RATIONAL SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS INVOLVING NORMS

MACIEJ ULAS

Abstract. In this note we present some results concerning the unirationality of the algebraic variety \(S_f \) given by the equation
\[
N_{K/k}(X_1 + \alpha X_2 + \alpha^2 X_3) = f(t),
\]
where \(k \) is a number field, \(K = k(\alpha) \), \(\alpha \) is a root of an irreducible polynomial \(h(x) = x^3 + ax + b \in k[x] \) and \(f \in k[t] \). We are mainly interested in the case of pure cubic extensions, i.e. \(a = 0 \) and \(b \in k \setminus k^3 \). We prove that if \(\deg f = 4 \) and the variety \(S_f \) contains a \(k \)-rational point \((x_0, y_0, z_0, t_0)\) with \(f(t_0) \neq 0 \), then \(S_f \) is \(k \)-unirational. A similar result is proved for a broad family of quintic polynomials \(f \) satisfying some mild conditions (for example this family contains all irreducible polynomials). Moreover, the unirationality of \(S_f \) (with non-trivial \(k \)-rational point) is proved for any polynomial \(f \) of degree 6 with \(f \) not equivalent to the polynomial \(h \) satisfying the condition \(h(t) \neq h(\zeta_3 t) \), where \(\zeta_3 \) is the primitive third root of unity. We are able to prove the same result for an extension of degree 3 generated by the root of polynomial \(h(x) = x^3 + ax + b \in k[x] \), provided that \(f(t) = t^6 + a_4 t^4 + a_1 t + a_0 \in k[t] \) with \(a_1 a_4 \neq 0 \).

1. Introduction

Let \(k \) be a number field and \(K/k \) be an algebraic extension of degree \(n \). There is a lot of papers devoted to the study of \(k \)-rational solutions of Diophantine equations of the form
\[
N_{K/k}(X_1 \omega_1 + \ldots + X_n \omega_n) = f(t),
\]
where \(N_{K/k} \) is a full norm form for the extension \(K/k \), \(\{\omega_1, \ldots, \omega_n\} \) is a fixed basis of the extension and \(f \) is a polynomial over \(k \). The main problem here is the question whether the Hasse principle, or in other words local to global principle, holds for the smooth proper model of a hypersurface given by the equation \(1 \). For example, if \(f(t) \) is constant then the local to global principle holds for \(1 \) (Hasse). If \(n = 2 \) and \(\deg f = 3 \) or 4 then the variety defined by \(1 \) is called a Châtelet surface. The arithmetic of these surfaces is well understood. In particular, in \(2, 3 \) it is proved that the Brauer-Manin obstruction for the Hasse principle and weak approximation is the only one. Moreover, the existence of a \(k \)-rational solution implies \(k \)-unirationality. These results are unconditional. However, the most general result in this area is obtained under Schinzel’s hypothesis (H) and says that if \(K \) is a cyclic extension of a number field \(k \), and \(f(t) \) is a separable polynomial of arbitrary degree, then the Brauer-Manin obstruction to the Hasse

2010 Mathematics Subject Classification. 11D57, 11D85.
Key words and phrases. rational point, norm form, Châtelet threefold, unirationality.
Research of the author was supported by Polish Government funds for science, grant IP 2011 057671 for the years 2012–2013.
principle and weak approximation is the only one for the smooth and projective model X of the variety given by the equation (1). Moreover, if there is no Brauer-Manin obstruction to the Hasse principle then the k-rational points are Zariski dense in X.

Most of the results in this area were proved using algebraic considerations (via the computation of the Brauer-Manin obstructions) or a combination of algebraic methods together with analytic techniques (see for example [5]). However, only few papers present constructions which allow to produce new solutions from a given k-rational solution of (1). As was mentioned in [5, p.162], usually this is a rather difficult problem.

We are working with a field k of characteristic 0 and an algebraic extension K/k of degree n. We take $\omega_i = \alpha^i$ for $i = 1, \ldots, n$, where $\alpha \in K$ is chosen in such a way that $K = k(\alpha)$. We thus are interested in the equation

$$N_{K/k}(X_1, \ldots, X_n) = f(t),$$

where in order to shorten the notation we put

$$N_{K/k}(X_1, \ldots, X_n) := N_{K/k}(X_1 + \alpha X_2 \ldots + \alpha^{n-1} X_n),$$

i.e. $N_{K/k}$ will denote a norm form, and $N_{K/k}$ denotes the corresponding field norm. In the sequel by a non-trivial solution of (2) we mean a solution (X_1, \ldots, X_n, t) which satisfies $f(t) \neq 0$. The present paper is a contribution to the subject in that we show that in some cases the existence of one k-rational solution of (2) implies the existence of infinitely many k-rational solutions. This is obtained mainly by constructing parametric solution of the corresponding equation, or, in a more geometric language, by constructing of a k-rational curve lying on the corresponding algebraic variety. Of course, we are interested only in the existence of k-rational curves which are not contained in the fiber of the map $\Phi : S_f \ni (X_1, \ldots, X_n, t) \mapsto t \in \mathbb{P}^1(k)$. Our argument is based on a similar approach proposed by Mestre in a series of papers [6, 7, 8] devoted to the study of the existence of rational points on (generalized) Châtelet surfaces, i.e. surfaces defined by (2) with $n = 2$ and $\deg f \geq 5$.

Let us describe the content of the paper in some details. In Section 2, we prove that if K/k is a pure cubic extension generated by the root of the polynomial $h(x) = x^3 + b \in k[x]$, $f \in k[t]$ is of degree 4, and the variety S_f defined by the equation (2) contains a non-trivial k-rational point, then S_f is unirational over k. In particular, in this case the set of k-rational points on S_f is Zariski dense. We prove a similar result for $f \in k[t]$ of degree 5, provided that f satisfies some mild conditions. In particular, if f is an irreducible polynomial, then S_f is k-unirational. We also prove that if $f \in k[t]$ is a monic polynomial of degree 6, S_f contains non-trivial k rational point and the polynomial f is not equivalent to a polynomial $h \in k[t]$ satisfying the condition $h(t) \neq h(\zeta_3 t)$, then the variety S_f given by equation (2) is k-unirational. This result is particularly interesting in the light of a recent work of Várilly-Alvarado and Viray [9]. Indeed, in the case under consideration the variety S_f is a so called Châtelet threefold (in the terminology of [9]). The authors of the cited paper asked whether the existence of a k-rational point on S_f implies k-unirationality [9, Problem 6.2]. Our result shows that S_f is k-unirational for a broad class of polynomials. Moreover, if k is a number field with a real embedding, we prove that for each polynomial $f(t) = a_0 t^6 + \sum_{i=0}^{4} a_{6-i} t^i \in k[t]$ and any given $\epsilon > 0$ there exists a polynomial $g(t) = c_0 t^6 + \sum_{i=0}^{4} c_{6-i} t^i \in k[t]$ which is close to f,

$$g(t) = f(t) - \epsilon,$$
RATIONAL SOLUTIONS OF EQUATIONS INVOLVING NORMS

i.e. \(|a_i - c_i| < \epsilon \) for \(i = 0, 2, \ldots , 6 \), and such that for any \(b \in k \setminus k^3 \) and a pure cubic extension \(K/k \) generated by the root of the polynomial \(h(x) = x^3 + b \), the variety \(\mathcal{S}_g \) is unirational over \(k \).

In Section 3 we consider the variety \(\mathcal{S}_f \) defined by the equation (\ref{equation2}) involving a norm form of an extension \(K/k \) generated by the root of an irreducible polynomial \(h(x) = x^3 + ax + b \in k[x] \). We prove that if \(f(t) = t^6 + a_4t^4 + a_1t + a_0 \in k[t] \), \(a_1a_4 \neq 0 \) then the variety \(\mathcal{S}_f \) is unirational over \(k \). Moreover, we give a remark concerning the unirationality of slightly more general varieties defined by equations of the form \(F(x, y, z) = f(t) \), where \(F \) is a homogenous form of degree 3 and \(f \) is a polynomial.

2. SOLUTIONS OF THE EQUATION \(N_{K/k}(X_1, X_2, X_3) = f(t) \) WITH PURE CUBIC EXTENSION \(K/k \) AND \(f \) OF DEGREE \(\leq 6 \)

Let \(k \) be a field of characteristic 0 and \(K/k \) be an extension of degree 3 generated by the root, say \(\alpha \), of the irreducible polynomial \(h(x) = x^3 + ax + b \) defined over \(k \). We are interested in the rational points lying on the variety defined by the equation

\[
\mathcal{S}_f : N_{K/k}(X_1, X_2, X_3) = f(t),
\]

where \(f \in k[t] \). In this section we consider the case of \(f \) of degree \(\leq 6 \). Since we are interested in \(k \)-unirationality of \(\mathcal{S}_f \), we make the assumption that the set of \(k \)-rational points on \(\mathcal{S}_f \) is non empty. To be more precise, we assume that there is a nontrivial \(k \)-rational point lying on \(\mathcal{S}_f \), i.e. there is a \(P = (x_0, y_0, z_0, t_0) \in \mathcal{S}_f(k) \) such that \(f(t_0) \neq 0 \). In particular the point \(P \) is a smooth point on \(\mathcal{S}_f \). In this section we consider the case of a pure cubic extension \(K/k \), i.e. \(K \) is generated by the root of a polynomial \(h \) with \(a = 0 \). Let us recall that in this case

\[
N_{K/k}(X_1, X_2, X_3) = X_1^3 + bX_2^3 + b^2X_3^3 + 3bX_1X_2X_3.
\]

Before we state our results let us note that \(\mathcal{S}_f \) is isomorphic with \(\mathcal{S}_g \), where \(g(t) = \sum_{i=1}^6 c_i t^i + 1 \). Indeed, making a change of variables \(t \mapsto t + t_0 \) we can assume that \(f(0) = c_0 = N_{K/k}(u, v, w) \neq 0 \) for some \(u, v, w \in k \). Multiplying this equation by \(c_0^{-1} = N_{K/k}(u', v', w') \), with \(u', v', w' \) chosen in such a way that \(N_{K/k}(u, v, w)N_{K/k}(u', v', w') = 1 \), and using the multiplicative property of a norm form, we get the desired form of our equation. It is clear that \(\mathcal{S}_f \) is \(k \)-unirational if and only if \(\mathcal{S}_g \) is \(k \)-unirational.

We are ready to prove the following result.

\textbf{Theorem 2.1.} Let \(k \) be a field of characteristic 0 and let \(K = k(\alpha) \), where \(\alpha^3 + b = 0 \) with \(b \in k \setminus k^3 \). Put \(g(t) = 1 + \sum_{i=1}^6 c_i t^i \in k[t] \) and let us suppose that

\[
(c_2, c_4, c_6) \neq \left(\frac{5c_1^2}{12}, -\frac{1}{144}c_1(5c_1^3 - 72c_3), -\frac{1}{144}c_1^2(c_1^3 - 12c_3) \right).
\]

Then the variety \(\mathcal{S}_g \) is \(k \)-unirational.

\textbf{Proof.} Let \(G = G(X_1, X_2, X_3, t) \) be a polynomial defining the variety \(\mathcal{S}_g \). We note that \(\mathcal{S}_g \) contains the \(k \)-rational point \((1, 0, 0, 0) \). We use it in order to construct a \(k \)-rational curve lying on \(\mathcal{S}_g \). More precisely, we are looking for a rational curve, say \(\mathcal{L} \), lying on \(\mathcal{S}_g \). We assume that \(\mathcal{L} \) can be parameterized by rational functions with parameter \(u \) in the following way:

\[
\mathcal{L} : X_1 = pt^2 + qt + 1, \quad X_2 = rt^2, \quad X_3 = st^2 + ut, \quad t = T,
\]

where \(p, q, r, s, t \) are polynomials in \(u \). In this way we can construct a \(k \)-rational curve on \(\mathcal{S}_g \).
where \(p, q, r, s, T \) need to be determined. With \(X_i \) and \(t \) defined above, we get
\[
G(X_1, X_2, X_3, t) = \sum_{i=1}^{6} C_i T^i,
\]
where
\[
C_1 = 3q - c_1, \quad C_5 = b^2 u^3 + 3bru + 6pq + q^3 - c_3, \\
C_2 = 3p + 3q^2 - c_2, \quad C_4 = 3(b^2 u^2 + bqr u + brs + p^2 + pq^2) - c_4
\]
and \(C_5, C_6 \in k[p, q, r, s, u] \) depend on \(c_i \) for \(i = 1, \ldots, 5 \). The system \(C_1 = C_2 = C_3 = C_4 = 0 \) has exactly one solution with respect to \(p, q, r, s \) and it is given by:
\[
\begin{align*}
& p = \frac{1}{5} (3c_2 - c_1^2), \\
& q = \frac{1}{5} c_1, \\
& r = \frac{-27b^2 u^3 + 5c_1^3 - 18c_1 c_2 + 27c_3}{81bu}, \\
& s = \frac{u(27b^2 c_1 u^3 + 5c_1^3 + 27c_2 c_1^2 - 27c_3 c_2 - 27c_2^2 + 81c_4)}{3(54b^2 u^2 + 5c_1^2 - 18c_1 c_2 + 27c_3)}.
\end{align*}
\]
For \(p, q, r, s \) defined in this way we get \(C_i = \tilde{A}_i / D, i = 5, 6, \) and \(DG(X_1, X_2, X_3, T) = \tilde{A}_5 T^5 + \tilde{A}_6 T^6 \) for \(\tilde{A}_5, \tilde{A}_6 \in k[u] \) and \(D = 3^{12} b^2 u^3 (54b^2 u^3 + 5c_1^3 - 18c_1 c_2 + 27c_3)^3 \). We note that \(\deg_\tilde{u} \tilde{A}_6 = 18 \) and the leading coefficient of \(\tilde{A}_6 \) is \(2^3 3^1 18b^{12} \). In particular \(A_6 \neq 0 \) as an element of \(k[u] \). We also have \(\deg_\tilde{u} \tilde{A}_5 = 15 \) and \(\tilde{A}_5 \neq 0 \) as an element of \(k[u] \) if and only if the condition \([1]\) is satisfied. In this case, we get a single non-zero solution of the equation \(T^5 (\tilde{A}_5 + \tilde{A}_6 T) = 0 \) with respect to \(T \). Indeed, we have
\[
T = \frac{\tilde{A}_5}{\tilde{A}_6} = \varphi(u) = \frac{2 \cdot 3^{19} b^{10} (5c_1^2 - 12c_2) u^{15} + \text{lower order terms in } \tilde{u}}{2^{3} 3^{18} b^{12} u^{18} + \text{lower order terms in } \tilde{u}}.
\]
Summing up, we see that the existence of a \(k \)-rational point \(P \) with \(f(t_0) \neq 0 \) implies that \(S_g \) contains a \(k \)-rational curve \(\mathcal{L} \), which is not contained in any hyperplane defined by the equation \(t = t_0 \) with \(t_0 \in k \). This allows us to define the base change \(t = \varphi(u) \) which gives the cubic surface \(S_{g_{\varphi \varphi}} \) defined over the field \(k(u) \) with a smooth \(k(u) \)-rational point. This immediately implies \(k(u) \)-unirationality of \(S_{g_{\varphi \varphi}} \) by \([1]\) Proposition 1.3 and thus \(k \)-unirationality of \(S_g \). Indeed, the map \(\Psi \) which guarantees unirationality of \(S_{g_{\varphi \varphi}} \) extends to a dominant rational map \((\Psi, \varphi) \) which gives unirationality of \(S_g \) and thus \(S_f \). \(\square \)

Corollary 2.2. Let \(k \) be a field of characteristic zero and let \(K/k \) be a pure cubic extension. Consider the variety \(S_f \) with \(f \in k[t] \) of degree 4 and suppose that \(S_f \) contains a nontrivial \(k \)-rational point. Then \(S_f \) is \(k \)-unirational.

Proof. We are working with \(S_g \) where \(g(t) = 1 + \sum_{i=1}^{4} c_i t^i \) with \(c_4 \neq 0 \). We have \(S_g \simeq S_f \). In order to get the result we need to check whether the condition \([1]\) is satisfied for all \(c_i \in k \) for \(i = 1, 2, 3, 4 \). We see that \([1]\) is not satisfied if and only if \((c_2, c_4, c_5) = (5c_1^2 / 12, c_1^3 / 144, 0)\). In particular \(c_1 \neq 0 \). Making the (invertible) substitution \(t \mapsto 6t / c_1 \) we are left with the problem of proving unirationality of \(S_h \) with \(h(t) = (3t^2 + 2t + 1)^2 \). We assume that \(\mathcal{L} \) can be parametrized by rational functions with parameter \(u \) in the following way
\[
\mathcal{L} : X_1 = T + 1, \quad X_2 = u T, \quad X_3 = p T, \quad t = q T,
\]
where parameters \(p, q, T \) still need to be determined. For \(X_1, X_2, X_3, t \) defined in this way we get \(F = \sum_{i=1}^{4} C_i T^i \), where
\[
C_1 = 3 - 6q, \quad C_2 = 3 + 3bpu - 15q^2, \quad C_3 = 1 + b^2 p^3 + 3br - bu^3 - 18q^3, \quad C_4 = -9q^4.
\]
We solve the system $C_1 = C_2 = 0$ with respect to p, q and get $p = 1/4bu, q = 1/2$. This substitution allows us to find the expression for T in the form

$$T = \frac{-64b^2a^6 - 32bu^3 + 1}{36bu^3}.$$

The expression for T together with the expressions for p, q give equations (6) defining the rational parametric curve L lying on S_h. Using now the same reasoning as at the end of the proof of Theorem 2.1, we get the result. \hfill \square

Remark 2.3. We were trying to prove k-unirationality of S_g in the case when the polynomial $g \in k[t]$ is of degree 5 and does not satisfy the condition (4). Among other things we were trying to replace the polynomial $g(t)$ by the polynomial $h(Y) = (1 + vY)^6g(Y/(1 + vY))$. In this way we got the variety S_h via the substitution

$$X_i = Y_i/(1 + vY)^2 \quad \text{for} \quad i = 1, 2, 3 \quad \text{and} \quad t = Y/(1 + vY).$$

Unfortunately, one can check that if g does not satisfy the condition (4), then $h(T)$ does not satisfy the condition (4), too. Because all our efforts failed, we decided to state the following:

Question 2.4. Let k be a field of characteristic 0 and let $K = k(\alpha)$, where $\alpha^3 + b = 0$ with $b \in k \setminus k^3$. Put $g(t) = 1 + \sum_{i=1}^{5} c_it^i \in k[t]$ with $c_5 \neq 0$ and let us suppose that the condition (4) is not satisfied. Is the variety S_g unirational over k?

Let us note that if the polynomial g does not satisfy the condition (4), then g is reducible, namely

$$g(t) = -\frac{1}{144}(c_1^2t^2 + 6c_1t + 12)(c_1^3 + 12c_3)t^3 - c_1^2t^2 - 6c_1t - 12).$$

In particular, Theorem 2.1 implies that if g is irreducible of degree 5 then S_g is k-unirational and thus the set of k-rational points on S_g is Zariski dense. It is clear that the same is true for a polynomial f corresponding to g.

In a recent paper Várilly-Alvarado and Viray [9] introduced the notion of a Châtelet threefold, which is a variety defined by the equation (2) with $n = 3$ and $f \in k[t]$ of degree 6. The authors of this paper asked, whether the existence of a k-rational point on S_f implies k-unirationality of S_f [9, Problem 6.2]. The statement of the Theorem 2.1 gives us a broad family of polynomials f such the variety S_f is k-unirational. In the next corollary we make this result more explicit.

Before we state our result, let us recall that two polynomials $f_1, f_2 \in k[t]$ are equivalent if $\deg f_1 = \deg f_2$ and there exist $\alpha, \beta \in k$ such that $f_2(t) = f_1(\alpha t + \beta)$.

Corollary 2.5. Let k be a field of characteristic 0 and let $K = k(\alpha)$, where $\alpha^3 + b = 0$ with $b \in k \setminus k^3$. Let $f \in k[t]$ be of degree 6 and suppose that f is not equivalent to the polynomial $h \in k[t]$ satisfying the condition $h(t) = h(\zeta_3t)$, where ζ_3 is the primitive third root of unity. Let us also suppose that S_f contains a nontrivial k-rational point. Then the variety S_f given by (3) is k-unirational.

Proof. First of all let us note that the existence of a non-trivial k-rational point on S_f with f of degree 6 and the fact that the norm form is multiplicative, implies that $S_f \simeq S_h$, where $h(t) = t^6 + \sum_{i=1}^{6} c_it^i$ for some $c_j \in k, j = 2, 3, \ldots, 6$. From our assumption on f we know that at least one among the elements c_2, c_4, c_5 is non-zero. Making the change of variables $X_i = Y_i/T$ for $i = 1, 2, 3$ and $t = 1/T$ we get that $S_f \simeq S_g$ with $g(T) = 1 + \sum_{i=2}^{6} c_iT^i$. We can apply now Theorem 2.1 to the variety S_g. It is k-unirational provided that the condition (4) is satisfied. In
our case we have $c_1 = 0$ and thus (3) is not satisfied if and only if $c_2 = c_4 = c_5 = 0$ which is not the case.

Using the corollary above in the case of a number field k with real embedding in \mathbb{R}, we deduce the following interesting result.

Theorem 2.6. Let K/k be a number field with $k \subset \mathbb{R}$ and put $f(t) = a_6 t^6 + \sum_{i=0}^4 a_{6-i} t^i \in k[t]$ with $a_0 \neq 0$. Then, for each $\epsilon > 0$ there exists a polynomial $g(t) = c_0 t^6 + \sum_{i=0}^4 c_{6-i} t^i \in k[x]$ such that $|a_i - c_i| < \epsilon$ for $i = 0, 2, \ldots, 6$ and for each pure cubic extension K/k of degree 3, the variety S_g given by the equation $N_{K/k}(X_1, X_2, X_3) = g(t)$ is k-unirational.

Proof. We are working with $S_h \simeq S_f$, where $h(t) = t^6 f(1/t)$. We note that for any given $a_0 \in k^*$ we can find a triple $u, v, w \in k$ such that $|N_{K/k}(u, v, w) - a_0| < \epsilon$ and $N_{K/k}(u, v, w) \neq 0$, which is a consequence of the density of the image of the norm map $N_{K/k} : k^3 \to k$. Then we take $c_0 = N_{K/k}(u, v, w)$. If $h(t) \neq h(\zeta_3 t)$ we take $c_i = a_i$ for $i = 2, \ldots, 6$. If $h(t) = h(\zeta_3 t)$ then we take $c_i = a_i$ for $i = 3, 6$ and we take $c_2 = c_4 = c$ for any $c \in k$ which satisfies $|c| < \epsilon$. Then we put $g(t) = c_0 t^6 + \sum_{i=0}^4 c_{6-i} t^i$ and note that S_g contains a k-rational point at infinity. Moreover, $S_g \simeq S_{h'}$, where $h'(t) = t^6 g(1/t)$. From the Corollary (2.5) we get the result.

The presented results motivate us to state the following:

Conjecture 2.7. Let k be a number field and K/k be a cyclic extension of degree 3. Let $f \in k[t]$ be a polynomial of degree 6 and let us suppose that there exists a non-trivial k-rational point on S_f. Then S_f is k-unirational.

We finish this section with the following simple result.

Theorem 2.8. Let K be a field of characteristic 0 and let $K = k(\alpha)$, where $\alpha^3 + b = 0$ with $b \in k \setminus k^3$. Put $f(t) = t^3m + a_2 t^m + a_1 t + a_0 \in k[t]$ with $a_1 \neq 0$. Then the variety S_f is k-unirational.

Proof. Let $F = F(X_1, X_2, X_3, t)$ be a polynomial defining the variety S_f. We put

$$X_1 = t^m, \quad X_2 = u, \quad X_3 = \frac{a_2}{3bu}.$$

For X_i defined in this way the polynomial F (in the variable t) is of degree 1 with the root

$$t = \varphi(u) = -\frac{27b^2 u^6 + 27ba_0 u^3 - a_0^3}{27ba_1 u^3},$$

which under the assumption $a_1 \neq 0$ is a non-constant element of $k(u)$. We thus see that the cubic surface S_{f_φ} is $k(u)$-unirational and this implies the k-unirationality of S_f.

3. **Solutions of the equation $N_{K/k}(X_1, X_2, X_3) = f(t)$ for general cubic extension and f of degree 6**

We consider now the variety S_f given by the equation (3) for a general extension K/k of degree 3 and a monic polynomial $f \in k[t]$ of degree 6. We thus assume that $K = k(\alpha)$, where α is a root of an irreducible polynomial $h(x) = x^3 + ax + b \in k[x]$ with $a \neq 0$. Unfortunately, in this case we were unable to prove the k-unirationality of S_f for all polynomials f which satisfy $f(t) \neq f(\zeta_3 t)$. However, we prove the following result.
Theorem 3.1. Let \(k \) be a field of characteristic 0 and put \(K = k(\alpha) \), where \(\alpha^3 + a\alpha + b = 0 \) and \(f(t) = t^6 + a_4 t^4 + a_1 t + a_0 \in k[t] \) with \(a_1 a_4 \neq 0 \). Then the variety \(S_f \) given by \(\mathbf{3} \) is unirational over \(k \).

Proof. In this case the norm form takes the form \(N_{K/k} = N_{K/k}(X_1, X_2, X_3) \), where
\[
N_{K/k} = X_1^3 - bX_2^3 + a^2 X_3^3 + (aX_2 + 3bX_3)X_1X_2 - (2aX_1^2 - a^2 X_1 X_3 - abX_2 X_3)X_3.
\]
Let \(G = G(X_1, X_2, X_3, t) \) be the polynomial defining the variety \(S_f \). We use exactly the same approach as in the proof of Theorem 2.1. This time we just take \(X_1 = t^2 + p \), where \(p \) needs to be determined. We thus get
\[
G(X_1, X_2, X_3, t) = \sum_{i=0}^{6} C_i t^i,
\]
where
\[
C_2 = a^2 X_3^2 - 4apX_3 + aX_2^2 + 3bX_2X_3 + 3p^2, \quad C_3 = 0, \quad C_4 = 3p - a_4 - 2aX_3.
\]
Eliminating \(p \) from the equation \(C_4 = 0 \) we are left with the equation \(C_2 = 0 \) defining a curve, say \(C \), in the plane \((X_2, X_3) \). The equation for \(C \) can be rewritten in the form
\[
C : (2a^2 X_3 - 9bX_2)^2 = 4a^2 a_4^2 + 3(4a^3 + 27b^2)X_2^2.
\]
The curve \(C \) is of genus 0 and has a rational point \((X_2, X_3) = (0, a_4/a) \) and thus can be parameterized by rational functions. A parametrization of \(C \) together with the expression for \(p \) is given by
\[
X_2 = \frac{4a_4 u}{3(4a^3 + 27b^2) - u^2}, \quad X_3 = \frac{a_4 (12a^3 + 81b^2 + 18bu + u^2)}{a(3(4a^3 + 27b^2) - u^2)}; \quad p = \frac{a_4 + 2aX_3}{3}.
\]
For \(X_2, X_3 \) and \(p \) chosen in this way we have the equality \(DG(X_1, X_2, X_3, t) = A_0 + A_1 t \), where \(\deg A_0 = 6 \) and \(D = A_1 = -27a^3 a_4 (12a^3 + 81b^2 - u^2)^3 \). From the assumption on \(a_1 \) we know that \(DA_1 \neq 0 \). Careful analysis of the coefficients of the polynomial \(A_0 \) shows that if the coefficients of \(f \) satisfy \(a_1 a_4 \neq 0 \) then the function \(t = \varphi(u) = -A_0/A_1 \) satisfies \(\varphi \in k(u) \setminus k \). Thus, we have found a rational curve lying on \(S_f \). Finally, the same argument as at the end of the proof of Theorem 2.1 gives \(k \)-unirationality of the variety \(S_f \). \(\square \)

Remark 3.2. It is natural to ask whether the method employed in order to get the \(k \)-unirationality of the varieties considered in this paper can be used in other situations. More precisely, one can ask the following.

Question 3.3. Let \(f \in k[t] \). How general an indecomposable form \(F \in k[X_1, X_2, X_3] \) of degree 3 can be such that a variety defined by the equation \(F(X_1, X_2, X_3) = f(t) \) is unirational over \(k \) for most choices of \(f \) of fixed degree?

For example, let us consider the case of a monic polynomial \(f \in k[t] \) of degree 6. It would be rather unexpected if taking the form
\[
F(X_1, X_2, X_3) = X_1^3 + aX_2^3 + bX_3^3 + (cX_1 + dX_2 + eX_3)X_2X_3,
\]
we could prove the \(k \)-unirationality of the hypersurface defined by the equation
\[
S : F(X_1, X_2, X_3) = f(t);
\]
where \(f(t) = t^6 + \sum_{i=0}^{6} a_i t^i \in k[t] \) and \(a, b, c, d, e \in k \) satisfy certain conditions. We note that for a generic choice of \(a, b, c, d, e \in k \) the form \(F \) is absolutely irreducible, i.e., is irreducible as a polynomial in \(\bar{k}[X_1, X_2, X_3] \). Let
$G(X_1, X_2, X_3, t) = F(X_1, X_2, X_3) - f(t)$ be the polynomial defining the hypersurface S. In order to verify the k-unirationality of S, it is enough to take

$$X_1 = t^2 + \frac{a_4}{3}, \quad X_2 = \frac{b_3 - bu^3}{cu}, \quad X_3 = ut + \frac{u(3beu^4 - 3a_3cu - a_1^2c + 3a_2c)}{3c(2bu^3 + a_3)}.$$

Indeed, for X_1, X_2, X_3 chosen in this way we note an equality $DG(X_1, X_2, X_3, t) = C_1t + C_0$, where $C_0, C_1 \in k[u]$ depend on the coefficients a, b, c, d, e and a_i for $i = 0, \ldots, 4$. Moreover, we have $D = 27c^3u^3(2bu^3 + a_3)^3$. If $C_0C_1 \neq 0$ as a polynomial in $k[u]$, we get a solution $t = \varphi(u) = -C_0/C_1$. We have $\deg C_1 = 17$ and $\deg C_0 = 18$. The expression for t together with the expressions for X_1, X_2, X_3 given by 7 yield a parametrization (in the parameter u) of a rational curve on S with $f(\varphi(u)) \neq 0$. The existence of a rational curve lying on S allows us to define a rational base change $t = \varphi(u)$. Then the (cubic) surface $S_u : F(X_1, X_2, X_3) = f(\varphi(u))$ (treated as a surface over the field $k(u)$) contains a smooth $k(u)$-rational point P with coordinates given by 7 and thus S_u is k-unirational over $k(u)$. As an immediate consequence we get the k-unirationality of S over k.

It is possible to write explicit conditions on the coefficients of the polynomial f and the form F which will guarantee that $\varphi \in k(u) \setminus k$. For example, if $abceac_3 \neq 0$ then $\varphi \in k(u) \setminus k$.

References

[1] J. L. Colliot-Thélène, P. Salberger, Arithmetic on some singular cubic hypersurfaces, Proc. London Math. Soc. (3), 58 (1989), 519–549.
[2] J. L. Colliot-Thélène, J.-J. Sansuc, P. Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I, J. reine angew. Math., 373 (1987) 37–107.
[3] J. L. Colliot-Thélène, J.-J. Sansuc, P. Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. II, J. reine angew. Math., 374 (1987), 72–168.
[4] J. L. Colliot-Thélène, A. N. Skorobogatov, P. Swinnerton-Dyer, Rational points and zero-cycles on fibred varieties: Schinzel’s hypothesis and Salberger’s device, J. Reine Angew. Math., 495 (1998), 1–28.
[5] R. D. Heath-Brown, A. N. Skorobogatov, Rational solutions of certain equations involving norms, Acta Math., 189 (2002), 161-177.
[6] J. F. Mestre, Annulation, par changement de variable, d’éléments de Br$_2(k(x))$ ayant huit pôles, à résidu constant, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 11, 1147–1149.
[7] J. F. Mestre, Annulation, par changement de variable, d’éléments de Br$_2(k(x))$ ayant quatre pôles, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 6, 529–532.
[8] J. F. Mestre, Annulation, par changement de variable, d’éléments de Br$_2(k(x))$ ayant cinq pôles, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 6, 503–505.
[9] A. Várilly-Alvarado, B. Viray, Higher dimensional analogues of Châtelet surfaces, Bull. London Math. Soc., 44 (2012) 125–135.

Maciej Ulas, Jagiellonian University, Faculty of Mathematics and Computer Science, Institute of Mathematics, Łojasiewicza 6, 30-348 Kraków, Poland; email: maciej.ulas@uj.edu.pl