Introduction

Apis mellifera can be affected by two species of microsporidia (*Nosema apis* and *Nosema ceranae*), which cause the disease called nosemosis or nosemose, with different field symptoms and seasonal prevalence (Fries et al., 2006, 2013, Higes et al., 2008). The current diagnostic techniques include light microscopy to confirm the presence and intensity of infection and molecular tools to distinguish *Nosema* species (Paxton et al., 2007; Fries et al., 2013) or to quantify nucleic acids of the species that are present (Cilia et al., 2018).

Initially, the only etiological agent of this pathology in *Apis mellifera* bees was *N. apis*. However, the presence of *N. ceranae* (Higes et al., 2006; Huang et al., 2007) was also observed in the mid-2000s, initially in *Apis cerana* (Fries et al., 1996). It is believed, however, that *N. ceranae* began infecting *A. mellifera* bees a few decades ago, because analyses of historical samples have detected its presence in several places, such as Uruguay (Invernizzi et al., 2009), Brazil (Teixeira et al., 2013), Italy (Ferroglio et al., 2013), USA (Fell et al., 2015) and México (Guzman-Novoa et al., 2011; Guerreiro-Molina et al., 2016) in decades prior to its first
Currently, the species *N. ceranae* is considered to be among the most prevalent infecting bees globally (Fries, 2010; Higes et al., 2010a; Gisder et al., 2010; Lecoq et al., 2016; Paxton et al., 2007; Higes et al., 2008; Emsen et al., 2016). *N. ceranae* can infect all members of the colony, be they workers, drones or queens (Alaux et al., 2011), including larvae (Eiri et al., 2015). This microsporidium infects the bees through the ingestion of spores from contaminated sources (pollen and water) and is eliminated in the feces (Fries et al., 1996).

The activities of cleaning and feeding in the colony bring new sources of infection (Fries, 2010; Higes et al., 2010b; 2013; Martin Hernandez et al., 2018). The spores germinate in the middle intestine, where the epithelial cells are infected, among other consequences causing the suppression of the immune system (Antúnez et al., 2009), energy stress (Mayack & Naug 2009; Castelli et al., 2020), acceleration of age polyethism (Lecoq et al., 2016), with a consequent decrease in longevity, as well as reduction of honey production and pollination (Botías et al., 2013). Infection with this microsporidium has been associated with colony collapse disorder (CCD) in parts of Europe (Higes et al., 2009; Martín-Hernández et al., 2007), but not in central Europe (Gisder et al., 2010), South America (Invernizzi et al., 2009; Pires et al., 2006), and United States (Cox-Foster et al., 2007; Chen et al., 2008; Guzman-Novoa et al., 2016). According to Fries (2010), the impact of this parasite is different depending on the environment, and research has found conflicting virulence data, either for individual bees and colonies, presenting distinct seasonal patterns between areas.

In Brazil, *N. ceranae* is widely distributed throughout the country, with no pattern of infection intensity observed during the year (Teixeira et al., 2013; Pires et al., 2016). Their presence was first reported by Klee et al. (2007), but later studies have demonstrated their presence since the 1970s (Teixeira et al., 2013), although no studies have so far evaluated the consequences of this infection in the long term. In tropical countries, there is little information about infections and seasonal patterns of *N. ceranae* (Guerrero-Molina et al., 2016; Fleites-Ayil et al., 2018). Since detection of *N. ceranae* in *A. mellifera* coincided with the recent large-scale loss of bee colonies worldwide, data on pathology and management are of significant interest (Fries et al., 2013). Epidemiological assessments and studies conducted in this sense, in Brazil, may help to elucidate the causes of colony decline and sudden losses, since there is possible involvement of pathogens and parasites in this phenomenon (Teixeira et al., 2008a; 2008b; 2012; 2013; Santos et al., 2014; Schwarz et al., 2014), including *N. ceranae*.

Here we test two hypotheses, the first one, whether the climatic variables (temperature, air humidity and precipitation) influence the intensity of infection of the microsporidium *Nosema* spp. in Africanized honey bees (*Apis mellifera*), and the second, whether the local of hive installation (outdoor or roofed) influences the intensity of infection of these spores in Africanized honey bees.

Material and Methods

From August 2013 to August 2016, samples containing about thirty Africanized honey bees were weekly collected from 20 colonies in two apiaries of the Honey Bee Health Laboratory (LASA) of the Biology Institute of the São Paulo State Agribusiness Technology Agency (IB/APTA), in Pindamonhangaba, SP. Langstroth hives were installed at easels (height of 50 cm), ten in the open air (here called “outdoor apiary”) and ten under roof (3.2 m high) (here called “roofed apiary”).

The spore collections were performed according to Teixeira and Message (2010): the entrance to the hive’s was closed with a strip of common foam to allow the collection of honey bees arriving from the field. These honey bees were swept with a common brush (paint brush) 4 to 5 cm wide into a universal type plastic bottle, containing 70% alcohol. At least 30 bees were collected per hive. The counts of *Nosema* spp. were performed according to Cantwell (1970).

For confirmation of the *Nosema* spp., composite samples were prepared from each beehive containing bees belonging to each weekly collection. Preparation of the samples for DNA extraction was done according to Teixeira et al. (2013) and for identification of the microsporidium species, the samples were submitted to duplex PCR reactions as described by Guimarães-Cestaro et al. (2016).

Data on temperature, air humidity and precipitation were obtained from the Polo do Vale do Paraíba meteorological station in Pindamonhangaba, SP, along with temperature and relative humidity obtained from a thermohygrometer installed in the covered apiary. In addition, pollen production data were obtained from September 2015 to August 2016 with pollen collectors of the intermediate type to evaluate the effect of this variable on the level of infection of the pathogen.

Although meteorological data and pollen quantity were collected daily, a weekly average was performed for the assessments (Table 1 and 2).

Table 1. Sampling number (N value) for each studied variable on outdoor apiary: Spores (honey bee samples), air humidity, precipitation, maximum temperature, and minimum temperature.

Outdoor Apiary	Spores	Air humidity	Precipitation	Max. Temperature	Min. Temperature
Autumn	360	30	33	36	36
Spring	380	36	26	38	38
Summer	390	26	27	39	39
Winter	390	26	39	39	39
Total	1520	118	125	152	152
A completely randomized factorial experimental design was used (2 apiary types x 4 seasons), with 10 replicates (represented by hives). The data were analyzed through the MIXED procedure of the SAS (Statistical Analysis System) program (SAS Institute, 2001), to determine the matrix structure of variance and covariance. The significance level adopted for the analysis of variance was 5%. The apiary averages were compared by the F-test and the seasonal differences by the Tukey-Kramer test. Pearson and Spearman correlations between spore fluctuation and climatic variables (maximum and minimum temperature, humidity, and precipitation) and pollen production in each season of the year were calculated.

Results

All the analyzed samples presented positive results for the species *Nosema ceranae*, while *Nosema apis* was not detected (Fig 1).

Although outdoor hives had a lower mean number of spores than covered hives, *N. ceranae* infection intensities did not differ (*p*=0.0706) between the place of installation of the apiaries and the seasons, except for autumn in comparison with the other seasons in the colonies of the covered apiary (*p*<0.0001) (Table 3).

The meteorological data were correlated with the fluctuation of the number of spores per bee (*p*<0.0001) only when considering season. In winter, the minimum temperature had a negative correlation with the number of spores in the outdoor apiary (Fig 2) and the humidity had a negative correlation with the number of spores in the covered apiary (Fig 3). Precipitation data had no influence on the intensity of infection (Fig 4).

The highest pollen production occurred in the summer and spring, when spore prevalence in bees was also high (Fig 5), without, however, presenting a significant difference (Table 4).

Discussion

The presence of *Nosema ceranae* and absence of *Nosema apis* corroborates the results obtained by Teixeira et al. (2013), Santos et al. (2014) and Guimarães-Cestaro et al. (2017a, 2017b), indicating possible suppression of *N. ceranae*.

Table 2. Sampling number (N value) for each studied variable on roofed apiary: Spores (honey bee samples), air humidity, precipitation, maximum temperature, and minimum temperature.

Covered Apiary	Spores	Air humidity	Precipitation	Max. Temperature	Min. Temperature
Autumn	337	22	33	22	22
Spring	380	22	26	22	22
Summer	382	26	27	26	26
Winter	364	26	39	26	26
Total	1463	96	125	96	96

Table 3. Intensity of natural infection of *Nosema ceranae* (average number of spores/bee x10^5) in hives located in open air and covered apiaries from August 2013 to August 2016 in relation to the seasons of the year.

Season	Outdoor Apiary	Covered Apiary	Mean
Spring	16.86±17.40aA	21.51±16.39aA	19.19±3.29
Summer	14.91±15.79aA	19.02±17.03aA	16.96±2.91
Autumn	14.01±14.18aA	11.09±11.70aB	12.55±2.06
Winter	14.34±15.99aA	18.21±15.03aA	16.38±2.74
Mean	15.03±1.28	17.46±4.47	

†Means followed by different lowercase letters in the rows and upper case in the columns differ from each other by the Tukey-Kramer test (*p* ≤ 0.05).
Fig 2. Intensity of natural infection of *Nosema ceranae* (mean number of spores/bee x10^5) and maximum and minimum temperatures in hives located in outdoor apiary and covered apiary from August 2013 to August 2016 in relation to seasons.

Fig 3. Intensity of natural infection of *Nosema ceranae* (mean number of spores/bee x10^5) and relative air humidity in hives located in open air apiary and covered apiary from August 2013 to August 2016 in relation to seasons.
in the *N. apis* species in Africanized *Apis mellifera* bees in Brazil, as observed in honey bees in Europe (Klee et al., 2007; Paxton et al., 2007). However, it should be considered that reports of interactions between the two species of *Nosema* in bees are contradictory. Several authors have observed that in countries with hot summers and mild winters, there is predominance of *N. ceranae* (Higes et al., 2006; Klee et al., 2007; Martin-Hernández et al., 2007), but in countries with cooler and longer winters, *N. apis* is predominant (Gisder et al., 2010; 2017). This can also be related to the presence of *N. ceranae* and the absence of *N. apis* in the samples analyzed in the present study and others performed in Brazil (Teixeira et al., 2013; Santos et al., 2014; Guimarães-Cestaro et al., 2017a; 2017b).

Fig 5. Intensity of natural infection of *Nosema ceranae* (average number of spores/bee x10^5) and pollen production in hives located in open air apiary and covered apiary from August 2015 to August 2016 in relation to the seasons of the year.

Fig 4. Intensity of natural infection of *Nosema ceranae* (mean number of spores/bee x10^5) and precipitation in hives located in outdoor apiary and covered apiary from August 2013 to August 2016 in relation to the seasons.
It is believed that cold weather is one of the limiting factors of *N. ceraeae* distribution (Fries, 2010; Gisder et al., 2010; Ozkirim et al., 2019), although environmental variables and interspecies competition are important elements to explain the differential prevalence of *Nosema* spp. in different climatic regions (Martin-Hernandez et al., 2018).

In our study, the climatic parameters did not influence (p<0.0001) the number of spores per bee, but considering the seasons, the largest number of spores was observed in the spring and the smallest in the autumn. These results can be explained by the development of the swarm in two different periods of nectariferous secretion that occur at the study site during the year. The first and most important occurs from February to mid-May and the second from mid-July to September (Silva et al., 1995). During the main flow, the colonies had a higher population of bees, and with the end of the flowering period (which coincides with autumn), the population decreased, with a substantial decline in the queen’s posture, but without completely ceasing. With the development of a secondary flow, the colonies resumed their growth, with increased posture and population.

The lowest infection rate was observed when the colonies’ activity and population were reduced, due to lower temperatures and less availability of pollen, a product that is an important source of contamination by spores of *Nosema* spp. and other bee pathogens (Higes et al., 2008; Zheng et al., 2014; Guimarães-Cestaro et al., 2016; Teixeira et al., 2018). At the end of winter and early spring, with the increase of comb cleaning for posture and consequent feeding of the larvae, there was higher availability of pollen (Fig 5), higher temperatures, in addition to greater wind intensity, which possibly facilitates the spread of spores through the air (Sulborska et al, 2019), increasing prevalence of this pathogen.

Different results (p<0.05) were obtained only for colonies of the covered apiary, which presented negative correlation for minimum winter temperature (14.98 ± 1.58 °C) (Fig 2), and for humidity in the open apiary (59.93 ± 10.91) (Fig 3). Similar data were obtained by Chen et al., (2012) in Taiwan, where infection by *Nosema* spp. had negative correlation with temperature, and higher spore counts were observed at mean temperature of 15 °C. These results were associated with an increase in the bee population in the spring (Winston, 1987), and are also related to the fact that during this period, there is increased risk of the disease due to spore ingestion as the bees clean the combs and feed the larvae, while the presence of spores decreases in periods of low growth (Guerrero-Molina et al., 2016).

The type of apiary did not influence (p=0.0706) the number of spores per bee. Except during the summer, in all seasons the hives in the roofed apiary tended to have higher infestation of *N. ceranae*, but without statistical difference.

The hives located in the open and roofed apiaries had, on average, 15.03 ± 1.28 x 10^5 and 17.46 ± 4.47 x 10^5 spores per bee, respectively, values close to those found by Santos et al. (2014) (16.5 ± 114 x 10^5 spores per bee) at the same location, and higher than those obtained in other municipalities of the state of São Paulo: 637 ± 36 x 10^3 (Santos et al 2014) and 1070 x 10^3 (Guimarães-Cestaro et al 2017b). The highest intensity of infection may be related to the weekly frequency and kind of management adopted (equalization of the population, comb exchanges between colonies, supplementation, among others).

In the current study, even considering the high infection rates in comparison to the other municipalities of the state of São Paulo (Santos et al., 2014; Guimarães-Cestaro et al., 2017a; 2017b), no negative effects were observed that could be associated directly to infection by *N. ceranae*, and no collapse of colonies occurred during the three years analyzed. This article presents the first data on the infection intensity of *N. ceranae* during three consecutive years in Africanized bees in a tropical climate, allowing to infer that this pathogen does not cause a collapse in colonies frequently assisted of this honey bee hybrid in tropical areas.

Guerrero-Molina et al. (2016), concluded that Africanized bees infected with the pathogen suffer moderate effects when compared to European bees in temperate areas. Santos et al. (2014) and Guimarães-Cestaro et al. (2017b) verified the highest prevalence of *N. ceranae* in the autumn, but it is important to note that in these studies, the collections occurred only once in the season, unlike the current study, where bees were sampled were performed weekly. According to Teixeira et al. (2013) and Pires et al. (2016), in Brazil there is no pattern regarding the sporulation curve in different colonies and in geographically different places, as also mentioned by Fries et al. (2010) in the Northern Hemisphere.

The absence of colony collapses may be related with the constant and routinely management of apiaries, which made it possible to identify the early needs, for avoiding the substitution of queens, as consequence of absence or poor posture, as well as the needs of artificial supplementation, timely offer of new wax foundations, adjustments in order to increase or decrease space according to population development, supplementation, among others. Studies carried in cages, with artificial infection by *Nosema* spp. have demonstrated the mortality of bees only a few days after infection (Higes et al., 2006; Paxton et al., 2007; Martin-Hernandez et al., 2011; Dussaubat et al., 2012). The technical management routinely adopted may have been crucial to allow the colonies to survive and to avoid losses reported in studies under artificial or natural conditions but not as often supervised and kept watch over.

Acknowledgments

We thank Carmen L. Monteiro and Vilma C.V. Takada for assistance in the analyses, and CNPq for specific funding (MAPA/CNPq, Process 2008-0 and APTA/PIBIC Program, E.W.T.).

Author Contribution Statement

LGC did the molecular analysis and helped to wrote the manuscript, RM and TMS executed sampling, helped with the
experimental analysis and the initial drafts of the manuscript, IPO performed the statistical analyses, DM helped to plan the work, EWT and MLTFA were in charge of the assembly and maintenance of the hives and the monthly collection samples, EWT planned and coordinated the work, supervised all the steps of the investigation and wrote the manuscript, all authors collaborated in the revision of the final version of the manuscript.

References

Alaux, C., Folschweiller, M., Mcdonnell, C., Beslay, D., Cousin, M., Dussaubat, C., Brunet, J.L. & Le Conte, Y. (2011). Pathological effects of the microsporidium *Nosema ceranae* on honey bee queen physiology (*Apis mellifera*). Journal of Invertebrate Pathology, 106: 380-385. doi: 10.1016/j.jip.2010.12.005

Antúnez K., Martin-Hernandez, R., Prieto, L., Meana, A., Zunino, P. & Higes, M. (2009). Immune suppression in the honey bee (*Apis mellifera*) following infection by *Nosema ceranae* (Microsporidia). Environmental Microbiology, 11: 2284-2290. doi: 10.1111/j.1462-2920.2009.01953.x

Botías, C., Martin-Hernández, R., Barrios, L., Meana, A. & Higes, M. (2013). *Nosema* spp. infection and its negative effects on honey bees (*Apis mellifera ibersiensis*) at the colony level. Veterinary Research, 44: 1-14. doi: 10.1186/1297-9176-44-25

Cantwell, G.R. (1970). Standard methods for counting Nosema spores. American Bee Journal, 110: 222-223.

Castelli, L., Branchicella, B., Garrido, M., Inverinizzi, C., Porrini, M., Romero, H., Santos, E., Zunino P., Antunez, K. (2020). Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and *Nosema ceranae* infection. Microbial Ecology, 1-12. doi: 10.1007/s00248-020-01538-1

Chen, Y., Evans, J.D., Smith, I.B. & Pettis, J.S. (2008). *Nosema ceranae* is a long-present and wide-spread microsporidian infection of the European honey bee (*Apis mellifera*) in the United States. Journal of Invertebrate Pathology, 97: 186–188. doi: 10.1016/j.jip.2007.07.010

Chen, Y.W., Chung, W.P., Wang, C.H, Solter, L.F. & Huang W.F. (2012). *Nosema ceranae* infection intensity highly correlates with temperature. Journal of Invertebrate Pathology, 111: 264-267. doi: 10.1016/j.jip.2012.08.014

Cilia, G., Sagona, S., Giusti, M., Santos, P.E.J., Nanetti, A. & Felicioli, A. (2018). *Nosema ceranae* infection in honeybee samples from Tuscanian Archipelago (Central Italy) investigated by two qPCR methods. Saudi Journal of Biological Sciences, 26: 1553-1556. doi: 10.1016/j.sjbs.2018.11.017

Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A, Quan, P. L., Briese, T., Hornig, M., Geiser, D.M., Martinson, V., Van Engelsdorp, D., Kalkstein, A.L., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchison, S.K., Simons, J.F., Egholm, M., Pettis, J.S. & Lipkin, W.I. (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318: 283-287. doi: 10.1126/science.1146498

Dussaubat, C., Brunet, J. L., Higes, M., Colbourne, J. K. & Lopez J. (2012). Gut pathology and responses to the microsporidium *Nosema ceranae* in the Honey bee *Apis mellifera*. Plos One, 7: e37017. doi: 10.1371/journal.pone.0037017

Eiri, D.M., Suwannapong, G., Endler, M. & Nieh, J.C. (2015). *Nosema ceranae* can infect honey bee larvae and reduces subsequent adult longevity. Plos One, 10: e0126330. doi: 10.1371/journal.pone.0126330

Emsen, B., Guzman-Novoa, E., Hamiduzzaman, M. M., Eccles, L., Lacey, B., Ruiz-Pérez, R.A. & Nasr, M. (2016). Higher prevalence and levels of *Nosema ceranae* than *Nosema apis* infections in Canadian honey bee colonies. Parasitology Research, 115: 175-181. doi: 10.1007/s00436-015-4733-3

Ferroglio, E., Zanet, S., Peraldo, N., Tachis, E., Trisicuoglio, A., Laurino, D. & Porporato, M. (2013). *Nosema ceranae* has been infecting honey bees *Apis mellifera* in Italy since at least 1993. Journal of Apicultural Research, 52: 60-61. doi: 10.3896/IBRA.1.52.11

Fleites-Ayil, F.A., Quezada-Euán J.G. & Medina-Medina, L.A., (2018). Onset of foraging and lifespan of Africanized honey bees (*Apis mellifera*) infected with different levels of *Nosema ceranae* spores in Neotropical Mexico. Apidologie, 49: 781-788. doi: 10.1007/s13592-018-0602-2

Fries, I., Feng, F., Silva, A., Silmenda, S. B. & Pieniazek, N. J. (1996). *Nosema ceranae* sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee *Apis cerana* (Hymenoptera, Apidae). European Journal of Protistology, 32: 356-365. doi: 10.1016/S0932-4739(96)80059-9

Fries, I., Martin, R., Meana A., Garcia-Palencia, P. & Higes, M. (2006). Natural infections of *Nosema ceranae* in European honey bees. Journal of Apicultural Research, 45: 230-233. doi: 10.3896/IBRA.1.45.13

Fries, I. (2010). *Nosema ceranae* in European honey bees (*Apis mellifera*). Journal of Apicultural Research, 103:573-579. doi: 10.1616/j.jap.2009.06.017

Fries, I., Chauzat, M.P., Chen, Y., Doublet, V., Genersch, E., Gisder, S., Higes, M., McMahon, D.P., Martin-Hernández, R., Natsopoulou, M., Paxton, R.J., Tanner, G., Webster, T. C. & Williams, G.R. (2013). Standart methods for Nosema infections in Canadian honey bee colonies. Journal of Invertebrate Pathology, 115: 175-181. doi: 10.1007/s00436-015-4733-3

Geiser, S., Heddke, K., Mockel, N., Frielitz, M.C., Linde, A. & Genersch, E. (2010). Five-year cohort study of *Nosema* spp. in Germany: does climate shape virulence and assertiveness of *Nosema ceranae*? Applied and Environmental Microbiology, 76: 3032-3038. doi: 10.1128/AEM.03097-09
Gisder, S., Schüle, V., Horchler, L.L. Groth, D. & Genersch, E. (2017). Long-term temporal trends of Nosema spp. infection prevalence in northern Germany: continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Frontiers in Cellular and Infection Microbiology, 7: 1-14. doi:10.3389/fcimb.2017.00301

Guerrero-Molina, C., Correa-Benitez, A., Hamiduzzaman, M.M. & Guzman-Novoa, E. (2016). Nosema ceranae is an old resident of honey bee (Apis mellifera) colonies in Mexico, causing infection levels of one million spores per bee or higher during summer and fall. Journal of Invertebrate Pathology, 141: 38-40. doi: 10.1016/j.jip.2016.11.001

Guimarães-Cestaro, L., Serrão, J.E., Message, D., Martins, M.F. & Teixeira, E.W. (2016). Simultaneous detection of Nosema spp., Ascosphaera apis and Paenibacillus larvae in honey bee products. Journal of Hymenoptera Research, 49: 43-50. doi: 10.3897/JHR.49.7061

Guimarães-Cestaro, L., Alves, M.L.T.M.F., Message, D, Silva, M.V.G.B. & Teixeira, E.W. (2017). A scientific note on occurrence of pathogens in colonies of honey bee Apis mellifera in Vale do Ribeira, Brazil. Apidologie, 48: 384-386. doi: 10.1007/s13592-016-0481-3

Guimarães-Cestaro, L., Alves, M.L.T.M.F., Message, D, Silva, M.V.G.B & Teixeira, E.W. (2017). Honey bee (Apis mellifera) health in stationary and migratory apiaries. Sociobiology, 64: 42-49. doi: 10.13102/sociobiology.v64i1.1183

Guzman-Novoa, E., Hamiduzzaman, M.M., Arechavaleta-Velasco, M.E., Koleoglu, G., Valizadeh, P. & Correa-Benitez, A. (2011). Nosema ceranae has parasitized Africanized honey bees in Mexico since at least 2004. Journal of Apicultural Research, 50: 167-169. doi: 10.3896/IBRA.1.50.2.09

Higes, M., Martin, R. & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology, 92: 93-95. doi: 10.1016/j.jip.2006.02.005

Higes, M., Martín-Hernandez, R., Botías, C., Garrido-Bailón, O.E., Gonzalez-Porto, A.V. & Barrios L (2008). How natural infection by Nosema ceranae causes honey bee colony collapse. Environmental Microbiology, 10: 2659-2669. doi: 10.1111/j.1462-2920.2008.01687.x

Higes, M., Martín-Hernández, R., Garrido-Bailón, E., González-Porto, A.V., García-Palencia, P., Meana, A., Del Nozal, M.J., Mayo, R. & Bernal, J.L. (2009). Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environmental Microbiology Reports, 1: 110-113. doi: 10.1111/j.1758-2229.2009.00014.x

Higes, M., Martín-Hernández, R., Garrido-Bailón, E., González-Porto, A.V., Meana & A, Bernal, J.L. (2010a). A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environmental Microbiology Reports, 2: 243-250. doi: 10.1111/j.1758-2229.2009.00099.x

Higes, M., Martín-Hernandez, R. & Meana, A. (2010). Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie, 41: 375-392. doi: 10.1051/apido/2010019

Huang, W.F., Jiang, J.H., Chen, Y.W. & Wang, C.H. (2007). A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie, 38: 30-37. doi: 10.1051/apido/2010019

Invernizzi, C., Abud, C., Tomascho, I.H., Harriet, J. Ramallo, G., Campá, J., Katz, H., Gardiol, G. & Mendoza, Y. (2009). Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. Journal of Invertebrate Pathology, 101: 150 –153. doi: 10.1016/j.jip.2009.03.006

Klee, J, Besana, A.M., Genersch, E., Gisder, S., Nanetti, A., Tam, D.Q., Chinh, T.X., Puerta, F., Ruz, J.M., Kryger, P., Message, D., Hatjina, F., Korpela, S., Fries, I. & Paxton, R.J. (2007). Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. Journal of Invertebrate Pathology, 96: 1-10. doi: 10.1016/j.jip.2007.02.014

Lecocq, A., Jensen, A.B., Kryger, P. & Niech, J.C. (2016). Parasite infection accelerates age polyethism in young honey bees. Scientific Reports, 6: 22042. doi: 10.1038/srep22042

Martín-Hernández, R., Meana, A., García-Palencia, P., Marrin, P., Botías, C., Garrido-Bailón, E., Barrios, L. & Higes, M. (2009). Temperature effect on biotic potential of honey bee microsporidia. Applied and Environmental Microbiology, 75: 2554-2557. doi: 10.1128/AEM.02908-08

Martín-Hernandez, R., Botías, C., Barrios, L., Martinez-Salvador, A., Meana, A., Mayack, C. & Higes, M. (2011). Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitology Research, 109: 605-612. doi: 10.1007/s00436-011-2292-9

Martín-Hernández, R., Bartolome, C., Chejanovsky, N., Le Conte, Y., Dalmon, A., Dussaubaht, C., Dussaubaht, C., Meana, A., Pinto, M., Soroker, V. & Higes, M. (2018). Nosema ceranae in Apis mellifera: a 12 years post-detection perspective: Nosema ceranae in Apis mellifera. Environmental Microbiology, 20: 1302-1329. doi: 10.1111/1462-2920.14103

Mayack, C. & Naug, D. (2009). Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. Journal of Invertebrate Pathology, 100: 185-188. doi: 10.1016/j.jip.2008.12.001

Özkırım, A., Schiesser, A. & Keskin, N. (2019). Dynamics of Nosema apis and Nosema ceranae co-infection seasonally in honey bee (Apis mellifera L.) colonies. Journal of Apicultural Research, 63: 41-48. doi: 10.2478/jas-2019-0001

Paxton, R.J., Klee, J., Korpela, S & Fries, I. (2007). Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie, 38: 558-565. doi: 10.1051/apido:2007037
L Guimarães-Cestaro et al. – *N. ceranae* Does Not Cause Collapse of Honey Bees in Tropical climate in open or roofed apiaries

Teixeira, E.W., Message, D., Chen, Y., Pettis, J.S. & Evans, J.D. (2008b). First metagenomic analysis of microorganisms in honey bees from Brazil. Boletim da Industria Animal, 65: 355-361.

Teixeira, E. W. & Message, D. (2010). *Abelhas Apis mellifera*. In: Manual veterinário de colheita e envio de amostras: manual técnico. Coordenação técnica MAPA/OPAS-PANAFTOSA. Editora Horizonte. São Paulo.

Teixeira, E.W., Chen, Y., Message, D., Pettis, J & Evans, J. D., Bonscristiani, H.F., Pettis, J.S. & Evans, J.D. (2012) *Israeli acute paralysis virus* in Africanized honey bees in southeastern Brazilian apiaries. Journal of Apicultural Research, 51: 282-284. doi: 10.3896/IBRA.1.51.3.11

Teixeira, E.W., Santos, L.G., Sattler, A., Message, D., Alves, M.L.T.M.F., Martins, M.F., Grassi-Sella, M.F. & Francoy, T.M. (2013). *Nosema ceranae* has been present in Brazil for more than three decades infecting Africanized honey bees. Journal of Invertebrate Pathology, 114: 250-254. doi: 10.1016/j.jip.2013.19.002.

Teixeira, E.W., Guimarães-Cestaro, L., Alves, M.L.T.M.F., Message, D., Martins, M.F., Luz, C.F.P. & Serrão, J.E. (2018). Spores of *Paenibacillus larvae*, *Ascosphaera apis*, *Nosema ceranae* and *Nosema apis* in bee products supervised by the Brazilian Federal Inspection Service. Revista Brasileira de Entomologia, 62: 188-194. doi: 10.1016/j.rbe.2018.04.001

Traver, B.E. & Fell, R.D. (2015). A scientific note: Survey for *Nosema* spp. in preserved *Apis* spp. Apidologie, 46: 194-196. doi: 10.1007/s13592-014-0306-1

Winston, M.L. (1987). *The Biology of the Honey Bee*. Cambridge, Harvard University Press.

Zheng, H.Q., Lin, Z.G., Huang S.K., Sohr, A. & Chen Y. (2014). Spore loads may not be used alone as a direct indicator of the severity of *Nosema ceranae* infection in honey bees *Apis mellifera* (Hymenoptera: Apidae). Journal of Economic Entomology 107: 2037-2014. doi: 10.1603/EC13520