ON HARMONIC WEAK MAASS FORMS OF HALF INTEGRAL WEIGHT

BUMKYU CHO AND YOUNGJU CHOIE

Abstract. Since Zweger [11] found a connection between mock theta functions and harmonic Maass forms this subject has been a vast research interest recently. Motivated by Zweger’s work harmonic Maass-Jacobi forms were introduced in [2], which include the classical Jacobi forms. We show the isomorphisms among the space $H_{k + \frac{1}{2}}^+(\Gamma_0(4m))$ of (scalar valued) harmonic weak Maass forms of half integral weight whose Fourier coefficients are supported on suitable progressions, the space $H_{k + \frac{1}{2}}, \rho_L$ of vector valued ones, and the space $\hat{J}_{k+1,m}$ of certain harmonic Maass-Jacobi forms of integral weight:

$H_{k + \frac{1}{2}}^+(\Gamma_0(4m)) \simeq H_{k + \frac{1}{2}}, \rho_L \simeq \hat{J}_{k+1,m}$

for k odd and $m = 1$ or a prime. This is an extension of the result developed by Eichler and Zagier [7], which showed the isomorphisms among the Kohnen plus space $M_{k + \frac{1}{2}}^+(\Gamma_0(4m))$ of (scalar valued) modular forms of half integral weight, the space $M_{k + \frac{1}{2}}, \rho_L$ of vector valued ones, and the space $J_{k+1,m}$ of Jacobi forms of integral weight:

$M_{k + \frac{1}{2}}^+(\Gamma_0(4m)) \simeq M_{k + \frac{1}{2}}, \rho_L \simeq J_{k+1,m}$.

1. Introduction and statement of a result

Let k be an integer, and m a positive integer. We denote by $M_{k + \frac{1}{2}}^+(\Gamma_0(4m))$ and $M_{k + \frac{1}{2}}^1(\Gamma_0(4m))$ the space of holomorphic and weakly holomorphic modular forms, respectively, of weight $k + \frac{1}{2}$ for $\Gamma_0(4m)$. Further we define a subspace $M_{k + \frac{1}{2}}^1(\Gamma_0(4m))$ of $M_{k + \frac{1}{2}}^+(\Gamma_0(4m))$ by

$M_{k + \frac{1}{2}}^1(\Gamma_0(4m)) := \{ f \in M_{k + \frac{1}{2}}^+(\Gamma_0(4m)) \mid c_f(n) = 0 \text{ unless } (-1)^k n \equiv \square \mod 4m \}$.

Let L' be the lattice $2m\mathbb{Z}$ equipped with the quadratic form $Q(x) = x^2/4m$. Then its dual L' equals \mathbb{Z}. Let ρ_L denote the Weil representation associated to the discriminant form $(L'/L, Q)$, and $\tilde{\rho}_L$ its dual representation. We denote by $M_{k + \frac{1}{2}, \rho_L}$ the space of $\mathbb{C}[L'/L]$-valued holomorphic modular forms of weight $k + \frac{1}{2}$ and type ρ_L. Then Eichler and Zagier

2000 Mathematics Subject Classification. Primary 11F11, 11F30; Secondary 11F37, 11F50.

The first author was partially supported by BK21 at POSTECH, the Tae-Joon Park POSTECH Postdoctoral Fellowship, and NRF 2010-0008426. The second author was partially supported by NRF 2009008-3919 and NRF-2010-0029683.
Theorems 5.1, 5.4, and 5.6] proved the following isomorphisms: for k odd and $m = 1$ or a prime,

$$M_{k+1}^+(\Gamma_0(4m)) \simeq M_{k+1,\rho_L} \simeq J_{k+1,m}.$$

Here $J_{k+1,m}$ is the space of Jacobi forms of weight $k + 1$ and index m on the full modular group $\Gamma(1)$.

Our result extends this isomorphism to the spaces of harmonic weak Maass forms (Theorem 1 and Theorem 2): if k is odd and $m = 1$ or a prime,

$$H_{k+1/2}^+(\Gamma_0(4m)) \simeq \hat{J}_{k+1,m}^{\text{cusp}}.$$

Here $H_{k+1/2}^+(\Gamma_0(4m))$, $H_{k+1/2,\rho_L}$, and $\hat{J}_{k+1,m}^{\text{cusp}}$ are the spaces consisting of corresponding harmonic ones (see Section 2).

In order to state our main results more precisely, we let k be an integer and fix $m = 1$ or a prime. We denote by $H_{k+1/2}^+(\Gamma_0(4m))$ the space of harmonic weak Maass forms of weight $k + 1/2$ for $\Gamma_0(4m)$ (see Section 2.1). Then it is known (see, for instance, [5]) that $f \in H_{k+1/2}^+(\Gamma_0(4m))$ has a unique decomposition $f = f^+ + f^-$, where

$$f^+(\tau) = \sum_{n \gg -\infty} c_+^f(n)q^n,$$

$$f^-(\tau) = \sum_{n < 0} c_-^f(n)\Gamma\left(\frac{1}{2} - k, 4\pi|n|y\right)q^n.$$

Here $\Gamma(a,y) = \int_y^\infty e^{-t}t^{a-1}dt$ denotes the incomplete Gamma function. We define a subspace $H_{k+1/2}^+(\Gamma_0(4m))$ of $H_{k+1/2}^+(\Gamma_0(4m))$ by

$$H_{k+1/2}^+(\Gamma_0(4m)) := \{f \in H_{k+1/2}^+(\Gamma_0(4m)) | c_+^f(n) = 0 \text{ unless } (-1)^k n \equiv \square \mod 4m\}.$$

Let $H_{k+1/2,\rho_L}$ denote the space of $\mathbb{C}[L'/L]$-valued harmonic weak Maass forms of weight $k + 1/2$ and type ρ_L (see Section 2.2). We denote the standard basis elements of the group algebra $\mathbb{C}[L'/L]$ by e_γ for $\gamma \in L'/L$. Suppose that the discriminant form $(L'/L, Q)$ is given by $(\mathbb{Z}/2m\mathbb{Z}, Q)$, where $Q(\gamma) = \gamma^2/4m$ for $\gamma \in \mathbb{Z}/2m\mathbb{Z}$ with the signature (b^+, b^-). Then the level of L equals $4m$, and $b^+ - b^- \equiv 1 \mod 8$. For example if we take

$$L = \{X = \begin{pmatrix} b-a/m & _ \\ c & -b \end{pmatrix} \in \text{Mat}_2(\mathbb{Q}) | a, b, c \in \mathbb{Z}\}$$

with $Q(X) = -m \det(X)$, then $(b^+, b^-) = (2, 1)$ and

$$L' = \{X = \begin{pmatrix} b/2m & -a/m \\ c & -b/2m \end{pmatrix} \in \text{Mat}_2(\mathbb{Q}) | a, b, c \in \mathbb{Z}\}.$$
For a given $f \in H_{k+\frac{1}{2}}^+(\Gamma_0(4m))$ we define a $\mathbb{C}[L'/L]$-valued function $F = \sum_{\gamma \in \mathbb{Z}/2m\mathbb{Z}} F_{\gamma} \epsilon_{\gamma}$ by

$$F_{\gamma}(\tau) := \frac{1}{s(\gamma)} \sum_{n \in \mathbb{Z}} (-1)^{k} c_f(n, y/4m) q^{n/4m}.$$

Here $c_f(n, y) := c_f^+(n) + c_f^-(n) \Gamma(\frac{1}{2} - k, 4\pi|n|y)$, and $s(\gamma) = 1$ if $\gamma \equiv 0, m \mod 2m$, and 2 otherwise.

Theorem 1. With the notation as above we have the following.

1. If k is even, then the map $f \mapsto F$ defines an isomorphism of $H_{k+\frac{1}{2}}^+(\Gamma_0(4m))$ onto $H_{k+1,\rho, L}$.
2. If k is odd, then the map $f \mapsto F$ defines an isomorphism of $H_{k+\frac{1}{2}}^+(\Gamma_0(4m))$ onto $H_{k+1,\bar{\rho}, L}$.

Remark 1. (1) For a given vector valued modular form $F = \sum_{\gamma} F_{\gamma} \epsilon_{\gamma}$ the map $F \mapsto f$ will be the inverse isomorphism where $f(\tau) := \sum_{\gamma} F_{\gamma}(4m\tau)$.

(2) If we restrict the domain on $M_{k+\frac{1}{2}}^+(\Gamma_0(4m))$, we get an isomorphism onto $M_{k+\frac{1}{2}, \rho, L}$ (k even), and so on.

(3) This kind of result for weakly holomorphic modular forms of integral weight is proved by Bruinier and Bundschuh [4]. Let p be an odd prime. We write $M_{k}^!(\Gamma_0(p), (\frac{\cdot}{p}))$ for the space of weakly holomorphic modular forms of weight k for $\Gamma_0(p)$ with Nebentypus $(\frac{\cdot}{p})$. For $\epsilon \in \{\pm 1\}$ we define the subspace

$$M_{k}^!(\Gamma_0(p), (\frac{\cdot}{p})) := \{ f \in M_{k}^!(\Gamma_0(p), (\frac{\cdot}{p})) | c_f(n) = 0 \text{ if } (\frac{n}{p}) = -\epsilon \}.$$

Let L be the lattice so that the discriminant group L'/L is isomorphic to $\mathbb{Z}/p\mathbb{Z}$. On L'/L the quadratic form is equivalent to $Q(x) = \alpha x^2/p$ for some $\alpha \in \mathbb{Z}/p\mathbb{Z} - \{0\}$. Put $\epsilon = (\frac{\alpha}{p})$. Then Bruinier and Bundschuh [4, Theorem 5] showed that $M_{k}^!(\Gamma_0(p), (\frac{\cdot}{p}))$ is isomorphic to $M_{k, \rho, L}$.

For integral weight case Bruinier and Bundschuh’s argument can be applied to the spaces of harmonic weak Maass forms (see [6, Theorem 1.2]). However, for half integral weight case, we need another argument because Eichler and Zagier’s argument depends on the dimension formulas for the spaces of holomorphic modular forms (see the proof of [7, Theorem 5.6]). It is essential that our proof of Theorem 1 relies on some nontrivial properties of the Weil representation.

Next we show that the spaces in Theorem 1 (2) are isomorphic to the space of harmonic Maass-Jacobi forms recently developed by Bringmann and Richter [2].
Let L be the lattice $2m\mathbb{Z}$ equipped with the positive definite quadratic form $Q(x) = x^2/4m$. Then the space $J_{k,m}$ of Jacobi forms of weight k and index m is isomorphic to the space $M_{k-1/2}^\rho(L')$ of $\mathbb{C}[L'/L]$-valued holomorphic modular forms of weight $k - \frac{1}{2}$ and type ρ_L (see [7, Theorem 5.1]). Recently, Bringmann and Richter [2] introduced harmonic Maass-Jacobi forms, which include the classical Jacobi forms. Let $\hat{J}_{k,m}^{\cusp}$ be the space of certain harmonic Maass-Jacobi forms

$$\phi(\tau, z) = \sum_{n,r \in \mathbb{Z}} c^+(n, r)q^n \zeta^r + \sum_{n,r \in \mathbb{Z}, D > 0} c^-(n, r)\Gamma\left(\frac{3}{2} - k, \frac{\pi D'y}{m}\right) q^n \zeta^r$$

of weight k and index m (see Section 2.3). Here, $D = r^2 - 4nm$, $q = e^{2\pi i \tau}$, $\zeta = e^{2\pi iz}$. By the transformation property of harmonic Maass-Jacobi forms [2, Definition 3], one can deduce that if $r' \equiv r \mod 2m$ and $D' = D$ with $D' := r'^2 - 4n'm$, then

$$c^\pm(n', r') = c^\pm(n, r), \quad \Gamma\left(\frac{3}{2} - k, \frac{\pi D'y}{m}\right) = \Gamma\left(\frac{3}{2} - k, \frac{\pi D'y}{m}\right).$$

Hence, we can decompose $\phi(\tau, z)$ by a linear combination of the theta functions as

$$\phi(\tau, z) = \sum_{\mu \in \mathbb{Z}/2m\mathbb{Z}} h_\mu(\tau)\theta_{m, \mu}(\tau, z),$$

where

$$h_\mu(\tau) := \sum_{N \gg -\infty}^\infty c^+\left(\frac{N + r^2}{4m}, r\right) q^{N/4m} + \sum_{N < 0} c^-\left(\frac{N + r^2}{4m}, r\right) \Gamma\left(\frac{3}{2} - k, -\frac{\pi N'y}{m}\right) q^{N/4m}$$

with any $r \in \mathbb{Z}$, $r \equiv \mu \mod 2m$, and

$$\theta_{m, \mu}(\tau, z) := \sum_{r \in \mathbb{Z}, r \equiv \mu \mod 2m} q^{r^2/4m} \zeta^r.$$

Using the same argument in [7, Theorem 5.1], the $2m$-tuples $(h_\mu)_{\mu \in (2m)}$ satisfies the desired transformation formula for vector valued harmonic weak Maass forms. Now the remaining thing is to check $\Delta_{k-\frac{1}{2}} h_\mu = 0$. By definition, $\phi(\tau, z)$ vanishes under the action of the Casimir element $C_{k,m}$ (see [2, p. 2305]), and the action of $C_{k,m}$ on functions in $\hat{J}_{k,m}^{\cusp}$ agrees with that of

$$C_{k,m} = -2\Delta_{k-\frac{1}{2}} + \frac{(\tau - \bar{\tau})^2}{4\pi im} \partial_{\tau \bar{\tau}}$$

(see [2, Proof of Lemma 1]). Using the fact that $\theta_{m, \mu}(\tau, z)$ is in the heat kernel, that is,

$$\left(\partial_\tau - \frac{1}{8\pi im} \partial_{zz}\right)(\theta_{m, \mu}) = 0,$$
one can conclude by a direct computation that
\[C^{k,m}(\phi) = 0 \implies \Delta_{k-\frac{1}{2}}(h_{\mu}) = 0 \]
for all \(\mu \in \mathbb{Z}/2m\mathbb{Z} \). In conclusion,
\[\hat{J}_{k,m}^{\text{cusp}} \simeq H_{k-\frac{1}{2},\bar{\rho}_L} \]
Hence, we get the following theorem:

Theorem 2. Let \(k \) be even, and \(m = 1 \) or a prime. Then
\[\hat{J}_{k,m}^{\text{cusp}} \simeq H_{k-\frac{1}{2}}(\Gamma_0(4m)). \]

Remark 2. (1) In the case of \(k \) odd, \(M_{k-\frac{1}{2}}^+(\Gamma_0(4m)) \) is isomorphic to the space of skew holomorphic Jacobi forms of weight \(k \) and index \(m \). So one can guess that there must be a similar isomorphism as above when \(k \) is odd. To do that, we need to introduce a new definition of Maass Jacobi forms which include skew holomorphic Jacobi forms. We hope this can be done by following and modifying the work of Bringmann and Richter [2].

(2) In the argument of the proof, the growth condition doesn’t matter. Namely, if we redefine \(H_{k-\frac{1}{2},\bar{\rho}_L} \) and \(H_{k-\frac{1}{2}}^+(\Gamma_0(4m)) \) so that they have at most linear exponential growth at cusps, then
\[\hat{J}_{k,m} \simeq H_{k-\frac{1}{2},\bar{\rho}_L} \simeq H_{k-\frac{1}{2}}^+(\Gamma_0(4m)) \]
for \(k \) even and \(m = 1 \) or a prime. Here, \(\hat{J}_{k,m} \) is the corresponding bigger space (see Section 2.3).

2. Preliminaries

2.1. **Scalar valued modular forms.** Let \(\tau = x + iy \in \mathbb{H} \), the complex upper half plane, with \(x, y \in \mathbb{R} \). Let \(k \in \frac{1}{2}\mathbb{Z} - \mathbb{Z} \), and \(m \) a positive integer. Put \(\varepsilon_d := (\frac{-1}{d})^{\frac{1}{4}} \).

Recall that **weakly holomorphic modular forms of weight \(k \) for \(\Gamma_0(4m) \)** are holomorphic functions \(f : \mathbb{H} \to \mathbb{C} \) which satisfy:

(i) For all \((\frac{a}{c} b \frac{c}{d}) \in \Gamma_0(4m) \) we have
\[f \left(\frac{a\tau + b}{c\tau + d} \right) = \left(\frac{c}{d} \right)^{-2k} (c\tau + d)^k f(\tau); \]

(ii) \(f \) has a Fourier expansion of the form
\[f(\tau) = \sum_{n \in \mathbb{Z}} c_f(n)q^n; \]

and analogous conditions are required at all cusps.
A smooth function $f : \mathbb{H} \to \mathbb{C}$ is called a harmonic weak Maass form of weight k for $\Gamma_0(4m)$ if it satisfies:

(i) For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4m)$ we have

$$f\left(\frac{a\tau + b}{c\tau + d}\right) = \left(\frac{c}{d}\right)^{-2k + 1} (c\tau + d)^k f(\tau);$$

(ii) $\Delta_k f = 0$, where Δ_k is the weight k hyperbolic Laplace operator defined by

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y} \right);$$

(iii) There is a Fourier polynomial $P_f(\tau) = \sum_{-\infty < n < 0} c_f^+(n) e^{\pi i \tau n^2} q^n \in \mathbb{C}[q^{-1}]$ such that $f(\tau) = P_f(\tau) + O(e^{-\varepsilon y})$ as $y \to \infty$ for some $\varepsilon > 0$. Analogous conditions are required at all cusps.

We denote the space of these harmonic weak Maass forms by $H_k(\Gamma_0(4m))$. This space can be denoted by $H^+_k(\Gamma_0(4m))$ in the context of [5], which is the inverse image of $S_{2-k}(\Gamma_0(4m))$ under the certain differential operator ξ_k. We have $M_k^+(\Gamma_0(4m)) \subset H_k(\Gamma_0(4m))$. The polynomial $P_f \in \mathbb{C}[q^{-1}]$ is called the principal part of f at the corresponding cusps.

2.2. Vector valued modular forms.

We write $M_p^+(\mathbb{R})$ for the metaplectic two-fold cover of $\text{SL}_2(\mathbb{R})$. The elements are pairs (M, ϕ), where $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R})$ and $\phi : \mathbb{H} \to \mathbb{C}$ is a holomorphic function with $\phi(\tau)^2 = c\tau + d$. The multiplication is defined by

$$(M, \phi(\tau))(M', \phi'(\tau)) = (MM', \phi(M'\tau)\phi'(\tau)).$$

For $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R})$ we use the notation $\tilde{M} := ((a b \cdot c d), \sqrt{cd}) \in M_p^+(\mathbb{R})$. We denote by $M_p(\mathbb{Z})$ the integral metaplectic group, that is the inverse image of $\text{SL}_2(\mathbb{Z})$ under the covering map $M_p^+(\mathbb{R}) \to \text{SL}_2(\mathbb{R})$. It is well known that $M_p(\mathbb{Z})$ is generated by $T := ((1 1 \cdot 0 1), 1)$ and $S := ((0 -1 \cdot 1 0), \sqrt{-1})$.

Let (V, Q) be a non-degenerate rational quadratic space of signature (b^+, b^-). Let $L \subset V$ be an even lattice with dual L'. We denote the standard basis elements of the group algebra $\mathbb{C}[L'/L]$ by \mathbf{c}_γ for $\gamma \in L'/L$, and write $\langle \cdot, \cdot \rangle$ for the standard scalar product, anti-linear in the second entry, such that $\langle \mathbf{c}_\gamma, \mathbf{c}_{\gamma'} \rangle = \delta_{\gamma, \gamma'}$. There is a unitary representation ρ_L of $M_p(\mathbb{Z})$ on $\mathbb{C}[L'/L]$, the so-called Weil representation, which is defined by

$$\rho_L(T)(\mathbf{c}_\gamma)^{} := e(Q(\gamma))\mathbf{c}_\gamma,$$

$$\rho_L(S)(\mathbf{c}_\gamma)^{} := e((b^- - b^+)/8 \sqrt{|L'/L|}) \sum_{\delta \in L'/L} e(- (\gamma, \delta))\mathbf{c}_\delta,$$
where $e(z) := e^{2\pi iz}$ and $(X, Y) := Q(X + Y) - Q(X) - Q(Y)$ is the associated bilinear form. We denote by $\overline{\rho}_L$ the dual representation of ρ_L.

Let $k \in \frac{1}{2}\mathbb{Z}$. A holomorphic function $f : \mathbb{H} \to \mathbb{C}[L'/L]$ is called a weakly holomorphic modular form of weight k and type ρ_L for the group $\text{Mp}_2(\mathbb{Z})$ if it satisfies:

(i) $f(M\tau) = \phi(\tau)^{2k} \rho_L(M,\phi)f(\tau)$ for all $(M,\phi) \in \text{Mp}_2(\mathbb{Z})$;

(ii) f is meromorphic at the cusp ∞.

Here condition (ii) means that f has a Fourier expansion of the form

$$f(\tau) = \sum_{\gamma \in L'/L} \sum_{n \in \mathbb{Z}+Q(\gamma)} c_f(\gamma,n)e(n\tau)e_\gamma.$$

The space of these $\mathbb{C}[L'/L]$-valued weakly holomorphic modular forms is denoted by $M^!_{k,\rho_L}$.

Similarly we can define the space $M^!_{k,\overline{\rho}_L}$ of $\mathbb{C}[L'/L]$-valued weakly holomorphic modular forms of type $\overline{\rho}_L$.

A smooth function $f : \mathbb{H} \to \mathbb{C}[L'/L]$ is called a harmonic weak Maass form of weight k and type ρ_L for the group $\text{Mp}_2(\mathbb{Z})$ if it satisfies:

(i) $f(M\tau) = \phi(\tau)^{2k} \rho_L(M,\phi)f(\tau)$ for all $(M,\phi) \in \text{Mp}_2(\mathbb{Z})$;

(ii) $\Delta_k f = 0$;

(iii) There is a Fourier polynomial $P_f(\tau) = \sum_{\gamma \in L'/L} \sum_{n \in \mathbb{Z}+Q(\gamma)} c_f^+(\gamma,n)e(n\tau)e_\gamma$ such that

$$f(\tau) = P_f(\tau) + O(e^{-\varepsilon y})$$ as $y \to \infty$ for some $\varepsilon > 0$.

We denote by H_{k,ρ_L} the space of these $\mathbb{C}[L'/L]$-valued harmonic weak Maass forms. This space is denoted by $H^!_{k,L}$ in [5], which is the inverse image of $S_{2-k,L}$ under ξ_k. We have $M^!_{k,\rho_L} \subset H_{k,\rho_L}$. Similarly we define the space $H_{k,\overline{\rho}_L}$. In particular $f \in H_{k,\rho_L}$ has a unique decomposition $f = f^+ + f^-$, where

$$f^+(\tau) = \sum_{\gamma \in L'/L} \sum_{n \in \mathbb{Z}+Q(\gamma)} c^+_f(\gamma,n)e(n\tau)e_\gamma,$$

$$f^-(\tau) = \sum_{\gamma \in L'/L} \sum_{n < 0} c^-_f(\gamma,n)\Gamma(1-k,4\pi|n|y)e(n\tau)e_\gamma.$$

2.3. Harmonic Maass-Jacobi forms. The most part of this session we follow the notation given in [2].

Definition 3. A function $\phi : \mathbb{H} \times \mathbb{C} \to \mathbb{C}$ is a harmonic Maass-Jacobi form of weight k and index m if ϕ is real-analytic in $\tau \in \mathbb{H}$ and $z \in \mathbb{C}$, and satisfies the following conditions:
(1) For all \(A = [(a b),(c d)], (\lambda, \mu) \in \text{SL}_2(\mathbb{Z}) \rtimes \mathbb{Z}^2 \)
\[
\phi \left(\frac{a \tau + b}{c \tau + d}, \frac{z + \lambda \tau + \mu}{c \tau + d} \right) (c \tau + d)^{-k} e^{2\pi im(-\frac{c(z+\lambda \tau+\mu)}{c \tau + d}+\lambda^2 \tau + 2\lambda z)} = \phi(\tau, z).
\]

(2) \(C_{k,m}(\phi) = 0 \), where \(C_{k,m} \) is the Casimir element of the real Jacobi group (see p. 2305 in [2]).

(3) \(\phi(\tau, z) = O(e^{ay}e^{2\pi mv^2/y}) \) as \(y \to \infty \) for some \(a > 0 \).

Let \(\mathfrak{j}_{k,m} \) be the space of harmonic Maass-Jacobi forms of weight \(k \) and index \(m \), which are holomorphic in \(z \). In fact, we are interested in the subspace \(\mathfrak{j}_{k,m}^{\text{cusp}} \) consisting of the elements \(\phi \in \mathfrak{j}_{k,m} \) whose Fourier expansion is of the form

\[
\phi(\tau, z) = \sum_{n, r \in \mathbb{Z}} c^+(n, r) q^n \zeta^r + \sum_{n, r \in \mathbb{Z}} c^-(n, r) \Gamma \left(\frac{3}{2} - k, \frac{\pi D y}{m} \right) q^n \zeta^r.
\]

The space \(\mathfrak{j}_{k,m}^{\text{cusp}} \) is in fact the inverse image of \(J_{3-k,m}^{\text{sk,cusp}} \) under the certain differential operator \(\xi_{k,m} \) (see [2, Remarks (1) on p. 2307]).

3. Proof of Theorem

We will only give a proof of (1) because exactly the same argument can be applied. We first prove that for a given \(f \in H_{k+\frac{1}{2}}^{\omega}(\Gamma_0(4m)) \) the \(\mathbb{C}[L'/L] \)-valued function \(F \) as defined in Section 1 belongs to \(H_{k+\frac{1}{2},\rho_L} \). One has that \(f(\tau) = \sum_{\gamma \in L'/L} F_\gamma(4m \tau) \) by inspecting the Fourier expansion of \(f \). Since it is straightforward to check \(F(\tau + 1) = \rho_L(T) F(\tau) \), we show that

\[
F \left(\frac{1}{\tau} \right) = \tau^{k+\frac{1}{2}} \rho_L(S) F(\tau).
\]

In [8] Kim proved (3.1) for \(m \in \mathfrak{S} \), where

\[
\mathfrak{S} = \{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 \}.
\]

We will prove (3.1) for \(m = 1 \) or a prime by following his argument. For details we refer to [8, pp. 735-737]. For \(j \) prime to \(4m \) put

\[
f_j := f \big|_{k+\frac{1}{2}}^{\omega} \left(\left(\begin{array}{cc} 1 & j \\ 0 & 4m \end{array} \right), (4m)^{1/4} \right) \big|_{k+\frac{1}{2}}^{\omega} W_{4m},
\]

where

\[
W_{4m} := \left(\left(\begin{array}{cc} 0 & -1 \\ 4m & 0 \end{array} \right), (4m)^{1/4} \sqrt{-i\tau} \right).
\]
We choose \(b, d \in \mathbb{Z} \) so that \(jd - 4mb = 1 \). Then one finds that

\[
((\begin{smallmatrix} 1 & j \\ 0 & 4m \end{smallmatrix}), (4m)^{1/4}) W_{4m} = ((\begin{smallmatrix} 4mj & -1 \\ 16m^2 & 0 \end{smallmatrix}), 2\sqrt{-mi\tau})
= (M, J(M, \tau))(\begin{smallmatrix} 4m & -d \\ 0 & 4m \end{smallmatrix}, \psi_j),
\]

where

\[
\psi_j := \left(\frac{4m}{j}\right) \sqrt{\left(\frac{-1}{j}\right)} e(-1/8)
\]

and \(M = (\begin{smallmatrix} j & b \\ 4m & d \end{smallmatrix}) \) and \(J(M, \tau) \) denotes the automorphy factor for the theta function \(\sum_{n \in \mathbb{Z}} q^{n^2} \), that is,

\[
J(M, \tau) := \left(\frac{c}{d}\right) \varepsilon^{-1} \left(\frac{c\tau + d}{4m}\right)^{1/2}, \quad M = (a \ b) \in \Gamma_0(4m).
\]

Here \((\cdot) \) is the usual Jacobi symbol.

This implies that

\[
f_j = f|_{k+\frac{1}{2}}((\begin{smallmatrix} 1 & j \\ 0 & 4m \end{smallmatrix}), (4m)^{1/4}) W_{4m}
= \psi_j^{-2k-1} f\left(\tau - \frac{j-1}{4m}\right)
= \psi_j^{-2k-1} \sum_{\gamma(2m)} e\left(-\frac{j^{-1}\gamma^2}{4m}\right) F_{\gamma}(4m\tau),
\]

where \(j^{-1} \) denotes an integer which is the inverse of \(j \) in \((\mathbb{Z}/4m\mathbb{Z})^\times\). On the other hand we have by definition that

\[
f_j = (4m)^{(-2k-1)/4} \left(\sum_{\gamma(2m)} e\left(\frac{j\gamma^2}{4m}\right) F_{\gamma}\right)|_{k+\frac{1}{2}} W_{4m}
= (4m)^{(-2k-1)/2} \sqrt{-1}\tau^{-2k-1} \sum_{\gamma(2m)} e\left(\frac{j\gamma^2}{4m}\right) F_{\gamma}\left(-\frac{1}{4m\tau}\right).
\]

Replacing \(\tau \) by \(\tau/4m \) in (3.2) and (3.3) one has the following identity:

\[
\sum_{\gamma(2m)} e\left(\frac{j\gamma^2}{4m}\right) F_{\gamma}\left(-\frac{1}{\tau}\right) = \left(\frac{4m}{j}\right) \sqrt{\left(\frac{-1}{j}\right)} \tau^{k+\frac{1}{2}} \sum_{\gamma(2m)} e\left(-\frac{j^{-1}\gamma^2}{4m}\right) F_{\gamma}(\tau).
\]

Let \(R \) be a \(2m \times 2m \) matrix defined by

\[
R := \frac{e(-1/8)}{\sqrt{2m}} \left(e\left(-\frac{l\gamma}{2m}\right) \right)_{l(2m), \gamma(2m)}.
\]
In order to show $F \in H_{k+\frac{1}{2}\varphi_2}$ we first need to prove (3.1), i.e.

$$
\begin{pmatrix}
\vdots \\
F_{\gamma} \\
\vdots
\end{pmatrix} (-1/\tau) = \tau^{k+\frac{1}{2}} R
\begin{pmatrix}
\vdots \\
F_{\gamma} \\
\vdots
\end{pmatrix} (\tau).
$$

Since $F_\gamma = F_{-\gamma}$ the above identity is equivalent to

$$
B \begin{pmatrix}
\vdots \\
F_{\gamma} \\
\vdots
\end{pmatrix} (-1/\tau) = \tau^{k+\frac{1}{2}} BR \begin{pmatrix}
\vdots \\
F_{\gamma} \\
\vdots
\end{pmatrix} (\tau)
$$

for some matrix B with $2m$ columns of which the first $m + 1$ ones are linearly independent. For instance, in [8] B was chosen as

$$
A := \left(e\left(\frac{j_\ell \gamma^2}{4m} \right) \right)_{\ell \in \{\varphi(4m)\}, \gamma(2m)}
$$

and checked that its rank is $m + 1$ if $m \in \mathcal{G} - \{2\}$. Here j_ℓ is the ℓth largest element in \{\(j \mid 1 \leq j \leq 4m, (j, 4m) = 1\}\}.

In this paper we take B as CA where

$$
C := \left(e\left(-\frac{j_\ell \beta^2}{4m} \right) \right)_{\beta \in \{\varphi(4m)\}}.
$$

Lemma 4. The rank of $B := CA$ is $2\varphi(m)$, and the first $2\varphi(m)$ columns of B are linearly independent.

Proof. The $\beta\gamma$-th entry $b_{\beta\gamma}$ of the $2m \times 2m$ matrix B is given by

$$
b_{\beta\gamma} = \sum_{\ell \in \{\varphi(4m)\}} e\left(\frac{j_\ell (\gamma^2 - \beta^2)}{4m} \right)
= \begin{cases}
2\varphi(m) & \text{if } \beta = \gamma \\
-2 & \text{if } \beta \neq \gamma \text{ and } \beta \equiv \gamma \mod 2 \\
0 & \text{otherwise}.
\end{cases}
$$

From this one can easily infer that B has rank $2\varphi(m)$, and its first $2\varphi(m)$ columns are linearly independent. \square

Since

$$
AR = \left(\left(\frac{4m}{j_\ell} \right)^{-1} \frac{-1}{j_\ell} \right) e\left(-\frac{j_\ell^{-1}\gamma^2}{4m} \right)_{\ell \in \{\varphi(4m)\}, \gamma(2m)}
$$
from the Gauss sum formula (see [8, p. 736]), the identity (3.4) is equivalent to

\[
A \begin{pmatrix}
\vdots \\
F_{\gamma} \\
\vdots
\end{pmatrix} (-1/\tau) = \tau^{k+\frac{1}{2}} AR \begin{pmatrix}
\vdots \\
F_{\gamma} \\
\vdots
\end{pmatrix} (\tau).
\]

This implies that the identity

\[
B \begin{pmatrix}
\vdots \\
F_{\gamma} \\
\vdots
\end{pmatrix} (-1/\tau) = \tau^{k+\frac{1}{2}} BR \begin{pmatrix}
\vdots \\
F_{\gamma} \\
\vdots
\end{pmatrix} (\tau)
\]

holds true. Combining with Lemma 4, \(F \) satisfies the transformation property (3.1) for \(m \neq 2 \). From (3.2), (3.4), and Lemma 4 we can infer that each \(F_{\gamma} \) can be written as a linear combination of \(f_{j} := f|_{k+\frac{1}{2}}((1 \; j \; 0 \; 4m), (4m)^{1/4})|_{k+\frac{1}{2}} W_{4m} \) for all \((j, 4m) = 1\).

Since \(\Delta_{k+\frac{1}{2}} \) commutes with the Petersson slash operator (see [9]), each \(\Delta_{k+\frac{1}{2}} F_{\gamma} \) vanishes, i.e. \(F \in H_{k+\frac{1}{2}, \rho_{L}} \) for \(m \neq 2 \). The same procedure as given in [8, Remark 3.2] can be applied to the case when \(m = 2 \), so we omit the detailed proof.

Now we consider the converse. For a given \(F = \sum_{(2m)} F_{\gamma} e_{\gamma} \in H_{k+\frac{1}{2}, \rho_{L}} \) we define

\[
f(\tau) := \sum_{\gamma(2m)} F_{\gamma}(4m\tau).
\]

It is straightforward to verify that \(f \) satisfies the condition \(c_{\pm}(n) = 0 \) unless \((-1)^{k}n \equiv \square \mod 4m \) by inspecting the Fourier expansion of \(F \). Also \(\Delta_{k+\frac{1}{2}} f = 0 \) by (3.5). Thus it suffices to show that

\[
f \left(\frac{a\tau + b}{c\tau + d} \right) = \left(\frac{c}{d} \right) \sqrt{\left(\frac{-1}{d} \right)} (c\tau + d)^{k+\frac{1}{2}} f(\tau)
\]

for all \((a \; c \; b \; d) \in \Gamma_{0}(4m)\). We may assume that \(d > 0 \) by multiplying \((-1 \; 0 \; -1)\) if necessary.

Remark 3. In what follows, our results hold for arbitrary \(m > 0 \). In fact one may apply our argument even for somewhat general discriminant forms \((L'/L, Q)\).

Lemma 5. For any \(n \in \mathbb{Z} \) one has

\[
\rho_{L} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \sum_{\gamma \in \mathcal{L}/L} c_{\gamma} = \sum_{\gamma \in L'/L} c_{\gamma}.
\]
Proof. Since \(\left(\frac{1}{n} \right) = \left(\frac{1}{1} \right)^n \) it suffices to prove that

\[
\rho_L \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \sum_{\gamma \in L'/L} e_{\gamma} = \sum_{\gamma \in L'/L} e_{\gamma}.
\]

For \(M \in \text{SL}_2(\mathbb{Z}) \) we define the coefficients \(\rho_{\beta\gamma}(\tilde{M}) \) of the representation \(\rho_L \) by

\[
\rho_{\beta\gamma}(\tilde{M}) = \langle \rho_L(\tilde{M}) e_{\gamma}, e_{\beta} \rangle.
\]

From Shintani’s result [3, Proposition 1.1] for \(\rho_{\beta\gamma}(\tilde{M}) \) one has

\[
\sum_{\gamma \in L'/L} \rho_{\beta\gamma} \left(\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right) e_{\gamma} = \sum_{\gamma \in L'/L} e_{\gamma}.
\]

The last equality is from Milgram’s formula (see [1]), that is,

\[
\sum_{\gamma \in L'/L} e(Q(\gamma)) = \sqrt{|L'/L|} e((b^+ - b^-)/8).
\]

First notice that

\[
f(\tau) = \langle F(4m\tau), \sum_{\gamma \in L'/L} e_{\gamma} \rangle.
\]

Since \(\left(\begin{smallmatrix} 4m & 0 \\ 0 & 1 \end{smallmatrix} \right) \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) = \left(\begin{smallmatrix} a/4m & 4mb \\ c/4m & d \end{smallmatrix} \right) \left(\begin{smallmatrix} 4m & 0 \\ 0 & 1 \end{smallmatrix} \right) \) we get for \(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(4m) \) that

\[
f \left(\frac{a\tau + b}{c\tau + d} \right) = \langle F\left((\frac{a}{4m}) \left(\begin{smallmatrix} 4m & 0 \\ 0 & 1 \end{smallmatrix} \right)\right), \sum_{\gamma \in L'/L} e_{\gamma} \rangle
\]

\[
= \langle (c\tau + d)^k F(4m\tau), \rho_L\left(\begin{smallmatrix} a/4m \\ c/4m \end{smallmatrix} \right)^{-1} \sum_{\gamma \in L'/L} e_{\gamma} \rangle.
\]

Observe that \(\Gamma^0(4m) = (\Gamma_0(4m) \cap \Gamma^0(4m), \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right)) \). More precisely one has

\[
\left(\begin{smallmatrix} a & 4mb \\ c/4m & d \end{smallmatrix} \right) = \left(\begin{smallmatrix} a(1-bc) & 4mb \\ ac/4m & d \end{smallmatrix} \right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right).
\]

We first consider the case \(a > 0 \). The consistency condition implies that

\[
\left(\begin{smallmatrix} a & 4mb \\ c/4m & d \end{smallmatrix} \right) = \left(\begin{smallmatrix} a(1-bc) & 4mb \\ ac/4m & d \end{smallmatrix} \right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right).
\]
Since $\rho_L\left(\frac{1}{ac/4m} \ 0 \ 1\right) \sum_{\gamma \in L'/L} \mathbf{e}_\gamma = \sum_{\gamma \in L'/L} \mathbf{e}_\gamma$ by Lemma 5, one finds from Borcherds’ result [1, Theorem 5.4] that

$$\rho_L\left(\frac{a}{c/4m} \ 4mb \ d\right) \sum_{\gamma \in L'/L} \mathbf{e}_\gamma = \rho_L\left(\frac{a(1-bc)}{-4mb(c/4m)^2} \frac{4mb}{d}\right) \sum_{\gamma \in L'/L} \mathbf{e}_\gamma$$

$$= \left(\left(\frac{-4mb}{d}\right) \sqrt{\frac{-1}{d}}\right)^1 \left(\frac{b^+-b^-+(\frac{ac}{d})}{4}\right) \sum_{\gamma \in L'/L} \mathbf{e}_\gamma$$

$$= \left(\frac{c}{d}\right) \sqrt{\frac{-1}{d}} \left(\frac{m}{d}\right) \sum_{\gamma \in L'/L} \mathbf{e}_\gamma.$$

Because $\sqrt{\left(\frac{-1}{d}\right)^{1-\left(\frac{ac}{d}\right)} \left(\frac{m}{d}\right)} = 1$ we get the following identity:

$$\rho_L\left(\frac{a}{c/4m} \ 4mb \ d\right) \sum_{\gamma \in L'/L} \mathbf{e}_\gamma = \left(\frac{c}{d}\right) \sqrt{\frac{-1}{d}} \sum_{\gamma \in L'/L} \mathbf{e}_\gamma. \tag{3.7}$$

We claim that (3.7) holds true for the case $a < 0$. If $c = 0$, then $a = d = -1$ and thereby it is straightforward to verify (3.7). So we assume that $c \neq 0$. If we choose $x \in \mathbb{Z}$ so that $a + xc > 0$, then from the elementary identity

$$\left(\frac{1}{0} \ \frac{4mx}{4m}\right) \left(\frac{a}{c/4m} \ 4mb \ d\right) = \left(\frac{a+xc}{c/4m} \ 4m(b+xd) \ d\right)$$

one can see that (3.7) holds true even for $a < 0$. Now if we insert (3.7) into (3.6), we obtain

$$f\left(\frac{a\tau + b}{c\tau + d}\right) = \left(\frac{c}{d}\right) \sqrt{\frac{-1}{d}} \left(\frac{c\tau + d}{c\tau + d}\right)^{k+\frac{1}{2}} \left(\sum_{\gamma \in L'/L} F(4m\tau), \mathbf{e}_\gamma\right)$$

$$= \left(\frac{c}{d}\right) \sqrt{\frac{-1}{d}} \left(\frac{c\tau + d}{c\tau + d}\right)^{k+\frac{1}{2}} f(\tau).$$

This completes the proof of Theorem 1.

REFERENCES

1. R. E. Borcherds, Reflection groups of Lorentzian lattices, Duke Math. J., 104 (2000), 319-366.
2. K. Bringmann and O. K. Richter, Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms, Adv. Math., 225 (2010), 2298-2315.
3. J. H. Bruinier, Borcherds products on $O(2, l)$ and Chern classes of Heegner divisors, Lecture Notes in Mathematics 1780, Springer-Verlag, 2002.
4. J. H. Bruinier and M. Bundschuh, On Borcherds products associated with lattices of prime discriminant, Ramanujan J., 7 (2003), 49-61.
5. J. H. Bruinier and J. Funke, *On two geometric theta lifts*, Duke Math. J., 125 (2004), 45-90.
6. B. Cho and Y. Choie, *Zagier duality for harmonic weak Maass forms of integral weight*, Proc. Amer. Math. Soc., 139 (2011), 787-797.
7. M. Eichler and D. Zagier, *The theory of Jacobi forms*, Progress in Mathematics 55, Birkhäuser, 1985.
8. C. H. Kim, *Traces of singular values and Borcherds products*, Bull. Lond. Math. Soc., 38 (2006), 730-740.
9. H. Maass, *Lectures on modular functions of one complex variable*, Tata Institute of Fundamental Research Lectures on Mathematics and Physics 29, Bombay, 1983.
10. D. Zagier, *Traces of singular moduli*, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), International Press Lecture Series 3 (International Press, Somerville, MA, 2002), 211-244.
11. S. Zwegers, Mock theta functions, PH.D thesis, Universiteit Utrecht, The Netherlands, 2002.

Department of Mathematics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang-si, Gyeongsangbuk-do 790-784, Republic of Korea

E-mail address: bam@math.kaist.ac.kr

Department of Mathematics, Pohang Mathematics Institute(PMI), POSTECH, Pohang, Korea

E-mail address: yjc@postech.ac.kr