Systematic Review of Plants Used Against Respiratory Diseases Related to COVID-19 in Africa

Gabriel Agbor Agbor*, Rosette Ndjib
Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Cameroon

Abstract

Background: Respiratory disorders are known to affect the airways including the nasal passages, bronchi and lungs causing blockages. The advent of COVID-19 has further aggravated the complications of the respiratory systems where conventional medicine is not reachable or affordable by the majority poor in Africa. Hence, the over 80% of the African population who turn to traditional medicine for their primary healthcare.

Objective: This review is aimed to identify plants directed against respiratory diseases which can be useful in the fight against COVID-19.

Methodology: Scientific articles selected in this study span the last ten years (2011-2021). Keywords such as “ethnobotany in Africa”, “ethnobotany and respiratory diseases” “medicinal plants and respiratory diseases”, “traditional medicine and COVID-19” were searched in open access search engines such as: Science Direct, Research Gate, Google Scholar, Pubmed, Web of Science, Scopus. The ethnobotanical indices were then calculated using Microsoft excel to determine the plants with the most therapeutic potential to be considered for the local management of COVID-19.

Results: Data obtained were classified according to country of origin of the author of the publication, the botanical family and the respiratory pathology being treated. Thirteen (13) references were finally selected with the represented country being Benin Republic. One hundred and forty-three plant species belonging to 60 families were registered. The most recurrent families were the Fabaceae and Lamiaceae (18 citations each). The plants in these families were used for the management of fifteen diseases and / or symptoms relating to the respiratory system. The most cited plants were: Ocimum gratissimum L. (4 citations), Entandrophragma cylindrium (Sprague), Scyphochelum ochocoa Warb., Rubia cordifolia and Allium sativum L. (3 citations each).

Conclusion: Based on the data obtained in this review Ocimum gratissimum stands out as the most used plant for the treatment of respiratory disorders.

Keywords: Respiratory diseases, Medicinal plants, COVID-19

INTRODUCTION

Respiratory diseases are known to affect the airways including the nasal passages, bronchi and lungs. It is very often difficult to classify them because they have different levels of severity and are closely dependent on the patient's age. They can be bronchitis, pneumonia, asthma, tuberculosis, sinusitis, and rhinitis representing the main factors of morbidity and mortality in both developed and developing nations of the world. Respiratory infections account for up to 38.6% of infectious diseases and are responsible for the death of around 14.9% of children in Africa.

Coronaviruses are emerging and reemerging enveloped RNA viruses that are distributed broadly among humans, mammals and birds. Coronaviruses vary significantly in the pathogenicity, and include highly pathogenic species such as MERS-CoV and COVID-19, and relatively harmless species such as the common cold. Severe Acute Respiratory Syndrome Corona Virus (SARS-COV) is the causal agent of the outbreaks in 2002, 2003 in China. In December 2019, a new epidemic of SARS-COV was detected in several local health facilities from patients with pneumonia in Wuhan, Hubei Province, China. COVID-19 is a species of coronavirus (CoVs), an etiologic agent which can systemically cause disease in the respiratory and digestive tract, resulting in severe infections in both humans and animals. Currently, no specific therapies for COVID-19 are available and investigations regarding the treatment of COVID-19 are still limited to preventive and supportive therapies, designed to prevent further complications and organ damage. The main symptoms described for COVID-19 were those of malaria (fever, fatigue, body aches, etc.), accompanied by symptoms of respiratory disorders (dry cough, breathing difficulties, chest pain, sore throat, etc.) and flu. After the panic caused by the first cases of contamination in Cameroon in March 2020, the population in search of preventive and even curative measures for COVID-19, flocked the traditional pharmacopoeia in search...
of traditional medicine which have properties against any of the symptoms. The plants most in demand were largely those with anti-influenza, antimalarial and immunomodulatory properties including those with reported effects on respiratory disorders.

In another study, some plant-sourced antioxidant and immune-boosters, kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, epicatechin-gallate, zingerol, gingerol, and allicin were investigated as potential inhibitor candidates for COVID-19. In comparison to antiretroviral protease inhibitors it was found that these plant products could act as potential inhibitors, meaning the source plants could be exploited as potential candidates for the development of improved traditional medicines (ITMs) as inhibitors of COVID-19.

The use of traditional medicine dates back to prehistoric times and remains the major accessible and affordable treatment for the population in African countries. Today medicinal plants which are the main component of traditional medicine have been transformed into conventional drugs that are sold in pharmacies worldwide. Many other plants are currently undergoing investigation to ascertain their therapeutic efficacies and safety. Medicinal plants have long been known for their curative or protective effects against a broad range of microorganisms, such as viruses, protozoa, bacteria and parasites. There are reports stating the protective effect of plant extracts against viral diseases, such as HIV and Herpes simplex virus, Hepatitis B & C virus just to name a few. Considering that COVID-19 is a respiratory disorder, the present study systematically reviewed the plants used in Africa for the treatment of respiratory disorders.

1. METHODOLOGY

1.1. Collection of bibliographic data

The scientific articles selected were based on relation to respiratory diseases published within the last ten years (2011-2021). The open access search engines consulted included: Science Direct, Research gate, Google Scholar, Pubmed, Web of Science and Scopus. The publications had authors with interest in medicinal plants for the treatment of the main symptoms of COVID-19 and geographic use described by Chassagne and amended in this study, was calculated according to the following formula:

\[S = \frac{I_1}{I_2} \]

With I1: Number of publications (the bibliographic review used) which mention the use of the species in the treatment of a respiratory pathology; and I2: Number of total publications.

1.3. Data analysis

The listed plants were then recorded on a Microsoft Excel 2013 spreadsheet and the ethnobotanical indices calculated. Descriptive statistics was used to express the data obtained (Tables and Figures).

2. RESULTS AND DISCUSSION

2.1. Bibliographic information on the scientific publications selected

The bibliographic search listed out seventy-five (75) publications from African authors. Of these, fourteen (14) discussed the use of medicinal plants in the management of respiratory diseases in Africa. The publications had authors from seven (07) African countries among which Benin (64), Cameroon (41), Morocco (33) and Gabon (27) were the most represented (Figure 1).

The fourteen (14) articles that reported the use of medicinal plants in the management of respiratory disorders were further analyzed. In a similar study in West Africa twelve articles were selected to produce a rich repertoire of plants used against respiratory diseases. In their publication they identified African authors as follows: Benin (64), Cameroon (41), Morocco (33) and Gabon (27) whose publications discussed the use of plants for treatment of respiratory disorders. Thus, in the study of Haidara et al. Benin had the highest number of authors reporting on medicinal plants and respiratory disorder followed by Cameroon and then Morocco in the third place. This result corroborated our data that presents Benin as the country with the most cited authors with interest in medicinal plants for the management of respiratory disorders. This could be justified by the fact that the Beninese is much more attached to traditional medicine with plants as the main ingredient. This data is also indicative that there is a high prevalence of respiratory disorder and that it is of importance to Benin researchers.
Figure 2 presented the spectrum of references reviewed in this study and their number of citations. Of the fourteen (14) references retained for this review, Kouchadé et al. 18 was the most cited revealing several plants used against respiratory diseases. Kouchadé et al. 18 cited over 55 times and Mathouet et al. 19 cited over 30 times signifies the importance and impact of the results of these groups of researchers in the use of medicinal plants against respiratory diseases.

2.2. Characterization of plants directed against respiratory tract diseases

In the 14 articles reviewed, one hundred and seventy-nine (179) research citations were registered on the use of plants species in the treatment of respiratory disorders in Africa. A total of one hundred and forty-three (143) plants species were reportedly used in Africa in the management of respiratory diseases. However, we reported only those plants species that were cited at least twice (Figure 3). The most cited plants across board were: Ocimum gratissimum L. (04 citations), Entandrophragma cylindrium (Sprague), Scyphocephalium ochocoa Warb. Rubia cordifolia and Allium sativum L. (03 citations each) (Figure 3). A similar study in West Africa recorded 145 species while North Africa reported 57 species implicated in the treatment of respiratory disorder 20, 21. Equally, 24 species were reported in Gabon to have therapeutic effect on respiratory disorders 19. Hence West Africa may have a well-organized traditional medicine system that promotes traditional medicine.
Sixty (60) plant families were reported in the present study. Twenty-three (23) families were cited at least three times. Amongst the 23 families Lamiaceae (18 citations) had the highest citation for respiratory disorders followed by the Fabaceae (08) and Myrtaceae (08) and then Solanaceae (07) (Figure 4). The rest of the families had below 7 citations. In African traditional medicine, the population uses plants that are within their immediate surrounding for treatment. This is the case of the Lamiaceae for Morocco and the Fabaceae for the countries of Central and West Africa. A typical example is that of *Alchornea cordifolia* that finds application as therapeutic agent in the respiratory system.\(^{22}\)
Fifteen respiratory conditions were listed from the literature search (Figure 5). Of the fifteen respiratory conditions listed, the generalized respiratory infections appear first (43 citations), followed by rhino-bronchitis (42 citations), cough (30 citations), lung infection (20 citations), asthma (19 citation) and angina (10 citations). These respiratory infections are those mostly seen in moderate to severe COVID-19 infection. One of the most important respiratory pathogens in COVID-19 is the human rhinovirus known to cause rhino-bronchitis 23 meanwhile cough is one of the most common presenting symptoms of COVID-19, along with fever and loss of taste and smell 24. When persist for weeks or months after SARS-CoV-2 infection, cough is accompanied by chronic fatigue, cognitive impairment, dyspnea, or pain 24. The situation of COVID-19 worsens in patients with preexisting conditions such as asthma and can be very fatal 25. COVID-19 infection gets worst with lung infections such as pneumonia. This is because the lungs responsible for gaseous exchange are compromised by pneumonia and COVID-19. Plants with therapeutic effects against these conditions could be of help to COVID-19 patients.

2.3. Ethnobotanical clues on the uses of plants in the management of respiratory tract diseases.

2.3.1. Citation Frequencies and Scores

The frequencies and citation scores obtained for the different plants were presented in Table 1.

Medicinal plants	Number of citations	Score	Quotation frequencies	
Abrus precatorius L.	1	0.071	0.006	
Acacia nilotica (L.) Wild. Ex Delile	2	0.143	0.011	
Acmella caulirhiza (Wal.ex DC.) R.K. Jansen	1	0.071	0.006	
Adenopus breviliorus Benth.	1	0.071	0.006	
Aframomum septrum (Oliv &D.Hans) K.Schum.	1	0.071	0.006	
Afrotyrax lepidophyllum Mildbr.	1	0.071	0.006	
Alchornea cordifolia (Schum.&Thonn.)Müll.Arg.	1	0.071	0.006	
Alchornea floribunda Müll.Arg.	1	0.071	0.006	
Allium cepa L.	1	0.071	0.006	
Allium sativum L.	3	0.214	0.017	
Amphimas ferrugineus Pierre ex Pellegr.	2	0.143	0.011	
Anacardium occidentale L.	1	0.071	0.006	
Annona muricata L.	1	0.071	0.006	
Anogeissus leiocarpa (D.C.) Guill&Perr.	1	0.071	0.006	
Apium graveolens L.	1	0.071	0.006	
Argemone mexicana L.	2	0.143	0.011	
Aucoumea klaineana Pierre	1	0.071	0.006	
Baillonella toxisperma Pierre	1	0.071	0.006	
Beilschmiedia sp	1	0.071	0.006	
Berhavia diffusa L.	1	0.071	0.006	
Bidens pilosa L.	1	0.071	0.006	
Bombax costatum Pellegr. &Vuillet	1	0.071	0.006	
Brassica napus L.	1	0.071	0.006	
Brassica oleacea L.	1	0.071	0.006	
Brassica rapa L.	1	0.071	0.006	
Bridelia ferruginea Benth.	1	0.071	0.006	
Buchholzia coriacea Engl.	1	0.071	0.006	
Caesalpinia bonduc (L.) Roxb.	1	0.071	0.006	
Cannabis sativa L.	1	0.071	0.006	
Capsicum annuum L.	2	0.143	0.011	
Species	Code	Effect	p-value	
--	------	--------	---------	
Capsicum frutescens L.	1	0.071	0.006	
Carapa procera DC.	1	0.071	0.006	
Carica papaya L.	1	0.071	0.006	
Casuarina equisetifolia L.	1	0.071	0.006	
Catharanthus roseus (L.) G.Don.	1	0.071	0.006	
Chamaecrista rotundifolia (Pers.) Greene	1	0.071	0.006	
Citrus limon L.	1	0.071	0.006	
Citrus medica L.	1	0.071	0.006	
Clausena anisata (Wild.) Hook.F. ex Benth.	1	0.071	0.006	
Clerodendrum capitatum (Wild.)	1	0.071	0.006	
Coffea arabica L.	1	0.071	0.006	
Cola anomala K.Schum.	2	0.143	0.011	
Combretum micranthum G.Don.	1	0.071	0.006	
Corrigiola telephiofia (Pourr.) Briq.	2	0.143	0.011	
Costus afer Ker-Gawl	1	0.071	0.006	
Costus lucanusianus J.Braun.	1	0.071	0.006	
Costus tappentabeckianus J. Braun	1	0.071	0.006	
Crocus sativus L.	1	0.071	0.006	
Cuminum cyminum L.	1	0.071	0.006	
Cynometra megalophylla Harms	1	0.071	0.006	
Detarium microcarpum Guill. & Perr.	1	0.071	0.006	
Dialium guineense Wild.	1	0.071	0.006	
Dichapetalum madagascariensis Poir.	1	0.071	0.006	
Discopodium penninervum (Hochst.)	1	0.071	0.006	
Emilia coccinea (Sims) G.Don	1	0.071	0.006	
Entandrophragma cylindrium (Sprague)	3	0.214	0.017	
Eucalyptus camaldulensis Dehn.	1	0.071	0.006	
Eucalyptus globulus Labill.	2	0.143	0.011	
Eucalyptus sp	2	0.143	0.011	
Eugenia caryophyllata Bullock & S.G. Harrison	1	0.071	0.006	
Euphorbia falcata L.	1	0.071	0.006	
Ficus cyathistipula Warb.	1	0.071	0.006	
Ficus exasperata P.Beauv.	1	0.071	0.006	
Ficus sur Forssk	1	0.071	0.006	
Ficus thonningii Blume	1	0.071	0.006	
Flueggea virosa (Roxb. Ex Wild)	1	0.071	0.006	
Foeniculum vulgare Mill. Subsp.	1	0.071	0.006	
Garcinia kola Heckel	1	0.071	0.006	
Gossypium arboreus L.	1	0.071	0.006	
Gossypium barbadense L.	2	0.143	0.011	
Grewia barombiensis K.Schum.	1	0.071	0.006	
Plant Name	Species	Concentration	SD	
--	--	---------------	-----	
Grewia ferruginea A.Rich.		1	0.071	0.006
Hallea ledermannii (K.Krause)Verdc.		1	0.071	0.006
Heterotis rotundifolia (Sm.) Jacq.Fel.		1	0.071	0.006
Hyptis suaveolens (L.) Poit.		1	0.071	0.006
Illicium verum Hook.		1	0.071	0.006
Kalanchoe crenata (Andrews) Haw.		1	0.071	0.006
Kaya senegalensis (Desr.) A.Juss.		1	0.071	0.006
Lactuca capensis Thunb		2	0.143	0.011
Laggera alata (D.Don) Sch.Bip.Oliv.		1	0.071	0.006
Lantana camara L.		1	0.071	0.006
Laportea aestuans (L.) Chew		1	0.071	0.006
Lavandula multifida L.		1	0.071	0.006
Lavandula stoechas ssp.		1	0.071	0.006
Lippia multiflora Maldenke		1	0.071	0.006
Magnistipula tussmannii Engl.		2	0.143	0.011
Mangifera indica L.		2	0.143	0.011
Marrubium vulgare L.		2	0.143	0.011
Memecylon zenkeri Gilg		1	0.071	0.006
Mentha pulegium L.		1	0.071	0.006
Monodora myristica (Gaertn.) Dunal		2	0.143	0.011
Nicotiana tabacum L.		1	0.071	0.006
Nigella sativa L.		2	0.143	0.011
Ocimum basilicum L.		2	0.143	0.011
Ocimum gratissimum L.		4	0.286	0.022
Origanum compactum (Benth.)		1	0.071	0.006
Parkia bigloboa (Jacq.) R.Br. Ex Benth.		2	0.143	0.011
Paullinia pinnata L.		1	0.071	0.006
Pergularia daemia (Forssk.) C.		1	0.071	0.006
Persea americana Mill.		1	0.071	0.006
Piper guineense Schumach. &Thonn.		2	0.143	0.011
Piper nigrum L.		1	0.071	0.006
Piptadeniastrum africanum (Hook.F.) Brennan		1	0.071	0.006
Podocarpus falcatus (Thunb.) R.Br.ex Mirb		1	0.071	0.006
Polyscias fulva (Hiern) Harms		1	0.071	0.006
Propopis africana (Guill.&Perr.) Taub		1	0.071	0.006
Psychotria psychotrioides (D.C.) Roberty		1	0.071	0.006
Pterocarpus erinaceus Poir.		1	0.071	0.006
Pycnanthus angolensis (Welw.) Warb.		1	0.071	0.006
Rauwolfia vomitoria Afz.		1	0.071	0.006
Rubia cordifolia L.		3	0.214	0.017
Ruta chalepensis L.		1	0.071	0.006
Saccharum officinarum L.		2	0.143	0.011

ISSN: 2250-1177 CODEN (USA): JDDTAO
The relative frequency of plant species is the ratio between the number of citations of the species and the total number of citations of all species. Hence the lower the frequency the lower the importance of the species. It emerged from this table that almost all of the plants listed have a low frequency, low citations and a low convergence score. However, certain plants were able to stand out: *Ocimum gratissimum* (score of 0.286 and 0.022 frequency), *Allium sativum* (score of 0.214 and 0.017 frequency), *Entandrophragma cylindricum* (score of 0.214 and 0.017 frequency), *Rubia cordifolia* (score of 0.214 and 0.017 Frequency) and *Scyphocephalium ochocoa* (score of 0.214 and frequency 0.017).

Ocimum gratissimum is an aromatic plant used in the treatment of several diseases in many countries and has been reported to contain 8 major groups of different metabolites \(^{26}\) which may be related to its medicinal properties.

2.3.2. Theoretical performance of plants against respiratory diseases

The performance indices were calculated (Table 2) and only plants involved in several respiratory pathologies (in this case, the most cited pathologies) and which were in competition with others were taken into account.
Table 2: Performance indices of plants directed against respiratory diseases

Scientific names/illnesses treated	Anthrax	Asthma	Bronchitis	Chronic Bronchitis	Lung Cancer	Common Cold	Pulmonary Infection	Respiratory Infection	Pneumonia	Rhinosinusitis	Influenza	Sputum	Cough	Tuberculosis	Total citation/species
Abrus precatorius L.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Acacia nilotica (L.) Wild. Ex Delile	2.00	-	-	-	-	1.00	-	-	-	-	-	-	-	-	2
Acmella caulirhiza (Wal.ex DC.) R.K. Jansen	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Adenopus breviflorus Benth.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Aframomum septum (Oliv &D.Hans) K.Schum.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Afrontyx lepidophyllus Mildbr.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Alchornea cordifolia (Schum.&T Thonn.)Mull.Arg.	-	-	3.00	-	-	-	-	-	-	-	-	-	-	-	1
Alchornea floribunda Müll.Arg.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Allium cepa L.	-	3.00	-	-	-	-	-	-	-	-	-	-	-	-	1
Allium sativum L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Amphimas ferrugineus Pierre ex Pellegr.	-	-	-	-	-	2.00	-	-	2.00	-	-	-	-	-	2
Anacardium occidentale L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Annona muricata L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Anogeissus leiocarpa (D.C.) Guill&Perr.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Apium graveolens L.	-	3.00	-	-	-	-	-	-	-	-	-	-	-	-	1
Argemone mexicana L.	-	-	-	-	-	2.00	-	-	2.00	-	-	-	-	-	2
Auckouma klaineana Pierre	-	-	-	-	-	-	-	-	3.00	-	-	-	-	-	1
Baillonella toxiperna Pierre	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Beilschmiedia sp	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Berhavia diffusa L.	-	3.00	-	-	-	-	-	-	-	-	-	-	-	-	1
Bidens pilosa L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Bombax costatum Pellegr.&Vuillet	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Brassica napus L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Brassica oleacea L.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Brassica rapa L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Bridelia ferruginea Benth.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Buchholzia coriacea Engl.	-	3.00	-	-	-	-	-	-	-	-	-	-	-	-	1
Caesalpinia bonduc (L.) Roxb.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Cannabis sativa L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Capsicum annuum L.	-	-	-	-	-	1.00	-	-	-	-	-	-	-	-	2
Capsicum frutescens L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Carapa procera DC.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Carica papaya L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Cassia russetifolia L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Catharanthus roseus (L.) G.Don.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Chamaecrista rotundifolia (Pers.) Greene	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Citrus limon L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Citrus medica L.	-	-	-	-	-	3.00	-	-	-	-	-	-	-	-	1
Name (Scientific Name)	Use Case	Quantity	CODEN (USA): JDDTAO												
------------------------	-----------	----------	---------------------												
Agrobis amputa (Wild.) Hook F. ex Benth.	-	-	-												
Clerodendrum capitatum (Wild.)	-	-	-												
Coffea arabica L.	-	3.00	-												
Cola anomala K.Schum.	-	2.00	-												
Combretum micranthum G.Don.	-	3.00	-												
Corrigiola telephifolia (Pourr.) Briq.	-	2.00	-												
Costus afer Ker-Gawl	-	3.00	-												
Costus lucasianus J.Braun	-	3.00	-												
Costus tappentabecianus J. Braun	-	3.00	-												
Crocus sativus L.	-	3.00	-												
Cuminum cinminum L.	-	3.00	-												
Cynometra megalophylla Harms	-	3.00	-												
Detarium microcarpum Guill. & Perr.	-	3.00	-												
Dialium guineense Wild.	-	3.00	-												
Dichapetala africana (Hook.f.) Jacq.	-	3.00	-												
Dichapetaleum madagascarensis Poir.	-	3.00	-												
Discopodium penninervum (Hochst.)	3.00	-	-												
Emilia coccinea (Sim.) G.Don	-	3.00	-												
Entandrophragma cylindrium (Sprague)	-	1.00	-												
Eucalyptus camaldulensis Dehn.	-	3.00	-												
Eucalyptus globulus Labill.	-	2.00	-												
Eucalyptus sp	-	1.00	-												
Eugenia caryophyllata Bullock & S.G. Harrison	-	3.00	-												
Euphorbia falcata L.	-	3.00	-												
Euphorbia hissa L.	-	3.00	-												
Ficus cyathistipula Warb.	-	3.00	-												
Ficus exasperata P.Beauv.	-	3.00	-												
Ficus sur Forssk	-	3.00	-												
Ficus thonningii Blume	-	3.00	-												
Flueggea virosa (Roxb. Ex Wild)	-	3.00	-												
Foeniculum vulgare Mill. Subsp.	-	3.00	-												
Garcinia kola Heckel	-	3.00	-												
Gossypium arboreus L.	-	3.00	-												
Gossypium barbadense L.	-	2.00	-												
Grewia barombiensis K.Schum.	-	3.00	-												
Grewia ferruginea A.Rich.	-	3.00	-												
Hallea ledermannii (K.Krause)Verdc.	-	3.00	-												
Heterotis rotundifolia (Sm.) Jacq.Fel.	-	3.00	-												
Hyptis suaveolens (L.) Poit.	-	3.00	-												
Illicium verum Hook.	-	3.00	-												
Kalanchoe crenata (Andrews) Haw.	-	3.00	-												
Kaya senegalensis (Desr.) A.Juss.	-	3.00	-												
Lactuca capensis Thumb	-	2.00	-												
Laguer a alata (D.Don) Sch.Bip.Oliv.	-	3.00	-												
Lantana camara L.	-	3.00	-												
Laportea aestuans (L.) Chew - 3.00 - - - - - - - 1
Lavandula multifida L. - - - - - - 3.00 - - - - 1
Lavandula stoechas ssp. - - - - - 3.00 - - - - 1
Lippia multiflora Maldenke - - - - - - 3.00 - - - - 1
Magnistipula tessmannii Engl. - - - - - - 3.00 - - - - 1
Mangifera indica L. - - - - - - - 1.00 - 1.00 - - 2
Marrubium vulgare L. - - - - - - 1.00 - - - - 1
Memecylon zenkeri Gilg - - - - - - - - - - 2
Mentha pulegium L. - - - 3.00 - - - - - - 1
Monodora myristica (Gaertn.) Dunal - 2.00 - - - - - - 2
Nicotiana tabacum (Jacq.) R.Br. Ex Benth. - - - - - - - - - - 2
Nigella sativa L. - 2.00 - - - - - - 3.00 - - 1
Ocimum basilicum L. - - - - - - 1.00 - - - - 2
Ocimum gratissimum L. - - - - - - 1.00 - - - - 4
Oregano compactum (Benth.) - - - - - - 3.00 - - - - 1
Parkia bigloboa (Jacq.) R.Br. Ex Benth. - - - - - - 1.00 - 1.00 - 2.00 - 2
Paulinia pinnata L. - - - - - - 3.00 - - - - 1
Pergularia daemia (Forssk.) C. - - - - - - - - - - 1
Perna americana Mill. - - - - - - - - - - 1
Piper guineense Schumach.&Thonn. - - - - - - 1.00 - - - - 2
Piper nigrum L. - - - - - 3.00 - - - - 1
Piptadeniatrium africanum (Hook.F.) Brenan - - - - - - 3.00 - - - - 1
Podocarpus falcatus (Thunb.R.Br.ex Mirb - 3.00 - - - - - - - - 1
Polyscias falvovirens) Harms - - - - - - - - - - 1
Propolis africana (Guill.&Perr.) Taub - - - - - - - - - - 1
Psychotria psychotrioides (D.C.) Roberty - 3.00 - - - - - - - - 1
Pterocarpus erinaceus Poir. - - - - - - 3.00 - - - - 1
Pyccanthas angolensis (Welw.) Warb. - - 3.00 - - - - - - - 1
Rauwolfia vomitoria Afx. - - - - - 3.00 - - - - 1
Rubia cordifolia L. - - - - 1.00 - - - - - 3
Ruta chalepensis L. - - - - - 3.00 - - - - 1
Saccharum officinarum L. - - - - - - - - - - 2
Salvia verbenaca L. - - - - - 3.00 - - - - 2
Satureja calamintha (L.) - - - - - - 3.00 - - - - 1
Schwenckia americana L. - - - - - - 3.00 - - - - 1
Scoparia dulcis L. - - 2.00 - - - - - - - 1
Scrophulariaceae ochocoa Warb. - 1.00 - - - - - - - 1.00 - 3
Securidaca longepedunculata Fresen - - - - - 1.00 - - - - 2
Senna occidentalis (L.) Link - - - - - - 3.00 - - - - 1
Senna sepentrionalis (Viv.) - - - - - - 1.00 - - - - 1
Solanum nigrum L. - - - - - - 1.00 - - - - 1
Spondias mombin L. - - - - - - 3.00 - - - - 1
Sporopertum glaberrimum Hoch. - - - - - - 3.00 - - - - 1
Staudia gabonensis Warb. - - - - - - 1.00 - - - - 1
Strombostepsis tetrandra Engl. - - - - - - 3.00 - - - - 1
The performance index determines which plant species is most suitable for the management of respiratory disorders. A performance index of zero signifies no performance which means there is no relationship between the plant species and the cited pathology meanwhile performance index of one is indicative of an average performance meaning there are possibilities that the plant species will treat the respective respiratory disorder. A performance index of two signifies good performance meaning there is a high probability the plant will treat the referenced respiratory disorder meanwhile a performance index of three signifies excellent performance which means the plant treats the referenced respiratory disorder. A particular plant species can have an excellent performance index for one respiratory disorder and a zero or poor performance index in another. This was the case with Acacia nilotica, Corriugila telephifolia, Eucalyptus globulus, Lantana camara, Marrubium vulgare, Monodora myristica, Nigella sativa, Parkia biglooba, Tragia senegalensis and Vitex doniana (Table 2). In the present study the highest performance index obtained was three (3) which means the said plants species is most likely to treat the particular respiratory disorder for which it has the index. All the plants presented in this study were at least cited once for a particular respiratory disorder hence spreading the performance which automatically become low. Meanwhile the respiratory disorder cited across board the higher the performance index. Hence, a plant that is cited many times for different respiratory disorders may end up with a low performance index for individual respiratory disorder meanwhile it has a wide coverage for different respiratory disorders. Similar observations have earlier been reported in a study specific to vaginal infections 27, This was the case with Entandrophragma cylindrium, Ocimum gratissimum, Rubia cordifolia and Scyphocephalium ochocoa. Ocimum gratissimum was the most cited plant indicated in the therapy of four respiratory disorders meanwhile Entandrophragma cylindrium, Rubia cordifolia and Scyphocephalium ochocoa were indicated in three different pathologies. Thus, the frequency of citation is inversely proportional to the performance index. This is understood because performance index is related to a particular respiratory disorder while the frequency of citation of a plant is in relation to the fourteen respiratory disorders reported in this study. With respect to number of plants cited for the respective respiratory disorders, forty-three plants were cited to have therapeutic effect against respiratory infections, thirty plants against cough, twenty plants against Asthma, eleven against pulmonary infection and the rest were below seven citations.

The performance of plants, calculated according to their contributions, was able to demonstrate that only plants involved in several respiratory pathologies, which were in competition with others were taken into account. Similar observations were earlier presented by Ndjidj et al. 27 that performance index should always take into account the coverage of a plant. Thus, the plants entering into the composition of a recipe whose performance index is greater than or equal to 2 will be said to be more effective for the pathology indicated. As an example, with regards to respiratory infections, Capsicum annuum (PI = 1) has a poor performance unlike Tragia senegalensis Müll. Arg. (PI = 2) for the treatment of cough.

3. CONCLUSION

The aim of this review was to determine the plants most likely to treat respiratory disorders related to COVID-19 infection in Africa. Although not exhaustive, this study made it possible to identify 143 plant species belonging to 60 families of plants in the management of 15 diseases and / or symptoms related to the respiratory system. The most cited plants are: Ocimum gratissimum L. (04 citations), Entandrophragma cylindrium (Sprague), Scyphocephalium...
ochocoa Warb. Rubia cordifolia et Allium sativum L. (03 citations each). The most represented families are the Fabaceae and Lamiaceae (18 citations each). These plants are linked with the treatment of pneumonia, lung infection, cough and rhino-bronchitis which are associated with COVID-19. Hence, may be helpful in COVID-19 infection.

Data Availability: The datasets used and analyzed in the study are included in the review without any restriction.

Conflicts Of Interest: Authors declare that they have no conflicts of interest.

Authors’ Contributions: GAA conceived and designed the review and participated in the collection of data and analysis; and revised the final form of the review. RCN carried out data collection and prepared the first draft of the review.

Funding Statement: This review did not receive any funding.

REFERENCES

1. Ait-Khaled, N., Odhiambo, J., Pearce, N. Prevalence of symptoms of asthma, rhinitis and eczema in 13-14-year-old children in Africa: the international study of asthma and allergies in childhood phase III. Allergy 2007; 62(3): 247-250. https://doi.org/10.1111/j.1398-9995.2007.01525.x

2. Roth G. A et al. Global, regional, and national age-standardized all-cause, child, and cause-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic assessment for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1736-1788. https://doi.org/10.1016/S0140-6736(18)32203-7

3. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xie J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3

4. Malik W et al. Emerging novel Coronavirus (2019-nCoV) - Current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q. 2020; 40(1): 1-12. https://doi.org/10.1007/s11658-020-00779-3

5. Rodríguez-Morales P, Going global - Travel and the 2019 novel coronavirus. Travel Med. Infect. Dis. 2019; 2020: 33.

6. Su J, He W-T, Wang L, Lai A, J JX, Zhai XL COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends in Molecular Medicine, 2020; 26(5):483-496. https://doi.org/10.1016/j.molmed.2020.02.006

7. Pokouo Fofiga IV, Nouibi JJ. La lutte contre la COVID-19 au Cameroun nécessite un second souffle. Pan African Medical Journal; 2020; 37(1):14 https://doi.org/10.11604/pamj.supp.2020.37.1.23535

8. Khaermunisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S(2020) Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020;2020.03026https://doi.org/10.20944/preprints202003.0226.v1

9. Kudi AC, Myint SH. Antiviral activity of some Nigerian medicinal plant extracts. J Ethnopharmacol 1999; 68(1-3):289-294. https://doi.org/10.1016/S0378-8741(99)00049-5

10. Pringproa K, Khonghiran O, Kunanondo P, Potha T, Chunnimit P. In vitro virucidal and virustatic properties of the crude extract of Cynodon dactylon against porcine reproductive and respiratory syndrome virus. Vet Med Int 2014. https://doi.org/10.1155/2014/915478

11. Ramalhetse C, De Cruz FP, Mulho S, Sousa J, Fernandes MX, Prudenco M, et al. Dual-stage triterpenoids from an African medicinal plant targeting the malaria parasite. Biorg Med Chem 2014; 22(15):3887-3890. https://doi.org/10.1016/j.bmc.2014.06.019

12. Ravikumar YS, Ray U, Nandhitha M, Perween A, Raja Naika H, Khanna N, Das S. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus Research 2011; 158(1-2):89-97. https://doi.org/10.1016/j.virusres.2011.03.014

13. Xuan DT, Khanh DT. Chemistry and pharmacology of Bidens pilosa: an overview. Journal of Pharmaceutical Investigation 2016; 16. https://doi.org/10.1016/j.jpi.2015.02.011

14. Nigam M, Atanassova M, Mishra PA, Pizzini R, Devkota HP, Piyum S, Salehi B, Setzer W, Rad SJ. Bioactive compounds and health benefits of Artemisia Species. Natural Product Communications 2019; 1-17. https://doi.org/10.1177/1934578X19850354

15. Betti J L. An ethnobotanical study of medicinal plants among the baka pygmies in the dja biosphere reserve, Cameroon. African Study Monographs, 2004; 25(1):1-27.

16. Chassagne F (2017). Cancer du foie au Camboodge : état des lieux épidémiologiques, description des médecines traditionnelles utilisées et évaluation d’espèces médicinales sélectionnées. Thèse PhD, Université de Paul Sabatier Toulouse III, France.

17. Haidara M, Diarra ML, Doumbia S, Denou A, Dembele D, Diarra A, Sanogo R. Plantes médicinales de l’Afrique de l’Ouest pour la prise en charge des affections respiratoires pouvant se manifester au cours de la Covid-19. Int. J. Biol. Chem. Sci. 2020; 14(8):2941-2950. https://doi.org/10.34134/jibs.2114822

18. Kouchadé A.S., Adomou A.C., Tossou G.M., Yédomonhan H., Dassou G.H. and Akoègninou A. Étude ethnobotanique des plantes médicinales utilisées dans le traitement des maladies infantiles et vendues sur les marchés au sud du Bénin. Journal of Animal & Plant Sciences, 2016; 28(2):448-448

19. Mathouet H, Abougue Angne S, Mengome L, Eyele Mve Mba C, Ronli ML, Souza A, Lamidi M. Ethnobotanic study of plants used in traditional medicine for some respiratory affections in Gabon. ScienceLib Editions Mersenne: 2014; 6(140905). ISSN 2111-4706

20. Fatima E.H., Akka F.B., Dahmani J., Belahbib N., Zidane L. Étude ethnobotanique des plantes médicinales utilisées dans le traitement des infections du système respiratoire dans le plateau central marocain. Journal of Animal & Plant Sciences, 2015; 25(2):3886-3897

21. Helaï A, Mokhtari C, Meriem Ghou M, Belhade F.M.S. (2020). Prevent COVID-19 infection: What place for medicinal plants according to the Algerian population? Algerian Journal of Pharmacy. 2020; 3(1):2602-795X

22. Mambe F.T., Youkeng L.K., Beng V.P., Kuete V. Antibacterial activities of methanol extracts from Alchornea cordifolia and four other Cameroonian plants against MDR phenotypes. Journal of Taibah University Medical Sciences 2015; 11(2):121-127 https://doi.org/10.1016/j.jtumed.2015.12.001

23. Watanabe Y, Kamioka Y, Seki M. Rhinovirus-Infected Patients in the COVID-19 Pandemic. Periodic Infection and Drug Resistance 2021; 14:609-611. https://doi.org/10.21147/jdr.S300001

24. Song WJ, Hui CKM, Hull JH, Birring SS, McGarvey L, Mazzone SB, Chung KF. Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neutropotism, neuro-inflammation, and neuroimmune responses. Lancet Respir Med 2021;9:533-44. https://doi.org/10.1016/S2213-2600(21)00025-9

25. Izquierdo JL, Almonacid C, González Y, Ribe-Bruezmed CD, Ancorchea J, Cárdenas R, Lumbrares S, Soriano JB. The impact of COVID-19 on patients with asthma. Eur Respir J 2021; 57:2003.142. https://doi.org/10.1183/13993003.00142-2020

26. Kpétého W.H., Hessou S., Tamégne D., Dougnon V., Johnson R.C., Boni G., Houët É.E., Assogba F., Pogon E., Loko F., Boko M., Gbouné J. Étude ethnobotanique, phytochimique et écotoxicologique de Ocimum gratissimum Linn (Lamiaceae) à Cotonou. Journal of Applied Biosciences, 2016; 109:10609-10617. ISSN 1997-5902 https://doi.org/10.4314/ijbcs.v14i8.22

27. Ndhib R B, Djoua Stevali, Amina Mamat, Kom Wayoué Christelle, Dibong Siegfried Didier and Nyegue Maximienne. Asension In vitro antioxidant and anti-inflammatory activities of Alchornea cordifolia (Schumach & Thomon) Mull.Arg. and Antrocaryon klaineanum Pierre extracts. International Journal of Botany: 2020; https://doi.org/10.22159/ijb.2020v12i8.38272