The Asymptotic Behaviour of the Sum of Negative Eigenvalues of a Self-Adjoint Operator Given in Semi-Axis

Özlem Bakși

Department of Mathematics,
Faculty of Arts and Science, Yıldız Technical University
(34210), Davutpaşa, İstanbul, Turkey

e-mail: baksi@yildiz.edu.tr

Abstract

In this work, we find the asymptotic formulas for the sum of the negative eigenvalues smaller than $-\varepsilon$ ($\varepsilon > 0$) of a self-adjoint operator L which is defined by the following differential expression

$$\ell(y) = -(p(x)y'(x))' - Q(x)y(x)$$

with the boundary condition

$$y(0) = 0$$

in the space $L_2(0, \infty; H)$.

AMS Subj. Classification: 34B24, 47A10

Keywords: Self-adjoint operator, Sturm-Liouville operator, spectrum, negative eigenvalues, asymptotic behaviour.
1 Introduction

Let H be an infinite dimensional separable Hilbert space. Let us consider the operator L in the Hilbert space $L^2(0, \infty; H)$ defined by the differential equation

$$\ell(y) = -(p(x)y'(x))' - Q(x)y(x)$$ \hspace{1cm} (1)

and with the boundary condition $y(0) = 0$.

Let us assume the scalar function $p(x)$ and the operator function $Q(x)$ satisfy the following conditions:

p1) For every $x \in [0, \infty)$, there are positive constants c_1, c_2 such that

$$c_1 \leq p(x) \leq c_2.$$

p2) The function $p(x)$ has continuous and bounded derivative.

p3) The function $p(x)$ is not decreasing in the interval $[0, \infty)$.

Q1) For every $x \in [0, \infty)$ the operator $Q(x) : H \rightarrow H$ is self-adjoint, compact and positive.

Q2) The operator $Q(x)$ is monotone decreasing.

Q3) $Q(x)$ is a continuous operator function with respect to the norm in $B(H)$ and

$$\lim_{x \rightarrow \infty} \|Q(x)\| = 0.$$

$D(L)$ denotes the set of all functions $y(x) \in L^2(0, \infty; H)$ satisfying the following conditions:

y1) $y(x)$ and $y'(x)$ are absolute continuous with respect to the norm in the space H in every finite interval $[0, a]$.

y2) $l(y) = -(p(x)y'(x))' - Q(x)y(x) \in L^2(0, \infty; H)$.

y3) $y(0) = 0$ and,

$$(Ly)(x) = -(p(x)y'(x))' - Q(x)y(x).$$

It is proved that the operator $L : D(L) \rightarrow L^2(0, \infty; H)$ is self-adjoint, semi bounded-below and the negative part of the spectrum of the operator L is discrete [1]. Let $-\lambda_1 \leq -\lambda_2 \leq \cdots \leq -\lambda_n \leq \cdots$ be negative eigenvalues of the operator L. In this work we find an asymptotic formula for the sum

$$\sum_{-\lambda_i < -\varepsilon} \lambda_i \hspace{1cm} (\varepsilon > 0),$$

as $\varepsilon \rightarrow +0$.

In [2] and [3], the asymptotic formulas for the sum of the negative eigenvalues of second order differential operator with scalar coefficient are calculated. In [1], [4], [5], [6], [7] the asymptotic behaviour of the number of the negative eigenvalues are investigated.
2 Some Inequalities For the Sum of the Eigenvalues

Let $\alpha_1(x) \geq \alpha_2(x) \geq \cdots \geq \alpha_j(x) \geq \cdots$ be the eigenvalues of the operator $Q(x) : H \to H$. Since the operator function $Q(x)$ is monotone decreasing, the functions $\alpha_1(x), \alpha_2(x), \cdots, \alpha_j(x), \cdots$ are also monotone decreasing, [5]. Moreover, since

$$\alpha_1(x) = \sup_{\|f\|=1} (Q(x)f, f),$$

[8] and

$$\|Q(x)\| = \sup_{\|f\|=1} \|Q(x)f, f\| = \sup_{\|f\|=1} (Q(x)f, f),$$

[9] then $\alpha_1(x) = \|Q(x)\|$.

On the other hand, since $\lim_{x \to \infty} \alpha_1(x) = 0$, then the function α_1 has a continuous inverse function defined in the interval $(0, \alpha_1(0)]$. Let

$$\psi_j(\varepsilon) = \sup\{x \in [0, \infty); \alpha_j(x) \geq \varepsilon\} \quad (j = 1, 2, \cdots)$$

(2)

and ψ_1 denote the inverse function of α_1. We consider the following operators:

1) Let L^0 and L' be operators in the space $L_2(0, \psi_1(\varepsilon); H)$, which are formed by expression (1) and with the boundary conditions

$$y(0) = y(\psi_1(\varepsilon)) = 0$$
$$y'(0) = y'(\psi_1(\varepsilon)) = 0,$$

respectively. Here, $\varepsilon \in (0, \alpha_1(0)]$.

2) L_i and L'_i be operators in the space $L_2(x_{i-1}, x_i; H)$ which are formed by expression (1) and with the boundary conditions

$$y(x_{i-1}) = y(x_i) = 0$$
$$y'(x_{i-1}) = y'(x_i) = 0,$$

respectively.

3) $L_{i(1)}$ be operator in the space $L_2(x_{i-1}, x_i; H)$ which is formed by the differential equation

$$-p(x_i)y''(x) - Q(x_i)y(x)$$

and with the boundary conditions $y(x_{i-1}) = y(x_i) = 0$.

4) Let $L'_{i(1)}$ be operator in the space $L_2(x_{i-1}, x_i; H)$ which is formed by the differential equation

$$-p(x_{i-1})y''(x) - Q(x_{i-1})y(x)$$
and with boundary conditions \(y'(x_{i-1}) = y'(x_i) = 0 \).

Let us divide the interval \([0, \psi_1(\varepsilon)]\) by the intervals at the length

\[
\delta = \frac{\psi_1(\varepsilon)}{||\psi_1'(\varepsilon)||} + 1 \quad (3)
\]

Here, \(a \in (0, 1) \) is a constant number and \(\varepsilon \) is any positive number satisfying the inequality \(\psi_1'(\varepsilon) \geq 2 \). And also \(||\psi_1'(\varepsilon)|| \) shows exact part of \(\psi_1'(\varepsilon) \).

Let the partition points of the interval \([0, \psi_1(\varepsilon)]\) be

\[0 = x_0 < x_1 < \cdots < x_M = \psi_1(\varepsilon). \]

Let \(N(\lambda), N^0(\lambda), N'(\lambda), n_i(\lambda) \) and \(n_{i(1)}(\lambda) \) be numbers of eigenvalues smaller than \(-\lambda \) \((\lambda > 0) \) of the operators \(L, L^0, L', L_i \) and \(L_{i(1)} \), respectively. Let us write \(n_i, n_{i(1)} \) instead of \(n_i(\varepsilon), n_{i(1)}(\varepsilon) \), respectively.

Şengül [1] proved that the inequalities

\[
N^0(\varepsilon) \leq N(\varepsilon) \leq N'(\varepsilon) \quad (4)
\]

are satisfied, if \(Q(x) \) satisfies the conditions \(Q1), Q2), Q3) \) and \(p(x) \) satisfies the conditions \(p1), p3).\)

We want to show that the inequalities

\[
N^0(\lambda) \leq N(\lambda) \leq N'(\lambda) \quad (\forall \lambda \in [\varepsilon, \infty)) \quad (5)
\]

are satisfied. Let \(u_1, u_2, \cdots, u_n, \cdots \) be orthonormal eigenvectors corresponding to the eigenvalues \(-\lambda_1, -\lambda_2, \cdots, -\lambda_n, \cdots \). Let us consider the following operators:

\[
S = L + \lambda I \quad (6)
\]

\[
S^0 = L^0 + \lambda I, \quad S' = L' + \lambda I \quad (7)
\]

Here \(I \) in (6) is identity operator in the space \(L_2(0, \infty; H) \); \(I \) in (7) is identity operator in the space \(L_2(0, \psi_1(\varepsilon); H) \). We have

\[
-\lambda_1 \leq -\lambda_2 \leq \cdots \leq -\lambda_{N(\lambda)} < -\lambda, \quad \lambda_{N(\lambda)+1} \geq -\lambda. \quad (8)
\]

Since the eigenvalues smaller than \(\lambda \) are \(\mu_i = \lambda_i + \lambda \) \((i = 1, 2, \cdots) \) from (8)

\[
-\mu_1 \leq -\mu_2 \leq \cdots \leq -\mu_{N(\lambda)} < 0, \quad -\mu_{N(\lambda)+1} \geq 0 \quad (9)
\]

is obtained. By the similar way we can show that the number of negative eigenvalues of the operators \(S^0 \) and \(S' \) are \(N^0(\lambda) \) and \(N'(\lambda) \), respectively. Let

\[
-\mu_{(1)1} \leq -\mu_{(1)2} \leq \cdots \leq -\mu_{(1)N^0(\lambda)}, \quad -\mu_{(2)1} \leq -\mu_{(2)2} \leq \cdots \leq -\mu_{(2)N'(\lambda)} \quad (10)
\]

be negative eigenvalues of the operators \(S^0 \) and \(S' \) respectively. Let the orthonormal eigenvectors corresponding these eigenvalues be \(\varphi_1, \varphi_2, \cdots, \varphi_{N^0(\lambda)} \) and \(\psi_1, \psi_2, \cdots, \psi_{N'(\lambda)} \) respectively.
Lemma 2.1 If the operator function $Q(x)$ satisfies the conditions $Q1), Q2), Q3$ and the function $p(x)$ satisfies the conditions $p1), p2$ then

$$N(\lambda) \geq N^0(\lambda) \quad (\forall \lambda \in (0, \infty))$$

(11)

Proof: To obtain a contradiction, we suppose that

$$N(\lambda) < N^0(\lambda).$$

Then, there is a non-zero linear combination

$$\varphi = \sum_{i=1}^{N^0(\lambda)} \beta_i \varphi_i$$

of the functions $\varphi_1, \varphi_2, \cdots, \varphi_{N^0(\lambda)}$ such that

$$\left(u_i, \varphi \right)_{(0, \psi_1(\varepsilon))} = \int_0^{\psi_1(\varepsilon)} \left(u_i(x), \varphi(x) \right) dx = 0 \quad (i = 1, 2, \cdots, N(\lambda))$$

By using (12)

$$\left(S^0 \varphi, \varphi \right)_{(0, \psi_1(\varepsilon))} = \left(S^0 \left(\sum_{i=1}^{N_1(\lambda)} \beta_i \varphi_i \right), \sum_{i=1}^{N_1(\lambda)} \beta_i \varphi_i \right)_{(0, \psi_1(\varepsilon))}$$

$$= \left(\sum_{i=1}^{N_1(\lambda)} \beta_i \mu_{(1)i} \varphi_i, \sum_{i=1}^{N_1(\lambda)} \beta_i \varphi_i \right)_{(0, \psi_1(\varepsilon))}$$

$$> \sum_{i=1}^{N_1(\lambda)} \mu_{(1)i} |\beta_i|^2 = \alpha < 0$$

(13)

In the similar way as proved in Glazman [10] there exists a vector function $\tilde{\varphi}$ which has the following properties:

$\tilde{\varphi}1)$ The vector function $\tilde{\varphi} = \tilde{\varphi}(x)$ has second second order continuous derivative respect to the norm in the space H in the interval $[0, \psi_1(\varepsilon)]$.

$\tilde{\varphi}2)$ $\tilde{\varphi}(x)$ is equal to zero outside of the interval $[a, b] \subset (0, \psi_1(\varepsilon))$.

$\tilde{\varphi}3)$ $\left| \left(S^0 \tilde{\varphi}, \tilde{\varphi} \right)_{(0, \psi_1(\varepsilon))} - \left(S^0 \varphi, \varphi \right)_{(0, \psi_1(\varepsilon))} \right| < \frac{\alpha}{2}$

$\tilde{\varphi}4)$ $\left(u_i, \tilde{\varphi} \right)_{(0, \psi_1(\varepsilon))} = 0 \quad (i = 1, 2, \cdots, N(\lambda))$.

As it is known,

$$\inf_{\substack{y \in D(S), \|y\|_{(0, \infty)} = 1 \\ y \perp u_i \ (i = 1, 2, \cdots, N(\lambda))}} \left(Sy, y \right)_{(0, \infty)} = \mu_{N(\lambda) + 1}$$.
Therefore

\[
(S^0(\tilde{\varphi}, \varphi)_{(0,\psi_1(\varepsilon)}) = (S(\tilde{\varphi}, \varphi)_{(0,\psi_1(\varepsilon)}) (0,\infty) \\
\geq \mu_{N(\lambda)+1} \geq 0.
\]

By the last inequality,

\[
(S^0_\varphi, \varphi)_{(0,\psi_1(\varepsilon))} \geq 0 \quad (14)
\]

is obtained. By (13) and (14)

\[
(S^0\tilde{\varphi}, \tilde{\varphi})_{(0,\psi_1(\varepsilon))} - (S^0\varphi, \varphi)_{(0,\psi_1(\varepsilon))} = (S^0\tilde{\varphi}, \tilde{\varphi})_{(0,\psi_1(\varepsilon))} - \alpha \geq -\alpha \quad (15)
\]

is found. On the other hand this result in (15) contradicts with the property \(\tilde{\varphi}^3\). Hence

\[
N(\lambda) \geq N^0(\lambda).
\]

Lemma 2.2 If the operator function \(Q(x)\) satisfies the conditions \(Q1), Q2), Q3) and function \(p(x)\) satisfies the conditions \(p1), p2) then \(N(\lambda) \leq N'(\lambda) for all \(\lambda \in [\varepsilon, \infty)).

Proof: Suppose for contradiction that \(N(\lambda) > N'(\lambda).\) Then, there is a non-zero linear combination

\[
u = \sum_{i=1}^{N(\lambda)} d_i u_i \quad (16)
\]

of the vector functions \(u_1, u_2, \cdots, u_{N(\lambda)}\) such that

\[
(\psi_i, u)_{(0,\psi_1(\varepsilon))} = \int_0^\psi_1(\lambda) (\psi_i(x), u(x))dx = 0 \quad (i = 1, 2, \cdots, N'(\lambda))
\]

By using (16)

\[
(Su, u)_{(0,\infty)} = (S(\sum_{i=1}^{N(\lambda)} d_i u_i), \sum_{i=1}^{N(\lambda)} d_i u_i)_{(0,\infty)} \\
= (\sum_{i=1}^{N(\lambda)} d_i \mu_i u_i, \sum_{i=1}^{N(\lambda)} d_i u_i)_{(0,\infty)} = \sum_{i=1}^{N(\lambda)} \mu_i |d_i|^2 < 0 \quad (17)
\]

is obtained. We can write the equation (17) as

\[
(Su, u)_{(0,\infty)} = \int_0^{\psi_1(\varepsilon)} (S(u(x)), u(x))dx + \int_\psi_1(\varepsilon) \infty (S(u(x)), u(x))dx < 0 \quad (18)
\]
Since
\[\int_{\psi_1(\varepsilon)}^{\infty} \left(S(u(x)), u(x) \right) dx \geq 0 \]
then we have
\[\int_{0}^{\psi_1(\varepsilon)} \left(S(u(x)), u(x) \right) dx < 0. \quad (19) \]

If we consider the equality
\[(u, \psi_1(0, \psi_1(\varepsilon))) = \int_{0}^{\psi_1(\varepsilon)} \left(u(x), \psi_1(x) \right) (0, \infty) \, dx = 0 \quad (i = 1, 2, \ldots, N'(\lambda)) \]
from (19)
\[\inf_{y \in D(S), \|y\|_{(0, \psi_1(\varepsilon))}=1, y \perp \psi_i \, (i=1, 2, \ldots, N'(\lambda))} \psi_1(\varepsilon) \int_{0}^{\psi_1(\varepsilon)} \left(S(y(x)), y(x) \right) dx < 0 \quad (20) \]
is obtained. From (20)
\[\inf_{y' \in D(S'), \|y'\|_{(0, \psi_1(\varepsilon))}=1, y'(0)=y'(\psi_1(\varepsilon))=0, y \perp \psi_i \, (i=1, 2, \ldots, N'(\lambda))} \psi_1(\varepsilon) \int_{0}^{\psi_1(\varepsilon)} \left(S(y(x)), y(x) \right) dx < 0 \quad (21) \]
is found. By (21)
\[\inf_{y' \in D(S'), \|y'\|_{(0, \psi_1(\varepsilon))}=1, y' \parallel \psi_i \, (i=1, 2, \ldots, N'(\lambda))} \psi_1(\varepsilon) \int_{0}^{\psi_1(\varepsilon)} \left(S'(y(x)), y(x) \right) dx < 0 \quad (22) \]
is obtained. On the other hand, we have
\[\inf_{y' \in D(S'), \|y'\|_{(0, \psi_1(\varepsilon))}=1, y \perp \psi_i \, (i=1, 2, \ldots, N'(\lambda))} \psi_1(\varepsilon) \int_{0}^{\psi_1(\varepsilon)} \left(S'(y(x)), y(x) \right) dx = \mu_{2(N'(\lambda)+1)} \geq 0 \quad (23) \]
This result contradicts with (22). Therefore \(N(\lambda) \leq N'(\lambda) \). \(\square \)

Let \(-\mu_{i(1)} \leq -\mu_{i(2)} \leq -\mu_{i(3)} \leq \cdots \) be eigenvalues of the operator \(L_i(1) \) and let we have the following equalities
\[a_j(x, t) = \alpha_j(x) - p(x) \left(\frac{\pi t}{\delta} \right)^2 \quad (j = 1, 2, \ldots) \quad (24) \]
\[b_j(\varepsilon, x) = \frac{\delta}{\pi} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} \quad (j = 1, 2, \ldots) \quad (25) \]
\[\beta_j(\varepsilon, x) = \int_0^{b_j(\varepsilon, x)} a_j(x, t) \, dt \quad (j = 1, 2, \cdots) \quad (26) \]

\[\varphi_{i,j}(\varepsilon) = \min\{x_{i+1}, \psi_j(\varepsilon)\} \quad (i = 1, 2, \cdots, M - 1). \quad (27) \]

Theorem 2.3 If the operator function \(Q(x) \) and the scalar function \(p(x) \) satisfy the conditions \(Q1) - Q3) \) and \(p1) - p3) \), then we have

\[\sum_{m=1}^{n_i(1)} \mu_{i(1)m} > \frac{1}{\delta} \sum_{\alpha_j(x_i) > \varepsilon} \varphi_{i,j}(\varepsilon) \int_{x_i}^{x_{i+1}} \beta_j(\varepsilon, x) \, dx - 3 \sum_{\alpha_j(0) > \varepsilon} \alpha_j(0) \]

for small positive values of \(\varepsilon \).

Proof: Let us consider the operator \(L_{i(1)} \) which is formed by the differential expression

\[-p(x_i)y''(x) - Q(x_i)y(x)\]

with the boundary conditions \(y(x_{i-1}) = y(x_i) = 0 \).

We wish to obtain the eigenvalues of the operator \(L_{i(1)} \). In order to find the eigenvalues, we will solve the eigenvalues problem

\[-du'' = \lambda u \]
\[u(a) = u(b) = 0 \quad (28) \]

in the space \(L_2(a,b) \). Here, \(a = x_{i-1}, \ b = x_i \) and \(d = p(x_i) \). Moreover, \(\gamma \) is an eigenvalue of the operator \(Q(b) : H \rightarrow H \). The eigenvalues of boundary-value problem (28) are in the form

\[\lambda_n = d\left(\frac{n\pi}{b-a}\right)^2, \quad (n \in \mathbb{N}). \]

So, the eigenvalues of the operator \(L_{i(1)} \) are of the form

\[\lambda_n - \gamma = p(x_i)\left(\frac{n\pi}{x_i - x_{i-1}}\right)^2 - \gamma. \]

Since the eigenvalues of the operator \(Q(x) : H \rightarrow H \) are \(\alpha_1(x) \geq \alpha_2(x) \geq \cdots \geq \alpha_j(x) \geq \cdots \) then the eigenvalues of the operator \(L_{i(1)} \) are

\[p(x_i)\left(\frac{m\pi}{x_i - x_{i-1}}\right)^2 - \alpha_j(x_i) \quad (m = 1, 2, \cdots; j = 1, 2, \cdots), \]

therefore \(n_{i(1)} \) is the number of pairs \((m, j) \quad (m, j \geq 1) \) satisfying the inequality

\[p(x_i)(\frac{m\pi}{\delta})^2 - \alpha_j(x_i) < -\varepsilon \quad (\delta = x_i - x_{i-1}). \quad (29) \]
By using (24), (25) and (29), we obtain

\[\sum_{m=1}^{n_{i(1)}} \mu_{i(1)m} = \sum_{\alpha_j(x_i) > \varepsilon}^j \sum_{a_j(x_i,m) > \varepsilon}^m a_j(x_i,m) \]

\[\geq \sum_{\alpha_j(x_i) > \varepsilon}^j \sum_{m=1}^{[b_j(\varepsilon,x_i)]-1} a_j(x_i,m) \]

(30)

For the sum \[\sum_{m=1}^{[b_j(\varepsilon,x_i)]-1} a_j(x_i,m) \] in (30)

\[\frac{b_j(\varepsilon,x_i)-2}{b_j(\varepsilon,x_i)} \]

\[\leq \int_1^{b_j(\varepsilon,x_i)} a_j(x_i,t)dt \]

\[= \int_0^{b_j(\varepsilon,x_i)} a_j(x_i,t)dt - \int_0^{b_j(\varepsilon,x_i)-2} a_j(x_i,t)dt \]

\[= \beta_j(\varepsilon,x_i) - 3\alpha_j(x_i) \]

(31)

is obtained. If we consider that the functions \(\beta_j(\varepsilon,x) \) \((j = 1,2,\cdots) \) are decreasing, from (27), (30) and (31)

\[\sum_{m=1}^{n_{i(1)}} \mu_{i(1)m} > \frac{1}{\delta} \sum_{\alpha_j(x_i) > \varepsilon}^j \int_{x_i}^{x_i+1} \beta_j(\varepsilon,x_i)dx - 3 \sum_{\alpha_j(0) > \varepsilon}^j \alpha_j(0) \]

\[\geq \frac{1}{\delta} \sum_{\alpha_j(x_i) > \varepsilon}^j \int_{x_i}^{x_i+1} \beta_j(\varepsilon,x)dx - 3 \sum_{\alpha_j(0) > \varepsilon}^j \alpha_j(0) \]

(32)

is obtained. □

Theorem 2.4 If the operator function \(Q(x) \) and the scalar function \(p(x) \)
satisfy the conditions $Q1) - Q3), p1) - p3)$, then we have

$$N(\varepsilon) \sum_{i=1}^{\lambda_i} > \frac{1}{\delta} \sum_{j=1}^{\varepsilon} \int_{0}^{\beta_j(\varepsilon, x)dx - \text{const.}} \int_{0}^{\delta_j} \alpha_j^{j}(x)dx - \text{const.} \psi^{n}_1(\varepsilon) \sum_{j=1}^{\alpha_j(0)}$$

for small positive values of ε.

Here, $l_\varepsilon = \sum_{\alpha_j(0) \geq \varepsilon} 1$.

Proof: We can easily show that $L_i < L_{i(1)}$. In the case, it is known that

$$n_i(\lambda) \geq n_{i(1)}(\lambda)$$

[11]. On the other hand, from variation principles of R. Courant [12], we have

$$N^0(\lambda) \geq \sum_{i=1}^{M} n_i(\lambda).$$

From (32) and (33)

$$N^0(\lambda) \geq \sum_{i=1}^{M} n_i(\lambda(1)) (\lambda \geq \varepsilon)$$

is obtained. From (5) and (34)

$$N(\lambda) \geq \sum_{i=1}^{M} n_i(1)(\lambda) (\forall \lambda \geq \varepsilon)$$

is found. By using (35), we can show that the inequality

$$N(\varepsilon) \sum_{i=1}^{\lambda_i} \geq \sum_{i=1}^{M} \sum_{m=1}^{n_{i(1)}} \mu_{i(1)m}$$

is satisfied. By the Theorem 2.1 and (36)

$$N(\varepsilon) = \sum_{i=1}^{\lambda_i} \geq \sum_{i=1}^{M-1} \left\{ \frac{1}{\delta} \sum_{j=1}^{\delta_i} \int_{0}^{\beta_j(\varepsilon, x)dx - \text{const.}} \int_{0}^{\delta_j} \alpha_j^{j}(x)dx - \text{const.} \psi^{n}_1(\varepsilon) \sum_{j=1}^{\alpha_j(0)} \right\}$$

$$= \frac{1}{\delta} \sum_{j(x) \geq \varepsilon}^{\varphi_{i,j}(\varepsilon)} \int_{x_i}^{\beta_j(\varepsilon, x)dx - \text{const.}} \int_{0}^{\delta_j} \alpha_j^{j}(x)dx - \text{const.} \sum_{j=1}^{\alpha_j(0)}$$

(37)
is obtained. Since the functions $\alpha_j(x) \ (j = 1, 2, \cdots)$ are decreasing, then we have

$$\sum_{\alpha_j(x_i) > \varepsilon} \sum_i \int_{x_i} \beta_j(\varepsilon, x) dx = \sum_{\alpha_j(x_1) > \varepsilon} \sum_{\alpha_j(x_i) > \varepsilon} \int_{x_i} \beta_j(\varepsilon, x) dx. \quad (38)$$

From (37) and (38)

$$\sum_{i=1}^{N(\varepsilon)} \lambda_i \geq \frac{1}{\delta} \sum_{\alpha_j(x_1) > \varepsilon} \sum_{\alpha_j(x_i) > \varepsilon} \int_{x_i} \beta_j(\varepsilon, x) dx - 3M \sum_{j=1}^{l_\varepsilon} \alpha_j(0) \quad (39)$$

is obtained. By using (27) on the right-hand side of inequality (39)

$$\sum_{i=1}^{N(\varepsilon)} \lambda_i \geq \frac{1}{\delta} \sum_{\alpha_j(x_1) > \varepsilon} \int_{x_1}^{x_2} \beta_j(\varepsilon, x) dx + \int_{x_2}^{x_3} \beta_j(\varepsilon, x) dx + \cdots + \int_{x_{i_0}} \beta_j(\varepsilon, x) dx$$

$$- 3M \sum_{j=1}^{l_\varepsilon} \alpha_j(0) \quad (40)$$

is found. Here, i_0 is a natural number satisfying the following condition:

$$x_{i_0} < \psi_j(\varepsilon) \leq x_{i_0+1}.$$

By using (27) and (40)

$$\sum_{i=1}^{N(\varepsilon)} \lambda_i \geq \frac{1}{\delta} \sum_{\psi_j(\varepsilon) > x_1} \int_{x_1}^{x_j} \beta_j(\varepsilon, x) dx - 3M \sum_{j=1}^{l_\varepsilon} \alpha_j(0)$$

$$= \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_{0}^{x_j} \beta_j(\varepsilon, x) dx - \frac{1}{\delta} \sum_{\psi_j(\varepsilon) < x_1} \int_{0}^{\psi_j(\varepsilon)} \beta_j(\varepsilon, x) dx$$

$$- \frac{1}{\delta} \sum_{\psi_j(\varepsilon) \geq x_1} \int_{0}^{x_j} \beta_j(\varepsilon, x) dx - 3M \sum_{j=1}^{l_\varepsilon} \alpha_j(0)$$

$$= \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_{0}^{x_j} \beta_j(\varepsilon, x) dx - \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_{0}^{\psi_j(\varepsilon)} \beta_j(\varepsilon, x) dx$$

$$- 3M \sum_{j=1}^{l_\varepsilon} \alpha_j(0) \quad (41)$$
is obtained. From (24), (25) and (26)

\[
\frac{1}{\delta} \beta_j(\varepsilon, x) = \frac{1}{\delta} \int_0^{b_j(\varepsilon, x)} \left[\alpha_j(x) - p(x) \left(\frac{\pi t}{\delta} \right)^2 \right] dt
\]

\[
= \frac{1}{\delta} \alpha_j(x) b_j(\varepsilon, x) - \pi^2 \frac{p(x)}{3\delta^3} b_j^3(\varepsilon, x)
\]

\[
= \frac{1}{\delta} b_j(\varepsilon, x) \left[\alpha_j(x) - \pi^2 \frac{p(x)}{3\delta^2} b_j^2(\varepsilon, x) \right]
\]

\[
= \frac{1}{\pi} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} \left[\alpha_j(x) - \pi^2 \frac{p(x)}{3\delta^2} \frac{\delta^2 (\alpha_j(x) - \varepsilon)}{\pi^2 p(x)} \right]
\]

\[
= \frac{1}{\pi} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} \left[\frac{2}{3} \alpha_j(x) + \frac{\varepsilon}{3} \right] < \text{const.} \alpha_j^\frac{4}{3} (x) \tag{42}
\]

is found for the expression \(\frac{1}{\delta} \beta_j(\varepsilon, x) \). From (27) and (42),

\[
\frac{1}{\delta} \sum_{j=1}^{l_e} \int_0^{\varphi_0,j(\varepsilon)} \beta_j(\varepsilon, x) dx < \text{const.} \sum_{j=1}^{l_e} \int_0^{\delta} \alpha_j^\frac{3}{2} (x) dx \tag{43}
\]

is obtained. From (3), (41) and (43)

\[
\sum_{i=1}^{N(\varepsilon)} \lambda_i > \frac{1}{\delta} \sum_{j=1}^{l_e} \int_0^{\psi_j(\varepsilon)} \beta_j(\varepsilon, x) dx - \text{const.} \sum_{j=1}^{l_e} \int_0^{\delta} \alpha_j^\frac{3}{2} (x) dx - \text{const.} \psi_1^\frac{4}{3} (\varepsilon) \sum_{j=1}^{l_e} \alpha_j(0)
\]

is found. □

Let \(-\mu_{i(1)}'1 \leq -\mu_{i(1)}'2 \leq -\mu_{i(1)}'3 \leq \cdots \) be eigenvalues of the operator \(L_{i(1)}' \) and \(n_{i(1)}'(\lambda) \) be number of the eigenvalues smaller than \(-\lambda \) \((\lambda > 0) \) of the operator \(L_{i(1)}' \). Moreover, we will simply write \(n_{i(1)}' \) instead of \(n_{i(1)}'(\varepsilon) \).

Theorem 2.5 If the operator function \(Q(x) \) and the scalar function \(p(x) \) satisfy the conditions \(Q1) - Q3), p1) - p3) \) then the inequality

\[
\sum_{m=1}^{n_{i(1)}'} \mu_{i(1)}'m \leq \frac{1}{\delta} \sum_{j=1}^{l_e} \int_0^{\frac{x_{i-1}}{\alpha_j(\varepsilon, x)}} \beta_j(\varepsilon, x) dx + \sum_{j=1}^{l_e} \alpha_j(0) \quad (i = 2, 3, \cdots)
\]

is satisfied for the small positive values of \(\varepsilon \).
Proof: The eigenvalues of the operator \(L_{i(1)}' \) are in the form

\[
p(x_{i-1}) \left[\frac{(m-1)\pi}{(x_i - x_{i-1})} \right]^2 - \alpha_j(x_{i-1}) \quad (m = 1, 2, \ldots; j = 1, 2, \ldots).
\]

Therefore \(n_{i(1)}' \) is the number of the pairs \((m, j) \quad (m, j \geq 1) \) satisfying the inequality

\[
p(x_{i-1}) \left[\frac{(m-1)\pi}{(x_i - x_{i-1})} \right]^2 - \alpha_j(x_{i-1}) < -\varepsilon. \tag{44}
\]

From (24), (25), and (44)

\[
\sum_{m=1}^{\infty} \mu_{i(1)m}' = \sum_{\alpha_j(x_{i-1}) > \varepsilon} \sum_{a_j(x_{i-1}, m-1) > \varepsilon} a_j(x_{i-1}, m-1)
\]

\[
= \sum_{\alpha_j(x_{i-1}) > \varepsilon} \sum_{m=1}^{[b_j(\varepsilon, x_{i-1})] + 1} a_j(x_{i-1}, m-1) \tag{45}
\]

is found. It is easy to see that

\[
\sum_{m=1}^{[b_j(\varepsilon, x_{i-1})] + 1} a_j(x_{i-1}, m-1) \leq \alpha_j(x_{i-1}) + \int_0^{b_j(\varepsilon, x_{i-1})} a_j(x_{i-1}, t)dt
\]

\[
= \alpha_j(x_{i-1}) + \beta_j(\varepsilon, x_{i-1}). \tag{46}
\]

We consider that the functions \(\beta_j(\varepsilon, x) \quad (j = 1, 2, \ldots) \) are monotone decreasing, by (45) and (46),

\[
\sum_{m=1}^{n_{i(1)}'} \mu_{i(1)m}' \leq \sum_{j=1}^{l_x} \alpha_j(0) + \frac{1}{\delta} \sum_{\alpha_j(x_{i-1}) > \varepsilon} \int_{x_{i-1}}^{x_{i-2}} \beta_j(\varepsilon, x)dx
\]

\[
< \frac{1}{\delta} \sum_{\alpha_j(x_{i-1}) > \varepsilon} \int_{x_{i-2}}^{x_{i-1}} \beta_j(\varepsilon, x)dx + \sum_{j=1}^{l_x} \alpha_j(0) \quad (i = 1, 2, \ldots)
\]

is obtained. \(\square \)

Let \(n_{i}'(\lambda) \) be number of the eigenvalues smaller than \(-\lambda \quad (\lambda > 0)\) of the operator \(L_i' \), \(-\mu_1' \leq -\mu_2' \leq -\mu_3' \leq \cdots\) be eigenvalues of the operator \(L_i' \) and \(n_{i}'(\varepsilon) = n_i' \).
Theorem 2.6 If the operator function $Q(x)$ and the scalar function $p(x)$ satisfy the conditions $Q(1) - Q(3)$, and $p(1) - p(3)$, then we have

$$\sum_{i=1}^{N(\varepsilon)} \lambda_i < \sum_{m=1}^{n'_i} \mu'_m + \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_0^{x_{i+1}} \beta_j(\varepsilon, x)dx + \frac{\psi_1(\varepsilon)}{\delta} \sum_{j=1}^{l_\varepsilon} \alpha_j(0)$$

for the small values of ε.

Proof: We can easily show that $L'_i > L'_{i(1)}$. In this case we have

$$N'_i(\lambda) \leq n'_{i(1)}(\lambda)$$

(47) [11]. On the other hand, from variation principles of R. Courant [12], we have

$$N'(\lambda) \leq \sum_{i=1}^{M} n'_i(\lambda).$$

(48)

From (47) and (48),

$$N'(\lambda) \leq \sum_{i=2}^{M} n'_{i(1)}(\lambda) + n'_1(\lambda)$$

(49)

is obtained. From (5) and (49)

$$N(\lambda) \leq \sum_{i=2}^{M} n'_{i(1)}(\lambda) + n'_1(\lambda) \quad (\forall \lambda \geq \varepsilon)$$

(50)

is found. By using (50), we have

$$\sum_{i=1}^{N(\varepsilon)} \lambda_i \leq \sum_{i=2}^{M} \sum_{m=1}^{n'_{i(1)}} \mu'_i(\lambda)m + \sum_{m=1}^{n'_1} \mu'_m.$$

(51)

By using Theorem 2.3 and (51)

$$\sum_{i=1}^{N(\varepsilon)} \lambda_i \leq \sum_{m=1}^{n'_1} \mu'_m + \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_{\alpha_j(x_{i-1})}^{x_{i+1}} \beta_j(\varepsilon, x)dx + M \sum_{j=1}^{l_\varepsilon} \alpha_j(0)$$

(52)

is found. Since the functions $\alpha_j(x)$ $(j = 1, 2, \cdots)$ are monotone decreasing, then we have

$$\sum_{j, \alpha_j(x_{i-1}) > \varepsilon}^{\int \beta_j(\varepsilon, x)dx} = \sum_{j, \alpha_j(x_{i-1}) > \varepsilon}^{\int \beta_j(\varepsilon, x)dx}$$

(53)
From (52) and (53)

\[
\sum_{i=1}^{N(\varepsilon)} \lambda_i < \sum_{m=1}^{n'_1} \mu'_m + \frac{1}{\delta} \sum_{j \in J(\varepsilon)} \sum_{i \in J(\varepsilon-1)} x_{i-1}^i \int \beta_j(\varepsilon, x) dx + M \sum_{j=1}^{l_\varepsilon} \alpha_j(0)
\]

\[
= \sum_{m=1}^{n'_1} \mu'_m + \frac{1}{\delta} \sum_{j \in J(\varepsilon)} \left[\int \beta_j(\varepsilon, x) dx + \int_{x_1}^{x_2} \beta_j(\varepsilon, x) dx \right]_{x_1}^{x_2}
\]

\[
+ \cdots + \int_{x_{i_0-1}}^{x_{i_0}} \beta_j(\varepsilon, x) dx + M \sum_{j=1}^{l_\varepsilon} \alpha_j(0)
\]

is obtained. Here, \(i_0\) is a natural number satisfying the conditions

\[
\alpha_j(x_{i_0}) > \varepsilon, \quad \alpha_j(x_{i_0+1}) \leq \varepsilon. \tag{54}
\]

From (2)

\[
x_{i_0} \leq \psi_j(\varepsilon). \tag{55}
\]

From (54) and (55)

\[
\sum_{i=1}^{N(\varepsilon)} \lambda_i < \sum_{m=1}^{n'_1} \mu'_m + \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \psi_j(\varepsilon) \int \beta_j(\varepsilon, x) dx + \frac{\psi_j(\varepsilon)}{\delta} \sum_{j=1}^{l_\varepsilon} \alpha_j(0)
\]

is found. \(\square\)

Let

\[
\delta_i = \frac{\delta_{i-1}}{|\delta_{i-1} \psi_1^{(i+1)(\delta-1)}(\varepsilon)|} + 1, \quad (i = 1, 2, \cdots; \delta_0 = \delta) \tag{56}
\]

\[
a_{j(i)}(x, t) = \alpha_j(x) - p(x) \left(\frac{\pi t}{\delta_i} \right)^2,
\]

\[
b_{j(i)}(\varepsilon, x) = \frac{\delta_i}{\pi} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}},
\]

\[
\beta_{j(i)}(\varepsilon, x) = \int_0^{b_{j(i)}(\varepsilon, x)} a_{j(i)}(x, t) dt,
\]

\[
\varphi_j(\delta_i, \varepsilon) = \min \{ \delta_i, \psi_j(\varepsilon) \} \quad (i = 0, 1, 2, \cdots). \tag{57}
\]

Let \(L(i)\) be operator in the space \(L_2(0, \delta_i; H)\) which is formed by the expression (1) and with the boundary condition

\[
y'(0) = y'(\delta_i) = 0. \tag{58}
\]
Moreover, let \(L^{(0)}_{(i)} \) be the operator which is formed by the expression
\[-p(0) y''(x) - Q(0) y(x)\]
and with the boundary condition (58).

Let \(-\mu_{(i)1} \leq -\mu_{(i)2} \leq \cdots \) and \(-\mu_{(i)1}^{(0)} \leq -\mu_{(i)2}^{(0)} \leq \cdots \) be eigenvalues smaller than \(-\lambda, (\lambda > 0)\) of the operators \(L_{(i)} \) and \(L^{(0)}_{(i)} \), respectively.

Moreover, let \(n_{(i)}(\lambda) \) and \(n_{(i)}^{(0)}(\lambda) \) be numbers of the eigenvalues smaller than \(-\lambda, (\lambda > 0)\) of the operators \(L_{(i)} \) and \(L^{(0)}_{(i)} \), respectively.

Since \(L_{(i)} \geq L^{(0)}_{(i)} \), then we have
\[n_{(i)}(\lambda) \leq n_{(i)}^{(0)}(\lambda), \] (59)
[11]. By using (59), we can show that
\[\sum_{m=1}^{n_{(i)}} \mu_{(i)m} \leq \sum_{m=1}^{n_{(i)}^{(0)}} \mu_{(i)m}^{(0)}. \] (60)

Here, \(n_{(i)} = n_{(i)}(\varepsilon), \quad n_{(i)}^{(0)} = n_{(i)}^{(0)}(\varepsilon). \) \(\delta_{-1} = \psi_1(\varepsilon) \) and from the formula (56)
\[\frac{\delta_{i-1}}{\delta_i} = \frac{\delta_{i-2}}{[\delta_{i-1} \psi_1^{(i+1)a-1}(\varepsilon)]} \geq 1 \leq \delta_{i-1} \psi_1^{(i+1)a-1}(\varepsilon) + 1 \]
\[= \frac{\delta_{i-2}}{[\delta_{i-1} \psi_1^{(i+1)a-1}(\varepsilon)]} \psi_1^{(i+1)a-1}(\varepsilon) + 1 \]
\[< \frac{\delta_{i-2}}{\delta_{i-1} \psi_1^{(i+1)a-1}(\varepsilon)} \psi_1^{(i+1)a-1}(\varepsilon) + 1 \]
\[= \psi_1^a(\varepsilon) + 1 \quad (i = 1, 2, \cdots) \]
is obtained. From the last relation, we find
\[\frac{\delta_{i-1}}{\delta_i} < 2 \psi_1^a(\varepsilon), \quad (i = 1, 2, \cdots) \] (61)
for the values of \(\varepsilon \) satisfying the inequality \(\psi_1^a(\varepsilon) > 2. \)

Theorem 2.7 If the operator function \(Q(x) \) and the scalar function \(p(x) \) satisfy the conditions \(Q1) - Q3), and p1) - p3), then we have
\[\sum_{i=1}^{N} \lambda_i < \frac{1}{\delta} \sum_{j=1}^{l} \beta_j(\varepsilon, x) dx + \text{const.} \sum_{j=1}^{l} \int_0^\delta \alpha_j^2(x) dx + \text{const.} \psi_1^a(\varepsilon) \sum_{j=1}^{l} \alpha_j(0) \]
for small positive values of \(\varepsilon. \)
\textbf{Proof :} By the similar way to the proof of Theorem 2.6, the following inequality
\begin{equation}
\sum_{m=1}^{n_1} \mu'_m < \sum_{m=1}^{n_1} \mu(1)m + \frac{1}{\delta_1} \sum_{\psi_j(\varepsilon) < \delta_0} \int_0^1 \beta_j(1)(\varepsilon, x)dx + \frac{\delta_0}{\delta_1} \sum_{j=1}^{l_\varepsilon} \alpha_j(0)
\end{equation}
(62)
can be proved. If we replace the equation (57) in (62), then we have
\begin{equation}
\sum_{m=1}^{n_1} \mu'_m < \sum_{m=1}^{n_1} \mu(1)m + \frac{1}{\delta_1} \sum_{j=1}^{l_\varepsilon} \int_0^\delta_0 \psi_j(\varepsilon) \int_0^1 \beta_j(1)(\varepsilon, x)dx + \frac{\delta_0}{\delta_1} \sum_{j=1}^{l_\varepsilon} \alpha_j(0).
\end{equation}
(63)
If we apply the inequality (63) for the eigenvalues of the operator $L(i)$, then
\begin{equation}
\sum_{m=1}^{n(i)} \mu(i)m < \sum_{m=1}^{n(i+1)} \mu(i+1)m + \frac{1}{\delta_{i+1}} \sum_{j=1}^{l_\varepsilon} \int_0^1 \beta_j(i+1)(\varepsilon, x)dx + \frac{\delta_{i+1}}{\delta_{i+1}} \sum_{j=1}^{l_\varepsilon} \alpha_j(0)
\end{equation}
(64)
is obtained. From (61) and (64)
\begin{equation}
\sum_{m=1}^{n(i)} \mu(i)m < \sum_{m=1}^{n(i+1)} \mu(i+1)m + \frac{1}{\delta_{i+1}} \sum_{j=1}^{l_\varepsilon} \int_0^1 \beta_j(i+1)(\varepsilon, x)dx + \sum_{j=1}^{l_\varepsilon} \alpha_j(0)
\end{equation}
(65)
is found. By using (45) and (46)
\begin{equation}
\sum_{m=1}^{n(i+1)} \mu(i+1)m \leq \sum_{j=1}^{l_\varepsilon} \left(\alpha_j(0) + \beta_j(i+1)(\varepsilon, 0)\right)
\end{equation}
(66)
is obtained. Moreover, if we use the equation (42), then we get
\begin{equation}
\beta_j(i+1)(\varepsilon, x) \leq \text{const.} \delta_{i+1}^3 \beta_j^3(x).
\end{equation}
(67)
From (60), (66) and (67),
\begin{equation}
\sum_{m=1}^{n(i+1)} \mu(i+1)m \leq \sum_{j=1}^{l_\varepsilon} \alpha_j(0) + \text{const.} \delta_{i+1}^3 \sum_{j=1}^{l_\varepsilon} \alpha_j^3(0)
\end{equation}
(68)
is obtained. By using inequality (56), we find
\begin{equation}
\delta_{i+1} \leq 1.
\end{equation}
(69)
Here, \(i_0 \in \mathbb{N} \) is a constant satisfying the condition
\[
i_0 \geq \frac{1}{a} - 2
\]
From (68) and (69), we get
\[
\sum_{m=1}^{n(i_0+1)} \mu_{(i_0+1)m} \leq \text{const.} \sum_{j=1}^{l_\varepsilon} \alpha_j(0).
\]
(70)
From (61), (63), (65) and (70),
\[
\sum_{m=1}^{n'_i} \mu'_m \leq \text{const.} \sum_{j=1}^{l_\varepsilon} \alpha_j(0) + \sum_{i=0}^{i_0} \frac{1}{\delta_i+1} \int_0^\varepsilon \beta_j(i+1)(\varepsilon, x) dx
\]
\[
+ 2(i_0 + 1)\psi_1^q(\varepsilon) \sum_{j=1}^{l_\varepsilon} \alpha_j(0)
\]
(71)
is found. From (57), (67) and (71),
\[
\sum_{m=1}^{n'_i} \mu'_m < \text{const.} \sum_{j=1}^{l_\varepsilon} \int_0^\delta \alpha_j^q(x) dx + \text{const.} \psi_1^q(\varepsilon) \sum_{j=1}^{l_\varepsilon} \alpha_j(0)
\]
(72)
is obtained. By the Theorem 2.6 and (72), we have
\[
\sum_{i=1}^{N(\varepsilon)} \lambda_i < \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_0^\delta \beta_j(\varepsilon, x) dx + \text{const.} \sum_{j=1}^{l_\varepsilon} \int_0^\delta \alpha_j^q(x) dx + \text{const.} \psi_1^q(\varepsilon) \sum_{j=1}^{l_\varepsilon} \alpha_j(0).
\]
is obtained. □

3 Asymptotic Formulas For The Sum Of Negative Eigenvalues

In this section, we find asymptotic formulas for the sum \(\sum_{\lambda_i < -\varepsilon} \lambda_i \) as \(\varepsilon \to +0 \).

Let us denote the functions of the form \(\ln_0 x = x, \ ln_n x = \ln(\ln_{n-1} x) \) by \(\ln_n x \quad (n = 0, 1, 2, \cdots) \) and we suppose that the function \(\alpha_1(x) = \|Q(x)\| \) satisfies the following condition:

\(\alpha_1 \) There are a number \(\xi > 0 \) and a natural number \(n \geq 1 \) such that the function \(\alpha_1(x) - (\ln_n x)^{-\xi} \) is neither negative nor monotone increasing in the interval \([b, \infty) \quad (b > 0)\).
Theorem 3.1 If the conditions $Q_1 - Q_3$, $p_1 - p_3$ and α_1 are satisfied and the series $\sum_{j=1}^{\infty} [\alpha_j(0)]^m$ is convergent for a constant $m \in (0, \infty)$, then the asymptotic formula

$$\sum_{-\lambda_i < -\varepsilon} \lambda_i = \frac{1}{3\pi} \left[1 + O(e^{-\varepsilon}) \right] \sum_{j} \int_{\alpha_j(x) \geq \varepsilon} \frac{\alpha_j(x) - \varepsilon}{p(x)} \left(2\alpha_j(x) + \varepsilon \right) dx$$

is satisfied as $\varepsilon \to +0$. Here, β is a positive constant.

Proof: By using Theorem 2.4 and Theorem 2.5, we have

$$\left| \sum_{i=1}^{N(\varepsilon)} \lambda_i - \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_0^{\beta_j(\varepsilon, x)} \beta_j(\varepsilon, x) dx \right| < \text{const.} l_\varepsilon (\delta + \psi_1^a(\varepsilon))$$

for the small positive values of ε. If we take $a = \frac{1}{2}$ and consider (3)

$$\left| \sum_{i=1}^{N(\varepsilon)} \lambda_i - \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_0^{\beta_j(\varepsilon, x)} \beta_j(\varepsilon, x) dx \right| < \text{const.} l_\varepsilon \psi_1^\frac{1}{2}(\varepsilon)$$

(73) is found. Let us take $f(\varepsilon) = \psi_1(\varepsilon) [\ln \psi_1(\varepsilon)]^{-1}$. By using the function $p(x)$ which satisfies the condition (p1) and the inequality (42)

$$\frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_0^{\beta_j(\varepsilon, x)} \beta_j(\varepsilon, x) dx > \frac{1}{\delta} \int_0^{\beta_1(\varepsilon, x)} \beta_1(\varepsilon, x) dx$$

$$= \frac{1}{3\pi} \int_0^{\frac{\psi_1}{\psi_1}} \left[\frac{\alpha_1(x) - \varepsilon}{p(x)} \right] \left(2\alpha_1(x) + \varepsilon \right) dx$$

$$> \frac{1}{3\pi} \int_{\frac{f}{2f(\varepsilon)}}^{\frac{f}{f(\varepsilon)}} \left[\frac{\alpha_1(x) - \varepsilon}{p(x)} \right] \left(2\alpha_1(x) + \varepsilon \right) dx$$

$$> \text{const.} f(\varepsilon) \left(\alpha_1(f(\varepsilon)) - \varepsilon \right)^\frac{3}{2}$$

(74) is obtained. Şengül showed

$$\alpha_1(f(\varepsilon)) - \varepsilon > \left(\ln \psi_1(\varepsilon) \right)^{-((\xi+1)(n+1))}$$

(75)

for the small values of $\varepsilon > 0$, [1]. From (74) and (75)
\[
\frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \int_0^{\psi_j(\varepsilon)} \beta_j(\varepsilon, x) dx > \text{const.} \frac{\psi_1(\varepsilon)}{\ln \psi_1(\varepsilon)} (\ln \psi_1(\varepsilon))^{(\varepsilon+1)(n+1)}
\]

\[
> \text{const.} \psi_1^{\frac{3}{4}}(\varepsilon)
\]

(76)

is found. From (73) and (76)

\[
\left| \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \frac{\sum_{i=1}^{N(\varepsilon)} \lambda_i}{\psi_j(\varepsilon)} \psi_j(\varepsilon) - 1 \right| < \text{const.} l_\varepsilon \psi_1^{\frac{1}{4}}(\varepsilon)
\]

(77)

is obtained. Since the series \(\sum_{m=1}^{\infty} [\alpha_j(0)]^m \) is convergent then we have

\[
\text{const} > \sum_{\alpha_j(0) \geq \varepsilon} [\alpha_j(0)]^m \geq \sum_{\alpha_j(0) \geq \varepsilon} \varepsilon^m = \varepsilon^m l_\varepsilon.
\]

From last inequality

\[
l_\varepsilon < \text{const.} \varepsilon^{-m}
\]

(78)

is found. Since the function \(\alpha_1(x) \) satisfy the condition \(\alpha_1 \), we have

\[
\varepsilon = \alpha_1(\psi_1(\varepsilon)) \geq (\ln \psi_1(\varepsilon))^{-\xi} \geq (\ln \psi_1(\varepsilon))^{-\xi}
\]

for the small values of \(\varepsilon > 0 \). From the last inequality above,

\[
\psi_1(\varepsilon) > e^{\varepsilon^{-\frac{1}{\xi}}}
\]

(79)

is obtained. From (77), (78) and (79)

\[
\left| \frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \frac{\sum_{i=1}^{N(\varepsilon)} \lambda_i}{\psi_j(\varepsilon)} \psi_j(\varepsilon) - 1 \right| < \text{const.} \varepsilon^{-m} e^{\frac{\varepsilon^{-1} \psi_1^{\frac{1}{4}}}{\psi_1^{\frac{1}{4}}} - \varepsilon^{-\beta}}
\]

(80)

is found. We can rewrite inequality (80)

\[
\frac{1}{\delta} \sum_{j=1}^{l_\varepsilon} \frac{\sum_{i=1}^{N(\varepsilon)} \lambda_i}{\psi_j(\varepsilon)} \psi_j(\varepsilon) - 1 = O(e^{-\varepsilon^{-\beta}})
\]

(81)
as \(\varepsilon \to 0 \). From (2), (42) and (81)

\[
\sum_{-\lambda_i < -\varepsilon} \lambda_i = \frac{1}{3\pi} [1 + O(e^{-\varepsilon^2})] \sum_j \int_{\alpha_j(x) \geq \varepsilon} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} (2\alpha_j(x) + \varepsilon) dx
\]
as \(\varepsilon \to 0 \), is obtained. \(\blacksquare \)

Let us assume that the function \(\alpha_1(x) \) satisfies the following condition:

\(\alpha_2\) For every \(\eta > 0 \)

\[
\lim_{x \to \infty} \alpha_1(x)x^{a_0 - \eta} = \lim_{x \to \infty} [\alpha_1(x)x^{a_0 + \eta}]^{-1} = 0
\]

Here, \(a_0 \) is a constant in the interval \((0, \frac{2}{3})\).

Theorem 3.2 We suppose that the operator function \(Q(x) \), the scalar function \(p(x) \) satisfy the condition \(Q1) - Q3) \), \(p1) - p3) \) and \(\alpha_1(x) \) also satisfies the condition \(\alpha_2 \). In addition the series \(\sum_{j=1}^{\infty} [\alpha_j(0)]^m \) is convergent for a constant \(m \) satisfying the condition

\[
0 < m < \frac{(2 - 3a_0)^2}{2a_0(4 - 3a_0)}
\]

then the asymptotic formula

\[
\sum_{i=1}^{N(\varepsilon)} \lambda_i = \frac{1}{3\pi} [1 + O(\varepsilon^2)] \sum_j \int_{\alpha_j(x) \geq \varepsilon} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} (2\alpha_j(x) + \varepsilon) dx
\]
is satisfied as \(\varepsilon \to 0 \). Where \(t_0 \) is a positive constant.

Proof: By Theorem 2.4 and Theorem 2.5, we have

\[
\left| \sum_{i=1}^{N(\varepsilon)} \lambda_i - \delta^{-1} \sum_{j=1}^{\delta} \int_0^\psi_j(\varepsilon) \beta_j(\varepsilon, x) dx \right| < \text{const.} l_\delta \left(\int_0^\delta \alpha_1^2(x) dx + \psi_1^2(\varepsilon) \right)
\]

for the small values of \(\varepsilon > 0 \). Since the function \(\alpha_1(x) \) is decreasing,

\[
\alpha_1(x) \geq \alpha_1(\psi_1(2\varepsilon)) = 2\varepsilon
\]
in the interval \([0, \psi_1(2\varepsilon)]\). Since the function \(p(x) \) satisfies the condition \(p1) \) and (42), (84) then we find
\[\delta^{-1} \sum_{j=1}^{\ell_x} \int_0^{\psi_j(\varepsilon)} \beta_j(\varepsilon, x) \, dx > \frac{1}{3\pi} \int_0^{\psi_1(\varepsilon)} \sqrt{\frac{\alpha_1(x) - \varepsilon}{p(x)}} \left(2\alpha_1(x) + \varepsilon\right) \, dx \]

\[> \text{const.} \varepsilon^{\frac{3}{2}} \psi_1(2\varepsilon) \] \hfill (85)

If we consider that the function \(\alpha_1(x) \) satisfies the condition \(\alpha_2 \) and \(\lim_{\varepsilon \to 0} \psi_1(\varepsilon) = \infty \), then we have

\[\lim_{\varepsilon \to \infty} \frac{\alpha_1(\varepsilon)}{\psi_1(2\varepsilon)(\psi_1(2\varepsilon))^{a_0+\eta}} = 0 \]

From the last equality above, we obtain

\[\psi_1(2\varepsilon) > (\varepsilon)^{a_0+\eta} \] \hfill (86)

for the small value of \(\varepsilon > 0 \). From (85) and (86)

\[\delta^{-1} \sum_{j=1}^{\ell_x} \int_0^{\psi_j(\varepsilon)} \beta_j(\varepsilon, x) \, dx > \text{const.} \varepsilon^{\frac{3a_0+3\eta}{2(a_0+\eta)}} \] \hfill (87)

is found. We limit the integral \(\int_0^{\delta} \alpha_1^\frac{3}{2}(x) \, dx \) at the right hand side of the inequality (83). Since the function \(\alpha_1(x) \) satisfies the condition \(\alpha_2 \), then we have

\[\alpha_1(x) \leq \text{const.} x^{\eta-a_0} \quad (\eta < a_0). \] \hfill (88)

Therefore we have

\[\int_0^{\delta} \alpha_1^\frac{3}{2}(x) \, dx \leq \text{const.} \int_0^{\delta} x^{\frac{3}{2}(\eta-a_0)} \, dx < \text{const.} \delta^{\frac{3}{2}(2-3a_0+3\eta)}. \] \hfill (89)

On the other hand, from (3)

\[\delta < \psi_1^{1-a}(\varepsilon) \] \hfill (90)

is obtained. If we take \(x = \psi_1(\varepsilon) \) in the inequality (88), then we find

\[\alpha_1(\psi_1(\varepsilon)) \leq \text{const.} \psi_1^{\eta-a_0}(\varepsilon) \quad (\eta < a_0) \]

or

\[\psi_1(\varepsilon) \leq \text{const.} \varepsilon^{\frac{1}{a_0-\eta}} \] \hfill (91)
From (89), (90) and (91), we have

\[\frac{\delta}{\int_0^{\alpha} \frac{3}{2} (x) dx} \leq \text{const.} \varepsilon^{-(1-a)^2 (2-3a_0+3\eta) / 2(a_0-\eta)} \] \hspace{1cm} (92)

From (78), (91) and (92)

\[l_\varepsilon \frac{\delta}{\int_0^{\alpha} \frac{3}{2} (x) dx} < \text{const.} \varepsilon^{-m - (1-a)^2 (2-3a_0+3\eta) / 2(a_0-\eta)} \] \hspace{1cm} (93)

\[l_\varepsilon \psi_1^a(\varepsilon) < \text{const.} \varepsilon^{-m(a_0-\eta)/ (a_0-\eta)} \] \hspace{1cm} (94)

are found. From (87), (93) and (94) we obtain

\[\frac{l_\varepsilon \int_0^{\alpha} \frac{3}{2} (x) dx}{\delta^{-1} \sum_{j=1}^{l_\varepsilon} \int_0^{\beta_j(\varepsilon)} \psi_j(\varepsilon) dx} < \text{const.} \varepsilon^{F_1(\eta)} \] \hspace{1cm} (95)

and

\[\frac{l_\varepsilon \psi_1^a(\varepsilon) dx}{\delta^{-1} \sum_{j=1}^{l_\varepsilon} \int_0^{\beta_j(\varepsilon)} \psi_j(\varepsilon) dx} < \text{const.} \varepsilon^{F_2(\eta)} \] \hspace{1cm} (96)

Here,

\[F_1(\eta) = -m - \frac{(1-a) (2-3a_0+3\eta)}{2(a_0-\eta)} - \frac{3a_0 + 3\eta - 2}{2(a_0+\eta)} \]

\[F_2(\eta) = -m(a_0-\eta)/ (a_0-\eta) - \frac{3a_0 + 3\eta - 2}{2(a_0+\eta)} \]

There is a number \(\omega = \omega(t) > 0 \) \((0 < \eta < \omega) \) such that

\[F_1(\eta) > \frac{2a - 2a_0m - 3aa_0}{2a_0} - t \] \hspace{1cm} (97)

\[F_2(\eta) > \frac{2 - 3a_0 - 2a_0m - 2a}{2a_0} - t \] \hspace{1cm} (98)

for every \(t > 0 \). If we take

\[a = \frac{(2-3a_0)^2 + 6a_0^2m}{4(2-3a_0)} \]

\[t = t_0 = \frac{1}{16a_0} \left((2-3a_0)^2 + 6a_0^2m - 8a_0m \right) \]
in the inequalities (97) and (98), then we have
\[F_1(\eta) > t_0 \quad ; \quad F_2(\eta) > t_0. \]
(99)

Since the number \(m \) satisfies the condition (82), we have \(a \in (0, 1) \) and \(t_0 > 0 \).
From (83), (95), (96) and (99) we obtain
\[\left| \frac{N(\varepsilon)}{\delta^{-1} \sum_{j=1}^{N(\varepsilon)} \int_0^1 \beta_j(\varepsilon, x)dx} \sum_{i=1}^{N(\varepsilon)} \lambda_i \frac{\psi_j(\varepsilon)}{\psi_j(\varepsilon)} - 1 \right| < \text{const.} \varepsilon^{t_0}. \]
(100)

By (42), (97) and (100) we have the asymptotic formula
\[N(\varepsilon) = \frac{1}{3\pi} \left[1 + O(\varepsilon^{t_0}) \right] \sum_{j} \int_{\alpha_j(x) \geq \varepsilon} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} (2\alpha_j(x) + \varepsilon)dx \]
as \(\varepsilon \to 0. \) □

Example 3.3 Let \(H = L^2[0, \pi] \) be a separable Hilbert space and \(e_i = \sqrt{\frac{2}{\pi}} \sin ix \quad (i = 1, 2, \cdots) \) be a standard basis in \(H \). Let \(Q(x) : H \to H \)
\[Q(x)f = \sum_{i=1}^{\infty} \alpha(x)i^{-2}(f, e_i)e_i \quad (f \in H) \]
for all \(x \in [0, \infty) \). \(Q(x) \) is a self adjoint, completely continuous and positive operator function. The eigenvalues of \(Q(x) \) are in the form
\[\alpha(x) = \begin{cases} \frac{2}{\ln \ln b} - \frac{x}{b \ln \ln b} & 0 \leq x \leq b \\ \frac{1}{\ln \ln x} & b \leq x < \infty \end{cases} \]
Here \(b > e^3 \) is a constant such that \(\ln x > (\ln \ln x)^2 \).

References

[1] Şengül, S. The asymptotic behaviour of the spectrum of negative part of Sturm-Liouville problem with operator coefficient, PhD thesis in YTU FBE (2006). (In Turkish).

https://tez.yok.gov.tr/Ulusaltetzgokmerkezi/TezGoster?key= -L8ilcw9ZRRcY-MKxXW1u5yjU0ABL-nqSBJoTERxJektuxRXLjFdBQGCdCtgfjhR
[2] Adıgüzelo, E.E., Oer, Z. Asymptotic Expansion for the sum of negative Eigenvalues of Sturm-Liouville operator given in Semi-axis, YTÜD, (2002), Vol 1,26-35.

[3] Bakși, Ö., Ismayılov, S. An asymptotic formula for the sum of negative eigenvalues of second order differential operator given in infinite interval, Sigma Mühendislik ve Fen Bilimleri Dergisi 2005-4, 87-98. (In Turkish)

[4] Skac.ek B.Y. Asymptod of Negative Part of Spectrum of One Dimensioned Differential Operators, Pribl. metodi res.eniya differn. uraveniy, Kiev, 1963”, Pribl. Metod reseniya differens, unavneniy, Kiev, (1963).

[5] Adıgüzelo, E.E. The asymptotic behaviour of the spectrum’s negative part of Sturm-Liouville problem with operator coefficient, Izv. AN Az.SSR, Seriya fiz.-tekn.i mat. nauk, No:6, 8-12, (1980). (In Russian)

[6] Maksudov F.G., Bayramoğlu M., Adıgüzelo E.,On asymptotics of spectrum and trace of high order differential operator with operator coefficients, Doğu-Turkish journal of Mathematics, (1993), vol.17.

[7] Adıgüzelo, E.E., Bakși, Ö., Bayramov, A.M. The Asymptotic Behaviour of the Negative Part of the Spectrum of Sturm-Liouville Operator with the Operator Coefficient which Has Singularity, International Journal of Differential Equations and Applications, Vol.6, No.3, 315-329, (2002).

[8] Gohberg, I.C. and Krein, M.G., Introduction to the Theory of Linear Non-self Adjoint Operators in Hilbert Space, Translation of Mathematical Monographs, Vol.18 (AMS, Providence, R.I.,1969).

[9] Lysternik, L.A. and Sobolev, V.I. Elements of Functional Analysis, (English translation), John Willey Sons, New York, page 229, (1974).

[10] Glazman, I.M. Direct methods qualitative spectral analysis of singular differential operators, Jerusalem, pages 34-44, (1965).

[11] Smirnov,V.I., A Course of Higher Mathematics, vol.5, Pergamon Pres, New York, page 623, (1964).

[12] Courant, R. and Hilbert, D., Methods of Mathematical Physics, vol.1, New York, page 408, (1966).