Compartmentalized Activation of the High Affinity Immunoglobulin E Receptor within Membrane Domains

Kenneth A. Field, David Holowka‡, and Barbara Baird‡
From the Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

The earliest known step in the activation of the high affinity IgE receptor, FceRI, is the tyrosine phosphorylation of its β and γ subunits by the Src family tyrosine kinase, Lyn. We report here that aggregation-dependent association of FceRI with specialized regions of the plasma membrane precedes its tyrosine phosphorylation and appears necessary for this event. Tyrosine phosphorylation of β and γ occurs in intact cells only for FceRI that associate with these detergent-resistant membrane domains, which are enriched in active Lyn. Furthermore, efficient in vitro tyrosine phosphorylation of FceRI subunits occurs only for those associated with isolated domains. This association and in vitro phosphorylation are highly sensitive to low concentrations of detergent, suggesting that lipid-mediated interactions with Lyn are important in FceRI activation. Participation of membrane domains accounts for previously unexplained aspects of FceRI-mediated signaling and may be relevant to signaling by other multichain immune receptors.

The plasma membrane contains specialized regions that have distinct compositions and can serve unique functions in the regulation of cell surface receptor activation. For example, caveolae have been shown to associate with certain signaling proteins (1, 2) and have been implicated in receptor activation (3–6), vesicular transport (7, 8), and the uptake of small molecules (9). Compositionally related membrane domains, which lack the invaginated morphology of caveolae as well as the membrane protein caveolin, have also been identified and biochemically separated from caveolae (10). These membrane domains, like caveolae, are resistant to solubilization in nonionic detergents such as Triton X-100, are enriched in sphingolipids and glycosylphosphatidylinositol-linked proteins, and are associated with palmitoyl-anchored signaling molecules including Src family tyrosine kinases (10–14). Detergent-resistant membrane domains isolated from rat basophilic leukemia (RBL) cells, a mast cell line, contain at least 30% of the cellular Lyn, a Src family tyrosine kinase, and no detectable caveolin (15).

Aggregation of FceRI on mast cells and basophils by multivalent antigens leads to phosphorylation of immunoreceptor tyrosine-based activation motifs within the β and γ receptor subunits by Lyn (16–19). This initiates a signaling cascade culminating in secretion of inflammatory mediators and cytokines that play an important role in the allergic response (20, 21). The molecular mechanism by which aggregation of FceRI initiates its phosphorylation by Lyn is incompletely understood. Selective binding of Lyn directly to unphosphorylated FceRI β (22) has been proposed to mediate an initial transphosphorylation of aggregated FceRI (23), but this does not account for the capacity of FceRI lacking the β subunit (24, 25) or chimeric receptors containing only the γ cytoplasmic tail (26–28) to become tyrosine-phosphorylated upon aggregation.

The involvement of detergent-resistant membrane domains in FceRI signaling was recently suggested by the observation that aggregation of FceRI on RBL cells significantly increased the amount of active Lyn associated with these structures (15). Furthermore, fluorescence microscopy studies showed that aggregation of FceRI at the surface of intact cells co-distributes ganglioside-enriched membrane patches that are related to the isolated membrane domains (29, 30). The aggregation-dependent association of FceRI with these less fluid regions of the membrane (30, 31) is also consistent with decreased lateral and rotational mobility of aggregated FceRI (reviewed in Ref. 32).

In the present study, we establish conditions for preserving the interaction of aggregated FceRI with these membrane domains following cell lysis, and we demonstrate the importance of this interaction to the initial step in signaling, the tyrosine phosphorylation of FceRI.

EXPERIMENTAL PROCEDURES

Sucrose Gradient Ultracentrifugation—RBL-2H3 cells were lysed in 10 mM Tris, pH 8.0, 50 mM NaCl, 10 mM EDTA, 1 mM Na3VO4, 30 mM pyrophosphate, 10 mM glycerophosphate, 1 mM 4-(2-aminoethyl)benzene sulfonyl fluoride (Calbiochem, San Diego, CA), 0.02 units/ml aprotinin, 0.01% (w/v) Na2VO4, and 0.05% (v/v) Triton X-100. The lysates were then diluted 1:1 in 80% sucrose and analyzed by ultracentrifugation as described (15). In some experiments, the lysis buffer contained 0.025% Triton X-100, and 0.025% Triton X-100 was also present in the 80% sucrose solution used to dilute the lysate. The two lysis procedures yielded identical results.2 Sucrose solutions contained 25 mM Tris, pH 7.5, 125 mM NaCl, and 2 mM EDTA.

Immunoblotting—Electrophoresis of samples was carried out on 12.5% acrylamide SDS gels under nonreducing conditions, and semidry transfer to Immobilon P (Millipore, Bedford, MA) was performed as described (15). Anti-phosphotyrosine immunoblots were performed using 0.1 μg/ml monoclonal antibody 4G10 conjugated to horseradish peroxidase (UBI, Lake Placid, NY) and Supersignal ECL substrate (Pierce, Rockford, IL). For the results in Fig. 2, tyrosine phosphorylation of the FceRI β subunit was quantified from anti-phosphotyrosine immunoblots of post-nuclear supernatants of 106 RBL cells lysed in 0.2% Triton X-100. The prominent 34-kDa band detected in these blots after FceRI stimulation was identified as β based on selective immunodepletion by IgE-specific agaroose beads.3 This band was quantified with a 256 gray-scale scanner (Umax Vista-S6E) and NIH Image software.

Immunoprecipitations—After adjusting the sucrose fractions to 0.2% Triton X-100 to extract FceRI from the membrane domains, FceRI was immunoprecipitated for 90 min with trinitrophenyl-conjugated Sepharose 4B (which efficiently binds anti-DNP IgE). The immunoprecipitates were washed twice with 0.2% Triton X-100 and once in lysis buffer

1 The abbreviations used are: RBL, rat basophilic leukemia; DNP, dinitrophenyl.

2 K. A. Field, D. Holowka, and B. Baird, unpublished observations.

© 1997 by The American Society for Biochemistry and Molecular Biology, Inc.
very sensitive to the detergent:cell lipid ratio during solubilization and ultracentrifugation, as indicated by its disruption when concentrations of Triton X-100 greater than 0.05% are used (15). This sensitivity is similar to that observed by Pribluda et al. (23) for FcεRI coupling to Lyn in cell lysates, and it contrasts with cytoskeleton-mediated detergent insolubility of aggregated FcεRI (33–35), which is not disrupted by high Triton X-100 concentrations.

Although this reduction in Triton X-100 used for cell lysis dramatically increases the amount of aggregated FcεRI that remains associated with detergent-resistant membrane domains, these domains are otherwise very similar to those isolated after lysis in high Triton X-100 (≥0.2%). When directly compared, domains from low and high detergent lysis conditions contain the same fraction of cellular Lyn, and neither has detectable amounts of Src. In addition, both preparations contain a similar spectrum of tyrosine kinase substrates as revealed in in vitro tyrosine kinase assays (Ref. 15 and as described below), and both contain similar amounts of cellular protein (<2% of the total). By these criteria, the domains obtained using 0.05% Triton X-100 for cell lysis appear to be identical to other membrane domains previously described that do not contain caveolin (10, 13–15). Furthermore, the aggregation-dependent association of FcεRI with membrane domains shows selectivity among transmembrane cell surface receptors, as FcεRI but not Type I interleukin-1 receptors, both expressed on Chinese hamster ovary cells, associate with membrane domains following aggregation.

Association of FcεRI with membrane domains does not require tyrosine phosphorylation of the receptor subunits. As shown in Fig. 1B, RBL cells permeabilized with Streptolysin O in the presence of excess EDTA to inhibit kinase activity show a similar amount of aggregation-dependent association of FcεRI with domains as intact cells (Fig. 1A). As previously shown with broken cells (36), stimulated tyrosine phosphorylation of FcεRI β and other substrates is prevented by EDTA in these permeabilized cells.

The presence of Lyn and aggregated FcεRI within the same subregions of the plasma membrane suggests that domain-associated Lyn could be responsible for the initial phosphorylation of the immunoreceptor tyrosine-based activation motifs. FcεRI associates with membrane domains very rapidly at 37 °C (●, Fig. 2A) and is more than 50% complete within 30 s, whereas substantially less than 50% of the maximal tyrosine phosphorylation of FcεRI β occurs during this time (●, Fig. 2A). The amount of β tyrosine phosphorylation declines after 2 min at 37 °C, and domain-associated receptor also decreases between 5 and 30 min in parallel with its internalization. At 4 °C, the association of FcεRI with domains occurs more slowly (○, Fig. 2B), but is clearly more rapid than the β tyrosine phosphorylation during the first 5 min (●, Fig. 2B). FcεRI internalization and downstream signaling such as Ca²⁺ mobilization and phosphatidylinositol hydrolysis do not occur at 4 °C (37), indicating that they are not required for domain association. These results demonstrate that association of FcεRI with membrane domains on cells is an early, aggregation-dependent event that is sufficiently rapid to mediate receptor tyrosine phosphorylation.

Evidence for FcεRI tyrosine phosphorylation occurring within membrane domains of intact cells is shown in Fig. 3. Stimulation of biotin-IgE-sensitized RBL cells with streptavidin dramatically increases the tyrosine phosphorylation of many proteins. When lysates of these cells are analyzed by sucrose gradient ultracentrifugation, most of the proteins with

RESULTS AND DISCUSSION

In order to determine if the interaction of FcεRI with membrane domains is involved in the activation of this immunoreceptor, we developed conditions that preserve this association during the isolation of these complexes by equilibrium sucrose density ultracentrifugation. As shown in Fig. 1A, limiting amounts of Triton X-100 used for cell lysis preserve the association of aggregated FcεRI (●, ■) with the detergent-resistant membrane domains which migrate as low density vesicles (fractions 5–7). In 29 separate experiments, 54 ± 7% of biotin-IgE FcεRI complexes aggregated with streptavidin associate with the membrane domains (●). Significant but lesser amounts of antigen-aggregated receptors associate (●; 11 ± 1%, n = 6), most likely reduced by the partial reversal of IgE-antigen binding during the overnight ultracentrifugation. In contrast, monomeric FcεRI (○) is nearly absent from the membrane domains (5 ± 1%, n = 26) and found almost entirely in the 40% sucrose fractions containing solubilized proteins (fractions 10–16). The association of FcεRI with isolated membrane domains depends on its aggregation at the cell surface, as less than 5% association is seen for FcεRI aggregated after cell lysis or for FcεRI aggregated with antigen on cells and then dissociated with monovalent hapten after lysis. The interaction between aggregated FcεRI and the membrane domains is...
enhanced tyrosine phosphorylation are found with the solubilized proteins at 40% sucrose (fractions 11–16), as expected (15). Associated with the membrane domains (fractions 3–8) after stimulation are tyrosine-phosphorylated proteins of approximately 90, 53/56, 45, 34, and 25–30 kDa. The 53/56-kDa doublet was identified as Lyn by reprobing the blot with rabbit anti-Lyn (UBI).2 Significantly, the 45-, 34-, and 25–30-kDa bands appear only with stimulation and are markedly enriched in membrane domains relative to the other fractions. The domain-associated proteins of 34 and 25–30 kDa correspond to phosphorylated β and γ FcεRI subunits, respectively, as identified by immunoprecipitating FcεRI from the sucrose gradient fractions (Fig. 3B). Fig. 3 clearly shows that the tyrosine-phosphorylated β and γ subunits are almost entirely associated with membrane domains. The majority of other tyrosine kinase substrates phosphorylated as the result of FcεRI aggregation are located in the solubilized protein fractions, presumably because they are cytosolic or associated with membranes that are solubilized in 0.05% Triton X-100. Syk, the ZAP-70-related tyrosine kinase responsible for phosphorylating the majority of substrates downstream of FcεRI (19, 38, 39), is also found exclusively in these soluble fractions,2 as expected because activated Syk is localized primarily in the cytosol after receptor stimulation (40, 41).2 Thus, following FcεRI aggregation on cells, Lyn phosphorylates the β and γ subunits of domain-associated receptors. This apparently leads to a transient association and the activation of Syk, followed by Syk-mediated phosphorylation of downstream substrates, most of which are not stably associated with membrane domains.

Additional support for the involvement of these domains in initiating FcεRI activation comes from in vitro tyrosine kinase assays performed on sucrose fractions, followed by immunoprecipitation of FcεRI in the presence of 0.2% Triton X-100 (which releases FcεRI from membrane domains). Fig. 4A shows that aggregated FcεRI associated with membrane domains isolated after cell lysis in 0.05% Triton X-100 (MD−) are efficiently tyrosine-phosphorylated in vitro, whereas receptors in the sucrose fractions containing solubilized proteins (40+ and 40−) are not phosphorylated, and membrane domains from unstimulated cells (MD−) also show no phosphorylated FcεRI. Streptavidin-aggregated FcεRI from cells lysed in 0.2% Triton X-100 migrate at a high density (50–70% sucrose) in these gradients (15). When in vitro tyrosine kinase assays are performed on these high density sucrose fractions (HD+), a relatively small amount of β subunit phosphorylation is seen. This fraction does contain a small amount of Lyn that may be responsible for the phosphorylation detected,2 but it is not known whether this represents Lyn directly associated with FcεRI, Lyn contaminating this fraction from the 40% sucrose fraction, or fragments of membrane domains which remain receptor-associated in 0.2% Triton X-100. Consistent with the last possibility, the in vitro phosphorylation in the HD+ fraction shows a Triton X-100 sensitivity similar to that of the MD+ fraction (see below).

When in vitro tyrosine kinase assays are performed on membrane domains, stimulated FcεRI phosphorylation is highly sensitive to the concentration of Triton X-100 present. As shown in Fig. 4B, addition of submicellar (0.01%) Triton X-100 to the membrane domains causes a slight enhancement of FcεRI β and γ tyrosine phosphorylation, but higher Triton X-100 concentrations dramatically reduce this phosphorylation. The association of Lyn with membrane domains, as well as its activity toward the exogenous substrate, enolase, is not significantly affected by Triton X-100,2 and neither is phosphorylation of Lyn itself or the 45-kDa substrate (Fig. 4B). The exquisite sensitivity of FcεRI in vitro phosphorylation to Triton X-100 indicates that lipid-mediated association of these receptors with the membrane domains is required for this activation
FIG. 4. In vitro tyrosine phosphorylation of FceRI associated with membrane domains. A, preferential phosphorylation of FceRI associated with membrane domains from stimulated cells. Kinase assays were performed on fractions from sucrose gradients without Na3VO4 containing either detergent-resistant membrane domains (MD), the 40% sucrose fraction (40), or immune complexes in high density sucrose (HD), from either unstimulated RBL cells (–) or cells stimulated with 10 ng/ml streptavidin for 5 min at 37 °C (+). FceRI was then immunoprecipitated and subjected to anti-phosphotyrosine immunoblotting as in Fig. 3B. The relative amount of 125I-IgE loaded in each lane is (left to right) 0.04, 1.00, 0.76, 0.34, and 0.42. Experiments where ATP and Mg2+ were omitted from the kinase assay, or where cells without IgE were used, showed no detectable phosphorylation of β and γ under these conditions. B, detergent sensitivity of in vitro FceRI phosphorylation. Membrane domains isolated as in Fig. 1 from streptavidin-stimulated cells were incubated with the indicated concentration of Triton X-100 prior to performing kinase assays on the sucrose fractions. The samples were then boiled with SDS, electrophoresed, and immunoblotted with anti-phosphotyrosine. C, extraction of FceRI from membrane domains with Triton X-100. Membrane domain fractions isolated from streptavidin-stimulated cells as for B were treated with no Triton X-100 (●), with 0.01% Triton X-100 (●), or with 0.05% Triton X-100 (■), readjusted to 40% sucrose, and ultracentrifuged overnight within a sucrose gradient (right axis) as in Fig. 1.

The involvement of membrane domains in this early step of FceRI activation provides a new model in which the initial phosphorylation of the β and γ subunits by Lyn is mediated by lipid–protein interactions. Although previous results have explained how the phosphorylation of FceRI β and γ and subsequent events proceed after the association of active Lyn with a receptor cluster (23, 25, 38, 39), the structural basis for the initial interaction between Lyn and FceRI in the activation process has remained poorly defined. Several studies that detected association of Lyn with unstimulated FceRI utilized methods that could stabilize the association of these receptors with membrane domains, including chemical cross-linking (18) or low detergent:cell lipid ratios (23). We find that unstimulated receptors do not co-isolate with the Lyn-containing domains to a large extent (Fig. 1), although weak and/or transient interactions could occur on intact cells. The size and stability of the domains on the surface of intact, unstimulated cells are unknown. These domains are likely to be small and dynamic in composition, but appear to coalesce together with aggregated FceRI (29, 30). Thus, localization of Lyn within membrane domains could serve to sequester this kinase away from FceRI prior to receptor aggregation and, in turn, provide a pool of active or readily stimulated Lyn for aggregated FceRI that stably associate with the domains. Support for this aspect of the model comes from our observation that isolated membrane domains contain abundant tyrosine kinase activity even in the absence of FceRI activation (15), as well as from other studies on Src family members that associate with detergent-resistant membrane domains. These other investigations have found that Fyn, Lck, and Fgr associated with isolated membrane domains show higher specific activity in vitro than soluble forms of these kinases (42, 43), possibly because of the capability for kinases concentrated within domains to trans-autophosphorylate readily.

Our results demonstrate that aggregation of FceRI causes its rapid and efficient association with specialized domains in the plasma membrane that are enriched in the tyrosine kinase Lyn. FceRI associated with membrane domains are rapidly tyrosine-phosphorylated in intact cells, and this phosphorylation is also observed in vitro preferentially for receptors associated with membrane domains. The interaction of FceRI with these specialized membrane domains does not depend on the β subunit,8 and thus can account for the initiation of receptor signaling independent of specific protein–protein interactions between the β subunit and Lyn (24–28). In addition, this receptor-membrane domain association may facilitate coupling to processes such as Ca2+ mobilization, lipid metabolism, and exocytic vesicle fusion. Recent evidence indicates that specialized membrane domains, including caveolae, are involved in the signaling of other cell surface receptors such as certain growth factor receptors (3, 5) and glycosphosphatidylinositol-linked mitogenic receptors (12, 44, 45). Receptor-domain interactions also may be important for other multichain immune recognition receptors that utilize Src family kinases during their initial signaling steps (46, 47).

REFERENCES
1. Lisanti, M. P., Scherer, P. E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Y. H., Cook, R. F., and Sargscim, M. (1994) J. Cell Biol. 126, 111–120
2. Song, K. S., Li, S., Okamoto, T., Quilliam, L. A., Sargiacimo, M., and Lisanti, M. P. (1996) J. Biol. Chem. 271, 9690–9697
3. Liu, P., Yang, Y., Ko, Y. G., and Anderson, R. G. W. (1996) J. Biol. Chem. 271, 10329–10333
4. Liu, P. and Anderson, R. G. W. (1995) J. Biol. Chem. 270, 27179–27185
5. Mineo, C., James, G. L., Smart, E. J., and Anderson, R. G. W. (1996) J. Biol. Chem. 271, 11393–11395
6. Chan, M., Liyanage, U. K., Lisanti, M. P., and Lodish, H. F. (1994) Proc. Natl. Acad. Sci. USA 91, 11728–11732
7. Schnitzer, J. E., Liu, J., and Oh, P. (1995) J. Biol. Chem. 270, 14399–14404
8. Brown, D. A. and Rose, J. K. (1992) Cell 68, 533–544
9. Anderson, R. G. W., Kamen, B. A., Rothberg, K. G., and Lacey, S. W. (1992) Science 255, 410–411
10. Schnitzer, J. E., McIntosh, D. P., Devrak, A. M., Liu, J., and Oh, P. (1995) Science 269, 1435–1439
11. Resh, M. D. (1994) Cell 76, 411–413
12. Brown, D. (1995) Curr. Opin. Immunol. 5, 349–354
13. Chun, M. A., Williamson, E., Simons, K., and Parton, R. G. (1994) J. Biol. Chem. 269, 30745–30748

4 S. M. Schuh and D. L. Lublin, personal communication.
4280

FcεRI Activation within Membrane Domains

14. Gorodinsky, A. and Harris, D. A. (1995) *J. Cell Biol.* **129**, 619–627

15. Field, K. A., Holowka, D., and Baird, B. (1995) *Proc. Natl. Acad. Sci. USA* **92**, 9021–9025

16. Paolini, R., Jouvín, M. H., and Kinet, J. P. (1991) *Nature* **353**, 855–858

17. Eiseman, E. and Bolten, J. B. (1992) *Nature* **355**, 78–80

18. Yamashita, T., Mao, S.-Y., and Metzger, H. (1994) *Proc. Natl. Acad. Sci. USA* **91**, 11251–11255

19. Scharenberg, A. M., Lin, S., Cuenod, B., Yamamura, H., and Kinet, J. P. (1995) *EMBO J.* **14**, 3385–3394

20. Beaven, M. A. and Metzger, H. (1993) *Immunol. Today* **14**, 222–226

21. Paul, W. E., Seder, R. A., and Plaut, M. (1993) *Adv. Immunol.* **53**, 1–29

22. Jouvin, M. H., Adamczewski, M., Numerof, R., Letourneur, O., Valle, A., and Kinet, J. P. (1994) *J. Biol. Chem.* **269**, 5918–5925

23. Pribluda, V. S., Pribluda, C., and Metzger, H. (1994) *Proc. Natl. Acad. Sci. USA* **91**, 11246–11250

24. Alber, G., Miller, L., Jelsema, C. L., Varin, B. N., and Metzger, H. (1991) *J. Biol. Chem.* **266**, 22613–22620

25. Lin, S., Cicala, C., Scharenberg, A. M., and Kinet, J. P. (1996) *Cell* **85**, 865–995

26. Eiseman, E. and Bolten, J. B. (1992) *J. Biol. Chem.* **267**, 21027–21032

27. Wilson, B. S., Kapp, N., Lee, R. J., Pfeiffer, J. R., Martinez, A. M., Platt, Y., Letourneur, F., and Oliver, J. M. (1995) *J. Biol. Chem.* **270**, 4013–4022

28. Repetto, B., Bandara, G., Kado-Fong, H., Larigan, J. D., Wiggan, G. A., Pocius, D., Basu, M., Gillilan, A. M., and Kochan, J. P. (1996) *J. Immunol.* **156**, 4876–4883

29. Pierini, L. M., Holowka, D., and Baird, B. (1996) *J. Cell Biol.* **134**, 1427–1439

30. Thomas, J. L., Holowka, D., Baird, B., and Webb, W. W. (1994) *J. Cell Biol.* **123**, 795–802

31. Schroeder, R., London, E., and Brown, D. (1994) *Proc. Natl. Acad. Sci. USA* **91**, 12130–12134

32. Hołowka, D. and Baird, B. (1996) *Annu. Rev. Biophys. Biomol. Struct.* **25**, 79–112

33. Robertson, D., Hołowka, D., and Baird, B. (1986) *J. Immunol.* **136**, 4565–4572

34. Seagrave, J. and Oliver, J. M. (1990) *J. Cell Physiol.* **144**, 128–136

35. Appar, J. R. (1990) *J. Immunol.* **145**, 3814–3822

36. Pribluda, V. S. and Metzger, H. (1992) *Proc. Natl. Acad. Sci. USA* **89**, 11446–11450

37. WoldeMussie, E., Maeyama, K., and Beaven, M. A. (1986) *J. Immunol.* **137**, 1674–1680

38. Oliver, J. M., Burg, D. L., Wilson, B. S., McLaughlin, J. L., and Geahlen, R. L. (1996) *J. Biol. Chem.* **269**, 29697–29703

39. Minoguchi, K., Benhameou, M., Swaim, W. D., Kawakami, Y., Kawakami, T., and Siranganian, R. P. (1994) *J. Biol. Chem.* **269**, 16902–16908

40. Peters, J. D., Furlong, M. T., Asai, D. J., Harrison, M. L., and Geahlen, R. L. (1996) *J. Biol. Chem.* **271**, 4755–4762

41. Shieh, L., Green, J., Green, O. M., Karas, J. L., Morgenstern, J. P., Ram, M. K., Taylor, M. K., Zoller, M. J., Zyskowsky, L. D., Bolten, B. P., and Brugge, J. S. (1995) *Mol. Cell Biol.* **15**, 272–281

42. Schuh, S. M. and Lublin, D. M. (1995) *FASEB J.* **9**, A1302

43. Yan, S. R., Fumagalli, L., and Berton, G. (1996) *FEBS Letters* **380**, 198–203

44. Thomas, P. M. and Samelson, L. E. (1992) *J. Biol. Chem.* **267**, 12317–12322

45. Draberova, L., Amoui, M., and Draber, P. (1996) *Immunology* **87**, 141–148

46. Chan, A. C., Desai, D. M., and Weiss, A. (1994) *Annu. Rev. Immunol.* **12**, 555–592

47. Cambier, J. C., Pleiman, C. M., and Clark, M. R. (1994) *Annu. Rev. Immunol.* **12**, 457–486