Abstract—For complexity of the heterogeneous minimum spanning forest problem not has been determined, we reduce 3-SAT which is NP-complete to 2-heterogeneous minimum spanning forest problem to prove this problem is NP-hard and spread result to general problem, which determines complexity of this problem. It provides a theoretical basis for the future designing of approximation algorithms for the problem.

Keywords: heterogeneous minimum spanning forest; complexity; reduction; NP-hard

I. INTRODUCTION

Heterogeneous minimum spanning forest problem(HMSF) was introduced by Yadlapalli et al. [1], and approximation algorithm was designed for heterogeneous vehicle routing problem in [1]. Heterogeneity of an undirected weighted complete graph refers to that each edge in the graph possesses a number of different costs. The goal of HMSF is to search the minimum cost spanning forest in a heterogeneous graph. An approximate algorithm of HMSF was proposed in [1], but complexity of this problem is not clear[2]. The main contribution of this paper is to prove HMSF is NP-hard by reducing a well known NP-complete problem to HMSF in which each edge in graph possesses two costs, which determines the complexity of the problem.

II. NOTATION

This section describes the notation used in the whole paper.

Undirected complete graph $G=(V,E)$ is heterogeneous if each edge in the graph possesses more than one non-negative integer costs. If each edge e in graph G possesses exactly two non-negative integer costs then G is 2-heterogeneous. Let $w_1(e)$ and $w_2(e)$ denote the costs, w_1 and w_2 are cost functions on edge set E. For any node v_1,v_2,v_3 in V, if cost function w meets $w(v_1,v_2)+w(v_2,v_3)\geqslant w(v_1,v_3)$ then w satisfies the triangle inequality.

Spanning forest F in the graph G consists of two disjoint trees T_1 and T_2, where T_1 and T_2 contain all nodes in the graph. The cost of edge in $T_1(T_2)$ is defined by function $w_1(w_2)$. The cost of tree $T_1(T_2)$ is the sum of costs of edges in tree $T_1(T_2)$. The cost of spanning forest F is the sum of the costs of T_1 and T_2.

2-Heterogeneous minimum spanning forest problem(2-HMSF) refers to search a minimum cost spanning forest in a 2-heterogeneous graph with given two nodes as tree roots. Determination form of 2-HMSF refers to that given a 2-heterogeneous graph, two nodes r_1,r_2 and a integer k, determinate whether there exists a spanning forest F such that nodes r_1 and r_2 are roots of tree T_1 and T_2 respectively and the cost of F is no larger than k.

3-SAT is a classical NP-complete problem, and it will be used in section 3. A formula is in 3-conjunctive normal form (3-CNF) if it is a conjunction of clauses, where a clause is a disjunction of three literals. For example, $(x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$ is in 3-CNF which contains two clauses and uses five variables. 3-SAT refers to determine whether a given formula in 3-CNF could be satisfied.

III. PROOF

We first use reduction technique to prove 2-HMSF in general graph is NP-hard, and then explains how to use the same method in complete graph which satisfies triangle inequality. 3-SAT will be used as reduction problem. For any instance of 3-SAT, we construct a heterogeneous graph G, and specify the two nodes r_1,r_2 and integer k, then prove that the instance could be satisfied if and only if there exists a spanning forest F in graph G such that cost of F is no larger than k and nodes r_1,r_2 are tree roots.

Assume that the instance of 3-SAT contains m clauses $C_1,C_2,...,C_m$ and uses n variables $x_1,x_2,...,x_n$. Construct a 2-heterogeneous graph G as follows: For each variable x_i in the instance of 3-SAT construct nodes x_i and $\neg x_i$ and each clause C_j construct a node C_j, then construct two nodes t and f represent true and false respectively; For each pair of nodes x_i and $\neg x_i$, construct a edge $(x_i,\neg x_i)$, define the cost $w_i(x_i,\neg x_i)=w_i(\neg x_i,x_i)=1$, call these edges type x edges; Construct edge (t,f) between node t and each x_i, define the cost $w(t,x_i)=n+1$, $w(f,x_i)=(n+1)^2$, call these edges type t edges; Construct edge $(f,\neg x_i)$ between node f and each $\neg x_i$, define the cost $w(f,\neg x_i)=(n+1)^2$, $w(\neg x_i,f)=(n+1)^2$, call these edges type f edges; For each clause C_j, construct three edges between the clause node and nodes corresponding three literals in C_j for the edges of form (C_j,x_i) define the cost $w(C_j,x_i)=(n+1)^2$, $w(C_j,\neg x_i)=2(n+1)^2$, for the edges of form $(C_j,\neg x_i)$ define the cost $w(C_j,\neg x_i)=2(n+1)^2$, $w(C_j,\neg x_i)=(n+1)^2$, call these edges type C edges; Let node t be root of tree T_1 and node f be root of tree T_2, then let $k=m(n+1)^2+n(n+1)+n$.

Complexity Analysis of 2-Heterogeneous Minimum Spanning Forest Problem

Zhujun Zhang
East China Normal University
Department of Computer Science and Technology
Shanghai, China
e-mail: zhangzhujun1988@163.com

Qiang Sun

Fig. 1(a) shows the 2-heterogeneous graph corresponding to the formula $(x_1 \lor \neg x_2 \lor x_3) \land (x_4 \lor \neg x_5 \lor x_6)$, where the dashed lines represent type x edges, and the thin solid lines represent type f edges, and the thick solid lines represent type C edges.

Lemma 1: Instance of 3-SAT could be satisfied if and only if there exists a spanning forest F in graph G constructed as above such that cost of F is no larger than k and nodes t and f are tree roots.

Proof: (necessity) Assume r is a satisfying assignment of the formula. Construct a spanning forest F with cost no larger than k, and at first F does not contain any edges. For each variable x_i in formula, if $r(x_i) = \text{true}$ than add edge (t,x_i) to F, otherwise add edge $(f,\neg x_i)$ to F; Since the formula is satisfied under the assignment r, for each clause C_i one could choose a literal in C_i where true value of the literal is true, if literal x_i is chosen than add edge (C_i,x_i) to F, and if literal $\neg x_i$ is chosen than add edge $(C_i,\neg x_i)$ to F; Finally add all type x edges to F. It is easy to verify that F is a spanning forest. Total cost of type C edges in F is $m(n+1)^2$. Total cost costs of type t and type f edges in F is $n(n+1)^2$. Total cost costs of type x edges in F is n. Therefore the cost of forest F is exactly k. Fig. 1(b) shows a spanning forest in a 2-heterogeneous graph.

(sufficiency) Assume F is a spanning forest such that nodes t and f are tree roots and cost of F is no larger than k. Construct a assignment r as follows, for each variable x_i in formula, if F contains edge (t,x_i) then define $r(x_i) = \text{true}$, otherwise define $r(x_i) = \text{false}$. We assert that assignment r is valid and formula is satisfied under the assignment r.

We first prove formula is satisfied under assignment r. Consider type C edges, since F is a spanning forest, F must contain one of type C edges for each node C_i, therefore F contains at least m type C edges. Since the cost of type C edges is either $(n+1)^2$ or $2(n+1)^2$, if F contains more than m type C edges or edges with cost $2(n+1)^2$ then the cost of F will be larger than $(m+1)(n+1)^2$, which is contrary to the assumption that cost of F is no larger than k, therefore F contains exactly m type C edges and the cost of each these edges is $(n+1)^2$. This means that each node C_j corresponds to one of type C edges with cost $(n+1)^2$. Assume edge (C_j,x_i) joins node C_j, then nodes C_j and x_i must be in tree T_j, otherwise edge $(C_j,\neg x_i)$ will not be in tree T_j. Tree T_j contains node x_i, implies that F contains edge (t,x_i) or $(f,\neg x_i)$, consequently clause C_j is satisfied under assignment r according to the definition of r and the construction of graph G. Same consequence could be obtained when edge $(C_j,\neg x_i)$ joins node C_j. Therefore, each clause in the formula is satisfied under the assignment r, which implies the formula is satisfied under the assignment r.

Now we prove assignment r is valid. Consider type t and type f edges in F, since F is a spanning forest, for each pair of nodes x_i and $\neg x_i$, F contains at least one of edges (t,x_i) and $(f,\neg x_i)$, otherwise nodes x_i and $\neg x_i$ will not be in tree T_i or T_5, thus F contains at least n type t and type f edges. Discussion in last paragraph argues that total cost of type C edges in F is $m(n+1)^2$, while cost of each type t and type f edges is no smaller than $(n+1)^2$. If F contains more than n type t and type f edges, the cost of F will be larger than $(m+1)(n+1)^2$, which is contrary to the assumption that cost of F is no larger than k. Therefore F contains exactly n type t and type f edges, and for each pair of nodes x_i and $\neg x_i$, either edge (t,x_i) or edge $(f,\neg x_i)$ is in F. Consequently assignment r is valid from the definition of r. □

Obviously, the construction of the graph G and reduction in Lemma 1 could be accomplished in polynomial time, and 3-SAT is NP-complete, thus 2-HMSF in general graph is NP-hard.

Consider 2-HMSF in complete graph. Add new edges in the heterogeneous graph G constructed before to form new graph G' such that G' is a complete graph. In graph G', costs of those edges in graph G remain unchanged. For each newly added edge e in G', define $w_1(e)$ as the shortest distance of two vertices of e in the graph G under cost function w_1, and...
the definition of \(w_2(e) \) is similar. A spanning forest in graph \(G \) clearly must be a spanning forest in graph \(G' \). A spanning forest \(F' \) in graph \(G' \) could be converted into a spanning forest \(F \) such that cost of \(F \) is not larger than cost of \(F' \), since those edges that are not in \(G \) could be substituted by shortest path in \(G \), and construction of \(G' \) implies cost of \(F \) is not larger than cost of \(F' \). Therefore proof of Lemma 1 could also be used in complete graph, thus 2-HMSF in complete is NP-hard.

Consider 2-HMSF in complete graph which satisfies triangle inequality. In graph \(G \) constructed before, redefine \(w_2(C_j, x_i) \) and \(w_1(C_j, \neg x_i) \) as \((n+1)^2 + (n+1) \), and other costs remain unchanged, then expand graph \(G \) to obtain complete graph \(G' \) like in last paragraph. One can verify that cost functions \(w_1 \) and \(w_2 \) in graph \(G' \) satisfy triangle inequality. Similarly, proof of Lemma 1 could also be used in graph \(G' \), therefore 2-HMSF in complete graph which satisfies triangle inequality is NP-hard.

Discussion in last several paragraphs argues Theorem 1.

Theorem 1: 2-HMSF is NP-hard.

For determination form of 2-HMSF, there exists a simple polynomial time verification algorithm, so 2-HMSF \(\in \) NP. Combined with Theorem 1, 2-HMSF is NP-complete. For the general problem, k-HMSF (k \(\geq \) 2) is also NP-complete obviously.

IV. CONCLUSION

This paper presents a reduction from 3-SAT to 2-HMSF, which proves 2-HMSF is NP-hard. Actually determination form of 2-HMSF is NP-complete. Therefore there does not exist precise polynomial time algorithm for 2-HMSF, unless P=NP. Future research could focus on designing better approximation algorithm for 2-HMSF or analyzing approximability.

REFERENCES

[1] S.K. Yadlapalli, S. Rathinam, S. Darbha, An approximation algorithm for a 2-Depot, heterogeneous vehicle routing problem, American Control Conference, 2009, pp. 1730-1735

[2] S. Yadlapalli, S. Rathinam, S. Darbha, 3-Approximation algorithm for a two depot, heterogeneous traveling salesman problem, Optimization Letters, vol. 6(1), 2012, pp. 141-152

[3] R. Bhattacharyya, A note on complexity of traveling tournament problem, Optimization Online, http://www.optimization-online.org/DB_FILE/2009/12/2480.pdf, 2009

[4] H. Yaman, Formulations and Valid Inequalities for the Heterogeneous Vehicle Routing Problem, Mathematical Programming, vol. 106(2), 2006, pp. 365-390

[5] S. Yadlapalli, J. Bae, S. Rathinam, S. Darbha, Approximation Algorithms for a Heterogeneous Multiple Depot Hamiltonian Path Problem, American Control Conference 2011, pp. 2789-2794

[6] S. O. Krumke, S. Saliba, T. Vredeveld, S. Westphal, Approximation algorithms for a vehicle routing problem, Mathematical Methods of Operations Research, vol. 68(2), 2008, pp. 333-359