Ultrashort pulse generation from binary temporal phase modulation

Anastasiia Sheveleva | Christophe Finot

Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université Bourgogne-Franche-Comté, Dijon, France

Correspondence
Christophe Finot, Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université Bourgogne-Franche-Comté, 9 Av. A. Savary, BP 47 870, 21078 DIJON Cedex, France.
Email: christophe.finot@u-bourgogne.fr

Abstract
We propose and numerically validate an all-optical scheme to generate a train of optical pulses. Modulation of a continuous wave with a periodic binary temporal phase pattern followed by a spectral phase shaping enables us to obtain ultrashort pulse trains. An ideal step phase profile as well as a profile arisen from a bandwidth-limited device is investigated. Analytical guidelines describing pulse train formation and their characteristics are provided. Pulses with a duration of a few picoseconds at a repetition rate of 10 GHz can be expected for realistic experimental conditions.

KEYWORDS
optical processing, optical pulse train generation, phase modulation

1 | INTRODUCTION

Generation of picosecond optical pulses at high repetition rates is still a technological challenge where alternative approaches to the existing mode-locked laser sources1 or to architectures based on nonlinear reshaping2,3 remain worthy of investigation. Electro-optics methods are among the most exciting solutions as the combination of phase and intensity modulators can be a convenient way to convert an initial highly coherent continuous wave into a pulse train at a repetition rate provided by an external RF clock. Many examples4,5 have therefore shown that temporal modulation of the phase has applications well beyond the modern optical transmission systems and the field of optical networking.6,7 Indeed, imprinting a quadratic spectral phase on a continuous wave that is phase modulated with a sinusoidal waveform in the temporal domain has been found efficient to generate ultrashort pulses at repetition rates of tens of GHz.8-11 Whereas the existing studies were essentially focused on the use of a quadratic spectral phase, progress in the field of line-by-line phase shaping12 offers a large versatility in the choice of a spectral phase profile and opens up fruitful possibilities to enhance the characteristics of pulse trains. As it has been recently experimentally demonstrated, the use of π/2 spectral phase shifts to replace the quadratic spectral phase profile13,14 induces a noticeable decrease of the spurious background and of unwanted sidelobes enabling the generation of Gaussian Fourier-transform limited structures.

In this contribution, we propose to extend our study to new temporal profiles that can be used as an initial phase modulation. More precisely, instead of a single sinusoidal waveform, we now numerically explore a periodic pattern of binary phase steps. Different spectral processing schemes are then tested and compared, such as a quadratic spectral phase, a triangular spectral phase, or a photonic Hilbert transform. Some analytical guidelines are derived for the case of an ideal pattern with a modulation depth of π. To get an idea of the temporal profiles that can be generated in a realistic case, numerical simulations taking into account the impact of the bandwidth limitation are also examined.

2 | IDEAL BINARY PHASE MODULATION

2.1 | Initial ideal phase modulation

The process under investigation is based on a two-stage approach illustrated in Figure 1: the phase of a continuous wave is first modulated in the temporal domain by a periodic waveform before being linearly processed with different spectral phase profiles. A sinusoidal pattern has found its use in most of the theoretical and experimental works exploiting periodic phase modulation techniques.15 Indeed, this waveform makes less demands in terms of the RF bandwidth reducing a degree of distortion from the ideal pattern. However, with the progress of digital electronics, binary patterns have become routinely available. In this context and given the link that can be drawn between the temporal and
spatial domains, we can benefit from the knowledge gained in the field of diffractive optics where binary phase gratings have been the subject of many discussions. We consider here a fully coherent continuous wave which is phase modulated by an ideal profile \(\phi(t) \) that is periodic (with a period \(T_0 \), leading to a frequency \(f_0 = 1/T_0 \)) and infinite. Such a profile is plotted in Figure 2(A) for two values of the phase offset \(\Delta \phi \) (\(\pi \) and \(\pi/4 \), black and blue lines respectively). We limit our discussion to a duty-cycle of ½ so that the temporal phase modulation is defined over one period (i.e. between \(-T_0/2\) and \(T_0/2\)) as:

\[
\phi(t) = \text{sgn}(-t) \Pi(t/T_0) \Delta \phi / 2
\]

where \(\text{sgn}(t) \) and \(\Pi(t) \) are the sign and the gate functions, respectively.

The optical spectrum \(s(f) \) of the phase-modulated signal is composed of equally spaced spectral components. Simple guidelines are available for a single cell (i.e. one period), giving the complex spectral envelope of the following form:

\[
s(f) = T_0 \sin(\pi T_0 f) \cos\left(\frac{\pi T_0 f + \Delta \phi}{2}\right)
\]

The spectral intensity and phase profiles are illustrated in panels B and C of Figure 2. These results provide a ground for discussion of several interesting points. In the case of a modulation depth of \(\pi \), one can note that all the even components are suppressed, i.e. the spectral components are spaced by twice the frequency of the initial modulation. The amplitude of the \(n \)th component is given by (\(n > 0 \)):

\[
s((2n+1)f_0) = -\frac{2}{\pi} \frac{2}{2n+1} \sin\left(\frac{\Delta \phi}{2}\right) \quad (3)
\]

The ratio between the intensity of two successive unsuppressed (odd) spectral components is drawn by (see red mixed line, Figure 2(B1)):

\[
\frac{|s((2n+1)f_0)|^2}{|s((2n-1)f_0)|^2} = \left(\frac{2n-1}{2n+1}\right)^2 \quad (4)
\]

Figure 2(C) outlines that the positive spectral components are phase-shifted by \(\pi \) with respect to the negative components. When the modulation depth differs from \(\pi \), we note that a central component appears in the spectrum (blue circles in Figure 2(B2)). However, the overall shape of the spectrum remains identical and a similar spectral phase profile is observed. Let us also remark that a binary intensity modulation will lead to the same overall spectrum structure.

2.2 Spectral phase processing

We now consider the impact of various spectral processing schemes on the temporal intensity profile. The first profile that we consider is a quadratic spectral phase that typically arises from dispersion. The same kind of spectral phase profile appears when diffraction takes place. So following the space/time analogy, dispersion is the temporal counterpart of diffraction. As the phase modulation is not limited in time, we have to consider the near field regime typical of Fresnel diffraction where the various temporal orders do not get temporally isolated. The dispersive propagation of the periodic
pattern will therefore exhibit a behavior representative of the Talbot carpet observed in the temporal domain, as illustrated in Figure 3 for an initial phase offset of π. The quadratic phase profile is $\exp(-i\beta^2 z \omega^2/2)$, with ω being the angular frequency and β^2 the second-order dispersion coefficient of a device of length z. The linear medium of propagation can be a dispersive fiber or a fiber Bragg grating. Results can then be normalized by the Talbot length z_T defined as:

$$z_T = \frac{1}{\pi |\beta^2| (\Delta f)^2}.$$ \hspace{1cm} (5)

where Δf is the frequency spacing between two non-zero spectral components ($\Delta f = 2f_0$ in our ideal case). After a propagation distance of $z_T/4$, the phase modulation is converted into a binary intensity modulation (red curve, Figure 3(B)), typical of a Talbot array illuminator.24 After $z_T/2$, a continuous wave is reconstructed as expected from the self-imaging process. The structure with the highest peak power is obtained after a propagation distance of 0.19 z_T and is plotted with a black line in Figure 3(B). The pulses that are generated have a full-width at half maximum (FWHM) duration that is only 0.07 T_0. However, its non-monotonic waveform is less appealing in terms of practical applications.

Another approach in spectral processing of the binary phase modulated wave relies on applying a triangular spectral phase profile. The slope of the linear spectral profile is chosen so as to impart a $\pi/2$ phase change on every f_0 spectral component. Experimentally such treatment can be applied using phase programmable spectral shapers or fiber Bragg gratings.29 The temporal profile obtained after the spectral processing is influenced by the initial modulation depth of the binary pattern as shown in Figure 4. The phase modulation is efficiently converted into ultrashort temporal structures equally spaced by $T_0/2$. Heavy tails and a difference in the intensity profile are present at any initial modulation depths except for the case of $\Delta \phi = \pi$ where the repetition rate is doubled.

Inspired by the spectral phase profile seen in Figure 2(C), the third processing we have investigated was the photonic multiplication of the spectrum by the sign function, i.e. applying a π phase shift between the negative and positive spectral components while canceling the central component. Such a spectral treatment corresponds to a Hilbert transform.30,31 Photonic Hilbert transform has been initially demonstrated in spatial free-space optics32 but now it can be all-optically performed by a spectral programmable filter, in Bragg gratings, in a SOI microdisk chip or in photonic crystal nanocavity.36 An alternative technique that may provide similar results is the use of optical differentiation.37,38 The temporal intensity profiles arisen after the spectral processing are summarized in Figure 5 based on which we can note that the repetition rate is doubled whatever the initial phase offset is. The resulting intensity profile plotted on a logarithmic scale in Figure 5(B) confirms that, with the suppression of the central component, the shape obtained after the Hilbert transform is not influenced by the value of the initial phase depth.

2.3 Analytical insights

In order to get further insight into the waveform that is achieved after the Hilbert transform, one may consider the...
Hilbert transform $H(t)$ of a single cell (with a phase profile provided by Equation (1)). For $\Delta \varphi = \pi$ the analytical expression takes the following form:

$$H(t) = -i \frac{\pi}{\ln \left| t^2 \right|}$$ (6)

Results are plotted in Figure 6 on linear and logarithmic scales. The resulting waveform is Fourier-transform limited and can also provide a first approximation of the shape achieved after dispersive propagation (see Figure 3(B), blue dotted line). The central part of the highly peaked waveform is characterized by a diverging behavior at $t = 0$, which prevents the definition of the FWHM duration. We can also remark that the Hilbert transform of a single cell does not perfectly fit the profile obtained for the periodic train. Indeed, $H(t)$ spans over a temporal duration that largely exceeds a single period so that it will influence the neighboring pulses. Results obtained considering a series of 7 cells (blue line) are in a good agreement with the profiles arisen from an ideal and infinite train (red line).

3 | TEMPORAL PHASE MODULATION WITH BANDWIDTH LIMITATION

The discussion we developed in the previous section assumes an ideal phase jump. Though this assumption enables us to easily derive interesting analytical guidelines, for more realistic predictions it is required to take into account the finite bandwidth of the phase modulation that will limit the steepness of the transition between the two
phase levels in the binary profile. As a first approximation, we consider that the bandwidth limitations can be modeled by a Gaussian filter with a full width at half maximum of \(4 f_0\). The resulting phase profile is shown in Figure 7(A) (black line) for a modulation depth of \(\pi\). Even if the steepness has been reduced compared to the ideal case, the sharpness of the edges remains well above a standard temporal sinusoidal phase modulation having the same modulation depth (red line). The resulting optical spectrum is given in panel (B) and is compared with spectra originated from the sinusoidal phase modulation (red line) and the ideal envelope predicted by Equation (2) (dashed black line). We can note that the bandwidth limitation leads to the emergence of even components in the optical spectrum. The spectral extend obtained from a binary pattern remains significantly higher than the one resulting from a sinusoidal modulation where the typical ratio between the optical intensity \(s_s\) of spectral components is defined as\(^{39}\):

\[
\left|\frac{s_s((n+1)f_0)}{s_s(n f_0)}\right|^2 = \frac{(\Delta \varphi/2)^2}{4(n+1)^2},
\]

which has to be compared with Equation (4).

The temporal profiles arisen from the dispersive propagation of a periodically modulated wave with a phase depth of \(\Delta \varphi = \pi\) are depicted in Figure 8 with respect to the propagation distance normalized by the Talbot length (Equation (5) with \(\Delta f = f_0\)). Pulse structures obtained after \(z = 0.054 z_T\) are plotted in panel (B) and have a FWHM duration of only 0.1450 \(T_0\). The waveform is strongly impaired by a residual background that contains a non-negligible portion of the energy, therefore limiting the peak power compared to what could be expected from a Fourier-transform limited pulse train [Color figure can be viewed at wileyonlinelibrary.com]
the optimized Besselon waves achieved from temporal phase modulation with a peak-to-peak amplitude of 5.72 rad14.

When a Hilbert transform is applied (panel A2 of Figure 9), a doubling of the repetition rate is recovered. The pulses are, however, significantly longer with a duty cycle of only 0.26 and a peak power increase limited to a factor 3.2 (see black line of Figure 9(B), results obtained for a phase shift of 4.1 rad). In this context, the approach developed in Reference14 and based on an initial single tone temporal modulation of the phase with a peak-to-peak amplitude of π rad does not provide better results with a duty cycle of 0.34.

4 | CONCLUSIONS

To conclude, we have discussed the patterns achieved after a spectral phase processing of a continuous wave periodically modulated with a binary temporal phase. Whereas the quadratic spectral phase leads to a phase-to-intensity conversion known as the Talbot array illuminator, other spectral phase modulation schemes are found even more interesting, such as a triangular profile or the Hilbert transform. This last scheme has been found efficient to double the repetition rate and to achieve ultrashort structures whatever the initial modulation depth is. Analytical insight into the pulse waveform has been described. When non-ideal binary phase modulation is taken into account, the main qualitative properties of the resulting patterns are preserved and one can expect to generate pulse train pattern at the doubled-up repetition rate using a photonic Hilbert transform. A triangular spectral profile combined with the suppression of the central component has also enabled the generation of ultrashort pulses with increased peak-power. To consider a realistic scenario, we have investigated temporal waveforms obtained after taking into account a Gaussian-like bandwidth limitation of the initial binary phase profile. Pulses in the picosecond range and with a moderate level of pedestals can be expected at a repetition rate of 10 GHz. In addition to that we have explored other linear filters (such as a Butterworth frequency response) which have driven to the same qualitative conclusions. In the present study we have focused on a duty cycle of 1/2 for the initial binary phase modulation. Other values of this factor could provide another degree of freedom to be explored.19

Our numerical results demonstrate that binary phase modulation associated with a convenient spectral phase processing can be potentially involved in various applications such as ultrashort pulse generation14, optical sampling43 or noiseless application scheme.42 Combination with an additional stage of nonlinear compression taking advantage of the self-phase modulation experienced in a nonlinear normally-dispersive fiber can be explored to further decrease the temporal duration by up to one order of magnitude.33,34 We can also anticipate that the proposed scheme could sustain multichannel operation45 and could be combined with an initial phase modulation which frequency linearly varies over time. Thereby pulse trains with jitters in the pulse-to-pulse delays and temporal widths could be achieved.46

ACKNOWLEDGMENTS

We acknowledge the support of the Institut Universitaire de France (IUF), the French Investissements d’Avenir program and the Agence Nationale de la Recherche, France (Graduate School EIPHI ANR-17-EURE-0002). We thank Ugo Andral, Julien Fatome, Bertrand Kibler and Sonia Boscolo for fruitful discussions.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Christophe Finot https://orcid.org/0000-0002-0755-5995

REFERENCES

[1] Carruthers TF, Duling IN. 10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening. Opt Lett. 1996;21(23):1927-1929.
[2] Inoue T, Namiki S. Pulse compression techniques using highly nonlinear fibers. Laser Photonics Rev. 2008;2(1):83-99.
[3] Fatome J, Kibler B, Finot C. High-quality optical pulse train generator based on solitons on finite background. Opt Lett. 2013;38 (10):1663-1665.
[4] Torres-Company V, Weiner AM. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev. 2014;8(3):368-393.
[5] Parriaux A, Hammani K, Millot G. Electro-optic frequency combs. Adv Opt Photon. 2020;12(1):223-287.
[6] Winzer PJ, Essiambre RJ. Advanced modulation formats for high-capacity optical transport networks. J Lightw Technol. 2006;24 (12):4711-4728.
[7] Winzer PJ, Neilson DT, Chraplyvy AR. Fiber-optic transmission and networking: the previous 20 and the next 20 years [invited]. Opt Express. 2018;26(18):24190-24239.
[8] Kobayashi T, Yao H, Amano K, Fukushima Y, Morimoto A, Sueta T. Optical pulse compression using high-frequency electrooptic phase modulation. IEEE J Quantum Electron. 1988;24 (2):382-387.
[9] Komukai T, Yamamoto Y, Kawanishi S. Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings. IEEE Photon Technol Lett. 2005;17(8):1746-1748.
[10] Jiang Z, Leaird DE, Weiner AM. Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser. IEEE J Quantum Electron. 2006;42(7):657-665.
[11] Otsuji T, Yaita M, Nagatsuma T, Sano E. 10-80-Gb/s highly extinctive electrooptic pulse pattern generation. IEEE J Sel Top Quantum Electron. 1996;2(3):643-649.
[12] Jiang Z, Huang C-B, Leaird DE, Weiner AM. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics. 2007;1(8):463-467.
