ON MINIMAL EDGE VERSION OF DOUBLY RESOLVING SETS OF A GRAPH

MUHAMMAD AHMAD, ZOHAIB ZAHID, SOHAIL ZAFAR.

Abstract. In this paper, we introduce the edge version of doubly resolving set of a graph which is based on the edge distances of the graph. As a main result, we computed the minimum cardinality ψ_E of edge version of doubly resolving sets of family of n-sunlet graph S_n and prism graph Y_n.

1. Introduction and Preliminaries

Let us take a graph $G = (V(G), E(G))$, which is simple, connected and undirected, where its vertex set is $V(G)$ and edge set is $E(G)$. The order of a graph G is $|V(G)|$ and the size of a graph G is $|E(G)|$. The distance $d(a, b)$ between the vertices $a, b \in V(G)$ is the length of a shortest path between them. If $d(c, a) \neq d(c, b)$, then the vertex $c \in V(G)$ is said to resolve two vertices a and b of $V(G)$. Suppose that $N = \{n_1, n_2, \ldots, n_k\} \subseteq V(G)$ is an ordered set and m is a vertex of $V(G)$, then the representation $r(m, N)$ of m with respect to N is the k-tuple $(d(m, n_1), d(m, n_2), \ldots, d(m, n_k))$. If different vertices of G have different representations with respect to N, then the set N is said to be a resolving set of G. The metric basis of G is basically a resolving set having minimum cardinality. The cardinality of metric basis is represented by $\text{dim}(G)$, and is called metric dimension of G.

In [19], Slater introduced the idea of resolving sets and also in [10], Harary and Melter introduced this concept individually. Different applications of this idea has been introduced in the fields like network discovery and verification [1], robot navigation [15] and

1991 Mathematics Subject Classification. Primary 05C12.

Key words and phrases. edge version of metric dimension, edge version of doubly resolving set, prism graph, n-sunlet graph.
The introduction of doubly resolving sets is given by Caceres et al. (see [3]) by presenting its connection with metric dimension of the cartesian product $G \square G$ of the graph G.

The doubly resolving sets create a valuable means for finding upper bounds on the metric dimension of graphs. The vertices a and b of the graph G with order $|V(G)| \geq 2$ are supposed to doubly resolve vertices u_1 and v_1 of the graph G if $d(u_1, a) - d(u_1, b) \neq d(v_1, a) - d(v_1, b)$. A subset D of vertices doubly resolves G if every two vertices in G are doubly resolved by some two vertices of D. Precisely, in G there do not exist any two different vertices having the same difference between their corresponding metric coordinates with respect to D. A doubly resolving set with minimum cardinality is called the minimal doubly resolving set. The minimum cardinality of a doubly resolving set for G is represented by $\psi(G)$. In case of some convex polytopes, hamming and prism graphs, the minimal doubly resolving sets has been obtained in [13], [14] and [4] respectively.

Since, the line graph $L(G)$ of a graph G is defined as, the graph whose vertices are the edges of G, with two adjacent vertices if the corresponding edges have one vertex common in G. In mathematics, the metric properties of line graph have been studied to a great extent (see [2, 5, 6, 17, 18]) and in chemistry literature, its significant applications have been proved (see [7, 8, 9]). In [16], the edge version of metric dimension have been introduced, which is defined as:

Definitions 1.1.

1. The edge distance $d_E(f, g)$ between two edges $f, g \in E(G)$ is the length of a shortest path between vertices f and g in the line graph $L(G)$.

2. If $d_E(e, f) \neq d_E(e, g)$, then the edge $e \in E(G)$ is said to edge resolve two edges f and g of $E(G)$.
(3) Suppose that \(N_E = \{f_1, f_2, \ldots, f_k\} \subseteq E(G) \) is an ordered set and \(e \) is an edge of \(E(G) \), then the edge version of representation \(r_E(e, N_E) \) of \(e \) with respect to \(N_E \) is the \(k \)-tuple \((d_E(e, f_1), d_E(e, f_2), \ldots, d_E(e, f_k)) \).

(4) If different edges of \(G \) have different edge version of representations with respect to \(N_E \), then the set \(N_E \) is said to be an edge version of resolving set of \(G \).

(5) The edge version of metric basis of \(G \) is basically an edge version of resolving set having minimum cardinality. The cardinality of edge version of metric basis is represented by \(\dim_E(G) \), and is called edge version of metric dimension of \(G \).

The following theorems in [16] are important for us.

Theorem 1.2. Let \(S_n \) be the family of \(n \)-sunlet graph then

\[
\dim_E(S_n) = \begin{cases}
2, & \text{if } n \text{ is even;} \\
3, & \text{if } n \text{ is odd.}
\end{cases}
\]

Theorem 1.3. Let \(Y_n \) be the family of prism graph then \(\dim_E(Y_n) = 3 \) for \(n \geq 3 \).

In this article, we proposed minimal edge version of doubly resolving sets of a graph \(G \), based on edge distances of graph \(G \) as follows:

Definitions 1.4.

1. The edges \(f \) and \(g \) of the graph \(G \) with size \(|E(G)| \geq 2 \) are supposed to edge doubly resolve edges \(f_1 \) and \(f_2 \) of the graph \(G \) if \(d_E(f_1, f) - d_E(f_1, g) \neq d_E(f_2, f) - d_E(f_2, g) \).

2. Let \(D_E = \{f_1, f_2, \ldots, f_k\} \) be an ordered set of the edges of \(G \) then if any two edges \(e \neq f \in E(G) \) are edge doubly resolved by some two edges of set \(D_E \) then the set \(D_E \subseteq E(G) \) is said to be an edge version of doubly resolving set of \(G \). The minimum cardinality of an edge version of doubly resolving set of \(G \) is represented by \(\psi_E(G) \).
Note that every edge version of doubly resolving set is an edge version of resolving set, which implies \(\dim_E(G) \leq \psi_E(G) \) for all graphs \(G \).

2. The edge version of doubly resolving sets for family of \(n \)-sunlet graph \(S_n \).

The family of \(n \)-sunlet graph \(S_n \) is obtained by joining \(n \) pendant edges to a cycle graph \(C_n \) (see Figure 1).

![Figure 1. \(n \)-sunlet graph \(S_n \)](image)

For our purpose, we label the inner edges of \(S_n \) by \(\{e_i : \forall 0 \leq i \leq n - 1\} \) and the pendent edges by \(\{f_i : \forall 0 \leq i \leq n - 1\} \) as shown in Figure 1.

![Figure 2. \(L(S_n) \) of \(n \)-sunlet graph \(S_n \)](image)

As motivated by the Theorem 1.2, we obtain

\[
\psi_E(S_n) \geq \begin{cases}
2, & \text{if } n \text{ is even;} \\
3, & \text{if } n \text{ is odd.}
\end{cases}
\]

Furthermore, we will show that \(\psi_E(S_n) = 3 \) for \(n \geq 4 \).
In order to calculate the edge distances for family of \(n\)-sunlet graphs \(S_n\), consider the line graph \(L(S_n)\) as shown in Figure 2. Define \(S_i(e_0) = \{e \in E(S_n) : d(e_0, e) = i\}\). For \(\psi_E(S_n)\) with \(n \geq 4\), we can locate the sets \(S_i(e_0)\) that are represented in the Table 1. It is clearly observed from Figure 2 that \(S_i(e_0) = \emptyset\) when \(i \geq k + 1\) for \(n = 2k\), and \(S_i(e_0) = \emptyset\) when \(i \geq k + 2\) for \(n = 2k + 1\).

From the above mentioned sets \(S_i(e_0)\), it is clear that they can be utilized to define the edge distances between two arbitrary edges of \(E(S_n)\) in the subsequent way.

\(n\)	\(i\)	\(S_i(e_0)\)
\(2k (k \geq 2)\)	\(k\)	\(\{f_{k-1}, f_k\}\)
\(2k + 1 (k \geq 2)\)	\(k\)	\(\{f_{k-1}, f_k, f_{k+1}\}\)
\(k + 1\)		\(\{f_k\}\)

The symmetry in Figure 2 shows that \(d_E(e_i, e_j) = d_E(e_0, e_{|j-i|})\) for \(0 \leq |j-i| \leq n - 1\).

If \(n = 2k\), where \(k \geq 2\), we have

\[
d_E(f_i, f_j) = \begin{cases}
 d_E(e_0, f_{|j-i|}) - 1, & \text{if } |j-i| = 0; \\
 d_E(e_0, f_{|j-i|}), & \text{if } 1 \leq |j-i| < k; \\
 d_E(e_0, f_{|j-i|}) + 1, & \text{if } k \leq |j-i| \leq n - 1,
\end{cases}
\]

If \(n = 2k + 1\) where \(k \geq 2\), we have

\[
d_E(e_i, f_j) = \begin{cases}
 d_E(e_0, f_{|j-i|}), & \text{if } 0 \leq |j-i| \leq n - 1 \text{ for } i \leq j; \\
 d_E(e_0, f_{|j-i|}) - 1, & \text{if } 1 \leq |j-i| < k \text{ for } i > j; \\
 d_E(e_0, f_{|j-i|}), & \text{if } |j-i| = k \text{ for } i > j; \\
 d_E(e_0, f_{|j-i|}) + 1, & \text{if } k < |j-i| \leq n - 1 \text{ for } i > j.
\end{cases}
\]
recreate the edge distances between any two edges from ψ Lemma 2.1.

As we know that for resolving set S of them the resultant non-edge doubly resolved pair of edges from edge set S edge version of doubly resolving set of $\{two edges of the set e To verify, let us take an example, the edges d ψ Lemma 2.2.

As a result, if we know the edge distance $d_E(e_0, e)$ for any $e \in E(S_n)$, then one can recreate the edge distances between any two edges from $E(S_n)$.

Lemma 2.1. $\psi_E(S_n) > 2$, for $n = 2k$, $k \geq 2$.

Proof. As we know that for $n = 2k$, $\psi_E(S_n) \geq 2$. So it is necessary to prove that each of the subset D_E of edge set $E(S_n)$ such that $|D_E| = 2$ is not an edge version of doubly resolving set for S_n. In Table 2 seven possible types of set D_E are presented and for each of them the resultant non-edge doubly resolved pair of edges from edge set $E(S_n)$ is found. To verify, let us take an example, the edges e_k, e_{k+1} are not edge doubly resolved by any two edges of the set $\{e_0, e_i; k < i \leq n - 1\}$. Obviously, for $k < i \leq n - 1$, we have

$$d_E(e_0, e_k) = d_E(e_0, e_{|k-0|}) = k, \quad d_E(e_0, e_{k+1}) = d_E(e_0, e_{|k+1-0|}) = k - 1, \quad d_E(e_i, e_k) = d_E(e_i, e_{|k-i|}) = i - k \quad \text{and} \quad d_E(e_i, e_{k+1}) = d_E(e_i, e_{|k+1-i|}) = i - k - 1.$$

So, $d_E(e_0, e_k) - d_E(e_0, e_{k+1}) = d_E(e_i, e_k) - d_E(e_i, e_{k+1}) = 1$, that is, $\{e_0, e_i; k < i \leq n - 1\}$ is not an edge version of doubly resolving set of S_n. Using this procedure we can verify all other non-edge doubly resolved pairs of edges for all other possible types of D_E from Table 2.

Lemma 2.2. $\psi_E(S_n) = 3$, for $n = 2k$, $k \geq 2$.

\Box
Table 2. Non-edge doubly resolved pairs of S_n for $n = 2k$, $k \geq 2$

D_E	Non-edge doubly resolved pairs
$\{e_0, e_i\}, 0 < i < k$	$\{e_0, e_{n-1}\}$
$\{e_0, e_i\}, k < i \leq n-1$	$\{e_k, e_{k+1}\}$
$\{e_0, f_i\}, 0 \leq i < k$	$\{e_0, f_{n-1}\}$
$\{e_0, f_i\}, k \leq i \leq n-1$	$\{e_0, f_0\}$
$\{f_0, f_i\}, 1 \leq i < k$	$\{e_k, f_k\}$
$\{f_0, f_k\}$	$\{e_0, e_1\}$
$\{f_0, f_i\}, k < i \leq n-1$	$\{e_1, f_1\}$

Proof. The Table 3 demonstrate that edge version of representations of S_n in relation to the set $D^*_E = \{e_0, e_1, e_k\}$ in a different manner.

Table 3. Vectors of edge metric coordinates for S_n, $n = 2k$, $k \geq 2$

i	$S_i(e_0)$	$D^*_E = \{e_0, e_1, e_k\}$
0	e_0	$(0, 1, k)$
$1 \leq i < k$	$f_{i-1}, e_i, f_{n-i}, e_{n-i}$	$(i, i-1, k+1 - i)$
i = k	f_{k-1}, f_k, e_k	$(k, k-1, 1)$

Now from Table 3 as $e_0 \in D^*_E$, so the first edge version of metric coordinate of the vector of $e_0 \in S_i(e_0)$ is equal to 0. For each $i \in \{1, 2, 3, \ldots, k\}$, one can easily check that there are no two edges $h_1, h_2 \in S_i(e_0)$ such that $r_E(h_1, D^*_E) - r_E(h_2, D^*_E) = 0$. Also, for each $i, j \in \{1, 2, 3, \ldots, k\}, i \neq j$, there are no two edges $h_1 \in S_i(e_0)$ and $h_2 \in S_j(e_0)$ such that $r_E(h_1, D^*_E) - r_E(h_2, D^*_E) = i - j$. In this manner, the set $D^*_E = \{e_0, e_1, e_k\}$ is the minimal edge version of doubly resolving set for S_n with $n = 2k$, $k \geq 2$ and hence Lemma 2.2 holds.

Lemma 2.3. $\psi_E(S_n) = 3$, for $n = 2k + 1$, $k \geq 2$.

Table 4. Vectors of edge metric coordinates for S_n, $n = 2k + 1$, $k \geq 2$

i	$S_i(e_0)$	$D^*_E = \{e_0, e_1, e_{k+1}\}$
0	e_0	$(0, 1, k)$
$1 \leq i < k$	f_{i-1}	$(i, i - 1, k + 2 - i)$
	e_i	$(i, i - 1, k + 1 - i)$
	f_{n-i}	$(i, i + 1, k + 1 - i)$
	e_{n-1}	$(i, i + 1, k - i)$
$i = k$	f_{k-1}	$(k, k - 1, 2)$
	e_k	$(k, k - 1, 1)$
	f_{k+1}	$(k, k + 1, 1)$
	e_{k+1}	$(k, k, 0)$
$i = k + 1$	f_k	$(k + 1, k, 1)$

Proof. The Table 4 demonstrate that the edge version of representations of S_n in relation to the set $D^*_E = \{e_0, e_1, e_{k+1}\}$ in a different way.

Now from Table 4 as $e_0 \in D^*_E$, so the first edge version of metric coordinate of the vector of $e_0 \in S_i(e_0)$ is equal to 0. Similarly for each $i \in \{1, 2, 3, \ldots, k+1\}$, one can easily find that there are no two edges $h_1, h_2 \in S_i(e_0)$ such that $r_E(h_1, D^*_E) - r_E(h_2, D^*_E) = 0$. Likewise, for every $i, j \in \{1, 2, 3, \ldots, k+1\}$, $i \neq j$, there are no two edges $h_1 \in S_i(e_0)$ and $h_2 \in S_j(e_0)$ such that $r_E(h_1, D^*_E) - r_E(h_2, D^*_E) = i - j$. Like so, the set $D^*_E = \{e_0, e_1, e_{k+1}\}$ is the minimal edge version of doubly resolving set for S_n with $n = 2k + 1$, $k \geq 2$ and consequently Lemma 2.3 holds.

\[\square \]

It is displayed from the whole technique that $\psi_E(S_n) = 3$, for $n \geq 4$. We state the resulting main theorem by using Lemma 2.2 and Lemma 2.3 as mentioned below;

Theorem 2.4. Let S_n be the n-sunlet graph for $n \geq 4$. Then $\psi_E(S_n) = 3$.
3. The edge version of doubly resolving sets for family of prism graph Y_n.

A family of prism graph Y_n is cartesian product graph $C_n \times P_2$, where C_n is cycle graph of order n and P_2 is a path of order 2 (see Figure 3).

![Figure 3. Prism graph Y_n](image)

The family of prism graph Y_n consists of 4-sided faces and n-sided faces. For our purpose, we label the inner cycle edges of Y_n by \(\{e_i : 0 \leq i \leq n - 1\} \), middle edges by \(\{f_i : 0 \leq i \leq n - 1\} \) and the outer cycle edges by \(\{g_i : 1 \leq i \leq n - 1\} \) as shown in Figure 3.

![Figure 4. $L(Y_n)$ of prism graph Y_n](image)

As motivated by the Theorem 1.3, we obtain $\psi_{E}(Y_n) \geq 3$. Furthermore, we will show that $\psi_{E}(Y_n) = 3$ for $n \geq 6$.

In order to calculate the edge distances for family of prism graphs Y_n, consider the line graph $L(Y_n)$ as shown in Figure 4.
Define $S_i(f_0) = \{ f \in E(Y_n) : d_E(f_0, f) = i \}$. For $\psi_E(Y_n)$ with $n \geq 6$, we can locate the sets $S_i(f_0)$ that are represented in the Table 5. It is clearly observed from Figure 4 that $S_i(f_0) = \emptyset$ for $i \geq k + 2$. From the above mentioned sets $S_i(f_0)$, it is clear that they can be utilized to define the edge distance between two arbitrary edges of $E(Y_n)$ in the subsequent way.

Table 5. $S_i(f_0)$ for Y_n

n	i	$S_i(f_0)$
1	1	$\{e_0, g_0, e_{n-1}, g_{n-1}\}$
$2 \leq i \leq k$	$k + 1$	$\{f_i\}$
$2k(k \geq 3)$	$k + 1$	$\{f_k\}$
$2k + 1(k \geq 3)$	$k + 1$	$\{f_k, e_k, g_k, f_{k+1}\}$

The symmetry in Figure 4 shows that $d_E(f_i, f_j) = d_E(f_0, f_{j-i})$ for $0 \leq |j - i| \leq n - 1$.

If $n = 2k$, where $k \geq 3$, we have

$$d_E(e_i, e_j) = d_E(g_i, g_j) = \begin{cases}
 d_E(f_0, e_{j-i}) - 1, & \text{if } 0 \leq |j - i| < k; \\
 d_E(f_0, e_{j-i}), & \text{if } k \leq |j - i| \leq n - 1,
\end{cases}$$

$$d_E(f_i, e_j) = d_E(f_i, g_j) = \begin{cases}
 d_E(f_0, e_{j-i}), & \text{if } 0 \leq |j - i| \leq n - 1, \text{ for } i \leq j; \\
 d_E(f_0, e_{j-i}) - 1, & \text{if } 1 \leq |j - i| < k, \text{ for } i > j; \\
 d_E(f_0, e_{j-i}), & \text{if } |j - i| = k, \text{ for } i > j; \\
 d_E(f_0, e_{j-i}) + 1, & \text{if } k < |j - i| \leq n - 1, \text{ for } i > j,
\end{cases}$$

$$d_E(e_i, g_j) = \begin{cases}
 d_E(f_0, e_{j-i}) + 1, & \text{if } |j - i| = 0; \\
 d_E(f_0, e_{j-i}), & \text{if } 1 \leq |j - i| < k; \\
 d_E(f_0, e_{j-i}) + 1, & \text{if } k \leq |j - i| \leq n - 1.
\end{cases}$$

If $n = 2k + 1$ where $k \geq 3$, we have
\[d_E(e_i, e_j) = d_E(g_i, g_j) = \begin{cases}
 d_E(f_0, e_{|j-i|}) - 1, & \text{if } 0 \leq |j-i| \leq k; \\
 d_E(f_0, e_{|j-i|}), & \text{if } k < |j-i| \leq n-1,
\end{cases} \]

\[d_E(f_i, e_j) = d_E(f_i, g_j) = \begin{cases}
 d_E(f_0, e_{|j-i|}), & \text{if } 0 \leq |j-i| \leq n-1 \text{ for } i \leq j; \\
 d_E(f_0, e_{|j-i|}) - 1, & \text{if } 1 \leq |j-i| \leq k \text{ for } i > j; \\
 d_E(f_0, e_{|j-i|}) + 1, & \text{if } k < |j-i| \leq n-1 \text{ for } i > j,
\end{cases} \]

\[d_E(e_i, g_j) = \begin{cases}
 d_E(f_0, e_{|j-i|}) + 1, & \text{if } |j-i| = 0; \\
 d_E(f_0, e_{|j-i|}), & \text{if } 1 \leq |j-i| \leq k; \\
 d_E(f_0, e_{|j-i|}) + 1, & \text{if } k < |j-i| \leq n-1.
\end{cases} \]

As a result, if we know the edge distance \(d_E(f_0, f) \) for any \(f \in E(Y_n) \) then one can recreate the edge distances between any two edges from \(E(Y_n) \).

Lemma 3.1. \(\psi_E(Y_n) = 3 \), for \(n = 2k, k \geq 3 \).

Proof. The Table 6 demonstrate that edge version of representations of \(Y_n \) in relation to the set \(D^*_E = \{ e_0, e_{k-1}, f_{k+1} \} \) in a different manner.

Now from Table 6 as \(e_0 \in D^*_E \), so the first edge version of metric coordinate of the vector of \(f_0 \in S_i(f_0) \) is equal to 1. For each \(i \in \{1, 2, 3, \ldots, k+1\} \), one can easily check that there are no two edges \(h_1, h_2 \in S_i(f_0) \) such that \(r_E(h_1, D^*_E) - r_E(h_2, D^*_E) = 0 \). Also, for each \(i, j \in \{1, 2, 3, \ldots, k+1\}, i \neq j \), there are no two edges \(h_1 \in S_i(f_0) \) and \(h_2 \in S_j(f_0) \) such that \(r_E(h_1, D^*_E) - r_E(h_2, D^*_E) = i - j \). In this manner, the set \(D^*_E = \{ e_0, e_{k-1}, f_{k+1} \} \) is the minimal edge version of doubly resolving set for \(Y_n \) with \(n = 2k, k \geq 3 \) and hence Lemma 3.1 holds.

Lemma 3.2. \(\psi_E(Y_n) = 3 \), for \(n = 2k+1, k \geq 3 \).
Table 6. Vectors of edge metric coordinates for Y_n, $n = 2k$, $k \geq 3$

i	$S_i(f_0)$	$D_E^* = \{e_0, e_k, f_{k+1}\}$
0	f_0	$(1, k, k)$
1	e_0	$(0, k - 1, k)$
	g_0	$(2, k, k)$
	e_{n-1}	$(1, k, k - 1)$
	g_{n-1}	$(2, k + 1, k - 1)$
2	f_1	$(1, k - 1, k + 1)$
	e_1	$(1, k - 2, k)$
	g_1	$(2, k - 1, k)$
	f_{n-1}	$(2, k, k - 1)$
	e_{n-2}	$(2, k - 1, k - 2)$
	g_{n-2}	$(3, k, k - 2)$
$3 \leq i \leq k$	f_{i-1}	$(i - 1, k + 1 - i, k + 3 - i)$
	e_{i-1}	$(i - 1, k - i, k + 2 - i)$
	g_{i-1}	$\begin{cases} (k, 2, 2), & \text{if } i = k; \\ (i, k + 1 - i, k + 2 - i), & \text{if } i < k. \end{cases}$
	f_{n+1-i}	$\begin{cases} (i, k + 2 - i, k + 1 - i), & \text{if } i < k \end{cases}$
	e_{n-i}	$\begin{cases} (i, k + 1 - i, k - i), & \text{if } i < k \end{cases}$
	g_{n-i}	$\begin{cases} (k + 1, 2, 1), & \text{if } i = k; \\ (i, k + 2 - i, k - i), & \text{if } i < k \end{cases}$

Proof. The Table 7 demonstrate that the edge version of representations of Y_n in relation to the set $D_E^* = \{e_0, e_k, g_{k+2}\}$ in a different way.
Table 7. Vectors of edge metric coordinates for Y_n, $n = 2k + 1$, $k \geq 3$

i	$S_i(f_0)$	$D_E = \{e_0, e_k, g_{k+2}\}$
0	f_0	$(1, k+1, k-1)$
1	e_0	$(0, k, k)$
	g_0	$(2, k+1, k-1)$
	e_{n-1}	$(1, k, k-1)$
	g_{n-1}	$(2, k+1, k-2)$
2	f_1	$(1, k, k)$
	e_1	$(1, k-1, k+1)$
	g_1	$(2, k, k)$
	f_{n-1}	$(2, k, k-2)$
	e_{n-2}	\(\begin{cases} (2, 2, 2), & \text{if } k = 3; \\ (2, k-i, k-2), & \text{if } k < 3. \end{cases}\)
	g_{n-2}	$(3, k, k-3)$
3 \leq i \leq k	f_{i-1}	$(i-1, k+2-i, k+4-i)$
	e_{i-1}	$(i-1, k+1-i, k+4-i)$
	g_{i-1}	$(i, k+2-i, k+3-i)$
	f_{n+1-i}	\(\begin{cases} (i, k+2-i, k-i), & \text{if } i+1 \leq k \\ (k, 1, 2), & \text{if } i = k; \end{cases}\)
	e_{n-i}	\(\begin{cases} (i, 2, 2), & \text{if } i + 1 = k; \\ (i, k+1-i, k-i), & \text{if } i + 1 < k \end{cases}\)
	g_{n-i}	\(\begin{cases} (k+1, 2, 1), & \text{if } i = k; \\ (i+1, k+2-i, k-1-i), & \text{if } i + 1 \leq k \end{cases}\)
$i = k + 1$	f_k	$(k, 1, 3)$
	e_k	$(k, 0, 3)$
	g_k	$(k+1, 2, 2)$
	f_{k+1}	$(k+1, 1, 2)$
Now from Table 7, as $e_0 \in D_E^*$, so the first edge version of metric coordinate of the vector of $f_0 \in S_i(f_0)$ is equal to 1. Similarly for each $i \in \{1, 2, 3, \ldots, k+1\}$, one can easily find that here are no two edges $h_1, h_2 \in S_i(f_0)$ such that $r_E(h_1, D_E^*) - r_E(h_2, D_E^*) = 0$. Likewise, for every $i, j \in \{1, 2, 3, \ldots, k+1\}, i \neq j$, there are no two edges $h_1 \in S_i(f_0)$ and $h_2 \in S_j(f_0)$ such that $r_E(h_1, D_E^*) - r_E(h_2, D_E^*) = i - j$. Like so, the set $D_E^* = \{e_0, e_k, g_{k+2}\}$ is the minimal edge version of doubly resolving set for Y_n with $n = 2k + 1$, $k \geq 3$ and consequently Lemma 3.2 holds.

\[\square\]

It is displayed from the whole technique that $\psi_E(Y_n) = 3$, for $n \geq 6$. We state the resulting main theorem by using Lemma 3.1 and Lemma 3.2 as mentioned below;

Theorem 3.3. Let Y_n be the prism graph for $n \geq 6$. Then $\psi_E(Y_n) = 3$.

4. **Conclusion**

In this article, we computed the minimal edge version of doubly resolving sets and its cardinality $\psi_E(G)$ by considering G as a family of n-sunlet graph S_n and prism graph Y_n. In case of n-sunlet graphs, the graph is interesting to consider in the sense that its edge version of metric dimension $\dim_E(S_n)$ is dependent on the parity of n for both even and odd cases. The cardinality $\psi_E(S_n)$ of minimal edge version of doubly resolving set of n-sunlet graph S_n is independent from the parity of n. In the case of prism graph Y_n, the edge version of metric dimension $\dim_E(Y_n)$ and the cardinality $\psi_E(Y_n)$ of its minimal edge version of doubly resolving set are same for every $n \geq 6$.

Open Problem 4.1. Compute edge version of doubly resolving sets for some generalized Petersen graphs.
References

[1] Z. Beerliova, F. Eberhard, T. Erlabach, A. Hall, M. Hoffmann, M. Mihalak and L.S. Ram, Network discovery and verification. IEEE J. Sel. Area. Commun. 24, 2168-2181. 2006.
[2] F. Buckley, Mean distance in line graphs, Congr. Numer., 32, 153-162. 1981.
[3] J. Cceres, C. Hernado, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, and D.R. Wood, On the Metric Dimension of Cartesian Products of Graphs. SIAM Journal on Discrete Mathematics. 21(2), 423-441. 2007.
[4] M. Cngalovic, J. Kratica, V. Kovacevic-Vujcic and M. Stojanovic, Minimal doubly resolving sets of prism graphs. Optimization 62, 1037-1043. 2013.
[5] I. Gutman, Distance of line graphs, Graph Theory Notes New York, 31, 49-52. 1996.
[6] I. Gutman and L. Pavlovic, More on distance of line graphs, Graph Theory Notes New York, 33, 14-18. 1997.
[7] I. Gutman and E. Estrada, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci., 36, 541-543. 1996.
[8] I. Gutman and Z. Tomovic, On the application of line graphs in quantitative structure- property studies, J. Serb. Chem. Soc., 65, 577-580. 2000.
[9] I. Gutman, Edge versions of topological indices, in: I. Gutman and B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications II, Univ. Kragujevac, Kragujevac, 03-20. 2010.
[10] F. Harary and R.A. Melter, On the metric dimension of a graph. Ars Combin. 2, 191-195. 1976.
[11] S. Khuller, B. Raghavachari, A. Rosenfeld: Landmarks in graphs. Discrete Appl. Math. 70(3), 217229. 1996.
[12] J. Kratica, V. Kovacevic-Vujcic, M. Cngalovic, Computing minimal doubly resolving sets of graphs. Comput. and Oper. Res. 36, 2149-2159. 2009.
[13] J. Kratica, V. Kovacevic-, M. Cngalovic and M. Stojanovic, Minimal doubly resolving sets and the strong metric dimension of some convex polytope, Appl. Math. Comput. 218, 9790-9801. 2012.
[14] J. Kratica, V. Kovacevic-, M. Cngalovic and M. Stojanovic, Minimal doubly resolving sets and the strong metric dimension of Hamming graphs. Appl. Anal. Discrete Math. 6, 63-71. 2012.
[15] K. Liu and N. Abu-Ghazaleh, Virtual coordinate backtracking for void transversal in geographic routing. In: T Kunz, S.S Ravi (Eds.), Lecture Notes on Computer Science, 4104, 46-59. 2006.
[16] R. Nasir, S. Zafar, Z. Zahid, Edge metric dimension of graphs, in press Ars Combin.
[17] H. S. Ramane and I. Gutman, Counter examples for properties of line graphs of graphs of diameter two, Kragujevac J. Math., 34, 147-150. 2010.

[18] H. S. Ramane, A. B. Ganagi and I. Gutman, On a conjecture of the diameter of line graphs of graphs of diameter two, Kragujevac J. Math., 36, 59-62. 2012.

[19] P.J. Slater, Leaves of trees. Proc. of the 6th Southeastern Conference on Combinatorics, Graph theory and Computing, Congr. Number. 14, 549-559. 1975.

University of Management and Technology (UMT), Lahore Pakistan

E-mail address: m.ahmad150092@gmail.com
E-mail address: sohailahmad04@gmail.com
E-mail address: zohaib_zahid@hotmail.com