Complete Genome Sequence of Agrobacterium tumefaciens Ach5

Ya-Yi Huang, a Shu-Ting Cho, a Wen-Sui Lo, a,b,c Yi-Chieh Wang, a Erh-Min Lai, a,b,d Chih-Horng Kuo a,b,d

Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan a; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan b; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan c; Biotechnology Center, National Chung Hsing University, Taichung, Taiwan d

Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease. The strain Ach5 was isolated from yarrow (Achillea ptarmica L.) and is the wild-type progenitor of other derived strains widely used for plant transformation. Here, we report the complete genome sequence of this bacterium.

Received 27 April 2015 Accepted 30 April 2015 Published 4 June 2015

Citation Huang Y-Y, Cho S-T, Lo W-S, Wang Y-C, Lai E-M, Kuo C-H. 2015. Complete genome sequence of Agrobacterium tumefaciens Ach5. Genome Announc 3(3):e00570-15. doi:10.1128/genomeA.00570-15.

ACKNOWLEDGMENTS

The funding for this project was provided by the Institute of Plant and Microbial Biology, Academia Sinica, to E.-M.L. and C.-H.K.

We thank the DNA Analysis Core Laboratory of our institute for providing Sanger sequencing service. The Illumina paired-end sequencing service was provided by the DNA Sequencing Core Facility (Institute of Molecular Biology, Academia Sinica), and the Illumina mate pair sequencing service was provided by Yourgene Bioscience (New Taipei, Taiwan).

REFERENCES

1. Nester EW. 2014. Agrobacterium: nature’s genetic engineer. Front Plant Sci 5:730. http://dx.doi.org/10.3389/fpls.2014.00730.

2. Archdeacon J, Bouhouche N, O’Connell F, Kado CI. 2000. A single amino acid substitution beyond the C2H2-zinc finger in Ros derepresses virulence and T-DNA genes in Agrobacterium tumefaciens. FEMS Microb Lett 187:175–178. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09156.x.

3. Cervera M, López MM, Navarro L, Peña L. 1998. Virulence and super-virulence of Agrobacterium tumefaciens in woody fruit plants. Physiol Mol Plant Pathol 52:67–78. http://dx.doi.org/10.1006/pmpp.1997.0135.

4. Ooms G, Klampij WM, Pouls JA, Schilperoort RA. 1980. Characteriza-
tion of Tn904 insertions in octopine Ti plasmid mutants of Agrobacterium tumefaciens. J Bacteriol 144:82–91.
5. Ooms G, Hooykaas PJ, Van Veen RJ, Van Beelen P, Regensburg-Tuinck TJ, Schilperoort RA. 1982. Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7:15–29. http://dx.doi.org/10.1016/0147-619X(82)90023-3.
6. Hoekema A, Hirsch PR, Hooykaas PJ, Schilperoort RA. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180. http://dx.doi.org/10.1038/303179a0.
7. Henkel CV, den Dulk-Ras A, Zhang X, Hooykaas PJ. 2014. Genome sequence of the octopine-type Agrobacterium tumefaciens strain Ach5. Genome Announc 2(2):e00225-14. http://dx.doi.org/10.1128/genomeA.00225-14.
8. Chung W-C, Chen L-L, Lo W-S, Lin C-P, Kuo C-H. 2013. Comparative analysis of the peanut witches’-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS One 8:e602770. http://dx.doi.org/10.1371/journal.pone.0060277.
9. Lo W-S, Chen L-L, Chung W-C, Gasparich GE, Kuo C-H. 2013. Comparative genome analysis of Spiroplasma melliferum IPMB4A, a honeybee-associated bacterium. BMC Genomics 14:22. http://dx.doi.org/10.1186/1471-2164-14-22.
10. Ku C, Lo W-S, Chen L-L, Kuo C-H. 2013. Complete genomes of two dipteran-associated spiroplasmas provided insights into the origin, dynamics, and impacts of viral invasion in Spiroplasma. Genome Biol Evol 5:1151–1164. http://dx.doi.org/10.1093/gbe/evt084.
11. Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog clusters from whole-genome sequence data. J Comput Biol 10:121–132. http://dx.doi.org/10.1089/1071301031655192.8
12. Su H-J, Hogenhout SA, Al-Sadi AM, Kuo C-H. 2014. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the Citrus. PLoS One 9:e913049. http://dx.doi.org/10.1371/journal.pone.0130394.
13. Chang H-H, Cho S-T, Canale MC, Mugford ST, Lopes JR, Hogenhout SA, Kuo C-H. 2015. Complete genome sequence of Candidatus Sulcia muelleri ML, an obligate nutrition symbiont of maize leafhopper (Dalbulus maidis). Genome Announc 3(1):e01483-14. http://dx.doi.org/10.1128/gna.01483-14.
14. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton LN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnikre A, Nusbaum C, Lander ES, Jaffe DB. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518. http://dx.doi.org/10.1073/pnas.1017351108.
15. Swain MT, Tsai J, Assesa FA, Newbold C, Berriman M, Otto TD. 2012. A postassembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc 7:1260–1284. http://dx.doi.org/10.1038/nprot.2012.068.
16. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. http://dx.doi.org/10.1093/bioinformatics/btp324.
17. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP, Stolz J, Sugarbaker D, Shurtleff S. 2011. Robust detection of differentially expressed genes from a small number of gene expression arrays. Nat Biotechnol 29:24–28. http://dx.doi.org/10.1038/nbt.1754.
18. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment Map Format and SAMtools. Bioinformatics 25:2078–2079. http://dx.doi.org/10.1093/bioinformatics/btp352.
19. Li H, Hall P, Lunter G, Egholm M, Steward C, Marcelli A, Clark R, Nix D, Coarfa C, Soder G, Green C, Slater E. 2009. Genome-wide association analysis within the rosids. PLoS One 4:e5099. http://dx.doi.org/10.1371/journal.pone.0005099.
20. McCombie SR. 2013. Comparison of commonly used next-generation sequencing platforms. J Proteome Res 12:2017–2021. http://dx.doi.org/10.1021/pr4004826.
21. Swamidass S, Boden M, Zitzelsberger H, Perrett DR, Simons K, Shoemaker B, Keese M, Pongpattanaphum N, Wang L, Tenzer S, O’Donnell T, Lee CH. 2010. Surfing the wave of eukaryotic medicine: a survey of bioinformatics software for Next Generation Sequencing. Bioinformatics 26:24–30. http://dx.doi.org/10.1093/bioinformatics/btp550.