Antiviral Peptides: Identification and Validation

Garima Agarwal1 · Reema Gabrani1

Received: 13 February 2020 / Revised: 30 April 2020 / Accepted: 8 May 2020 / Published online: 18 May 2020
© Springer Nature B.V. 2020

Abstract
Despite rapid advances in the human healthcare, the infection caused by certain viruses results in high morbidity and mortality accentuate the importance for development of new antivirals. The existing antiviral drugs are limited, due to their inadequate response, increased rate of resistance and several adverse side effects. Therefore, one of the newly emerging field “peptide-based therapeutics” against viruses is being explored and seems promising. Over the last few years, a lot of scientific effort has been made for the identification of novel and potential peptide-based therapeutics using various advanced technologies. Consequently, there are more than 60 approved peptide drugs available for sale in the market of United States, Europe, Japan, and some Asian countries. Moreover, the number of peptide drugs undergoing the clinical trials is rising gradually year by year. The peptide-based antiviral therapeutics have been approved for the Human immunodeficiency virus (HIV), Influenza virus and Hepatitis virus (B and C). This review enlightens the various peptide sources and the different approaches that have contributed to the search of potential antiviral peptides. These include computational approaches, natural and biological sources (library based high throughput screening) for the identification of lead peptide molecules against their target. Further the applications of few advanced techniques based on combinatorial chemistry and molecular biology have been illustrated to measure the binding parameters such as affinity and kinetics of the screened interacting partners. The employment of these advanced techniques can contribute to investigate antiviral peptide therapeutics for emerging infections.

Keywords Binding evaluation techniques · High throughput screening methods · In silico approaches · Peptide based therapeutics

Introduction
The infections caused by viral pathogens including clinical viruses or naturally emerging viruses pose a serious threat worldwide. Unfortunately, only few therapeutics are available for limited viruses like Human immunodeficiency virus (HIV), Hepatitis virus, Herpes simplex virus (HSV) and Influenza virus (Rider et al. 2011). Researchers are currently working to extend the range of specific and novel antivirals to other families of pathogens. Since, viruses depend on host cell organism for replication, the selection of target for the designing of effective and safe antiviral drugs without harming the host cell, is an extremely difficult process. Besides this, owing to the evolution, mutations occur in the viral genome, which contribute to the development of resistance to drugs and thus rendered many drugs ineffective (Lee et al. 2019). The peptides can block infection by targeting either virus or its host. The virus specific antiviral peptides are known as virucidal, as they directly target the viral proteins. Most of the antivirals have been reported to inhibit the development of viruses by targeting its specific regions or components. Various steps of viral life cycle have been targeted for the discovery of novel antiviral drugs, such as viral entry, viral synthesis, or assembly. Due to the extracellular site of action and blockage of viral infection, the viral entry inhibition is marked as an attractive strategy (Chew et al. 2017). Protein–protein interactions (PPIs) are the foundation of important cellular processes and are considered as primary targets for the drug discovery over the last decade (Lee et al. 2019; Teissier et al. 2011). The knowledge of crucial interactors involved in PPIs and their mechanism is necessary to pave way for the selection of suitable target for drug discovery. New approaches in therapeutics include the use of small cyclic molecules, proteins/peptides, nucleic
acids such as small interfering RNA (siRNA) and small hairpin RNA (shRNA) molecules (Teissier et al. 2011). Among these advanced approaches, peptides as therapeutics is a promising field in the drug discovery (Lau and Dunn 2018). Peptides are the biologically active molecules composed of amino acids residues that disrupt the PPIs. They are small (less than 100 amino acids), and they can be easily synthesized. They are also highly specific and effective even in nanomolar range. The main benefit of using peptide as therapeutics is its hydrolysis by peptidases present in the body, which prevents its accumulation in specific organs and minimizes the toxic side effects (Ali et al. 2013). Previously, the pharmaceutical industries have shown poor interest for the expansion of peptide-based therapeutics because of their extremely poor ADME (absorption, distribution, metabolism and elimination) properties. However, the advanced research enables modifications of the peptides such as synthesis of amino acid enantiomers, addition of chemical compounds and their nanoparticle formulation to overcome the pharmacodynamic flaws of peptides (Gentilucci et al. 2010; Zeng et al. 2018). The advantages offered by the modified peptides have sparked the interest amongst the researchers and companies. Now-a-days peptide as therapeutics has come to forte with nearly 20 new peptides added in clinical trials annually. In fact, the global market of peptides as drugs has reached to billion dollars with currently more than 60 peptides approved by US Food and Drug Administration (FDA) and over 400 peptides being under clinical phase trials (Lau and Dunn 2018). Peptide as therapeutics are approved or are being considered for the treatment of diseases such as cancer, diabetes, cardiovascular diseases and even infection caused by few viruses such as HIV, Herpes, Hepatitis and Influenza virus. Thus, over the years peptide-based therapeutics has added a new dimension as the potential antiviral candidate. This review focuses on the types of peptides approaches that can be used for the identification of the lead peptides against the target protein and the selected advanced techniques reported for the validation of the peptide binding affinity to their targets.

Antiviral Peptides as Therapeutics

The peptides possessing potential to inhibit the virus are considered as antiviral peptides (AVPs). Usually, the AVPs exhibit antiviral effects by inhibiting the virus directly, but their inhibition sites and the mechanism of action vary within the viral replication cycle (Rider et al. 2011). The AVPs can be obtained through different approaches: (1) Computational approach (2) Natural sources and (3) Biological source such as High-throughput screening (Fig. 1). There are many online databases available which contain information regarding experimentally tested antiviral peptides such as Antiviral peptide database (AVPdp) (Qureshi et al. 2013) where 2683 entries of peptides including 624 modified AVPs are compiled till December 2019, while many others are unreported. Since the field of peptides as antiviral is not entirely explored, therefore, many research studies are being undertaken to elucidate the role of peptides in blocking viral infections. The first peptide drug approved for clinical indication, Enfuvirtide (Enf), a 36-amino acid residue peptide, against HIV corresponds to the heptad-repeat (HR2) domain of gp41 (HIV envelope protein). Enf prevents the fusion of HR1 domain to HR2 during HIV formation and blocks HIV infection (Teissier et al. 2011). Similarly, Boceprevir and Telaprevir, both synthetic peptides against Hepatitis C virus (HCV), got approval by FDA in 2011. These peptides act on NS3/4, a protease inhibitor, and interfere with viral replication (Divyashree et al. 2020). Other peptide candidates such as Myrcludex for Hepatitis B and D viruses (HBV and HDV) (Bogomolov et al. 2016), Flufirvitide for Influenza virus (Skalickova et al. 2015), Sifuvirtide for HIV-1 (Yu et al. 2018), IM862 and SCV-07 for HCV and Thymosin α-1 for HBV as well as HCV (Jenssen 2009), are under various phase trials of pre-clinical and clinical studies. We have discussed the different approaches used for the identification of AVPs. Moreover, the few selected methodologies used for the validation of identified peptides as potential AVPs have also been described here. The techniques used in identification and validation of peptides are compared in Table 1.

Antiviral Peptides Designed from Computational Approach

Computer assisted drug designing process is based on the understanding of structural and functional aspects of the viral machinery. The rational knowledge of the viral proteins and the interactors/cellular partners assists in the selection of target protein. This approach has expedited the process of
S. No	Approach	Technique	Characteristics	Advantages	Disadvantages	References
1	Computational	Docking	Virtual screening of target based hits	Expedite the process of drug discovery	Requires multiple runs to obtain reliable results	Nevola and Giralt (2015)
			Size, shape, charge distribution, polarity, hydrogen bonding, and hydrophobic interactions of ligand-receptor complexes can be identified	Identification of target sites of the ligand and the receptor molecule	Limits the flexibility of receptor	
					Less accurate	
					Docking calculations are complex	
2	Biological	Phage display	Utilizes phages to display foreign protein/peptide	Rapid identification of target specific phages	Library size is limited by phage transformation efficiency (~10^6)	Matsubara (2012) and Fukunaga and Taki (2012)
			Most adopted system	System suitable for delivering small peptides (<20 aa)	Allows only natural amino acids	
				High throughput screening approach	Complicated affinity maturation process because of large diversity of proteins/peptides displayed on surface	
				Selection of disease specific antigen mimics	Limits the rapidity of library generation	
				Selection of organ specific peptides	Restricts the size of expressed proteins	
				Used in B-cell and T-cell epitope mapping	Limits the intractability of some targets	
					Solid surface based biopanning often results in non specific binding	Wang and Liu (2011)
					Likely to interfere with other molecules due to single stranded form of m-RNA	
					Display larger proteins (> 300 aa) with lower efficiency	
					Not suitable for displaying membrane bound proteins	
					Ribonuclease free environment is required	
	Peptidomimetics	Mimics of the natural peptides Prevent the protein–protein/ protein-peptide interaction by competitive binding	Design the mimic of peptide with enhanced bioavailability	Offers restricted conformational structures	Sen et al. (2019)	
			Overcome the proteolytic instability of natural peptides		Termini are exchanged with the inversion of their sequence	
			Improved receptor selectivity		Requires entire understanding of target interaction	
	m-RNA display		Uses the transcription and translation machinery extracted from prokaryotic/ eukaryotic cells Utilizes covalent mRNA-polypeptide complexes linked through puromycin	Library size as large as (~ 10^{12–15})		
				Protein expression free from cellular constraints		
				Allows the incorporation of unnatural amino acids		
				Greater diversity as transformation is not required		
				Increased probability of higher affinity hits		
S. No	Approach	Technique	Characteristics	Advantages	Disadvantages	References
-------	------------------	--	---	---	--	---------------------------------
	Ribosome display	Living cell free technology	Utilizes non-covalent ribosome-mRNA-polypeptide complexes for display system	Library size as large as (~ 10^{12-15})		
Greater diversity due to not being dependent on transformation efficiency						
Increased probability of higher affinity hits						
Suitable for generating toxic, proteolytically sensitive and unstable proteins						
Random mutations can be introduced						
Allows the incorporation of unnatural amino acids	Selection stringency is limited					
System is very sensitive to RNase activity						
Ribonuclease free environment is required	Dreier and Pluckthun 2011					
	Yeast display	Proteins/peptides are usually fused to Aga2 protein subunit of yeast	Can be displayed as N- or C-terminal fusion	Displays fully monomeric as well as oligomeric proteins on their surface due to eukaryotic machinery		
More diverse library as compared to phage system	Library size is smaller (~ 10^{6-7})					
than other display systems						
Allows only natural amino acids						
Allows the expression of extracellular proteins						
Complicated affinity maturation process because of large diversity of proteins/peptides displayed on surface	Linciano et al. (2019)					
3	Advanced Techniques	Surface Plasmon resonance (SPR)	Label-free binding technique			
Quantitatively analyzes the real time binding kinetics of two bimolecular interactions	Label-free detection					
Real-time data monitoring						
Sensitive and accurate						
Small sample quantity						
Ability to Handle Complex Samples						
Ability to Replicate Measurements	Expensive instrument and sensors					
Expensive maintenance						
Low throughput	Patching (2014)					
		Biolayer interferometry	Optical analytical technique			
Quantify real time binding kinetics of bimolecular interactions | Label-free detection
Real-time data monitoring
No reference channel required
Crude sample compatibility
System requires less maintenance
High throughput
Low vibrational/mechanical noise
Simple, fast and more accurate results | Requires immobilization of ligand to surface of tip
No temperature control
Low sensitivity as compared to SPR
Poor reproducibility
Relatively high sample consumption
Results should be cross-validated with SPR | Shah and Duncan (2014) |
drug designing. Peptides can be identified computationally; via in silico screening using molecular docking. A docking program predicts the target site which is usually known as pocket or protrusion with hydrogen bond donors and acceptors, hydrophobic characteristics and different molecular shapes. Subsequently, library of peptides docked with these pockets results in the highest binding peptide (Nevola and Giralt 2015). For example, peptides have been designed computationally using virtual docking against the surface protein of Zika virus (ZIKV) for its detection. Tetra, penta, hexa and heptapeptide libraries were docked using Open Eye Scientific Software against envelope protein of ZIKV; subsequently, eight peptides were selected. They were further tested by Direct ELISA and out of them, three were delineated with best performance for Zika detection (Mascini et al. 2019). Another method is based on peptidomimetics which mimics the designed targets, prevents the interaction of proteins by competitive binding. Four putative peptide inhibitors were designed against Nipah virus (NiV) proteins using the approach of peptidomimetics and the stability of peptide-protein complexes were analysed using MD simulation (Sen et al. 2019). The in silico methods (Docking and peptidomimetics) can predict the peptide sequence but further validation using in vitro/in vivo approaches is required to establish its biological activity.

Antiviral Peptides Derived from Natural Source

The peptides that exhibit immunomodulatory and inhibitory properties against infection caused by bacteria, fungi, viruses or protozoa, are expressed as naturally occurring antimicrobial peptides (AMPs). The AMPs have been extensively used as substitutes of antibiotics for bacterial infections, but recently their use has been expanded to antiviral therapeutics also (Ahmed et al. 2019a). The naturally occurring AVPs are amphipathic and cationic in nature with net positive charge (Bulet et al. 2004). Moreover, it has been proven that the hydrophobicity of the peptides is an essential property for targeting enveloped viruses (Badani et al. 2014; Wang et al. 2017). These AVPs can be derived from different sources such as plants, bacteria, arthropods, amphibians, marine organisms and mammals with their varied mechanism of action (Zhang and Gallo 2016). A peptide family called cyclotides derived from different plant sources has been proven successfully for their antiviral activity against HIV, Influenza virus and Dengue virus (Ireland et al. 2008; Sencanski et al. 2015; Gao et al. 2010). The small size, cationic and amphipathic nature of the cyclotides facilitates its effective binding to the target and rupture the membrane. This allows the leakage of cell components which further leads to the cell death (Weidmann and Craik 2016). In a study, kalata B1, a cyclotide isolated from the leaves of Oldenlandia affins plant, showed destruction of viral particle
at entry step along with inhibition of viral-host membrane fusion, thus exhibiting anti-HIV activity (Henriques et al. 2011). Similarly, a peptide derived from arthropod, Hyalophora cecropia, known as cecropin A showed the inhibitory activity against HIV, Junin virus (JUNV) and HSV by suppression of their gene expression (Wachinger et al. 1998; Albiol Matanic and Castilla 2004). Moreover, in recent studies bovine lactoferrin (bLF) has showed the antiviral activity against three Aedes mosquito transmitted viruses: Dengue (DENV), Chikungunya (CHIKV) and Zika virus apart from anti-HBV activity established in a previous study (Li et al. 2009; Carvalho et al. 2017; Chen et al. 2017). The bLF blocks the viral binding to its target site and thus prevents its spread to host cells. Many other AVPs originated from natural source are summarized in Table 2 with their varied mode of action. However, despite promising efficacy, the utility of these peptides is constrained due to weak binding, low stability, other side effects and virus resistance. The shortcomings of AVPs from natural resource need to be addressed so that they can be considered as mainstay antiviral therapeutics.

Antiviral Peptides Identified Through Biological Approach

Methodologies based on in vitro display approach, usually offer genetically encoded peptides with superior quality and high affinity to their targets. Among these methodologies, phage display, mRNA display, ribosome display, yeast display and bacteria display are the most common technologies to generate peptides. The phage display technology is widely used and considered as the most appropriate for the screening of high efficiency peptides. While these technologies have already been thoroughly illustrated in other reviews (Nevolà and Giralt 2015), we have focused on the use of selected methodologies for the identification of antiviral peptides and compared them in Table 1.

Phage Display

Phage display technology is an efficient in vitro screening method for the selection of high affinity and target specific peptide binder from a randomly displayed peptide library. The technology involves the fusion of exogenous peptide sequence into the genome of phage, its expression on the surface as fusion product to phage surface protein. The phage displayed libraries thus constructed have 10^{8-10} variants at a time. In this method, biopanning is performed in which the target molecule is immobilized on surface and incubated with phage library. The unbound or excess of phage particles are removed by washing and potentially bound phages are eluted by acidic/basic buffer or with appropriate ligand. These recovered phages are amplified by infecting bacterial cells *Escherichia coli* and are used for subsequent rounds of biopanning to obtain target specific phages using affinity selection. The sequencing of DNA isolated from binding phage, validated by ELISA, helps to identify peptide sequence (Fukunaga and Taki 2012; Matsubara 2012). A peptide named P3 against Japanese encephalitis virus (JEV) host fusion has been identified as the potential AVP using phage display library. The screened peptide has shown the highest affinity to domain III of JEV envelope glycoprotein assessed by Biolayer interferometry and IC$_{50}$ of ~ 100 µM and IC$_{50}$ of ~ 1 µM in JEV infected BHK-21 cells (Wei et al. 2019). Similarly, an analogous study conducted by de la Guardia et al. (2017) identified three peptides against the domain III of DENV envelope protein to block the DENV infection. Further these peptides were non-toxic to the target cells. Moreover, the same approach has also been used to identify peptides targeting non-structural viral protein: RNA-dependent RNA polymerase (NS5B) of HCV, by screening a library composed of disulfide-constrained heptapeptides (Amin et al. 2003). In another study, a novel heptapeptide was identified using random peptide phage library which inhibited the integration of HIV genome into the host (Desjobert et al. 2004). The most important advantage of this technology over others is its high rate of mutability with affinity selection, which widely employs the screening of phage displayed peptides for identification of potential AVPs. There are many other AVPs derived from the utilization of phage display technology which are summarised in Table 3.

mRNA Display

mRNA display technology utilizes the covalently bonded mRNA-polypeptide complexes formed during in vitro translation, which are linked through puromycin (an analogue of the 3′-tyrosyl-tRNA along with mimics of adenosine and tyrosine) via A-site of ribosome. The complexes with desired functions are allowed to bind to the immobilized target protein, reverse transcribed to cDNA and amplified via Polymerase chain reaction (PCR). This enables the reinforcement of DNA template library for next round of screening (Cotten et al. 2012; Newton et al. 2019). The most successful use of mRNA displayed peptide library was described by Litovchick and Szostal (2008), in which they have screened potential AVPs using cyclic peptide-mRNA fusion library targeting Internal ribosomal entry site (IRES) of HCV for inhibition of virions. Another use of this technology was reported for the reverse engineering of peptide vaccines for HCV. High affinity peptides to neutralizing monoclonal antibodies (mAbs) of HCV were selected in this study and used for peptide-based vaccine development (Guo et al. 2015).
S. No	Peptide	Source	Characteristics	Targeted virus	Mode of action/activity	Reference
I	**Plant**					
1	2 kDa peptide	Seeds of *Sorghum bicolor*	2 kDa, cationic and amphipathic peptide	HSV-1	Inhibition of cell entry by masking essential viral envelope proteins	Camargo et al. (2008)
2	Cyclotide: vhl-1	Leaves of *Viola hederaceae*	31 amino acid cyclic cystine knot like peptide	HIV	Inhibition of viral fusion by disrupting the lipid envelope	Wang et al. (2008)
3	Cycloviolacin VY1	*Viola yedoensis*	31 amino acid peptide, three conserved disulphide bonds, bridge like 3-D structure	Influenza H1N1	Inhibition of virus at cell entry	Liu et al. (2014)
4	Kalata B1	Leaves of *Oldenlandia affinis*	Cyclic backbone, knot-like rigid structure, three conserved disulphide bonds	HIV	Inhibition of viral-host membrane fusion	Henriques et al. (2011)
5	Kalata B1-inspired peptide	Derivative of Kalata B1 peptide	Amino acid modifications in kalata B1 peptide	DENV	Inhibition of viral replication	Gao et al. (2010)
6	Peptides 2 and 4	*Acacia catechu*	15 amino acids, cationic and amphipathic peptide	DENV	Inhibition at early steps of viral entry	Panya et al. (2019)
7	Sesquin	Seeds of *Vigna sesquipedalis*	7 kDa, cationic, defensin like peptide	HIV	Inhibition of viral replication by hindering reverse transcriptase activity	Jack and Tzi (2005)
II	**Bacteria**					
8	Locillomycin	*Bacillus subtilis*	Cyclic lipononapeptide	PEDV	Unknown	Luo et al. (2015)
9	Surfactin	*Bacillus subtilis*	Cyclic lipopeptide, amphiphilic	HIV, HSV-1, HSV-2, VSV, SIV, NDV, PEDV	Disintegration of lipid envelope and, capsid through ion channel formations	Yuan et al. (2019)
III	**Arthropod**					
10	Alloferon 1 and 2	Hemolymph of blowfly: *Calliphora vicina*	Linear, nonglycosylated oligopeptide of 13 and 12 amino acid residues, respectively	Influenza virus	Inhibition by activation of natural killer cells and release of interferon	Chernysh et al. (2002)
11	Alloferon 1-derived peptide	Hemolymph of blowfly: *Calliphora vicina*	Modifications in their N-terminal portions of Alloferon 1 peptide	HSV-1	Inhibition of viral replication	Kuczer et al. (2010)
12	Bmkn2-7	Venom of scorpion: *Mesobuthus martensi*	13-amino acid residues, basic, alpha-helical peptide	HIV-1	Inhibition by direct interaction with viral particle	Chen et al. (2012)
13	Cecropin A	Moth *Hyalophora cecropia*	37-amino acid linear, cationic peptide	HIV; HSV-1 and 2; JUNV	Suppression of viral gene expression	Wachinger et al. (1998) and Hultmark et al. (2005)
S. No	Peptide	Source	Characteristics	Targeted virus	Mode of action/ activity	Reference
-------	------------------	-------------------	--	----------------	---	----------------------------------
	Ctry2459	Chaerilus tryznai	13-amino-acid residue, helical and amphipathic peptide	HCV	Inhibition by inactivating the viral particles, virucidal activities and suppressed the established infection at cellular level	Hong et al. (2013)
15	Ctry2459-H2		Histidine-rich Ctry2459 peptide			
16	Ctry2469-H3		Histidine-rich Ctry2459 peptide			
17	Eva1418	Venom of scorpion: Euscorpiops validus	Helical and amphipathic peptide	HSV-1	Inhibition by disruption of initial steps of infection	Zeng et al. (2018)
18	Eva1418-FH5		Histidine rich derivative of Eva1418 peptide		Enhanced inhibition activity with lowest cytotoxicity	
19	Hp1090	Venom of Scorpion: Heterometrus petersii	Amphipathic α-helical peptide	HCV	Inhibition of viral replication	Yan et al. (2011)
20	Hp1239		Amphipathic α-helical peptide	HSV-1	Inhibition of cell entry by blocking viral-host membrane fusion	Hong et al. (2014)
21	Hp1036		Amphipathic α-helical peptide	HSV-1	Inhibition of cell entry by blocking viral-host membrane fusion	Hong et al. (2014)
22	Lactarcin 1	Venom of spider: Lachesana tarabaeva	Amphipathic α-helical peptide	DENV	Inhibition of viral replication by binding to viral protease	Rothan et al. (2014)
23	Mastoparan	Venom of wasp: Vespula lewisi	14 amino acid residues, cationic, amphipathic α-helical peptide	VSV, HSV-1, flaviviruses	Inhibition of cell entry by disruption of envelope	Moreno and Giralt (2015)
24	Mastoparan 7	Venom of wasp: Vespula lewisi	Derivative of Mastoparan peptide	VSV	Inhibition of cell entry by disruption of envelope	Sample et al. (2013)
25	Melittin	Venom of bee: Apis melifera	26 amino acid linear cytolytic peptide with no disulfide bridge	HIV-1; HSV-1 and 2; JUNV	Inhibition of cell entry by disruption of envelope	
26	Mucroporin-M1	Scorpion: Lychas mucronatus	Cationic host defense peptide	MeV, Influenza-H5N1; SARS-CoV; HIV-1 HBV	Virucidal activity	Li et al. (2011)
	Amphibians				Inhibition of viral replication by decreasing expression of important HBV replication factors	
27	Dermaseptins S3, S4	Frogs of Phylomedusa genus	Cationic, amphipathic and α-helical peptide	HSV-1 and 2, HIV	Inhibition at cell entry step by targeting viral envelopes	Lorin et al. (2005)
28	Dermaseptin derived peptide	Frogs of Phylomedusa genus	Cationic, amphipathic and α-helical peptide	Rabies virus	Inhibition at cell entry step	Bergaoui et al. (2013)
29	HS-1	Skin of Anuran: Hypsiboas semilineatus	Cationic, amphipathic and α-helical peptide	DENV 2 and 3	Inhibition at cell entry step by targeting viral envelopes	Monteiro et al. (2018)
S. No	Peptide	Source	Characteristics	Targeted virus	Mode of action/ activity	Reference
-------	--------------------------	-------------------------	---	-------------------------	--	---------------------------------
30	Magainin I and II	Frog: *Xenopus laevis*	23 amino acid residues, lysine-rich, cationic, amphipathic and α-helical peptide	HSV-1 and 2	Inhibition at cell entry step by disrupting the structure of viral envelope proteins; virucidal activity	AlbiolMatanic and Castilla (2004)
31	Magainin-II derived peptide	Frog: *Xenopus laevis*	Alanine-substituted magainin-2 amide along with three other peptides	VV	Virucidal activity by attacking its envelope	
32	Temporin B	Frog: *Rana temporaria*	10–50 amino acids, cationic, amphipathic and α-helical peptide	HSV-1	Inhibition at entry step by interfering in cell-to-cell spread of the virus	
33	Urumin	Indian frog: *Hydropylax bahuvistara*	27-residues, cationic, amphipathic and α-helical peptide	Influenza-H1N1 and H1N2	Inhibition at cell entry step by targeting cell receptors	Holthausen et al. (2017)
34	Callipeltin A	*Callipeltin sp.*	Cyclic depsidecapeptide	HIV-1	Inhibition of virion entry	Zampella et al. (1996)
35	Celebeside A-C	*Siliquariaspongia mirabilis*	Cyclic depsipeptides	HIV-1	Inhibition of virion entry	Plaza et al. (2009)
36	Clavanin A	Tunicate: *Styelaclava*	23 residues alpha-helical peptide with amidated C-terminal	Rotavirus, Denovirus	Inhibition by interfering with viral membranes	Carriel-Gomes et al. (2007)
37	Homophymin A	*Homophymina sp.*	Cyclic depsideptide	HIV-1	Inhibition of virion entry	Plaza et al. (2008)
38	Koshikamides F	*Theonella swinhoei*	17-residue cyclic depsipeptides	HIV-1	Inhibition by blocking HIV entry into T cells	Plaza et al. (2010)
39	Koshikamides H	*Theonella cupola*	17-residue cyclic depsipeptides	HIV-1	Inhibition by blocking HIV entry into T cells	
40	LvHcL48	Hemocyanin of shrimp: *Litopenaeus vannamei*	79 amino acid fragment	WSSV	Inhibition of the transcription and proliferation possibly by binding to the viral envelope protein	Zhan et al. (2018)
41	Microspinosamide	*Sidonops microspinosa*	Cyclic depsideptide incorporating 13 amino acid residues	HIV	Inhibition of cytopathic effects of the infection	Rashid et al. (2001)
42	Mirabamide A, C and D	*Siliquaria spongia mirabilis*	Cyclic depsipeptides	HIV-1	Inhibition at the early stages of virus entry	Plaza et al. (2007)
43	Mirabamides E, F, G, and H	*Sponge: Stelletta clavosa*	Cyclic depsipeptides	HIV-1	Inhibition at entry step by disruption of viral membrane fusion	Lu et al. (2011)
44	Mollamides B	Tunicate: *Didemmummolle*	Cyclic hexapeptide	HIV	Unknown	Donia et al. (2008)
45	Mutrendamide A	*Theonella swinhoei*	Sulfated cyclic depsipeptide	HIV-1	Inhibition by blocking HIV entry into T cells	Plaza et al. (2010)
46	Neamphamide A	*Neamphius huxleyi*	Cyclic depsipeptide	HIV-1	Inhibition of virion entry	Oku et al. (2004)
S. No	Peptide	Source	Characteristics	Targeted virus	Mode of action/activity	Reference
-------	---------------	----------------------------------	---	----------------	--	----------------------------
47	Nkl71-100	Turbot: *Scophthalmus maximus*	five-helix bundled structure stabilized by three intra chain disulphide bonds	SVC	Inhibition by not binding of viral particles to host cells and fusion of virus and cell membranes	Falco et al. (2019)
48	Papuamide A	Tunicate: *Didemnum molle*	Cyclic depsipeptides	HIV	Virucidal mechanism	Andjelic et al. (2008)
49	Piscidin 1	Mast cells of hybrid Striped bass (fish)	22 amino acid, α-helical and amphipathic peptide	PRV	Inhibition by direct interaction with virus	Hu et al. (2019)
50	Pa-MAP 1	Polar fish: *Pleuroproctus americana*	an alanine-rich α-helix peptide composed of eleven amino acid residues with three imperfect motif repetitions	HSV-1 and 2	Virucidal mechanism of action, Inhibition at entry step by interacting viral surface glycoprotein	Migliolo et al. (2012)
51	P34	Intestinal contents of *Leporinus sp.* (fish)	Anionic, thermostable, hydrophobic, lipidic peptide	EAV, FHV-1	Virucidal activity	Castro et al. (2014)
52	Stelletapin A and B	*Stelletta clavosa*	Cyclic and nonribosomal depsipeptides	HIV-1	Inhibition of cytopathic effects of the infection	Shin et al. (2015)
53	Theopapuamide A	*Theonella swinhoei*	Cyclic depsipeptides	HIV-1	Inhibition of virion entry	Andjelic et al. (2008)
54	Theopapuamide B-D	*Siliquariaspongia mirabilis*	Undecapeptides with an N-terminal fatty acid moiety	HIV-1	Inhibition by disruption of viral membrane	Plaza et al. (2009)
VI	Mammals					
55	α-Defensin HNPs 1, 2 and 4	Human neutrophil	18 to 45 amino acid residues cationic charge, amphipathic properties and predominance of β sheets stabilized by three disulfide bonds	HIV-1	Inhibition at cell entry step	Wu et al. (2005)
56	α-Defensin HNPs 1	Human neutrophil		Influenza A	Inhibition of viral replication	Salvatore et al. (2007)
57	β-defensins hDB-2	Epithelial cells	Cysteine-rich, cationic peptides	HPV; VZV; HIV	Inhibition at cell entry as well as viral replication by late reverse transcripts and nuclear import	Meyer-Hoffert et al. (2008) and Crack et al. (2012)
58	β-defensins hBD-3	Epithelial cells		HPV; VV; VZV; HIV	Inhibition of viral replication	Quinones-Mateu et al. (2003), Howell et al. (2007), Gwyer Findlay et al. (2015)
Table 2 (continued)

S. No	Peptide	Source	Characteristics	Targeted virus	Mode of action/activity	Reference	
59	Cathelicidin LL-37	Human neutrophil granules	12 to 88 amino acid residues, cationic, α-helical and amphipathic peptide	VZV; VV; HSV-1; HIV; RSV; Influenza A; HCV; DENV; ZIKV; VEEV	Inhibition of cell entry by disruption of envelope	Sørensen et al. (2001), Barlow et al. (2011), Tripathi et al. (2015), Matsumura et al. (2016), Alagarasu et al. (2017)	
					Adenovirus; Aichi virus; Rhinovirus	Inhibition of cell entry	Gordon et al. (2005), Sousa et al. (2017), Ahmed et al. (2019b)
60	CYVIP	Human hemofiltrate	71-amino-acid, cationic peptide	HCMV	Inhibition of cell entry by interacting the host cell receptors	Borst et al. (2013)	
61	Indolicidin	Bovine neutrophils	Tridecapeptide amide	HIV	Inhibition by membrane-disruption	Robinson et al. (1998)	
62	Lactoferrin	Mammals’ milk	Hydrophobic, cationic, and helical peptide	CMV; HSV-1 and 2; Adenovirus; Rotavirus; Poliovirus; RSV; HIV; Influenza; HCV; HBV DENV; CHIKV	Inhibition at cell entry as well as viral replication	Van der Strate et al. (2001), Li et al. (2009), Carvalho et al. (2017), Chen et al. (2017)	
63	Lactoferricin	Derivative of lactoferrin	Amphipathic, cationic peptide corresponds to lactoferrin fragment 17–41	CMV, HIV-1, HPV	Inhibition at cell entry step	Andersen et al. (2001), Misra et al. (2007), Li et al. (2009), Wang et al. (2016)	
				HSV-1 and 2	Inhibition of viral replication by interfering the host cell microtubules	Marr et al. (2009)	
64	Protegrin-1	White blood cells of swine	18 amino acid residues, cyclical, β-sheets and cationic	DENV	Inhibition of viral replication by binding to viral protease	Rothan et al. (2012)	

Human immunodeficiency virus: HIV; Dengue virus: DENV; Herpes simplex virus 1 and 2: HSV-1 and HSV-2; Porcine epidemic diarrhea virus: PEDV; Vesicular stomatitis virus: VSV; Simian immunodeficiency virus: SIV; Newcastle disease virus: NDV; Coxsackie virus B2: CBV-2; Junin virus: JUNV; Hepatitis C virus: HCV; Measles morbillivirus: MeV; Severe acute respiratory syndrome coronavirus: SARS-CoV; Hepatitis B virus: HBV; Vaccinia virus: VV; White spot syndrome virus: WSSV; Carp siphivirus: SVC; Pseudorabies virus: PRV; Equine arteritis virus: EAV; Feline herpes virus type-1: FHV-1; Bovine herpesvirus1: BoHV-1; Human papillomavirus: HPV; Varicella zoster virus: VZV; Respiratory syncytial virus: RSV; Zika virus: ZIKV; Venezuelan equine encephalitis virus: VEEV; Human cytomegalovirus: HCMV; Cytomegalovirus: CMV; Chikungunya virus: CHIKV
Ribosome Display

Ribosome display is an entirely in vitro and cell-free system which makes it efficient in comparison to other display systems (Nevola and Giralt 2015). In this system, the coupling of genotype and phenotype is essential for the selection of high affinity peptides from their pool. During in vitro translation, the association between the mRNA, ribosome and the nascent polypeptide leads to a stabilized protein-ribosome-mRNA complex. This ternary complex is feasible due to the presence of spacer sequence, without stop codon, inserted into the DNA library coding for proteins/peptides. The spacer ensures that the peptide folds properly and stays attached to the mRNA and ribosomes. These specific ribosomal complexes that display folded peptides are then allowed to bind to the immobilized target and the non-specific ones are washed off. The mRNA complexes having bound polypeptide chains are recovered and their sequences are obtained (Zahnd et al. 2007). A large library that contains $10^{13} - 10^{14}$ clones can be screened as it is not dependent on the living cell system and is free of any bias. This technology has numerous advantages over others as the diversity of library depends on the number of available ribosomes and mRNA in the system rather restricted by the bacterial transformation efficiency (Dreier and Plückthun 2011). Moreover, such system allows insertion of random mutations at any round of selection since library has not been transformed after any diversification step. The ribosomal display technology has opened a new insight for using peptide inhibitors for early diagnostic as well as therapeutic agent. For instance, the peptide inhibitor against envelope protein E2 of HCV was identified using ribosomal display library. After extensive selection of 13 rounds, 12-mer peptides were generated. This peptide named PE2D has not only being verified to bind E2 protein but also blocks the virus entry inside hepatocyte cells (Chen et al. 2010).

Yeast Display

The main advantage of the yeast display system over the others is the complete exposure of the peptide/protein for fusion and its compatibility with the fluorescence-activated cell sorting (FACS), which enables the high-throughput screening and characterization of protein/peptide combinatorial libraries (Linciano et al. 2019). Moreover, it also allows the expression of proteins with post translational modifications which has encountered the problem of misfolding in the field of antibody engineering (Mei et al. 2017). Saccharomyces cerevisiae strain based on the Aga1–Aga2 proteins is the most widely used display system. In this system, the protein/peptide is displayed either as N- or C-terminal fusion to the Aga2 protein of yeast cell, which is linked to the Aga1 via disulphide bonds. Every yeast cell exhibits $10^4 - 10^5$ copies of the Aga2 fusion protein/peptide on its surface though the expression of individuals may vary. The construct of yeast cell also contains two epitope tags at the N and C terminus of Aga2 fusion protein, which facilitates the real time quantification of their expression using flow cytometry. Moreover, the tags also enable to estimate and quantify the binding of the target via different labelling approaches (Linciano et al. 2019). Though yeast display system is a valuable platform for screening purpose, however, the library size is restricted due to limited transformation efficiency of yeast. Another major limitation of yeast display is complicated affinity maturation process in comparison to other systems. Besides, these drawbacks, this technology has provided a wide application of high throughput screening in peptide engineering and a platform to study protein–protein/peptide interactions in vivo. In a recent study, this technology was used to screen the hits from a grafted C-peptide library of HIV gp41 against N-peptide trimer of HIVgp41. As a result, four hits suppressed the HIV entry better than others (Tennyson et al. 2018).

Application of Advanced Techniques to Validate Identified Peptides

Another challenging task in the intervention of antiviral peptides is the corroboration of the binding of selected peptides to the target protein, and their antiviral efficacy. Various techniques have been developed to evaluate the PPIs in vitro/in vivo such as Surface Plasmon Resonance (SPR), Optical based Biolayer interferometry, Fluorescence Resonance Energy Transfer (FRET), Nuclear Magnetic Resonance (NMR), Isothermal Calorimetry (ITC), yeast two hybrid display, microscopic visualization and many more. Some of them can be used for the binding evaluation of the peptides to their target proteins. Since various reviews and reports are available on PPIs detection methods in detail (Nevola and Giralt 2015), this review focuses only on the recent techniques used to determine/ validate the peptide binding efficiency (Table 1).

Surface Plasmon Resonance (SPR)

SPR is an optical based detection and label-free technique which utilizes the protein in small amount for the real time quantification and evaluation of the binding affinity as well as kinetics between peptide and target protein (Patching 2014). The binding affinity between interacting partners is measured via small variation in the refractive index at sensor surface. This response change is calculated as the change in the angle of resonance of refracted light when flowing analyte binds to the immobilized ligand. The change in the angle of resonance is measured in the form of resonance unit.
S. No	Peptide sequence	Library used	Targeted virus	Targeted protein	References
1	GSHHRHVHSPFV	12-mer peptide library: New England Biolabs (NEB)	Avian infectious bronchitis virus	Purified whole virus	Peng et al. (2006)
2	HAWDPIARDPF	12-mer peptide library (NEB)	Avian influenza A virus-subtype H5N1	H5N1 viruses	Wu et al. (2011)
3	AAWHIVALAPN	12-mer peptide library (NEB)	Avian infectious bronchitis virus	Purified whole virus	Peng et al. (2006)
4	ATSHLHVRPSK	7-mer disulfide constrained peptide library (NEB)	Avian influenza virus H9N2	AIV sub-type H9N2 virus particles	Rajik et al. (2009)
5	NDFRSKT	7-mer disulfide constrained peptide library (NEB)	Avian influenza virus H9N2	AIV sub-type H9N2 virus particles	Rajik et al. (2009)
6	HSIRYDF	7-mer Peptide Library	Bovine ephemeral fever virus	Neutralization site 1 of glycoprotein: G1	Hou et al. (2018)
7	YSLRSDY	Octapeptides peptide library	Classical swine fever virus	Envelope protein: E2	Yin et al. (2014)
8	DRATSSNA	7-mer peptide Library	Dengue virus	Recombinant dengue envelope protein and its domain III	de la Guardia et al. (2017)
9	SYQSHYY	7-mer peptide Library	Dengue virus	Recombinant dengue envelope protein and its domain III	de la Guardia et al. (2017)
10	STSFWIT	7-mer peptide Library	Dengue virus	Recombinant dengue envelope protein and its domain III	de la Guardia et al. (2017)
11	ELLASPSW	7-mer disulfide constrained peptide library (NEB)	Hepatitis B virus	Full-length HbcAg	Ho et al. (2003)
12	CWSFFSNIC	7-mer disulfide constrained peptide library (NEB)	Hepatitis B virus	Full-length HbcAg	Ho et al. (2003)
13	KHMHWHPALNT	12-mer peptide library (NEB)	Hepatitis B virus	PreS1 region of L-protein	Wang et al. (2011)
14	WTDMMFAWSPTP	M13-based 12-mer peptide library	Hepatitis B virus	Thio-PreS	Deng et al. (2007)
15	FPWGNNTW	7-mer disulfide constrained peptide library (NEB)	Hepatitis C virus	NS5B (del 21-His) protein	Amin et al. (2003)
16	ATWVCGPCT	Phage-displayed nonapeptide library (PVIII9aa)	Hepatitis C virus	mAb JS-81 against CD81	Cao et al. (2007)
17	WPWHNHR	heptapeptide M13 phage-display library	Hepatitis C virus	Truncated envelope protein E2	Lu et al. (2014)
18	RINNIPWSEAMM	libraries of random 12-mers, 7-mers, and cyclic 9-mers	Human immunodeficiency virus	Envelope glycoprotein gp120	Ferrer and Harrison (1999)
19	VSWPELYKWITWS	7-mer disulfide constrained peptide library; 12-mer peptide library (NEB)	Human immunodeficiency virus	mAb VRC01	Chikaev et al. (2015)
20	FHNHGKQ	7-mer peptide library (NEB)	Human immunodeficiency virus	HIV-1 Integrase	Desjoubert et al. (2004)
21	GWWYKGRAPVS-AVA	Pentadecapeptides peptide library	Influenza virus A	Monolayer of the ganglioside:GM3	Matsubara et al. (2009)
22	RAVWRHSATPSHSV	libraries of random 12-mers, 7-mers, and cyclic 9-mers	Human immunodeficiency virus	mAb VRC01	Chikaev et al. (2015)
23	SENRKVPFYSHS	12-mer peptide library (NEB)	Japanese encephalitis virus	Domain III of the virus envelope glycoprotein	Zu et al. (2014)
24	TPDCCTRWCPLT	12-mer peptide library (NEB)	Japanese encephalitis virus	Domain III of the virus envelope glycoprotein	Zu et al. (2014)
25	RLRNRAIIIRADA	12-mer peptide library (NEB)	Mink enteritis virus	Purified whole virus	Zhang et al. (2012)
26	LAHKSRLYERHM	7-mer disulfide constrained peptide library (NEB)	Newcastle disease virus	Inactivated whole virus	Ramanujam et al. (2002)
27	CTLLTKLYC	7-mer disulfide constrained peptide library (NEB)	Newcastle disease virus	Inactivated whole virus	Ramanujam et al. (2002)
28	EVSHPKVG	Heptapeptide library-pSKAN8-HyA library	Newcastle disease virus	Inactivated whole virus	Ozawa et al. (2005)
29	SGGSNRP	Heptapeptide library-pSKAN8-HyA library	Newcastle disease virus	Inactivated whole virus	Ozawa et al. (2005)
30	WVTTSNQW	Heptapeptide library-pSKAN8-HyA library	Newcastle disease virus	Inactivated whole virus	Ozawa et al. (2005)
(RU), where 1RU is equivalent to the 10^{-4} deg/10$^{-12}$ gmm$^{-2}$ angle shift. It has become the gold standard in research, typically characterizes the interaction between two molecules in which one is in mobile state and the other is fixed on a gold film. This technique can be used to screen the library of molecules for their binding affinity against a single soluble protein which is immobilized on the sensor surface (Tang et al. 2010). Thus, SPR has emerged as a powerful technique in therapeutic intervention. It can also be adapted to study the interactions involving complicated proteins in situ, such as, membrane-bound proteins, ion channels and other growth, immune and cellular receptors, which are considered as potential targets for drug discovery (Patching 2014). Bai et al. (2007) have investigated the affinity interaction of screened peptides to the Envelope protein of West Nile virus (WNV) using SPR, in which they found peptide P9 to have the highest affinity to the target. Besides this, in another study, the binding of Helix-A peptide to the neuronal microtubules (MTs): β-tubulin was determined by SPR. Helix-A peptide prevents the binding of the gp120 protein of HIV to the β-tubulin, a neuronal MT and possesses neuroprotective activity (Avdoshina et al. 2019). Moreover, the SPR has been used as a ligand screening strategy for Influenza virus and HSV-1, in which the technique enables the continuous screening of inhibitors that inhibit the viral entry. The major advantage of this technique is the use of minimal amount of immobilized viral surface proteins or receptors as compared to other techniques (Kumar 2017).

Biolayer Interferometry

Another optical based and label-free technique is the Biolayer interferometry (BLI) which validates the interaction between two molecules by quantifying the change in an interference pattern. The target molecule is immobilized on the tip of fiber optic biosensor that moves toward the wells containing the binding partner present in solution. The association and dissociation of the binding partner with the immobilized molecule is monitored by BLI, leading to the generation of optical thickness at the tip of biosensor that produces an optical interference pattern. This pattern can be quantified and used to determine real time kinetic rates of binding and dissociation (Shah and Duncan 2014). Thus, it has become a valuable tool for monitoring interactions between small molecules in the field of drug discovery. This technique is advantageous over others as nonspecific and non ideal interactions can be differentiated in initial steps by examining their binding response and moreover, it has low false positive rate. Besides, the varied flow rate, available unbound molecules and the refractive index of adjacent medium do not affect the obtained interference pattern, which is the unique property of this technique (Wartchow et al. 2011). In this context Zu et al. (2014) have analysed the real time binding affinity of chemically synthesized screened peptides to the Domain III of JEV envelope protein and reported peptide P3 possessed the highest affinity.

Fluorescence Resonance Energy Transfer (FRET)

FRET is a sensitive method to investigate the interaction of proteins with large diverse set of peptides/proteins libraries for high throughput screening efficiently. This technique is reliable on the distance-dependent transfer of energy between dye-labelled molecules, where the excited donor fluorophore transfers its energy to an acceptor chromophore (Rogers et al. 2012). This energy transfer determines the ratio metric signal generated by the reduction in fluorescence of donor molecule and the increment in fluorescence of acceptor molecule. The technique of FRET can be used as both screening as well as validation method. In view of this, various FRET based studies have been reported for the identification of potent inhibitors against several viral proteases such as SARS coronavirus 3CLpro protease, DENV NS2B-NS3 protease, WNV Serine Protease, HCV NS3/4A protease.
and HIV protease. Similarly, a FRET based proteolytic assay was used to screen the compounds against CHIKV capsid protein (Aggarwal et al. 2015).

Challenges to the Peptide as Therapeutic Use

Several limitations that obstruct the way of peptide to be a successful therapeutic drug, are its instability, short half-life, lower potency, inability to cross membrane barriers and poor bioavailability due to protease degradation (Ali et al. 2013). The main challenge is to overcome these limitations and to achieve the desired efficacy for the required time span. Various modifications have been employed to enhance the stability and physicochemical properties of the peptides (Gentilucci et al. 2010). For instance, the conjugation of peptide to polymers such as polyethylene glycol (PEG) has enhanced the stability of peptides by increasing their molecular weight (Chew et al. 2017). Likewise, the bioavailability was improved by balancing the aqueous solubility via replacement of redundant hydrophobic amino acids to charged/polar residues (Mant et al. 2009; Wu et al. 2010). Moreover, there are two computational softwares based on support-vector machine (SVM) to predict the solubility of the peptides, thus assisting in the designing and optimising the peptide bioavailability (Lee et al. 2019). In addition to the strategies involved in the improvement of peptide properties, the delivery of peptides has also been improved by linking of peptides to the cell penetrating peptides (CPPs) to enhance their cell permeability (Chew et al. 2017). CPPs are general peptides (<30 amino acids) derived from natural/unnatural sources or chimeric sequences, considered as promising carrier for successful delivery of therapeutic molecules varying from small chemical molecules, liposomes, proteins, peptides and nucleic acids for in vitro as well as in vivo applications (Heitz et al. 2009). Alternatively, peptides can be encapsulated in nanoparticles for efficient delivery, or administered through primary parental or transdermal routes with variations such as prefilled syringes, auto injectors and biodegradable micro needles (Lee et al. 2019). These modifications help to address the challenges of poor ADME properties of non-modified peptides (Lau and Dunn 2018).

Conclusion

In summary, the discovery of the peptide-based therapies have made a significant impact in the research. Many peptide therapies are available in the clinical and pre-clinical trials which are expected to yield positive results. The various approaches including computational, natural and biological sources provide a wide repository for identification of peptides involved in viral therapeutics. These promising therapeutics/inhibitors are advantageous because of their high specificity, selectivity against target and can be easily developed without the prior structural knowledge of target (except docking). Novel technologies like SPR, BLI and FRET validate the binding of identified peptides to their target which further aid in the selection of high affinity potential AVPs. However, there is a dearth of knowledge in the field of identification and characterization of antiviral therapeutics; further advancement and commercialization of peptide-based therapeutics is warranted.

Acknowledgements The authors acknowledge Jaypee Institute of Information Technology (JIIT), Noida for providing infrastructure facilities.

Author Contributions GA reviewed the literature and wrote the manuscript. RG conceived the idea and finalized the manuscript.

Funding GA is funded by the Department of Science and Technology, Government of India: DST-INSPIRE (IF 150104).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest in the publication.

Ethical Approval This is a review article which does not contain any type of studies related to human or animal participants.

References

Aggarwal M, Sharma R, Kumar P, Parida M, Tomar S (2015) Kinetic characterization of trans-proteolytic activity of Chikungunya virus capsid protease and development of a FRET-based HTS assay. Sci Rep 5:14753. https://doi.org/10.1038/srep14753
Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A (2019a) Human antimicrobial peptides as therapeutics for viral infections. Viruses 11:704. https://doi.org/10.3390/v11080704
Ahmed A, Siman-Tov G, Keck F, Korchak S, Bakovic A, Risner K, Lu TK, Bhalla N, de la Fuente-Nunez C, Narayanan A (2019b) Human cathelicidin peptide LL-37 as a therapeutic antiviral targeting Venezuelan equine encephalitis virus infections. Antiviral Res 164:61–69. https://doi.org/10.1016/j.antiviral.2019.02.002
Alagarasu K, Patil PS, Shil P, Seervi M, Kakade MB, Tilhu H, Salunke A (2017) In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides 92:23–30. https://doi.org/10.1016/j.peptides.2017.04.002
Albiol Matanic VC, Castilla V (2004) Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 23:382–389. https://doi.org/10.1016/j.ijantimicag.2003.07.022
Ali R, Rani R, Kumar S (2013) New peptide based therapeutic approaches. In: Ashraf GMd, Sheikh IA (eds) Advances in protein chemistry. OMICS Group eBooks, Jeddah
Amin A, Zaccardi J, Mullen S, Olland S, Orlowski M, Feld B, Labonte P, Mak P (2003) Identification of constrained peptides that bind to and preferentially inhibit the activity of the hepatitis C viral
RNA-dependent RNA polymerase. Virology 313:158–169. 10.1016/S0042-6822(03)00313-1
An TQ, Zhou YJ, Qiu HJ, Tong GZ, Wang YF, Liu JX, Yang YJ (2005) Identification of a Novel B cell epitope on the nucleocapsid protein of porcine reproductive and respiratory syndrome virus by phage display. Virus Genes 31:81–87. 10.1007/s11262-005-2203-1
Andersen JH, Osbakk SA, Vorland LH et al (2001) Lactoferrin and cathelicidin LL-37. PLoS ONE 6:1–9. 10.1371/journal.pone.0120847
Badani H, Garry RF, Wimley WC (2014) Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim Biophys Acta Biomembr 1838:2180–2197. 10.1016/j.bbamem.2014.04.015
Bai F, Town T, Pradhan D, Cox J, Ledizet M, Anderson JF, Flavell RA, Badani H, Garry RF, Wimley WC (2014) Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim Biophys Acta Biomembr 1838:2180–2197. 10.1016/j.bbamem.2014.04.015
Bai F, Town P, Pradhan C, Cox J, Ledizet M, Anderson JF, Flavell RA, Krueger JK, Koski RA, Fikrig E (2007) Antiviral peptides targeting the West Nile virus envelope protein. J Virol 81:2047–2055. 10.1128/JVI.01840-06
Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Puhl J, Davidson DJ, Doris RO (2011) Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE 6:1–9. 10.1371/journal.pone.0025333
Bergaoui I, Zairi A, Tangy F, Aouni M, Selmi B, Hani K (2013) In vitro antiviral activity of dermasplatin S4 and derivatives from amphibian skin against herpes simplex virus type 2. J Med Virol 85:272–281. 10.1002/jmv.23450
Bogomolov P, Alexandrov A, Voronkova N, Macievič M, Kokina K, Petrachenkova M, Leh T, Lempp FA, Wedemeyer H, Haag M, Schwab M (2016) Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase Ib/Ila study. J Hepatol 65:490–498. 10.1016/j.jhep.2016.04.016
Borst EM, Ständker L, Wagner K et al (2013) A peptide inhibitor of cytomegalovirus infection from human hemofiltrate. Antimicrob Agents Chemother 57:4751–4760. 10.1128/aac.00854-13
Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184. 10.1111/j.0161-114X.2004.0124.x
Camargo Filho I, Cortez DAG, Ueda-Nakamura T, Nakamura CV, Dias Filho BP (2008) Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 15:202–208. 10.1016/j.phymed.2007.07.059
Cao J, Liao XL, Wu SM, Zhao P, Zhao LJ, Wu WB, Qi ZT (2007) Selection of a phage-displayed peptide recognized by monoclonal antibody directed blocking the site of hepatitis C virus E2 for human CD81. J Microbiol Methods 68:601–604. 10.1016/j.mimet.2006.11.009
Carriel-Gomes MC, Kratz JM, Barracco MA, Bachère E, Barardi CR, Simões CM (2007) In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus. Mem Inst Oswaldo Cruz 102:469–472. 10.1590/S0074-72672007000500028
Carvalho CAM, Casseb SMM, Gonçalves RB, Silva EV, Gomes AM, Vasconcelos PF (2017) Bovine lactoferrin activity against Chikungunya and Zika viruses. J Gen Virol 98:1749–1754. 10.1099/jgv.0.008849
Castro CC, Sant’anna V, Vargas GD, Lima MD, Fischer G, Brandelli A, Motta AD, Hübner SD (2014) Antiviral activity of a Bacillus sp: P34 peptide against pathogenic viruses of domestic animals. Braz J Microbiol 45:1089–1094. 10.1590/s1517-83822014000300043
Castro CC, Silva DS, Costa GA, Fischer G, Vargas GD, Brandelli A, Lima MD, Motta AD, Hübner SD (2017) Activity of the antimicrobial peptide P34 against bovine alpha herpes virus type 1. Ciência Rural 47:ce20160668. 10.1590/1516-8747cr20160668
Chen F, Zhao Y, Liu M, Li D, Wu H, Chen H, Zhu Y, Luo F, Zhong J, Zhou Y, Qi Z (2010) Functional selection of hepatitis C virus envelope E2-binding Peptide ligands by using ribosome display. Antimicrob Agents Chemother 54:3355–3364. 10.1128/aac.01357-09
Chen Y, Cao L, Zhong M, Zhang Y, Han C, Li Q, Yang J, Zhou D, Shi W, He B, Liu F (2012) Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PLoS ONE 7:1–9. 10.1371/journal.pone.0034947
Chen JM, Fan YC, Lin JW, Chen YY, Hsu WL, Chiuo SS (2017) Bovine lactoferrin inhibits dengue virus infection by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN. Int J Mol Sci 18:1–13. 10.3390/ijms18091957
Chernyshev S, Kim SI, Bekker G, Pleskach VA, Anikin VB, Platonov VG, Bulet P (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci 99:12628–12632. 10.1073/pnas.192301899
Chew MF, Poh KS, Poh CL (2017) Peptides as therapeutic agents for dengue virus. Int J Med Sci 14:1342–1359. 10.7150/ijms.21875
Chikae AN, Bakulina AY, Burdick RC, Karpenko LI, Pathak VK, Ilyichev AA (2015) Selection of Peptide Mimics of HIV-1 Epitope Recognized by Neutralizing Antibody VRC01. PLoS ONE 10:e0120847. 10.1371/journal.pone.0120847
Cotten SW, Zou J, Wang R, Huang BC, Liu R (2012) mRNA display-based selections using synthetic peptide and natural protein libraries. Methods Mol Biol 805:287–297. 10.1007/978-1-61779-379-0_16
Crack LR, Jones L, Malavige GN, Patel V, Ogg GS (2012) Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol 37:534–543. 10.1111/j.1365-2230.2012.04305.x
de la Guardia C, Quijada M, Lleonart R (2017) Phage-displayed peptides selected to bind envelope glycoprotein show antiviral activity against dengue virus serotype 2. Adv Virol 2017:1827341. 10.1155/2017/1827341
Deng Q, Zhai JW, Michel ML, Zhang J, Qin J, Kong YY, Zhang XX, Budkowska A, Tioilais P, Wang Y, Xie YH (2007) Identification and characterization of peptides that interact with hepatitis B virus via the putative receptor binding site. J Virol 81:4244–4254. 10.1128/jvi.01270-06
Desjoubert C, de Soultrait VR, Faure A, Parissi V, Litvak S, Tarrago-Litvak L, Fournier M (2004) Identification by phage display selection of a short peptide able to inhibit only the strand transfer reaction catalyzed by human immunodeficiency virus type 1 integrase. Biochemistry 43:13097–13105. 10.1021/bi049385e
Divyashree M, Mani MK, Reddy D, Kumavath R, Ghoosh P, Azavedo VB, Barb D (2020) Clinical applications of antimicrobial peptides (AMPs): where do we stand now? Protein Pept Lett 27:120–134. 10.1179/19420862090983390
Donia MS, Wang B, Dunbar DC, Desai PV, Patny A, Avery M, Hamann MT (2008) Mollamides B and C, Cyclic Hexapeptides from the Indonesian Tunicate Didemnum molle. J Nat Prod 71:941–945. 10.1021/np700718p
Dreier B, Pluckthun A (2011) Ribosome display: a technology for selecting and evolving proteins from large libraries. Methods Mol Biol 687:283–306. https://doi.org/10.1007/978-1-60761-944-4_21

Falco A, Medina-Gali R, Poveda J, Bello-Perez M, Novoa B, Encinar JA (2019) Antiviral activity of a Turbot (Scophthalmus maximus) NK-lysin peptide by inhibition of low-pH virus-induced membrane fusion. Mar Drugs 17:87. https://doi.org/10.3390/md17020087

Ferrer M, Harrison SC (1999) Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries. J Virol 73:5795–5802

Fukunaga K, Taki M (2012) Practical tips for construction of custom peptide libraries and affinity selection by using commercially available phage display cloning systems. J Nucleic Acids 2012:295719. https://doi.org/10.1155/2012/295719

Galdiero S, Falanga A, Tarallo R, Russo L, Galdiero E, Cantisani M, Morelli G, Galdiero M (2013) Peptide inhibitors against herpes simplex virus infections. J Pept Sci 19:148–158. https://doi.org/10.1002/jpsc.2489

Gao Y, Cui T, Lam Y (2010) Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease. Bioorganic Med Chem 18:1331–1336. https://doi.org/10.1016/j.bmc.2009.12.026

Gentilucci L, De Marco R, Cerisoli L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 16:3185–3203. https://doi.org/10.2174/13816121079329555

Gordon YJ, Huang LC, Romanowski EG et al (2005) Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 30:385–394. https://doi.org/10.1080/0271368059034111

Guo N, Duan H, Kachko A, Krause BW, Major ME, Krause PR (2015) Reverse engineering of vaccine antigens using high throughput sequencing enhanced mRNA display. EBioMedicine 2:859–867. https://doi.org/10.1016/j.ebiom.2015.06.021

Gwyer Findlay E, Currie SM, Davidson DJ (2013) Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs 27:479–493. https://doi.org/10.1007/s40259-013-0039-0

Heiskanen T, Lundkvist A, Vaheri A, Lankinen H (1997) Phage-displayed peptide targeting on the Puumala hantavirus neutralization site. J Virol 71(5):3879–3885

Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutic applications. Br J Pharmacol 157:195–206. https://doi.org/10.1111/j.1476-5381.2009.00057.x

Henriques ST, Huang YH, Rosengren KJ, Franquelim HG, Carvalho FA, Johnson A, Sonza S, Tachdjian G, Castanho MA, Daly NL, Craik DJ (2011) Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J Biol Chem 286:1–24. https://doi.org/10.1074/jbc.m111.253393

Ho KL, Yousof K, Seow HF, Tan WS (2003) Selection of high affinity ligands to hepatitis B core antigen from a phage-displayed cyclic peptide library. J Med Virol 69:27–32. https://doi.org/10.1002/jmv.10266

Holthausen DJ, Lee SH, Kumar VT, Bouvier NM, Krammer F, Ellebedy AH, Wrammert J, Lowen AC, George S, Pillai MR, Jacob J (2017) An amphibian host defense peptide is virucidal for human H1 hemagglutinin bearing influenza viruses. Immunity 46:587–595. https://doi.org/10.1016/j.immuni.2017.03.018

Hong W, Zhang R, Di Z, He Y, Zhao Z, Hu J, Wu Y, Li W, Cao Z (2013) Design of histidine-rich peptides with enhanced bioavailability and inhibitory activity against hepatitis C virus. Biomaterials 34:3511–3522. https://doi.org/10.1016/j.biomaterials.2013.01.075

Hong W, Li T, Song Y, Zhang R, Zeng Z, Han S, Zhang X, Wu Y, Li W, Cao Z (2014) Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Res 102:1–10. https://doi.org/10.1016/j.antiviral.2013.11.013

Hood JL, Jallouk AP, Campbell N, Rainer L, Wickline SA (2013) Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir Ther 18:95–103. https://doi.org/10.3851/imsp2346

Hou P, Zhao G, He C, Wang H, He H (2018) Biopanning of polypeptide binding to bovine ephemeral fever virus G1 protein from phage display peptide library. BMC Vet Res 14:3. https://doi.org/10.1186/s12917-017-1315-x

Howell MD, Streib JE, Leung DYM (2007) Antiviral activity of human beta-defensin 3 against vaccinia virus. J Allergy Clin Immunol 119:1022–1025. https://doi.org/10.1016/j.jaci.2007.01.044

Hu H, Guo N, Chen S, Guo X, Liu X, Ye S, Chai Q, Wang Y, Liu B, He Q (2019) Antiviral activity of Piscidin 1 against pseudorabies virus both in vitro and in vivo. Virol J 16:95. https://doi.org/10.1186/s12985-019-1199-4

Hultmark D, Steiner H, Rasmussen T, Boman HG (2005) Insect immunity: Purification and properties of three inducible bacterial proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16. https://doi.org/10.1111/j.1432-1033.1980.tb0591.x

Ireland DC, Wang CKL, Wilson JA, Gustafson KR, Craik DJ (2008) Cyclotides as natural anti-HIV agents. Biopolymers - Pept Sci Sect 90:51–60. https://doi.org/10.1002/bip.20886

Jack HW, Tzi BN (2005) Sesquins, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 26:1120–1126. https://doi.org/10.1016/j.peptides.2005.01.003

Jenssen H (2009) Therapeutic approaches using host defence peptides to tackle herpes virus infections. Viruses 1:939–964. https://doi.org/10.3390/v1030939

Kuczer M, Dziubasik A, Midak-Siewirska A, Zahorska R, Luzzac M, Konopinska D (2010) Studies of insect peptides alloferon, Any-GS and their analogues. Synthesis and antitherspe activity. J Pept Sci 16:186–189. https://doi.org/10.1002/jpsc.1219

Kumar PKR (2017) Systematic screening of viral entry inhibitors using surface plasmon resonance. Rev Med Virol 27:e1952. https://doi.org/10.1002/rmv.311

Lau JL, Dunn MK (2018) Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052

Lee AC, Harris JL, Khanna KK, Hong JH (2019) A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci 20:2383. https://doi.org/10.3390/ijms201102383

Li S, Zhao H, Huang G, Liu N (2009) Inhibition of HBV infection by bovine lactoferrin and iron, zinc-saturated lactoferrin. Med Microbiol Immunol 198:19–25. https://doi.org/10.1007/s00430-008-0100-7

Li Q, Zhao Z, Zhou D, Chen Y, Hong W, Cao L, Yang J, Zhang Y, Shi W, Cao Z, Wu Y (2011) Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS CoV and influenza H5N1 viruses. Peptides 32:1518–1525. https://doi.org/10.1016/j.peptides.2011.05.015

Linciano S, Pluda S, Bacchin A, Angelini A (2019) Molecular evolution of peptides by yeast surface display technology. Med Chem Comm 10:1569–1580. https://doi.org/10.1039/c8md00252a

Litovchick A, Szostak JW (2008) Selection of cyclic peptide aptamers to HCV IRES RNA using mRNA display. Proc Natl Acad Sci USA 105:15293–15298. https://doi.org/10.1073/pnas.0805837105
Liu K, Feng X, Ma Z, Luo C, Zhou B, Cao R, Huang L, Miao D, Pang R, He D, Lian X, Chen P (2012) Antiviral activity of phage display selected peptides against Porcine reproductive and respiratory syndrome virus in vitro. Virology 432:73–80. https://doi.org/10.1016/j.virology.2012.05.010

Liu MZ, Yang Y, Zhang SX, Tang L, Wang HM, Chen CJ, Shen ZF, Cheng KD, Kong JQ, Wang W (2014) A cyclotide against influenza A H1N1 virus from Viola yedoensis. Yao xue xue bao. Acta Pharm Sin 49:905–912

Lorin C, Saidi H, Belaid A et al (2005) The antimicrobial peptide Dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 334:264–275. https://doi.org/10.1016/j.virol.2005.02.002

Lu Z, Van Wagener RM, Harper MK, Baker HL, Hooper JNA, Bewley CA, Ireland CM (2011) Mirabamides E-H, HIV-Inhibitory Depsipetides from the Sponge Stelletta clavosa. J Nat 74:185–193. https://doi.org/10.1021/p100613p

Lu X, Yao M, Zhang JM, Yang J, Lei YF, Huang XJ, Jia ZS, Ma L, Lan HY, Xu ZK, Yin W (2014) Identification of peptides that bind hepatitis C virus envelope protein E2 and inhibit viral cellular entry from a phage-display peptide library. Int J Mol Med 33:1312–1318. https://doi.org/10.3892/ijmm.2014.1670

Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, Zhou H, Li X, Chen Z (2015) Unusual biosynthesis and structure of locilicyamines from Bacillus subtilis 916. Appl Environ Microbiol 81:6601–6609. https://doi.org/10.1128/aem.01639-15

Mant CT, Kovacs JM, Kim HM, Pollock DD, Hodges RS (2009) Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers 92:573–595. https://doi.org/10.1002/bip.21316

Marr AK, Jennis H, Moniri MR, Hancock RE, Panté N (2009) Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1. Biochimie 91:160–164. https://doi.org/10.1016/j.biochi.2008.05.016

Mascini M, Dikici E, Robles Mañueco M, Perez-Erviti JA, Deo SK, Mei M, Zhou Y, Peng W, Yu C, Ma L, Zhang G, Yi L (2017) Applied selection of carbohydrate-mimetic peptides from phage display libraries. J Nucleic Acids. https://doi.org/10.1155/2012/740982

Matsumura T (2012) Structural and functional characterization of a multifunctional alaminois-ricin peptide analogue from pleurocoelites americanus. PLoS ONE 7:e47047. https://doi.org/10.1371/journal.pone.0047047

Mistry N, Drobić P, Näslund J, Sankari VG, Jenessen H, Evander M (2007) The anti-papillomavirus activity of human and bovine lactoferrin. Antiviral Res 75:258–265. https://doi.org/10.1016/j.antiviral.2007.03.012

Monteiro JMC, Oliveira MD, Dias RS, Maciel-Marçal L, Feio RN, Ferrera SO, Oliveira LL, Silva CC, Paula SO (2018) The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology 514:79–87. https://doi.org/10.1016/j.virol.2017.11.009

Moreno M, Giralt E (2015) Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins 7:1126–1150. https://doi.org/10.3390/toxins7041126

Nevola L, Giralt E (2015) Modulating protein-protein interactions: the potential of peptides. Chem Commun (Camb) 51:3302–3315. https://doi.org/10.1039/c4cc08565e

Newton M, Cabezás-Perusse Y, Tong CL, Seelig B (2019) In vitro selection of peptides and proteins—advantages of mRNA display. ACS Synth Biol 9:181–190. https://doi.org/10.1021/acssynbio.9b00419

Oku N, Gustafson KR, Cartner LK, Wilson JA, Shigematsu N, Hess S, Pannell LK, Boyd MR, McMahon JB (2004) Neamphamide A, a new HIV-inhibitory depsipeptide from the papua new guinea marine sponge Neamphs husteyi. J Nat 67:1407–1411. https://doi.org/10.1111/jcbdd.13400

Ozawa M, Ohashi K, Onuma M (2005) Identification and characterization of peptides binding to Newcastle disease virus by phage display. J Vet Med Sci 67:1237–1241. https://doi.org/10.1292/jvms.67.1237

Pany A, Youngpitakwattana P, Buchhart P, Sawsadsee N, Krohbsong S, Paemanee A, Roytrakul S, Rattanabunyong S, Choowongkomon K, Yenchitsoomanus P (2019) Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia Catechu. Chem Biol Drug Des 93:100–109. https://doi.org/10.1111/cbdd.13400

Patching SG (2014) Surface plasmon resonance spectroscopy for characterization of membrane protein–ligand interactions and its potential for drug discovery. Biochim Biophys Acta 1838:43–55. https://doi.org/10.1016/j.bbapap.2013.04.028

Peng B, Chen H, Tan Y, Jin M, Chen H, Guo A (2006) Identification of one peptide which inhibited infectivity of avian infectious bronchitis virus in vitro. Sci China C 49:8. https://doi.org/10.1007/s11427-006-0158-7

Plaza A, Gustchina E, Baker HL, Kelly M, Bewley CA (2007) Mirabamides A-D, Depsipetides from the Sponge Siliquarapispinga mirabilis that inhibit HIV-1 Fusion. J Nat Prod 70:1753–1760. https://doi.org/10.1021/np070306k

Plaza A, Bifulco G, Keffer JL, Lloyd JR, Baker HL, Bewley CA (2009) Celebesides A-C and theopapuamides B-D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J Org Chem 74:504–512. https://doi.org/10.1021/jo802232u

Plaza A, Bifulco G, Masullo M, Lloyd JR, Keffer JL, Colin PL, Hooper JN, Bell LJ, Bewley CA (2010) Mutemramida A and koshikamides C-H, peptide inhibitors of HIV-1 entry from different Theonella species. J Org Chem 75:4344–4355. https://doi.org/10.1021/jo100076g

Quinones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, Marotta ML, Mirza M, Jiang B, Kiser P, Medvik K (2003) Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17:F39–F48. https://doi.org/10.1097/01.aids.0000096878.73209.4f

Qureishi A, Thakur N, Himani T, Kumar M (2013) AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Nucl Acids Res 42:D1147–D1153. https://doi.org/10.1093/nar/gkt1191

Rajik M, Jahnshiri F, Omar AR, Ideris A, Hassan SS, Yusoff K (2009) Identification and characterisation of a novel anti-viral peptide
Wu SJ, Lao J, O’Neil KT, Kang J, Lacy ER, Canziani G, Baker A, Huang M, Tang QM, Raju TS, Jacobs SA (2010) Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel 23:643–651. https://doi.org/10.1093/protein/gzq037

Wu D, Li G, Qin C, Ren X (2011) Phage displayed peptides to avian H5N1 virus distinguished the virus from other viruses. PLoS ONE 6:e23058. https://doi.org/10.1371/journal.pone.0023058

Yan R, Zhao Z, He Y, Wu L, Cai D, Hong W, Wu Y, Cao Z, Zheng C, Li W (2011) A new natural α-helical peptide from the venom of the scorpion Heterometrus petersii kills HCV. Peptides 32:11–19. https://doi.org/10.1016/j.peptides.2010.10.008

Yin L, Luo Y, Liang B, Wang F, Du M, Petrenko VA, Qiu HJ, Liu A (2014) Specific ligands for classical swine fever virus screened from landscape phage display library. Antivir Res 109:68–71. https://doi.org/10.1016/j.antiviral.2014.06.012

Yu D, Ding X, Liu Z, Wu X, Zhu Y, Wei H, Chong H, Cui S, He Y (2018) Molecular mechanism of HIV-1 resistance to sifuvirtide, a clinical trial–approved membrane fusion inhibitor. J Biol Chem 293:12703–12718. https://doi.org/10.1074/jbc.ra118.003538

Yuan L, Zhang S, Peng J, Li Y, Yang Q (2019) Synthetic surfactin analogues have improved anti-PEDV properties. PLoS ONE 14:e0215227. https://doi.org/10.1371/journal.pone.0215227

Zahnd C, Amstutz P, Plückthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically binds to a target. Nat Methods 4:269–279. https://doi.org/10.1038/nmeth1003

Zampella A, D’Auria MV, Paloma LG, Casapullo A, Minale L, Debitus C, Henin Y (1996) Callipeltin A, an anti-hiv cyclic depsipeptide from the new caledonian lithistida sponge Callipelta sp. J Am Chem Soc 118:6202–6209. https://doi.org/10.1021/ja954287p

Zampella A, Sepe V, Luciano P, Bellotta F, Monti MC, D’Auria MV, Jepsen T, Petek S, Adeline MT, Laprêvôte O, Aubertin AM (2008) Homophymine A, an anti-HIV cyclodepsipeptide from the sponge Homophymia sp. J Org Chem 73(14):5319–5327. https://doi.org/10.1021/jo800583b

Zeng Z, Zhang R, Hong W, Cheng Y, Wang H, Lang Y, Ji Z, Wu Y, Li W, Xie Y, Cao Z (2018) Histidine-rich modification of a scorpion-derived peptide improves bioavailability and inhibitory activity against HSV-1. Theranostics 8:199–211. https://doi.org/10.7150/thno.21425

Zhan S, Aweya JJ, Wang F, Yao D, Zhong M, Chen J, Li S, Zhang Y (2018) Litopenaeus vannamei attenuates white spot syndrome virus replication by specific antiviral peptides generated from hemocyanin. Dev Comp Immunol 91:50–61. https://doi.org/10.1016/j.dci.2018.10.005

Zhang LJ, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26:R14–R19. https://doi.org/10.1016/j.cub.2015.11.017

Zhang Q, Wang Y, Ji Q, Gu J, Liu S, Feng X, Sun C, Li Y, Lei L (2012) Selection of antiviral peptides against mink enteritis virus using a phage display peptide library. Curr Microbiol 66:379–384. https://doi.org/10.1007/s00284-012-0284-3

Zhao Z, Hong W, Zeng Z, Wu Y, Hu K, Tian X, Li W, Cao Z (2012) Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4α in vitro and in vivo. J Biol Chem 287:30181–30190. https://doi.org/10.1074/jbc.m112.370312

Zu X, Liu Y, Wang S, Jin R, Zhou Z, Liu H, Gong R, Xiao G, Wang W (2014) Peptide inhibitor of Japanese encephalitis virus infection targeting envelope protein domain III. Antiviral Res 104:7–14. https://doi.org/10.1016/j.antiviral.2014.01.011

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.