3.A.1.11.2)	Putrescine transport
ArgR	potH	12	1	Putrescine ABC transporter, permease protein 1 (TC 3.A.1.11.2)	Putrescine transport
ArgR	potI	12	1	Putrescine ABC transporter, permease protein 2 (TC 3.A.1.11.2)	Putrescine transport
ArgR	recN	12	1	DNA repair protein RecN	DNA repair
ArgR	aprE	11	1	Alkaline serine protease	
ArgR	SO0762	10	1	Isochorismate hydratase (EC 3.3.2.2)	Arginine degradation
ArgR	astE	7	2	succinylglutamate desuccinylase	Arginine degradation
ArgR	SO2753	9	1	Prolyl endopeptidase (EC 3.4.21.26)	
ArgR	arcA	5	1	Arginine deiminase (EC 3.5.3.6)	Arginine degradation
ArgR	arcB	1	1	Ornithine carbamoyltransferase (EC 2.1.3.3), catabolic	Arginine degradation
ArgR	arcC	1	1	Carbamate kinase (EC 2.7.2.2)	Arginine degradation
ArgR	Gene	Description	Function		
------	-------	---	---------------------------------------		
ArgR	arcD	1 Arginine/ornithine antiporter	Arginine degradation		
ArgR	hisJ	6 histidine ABC transporter, substrate-binding protein	Histidine degradation		
ArgR	hisM	6 histidine ABC transporter, inner membrane permease	Histidine transport		
ArgR	hisP	6 histidine ABC transporter, ATP-binding protein	Histidine transport		
ArgR	hisQ	6 histidine ABC transporter, permease protein	Histidine transport		
ArgR	potE	8 Putrescine/ornithine antiporter	Putrescine transport		
ArgR	proV	3 Glycine betaine/L-proline ABC transporter, ATP-binding protein	Proline transport		
ArgR	proW	3 Glycine betaine/L-proline ABC transporter, permease protein	Proline transport		
ArgR	proX	3 Glycine betaine/L-proline ABC transporter, substrate-binding protein	Proline transport		
ArgR	SO0312	8 Predicted outer membrane porin			
ArgR	ggt2	7 Gamma-glutamyltranspeptidase (EC 2.3.2.2)	Glutathione metabolism		
ArgR	SO4732	7 Conserved hypothetical protein			
ArgR	mcp	6 Methyl-accepting chemotaxis protein			
ArgR	aprE2	5 Cold-active alkaline serine protease (EC 3.4.21.62)	Branch-chor amino acid biosynthesis		
ArgR	ilvE	5 Branched-chain amino acid aminotransferase (EC 2.6.1.42)	Branch-chor amino acid biosynthesis		
ArgR	ECA3537	3 amino acid-binding protein			
ArgR	ECA3538	3 polar amino acid ABC transporter, inner membrane subunit			
ArgR	ECA3539	3 amino acid ABC transporter, ATP-binding protein			
ArgR	hisA	4 Histidinol-phosphatase (EC 3.1.3.15) / Imidazole glycerol-phosphate dehydratase (EC 4.2.1.19)	Histidine biosynthesis		
ArgR	hisB	4 Histidinol-phosphate aminotransferase (EC 2.6.1.9)	Histidine biosynthesis		
ArgR	hisC	4 Histidinol dehydrogenase (EC 1.1.1.23)	Histidine biosynthesis		
ArgR	hisD	4 Imidazole glycerol phosphate synthase cyclase subunit (EC 4.1.3.-)	Histidine biosynthesis		
ArgR	hisF	4 ATP phosphoribosyltransferase (EC 2.4.2.17)	Histidine biosynthesis		
ArgR	hisG	4 Imidazole glycerol phosphate synthase amidotransferase subunit (EC 2.4.2.-)	Histidine biosynthesis		
ArgR	hisH	4 Phosphoribosyl-AMP cyclohydrolase (EC 3.5.4.19) / Phosphoribosyl-ATP pyrophosphatase (EC 3.6.1.31)	Histidine biosynthesis		
ArgR	hisI	4 Histidinol-phosphate aminotransferase (EC 2.6.1.9)	Histidine biosynthesis		
ArgR	pbpG	4 D-alanyl-D-alanine endopeptidase			
ArgR	Swoo_0949	4 Peptidase U32			
ArgR	ybgH	3 Amino acid/peptide transporter			
ArgR	SQ1443	3 Conserved hypothetical protein			
ArgR	SQ1915	3 Serine protease, subtilase family			
ArgR	SQ2306	3 Cell division protein FtsK			
ArgR	marC	1 Membrane protein, MarC family			
ArgR	speF	1 Ornithine decarboxylase (EC 4.1.1.17)	Putrescine metabolism		
BioR	bioB	12 Biotin synthase (EC 2.8.1.6)	Biotin biosynthesis		
BioR	bioR	10 Biotin metabolism regulatory protein BioR, GntR family	Transcription regulation		
BioR	bioY	8 Substrate-specific component BioY of biotin ECF transporter	Biotin transport		
BioR	bioF	7 B-aminoo-7-oxononanoate synthase (EC 2.3.1.47)	Biotin biosynthesis		
BioR	bioD	7 Dethiobiotin synthetase (EC 6.3.3.3)	Biotin biosynthesis		
BioR	bioA	7 Adenosylmethionine-8-aminoo-7-oxononanoate aminotransferase (EC 2.6.1.62)	Biotin biosynthesis		
BioR	bioZ	3 Biotin synthesis protein BioZ	Biotin biosynthesis		
BioR	bioM	1 ATPase component BioM of energizing module of biotin ECF transporter	Biotin transport		
BioR	bioG	1 Biotin synthesis protein BioG	Biotin biosynthesis		
BioR	bioN	1 Transmembrane component BioN of energizing module of biotin ECF transporter	Biotin transport		
BioR	bioC	1 Biotin synthesis protein BioC	Biotin biosynthesis		
BioR	panD	1 Aspartate alpha-decarboxylase	Pantothenate biosynthesis		
BirA	bioB	93 Biotin synthase (EC 2.8.1.6)	Biotin biosynthesis		
BirA	bioF	86 B-aminoo-7-oxononanoate synthase (EC 2.3.1.47)	Biotin biosynthesis		
Protein	Accession	Exon	Location		
---------	-----------	------	----------		
BirA bioD	83 10	Biotin synthesis protein BioD			
BirA bioC	84 10	Biotin synthesis protein BioC			
BirA bioA	65 8	Adenosylmethionine-8-amino-7-oxononanoate aminotransferase (EC 2.6.1.62)			
BirA bioH	33 5	Biotin synthesis protein BioH			
BirA COG1040	23 4	Competence protein F			
BirA fabF	3 1	3-oxoacyl-[acyl-carrier-protein] synthase, KASII (EC 2.3.1.41)			
BirA birA	3 1	Biotin-protein ligase (EC 6.3.4.15) / Biotin operon repressor			
BirA fabG	3 1	3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100)			
BirA DVU2560	3 1	Conserved domain protein			
BirA acpP	3 1	Acyl carrier protein, putative			
BirA Dde_2651	2 1	Hypothetical thioesterase domain protein			
BirA XAC0384	2 1	Putative short chain dehydrogenase			
BirA XAC0386	2 1	Hypothetical protein			
BirA bioHC	3 1	Biotin synthesis protein BioH / Biotin synthesis protein BioC			
BirA yigM	3 1	Predicted biotin transporter YigM			
BirA CV3478	1 1	Phosphatidylethanolamine N-methyltransferase (EC 2.1.1.17)			
FabR fabA	62 8	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.60)			
FabR hyll	30 6	COG172: Predicted membrane protein hemolysin III homolog			
FabR OLE1	38 5	Fatty acid desaturase (EC 1.14.19.1)			
FabR pIIc	30 6	1-acyl-sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.51)			
FabR desB	13 6	Acyl-CoA delta-9-desaturase, DesB			
FabR desC	13 6	Flavodoxin reductases (ferredoxin-NADPH reductases) family 1			
FabR iccH	25 5	Putative long-chain-fatty-acid--CoA ligase (EC 6.2.1.3)			
FabR fabR	26 3	Unsaturated fatty acid biosynthesis repressor FabR, TetR family			
FabR fabD	25 3	Long-chain fatty acid transport protein			
FabR fabR2	5 2	Unsaturated fatty acid biosynthesis repressor FabR, TetR family			
FabR fabB	20 4	3-oxoacyl-[acyl-carrier-protein] synthase, KASI (EC 2.3.1.41)			
FabR rraB	17 2	Ribonuclease E inhibitor RraB			
FabR lcE	16 1	Long-chain-fatty-acid--CoA ligase (EC 6.2.1.3)			
FabR hyll	17 2	COG172: Predicted membrane protein hemolysin III homolog			
FabR Maqu_3149	2 1	AraC family transcriptional regulator			
FabR pfA	7 2	Omega-3 unsaturated fatty acid synthase subunit, PfA			
FabR pfB	7 2	Omega-3 unsaturated fatty acid synthase subunit, PfB			
FabR COG2030	6 1	Putative acyl dehydrogenase, COG2030			
FabR pfaR	6 1	Transcriptional regulator for synthesis of eicosapentaenoic acid, PfaR			
FabR pfaC	6 1	Omega-3 unsaturated fatty acid synthase subunit, PfaC			
FabR faeA	1 1	Fatty acid desaturase (EC 1.14.99.9)			
FabR desE	5 1	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)			
FabR pfaD	4 1	Enoyl-[acyl-carrier-protein] reductase [FMN] (EC 1.3.1.9), inferred for PFA pathway			
FabR psaA	2 1	Predicted transcriptional regulator for fatty acid degradation PsaA, TetR family			
FabR faeE	1 1	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)			
FabR COG2072	3 2	Probable flavin-containing monooxygenase, COG2072			
FabR COG0300	2 1	Probable short-chain dehydrogenase, COG0300			
FadP fadP	24 3	Predicted transcriptional regulator for fatty acid degradation FadP, TetR family			
FadP etfA	23 3	Electron transfer flavoprotein alpha subunit			
FadP etfB	23 3	Electron transfer flavoprotein, beta subunit			
FadP acdH	23 3	Acyl-CoA dehydrogenase (EC 1.3.99.3)			
FadP fadA	22 3	3-ketoacyl-CoA thiolase (EC 2.3.1.16)			
Enoyl-CoA hydratase (EC 4.2.1.17) / Delta(3)-cis-delta(2)-trans-enoyl-CoA isomerase (EC 5.3.3.8) / 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) / 3-hydroxybutyryl-CoA epimerase (EC 5.1.2.3)
Fatty acid degradation

Enoyl-CoA hydratase (EC 4.2.1.17) / 1,2-trans-enoyl-CoA isomerase (EC 5.3.3.8) / 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)
Fatty acid degradation

Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1)
Electron transfer chain for fatty acid degradation

3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9)
Fatty acid degradation

Acyl-CoA dehydrogenase domain protein
Fatty acid degradation

Fatty acid degradation
FadR	**plsB**	8	1	Glycerol-3-phosphate acyltransferase (EC 2.3.1.15)	Glycerolipid metabolism
FadR	**iclR**	8	1	Acetate operon transcriptional repressor, IclR family	Transcription regulation
FadR	**fadM**	8	1	Long-chain acyl-CoA thioesterase FadM (EC=3.1.2.1)	Fatty acid degradation
FadR	**yebV**	8	1	hypothetical protein	
FadR	**VC2105**	6	1	Thioesterase/thiol ester dehydrase-isomerase	
FadR	**tesB**	4	1	Acyl-CoA thioesterase	Fatty acid degradation
FadR	**acdB**	2	1	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
FadR	**COG0596**	1	1	Predicted hydrolase/acyltransferase	
GlcC	**glcE**	23	7	Glycolate dehydrogenase (EC 1.1.99.14), FAD-binding subunit GlcE	Glycolate utilization
GlcC	**glcF**	22	7	Glycolate dehydrogenase (EC 1.1.99.14), iron-sulfur subunit GlcF	Glycolate utilization
GlcC	**glcD**	7	7	Glycolate dehydrogenase (EC 1.1.99.14), subunit GlcD	Glycolate utilization
GlcC	**glcC**	22	6	Glycolate utilization operon transcriptional activator GlcC	Transcription regulation
GlcC	**glcG**	13	4	Hypothetical protein GlcG in glycolate utilization operon	Glycolate utilization
GlcC	**glcB**	8	3	Malate synthase G (EC 2.3.3.9)	Tricarboxylic acid cycle
GlcC	**glcA**	1	1	Glycolate permease	Glycolate transport
GlcC	**lldD**	4	1	L-lactate dehydrogenase (EC 1.1.2.3)	Lactate utilization
GlcC	**mln6914**	4	1	uncharacterized conserved membrane protein	
GlcC	**lyrR**	3	1	Transcriptional regulator, LyrR family, in glycolate utilization operon	Transcription regulation
GlcC	**lldG**	1	1	L-lactate dehydrogenase, subunit LldG	Lactate utilization
GlcC	**lldE**	1	1	L-lactate dehydrogenase, Fe-S oxidoreductase subunit LldE	Lactate utilization
GlcC	**glcQ**	1	1	Predicted TRAP-type glycolate transport system, small permease component	Glycolate transport
GlcC	**glcM**	1	1	Predicted TRAP-type glycolate transport system, large permease component	Glycolate transport
GlcC	**lldP**	2	1	L-lactate permease	Lactate utilization
GlcC	**lldF**	1	1	L-lactate dehydrogenase, Iron-sulfur cluster-binding subunit LldF	Lactate utilization
GlcC	**glcP**	1	1	Predicted TRAP-type glycolate transport system, periplasmic component	Glycolate transport
GlcC	**NGR_c03940**	1	1	hypothetical protein	
GlcC	**ykgE**	1	1	L-lactate dehydrogenase, Fe-S oxidoreductase subunit YkgE	Lactate utilization
GlcC	**ykgF**	1	1	L-lactate dehydrogenase, Iron-sulfur cluster-binding subunit YkgF	Lactate utilization
GlcC	**ykgG**	1	1	L-lactate dehydrogenase, hypothetical protein subunit YkgG	Lactate utilization
HexR	**hexR**	74	9	Central carbohydrate metabolism transcription regulator HexR, RpiR family	Transcription regulation
HexR	**zwf**	72	9	Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49)	Pentose phosphate pathway
HexR	**edd**	55	9	2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase I alpha (EC 2.5.1.54) # AroA I alpha	Entner-Doudoroff pathway
HexR	**eda**	53	9	Entner-Doudoroff pathway	
HexR	**pgi**	53	8	6-phosphogluconolactonase (EC 3.1.1.31), eukaryotic type	Pentose phosphate pathway
HexR	**gk**	33	7	Glucokinase (EC 2.7.1.2)	Glycolysis
HexR	**pykA**	40	7	Pyruvate kinase (EC 2.7.1.40)	Glycolysis
HexR	**gapA**	28	5	NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12)	Glycolysis
HexR	**pgi**	31	5	Glucose-6-phosphate isomerase (EC 5.3.1.1)	Glycolysis
HexR	**ppc**	20	4	Phosphoenolpyruvate carboxylase (EC 4.1.1.31)	Glycolysis
HexR	**tal**	23	5	Transaldolase (EC 2.2.1.2)	Pentose phosphate pathway
HexR	**ppA**	20	3	Phosphoenolpyruvate synthase (EC 2.7.9.2)	Gluconeogenesis
HexR	**aceB**	25	3	Malate synthase (EC 2.3.3.9)	Tricarboxylic acid cycle
HexR	**aceA**	21	4	Isocitrate lyase (EC 4.1.3.1)	Tricarboxylic acid cycle
HexR	**gapB**	19	3	NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13)	Glycolysis
HexR	**pfIA**	12	3	Pyruvate formate-lyase activating enzyme (EC 1.97.1.4)	Fermentation
HexR	**aceE**	10	2	Pyruvate dehydrogenase E1 component (EC 1.2.4.1)	Pyruvate metabolism
HexR	**aceF**	10	2	Dihydropilloamide acetyltransferase component of pyruvate dehydrogenase complex (EC 2.3.3.12)	Pyruvate metabolism
HexR	**gpmM**	12	2	2,3-bisphosphoglycerate-independent phosphoglycerate mutase (EC 5.4.2.1)	Glycolysis
HexR	**adhE**	18	3	Alcohol dehydrogenase (EC 1.1.1.1)	Fermentation
HexR pckA 10 4 Phosphoenolpyruvate carboxykinase [ATP] (EC 4.1.1.49) Gluconeogenesis					
HexR grcA 12 2 Autonomous glycol radical cofactor					
HexR gldD 12 2 Glutamate synthase [NADPH] small chain (EC 1.4.1.13) Glutamate biosynthesis					
HexR gldB 12 2 Glutamate synthase [NADPH] large chain (EC 1.4.1.13) Glutamate biosynthesis					
HexR aldE 7 4 Aldose 1-epimerase Glycolysis					
HexR tpiA 11 2 Triosephosphate isomerase (EC 5.3.1.1) Glycolysis					
HexR pntB 11 2 NAD(P) transhydrogenase subunit beta (EC 1.6.1.2) NAD metabolism					
HexR ptsG 8 2 PTS system, glucose-specific IIB component (EC 2.7.1.69) PTS system, glucose-specific IIC component (EC 2.7.1.69) Glucose transport					
HexR mtaA 10 2 PTS system, mannitol-specific IIB component (EC 2.7.1.69) Mannitol utilization					
HexR pntA 10 2 NAD(P) transhydrogenase alpha subunit (EC 1.6.1.2) NAD metabolism					
HexR pflB 7 2 Pyruvate formate-lyase (EC 2.3.1.54) Fermentation					
HexR ptsI 7 2 Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9) Glucose transport					
HexR focA 7 2 Formate efflux transporter (TC 2.A.44 family) Fermentation					
HexR ptsH 7 2 Phosphocarrier protein of PTS system Glucose transport					
HexR mltD 9 2 Mannitol-1-phosphate 5-dehydrogenase (EC 1.1.1.17) Mannitol utilization					
HexR ptsL 9 2 Mannitol operon repressor Transcription regulation					
HexR crr 7 2 PTS system, glucose-specific IIA component (EC 2.7.1.69) Glucose transport					
HexR phk 16 1 Xylose-5-phosphate phosphoketolase (EC 4.1.2.9) Pentose phosphate pathway					
HexR hexR1 8 1 Central carbohydrate metabolism transcription regulator HexR, RpiR family Transcription regulation					
HexR gapA2 16 1 glyceraldehyde-3-phosphate dehydrogenase, type I Glycolysis					
HexR ybA 10 1 Putative exported protein					
HexR pepD 9 1 Aminoacyl-histidine dipeptidase (Peptidase D) (EC 3.4.13.3) Nucleoside metabolism					
HexR gnd 14 1 6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44) Pentose phosphate pathway					
HexR nqrD 14 1 NqrD Electron transport chain					
HexR nqrC 14 1 NADH:ubiquinone oxidoreductase, Na translocating, gamma subunit Electron transport chain					
HexR gltR 7 1 DNA-binding response regulator GltR, controls specific porins for the entry of glucose Transcription regulation					
HexR nqrE 14 1 NqrE Electron transport chain					
HexR nqrB 14 1 NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic membrane protein Electron transport chain					
HexR gcvT 12 1 Aminomethyltransferase (glycine cleavage system T protein) (EC 2.4.2.1) Glycine cleavage system					
HexR gcvP 12 1 Glycine dehydrogenase [decarboxylating] (glycine cleavage system P protein) (EC 1.4.4.2) Glycine cleavage system					
HexR nupC 12 1 Nucleoside transporter, NupC family Nucleoside metabolism					
HexR gcvH 12 1 Glycine cleavage system H protein Glycine cleavage system					
HexR nirB 7 1 Nitrite reductase [NAD(P)H] large subunit (EC 1.7.1.4) Nitrogen metabolism					
HexR nirD 7 1 Nitrite reductase [NAD(P)H] small subunit (EC 1.7.1.4) Nitrogen metabolism					
HexR pta 4 1 Phosphate acetyltransferase (EC 2.3.1.8) Fermentation					
HexR mgsA 2 1 Methylglyoxal synthase (EC 4.2.3.3) Methylglyoxal metabolism					
HexR gta 2 1 Citrate synthase (s) (EC 2.3.3.1) Tricarboxylic acid cycle					
Gene	Accession	Description	Function		
---	---	---	---	---	---
HexR	ackA	Acetate kinase (EC 2.7.2.1)	Fermentation		
HexR	PF00248	Putative aldo/keto reductase			
HexR	SO1118	hypothetical protein			
HexR	cdd	Cytidine deaminase	Nucleoside metabolism		
HexR	glgX	Glycogen debranching enzyme (EC 2.7.2.1)	Glycogen utilization		
HexR	pgk	Phosphoglycerate kinase (EC 2.7.2.3)	Glycolysis		
HexR	giPA	Glycogen synthase, ADP-glucose transglycosylase (EC 2.4.1.2)	Glycogen utilization		
HexR	adhB	Alcohol dehydrogenase II	Fermentation		
HexR	ldhA	D-lactate dehydrogenase (EC 1.1.1.28)	Fermentation		
HexR	gntU	Low-affinity gluconate/H+ symporter GntU	Gluconate utilization		
HexR	giGC	Glucose-1-phosphate adenyltransferase (EC 2.7.7.27)	Glycogen utilization		
HexR	mglB	Galactose/methyl galactoside ABC transport system, D-galactose-binding periplasmic protein MglB (TC 3.A.1.2.3)	Galactose transport		
HexR	pgk	Phosphoglycerate kinase (EC 2.7.2.3)	Glycolysis		
HexR	glgA	Glycogen synthase, ADP-glucose transglycosylase (EC 2.4.1.2)	Glycogen utilization		
HexR	adhB	Alcohol dehydrogenase II	Fermentation		
HexR	ldhA	D-lactate dehydrogenase (EC 1.1.1.28)	Fermentation		
HexR	gntU	Low-affinity gluconate/H+ symporter GntU	Gluconate utilization		
HexR	giGC	Glucose-1-phosphate adenyltransferase (EC 2.7.7.27)	Glycogen utilization		
HexR	mglB	Galactose/methyl galactoside ABC transport system, D-galactose-binding periplasmic protein MglB (TC 3.A.1.2.3)	Galactose transport		
HexR	mcp1	1 methyl-accepting chemotaxis protein			
HexR	ptsHI	PTS system, glucose-specific IIA component (EC 2.7.1.69) / Phosphocarrier protein of PTS system / Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9)	Glucose transport		
HexR	gntK	Glucokinase (EC 2.7.1.12)	Gluconate utilization		
HexR	mglA	Galactose/methyl galactoside ABC transport system, ATP-binding protein MglA (EC 3.6.3.17)	Galactose transport		
HexR	mglC	Galactoside transport system permease protein mglC (TC 3.A.1.2.3)	Galactose transport		
HexR	cpsA	Capsular polysaccharide synthesis enzyme CpsA, sugar transferase			
HexR	giGP	Glycogen phosphorylase (EC 2.4.1.1)	Glycogen utilization		
HexR	prpB	Carboxyphosphoenolpyruvate phosphomutase (EC 2.7.8.23)			
HexR	oxIT	Putative oxalate:formate antiporter	Tricarboxylic acid cycle		
HexR	uggC	SN-glycerol-3-phosphate transport ATP-binding protein UggC (TC 3.A.1.1.3)	Glycerol-3-phosphate transport		
HexR	giPT	Glycerol-3-phosphate transporter	Glycerol-3-phosphate transport		
HexR	pyKF	Pyruvate kinase (EC 2.7.1.40)	Glycolysis		
HexR	icIP	L-Lactate permease	Lactate utilization		
HexR	gapN	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9)	Glycolysis		
HexR	fba	Fructose-biphosphate aldolase class II (EC 4.1.2.13)	Glycolysis		
HexR	manC	Mannose-1-phosphate guanylyltransferase (GDP) (EC 2.7.7.22)	Mannose utilization		
HexR	bkdA2	Branched-chain alpha-keto acid dehydrogenase, E1 component, beta subunit (EC 1.2.4.4)	Branched-chain amino acid degradation		
HexR	bkdB	Branched-chain alpha-keto acid dehydrogenase complex (EC 2.3.1.168)	Branched-chain amino acid degradation		
HexR	bkdA1	Branched-chain alpha-keto acid dehydrogenase, E1 component, alpha subunit (EC 1.2.4.4)	Branched-chain amino acid degradation		
HexR	nupC2	Putative nucleoside transporter, NupC family	Nucleoside metabolism		
HexR	mcp2	Methyl-accepting chemotaxis sensory transducer			
HexR	PST_3493	Aldo/keto reductase			
HexR	dld	D-Lactate dehydrogenase (EC 1.1.2.5)	Lactate utilization		
HmgQ	hpd	4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27)	Tyrosine degradation		
HmgQ	hmgA	Homogentisate 1,2-dioxygenase (EC 1.13.11.5)	Tyrosine degradation		
HmgQ	hmgB	Maleylacetate isomerase (EC 5.2.1.2)	Tyrosine degradation		
HmgQ	hmgC	Fumarylacetate isomerase (EC 3.7.1.2)	Tyrosine degradation		
HmgQ	gloA	Predicted homogentisate dioxygenase, GloA family	Tyrosine degradation		
HmgQ	hmgQ	Tyrosine degradation transcriptional regulator, LysR family	Transcription regulation		
HmgR	hpd	4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27)	Tyrosine degradation		
HmgR	hmgA	Homogentisate 1,2-dioxygenase (EC 1.13.11.5)	Tyrosine degradation		
HmgR	hmgB	Maleylacetate isomerase (EC 5.2.1.2)	Tyrosine degradation		
HmgR	hmgC	Fumarylacetate isomerase (EC 3.7.1.2)	Tyrosine degradation		
HmgR	COG2814	Predicted tyrosine transporter, COG2814 family	Tyrosine transport		
Gene	Accession	Description	Function		
---------	-----------	--	---------------------------		
HmgR	hmgR	Tyrosine degradation transcriptional regulator, IclR family	Transcription regulation		
HmgA	hmgA	Homogentisate 1,2-dioxygenase (EC 1.13.11.5)	Tyrosine degradation		
HmgB	hmgB	Maleylacetate isomerase (EC 5.2.1.2)	Tyrosine degradation		
HmgS	hmgS	Tyrosine degradation transcriptional regulator, MarR family	Transcription regulation		
HutC	hutU	Urocanate hydratase (EC 4.2.1.49)	Histidine degradation		
HutC	hutH	Histidine ammonia-lyase (EC 4.3.1.3)	Histidine degradation		
HutC	hutI	Imidazolonepropionase (EC 3.5.2.7)	Histidine degradation		
HutC	hutC	Histidine utilization repressor, GntR family	Transcription regulation		
HutC	hutF	Formiminoglutamic iminohydrolase (EC 3.5.3.13)	Histidine degradation		
HutC	hutG	N-formylglutamate deformylase (EC 3.5.1.68)	Histidine degradation		
HutC	hutD	Conserved hypothetical protein related to histidine degradation	Histidine degradation		
HutC	hutG2	Formiminoglutamase (EC 3.5.3.8)	Histidine degradation		
HutC	hisT	Histidine transport protein (permease)	Histidine transport		
HutC	hutH2	Histidine ammonia-lyase (EC 4.3.1.3)	Histidine degradation		
HutC	COG3314	Predicted histidine uptake transporter	Histidine transport		
HutC	COG1457	Permease, cysteine/purines, uracil, thiamine, allantoin family protein	Transport		
HutC	hutX	Histidine ABC transporter, histidine-binding protein (TC 3.A.1)	Histidine transport		
HutC	hutW	Histidine ABC transporter, permease protein (TC 3.A.1)	Histidine transport		
HutC	hutV	Histidine ABC transporter, ATP-binding protein (TC 3.A.1)	Histidine transport		
HutC	COG834	ABC amino acid transporter, periplasmic binding protein	Histidine transport		
HutC	hisC	Histidinol-phosphate aminotransferase	Histidine biosynthesis		
HutC	COG1126	ABC amino acid transporter, ATPase component	Histidine transport		
HutC	COG765	ABC amino acid transporter, permease component	Histidine transport		
HutC	hisX	Putative histidine ABC transporter, substrate binding protein	Histidine transport		
HutC	hisY	Putative histidine ABC transporter, permease protein	Histidine transport		
HutC	hisZ	Putative histidine ABC transporter, ATPase protein	Histidine transport		
HutC	Caul_2357	Optional hypothetical component of omp transporter	Transport		
HutC	omp	TonB-dependent outer membrane transporter	Histidine transport?		
HutC	COG5285	Phytanoyl-CoA dioxygenase	Transport		
HutC	COG4160	ABC amino acid transporter, permease component	Transport		
HutC	COG2777	FAD linked oxidase domain protein	Transport		
HutC	COG1125	ABC proline/glycine/betaine transporter, ATPase component	Transport		
HutC	COG1174	ABC proline/glycine/betaine transporter, permease component	Transport		
HutC	COG1732	ABC proline/glycine/betaine transporter, periplasmic binding domain	Transport		
HutC	COG2423	Predicted ornithine cycleoaminase, mu-crystallin homolog (EC 4.3.1.12)	Transport		
HutC	COG3221	ABC phosphate/phosphonate transporter, periplasmic binding component	Transport		
HutC	hisD	Histidinol dehydrogenase (EC 1.1.1.23)	Histidine biosynthesis		
HutC	hisI	ABC amino acid transporter, permease component	Transport		
HutC	hisG	ATP phosphoribosyltransferase (EC 2.4.2.17)	Histidine biosynthesis		
HutC	hisF	Imidazole glycerol phosphate synthase cyclase subunit (EC 4.1.3.-)	Histidine biosynthesis		
HutC	hisA	Phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase (EC 5.3.1.16)	Histidine biosynthesis		
HutC	hisH	Imidazole glycerol phosphate synthase amidotransferase subunit (EC 2.4.2.-)	Histidine biosynthesis		
HutC	hisB	Histidinol-phosphate (EC 3.1.3.15) / Imidazoleglycerol-phosphate dehydratase (EC 4.2.1.19)	Histidine biosynthesis		
HutC	COG2814	Putative histidine permease, major facilitator superfamily	Histidine transport		
HutC	hisP	Histidine ABC transporter, ATP-binding protein HisP (TC 3.A.1.3.1)	Histidine transport		
HutC	hisP2	Histidine ABC transporter, ATP-binding protein HisP (TC 3.A.1.3.1)	Histidine transport		
HutC	COG1960	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	Histidine transport		
HutC	COG1804	CAIB/BAIF family protein	Histidine transport		
HypR	Gene	Description	Function		
-------	-------	--	--		
HypR	hypC	Putative hydroxylases or acyltransferases (alpha/beta hydrolase superfamily)	TCA cycle		
HypR	hypD	1-pyrroline-4-hydroxy-2-carboxylate deaminase (EC 3.5.4.22) # predicted	Hydroxypoline/proline degradation		
HypR	hypE	Proline racemase /4-hydroxyproline epimerase (EC 5.1.1.8)	Hydroxypoline/proline degradation		
HypR	hypH	Ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) # hydroxy-L-proline-inducible	Hydroxypoline/proline degradation		
HypR	hypP	Predicted hydroxypoline ABC transporter, permease protein	Hydroxypoline/proline transport		
HypR	hypQ	Predicted hydroxypoline ABC transporter, ATP-binding protein	Hydroxypoline/proline transport		
HypR	hypX	Predicted citrate/succinate isomerase or aconitase # predicted from clustering to proline racemase	TCA cycle		
HypR	hypD'	1-pyrroline-4-hydroxy-2-carboxylate deaminase (EC 3.5.4.22) # predicted	Hydroxypoline/proline degradation		
HypR	hypH'	Ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) # hydroxy-L-proline-inducible	Hydroxypoline/proline degradation		
HypR	hypH'-2	Predictive ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) # hydroxy-L-proline-inducible	Hydroxypoline/proline degradation		
HypR	hypT	1	1	Putative hydroxyproline transporter	Hydroxyproline transport
------	-------	----	---	-------------------------------------	-------------------------
HypR	hypZ	1	1	OsmC/Ohr family protein	
HypR	COG531 (PotE)	1	1	Putative proline/hydroxyproline permease, PotE family	Hydroxyproline/proline transport
HypR	colA1	7	1	Microbial collagenase, secreted [EC 3.4.24.3]	Collagen degradation
HypR	pdtP	6	1	Predicted proline dipeptide/tripeptide permease, MFS family	Proline transport
HypR	ATW7_13133	1	1	hypothetical protein	
HypR	ypfF	1	1	Aminopeptidase YpfF (MP-, MA-, MS-, AP-, NP- specific)	Collagen degradation
HypR	hypA	1	1	Predicted hydroxyproline TRAP-type transport system, small permease component	Hydroxyproline transport
HypR	hypB	1	1	Predicted hydroxyproline TRAP-type transport system, large permease component	Hydroxyproline transport
HypR	hypC	1	1	Predicted hydroxyproline TRAP-type transport system, periplasmic component	Hydroxyproline transport
HypR	colA3	4	1	Microbial collagenase, secreted [EC 3.4.24.3]	Collagen degradation
HypR	omp2	1	1	TonB-dependent receptor	
LiuQ	liuD	14	3	Methylcrotonyl-CoA carboxylase carboxyl transferase subunit [EC 6.4.1.4]	Branched_chain amino acid degradation
LiuQ	liuB	14	3	Methylcrotonyl-CoA carboxylase biotin-containing subunit [EC 6.4.1.4]	Branched_chain amino acid degradation
LiuQ	liuQ	12	3	Predicted branched-chain amino acid degradation regulator LiuQ, TetR family	Branched_chain amino acid degradation
LiuQ	liuA	11	3	Isovaleryl-CoA dehydrogenase [EC 1.3.99.10]	Branched_chain amino acid degradation
LiuQ	liuC	11	3	Methylglutaryl-CoA hydratase [EC 4.2.1.18]	Branched_chain amino acid degradation
LiuQ	aacS	4	1	AMP-dependent synthetase and ligase	Branched_chain amino acid degradation
LiuQ	liuE	2	2	Hydroxymethylglutaryl-CoA lyase [EC 4.1.3.4]	Branched_chain amino acid degradation
LiuQ	ivd2	1	1	Isovaleryl-CoA dehydrogenase [EC 1.3.99.10]	Branched_chain amino acid degradation
LiuQ	liuQ2	1	1	Predicted transcriptional regulator LiuQ of leucine degradation pathway, TetR family	Transcription regulation
LiuQ	atuB	1	1	Short-chain dehydrogenase/reductase SDR	
LiuQ	liuQ1	1	1	Predicted transcriptional regulator LiuQ of leucine degradation pathway, TetR family	Transcription regulation
LiuQ	acsA	1	1	Acetyl-coenzyme A synthetase [EC 6.2.1.1]	Acetyl-coenzyme A synthetase
LiuR	etfA	49	10	Electron transfer flavoprotein, alpha subunit	Electron transfer chain for branched-chain amino acid degradation
LiuR	etfB	48	9	Electron transfer flavoprotein, beta subunit	Electron transfer chain for branched-chain amino acid degradation
LiuR	ivdA	54	10	Acetyl-CoA C-acyltransferase [EC 2.3.1.16] \& Acetyl-CoA acetyltransferase [EC 2.3.1.9]	Branched-chain amino acid degradation
LiuR	ivdC	47	9	Branched-chain acyl-CoA dehydrogenase [EC 1.3.99.12]	Branched-chain amino acid degradation
LiuR	liuA	65	11	Isovaleryl-CoA dehydrogenase [EC 1.3.99.10]; Butyryl-CoA dehydrogenase [EC 1.3.99.2]	Branched-chain amino acid degradation
LiuR	liuB	55	10	Methylcrotonyl-CoA carboxylase biotin-containing subunit [EC 6.4.1.4]	Branched-chain amino acid degradation
LiuR	liuC	54	10	Methylglutaryl-CoA hydratase [EC 4.2.1.18]	Branched-chain amino acid degradation
LiuR	liuD	46	9	Methylcrotonyl-CoA carboxylase carboxyl transferase subunit [EC 6.4.1.4]	Branched-chain amino acid degradation
LiuR	liuE	49	9	Hydroxymethylglutaryl-CoA lyase [EC 4.1.3.4]	Branched-chain amino acid degradation
LiuR	liuR	90	13	Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family	Transcriptional regulator
LiuR	acsS2	1	1	Acetoacetyl-CoA synthetase [EC 6.2.1.16] \& Long-chain-fatty-acid--CoA ligase [EC 6.2.1.3]	Branched-chain amino acid degradation
LiuR	acdA2	2	2	3-ketoacyl-CoA thiolase [EC 2.3.1.16] \& Acetyl-CoA acetyltransferase [EC 2.3.1.9]	Branched-chain amino acid degradation
LiuR	acdA3	6	2	3-ketoacyl-CoA thiolase [EC 2.3.1.16] \& Acetyl-CoA acetyltransferase [EC 2.3.1.9]	Branched-chain amino acid degradation
LiuR	acdA2	1	1	Enoyl-CoA hydratase [EC 4.2.1.17]	Branched-chain amino acid degradation
LiuR	acdA3	1	1	Enoyl-CoA hydratase [EC 4.2.1.17]	Branched-chain amino acid degradation
LiuR	acdA4	2	1	Enoyl-CoA hydratase [valine degradation] [EC 4.2.1.17]	Branched-chain amino acid degradation
LiuR	acdA5	1	1	Enoyl-CoA hydratase [EC 4.2.1.17]	Branched-chain amino acid degradation
LiuR	acdH3	3	1	Acyl-CoA dehydrogenase, short-chain specific [EC 1.3.99.2]	Branched-chain amino acid degradation
LiuR	acdH4	1	1	Acyl-CoA dehydrogenase [EC 1.3.99.3]	Branched-chain amino acid degradation
LiuR	acdH5	1	1	Acyl-CoA dehydrogenase, short-chain specific [EC 1.3.99.2]	Branched-chain amino acid degradation
LiuR	Gene ID	Description	Functional Category		
------	---------	--	---		
aceA	1	isocitrate lyase	Tricarboxylic acid cycle		
acs	2	acyl-CoA synthase	Acyl-coenzyme A synthetase		
acsA	2	Acyl-coenzyme A synthetases/AMP-(fatty) acid ligases	Acyl-coenzyme A synthetase		
ahpD	2	alkylhydroperoxidase AhpD family core domain protein			
badI	1	2-ketocyclohexanecarboxyl-CoA hydrolase (EC 4.1.3.36)			
csgA	1	Short-chain dehydrogenase/reductase SDR (EC:1.1.1.184)			
Dai_5984	1	Alpha/beta Hydrolase fold			
dcp	2	Peptidyl-dipeptidase dcp (EC 3.4.15.5)			
ebA6516	1	Enoyl-CoA hydrolase (EC 4.2.1.17)	Enoyl-CoA hydrolase		
etfB	1	Electron transfer flavoprotein, beta subunit	Electron transfer chain for branched-chain amino acid degradation		
etfD1	1	Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1)	Electron transfer chain for branched-chain amino acid degradation		
etfD2	1	Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1)	Electron transfer chain for branched-chain amino acid degradation		
fabG	2	3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100)			
fadA	1	acetyl-CoA acyltransferase	Fatty acid biosynthesis		
fadB	1	3-hydroxyacyl-CoA dehydrogenase	Fatty acid degradation		
fadL	1	Long-chain fatty acid transport protein	Fatty acid degradation		
fpr	1	Flavodoxin reductases (ferredoxin-NADPH reductases) family 1			
h16_A0164	1	Metallo-beta-lactamase family protein	Dehydrogenases with different specificities (related to short-chain alcohol dehydrogenases)		
h16_A0171	1	2-Hydroxychromene-2-carboxylate isomerase			
h16_A0173	1	Putative phosphatase YieH			
h16_A0174	1	Dienenalactone hydrolase or related enzyme			
h16_A0175	1	Dienenalactone hydrolase or related enzyme			
h16_A0176	1	Maleylacetate isomerase (EC 5.2.1.2) / Glutathione S-transferase			
h16_A0178	1	Maleylacetate isomerase (EC 5.2.1.2) / Glutathione S-transferase			
hit	3	Bis(5'-nucleosyl)-tetraphosphatase (asymmetrical) (EC 3.6.1.17)			
IL0880	2	Sensory box/GGDEF family protein			
ivdA1	1	3-ketoacyl-CoA thiola (isoleucine degradation) (EC 2.3.1.16)	Branched-chain amino acid degradation		
ivdA2	1	3-ketoacyl-CoA thiola (isoleucine degradation) (EC 2.3.1.16)	Branched-chain amino acid degradation		
ivdB1	1	Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27)	Branched-chain amino acid degradation		
ivdB2	1	Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27)	Branched-chain amino acid degradation		
ivdC1	1	Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12)	Branched-chain amino acid degradation		
ivdC2	1	Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12)	Branched-chain amino acid degradation		
ivdD1	1	3-hydroxyisobutyryl-CoA hydrolase (EC 3.1.2.4)	Branched-chain amino acid degradation		
ivdD2	1	3-hydroxyisobutyryl-CoA hydrolase (EC 3.1.2.4)	Branched-chain amino acid degradation		
ivdE1	1	Enoyl-CoA hydratase (valine degradation) (EC 4.2.1.17) / Enoyl-CoA hydratase (isoleucine degradation] (EC 4.2.1.17)	Branched-chain amino acid degradation		
ivdE2	1	Enoyl-CoA hydratase (valine degradation) (EC 4.2.1.17) / Enoyl-CoA hydratase (isoleucine degradation] (EC 4.2.1.17)	Branched-chain amino acid degradation		
ivdG1	1	3-hydroxyacyl-CoA dehydrogenase (isoleucine degradation) (EC 1.1.1.35)	Branched-chain amino acid degradation		
ivdG2	1	3-hydroxyacyl-CoA dehydrogenase (isoleucine degradation) (EC 1.1.1.35)	Branched-chain amino acid degradation		
lc6A	1	Long-chain fatty acid-CoA ligase (EC 6.2.1.3)	Fatty acid degradation		
livF	4	Branched-chain amino acid transport ATP-binding protein LivF (TC 3.A.1.4.1)	Branched-chain amino acid transport		
livG	4	Branched-chain amino acid transport ATP-binding protein LivG (TC 3.A.1.4.1)	Branched-chain amino acid transport		
livH	4	Branched-chain amino acid transport permease protein LivH (TC 3.A.1.4.1)	Branched-chain amino acid transport		
livK	6	Branched-chain amino acid transport substrate-binding protein LivK (TC 3.A.1.4.1)	Branched-chain amino acid transport		
livM	4	Branched-chain amino acid transport system permease protein LivM (TC 3.A.1.4.1)	Branched-chain amino acid transport		
mmgB	1	3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157)	Branched-chain amino acid degradation		
mmgC	1	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	Branched-chain amino acid degradation		
LiuR paaG 2 2 Enoyl-CoA hydratase/isomerase					
LiuR paaH1 3 1 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157) Branched-chain amino acid degradation					
LiuR paaI 10 3 Phenylacetic acid degradation-related protein					
LiuR paaK 2 2 Phenylacetate-coenzyme A ligase (EC 6.2.1.30)					
LiuR Rsu_A1944 1 1 2-hydroxychromene-2-carboxylate isomerase (EC 5.3.99.-)					
LiuR RSc0258 1 1 Protein of unknown function					
LiuR RSc0259 1 1 Beta-lactamase domain protein					
LiuR RSc0281 1 1 Metallo-beta-lactamase family protein					
LiuR serA 2 1 D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) Serine biosynthesis					
LiuR SMc00041 5 1 hypothetical protein					
LiuR tyrP 1 1 Tyrosine-specific transport protein (HAAAP family)					
LiuR tyrR 7 1 aromatic amino acid biosynthesis/transport transcriptional regulator Transcriptional regulator					
LiuR yciK 3 1 Oxidoreductase, short-chain dehydrogenase/reductase family					
LiuR acdA 28 5 Acetoacetyl-CoA synthetase [leucine] (EC 6.2.1.16) Branched-chain amino acid degradation					
LiuR acdB 27 5 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain amino acid degradation					
LiuR acdH 43 8 Acyl-CoA dehydrogenase (EC 1.3.99.3) Branched-chain amino acid degradation					
LiuR acdH2 14 4 Acyl-CoA dehydrogenase (EC 1.3.99.3) Branched-chain amino acid degradation					
LiuR acdL 7 4 Acyl-CoA dehydrogenase, long-chain specific, mitochondrial precursor (EC 1.3.99.13) Branched-chain amino acid degradation					
LiuR acdL2 6 3 Acyl-CoA dehydrogenase, long-chain specific, mitochondrial precursor (EC 1.3.99.13) Branched-chain amino acid degradation					
LiuR acdP 4 1 Acyl-CoA dehydrogenase family protein					
LiuR acdQ 4 1 Acyl-CoA dehydrogenases Branched-chain amino acid degradation					
LiuR aceB 16 1 malate synthase A Tricarboxylic acid cycle					
LiuR aceK 17 3 Isocitrate dehydrogenase phosphatase (EC 2.7.11.5)/kinase (EC 3.1.3.-) Tricarboxylic acid cycle					
LiuR attC 1 1 Geranyl-CoA carboxylase carboxyl transferase subunit					
LiuR attD 1 1 Isovaleryl-CoA dehydrogenase (EC 1.3.99.10) Branched-chain amino acid degradation					
LiuR attE 1 1 Isohexenylglutaconyl-CoA hydratase Branched-chain amino acid degradation					
LiuR attF 1 1 Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Branched-chain amino acid degradation					
LiuR bkdA1 25 3 Branched-chain alpha-keto acid dehydrogenase, E1 component, alpha subunit (EC 1.2.4.4) Branched-chain amino acid degradation					
LiuR bkdA2 25 3 Branched-chain alpha-keto acid dehydrogenase, E1 component, beta subunit (EC 1.2.4.4) Branched-chain amino acid degradation					
LiuR bkdB 25 3 Dihydrolipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex (EC 2.3.1.168) Branched-chain amino acid degradation					
LiuR cah 19 4 Carbonic anhydrase (EC 4.2.1.1) Carbonic anhydrase					
LiuR echH 7 1 Enoyl-CoA hydratase (EC 4.2.1.17) Branched-chain amino acid degradation					
LiuR etfD 23 5 Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1) Electron transfer chain for branched-chain amino acid degradation					
LiuR fadA 9 4 Long-chain-fatty acid--CoA ligase (EC 6.2.1.3) Fatty acid degradation					
LiuR gldB 18 2 Glutamate synthase [NADPH] large chain (EC 1.4.1.13) Glutamate biosynthesis					
LiuR gldD 18 2 Glutamate synthase [NADPH] small chain (EC 1.4.1.13) Glutamate biosynthesis					
LiuR hbdA 6 1 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157) Branched-chain amino acid degradation					
LiuR ivdA 28 5 Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27) Branched-chain amino acid degradation					
LiuR ivdB 27 5 3-hydroxyisobutyryl-CoA hydratase (EC 3.1.2.4) Branched-chain amino acid degradation					
LiuR ivdE 31 6 Enoyl-CoA hydratase [valine degradation] (EC 4.2.1.17) Branched-chain amino acid degradation					
LiuR ivdF 32 6 3-hydroxyisobutyrate dehydrogenase (EC 1.1.1.31) Branched-chain amino acid degradation					
LiuR ivdG 31 6 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157) Branched-chain amino acid degradation					
LiuR ldh 21 3 Leucine dehydrogenase (EC 1.4.1.9) Branched-chain amino acid degradation					
LiuR liuF 19 2 Succinyl-CoA 3-ketoacid-coenzyme A transferase subunit A (EC 2.8.3.5) Branched-chain amino acid degradation					
LiuR liuG 19 2 Succinyl-CoA 3-ketoacid-coenzyme A transferase subunit B (EC 2.8.3.5) Branched-chain amino acid degradation					
LiuR	liuR1	10	2	Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family	
LiuR	liuR2	5	4	Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family	
LiuR	mcma	9	2	Methylmalonyl-CoA mutase (EC 5.4.99.2)	
LiuR	mdh	9	1	Malate dehydrogenase (EC 1.1.1.137)	
LiuR	paaH	17	4	3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157)	
LiuR	PF03060	6	1	Dioxygenases related to 2-nitropropane dioxygenase	
LiuR	PF04828	11	1	Glutathione S-transferase, unnamed subgroup (EC 2.5.1.18)	
LiuR	PF09917	6	1	Protein of unknown function, PF09917	
LiuR	prpB	2	1	Methylisocitrate lyase (EC 4.1.3.30)	
LiuR	prpC	2	1	2-methylcitrate synthase (EC 2.3.3.5)	
LiuR	prpD	2	1	2-methylcitrate dehydratase (EC 4.2.1.79)	
LiuR	Rfer_2814	1	1	protein of unknown function DUF849	
LiuR	sucA	9	1	2-oxoglutarate dehydrogenase E1 component (EC 1.2.4.2)	
LiuR	sucB	8	1	Tricarboxylic acid cycle	
LiuR	succ	9	1	Succinyl-CoA ligase [ADP-forming] beta chain (EC 6.2.1.5)	
LiuR	succD	9	1	Succinyl-CoA ligase [ADP-forming] alpha chain (EC 6.2.1.5)	
LiuR	thrA	15	1	Threonine biosynthesis	
LiuR	thrB	15	1	Threonine biosynthesis	
LiuR	thrC	15	1	Threonine biosynthesis	
LldR	lldR	54	13	Lactate-responsive regulator LldR, GntR family	
LldR	lldP	41	12	L-lactate permease	
LldR	lldD	23	8	L-lactate dehydrogenase (EC 1.1.2.5)	
LldR	lldG	29	9	L-lactate dehydrogenase, hypothetical protein subunit LldG	
LldR	lldE	21	7	L-lactate dehydrogenase (EC 1.1.2.3)	
LldR	lldE	26	8	L-lactate dehydrogenase, Fe-S oxidoreductase subunit	
LldR	lldF	25	8	L-lactate dehydrogenase, iron-sulfur cluster-binding subunit	
LldR	glcF	5	2	Glycolate dehydrogenase (EC 1.1.99.14), iron-sulfur subunit GlcF	
LldR	glcD	5	2	Glycolate dehydrogenase (EC 1.1.99.14), subunit GlcD	
LldR	glcE	4	1	L-lactate dehydrogenase, iron-sulfur cluster-binding subunit LldE	
LldR	lldD	5	1	predicted lactate permease, DUF81 family	
LldR	glcE	1	1	Glycolate dehydrogenase (EC 1.1.99.14), FAD-binding subunit GlcE	
LldR	glcG	1	1	Hypothetical protein GlcG in glycolate utilization operon	
LldR	glcB	1	1	Malate synthase G (EC 2.3.3.9)	
MetJ	metA	50	5	Methionine biosynthesis	
MetJ	metB	46	6	Methionine biosynthesis	
MetJ	metE	44	6	S-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase (EC 2.1.1.14)	
MetJ	metF	43	6	5,10-methyleneetahydrofolate reductase (EC 1.5.1.20)	
MetJ	metH	36	4	S-methyltetrahydrofolate–homocysteine methyltransferase (EC 2.1.1.13)	
MetJ	metI	36	4	Methionine ABC transporter permease protein	
MetJ	metJ	59	6	S-adenosylmethionine-responsive transcriptional repressor MetJ	
MetJ	metK	55	6	S-adenosylmethionine synthetase (EC 2.5.1.6)	
MetJ	metL	48	5	Aspartokinase (EC 2.7.2.4) / Homoserine dehydrogenase (EC 1.1.1.3)	
MetJ	metN	37	4	Methionine ABC transporter ATP-binding protein	
MetJ	metQ	38	4	Methionine ABC transporter substrate-binding protein	
MetJ	metR	44	5	Methionine-responsive transcriptional regulator of methionine metabolism, LysR family	
MetJ	metT	32	4	Methionine transporter MetT, NhaC antiporter family	
MetJ	ahpC	5	1	Alkyl hydroperoxide reductase protein C (EC 1.6.4.-)	
Gene	Function	Description	
ahpF	Alkyl hydroperoxide reductase protein F	EC 1.6.4.-	
ASA_2534	Erythronate-4-phosphate dehydrogenase	(EC 1.1.1.290)	
asd	Aspartate-semialdehyde dehydrogenase	EC 1.2.1.11	
btuB	TonB-dependent outer membrane transporter for vitamin B12		
btuC	Vitamin B12 ABC transporter, permease component		
btuD	Vitamin B12 ABC transporter, ATPase component		
btuF	Vitamin B12 ABC transporter, B12-binding component		
CKO_03982	Hypothetical protein		
COG0235	Ribulose-5-phosphate 4-epimerase and related epimerases and aldolases		
COG4948	L-alanine-DL-glutamate epimerase and related enzymes of enolase superfamily		
COG5276	Hypothetical protein, COG5276 family		
folE	GTP cyclohydrolase I	Type 1	
mccA	Cystathionine beta-synthase	EC 4.2.1.22	
mccB	Cystathionine gamma-lyase	EC 4.4.1.11	
metC	Cystathionine beta-lyase	EC 4.4.1.8	
metE	Methionine synthase II, vitamin-B12 independent		
metF-II	5,10-methylenetetrahydrofolate reductase, non-orthologous isozyme		
metF	Methionine ABC transporter substrate-binding protein		
mmuM	Homocysteine S-methyltransferase	EC 2.1.1.10	
mmuP	S-methylmethionine transporter		
mtnA	Methylthioribose-1-phosphate dehydratase	EC 4.2.1.10	
mtnB	2,3-diketo-5-methylthiopentyl-1-phosphate enolase-phosphatase		
mtnC	1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase		
mtnD	Methionine aminotransferase		
mtnE	Methylthioribose recycling		
mtnF	Predicted methylthioribose ABC transporter, substrate-binding protein		
mtnG	Predicted methylthioribose ABC transporter, ATP-binding protein		
mtnH	Predicted methylthioribose ABC transporter, permease protein		
mtnI	Methylthioribose recycling		
mtnJ	Putative ZOG-Fe(II) oxygenase		
mtnK	Homoserine/homoserine lactone efflux protein		
mtnL	Cob(II)alamin adenosyltransferase	EC 2.5.1.17	
pduO	Protein of unknown function	DU1852	
serA	D-3-phosphoglycerate dehydrogenase	EC 1.1.1.95	
thrA	Aspartokinase	EC 2.7.2.4 / Homoserine dehydrogenase	EC 1.1.1.3
thrB	Homoserine kinase	EC 2.7.1.39	
thrC	Threonine synthase	EC 4.2.3.1	
ybdH	Uncharacterized oxidoreductase		
btuB	TonB-dependent outer membrane transporter for vitamin B12		
COG3126	Homoserine/lactone efflux protein		
csd	Cysteine desulfurase	EC 2.8.1.7	
metX	Homoserine O-acethyltransferase	EC 2.3.1.31	
metY	O-acetylhomoserine sulfhydrylase	/ O-succinylhomoserine sulfhydrylase	
mtsA	Substrate-specific component		
mtsB	Duplicated ATPase component		
mtsC	Transmembrane component		

Gene Functions:
- **Methionine biosynthesis:**
- **Vitamin B12 transport:**
- **Methionine metabolism:**
- **Threonine biosynthesis:**
- **Serine biosynthesis:**
- **Threonine biosynthesis:**
- **Vitamin B12 transport:**
- **Methionine metabolism:**
- **Methionine metabolism:**
- **Methionine transport:**
- **Methionine transport:**
- **Methionine transport:**
- **Protein of unknown function:**
- **Protein of unknown function:**
- **Lipoprotein-related protein:**
- **Cysteine desulfurase:**
- **Homoserine O-acetyltransferase:**
- **O-acetylhomoserine sulfhydrylase:**
- **O-succinylhomoserine sulfhydrylase:**
- **Substrate-specific component:**
- **Duplicated ATPase component:**
- **Transmembrane component:**
| Gene | Description | | | | |
|---|---|---|---|---|---|
| metR | Homocysteine-responsive transcriptional regulator of methionine metabolism, LysR family |
| metE | 5-methyltetrahydropteroylglutamate--homocysteine methyltransferase (EC 2.1.1.14) |
| metE2 | Methionine synthase II, vitamin-B12 independent (EC 2.1.1.14) |
| metF | 5,10-methylenetetrahydrofolate reductase (EC 1.5.1.20) |
| glyA | Serine hydroxymethyltransferase (EC 2.1.2.1) |
| PF08908 | Protein of unknown function DUF1852 |
| metH | 5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13) |
| luxS | S-ribosylhomocysteine lyase (EC 4.4.1.21) / Autoinducer-2 production protein LuxS |
| metA | Homoserine O-succinyltransferase (EC 2.3.1.46) |
| metE2-2 | Methionine synthase II, vitamin-B12 independent (EC 2.1.1.14) |
| PF03358 | NADPH-dependent FMN reductase |
| ilvI | Acetolactate synthase large subunit (EC 2.2.1.6) |
| ilvH | Acetolactate synthase small subunit (EC 2.2.1.6) |
| hmp | Flavohemoprotein (Hemoglobin-like protein) (Flavohemoglobin) (Nitric oxide dioxygenase) (EC 1.14.12.17) |
| metF-II | 5,10-methylenetetrahydrofolate reductase, non-orthologous isozyme (EC 1.5.1.20) |
| metC | Cystathionine beta-lyase (EC 4.4.1.8) |
| HI0736 | Methionine gamma-lyase (EC 4.4.1.11) |
| PF0613 | Hypothetical sodium-dependent transporter |
| PF02677 | Protein of unknown function DUF208 |
| pfI | Pyruvate formate-lyase (EC 2.3.1.54) |
| dsbC | Thiol-disulfide interchange protein DsbC |
| metQ2 | Methionine ABC transporter substrate-binding protein |
| thrC | Threonine synthase (EC 4.2.3.1) |
| hom | Homoserine dehydrogenase (EC 1.1.1.3) |
| metF2 | 5,10-methylenetetrahydrofolate reductase (EC 1.5.1.20) |
| metH2 | 5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13) |
| metR2 | Homocysteine-responsive transcriptional regulator of methionine metabolism, LysR family |
| gcvP | Glycine dehydrogenase [decarboxylating] (glycine cleavage system P protein) (EC 1.4.4.2) |
| gcvH | Glycine cleavage system H protein |
| mdeA | Methionine gamma-lyase (EC 4.4.1.11) |
| bhmT | Betaine--homocysteine S-methyltransferase (EC 2.1.1.5) |
| nadA | Quinolinate synthetase (EC 4.1.99.-) |
| nadC | Quinolinate phosphoribosyltransferase [decarboxylating] (EC 2.4.2.19) |
| nadE | Nicotinate phosphoribosyltransferase (EC 2.4.2.11) |
| nadB | L-aspartate oxidase (EC 1.4.3.16) |
| nadR | Transcriptional regulator of NAD metabolism / Nicotinamide-nucleotide adenylyltransferase, NadR family (EC 2.7.7.1) / Ribosylnicotinamide kinase (EC 2.7.1.22) |
| niaA | Niacin transporter, MFS family |
| nadA | Quinolinate synthetase (EC 4.1.99.-) |
| nadC | Quinolinate phosphoribosyltransferase [decarboxylating] (EC 2.4.2.19) |
| nadB | L-aspartate oxidase (EC 1.4.3.16) |
| nadE | Nicotinate-nucleotide adenylyltransferase, NadE family (EC 6.3.1.5) / Glutamine amidotransferase chain of NAD synthetase |
| nadQ | Transcriptional regulator of NAD metabolism, COG4111 family |
| nadD | Nicotinate-nucleotide adenylyltransferase (EC 2.7.7.18) ## bacterial NadD family |
| proA | Gamma-glutamyl phosphate reductase (EC 1.2.1.41) |
| Protein | Gene Symbol | Description | Function |
|---------|-------------|-------------|----------|
| NadQ | HNE_0691 | Hypothetical protein | |
| NadQ | nadC2 | Quinolinate phosphoribosyltransferase [decarboxylating] (EC 2.4.2.19) | NAD biosynthesis |
| NadQ | nadA1 | Quinolinate synthetase (EC 4.1.99.-) | NAD biosynthesis |
| NadQ | nadA2 | Quinolinate synthetase (EC 4.1.99.-) | NAD biosynthesis |
| NadQ | nadB2 | L-aspartate oxidase (EC 1.4.3.16) | NAD biosynthesis |
| NadQ | nadB1 | L-aspartate oxidase (EC 1.4.3.16) | NAD biosynthesis |
| NagC | nagC | PTS system, N-acetylglucosamine-specific II B component (EC 2.7.1.69) / PTS system, glucose-specific II C component (EC 2.7.1.69) | N-acetylglucosamine utilization |
| NagC | nagE | N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25) | N-acetylglucosamine utilization |
| NagC | nagC | N-acetylglucosamine-6 phosphate deaminase (EC 3.5.99.6) | N-acetylglucosamine utilization |
| NagC | ptsI | Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9) | Sugar transport |
| NagC | ptsH | Phosphocarrier protein of PTS system | Sugar transport |
| NagC | crr | PTS system, glucose-specific III A component (EC 2.7.1.69) | Sugar transport |
| NagC | nagA | N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25) | N-acetylglucosamine utilization |
| NagC | nagB | N-acetylglucosamine-6 phosphate deaminase (EC 3.5.99.6) | N-acetylglucosamine utilization |
| NagC | ptsI | Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9) | Sugar transport |
| NagC | ptsH | Phosphocarrier protein of PTS system | Sugar transport |
| NagC | crr | PTS system, glucose-specific III A component (EC 2.7.1.69) | Sugar transport |
| NagC | mcp | N-acetylglucosamine regulated methyl-accepting chemotaxis protein | Chemotaxis |
| NagC | mcp2 | N-acetylglucosamine regulated methyl-accepting chemotaxis protein | Chemotaxis |
| NagC | glmU | N-acetylglucosamine-1-phosphate uridylyltransferase (EC 2.7.7.23) / Glucosamine-1-phosphate N-acetyltransferase (EC 2.3.1.157) | N-acetylglucosamine utilization |
| NagC | hex | Beta-hexosaminidase (EC 3.2.1.52) | Chitin degradation |
| NagC | rpmE1 | SOS ribosomal protein L31 | |
| NagC | znuA | Zinc ABC transporter, periplasmic-binding protein ZnuA | |
| NagC | pyrG | CTP synthase (EC 6.3.4.2) | Glycolysis |
| NagC | eno | Enolase (EC 4.2.1.11) | Glycolysis |
| NagC | tfoX | DNA transformation protein TfoX | |
| NagC | tfoX1 | DNA transformation protein TfoX1 (Sxy) | |
| NagC | ptsG | PTS system, glucose-specific III B component (EC 2.7.1.69) / PTS system, glucose-specific III C component (EC 2.7.1.69) | Mannose and glucose transport |
| NagC | fbaA | Fructose-biphosphate aldolase class II (EC 4.1.2.13) | Glycolysis |
| NagC | pgk | Phosphoglycerate kinase (EC 2.7.2.3) | Glycolysis |
| NagC | chiA | Chitinase (EC 3.2.1.14) | Chitin degradation |
| NagC | manX | PTS system, mannose-specific IIIA B component | Mannose and glucose transport |
| NagC | glmS | Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] (EC 2.6.1.16) | N-acetylglucosamine utilization |
| NagC | manZ | PTS system, mannose-specific III D component | Mannose and glucose transport |
| NagC | manY | PTS system, mannose-specific III C component | Mannose and glucose transport |
| NagC | negE2 | N-acetylglucosamine-specific III A component (EC 2.7.1.69) / PTS system, N-acetylglucosamine-specific III C component (EC 2.7.1.69) | N-acetylglucosamine utilization |
| NagC | aldE | Aldose 1-epimerase | |
| NagC | chi | Chitinase (EC 3.2.1.14) | Chitin degradation |
| NagC | nagD | Phosphatase NagD predicted to act in N-acetylglucosamine utilization subsystem | N-acetylglucosamine utilization |
| NagC | nagE1 | N-acetylglucosamine-specific III B component (EC 2.7.1.69) / PTS system, N-acetylglucosamine-specific III C component (EC 2.7.1.69) | N-acetylglucosamine utilization |
| NagC | gapA | NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) | Glycolysis |
| NagC | chbR | Chitobiose-specific regulator ChbR, AraC family | Transcription regulation |
| NagC | chbB | Chitobiose-specific III B component (EC 2.7.1.69) | Chitobiose utilization |
| NagC | gdhA | NADP-specific glutamate dehydrogenase (EC 1.4.1.14) | Glutamate degradation |
| NagC | rpmJ1 | Ribosomal protein L36 | |
| Gene | Description | Function/Location |
|-------|---|---|
| chbA | N,N'-diacetylchitobiose-specific PTS system, EIIA component | Chitobiose utilization |
| exbD | Biopolymer transport protein ExbD/TolR | |
| tonB | Periplasmic binding protein TonB | |
| chbC | PTS system, chitobiose-specific IIC component (EC 2.7.1.69) | Chitobiose utilization |
| exbB | Biopolymer transport protein ExbB | |
| chbG | Cellulobiose phosphotransferase system YdjC-like protein | |
| chbF | Chitobiose-specific 6-phospho-beta-glucosidase ChbF (EC 3.2.1.86) | Chitobiose utilization |
| ybFM | N-acetylglucosamine-regulated outer membrane porin | Chitobiose utilization |
| chbG | PTS system, chitobiose-specific IIC component (EC 2.7.1.69) | Chitobiose utilization |
| chbF | Chitobiose-specific 6-phospho-beta-glucosidase ChbF (EC 3.2.1.86) | Chitobiose utilization |
| glpA | Glycogen synthase, ADP-glucose transglycosylase (EC 2.4.1.21) | Glycogen metabolism |
| glpC | Glucose-1-phosphate adenyltransferase (EC 2.7.7.27) | Glycogen metabolism |
| omC | Predicted OmpC-like chitoporin | Chitobiose utilization |
| adh | Alcohol dehydrogenase (EC 1.1.1.1); Acetaldehyde dehydrogenase (EC 1.2.1.10) | Chitobiose utilization |
| gltA | Citrate synthase (u) (EC 2.3.3.1) | Tricarboxylic acid cycle |
| chiS | Chitin catabolic cascade sensor histidine kinase ChiS | |
| epd | D-erythrose-4-phosphate dehydrogenase (EC 1.2.1.72) | |
| galP | D-galactose transporter | |
| chi1 | Chitinase (EC 3.2.1.14) | Chitin degradation |
| VP1029| Hypothetical protein | |
| ompU | Outer membrane protein OmpU | |
| VC1591| Oxidoreductase, short-chain dehydrogenase/reductase family | |
| aldC | Alpha-acetolactate decarboxylase (EC 4.1.1.5) | |
| budB | Acetolactate synthase, catabolic (EC 2.2.1.6) | |
| alsR | Transcriptional regulator of alpha-acetolactate operon alsR | Transcription regulation |
| nanM | N-acetylneuraminic acid-induced hypothetical transmembrane protein | N-acetylneuraminic acid transport |
| nanC | N-acetylneuraminic acid outer membrane channel protein NanC | N-acetylneuraminic acid transport |
| nagQ | Predicted transcriptional regulator of N-Acetylglucosamine utilization, GntR family | Transcription regulation |
| nagA | N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25) | N-acetylglucosamine utilization |
| nagB2 | Glucosamine-6-phosphate deaminase [isomerizing], alternative (EC 3.5.99.6) | N-acetylglucosamine utilization |
| nagE | PTS system, N-acetylglucosamine-specific IIB component (EC 2.7.1.69) / PTS system, N-acetylglucosamine-specific IIC component (EC 2.7.1.69) | N-acetylglucosamine utilization |
| ptsI | PTS system, glucose-specific II8 component (EC 2.7.1.69) / Phosphocarrier protein of PTS system / Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9) | Sugar transport |
| nagK | N-acetylglucosamine kinase of eukaryotic type (EC 2.7.1.59) | N-acetylglucosamine utilization |
| mruQ | N-acetyluramic acid 6-phosphate etherase (EC 4.2.-.-) | N-acetyluramic acid utilization |
| nagT | N-Acetyl-D-glucosamine ABC transport system, sugar-binding protein | N-acetylglucosamine utilization |
| nagV | N-Acetyl-D-glucosamine ABC transport system, permease protein 2 | N-acetylglucosamine utilization |
| nagU | N-Acetyl-D-glucosamine ABC transport system, permease protein 1 | N-acetylglucosamine utilization |
| nagW | N-Acetyl-D-glucosamine ABC transport system, ATP-binding component | N-acetylglucosamine utilization |
| hex | Beta-hexosaminidase (EC 3.2.1.52) | N-acetylglucosamine utilization |
| chiA | Chitinase (EC 3.2.1.14) | Chitin degradation |
| cdxA | Chitodextrinase precursor (EC 3.2.1.14) | Chitin degradation |
| omp_nag| Hypothetical oxidoreductase related to N-acetylglucosamine utilization | |
| nagD | Hypothetical oxidoreductase related to N-acetylglucosamine utilization | |
| nagZ | Beta N-acetyl-glucosaminidase (EC 3.2.1.52) | Chitin degradation |
| Gene | Accession | Description | Function |
|--------|-----------|--|---|
| NagQ | nagB | Glucosamine-6-phosphate deaminase (EC 3.5.99.6) | N-acetylglucosamine utilization |
| NagQ | nagR | Transcriptional regulator of N-acetylglucosamine utilization, Lact family | Transcription regulation |
| NagQ | wecA | Undecaprenyl-phosphate N-acetylglucosaminyl 1-phosphate transferase (EC 2.7.8.-) | Chitin degradation |
| NagQ | hex2 | N-Acetyl-D-glucosamine ABC transport system ATP-binding protein | |
| NagQ | cga | Glucoamylase (EC 3.2.1.3) | Chitin degradation |
| NagQ | ybM | N-acetylglucosamine-regulated outer membrane porin | Chitin degradation |
| NagQ | cbp21 | Chitin binding protein | Chitin degradation |
| NagQ | chiC | Chitinase (EC 3.2.1.14) | Chitin degradation |
| NagQ | chi | Chitinase (EC 3.2.1.14) | Chitin degradation |
| NagQ | nagP | N-acetylglucosamine transporter, NagP | N-acetylmuramic acid utilization |
| NagQ | omp1 | Outer membrane protein (porin) | Chitobiose utilization |
| NagQ | CC0542 | Predicted periplasmic phosphohydrolase | |
| NagQ | MED297_05914 | Hypothetical protein | |
| NagQ | nagX | N-acetylglucosamine related transporter, NagX | N-acetylmuramic acid utilization |
| NagQ | anaG | Alpha-N-acetylglucosaminidase (EC 3.2.1.50) | Alpha-N-acetylglucosaminidase |
| NagQ | mrl4776 | Hypothetical protein | |
| NagQ | nagM | Predicted N-Acetylglucosamine ABC transporter, inner membrane subunit | N-acetylmuramic acid utilization |
| NagQ | nagO | Predicted N-Acetylglucosamine ABC transporter, periplasmic sugar-binding protein | N-acetylmuramic acid utilization |
| NagQ | nagN | Predicted N-Acetylglucosamine ABC transporter, permease protein | N-acetylmuramic acid utilization |
| NagQ | nagK2 | N-acetylglucosamine kinase (EC 2.7.1.59), ROX family | N-acetylmuramic acid utilization |
| NagQ | nagD1 | Probable oxidoreductase | |
| NagQ | nagL | Predicted N-Acetylglucosamine ABC transporter, ATP-binding protein | N-acetylmuramic acid utilization |
| NagR | omp_nag | N-acetylglucosamine-regulated TonB-dependent outer membrane receptor | Chitobiose utilization |
| NagR | trpX | Tryptophan halogenase | |
| NagR | nagA | N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25) | N-acetylglucosamine utilization |
| NagR | nagP | PTS system, N-acetylglucosamine-specific IIIB component (EC 2.7.1.69) | N-acetylmuramic acid utilization |
| NagR | nagK | PTS system, N-acetylglucosamine-specific IIC component (EC 2.7.1.69) | N-acetylmuramic acid utilization |
| NagR | nagX | N-acetylglucosamine related transporter, NagX | N-acetylmuramic acid utilization |
| NagR | hex | Beta-hexosaminidase (EC 3.2.1.52) | Chitobiose utilization |
| NagR | nagB2 | Glucosamine-6-phosphate deaminase [isomerizing], alternative (EC 3.5.99.6) | N-acetylmuramic acid utilization |
| NagR | nagK2 | Predicted N-acetylglucosamine kinase, glucokinase-like (EC 2.7.1.59) | N-acetylmuramic acid utilization |
| NagR | nagR | Transcriptional regulator of N-acetylglucosamine utilization, Lact family | Transcription regulation |
| NagR | nagB | Glucosamine-6-phosphate deaminase (EC 3.5.99.6) | N-acetylmuramic acid utilization |
| NagR | chiA | Chitinase (EC 3.2.1.14) | Chitin degradation |
| NagR | nixC | N-acetylglucosamine-regulated TonB-dependent outer membrane receptor | Chitobiose utilization |
| NagR | naxA | N-acetylglucosamine-regulated TonB-dependent outer membrane receptor | Chitobiose utilization |
| NagR | cbp | Chitin and N-acetylglucosamine-binding protein A | Chitin degradation |
| NagR | pckA | Phosphoenolpyruvate carboxykinase [ATP] (EC 4.1.1.49) | Gluconeogenesis |
| NagR | chiD | Chitodextrinase (EC 3.2.1.14) | Chitin degradation |
| NagR | pgii2 | Glucose-6-phosphate isomerase (EC 5.3.1.9) | Glycolysis |
| NagR | sapC | Peptide transport system permease protein sapC (TC 3.A.1.5.5) | |
| NagR | mcp_nag | N-acetylglucosamine regulated methyl-accepting chemotaxis protein | Chemotaxis |
| NagR | nixD | N-acetylglucosamine-regulated TonB-dependent outer membrane receptor | Chitobiose utilization |
| NagR | nixB | N-acetylglucosamine-regulated TonB-dependent outer membrane receptor | Chitobiose utilization |
| NagR | pilIM | Homolog of type IV pilus assembly protein PilIM | |
| NagR | duf81 | Protein of unknown function DUF81 | |
| NagR | nagS2 | Putative sulfatase (EC 3.1.6.-) | |
| NagR | SO0851 | Preplin-type cleavage/methylation-like protein | |
| Gene | Accession | Start | End | Description |
|----------|-----------|-------|-----|---|
| NagR | CPS_2383 | 1 | 1 | Putative surface protein |
| NagR | SO0852 | 5 | 1 | Type IV fimbrial biogenesis protein PilV |
| NagR | ATW7_01305| 1 | 1 | Pass1-related protein |
| NagR | bgIX | 1 | 1 | Beta-glucosidase (EC 3.2.1.21) |
| NagR | SO0850 | 5 | 1 | Type IV fimbrial biogenesis protein PilX |
| NagR | SO0854 | 4 | 1 | Type IV pilus biogenesis protein PilE |
| NagR | SO0853 | 4 | 1 | Type IV fimbrial biogenesis protein FimT |
| NagR | nixA | 1 | 1 | N-acetylglucosamine-regulated TonB-dependent outer membrane receptor |
| NagR | cbp2 | 2 | 1 | putative chitin-binding protein, exported |
| NagR | cdxA | 2 | 1 | Chitodextrinase precursor (EC 3.2.1.14) |
| NagR | pdaA | 1 | 1 | Peptidoglycan N-acetylglucosamine deacetylase |
| NagR | omp_nag2 | 1 | 1 | N-acetylglucosamine-regulated TonB-dependent outer membrane receptor |
| NagR | chiA3 | 1 | 1 | Chitodextrinase |
| NrdR | nrdA | 126 | 19 | Ribonucleotide reductase of class la (aerobic), alpha subunit (EC 1.17.4.1) |
| NrdR | nrdB | 117 | 19 | Ribonucleotide reductase of class la (aerobic), beta subunit (EC 1.17.4.1) |
| NrdR | nrdD | 70 | 12 | Ribonucleotide reductase of class III (anaerobic), large subunit (EC 1.17.4.2) |
| NrdR | nrdE | 63 | 12 | Ribonucleotide reductase of class III (anaerobic), activating protein (EC 1.97.1.4) |
| NrdR | yfAe | 40 | 7 | Ferredoxin |
| NrdR | nrdJa | 21 | 4 | Ribonucleotide reductase of class II (coenzyme B12-dependent) |
| NrdR | trxA | 4 | 1 | Thioredoxin |
| NrdR | topA | 8 | 1 | DNA topoisomerase I (EC 5.99.1.2) |
| NrtR | nrtR | 24 | 10 | Nudix-related transcriptional regulator NrtR |
| NrtR | nrtX | 7 | 6 | NrtR-regulated hypothetical OrfX, Band 7 protein domain |
| NrtR | pncB | 15 | 5 | Nicotinate phosphoribosyltransferase (EC 2.4.2.11) |
| NrtR | pncA | 13 | 5 | Nicotinamidase (EC 3.5.1.19) |
| NrtR | nadV | 7 | 4 | Nicotinamide phosphoribosyltransferase (EC 2.4.2.12) |
| NrtR | prs | 6 | 3 | Ribose-phosphate pyrophosphokinase (EC 2.7.6.1) |
| NrtR | nadE | 8 | 4 | NAD synthetase (EC 6.3.1.5) |
| NrtR | nadD | 4 | 3 | Nicotinate-nucleotide adenyltransferase (EC 2.7.7.18) |
| NrtR | nadM | 4 | 2 | NAD metabolism |
| Gene | Accession | Days | | Description | Function |
|------|-----------|------|------|-----------------|----------|
| NrtR | pmuC | 1 | | Ribosyl nicotinamide transporter, PmuC-like | NAD metabolism |
| NrtR | nadR | 1 | | Nicotinamide-nucleotide adenylyltransferase, NadR family (EC 2.7.7.1) / Ribosynicotinamide kinase (EC 2.7.1.22) | NAD metabolism |
| NtrC | glnA | 163 | 19 | Glutamine synthetase type I (EC 6.3.1.2) | Glutamine biosynthesis |
| NtrC | ntrC | 157 | 19 | Nitrogen regulation protein NR(I) | Transcription regulation |
| NtrC | ntrB | 157 | 19 | Nitrogen regulation protein NR(II) (EC 2.7.3.7) | Nitrogen metabolism regulation proteins |
| NtrC | amtB | 134 | 17 | Ammonium transporter | Nitrogen source transport |
| NtrC | glnK | 107 | 13 | Nitrogen regulatory protein P-II | Nitrogen metabolism regulation proteins |
| NtrC | glnB | 66 | 7 | Nitrogen regulatory protein P-II | Nitrogen metabolism regulation proteins |
| NtrC | nifR3 | 41 | 5 | Nitrogen assimilation transcriptional regulator NtrX, Fis family | Nitrogen metabolism regulation proteins |
| NtrC | nasD | 34 | 8 | Nitrite reductase, large subunit (EC 1.7.1.4) | Nitrogen metabolism |
| NtrC | nasE | 33 | 8 | Nitrite reductase, small subunit (EC 1.7.1.4) | Nitrogen metabolism |
| NtrC | ntrY | 30 | 4 | Nitrogen regulation protein NtrY, sensor kinase (EC 2.7.3.7) | Nitrogen metabolism |
| NtrC | amtB2 | 30 | 8 | Ammonium transporter | Nitrogen source transport |
| NtrC | narK | 23 | 6 | Nitrate/nitrite antiporter | Nitrogen source transport |
| NtrC | ntrX | 24 | 3 | Nitrogen assimilation transcriptional regulator NtrX, Fis family | Nitrogen metabolism |
| NtrC | ntrZ | 23 | 3 | Conserved hypothetical signal peptide protein | Nitrogen metabolism |
| NtrC | nasA | 23 | 7 | Assimilatory nitrate reductase, large subunit (EC 1.7.99.4) | Nitrogen metabolism |
| NtrC | nrtC | 22 | 4 | Nitrate ABC transporter, ATP-binding component | Nitrogen source transport |
| NtrC | nrtB | 21 | 4 | Nitrate ABC transporter, permease component | Nitrogen source transport |
| NtrC | nrtA | 21 | 4 | Nitrate ABC transporter, substrate-binding component | Nitrogen source transport |
| NtrC | urtB | 22 | 3 | Urea ABC transporter, permease component 2 | Nitrogen source transport |
| NtrC | gdhA | 13 | 3 | NADP-specific glutamate dehydrogenase (EC 1.4.1.4) | Nitrogen metabolism |
| NtrC | ureD | 20 | 3 | Urease accessory protein, UreD | Nitrogen metabolism |
| NtrC | ureA | 20 | 3 | Urease, gamma subunit (EC 3.5.1.5) | Nitrogen metabolism |
| NtrC | ureB | 19 | 3 | Urease, beta subunit (EC 3.5.1.5) | Nitrogen metabolism |
| NtrC | ureC | 19 | 3 | Urease, alpha subunit (EC 3.5.1.5) | Nitrogen metabolism |
| NtrC | urtA | 18 | 3 | Urea ABC transporter, substrate-binding component | Nitrogen source transport |
| NtrC | urtD | 16 | 3 | Urea ABC transporter, ATP-binding component 1 | Nitrogen source transport |
| NtrC | CHP02001 | 12 | 2 | Conserved hypothetical protein CHP02001 | Nitrogen source transport |
| NtrC | dppC | 10 | 2 | Dipeptide ABC transporter, permease component 2 | Nitrogen source transport |
| NtrC | dppA | 10 | 2 | Dipeptide ABC transporter, substrate-binding component | Nitrogen source transport |
| NtrC | dppB | 10 | 2 | Dipeptide ABC transporter, permease component 1 | Nitrogen source transport |
| NtrC | ureE | 15 | 2 | Urease accessory protein, UreE | Nitrogen metabolism |
| NtrC | ureG | 15 | 2 | Urease accessory protein, UreG | Nitrogen metabolism |
| NtrC | ureF | 15 | 2 | Urease accessory protein, UreF | Nitrogen metabolism |
| NtrC | cydG | 10 | 4 | Uroporphyrinogen-III methyltransferase (EC 2.1.1.107) | Porphyrin biosynthesis |
| NtrC | urtE | 15 | 3 | Urea ABC transporter, ATP-binding component 1 | Nitrogen source transport |
| NtrC | glnK2 | 12 | 3 | Nitrogen regulatory protein P-II | Nitrogen metabolism |
| NtrC | nasB | 8 | 1 | Assimilatory nitrate reductase, large and small subunits protein fusion (EC 1.7.99.4) | Nitrogen metabolism |
| NtrC | dat | 4 | 1 | D-alanine aminotransferase (EC 2.6.1.21) | Proline degradation |
| NtrC | nasA | 8 | 2 | Assimilatory nitrate reductase, small subunit (EC 1.7.99.4) | Nitrogen metabolism |
| NtrC | glutI | 11 | 1 | Glutamate-aspartate ABC transporter, transmembrane component 1 | Nitrogen source transport |
| NtrC | glutK | 11 | 1 | Glutamate-aspartate ABC transporter, transmembrane component 2 | Nitrogen source transport |
| NtrC | glutL | 11 | 1 | Glutamate-aspartate ABC transporter, ATP-binding component | Nitrogen source transport |
| NtrC | glutI | 11 | 1 | Glutamate-aspartate ABC transporter, substrate-binding component | Nitrogen source transport |
| NtrC | dppD | 5 | 5 | Dipeptide ABC transporter, ATP-binding component 1 | Nitrogen source transport |
| NtrC | dppF | 5 | 5 | Dipeptide ABC transporter, ATP-binding component 2 | Nitrogen source transport |
| NtrC | ntrXY | 5 | 1 | Nitrogen assimilation transcriptional regulator NtrX, Fis family | Transcription regulation |
| NtrC | nifR | 7 | 1 | Predicted oxidoreductase, FAD binding | Nitrogen metabolism |
| Gene | Type | Function |
|--------|-------------------|--|
| urtC | Carboxylate-amine ligase | Urea transporter, permease component 2 |
| ybdK | Conserved hypothetical protein | Nitrogen source transport |
| PF04168| Conserved hypothetical protein | Nitrogen source transport |
| gltB | Glutamate synthase, large chain (EC 1.4.1.13) | Glutamate biosynthesis |
| gltD | Glutamate synthase, small chain (EC 1.4.1.13) | Glutamate biosynthesis |
| nraA2 | Nitrate ABC transporter, substrate-binding component | Nitrogen source transport |
| nifEN | Nitrogenase FeMo-cofactor scaffold and assembly protein | Nitrogen metabolism |
| Gmet_0693 | Conserved hypothetical protein | Nitrogen source transport |
| PF01841| Transglutaminase-like protein | Nitrogen source transport |
| rutG | Uracl permease | Nitrogen source transport |
| hisM | Histidine ABC transporter, transmembrane component 2 | Nitrogen source transport |
| rutC | Aminoacylate peracid reductase | Pyrimidine Degradation |
| rutA | Pyrimidine oxygenase | Pyrimidine Degradation |
| glnP | Glutamine ABC transporter, transmembrane component | Nitrogen source transport |
| hisP | Histidine ABC transporter, ATP-binding component | Nitrogen source transport |
| glnH | Glutamine ABC transporter, substrate-binding component | Nitrogen source transport |
| hisQ | Histidine ABC transporter, transmembrane component 1 | Nitrogen source transport |
| rutB | Peroxoyureidocarboxyl/ureidocarboxyl amido hydrolase | Nitrogen source transport |
| rutF | Flavin reductase | Pyrimidine Degradation |
| hisJ | Histidine ABC transporter | Nitrogen source transport |
| astD | Succinylglutamic semialdehyde dehydrogenase (EC 1.2.1.71) | Arginine degradation |
| glnQ | Glutamine ABC transporter, ATP-binding component | Nitrogen source transport |
| astB | Succinylarginine dihydroase (EC 3.5.3.23) | Arginine degradation |
| astA | Arginine N-succinyltransferase (EC 2.3.1.109) | Arginine degradation |
| nac | Nitrogen assimilation transcriptional regulator, LysR family | Transcription regulation |
| astC | Succinylornithine transaminase (EC 2.6.1.81) | Arginine degradation |
| astE | Succinylglutamate dessuccinylase (EC 3.5.1.96) | Arginine degradation |
| uctA | Urea carboxylase-related ABC transporter, substrate-binding component | Nitrogen source transport |
| COG0733| Predicted sodium dependent transporter | Nitrogen source transport |
| glnK1 | Nitrogen regulatory protein P-II | Nitrogen metabolism |
| uctB | Urea carboxylase-related ABC transporter, permease component | Nitrogen source transport |
| nasT | Nitrogen assimilation attenuator protein NasT | Transcription regulation |
| uctC | Urea carboxylase-related ABC transporter, ATP-binding component | Nitrogen source transport |
| ureJ | Urease accessory protein, UreI | Nitrogen metabolism |
| alsT | Predicted alanin/sodium symporter | Nitrogen source transport |
| ansA | L-asparaginase I (EC 3.5.1.1) | Asparagine degradation |
| dppDE | Dipeptide ABC transporter, ATP-binding component | Nitrogen source transport |
| hmp | Nitric oxide dioxygenase | Nitrogen stress response |
| uahA | Urea carboxylase (EC 6.3.4.6) | Nitrogen metabolism |
| uahB | Urea carboxylase-related aminomethyltransferase (EC 2.1.2.10) | Nitrogen metabolism |
| uahC | Urea carboxylase-related aminomethyltransferase (EC 2.1.2.10) | Nitrogen metabolism |
| EAM_0873| Predicted ABC transporter, permease component 1 | Nitrogen source transport |
| EAM_0875| Predicted ABC transporter, ATP-binding component | Nitrogen source transport |
| potG | Putrescine ABC transporter, ATP-binding component | Nitrogen source transport |
| potI | Putrescine ABC transporter, transmembrane component 1 | Nitrogen source transport |
| rutD | Aminoacylate hydrolase | Pyrimidine Degradation |
| PF09694| Conserved hypothetical protein, nitrogen assimilation associated | Nitrogen assimilation metabolism |
| ygG | Putrescine aminotransferase (EC 2.6.1.82) | Putrescine metabolism |
| EAM_0872| Predicted ABC transporter, substrate-binding component | Nitrogen assimilation metabolism |
| EAM_0874| Predicted ABC transporter, permease component 2 | Nitrogen source transport |
| Gene | Accession | Count | Description | Function |
|--------|-----------|-------|--|-----------------------------------|
| NtrC | potH | 4 | Putrescine ABC transporter, transmembrane component 2 | Nitrogen source transport |
| NtrC | nasB2 | 4 | Assimilatory nitrate reductase, large subunit (EC:1.7.99.4) | Nitrogen metabolism |
| NtrC | nirA | 4 | Ferredoxin–nitrite reductase [EC 1.7.7.1] | Nitrogen metabolism |
| NtrC | ddpC | 3 | Dipeptide ABC transporter, transmembrane component 2 [TC 3.A.1.5.2] | Nitrogen source transport |
| NtrC | amaB | 3 | N-carbamoyl-L-amino acid hydrolase | |
| NtrC | potC | 2 | Putrescine ABC transporter, transmembrane component 2 [TC 3.A.1.11.1] | Nitrogen source transport |
| NtrC | pucG | 3 | Serine–pyruvate aminotransferase [EC 2.6.1.51] / L-alanine:glyoxylate aminotransferase [EC 2.6.1.44] | Amino acid degradation |
| NtrC | rutE | 3 | 3-hydroxy propionic acid dehydrogenase | Pyrimidine Degradation |
| NtrC | ddpA | 3 | Dipeptide ABC transporter, substrate-binding component [TC 3.A.1.5.2] | Nitrogen source transport |
| NtrC | potA | 2 | Putrescine ABC transporter, ATP-binding component [TC 3.A.1.11.1] | Nitrogen source transport |
| NtrC | ddpX | 3 | D-alanyl-D-alanine dipeptidase [EC 3.4.13.1] | |
| NtrC | ddpB | 3 | Dipeptide ABC transporter, transmembrane component 1 [TC 3.A.1.5.2] | Nitrogen source transport |
| NtrC | rutE2 | 1 | 3-hydroxy propionic acid dehydrogenase | Pyrimidine Degradation |
| NtrC | potB | 2 | Putrescine ABC transporter, transmembrane component 1 [TC 3.A.1.11.1] | Nitrogen source transport |
| NtrC | rutR | 1 | Pyrimidine catabolism transcriptional regulator RutR, TetR family | Transcription regulation |
| NtrC | potD | 2 | Putrescine ABC transporter, substrate-binding component [TC 3.A.1.11.1] | Nitrogen source transport |
| NtrC | ddpD | 3 | Dipeptide ABC transporter, transmembrane component 3 [TC 3.A.1.5.2] | Nitrogen source transport |
| NtrC | ddpF | 3 | Dipeptide ABC transporter, ABC-binding component [TC 3.A.1.5.2] | Nitrogen source transport |
| NtrC | ybiB | 2 | Conserved hypothetical protein | |
| NtrC | CKO_01526 | 2 | Predicted transcriptional regulator, RpiR family | Transcription regulation |
| NtrC | TM1040_0383| 2 | Conserved hypothetical protein | |
| NtrC | CDG0547 | 2 | Glycyl transferase, family 3 | |
| NtrC | atzF | 2 | Allophanate hydrolyase [EC 3.5.1.54] | Nitrogen metabolism |
| NtrC | atzF2 | 2 | Allophanate hydrolyase [EC 3.5.1.54] | Nitrogen metabolism |
| NtrC | Jann_1753 | 2 | Conserved hypothetical protein | |
| NtrC | iSBma2 | 1 | Transposase, IS4 | |
| NtrC | nrtB3 | 1 | Nitrate ABC transporter, permease component | Nitrogen source transport |
| NtrC | nrtC3 | 1 | Nitrate ABC transporter, ATP-binding component | Nitrogen source transport |
| NtrC | nrtA3 | 1 | Nitrate ABC transporter, substrate-binding component | Nitrogen source transport |
| NtrC | Daro_0818 | 1 | Hypothetical protein | |
| NtrC | pkn | 1 | Probable serine/threonine-protein kinase SCO3848 | |
| NtrC | PF00262 | 1 | Putative alkylhydroperoxidase | |
| NtrC | QB2597_07045 | 1 | Conserved hypothetical protein | |
| NtrC | QB2597_07055 | 1 | Hypothetical protein | |
| NtrC | Xaut_1081 | 1 | Hypothetical protein | |
| NtrC | NGR_b03860 | 1 | Hypothetical protein | |
| NtrC | speB | 1 | Agmatinase [EC 3.5.3.11] | Putrescine metabolism |
| NtrC | Jann_1751 | 1 | Hypothetical protein | |
| PdhR | aceE | 55 | Pyruvate dehydrogenase E1 component [EC 1.2.4.1] | Pyruvate metabolism |
| PdhR | pdhR | 55 | Transcriptional repressor for pyruvate dehydrogenase complex | Transcription regulation |
| PdhR | aceF | 54 | Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex [EC 2.3.1.12] | Transcription regulation |
| PdhR | lpdA | 49 | Dihydrolipoamide dehydrogenase of pyruvate dehydrogenase complex [EC 1.8.1.4] | Pyruvate metabolism |
| PdhR | oadB | 19 | Oxaloacetate decarboxylase beta chain [EC 4.1.1.3] | Pyruvate metabolism |
| PdhR | oadA | 19 | Oxaloacetate decarboxylase alpha chain [EC 4.1.1.3] | Pyruvate metabolism |
| PdhR | oadG | 18 | Oxaloacetate decarboxylase gamma chain [EC 4.1.1.3] | Pyruvate metabolism |
| PdhR | pfA | 16 | Pyruvate formate-lyase activating enzyme [EC 1.97.1.4] | Formate metabolism |
| PdhR | pfB | 16 | Pyruvate formate-lyase [EC 2.3.1.54] | Formate metabolism |
| PdhR | aceB | 14 | Malate synthase [EC 2.3.3.9] | Tricarboxylic acid cycle |
PdhR aceA 12 1 Iso citrate lyase (EC 4.1.3.1) Tricarboxylic acid cycle
PdhR pfIX 11 1 pyruvate formate lyase-related hypothetical transporter
PdhR ndh 8 1 NADH dehydrogenase NAD metabolism
PdhR hemL 6 1 Glutamate-1-semialdehyde aminotransferase (EC 5.4.3.8) Porphyrin biosynthesis
PdhR focA 6 1 formate transporter
PdhR yfdD 4 1 stress-induced alternate pyruvate formate-lyase subunit
PdhR deaD 5 1 Cold-shock DEAD-box protein A
PdhR cyoC 3 2 Cytochrome O ubiquinol oxidase subunit III (EC 1.10.3.-) Electron transfer chain
PdhR cyoE 3 2 Heme O synthase, protoheme IX farnesyltransferase (EC 2.5.1.-) COX10-CtaB Porphyrin biosynthesis
PdhR cyoD 3 2 Cytochrome O ubiquinol oxidase subunit IV (EC 1.10.3.-) Electron transfer chain
PdhR cyoB 3 2 Cytochrome O ubiquinol oxidase subunit I (EC 1.10.3.-) Electron transfer chain
PdhR cyoA 3 2 Cytochrome O ubiquinol oxidase subunit II (EC 1.10.3.-) Electron transfer chain
PdhR dld 2 1 Predicted D-lactate dehydrogenase, Fe-S protein, FAD/FMN-containing Lactate metabolism
PdhR lldP 2 1 L-lactate permease Lactate metabolism
PdhR grcA 1 1 stress-induced alternate pyruvate formate-lyase subunit Pyruvate metabolism
PdhR glcB 1 1 Malate synthase G (EC 2.3.3.9) Glycolate utilization
PdhR glcD 1 1 Glycolate dehydrogenase (EC 1.1.99.14), subunit GlcD Glycolate utilization
PdhR glcG 1 1 Hypothetical protein GlcG in glycolate utilization operon Glycolate utilization
PdhR glcE 1 1 Glycolate dehydrogenase (EC 1.1.99.14), FAD-binding subunit GlcE Glycolate utilization
PdhR glcF 1 1 Glycolate dehydrogenase (EC 1.1.99.14), iron-sulfur subunit GlcF Glycolate utilization
PdhR SO0273 1 1 protein of unknown function DUF1439
PdhR sdhC 1 1 succinate dehydrogenase, cytochrome b556 subunit Tricarboxylic acid cycle
PdhR gltA 1 1 citrate synthase Tricarboxylic acid cycle
PdhR ppc 1 1 Phosphoenolpyruvate carboxylase (EC 4.1.1.31) Pyruvate metabolism
PdhR sdhA 1 1 succinate dehydrogenase, flavoprotein subunit Tricarboxylic acid cycle
PdhR sdhB 1 1 succinate dehydrogenase, hydrophobic membrane anchor protein Tricarboxylic acid cycle
PsrA psrA 69 12 Predicted transcriptional regulator for fatty acid degradation PsrA, TetR family Transcription regulation
PsrA fadA 56 10 3-ketoacyl-CoA thiolase (EC 2.3.1.16) Fatty acid degradation
PsrA fadB 55 9 Enoyl-CoA hydratase (EC 4.2.1.17) Fatty acid degradation
PsrA fadD 25 5 Long-chain-fatty-acid--CoA ligase (EC 6.2.1.3) Fatty acid degradation
PsrA acdH 26 4 Acyl-CoA dehydrogenase (EC 1.3.99.3) Fatty acid degradation
PsrA fadH 31 6 2,4-dienoyl-CoA reductase [NADPH] (EC 1.3.1.34) Fatty acid degradation
PsrA etfD 31 6 Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1) Electron transfer chain for fatty acid degradation
PsrA fadJ 27 3 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Fatty acid degradation
PsrA fadI 27 3 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Fatty acid degradation
PsrA etfA 27 5 electron transfer flavoprotein, alpha subunit Electron transfer chain for fatty acid degradation
PsrA etfB 27 5 electron transfer flavoprotein, beta subunit Electron transfer chain for fatty acid degradation
PsrA fadE 17 5 Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2) Fatty acid degradation
PsrA fadE1 21 3 Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2) Fatty acid degradation
PsrA fabG 16 2 3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100) Fatty acid biosynthesis
PsrA fabF 14 3 3-oxoacyl-[acyl-carrier-protein] synthase, KASII (EC 2.3.1.41) Fatty acid biosynthesis
PsrA fadD2 18 4 Long-chain-fatty-acid--CoA ligase (EC 6.2.1.3) Fatty acid degradation
PsrA echH 20 3 Enoyl-CoA hydratase [valine degradation] (EC 4.2.1.17) Fatty acid degradation
PsrA fadL 9 3 Long-chain fatty acid transport protein Fatty acid degradation
PsrA scp 13 3 Sterol-binding domain protein
PsrA fabH 12 2 3-oxoacyl-[acyl-carrier-protein] synthase, KASIII (EC 2.3.1.41) Fatty acid biosynthesis
PsrA fabD 12 2 Malonyl CoA-acyl carrier protein transacylase (EC 2.3.1.39) Fatty acid biosynthesis
| Gene | Description | Function |
|--------|---|---|
| acpP | Acyl carrier protein | Fatty acid degradation |
| acdH1 | Acyl-CoA dehydrogenase (EC 1.3.99.3) | Fatty acid degradation |
| fadE2 | Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2) | Fatty acid degradation |
| fadD1 | Long-chain fatty acid-CoA ligase (EC 6.2.1.3) | Fatty acid degradation |
| sdhC | Succinate dehydrogenase, cytochrome b556 subunit | Tricarboxylic acid cycle |
| g7A | Citrate synthase | Tricarboxylic acid cycle |
| aroQ | 3-dehydroquinate dehydratase II (EC 4.2.1.10) | Aromatic amino acid biosynthesis |
| SO2935 | Oxidoreductase, short-chain dehydrogenase/reductase family | Tricarboxylic acid cycle |
| sdhA | Succinate dehydrogenase, flavoprotein subunit | Tricarboxylic acid cycle |
| rpoS | RNA polymerase sigma factor RpoS | Transcription |
| aceB | Malate synthase A | Tricarboxylic acid cycle |
| sdhD | Succinate dehydrogenase subunit D | Tricarboxylic acid cycle |
| acdB | Enoyl-CoA hydratase (EC 4.2.1.17) / 3,2-trans-enoyl-CoA dehydrogenase (EC 1.1.1.35) | Fatty acid degradation |
| sdhB | Succinate dehydrogenase, iron-sulfur protein | Tricarboxylic acid cycle |
| bccP | Biotin carboxyl carrier protein of acetyl-CoA carboxylase | |
| accC | Biotin carboxylase of acetyl-CoA carboxylase (EC 6.3.4.14) | |
| acdA | 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) | Fatty acid degradation |
| acdH2 | Acyl-CoA dehydrogenase (EC 1.3.99.3) | Fatty acid degradation |
| SO0881 | Conserved hypothetical protein | |
| SO0882 | Oxidoreductase, GMC family | |
| paal | Phenylacetic acid degradation protein paal | |
| algQ | Regulator of RNA polymerase sigma(70) subunit, Rsd/AlgQ | Transcription |
| phhB | Pterin-4-alpha-carbinolamine dehydrogenase (EC 4.2.1.96) | |
| fabL | ENOYL-[ACYL-CARRIER-PROTEIN] REDUCTASE (FabL) (NADPH) (EC 1.3.1.9) | Fatty acid biosynthesis |
| aceA | Isocitrate lyase | Tricarboxylic acid cycle |
| SO0080 | Thioesterase superfamily protein | |
| mdh | Malate synthase (EC 2.3.3.9) | Tricarboxylic acid cycle |
| ldh | Leucine dehydrogenase (EC 1.4.1.9) | Branched-chain amino acid biosynthesis |
| fadH1 | 2,4-dienoyl-CoA reductase [NADPH] (EC 1.3.1.34) | Fatty acid degradation |
| fadE3 | Acyl-CoA dehydrogenase | Fatty acid degradation |
| acdH3 | Acyl-CoA dehydrogenase (EC 1.3.99.3) | Fatty acid degradation |
| paal2 | Phenylacetic acid degradation protein paal | |
| Sbal_0657 | Hypothetical protein | |
| fabK | Enoyl-[acyl-carrier-protein] reductase (FMN) (EC 1.3.1.9) | Fatty acid biosynthesis |
| SO3908 | Enoyl-CoA hydratase (EC 4.2.1.17) | Fatty acid degradation |
| acdH4 | Acyl-CoA dehydrogenase (EC 1.3.99.3) | Fatty acid degradation |
| fadL2 | Long-chain fatty acid transport protein | Fatty acid degradation |
| fadD3 | Long-chain-fatty acid-CoA ligase | Fatty acid degradation |
| rutR | Transcriptional regulator RutR of pyrimidine catabolism, TetR family | Transcription regulation |
| rutB | Peroxyreioacylase / ureidoacylacte amido hydrolase | Pyrimidine degradation |
| rutA | Pyrimidine oxygenase | Pyrimidine degradation |
| xdhC | XdhC protein (assists in molybdopterin insertion into xanthine dehydrogenase) | Purine degradation |
| xdhA | Xanthine dehydrogenase, iron-sulfur cluster and FAD-binding subunit A (1.17.1.4) | Purine degradation |
| xdhB | Xanthine dehydrogenase, molybdenum binding subunit (EC 1.17.1.4) | Purine degradation |
| guaD | Guanine deaminase (EC 3.5.4.3) | Purine degradation |
| rutC | Aminoacylase peracid reductase | Pyrimidine degradation |
| rutD | Aminoacylase hydrolase | Pyrimidine degradation |
| pydC | Beta-ureidopropionase (EC 3.5.1.6) | Pyrimidine degradation |
| Gene | Description | Function |
|--------|---|-----------------------------------|
| pydX | Pyridine nucleotide-disulphide oxidoreductase associated with reductive pyrimidine catabolism | Pyrimidine degradation |
| pydA | Dihydropyrimidine dehydrogenase [NADP+] (EC 1.3.1.2) | Pyrimidine degradation |
| rutF | Flavin reductase | Pyrimidine degradation |
| pydB | Dihydropyrimidinase (EC 3.5.2.2) | Pyrimidine degradation |
| pbuT | Xanthine/urate permease | Nucleoside transport |
| pucL | Uracilase (EC 1.7.3.3) | Pyrimidine degradation |
| COG3748| hypothetical protein, COG3748 | |
| pydA | Dihydropyrimidine dehydrogenase [NADP+] (EC 1.3.1.2) | Pyrimidine degradation |
| rutR2 | Transcriptional regulator RutR of pyrimidine catabolism, TetR family | Transcription regulation |
| codA | Cytosine deaminase (EC 3.5.4.1) | Pyrimidine degradation |
| pydP | 3-hydroxy propionic acid dehydrogenase | Pyrimidine degradation |
| pucM | Hydroxysisurate hydrolase (EC 3.5.2.17) | Pyrimidine degradation |
| upp | Uracil phosphoribosyltransferase (EC 2.4.2.9) | Pyrimidine degradation |
| ppuD | Predicted ABC transporter, inner membrane protein precursor | Nucleoside transport |
| ppuC | Predicted ABC transporter, permease protein | Nucleoside transport |
| ppuA | Predicted ABC transporter, ATP-binding protein | Nucleoside transport |
| aIA | Ureidoglycolate hydrolase (EC 3.5.3.19) | Purine degradation |
| COG7026| putative polysaccharide deacetylase family protein | Nucleoside-binding outer membrane protein |
| tsx | Xanthine deaminase (EC 3.5.4.5) | Pyrimidine degradation |
| cdd | Cytidine deaminase (EC 3.5.4.5) | Pyrimidine degradation |
| pbuT2 | Xanthine/urate permease | Nucleoside transport |
| deoA | Thymidine phosphorylase (EC 2.4.2.4) | Pyrimidine degradation |
| pntB | Predicted nucleoside ABC transporter, permease protein 1 | Nucleoside transport |
| pntC | Predicted nucleoside ABC transporter, permease protein 2 | Nucleoside transport |
| pntA | Predicted nucleoside ABC transporter, ATP-binding protein | Nucleoside transport |
| rutG | Uracil permease | Pyrimidine transport |
| rutG2 | Uracil permease | Pyrimidine transport |
| gat | Xanthine-guanine phosphoribosyltransferase (EC 2.4.2.22) | Purine degradation |
| xpt | Xanthine phosphoribosyltransferase (EC 2.4.2.22) | Purine degradation |
| PF07958| Conserved hypothetical protein | |
| ribA2 | GTP cyclohydrolase II (EC 3.5.4.25) homolog | |
| pntD | Predicted nucleoside ABC transporter, substrate-binding protein | Nucleoside transport |
| pytD | Predicted pyrimidine ABC transporter, permease protein 1 | Pyrimidine transport |
| pytM | Predicted pyrimidine ABC transporter, substrate-binding protein | Pyrimidine transport |
| pytN | Predicted pyrimidine ABC transporter, ATP-binding protein | Pyrimidine transport |
| pytQ | Predicted pyrimidine ABC transporter, permease protein 2 | Pyrimidine transport |
| allC | Allantoicase (EC 3.5.4.3) | Purine degradation |
| ppuB | Predicted ABC transporter, substrate-binding protein precursor | |
| pytC | Pyrimidine ABC transporter, permease protein 2 | Pyrimidine transport |
| pytB | Pyrimidine ABC transporter, permease protein 1 | Pyrimidine transport |
| deoC | Decoxyribose-phosphate aldolase (EC 4.1.2.4) | Pyrimidine degradation |
| pytA | Pyrimidine ABC transporter, ATP-binding protein | Pyrimidine transport |
| carA | Carbamoyl-phosphate synthase small chain (EC 6.3.5.5) | Arginine and pyrimidine biosynthesis |
| carB | Carbamoyl-phosphate synthase large chain (EC 6.3.5.5) | Arginine and pyrimidine biosynthesis |
| pytD | Pyrimidine ABC transporter, substrate-binding protein | Pyrimidine transport |
| deoD | Purine nucleoside phosphorylase (EC 2.4.2.1) | Purine degradation |
| nupX | Nucleoside permease | Nucleoside transport |
| udk | Uridine kinase (EC 2.7.1.48) | Pyrimidine metabolism |
| COG1739| hypothetical protein, COG1739 | |
| Gene | NCBI | Function |
|--------|-------|---|
| RutR | ald | Aldehyde dehydrogenase (EC 1.2.1.3) |
| RutR | add | Adenosine deaminase (EC 3.5.4.4) |
| RutR | allB | Allantoinase (EC 3.5.2.5) |
| RutR | omp1 | putative TonB-dependent outer membrane transporter |
| RutR | omp2 | putative TonB-dependent outer membrane transporter |
| RutR | pbuT3 | Xanthine/uracil permease |
| RutR | ssnA | Predicted chlorohydrolase/aminohydrolase |
| RutR | pytH | Predicted hydrolase |
| RutR | praX | Omega-amino acid--pyruvate aminotransferase (EC 2.6.1.18) |
| RutR | tsx2 | Cytosine permease |
| RutR | codB | Predicted purine nucleoside permease |
| RutR | nupP | Adenosine deaminase (EC 3.5.4.4) |
| RutR | add2 | Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) |
| RutR | deoB | Phosphopentomutase (EC 5.4.2.7) |
| RutR | RL3717| Hypothetical protein |
| RutR | RSP_1242 | Predicted lyase |
| RutR | tsx3 | Xanthine/uracil permease |
| RutR | pbuT4 | Xanthine/uracil permease |
| RutR | urA | Uracil permease |
| RutR | rutR3 | Transcriptional regulator RutR of pyrimidine catabolism, TetR family |
| RutR | Meso_2056| Hypothetical protein |
| RutR | Atu2387| NTP pyrophosphohydrolase, MutT family |
| RutR | mll1644| Predicted methyltransferase |
| RutR | OG2516_07987| Conserved hypothetical protein |
| RutR | Jann_2708| Hypothetical protein |
| RutR | Jann_2706| Hypothetical protein |
| RutR | MED193_05504| Hypothetical protein |
| RutR | MED193_05494| Hypothetical protein |
| RutR | Jann_0788| Hypothetical protein |
| RutR | Jann_0787| Hypothetical protein |
| RutR | Jann_2704| Hypothetical protein |
| RutR | RSP_0188| DedA family integral membrane protein |
| RutR | OB2597_04350| Hypothetical protein |
| RutR | SKA53_10669| Hypothetical protein |
| RutR | RB2654_14945| Hypothetical protein |
| RutR | OG2516_10896| Hypothetical protein |
| RutR | amiC | Predicted amidase |
| SahR | sahR | Predicted regulator of methionine metabolism, ArsR family |
| SahR | ahyY | Adenosylhomocysteine (EC 3.3.1.1) |
| SahR | metF | 5,10-methylene tetrahydrofolate reductase (EC 1.5.1.20) |
| SahR | metK | 5-adenosylmethionine synthetase (EC 2.5.1.6) |
| SahR | metH | 5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13) |
| SahR | metH2 | 5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13) |
| SahR | betE | 4-Benzoyl-DL-homocysteine methyltransferase (EC 2.1.1.14) |
| SahR | panC | Pantoate--beta-alanine ligase (EC 6.3.2.1) |

Transcription Regulation

- **Aldehyde dehydrogenase (EC 1.2.1.3)**
- **Adenosine deaminase (EC 3.5.4.4)**
- **Allantoinase (EC 3.5.2.5)**
- **Putative TonB-dependent outer membrane transporter**
- **Xanthine/uracil permease**
- **Predicted chlorohydrolase/aminohydrolase**
- **Predicted hydrolase**
- **Omega-amino acid--pyruvate aminotransferase (EC 2.6.1.18)**
- **Cytosine permease**
- **Predicted purine nucleoside permease**
- **Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8)**
- **Phosphopentomutase (EC 5.4.2.7)**
- **Hypothetical protein**
- **Conserved hypothetical protein**
- **Hypothetical protein**
- **DedA family integral membrane protein**
- **Hypothetical protein**
- **Predicted amidase**

Methionine Metabolism

- **Adenosylhomocysteine (EC 3.3.1.1)**
- **5,10-methylene tetrahydrofolate reductase (EC 1.5.1.20)**
- **5-adenosylmethionine synthetase (EC 2.5.1.6)**
- **5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13)**
- **5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13)**
- **4-Benzoyl-DL-homocysteine methyltransferase (EC 2.1.1.14)**
- **Pantoate--beta-alanine ligase (EC 6.3.2.1)**

Methionine Biosynthesis

- **Metabolism**
- **Methionine metabolism**
- **Methionine biosynthesis**
- **Methionine biosynthesis**
- **Methionine biosynthesis**

Alanine Metabolism

- **Methionine biosynthesis**
| | | Description | Metabolism | Notes |
|---|---|---|---|---|
| SahR | metB | Cystathionine gamma-synthase (EC 2.5.1.48) | Methionine biosynthesis | |
| SahR | metX2 | Homoserine O-acetyltransferase (EC 2.3.1.31) | Methionine biosynthesis | |
| SahR | hom | Homoserine dehydrogenase (EC 1.1.1.3) | Methionine biosynthesis | |
| SahR | metE2 | Methionine synthase | Methionine biosynthesis | |
| SahR | DUF1852 | Protein of unknown function DUF1852 | | |
| SahR | ddl | D-alanine--D-alanine ligase B (EC 6.3.2.4) | Alanine metabolism | |
| SahR | Caul_3406 | PIN domain protein | | |
| SahR | metT | Methionine transporter MetT | Methionine transport | |
| SamR | metE | 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase (EC 2.1.1.14) | Methionine biosynthesis | |
| SamR | metF2 | 5,10-methylenetetrahydrofolate reductase (EC 1.5.1.20) | Methionine biosynthesis | |
| SamR | metX2 | Homoserine O-acetyltransferase (EC 2.3.1.31) | Methionine biosynthesis | |
| SamR | hom | Cystathionine gamma-synthase (EC 2.5.1.48) | Methionine biosynthesis | |
| SamR | metK | 5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13) | Methionine biosynthesis | |
| SamR | samR | Transcriptional regulator of methionine metabolism, ArsR family | Transcription regulation | |
| SamR | metH1 | 5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13) | Methionine biosynthesis | |
| SamR | metH2 | 5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13) | Methionine biosynthesis | |
| TrpR | trpE | Anthranilate synthase, aminase component (EC 4.1.3.27) | Tryptophan biosynthesis | |
| TrpR | trpR | Trp operon repressor | Transcription regulation | |
| TrpR | trpG | Anthranilate synthase, amidotransferase component (EC 4.1.3.27) | Tryptophan biosynthesis | |
| TrpR | trpB | Tryptophan synthase beta chain (EC 4.2.1.20) | Tryptophan biosynthesis | |
| TrpR | trpC | Indole-3-glycerol phosphate synthase (EC 4.1.1.48) | Tryptophan biosynthesis | |
| TrpR | trpA | Tryptophan synthase alpha chain (EC 4.2.1.20) | Tryptophan biosynthesis | |
| TrpR | mtr | Tryptophan-specific transport protein | Tryptophan transport | |
| TrpR | trpD | Anthranilate phosphoribosyltransferase (EC 2.4.2.18) | Tryptophan biosynthesis | |
| TrpR | trpD_a | Anthranilate synthase, amidotransferase component (EC 4.1.3.27) | Tryptophan biosynthesis | |
| TrpR | trpD_b | Anthranilate phosphoribosyltransferase (EC 2.4.2.18) | Tryptophan biosynthesis | |
| TrpR | tyrA | Chorismate mutase I (EC 5.4.99.5) / Prephenate dehydrogenase (EC 5.4.99.5.1.12) | Tyrosine & Phenylalanine biosynthesis | |
| TrpR | COG1541 | Coenzyme F390 synthetase | Aromatic amino acid biosynthesis | |
| TrpR | aroF | 2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 2.5.1.54) | Aromatic amino acid biosynthesis | |
| TrpR | SSF55729 | Acyl-CoA N-acyltransferase | | |
| TrpR | COG0733(Trp) | Predicted tryptophan transporter, SNF family | Tryptophan transport | |
| TrpR | aroG | 2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 2.5.1.54) | Aromatic amino acid biosynthesis | |
| TrpR | aroH | 2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 2.5.1.54) | Aromatic amino acid biosynthesis | |
| TrpR | aroM | AroM family protein | Aromatic amino acid biosynthesis | |
| TrpR | aroL | Shikimate kinase III (EC 2.7.1.71) | Aromatic amino acid biosynthesis | |
| TrpR | yaiA | Putative cytoplasmic protein | | |
| TrpR | aroA | 5-Enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19) | Aromatic amino acid biosynthesis | |
| TrpR | COG4221 | Short-chain alcohol dehydrogenase of unknown specificity | Tryptophan biosynthesis | |
| TrpR | HI1388 | Anthranilate synthase, amidotransferase component (EC 4.1.3.27) | Tryptophan biosynthesis | |
| TrpR | tnaB | Tryptophan-specific transport protein | Tryptophan transport | |
| TrpR | aroF2 | 2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 2.5.1.54) | Aromatic amino acid biosynthesis | |
| TrpR | HAPS_1139 | ABC transporter, inner-membrane component | | |
| TrpR | HAPS_0395 | ABC transporter, substrate binding component | | |
| TrpR | HAPS_1138 | ABC transporter, ATP-binding protein | | |
| TrpR | tnaA | Tryptophanase (EC 4.1.99.3) | Tryptophan utilization | |
| TrpR | trpB2 | Tryptophan synthase beta chain like (EC 4.2.1.20) | Tryptophan utilization | |
| TyrR | phhA | Phenylalanine-4-hydroxylase (EC 1.14.16.1) | Phenylalanine degradation | |
| TyrR | phhB | Pterin-4-alpha-carbinolamine dehydratase (EC 4.2.1.96) | Phenylalanine degradation | |
| **YrSR** | **Name** | **Location** | **Function** |
|-------|-------|------------|-------------|
| TyrR | tyrA | 39 5 | Chorismate mutase I (EC 5.4.99.5) / Prephenate dehydrogenase (EC 5.4.99.5 1.3.1.12) | Tyrosine & Phenylalanine biosynthesis |
| TyrR | tyrR | 45 6 | Transcriptional regulator of aromatic amino acid biosynthesis | |
| TyrR | aroF | 35 5 | 2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 2.5.1.54) | Aromatic amino acid biosynthesis |
| TyrR | COG2814 | 7 1 | Predicted tyrosine transporter, COG2814 family | Tyrosine transport |
| TyrR | emrD | 9 1 | Multidrug resistance protein D | |
| TyrR | pepD | 9 1 | Aminoacyl-histidine dipeptidase (Peptidase D) (EC 3.4.13.5) | |
| TyrR | putA | 9 1 | 2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase I alpha (EC 2.5.1.54) | Aromatic amino acid biosynthesis |
| TyrR | COG1284 | 4 1 | Hypothetical protein | |
| TyrR | SfrI_3409 | 6 1 | Hypothetical protein | |
| TyrR | aprE | 6 1 | Alkaline serine protease | |
| TyrR | SfrI_3410 | 6 1 | Transcriptional regulator, XRE family protein | |
| TyrR | ompF | 4 1 | Outer membrane porin F | Tyrosine degradation |
| TyrR | ipdC | 7 2 | Indole-3-pyruvate decarboxylase (EC 4.1.1.14) | Tryptophan degradation |
| TyrR | plpC | 4 1 | Oligopeptidase A (EC 3.4.24.70) | Tryptophan degradation |
| TyrR | pep1 | 3 1 | Alkaline serine exoprotease A precursor (EC 3.4.21.-) | |
| TyrR | aprE2 | 3 1 | Cold-active alkaline serine protease (EC 3.4.21.62) | |
| TyrR | omp2 | 3 1 | Putative TonB-dependent outer membrane receptor | |
| TyrR | tpi | 3 2 | Tyrosine phenol-lyase (EC 4.1.99.2) | |
| TyrR | folA | 1 1 | Dihydrofolate reductase (EC 1.5.1.1) | Tetrahydrofolate biosynthesis |
| TyrR | pep2 | 1 1 | Peptidase M4 thermolysin | |
| TyrR | omp1 | 1 1 | TonB-dependent receptor | |
| TyrR | pep4 | 1 1 | Prolyl oligopeptidase family protein | |
| TyrR | tyrP | 32 5 | Tyrosine-specific transport protein | Tyrosine transporter |
| TyrR | hmgB | 29 5 | Maleylacetacetate isomerase (EC 5.2.1.2) | Tyrosine degradation |
| TyrR | hmgC | 29 5 | Fumarylacetacetase (EC 3.7.1.2) | Tyrosine degradation |
| TyrR | hpd | 14 4 | 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27) | Tyrosine degradation |
| TyrR | hmgA | 13 4 | Homogentisate 1,2-dioxygenase (EC 1.13.11.5) | Tyrosine degradation |
| TyrR | aceA | 12 1 | Isocitrate lyase (EC 4.1.1.1) | Tricarboxylic acid cycle |
| TyrR | aceB | 16 1 | Malate synthase (EC 2.3.3.9) | Tricarboxylic acid cycle |
| TyrR | acsA | 8 1 | Acetoacetyl-CoA synthetase (EC 6.2.1.16) | Acetyl-coenzyme A synthetase |
| TyrR | aroA | 14 1 | 5-Enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19) | Aromatic amino acid biosynthesis |
| TyrR | aroL | 10 1 | Shikimate kinase III (EC 2.7.1.71) | Aromatic amino acid biosynthesis |
| TyrR | aroP | 11 1 | Aromatic amino acid transport protein AroP | Aromatic amino acid transport |
| TyrR | bkdA1 | 16 1 | Branched-chain alpha-keto acid dehydrogenase, E1 component, alpha subunit (EC 1.2.4.4) | Branched-chain amino acid degradation |
| TyrR | bkdA2 | 16 1 | Branched-chain alpha-keto acid dehydrogenase, E1 component, beta subunit (EC 1.2.4.4) | Branched-chain amino acid degradation |
| TyrR | bkdB | 16 1 | Dihydrolipoamide acetyltransferase component of branched-chain alpha-keto acid dehydrogenase complex (EC 2.3.1.168) | Branched-chain amino acid degradation |
| TyrR | brnQ | 16 1 | Branched-chain amino acid transport system carrier protein | Branched-chain amino acid transport |
| TyrR | COG0733[Tyr] | 13 2 | Predicted tyrosine transporter, SNF family | |
| TyrR | tyrR2 | 2 1 | Tyrosine and phenylalanine degradation transcriptional activator, TyrR family | Transcription regulation |
| TyrR | ivdA | 16 1 | 3-ketoacyl-CoA thiolase [isoleucine degradation] (EC 2.3.1.16) | Branched-chain amino acid degradation |
| TyrR | Genomic Position | Description | Pathway |
|------|------------------|--|--------------------------------|
| ivdB | 16 | Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27) | Branched_chain amino acid degradation |
| ivdC | 16 | Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) | Branched_chain amino acid degradation |
| ivdD | 16 | Enoyl-CoA hydratase [valine degradation] (EC 4.2.1.17) / Enoyl-CoA hydratase [isoleucine degradation] (EC 4.2.1.17) | Branched_chain amino acid degradation |
| ivdE | 16 | 3-hydroxoisobutyryl-CoA hydrolase (EC 3.1.2.4) | Branched_chain amino acid degradation |
| ivdF | 16 | 3-hydroxoisobutyrate dehydrogenase (EC 1.1.1.31) | Branched_chain amino acid degradation |
| ivdG | 16 | 3-hydroxyacyl-CoA dehydrogenase [isoleucine degradation] (EC 1.1.1.35) | Branched_chain amino acid degradation |
| ldh | 16 | Leucine dehydrogenase (EC 1.4.1.9) | Branched_chain amino acid degradation |
| liuA | 14 | Isovaleryl-CoA dehydrogenase (EC 1.3.99.10) | Branched_chain amino acid degradation |
| liuB | 14 | Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) | Branched_chain amino acid degradation |
| liuC | 14 | Methylglutaconyl-CoA hydratase (EC 4.2.1.18) | Branched_chain amino acid degradation |
| liuD | 16 | Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) | Branched_chain amino acid degradation |
| liuE | 14 | Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) | Branched_chain amino acid degradation |
| liuF | 13 | Succinyl-CoA:3-ketoacid-coenzyme A transferase subunit A (EC 2.8.3.5) | Branched_chain amino acid degradation |
| liuG | 13 | Succinyl-CoA:3-ketoacid-coenzyme A transferase subunit B (EC 2.8.3.5) | Branched_chain amino acid degradation |
| liuR | 14 | Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family | Transcription regulation |
| mdeA | 14 | Methionine gamma-lyase (EC 4.4.1.11) | Methionine degradation |
| pep3 | 14 | Peptidase, M13 family | |
| phhC | 5 | Aromatic-amino-acid aminotransferase (EC 2.6.1.57) | Phenylalanine degradation |
| phhR | 7 | Phenylalanine degradation transcriptional activator, TyrR family | Transcription regulation |
| tyrB | 16 | Tyrosine aminotransferase (EC 2.6.1.42) | Tyrosine biosynthesis / Tyrosine degradation |

1 Number of regulatory interactions
2 Number of taxa with regulation
Table S4. Metabolic and gene content of reconstructed TF regulons in Proteobacteria classified by conservation of regulatory interactions.

TF name	TF regulon members	Assigned metabolic pathway or process	Major function	TF effector	
ArgR	Core	ArgH, argB, argC, argG, argF, argA, argE	Arginine biosynthesis	Arginine	metabolism
	argR	Transcription regulation			
	artL, artQ, artM, artP	Arginine transport			
	astD, astA	Arginine degradation			
	carA, carB	Arginine and pyrimidine biosynthesis			
	Taxonomy-specific	argD	Arginine biosynthesis		
	argW, artJ, omp	Arginine transport			
	gltB, gltD	Glutamate biosynthesis			
	ilvM, ilvG, ilvD, ilvA	Branched-chain amino acid biosynthesis			
	potF, potG, potH, potI	Putrescine transport			
	recN	DNA repair			
	oadA, oadB, oadG	Pyruvate metabolism			
	astC, astB	Arginine degradation			
	Genome-specific	ilvE	Branched-chain amino acid biosynthesis		
	hisJ, hisM, hisP, hisQ	Histidine transport			
	arcA, arcB, arcC, arcD, astE	Arginine degradation			
	hisA, hisB, hisC, hisD, hisF, hisG, hisH, hisI	Histidine biosynthesis			
	proV, proW, proX	Proline transport			
	speF, potE	Putrescine metabolism			
BioR	All target genes	bioY, bioM, bioN	Biotin transport		
	bioB, bioF, bioD, bioA, bioZ, bioG, bioC	Biotin biosynthesis			
	bioR	Transcription regulation			
BirA	Core	bioB, bioF, bioD, bioC, bioA	Biotin biosynthesis		
	Taxonomy-specific	bioH	Biotin biosynthesis		
	birA	Transcription regulation			
	fabF, fabG	Fatty acid biosynthesis			
	Genome-specific	yigM	Biotin transport		
	bioW	Biotin biosynthesis			
FabR	Core	OLE1 (desA)	Unsaturated fatty acid biosynthesis		
	fabA, fabB, lcfH	Fatty acid biosynthesis			
	plsC	Glycerolipid metabolism			
	hyll	Fatty acid metabolism			
	Taxonomy-specific	desB, desC	Unsaturated fatty acid biosynthesis		
	fabL, lcfE	Fatty acid biosynthesis			
	fabR, fabR2	Transcription regulation			
	Genome-specific	pfaA, pfaB, pfaC, pfaD	Unsaturated fatty acid biosynthesis		
	pfaR, psrA	Transcription regulation			
	fadE	Fatty acid degradation			
FadP

Genes/Proteins	Function	Type
fadA, fadB, acdA, acdB, acdH, echH, acdP, acdQ, fadD	Fatty acid degradation	Unknown
etfA, etfB, etfD	Electron transfer chain for fatty acid degradation	
pncA	Nicotinate biosynthesis	
fadP	Transcription regulation	

Taxonomy-specific and Genome-specific

Genes/Proteins	Function	Type
acsA	Acetyl-coenzyme A synthetase	
BPSL1236	Glycolysis	
liuR	Transcription regulation	
paaI, paaG4, paaH1, bktB, alkK	Fatty acid degradation	

FadR

Genes/Proteins	Function	Type
fadL, fadI, fadJ, fadE	Fatty acid degradation	Unknown

Taxonomy-specific

Genes/Proteins	Function	Type
fabA, fabB	Fatty acid biosynthesis	
plsB	Glycerolipid metabolism	
fadA, fadD, fadH, fadb, fadM, SO0572	Fatty acid degradation	
fadr, iclR	Transcription regulation	

Genome-specific

Genes/Proteins	Function	Type
acdB, tesB	Fatty acid degradation	

GlcC

Genes/Proteins	Function	Type
glcE, glcF, glcD, glcG	Glycolate utilization	
glcC	Transcription regulation	

Taxonomy-specific

Genes/Proteins	Function	Type
glcB	Tricarboxylic acid cycle	
glcA	Glycolate transport	
lldD	Lactate utilization	

Genome-specific

Genes/Proteins	Function	Type
glcQ, glcM, glcP	Glycolate transport	
lldG, lldE, lldF, ykgE, ykgF, ykgG, lldP	Lactate utilization	
lysR	Transcription regulation	

HexR

Genes/Proteins	Function	Type
glk, pykA	Glycolysis	
edd, eda	Entner-Doudoroff pathway	
zwf, pgl	Pentose phosphate pathway	
hexR	Transcription regulation	

Taxonomy-specific

Genes/Proteins	Function	Type
nqrD, nqrC, nqrF, nqrA, nqrE, nqrB	Pentose phosphate pathway	
adhE, pflA, pflB, ackA, pta, focA	Electron transport chain	
ppsA	Fermentation	
ptsI, ptsH, ptsG, crr	Gluconeogenesis	
gldD, gldB	Glucose transport	
gcvT, gcVP, gcvH	Glutamate biosynthesis	
gapA, pgi, ppc, tiA, gapB, gpmM	Glycine cleavage system	
mtlA, mtlD	Glycolysis	
pntB, pntA	Mannitol utilization	
nirB, nirD	NAD metabolism	
deoD, deoA, deoB, nupC	Nitrogen metabolism	
mtlR, gltR, gltS	Transcription regulation	
Genes (or Proteins)	Pathway	Function
---------------------	----------	----------
aceB, aceA	Tricarboxylic acid cycle	
Genome-specific		
bkdA2, bkdB, bkdA1	Branched-chain amino acid degradation	
adhB, ldhA	Fermentation	
mglA, mglB, mglC	Galactose transport	
gntU, gntK	Gluconate utilization	
pckA	Gluconeogenesis	
ptsHI	Glucose transport	
glpT	Glycerol-3-phosphate transport	
glgX, glgA, glgC, glgP	Glycogen utilization	
gapN, eno, pgk, fba, aldE	Glycolysis	
lctP, cld	L-lactate utilization	
manC	Mannose utilization	
cdd	Nucleoside metabolism	

HmgQ	All target genes	Tyrosine degradation	Unknown
hmgA, hmgB, hmgC, hpd, gloA	Tyrosine degradation		
hmgQ	Transcription regulation		

HmgR	All target genes	Tyrosine degradation	Homogentisate
hmgA, hmgB, hmgC, hpd COG2814	Tyrosine degradation		
hmgR	Tyrosine transport		
	Transcription regulation		

HmgS	All target genes	Tyrosine degradation	Unknown
hmgA, hmgB	Tyrosine degradation		
hmgS	Transcription regulation		

HutC	Core	Histidine utilization	Urocanate
hutU, hutH, hutL, hutD, hutF, hutG, hutG2	Histidine degradation		
hutC	Transcription regulation		
Taxonomy-specific			
hisT, hisX, hisY, hisZ, hisP, hisQ, hisM, hisJ, COG2814, omp	Histidine transport		

HypR	Core	Proline and 4-hydroxyproline utilization	Proline; 4-hydroxyproline								
hypD, hypE, hypH, hypO	Hydroxyproline/proline degradation										
hypR	Transcription regulation										
Taxonomy-specific											
hypY, hypH', 2	Hydroxyproline/proline degradation										
putA, prdP, ampP	Proline degradation										
hypP, hypM, hypN, hypQ, COG531, omp	Hydroxyproline transport										
hypX, hypS	Hydroxyproline/proline transport										
colA2	TCA cycle										
	Collagen degradation										
Genome-specific											
pdtp	Proline transport										
hypA, hypB, hypC, hypT	Hydroxyproline transport										
LiuQ	Core	Taxonomy-specific and Genome-specific	Branched-chain amino acid degradation	Unknown							
---	---	---	---	---							
liuA, liuB, liuC, liuD	liuQ	liuA, liuB, liuC, liuD, ivdA, ivdC, acdH	Branched-chain amino acid degradation	Unknown							
	liuQ	liuE, aacS, ivd2, acsA	Branched-chain amino acid degradation	Acyl-coenzyme A synthetase							
LiuR	Core	Taxonomy-specific	Branched-chain amino acid degradation	Unknown							
liuA, liuB, liuC, liuD, liuE, ivdA, ivdC, acdH	liuR, etfA, etfB	aacS, acdA, acdB, acdP, bkdA, bkdB, hbdA, ivdA, ivdB, ivdD, ivdE, ivdF, ivdG, ldh, liuF, liuG, mcm, paaH, echH	Branched-chain amino acid degradation	Electron transfer chain for branched-chain amino acid degradation							
etfD	atuC, atuD, atuE, atuF	gltB, gltD	Acyclic terpenes degradation	Fatty acid degradation							
prpB, prpC, prpD	fadD	aceB, mdh, sucA, sucB, sucC, sucD, aceK	Glutamate biosynthesis	Propionate metabolism							
fadD	aceB, mdh, sucA, sucB, sucC, sucD, aceK	thrA, thrB, thrC	Fatty acid degradation	Threonine biosynthesis							
cah	cah		Fatty acid degradation	Carbonic anhydrase							
LidR	Core	Taxonomy-specific	Lactate utilization	Lactate							
dld, llD, llDl, llDf, llDg	lidP, lidD	llDl, llDf, llDg	Lactate utilization	Lactate							
lidP	lidR		Lactate transport	Lactate transport							
MetJ	Core	Genome-specific	Methionine metabolism	S-adenosyl-methionine							
metI, metN, metQ, metT	glcE, glcG	metI, metN, metQ, metT	Methionine transport	Methionine biosynthesis							
metJ, metR	glcB	metJ, metR	Transcription regulation	Transcription regulation							
metA, metB, metE, metF, metH, metK, metL		metA, metB, metE, metF, metH, metK, metL	Methionine transport	Methionine biosynthesis							
	Vitamin B12 transport	Methionine transport	Methionine biosynthesis	Methionine metabolism	Metionine biosynthesis	Metionine transport	Methionine transport	Methionine transport	Vitamin B12 biosynthesis	Serine biosynthesis	Threonine biosynthesis
----------------	------------------------	----------------------	-------------------------	-----------------------	-----------------------	----------------------	----------------------	----------------------	------------------------	----------------------	------------------------
btuB											
Taxonomy-specific											
mtsA, mtsB, mtsC											
metX, metY											
msrA, csd											
Genome-specific											
btuC, btuD, btuF											
asd, mccA, mccB, mdeA2, metC, metF-II, mmuM											
mmuP											
mtnA, mtnB, mtnC, mtnD, mtnE, mtnK, mtnX, mtnY, mtnZ											
pduO											
serA											
thrA, thrB, thrC											

	Methionine metabolism	Homocysteine
MetR		
metE		Methionine biosynthesis
metR		Transcription regulation
Taxonomy-specific		
metF, glyA, metH, metA, metF-II		Methionine biosynthesis
luxS		SAM recycling
hmp		Nitric oxide cell defense
ilvI, ilvH		Branched-chain amino acid biosynthesis
Genome-specific		
gcvP, gcvH		Glycine cleavage system
metQ2		Methionine transport
thrC		Threonine biosynthesis
metC, hom, mdeA, bhmT		Methionine biosynthesis

	NAD metabolism	NAD
NadR		
pnuC, niaP		Niacin or Ribosyl nicotinamide transport (NAD salvage)
nadA, nadB		NAD biosynthesis
nadR, pncB		NAD salvage

	NAD metabolism	Unknown
NadQ		
nadA, nadC, nadB		NAD biosynthesis
Taxonomy-specific		
nadE, nadD		NAD biosynthesis
proA		Proline biosynthesis
nadQ		Transcription regulation

	N-acetylglucosamine utilization	N-acetylglucosamine
NagC		
nagA, nagB, nagE		N-acetylglucosamine utilization
ptsI, ptsH, crr		Sugar transport
nagC		Transcription regulation
Taxonomy-specific		
eno, pgk, fbaA		Glycolysis
omp, glmU, glmS, nagD, nagF		N-acetylglucosamine utilization
manX, manZ, manY, ptsG		Mannose and glucose transport
chiA, hex		Chitin degradation
mcp		Chemotaxis protein (toward chitin?)
Genome-specific		
chbB, chbA, chbC, chbF, chiP, ompC, ybfM		Chitobiose utilization
chi, cbp, chiD, chi1		Chitin degradation
Protein	Function	
--------	----------	
galP, gapA, gapB, chbR, chiS, alsR, glgA, glgC, gdhA, gtlA, nanM, nanC	Galactose transport, Glycolysis, Glycogen metabolism, Glutamate degradation, Tricarboxylic acid cycle, N-acetylmuramic acid transport	
NagQ	N-acetylglucosamine utilization, Transcription regulation	
NagR	N-acetylglucosamine utilization, N-acetylglucosamine-6-phosphate	
NrdR	Deoxyribonucleotide biosynthesis, NAD metabolism, Adenosine diphosphate ribose	
NrtR	Transcription regulation	

NagQ
- **Core**
 - nagA, nagB2, nagE, nagQ
 - N-acetylglucosamine utilization
 - Transcription regulation

- **Taxonomy-specific**
 - chiA, cdxA, cbp21, chiC, chi, hex
 - NagB, nagK, nagZ, nagT, nagV, nagU, nagW, nagP
 - ybfM, omp_nag, omp1
 - murQ
 - ptsI
 - nagR
 - Chitin degradation
 - N-acetylglucosamine utilization
 - Chitobiose utilization
 - N-acetylmuramic acid utilization
 - Sugar transport
 - Transcription regulation

- **Genome-specific**
 - nagX, nagM, nagO, nagN, nagL, nagK2, anaG
 - N-acetylglucosamine utilization
 - Alpha-N-acetylglucosaminidase

NagR
- **Core**
 - nagA, nagK, nagB, nagB2, nagP, nagX, hex, omp_nag, chiA, nagR
 - N-acetylglucosamine utilization
 - Chitobiose utilization
 - Chitin degradation
 - Transcription regulation

- **Taxonomy-specific**
 - nagK2, chiD, nixC, naxA, pgi2, pckA
 - N-acetylglucosamine utilization
 - Chitin degradation
 - Chitobiose utilization
 - Glycolysis
 - Gluconeogenesis

- **Genome-specific**
 - cbp, cbp2, cdxA, chiA3, nixD, nixB, nixA, omp_nag2, bglX, SO0852, SO0850, SO0854, SO0853, pdA, mcp
 - Chitin degradation
 - Chitobiose utilization
 - Glucosides utilization
 - Fimbriae biogenesis
 - N-acetylglucosamine utilization
 - Chemotaxis protein (toward chitin?)

NrdR
- **Taxonomy-specific**
 - ndA, ndB, ndD, ndG
 - Deoxyribonucleotide biosynthesis

NrtR
- **Taxonomy- and Genome-specific**
 - pncB, pncA, nadV, nadE, nadD, nadM, nadR, pnuC, prs
 - NAD biosynthesis; NAD salvage
| NtrC | Core | Nitrogen assimilation | Phosphorylated NtrB | | |
|---|---|---|---|---|---|
| | | Glutamine biosynthesis | Nitrogen source transport | Nitrogen metabolism regulation proteins | Transcription regulation |
| glnA | | | | |
| amtB | | | | |
| ntrB, glnB, glnK | | | | |
| ntrC | | | | |
| | **Taxonomy-specific** | | | |
| dat | | Proline degradation | | |
| narK, nrtC, nrtB, nrtA, gltK, gltI, gltI, dppC, dppA, dppB, dppD, dppF | | Nitrogen source transport | | |
| ntrXY | | Transcription regulation | | |
| nasD, nasE, ntrY, ntrX, nasA, gdhA, nasBA, nasB, nifEN | | Nitrogen metabolism | | |
| | **Genome-specific** | | | |
| ureD, ureA, ureB, ureC, ureE, ureG, ureF, ureJ | | Nitrogen metabolism | | |
| hmp, uahA, uahB, uahC, nirA, atzF | | | | |
| hisQ, hisJ, hisM, glnH, glnQ, uctA, uctB, uctC, alsT, potG, potI, potH, potA, potB, potC, potD, gltB, gltD | | | | |
| speB, ygjG | | Glutamate biosynthesis | | |
| astD, astB, astA, astC, astE | | Putrescine metabolism | | |
| rucC, rucA, rucF, rucD, rucE, rucE2 | | Arginine degradation | | |
| ansA | | Pyrimidine degradation | | |
| hmp | | Asparagine degradation | | |
| nac, nasT, rutR | | Nitrogen stress response | | |
| | **Transcription regulation** | | | |
| | | | | |
| PdhR | Core | Nitrogen assimilation | Pyruvate metabolism | Pyruvate |
| | | Pyruvate utilization | | |
| aceE, aceF, lpdA | | | | |
| pdhR | | Transcription regulation | | |
| | **Taxonomy-specific** | | | |
| ndh | | NAD metabolism | | |
| aceB, aceA | | Tricarboxylic acid cycle | | |
| oadB, oadA, oadG | | Pyruvate metabolism | | |
| pflA, pflB | | Formate metabolism | | |
| | **Genome-specific** | | | |
| sdhC, gltA, sdhA, sdhD, sdhB | | Tricarboxylic acid cycle | | |
| cyoC, cyoD, cyoB, cyoA | | Electron transfer chain | | |
| ldpD, did | | Lactate metabolism | | |
| ppc, grcA | | Pyruvate metabolism | | |
| hemL, cyoE | | Porphyrin biosynthesis | | |
| glcB, glcD, glcG, glcE, glcF | | Glycolate utilization | | |
| | **Transcription regulation** | | | |
| | | | | |
| PsrA | Core | Nitrogen assimilation | Fatty acid degradation | Oleate |
| | | Fatty acid degradation | | |
| fadA, fadB | | | | |
| psrA | | Transcription regulation | | |
| | **Taxonomy-specific** | | | |
| fabG, fabF, fabH, fabD, fabL | | Fatty acid degradation | | |
| aceA, aceB, gltA, sdhA, sdhB, sdhC, sdhD | | Fatty acid biosynthesis | | |
| etfD, etfA, etfB | | Tricarboxylic acid cycle | | |
| rpoS, algQ | | Electron transfer chain for fatty acid degradation | | |
| aroQ | | Transcription | | |
| | **Genome-specific** | | | |
| ldh | | Aromatic amino acid biosynthesis | | |
| | | | | |
| | | | | |
| Genes | Function |
|-------|----------|
| mdh | Tricarboxylic acid cycle |
| SO3908 | Fatty acid degradation |
| fabK | Fatty acid biosynthesis |

RutR

Genes	Function
rutB, rutA, rutC, rutD	Pyrimidine degradation
rutR	Transcription regulation

Genes	Function
carA, carB	Arginine and pyrimidine biosynthesis
rutG, pydP	Pyrimidine transport
xdhC, xdhA, xdhB, guaD, gpt, xpt, deoD	Purine degradation
rutF, pydC, pydX, pydA, pydB, rutE, codA, upp, cdd, deoA, pucM, pucL	Pyrimidine degradation
pbuT, pntB, pntC, pntA, ppuD, ppuC, pntD	Nucleoside transport

Taxonomy-specific

Genes	Function
pytO, pytM, pytN, pytQ, pytC, pytB, pytA, pytD	Pyrimidine transport
add, allB, allA, allC, hpt, deoB	Purine degradation
deoC	Pyrimidine degradation

Genome-specific

Genes	Function
pytO, pytM, pytN, pytQ, pytC, pytB, pytA, pytD	Pyrimidine transport

SahR

Genes	Function
ahy	Methionine metabolism
metF, metH	Methionine biosynthesis
sahR	Transcription regulation
metK	Methionine metabolism

Genes	Function
metE, metH2	Methionine biosynthesis

Taxonomy-specific

Genes	Function
metT	Methionine transport
bhmT, metB, metX, hom	Methionine biosynthesis

Genome-specific

Genes	Function
metT	Methionine transport
bhmT, metB, metX, hom	Methionine biosynthesis

SamR

Genes	Function
metE, metF2, metX2, metB, metH, hom	Methionine biosynthesis
samR	Transcription regulation
metK	SAM biosynthesis

TyrR

Genes	Function
aroF	Chorismate biosynthesis
tyrA	Tyrosine & Phenylalanine biosynthesis
phhA, phhB	Phenylalanine degradation
hmgB, hmgC, hpd, hmgA	Tyrosine degradation
tyrP	Tyrosine transporter
tyrR (phhR)	Transcription regulation

Genes	Function
brnQ	Branched-chain amino acid transport
mdeA	Methionine degradation
putA	Proline degradation
bkdA, bkdB, ivdA, ivdB, ivdC, ivdD, ivdE, ivdF, ivdG, ldh, liuA, liuB, liuC, liuD, liuE, liuF, liuG	Branched-chain amino acid degradation
hmgR, liuR	Transcription regulation
tyrB	Tyrosine biosynthesis / Tyrosine degradation
aceA, aceB	Tricarboxylic acid cycle
aroA, aroL	Chorismate biosynthesis
Gene	Function
--------	--
aroP	Aromatic amino acid transport
acsA	Acetyl-coenzyme A synthetase
phhC	Phenylalanine degradation
COG0733	Tyrosine transport
Genome-specific	
aroM, aroG	Chorismate biosynthesis
kyn, tdo, ipdC	Tryptophan degradation
mtr	Tryptophan transport
tpl	Tyrosine degradation
COG2814	Tyrosine transport
folA	Tetrahydrofolate biosynthesis

Gene	Function
trpE	Tryptophan biosynthesis
trpR	Transcription regulation
Taxonomy-specific	
aroF, aroG	Chorismate biosynthesis
trpG, trpB, trpC, trpA, trpD	Tryptophan biosynthesis
tyrA	Tyrosine biosynthesis
mtr, COG0733	Tryptophan transport
Genome-specific	
aroH, aroM, arol, aroA	Chorismate biosynthesis
tnaA, tnaB	Tryptophan transport and degradation

annotated gene functions and metabolic pathways are listed in Table S3. This table excludes functionally unassigned genes.
Gamma-proteobacteria	TyrR	TyrA	TyrB	TyrP	HpdC	HmgA	HmgB	HmgC	HmgD	HmgE	HmgF	TyrR regulon
Alteromonadales												
Alteromonadales bacterium TW-7	+	+	-	-	+	+	+	+	+	-	+	tyrR, HpdA, HpdB, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmgAB, hmgB, hmgC, hmgD, hmgE, hmgF, tyrR, tyrA, tyrB, tyrP, rib-kyne, hmg
Genus/Species	TyrR	AroL	AroH	AroG	AroF	TyrA	TyrB	Hpd	HmgA	HmgB	HmgC	PhhAB
---------------------------------------	------	------	------	------	------	------	------	------	------	------	------	-------
Psychromonas spp. (2 genomes)												
Psychromonas sp. F136												
Aeromonas hydrophila ATCC 7966												
Aeromonas salmonicida M449												
Tolomona auensis DSM 1817												
Moritella sp. PE36												
Aeromonas hydrophila ATCC 7966												
Aeromonas salmonicida M449												
Tolumona auensis DSM 1817												
Oceanospirillales/Alteromonadales												
Hahella chejuensis KCTC 21906												
Marinobacter aquaeolii												
Marinobacter sp. ELB13												
Oceanobacter sp. RED65												
Oceanospirillum sp. MED92												
Marinomonas sp. MWYL1												
Saccharophaga degradans 2-40												
Tereutilacter turnerae T901												
Cellvibrio japonicus Ueda107												
Chromohalobacter salexigens DSM 3043												
Reinekeia sp. MED207												
Akkai vibrio berkemensis SK2												
Pseudomonadaceae												
Pseudomonas aeruginosa PA01												
Pseudomonas entomophila I48												
Pseudomonas putida KT2440												
Pseudomonas syringae DC3000												
Pseudomonas fluorescens IF-5												
Pseudomonas mendocina ymp												
Acetobacter sp. met33												
Acinetobacter sp. A0139												
Acinetobacter baumannii AB0057												
Psychrobacter arcticus 775												
Psychrobacter arcticus 775												
Xanthomonadiales												
Xylella fastidiosa Belfri												
Xanthomonas axonopodis 306												
Xanthomonas campestris ATCC 33913												
Stenotrophomonas maltophilia K279a												
Unclassified												
TyR (PhhR) regulon												
Chorismate biosynthesis genes												
Tyr biosynthesis pathway genes												
Tyr transporter genes												
Tyr degradation genes												

The presence or absence of gene orthologs is shown by ‘+’/-’ signs. Colored ‘+’ signs (red, purple, green, blue) indicate that the gene belong to TyrR(PhhR), HmgR, HmgQ, HmgS regulons, respectively. Column shows the list of all corresponding operons from reconstructed regulons. Additional member of TyrR regulons that are not involved in aromatic amino acid metabolism are not included.

Color code for genes in the table:

- **TyR (PhhR) regulator gene**
- **Chorismate biosynthesis genes**
- **Tyr biosynthesis pathway genes**
- **Tyr transporter genes**
- **Tyr degradation genes**