Raney numbers, threshold sequences and Motzkin-like paths

Irena Rusu
LS2N, UMR 6004, Université de Nantes, France

Abstract
We provide new interpretations for a subset of Raney numbers, involving threshold sequences and Motzkin-like paths with long up and down steps.

Given three integers \(n, k, l \) such that \(n \geq 1, k \geq 2 \) and \(0 \leq l \leq k - 2 \), a \((k, l)\)-threshold sequence of length \(n \) is any strictly increasing sequence \(S = (s_1 s_2 \ldots s_n) \) of integers such that \(ki \leq s_i \leq kn + l \). These sequences are in bijection with ordered \((l + 1)\)-tuples of \(k \)-ary trees. We prove this result and identify the Raney numbers that count the \((k, l)\)-threshold sequences. As a consequence, when \(k = 2 \) and \(k = 3 \), we deduce combinatorial identities involving Catalan numbers and powers of 2, and respectively Fuss-Catalan and Raney numbers. Finally, we show how to represent threshold sequences as Motzkin-like paths with long up and down steps, and deduce that these paths are enumerated by the same Raney numbers.

1 Introduction

In this paper, a \(k \)-ary tree \((k \geq 2)\) is any tree whose internal nodes, the root included, have exactly \(k \) children. It follows that such a tree either is a unique node (the tree is then called trivial), or is made of an internal node (the root) and \(k \) smaller \(k \)-ary subtrees. We assume that the \(k \) subtrees are ordered from left to right, meaning that two trees are equal if and only if either both of them are trivial, or both of them are non-trivial and they have the same \(k \)-trees identically ordered.

With the notation \(C_n^{(k)} \) for the number of \(k \)-ary trees with \(n \) internal nodes, we then have \(C_0^{(k)} = 1 \) and:

\[
C_n^{(k)} = \sum_{j_1 + j_2 + \ldots + j_k = n-1 \atop \forall h: 0 \leq j_h \leq n-1} C_{j_1}^{(k)} C_{j_2}^{(k)} \ldots C_{j_k}^{(k)} \tag{1}
\]

This recurrence defines the so-called Fuss-Catalan numbers, for which the following closed form is known [4]:

\[
C_n^{(k)} = \frac{1}{(k-1)n+1} \binom{kn}{n}. \tag{2}
\]

The Fuss-Catalan numbers are the particular case with \(r = 1 \) of the Raney numbers, defined as follows [10]:

\[
R_n^{(k,r)} = \frac{r}{kn+r} \binom{kn+r}{n} = \frac{r}{(k-1)n+r} \binom{kn+r-1}{n} \tag{3}
\]

As proved in [3], the Raney numbers are also related to the Fuss-Catalan numbers by the following relation:

\[
R_n^{(k,r)} = \sum_{i_1 + i_2 + \ldots + i_r = n \atop \forall h: 0 \leq i_h \leq n} C_{i_1}^{(k)} C_{i_2}^{(k)} \ldots C_{i_r}^{(k)} \tag{4}
\]
Using the interpretation of each \(C_{i_k}^{(k)} \), which represents the number of \(k \)-ary trees with \(i_k \) internal nodes, the previous recurrence relation implies that:

Remark 1.1. The Raney number \(R_n^{(k,r)} \) counts the number of ordered \(r \)-tuples of \(k \)-ary trees with a total number of \(n \) internal nodes.

The cases where \(k = 2 \) and \(k = 3 \) are particularly useful. Binary trees with \(n \) internal nodes, obtained when \(k = 2 \), are counted by \(C_n^{(2)} = \frac{1}{n+1} \binom{2n}{n} \), for \(n \geq 0 \), also called Catalan number and denoted \(C_n \).

Ternary trees with \(n \) internal nodes, obtained when \(k = 3 \), are counted by the Fuss-Catalan numbers \(C_n^{(3)} = \frac{1}{2n+1} \binom{3n}{n} = R_n^{(3,1)} \), and the ordered pairs of ternary trees with total number of \(n \) internal nodes are counted by the Raney number \(R_n^{(3,2)} = \frac{2}{2n+2} \binom{3n+1}{n} = \frac{1}{n+1} \binom{3n+1}{n} \). To simplify the notations, we denote by \(T_n = C_n^{(3)} = \frac{1}{2n+1} \binom{3n}{n} \) the number of ternary trees and by \(U_n = R_n^{(3,2)} = \frac{1}{n+1} \binom{3n+1}{n} \) the number of ordered pairs of ternary trees, both with \(n \) internal nodes. In the Online Encyclopedia of Integer Sequences [13], the sequences \(T_n \) and \(U_n \) are respectively OEIS A001764 and OEIS A006013, and enumerate many other combinatorial objects.

A \((k,l)\)-threshold sequence of length \(n \), for \(n \geq 1 \), \(k \geq 2 \) and \(0 \leq l \leq k-2 \), is any strictly increasing sequence \(S = (s_1 s_2 \ldots s_n) \) of integers such that \(ki \leq s_i \leq kn + l \). See Figure [1] (Note that the case \(l = k - 1 \) is not significant, since the resulting sequences are easily identified as the \(n \)-length prefixes of the \((k,0)\)-threshold sequences of length \(n+1 \).) The contiguous subsequence \((s_p s_{p+1} \ldots s_q)\) of \(S \) is denoted by \(S[p,q] \). A proper \((k,l)\)-threshold sequence is a \((k,l)\)-threshold sequence such that \(s_n = kn + l \), i.e. either a \((k,0)\)-sequence, or a \((k,l)\)-threshold sequence with \(l \geq 1 \) which is not a \((k,l-1)\)-threshold sequence. Threshold-like sequences appear for instance in the characterization of maximally admissible pinnacle sets [12] (with \(k = 3 \)).

Example 1.2. Let \(k = 3 \) and \(n = 6 \). Then \(S_1 = (3 \ 6 \ 14 \ 15 \ 17 \ 18) \) is a proper \((3,0)\)-threshold sequence, whereas \(S_2 = (3 \ 6 \ 14 \ 15 \ 17 \ 19) \) is a proper \((3,1)\)-threshold sequence of length 6. Moreover, \(S_1 \) is also a \((3,1)\)-threshold sequence, but not a proper one. The sequence \(S_3 = (3 \ 4 \ 14 \ 15 \ 17 \ 18) \) is not a \((3,0)\)-threshold sequence since \(s_2 < 6 \).

Remark 1.3. The sequences \(S' = (s'_1 s'_2 \ldots s'_n) \) of integers such that \(ki + d \leq s'_i \leq kn + l + d \), for a fixed integer \(d \), are in bijection with the \((k,l)\)-threshold sequences, and are thus counted by the same formulas. We call them \((k,l)\)-sequences with offset \(d \).

In this paper, we show that \((k,l)\)-threshold sequences are related to \(k \)-ary trees in the sense that \((k,l)\)-threshold sequences of length \(n \) are in bijection with ordered \((l + 1)\)-tuples of \(k \)-ary trees with a total of \(n \) internal nodes, and are thus counted by the Raney numbers \(R_n^{(k,l+1)} \). We further deduce combinatorial identities involving Catalan, Fuss-Catalan and Raney numbers as well as bijections between \((k,l)\)-threshold sequences and related combinatorial objects.

To this end, in Section 2 we first consider the particular case \(k = 3 \), and obtain an implicit bijection by showing that the number of \((3,l)\)-threshold sequences of length \(n \) equals that of \((l+1)\)-tuples of ternary trees with \(n \) internal nodes, for \(l = 0, 1 \). Then, in Section 3, we propose, for arbitrary values \(k \) and \(l \), an explicit bijection between \((k,l)\)-threshold sequences and \((l+1)\)-tuples of \(k \)-ary trees. In Section 4, we present several combinatorial identities resulting from the recurrence relations proved in Sections 2 and 3. Finally, in Section 5, we represent threshold sequences as Motzkin-like paths with up steps \((1,u)\), \(u \geq 1 \), horizontal steps \((1,0)\) and down steps \((1,-d)\), \(1 \leq d \leq k - 1 \). This representation allows us to deduce counting formulas for these paths too. Section 6 is the conclusion.
two depending whether the threshold sequence is simple or double. See Figure 1, with k = 3 values larger than 3. Sequences are in bijection with ternary trees, and the second result ensures the bijection between double ordered pairs of simple b-threshold sequences and ordered pairs of ternary trees.

In this section, k = 3 and the (3, l)-threshold sequences are called simple 3-threshold sequences when l = 0, and double 3-threshold sequences when l = 1. Simple 3-threshold sequences are thus also double 3-threshold sequences.

Let an (bn) be the number of simple (double) 3-threshold sequences of length n. Note that a1 = 1, a2 = 3, whereas b1 = 2, b2 = 7. By convention, we define a0 = bn = 1. We use various ways to count an and bn, then combine them to show that an satisfies the recurrence relation in Equation (1) and that bn counts ordered pairs of simple 3-threshold sequences. The first result allows us to deduce that simple 3-threshold sequences are in bijection with ternary trees, and the second result ensures the bijection between double 3-threshold sequences and ordered pairs of ternary trees.

For each i with 1 ≤ i ≤ n − 1, let the values 3i, 3i + 1, 3i + 2 be called standard values for si, and the values larger than 3i + 2 be called high values for si. For sn, there are only standard values, either one or two depending whether the threshold sequence is simple or double. See Figure 1 with k = 3.

2.1 First count: from left to right

A simple 3-threshold sequence of length n can be of two types with respect to s1.

- When s1 is a standard value, (s2 . . . sn) is any simple 3-threshold sequence of length n − 1 and offset 3. Using Remark 1.3, the number of such sequences is an−1, thus the number of simple 3-threshold sequence of length n with these properties is 3an−1, since there are three standard values available for s1.

- When s1 is a high value, there exists a largest value h such that s1, s2, . . . , sh are high values. Then sh+1 is a standard value, and 1 ≤ h ≤ n − 2, since sn = kn and thus no high value is available for sn−1. The simple 3-threshold sequence is thus made of a subsequence (s1 . . . sh+1) of length h + 1 containing only high values except for the last one, which is a standard value, followed by a subsequence (sh+2 . . . sn) of length n − h − 1 which may be any simple 3-threshold sequence of this length with offset 3(h + 1). Using again Remark 1.3, the number of such 3-threshold sequences for a fixed h is thus ch+1an−h−1, where ch+1 is the number of sequences (s1 . . . sh+1) described above. Each such sequence satisfies 3(i + 1) ≤ si ≤ 3(h + 1) + 2 for 1 ≤ i ≤ h and 3(h + 1) ≤ sh+1 ≤ 3(h + 1) + 2. Thus its h − 1 first elements are constrained as in a 3-threshold sequence with offset 3, whereas sh, sh+1 ∈ {3(h + 1), 3(h + 1) + 1, 3(h + 1) + 2}. Then we cannot have sh+1 = 3(h + 1),
since no value would be available for \(s_h \). Moreover, when \(s_{h+1} = 3(h+1) + 1 \) we have \(s_h = 3(h+1) \) and \((s_1 \ldots s_{h-1} s_h)\) is any simple 3-threshold sequence with offset 3 of length \(h \); there are \(a_h \) such sequences. And when \(s_{h+1} = 3(h+1) + 2 \) we have \(s_h \in \{3(h+1), 3(h+1) + 1\} \) and \((s_1 \ldots s_{h-1} s_h)\) is any double 3-threshold sequence with offset 3 of length \(h \); there are \(b_h \) such sequences. We deduce that \(c_{h+1} = a_h + b_h \).

In conclusion, the number of simple 3-threshold sequences of length \(n \) is given by:

\[
a_n = 3a_{n-1} + \sum_{h=1}^{n-2} (a_h + b_h)a_{n-h-1} \quad (5)
\]

For the double 3-threshold sequences, the enumeration is similar, except that we may have \(h = n - 1 \) when \(s_1 \) is a high value. This can only happen for sequences with \(s_{n-1} = 3n \) and \(s_n = 3n + 1 \). For these sequences, \((s_1 \ldots s_{n-1})\) is any simple 3-threshold sequence, so an amount of \(a_{n-1} \) must be added to the final count:

\[
b_n = 3b_{n-1} + \sum_{h=1}^{n-2} (a_h + b_h)b_{n-h-1} + a_{n-1} \quad (6)
\]

2.2 Second count: from right to left

Consider a simple 3-threshold sequence. Recall that \(s_n = 3n \) and make the following observation.

Remark 2.1. For every \(j \leq n - 1 \), the sequences \((s_1 s_2 \ldots s_j)\) satisfying for each \(i \) with \(1 \leq i \leq j \) the constraint \(3i \leq s_i \leq 3j + 2 \) (i.e. such that \(s_j \) is a standard value) are exactly the \(j \)-length prefixes of the simple 3-threshold sequences of length \(j + 1 \). Thus, there exist \(a_j+1 \) such sequences.

Again, a simple 3-threshold sequence may be of two types.

- When \(s_{n-1} \in \{3(n-1), 3(n-1) + 1\} \), the sequence \((s_1 \ldots s_{n-1})\) is any double 3-threshold sequence of length \(n - 1 \). There are \(b_{n-1} \) such simple 3-threshold sequences of length \(n - 1 \).

- When \(s_{n-1} = 3(n-1) + 2 \), two cases are possible. When \(s_{n-2} \) is a standard value, by Remark 2.1 we deduce that there are \(a_{n-1} \) 3-threshold sequences of length \(n \) with this property. When \(s_{n-2} \) is a high value, we have \(s_{n-2} \in \{3(n-1), 3(n-1) + 1\} \) and there exists a lowest index \(h \), with \(0 \leq h \leq n - 3 \), such that \(s_{h+1} \), \ldots, \(s_{n-2} \) are high values. Thus \(s_h \), when \(h \geq 1 \), is a standard value. In this case, the simple 3-threshold sequence of length \(n \) is made of a subsequence \((s_1 s_2 \ldots s_h)\) satisfying Remark 2.1 for \(j = h \), followed by a double 3-threshold sequence \((s_{h+1} s_{h+2} \ldots s_{n-2})\) with offset 3 and length \(n - 2 - h \), which is on its turn followed by \(3(n-1) + 2 \) and \(3n \). The number of such sequences, for a fixed \(h \), is \(a_{h+1} b_{n-2-h} \).

We deduce that:

\[
a_n = b_{n-1} + a_{n-1} + \sum_{h=0}^{n-3} a_{h+1} b_{n-2-h} = b_{n-1} + a_{n-1} + \sum_{h=1}^{n-2} a_h b_{n-1-h} = \sum_{h=0}^{n-1} a_h b_{n-1-h} \quad (7)
\]

A double 3-threshold sequence is in one of the two following cases:

- When \(s_n \in \{3n, 3n + 1\} \) and \(s_{n-1} \) is a standard value, the double 3-threshold sequence of length \(n \) is made of a subsequence \((s_1 s_2 \ldots s_{n-1})\) satisfying Remark 2.1 followed either by \(3n \) or by \(3n + 1 \). There are \(2a_n \) such sequences.
• When \(s_n = 3n + 1 \) and \(s_{n-1} = 3n \), two situations are possible for the sequence \((s_1 s_2 \ldots s_{n-2})\). If \(s_{n-2} \) is a standard value, by Remark \(2.1 \) there are \(a_{n-1} \) simple 3-threshold sequences \((s_1 s_2 \ldots s_{n-2})\), and thus the same number of double 3-threshold sequences with the desired properties. If \(s_{n-2} \) is a high value, then we consider as before the minimum value of \(h \), \(0 \leq h \leq n - 3 \), such that \(s_{h+1}, \ldots, s_{n-2} \) are high values. The double 3-threshold sequence of length \(n \) is made of a subsequence \((s_1 s_2 \ldots s_h)\) satisfying Remark \(2.1 \) followed by a simple 3-threshold sequence \((s_{h+1} s_{h+2} \ldots s_{n-1})\) with offset 3, and further followed by \(3n + 1 \). For a fixed \(h \), the number of such sequences is \(a_{h+1}a_{n-1-h} \).

In conclusion, we have:

\[
b_n = 2a_n + a_{n-1} + \sum_{h=0}^{n-3} a_{h+1}a_{n-1-h} = 2a_n + \sum_{h=1}^{n-1} a_{h}a_{n-h} = \sum_{h=0}^{n} a_{h}a_{n-h} \tag{8}
\]

2.3 Implicit bijections

Proposition 2.2. Simple 3-threshold sequences of length \(n \) are in bijection with ternary trees with \(n \) internal nodes.

Proof. We use Equations \((5)\) and \((8)\) to deduce that \(a_n \) satisfies the same recurrence relation as \(T_n \) (see Equation \((1)\), where \(C^{(3)}_n = T_n \)).

\[
a_n = 3a_{n-1} + \sum_{h=1}^{n-2} (a_h + b_h)a_{n-h-1}
\]

\[
= 3a_{n-1} + \sum_{h=1}^{n-2} a_ha_{n-h-1} + \sum_{h=1}^{n-2} b_ha_{n-h-1}
\]

\[
= 3a_{n-1} + \sum_{h=1}^{n-2} a_ha_{n-h-1} + \sum_{h=1}^{n-2} \left(\sum_{j=1}^{h} a_ja_{h-j} \right)a_{n-h-1}
\]

\[
= a_{n-1} + \sum_{j=0}^{n-1} a_ja_{n-j-1}a_{n-(n-1)-1} + \sum_{h=1}^{n-2} \sum_{j=0}^{h} a_ja_{h-j}a_{n-h-1}
\]

\[
= a_{n-1} + \sum_{h=1}^{n-1} \sum_{j=0}^{h} a_ja_{h-j}a_{n-h-1} = \sum_{h=0}^{n-1} \sum_{j=0}^{h} a_ja_{h-j}a_{n-h-1}
\]

Since \(a_0 = T_0 = 1 \) and \(a_n, T_n \) satisfy the same recurrence relation, we deduce that \(a_n = T_n \) for \(n \geq 1 \). The conclusion follows.

Proposition 2.3. Double 3-threshold sequences of length \(n \) are in bijection with ordered pairs of ternary trees whose total number of internal nodes is \(n \).

Proof. By Equation \((8)\), we have that \(b_n = \sum_{h=0}^{n} a_{h}a_{n-h} \). For each \(h \), the term \(a_{h}a_{n-h} \) counts the ordered pairs of simple 3-threshold sequences where the first (second) sequence in the pair is any simple 3-threshold...
sequence of length \(h \) \((n - h)\). But, by Proposition 2.2, simple 3-threshold sequences of length \(w \) are in a 1-to-1 correspondence with ternary trees with \(w \) internal nodes, so the conclusion follows.

The two previous propositions imply that:

Corollary 2.4. For each \(n \geq 1 \), \(a_n = T_n = \frac{1}{2n+1} \binom{3n}{n} \) and \(b_n = U_n = \frac{1}{n+1} \binom{3n+1}{n} \).

Proposition 2.5. Proper double 3-threshold sequences are in bijection with ordered 4-tuples of ternary trees with total number of internal nodes equal to \(n - 1 \). Moreover, we have

\[
b_n - a_n = \sum_{h=0}^{n-1} a_h a_{n-h} = \sum_{h=0}^{n-1} b_h b_{n-h-1} = U_n - T_n = \frac{2}{n+1} \binom{3n}{n-1}.
\]

Proof. Using Equations (6) and (7), we obtain:

\[
b_n = 3b_{n-1} + \sum_{h=1}^{n-2} a_h b_{n-1-h} + \sum_{h=1}^{n-2} b_h b_{n-1-h} + a_{n-1}
\]

\[
= 3b_{n-1} + (a_n - b_{n-1} - a_{n-1}) + \sum_{h=1}^{n-2} b_h b_{n-1-h} + a_{n-1}
\]

\[
= a_n + 2b_{n-1} + \sum_{h=1}^{n-2} b_h b_{n-1-h}
\]

\[
= a_n + \sum_{h=0}^{n-1} b_h b_{n-1-h}
\]

which implies together with Equation (8) that:

\[
b_n - a_n = \sum_{h=0}^{n-1} b_h b_{n-h-1} = \sum_{h=0}^{n-1} a_h a_{n-h}
\]

Now, \(\sum_{h=0}^{n-1} b_h b_{n-h-1} = \sum_{h=0}^{n-1} U_h U_{n-h-1} \) and thus counts, for \(n \geq 1 \), the number of ordered 4-tuples of ternary trees with total number of internal nodes equal to \(n - 1 \). This follows from the interpretation of \(U_k \), \(k \geq 0 \), which counts the pairs of ternary trees with \(k \) internal nodes. A simple computation further shows, using Corollary 2.4, that \(b_n - a_n = U_n - T_n = \frac{2}{n+1} \binom{3n}{n-1} \). The conclusion follows.

Remark 2.6. The sequence corresponding to the number of ordered 4-tuples of ternary trees is known as OEIS A006629 [13].

3. Explicit bijections

We start this section by defining a labeling for the \(k \)-ary trees. Note that a \(k \)-ary tree with \(n \) internal nodes has \(nk + 1 \) nodes.

Let \(w \) be an integer. A \textit{k-ary w-tree} is a \(k \)-ary tree \(A \) whose nodes are labeled such that a breadth first traversal of \(A \) yields the list of nodes \(w, w - 1, \ldots, w - nk \), where \(n \) is the number of internal nodes of \(A \). Equivalently, the root of \(A \) is \(w \), and the nodes on each level are labeled in decreasing order from left to right, starting with the largest value not used on the previous level.
Figure 2: a) The quaternary tree A^1_S computed for the $(4, 0)$-threshold sequence $S = (7, 12, 14, 16)$. b) The two quaternary trees A^1_{V} (left), A^2_{V} (right) computed for the $(4, 2)$-threshold sequence $V = (7, 9, 17, 18)$.

Example 3.1. The trees in Figure 2 are respectively a quaternary 16-tree, a quaternary 18-tree and a quaternary 9-tree.

Remark 3.2. Two k-ary w-trees are equal if and only if the sets of their internal nodes, seen as labeled nodes, are equal.

Remark 3.3. In each k-ary w-tree with j internal nodes, the smallest label x of a node satisfies $x = w - jk$.

Let $S = (s_1s_2 \ldots s_n)$ be a (k, l)-threshold sequence. The cut index of S is the largest index $i < n$ such that

$$s_i < s_n - (n - i)k$$ \hspace{1cm} (11)

if such an element exists, and is equal to 0 otherwise. Intuitively, s_i is the largest element in S whose value is not large enough to be a label in the k-ary s_n-tree whose internal nodes have the labels $s_n, s_{n-1}, \ldots, s_{i+1}$ (see also Remark 3.3). For each (k, l)-threshold sequence S of length n, let $\text{Forest}(S)$ be the set of trees, initially empty, defined as follows (see Figure 2) as well as Examples 3.4 and 3.5:

1. Let A^1_S be the k-ary s_n-tree whose internal nodes ordered according to a breadth first traversal are the elements $s_n, s_{n-1}, \ldots, s_{i+1}$ of S. Then A^1_S belongs to $\text{Forest}(S)$ (discard the node labels, they were needed only to define the tree).

2. If $i \neq 0$, let $Q = S[1, i]$ and add $\text{Forest}(Q)$ to $\text{Forest}(S)$.

Assume $\text{Forest}(S) = \{A^1_S, A^2_S, \ldots, A^t_S\}$ where $1, 2, \ldots, t$ indicate the order of computation of the trees. Let $Q_1 = S$ and let Q_2, \ldots, Q_t be the successive sequences computed in step (2) above, respectively generating $A^2_S, A^3_S, \ldots, A^t_S$ using step (1). We prove below that the unique index l_p such that Q_p is a proper (k, l_p)-threshold sequence, $1 \leq p \leq t$, satisfies $l = l_1 > l_2 > \ldots > l_t$. Then define $\text{Tuple}(S)$ as the $(l+1)$-tuple containing A^p_S in position $l_p + 1$, $1 \leq p \leq t$, and the trivial k-ary tree λ on each of the remaining positions.

Example 3.4. For the proper $(4, 0)$-threshold sequence $S = (7, 12, 14, 16)$ of length 4, also denoted by Q_1, none of the indices satisfies the definition of a cut index, thus $\text{Forest}(S) = \{A^1_S\}$ and the quaternary tree A^1_S is depicted in Figure 2 (a). The $(l + 1)$-tuple associated with S is a 1-tuple, represented by A^1_S alone. When S is seen as a $(4, 2)$-threshold sequence, the $(l + 1)$-tuple associated with S is the 3-tuple $(A^1_S, \lambda, \lambda)$. Indeed, $16 = 4 \cdot 4 + 0$ thus for the sequence $V (= Q_1)$ we have $l_1 = 0$.

Example 3.5. For the proper (4, 2)-threshold sequence \(V = (7, 9, 17, 18), \) also denoted by \(Q_1, \) we have \(s_3 = 17. \) Then \(s_3 \) does not satisfy the condition \(\Box \), since \(17 \not\in (4 - 3)4 = 14, \) so the index 3 is not the cut index of \(V. \) But \(s_2 = 9 \) and \(9 < (4 - 2)4 = 10, \) so that 9 does not belong to the tree with internal nodes 18 and 17, denoted by \(A_1^l \) and depicted in Figure 3(b), left. Therefore \(i = 2 \) is the cut index of \(V, \) and 9 is the root of the next tree. The next tree, called \(A_2^l \) is thus computed in the same way using the (4, 2)-threshold sequence \(Q_2 = V[1, i] = (7, 9), \) which has no cut index. Then \(A_2^l \) is the tree in Figure 3(b), right. We deduce that \(Forest(V) = \{ A_1^l, A_2^l \}. \) The \((l + 1) \)-tuple associated with \(V \) is the 3-tuple \((\lambda, A_1^l, A_2^l) \) since \(18 = 4 \cdot 4 + 2 \) (thus \(l_1 = 2 \) for \(Q_1 = V \)) and \(9 = 2 \cdot 4 + 1 \) (thus \(l_2 = 1 \) for \(Q_2 = V[1, 2] = (7, 9) \)).

Theorem 3.6. Let \(n, k, l \) be three integers with \(n \geq 1, k \geq 2 \) and \(0 \leq l \leq k - 2. \) The function \(Tuple(S) \) is well-defined for the pair \((k, l), \) and is a bijection between \((k, l) \)-threshold sequences of length \(n \) and \((l + 1) \)-tuples of \(k \)-ary trees with total number of \(n \) internal vertices.

Proof. We first prove two affirmations, named (A) and (B):

(A) For any \((k, l) \)-threshold sequence \(S \) of length \(n, \) the number of trees in \(Forest(S) \) is upper bounded by \(l + 1. \)

When \(A_S^l \) is built, the value \(s_i \) given by the cut index \(i \) of \(S \) is not a node of \(A_S^l. \) Indeed, \(s_i \) is the \((n - i + 1) \)-th element of \(S \) in decreasing order of the indeces, thus \(A_S^l \) is built on \((n - i) \) internal nodes and by Remark 3.3, its smallest label is \(s_n - (n - i)k. \) Condition \(\Box \) then ensures that \(s_i \) is not a node label from \(A_S^l. \) Then, either \(A_S^l \) contains all the elements in \(S \) (this is the case \(i = 0), \) or \(S[1, i] \) must be used to complete the set \(Forest(S) \) (this is the case \(i \geq 1). \)

We use induction on \(l \) to show Affirmation (A). When \(l = 0, s_n = kn \) and for each \(r < n \) we have \(s_r \geq kr = kn - (n - r)k = s_n - (n - r)k, \) thus \(s_r \) belongs to the \(k \)-ary \(s_n \)-tree with internal nodes \(s_n, s_{n-1}, \ldots, s_{r+1}. \) We deduce that \(A_S^l \) contains all the elements in \(S \) and the conclusion follows.

Assume now that Affirmation (A) is true for all \((k, l') \)-threshold sequences \(Q \) with \(l' < l. \) Assume moreover that \(S \) is a proper \((k, l) \)-threshold sequence, i.e. \(s_n = kn + l, \) otherwise the conclusion follows by inductive hypothesis. Let \(i \) be the cut index of \(S, \) denote by \(Q = S[1, i] \) and note that \(q_i = s_i < s_n - (n - i)k = kn + l - nk + ik = ik + l, \) thus \(q_i \leq ik + l - 1. \) This means \(Q \) is a proper \((k, l_Q) \)-threshold sequence of length \(i, \) for some \(l_Q \leq l - 1. \) Then, using the inductive hypothesis for \(Q, \) we deduce that the number of trees in \(Forest(Q) \) is upper bounded by \(l_Q + 1, \) thus by \(l, \) and therefore the number of trees in \(Forest(S) \) is upper bounded by \(l + 1. \)

(B) With the notation \(Q_1 = S, Q_2, \ldots, Q_l \) for the successive sequences respectively generating \(A_2^l, A_3^l, \) \ldots, \(A_l^l, \) and assuming each \(Q_p \) is a proper \((k, l_p) \)-sequence, the sequence \(l_1, l_2, \ldots, l_i \) is a strictly decreasing sequence of integers.

As proved above for \(S \) and \(Q = S[1, i], \) where \(i \) is the cut index of \(S, \) we have \(q_i = s_i < ik + l \) meaning that \(q_i = ik + l' \) with \(l' < l. \) The same reasoning may be applied to each pair \(Q_i, Q_{i+1} \) and Affirmation (B) follows.

By Affirmations (A) and (B), the function \(Tuple(S) \) is well defined, since no pair of trees \(A_S^l, A_T^l \) is affected to the same position, and there are enough positions in the \((l + 1) \)-tuple to contain all the trees in \(Forest(S). \)

We show that \(Tuple(S) \) is a bijection.

Injectivity. Assume that \(Tuple(S) = Tuple(V) \) for two \((k, l) \)-threshold sequences \(S \) and \(V. \) Denote by \(y_1, \ldots, y_k \) from right to left the positions of the non-trivial trees, which are the same in both tuples. Then by the definition of the function \(Tuple \) and the equation \(Tuple(S) = Tuple(V), \) we have that \(A_S^l = A_T^l \)
Tuple(S)[wp] = Tuple(V)[wp] = A^p, for 1 ≤ p ≤ t. Recall that all the trees in the tuples are unlabeled k-ary trees.

Let \(r_{p-1} \) be the number of internal nodes in \(A^1_S, \ldots, A^{p-1}_S \). By the definition of the function Tuple, and using the same notations \(Q_i \) as above with respect to \(S \), during the construction of Tuple(S) the root of \(A^p_S \) has the label \(w_p = k(n-r_{p-1}) + l_p \). The same reasoning for \(V \), assuming the sequences used to build Tuple(V) are \(Y_1, \ldots, Y_t \), imply that the root \(A^p_V \) has the label \(k(n-r_{p-1}) + l'_p \), where \(Y_p \) is a proper \((k, l'_p)\)-sequence. But \(A^p_S \) and \(A^p_V \) are placed on the same position in Tuple(S) and Tuple(V) respectively, meaning that \(l_p = l'_p = y_p - 1 \), and thus the roots of \(A^p_S \) and \(A^p_V \) have the same label \(w_p \). Then \(A^p_S \) and \(A^p_V \) are not only identical when seen as k-ary trees, but also when seen as k-ary \(w \)-trees (see Remark 3.2).

Then let \(I_p \) be the increasing sequence of the internal nodes of \(A^p_S \), seen as a k-ary \(w_p \)-tree. Then \(S = I_1 I_{t-1} \ldots I_1 \). The sequence \(V \) is computed similarly using the same increasing sequences, since the labeled trees are identical. Thus \(S = V \).

Surjectivity. Let \(A = (A_1, \ldots, A_{l+1}) \) be a \((l+1)\)-tuple of k-ary trees, and assume that \(A_{y_1}, A_{y_2}, \ldots, A_{y_t} \) are the non-trivial k-ary trees, with \(y_1 > y_2 > \ldots > y_t \). Let \(r_p \) be the total number of internal nodes in \(A_{y_1}, \ldots, A_{y_t} \). We label \(A_{y_p} \) as a k-ary \(w_p \)-tree with \(w_p = k(n-r_{p-1}) + y_p - 1 \), and we denote by \(I_p \) the increasing sequence of its internal nodes. Then the length of \(I_p \) is \(|I_p| = r_p - r_{p-1} \).

Define \(S = I_1 \ldots I_t \) and notice that the number \(n \) of elements in \(S \) is the total number \(n \) of internal vertices in all the trees of \(A \). Also denote by \(Q_p = I_1 \ldots I_p \) for \(1 ≤ p ≤ t \). Then the rightmost element of \(Q_p \) is the root of \(A_{y_p} \), that is \(w_p \), and its length is:

\[
|Q_p| = n - (|I_1| + \ldots + |I_{p-1}|) = n - (r_1 - r_0 + r_2 - r_1 + \ldots + r_{p-1} - r_{p-2}) = n - r_{p-1}.
\]

Then we also have \(w_p = s_{|Q_p|} \). We note that:

\[
w_p = k(n - r_{p-1}) + y_p - 1 = k(n - r_{p-2}) - (r_{p-1} - r_{p-2})k + y_p - 1 + y_p - y_{p-1}
\]

\[
= w_{p-1} - (r_{p-1} - r_{p-2})k + y_p - y_{p-1}
\]

\[
< w_{p-1} - (r_{p-1} - r_{p-2})k = w_{p-1} - (|Q_{p-1}| - |Q_p|)k.
\]

Now, \(w_p < w_{p-1} - (|Q_{p-1}| - |Q_p|)k \) is condition (11) applied to \(Q_{p-1} \) and the index \(|Q_p| \) of \(Q_{p-1} \), given that \(w_p = s_{|Q_p|} \). Moreover, by the definition of a k-ary \(w_{p-1} \)-tree, for any element \(s_j \) situated between \(w_{p-1} \) and \(w_p \) Equation (11) cannot hold. Thus \(|Q_p| \) is the cut index of \(Q_{p-1} \), and thus \(A = Tuple(S) \).

Corollary 3.7. The number of \((k, l)\)-threshold sequences of length \(n \) is equal to the Raney number:

\[
R^{(k,l+1)}_n = \frac{l + 1}{kn + l + 1} \binom{kn + l + 1}{n}.
\]

Proof. The result follows from Theorem 3.6, Remark 3.5 and Equation (3). \(\square \)

Corollary 3.8. For each \(l ≥ 1 \), the number of proper \((k, l)\)-threshold sequences of length \(n \) is equal to the Raney number:

\[
P_{n-1}^{(k,k+l)} = \frac{k + l}{(k-1)(n-1) + k + l} \binom{kn + l - 1}{n-1}.
\]

Proof. By Corollary 3.7, the number of proper \((k, l)\)-threshold sequences of length \(n \) is equal to \(R^{(k,l+1)}_n - R^{(k,l)}_n \), and a well known recurrence relation or a simple verification indicates that this value is \(R^{(k,k+l)}_{n-1} \). \(\square \)
4 Combinatorial identities

In this section, we deduce from our previous results three combinatorial identities, obtained when \(k = 2 \) and \(k = 3 \).

4.1 Case \(k = 2 \): Catalan numbers

Proposition 4.1. Catalan numbers \(C_n \) satisfy for all \(n \geq 1 \) the recurrence relation:

\[
C_n = \sum_{r+s+t=n-1 \atop r,s \geq 1; t \geq 0} C_r C_s 2^t + 2^{n-1}
\]

(12)

Proof. By Corollary 3.7 for \(k = 2, l = 0 \) and recalling that \(C_n = C_n(2) = R_n^{(2,1)} \), we deduce that \(C_n \) is the number of \((2,0)\)-threshold sequences of length \(n \).

As in Section 2, we propose a count of the \((2,0)\)-threshold sequences \(S \) of length \(n \) that allows us to obtain Equation (12). The last element of these sequences is always \(s_n = 2n \). Similarly to the case \(k = 3 \), for each \(i \) with \(1 \leq i \leq n - 1 \), the values \(2i, 2i + 1 \) are called standard values for \(s_i \), and the values larger than \(2i + 1 \) are called high values for \(s_i \). See Figure 1. We assume that \(s_0 = 0 \), and this value is neither high nor standard.

For each \((2,0)\)-threshold sequence \(S \) of length \(n \), we introduce the following notation:

\[
a = \max \{ j \mid s_{j-1} \text{ is not a standard value and } s_j \text{ is a standard value} \}
\]

\[
b = \max \{ j \mid s_j \text{ is not a high value value and } s_{j+1} \text{ is a high value} \}
\]

Then \(a = 1 \) if and only if the sequence \(S \) contains only standard values. There are \(2^{n-1} \) such \((2,0)\)-threshold sequences.

Otherwise, \(2 \leq a \leq n - 1 \) since there are no high values for \(s_{n-1} \). In this case, \(S \) is made of 1) a \((2,0)\)-threshold subsequence of length \(a \) such that \(s_{a-1} = 2a \) and \(s_a = 2a + 1 \) (these are the only possible values), concatenated with 2) any subsequence \((s_{a+1} \ldots s_{n-1})\) of length \(n - 1 - a \) made of standard elements, and followed by \(2n \).

The subsequences described in 2) are counted by \(2^{n-1-a} \) since each \(s_i \) may take one of two precise values, for each \(i \) with \(a + 1 \leq i \leq n - 1 \). We need \(b \) to count the subsequences described in 1). We have \(0 \leq b \leq a - 2 \). Each of the subsequences described in 1) are made of 1') an arbitrary \((2,0)\)-subsequence \((s_1 \ldots s_b)\) with \(s_b \in \{2b, 2b + 1\} \), followed by 2') an arbitrary \((2,0)\)-subsequence \(s_{b+1}, \ldots, s_{a-1} \) with \(s_i \geq 2i + 2 \) for each \(i \) with \(b + 1 \leq i \leq a \) and \(s_{a-1} = 2a \) as explained above; the sequence ends with \(s_a = 2a + 1 \). By Remark 2.1, the subsequences in 1') are in bijection with the \((2,0)\)-threshold sequences of length \(b+1 \). Then these sequences are enumerated by \(C_{b+1} \). The subsequences in 2') are the \((2,0)\)-threshold subsequences of length \(a - 1 - b \) and offset 2.

Thus the total number of \((2,0)\)-threshold sequences of length \(n \) is

\[
C_n = \sum_{a=2}^{n-1} \sum_{b=0}^{a-2} C_{b+1} C_{a-1-b} 2^{n-1-a} + 2^{n-1}
\]

(13)

Let \(r = b + 1, s = a - r \) and \(t = n - 1 - (r + s) \). Then we successively have:
\[C_n = \sum_{a=2}^{n-1} \sum_{r=1}^{n-1-a} C_r C_{a-r} 2^{n-1-a} + 2^{n-1} = \sum_{r=1}^{n-1} \sum_{a=r+1}^{n-1} C_r C_{a-r} 2^{n-1-a} + 2^{n-1} \]
\[= \sum_{r=1}^{n-1} \sum_{s=1}^{n-1-r} C_r C_s 2^{n-1-(s+r)} + 2^{n-1} = \sum_{r,s \geq 1; t \geq 0} C_r C_s 2^t + 2^{n-1} \]

The conclusion is proved. \(\square \)

4.2 Case \(k = 3 \): Relations between \(T_n \) and \(U_n \)

According to the introduction and to Corollary 2.4, we have:

1. \(T_n = a_n = C_n^{(3)} \), and this value counts the number of ternary trees with \(n \) internal nodes, as well as the simple 3-threshold sequences of length \(n \).

2. \(U_n = b_n = R_n^{(3,2)} \), and this value counts the number of ordered pairs of ternary trees with a total of \(n \) internal nodes, as well as the double 3-threshold sequences of length \(n \).

Proposition 4.2. Assuming \(T_0 = U_0 = 1 \), the following relations hold for \(n \geq 1 \):

\[2 \sum_{h=0}^{n-1} \frac{1}{h+1} T_h T_{n-1-h} = 3U_{n-1} - T_n \]
\[2 \sum_{h=0}^{n-1} \frac{1}{3h+1} U_h U_{n-1-h} = 4T_n - U_n \]

Proof. We use the equations proved in Section 2 and thus also the notations \(a_n \) and \(b_n \), rather than \(T_n \) and \(U_n \), during the proof.

For each \(n \geq 1 \), the following equations may be obtained by basic computations using the close forms for \(a_n \) and \(b_n \):

\[a_n + b_n = \frac{2}{n+1} \binom{3n}{n} = \frac{2}{n+1} (2n+1) a_n = 2 \left(2 - \frac{1}{n+1} \right) a_n \]
\[\frac{1}{n+1} a_n = \frac{1}{3n+1} b_n \]
\[3a_n - b_n = \frac{1}{n} (b_n - a_n) = \frac{2}{3n+1} b_n \]

They are used below without recalling it. Then Equation (5) and Equation (8) imply:

\[a_n - 3a_{n-1} = \sum_{h=1}^{n-2} (a_h + b_h) a_{n-h-1} = 2 \sum_{h=1}^{n-2} \left(2 - \frac{1}{h+1} \right) a_h a_{n-h-1} \]
\[= 4 \sum_{h=1}^{n-2} a_h a_{n-h-1} - 2 \sum_{h=1}^{n-2} \frac{1}{h+1} a_h a_{n-h-1} \]
\[= 4 (b_{n-1} - 2a_{n-1}) - 2 \sum_{h=1}^{n-2} \frac{1}{h+1} a_h a_{n-h-1} \]
We deduce:

\[2 \sum_{h=1}^{n-2} \frac{1}{h+1} a_h a_{n-h-1} = 4b_{n-1} - a_n - 5a_{n-1} \]

\[2 \sum_{h=0}^{n-2} \frac{1}{h+1} a_h a_{n-h-1} = 4b_{n-1} - a_n - 3a_{n-1} \]

\[2 \sum_{h=0}^{n-1} \frac{1}{h+1} a_h a_{n-h-1} = 3b_{n-1} - a_n \]

The first equation in the proposition is proved. The approach is similar for the second one. Using Equation (6) and Equation (7) we deduce:

\[b_n - 3b_{n-1} - a_{n-1} = \sum_{h=1}^{n-2} (a_h + b_h)b_{n-h-1} = 2 \sum_{h=1}^{n-2} \left(2 - \frac{1}{h+1} \right) a_h b_{n-h-1} \]

\[= 4 \sum_{h=1}^{n-2} a_h b_{n-h-1} - 2 \sum_{h=1}^{n-2} \frac{1}{h+1} a_h b_{n-h-1} \]

\[= 4(a_n - b_{n-1} - a_{n-1}) - 2 \sum_{h=1}^{n-2} \frac{1}{h+1} a_h b_{n-h-1} \]

This implies:

\[2 \sum_{h=1}^{n-2} \frac{1}{h+1} a_h b_{n-h-1} = 4a_n - b_n - b_{n-1} - 3a_{n-1} \]

\[2 \sum_{h=1}^{n-2} \frac{1}{3h+1} b_h b_{n-h-1} = 4a_n - b_n - b_{n-1} - 3a_{n-1} \]

\[2 \sum_{h=1}^{n-1} \frac{1}{3h+1} b_h b_{n-h-1} = 4a_n - b_n - b_{n-1} - 3a_{n-1} + \frac{2}{3n-2} b_{n-1} \]

\[2 \sum_{h=1}^{n-1} \frac{1}{3h+1} b_h b_{n-h-1} = 4a_n - b_n - b_{n-1} - 3a_{n-1} + 3a_{n-1} - b_{n-1} \]

\[2 \sum_{h=1}^{n-1} \frac{1}{3h+1} b_h b_{n-h-1} = 4a_n - b_n - 2b_{n-1} \]

\[2 \sum_{h=0}^{n-1} \frac{1}{3h+1} b_h b_{n-h-1} = 4a_n - b_n \]

The second equation in the conclusion is now proved.
5 Threshold sequences and Motzkin-like paths

We now show that threshold sequences may be seen as variants of Motzkin paths.

Defined in [3] in relation with the Motzkin numbers used in [3], a Motzkin path of length \(n \) is a path on the integral lattice \(\mathbb{Z} \times \mathbb{Z} \) never going below the \(x \)-axis, starting in position \((0, 0)\) and whose steps are of three types: up steps \((1, 1)\), horizontal steps \((1, 0)\) and down steps \((1, -1)\). Here, step \((a, b)\) indicates that the next position in the path is reached by moving \(a \) units to right and \(b \) units to top with respect to the current position. Motzkin paths enumerate various combinatorial objects, as shown in [3, 14] but also more recently in [3, 15, 2, 9]. Some generalizations of Motzkin paths have also been investigated [7], among which those with long horizontal steps [1].

Motzkin \(n \)-paths are Motzkin paths of length \(n \) ending in \((n, 0)\). They are counted by the formula below [3]:

\[
M_n = \sum_{k=0}^{\left\lfloor n/2 \right\rfloor} \binom{n}{2k} C_k
\]

(14)

where \(C_k \) is the Catalan number.

Let us call a \((k, l)\)-extended Motzkin path of length \(n \) every path on the integral lattice \(\mathbb{Z} \times \mathbb{Z} \) never going below the \(x \)-axis, starting in position \((0, 0)\) and ending in position \((n, h)\), with \(0 \leq h \leq l \), whose \(n \) steps are of three types: up steps \((1, u)\) with \(u \geq 1 \), horizontal steps \((1, 0)\) and down steps \((1, -t)\) with \(1 \leq t \leq k-1 \). Similarly to Motzkin \(n \)-paths, we call a \((k, l)\)-extended Motzkin \(n \)-path every \((k, l)\)-extended Motzkin path with \(n \) steps that starts in \((0, 0)\) and ends in \((n, 0)\).

Proposition 5.1. Let \(k, l, n \) be three integers such that \(k \geq 2 \), \(0 \leq l \leq k-2 \) and \(n \geq 1 \). The \((k, l)\)-extended Motzkin paths of length \(n \) and endpoint \((n, l)\) are in bijection with the proper \((k, l)\)-threshold sequences of length \(n \).

Proof. We associate with the proper \((k, l)\)-threshold sequence \(S \) of length \(n \) the path \(\text{Path}(S) \) starting in position \((0, 0)\) and whose \(i \)-th step depends on the value of \(s_i - s_{i-1} - k \), for \(1 \leq i \leq n \) (\(s_0 \) is supposed to be equal to \(0 \)):

- if \(s_i - s_{i-1} > k \), then the \(i \)-th step is an up step \((1, s_i - s_{i-1} - k)\)
- if \(s_i - s_{i-1} = k \), then the \(i \)-th step is an horizontal step \((1, 0)\)
- if \(s_i - s_{i-1} < k \), then the \(i \)-th step is a down step \((1, s_i - s_{i-1} - k)\)

Let \((i, y_i)\), \(1 \leq i \leq n \), be the point the path reaches after the \(i \)-th step. Then, according to the definition of \(\text{Path}(S) \):

\[
y_i = \sum_{p=1}^{i} (s_p - s_{p-1} - k) = s_i - ik.
\]

(15)

Since \(S \) is a proper \((k, l)\)-threshold sequence, we have that \(y_i \geq 0 \) and also that \(y_n = s_n - nk = l \). Thus the endpoint of \(\text{Path}(S) \) is \((n, l)\). In order to show that \(\text{Path}(S) \) is a \((k, l)\)-extended Motzkin path of length \(n \), it remains to verify that the down steps satisfy \(1 \leq -(s_i - s_{i-1} - k) \leq k - 1 \). We have \(s_i - s_{i-1} < k \) by the definition of a down step, and thus the inequality on the left side is verified. Moreover, \(- (s_i - s_{i-1} - k) \leq k - 1 \) is equivalent with \(s_i - s_{i-1} \geq 1 \) and this is necessarily true since threshold sequences are strictly increasing sequences. Thus the right side inequality is verified too.

Equation (15) easily implies that the function \(\text{Path}(\cdot) \) is an injective function. To show it is a bijection, consider a \((k, l)\)-extended Motzkin path of length \(n \) and endpoint \((n, l)\), and let \((i, y_i)\) be the coordinates of
Figure 3: The $(5, 4)$-extended Motzkin path associated with the $(5, 4)$-threshold sequence $S = (7\ 15\ 16\ 21\ 28\ 30\ 38)$.

the point reached after i steps. We have $y_i \geq 0$ by definition. We also have $y_n = l$ and, since the down steps $(1, -t)$ satisfy $1 \leq t \leq k - 1$, we deduce that $y_i \leq y_n + (n - i)(k - 1) \leq l + nk - ik - n + i$, thus $y_i + ik \leq nk + l + (i - n) \leq nk + l$. Then, defining S as the sequence with $s_i = y_i + ik$ for all i, $1 \leq i \leq n$, we have $s_i \leq nk + l$ and $s_i - ik = y_i \geq 0$, thus S is a (k, l)-threshold sequence. Moreover, $s_n - nk = y_n = l$ and the proof is finished.

Example 5.2. Consider the proper $(5, 3)$-threshold sequence S of length 7 given by $S = (7\ 15\ 16\ 21\ 28\ 30\ 38)$. The $(5, 4)$-extended Motzkin path $Path(S)$ associated to it uses the following steps: $(1, 2)$, $(1, 3)$, $(1, -4)$, $(1, 0)$, $(1, 2)$, $(1, -3)$, $(1, 3)$. It starts in $(0, 0)$ and ends in $(7, 3)$. See Figure 3.

Now, Proposition 5.1 and Corollary 3.8 imply:

Corollary 5.3. For each $l \geq 1$, the number of (k, l)-extended Motzkin paths of length n ending in (n, l) is equal to the Raney number:

$$R_{n-1}^{(k,k+l)} = \frac{k + l}{(k - 1)(n - 1) + k + l} \binom{kn + l - 1}{n - 1}.$$

Using Proposition 5.1 for each $h = 0, 1, \ldots, l$ and Corollary 3.7, we deduce that:

Corollary 5.4. The (k, l)-extended Motzkin paths of length n are in bijection with the (k, l)-threshold sequences of length n. Thus they are counted by the Raney number:

$$R_n^{(k,l+1)} = \frac{l + 1}{kn + l + 1} \binom{kn + l + 1}{n}.$$

When $l = 0$, the $(k, 0)$-extended Motzkin paths of length n are exactly the $(k, 0)$-extended Motzkin n-paths. The case $k = 2$ is worth to be noticed, since the down steps are in this case $(1, -1)$ steps only, as in the Motzkin paths. We deduce from the previous corollary and the remark that $R_n^{(2,1)} = C_n$ that:

Corollary 5.5. Motzkin-like n-paths obtained by allowing arbitrarily long up steps in Motzkin n-paths are enumerated by the Catalan numbers:

$$C_n = \frac{1}{n + 1} \binom{2n}{n}.$$

Example 5.6. Figure 4 shows the five Motzkin-like 4-paths with arbitrarily long up steps which are not Motzkin 4-paths. The number of Motzkin 4-paths, computed with Equation (14) is 9. The total number of Motzkin-like 4-paths with arbitrarily long up steps is thus 14, which is the Catalan number C_4.

14
Conclusion

The bijections between \((k,l)\)-threshold sequences, ordered \((l+1)\)-tuples of \(k\)-ary trees and Motzkin-like paths with long up and down steps we presented in the paper provide new combinatorial interpretations for the Raney numbers, when the parameters \(r\) and \(k\) satisfy \(r \leq k - 1\). The case where \(k \leq r \leq 2k - 2\) also gets new interpretations, since in this case the Raney numbers count proper \((k,l)\)-threshold sequences and Motzkin-like paths with long up and down steps that have a fixed endpoint.

Threshold sequences may also be represented as particular cases of other combinatorial objects. For instance, \((k,l)\)-threshold sequences of length \(n\) are also in bijection with \(k\)-ballot sequences \([11]\) over the alphabet \(\{A,B\}\) with \(a = kn + l + 1\) letters \(A\), \(b = n\) letters \(B\), whose letters \(B\) are isolated and whose last letter is \(B\). This is done by associating with each \((k,l)\)-threshold sequence \(S\) of length \(n\) the \(k\)-ballot sequence \(W(S) = AW_1W_2\ldots W_n\), where \(W_i\) is a sequence of \(s_i - s_{i-1}\) letters \(A\), followed by a letter \(B\) \((s_0 = 0\) by convention). Then the number of \(k\)-ballot sequences with \(kb < a < kb + k\), whose letters \(B\) are isolated and whose last letter is \(B\), is equal to:

\[
R_b^{(k,a-kb)} = \frac{a - kb \binom{a}{b}}{a}
\]

To see this, it is sufficient to define \(l = a - kb - 1\) and to conclude using Corollary \([3,7]\) and Equation \([3]\).

In consequence, threshold sequences are closely related to existing, and useful, combinatorial objects, and show efficient in bringing a new point of view on these objects.

References

[1] Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani. Eco: a methodology for the enumeration of combinatorial objects. *Journal of Difference Equations and Applications*, 5(4-5):435–490, 1999.

[2] Emeric Deutsch and Louis W. Shapiro. A bijection between ordered trees and 2-Motzkin paths and its many consequences. *Discrete Mathematics*, 256(3):655–670, 2002.

[3] Robert Donaghey and Louis W Shapiro. Motzkin numbers. *Journal of Combinatorial Theory, Series A*, 23(3):291–301, 1977.

[4] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. *Concrete Mathematics*. A Foundation for Computer Science, 1994.
[5] Olivier Guibert, Elisa Pergola, and Renzo Pinzani. Vexillary involutions are enumerated by motzkin numbers. *Annals of Combinatorics*, 5(2):153–174, 2001.

[6] Peter Hilton and Jean Pedersen. Catalan numbers, their generalization, and their uses. *The Mathematical Intelligencer*, 13(2):64–75, 1991.

[7] Katherine Humphreys. A history and a survey of lattice path enumeration. *Journal of statistical planning and inference*, 140(8):2237–2254, 2010.

[8] Th. Motzkin. Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. *Bulletin of the American Mathematical Society*, 54(4):352–360, 1948.

[9] Helmut Prodinger, Sarah J. Selkirk, and Stephan Wagner. On two subclasses of motzkin paths and their relation to ternary trees. In *Algorithmic Combinatorics: Enumerative Combinatorics, Special Functions and Computer Algebra*, pages 297–316. Springer, 2020.

[10] George N. Raney. Functional composition patterns and power series reversion. *Transactions of the American Mathematical Society*, 94(3):441–451, 1960.

[11] Marc Renault. Four proofs of the ballot theorem. *Mathematics magazine*, 80(5):345–352, 2007.

[12] Irena Rusu and Bridget Eileen Tenner. Admissible pinnacle orderings. *Graphs and Combinatorics*, pages 1–10, 2021.

[13] N. J. A. Sloane. Online Encyclopedia of Integer Sequences, https://oeis.org/.

[14] Richard P. Stanley. Enumerative Combinatorics, vol. 2, 1999.

[15] Robert A. Sulanke. Bijective recurrences for Motzkin paths. *Advances in Applied Mathematics*, 27(2-3):627–640, 2001.