Review Article

Recent Advances on Electroconductive Hydrogels Used in Heart Repair and Regeneration

Xu Yan, Huan Sun, and Ping Yang

Cardiology Department, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun TX 130031, China

Correspondence should be addressed to Huan Sun; sunhuan0404@jlu.edu.cn and Ping Yang; pyang@jlu.edu.cn

Received 22 September 2021; Revised 17 April 2022; Accepted 18 July 2022; Published 9 August 2022

Academic Editor: Raghu V. Anjanapura

Copyright © 2022 Xu Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Myocardial infarction (MI) permanently damages cardiac tissue. Tissue engineering exhibits tremendous potential as a strategy for developing engineered tissue to repair congenital abnormalities in the heart and/or cardiovascular tissue. Electroconductive hydrogels (EHs) are prepared from synthetic or natural biodegradable polymers and conductive components that could partially restore the myocardial/ventricular electromechanical coupling and synchronized heartbeats. Also, EHs are ideal materials for the preparation of cell culture and induction carriers, engineered scaffolds, and patches, as well as cell and gene delivery carriers, all of which aid in tissue formation. Except for a brief introduction to the classification and synthesis of EHs, this review discussed the recent progress and challenges of EHs applied in cardiac repair and regeneration to provide a reference for the further application of EHs in treating cardiovascular diseases. Figure abstract: the EHs category and the potential application of heart repair and regeneration in this review.

1. Introduction

Ischemic heart disease, typified by MI, is a leading cause of fatality in China and even the globe, with mortality exceeding that of various cancers, imposing a significant burden on the global society and the economy [1, 2]. Ischemia and hypoxia of coronary arteries cause necrosis and fibrosis in the myocardium, along with the myocardium cells’ very restricted regeneration capacity, ultimately resulting in scar tissue, aberrant ventricular remodeling, and arrhythmias [3]. The only therapeutic alternative for patients with end-stage heart failure is heart transplantation, but postoperative complications and a scarcity of organ donors significantly restrict the number of transplantation cases [4]. Therefore, heart failure necessitates novel therapeutic strategies. Bioengineering to generate functional cardiac tissue via the integration of materials science and stem cell biology has been proved a highly promising strategy for treating MI in recent decades [5]. The emergence of hydrogels offers promise for many challenging areas of cardiac tissue engineering. Hydrogels are highly aqueous porous materials that are one of the few biomaterials capable of resembling the extracellular matrix to prepare an engineered scaffold. Besides excellent biocompatibility and biomanufacturing stability, hydrogels incorporate accessible adjustment and delivery of physical and chemical properties. Hydrogels derived from natural materials, in particular, can circumvent immunoreaction to a particular degree, and their biodegradability and low toxicity also fulfill the requirements of tissue engineering [6]. Along with its ability to cover diverse geometries of damage and resemble the natural extracellular matrix and cell-proliferating nutrients, hydrogels are very biocompatible [7]. Hydrogels, particularly injectable ones, have many benefits including avoiding complicated surgery on large-sized wounds, filling irregular wounds, and delivering medications and growth factors, which have drawn an increasing amount of attention [8–10]. Hydrogels are thus an appealing material for heart repair and regeneration.

Hydrogels are prepared from various natural and synthetic materials, primarily including hyaluronic acid, collagen, gelatin, chitosan, matrix glue, alginate, fibrin, poly (2-hydroxyethyl methacrylate) (PHEMA), poly (N-isopropyl acrylamide) (PNIPAAm), poly (ethylene glycol) (PEG), and
Advances in Materials Science and Engineering

2. Synthesis and Classification of EHs

2.1. Conducting Polymer-Based Hydrogels. Conductive polymers (CPs) are a class of organic material with optical and electrical properties comparable to nonpolar semiconductors and metals, and the merits of conventional polymer materials [22]. The primary CP types include polyaniline, polypyrrole, polyphenylene, and polyacetylene. Electronic conductivity is achieved by the conjugated \(\pi \) bonds on conductive polymers with simple, ubiquitous, cost-effective, and efficient synthesis, as well as an accessible functional modification at the molecular level [23, 24]. A strong recommendation is to examine the following review to understand more about the underlying structure, the conductive mechanism, and the differences between different conducting polymers [24–27]. Nerve tissue engineering, heart tissue engineering, muscle tissue engineering, bone tissue engineering, and other domains have demonstrated that the inclusion of conductive polymers in biomaterials may increase the conductivity of the whole system [28–33]. The improvement of synthesis techniques, such as dispersion polymer, side-chain functionalization, and graft modification [34] (Figure 1), allowed for the appropriate avoidance of conductive polymers' drawbacks, like insolubility, low processability, and poor biocompatibility. However, biomedicine requires stricter biocompatibility and nonimmunogenenicity of conducting polymer-based hydrogels to avoid aberrant fibrosis encapsulation induced by nonspecific protein adsorption on implant surfaces. Table 1 outlines some current uses of conducting polymer-based hydrogels in heart repair and regeneration.

2.2. Carbon-Based EHs

2.2.1. Graphene. Graphene is a two-dimensional hexagonal carbon lattice with three \(\sigma \) bonds and an out-of-plane \(\pi \) bond connecting to adjacent atoms [40]. Graphene is inherent in electrical conductivity, strong tensile properties, high thermal conductivity, magnetic properties, optical properties, and chemical stability [41]. Chemical vapor deposition, electrochemical stripping, and mechanical cracking of graphite could synthesize pure graphene [42]. Also, the physical and chemical modification could generate graphene derivatives including graphene oxide (GO) and reduced graphene oxide (rGO). Over the past two decades, graphene-based EHs have been applied to tissue engineering, medication and gene delivery, bioimaging, biosensors, 3D printing, and other fields of regenerative medicine [42, 43] (Figure 2). It was revealed that each form of graphene shows diverse and unique adjustable characteristics, making graphene one of the most significant options for developing electrochemical sensors based on nanocomposites [41]. While graphene and its derivatives have been incorporated into some synthetic strategies to develop EHs with strong electrical and mechanical properties, they occasionally exhibit low water solubility in hydrogels and tend to aggregate in solution. The current solutions include wet spinning technology and in situ redox to avoid abnormal conductivity in hydrogels [44, 45]. Notably, graphene’s cytotoxicity is highly dependent on its size, shape, surface area, charge, and functional groups, necessitating a thorough assessment of its biocompatibility in biomedical application research to enable future clinical transformation [46, 47].

2.2.2. Carbon Nanotube. Carbon nanotubes (CNTs) are single or multiwall nanostructures with a high aspect ratio formed of a carbon atom lattice. CNTs are often synthesized via laser cutting, arc discharge, and chemical vapor deposition. CNTs incorporate superior physical characteristics such as a high aspect ratio, a low density, a high electrical...
conductivity, and a high compressive and tensile strength [48]. CNT has been demonstrated to be an appealing material for biomedical applications when integrated with EHs, where CNT substantially improves electrical conductivity and decreases brittleness [18, 49–51]. However, the high van der Waals force, strong hydrophobicity, and low entropy of CNTs result in heterogeneous polymers in solution [52]. Surface coating, functionalization of other groups, and

![Figure 1](https://example.com/figure1.png)

Figure 1: Schematic diagram of preparing functional CP. (a) CP compound, (b) Side chain modification CP, and (c) Electroconductive graft polymer [34]. Copyright 2021, with permission from Elsevier.

Biomaterial	Conductivity	Mechanical properties	Model	Application
PPy + chitosan + collagen + PEO [30]	$\approx 150 \times 10^{-3}$ S/m	Young’s modulus = 1.09 MPa; tensile strength = 4.6 MPa; elongation = 4.2	In vitro: Fibroblast cell	Improved cell adhesion, growth, and proliferation
PEDOT: PSS + collagen + alginate [35]	$27 \pm 8 \times 10^{-2}$ S/m	N/A	In vitro: Cardiomyocyte	Enhanced electrical coupling and myocardial cell maturation
PPy + chitosan [36]	Improved the conduction velocity of cardiac scar tissue	N/A	In vitro: Cardiomyocyte; ex vivo: isolated cardiac scar tissue	Improved electrical transmission and resynchronize cardiac contraction, reduced susceptibility to arrhythmias
PANI + chitosan + phytic acid [37]	16.2 ± 0.43 S/m	Young’s modulus = 6.73 ± 1.14 MPa; tensile strength = 5.26 ± 2.25 MPa	Ex vivo: Cardiac slices and whole hearts	Enhanced electronic stability
HPAE–Py + gelatin [38]	$6.51 \pm 0.12 \times 10^{-2}$ S/m	Young’s modulus = 35 Kpa	In vivo: Myocardial infarction in rats	Enhanced the conduction of electrophysiological signal and revascularization
PANI + collagen + hyaluronic acid [39]	0.2 ± 0.06 S/m	Young’s modulus = 2 ± 1 MPa; tensile stress = 9.3 ± 0.5 MPa	In vitro: Cardiomyocyte	Improved contractile amplitude and contraction time of cardiomyocyte; improved electrical coupling

Abbreviations: PPy: polypyrrole; PEO: poly (ethylene oxide); PEDOT: PSS: poly (3,4-ethylenedioxythiophene): polystyrene sulfonate; PANI: polyaniline; and HAPE-Py: hyperbranched poly (amino ester)-pyrrole.
dispersants such as microgel particles to alter the solution environment are recognized methods for partly addressing the issues mentioned above [52–55]. Also, it is essential to assess the toxicity and inflammatory response of CNTs in vivo.

2.2.3. MXene. MXene is a two-dimensional transition metal carbide, nitride, and carbonitride with many advantages including cellular compatibility, a very high specific surface area, adjustable conductivity, and water-dispersible workability. MXene has generated considerable research interest since its first introduction in 2011, and its superior performance makes it an attractive option for various biomedical and tissue engineering applications [56–58]. The following focuses on the synthesis strategy of MXene and the techniques for doping and compounding MXene with other materials to prepare EHs [59, 60]. Modifications or self-assembled hydrogel platforms could address the low dispersibility of MXene nano pieces in water [59]. The research on MXene’s toxicity to humans and the environment is ongoing [61–63]. Table 2 highlights some current applications of carbon-based EHs in cardiac repair and regeneration.

2.3. Metal Nanoparticles EHs. Ranging in diameter from 1 to 100 nm, metal nanoparticles are colloids with a high surface-to-volume ratio. The unique electrical activity, optical properties, magnetic properties, antibacterial properties, biocompatibility, mechanical properties, and catalytic properties of metal and oxide nanoparticles such as gold, silver, platinum, ferric oxide, zinc oxide, and zirconia make them an attractive choice for the synthesis of composite EHs in the field of biological materials [18, 72] (Table 3, Figure 1). However, the disadvantages of high cost, cytotoxicity, and others are also noticeable. Metal nanoparticles are synthesized through electrochemistry, photochemistry, various physical reduction techniques, and biosynthesis, among others [73, 74]. The synthesis techniques impact metal nanoparticles’ type, size, shape, and functionalization route, further influencing their physicochemical characteristics and stability. EHs have been designed and synthesized using a range of various metal nanoparticles for a variety of biological applications including biosensing, bioimaging, and tissue engineering. Many metal nanoparticles have been utilized to design and synthesize EHs for many biological applications including biosensing, bioimaging, and tissue engineering [75–79].

3. EHs for Heart Repair and Regeneration

3.1. Cell Culture and Induction. EHs represent a significant stride in correctly resolving the cell fate of cardiomyocytes and their derived stem cell phenotypes. EHs manufacturing is a complex undertaking with the ultimate goal of replicating the ECM microenvironment in vitro to promote the appropriate cell-cell and cell-matrix interactions that drive the maturation of cardiomyocytes [80]. In order for EHs to induce cell differentiation, promote cell maturation, and regulate electrical signals, they must possess minimal bio toxicity, conductivity, and cross-linking with cardiac myocytes. Melero et al. [81] cross-linked cellulose acetate hydrogel (HAC) with EDTAD (ethylenediaminetetraacetic acid dihydrate). The results exhibited obvious chelation with calcium and magnesium ions in vitro and influenced

Figure 2: Overall application of graphene-based materials in regenerative medicine and tissue engineering [42]. Copyright 2016, with permission from Elsevier.
Table 2: Applications of carbon-based EHs in cardiac repair and regeneration.

Biomaterial	Conductivity (S/m)	Mechanical properties	Model	Application
RGO + dECM [64]	3.3	Compressive modulus 17.5 KPa	Ex vivo: Heart tissue	Enhanced myocardial contractility and upregulated genes regulating systolic function improved the maturation and beating properties
Graphene			In virto: Mesenchymal stem cell	Good biocompatibility and potential to promote cardiomyogenic differentiation
Graphene [65]	N/A	N/A	In virto: Cardiomyocyte	Induced cellular orientation, maturation, and anisotropy
Heart-derived ECM + SWCNTs [66]	N/A	N/A	In virto: Cardiomyocyte	Provided mechanical support and electrical connectivity to cardiomyocytes enhanced remodeling and regeneration
Polycapro lactone + silk fibrin + carbon nanotubes + GelMA [67]	≈6.5 × 10⁻⁵ S/m	≈27 MPa	In virto: Cardiomyocyte	Reduced fibrosis and increased formation of a blood vessel network and immature cardiomyocytes
Carbon nanotube	≈1 × 10⁻⁴ S/m	Shear modulus ≈ 0.6 KPa	In virto: Cardiomyocyte	Promoted myocardial cell alignment and improved the synchronization of heart cells
Carbon nanofiber + collagen [69]	N/A	Newton force ≈ 3.1 N	In virto: Cardiomyocyte	
SACNTs + GelMA [70]	N/A	N/A	In virto: Cardiomyocyte	
MXene	PEG + Ti3C2Tx Mxene [71]	0.1 S/m	Young’s modulus = 144.5 ± 8.8 KPa	In virto: Cardiomyocyte

Abbreviations: rGO: reduced graphene oxide; dECM: decellularized extracellular matrix; ECM: extracellular matrix; SWCNTs: single-wall carbon nanotubes; GelMA: gelatin methacrylate; SWNT: single-walled carbon nanotube; SACNTs: super aligned carbon nanotubes sheets; PEG: polyethylene glycol.

Table 3: Properties of metal nanoparticles [18].

Nanoparticles	Size (nm)	Shape	Advantages	Disadvantages	Application
Gold nanoparticles	1–60	Spherical rod polygonal floral	High stability low cytotoxicity in initial step possibility of high scale production	Relatively weak optical signal long-term cytotoxicity high price	Labeling and visualization diagnostics, therapeutics, catalysis, cancer cell treatment
Silver nanoparticles	4–120	Spherical wire oval polygonal rod	Antimicrobacterial high optical signal	Cytotoxicity low stability before surface treatment high price	Antimicrobial, gas/vapor sensing water sterilization, cancer cell treatment
Platinum nanoparticles	10–100	Spherical cuboidal floral	Catalysis high optical-signal high stability	High price cytotoxicity	Biosensing of molecules enhancement of bone strength, detection of cancer cells
Iron oxide nanoparticles	4–45	Tube spherical cluster	Superparamagnetic property low cytotoxicity economical	Weak strength low stability toxic solvent is needed	Gas sensing, magnetic resonance imaging
Zinc oxide nanoparticles	20–600	Flower rod wire sheet	Piezo- and pyro-electric wide range of UV absorption high optical signal economical antibacterial effect	Cytotoxicity low stability toxic solvent is needed	Photocatalyst, absorber of UV radiation, biosensors, gas sensing
cell adhesion, hence creating biological signals and an environment for cell repair.

Roshanbinfar and colleagues [35] developed an electrochemical bio-mixed hydrogel composed of collagen, alginate, and conductive PEDOT: PSS, which incorporates ECM simulated fiber structure, enhanced electrical coupling, and myocardial cell maturation. This electrochemical bio-mixed hydrogel could increase the pulsation frequency to over 200 times the endogenous frequency of min−1. Cardiomyocytes exhibited better alignment and density in these constructs, improving sarcomere tissue. Jonathan and colleagues [64] mixed decellularized porcine myocardial extracellular matrix (dECM) and reduced graphene oxide (rGO) to prepare hybrid hydrogel. The experimental result demonstrated that engineered heart tissues constructed with dECM-RGO hydrogel scaffold and cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) significantly enhanced myocardial contractility and upregulated genes regulating systolic function. Also, these electrochemical bio-mixed hydrogels improved the maturation and beating properties of human induced pluripotent stem cell-derived cardiomyocytes. These cells exhibit 1.9 µm near-adult sarcomeric length, enhanced beating frequency, increased contraction speed, and larger contraction amplitude.

The myocardial’s dense uniaxial cardi cell structure and electrical and mechanical coupling between myocardium cells are critical factors of synchronous cardiac contractions. Navaei and colleagues [82] utilized a gelMA (gelatin methacrylate)-GNR hydrogel to develop homogeneous, dense, and highly aligned heart tissue that could provide electrical and topographic cues for simulating physiologically relevant cardiac activity. When the natural extracellular matrix is utilized to support cell growth and inoculation in vitro, it is inevitable that biophysical cues be destroyed during the decellularization process. Bai and colleagues prepared a hybrid hydrogel by incorporating single-walled carbon nanotubes (SWCNTs) into a heart-derived extracellular matrix (ECM). By interacting with ECM proteins, insoluble single-walled carbon nanotubes were dispersed uniformly throughout the mixed hydrogel system, activating integrin-related pathways such as biophysical cues and improving the system’s intercellular communication and bioactivity [66] (Figure 3). Modeling anisotropic cardiac architecture and controlling three-dimensional cell orientation are essential for developing cardiac tissue regeneration scaffolds [83]. Wu and colleagues [67] used a 3D hybrid scaffold that mimics the shape of native heart tissue in a hydrogel shell, using a permutation-based conductive nanofiber yarn network (NFFys-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes). They developed an endothelialized myocardial by coculturing the CM on the NFFys-NET layer and endothelial cells in a hydrogel shell. Thus, the hybrid approach of the NFFys-NET layer promotes cell orientation, maturation, and anisotropy, while the hydrogel shell offers a suitable three-dimensional environment for endothelialization, which has significant promise for designing three-dimensional cardiac anisotropy.

3.2. Tissue Engineering Scaffolds and Patches. A promising treatment option for ischemic cardiovascular disease is tissue engineering, a multidisciplinary collaborative strategy that combines materials engineering, life sciences, and computer modeling to ultimately produce artificial tissues or functional scaffolds for biomedicine and regenerative medicine [84]. The primary objective of cardiac tissue engineering is to provide artificial substitutes for damaged regions such as engineered scaffolds and/or patches [85, 86]. For therapeutic efficacy, these materials must have the same mechanical qualities and electrical conductivity as the original cardiac tissue in order to better fit into the beating heart. Additionally, the physical qualities of the scaffold/patch, such as porosity, pore size, and surface pattern, have a significant impact on the therapeutic efficacy [11, 82].

EHs have been shown to be an efficient component of cardiac tissue engineering scaffolds and patches [87, 88]. In myocardial infarction, ischemia damage results in an increase in tissue resistance in the infarct region, limiting heart synchronous electrical transmission. This asynchronous conduction between the myocardium and fibrotic tissue leads to asynchronous contractions that develop into ventricular dysfunction. He and colleagues synthesized electroconductive polypyrrole chitosan hydrogels (PPY:CHI) and discovered that they could improve electrical transmission in fibrotic tissues and resynchronize cardiac contraction to preserve cardiac function, and reduce susceptibility to arrhythmias by 30% following MI [36, 89]. Due to the decrease of electroconductive polymers’ electrical properties, their short working duration precludes their therapeutic use. Mawad and colleagues [37] demonstrated that the immobilization of phytic acid and other dopants in conductive scaffolds avoided electrical deterioration. Additionally, the water solubility and phase separation issues associated with PPY produced directly from the free pyrrole monomer may be overcome by sealing it to a hyperbranched polymer containing dopamine [38].

Carbon-based nanomaterials exhibit excellent electrical conductivity and mechanical properties, and previous research has demonstrated that they can be used as hydrogel scaffolds or patch materials for myocardial tissue engineering, as well as being favorable for myocardial cell adhesion, proliferation, and differentiation [65, 90, 91]. For example, Zhou and colleagues found that injected OPF (Oligo Poly (ethylene glycol) fumarate)/GO hydrogels could provide mechanical support and electrical connectivity to cardiomyocytes in normal myocardium and scars by activating typical Wnt signaling pathways. Additionally, they developed EHs with an acceptable structure, phenotype, and function using in vitro conductive SWNT and gelatin, which demonstrated significant structural fusion with infarcted myocardium following implantation, thereby enhancing remodeling and regeneration of infarcted myocardium [68]. Simultaneously, the integration of carbon nanotubes into
biocompatible materials such as collagen is one of the development strategies for cardiac patches [92]. Certain studies have shown that combining carbon nanofibers (CNF) and collagen hydrogel could repair injured myocardium, resulting in a reduction in fibrosis and an increase in vascular network and immature myocardial cell production in infarcted hearts [69]. The arrangement of cardiomyocytes is also essential in the design of cardiac patches, as the function of cardiac tissue is highly dependent on the linear arrangement of myofibrils and muscle bundles and the longitudinal shape and connections of ventricular myocytes [93]. The high resolution of 3D printing makes it ideal for cell patterning to provide terrain direction to cardiac muscle cells. Basara and colleagues [71] showed that the conductive characteristics of composite hydrogels could enhance the patch’s electrophysiological coupling to the infarcted region by utilizing a predesigned pattern on PEG hydrogels and 3D-printed conductive titanium carbide (Ti3C2Tx) MXene through aerosol injection. This research indicates that 3D-printed (Ti3C2Tx) MXene could be utilized to create an electrophysiologically relevant cardiac patch to treat MI. Besides, Sun and colleagues [70] polymerized nonclose-packed colloidal arrays on super-aligned carbon nanotube sheets (SACNTs) to achieve a new color hydrogel with electric conductivity and anisotropic structure, which was applied to visualizing and precisely constructing the heart-on-chip. The findings demonstrated that SACNTs’ anisotropic shape was capable of effectively promoting myocardial cell alignment. Additionally, its electrical conductivity might aid in the synchronization of heart cells, indicating that color hydrogels with electrical conductivity and structural anisotropy offer a wide range of application possibilities in cardiac engineering.

3.3. Delivery System. The cardiac muscle’s limited potential for regeneration raises delivery therapy (cellular, protein, or gene), a capable and promising approach for restoring injured heart tissue after myocardial infarction [94]. EHs could perform biological tasks by targeting particular tissue types using a combination of cells, growth factors, therapeutic peptides or chemical molecules, and genes. Unsurprisingly, many pieces of research have continued to innovate in cardiac tissue engineering. Different types of hydrogels were employed in cardiac repair and regeneration to mix diverse cardiac cells and stem cells, as well as therapeutic proteins and genes to achieve delivery, in order to adapt to the many functions and objectives of EHs, see Table 4. Human cells derived from various sources, including cardiac stem cells, bone marrow stem cells, mesenchymal stem cells, hematopoietic stem cells, and embryonic stem cells, have been used to regenerate cardiac tissue and are expected to be used in the future for cell delivery in the EHs system [95]. EHs’ porous characteristics, responsiveness to stimulus, and adjustable mechanical and physicochemical properties enable them to create a protected microenvironment conducive to cell activity. EHs stimuli responses include thermal, mechanical, electrical, temperature, light, and pH responses, among others [96–99]. Because of the response of EHs to external stimuli, the EHs system is capable of efficiently delivering biotherapeutic molecules such as proteins and genes in a controlled and local manner, as well as utilizing the cell’s mechanisms for continuous production of therapeutic proteins, which is not possible with mass protein delivery methods [100]. As a delivery platform, it is vital to consider the controlled release properties of EHs in order to fulfill particular drug release speed and duration requirements, as well as biodegradability.

How to employ stimulation to regulate the production, degradation, and release of therapeutic chemicals carried by EHs offers significant promise for future studies in heart repair and regeneration.
4. Challenges

Compared to conventional myocardial injury treatment strategies, cardiac tissue engineering utilizing EHs had the merits of enhancing the electrical conductivity of scar tissue and promoting heart regeneration. Prior to the clinical use of EHs, some difficulties must be resolved including the preparation of EHs, which relate to their electrical conductivity, biotoxicity, biocompatibility, and adequate mechanical strength. The present production of EHs requires further adjustment for the dispersion of conductive filler, as well as the synthesis technique and ambient conditions. Additionally, the physicochemical properties (e.g., size, surface area, surface properties, number of layers, and particle state) and surface functionalization of metal nanoparticles and carbon-based conductive fillers affect their in vitro and in vivo nanotoxicity, which is rarely well established and systematic. Despite the fact that, for injured cardiac tissue, the higher the conductivity of the biomaterial, the greater its ability to repair the electrical conduction of the scar site, and the higher the conductivity also increases the percentage of conductive material, resulting in increased bio toxicity. In some experiments, the majority of conductive materials were abandoned after the first cell experiment. Therefore, the conductivity and bio toxicity of all EHs must be in equilibrium [30, 35].

The mechanical compliance of conductive polymers remains unknown during implantation, and more research is needed to validate and enhance their effect in vivo [26]. Moreover, the electrically insulated macroporous matrix of hydrogels impairs cell-to-cell electrical connection and signal propagation within tissues, interfering the entire electrical integration of tissue structures with the normal heart and eventually resulting in unanticipated arrhythmias. The integration of micrometer- and nanometer-scale methods in hydrogel-based micropatterns may assist in overcoming this constraint 8. In contrast, the capacity of biomaterials to cross-link with the site of myocardial infarction is crucial to their therapeutic efficacy, independent of application. In cardiac tissue engineering, variations in patient age, infarct size, and other variables demand the exact individualization of EHs [107]. EHs are anticipated to have enormous promise in the realm of cardiac repair and regeneration, despite the challenges that need to be resolved.

5. Conclusions and Future Perspective

According to the present state of EHs production, dispersion of conductive fillers needs further improvement of synthesis techniques and conditions. The cell-loaded ECH organ model is still in its infancy, but it is a rapidly growing study area. This may be because current knowledge of cardiac biomechanics and electrophysiology is insufficient, and the structure of EHs has to be improved from cellular and molecular perspectives, as well as its long-term stability, function, and cytocompatibility. The ideal biodegradable EHs for cardiac tissue engineering have not yet been discovered [108, 109].

Table 4: EHs for delivery systems to treat MI.
Hydrogel
Ti2C-cryogel
Cardiac ECM and PPy hydrogel
Cluster graphene oxide formed conductive silk hydrogel
Ultrasmall graphene quantum dots/chitosan/collagen matrix hydrogel
ECM/Lapauhydrogel
GO/GelMA hydrogel
With the fast advancement of 3D printing in the biomedical field [110], the technology may now be utilized to rapidly create bespoke tissue-constructing frameworks, heal tissue damage in situ using cells, and even directly print tissues and organs. 3D printing in conjunction with external electrical stimulation may be a viable approach for engineering cardiac structures [111].

Delkash et al. [112] created an egg-white and sodium alginate-based natural bioink for bioprinting cell-laden patches utilized in endothelial tissue engineering. Their research indicated that the incorporation of these materials improved the printability and mechanical strength of cell-laden patches without impairing cell viability and with suitable degradation in a human-like environment. Using 3D printing technology, Bejleri et al. [113] printed cECM (cardiac extracellular matrix), hCPC (human cardiac progenitor cell), and GelMA into cardiac patches. They discovered that hCPCs in the patch showed enhanced differentiation and angiogenesis, which were effectively maintained in the rat heart for more than 14 days, and revealed vascularization. The research reveals the possibility of using 3D printing to heal injured cardiac muscles.

It is essential to investigate a conductive hydrogel that could endure the pulse while meeting the mechanical strength and electrical conductivity of the heart. Synergistic advances in medicine, biology, and materials science will continue to bridge the laboratory-clinic gap.

Data Availability
Data sharing is not applicable to this review as no datasets were generated or analyzed during the current review.

Conflicts of Interest
There are no conflicts of interest to declare.

Acknowledgments
This work was supported by the Jilin Provincial Science and Technology Department (20200403091SF).

References

[1] K. M. Abbas, M. Abbasi, M. Abbasi-Kangevari, H. Abbastabar, and X. Liang, “Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, vol. 396, no. 10258, pp. 1204–1222, 2020.

[2] M. Zhou, H. Wang, X. Zeng et al., “Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017,” The Lancet, vol. 394, no. 10204, pp. 1145–1158, 2019.

[3] B. Qian, Q. Yang, M. Wang et al., “Encapsulation of lyophilized platelet-rich fibrin in alginate-hyaluronic acid hydrogel as a novel vascularized substitution for myocardial infarction,” Bioactive Materials, vol. 7, pp. 401–411, 2022.

[4] S. Pechta, T. Eschenhagen, and H. Reichenspurner, “Myocardial tissue engineering for cardiac repair,” The Journal of Heart and Lung Transplantation, vol. 35, no. 3, pp. 294–298, 2016.

[5] B. M. Ogle, N. Bursac, I. Domian et al., “Distilling complexity to advance cardiac tissue engineering,” Science Translational Medicine, vol. 8, no. 342, p. 342ps13, 2016.

[6] K. Elkhoury, M. Morsink, L. Sanchez-Gonzalez, C. Kahn, A. Tamayol, and E. Arab-Tehrany, “Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications,” Bioactive Materials, vol. 6, no. 11, pp. 3904–3923, 2021.

[7] E. E. Hago and X. S. Li, “Interpenetrating polymer network hydrogels based on gelatin and PVA by biocompatible approaches: synthesis and characterization,” Advances in Materials Science and Engineering, vol. 2013, pp. 1–8, Article ID 328763, 2013.

[8] H. Sun, L. Zhang, W. Cheng, F. Hao, L. Zhou, and Q. Li, “Injectable hydrogels in repairing central nervous system injuries,” Advances in Materials Science and Engineering, vol. 2021, pp. 1–11, Article ID 7381980, 2021.

[9] E. Y. Chuang, C. W. Chiang, P. C. Wong, and C. H. Chen, “Hydrogels for the application of articular cartilage tissue engineering: a review of hydrogels,” Advances in Materials Science and Engineering, vol. 2018, pp. 1–13, Article ID 4368910, 2018.

[10] A. N. Ordeghan, D. Khayatan, M. R. Saki et al., “The wound heating effect of nano collagen, collagen, and tadalafil in diabetic rats: an in vivo study,” Advances in Materials Science and Engineering, vol. 2022, pp. 1–10, Article ID 9222003, 2022.

[11] G. Camci-Unal, N. Annabi, M. R. Dokmeci, R. Liao, and A. Khademhosseini, “Hydrogels for cardiac tissue engineering,” NPG Asia Materials, vol. 6, no. 5, pp. e99–e, 2014.

[12] L. E. Portillo Esquivel and B. Zhang, “Application of cell, tissue, and biomaterial delivery in cardiac regenerative therapy,” ACS Biomaterials Science & Engineering, vol. 7, no. 3, pp. 1000–1021, 2021.

[13] A. Saberi, F. Jabbari, P. Zarrintaj, M. R. Saeb, and M. Mozafari, “Electrically conductive materials: opportunities and challenges in tissue engineering,” Biomolecules, vol. 9, no. 9, p. 448, 2019.

[14] A. López-Canosa, S. Perez-Amodio, E. Yanac-Huertas et al., “A microphysiological system combining electrospun fibers and electrical stimulation for the maturation of highly anisotropic cardiac tissue,” Biofabrication, vol. 13, no. 3, Article ID 035047, 2021.

[15] M. Solazzo, F. J. O’Brien, V. Nicolosi, and M. G. Monaghan, “The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering,” APL Bioengineering, vol. 3, no. 4, Article ID 041501, 2019.

[16] L. T. Izu, P. Kohl, P. A. Boyden et al., “Mechano-electric and mechano-chemo-transduction in cardiomyocytes,” The Journal of Physiology, vol. 598, no. 7, pp. 1285–1305, 2020.

[17] K. Liu, S. Wei, L. Song, H. Liu, and T. Wang, “Conductive hydrogels—a novel material: recent advances and future perspectives,” Journal of Agricultural and Food Chemistry, vol. 68, no. 28, pp. 7269–7280, 2020.

[18] J. H. Min, M. Patel, and W.-G. Koh, “Incorporation of conductive materials into hydrogels for tissue engineering applications,” Polymers, vol. 10, no. 10, p. 1078, 2018.

[19] Z. Wang, Y. Cong, and J. Fu, “Stretchable and tough conductive hydrogels for flexible pressure and strain sensors,” Journal of Materials Chemistry B, vol. 8, no. 16, pp. 3437–3459, 2020.

[20] L. Jiang, Y. Wang, Z. Liu et al., “Three-dimensional printing and injectable conductive hydrogels for tissue engineering application,” Tissue Engineering Part B Reviews, vol. 25, no. 5, pp. 398–411, 2019.
[21] L. Tang, S. Wu, J. Qu, L. Gong, and J. Tang, “A review of conductive hydrogel used in flexible strain sensor,” Materials, vol. 13, no. 18, p. 3947, 2020.

[22] F. Zhao, Y. Shi, L. Pan, and G. Yu, “Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications,” Accounts of Chemical Research, vol. 50, no. 7, pp. 1734–1743, 2017.

[23] N. K. Guimard, N. Gomez, and C. E. Schmidt, “Conducting polymers in biomedical engineering,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 876–921, 2007.

[24] T. Nezakati, A. Seifalian, A. Tan, and A. M. Seifalian, “Conductive polymers: opportunities and challenges in biomedical applications,” Chemical Reviews, vol. 118, no. 14, pp. 6766–6843, 2018.

[25] A. Abd Ali, D. H. Fadhil, E. Yousif, Z. Hussain, and S. Abdul-Wahab, “A comprehensive study of conductive polymer matrix composites: a review,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 8, no. 2, pp. 2043–2049, 2017.

[26] B. Guo and P. X. Ma, “Conducting polymers for tissue engineering,” Biomacromolecules, vol. 19, no. 6, pp. 1764–1782, 2018.

[27] J. Cao, Z. Liu, L. Zhang, J. Li, H. Wang, and X. Li, “Advance of electroconductive hydrogels for biomedical applications in orthopedics,” Advances in Materials Science and Engineering, vol. 2021, pp. 1–13, Article ID 6668209, 2021.

[28] C. Xu, S. Guan, S. Wang et al., “Biodegradable and electroconductive poly(3-4 ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering,” Materials Science and Engineering: C, vol. 84, pp. 32–43, 2018.

[29] Y. Sun, H. Li, Y. Lin, L. Niu, and Q. Wang, “Integration of poly(3-hexylthiophene) conductive stripe patterns with 3D tubular structures for tissue engineering applications,” RSC Advances, vol. 6, no. 76, pp. 72519–72524, 2016.

[30] M. Zarei, A. Samimi, M. Khorram, M. M. Abdi, and S. I. Golestanian, “Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application,” International Journal of Biological Macromolecules, vol. 168, pp. 175–186, 2021.

[31] N. Zanjazadeh Ezazi, M.-A. Shahbazi, Y. V. Shatalin et al., “Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration,” International Journal of Pharmaceutics, vol. 536, no. 1, pp. 241–250, 2018.

[32] S. Mohammad Nasr, R. Rabiee, S. Hajei et al., “Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine,” International Journal of Nanomedicine, vol. 15, pp. 4205–4224, 2020.

[33] R. Dong, X. Zhao, B. Guo, and P. X. Ma, “Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy,” ACS Applied Materials & Interfaces, vol. 8, no. 27, pp. 17138–17150, 2016.

[34] C. Yu, F. Yao, and J. Li, “Rational design of injectable conducting polymer-based hydrogels for tissue engineering,” Acta Biomaterialia, vol. 139, pp. 4–21, 2022.

[35] K. Roshanbinfar, L. Vogt, B. Greber et al., “Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues,” Advanced Functional Materials, vol. 28, no. 42, Article ID 1803951, 2018.

[36] Z. Cui, N. C. Ni, J. Wu et al., “Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation,” Theranostics, vol. 8, no. 10, pp. 2752–2764, 2018.

[37] D. Mawad, C. Mansfield, A. Lauto et al., “A conducting polymer with enhanced electronic stability applied in cardiac models,” Science Advances, vol. 2, no. 11, Article ID e1601007, 2016.

[38] S. Liang, Y. Zhang, H. Wang et al., “Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches,” Advanced Materials, vol. 30, no. 23, Article ID 1704235, 2018.

[39] K. Roshanbinfar, L. Vogt, F. Ruther, J. A. Roether, A. R. Boccaccini, and F. B. Engel, “Nanofibrous composite with tailorable electrical and mechanical properties for cardiac tissue engineering,” Advanced Functional Materials, vol. 30, no. 7, Article ID 1908612, 2020.

[40] A. K. Geim, “Graphene: status and prospects,” Science, vol. 324, no. 5934, pp. 1530–1534, 2009.

[41] H. C. A. Murthy, S. Ghotekar, B. Vinay Kumar, and A. Roy, “Graphene: a multifunctional nanomaterial with versatile applications,” Advances in Materials Science and Engineering, vol. 2021, pp. 1–8, Article ID 2418149, 2021.

[42] S. R. Shin, Y.-C. Li, H. L. Jang et al., “Graphene-based materials for tissue engineering,” Advanced Drug Delivery Reviews, vol. 105, pp. 255–274, 2016.

[43] B. W. Walker, R. Portillo Lara, E. Mogadam, C. Hsiang Yu, W. Kimball, and N. Annabi, “Rational design of microfabricated electroconductive hydrogels for biomedical applications,” Progress in Polymer Science, vol. 92, pp. 135–157, 2019.

[44] S. Talebian, M. Mehrali, R. Raad et al., “Electrically conducting hydrogel graphene nanocomposite biofibers for biomedical applications,” Frontiers of Chemistry, vol. 8, no. 88, 2020.

[45] H. Jo, M. Sim, S. Kim et al., “Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation,” Acta Biomaterialia, vol. 48, pp. 100–109, 2017.

[46] S. Gurunathan and J.-H. Kim, “Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials,” International Journal of Nanomedicine, vol. 11, pp. 1927–1945, 2016.

[47] K. Li, W. Liu, Y. Ni et al., “Technical synthesis and biomedical applications of graphene quantum dots,” Journal of Materials Chemistry B, vol. 5, no. 25, pp. 4811–4826, 2017.

[48] R. Rafiee, T. Rabczuk, R. Pourazizi, J. Zhao, and Y. Zhang, “Challenges of the modeling methods for investigating the interaction between the CNT and the surrounding polymer,” Advances in Materials Science and Engineering, vol. 2013, pp. 1–10, Article ID 183026, 2013.

[49] A. K. Gaharwar, N. A. Peppas, and A. Khademhosseini, “Biotecnology and Bioengineering,” Peer-reviewed journal, vol. 111, no. 3, pp. 441–453, 2014.

[50] L. Han, K. Liu, M. Wang et al., “Mussel-Inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance,” Advanced Functional Materials, vol. 28, no. 3, Article ID 1704195, 2018.

[51] G. Cellot, F. M. Toma, Z. Kasap Varley et al., “Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial–tissue interactions,” Journal of Neuroscience, vol. 31, no. 36, pp. 12945–12953, 2011.

[52] Z. Cui, M. Zhou, P. J. Greensmith et al., “A study of conductive hydrogel composites of pH-responsive microgels and carbon nanotubes,” Soft Matter, vol. 12, no. 18, pp. 4142–4153, 2016.
Advances in Materials Science and Engineering

[53] N. Karousis, N. Tagmataris, and D. Tasis, “Current progress on the chemical modification of carbon nanotubes,” Chemical Reviews, vol. 110, no. 9, pp. 5366–5397, 2010.

[54] Y. Liang, X. Zhao, T. Hu, Y. Han, and B. Guo, “Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin,” Journal of Colloid and Interface Science, vol. 556, pp. 514–528, 2019.

[55] A. C. P. de Vasconcelos, R. P. Morais, G. B. Novais et al., “In situ photocrosslinkable formulation of nanocomposites based on multi-walled carbon nanotubes and formononetin for potential application in spinal cord injury treatment,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 29, Article ID 102272, 2020.

[56] J. Park, S. Park, J. H. Tsui, A. Leonard, N. D. Camp et al., “Tunable electronic properties of MXene hydrogels,” Acta Biomaterialia, vol. 115, pp. 104–115, 2020.

[57] L. Sun, Z. Chen, D. Xu, and Y. Zhao, “Electroconductive and anisotropic structural color hydrogels for visual heart-on-a-chip construction,” Advanced Science, vol. 9, 2022.

[58] G. Basara, M. Saeidi-Javash, X. Ren et al., “Electrically conductive 3D printed Ti3C2Tx MXene-PGE composite constructs for cardiac tissue engineering,” Acta Biomaterialia, vol. 139, pp. 179–189, 2022.

[59] M. Zhou, K. H. Song, J. C. Burrell, D. K. Cullen, and J. A. Burdick, “Injectable and conductive granular hydrogels for 3D printing and electroactive tissue support,” Advanced Science, vol. 6, no. 20, Article ID 1901229, 2019.

[60] S. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari, “Synthesis of silver nanoparticles: chemical, physical and biological methods,” Research in pharmaceutical sciences, vol. 9, no. 6, pp. 385–406, 2014.

[61] M. Shah, V. Badwaik, Y. Kherde et al., “Gold nanoparticles: various methods of synthesis and antibacterial applications,” Frontiers in Bioscience, vol. 19, no. 8, pp. 1320–1344, 2014.

[62] E. Gutierrez-Pineda, P. R. Cáceres-Vélez, M. J. Rodríguez-Presa, S. E. Moya, C. A. Gervasi, and J. I. Amalvy, “Hybrid conducting composite films based on polypyrrole and poly(2-(diethylamino)ethyl methacrylate) hydrogel nanoparticles for electrochemically controlled drug delivery,” Advanced Materials Interfaces, vol. 5, no. 21, Article ID 1800968, 2018.

[63] B. Pena, M. Maldonado, A. J. Bonham et al., “Gold nanoparticle-functionalized reverse thermal gel for tissue engineering applications,” ACS Applied Materials & Interfaces, vol. 11, no. 20, pp. 18671–18680, 2019.

[64] A. Pourjavadi, M. Doroudian, A. Ahadpour, and S. Azari, “Injectable chitosan/carrageenan hydrogel designed with au nanoparticles: a conductive scaffold for tissue engineering demands,” International Journal of Biological Macromolecules, vol. 126, pp. 310–317, 2019.

[65] H. Wang and Z. Ma, “Ultrasensitive amperometric detection of the tumor biomarker cytokeratin antigen using a hydrogel composite consisting of phytic acid, Pb(II) ions and gold nanoparticles,” Microchimica Acta, vol. 184, no. 4, pp. 1045–1050, 2017.

[66] J. O. You, M. Rafat, G. J. C. Ye, and D. T. Auguste, “Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression,” Nano Letters, vol. 11, no. 9, pp. 3643–3648, 2011.

[67] A. Ul Haq, F. Carotenuto, F. De Matteis et al., “Intrinsically conductive polymers for striated cardiac muscle repair,” International Journal of Molecular Sciences, vol. 22, no. 16, pp. 8550, 2021.
hydrogel-based micro-topographies for the development of organized cardiac tissues,” RSC Advances, vol. 7, no. 6, pp. 3302–3312, 2017.

[83] P. Abdollahian, F. Oroojalian, and A. Mokhtarzadeh, “The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: an overview on soft-tissue engineering,” Journal of Controlled Release, vol. 332, pp. 460–492, 2021.

[84] T. Agarwal, G.M. Fortuna, S.Y. Hamid et al., “Recent advances in bioprinting technologies for engineering cardiac tissue,” Materials Science & Engineering C-Materials for Biological Applications, vol. 124, 2021.

[85] N. Liu, X. Ye, B. Yao et al., “Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration,” Bioactive Materials, vol. 6, no. 5, pp. 1388–1401, 2021.

[86] N. Z. Laird, T. M. Acri, J. L. Chakka et al., “Applications of nanotechnology in 3D printed tissue engineering scaffolds,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 161, pp. 15–28, 2021.

[87] A. Mousavi, S. Vahdat, N. Bahirei, M. Razavi, M. H. Norahan, and H.Baharvand, “Multifunctional conductive biomaterials as promising platforms for cardiac tissue engineering,” ACS Biomaterials Science & Engineering, vol. 7, no. 1, pp. 55–82, 2021.

[88] A. U. I. Haq, F. Carotenuto, P. Di Nardo et al., “Extrinsically conductive nanomaterials for cardiac tissue engineering applications,” Micromachines, vol. 12, no. 8, p. 914, 2021.

[89] S. He, J. Wu, S.-H. Li et al., “The conductive function of biopolymer corrects myocardial scar constriction blockage and resynchronizes contraction to prevent heart failure,” Biomaterials, vol. 258, Article ID 120285, 2020.

[90] T. Kim, Y. H. Kahng, T. Lee, K. Lee, and D. H. Kim, “Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells,” Molecules and Cells, vol. 36, no. 6, pp. 577–582, 2013.

[91] T.-J. Lee, S. Park, S. H. Bhang et al., “Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 452, no. 1, pp. 174–180, 2014.

[92] P. C. Sherrell, A. Cieslar-Pobuda, M. S. Ebnery et al., “Rational design of a conductive collagen heart patch,” Macromolecular Bioscience, vol. 17, no. 7, Article ID 1600446, 2017.

[93] S. Rohr, D. M. Scholly, and A. G. Kleber, “Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization,” Circulation Research, vol. 68, no. 1, pp. 114–130, 1991.

[94] A. Paul, A. Chakravarti, S. Pacelli, and R. Ahmed, “Abstract 339: a novel strategy to harness stem cell-intrinsic mecha-nobiological properties for advanced tissue repair: implication in cardiac tissue injury,” Circulation Research, vol. 123, no. Suppl. 1, 2018.

[95] M. Baghalishahi, S. H. Esfekhar-vaghefi, A. Pirvaye, S. N. Nematolahi-mahani, H. R. Mollaei, and Y. Sadeghi, “Cardiac extracellular matrix hydrogel together with or without inducer cocktail improves human adipose tissue-derived stem cells differentiation into cardiomyocyte-like cells,” Biochemical and Biophysical Research Communications, vol. 502, no. 2, pp. 215–225, 2018.

[96] J.-F. Chen, Q. Lin, H. Yao, Y.-M. Zhang, and T.-B. Wei, “Pillar 5 arene-based multifunctional supramolecular hydrogel: multistimuli responsiveness, self-healing, fluorescence sensing, and conductivity,” Materials Chemistry Frontiers, vol. 2, no. 5, pp. 999–1003, 2018.

[97] L. Fan, Z. He, X. Peng et al., “Injectable, intrinsically antibacterial conductive hydrogels with self-healing and pH stimulus responsiveness for epidermal sensors and wound healing,” ACS Applied Materials & Interfaces, vol. 13, no. 45, pp. 53541–53552, 2021.

[98] J. Qu, Y. Liang, M. Shi, B. Guo, Y. Gao, and Z. Yin, “Bio-compatible conductive hydrogels based on dextran and amine-trimer as electro-responsive drug delivery system for localized drug release,” International Journal of Biological Macromolecules, vol. 140, pp. 255–264, 2019.

[99] L. Zhao, Z. Ren, X. Liu, Q. Ling, Z. Li, and H. Gu, “A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor,” ACS Applied Materials & Interfaces, vol. 13, no. 9, pp. 11344–11355, 2021.

[100] C. Cam and T. Segura, “Matrix-based gene delivery for tissue repair,” Current Opinion in Biotechnology, vol. 24, no. 5, pp. 855–863, 2013.

[101] G. Ye, Z. Wen, F. Wen et al., “Mussel-inspired conductive Ti3C2-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction,” Theranostics, vol. 10, no. 5, pp. 2047–2066, 2020.

[102] M. Parchehbaf-Kashani, H. Ansari, E. Mahmoudi et al., “Heart repair induced by cardiac progenitor cell delivery within polypropylene-loaded cardiogel post-ischemia,” ACS Applied Bio Materials, vol. 4, no. 6, pp. 4849–4861, 2021.

[103] Z. Yuan, Q. Qin, M. Yuan, H. Wang, and R. Li, “Development and novel design of clustery graphene oxide formed Conductive Silk hydrogel cell vesicle to repair and routine care of myocardial infarction: investigation of its biological activity for cell delivery applications,” Journal of Drug Delivery Science and Technology, vol. 60, Article ID 102001, 2020.

[104] R. Si, C. Gao, R. Guo, C. Lin, J. Li, and W. Guo, “Human mesenchymal stem cells encapsulated-coacervated photoluminescent nanodots layered bioactive chitosan/collagen hydrogel matrices to indorse cardiac healing after acute myocardial infarction,” Journal of Photochemistry and Photobiology B: Biology, vol. 206, Article ID 117789, 2020.

[105] Y. Zhang, W. Fan, K. Wang, H. Wei, R. Zhang, and Y. Wu, “Novel preparation of Au nanoparticles loaded Laponite nanoparticles/ECM injectable hydrogel on cardiac differentiation of resident cardiac stem cells to cardiomyocytes,” Journal of Photochemistry and Photobiology B: Biology, vol. 192, pp. 49–54, 2019.

[106] A. Paul, A. Hasan, H. A. Kindi et al., “Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair,” ACS Nano, vol. 8, no. 8, pp. 8050–8062, 2014.

[107] M. Chingle, D. Zhu, K. Cheng, and K. Huang, “Bioengineering technologies for cardiac regenerative medicine,” Frontiers in Bioengineering and Biotechnology, vol. 9, Article ID 681705, 2021.

[108] Z. J. Rogers, M. P. Zeevi, R. Koppes, and S. A. Bencherif, “Electroconductive hydrogels for tissue engineering: current status and future perspectives,” Bioelectricity, vol. 2, no. 3, pp. 279–292, 2020.

[109] R. Dong, P. X. Ma, and B. Guo, “Conductive biomaterials for muscle tissue engineering,” Biomaterials, vol. 229, Article ID 119584, 2020.

[110] D. Srinivasan, M. Meignanamoorthy, M. Ravichandran et al., “3D printing manufacturing techniques, materials, and applications: an overview,” Advances in Materials Science and Engineering, vol. 2021, Article ID 5756563, 10 pages, 2021.
[111] M. Izadifar, D. Chapman, P. Babyn, X. Chen, and M. E. Kelly, “UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering,” *Tissue Engineering Part C Methods*, vol. 24, no. 2, pp. 74–88, 2018.

[112] Y. Delkash, M. Gouin, T. Rimbeault et al., “Bioprinting and in vitro characterization of an eggwhite-based cell-laden patch for endothelialized tissue engineering applications,” *Journal of Functional Biomaterials*, vol. 12, no. 3, p. 45, 2021.

[113] D. Bejleri, B. W. Streeter, A. L. Y. Nachlas et al., “A bio-printed cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair,” *Advanced Healthcare Materials*, vol. 7, no. 23, Article ID 1800672, 2018.