Geophysical Research Letters

RESEARCH LETTER
10.1029/2021GL095017

Key Points:
- We show that in rotating spherical Rayleigh-Bénard convection, three regions with distinctly different flow dynamics are formed
- The mid-latitude region is characterized by convective columns that extend from the Northern to the Southern hemisphere of the outer sphere
- The diffusion-free scaling indicates that the flow dynamics and heat transport originating in the mid-latitude region are bulk-dominated

Supporting Information:
Supporting Information may be found in the online version of this article.

Correspondence to:
G. Wang and R. J. A. M. Stevens, gwang4academy@gmail.com; r.j.a.m.stevens@utwente.nl

Citation:
Wang, G., Santelli, L., Lohse, D., Verzicco, R., & Stevens, R. J. A. M. (2021). Diffusion-free scaling in rotating spherical Rayleigh-Bénard convection. Geophysical Research Letters, 48, e2021GL095017. https://doi.org/10.1029/2021GL095017

Received 29 JUN 2021
Accepted 28 SEP 2021

Abstract
Direct numerical simulations are employed to reveal three distinctly different flow regions in rotating spherical Rayleigh-Bénard convection. In the high-latitude region, vertical (parallel to the axis of rotation) convective columns are generated between the hot inner and the cold outer sphere. The mid-latitude region is dominated by vertically aligned convective columns formed between the Northern and Southern hemispheres of the outer sphere. The diffusion-free scaling, which indicates bulk-dominated convection, originates from this mid-latitude region. In the equator region, the vortices are affected by the outer spherical boundary and are much shorter than in region II.

Plain Language Summary
Thermally driven turbulence with background rotation in spherical Rayleigh-Bénard convection is found to be characterized by three distinctly different flow regions. The diffusion-free scaling, which indicates the heat transfer is bulk-dominated, originates from the mid-latitude region in which vertically aligned vortices are stretched between the Northern and Southern hemispheres of the outer sphere. These results show that the flow physics in rotating convection is qualitatively different in planar and spherical geometries. This finding underlines that it is crucial to study convection in spherical geometries to better understand geophysical and astrophysical flow phenomena.

1. Introduction

Rapidly rotating convection is relevant for many geophysical and astrophysical flows, e.g., the solar interior (Schumacher & Sreenivasan, 2020), the liquid metal core of terrestrial planets (Aurnou et al., 2015; Jones, 2011; Olson, 2011; Zhang & Schubert, 2000), and Earth’s oceans and atmosphere (Fultz et al., 1999; Marshall & Schott, 1999). In these instances of convection with strong thermal driving, the flow dynamics is nevertheless dominated by the strong background rotation (Aurnou et al., 2015; Kunnen, 2021; Sprague et al., 2006). The effect of rotation has been extensively studied in Rayleigh-Bénard (RB) convection experiments (Cheng et al., 2020; Ecke & Niemela, 2014; King et al., 2009, 2012; Liu & Ecke, 1997; Rossby, 1969; Stellmach et al., 2014; Stevens et al., 2009; Wedi et al., 2021; Zhong et al., 2009) and simulations (Horn & Shishkina, 2015; King et al., 2012, 2013, 2009; Kunnen et al., 2016; Schmitz & Tilgner, 2009; Stellmach et al., 2014; Stevens et al., 2009). In the canonical RB system, the flow is confined between two parallel plates, and this system is studied in 3D periodic, rectangular, or cylindrical domains. In the remainder of this article, we refer to this as planar RB convection to distinguish it from the spherical RB system considered here (see Figure 1a). We refer the reader to the reviews (Aurnou et al., 2015; Kunnen, 2021; Plumley & Julien, 2019) for an extensive explanation of rotating RB convection. Even though there are great community efforts on rotating RB the diffusion-free scaling regime, geostrophic dominated which will be defined explicitly below, predicted for strongly thermally driven rotation dominated flow has not been observed yet for rotating RB with no-slip boundaries. This study will show that in a spherical RB convection, the geometry allows for the formation of a geostrophic dominated flow region that exhibits diffusion-free scaling in the mid-latitude region.

The control parameters of rotating RB flow are the Rayleigh (Ra), Ekman (Ek), and Prandtl (Pr) numbers, to be defined explicitly below. Derived from these, the convective Rossby number $Ro = \sqrt{Ra/PrEk/2}$...
The objective of this work is to elucidate the observation of diffusion-free scaling in spherical RB convection at relatively weak rotation (\(Ek \sim 10^{-5}\)), while this scaling is not observed in planar convection. For strong rotation \(Ro \ll 1\), the Taylor Proudman effect (Taylor, 1923) favors invariance along the rotation axis. In
planar convection, see Figure 1a, the rotation axis is orthogonal to the plates, and the convective columns are homogeneously distributed in the horizontal direction and always stretch between the hot and cold plates. However, in spherical geometry, the rotation effect is latitude dependent; see Figure 1b, due to which three distinctly different flow regions are formed. Inside the inner sphere's tangent cylinder, the convective columns touch the inner and outer spherical boundaries. In the mid-latitude region, the convective columns are stretched between the Northern and Southern hemispheres of the outer sphere. Near the equator, the convective columns adjust themselves to the curved boundary. This work will show that the diffusion-free scaling originates from this mid-latitude region.

The article is organized as follows: In Section 2, we introduce the rotating spherical RB system with its control parameters. Section 3 is an overview of our simulation results compared and validated to literature, subsequent analysis is performed in Sections 4 and 5. Finally, we conclude our findings in Section 6.

2. Numerical Method, Control and Response Parameters

A sketch of the rotating spherical RB geometry is shown in Figure 1b. A fluid fills a spherical shell between the inner sphere of radius r_i and outer sphere of radius r_o, with distance $d = r_o - r_i$ from the inner one. The whole system rotates about the vertical z axis at angular velocity ω. The surface temperature of the inner and outer spheres is kept constant at T_i and T_o, respectively, with $T_o > T_i$. No-slip boundary conditions are imposed at both spheres. We solve the Navier-Stokes equations in spherical coordinates within the Boussinesq approximation, which in dimensionless form read:

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{Pr}{Ra} \nabla^2 \mathbf{u} + gT \mathbf{e}_z - \frac{1}{Ro} \mathbf{e}_z \times \mathbf{u}, \quad \nabla \cdot \mathbf{u} = 0, \quad (1)$$

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \frac{1}{RaPr} \nabla^2 T. \quad (2)$$

where $\mathbf{u}(\tilde{x}, t)$, $p(\tilde{x}, t)$, $T(\tilde{x}, t)$, and $g(r)$ denote the fluid velocity, pressure, temperature and radially dependent gravitational acceleration.

In this study, we focus on a radius ratio $\eta = r_i/r_o = 0.6$ and the gravity profile $g(r) \sim (r_i/r)^2$ valid for homogeneous mass distribution to allow comparisons with non-rotating (Gastine et al., 2015) and rotating (Gastine et al., 2016) convection in spherical RB. This system configuration is considered representative for studying convection in gas giants (Long et al., 2020). Additionally, we perform simulations for $\eta = 0.35$ and $g(r) \sim (r_i/r)^3$, which is considered an Earth-like configuration used by Long et al. (2020) and Yadav et al. (2016). The equations are discretized by a staggered central second-order finite-difference scheme in spherical coordinates (Santelli et al., 2020). We use a uniform grid in the longitudinal and co-latitudinal directions and ensure that the bulk and boundary layers are appropriately resolved (Stevens, Verzicco, & Lohse, 2010). The grid cells are clustered toward the inner and outer sphere to ensure the boundary layers are adequately resolved (Shishkina et al., 2010). Further details on the simulations are given in the Supporting Information S1.

The dynamics of rotating spherical RB convection are determined by the Rayleigh, Prandtl, and Ekman numbers:

$$Ra = \frac{\beta g_o d^3 \Delta T}{\kappa v}, \quad Pr = \frac{v}{\kappa}, \quad Ek = \frac{v}{\kappa d^2}. \quad (3)$$

where β is the thermal expansion coefficient, g_o is the gravity at the outer sphere, v is the kinematic viscosity, and κ is the thermal diffusivity of the fluid. Ra is a measure of the thermal driving of the system, Ek characterizes the ratio of viscous to Coriolis forces, and Pr indicates the ratio of the viscous to thermal diffusivities. In this study we consider $Pr = 1$. We use the Rossby number $Ro = \sqrt{RaPrEk}/2$ to evaluate the relative importance of rotation and buoyancy (Gilman, 1977). We normalize the results using the length scale $d = r_o - r_i$, the temperature difference ΔT between inner and outer sphere, and the free-fall velocity $U = \sqrt{\beta g_o \Delta T d}$.

The Nusselt number quantifies the non-dimensional heat transport:
where $T_s(r) = \bar{T}(\theta, \phi) - \bar{T}_s$ is the conductive temperature profile in spherical shells with constant temperature boundary conditions $T_s(r) = 1$ and $T_s(r_o) = 0$. The notations (\cdots) represent the average over a spherical surface with constant distance from the center, e.g.,

$$
(T) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi T(\theta, r, \phi) \sin \phi \, d\phi \, d\theta.
$$

Overbar $\bar{\cdot}$ corresponds to time averaging. In the following discussion, we will use Nu on the outer sphere as a function of the co-latitude:

$$
Nu(\phi) = -\frac{1}{\eta} \frac{d \langle T \rangle_\theta}{dr} |_{r_o}
$$

where $(\cdots)_\theta$ represents the average over the azimuthal direction, e.g.,

$$
\langle T \rangle_\theta = \frac{1}{2\pi} \int_0^{2\pi} T(\theta, r, \phi) d\theta.
$$

3. Heat Transfer in Rotating Spherical RB Convection

Figure 2 shows Nu as function of Ra for various Ek. The results from our simulations agree excellently with those from Gastine et al. (2016). For strong enough rotation (e.g., $Ek \lesssim 3 \times 10^{-5}$), with increasing Ra three regimes can be identified (Gastine et al., 2016; Long et al., 2020). For low Ra, in the weakly nonlinear regime, rotational effects are dominant ($Ro \ll 1$) and $Nu \sim R^\alpha$ with $K = RaEk^{1/3}$ and $\alpha = 1$. In the quasi-geostrophic regime with diffusion-free scaling $\alpha = 3/2$, the Taylor-Proudman effect favors invariance along the rotation axis, thereby suppressing global heat transport relative to non-rotating case (Julien, Knobloch, et al., 2012). This regime is observed for $6Ek^{4/3} \leq Ra \leq 0.4Ek^{-3/2}$ (Gastine et al., 2016). The lower bound is related to Ro_o, while the upper bound corresponds to the asymptotic prediction for bulk-limited heat transfer in geostrophic turbulence by Julien, Knobloch, et al. (2012). In the transitional regime between strong and weak rotation ($Ro \sim 1$) the buoyancy force gradually becomes dominant over rotational effects with increasing Ra and the flow eventually approaches the non-rotating case for $Ro \gg 1$.

4. Identification of Three Flow Regimes

Figure 3a visualizes the columnar structures by $T' > 0$ and $T' < 0$, here $T'(\theta, r, \phi) = T(\theta, r, \phi) - \langle T \rangle$ is defined in Section 2. The inner and outer thermal boundary layer thickness $\lambda_{r,i}$ and $\lambda_{r,o}$ is defined by the intersection of the linear fit to $\langle T \rangle$, near the boundaries and the profile at middepth (Gastine et al., 2016; Long et al., 2020). Figure 3b clearly shows that there are three distinct flow regions. Region I spans from the rotation axis to ϕ_1, where ϕ_1 can be determined by the intersection between the cylinder tangent to the inner sphere with the outer sphere. In this region, the columnar structures connect the boundary layers around the inner and outer spheres. Region II is found between ϕ_1 and ϕ_2 (see Figure 3b), ϕ_2 being the maximum zonal flow location (see below). In this mid-latitude region, the structures are the strongest, and tall thin columns stretch from the Northern to the Southern parts of the cold outer sphere. Region III is the region around the equator, see Figure 3b. In this region, the structures aligned with the rotation axis are much shorter than in the mid-latitude region II, while they conform themselves to the outer spherical boundary. Figure 3c shows that the heat transport strongly depends on the latitude (Yadav et al., 2016), which means that the heat transfer in the different flow regions identified above is different.

Aurnou and Olson (2001) and Christensen (2002) found that the zonal flow is prograde in the equatorial region near the outer boundary and retrogrades near the tangent cylinder that encloses the central core. Therefore, the zonal flow is suitable to identify the boundary between region II and III. Figures 4a and 4b show how we use the local maximum prograde zonal velocity close to the equator to set ϕ_2. Figure 4a
Figure 3. (a) Contour of the temperature fluctuation T' on two meridional cuts, equatorial section, and two spherical surfaces (corresponding to the spherical surfaces located at the inner ($r = r_i + \lambda r_e$) and outer ($r = r_o - \lambda r_e$) thermal boundary layers). (b) Contour of T' with streamlines illustrated by using line integral convolution on the outer radial surface (see Section 3 in the Supporting Information S1). The definition of the three regimes I, II, III is given in the text and Figure 4. (c) Nu as function of the co-latitude φ on the outer sphere. In all cases (a–c), $Ek = 1 \times 10^{-7}$ and $Ra = 5 \times 10^7$, i.e., simulation No.76 in the Supporting Information S1.

Figure 4. (a) Cylindrical polar coordinates (z, φ, θ), z is the rotation axis, z_i is the cylindrical radius and θ is the azimuthal angle and of which the regimes I, II, III can be defined as shown. (b) Ensemble averaged azimuthal velocities U_θ (zonal flows) as a function of z_i/r in Equation 6. $(z_i - r)/d = 0$ and 1 correspond to the tangent cylinders of the inner and outer spheres, respectively. φ_2 is determined by the z_i location close to the outer sphere where the zonal flow is strongest. (c) Time and azimuthal averaged thermal dissipation $\langle \nabla T^2 \rangle_o$ in the meridional plane for case No.76 of $Ek = 1 \times 10^{-5}$ and $Ra = 5 \times 10^7$. (d) Pie chart for (c) showing the distribution of the thermal dissipation rate over the different regions in the boundary layer and bulk, see Equation 8.
The zonal flow is the ensemble average of the azimuthal velocity in cylindrical coordinate:

\[U_z = \frac{1}{\theta E z \theta \Omega E z} \langle u_{	heta \theta} (z, \theta E z) \rangle \tag{6} \]

where \(u_{\theta \theta} (z, \theta E z) \) is the longitudinal velocity \(u_{\theta \theta} (\theta, r, \phi) \) in spherical coordinate projected to cylindrical coordinate, \(\langle \cdots \rangle_{\theta \theta} \) indicates spatial average over a cylindrical surface (in the azimuthal and vertical direction), and \(\overline{\cdots} \) indicates time-averaging.

We analyze the thermal dissipation in the different flow regions to determine whether the different regions are dominated by the boundary layer or the bulk dynamics. For spherical shells with radius ratio \(\eta \), the thermal dissipation rate:

\[\epsilon^T = \frac{3 \eta}{1 + \eta + \eta^2} Nu \tag{7} \]

by volume integral of \(T \times (T) \). Figure 4c shows the time-averaged thermal dissipation rate in the meridional plane. The figure shows that the thermal dissipation intensity is highest in the boundary layers along the inner sphere (region I) and close to the equator region along the outer sphere (region III). We determine the distribution of the thermal dissipation rate over the different regions as follows:

\[\epsilon^T = \epsilon_{I, \text{bulk}}^T + \epsilon_{I, \text{TBL}}^T + \epsilon_{II, \text{bulk}}^T + \epsilon_{II, \text{TBL}}^T + \epsilon_{III, \text{bulk}}^T + \epsilon_{III, \text{TBL}}^T. \tag{8} \]

where bulk indicates the bulk regions and TBL indicates the thermal boundary layer regions, i.e., for the radial locations \(r; r_i \leq r \leq r_f + \delta r_i \) along the inner sphere and \(r_o - \delta r_o \leq r \leq r_o \) along the outer sphere. Figure 4d confirms that regions I and III are both strongly affected by the boundary layer dynamics. However, region II turns out to be bulk-dominated. We note that the boundary between region II and III is not determined based on the thermal dissipation profiles as there is not a clear peak in the direction separating the regimes. Therefore, as discussed above, we use the maximum in the zonal flow profile to determine this transition.
In the following section, we will show that, in agreement with theoretical expectations discussed above, the scaling of the heat transfer in the region II follows the diffusion-free scaling for rotation dominated strongly thermally driven flows.

5. Diffusion-Free Scaling in Region II

Figure 5 shows \(Nu \) on the outer sphere compensated with the diffusion-free scaling law. Panel 5(a) shows that for the global heat transfer and \(E_k \leq 5 \times 10^{-5} \) the diffusion-free scaling is observed for \(R \geq 6 \). The crossover from the quasi-geostrophic region to the transitional region is observed at \(Ra_I = 0.4 E_k^{-8/5} \) (Gastine et al., 2016). Figures 5b–5d show the heat transfer scaling in the different flow regions identified above. Panel 5(b) evidences that, due to Ekman pumping (Stellmach et al., 2014; Stevens, Clercx, & Lohse, 2010; Stevens et al., 2013; Zhong et al., 2009), the heat transport scaling in region I is \(Nu_I \sim R^{2.1} \). This is steeper than the \(\alpha = 3/2 \) scaling for diffusion-free convection, but shallower than the \(\alpha = 3 \) value observed in planar convection (King et al., 2013). Most importantly, panel 5(c) shows that the diffusion-free scaling is much more pronounced in region II than in region I. Although the diffusion-free scaling still starts at \(R = 6 \), it continues for much higher \(R \) than the global heat transfer, see Figure 5a. Panel 5(d) shows that no diffusion-free scaling regime is observed in region III.

The diffusion-free scaling regime is observed from \(6R \) up to \(Ra_I \), where \(Ra_I \) indicates the \(Ra \) number at which the regime for bulk-limited heat transfer in geostrophic turbulence ends (Julien, Knobloch, et al., 2012; Julien, Rubio, et al., 2012). It was demonstrated (Gastine et al., 2016) that for the global heat transfer the diffusion-free scaling regime is observed up to \(Ra_I = 0.4 E_k^{-8/5} \); see also Figure 6a. For region II, Figure 6b shows that the diffusion-free scaling is observed up to \(Ra_I = E_k^{-3/5} \), which is considerably higher \(Ra \) than for the global heat transport.

In Section 4 of the Supporting Information S1, we show that the observation of the diffusion-free scaling in the mid-latitude region II does not depend on the specific \(\eta = 0.6, g(r) \sim (r/r_o)^2 \) considered here. The same conclusion is obtained by analyzing \(\eta = 0.35, g(r) \sim (r/r_o)^{-1} \) and \(E_k = 1 \times 10^{-5} \).

6. Conclusions

In conclusion, we have shown that rotating spherical RB convection has three distinctly different flow regions; see Figure 3b. In region I, convective columns are formed between the hot inner and cold outer spheres. The mid-latitude region II is the region where the vertically aligned vortices are strongest, and the flow is bulk dominated. Region III is formed around the equator, and here the vortices are shorter and are affected by the outer spherical boundary.

The diffusion-free scaling \(Nu \sim (Ra E_k^{4/3})^{\alpha/2} \) with \(\alpha = 3/2 \) originates from the mid-latitude flow region in which the flow dynamics are bulk dominated. In this region, thin and long convective columns are formed between the Northern and Southern parts of the cold outer sphere. This geostrophically dominated flow region can be formed due to the system geometry. Due to the curvature effects in spherical geometries, the latitude-dependent Coriolis force results in inhomogeneous convective columns in the co-latitude direction and more convective columns on the outer sphere than the inner sphere.

Data Availability Statement

The data used in this article are available for download at https://doi.org/10.5281/zenodo.5034407.

References

Ahlers, G., Grossmann, S., & Lohse, D. (2009). Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Reviews of Modern Physics, 81, 503–537. https://doi.org/10.1103/revmodphys.81.503
Aurnou, J. M., Calkins, M. A., Cheng, J. S., Julien, K., King, E. M., Nieves, D., et al. (2015). Rotating convective turbulence in Earth and planetary cores. Physics of the Earth and Planetary Interiors, 246, 52–71. https://doi.org/10.1016/j.pepi.2015.07.001
Aurnou, J. M., & Olson, P. L. (2001). Strong zonal winds from thermal convection in a rotating spherical shell. Geophysical Research Letters, 28(13), 2557–2559. https://doi.org/10.1029/2000gl012474
Busse, F. H. (1970). Thermal instabilities in rapidly rotating systems. Journal of Fluid Mechanics, 44(3), 441–460. https://doi.org/10.1017/S0022112070001921

Busse, F. H. (1983). A model of mean zonal flows in the major planets. Geophysical & Astrophysical Fluid Dynamics, 23(2), 153–174. https://doi.org/10.1080/03091928308221746

Chandrasekhar, S. (1961). Hydrodynamic and hydromagnetic stability. Oxford University Press.

Cheng, J. S., Madonia, M., Aguirre Guzmán, A. J., & Kunnen, R. P. J. (2020). Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection. Physical Review Fluids, 5, 113501. https://doi.org/10.1103/physrevfluids.5.113501

Cheng, J. S., Stellmach, S., Ribeiro, A., Granann, A., King, E. M., & Aurnou, J. M. (2015). Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophysical & Astrophysical Fluid Dynamics, 110(1), 1–17. https://doi.org/10.1016/j/ggfd.2014.08.001

Chilla, F., & Schumacher, J. (2012). New perspectives in turbulent Rayleigh-Bénard convection. The European Physical Journal E, 35, 58. https://doi.org/10.1140/epje/i2012-12058-9

Christensen, U. R. (2002). Open-ocean convection: Observations, theory, and models. Journal of Fluid Mechanics, 470, 115–133. https://doi.org/10.1017//s002211200020008

Eck, R. E., & Niemela, J. J. (2014). Heat transport in the geostrophic regime of rotating Rayleigh-Bénard convection. Physical Review Letters, 113(11), 114301. https://doi.org/10.1103/physrevlett.113.114301

Fultz, D., Long, R. R., Owens, G. V., Bohan, W., Kaylor, R., & Weil, J. (1959). Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions. Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions (pp. 1–104). Springer. https://doi.org/10.1007/978-1-4901-472-1_1

Gastine, T., Wicht, J., & Aurnou, J. M. (2015). Turbulent Rayleigh-Bénard convection in spherical shells. Journal of Fluid Mechanics, 778, 721–764. https://doi.org/10.1017/jfm.2015.401

Gastine, T., Wicht, J., & Aurnou, J. M. (2016). Scaling regimes in spherical shell rotating convection. Journal of Fluid Mechanics, 808, 690–732. https://doi.org/10.1017/jfm.2016.659

Gilman, P. A. (1977). Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell-I. Geophysical & Astrophysical Fluid Dynamics, 8(1), 93–135. https://doi.org/10.1080/03091927708240373

Grossmann, S., & Lohe, D. (2000). Scaling in thermal convection: A unifying theory. Journal of Fluid Mechanics, 407, 27–56. https://doi.org/10.1017//s002211200020008

Grossmann, S., & Lohe, D. (2011). Multiple scaling in the ultimate regime of thermal convection. Physics of Fluids, 23(4), 045108. https://doi.org/10.1063/1.3582362

Horn, S., & Shishkina, O. (2015). Toroidal and poloidal energy in rotating Rayleigh-Bénard convection. Journal of Fluid Mechanics, 762, 232–255. https://doi.org/10.1017/jfm.2014.652

Jones, C. A. (2011). Planetary magnetic fields and fluid dynamo. Annual Review of Fluid Mechanics, 43, 583–614. https://doi.org/10.1146/annurev-fluid-122109-160727

Julien, K., Rubio, A. M., Grooms, I., & Knobloch, E. (2012). Statistical and physical balances in low Rossby number Rayleigh-Bénard convection. Physical Review Letters, 109(25), 254503. https://doi.org/10.1103/physrevlett.109.254503

King, E. M., Stellmach, S., & Aurnou, J. M. (2012). Heat transfer by rapidly rotating Rayleigh-Bénard convection. Journal of Fluid Mechanics, 691, 568–582. https://doi.org/10.1017/jfm.2011.493

King, E. M., Stellmach, S., & Buffett, B. (2013). Scaling behaviour in Rayleigh-Bénard convection with and without rotation. Journal of Fluid Mechanics, 717, 449–471. https://doi.org/10.1017/jfm.2012.586

Kunnen, R. P. J. (2009). Boundary layer control of rotating convection systems. Nature, 457(7227), 301–304. https://doi.org/10.1038/nature07647

Kraichnan, R. H. (1962). Turbulent thermal convection at arbitrary Prandtl number. Physics of Fluids, 5(11), 1374–1389. https://doi.org/10.1063/1.1705533

Kunnen, R. P. J. (2021). The geostrophic regime of rapidly rotating turbulent convection. Journal of Turbulence, 22(4–5), 267–296. https://doi.org/10.1080/14685248.2021.1878677

Kunnen, R. P. J., Ostilla-Mónico, R., Van Der Poel, E. P., Verzicco, R., & Lohse, D. (2016). Transition to geostrophic convection: The role of the boundary conditions. Journal of Fluid Mechanics, 799, 413–432. https://doi.org/10.1017/jfm.2016.394

Liu, Y., & Ecke, R. E. (1997). Heat transport scaling in turbulent Rayleigh-Bénard convection: Effects of rotation and Prandtl number. Physical Review Letters, 79(12), 2257–2260. https://doi.org/10.1103/physrevlett.79.2257

Long, R. S., Mound, J. E., Davies, C. J., & Tobias, S. M. (2020). Scaling behaviour in spherical shell rotating convection with fixed-flux thermal boundary conditions. Journal of Fluid Mechanics, 889, A7. https://doi.org/10.1017/jfm.2020.67

Marshall, J., & Schott, F. (1999). Open-ocean convection: Observations, theory, and models. Reviews of Geophysics, 37(1), 1–64. https://doi.org/10.1029/98rg02739

Olson, P. (2011). Laboratory experiments on the dynamics of the core. Physics of the Earth and Planetary Interiors, 187(3–4), 139–156. https://doi.org/10.1016/j.pepi.2011.08.006

Plumley, M., & Julien, K. (2019). Scaling laws in Rayleigh-Bénard convection. Earth and Space Science, 6(9), 1580–1592. https://doi.org/10.1002/2019ea000583

Plumley, M., Julien, K., Marti, P., & Stellmach, S. (2016). The effects of Ekman pumping on quasi-geostrophic Rayleigh-Bénard convection. Journal of Fluid Mechanics, 803, 51–71. https://doi.org/10.1017/jfm.2016.452

Raether, H. (1969). A study of Bénard convection with and without rotation. Journal of Fluid Mechanics, 36(2), 309–335. https://doi.org/10.1017//s0022112069001674

Santelli, L., Orlandi, P., & Verzicco, R. (2020). A finite-difference scheme for three-dimensional incompressible flows in spherical coordinates. Journal of Computational Physics, 424, 109848. https://doi.org/10.1016/j.jcp.2020.109848

Schmitz, M., & Tilgner, A. (2009). Heat transport in rotating convection without Ekman layers. Physical Review E, 80(1), 015305. https://doi.org/10.1103/physreve.80.015305

Schumacher, J., & Sreenivasan, K. R. (2020). Colloquium: Unusual dynamics of convection in the Sun. Reviews of Modern Physics, 92(4), 041101. https://doi.org/10.1103/reviewmodphys.92.041101

Shishkina, O., Stevens, R. J. A. M., Grossmann, S., & Lohse, D. (2010). Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New Journal of Physics, 12(7), 075022. https://doi.org/10.1088/1367-2630/12/7/075022
Shraiman, B. I., & Siggia, E. D. (1990). Heat transport in high-Rayleigh-number convection. *Physical Review A*, 42(6), 3650–3653. https://doi.org/10.1103/physreva.42.3650

Spiegel, E. A. (1971). Convection in stars I. Basic Boussinesq convection. *Annual Review of Astronomy and Astrophysics*, 9(1), 323–352. https://doi.org/10.1146/annurev.aa.09.090171.001543

Sprague, M., Julien, K., Knobloch, E., & Werne, J. (2006). Numerical simulation of an asymptotically reduced system for rotationally constrained convection. *Journal of Fluid Mechanics*, 551, 141. https://doi.org/10.1017/s0022112005008499

Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., et al. (2014). Approaching the asymptotic regime of rapidly rotating convection: Boundary layers versus interior dynamics. *Physical Review Letters*, 113(25), 254501. https://doi.org/10.1103/physrevlett.113.254501

Stevens, R. J. A. M., Clercx, H. J. H., & Lohse, D. (2010). Optimal Prandtl number for heat transfer in rotating Rayleigh-Bénard convection. *New Journal of Physics*, 12(7), 075005. https://doi.org/10.1088/1367-2630/12/7/075005

Stevens, R. J. A. M., Clercx, H. J. H., & Lohse, D. (2013). Heat transport and flow structure in rotating Rayleigh-Bénard convection. *European Journal of Mechanics - B/Fluids*, 40, 41–49. https://doi.org/10.1016/j.euromechflu.2013.01.004

Stevens, R. J. A. M., Verzicco, R., & Lohse, D. (2010). Radial boundary layer structure and Nusselt number in Rayleigh-Bénard convection. *Journal of Fluid Mechanics*, 643, 495–507. https://doi.org/10.1017/S002211201000992461

Stevens, R. J. A. M., Zhong, J.-Q., Clercx, H. J., Ahlers, G., & Lohse, D. (2009). Transitions between turbulent states in rotating Rayleigh-Bénard convection. *Physical Review Letters*, 103(2), 024503. https://doi.org/10.1088/1367-2630/12/7/075005

Taylor, G. I. (1923). VIII. Stability of a viscous liquid contained between two rotating cylinders. *Philosophical Transactions of the Royal Society of London. Series A*, 223(605–615), 289–343. https://doi.org/10.1098/rsta.1923.0008

Wedi, M., Gils, D. P. M. V., Bodenschatz, E., & Weiss, S. (2021). Rotating turbulent thermal convection at very large Rayleigh numbers. *Journal of Fluid Mechanics*, 912, A30. https://doi.org/10.1017/jfm.2020.1149

Yadav, R. K., Gastine, T., Christensen, U. R., Duarte, L., & Reiners, A. (2016). Effect of shear and magnetic field on the heat-transfer efficiency of convection in rotating spherical shells. *Geophysical Journal International*, 204(2), 1120–1133. https://doi.org/10.1093/gji/ggv506

Zhang, K., & Schubert, G. (2000). Magnetohydrodynamics in rapidly rotating spherical systems. *Annual Review of Fluid Mechanics*, 32(1), 409–443. https://doi.org/10.1146/annurev.fluid.32.1.409

Zhong, J.-Q., Stevens, R. J. A. M., Clercx, H. J., Verzicco, R., Lohse, D., & Ahlers, G. (2009). Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection. *Physical Review Letters*, 102(4), 044502. https://doi.org/10.1103/physrevlett.102.044502

References From the Supporting Information

Al-Shamali, F. M., Heimpel, M. H., & Aurnou, J. M. (2004). Varying the spherical shell geometry in rotating thermal convection. *Geophysical & Astrophysical Fluid Dynamics*, 98(2), 153–169.

Cabral, B., & Heed, L. C. (1993). Imaging vector fields using line integral convolution. *Proceedings of the 20th annual conference on computer graphics and interactive techniques* (pp. 263–270).

Hege, H. C., & Polthier, K. (2013). *Visualization and mathematics iii*. Springer Science & Business Media.