Correlations between objective and subjective outcomes after adenotonsillar surgery in children with OSA

Isabella Sjölander MD | Anna Borgström MD, PhD | Pia Nerfeldt MD, PhD | Johan Fehrm MD, PhD | Danielle Friberg MD, PhD

1Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
2Department of Clinical Science, Intervention, and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden

Correspondence
Isabella Sjölander, Department of Surgical Sciences, Uppsala University, Lasarettsvägen 1, 801 88 Gävle, Uppsala, Sweden. Email: isabella.sjolander@surgsci.uu.se

Funding information
The Acta-Otolaryngologica Foundation; The Uppsala County Council (ALF project)

Abstract

Objectives: To investigate whether the OSA-18 questionnaire and a postoperative patient-reported outcome measure (PROM) question correlated with polysomnography (PSG) data.

Methods: A prospective study of otherwise healthy young children with moderate to severe obstructive sleep apnea (OSA) to investigate if the obstructive apnea–hypopnea index (OAHI) before and 6–12 months after adenotonsil surgery correlated with the OSA-18 total symptom score (TSS) and the sleep disturbance subscale (SDS), as well as a PROM question on symptom improvement with responses on a 4-grade Likert scale.

Results: Of 201 children, 173 (86%) had complete data of OAHI and OSA-18 pre- and postoperatively. The mean age was 3.2 years (SD 1.0) and the mean OAHI was 15.9 (11.3). Significant correlations between changes in the OAHI and OSA-18 were found, both TSS ($r = 0.29$, $p < .001$) and SDS ($r = 0.53$, $p < .001$). A total of 136 (68%) patients responded to the PROM question, the majority of whose symptoms had disappeared ($n = 102$) or almost disappeared ($n = 30$). Four patients had unchanged symptoms, and none had worsening symptoms. A correlation was found between the PROM question and a change in the OAHI ($r = 0.36$, $p < .001$), as well as a change in the OSA-18 TSS ($r = 0.24$, $p = .006$) and the SDS ($r = 0.34$, $p < .001$). The specificity of the PROM question for prediction of a postoperative OAHI < 2 was 82%, and the sensitivity was 38%.

Conclusion: Changes in the OAHI significantly correlated with changes in the OSA-18, especially with the sleep disturbance scale, which could be an alternative for evaluation at follow-ups.

Level of Evidence: 3

Abbreviations: AHI, apnea–hypopnea index; APP, adenopharyngoplasty; ATE, adenotonsillectomy; ATT, adenotonsillotomy; HRQoL, health-related quality of life; OAHI, obstructive apnea–hypopnea index; ODI, oxygen desaturation index; OSA, obstructive sleep apnea; PROM, patient-reported outcome measure; PSG, polysomnography; RDI, respiratory disturbance index; SDS, sleep disturbance scale; TSS, total symptom score.
1 | INTRODUCTION

Pediatric obstructive sleep apnea (OSA) is the most severe form of obstructive sleep-disordered breathing (OSDB) in children. It is a common disorder with a prevalence peak among children aged 2–6 years.1 Children with OSA and OSDB have a higher risk of morbidities, such as cardiorespiratory disorders and neurocognitive deficits, and their families have a significantly decreased quality of life.2–5 The symptom spectrum is broad, and the diagnosis is not always clear. The standard test for the diagnosis of OSA is sleep registration with polysomnography (PSG), an advanced, resource-demanding technique.6

An incongruence between PSG and a child’s medical history and clinical examination has been found.7 Yet even children with primary snoring but without evident abnormal PSG findings could experience disturbing, harmful symptoms.5,8 First-line treatment for OSA with enlarged tonsils and adenoid is adenotonsillar surgery with different techniques.

Adenotonsillar surgery is one of the most common surgical procedures among children worldwide. In Sweden, approximately 5000–8000 surgeries of this kind are performed annually.9,10 Yet even if the adenotonsillar surgery often improves a child’s signs and symptoms, it may not always cure the child of OSA. The number of persistent OSA cases differs depending on the patient’s age, morbidity in the population, and the level of the apneahypopnea index (AHI) or the obstructive apneahypopnea index (OAHI). Approximately 60%–80% are cured according to different studies.11,12 In a multicenter review, 21.6% of 578 children had an objective persistent disease with an AHI > 5.13 There are no international guidelines with recommendations regarding the follow-up of children treated for OSA. The risk of persistent OSA is highest among children with obesity and a high preoperative AHI.14 Polysomnography is recommended for follow-up among children with comorbidities, including obesity, since they are at a higher risk of having residual OSA and may need further treatment. PSG is a resource-demanding test, though. It is therefore not feasible to have every child who has had surgery for OSA undergo it. European guidelines recommend polygraphy or either oximetry or capnography as alternatives, but this type of follow-up for every child could also be difficult to manage.15

The evaluation of other parameters, such as cognition,16 behavior,17 and quality of life,5,18 have been studied using different questionnaires and patient-reported outcome measures (PROM).10 For otherwise healthy children with OSA, this type of evaluation could be a better choice. Therefore, the aim of this study was to investigate the correlations between changes in objective and subjective outcomes after adenotonsillar surgery for young children with moderate to severe OSA.

2 | MATERIALS AND METHODS

2.1 | Study design

A prospective cohort study was performed between November 2011 and December 2017 on children who underwent adenotonsillar surgery at the Karolinska University Hospital, Department of Otorhinolaryngology in Stockholm. The participants had been enrolled in two other studies that our group had conducted.19,20 PSG was performed, and the OSA-18 questionnaire was completed both before and after surgery. The patients’ symptom degrees were assessed postoperatively with a PROM local questionnaire. The primary outcome in the present study was to investigate correlations between differences in pre and postoperative data from the obstructive AHI obtained from PSG and the OSA-18.

2.2 | Ethical considerations

Consent was obtained from all the patients’ caregivers, and ethical approval was obtained from the Swedish Regional Ethics Board, Stockholm (DnR 2014/1000-31/1 and DnR 2011/333-31/4).

2.3 | Subjects

Data were collected from children between 2 and 6 years of age with moderate-to-severe OSA. A total of 10 children were obese (BMI z-score ≥ 1.66), but all the children were otherwise healthy. The children were randomized to either adenotonsillectomy (ATE) (n = 126), adenotonsillotomy with coblation (ATT) (n = 39), or ATE with the suturing of palatal pillars, or adenopharyngoplasty (APP) (n = 36).

2.4 | Polysomnography

All patients underwent overnight in-laboratory PSG at baseline and at follow-up after 6–12 months using EMBLA technology (Flaga Medical; Reykjavik, Iceland). The PSG included electroencephalography, electrooculography, electromyography, electrocardiography, pulse, oronasal airflow, transcutaneous oxygen saturation (SaO₂), respiratory movements (chest and abdomen), body position, and video and sound recordings.21 A registered polysomnographic technologist scored all the polysomnographs manually according to guidelines issued by the American Academy of Sleep Medicine 2012.6
2.5 | OSA-18

Quality of life related to OSA was assessed using the OSA-18, the only validated questionnaire available in Swedish at the time. This questionnaire has shown poor validity when PSG is used to diagnose OSA, with a specificity and sensitivity of around 50% for a total symptom score (TSS) ≥ 60 and a positive predictive value to find an AHI ≥ 5 of 60% and a negative predictive value of 48%. In this study, the parent/caregiver answered OSA-18 at baseline and at follow-up 6–12 months after surgery. The OSA-18 questionnaire consists of 18 items within 5 domains (sleep disturbance, physical symptoms, emotional distress, daytime function, and caregiver concerns). Caregivers are asked to note how often their child has had specific symptoms in the five domains during the previous 4 weeks by scoring from 1 to 7 (1—none of the time, 2—hardly any of the time, 3—a little of the time, 4—some of the time, 5—a good bit of the time, 6—most of the time, and 7—all of the time). The TSS ranges from 18 to 126. A score above 60 is considered abnormal, and a score above 80 indicates a significant impact on quality of life.

The PROM question was asked in writing, for the majority of the patients (65%), at follow-up 6 months after surgery. For 35% of the patients, it was asked verbally by a doctor at a visit or by phone 12 months after surgery, and the responses were documented in their medical records.

2.6 | PROM question

The parent/caregiver was asked: How have your child’s symptoms changed after surgery? They answered by checking a box beside the response that best described the child’s situation:

1. The symptoms are gone.
2. My symptoms are almost gone.
3. My symptoms remain.
4. My symptoms have worsened.

The PROM question was asked in writing, for the majority of the patients (65%), at follow-up 6 months after surgery. For 35% of the patients, it was asked verbally by a doctor at a visit or by phone 12 months after surgery, and the responses were documented in their medical records.

2.7 | Statistical analysis

Per protocol analysis was performed. Quantitative data were presented as the mean (standard deviation) and ordinal data as the median (interquartile range) or range. The Kruskal–Wallis test was used to test for differences among > 2 groups. The Spearman’s rank correlation coefficient was used to test the correlation between changes in the OAHI, RDI, and ODI with changes in the OSA-18 TSS, SDS, and the Health related quality of life (HRQoL). The PROM question was also correlated with postoperative data and changes in PSG parameters and the OSA-18 TSS, SDS, and the HRQoL. Intention-to-treat analyses were performed after imputing the missing values of the postoperative OSA-18 and the OAHI using the last observation carried forward and backward. The correlation was interpreted as 0.1 < r < 0.39 for weak, 0.4 ≤ r < 0.69 for moderate, and r ≥ 0.7 for strong. To evaluate the PROM question for cured OSA we used Chi-square with the dichotomized variable of postoperative OAHI < 2 as cured according to European guidelines and OAHI ≥ 2 as not cured while the PROM answer “The symptoms are gone” considered as cured and any other answer as not cured. Sensitivity, specificity as well as positive and negative predictive value was calculated. Statistical analyses were performed using R Studio and Stata/SE 15.1 with the significance level defined as a two-sided p-value < .05.

3 | RESULTS

The mean OAHI at baseline for the 201 included children was 15.9 (SD 11.3). The baseline characteristics are shown in Table 1. Pre and postoperative data on the OAHI were obtained from 183 patients...
(91%, 114 treated with ATE, 39 treated with ATT and 30 with APP). Pre and postoperative data of the OSA-18 were obtained from 174 children, one of them had not completed the postoperative PSG. A total of 173 (86%) patients had pre and postoperative data from both PSG and OSA-18 to analyze for correlations. Of these children, 167 (96%) had completed the HRQoL, and 136 (78%) had completed the PROM question. A flow chart of the patients is shown in Figure 1.

Postoperatively, 11 children scored an OAHI > 5, 72 scored OAHI ≥ 2, and 7 scored an OSA-18 TSS > 60. The mean change in the OAHI in total was −13.8 (SD 11.5), this was the only variable that differed between the three surgical treatment arms (Table 2). The correlation between changes in the OAHI and the OSA-18 TSS showed a significant but weak correlation: \(r = 0.28, p < .001 \). The correlation between changes in the OAHI and the OSA-18 sleep disturbance subscale (SDS) was moderate: \(r = 0.53, p < .001 \) (Figures 2 and 3 and Table 3).

Changes in RDI and ODI showed the same pattern as OAHI with moderate correlation to SDS. The correlation between changes in the HRQoL and the OAHI was also significant but weak: \(r = -0.16, p = .045 \) (n = 165). Intention-to-treat analysis did not change the results (Table 3).

The correlation between the preoperative values of the OSA-18 TSS and the OAHI was significant but weak \(r = 0.23, p = .002 \), while the correlation between the OSA-18 SDS and the OAHI was significant and moderate \(r = 0.4, p < .001 \). The postoperative correlation between the OSA-18 and the OAHI was not significant for the TSS \(p = .6 \) but was for the SDS \(r = 0.17, p = .02 \) (Table 3).

The median of the PROM question was 1 (range 1–3) at follow-up. No patient answered the fourth answer choice (“My symptoms have worsened”). The changes in the OAHI and the OSA-18 (TSS and SDS) were divided into three groups according to the results of the PROM question, and there were significant group differences for changes in the OAHI and the OSA-18 SDS, illustrated as boxplots in Figure 4A \(p < .001 \), Figure 4B \(p = .08 \), and Figure 4C \(p = .002 \).

The correlation between the PROM question and changes in the OAHI was \(r = 0.36, p < .001 \), and changes in the OSA-18 TSS was \(r = 0.20, p = .03 \), respectively. The correlation between the PROM question and changes in the OSA-18 SDS was \(r = 0.31, p < .001 \), while the correlation between the PROM question and the postoperative values of the OSA-18 TSS and SDS was \(r = 0.36, p < .001 \), and \(r = 0.58, p < .001 \), respectively (Table 3).

Chi-square table of “cured patients” using the cut-off value of postoperative OAHI < 2 resulted in a sensitivity of 38%, a specificity of 82%, a positive predictive value of 53% and a negative predictive value of 70% for PROM.

4 | DISCUSSION

The main finding in this prospective study of 173 young children operated on for moderate-to-severe OSA is a moderate correlation between changes in the OAHI, ODI, and RDI and the OSA-18 sleep disturbance subscale (SDS). The correlation between changes in the OSA-18 total symptom score (TSS) and changes in the OAHI was weak. The correlations between the responses from the PROM question and changes in the OAHI and the OSA-18 TSS were also weak, but they are difficult to interpret, as the majority (97%) responded...
with two alternatives (“My symptoms are gone,” or “my symptoms are almost gone”). There was also a moderate correlation between the preoperative OAHI and the OSA-18 SDS. The sensitivity of the PROM question for cure was low (38%) and the specificity was high (82%).

Although many questionnaires are available to assess a child’s subjective symptoms of OSA, such as psychometric properties and sleep disturbance,25 the OSA-18 is the only validated questionnaire currently available in Swedish. Several studies have demonstrated poor validity for the OSA-18 TSS compared to PSG for young children for diagnostic purposes.22,26–28 On the other hand, improvements in quality of life measured by the OSA-18 survey after adenotonsillar surgery have previously been indicated.29,30

Only a few studies have reported a correlation between changes in subjective and objective outcomes before and after surgical

Variable	Treatment	n	Value	p
Age, years mean (SD)	ATE	114	4.2 (1.0)	.0004
	ATT	39	2.0 (3.2)	.4
	APP	30	2.2 (4.5)	
OAHI, mean (SD)	ATE	114	2.0 (3.0)	
	ATT	39	2.2 (4.5)	
	APP	30	2.1 (1.7)	
OSA-18 TSS, median (range)	ATE	111	31 (18–82)	.7
	ATT	38	31.5 (20–59)	
	APP	29	30 (18–82)	
OSA-18 SDS, median (range)	ATE	111	6 (4–24)	.2
	ATT	38	6.5 (4–24)	
	APP	29	6 (4–20)	
HRQoL, median (range)	ATE	111	9 (4–10)	1.0
	ATT	38	9 (5–10)	
	APP	28	9 (5–10)	
ΔOAHI, mean (SD)	ATE	114	−13.8 (11.5)	.0001
	ATT	39	−11.2 (9.1)	
	APP	30	−21.7 (12–2)	
ΔOSA-18, TSS, median (SD)	ATE	107	−27.5 (18.5)	.4
	ATT	38	−26.5 (17.7)	
	APP	29	−31 (18.7)	
ΔOSA-18, SDS, median (SD)	ATE	107	−11 (6.2)	.3
	ATT	38	−9.5 (6.2)	
	APP	29	−11 (5.4)	
ΔHRQoL, median (SD)	ATE	106	2 (2.1)	.5
	ATT	34	2 (1.9)	
	APP	27	2 (2.3)	
PROM question	ATE	102	100%	
	ATT	30	22%	
	APP	4	3%	
My symptoms are gone1	ATE	102	75%	
	ATT	30	22%	
	APP	4	3%	
My symptoms are almost gone2	ATE	102	75%	
	ATT	30	22%	
	APP	4	3%	
My symptoms remain3	ATE	102	75%	
	ATT	30	22%	
	APP	4	3%	
My symptoms have worsened4	ATE	102	75%	
	ATT	30	22%	
	APP	4	3%	

Note: Δ is the changes between preoperative and postoperative values. \(p\)-value calculated with Kruskal Wallis-test for differences between surgical treatment groups.
Previous studies have attempted to determine the correlation between the OSA-18 and the OAHI before intervention. For instance, in a Norwegian study which included 97 children, a weak correlation between the OAHI and the TSS was found ($r = 0.21, p = .04$), and a stronger correlation between the SDS and the OAHI ($r = 0.51, p < .01$) was also indicated. These results are similar to those of the present study. An American study from 2014 with 127 children also noted a significant correlation between the SDS and the OAHI before intervention ($r = 0.22, p = .01$) but no significant correlation between the TSS and the OAHI. Similar results were reported in a Japanese study with 45 patients that found a correlation between the SDS and the OAHI ($r = 0.35, p = .018$), but not the TSS. We have previously published a study of a mixed population of 225 children that is in line with these results that used the OSA-18 before intervention. It indicated a significant weak correlation between the AHI and the TSS ($r = 0.17, p < .05$) and a strong correlation between the AHI and the SDS ($r = 0.34, p < .05$). Mitchell’s 2009 study of 89 children (normal weight and obese) compared their preoperative AHI and postoperative AHI with the OSA-18 TSS, with no clinically significant correlations. Since polysomnography is rarely used to assess the outcomes of adenotonsillar surgery in children with OSA, there is limited information in the literature on its objective determination of effects. The discrepancy between subjective measurements in questionnaires and objective parameters from PSG have been discussed, and the question of whether PSG results are neglecting important issues and outcomes related to OSA has been highlighted. Recent research has suggested that subjective symptom assessments are important for patients and their families and for determining the physical effects of OSDB and OSA. Symptoms, such as snoring and mild OSA, have been associated with changes in brain structure, neurocognitive parameters, and behavior. Measuring the subjective symptoms of OSA and OSDB, such as habitual snoring and quality of life, with questionnaires is also an easy, inexpensive way to evaluate a child after surgery.

The sensitivity and specificity for the PROM response “symptoms gone” versus OAHI < 2 has not been studied before. The low sensitivity of 38% but high specificity of 82% indicate a majority for true negative. However, since the variability in responses was small, the clinical importance of this PROM question is uncertain. Since 1997, the National Tonsil Surgery Register in Sweden (NTSRS) has collected data on indications for surgery. Every patient receives a follow-up 6 months after surgery, either by mail or email, with a PROM question, which is identical in its formulation and answer choices to the present study. This register includes indications for tonsil surgery for all ages, but the majority (56%) are children with OSDB. The results from a previous study from the NTSRS database showed that 70% of respondents noted that “my symptoms are gone,” and 25% noted that “my symptoms are almost gone.” These results are in line with the present study in which 75% of respondents stated that “my symptoms are gone” and 22% stated that “my symptoms are almost gone.” A more recent study from the NTSRS found that in the pediatric obstructive group, the proportion of respondents answering “the symptoms are gone” decreased from 85% in 2009 to 65% in 2018, a
reduction of 20% over 10 years.42 The authors do not have a plausible explanation for this decline, since the incidence of tonsil surgery has been stable, although the increased rate of adenotonsillotomies (instead of tonsillectomies) could have been impactful. The authors also suggest that a validated questionnaire to assess the disease burden before and after surgery may elucidate this drop.

4.1 \textbf{Strengths and limitations}

A strength of the present study is its relatively large sample size and high-response rate of 87\% after surgery. Moreover, the findings of the correlations between the OSA-18 sleep disturbance subscale and the PROM question versus polysomnographic OAHI have to our

Correlations	Per protocol	Intention to treat				
	N	r	p	n	r	p
Preoperative						
OAHI \sim OSA-18 TSS	194	0.23	.002	198	0.35	<.001
OAHI \sim OSA-18 SDS	194	0.4	<.001	198	0.51	<.001
OAHI \sim HRQoL	186	-0.07	.33			
ODI \sim OSA-18 TSS	194	0.17	.02			
ODI \sim OSA-18 SDS	194	0.35	<.001			
RDI \sim OSA-18 TSS	193	0.23	.001			
RDI \sim OSA-18 SDS	193	0.37	<.001			
Postoperative						
OAHI \sim OSA-18 TSS	177	0.04	.6	198	0.17	.01
OAHI \sim OSA-18 SDS	177	0.17	.02	197	0.28	.001
OAHI \sim PROM	136	0.19	.03	136	0.19	.03
OAHI \sim HRQoL	175	-0.08	.28			
ODI \sim OSA-18 TSS	174	0.03	.7			
ODI \sim OSA-18 SDS	174	0.06	.5			
ODI \sim PROM	133	0.22	.01			
RDI \sim OSA-18 TSS	171	0.004	.96			
RDI \sim OSA-18 SDS	171	0.21	.007			
RDI \sim PROM	132	0.36	.003			
PROM \sim OSA-18 TSS	133	0.36	<.001			
PROM \sim OSA-18 SDS	133	0.58	<.001			

Changes pre and postoperatively

ΔOAHI \sim ΔOSA-18 TSS 173 0.28 <.001 198 0.36 <.001
ΔOAHI \sim ΔOSA-18 SDS 173 0.53 <.001 198 0.51 <.001
ΔOAHI \sim ΔHRQoL 165 -0.16 .045 166 -0.16 .045
ΔOAHI \sim PROM 136 0.36 <.001 136 0.36 <.001
ΔODI \sim ΔOSA-18 TSS 173 0.20 .01 173 0.20 .01
ΔODI \sim ΔOSA-18 SDS 173 0.42 <.001 173 0.42 <.001
ΔODI \sim ΔHRQoL 166 -0.03 .7 166 -0.03 .7
ΔODI \sim PROM 136 0.24 .004 136 0.24 .004
ΔRDI \sim ΔOSA-18 TSS 174 0.25 <.001 174 0.25 <.001
ΔRDI \sim ΔOSA-18 SDS 174 0.46 <.001 174 0.46 <.001
ΔRDI \sim ΔHRQoL 167 -0.1 2 167 -0.1 2
ΔRDI \sim PROM 136 0.34 <.001 136 0.34 <.001
PROM \sim ΔHRQoL 124 -0.11 .23 124 -0.11 .23
PROM \sim ΔOSA-18 TSS 129 0.20 .03 136 0.24 .004
PROM \sim ΔOSA-18 SDS 129 0.31 <.001 136 0.37 <.001

Note: Correlations calculated with the Spearman’s rank correlation. Moderate correlations (r-values ≥ 0.4) and significant p-values are marked in bold.

Abbreviations: HRQoL, health-related quality of life; OAHI, obstructive apnea–hypopnea index; ODI, oxygen desaturation index, OSA-18; OSA-18 SDS, OSA-18 sleep disturbance subscale; PROM, patient-related outcome measures; RDI, respiratory disturbance index; TSS, OSA-18 total symptom score.
knowledge not been investigated before and could be of clinical interest. The selected study population of children between 2 and 6 years of age is not well studied and therefore a strength. However, together with the high mean OAHI of 16 and the small number of obese children, the generalizability and external validity of the present study are limited. Further limitation is that the PROM question was assessed in three different ways with different follow-up times which could have affected the responses.

5 | CONCLUSION

A moderate correlation was found between changes in the OAHI and the OSA-18 SDS in otherwise healthy young children treated with adenotonsillar surgery for moderate to severe OSA. The specificity of the PROM question versus OSA-cure was high, however, since the variability in the responses was small, its clinical importance is uncertain. For the clinician, measuring changes in the OSA-18 SDS could be an alternative at follow-ups, but further studies are needed.

AUTHOR CONTRIBUTIONS

Dr Isabella Sjölander was involved in the data collection and analysis, interpreted the data, and wrote the manuscript. Dr Anna Borgström, Dr Johan Fehrm, and Dr Pia Froissart Nerfeldt were involved in the study design and the data collection and analysis and reviewed and revised the manuscript. Prof Danielle Friberg conceptualized and designed the study, coordinated, and supervised data collection, and reviewed and revised the manuscript. All authors approved the final manuscript as submitted.
ACKNOWLEDGMENTS

The authors would like to thank the staff at the Sleep Laboratory at Karolinska University Hospital for their valuable work and express gratitude to the patients and parents who contributed to this study. They would also like to thank Johan Bring for his help with statistics and graphs, and Dr Lotta Hessén-Söderman for the follow-ups on some of the patients.

FUNDING INFORMATION

The Uppsala County Council (ALF project) and the Acta-Otolaryngologica Foundation supported this research.

CONFLICTS OF INTEREST

The authors have no conflicts of interest that are relevant to this article.

ORCID

Isabella Sjölander https://orcid.org/0000-0002-8519-6000

Danielle Friberg https://orcid.org/0000-0001-8327-1292

REFERENCES

1. Lumeng JC, Chervin RD. Epidemiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):242-252.
2. Crabtree VM, Vanni JW, Gozal D. Health-related quality of life and depressive symptoms in children with suspected sleep-disordered breathing. Sleep. 2004;27(6):1131-1138.
3. Baker-Smith CM, Isaiah A, Melendres MC, et al. Sleep-disordered breathing and cardiovascular disease in children and adolescents: a scientific statement from the American Heart Association. J Am Heart Assoc. 2021;10(18):e022427.
4. Yu PK, Radcliffe J, Taylor HG, et al. Neurobehavioral morbidity of pediatric mild sleep-disordered breathing and obstructive sleep apnea. Sleep. 2022;45(5):zsac035.
5. Isaiah A, Ernst T, Cloak CC, Clark DB, Chang L. Associations between frontal lobe structure, parent-reported obstructive sleep disordered breathing and childhood behavior in the ABCD dataset. Not Commun. 2021;12(11):2205.
6. Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597-619.
7. Carroll JL, Mccolley SA, Garcia CL, Curtis S, Loughlin GM. Inability of clinical history to distinguish primary snoring from obstructive sleep apnea syndrome in children. Chest. 1995;108(3):610-618.
8. Smith DL, Gozal D, Hunter SJ, Kheirandish-Gozal L. Frequency of snoring, rather than apnea-hypopnea index, predicts both cognitive and behavioral problems in young children. Sleep Med. 2017;34:170-178.
9. Stalfors J, Ovesen T, Bertelsen JB, Bugten V, Wennberg S, Sunnergren O. Comparison of clinical practice of tonsil surgery from quality register data from Sweden and Norway and one clinic in Denmark. BMJ Open. 2022;12(4):e065551.
10. Hallenstal N, Sunnergren O, Ericsson E, et al. Tonsil surgery in Sweden 2013–2015. Indications, surgical methods and patient-reported outcomes from the National Tonsil Surgery Register. Acta Otolaryngol. 2017;137(10):1096-1103.
11. Cohen-Levy J, Quintal MC, Abela A, Rompré P, Almeida FR, Huynh N. Persistent sleep disordered breathing after adenoidectomy and/or tonsillectomy: a long-term survey in a tertiary pediatric hospital. Sleep Breath. 2018;22(4):1197-1205.
12. Friedman M, Wilson M, Lin HC, Chang HW. Updated systematic review of tonsillectomy and adenoidectomy for treatment of pediatric obstructive sleep apnea/hypopnea syndrome. Otolaryngol Head Neck Surg. 2009;140(6):800-808.
13. Bhattacharjee R, Kheirandish-Gozal L, Spruyt K, et al. Adenotonsillectomy outcomes in treatment of obstructive sleep apnea in children: a multicenter retrospective study. Am J Respir Crit Care Med. 2010;182(5):676-683.
14. Marcus CL, Brooks LJ, Ward SD, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome - technical report. Pedi atrics. 2012;130(3):e714-e755.
15. Kaditis AG, Alonso Alvarez ML, Boudewyns A, et al. Obstructive sleep disordered breathing in 2- to 18-year-old children: diagnosis and management. Eur Respir J. 2016;47(1):69-94.
16. Waters KA, Chawla J, Harris MA, et al. Cognition after early tonsillectomy for mild OSA. Pediatrics. 2020;145(2):e20191450.
17. Isaiah A, Spanier AJ, Grattan LM, Wang Y, Pereira KD. Predictors of behavioral changes after adenotonsillectomy in pediatric obstructive sleep apnea: a secondary analysis of a randomized clinical trial. JAMA Otolaryngol Head Neck Surg. 2020;146(10):900-908.
18. Lushington K, Kennedy D, Martin J, Kohler M. Quality-of-life but not behavior improves 48-months post-adenotonsillectomy in children with SDB. Sleep Med. 2021;81:418-429.
19. Fehm J, Nerfeldt P, Sundman J, Friberg D. Adenopropharyngoplasty vs adenotonsillectomy in children with severe obstructive sleep apnea: a randomized clinical trial. JAMA Otolaryngol Head Neck Surg. 2018;144(7):580-586.
20. Borgstrom A, Nerfeldt P, Friberg D. Adenotonsillotomy versus adenotonsillectomy in pediatric obstructive sleep apnea: an RCT. Pediatrics. 2017;139(4):e20163314.
21. Marcus CL, Brooks LJ, Draper KA, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome - clinical practice guideline. Pediatrics. 2012;130(3):576-584.
22. Borgstrom A, Nerfeldt P, Friberg D. Questionnaire OSA-18 has poor validity compared to polysomnography in pediatric obstructive sleep apnea. Int J Pediatr Otorhinolaryngol. 2013;77(11):1864-1868.
23. Franco RA Jr, Rosenfeld RM, Rao M. First place–resident clinical science award 1999. Quality of life for children with obstructive sleep apnea. Otolaryngol Head Neck Surg. 2000;123(1 Pt 1):9-16.
24. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):1763-1768.
25. Spruyt K, Gozal D. Pediatric sleep questionnaires as diagnostic or epidemiological tools: a review of currently available instruments. Sleep Med Rev. 2011;15(1):19-32.
26. Overland B, Berdal H, Akre H. Obstructive sleep apnea in 2-6 year old children referred for adenotonsillectomy. Eur Arch Otorhinolaryngol. 2019;276(7):2097-2104.
27. Ishman SL, Yang CJ, Cohen AP, et al. Is the OSA-18 predictive of obstructive sleep apnea: comparison to polysomnography. Laryngoscope. 2015;125(6):1491-1495.
28. Wu C-R, Tu Y-K, Chuang L-P, et al. Diagnostic meta-analysis of the Pediatric Sleep Questionnaire, OSA-18, and pulse oximetry in detecting pediatric obstructive sleep apnea syndrome. Sleep Med Rev. 2020;54:101355.
29. Mitchell RB. Adenotonsillectomy for obstructive sleep apnea in children: outcome evaluated by pre- and postoperative polysomnography. Laryngoscope. 2007;117(10):1844-1854.
30. Todd CA, Bareiss AK, McCoul ED, Rodriguez KH. Adenotonsillectomy for obstructive sleep apnea and quality of life: systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2017;157(5):767-773.
31. Øverland B, Berdal H, Akre H. Surgery for obstructive sleep apnea in young children: outcome evaluated by polysomnography and quality of life. Int J Pediatr Otorhinolaryngol. 2021;142:110609.
32. Kang K-T, Weng W-C, Lee C-H, Lee P-L, Hsu W-C. Discrepancy between objective and subjective outcomes after adenotonsillectomy in children with obstructive sleep apnea syndrome. Otolaryngol Head Neck Surg. 2014;151(1):150-158.

33. Overland B, Berdal H, Akre H. Correlations between disease-specific quality of life and polysomnographic findings in children with obstructive sleep apnea. Int J Pediatr Otorhinolaryngol. 2020;134:110077.

34. Baldassari CM, Alam L, Vigilar M, Benke J, Martin C, Ishman S. Correlation between REM AHI and quality-of-life scores in children with sleep-disordered breathing. Otolaryngol Head Neck Surg. 2014;151(4):687-691.

35. Kobayashi R, Miyazaki S, Karaki M, et al. Evaluation of adenotonsillectomy and tonsillectomy for pediatric obstructive sleep apnea by rhinomanometry and the OSA-18 questionnaire. Acta Otolaryngol. 2014;134(8):818-823.

36. Mitchell RB, Boss EF. Pediatric obstructive sleep apnea in obese and normal-weight children; impact of adenotonsillectomy on quality-of-life and behavior. Dev Neuropsychol. 2009;34(5):650-661.

37. Garetz SL, Mitchell RB, Parker PD, et al. Quality of life and obstructive sleep apnea symptoms after pediatric adenotonsillectomy. Pediatrics. 2015;135(2):e477-e486.

38. Jackman AR, Biggs SN, Walter LM, et al. Sleep disordered breathing in early childhood: quality of life for children and families. Sleep. 2013;36(11):1639-1646.

39. Au CT, Chan KC, Chook P, Wing YK, Li AM. Cardiovascular risks of children with primary snoring: a 5-year follow-up study. Respirology. 2021;26(8):796-803.

40. Chawla J, Harris M-A, Black R, et al. Cognitive parameters in children with mild obstructive sleep disordered breathing. Sleep Breath. 2021;25:1625-1634.

41. Lundstrom F, Odhagen E, Alm F, Hemlin C, Nerfeldt P, Sunnergren O. A validation study of data in the National Tonsil Surgery Register in Sweden: high agreement with medical records ensures that data can be used to monitor clinical practices and outcomes. BMC Med Res Methodol. 2022;22(1):3.

42. Lundstrom F, Stalfors J, Ostvoll E, Sunnergren O. Practice, complications and outcome in Swedish tonsil surgery 2009-2018. An observational longitudinal national cohort study. Acta Otolaryngol. 2020;140(7):589-596.

How to cite this article: Sjölander I, Borgström A, Nerfeldt P, Fehrm J, Friberg D. Correlations between objective and subjective outcomes after adenotonsillar surgery in children with OSA. Laryngoscope Investigative Otolaryngology. 2022;7(6):2161-2170. doi:10.1002/lio2.967