1. Introduction

The problem of Critical Infrastructure (CI) and its security, especially the resilience assessment of the most important elements and services of infrastructure systems and their efficient protection is a topical problem nowadays. Despite the numerous publications [1], [2], [3] and proposed approaches [4], [5], one cannot apply any universally accepted approach to understand the relations between individual infrastructures. The crucial problem here is how to identify the potential CI elements, based on their parameters and properties or mutual relations. Several influential papers [1], [2], [3], [6], [7] focus on identification methodology of critical sections and elements of the transport infrastructure. The Slovak methodology of the national and the European CI elements determination [8] is regulated by the Act 45/2011 Coll. on Critical Infrastructure [9]. The Government of the Slovak Republic (hereinafter SR), based on the proposal of the Slovak Ministry of Interior, according to § 4 letter c) of the Act No. 45/2011 Collection of Laws on critical infrastructure, determined the so-called sector criteria, European sector criteria, cross-sectional criteria and European cross-sectional criteria that are at present classified. Due to this reason, the proposal of procedures for objective determination of the set of the so-called “potential CI elements” is an important objective not only of field experts, but in academic environment, as well. The paper focuses on the problem of identification of important infrastructure elements in the transportation sector - railway sub-sector. It contains characteristics and main features of the proposed theoretical approach to identification of importance of defined typological elements of the transport infrastructure. By applying the original developed procedure, it is possible to decide objectively about the structure of the subset of potential CI elements in the railway sub-sector. At present, a respective software support for its practical application is being developed.

2. The current state of the railway infrastructure elements significance valuation

The main objectives of all participating countries of the EPCIP (European Program for Critical Infrastructure Protection) [10], in the transportation sector are to identify the most important elements of transport infrastructure, to reveal and assess their risks that can possibly negatively affect the transportation system functioning and also to prepare efficient protection measures. However, the EPCIP countries often apply different procedures for selection of significant infrastructure elements and their risk and resilience assessment. Nowadays,
it is possible to use a wide variety of different methods for risk assessment or comprehensive parametric assessment of infrastructure element resilience. The CI experts are continuously creating or modifying approaches that enable them to conduct more specific assessment of system parameters of selected groups of elements, the so-called typological objects. They have been frequently involved in designing procedures for selecting potential CI elements, identifying the active factors, assessing the risk level and proposing measures for protection of the most significant/important CI systems and services [11].

The European cross-sectional criteria are identical in all the participating countries, but they are not defined clearly, e.g. by determining the limit values of observed parameters. The cross-sectional criteria mostly focus on failure impact of a significant infrastructure element only. On the contrary, the sector criteria in the railway sub-sector (but also in other transport sub-sectors) do not primarily focus on the assessment of an element failure impact, but they represent specific technical parameters for infrastructure element assessment. The sector criteria, except for the Czech Republic, are classified in all the EU countries and that is why it is only possible to assume and not clearly state which criteria were applied for identification and selection of the set of CI elements [4], [5], [7], [12], [13].

The approaches and methodology for identification of the CI set elements generally depend on the country as each country uses a specific methodology. Table 1 shows a basic comparison of approaches used in various countries.

Table 1: An example of the hazardous events

Methodical / procedure	Slovakia - Risk analysis in sector Transport	Czech rep. - CritInfo	Germany - SECMAN	USA - RAMCAP	Denmark - RVA	Germany - SeRoN
Sector / sub-sector of Critical infrastructure	Road and railway transport subsector	Transport - all subsectors	Road transport			
Approach to determine	Sections, objects	Sections, objects	Sections, objects	Particular element	Particular element	Sections, objects
Determination of criteria	Yes	Yes	Partially	No	No	Partially
Evaluation of criteria	Threshold limits	Point scale	Qualitative	Not defined	Not defined	Qualitative
Risk assessment	Yes	Yes	Partially	Yes	Yes	Yes

The procedure is based on the assessment according to [14], [15] and applies multi-criteria assessment. The purpose of the multi-criteria assessment of selected sections and objects is to select the most significant ones from the point of view of maintaining the railway operability [16]. The selection is conducted using the assessment of a section or an object following
PHASE 1: Assessment on the section level - line infrastructure elements

The aim of the first phase of the assessment procedure is to identify the most important sections of railway track in the area of interest and to determine the Index of Section Importance I_U.

In the proposed procedure, the selected sections are assessed according to five criteria (K1 – K5) that are assigned points following the scale designed by authors. The pairwise comparison makes possible to state the order of importance of the assessment criteria for sections. The following order of importance of the section criteria is used:

- K1 = section performance
- K2 = section category
- K4 = occurrence of important typological elements
- K5 = deviation from the orthodrome
- K3 = traction on section

Naturally, the individual assessment criteria could become a subject of discussion. For example, the section performance does not have to be the most important criterion. From the point of view of maintaining primary functions of the state, it is important what is being transported in a given section. The load of 50 000 t of cars would not be of the same importance for the state as 50 000 t of coal for a power plant. The outcome of the first phase is the list of all sections of the railway infrastructure in the area of interest and the corresponding value of the Index of section importance I_U which can be expressed as follows:

$$I_U = \sum_{i=1}^{5} \left(\frac{K_i \times w_i}{5} \right)$$

where K_i is point value of the ith criterion for a given section, w_i is weight coefficient of the ith criterion. The theoretical benchmark...
Phase 1: Assessment on the network level
Identification of significant sections

- Map data
- Define the area of railway infrastructure
- Divide the network on a track sections
- Multi-criteria decision making
- “Index of section importance” quantification for each section
- To assess all sections?
- Use a scale of decision
- Section suits?
- The list of valued sections with significance indexes

Phase 2: Assessment on the object level

Step 1: Identification of significant objects

1A “General index” quantification for object
1B “Specific index” quantification for object
1C “Index of importance” quantification for object

To assess further all objects?
Using decision-making scales for selection
Object suits?
The object is not further evaluated

Step 2: Determination of the total criticality index for object

“Overall index of criticality” quantification for object

All sections and objects were evaluated?
Complex table of sections and objects criticality
The list of all sections and objects on railway infrastructure in concerned area

List of objects selected according to the “section index” and “total significant index” values

Overview of selected objects
Determining the threshold for “Overall index of criticality” value
The list of CI potential elements in railway subsector

End

Figure 2 Procedure for CI elements identification in railway sub-sector
Based on the assigned points VK_i and the weight coefficient of the criterion w_i, for the General index of object importance the following relation is valid:

$$I_V = \frac{\sum_i (VK_i \times w_i)}{5} = \frac{63}{5} = 12.6$$

where VK_i is value of the i-th criterion for the given object, w_i is weight coefficient of the i-th criterion.

B. Specific index of object importance I_S: detailed analysis of an object for the purpose of defining its typology and attributes. Based on assessment of specific parameters of typological objects – bridges, tunnels, stations, terminals or other objects, it is possible to determine the value of the Index I_S, following the predefined matrices of individual groups of typological groups (Figure 3).

For each typological group, the Specific Index of Object Importance I_S is determined as:

$$I_S = \frac{\sum_i (SK_i \times w_i)}{5}$$

where SK_i is value of the i-th specific criterion for the given object, w_i is weight coefficient of the i-th criterion.

C. Summary value of the object importance: it’s called Index of object importance I_O. Here, the following relation is valid:

$$I_O = \frac{I_V + I_S}{2}$$

where I_V is the value of the General index of object importance, I_S is the value of the Specific index of object importance. The Index of object importance I_O must be determined separately for each typological group, because the specific criteria of each typological group are different, featuring different point values and different maximum value each typological object can reach. The maximum possible (reference) values of the Index of object importance I_O for each typological group are stated in Table 2.
It is thus possible to select hundreds of elements and label them as "vitally important". If financial support for security measures is not available, the fact whether the object is on the CI element list or not will not protect it against any potential threat. It also means that the value 0.75 - benchmark selected by methodology authors, cannot be understood dogmatically. A set of railway infrastructure objects acquired in the stated way needs to be further assessed applying objective risk assessment methods [19]. Based on results of the risk assessment and the resilience level assessment of the CI systems and services, it is possible to decide objectively about the size and structure of CI system in a specific sector/sub-sector on national and European level.

4. Conclusions

The procedure was designed in the way to provide an assessment of railway infrastructure on the network and object levels. The aim of this methodology is to identify important railway sections and determine values of section importance. Subsequently, it is necessary to define and assess typological objects in the section and set the values of object importance. This enables us to focus attention on prevention checks, maintenance and organizational measures for securing the desired protection level. The authors are aware of the fact that the designed procedure is only one of possible steps applicable in a comprehensive process of the CI element selection, specifically in railway infrastructure (bridges, tunnels and railway stations).

It is obvious that if the set of important elements of transport infrastructure is too large, the costs for securing prevention or subsequent protection measures will be higher. If the criterion limit for including the object to the list is set arbitrarily, (e.g. value 0.5 or 0.95), and the group of potential CI elements includes arbitrarily high number of transport infrastructure elements, the final range of carried out measures will always depend on financing possibilities of their protection. For example, in compliance with § 9, para. 4 of the Act [9], the operator of a CI element is entitled to a financial support (from the respective Ministry) to meet the duties related to performing security measures for a CI element protection. It is thus possible to select hundreds of elements and label them as "vitally important". If financial support for security measures is not available, the fact whether the object is on the CI element list or not will not protect it against any potential threat. It also means that the value 0.75 - benchmark selected by methodology authors, cannot be understood dogmatically. A set of railway infrastructure objects acquired in the stated way needs to be further assessed applying objective risk assessment methods [19]. Based on results of the risk assessment and the resilience level assessment of the CI systems and services, it is possible to decide objectively about the size and structure of CI system in a specific sector/sub-sector on national and European level.

Table 2: Maximum values of the Object importance index

Typological group	Maximal value of General index of object importance I_v	Maximal value of Specific index of object importance I_s	Maximal value of Total index of object importance I_o
Bridges	8.4	11.7	11.7
Tunnels	$I_{v\text{max}} = 15$	7.4	11.2
Railway stations	7.5	11.25	

Table 3: Scale for assessing - Overall criticality index of object

Level	Scale for assessing	Index I_K
1	Very important / Very critical	0.90 - 1.00
2	Important / Critical	0.75 - 0.90
3	Moderately important / Moderately critical	0.65 - 0.75
4	Low important / Low critical	0.50 - 0.65
5	Insignificant / not critical	0.00 - 0.50

PHASE 2 - Step 2: Calculation of the Overall Criticality Index I_K

The Overall Criticality Index I_K is determined based on the above mentioned data and is determined by the following relation:

$$I_K = \frac{I_v + I_o}{\text{max}(I_v + I_o)}$$

where I_v is a resulting value of Index of Importance for section i, I_o is a resulting value of the Index of Importance for object i, $\text{max}(I_v + I_o)$ is the maximum possible value of the sum of values of indices I_v and I_o for a particular object i. The Overall Criticality Index I_K always acquires values from the interval $<0; 1>$. The principle of identification or determination of the object importance lies in comparing the acquired number of points of the assessed object with the maximum number of points a given typological object is able to reach. To determine the level of criticality, a scale with value range of IK was defined according to Table 3.

In a conducted case study, the authors decided that the objects reaching values over 0.75 can be considered as objects that compose a set of potential CI elements. Why the value 0.75? Interestingly, the users can define the limit values according to their needs and according to the desired size of the set of important elements.

It is obvious that if the set of important elements of transport infrastructure is too large, the costs for securing prevention or subsequent protection measures will be higher. If the criterion limit for including the object to the list is set arbitrarily, (e.g. value 0.5 or 0.95), and the group of potential CI elements includes arbitrarily high number of transport infrastructure elements, the final range of carried out measures will always depend on financing possibilities of their protection. For example, in compliance with § 9, para. 4 of the Act [9], the operator of a CI element is entitled to a financial support (from the respective Ministry) to meet the duties related to performing security measures for a CI element
In the moment of redirecting the flow, the importance of element value changes (the criterion values for selected elements of railway infrastructure change) and the original element that seemed to be critical loses its importance. There are also problems of possible impact of replacement of the railway transport by the road transport and assessment of railway infrastructure elements in terms of their uniqueness. For example, the only 100-m-long bridge on a 100-km-long section will be of different importance than a 100-m-long bridge on a 20-km-long section with 5 other bridges, even if the tracks were loaded identically.

The most significant deficiency of the CI element determination and protection is the fact that no EU document states exhaustively the required level of the CI element protection in the transport sector, either on the European or national level. The need is even more obvious if we realize that it was the EU that started discussion on this problem. From this point of view, it is not clear what final state of element protection should be reached. There is space for more extensive research (e.g. scientific project, study, final thesis, etc.). For example, it should be possible to quantify that a railway station with more than 30 000 passengers per day must have a CCTV and a security guard service and a different station with more than 15 000 passengers per day at least a CCTV, etc. A similar system can be adopted as a protection measure for other typological elements, e.g. bridges, tunnels, etc. Our research has revealed other areas that need to be focused on in terms of functionality and versatility:

- adding more typological objects to typological groups and determination of their specific parameters and criteria (e.g. energy supplying systems, controlling systems, etc.),
- detailed definition of main criteria and vulnerability analysis for each object type in each typological group,
- completing the next process step: comparison of objects based on another index that would consider some risk factors of objects,
- creation of software tool enabling automated assessment of object criticality that would be based on developed procedure and current railway infrastructure databases,
- cooperation with GIS systems in presentation of object location in the area of interest and criticality parameters of the analyzed sections / objects on a map.

Systematic solution of the above mentioned areas of problems and partial activities in the processes of identification and importance assessment and object resilience in infrastructure networks can contribute to more efficient processes of security management and protection of important sections and elements of transport infrastructure.

Acknowledgements

This work was supported by project 1/0240/15 “Process model of critical infrastructure safety and protection in the transport sector” and by the project V120152019049, “Dynamic Resilience Evaluation of Interrelated Critical Infrastructure Subsystems”.

References

[1] BAKER, J.: A Vulnerability Assessment Methodology for Critical Infrastructure Facilities [online]. James Madison University, 2005. Available: phttp://www.jmu.edu/iiia/wm_library/Vulnerability_Facility_Assessment_05-07.pdf.
[2] KAUNDINYA, I., MAYER, M., KRIEGER, J., ROTHENPIELER, S.: Security of Road Transport Networks – Identifying and Assessing Critical Road Infrastructure [online]. Transport research area, Paris, 2014. Available: http://tra2014.traconference.eu/papers/pdfs/TRA 2014_Fpaper_17827.pdf.
[3] LOVECEK, T., REHAK, D., SISER, A., HROMADA, M.: Resistance of Passive Security Elements as a Quantitative Parameter Influencing the Overall Resistance and Resilience of a Critical Infrastructure Element. The tenth International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2016), France, 200-205, 2016.
[4] ONDREJKA, R.: Risk Analysis of Transport Sector – Subsectors Road Transport and Rail Transport (in Slovak). Final report. Research Institute of Transport, Zilina, p. 844, 2014.
[5] FUCHS, P., SOUSEK, R., ZAJICEK, J., HAVLICEK, J.: Transport Infrastructure as Element of the State Critical Infrastructure: Assessment of Criticality in Czech Republic (in Czech). VSBM Kosice, p. 85, 2011.
[6] SVENTEKOVA, E., LUSKOVA, M., DVORAK, Z.: Use of Network Analysis in Conditions of Critical Infrastructure Risk Management. The 20th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2016), USA, II., 247-250, 2016.
[7] NOVOTNY, P., MARKUCI, J., TITKO, M., SLIVKOVA,S., REHAK, D.: Practical Application of a Model for Assessing the Criticality of Railway Infrastructure Elements. Proceedings of scientific works, VSB – Technical university Ostrava, 26-32, 2015.
[8] Council of the EU, 2008. Non-Binding Guidelines for the Application of the Directive on the Identification and Designation of European Critical Infrastructures and the Assessment of the Need to Improve Their Protection [online]. Available: http://register.consilium.europa.eu/doc/srv?l=EN&f=ST%2015616%202008%20INIT [accessed: 2017-05-18].
[9] Act 45/2011 Collection of Laws on Critical Infrastructure (in Slovak) [online]. Bratislava, 2011. Available: http://www.zakonypreldi.sk/zz/2011-45.
[10] European Programme for Critical Infrastructure Protection [online]. Available: http://eur-lex.europa.eu/legal-content/SK/TXT/?uri=URISERV%3A114EC.
[11] Council Directive 2008/114/EC on the Identification and Designation of European Critical Infrastructures and the Assessment of the Need to Improve Their Protection [online]. Available: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0114.
[12] RAMCAP Framework. ASME Innovative Technologies Institute [online]. 2006. Available: http://www.personal.psu.edu/jsd222/SRA311/RAMCAPframework_Risk_Analysis_and_Manage.pdf.
[13] SECMAN Project [online]. Available: http://www.secmann-project.eu/.
[14] JANUSOVA, L.: Increasing the Objectivity of Identification Critical Infrastructure Elements in Transportation Sector (in Slovak). Dissertation work, University of Zilina, p. 149, 2013.
[15] JANUSOVA, L., LEITNER, B.: Procedure to Identification of Critical Infrastructure Potential Elements in Railway Sub-Sector (in Slovak). Crisis Management, 2, 5-13, 2015.
[16] BREZNICKA, A., CHOVANEK, A., STODOLA, J.: Discrete Simulation with a Variable Time Step in Assessing Costs to Mission. International Conference on Military Technologies (ICMT 2015), Czech Republic, 103-106, 2015.
[17] DVORAK, Z., LUSKOVA, M., HRUZA, P., SOUSEK, R.: Complex Automated Information System for Remote Management of Crisis Situations in Rail Transport. Communications: Scientific Letters of the University of Zilina, 15(3), 83-88, 2013.
[18] SAATY, T. L: Analytic Hierarchy Process. McGraw-Hill, New York, USA, 1980.
[19] SAATY, T. L.: Decision-Making with the AHP: Why is the Principal Eigenvector Necessary. European Journal of Operational Research, 145(1), 85–91, 2003.