R-TORSION OF COMPACT ORIENTABLE SURFACES VIA PANTS DECOMPOSITION

ESMA DİRİÇAN ERDAL AND YAŞAR SÖZEN

Abstract. Let \(\Sigma_{g,n} \) denote the compact orientable surface with genus \(g \geq 2 \) and boundary disjoint union of \(n \) circles. By using a particular pants-decomposition of \(\Sigma_{g,n} \), we obtain a formula that computes the Reidemeister torsion of \(\Sigma_{g,n} \) in terms of Reidemeister torsions of pairs of pants.

1. Introduction

The Reidemeister torsion (or R-torsion) was introduced by Reidemeister to classify 3 dimensional lens spaces [6]. This invariant was later generalized by Franz to other dimensions [2] and shown to be a topological invariant by Kirby-Siebenmann [3]. The R-torsion is also an invariant of the basis of the homology of a manifold [4]. Moreover, for compact orientable Riemannian manifolds the R-torsion is equal to the analytic torsion [1].

For a manifold \(M \) and an integer \(\eta \), we denote by \(h^\eta_M \) the basis of the homology \(H^\eta(M) = H^\eta(M; \mathbb{R}) \). Note that \(\Sigma_{2,0} \) is the double of \(\Sigma_{0,3} \). Let \(\Delta_{0,2}(\Sigma_{2,0}) \) be the matrix of the intersection pairing of \(\Sigma_{2,0} \) in the bases \(h^\Sigma_{2,0}, h^\Sigma_{2,0}, h^1_{\Sigma_{2,0}} = \{\omega_j\}_{i=1}^4 \) denote the Poincaré dual basis of \(H^1(\Sigma_{2,0}) \) corresponding to \(h^1_{\Sigma_{2,0}} \). We first prove the following theorem for the R-torsion of the pair of pants \(\Sigma_{0,3} \).

Theorem 1.0.1. For a given basis \(h^\Sigma_{0,3}, i = 0, 1 \), there is a basis \(h^\Sigma_{2,0}, \eta = 0, 1, 2 \) such that the following formula holds

\[
|T(\Sigma_{0,3}, \{h^\Sigma_{0,3}\}_0)| = \sqrt{\frac{|\det \Delta_{0,2}(\Sigma_{2,0})|}{|\det \varphi(h^1_{\Sigma_{2,0}}, \Gamma)|}},
\]

where \(\Gamma = \{\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4\} \) is the canonical basis for \(H_1(\Sigma_{2,0}) \), i.e. \(i = 1, 2, \Gamma_i \) intersects \(\Gamma_{i+2} \) once positively and does not intersect others, and \(\varphi(h^1_{\Sigma_{2,0}}, \Gamma) = [\int_{\Gamma} \omega_j] \) is the period matrix of \(h^1_{\Sigma_{2,0}} \) with respect to the basis \(\Gamma \).

By using the pants decomposition of \(\Sigma_{g,n} \) as in Figure 1, we prove the following theorem.

2010 Mathematics Subject Classification. Primary 55U99; Secondary (optional) 18G99, 57Q10.

Key words and phrases. Reidemeister torsion, compact orientable surfaces, pair of pants, period matrix.

Partially supported by TÜBİTAK under the project number 114F516. The first author would also like to thank TÜBİTAK for the financial support.
Theorem 1.0.2. If $h_{g,n}^{\sum}$ is a given basis, $\eta = 0, 1$, then for each $\nu = 1, \ldots, 2g - 2 + n$ there exists a basis $h_{\eta}^{\sum_{0,3}}$ such that

$$|\mathbb{T}(\Sigma_{g,n}, \{h_{\eta}^{\sum_{g,n}}\}_0)| = \prod_{\nu=1}^{2g-2+n} |\mathbb{T}(\Sigma_{0,3}^{\nu}, \{h_{\eta}^{\sum_{0,3}}\}_0)|,$$

where $\Sigma_{0,3}^{\nu}$ is the pair of pants in the decomposition labelled by ν.

2. R-torsion of a general chain complex

Let $C_s : 0 \to C_n \xrightarrow{\partial_n} C_{n-1} \to \cdots \to C_1 \xrightarrow{\partial_1} C_0 \to 0$ be a chain complex of finite dimensional vector spaces over \mathbb{R}. Let $B_p(C_s) = \text{Im}(\partial_{p+1})$, $Z_p(C_s) = \text{Ker}(\partial_p)$, and $H_p(C_s) = Z_p(C_s)/B_p(C_s)$ denote the p-th homology of the chain complex C_s for $p = 0, \ldots, n$. Then we have the following short exact sequences

(2.0.1) $0 \to Z_p(C_s) \xrightarrow{i} C_p(C_s) \xrightarrow{\partial_p} B_{p-1}(C_s) \to 0$,

(2.0.2) $0 \to B_p(C_s) \xrightarrow{j} Z_p(C_s) \xrightarrow{\varphi_p} H_p(C_s) \to 0$.

Here, i and φ_p are the inclusion and the natural projection, respectively. If we apply the Splitting Lemma to the above short exact sequences, then $C_p(C_s)$ can be expressed as the following direct sum

$$B_p(C_s) \oplus \ell_p(H_p(C_s)) \oplus s_p(B_{p-1}(C_s)).$$

Let c_p, b_p, and h_p be respectively bases of $C_p(C_s)$, $B_p(C_s)$, and $H_p(C_s)$. Then we obtain a new basis $b_p \sqcup \ell_p(h_p) \sqcup s_p(b_{p-1})$ for $C_p(C_s)$.

Definition 2.0.1. The R-torsion of C_s with respect to bases $\{c_p\}_0^n$, $\{h_p\}_0^n$ is defined by

$$\mathbb{T}(C_s, \{c_p\}_0^n, \{h_p\}_0^n) = \prod_{p=0}^{n} |b_p \sqcup \ell_p(h_p) \sqcup s_p(b_{p-1}), c_p|^{(-1)^{p+1}}.$$

Here, $|b_p \sqcup \ell_p(h_p) \sqcup s_p(b_{p-1}), c_p|$ is the determinant of the change-base-matrix from basis c_p to $b_p \sqcup \ell_p(h_p) \sqcup s_p(b_{p-1})$ of $C_p(C_s)$.

The R-torsion of a general chain complex C_s is an element of the dual of the vector space

$$\bigotimes_{p=0}^{n} (\det H_p(C_s))^{(-1)^{p}},$$

see [10] pp. 185 and [7] Thm. 2.0.6).

For a smooth m-manifold M with a cell decomposition K, there is a chain complex

$$C_s(K) : 0 \to C_m(K) \xrightarrow{\partial_m} C_{m-1}(K) \to \cdots \to C_1(K) \xrightarrow{\partial_1} C_0(K) \to 0,$$

where ∂_i is the usual boundary operator. The R-torsion of M is defined as the R-torsion of its cellular chain complex $C_s(K)$ in the bases $\{c_i\}_0^m$ and $\{h_i\}_0^m$. Here, c_i is the geometric basis for the i-cells $C_i(K)$, $i = 0, \ldots, m$. By [7] Lem. 2.0.5], the R-torsion of M does not depend on the cell decomposition K. Thus, we write $\mathbb{T}(M, \{h_i\}_0^m)$ instead of $\mathbb{T}(C_s(K), \{c_i\}_0^m, \{h_i\}_0^m)$. For further details we refer to [7] [9].
Corollary 2.0.2. Let $Y = S^1 \times [-\epsilon, +\epsilon]$ be a cylinder with boundary circles $S^1 \times \{-\epsilon\}$ and $S^1 \times \{+\epsilon\}$, where $\epsilon > 0$. Let h_i be a basis of $H_i(Y)$ for $i = 0, 1$. By Künneth formula, we have the isomorphisms: $C_i(Y) \cong C_i(S^1)$ and $H_i(Y) \cong H_i(S^1)$. Then [8, Thm. 3.5] gives the following result

$$|\mathbb{T}(Y, \{h_0, h_1\})| = |\mathbb{T}(S^1, \{[\varphi_0](h_0), [\varphi_1](h_1)\})| = 1.$$

3. Proofs of main results

Proof of Theorem 1.0.1 For any manifold M, let $C_*(M)$ denote the associated cellular chain complex.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Double of the pair of pants $\Sigma_{0,3}$.}
\end{figure}

Note that $\Sigma_{2,0}$ is the double of $\Sigma_{0,3}$. Let \mathcal{B} be the intersection of the pairs of pants in $\Sigma_{2,0}$, so \mathcal{B} is homeomorphic to the disjoint union of three circles, $S_1 \amalg S_2 \amalg S_3$. Then there is the natural short exact sequence of the chain complexes

\begin{equation}
0 \to C_*(\mathcal{B}) \to C_*(\Sigma_{0,3}) \oplus C_*(\Sigma_{0,3}) \to C_*(\Sigma_{2,0}) \to 0
\end{equation}

and the Mayer-Vietoris sequence associated to (3.0.1) is

\begin{equation}
\mathcal{H}_*: 0 \xrightarrow{\alpha} H_2(\Sigma_{2,0}) \xrightarrow{f} H_1(\mathcal{B}) \xrightarrow{\beta} H_1(\Sigma_{0,3}) \oplus H_1(\Sigma_{0,3}) \xrightarrow{h} H_1(\Sigma_{2,0}) \xrightarrow{g} H_0(\Sigma_{0,3}) \oplus H_0(\Sigma_{0,3}) \xrightarrow{k} H_0(\Sigma_{2,0}) \xrightarrow{\xi} 0.
\end{equation}

Let us denote by $C_p(\mathcal{H}_*)$ the vector spaces in (3.0.2) for $p = 0, \ldots, 6$ and consider the short exact sequences (2.0.1) and (2.0.2) for \mathcal{H}_*. Let us take the isomorphism $s_p : B_{p-1}(\mathcal{H}_*) \to s_p(B_{p-1}(\mathcal{H}_*))$ obtained by the First Isomorphism Theorem as a section of $C_p(\mathcal{H}_*) \to B_{p-1}(\mathcal{H}_*)$ for each p. By the exactness of \mathcal{H}_*, we get $Z_p(\mathcal{H}_*) = B_p(\mathcal{H}_*)$. Applying the Splitting Lemma to (2.0.2), we have

\begin{equation}
C_p(\mathcal{H}_*) = B_p(\mathcal{H}_*) \oplus s_p(B_{p-1}(\mathcal{H}_*)).
\end{equation}

Then the R-torsion of \mathcal{H}_* with respect to basis $\{h_p\}_{0}^{n}$ is given as follows

$$\mathbb{T}(\mathcal{H}_*, \{h_p\}_{0}^{n}, \{0\}_{0}^{n}) = \prod_{p=0}^{n} [h_p', h_p]^{(-1)^{(p+1)}},$$

where $h_p' = b_p \amalg s_p(b_{p-1})$ for each p. In [4], Milnor proved that the R-torsion does not depend on bases b_p and sections s_p, ℓ_p. Therefore, we will choose a suitable bases b_p.
and sections \(s_p \) so that \(T(\mathcal{H}_s, \{h_p\}_{0}^{n}, \{0\}_{0}^{n}) = 1. \)

Let us consider the space \(C_0(\mathcal{H}_s) = H_0(\Sigma_{2,0}) \) in (3.0.3). Then \(\text{Im}(\ell) = 0 \) yields

\[
(3.0.4) \quad C_0(\mathcal{H}_s) = \text{Im}(k) \oplus s_0(\text{Im}(\ell)) = \text{Im}(k).
\]

Since \(\{(h_0^{\Sigma_{0,3}}, 0), (0, h_0^{\Sigma_{0,3}})\} \) is the basis of \(H_0(\Sigma_{0,3}) \oplus H_0(\Sigma_{0,3}) \),

\[
\{\alpha_{11}k(h_0^{\Sigma_{0,3}}, 0) + \alpha_{12}k(0, h_0^{\Sigma_{0,3}})\}
\]
can be taken as the basis \(\text{h}^{\text{Im}(k)} \) of \(\text{Im}(k) \), where \((\alpha_{11}, \alpha_{12}) \) is a non-zero vector. By (3.0.3), \(\text{h}^{\text{Im}(k)} \) becomes the obtained basis \(h'_0 \) of \(C_0(\mathcal{H}_s) \). If we take the initial basis \(h_0 \) (namely, \(h_{0}^{\Sigma_{2,0}} \)) of \(C_0(\mathcal{H}_s) \) as \(h'_0 \), then

\[
(3.0.5) \quad [h'_0, h_0] = 1.
\]

If we use (3.0.3) for \(C_1(\mathcal{H}_s) = H_0(\Sigma_{0,3}) \oplus H_0(\Sigma_{0,3}) \), then we get

\[
(3.0.6) \quad C_1(\mathcal{H}_s) = \text{Im}(j) \oplus s_1(\text{Im}(k)).
\]

Note that the given basis \(h_1 \) of \(C_1(\mathcal{H}_s) \) is \(\{(h_0^{\Sigma_{0,3}}, 0), (0, h_0^{\Sigma_{0,3}})\} \). Since \(\text{Im}(j) \) is 1-dimensional subspace of 2-dimensional space \(C_1(\mathcal{H}_s) \), there is a non-zero vector \((a_{21}, a_{22}) \) such that \(\{a_{21}(h_0^{\Sigma_{0,3}}, 0) + a_{22}(0, h_0^{\Sigma_{0,3}})\} \) is a basis of \(\text{Im}(j) \). In the previous step, the basis of \(\text{Im}(k) \) was chosen as \(\text{h}^{\text{Im}(k)} \) so

\[
s_1(\text{h}^{\text{Im}(k)}) = a_{11}(h_0^{\Sigma_{0,3}}, 0) + a_{12}(0, h_0^{\Sigma_{0,3}}).
\]

Then we obtain a non-singular \(2 \times 2 \) matrix \(A = [a_{ij}] \) with entries in \(\mathbb{R} \). Let us choose the basis of \(\text{Im}(j) \) as

\[
\text{h}^{\text{Im}(j)} = \{-(\det A)^{-1}[a_{21}(h_0^{\Sigma_{0,3}}, 0) + a_{22}(0, h_0^{\Sigma_{0,3}})]\}.
\]

By (3.0.6), \(\{\text{h}^{\text{Im}(j)}, s_1(\text{h}^{\text{Im}(k)})\} \) becomes the obtained basis \(h'_1 \) of \(C_1(\mathcal{H}_s) \). Hence, we get

\[
(3.0.7) \quad [h'_1, h_1] = 1.
\]

Considering (3.0.3) for \(C_2(\mathcal{H}_s) = H_0(B) \), we obtain

\[
(3.0.8) \quad C_2(\mathcal{H}_s) = \text{Im}(i) \oplus s_2(\text{Im}(j)).
\]

Recall that \(\{h_{0}^{S_1}, h_{0}^{S_2}, h_{0}^{S_3}\} \) is the given basis \(h_2 \) of \(C_2(\mathcal{H}_s) \). Since \(\text{Im}(i) \) and \(s_2(\text{Im}(j)) \) are 2 and 1-dimensional subspaces of 3-dimensional space \(C_2(\mathcal{H}_s) \), there are non-zero vectors \((b_{i1}, b_{i2}, b_{i3}), i = 1, 2, 3 \) such that \(\{\sum_{i=1}^{3} b_{ij} h_{0}^{S_i}\}_{j=1}^{2} \) is a basis of \(\text{Im}(i) \) and

\[
s_2(\text{h}^{\text{Im}(j)}) = \sum_{i=1}^{3} b_{ni} h_{0}^{S_i} \]

is a basis of \(s_2(\text{Im}(j)) \). Then \(3 \times 3 \) real matrix \(B = [b_{ij}] \) is invertible. Let us choose the basis of \(\text{Im}(i) \) as follows

\[
\text{h}^{\text{Im}(i)} = \left\{ (\det B)^{-1} \sum_{i=1}^{3} b_{i1} h_{0}^{S_1}, \sum_{i=1}^{3} b_{i2} h_{0}^{S_2}, \sum_{i=1}^{3} b_{i3} h_{0}^{S_3} \right\}.
\]
By (3.0.8), \(\{ h^{im(i)}, s_4(h^{im(j)}) \} \) becomes the obtained basis \(h'_2 \) of \(C_2(H_*) \) and we have

\[
[h'_2, h_2] = 1.
\]

Using (3.0.3), \(C_3(H_*) = H_1(\Sigma) \) can be expressed as the following direct sum

\[
(3.0.10) \quad C_3(H_*) = \text{Im}(h) \oplus s_4(\text{Im}(i)).
\]

Note that the basis of \(H\Sigma \Sigma_{0,3} \) is \(\{(h_{1,1}^{\Sigma_3}, 0), (0, h_{1,1}^{\Sigma_3}), (h_{1,2}^{\Sigma_3}, 0), (0, h_{1,2}^{\Sigma_3}) \} \).

Since \(\text{Im}(h) \) is a 2-dimensional space, we can choose the basis of \(\text{Im}(h) \) as

\[
\begin{align*}
\text{Im}(h) = \{ & c_{11} h(h_{1,1}^{\Sigma_3}, 0) + c_{12} h(0, h_{1,1}^{\Sigma_3}) + c_{13} h(h_{1,2}^{\Sigma_3}, 0) + c_{14} h(0, h_{1,2}^{\Sigma_3}), \\
& c_{21} h(h_{1,1}^{\Sigma_3}, 0) + c_{22} h(h_{1,2}^{\Sigma_3}, 0) + c_{23} h(h_{1,2}^{\Sigma_3}, 0) + c_{24} h(0, h_{1,2}^{\Sigma_3}) \}.
\end{align*}
\]

Here, \((c_{11}, c_{12}, c_{13}, c_{14}) \) is a non-zero vector for \(i = 1, 2, \) using (3.0.10), we have that \(\{ h^{im(h)}, s_3(h^{im(i)}) \} \) is the obtained basis \(h'_3 \) of \(C_3(H_*) \). If we take the initial basis \(h_3 \) (namely, \(h_{1,0} \)) of \(C_3(H_*) \) as \(h'_3 \), then we get

\[
(3.0.11) \quad [h'_3, h_3] = 1.
\]

If we consider (3.0.3) for \(C_4(H_*) = H_1(\Sigma) \oplus H_1(\Sigma) \), then we obtain

\[
(3.0.12) \quad C_4(H_*) = \text{Im}(g) \oplus s_4(\text{Im}(h)).
\]

Recall that \(\{(h_{1,1}^{\Sigma_3}, 0), (0, h_{1,1}^{\Sigma_3}), (h_{1,2}^{\Sigma_3}, 0), (0, h_{1,2}^{\Sigma_3}) \} \) is the given basis \(h_4 \) of \(C_4(H_*) \).

In the previous step, \(h^{im(h)} \) was chosen as the basis of \(\text{Im}(h) \) so

\[
s_4(h^{im(h)}) = \begin{cases} c_{11} (h_{1,1}^{\Sigma_3}, 0) + c_{12} (0, h_{1,1}^{\Sigma_3}) + c_{13} (h_{1,2}^{\Sigma_3}, 0) + c_{14} (0, h_{1,2}^{\Sigma_3}), \\
c_{21} (h_{1,1}^{\Sigma_3}, 0) + c_{22} (h_{1,2}^{\Sigma_3}, 0) + c_{23} (h_{1,2}^{\Sigma_3}, 0) + c_{24} (0, h_{1,2}^{\Sigma_3}) \end{cases}
\]

is a basis of \(s_4(\text{Im}(h)) \). As \(\text{Im}(g) \) is a 2-dimensional subspace of 4-dimensional space \(C_4(H_*) \), there are non-zero vectors \((c_{i1}, c_{i2}, c_{i3}, c_{i4}) \), \(i = 3, 4 \) such that

\[
\begin{align*}
\{ & c_{31} (h_{1,1}^{\Sigma_3}, 0) + c_{32} (0, h_{1,1}^{\Sigma_3}) + c_{33} (h_{1,2}^{\Sigma_3}, 0) + c_{34} (0, h_{1,2}^{\Sigma_3}), \\
& c_{41} (h_{1,1}^{\Sigma_3}, 0) + c_{42} (h_{1,1}^{\Sigma_3}, 0) + c_{43} (h_{1,2}^{\Sigma_3}, 0) + c_{44} (0, h_{1,2}^{\Sigma_3}) \}
\end{align*}
\]

is a basis of \(\text{Im}(g) \) and \(C = [c_{ij}] \) is the non-singular \(4 \times 4 \) real matrix. Thus, we can choose the basis of \(\text{Im}(g) \) as

\[
\text{Im}(g) = \begin{cases} (\det(C))^{-1} [c_{31} (h_{1,1}^{\Sigma_3}, 0) + c_{32} (0, h_{1,1}^{\Sigma_3}) + c_{33} (h_{1,2}^{\Sigma_3}, 0) + c_{34} (0, h_{1,2}^{\Sigma_3})], \\
c_{41} (h_{1,1}^{\Sigma_3}, 0) + c_{42} (0, h_{1,1}^{\Sigma_3}) + c_{43} (h_{1,2}^{\Sigma_3}, 0) + c_{44} (0, h_{1,2}^{\Sigma_3}) \end{cases}
\]

By (3.0.12), \(\{ h^{im(g)}, s_4(h^{im(h)}) \} \) becomes the obtained basis \(h'_4 \) of \(C_4(H_*) \) and the following equation holds

\[
(3.0.13) \quad [h'_4, h_4] = 1.
\]
Consider the space $C_5(H_*) = H_1(B)$, then (3.0.3) becomes
\[(3.0.14) \quad C_5(H_*) = \text{Im}(f) \oplus s_5(\text{Im}(g)).\]
Recall that the initial basis h_5 of $C_5(H_*)$ is \{h_{1}^{5}, h_{1}^{5}, h_{1}^{5}\}. Since Im(f) and $s_5(\text{Im}(g))$ are respectively 1 and 2-dimensional subspaces of 3-dimensional space $C_5(H_*)$, there are non-zero vectors (d_{1i}, d_{2i}, d_{3i}), $i = 1, 2, 3$ such that \(\sum_{i=1}^{3} d_{1i} h_{1i}^{5}\) is a basis of Im(f) and
\[s_5(\text{Im}(g)) = \left\{ \sum_{i=1}^{3} d_{2i} h_{1i}^{5}, \sum_{i=1}^{3} d_{3i} h_{1i}^{5} \right\}\]
is a basis of $s_5(\text{Im}(g))$. Then we get a non-singular 3 x 3 real matrix $D = [d_{ij}]$. Let us choose the basis of Im(f) as
\[h_{\text{Im}(f)} = \left\{ (\det D)^{-1} \sum_{i=1}^{3} d_{1i} h_{1i}^{5} \right\}.\]
By (3.0.14), \(\{h_{\text{Im}(f)}, h_5(\text{Im}(g))\}\) becomes the obtained basis h_5' of $C_5(H_*)$. Hence, we obtain
\[(3.0.15) \quad [h_5', h_5] = 1.\]
Finally, let us consider $C_6(H_*) = H_2(\Sigma_{2,0})$. Since Im($\alpha$) = 0, (3.0.3) becomes
\[(3.0.16) \quad C_6(H_*) = \text{Im}(\alpha) \oplus s_6(\text{Im}(f)) = s_6(\text{Im}(f)).\]
From (3.0.16) it follows that $s_6(\text{Im}(f))$ is the obtained basis h_6' of $C_6(H_*)$. If we take the initial basis h_6 (namely, $h_{2}^{5,0}$) of $C_6(H_*)$ as $s_6(\text{Im}(f))$, then we have
\[(3.0.17) \quad [h_6', h_6] = 1.\]
If we combine (3.0.5), (3.0.7), (3.0.9), (3.0.11), (3.0.13), (3.0.15), and (3.0.17), then we get
\[(3.0.18) \quad T(H_*, \{h_p\}_0, \{0\}_0) = \prod_{p=0}^{6} [h_p', h_p]^{(-1)(p+1)} = 1.\]
Since the natural bases in (3.0.11) are compatible, [4] Thm. 3.2] yields
\[(3.0.19) \quad T(H_*, \{h_{\Sigma,3}^{0,3}\}_0)^2 = \prod_{j=1}^{3} T(S_{j}, \{h_{\Sigma,1}^{j}\}_0) T(H_*, \{h_{\Sigma,2,0}^{0,3}\}_0) T(H_*, \{h_p\}_0, \{0\}_0).\]
Considering [8] Thm. 3.5], (3.0.18], and (3.0.19], we obtain
\[(3.0.20) \quad |T(H_*, \{h_{\Sigma,3}^{0,3}\}_0)| = \sqrt{T(H_*, \{h_{\Sigma,2,0}^{0,3}\}_0)^2}.\]
By Poincaré Duality, Theorem 4.1 in [8] and (3.0.20], the main formula holds
\[|T(H_*, \{h_{\Sigma,3}^{0,3}\}_0)| = \frac{||\det \Delta_{0,2}(\Sigma_{2,0})||}{||\det \varphi(h_{\Sigma_{2,0}}^{1,1}, \Gamma)||}.\]
\[\square\]
A pants decomposition of $\Sigma_{g,n}$ is a finite collection of disjoint smoothly embedded circles cutting $\Sigma_{g,n}$ into pairs of pants $\Sigma_{0,3}$ and tori with one boundary circle $\Sigma_{1,1}$. The number of complementary components is $|\chi(\Sigma_{g,n})| = 2g - 2 + n$.

![Diagram of a pants decomposition](image)

Figure 2. Compact orientable surface $\Sigma_{g,n}$ with genus $g \geq 2$ and bordered by $n \geq 1$ circles.

Proof of Theorem 1.0.2. Consider the decomposition of $\Sigma_{g,n}$, as in Figure 1, obtained by cutting the surface along the circles in the following order

$S_1, \ldots, S_g, S_{g+1}, \ldots, S_{2g-3+n}$.

This decomposition consists of
- the torus $\Sigma_{1,1}'$ with boundary circle S_ν, $\nu = 1, \ldots, g$,
- the pair of pants $\Sigma_{2g,3}'$ with boundaries S_1, S_2, S_{g+1},
- the pair of pants $\Sigma_{2g,3}''$ with boundaries $S_{g+6}, S_{g+7}, S_{g+2}$, $\nu = 2, \ldots, g - 1$,
- the pair of pants $\Sigma_{2g,3}'''$ with boundaries $S_{g+6}, S_{g+7}, S_{g-6}, \nu = g, \ldots, g + n - 3$,
- the pair of pants $\Sigma_{2g,3}^0$ with boundaries $S_{2g-3, n-3}, S_{(n-1)}$, $S_{(n-2)}$.

Consider also the decomposition $\Sigma_{1,1}' = Y_\nu \cup Y_\nu'$ of $\Sigma_{0,3}$, $\nu = 1, \ldots, g$, where Y_ν is the cylinder $S_\nu \times [-\varepsilon, +\varepsilon]$ and Y_ν' is the pair of pants with boundaries $S_\nu \times \{-\varepsilon\}, S_\nu' \times \{\varepsilon\}$, for sufficiently small $\varepsilon > 0$.

Case 1: Consider the decomposition $\Sigma_{0,3} \cup \Sigma_{0,n-1}$ of $\Sigma_{0,n}$ for $n \geq 4$, where $\Sigma_{0,3}$ and $\Sigma_{0,n-1}$ are glued along the common boundary circle S_1. Then there is a short exact sequence of the chain complexes

$$0 \to C_*(S_1) \to C_*(\Sigma_{0,3}) \oplus C_*(\Sigma_{0,n-1}) \to C_*(\Sigma_{0,n}) \to 0$$

and the corresponding Mayer-Vietoris sequence \mathcal{H}_*. By using the arguments stated in the proof of Theorem 1.0.1 for the given bases h_η^0, h_η^1, $\eta = 0, 1$, there exist bases $h_{\Sigma_{0,3}}^0$ and $h_{\Sigma_{0,n-1}}^1$ such that the R-torsion of \mathcal{H}_* in the corresponding bases is 1 and

$$\tau(\Sigma_{0,n}, \{h_{\eta}^{\Sigma_{0,n}}\}^1_0) = \tau(\Sigma_{0,3}, \{h_{\eta}^{\Sigma_{0,3}}\}^1_0) \tau(\Sigma_{0,n-1}, \{h_{\eta}^{\Sigma_{0,n-1}}\}^1_0) \tau(\Sigma_{1}, \{h_{\eta}^{\Sigma_{1}}\}^1_0)^{-1}.$$

By [8, Thm. 3.5] and (3.0.21), we obtain

$$|\tau(\Sigma_{0,n}, \{h_{\eta}^{\Sigma_{0,n}}\}^1_0)| = |\tau(\Sigma_{0,3}, \{h_{\eta}^{\Sigma_{0,3}}\}^1_0)||\tau(\Sigma_{0,n-1}, \{h_{\eta}^{\Sigma_{0,n-1}}\}^1_0)|.$$
Applying (3.0.22) inductively, we get
\[|T(\Sigma_{0,n}, \{h^\Sigma_{0,n,1,0}\})| = \prod_{\nu=1}^{n-2} |T(\Sigma_{0,3}, \{h^\Sigma_{0,3,1,0}\})|. \]

Case 2: For the decomposition \(\Sigma_{1,1} = Y \cup_{\partial Y} \Sigma_{0,3} \), where \(Y = S' \times [-\varepsilon, +\varepsilon] \), \(\partial Y = S' \times \{-\varepsilon\} \cup S' \times \{+\varepsilon\} \), and \(\Sigma_{0,3} \) is the pair of pants with boundaries \(S' \times \{-\varepsilon\}, S' \times \{+\varepsilon\} \), \(\Sigma \) for sufficiently small \(\varepsilon > 0 \), we have the following short exact sequence of the chain complexes
\[(3.0.23) \quad 0 \to C_*(\Sigma_{0,3} \cap Y) \to C_*(\Sigma_{0,3}) \oplus C_*(Y) \to C_*(\Sigma_{1,1}) \to 0 \]
and the corresponding Mayer-Vietoris sequence \(H_* \). If we follow the arguments in the proof of Theorem 1.0.1 for the given bases \(h^\Sigma_{1,1} \) and \(h^S_{\eta} \), \(\eta = 0, 1 \), then we get the bases \(h^\Sigma_{0,3} \) and \(h^S_{\eta} \) such that the R-torsion of \(H_* \) in the corresponding bases equals to 1 and the formula is valid
\[T(\Sigma_{1,1}, \{h^\Sigma_{1,1,0}\}) = T(\Sigma_{0,3}, \{h^\Sigma_{0,3,1,0}\}) T(Y, \{h^S_{\eta,0}\}) T(S', \{h^S_{\eta,1}\})^{-2}. \]

From [8] Thm. 3.5] and Corollary [2.0.2] it follows
\[|T(\Sigma_{1,1}, \{h^\Sigma_{1,1,0}\})| = |T(\Sigma_{0,3}, \{h^\Sigma_{0,3,1,0}\})|. \]

Case 3: Let \(\Sigma_{g-1,1} \cup_{S} \Sigma_{1,1} \) be the decomposition of \(\Sigma_{g,0} \), \(g \geq 2 \), where \(\Sigma_{1,1} \) and \(\Sigma_{g-1,1} \) are glued along the common boundary circle \(S_0 \). By the decomposition, there exists the natural short exact sequence
\[0 \to C_*(S_0) \to C_*(\Sigma_{g-1,1}) \oplus C_*(\Sigma_{1,1}) \to C_*(\Sigma_{g,0}) \to 0 \]
and its corresponding Mayer-Vietoris sequence
\[H_* : 0 \to H_2(\Sigma_{g,0}) \xrightarrow{\delta_2} H_1(S_0) \xrightarrow{j} H_1(\Sigma_{g-1,1}) \oplus H_1(\Sigma_{1,1}) \xrightarrow{\partial} H_1(\Sigma_{g,0}) \]
\[\xrightarrow{\delta_0} H_0(\Sigma_{g,0}) \xrightarrow{i} H_0(\Sigma_{g-1,1}) \oplus H_0(\Sigma_{1,1}) \xrightarrow{j} H_0(\Sigma_{g,0}) \]
For the given bases \(h^\Sigma_{g,0} \) and \(h^S_{g,1} \) with the condition \(\delta_2(h^\Sigma_{g,0}) = h^S_{g,1}, \nu = 0, 1, 2, \eta = 0, 1 \), if we use the arguments stated in the proof of Theorem 1.0.1[1,0.1] then we obtain the bases \(h^\Sigma_{0,1} \) and \(h^\Sigma_{1,1} \) such that the R-torsion of \(H_* \) in the corresponding bases becomes 1 and the following formula holds
\[T(\Sigma_{g,0}, \{h^\Sigma_{g,0,1,0}\}) = T(\Sigma_{g-1,1}, \{h^\Sigma_{g-1,1,0}\}) T(S_0, \{h^S_{g,1}\})^{-1}. \]

By [8] Thm. 3.5, we obtain
\[|T(\Sigma_{g,0}, \{h^\Sigma_{g,0,1,0}\})| = |T(\Sigma_{g-1,1}, \{h^\Sigma_{g-1,1,0}\})| |T(S_0, \{h^S_{g,1}\})^{-1}|. \]

Case 4: Consider the decomposition \(\Sigma_{g,n} = \Sigma_{g-1,n+1} \cup_{S_1} \Sigma_{1,1} \) for \(g \geq 2, n \geq 1 \), where \(\Sigma_{1,1} \) and \(\Sigma_{g-1,n+1} \) are glued along the common boundary circle \(S_1 \). Then there is the natural short exact sequence of the chain complexes
\[(3.0.24) \quad 0 \to C_*(S_1) \to C_*(\Sigma_{g-1,n+1}) \oplus C_*(\Sigma_{1,1}) \to C_*(\Sigma_{g,n}) \to 0, \]
and the corresponding Mayer-Vietoris sequence \mathcal{H}_*. Using the arguments in the proof of Theorem 1.0.1 for the given bases $h^{g,n}_\eta$ and $h^{g,1}_\eta$, $\eta = 0, 1$, we get the bases $h^{g-1,n+1}_\eta$ and $h^{g,1}_\eta$ such that the R-torsion of \mathcal{H}_* in the corresponding bases is 1 and $T(\Sigma_{g,n}, \{h^{g,n}_\eta\}_0) = T(\Sigma_{g-1,n+1}, \{h^{g-1,n+1}_\eta\}_0) T(\Sigma_{1,1}, \{h^{g,1}_\eta\}_0) T(S_1, \{h^{g,1}_\eta\}_0)^{-1}$.

By [8] Thm. 3.5, the R-torsion of $\Sigma_{g,n}$ satisfies the following formula

$$|T(\Sigma_{g,n}, \{h^{g,n}_\eta\}_0)| = |T(\Sigma_{g-1,n+1}, \{h^{g-1,n+1}_\eta\}_0)| |T(\Sigma_{1,1}, \{h^{g,1}_\eta\}_0)|$$

Applying the Cases 1-4 inductively, we have the following R-torsion formula for the compact orientable surfaces $\Sigma_{g,n}$, $g \geq 2$, $n \geq 0$

$$|T(\Sigma_{g,n}, \{h^{g,n}_\eta\}_0)| = \prod_{\nu=1}^{2g-2+n} |T(\Sigma_{0,3}, \{h^{\nu,0}_\eta\}_0)|^2.$$

\square

4. Applications

4.1. Compact 3-manifolds with boundary. Let N be a smooth compact orientable 3-manifold whose boundary consists of finitely many closed orientable surfaces $\partial N = \Sigma_{g_1,0} \sqcup \Sigma_{g_2,0} \sqcup \cdots \sqcup \Sigma_{g_n,0}$. Let $d(N)$ be the double of N. Consider the natural short exact sequence of the chain complexes

$$0 \to C_\ast(\partial N) \to C_\ast(N) \oplus C_\ast(d(N)) \to C_\ast(d(N)) \to 0$$

and the corresponding Mayer-Vietoris sequence \mathcal{H}_*. For the given bases h^N_{μ}, $h^\partial N_{\nu}$, and $h^d(N) \eta$, $\nu = 0, 1, 2$, $\mu = 0, 1, 2, 3$, we will denote the corresponding basis of \mathcal{H}_* by h_n, $n = 0, \ldots, 11$. As the bases in the sequence (4.1.1) are compatible, [8] Thm. 3.2 yields

$$T(N, \{h^N_{\mu}\}_0^2) = T(\partial N, \{h^\partial N_{\nu}\}_0^2) T(d(N), \{h^d(N)\}_0^3) T(\mathcal{H}_*, \{h_n\}_0^{11}).$$

By [8] Thm. 3.5 and (4.1.2), we have

$$|T(N, \{h^N_{\mu}\}_0^2)| = \sqrt{|T(\partial N, \{h^\partial N_{\nu}\}_0^2)||T(\mathcal{H}_*, \{h_n\}_0^{11})|}.$$

Note that ∂N is equal to $\Sigma_{g_1,0} \sqcup \Sigma_{g_2,0} \sqcup \cdots \sqcup \Sigma_{g_n,0}$. By [8] Lem. 1.4, we get

$$|T(\partial N, \{h^\partial N_{\nu}\}_0^2)| = \prod_{i=1}^{m} |T(\Sigma_{g_i,0}, \{h^{g_i,0}_\nu\}_0^2)|.$$

For each $i = 1, \ldots, m$, consider the given basis $h^{g_i,0}_\nu$ for $\nu = 0, 1, 2$ and pants-decompositions $\{\Sigma^{j,i}_{0,3}\}_{j=1}^{2g_i-2}$ of $\Sigma_{g_i,0}$. By using Theorem 1.0.2, we obtain the basis $h^{g_i,0,j,i}_\eta$, $\eta = 0, 1$, $j = 1, \ldots, 2g_i - 2$ such that

$$|T(\partial N, \{h^\partial N_{\nu}\}_0^2)| = \prod_{i=1}^{m} \prod_{j=1}^{2g_i-2} |T(\Sigma^{j,i}_{0,3}, \{h^{g_i,0,j,i}_\eta\}_0)|.$$
Equations (4.1.4) and (4.1.5) yield the following formula

\[
|T(N, \{h^N_\mu\}_0^3)| = \prod_{i=1}^{m} \prod_{j=1}^{2g-2} |T(\Sigma^j_{0,3}, \{h^{\Sigma^j_{0,3}}_\eta\}_0^1)\| T(\mathcal{H}_*, \{h_i\}_0^1)|.
\]

Corollary 4.1.1. Let \(N\) be the handlebody of genus \(g \geq 2\). Clearly, the boundary \(\partial N\) of \(N\) is an orientable closed surface \(\Sigma_{g,0}\) and the double \(d(N)\) of \(N\) is equal to \(#(S \times S^2)\).

Then, we have the short exact sequence

(4.1.6) \[0 \to C_\ast(\Sigma_{g,0}) \to C_\ast(N) \oplus C_\ast(N) \to C_\ast(d(N)) \to 0\]

and the corresponding Mayer-Vietoris sequence \(\mathcal{H}_\ast\). For the given bases \(h^{d(N)}_\mu\) and \(h^N_\mu\) \(\mu = 0, \ldots, 3\), following the arguments above, there exists a basis \(h^{\Sigma_{g,0}}_i\); \(i = 0, 1, 2\) such that in the corresponding bases the R-torsion of \(\mathcal{H}_\ast\) is 1 and from [8, Thm. 3.5] it follows

\[|T(N, \{h^N_\mu\}_0^3)| = \sqrt{|T(\Sigma_{g,0}, \{h^{\Sigma_{g,0}}_i\}_0)|}.\]

Let us consider the pants-decomposition \(\{\Sigma^j_{0,3}\}_{j=1}^{2g-2}\) of \(\Sigma_{g,0}\). By Theorem 1.0.2, there exists the basis \(h^{\Sigma^j_{0,3}}_\eta\) for each \(j = 1, \ldots, 2g - 2, \eta = 0, 1\) and the formula holds

\[|T(N, \{h^N_\mu\}_0^3)| = \prod_{j=1}^{2g-2} |T(\Sigma^j_{0,3}, \{h^{\Sigma^j_{0,3}}_\eta\}_0)|.\]

4.2. Product of 2d-manifolds and compact 3-manifolds with boundary \(\Sigma_{g,0}\).

Let \(M\) be a smooth closed orientable 2d-manifold \((d \geq 1)\) and \(N\) an smooth compact orientable 3-manifold whose boundary consists of closed orientable surface \(\Sigma_{g,0}\) \((g \geq 2)\). Let \(X\) be the product manifold \(M \times N\) and \(d(X)\) denote the double of \(X\). Clearly, the boundary of \(X\) is \(M \times \Sigma_{g,0}\). Consider the natural short exact sequence of the chain complexes

(4.2.1) \[0 \to C_\ast(M \times \Sigma_{g,0}) \to C_\ast(X) \oplus C_\ast(X) \to C_\ast(d(X)) \to 0\]

and the Mayer-Vietoris sequence \(\mathcal{H}_\ast\) corresponding to (4.2.1). Let \(h^X_i, h^{d(X)}_\nu, h^M_i, \) and \(h^{\Sigma_{g,0}}_\ell\) be given bases for \(i = 0, \cdots, 2d + 3\), \(k = 0, \ldots, 2d\), \(\ell = 0, 1, 2\). Let \(h^M_{\nu \times \Sigma_{g,0}}\) denote the basis \(\oplus h^M_i \oplus h^{\Sigma_{g,0}}_\nu\) of \(H_\nu(M \times \Sigma_{g,0})\), \(\nu = 0, \ldots, 2d + 2\). For \(n = 0, \ldots, 8d + 11\), let \(h_n\) be the corresponding basis of \(\mathcal{H}_\ast\). Let \(\{\Sigma^j_{0,3}\}_{j=1}^{2g-2}\) be the pants-decomposition of \(\Sigma_{g,0}\). Since the bases in the sequence (4.2.1) are compatible and [8] Lem. 1.4, we obtain

(4.2.2) \[T(X, \{h^X_i\}_0^{2d+3}) = T(M \times \Sigma_{g,0}, \{h^M_{\nu \times \Sigma_{g,0}}\}_0^{2d+2}) T(d(X), \{h^{d(X)}_\nu\}_0^{2d+3})
\times T(\mathcal{H}_*, \{h_n\}_0^{8d+11}).\]

From [8, Thm. 3.5] and (4.2.2) it follows that

(4.2.3) \[|T(X, \{h^X_i\}_0^{2d+3})| = |T(M \times \Sigma_{g,0}, \{h^M_{\nu \times \Sigma_{g,0}}\}_0^{2d+2})|^{1/2} |T(\mathcal{H}_*, \{h_n\}_0^{8d+11})|^{1/2}.\]

By [5, Thm. 3.1], the R-torsion of \(M \times \Sigma_{g,0}\) satisfies the equality

(4.2.4) \[|T(M \times \Sigma_{g,0}, \{h^M_{\nu \times \Sigma_{g,0}}\}_0^{2d+2})| = |T(M, \{h^M_\kappa\}_0^{2d})| \chi(\Sigma_{g,0}) |T(\Sigma_{g,0}, \{h^{\Sigma_{g,0}}_\ell\}_0^2)| \chi(M).\]
Here, χ is the Euler characteristic. Then equations (4.2.3) and (4.2.4) yield
\[
|\mathcal{T}(X, \{h_i^X\}_{0}^{2d+3})| = |\mathcal{T}(M, \{h_k^M\}_{0}^{2d})|^{\chi(\Sigma_g, 0)/2} |\mathcal{T}(\Sigma_g, 0, \{h_{\xi}^{\Sigma_g, 0}\}_{0}^{2})|^{\chi(M)/2} \\
\times |\mathcal{T}(\mathcal{H}, \{h_n\}_{0}^{8d+11})|^{1/2}.
\] (4.2.5)

Since $\{\Sigma_j^{g, 0}\}_{j=1}^{2g-2}$ is the pants-decomposition of $\Sigma_g, 0$ as in Theorem 1.0.2, there exists a basis $h_{\eta_0}^{\Sigma_j^{0, 3}}$ of $H_{\eta}(\Sigma_j^{0, 3}), j = 1, \ldots, 2g - 2, \eta = 0, 1$ so that
\[
|\mathcal{T}(\Sigma_g, 0, \{h_{\xi}^{\Sigma_g, 0}\}_{0}^{2})| = \prod_{j=1}^{2g-2} |\mathcal{T}(\Sigma_j^{0, 3}, \{h_{\eta}^{\Sigma_j^{0, 3}}\}_{0}^{1})|.
\] (4.2.6)

Equations (4.2.5) and (4.2.6) yield
\[
|\mathcal{T}(X, \{h_i^X\}_{0}^{2d+3})| = \prod_{j=1}^{2g-2} |\mathcal{T}(\Sigma_j^{0, 3}, \{h_{\eta}^{\Sigma_j^{0, 3}}\}_{0}^{1})|^{\chi(\Sigma_g, 0)/2} |\mathcal{T}(M, \{h_k^M\}_{0}^{2d})|^{\chi(M)/2} \\
\times |\mathcal{T}(\mathcal{H}, \{h_n\}_{0}^{8d+11})|^{1/2}.
\]

Acknowledgment

Theorem 1.0.2 and Section 4 were proven in the first author’s MSc thesis.

References

[1] Jeff Cheeger. Analytic torsion and reidemeister torsion. *Proceedings of the National Academy of Sciences*, 74(7):2651–2654, 1977.

[2] Wolfgang Franz. Über die Torsion einer Überdeckung. *J. Reine Angew. Math.*, 173:245–254, 1935.

[3] R. C. Kirby and L. C. Siebenmann. On the triangulation of manifolds and the Hauptvermutung. *Bull. Amer. Math. Soc.*, 75:742–749, 1969.

[4] John Willard Milnor. Whitehead torsion. *Bull. Amer. Math. Soc.*, 72:358–426, 1966.

[5] Cenap Ozel and Yasar Ozsöz. Reidemeister torsion of product manifolds and its applications to quantum entanglement. *Balkan Journal of Geometry and Its Applications*, 17(2):66–76, 2012.

[6] Kurt Reidemeister. Homotopieringe und Linsenräume. *Abh. Math. Sem. Univ. Hamburg*, 11(1):102–109, 1935.

[7] Yasar Özsoz. Reidemeister torsion of a symplectic complex. *Osaka J. Math.*, 45(1):1–39, 2008.

[8] Yasar Ozsöz. Symplectic chain complex and Reidemeister torsion of compact manifolds. *Math. Scand.*, 111(1):65–91, 2012.

[9] Vladimir Turaev. Torsions of 3-manifolds. In *Invariants of knots and 3-manifolds (Kyoto, 2001)*, volume 4 of *Geom. Topol. Monogr.*. pages 295–302. Geom. Topol. Publ., Coventry, 2002.

[10] Edward Witten. On quantum gauge theories in two dimensions. *Communications in Mathematical Physics*, 141(1):153 – 209, 1991.

(1) DEPARTMENT OF MATHEMATICS, İZMİR INSTITUTE OF TECHNOLOGY, 35430, İZMİR, TURKEY

Email address: esmadircan@iyte.edu.tr

(2) DEPARTMENT OF MATHEMATICS, HACETTEPE UNIVERSITY, 06800, ANKARA, TURKEY

Email address: ysozen@hacettepe.edu.tr