MARKOV-TYPE INEQUALITIES AND DUALITY IN WEIGHTED SOBOLEV SPACES

FRANCISCO MARCELLÁN\(^{(1)}\), YAMILET QUINTANA\(^{(1)}\), AND JOSÉ M. RODRÍGUEZ\(^{(2)}\)

Abstract. The aim of this paper is to provide Markov-type inequalities in the setting of weighted Sobolev spaces when the considered weights are generalized classical weights. Also, as results of independent interest, some basic facts about Sobolev spaces with respect to certain vector measures are stated.

Key words and phrases: Extremal problems; Markov-type inequality; weighted Sobolev norm; weighted \(L^2\)-norm; duality.

1. Introduction

Given a norm on the linear space \(\mathbb{P}\) of polynomials with real coefficients, the so-called Markov-type inequalities are estimates connecting the norm of derivatives of a polynomial with the norm of the polynomial itself. These inequalities are interesting by themselves and play a fundamental role in the proof of many inverse theorems in polynomial approximation theory (cf. [23, 27] and the references therein).

It is well known that for every polynomial \(P\) of degree at most \(n\), the Markov inequality

\[
\|P'\|_{L^\infty([-1,1])} \leq n^2 \|P\|_{L^\infty([-1,1])}
\]

holds and it is optimal since you have equality for the Chebyshev polynomials of the first kind.

The above inequality has been extended to the \(p\) norm \((p \geq 1)\) in [14]. For every polynomial \(P\) of degree at most \(n\) their result reads

\[
\|P'\|_{L^p([-1,1])} \leq C(n,p)n^2 \|P\|_{L^p([-1,1])}
\]
where the value of $C(n, p)$ is explicitly given in terms of p and n. Indeed, you have a bound $C(n, p) \leq 6e^{1+1/e}$ for $n > 0$ and $p \geq 1$. In [11] admissible values for $C(n, p)$ and some computational results for $p = 2$ are deduced. Notice that for any $p > 1$ and every polynomial P of degree at most n

\[\|P'\|_{L^p([-1,1])} \leq Cn^2 \|P\|_{L^p([-1,1])}, \]

where C is explicitly given and it is less than the constant $C(n, p)$ in [14].

On the other hand, using matrix analysis, in [8] it is proved that the exact value of $C(n, 2)$ is the greatest singular value of the matrix $A_n = [a_{j,k}]_{0 \leq j \leq n-1, 0 \leq k \leq n}$, where $a_{j,k} = \int_{-1}^{1} p'_j(x)p_k(x)w(x)dx$ and $\{p_n\}_{n=0}^\infty$ is the sequence of orthonormal Legendre polynomials. A simple proof of this result, with an interpretation of the sharp constant $C(n, 2)$ as the largest positive zero of a polynomial as well as an explicit expression of the extremal polynomial (the polynomial such that the inequality becomes an equality) in the L^2-Markov inequality appears in [15].

If you consider weighted L^2-spaces, the problem becomes more difficult. For instance, let $\|\cdot\|_{L^2((a,b),w)}$ be a weighted L^2-norm on \mathbb{P}, given by

\[\|P\|_{L^2((a,b),w)} = \left(\int_a^b |P(x)|^2 w(x)dx \right)^{1/2}, \]

where w is an integrable function on (a, b), $-\infty \leq a < b \leq \infty$, such that $w > 0$ a.e. on (a, b) and all moments

\[r_n := \int_a^b x^n w(x)dx, \quad n \geq 0, \]

are finite. It is clear that there exists a constant $\gamma_n = \gamma_n(a, b, w)$ such that

\[(1.1) \quad \|P'\|_{L^2((a,b),w)} \leq \gamma_n \|P\|_{L^2((a,b),w)}, \quad \text{for all } P \in \mathbb{P}_n, \]

where \mathbb{P}_n is the space of polynomials with real coefficients of degree at most n. Indeed, the sharp constant is the greatest singular value of the matrix $B_n = [b_{j,k}]_{0 \leq j \leq n-1, 0 \leq k \leq n}$, where $b_{j,k} = \int_{-1}^{1} p'_j(x)p_k(x)w(x)dx$ and $\{p_n\}_{n=0}^\infty$ is the orthonormal polynomial system with respect to the positive measure $w(x)dx$. Thus, from a computational point of view you need to find the connection coefficients between the sequences $\{p'_n\}_{n=0}^\infty$ and $\{p_n\}_{n=0}^\infty$ in order to proceed with the computation of the matrix, and in a second step, to find the greatest singular value of the matrix B_n. Notice that for classical weights (Jacobi, Laguerre and Hermite), such connection coefficients can be found in a simple way.
Mirsky \[25\] showed that the best constant \(\gamma^*_n := \sup_{P \in \mathbb{P}_n} \left\{ ||P'||_{L^2((a,b),w)} : ||P||_{L^2((a,b),w)} = 1 \right\}\) satisfies
\[
\gamma^*_n \leq \left(\sum_{\nu=1}^{n} \nu ||P'_\nu||_{L^2((a,b),w)}^2 \right)^{1/2}.
\]
(1.2)

Notice that the main interest of the above result is however qualitative, since the bound specified by (1.2) can be very crude. In fact, when \(w(x) = e^{-x^2}\) on \((-\infty, \infty)\), the estimate (1.2) becomes
\[
\gamma^*_n \leq \sqrt{\frac{1}{3} n(n+1)(2n+1)} = O\left(n^{3/2}\right).
\]

The contrast between this estimate and the classic result of Schmidt \[38\], which establishes \(\gamma^*_n = \sqrt{2n}\), is evident.

Also, when we consider the weighted \(L^2\)-norm associated with the Laguerre weight \(w(x) := x^\alpha e^{-x}\) in \([0, \infty)\), the results in \[3\] give the following inequality
\[
||P'||_{L^2(w)} \leq C_\alpha n ||P||_{L^2(w)}, \text{ for all } P \in \mathbb{P}_n.
\]
(1.3)

Notice that the nature of the extremal problems associated to the inequalities (1.1) and (1.3) is different, since in the first case the constant on the right-hand side of (1.1) depends on \(n\), while in the second one the multiplicative constant \(C_\alpha\) on the right-hand side of (1.3) is independent of \(n\).

There exist a lot of results on Markov-type inequalities (see, e.g. \[9, 10, 23\], and the references therein). In connection with the research in the field of the weighted approximation by polynomials, Markov-type inequalities have been proved for various weights, norms, sets over which the norm is taken (see, e.g. \[22\] and the references therein) and more recently, the study of asymptotic behavior of the sharp constant involved in some kind of these inequalities have been done in \[3\] for Hermite, Laguerre and Gegenbauer weights and in \[4\] for Jacobi weights with parameters satisfying some constraints.

On the other hand, a similar problem connected with the Markov-Bernstein inequality has been analyzed in \[12\] when you try to determine the sharp constant \(C(n, m; w)\) such that
\[
\|A^{m/2} P^{(m)}\|_{L^2((a,b),w)} \leq C(n, m; w) \|P\|_{L^2((a,b),w)}, \text{ for all } P \in \mathbb{P}_n.
\]
(1.4)

Here \(w\) is a classical weight satisfying a Pearson equation \((A(x)w(x))' = B(x)w(x)\) and \(A, B\) are polynomials of degree at most 2 and 1, respectively.
An analogue of the Markov-Bernstein inequality for linear operators T from \mathbb{P}_n into \mathbb{P} has been studied in [17] in terms of singular values of matrices. Some illustrative examples when T is either the derivative or the difference operator and you deal with some classical weights (Laguerre, Gegenbauer in the first case, Charlier, Meixner in the second one) are shown. Another recent application of Markov-Bernstein-type inequalities can be found in [5].

With these ideas in mind, one of the authors of the present paper posed in 2008 during a conference on Constructive Theory of Functions held in Campos do Jordão, Brazil, the following problem: Find the analogous of Markov-type inequalities in the setting of weighted Sobolev spaces. A partial answer of this problem was given in [27], considering an extremal problem with similar conditions to those given by Mirsky, and following the scheme of Kwon and Lee [17], mainly.

The first part of this paper is devoted to provide another partial solution of the above problem, which is based on the adequate use of inequalities of kind (1.3) [3, 9, 38], in the setting of weighted Sobolev spaces, when the considered weights are generalized classical weights. In the second part we study some basic facts about Sobolev spaces with respect to measures: separability, reflexivity, uniform convexity and duality, which to the best of our knowledge are not available in the current literature. These Sobolev spaces appear in a natural way and are a very useful tool when we study the asymptotic behavior of Sobolev orthogonal polynomials (see [7], [18], [19], [31], [32], [33], [35], [37]).

The outline of the paper is as follows. The first part of Section 2 provides some short background about Markov-type inequalities in L^2 spaces with classical weights and the second one deals with a Markov-type inequality corresponding to each weighted Sobolev norm with respect to these classical weights and to some generalized weights (see Theorem 2.1). Section 3 contains definitions and a discussion about the appropriate vector measures which we will need in order to get completeness of our Sobolev spaces with respect to measures. Finally, Section 4 contains some basic results on Sobolev spaces with respect to the vector measures defined in the previous section (see Theorems 4.2 and 4.3): separability, reflexivity, uniform convexity and duality.

2. Markov-type inequalities in Sobolev spaces with weights

The following proposition summarizes the Markov-type inequalities in L^2 spaces with classical weights, which will be used in the sequel. Recall that we denote by \mathbb{P}_n the linear space of polynomials with real coefficients and degree less than or equal to n.

Proposition 2.1. The following inequalities are satisfied.

1. **Laguerre case** [3]:
 \[\|P'\|_{L^2(w)} \leq C_\alpha n \|P\|_{L^2(w)}, \]
 where $w(x) := x^\alpha e^{-x}$ in $[0, \infty)$, $\alpha > -1$ and $P \in \mathbb{P}_n$.

2.1 We want to remark that the proof provides explicit expressions for the involved constants.

In Theorem 2.1 below we extend these results to the context of weighted Sobolev spaces.

The multiplicative constants \(C_\alpha \) and \(C_{\alpha,\beta} \) are independent of \(n \).

In Theorem 2.1 below we extend these results to the context of weighted Sobolev spaces.

We want to remark that the proof provides explicit expressions for the involved constants.

Theorem 2.1. The following inequalities are satisfied.

1. **Laguerre-Sobolev case:**
 \[
 \|P\|_{W^{k,2}(w,\lambda_1,w,\ldots,\lambda_k,w)} \leq C_{\alpha n} \|P\|_{W^{k,2}(w,\lambda_1,w,\ldots,\lambda_k,w)},
 \]
 where \(w(x) := |x|^\alpha e^{-x} \) in \(\mathbb{R} \), \(\alpha \geq 0 \), \(\lambda_1, \ldots, \lambda_k \geq 0 \), \(P \in \mathbb{P}_n \) and \(C_\alpha \) is the same constant as in Proposition 2.1 (1).

2. **Generalized Hermite-Sobolev case:**
 \[
 \|P'\|_{L^2(w)} \leq \sqrt{2n} \|P\|_{L^2(w)},
 \]
 where \(w(x) := (1-x)^\alpha (1+x)^\beta \) in \([-1,1] \), \(\alpha, \beta > -1 \) and \(P \in \mathbb{P}_n \).

3. **Jacobi case** (see also [10]):
 \[
 \|P'\|_{L^2(w)} \leq C_{\alpha,\beta} n^2 \|P\|_{L^2(w)},
 \]
 where \(w(x) := (1-x)^\alpha (1+x)^\beta \) in \([-1,1] \), \(\alpha, \beta > -1 \) and \(P \in \mathbb{P}_n \).

4. Let us consider the generalized Jacobi weight \(w(x) := h(x)\prod_{j=1}^r |x - c_j|^\gamma_j \) in \([a,b]\) with \(c_1, \ldots, c_r \in \mathbb{R} \), \(\gamma_1, \ldots, \gamma_r \in \mathbb{R} \), \(\gamma_j > -1 \) when \(c_j \in [a,b] \), and \(h \) a measurable function satisfying \(0 < m \leq h \leq M \) in \([a,b]\) for some constants \(m, M \). Then we have
 \[
 \|P'\|_{W^{k,2}(w,\lambda_1,w,\ldots,\lambda_k,w)} \leq C_1(a, b, c_1, \ldots, c_r, \gamma_1, \ldots, \gamma_r, m, M) n^2 \|P\|_{W^{k,2}(w,\lambda_1,w,\ldots,\lambda_k,w)},
 \]
 for every \(\lambda_1, \ldots, \lambda_k \geq 0 \) and \(P \in \mathbb{P}_n \).

5. Consider now the generalized Laguerre weight \(w(x) := h(x)\prod_{j=1}^r |x - c_j|^\gamma_j e^{-x} \) in \([0,\infty)\) with \(c_1 < \cdots < c_r \), \(c_r \geq 0 \), \(\gamma_1, \ldots, \gamma_r \in \mathbb{R} \), \(\gamma_j > -1 \) when \(c_j \geq 0 \), and \(h \) a measurable function satisfying \(0 < m \leq h \leq M \) in \([0,\infty)\) for some constants \(m, M \).
 \[
 \|P'\|_{W^{k,2}(w,\lambda_1,w,\ldots,\lambda_k,w)} \leq C_2(c_1, \ldots, c_r, \gamma_1, \ldots, \gamma_r, m, M) n^2 \|P\|_{W^{k,2}(w,\lambda_1,w,\ldots,\lambda_k,w)},
 \]
 If \(\sum_{j=1}^r \gamma_j = 0 \), then
for every $\lambda_1, \ldots, \lambda_k \geq 0$ and $P \in \mathbb{P}_n$.

(5.2) Assume that $c_1 < \cdots < c_r$ and $\sum_{j=1}^{r} \gamma_j > -1$. Let $r_0 := \min \{1 \leq j \leq r \mid c_j \geq 0\}$, $\gamma'_r := \gamma_{r+1} := 0$ and $\gamma'_j := \gamma_j$ for every $r_0 \leq j \leq r$. Assume that $\max \{\gamma'_j, \gamma'_{j+1}\} \geq -1/2$ for every $r_0 - 1 \leq j \leq r$. Then we have

$$\|P\|_{W^{k, 2}(w, \lambda_1, \ldots, \lambda_k, w)} \leq C_2(c_1, \ldots, c_r, \gamma_1, \ldots, \gamma_r, m, M) n^{a'} \|P\|_{W^{k, 2}(w, \lambda_1, \ldots, \lambda_k, w)},$$

for every $\lambda_1, \ldots, \lambda_k \geq 0$ and $P \in \mathbb{P}_n$, where

$$a' := \max \left\{2, \frac{b' + 2}{2}\right\}, \quad b' := \max_{r_0 - 1 \leq j \leq r} \left(\gamma'_j + \gamma'_{j+1} + |\gamma'_j - \gamma'_{j+1}| + 2\right).$$

(6) Let us consider the generalized Hermite weight $w(x) := h(x) \prod_{j=1}^{r} |x - c_j|^{\gamma_j} e^{-x^2}$ in \mathbb{R} with $c_1 < \cdots < c_r$, $\gamma_1, \ldots, \gamma_r > -1$ with $\sum_{j=1}^{r} \gamma_j \geq 0$ and h a measurable function satisfying $0 < m \leq h \leq M$ in \mathbb{R} for some constants m, M. Define $\gamma_0 := \gamma_{r+1} := 0$ and assume that $\max \{\gamma_j, \gamma_{j+1}\} \geq -1/2$ for every $0 \leq j \leq r$. Then we have

$$\|P\|_{W^{k, 2}(w, \lambda_1, \ldots, \lambda_k, w)} \leq C_3(c_1, \ldots, c_r, \gamma_1, \ldots, \gamma_r, m, M) n^{a} \|P\|_{W^{k, 2}(w, \lambda_1, \ldots, \lambda_k, w)},$$

for every $\lambda_1, \ldots, \lambda_k \geq 0$ and $P \in \mathbb{P}_n$, where

$$a := \max \left\{2, \frac{b + 1}{2}\right\}, \quad b := \max_{0 \leq j \leq r} \left(\gamma_j + \gamma_{j+1} + |\gamma_j - \gamma_{j+1}| + 2\right).$$

In each case the multiplicative constants depend just on the specified parameters (in particular, they do not depend on n).

Remark 2.1. Note that (4), (5), and (6) are new results in the classical (non-Sobolev) context (taking $\lambda_1 = \cdots = \lambda_k = 0$). In (5.2), there is no hypothesis on $\sum_{j=1}^{r-1} \gamma_j$.

Proof. First of all, note that if the inequality

$$\|P\|_{L^2(w)} \leq C(n, w) \|P\|_{L^2(w)}$$

holds for every polynomial $P \in \mathbb{P}_n$ and some fixed weight w, then we have

$$\|P^{(j+1)}\|_{L^2(\lambda w)} \leq C(n, w) \|P^{(j)}\|_{L^2(\lambda w)}$$

for every polynomial $P \in \mathbb{P}_n$ and every $\lambda \geq 0$. Consequently, for the weighted Sobolev norm on \mathbb{P}_n

$$\|P\|_{W^{k, 2}(w, \lambda_1, \ldots, \lambda_k, w)} := \left(\|P\|_{L^2(w)}^2 + \sum_{j=1}^{k} \|P^{(j)}\|_{L^2(\lambda_j w)}^2\right)^{1/2}, \quad \lambda_1, \ldots, \lambda_k \geq 0,$$

we have

$$\|P\|_{W^{k, 2}(w, \lambda_1, \ldots, \lambda_k, w)} \leq C(n, w) \|P\|_{W^{k, 2}(w, \lambda_1, \ldots, \lambda_k, w)},$$

for every polynomial $P \in \mathbb{P}_n$ and every $\lambda_1, \ldots, \lambda_k \geq 0$.

Thus, (1), (2) and (3) hold.
In order to prove (4), note that using an affine transformation of the form \(Tx = \alpha_1 x + \alpha_2\), we obtain from Proposition 2.1 (3)
\[
\|P'\|_{L^2(w)} \leq C(a_1, a_2, \alpha, \beta) n^2 \|P\|_{L^2(w)},
\]
for the weight \(w(x) := (a_2 - x)^\alpha (x - a_1)^\beta\) in \([a_1, a_2]\) and every polynomial \(P \in \mathbb{P}_n\).

Without loss of generality we can assume that \(a \leq c_1 < \cdots < c_r \leq b\), since otherwise we can consider
\[
w(x) = \tilde{h}(x) \prod_{1 \leq j \leq r, c_j \in [a, b]} |x - c_j|^{\gamma_j}, \quad \tilde{h}(x) := h(x) \prod_{1 \leq j \leq r, c_j \notin [a, b]} |x - c_j|^{\gamma_j}.
\]

If we define \(c_0 := a, c_{r+1} := b\) and \(\gamma_0 := \gamma_{r+1} := 0\), then we can write \(w(x) = h(x)\prod_{j=0}^{r+1} |x - c_j|^{\gamma_j}\). Denote by \(h_j\) the function
\[
h_j(x) := \frac{w(x)}{|x - c_j|^{\gamma_j} |x - c_{j+1}|^{\gamma_{j+1}}},
\]
for \(0 \leq j \leq r\). It is clear that there exist positive constants \(m_j, M_j\) (depending just on \(m, M, c_1, \ldots, c_r, \gamma_1, \ldots, \gamma_r\)), with \(m_j \leq h_j(x) \leq M_j\) for every \(x \in [c_j, c_{j+1}]\).

Hence, for \(P \in \mathbb{P}_n\), we have
\[
\|P'\|_{L^2([c_j, c_{j+1}], w)} = \left(\int_{c_j}^{c_{j+1}} |P'(x)|^2 h_j(x) |x - c_j|^{\gamma_j} |x - c_{j+1}|^{\gamma_{j+1}} dx \right)^{1/2}
\leq \sqrt{M_j} \left(\int_{c_j}^{c_{j+1}} |P'(x)|^2 |x - c_j|^{\gamma_j} |x - c_{j+1}|^{\gamma_{j+1}} dx \right)^{1/2}
\leq \sqrt{M_j} C(c_j, c_{j+1}, \gamma_j, \gamma_{j+1}) n^2 \left(\int_{c_j}^{c_{j+1}} |P(x)|^2 |x - c_j|^{\gamma_j} |x - c_{j+1}|^{\gamma_{j+1}} dx \right)^{1/2}
\leq \sqrt{M_j} C(c_j, c_{j+1}, \gamma_j, \gamma_{j+1}) n^2 \left(\int_{c_j}^{c_{j+1}} \frac{|P(x)|^2 |x - c_j|^{\gamma_j} |x - c_{j+1}|^{\gamma_{j+1}} h_j(x)}{m_j} dx \right)^{1/2}
= \sqrt{M_j} m_j C(c_j, c_{j+1}, \gamma_j, \gamma_{j+1}) n^2 \|P\|_{L^2([c_j, c_{j+1}], w)}.
\]

Next, “pasting” several times this last inequality in each subinterval \([c_j, c_{j+1}] \subseteq [a, b]\), \(0 \leq j \leq r\), we obtain
\[
\|P'\|_{L^2(w)} \leq C_1(a, b, c_1, \ldots, c_r, \gamma_1, \ldots, \gamma_r, m, M) n^2 \|P\|_{L^2(w)}
\]
for every polynomial \(P \in \mathbb{P}_n\), with
\[
C_1(a, b, c_1, \ldots, c_r, \gamma_1, \ldots, \gamma_r, m, M) := \max_{0 \leq j \leq r} \sqrt{\frac{M_j}{m_j}} C(c_j, c_{j+1}, \gamma_j, \gamma_{j+1}).
\]

Hence, we obtain the case (4) by applying (2.6).
Similarly, for the case (5.1) we can write

\[w(x) = H_1(x) \prod_{j=1}^{r} |x - c_j|^{\gamma_j}, \]

where \(H_1(x) := h(x)e^{-x} \) satisfies \(0 < me^{-c_r} \leq H_1 \leq M \) in \([0, c_r]\). Then the case (4) provides a constant \(C_1 \), which just depends on the appropriate parameters, with

\[\|P'\|_{W^{k,2}([0,c_r],w,\lambda_1 w,\ldots,\lambda_k w)} \leq C_1 n^2 \|P\|_{W^{k,2}([0,c_r],w,\lambda_1 w,\ldots,\lambda_k w)}, \]

for every \(\lambda_1, \ldots, \lambda_k \geq 0 \) and every polynomial \(P \in \mathbb{P}_n \).

Proposition 2.1 (1) gives

\[\|P'\|_{L^2(w_1)} \leq C_\alpha n \|P\|_{L^2(w_1)}, \]

where \(w_1(x) := x^\alpha e^{-x} \) in \([0, \infty)\), \(\alpha > -1 \) and \(P \in \mathbb{P}_n \). Hence, replacing \(x \) by \(x - c \), we obtain with the same constant \(C_\alpha \)

\[\|P'\|_{L^2((c,\infty),(x-c)^\alpha e^{-x})} \leq C_\alpha n \|P\|_{L^2((c,\infty),(x-c)^\alpha e^{-x})}, \]

for every \(c \geq 0 \) and \(P \in \mathbb{P}_n \). Now, if \(w_2(x) := (x-c)^\alpha e^{-x} \), then the previous inequality implies

\[\|P'\|_{L^2((c,\infty),w_2)} \leq C_\alpha n \|P\|_{L^2((c,\infty),w_2)}, \]

for every \(c \geq 0 \) and \(P \in \mathbb{P}_n \), and (2.6) gives

\[\|P'\|_{W^{k,2}((c,\infty),w_2,\lambda_1 w_2,\ldots,\lambda_k w_2)} \leq C_\alpha n \|P\|_{W^{k,2}((c,\infty),w_2,\lambda_1 w_2,\ldots,\lambda_k w_2)}, \]

for every \(c \geq 0 \), \(\lambda_1, \ldots, \lambda_k \geq 0 \) and \(P \in \mathbb{P}_n \).

We can write now

\[w(x) = H_2(x)(x - c_r)^{\gamma_r} e^{-x}, \]

where \(H_2(x) := h(x) \Pi_{j=1}^{r-1} |x - c_j|^{\gamma_j} \) and there exist constants \(m_2, M_2 \) with \(0 < m_2 \leq H_2 \leq M_2 \) in \([c_r, \infty)\), since \(\sum_{j=1}^{r-1} \gamma_j = 0 \). Thus,

\[\|P'\|_{W^{k,2}((c_r,\infty),w,\lambda_1 w,\ldots,\lambda_k w)} \leq C_{\gamma_r} \sqrt{\frac{M_2}{m_2}} n \|P\|_{W^{k,2}((c_r,\infty),w,\lambda_1 w,\ldots,\lambda_k w)}, \]

for every \(\lambda_1, \ldots, \lambda_k \geq 0 \) and \(P \in \mathbb{P}_n \).

If we define \(C_2 := \max \{ C_1, C_{\gamma_r} \sqrt{M_2/m_2} \} \), then (2.7) and (2.8) give

\[\|P'\|_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)} \leq C_2 n^2 \|P\|_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)}, \]

for every \(\lambda_1, \ldots, \lambda_k \geq 0 \) and \(P \in \mathbb{P}_n \).

Let us prove now (5.2). Define \(A := 1 + c_r \). We can write

\[w(x) = H_3(x) \prod_{j=1}^{r} |x - c_j|^{\gamma_j}, \]
where \(H_3(x) := h(x)e^{-x} \) satisfies \(0 < m e^{-x} \leq H_3 \leq M \) in \([0, A]\). Then the case (4) provides a constant \(C_1 \), which just depends on the appropriate parameters, with
\[
\|P'\|_{\mathcal{W}^k,2([0,A],w,\lambda_1w,\ldots,\lambda_kw)} \leq C_1 n^2 \|P\|_{\mathcal{W}^k,2([0,A],w,\lambda_1w,\ldots,\lambda_kw)},
\]
for every \(\lambda_1, \ldots, \lambda_k \geq 0 \) and every polynomial \(P \in \mathbb{P}_n \).

Proposition 2.1 (1) gives a constant \(C_s \) with
\[
\|P'\|_{L^2(w_3)}^2 \leq C_s n^2 \|P\|_{L^2(w_3)}^2,
\]
where \(w_3(x) := x^s e^{-x} \), \(s := \sum_{j=1}^r \gamma_j > -1 \) and \(P \in \mathbb{P}_n \).

We can write now
\[
w(x) = H_4(x)x^s e^{-x} = H_4(x)w_3(x),
\]
where \(H_4(x) := h(x)x^{-s} \Pi_{j=1}^r |x - c_j|^\gamma_j \), and there exist constants \(m_4, M_4 \) with \(0 < m_4 \leq M_4 \leq M_4 \) in \([A, \infty)\), since \(s = \sum_{j=1}^r \gamma_j \). Thus,
\[
\|P'\|_{L^2([A,\infty),w)}^2 \leq M_4 \|P'\|_{L^2(w_3)}^2 \leq C_s n^2 M_4 \|P\|_{L^2(w_3)}^2
\]
\[
\leq C_s^2 n^2 M_4 \|P\|_{L^2([A,\infty),w)} + C_s^2 n^2 M_4 \|P\|_{L^2([0,A],w_3)}^2,
\]
for every \(P \in \mathbb{P}_n \).

Using Lupas’ inequality [20] (see also [24, p.594]):
\[
\|P\|_{L^\infty([-1,1])} \leq \frac{\Gamma(n + \alpha + \beta + 2)}{2^{\alpha+\beta+1} \Gamma(q+1) \Gamma(n+q'+1)} \left(\frac{n+q+1}{n} \right) \sqrt{\int_{-1}^1 |P(x)|^2 (1 - x)^\alpha (1 + x)^\beta dx},
\]
for every \(P \in \mathbb{P}_n \), where \(q = \max(\alpha, \beta) \geq -1/2 \) and \(q' = \min(\alpha, \beta) \), we obtain that
\[
2\|P\|_{L^\infty([-1,1])}^2 \leq \frac{\Gamma(n + \alpha + \beta + 2) \Gamma(n + q + 2)}{2^{\alpha+\beta} \Gamma(q+1) \Gamma(q+2) \Gamma(n+q'+1)} \left(\frac{n+q+1}{n+q'+1} \right) \int_{-1}^1 |P(x)|^2 (1 - x)^\alpha (1 + x)^\beta dx.
\]
Now, taking into account that
\[
\lim_{n \to \infty} \frac{\Gamma(n + x)}{\Gamma(n + y)n^{x-y}} = 1, \quad x, y \in \mathbb{R},
\]
we get
\[
\frac{\Gamma(n + \alpha + \beta + 2) \Gamma(n + q + 2)}{\Gamma(n+1)\Gamma(n+q'+1)} \sim n^{\alpha+\beta+1} n^{q-q'+1} = n^{\alpha+\beta+|\alpha-\beta|+2}.
\]
Consequently, there exists a constant \(k_1 \), which just depends on \(\alpha \) and \(\beta \), such that
\[
\int_{-1}^1 |P(x)|^2 dx \leq 2\|P\|_{L^\infty([-1,1])}^2 \leq k_1(\alpha, \beta) n^{v(\alpha, \beta)} \int_{-1}^1 |P(x)|^2 (1 - x)^\alpha (1 + x)^\beta dx,
\]
where \(v(\alpha, \beta) = \alpha + \beta + |\alpha - \beta| + 2 \) and \(P \in \mathbb{P}_n \).

Recall that \(\max\{\gamma'_j, \gamma'_j+1\} \geq -1/2 \) for every \(r_0 - 1 \leq j \leq r \) and
\[
b' := \max_{r_0-1 \leq j \leq r} \left(\gamma'_j + \gamma'_j+1 + |\gamma'_j - \gamma'_j+1| + 2 \right).
\]
Therefore, a similar argument to the one in the proof of (4) gives
\[
\int_0^A |P(x)|^2 \, dx \leq k_2 n^{b'} \int_0^A |P(x)|^2 \prod_{j=r_0}^{r+1} |x-c_j|^\gamma_j \, dx = k_2 n^{b'} \int_0^A |P(x)|^2 \prod_{j=r_0}^{r} |x-c_j|^\gamma_j \, dx,
\]
for every polynomial \(P \in \mathbb{P}_n \) and some constant \(k_2 \) which just depends on \(c_{r_0}, \ldots, c_r, \gamma_{r_0}, \ldots, \gamma_r \). Thus,
\[
\int_0^A |P(x)|^2 \, dx \leq k_3 n^{b'} \int_0^A |P(x)|^2 \prod_{j=1}^{r} |x-c_j|^\gamma_j \, dx,
\]
for every polynomial \(P \in \mathbb{P}_n \) and some constant \(k_3 \) which just depends on \(c_1, \ldots, c_r, \gamma_1, \ldots, \gamma_r \). Hence,
\[
\|P\|^2_{L^2([0,A],w^3)} = \int_0^A |P(x)|^2 x^s e^{-x} \, dx \leq A^s \int_0^A |P(x)|^2 \, dx
\]
\[
\leq k_3 n^{b'} A^s \int_0^A |P(x)|^2 \prod_{j=1}^{r} |x-c_j|^\gamma_j \, dx
\]
\[
\leq \frac{1}{m} k_3 n^{b'} A^s e^A \int_0^A |P(x)|^2 h(x) \prod_{j=1}^{r} |x-c_j|^\gamma_j e^{-x} \, dx
\]
\[
\leq \frac{1}{m} k_3 A^s e^A n^{b'} \|P\|^2_{L^2(w)},
\]
for every polynomial \(P \in \mathbb{P}_n \).

This inequality and (2.10) give
\[
\|P'\|^2_{L^2([A,\infty),w)} \leq \max \left\{ C_s^2 \frac{M_1}{m} n^2, C_s^2 \frac{M_1}{m} k_3 A^s e^A n^{b'+2} \right\} \|P\|^2_{L^2(w)}
\]
\[
\leq k_4 n^{b'+2} \|P\|^2_{L^2(w)},
\]
for every polynomial \(P \in \mathbb{P}_n \), where
\[
k_4 := \max \left\{ C_s^2 \frac{M_1}{m}, C_s^2 \frac{M_1}{m} k_3 A^s e^A \right\}.
\]
Hence,
\[
\|P'\|^2_{W^{k,2}([A,\infty),w,\lambda_1 w,\ldots,\lambda_k w)} \leq k_4 n^{b'+2} \|P\|^2_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)},
\]
for every \(\lambda_1, \ldots, \lambda_k \geq 0 \) and every polynomial \(P \in \mathbb{P}_n \), and (2.9) allows to deduce
\[
\|P'\|^2_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)} \leq \left(C_1 n^2 + k_4 n^{b'+2}\right) \|P\|^2_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)},
\]
for every \(\lambda_1, \ldots, \lambda_k \geq 0 \) and every polynomial \(P \in \mathbb{P}_n \). If we define
\[
k_5 := \left(C_1^2 + k_4\right)^{1/2},
\]
and we recall that
\[a' := \max \left\{ 2, \frac{b' + 2}{2} \right\}, \]
then
\[\|P'\|_{W^{k,2}(w,\lambda_1w,\ldots,\lambda_kw)} \leq k_5 n^{a'} \|P\|_{W^{k,2}(w,\lambda_1w,\ldots,\lambda_kw)}, \]
for every \(\lambda_1, \ldots, \lambda_k \geq 0 \) and every polynomial \(P \in \mathbb{P}_n \).

Finally, let us show (6). Define \(B := 1 + \max\{|c_1|, \ldots, |c_r|\} \). We can write
\[w(x) = H_5(x) \prod_{j=1}^r |x - c_j|^{\gamma_j}, \]
where \(H_5(x) := h(x)e^{-x^2} \) satisfies \(0 < m e^{-B^2} \leq H_5 \leq M \) in \([-B, B]\). Then the case (4) provides a constant \(C_1 \), which just depends on the appropriate parameters, with
\[\|P\|_{W^{k,2}([-B,B],w,\lambda_1w,\ldots,\lambda_kw)} \leq C_1 n^2 \|P\|_{W^{k,2}([-B,B],w,\lambda_1w,\ldots,\lambda_kw)}, \]
for every \(\lambda_1, \ldots, \lambda_k \geq 0 \) and every polynomial \(P \in \mathbb{P}_n \).

Proposition 2.1 (2) gives
\[\|P'\|_{L^2(w_4)}^2 \leq 2n \|P\|_{L^2(w_4)}^2, \]
where \(w_4(x) := |x|^\alpha e^{-x^2}, \alpha := \sum_{j=1}^r \gamma_j \geq 0 \) and \(P \in \mathbb{P}_n \).

We can write now
\[w(x) = H_6(x)|x|^\alpha e^{-x^2} = H_6(x)w_4(x), \]
where \(H_6(x) := h(x)|x|^{-\alpha} \prod_{j=1}^r |x - c_j|^{\gamma_j} \), and there exist constants \(m_6, M_6 \) with \(0 < m_6 \leq H_6 \leq M_6 \) in \((-\infty, -B] \cup [B, \infty)\), since \(\alpha = \sum_{j=1}^r \gamma_j \). Thus,
\[\|P'\|_{L^2((-\infty, -B] \cup [B, \infty), w)} \leq M_6 \|P'\|_{L^2(w_4)}^2 \leq 2nM_6 \|P\|_{L^2(w_4)}^2 \]
\[\leq 2n \frac{M_6}{m_6} \|P\|_{L^2((-\infty, -B] \cup [B, \infty), w)}^2 + 2nM_6 \|P\|_{L^2([-B,B], w_4)}^2, \]
for every \(P \in \mathbb{P}_n \).

Since \(\max\{\gamma_j, \gamma_{j+1}\} \geq -1/2 \) for every \(0 \leq j \leq r \) and \(b := \max_{0 \leq j \leq r} (\gamma_j + \gamma_{j+1} + |\gamma_j - \gamma_{j+1}| + 2) \), the argument in the proof of (5,2), using Lupaš inequality, gives
\[\int_{-B}^B |P(x)|^2 \, dx \leq k_6 n^b \int_{-B}^B |P(x)|^2 \prod_{j=1}^r |x - c_j|^{\gamma_j} \, dx, \]
for every polynomial \(P \in \mathbb{P}_n \) and some constant \(k_6 \) which just depends on \(c_1, \ldots, c_r, \gamma_1, \ldots, \gamma_r \).
Hence,
\[
\|P\|_{L^2([-B,B],w_4)}^2 = \int_{-B}^{B} |P(x)|^2 |x|^\alpha e^{-x^2} \, dx \leq B^\alpha \int_{-B}^{B} |P(x)|^2 \, dx
\]
\[
\leq k_6 n^b B^\alpha \int_{-B}^{B} |P(x)|^2 \prod_{j=1}^{r} |x - c_j|^\gamma_j \, dx
\]
\[
\leq \frac{1}{m} k_6 n^b B^\alpha \int_{-B}^{B} |P(x)|^2 h(x) \prod_{j=1}^{r} |x - c_j|^\gamma_j e^{-x^2} \, dx
\]
\[
\leq \frac{1}{m} k_6 n^b B^\alpha e^{B^2} \|P\|_{L^2(w)}^2,
\]
for every polynomial \(P \in \mathbb{P}_n\).

This inequality and (2.12) give
\[
\|P'\|_{L^2((-\infty,-B]\cup[B,\infty),w)}^2 \leq \max \left\{ \frac{2 M_6}{m_6} n, \frac{2 M_6}{m} k_6 B^\alpha e^{B^2} n^{b+1} \right\} \|P\|_{L^2(w)}^2
\]
\[
\leq k_7 n^{b+1} \|P\|_{L^2(w)}^2,
\]
for every polynomial \(P \in \mathbb{P}_n\), where
\[
k_7 := \max \left\{ \frac{2 M_6}{m_6}, \frac{2 M_6}{m} k_6 B^\alpha e^{B^2} \right\}.
\]

Hence,
\[
\|P'\|_{W^{k,2}((-\infty,-B]\cup[B,\infty),w,\lambda_1 w,\ldots,\lambda_k w)}^2 \leq k_7 n^{b+1} \|P\|_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)}^2,
\]
for every \(\lambda_1, \ldots, \lambda_k \geq 0\) and every polynomial \(P \in \mathbb{P}_n\), and (2.11) allows to deduce
\[
\|P'\|_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)}^2 \leq (C_1^2 n^4 + k_7 n^{b+1}) \|P\|_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)}^2,
\]
for every \(\lambda_1, \ldots, \lambda_k \geq 0\) and every polynomial \(P \in \mathbb{P}_n\). If we define
\[
k_8 := (C_1^2 + k_7)^{1/2},
\]
and we recall that
\[
a := \max \left\{ \frac{b+1}{2} \right\},
\]
then
\[
\|P'\|_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)} \leq k_8 n^a \|P\|_{W^{k,2}(w,\lambda_1 w,\ldots,\lambda_k w)},
\]
for every \(\lambda_1, \ldots, \lambda_k \geq 0\) and every polynomial \(P \in \mathbb{P}_n\). \(\square\)
3. Sobolev spaces with respect to measures

In this section we recall the definition of Sobolev spaces with respect to measures introduced in [31], [32] and [36].

Definition 3.1. Given $1 \leq p < \infty$ and a set A which is a union of intervals in \mathbb{R}, we say that a weight w defined in A belongs to $B_p(A)$ if $w^{-1} \in L_{loc}^{1/(p-1)}(A)$ (if $p = 1$, then $1/(p-1) = \infty$).

It is possible to construct a similar theory with $p = \infty$. We refer to [2], [28], [29] and [30] for the case $p = \infty$.

If $A = \mathbb{R}$, then $B_p(\mathbb{R})$ contains, as a very particular case, the classical $A_p(\mathbb{R})$ weights appearing in Harmonic Analysis. The classes $B_p(\Omega)$, with $\Omega \subseteq \mathbb{R}^n$, have been used in other definitions of weighted Sobolev spaces in \mathbb{R}^n in [16].

We consider vector measures $\mu = (\mu_0, \ldots, \mu_k)$ in the definition of our Sobolev space in \mathbb{R}. We assume that each μ_j is σ-finite; hence, by Radon-Nikodym’s Theorem, we have the decomposition $d\mu_j = d(\mu_j)_s + w_j ds$, where $(\mu_j)_s$ is singular with respect to Lebesgue measure and w_j is a non-negative Lebesgue measurable function.

In [16], Kufner and Opic define the following sets:

Definition 3.2. Let us consider $1 \leq p < \infty$ and a vector measure $\mu = (\mu_0, \ldots, \mu_k)$. For $0 \leq j \leq k$ we define the open set

$$\Omega_j := \{ x \in \mathbb{R} : \exists \text{ an open neighbourhood } V \text{ of } x \text{ with } w_j \in B_p(V) \}.$$

Note that we always have $w_j \in B_p(\Omega_j)$ for any $0 \leq j \leq k$. In fact, Ω_j is the largest open set U with $w_j \in B_p(U)$. It is easy to check that if $f^{(j)} \in L^p(\Omega_j, w_j)$, $1 \leq j \leq k$, then $f^{(j)} \in L_{loc}^1(\Omega_j)$ and, therefore, $f^{(j-1)} \in AC_{loc}(\Omega_j)$, i.e., $f^{(j-1)}$ is a locally absolutely continuous function in Ω_j.

Since the precise definition of Sobolev space requires some technical concepts (see Definition 3.3), we would like to introduce here a heuristic definition of Sobolev space and an example which will help us to understand the technical process that we will follow in order to reach Definition 3.3.

Definition 3.3. (Heuristic definition.) Let us consider $1 \leq p < \infty$ and a p-admissible vector measure $\mu = (\mu_0, \ldots, \mu_k)$ in \mathbb{R}. We define the Sobolev space $W^{k,p}(\mu) = W^{k,p}(\Delta, \mu)$, with $\Delta := \bigcup_{j=0}^k \text{supp}(\mu_j)$, as the space of equivalence classes of

$$W^{k,p}(\mu) := W^{k,p}(\Delta, \mu) := \left\{ f : \Delta \to \mathbb{R} : \| f \|_{W^{k,p}(\Delta, \mu)} := \left(\sum_{j=0}^k \| f^{(j)} \|_{L^p(\Delta, \mu_j)}^p \right)^{1/p} < \infty, \right.$$

$$f^{(j)} \in AC_{loc}(\Omega_{j+1} \cup \cdots \cup \Omega_k) \text{ and } f^{(j)} \text{ satisfies}$$

“pasting conditions” for $0 \leq j < k,$

with respect to the seminorm $\| \cdot \|_{W^{k,p}(\Delta, \mu)}.$
These pasting conditions are natural: a function must be as regular as possible. In a first step, we check if the functions and their derivatives are absolutely continuous up to the boundary (this fact holds in the following example), and then we join the contiguous intervals:

Example. \(\mu_0 := \delta_0 \), \(\mu_1 := 0 \), \(d\mu_2 := \chi_{[-1,0]}(x)dx \) and \(d\mu_3 := \chi_{[0,1]}(x)dx \), where \(\chi_A \) denotes the characteristic function of the set \(A \).

Since \(\Omega_1 = \emptyset \), \(\Omega_2 = (-1,0) \) and \(\Omega_3 = (0,1) \), \(W^{3,p}(\mu) \) is the space of equivalence classes of

\[
W^{3,p}(\mu) = \left\{ f : \|f\|_{W^{3,p}(\mu)} < \infty, \ f, f' \text{ satisfy “pasting conditions”}, \ f, f', f'' \in AC((-1,0)) \right\} \\
= \left\{ f : \|f\|_{W^{3,p}(\mu)} < \infty, \ f, f' \text{ satisfy “pasting conditions”}, \ f, f', f'' \in AC([-1,0]) \right\} \\
= \left\{ f : \|f\|_{W^{3,p}(\mu)} < \infty, \ f, f' \in AC([-1,1]) \right\}.
\]

In the current case, since \(f \) and \(f' \) are absolutely continuous in \([-1,0]\) and in \([0,1]\), we require that both are absolutely continuous in \([-1,1]\).

These heuristic concepts can be formalized as follows:

Definition 3.4. Let us consider \(1 \leq p < \infty \) and \(\mu, \nu \) measures in \([a,b]\). We define

\[
\Lambda_{p,[a,b]}^+(\mu, \nu) := \sup_{a < x < b} \mu((a,x))\| (dv/ds)^{-1} \|_{L^{1/(p-1)}([x,b])},
\]

\[
\Lambda_{p,[a,b]}^-(\mu, \nu) := \sup_{a < x < b} \mu((x,b))\| (dv/ds)^{-1} \|_{L^{1/(p-1)}([a,x])},
\]

where we use the convention \(0 \cdot \infty = 0 \).

Muckenhoupt inequality. (See [26], [21, p.44], [2, Theorem 3.1]) Let us consider \(1 \leq p < \infty \) and \(\mu_0, \mu_1 \) measures in \([a,b]\). Then:

1. There exists a real number \(c \) such that

\[
\| \int_a^b g(t) \, dt \|_{L^p((a,b),\mu_0)} \leq c \| g \|_{L^p((a,b),\mu_1)}
\]

for any measurable function \(g \) in \([a,b]\), if and only if \(\Lambda_{p,[a,b]}^+(\mu_0, \mu_1) < \infty \).

2. There exists a positive constant \(c \) such that

\[
\| \int_a^b g(t) \, dt \|_{L^p((a,b),\mu_0)} \leq c \| g \|_{L^p((a,b),\mu_1)}
\]

for any measurable function \(g \) in \([a,b]\), if and only if \(\Lambda_{p,[a,b]}^-(\mu_0, \mu_1) < \infty \).
Definition 3.5. Let us consider $1 \leq p < \infty$. A vector measure $\overline{\mu} = (\overline{\mu}_0, \ldots, \overline{\mu}_k)$ is a right completion of a vector measure $\mu = (\mu_0, \ldots, \mu_k)$ in \mathbb{R} with respect to a in a right neighborhood $[a, b]$, if $\overline{\mu}_k = \mu_k$ in $[a, b]$, $\overline{\mu}_j = \mu_j$ in the complement of (a, b) and

$$\overline{\mu}_j = \mu_j + \tilde{\mu}_j, \quad \text{in } (a, b) \text{ for } 0 \leq j < k,$$

where $\tilde{\mu}_j$ is any measure satisfying $\tilde{\mu}_j((a, b)) < \infty$ and $\Lambda^+_{p,[a,b]}(\tilde{\mu}_j, \overline{\mu}_{j+1}) < \infty$.

Muckenhoupt inequality guarantees that if $f^{(j)} \in L^p(\mu_j)$ and $f^{(j+1)} \in L^p(\overline{\mu}_{j+1})$, then $f^{(j)} \in L^p(\overline{\mu}_j)$ (see some examples of completions in [34] and [2]).

Remark 3.1. We can define a left completion of μ with respect to a in a similar way.

Definition 3.6. For $1 \leq p < \infty$ and a vector measure μ in \mathbb{R}, we say that a point a is right j-regular (respectively, left j-regular), if there exist a right completion $\overline{\mu}$ (respectively, left completion) of μ in $[a, b]$ and $j < i \leq k$ such that $\overline{\mu}_i \in B_p([a, b])$ (respectively, $B_p([b, a])$). Also, we say that a point $a \in \gamma$ is j-regular, if it is right and left j-regular.

Remark 3.2. 1. A point a is right j-regular (respectively, left j-regular), if at least one of the following properties holds:

(a) There exist a right (respectively, left) neighborhood $[a, b]$ (respectively, $[b, a]$) and $j < i \leq k$ such that $w_i \in B_p([a, b])$ (respectively, $B_p([b, a])$). Here we have chosen $\tilde{w}_j = 0$.

(b) There exist a right (respectively, left) neighborhood $[a, b]$ (respectively, $[b, a]$) and $j < i \leq k$, $\alpha > 0$, $\delta < (i-j)p - 1$, such that $w_i(x) \geq \alpha |x-a|^\delta$, for almost every $x \in [a, b]$ (respectively, $[b, a]$). See Lemma 3.4 in [34].

2. If a is right j-regular (respectively, left), then it is also right i-regular (respectively, left) for each $0 \leq i \leq j$.

When we use this definition we think of a point $\{t\}$ as the union of two half-points $\{t^+\}$ and $\{t^-\}$. With this convention, each one of the following sets

$$(a, b) \cup (b, c) \cup \{b^+\} = (a, b) \cup \{b^+, c\} \neq (a, c),$$

$$(a, b) \cup (b, c) \cup \{b^-\} = (a, b^-) \cup (b, c) \neq (a, c),$$

has two connected components, and the set

$$(a, b) \cup (b, c) \cup \{b^-\} \cup \{b^+\} = (a, b) \cup (b, c) \cup \{b\} = (a, c)$$

is connected.

We use this convention in order to study the sets of continuity of functions: we want that if $f \in C(A)$ and $f \in C(B)$, where A and B are union of intervals, then $f \in C(A \cup B)$. With the usual definition of continuity, if $f \in C([a, b]) \cap C([b, c])$ then we do not have $f \in C([a, c])$. Of course, we have $f \in C([a, c])$ if and only if $f \in C([a, b^-]) \cap C([b^+, c])$, where by definition, $C([b^+, c]) = C([b, c])$ and $C([a, b^-]) = C([a, b])$. This idea can be formalized with a suitable topological space.
Let us introduce some more notation. We denote by $\Omega^{(j)}$ the set of j-regular points or half-points, i.e., $x \in \Omega^{(j)}$ if and only if x is j-regular, we say that $x^+ \in \Omega^{(j)}$ if and only if x is right j-regular, and we say that $x^- \in \Omega^{(j)}$ if and only if x is left j-regular. Obviously, $\Omega^{(k)} = \emptyset$ and $\Omega_{j+1} \cup \cdots \cup \Omega_k \subseteq \Omega^{(j)}$. Note that $\Omega^{(j)}$ depends on p.

Intuitively, $\Omega^{(j)}$ is the set of “good” points at the level j for the vector weight (w_0, \ldots, w_k): every function f in the Sobolev space must verify that $f^{(j)}$ is continuous in $\Omega^{(j)}$. Let us present now the class of measures that we use in the definition of Sobolev space.

Definition 3.7. We say that the vector measure $\mu = (\mu_0, \ldots, \mu_k)$ in \mathbb{R} is p-admissible if μ_j is σ-finite and $\mu_j^*(\mathbb{R} - \Omega^{(j)}) = 0$, for $1 \leq j < k$, and $\mu_k \equiv 0$, where $d\mu_j^* := d\mu_j - w_j \chi_{\Omega_j} dx$ and χ_A denotes the characteristic function of the set A (then $\mu_k = w_k \chi_{\Omega_k} dx$).

Remark 3.3. 1. The hypothesis of p-admissibility is natural. It would not be reasonable to consider Dirac’s deltas in μ_j in the points where $f^{(j)}$ is not continuous.

2. Note that there is not any restriction on μ_0.

3. Every absolutely continuous measure $w = (w_0, \ldots, w_k)$ with $w_j = 0$ a.e. in $\mathbb{R} - \Omega_j$ for every $1 \leq j \leq k$, is p-admissible (since then $\mu_j^* = 0$). It is possible to find a weight w which does not satisfy this condition, but it is a hard task.

4. $(\mu_j)_s \leq \mu_j^*$, and the equality usually holds.

Definition 3.8. Let us consider $1 \leq p < \infty$ and a p-admissible vector measure $\mu = (\mu_0, \ldots, \mu_k)$ in \mathbb{R}. We define the Sobolev space $W^{k,p}(\mu) = W^{k,p}(\Delta, \mu)$, with $\Delta := \bigcup_{j=0}^k \text{supp}(\mu_j)$, as the space of equivalence classes of

$$V^{k,p}(\Delta, \mu) := \left\{ f : \Delta \to \mathbb{R} : f^{(j)} \in AC_{\text{loc}}(\Omega^{(j)}) \text{ for } 0 \leq j < k \right\}$$

with respect to the seminorm $\| f \|_{W^{k,p}(\Delta, \mu)} := \left(\sum_{j=0}^k \| f^{(j)} \|_{L^p(\Delta, \mu_j)}^p \right)^{1/p} < \infty$.

4. Basic results on Sobolev spaces with respect to measures

This definition of Sobolev space is very technical, but it has interesting properties: we know explicitly how are the functions in $W^{k,p}(\Delta, \mu)$ (this is not the case if we define the Sobolev space as the closure of some space of smooth functions); if Δ is a compact set and μ is a finite measure, then in many cases, $W^{k,p}(\Delta, \mu)$ is equal to the closure of the space of polynomials (see [2, Theorem 6.1]). Furthermore, we have powerful tools in $W^{k,p}(\Delta, \mu)$ (see [34], [35], [2] and [37]).

In [37], Theorem 4.2 appears the following main result in the theory (in fact, this result in [37] holds for measures defined in any curve in the complex plane instead of \mathbb{R}).

Theorem 4.1. Let us consider $1 \leq p < \infty$ and a p-admissible vector measure $\mu = (\mu_0, \ldots, \mu_k)$. Then the Sobolev space $W^{k,p}(\Delta, \mu)$ is a Banach space.
We want to remark that the proof of Theorem 4.1 is very long and technical: the paper is mainly devoted to prove a weak version of Theorem 4.1, and using this version, [37] provides a very technical proof of the general case.

For each $1 \leq p < \infty$ and p-admissible vector measure μ in \mathbb{R}, consider the Banach space $\prod_{j=0}^{k} L^p(\Delta, \mu_j)$ with the norm

$$\|f\|_{\prod_{j=0}^{k} L^p(\Delta, \mu_j)} = \left(\sum_{j=0}^{k} \|f_j\|_{L^p(\mu_j)}^p \right)^{1/p}$$

for every $f = (f_0, f_1, \ldots, f_k) \in \prod_{j=0}^{k} L^p(\Delta, \mu_j)$.

Definition 4.1. For each $1 \leq p < \infty$ we denote by q the conjugate or dual exponent of p, i.e., $1/p + 1/q = 1$. Consider a p-admissible vector measure μ. If $f \in \prod_{j=0}^{k} L^p(\Delta, \mu_j)$ and $g \in \prod_{j=0}^{k} L^q(\Delta, \mu_j)$, we define the product (f, g) as

$$(f, g) = \sum_{j=0}^{k} \int_{\Delta} f_j g_j \, d\mu_j.$$

Let us consider the projection $P : W^{k,p}(\Delta, \mu) \rightarrow \prod_{j=0}^{k} L^p(\Delta, \mu_j)$, given by $P f = (f, f', \ldots, f^{(k)})$.

Theorem 4.2. Let $1 \leq p < \infty$ and μ a p-admissible vector measure. Then $W^{k,p}(\Delta, \mu)$ is separable. Furthermore, if $1 < p < \infty$, then it is reflexive and uniformly convex.

Proof. The map P is an isometric embedding of $W^{k,p}(\Delta, \mu)$ onto $W := P(W^{k,p}(\Delta, \mu))$. Then W is a closed subspace since $\prod_{j=0}^{k} L^p(\Delta, \mu_j)$ and $W^{k,p}(\Delta, \mu)$ are Banach spaces by Theorem 4.1.

If $1 \leq p < \infty$, then each $L^p(\Delta, \mu_j)$ is separable; furthermore, if $1 < p < \infty$, then it is reflexive and uniformly convex. Then $\prod_{j=0}^{k} L^p(\Delta, \mu_j)$ is separable (and reflexive and uniformly convex if $1 < p < \infty$) by [1, p.8].

Since W is closed and $\prod_{j=0}^{k} L^p(\Delta, \mu_j)$ is separable, W is separable; furthermore, if $1 < p < \infty$, then W is reflexive and uniformly convex since $\prod_{j=0}^{k} L^p(\Delta, \mu_j)$ is reflexive and uniformly convex (see [1, p.7] and [13]). Since W and $W^{k,p}(\Delta, \mu)$ are isometric, $W^{k,p}(\Delta, \mu)$ also has these properties. \hfill \square

Theorem 4.3. Let $1 \leq p < \infty$, q the dual exponent of p, and μ a p-admissible vector measure. Consider the canonical map $J : \prod_{j=0}^{k} L^q(\Delta, \mu_j) \rightarrow (W^{k,p}(\Delta, \mu))'$ defined by $J(v) = (\cdot, v)$, i.e., $(J(v))(f) = (Pf, v)$. Then giving any $T \in (W^{k,p}(\Delta, \mu))'$ there exists $v \in \prod_{j=0}^{k} L^q(\Delta, \mu_j)$ with

$$(4.13) \quad T = J(v) \quad \text{and} \quad \|T\|_{(W^{k,p}(\Delta, \mu))'} = \|v\|_{\prod_{j=0}^{k} L^q(\Delta, \mu_j)}.$$

Furthermore, if $1 < p < \infty$, then there exists a unique $v \in \prod_{j=0}^{k} L^q(\Delta, \mu_j)$ verifying (4.13).

Proof. First of all we will prove that J, in fact, a map $J : \prod_{j=0}^{k} L^q(\Delta, \mu_j) \rightarrow (W^{k,p}(\Delta, \mu))'$. Given $v \in \prod_{j=0}^{k} L^q(\Delta, \mu_j)$, consider $J(v)$. Then continuous and discrete H"older’s inequalities give

$$
|\langle J(v) f \rangle| = |\langle Pf, v \rangle| \leq \sum_{j=0}^{k} \int_{\Delta} |f^{(j)} v_j| \, d\mu_j \leq \sum_{j=0}^{k} \|f^{(j)}\|_{L^p(\mu_j)} \|v_j\|_{L^q(\mu_j)}
$$

$$
\leq \left(\sum_{j=0}^{k} \|f^{(j)}\|^p_{L^p(\mu_j)} \right)^{1/p} \left(\sum_{j=0}^{k} \|v_j\|^q_{L^q(\mu_j)} \right)^{1/q} = \|f\|_{W^{k,p}(\Delta, \mu)} \|v\|_{\prod_{j=0}^{k} L^q(\Delta, \mu_j)}.
$$

Hence,

$$
(4.14) \quad \|J(v)\|_{(W^{k,p}(\Delta, \mu))'} \leq \|v\|_{\prod_{j=0}^{k} L^q(\Delta, \mu_j)}.
$$

Thus we have proved that $J : \prod_{j=0}^{k} L^q(\Delta, \mu_j) \rightarrow (W^{k,p}(\Delta, \mu))'$. Let us prove now that J is onto.

Consider $T \in (W^{k,p}(\Delta, \mu))'$. The map P is an isometric isomorphism of $W^{k,p}(\Delta, \mu)$ onto $W := P(\prod_{j=0}^{k} L^q(\Delta, \mu))$. Then $T \circ P^{-1} \in W'$ and

$$
\|T \circ P^{-1}\|_{W'} = \|T\|_{(W^{k,p}(\Delta, \mu))'}.
$$

Since W is a subspace of $\prod_{j=0}^{k} L^p(\Delta, \mu_j)$, by Hahn-Banach Theorem there exists

$$
T_0 \in \left(\prod_{j=0}^{k} L^p(\Delta, \mu_j) \right)' = \prod_{j=0}^{k} (L^p(\Delta, \mu_j))' = \prod_{j=0}^{k} L^q(\Delta, \mu_j),
$$

with

$$
T_0|_{W'} = T \circ P^{-1}, \quad \|T_0\|_{\prod_{j=0}^{k} L^p(\Delta, \mu_j)} = \|T \circ P^{-1}\|_{W'}.
$$

Therefore, there exists $v \in \prod_{j=0}^{k} L^q(\Delta, \mu_j)$ with $v \simeq T_0$, i.e.,

$$
T_0(f) = \langle f, v \rangle, \quad \forall f \in W,
$$

and

$$
(4.15) \quad \|v\|_{\prod_{j=0}^{k} L^q(\Delta, \mu_j)} = \|T_0\|_{\left(\prod_{j=0}^{k} L^p(\Delta, \mu_j) \right)'} = \|T \circ P^{-1}\|_{W'} = \|T\|_{(W^{k,p}(\Delta, \mu))'}.
$$

Hence,

$$
T(f) = T_0(Pf) = \langle Pf, v \rangle = \langle J(v) f \rangle, \quad \forall f \in W^{k,p}(\Delta, \mu),
$$

$T = J(v)$ and J is onto.
If $1 < p < \infty$, let us consider the set $U := \{ u \in \prod_{j=0}^{k} L^{q}(\Delta, \mu_{j}) : T = J(u) \}$. Note that (4.14) and (4.15) give
\[
\| T \|_{(W^{k,p}(\Delta, \mu))'} = \inf \left\{ \| u \|_{\prod_{j=0}^{k} L^{q}(\Delta, \mu_{j})} : u \in U \right\} = \min \left\{ \| u \|_{\prod_{j=0}^{k} L^{q}(\Delta, \mu_{j})} : u \in U \right\}.
\]

It is easy to check that U is a closed convex set in $\prod_{j=0}^{k} L^{q}(\Delta, \mu_{j})$. Since $\prod_{j=0}^{k} L^{q}(\Delta, \mu_{j})$ is uniformly convex, this minimum is attained at a unique $u_{0} \in U$ (see, e.g., [6, p.22]), and (4.15) gives $u_{0} = v$. □

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] V. Alvarez, D. Pestana, J. M. Rodríguez, E. Romera, Weighted Sobolev spaces on curves, J. Approx. Theory 119 (2002) 41–85.
[3] A. I. Aptekarev, A. Draux, V. A. Kalyagin, On the asymptotics of sharp constants in Markov-Bernstein inequalities in integral metrics with classical weight, Commun. Moscow Math. Soc. 55 (2000), 163–165.
[4] A. I. Aptekarev, A. Draux, V. A. Kalyagin, D. Tulyakov, Asymptotics of sharp constants of Markov-Bernstein inequalities in integral norm with Jacobi weight, Proc. Amer. Math. Soc. In press.
[5] M. Bun, J. Thaler, Dual lower bounds for approximate degree and Markov-Bernstein inequalities, In Automata, languages, and programming. Part I, 303–314, Lecture Notes in Comput. Sci., 7965, Springer-Verlag, Heidelberg, 2013.
[6] E. W. Cheney, Introduction to Approximation Theory, AMS Chelsea Publishing, Providence, R. I., 1982 (Second Edition).
[7] E. Colorado, D. Pestana, J. M. Rodríguez, E. Romera, Muckenhoupt inequality with three measures and Sobolev orthogonal polynomials, J. Math. Anal. Appl. 407 (2013), 369–386.
[8] P. Dörfler, New inequalities of Markov type, SIAM J. Math. Anal. 18 (1987), 490–494.
[9] A. Draux, V. A. Kalyagin, Markov-Bernstein inequalities for generalized Hermite weight, East J. Approx. 12 (2006), 1–24.
[10] A. Draux, B. Moalla, M. Sadik, Generalized qd algorithm and Markov-Bernstein inequalities for Jacobi weight, Numer. Algorithms 51 (2009), 429–447.
[11] P. Goetgheluck, On the Markov Inequality in L^{p}-Spaces, J. Approx. Theory 62 (1990), 197–205.
[12] A. Guessab, G. V. Milovanovic, Weighted L^{2}- Analogues of Bernstein’s Inequality and Classical Orthogonal Polynomials, J. Math. Anal. Appl. 182 (1994), 244–249.
[13] O. Hanner, On the uniform convexity of L^{p} and l^{p}, Arkiv Mat. 3 (1956), 239–244.
[14] E. Hille, G. Szegö, J. D. Tamarkin, On some generalization of a theorem of A. Markoff, Duke Math. J. 3 (1937), 729–739.
[15] A. Kroó, On the exact constant in the L_2 Markov inequality, *J. Approx. Theory* **151** (2008), 208–211.

[16] A. Kufner, B. Opic, How to define reasonably weighted Sobolev Spaces, *Comm. Math. Univ. Carol.* **25**(3) (1984), 537–554.

[17] K. H. Kwon, D. W. Lee, Markov-Bernstein type inequalities for polynomials, *Bull. Korean Math. Soc.* **36** (1999), 63–78.

[18] G. López Lagomasino, I. Pérez Izquierdo, H. Pijeira, Asymptotic of extremal polynomials in the complex plane, *J. Approx. Theory* **137** (2005), 226–237.

[19] G. López Lagomasino, H. Pijeira, Zero location and n-th root asymptotics of Sobolev orthogonal polynomials, *J. Approx. Theory* **99** (1999), 30–43.

[20] A. Lupaş, An inequality for polynomials, *Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz.* **461-497** (1974), 241–243.

[21] V. G. Maz’ja, Sobolev Spaces, Springer-Verlag, New York, 1985.

[22] L. Milev, N. Naidenov, Exact Markov inequalities for the Hermite and Laguerre weights, *J. Approx. Theory* **138** (2006), 87–96.

[23] G. V. Milovanović, Extremal problems and inequalities of Markov-Bernstein type for polynomials, in Analytic and Geometric Inequalities and Applications, Mathematics and Its Applications. T. M. Rassias and H. M. Srivastava Editors, **478** (1999), 245–264.

[24] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros. World Scientific, Singapore, 1994.

[25] L. Mirsky, An inequality of the Markov-Bernstein type for polynomials, *SIAM J. Math. Anal.* **14** (1983), 1004–1008.

[26] B. Muckenhoupt, Hardy’s inequality with weights, *Studia Math.* **44** (1972), 31–38.

[27] D. Pérez, Y. Quintana, Some Markov-Bernstein type inequalities and certain class of Sobolev polynomials, *J. Adv. Math. S.* **4** (2011) 85–100.

[28] A. Portilla, Y. Quintana, J.M. Rodríguez, E. Tourís, Weierstrass’ Theorem with weights, *J. Approx. Theory* **127** (2004), 83–107.

[29] A. Portilla, Y. Quintana, J.M. Rodríguez, E. Tourís, Zero location and asymptotic behavior for extremal polynomials with non-diagonal Sobolev norms, *J. Approx. Theory* **162** (2010), 2225–2242.

[30] A. Portilla, Y. Quintana, J.M. Rodríguez, E. Tourís, Concerning asymptotic behavior for extremal polynomials associated to non-diagonal Sobolev norms, *J. Function Spaces Appl.* **2013** (2013), Article ID 628031, 11 pages.

[31] J. M. Rodríguez, The multiplication operator in Sobolev spaces with respect to measures, *J. Approx. Theory* **109** (2001), 157–197.

[32] J. M. Rodríguez, A simple characterization of weighted Sobolev spaces with bounded multiplication operator, *J. Approx. Theory* **153** (2008) 53–72.

[33] J. M. Rodríguez, Zeros of Sobolev orthogonal polynomials via Muckenhoupt inequality with three measures. Submitted.
[34] J. M. Rodríguez, V. Alvarez, E. Romera, D. Pestana, Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials I, *Acta Appl. Math.* **80** (2004), 273–308.

[35] J. M. Rodríguez, V. Alvarez, E. Romera, D. Pestana, Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials II, *Approx. Theory and its Appl.* **18:2** (2002), 1–32.

[36] J. M. Rodríguez, V. Alvarez, E. Romera, D. Pestana, Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials: a survey, *Electr. Trans. Numer. Anal.* **24** (2006), 88–93.

[37] J. M. Rodríguez, J. M. Sigarreta, Sobolev spaces with respect to measures in curves and zeros of Sobolev orthogonal polynomials, *Acta Appl. Math.* **104** (2008), 325–353.

[38] E. Schmidt, Über die nebst ihren Ableitungen orthogonalen Polynomsysteme und das zugehörige Extremum, *Math. Ann.* **119** (1944), 165–204.

Instituto de Ciencias Matemáticas (ICMAT), Campus de Cantoblanco, Universidad Autónoma de Madrid, Calle Nicolás Cabrera, no. 13-15, 28049 Madrid, Spain, Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain

E-mail address: pacomarc@ing.uc3m.es

Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain

E-mail address: yquintana@usb.ve

Departamento de Matemáticas Puras y Aplicadas, Edificio Matemáticas y Sistemas (MYS), Apartado Postal: 89000, Caracas 1080 A, Universidad Simón Bolívar, Venezuela

E-mail address: jomaro@math.uc3m.es