Superior mesenteric artery syndrome treated successfully by endoscopy-assisted jejunal feeding tube placement

Jongkuk Kim, Songsoo Yang, Yeong Cheol Im, Inkyu Park

SUMMARY
We report the case of a 31-year-old man with superior mesenteric artery syndrome after reoperation due to postoperative complications from rectal cancer. Although initial total parenteral nutrition (TPN) therapy failed, he underwent endoscopy-assisted feeding tube placement without complications instead of surgery. After 2 weeks of dual feeding (enteral feeding and TPN), he improved, gaining 6 kg; and an oral diet was advanced.

BACKGROUND
Superior mesenteric artery (SMA) syndrome is a rare disease that presents with abdominal pain, vomiting and weight loss. Non-surgical therapy is recommended for the initial treatment of SMA syndrome, but surgery can be performed if conservative nutritional therapy does not address the condition. However, the surgical treatment itself has a risk of postoperative complications, and there are surgical risks to the patient due to poor nutritional status.

CASE PRESENTATION
A 31-year-old man, weighing 56.2 kg and 170 cm tall, was diagnosed with advanced rectal cancer, and after concurrent chemoradiation therapy, underwent laparoscopic low anterior resection. After 2 weeks from discharge, he was readmitted to the hospital for nausea and vomiting and was diagnosed with postoperative small bowel obstruction around the ileostomy. He underwent a small bowel resection because he did not improve from conservative treatment. After reoperation due to the small bowel obstruction, he reported abdominal discomfort and postprandial stabbing epigastric pain with nausea and vomiting. He showed a weight loss of 9 kg over 18 days since the readmission (figure 1). An abdominal CT scan was performed under suspicion of postoperative intestinal obstruction, which demonstrated moderate gastroduodenal dilation with compression of the SMA, and 7 mm of aortomesenteric distance, consistent with SMA syndrome (figure 2). Gastroduodenoscopy showed reflux esophagitis grade III and a fluid-filled first and second portion of the duodenum, and stenosis of the third portion. Conservative medical treatment with high-calorie total parenteral nutrition (TPN) and anti-emetics was initially administered for 2 weeks. The administration of nutrients was set at 1500 kcal/day, and the total volume of TPN was 1440 mL. The ingredients of TPN administered during this period were glucose 187 g/day, protein 72 g/day and lipid 58 g/day. Even after TPN treatment, his weight continued to decline. Although we tried to increase the total calorie of TPN, we could not afford it due to the fluid overload. So then surgery was considered first, but the perioperative risk was expected to be high in preoperative risk evaluation due to his poor nutritional status and severe bronchiectasis. Consequently, jejunal feeding tube placement past the obstruction via endoscopy was offered for the treatment of SMA syndrome.

An endoscopy-guided jejunal feeding tube (Abbott’s 12 Fr) was passed through the third portion of the duodenum and successfully placed distally to the duodenojejunal junction (figures 3 and 4). After confirming that there were no complications or patient discomfort, we started both tube enteral feeding and TPN simultaneously. The initial enteral nutrition was set at 900 kcal, and the components were 143 g of glucose, 40 g of protein and 30 g of lipid. The previous calories of TPN decreased gradually from 1500 to 1000 kcal/day. Finally, the administration of total nutrients was set at 1900 kcal. On dual enteral and parenteral nutrition feeding, the patient gained 6 kg in 2 weeks and showed a relief of symptoms (figure 5). The jejunal feeding tube was removed, and an oral diet was advanced. The patient has signed the informed consent.

OUTCOME AND FOLLOW-UP
After successfully undergoing the procedure, the patient gained 6 kg in 2 weeks by simultaneously taking enteral and parenteral nutrition, and then an oral diet was advanced. This favourable outcome is comparable with other studies that showed weight gain after surgery.

DISCUSSION
This case report of feeding tube placement distal to the obstruction via the endoscopic approach for SMA syndrome in a postoperative patient showed that feeding tube placement was safe and useful, particularly in a perioperative high-risk patient, to improve SMA syndrome quickly. SMA syndrome studies have estimated the incidence at 0.013%–0.3% in the general population. It is defined as the compression of the third part of the duodenum due to the narrowing of the space between the SMA and the aorta, mainly by the loss of the mesenteric fat pad. The most common factor reducing the angle and distance between the aorta and the SMA is
significant weight loss leading to the loss of mesenteric fat pads due to a medical disorder, psychological disorder or surgery.3–7 Patients may have acute (eg, postoperative) or slowly progressive symptoms, consistent with the symptoms of proximal small bowel obstruction. Patients with mild obstruction may have only postprandial epigastric pain and early satiety, while those with more advanced obstruction may have severe nausea, bilious emesis and weight loss. Patients may also have symptoms of reflux.8,9 The diagnosis of SMA syndrome may be aided by radiological, angiographic, ultrasonic and endoscopic studies. CT angiography is now the investigation of choice, with endoscopy and ultrasound playing adjunctive roles.10 We employed a CT scan with confirmatory findings. As a general rule, few criteria should be present on imaging11,12: (1) duodenal obstruction with an abrupt cut-off in the third portion and active peristalsis; (2) an aortomesenteric artery angle of $\leq 25^\circ$, which is the most sensitive measure of diagnosis, particularly if the aortomesenteric distance is ≤ 8 mm; and (3) high fixation of the duodenum by the ligament of Treitz, an abnormally low origin of the SMA, or anomalies of the SMA. The goal of SMA syndrome treatment is weight gain, the relief of intestinal obstruction symptoms and the correction of precipitating factors. Initial treatment is usually conservative non-operative treatment, which includes gastrointestinal decompression using nasogastric tube placement, the correction of electrolyte abnormalities and nutritional support.13 Among these, nutritional support is the major component of conservative treatment to increase the aortomesenteric angle and improve symptoms by increasing the intermesenteric fat pad and prevent duodenal compression. Enteral nutrition is preferred, taking frequent small meals of nutritious liquid, lying on the left side or prone following meals.6,13 Metoclopramide is also advised to relieve symptoms. TPN can be useful when enteral feedings are not tolerated.15,16

However, except for paediatric patients and some adults who have a brief history of symptoms, the success rate of conservative treatment is not high. Particularly, patients who had chronic symptoms had unfavourable outcomes from nutritional support alone,17 and many patients failed and finally required surgical treatment.18–20 The patient in this case also did not gain body weight for 6 weeks despite TPN and electrolyte supplementation and did not experience symptom improvement. Surgery has still been the only accepted treatment if conservative treatment fails.18 Many surgical procedures have been developed over the years, and minimally invasive duodenojejunostomy is now widely accepted as the main treatment for SMA syndrome.4 Previous studies have shown a higher success rate of surgical treatment than conservative treatment and suggested an earlier surgical intervention to avoid creating a vicious cycle of symptoms.19,21,22
imbalance and hepatotoxicity due to TPN. If endoscopy-assisted feeding tube placement is available for highly selected patients, especially for the patients who have a high risk for surgery or have previously had surgery, the approach might be useful.

Contributors Conceptualisation—SY. Data curation—JK. Project administration—IP and YCI. Supervision—SY and YCI. Validation—IP. Writing (original draft)—JK. Writing (review and editing)—SY.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Case reports provide a valuable learning resource for the scientific community and can indicate areas of interest for future research. They should not be used in isolation to guide treatment choices or public health policy.

ORCID iDs
Jongkuk Kim http://orcid.org/0000-0003-4330-4891
Sangsoo Yang http://orcid.org/0000-0003-4030-8723
Yeong Cheol Im http://orcid.org/0000-0003-0242-1717
Inkyu Park http://orcid.org/0000-0003-4113-5019

REFERENCES
1 Bakker MEC, van Delft R, Vaessen NAJ, et al. Superior mesenteric artery syndrome in a 15-year-old boy during Ramadan. Eur J Pediatr 2014;173:1619–21.
2 Hines JR, Gore RM, Ballantyne GH. Superior mesenteric artery syndrome. Diagnostic criteria and therapeutic approaches. Am J Surg 1984;148:630–2.
3 Pottorf BJ, Husain FA, Hollis HW, et al. Laparoscopic management of duodenal obstruction resulting from superior mesenteric artery syndrome. JAMA Surg 2014;149:1319–22.
4 Mathenje N, Osorio S, Rodriguez II, et al. Superior mesenteric artery syndrome and its associated gastrointestinal implications. Clin Anar 2014;27:1244–52.
5 Cullis PS, Gallagher M, Sahbaiwal AJ, et al. Minimally invasive surgery for superior mesenteric artery syndrome: a case report and literature review. Scott Med J 2016;61:42–7.
6 Welsh T, Büchler MW, Kienle P. Recalling superior mesenteric artery syndrome. Dig Surg 2007;24:149–56.
7 Oguz A, Usluayak O, Ulger BV, et al. Superior mesenteric artery (Willkie’s) syndrome: a rare cause of upper gastrointestinal system obstruction. Acta Chir Belg 2016;116:81–3.
8 Yilin P, Kinnunen J, Hückkerstedt K. Superior mesenteric artery syndrome. A follow-up study of 16 operated patients. J Clin Gastroenterol 1989;11:386–91.
9 Bank V, Werlin S. Superior mesenteric artery syndrome in children: a 20-year experience. J Pediatr Gastroenterol Nutr 2006;42:522–5.
10 Kirby GC, Faulconer ER, Robinson SJ, et al. Superior mesenteric artery syndrome: a single centre experience of laparoscopic duodenaljejunostomy as the operation of choice. Anaesth 2017;99:472–5.
11 Neri S, Signorelli SS, Mondati E, et al. Ultrasound imaging in diagnosis of superior mesenteric artery syndrome. J Intern Med 2005;257:344–56.
12 Unal B, Aktaa A, Kemal G, et al. Superior mesenteric artery syndrome: CT and ultrasonography findings. Diagn Interv Radiol 2005;11:190–5.
13 Adams JB, Hawkins ML, Ferdinand CH, et al. Superior mesenteric artery syndrome in the modern trauma patient. Am Surg 2007;73:893–6.
14 Moskovich R, Cheong-Leen P. Vascular compression of the duodenum. J R Soc Med 1986;79:465–7.
15 Anderson WC, Vivit R, Khir N. Arteriomesenteric duodenal compression syndrome. Its association with peptic ulcer. J Am Surg 1973;125:681–9.
16 Munns SW, Morrissy RT, Golladay ES, et al. Hyperalimentation for superior mesenteric artery (cast) syndrome following correction of spinal deformity. J Bone Joint Surg Am 1984;66:1175–7.
17 Shin MS, Kim JY. Optimal duration of medical treatment in superior mesenteric artery syndrome in children. J Korean Med Sci 2013;28:1220–5.
18 Merrett ND, Wilson RB, Cosman P, et al. Superior mesenteric artery syndrome: diagnosis and treatment strategies. J Gastrointest Surg 2009;13:287–92.

Figure 5 Weight change according to the time after dual enteral feeding and total parenteral nutrition treatment.

However, surgical treatment has potential operative and post-operative risks, particularly for the patients who underwent surgery, as in this case, and have (1) poor nutritional status, (2) changes in anatomical structures and intraperitoneal adhesions, and (3) not fully recovered from previous surgery and/or had comorbidities. In contrast, jejunal feeding tube placement past the obstruction to allow continuous enteral feeding is safe and useful. If the patient cannot tolerate oral feeding, this treatment can be employed to support weight gain. Several previous cases have reported the successful treatment of SMA syndrome by transpyloric jejunal feeding past the point of the obstruction. However, these were cases of paediatric patients or patients with no surgical history. These studies also did not report the detailed treatment and recovery process. In particular, there was no description of the role of endoscopy in jejunal feeding tube placement. The present case was performed safely by an endoscopist who had ample experience with colonic stent insertion. When passing through the obstruction of the duodenal third portion, the risk was evaluated by an endoscopist, who decided whether to proceed with the procedure. Endoscopy-assisted feeding tube placement followed by the dual enteral and parenteral nutrition might be applied as first-line therapy in the conservative treatment of SMA syndrome because (1) an experienced endoscopist can safely attempt it with a high success rate, (2) SMA syndrome can be diagnosed and treated simultaneously, (3) it allows the patient to reach the target weight faster than conventional TPN, and (4) it can also avoid electrolyte

Learning points
- The goal of superior mesenteric artery (SMA) syndrome treatment is weight gain, the relief of intestinal obstruction symptoms and the correction of precipitating factors.
- Initial treatment is usually conservative non-operative treatment, which includes gastrointestinal decompression using nasogastric tube placement, the correction of electrolyte abnormalities and nutritional support.
- Jejunal feeding tube placement past the obstruction to allow continuous enteral feeding is safe and useful.
- This treatment might be a valuable initial alternative to conventional conservative total parenteral nutrition therapy in high operative risk patients with SMA syndrome.
Case report

19 Lee TH, Lee JS, Jo Y, et al. Superior mesenteric artery syndrome: where do we stand today? J Gastrointest Surg 2012;16:2203–11.

20 Hutchinson DT, Bassett GS. Superior mesenteric artery syndrome in pediatric orthopedic patients. Clin Orthop Relat Res 1990;250:250–7.

21 Sun Z, Rodriguez J, McMichael J, et al. Minimally invasive duodenojejunostomy for superior mesenteric artery syndrome: a case series and review of the literature. Surg Endosc 2015;29:1137–44.

22 Jain N, Chopde A, Soni B, et al. SMA syndrome: management perspective with laparoscopic duodenojejunostomy and long-term results. Surg Endosc 2021;35:2029–38.

23 Wang Y, Takada T. Superior mesenteric artery syndrome: report of four cases. Gastroenteral Jpn 1984;19:479–85.

24 Vitale MG, Higgs GB, Liebling MS, et al. Superior mesenteric artery syndrome after segmental instrumentation: a biomechanical analysis. Am J Orthop 1999;28:461–7.