惑星の母天体、実は長生き？
—中間質量星周りの原始惑星系円盤ではガス散逸が遅い可能性—

名古屋大学大学院理学研究科理論宇宙物理学研究室の小林浩助教、理化学研究所（理研）開拓研究本部坂井星・惑星形成研究室の仲谷崚平基礎科学特別研究員らの国際共同研究グループは、中間質量星周りにある「原始惑星系円盤」のガス散逸過程をシミュレーションし、円盤の寿命が従来の認識（数百万年）よりも10倍程度長い可能性があることを示しました。本研究成果は、惑星系の天体がガスを獲得できる期間や、惑星系が円盤ガスとの相互作用によって構造を変える期間についての従来の考えを改める必要があることを示しています。

今回、国際共同研究グループは、太陽質量の約2倍の星の周りにある原始惑星系円盤において、星から放射される紫外線・X線により円盤ガスが流出する過程（光蒸発）についてシミュレーションを行いました。その結果、円盤質量が地球質量の約300倍以下の場合は、ガスの流出率が100万年あたり地球3個分程度になることが分かりました。これは、ガス円盤を全て散逸させるために、数千万年〜1億年程度の時間を要することを意味します。本研究結果は、近年の観測により明らかになってきたガスを保有する数千万歳以上の円盤の起源を解明する上で重要な手掛かりとなります。

本研究は、科学雑誌『The Astrophysical Journal』の掲載に先立ち、オンライン版（7月12日付）に掲載されました。
本研究結果から提案される星質量に応じた円盤質量の時間進化

※国際共同研究グループ
理化学研究所 開拓研究本部 坂井星・惑星形成研究室
基礎科学特別研究員 仲谷 崙平（なかたに りょうへい）
名古屋大学 大学院理学研究科 理論宇宙物理学研究室
助教 小林 浩（こばやし ひろし）
ドイツ テュービンゲン大学 Institute of Astronomy and Astrophysics,
Emmy Noether Research Group Leader（研究当時）
ロルフ・コイパー（Rolf Kuiper）
（現ハイデルベルク大学 天文学センター Heisenberg Fellow）
国立天文台 科学研究部
教授 野村 英子（のむら ひでこ）
東京大学 大学院理学系研究科 天文学専攻
教授 相川 祐理（あいかわ ゆり）

研究支援
本研究は、日本学術振興会（JSPS）科学研究費補助金研究活動スタート支援「輻射多流体計算を用いたより現実的な原始惑星系円盤内部進化モデルの構築（研究代表者：仲谷嶺平）」による助成を受けて行われました。

1. 背景

太陽系に代表される惑星系の形成は、宇宙空間を漂うガスと固体微粒子（塵）から成る分子雲が重力収縮することで始まります。収縮の中心で若い星（原始星）が生まれ、その周りを囲むように薄い円盤が形成されます。その後、物質が円盤から星に向かって流れていくことで星は成長していきます。やがて 100 万年程度経つと、元あった質量の約 99%以上を星が保有し、残りを円盤が保有するようになると考えられています。この円盤物質を材料にして原始惑星が形成して
いくことから、この円盤は「原始惑星系円盤」と呼ばれます（図1）。
現在の太陽系は、このようなガスに富んだ円盤を持たないことからも推察されるように、円盤には寿命があることが知られています。2000年以降、複数の観測的研究により、円盤の寿命は300万〜600万年と見積もられており、現在に至るまでこの説が主流となっています。
図１ 現在の標準的な星惑星形成過程の模式図
分子雲の高密度部分での重力収縮により星形成が始まる（左）。約1万から10万年後、若い星を取り囲むように星周円盤が形成される。それらを取り囲むようにエンベロープが存在する。約100万年後に、エンベロープ降着が完了し、星と原始惑星系円盤から成る系になる。円盤はおよそ1000万年かけて消失し、原始惑星系が残される。惑星は円盤物質を材料にされる。

しかし、近年の最新鋭観測機器を用いた研究により、消失しているはずのガスを持つ300万〜600万歳を超えた「ガスリッチデブリ円盤」と呼ばれる円盤が20天体ほど存在することが分かっています。このガスリッチデブリ円盤のガスの起源はまだ解明されておらず、二つの説が提唱されています。

一つは原始惑星系円盤のガスが何らかの原因により生き残ったとする「始原ガス説」、もう一つは形成した原始惑星や微惑星の衝突によりガスが発生したとする「二次ガス説」です。後者については、これまで多くの理論研究が行われており、二次ガス説でガスの起源を説明できることが示されてきました。一方、前者の始原ガス説については研究報告がほとんどなく、説の正否については全く分かっていませんでした。

2. 研究手法と成果

誕生から数百万年以上経った原始惑星系円盤の散逸には、「光蒸発」と呼ばれる現象が最も効果的であることが先行研究で示されています（図2注1-2）。光蒸発とは、中心星から放射される紫外線・X線による加熱でガスが蒸発することです。今回、国際共同研究グループは、この物理過程のシミュレーションを行うことで、円盤の寿命を理論的に正確に導出し、始原ガス説を検証しました。
図2 原始惑星系円盤における光蒸発の模式図

図3 中間質量星周りの原始太陽系円盤における光蒸発シミュレーションの例

注1) Kunitomo, Masanobu; Suzuki, Takeru K.; Inutsuka, Shu-ichiro; “Dispersal of protoplanetary discs by the combination of magnetically driven and photoevaporative winds”, Monthly Notices of the Royal Astronomical Society, Volume 492, Issue 3, p.3849-3858, 2020, doi: 10.1093/mnras/staa087

注2) Kunitomo, Masanobu; Ida, Shigeru; Takeuchi, Taku; Panic, Olja; Miley, James M.; Suzuki, Takeru K., “Photoevaporative Dispersal of Protoplanetary Disks around Evolving Intermediate–mass Stars”, The Astrophysical Journal, Volume 909, Issue 2, id.109, 16 pp., 2021, doi: 10.3847/1538-4357/abdb2a

このシミュレーションに必要な計算方法（計算コード）は、研究開始時には存在しなかったため、まず世界最先端の計算コードを独自に開発しました。そしてそのコードを用いて、ガスリッチデブリ円盤が比較的頻繁に見つかる中間質量星（太陽質量の約2倍）周りの円盤について、光蒸発過程のシミュレーションを行いました（図3）。
検証の結果、中間質量星周りの数百万歳以上の円盤では、13.6eV〜100eV の極紫外線が光蒸発に大きく寄与することが分かりました。また、円盤質量が太陽質量の約 0.1%以下（地球質量の約 300 倍以下）だと、光蒸発によるガス流出率が 100 万年あたり地球 3 個分程度と、かなり低い値になることが明らかになりました。導かれた流出率を円盤寿命に換算すると、数千年〜1 億年となり、これまでの理論研究で見積もられていた値（数百万年）より 10 倍ほど長くなり、観測的に約 5000 万歳を超えるガスリッチデブリ円盤は比較的発見例が少なく、本研究で得られた流出率はこの統計的観測事実とも整合するものです。

比較のため、中心星を太陽型星（太陽質量と同程度の質量を持つ星）に設定し、同様のシミュレーションを行ったところ、流出率は中間質量星周りの円盤のものに比べ、20〜30 倍程度大きくなることが分かりました。これは中心星の特性により、極紫外線の光度が太陽質量星の方が中間質量星よりも高いことを反映した結果で、円盤寿命は中間質量星の方が太陽型星よりも長くなることを示しています（図 4）。

観測的に、ガスリッチデブリ円盤が太陽型星周りよりも中間質量星周りに比較的多く見つかることも大きな謎の一つでした。本研究結果は、この統計と整合的で、ガスリッチデブリ円盤が原始惑星系円盤の生き残りである場合、自然にこの統計が実現されることを意味しています。
これまでガスリッチデブリ円盤の始原ガス説については、ほとんど詳細な議論がなされることなく、実質的に棄却されているような状況でした。しかし、本研究で新たに求められた正確なガス流出率により、始原ガス説が棄却できないことが初めて明らかになりました。さらに、本研究結果はこれまで未解明だったガスリッチデブリ円盤の統計的性質についても、始原ガス説に基づくと自然に説明を与えられることを明らかにしました。

3. 今後の期待

本研究では、理論計算を用いた定量的な議論を行うことでガスリッチデブリ円盤の起源に関する始原ガス説の妥当性を示しました。従来の認識に反し、原始惑星系円盤のガスが1000万年以上生き残り得ることが判明したため、この研究分野に新たな潮流が生まれることが期待できます。例えば、中間質量星周りでは原始惑星がガスを獲得できる期限が1000万年以上あるため、原始惑星系が円盤との相互作用により1000万年以上にわたってその構造を変え得ることなどを意味するため、主星質量に応じた系外惑星の統計的性質に説明を与える指標になることが考えられます。また本研究では、質量が地球の約300倍（およそ木星1個分）以下の円盤について、円盤質量に依って1000万年以上生き残れることを示しました。そのような原始惑星系円盤には、木星や土星のような巨大ガス惑星を形成できるだけのガスは残していませんが、地球-月系の形成に導いた巨大衝突を起こすような軌道不安定性を抑制する効果を持っています。原始太陽系では、月の形成により地球の自転変化が抑えられ、安定した気候を持つ生命発生環境が整った可能性も高く、円盤ガス散逸は惑星系での生命居住環境形成に多大に影響すると考えられます。本研究はそこへ新しい知見をもたらしました。

ガスリッチデブリ円盤の観測は、しばしば炭素原子や一酸化炭素から放出される光を利用して行われますが、そこで得られている炭素ガス質量などの観測諸量を始原ガス説で説明可能かどうか、詳細な化学計算を行い、検証することも今後の重要な課題の一つです。また、そこで導かれた諸量を将来のアルマ望遠鏡やジェイムズ・ウェッブ宇宙望遠鏡による観測と比較することで、ガスリッチデブリ円盤の起源解明に向けた必要不可欠な情報が得られることを期待できます。

ただし、本研究は二次ガス説を否定するものではありません。なぜなら、始原ガスを残しながら、惑星がガスを放出するような描像も考えられるからです。今後、そのような始原ガス説・二次ガス説をハイブリッドさせたような観点からガスリッチデブリ円盤の起源を探ることも重要です。

以上のように、本研究成果は惑星形成論において基本的な量の一つである円盤寿命に新たな見解を持ち込むもので、惑星系がどのように形成され、進化していくのかという問いの答えを導くのに大きく貢献するものと期待できます。
4. 論文情報

＜タイトル＞
Photoevaporation of Grain-Depleted Protoplanetary Disks around Intermediate-Mass Stars: Investigating Possibility of Gas-Rich Debris Disks as Protoplanetary Remnants

＜著者名＞
Riouhei Nakatani, Hiroshi Kobayashi, Rolf Kuiper, Hideko Nomura, Yuri Aikawa

＜雑誌＞
The Astrophysical Journal

5. 补足説明

[1] 中間質量星
太陽質量の約 2 倍から約 5 倍程度の質量を持つ星。特に本研究では太陽質量の 2 倍程度の星を対象にした。

[2] 原始惑星系円盤
若い星（前主系列星）を取り囲むガスと固体微粒子から構成される幾何学的に薄い円盤。ケプラー回転をしている。円盤構成物質を基にして惑星系が形成する。

[3] 極紫外線
水素原子の電離エネルギー（約 13.6eV）以上、約 100eV 以下の高エネルギー光。

[4] アルマ望遠鏡
アタカマ大型ミリ波サブミリ波干渉計（Atacama Large Millimeter/submillimeter Array: ALMA、アルマ望遠鏡）は、ヨーロッパ南天天文台（ESO）、米国国立科学財団（NSF）、日本の自然科学研究機構（NINS）がチリ共和国と協力して運用する国際的な天文観測施設。直径 12m のアンテナ 54 台、7m アンテナ 12 台、計 66 台のアンテナ群をチリ共和国のアンデス山中にある標高 5,000m の高原に設置し、一つの超高性能な電波望遠鏡として運用している。2011 年から部分運用が開始され、2013 年から本格運用が始まった。感度と空間分解能でこれまでの電波望遠鏡を 10 倍から 1,000 倍上回る性能を持つ。

[5] ジェイムズ・ウェッブ宇宙望遠鏡
アメリカ航空宇宙局（NASA）が主導で開発している赤外線観測用宇宙望遠鏡。2021年 10 月 31 日に打ち上げを予定している。