A Novel Model Using Virtual State Variables and Bayesian Discriminant Analysis to Classify Surrounding Rock Stability

Jinglai Sun,1 Darui Ren,2 Yu Song,2 Mingyuan Yu,2 Zhaofei Chu,3 Baoguo Liu,2 Shaogang Li,4,5 and Xinyang Guo6

1Beijing Municipal Engineering Research Institute, Beijing 100037, China
2School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
3School of Civil Engineering, Wuhan University, Wuhan 430072, China
4Mine Safety Technology Branch, China Coal Research Institute, Beijing 100013, China
5State Key Lab of Coal Mining and Clean Utilization, China Coal Research Institute, Beijing 100013, China
6BGI Engineering Consultants LTD, Beijing 100085, China

Correspondence should be addressed to Zhaofei Chu; zhaofeichu@whu.edu.cn

1.Introduction

Rock mass classification is generally considered a usable and practical approach to evaluating the stability of a rock mass in underground engineering [1, 2]. Reasonable classification can reflect the mechanical characteristics of the rock mass and provide a reliable basis for the design of underground engineering excavations and supporting systems [3–5]. The classification approach has gradually evolved from the beginning with a single index to the current generation with multiple quantitative and/or qualitative indexes.

Rock quality design (RQD) was an efficient method proposed for rock mass quality assessment [6, 7]. The rock structure rating (RSR) system was proposed for tunnel support design [8]. RSR was further developed into rock mass rating (RMR), a portion-rating system [9, 10]. A rock tunneling quality index called the Q-system has been widely used in underground engineering and is closely related to RMR [11]. In recent times, with the development of numerical analysis and computer science, researchers have extensively studied rock mass classification and stability evaluation approaches: fuzzy analytic hierarchy process [12], artificial neural networks (ANNs) [13, 14], distance discriminant analysis [15, 16], set pair analysis [17], and so on.

The stability of surrounding rocks is determined by many factors including geological conditions, exploitation factors, rock properties, and hydrogeological conditions [18–24]. These factors have mutual effects and complicated nonlinear relationships. ANNs can represent nonlinear relationships, but a sufficient number of available training samples is needed [25, 26]. Bayesian discriminant analysis (BDA) is a statistical method to classify samples that can use prior probability to increase the accuracy, but the relationships are too simple [27, 28].
A novel method combining virtual state variables (VSVs) and Bayesian discriminant analysis (BDA), denoted as the VSV-BDA model, is proposed. The characteristics include the following: (1) the VSVs and prior probability is based to increase the accuracy of prediction; (2) quantile-quantile (QQ) plots and constructed statistics are used to test the normal distribution and equality of covariance instead of assuming a normal distribution and an equal covariance.

The remainder of the paper includes three parts. In Section 2, the VSV-BDA approach is proposed with virtual state variables determination, Bayesian discriminant theory, and evaluation of the VSV-BDA. In Section 3, the proposed approach is used in rock mass classification and testing the accuracy. In Section 4, existing problems are analyzed and further study is analyzed.

2. VSV-BDA Approach

The factors influencing rock mass stability have nonlinear relationships [11], and ANNs can recognize these relationships [29–31]. The output of training samples predicted by an ANN model, denoted as Y^-, is compared with the actual output by the residual variance ratio (RVR) method to determine the construction [32, 33]. Then, the first k – 1 layers (except for the output layer) and the regulating unit are used to construct a recognition network [34]. The output vector of the recognition network through nonlinear transformation of the input vector is called the VSVs by ANN, with the i-th variable denoted as v_i. The vector with l components is called the virtual state vector, denoted as V, which does not have physical meaning but contains particular information characteristics to classify the stability, as shown in Figure 1. In addition, these variables instead of the influencing factors are used to construct the BDA model to classify the stability.

The processes of VSV-BDA are summarized as follows: (1) collect data and group them into training samples and testing samples; (2) construct a multilayer ANN to determine the VSVs (influencing factors); (3) calculate the Mahalanobis distance of VSVs and use the QQ plot to normality test; the data should be transformed to satisfy the multinormal distribution by a Box-Cox transformation; (4) create discriminant functions based on the VSV of the training samples and cross-validation to estimate the accuracy; (5) use the constructed discriminant function to calculate the scores of the testing samples belonging to the collectivities; (6) classify the testing samples associated with the highest posterior probability and calculate the ratio of misclassification. The process of BDA is illustrated in Figure 2.

2.1. Virtual State Variable Determination. Interconnected processing elements, called neurons or cells, are used to construct the ANN, which offers a computational mechanism to acquire, compute, and represent a mapping from one information space layer to another, and to obtain a dataset to represent the relationships. An ANN identifies relationships by focusing on the parallel processing of many simple units, which can describe a complex function when combined. Essentially, the ANN is a gathering of simple processing units that exchange information that can be modified and filtered by the processing units’ connections [35].

A multilayer ANN, which consists of an input layer, an output layer, and one or more hidden layers, is used to explain how to determine the VSVs. Factors influencing rock stability are taken as the input vector, represented by $x = [x_1, x_2, \ldots, x_l]$. To simplify, a typical representation with one hidden layer whose function is denoted by $f(u)$ is illustrated in Figure 2. The output is the resulting rock mass classification, denoted as Y^- (Figure 3).

The input dataset of the hidden layer is $u_j = \sum_{i=1}^l U_{ij}x_i$ and the output dataset is $f_j(u_j)$ with a weight index w_j. When the hidden layer function is a wavelet function or a linear function, the output Y^- can be denoted as equation (1):

$$Y^- = \sum_{i=1}^l w_j f_j(u_j).$$

The common transfer function in this paper is the sigmoid function [36], so equation (1) is replaced by equation (2).

$$Y^- = wS[\sum f_j(u_j) + \theta],$$

where $w = 1$ and θ is a threshold value. These parameters can be calculated by the ANN training process [29, 37]. As aforementioned, the output of the hidden layer $f_j(u_j)$ is used as the VSV (v_j), and the virtual state vector is represented by $V = [v_1, v_2, v_3, \ldots, v_l]^T$.

The optimal dimension is determined by RVR, which is illustrated by equation (3). The initial state of V dimension is Λ, and the calculated RVR is denoted as $S_e(\Lambda)$. When the dimension is decreased or increased, called a state change and denoted as Λ, the RVR is represented by $S_e(\Lambda)$.

$$S_e = \sqrt{\frac{1}{N - 1} \sum_{k=1}^N [Y^-_{ANN}(k) - Y(k)]^2},$$

where $Y^-_{ANN}(k)$ is the prediction by the ANN model, $Y(k)$ is the actual stability level, and N is the number of training samples.

When S_e is supposed to follow a normal distribution, to test the availability, a testing variable F is illustrated by

$$F = S_e(\Lambda) S_e(\Lambda)$$

For the given significance level α, the processes of RVR are shown as follows:

(1) When $F > F_{\alpha}(N - 1, N - 1)$, the RVR has a significant increase, and the prediction performance is worse, so the new state is invalid

(2) When $F < F_{1-\alpha}(N - 1, N - 1)$, the RVR has a significant decrease, and the prediction performance is better, so the new state is valid.
In the third situation, the RVR is changing, but it cannot decide for the better or the worse, so the state remains unchanged.

2.2. Bayesian Discriminant Theory (BDA). Bayesian discriminant analysis is a probability analysis method with various types of distribution density functions that should be obtained at the beginning. The prior distribution is used to describe the awareness level of training samples before extracting the testing samples; then, the posterior distribution is obtained by modifying the prior distribution from the testing samples.

Suppose there are \(k \) collectivities with \(p \) member indexes (considering \(p \) indexes): \(G_1, G_2, \ldots, G_k \) (\(k \geq 2 \)), and the covariance matrix \(\Sigma_i > 0 \) (\(i = 1, 2, \ldots, k \)). The prior probability of \(G_i \) is denoted as \(p_i \) (\(i = 1, 2, \ldots, k \)) and allocated by the proportion of \(G_i \) to all collectivities with \(\sum_{i=1}^{k} p_i = 1 \), as shown in

\[
p_i = \frac{n_i}{n}, \quad i = 1, 2, \ldots, k,
\]

where \(n_i \) is the number of the training samples belonging to \(G_i \) and \(n \) is the number of training samples.

According to Bayesian theory, the posterior probability of sample (VSV from ANN) \(V = [v_1, v_2, v_3, \ldots, v_l]^T \) belonging to collectivity \(G_i \) is

\[
P(G_i|V) = \frac{p_i f_i(V)}{\sum_{i=1}^{k} p_i f_i(V)},
\]

where \(f_i(X) \) is the distribution function of \(G_i \).

Then, the optimal belonging can be obtained as

\[
V \in G_j: \left\{ P_j(V) = \max_i \left(P_i(V) (1 \leq i \leq k) \right) \right\}.
\]

2.2.1. Normal Distribution Testing. The square difference of the Mahalanobis distance, denoted as \(d^2_i(V) \), is used to represent the distance between sample \(V \) and collectivities \(G_i \),

\[
d^2_i(V) = (V - \mu_i)^T \sum_i^{-1} (V - \mu_i),
\]
where \(\mu_i \) is the expect vector of \(G_i \).

The square differences of the Mahalanobis distances are sorted from the smallest to the largest.

\[
d^2_{(1)} \leq d^2_{(2)} \leq \cdots \leq d^2_{(n)}. \quad (9)
\]

A QQ plot, which is represented by the points \((d^2_{(i)}, \chi^2_{(i)}) \), where \(\chi^2_{(i)} \) is the chi-square distribution, is used to test whether the collectivities obey the multinormal distribution. When the points are all near the line passing through the origin with slope equal to one, the collectivities are regarded as obeying the multinormal distribution; otherwise, the data should be transformed to satisfy the multinormal distribution by a Box-Cox transformation. [33].

2.2.2. Discriminant Criterion. Through the testing by the QQ plot and data transformation, all collectivities would obey the normal distribution; i.e., \(G_i \sim N_p (\mu_i, \Sigma_i), i = 1, 2, \ldots, k (k \geq 2) \).

(1) When \(\Sigma_1 = \Sigma_2 = \cdots = \Sigma_k = \Sigma \), the distribution function is

\[
f_i(V) = \left(2\pi \right)^{-p/2} |\Sigma|^{-0.5} \exp \left\{ -0.5 (V - \mu_i)^T \Sigma^{-1} (V - \mu_i) \right\}. \quad (10)
\]

The discriminant function \(W_i(V) \) of collectivity \(G_i \) is linear, and the best divisions \((R_j) \) are obtained by equations (10), (11), and (14).

\[
W_i(V) = a_i^T V + b_i, \quad (11)
\]

where \(a_i = \Sigma^{-1} \mu_i, b_i = -0.5 \mu_i^T \Sigma^{-1} \mu_i + \ln (p_i) \).

(2) When \(\Sigma_1 \neq \Sigma_2 \neq \cdots \neq \Sigma_k \neq \Sigma \), the distribution function is

\[
f_i(V) = \left(2\pi \right)^{-0.5 p} |\Sigma_i|^{-0.5} \exp \left\{ -0.5 (V - \mu_i)^T \Sigma_i^{-1} (V - \mu_i) \right\}. \quad (12)
\]

The discriminant function \(W_i(V) \) of collectivity \(G_i \) is quadratic, and the best divisions are obtained by equations (12)–(14).

\[
d_i^2(V) = (V - \mu_i)^T \Sigma_i^{-1} (V - \mu_i) + \ln |\Sigma_i| - 2 \ln (p_i), \quad (13)
\]

\[
R_j = \left\{ V : d_j^2(V) = \min d_i^2(V), \quad 1 \leq i \leq k \right\} = \left\{ V : P_j(G_i | V) = \max P_i(G_i | V), \quad 1 \leq i \leq k \right\}, \quad (14)
\]

\[j = 1, 2, \ldots, k.\]

2.2.3. Estimation of Parameters. In fact, \(\mu_i \) and \(\Sigma_i \) are unknown, and an unbiased estimation can be obtained from the training samples. Supposing that training samples \(V^{(i)} = (V_1^{(i)}, V_2^{(i)}, \ldots, V_{n_i}^{(i)})^T \) belong to \(G_i \), \(\mu_i \) is defined as \(\overline{V}^{(i)} \).

\[
\overline{V}^{(i)} = \frac{1}{n_i} \sum_{j=1}^{n_i} V_j^{(i)}. \quad (15)
\]

\(\Sigma_i \) is defined as \(S_i \).

\[
S_i = \frac{1}{(n_i - 1)} \sum_{j=1}^{n_i} (V_j^{(i)} - \overline{V}^{(i)})(V_j^{(i)} - \overline{V}^{(i)})^T, \quad i = 1, 2, \ldots, k. \quad (16)
\]

The statistic used to examine the equality of the covariance matrix is defined as

\[
\xi = (1 - D) M \sim \chi^2(f), \quad (17)
\]

\[
M = (n - k) \ln |S| - \sum_{i=1}^{k} (n_i - 1) \ln |S_i|, \quad (18)
\]

\[
S = \frac{\sum_{i=1}^{k} (n_i - 1) S_i}{(n - k)}, \quad (19)
\]

\[
f = \frac{p(p + 1)(k - 1)}{2}, \quad (20)
\]

\[
D = \begin{cases}
\frac{2p^2 + 3p - 1}{6(p + 1)(k - 1)} \left(\sum_{i=1}^{k} \frac{1}{n_i - 1} - \frac{1}{n - k} \right), & n_i \text{ are not completely equal}, \\
\frac{2p^2 + 3p - 1}{6(p + 1)(k - 1)} (k + 1), & n_i \text{ are completely equal}.
\end{cases} \quad (21)
\]
For the given \(\alpha \), the probability \(P = P(\xi > \chi_n^2(f)) \) is calculated. If \(p > \alpha \), \(S_i \) are completely equal; otherwise, they are not completely equal.

2.3. Evaluation of the VSV-BDA. The resubstitution method and cross-validation method can also be used to estimate the reliability of the constructed discriminant criterion [33, 38–40]. For high accuracy, cross-validation is used, the principle of which is to choose one sample as a testing sample and use the rest of the collectivities as training samples to construct the discriminant criteria. The constructed criteria are used to classify the testing sample. The processes are shown as follows:

(1) Choose one sample from \(G_1 \) as the testing sample and construct the discriminant criterion with the other \(n-1 \) samples.

(2) Classify the testing sample with the criterion constructed in process (1).

(3) Repeat processes (1) and (2), and define the misclassification number as \(N_1 \) after all the samples of \(G_1 \) are tested.

(4) Repeat the processes (1), (2), and (3) for collectivity \(G_i \) (\(1 \leq i \leq k \)) and define the misclassification number as \(N_i \) after all the samples of \(G_i \) are tested.

(5) The ratio of misclassification (\(\eta \)) can be calculated by

\[
\eta = \frac{N_1 + N_2 + \ldots + N_k}{n} \quad (22)
\]

3. VSV-BDA Model for Rock Mass Classification

3.1. Influencing Factors of Rock Stability and Sample Collection. Considering the typical factors, the convenience of factors can be obtained and compared in practical engineering. Five factors are selected as influencing factors, including the RQD, uniaxial axial compressive strength of the rock \((R_u) \), rock mass integrity index \((K_u) \), coefficient of structural surface strength \((K_s) \), and groundwater discharge \((\omega) \) [41]. The rock stability is divided into five levels presented by collectivities \(G_1 \sim G_5 \); \(G_1 \) is level I of rock stability; \(G_2 \) is level II; \(G_3 \) is level III; \(G_4 \) is level IV; and \(G_5 \) is level V. The discriminant criterion belonging to \(G_i \) is \(W_i (i = 1, 2, \ldots, 5) \).

The surrounding rock classifications in the second-stage project of the Guangzhou pumped storage power station are collected to construct the VSV-BDA model and validation, as shown in Table 1 [41].

3.2. VSV-BDA Construction. To test the generalization of the VSV-BDA model and ensure the reliability of the results, the situation with too many training samples and too few testing samples should be avoided. The collected samples in Table 1 are divided into three different situations to construct VSV-BDA models with ratios of training samples to testing samples equal to 20:17, 25:12, and 30:7.

Taking the first ratio as an example, no. 1-20 are assigned as the training samples, and no. 21-37 are assigned as the testing samples. The method in Section 2 is applied. An ANN with 4 layers is constructed to determine the VSVs. The significance level is 0.05 (\(\alpha = 0.05 \)). The input layer and two hidden layers of ANN compose the first 3 layers of the recognition network. The five influencing factors listed in Table 1 are taken as the input vector. The transfer function implemented in the two hidden layers is the sigmoid function. When the number of training samples is smaller than the dimensions of the VSVs, the covariance estimation may be ill-posed [42]. Due to the limitation of collected samples, the number of VSVs can be decreased by increasing the number of hidden layers [32]. The optimal dimension of VSVs is determined by RVR, which has a structure of \(5 \times 6 \times 5 \times 1 \). Then, the five VSVs obtained from the second hidden layer are used to construct the VSV-BDA model by the BDA theory.

An ANN [41] and BDA are also used to create the model with the training samples to obtain the classification functions or variables.

3.3. Validation and Comparison. The testing samples are predicted by the three models to gain the output and compare the accuracy. The outputs of these 3 situations are shown in Figures 4–6. The predictions of the training samples through cross-validation of the three models are the same as the actual output. From Figures 5 and 6, the outputs of the VSV-BDA model in situations 2 and 3 are completely identical to the
Table 1: The collected samples.

No.	RQD (%) x_1	R_w (MPa) x_2	K_r x_3	K_f x_4	ω (L/min10m) x_5	Actual output
1	43.8	26.3	0.28	0.35	50	IV
2	37.5	22.5	0.25	0.3	75	IV
3	31.3	18.8	0.23	0.25	100	IV
4	26	36	0.22	0.35	5	IV
5	50	40.2	0.5	0.5	10	III
6	52	25	0.2	0.5	5	III
7	71	90	0.35	0.3	18	III
8	75	95	0.7	0.5	0	II
9	77.5	90	0.57	0.45	10	II
10	50	70	0.5	0.25	5	III
11	50.9	34	0.32	0.35	21	III
12	31.5	20	0.23	0.25	46	IV
13	50.6	26	0.26	0.35	20	III
14	75.5	90	0.45	0.52	8	II
15	85.5	94	0.65	0.55	0	II
16	80	95	0.5	0.45	0	II
17	35	70.5	0.35	0.3	10	III
18	50	90	0.5	0.25	5	III
19	85	93	0.6	0.5	0	II
20	78.5	92	0.55	0.5	6	II
21	30.2	70	0.4	0.2	10	III
22	85	92	0.7	0.5	10	II
23	51	35	0.32	0.35	15	III
24	87	95	0.5	0.45	0	II
25	82	96	0.75	0.35	0	II
26	52.5	30.5	0.38	0.15	25	IV
27	78	80	0.75	0.5	0	II
28	85	92	0.7	0.5	10	II
29	50	45	0.12	0.3	5	III
30	31.5	20	0.23	0.25	50	IV
31	76.5	90	0.55	0.5	10	II
32	85	95	0.65	0.5	0	II
33	50.9	34	0.32	0.35	20	III
34	75	90	0.55	0.5	7	II
35	75	90	0.55	0.5	10	II
36	50	45	0.15	0.35	5	III
37	75	70	0.72	0.53	12	II

Figure 4: Training effects and the prediction results for situation 1.
actual output. Obviously, the VSV-BDA model has higher prediction accuracy and estimation accuracy than the other approaches when the samples are limited. All models have the same accuracy when the samples are sufficient. We conclude that the VSV-BDA model can be applied to surrounding rock mass classification with high prediction accuracy.

In situation 1, the inaccurate predictions of testing samples occur for (1) samples 21, 26, and 31 by ANN, (2) samples 26 and 31 by BDA, and (3) sample 26 by VSV-BDA. The average relative error ratios of testing samples are 5.88% for ANN, 3.92% for BDA, and 1.96% for VSV-BDA, as shown in Figure 4.

In situation 2, the inaccurate prediction of samples occurs for sample 26 by ANN and by BDA. The average relative error ratios of testing samples are 3.03% for ANN and 3.03% for BDA, as shown in Figure 5.

In situation 3, the predictions by all three methods are correct. The three models have the same accuracy, which indicates that they can yield the correct result, as shown in Figure 6.

Compared with the ANN, the VSV-BDA model can use prior probability to increase the accuracy. Compared with BDA, the proposed method can represent complex relationships between the factors. From the aforementioned points, the VSV-BDA model has higher accuracy than the ANN and BDA models, especially when the training samples are insufficient. The more training samples are available, the more accurate the prediction. For the three methods, as the number of training samples increases, the accuracy increases.

3.4. Application of VSV-BDA Discriminant Criteria. Due to the limitation of space, only situation 1 is explained in this paper. The samples in Table 1 are normalized. Through the constructed ANN, from the second hidden layer, five VSVs are obtained, denoted as \(V = [v_1, v_2, v_3, v_4, v_5] \). After calculating the Mahalanobis distance of the VSVs of training samples, the QQ plot shown in Figure 7 indicates that the points are all near the line passing through the origin with
slope equal to one. The plot illustrates that the samples all obey the multinormal distribution.

The prior probability is allocated by the proportion of the training samples: \(p_1 = 0/20, p_2 = 7/20, p_3 = 8/20, p_4 = 5/20, \) and \(p_5 = 0/20.\) Due to the limitation of the samples, three collectivities and discriminant criteria have been collected and constructed.

Equations (15)–(21) are calculated with the training samples: \(p_{10/20}.\) Due to the limitation of the samples, only three collectivities yield the discriminant criterion based on the VSV-BDA. More samples should be collected to construct the other levels’ criteria.

(3) Compared with the results obtained with the ANN model and BDA, the results from the VSV-BDA model indicate that it has high prediction accuracy and can be used in practice. The VSV-BDA model provides a perfect approach to classify the surrounding rock mass stability.

In the future, further study should be carried out to select the influencing factor and enhance the VSV-BDA model in practical engineering.

4. Conclusions

(1) The accuracy of the VSV-BDA model in rock stability classification depends on the prior probability, probability density, and complex relationships among the VSVs. To satisfy the actual conditions, the QQ plot and statistic are introduced to test the probability distribution and equality used in other studies, which could yield a more reasonable distribution and criterion to classify the stability.

(2) Due to the limitation of the samples, only three collectivities yield the discriminant criterion based on the VSV-BDA. More samples should be collected to construct the other levels’ criteria.

(3) The testing samples are no. 21-37. The discriminant criteria, equations (25)–(27), are used to classify the testing samples. The output of sample no. 26 is level III but should be level IV, so the average relative error ratio is 1.96%.

Data Availability

All data have been included in the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Jinglai Sun contributed to conceptualization, methodology, and writing-original draft. Zhaofei Chu contributed to validation, writing-review, and editing. Darui Ren and Yu Song contributed to investigation. Baoguo Liu contributed to funding acquisition. Shaogang and Xinyang Guo contributed to data curation.

Acknowledgments

The authors gratefully acknowledge the support provided by the National Natural Science Foundation of China (Grant no. 71771020), Financial Project of Beijing Municipal Engineering Research Institute (Grant no. J-21051-270), and Beijing Municipal Natural Science Foundation (Grant no. 8214049).
References

[1] L. Chen, J. Wang, Z. H. Zong et al., “A new rock mass classification system QHILW for high-level radioactive waste disposal,” Engineering Geology, vol. 190, pp. 33–51, 2015.

[2] X. Xi, Z. Yin, S. Yang, and C.-Q. Li, “Using artificial neural network to predict the fracture properties of the interfacial transition zone of concrete at the mesoscale,” Engineering Fracture Mechanics, vol. 242, no. 11, p. 107488, 2020.

[3] Z.-x. Liu and W.-g. Dang, “Rock quality classification and stability evaluation of undersea deposit based on M-IRMR,” Tunnelling and Underground Space Technology, vol. 40, pp. 95–101, 2014.

[4] R. Huang, J. Huang, N. Ju, and Y. Li, “Automated tunnel rock classification using rock engineering systems,” Engineering Geology, vol. 156, pp. 20–27, 2013.

[5] X. Xi, X. Wu, Q. Guo, and M. Cai, “Experimental investigation and numerical simulation on the crack initiation and propagation of rock with pre-existing cracks,” IEEE Access, vol. 8, pp. 129636–129644, 2020.

[6] D. U. Deere, Technical Description of Rock Cores for Engineering Purposes, University of Illinois, Champaign, IL, USA, 1962.

[7] J. Zheng, X. Wang, Q. Liu et al., “A contribution to relationship between volumetric joint count (jv) and rock quality designation (RQD) in three-dimensional (3-D) space,” Rock Mechanics and Rock Engineering, vol. 53, no. 3, pp. 1485–1494, 2020.

[8] G. Wickham, H. Tiedemann, and E. H. Skinner, “Support determinations based on geologic predictions,” in Proceedings of International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, pp. 43–64, Italy, July 1977.

[9] Z. Bieniawski, “Engineering classification of jointed rock masses,” Civil Engineer in South Africa, vol. 15, pp. 335–343, 1973.

[10] Q. Chen and T. Yin, “Modification of the rock mass rating system (RMRmbi) considering three-dimensional rock block size,” Bulletin of Engineering Geology and the Environment, vol. 79, no. 2, pp. 789–810, 2020.

[11] N. Barton, R. Lien, and J. Lunde, “Engineering classification of rock masses for the design of tunnel support,” Rock Mechanics Felsmechanik Mecanique des Roches, vol. 6, no. 4, pp. 189–236, 1974.

[12] S.-s. Shi, S.-c. Li, L.-p. Li, Z.-q. Zhou, and J. Wang, “Advance optimized classification and application of surrounding rock based on fuzzy analytic hierarchy process and Tunnel Seismic Prediction,” Automation in Construction, vol. 37, pp. 217–222, 2014.

[13] J.-x. Wang, Z.-h. Zhou, T. Zhao, Y.-x. Yu, G. Long, and C.-y. Li, “Application of Alpha stable distribution probabilistic neural network to classification of surrounding rock stability assessment,” Rock and Soil Mechanics, vol. 37, pp. 649–657, 2016.

[14] S. N. Almasi, R. Bagherpour, R. Mikaeil, and Y. Ozcelik, “Developing a new rock classification based on the abrasiveness, hardness, and toughness of rocks and PA for the prediction of hard dimension stone sawability in quarrying,” Geosystem Engineering, vol. 20, pp. 1–16, 2017.

[15] L.-s. Shao and B. Xu, “Classification of rocks surrounding a tunnel based on factor Analysis and Fisher discriminant analysis,” Journal of Highway and Transportation Research and Development (English Edition), vol. 9, no. 4, pp. 50–57, 2015.

[16] F.-q. Gong and X.-b. Li, “Application of distance discriminant analysis method to classification of engineering quality of rock masses Chinese,” Journal of Rock Mechanics and Engineering, vol. 26, p. 27, 2007.

[17] M. Wang, X. Xu, J. Li, J. Jin, and F. Shen, “A novel model of set pair analysis coupled with extenics for evaluation of surrounding rock stability,” Mathematical Problems in Engineering, vol. 2015, Article ID 892549, 9 pages, 2015.

[18] L. Pantelidis, “Rock slope stability assessment through rock mass classification systems,” International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 2, pp. 315–325, 2009.

[19] B. Rahimi, K. Shahriar, and M. Sharifzadeh, “Evaluation of rock mass engineering geological properties using statistical analysis and selecting proper tunnel design approach in Qazvin-Rasht railway tunnel,” Tunnelling and Underground Space Technology, vol. 41, pp. 206–222, 2014.

[20] F. J. Macias, P. D. Jakobsen, Y. SEO, and A. Bruland, “Influence of rock mass fracturing on the net penetration rates of hard rock TBMs,” Tunnelling and Underground Space Technology, vol. 44, pp. 108–120, 2014.

[21] X. M. Shi, B.-g. Liu, D. Tannant, and Y. Qi, “Influence of consolidation settlement on the stability of inclined TBM tunnels in a coal mine,” Tunnelling & Underground Space Technology, vol. 69, pp. 64–71, 2020.

[22] Z. Chu, Z. Wu, Q. Liu, and B. Liu, “Analytical solution for lined circular tunnels in deep viscoelastic Burgers rock considering the longitudinal discontinuous excavation and sequential installation of liners,” Journal of Engineering Mechanics (ASCE), vol. 147, 2021.

[23] Z. Chu, Z. Wu, B. Liu, and Q. Liu, “Coupled analytical solutions for deep-buried circular lined tunnels considering tunnel face advancement and soft rock rheology effects,” Tunnelling and Underground Space Technology, vol. 94, p. 103111, 2019.

[24] K. Wu, Z. Shao, and S. Qin, “An analytical design method for ductile support structures in squeezing tunnels,” Archives of Civil and Mechanical Engineering, vol. 20, no. 3, 2020.

[25] T. Kavzoglu, “An Investigation of the Design and Use of Feed-Forward Artificial Neural Networks in the Classification of Remotely Sensed Images,” University of Nottingham, Nottingham, UK, 2001.

[26] K. Messer and J. Kittler, “Choosing an optimal neural network size to aid a search through a large image database,” Proceedings of BMVC, pp. 1–10, 1998.

[27] F.-q. GONG and X.-b. LI, “The bayes discriminant analysis method for stability evaluation of rock surrounding in tunnel and its application,” Chinese Journal of Underground Space and Engineering, vol. 3, pp. 1138–1141, 2007.

[28] X. Liu, J. Li, X. Chen, L. Zhou, and K. Guo, “Bayesian discriminant analysis of lithofacies integrate the Fisher transformation and the kernel function estimation,” Interpretation, vol. 5, no. 2, pp. SE1–SE10, 2017.

[29] B. D. Ripley, “Neural networks and related methods for classification,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 56, no. 3, pp. 409–437, 1994.

[30] A. Almoradi, A. Moradzadeh, R. Naderi, M. Z. Salehi, and A. Etemadi, “Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks,” Tunnelling and Underground Space Technology, vol. 23, no. 6, pp. 711–717, 2008.

[31] W. Yan, B. Liu, and Q. Yi, A Risk Evaluation Method with an Improved Scale for Tunnel Engineering, Springer, Berlin, Germany, 2018.
[32] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the bias/variance dilemma,” Neural Computation, vol. 4, no. 1, pp. 1–58, 1992.

[33] C.-l. Mei and J.-c. Fan, Data Analysis, Higher Education Press, Beijing, China, 2006.

[34] X.-L. WANG, J. LIU, and J.-J. LU. “Gas emission quantity forecasting based on virtual state variables and Kalman filter,” Journal of China Coal Society, vol. 36, pp. 80–85, 2011.

[35] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural Networks for Perception, pp. 65–93, Elsevier, Amsterdam, Netherlands, 1992.

[36] H. Sonmez, C. Gokceoglu, H. A. Nefeslioglu, and A. Kayabasi, “Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation,” International Journal of Rock Mechanics and Mining Sciences, vol. 43, no. 2, pp. 224–235, 2006.

[37] A. Majdi and M. Beiki, “Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses,” International Journal of Rock Mechanics and Mining Sciences, vol. 47, no. 2, pp. 246–253, 2010.

[38] Y.-x. HU and X.-b. LI. “Bayes discriminant analysis method to identify risky of complicated goaf in mines and its application,” Transactions of Nonferrous Metals Society of China, vol. 22, no. 2, pp. 425–431, 2012.

[39] F.-q. Gong, X.-b. Li, and W. Zhang, “Over-excavation forecast of underground opening by using Bayes discriminant analysis method,” Journal of Central South University of Technology, vol. 15, no. 4, pp. 498–502, 2008.

[40] Y. Li and R. Anderson-Sprecher, “Facies identification from well logs: a comparison of discriminant analysis and naive Bayes classifier,” Journal of Petroleum Science and Engineering, vol. 53, no. 3–4, pp. 149–157, 2006.

[41] G.-k. CAI, Study of the BP Neural Network on the Stability Classification of Surrounding Rocks, Hohai University, Nanjing, China, 2001.

[42] S. Srivastava, M. R. Gupta, and B. A. Frigyik, “Bayesian quadratic discriminant analysis,” Journal of Machine Learning Research, vol. 8, pp. 1277–1305, 2007.