Novel BaTiO3-based, Ag/Pd compatible lead-free relaxors with superior energy storage performance

YANG, Hui-Jing, LU, Zhilun, LI, Linhao, BAO, Weichao, JI, Hongfen, LI, Jinglei, FETEIRA, Antonio <http://orcid.org/0000-0001-8151-7009>, XU, Fangfang, ZHANG, Yong, SUN, Huajun, HUANG, Zhichao, LOU, Weichao, SONG, Kaixin, SUN, Shikuan, WANG, Ge, WANG, Dawei and REANEY, Ian M

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/27278/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

YANG, Hui-Jing, LU, Zhilun, LI, Linhao, BAO, Weichao, JI, Hongfen, LI, Jinglei, FETEIRA, Antonio, XU, Fangfang, ZHANG, Yong, SUN, Huajun, HUANG, Zhichao, LOU, Weichao, SONG, Kaixin, SUN, Shikuan, WANG, Ge, WANG, Dawei and REANEY, Ian M (2020). Novel BaTiO3-based, Ag/Pd compatible lead-free relaxors with superior energy storage performance. ACS Applied Materials and Interfaces.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Supporting information

Novel BaTiO$_3$-based, Ag/Pd compatible lead-free relaxors
with superior energy storage performance

Huijing Yanga,b,*, Zhilun Lua, Linhao Lia, Weichao Baoc, Hongfen Jia,d, Jinglei Lie, Antonio Feteiraf, Fangfang Xug, Yong Zhangg, Huajun Sung, Zhichao Huangf,h, Weichao Louf,h, Kaixin Songg, Shikuan Sung, Ge Wanga,*, Dawei Wanga,*, Ian M. Reaneya

aDepartment of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
bDepartment of Physics, Tangshan Normal University, Tangshan, 063000, China
cState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China
dLaboratory of Thin Film Techniques and Optical Test, Xi’an Technological University, Xi’an, 710032, China
eElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an, 710049, China.
fMaterials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, UK
gState Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
hCollege of Electronics Information, Hangzhou Dianzi University, Hangzhou, 310018, China

*Corresponding authors. E-mail address: g.wang@sheffield.ac.uk, dawei.wang@sheffield.ac.uk

#Author Contributions: H. Y., Z. L., L. Li. and W. Bao contributed equally to this work.
Figure S-1. Full-pattern refinement of $x\text{B}_{2/3}\text{MN-BT}$ ceramics
Figure S-2. P-E loop for BT ceramics at 60 kV cm$^{-1}$
Figure S-3. (a-f) The frequency-dependent dielectric properties for \(xB_{23}MN-BT \) \((x=0.00\leq x \leq 0.10) \) ceramics.
Figure S-4. (a-f) The SEM image of thermal-etched surfaces for $xB_{2/3}M_N$-BT ($x=0.00 \leq x \leq 0.10$) ceramics.
Figure S-5. (a-d) Unipolar P-E loops under E_{max} and (e-h) calculated energy storage properties (W_{rec} and η) at different electric field for xB$_{23}$MN-BT ceramics.
Figure S-6. (a) Changes of E_{max} and ΔP for $xB_{23}M$N-BT ceramics. (b) Change of W_{rec} and η as function of x concentration.
Table S-1. Refined crystallography details for BT-xB$_{2/3}$MN ceramics.

Composition / x	0.00	0.02	0.04	0.06	
GOF	1.31	2.19	1.34	1.55	1.86
R_{exp}	9.03	16.25	6.75	7.79	8.02
R_{wp}	11.84	39.59	9.08	12.05	14.99
Space group	$P4mm$	$Pm3m$	$P4mm$	$Pm3m$	$Pm3m$
Cell mass	233.19	234.642	233.57	234.64	235.73
Cell volume	64.40(4)	64.49(4)	64.52(7)	64.69(4)	64.93(4)
Crystal density	6.013(4)	6.023(4)	6.018(8)	6.023(4)	6.029(9)
Lattice parameter a / Å	3.9946(12)	4.0144(8)	3.9901(13)	4.0144(8)	4.0192(8)
Lattice parameter c / Å	4.0358(12)	N/A	4.0211(8)	N/A	N/A
c/a ratio	1.0103	N/A	1.0083	N/A	N/A

Refined atoms position details

site	NP	x	y	z	Atom	Occ	Beq	
0.00	Ba	1	0.000	0.000	0.000	Ba+2	1.00	0.012
	Ti	1	0.500	0.500	0.5370	Ti+4	1.00	0.019
	O1	1	0.5000	0.5000	-0.3700	O-2	1.00	0.062
	O2	2	0.5000	0.0000	0.5180	O-2	1.00	0.042
0.02	Ba	1	0.000	0.000	0.000	Ba+2	0.980	0.025
	Ti	1	0.5000	0.5000	0.5370	Ti+4	0.980	0.033
	O1	1	0.5000	0.5000	-0.3700	O-2	1.00	0.051
	O2	2	0.5000	0.0000	0.5180	O-2	1.00	0.033
0.04	Ba	1	0.000	0.000	0.000	Ba+2	0.960	0.015
	Ti	1	0.5000	0.5000	0.5000	Ti+4	0.960	0.015
	O1	3	0.000	0.5000	0.5000	O-2	1.00	0.004
0.06	Ba	1	0.000	0.000	0.000	Ba+2	0.940	0.022
	Ti	1	0.5000	0.5000	0.5000	Ti+4	0.940	0.025
	O1	3	0.000	0.5000	0.5000	O-2	1.00	0.012
Table S-2. Average grain size for xB_{2/3}MN-BT ceramics

Composition	Average grain size / μm
x=0.00	25.2 ± 0.6
x=0.02	16.6 ± 0.5
x=0.04	7.2 ± 0.6
x=0.06	2.8 ± 0.3
x=0.08	2.4 ± 0.5
x=0.10	2.3 ± 0.4