Child–Pugh Versus MELD Score for the Assessment of Prognosis in Liver Cirrhosis
A Systematic Review and Meta-Analysis of Observational Studies

Ying Peng, MS, Xingshun Qi, MD, and Xiaozhong Guo, MD, PhD

Abstract: Child–Pugh and MELD scores have been widely used for the assessment of prognosis in liver cirrhosis. A systematic review and meta-analysis aimed to compare the discriminative ability of Child–Pugh versus MELD score to assess the prognosis of cirrhotic patients. PubMed and EMBASE databases were searched. The statistical results were summarized from every individual study. The summary results under receiver operating characteristic curves, sensitivities, specificities, positive and negative likelihood ratios, and diagnostic odds ratios were also calculated. Of the 1095 papers initially identified, 119 were eligible for the systematic review. Study population was heterogeneous among studies. They included 269 comparisons, of which 44 favored MELD score, 16 favored Child–Pugh score, 99 did not find any significant difference between them, and 110 did not report the statistical significance. Forty-two papers were further included in the meta-analysis. In patients with acute-on-chronic liver failure, Child–Pugh score had a higher sensitivity and a lower specificity than MELD score. In patients admitted to ICU, MELD score had a smaller negative likelihood ratio and a higher specificity than Child–Pugh score. In patients undergoing surgery, Child–Pugh score had a higher specificity than MELD score. In other subgroup analyses, Child–Pugh and MELD scores had statistically similar discriminative abilities or could not be compared due to the presence of significant diagnostic threshold effects.

Although Child–Pugh and MELD scores had similar prognostic values in most of cases, their benefits might be heterogeneous in some specific conditions. The indications for Child–Pugh and MELD scores should be further identified.

Editor: Huitao Fan.
Received: October 14, 2015; revised: January 7, 2016; accepted: January 29, 2016.
From the Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang (YP, XQ, XG); and Postgraduate College, Dalian Medical University, Dalian, China (YP). Correspondence: Xinghuan Qi, Department of Gastroenterology, General Hospital of Shenyang Military Area, No. 83 Wenhua Road, Shenyang 110840, China (e-mail: guo_xiao_zhong@126.com, xingshunqi@126.com).

YP and XQ contributed equally to this work.
XQ conceived the study, performed the literature search and selection, data extraction, quality assessment, and statistical analysis, and drafted the manuscript; YP: performed the literature search and selection, data extraction, quality assessment, and statistical analysis; XG: gave critical comments and revised the manuscript. All authors have made an intellectual contribution to the manuscript and approved the submission. This study was partially supported by the grant from the National Natural Science Foundation of China (no. 81500474) and Natural Science Foundation of Liaoning Province (no. 2015020409).

The authors have no conflicts of interest to disclose. Supplemental Digital Content is available for this article. Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

Medicine • Volume 95, Number 8, February 2016
www.md-journal.com | 1

INTRODUCTION

Liver cirrhosis has a high morbidity and mortality, which is the 14th most common cause of death all over the world and the 4th in central Europe. It leads to 1.03 million deaths per year in the world,1 and 170,000 deaths per year in Europe.2 The prevalence of liver cirrhosis may be underestimated, because patients at the early phase of liver cirrhosis are often asymptomatic, and most of patients with liver cirrhosis are admitted due to its related complications. The 1-year mortality of liver cirrhosis varies greatly from 1% to 57% according to the complications.3 It is necessary to use the prognostic models to identify high-risk patients.

Child–Pugh score was firstly proposed by Child and Turcotte to predict the operative risk in patients undergoing portosystemic shunt surgery for variceal bleeding. The primary version of Child–Pugh score included ascites, hepatic encephalopathy (HE), nutritional status, total bilirubin, and albumin. Pugh et al4 modified the Child–Pugh classification by adding prothrombin time or international normalized ratio (INR) and removing nutritional status. Child–Pugh score has been widely used to assess the severity of liver dysfunction in clinical work.

Model for end-stage liver disease (MELD) score was initially created to predict the survival of patients undergoing transjugular intrahepatic portosystemic shunts (TIPS).5 The primary version of MELD score included the etiology of liver cirrhosis, but this variable was unnecessary.6 The present version of MELD score incorporated only 3 objective variables, including total bilirubin, creatinine, and INR. Currently, it has been used to rank the priority of liver transplantation (LT) candidates.

Child–Pugh and MELD scores have been widely used to predict the outcomes of cirrhotic patients. However, they have some drawbacks. First, 2 variables (i.e., ascites and HE) included in Child–Pugh score are subjective and may be variable according to the physicians’ judgment and the use of diuretics and lactulose. Second, INR, which is one component of both Child-Pugh and MELD scores, does not sufficiently reflect coagulopathy and consequently liver function in
Liver cirrhosis. Three, there is an interlaboratory variation in INR value.6

Until now, a large number of studies compared their discriminative abilities. But the results remained controversial. Some studies favored the Child–Pugh score, but the others were on the opposite side. The aim of this systematic review and meta-analysis was to compare the discriminative ability of Child–Pugh versus MELD score for the assessment of prognosis in cirrhotic patients.

METHODS

This work is registered on PROSPERO database (registration number: CRD42015019700). Because this work is a systematic review of literatures, the ethical approval and patient consent are not necessary.

Study Search and Selection

We searched the PubMed and EMBASE databases. The search terms were as follows: (“Child score” or “Child–Pugh score” or “Child–Turcotte–Pugh score”) and (“MELD score” or “model for end stage liver disease score”) and (“liver cirrhosis”). The last search was performed on April 20, 2015.

The inclusion criteria were as follows: patients had been definitely diagnosed as liver cirrhosis; both Child–Pugh and MELD scores were calculated; areas under receiver operating characteristic curve of Child–Pugh versus MELD scores were compared; and sensitivity, specificity, and number of patients with endpoint events were reported. We excluded the following papers: duplicated papers; case reports; reviews; letters; commentaries; corrections; and papers unrelated to comparison of Child–Pugh and MELD scores. We did not restrict the publication years or study design.

Data Extraction

We extracted the following data: First author, study design, regions of study, the number of patients and the number of patients analyzed, age, sex, study population, etiology of cirrhosis, proportion of hepatocellular carcinoma (HCC), endpoints, cut-off value, true positive value, false positive value, false negative value, and true negative value.

Quality Assessment

Quality Assessment of Diagnostic Accuracy Studies (QUADAS) 2, a revised version of QUADAS, was used for the quality assessment.2 We obtained the detailed information of the QUADAS 2 tool from the website (www.quadas.org). There are 4 key aspects incorporated: patient selection, index test, reference standard, and flow and timing. In the former 3 aspects, the risk of bias and applicability should be evaluated. In the last one, only the risk of bias should be evaluated. The risk of bias is judged as “low,” “high,” or “unclear.” If all the answers are “yes,” it should be judged as “low” risk. If any answer is “unclear,” it should be judged as “unclear” risk. If all answers are “no,” it should be judged as “high” risk. Similarly, the applicability is classified as “low concern,” “high concern,” or “unclear concern.” If the relevant information was not given, it would be classified as “unclear concern.”

Meta-Analysis

The true positive, false positive, false negative, and true negative values were extracted and entered into the Meta-DiSc software version 1.4. If the diagnostic threshold effect was not statistically significant (P > 0.05 in the Spearman correlation test), the diagnostic accuracy would be further evaluated by a random-effects model. The summary areas under receiver operating characteristic curves (AUSROCs) with standard errors (SEs) and Q indexes with SEs, summary sensitivities, specificities, PLRs, NLRs, or DORs. The heterogeneity among studies was evaluated by Chi-square test and inconsistency index. P < 0.1 and/or I² > 50% was suggestive of considerable heterogeneity.

RESULTS

Paper Selection

Overall, 1095 papers were identified via the 2 databases. According to the eligibility criteria, 119 papers were eligible for the systematic review (Figure 1).10–128

Description of Study Characteristics

The characteristics of the 119 papers were shown in Table 1. The countries included Austria (n = 1),11 Belgium (n = 2),40,52 China (n = 26),8,16,20,21,27,30,31,33,35,59,60,66,74,84,102,109,112,117,118 Cuba (n = 1),47 Czech Republic (n = 1),44 Egypt (n = 1),51 France (n = 6),55,37,41,71,77,124 Germany (n = 7),12,48,50,92,105,111 Greece (n = 1),82 Hungary (n = 1),51 India (n = 10),19,29,39,40,67,75,76,86,98,115 Iran (n = 1),57 Italy (n = 5),22,24,43,69 Ivory Coast (n = 1),13 Japan (n = 2),57,106 Mexico (n = 1),45 Nepal (n = 1),28 Pakistan (n = 2),62,97 Poland (n = 1),88 Portugal (n = 3),23,26,63 Serbia (n = 1),19 Singapore (n = 2),72,73 South Korea (n = 17),10,15,16,32,33,35,63,66,68–70,83,99,100,103 Spain (n = 7),14,58,89,90,94,95,116 Tunisia (n = 1),73 Tur- key (n = 3),80,107,108 UK (n = 3),34,42,110 and USA (n = 11),17,35,52,79,81,85,93,101,104,118,122 The total number of patients analyzed in the included studies was 29,414. The number of patients varied from 17 to 2271.

The characteristics of study population were heterogeneous among studies. According to the clinical presentations, etiology of liver diseases, patients’ conditions, and treatment options, they were mainly classified as follows: patients presenting with acute gastrointestinal bleeding (n = 12),10,14,15,26,45,57,69,81,88,89,94,107 patients presenting with ascites (n = 2),65,96 patients presenting with HE (n = 10),19,50,58,86,110,125 patients presenting with infection, sepsis, or spontaneous bacterial peritonitis (n = 5),30,62,72,73,116 patients admitted to intensive care unit (ICU) (n = 10),34,37,42,71,78,80,107,108,110,112 patients with trauma (n = 2),35,93 patients with viral hepatitis-related liver cirrhosis alone (n = 3),27,56,79 patients with alcohol-related liver cirrhosis alone (n = 5),19,61,70,75,120 patients undergoing TIPS (n = 8),11,31,44,91,92,101,113,123 patients undergoing LT (n = 10),23,38,41,48,67,87,88,105,115,122 patients undergoing abdominal, cardiac, or other surgery/procedure (n = 13),12,17,32,36,52,63,85,99,102,104,111,114,125 and unselected patients with liver cirrhosis (n = 43),13,15,16,20–22,24,25,28,29,33,39,43,46,47,49,51–53,55,59,60,64,66,68,74,76,77,82,83,90,95,97,98,100,103,106,118,121,124,126,127 in 57 studies, the information regarding the number of
patients with HCC was lacking; 12,13,17,19,23,28,30,32,34,35,37,39,40, 42–44,48,52,57,58,60,62,63,65,67,70,71,73,75–77,79–81,83,85,87,88,91–93,99, 100,104,105,110–116,120,121,125,126 and in 20 studies, 1.9% to 52.8% of included patients were diagnosed with HCC.

Description of Statistical Results

Their statistical results were summarized in Table 2. There were 269 comparisons between MELD and Child–Pugh scores. Among 60 comparisons, a statistically significant difference ($P < 0.05$) was observed. In details, the superiority of MELD score over Child–Pugh score was observed in 44 comparisons; and the superiority of Child–Pugh score over MELD score was observed in 16 comparisons. Among 99 comparisons, no statistically significant difference ($P \geq 0.05$) was observed. Among 110 comparisons, the statistical significance was not reported.

Study Quality

The brief explanation of study quality was presented in Table 3. As for the risk of bias, 48 and 71 studies had low and unclear risks in the term of patient selection, respectively; 119 studies had low risks in the term of index tests; 117 and 2 studies had low and unclear risks in the term of reference standard, respectively; 91 and 28 studies had low and unclear risks in the term of flow and timing, respectively. As for the applicability concerns, 94 and 25 studies had low and high concerns in the term of patient selection, respectively; 2, 1, and 116 studies had low, unclear, and high concerns in the term of index test, respectively; and 1 study had the endpoint unrelated to prognosis. Finally, 42 papers were included (Figure 1). 12,14–16, 20–23,26–31,33–39,41,43–47,49–51,53–55,57–60,63,64,66,68–73,75,78,79,81– 83,85,86,88–90,92,93,95,96,99–101,103,105,106,113,114,118,120–124,126,128 because 76 studies were lacking of relevant data and 1 study had the endpoint unrelated to the prognosis. 12,14–16, 20–23,26–31,33–39,41,43–47,49–51,53–55,57–60,63,64,66,68–73,75,78,79,81– 83,85,86,88–90,92,93,95,96,99–101,103,105,106,113,114,118,120–124,126,128

Meta-Analysis

As for the meta-analysis, 77 papers were excluded because 76 studies were lacking of relevant data and 1 study had the endpoint unrelated to the prognosis. Finally, 42 papers were included (Figure 1).
First Author, year – Study Design	Regions	No. Total Pts/No. Pts Analyzed	Age, year	Male, %	Study Population	Etiology of Cirrhosis	HCC, %
An (2014) – R	South Korea	17/14	Median: 62 (56–65.5)	64.7%	Recurrent HE after embolization	HBV (52.9%) HCV (11.8%) Alcohol (29.4%) Others (5.9%)	17.0%
Angermayr (2003) – R	Austria	475/475	Mean ± SD: 56 ± 10.6	NA	Elective TIPS	Virus (14.3%) Alcohol (67.4%) Cholestatic (1.1%) Others (5.9%) Missing data (12%)	0.0%
Arif (2012) – R	Germany	109/109	Mean ± SD: women: 64.6 ± 10.8 men: 64.0 ± 10.6	75.2%	Patients who undergo heart surgery with cardiopulmonary bypass	Alcohol (55.0%) Cryptogenic (25.7%) Cardiac (6.4%) Viral (5.5%) PBC (2.8%) Other origin (4.6%)	NA
Attia (2008) – R	Ivory Coast	172/172	Mean ± SD: 47.5 ± 13	69.8%	Black African patients with cirrhosis	HBV (45.3%) HCV (10%) Alcohol + HBV/HCV (23.8%) Unknown (20.9%)	NA
Augustin (2009) – P	Spain	164/164	Median: 59 (48–70)	68.0%	AVB	Alcohol (33%) Virus (48%)	13.0%
Bae (2007) – R	South Korea	71/71	Mean ± SD: 56 ± 10	85.9%	First episode of VB	Alcohol (43.7%) Cryptogenic (5.6%)	0.0%
Bang (2014) – P	South Korea	1002/1002	NA	NA	Patients with CLD who undergo HVPG measurement	Alcohol (40.5%) HBV (39.4%) HCV (8.8%) Others (11.3%)	6.2%
Befeler (2005) – R	USA	53/53	Mean: 52.6 (26–79)	62.0%	Patients who undergo abdominal surgery	HVB/HCV (47%) Cryptogenic (19%) Alcohol (19) NASH (7%) PSC PBC (6%) BCS (2%)	NA
Benedeto-Stojanov (2009) – R	Serbia	100/100	Mean: 57 (32–79)	76.0%	Patients with complications of liver disease	HBV (7%) HCV (4%) Alcohol (88%) AHI (1%)	0.0%
Blise (2007) – R	India	79/79	Median: 42 (23–65)	100.0%	Alcoholic cirrhotic patients	Alcohol (100%)	NA
Bie (2007) – R	China	181/181	Mean: 61 (23–76)	77.9%	Decompensated liver cirrhosis	HBV (81%) HCV (4%) Alcohol (10%) PBC + Others (5.5%)	0.0%
Bie (2009) – P	China	160/160	Mean ± SD: 52 ± 13	81.2%	Liver cirrhosis	HBV (80%) HCV (7%) Alcohol (7.5%) HBV + Alcohol (1.2%) HBV + HCV (1.2%)	0.0%
Biselli (2015) – P	Italy	227/227	Median: 56 (19–69)	65.0%	MELD score <18 from Modena and Padua Centers (Training group)	HBV (8.3%) HCV (43%) Alcohol (24.9%) Viral + Alcohol (5.4%) Cryptogenic (5.4%) Others (6.9%)	0.0%
Boim Ide (2008) – R	Portugal	232/232	Mean ± SD: 46.4 ± 10.3	73.3%	Adult patients who undergo LT	HBV (11.6%) HCV (46.5%) HBV + HCV (1.6%) HBV + HDV (4.7%) HBV + HCV + HDV (0.8%) Alcohol (21.7%) HCV + Alcohol (7.0%) AHI (6.2%)	0.0%
Botta (2003) – R	Italy	129/129	Median: 50 (22–75)	73.6%	Liver cirrhosis	HCV (51.1%)	NA
Bourlier (2009) – P	France	308/308	Mean ± SD: 59.0 ± 10.9	64.0%	Liver cirrhosis	HBV (81.8%) Viral (11.4%) Others (6.8%)	0.0%
Cerqueira (2012) – R	Portugal	102/102	Mean ± SD: 55.4 ± 12.6	71.6%	First episode of oesophageal VB	DHCA (75.5%) Other (24.5%)	0.0%
Chan (2006) – R	China	506/480	Mean ± SD: 54 ± 15	82.0%	Chronic hepatitis B-related complications	HBV (100%)	28.0%
Chaurasia (2013) – P	Nepal	216/216	Mean ± SD: 51.31 ± 11.5	65.30%	Decompensated cirrhosis	Alcohol (96.3%) HBV (2.3%) HCV (1.4%)	NA
First Author, year – Study Design	Regions	No. Total Pts/No. Pts Analyzed	Age, year	Male, %	Study Population	Etiology of Cirrhosis	HCC, %
----------------------------------	---------	------------------------------	----------	---------	------------------	----------------------	-------
Chawla (2011) – P	India	102/102	Mean: 47.8 (45.5 – 50.1)	87.3%	Liver cirrhosis	Alcohol (44.1%) HBV (13.7%) HCV (17.6%) BCS (2.9%) Cryptogenic (21.6%)	0.0%
Chen (2011) – R	China Taiwan	81/81	Mean ± SD: 60 ± 12.8	67.9%	SBE	Alcohol (16.0%) HBV (42.0%) HCV (34.6%) Other + Unknown (7.4%)	NA
Chen (2013) – R	China	124/124	Median: 46 (21–88)	64.5%	Patients with SPH who treated with TIPS	Alcohol (4.8%) HBV (79.8%) Other (9.7%) Unknown (5.7%)	0.0%
Cho (2011) – R	South Korea	490/490	Median: 60 (18–86)	65.1%	Patients who undergo nonhepatic surgery under general anesthesia	HBV (65.7%) HCV (13.7%) Alcohol (5.9%) Cryptogenic (12.5%) Others (2.2%)	NA
Choi (2009) – R	South Korea	128/128	Mean ± SD: 54.2 ± 11.2	71.9%	Liver cirrhosis	HBV (65.7%) HCV (13.7%) Alcohol (5.9%) Cryptogenic (12.5%)	0.0%
Cholon gitas (2008) – R	UK	128/128	Mean ± SD: 49 ± 11	60.0%	Patients who were first admitted to ICU	Alcohol (63%) HBV/HCV (16.5%) Other (20.5%)	NA
Cornelle (2011) – R	USA	163/163	Mean ± SD: 51 ± 11.9	80.0%	Trauma patients with liver dysfunction or cirrhosis	NA	NA
Costa (2009) – R	Portugal	190/190	Mean ± SD: 61.4 ± 12	81.0%	Surgery	Alcohol (87%) Viral (6%) Other (7%)	18.0%
Das (2010) – R	France	138/138	NA	68.0%	ICU patients	Alcohol (78%) HBV/HCV (16%)	NA
Degre (2004) – R	Belgium	131/131	NA	82.4%	Patients who undergo first LT	Alcohol (38.9%) Other (61.1%)	19.1%
Dhiman (2014) – P	India	50/50	Mean ± SD: 46 ± 13	86.0%	Cirrhosis with AD	Alcohol (58%) HCV + Alcohol (10%) AHI (6%) HBV (6%) Wilson (6%) Cryptogenic (14%) Alcohol (72%) Alcohol + HBV/HCV (6%) HBV (5%) HCV (5%) AHI (4%) NASH/Cryptogenic (8%)	NA
Dussia (2013) – P	India	100/100	Median: 49 (38–55.7)	87.0%	ACLF	Alcohol (40.2%) HBV (3.2%) HCV (6.3%) HCC (25.9%) Other (24.5%)	25.9%
Ecochard (2011) – R	France	560/560	Mean: 51.3 (20.2 – 70.9)	70.7%	LT	Alcohol (80%) Nonalcoholic (20%)	NA
Emerson (2014) – P	UK	59/59	Mean ± SD: 51 ± 12	68.0%	ICU patients	Viral (46.5%) Alcohol (24.8%) Other (28.7%)	NA
Fede (2011) – R	Italy	101/101	Mean ± SD: 59.0 ± 1.9	59.4%	Patients without infections or hemodynamic instability	Viral (15%) Alcohol (60%) PBC/PSC (2%) Cryptogenic (14%) BCS (7%) AHI (2%)	NA
Fejfar (2006) – R	Czech Republic	110/110	Mean: 55	NA	Patients who underwent TIPS for refractory ascites	Alcohol (73%) HBV/HCV (7%) AHI (3%) Other (17%)	0.0%
Flores-Rendon (2008) – R	Mexico	212/212	Mean ± SD: 53 ± 12	68.0%	Acute EVB	HBV (10.3%) HCV (47.6%) Alcohol (24.1%) Alcohol + HBV/HCV (7.6%) Cryptogenic (4.1%) PBC (2.8%) AHI (1.4%) Others (2.1%)	0.0%
Giannini (2004) – P	Italy	145/145	Median: 60 (51–69)	73.0%	Liver cirrhosis	HBV (12%) HCV (53%) Alcohol (17%) Alcohol + Viral infection (9%) Viral co-infection (HBV/HCV) (1%) Unknown (7%) NAFL (1%)	0.0%
Gomez (2009) – P	Cuba	172/170	Median: 56 (20–79)	62.0%	Liver cirrhosis	Alcohol (29.5%) Viral (28%) Other (20.2%) Malignancy (14.5%) Cholestatic (7.8%)	NA
Gotthardt (2009) – R	Germany	268/168	Mean: 50.5 (16–68)	63.1%	Listed for single-organ LTx for nonfulminant liver disease	Alcohol (29.5%) Viral (28%) Other (20.2%) Malignancy (14.5%) Cholestatic (7.8%)	NA
First Author, year – Study Design	Regions	No. Total Pts/No. Pts Analyzed	Age, year	Male, %	Study Population	Etiology of Cirrhosis	HCC, %
----------------------------------	---------	-------------------------------	-----------	---------	-----------------	----------------------	-------
Gotzberger (2012) – P	Germany	44/44	Mean ± SD: Alive: 57 ± 10 Death: 62 ± 9	68.2%	Liver cirrhosis	Alcohol abuse (65.9%)	0.0%
Grunhage (2008) – P	Germany	92/92	Median: 55 (19 – 76)	66.0%	Liver cirrhosis	HCV (22.7%) Wilson’s disease (2.3%) AIH (2.3%) PBC (2.3%)	0.0%
Hassan (2013) – R	Egypt	1000/1000	Mean ± SD: 54.8 ± 8	68.0%	Liver cirrhosis	Alcohol (59.8%) HBV (6.5%) HCV (8.7%) Wilson’s (4.3%) Alphal-antitrypsin deficiency (2.2%) PBC (1.1%) PSC (1.1%)	18.0%
Hoteit (2008) – R	USA	195/57	Mean ± SD: 57.1 ± 11.2	59.5%	Surgery	AIH (4.3%)	NA
Huo (2005) – P	China Taiwan	472/472	Mean ± SD: 65 ± 12	78.0%	Liver cirrhosis (CTP > 7)	HBV (73%) Non-HBV (27%)	0.0%
Huo (2006) – P	China Taiwan	436/436	Mean ± SD: 66 ± 12	77.0%	Liver cirrhosis (CTP > 7)	HBV (72%) Non-HBV (28%)	0.0%
Huo (2005) – P/R	China Taiwan	351	Mean ± SD: 67 ± 11	76.0%	Liver cirrhosis (CTP > 7)	HBV (69%) HCV (13%) Alcohol (6%) HBV + HCV (5%) Cryptogenic (4%) Others (3%)	0.0%
Hyun (2012) – R	South Korea	86/83	Mean ± SD: 54 ± 11	63.0%	HBV-related decompensated cirrhotic patients (CTP > 7) who received antiviral therapy	HBV (100%)	0.0%
Ishizu (2014) – R	Japan	148/148	NA	NA	Patients with AVB who were treated by endoscopic variceal ligation	NA	NA
Jalal (2014) – P	Spain	275/275	Mean ± SD: 54.5 ± 12.1	64.0%	ACLF: Derivation set	Alcohol (54.7%) HCV (14.9%)	NA
Jiang (2009) – R	China	188/188	Mean ± SD: Survival group: 61.56 ± 11.35 Death group: 62.68 ± 12.56	76.0%	ACLF: External validation	Alcohol + HCV (10.8%)	NA
Jiang (2013) – R	China	39/39	Mean ± SD: 45.6 ± 3.6	76.9%	Liver cirrhosis	Alcohol + HCV (6.2%)	0.0%
Kalabay (2007) – P	Hungary	93/89	Mean ± SD: 54 ± 13	55.9%	Alcoholic liver disease	Viral (88.39%) Alcohol (5.31%) PBC + Other (6.3%)	0.0%
Khan (2009) – R	Pakistan	530/530	Mean ± SD: 53 ± 13	59.0%	Infection (at admission or acquiring in hospital)	NA	NA
Kim (2014) – R	South Korea	79/79	Median: 59 (20 – 84)	79.7%	Patients who undergo elective extrahepatic surgery under general anesthesia	HBV (45.6%) HCV (11.4%) Alcohol (34.2%) Non-HBV/HCV (8.9%)	0.0%
Kim (2007) – R	South Korea	355/355	Mean: 55.9 (21 – 92)	74.9%	Liver cirrhosis	HBV (40.0%) HCV (5.6%) Alcohol (49.9%) Unknown (4.5%)	0.0%
First Author, year	Study Design	No. Total Pts/No. Pts Analyzed	Age, year	Male, %	Study Population	Etiology of Cirrhosis	HCC, %
-------------------	--------------	-------------------------------	-----------	--------	------------------	-----------------------	-------
Kim (2014) – P	South Korea	65/65	Mean ± SD: 55 ± 9.2	63.1%	Cirrhotic patients with ascites	Viral hepatitis (26.1%) Alcohol (56.9%) Virus + Alcohol (9.3%) Others (7.7%)	NA
Koo (2013) – R	South Korea	882/882	Mean ± SD: 57.5 ± 10.9	75.5%	Liver cirrhosis	HBV (34.2%) HCV (7.3%) Alcohol (45.4%) AIH (1.5%) PBC (0.7%) PSC (0.3%) NAFLD (0.2%) Wilson’s disease (0.3%) Unknown (2.2%)	0.0%
Krishnan (2013) – R	India	216/216	NA	NA	Single-organ LT for nonfulminant liver disease	NA	NA
Kwon (2014) – P	South Korea	295/295	Mean ± SD: 53.8 ± 10.7	82.8%	Advanced liver cirrhosis (CTP > 6)	NA	37.3%
Lee (2002) – R	South Korea	93/93	Mean ± SD: 55.5 ± 11.4	73.5%	ICU patients	Alcohol (68%) HBV (4%) HCV (14%) Alcohol + Hepatitis (6%) Others (8%) Cryptogenic (43.9%) Alcohol (16.6%) HBV (25.9%) HCV (7.8%) AIH (2.9%) PBC (2.4%) BCS (0.5%)	18.5%
Lee (2015) – R	South Korea	345/345	NA	85.5%	Acutely decompensated alcoholic cirrhosis	Alcohol (100%)	NA
Levesque (2012) – P	France	377/377	Mean ± SD: 55.5 ± 11.4	73.5%	ICU patients	Alcohol (50.0%) HBV (27.6%) HCV (6.6%) Metabolic (1.3%) Cryptogenic (14.5%)	0.0%
Lim (2011) – R	Singapore	205/205	Mean ± SD: 64.0 ± 13.0	51.7%	Patients admitted for sepsis	Alcohol (9.3%) HBV (61.3%) HCV (15.2%) Others (14.1%) Alcohol (100%)	0.0%
Lim (2009) – R	Singapore	208/208	Mean ± SD: 54.3 ± 11.5	78.5%	Liver cirrhosis	Alcohol (9.3%) HBV (61.3%) HCV (15.2%) Others (14.1%) Alcohol (100%)	0.0%
Lv (2009) – R	China	256/256	Mean ± SD: 44.2 ± 9.8	99.1%	Alcoholic liver disease	Alcohol (100%)	NA
Mallayappan (2013) – R/P	India	110 R/110	Mean ± SD: 43.8 ± 9.4	95.8%	Alcoholic liver disease	Alcohol (100%)	NA
Mishra (2007) – P	India	96 P/96	Mean ± SD: 46.97 ± 12.96	75.0%	Liver cirrhosis	Alcohol (50.0%) HBV (27.6%) HCV (6.6%) Metabolic (1.3%) Cryptogenic (14.5%)	0.0%
Moreno (2013) – P	France	125/125	Mean ± SD: 57.9 ± 9.8	68.8%	Liver cirrhosis	Alcohol (84.2%)	NA
Mouelhi (2010) – R	Tunisia	286/286	Mean ± SD: 59 ± 13	56.3%	ICU patients	HCV (100%)	17.1%
Nunes (2010) – P	USA	303/303	Mean: 44	64.0%	HCV-related liver disease	Alcohol (11.1%) HBV (35.8%) HCV (18.2%) Cryptogenic (22.2%)	NA
Olmez (2012) – P	Turkey	201/201	Mean ± SD: 56.8 ± 14.1	64.7%	ICU patients	Alcohol (11.1%) HBV (35.8%) HCV (18.2%) Cryptogenic (22.2%)	NA
Orloff (2012) – RCT	USA	211 (106EST/105PCS)/211	NA	60.0%	EVB	HBV (23%) HCV (17%) Alcohol (38%) PBC/PSC (7%) Unknown (15%)	0.0%
Papatheodoridis (2005) – R	Greece	102/102	Median: 61 (27–89)	68.0%	Decompensated cirrhosis	HBV (23%) HCV (17%) Alcohol (38%) PBC/PSC (7%) Unknown (15%)	NA
Park (2014) – P	South Korea	867/867	NA	NA	Patients with CLD who underwent HVPG measurement	HBV (40.2%) HCV (9.2%) Alcohol (39.7%) NASI (2.3%) Others (8.5%)	NA
Peng (2015) – R	China	145/145	Mean ± SD: 56.77 ± 11.33	64.8%	Acute UGIB	HBV (31.7%) HCV (7.6%) Alcohol (24.1%) HBV + Alcohol (2.1%) Unknown (24.1%) Others (9.7%)	0.0%
Perkins (2004) – R	USA	33/33	Mean: 58	36.4%	Patients who undergo cholecystectomy	NA	NA
First Author, year – Study Design	Regions	No. Total Pts/No. Pts Analyzed	Age, year	Male, %	Study Population	Etiology of Cirrhosis	HCC, %
----------------------------------	---------	-------------------------------	-----------	---------	------------------	----------------------	-------
Radha Krishna (2009) – R	India	121/121	Mean ± SD: 36.3 ± 18.0	70.2%	ACLF with acute viral hepatitis due to HAV or HEV	HBV (30%) HCV (4.1%) Alcohol (11%) HBV + Alcohol (2.5%) HCV + Alcohol (1%)	0.0%
Rahimi-Dehkordi (2014) – P	Iran	257/257	Mean ± SD: 40.7 ± 13.45	54.1%	Waiting for LT	HBV (18.7%) HCV (14.8%) Alcohol (0.4%)	NA
Razejs-Wyszomirska (2009) – R	Poland	48/48	Mean ± SD: Survivors: 53 ± 11 Nonsurvivors: 45 ± 9	62.5%	OLT	Viral + Alcohol (37.5%) AIH (22.9%)	NA
Reverter (2014) – P	Spain	178/178	Mean ± SD: 58.3 ± 12.4	73.0%	Esophageal AVB	Alcohol (39%) HCV (32%) Virus + Alcohol (11%)	10.0%
Ripoll (2007) – RCT	Spain	213/213	Median: 54 (46–63)	59.0%	Compensated cirrhosis with portal hypertension but without varices	Alcohol (24%) Nonalcoholic (76%) HBV (4%) HCV (62%)	9.0%
Salerno (2002) – R	Italy	140/138	Median: 60.5 (14–76)	64.3%	Elective TIPS	Viral (67%) Alcohol (20%) Cholestatic (2%) Other (11%) Virus (16.7%) Alcohol (69.1%) Cholestatic (4.3%) Other (9.9%)	NA
Schepke (2003) – P	Germany	162/162	Mean ± SD: 57.0 ± 10.4	64.2%	TIPS	Viral (7.4%) HCV (39.7%) Alcohol (Intoxication: 41.7%; Dependence: 42.6%) HBV + HCV (4.4%)	NA
Seamon (2010) – R	USA	68/68	Mean ± SD: 53.2 ± 8.9	83.8%	Trauma patients with CLD	Alcohol (45.3%) Virus (31.3%) Alcohol + Virus (13.4%) Other (1%)	11.4%
Sempere (2009) – R	Spain	201/201	Mean ± SD: 59.48 ± 11.78	70.6%	AVB	HBV (2.8%) HCV (28.3%) Alcohol (15.6%) Cryptogenic (9.9%)	0.0%
Serra (2004) – R	Spain	212/212	Mean ± SD: Death group: 68.8 ± 10 Alive group: 67.3 ± 12.5	NA	Decompensated cirrhosis	HBV (9.8%) HCV (21.3%) Alcohol (55.2%)	29.9%
Serste (2012) – P	Belgium	174/174	Mean ± SD: 60.3 ± 11.6	79.9%	Cirrhosis and refractory ascites	HBV (33%) HCV (54%) HBV + HCV (11%)	0.0%
Shajik (2010) – Descriptive	Pakistan	110/110	Mean ± SD: 46.76 ± 12.93	65.0%	Decompensated cirrhosis	HBV (57.2%) HCV (10.2%) Alcohol (22.4%) Other (10.2%)	NA
Sharma (2010) – P	India	200/200	Mean ± SD: 41.6 ± 11.7	79.5%	Patients without recent UGIB or HE	Patients who undergo intraabdominal surgery under generalized anesthesia	NA
Song (2011) – R	South Korea	98/98	Mean ± SD: 57.8 ± 10.5	81.6%	NA	HBV (9.8%) HCV (21.3%) Alcohol (55.2%)	29.9%
Song (2014) – R	South Korea	946/946	Median: 54 (47–63)	74.3%	Cirrhosis with AD	HBV (33%) HCV (54%) HBV + HCV (11%)	0.0%
Stewart (2007) – R	USA	223/223	Mean: 56 (45.4–64.6)	NA	TIPS	HBV (57.2%) HCV (10.2%) Alcohol (22.4%) Other (10.2%)	NA
Su (2009) – R	China Taiwan	46/46	Mean ± SD: 60.4 (49.5–69.2)	26.1%	NA	HBV (9.8%) HCV (21.3%) Alcohol (55.2%)	29.9%
Suk (2014) – P	South Korea	1002/1002	Mean ± SD: 53.3 ± 12.7	26.1%	Patients with PBC who undergo biopsy	Patients with CLD who undergo HVPG measurement	NA
Peng et al.							
First Author, year – Study Design	Regions	No. Total Pts/No. Pts Analyzed	Age, year	Male, %	Study Population	Etiology of Cirrhosis	HCC, %
----------------------------------	---------	-----------------------------	-----------	--------	-----------------	----------------------	--------
Suman (2004) – R USA	44/44	Mean ± SD: Death: 58.3 ± 11.7 No death: 64.6 ± 12.5	61.0%	Patients with undergo cardiac surgery using CPB	HBV (6.8%) HCV (6.8%) AIH (6.8%)	NA	
Tacke (2007) – R Germany	111/111	Median: 46 (18–70)	59.5%	CLD evaluated for potential LT	Viral (28.8%) Biliary/AIH (24.3%)	NA	
Takaya (2012) – R Japan	108/108	Mean ± SD: Child A: 66.4 ± 7.8 Child B: 63.6 ± 8.3 Child C: 64.7 ± 15.1	59.3%	Liver disease	HBV (14.8%) HCV (62.0%) Alcohol (9.3%)	52.8%	
Tas (2012) – R Turkey	90/90	Mean ± SD: 69 ± 5.919	57.8%	ICU patients	HBV (32.2%) HCV (33.3%) Alcohol (10%)	7.8%	
Tas (2012) – R Turkey	106/106	Mean: Discharged: 56 (40–80) Deceased: 55.5 (17–80)	30.2%	ICU patients	HBV (33%) HCV (20%) Alcohol (16%)	1.9%	
Teng (2014) – R China Taiwan	132/132	Mean: 51.3 (46.3–64.2)	83.3%	Acute GVB after emergent endoscopic NBC injection	HBV (18.2%) HCV/HCV (45.4%)	25.8%	
Theocharidou (2014) – R UK	635/635	Mean ± SD: 50.5 ± 11.7	62.4%	ICU patients	Alcohol (36.4%) Alcohol + HBV/ HCV (9.1%)	NA	
Thielmann (2010) – R Germany	57/57	Mean ± SD: 62 ± 10	67.0%	Noncardiac liver cirrhosis, undergo open-heart surgery using CPB	Alcohol (29%) HBV (22%) Alcohol (20%)	NA	
Tu (2011) – R China Taiwan	202/202	Mean ± SD: 58 ± 14	75.7%	ICU patients	HBV + Alcohol (9%) HCV + Alcohol (2%)	NA	
Tzeng (2009) – R China Taiwan	107/107	Mean ± SD: 55.50 ± 12.33	69.0%	Emergent TIPS for uncontrolled VB	HBV + Alcohol + HCV (3%)	NA	
Vanhuysse (2012) – R France	34/34	Mean ± SD: 64.8 ± 12.8	76.5%	Patients who underwent cardiac surgery	HBV + Alcohol + HCV (1%)	NA	
Velayutham (2012) – R India	210/210	Mean: 45.9	76.2%	Patients listed for single-organ LT for nonfulminant liver disease	Alcohol (24%) Viral hepatitis (B and/ or C) (68%)	NA	
Viasus (2011) – R Spain	90/90	Mean ± SD: 61.8 ± 13	80.0%	Nonseverely immunosuppressed cirrhotic patients with pneumonia	Alcohol (58%) Viral hepatitis (21%)	NA	
Wang (2014) – P China	429/429	Mean ± SD: 48.9 ± 13.8	79.3%	After cessation of AVB by endoscopic therapy within 48 hours of admission	Alcohol (38.9%) HCV (27.8%) Viral hepatitis + Alcohol (12.2%)	0.0%	
First Author, year – Design	Regions	No. Total Pts/No. Pts Analyzed	Age, year	Male, %	Study Population	Etiology of Cirrhosis	HCC, %
-----------------------------	---------	-------------------------------	-----------	---------	-----------------	----------------------	--------
Wiesner (2003) – P USA	2271/2271	Mean: 50.7 (18–79)	67.8%	Patients with CLD added to OPTN liver waiting list	HBV (5.8%)	NA	
Wu (2015) – P China	121/121	Mean ± SD: 43.3 ± 12.0	79.3%	ACHBLF: Training cohort	HBV (100%)	0.0%	
Xie (2013) – R China	205/205	Mean ± SD: 50.48 ± 11.15	99.5%	ACHBLF: Validation cohort	HBV (100%)	0.0%	
Zapata (2004) – R USA	26/26	Mean ± SD: 46.9 ± 10.9	57.7%	LT	Alcohol (100%)	0.0%	
Zhang (2014) – R China	159/159	Mean ± SD: 52 ± 12	71.1%	TIPS	HBV (100%)	0.0%	
Zhang (2012) – R China	160/160	Mean ± SD: Survival group: 52.5 ± 9.0 Death group: 52.4 ± 11.5	NA	Liver cirrhosis	HBV (54.5%)	0.0%	
Zhang (2015) – R China	77/77	Mean: 62.6 (34–89)	53.2%	Patients with choledocholithiasis who undergo ERCP for the first time	HBV (91.0%)	0.0%	
Zhang (2005) – R China	315/315	Mean: Male: 52.9 Female: 60.9	67.3%	Liver cirrhosis	HBV (67.0%)	0.0%	
Zhang (2012) – R China	435/435	Median: 56 (20–87)	77.5%	Liver cirrhosis	HBV (67.0%)	0.0%	
Zheng (2011) – R China	242/242	Mean ± SD: 46.0 ± 12.9	81.0%	Biliary cirrhosis	HBV (100%)	0.0%	
TABLE 2. Results of Comparison Between MELD and Child–Pugh Score: An Overview of Studies

First Author, year – Study Design	Study Population	Endpoint	Diagnostic Accuracy of Child–Pugh Score (95% CI)	Diagnostic Accuracy of MELD Score (95% CI)	P Value	
An (2014) – R	Recurrent HE after embolization	2-year mortality	AUC = 0.99 (NA)	AUC = 1.0 (NA)	>0.05	
Angermayr (2003) – R	Elective TIPS	1-month mortality	AUC = 0.78 (NA)	AUC = 0.73 (NA)	>0.05	
Arif (2012) – R	Patients who undergo heart surgery with cardiopulmonary bypass	30-day mortality	AUC = 0.60 ± 0.064 (NA)	AUC = 0.71 ± 0.06 (NA)	<0.05	
Attia (2008) – R	Black African patients with cirrhosis	3-month mortality	AUC = 0.72 (0.64–0.80)	AUC = 0.75 (0.62–0.88)	0.68	
Augustin (2009) – P	AVB	6-week mortality	AUC = 0.69 (0.75–0.87)	AUC = 0.77 (0.69–0.87)	0.67	
Bae (2007) – R	First episode of VB	6-month mortality	AUC = 0.75 (0.67–0.83)	AUC = 0.74 (0.65–0.83)	NA	
Bang (2014) – P	Patients with CLD who undergo HVPG measurement	Prediction of HCC	AUC = 0.681 (NA)	AUC = 0.659 (NA)	NA	
Befeler (2005) – R	Patients who undergo abdominal surgery	Poor outcome	AUC = 0.83 (NA)	AUC = 0.826 (NA)	NA	
Benedeto-Stojanov (2009) – R	Patients with complications of liver disease	15-month mortality	AUC = 0.89 (0.88–0.90)	AUC = 0.87 (NS)	<0.001	
Bhise (2007) – R	Alcoholic cirrhotic patients	1-year mortality	AUC = 0.74 (0.65–0.83)	AUC = 0.74 (0.65–0.83)	NA	
Bie (2007) – R	Decompensated cirrhosis	6-month mortality	AUC = 0.71 (0.54–0.872)	AUC = 0.71 (0.66–0.872)	NA	
Bie (2009) – P	Liver cirrhosis	3-month mortality	AUC = 0.60 (0.54–0.658)	AUC = 0.60 (0.47–0.759)	0.68	
Biselli (2015) – P	MELD score <18 from Modena and Padua Centers (Training group)	3-month mortality	AUC = 0.888 (0.882–0.893)	AUC = 0.592 (0.586–0.598)	0.68	
		6-month mortality	AUC = 0.809 (0.805–0.814)	AUC = 0.648 (0.643–0.653)	0.68	
		12-month mortality	AUC = 0.775 (0.772–0.778)	AUC = 0.651 (0.647–0.655)	0.68	
		MELD score <18 from Bologna (Validation group)	3-month dropout	AUC = 0.659 (0.653–0.666)	NA	
		6-month dropout	AUC = 0.687 (0.681–0.692)	AUC = 0.582 (0.575–0.588)	0.68	
		12-month dropout	AUC = 0.687 (0.681–0.693)	AUC = 0.582 (0.575–0.588)	NA	
First Author, year – Study Design	Study Population	Endpoint	Diagnostic Accuracy of Child–Pugh Score (95% CI)	Diagnostic Accuracy of MELD Score (95% CI)	P Value	
----------------------------------	------------------	----------	---	---	---------	
Boin Ide (2008) – R	Adult patients who undergo LT 10-year mortality	NA (NA)	NA (NA)	NA	NA	
Botta (2003) – R	Liver cirrhosis 6-month mortality	AUC = 0.824 (NA)	AUC = 0.796 (NA)	NA	NA	
Bourisier (2009) – P	Whole liver cirrhosis 6-month mortality	AUC = 0.882 ± 0.03 (NA)	AUC = 0.866 ± 0.03 (NA)	0.305		
Cerqueira (2012) – R	First episode of EVB In-hospital mortality	AUC = 0.719 (0.585–0.853)	AUC = 0.760 (0.644–0.876)	0.0876		
Chan (2006) – R	Chronic HBV 3-month mortality	AUC = 0.75 (0.70–0.80)	AUC = 0.65 (0.59–0.71)	<0.0001		
Non-HCC, Cirrhotic	1-year mortality	AUC = 0.77 (0.72–0.81)	AUC = 0.63 (0.58–0.68)	<0.0001		
Non-HCC without lamivudine	3-month mortality	AUC = 0.79 (0.75–0.87)	AUC = 0.76 (0.76–0.80)	0.03		
HCC	1-year mortality	AUC = 0.80 (0.73–0.87)	AUC = 0.77 (0.68–0.87)	0.032		
Chaurasia (2013) – P	Decompensated cirrhosis 1-month mortality	AUC = 0.875 (0.794–0.932)	AUC = 0.920 (0.849–0.964)	0.044		
Non-HCC, noncirrhotic	3-month mortality	AUC = 0.884 (0.806–0.939)	AUC = 0.967 (0.911–0.992)	0.05		
Alcohol-related	6-month mortality	AUC = 0.908 (0.835–0.956)	AUC = 0.977 (0.925–0.996)	0.05		
Nonalcoholic	1-month mortality	AUC = 0.875 (0.742–0.954)	AUC = 0.944 (0.832–0.990)	0.29		
Non-HCC, noncirrhotic	3-month mortality	AUC = 0.874 (0.741–0.954)	AUC = 0.955 (0.847–0.993)	0.18		
Alcohol-related	6-month mortality	AUC = 0.904 (0.779–0.971)	AUC = 0.993 (0.908–0.990)	0.08		
Nonalcoholic	1-month mortality	AUC = 0.851 (0.732–0.932)	AUC = 0.910 (0.804–0.969)	0.62		
Non-HCC, noncirrhotic	3-month mortality	AUC = 0.896 (0.786–0.961)	AUC = 0.980 (0.901–0.997)	0.15		
Alcohol-related	6-month mortality	AUC = 0.911 (0.805–0.970)	AUC = 0.972 (0.890–0.996)	0.22		
Chen (2011) – R	SBE In-hospital mortality	AUC = 0.744 (NA)	AUC = 0.720 (NA)	NA		
Chen (2013) – R	Patients with SPH who treated with TIPS 1-year mortality – Overall	AUC = 0.764 (NA)	AUC = 0.654 (NA)	NA		
Cho (2011) – R	Patients who undergo nonhepatic surgery under general anesthesia 1-year mortality – Na < 138	AUC = 0.663 (NS) (NA)	AUC = 0.564 (NS) (NA)	NA		
Choi (2009) – R	Liver cirrhosis 3-month mortality	AUC = 0.859 (NA)	AUC = 0.761 (NA)	0.027		
Cholongitas (2008) – R	Patients who were first admitted to ICU ICU or 6-weeks mortality – Scores calculated at 24 h	AUC = 0.75 (NA)	AUC = 0.78 (NA)	NA		
First Author, year – Study Design	Study Population	Endpoint	Diagnostic Accuracy of Child–Pugh Score (95% CI)	Diagnostic Accuracy of MELD Score (95% CI)	P Value	
-----------------------------------	------------------	----------	---	---	---------	
Corneille (2011) – R R	Trauma patients with liver dysfunction or cirrhosis	ICU or 6-weeks mortality – Scores calculated at 48 h	AUC = 0.78 (NA)	AUC = 0.86 (NA)	NA	
Costa (2009) – R R	Surgery	In-hospital mortality	AUC = 0.639 (NA)	AUC = 0.725 (NA)	0.38	
Das (2010) – R R	ICU patients	Peri-operative mortality – Overall	AUC = 0.72 (0.61–0.83)	AUC = 0.76 (0.64–0.89)	>0.05	
Corneille (2011) – R R	Trauma patients with liver dysfunction or cirrhosis	Peri-operative mortality – Elective surgery	AUC = 0.54 (NS) (0.24–0.84)	AUC = 0.61 (NS) (0.27–0.94)	NA	
Costa (2009) – R R	Surgery	In-hospital mortality – Scores calculated on day 1	AUC = 0.76 (NA)	AUC = 0.77 (NA)	NA	
Costa (2009) – R R	Surgery	In-hospital mortality – Scores calculated after 3 days	AUC = 0.69 (NA)	AUC = 0.67 (NA)	NA	
Degre (2004) – R R	Patients who undergo first LT	3-month mortality	AUC = 0.726 ± 0.084 (NA)	AUC = 0.704 ± 0.084 (NA)	>0.05	
Dhiman (2014) – P R	Cirrhosis with AD	28-day mortality	AUC = 0.739 (NA)	AUC = 0.710 (NA)	NA	
Duseja (2013) – P R	ACLF	Short-term mortality	AUC = 0.61 (0.49–0.73)	AUC = 0.67 (0.56–0.78)	>0.05	
Ecochard (2011) – R R	LT	Mortality before LT	AUC = 0.70 (0.64–0.77)	AUC = 0.66 (0.59–0.72)	NA	
Ecochard (2011) – R R	LT	Mortality after LT	AUC = 0.645 (0.37–0.52)	AUC = 0.42 (0.35–0.49)	NA	
Ecochard (2011) – R R	LT	Short-term mortality after LT	AUC = 0.78 (0.72–0.84)	AUC = 0.73 (0.66–0.80)	NA	
Emerson (2014) – P R	ICU patients	ICU mortality	AUC = 0.70 (0.55–0.85)	AUC = 0.74 (0.61–0.88)	NA	
Fede (2011) – R R	Patients without infections or hemodynamic instability	Adrenal insufficiency	AUC = 0.78 (NA)	AUC = 0.75 (NA)	NA	
Fejfar (2006) – R R	Patients who underwent TIPS for refractory ascites	1-month mortality	AUC = 0.62± (NA)	AUC = 0.73 (NA)	NA	
Fejfar (2006) – R R	Patients who underwent TIPS for refractory ascites	3-month mortality	AUC = 0.67 (NA)	AUC = 0.73 (NA)	NA	
Fejfar (2006) – R R	Patients who underwent TIPS for refractory ascites	1-year mortality	AUC = 0.61 (NA)	AUC = 0.66 (NA)	>0.05	
Flores- Rendon (2008) – R R	Acute EVB	5-day failure to control bleeding	AUC = 0.693 (NS) (0.561–0.825)	AUC = 0.679 (NS) (0.495–0.863)	>0.05	
Giannini (2004) – P P	Liver cirrhosis	In-hospital mortality	AUC = 0.809 (0.710–0.907)	AUC = 0.88 (0.77–0.99)	<0.05	
Giannini (2004) – P P	Liver cirrhosis	Mortality related to EVB	AUC = 0.794 (0.676–0.913)	AUC = 0.905 (0.801–1.00)	>0.05	
Giannini (2004) – P P	Liver cirrhosis	3-month mortality	AUC = 0.757 (0.679–0.825)	AUC = 0.947 (0.897–0.977)	0.012	
Giannini (2004) – P P	Liver cirrhosis	3-month mortality – Excluding serum creatinine levels ≥1.2 mg/dL	AUC = 0.787 (0.697–0.861)	AUC = 0.933 (0.867–0.972)	>0.05	
Gomez (2009) – P P	Liver cirrhosis	12-week mortality	AUC = 0.82 (0.71–0.89)	AUC = 0.82 (0.71–0.89)	>0.05	
Gomez (2009) – P P	Liver cirrhosis	52-week mortality	AUC = 0.84 (0.76–0.91)	AUC = 0.82 (0.73–0.89)	>0.05	
Gotthardt (2009) – R R	Listed for single-organ LTxs for nonfulminant liver disease	104-week mortality	AUC = 0.86 (0.78–0.91)	AUC = 0.82 (0.74–0.90)	>0.05	
Gotzberger (2012) – P P	Liver cirrhosis	Mortality or removed for poor condition	AUC = 0.73 (NA)	AUC = 0.68 (NA)	0.091	
Grunhage (2008) – P P	Liver cirrhosis	Death or 6-month survival	AUC = 0.677 (0.518–0.837)	AUC = 0.724 (0.575–0.873)	NA	
Hassan (2013) – R R	Liver cirrhosis	6-month mortality	AUC = 0.72 (NA)	AUC = 0.78 (NA)	>0.05	
Hassan (2013) – R R	Liver cirrhosis	15-month mortality	AUC = 0.68 (NA)	AUC = 0.78 (NA)	>0.05	
Hassan (2013) – R R	Liver cirrhosis	24-month mortality	AUC = 0.70 (NA)	AUC = 0.79 (NA)	>0.05	
Hoteit (2008) – R R	Surgery	1-year mortality	AUC = 0.658 (NA)	AUC = 0.725 (NA)	<0.05	
Hoteit (2008) – R R	Surgery	Death or hepatic decompensation (30 postprocedure days)	AUC = 0.696 ± 0.070 (NA)	AUC = 0.755 ± 0.066 (NA)	0.2	
First Author, year – Study Design	Study Population	Endpoint	Diagnostic Accuracy of Child–Pugh Score (95% CI)	Diagnostic Accuracy of MELD Score (95% CI)	P Value	
----------------------------------	------------------	----------	---	--	---------	
Huo (2005) – P	Liver cirrhosis (CTP ≥ 7)	3-month mortality	AUC = 0.635 (NA)	AUC = 0.785 (NA)	>0.1	
		6-month mortality	AUC = 0.607 (NA)	AUC = 0.714 (NA)	>0.1	
		9-month mortality	AUC = 0.594 (NA)	AUC = 0.689 (NA)	>0.1	
		12-month mortality	AUC = 0.592 (NA)	AUC = 0.681 (NA)	>0.1	
	Subgroup: MELD score >14	3-month mortality	AUC = 0.543 (NA)	AUC = 0.715 (NA)	0.02	
		6-month mortality	AUC = 0.536 (NA)	AUC = 0.705 (NA)	0.003	
		9-month mortality	AUC = 0.507 (NA)	AUC = 0.737 (NA)	<0.001	
		12-month mortality	AUC = 0.526 (NA)	AUC = 0.716 (NA)	<0.001	
Huo (2006) – P	Liver cirrhosis (CTP ≥ 7)	3-month mortality	AUC = 0.809 (0.769–0.845)	AUC = 0.872 (0.836–0.901)	0.069	
		6-month mortality	AUC = 0.756 (0.713–0.796)	AUC = 0.837 (0.799–0.871)	0.008	
Huo (2005) – P/R	Liver cirrhosis (CTP ≥ 7)	6-month mortality	AUC = 0.528 (0.475–0.581)	AUC = 0.718 (0.668–0.765)	0.004	
		12-month mortality	AUC = 0.528 (0.472–0.583)	AUC = 0.744 (0.693–0.791)	<0.001	
Hyun (2012) – R	HBV-related decompensated cirrhotic patients (CTP ≥ 7) who received antiviral therapy	6-month mortality	AUC = 0.913 (Score calculated at admission) (0.838–0.988)	AUC = 0.977 (Score calculated at 3-month) (0.940–1.014)	NA	
Ishizu (2014) – R	Patients with AVB who were treated by endoscopic variceal ligation	30-day mortality	NA (NA)	NA (NA)	NA	
Jalan (2014) – P	ACLF: Derivation set	1-month mortality	AUC = 0.668 (0.610–0.726)	AUC = 0.687 (0.635–0.738)	NA	
		3-month mortality	AUC = 0.655 (0.605–0.705)	AUC = 0.659 (0.615–0.710)	NA	
		6-month mortality	AUC = 0.642 (0.593–0.691)	AUC = 0.652 (0.607–0.697)	NA	
		1-year mortality	AUC = 0.636 (0.588–0.683)	AUC = 0.638 (0.595–0.682)	NA	
	ACLF: External validation	1-month mortality	AUC = 0.653 (0.603–0.704)	AUC = 0.645 (0.593–0.697)	NA	
		3-month mortality	AUC = 0.647 (0.599–0.695)	AUC = 0.635 (0.585–0.684)	NA	
Jiang (2009) – R	Liver cirrhosis	3-month mortality	AUC = 0.818 (0.747–0.889)	AUC = 0.804 (0.730–0.878)	>0.05	
Jiang (2013) – R	Liver cirrhosis	Nonsufficient visualization of the biliary tree 20min after Gd-EOB-DT-PA	AUC = 0.78 (NA)	AUC = 0.86 (NA)	NA	
Kalabay (2007) – P	Alcoholic liver disease	1-year mortality	AUC = 0.865 ± 0.040 (0.787–0.943)	AUC = 0.739 ± 0.052 (0.637–0.871)	NA	
		1–12-month mortality	AUC = 0.855 ± 0.050 (0.757–0.953)	AUC = 0.740 ± 0.058 (0.626–0.854)	NA	
Khan (2009) – R	Infection (at admission or acquiring in hospital)	In-hospital mortality	AUC = 0.67 (NA)	AUC = 0.68 (NA)	NA	
First Author, year – Study Design	Study Population	Endpoint	Diagnostic Accuracy of Child–Pugh Score (95% CI)	Diagnostic Accuracy of MELD Score (95% CI)	P Value	
----------------------------------	------------------	----------	---	---	---------	
Kim (2014) – R	Patients who undergo elective extrahepatic surgery under general anesthesia	Operative mortality	NA (NA)	NA (NA)	NA	
Kim (2007) – R	Liver cirrhosis	Overall mortality	NA (NA)	NA (NA)	NA	
Kim (2014) – P	Cirrhotic patients with ascites	1-year mortality	AUC = 0.777 (0.635–0.883)	AUC = 0.769 (0.627–0.877)	NA	
Koo (2013) – R	Liver cirrhosis	3-month mortality	AUC = 0.831 (NA)	AUC = 0.844 (NA)	>0.05	
Koo (2013) – R	Liver cirrhosis	Excluding CTP class A 3-month mortality	AUC = 0.765 (NA)	AUC = 0.795 (NA)	NA	
Kim (2014) – P	Cirrhotic patients with ascites	1-year mortality	AUC = 0.943 (NA)	AUC = 0.947 (NA)	NA	
Kwon (2014) – P	Single-organ LT for nonfulminant liver disease	3-month mortality	NA (NA)	NA (NA)	<0.001 MELD was better	
Lee (2002) – R	Advanced liver cirrhosis (CTP > 6)	6-week mortality	AUC = 0.648 (0.569–0.727)	AUC = 0.691 (0.619–0.764)	NA	
Lee (2015) – R	Acutely decompensated alcoholic cirrhosis	4-week mortality	AUC = 0.705 (0.638–0.773)	AUC = 0.804 (0.747–0.861)	NA	
Krishnan (2013) – R	Single-organ LT for nonfulminant liver disease	6-month mortality	NA (NA)	NA (NA)	>0.05	
Levesque (2012) – P	ICU patients	ICU mortality	AUC = 0.79 (0.74–0.84)	AUC = 0.82 (NA)	NA	
Lim (2011) – R	Patients admitted for sepsis	In-hospital mortality	AUC = 0.934 (0.902–0.966)	AUC = 0.751 (0.671–0.831)	NA	
Lim (2009) – R	Patients admitted for sepsis	1-month mortality	AUC = 0.933 (NA)	AUC = 0.757 (NA)	NA	
Lv (2009) – R	Liver cirrhosis	1-month mortality	AUC = 0.722 (0.692–0.752)	AUC = 0.819 (0.753–0.885)	<0.01	
Low MELD group (≤17)	1-month mortality	AUC = 0.721 (0.689–0.753)	AUC = 0.820 (0.756–0.884)	<0.01		
High MELD group (>17)	1-month mortality	AUC = 0.754 (NA)	AUC = 0.608 (NA)	<0.01		
Mallaiyappan (2013) – R/P	Alcoholic liver disease	1-month mortality	AUC = 0.67 (0.57–0.77)	AUC = 0.72 (0.62–0.81)	>0.05	
Alcoholic liver disease	3-month mortality	AUC = 0.70 (0.60–0.80)	AUC = 0.73 (0.64–0.83)	>0.05		
High MELD group (>17)	3-month mortality	AUC = 0.70 (0.60–0.80)	AUC = 0.73 (0.64–0.83)	>0.05		
Alcoholic liver disease	3-month mortality	AUC = 0.57 (0.45–0.67)	AUC = 0.80 (0.72–0.89)	<0.0058		
First Author, year – Study Design	Study Population	Endpoint	Diagnostic Accuracy of Child–Pugh Score (95% CI)	Diagnostic Accuracy of MELD Score (95% CI)	P Value	
----------------------------------	------------------	----------	---	---	---------	
Mishra (2007) – P	Liver cirrhosis	6-month mortality	AUC = 0.51 (0.39 – 0.63)	AUC = 0.89 (0.82 – 0.95)	<0.0001	
Moreno (2013) – P	Liver cirrhosis	6-month mortality	AUC = 0.804 (NA)	AUC = 0.764 (NA)	>0.05	
Mouelhi (2010) – R	ICU patients	1-year mortality	AUC = 0.86 (0.71 – 0.86)	AUC = 0.80 (0.70 – 0.86)	NA	
Nunes (2010) – P	HCV-related liver disease	1-year mortality	AUC = 0.80 (NA)	AUC = 0.94 (NA)	<0.05	
		3-year mortality	AUC = 0.83 (0.77 – 0.98)	AUC = 0.84 (0.67 – 0.93)	NA	
		5-year mortality	AUC = 0.84 (0.72 – 0.94)	AUC = 0.84 (0.74 – 0.90)	NA	
Olmez (2012) – P	ICU patients	3-year mortality	AUC = 0.72 (0.704 – 0.810)	AUC = 0.78 (0.714 – 0.843)	NA	
Orloff (2012) – RCT	EVB	6-month mortality	AUC = 0.62 (NA)	AUC = 0.53 (NA)	0.089	
		1-year mortality	AUC = 0.58 (NA)	AUC = 0.50 (NA)	0.490	
		Hospital readmission – Overall	AUC = 0.61 (NA)	AUC = 0.47 (NA)	0.009	
		Hospital readmission – EST arm	AUC = 0.59 (NA)	AUC = 0.46 (NA)	0.012	
Papatheodoridis (2005) – R	Decompensated cirrhosis	6-month mortality	AUC = 0.71 (NA)	AUC = 0.77 (NA)	0.18	
		12-month mortality	AUC = 0.68 (NA)	AUC = 0.78 (NA)	0.09	
		24-month mortality – Overall	AUC = 0.70 (NA)	AUC = 0.79 (NA)	0.27	
		24-month mortality – Unadjusted for GGT	AUC = 0.65 (NA)	AUC = 0.73 (NA)	>0.05	
		24-month mortality – Adjusted for GGT	AUC = 0.77 (NA)	AUC = 0.81 (NA)	>0.05	
Park (2014) – P	Patients with CLD who underwent HVPG measurement	Mortality	AUC = 0.766 (NA)	AUC = 0.733 (NA)	NA	
Peng (2015) – R	Acute UGIB	In-hospital mortality	AUC = 0.796 (0.721 – 0.858)	AUC = 0.810 (0.736 – 0.870)	0.7241	
Perkins (2004) – R	Patients who undergo cholecystectomy	Postoperative morbidity (90-day)	AUC = 0.839 (NA)	AUC = 0.938 (NA)	>0.05	
Radha Krishna (2009) – R	ACLF with acute viral hepatitis due to HAV or HEV	3-month mortality	AUC = 0.631 (0.538 – 0.734)	AUC = 0.941 (0.897 – 0.985)	<0.05	
Rahimi-Dehkordi (2014) – P	Waiting for LT	9-month mortality or removal from the waiting list due to poor condition	AUC = 0.75 (NA)	AUC = 0.69 (NA)	0.065	
Raseja-Wyszonimiska (2009) – R	OLT	Early mortality	AUC = 0.758	AUC = 0.655 (NS)	NA	
Reverter (2014) – P	Esophageal AVB	6-week mortality	AUC = 0.740 (0.639 – 0.841)	AUC = 0.795 (0.689 – 0.901)	0.2179	
Ripoll (2007) – RCT	Compensated cirrhosis with portal hypertension but without varices	Developed decompensation	AUC = 0.61 (0.52 – 0.71)	AUC = 0.64 (0.55 – 0.72)	NA	
Salerno (2002) – R	Elective TIPS	3-month mortality	AUC = 0.70 (0.52 – 0.89)	AUC = 0.84 (0.74 – 0.94)	0.038	
First Author, year – Study Design	Study Population	Endpoint	Diagnostic Accuracy of Child–Pugh Score (95% CI)	Diagnostic Accuracy of MELD Score (95% CI)	P Value	
----------------------------------	-----------------	----------	---	---------------------------------	---------	
Schepke (2003) – P TIPS	TIPS for the treatment of intestinal bleeding.	6-month mortality	AUC = 0.69 (0.56–0.83)	NA (NA)	AUC = 0.84 (0.71–0.98)	NA
		12-month mortality	AUC = 0.66 (0.54–0.78)	NA (NA)	AUC = 0.71 (0.58–0.84)	0.07
		3-month mortality	AUC = 0.72 (0.60–0.84)	NA (NA)	AUC = 0.71 (0.56–0.86)	<0.05
		1-year mortality	AUC = 0.67 (0.57–0.76)	NA (NA)	AUC = 0.73 (0.64–0.82)	<0.05
		3-year mortality	AUC = 0.73 (0.63–0.84)	NA (NA)	AUC = 0.74 (0.64–0.84)	<0.05
Seamon (2010) – R Trauma patients with CLD	In-hospital mortality – CTP score	6-week mortality	AUC = 0.75 (0.60–0.91)	NA (NA)	AUC = 0.61 (NS) (0.44–0.79)	<0.05
		In-hospital mortality – CTP class	AUC = 0.76 (0.64–0.89)	NA (NA)	AUC = 0.61 (NS) (0.44–0.79)	<0.05
		Hepatic complication – CTP score	AUC = 0.80 (0.61–0.98)	NA (NA)	AUC = 0.74 (NS) (0.49–0.99)	<0.05
		Hepatic complication – CTP class	AUC = 0.79 (0.63–0.95)	NA (NA)	AUC = 0.61 (NS) (0.49–0.99)	<0.05
Sempere (2009) – R AVB	6-week mortality	AUC = 0.762 (0.682–0.842)	NA (NA)	AUC = 0.804 (0.728–0.881)	<0.05	
	3-month mortality	AUC = 0.760 (0.684–0.836)	NA (NA)	AUC = 0.794 (0.720–0.868)	<0.05	
	1-year mortality	AUC = 0.741 (0.668–0.814)	NA (NA)	AUC = 0.766 (0.697–0.835)	<0.05	
	36-week mortality	AUC = 0.717 (0.645–0.788)	NA (NA)	AUC = 0.737 (0.667–0.808)	<0.05	
Serra (2004) – R Decompensated cirrhosis	In-hospital mortality	3-month mortality	AUC = 0.628 (0.527–0.729)	NA (NA)	AUC = 0.757 (0.655–0.858)	>0.05
Serste (2012) – P Cirrhosis and refractory ascites	Decompensated cirrhosis	2-year mortality	AUC = 0.89 (0.85–0.94)	NA (NA)	AUC = 0.58 (0.49–0.67)	<0.0001
Shaikh (2010) – Descriptive Prolong hospitalization for more or less than 14 days or in-hospital mortality	Decompensated cirrhosis	3-month mortality	AUC = 0.631 (0.531–0.795)	NA (NA)	AUC = 0.706 (0.629–0.783)	>0.05
Sharma (2010) – P Patients without recent UGIB or HE	Minimal HE	AUC = 0.585 (0.503–0.667)	NA (NA)	AUC = 0.743 (0.670–0.816)	<0.05	
Song (2011) – R Patients who undergo intraabdominal surgery under generalized anesthesia	Mortality	AUC = 0.71 (0.62–0.83)	NA (NA)	AUC = 0.82 (0.69–0.93)	<0.05	
Song (2014) – R AD	1-month mortality	AUC = 0.769 (NA)	NA (NA)	AUC = 0.837 (NA)	0.016	
Stewart (2007) – R TIPS	3-month mortality	AUC = 0.784 (NA)	NA (NA)	AUC = 0.813 (NA)	NA	
	1-year mortality	AUC = 0.67 (NA)	NA (NA)	AUC = 0.75 (NA)	NA	
	3-month mortality	AUC = 0.79 (NA)	NA (NA)	AUC = 0.80 (NA)	NA	
First Author, year – Study Design	Study Population	Endpoint	Diagnostic Accuracy of Child–Pugh Score (95% CI)	Diagnostic Accuracy of MELD Score (95% CI)	P Value	
----------------------------------	------------------	----------	---	--	---------	
Su (2009) – R	Patients with PBC who undergo biopsy	1-year mortality	AUC = 0.79 (NA)	AUC = 0.80 (NA)	NA	
		Advanced fibrosis	AUC = 0.608 (NS (0.393–0.823)	AUC = 0.617 (NS (0.392–0.842)	NA	
Suk (2014) – P	Patients with CLD who undergo HVPG measurement	Develop HCC	AUC = 0.681 (NA)	AUC = 0.659 (NA)	NA	
Suman (2004) – R	Patients with undergo cardiac surgery using CPB	Mortality	AUC = 0.84 ± 0.09 (NA)	AUC = 0.87 ± 0.09 (NA)	0.72	
Tacke (2007) – R	CLD evaluated for potential LT	Hepatic decompensation	NA (NA)	NA (NA)	NA	
Takaya (2012) – R	Liver disease	Development of UGIB	AUC = 0.584 (NA)	AUC = 0.577 (NA)	NA	
Suman (2004) – R	Patients with undergo cardiac surgery using CPB	1-year mortality	AUC = 0.769 (0.658–0.881)	AUC = 0.805 (0.695–0.915)	<0.05	
Tacke (2007) – R	CLD evaluated for potential LT	2-year mortality	AUC = 0.752 (0.645–0.859)	AUC = 0.805 (0.702–0.907)	>0.05	
Tas (2012) – R	ICU patients	ICU mortality	AUC = 0.687 (0.573–0.801)	AUC = 0.766 (0.659–0.872)	NA	
Tas (2012) – R	ICU patients	6-week mortality	AUC = 0.848 (0.755–0.942)	AUC = 0.794 (0.690–0.897)	NA	
Teng (2014) – R	Acute GVB after emergent endoscopic NBC injection	In-hospital mortality – Overall	NA (NA)	NA (NA)	NA	
Theocharidou (2014) – R	ICU patients	In-hospital mortality – Training group	AUC = 0.668 (NA)	AUC = 0.787 (NA)	NA	
		In-hospital mortality – Validation group	AUC = 0.707 (NA)	AUC = 0.749 (NA)	NA	
		In-hospital mortality – 2005–2012 year group	AUC = 0.68 (NA)	AUC = 0.73 (NA)	NA	
Thielmann (2010) – R	Noncardiac LC, undergo open-heart surgery with the use of CPB	In-hospital mortality	AUC = 0.757 ± 0.070 (0.623–0.890)	AUC = 0.851 ± 0.050 (0.745–0.956)	0.17	
Tu (2011) – P	ICU patients	In-hospital mortality	AUC = 0.714 ± 0.053 (0.611–0.817)	AUC = 0.865 ± 0.037 (0.792–0.938)	NA	
Tzeng (2009) – R	Emergent TIPS for uncontrolled VB	1-month mortality	AUC = 0.74 (0.65–0.82)	AUC = 0.78 (0.69–0.85)	>0.05	
Vanhuysse (2012) – R	Patients who underwent cardiac surgery	2-month mortality	AUC = 0.71 (0.62–0.80)	AUC = 0.78 (0.69–0.86)	>0.05	
	Patients listed for single-organ LT for nonfulminant liver disease	1-year mortality	AUC = 0.73 (0.64–0.81)	AUC = 0.74 (0.65–0.82)	>0.05	
Velayutham (2012) – R	Patients who underwent cardiac surgery	Operative mortality	AUC = 0.658 ± 0.10 (NA)	AUC = 0.691 ± 0.11 (NA)	0.8	
		Mortality or severe deterioration	NA (NA)	NA (NA)	>0.05	
Viasus (2011) – P	Nonseverely immunosuppressed cirrhotic patients with pneumonia	30-day mortality or ICU admission	AUC = 0.761 (0.655–0.848)	AUC = 0.832 (0.736–0.904)	NA	
Wang (2014) – P	After cessation of AVB by endoscopic therapy within 48 hours of admission	3-month rebleeding	AUC = 0.69 (0.64–0.73)	AUC = 0.77 (0.73–0.81)	<0.0001	
		1-year rebleeding	AUC = 0.65 (0.60–0.70)	AUC = 0.80 (0.76–0.84)	<0.0001	
		3-month rebleeding – associated mortality	AUC = 0.66 (0.61–0.70)	AUC = 0.75 (0.70–0.79)	0.0003	
First Author, year – Study Design	Study Population	Endpoint	Diagnostic Accuracy of Child–Pugh Score (95% CI)	Diagnostic Accuracy of MELD Score (95% CI)	P Value	
----------------------------------	----------------	----------	---	--	---------	
Wiesner (2003) – P	Patients with CLD added to OPTN liver waiting list	1-year rebleeding – associated mortality	AUC = 0.68 (0.63–0.72)	AUC = 0.78 (0.74–0.82)	<0.0001	
Wu (2015) – P	ACHBLF: Training cohort	3-month mortality	AUC = 0.76 (0.74–0.79)	AUC = 0.83 (0.81–0.84)	<0.001	
Xie (2013) – R	Alcoholic liver disease	In-hospital mortality	NA	NA	NA	
Xiong (2004) – R	Liver cirrhosis	3-month mortality	AUC = 0.74 (0.65–0.835)	AUC = 0.826 (0.752–0.900)	<0.05	
Zapata (2004) – R	LT	3-month mortality	AUC = 0.74 (0.58–0.90)	AUC = 0.75 (0.687–0.830)	>0.05	
Zhang (2014) – R	TIPS	3-month mortality	AUC = 0.70 (0.55–0.86)	AUC = 0.76 (0.64–0.89)	0.258	
Zhang (2012) – R	Liver cirrhosis	3-month mortality	AUC = 0.770 (0.648–0.891)	AUC = 0.689 (0.585–0.781)	NA	
Zhang (2015) – R	Patients with choledocholithiasis who undergo ERCP for the first time	Incidence of complications – Overall	NA (NA)	AUC = 0.75 (0.63–0.87)	NA	
Zhang (2005) – R	Liver cirrhosis	3-month mortality	AUC = 0.74 (0.69–0.85)	AUC = 0.83 (0.76–0.90)	<0.05	
Zhang (2012) – R	Liver cirrhosis	6-month mortality	AUC = 0.718 (NA)	AUC = 0.708 (NA)	NA	

Diagnostic Accuracy of Child–Pugh Score:
- HBV-associated: AUC = 0.68 (0.63–0.72)
- 1-year rebleeding – associated mortality: AUC = 0.78 (0.74–0.82)

Diagnostic Accuracy of MELD Score:
- 3-month mortality: AUC = 0.76 (0.74–0.79)
- 1-year rebleeding: AUC = 0.83 (0.81–0.84)

P Value:
- <0.0001
- <0.001
- >0.05
| First Author, year – Study Design | Study Population | Endpoint | Diagnostic Accuracy of Child–Pugh Score (95% CI) | Diagnostic Accuracy of MELD Score (95% CI) | P Value |
|----------------------------------|------------------|----------|---|---|---------|
| Zheng (2011) – R | Suspected ACHBLF | 3-month mortality – Internal cohort | AUC = 0.718 (0.657–0.774) | AUC = 0.694 (0.632–0.752) | NA |
| | | 3-month mortality – External cohort | AUC = 0.601 (0.532–0.668) | AUC = 0.775 (0.712–0.830) | NA |

ACHBLF = acute-on-chronic hepatitis B liver failure, ACLF = acute-on-chronic liver failure, AD = acute decompensation, AUC = area under the curve, AVB = acute variceal bleeding, CI = confidence interval, CLD = chronic liver disease, CPB = cardiopulmonary bypass, CTP = Child–TURCOTTE–Pugh, EPCS = emergency direct portacaval shunt, ERCP = endoscopic retrograde cholangiopancreatography, EST = endoscopic sclerotherapy, EVB = esophageal variceal bleeding, GGT = gamma-glutamyl-transpeptidase, GVB = gastric variceal bleeding, HAV = hepatitis A virus, HBV = hepatitis B virus, HCC = hepatocellular carcinoma, HCV = hepatitis C virus, HE = hepatic encephalopathy, HEV = hepatitis E virus, HVPG = hepatic venous pressure gradient, ICU = intensive care unit, LC = liver cirrhosis, LT = liver transplantation, MELD = model for end-stage liver disease, NA = not available, NBC = N-butyl cyanoacrylate, NS = not significant, OLT = orthotopic liver transplantation, P = prospective, PBC = primary biliary cirrhosis, PSE = portal-systemic encephalopathy, R = retrospective, RCT = randomized controlled trials, SBE = spontaneous bacterial empyema, SD = standard deviation, SPH = symptomatic portal hypertension, TIPS = transjugular intrahepatic portosystemic shunt, UGIB = upper gastrointestinal bleeding, VB = variceal bleeding.

\(^6\) 0.62 was recorded in the table, but 0.63 was recorded in the abstract.
\(^1\) >0.05 was recorded in the figure, but <0.05 was recorded in the article.
\(^{11}\) 0.809 was recorded in the article, 0.808 was recorded in the table.
\(^1\) 0.78 was recorded in the table, but 0.74 was recorded in the abstract.
\(^5\) 0.72 was recorded in the table, but 0.724 was recorded in the discussion.
\(^7\) 0.78 was recorded in the table, but 0.790 was recorded in the discussion.
\(^{11}\) 36-week mortality was recorded in the original paper, but it should be revised as 36-month mortality.
\(^{11}\) 0.74 was recorded in the table, but 0.78 was recorded in the abstract.
\(^{11}\) 0.89 was recorded in the table, but 0.88 was recorded in the article.
First Author, year – Study Design	Patient Selection	Index Test	Reference Standard	Flow and Timing	Applicability Concerns
An (2014) – R	LR	LR	LR	UR	LC
Angermayr (2003) – R	UR	LR	LR	UR	LC
Arif (2012) – R	UR	LR	LR	LR	LC
Attia (2008) – R	UR	LR	LR	LR	HC
Augustin (2009) – P	LR	LR	LR	LR	LC
Bae (2007) – R	UR	LR	LR	LR	LC
Bang (2014) – P	UR	LR	LR	UR	LC
Befeler (2005) – R	UR	LR	LR	UR	LC
Benedeto-Stojanov (2009) – R	UR	LR	LR	LR	HC
Bie (2007) – R	UR	LR	LR	LR	LC
Bie (2009) – P	UR	LR	LR	LR	LC
Biselli (2015) – P	LR	LR	LR	UR	LC
Boin Ide (2008) – R	UR	LR	LR	LR	LC
Botta (2003) – R	LR	LR	LR	LR	HC
Boursier (2009) – P	LR	LR	LR	LR	HC
Cerqueira (2012) – R	UR	LR	LR	LR	LC
Chan (2006) – R	LR	LR	LR	LR	LC
Chaurasia (2013) – P	LR	LR	LR	LR	HC
Chawla (2011) – P	LR	LR	LR	LR	LC
Chen (2011) – R	UR	LR	LR	LR	LC
Chen (2013) – R	UR	LR	LR	LR	LC
Cho (2011) – R	UR	LR	LR	LR	LC
Choi (2009) – R	UR	LR	LR	LR	LC
Cholongitas (2008) – R	LR	LR	LR	LR	LC
Corneille (2011) – R	UR	LR	LR	LR	LC
Costa (2009) – R	UR	LR	LR	LR	LC
Das (2010) – R	UR	LR	LR	LR	LC
Degre (2004) – R	LR	LR	LR	LR	LC
Dhiman (2014) – P	UR	LR	LR	LR	LC
Duseja (2013) – P	LR	LR	LR	LR	LC
Ecochard (2011) – R	LR	LR	LR	LR	LC
Emerson (2014) – P	LR	LR	LR	LR	LC
Fede (2011) – R	LR	LR	LR	LR	LC
Fejfar (2006) – R	UR	LR	LR	LR	LC
Flores-Rendon (2008) – R	UR	LR	LR	LR	LC
Giannini (2004) – P	UR	LR	LR	LR	LC
Gomez (2009) – P	LR	LR	LR	UR	HC
Gotthardt (2009) – R	LR	LR	LR	UR	LC
Gotzberger (2012) – P	LR	LR	LR	LR	HC
Grunhage (2008) – P	UR	LR	LR	LR	HC
Hassan (2013) – R	LR	LR	LR	LR	HC
Hoteit (2008) – R	UR	LR	LR	UR	LC
Huo (2005) – P	UR	LR	LR	LR	LC
Huo (2006) – P	UR	LR	LR	LR	LC
Huo (2005) – P/R	UR	LR	LR	LR	LC
Hyun (2012) – R	LR	LR	LR	UR	LC
Ishizu (2014) – R	UR	LR	LR	LR	LC
Jalan (2014) – P	UR	LR	LR	LR	LC
Jiang (2009) – R	UR	LR	LR	LR	HC
Jiang (2013) – R	UR	LR	LR	LR	HC
Kalabay (2007) – P	UR	LR	LR	LR	LC
Khan (2009) – R	UR	LR	LR	LR	LC
Kim (2014) – R	UR	LR	LR	UR	LC
Kim (2007) – R	UR	LR	LR	LR	HC
First Author, year – Study Design	Risk of Bias (LR/UR/HR)	Applicability Concerns (LC/UC/HC)			
----------------------------------	--------------------------	----------------------------------			
Kim (2014) – P	LR LR LR LR LR	LC HC HC			
Koo (2013) – R	UR LR LR LR LR	HC HC HC			
Krishnan (2013) – R	LR LR LR LR UR	LC HC HC			
Kwon (2014) – P	UR LR LR LR LR	LC HC HC			
Lee (2002) – R	UR LR LR LR LR	LC HC HC			
Lee (2015) – R	UR LR LR LR LR	LC HC HC			
Levesque (2012) – P	LR LR LR LR LR	LC HC HC			
Lim (2011) – R	UR LR LR LR LR	LC HC HC			
Lim (2009) – R	UR LR LR LR LR	LC HC HC			
Lv (2009) – R	UR LR LR LR LR	HC HC HC			
Malliyappan (2013) – R/P	UR LR LR LR LR	LC HC HC			
Mishra (2007) – P	UR LR LR LR LR	HC HC HC			
Moreno (2013) – P	LR LR LR LR LR	LC HC HC			
Mouelhi (2010) – R	UR LR LR LR LR	LC HC HC			
Nunes (2010) – P	UR LR LR LR UR	LC HC HC			
Olmez (2012) – P	UR LR UR LR LR	LC HC HC			
Oroff (2012) – R/CT	LR UR LR LR LR	LC HC HC			
Papatheodoridis (2005) – R	UR LR LR LR LR	LC HC HC			
Park (2014) – P	UR LR LR LR UR	HC HC HC			
Peng (2015) – R	UR LR LR LR LR	LC HC HC			
Perkins (2004) – R	UR LR LR LR LR	LC HC HC			
Radha Krishna (2009) – R	UR LR LR LR LR	LC HC HC			
Rahimi-Dekordi (2014) – P	UR LR LR LR LR	LC HC HC			
Raszeja-Wyszomirska (2009) – R	LR LR LR LR LR	LC HC HC			
Reverter (2014) – P	UR LR LR LR LR	LC HC HC			
Ripoll (2007) – R/CT	LR LR LR LR LR	LC HC HC			
Salerno (2002) – R	LR LR LR LR UR	LC HC HC			
Schepke (2003) – P	LR LR LR LR LR	LC HC HC			
Seamon (2010) – R	LR LR LR LR LR	LC HC HC			
Sempere (2009) – R	UR LR LR LR LR	LC HC HC			
Serra (2004) – R	LR LR LR LR LR	LC HC HC			
Serste (2012) – P	LR LR LR LR LR	LC HC HC			
Shahal (2010) – Descriptive	LR LR LR LR LR	LC HC HC			
Sharma (2010) – P	LR LR LR LR LR	LC HC HC			
Song (2011) – R	UR LR LR LR LR	LC HC HC			
Song (2014) – R	LR LR LR LR LR	LC HC HC			
Stewart (2007) – R	UR LR LR LR LR	HC HC HC			
Su (2001) – R	LR LR LR LR LR	LC HC HC			
Sut (2014) – P	UR LR UR LR LR	LC HC HC			
Suman (2004) – R	UR LR LR LR LR	LC HC HC			
Tacke (2007) – R	LR LR LR LR UR	LC HC HC			
Takaya (2012) – R	UR LR LR LR UR	HC HC HC			
Tas (2012) – R	UR LR LR LR LR	LC HC HC			
Tas (2012) – R	UR LR LR LR LR	LC HC HC			
Teng (2014) – R	UR LR LR LR LR	LC HC HC			
Theocharidou (2014) – R	LR LR LR LR LR	LC HC HC			
Thielmann (2010) – R	LR LR LR LR LR	LC HC HC			
Tu (2011) – P	LR LR LR LR LR	LC HC HC			
Tzeng (2009) – R	LR LR LR LR LR	LC HC HC			
Vanhuysse (2012) – R	UR LR LR LR LR	LC HC HC			
Velayutham (2012) – R	LR LR LR LR LR	LC HC HC			
Viasus (2011) – P	LR LR LR LR LR	LC HC HC			
Wang (2014) – P	LR LR LR LR LR	LC HC HC			
Wiesner (2003) – P	UR LR LR LR LR	LC HC HC			
Wu (2015) – P	UR LR LR LR LR	LC HC HC			
Xie (2013) – R	LR LR UR LR LR	LC HC HC			
Xiong (2004) – R	UR LR LR LR LR	HC HC HC			
Zapata (2004) – R	LR LR LR LR LR	LC HC HC			
Meta-analyses were performed according to the clinical presentations, etiology of liver diseases, patients’ conditions, treatment options, and endpoints (Table 4).

Subgroup Analysis According to the Clinical Presentations

Two studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score in patients with ACLF. The mean AUSROC of MELD score was larger than that of Child–Pugh score. There was not statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh or MELD score. The 95% CIs of DORs, NLRs, and PLRs were overlapped between them. But the 95% CIs of sensitivities and specificities were not overlapped. Child–Pugh score had a higher summary sensitivity than MELD score, but MELD score had a higher summary specificity than Child–Pugh score.

Four studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score in patients with UGIB. The mean AUSROC of MELD score was larger than that of Child–Pugh score. There was a statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh or MELD score. The 95% CIs of DORs, NLRs, PLRs, and specificities were overlapped between them. But the 95% CIs of specificities were not overlapped. Child–Pugh score had a higher summary specificity than MELD score.

Subgroup Analysis According to the Etiology of Liver Diseases

Two studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score in patients with alcohol alone related liver cirrhosis. The mean AUSROC of MELD score was larger than that of Child–Pugh score. There was not statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh or MELD score. The 95% CIs of DORs, NLRs, PLRs, and specificities were overlapped between them.

Two studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score in patients with hepatitis B virus alone related liver cirrhosis. The mean AUSROC of MELD score was larger than that of Child–Pugh score. There was a statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh or MELD score.

Subgroup Analysis According to the Patients’ Conditions

Six studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score in patients admitted to ICU. The mean AUSROC of MELD score was larger than that of Child–Pugh score. There was not statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh or MELD score. The 95% CIs of DORs, PLRs, and specificities were overlapped between them. But the 95% CIs of PLRs and sensitivities were not overlapped. MELD score had a higher summary specificity than Child–Pugh score.

Four studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score in LT candidates. The mean AUSROC of MELD score was larger than that of Child–Pugh score. There was no statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh or MELD score. The 95% CIs of DORs, PLRs, and specificities were overlapped between them. But the 95% CIs of specificities were not overlapped. Child–Pugh score had a higher summary specificity than MELD score.

Subgroup Analysis According to the Treatment Options

Five studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score in patients who underwent surgery. The mean AUSROC of Child–Pugh score was larger than that of MELD score. There was no statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh or MELD score. The 95% CIs of DORs, NLRs, PLRs, and specificities were overlapped between them. But the 95% CIs of specificities were not overlapped. Child–Pugh score had a higher summary specificity than MELD score.
TABLE 4. Results of Meta-Analyses

Subgroup	No. Total Studies	No. Groups Analyzed	Prognostic Index	AUC ± SE	Threshold Analysis (P Value)	Diagnostic OR (95% CI)	Negative LR (95% CI)	Positive LR (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Subgroup according to clinical presentations										
ACLF	2	3	Child	0.5278 ± 0.0954	0.667	4.68 (1.63–13.45)	0.36 (0.16–0.83)	1.66 (1.37–2.01)	0.81 (0.73–0.87)	0.51 (0.43–0.58)
MELD	2	3	Child	0.7247 ± 0.0418	0.667	5.20 (3.13–8.64)	0.51 (0.41–0.64)	2.59 (1.31–4.43)	0.63 (0.54–0.71)	0.77 (0.70–0.83)
Subgroup according to etiology of liver diseases										
Alcohol	2	4	Child	0.8317 ± 0.0406	0.600	9.18 (5.25–18.30)	0.34 (0.24–0.50)	3.21 (2.44–4.22)	0.74 (0.63–0.83)	0.76 (0.71–0.82)
MELD	2	3	Child	0.7445 ± 0.0203	0.058	4.76 (3.56–6.37)	0.50 (0.42–0.60)	2.26 (1.79–2.86)	0.67 (0.62–0.71)	0.63 (0.60–0.65)
Subgroup according to patient conditions										
ICU	6	6	Child	0.7531 ± 0.0313	0.872	4.97 (3.04–8.14)	0.48 (0.36–0.65)	2.26 (1.81–2.83)	0.66 (0.61–0.71)	0.70 (0.66–0.75)
LT candidates	4	4	Child	0.8062 ± 0.0466	0.600	10.89 (4.36–27.21)	0.32 (0.22–0.47)	3.42 (2.01–5.80)	0.76 (0.69–0.83)	0.76 (0.72–0.79)
Subgroup according to treatment options										
Surgery	5	6	Child	0.8342 ± 0.0322	0.468	11.10 (6.01–20.49)	0.38 (0.19–0.75)	3.71 (2.29–6.03)	0.70 (0.61–0.79)	0.82 (0.79–0.84)
MELD	0.8545 ± 0.0384	0.784	6.66 (6.66–13.86)	0.29 (0.39–0.35)	2.67 (2.19–3.26)	0.80 (0.76–0.84)	0.70 (0.66–0.75)			
TIPS	2	2	Child	0.8062 ± 0.0466	0.600	10.89 (4.36–27.21)	0.32 (0.22–0.47)	3.42 (2.01–5.80)	0.76 (0.69–0.83)	0.76 (0.72–0.79)
Subgroup according to endpoints										
In-hospital mortality	5	5	Child	0.7051 ± 0.0345	0.037	11.01 (6.01–20.49)	0.38 (0.19–0.75)	3.71 (2.29–6.03)	0.70 (0.61–0.79)	0.82 (0.79–0.84)
MELD	0.7437 ± 0.1444	0.505	8.17 (3.68–18.14)	0.32 (0.20–0.51)	2.59 (1.31–4.43)	0.75 (0.71–0.79)	0.66 (0.62–0.69)			
3-month mortality	8	9	Child	0.7093 ± 0.0255	0.025	11.01 (6.01–20.49)	0.38 (0.19–0.75)	3.71 (2.29–6.03)	0.70 (0.61–0.79)	0.82 (0.79–0.84)
MELD	0.7936 ± 0.0254	0.010	11.01 (6.01–20.49)	0.38 (0.19–0.75)	3.71 (2.29–6.03)	0.70 (0.61–0.79)	0.82 (0.79–0.84)			
6-month mortality	7	7	Child	0.8867 ± 0.0228	0.008	11.01 (6.01–20.49)	0.38 (0.19–0.75)	3.71 (2.29–6.03)	0.70 (0.61–0.79)	0.82 (0.79–0.84)
MELD	0.8896 ± 0.0343	0.760	21.67 (7.45–63.03)	0.23 (0.11–0.46)	4.47 (3.00–6.66)	0.73 (0.67–0.79)	0.81 (0.79–0.84)			
12-month mortality	8	8	Child	0.7421 ± 0.0270	0.233	5.12 (3.52–7.82)	0.50 (0.39–0.64)	2.54 (1.86–3.46)	0.58 (0.54–0.63)	0.72 (0.69–0.75)
MELD	0.7420 ± 0.0375	0.139	5.12 (3.52–7.82)	0.50 (0.39–0.64)	2.54 (1.86–3.46)	0.58 (0.54–0.63)	0.72 (0.69–0.75)			

ACLF = acute-on-chronic liver failure, AUC = area under the curve, CI = confidence interval, HBV = hepatitis B virus, ICU = intensive care unit, LR = likelihood ratio, LT = liver transplantation, MELD = model for end-stage liver disease, NA = not available, OR = odds ratio, SE = standard error, TIPS = transjugular intrahepatic portosystemic shunt, VB = variceal bleeding.
Two studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score in patients who underwent TIPS. Because only 2 comparisons were eligible for the subgroup meta-analysis, the mean AUSROC of Child–Pugh and MELD scores could not be calculated. The 95% CIs of DORs, NLRs, PLRs, sensitivities, and specificities were overlapped between them.

Subgroup Analysis According to the Endpoints

Five studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score for predicting the in-hospital mortality. The mean AUSROC of MELD score was larger than that of Child–Pugh score. There was a statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh score. DOR, NLR, PLR, sensitivity, or specificity of Child–Pugh score was not calculated.

Eight studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score for predicting the 3-month mortality. The mean AUSROC of MELD score was larger than that of Child–Pugh score. There were statistically significant diagnostic threshold effects in the meta-analyses of Child–Pugh and MELD scores. DORs, NLRs, PLRs, sensitivities, or specificities of Child–Pugh and MELD scores were not calculated.

Seven studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score for predicting the 6-month mortality. The mean AUSROC of MELD score was larger than that of Child–Pugh score. There was a statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh score. DOR, NLR, PLR, sensitivity, or specificity of Child–Pugh score was not calculated.

Eight studies were eligible for the subgroup meta-analysis to compare the diagnostic accuracy of Child–Pugh versus MELD score for predicting the 12-month mortality. The mean AUSROC of MELD score was larger than that of MELD score. There was no statistically significant diagnostic threshold effect in the meta-analysis of Child–Pugh or MELD score. The 95% CIs of DORs, NLRs, PLRs, sensitivities, and specificities were overlapped between them.

DISCUSSION

To our knowledge, this is the most comprehensive review to evaluate the diagnostic accuracy of Child–Pugh and MELD scores in patients with liver cirrhosis. Indeed, several previous narrative reviews regarding their prognostic values had been published by top experts. By comparison, our study employed a systematic search strategy to maximize the number of relevant papers. Several additional strengths included: the study and patient characteristics were systematically analyzed; the study quality was carefully evaluated; the clinical significance of Child–Pugh and MELD scores was further subdivided according to the different study population; and the meta-analysis was employed to synthesize the statistical results. Some remarkable findings should be summarized as follows.

First, in patients with ACLF, Child–Pugh score had a significantly higher specificity than MELD score, because the 95% CIs were not overlapped among them and the lower limit of 95% CI of MELD score was higher than the upper limit of 95% CI of Child–Pugh score (0.73 < 0.71); by contrast, MELD score had a significantly higher specificity than Child–Pugh score, because the 95% CIs were not overlapped among them and the lower limit of 95% CI of MELD score was higher than the upper limit of 95% CI of Child–Pugh score (0.70 > 0.58). These findings suggested that Child–Pugh score might have a better discriminative ability to predict the probability of developing some endpoint events in patients with ACLF, and that MELD score might have a better discriminative ability to predict the probability of free of developing some endpoint events in such patients.

Second, in patients admitted to ICU, MELD score had a significantly smaller NLR than Child–Pugh score, because the 95% CIs were not overlapped among them and the upper limit of 95% CI of MELD score was smaller than the lower limit of 95% CI of Child–Pugh score (0.35 < 0.36). MELD score also had a significantly higher sensitivity than Child–Pugh score, because the 95% CIs were not overlapped among them and the lower limit of 95% CI of MELD score was higher than the upper limit of 95% CI of Child–Pugh score (0.76 > 0.71). These findings suggested that MELD score might have a better discriminative ability to predict the probability of developing some endpoint events in such patients.

Third, in patients undergoing surgery, Child–Pugh score had a significantly higher specificity than MELD score, because the 95% CIs were not overlapped among them and the lower limit of 95% CI of Child–Pugh score was higher than the upper limit of 95% CI of MELD score (0.79 < 0.73). These findings suggested that Child–Pugh score might have a better discriminative ability to predict the probability of free of developing some endpoint events in such patients.

Fourth, Child–Pugh and MELD scores had statistically similar discriminative abilities in some subgroups (i.e., patients with alcohol alone related liver cirrhosis, LT candidates, patients undergoing TIPS, and 12-month mortality as the endpoint).

Fifth, because of statistically significant diagnostic threshold effects, DORs, NLRs, PLRs, sensitivities, or specificities could not be compared in some subgroups (i.e., patients with acute gastrointestinal bleeding, patients with hepatitis B virus alone related liver cirrhosis, in-hospital mortality as the endpoint, 3-month mortality as the endpoint, and 6-month mortality as the endpoint). Our study had 2 major limitations. First, although a great number of papers were included in the systematic review, not all included studies were eligible for our meta-analysis. Additionally, in some subgroup analyses, DORs, NLRs, PLRs, sensitivities, or specificities were not available. Thus, the combination of data from some selected papers could result in the potential bias. Second, the cut-off values of Child–Pugh and MELD scores for the assessment of prognosis were different among included studies. Therefore, we could not obtain any accurate thresholds for identifying the high-risk or low-risk patients.

In conclusion, we provided an overview regarding the comparison of Child–Pugh and MELD scores for the assessment of prognosis in liver cirrhosis. Both of them had similar prognostic significance in most of cases. However, given their distinctive benefits for some specific conditions, further studies might be necessary to clarify the candidates who should use Child–Pugh or MELD score for the assessment of prognosis and the timing when we should use Child–Pugh or MELD score for the assessment of prognosis. New scores should also be proposed to more accurately assess the prognosis of patients with liver disease based on prospective studies.
REFERENCES

1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128.

2. Blacher M, Leleu H, Peck-Radosavljevic M, et al. The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol. 2013;58:593–608.

3. D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol. 2006;44:217–231.

4. Pugh RN, Murray-Lyon IM, Dawson JL, et al. Transsection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60:646–649.

5. Malinchoc M, Kamath PS, Gordon FD, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology (Baltimore, MD). 2000;31:864–871.

6. Kamath PS, Kim WR, Advanced Liver Disease Study G. The model for end-stage liver disease (MELD). Hepatology (Baltimore, MD). 2007;45:797–805.

7. Bedreli S, Sowa JP, Gerken G, et al. Management of acute-on-chronic liver failure: rotational thromboelastometry may reduce substitution of coagulation factors in liver cirrhosis. Gut. 2016;65:357–358.

8. Trotter JF, Olson J, Lefkowitz J, et al. Changes in international normalized ratio (INR) and model for endstage liver disease (MELD) based on selection of clinical laboratory. Am J Transplant. 2007;7:1624–1628.

9. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–536.

10. An J, Kim KW, Han S, et al. Improvement in survival associated with embolisation of spontaneous portosystemic shunt in patients with recurrent hepatic encephalopathy. Aliment Pharmacol Ther. 2014;39:1418–1426.

11. Angermayr B, Cezna M, Karnel F, et al. Child-Pugh versus MELD score in predicting survival in patients undergoing transjugular intrahepatic portosystemic shunt. Gut. 2003;52:879–885.

12. Arif R, Seppelt P, Schwil S, et al. Predictive risk factors for patients with cirrhosis undergoing heart surgery. Ann Thorac Surg. 2012;94:1947–1952.

13. Attia KA, Ackoundou-N’guessan KC, N’Dri-Yoman AT, et al. Child-Pugh-Turcotte versus Meld score for predicting survival in a retrospective cohort of black African cirrhotic patients. World J Gastroenterol. 2008;14:286–291.

14. Augustin S, Muntaner L, Altamirano JT, et al. Predicting early mortality after acute variceal hemorrhage based on classification and regression tree analysis. Clin Gastroenterol Hepatol. 2009;7:1347–1354.

15. Bae WK, Lee JH, Kim NH, et al. [Usefulness of DeltaMELD/ month for prediction of the mortality in the first episode of variceal bleeding patients with liver cirrhosis: comparison with CTP, MELD score and DeltaCTP/month]. Korean J Hepatol. 2007;13:51–60.

16. Bang CS, Suk KT, Kim DJ. Clinical significance of hepatic venous pressure gradient measurement in the risk assessment of hepatocellular carcinoma. Hepatol Int. 2014;8:S387.

17. Befeler AS, Palmer DE, Hoffman M, et al. The safety of intra-abdominal surgery in patients with cirrhosis: model for end-stage liver disease score is superior to Child-Turcotte-Pugh classification in predicting outcome. Arch Surg (Chicago, Ill: 1960). 2005;140:650–654; discussion 5.

18. Benedeto-Stojanov D, Nagorni A, Bjelakovic G, et al. The model for the end-stage liver disease and Child-Pugh score in predicting prognosis in patients with liver cirrhosis and esophageal variceal bleeding. Vojnosanit Pregl. 2009;66:724–728.

19. Bhise SB, Dias RJ, Mali KK. Prognostic value of the monoethylglycinexilidide test in alcoholic cirrhosis. Saudi J Gastroenterol. 2007;13:118–123.

20. Bie CQ, Yang DH, Tang SH, et al. Value of (Delta)MELD in evaluating the prognosis of patients with decompensated cirrhosis. World Chin J Digestol. 2007;15:3135–3139.

21. Bie CQ, Yang DH, Tang SH, et al. The value of model for end-stage liver disease and Child-Turcotte-Pugh scores over time in evaluating the prognosis of patients with decompensated cirrhosis: experience in the Chinese mainland. Hepatol Res. 2009;39:779–785.

22. Biseli M, Dall’Agata M, Gramenzi A, et al. A new prognostic model to predict dropout from the waiting list in cirrhotic candidates for liver transplantation: a retrospective analysis of survival and the predictive factors in the short and long term. Arch Gastroenterol. 2008;45:275–283.

23. Botta F, Giannini E, Romagnoli P, et al. MELD scoring system is useful for predicting prognosis in patients with liver cirrhosis and is correlated with residual liver function: a European study. Gut. 2003;52:134–139.

24. Boursier J, Cesbron E, Tropet AL, et al. Comparison and improvement of MELD and Child-Pugh score accuracies for the prediction of 6-month mortality in cirrhotic patients. J Clin Gastroenterol. 2009;43:580–585.

25. Cerqueira RM, Andrade L, Correia MR, et al. Risk factors for in-hospital mortality in cirrhotic patients with oesophageal varical bleeding. Eur J Gastroenterol Hepatol. 2012;24:551–557.

26. Chan HL, Chim AM, Lau JT, et al. Evaluation of model for end-stage liver disease for prediction of mortality in decompensated chronic hepatitis B. Am J Gastroenterol. 2006;101:1516–1523.

27. Chaurasia RK, Pradhan B, Chaudhary S, et al. Child-Turcotte-Pugh score versus model for end stage liver disease score for predicting survival in hospitalized patients with decompensated cirrhosis. J Nepal Health Res Counc. 2013;11:9–16.

28. Chawla VK, Kashinath RC, Duseja A, et al. Predicting Mortality Across a Broad Spectrum of Liver Disease-An Assessment of Model for End-Stage Liver Disease (MELD), Child-Turcotte-Pugh (CTP), and Creatinine-Modified CTP Scores. J Clin Exp Hepatol. 2011;1:161–168.

29. Chen CH, Shih CM, Chou JW, et al. Outcome predictors of cirrhotic patients with spontaneous bacterial empyema. Liver Int. 2011;31:417–424.

30. Chen H, Bai M, Qi X, et al. Child-Na score: a predictive model for survival in cirrhotic patients with symptomatic portal hypertension treated with TIPS. PloS One. 2013;8:e79637.

31. Cho HC, Jung HY, Sinn DH, et al. Mortality after surgery in cirrhotic patients with oesophageal varical bleeding. Eur J Gastroenterol Hepatol. 2012;24:551–557.

32. Choi PC, Kim HJ, Choi WH, et al. Model for end-stage liver disease, model for end-stage liver disease-sodium and Child-Turcotte-Pugh scores over time for the prediction of complications of liver cirrhosis. Liver Int. 2009;29:221–226.

33. Cholongitas E, Betrosian A, Senzolo M, et al. Prognostic models in cirrhosis admitted to intensive care units better predict outcome when assessed at 48 h after admission. J Gastroenterol Hepatol. 2008;23 (8 Pt 1)):1223–1227.
35. Cornille MG, Nicholson S, Richa J, et al. Liver dysfunction by model for end-stage liver disease score improves mortality prediction in injured patients with cirrhosis. J Trauma. 2011;71:6–11.

36. Costa BP, Sousa FC, Serodo M, et al. Value of MELD and MELD-based indices in surgical risk evaluation of cirrhotic patients: retrospective analysis of 190 cases. World J Surg. 2009;33:1711–1719.

37. Das V, Boelle PY, Galbois A, et al. Cirrhotic patients in the medical intensive care unit: early prognosis and long-term survival. Crit Care Med. 2010;38:2108–2116.

38. Degre D, Bourgeois N, Boon N, et al. Aminopyrine breath test compared to the MELD and Child-Pugh scores for predicting mortality among cirrhotic patients awaiting liver transplantation. Transpl Int. 2004;17:31–38.

39. Dhiman RK, Agrawal S, Gupta T, et al. Chronic Liver Failure-Sequential Organ Failure Assessment is better than the Asia-Pacific Association for the Study of Liver criteria for defining acute-on-chronic liver failure and predicting outcome. World J Gastroenterol. 2014;20:14934–14941.

40. Duseja A, Choudhary NS, Gupta S, et al. APACHE II score is superior to SOFA, CTP and MELD in predicting the short-term mortality in patients with acute-on-chronic liver failure (ACLF). J Dig Dis. 2013;14:484–490.

41. Ecochard M, Boillot O, Guillaud O, et al. Could metabolic liver function tests predict mortality on waiting list for liver transplantation? A study on 560 patients. Clin Transpl. 2011;25:755–765.

42. Emerson P, McPeake J, O’Neill A, et al. The utility of scoring systems in critically ill cirrhotic patients admitted to a general intensive care unit. J Crit Care. 2014;29:1131.e1–1131.e6.

43. Fede G, Spadaro L, Tomasselli T, et al. Assessment of adrenocortical reserve in stable patients with cirrhosis. J Hepatol. 2011;54:243–250.

44. Fejfar T, Safka V, Hulek P, et al. [MELD score in prediction of early mortality in patients suffering refractory ascites treated by TIPS]. Vnitř Lek. 2006;52:771–776.

45. Flores-Rendon AR, Gonzalez-Gonzalez JA, Garcia-Compean D, et al. Model for end stage of liver disease (MELD) is better than the Child-Pugh score for predicting in-hospital mortality related to esophageal varical bleeding. Ann Hepatol. 2008;7:230–234.

46. Giannini E, Botta F, Fumagalli A, et al. Can inclusion of serum creatinine values improve the Child-Turcotte-Pugh score and challenge the prognostic yield of the model for end-stage liver disease score in the short-term prognostic assessment of cirrhotic patients? Liver Int. 2004;24:465–470.

47. Gomez EV, Bertot LC, Gra Oramas B, et al. Application of a biochemical and clinical model to predict individual survival in patients with end-stage liver disease. World J Gastroenterol. 2009;15:2768–2777.

48. Gotthardt D, Weiss KH, Baumgartner M, et al. Limitations of the MELD score in predicting mortality or need for removal from waiting list in patients awaiting liver transplantation. BMC Gastroenterol. 2009;9:72.

49. Gotzberger M, Singer J, Kaiser C, et al. Intrarenal resistance index as a prognostic parameter in patients with liver cirrhosis compared with other hepatic scoring systems. Digestion. 2012;86:349–354.

50. Grunhage F, Rezori B, Neef M, et al. Elevated soluble tumor necrosis factor receptor 75 concentrations identify patients with liver cirrhosis at risk of death. Clin Gastroenterol Hepatol. 2008;6:1255–1262.

51. Hassan EA, Abd El-Rehim AS. A revised scope in different prognostic models in cirrhotic patients: Current and future perspectives, an Egyptian experience. Arab J Gastroenterol. 2013;14:158–164.

52. Hoteit MA, Ghazale AH, Bain AJ, et al. Model for end-stage liver disease score versus Child score in predicting the outcome of surgical procedures in patients with cirrhosis. World J Gastroenterol. 2008;14:1774–1780.

53. Huo TI, Lin HC, Wu JC, et al. Different model for end-stage liver disease score block distributions may have a variable ability for outcome prediction. Transplantation. 2005;80:1414–1418.

54. Huo TI, Lin HC, Wu JC, et al. Proposal of a modified Child-Turcotte-Pugh scoring system and comparison with the model for end-stage liver disease for outcome prediction in patients with cirrhosis. Liver Transpl. 2006;12:65–71.

55. Huo TI, Wu JC, Lin HC, et al. Evaluation of the increase in model for end-stage liver disease (DeltaMELD) score over time as a prognostic predictor in patients with advanced cirrhosis: risk factor analysis and comparison with initial MELD and Child-Turcotte-Pugh score. J Hepatol. 2005;42:826–832.

56. Ishizu Y, Kuzuya T, Honda T, et al. A simple scoring system using MELD-Na and the stage of hepatocellular carcinoma for prediction of early mortality after acute variceal bleeding in patients with liver cirrhosis. Hepatology (Baltimore, MD). 2014;60:1193A.

57. Jalan R, Saliba F, Pavesi M, et al. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J Hepatol. 2014;61:1038–1047.

58. Jiang CM, Xie W, Wang ZH. Prognostic evaluation for patients with decompensated hepatic cirrhosis. J Dalian Med Univ. 2009;31:67–70.

59. Jiang JJ, Yee JJ, Liu GY, et al. Visualization of the biliary ducts on contrast enhanced MR cholangiography with Gd-EOB-DTPA: Relation with liver function in patients with liver cirrhosis. Chin J Med Imaging Technol. 2013;29:765–769.

60. Kalabay L, Graf L, Voros K, et al. Human serum fetuin A/alpha2HS-glycoprotein level is associated with long-term survival in patients with alcoholic liver cirrhosis, comparison with the Child-Pugh and MELD scores. BMC Gastroenterol. 2007;7:15.

61. Khan R, Abid S, Jafri W, et al. Model for end-stage liver disease (MELD) score as a useful prognostic marker in cirrhotic patients with infection. J Coll Physicians Surg Pak. 2009;19:694–698.

62. Kim DH, Kim SH, Kim KS, et al. Predictors of mortality in cirrhotic patients undergoing extrapleural surgery: comparison of Child-Turcotte-Pugh and model for end-stage liver disease-based indices. ANZ J Surg. 2014;84:832–836.

63. Kim SY, Yim HJ, Lee J, et al. [Comparison of CTP, MELD, and MELD-Na scores for predicting short term mortality in patients with liver cirrhosis]. Korean J Gastroenterol. 2007;50:92–100.

64. Kim TY, Kim MY, Sohn IH, et al. Sarcopenia as a useful predictor for long-term mortality in cirrhotic patients with ascites. J Korean Med Sci. 2014;29:1253–1259.

65. Koo JK, Kim JH, Choi YJ, et al. Predictive value of Refit Model for End-Stage Liver Disease, Refit Model for End-Stage Liver Disease-Na, and pre-existing scoring system for 3-month mortality in Korean patients with cirrhosis. J Gastroenterol Hepatol. 2013;28:1209–1216.

66. Krishnan A. Assessment of an optimal prognostic system for predicting mortality in patients awaiting liver transplantation: CTP vs meld. HPB. 2013;15:15.

67. Kwon HJ, Koo KH, Han BH, et al. The prognostic value of hyponatremia in a well-defined population of patients with ascites due to cirrhosis. Hepatol Int. 2014;8:S386.
69. Lee JY, Lee JH, Kim SJ, et al. [Comparison of predictive factors related to the mortality and rebleeding caused by variceal bleeding: Child-Pugh score, MELD score, and Rockall score]. J Hepatol. 2002;8:458–464.

70. Lee M, Lee JH, Oh S, et al. CLIF-SOFa scoring system accurately predicts short-term mortality in acutely decompensated patients with alcoholic cirrhosis: a retrospective analysis. Liver Int. 2015;35:46–57.

71. Levesque E, Hoti E, Azoulay D, et al. Prospective evaluation of the prognostic scores for cirrhotic patients admitted to an intensive care unit. J Hepatol. 2012;56:95–102.

72. Lim LG, Tan XX, Woo SJ, et al. Risk factors for mortality in cirrhotic patients with sepsis. Hepatol Int. 2011;5:800–807.

73. Lim SG, Lim LG, Xuan X, et al. Risk factors for mortality in cirrhotic patients with sepsis. Hepatology (Baltimore, MD). 2009;50:454A.

74. Lv XH, Liu HB, Wang Y, et al. Validation of model for end-stage liver disease score to serum sodium ratio index as a prognostic predictor in patients with cirrhosis. J Gastroenterol Hepatol. 2009;24:1547–1553.

75. Mallayappan M, Sawalakhe NR, Sasidharan M, et al. Retrospective and prospective validation of model for end-stage liver disease (MELD) score in predicting mortality in patients of alcoholic liver disease. Trop Gastroenterol. 2013;34:252–258.

76. Mishra P, Desai N, Alexander J, et al. Applicability of MELD as a short-term prognostic indicator in patients with chronic liver disease: an Indian experience. J Gastroenterol Hepatol. 2007;22:1232–1235.

77. Moreno JP, Grandclement E, Monnet E, et al. Plasma copeptin, a possible prognostic marker in cirrhosis. Liver Int. 2013;33:843–851.

78. Mouelhi L, Ben Hammouda I, Salem M, et al. Hospital mortality in cirrhotic patients admitted in intensive care unit: prognosis factors and impact of gravity scores. J Afr d’Hepato-Gastroenterol. 2010;4:17–21.

79. Nunes D, Fleming C, Offner G, et al. Noninvasive markers of liver fibrosis are highly predictive of liver-related death in a cohort of HCV-infected individuals with and without HIV infection. Am J Gastroenterol. 2010;105:1346–1353.

80. Olmez S, Gumurdulu Y, Tas A, et al. Prognostic markers in cirrhotic patients requiring intensive care: a comparative prospective study. Ann Hepatol. 2012;11:513–518.

81. Orloff MJ, Vaida F, Isenberg JI, et al. Child-Turcotte score versus MELD score for predicting survival in patients with decompensated cirrhosis. Hepatology. 2010;52:631A–631A.

82. Papatheodoridis GV, Cholongitas E, Dimitriadou E, et al. MELD vs Child-Pugh and creatinine-modified Child-Pugh score for predicting survival in patients with decompensated cirrhosis. World J Gastroenterol. 2005;11:3099–3104.

83. Park SH, Suk KT, Kim HJ, et al. Prognostic significance of the hemodynamic and clinical staging in the prediction of mortality in patients with chronic liver disease. Hepatology (Baltimore, MD). 2014;60:1182A–1183A.

84. Peng Y, Qi X, Dai J, et al. Child-Pugh versus MELD score for predicting the in-hospital mortality of acute upper gastrointestinal bleeding in liver cirrhosis. Int J Clin Exp Med. 2015;8:751–757.

85. Perkins L, Jeffries M, Patel T. Utility of preoperative scores for predicting morbidity after cholecystectomy in patients with cirrhosis. Clin Gastroenterol Hepatol. 2004;2:1123–1128.

86. Radha Krishna Y, Saraswat VA, Das K, et al. Clinical features and predictors of outcome in acute hepatitis A and hepatitis E virus hepatitis on cirrhosis. Liver Int. 2009;29:392–398.

87. Rahimi-Dekordi N, Nourijelyani K, Nasiri-Tousi M, et al. Model for End stage Liver Disease (MELD) and Child-Turcotte–Pugh (CTP) scores: Ability to predict mortality and removal from liver transplantation waiting list due to poor medical conditions. Arch Iran Med. 2014;17:118–121.

88. Raszeja-Wyszomirska J, Wasilewicz MP, Wunsch E, et al. Assessment of a modified Child-Pugh-Turcotte score to predict early mortality after liver transplantation. Transpl Proc. 2009;41:3114–3116.

89. Reverter E, Tandon P, Augustin S, et al. A MELD-based model to determine risk of mortality among patients with acute variceal bleeding. Gastroenterology. 2014;146:412–431e3.

90. Ripoll C, Groszmann R, Garcia-Tsao G, et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology. 2007;133:481–488.

91. Salerno F, Merli M, Cazzaniga M, et al. MELD score is better than Child-Pugh score in predicting 3-month survival of patients undergoing transjugular intrahepatic portosystemic shunt. J Hepatol. 2002;36:494–500.

92. Scheepke M, Roth F, Fimmers R, et al. Comparison of MELD, Child-Pugh, and Emory model for the prediction of survival in patients undergoing transjugular intrahepatic portosystemic shunting. Am J Gastroenterol. 2003;98:1167–1174.

93. Seamon MJ, Franco MJ, Stawicki SP, et al. Do chronic liver disease scoring systems predict outcomes in trauma patients with liver disease? A comparison of MELD and CTP. J Trauma. 2010;69:568–573.

94. Sempere L, Palazon JM, Sanchez-Paya J, et al. Assessing the short- and long-term prognosis of patients with cirrhosis and acute variceal bleeding. Rev Esp Enferm Dig. 2009;101:236–248.

95. Serra MA, Puchades MJ, Rodriguez F, et al. Clinical value of increased serum creatinine concentration as predictor of short-term outcome in decompensated cirrhosis. Scand J Gastroenterol. 2004;39:1149–1153.

96. Serste T, Gustot T, Rautou PE, et al. Severe hyponatremia is a better predictor of mortality than MELDNa in patients with cirrhosis and refractory ascites. J Hepatol. 2012;57:274–280.

97. Shaikh S, Ghami H, Memon S, et al. MELD era: is this time to replace the original Child-Pugh score in patients with decompensated cirrhosis of liver. J Coll Physicians Surg. 2010;20:432–435.

98. Sharma P, Sharma BC. Predictors of minimal hepatic encephalopathy in patients with cirrhosis. Saudi J Gastroenterol. 2010;16:181–187.

99. Song SY, Yoon MY, Kim HJ, et al. [Usefulness of model for end-stage liver disease score for predicting mortality after intra-abdominal surgery in patients with cirrhosis in a single hospital]. Korean J Gastroenterol. 2011;57:340–345.

100. Song DS, Kim DJ, Kim TY, et al. The usefulness of prognostic factors of acute-on chronic liver failure in patients with liver cirrhosis: a multicenter, retrospective cohort study in Korea (KACLiF Study). Hepatology (Baltimore, MD). 2014;60:552A–553A.

101. Stewart CA, Malinchoc M, Kim WR, et al. Hepatic encephalopathy as a predictor of survival in patients with end-stage liver disease. Liver Transpl. 2007;13:1366–1371.

102. Su CW, Chan CC, Hung HH, et al. Predictive value of aspartate aminotransferase to alanine aminotransferase ratio for hepatic fibrosis and clinical adverse outcomes in patients with primary biliary cirrhosis. J Clin Gastroenterol. 2009;43:876–883.

103. Suk KT, Bang CS, Lee YS, et al. Diagnostic significance of hepatic venous pressure gradient in the prediction of hepatocellular carcinoma. J Hepatol. 2014;60:S261.
104. Suman A, Barnes DS, Zein NN, et al. Predicting outcome after cardiac surgery in patients with cirrhosis: a comparison of Child-Pugh and MELD scores. *Clin Gastroenterol Hepatol.* 2004;2:719–723.

105. Tacke F, Fiedler K, Trautwein C. A simple clinical score predicts high risk for upper gastrointestinal hemorrhages from varices in patients with chronic liver disease. *Scand J Gastroenterol.* 2007;42:374–382.

106. Takaya H, Uemura M, Fujimura Y, et al. ADAMTS13 activity may predict the cumulative survival of patients with liver cirrhosis in comparison with the Child-Turcotte-Pugh score and the Model for End-Stage Liver Disease score. *Hepatol Res.* 2012;42:459–472.

107. Tas A, Akbal E, Beyazit Y, et al. Serum lactate level predicts mortality in elderly patients with cirrhosis. *Wien Klin Wochenschr.* 2012;124:520–525.

108. Tas A, Koklu S, Beyazit Y, et al. Thyroid hormone levels predict mortality in intensive care patients with cirrhosis. *Am J Med Sci.* 2012;344:175–179.

109. Teng W, Chen WT, Ho YP, et al. Predictors of mortality within 6 weeks after treatment of gastric variceal bleeding in cirrhotic patients. *Medicine (United States).* 2014;93:e321.

110. Theocharidou E, Pieri G, Mohammad AO, et al. The Royal Free Hospital score: a calibrated prognostic model for patients with cirrhosis admitted to intensive care unit. Comparison with current models and CLIF-SOFA score. *Am J Gastroenterol.* 2014;109:554–562.

111. Thielmann M, Mechmet A, Neuhauser M, et al. Risk prediction and outcomes in patients with liver cirrhosis undergoing open-heart surgery. *Eur J Cardiothorac Surg.* 2010;38:592–599.

112. Tu KH, Jenq CC, Tsai MH, et al. Outcome scoring systems for short-term prognosis in critically ill cirrhotic patients. *Shock (Augusta, GA).* 2011;36:445–450.

113. Tseng WS, Wu RH, Lin CY, et al. Prediction of mortality after emergent transjugular intrahepatic portosystemic shunt placement: use of APACHE II, Child-Pugh and MELD scores in Asian patients with refractory variceal hemorrhage. *Korean J Radiol.* 2009;10:481–489.

114. Vanhuysse F, Maureira P, Portocarrero E, et al. Cardiac surgery in cirrhotic patients: results and evaluation of risk factors. *Eur J Cardiothorac Surg.* 2012;42:293–299.

115. Velayutham V, Sathyanesan J, Krishnan A, et al. Variation of meld vs child pugh score for predicting survival in patients in waiting list for liver transplantation. *Liver Transpl.* 2012;18:S220.

116. Viasus D, Garcia-Vidal C, Castellote J, et al. Community-acquired pneumonia in patients with liver cirrhosis: clinical features, outcomes, and usefulness of severity scores. *Medicine.* 2011;90:110–118.

117. Wang J, Wang AJ, Li BM, et al. MELD-Na: effective in predicting rebleeding in cirrhosis after cessation of esophageal variceal hemorrhage by endoscopic therapy. *J Clin Gastroenterol.* 2014;48:870–877.

118. Wiesner R, Edwards E, Freeman R, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. *Gastroenterology.* 2003;124:91–96.

119. Wu SJ, Yan HD, Zheng ZX, et al. Establishment and validation of ALPH-Q score to predict mortality risk in patients with acute-on-chronic hepatitis B liver failure: a prospective cohort study. *Medicine.* 2015;94:e403.

120. Xie YD, Feng B, Gao Y, et al. Characteristics of alcoholic liver disease and predictive factors for mortality of patients with alcoholic cirrhosis. *Hepatobiliary Pancreat Dis Int.* 2013;12:594–601.

121. Xiong WJ, Liu F, Zhao ZX, et al. Application of an end-stage liver disease model in prediction of prognosis in patients with liver cirrhosis. *World Chin J Digestol.* 2004;12:1159–1162.

122. Zapata R, Innocenti F, Sanhueza E, et al. Predictive models in cirrhosis: correlation with the final results and costs of liver transplantation in Chile. *Transpl Proc.* 2004;36:1671–1672.

123. Zhang F, Zhuge Y, Zou X, et al. Different scoring systems in predicting survival in Chinese patients with liver cirrhosis undergoing transjugular intrahepatic portosystemic shunt. *Eur J Gastroenterol Hepatol.* 2014;26:853–860.

124. Zhang J, Lu F, Ouyang C, et al. [Respective analysis of dead patients with cirrhosis by Child-Pugh score and model of end-stage liver disease score]. *Zhong Nan Da Xue Xue Bao Yi Xue Ban.* 2012;37:1021–1026.

125. Zhang J, Ye L, Zhang J, et al. MELD scores and Child-Pugh classifications predict the outcomes of ERCP in cirrhotic patients with choledocholithiasis: a retrospective cohort study. *Medicine.* 2015;94:e433.

126. Zhang JY, Zhang FK, Wang BE, et al. [The prognostic value of end-stage liver disease model in liver cirrhosis], *Zhonghua Nei Ke Za Zhi.* 2005;44:822–824.

127. Zhang QB, Chen YT, Lian GD, et al. A combination of models for end-stage liver disease and cirrhosis-related complications to predict the prognosis of liver cirrhosis. *Clin Res Hepatol Gastroenterol.* 2012;36:583–591.

128. Zheng MH, Shi KQ, Fan YC, et al. A model to determine 3-month mortality risk in patients with acute-on-chronic hepatitis B liver failure. *Clin Gastroenterol Hepatol.* 2011;9:351–356.e3.

129. Cholongitas E, Papatheodoridis GV, Vangeli M, et al. Systematic review: The model for end-stage liver disease – should it replace Child-Pugh’s classification for assessing prognosis in cirrhosis? *Aliment Pharmacol Ther.* 2005;22:1079–1089.

130. Durand F, Valla D. Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. *J Hepatol.* 2005;42 (SUPPL. 1):S100–S107.

131. Durand F, Valla D. Assessment of prognosis of cirrhosis. *Semin Liver Dis.* 2008;28:110–122.