Algorithmic Cooling and Scalable NMR Quantum Computers*

P. Oscar Boykin¹, Tal Mor¹,²*, Vwani Roychowdhury¹, Farrokh Vatan¹,³, and Rutger Vrijen⁴

1. Electrical Engineering Department, UCLA, Los Angeles, CA 90095, USA.
2. Electrical Engineering Department, College of Judea and Samaria, Ariel, Israel.
3. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive Pasadena, CA 91109
4. Sun Microsystems Laboratories, Mountain View, CA, USA

* To whom correspondence should be addressed. Email: talmo@cs.technion.ac.il

Abstract

We present here algorithmic cooling (via polarization-heat-bath)—a powerful method for obtaining a large number of highly polarized spins in liquid nuclear-spin systems at finite temperature. Given that spin-half states represent (quantum) bits, algorithmic cooling cleans dirty bits beyond the Shannon’s bound on data compression, by employing a set of rapidly thermal-relaxing bits. Such auxiliary bits could be implemented using spins that rapidly get into thermal equilibrium with the environment, e.g., electron spins.

Cooling spins to a very low temperature without cooling the environment could lead to a breakthrough in nuclear magnetic resonance experiments, and our “spin-refrigerating” method suggests that this is possible.

The scaling of NMR ensemble computers is probably the main obstacle to building useful quantum computing devices, and our spin-refrigerating method suggests that this problem can be resolved.

*This work was sponsored in part by the Defense Advanced Research Projects Agency (DARPA) project MDA972–99–1–0017 [note that the content of this paper does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred], and in part by the U.S. Army Research Office/DARPA under contract/grant number DAAD19–00–1–0172.

The research of Farrokh Vatan was performed partly at UCLA and supported by the above mentioned grants and was performed partly at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with National Aeronautics and Space Administration (NASA). The Revolutionary computing Technologies Program of the JPL’s Center for Integrated Space Microsystems (CISM) supported his work.
1 Introduction

Ensemble computing is based on a model comprised of a macroscopic number of computers, where the same set of operations is performed simultaneously on all the computers. The concept of ensemble computing became very important recently, due to the fact that NMR quantum computers \[1\] perform ensemble computing. NMR quantum computing has already succeeded in performing complex operations involving up to 7-8 qubits (quantum bits), and therefore, NMR quantum computers are currently the most successful quantum computing devices.

In NMR quantum computing each computer is represented by a single molecule, and the qubits of the computer are represented by the nuclear spins embedded in a single molecule. A macroscopic number of identical molecules is available in a bulk system, and these molecules act as many computers performing the same computation in parallel. To perform a desired computation, the same sequence of external pulses is applied to all the molecules/computers. Finally, a measurement of the state of a single qubit is performed by averaging over all computers/molecules to read out the output on a particular bit on all computers. Due to the use of a macroscopic number of molecules, the output is a noticeable magnetic signal. It has been shown that almost all known quantum algorithms designed for the usual single-computer model, can be adapted to be implemented on ensemble computers \[2\]: and in particular, these ensemble computers can perform fast factorization of large numbers \[3\] and fast data-base search \[4\].

Unfortunately, the wide-spread belief is that even though ensemble quantum computation is a powerful scheme for demonstrating fundamental quantum phenomena, it is not scalable (see for instance \[5, 6, 7\]). In particular, in the current approaches to ensemble computing, identifying the state of the computer requires sensing signals with signal-to-noise ratios that are exponentially small in \(n\), the number of qubits in the system. We refer to this well-known problem as the scaling problem. The origin of the scaling problem is explained in the following.

The initial state of each qubit, when averaged over all computers (a macroscopic number), is highly mixed, with only a small bias towards the zero state. At thermal equilibrium the state is

\[
\rho_{\epsilon_0} = \begin{pmatrix}
(1 + \epsilon_0)/2 & 0 \\
0 & (1 - \epsilon_0)/2
\end{pmatrix},
\]

where the initial bias, \(\epsilon_0\), is mainly determined by the magnetic field and the temperature, but also depends on the structure and the electronic configurations of the molecule. For an ideal system, one has \(\epsilon_0 = \epsilon_{\text{perfect}} = 1\) leading to \(\rho_{\epsilon_{\text{perfect}}} = |0\rangle \langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\), meaning that the state is \(|0\rangle\) with probability one, and it is \(|1\rangle\) with probability zero. For a totally mixed system, \(\epsilon_0 = 0\), hence the probabilities of \(|0\rangle\) and \(|1\rangle\) are both equal to half. We also define \(\delta_0 = (1 - \epsilon_0)/2\) to be the initial error probability. Typically, \(\epsilon_0\) is around \(10^{-6}\) for the liquid NMR systems in use \[8\], and can probably be improved (increased) a great deal in the
near future. Especially promising directions are the use of liquid crystal NMR for quantum computing \cite{8}, and the use of a SWAP operation for the nuclear spin and the electron spin known as ENDOR technique \cite{9}.

The state of an n-qubit system in the ideal case is $\rho_{\text{ideal}}^{(n)} = |0_n\rangle\langle 0_n|$ with $|0_n\rangle = |0\rangle \otimes |0\rangle \otimes \ldots \otimes |0\rangle$ (a tensor product of n single qubit states). In general, the initial state of an n-qubit liquid NMR system can be represented as a tensor product of states of the individual qubits:

$$\rho_{\text{init}}^{(n)} = \rho_{e_0} \otimes \rho_{e_0} \otimes \cdots \otimes \rho_{e_0}. \quad (2)$$

This state can also be written as $\sum_{i=0}^{2^n-1} P_i |i\rangle\langle i|$, a mixture of all states $|i\rangle$—the basis vectors of the system, and i (for n qubits) is a n-bit binary string. E.g., for two qubits, $P_{00} = (1 + \epsilon_0)^2/4$. In fact, the initial bias is not the same on each qubit \cite{10}, but as long as the differences between these biases are small we can ignore this fact in our analysis. The analysis we do later on is correct if we replace all these slightly different initial biases by their minimum value and call this value ϵ_0.

Currently, researchers use the so-called “pseudo pure state (PPS)” technique to perform computations with such highly mixed initial states. In this technique, the initial mixed density matrix is transformed to a state

$$\rho_{\text{PPS}}^{(n)} \equiv (1-p)I + p|\psi\rangle\langle \psi|, \quad (3)$$

which is a mixture of the totally-mixed state $I = \frac{1}{2^n} I_{2^n}$ (with I_{2^n}, the identity matrix of order 2^n), and a pure state $|\psi\rangle$ initially set to be $|0_n\rangle$ in our case. Such a state is called a pseudo-pure state. Unitary operations then leave the totally mixed state unchanged, but do affect the pure state part, to perform the desired computation via entanglement of the pure part (which we refer to as “pseudo-entanglement”). Finally, the state of the ensemble-computer is measured. If the probability p of the pure state is not too small, then the pure part of the state yields the expectation value for each qubit, an outcome which is sufficient for performing quantum computing which is as powerful as the standard (non-ensemble) quantum computing \cite{3}. Unfortunately, in all the existing PPS methods

$$p = \frac{(1 + \epsilon_0)^n - 1}{2^n - 1} < 2 \left(\frac{1 + \epsilon_0}{2}\right)^n, \quad (4)$$

and hence, p scales exponentially badly with n (the number of computation qubits), leading to an exponentially small signal-to-noise ratio. As a result, an exponential number of computers (molecules) are required in order to read the signal. With ϵ_0 in the range $10^{-6} - 10^{-1}$ one might still hope to obtain a 20-qubit computer, since then p (approximately $10^{-5} - 10^{-6}$) can still lead to an observed signal when an Avogadro number of computers are used. But one cannot hope to go beyond a 50-qubit computer, since then, p is approximately $10^{-13} - 10^{-15}$, which is smaller than the standard deviation in reading the result (and, even with perfect devices, the signal cannot be read).
The exponential advantage of quantum computers over classical ones [3] is totally lost in these NMR computing devices since an exponential number of molecules/computers is required for the computation, and therefore the scaling problem must be resolved in order to achieve any useful NMR quantum computing. This scaling problem (plus the assumption that quantum computing requires entanglement, and cannot rely on pseudo-entanglement) has led several researchers to suggest that the current NMR quantum computers are no more than classical simulators of quantum computers [7]. Actually, the important contribution of [7] is the result that in some neighborhood of the totally-mixed state, all states are separable; hence, some pseudo-entanglement states contain no entanglement. But this work does not prove (and does not claim to prove) that current NMR quantum computers do not perform quantum computation. We, in contrast, conjecture that the PPS technique and the work of [7] form the first step in proving that quantum computing without entanglement is possible.

The first important step in resolving the scaling problem is to understand that the scaling problem is not an inherent characteristic of ensemble computers but is an artifact of the existing PPS methods. In fact, the original highly mixed state contains a great deal of information, and this can be seen by rotating each qubit separately and finally measuring the qubits. However, the existing methods of transforming the highly mixed state into the PPS cause the scaling problem, by losing information on purpose. Furthermore, it is important to mention that for any \(n \), there is a range of bias, \(\epsilon \), not close to zero, where the currently existing methods for creating PPS work just fine. In order to be in that range, the state of each qubit must be almost pure: \(\epsilon = 1 - 2\delta \), where \(\delta \), the error probability, satisfies \(\delta \ll 1 \) (actually \(\delta \approx 0.2 \) is already useful). Then \(p \) scales well:

\[
p = \frac{(1 + \epsilon)^n - 1}{2^n - 1} \approx (1 - \delta)^n. \tag{5}
\]

As long as \(\delta \approx O(1/n) \), the probability \(p \) is sufficiently large for all practical purposes, thus much larger \(n \)’s can still be used. Furthermore, any \(n \) can be used if one can control \(\delta \) as a function of \(n \). The PPS technique, the loss of information, and the scaling problem are described in more detail in appendix A.

Instead of converting the initial state (2) to a PPS (3), we perform a “purification” transformation that takes a subset, \(m \) (with \(m \leq n \), of the qubits to a final state of the form

\[
\rho_{\text{final}}^{\{m\}} = \rho_{\epsilon_{\text{des}}} \otimes \rho_{\epsilon_{\text{des}}} \otimes \cdots \otimes \rho_{\epsilon_{\text{des}}}, \tag{6}
\]

where \(\epsilon_{\text{des}} \) is some desired bias close enough to 1. This state with a higher bias can then be transformed into a scalable PPS, \(\rho_{\text{PPS}}^{\{m\}} \). For example, we shall demonstrate how to achieve (via algorithmic cooling) \(\delta \approx 0.2 \), which allows \(n \) in the range 20-50 qubits, and \(\delta \approx 0.04 \), which allows \(n \) in the range of 50-200 qubits.

In this paper we present a purification process which uses concepts from information theory (data compression) and from thermodynamics (heat bath, thermal relaxation), and which resolves the scaling
problem. Our “information-theoretic” purification is totally classical, hence the density matrices are treated as classical probability distributions, and no explicit quantum effects are taken into consideration. In earlier work, Schulman and Vazirani [11] already demonstrated novel compression-based (and not PPS-based) alternative NMR computing, which does not suffer from the scaling problem. Their scheme is based on information theoretic tools, and it leads to Eq. (6). However, the Shannon bound on the purification ability prevents purifying any reasonable fraction of bits for small values of ϵ_0: $m \approx \frac{\epsilon_0^2}{2\ln 2} n$ (see Section 2), meaning that thousands of bits are required in order to get one or a few purified bits (with a reasonable probability of success). More explicitly, any entropy-preserving purification scheme cannot currently be useful for NMR computation.

We present here the first cooling scheme that goes beyond the Shannon bound, an \textit{algorithmic cooling via polarization-heat-bath}, or in short, \textit{algorithmic cooling}. This cooling scheme, presented in Section 3, purifies a large fraction of the bits initially set in a highly mixed state, and hence resolves the scaling problem. Algorithmic cooling can bypass the Shannon bound since it does not preserve entropy of the system, but removes entropy into a heat bath at a temperature β_0. In order to pump entropy into the polarization heat bath, algorithmic cooling demands the existence and the mutual processing of two types of qubits [12]: computation bits and bits which Rapidly Reach Thermal Relaxation (RRTR bits). The computation bits are assumed to have a very long relaxation time, $T_{\text{comput-bits}}$, and they are used for the computation, and the RRTR bits are assumed to have a much shorter relaxation time, T_{RRTR}, hence they rapidly get into thermal equilibrium with the environment (a heat bath) at a temperature of β_0. Since the RRTR bits are defined via their spin (to be 0 or 1), the heat bath is actually a spin-polarization heat bath. In our algorithmic cooling, a standard compression is performed on the computation bits, purifying (cooling) some while concentrating the entropy (heating) the others, to heat them above β_0. Then the hotter bits are replaced with the RRTR bits, which are at the heat-bath temperature β_0, resulting in an overall cooling of the system. Repeating the process many times via a recursive algorithm, any final close-to-zero “temperature” (that is, any final bias) can in principle be achieved.

Algorithmic cooling provides a new challenge for the experimentalists, since such processing of two types of quantum bits (two different spin systems) is highly nontrivial. The currently existing experimental technologies, and the new “experimental challenge” of combining them in order to perform algorithmic cooling, are explained further in Section 4. Conclusions and some open questions for further research are provided in Section 5.

2 Information Theory, the Basic Compression Subroutine and Purification Levels
2.1 Shannon’s bound

Let us briefly describe the purification problem from an information theoretic perspective. There exists a straightforward correspondence between the initial state of our n-qubit system, and a probability distribution of all n-bit binary strings, where the probability of each string i is given by the term P_i, the probability of the state $|i\rangle$ in the mixed state ρ_{init}^n described by Eq. (2). A loss-less compression of a random binary string which is distributed as stated above has been well studied. In an optimal compression scheme, all the randomness (and hence, the entropy) of the bit string is transferred to $n - m$ bits, while with extremely high probability leaving m bits in a known deterministic state, say the string 0. The entropy H of the entire system is $H(\text{system}) = nH(\text{single-bit}) = nH(1/2 + \epsilon_0/2)$ with $H(P) \equiv -P \log_2 P - (1 - P) \log_2 (1 - P)$ measured in bits. Any loss-less compression scheme preserves the entropy H of the entire system, hence, one can apply Shannon’s source coding bound on m to get $m \leq n[1 - H(1/2 + \epsilon_0/2)]$. Simple leading-order calculation shows that m is bounded by (approximately) $\frac{\epsilon_0^2}{2m^2} n$ for small values of the initial bias ϵ_0, and in a practical compression scenario this can be achieved if a large enough string (large enough n) is used. Schulman and Vazirani [11] were the first to use information theoretic tools for solving the scaling problem, and they also demonstrated how to get very close to the Shannon bound, once n is very large. We consider here a bias of 0.01 and a bias of 0.1, and with these numbers, the Schulman-Vazirani compression cannot be useful in practice, and cannot help in achieving NMR computing with more than 20 qubits in the foreseeable future. In fact, any entropy-preserving purification scheme cannot be useful for NMR computation in the near future.

We suggest here an entropy-nonpreserving purification. Our purification, algorithmic cooling, has some common properties with the entropy-preserving purification, such as the basic compression subroutine and the purification levels. These are therefore described in the following.

2.2 Basic Compression Subroutine and Purification Levels

The Basic Compression Subroutine (BCS) is the simplest purification procedure used to convert a mixture with a particular bias ϵ_j, to one with a higher bias ϵ_{j+1} but fewer bits. We take pairs of bits and check if they are the same or different. One bit (the “supervisor”) retains the information of whether or not they were the same. If they were the same, then we keep the other bit (the “adjusted” bit) and we say it is purified. This way we increase the bias or push the bits to a higher purification level. To realize this operation we use a Controlled-NOT (CNOT) transformation on a control bit (c) and a target bit (t): $0_c0_t \rightarrow 0_c0_t$, $0_c1_t \rightarrow 0_c1_t$, $1_c0_t \rightarrow 1_c1_t$, $1_c1_t \rightarrow 1_c0_t$. After the transformation, the target bit holds the information regarding the identity of the initial states of the two bits, hence it is the supervisor bit. If the target bit is 0 after the CNOT operation between a pair of bits, then the pair had the same initial value and the control bit of the CNOT (the adjusted bit) is retained since it is purified, otherwise they were different.
and the adjusted bit is thrown away since it got dirtier. In both cases, the supervisor bit has a reduced bias (increased entropy), hence it is thrown away. However, before being thrown away, the supervisor bit is used as a control bit for a SWAP operation: if it has the value “0”, then it SWAPs the corresponding adjusted bit at the head of the array (say to the left), and if it is “1” it leaves the corresponding adjusted bit at its current place. In either cases the supervisor bit is then SWAPped to the right of the array. [Note that we use here a hybrid of English and symbol languages to describe an operation, such as SWAP or CUT.]

As a result, at the end of the BCS all purified bits are at the first locations at the left side of the array, the dirty adjusted bits are at the center, and the supervisor bits are at the right side of the array. Thus the dirty adjusted bits and the supervisor bits can be thrown away (or just ignored).

Starting a particular BCS on an even number \(n_j \) of bits with a bias \(\epsilon_j \), at the end of the BCS there are (on average) \(n_{j+1} \) purified bits with a new bias \(\epsilon_{j+1} \). The new length and new bias are calculated as follows. The probability of an adjusted bit being \(|0\rangle \) in the purified mixture, i.e., \((1 + \epsilon_{j+1})/2 \), is obtained by a direct application of Bayes’ law and is given by:

\[
\frac{1 + \epsilon_{j+1}}{2} = \frac{P_{00}}{P_{00} + P_{11}} = \frac{(1 + \epsilon_j)^2/4}{(1 + \epsilon_j^2)/2} = 1 + \frac{2\epsilon_j}{1 + \epsilon_j^2} / 2,
\]

where the \(P_i \) are defined for a 2-bit string, so that \(P_{00} = \frac{1 + \epsilon_j}{2} \), and \(P_{11} = \frac{1 - \epsilon_j}{2} \). The new bias is

\[
\epsilon_{j+1} = \frac{2\epsilon_j}{1 + \epsilon_j^2}.
\]

The number of purified bits, \(L_{j+1} \), with the new bias \(\epsilon_{j+1} \) is different on each molecule. Since, for each pair, one member is kept with probability \(P_{00} + P_{11} = (1 + \epsilon_j^2)/2 \), and the other member is thrown away, the expected value of the length of the purified string is

\[
n_{j+1} = \langle L_{j+1} \rangle = \frac{1 + \epsilon_j^2}{4} n_j.
\]

Note that \(n_{j+1} = (\epsilon_j/2\epsilon_{j+1})n_j \).

The number of steps in one such BCS is calculated as follows. There are \(n_j/2 \) pairs. For each pair one CNOT operation is performed. Then, at most \(3n_j/2 - 3 \) (that is, less than \(2n_j - 1 \)) operations of controlled-SWAPs and SWAPs are performed to conditionally put the adjusted bit in the first location at the left of the array, or leave it in its current location: first, a controlled-SWAP is performed with the supervisor bit as a control, the adjusted bit and the bit to its left as the target. Then the SWAP operation is performed on the supervisor bit and the bit which is one location to its left. Then a controlled-SWAP is again performed to conditionally swap the two bits at the left of the supervisor bit, and again the supervisor bit is SWAPped one location to the left. These SWAP and controlled-SWAP operations are then repeated until the adjusted bit is conditionally SWAPped all the way to the first location of the array [the supervisor bit is at the third location in the array when this final controlled-SWAP is performed]. Finally, the supervisor bit is SWAPped till it reaches the previously used supervisor bit. At the end of these operations all used supervisors are at the right of the array, all purified adjusted bits are at the left of the array, and all the
adjusted bits which got dirtier are to the right of the purified adjusted bits. Considering controlled-SWAP, SWAP, and CNOT as being a single operation each (hence one time step each), we obtain a total of

\[T_{\text{BCS}} < (2n_j)(n_j/2) = n_j^2 \]

(9)
time steps for a single BCS operation. Actually, even if each controlled-SWAP is considered as two time steps this bound still holds, once a more tight bound is calculated.

A full compression scheme can be built by repeating the BCS several times, such that the first application, \(B_{\{0\rightarrow1\}} \), purifies the bits from \(\epsilon_0 \) to \(\epsilon_1 \), and the second purification, \(B_{\{1\rightarrow2\}} \), acts only on bits that were already purified to \(\epsilon_1 \), and purifies them further to \(\epsilon_2 \). The \(j \)th application, \(B_{\{(j-1)\rightarrow j\}} \), purifies bits from \(\epsilon_{j-1} \) to \(\epsilon_j \). Let the total number of BCS steps be \(j_{\text{final}} \equiv j_f \) and let the final bias achieved after \(j_f \) applications of the compression be \(\epsilon_{\text{final}} \equiv \epsilon_f \). By iterating equation (9) we calculate directly \(\epsilon_{\text{final}} \) when starting with \(\epsilon_0 = 0.01 \) or \(\epsilon_0 = 0.1 \), and after \(j_{\text{final}} \) application of BCS. Then, using \(\delta_{\text{final}} = (1 - \epsilon_{\text{final}})/2 \), and Eq.(9) with \(m \) purified bits, we estimate the number of bits \(m \) for which a scalable PPS technique can be obtained. The results are summarized in Table 1. The first interesting cases within the table are \(\epsilon_0 = 0.01; j_f = 6 \), or \(\epsilon_0 = 0.1; j_f = 3 \), allowing up to \(m = 50 \) bits. We refer to these possibilities as a short term goal. As a long term goal, up to 200 bits can be obtained with \(\epsilon_0 = 0.01; j_f = 7 \), or \(\epsilon_0 = 0.1; j_f = 4 \). We consider cases in which the probability \(p \) of the pure state is less than \(10^{12} \) as unfeasible.

When only the BCS is performed, the resulting average final length of the string is \(m = n_{j_f} = (\epsilon_{j_f-1}/2\epsilon_{j_f})n_{j_f-1} = (\epsilon_{j_f}/2\epsilon_0)n_0 \), so that the initial required number of bits, \(n_0 \), is huge, but better compression schemes can be designed [11], which approach the Shannon’s bound. However, for our purpose, which is to achieve a “cooling via polarization-heat-bath” algorithm, this simplest compression scheme is sufficient.

3 Algorithmic Cooling via Polarization-Heat-Bath

3.1 Going Beyond Shannon’s Bound

In order to go beyond Shannon’s bound we assume that we have a thermal bath of partially polarized bits with a bias \(\epsilon_0 \). More adequate to the physical system, we assume that we have rapidly-reaching-thermal-relaxation (RRTR) bits. These bits, by interaction with the environment at some constant temperature \(\beta_0 \), rapidly return to the fixed initial distribution with bias of \(\epsilon_0 \) (a reset operation). Hence, the environment acts as a polarization heat bath.

In one application of the BCS on bits at a bias of \(\epsilon_j \), some fraction \(f \) (satisfying \(1/4 \leq f \leq 1/2 \)) is purified to the next level, \(\epsilon_{j+1} \) while the other bits have increased entropy. The supervisor bits are left with a reduced bias of \(\epsilon_j^2 \), and the adjusted bits which failed to be purified are changed to a bias \(\epsilon = 0 \), that is, they now remain with full entropy.
To make use of the heat bath for removing entropy, we swap a *dirtier* bit with an RRTR bit at bias ϵ_0, and do not use this RRTR bit until it thermalizes back to ϵ_0. We refer to this operation as a single “cooling” operation [14]. In a nearest-neighbor gate array model, which is the appropriate model for NMR quantum computing, we can much improve the efficiency of the cooling by assuming that each computation bit has an RRTR bit as its neighbor (imagine a ladder built of a line of computation bits and a line of RRTR bits). Then k cooling operations can be done in a single time step by replacing k dirty bits with k RRTR bits in parallel.

By applying many BCS steps and cooling steps in a recursive way, spins can be refrigerated to any temperature, via algorithmic cooling.

3.2 Cooling Algorithm

For the sake of simplicity, we design an algorithm whereby BCS steps are always applied to blocks of exactly m bits (thus, m is some pre-chosen even constant), and which finally provides m bits at a bias ϵ_j. Any BCS step is applied onto an array of m bits at a bias ϵ_j, all purified bits are pushed to the head of the array (say, to the left), all supervisor bits are swapped to the back of the array (say, to the right), and all unpurified adjusted bits (which actually became much dirtier) are kept in their place. After one such BCS step, the $m/2$ bits at the right have bias of ϵ_j^2, the purified bits at the left have a bias $\epsilon_j + 1$, and to their right there are bits with a bias zero. Note that the boundary between the purified adjusted bits and the dirtier adjusted bits is known only by its expected value $\langle L_j + 1 \rangle = \frac{1+\epsilon_j^2}{4} m$. By repeating this set of operations ℓ times (as explained in the following paragraphs), with $\ell \geq 4$, an expected value $\langle L_j^\ell \rangle = \frac{\ell(1+\epsilon_j^2)}{4} m$ of bits is obtained, from which the first m bits are defined as the output bits with $\epsilon_j + 1$, and the rest are ignored. If an additional purification is now performed, only these first m bits are considered as the input for that purification. We refer to ℓ as the “cooling depth” of the cooling algorithm [13].

The algorithm is written recursively with purification-steps M_j, where the j^{th} purification step corresponds to purifying an initial array of N_j bits into a set of m bits at a bias ϵ_j, via repeated compression/cooling operations described as follows: In the purification step M_0 we wish to obtain m bits with a bias ϵ_0. In order to achieve this we SWAP m bits with m RRTR bits, which results in m cooling operations performed in parallel. The number of bits required for M_0 is $N_0 = m$. In one purification step M_{j+1} (with $j \geq 0$) we wish to obtain m bits with a bias ϵ_{j+1}. In order to achieve this goal we apply ℓ purification steps M_j, each followed by a BCS applied to exactly m bits at a bias ϵ_j. First, M_j is applied onto N_j bits, yielding an output of m bits at a bias ϵ_j. A BCS is then applied onto these bits, yielding a string of expected length $\langle L_j^{\ell+1} \rangle = \frac{1+\epsilon_j^2}{4} m$ bits purified to a bias ϵ_{j+1} and pushed all the way to the left. At the end of that BCS all the $m/2$ supervisor bits are located at positions $m/2 + 1$ until m. Then M_j is applied again onto an array of N_j bits, starting at position $m/2 + 1$. This time all BCS operations *within* this second application of M_j push the bits to the relative first location of that M_j array which is the loca-
tion $m/2 + 1$ of the entire string. [In the case of $j = 0$, of course, there are no BCS operations within M_0.] At the end of that second M_j application, a BCS is applied to m bits at a bias ϵ_j (at locations $m/2 + 1$ till $m/2 + m$), purifying them to ϵ_{j+1}. The purified bits are pushed all the way to the left, leading to a string of expected length $\langle L_{j+1}^2 \rangle = 2^{1+\epsilon_j^2} m$. At the end of that BCS all the $m/2$ supervisor bits are located at positions $m + 1$ till $3m/2$. Then M_j is again applied onto an array of N_j bits, starting at position $m + 1$. All BCS operations within this third application of M_j push the bits to the relative first location of that M_j array (the location $m + 1$ of the entire string). At the end of that third M_j application, a BCS is applied to m bits at a bias ϵ_j (at locations $m + 1$ till $m + m$), purifying them to ϵ_{j+1}, and the purified bits are pushed all the way to the left. This combined M_j-and-BCS is repeated ℓ times, yielding $\langle L_{j+1}^\ell \rangle = \ell^{1+\epsilon_j^2} m$ bits purified to ϵ_{j+1}. For $\ell \geq 4$ we are promised that $\langle L_{j+1}^\ell \rangle > m$, and a CUT operation, C_{j+1}, defines the first m bits to be the output of M_{j+1}.

The total number of bits used in M_{j+1} is $N_{j+1} = (\ell - 1)m/2 + N_j$ bits, where the N_j bits are the ones used at the last M_j step, and the $(\ell - 1)m/2$ bits are the ones previously kept. The output of M_{j+1} is defined as the first m bits, and in case M_{j+2} is to be performed, these m bits are its input. Let the total number of operations applied at the j^{th} purification step, M_j, be represented as T_j. Note that $T_0 = 1$, meaning that m bits are SWAPped with RRTR bits in parallel. Each application of the BCS has a time complexity smaller than m^2 for a near-neighbor connected model [3]. When the k^{th} cooling is done (with $k \in \{1, \ldots , \ell\}$) the number of additional steps required to (control-)SWAP the adjusted bit at the top of the array is less than $2(k - 1)m$. Thus we get $T_{j+1} < \sum_{k=1}^\ell [(2k - 1)m + 2m/m + T_j]$. Hence, for all j,

$$T_{j+1} < \sum_{k=1}^\ell [km^2 + T_j] = \frac{\ell(\ell + 1)}{2} m^2 + \ell T_j.$$ \tag{10}$$

The purification steps M_1 and M_2 can be obtained by following the general description of M_{j+1}. For clarity, M_1 is described in Figure 1, M_2 is described in Figure 2 in appendix [3] and both M_1 and M_2 are described in words in that appendix. For the entire protocol we choose j_{final}, and perform M_{j_f} starting with $N_{j_f} \equiv n$ bits, and we end up with m bits.

To emphasize the recursive structure of this algorithm we use the following notations. $[B_{\{(k-1)\rightarrow k\}}]$—the BCS procedure purifying from ϵ_{k-1} to ϵ_k (followed by moving the purified bits to the relevant starting point). $[S]$—SWAP m bits with the RRTR. $[C_j]$—CUT, keep the first m bits from the starting point of the sub-array of the bits with a bias ϵ_j. Then, $M_0 \equiv S$, and for $j \in \{1, \ldots , j_f\}$

$$M_j = C_j \underbrace{B_{\{(k-1)\rightarrow k\}}M_{j-1} \cdots B_{\{(k-1)\rightarrow k\}}M_{j-1} B_{\{(k-1)\rightarrow k\}}}_{\ell \text{ times}} M_{j-1},$$ \tag{11}$$
is the recursive formula describing our algorithm.
A full cooling algorithm is M_{jf} and it is performed starting at location $\mu = 0$. A pseudo-code for the complete algorithm is shown in Figure 5. For any choice of ϵ_{des}, one can calculate the required (minimal) j_f such that $\epsilon_{jf} \geq \epsilon_{\text{des}}$, and then m bits (cooled as desired) are obtained by calling the procedure COOLING $(j_{\text{final}}, 1, \ell, m)$, where $\ell \geq 4$. We actually use $\ell \geq 5$ in the rest of the paper (although $\ell = 4$ is sufficient when the block’s size m is very large) in order to make sure that the probability of a successful process does not become too small. [The analysis done in [11] considers the case in which m goes to infinity, but the analysis does not consider the probability of success of the purification in the case where m does not go asymptotically to infinity; however, in order to motivate experiments in this direction, one must consider finite, and not too large blocks, with a size that shall potentially be accessible to experimentalists in the near future. In our algorithm, the case of $\ell = 4$ does not provide a reasonable probability of success for the cooling process, but $\ell = 5$ does].

3.3 Algorithmic Complexity and Error Bound

3.3.1 Time and Space Complexity of the Algorithm

We now calculate $N_f = n$, the number of bits we must start with in order to get m purified bits with bias ϵ_{j_f}. We have seen that $N_0 = m$ and $N_j = \frac{\ell - 1}{2}m + N_{j-1}$, leading to $N_j = \left(\frac{\ell - 1}{2}j + 1\right)m$, and in particular

$$N_{j_f} = \left(\frac{\ell - 1}{2}j_{\text{final}} + 1\right)m. \quad (12)$$

Thus, to obtain m bits we start with $n = cm$ bits where $c = \frac{\ell - 1}{2}j_{\text{final}} + 1$ is a constant depending on the purity we wish to achieve (that is, on j_{final}) and on the probability of success we wish to achieve (that is, on ℓ). For reasonable choices, j_f in the range $3 - 7$ and ℓ in the range $5 - 7$, we see that c is in the range $7 - 22$. To compare with the Shannon’s bound, where the constant goes as $1/\epsilon_0^2$, one can show that here c is a function of $1/\log \epsilon_0$.

As we have seen in Section 3.2, the total number of operations applied at the jth purification step, M_j, satisfies $T_j < \frac{\ell(\ell + 1)}{2}m^2 + \ell T_{j-1}$. Writing $d = m^2[\ell(\ell + 1)]/2$, the recursive formula leads to $T_{j_f} < \ell^{j_f}T_0 + d \sum_{j=0}^{j_f-1} \ell^k = \ell^{j_f} + d[\ell^{j_f} - 1]/[\ell - 1]$. After some manipulations we get

$$T_{j_f} < m^2\ell^{j_f + 1}. \quad (13)$$

This bound is not tight and a tighter bound can be obtained. It is also important to mention that in a standard gate-array model (and even in a “qubits in a cavity” model), in which SWAPs are given almost for free, an order of m instead of m^2 is obtained.

Let the relaxation time T_1 of the computation bits be called $T_{\text{computation-bits}}$, and the relaxation time T_1 for the RRTR bits be called T_{RRTR}. Note that the dephasing time, T_2, of the computation bits is irrelevant for our algorithm, and plays a role only after the cooling is done.
With the short-term goal in mind we see that \(m = 20 \) can be achieved (for \(\ell = 5 \)) with \(\epsilon_0 = 0.01, j_f = 6, T_{jj} < 3.1 \times 10^7 \) steps, and \(n = 260 \) bits, or with \(\epsilon_0 = 0.1, j_f = 3, T_{jj} < 250,000 \) steps, and \(n = 140 \) bits. Increasing \(m \) to 50 only multiplies the initial length by 2.5, and multiplies the time steps by 6.25. Thus, this more interesting goal can be achieved with \(\epsilon_0 = 0.01, j_f = 6, T_{jj} < 1.9 \times 10^8 \) steps, and \(n = 650 \) bits, or with \(\epsilon_0 = 0.1, j_f = 3, T_{jj} < 1.56 \times 10^6 \) steps, and \(n = 350 \) bits.

Concentrating on the case of \(j_f = 3 \) and \(\epsilon_0 = 0.1 \), let us calculate explicitly the timing demands. For \(m = 20 \) bits, we see that the switching time \(T_{\text{switch}} \) must satisfy \(250,000 T_{\text{switch}} \ll T_{\text{comput}} \) bits in order to allow completion of the purification before the system spontaneously relaxes. Then, with \(m^2 = 400 \) time steps for each BCS operation, the relaxation time for the RRTR bits must satisfy \(T_{\text{RRTR}} \ll 400 T_{\text{switch}} \), if we want the RRTR bits to be ready when we need them the next time. As result, a ratio of \(T_{\text{comput}} \gg 625 T_{\text{RRTR}} \) is required in that case. The more interesting case of \(m = 50 \) demands \(1.56 \times 10^6 T_{\text{switch}} \ll T_{\text{comput}} \), \(T_{\text{RRTR}} \ll 2500 T_{\text{switch}} \), and \(T_{\text{comput}} \gg 625 T_{\text{RRTR}} \). Note that choosing \(\ell = 6 \) increases the size by a factor of \(5/4 \), and the time by a factor of \(6^4/5^4 \approx 2 \). We shall discuss the possibility of obtaining these numbers in an actual experiment in the next section.

3.3.2 Estimation of error

Since the cooling algorithm is probabilistic, and so far we have considered only the expected number of purified bits, we need to make sure that in practice the actual number of bits obtained is larger than \(m \) with a high probability. This is especially important when one wants to deal with relatively small numbers of bits. We recall that the random variable \(L_j^k \) is the number of bits purified to \(\epsilon_j \), after the \(k \)th round of purification step–\(M_{j-1} \) each followed by \(B_{(j-1),j} \). Hence, prior to the CUT \(C_j \) we have \(L_j^\ell \) bits with bias \(\epsilon_j \), where the expected value \(\langle L_j^\ell \rangle = \ell^{1+\epsilon_j^2} m > \frac{\ell m}{4} \), and we use \(\ell \geq 5 \). Out of these bits we keep only the first \(m \) qubits, i.e., we keep at most a fraction \(\frac{4}{7} \) of the average length of the string of desired qubits. Recall also that \(L_j^\ell \) is a sum of independent Bernoulli random variables, and hence one can apply a suitable form of the strong law of large numbers to determine the probability of success, i.e., the probability that \(L_j^\ell \geq m \).

The details of applying a law of large numbers are given in appendix 4. Here we only state the result. Chernoff’s bound implies that the probability of failing to get at least \(m \) bits with bias \(\epsilon_j \) is

\[
\Pr \left[L_j^\ell < m \right] \leq \exp \left(\frac{-1}{2} \left(1 - \frac{4}{\ell} \right)^2 \frac{\ell^2}{4} m \right) = \exp \left(\frac{-\left(\ell - 4 \right)^2}{8\ell} m \right).
\]

For the probability of success of the entire algorithm we have the following conservative lower bound

\[
\Pr \left[\text{success of the algorithm} \right] \geq \left[1 - \exp \left(\frac{-\left(\ell - 4 \right)^2}{8\ell} m \right) \right]^{\ell/\ell - 1/(\ell - 1)}.
\]

(14)
The probability of success is given here for several interesting cases with \(j_f = 3 \) (and remember that the probability of success increases when \(m \) is increased): For \(m = 50 \) and \(\ell = 6 \) we get \(\Pr \left[\text{success of the algorithm} \right] > 0.51 \). For \(m = 50 \) and \(\ell = 5 \) we get \(\Pr \left[\text{success of the algorithm} \right] > 2.85 \times 10^{-5} \). This case is of most interest due to the reasonable time scales. Therefore, it is important to mention here that our bound is very conservative since we demanded success in all truncations (see details in appendix C), and this is not really required in practice. For instance, if only \(m - 1 \) bits are purified to \(\epsilon_1 \) in one round of purification, but \(m \) bits are purified in the other \(\ell - 1 \) rounds, then the probability of having \(m \) bits at the resulting \(M_2 \) process is not zero, but actually very high. Thus, our lower bound presented above should not discourage the belief in the success of this algorithm, since a much higher probability of success is actually expected.

4 Physical Systems for Implementation

The spin-refrigeration algorithm relies on the ability to combine rapidly relaxing qubits and slowly relaxing qubits in a single system. T1 lifetimes of atomic spins in molecules can vary greatly, depending on the degree of isolation from their local environment. Nuclei that are positioned close to unpaired electrons, for example, can couple strongly to the spin of these electrons and decay quickly. Identical nuclei that are far removed from such an environment can have extremely long lifetimes. Many examples of T1 varying over three orders of magnitude, from seconds to milliseconds, exist in the literature. One example is the \(^{13}\text{C} \) nuclear relaxation rate, which changes by three orders of magnitude depending on whether the \(^{13}\text{C} \) atom is part of a phenoxy or triphenylmethyl radical [9]. By combining these different chemical environments in one single molecule, and furthermore, by making use of different types of nuclei, one could hope to achieve even a ratio of \(10^4 \).

Another possible choice is to combine the use of nuclear spins and electron spins. The coupling between nuclei and electrons that is needed to perform the desired SWAP operations, has been well studied in many systems by the Electron-Nuclear Double Resonance (ENDOR) technique[9]. The electron spins which typically interact strongly with the environment could function as the short lived qubits, and the nuclei as the qubits that are to be used for the computation. In fact, the relaxation rate of electrons is commonly three orders of magnitude faster than the relaxation rate of nuclei in the same system, and another order of magnitude seems to be easy to obtain. Note also that the more advanced TRIPLE resonance technique can yield significantly better results than the ENDOR technique[15].

This second choice of strategy has another advantage—it allows initiation of the the process by SWAPing the electron spins with the nuclear spins, thus getting much closer to achieving the desired initial bias, \(\epsilon_0 = 0.1 \), which is vital for allowing reasonable time-scales for the process. If one achieves \(T_{\text{comput}} - \text{bits} \approx 10\text{secs} \), and \(T_{\text{RRTR}} \approx 1\text{millisecs} \), then a switching time of \(\approx 10\text{microsecs} \) allows our al-
gorithm to yield 20-qubit computers. If one achieves $T_{\text{comput}} \approx 100\text{ secs}$, and $T_{\text{RRTR}} \approx 10\text{ millisecs}$, then a switching time of $\approx 10\text{ microsecs}$ allows our algorithm to yield 50-qubit computers.

5 Discussion

In this paper we suggested “algorithmic cooling via polarization heat bath” which removes entropy into the environment, and allows compression beyond the Shannon’s bound. The algorithmic cooling can solve the scaling problem of NMR quantum computers, and can also be used to refrigerate spins to very low temperatures. We explicitly showed how, using SWAP operations between electron spins and nuclear spins, one can obtain a 50-qubit NMR quantum computer, starting with 350 qubits, and using feasible time scales. Interestingly, the interaction with the environment, usually a most undesired interaction, is used here to our benefit.

Some open questions which are left for further research: (i) Are there better and simpler cooling algorithms? (ii) Can the above process be performed in a (classical) fault-tolerant way? (iii) Can the process be much improved by using more sophisticated compression algorithms? (iv) Can the process be combined with a process which resolves the addressing problem? (v) Can one achieve sufficiently different thermal relaxation times for the two different spin systems? (vi) Can the electron-nuclear spin SWAPs be implemented on the same systems which are used for quantum computing? Finally, the summarizing question is: (vii) How far are we from demonstrating experimental algorithmic cooling, and how far are we from using it to yield 20-qubit, 30-qubit, or even 50-qubit quantum computing devices?

References

[1] N. A. Gershenfeld, I. L. Chuang, Science, 275, 350 (1997). D. G. Cory, A. F. Fahmy, T. F. Havel, Proc. Natl. Acad. Sci. 94, 1634 (1997). J. A. Jones, M. Mosca, R. H. Hansen, Nature, 393, 344 (1998). E. Knill, R. Laflamme, R. Martinez, C.-H. Tseng, Nature, 404, 368 (2000).

[2] P. O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, “Algorithms on Ensemble Quantum Computers,” (LANL e-print, quant-ph/9907067, 1999).

[3] P. Shor, SIAM J. Computing, 26, 1484 (1997).

[4] L. Grover, in Proceedings of 28th ACM Symposium on Theory of Computing (1996), pp. 212–219.

[5] W. S. Warren, Science, 277, 1688 (1997).

[6] D. DiVincenzo, Nature, 393, 113 (1998).
[7] S. L. Braunstein et al., Phys. Rev. Lett., 83, 1054 (1999).

[8] C. S. Yannoni et al., Appl. Phys. Lett. 75, 3563 (1999).

[9] H. Kurreck, B. Kirste, W. Lubitz, in Methods in Stereochemical analysis, A. P. Marchand, Ed. (VCH Publishers, Inc., 1988).

[10] Individual addressing of qubits requires a slightly different bias for each one, which is easily achievable in practice.

[11] L. J. Schulman, U. Vazirani, in Proceedings of 31st ACM Symposium on Theory of Computing (1999), pp. 322-329.

[12] We refer to these qubits as bits since no quantum effects are used in the cooling process.

[13] An algorithm with ℓ replaced by ℓ_j (different numbers of repetitions, depending on the bias-level j) could have some advantages, but will not be as easy to analyze.

[14] Actually, adjusted bits which failed to purify are always dirtier than the RRTR bits, but supervisor bits are dirtier only as long as $\epsilon_j^2 < \epsilon_0$. Therefore the CUT of the adjusted bits which failed to purify, C (which is explained in the next subsection) is the main “engine” which cools the NMR system at all stages of the protocol.

[15] K. Mobius, M. Plato, W. Lubitz, Physics Reports, 87, 171 (1982).
Figure 1: The purification step M_1.
Figure 2: The purification step M_2. The details of the operations of M_1 on the second level are shown.
procedure COOLING\((j, \mu, \ell, m)\)

(comment: this procedure returns \(m\) bits with bias \(\epsilon_j\) starting from the bit in position \(\mu\); \(\ell\)

is the cooling depth)

begin
 if \(j = 0\) then do
 call SWAP\((\mu, m)\)
 else do
 begin
 for \(\text{depth} = 0\) to \(\ell - 1\) do
 begin
 call COOLING\((j - 1, \mu + (\text{depth}) \cdot \frac{1}{2} m, \ell, m)\)
 call BCS\((\mu + \text{depth} \cdot \frac{1}{2} m, \mu)\)
 end
 end
 end
end

procedure BCS\((\nu, \nu_0)\)

begin

 Apply the BCS to the \(m\) bits starting at location \(\nu\), and push the purified bits always
 to the location \(\nu_0\) (where, \(\nu_0 \leq \nu\)).

end

procedure SWAP\((\mu, m)\)

begin

 Perform a cooling operation by swapping the bits at location \(\mu\) to \(\mu + m - 1\) with
 the RRTR bits and thus resetting their bias to \(\epsilon_0\).

end

Figure 3: A pseudo-code for the cooling algorithm.
\[p \approx (1 - \delta_f)^m \]

\(\epsilon_0 \)	\(j_f \)	\(\epsilon_f \)	\(\delta_f = \frac{1-\epsilon_f}{2} \)	\(p \approx (1 - \delta_f)^m \)		
				\(m = 20 \)	\(m = 50 \)	\(m = 200 \)
0.1	0	0.1	0.45	6.4 \times 10^{-6}	unfeasible	unfeasible
	3	0.666	0.1672	2.6 \times 10^{-2}	1.1 \times 10^{-4}	unfeasible
	4	0.922	0.0388	4.5 \times 10^{-1}	1.3 \times 10^{-1}	3.7 \times 10^{-4}
0.01	0	0.01	0.495	1.2 \times 10^{-6}	unfeasible	unfeasible
	6	0.565	0.2175	7.4 \times 10^{-3}	4.7 \times 10^{-6}	unfeasible
	7	0.856	0.0718	2.2 \times 10^{-1}	2.4 \times 10^{-2}	3.4 \times 10^{-7}

Table 1: Feasibility of running an \(n \)-qubit NMR computer, when the polarization bias is improved to \(\epsilon_f \), prior to using the PPS technique.
A PPS technique and the scaling problem

To illustrate the PPS scheme, let us first consider the case of \(n = 1 \) qubits, with an arbitrary bias \(\epsilon \). The initial state is given by equation (1) [with \(\epsilon \) replacing \(\epsilon_0 \)],

\[
\rho_\epsilon = \left(\frac{1 + \epsilon}{2} 0 \\ 0 \frac{1 - \epsilon}{2} \right) = \left(\epsilon 0 \right) + \left(\frac{1 - \epsilon}{2} 0 \right),
\]

(15)

where the second form is already in the form of a PPS, \(\epsilon|0\rangle\langle 0| + \frac{(1 - \epsilon)}{2} I \).

Let us now consider the case of \(n = 2 \) qubits. Since the initial state of each qubit is given by equation (15), the density matrix of the initial thermal-equilibrium state of the two-qubit system can be represented as:

\[
\rho_{init}^{n=2} = \left(\frac{1 + \epsilon}{2} 0 \\ 0 \frac{1 - \epsilon}{2} \right) \otimes \left(\frac{1 + \epsilon}{2} 0 \\ 0 \frac{1 - \epsilon}{2} \right).
\]

(16)

For the purpose of understanding the PPS it is legitimate to ignore the difference between the \(\epsilon \) of the two spins, but in practice they must differ a bit, since the only way to address one of them and not the other is by using accurate fields such that only one level splitting is on resonance with that field.

For the purposes of generating the PPS, it is instructive to represent the initial state as

\[
\rho_{init}^{n=2} = \frac{(1 + \epsilon)^2}{4} \rho_{00} + \frac{1 - \epsilon^2}{4} \rho_{01} + \frac{1 - \epsilon^2}{4} \rho_{10} + \frac{(1 - \epsilon)^2}{4} \rho_{11},
\]

(17)

where \(\rho_i = |i\rangle\langle i| \), and \(i \) is being a binary string. The coefficient of each \(\rho_i \), say \(P_i \), is the probability of obtaining the string \(i \) in a measurement (in the computation basis) of the two qubits. Thus, \(P_{00} = (1 + \epsilon)^2/4 \), \(P_{01} = \rho_{10} = (1 - \epsilon^2)/4 \), and \(P_{11} = (1 - \epsilon)^2/4 \). In order to generate a pseudo-pure state, let us perform one of the following three transformations: \(S_1 = I \) (the identity),

\[
S_2 = \begin{cases}
|00\rangle \rightarrow |00\rangle \\
|01\rangle \rightarrow |10\rangle \\
|10\rangle \rightarrow |11\rangle \\
|11\rangle \rightarrow |01\rangle
\end{cases} \quad S_3 = \begin{cases}
|00\rangle \rightarrow |00\rangle \\
|01\rangle \rightarrow |11\rangle \\
|10\rangle \rightarrow |01\rangle \\
|11\rangle \rightarrow |10\rangle
\end{cases}
\]

with equal probability, so that each molecule (each computer) is subjected to one of the above-mentioned transformations. This transformation can be carried out in an experiment by applying different laser pulses to different portions of the liquid, or by splitting the liquid into three portions, applying one of the transformations to each part, and mixing the parts together. These permutations map \(|00\rangle \) to itself, and completely
mix all the other states. As a result, the density matrix of the final state becomes:

$$\rho_{pp}^2 = \frac{(1 + \epsilon)^2}{2^2} \rho_{00} + \frac{(1 + \epsilon)^2/2^2}{2^2 - 1} (\rho_{01} + \rho_{10} + \rho_{11})$$

$$= \frac{(1 + \epsilon)^2 - 1}{2^2 - 1} \rho_{00} + \frac{1 - (1 + \epsilon)^2/2^2}{2^2 - 1} (\rho_{00} + \rho_{01} + \rho_{10} + \rho_{11})$$

$$= \frac{(1 + \epsilon)^2 - 1}{2^2 - 1} |00\rangle\langle 00| + \frac{2^2 - (1 + \epsilon)^2}{2^2 - 1} I,$$

so that finally, $p = \frac{(1 + \epsilon)^2 - 1}{2^2 - 1}$ is the probability of having the pure state. Note that p is not P_{00} since the completely mixed state also contains a contribution from P_{00}.

The above procedure for mixing can be directly generalized to a system comprising n qubits. The density matrix for the final state is:

$$\rho_{pp}^n = \frac{(1 + \epsilon_0)^n}{2^n} \rho_{00...0} + \frac{1 - (1 + \epsilon_0)^n/2^n}{2^n - 1} \left(\sum_{i=1}^{2^n - 1} \rho_i \right)$$

$$= \frac{(1 + \epsilon_0)^n - 1}{2^n - 1} |00\cdots0\rangle\langle 00\cdots0| + \frac{2^n - (1 + \epsilon_0)^n}{2^n - 1} I.$$

The probability of the n bit pure state $|00\cdots0\rangle$ is $p = \frac{(1 + \epsilon_0)^n - 1}{2^n - 1}$ which is $p \approx (n\epsilon_0)/2^n$ for small ϵ, hence exponentially small with n. Obviously, such a signal is highly obscured by the completely mixed state, leading to an exponentially small signal-to-noise ratio, and hence, to the scaling problem. However, it is clear now that information is lost in the process, due to the mixing step: In order to obtain the PPS we need to “forget” the transformation done on each computer, and consider only the average result.

In order to clearly see the inherent loss of information in the mixing process, consider an ensemble computer in its initial state, ρ_{init}^n. We note that one can perform any single qubit operation (and measure) on any of the n qubits without any purification. For example, if one were to measure any individual qubit in the ensemble when it is in its initial state, then one would observe a $|0\rangle$, irrespective of how large n is; similarly, one can perform single qubit rotations and then make measurements without any purification of the initial state. The same is not true if the rotation is applied to the PPS ρ_{pp}^n: then the completely mixed state dominates, and the exponentially small signal is obscured. Unfortunately, performing 2-qubit computation (or more) with mixed states is not a realistic choice. To summarize, the PPS technique causes the problem of scaling, by losing information on purpose.

\[1\] In practice, one might accomplish an approximate mixing instead, due to the exponential number of different rotations required for a perfect mixing.
B A detailed description of M_1 and M_2

In the purification step M_1 we wish to obtain m bits with a bias ϵ_1. In order to achieve this we apply ℓ cooling operations (SWAPs with RRTR), each followed by repeated applications of the BCS (acting on bits with ϵ_0 bias). This is done as follows: The m bits at the head of the array (positions 1 to m) are SWAPped with RRTR to yield ϵ_0. Then, a BCS is applied onto them, resulting in having L_1 purified bits at the left, unpurified adjusted bits next to them, and finally, the supervisor bits at the positions $m/2 + 1$ to m (the right locations of the m-bit-array). Then a similar set of operations is applied to an array of m bits at locations $m/2 + 1$ to $3m/2$. This array includes all the supervisor bits of the previous operation plus $m/2$ more bits. First, these m bits are reset to ϵ_0. When a BCS is applied onto these m bits, all purified bits are pushed to the left, but now it is a push to the head of the entire ϵ_1-bias string, all unpurified adjusted bits are kept in their place and all supervisor bits are pushed to the right of the m-bit array. Pushing the purified bits all the way to the left is vital, since we want to be certain that no unpurified bit remains among the purified bits. Let us denote the number of purified bits at the end of this step L_1^2 where the superscript is added to indicate it is a count done after a second SWAP with RRTR. [Thus, the number of bits after the first SWAP with RRTR is renamed L_1^1.] The same set of operations is repeated ℓ times, and at its end the entire array used for M_1 contains $N_1 = (\ell - 1)m/2 + m$ bits, where the m bits are the ones used at the last compression, and the $(\ell - 1)m/2$ bits are the ones previously kept. Of these N_1 bits, $\langle L_1^\ell \rangle$ purified bits are at the left, and $m/2$ dirty supervisor bits are at the right (remaining from the last application of BCS). The expectation value for the length of the purified bits satisfies $\langle L_1^\ell \rangle = \frac{\ell^2 + m^2}{4} m$. Finally, we define the output of this purification step to be the first m bits at the left. Then, for $\ell \geq 4$, $\langle L_1^\ell \rangle > m$.

In the purification step M_2 we wish to obtain m bits with a bias ϵ_2. In order to achieve this goal, we apply ℓ purification steps M_1, each followed by a BCS applied to exactly m bits at a bias ϵ_1: First, M_1 is applied onto N_1 bits yielding an output of m bits at a bias ϵ_1, then a BCS is applied onto these bits yielding a string of expected length $\langle L_2^1 \rangle = \frac{1 + \epsilon_1^2}{4} m$ bits purified to a bias ϵ_2 and pushed to the left. Then M_1 is applied again to an array of N_1 bits, starting at the location $m/2 + 1$. This time all BCS operations within M_1 push the bits to the first location of that array (the location $m/2 + 1$ of the entire string). At the end of the second M_1 application, a BCS is applied to m bits at a bias ϵ_1 purifying them to ϵ_2, and the purified bits are pushed all the way to the left. Then M_1 is applied a third time to an array of N_1 bits, starting at location $m + 1$. This time all BCS operations within M_1 push the bits to the first location of the array (the location $m + 1$ of the entire string). At the end of the third M_1 application, a BCS is applied to m bits at a bias ϵ_1 purifying them to ϵ_2, and the purified bits are pushed all the way to the left. This combined M_1-and-BCS is repeated ℓ times, yielding $\langle L_2^\ell \rangle = \frac{\ell^2 + m^2}{4} m$ bits purified to ϵ_2. The total number of bits used in M_2 is $N_2 = (\ell - 1)m/2 + N_1$ bits, where the N_1 bits are the ones used at the last M_1 step, and the $(\ell - 1)m/2$ bits are the ones previously kept. The output of M_2 is defined as the first m bits.

\section*{C \ Probability of error in the algorithm}

We utilize the following form of the Chernoff’s bound: If X_1, \ldots, X_t are t independent random variables with $\Pr(X_i = 1) = p$ and $\Pr(X_i = 0) = 1 - p$, then for $X = X_1 + \cdots + X_t$ we have

$$\Pr[X < tp(1 - a)] < \exp\left(-\frac{a^2tp}{2}\right).$$ \hfill (18)

In our case, the number of trials t, is ℓm. The probability of keeping a bit (so that $X_i = 1$) is $p = (1 + \epsilon_{j-1}^2)/4$ which is greater than 1/4. We set $a = 1 - \frac{1}{8p}$ so that $tp(1 - a) = m$. Therefore, $a > 1 - \frac{4}{\ell}$. Now, using the fact that $p > 1/4$, Chernoff’s bound \hfill (18) implies that the probability to fail to get at least m bits with bias ϵ_j is

$$\Pr\left[\mathcal{L}_j^\ell < m\right] < \exp\left(-\frac{1}{2} \left(1 - \frac{4}{\ell}\right)^2 \frac{\ell}{4} m\right) = \exp\left(-\frac{(\ell - 4)^2}{8\ell} m\right).$$

In the complete algorithm that runs for j_{final} purification steps, we need to calculate the total number of times the above–mentioned hard truncations are performed and demand success in all of them. In other words, to get \mathcal{L}_j^ℓ purified bits at purification step M_j (from which m bits will be taken via another truncation) we first need to successfully provide ℓ times m–bit strings with bias ϵ_{j-1}. The recursive nature of our algorithm demands the successful purification of all m–bit strings with smaller biases ϵ_k, for all $0 < k < j$, in order to achieve this goal for the M_j step. Let C_j be the number of all m–bit strings with biases smaller than ϵ_j, needed at the j^{th} step. Recall that the m bits at ϵ_0 are given with certainty, so only one successful truncation is required to get ϵ_1. Then

$$C_1 = 1,$$
$$C_j = 1 + \ell C_{j-1}.$$

Hence, $C_j = \sum_{k=0}^{j-1} \ell^k = \frac{\ell^j - 1}{\ell - 1}$, and

$$C_{j_{\text{final}}} = \frac{\ell^{j_{\text{final}}} - 1}{\ell - 1}. \hfill (19)$$

For the probability of success of the entire algorithm we demand success in all the $C_{j_{\text{final}}}$ truncation processes

$$\Pr\left[\text{success of the algorithm}\right] > \left(1 - \Pr\left[\mathcal{L}_j^\ell < m\right]\right)^{C_{j_{\text{final}}}}$$
$$> \left(1 - \exp\left(-\frac{(\ell - 4)^2}{8\ell} m\right)\right)^{(\ell^{j_{\text{final}}} - 1)/(\ell - 1)}.$$

\footnote{This is a very conservative demand, so actually the probability of success is much higher than the one we calculate here.}