The complete mitochondrial genome of *Dysgonia stuposa* (Lepidoptera: Erebidae) and phylogenetic relationships within Noctuoidea

Yuxuan Sun\(^1\), Yeshu Zhu\(^1\), Chen Chen\(^1\), Qunshan Zhu\(^1\), Qianqian Zhu\(^1\), Yanyue Zhou\(^1\), Xiaojun Zhou\(^1\), Peijun Zhu\(^1\), Jun Li\(^1\), Haijun Zhang\(^1\)

\(^1\) College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China

Corresponding Authors: Jun Li, Haijun Zhang
Email address: healthlicn@chnu.edu.cn, haijunzhang@163.com

To determine the *Dysgonia stuposa* mitochondrial genome (mitogenome) structure and to clarify its phylogenetic position, the entire mitogenome of *D. stuposa* was sequenced and annotated. The *D. stuposa* mitogenome is 15,721 bp in size and contains 37 genes (protein-coding genes, transfer RNA genes, ribosomal RNA genes) usually found in lepidopteran mitogenomes. The newly sequenced mitogenome contained some common features reported in other Erebidae species, e.g., an A+T biased nucleotide composition and a non-canonical start codon for *cox1* (CGA). Like other insect mitogenomes, the *D. stuposa* mitogenome had a conserved sequence ‘ATACTAA’ in an intergenic spacer between *trnS2* and *nad1*, and a motif ‘ATAGA’ followed by a 20 bp poly-T stretch in the A+T rich region. Phylogenetic analyses supported *D. stuposa* as part of the Erebidae family and confirmed the monophyly of the subfamilies Arctiinae, Catocalinae and Lymantriinae within Erebidae.
The complete mitochondrial genome of *Dysgonia stuposa* (Lepidoptera: Erebidae) and phylogenetic relationships within Noctuoidea

Yuxuan Sun*, Yeshu Zhu*, Chen, Chen, Qunshan Zhu, Qianqian Zhu, Yanyue Zhou, Xiaojun Zhou, Peijun Zhu, Jun Li#, HaiJun Zhang#

(College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China)

*These two authors contributed equally to this work.

Corresponding authors.

Address: College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, 235000 China.

Email: healthlicn@chnu.edu.cn (Jun Li), haijuzhang@163.com(HaiJun Zhang)
Abstract

To determine the *Dysgonia stuposa* mitochondrial genome (mitogenome) structure and to clarify its phylogenetic position, the entire mitogenome of *D. stuposa* was sequenced and annotated. The *D. stuposa* mitogenome is 15,721 bp in size and contains 37 genes (protein-coding genes, transfer RNA genes, ribosomal RNA genes) usually found in lepidopteran mitogenomes. The newly sequenced mitogenome contained some common features reported in other Erebidae species, e.g., an A+T biased nucleotide composition and a non-canonical start codon for *cox1* (CGA). Like other insect mitogenomes, the *D. stuposa* mitogenome had a conserved sequence ‘ATACTAA’ in an intergenic spacer between *trnS2* and *nad1*, and a motif ‘ATAGA’ followed by a 20 bp poly-T stretch in the A+T rich region. Phylogenetic analyses supported *D. stuposa* as part of the Erebidae family and reconfirmed the monophyly of the subfamilies Arctiinae, Catocalinae and Lymantriinae within Erebidae.

Keywords: Phylogenetic relationship; *D. stuposa*; Mitochondrial genome; Noctuoidea

Introduction

D. stuposa (Lepidoptera: Erebidae) is an important pest species, and it has a wide distribution throughout the southern and eastern parts of Asia. Its larvae mainly consume the leaves of *Punica granatum* (pomegranate) resulting in considerable economic losses. In the northern areas of China, *D. stuposa* pupates during the winter to avoid the harsh environment (Piao et al., 2012). The identification and prevention of *D. stuposa* at pupal stage based on morphological characteristics is quite difficult for taxonomists and population ecologists. Despite
the economic importance, our understanding of *D. stuposa* biology or phylogenetic status at the molecular level is still in its infancy. New molecular techniques such as DNA barcoding and PCR-RFLP are considered more reliable than morphology for studying taxonomy of animals (Arimoto & Iwaizum, 2014; Raupach et al., 2010). The application of molecular techniques to study the sequence of *D. stuposa* mitogenome will help in its precise identification and classification while contributing to future genetic ecology and evolutionary analyses.

The insect mitogenome is typically a 14-19 kb sized, circular, double-stranded DNA molecule (Boore, 1999). Compared to the nuclear genome, mitogenome is small in size and comparatively easy to sequence. Mitogenome usually contains numerous typical characteristics, such as stable gene composition, and conserved gene arrangements, which are widely used in molecular identification, population genetics, systematics and biogeographic studies (Wolstenholme, 1992; Wilson et al., 2010). Given the vast diversity of insects, mitogenome analyses are beneficial for species identification and broadly employed in the study of genomic evolution and phylogenetic relationships (Lu et al., 2013; Cameron, 2014).

Noctuoidea is one of the largest superfamilies of Lepidoptera, with over 42,400 described species (Nieukerken et al., 2011). Unlike other superfamilies, a metathoracic tympanal organ is a characteristic feature of Noctuoidea species (Miller, 1991). However, morphological based phylogenetics has failed to resolve classification conflicts at the family and sub-family level. Furthermore, the initial molecular studies were also unable to provide sufficient information as most of them rely on one or two genes with only 29-49 species (Mitchell et al., 1997; Fang et al., 2000). Mitchell et al. (2006) conducted systemic analyses based on two nuclear genes
(elongation factor-1α (EF-1α) and dopa decarboxylase (DDC)) and increased taxon sampling (146 species), that supported the monophyly of sub-families and proposed a LAQ clade (Lymantriidae and Arctiidae became subordinate subfamilies within quadrifid noctuids). Zahiri et al. (2011) reconstructed the molecular phylogenetics of Noctuoidea using one mitochondrial (cox1) and seven nuclear genes (EF-1α, wingless, RpS5, IDH, CMDH, GAPDH and CAD) from 152 species with the Maximum Likelihood (ML) method. They proposed a new perspective, splitting up the traditional group of quadrifid noctuids, and re-establishing Erebidae and Nolidae as families (Zahiri et al., 2011). However, this study failed to clarify phylogenetic relationships between Erebidae subfamilies (Zahiri et al., 2012). Additionally, morphological studies were not entirely consistent with the molecular studies in challenging some traditional synapomorphies, such as the “quadrifid” forewing venation and the presence of a transverse sclerite in the pleural region of segment A1 (Minet et al., 2012).

Complete mitogenomes and the mitochondrial genes are increasingly applied to understand phylogenetic relationships. For example, Wang et al. (2015) proposed two new tribes and established relationships between them within Lymantriinae by using two mitochondrial genes (cox1 and rrnL) along with six nuclear genes, using ML and Bayesian Inference (BI). The nucleotide and amino acid sequences of mitochondrial PCGs are also broadly used to determine the taxonomic status of species and to analyze phylogenetic relationships within Erebidae (Yang & Kong, 2016; Liu et al., 2017). Furthermore, as the mitogenome differs from the nuclear genome, it has been increasingly used to investigate poorly supported phylogenetic questions such as the position of Nymphalidae within Papilionoidea (Yang et al., 2009). Since many
species of the genus *Dysgonia* have been moved to other genera, including Erebidae and Noctuidae based on the classification of Holloway and Miller (2003), the taxonomic status of many species remained uncertain. In our study, we sequenced the complete mitogenome of *D. stuposa* and reconstructed phylogenetic relationships to assess its phylogenetic position within Noctuoidea. The newly sequenced mitogenome supported new phylogenetic relationships within Erebidae and will provide a foundation for further studies into Noctuidae and Erebidae mitogenomics, biogeography, and phylogenetics.

Materials and Methods

Specimen collection and Genomic DNA extraction

The *D. stuposa* moths were collected from Xiangshan mountains (N33° 59’ 47” , E116° 47’ 42”), Huaibei, Anhui, China. Based on morphological characteristics, the collected specimens were identified as *D. stuposa* using the record in *Fauna Sinica* (Chen, 2003). The genomic DNA (contains nuclear genome and mitogenome) of *D. stuposa* was isolated using the Animal Genomic DNA Isolation Kit according to the manufacturer’s instructions (Sangon, Shanghai, China).

PCR amplification and fragment sequencing

To amplify the *D. stuposa* mitogenome, the universal (F1-R13) and specific primers (S1F-S3R) were used to perform PCR amplification (Table 1) (Sun et al., 2016). All PCR amplifications were executed using high fidelity DNA Polymerase (PrimeSTAR® GXL, Takara, Dalian, China). PCRs was performed according to Sun et al. (2016) with extension times depending on the putative length of target fragment. PCR product size was determined by
agarose gel with TAE buffer, then sequenced at General Biosystems (General, Chuzhou, China) in both forward and reverse directions using ABI 3500 Genetic Analyzer by the Sanger sequencing method. For long fragments, internal sequencing primers were designed based on known fragment sequence. For the A+T rich region, the fragment was sequenced from two directions and repeated three times.

Sequence assembly and annotation

The complete mitogenome was assembled using the DNAMAN (https://www.lynnon.com/index.html). Sequence annotation (supplied in supplemental files) was performed by MITOS2 Web Server (http://mitos2.bioinf.uni-leipzig.de/index.py) and confirmed by BLAST to homologous sequences in NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). To determine PCG initiation and termination codons, sequences were aligned with other published Noctuoidea sequences using ClustalX 2.0 (Larkin et al., 2007). AT skew and GC skew values were calculated using the methods given by Perna & Kocher (1995). MEGA 5.0 software was used to analyze relative synonymous codon usage (RSCU) (Tamura et al., 2011). tRNA genes were determined by tRNAScan Search Server (http://lowelab.ucsc.edu/tRNAScan-SE/) and secondary structures inferred from folding into their canonical clover-leaf structures (Lowe & Eddy, 1997). rRNA genes were determined by MITOS2 Web Server and confirmed by BLAST with the homologous sequences in NCBI. Tandem Repeats Finder (http://tandem.bu.edu/trf/trf.html) was used to analyze non-coding regions for tandem repeats (Benson, 1999).

Phylogenetic analysis
To infer the phylogenetic relationships among Noctuoidea at superfamily level, concatenated nucleotide sequence alignments for PCGs from 42 species (Table 2) was performed. All of the sequences were downloaded from GenBank. The Saturnidae species *Bombyx mori* (AY048187) and *Antheraea pernyi* (AY242996) (Liu et al., 2008) were used as outgroups. Sequences were aligned using ClustalX 2.0 software (Larkin et al., 2007). ML and BI were used to reconstruct phylogenetic relationships. For the ML analysis, nucleotide sequences were partitioned and performed in IQ-TREE (http://iqtree.cibiv.univie.ac.at/) with the best-fit model GTR+I+G4 (Trifinopoulos et al., 2016), and the clade support was investigated with 1000 bootstrap replicates. For the BI analysis, the GTR model and Invgamma rate variation across sites were presented and performed with MrBayes 3.2.6 (Ronquist et al., 2012). One cold chain and three heated chains were run with the dataset for 10 million generations with the tree being sampled every 1000 generations. After discarding the first 25% samples as burn-in, posterior probabilities were calculated. The phylogenetic trees were visualized in FigTree software (http://tree.bio.ed.ac.uk/software/figtree/).

Results and Discussion

Genome organization and composition

The *D. stuposa* mitogenome is a circular DNA molecule, which is 15,721 bp in length (accession number: MK262707) (Figure 1). The size of the newly sequenced mitogenome is comparable to other Noctuoidea species, which range from 15,377 bp (*Agrotis ipsilon*) to 15,801 bp (*Gynaephora minora*) (Table 3). The variation in size is generally due to differences in the length of their non-coding regions (intergenic spacers and A+T rich region) (Lv et al., 2018).
Annotation found the typical 37 genes and a non-coding A+T rich region like most of the sequenced insect mitogenomes (Table 4). An A and T biased nucleotide composition is a characteristic feature of insect mitogenomes (Boore, 1999), and *D. stuposa* is no exception.

Nucleotide composition of *D. stuposa* was highly biased towards using A and T (A=39.98%, T=40.38%, G=7.5%, C=12.14%) (Table 3); 80.36% total A+T content is comparable to previously sequenced lepidopterans (ranges from 77.84% in *Ochrogaster lunifer* to 81.49% in *Gynaephora minora*).

AT ((A-T)/(A+T)) and GC skew ((G-C)/(G+C)) were calculated for the J strand (majority) (Perna and Kocher, 1995); with negative AT skew (-0.005) and GC skew (-0.236), indicating the presence of more Ts than As, and Cs than Gs, respectively (Table 3). Negative AT skew has been reported in several other insect species such as *Asota plana lacteata* (-0.002), *Risoba prominens* (-0.007) and *Agrotis ipsilon* (-0.006).

Protein-coding genes and codon usage

PCGs identified from the *D. stuposa* mitogenome had a total length of 11,269 bp, accounting for 71.7% of the mitogenome. In insects, most PCGs are on the J strand (majority), while some of them reside on the N strand (minority) (Simon et al., 1994). In *D. stuposa*, nine of the thirteen PCGs (*nad2, cox1, cox2, atp8, atp6, cox3, nad3, nad6* and *cob*) are encoded on the J-strand, while the remaining PCGs (*nad5, nad4, nad4L* and *nad1*) are on the N-strand. An ATN codon initiated all PCGs except *cox1*, which uses a CGA codon, as in most Lepidoptera (Table 4). The utilize of non-canonical initiation codons for *cox1* is a common feature across insects (Liu et al., 2014; Dai et al., 2016).
To estimate codon usage among Noctuoidea species and to assess similarities and variations in codon usage and distribution, PCGs nucleotide sequences of seven Noctuoidea (belonging to four families: Erebidae, Noctuidae, Nolidae and Notodontidae) were compared (Figure 2). In *D. stuposa* phenylalanine (Phe), asparagine (Asn), leucine (Leu), methionine (Met), tyrosine (Tyr) and isoleucine (Ile) were the most commonly used amino acids, while cysteine (Cys) was the most rarely utilized amino acid. Codon usage is similar across Noctuoidea. Furthermore, we used the codons per thousand (CDspT) metric to illustrate the codons distribution in different species (Dai et al., 2015) (Figure 3). CDspT results exhibited similar trends across the Noctuoidea superfamily, with the maximum CDspT value observed for Asn and Ile.

Relative Synonymous Codon Usage (RSCU) for Noctuoidea species is presented in Figure 4. Codons usage within a given amino acid varied between species. All codons were found in *D. stuposa*, except ACG and CCG. Some noctuid species lack GC rich synonymous codons, with G or C at the third codon position, such as GCG, CGC, GGC and CCG (e.g., these are not present in *A. ipsilon*) (Wu et al., 2015). The rarity or complete absence of GC-rich codons occur in various insect species (Yu et al., 2017; Li et al., 2018).

Ribosomal RNA and transfer RNA genes

The *D. stuposa* mitogenome contains the large (*rrnL*) and small ribosomal genes (*rrnS*), encoded by the N strand with a length of 1,308 bp and 782 bp, respectively (Figure 1, Table 4). In *D. stuposa*, *rrnL* was located between *trnL1* and *trnV*, while *rrnS* was resided between *trnV* and the AT-rich region, as reported in previously sequenced mitogenomes (Yang et al., 2009).

There are 22 tRNA genes in the *D. stuposa* mitogenome, ranging in size from 57 bp (*trnA*)
to 71 bp (trnK) (Table 4). Almost all tRNAs had the canonical clover-leaf secondary structure, except trnS1 that lacks the dihydrouridine (DHU) arm (Figure 5), a common feature of trnS1 across mitogenomes of insects (Lavrov et al., 2000; Zhang et al., 2013). Stem pair mismatches in the secondary structure of tRNAs were observed such as an A-A mismatch (trnM), U-G mismatches (trn I, trnQ, trnW, trn Y, trnL2, trnG, trnF, trnH, trn T, trnP, trnV), U-U mismatches (trn Y, trnL2, trnS2) and a U-C mismatch (trnA). These mismatches may be corrected by an RNA-editing process which was proposed by Lavrov et al. (2000), but has not been investigated fully in Lepidoptera.

Overlapping, intergenic spacer and A+T rich regions

Overlapping genes has been proposed to extend the genetic information possibly within the limited size of the genome, and are commonly observed in metazoan mitogenomes (Wolstenholme, 1992). We identified nine overlapping regions, a total length of 144 bp (Table 4). A seven bp overlapping region present at the boundary of atp6 and atp8 has also been reported in many other insects. The D. stuposa mitogenome also had 21 intergenic spacer regions, ranging in size from 1 to 105 bp. The 105 bp spacer located between trnA and trnR and had high A and T content (A=47.62% and T=49.52%) and a similar spacer has been described in Andraca theae (77 bp spacer with A=46.75% and T=44.16%). We also observed a 22 bp spacer that contained an ‘ATACTAA’ motif located between nad1 and trnS2 (Figure 6A). This region commonly exists in most insect mitogenomes even though the region varies in size between lepidopteran species (Cameron & Whiting, 2008).

Metazoan mitogenomes usually have a single large non-coding region, named as the A+T
rich region (Clayton, 1991). It contains initiation signals for DNA transcription and replication (Fernández-Silva et al., 2003). The A+T rich region of *D. stuposa* mitogenome is located between *rrnS* and *trnM* and is 406 bp in size (Table 4), with the negative GC skew (-0.355) and highest A+T content (92.37%) of the genome (Table 3). The A+T rich region usually contains multiple tandem repeat elements (Zhang & Hewitt, 1997); however, *D. stuposa* did not have macro-repeats but does include short repeating sequences. It has the ‘ATAGA’ motif along with a 20 bp poly-T repeat, a microsatellite-like (AT)$_{10}$ repeat and a poly-A repeat sequence upstream of *trnM* (Figure 6B). The poly-T stretch varies between different species (Dai et al., 2015), but the ‘ATAGA’ motif is conserved in insects (Zhang & Hewitt, 1997).

Phylogenetic relationships

To determine the phylogenetic position of *D. stuposa*, we reconstructed phylogenetic relationships with Noctuoidea species. In phylogenetic analyses, mitogenome PCGs have a lower sensitivity to analytical bias compared to other genes such as the tRNA or rRNA genes (Yang et al., 2015). Here, we applied the nucleotide sequence of the 13 PCGs for phylogenetic analyses using BI and ML methods. Results showed that *D. stuposa* is closely related to *Grammodes geometrica*, a clade that was well supported by both the methods (Figure 7A and 7B). *D. stuposa* belongs to the family Erebidae and subfamily Catocalinae, consistent with the reported classification of Erebidae (Zahiri et al., 2011). Erebidae is a large noctuid family (Yang et al., 2015); however, its monophyly remained unconfirmed, especially for Catocalinae (Zahiri et al., 2012). In the present study, the Catocalinae was found monophyletic, but nodal support values were not significant, i.e. 0.76 posterior probability (BI) and 31% bootstrap values (ML). There is
still some controversy about relationships of Catocalinae under Erebidae. Zahiri et al. (2011) demoted Catocalinae to a tribe Catocalini within the subfamily Erebinae, and upgraded Anobini (formerly as a tribe within Catocalinae by Holloway, (2005)) to subfamily Anobinae. Several species of the Dysgonia genus have been reclassified into Noctuidae (Holloway & Miller, 2003), results in further complications for phylogenetic analysis. Within Erebidae, our study supported the monophyly of subfamilies and suggested that Catocalinae is a subfamily, most closely related to Hypeninae (BI) or Aganainae (ML) (Figure 7A and 7B). Furthermore, Noctuoidea contained four families: Notodontidae, Erebidae, Nolidae and Noctuidae, for which their phylogenetic relationship was Notodontidae + (Erebidae + (Nolidae + Noctuidae)) with strong nodal support in both ML and BI trees. Since there is limited data of complete mitogenome sequences from Oenosandridae and Euteliidae in the public repository NCBI, our results are consistent with the previous family-level phylogenetic hypothesis proposed by Zahiri et al. (2011).

Reference

Arimoto M, Iwaizum R. 2014. Identification of Japanese Lymantria species (Lepidoptera: Lymantriidae) based on PCR-RFLP analysis of mitochondrial DNA. Applied Entomology and Zoology 49:159-169.

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27:573-580.

Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Research 27:1767-1780.

Cameron SL. 2014. Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annual Review of Entomology 59:95-117.
Cameron SL, Whiting MF. 2008. The complete mitochondrial genome of the tobacco hornworm, *Manduca sexta* (Insecta: Lepidoptera: Sphingidae) and an examination of mitochondrial gene variability within butterflies and moths. *Gene* 408:0-123.

Chen YX. 2003. *Fauna Sinica*: Vol. 16. Insecta, Lepidoptera, Noctuidae (Chinese Edition). Beijing: Science Press, 2-3.

Clayton DA. 1991. Replication and Transcription of Vertebrate Mitochondrial DNA. *Annual Review of Cell Biology* 17:453-478.

Dai LS, Qian C, Zhang CF, Wang L, Wei GQ, Li J, Zhu BJ, Liu CL, Ling EJ. 2015. Characterization of the Complete Mitochondrial Genome of *Cerura menciana* and Comparison with Other Lepidopteran Insects. *PLoS ONE* 10:e0132951.

Dai LS, Zhu BJ, Qian C, Zhang CF, Li J, Wang L, Wei GQ, Liu CL. 2016. The complete mitochondrial genome of the diamondback moth, *Plutella xylostella* (Lepidoptera: Plutellidae). *Mitochondrial DNA. Part A* 27:1512-1513.

Fang QQ, Mitchell A, Regier JC, Mitter C, Friedlander TP, Poole RW. 2000. Phylogenetic utility of the nuclear gene dopa decarboxylase in Noctuid moths (Insecta: Lepidoptera: Noctuoidea). *Molecular Phylogenetics and Evolution* 15:473-486.

Fernández-Silva P, Enriquez JA, Montoya J. 2003. Replication and transcription of mammalian mitochondrial DNA. *Experimental Physiology* 88:41-55.

Holloway JD. 2005. The Moths of Borneo (part 15 & 16): family Noctuidae, subfamily Catocalinae. *Malayan Nature Journal* 58:1-529.

Holloway JD, Miller SE. 2003. The composition, generic placement and host-plant relationships
of the joviana-group in the Parallelia generic complex (Lepidoptera: Noctuidae, Catocalinae). *Invertebrate Systematics* 17:111-128.

Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mewilliam H, Lopez R. 2007. Clustal W and Clustal X version 2.0. *Bioinformatics* 23:2947-2948.

Lavrov DV, Brown WM, Boore JL. 2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede *Lithobius forficatus*. *Proceedings of the National Academy of Sciences* 97:13738-13742.

Li J, Zhang YY, Hu KJ, Zhao YQ, Lin RR, Li Y, Huang ZR, Zhang X, Geng XX, Ding JH. 2018. Mitochondrial genome characteristics of two Sphingidae insects (*Psilogramma increta* and *Macroglossum stellatarum*) and implications for their phylogeny. *International Journal of Biological Macromolecules*: S0141813018304422.

Liu QN, Zhu BJ, Dai LS, Wang L, Qian C, Wei GQ, Liu CL. 2014. The complete mitochondrial genome of the common cutworm, *Spodoptera litura* (Lepidoptera: Noctuidae). *Mitochondrial DNA*: 1-2.

Liu Y, Li Y, Pan M, Dai F, Zhu X, Lu C, Xiang Z. 2008. The complete mitochondrial genome of the Chinese oak silkmoth, *Antheraea pernyi* (Lepidoptera: Saturniidae). *Acta Biochimica et Biophysica Sinica* 40:693-703.

Liu Y, Xin ZZ, Zhu XY, Zhao XM, Wang Y, Tang BP, Zhang HB, Zhang DZ, Zhou CL, Liu QN. 2017. The complete mitochondrial genome of *Euproctis similis* (Lepidoptera: Noctuoidea: Erebidae) and phylogenetic analysis. *International Journal of Biological Macromolecules*: S0141813017311339.
Lowe TM, Eddy SR. 1997. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. *Nucleic Acids Research* 25:955-964.

Lu HF, Su TJ, Luo AR, Zhu CD, Wu CS. 2013. Characterization of the Complete Mitochondrion Genome of Diurnal Moth *Amata emma* (Butler) (Lepidoptera: Erebidae) and Its Phylogenetic Implications. *PLoS ONE* 8:e72410.

Lv C, Li Q, Kong L. 2018. Comparative analyses of the complete mitochondrial genomes of *Dosinia clams* and their phylogenetic position within Veneridae. *PLoS ONE* 13:e0196466.

Miller JS. 1991. Cladistics and classification of the Notodontidae (Lepidoptera, Noctuoidea) based on larval and adult morphology. *Bulletin of the American Museum of Natural History* 204:1-230.

Minet J, Barbut J, Lalanne-Cassou B. 2012. Les Noctuelles: classification et clé de détermination des familles (Lepidoptera: Noctuoidea). *Alexanor* 25:131-151.

Mitchell A, Cho S, Regier JC, Mitter C, Poole RW, Matthews M. 1997. Phylogenetic utility of elongation factor-1 alpha in Noctuoidea (Insecta: Lepidoptera): the limits of synonymous substitution. *Molecular Biology and Evolution* 14:381-390.

Mitchell A, Mitter C, Regier JC. 2006. Systematics and evolution of the cutworm moths (Lepidoptera: Noctuidae): evidence from two protein-coding nuclear genes. *Systematic Entomology* 31:21-46.

Nieukerken E, Kaila L, Kitching I, Kristensen NP, Lees DC. 2011. Order Lepidoptera Linnaeus, 1758. *Zootaxa* 3148:212-221.

Perna NT, Kocher TD. 1995. Patterns of nucleotide composition at fourfold degenerate sites of
animal mitochondrial genomes. *Journal of Molecular Evolution* 41(3):353-358.

Piao MH, Fan LH, Zheng YC. 2012. Last Instar Larval Morphology of Three Species of Catocalinae (Lepidoptera: Noctuidae) from China. vol. 134: Information Technology and Agricultural Engineering. Advances in Intelligent and Soft Computing. Berlin: Springer, 857-862.

Raupach MJ, Astrin JJ, Hannig K, Peters MK, Stoeckle MY, Wägele JW. 2010. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear DNA expansion segments and DNA barcodes. *Frontiers in Zoology* 7:1-15.

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systems Biology* 61:539-542.

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the Entomological Society of America* 87:651-701.

Sun Y, Chen C, Gao J, Abbas MN, Kausar S, Qian C, Wang L, Wei G, Zhu BJ, Liu CL. 2017. Comparative mitochondrial genome analysis of *Daphnis nerii* and other lepidopteran insects reveals conserved mitochondrial genome organization and phylogenetic relationships. *PLoS ONE* 12:e0178773.

Sun YX, Wang L, Wei GQ, Qian C, Dai LS, Sun Y, Abbas MN, Zhu BJ, Liu CL. 2016. Characterization of the Complete Mitochondrial Genome of *Leucoma salicis* (Lepidoptera:...
Lymantriidae) and Comparison with Other Lepidopteran Insects. *Scientific Reports* 6:39153.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Molecular Biology and Evolution* 28:2731-2739.

Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast-online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research* 44 (W1):W232-W235.

Wang H, Wahlberg N, Holloway JD, Bergsten J, Fan XL, Janzen DH, Hallwachs W, Wen L, Wang M, Nylin S. 2015. Molecular phylogeny of Lymantriinae (Lepidoptera, Noctuoidea, Erebidae) inferred from eight gene regions. *Cladistics* :1-14.

Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR. Prager EM, Sage RD, Stoneking M. 2010. Mitochondrial DNA and two perspectives on evolutionary genetics. *Biological Journal of the Linnean Society* 26:375-400.

Wolstenholme DR. 1992. Animal mitochondrial DNA: structure and evolution. *International Review of Cytology* 141:173.

Wu QL, Cui WX, Wei SJ. 2015. Characterization of the complete mitochondrial genome of the black cutworm *Agrotis ipsilon* (Lepidoptera: Noctuidae). *Mitochondrial DNA* 26(1):139-140.

Yang J, Kong W. 2016. The complete mitochondrial genome of *Lemyra melli* (Daniel) (Lepidoptera, Erebidae) and a comparative analysis within the Noctuoidea. *Zoological*
Yang L, Wei ZJ, Hong GY, Jang ST, Wen LP. 2009. The complete nucleotide sequence of the mitochondrial genome of *Phthonandria atrilineata* (Lepidoptera: Geometridae). *Molecular Biology Reports* 36:1441-1449.

Yang X, Cameron SL, Lees DC, Xue D, Han H. 2015. A mitochondrial genome phylogeny of owlet moths (Lepidoptera: Noctuoidea), and examination of the utility of mitochondrial genomes for lepidopteran phylogenetics. *Molecular Phylogenetics and Evolution* 85:230-237.

Zahiri R, Holloway JD, Kitching IJ, Lafontaine JD, Mutanen M, Wahlberg N. 2012. Molecular phylogenetics of Erebididae (Lepidoptera, Noctuoidea). *Systematic Entomology* 37:102-124.

Zahiri R, Kitching IJ, Lafontaine JD, Mutanen M, Kaila L, Holloway JD, Wahlberg N. 2011. A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). *Zoologica Scripta* 40:158-173.

Zhang DX, Hewitt GM. 1997. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. *Biochemical Systematics and Ecology* 25:99-120.

Zhang HL, Zeng HH, Huang Y, Zheng ZM. 2013. The complete mitochondrial genomes of three grasshoppers, *Asiotmethis zacharjini*, *Filchnerella helanshanensis* and *Pseudotmethis rubimarginis* (Orthoptera: Pamphagidae). *Gene* 517:89-98.
Table 1 (on next page)

Details of the primers used to amplify the mitochondrial DNA of *D. stuposa*
Table 1. Details of the primers used to amplify the mitochondrial DNA of *D. stuposa*

Primer name	Nucleotide sequence (5’-3’)
F1	TAAAAATAAGCTAAATTTAAGCTT
R1	TATTTAAATTGCAAATTTAAGGA
F2	AAACAAAAATCTCTCAAAATAT
R2	AAAATAATTTTGTCTATTTAAG
F3	ATCTATATTCTTGAATAATTTT
R3	CATAAATTATAATCTTAACTATA
F4	TGAATGATAAGTATTAAAAAAAA
R4	AATATTTATGAAAATTTACCTA
F5	TAAGCTGCTAATCTCTTCTATTAGT
R5	CCGTTTCAGCTTTAGTTCT TTCATTC
F6	CCTAAATTCTTAAAGTATA
R6	TGCTTATCTCTCTGTACATAT
F7	TAATGTATAATCTCTGTATAT
R7	ATCAATAATCTCCAAAATATTAT
F8	ACTTTTTAAAACCTTCAAAGAAA
R8	TCATAATTAATTCCTCGTCAATAAT
F9	GAAATATTTGTTGTTATAT
R9	TGATCTCAAAATCTAAATATGC
F10	CCGAAACCTACTTCTCTCACCT
R10	CTTAACATGATCTGAGTTCAACCAG
F11	CGTCTAATAAAGTTAAATAGCA
R11	AATATGTACATATGCCCCGTGCT
F12	TCTAGAAACCTTACGTCATACCT
R12	AATTTAAATATTAGGTAATTAT
F13	TAATAGGATATCTAATCTGAGTTT
R13	ACTTAATTATCCTATCAAAAAA
S1F	ACTTTTTAATCTCTACGAAATAA
S1R	ACTTTTTAATCTCTACGAAATAA
S2F	CGCAACTGCTGGCACA AAA
S2R	GAAGAGAAGTTATAGTGAGGAAGTT
S3F	TAAGCTGCTAATCTCTTCTAT
S3R	GTAATATTAATTCCTCGTCAATAT
Table 2 (on next page)

Details of the lepidopteran mitogenomes used in this study.
Table 2. Details of the lepidopteran mitogenomes used in this study.

Family	Subfamily	Species	Size (bp)	GenBank No.
Erebidae	Arctiinae	Spilarctia subcarnea	15,441	KT258909
		Lemyra melli	15,418	KP307017
		Hyphantria cunea	15,481	GU592049
		Nyctemera arctata albofasciata	15,432	KM244681
		Callimorpha dominula	15,496	KP973953
		Aglaomorpha histrio	15,472	KY800518
		Amata formosae	15,463	KC513737
		Cyana sp. MT-2014	15,494	KM244679
		Paraona staudingeri	15,427	KY827330
		Vamuna virilis	15,417	KJ364659
Catocalinae		Grammodes geometrica	15,728	KY888135
		Catocala sp. XY-2014	15,671	KJ432280
		Dysgonia stuposa	15,721	This study
Herminiinae		Hydrilodes lentalis	15,570	MH013484
Aganainae		Asota plana lacteata	15,416	KJ173908
Hypeninae		Paragabara curvicornata	15,532	KT362742
Lymanthriinae		Gynaephora minora	15,801	KY688086
		Gynaephora aureata	15,773	KJ507132
		Lachana alpherakii	15,755	KJ957168
		Gynaephora qumalatiensis	15,753	KJ507134
		Euproctis similis	15,437	KT258910
		Somena scintillans	15,410	MH051839
Noctuidae	Noctuinae	Agrotis ipsilon	15,377	KF163965
		Agrotis segetum	15,378	KC894725
Hadeninae		Mythimna separata	15,329	KM099034
		Protegira songi	15,410	KY379907
Amphipyrinae		Sexamia inferens	15,413	JN039362
		Spodoptera exigua	15,365	JX316220
		Spodoptera litura	15,383	KF701043
		Spodoptera fragiperda	15,365	KM362176
Heliothinae		Helicoverpa armigera	15,347	GU188273
		Helicoverpa zea	15,343	KJ930516
		Helicoverpa assulta	15,400	KT626655
		Heliolith subflexa	15,323	KT598688
Plusiinae		Ctenoplusia aagnata	15,261	KC414791
		Ctenoplusia limbirena	15,306	KM244665
Nolide	Chloephorinae	Gabala argentata	15,337	KJ410747
		Risoba prominens	15,343	KJ396197
Family	Subfamily	Species	Accession No	Length
-----------------	-----------------	-------------------	--------------	--------
Notodontidae	Thaumetopoeinae	*Ochrogaster lunifer*	AM946601	15,593
Phalerinae		*Phalera flavescens*	JF440342	15,659
outgroup		*Bombyx mori*	AY048187	15,664
outgroup		*Antheraea pernyi*	AY242996	15,566
Table 3 (on next page)

Composition and skew in mitogenomes of Noctuoidea species.
Table 3. Composition and skew in mitogenomes of Noctuoidea species.

Species	Size (bp)	A%	G%	T%	C%	A+T%	AT skew	GC skew
Whole genome								
D. stuposa	15721	39.98	7.5	40.38	12.14	80.36	-0.005	-0.236
A. plana lacteata	15416	40.08	7.49	40.26	12.16	80.34	-0.002	-0.238
V. a virilis	15417	40.18	7.56	40.22	12.05	80.4	0.000	-0.229
G. minora	15801	40.97	6.77	40.52	11.75	81.49	0.006	-0.269
R. prominens	15343	40.25	7.8	40.82	11.13	81.07	-0.007	-0.176
O. lunifer	15593	40.09	7.56	37.75	14.6	77.84	0.030	-0.318
A. ipsilon	15377	40.38	7.71	40.87	11.04	81.25	-0.006	-0.178
PCGs								
D. stuposa	11269	33.80	10.91	44.64	10.65	78.45	-0.138	0.012
A. plana lacteata	11211	33.87	10.92	44.76	10.45	78.63	-0.138	0.022
V. virilis	11203	33.14	11.16	45.43	10.27	78.57	-0.156	0.042
G. minora	11237	34.72	10.11	44.98	10.2	79.7	-0.129	-0.004
R. prominens	11216	33.64	10.57	46	9.8	79.64	-0.155	0.038
O. lunifer	11266	32.47	12.08	43.26	12.19	75.73	-0.142	-0.005
A. ipsilon	11211	34.24	10.64	45.56	9.55	79.8	-0.142	0.054
A+T rich								
D. stuposa	406	43.6	2.46	48.77	5.17	92.37	-0.056	-0.355
A. plana lacteata	328	46.04	1.22	48.48	4.27	94.52	-0.026	-0.556
V. virilis	362	44.48	1.1	50.55	3.87	95.03	-0.064	-0.557
G. minora	449	43.21	2.67	49.44	4.68	92.65	-0.067	-0.273
R. prominens	342	44.15	2.34	49.42	4.09	93.57	-0.056	-0.272
O. lunifer	319	44.51	1.57	48.9	5.02	93.41	-0.047	-0.524
A. ipsilon	332	46.08	1.51	48.8	3.61	94.88	-0.029	-0.410
Table 4 (on next page)

List of annotated mitochondrial genes of *D. stuposa*
Gene name	Start	Stop	Strand	Length	Anti-codon	Start codon	End codon	Intergenic nucleotides
trnM	1	68	J	68	CAT	/	/	2
trnI	71	138	J	68	GAT	/	/	8
trnQ	147	215	N	69	TTG	/	/	55
nad2	271	1284	J	1014	/	ATT	TAA	-2
trnW	1283	1350	J	68	TCA	/	/	-8
trnC	1343	1409	N	67	GCA	/	/	22
trnY	1432	1496	N	65	GTA	/	/	9
cox1	1506	3041	J	1536	/	CGA	TAA	-5
trnL2	3037	3103	J	67	TAA	/	/	0
cox2	3104	3820	J	717	/	ATA	TAA	-35
trnK	3786	3856	J	71	CTT	/	/	0
trnD	3857	3923	J	67	GTC	/	/	0
atp8	3924	4085	J	162	/	ATC	TAA	-7
atp6	4079	4756	J	678	/	ATG	TAA	27
cox3	4784	5572	J	789	/	ATG	TAA	20
trnG	5575	5640	J	66	TCC	/	/	0
nad3	5641	5994	J	354	/	ATT	TAA	34
trnA	6029	6085	J	57	TGC	/	/	105
trnR	6191	6256	J	66	TCG	/	/	10
trnN	6267	6332	J	66	GTT	/	/	8
trnS1	6341	6406	J	66	GCT	/	/	32
trnE	6439	6506	J	68	TTC	/	/	50
trnF	6557	6624	N	68	GAA	/	/	-17
nad5	6608	8368	N	1761	/	ATT	TAA	-3
trnH	8366	8433	N	68	GTG	/	/	0
nad4	8434	9772	N	1338	/	ATG	TA	42
nad4l	9815	10102	N	288	/	ATG	TAA	14
trnT	10117	10181	J	65	TGT	/	/	0
trnP	10182	10246	N	65	TGG	/	/	7
nad6	10254	10784	J	531	/	ATT	TAA	14
cob	10799	11959	J	1161	/	ATG	TAA	22
trnS2	11958	12025	J	68	TGA	/	/	22
nad1	12048	12986	N	939	/	ATG	TAA	1
trnL1	12988	13055	N	68	TAG	/	/	65
rrnL	13121	14428	N	1308	/	/	/	37
trnV	14466	14533	N	68	TAC	/	/	0
rrnS	14534	15315	N	782	/	/	/	0
AT-rich	15316	15721	/	406	/	/	/	/
Figure 1

Map of the mitogenome of *D. stuposa*.

tRNA genes are labeled according to the IUPAC-IUB one-letter amino acids; *cox1*, *cox2* and *cox3* refer to the cytochrome c oxidase subunits; *cob* refers to cytochrome b; *nad1*-*nad6* refer to NADH dehydrogenase components. The moth was photographed by the corresponding author Jun Li.
Dysgonia stuposa

15721 nt
Figure 2

Comparison of codon usage within the mitochondrial genome of members of the Noctuoidea.

Lowercase letters (a, b, c and d) above species names represent the family to which the species belongs (a: Erebidae, b: Nolide, c: Notodontidae, d: Noctuidae).
Figure 3

Codon distribution in members of the Noctuoidea.

CDspT = codons per thousand codons.
Figure 4

Relative Synonymous Codon Usage (RSCU) of the mitochondrial genome of four families in the Noctuoidea.

Codon families are plotted on the x-axis. Codons indicated above the bar are not present in the mitogenome.
Manuscript to be reviewed
Figure 5

Predicted secondary structures of the 22 tRNA genes of the *D. stuposa* mitogenome.
Figure 6

Features in the intergenic spacer and the A+T rich region.

(A) Alignment of the intergenic spacer region between \textit{trnS2} and \textit{nad1} of several Noctuoidea insects. (B) Features present in the A+T-rich region of \textit{D. stuposa}. The ‘ATAGA’ motif is shaded. The poly-T stretch is underlined and the poly-A stretch is double underlined. The single microsatellite ‘AT’ repeat sequence is indicated by dotted underlining.
A *Dysgania stuposa* (Erebidae) ATACTAAAAATAATCAACAAAA
 Asota plana lacteata (Erebidae) ATACTAAAAATAATCAATAA
 Vamuna virilis (Erebidae) ATACTAAAAATAATTAATT
 Gynaephora minora (Erebidae) TATACTAAAAAAAATATACAAATTA
 Risoba prominens (Nolidae) ATACTAAAAATAATTA
 Ochrogaster lunifer (Notodontidae) ATACTAAAAATAATTA
 Agrotis ipsilon (Noctuidae) ATACTAAAAAAAATTA

B *rrnS-15,315* TTTATATGCACAATTTCTCACATAGATTTTTTTTT
 TTTTTTTTTTATATTAAATATTATTATATAATATTATTAT
 ATAAAAATAATTTAAATTTAAAATTTAAATTAAATTAAATTAAATTT
 ATCTTTTTCTTCATACATTACATTGAAACCTAATTGGAA
 ATTAACAACTACAATTTCTTAATTAAATTACAATATTAAATTA
 TTAATAATTATTTTTCTTAATAGTTAAATGAAATTATAAATTT
 TAATTATTTAAAAATTTAAT
 TAAAAATTTAAT
 TATTATTTAATTATGTTAATTTAAAACCATTTTAAATATGCAT
 ATAAATaaaaaaaaaaaaaATA-15,721-trnM
Figure 7

The phylogenetic relationships within Noctuoidea.

(A) Tree showing the phylogenetic relationships among 43 species, constructed using Maximum Likelihood with 1000 bootstrap replicates. (B) Tree constructed using Bayesian Inference (BI) MCMC consensus tree, with posterior probabilities shown at nodes. *Bombyx mori* (AY048187) and *Antheraea pernyi* (AY242996) were used as outgroups.
