An Element in the Region Responsible for Premature Termination of Transcription Mediates Repression of c-myc Gene Expression by Thyroid Hormone in Neuroblastoma Cells*

(Received for publication, June 28, 1999, and in revised form, October 8, 1999)

Germán Pérez-Juste‡, Susana García-Silva, and Ana Aranda§

From the Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain

The thyroid hormone (T3) blocks proliferation and induces differentiation of neuroblastoma N2a-β cells that express the thyroid hormone receptor (TR) β1 isoform. c-Myc is required for cell cycle progression, and this study shows that T3-induced neuronal differentiation is preceded by a rapid decrease of c-myc gene expression. A negative T3 responsive element (TRE), arranged as an inverted palindrome spaced by three nucleotides, has been identified within the first exon between nucleotides +237 and +269. The TRE is adjacent to the binding site for the transcriptional repressor CCCTC binding factor and maps precisely within the region of RNA polymerase II pausing and release, suggestive of a direct implication of TR on premature termination of transcription. Furthermore, the TRE confers repression by T3 to an heterologous promoter only when inserted downstream of the transcription initiation site. Binding of CCCTC binding factor and TR to their cognate sites in the region of transcriptional attenuation, as well as direct interactions between both factors, could facilitate the formation of a repressor complex and the inhibition of c-myc gene expression. These studies provide insight into mechanisms by which TR mediate transcriptional repression and contribute to the understanding of the important effects of thyroid hormones on growth and differentiation of neuronal cells.

The effects of the thyroid hormone (triiodothyronine, T3) in cells are initiated by binding to nuclear receptors (TRs). These receptors are ligand-inducible transcription factors that exert their actions by binding, preferentially as heterodimers with the retinoid receptor RXR, to hormone response elements (TREs) located in regulatory regions of target genes (1, 2). Naturally occurring and synthetic TREs are normally composed of at least two copies of the consensus AGGTCA motif arranged as direct repeats, palindromes, or inverted palindromes (IPs) separated by a variable number of nucleotides.

* This work was supported by Grants PM97-0135 from the Dirección General de Enseñanza Superior and 08.2/0032 from the Comunidad de Madrid. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Fellow from the Comunidad de Madrid.

§ To whom correspondence should be addressed: Instituto de Investigaciones Biomédicas, Arturo Dupuyer 4, 28029 Madrid, Spain. Tel.: 34-91-5854642; Fax: 34-91-5854587; E-mail: aaranda@iib.uam.es.

1 The abbreviations used are: T3, thyroid hormone; TR, thyroid receptor; RXR, retinoid X receptor; TRE, thyroid response element; IP, inverted palindrome; TK, thymidine kinase; CAT, chloramphenicol acetyltransferase; GST, glutathione S-transferase; PAGE, polyacrylamide gel electrophoresis; mmyc, murine c-myc; CTCF, CCCTC binding factor.

The thyroid hormones are essential for brain development, although the specific mechanisms by which these hormones control neuronal proliferation and differentiation are not yet understood. It has been shown that T3 treatment of N2a-β cells (a murine neuroblastoma cell line that overexpresses the TRβ1 isoform) blocks proliferation by an arrest of cells in G0/G1 and induces morphological and functional differentiation (3, 4). One of the molecular events required for cell cycle progression is the inactivation by hyperphosphorylation of retinoblastoma protein (pRb) family members (5), which is catalyzed by the cyclin-dependent kinases or CDKs. We have recently shown that T3 induces a strong and sustained increase of the levels of the cyclin kinase inhibitor p27Kip1 in N2a-β cells. As a consequence, the kinase activity associated with CDK2 complexes is inhibited and pRb proteins are hypophosphorylated in T3-treated N2a-β cells (6).

The c-myc proto-oncogene encodes a nuclear phosphoprotein with leucine zipper and helix-loop-helix domains, which can cause transcriptional activation as well as transcriptional repression, and also plays an important role in cell cycle progression (7–9). Although the mechanisms connecting c-Myc function to cell cycle control are not well understood, different signals that arrest growth and elicit cell differentiation suppress c-myc expression. Conversely, elevated levels of c-Myc prevent differentiation and lead to continued growth in many lineages. Thus, regulation of c-myc expression appears to play an important role in decisions of cellular growth versus differentiation. Therefore, it would not be surprising that T3 could repress c-myc. Indeed, we have observed that the effect of T3 on p27Kip1 and N2a-β cells differentiation is accompanied by a decrease in c-Myc protein and c-myc mRNA levels (6).

Transcription of the c-myc gene is controlled by several promoters in mice, humans, and chickens. The two major promoters P1 and P2, which are positioned 164 base pairs apart in mice, contribute to more than 95% of the cytoplasmic c-myc mRNAs (6). Analysis of these regions has shown that numerous positive and negative regulatory elements are important for transcriptional regulation of the c-myc gene. One region which lies −65 to −58 base pairs upstream of the P2 promoter and appears to be essential for c-myc activation is bound by the cell cycle-regulated transcription factor E2F (8). In addition, a block in transcriptional elongation plays an important role in the regulation of c-myc gene expression (9). The regions responsible for transcriptional blockage within c-myc have been defined (10, 11). It has been shown that the sequences responsible for premature termination are found proximal to the P2 promoter. The site involved is known to function as a RNA polymerase II pausing region (12, 13). An 11-zinc finger transcriptional repressor CTCF binds immediately downstream of the P2 promoter at a sequence that maps precisely within the region of the polymerase II pausing and release (14). CTCF is
an exceptionally conserved protein that uses different combinations of the 11 zinc fingers to specifically bind to diverged regulatory DNA sequences within the promoter proximal regions of chicken, mouse, and human c-myc genes (15). CTCF contains two strong transcriptional repressor domains, and mutation of the CTCF binding site results in increased transcription from human c-myc reporter constructs (15). Very recently it has been demonstrated that CTCF is required for the enhancer blocking activity of vertebrate insulators that can act as a barrier to the influence of neighboring cis-acting elements preventing gene activation (16). A transcriptional repressor, negative protein 1 or NeP1, which binds to the F1 element of the chicken lysozyme silencer, has been demonstrated to be identical to CTCF (17). CTCF recognizes a sequence within the lysozyme gene silencer without any obvious sequence similarity to CTCF binding sites in the c-myc gene because of the different usage of zinc fingers (17). Interestingly, the lysozyme silencer is comprised of two DNA response elements (F1 and F2), which synergistically repress gene activity (18). The F1 module is bound by CTCF and the F2 is bound by TR, the homologous viral oncoprotein v-ERBA, or the retinoic acid receptor (RAR) (15). Whereas the unliganded TR acts as a repressor, in the presence of T3 the two silencer modules can synergistically activate gene transcription (18).

In this work we have analyzed the effects of T3 on c-myc gene expression in neuroblastoma N2a-β cells. Our results show that the hormone causes an extremely rapid decrease of c-myc transcripts in N2a-β cells that is independent on de novo protein synthesis. Transient transfection experiments and gel retardation assays showed the existence of a negative TRE located between nucleotides +239 and +268 in the region responsible for premature termination of transcription. This element is arranged as an IP with a 3-nucleotide gap (IP3), binds TR-RXR heterodimers, and is adjacent to the CTCF binding site. A promoter fragment (+140 to +266) containing binding sites for both transcription factors confers repression by T3 to an heterologous promoter but only when inserted 3' of the promoter. These results indicate the direct implication of TR in premature termination of transcription leading in cooperation with CTCF to polymerase II pausing and release and to a decrease of c-myc mRNA levels.

MATERIALS AND METHODS

Cell Cultures—The clonal cell line Neuro-2a stably transfected with the β1 isofor of the human thyroid hormone receptor (N2a-β cells) was grown in Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal bovine serum. The cell cultures with guanidine thiocyanate. The RNA was run in 1% agarose gel, and then for 30 min at room temperature with approximately 30,000 cpm of labeled double-stranded oligonucleotide labeled with [32P]dCTP. The fragment +140 to +269, amplified with the primers indicated above, as well as the same fragment with the mutated TRE were also used in the assays. In addition, a labeled fragment of the murine c-myc promoter (from +137 to +335) was obtained by polymerase chain reaction using the primers 5'-AACCTTTTCCCCGCGTTTTTTTCG-3' and 5'-GCTTGATGGGGTCAGGG-3'. For shift experiments 1 μl specific antibody against RXR (which recognizes the different receptor isoforms) and CTCF (17) were added to the binding reactions and incubated on ice for 30 min before the addition of the labeled probe. For competition experiments an excess of unlabeled double-stranded oligonucleotides or polymerase chain reaction fragment was added to the binding reaction mixture. The competitor oligonucleotide TREpal contains the palindrome 5'-AGTAGTGTTGGTCAGGG-3', and the 5'-AGTTTCCGCGTTTTCG-3' is the CTCF binding element of the lysozyme silencer (18). DNA-protein complexes were resolved on 6% polyacrylamide gels in 0.5x Tris borate-EDTA buffer. The gels were then fixed, dried, and autoradiographed at -70°C.

Protein-Protein Interactions—GST pull-down assays were performed with 5 μl of r-n-ethylmaleimide-labeled CTF, and the GST fusion proteins GST-TR and GST-RXR. An N-terminally truncated TR, GST-TR (120–408), lacking the A/B domain and the DNA binding domain (22), as well as the GST-vitamin D receptor and GST-peroxisome proliferator-activated receptor α (23, 24) were used. A vector for CTCF (1 μg) cloned in pSg5 (15) was used for in vitro transcription using the T7 T7 Quick coupled Transcription/Translation System (Promega) in the presence of 40 μCi of [35S]methionine. Labeled CTCF was incubated with 1 μg of GST-fusion protein or with the same amount of GST as a control immobilized in glutathione-Sepharose beads. The proteins were first incubated in the presence of 1 μM T3 or ethanol for 20 min at room temperature in glass tubes. The reaction with the beads was performed for 1 h at 4°C in a binding buffer containing 25 mM Hepes-KOH, pH 7.9, 10% glycerol, 5 mM MgCl2, 1 mM dithiothreitol, 0.001% Triton X-100, 5 mM EDTA, 1% r-n-ethylmaleimide, and 10 μM fluorescein. Beads were washed from the beads with a buffer containing 100 mM KCl, and the bound proteins were analyzed by SDS-PAGE and autoradiography. Whole cell extracts from N2aβ cells were prepared with 25 mM Hepes-KOH, pH 7.9, 0.1% Nonidet P-40, 150 mM KCl, 2 mM EDTA, 10 mM NaF, 1 mM dithiothreitol, and 0.25% bovine serum albumin. GST alone or GST-TR (1 μg) was exposed to 700 μg of cell extract. Proteins were

Inhibition of c-myc Gene Expression by T3
Inhibition of c-myc Gene Expression by T3

RESULTS

Influence of T3 on c-myc mRNA Levels in N2a-β Cells—We have previously observed that the levels of c-Myc and c-myc mRNA were reduced in N2a-β cells treated with T3 for 48 h (6). Fig. 1A shows the kinetics of reduction of c-myc mRNA. T3 produced a rapid decrease of this transcript with a maximal reduction found only after 2 h of incubation with the hormone. This decrease was maintained for at least 48 h. To analyze whether de novo protein synthesis was required for T3 repression of c-myc gene expression, treatment with the hormone was performed in the presence and absence of 10 μM cycloheximide. As shown in Fig. 1B, cycloheximide increased c-myc mRNA levels. Superinduction in the absence of protein synthesis is characteristic of "early response" genes, which have transcripts following T3 treatment of N2a-β cells as well as from

Proximal Promoter Sequences of the Murine c-myc Gene Mediate Repression by T3—To directly examine whether the repression of c-myc transcripts following T3 treatment of N2a-β cells is exerted at a transcriptional level, reporter constructs containing different fragments of the murine c-myc promoter region were used in transient transfection studies. Fig. 2A shows that incubation with 5 nM T3 for 48 h reduced by approximately 70% the activity of (−1141/+516)-mycCAT. A similar reduction was observed with the reporter (−140/+335)-mmyc-CAT. This result shows that the region between −140 and +335, which includes both the P1 and the P2 promoters, contains the sequences required for transcriptional repression by T3. In contrast, the activity of the ApBLCAT3 construct was very low and was not affected by incubation with T3 (not illustrated). To further map the elements responsible for this regulation, two additional plasmids (−140/+113)-mmyc-CAT and (+137/+516)-mmyc-CAT were also used. The first construct includes sequences upstream of the P1 promoter, and the second one comprises P2 and sequences downstream of this site including the premature termination region. When assayed after 48 h of treatment with T3, the activity of both promoters was similarly repressed by the hormone. However, the kinetics of repression were different. As illustrated in Fig. 2B, incubation with T3 prevented accumulation of CAT activity, which occurred during the period examined in the untreated cells. An inhibitory effect on the activity of (+137/+516)-mmyc-CAT was found at the first time period analyzed, namely at 3 h of incubation with T3. However, a reduction in the activity of the (−140/+113)-mmyc-CAT plasmid was not detected at 3 or 8 h of incubation and became apparent from 20 h of treatment.

A TRE Is Located within the First Exon of the c-myc Gene Overlapping Sequences Responsible for RNA Polymerase II Pausing and Release—The sequences responsible for the rapid repression of c-myc gene transcription by T3 were analyzed for TR binding sites by gel retardation assays. The labeled promoter fragment +140/+335 was incubated with recombinant TR and/or RXR as fusions with GST. As illustrated in Fig. 3, this region did not bind RXR and only weakly TR, but when both receptors were combined a strong retardation was observed (lane 4). In vitro incubation with T3 did not significantly alter retardation (lane 5). The mobility of the GST fusion proteins is slower than that obtained with highly purified TR-RXR heterodimers obtained with vaccinia infection that is shown in lanes 14 and 15. The promoter fragment +132 to +269 (lanes 6–9) also bound TR-RXR heterodimers, indicating the existence of a TRE in this region. In contrast, when the fragment +140 to +335 was excised to give +140 to +249 and +249 to +335, the resulting fragments did not bind TR-RXR (lanes 10–13), suggesting that the TRE is located around the excision point. Analysis of the sequences comprised between +237 and +270 revealed the existence of the three potential TRE hemi-sites depicted in Fig. 4A as TREmmyc. Fig. 4B shows that the TREmmyc probe, as the promoter fragments, binds TR-RXR heterodimers (lane 4) but not TR or RXR separately. Although with a lower affinity, this element also bound RAR-RXR heterodimers (not illustrated). The TREmmyc could be organized as an inverted palindrome separated by 3 nucleotides (IP3) or with an 8-nucleotide gap (IP8). To determine the contribution of the different elements to receptor binding, two additional probes were used in which either the more downstream motif or the middle one were mutated to render an IP3 or an IP8 element, respectively (Fig. 4A). Lane 8 in panel B shows that the IP8 bound weakly TR-RXR heterodimers, whereas the IP3 (lane 12) bound the receptors at least as strongly as the complete TREmmyc. The competition studies illustrated in the right panel in Fig. 4B further demonstrate the IP3 configuration of the response element. Whereas the TREmmyc and IP3 probes were equally effective in competing the retardation caused by TR-RXR on the native element, a large molar excess of IP8 oligonucleotide was unable to reduce binding.

Binding of nuclear proteins to the TREmmyc is shown in Fig. 4C. Nuclear extracts from control N2a-β cells as well as from cells treated with T3 were subjected to gel retardation assays with the TREmmyc oligonucleotide. A predominant retarded complex with the same mobility as the purified TR-RXR heterodimer was observed. The results are expressed as the percentage of the values obtained at time 0 are corrected by the amount of RNA applied. The resulting c-myc transcripts obtained from two independent experiments. Data are mean ± S.D. values expressed as percentages of the results obtained in control untreated cells.

Proximal Promoter Sequences of the Murine c-myc Gene Mediate Repression by T3—To directly examine whether the repression of c-myc transcripts following T3 treatment of N2a-β cells is exerted at a transcriptional level, reporter constructs containing different fragments of the murine c-myc promoter region were used in transient transfection studies. Fig. 2A shows that incubation with 5 nM T3 for 48 h reduced by approximately 70% the activity of (−1141/+516)-myc-CAT. A similar reduction was observed with the reporter (−140/+335)-mmyc-CAT. This result shows that the region between −140 and +335, which includes both the P1 and the P2 promoters, contains the sequences required for transcriptional repression by T3. In contrast, the activity of the ApBLCAT3 construct was very low and was not affected by incubation with T3 (not illustrated). To further map the elements responsible for this regulation, two additional plasmids (−140/+113)-mmyc-CAT and (+137/+516)-mmyc-CAT were also used. The first construct includes sequences upstream of the P1 promoter, and the second one comprises P2 and sequences downstream of this site including the premature termination region. When assayed after 48 h of treatment with T3, the activity of both promoters was similarly repressed by the hormone. However, the kinetics of repression were different. As illustrated in Fig. 2B, incubation with T3 prevented accumulation of CAT activity, which occurred during the period examined in the untreated cells. An inhibitory effect on the activity of (+137/+516)-mmyc-CAT was found at the first time period analyzed, namely at 3 h of incubation with T3. However, a reduction in the activity of the (−140/+113)-mmyc-CAT plasmid was not detected at 3 or 8 h of incubation and became apparent from 20 h of treatment.

A TRE Is Located within the First Exon of the c-myc Gene Overlapping Sequences Responsible for RNA Polymerase II Pausing and Release—The sequences responsible for the rapid repression of c-myc gene transcription by T3 were analyzed for TR binding sites by gel retardation assays. The labeled promoter fragment +140/+335 was incubated with recombinant TR and/or RXR as fusions with GST. As illustrated in Fig. 3, this region did not bind RXR and only weakly TR, but when both receptors were combined a strong retardation was observed (lane 4). In vitro incubation with T3 did not significantly alter retardation (lane 5). The mobility of the GST fusion proteins is slower than that obtained with highly purified TR-RXR heterodimers obtained with vaccinia infection that is shown in lanes 14 and 15. The promoter fragment +132 to +269 (lanes 6–9) also bound TR-RXR heterodimers, indicating the existence of a TRE in this region. In contrast, when the fragment +140 to +335 was excised to give +140 to +249 and +249 to +335, the resulting fragments did not bind TR-RXR (lanes 10–13), suggesting that the TRE is located around the excision point. Analysis of the sequences comprised between +237 and +270 revealed the existence of the three potential TRE hemi-sites depicted in Fig. 4A as TREmmyc. Fig. 4B shows that the TREmmyc probe, as the promoter fragments, binds TR-RXR heterodimers (lane 4) but not TR or RXR separately. Although with a lower affinity, this element also bound RAR-RXR heterodimers (not illustrated). The TREmmyc could be organized as an inverted palindrome separated by 3 nucleotides (IP3) or with an 8-nucleotide gap (IP8). To determine the contribution of the different elements to receptor binding, two additional probes were used in which either the more downstream motif or the middle one were mutated to render an IP3 or an IP8 element, respectively (Fig. 4A). Lane 8 in panel B shows that the IP8 bound weakly TR-RXR heterodimers, whereas the IP3 (lane 12) bound the receptors at least as strongly as the complete TREmmyc. The competition studies illustrated in the right panel in Fig. 4B further demonstrate the IP3 configuration of the response element. Whereas the TREmmyc and IP3 probes were equally effective in competing the retardation caused by TR-RXR on the native element, a large molar excess of IP8 oligonucleotide was unable to reduce binding.

Binding of nuclear proteins to the TREmmyc is shown in Fig. 4C. Nuclear extracts from control N2a-β cells as well as from cells treated with T3 were subjected to gel retardation assays with the TREmmyc oligonucleotide. A predominant retarded complex with the same mobility as the purified TR-RXR het-
Inhibition of c-myc Gene Expression by T3

Fig. 2. T3 represses the activity of the murine c-myc promoter in transient transfection assays. A schematic representation of the reporter CAT plasmids containing fragments of the mmyc gene used to transfect N2a-β cells is shown. The arrows indicate the positions of the P1 and P2 transcription initiation sites, and the black box shows the region responsible for premature termination of transcription located downstream of P2. A, the cells were transfected with the constructs (-1141/+516)-mmyc-CAT and (-140/+335)-mmyc-CAT, and CAT activity was determined after 48 h of incubation in the absence and presence of 5 nM T3. Data are expressed relative to the CAT values obtained in the corresponding untreated cells. In B N2a-β cells were transfected with the constructs (-140/+113)-mmyc-CAT and (+137/+516)-mmyc-CAT, and CAT activity determined in cells incubated in the presence and absence of T3 at the indicated time periods. All data are mean ± S.D.

Fig. 3. Sequences located downstream of P2 bind TR-RXR heterodimers. The labeled regions +140 to +335 and +132 to +289 of the murine c-myc gene were obtained by polymerase chain reaction, and the regions +140 to +249 and +246 to +335 were obtained by digestion of the +140 to +335 fragment. The different probes were used for gel retardation assays with 100 ng of recombinant GST-TR and/or GST-RXR as indicated (lanes 1–13) or with an equivalent amount of purified TR-RXR heterodimers obtained with vaccinia (lanes 14 and 15). When indicated the assays were performed in the presence of 1 μM T3.

The nuclear complexes formed with the cell extracts. T3 treatment did not alter the abundance of these complexes, which were competed equally well by the TREmyc and by the palindromic element TREpal. In addition, the retarded complex was super-shifted by an RXR antibody, demonstrating the presence of RXR heterodimers (most likely TR-RXR) in the protein-DNA complexes. This heterodimeric complex was not detected in nuclear extracts from parental N2a cells, which express low levels of thyroid hormone receptors (lane 16 and 17), confirming that TR-RXR are the major heterodimeric complexes bound to the TREmyc.

The nuclear complexes formed with the +140 tp +266 promoter fragment are illustrated in Fig. 5A. Several retarded bands were observed with the nuclear extracts from either untreated or T3-treated N2a-β cells. The components of the different bands were again identified by the use of antibodies and competition with specific binding sites. The fastest complex had a mobility identical to that caused by the TR-RXR heterodimer, was displaced by an excess of TREpal, and super-shifted by the anti-RXR antibody. These treatments did not affect the predominant complex, which has a slower mobility than the TR-RXR heterodimer. It has been recently described that the transcriptional repressor CTCF binds to a GC-rich region between positions +165 and +205 in the murine c-myc promoter (15). That the TREmyc within the promoter (15). That the TREmyc within the region is responsible for TR-RXR binding is shown in Fig. 5B. This figure compares binding of the heterodimer and CTCF to the native fragment and to a fragment in which both hemisites of the TREmyc have been mutated. TR-RXR bound to the native fragment with the expected strength and mobility, and when combined with CTCF, it produced the appearance of the super-retarded complex. In contrast, TR-RXR did not significantly bind to the promoter in which the TREmyc sequences have been mutated. Interestingly, although TR/RXR alone did not bind this fragment, a retarded band with the mobility of the ternary complex, although weaker than that found with the
Inhibition of c-myc Gene Expression by T3

regulators with 35S-luciferase used as a negative control was detected (not illustrated). In addition, the interaction with CTCF is not a general property of nuclear receptors as neither the vitamin D receptor nor the peroxisome proliferator-activated receptor α associated in vitro with this factor. As also shown in Fig. 6A, the interaction between TR and CTCF required the N terminus of the receptor, because a truncated TR, which contains only the ligand binding domain, did not interact with CTCF.

To test whether there was an interaction between TR and the endogenous CTCF, extract from N2a-β cells was incubated with GST-TR or GST alone. The associated proteins were subjected to electrophoresis, and CTCF was detected by Western blot. Although the size of the CTCF cDNA predicts an 82-kDa protein, in agreement with previous observations (25), our results show that CTCF migrates aberrantly in SDS-PAGE with an apparent molecular mass of 130 kDa (Fig. 6B, lane 1). Lane 2 shows that GST did not interact with CTCF in the cell extracts. However, a band corresponding to CTCF was pulled down by GST-TR (lane 3). To test whether CTCF and TR can also associate in vivo, cell extracts were immunoprecipitated with an anti-TR antibody, and CTCF in the precipitate was detected by Western blot. As shown in Fig. 6C, a band corresponding to CTCF was present in the immunoprecipitates (lane 2). These results show that CTCF and TR can indeed associate in vivo. However, this interaction was weak because the amount of CTCF in the TR immunoprecipitates was below that found in lane 1, which represents only 3% of the input.

The Region of Premature Termination Confers Negative Regulation by T3 when Inserted Downstream but Not Upstream of the Thymidine Kinase Promoter—To test whether or not the TRE binding site in the c-myc promoter acts as a functional negative element conferring T3 responsiveness to an heterologous promoter, the region +140 to +266 of c-myc was linked either upstream or downstream of the TK promoter in ΔpBLCAT2. Fig. 7 shows that the functionality of the TRE depends on its position with respect to the initiation site. When the c-myc fragment, which contains the CTCF binding site besides the TRE, was cloned 5′ of the TK promoter, T3 did not cause a decrease of CAT activity. In contrast, T3 significantly decreased the activity of the reporter construct when the same fragment was linked in a 3′-position with respect to the TK promoter. This is the location of the native element in the murine c-myc gene. Additionally, mutation of the TRE abolished negative regulation by T3 demonstrating that this element is responsible for the repression.

DISCUSSION

Regulation of c-myc expression appears to play an important role in cell cycle progression and cellular differentiation. Our results show that T3-induced neuronal differentiation and growth arrest of neuroblastoma N2a-β cells is preceded by a decrease of c-myc gene expression. The effect of T3 was very rapid, with a maximal repression of c-myc mRNA being found within 2 h of hormone treatment. This decrease occurs before induction of the cyclin kinase inhibitor p27Kip1 (6) and is one of the most rapid effects of thyroid hormone on gene expression known. Repression by T3 does not require de novo protein synthesis, suggesting a direct effect of the thyroid hormone receptor on the c-myc gene. It has been proposed that the initial decrease of c-myc mRNA levels during differentiation of several cell types results from a reduction in the number of polymerases that read through sites of termination or pausing within exon 1. Even in cells with high expression of c-myc, the majority of polymerases on c-myc exon 1 pause at the P2 promoter and only a minor fraction of polymerase II actively transcribes c-myc exon 1 (26). The transient pausing of RNA polymerase II

FIG. 4. Mapping of the TRE in the murine c-myc gene. A, sequence corresponding to the region between positions +237 to +270 was designated as TREmmyc. Boxes and arrows show the putative TRE hemisites. In IP3 and IP8 the TREmmyc sequence was mutated to eliminate the downstream or the central hemisites, respectively. Mutations are shown in boldface. B, in the left panel gel mobility shift assays were performed with GST-TR and/or GST-RXR and the 32P-labeled TREmmyc, IP3, or IP8 probes as indicated. In the right panel, the TR-RXR heterodimers bound to the TREmmyc probe were competed with increasing concentrations of unlabeled TREmmyc, IP3, or IP8 oligonucleotides. The mobility of the heterodimer is shown by an arrow. C, in the left panel the assays were performed with nuclear extracts (10 μg of protein) of control N2a-β cells (c) or cells treated with 5 nM T3 for 24 h. The labeled TREmmyc oligonucleotide was used as probe. In lanes 6 and 7, where 1 μl of anti-RXR antibody (α-RXR) was added to the binding reactions, an arrowhead indicates the mobility of the super-shifted complex. In lanes 8–11 binding was competed with an excess of TREmmyc or TRepal oligonucleotides. In lane 12 the mobility of the purified TR-RXR heterodimer (75 ng) is shown. In the right panel nuclear extracts (NE) from either N2a-β cells or parental N2a cells were incubated with the labeled oligonucleotide in the presence and absence of the anti-RXR antibody.

Interaction of CTCF with the Receptors—The results shown in Fig. 5B are compatible with the existence of a direct association between the receptors and CTCF. Therefore, we tested in vitro interaction between them in GST pull-down assays. Binding of 35S-labeled CTCF to GST-TR and GST-RXR immobilized on glutathione-agarose beads is shown in Fig. 6A. GST protein alone did not interact with CTCF. However, 35S-labeled CTCF was specifically retained by GST-TR. Binding of GST-RXR to CTCF was weak, but the presence of GST-RXR enhanced significantly the binding of GST-TR. The interaction occurred in the absence of ligand, and the ligand had little effect in the association of CTCF with the receptors. No interaction of the native sequence, was formed.
has been suggested as a prerequisite for termination (or attenuation), and it has been shown that the sequences responsible for this event map at a position proximal to the major c-myc promoter (P2) (10–13).

A nuclear factor, CTCF, mediating active repression of the c-myc promoter has been identified, and the CTCF binding sequence maps precisely within the region of polymerase II pausing (14, 15). We have shown that CTCF is the predominant nuclear factor binding to this region in N2a-β cells, and most interestingly, we have identified a functional negative TRE adjacent to the CTCF binding site. This configuration is very similar to that of the lysozyme gene silencer (18). It has been
demonstrated that binding of a protein, called NeP1, to 50 base pairs of DNA next to the TRE in the silencer is required to mediate efficient transcriptional repression by unliganded TR (27). More recently, it has been proved the identity of NeP1 with CTCF (17). Functional synergism in repression is not based on DNA-binding cooperativity to the lysozyme silencer as judged by in vitro binding experiments (28), and we have confirmed this lack of binding cooperativity in the c-myc gene element. The functional cooperation of the receptor with CTCF could involve a direct physical association, and we have been able to demonstrate by in vitro binding experiments the existence of a direct interaction between these two transcription factors. We have also observed an in vivo interaction between CTCF and TR, but this association was very weak and therefore its functional significance is still unclear.

Our results indicate that the negative TRE in the murine c-myc gene consists of two half-sites separated by three nucleotides and arranged as inverted palindromic repeats. This TRE shares the half-site arrangement with other TREs (18, 29–33), but to our knowledge a separation of three nucleotides has not been found before. Some negative elements have been shown to be preferentially bound by a thyroid hormone receptor homodimer in the absence of hormone, whereas in the presence of T3 a RXR/TR heterodimer is bound. However, the IP3 TRE in the mouse c-myc gene binds homodimers weakly, and essentially only heterodimeric binding is observed both in the presence and absence of ligand.

Despite the same arrangement the diverse TREs composed of IPs can have different functional properties. Thus, the TREs present in the Rous sarcoma virus promoter (31), the human growth hormone gene (34), or the pituitary clone 144 (29) mediate negative regulation by T3 as the TREmmyc does, whereas the elements in the malic enzyme (30), the γ-f-crystallin (32) or the P2 element in the lysozyme gene silencer (18) mediate repression by the unliganded receptor and T3-induced activation. Although at the present time the properties of the TREs governing these differences are not yet understood, location of the TRE may play a role. TREs are frequently located 5′ with respect to transcription initiation sites, but some are positioned downstream of the TATA box (31) or even have an unusual location at the 3′ untranslated region (29, 34). The TREmmyc is located downstream of the transcription initiation sites P1 and P2 and its function is position-dependent because it only confers negative regulation by T3 when placed downstream of a heterologous promoter. By contrast, the TREmmyc was inactive when placed upstream of the promoter. The finding that this sequence has properties that depend on its localization, exhibiting negative responses only when placed downstream of the transcription initiation site, strongly suggests that this TRE affects the transcriptional activity of c-myc by regulating the rate of release of RNA polymerase II from the c-myc P2 promoter.

One of the mechanisms proposed to explain how CTCF exerts its repressive effect is DNA bending. It has been shown that CTCF can induce a significant directed bend on the lysozyme silencer. Furthermore, although TR and RXR do not induce bending on their own, when all factors are bound simultaneously the RXR/TR heterodimer changes the position and orientation of the bend (28). We have observed that CTCF shows a significant bending activity on the +140 to +266 region of c-myc (data not shown), and although it is still not clear how bending relates with the repressive effects of CTCF, DNA bending may occur in conjunction with repositioning of nucleosomes resulting in an altered chromatin structure. The direct interaction of CTCF with the receptors could also play a role in determining this alteration and on the occupancy of this promoter region. Additionally, bending may be required for the assembly of other interacting partners. Transcriptional repression can be achieved by interaction with corepressors. Thus, corepressors such as SMRT or NCoR have been identified as interacting with TR (35, 36). It has been shown that a complex containing SMRT, mSin3, and histone deacetylases mediates transcriptional repression (37, 38). The finding that CTCF contains at least two repressor domains (15) suggests that this factor could also associate with still unidentified nuclear corepressors. The simultaneous binding of CTCF and the thyroid hormone receptor to their close cognate sites in the region of transcriptional attenuation, as well as the direct interactions between them and with corepressors could facilitate the formation of the repressor complex and the inhibition of c-myc gene expression.

Our data also show that two distinguishable modes of regulation operate on c-myc during T3-induced differentiation of neuroblastoma cells. During the early stages, the TRE at the site responsible for transcriptional attenuation could contribute to increase termination or pausing of transcriptional elongation near the end of the first exon, thus preventing formation of full-length c-myc transcripts. However, at later stages, other control mechanism mediated by sequences contained upstream of the P1 initiation site occurs, because T3 also decreases the activity of plasmids containing these sequences in the absence of P2. A later acting mechanism of down-regulation, besides the early increased blocking of c-myc transcripts elongation, also occurs during differentiation of HL60 or U937 cells (39, 40). The time course of the later mechanism of inhibition by T3 suggests a loss of promoter function because of previous changes in the abundance or activity of other trans-acting factors binding to the promoter region—140 to +113. For instance, it has been described that E2F factors appear to be essential in determining the rate of transcription of the c-myc gene (8). We have shown that CDK2 activity is inhibited and pRB proteins are hypophosphorylated in T3-treated N2a-β cells (6). Therefore, T3 maintains pRb family proteins in their active form a condition in which they associate with E2F factors and could repress transcription of the c-myc gene. Therefore multiple mechanisms can contribute to the long term maintenance of c-myc repression by T3.

In conclusion, our studies provide evidence of a novel role of the thyroid hormone on premature termination of transcription of the murine c-myc gene during neuronal differentiation and give insight into the mechanisms by which TR and CTCF mediate transcriptional repression. Given the crucial role of c-Myc in the regulation of cell growth, differentiation, and survival, the rapid down-regulation of c-myc gene expression on the neuroblasts could be one of the initial events responsible for the effects of thyroid hormones during brain development.

Acknowledgments—We thank J. Puymirat for the cells, E. Klenova for the CTCF expression vector, V. Lobanenkov for the anti-CTCF antibody, P. Chamoun for the anti-RXR antibody, R. Arnold for purified CTCF, and D. Barettoni for purified TR-RXR.

REFERENCES
1. Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Rastner, P., Mark, M., and Chambon, P. (1995) Cell 83, 835–839
2. Mangelsdorf, D. J., and Evans, R. M. (1995) Cell 83, 841–850
3. Lebel, J. M., Dussault, J. H., and Puymirat, J. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 2644–2648
4. Puymirat, J., Ettoung-Meyer, P., and Dussault, J. H. (1995) J. Biol. Chem. 270, 30651–30656
5. Weinberg, R. A. (1995) Cell 81, 323–330
6. Peres-Juste, G., and Aranda, A. (1999) J. Biol. Chem. 274, 5026–5031
7. Henrekson, M., and Lusche, B. (1986) Adv. Cancer Res. 45, 109–182
8. Marcu, K. B., Bossone, S. A., and Patel, A. J. (1992) Annu. Rev. Biochem. 61, 809–860
9. Ryan, K. M., and Birnie, G. D. (1996) Biochem. J. 314, 715–721
10. Bentley, D. L., and Groudine, M. (1988) Cell 53, 245–256
Inhibition of c-myc Gene Expression by T3

11. Wright, S., and Bishop, J. M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 505–509
12. Krumm, A., Meulia, T., Brunvand, M., and Groudine, M. (1992) Genes Dev. 6, 2201–2213
13. Krumm, A., Hickey, L. B., and Groudine, M. (1995) Genes Dev. 9, 559–572
14. Klenova, E. M., Nicolas, R. H., Peterson, H. F., Carne, A. F., Heath, C. M., Goodwin, G. H., Neiman, P. E., and Lobanenkov, V. V. (1993) Mol. Cell. Biol. 13, 7612–7624
15. Filippova, G. N., Fagerlie, S., Klenova, E. M., Myers, C., Dhener, Y., Goodwin, G., Neiman, P. E., Collins, S. T., and Lobanenkov, V. V. (1993) Mol. Cell. Biol. 13, 7612–7624
16. Bell, A. C., West, A. G., and Fenselfeld, G. (1999) Cell 98, 387–396
17. Burcin M., Arnold, R., Lutz, M., Kaiser, B., Runge, D., Lottspeich, F., Filippova, G. N., Lobalenkov, V. V., and Renkawitz, R. (1997) Mol. Cell. Biol. 17, 1281–1288
18. Banaihmad, A., Steiner, C., Khone, A. C., and Renkawitz, R. (1990) Cell 61, 505–514
19. Lavenu, A., Pourmin, S., Babinet, C., and Morello, D. (1994) Oncogene 9, 527–536
20. Kushner, P. J., Baxter, J. D., Duncan, K. G., Lopez, G. N., Schaufele, F., Uth, E. M., Webb, P., and West, B. L. (1994) Mol. Endocrinol. 8, 405–407
21. Valeti, R., Holtz, H., Garcia-Jimenez, C., Barretino, D., and Stunenberg, H. (1995) Genes Dev. 8, 3068–3079
22. Hadzic, E., Desai-Janick, V., Helmer, E., Guo, S., Wu, S., Koudinova, N., Casanova, J., Rauka, B. M., and Samuels, H. H. (1995) Mol. Cell. Biol. 15, 4507–4517
23. Jimenez-Lara, A. M., and Aranda, A. (1999) FASEB J. 13, 1073–1081
24. Tolón, R. M., Castillo, A. I., and Aranda, A. (1998) J. Biol. Chem. 273, 26652–26661
25. Klenova, E. M., Nicolas, R. H., Carne, A. F., Lee, R. E., Lobanenkov, V. V., and Goodwin, G. H. (1997) Nucleic Acids Res. 25, 466–474
26. Strehl, I. J., and Eick, D. (1992) EMBO J. 11, 3307–3314
27. Kohn, A. C., Banaihmad, A., and Renkawitz, R. (1993) J. Mol. Biol. 232, 747–755
28. Arnold, R., Burcin, M., Kaiser, B., Muller, M., and Renkawitz, R. (1996) Nucleic Acids Res. 16, 2640–2644
29. Bigler, J., and Eisenman, R. N. (1995) EMBO J. 14, 5710–5723
30. Farsetti, A., Desvergne, B., Hallenbeck, P., Robbins, J., and Nikodem, V. M. (1992) J. Biol. Chem. 267, 15784–15788
31. Saastecgou, P., Deng, T., and Kartin, M. (1993) Cell 75, 1095–1105
32. Tini, M., Tsui, L. C., and Guiguer, V. (1994) Mol. Endocrinol. 8, 1494–1506
33. Williams, G. R., Zavacki, A. M., Harney, J. W., and Brent, G. A. (1994) Endocrinology 134, 1888–1896
34. Zhang, W., Brooks, R. L., Silversides, D. W., West, B. L., Leidig, F., Baxter, J. D., and Eberhardt, N. L. (1992) J. Biol. Chem. 267, 15056–15063
35. Chen, J. D., and Evans, R. M. (1995) Nature 377, 454–457
36. Horlein, A. J., Naar, A. M., Heinzl, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C. K., and Rosenfeld, M. G. (1995) Nature 377, 397–404
37. Heinzl, T., Lavinsky, R. M., Mullen, T. M., Soderstrom, M. C., Laherty, D., Torchia, J., Yang, W. M., Brand, G., Ngo, S. D., and Davie, J. R. (1997) Nature 387, 43–47
38. Nagy, L., Kao, H.-Y., Chakravarti, D., Lin, R., Hassig, C. A., Ayer, D. E., Schreiber, S. L., and Evans, R. M. (1997) Cell 89, 373–380
39. Szerka, C., Zipfel, P. P., and Siebenlist, U. (1995) Oncogene 8, 2135–2143
40. Siebenlist, U., Bressler, P., and Kelly, K. (1988) Mol. Cell. Biol. 8, 867–874