Carriage Rate of Neisseria meningitidis, Antibiotic Susceptibility Pattern and Associated Risk Factors among Primary School Children in Gondar town, Northwest Ethiopia

CURRENT STATUS: UNDER REVIEW

BMC Infectious Diseases ■ BMC Series

Zelalem Tefera
Kemissie General Hospital

Feleke Mekonnen
Bahir Dar University college of Medicine and Health Science, Department of Medical Microbiology

Moges Tiruneh
University of Gondar College of Medicine and Health Sciences

Teshome Belachew
University of Gondar College of Medicine and Health Sciences

tesh0926@gmail.com Corresponding Author
ORCiD: 0000-0003-4350-9803

DOI:
10.21203/rs.2.11842/v2

SUBJECT AREAS
Infectious Diseases

KEYWORDS
Neisseria meningitidis, meningococcal disease
Abstract

Background: Globally, in 2012, 1.2 million estimated cases were reported with ~135,000 deaths annually. In Ethiopia, specifically in our study area, limited information is found on the oropharyngeal carriage, antimicrobial resistance pattern, and associated risk factors for N. meningitidis among school children. So, the aim of this study was to assess oropharyngeal carriage rate of N. meningitidis, antibiotic susceptibility pattern and determinants among primary school children in Gondar town, Northwest Ethiopia.

Methods: A cross sectional study was conducted from January to April, 2019 in Gondar town. Multi stage simple random sampling technique was used. A total of 524 oropharyngeal swabs were collected using sterile plastic cotton swabs. Modified Thayer Martin media was used for primary isolation. Antimicrobial susceptibility pattern was done based on Kirby-Bauer method on Muller-Hinton agar supplemented with 5% sheep blood. Multidrug resistance was defined as resistance of an isolate to two or more antimicrobial classes tested. Logistic regression model was used to see the association between dependent variables (Carriage rate of Neisseria meningitidis, Serogroups of Neisseria meningitidis and Antimicrobial susceptibility patterns) and independent variables (Socio-demographic data and risk factors). Variables with a P- value ≤ 0.2 during bivariable analysis was taken to multivariable analysis to check significant association of meningococcal carriage with risk factors. Finally, a P-value < 0.05 was considered as statistically significant. Data was summarized using numbers, percentages and tables.

Results: A total of 53(10.1%) (CI: 7.6-12.8) N. meningitidis isolates were identified. Serogroup A 13 (24.5%) was the most prevalent followed by Y/W135 11(20.7%) whereas serogroup B 4(7.6%) was the least identified serotype. Meningococcal isolates were resistant to ciprofloxacin (45.3%) and trimethoprim-sulfamethoxazole (73.6%). Overall, most of meningococcal isolates showed about 32(60.4%) multidrug resistance.
Meningococcal carriage rate was significantly associated with family size, tonsillectomy, passive smoking, number of students per class, sharing utensils, history of visiting healthcare institutions, and indoor kitchen. Conclusion: This study highlights the need for reinforcement of case-based, laboratory confirmed surveillance of N. meningitidis carriage in Ethiopian elementary school students to enable mapping of distribution of serotypes of the causative organisms across the country and determine the current potential necessity of vaccination.

Background

The human pathogen *Neisseria meningitidis* (a Gram-negative diplococci) has 13 serotypes and is capable of colonizing the nasopharyngeal surface [1]. However, the most important serogroups associated with 90% of disease in humans are A, B, C, X, Y, and W135 [2]. *Neisseria meningitidis* presents in the nasopharynx and oropharynx in 5-10% of healthy people (carriers) and during epidemics, the carrier state rises to 70-80% [3]. Immunological susceptibility, travel, large population displacement, poor living condition, overcrowding, housing condition and climatic condition are among risk factors that led carriage and infection with *Neisseria meningitidis* [4].

Meningococcal infection is a global problem occurring as sporadic, hyper-sporadic, and epidemic disease. There were an estimated 1.2 million cases of meningococcal infection per year, with ~135,000 deaths worldwide. [5]. The African meningitis belt is an area of increased risk of bacterial meningitis characterized by distinct seasonal patterns in disease incidence with peaks in the dry season[6]. In Ethiopia, a major epidemic was recorded in 2001 with 6964 cases and 330 deaths followed by another epidemic during 2003-2004 with 3326 cases and 160 deaths from all regions of the country [7]. The study conducted in Addis Ababa, Ethiopia showed that the prevalence of *N. meningitidis* among elementary school children was 20.4% [8].
As a prevention strategy, in 2010, a new meningococcal conjugate vaccine, developed specifically for the sub-Saharan meningitis belt, was introduced. The vaccine was developed from, *N. meningitidis* serogroup A polysaccharide conjugated to tetanus toxoid, and has been introduced in mass vaccination campaigns of all 1–29-years old in more than 15 countries [9]. In Ethiopia, one of the countries with high epidemic risk and high disease burden, vaccination has been implemented in 3 phases from 2013 to 2015 [10]. In the study area, limited information is found on the oropharyngeal carriage, antimicrobial resistance pattern and associated risk factors for *N. meningitidis* especially in school children. Thus, carriage studies are important to improve our understanding of the *N. meningitidis* serogroup distribution and also the epidemiology of meningococcal disease control. Thus, it is important to determine the percentage of carriage rates. If the rate of carriers were identified, then tools to reduce personal contacts could be provided in populations with a high carrier rate. This process may include avoidance of crowding, reconstruction of the air-condition systems of the dorms, personal health education, or the administration of vaccines. So, the aim of this study was to assess oropharyngeal carriage rate of *N. meningitidis*, antibiotic susceptibility pattern and associated risk factors among primary school children in Gondar town, Northwest Ethiopia.

Materials And Methods

Study Setting, Design, and Period

A community-based cross-sectional study was conducted among primary school children in Gondar town, North West Ethiopia, from January to April 2019. This study was conducted in six primary schools. Gondar is found 737 km from Addis Ababa, the capital city of Ethiopia, and 180 km from Bahir Dar, the capital of Amhara national regional state. Gondar town and its surroundings have 44 elementary schools, 11 secondary schools and 30 kindergartens.
Sample size and Sampling technique

The sample size (524) was determined by using a single population proportion formula by considering the prevalence of 20.4% [8], with a 95% confidence interval, and a 5% margin of error, with 10% no-response rate and design effect. The multistage sampling technique was used to select schools. Then schools were stratified to grades and sections. The total number of study participants were allocated proportionally to each school, grades and sections based on the school sampling frame and the study subjects were selected by simple random sampling technique (Table 1).

Table 1: List of selected elementary schools and number of selected students in Gondar town, Northwest Ethiopia, January to April, 2019

S.no	Elementary school	Students per school	Proportion	Proportionally allocated number of students per school
1	Abiwotfire	2010	23.4	128
2	Hubret	1090	12.7	70
3	AtseBekafa	1146	13.2	73
4	TsadikuYohanis	1450	16.8	92
5	Meseret	1512	17.6	97
6	Chechela	1400	16.3	90
	Total	8608	100	550

Data collection and laboratory methods

Data collection procedures

A pre-tested questionnaire based on postulated or known risk factors was developed and modified to explore the objectives of the study. Then, it was checked on school children who were not included in the study. It was prepared in English and translated to Amharic
then translated back into English to check the accuracy of the translation. The questionnaire design included two parts; socio-demographic characteristics and associated risk factors.

The questionnaire and assent/consent form were distributed to the selected students at school after informing the purpose of the study and the right of the study participants. Questionnaire and assent/consent form were also distributed to guardians and emphasis was given to return the questionnaire and assent/consent form after twenty-four hours. Students living alone (with the age range of 17-18 years) were considered as adults and informed to fill the questionnaire and sign the consent form at school. Socio-demographic characteristics and other relevant information filled by the parents/guardians and students were collected at school by trained laboratory technologists before sample collection.

Laboratory methods

Oropharyngeal sample collection

Oropharyngeal swabs were collected by a trained medical microbiologist using a plain cotton swab (Unison Narula, India) using tongue depressor (Unison Narula group, India) at the posterior pharyngeal wall behind the uvula and tonsils of each volunteer participant. After collection, samples were transported by using Amies transport media (Bio mark, India) to the University of Gondar teaching hospital laboratory within two hours of collection within a cold box.

Culture and identification

Once the specimens reached to Gondar University teaching laboratory, it was inoculated on Modified Thayer Martin (MTM) culture media (Oxoid, UK). The inoculated MTM plates were incubated at 37°C with 5-10% CO₂ for 24 to 48 hours. A presumptive diagnosis was done by gram stain and colony characteristics on the agar plate. Medium to large, round, smooth, convex, colorless-to-grey, opaque colonies on the MTM was further confirmed by
the oxidase test (Deben Diagnostics Ltd, UK). After confirmation, the presence of gram-negative diplococcus with oxidase-positive, isolates were sub-cultured on a blood agar plate (BAP) (Oxoid, UK) with 5-10% CO₂ for 24 to 48 hours, to guarantee the purity of colonies for the biochemical test. Plates were monitored every 24 hours for the growth of typical colonies.

Carbohydrate utilization test (glucose, maltose, lactose, and sucrose) was performed by cystine trypticase agar (CTA) (SRL, India) to further differentiate *Neisseria meningitidis* from *Moraxella* species and other nonpathogenic *Neisseria* species. Isolates with gram-negative diplococci, oxidase-positive, glucose fermenter, maltose fermenter, lactose and sucrose none- fermenter were interpreted and confirmed as *N. meningitidis*. Once the species are known, the serogroup of isolates was determined with the slide agglutination method while using commercially prepared antiserum A, B, C, W135/Y, and X (Bio-Rad, France) and antiserum X (BD Difco, USA). Negative for these six serogroups was classified as non-serogroupable[8]

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was carried out on isolates of *N. meningitidis* by using disc diffusion technique as per the standard Kirby-Bauer method on Mueller-Hinton agar (Bio mark, India) supplemented with 5% sheep blood at 37°c for 18-24 hours [11]. A suspension of the test organism was prepared equivalent to 0.5 McFarland. The surface of Mueller-Hinton agar supplemented with 5% sheep blood was completely covered by rotating the swab. The plates were allowed to dry for 3-5 minutes; then discs were evenly distributed on the inoculated plate using sterile forceps and incubated in 5-10% CO₂ at 37°c for 20-24 hours. The following routinely used antimicrobial agents were tested: cefotaxime (30μg), minocycline (30μg) meropenem (10μg), azithromycin (15μg), ciprofloxacin (5μg), trimethoprim-sulfamethoxazole (1.25/ 23.75 μg), chloramphenicol
(30μg), and rifampin (5μg). Diameters of the zone of inhibition around the disc was measured to the nearest millimeter using a graduated caliper in millimeters and results were classified as sensitive, intermediate and resistant based on CLSI-2018 guideline[12]. Multidrug resistance was defined as resistance of an isolate to two or more antimicrobial classes tested [13].

Laboratory data quality assurance

Preanalytical, analytical and post analytical quality assurance was maintained [14].

Data analysis and interpretation

All data was entered to EPI info version 7 for data clearance and consistency and exported to SPSS version 20.0 for analysis. Descriptive statistics was computed to calculate frequencies. The magnitude of the association between different variables and oropharyngeal meningococcal carriage was assessed using bivariate and multivariate analysis. Variables which had a P-value ≤0.20 for bivariate analysis was taken to multivariate analysis to check real association of meningococcal carriage rate with risk factors and expressed by adjusted odds ratio at 95% confidence interval. A P-value ≤ 0.05 was considered as statistically significant. Data was summarized using numbers, percentages and tables.

Ethical considerations

The study was conducted after obtaining institutional ethical clearance (“Ref No-SBMLS/2123/11”) from University of Gondar. Support letter was sought from Gondar town educational office. Assent from the parents/guardians of youth students and assent/consent from the study participants was obtained.

Results

Demographic characteristics of study participants

A total of 524 school children (283 males and 241 females) were included in this study.
The mean ± SD age of the participants was 12.2 ± 2.74 years. About 49% of the study participants were within the age group of 11-14 years (Table 2).

Oropharyngeal carriage isolates

The overall prevalence of *Neisseria meningitidis* was 53(10.1%) (95% CI: 7.6, 12.8). Meningococcal carriage identified among male 30/53 (56.6%) was higher than females 23/53 (43.4%) (Table 3).

Serogroup distribution of *N. meningitidis*

All types of invasive meningococcal serogroups were identified, of which, serogroup A was the leading isolate with the isolation rate of 13 (24.5%) followed by serogroup Y/W135, 11(20.7%). Serogroup B, 4 (7.5%) was the least identified isolate. Serogroup A dominates on male (15.1%) than female (9.4%) (Table 4).

Antimicrobial susceptibility patterns of *N. meningitidis*

Neisseria. meningitidis isolates were tested against routinely used antimicrobial agents. In this study, most of the meningococci isolates showed a high level of resistance to trimethoprim/ sulfamethoxazole (73.6%), ciprofloxacin (45.3%) and cefotaxime (35.8%). However, the majority of the isolates were susceptible to azithromycin (96.2%), chloramphenicol (92.5%) and minocycline (88.7%) (Table 5).

Multidrug resistance pattern of *N. meningitidis*

Multidrug resistance pattern of *N. meningitis* isolates was also determined. Overall, most of the meningococcal isolates showed a high level of multidrug resistance with the rate of 32(60.4%). On the serogroup level, serogroup B was 100% MDR followed by serogroup X, 80% and serogroup Y/W-135, 72.7%. Only 9 (16.9%) of the meningococcal isolates had no resistance for all class of antimicrobials tested. Similarly, about 50% of non-serogroupable (NG) isolates had no resistance to the tested class of antimicrobials (Table 6).

Associated risk factors of study participants
In this study, the average family size of students was 5.3 people per household and the average number of rooms per household was 2.3. From all study participants, 21% had a history of hospitalization at least for one day at health institutions. Of the total participants, the majority of (60.5%) had a history of tonsillectomy. Among the study participants who had a history of treatment before two weeks of the study period, 19.3% had poor treatment adherence. About 10.1% of the family of the study participants smokes cigarettes while 29.2% of the family had a history of living in crowded area (Table 7).

Risk factors analysis for oropharyngeal carriage of *N. meningitidis*

In bivariable logistic regression analysis associated factors with P-value < 0.2 were transferred to multivariable logistic regression to the significant association of these factors. Multivariable logistic statistical analysis showed that *N. meningitidis* oropharyngeal carriage had a significant association with family size (Adjusted Odds Ratio (AOR; 2.71 95% CI 1.41-5.18, P= 0.003)), sharing utensils (AOR; 4.15, 95% CI 1.49-11.58, P=0.007), attending healthcare institutions (AOR;2.76, 95% CI 1.098-6.94, P=0.031), history of tonsillectomy (AOR;2.84, 95% CI 1.36-5.93, P=0.006), indoor kitchen (AOR;5.55, 95% CI, 1.53-20.17 P=0.009), parental cigarette smoking (AOR;4.62, 95% CI, 1.65-12.89, P=0.004) and number of students per classroom (AOR;7.81, 95% CI, 1.02 59.78,P=0.048) (Tables 7).

Discussion

Invasive meningococcal infection is a global problem occurring as sporadic, hyper-sporadic, and epidemic disease [15]. The problem has mainly occurred in the developing world especially in the African meningitis belt [16, 17]. In Ethiopia, meningitis outbreaks have been occurred over several years, being responsible for morbidity and mortality [7]. Many researched evidences showed that people who are carriers of *N. meningitidis* are at
high risk of developing invasive meningococcal disease in their life time specifically, if they are exposed to factors that wanes the immune system. However, in Ethiopia, there is only limited information regarding the \textit{N. meningitidis} carriage rate, antimicrobial susceptibility pattern and associated factors [18-19]. Therefore, this study was intended to show the gap and fill the limited information on the oropharyngeal carriage, antimicrobial resistance pattern and associated risk factors for \textit{N. meningitidis} especially in school children in the study area.

The overall \textit{N. meningitidis} oropharyngeal carriage rate in this study was 10.1\%. The predominant serogroup in our study was serogroup A (24.5\%) and W135/Y (20.6\%) while the least was serogroup B (7.6\%). Despite the fact that menA vaccine mass vaccination campaign was implemented in 2012 in the study area, now it is six years after implementation and the prevalence of \textit{N. meningitidis} serotype A will be reverted to high. The high prevalence of serotype W135/Y may be due to suppression of serotype A by the vaccine which in turn let serotype W135/Y to compete with other least prevalent serotypes. This overall carriage prevalence was markedly higher than a study conducted at Gondar University teaching hospital in 2012 (234 oropharyngeal swabs) among <10 years OPD patients with 6\% carriage [20]. The variation may result from the difference in the target population (asymptomatic vs symptomatic), time of investigation and sample size.

Our study also had a high prevalence of carriage than the studies conducted in Arba Minch, Southern Ethiopia among 7479 oropharyngeal samples with 6.6\% prevalence [21] and in Gurage Zone, Southern Ethiopia with 4.6\% carriage rate [22]. Surveillance of invasive meningitis isolates in Ethiopia in 2012-2013 showed that in Hawassa, in the southern part of the country, serogroup A was the dominant cause of disease [23]. But in 2015, menA vaccine was given and this may be the reason for the decrement of the
carriage rate. On those mentioned studies, no serogroup A was identified and serogroup B was the least identified. Implementation of menA mass vaccination campaign may be the reason for zero prevalence of serotype A.

In contrast, our study had less carriage rate compared to three local studies conducted at Gondar university hospital (2019 CSF samples) in the year 2011 to 2013 with 18.4% prevalence [24], Addis Ababa (240 nasal swabs) with 20.4% carriage rate [8] and bacterial meningitis surveillance in Ethiopia, 2012-2013 (139 CSF samples) with 19.4% prevalence rate [25].

The antimicrobial susceptibility pattern of N. meningitidis was determined. In the present study, higher resistance was reported for cefotaxime (35.8%), ciprofloxacin (45.3%) and trimethoprim-sulfamethoxazole (73.6%). The increment of resistance may be due to the easy accessibility of drugs, the simplicity of taking drugs (oral route of administration) and the use of these antibiotics for a long period of time in the country especially ciprofloxacin and trimethoprim-sulfamethoxazole and on top of that, irrational drug use. Many studies done in developed countries showed that resistance to cefotaxime is rare. But, in the Southern parts of Ethiopia about 14% of cefotaxime resistance was reported which supports our findings [22].

Ciprofloxacin was another antimicrobial agent tested against N. meningitidis and high level of resistance (45%). In contrary to our study, in Addis Ababa [8] and Gondar [20], N. meningitidis was susceptible to ciprofloxacin with the rate of 83.7% and 78.6% respectively. This discrepancy might be due to the difference in antimicrobial usage practices.

In our study, associated risk factors like tonsillectomy (P = 0.006), large family size (P = 0.003), history of visiting health care institutions (P = 0.031), number of students per class greater than 40 (P = 0.048), indoor kitchen location (P = 0.009), sharing utensils (P
and cigarette smoking (P = 0.004) were significantly associated with \textit{N. meningitidis} carriage. In different studies determinants like family size \cite{26}, crowded living condition \cite{8,27}, the number of children per house \cite{28}, the number of positive household members \cite{29}, lower socioeconomic status \cite{30}, indoor kitchen \cite{27}, and overcrowding in the house \cite{31} were significantly associated risk factors in which coincided with our study finding.

\textbf{Conclusion}

\textit{Neisseria meningitidis} prevalence in the present study had a high carriage rate among males than females. Serogroup A and Y/W135 were predominantly circulating meningococcal isolates in the community. Meningococcal carriage rate among primary school students was significantly associated with larger family size, students with tonsillectomy, parental cigarette smoking, students with greater than 40 per class, sharing utensils, history of visiting healthcare institutions and indoor kitchen. The antibiotics markedly resisted by meningococcal isolates were trimethoprim-sulfamethoxazole, ciprofloxacin, and cefotaxime. The effective antibiotics identified in this study were minocycline, azithromycin, meropenem and chloramphenicol. Most of the meningococcal isolates were identified as multidrug resistance, with serogroup B and serogroup X had markedly higher resistance. We recommend the scientific community as well as the health sector to perform continuous surveillance of \textit{N. meningitidis} carriage to control any possible diversity and emerging virulent strains in high-risk populations as well as to predict the epidemiology of meningococcal infections and the clinical spectrum of affected populations. Especially, molecular identification is essential for identification of which genotypes is circulating. Health education should be strengthened to reduce \textit{N. meningitidis} carriage and possible risk factors. Moreover, antibiotic stewardship should be well strengthened at all health facility level to reduce the expanding of drug resistance
List Of Abbreviations

ATCC: American Type Culture Collection, BAP: Blood Agar Plate, CLSI: Clinical Laboratory Standard Institute, CSF: Cerebro Spinal Fluid, CTA: Cysteine Trypticase Agar, ELISA: Enzyme Linked Immuno-Sorbent Assay, MTM: Modified Thayer-Martín Media, OPD: Out-Patient Department, PCR: Polymerase Chain Reaction, SBML: School of Biomedical and Laboratory Science

Declarations

Ethics approval and consent to participate

An ethical clearance letter was obtained from the Departmental Research and Ethics Review Committee of school of biomedical laboratory science. The reference number of the ethical letter was “Ref no- SBMLS/2123/11”. This ethical letter was obtained from Mr. Mekonnen Girma (mekonnen2302@cmail.com), Markos Negash (markosnegash@yahoo.com) and Bamilaku Enawgaw (bamlak21@gmail.com). All eligible subjects were informed as their participation was voluntary. Study participants were informed about the purpose of the study. Confidentiality was maintained at all levels of the study. In addition, study participants involvement was based on a voluntary basis and participants who were unwilling to take part in the study and those who need to quit their participation at any stage were informed to do so without any restriction.

Consent for publication

All authors read the manuscript and have provided their consent to publish.

Availability of data and material

Data and supporting materials associated with this study will be shared upon request.

Competing interests
The authors declare that they have no competing interest.

Funding

This study was not funded.

Authors’ contribution

ZT did conceptualization, analyzing the data, methodology designing, investigation during the laboratory work, writing original draft and review the final manuscript.

FM did conceptualization, methodology designing, writing original draft and review the final manuscript.

MT did conceptualization, analyzing the data, methodology designing, writing original draft and review the final manuscript.

TB did conceptualization, methodology designing, investigation during the laboratory work, writing original draft and review the final manuscript.

All authors have read and approved the manuscript.

Acknowledgments

The authors would like to thank all the study participants and parents for their good collaboration. The authors would like to thank the department of Medical Microbiology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar for logistic and material supports. Finally, the authors would like to thank Ethiopian Public Health Institute for reagent support.

References

1. Trivedi K, Tang CM, Exley RM. Mechanisms of meningococcal colonization. Trends in microbiology 2011; 19(9):456-463.

2. Caugant DA, Maiden MC. Meningococcal carriage and disease—population biology and evolution. Vaccine 2009; 27:B64-B70.

3. Montero-Martin M, Inwald DP, Carrol ED, Martinon-Torres F. Prognostic markers of
meningococcal disease in children: recent advances and future challenges. Expert review of anti-infective therapy 2014; 12(11):1357-1369.

4. Gazi H, Surucuoglu S, Ozbakkaloglu B, Akcali S, Ozkutuk N, Degerli K, et al. Oropharyngeal carriage and penicillin resistance of Neisseria meningitidis in primary school children in Manisa, Turkey. Ann Acad Med Singapore 2004; 33(6):758-762.

5. Rouphael NG, Stephens DS. Neisseria meningitidis: biology, microbiology, and epidemiology. In Neisseria meningitidis. Springer 2012; 799: 1-20.

6. Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, et al: Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS hygiene and infection control 2017; 12.

7. Ethiopian Health and Nutrition Research Institute Federal Democratic Republic of Ethiopia. National guideline on meningococcal meningitis surveillance and outbreak management. Addis Ababa Ethiopia; 2013.

8. Alemayehu T, Mekasha A, Abebe T. Nasal carriage rate and antibiotic susceptibility pattern of Neisseria meningitidis in healthy Ethiopian children and adolescents: A cross-sectional study. PloS one 2017; 12(10): e0187207.

9. Goldblatt D. Conjugate vaccines. Clin Exp Immunol. 2000; 119:1-3.

10. Djingarey MH, Diomande FV, Barry R, Kandolo D, Shirehwa F, Lingani C, et al. Introduction and Rollout of a New Group A Meningococcal Conjugate Vaccine (PsA-TT) in African Meningitis Belt Countries, 2010-2014. Clin Infect Dis. 2015;61 Suppl 5:S434–41.

11. Winn WC: Koneman's color atlas and textbook of diagnostic microbiology: Lippincott williams & wilkins 2006.

12. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100 Wayne, PA: Clinical and Laboratory Standards Institute; 2018, 28th
13. Magiorakos A P, Srinivasan A, Carey R B, Carmeli Y, Falagas M.E, Giske CG et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012; 18: 268–281.

14. Aminu A, Yahaya S. Carriage rate of Neisseria meningitides among pupils of islamic boarding schools (Tsangaya Almajirai) in Kano, Nigeria. Bayero Journal of Pure and Applied Sciences 2017; 10(1):239-242.

15. Jafri RZ, Ali A, Messonnier NE, Tevi-Benissan C, Durrheim D, Eskola J, et al: Global epidemiology of invasive meningococcal disease. Population health metrics 2013; 11(1):17.

16. Basta NE, Berthe A, Keita M, Onwuchekwa U, Tamboura B, Traore A, et al: Meningococcal carriage within households in the African meningitis belt: A longitudinal pilot study. Journal of Infection 2018; 76(2):140-148.

17. Harrison LH, Pelton SI, Wilder-Smith A, Holst J, Safadi MA, Vazquez JA, et al. The Global Meningococcal Initiative: recommendations for reducing the global burden of meningococcal disease. Vaccine 2011; 29(18):3363-3371.

18. Soriani M. Unraveling Neisseria meningitidis pathogenesis: from functional genomics to experimental models. F1000Research 2017; 6.

19. Gazi H, Surucuoglu S, Ozbakkaloglu B, Akcali S, Ozkutuk N, Degerli K, et al. Oropharyngeal carriage and penicillin resistance of Neisseria meningitidis in primary school children in Manisa, Turkey. Ann Acad Med Singapore 2004; 33(6):758-762.

20. Assefa A, Gelaw B, Shiferaw Y, Tigabu Z. Nasopharyngeal carriage and antimicrobial susceptibility pattern of streptococcus pneumoniae among pediatric outpatients at gondar university hospital, north west ethiopia. Pediatrics & Neonatology 2013;
21. Bårnes GK, Kristiansen PA, Beyene D, Workalemahu B, Fissiha P, Merdekios B, et al: Prevalence and epidemiology of meningococcal carriage in Southern Ethiopia prior to implementation of MenAfriVac, a conjugate vaccine. BMC infectious diseases 2016; 16(1):639.

22. Fikerte M, Zelalem M, Biruk Y, Hiwot T, Melaku Y, Marechign Y. Antibiotic Susceptibility Pattern of Neisseria meningitides Isolates from Asymptomatic Carriers in Gurage zone, Southern Ethiopia. American Journal of Health Research 2019; 7(1): 12-18.

23. Bogaert D, Hermans P, Boelens H, Sluijter M, Luijendijk A, Rümke H, et al. Epidemiology of nasopharyngeal carriage of Neisseria meningitidis in healthy Dutch children. Clinical infectious diseases 2005; 40(6):899-902.

24. Tegene B, Kassahun Denekew GM. Phenotypic Characterization and Serotypes Identification of CSF isolates in Acute Bacterial Meningitis. American Journal of Infectious Diseases 2017; 5(3):100-105.

25. Mihret W, Lema T, Merid Y, Kassu A, Abebe W, Moges B, et al. Surveillance of bacterial meningitis, Ethiopia, 2012-2013. Emerging infectious diseases 2016; 22(1):75.

26. Valipour M, Piroozmand A, Khorshidi A, Akbari H, Mirzaee H: Identification of serological groups A, B, C, W135, Y, X Neisseria meningitidis carriers by multiplex PCR in the nasopharynx of students in Kashan during 2011-2012. Feyz Journal of Kashan University of Medical Sciences 2013; 17(2).

27. Diallo K, Trotter C, Timbine Y, Tamboura B, Sow SO, Issaka B, et al. Pharyngeal carriage of Neisseria species in the African meningitis belt. Journal of Infection 2016; 72(6):667-677.
28. Díaz J, Cárcamo M, Seoane M, Pidal P, Cavada G, Puentes R, et al. Prevalence of meningococcal carriage in children and adolescents aged 10-19 years in Chile in 2013. Journal of infection and public health 2016; 9(4):506-515.

29. De Moraes JC, Kemp B, De Lemos APS, Gorla MCO, Marques EGL, do Carmo Ferreira M, et al. Prevalence, risk factors and molecular characteristics of meningococcal carriage among Brazilian adolescents. The Pediatric infectious disease journal 2015; 34(11):1197-1202.

30. Cleary P, Calvert N, Gee S, Graham C, Gray S, Kaczmarski E, et al. Variations in Neisseria meningitidis carriage by socioeconomic status: a cross-sectional study. Journal of Public Health 2015; 38(1):61-70.

31. Nunes AMPB. Colonização por Neisseria meningitidis entre adolescentes após introdução da vacina meningocócica C conjugada em Salvador, Brasil. 2017.

Tables

Table 2: Socio-demographic characteristics of all participants among primary school children in Gondar town, Northwest Ethiopia, January to April 2019

Characteristics of children (n = 524)	Frequency	%
Sex		
Male	283	54
Female	241	46
Age		
7-10	148	28
11-14	257	49
15-18	119	22
Religion		
Orthodox	419	80
Muslim	100	19
Protestant	2	0.2
Catholic	1	0.2
Other	2	0.2
Residence		
Rural	10	1.9
Urban	514	98
Grade level		
1-4	253	48
5-8	271	51

Table 3: Distribution of oropharyngeal isolates by age, sex and school among primary school children in Gondar town, Northwest Ethiopia, January to April 2019
School	Age	$N. \text{ meningitides} \ (N=53)$		
		M	F	
Abiwot fire	7-10	1	0	
		11-14	3	0
		15-18	6	0
Hibret	7-10	0	1	
		11-14	1	2
		15-18	0	3
AtseBekafa	7-10	0	1	
		11-14	0	4
		15-18	0	0
TsadikuYohanis	7-10	5	4	
		11-14	1	5
		15-18	0	0
Meseret	7-10	1	0	
		11-14	7	0
		15-18	3	0
Chechela	7-10	0	0	
		11-14	2	2
		15-18	0	1
Total n (%)		30(56.6)	23(43.4)	

Table 4: Serogroup distribution of $N. \text{ meningitidis}$ isolates by age and sex among primary school children in Gondar town, Northwest Ethiopia, January to April 2019

Age	Serogroups (N = 53)										
	A(n=13)	B(n=4)	C(n=8)	Y/W135=11	X(n=5)	\ NG(n=7)					
	M	F	M	F	M	F	M	F	M	F	
7-10	0	2	2	0	2	0	1	1	1	2	1
11-14	6	3	1	1	2	3	2	3	0	0	3
15-18	2	0	0	0	1	0	2	2	1	1	3
Total (%)	8 (15.1)	5 (9.4)	3 (5.7)	1 (1.9)	5 (9.4)	3 (5.7)	5 (9.4)	6 (11.3)	2 (3.8)	3 (5.7)	7 (13.2)

Table 5: Antimicrobial susceptibility patterns of meningococcal isolates among primary school children in Gondar town, Northwest Ethiopia, January to April 2019
Antimicrobials Sensitivity

Antimicrobials	Sensitivity	N. meningitidis (n= 53)						
		A=13	B=4	C=8	W/Y=11	X=5	NG=12	
Cefotaxime	S	8	1	7	5	3	10	3
	R	5	3	1	6	2	2	1
Minocycline	S	9	3	8	10	5	12	4
	R	4	1	1		1		6
Meropenem	S	10	3	8	9	5	10	4
	R	3	1	2		2		8
Azithromycin	S	12	4	8	10	5	12	5
	R	1				1		
Ciprofloxacin	S	7	2	6	4	2	7	2
	R	6	2	2	6	3	5	2
	I	1				1		
Trimethoprim/	S	1	1	3	1	2	5	1
sulfamethoxazole	R	11	4	7	8	4	5	3
Chloramphenicol	S	13	3	8	8	5	12	4
	R	1				1		
Rifampin	S	8	2	7	8	5	9	3
	I	2				1		1
	R	3	2	2		2		2

Note: A= Serogrup A, B= Serogroup B, C= Serogroup C, W/Y= Serogroup W/Y, X= Serogroup X, NG= non-serogroupable, S=sensitive, R= resistance, I= intermediate

Table 6: Multi-drug resistance pattern for Neisseria meningitidis isolates among primary school children in Gondar town, Northwest Ethiopia, January to April 2019.

Serogroup	Anti-microbial sensitivity pattern	Total					
	R0	R1	R2	R3	R4	≥R5	
A	1	3	2	3	3	1	13
B	0	0	2	1	0	1	4
C	1	5	1	1	0	0	8
Y/W135	1	2	3	2	1	2	11
X	0	1	4	0	0	0	5
NG	6	1	1	3	1	0	12
Total	9	12	13	10	5	4	53
Percentile	16.9	22.7	24.5	18.9	9.4	7.6	100

Key: R0: No resistance for any class of antimicrobial R1: Resistance for one class of antimicrobials R2: Resistance for two class of antimicrobials R3: Resistance for three class of antimicrobials R4: Resistance for four class of antimicrobials R≥5: Resistance for five class of antimicrobials
Variables	N. meningitidis	95% C.I.	AOR (95% C.I.)		
Sex					
Male	30(10.6)	253(89.4)	1.12(0.634-1.99)***		
Female	23(9.5)	218(90.5)	1		
Age					
7-10	13(8.8)	135(91.2)	1.274(0.567-2.86)***		
11-14	27(10.5)	230(89.5)	1.045(0.519-2.105)***		
15-18	13(10.9)	106(89.1)	1		
Grade level					
1-4	24(9.5)	229(90.5)	0.875(0.494-1.55)***		
5-8	29(10.7)	242(89.3)	1		
Family size					
>5	29(13.9)	180(86.1)	1.953(1.103-3.46)**	2.71(1.41	
≤5	24(7.6)	291(92.4)	1	1	
Number of beds/houses					
Only one	42(10.5)	360(89.6)	1.18(0.586-2.364)***		
> one	11(9)	111(91)	1		
Sharing utensils					
Yes	48(12.1)	349(87.9)	3.356(1.31-8.62)**	4.15(1.49	
No	5(3.9)	122(96.1)	1	1	
History of family visiting crowded area					
Yes	16(10.5)	137(89.5)	1.05(0.568-1.958)***		
No	37(9.97)	334(90.03)	1		
Visiting healthcare institutions					
Yes	46(11.4)	358(88.6)	2.07(0.911-4.723)**	2.76(1.04	
No	7(5.8)	113(94.2)	1		
Hospitalization					
Yes	14(12.7)	96(87.3)	1.40(0.732-2.687)***		
No	39(9.4)	375(90.6)	1		
Antibiotics adherence					
Yes	39(12.1)	384(87.9)	1		
No	14(13.9)	87(86.1)	1.584(0.824-3.05)**		
Tonsillectomy					
Yes	40(12.6)	277(87.4)	2.155(1.123-4.136)**	2.84(1.36	
	No	13(6.3)	194(93.7)	1	1
-----------------------------------	------	---------	-----------	-------	-------
Kitchen location	Indoor	50(11.7)	379(88.3)	4.046(1.234-13.26)**	5.55(1.53)
	Outdoor	3(3.2)	92(96.8)	1	1
Passive smoker	Yes	8(15.1)	45(84.9)	1.68(1.25-6.82)**	4.62(1.65)
	No	45(9.6)	426(90.4)	1	1
Number of students per class	≤40	1(1.7)	57(98.3)	1	1
	>40	52(11.2)	414(88.8)	7.159(0.971-52.79)**	7.81(1.02)