Ratio of shear viscosity to entropy density in multifragmentation of Au + Au

C. L. Zhou1,2, Y. G. Ma(a), D. Q. Fang1, S. X. Li1,2 and G. Q. Zhang1

1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences - Shanghai 201800, China
2 Graduate School of the Chinese Academy of Sciences - Beijing 100080, China

received 22 March 2012; accepted 25 May 2012
published online 27 June 2012

PACS 66.20.-d – Viscosity of liquids; diffusive momentum transport
PACS 25.70.-z – Low and intermediate energy heavy-ion reactions

Abstract – The ratio of the shear viscosity (\(\eta\)) to entropy density (\(s\)) for the intermediate energy heavy-ion collisions has been calculated by using the Green-Kubo method in the framework of the quantum molecular dynamics model. The theoretical curve of \(\eta/s\) as a function of the incident energy for the head-on Au + Au collisions displays that a minimum region of \(\eta/s\) has been approached at higher incident energies, where the minimum \(\eta/s\) value is about 7 times Kovtun-Son-Starinets (KSS) bound (1/4\(\pi\)). We argue that the onset of minimum \(\eta/s\) region at higher incident energies corresponds to the nuclear liquid gas phase transition in nuclear multifragmentation.

Introduction. – Intermediate energy heavy-ion collisions have been extensively studied experimentally and theoretically for obtaining information about the properties of nuclear matter under a wide range of densities and temperatures. One of the most important aspects of studying nucleus-nucleus collisions at these conditions focuses on multifragmentation and liquid gas phase transition (LGPT) around a hundred MeV/nucleon \([1–11]\). On the other hand, the ratio of shear viscosity to entropy density \((\eta/s)\) has been claimed to reach its local minimum at the phase transition temperature for a wide class of systems. Empirical observation of the temperature or incident energy dependence of the shear viscosity to entropy density ratio for H\(_2\)O, He and Ne\(_2\) exhibits a minimum in the vicinity of the critical point for phase transition \([12]\). And a lower bound of \(\eta/s > 1/4\pi\), obtained by Kovtun-Son-Starinets (KSS) for infinitely coupled super-symmetric Yang-Mills gauge theory based on the AdS/CFT duality conjecture, is speculated to be universally valid \([13,14]\). In ultra-relativistic heavy-ion collisions \([15–20]\), the ratio of shear viscosity to entropy density was used for studying the quark-gluon plasma phase and a minimum value of \(\eta/s\) close to the lower bounder was claimed. In contrast, the study on \(\eta/s\) was very limited in intermediate energy heavy-ion collision. Therefore, it is very interesting to investigate shear viscosity or \(\eta/s\) in the intermediate energy domain \([21–25]\). In our recent paper \([26]\), the relation between \(\eta/s\) and incident energy or temperature is studied in the framework of one-body mean-field theory, namely Boltzmann-Uehling-Uhlenbeck (BUU) model, a gradual decreasing behavior of \(\eta/s\) was observed in lower energy but tends to be saturated around a hundred MeV/nucleon. However, no minimum was found, which may be due to the absence of the dynamical fluctuation and cluster formation in the BUU model. In contrast, some other signals of multifragmentation indicate a turning point around a certain beam energy or temperature in experimental data as well as in some models, such as the quantum molecular dynamics (QMD) model. In this context, it will be very interesting to investigate the \(\eta/s\) in the QMD model.

In this work we use a microscopic transport model known as the isospin-dependent quantum dynamic (IQMD) model \([27]\), to simulate Au + Au central collisions. The thermodynamic and transport properties are extracted from the nuclear matter located in the central sphere, with radius \(R = 3.5\) fm. The generalized hot Thomas-Fermi formula (GHTFF) \([28–30]\) is employed to extract the thermodynamic properties, \textit{e.g.}, temperature and entropy density. The shear viscosity is calculated by using the Green-Kubo relation. Furthermore the multiplicity of intermediate mass fragments (IMFs) is also studied as a signal of liquid gas phase transition \([31]\) to verify the Green-Kubo’s result.

The paper is organized as follows. The second section provides a brief introduction of the QMD model. In the

(a)E-mail: ygma@sinap.ac.cn
third section we present calculation and discussion. The conclusion and outlook is given in the last section.

QMD model. – The quantum molecular dynamics model approach is a many-body theory that describes heavy-ion collisions from intermediate to relativistic energy [32]. The isospin-dependent quantum molecular dynamics model [33,34] is based on the QMD model, including the isospin degrees and Pauli blocking etc. Each nucleon in the colliding system is described as a Gaussian wave packet

\[
\phi_i(r, t) = \frac{1}{(2\pi L)^{3/4}} \exp \left[-\frac{(r - r_i(t))^2}{4L} \right] \exp \left[-\frac{i \mathbf{r} \cdot \mathbf{p}_i(t)}{\hbar} \right].
\]

Here \(r_i(t) \) and \(\mathbf{p}_i(t) \) are the mean position and mean momentum, respectively, and the Gaussian width has the fixed value \(L = 2.16 \text{ fm}^2 \) for Au + Au system. The centers of these Gaussian wave packets propagate in coordinate \((\mathbf{R})\) and momentum \((\mathbf{P})\) space according to the classical equations of motion:

\[
\dot{\mathbf{p}}_i = -\frac{\partial U}{\partial r_i}; \quad \dot{r}_i = \frac{\partial U}{\partial \mathbf{p}_i},
\]

where \((U)\) is the Hamiltonian of the system.

The Wigner distribution function for a single nucleon density in phase space is given by

\[
f_i(r, p, t) = \frac{1}{(2\pi \hbar)^3} e^{-i(r-r_i(t))^2/\hbar^2} e^{-(p-p_i(t))^2/2\hbar^2}.
\]

The mean field in the IQMD model is

\[
U(\rho) = U_{\text{Skyr}} + U_{\text{Coul}} + U_{\text{Yuk}} + U_{\text{sym}},
\]

where \(U_{\text{Skyr}}, U_{\text{Coul}}, U_{\text{Yuk}}, \) and \(U_{\text{sym}} \) represent the Skyrme potential, the Coulomb potential, the Yukawa potential and the symmetry potential interaction, respectively [32]. The Skyrme potential is

\[
U_{\text{Skyr}} = \alpha(\rho/\rho_0) + \beta(\rho/\rho_0)^\gamma,
\]

where \(\rho_0 = 0.16 \text{ fm}^{-3} \) and \(\rho \) is the nuclear density. In the present work, the parameter set with \(\alpha = -356 \text{ MeV}, \beta = 303 \text{ MeV}, \) and \(\gamma = 7/6 \), is used, which corresponds to a soft equation of state. \(U_{\text{Yuk}} \) is a long-range interaction (surface) potential, and takes the following form:

\[
U_{\text{Yuk}} = (V_g/2) \sum_{i \neq j} \exp(Lm^2/2)^2/r_{ij} \left[\exp(mr_{ij}) \text{erfc}(\sqrt{Lm} - r_{ij}/\sqrt{4L}) - \exp(mr_{ij}) \text{erfc}(\sqrt{Lm} + r_{ij}/\sqrt{4L}) \right].
\]

with \(V_g = 0.0074 \text{ GeV} \) and \(m = 1.25 \text{ fm}^{-1} \). \(r_{ij} \) is the relative distance between two nucleons. The symmetry potential is \(U_{\text{sym}} = 32 \rho_n \rho_p/\rho_0 \tau_z \), where \(\rho_n, \rho_p \), and \(\rho_0 \) are the neutron, proton and nucleon densities, respectively; \(\tau_z \) equals \(1 \) or \(-1 \) for neutrons and protons, respectively.

From eq. (3) one obtains the matter density of coordinate space by the sum over all the nucleons, \(\rho(\mathbf{r}, t) = \sum_{i=1}^{A_f + A_p} \rho_i(\mathbf{r}, t) = \sum_{i=1}^{A_f + A_p} \frac{1}{(2\pi \hbar)^3} e^{-(\mathbf{r} - \mathbf{r}_i(t))^2/\hbar^2}. \)

The kinetic energy density in coordinate space could also be calculated from eq. (7):

\[
\rho_K(\mathbf{r}, t) = \sum_{i=1}^{A_f + A_p} \frac{\mathbf{p}_i(t)^2}{2m} \rho_i(\mathbf{r}, t).
\]

The time evolution of the mean nuclear density and kinetic energy density in a given central volume (with \(R = 3.5 \text{ fm} \)) is shown in fig. 1. Both the matter density and kinetic energy density are reaching their maxima around 20 fm/c. And the hot and dense nuclear matter survives for a longer time when the beam energy is lower. This can be easily understood as the nuclear matter experiences compressed and expanded more quickly at higher beam energy.

With the help of coalescence mechanism, the fragment information can be given in IQMD. The intermediate mass fragment which is here defined with charge number greater than 3 and smaller than 1/3 of the system size is very important for nuclear multifragmentation. These fragments are larger than typical evaporated light particles and smaller than the residues and fission products, and they can be considered as nuclear fog. So the multiplicity of intermediate mass fragments \((M_{\text{IMFs}}) \) is related to the occurrence of liquid gas phase transition. Usually the \(M_{\text{IMFs}} \) increases first as beam energy increases when

Fig. 1: (Color online) The time evolution of mean nuclear matter density (a) and kinetic energy density (b) in a central region defined as a sphere with radius \(R = 3.5 \text{ fm} \) for the head-on Au + Au collisions. Different color lines represent different beam energies which are illustrated in the inset.
the nuclear liquid phase is still dominant, and reaches a maximum, then decreases when the nuclear gas phase becomes dominant [31]. Figure 2 shows the M_{IMFs} which is extracted from the final stage of the collision as a function of beam energy for head-on $Au+Au$ collisions. One can see the turning energy is around 90 MeV/nucleon. If we study the thermodynamic evolution of η/s as a function of beam energy, it is likely to exhibit a minimum at a certain beam energy, which means η/s could also serve as a probe of nuclear liquid gas phase transition in heavy-ion collisions.

Calculations and discussions. – Thermodynamical properties of hot nuclear matter created in heavy-ion collisions can be extracted by using the approach developed by Faessler and collaborators [28–30]. From a microscopic picture of two interpenetrating pieces of nuclear matter, thermal quantities are deduced from the matter density and kinetic energy density. The extraction of the thermal properties is based on a generalized hot Thomas-Fermi formalism (GHTFF), more detailed information can be found in refs. [35,36].

Time evolutions of temperature and entropy density are depicted in fig. 3. Along the time scale of the collision, one can see that both values almost evolve isochronously, reach their maxima at about 20 fm/c. After the compression stage the nuclear system begins to expand and some nucleons escape from the central region, and the central region becomes cooled down. The entropy density decreases more quickly than temperature, and this is due to the direct effect of the quick escape of the nucleons. As one can see in fig. 4 the entropy per nucleon S/A in the central region almost evolves isentropically after the compressed stage for some times, the higher the incident energy the larger the S/A. This can be understood by the transition of the energy of collective motion into the colliding system’s thermal motion. And then S/A increases again and reaches a saturated value for all incident energies. Furthermore, it is interesting that although thermal properties differ from each other during compression and expansion stage for different beam energies, the nuclear matter located in the central region has the same thermal properties at the end of evolution.

Shear viscosity determines the strength of the energy momentum fluctuation of dissipative fluxes about the equilibrium state, which can be calculated by using the Green-Kubo relation. The Green-Kubo formula for shear viscosity is defined by [37]

$$
\eta = \frac{1}{T} \int d^3 r \int_0^\infty dt \langle \pi_{ij}(0,0)\pi_{ij}(r,t) \rangle,
$$

where T is the temperature of the system, “0” represents the starting time when the system tends to equilibrium and t is the post-equilibration time, $\langle \pi_{ij}(0,0)\pi_{ij}(r,t) \rangle$ is the shear component of the energy momentum tensor. In
Fig. 5: (Color online) Time evolution of stopping in the central sphere. Different color lines represent different beam energies as illustrated in the inset.

In this work, the post-equilibration stage is defined as the nuclear matter within the given central region has reached an equilibrium which can be judged by the stopping parameter \[38\]. The stopping \(R_p \) is defined as

\[
R_p = \frac{2}{\pi} \sum R_t \pi R_z,
\]

(10)

where \(R_t = \sqrt{p_x^2 + p_y^2} \) and \(R_z = \sqrt{p_z^2} \) is the transverse and parallel momentum, respectively. The time evolution of stopping is displayed in fig. 5. From the figure, we observe that at the initial stage the stopping is very small and its value decreases with the energy. Later there is a quick increase of the stopping due to the interplay of two-body collision, mean field and Pauli blocking, and the collective motion energy turns into thermal energy and the potential energy during the compression stage. It is interesting to see that there is a vibration of \(R_p \), and this is caused by the transformation between the potential energy and kinetic energy. The stopping approaches a saturated value very close to 1 after oscillation, which means the nucleonic system in the central volume is very close to equilibrium in later stage of collisions. Different starting time ("0") when \(R_p \) tends to 1 has been used in eq. (9) for calculating viscosity.

The expression for the energy momentum tensor is defined by \(\pi_{ij} = T_{ij} - \frac{1}{3} \delta_{ij} T_i^i \), where the momentum tensor reads [39]

\[
T_{ij}(r, t) = \int d^3 p \frac{p_i p_j}{p^3} f(r, p, t),
\]

(11)

with the momenta component \(p_i, p_j \) and the total energy \(p^0 \) of each nucleon provided by the IQMD model. \(f(r, p, t) \) is the phase space density of the particles in the system. In order to compute an integral, we assume that nucleons are uniformly distributed inside the volume. Meanwhile, the volume with the radius \(R = 3.5 \) fm is fixed, so the viscosity becomes

\[
\eta = \frac{V}{T} \langle \pi_{ij}(0)^2 \rangle \tau_{\pi},
\]

(12)

where \(\tau_{\pi} \) represents relaxation time and can be extracted from the fit:

\[
\langle \pi_{ij}(0) \pi_{ij}(t) \rangle \propto \exp \left(-\frac{1}{\tau_{\pi}} \right).
\]

(13)

As shown in fig. 6, \(\langle \pi_{ij}(0, 0) \pi_{ij}(r, t) \rangle \) evolves with the post-equilibration time for the head-on Au+Au collision in the central sphere. Different symbols represent different beam energies and lines are the fits with eq. (13).

Fig. 6: (Color online) \(\langle \pi_{ij}(0, 0) \pi_{ij}(r, t) \rangle \) evolves with the post-equilibration time for the head-on Au+Au collision in the central sphere. Different symbols represent different beam energies and lines are the fits with eq. (13).
BUU calculation [26]. As we expected, all η/s values from the present QMD model are larger than the KSS bound. On the other hand, we noticed that the location of energy with the minimum N_{IMFs} and η/s is not exactly the same; this might be due to our Green-Kubo calculation focusing on a given central nuclear region, and the IMFs representing the whole colliding system.

Conclusion. – In this letter, we performed a first calculation on the ratio of shear viscosity to entropy density in the framework of quantum molecular dynamics model with the Green-Kubo method. As an example, the head-on Au + Au collisions are simulated for beam energies from 70 to 200 MeV/nucleon. The generalized hot Thomas-Fermi formalism is used to extract the thermal properties of the given central nuclear system, and the shear viscosity is calculated with the Green-Kubo relation. The results display that a minimum η/s region, about 7 times Kovtun-Son-Starinets (KSS) bound ($1/4\pi$), exhibits at around 120 MeV/nucleon, which may correspond to a liquid gas phase transition for a hot nuclear matter. The ratio of shear viscosity to entropy density is always larger than $1/4\pi$, supporting the result of AdS/CFT. Finally, we would mention that the effect of equation of state and symmetry energy on the η/s is also an interesting topic [40-43], which is beyond the scope of this letter, will be studied in the near future.

This work is partially supported by the NSFC under contracts No. 11035009, No. 10979074, No. 10875160, No. 10805067 and No. 10975174, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KJCX2-EW-N01.

REFERENCES

[1] Das Gupta S., Mekjian A. Z. and Tsang M. B., Adv. Nucl. Phys., 26 (2001) 89.
[2] Bonasera A., Bruno M., Mastinu P. F. and Dorso C. O., Riv. Nuovo Cimento, 23, issue No. 2 (2000) 1.
[3] Borderie B. and Rivet M. F., Prog. Part. Nucl. Phys., 61 (2008) 551.
[4] The ALADIN Collaboration (Pochodzalla J. et al.), Phys. Rev. Lett., 75 (1995) 1040.
[5] Natowitz J. B., Hagle K., Ma Y. G., Murray M., Qin L., Wada R. and Wang J., Phys. Rev. Lett., 89 (2002) 212701.
[6] Gross D. H. E., Rep. Prog. Phys., 53 (1990) 605.
[7] Bondorf J. P., Botvina A. S., Iljinov A. S., Mishustin I. N. and Sneppen K., Phys. Rep., 257 (1995) 133.
[8] Ma Y. G. and Shen W. Q., Nucl. Sci. Technol., 15 (2004) 4.
[9] Gilkes M. L. et al., Phys. Rev. Lett., 73 (1994) 1590.
[10] Elliott J. B. et al., Phys. Rev. C, 49 (1994) 3185; Phys. Rev. Lett., 88 (2002) 042701.
[11] Ma Y. G., Phys. Rev. Lett., 85 (1999) 3617; Ma Y. G. et al., Phys. Rev. C, 69 (2004) 031604(R); Ma Y. G. et al., Phys. Rev. C, 71 (2005) 054606.
[12] Csernai L. P., Kapusta J. I. and McLerran L. D., Phys. Rev. Lett., 97 (2006) 152303.
[13] Kovtun P. K., Son D. T. and Starinets A. O., Phys. Rev. Lett., 94 (2005) 111601.
[14] Policastro G., Son D. T. and Starinets A. O., Phys. Rev. Lett., 87 (2001) 081601.
[15] Demir N. and Bass S. A., Phys. Rev. Lett., 102 (2009) 172302.
[16] Lacey R., Ajitanand N. N., Alexander J. M., Chung P., Holzmann W. G., Issah M., Taranenko A., Danielewicz P. and Stöcker Horst, Phys. Rev. Lett., 98 (2007) 092301.
[17] Chen Jiunn-Wei and Nakano Eiji, Phys. Lett. B, 647 (2007) 371.
[18] Kapusta J. I. and Springer T., Phys. Rev. D, 78 (2008) 066017.
[19] Majumder A., Müller B. and Wang Xin-Nian, Phys. Rev. Lett., 99 (2007) 192301.
[20] Xu Zhe and Greiner Carsten, *Phys. Rev. Lett.*, **100** (2008) 172301.

[21] Chen J. W., Li Y. H., Liu Y. F. and Nakano E., *Phys. Rev. D*, **76** (2007) 114011.

[22] Danielewicz P., *Phys. Lett. B*, **146** (1984) 168.

[23] Shi L. and Danielewicz P., *Phys. Rev. C*, **68** (2003) 064604.

[24] Pal S., *Phys. Lett. B*, **684** (2010) 211.

[25] Auerbach N. and Shlomo S., *Phys. Rev. Lett.*, **103** (2009) 172501.

[26] Li S. X., Fang D. Q., Ma Y. G. and Zhou C. L., *Phys. Rev. C*, **84** (2011) 024607.

[27] Ma Y. G., *J. Phys. G*, **27** (2001) 2455.

[28] Khoa D. T., Ohtsuka N., Faessler A., Matin M. A., Huang S. W., Lehmann E. and Lotfy Y., *Nucl. Phys. A*, **542** (1992) 671.

[29] Khoa D. T., Ohtsuka N., Matin M. A., Faessler A., Huang S. W., Lehmann E. and Puri R. K., *Nucl. Phys. A*, **548** (1992) 102.

[30] Puri R. K., Ohtsuka N., Lehmann E., Faessler A., Khoa D. T., Matin M. A., Batko G. and Huang S. W., 1992 GSI Scientific Report 93-1, GSI, Darmstadt, Germany, p. 126.

[31] Ma Y. G. and Shen W. Q., *Phys. Rev. C*, **51** (2005) 710.

[32] Aichelin J., *Phys. Rep.*, **202** (1991) 233.

[33] Hartnack C., Puri Rajeev K., Aichelin J., Konopka J., Bass S. A., Stöcker H., Greiner W. et al., *Eur. Phys. J. A*, **1** (1998) 151.

[34] Hartnack C., Zhuxia Li, Neise L., Peilert G., Rosenhauer A., Sorge H., Aichelin J., Stöcker H. and Greiner W., *Nucl. Phys. A*, **495** (1989) 303c.

[35] Barranco M. and Treiner J., *Nucl. Phys. A*, **351** (1981) 269.

[36] Rashdan M., Faessler A., Ismail M. and Ohtsuka N., *Nucl. Phys. A*, **468** (1987) 168.

[37] Kubo R., *Rep. Prog. Phys.*, **29** (1966) 255.

[38] Zhang G. Q., Ma Y. G., Cao X. G., Zhou C. L., Cai X. Z., Fang D. Q., Tian W. D. and Wang H. W., *Phys. Rev. C*, **84** (2011) 034612.

[39] Muronga A., *Phys. Rev. C*, **69** (2004) 044901.

[40] Tsang M. B. et al., *Phys. Rev. Lett.*, **92** (2004) 062701.

[41] Souza S. R. et al., *Phys. Rev. C*, **78** (2008) 014605.

[42] Wu C. and Ren Z., *Phys. Rev. C*, **83** (2011) 044605.

[43] Zhang Guang-Hua and Jiang Wei-Zhou, arXiv:1203.3846.