‘KnuckleHull-VNR’, a Crowder-type Southernpea Resistant to Blackeye Cowpea Mosaic Virus and Root-knot Nematode

Richard L. Ferry1 and Judy A. Thies2
U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414-5334

A. Graves Gillaspie2
Plant Genetic Resources Conservation Unit, Agricultural Research Service, U.S. Department of Agriculture, 1109 Experiment Street, Griffin, GA 30223-1797

Additional index words. Vigna unguiculata, cowpea, soil-borne pathogen, Meloidogyne, disease resistance, vegetable breeding

‘KnuckleHull-VNR’ is a new southernpea [Vigna unguiculata (L.) Walp.] released 18 Oct. 2002 by the U.S. Dept. of Agriculture, Agricultural Research Service (USDA–ARS). ‘KnuckleHull-VNR’ was developed as a replacement for ‘Knuckle Purple Hull’, a crowder-type cultivar widely grown by home gardeners throughout the southeastern United States for many years despite susceptibility to blackeye cowpea mosaic virus (BICMV) and root-knot nematodes (Meloidogyne spp.). The major attributes of the new cultivar are its excellent resistances to BICMV and root-knot nematodes.

Origin

Efforts to develop ‘KnuckleHull-VNR’ were initiated in 1997 with the field evaluation at Charleston, S.C., of a collection of 61 knuckle purple hull-type breeding lines received from Auburn Univ. at the closeout of its southernpea breeding program. Exact pedigrees and degree of inbreeding of the original lines are unknown, but each line was believed to be the result of a cross between US-427 and an Auburn Univ. BICMV-resistant, knuckle purple hull-type breeding line. US-427 is a root-knot nematode resistant breeding line developed at the U.S. Vegetable Laboratory and released in 1987; it is the product of a recurrent backcross breeding effort (five backcrosses) to incorporate the dominant Rk gene for root-knot nematode resistance into ‘Knuckle Purple Hull’ (Ferry and Dukes, 1988). Patel (1985) noted that ‘Worthmore’ was used in the Auburn Univ. southernpea breeding program to improve ‘Knuckle Purple Hull’ for BICMV resistance; Walker and Chambliss (1981) reported that a single recessive gene (blc) controls BICMV resistance in ‘Worthmore’. The 61 lines in the 1997 field planting were subjected to a selection effort between and within lines to develop homozygous, knuckle purple hull-type populations. Progeny of single plants selected from the 1997 field planting were grown in a Winter 1997–98 greenhouse planting and an additional cycle of single-plant selection was completed. ‘KnuckleHull-VNR’ originated as the bulk of the progeny of one of the Winter 1997–98 single-plant selections grown in a Spring 1998 greenhouse planting.

Description

Plant and pod characteristics of ‘KnuckleHull-VNR’ are quite similar to those of ‘Knuckle Purple Hull’ (Fig. 1). ‘KnuckleHull-VNR’ has a high bushy growth habit and produces dry pods at Charleston, S.C., in 68 to 74 d. Flower color is purple (completely pigmented). There is extensive purple pigmentation on the stems, branches, and peduncles, but only intermediate pigmentation on petioles. ‘KnuckleHull-VNR’ has smooth, nonglossy, green-colored leaves. Pod set is concentrated, and pods are borne above foliage level in a scattered fashion. Dry pods are attached to the peduncles in a pendant fashion. Each peduncle typically produces two pods.

A typical ‘KnuckleHull-VNR’ pod is slightly curved, 20 cm long, and contains 14 peas (Fig. 2). Pod color is light green (with purple pigmentation at both ends) when immature, purple (glossy) at optimum green-shell maturity, and dark purple (nonglossy) when dry. Fresh peas have a semi-crowder to crowder shape and a light green color. Dry ‘KnuckleHull-VNR’ peas have a brown-colored, smooth seedcoat, and are smaller than ‘Knuckle Purple Hull’ (weight per 100 dry peas: ‘KnuckleHull-VNR’, 15.2 g, and ‘Knuckle Purple Hull’, 19.7 g) (Table 1).

Results of 3 years (1999–2001) of replicated field testing at Charleston, S.C., indicate yield potential of ‘KnuckleHull-VNR’ is similar to that of ‘Knuckle Purple Hull’ (‘KnuckleHull-VNR’ yield of dry peas over the entire 3-year period of replicated testing was 107% of the yield of ‘Knuckle Purple Hull’) (Table 1). ‘KnuckleHull-VNR’ was tested as US-1035 throughout the southern United States in the 2000 and 2001 Regional Southernpea Cooperative Trials. The results of an inoculated greenhouse test and 3 years (1999–2001) of inoculated (susceptible spreader row technique) field tests conducted at Griffin, Ga., using enzyme-linked immunosorbant assay methodology indicate that ‘KnuckleHull-VNR’ is highly resistant to BICMV. This demonstrated resistance to BICMV indicates that ‘KnuckleHull-VNR’ is also resistant to cowpea stunt, an extremely devastating viral disease caused by a synergistic effect of BICMV and cucumber mosaic virus (Pio-Ribeiro et al., 1978).

‘KnuckleHull-VNR’ is homozygous for the Rk gene that conditions resistance to southern root-knot nematode (M. incognita (Kofoid and White) Chitwood], Javanese root-knot nematode [M. javanica (Treub.) Chitwood], and northern root-knot nematode [M. hapla Chitwood] (Ferry and Dukes, 1980). A South Carolina isolate of M. incognita race 3 was used to bioassay for presence of the Rk gene during the development of ‘KnuckleHull-VNR’.

Received for publication 3 Dec. 2002. Accepted for publication 26 Mar. 2003. We thank Oyette Chambliss and Gene Hunter for providing seed of knuckle purple hull-type southernpea breeding lines at the closeout of the breeding program at Auburn Univ. The technical assistance of F.P. Maguire, E.L. Corley, Jr., and S.W. Miller is gratefully acknowledged.

1Research Plant Pathologist.
2Research Geneticist.
3Research Plant Pathologist.

HORTSCIENCE, VOL. 39(1), FEBRUARY 2004

Fig. 1. Space-planted field (single plants spaced 90 cm apart on beds 102 cm apart) of ‘KnuckleHull-VNR’ southernpea.
and results of all greenhouse tests indicated that resistance exhibited by 'KnuckleHull-VNR' is equal to the resistance exhibited by the widely grown crowder-type cultivar Mississippi Silver. Numbers of galls and egg masses on the roots were always minimal. Results of a 1999 replicated test conducted in a soil-filled greenhouse bench infested with *M. incognita* showed that fresh 'KnuckleHull-VNR' roots yielded 87% fewer *M. incognita* eggs/gram than did fresh 'Knuckle Purple Hull' roots (Table 2).

'KnuckleHull-VNR' is recommended for use by home gardeners who are concerned about yield losses to their 'Knuckle Purple Hull' plantings caused by BICMV, cowpea stunt, and root-knot nematodes. BICMV and cowpea stunt can cause devastating yield losses to southernpeas in home gardens, and plant resistance is the only feasible method of control. Home gardeners often do not have easy access to needed nematicides or garden soil. Results of all greenhouse tests indicated that resistance exhibited by 'KnuckleHull-VNR' is equal to the resistance exhibited by the widely grown crowder-type cultivar Mississippi Silver. Numbers of galls and egg masses on the roots were always minimal. Results of a 1999 replicated test conducted in a soil-filled greenhouse bench infested with *M. incognita* showed that fresh 'KnuckleHull-VNR' roots yielded 87% fewer *M. incognita* eggs/gram than did fresh 'Knuckle Purple Hull' roots (Table 2).

'KnuckleHull-VNR' is recommended for use by home gardeners who are concerned about yield losses to their 'Knuckle Purple Hull' plantings caused by BICMV, cowpea stunt, and root-knot nematodes. BICMV and cowpea stunt can cause devastating yield losses to southernpeas in home gardens, and plant resistance is the only feasible method of control. Home gardeners often do not have easy access to needed nematicides or garden soil. Results of all greenhouse tests indicated that resistance exhibited by 'KnuckleHull-VNR' is equal to the resistance exhibited by the widely grown crowder-type cultivar Mississippi Silver. Numbers of galls and egg masses on the roots were always minimal. Results of a 1999 replicated test conducted in a soil-filled greenhouse bench infested with *M. incognita* showed that fresh ‘KnuckleHull-VNR’ roots yielded 87% fewer *M. incognita* eggs/gram than did fresh ‘Knuckle Purple Hull’ roots (Table 2).

'KnuckleHull-VNR' is recommended for use by home gardeners who are concerned about yield losses to their ‘Knuckle Purple Hull’ plantings caused by BICMV, cowpea stunt, and root-knot nematodes. BICMV and cowpea stunt can cause devastating yield losses to southernpeas in home gardens, and plant resistance is the only feasible method of control. Home gardeners often do not have easy access to needed nematicides or garden soil. Results of all greenhouse tests indicated that resistance exhibited by ‘KnuckleHull-VNR’ is equal to the resistance exhibited by the widely grown crowder-type cultivar Mississippi Silver. Numbers of galls and egg masses on the roots were always minimal. Results of a 1999 replicated test conducted in a soil-filled greenhouse bench infested with *M. incognita* showed that fresh ‘KnuckleHull-VNR’ roots yielded 87% fewer *M. incognita* eggs/gram than did fresh ‘Knuckle Purple Hull’ roots (Table 2).

Availability

Breeder’s seed of ‘KnuckleHull-VNR’ has been released to seed producers. Small samples of ‘KnuckleHull-VNR’ breeder’s seed are available from R.L.F. for distribution to interested research personnel. Genetic material of this release will be deposited in the National Plant Germplasm System where it will be available for research purposes, including the development and commercialization of new cultivars. It is requested that appropriate recognition of source be given when this germplasm contributes to research or development of a new breeding line or cultivar.

Literature Cited

Fery, R.L. and P.D. Dukes. 1980. Inheritance of root-knot nematode resistance in cowpea (*Vigna unguiculata* (L.) Walp.) J. Amer. Soc. Hort. Sci. 105:671–674.

Fery, R.L. and P.D. Dukes. 1988. US-311 and US-427 southernpea breeding lines. HortScience 23:643–644.

Hussey, R.S. and K.R. Barker. 1973. A comparison of methods of collecting inocula of *Meloidogyne* spp., including a new technique. Plant Dis. Rptr. 57:1025–1028.

Patel, P.N. 1985. Fungal, bacterial and viral diseases of cowpea in the USA, p. 205–213. In S.R. Singh and K.O. Rachel (eds.). Cowpea research, production and utilization. Wiley, Chichester, U.K.

Pio-Ribeiro, G., S.D. Wyatt, and C.W. Kuhn. 1978. Cowpea stunt: A disease caused by a synergistic interaction of two viruses. Phytopathology 68: 1260–1265.

Walker, C.A., Jr., and O.L. Chambliss. 1981. Inheritance of resistance to blackeye cowpea mosaic virus in *Vigna unguiculata* (L.) Walp. J. Amer. Soc. Hort. Sci. 106:410–412.