Anderson localization of spinons in a spin-1/2 antiferromagnetic Heisenberg chain

B. Y. Pan, S. Y. Zhou, X. C. Hong, X. Qiu, & S. Y. Li

Department of Physics, State Key Laboratory of Surface Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China

Anderson localization is a general phenomenon of wave physics, which stems from the interference between multiple scattering paths\(^1,^2\). It was originally proposed for electrons in a crystal, but later was also observed for light\(^3-^5\), microwaves\(^6\), ultrasound\(^7,^8\), and ultracold atoms\(^9-^{12}\). Actually, in a crystal, besides electrons there may exist other quasiparticles such as magnons and spinons. However the search for Anderson localization of these magnetic excitations is rare so far. Here we report the first observation of spinon localization in copper benzoate, an ideal compound of spin-1/2 antiferromagnetic Heisenberg chain, by ultra-low-temperature specific heat and thermal conductivity measurements. We find that while the spinon specific heat \(C_s\) displays linear temperature dependence down to 50 mK, the spinons thermal conductivity \(\kappa_s\) only manifests the linear temperature dependence down to 300 mK. Below 300 mK, \(\kappa_s/T\) decreases rapidly and vanishes at about 100 mK, which is a clear evidence for Anderson localization. Our finding opens a new window for studying such a fundamental phenomenon in condensed matter physics.
Since its discovery1, Anderson localization has been one of the most studied phenomena in physics2-13. Originally, it was found that beyond a critical amount of impurity scattering, the electrons in a crystal are trapped and the conductivity vanishes1. This counterintuitive result stems deeply from the quantum interference effect of electron waves2. Later, Anderson localization was widely observed for light3-5, microwaves6, ultrasound7,8, and recently for ultracold atoms9-12, thus it becomes a general phenomenon of wave physics.

Back to the crystal, if some atoms have magnetic moment, there may exist magnetic excitations such as magnons and spinons. We aim to look for Anderson localization of these magnetic quasiparticles, which has been rarely studied. Since one-dimensional (1D) systems provide a paradigmatic example of strong Anderson localization13, it is natural to focus on the quasi-1D spin chains, such as spin-1/2 Ising chain or antiferromagnetic Heisenberg chain (AFHC).

In zero magnetic field, the domain-wall quasiparticles of a spin-1/2 Ising chain are gapped14. On the contrary, the spin-1/2 isotropic AFHC is described by the Hamiltonian

$$H = J \sum_i S_i S_{i+1},$$

representing the antiferromagnetic interactions between nearest neighbour spins S_i along the 1D chain with coupling strength J. It is well-known that the magnetic excitations in the chain are gapless spinons15. Figure 1a shows a carton picture of those spinons, and Fig. 1b sketches the “two-spinon continuum” spectrum, limited by the lower bound $\varepsilon_1 = \frac{\pi}{2} J |\sin q|$ and upper bound $\varepsilon_2 = \pi J |\sin q/2|$. Therefore it is more suitable to study Anderson localization of spinons in the compounds of spin-1/2 AFHC.
The transport properties of the spinons in a spin-1/2 AFHC have been studied by thermal conductivity measurements for various compounds16,17. The intrachain coupling J/k_B ranges from 2000 K in Sr$_2$CuO$_3$ (ref. 18) to 10 K in Cu(C$_4$H$_4$N$_2$)(NO$_3$)$_2$ (ref. 19). However, most of those compounds are not ideal AFHC at low temperature, due to the existence of weak interchain coupling J'. For example, Sr$_2$CuO$_3$ shows three-dimensional magnetic order below $T_N = 5.4$ K (ref. 20). Furthermore, all the measurements were limited above 0.3 K. So far, the spinon Anderson localization has not been observed.

Copper benzoate, Cu(C$_6$H$_5$COO)$_2$ • 3H$_2$O, is a rare ideal compound of the spin-1/2 AFHC21. It has a monoclinic crystal structure with lattice constants $a = 6.98$ Å, $b = 34.12$ Å, $c = 6.30$ Å, and $\beta = 89.5^\circ$ (ref. 22), as shown in Fig. 1c. The Cu$^{2+}$ ions carry spin-1/2 and form chains along the c axis. With the coupling $J/k_B \approx 18.6$ K, no magnetic Braggs peaks were found at $T = 0.3$ K and no specific heat anomaly associated with magnetic phase transition was observed down to $T = 0.1$ K (ref. 23), indicating the interchain coupling J' is extremely weak.

Figure 2a shows the specific heat of copper benzoate single crystal in zero magnetic field from 3.5 K down to 50 mK. The curve can be well fitted by $C_{total} = aT + bT^3$, giving $a = 0.291\pm0.001$ J/mol K2 and $b = 0.0094\pm0.0001$ J/mol K4. Since copper benzoate is an insulator, the first linear term aT is apparently contributed by the spinons, due to their low-energy linear dispersion shown in Fig. 1b. For spin-1/2 AFHC compounds, the spinon specific heat at $T \ll J/k_B$ can be theoretically calculated by the formula $C_s = \frac{2Nk_B^2}{3J}T$, where N is the number of magnetic ions per unit volume (ref. 24-26). With $N = 2.67 \times 10^{27}$ m$^{-3}$ and $J/k_B = 18.6$ K for copper benzoate, one obtains $C_s/T = 0.298$ J/mol K2, which is in good agreement with our experimental value 0.291 J/mol K2. The second term bT^3 comes from the phonons. In Fig. 2b, we plot the magnetic specific heat of copper benzoate in $H = 0$ and 7 T below 1 K. The small
phonon contribution has been subtracted in both cases. Similar magnetic specific heat data have been previously obtained down to 100 mK by Dender et al.23.

From Fig. 2b, the magnetic specific heat in $H = 7$ T shows a clear signature of field-induced energy gap. The field dependence of this gap was found to obey $\Delta(H) \propto H^{2/3}$ (ref. 23). This has been understood on the basis of quantum sine-Gordon model, by considering the staggered field h induced by the external field H (ref. 27-29). According to this model, the magnetic excitations of copper benzoate in magnetic field are solitons, antisolitons, and breathers. In Fig. 2b, the magnetic specific heat in $H = 7$ T can be fitted in the framework of the sine-Gordon theory below 0.7 K with a gap of 2.41 K (ref. 30), which suggests it is indeed contributed by those magnetic excitations.

We now turn to the thermal conductivity measurements, which explore the transport properties of those magnetic excitations in copper benzoate. Figure 3a presents the thermal conductivity data of sample S1 in $H = 0$, 7, and 14.5 T. In zero field, the data between 0.3 and 0.7 K can be well fitted by $\kappa = aT + bT^\alpha$, giving $a = 1.70\pm0.04$ mW/cm K2, $b = 8.87\pm0.04$, and $\alpha = 2.80\pm0.03$. The term bT^{α} is a typical contribution of phonons. For phonon scattering off the crystal boundary at low temperature, one usually gets $\alpha = 3$, but specular reflection of phonons at the smooth crystal surfaces can result in a lower power $\alpha < 3$ (ref. 31).

Usually electrons will contribute a linear term of thermal conductivity in a metal. Again, since copper benzoate is an insulator, we attribute the linear term aT in $H = 0$ T to the spinons. The same linear temperature dependence of spinon specific heat and thermal conductivity in $H = 0$ T suggests that these two quantities are directly related by the simple kinetic expression $\kappa_s = C_s v_s l_s$, with constant spinon velocity v_s and mean free path l_s. The v_s can be calculated via $v_s = Jd\pi / 2\hbar$, where d is the distance between the spins along the chain direction. (ref. 32). For copper benzoate, we get $v_s \approx 1.2 \times 10^3$ m/s.
With the experimental data of κ_s and C_s, $l_s \approx 1060$ Å is further obtained, corresponding to about 330 spin distances along the chain direction. Previously, the linear temperature dependence of κ_s was only observed in the range 100-300 K for the pseudo-two-leg ladder compound CaCu$_2$O$_3$ ($J/k_B \approx 2000$ K and $T_N \approx 25$ K), where the small $l_s \approx 22$ Å is due to the high density of static scattering centers33.

In $H = 7$ T, the magnetic excitations of solitons, antisolitons, and breathers will replace spinons, according to the quantum sine-Gordon model. After subtracting the phonon contribution bT^α, the magnetic thermal conductivity κ_s in $H = 7$ T is plotted in Fig. 3b together with C_s (scaled by 6 times). One can see that κ_s shows nearly the same temperature dependence as C_s, indicating that κ_s in $H = 7$ T indeed comes from those solitons, antisolitons, and breathers. Further increasing field will result in larger energy gap, thus the thermal conductivity in $H = 14.5$ T should further approach the phonon background, as observed in Fig. 3a. These consistent behaviours of thermal conductivity in magnetic field also support that the linear term aT in $H = 0$ T is contributed by spinons.

By measuring more single crystals of copper benzoate, we find that the residual linear term $\kappa_s = aT$ is sample dependent. In Fig. 3c and 3d, the κ_s/T of samples S2 and S3 in $H = 0$ T are plotted versus $T^{4.90}$ and $T^{4.85}$, respectively. While the phonon contributions are similar to S1, their κ_s/T extrapolate to different values of κ_s/T, 0.60±0.02 and 1.25±0.05 mW/cm K2 for S2 and S3, respectively. For clarity, we subtract the phonon contributions and plot κ_s/T for all three samples in Fig. 4, which shows that the κ_s/T can differ by 3 times. This suggests that the spinon mean free path in copper benzoate is sample dependent, which is reasonable since different sample may have different disorder level. A good analogy of above spinon thermal conductivity in the spin-1/2 AFHC is the electron thermal conductivity in the metal.
More interesting observation from Fig. 4 is that κ_s/T decreases rapidly below 300 mK, and vanishes at about 100 mK. Previously, a low-temperature downturn of thermal conductivity has been observed in cuprate superconductors, which is attributed to the thermal decoupling of electrons and phonons in the samples34,35. Here we interpret that the vanishing κ_s/T below 300 mK in copper benzoate is not due to the spinon-phonon decoupling, but rather the manifestation of Anderson localization. First, as seen in Fig. 2, the linear term of spinon specific heat can be measured nicely down to 50 mK, showing the good thermal coupling between the spinons and phonons in the sample. Secondly, 1D system is the best place for the happening of Anderson localization, therefore it is actually not very surprising that we finally observe the spinon Anderson localization in this ideal spin-1/2 AFHC compound.

For Fig. 4, the onset temperature of the spinon localization T_{AL} remains at about 300 mK when the mean free path of spinons differs by 3 times between S1 and S2. This indicates that T_{AL} is not very sensitive to the disorder level. A numerical simulation on the effect of disorder on the spinon localization in spin-1/2 AFHC36, specified to copper benzoate, will be very helpful.

In conclusion, we have investigated spinon Anderson localization in copper benzoate, an ideal compound of spin-1/2 antiferromagnetic Heisenberg chain. While a linear temperature dependence of spinon specific heat C_s is observed down to 50 mK, the spinon thermal conductivity κ_s only shows linear temperature dependence down to 300 mK. Below 300 mK, κ_s/T decreases rapidly and vanishes at about 100 mK, which is interpreted as a strong evidence for Anderson localization. We believe that our work is the first example of Anderson localization for magnetic excitations, thus opens a new window for studying such a fundamental phenomenon in condensed matter physics.
METHODS SUMMARY

Copper benzoate, Cu(C₆H₅COO)₂ • 3H₂O, single crystals were grown from water solutions by a diffusion method²¹. The obtained single crystals are flat plates in the ac plane, with the longest dimension up to several centimetres along the chain direction (c-axis). Specific heat measurements were carried in a small dilution refrigerator adapted in a Physical Property Measure System (PPMS, Quantum Design). The samples of bar shape were cut and cleaved to typical dimensions 2.0 × 0.5 × 0.03 mm³, with the longest dimension along c-axis and the shortest along b-axis. Four silver wires were attached on the sample by silver paint. Thermal conductivity were measured in a dilution refrigerator (Oxford Instruments), using a standard four-wire steady-state method with two RuO₂ chip thermometers, calibrated in situ against a reference RuO₂ thermometer. Magnetic fields were applied along the b axis for both specific heat and thermal conductivity measurements.

1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492-1505 (1958).
2. Lagendijk, A., Van Tiggelen, B. A. & Wiersma, D. Fifty years of Anderson localization. Phys. Today 62, 24-29 (August 2009).
3. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).
4. Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).
5. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. *Nature* **446**, 52–55 (2007).

6. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. *Nature* **404**, 850–853 (2000).

7. Weaver, R. L. Anderson localization of ultrasound. *Wave motion* **12**, 129–142 (1990).

8. Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. *Nature Phys.* **4**, 945-948 (2008).

9. Billy, J. *et al.* Direct observation of Anderson localization of matter waves in a controlled disorder. *Nature* **453**, 891-894 (2008).

10. Roati, G. *et al.* Anderson localization of a non-interacting Bose-Einstein condensate. *Nature* **453**, 895-898 (2008).

11. Kondov, S. S., McGehee, W. R., Zirbel, J. J. & DeMarco, B. Three-dimensional Anderson localization of ultracold fermionic matter. *Science* **333**, 66-68 (2011).

12. Jendrzejewski, F. *et al.* Three-dimensional localization of ultracold atoms in an optical disordered potential. *Nature Phys.* **8**, 398–403 (2012).

13. Evers, F. & Mirlin, A. D. Anderson transitions. *Rev. Mod. Phys.* **80**, 1355-1417 (2008).

14. Coldea, R. *et al.* Quantum criticality in an Ising chain: experimental evidence for emergent E_8 symmetry. *Science* **327**, 177-180 (2010).

15. Des Cloizeaux, J. & Pearson, J. J. Spin-wave spectrum of the antiferromagnetic linear chain. *Phys. Rev.* **128**, 2131-2135 (1962).
16. Sologubenko, A. V., Lorenz, T., Ott, H. R. & Freimuth, A. Thermal conductivity via magnetic excitations in spin-chain materials. *J. Low Temp. Phys.* **147**, 387-403 (2007).

17. Hess, C. Heat conduction in low-dimensional quantum magnets. *Eur. Phys. J. Special Topics* **151**, 73-83 (2007).

18. Sologubenko, A. V. *et al.* Thermal conductivity and specific heat of the linear chain cuprate Sr$_2$CuO$_3$: Evidence for thermal transport via spinons. *Phys. Rev. B* **62**, R6108-R6111 (2000).

19. Sologubenko, A. V. *et al.* Magnetothermal transport in the spin-1/2 chains of copper pyrazine dinitrate. *Phys. Rev. Lett.* **98**, 107201 (2007).

20. Kojima, K. M. *et al.* Reduction of ordered moment and Néel temperature of quasi-one-dimensional antiferromagnets Sr$_2$CuO$_3$ and Ca$_2$CuO$_3$. *Phys. Rev. Lett.* **78**, 1787-1790 (1997).

21. Date, M., Yamazaki, H., Motokawa, M. & Tazawa, S. Linear chain antiferromagnetism in copper benzoate. *Suppl. Prog. Theor. Phys.* **46**, 194-209 (1970).

22. Koizumi, H., Osaki, K. & Watanabé T. Crystal structure of cupric benzoate trihydrate Cu(C$_6$H$_5$COO)$_2$$\cdot$3H$_2$O. *J. Phys. Soc. Jpn.* **18** 117-124 (1963).

23. Dender, D. C., Hammar, P. R., Reich, D. H., Broholm, C. & Aeppli, G. Direct observation of field-induced incommensurate fluctuations in a one-dimensional S = 1/2 antiferromagnet. *Phys. Rev. Lett.* **79**, 1750-1753 (1997).

24. Takahashi, M. Low-temperature specific heat of spin-1/2 anisotropic Heisenberg ring, *Prog. Theor. Phys.* **50**, 1519-1536 (1973).
25. Affleck, I. Universal term in the free energy at a critical point and the conformal anomaly, *Phys. Rev. Lett.* **56**, 746-748 (1986).

26. McRae, M. & Sushkov, O. P. Magnetic moment of a spinon and thermodynamic properties of the one-dimensional Heisenberg model, *Phys. Rev. B* **58**, 62-64 (1998).

27. Oshikawa, M. & Affleck, I. Field-Induced Gap in S = 1/2 Antiferromagnetic Chains. *Phys. Rev. Lett.* **79**, 2883-2886 (1997).

28. Affleck, I. & Oshikawa, M. Field-induced gap in Cu benzoate and other S = 1/2 antiferromagnetic chains. *Phys. Rev. B* **60**, 1038-1056 (1999); **62**, 9200(E) (2000).

29. Oshikawa, M. & Affleck, I. Low-temperature electron spin resonance theory for half-integer spin antiferromagnetic chains. *Phys. Rev. Lett.* **82**, 5136-5139 (1999).

30. Eßler, F. H. L. Sine-Gordon low-energy effective theory for copper benzoate. *Phys. Rev. B* **59**, 14376-14383 (1999).

31. Li, S. Y. *et al.* Low-temperature phonon thermal conductivity of single-crystalline Nd$_2$CuO$_4$: Effects of sample size and surface roughness. *Phys. Rev. B* **77**, 134501 (2008).

32. Faddeev, L. D. & Takhtajan, L. A. What is the spin of a spin-wave? *Phys. Lett. A* **85**, 375-377 (1981).

33. Hess, C. *et al.* Linear temperature dependence of the magnetic heat conductivity in CaCu$_2$O$_3$. *Phys. Rev. Lett.* **98**, 027201 (2007).

34. Hill, R. W., Proust, C., Taillefer, L., Fournier, P. & Greene, R. L. Breakdown of Fermi-liquid theory in a copper-oxide superconductor. *Nature* **414**, 711-715 (2001).

35. Smith, M. F., Paglione, J. & Walker, M. B. Origin of anomalous low-temperature downturns in the thermal conductivity of cuprates. *Phys. Rev. B* **71**, 014506 (2005).
Acknowledgements This work is supported by the Natural Science Foundation of China, the Ministry of Science and Technology of China (National Basic Research Program Nos. 2009CB929203 and 2012CB821402), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author Information The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to S. Y. Li (shiyan_li@fudan.edu.cn).

Figure 1 | Spinons in the spin-1/2 antiferromagnetic Heisenberg chain and crystal structure of copper benzoate.

a, Cartoon picture of spinon excitations in a spin-1/2 antiferromagnetic Heisenberg chain. b, The “two-spinon continuum” spectrum, limited by the lower bound $\varepsilon_1 = \frac{\pi}{2} |q| J$ and upper bound $\varepsilon_2 = \pi |q| J / 2$. The spinons are gapless at $q = 0$ and π. c, Crystal structure of copper benzoate. It has a monoclinic crystal structure with lattice constants $a = 6.98 \text{ Å}, b = 34.12 \text{ Å}, c = 6.30 \text{ Å},$ and $\beta = 89.5^\circ$. The Cu$^{2+}$ ions carry spin-1/2 and form chains along the c axis. The intrachain coupling $J/k_B \approx 18.6 \text{ K}$ and the interchain coupling J' is extremely weak, which make copper benzoate an ideal compound of spin-1/2 antiferromagnetic Heisenberg chain.
Figure 2 | Specific heat of copper benzoate single crystal.

a, Total specific heat of copper benzoate single crystal in zero magnetic field. The solid line is a fit to $C_{\text{total}} = aT + bT^3$, in which the first and second terms are contributed by spinons and phonons, respectively. Based on the fitting, the phonons only contribute about 3% of the total specific heat at $T = 1$ K. b, Magnetic specific heat in $H = 0$ and 7 T. The small phonon contribution has been subtracted in both cases. The zero-field magnetic thermal conductivity is attributed to spinons. In $H = 7$ T, the thermal conductivity comes from solitons, antisolitons, and breathers, according to the quantum sine-Gordon model. The curve shows a clear signature of energy gap, which can be fitted in the framework of sine-Gordon theory with a gap of 2.41 K.

Figure 3 | Thermal conductivity of copper benzoate single crystal.

a, κ/T vs T in $H = 0, 7,$ and 14.5 T for copper benzoate sample S1. The data in $H = 0$ T between 0.3 and 0.7 K can be well fitted by $\kappa = aT + bT^\alpha$, giving $a = 1.70 \pm 0.04$ mW/cm K2, $b = 8.87 \pm 0.04$, and $\alpha = 2.80 \pm 0.03$. The linear term aT is attributed to spinons, and the term bT^α is a typical contribution of phonons. b, The magnetic thermal conductivity κ_s and specific heat C_s (scaled by 6 times) in $H = 7$ T. The phonon contribution has been subtracted in both cases. κ_s shows nearly the same temperature dependence as C_s. c, κ/T vs $T^{1.90}$ for copper benzoate sample S2 in $H = 0$ T. d, κ/T vs $T^{1.85}$ for copper benzoate sample S3 in $H = 0$ T.
Figure 4 | Spinon Anderson localization in copper benzoate.

Spinon thermal conductivity of copper benzoate single crystals S1, S2, and S3 in $H = 0$ T, plotted as κ_s/T vs T. The different values of κ_s/T above 300 mK suggest that the spinon mean free path in copper benzoate is sample dependent. Below 300 mK, κ_s/T decreases rapidly and vanishes at about 100 mK, which gives a strong evidence for spinon Anderson localization. The onset temperature of the spinon localization T_{AL} remains at about 300 mK when the mean free path of spinons differs by 3 times between S1 and S2.
