Magnetotactic bacteria from Pavilion Lake, British Columbia

Zachery Oestreicher1, Steven K. Lower2, Eric Rees3, Dennis A. Bazylinski4 and Brian H. Lower2*

1 College of Science and Engineering, Kanazawa University, Kanazawa, Japan
2 School of Earth Sciences, School of Environment & Natural Resources, The Ohio State University, Columbus, OH, USA
3 Research and Testing Laboratory, Lubbock, TX, USA
4 School of Life Sciences, University of Nevada at Las Vegas, NV, USA

Edited by: Wei Lin, Chinese Academy of Sciences, China
Reviewed by: Liang Shi, Pacific Northwest National Laboratory, USA
John Senko, The University of Akron, USA
*Correspondence: Brian H. Lower, School of Earth Sciences, School of Environment & Natural Resources, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
e-mail: lower.30@osu.edu

INTRODUCTION

Magnetotactic bacteria (MTB) have been found in a variety of aquatic sediments such as marine environments, freshwater lakes and rivers, hot springs, and brackish waters all over the world (Blakemore, 1975; Moench and Konetzka, 1978; Spring et al., 1994; Bazylinski et al., 1995, 2000; Amann et al., 2007; Lin et al., 2009; Lefèvre et al., 2010, 2011). In these settings, MTB tend to reside in chemically stratified water or sediment at the oxic-anoxic interface. The common feature that is unique to all MTB is their ability to synthesize intracellular membrane-bound crystals of single domain magnetite (Fe3O4) and/or greigite (Fe3S4) (Bazylinski et al., 1993, 1995; Lower and Bazylinski, 2013). The magnetosomes provide a torque on the cells that passively aligns them with the Earth’s geomagnetic field. This in turn reduces their navigational route from three dimensions to one dimension; shortening the time it takes for cells to navigate to their preferred habitat, the oxic-anoxic interface at the bottom of water bodies (Bazylinski et al., 1995; Frankel et al., 2007; Lower and Bazylinski, 2013).

Magnetite from MTB occurs as a very specific size with well-defined crystal morphology that is chemically pure (Devouard et al., 1998; Faiivre et al., 2008). Such minerals are preserved in the rock record as “magnetofossils,” which have been found in Mesozoic rocks, and may extend back as far as the pre-Cambrian (Kirschvink and Chang, 1984; Chang and Kirschvink, 1989; Kopp et al., 2007; Kopp and Kirschvink, 2008). The distinct size, purity and crystallinity of magnetite made by MTB help differentiate it from abiogenic magnetite in the fossil record (Petersen et al., 1986; Chang and Kirschvink, 1989; Devouard et al., 1998; Kobayashi et al., 2006; Kopp and Kirschvink, 2008; Benzerara and Menguy, 2009; Benzerara et al., 2011).

This study investigates uncultured MTB from Pavilion Lake, a deep, slightly alkaline, freshwater lake in British Columbia. This site was selected because it contains large organosedimentary structures called microbialites (Laval et al., 2000). Such structures abound in the fossil record back to nearly 3.5 billion years (Lim et al., 2009) and microbialites, in the form of thrombolites, have been dated as far back as the Proterozoic (Kennard and James, 1986). The MTB that we isolated from Pavilion Lake belonged to the Alphaproteobacteria class. Transmission electron microscopy was used to determine the morphology of the cells, and the size and shape of magnetosomes. Scanning transmission electron microscopy was used to determine the chemical composition of the magnetosomes. This is the first time MTB have been described from a microbialite-forming environment. This discovery could be of great value to others interested in potential life forms on other planets or the earliest forms of life on Earth as Pavilion Lake contains microbial fossils in the freshwater microbialites.

MATERIALS AND METHODS

MAGNETOTACTIC BACTERIA COLLECTION

Sediment samples were collected from along the shore of Pavilion Lake (Figure 1) in August 2011. Shallow samples of sediment...
were obtained by scraping the sediment approximately 20–45 cm below the surface of the water with a 1-liter container. The containers contained one-half to three-quarters sediment and the remainder was filled with freshwater from the site. The bottles were sealed and brought back to the laboratory for analysis. In the laboratory, the bottle caps were loosened and stored in a dark at room temperature for up to several weeks.

MAGNETOTACTIC BACTERIA ENRICHMENT
Magnetotactic bacteria were isolated from the sediment following a procedure described previously (Oestreicher et al., 2012). Briefly, the south end of a magnet was placed on the outside of the 1-liter sample container just above the sediment-water interface. The north end of a magnet was placed on the opposite side of the container. After 1 h, the water around the south end of the magnet was extracted with a pipette and placed in a racetrack with a cotton plug at the sealed end (Wolfe et al., 1987). This was repeated 12 times for each sample. The south end of a magnet was placed at the racetrack’s sealed end, and the magnetotactic cells were allowed to swim through the cotton barrier for approximately 30 min. The racetrack was taken away from the magnet, the tip snapped off, and the bacteria removed with a syringe. A total of 500–1000 μL were collected from each sample. The presence of MTB was confirmed by light microscopy on samples prepared by the hanging drop method (Oestreicher et al., 2012).

TRANSMISSION ELECTRON MICROSCOPY
An aliquot of the enriched cells were placed on a 200 mesh copper grid coated with carbon and formvar (Ted Pella) and analyzed in an FEI Tecnai G² Spirit transmission electron microscope or an FEI Tecnai F20 scanning transmission electron microscope. The accelerating voltage of the G² Spirit was 80 keV with a spot size 2 using the number 2 objective aperture. Images were collected using a Gatan camera and AMT Image Capture software. For the Tecnai F20, an accelerating voltage of 200 keV was used in the high angle annular dark field (HAADF) mode. Crystals inside the cells were analyzed with the energy-dispersive X-ray (EDX) spectrometer on the Tecnai F20 using only a 100 μm condenser aperture. The specimen was tilted 5° toward the EDAX detector that had an ultrathin Moxtex AP3.3 window with an elevation angle of 20°. The size of the cells and the magnetite crystals were analyzed using FIJI software.

PHYLOGENETIC ANALYSIS
Approximately 500 μL of sample collected from the racetrack was used to obtain DNA for phylogenetic analysis. DNA was obtained from the MTB by homogenizing the cells and resuspending them in RT buffer (Qiagen) with β-mercaptoethanol. A Qiagen DNA kit was used to isolate the DNA. The 16S rRNA genes were amplified by PCR using 28F and 519R primer pairs (TITGATCNNTGGCTCAG and GWNTTACNGCGGCKGCTG, respectively) and a Qiagen hotstart taq mastermix. The DNA was denatured at 95°C for 5 min, followed by 35 cycles at 94°C for 30 s, 54°C for 45 s, 72°C for 60 s. Finally, an extension reaction was performed at 72°C for 10 min.

The amplified DNA was sequenced and analyzed by the Research and Testing Laboratory in Lubbock, Texas. The DNA sequences were aligned using the default settings in MUSCLE (Edgar, 2004a,b). The sequences were compared with reference sequences from NCBI. A phylogenetic tree was generated using these sequences with the sum of branch length = 1.85273957 shown. The tree shown herein is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree (Sneath and Sokal, 1973). The evolutionary distances were computed using the Maximum Composite Likelihood method (Tamura et al., 2004), and are in the units of the number of base substitutions per site. The analysis involved 37 nucleotide sequences. Codon positions included were 1st + 2nd + 3rd + Noncoding. All ambiguous positions were removed for each sequence pair. There were a total of 1711 positions in the final dataset. A total of 16 operational taxonomic units (OTUs) were generated at a clustering identity of 97% (Table S1). Evolutionary analyses were conducted in MEGAS (Tamura et al., 2011). All sequence data has been deposited in GenBank as SAMN02370231 to SAMN02370259.

RESULTS
In August 2011, water-sediment samples were collected from Pavilion Lake, British Columbia, Canada (Figure 1). The temperature and pH of the freshwater lake were 20°C and pH 8.3, respectively. This lake is very clear (Figure 1B) with a maximum-recorded depth of 65 m (Laval et al., 2000; Lim et al., 2009). The collected samples were returned to the lab for enrichment of MTB and subsequent analysis of 16S rDNA and examination of the microorganisms by electron microscopy.

An aliquot containing enriched MTB from Pavilion Lake was analyzed by 16S sequencing from all the bacteria contained within the enriched sample. The sample contained 29 different 16S rRNA gene sequences named PL-5-1 through PL-5-29. These sequences were compared with sequences in the NCBI nucleotide database in order to construct a phylogenetic tree (Figure 2). An
Alphaproteobacterium (Genbank accession number DQ482050) was used to root the tree. All 29 of the MTB species isolated from Pavilion Lake were found to group with the Alphaproteobacteria (Figure 2).

TEM was used to visualize individual bacterial cells that had been isolated from Pavilion Lake. These MTB were found to be spirillum-shaped, 2.9 (±0.6) μm long, 0.34 (±0.02) μm wide (n = 7), containing a single flagellum (Figure 3A). The magnetosomes contained crystals of iron and oxygen indicating Fe₃O₄ (Figure 3B). Background spectra collected from the cellular matrix contained additional elements such as Mg, Na, Si, P, S, Cl, and K (Figure 3C). The Cu peaks that are seen in Figures 3B,C originated from the grid support used to mount the samples for TEM. The other elements (e.g., Na, Mg, P, K, S, Cl) observed in the EDX spectrum are from the cellular matrix (e.g., proteins, cytoplasm) and the dried fluid from the collection process (e.g., Al, Na, Si, Cl).

The Fe₃O₄ crystals in the cells averaged 47 (±4) nm long and 44 (±5) nm wide. The size range was 37–62 and 33–56 nm, respectively, for length and width (n = 155, Figure 4) with an average number of 19 crystals per cell (n = 7). The magnetite crystals were nearly the same size in length and width (Figure 4C) and most had a shape factor around 0.9 (±0.05) (Figure 4A) indicating that the magnetite crystals are single domain magnetite crystals (Figure 4D).

DISCUSSION

This study expands the range of habitats for MTB to include a freshwater ecosystem that contains microbialites. The MTB isolated from Pavilion Lake were spirillum-shaped bacteria from the Alphaproteobacteria that are closely related to Magnetospirillum (Figure 2). The bacteria were 2.9 μm long and 0.3 μm wide and contained a single chain of magnetosomes with an average of 19 cuboidal-shaped crystals per cell. The EDX data (Figures 3B,C) clearly demonstrated that the nanometer-sized minerals were composed of iron and oxygen, as expected for Fe₃O₄. The magnetite nanominerals were approximately 45 nm in diameter (Figure 4).
These measurements for MTB isolated from Pavilion Lake (Figure 3A) are similar to other freshwater *Magnetospirillum* bacteria, which have single chains of 15 or more magnetosomes with cuboctahedral shaped magnetite ranging from 40 to 50 nm (Isambert et al., 2007; Faivre and Schüler, 2008; Baumgartner and Faivre, 2011). In addition, the MTB that we isolated from Pavilion Lake had a polar flagellum, similar shape, and similar size as other freshwater *Magnetospirillum* (Figure 3A).

Magnetospirillum are ubiquitous in freshwater habitats and are one of the most common magnetotactic forms of *Alphaproteobacteria* (Spring and Bazylinski, 2006; Amann et al., 2007). Environmental parameters have been shown to affect the morphology of magnetosome crystals in culture (Spring and Schleifer, 1995; Faivre et al., 2008; Li and Pan, 2012) as well as the mineral composition both in the environment and in culture (Bazylinski et al., 1995; Simmons and Edwards, 2007; Lefèvre et al., 2011). The chemical composition and crystal morphology of magnetite crystals in our specimens were comparable to other *Magnetospirillum* described in the literature. Therefore, it appears that the unique freshwater environment of Pavilion Lake does not affect the “typical” magnetite crystals in magnetosomes of MTB. Perhaps a more detailed chemical and redox profiling of the microbialites as well as the water and sediment might reveal what environmental parameters are important in this regard.
Based on morphological and phylogenetic analysis of the bacteria from Pavilion Lake we were able to isolate one type of MTB (Alphaproteobacteria, Figure 2). None were found that belonged to the Deltaproteobacteria class or Gammaproteobacteria class or the Nitrospirae phylum. While it is possible that the collection and enrichment protocol used here selected for specific MTB species (Lin et al., 2008), this seems doubtful given the numerous studies where these types of techniques have been used to successfully retrieve MTB from the Nitrospirae phylum as well as the Proteobacteria (Lefèvre et al., 2011). In addition, MTB of the Nitrospirae and the Deltaproteobacteria are only known to bio mineralize bullet-shaped magnetite magnetosomes (Lefèvre et al., 2013) and we did not observe these using electron microscopy. Thus, it seems more likely that Nitrospirae MTB were not present. Of course, one should be mindful of the fact that bacteria were not enriched from our lake samples until several weeks after collection. Some work has shown that this could have selected for one dominant type of MTB during the incubation period in our laboratory (Vali et al., 1987; Flies et al., 2005).

The samples analyzed in this paper confirm that MTB are present in the shallow water along the shoreline of Pavilion Lake. The next logical step is to use Scuba to access deeper parts of Pavilion Lake to determine whether MTB are also present in the microbialites. The presence of MTB in the microbialites in Pavilion Lake would have important implications for finding microfossils in these structures, especially when one considers that magnetite is known to serve as a robust biomarker in microfossils (Kirschvink and Chang, 1984; Chang and Kirschvink, 1989; Kobayashi et al., 2006; Kopp et al., 2006; Kopp and Kirschvink, 2008; Jimenez-Lopez et al., 2010; Pósfai et al., 2013).

By determining whether magnetofossils and what magnetosome magnetite crystal morphologies are present in the microbialites, much important geologic, paleo geographic and geochemical information might be obtained. For example, it might be ascertained whether MTB played a significant role in the geochemical formation of the microbialites. By knowing what types of magnetofossil magnetite crystals are present, we may also be able to determine which phylogenetic and metabolic types of MTB (Lefèvre et al., 2013; Pósfai et al., 2013) are currently present as well as those associated with the microbialites in the past and when these associations existed. Finally, the presence of magnetofossils in the microbialites, together with geochemical studies, one might be able to determine specific chemical/redox conditions under which magnetite magnetofossils are chemically stable and persist in such environments.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science Foundation (NSF) grants EAR-0920299, EAR-0920718, EAR-0745808. A portion of this research was also supported by funds from the NSF East Asia and Pacific Summer Institutes Program and The Geological Society of America. Dennis A. Bazylnski is also supported by subcontract SC-12-384 from U.S. Department of Energy contract DE-AC02-07CH11358 to the Ames Laboratory at Iowa State University. We thank S. Cole and R. Montione from OSU-CMIF and H. Colijn from OSU-CEOF for their assistance with the microscopy.

SUPPLEMENTARY MATERIAL

The Supplementary material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fmicb.2013.00406/abstract

REFERENCES

Amann, R., Phipps, J., and Schüler, D. (2007). “Diversity and taxonomy of magnetotactic bacteria,” in Magnetoreception and Magnetosomes in Bacteria, ed D. Schüler (New York, NY; Berlin: Heidelberg: Springer-Verlag), 25–36. doi: 10.1007/7171_057

Baumgartner, J., and Faire, D. (2011). “Magnetite biominalization in bacteria,” in Molecular Biominalization, ed W. E. G. Müller (New York, NY; Berlin: Heidelberg: Springer-Verlag), 3–27.

Bazylnski, D., A., Frankel, R., Heywood, B. R., Mann, S., King, J. W., Donaghy, P. L., et al. (1995). Controlled biominalization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl. Environ. Microbiol. 61, 3232–3239.

Bazylnski, D. A., Heywood, B. R., Mann, S., and Frankel, R. B. (1993). Fe3O4 and Fe3S4 in a bacterium. Nature 366, 218–218. doi: 10.1038/366218a0

Bazylnski, D. A., Schleizinger, D. R., Howes, B. H., Frankel, R. B., and Epstein, S. S. (2000). Occurrence and distribution of diverse populations of magnetic prots in a chemically stratified coastal salt pond. Chem. Geol. 169, 319–328. doi: 10.1016/S0009-2541(00)00211-4

Benzerara, K., and Menguy, N. (2009). Looking for traces of life in minerals. Comptes Rendus Palevol 8, 617–628. doi: 10.1016/j.crpv.2009.03.006

Benzerara, K., Miot, J., Morin, G., Ona-Nguema, G., Skouri-Panet, F., and Férard, C. (2011). Significance, mechanisms and environmental implications of microbial biominalization. Comptes Rendus Geoscience 343, 160–167. doi: 10.1016/j.crte.2010.09.002

Blakemore, R. (1975). Magnetotactic bacteria. Science 190, 377–379. doi: 10.1126/science.170679

Butler, R. F., and Banerjee, S. K. (1975). Theoretical single-domain grain size and magnetite and titanomagnetite. J. Geophys. Res. 80, 4049–4058. doi: 10.1029/JB080i02p04049

Chang, S. B. R., and Kirschvink, J. L. (1989). Magnetofossils, the magnetization of sediments, and the evolution of magnetite biominalization. Annu. Rev. Earth Planet. Sci. 17, 169–195. doi: 10.1146/annurev.ea.17.050189.001125

Devoard, B., Posfai, M., Hua, X., Bazylinski, D. A., Frankel, R. B., and Buscck, P. R. (1998). Magnetite from magnetotactic bacteria; size distributions and twinning. Am. Mineral. 83, 1387–1398.

Edgar, R. (2004a). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. doi: 10.1186/1471-2105-5-113

Edgar, R. C. (2004b). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi: 10.1093/nar/gkh340

Faire, D., Menguy, N., Posfai, M., and Schüler, D. (2008). Environmental parame ters affect the physical properties of fast-growing magnetosomes. Am. Mineral. 93, 463–469. doi: 10.2138/am.2008.2678

Faire, D., and Schüler, D. (2008). Magnetotactic bacteria and magnetosomes. Chem. Rev. 108, 4875–4898. doi: 10.1021/cr078258w

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791. doi: 10.2307/2408678

Flies, C. B., Jonkers, H. M., Beer, D., Bosselmman, K., Bottcher, M. E., and Schüler, D. (2005). Diversity and vertical distribution of magnetotactic bacteri a along chemical gradients in freshwater microcosms. FEMS Microbiol. Ecol. 52, 185–195. doi: 10.1016/j.femsec.2004.11.006

Frankel, R. B., Williams, T. J., and Bazylinski, D. A. (2007). “Magnetotactic bacteria,” in Magnetoreception and Magnetosomes in Bacteria, eds D. Schüler (New York, NY; Berlin: Heidelberg: Springer-Verlag), 1–24. doi: 10.1007/7171_2006_036

Isambert, A., Menguy, N., Larquet, E., Gayot, F., and Valet, J. P. (2007). Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am. Mineral. 92, 621–630. doi: 10.2138/am.2007.2278

Jimenez-Lopez, C., Romanek, C. S., and Bazylinski, D. A. (2010). Magnetite as a prokaryotic biomarker: a review. J. Geophys. Res. Biogeosci. 115, G00G03. doi: 10.1029/2009JD01152

Kennard, J. M., and James, N. P. (1986). Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1, 492–503. doi: 10.2307/3514631
Kirschvink, J. L., and Chang, S. B. R. (1984). Ultrafine-grained magnetite in deep-sea sediments: Possible bacterial magnetofossils. Geology 12, 559–562. doi: 10.1130/0091-7613(1984)12<559:UMDFSP>2.0.CO;2
Kobayashi, A., Kirschvink, J. L., Nash, C. Z., Kopp, R. E., Sauer, D. A., Bertani, L. E., et al. (2006). Experimental observation of magnetosome chain collapse in magnetotactic bacteria: sedimentological, paleomagnetic, and evolutionary implications. Earth Planet. Sci. Lett. 245, 538–550. doi: 10.1016/j.epsl.2006.03.041
Kopp, R. E., and Kirschvink, J. L. (2008). The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci. Rev. 86, 42–61. doi: 10.1016/j.earscirev.2007.08.001
Kopp, R. E., Raub, T. D., Schumann, D., Vali, H., Smirnov, A. V., and Kirschvink, J. L. (2007). Magnetofossil spike during the paleocene-eocene thermal maximum: ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States. Paleoclimatology 22, PA4103. doi: 10.1029/2007PA001473
Kopp, R., Weiss, B., Maloof, A., Vali, H., Nash, C., and Kirschvink, J. (2006). Chains, clumps, and strings: magnetofossil taphonomy with ferromagnetic resonance spectroscopy. Earth Planet. Sci. Lett. 247, 10–25. doi: 10.1016/j.epsl.2006.05.001
Laval, B., Cady, S. L., Pollack, J. C., McKay, C. P., Bird, J. S., Grotzinger, J. P., et al. (2000). Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature 407, 626–629. doi: 10.1038/35036579
LeFèvre, C., Abreu, F., Schmidt, M. L., Lins, U., Frankel, R. B., Hedlund, B. P. et al. (2010). Moderately thermophilic magnetotactic bacteria from hot springs in nevada. Appl. Environ. Microbiol. 76, 3740–3743. doi: 10.1128/AEM.03018-09
LeFèvre, C., Menguy, N., Abreu, F., Lins, U., Posfai, M., Prozorov, T. et al. (2011). A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334, 1720–1723. doi: 10.1126/science.1212596
LeFèvre, C. T., Frankel, R. B., Abreu, F., Lins, U., and Bazylinski, D. A. (2011). Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ. Microbiol. 13, 538–549. doi: 10.1111/j.1462-2920.2010.02361.x
LeFèvre, C. T., Trubitsyn, D., Abreu, F., Kolinko, S., de Almeida, L. G. P., de Vasconcelos, A. T. R., et al. (2013). Monophyletic origin of magnetotaxis and the first magnetosomes. Environ. Microbiol. 15, 2267–2274. doi: 10.1111/1462-2920.12097
Li, J., and Pan, Y. (2012). Environmental factors affect magnetite magnetosome synthesis in magnetospirillum magneticaAMB-1: implications for biologically controlled mineralization. Geomicrobiol. J. 29, 362–373. doi: 10.1080/01490451.2011.565401
Lim, D. S. S., Laval, B. E., Slater, G., Antoniades, D., Forrest, A. L., Pike, W., et al. (2009). Limnology of Pavilion lake, BC, Canada characterization of a microbialite forming environment. Fund. Appl. Limnol. 173, 329–351. doi: 10.1127/1663-9135(2009)0173<0329:LMOPLB>2.0.CO;2
Lin, W., Li, J., Schuler, D., Jorgler, C., and Pan, Y. (2009). Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism. Syst. Appl. Microbiol. 32, 342–350. doi: 10.1016/j.syapm.2008.10.005
Lin, W., Tian, L., Li, J., and Pan, Y. (2008). Does capillary racetrack-based enrichment reflect the diversity of uncultivated magnetotactic cocci in environmental samples? FEMS Microbiol. Lett. 279, 202–206. doi: 10.1111/j.1574-6968.2007.01029.x
Lower, B. H., and Bazylinski, D. A. (2013). The bacterial magnetosome: a unique prokaryotic organelle. J. Mol. Microbiol. Biotechnol. 23, 63–80. doi: 10.1159/000346543
Moench, T. T., and Konetzka, W. (1978). A novel method for the isolation and study of a magnetotactic bacterium. Arch. Microbiol. 119, 203–212. doi: 10.1007/BF00964274

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 30 August 2013; accepted: 07 December 2013; published online: 20 December 2013.

Citation: Oesterhier, Z., Lower, SK, Rees, E, Bazylinski, D and Lower, BH (2013) Magnetotactic bacteria from Pavilion Lake, British Columbia. Front. Microbiol. 4:406. doi: 10.3389/fmicb.2013.00406
This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology.
Copyright © 2013 Oesterhier, Lower, Rees, Bazylinski and Lower. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.