Immune checkpoint inhibitors and type 1 diabetes mellitus: a case report and systematic review

Jeroen M K de Filette1, Joeri J Pen2, Lore Decoster3, Thomas Vissers4, Bert Bravenboer1, Bart J Van der Auwera5, Frans K Gorus4, Bart O Roep6,7, Sandrine Aspeslagh3, Bart Neyns3, Brigitte Velkeniers1 and Aan V Kharagjitsingh1,2,5,8

1Department of Endocrinology, 2Diabetes Clinic, 3Department of Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium, 4Medical Library, Haaglanden Medical Center, Hague, The Netherlands, 5Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium, 6Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands, 7Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA, and 8Section Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands

Abstract

Objective: To better define the rare adverse event (AE) of diabetes mellitus associated with immune checkpoint inhibitors (ICIs).

Design and methods: We report the case of a lung cancer patient with diabetic ketoacidosis (DKA) and autoimmune thyroiditis during pembrolizumab treatment. We provide a systematic review of all published cases (PubMed/Web of Science/Cochrane, through November 2018) of autoimmune diabetes mellitus related to blockade of the cytotoxic T-lymphocyte antigen 4 (CTLA-4)-, programmed cell death 1 (PD-1) receptor or its ligand (PD-L1) or combination (ICI) therapy.

Results: Our literature search identified 90 patient cases (our case excluded). Most patients were treated with anti-PD-1 or anti-PD-L1 as monotherapy (79%) or in combination with CTLA-4 blockade (15%). On average, diabetes mellitus was diagnosed after 4.5 cycles; earlier for combination ICI at 2.7 cycles. Early-onset diabetes mellitus (after one or two cycles) was observed during all treatment regimens. Diabetic ketoacidosis was present in 71%, while elevated lipase levels were detected in 52% (13/25). Islet autoantibodies were positive in 53% of patients with a predominance of glutamic acid decarboxylase antibodies. Susceptible HLA genotypes were present in 65% (mostly DR4). Thyroid dysfunction was the most frequent other endocrine AE at 24% incidence in this patient population.

Conclusion: ICI-related diabetes mellitus is a rare but often life-threatening metabolic urgency of which health-care professionals and patients should be aware. Close monitoring of blood glucose and prompt endocrine investigation in case of hyperglycemia is advisable. Predisposing factors such as HLA genotype might explain why some individuals are at risk.

Introduction

Unleashing the power of the immune system with monoclonal antibodies targeting immune checkpoint receptors has been a major breakthrough causing a paradigm shift in the treatment of many types of cancer. The deficient anti-tumor immune response can be restored by blocking inhibitory immune receptors of which cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death 1 receptor (PD-1) and its ligand

https://doi.org/10.1530/EJE-19-0291

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloaded from Bioscientifica.com at 07/27/2022 03:52:36AM via free access
(PD-L1) have become part of our standard of care options in many indications (1). Immune checkpoint blockade is associated with a unique risk for immune-related AEs (irAE), affecting the endocrine organs in 4–30% of patients (2, 3). While hypophysitis and thyroid disorders are the most frequent endocrine irAE, autoimmune diabetes mellitus is a rare (1%) but potentially life-threatening irAE deserving further notice (4). It appears more frequently with PD-1 or PD-L1 blockade (or combination therapy) than with anti-CTLA-4 (ipilimumab) therapy (5, 6), highlighting the importance of the PD-1/PD-L pathway in maintaining self-tolerance against pancreatic islets. Similarities with ‘classic’ type 1 diabetes mellitus (T1D) include the presence of islet antibodies and susceptible HLA genotypes (4, 6). The clinical significance of diabetes mellitus associated with checkpoint blockade is estimated to increase as these novel anticancer agents are both initiated to a greater extent and at an earlier disease stage (7). We describe a patient with rapid-onset diabetes mellitus and ketoacidosis associated with the ICI pembrolizumab (anti-PD-1). We subsequently performed a systematic review and present an overview of similar cases of diabetes mellitus related to CTLA-4, PD-1, PD-L1 or a combination of CTLA-4 and PD-1 checkpoint inhibitors. We discuss the clinical presentation, potential mechanisms and suggestions for optimal management.

Case report

Our patient is a 61-year-old male with a recent diagnosis of metastatic non-small-cell lung carcinoma (NSCLC). Eight weeks after initiating treatment with pembrolizumab, he presented at the emergency department with a 5-day history of nausea, vomiting, diarrhea and generalized weakness. He had no personal or family history of endocrine or autoimmune disease. Physical examination revealed impaired consciousness, dry mouth, marbled skin and cold extremities. He was hypotensive (105/45 mmHg) and tachycardic (108/min). Blood analysis showed a marked hyperglycemia (1194 mg/dL = 66.3 mmol/L), pseudohyponatremia (117 mmol/L – corrected 143 mmol/L) (8) and acute renal insufficiency (CrCl 28 mL/min/1.73 m²). The positive reaction for urinary ketones and a blood gas analysis showing severe metabolic acidosis with respiratory compensation, established the diagnosis of diabetic ketoacidosis. The patient was hospitalized at our intensive care unit for monitoring, rehydration and intravenous insulin therapy. He recovered and was switched to a subcutaneous basal-prandial insulin regimen. An autoimmune etiology was probable, given the context and the presence of positive glutamic acid decarboxylase autoantibodies (GADAs) with low C-peptide levels (Table 1). The serum lipase level was also elevated at diagnosis (>3 times the upper reference limit). Abdominal computed tomography did not show signs of pancreatitis. The HLA class II genotype of our case was assessed by allele-specific oligonucleotide hybridization, as previously described (9). HLA genotype analysis identified homozygosity for the haplotype DRB1*04-DQA1*03:01-DQB1*03:02 (DR4-DQ8). Subclinical hyperthyroidism was simultaneously detected (TSH 0.058 mIU/L, fT4 18.7 pmol/L) which evolved into manifest hypothyroidism (TSH 18.92 mIU/L, fT4 5.7 pmol/L) over the next weeks requiring levothyroxine substitution therapy. Ultrasonography of the thyroid did not demonstrate hypervascularity, and thyroid autoantibodies (TPOAb, TSI) were negative. This clinical pattern was suggestive of checkpoint blockade-induced thyroiditis (10, 11, 12, 13). We subsequently performed a systematic review to identify similar cases of diabetes mellitus associated with ICI.

Methods

Several databases (PubMed/Web of Science/Cochrane) were searched through November 2018, for case reports on the subject of diabetes mellitus and checkpoint inhibitors, by two reviewers independently (J M K d F and A V K). The investigators screened the title and abstract for manuscript selection. Language was restricted to English. Congress reports were excluded. Supplementary Table 1 (see section on supplementary data given at the end of this article) provides an overview of our search terms. Additionally, the authors reviewed the reference lists of the included articles (4, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68) and identified five additional cases (69, 70, 71, 72). The following data were extracted from each manuscript: author, year of publication, age, gender and ethnicity of the patient, cancer type, checkpoint inhibitor therapy, number of cycles of therapy, prior immunotherapy, relevant past medical history (PMH), presence of diabetic ketoacidosis, glycaemia, glycated hemoglobin, C-peptide, islet autoantibodies, lipase, other irAE and HLA genotype. The number of treatment cycles was preferred rather than the time to onset.
Table 1 Laboratory data on admission.

Parameter	Value	Ref.
Blood		
Glucose, mg/dL	1194	70–100
Urea, mg/dL	96	19–43
Creatinine, mg/dL	2.4	0.66–1.25
eGFR (MDRD; mL/min/1.73 m²)	28	>60
Na, mmol/L	117	137–145
K, mmol/L	5.6	3.4–5.0
Cl, mmol/L	86	98–107
HCO₃⁻, mmol/L	6	22–30
Anion Gap, mmol/L	31	10–18
Ca, mmol/L	1.86	2.10–2.50
P, mmol/L	0.77	0.81–1.45
Mg, mmol/L	0.95	0.66–0.95
Alb, g/L	31	35–50
CRP, mg/L	100.3	<5
LDH, U/L	408	313–618
AST, U/L	16	17–59
ALT, U/L	29	21–72
ALP, U/L	113	38–126
GGT, U/L	36	<73
Bilirubin, mg/dL	0.43	0.2–1.3
Lipase, U/L	970	23–300
Platelet, x10⁹/mm³	305	158–450
Hb, g/dL	14.3	13.0–16.5
WBC, x10⁹/mm³	21.9	3.6–9.6
Neutrophils, %	86.0	41.0–74.0
(Absolute), x10⁹/mm³	18,834	1.4–6.7
Urine		
Protein	Negative	
Glucose, g/L	44.3	
Creatinine, mg/dL	25	
Na, mmol/L	10	
Osm, mosmol/kg H₂O	418	
Arterial blood gas		
pH	6.944	7.35–7.45
PaCO₂, mmHg	18.5	36–44
PaO₂, mmHg	86.5	65–80
HCO₃⁻, mmol/L	4.0	22–26
Base excess, mmol/L	−26.2	−2–12
Lactate, mmol/L	1.6	0.7–2.1
Thyroid (before the start of immunotherapy)		
TSH, mIU/L	1.11	0.27–4.2
fT₄, pmol/L	12.4	11.0–24.0
Diabetes		
ICA	Negative	
Insulin Ab, % binding	0.5	<0.6
GADA, WHO U/mL	>171	<23
IA2A, WHO U/mL	<0.1	<1.4
C-peptide, nmol/L	0.02	0.29–0.99

Results

Our search identified a total of 145 articles of which 62 were eligible. Figure 1 shows a flow chart of the study selection. We identified a total of 90 cases, aside from our patient, with a male predominance (55/91, 60%) and a mean age of 61 years (range 22–84). The ethnicity was Asian in 15%. The main tumor types were melanoma (48/91, 53%) and NSCLC (14/91, 15%). Relevant PMH, namely diabetes mellitus, thyroid disease or risk thereof, was noted in 22% (20/91). One in four cases (22/91, 24%) had received prior immunotherapy, with IL-2 (2/91), interferon (7/91), ipilimumab (16/91) and/or nivolumab (3/91). The different treatment regimens included monotherapy with anti-CTLA-4 (3/91, 3%), anti-PD-1 (65/91, 71%), anti-PD-L1 (7/91, 8%) or a combination of anti-CTLA-4 with anti-PD-1 (14/91, 15%). One patient received PD-L1 with 4-1BB (CD137) blockade and one other patient received either CTLA-4 or PD-1 blockade therapy. Thus, the treatment regimen mostly observed in this cohort was anti-PD-1 monotherapy; blockade of the PD-1/PD-L pathway was involved in 96% (87/91). Only three cases of diabetes development were observed during anti-CTLA-4 monotherapy. Importantly, all of these were pre-treated with nivolumab (2/3) and/or interferon (2/3). On average, patients were diagnosed with diabetes after 4.5 treatment cycles (range: 1–17), while this appeared to be earlier for the combination of anti-CTLA-4 and PD-1 therapy (2.7 cycles, range: 1–5). Cases of early-onset diabetes (after only one or two cycles) were observed in all treatment regimens. The presentation of diabetes mellitus related to checkpoint blockers often follows a severe course. Seventy-one percent of patients (64/91) presented with diabetic ketoacidosis (DKA), with a median presenting glyceremia of 565 mg/dL (range: 209–1211) and glycated hemoglobin of 7.6% (average: 7.7%; range: 5.4–11.4). Low C-peptide levels were present at diagnosis in 84% (58/69) of cases. The onset appeared earlier for patients presenting with DKA, with 4 versus 5.9 cycles. Elevated lipase levels were detected in 52% (13/25) of analyzed patients. At least one of the islet autoantibodies was positive in 53% (47/88), while two or more autoantibodies were detected in weeks, as this information was not consistently available (immune checkpoint therapy is usually given every 3 weeks). We categorized the HLA haplotype into three classes: ‘susceptible’, ‘neutral’ or ‘protective’ for autoimmune diabetes. Specifically, haplotypes were categorized as susceptible in the presence of (1) HLA A2, DR3, DR4 or (2) the presence of DR9 in a Japanese population or (3) when the authors of the original paper had categorized it susceptible. They were protective in case of DQ6, DR11 or DR16-DQ5. Written informed consent for genetic analysis and publication was obtained from our patient.
in 15% (13/88). The autoantibody analysis was positive in 51% of patients for GADA, 18% for insulinoma-associated antigen-2 (IA-2), 13% for islet-cell antibodies (ICA), 26% for anti-insulin and 4% for zinc transporter 8 (ZnT8). Table 2 shows an overview of pancreatic autoantibodies. The mean time of onset was 3.1 cycles (range: 1–17) for GADA-positive and 5.9 cycles (range: 1–16) for GADA-negative patients. The genetic HLA region was analyzed in 56% (51/91) of patients. Genotypes susceptible for T1D or fulminant diabetes were present in 61% (31/51), while a protective genotype was simultaneously present in an additional 4% (2/51). The DR4, DR3, DR9 and A2 were the dominant HLA serotypes. Table 3 shows an overview of the HLA genotypes. Thyroid dysfunction related to checkpoint inhibition (thyroiditis, primary hypo- or hyper-thyroidism) developed in 24% (21/91) of patients. Of these 21 patients, two had a known history of hypothyroidism. A summary of the results can be found in Table 4.

Discussion

We present a comprehensive overview of diabetes mellitus development in patients treated with ICIs and describe a patient with simultaneous rapid onset of diabetes mellitus with ketoacidosis and thyroiditis associated with the checkpoint inhibitor pembrolizumab. We confirm that diabetes mellitus is an important, yet rare, side effect. Similar to our case, these patients often present with a fulminant onset of diabetes mellitus and the presence of ketoacidosis at the time of diagnosis (4, 6, 15). Its onset ranges from a few weeks, sometimes even after the first or second cycle of immunotherapy (4, 6), up to more than a year after the initiation of immunotherapy (6, 17). We observed the early pattern of diabetes onset with all classes of checkpoint inhibitors. The onset of β cell inflammation is often fulminant, suggested by the relatively low glycated hemoglobin levels, while C-peptide levels are usually low or undetectable at diagnosis. This irAE is predominantly found in patients exposed to blockade of the PD-1/PD-L pathway. We further observed that a quarter of all patients has received prior immunotherapy, and it is possible that this influenced the results, as it was previously observed that the combination of rapamycin and IL-2 transiently decreased C-peptide levels in T1D patients (73), and additionally T1D was also a reported side effect of interferon therapy (74). Islet autoantibodies were detected in half of patients, with GADA being the predominant antibody, although it should be noted that the other autoantibodies were not as systematically analyzed. This differs from ‘classic’ T1D where autoantibodies are present in 80–95% of patients (75, 76). It has previously been suggested that the presence of autoantibodies at the time of diagnosis is related to an earlier onset of ICI-induced diabetes (4, 6, 43, 58). Our review supports this hypothesis. It would be of academic value to prospectively investigate this phenomenon as well as the serologic status of non-diabetes patients in future studies. Additionally, there

Table 2 Pancreatic autoantibodies and ICI-induced diabetes.

	All	GAD	ICA	IA-2	Insulin	ZnT8
Present	47	43	3	10	9	1
Absent	41	42	20	45	26	23
N/A	3	6	68	36	56	67
Frequency (%)	53	51	13	18	26	4

GAD, glutamic acid decarboxylase; IA-2, insulinoma-associated antigen-2; ICA, islet-cell antibodies; N/A, not available; ZnT8, zinc transporter 8.

Table 3 HLA genotype in patients with ICI-induced diabetes.

HLA genotype	Serotype	#
Susceptible	A2.1	5
Susceptible and protective	DR3	8
Neutral	DR4	23
Protective	DR4-DQ4	2
N/A	Other	15

ICI, immune checkpoint inhibitor; N/A, not available.
was biochemical evidence of pancreatic inflammation with elevated lipase levels reported in about 50% of all cases. Several authors also described radiographic changes in the pancreatic volume during immunotherapy, notably pancreatic enlargement before diabetes onset, followed by a volume decrease (14, 46). These findings are often asymptomatic (6, 14) as was the case in our patient. It remains unclear to which extent the pancreatic exocrine gland is involved. It has been hypothesized that ‘classic’ T1D is in fact a combined endocrine-exocrine disease in which the loss of functional β cell mass is most clinically apparent (77) and non-specific elevations of amylase and lipase occur in 16–25% of cases with DKA (78). In the context of checkpoint blockade therapy, asymptomatic elevations of lipase and/or amylase have also been reported in the absence of new-onset diabetes (79, 80). Whether these patients are prone to develop diabetes in the future is an additional question to address in prospective studies.

The strength of our study is the broad and extensive investigation with the exploration of different search engines. Our study also has its limitations. The analysis included individual patient data, of whom not all parameters of interest were available. The incidence could not be calculated by the lack of the total number of treated patients. We do believe however that this AE is still underestimated as it is increasingly being reported, as shown by a recent pharmacovigilance study (81). The incidence of DKA was lower (50.2 vs 71%) in their analysis. Another research group described a large case series of 27 patients with insulin-dependent diabetes induced by checkpoint inhibitors. Compared to our analysis, they also reported DKA less frequently (59 vs 71%) (6). This might be due to a publication bias in our study toward fulminant presentations, due to an underrepresentation of milder diabetes cases in the literature.

The role of immune checkpoints in the pathophysiology of diabetes mellitus has been investigated in mice and in humans. Non-obese diabetic (NOD) mice develop rapid-onset diabetes following the blockade of PD-1 or PD-L1 but not PD-L2 (82). This corresponds with the finding that pancreatic islets express PD-L1 at low levels in mice (dramatically upregulated in NOD) mice develop rapid-onset diabetes following investigation with the exploration of different search

Characteristic	All cases (n = 91)
Age, years	61 (22–84)
Gender	Female/male
Ethnicity	Asian
Tumor types	Melanoma
Past medical history*	20/91 (22%)
Prior immunotherapy	IL-2 2/91 (24%)
Interferon	7/91
Ipilimumab	16/91
Nivolumab	3/91
Immune checkpoint inhibitor	Anti-CTLA-4 3/91 (3%)
Anti-PD-1	65/91 (71%)
Anti-PD-L1	7/91 (8%)
Anti-CTLA-4 + anti-PD-1	14/91 (15%)
Anti-PD-L1 + 4-1BB blockade	1/91
CTLA-4 or PD-1 blockade	1/91
Time-to-diagnosis in cycles (range)	4.5 (1–17)
Combination therapy	2.7 (1–5)
With/without DKA	4 vs 5.9
GADA pos./GADA neg.	3.1 vs 5.9
Diabetic ketoacidosis	64/91 (71%)
Glycemia, median (range)	565 mg/dL (209–1211)
Glycated hemoglobin, median (range)	7.6% (5.4–11.4)
Low-C-peptide at diagnosis	58/69 (84%)
Elevated lipase	13/25 (52%)
Positive pancreas autoantibodies	At least one 47/88 (53%)
Two or more 13/88 (15%)	
Type of pancreas autoantibodies	GADA 51%
IA-2 18%	
ICA 13%	
Anti-insulin 26%	
ZnT8 4%	
HLA analysis	51/91 (56%)
Susceptible	31/51 (61%)
Susceptible and protective	2/51 (4%)
Neutral	10/51 (20%)
Protective	8/51 (16%)
Thyroid dysfunction with ICI	21/91 (24%)
Prior history of thyroid dysfunction	2/21

*Diabetes mellitus, thyroid disease or risk thereof.
4-1BB, CD137; CTLA-4, cytotoxic T lymphocyte antigen 4; DKA, diabetes ketoacidosis; GADA, glutamic acid decarboxylase; HLA, human leukocyte antigen; IA-2, insulinoma-associated antigen-2; ICA, islet-cell antibodies; ICI, immune checkpoint inhibitor; IL-2, Interleukin-2; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; ZnT8, zinc transporter 8.
although the transgenic overexpression of anti-CTLA-4 Fv on β cells could protect NOD mice from autoimmune diabetes (86). In humans, polymorphisms in the CTLA4 and PD-1 gene confer increased susceptibility to a variety of autoimmune disorders, including T1D (87, 88, 89, 90, 91, 92). The CTLA-4 and PD-1/PD-L pathways have been studied in T-cell subsets from patients with ‘classic’ T1D. Both decreased PD-1 gene expression in peripheral CD4+ T cells (93) as a low frequency of circulating PD-1+ CD4+ T cells were found in T1D patients (94). More recently, Granados et al. demonstrated further PD-1 dysregulation as activated peripheral T cells from children with new-onset T1D failed to upregulate PD-1 upon T-cell receptor stimulation (95). Regulatory T cells (Tregs) express both CTLA-4 (96) and PD-1 (97), essential in their activation and suppressive role in peripheral immune tolerance (97, 98, 99) and a deficiency in the ability to upregulate PD-1 and efficiently use the PD-1/PD-L pathway has been observed in CD4+ CD25+ Tregs from T1D patients (100). Furthermore, human pancreatic β cells express PD-L1, which is induced by IFN-γ (and to a lesser extent IFN-α). This expression is upregulated in inflamed islets and is associated with CD8+ T-cell infiltration (101, 102). One could hypothesize that β cells respond in such a way to attempt to suppress autoreactive CD8+ T cells. Figure 2 illustrates the pathophysiology of immune checkpoint inhibitor-associated diabetes mellitus.

Predisposing factors for ICI-induced diabetes should be better defined. ‘Classic’ T1D has a strong genetic component, with the HLA class II alleles accounting for up to 50% of the disease risk (103). Differences between populations and diabetic genotypes do exist, as the DR3-DQ2 and DR4-DQ8 haplotypes are a major risk factor for T1D (103), while the DR4-DQ4 and DR9-DQ9 haplotypes are linked with fulminant diabetes in Asians (104). Our patient was homozygous for the DR4-DQ8 haplotype, an HLA pattern associated with a high risk for type 1 diabetes. In this review, the majority of patients had a HLA genotype with increased susceptibility for either T1D or fulminant diabetes (61%), which is striking when compared to a Caucasian reference population (susceptible genotypes: 9.1%; rare, neutral or moderately protective/susceptible genotypes: 23.9%; protective genotypes: 67.1%) (105). There was also a predominance of HLA-DR4, similar to the cohort described by Stamatouli et al., although they reported a higher frequency (16/21, 76%) (6). We might consider checkpoint blockade-induced diabetes to be a distinct diabetes subtype, showing typical features of ‘classic’ T1D and fulminant diabetes. The rapid-onset of diabetes with ketoacidosis, relatively low glycated hemoglobin levels and pancreatic inflammation are suggestive of fulminant diabetes, while the seemingly non-Asian ethnical predominance and the presence of autoantibodies (although less frequent) fit to the ‘classic’ T1D. Alternatively, checkpoint blockade-induced diabetes mellitus may merely be a heterogeneous collection of variants of autoimmune diabetes, exhibiting the increasingly acknowledged heterogeneity of T1D (106). Table 5 compares the characteristics of the different diabetes subtypes (78, 107, 108, 109, 110, 111, 112, 113). Patients who received immune checkpoint therapy after pretreatment with other immunotherapy also appeared to be at increased risk. The combination of checkpoint blockade therapy carries an increased incidence of irAE as compared to monotherapy (114). In a meta-analysis by Barroso-Sousa et al., patients who received combination immunotherapy were more likely to develop thyroid dysfunction and hypophysitis (2). This may hold true as well for ICI-induced diabetes. Prior autoimmune disease, such as autoimmune thyroid disease (spontaneous or associated with immunotherapy).
could be another potential risk factor for the development of diabetes mellitus related to ICI. The pre-existence of type 2 diabetes did not appear to be a particular risk factor in a French retrospective analysis (25). In this study, one patient with insulin-dependent type 2 diabetes had worsening glycemic control, although it could not be excluded that pancreatic autoimmunity already existed (i.e. LADA) before the start of nivolumab therapy (26).

Health care professionals should be aware of this possible side effect as these novel anticancer agents are increasingly used (7). Clinical signs and symptoms of hyperglycemia should be checked and when present, should prompt blood glucose measurement. Routine monitoring of blood glucose before each administration of ICI therapy is currently advisable (5, 115, 116). This would theoretically allow for an early diagnosis of glucose abnormalities and of DKA in particular. Some have even suggested to provide a glucometer to patients with a history of autoimmune disease (4). The usefulness of glucose monitoring has been disputed however in a retrospective analysis of fasting glycaemia in anti-PD-1-treated patients, suggesting that glucose monitoring does not allow to anticipate T1D in this patient population, perhaps due to its brisk onset (25). Upon the detection of new-onset diabetes or worsening glycaemia in patients with known type 2 diabetes mellitus, the glycated hemoglobin and pancreatic autoantibodies (especially GADA) should be analyzed to support the diagnosis of checkpoint blockade-related diabetes mellitus. Measurement of C-peptide is not strictly necessary for the diagnosis and treatment of this AE, especially given its fluctuation in time, although serially measured (or in the non-DKA phase, glucagon-stimulated) values could be of potential value in future decision-making regarding tapering or omitting insulin therapy in selected cases. The presence of pancreatic autoantibodies, detectable in ~50% of patients, is not an absolute requirement for the diagnosis and treatment of checkpoint inhibitor-associated diabetes. The management is based mainly on clinical expertise with these novel drugs. Insulin is the default therapy for glucose control, together with supportive measures (i.e. hydration, correction of electrolytes) according to standard guidelines (5, 117). There is currently no effective way of preventing or limiting the onset of this side effect. The attempt of immunomodulation with high-dose corticosteroids (i.e. standard treatment of irAE) was unsuccessful in reversing autoimmune diabetes following immunotherapy in a patient described by Aleksova et al. (60). Although omitting checkpoint blockade has been found to prevent further β cell loss in a single patient (118), given the compelling indication of immunotherapy in advanced malignancies with few treatment options, this might not be practically possible. This should perhaps be considered in an adjuvant setting where the prognosis is better. Restarting treatment with ICI should be considered once adequate glucose control has been established (5, 117). Finally, we acknowledge the need for further prospective studies to reassess/reevaluate current policy and expand our knowledge of the pathophysiology of this unique entity of diabetes mellitus associated with checkpoint inhibitors. Further exploration of risk factors and biomarkers is required to better identify individuals at risk and ideally prevent the onset of this rare but often aggressive form of diabetes.

Table 5 Classification of diabetes mellitus.

Clinical features	Checkpoint blockade	'Classic' type 1	LADA	Fulminant diabetes
Age at onset (range)	61 years (22–84)	Childhood or adolescence	>30 years	Adult
Ethnicity	Both	Rarely adult	Non-Asian	Asian
Symptoms at diagnosis	Acute (rarely subclinical)	Non-Asian	Acute	Yes
Ketoacidosis	Yes	Subclinical	Rarely	Yes
Insulin required at diagnosis	Yes	Possible	No	Yes
Biochemical features (at diagnosis)	Low or undetectable (84%)	Low or undetectable	Low or normal	Low or undetectable
C-peptide	7.5% (5.4–11.4)	>6.35%	7.86	<8.7%
HbA1c (range)	Elevated (52%)	Elevated (24%, DKA)	Elevated (98%)	Elevated (98%)
Lipase	Positive (53%)	Positive	Positive	Negative
Autoantibodies	Suspected	High risk	High/mild risk	High risk
Pathophysiology				
HLA association				

References: (78, 107, 108, 109, 110, 111, 112, 113).

CRP, C-reactive peptide; HbA1c, glycated hemoglobin; LADA, latent autoimmune diabetes of adults.
Conclusion

Checkpoint blockade-induced diabetes mellitus is a rare but potentially lethal AE, as diabetic ketoacidosis is often the first presentation. Despite its rarity, healthcare professionals should be aware and patients need to be educated. This is crucial since a growing number of patients are treated with checkpoint blockade. Apart from raising awareness, periodic measurement of blood glucose is a practical screening option, for the time being. Predisposing factors, such as HLA genotype, may explain why some individuals are at greater risk. Our current knowledge of biomarkers, for the stratification of patients that need close follow-up, remains insufficient.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/EJE-19-0291.

Declaration of interest
Jeroen M K de Filette: lecture honoraria from Bristol-Myers Squibb. Lore Decoster: received grants from Boehringer-Ingelheim, Roche, Bristol-Myers Squibb. Sandrine Aspeslagh: speaker’s fees from Bristol-Myers Squibb, Roche, Astra Zeneca, Merck and Novartis. Bart Neyns: Honoraria from Bristol-Myers Squibb. Sandrine Aspeslagh: speaker’s fees from Bristol-Myers Squibb, Roche, Astra Zeneca, Merck and Novartis. Bart Neyns: Honoraria from Bristol-Myers Squibb. Sandrine Aspeslagh: speaker’s fees from Bristol-Myers Squibb, Roche, Astra Zeneca, Merck and Novartis. Bart Neyns: Honoraria from Bristol-Myers Squibb. Sandrine Aspeslagh: speaker’s fees from Bristol-Myers Squibb, Roche, Astra Zeneca, Merck and Novartis. Bar

Funding
This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit-sector.

Author contribution statement
J M K d F, A V K and B V planned the concept of this review. J M K d F, T V and A V K carried out the literature search. J M K d F and A V K performed the manuscript selection, data extraction and analysis. B J V D A performed HLA genotyping. J M K d F, B J V D A and A V K categorized the HLA genotypes. J M K d F and A V K drafted the manuscript. B O R provided the figure explaining the pathophysiology. All authors critically reviewed, revised and contributed to the final article.

References

1 Sanmamed MF & Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 2018 175 313–326. (https://doi.org/10.1016/j.cell.2018.09.035)
2 Barroso-Sousa R, Barry WT, Garrido-Castro AC, Hodi FS, Min L, Krop IE & Tolaney SM. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncology 2018 4 173–182. (https://doi.org/10.1001/jamaoncol.2017.3064)
3 Sznol M, Postow MA, Davies MJ, Pavlick AC, Plimack ER, Shaheen M, Velosi C & Robert C. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treatment Reviews 2017 58 70–76. (https://doi.org/10.1016/j.ctrv.2017.06.002)
4 Clotman K, Janssens K, Specener P, Weets I & De Block CEM. Programmed cell death-1 inhibitor-induced Type 1 diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 2018 103 3144–3154. (https://doi.org/10.1210/jc.2018-00728)
5 Haanen JBag, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, Jordan K & Committee EG. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2017 28 (Supplement 4) iv119–iv142. (https://doi.org/10.1093/annonc/mdx225)
6 Stamatouli AM, Quandt Z, Perdigoto AL, Clark PL, Kluger H, Weiss SA, Gettinger S, Szoln M, Young A, Rashukoff R & et al. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes 2018 67 1471–1480. (https://doi.org/10.2337/db18-0002)
7 Ascierto PA, Palmieri G & Gogas H. What is changing in the adjuvant treatment of melanoma? Oncotarget 2017 8 110735–110736. (https://doi.org/10.18632/oncotarget.22988)
8 Hillier TA, Abbott RD & Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. American Journal of Medicine 1999 106 399–403. (https://doi.org/10.1016/s0002-9343(99)00055-8)
9 Heimberg H, Nagy ZP, Somers G, De Leeuw I & Schuit FC. Complementation of HLADQA and -DQB genes confers susceptibility and protection to insulin-dependent diabetes mellitus. Human Immunology 1992 33 10–17. (https://doi.org/10.1016/0198-8859(92)90046-P)
10 de Filette J, Jansen Y, Schreuer M, Everaert H, Velkeniers B, Neyns B & Bravenboer B. Incidence of thyroid-related adverse events in melanoma patients treated with pembrolizumab. Journal of Clinical Endocrinology and Metabolism 2016 101 4431–4439. (https://doi.org/10.1210/jc.2016-2300)
11 Delivanis DA, Gustafson MP, Bornschlegl S, Merten KM, Kottschade L, Withers S, Dietz AB & Ryder M. Pembrolizumab-induced thyroiditis: comprehensive clinical review and insights into underlying involved mechanisms. Journal of Clinical and Endocrinology and Metabolism 2017 102 2770–2780. (https://doi.org/10.1210/jc.2017-00448)
12 Morganstein DL, Lai Z, Spain L, Diem S, Levine D, Mace C, Gore M & Larkin J. Thyroid abnormalities following the use of cytotoxic T-lymphocyte antigen-4 and programmed death receptor protein-1 inhibitors in the treatment of melanoma. Clinical Endocrinology 2017 86 614–620. (https://doi.org/10.1111/cen.13297)
13 Scott ES, Long GV, Guminski A, Clifton-Bligh RJ, Menzies AM & Tsang VH. The spectrum, incidence, kinetics and management of endocrinopathies with immune checkpoint inhibitors for metastatic melanoma. European Journal of Endocrinology 2018 178 173–180. (https://doi.org/10.1530/EJE-17-0810)
14 Marchand L, Thivolet A, Dalle S, Chikh K, Reffet S, Vuillarmet J, Fabien N, Cugnet-Anceau C & Thivolet C. Diabetes mellitus induced by PD-1 and PD-L1 inhibitors: description of pancreatic endocrine and exocrine phenotype. Acta Diabetologica 2019 56 441–448. (https://doi.org/10.1007/s00592-018-1234-8)
15 Matsumura K, Nagaoka K, Oshima Y, Kikuno S, Hayashi K, Nishimura A, Okubo M, Uruha G, Kishi K, Kobayashi T & et al. Aggravation of diabetes, and incompletely deficient insulin secretion in a case with type 1 diabetes-resistant HLA DRB1*15:02 treated with nivolumab. Journal of Diabetes Investigation 2017 6 438–441. (https://doi.org/10.1111/jdi.12679)
16 Lowe JR, Perry DJ, Salama AK, Mathews CE, Moss LG & Hanks BA. Genetic risk analysis of a patient with fulminant autoimmune type 1 diabetes mellitus secondary to combination ipilimumab and nivolumab immunotherapy. Journal for ImmunoTherapy of Cancer 2018 6 489. (https://doi.org/10.1186/s40425-016-0196-z)
17 Okamoto M, Okamoto M, Gotoh K, Masaki T, Ozeki Y, Ando H, Anai M, Sato A, Yoshida Y, Ueda S & et al. Fulminant type 1 diabetes...
mellitus with anti-programmed cell death-1 therapy. Journal of Diabetes Investigation 2016 7 915–918. (https://doi.org/10.1111/jdi.12531)
18 Hughes J, Vadattu N, Szoln M, Gettinger S, Kluger H, Lupsa B & Herold KC. Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes Care 2015 38 e55–e57. (https://doi.org/10.2337/dc14-2349)
19 Capitao R, Bello C, Fonseca B & Saravia C. New onset diabetes after nivolumab treatment. BMJ Case Reports 2018 2018 Epub. (https://doi.org/10.1136/bcr-2017-220999)
20 Chokr N, Farooq H & Guadalupe E. Fulminant diabetes in a patient with advanced melanoma on nivolumab. Case Reports in Oncological Medicine 2018 2018 1–4. (https://doi.org/10.1155/2018/8981375)
21 Gunawan F, George E & Roberts A. Combination immune checkpoint inhibitor therapy nivolumab and ipilimumab associated with multiple endocrinopathies. Endocrinology, Diabetes and Metabolism Case Reports 2018 2018 Epub. (https://doi.org/10.1530/edm-17-0146)
22 Ho WJ, Rooper L, Sagersky S & Kang H. A robust response to combination immune checkpoint inhibitor therapy in HPV-related small cell cancer: a case report. Journal for ImmunoTherapy of Cancer 2018 6 33. (https://doi.org/10.1186/s40425-018-0348-4)
23 Lee S, Morgan A, Shah S & Ebeling PR. Rapid-onset diabetic ketoacidosis secondary to nivolumab therapy. Endocrinology, Diabetes and Metabolism Case Reports 2018 2018 Epub. (https://doi.org/10.1530/edm-18-0021)
24 Maamari J, Yeung SJ & Chaftari PS. Diabetic ketoacidosis induced by a single dose of pembrolizumab. American Journal of Emergency Medicine 2019 37 376.e1–376.e2. (https://doi.org/10.1016/j.ajem.2018.10.040)
25 Magis Q, Gaudy-Marquerte C, Basire A, Loundou A, Malissen N, Troin L, Monestier S, Mallet S, Hesse S, Richard MA et al. Diabetes and blood glucose disorders under anti-PD1. Journal of Immunotherapy 2018 41 232–240. (https://doi.org/10.1097/CJI.0000000000000218)
26 Matsuura N, Koh G, Konishi C, Minamino S, Takahara Y, Harada H, Kodama K & Emoto M. Fulminant onset of insulin-dependent diabetes with positive anti-GAD antibody titers during treatment with nivolumab in a patient with NSCLC. Cancer Immunology, Immunotherapy 2018 67 1417–1424. (https://doi.org/10.1007/s00262-018-2203-3)
27 Meyers DE, Hill WF, Suo A, Jimenez-Zepeda V, Cheng T & Nixon NA. Aplastic anemia secondary to nivolumab and ipilimumab in a patient with metastatic melanoma: a case report. Experimental Hematology and Oncology 2018 7 6. (https://doi.org/10.1186/s40164-018-0098-5)
28 Omnoda T, Kiiniwa Y, Sato Y, Suwa M, Sato M, Yamaguchi T, Sato A, Miyake T & Okuyama R. Type 1 diabetes in a melanoma patient treated with ipilimumab after nivolumab. Journal of Dermatology 2018 45 e289–e290. (https://doi.org/10.1111/1346-8138.14331)
29 Patti R, Malhotra S, Sinha A, Singh P, Marcelin M & Saxena A. Atezolizumab-induced new onset diabetes mellitus with ketoacidosis. American Journal of Therapeutics 2018 25 e565–e568. (https://doi.org/10.1097/MJT.0000000000000644)
30 Ramos-Levi AM, Rogado J, Sanchez-Torres JM, Colomer R & Marazuela M. Nivolumab-induced thyroid dysfunction in patients with lung cancer. Endocrinología, Diabetes y Nutrición 2019 66 26–34. (https://doi.org/10.1016/j.endinu.2018.05.005)
31 Sakurai K, Niitsuma S, Sato R, Takahashi K & Arthara Z. Painless thyroiditis and fulminant type 1 diabetes mellitus in a patient with an immune checkpoint inhibitor, nivolumab. Tohoku Journal of Experimental Medicine 2018 244 43–40. (https://doi.org/10.1620/tjem.244.33)
32 Shibata M, Inaba H, Aritayasu H, Kawai S, Inagaki Y, Matsuno S, Iwakura H, Yamamoto Y, Nishi M & Akamizu T. Fulminant type 1 diabetes mellitus accompanied by positive conversion of anti-insulin antibody after the administration of anti-CTLA-4 antibody following the discontinuation of anti-PD-1 antibody. Internal Medicine 2018 67 2029–2034. (https://doi.org/10.2169/internalmedicine.9518-17)
33 Takahashi A, Tsutsumida A, Namikawa K & Yamazaki N. Fulminant type 1 diabetes associated with nivolumab in a patient with metastatic melanoma. Melanoma Research 2018 28 159–160. (https://doi.org/10.1097/CMR.0000000000000418)
34 Tassone E, Colantonio I, Gamarra E, Gianotti L, Baffoni C, Magro G & Borrett G. Nivolumab-induced fulminant type 1 diabetes (T1D) in the first Italian case report with long follow-up and flash glucose monitoring. Acta diabetologica 2018 56 489–490. (https://doi.org/10.1007/s00592-018-1246-4)
35 Tzolis P, Corbett RW, Ponnampalam S, Baker E, Heaton D, Doulgeraki T & Stebbing J. Nivolumab-induced fulminant diabetic ketoacidosis followed by thyroditis. Endocrinology, Diabetes and Metabolism Case Reports 2018 2018 Epub. (https://doi.org/10.1530/edm-18-0111)
36 Villarreal J, Townes D, Vrablik M & Ro K. A case of drug-induced severe endocrinopathies: what providers in the Emergency Department need to know. Advanced Emergency Nursing Journal 2018 40 16–20. (https://doi.org/10.1097/TEN.0000000000000173)
37 Zaled AA, Akturk HK, Joseph RW & Lee AS. New-onset insulin-dependent diabetes due to nivolumab. Endocrinology, Diabetes and Metabolism Case Reports 2018 2018 Epub. (https://doi.org/10.1530/edm-17-0174)
38 Araujo M, Ligeiro D, Costa L, Marques E, Trindade H, Correia JM & Fonseca C. A case of fulminant Type 1 diabetes following anti-PD1 immunotherapy in a genetically susceptible patient. Immunotherapy 2017 9 531–535. (https://doi.org/10.2217/imt-2017-0020)
39 Atkins PW & Thompson DM. Combination avelumab and atolimumab immunotherapy can induce diabetic ketoacidosis. Diabetes and Metabolism 2018 44 514–515. (https://doi.org/10.1016/j.diab.2017.05.005)
40 Chae YK, Chieck L, Mohindra N, Gentzler R, Patel J & Giles F. A case of pembrolizumab-induced type-1 diabetes mellitus and discussion of immune checkpoint inhibitor-induced type 1 diabetes. Cancer Immunology, Immunotherapy 2017 66 25–32. (https://doi.org/10.1007/s00262-016-1913-7)
41 Chan PY, Hall P, Hay G, Cohen VML & Szosarek PW. A major responder to ipilimumab and nivolumab in metastatic uveal melanoma with concomitant autoimmune. Pigment Cell and Melanoma Research 2017 30 558–562. (https://doi.org/10.1111/jpcm.12607)
42 Changizadeh PN, Mukkamalla SKR & ArminavvA. Combined checkpoint inhibitor therapy causing diabetic ketoacidosis in metastatic melanoma. Journal for ImmunoTherapy of Cancer 2017 5 97. (https://doi.org/10.1186/s40425-017-0303-9)
43 Guaci ML, Lally P, Vidal-Trench T, Baroudjian B, Gottlieb J, Majdjesi-Ezra N, Da Meda L, Madelaine-Chambriñ I, Bagot M, Basset-Sequín N et al. Autoimmune diabetes induced by PD-1 inhibitor-retrospective analysis and pathogenesis: a case report and literature review. Cancer Immunology, Immunotherapy 2017 66 1399–1410. (https://doi.org/10.1007/s00262-017-2033-8)
44 Godwin JL, Jaggi S, Sritesa I, Sharda P, Rao AD, Mehra R & Veloski C. Nivolumab-induced autoimmune diabetes mellitus presenting as diabetic ketoacidosis in a patient with metastatic lung cancer. Journal for ImmunoTherapy of Cancer 2017 540. (https://doi.org/10.1186/s40425-017-0245-2)
45 Hickmott L, De La Pena H, Turner H, Ahmed F, Protheroe A, Grossman A & Gupta A. Anti-PD-L1 atezolizumab-induced autoimmune diabetes: a case report and review of the literature. Targeted Oncology 2017 12 235–241. (https://doi.org/10.1007/s11523-017-0480-y)
46 Ishikawa K, Shono-Saito T, Yamate K, Kai Y, Sakai T, Shimizu F, Yamada Y, Mori H, Nosu S, Ikegami H et al. A case of fulminant type 1 diabetes mellitus, with a precipitous decrease in pancreatic volume, induced by nivolumab for malignant melanoma: analysis of HLA
and CTLA-4 polymorphisms. European Journal of Dermatology 2017 27 184–185. (https://doi.org/10.1684/edj.2016.2923)

47 Kapke J, Shaheen Z, Kiliar D, Knudson P & Wong S. Immune checkpoint inhibitor-associated Type 1 diabetes mellitus: case series, review of the literature, and optimal management. Case Reports in Oncology 2017 10 897–909. (https://doi.org/10.1159/000480634)

48 Kumagai R, Muramatsu A, Nakajima R, Fujii M, Kaino K, Kataoka Y, Okumura N, Ohara G, Kagohashi K, Satoh H et al. Acute-onset type 1 diabetes mellitus caused by nivolumab in a patient with advanced pulmonary adenocarcinoma. Journal of Diabetes Investigation 2017 8 798–799. (https://doi.org/10.1111/jdi.12627)

49 Leonardi GC, Oxnard GR, Haas A, Lang JP, Williams JS & Awad MM. Diabetic ketoacidosis as an immune-related adverse event from pembrolizumab in non-small cell lung cancer. Journal of Immunotherapy 2017 40 249–251. (https://doi.org/10.1097/CJI.0000000000000173)

50 Li L, Masood A, Bari S, Yavuz S & Grosbach AB. Autoimmune diabetes and thryroditis complicating treatment with nivolumab. Case Reports in Oncology 2017 10 230–234. (https://doi.org/10.1159/000456540)

51 Marchand L, Paulus V, Fabien N, Toubal M & Saintpierre J. Nivolumab-induced acute diabetes mellitus and hypophysitis in a patient with advanced pulmonary pleomorphic carcinoma with a prolonged tumor response. Journal of Thoracic Oncology 2017 12 e182–e184. (https://doi.org/10.1097/JTO.0000000000000721)

52 Munakata W, Ohashi K, Yamagishi N & Tobinai K. Fulminant type 1 diabetes mellitus associated with nivolumab in a patient with relapsed classical Hodgkin lymphoma. International Journal of Hematology 2017 105 383–386. (https://doi.org/10.1007/s12185-016-2101-4)

53 Smith-Cohn MA, Gill D, Voorhies BN, Agarwal N & Garrido-Medina JR. Nivolumab-induced severe cutaneous adverse events in patients with metastatic melanoma. Journal of Cutaneous, Gastrointestinal, Hepatic, Endocrine, and Renal side-effects of anti-PD-1 therapy. European Journal of Cancer 2016 60 190–209. (https://doi.org/10.1016/j.ejca.2016.02.025)

54 Nakamura K, Kawasaki E, Imagawa A, Awata T, Ikegami H, Uegata K & Ohtaki M. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments insulin-independent diabetes as immune-related toxicity of pembrolizumab: presentation, management and outcome. European Journal of Endocrinology 2016 165 765–767. (https://doi.org/10.1530/EJEN-16-0043)

55 Hofmann J, Forschner A, Loquai C, Goldinger SM, Zimmer I, Uegura S, Schmidgen M, Gutzmer R, Utikal J, Goppner D et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. European Journal of Cancer 2016 60 190–209. (https://doi.org/10.1016/j.ejca.2016.02.025)

56 Humayun MA & Poole R. A case of multiple immune toxicities from ipilimumab and pembrolizumab treatment. Hormones 2016 15 303–306. (https://doi.org/10.14310/horm.2002.1656)

57 Miyoshi Y, Ogawa O & Oyama Y. Nivolumab, an anti-programmed cell death-1 antibody, induces fulminant type 1 diabetes. Tohoku Journal of Experimental Medicine 2016 239 155–158. (https://doi.org/10.14814/tjem.239.155)

58 Gaudy C, Clevy C, Monestier S, Dubois N, Peau Y, Mallet S, Richard MA, Grob JJ, Valero R & Beliard S. Anti-PD1 pembrolizumab can induce exceptional fulminant type 1 diabetes. Diabetes Care 2015 38 e182–e183. (https://doi.org/10.2337/dc15-1331)

59 Martin-Liberal J, Furness AJ, Joshi K, Peggs KS, Quezada SA & Larkin J. Anti-programmed cell death-1 therapy and insulin-dependent diabetes: a case report. Cancer Immunology, Immunotherapy 2015 64 765–767. (https://doi.org/10.1007/s00262-015-1689-1)

60 Gallagher A, Xu W, Fourlanos S, Nankervis A, Chiang C, Mant AM, Parente P, Rischin D, Krishnamurthy B, Sandhu S et al. Diabetes associated with immune checkpoint inhibition: presentation and management challenges. Diabetic Medicine 2018 35 1283–1290. (https://doi.org/10.1111/dme.13762)

61 Guaci ML, Boudou P, Baroudjian B, Vidal-Trecan T, Da Meda L, Madelaine-Chambriant I, Basset-Seguin N, Bagot M, Pages C, Mourah S et al. Occurrence of type 1 and type 2 diabetes in patients treated with immunotherapy (anti-PD-1 and/or anti-CTLA-4) for metastatic melanoma: a retrospective study. Cancer Immunology, Immunotherapy 2018 67 1197–1208. (https://doi.org/10.1007/s00262-018-2178-0)

62 Mellati M, Eaton KD, Brooks-Worrell BM, Hagopian WA, Martins R, Palmer JP & Hirsch IB. Anti-PD-1 and anti-PDL-1 monoclonal antibodies causing Type 1 diabetes. Diabetes Care 2015 38 e137–e138. (https://doi.org/10.2337/dc15-0889)

63 Alhusseini M & Samantray J. Autoimmune diabetes superimposed on type 2 diabetes in a patient initiated on immunotherapy for lung cancer. Diabetes and Metabolism 2017 43 86–88. (https://doi.org/10.1016/j.diabet.2016.05.007)

64 Hao JB, Renno A, Imam S, Alfonso-Jaume M, Elnagar N & Jaume JC. Type 2 diabetes mellitus after initiation of anti-PD-1 therapy. AACE Clinical Case Reports 2017 3 e242–e245. (https://doi.org/10.4183/epi161401.0038)

65 Farah P, Parente P, Rischin D, Krishnamurthy B, Sandhu S et al. Diabetes dependent diabetes as immune-related toxicity of pembrolizumab: presentation, management and outcome. European Journal of Cancer 2016 60 190–209. (https://doi.org/10.1016/j.ejca.2016.02.025)

66 Alhusseini M & Samantray J. Autoimmune diabetes superimposed on type 2 diabetes in a patient initiated on immunotherapy for lung cancer. Diabetes and Metabolism 2017 43 86–88. (https://doi.org/10.1016/j.diabet.2016.05.007)

67 Wang J, Renno A, Imam S, Alfonso-Jaume M, Elnagar N & Jaume JC. Type 2 diabetes mellitus after initiation of anti-PD-1 therapy. International Journal of Cancer and Clinical Research 2018 3 066. (https://doi.org/10.23937/2378-3419/5.3/1066)

68 Long SA, Rieck M, Sanda S, Bollyky JB, Saubers PL, Goland R, Ahmann A, Rabinovitch A, Aggarwal S, Phippard D et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes 2012 61 2340–2348. (https://doi.org/10.2337/db12-0049)

69 Nakamura K, Kawaseki E, Imagawa A, Awata T, Ikegami H, Uchigata Y, Kobayashi T, Shimada A, Nakanishi K, Makino H et al. Type 1 diabetes and interferon therapy: a nationwide survey in Japan. Diabetes Care 2011 34 2084–2089. (https://doi.org/10.2337/dc10-2274)
diabetes: a nationwide survey with reference to glutamic acid decarboxylase antibodies. *Journal of Diabetes Investigation* 2012 3 62–69. (https://doi.org/10.1111/j.2040-1124.2011.00139.x)

105 Van der Auwera BJ, Schuit FC, Weets I, Ivens A, Van Autreve JE, Gorus FK & Belgian Diabetes Registry. Relative and absolute HLA-DQA1-DQB1 linked risk for developing type 1 diabetes before 40 years of age in the Belgian population: implications for future prevention studies. *Human Immunology* 2002 63 40–50. (https://doi.org/10.1016/S0198-8859(01)00362-7)

106 Tuomi T, Santoro N, Caprio S, Cai M, Weng J & Groop L. The many faces of diabetes: a disease with increasing heterogeneity. *Lancet* 2014 383 1084–1094. (https://doi.org/10.1016/S0140-6736(01)00362-7)

107 Szepietowska B, Glebocka A, Puch U, Gorska M & Szelachowska M. Latent autoimmune diabetes in adults in a population-based cohort of Polish patients with newly diagnosed diabetes mellitus. *Archives of Medical Science* 2012 8 491–495. (https://doi.org/10.5114/aoms.2012.29405)

108 Kawasaki E, Matsuura N & Eguchi K. Type 1 diabetes in Japan. *Diabetologia* 2006 49 826–836. (https://doi.org/10.1007/s00125-006-0213-8)

109 Buzzetti R, Zampetti S & Maddaloni E. Adult-onset autoimmune diabetes: current knowledge and implications for management. *Nature Reviews: Endocrinology* 2017 13 674–686. (https://doi.org/10.1038/nrendo.2017.99)

110 Hanafusa T & Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. *Nature Clinical Practice: Endocrinology and Metabolism* 2007 3 36–45; quiz 2p. (https://doi.org/10.1038/ncpendmet0351)

111 Imagawa A, Hanafusa T, Awata T, Ikekami H, Uchigata Y, Osawa H, Kawasaki E, Kawabata Y, Kobayashi T, Shimada A et al. Report of the Committee of the Japan Diabetes Society on the research of fulminant and acute-onset type 1 diabetes mellitus: new diagnostic criteria of fulminant type 1 diabetes mellitus (2012). *Journal of Diabetes Investigation* 2012 3 536–539. (https://doi.org/10.1111/jdi.12024)