Dear Dr. Ciavatta,

We are pleased to submit a revised version of “Remineralization rate of terrestrial DOC as inferred from CO2 supersaturated waters”. We have taken into account the comments from reviewer 1 as stated out in the point by point answers on the next page. Please also find attached a manuscript with marked up differences between the new manuscript and the previous one.

We want to express our gratitude to you and the two reviewers for the work you have done.

Sincerely,
Filippa Fransner and co-authors
Answers to reviewer 1

I am generally satisfied by the way the authors addressed my comments. I only have a few additional points which the authors could consider before publication:

We want to thank reviewer 1 for rereading our manuscript and for these additional comments. Please find below our answers and a description of the modifications we have done in the text.

1) While eq 1 is now better described, the meaning (and the units) of the factor 10-3 are still not described in the text

We added a description on page 5, line 18 in the new manuscript.

2) Page 5, Lines 8-10: “in All experiments the terrestrial derived organic nutrients are subject to a degradation..”. Is this really the case for all the experiments (I guess not) or only for the TP, 1Y and 10Y? I think it would be better to specify to avoid confusion

This is the case for all experiments. We have clarified this on lines page 5, 8-10 in the revised manuscript.

3) I would suggest to introduce a bit better the function f(sal) reported in table 1

We have specified the number of the equation in Fransner et al. 2018, where it can be found and introduced it better in the table caption. (page 5, line 12 and Table 1 in the new manuscript).

4) It would be nice to see how the simulation BIO performs with respect to 1Y and 1YS when compared with observations (nutrients and chlorophyll)!. This comparison could provide additional support to the idea that the inclusion of riverine DOM is crucial to properly simulate the investigated ecosystem

We see your point, and it could have been interesting if the experiments would have been designed in another way. However, our experiments are designed to focus on the carbon in the DOM, and only difference between BIO and 1Y experiment is the inclusion of terrestrial organic carbon. The input and degradation of organic nutrients is constant over the experiments (to avoid changes in the primary production). Therefore, the only difference between BIO and 1Y will be in the carbonate system, and there is no effect on the nutrients and chlorophyll.
Remineralization rate of terrestrial DOC as inferred from CO$_2$ supersaturated coastal waters

Filippa Fransner1,*, Agneta Fransson2, Christoph Humborg3,4, Erik Gustafsson3, Letizia Tedesco4, Robinson Hordoir6, and Jonas Nycander1

1Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
2Norwegian Polar Institute, Fram Centre, Tromsø, Norway.
3Baltic Nest Institute, Baltic Sea Centre, Stockholm University, Stockholm, Sweden.
4Faculty of Biological and Environmental Sciences, Tvärimne Zoological Station, University of Helsinki, Hanko, Finland.
5Finnish Environment Institute, Marine Research Centre, Helsinki, Finland.
6Institute of Marine Research and Bjerknes Centre for Climate Research, Bergen, Norway

*now at Geophysical Institute, Bergen University and Bjerknes Centre for Climate Research, Bergen, Norway

Correspondence: Filippa Fransner (filippa.fransner@hotmail.se)

Abstract. Coastal seas receive large amounts of terrestrially derived organic carbon (OC). The fate of this carbon, and its impact on the marine environment, is however poorly understood. Here we combine underway CO$_2$ partial pressure (pCO$_2$) measurements with coupled 3D hydrodynamical-biogeochemical modelling to investigate whether remineralization of terrestrially dissolved organic carbon (tDOC) can explain CO$_2$ supersaturated surface waters in the Gulf of Bothnia, a subarctic estuary. We find that a substantial remineralization of tDOC, and that a strong tDOC induced light attenuation dampening the primary production, is required to reproduce the observed CO$_2$ supersaturated waters in the nearshore areas. A removal rate of tDOC of the order of one year, estimated in a previous modelling study in the same area, gives a good agreement between modelled and observed pCO$_2$. The remineralization rate is on the same order as bacterial degradation rates calculated from published incubation experiments, suggesting that bacteria has the potential to cause this degradation. Furthermore, the observed high pCO$_2$ values during the ice-covered season argues against photochemical degradation as the main removal mechanism. All of the remineralized tDOC is outgassed to the atmosphere in the model, turning the northernmost part of the Gulf of Bothnia to a source of CO$_2$ to the atmosphere.

Copyright statement. TEXT

1 Introduction

Rivers bring large amounts of organic carbon to the coastal seas, linking the terrestrial and oceanic carbon cycles. The riverine organic carbon influences the carbon cycling in coastal seas by providing an external carbon source for bacteria, as well as hampering the primary production by making the coastal waters more turbid (Hessen et al., 2010; Wikner and Andersson, 2012; Bauer et al., 2013). The fate of tDOC in coastal and oceanic waters, and to what extent it undergoes remineralization
by bacteria and photochemical processes, is however poorly constrained (Blair and Aller, 2012). Whereas conservative mixing of tDOC with salinity (Mantoura and Woodward, 1983; Dittmar and Kattner, 2003) points towards an inert behaviour, other studies suggest that there is a large removal, mainly by bacterial and photochemical degradation (Benner and Kaiser, 2011; Fichot and Benner, 2014). The high pCO\textsubscript{2} measured in many inner estuaries (Frankignoulle et al., 1998; Borges et al., 2005; Anderson et al., 2009) further indicates that a substantial remineralization of tDOC could take place, but it is not clear how much of this signal is caused by lateral transport of CO\textsubscript{2} oversaturated waters from rivers and wetlands (Raymond et al., 2000; Cai, 2011).

The Gulf of Bothnia, in the Northern Baltic Sea (Figure 1), is a subarctic estuary that receives large amounts of allochthonous organic carbon (Sandberg et al., 2004; Alling et al., 2008; Deutsch et al., 2012; Hoikkala et al., 2015) originating from surrounding coniferous forests and peatlands. Recent isotope and modelling studies have shown that a majority of this terrestrially derived organic carbon is removed in the transit from estuarine to more oceanic waters (Alling et al., 2008; Deutsch et al., 2012; Gustafsson et al., 2014; Fransner et al., 2016; Seidel et al., 2017), but no direct evidence of the responsible processes exists, and the time scales of the removal are unclear (Fransner et al., 2016). Upscaling of small scale experiments in the Baltic Sea suggests that photochemical remineralization could account for a major removal (Aarnos et al., 2012), while only a small fraction is available for bacterial degradation (Wikner et al., 1999; Asmala et al., 2013, 2014a; Herlemann et al., 2014; Figueroa et al., 2016; Kuliński et al., 2016) and flocculation processes (Asmala et al., 2014b). Other studies, showing that phytoplankton production of organic carbon is not large enough to support the secondary production, suggest on the other hand that the bacterial production to a large degree is supported by tDOC (Zweifel et al., 1995; Kuparinen et al., 1996; Sandberg et al., 2004). Based on observed pCO\textsubscript{2} values, mainly from offshore waters, Löffler et al. (2012) calculated that the Bothnian Bay is a slightly heterotrophic system. Whether this net heterotrophy is due to discharge of river waters supersaturated in CO\textsubscript{2}, or remineralization of tDOC into dissolved inorganic carbon (DIC), remains to be investigated. To better understand the dynamics of tDOC, observations are needed in the nearshore areas, where the largest tDOC concentrations and likely also the largest tDOC removal takes place (Deutsch et al., 2012).

Here we explore the remineralization dynamics of terrestrial dissolved organic carbon in the Gulf of Bothnia by combining high resolution underway pCO\textsubscript{2} measurements with numerical simulations from a 3D coupled hydrodynamic-biogeochemical model. The underway pCO\textsubscript{2} measurements cover CO\textsubscript{2} supersaturated nearshore waters next to some of the larger rivers draining into the Gulf of Bothnia as well as offshore waters. A 3D hydrodynamic model makes it possible to take water movements into account, which cannot be neglected on longer time scales. A suite of modelling experiments is performed to describe the underlying processes behind the observed pCO\textsubscript{2}. The objectives of this study are to investigate if, and in that case on what time scale, remineralization of tDOC into DIC is needed to explain the observed high pCO\textsubscript{2} values in the coastal waters, or if input of CO\textsubscript{2} supersaturated river water is enough to explain this pattern. Because there is no clear consensus on which is the dominating remineralization process in the Baltic Sea, it is parameterized as a simple linear decay (after Fransner et al. (2016)) that is assumed to include the effects of both bacterial and photochemical remineralization. We further investigate the potentially damping effect the tDOC can have on the primary production and the pCO\textsubscript{2} drawdown by increasing the light.
attenuation in nearshore waters. We conclude by looking at the impact of the tDOC on the air-sea CO\textsubscript{2} exchange in the Gulf of Bothnia and whether it turns it to a net heterotrophic system.

2 Methods

2.1 Model setup

The model setup used for this study (BFM-NEMO-GoB) consists of a 3D coupled hydrodynamical-biogeochemical model applied to the Gulf of Bothnia (GoB, Figure 1), (Fransner et al., 2018). It has approximately two nautical miles (3704 m) horizontal resolution and 36 vertical levels with increased resolution towards the ocean surface. An open boundary towards the Baltic Proper is located in the Southern part of the domain at 59.9 °N (Figure 1). The hydrodynamical part is based on the NEMO-Nordic model (Hordoir et al., 2013, 2015, 2018), which is a NEMO 3.6 (http://www.nemo-ocean.eu, Madec and the NEMO team (2016)) configuration for the Baltic and the North Seas with the LIM3 sea ice model (Vancoppenolle et al., 2009). The performance of the sea ice dynamics in NEMO-Nordic is validated in Pemberton et al. (2017). A comparison between modelled and observed sea ice concentration climatologies can also be found in Figure S1 in the supplementary material. BFM-NEMO-GoB is driven by hourly downscaled ERA40 data (Samuelsson et al., 2011), and river runoff from the EHYPE model (Donnelly et al., 2016). The biogeochemical part consists of the Biogeochemical Flux Model (BFM; http://bfm-community.eu) (Vichi et al., 2007a, 2015a). BFM is a stoichiometric model that simulates the biogeochemical cycles of carbon (C), nitrogen (N), phosphorus (P) and silica (Si). It has four phytoplankton groups, four zooplankton groups (partitioned into micro and meso-zooplankton), one group of bacteria, particulate organic matter, and two groups of dissolved organic matter of different lability. A separate functional group representing terrestrial dissolved organic matter has been added to the BFM-NEMO-GoB setup (Fransner et al., 2018). While the organic matter that is a built-in feature in BFM is degraded by bacteria, the terrestrial dissolved organic matter is subject to a linear decay, which will be further described in section 2.3. The forcing data for the biogeochemical part consists of river inputs of inorganic and organic C,N,P, Si, and total alkalinity, as well as atmospheric depositions of DOC, phosphate and inorganic and organic nitrogen. The riverine loads have been calculated by multiplying measured concentrations of the chemical species with the volume flow in EHYPE Fransner et al. (2016, 2018). The riverine input of organic carbon is supposed to consist of 10% particulate organic carbon (POC) and 90% DOC (Fransner et al., 2016, 2018). As in Fransner et al. (2016), the DOC of atmospheric origin is considered as tDOC. A complete description and evaluation of the BFM-NEMO-GoB setup, including the mean seasonal pCO\textsubscript{2} cycle, can be found in Fransner et al. (2018).

2.2 pCO\textsubscript{2} data

The pCO\textsubscript{2} was measured during 25 cruises, spanning January to October 2012, with the TransPaper cargo (Fransson et al., in preparation). The TransPaper cargo sails from Gothenburg on the Swedish west coast, through the Baltic proper and northwards through the Bothnian Sea and the Bothnian Bay to the ports of Oulu and Kemi in Finland. The pCO\textsubscript{2} data were gained by infrared analysis of equilibrator headspace samples. The specific instrument was supplied by General Oceanics® and designed
following the principles presented by Pierrot et al. (2009) using two-stage showerhead equilibration and a LICOR®7000 non-dispersive infrared detector. The system was calibrated using four high-qualitative reference gases with approximate values of 250, 350, 450 and 550 ppm, traceable to reference standards (National Oceanic and Atmospheric Administration – Earth System Research and Laboratory), see Pierrot et al. (2009) for a more detailed description of the system. The seawater was supplied from an intake located mid-ships, at approximately 7 m water depth. Temperature was recorded in the surface-water intake using a Seabird CTD and in the equilibrator using 1521 temperature probes from Hart Scientific, with an accuracy of 0.01 °C. The mole fraction of CO₂ (xCO₂) in the atmosphere was measured in air samples, pumped from an air intake located at approximately 50 m above sea level, where contaminated samples were removed. Air pressure was recorded by a high precision Druck barometer mounted at the air intake.

The measured pCO₂ and the cargo route for every month are displayed in Figure 2.

2.3 Simulations

The experiments have been performed in three sets (Table 1). In the first set, containing two experiments, all terrestrial organic carbon (both particulate and dissolved) is excluded. The first experiment (CHEM) investigates whether river water oversaturated in CO₂ can explain the high pCO₂ in the low-salinity region. It is done by excluding all biological processes in the water column and in the sediments. The model is thus only computing the carbonate chemistry. The only processes affecting the state of the carbonate chemistry in this experiment are river discharge of total alkalinity and DIC, air-sea exchange, and changes in temperature and salinity (due to riverine and atmospheric forcing). In the second experiment, BIO, the biological processes are activated, to see whether remineralization of autochthonous organic carbon, both in the sediments and in the water column, can explain the waters oversaturated in CO₂.

In the second set, the remineralization experiments (Table 1), the remineralization kinetics of riverine POC and DOC are examined by running three experiments, TP, 1Y and 10Y. The aim of these experiments are to investigate whether remineralization of tPOC is enough to explain the high pCO₂ in the low-salinity region, or if a remineralization of tDOC (and in that case on what times scale) is needed. The TP experiment is the same as the BIO experiment, with the addition of the supply of terrestrially derived POC. For simplicity we haven’t added a separate group for terrestrial POC and it is therefore subject to the same dynamics as the autochthonous POC, meaning that it is degraded by bacteria with a time scale of 10 days. As the terrestrial POC only consists of 10% of the total load of riverine organic carbon, this assumption does not have significant impact on our results.

The 10Y and 1Y experiments are the same as the TP experiment, but with the addition of tDOC subject to a linear remineralization rate. These experiments are based on Fransner et al. (2016) who showed, by using passive tracer representing tDOC in a 3D physical model of the Baltic Sea, that observed concentrations of tDOC in the Baltic Sea (Deutsch et al., 2012) can be obtained with two different parameterizations of tDOC removal. In the first parameterization, a decay rate on of the time scale of ten years was applied to 100% of the tDOC entering the Baltic Sea. In the second one, 20% of the tDOC was assumed to be refractory (resistant to removal), and 80% was assumed to be labile subject to a decay rate on the time scale of 1 year. Here we apply the same experiments in a biogeochemical model. Because tDOC can be remineralized by both bacteria and
solar radiation, and there is no clear consensus on which of these are the dominating process in the Baltic Sea, we use the same linear decay as in Fransner et al. (2016) that is assumed to include the effect of both of these processes, instead of letting it be degraded by the bacteria in the model. In the 1Y experiment (similar to the REF experiment in Fransner et al. (2018)) a decay constant of 1 y\(^{-1}\) is applied to 80% of the tDOC (the labile pool) entering the Gulf of Bothnia, and the remaining 20% is assumed to be refractory. The refractory part of the tDOC is not modelled explicitly, and is removed from the river load. In the 10Y experiment a decay constant on the time scale of 10 years is applied to the whole pool of tDOC. The remineralized tDOC goes directly to the DIC pool. Terrestrially derived organic nutrients have been shown to be important nutrient sources for phytoplankton in the Baltic Sea (Stepanauskas et al., 2002). In all experiments the terrestrially derived organic nutrients are subjected to The input and degradation (with a degradation rate of 1 y\(^{-1}\) (Fransner et al., 2018), on the time scale of one year) of terrestrial organic nutrients (Fransner et al., 2018) are constant over all experiments and all three sets to make sure that any differences in pCO\(_2\) is not caused by changes in primary production.

The third set contains one experiment (1YS) that is similar to the 1Y experiment, but where a tDOC dependent light parameterization is used instead of a salinity dependent one as described in Fransner et al. (2018) (equation A4 in Fransner et al. (2018)). The aim of 1YS is to investigate the potential indirect effect tDOC could have on the pCO\(_2\) by dampening phytoplankton growth and carbon fixation. Unfortunately, there are little data available of simultaneously measured DOC concentration and photosynthetic available radiation. We have therefore created a simple parameterization where we let the tDOC-induced light extinction coefficient (\(k_{d,\text{tDOC}}\)) vary as a linear function of the labile tDOC according to:

\[
k_{d,\text{tDOC}} = 0.15 + 10^{-3} tDOC_l \tag{1}\]

where tDOC\(_l\) is the concentration of the labile tDOC in \(\text{mg C m}^{-3}\). The constant \(10^{-3}\) has the units \([\text{m}^{-1} (\text{mg C})^{-1} \text{m}^3]\). and \(k_{d,\text{tDOC}}\) has the units \([\text{m}^{-1}]\). This means that \(k_{d,\text{tDOC}}\) is 0.15 at zero labile tDOC concentration, and amounts to 7.5 close to river mouths. The reason for \(k_{d,\text{tDOC}}\) to be 0.15 at zero concentration of labile tDOC is to take into account the contribution of the refractory tDOC, which is not modelled explicitly in our experiments. \(k_{d,\text{tDOC}}\) is together with the modelled chlorophyll-a and POC concentration modulating the total light extinction coefficient \(k_d\), which ranges from 0.23 to 7.6 in surface waters (Figure 3). Ask et al. (2009) measured light extinction coefficients up to 4 in Swedish lakes, and Arst et al. (2008) measured as high as 10 at about the same maximum DOC concentrations as in Finnish rivers that drain into the Gulf of Bothnia, suggesting that our modelled \(k_d\) lies within a reasonable range. The tDOC dependent light parameterization results in a steeper gradient in the light extinction coefficient between coastal and offshore waters than in the 1Y experiment (Figure 3). While \(k_d\) in the middle of the basins is rather similar in the two simulations, the \(k_d\) is much larger in the coastal waters in the 1YS experiment.

All simulations are run for 20 years, from 1990 to 2010, and the output data are saved at a monthly frequency. The simulations are started from restarts after a 10 year spinup (REF experiment in Fransner et al. (2018)). Climatological means (20 years) of the simulations are compared to the observed pCO\(_2\). The comparison between modelled and observed pCO\(_2\) will be done in salinity space as the influence of river discharge on the pCO\(_2\) becomes more apparent with these coordinates. Maps of modelled salinities are shown in Figure S2 in the supplementary material.
3 Results

3.1 Description of observed pCO$_2$

There is a strong seasonal as well as spatial variability in the observed pCO$_2$ (Figure 2). In January to March rather high pCO$_2$ values of 400-500 μatm are observed in the offshore areas. In the North-Eastern parts of the Bothnian Bay, supersaturated waters of up to 1500 μatm are observed. In April the spring bloom begins in the Bothnian Sea and patches of undersaturated waters can be observed. The waters in the Bothnian Bay stay oversaturated. In May, the waters are undersaturated in pCO$_2$ in the Bothnian Sea, and oversaturated in the Bothnian Bay. The waters in the North-Eastern parts of the Bothnian Bay stay highly oversaturated (>1000 μatm) in the observations also in April and May. During June and July the waters in almost the entire domain are undersaturated. The waters in the North-Eastern parts are however slightly oversaturated. In August the pCO$_2$ starts rising due to a combination of lower productivity and mixing/entrainment of CO$_2$ rich deep water, and in October it returns to 400-500 μatm. In the North-Eastern Bothnian Bay no CO$_2$ supersaturated (pCO$_2$>1000) waters are found during September and October. During November and December no observational data exists.

The influence of river water on the pCO$_2$ becomes clearer in salinity coordinates (i.e. if plotting the pCO$_2$ against salinity instead of in lat-lon coordinates, Figure 4). A distinct decrease of pCO$_2$ with increasing salinity is observed especially from January to May. High pCO$_2$ values well above 1000 μatm are observed at salinities below 3. The pCO$_2$ values in this low-salinity region (0-3) are scattered, but there seems to be a general pattern with two branches, one with higher pCO$_2$ and one with lower. They might correspond to whether the ship was breaking through compact sea ice or going in an already open channel, respectively. Also in June and July there is a clear decrease of pCO$_2$ with salinity, although the pCO$_2$ in the low-salinity region is not as high as during the first five months of the year. In August the pCO$_2$ values in the low-salinity region are rather scattered. In September and October no pCO$_2$ measurements exist in the waters with the lowest salinity.

3.2 High pCO$_2$ river water and marine OC

When comparing modelled pCO$_2$ in the CHEM experiment with the observations it becomes clear that discharge of river water oversaturated in CO$_2$ cannot explain the observed high pCO$_2$ values in the low-salinity region (Figure 4). The influence of river water on pCO$_2$ is overall negligible for the pCO$_2$ dynamics in the Gulf of Bothnia, and the modelled pCO$_2$ in the CHEM experiment is close to atmospheric equilibrium, with the exception of temperature effects that causes a seasonal variation in the pCO$_2$ of up to 100 μatm.

When activating the biology and the autochtonous production of organic carbon (the BIO experiment), as well as the water-sediment interaction, the model simulates a slight oversaturation of CO$_2$ in the low-salinity region during January-April (Figure 4). It is, however, not high enough to explain the observed pCO$_2$ values. During summer the model draws down the pCO$_2$ too much in the low-salinity area, which could either be a result of too little remineralization, or a too high primary production.
3.3 Remineralization of terrestrial OC

When adding river discharge of highly degradable terrestrial POC (tPOC) to the BIO setup (TP experiment), the model simulates the lower branch of the observed pCO$_2$ in the low-salinity region from January to March (Figure 5). It is however not enough to explain the observed high pCO$_2$ values, indicating that there is not enough remineralization in this area.

Subjecting tDOC to a decay, as in the 1Y and 10Y experiments, results in higher remineralization per volume unit where the highest concentrations of tDOC occur. Consequently, in the North-Eastern Bothnian Bay, where the highest tDOC concentrations are found (not shown here, but in Fransner et al. (2016)), the remineralization rates are also the highest (Figure 6). It is in the areas with the highest remineralization that the largest impacts on the pCO$_2$ are seen (Figure 2 and 6). Adding remineralization of tDOC results in an increase in pCO$_2$ by up to 350 in the coastal waters in the 1Y experiment, while the increase is only 80 in the 10Y experiment, on annual average (Figure 6).

As seen in Figure 5, the 1Y experiment reproduces the observed CO$_2$ supersaturated (>1000 µatm) waters in spring, although it does not capture the highest observed values. The 10Y experiment results in higher pCO$_2$ than the TP experiment in the low-salinity region, but the differences are small, and it barely simulates a pCO$_2$ above 1000 ppm, except at the lowest salinities. Interestingly, the high pCO$_2$ values above 1000 µatm only exist during periods when there is sea ice, both in the 1Y experiment and in the observations. When removing the damping effect of sea ice on the air-sea CO$_2$ exchange, the 1Y experiment no longer simulates the higher pCO$_2$ values, and the simulated pCO$_2$ values in the low-salinity region approach the ones in the TP and 10Y experiments (Figure S3 in Supplementary Material). This is an additional indication that the two observed branches in the pCO$_2$ during the ice-covered months could be a result of whether the ship has travelled through open or ice-covered water.

During the productive season, none of the remineralization experiments, not even the one with a higher degradation of tDOC, is capable of reproducing the higher pCO$_2$ values in the low-salinity region (Figure 5 e-h). This is probably due to a too high productivity, which will be discussed in Section 3.4.

3.4 Terrestrial DOC and light extinction

Adding a linear dependency of the light extinction coefficient on the tDOC concentration, as in experiment 1YS, gives a steeper gradient in the light availability between coastal and offshore waters (Figure 3). The reduced light availability decreases the primary production and nutrient consumption in coastal areas (Figure 7), which results in a larger transport of nutrients offshore, partly explaining the increased primary production in the middle of the basins. The parameterization of the light extinction coefficient in the 1YS also results in slightly clearer waters in the middle of the basins, which also increases the primary production. The tDOC dependent light extinction has the largest effect in the Bothnian Bay, where the primary production is reduced by 25% (Table 3). In the Northern Quark and the Bothnian Sea, as well for the whole domain, there is barely any change in the total primary production.

The lower primary production in the coastal areas in the 1YS experiment leads to elevated pCO$_2$ in these areas (Figure 7). In the low-salinity region, the pCO$_2$ stays oversaturated also during the summer period (Figure 8), and agrees better with observed pCO$_2$ than the 1Y experiment does. During the winter months the pCO$_2$ in the low-salinity region is slightly decreased. The
decrease is caused by the lower primary productivity and consequently the reduced export of organic carbon to the sediments, which leads to a lower DIC (Dissolved Inorganic Carbon) efflux from the sediments. A comparison of the simulated pCO$_2$ in 1YS with observations in geographical space is shown in Figure 9. It shows an overall good agreement with the observations. The largest discrepancies are found in the Bothnian Sea in March and September and are related to the onset of the spring bloom and the autumn mixing, respectively, which causes relatively large changes in pCO$_2$ over a short period of time. Both of these discrepancies can be related to that the model results show a monthly mean, while the measurements have been taken in the first half of the month for March, and second half of the month of September, respectively. The measurements are therefore biased towards the period of high pCO$_2$ in both March and September. The tDOC dependent k_d parameterization also results in a better agreement between modelled an observed seasonal cycles of nutrients in the North-Eastern Bothnian Bay (Figure S4 and S5 in supplementary material). In the middle of the basins (the stations in Figure 1) the difference between the 1Y and 1YS experiments are small (Figures S6-S19 in the supplementary material).

4 Discussion

4.1 Remineralization of terrestrial DOC

Our results clearly show that input of river water over-saturated in CO$_2$ is not enough to explain the high pCO$_2$ values observed in the Northern Gulf of Bothnia, and suggest that it is a result of a substantial remineralization of tDOC into DIC. Here we tried two different rates of remineralization, one on the order of 1 year applied to 80% of the tDOC, and one on the order of 10 years applied to 100% of the tDOC. These removal rates were derived in a 3D model (Fransner et al., 2016) to simulate observed concentrations of tDOC in the Baltic Sea (Deutsch et al., 2012). We showed here that only the simulation with the faster rate was able to reproduce the CO$_2$ supersaturated waters, although it didn’t capture the highest observed values. The reason for this could be that there are more labile pools (with faster degradation rates) of the tDOC that we do not resolve in our relatively simple model. It is well known that organic matter consists of a continuum of pools with different lability that are subject to different remineralization rates (Hansell, 2013; Carlson et al., 2015). Pools with faster remineralization rates than the one we use would be remineralized closer to the river mouth, and therefore cause higher pCO$_2$ at lower salinities.

Considering that the removal rate of tDOC in the 1Y experiment not only results in a good agreement between observed and modelled concentrations of tDOC, as shown in Fransner et al. (2016), but also results in a good agreement with observed pCO$_2$ values, it suggests that remineralization of tDOC into DIC is the main mechanism behind tDOC removal in the Gulf of Bothnia. In other words, flocculation into particulate organic carbon seems only to play a minor role in removal of tDOC from the water column, which also was suggested by Asmala et al. (2014b). The high pCO$_2$ values observed during the ice season, when there is little light reaching the surface water, would further argue against photochemical degradation as the main removal mechanism, in contrast to what was suggested by Aarnos et al. (2012). Incubation experiments do however suggest that only 10-20% of the terrestrial DOC is available to bacterial degradation (Wikner et al., 1999; Asmala et al., 2013, 2014a; Herlemann et al., 2014; Hulatt et al., 2014; Figueroa et al., 2016). The time scale of these incubation experiments are on the
other hand relatively short (on the order of weeks to a few months), and the availability could be larger if exposing the DOC to
bacteria during a longer period of time, as discussed in Fransner et al. (2016).

Knowing the incubation length in time, and the relative change in DOC concentration, a average degradation rate of tDOC
during the time of incubation can be calculated based on the the classical expression for exponential decay:

\[C = C_0 e^{-\lambda t} \]

(2)

where \(\lambda \) is the decay constant (degradation rate), \(t \) is the incubation length in years, \(C \) is the concentration of DOC at the
depth of the incubation and \(C_0 \) is the concentration of DOC at the start of the incubation. Rearranging Equation 2, an expression
for \(\lambda \) is obtained:

\[\lambda = \frac{1}{t} \log \left(\frac{C}{C_0} \right) \]

(3)

Interestingly, when calculating the degradation rates for various published incubation experiments from the Gulf of Bothnia,
many of them are on the time scale of the order of one year (Table 2), the same time scale that we use for the degradation
in our 1Y experiment\(^1\) This indicates that bacteria could be capable of remineralizing similar amounts of tDOC as in our
experiments and in Fransner et al. (2016) (80% of the load to the Baltic Sea), if only considering longer timescales than those
of the incubation experiments. This is in line with what was suggested by Kuparinen et al. (1996) and Sandberg et al. (2004)
who, based on extrapolations of the carbon demand of secondary producers, suggested that a large part of the tDOC entering
the Gulf of Bothnia is degraded by bacteria. Table 2 gives furthermore an additional indication that the 1Y experiment is more
realistic than the 10Y experiment.

Equation 3 is a very simple model of degradation; organic matter tends to consist of several pools subject to different
degradation rates (Hansell, 2013; Carlson et al., 2015). Three of the incubation experiments in our comparison (Table 2) have
several sampling points in time that indicate that the degradation rate decreases with time, and that the tDOC consists of more
than two pools of different lability in contrast to our experiment 1Y (Asmala et al., 2014a; Herlemann et al., 2014; Hulatt et al.,
2014). Hulatt et al. (2014) for example, calculate the degradation rates with a continuum model at different times during the
incubation and report degradation rates on the order of 3 months in the beginning and 5 years in the end of their experiments
(after 55 days). When working on larger spatial scales such as our model and our in situ measurements cover, it is however
difficult to go into these fine details of degradation dynamics.

There are further many aspects that complicate a detailed comparison between results from incubation experiments to what is
happening in the natural environment (from which we use observations to compare our model results to). Incubations are rather
artificial environments, where effects of turbulence, stratification, sunlight and interactions with other organisms/chemical

\(^{1}\)In contrast to the model of remineralization in 1Y that have two pools of tDOC of different lability, Equation 3 only considers one pool. The results of
these two models are comparable until the labile pool starts to be depleted (after one year), which is why we can compare the degradation rate of the labile
pool in 1Y and the degradation rates calculated for incubation experiments with a time duration up to 55 days.
constituents often are absent (depending on the experimental setup). It has been suggested, for example, that the lability of relatively refractory organic matter can increase in presence of more labile substrates (priming) (Bianchi, 2011; Blair and Aller, 2011) and solar radiation (Vähätalo et al., 2011), which would not occur in incubation experiments.

4.2 Terrestrial DOC and light extinction

The results from the 1YS experiment show that a strong extinction of light induced by terrestrially derived organic matter, hampering the primary production, could explain why the waters stay oversaturated in pCO$_2$ in summer. It doesn’t only improve the modelled pCO$_2$, but also results in a better agreement between modelled and observed seasonal cycles of nutrients in the North-Eastern Bothnian Bay (Figure S4 and S5 in supplementary material), further suggesting that this parameterization is reasonable. The measurements in Arst et al. (2008) and Ask et al. (2009) show a large spread in the light extinction coefficients for different lakes, and we based our parameterization on the upper values that they present. We also made experiments where the effect of tDOC on the light attenuation was weaker, and where k$_d$ reached up to one at the lowest salinities. This was however not strong enough to prevent a too large drawdown of the pCO$_2$. Local measurements of k$_d$ and DOC would be needed to better understand the influence of tDOC on light attenuation in the Gulf of Bothnia, and to create a more precise parameterization.

Although the tDOC-dependent light parameterization has an overall negligible effect on the primary production in the Gulf of Bothnia (Table 3), it has quite large local effects. The primary production is reduced in coastal waters, leading to a larger offshore transport of nutrients. The filtering effect of coastal waters (Asmala et al., 2017) is thus decreased. Clearly, more measurements of the relationship between light and DOC are needed to better understand not only the carbon fixation in coastal waters, but also the exchange of nutrients between coastal and offshore waters.

4.3 The influence of terrestrial DOC on the air-sea CO$_2$ exchange

The remineralization of tDOC in the 1Y experiment reduces uptake of atmospheric CO$_2$ by in total 43% (Table 4), compared to the simulation with no terrestrial DOC (TP-simulation). The reduction in the atmospheric CO$_2$ uptake (17.5, 8.3, 6.7, 10.0 m$^{-2}$ y$^{-1}$) corresponds well to the amount of remineralized tDOC in each subbasin (18.2, 8.2, 6.6 and 10.1 mg m$^{-2}$ y$^{-1}$ for BB, NQ, BS and the whole domain, respectively), indicating that almost all of the remineralized tDOC is outgassed to the atmosphere, and that a negligible fraction of the remineralized DOC (1%) adds to the DIC pool. A surplus of remineralized DIC is transported from the BB to the southern basins, which is why there is a slightly larger reduction in atmospheric uptake in these basins than calculated from the remineralized tDOC. The large amount of remineralized tDOC in the Bothnian Bay turns it to a source of atmospheric CO$_2$ (Figure 10), in agreement with estimations by Löffler et al. (2012). However, the modelled outflux of CO$_2$ to the atmosphere in the Bothnian Bay is larger than their estimations. The simulated air-sea exchange in the 1Y and 1YS experiment agrees overall better with the estimations by Löffler et al. (2012), than the simulation without any remineralization of tDOC, strengthening our findings that a remineralization of tDOC into DIC takes place.

Adding a dependency of the light extinction on the tDOC increases the heterotrophy of the nearshore areas and the Bothnian Bay. Compared to the 1Y experiment (Table 4 and Figure 10), the outgassing of CO$_2$ is increased by 28% in the Bothnian
Bay. In the central parts of the Bothnian Bay and the Bothnian Sea, on the other hand, the outgassing/uptake slightly decreases/increases due to the increased primary production in these areas. The overall effect on air-sea CO₂ exchange is minor with only a decrease of 4%.

4.4 Future studies

In this study we have shown that remineralization is an important pathway for terrestrial DOC entering the Gulf of Bothnia. Considering that there is a large remineralization taking place under the sea ice (arguing against photochemical degradation), and that the rate we find is comparable to degradation rates calculated from bacterial incubation studies, we argue that bacteria has the potential to be responsible for this large removal. This needs to be investigated further, and an interesting next step from a modelling point of view would be to let the bacteria degrade the tDOC within the model, and compare modelled bacterial biomass/growth rates to measured ones. Interesting studies, that would be possible to perform with a stoichiometric flexible model, could for example be done on the quality of terrestrial DOM (based on its nutrient content), and on the competition for inorganic nutrients between bacteria and phytoplankton, which has been shown to be dependent on the availability of organic carbon relative to nutrients (e.g. Bratbak and Thingstad (1985); Joint et al. (2002); Thingstad et al. (2008)).

4.5 Uncertainty analysis

In shallow areas such as the North-Eastern parts of the Bothnian Bay, sediment fluxes have a particularly large impact on the carbon cycling and the air-sea CO₂. The highest sediment-water DIC flux in the model is found next to the river mouths. The maximum modelled sediment-water fluxes in the Bothnian Bay during winter, when DIC is accumulated under the sea ice, is about 200 mg m⁻² d⁻¹ in the 1Y experiment, which is in good agreement with Silvennoinen et al. (2008), who measured fluxes around 180-240 mgC m⁻² d⁻¹ in the mouth of river Temmesjoki at low temperatures (5 deg. C). The modelled sediment-DIC fluxes in the more central parts of the basins further agree well with Winogradow and Pempkowiak (2014). They calculated a mean flux of 9.9 mgC m⁻² d⁻¹ from four stations in the Gulf of Bothnia. The mean flux in the model, calculated from the same four positions, equals 8.6 mgC m⁻² d⁻¹. A sensitivity experiment was performed to investigate the sensitivity of the results to sediment fluxes. It was similar to the TP experiment, but the permanent burial of carbon was turned off, which leads to a higher carbon content in the sediments, an consequently a higher remineralization and DIC efflux. This experiment almost reproduced as high pCO₂ values as the 1Y experiment. However, the DIC efflux from the sediments was also much higher than observations; the maximum modelled sediment-water fluxes in the Bothnian Bay during winter amounted to 400 mg m⁻² d⁻¹, and the modelled DIC flux at the four stations in the more central parts of the basins amounted to 17 m⁻² d⁻¹, which is about double the flux in the 1Y experiment and the observations.
5 Conclusions

In this study the remineralization of terrestrial DOC, and its influence on the pCO$_2$ and the air-sea CO$_2$ exchange, is studied in the Gulf of Bothnia. It is done by combining results from a coupled physical-biogeochemical model together with high resolution underway measurements of pCO$_2$ data. Our conclusions are the following:

1. High pCO$_2$ values are explained by remineralization of terrestrial DOC, with a remineralization time scale of 1 year.

2. The remineralization rate agrees well with bacterial uptake rates of terrestrial DOC calculated from incubation experiments from the Northern Baltic Sea.

3. In addition to the terrestrial DOC remineralization, a high light attenuation induced by terrestrial DOC is needed to dampen the primary production and to reproduce the summer pCO$_2$.

10 Code and data availability. The BFM and NEMO source codes can be obtained at http://bfm-community.eu and http://www.nemo-ocean.eu, respectively. The input files needed to reproduce the simulations can be obtained upon request to the corresponding author (filippa.fransner@hotmail.se). The pCO$_2$ is a part of a bigger pCO$_2$ dataset of the Baltic Sea which will be presented (and made publicly available) in an article that is in preparation (Fransson et al., in preparation). Until then the data can be obtained upon request to Agneta Fransson (Agneta.Fransson@npolar.no). The nutrient data used to produce Figure S4 in the supplementary material comes from the ICES data portal (http://ocean.ices.dk/Helcom/Helcom.aspx?Mode=1).

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We acknowledge the use of the BFM (http://bfm-community.eu) and NEMO (http://www.nemo-ocean.eu) models. The simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the Triolith system. Per Pemberton at SMHI is acknowledged for sharing the observations of sea ice in the Baltic Sea. This work was partly funded by Baltic Ecosystem Adaptive Management (BEAM), a strategic research program at Stockholm University, Sweden, and by the Swedish Agency of Environment (Naturvårdsverket). The Baltic Nest Institute is supported by the Swedish Agency for Marine and Water Management through their grant 1:11 - Measures for marine and water environment. L.T. acknowledges support from the BONUS COCOA project (grant agreement 2112932-1), funded jointly by the European Union and the Academy of Finland. We want to thank the two anonymous reviewers for their suggestions that lead to an improvement of our work.
Aarnos, H., Ylöstalo, P., and Vähätalo, A. V.: Seasonal phototransformation of dissolved organic matter to ammonium, dissolved inorganic carbon, and labile substrates supporting bacterial biomass across the Baltic Sea, Journal of Geophysical Research: Biogeosciences, 117, https://doi.org/10.1029/2010JG001633, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JG001633, 2012.

Alling, V., Humborg, C., Mörth, C.-M., Rahm, L., and Pollehne, F.: Tracing terrestrial organic matter by \(\delta^{34}\)S and \(\delta^{13}\)C signatures in a sub-arctic estuary, Limnology and Oceanography, 53, 2594–2602, https://doi.org/10.4319/lo.2008.53.6.2594, https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.2008.53.6.2594, 2008.

Anderson, L. G., Jutterström, S., Hjalmarssson, S., Wåhlström, I., and Semiletov, I. P.: Out-gassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition, Geophysical Research Letters, 36, https://doi.org/10.1029/2009GL040046, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GL040046, 2009.

Arst, H., Erm, A., Herlevi, A., Kutser, T., Leppäranta, M., Reinart, A., and Virta, J.: Optical properties of boreal lake waters in Finland and Estonia, Boreal Env. Res., 13, 133–158, 2008.

Ask, J., Karlsson, J., Persson, L., Ask, P., Byström, P., and Jansson, M.: Terrestrial organic matter and light penetration: Effects on bacterial and primary production in lakes, Limnology and Oceanography, 54, 2034–2040, https://doi.org/10.4319/lo.2009.54.6.2034, https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.2009.54.6.2034, 2009.

Asmala, E., Autio, R., Kaartokallio, H., Pötkönen, L., Stedmon, C. A., and Thomas, D. N.: Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use, Biogeoosciences, 10, 6969–6986, https://doi.org/10.5194/bg-10-6969-2013, https://www.biogeosciences.net/10/6969/2013/, 2013.

Asmala, E., Autio, R., Kaartokallio, H., Stedmon, C. A., and Thomas, D. N.: Processing of humic-rich riverine dissolved organic matter by estuarine bacteria: effects of predegradation and inorganic nutrients, Aquatic Sciences, 76, 451–463, https://doi.org/10.1007/s00027-014-0346-7, https://doi.org/10.1007/s00027-014-0346-7, 2014a.

Asmala, E., Bowers, D. G., Autio, R., Kaartokallio, H., and Thomas, D. N.: Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation, Journal of Geophysical Research: Biogeosciences, 119, 1919–1933, https://doi.org/10.1002/2014JG002722, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JG002722, 2014b.

Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., and Voss, M.: Efficiency of the coastal filter: Nitrogen and phosphorus removal in the Baltic Sea, Limnology and Oceanography, 62, S222–S238, https://doi.org/10.1002/lo.10644, https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.1002/lo.10644, 2017.

Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61 EP –, http://dx.doi.org/10.1038/nature12857, 2013.

Benner, R. and Kaiser, K.: Biological and photochemical transformations of amino acids and lignin phenols in riverine dissolved organic matter, Biogeochemistry, 102, 209–222, https://doi.org/10.1007/s10533-010-9435-4, https://doi.org/10.1007/s10533-010-9435-4, 2011.

Bianchi, T. S.: The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect, Proceedings of the National Academy of Sciences, 108, 19 473, https://doi.org/10.1073/pnas.1017982108, http://www.pnas.org/content/108/49/19473, abstract, 2011.

Blair, N. E. and Aller, R. C.: The Fate of Terrestrial Organic Carbon in the Marine Environment, Annual Review of Marine Science, 4, 401–423, https://doi.org/10.1146/annurev-marine-120709-142717, https://doi.org/10.1146/annurev-marine-120709-142717, 2011.
Blair, N. E. and Aller, R. C.: The Fate of Terrestrial Organic Carbon in the Marine Environment, Annual Review of Marine Science, 4, 401–423, https://doi.org/10.1146/annurev-marine-120709-142717, https://doi.org/10.1146/annurev-marine-120709-142717, pMID: 22457981, 2012.

Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts, Geophysical Research Letters, 32, https://doi.org/10.1029/2005GL023053, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GL023053, 2005.

Bratbak, G. and Thingstad, T. F.: Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalisms, Marine Ecology Progress Series, 25, 23–30, 1985.

Cai, W.-J.: Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration?, Annual Review of Marine Science, 3, 123–145, https://doi.org/10.1146/annurev-marine-120709-142723, https://doi.org/10.1146/annurev-marine-120709-142723, pMID: 21329201, 2011.

Carlson, C. A., Hansell, D. A., Hansell, D. A., and Carlson, C. A.: Chapter 3 - DOM Sources, Sinks, Reactivity, and Budgets, pp. 65–126, Academic Press, Boston, https://doi.org/https://doi.org/10.1016/B978-0-12-405940-5.00003-0, http://www.sciencedirect.com/science/article/pii/B9780124059405000030, 2015.

Deutsch, B., Alling, V., Humborg, C., Korth, F., and Mörth, C. M.: Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem, Biogeosciences, 9, 4465–4475, https://doi.org/10.5194/bg-9-4465-2012, https://www.biogeosciences.net/9/4465/2012/, 2012.

Dittmar, T. and Kattner, G.: The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review, Marine Chemistry, 83, 103 – 120, https://doi.org/10.1016/S0304-4203(03)00105-1, http://www.sciencedirect.com/science/article/pii/S0304420303001051, the 7th International Estuarine Biogeochemistry Symposium, 2003.

Donnelly, C., Andersson, J. C., and Arheimer, B.: Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe, Hydrological Sciences Journal, 61, 255–273, https://doi.org/10.1080/02626667.2015.1027710, https://doi.org/10.1080/02626667.2015.1027710, 2016.

Fichot, C. G. and Benner, R.: The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin, Global Biogeochemical Cycles, 28, 300–318, https://doi.org/10.1002/2013GB004670, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013GB004670, 2014.

Figueroa, D., Rowe, O. F., Paczkowska, J., Legrand, C., and Andersson, A.: Allochthonous Carbon—a Major Driver of Bacterioplankton Production in the Subarctic Northern Baltic Sea, Microbial Ecology, 71, 789–801, https://doi.org/10.1007/s00248-015-0714-4, https://doi.org/10.1007/s00248-015-0714-4, 2016.

Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., and Théate, J.-M.: Carbon Dioxide Emission from European Estuaries, Science, 282, 434–436, https://doi.org/10.1126/science.282.5388.434, http://science.sciencemag.org/content/282/5388/434, 1998.

Fransner, F., Nycander, J., Mörth, C.-M., Humborg, C., Meier, M. H. E., Hordoir, R., Gustafsson, E., and Deutsch, B.: Tracing terrestrial DOC in the Baltic Sea—A 3-D model study, Global Biogeochemical Cycles, 30, 134–148, https://doi.org/10.1002/2014GB005078, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014GB005078, 2016.

Fransner, F., Gustafsson, E., Tedesco, L., Vichi, M., Hordoir, R., Roquet, F., Spilling, K., Kuznetsov, I., Eilola, K., Mörth, C.-M., Humborg, C., and Nycander, J.: Non-Redfieldian Dynamics Explain Seasonal pCO2 Drawdown in the Gulf of Bothnia, Journal of Geophysical Research:
Fransson, F., Anderson, L., Andreasson, K., Johansson, S., Karlson, B., Kronsell, J., Stranne, C., Sahlsten, E., and Willstrand-Wranne, A.: Seasonal and spatial variability of the surface-water fCO\textsubscript{2} in the Baltic Sea and Skagerrak-Kattegat: implications for ocean acidification, in preparation.

Gustafsson, E., Deutsch, B., Gustafsson, B., Humborg, C., and Mört, C.-M.: Carbon cycling in the Baltic Sea — The fate of allochthonous organic carbon and its impact on air–sea CO\textsubscript{2} exchange, Journal of Marine Systems, 129, 289 – 302, https://doi.org/https://doi.org/10.1016/j.jmarsys.2013.07.005, http://www.sciencedirect.com/science/article/pii/S0924796313001577, 2014.

Hansell, D. A.: Recalcitrant Dissolved Organic Carbon Fractions, Annual Review of Marine Science, 5, 421–445, https://doi.org/10.1146/annurev-marine-2017-080817, https://doi.org/10.1146/annurev-marine-2017-080817, 2013.

Hessen, D. O., Carroll, J., Kjeldstad, B., Korosov, A. A., Pettersson, L. H., Pozdnyakov, D., and Sørensen, K.: Input of organic carbon as determinant of nutrient fluxes, light climate and productivity in the Ob and Yenisei estuaries, Estuarine, Coastal and Shelf Science, 88, 53 – 62, https://doi.org/https://doi.org/10.1016/j.ecss.2010.03.006, http://www.sciencedirect.com/science/article/pii/S0272771410000971, 2010.

Hordoir, R., Axell, L., Löptien, U., Dietze, H., and Kuznetsov, I.: Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea, Journal of Geophysical Research: Oceans, 120, 6653–6668, https://doi.org/10.1002/2014JC010642, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JC010642, 2015.

Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Franser, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungenmyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., and Haapala, J.: Nemo-Nordic 1.0: A NEMO based ocean model for Baltic & North Seas, research and operational applications, Geoscientific Model Development Discussions, 2018, 1–29, https://doi.org/10.5194/gmd-2018-2, https://www.geosci-model-dev-discuss.net/gmd-2018-2/, 2018.

Hulatt, C. J., Kaartokallio, H., Asmala, E., Autio, R., Stedmon, C. A., Sonninen, E., Oinonen, M., and Thomas, D. N.: Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change, Aquatic Sciences, 76, 393–404, https://doi.org/10.1007/s00027-014-0342-y, https://doi.org/10.1007/s00027-014-0342-y, 2014.

Joint, I., Henriksen, P., Fonnes, G. A., Bourne, D., Thingstad, T. F., and Riemann, B.: Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms, Aquatic Microbial Ecology, 29, 145–159, https://www.int-res.com/abstracts/ame/v29/n2/p145-159/, 2002.
Kuliński, K., Hammer, K., Schneider, B., and Schulz-Bull, D.: Remineralization of terrestrial dissolved organic carbon in the Baltic Sea, Marine Chemistry, 181, 10 – 17, https://doi.org/10.1016/j.marchem.2016.03.002, http://www.sciencedirect.com/science/article/pii/S0304420316300160, 2016.

Kuparinen, J., Leonardsson, K., Mattila, J., and Wikner, J.: Food Web Structure and Function in the Gulf of Bothnia, the Baltic Sea, Ambio, pp. 13–21, http://www.jstor.org/stable/25094545, 1996.

Löffler, A., Schneider, B., Perttilä, M., and Rehder, G.: Air–sea CO2 exchange in the Gulf of Bothnia, Baltic Sea, Continental Shelf Research, 37, 46 – 56, https://doi.org/10.1016/j.csr.2012.02.002, http://www.sciencedirect.com/science/article/pii/S0278434312000301, 2012.

Madec, G. and the NEMO team: Nemo ocean engine, version 3.6 stable, Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, no 27, issn no 1288-1619 edn., 2016.

Mantoura, R. and Woodward, E.: Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications, Geochimica et Cosmochimica Acta, 47, 1293 – 1309, https://doi.org/10.1016/0016-7037(83)90069-8, http://www.sciencedirect.com/science/article/pii/0016703783900698, 1983.

Pemberton, P., Löptien, U., Hordoir, R., Höglund, A., Schimanke, S., Axell, L., and Haapala, J.: Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea, Geoscientific Model Development, 10, 3105–3123, https://doi.org/10.5194/gmd-10-3105-2017, https://www.geosci-model-dev.net/10/3105/2017/, 2017.

Pierrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Lüger, H., Johannessen, T., Olsen, A., Feely, R. A., and Cosca, C. E.: Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines, Deep-Sea Research Part II, 56, 512–522, https://doi.org/10.1016/j.dsr2.2008.12.005, 2009.

Raymond, P. A., Bauer, J. E., and Cole, J. J.: Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary, Limnology and Oceanography, 45, 1707–1717, https://doi.org/10.4319/lo.2000.45.8.1707, https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.2000.45.8.1707, 2000.

Samuelsson, P., Jones, C. G., Willén, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellström, E., Nikulin, G., and Wyser, K.: The Rossby Centre Regional Climate model RCA3: model description and performance, Tellus A, 63, 4–23, https://doi.org/10.1111/j.1600-0870.2010.00478.x, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2010.00478.x, 2011.

Sandberg, J., Andersson, A., Johansson, S., and Wikner, J.: Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon, Marine Ecology Progress Series, 268, 13–29, https://www.int-res.com/abstracts/meps/v268/p13-29/, 2004.

Seidel, M., Manecki, M., Herlemann, D. P. R., Deutsch, B., Schulz-Bull, D., Jürgens, K., and Dittmar, T.: Composition and Transformation of Dissolved Organic Matter in the Baltic Sea, Frontiers in Earth Science, 5, 31, https://doi.org/10.3389/feart.2017.00031, https://www.frontiersin.org/article/10.3389/feart.2017.00031, 2017.

Silvennoinen, H., Liikanen, A., Torssonen, J., Stange, C. F., and Martikainen, P. J.: Denitrification and N2O effluxes in the Bothnian Bay (northern Baltic Sea) river sediments as affected by temperature under different oxygen concentrations, Biogeochemistry, 88, 63–72, https://doi.org/10.1007/s10533-008-9194-7, https://doi.org/10.1007/s10533-008-9194-7, 2008.

Stepanauskas, R., JØrgensen, N. O. G., Eigaard, O. R., Žvikas, A., Tranvik, L. J., and Leonardson, L.: Summer inputs of riverine nutrients to the Baltic Sea: bioavailability and eutrophication relevance, Ecological Monographs, 72, 579–597, https://doi.org/10.1890/0012-9615(2002)072[0579:SIORNT]2.0.CO;2, 2002.
Thingstad, T. F., Bellerby, R. G. J., Bratbak, G., Bør sheim, K. Y., Egge, J. K., Heldal, M., Larsen, A.,Neill, C., Nejstgaard, J., Norland, S., Sandaa, R. A., Skjoldal, E. F., Tanaka, T., Thy rhaug, R., and Töpper, B.: Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem, Nature, 455, 387 EP –, https://doi.org/10.1038/nature07235, 2008.

Vähätalo, A., Aarnos, H., Hoikkala, L., and Lignell, R.: Photochemical transformation of terrestrial dissolved organic matter supports hetero- and autotrophic production in coastal waters, Marine Ecology Progress Series, 423, 1–14, https://www.int-res.com/abstracts/meps/v423/p1-14/, 2011.

Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and Maqueda, M. A. M.: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. I. Model description and validation, Ocean Modelling, 27, 33 – 53, https://doi.org/10.1016/j.ocemod.2008.10.005, http://www.sciencedirect.com/science/article/pii/S1463500308001613, 2009.

Vichi, M., Pinardi, N., and Masina, S.: A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory, Journal of Marine Systems, 64, 89 – 109, https://doi.org/10.1016/j.jmarsys.2006.03.006, http://www.sciencedirect.com/science/article/pii/S0924796306001084, contributions from Advances in Marine Ecosystem Modelling Research, 27-29 June, 2005, Plymouth, UK, 2007a.

Vichi, M., Lovato, T., Lazzari, P., Cossarini, G., Gutierrez Mlot, E., Mattia, G., Masina, S., McKiver, W. J., Pinardi, N., Solidoro, C., Tedesco, L., and Zavatarelli, M.: The Biogeochemical Flux Model (BFM): Equation Description and User Manual. BFM version 5.1, BFM Consortium, 2015a.

Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509–2519, https://doi.org/10.1111/j.1365-2486.2012.02718.x, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2012.02718.x, 2012.

Wikner, J., Cuadros, R., and Jansson, M.: Differences in consumption of allochthonous DOC under limnic and estuarine conditions in a watershed, Aquatic Microbial Ecology, 17, 289–299, https://www.int-res.com/abstracts/ame/v17/n3/p289-299/, 1999.

Winogradow, A. and Pempkowiak, J.: Organic carbon burial rates in the Baltic Sea sediments, Estuarine, Coastal and Shelf Science, 138, 27 – 36, https://doi.org/https://doi.org/10.1016/j.ecss.2013.12.001, http://www.sciencedirect.com/science/article/pii/S0277714313005192, 2014.

Zweifel, U. L., Wikner, J., Hagström, Å., Lundberg, E., and Norrman, B.: Dynamics of dissolved organic carbon in a coastal ecosystem, Limnology and Oceanography, 40, 299–305, https://doi.org/10.4319/lo.1995.40.2.0299, https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.1995.40.2.0299, 1995.
Figure 1. a) Map of the Baltic Sea. The rectangle marks the location of the Gulf of Bothnia and the model domain b) Bathymetric chart of the NEMO-GoB configuration. The filled contours show the depth (m). The horizontal lines marks the borders of the subbasins: the Bothnian Bay (BB), the Northern Quark (NQ) and the Bothnian Sea (BS). The two red dots show the position of two stations that are used for evaluation of the model (Figures S6-S19 in the supplementary material).
Figure 2. Observed (filled lines) pCO$_2$ (μatm) and cargo route for each month. The filled contours show the bathymetry of the model.
Figure 3. Modelled light extinction coefficient (m^{-1}) in the a) 1Y and the b) 1YS experiments, and c) the difference (1YS-1Y).
Figure 4. pCO$_2$-salinity relationships for January-October (a-j). Grey dots show observed values. The red and blue lines show modelled climatological monthly means for the BIO and the CHEM experiments, with the shaded area displaying the standard deviation at a given salinity. The dashed blue line shows the ice extent (salinities where the ice concentration is larger than 60%).
Figure 5. \(p\text{CO}_2 \)-salinity relationships for January-October (a-j). Grey dots show observed values. The black, red and blue lines show modelled climatological monthly means for the TP, 1Y and 10Y experiments, with the shaded area displaying the standard deviation at a given salinity. The dashed blue line shows the ice extent (salinities where the ice concentration is larger than 60%).
Figure 6. a),b) Vertically averaged remineralization rates of tDOC (g m$^{-3}$ y$^{-1}$) in the 1Y and 10Y experiment, respectively. c),d) difference in modelled pCO$_2$ (μatm), climatological annual mean, between the 1Y and the TP experiment, and d) the 10Y and the TP experiment, respectively.
Figure 7. Difference in a) vertically integrated primary production (g m\(^{-2}\) y\(^{-1}\)), and b) pCO\(_2\) (μatm), between the 1Y and 1YS experiment.
Figure 8. pCO$_2$-salinity relationships for January-October (a-j). Grey dots show observed values. The red and blue lines show modelled climatological monthly means for the 1Y and 1YS experiments, with the shaded area displaying the standard deviation at a given salinity. The dashed blue line shows the ice extent (salinities where the ice concentration is larger than 60%).
Figure 9. Observed (filled lines) and modelled (filled contours) pCO$_2$ (µatm) from the 1YS experiment.
Figure 10. Air-sea CO$_2$ exchange (g m$^{-2}$ y$^{-1}$) in the a) TP, b) 1Y and d) 1YS experiments. Red indicates outgassing of CO$_2$ to the atmosphere, and blue uptake from the atmosphere. c) and d) show the difference in air-sea CO$_2$ exchange between the 1Y and TP experiments, and the 1YS and the 1Y experiments, respectively.
Table 1. Experimental setup

Experiment	Activated modules	λ^{-1}	k_{tDOC}
1st set.			
CHEM	chem.	-	$f(sal)$
BIO	chem. & bio.	-	$f(sal)$
2nd set (Rem exp.)			
TP	chem., bio. & tPOC	-	$f(sal)$
1Y	chem., bio., tPOC & tDOC	1 year	$f(sal)$
10Y	chem., bio., tPOC & tDOC	10 years	$f(sal)$
3rd set (Light exp.)			
1YS	chem., bio., tPOC & tDOC	1 year	$f(tDOC)$

The second column shows the activated modules in the biogeochemical model, where chem= chemistry, bio= biology, and tPOC, and tDOC means that there is a remineralization of terrestrial POC and DOC, respectively. The third column shows the remineralization time scale (λ^{-1}) of the terrestrial DOC and the last column, k_{tDOC}, indicates whether the influence of the tDOC on the light attenuation is a linear function of salinity (equation A4 in Fransner et al. (2018)) or tDOC (equation 1).
Table 2. Removal of terrestrial DOC in incubation studies from the Gulf of Bothnia area.

Sampling site	t	% removed	λ^{-1}	Reference
BB	28	4–16	0.44–1.87	Herlemann et al. (2014)
NQ	6–15	6.3–8 (median)	0.2–0.63	Wikner et al. (1999)
GoB	12–18	8.88 (mean)	0.35–0.53	Asmala et al. (2013)
BB	39	9.0–13.5 (avg)	0.7–1.3	Asmala et al. (2014a)
BB	10	2 (avg)	1.35	Figueroa et al. (2016)
BB	55	9.8 (avg)	1.46	Hulatt et al. (2014)

The first column shows the site of the sampling, where BB= Bothnian Bay, NQ= Northern Quark, and GoB is the whole Gulf of Bothnia (Figure 1). The second column shows the length of the incubation in days and the third column shows the percentage of tDOC that has been removed at the end of the incubation (if average values are available these values has been reported, otherwise ranges). The fourth column shows the calculated time scale of degradation based on Equation 3.
Table 3. Primary production (1990–2010) in g C m$^{-2}$ y$^{-1}$ in the 1Y and 1YS experiments (relative change with respect to 1Y).

Basin	BB	NQ	BS	GoB
1Y	90	152	236	180
1YS	71 (-25%)	147 (-3%)	240 (+2%)	177 (-2%)
Table 4. Air-sea CO$_2$ exchange (1990–2010) in g C m$^{-2}$ y$^{-1}$ in the TP, 1Y (relative change with respect to TP) and 1YS (relative change with respect to 1Y) experiments. Negative values indicates outgassing of CO$_2$ to the atmosphere, positive uptake of CO$_2$ from the atmosphere.

Basin	BB	NQ	BS	GoB
TP	10.9	24.5	29.4	23.3
1Y	-6.5(-160%)	16.2(-34%)	22.7(-23%)	13.3(-43%)
1YS	-8.4(-28%)	15.7(-3%)	22.9(+1%)	12.9(-4%)
Löffler et al. (2012)	-1.4-2.5	-	17.05	-