Sobrecarga de fluidos em pacientes com choque séptico e depuração de lactato como alvo terapêutico: um estudo de coorte retrospectiva

Fluid overload in patients with septic shock and lactate clearance as a therapeutic goal: a retrospective cohort study

RESUMO

Objetivo: Avaliar se a sobrecarga de fluidos na terapia hídrica é fator prognóstico para pacientes com choque séptico quando ajustada para os alvos de depuração de lactato.

Métodos: Este estudo envolveu uma coorte retrospectiva e foi conduzido em um hospital de cuidados nível IV localizado em Bogotá, na Colômbia. Foi organizada uma coorte de pacientes com choque séptico, e suas características e balanço hídrico foram documentados. Os pacientes foram estratificados por níveis de exposição segundo a magnitude da sobrecarga de fluidos por peso corporal após 24 horas de terapia. A mortalidade foi determinada aos 30 dias, e foi desenvolvido um modelo de regressão logística incondicional com ajuste para fatores de confusão. A significância estatística foi estabelecida com nível de p ≤ 0,05.

Resultados: Foram 213 pacientes com choque séptico e, após o tratamento, 60,8% deles tiveram depuração de lactato acima de 50%. Dentre os pacientes 97 (46%) desenvolveram sobrecarga de fluidos ≥ 5%, e apenas 30 (13%) desenvolveram sobrecarga ≥ 10%.

Conclusões: Após ajuste para severidade da condição e depuração adequada de lactato, a ocorrência de balanço hídrico positivo não se associou com aumento da mortalidade nessa coorte latino-americana de pacientes sépticos.

Descriores: Hidratação; Edema; Choque séptico; Ressuscitação; Ácido lático; Mortalidade

INTRODUÇÃO

A sepse é uma das síndromes clínicas que mais frequentemente enfrentamos na medicina intensiva. Dentre os pacientes admitidos às unidades de terapia intensiva (UTIs) gerais em todo o mundo, em média 20% deles têm a sepse como causa de admissão. A sepse é uma resposta inflamatória não homeostática a uma infecção, que acaba em danos a órgãos. Mais ainda, a progressão para o desenvolvimento de choque séptico é, em geral, muito séria, com mortalidade de cerca de 40%.
Desde 1991 foram estabelecidas em todo o mundo estratégias globais para a gerar diretrizes de prática clínica que tornem possível melhorar os resultados na detecção e no tratamento desta condição. A mais conhecida campanha é denominada Sobrevivendo à Sepse, que, em sua última edição, salienta a necessidade de detecção precoce, controle do foco de infecção, administração dos antibióticos corretos e terapia precoce guiada por metas (TGM). (10,11) Esta ressuscitação inicial é essencialmente baseada na administração de fluidos cristaloides isotônicos, que é a abordagem com maior nível de evidência. (11,12) Desde então, a administração de fluidos se tornou universal, razão pela qual a recomendação é utilizar 30mL/kg nos primeiros 90 minutos e, a seguir, conforme necessário, com base na presunção de resposta aos fluidos. (13) O problema com a administração de fluidos como primeira medida de ressuscitação é que seu efeito é errático, imprevisível e de vida muito curta. Isto significa que apenas 50% dos pacientes verdadeiramente respondem à administração de fluidos, e, assim, com elevada frequência, pacientes com sepse desenvolvem sobrecarga de fluidos. (14,15)

A sobrecarga de fluidos em pacientes com choque séptico é quase um achado universal; 70% dos pacientes submetidos a estratégias como TGM a apresentam dentro das primeiras 24 horas, e quase metade destes pacientes ainda tem esta sobrecarga no terceiro dia. (16,17) O desenvolvimento de sobrecarga de fluidos é multifatorial e depende não apenas da administração frequente de fluidos, mas também da presença de lesão renal aguda e da de extravasamento vascular associado com a resposta inflamatória na sepse. Estudos observacionais e análises post hoc de ensaios clínicos hoje mostram uma associação com aumento das taxas de mortalidade à medida que aumenta a sobrecarga de fluidos. (18,19) Contudo, isto não é prova de um relacionamento causal. Na verdade, os pacientes mais criticamente doentes são os que têm maior probabilidade de receber mais fluidos durante o tratamento, assim como são os que mais frequentemente não têm objetivos terapêuticos.

Nosso estudo tem como objetivo avaliar a associação entre a quantidade de fluidos para ressuscitação nas primeiras 24 horas do choque séptico e a ocorrência de óbito, com ajuste para a presença de fatores de confusão muito importantes, como a severidade da condição, e o atingimento dos alvos terapêuticos, como depuração apropriada de lactato.
Resultado e definições

O resultado primário foi medido aos 30 dias como óbito por todas as causas de admissão. O diagnóstico de choque séptico se baseou nos critérios definidos pelo SEPIS 3.1,3 Pacientes com infecção comprovada ou provável, que tenham utilizado suporte com vasopressores para manter pressão arterial média ≥ 65mmHg e níveis de lactato ≥ 2,0 foram considerados em choque séptico. Choque cardiogênico foi considerado critério de exclusão, sendo definido como presença de pressão arterial sistólica < 90mmHg por mais de 30 minutos ou necessidade de utilizar suporte com vasopressores para manter valores normais, mais a presença de congestão pulmonar devida a elevadas pressões de enchimento e sinais de hipoperfusão ou lesão de órgãos.22 Não se utilizou a estratégia TGM para estabelecer o atingimento dos alvos terapêuticos. Não há presente mente evidência suficiente sobre a equivalência de outras medidas terapêuticas gerais.23,24 Por esta razão, pacientes capazes de atingir e manter pressão arterial média ≥ 65mmHg, saturação arterial ≥ 90% e débito urinário ≥ 0,5mL/kg/hora nas primeiras 6 horas foram considerados dentro dos alvos. Além disto, ter nível arterial ou venoso central de lactato < 2mmol/L ou redução de pelo menos 50% de seu valor inicial dentro das primeiras 12 a 24 horas de tratamento foi considerado atingimento de alvo.

Análise estatística

Com nível de significância de 0,05, erro beta de 0,2 e mortalidade prevista de 30% em pacientes sem sobrecarga de fluidos, com uma razão das chances (RC) alvo de 2,5, o modelo foi conduzido por meio da construção de uma regressão logística incondicional. As variáveis foram selecionadas por meio do método de seleção com propósito (Hosmer & Lemeshow, 2008). O delineamento do modelo inicial incluiu todas as variáveis e o conjunto de interações multiplicativas. O modelo final, ou de efeito principal, foi obtido de uma estratégia de modelagem regressiva (backward). Excluíram-se as variáveis com fraca associação com o resultado (p ≤ 0,20) com utilização do teste de Wald.28,29 A presença de fatores de confusão foi considerada em modificações da RC acima de 20%.

RESULTADOS

Durante o período compreendido entre 1° de dezembro de 2015 e 30 de dezembro de 2016, 1.300 pacientes adultos foram admitidos à UTI. Destes, 333 (25,6%) foram admitidos para tratamento com diagnóstico primário de choque. Dentre os pacientes com diagnóstico de choque, 238 (71%) cumpriram os critérios de choque séptico, 54 (16%) os para choque hipovolêmico, 29 (8%) de choque cardiogênicos e 4 (2%) de choque obstrutivo. Todos os pacientes com diagnóstico de choque séptico foram incluídos na coorte, e não houve perdas durante o seguimento. Entretanto, 25 (10,5%) foram excluídos por diversas razões, sendo a mais frequente a ocorrência de mortalidade precoce, dentro das primeiras 24 horas após o início do tratamento. Os detalhes da construção da coorte e as demais causas de exclusão são mostradas pela figura 1.

A coorte final foi constituída por 213 pacientes, dos quais 131 (61%) eram do sexo masculino; a média de idade foi de 58 anos (DP ± 17,1) e o peso corporal médio foi de 61,9kg (DP ± 12,5). Com relação à origem do paciente para admissão, 161 (75%) vieram do pronto-socorro, e o tempo médio de tratamento nas salas de ressuscitação foi de 14 horas (DP ± 11,7). A comorbidade mais frequente na coorte foi câncer em 73 (34%) pacientes, seguido de hipertensão arterial sistêmica em 71 (33%) pacientes e diabetes mellitus em 36 (17%) indivíduos. Com relação às causas do choque séptico, 129 (60%) pacientes tiveram culturas positivas, e os focos mais frequentes de infeção foram o abdome, com 57 (26,7%) casos, seguido dos pulmões, com 55 (25,8%) casos, 44 (20,6%) casos de bacteremia e 21 (14,5%) de infeção urinária. Com relação à severidade da condição, o Sequential Organ Failure Assessment (SOFA) mediano por ocasião da admissão foi de 9 (IQR 7 - 12); 128 (60%) dos pacientes receberam ventilação mecânica, 37 (17%) terapia de substituição renal contínua e 137 (64%) fluidos coloidais (albumina, 20%).
Com relação à terapia com fluidos, o volume médio de fluidos para ressuscitação utilizado nas primeiras 6 horas de tratamento foi 30,8mL/kg (DP ± 19,9), e o volume médio de fluidos recebidos em 24 horas foi de 82,7mL/kg (DP ± 34,1). Em termos de atingimento dos alvos terapêuticos, 60% da coorte atingiu depuração do lactato ≥ 50% dentro de 24 horas de tratamento. Como resultado do processo terapêutico, 46% desenvolveram sobrecarga de fluidos ≥ 5% de seu peso corpóreo em 24 horas, enquanto apenas 13% dos pacientes desenvolveram sobrecarga de fluidos ≥ 10%. A taxa de mortalidade aos 30 dias foi de 44%, envolvendo 94 indivíduos (intervalo de confiança de 95% - IC95% 37 - 50). Com base na sobrecarga de fluidos ≥ 5% do peso corporal dentro de 24 horas, 114 indivíduos foram estratificados como pacientes não expostos, e 99 como pacientes expostos. A percentagem de pacientes masculinos expostos foi de 63%, em comparação com 59% dos não expostos; a média de idade dos pacientes expostos foi 60,1 anos, em comparação com 57,6 entre pacientes não expostos; e o peso corporal médio entre os pacientes expostos foi de 62,9kg, em comparação com 60,7kg entre os não expostos. Não se encontraram diferenças estatisticamente significantes nas comorbidades por ocasião da admissão. Entretanto, a percentagem de indivíduos com hipertensão arterial sistêmica foi surpreendentemente mais alta, com 37,7% entre os pacientes não expostos versus 28,2% entre os não expostos. Com relação aos exames laboratoriais realizados por ocasião da admissão, não se observaram diferenças clinicamente relevantes na concentração de hemoglobina ou na contagem de plaquetas.

Foram encontradas diferenças, em termos de níveis de creatinina, com 1,69mg/dL entre os pacientes não expostos em comparação com 2,32mg/dL entre os expostos, e níveis iniciais de lactato, com 2,8mmol/L entre os expostos, entre os expostos (essas diferenças foram estatisticamente significativas, com p < 0,05). Com relação aos marcadores de severidade, o SOFA mediano, por ocasião da admissão, foi de 10 nos pacientes expostos, enquanto nos pacientes não expostos foi de 8. A tabela 1 apresenta um resumo de todas as características comparativas.

Com relação ao tratamento, os pacientes não expostos foram, em média, ressuscitados com 24,2mL/kg (DP ± 14,3 ml/kg) nas primeiras 6 horas, em comparação com 38,4mL/kg (DP ± 22,3mL/kg) nos expostos. Igualmente, o balanço médio em 24 horas foi positivo, com 1,620mL (DP ± 931mL) entre os pacientes não expostos, em comparação com 5,111mL (DP ± 2,087mL) entre os expostos (Figura 2). Além disto, 67,5% dos pacientes não expostos obtiveram depuração de lactato ≥ 50% dentro de 24 horas, em comparação com 57,0% dos expostos. Indivíduos com sobrecarga de fluidos foram mais frequentemente tratados com ventilação mecânica (70,7% versus 50,8%), receberam tratamento com albumina 20% mais frequentemente (74,7% versus 55,2%), tiveram tendência à maior necessidade de terapia de substituição renal (22,2% versus 13,1%) e seus níveis de mortalidade foram mais altos, com 54,5% em comparação a 35,0% entre os pacientes não expostos (p = 0,004).

Finalmente, a análise bruta relativa à ocorrência de óbito e ao balanço acumulado medido em litros dentro de 24 horas inicialmente mostrou associação positiva, com RC de 1,19 (IC95% 1,05 - 1,35). Contudo, após ajuste para fatores de confusão, esta associação não foi estatisticamente significante, com RC ajustada de 1,03 (IC95% 0,89 - 1,20). Na análise multivariada, as variáveis que predisseram de forma significante a ocorrência de óbito foram históricos de câncer, com RC ajustada de 1,92 (IC95% 1,007 - 3,69), e SOFA, com RC ajustada de 1,14 (IC95% 1,04 - 1,26). A obtenção da depuração necessária de lactato foi fator de proteção, com RC ajustada de 0,24 (IC95% 0,12 - 0,45). Quando se utilizaram pontos de corte relacionados à ocorrência de sobrecarga de fluidos de 5,0%, 7,5% e 10%, não foram encontradas associações significativas com a ocorrência de óbito após ajustes para os índices de severidade, comorbidades ou obtenção da depuração adequada de lactato (Figura 3).
Tabela 1 - Comparação das características clínicas e sociodemográficas entre pacientes expostos e não expostos

	Não expostos (n = 114)	Expostos* (n = 99)	Total (n = 213)
Homens (%)	72 (63,2)	59 (59,6)	131 (61,5)
Idade (média ± DP)	60,1 (17,0)	57,6 (17,2)	58,9 (17,1)
Peso corpóreo (kg) (média ± DP)	62,9 (11,9)	60,7 (13,0)	61,9 (12,5)
Hipertensão arterial (%)	43 (37,7)	28 (28,2)	71 (33,3)
Diabetes mellitus (%)	19 (16,6)	17 (17,1)	36 (16,9)
Doença neoplásica (%)	40 (35,0)	33 (33,3)	73 (34,2)
Infecção por HIV (%)	4,0 (3,5)	6,0 (6,0)	10 (4,6)
DRC (TFG < 60mL/minuto) (média ± DP)	60 (52,6)	58 (58,5)	118 (55,4)
DRC 5 (diálise crônica) (%)	4 (3,5)	4 (4,0)	8 (3,76)
Hemoglobina (g/dL) (média ± DP)	10,8 (2,9)	10,7 (2,8)	10,8 (2,8)
Contagem de plaquetas (10^9/µL) (média ± DP)	209 (156)	197 (165)	203 (160)
Nível de creatinina (mg/dL) (média ± DP)	1,69 (2,0)	2,32 (2,5)	1,98 (2,3)
TFG média (mL/minuto) (média ± DP)	62,9 (38,2)	52,7 (35,6)	58,2 (36,2)
Lactato na admissão (mmol/L) (média ± DP)	2,8 (2,2)	4,0 (2,6)	3,42 (2,4)
Isolamento positivo (%)	72 (63,1)	57 (57,5)	129 (60,5)
Germe resistente isolado (%)	37 (31,3)	27 (47,3)	64 (49,6)
Ventilação mecânica (%)	58 (50,8)	70 (70,7)	128 (60,0)
Terapia de substituição renal contínua (%)	15 (13,1)	22 (22,2)	37 (17,3)
Solução salina hipertônica 3% (%)	29 (25,4)	35 (35,3)	64 (30,0)
Uso de albumina hipertônica 20% (%)	63 (55,2)	74 (74,7)	137 (64,3)
Uso de glicocorticoides (%)	40 (35,0)	53 (53,5)	93 (43,6)
SOFA (mediana (IQR))	8 (7 - 10)	10 (7 - 13)	9 (7 - 12)
Depuração de lactato > 50%(%)	77 (67,5)	52 (53,0)	129 (60,8)
Dias livres de ventilação mecânica (média ± DP)	3,3 (3,3)	2,1 (2,4)	2,7 (3,0)
Dias de permanência na UTI (média ± DP)	6,4 (6,4)	5,6 (6,0)	6,0 (6,2)
Mortalidade 30 dias após admissão à UTI (%)	40 (35,0)	54 (54,5)	94 (44)

DP - desvio padrão; HIV – vírus da imunodeficiência humana; DRC – doença renal crônica; TFG – taxa de filtração glomerular; SOFA – Sequential Organ Failure Assessment; UTI – unidade de terapia intensiva; IQR - intervalo interquartil. *Pacientes expostos com sobrecarga de fluidos ≥ 5% de peso corporal a 24 horas.

Figura 2 - Comparação dos resultados da terapia com fluidos entre pacientes expostos e não expostos. T0 – T6H – primeiras 6 horas de tratamento; T7 – T24H – tratamento entre 7 e 24 horas.

* Comparação entre sem sobrecarga de volume com sobrecarga de volume de 5% e 10%, valor de p < 0,05; † comparação entre sobreviventes e não sobreviventes, valor de p < 0,05.
DISCUSSÃO

A sobrecarga de fluidos em pacientes críticos é um fenômeno multifatorial que resulta da interação de fatores que incluem a síndrome de extravasamento capilar, a administração comum de fluidos como base da terapia de ressuscitação e a retenção hidrossalina associada com a frequente ocorrência de lesão renal. Esta sobrecarga é considerada deletéria e frequentemente associada com taxas maiores de mortalidade, assim como mais procedimentos invasivos. Mais ainda, as condições da perfusão tissular e circulação na presença de edema são tornadas muito mais complexas e podem perpetuar a disfunção circulatória, além de piorar a função de órgãos. Contudo, é claro que o risco de sobrecarga de fluidos também aumenta à medida que o paciente piora e não atinge os alvos de tratamento, o que, por sua vez, associa-se com taxas mais elevadas de mortalidade. Por esta razão, a sobrecarga de fluidos parece ser um marcador de severidade e não necessariamente um fator independente de mau prognóstico. O relacionamento entre a severidade da condição e a ocorrência de sobrecarga de fluidos é muito mais consistente na literatura e nosso estudo mostra, mais uma vez, que estes indivíduos são pacientes mais graves. Em nossa coorte, pacientes com sobrecarga de fluidos mostraram um espectro mais amplo de severidade do que pacientes sem sobrecarga de fluidos em razão de fatores como seu nível de creatinina (2,32mg/dL versus 1,69mg/dL; p = 0,040), seus níveis de lactato por ocasião da admissão (4,0mmol/L versus 2,8mmol/L; p = 0,001) e seu SOFA (mediana 10 versus 8; p = 0,005).

Quando se avalia o relacionamento entre o balanço acumulado de fluidos e a mortalidade, não encontramos qualquer relacionamento em nossa coorte após ajustar para fatores importantes, como severidade da condição e atingimento dos alvos do tratamento (RC ajustada 1,03; IC95% 0,89 - 1,20), ou quando utilizamos pontos de corte para a sobrecarga de volume, como 5%, 7,5% e 10% do peso corporal (Figura 3). Além disto, os únicos fatores que puderam predizer independentemente a ocorrência de óbito foram aumento do SOFA (RC ajustada 1,14; IC95% 1,04 - 1,26), histórico de câncer (RC ajustada 1,92; IC95% 1,007 - 3,69) e atingimento de um alvo terapêutico na depuração de lactato como fator protetor (RC 0,24; IC95% 0,12 - 0,45). Em nossa opinião, estes achados dão suporte ao fato de que pacientes com doença mais grave com frequência desenvolvem sobrecarga de fluidos. Entretanto, se os esforços terapêuticos forem capazes de levar o individuo ao atingimento dos alvos do tratamento, a sobrecarga de fluidos não parece ser significante na previsão de mortalidade. A sobrevivência do paciente, em última instância, depende do balanço entre a severidade de sua condição e o atingimento dos alvos terapêuticos, no qual, nesse caso, a obtenção da redução dos níveis de lactato em mais de 50% em 24 horas é um grande fator de proteção. Isto não necessariamente justifica o uso liberal da terapêutica com fluidos, uma vez que é claro que estes pacientes demandam mais dias sob ventilação mecânica e tratamentos invasivos. Contudo, estes resultados mostram que a terapia deve sempre ser ajustada às reais necessidades terapêuticas, como o atingimento dos alvos de ressuscitação. Na verdade, recente estudo a respeito da incorporação de um conjunto de medidas terapêuticas na sepse demonstrou que a aplicação de uma medida simples, como identificação precoce do foco e rápida administração de antibióticos mais a administração rápida de 30mL/kg de cristaloides, é efetiva e se associa com redução da
mortalidade, e não se associa com resultados adversos, mesmo em pacientes com histórico de insuficiência cardíaca.\(^{37}\) Isto salienta que a administração precoce apropriada de fluidos é provavelmente justificada, porém é necessário identificar rapidamente os pacientes que não respondem ao volume e, portanto, não obterão benefícios adicionais com o tratamento. Na verdade, em nossa coorte, a maior sobrecarga de fluidos em pacientes aconteceu após as primeiras 6 horas de tratamento (Figura 2), o que também traz à discussão se os líquidos utilizados no tratamento após a fase de ressuscitação estão, de fato, contribuindo para que se atinjam os alvos terapêuticos, ou apenas representam a administração continuada de soluções desnecessárias.

Na literatura os resultados são coerentes com o que se encontrou em nosso estudo. Se considerarmos estudos de coorte, existe uma concordância de que os pacientes com sobrecarga de fluidos são aqueles com enfermidades mais graves.\(^{21,36,38}\) No estudo conduzido por Kelm et al.\(^{18}\) que incluiu pacientes sépticos com utilização de uma definição clínica de presença de edema, pacientes com sobrecarga de fluidos foram mais frequentemente afetados por nefropatia crônica e tiveram índices mais altos de mortalidade do que os pacientes sem sobrecarga de fluidos. No estudo conduzido por Sakr et al.,\(^{21}\) que também incluiu apenas pacientes sépticos e utilizou diferentes pontos de corte para sobrecarga de fluidos com base em quartis de balanço hídrico dentro de 24 horas, o SOFA aumentou para cada aumento no quartil de retenção hídrica. Igualmente, outros estudos mostram tendência à maior severidade nos pacientes que sofrem de sobrecarga de fluidos.\(^{36,39}\) Entretanto, estabelecer se a sobrecarga de fluidos é um fator independente de prognóstico é uma tarefa muito mais complexa (e, em relação a isto, tivemos resultados difíceis de interpretar), e os estudos observacionais têm suas deficiências. Primeiramente, com relação à definição de sobrecarga de fluidos, encontramos alguns estudos com definições baseadas em achados clínicos, outros estudos com definições com base em pontos de corte em diferentes momentos da evolução e, finalmente, estudos que compararam apenas os quartis mais altos de balanço com os mais restritivos.\(^{21}\) Quando se consideram pesquisas específicas com foco no choque séptico, o trabalho conduzido por Kelm et al.\(^{18}\) demonstrou que a sobrecarga foi independentemente capaz de predizer a mortalidade entre pacientes sépticos (RC ajustada de 2,2; IC95% 1,31 - 4,09), porém não foi capaz de esclarecer se a definição de sobrecarga de fluidos utilizada classificaria bem os pacientes em razão de níveis mais elevados de retenção hídrica. Na verdade, não se observaram diferenças no balanço entre pacientes com e sem sobrecarga de fluidos para os dias 1 e 3 de tratamento. Em contraste, o trabalho conduzido por Sakr et al.,\(^{21}\) que classificou os pacientes por quartis de balanço em 24 horas, não conseguiu demonstrar a associação com a ocorrência de óbito quando se fizeram ajustes quanto ao grau de severidade (RC ajustada de 1,07; IC95% 0,76 - 1,51). Uma revisão sistemática da literatura publicada em 2014, a respeito de tópicos que incluem todos os tipos de pacientes críticos, mostrou que terapias restritivas com fluidos se associaram com taxas menores de mortalidade (RC de 0,42; IC95% 0,32 - 0,55).\(^{20}\) Contudo, esta foi uma revisão de qualidade muito ruim, uma vez que combinou de estudos observacionais, inclusive uma série de casos, o que torna impossível controlar quanto à presença de desequilíbrios entre os grupos e mostrou um grau muito alto de heterogeneidade (I\(^2\) = 86%). Afinal, temos apenas o grande ensaio clínico randomizado, que teve como alvo comparar as modalidades de terapia com fluido restritiva e liberal no processo terapêutico. Este ensaio foi conduzido com pacientes que tinham diagnóstico de síndrome do desconforto respiratório agudo (SDRA), dentre os quais cerca de 60% eram sépticos.\(^{35}\) Embora pacientes com a abordagem restritiva tenham atingido balanço negativo no dia 7 em comparação com um balanço médio positivo de quase 7L no grupo controle, não houve diferença entre os grupos em termos de mortalidade. Esta é, até aqui, a evidência mais forte para dar suporte ao fato de que a sobrecarga de fluidos não é necessariamente associada com níveis mais altos de mortalidade. Mais uma vez, isto não dá apoio para o uso rotineiro de estratégias restritivas de fluidos, o que pode ser até mesmo danoso se os pacientes não receberem quantidades apropriadas de líquidos nas primeiras horas de ressuscitação. Trabalhos como o de Leisman et al. demonstram que pacientes com nefropatia e cardiopatia crônicas recebem muito menos fluidos nas fases iniciais da ressuscitação (120 minutos) e mesmo em estágios muito mais tardios, o que é tipicamente associado com resultados piores.\(^{40,41}\)

Nosso trabalho tem alguns pontos fortes: trata-se de um estudo de coorte, que foi primariamente delineado para buscar uma associação; os pacientes foram selecionados consecutivamente, o estudo seguiu as definições do SEPSIS 3, e, em particular, é um dos primeiros a promover ajustes quanto a fatores de confusão na obtenção dos alvos terapêuticos, como a depuração de lactato. Nosso trabalho também tem seus pontos fracos: os pacientes foram recrutados de forma retrospectiva, o que aumenta a probabilidade de viés de mensuração; o estudo foi conduzido...
em um único centro e não foi possível avaliar especificamente os alvos da TGM dentro de 6 horas de tratamento (falta de mensuração da saturação venosa ou da pressão venosa central dentro das 6 horas). Acreditamos que pode haver viés na mensuração do peso corporal dos pacientes, já que a qualidade dos registros em muitos dos casos tornou impossível verificar a forma como os pacientes foram pesados. Finalmente, o uso de pontos de corte arbitrários na definição da sobrecarga de volume também tornou a precisão do cálculo das RC inadequada, para o que seria necessária uma amostra de grande tamanho. Em virtude do acima exposto, cremos que ainda é necessário que se conduzam muito mais pesquisas a respeito deste assunto, sendo necessário um estudo clínico randomizado que avalie diretamente os resultados do uso de estratégias restritivas de fluidos em pacientes com choque séptico. Até o momento, a evidência é mais forte em relação a resultados, como o número de dias sob ventilação mecânica e necessidade de terapia de substituição renal, o que não é menos importante. Entretanto, com relação à predição de mortalidade como fator independente, cremos que a sobrecarga de fluidos é apenas mais um marcador da severidade da condição clínica do paciente, e a administração de fluidos deve ser equilibrada, favorecendo ressuscitação precoce sem restrições a 30mL/kg e, após as primeiras 3 horas, estabelecer a real resposta dos pacientes ao volume.

CONCLUSÃO

Após ajustes quanto à severidade clínica e à depuração adequada de lactato, o balanço hídrico acumulado não se associou com aumento da mortalidade nesta coorte de pacientes latino-americanos com sepse.

AGRADECIMENTOS

Os autores agradecem ao Hospital Universitario San Ignacio de Bogotá, por sua assistência e seu suporte.

REFERENCES

1. Kempker JA, Martin GS. The Changing Epidemiology and Definitions of Sepsis. Clin Chest Med. 2016;37(2):165-79.
2. Gotts JE, Matthey MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585.
3. Dias FS. Sepsis definitions. Rev Bras Ter Intensiva. 2017;29(4):520-1.
4. Balk RA. Systemic inflammatory response syndrome (SIRS): where did it come from and is it still relevant today? Virulence. 2014;5(1):20-6.
5. Opal SM. The evolution of the understanding of sepsis, infection, and the host response: a brief history. Crit Care Clin. 2009;25(4):637-63, viii.
6. Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014;5(1):4-11.

7. Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med. 2000;26 Suppl 1:S64-74.
8. Horeczko T, Green JP, Panacek EA. Epidemiology of the Systemic Inflammatory Response Syndrome (SIRS) in the emergency department. West J Emerg Med. 2014;15(3):329-36.
9. Ortíz G, Dueñas C, Rodríguez F, Barrera L, de La Rosa G, Dennis R, et al. Epidemiology of sepsis in Colombian intensive care units. Biomedica. 2014;34(1):40-7.
10. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-10.
11. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis andSeptic Shock. 2016. Intensive Care Med. 2017;43(3):304-77.
12. Cavcett KA, Peters SG. Severe sepsis and septic shock: clinical overview and update on management. Mayo Clin Proc. 2014;89(11):1572-8.
13. Marik PE, Bellomo R. A rational approach to fluid therapy in sepsis. Br J Anaesth. 2016;116(3):339-49.
14. Siddiqui S. Not "surviving sepsis" in the developing countries. J Indian Med Assoc. 2007;105(4):221.
15. Poëze M, Solberg BC, Greve JW, Ramsay G. Monitoring global volume-related hemodynamic or regional variables after initial resuscitation: What is a better predictor of outcome in critically ill septic patients? Crit Care Med. 2005;33(11):2494-500.
16. O’Connor ME, Prowle JR. Fluid overload. Crit Care Clin. 2015;31(4):803-21.
17. Marik PE. Lactogenetic salt water drowning and the hazards of a high central venous pressure. Ann Intensive Care. 2014;4:21.
18. Kelm DJ, Perrin JT, Cirtin-Ceba R, Gajic O, Schenck L, Kennedy CC. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock. 2015;43(1):68-73.
19. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259-65.
20. Malbrain ML, Marik PE, Witters I, Coddmans C, Kirkpatrick AW, Roberts DJ, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46(5):361-80.
21. Sakr Y, Rubatto Birri PN, Kottis K, Nanchal R, Shah B, Kluge S, Schroeder ME, Marshall JC, Vincent JL; Intensive Care Over Nations Investigators. Higher fluid balance increases the risk of death from sepsis: results from a large international audit. Crit Care Med. 2017;45(3):386-94.
22. Shah P, Cowger JA. Cardiogenic shock. Crit Care Clin. 2014;30(3):391-412.
23. ProCESS Investigators, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683-93.
24. ARISE Investigators; ANZICS Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(18):1496-506.
25. Kelsey JL, Whittomore AS, Evans AS, Thompson WD. Methods in observational epidemiology. 2nd ed. New York: Oxford University Press; 1996.
26. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012.
27. Whitley E, Ball J. Statistics review 3: hypothesis testing and P values. Crit Care. 2002;6(3):222-5. Erratum in: Crit Care. 2003;7(1):15.
28. Ali Z, Bhaskar SB. Basic statistical tools in research and data analysis. Indian J Anaesth. 2016;60(9):662-9. Erratum in: Indian J Anaesth. 2016;60(10):790.
29. Kleinbaum DG, Klein M. Logistic regression: a self-learning text. 3rd ed. New York: Springer; 2010.
30. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10(6):701-6.
31. Russell JA, Rush B, Boyd J. Pathophysiology of septic shock. Crit Care Clin. 2018;34(1):43-61.
32. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368-77.
33. Jiang LB, Zhang M, Jiang SY, Ma YF. Early goal-directed resuscitation for patients with severe sepsis and septic shock: a meta-analysis and trial sequential analysis. Scand J Trauma Resusc Emerg Med. 2016;24:23.
34. Sánchez M, Jiménez-Lendínez M, Cidoncha M, Asensio MJ, Herrero E, Collado A, et al. Comparison of fluid compartments and fluid responsiveness in septic and non-septic patients. Anaesth Intensive Care. 2011;39(6):1022-9.
35. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564-75.
36. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6(5):966-73.
37. Liu VX, Morehouse JW, Marelich GP, Soule J, Russell T, Skeath M, et al. Multicenter implementation of a treatment bundle for patients with sepsis and intermediate lactate values. Am J Respir Crit Care Med. 2018;193(11):1264-70.
38. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87(2):198-210.
39. Alsous F, Khamiees M, DeGirolamo M, Armacot-Adejpey Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117(6):1749-54.
40. Leisman DE, Goldman C, Doerfler ME, Masick KD, Dries S, Hamilton E, et al. Patterns and outcomes associated with timeliness of initial crystalloid resuscitation in a prospective sepsis and septic shock cohort. Crit Care Med. 2017;45(10):1596-606.
41. Garzotto F, Ostermann M, Martín-Langerwerf D, Sánchez-Sánchez M, Teng J, Robert R, Marinho A, Herrera-Gutiérrez ME, Mao HJ, Benavente D, Kipnis E, Lorenzin A, Marcelli D, Tetta C, Ronco C; DoReMIFA study group. The Dose Response Multicentre Investigation on Fluid Assessment (DoReMIFA) in critically ill patients. Crit Care. 2018;22(1):196.