RESEARCH ARTICLE

Predictors of post-thrombolysis symptomatic intracranial hemorrhage in Chinese patients with acute ischemic stroke

Mingyong Liu1,2,3,4,5*, Yuesong Pan6,7*, Lichun Zhou5‡*, Yongjun Wang1,2,3,4‡*

1 Center of Stroke, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 2 National Clinical Research Center for Neurological Diseases, Beijing, China, 3 Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 5 Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China, 6 Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China, 7 Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China

☯ These authors contributed equally to this work.
‡ These authors also contributed equally to this work.
* yongjunwang1962@gmail.com (YW); 13701279076@163.com (LZ)

Abstract

Background and purpose

Predictors of symptomatic intracranial hemorrhage (sICH) in Chinese patients with acute ischemic stroke treated with recombinant tissue plasminogen activator remain unclear.

Methods

Data from the Thrombolysis Implementation and Monitor of Acute Ischemic Stroke in China (TIMS-China) study were assessed to explore risk factors for symptomatic intracranial hemorrhage after intravenous thrombolysis. Three candidate sICH definitions were analyzed.

Results

Among 1128 patients with acute ischemic stroke treated with intravenous rtPA within 4.5 hours of symptom onset, 23 (2.0%), 44 (3.9%) and 61 (5.4%) experienced modified mSITS-MOST, ECASS II, and NINDS defined sICH, respectively. Multivariate logistic regression revealed independent risk factors for sICH were age ≥ 70 years-old (sICH per NINDS, adjusted OR = 1.73 [95%CI 1.02–2.95], $p = 0.04$), diabetes (sICH per SITS-MOST, adjusted OR = 3.50 [95%CI 1.34–9.16], $p = 0.01$), serum glucose on admission >9.0mmol/L (sICH per ECASS II, adjusted OR = 2.84 [95%CI 1.48–5.46], $p = 0.002$), NIHSS on admission >20 (sICH per SITS-MOST, adjusted OR = 5.06 [95%CI 1.68–15.20], $p = 0.004$ or sICH per NINDS, adjusted OR = 7.09 [95%CI 2.41–20.87], $p < 0.001$ or sICH per ECASS II, adjusted OR = 4.99 [95%CI 2.53–9.84], $p < 0.001$) or sICH per NINDS, adjusted OR = 2.47 [95%CI 1.39–4.39], $p = 0.002$.)
Conclusion
Cardioembolism, NIHSS on admission higher than 20, serum glucose on admission higher than 9.0 mmol/L and age \geq 70 years were independent risk factors for symptomatic intracranial hemorrhage in Chinese patients with acute ischemic stroke treated with recombinant tissue plasminogen activator.

Introduction
Recombinant tissue plasminogen activator (r-tPA) treatment is an effective therapy for acute ischemic stroke (AIS) [1]. However, treatment with r-tPA is accompanied by a fatal complication known as symptomatic intracranial hemorrhage (sICH), which can worsen the outcomes of stroke patients [2]. According to NINDS criteria, the incidence rate of sICH is 2.2% to 8% across the world [3–7], and 4.87% to 7.3% in China [8–9]. Ginsberg reported that symptomatic intracranial hemorrhage is fatal in 41.4% of cases [10]. In a survey of American emergency physicians, 26% of the 1105 respondents were reluctant to use thrombolysis in acute ischemic stroke for fear of sICH [11]. Therefore, it is critical to identify predictors of sICH after thrombolysis. As demonstrated in the GRASPS score, Asian race was an independent predictor of sICH [12]. It has been postulated that Asian had higher rates of tPA-related intracranial hemorrhage because of the racial differences in blood coagulation–fibrinolysis factors, such as in the altered functions of fibrinogen and factor XII [13]. So, we think it is worthwhile to investigate the potential predictors in the Chinese population. In China, there is limited information regarding risk factors for sICH in patients with acute ischemic stroke treated with r-tPA. The aim of this study was to identify independent risk factors associated with sICH in Chinese patients with acute ischemic stroke treated with r-tPA.

Methods
Study population
Data were derived from a Chinese national prospective stroke registry study—The Thrombolysis Implementation and Monitor of Acute Ischemic Stroke in China (TIMS-China) trial. The design and previous results of the TIMS-China registry were published elsewhere [14]. Briefly, consecutive patients (18–80 years-old; platelet \geq 100,000/mm3) who received intravenous r-tPA (Actilyse; Boehringer Ingelheim, Germany) within 4.5 hours of AIS onset were recruited from 67 hospitals in China, between May 2007 and April 2012 [14]. The TIMS-China was approved by the ethics committees at all participating hospitals. Written informed consent was obtained from all patients or their representatives before data collection. This secondary analysis of data from the TIMS-China registry study was conducted from March 2016 to June 2016.

Data collection
Data on patient demographics, clinical characteristics, computed tomography (CT) or magnetic resonance imaging (MRI) scans of the brain, medical therapy and IV thrombolysis were collected by face-to-face interview by neurologists from the participating hospitals. Potential risk factors included age, gender, hypertension, diabetes, modified Rankin Scale (mRS) before stroke, NIHSS on admission, SBP on admission, DBP on admission, Serum glucose on admission, pre-existing treatment, early infarct signs on admission CT head scan,
Hyper dense middle cerebral artery sign on admission CT head scan, alteplase dose (mg/kg body weight), onset to needle time (hours), onset to needle time >3 hours, and stroke subtype.

Outcome measurements
The primary outcome was incidence of sICH at 0 to 36 h after IV r-tPA. Symptomatic ICH (sICH) was based on three different definitions from previously published international trials: parenchymal hemorrhage with deterioration in National Institutes of Health Stroke Scale score of ≥4 points or death (the modified Safe Implementation of Thrombolysis in Stroke-Monitoring Study [mSITS-MOST]) [15]; any type of intracranial hemorrhage on any post-treatment imaging after thrombolysis start and increase of NIHSS by 4 points from baseline, or death (the European Cooperative Acute Stroke Study [ECASS] II) [16]; any hemorrhagic transformation temporally related to any worsening in neurological condition (National Institute of Neurological Disorders and Stroke [NINDS]) [17].

Statistical analysis
Continuous and categorical variables of patients' baseline characteristics were presented as mean±SD or median (interquartile range) and percentages, respectively. Baseline characteristics of patients with and without sICH per SITS-MOST, ECASS II and NINDS definitions were compared by the Mann-Whitney U test and Pearson χ² method for continuous and categorical variables, respectively. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated by multi-variable logistic regression analysis. Two-sided p<0.05 was considered statistically significant. All analyses were performed with the SAS 9.4 software.

Results
From May 2007 to April 2012, 1128 AIS patients with onset to needle time ≤4.5 hours were entered into the TIMS-China registry. Among the 1128 patients with acute ischemic stroke included in this study, 23 (2.0%), 44 (3.9%), and 61 (5.4%) experienced modified mSITS-MOST, ECASS II, and NINDS defined sICH, respectively.

Demographic and baseline characteristics of the patients with sICH per mSITS-MOST criteria are summarized in Table 1. Compared with non-sICH patients, sICH patients were accompanied with higher NIHSS on admission (18 [12–21] vs 11 [7–16], p = 0.0007), higher serum glucose on admission (8.64±3.04 vs 7.70±3.02 mmol/L, p = 0.0410), and more cardioembolism stroke subtype (13 [56.52%] vs 208 [18.82%], p < 0.0001).

Demographic and baseline characteristics of the patients with sICH per ECASS II criteria are summarized in Table 2. Compared with non-sICH patients, sICH patients were accompanied with higher NIHSS on admission (15 [12–20] vs 11 [7–16], p = 0.0002), higher serum glucose on admission (8.88±3.81 vs 7.67±2.99 mmol/L, p = 0.0150), and more cardioembolism stroke subtype (23 [52.27%] vs 198 [18.27%], p < 0.0001).

Demographic and baseline characteristics of the patients by sICH per NINDS criteria are summarized in Table 3. Compared with non-sICH patients, sICH patients were accompanied with elder age (67.18±9.28 vs 63.27±11.42, p = 0.0126), higher NIHSS on admission (16 [12–20] vs 11 [7–16], p = 0.0001), larger proportion of serum glucose >9.0 mmol/L on admission (18 [29.51%] vs 202 [18.93%], p = 0.0426), and more cardioembolism stroke subtype (27 [44.26%] vs 194 [18.18%], p < 0.0001).

Multivariate logistic regression analysis for determining sICH risk factors per mSITS-MOST, ECASS II or NINDS are summarized in Table 4. Independent risk factors for sICH were age ≥70 years (sICH per NINDS, adjusted OR = 1.73 [95%CI 1.02–2.95], p = 0.04), diabetes (sICH per SITS-MOST, adjusted OR = 3.50 [95%CI 1.34–9.16], p = 0.01), serum glucose on
Table 1. Demographic and baseline characteristics of the patients with sICH per mSITS-MOST criteria.

variables	sICH (N = 23)	Non-sICH(N = 1105)	p
Age (year)			
<70	12(52.17)	699(63.26)	0.2757
≥70	11(47.83)	406(36.74)	
Gender (male)			
	12(52.17)	676(61.18)	0.3810
Hypertension			
	15(65.22)	652(59.00)	0.5486
Diabetes			
	7(30.43)	189(17.10)	0.1639
mRS 0–2 before stroke			
	23(100.00)	1083(98.01)	0.4944
NIHSS on admission			
0–14	8(34.78)	762(68.96)	0.0007
15–20	8(34.78)	233(21.09)	0.0006
>20	7(30.43)	110(9.95)	
SBP on admission (mm Hg)	148.04±15.06	148.03±11.06	0.9463
DBP on admission (mm Hg)	86.00±11.78	85.94±12.67	0.9003
Serum glucose on admission (mmol/L)			
≤9.0	14(60.87)	894(80.90)	0.0328
>9.0	9(39.13)	211(19.10)	0.4332
Preexisting antihypertensive treatment			
	7(30.43)	425(38.46)	0.4332
Preexisting anticoagulant treatment			
	0(0.00)	19(1.72)	0.5259
Preexisting antiplatelet treatment			
	6(26.09)	152(13.76)	0.1667
Early infarct signs on admission CT head scan			
	0(0.00)	61(5.52)	0.2466
Hyper dense middle cerebral artery sign on admission CT			
	2(8.70)	75(6.79)	1.0000
Alteplase dose (mg/kg body weight)	0.90(0.81–0.90)	0.90(0.86–0.90)	0.2460
Onset to needle time (hours)	3.03(2.38–3.58)	2.83(2.33–3.25)	0.2553
Onset to needle time >3 h	12(52.17)	362(32.76)	0.0503
Stroke subtype			
Large-artery atherosclerosis	5(21.74)	601(54.39)	<.0001
Small-vessel occlusion	0(0.00)	117(10.59)	
Cardioembolism	13(56.52)	208(18.82)	
Other	5(21.74)	179(16.20)	

Continuous variables: median with interquartile range (IQR) and P values per the Mann-Whitney U test. Categorical variables: proportions (%) and P values per the Pearson χ^2 test.

The sICH indicates symptomatic intracranial hemorrhage; SITS-MOST, Safe Implementation of Thrombolysis in Stroke-Monitoring Study; NIHSS, National Institutes of Health Stroke Scale; BP, blood pressure; mRS, modified Rankin Scale

https://doi.org/10.1371/journal.pone.0184646.t001

admission >9.0 mmol/L (sICH per ECASS II, adjusted OR = 2.84 [95% CI 1.48–5.46], p = 0.002), NIHSS on admission >20 (sICH per SITS-MOST, adjusted OR = 5.06 [95% CI 1.68–15.20], p = 0.004) or sICH per NINDS, adjusted OR = 2.81 [95% CI 1.42–5.57], p = 0.003) and cardioembolism (sICH per SITS-MOST, adjusted OR = 7.09 [95% CI 2.41–20.87], p < 0.001 or sICH per ECASS II, adjusted OR = 4.99 [95% CI 2.53–9.84], p < 0.001 or sICH per NINDS, adjusted OR 2.47 [95% CI 1.39–4.39], p = 0.002).

Discussion

This study showed that age ≥70 years, NIHSS score >20, diabetes or serum glucose on admission >9.0 mmol/L and cardioembolism were independent predictors of sICH after thrombolysis in Chinese patients with acute ischemic stroke.
Because age > 80 years old is considered a relative contraindication for 3–4.5h iv r-tPA thrombosis by many guidelines, and the time range in this study was 0h-4.5h, we selected patients with age varying from 18 to 80 years. It was reported that higher sICH are found in patients \(\geq 70 \) years old treated by iv r-tpA.\[18\] Therefore, age \(\geq 70 \) years was considered a risk factor for sICH. In agreement with our findings, Sombat M, et al reported that age > 75 years increases by 1.532 times the risk of sICH in Thai AIS patients who accepted iv r-tPA thrombosis\[19\]. However, two studies in Australia\[20\] and Japan\[21\] reported that age over 80 years is not related to sICH risk increase. These findings indicated that ethnicity may account for the discrepant effects of age in sICH.

That higher NIHSS score increases the risk of sICH has been reported by many studies \[2,19,22\]. Severe ischemic stroke is reflected by large areas of injured brain tissue, including injured blood vessels, which are prone to bleeding after r-tPA treatment.
Lindley RI et al. reported diabetes does not increase the risk of sICH in AIS patients treated with r-tPA[23]. However, Menon BK et al reported that serum glucose on admission >8.3mmol/L increases sICH risk[12], corroborating the above findings. Certainly, the mechanism behind this phenomenon requires further research.

Cardioembolism was reported as an independent predictor of sICH in many studies[5,24–27]. This was confirmed in the present study assessing Chinese patients. Mosimann PJ et al reported that onset to needle time >3h increases the risk of sICH[28]. We also found such a trend, although no statistical significance was reached (52.17% vs 32.76%, p = 0.0503).

In agreement with a previous study[29], we demonstrated that pre-existing anticoagulant treatment did not increase the risk of sICH (0.00% vs1.72%, p = 0.5259). Matute MC et al. reported that pre-existing oral anticoagulant treatment with INR <2 does not increase the risk of sICH. However, prior use of low molecular heparin appeared to increase the risk of sICH.

Table 3. Demographic and baseline characteristics of the patients by sICH per NINDS criteria.

variables	sICH (N = 61)	Non-sICH(N = 1067)	p
Age (year)	67.18±9.28	63.27±11.42	0.0126
<70	28(45.90)	683(64.01)	0.0044
≥70	33(54.10)	384(35.99)	
Gender (male)	32(52.46)	656(61.48)	0.1600
Hypertension	37(60.66)	630(59.04)	0.8033
Diabetes	10(16.39)	186(17.43)	0.8351
mRS 0–2 before stroke	61(100.00)	1045(97.94)	0.2574
NIHSS on admission	16(12–20)	11(7–16)	<.0001
0–14	27(44.26)	743(69.63)	<.0001
15–20	19(31.15)	222(20.81)	
>20	15(24.59)	102(9.56)	
SBP on admission (mm Hg)	148.10±18.21	148.03±21.11	0.9850
DBP on admission (mm Hg)	87.07±10.99	85.88±12.73	0.5413
Serum glucose on admission (mmol/L)	8.35±3.47	7.68±3.00	0.1114
≤9.0	43(70.49)	865(81.07)	0.0426
>9.0	18(29.51)	202(18.93)	
Preexisting antihypertensive treatment	22(36.07)	410(38.43)	0.7123
Preexisting anticoagulant treatment	0(0.00)	19(1.78)	0.2932
Preexisting antiplatelet treatment	11(18.03)	147(13.78)	0.3516
Early infarct signs on admission CT head scan	3(4.92)	58(5.44)	1.0000
Hyper dense middle cerebral artery sign on admission CT	8(13.11)	69(6.47)	0.0816
Alteplase dose (mg/kg body weight)	0.90(0.83–0.90)	0.90(0.86–0.90)	0.3226
Onset to needle time (hours)	2.75(2.38–3.33)	2.83(2.33–3.25)	0.8085
Onset to needle time >3 h	21(34.43)	353(33.08)	0.8285
Stroke subtype			
Large-artery atherosclerosis	27(44.26)	579(54.26)	<.0001
Small-vessel occlusion	0(0.00)	117(10.97)	
Cardioembolism	27(44.26)	194(18.18)	
Other	7(11.48)	177(16.59)	

Continuous variables: median with inter quartile range (IQR) and P values per the Mann-Whitney U test. Categorical variables: proportions (%) and P values per the Pearson χ² test.

The sICH indicates symptomatic intracranial hemorrhage; NINDS, the National Institute of Neurological Disorders and Stroke; NIHSS, National Institutes of Health Stroke Scale; BP, blood pressure; mRS, modified Rankin Scale

https://doi.org/10.1371/journal.pone.0184646.t003
Regarding bleeding effects of anticoagulants before thrombolysis, further research is necessary.

The SEDAN (blood Sugar, Early infarct signs, hyper Dense cerebral artery sign, Age, NIH Stroke Scale) score [31] was reported [32] to show higher predictive value compared with other sICH risk scores, including MSS (Multicenter Stroke Survey) [33], HAT (Hemorrhage After Thrombolysis) [34], GRASPS (Glucose at presentation, Race [Asian], Age, Sex [male], systolic blood Pressure at presentation, and Severity of stroke at presentation [NIH Stroke Scale]) [12], SITS (Safe Implementation of Thrombolysis in Stroke) [35], and SPAN (Stroke Prognostication using Age and NIH Stroke Scale) - 100 positive index [36]. Most risk factors of the SEDAN score, such as blood sugar, age, and NIHSS, were found in this study; however, early infarct and hyper dense cerebral artery signs were not independent sICH risk factors as shown above. Future larger sample studies are required to confirm these findings.

Leukoaraiosis was shown to be a risk factor for sICH in acute ischemic stroke patients treated with IV r-tPA [37]. However, this aspect was not evaluated in this study. Further studies are required to confirm the above risk factors to guide clinical practice.

Nonetheless, risk factors for sICH should not be regarded as contraindications for IV r-tPA therapy in acute ischemic stroke.

There were some limitations in the current study. Firstly, most participating hospitals in TIMS-China were in urban areas. Urban hospitals mainly accept urban patients and little rural patients, which may comply with patients choice bias.

Secondly, TIMS-China recruited patients from May 2007 to April 2012, and this long period may increase confounding factors. During six years of period, patients’ basic medical circumstance is changing. For example, habits and customs (smoking, drink, sports, etc) and medical prevention may change, which may comply with bias. Thirdly, the sample size was relatively small, and the obtained findings should be verified in future larger sample studies.

	sICH per mSITS-MOST		sICH per ECASS II		sICH per NINDS	
	Adjusted OR (95%CI)	p	Adjusted OR (95%CI)	p	Adjusted OR (95%CI)	p
Age ≥ 70 years	3.50 (1.34–9.16)	0.01			1.73 (1.02–2.95)	0.04
Diabetes	ref				ref	
Serum glucose on admission > 9.0 mmol/L	2.84 (1.48–5.46)	0.002			ref	
NIHSS on admission	ref				ref	
0–14	ref			ref	ref	
15–20	2.37 (0.83–6.76)	0.11		1.54 (0.82–2.90)	0.18	
>20	5.06 (1.68–15.20)	0.004		2.81 (1.42–5.57)	0.003	
Stroke subtype	ref		ref	ref	ref	
Large-artery atherosclerosis	ref		ref	ref	ref	
Small-vessel occlusion	NA		NA	NA	NA	
Cardioembolism	7.09 (2.41–20.87)	<0.001	4.99 (2.53–9.84)	<0.001	2.47 (1.39–4.39)	0.002
Other	5.12 (1.40–18.72)	0.01	1.46 (0.56–3.85)	0.44	0.99 (0.42–2.32)	0.97

Multivariate logistic regression analysis adopted backward method. Ref, reference; N/A, not available or unreported.

The sICH indicates symptomatic intracranial hemorrhage; SITS-MOST, Safe Implementation of Thrombolysis in Stroke-Monitoring Study; ECASS II, the European Cooperative Acute Stroke Study II; NINDS, the National Institute of Neurological Disorders and Stroke; NIHSS, National Institutes of Health Stroke Scale; BP, blood pressure; mRS, modified Rankin Scale.

https://doi.org/10.1371/journal.pone.0184646.t004

Table 4. Results of multivariate logistic regression analysis of sICH risk factors per mSITS-MOST, ECASS II or NINDS.
Conclusions
Cardioembolism, NIHSS on admission higher than 20, serum glucose on admission > 9.0 mmol/L and age ≥ 70 years are risk factors for symptomatic intracranial hemorrhage in Chinese patients with acute ischemic stroke treated with recombinant tissue plasminogen activator.

Supporting information
S1 File. TRAIS-CHINA ethic approval-Chinese version.pdf. (PDF)
S2 File. TRAIS-CHINA ethic approval-English version.doc. (DOC)
S1 Checklist. PLOSOne_Clinical_Studies_Checklist-PONE-D-17-01680.doc. (DOC)

Author Contributions
Conceptualization: Mingyong Liu, Lichun Zhou, Yongjun Wang.
Data curation: Mingyong Liu, Yuesong Pan.
Formal analysis: Mingyong Liu, Yuesong Pan.
Methodology: Mingyong Liu, Yuesong Pan, Yongjun Wang.
Project administration: Lichun Zhou, Yongjun Wang.
Resources: Lichun Zhou.
Software: Yuesong Pan.
Supervision: Lichun Zhou, Yongjun Wang.
Validation: Yuesong Pan, Lichun Zhou.
Writing – original draft: Mingyong Liu.
Writing – review & editing: Mingyong Liu, Yuesong Pan, Lichun Zhou, Yongjun Wang.

References
1. Urra X, Arinó H, Llull L, Amaro S, Obach V, Cervera Á, et al. (2013) The outcome of patients with mild stroke improves after treatment with systemic thrombolysis. PLoS ONE 8(3): e59420. https://doi.org/10.1371/journal.pone.0059420 PMID: 23527192
2. Strbian D, Sairanen T, Meretoja A, Pitkänen I, Putaala J, Salonen O, et al. (2011) Helsinki Stroke Thrombolysis Registry Group. Patient outcomes from symptomatic intracerebral hemorrhage after stroke thrombolysis. Neurology 77:341–348. https://doi.org/10.1212/WNL.0b013e3182267b8c PMID: 21715707
3. Orlando A, Wagner JC, Fanale CV, Whaley M, McCarthy KL, Bar-Or D. (2016) A four-year experience of symptomatic intracranial hemorrhage following intravenous tissue plasminogen activator at a comprehensive stroke center. J Stroke Cerebrovasc Dis 25(4):969–76. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.01.003 PMID: 26856464
4. Lee HJ, Lee JS, Choi JC, Cho YJ, Kim BJ, Bae HJ, et al. Simple estimates of symptomatic intracranial hemorrhage risk and outcome after intravenous thrombolysis using age and stroke severity. (2017) Journal of Stroke 19(2):229–231. https://doi.org/10.5853/jos.2016.01109 PMID: 28460493
5. Tong X, George MG, Yang Q, Gillespie C. Predictors of in-hospital death and symptomatic intracranial hemorrhage in patients with acute ischemic stroke treated with thrombolytic therapy: Paul Coverdell
Predictors of post-thrombolysis symptomatic intracranial hemorrhage

6. Seet Raymond C.S., Rabinstein Alejandro A.. Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke: a critical review of case definitions.(2012)Cerebrovasc Dis 34:106–114. https://doi.org/10.1159/000339675 PMID: 22868870

7. Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, Lee TH, et al. Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke.(2016)N Engl J Med 374:2313–23. https://doi.org/10.1056/NEJMoa1515510 PMID: 27161018

8. Liao X, Wang Y, Pan Y, Wang C, Zhao X, Wang DZ, et al. Standard-dose intravenous tissue-type plasminogen activator for stroke is better than low doses.(2014)Stroke 45:2354–2358. https://doi.org/10.1161/STROKEAHA.114.005989 PMID: 25013020

9. Sung SF, Chen SC, Lin HJ, Chen YW, Tseng MC, Chen CH. Comparison of risk-scoring systems in predicting symptomatic intracerebral hemorrhage after intravenous thrombolysis.(2013)Stroke 44:1561–1566. https://doi.org/10.1161/STROKEAHA.111.000651 PMID: 23632979

10. Ginsburg Hill.(2015)Symptomatic intracranial hemorrhage in the ALIAS Multicenter Trial: relationship to endovascular thrombolytic therapy. Int J Stroke 10: 494–500. https://doi.org/10.1111/ijs.12476 PMID: 25808637

11. Brown DL, Barsan WG, Lisabeth LD, Gallery ME, Morgenstern LB.(2005) Survey of emergency physicians about recombinant tissue plasminogen activator for acute ischemic stroke. Ann Emerg Med 46:56–60. https://doi.org/10.1016/j.annemergmed.2004.12.025 PMID: 15984247

12. Menon BK, Saver JL, Prabhakaran S, Reeves M, Liang L, Olson DM, et al. (2012)Risk score for intracranial hemorrhage in patients with acute ischemic stroke treated with intravenous tissue-type plasminogen activator. Stroke 43:2293–2299. https://doi.org/10.1161/STROKEAHA.111.660415 PMID: 22811458

13. Ueshima S, Matsuo O. The differences in thrombolytic effects of administrated recombinant t-PA between Japanese and Caucasians.(2002) ThrombHaemost 87:544–546.

14. Liao XL, Wang CX, Wang YL, Wang CJ, Zhao XQ, Zhang LQ, et al.(2013)Thrombolysis Implementation and Monitor of acute ischemic Stroke in China (TIMS-China) Investigators. Implementation and outcome of thrombolysis with alteplase 3 to 4.5 h after acute stroke in Chinese patients. CNS Neurosci Ther 19:43–47. https://doi.org/10.1111/cns.12031 PMID: 23206165

15. Wahlgren N, Ahmed N, Dávalos A, Ford GA, Grond M, Hacke W, et al.(2007)Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring (SITS-MOST): an observational study. Lancet 369:275–282. https://doi.org/10.1016/S0140-6736(07)60149-4 PMID: 17258667

16. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. (2008) ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute stroke. N Engl J Med 359:1317–29. https://doi.org/10.1056/NEJMoa0804656 PMID: 18815396

17. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group.(1995)Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–7. https://doi.org/10.1056/NEJM199512143332401 PMID: 7477192

18. Dharmasaroja PA, Muengtaweepongsa S, Dharmasaroja P. Intravenous thrombolysis in Thai patients with acute ischemic stroke: role of aging. J Stroke Cerebrovasc Dis 22:227–31. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.08.001 Epub 2011 Dec 15. PMID: 22177929

19. Muengtaweepongsa S, Prapa-Anantachai P, Dharmasaroja PA, Rukkul P, Yodvisitsak P, (2015)External validation of the SEDAN score: The real world practice of a single center. Ann Indian Acad Neurol 18(2): 181–186. https://doi.org/10.4103/0972-2327.150592 PMID: 26019416

20. Costello CA, Campbell BC, Perez de la Ossa N, Zheng TH, Sherwin JC, Weir L, et al.(2012)Age over 80 years is not associated with increased hemorrhagic transformation after stroke thrombolysis. J Clin Neurosci 19:360–3. https://doi.org/10.1016/j.jocn.2011.08.014 PMID: 22245278

21. Matsuo R, Kamouchi M, Fukuda H, Hata J, Wakisaka Y, Kuroda J, et al.(2014) Intravenous thrombolysis with recombinant tissue plasminogen activator for ischemic stroke patients over 80 years old: The Fukuoka Stroke Registry. PLoS ONE 9(10):e110444. https://doi.org/10.1371/journal.pone.0110444 PMID: 25329379

22. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. (2014)Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384:1829–1935. https://doi.org/10.1016/S0140-6736(14)60584-5 PMID: 25106063

23. Lindley RJ, Wardlaw JM, Whiteley WN, Cohen G, Blackwell L, Murray GD, et al. (2015)Alteplase for acute ischemic stroke: outcomes by clinically important subgroups in the Third International Stroke Trial. Stroke 46:746–756. https://doi.org/10.1161/STROKEAHA.114.006573 PMID: 25613308
24. C Carolyn A., S Nikeith, M Tanya, H Lisa D., S Kevin N. (2012) No increased risk of symptomatic intracerebral hemorrhage after thrombolysis in patients with European Cooperative Acute Stroke Study (ECASS) exclusion criteria. Stroke 43: 1684–1686. https://doi.org/10.1161/STROKEAHA.112.656587 PMID: 22535272

25. Dharmasaroja PA, Muengtaweepongsa S, Pattaraarchchai J, Dharmasaroja P. (2012) Intracerebral hemorrhage following intravenous thrombolysis in Thai patients with acute ischemic stroke. J Clin Neurol 19:799–803. https://doi.org/10.1016/j.jcn.2011.08.035 PMID: 22472785

26. Kono S, Deguchi K, Morimoto N, Kurata T, Deguchi S, Yamashita T, et al. (2013) Tissue plasminogen activator thrombolytic therapy for acute ischemic stroke in 4 hospital groups in Japan. J Stroke Cerebrovasc Dis 22(3):190–9. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.07.016 PMID: 21968092

27. Al-Khaled M, Matthais C and Eggers J. (2014) Predictors of in-hospital mortality and the risk of symptomatic intracerebral hemorrhage after thrombolytic therapy with recombinant tissue plasminogen activator in acute ischemic stroke. J Stroke Cerebrovasc Dis 23(1):7–11. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.04.004 PMID: 22578915

28. Mosimann PJ, Sirimarco G, Meseguer E, Serfaty JM, Laissy JP, Labreuche J, et al. (2013) Is intracerebral hemorrhage a time-dependent phenomenon after successful combined intravenous and intra-arterial therapy? Stroke 44(3):806–8. https://doi.org/10.1161/STROKEAHA.112.675678 PMID: 23370204

29. Xian Y, Liang L, Smith EE, Schwamm LH, Reeves MJ, Olson DM, et al. (2012) Risks of intracranial hemorrhage among patients with acute ischemic stroke receiving warfarin and treated with intravenous tissue plasminogen activator. JAMA 307(24):2600–8. https://doi.org/10.1001/jama.2012.6756 PMID: 22735429

30. Matute MC, Masjuan J, Egido JA, Fuentes B, Simal P, Díaz-Otero F, et al. (2012) Safety and outcomes following thrombolytic treatment in stroke patients who had received prior treatment with anticoagulants. Cerebrovasc Dis 33(3):251–9. https://doi.org/10.1159/000334662 PMID: 22261670

31. Strbian D, Engelter S, Michel P, Meretoja A, Sekoranja L, Ahlhelm FJ, et al. (2012) Symptomatic intracerebral hemorrhage after stroke thrombolysis: the SEDAN score. Ann Neurol 71(5):634–41. https://doi.org/10.1002/ana.23546 PMID: 22922478

32. Strbian D, Michel P, Seifgfe DJ, Saver JL, Numminen H, Meretoja A, et al. (2014) Symptomatic intracerebral hemorrhage after stroke thrombolysis: comparison of prediction scores. Stroke 45(3):752–8. https://doi.org/10.1161/STROKEAHA.113.003806 PMID: 24473180

33. Cucchiara B, Tanne D, Levine SR, Demchuk AM, Kasner S. (2008) Ariskscore to predict intracranial hemorrhage after recombinant tissue plasminogen activator for acute ischemic stroke. J Stroke Cerebrovasc Dis 17:331–333. https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.03.012 PMID: 18984422

34. Lou M, Safdar A, Mehdiratta M, Kumar S, Schlaug G, Caplan L, et al. (2008) The HAT Score: a simple grading scale for predicting hemorrhage after thrombolysis. Neurology 71:1417–1423. https://doi.org/10.1212/01.wnl.0000330297.58334.dd PMID: 18955684

35. Mazya M, Egido JA, Ford GA, Lees KR, Mikulik R, Toni D, et al. (2012) SITS Investigators, Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke treated with intravenous alteplase: Safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score. Stroke 43:1524–1531. https://doi.org/10.1161/STROKEAHA.111.644815 PMID: 22442179

36. Saposnik G, Guzik AK, Reeves M, Ovbiagele B, Johnston SC. (2013) Stroke prognostication using age and NIH stroke scale: SPAN-100. Neurology 80:21–28. https://doi.org/10.1212/WNL.0b013e31827b1ace PMID: 23175723

37. Lin Q, Li Z, Wei R, Lei Q, Liu Y, Cai X. (2016) Increased risk of post-thrombolysis intracranial hemorrhage in acute ischemic stroke patients with leukoaraiosis: A Meta-Analysis. PLoS ONE 11(4): e0153486. https://doi.org/10.1371/journal.pone.0153486 PMID: 27096292