Ecofriendly production of silver nanoparticles from the seeds of *Carica papaya* and its larvicidal and antibacterial efficacy against some selected bacterial pathogens

AD Aina*a, O Owolo*a, M Adeoye-Isijola*a, O D Olukanni*b, A Lateef*c,d, T Egbe*a, FO Aina*e, TB Asafad,f and SH Abbas*g

*aDepartment of Microbiology, Babcock University PMB 21244, Ikeja, Lagos, Nigeria
*bDepartment of Chemical Sciences, Redeemer's University, Gbogan-Osogbo Road, PMB 230, Ede 232001
*cDepartment of Pure and Applied Biology, Ladoke Akintola University of Technology PMB 4000, Ogbomoso, Nigeria
*dNanotechnology Research Group (*NANO*), LAUTECH, Ogbomoso, Nigeria
*eDepartment of Maternal and Child Health, Babcock University, PMB 21244, Ikeja, Lagos, Nigeria
*fDepartment of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
*gCenter of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 Saudi Arabia

Abstract

Carica papaya seed extract (CPE) was used in the synthesis of silver nanoparticles (AgNPs) in this study. For the characterization of biosynthesized particles, UV-vis spectroscopy, FTIR, FESEM and EDX were used. Antimicrobial and larvicidal efficacies of the synthesized AgNPs were assessed in the fight against certain pathogens and the *Aedes aegypti* 4th instar larvae. The absorption spectrum of AgNPs peaked at 433 nm with a broad peak of 3000 to 3800 cm$^{-1}$ for different functional groups as presented in the FTIR analysis. A FESEM evaluation revealed a number of spherical particle structures with an average of 20-69 nm. With zones of inhibition between 10-24 mm, the AgNPs synthesized inhibited selected microorganisms. After 12 h of exposure, the nanoparticles had LC$_{50}$ and LC$_{90}$ lethal concentration on the *Aedes aegypti* larva at 14.56 and 33.89 μg/ml respectively. This study demonstrates possibility of using *Carica papaya* seeds in AgNPs synthesis.

Keywords: Antibacterial, *Carica papaya*, dengue fever, larvicidal, pathogens, silver nanoparticles
1 Introduction

The development of microbial resistance to antimicrobial agents is one of the biggest challenges facing bio-scientists. Zika and dengue fever both transmitted by *Aedes aegypti* mosquito are another major public health problem that bio-scientists are looking to tackle. One way to control these mosquito-borne diseases is to interfere with the transmission of diseases through either the eradication of mosquitoes, the preservation of mosquitoes against bitten persons or through a high-scale mortality in mosquito larvae at vector breeding sites [1]. The application of chemical larvicides is detrimental to the environment because they are not biodegradable and therefore can persist for a long time in the environment [2]. In addition, synthetic larvicidal also disrupt biological frameworks of natural control which at times promote resistance [3]. Scientists are therefore looking for alternative natural products that can serve as both larvicidal and antimicrobial agents.

Silver has been known for a long time to prevent microbial contamination. It protects against quite a number of microorganisms such as *Escherichia coli* and *Pseudomonas aeruginosa* [4]. However, the metal has received much attention recently and is being used in the synthesis of silver nanoparticles. *Azadirachta indica* leaf extract used in silver nanoparticles synthesis (AgNPs) was reported by Benakashani *et al.* [5]. Numerous researchers in silver nanoparticles synthesis with remarkable biomedical applications also used several other species including *Cola nitida*, *Theobroma cacao*, *Buchholzia coriacea* and *Synsepalum dulcificum* [6-14].

In biomedical research, the different applications for certain parts of the *Carica papaya* plant have been used a number of times. Okeniyi *et al.* [15] documented the anti-moebic and antihelmintic potentials in *Carica papaya*. Bamisaye *et al.* [16] also reported on the plant’s ethnobotanical perspectives. The antimicrobial efficacy of its root against certain infectious microorganisms was also tested by Tiwari *et al.* [17]. In a previous paper, the flavonoid content, total phenolic content and total antioxidant activity of the various plant parts of the papaya tree were determined and compared [18].

Several portions of the *Carica papaya* plant have also been utilised for green synthesis of nanoparticles. Jain *et al.* [19] reported the usage of *Carica* fruit extract in AgNPs synthesis. It’s antimicrobial efficacy against some microorganisms such as *Escherichia coli* and *Pseudomonas aeruginosa* were likewise reported [19]. In addition, Kokila and others in 2013 also reported the usage of the AgNPs synthesized from its peel extract as antioxidant and antimicrobial agents [20]. Mahanty *et al.* [21] evaluated the possible application of silver nanoparticles in aquaculture as alternatives to antibiotics. Banala *et al.* [22] also evaluated the
bactericidal activity of silver nanoparticles synthesized from the leaf extract of this plant against human pathogenic strains like Staphylococcus aureus, Bacillus subtilis, Microbacterium luteus, Klebsiella pneumoniae and E. coli. In the synthesis of AgNPs, Mude et al. [23] also used the callus extract to synthesize AgNPs, while Sankar et al. [24] took further steps in the synthesis and application of colloidal copper oxide in photocatalytic degradation with the extracts from this plant. It is worthy of note in the field of nanotechnology that nanoparticles from the seeds of Carica papaya have not been synthesized or investigated for its biological or antimicrobial properties. Therefore, the study discussed here aims to analyze and apply Carica papaya seed as antimicrobial, larvicidal and bio-reducing agents in the green synthesis of AgNPs.

2 Materials and Methods

2.1 Sample collection

Fresh Carica papaya was purchased from Ilishan-Remo market in Ogun state and was stored in the Babcock University Microbiology Laboratory. The fruit was cut open and the seeds were removed and dried for 5 days (30 ± 2 °C) under shade. The dried seeds were pulverised and stored in air-tight bottles at room temperature for further use in water/air resistant bottles. For antimicrobial studies, Staphylococcus aureus was the selected Gram positive organism used, while Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae served as the selected Gram negative organisms. These bacterial strains were collected from the Teaching Hospital of Ladoke Akintola University Ogbomoso, Nigeria.

2.2 Collection and Identification of Mosquito Larva

The mosquito larvae were collected using a net, and kept in sealed containers from polluted body of water in Babcock University, Nigeria. In this study, the target mosquito larvae were the 4th instar larva Aedes aegypti mosquito. Identified Aedes aegypti mosquito larvae (identified by a medical entomologist) were isolated from the other mosquito species and placed separately in a container full of water.

2.3 Preparation of extract

The Carica papaya seed aqueous extract used for this analysis was done following the method of Lateef et al. [25]. One gram of the seed was soaked in 100 ml distilled water. This was accompanied by heating in the water bath for 1 h at 60 °C temperature. The extract was filtered and centrifuged at 4000 rpm for 20 min and the resultant supernatant was obtained.
2.4 Biogenic synthesis of the AgNPs
The AgNPs was biogenically synthesised by introducing 1 ml of the prepared extract into 40 ml of 1 mM AgNO₃ and the colour change was observed. The entire reaction which was about 2 h was conducted in ambient condition [25].

2.5 Characterization of the AgNPs
The synthesized AgNPs were characterized by a UV-visible spectrophotometer (Cecil USA) that measured its absorbance spectrum at 190-1100 nm. FTIR spectroscopy identified biomolecules participating in the green synthesis. The FTIR model 8400S (Shimadzu Japan) developed vibrational frequencies in NPs from FTIR spectrum using KBr process. To assess the identity and ratio of elemental particles, EDX analysis (Silicon-Drift Detector X-Max daN Oxford Instruments UK) was carried out. FESEM (Lyra 3 Tescan Czech Republic) was used to examine the presence, size and structural morphology of synthesized silver nanoparticles. Image J was used to analyze the image attributes [26].

2.6 Antimicrobial Activity
The agar well-diffusion method was used to assess the efficacy of biosynthesized Carica papaya extract mediated silver nanoparticles (CPE-AgNPs) against certain selected clinical isolates. An 18 h-old culture of each species grown in peptone broth was used to inoculate an already prepared Mueller Hinton agar plate. Holes were drilled using a 6 mm sterile cork borer on the inoculated plate and labelled 10, 20, 40, 60, 80 and 100 μg/ml respectively. The resulting holes were then filled with 100 μl of different concentrations from the synthesized CPE-AgNPssilver nitrate (positive control) and water (negative control). The plates were incubated at 37 °C for 18 h after which the zone of inhibition was then determined [27]. The analysis was done in triplicates.

2.7 Larvicidal Efficacy
The WHO recommended guideline was used to test the efficacy of the AgNPs with the 4th Aedes aegypti instar larva [28]. A microtitre plate of 96-hole was used. The 5 holes of 20, 40, 60, 80 and 100 μg / ml respectively were loaded with five larvae. In each respective hollow, 300 μl of each AgNP concentration was then dispensed as labelled. A control experiment was conducted in which the larvae were exposed to sterile distilled water. Triplicate tests were performed and after 12 h of treatment readings were obtained. This was followed by statistical assessment of mortality percentage and Probit analysis for the LC₅₀ and LC₉₀ computation.
3 Results and Discussion

3.1 Synthesis and Characterization of the Synthesized AgNPs

Upon the addition of the plant extract to the silver nitrate, the solution still remained colourless. After 10 min, a gradual change in colour was observed; initially starting faintly and in 30 min, a stable deep brown colouration was formed in the reaction vessel (Figure 1), which is indicative of the formation of AgNPs as it has been observed by several other researchers [8-12]. The colour change of the solution of metallic salt is a sign of nanoparticles development. Earlier researchers reported extensively the advances of different color shades including light yellow to darker colloidal AgNPs [4, 7-9, 29-32]. A light brown coloration was observed by Mahanty et al. [21] during the synthesis of silver nanoparticles from *Carica papaya* leaves. It was believed that this colour shift during the formation of silver nanoparticles from *Carica papaya* is induced by the different biomolecules present in the plant and are of responsible for the synthesis and stability of silver nanoparticles in its seed extract [8].

Figure 1. Synthesis of the CPE-AgNPs (a) 0 min after the addition of the plant extract to the silver nitrate (b) Formation of deep brown colouration after 30 min

The CPE-AgNPs formed were examined with the UV-vis spectrophotometer as shown in Figure 2. The absorption range of the synthesized CPE-AgNPs displayed a peak magnitude at 433 nm. The peak is in line with previously reported investigations on silver nanoparticles [4, 8, 25, 33-35]. Jain et al. [19] recorded a maximum absorption of 450 nm which was due to surface plasmon excitation when using *Carica papaya* fruit extract for silver nanoparticles synthesis.
Specific functional classes on the surface of the AgNPs were shown in the FTIR study of the CPE-AgNPs (Figure 3). It has a large range from 3000 to 3800 cm\(^{-1}\) defined as the ones with vibration of O-H and/or N-H correlated with n-substituted amide [36] at 2426 cm\(^{-1}\) and 2360 cm\(^{-1}\), and the ones with ambient CO\(_2\) absorption [37-38]. The N-H bending of amides of proteins is reported at 1635 cm\(^{-1}\).

The EDX ranges of the *Carica papaya* controlled AgNPs is shown in Figure 4. Powerful signals at 1.5 keV and 3.0 keV were recorded from Ag atoms while weak signals at 2.7, 2.9 and 3.2 keV were noted. Figure 4 also displayed certain components such as C and O which are known as impurities from the sample. Several other scientists [39-41] reported similar findings of heavy silver signalling varying from 1.5 to 5.0 keV.
In Figure 5, FESEM analysis on CPE-AgNPs provided additional details on the size and morphology of the synthesized AgNPs. As a consequence of its high surface ratio, the particles produced formed clusters or aggregates. There are also many spherical nanoparticles from 20 to 69 nm. This picture shows a large amount. The viability of *Carica papaya* seed for the biosynthesis of silver nanoparticles in this study has been verified by similar FESEM findings from synthesized silver nanoparticles from other plants [8].

![Figure 5](image)

Figure 5. Field emission scanning electron micrograph of the synthesized AgNPs at different magnifications (a) 200kx (b) 100kx (c) 50kx

3.2 Antimicrobial activity

Of all the four selected pathogens tested, the synthesized AgNPs inhibited the growth of *Klebsiella pneumoniae, Pseudomonas aeruginosa* and *Escherichia coli*, all of which were
inhibited distinctly with zones ranging from 10-24 mm. A wide range of pathogenic organisms have been inhibited by biosynthesized AgNPs effectively [42-46]. At 100 μg of CPE-AgNPs Staphylococcus aureus was inhibited by 16.0 mm, while other concentrations (10-80 μg) did not have any inhibitory effect. Panacek et al. [47] reported similar resistance trends to AgNPs. It is proposed that flagellin present in large amounts in bacteria may cluster the silver nanoparticles and thus decreases its antibacterial effectiveness. Ultimately, the results of this study showed a significant antibacterial impact of the nano-sized silver synthesized from Carica papaya seed. The above details are described in both Table 1 and Figure 6.

Table 1. Zone of inhibition of the synthesized AgNPs against some selected pathogens

Isolate	AgNPs 10μg/ml	AgNPs 20μg/ml	AgNPs 40μg/ml	AgNPs 60μg/ml	AgNPs 80μg/ml	AgNPs 100μg/ml	AgNO₃ 100μg/ml	CPE 100μg/ml	Distilled H₂O 100μg/ml
Staphylococcus aureus	NZ	NZ	NZ	NZ	16.0±01	6.2±02	NZ	NZ	NZ
Klebsiella pneumoniae	NZ	11±02	17±02	24±02	20±02	15.0±01	6.4±01	NZ	NZ
Pseudomonas aeruginosa	10±01	12±02	13±01	NZ	NZ	6.1±01	NZ	NZ	NZ
Escherichia coli	13±01	10±01	NZ	12±02	20.0±01	6.3±01	NZ	NZ	NZ

NZ, No zone

3.3 Larvicidal Activity

The biosynthesized AgNPs were found to be highly toxic to the 4th instar larvae Aedes aegypti. Mortality percentages in the 20, 40 and 60 μg/ml were found to be 80%, 86.6% and 93.3% respectively, while the 80 and 100 μg/ml showed 100% mortality as shown in Figure 7. However, no mortality was recorded in the control group. Furthermore, the AgNPs exhibited a concentration dependent activity against mosquito larvae since the percentage mortality was observed to increase with increasing concentrations of the biosynthesized nanoparticles. The 50% lethal concentration (LC₅₀) of the nanoparticles was 14.54 μg/ml, while the LC₉₀ was 33.9 μg/ml. Similar results were recorded also in the previous study by Lateef et al. [25], where AgNPs synthesized from cell-free extract of Bacillus safensis exhibited larvicidal potential against Anopheline larvae. The larvicidal activity of the AgNPs could be because of the penetration of the particles to debilitate cell metabolism because of their attachment to enzymes and DNA. CPE-AgNPs larvicidal activities were similar to
reported larvicidal activity of some AgNPs of bacterial extract origin and plants against *Aedes aegypti* larvae [48].

Figure 6. The antibacterial activities of the CPE-AgNPs against some clinical bacterial isolates (a) *Pseudomonas aeruginosa* (b) *Staphylococcus aureus* (c) *Klebsiella pneumoniae* (d) *Escherichia coli*

Figure 7. Larvicidal activity of the biosynthesized CPE-AgNPs on *Aedes* mosquito larvae
4 Conclusion

This study has revealed a cheaper and eco-friendly biosynthesis of AgNPs using seeds of Carica papaya. It is proof that the seeds of the plant possess the biomolecules and phytochemicals necessary for the reduction and stabilization agents in the synthesis of silver nanoparticles. The CPE-AgNPs had remarkable antibacterial and larvicidal activities, making available a new agent for combat against multi-drug resistant bacteria and the Zika and Dengue fever vector. More investigation into the cytotoxicity of these biosynthesized silver nanoparticles is however required to further clarify issues on its application.

References

[1] Mohan DR and Ramaswamy M 2007 Evaluation of larvicidal activity of the leaf extract of a weed plant Ageratina adenophora against two important species of mosquito Aedes aegypti and Culex quinquefaciatus. Afr. J. Biotechnol. 6 (5) pp 631-638.

[2] Tiwary M, Naik S, Tewary D K, Mittal P K and Yadav S 2007 Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J. Vect. Borne Dis. 44 (3) pp 198-204.

[3] Mathivanan T, Govindarajan K, Elumalai K and Ananthan A 2010 Mosquito larvicidal and phytochemical properties of Ervatamia coronaria Stap f (Family Apocynaceae). J. Vect. Borne Dis. 47 (3) pp 178-180.

[4] Ahmed S, Saifullah A, Ahmad M, Swami B L and Ikram S 2016 Green synthesis of silver nanoparticles using Azadiracha indica aqueous leaf extract. J. Rad. Res. Appl. Sci. 9 (1) pp 1–7.

[5] Benakashani F, Allafchian A R and Jalali S A H 2016 Biosynthesis of silver nanoparticles using Capparis spinosa L leaf extract and their antibacterial activity. Karbala Int. J. Modern Sci. 2 (4) pp 251-258.

[6] Adelere I A and Lateef A 2016 A novel approach to the green synthesis of metallic nanoparticles: The use of agro-wastes enzymes and pigments. Nanotechnol. Rev. 5 (6) pp 567-587.

[7] Adelere I A, Lateef A, Aboyegi DO, Abdulsalam R, Adabara NU and Bala JD 2017 Biosynthesis of silver nanoparticles using aqueous extract of Buchholzia coriacea (wonderful kola) seeds and their antimicrobial activities. Ann. Food Sci. Technol. 18 (4) pp 671-679.

[8] Lateef A, Azeez M A, Asafa T B, Yekeen T A, Akinboro A, Oladipo I C and Beukes L S 2015 Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and
seed shell extracts and evaluation of antibacterial activities. *BioNanoSci.* 5 (4) pp 196-205.

[9] Lateef A, Azeez M A, Asafa T B, Yekeen T A, Akinboro A, Oladipo I C and Beukes L S 2016 Biogenic synthesis of silver nanoparticles using a pod extract of *Cola nitida*: Antibacterial and antioxidant activities and application as a paint additive. *J. Taibah Univ. Sci.* 10 (4) pp 551-562.

[10] Lateef A, Azeez M A, Asafa T B, Yekeen T A, Akinboro A, Oladipo I C and Beukes L S 2016 Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial antioxidant and larvicidal activities. *J. Nanostruct. Chem.* 6 (2) pp 159-169.

[11] Lateef A, Akande M A, Azeez M A, Ojo S A, Folarin B I, Gueguim-Kana E B and Beukes L S 2016 Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (*Synsepalum dulcificum*) for antimicrobial catalytic anticoagulant and thrombolytic applications. *Nanotechnol. Rev.* 5 (6) pp 507-520.

[12] Azeez M A, Lateef A, Asafa T B, Yekeen T A, Akinboro A, Oladipo I C, Gueguim-Kana E B and Beukes L S 2017 Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial larvicidal and anticoagulant agents. *J. Clust. Sci.* 28 (1) pp 149-164.

[13] Yekeen T A, Azeez M A, Lateef A, Asafa T B, Oladipo I C, Badmus J A, Adejumo SA and Ajibola A A 2017 Cytogenotoxicity potentials of cocoa pod and bean-mediated green synthesized silver nanoparticles on *Allium cepa* cells. *Caryologia: Int. J. Cytol. Cytosystem. Cytogenet.* 70 (4) pp 366-377.

[14] Yekeen T A, Azeez M A, Akinboro A, Lateef A, Asafa T B, Oladipo I C, Oladokun SO and Ajibola A A 2017 Safety evaluation of green synthesized *Cola nitida* pod seed and seed shell extract-mediated silver nanoparticles (AgNPs) using an *Allium cepa* assay. *J. Taibah Univ. Sci.* 11 (6) pp 895-909.

[15] Okeniyi JA, Ogunlesi TA, Oyelami OA and Adeyemi LA 2007 Effectiveness of dried *Carica papaya* seeds against human intestinal parasitosis: A pilot study. *J. Med. Food* 10 (1) pp 194-196.

[16] Bamisaye FA, Ajani EO and Minari JB 2013 Prospects of ethnobotanical uses of pawpaw (*Carica papaya*). *J. Med. Plants Stud.* 1 (4) pp 171-177.

[17] Tiwari P, Kumar K, Panik R, Pandey A, Pandey A, Sahu P K and Raipur C G 2011 Antimicrobial activity evaluation of the root of *Carica papaya* Linn. *Int. J. PharmTech Res.* 3 (3) pp 1641-1648.
[18] Maisarah A, Nurul Amira B, Asmah R and Fauziah O 2013 Antioxidant analysis of different parts of Carica papaya. Int. Food Res. J. 20 (3) pp 1043-1048.

[19] Jain D, Daima H, Kachhwaha S and Kothari S 2009 Synthesis of plant-mediated silver nanoparticles using Carica papaya fruit extract and evaluation of their antimicrobial activities. Digest J. Nanomater. Biostruct. 4 (3) pp 557-563.

[20] Kokila T, Ramesh P S and Geetha D 2016 Ecotoxicology and Environmental Safety Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol. Environ. Saf. 134 pp 467-473.

[21] Mahanty A, Mishra S, Bosu R, Maurya U K, Netam S P and Sarkar B 2013 Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Ind. J. Microbiol. 53 (4) pp 438-446.

[22] Banala R, Nagati V and Karnati P 2015 Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction electron microscopy and evaluation of bactericidal properties. Saudi J. Biol. Sci. 22 (5) pp 637-644.

[23] Mude N, Ingle A, Gade A and Rai M 2009 Synthesis of silver nanoparticles using callus extract of Carica papaya-a first report. J. Plant Biochem. Biotechnol. 18 (1) pp 83-86.

[24] Sankar R, Manikandan P and Malavizhi V 2014 Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim. Acta Part A: Mol. Biomol. Spectr. 121 pp 746-750.

[25] Lateef A, Ojo S A, Akinwale A S, Azeez L, Gueguim-Kana E B and Beukes L S 2015 Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: Antimicrobial free radical scavenging and larvicidal activities. Biologia 70 (10) pp 1295-1306.

[26] Defante A P, Vreeland W N, Benkstein K D and Ripple D C 2018 Using image attributes to assure accurate particle size and count using nanoparticle tracking analysis. J. Pharmaceut. Sci. 107 (5) pp 1383-1391.

[26] Perez C, Paul M and Bazerque P 1990 Antibiotic assay by agar well diffusion method. Acta Biol. Med. Exp. 15 pp 113-115.

[27] WHO 2005 Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization (No. WHO/CDS/WHOPES/GCDPP/2005.13). https://apps.who.int/iris/bitstream/handle/10665/69101/WHO_CDS_WHOPES_GCDPP_2005.13.pdf (Accessed on 2 February, 2020).
[28] Prabu H and Johnson I 2015 Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of *Tragia involucrata*, *Cymbopogon citronella*, *Solanum verbascifolium* and *Tylophora ovata*. Karbala Int. J. Modern Sci. 1 (4) pp 237-246.

[29] Bindhu MR and Umadevi M 2013 Synthesis of monodispersed silver nanoparticles using *Hibiscus cannabinus* leaf extract and its antimicrobial activity. *Spectrochim. Acta Part A: Mol. Biomol. Spectr.* 101 pp 184-190.

[30] Bindhu MR and Umadevi M 2015 Antibacterial and catalytic activities of green synthesized silver nanoparticles. *Spectrochim. Acta Part A: Mol. Biomol. Spectr.* 135 pp 373-378.

[31] Thirumurugan A, Tomy N A, Ganesh R J and Gobikrishnan S 2010 Biological reduction of silver nanoparticles using plant leaf extracts and its effect on increased antimicrobial activity against clinically isolated organisms. *Der Pharm. Chem.* 2 (6) pp 279-284.

[32] Lateef A, Adelere I A, Gueguim-Kana E B, Asafa T B and Beukes L S 2015 Green synthesis of silver nanoparticles using keratinase obtained from a strain of *Bacillus safensis* LAU 13. *Int. Nano Lett.* 5 (1) pp 29-35.

[33] Krishnaraj C, Jagan E G, Rajasekar S, Selvakumar P, Kalaichelvan P T and Mohan N 2010 Synthesis of silver nanoparticles using *Acalypha indica* leaf extracts and its antibacterial activity against water borne pathogens. *Colloids Surf. B: Biointerf.* 76 (1) pp 50-56.

[34] Basavegowda N and Rok Lee Y 2013 Synthesis of silver nanoparticles using Satsuma mandarin (*Citrus unshiu*) peel extract: A novel approach towards waste utilization. *Mater. Lett.* 109 pp 31-33.

[35] Unuabonah EI, Adie GU, Onah LO and Adeyemi O G 2009 Multistage optimization of the adsorption of methylene blue dye onto defatted *Carica papaya* seeds. *Chem. Eng. J.* 155 (3) pp 567-579.

[36] Zhao Y, Frost RL, Yang J and Martens WN 2008 Size and morphology control of gallium oxide hydroxide GaO(OH) nano- to micro-sized particles by soft-chemistry route without surfactant. *J. Phys. Chem. C* 112 (10) pp 3568-3579.

[37] Gopalakrishnan M, Purushothaman V, Ramakrishnan V, Bhalerao G M and Jeganathan K 2014 The effect of nitridation temperature on the structural optical and electrical properties of GaN nanoparticles. *CrystEngComm.* 16 (17) pp 3584-3591.

[38] Islam N U, Amin R, Shahid M, Amin M, Zaib S and Iqbal J 2017 A multi-target therapeutic potential of *Prunus domestica* gum stabilized nanoparticles exhibited
prospective anticancer antibacterial urease-inhibition anti-inflammatory and analgesic properties. *BMC Complem. Altern. Med.*. **17** 276. https://doi.org/10.1186/s12906-017-1791-3.

[39] Puchalski P, Dabrowski P, Olejnikzac W, Krukowski P, Polanski K and Kowalczyk K 2007 The study of silver nanoparticles by scanning electron microscopy energy dispersive X-ray analysis and scanning tunnelling microscopy. *Mater. Sci.-Poland* **25** (2) pp 473-478.

[40] Lateef A, Folarin BI, Oladejo SM, Akinola PO, Beukes LS and Gueguim-Kana EB 2018 Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from *Petiveria alliacea* L. leaf extract. *Prep. Biochem. Biotechnol.* **48** (7) pp 646-652.

[41] Rai M, Deshmukh S, Ingle A and Gade A 2012 Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. *J. Appl. Microbiolo.* **112** (5) pp 841-852.

[42] Lara HH, Ayala-Núñez NV, Turrent L and Padilla CR 2010 Bactericidal effect of silver nanoparticles against multidrugresistant bacteria. *World J. Microbiol. Biotechnol.* **26** (4) pp 43-56.

[43] Sondi B and Salopek-Sondi A 2004 Silver nanoparticles as antimicrobial agent: a case study on *E coli* as a model for Gram-negative bacteria. *J. Colloid Interf. Sci.* **275** (1) pp 177-182.

[44] Salem W M, Haridy M, Sayed W F and Hassan N H 2014 Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of *Ficus sycomorus*. *Ind. Crops Prod.* **62** (4) pp 228-234.

[45] Shankar S, Jaiswal L,Aparna R S L and Prasad V 2014 Synthesis characterization in vitro biocompatibility and antimicrobial activity of gold silver and gold silver alloy nanoparticles prepared from *Lansium domesticum* fruit peel extract. *Mater. Lett.* **137** pp 75-78.

[46] Panáček A, Kvítek L, Směkalová M, Večeřová R, Kolář M, Röderová M and Zbořil R 2018 Bacterial resistance to silver nanoparticles and how to overcome it. *Nature Nanotechnol.* **13** (1) pp 65-71.

[47] Benelli G 2016 Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. *Parasitol. Res.* **115** (1) pp 23-34.
[48] Aina DA, Owolo O, Lateef A, Aina FO, Hakeem AS, Adeoye-Isijola M, Okon V, Asafa TB, Elegbede JA, Olukanni OD and Adediji I. Biomedical applications of
Chasmanthera dependens stem extract mediated silver nanoparticles as antimicrobial,
antioxidant, anticoagulant, thrombolytic, and larvicidal agents. Karbala Int. J.
Modern Sci. 5 (2) pp 71-80.