INFLUENCE OF USING DATE PALM POLLEN OR BEE POLLEN ON SOME BLOOD BIOCHEMICAL METABOLITES, SEMEN CHARACTERISTICS AND SUBSEQUENT REPRODUCTIVE PERFORMANCE OF V-LINE MALE RABBITS

Saber S. A. Hassan1*, Hossam A. Shahba2 and Mohamed M. Mansour1
1Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Al-Behira, Egypt.
2Animal Production Research Institute, Ministry of Agriculture, ARC, Gizza, Egypt
*Corresponding author: Tel: 0201126114161, Fax: 020453316535,
Email: saber.hassan@agr.dmu.edu.eg & saber.shihata77@gmail.com

ABSTRACT: The present study aimed to compare the impact of oral administration of date palm pollen (DPP) or bee pollen (BP) in suspension form on rabbit bucks' physiological and reproductive performance traits. Fifty V-line male rabbits at 20 weeks of age were divided into five equal groups; Control group was given water (placebo), DPP groups (DPP1, 150 mg/kg BW; DPP2, 300 mg/kg BW), and BP groups (BP1, 200 mg/kg BW; BP2, 400 mg/kg BW). During a 12-week period, supplements were taken three times a week (Sunday, Tuesday, and Thursday). Blood samples (either plasma or serum) were collected at 32 weeks of age to examine the hematological and biochemical constituents. Also, at 28 weeks of age, semen was collected to evaluate some semen quality traits and seminal plasma metabolites.

Results indicate that white blood cells (WBCs) and lymphocytes increased significantly in the high level of both supplements compared to the control group. Meanwhile, the BP2 group had an increase in red blood cells (RBCs), hemoglobin (Hgb), and Packed cell volume (PCV) and a decrease in urea significantly compared to control without significant difference between treatments. Furthermore, high density lipoprotein (HDL) and testosterone were increased in the treated rabbits, as well as decreased in low density lipoprotein (LDL), very low density lipoprotein (VLDL), and Alanine aminotransferase (ALT) significantly compared to the control. There was an increase in the total antioxidant capacity (TAC) and testosterone concentration in the treated groups compared with the C rabbits. These results indicated that DPP and BP, which were natural additives considered safe as they improved the immune and physiological parameters and reproductive performance of rabbit bucks.

Accordingly, from an economic point of view it could recommend using levels of DPP (150 mg/kg BW) or BP (200 mg/kg BW) to improve the...
INTRODUCTION

Rabbit meat is considered a healthful food because it is rich in protein. It includes great values of essential amino acids with easy digestibility (Hernandez and Dalle Zotte, 2010; Dalle Zotte and SzendrÓ, 2011), and it also has low fat and cholesterol (Petracci et al., 2009). Numerous studies had established to evaluate the effect of different natural products on improved feed efficiency, growth rate, immunity, and productivity of rabbits (Perić et al., 2009; Dias et al., 2013).

Date palm pollen (DPP) is the meal origin powder of palm plants, which contains a mixture of compounds like phenolic, flavonoids, anthocyanins, and selenoproteins (Baliga et al., 2011), which makes it a source of natural antioxidants with few side effects (Fallahi et al., 2015). Also, various concentrations (20, 40, and 80mg/mL) of DPP aqueous extract has been used as a vital supplementation to enhance male infertility by decreasing free radicals and improving spermatozoa properties (Laghouati et al., 2021). Moreover, using DPP extract has improved sperm characteristics, such as motility, viability, acrosome reaction, and lipid peroxidation (Fallahi et al. 2015). Besides, oral administration with 30, 60, and 90 mg/kg/day of oily DPP suspensions has enhanced testosterone production and increased spermatogenesis in rabbit bucks (Al-Samarrai et al., 2017). Also, Laghouati et al., (2021) showed that DPP extract was a suitable addition for sperm dilution in vitro. Besides, DPP extracts improved sperm quality and better protection against oxidative damage. Furthermore, DPP was found to support and increase the resistance of some tissues to several harmful pathogens and toxicants due to their high phenolic and flavonoid contents (Campos et al., 1997).

Bee pollen (BP) is an agglomerate of flower pollen grains collected by honeybees mixed with plant juice and bee saliva enzymes, increasing its pharmacutic effectiveness (Carpes et al., 2008; Leblanc et al., 2009). BP is rich in protein, polyunsaturated fatty acids, provitamins, vitamins, and minerals (Xu et al., 2009; Haščík, et al., 2012). Besides, several studies showed that BP has some pharmacutic characteristics as antibacterial (Proestos et al., 2005), antifungal (García et al., 2001), antibiotic, and antioxidant (Almaraz-Abarca et al.,2004; Hajkova et al., 2013). Hashem et al. (2013) inclusion of propolis in male rabbits' diets during the hot season could be used effectively to mitigate adverse impacts of elevated temperature on semen quality, oxidative status, and hemato-biochemical features. Using a water suspension with 100, 200, and 300
mg/kg/day supplementation of BP for 5 weeks had improved the productive and reproductive performance of rabbits does (Attia et al., 2015). Also, giving the growing rabbits 250 and 500 mg BP/kg body weight increased their growth and survival ratio from weaning up to mature age (El-Hanoun et al., 2007). However, more studies are needed to compare DPP and/or BP on adult male rabbit productivity. Therefore, the objectives of the present study were to evaluate the effect of oral administration of DPP or BP suspensions on the physiological, reproductive, and production performance of V-line male rabbits. It hypothesized that using DPP or BP can improve the physiological and immunological performance, which subsequently leads to enhancement of the reproductive traits of the rabbit bucks.

MATERIALS AND METHODS

Ethical statement

The present study was carried out at El-Bostan Experimental Station, Faculty of Agriculture, Damanhour University, Al-Behera governorate, Egypt. The current study has been accompanied with the recommendations of the ethical principles of animal research and approved by the Ethical Animal Care and Use Committee of Damanhour University.

Date palm pollen and bee pollen preparation

Dried DPP and BP were purchased from the local market and ground to a fine powder using an electric dry mill; the powders were then stored in well-tied black plastic bags at room temperature (~25° C) until used. As described by Al-Samarrai et al., 2017, and Attia et al., 2015, the DPP and BP treatments were suspended in clean water in shares by weight.

Animals and experimental design

A total number of 50 male V-line rabbits at 20 weeks old were used in the current study. All rabbits were housed individually in a naturally ventilated building, kept in Italian wire galvanized cages (50L × 50W × 40H), and given 16 hr. of light daily including 12 h of natural day light and 4 h of supplementary electric light. The batteries were accommodated with automatic stainless-steel nipple drinkers, feeders for pelleted rations. All rabbits were fed the same basal diet (*ad libitum*), formulated according to NRC (1994) and AOAC (1995), which feed ingredients and calculated chemical proximate analyses are presented in Table (1).

The freshwater was available continuously during the experiment. All animals were kept under similar management (environmental temperature, humidity, light-dark cycles, and lengths) and similar hygienic conditions (vaccinations and health care).
Table 1: feed ingredients and calculated chemical composition of the basal diet

Ingredients	(kg/ton)	chemical composition (g/kg)
Yellow corn	100.0	Dry matter
Barley	130.0	Organic matter
Molasses	30.0	Crude protein
Clover hay	395.0	Crude fibre
Wheat bran	150.0	Ether extract
Soybean meal	175.0	Nitrogen-free extract
Dicalcium phosphate	8.0	Ash
Limestone	5.0	digestible energy (kcal/kg)
Sodium chloride	3.0	
Vitamin and minerals mixture*	3.0	
DL-methionine	1.0	

*Provides per kg of diet: Vit.A,1200 IU; Vit.D3, 2500 IU; Vit. E, 10 mg; Vit. K3, 3mg; Vit.B1, 1mg; Vit.B2, 4mg; Pantothenic acid, 10 mg; Nicotinic acid, 20 mg; Folic acid, 1 mg; Biotin, 0.05mg; Niacin, 40 mg; Vit.B6, 3 mg; Vit. B12, 20 mcg; Choline Chloride, 400 mg; Mn, 62 mg; Fe, 44 mg; Zn, 56 mg; I, 1 mg; Cu, 5 mg and Se, 0.01mg.

The rabbit bucks were randomly divided into five equal groups (n = 10 each) as follows: Control group (C), which was orally administered with 2 ml of water (placebo) using a 3 cm syringe, date palm pollen groups (second and third), which was orally treated with 2 ml of water suspension of DPP containing 150 mg/kg BW (DPP1) or 300 mg/kg BW (DPP2), respectively by using a 3 cm syringe, and bee pollen groups (fourth and fifth), which orally treated with 2 ml of water suspension of BP containing 200 mg/kg BW (BP1) or 400 mg/kg BW (BP2), respectively by using a 3 cm syringe. During a 12-week period, supplements were taken three times a week (Sunday, Tuesday, and Thursday). The initial body weights at the beginning of the experiment were 3182±29.1, 3141±25.6, 3159±27.4, 3180±23.7, and 3200±13.5 for the C, DPP1, DPP2, BP1, and BP2 groups, respectively without significant differences (P > 0.5). All rabbit's weight was recorded at the end of the experiment and average body weight gain was estimated.

Blood biochemical constituents

At 32 weeks of age, five samples of blood of each treatment from the marginal ear vein of the bucks were collected in the morning at 8 o'clock before the regular time of feeding. The blood was collected in clean tubes with or without heparin to collect plasma and serum. The blood samples collected with heparin are used to measure hematological blood parameters like hemoglobin concentration (Hgb) were assessed in fresh blood samples using commercial kits (according to Tietz, 1982). Packed cell volume was carried out by using micro-
hematocrit capillary tubes according to Blaxhall and Daisley (1973). Red blood cells (RBCs) and white blood cells (WBCs) were counted in fresh blood samples according to Hawks and Dennett (1989) utilizing hemocytometer (German Hemocytometer Manufacturers) and counted at 400x objective of a phase-contrast microscope. Differential leukocyte count was estimated according to Schalm, (1986). The phagocyte activity (PA), phagocytic index (PI), Bactericide activity (BA), and lysosome activity (LA) were determined according to Kawahara et al., (1991).

Blood serum was collected by centrifugation at 860 x g for 20 min at 4°C and stored at -20°C until analysis. All biochemical traits of blood (glucose, total protein, albumin, globulins “α, β and γ”, total lipids, triglycerides, total cholesterol, high-density lipoprotein “HDL”, low-density lipoprotein “LDL”, very low-density lipoprotein “VLDL”, alkaline phosphatase “ALP” alanine aminotransferase “ALT”, aspartate aminotransferase “AST”, urea, creatinine, total antioxidant capacity “TAC”, malondialdehyde “MDA”) were determined by using commercial kits (Diagnostic Product Company, LOS Angeles, CA). Also, serum testosterone concentrations were determined by radioimmunoassay (RIA) in duplicate 100 µl aliquots using a commercial kit (Diagnostic Product Company, LOS Angeles, CA). Assay sensitivity was 0.1 ng/ml with a coefficient of variation of < 8 %.

Semen analysis and reproductive performance evaluation

Semen was collected once weekly after 8 weeks of the initiation of the experiment. Ejaculates were collected using an artificial vagina maintained at 45-46°C and a teaser doe. Reaction time (RT), ejaculate volume (EV), sperm concentration (SC), total sperm output (TSO), Advanced motility (AM), total motile sperm (TMS), dead sperm (DS), abnormal sperm (AS), live sperm (LS), and total live sperm (TLS) were measured according to Smith and Mayer (1955) and Blom (1950).

The reproductive performance and fertility assessment of bucks have been carried out according to the International Rabbit Reproduction Group recommendations (IRRG, 2005). Briefly, at 8:00 a.m. bucks of each group were mated to ten receptive nulliparous female rabbits. The mating was done randomly so that the male in any treatment have the similar chances to mate any female in the population. Every doe was transferred to the buck’s cage for mating and returned to its cage after copulation. Each doe was subjected to two insemination services within 30 min by the same buck. Total litter size at birth (total and a live) were recorded for three consecutive parities per each doe and the average value was calculated per each buck. Fertility rate was measured by divided the number of kindled does by the number of mated does x100.
Seminal plasma was collected by centrifugation at 860 x g for 20 min at 4°C and stored at -20°C until analysis. Seminal plasma metabolites included total protein, albumin, globulins “α, β and γ”, total lipids, triglycerides, total cholesterol, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX), TAC, MDA, were measured using commercial kits (Diagnostic Product Company, LOS Angeles, CA). Also, seminal plasma testosterone concentration was determined by RIA in duplicate 100 μl aliquots using a commercial kit (Diagnostic Product Company, LOS Angeles, CA). Assay sensitivity was 0.2 ng/ml with a coefficient of variation of < 5 %.

Statistical analysis
Statistical analysis was done using the GLM procedure of statistical analysis software of SAS Institute (SAS, 2002) using one-way analysis of variance according to the following statistical model:

\[Y_{ij} = \mu + T_i + e_{ij}. \]

Where: \(Y_{ij} \) = an observation, \(\mu \) = The general overall mean, \(T_i \) = The effect of treatment (i=1 - 5), and \(e_{ij} \) = The experimental random error. Mean treatment differences were obtained by Duncan’s multiple range tests (Duncan, 1955) and values are presented as means ± SEM. All the analyses were considered to be statistically significant at \(P < 0.05 \).

RESULTS AND DISCUSSION

Body weight and weight gain response in rabbits
As shown in Table 2, no differences (\(P > 0.5 \)) were found in the rabbit groups' final body weights or weight gain.

Table 2: Effect of date palm pollen (DPP) or bee pollen (BP) on body weight and body weight gain of V-line rabbit bucks

Traits	Experimental groups	P-value				
	C	DPP1	DPP2	BP1	BP2	
Initial body weight	3182 ±29.1	3141 ±25.6	3159 ±27.4	3180 ±23.7	3200 ±13.5	0.496
Final body weight	3782 ±31.7	3756 ±71.5	3724 ±35.3	3780 ±40.0	3784 ±40.1	0.867
Body weight gain	600 ±35.6	615 ±53.9	565 ±11.0	600 ±43.2	584 ±31.4	0.902

C = Control, DPP1 = 150 mg/kg BW, DPP2 = 300 mg/kg BW, BP1 = 200 mg/kg BW, BP2 = 400 mg/kg BW.
Blood cells contents

The complete blood cells analysis is exhibited in Table (3). As shown, the total RBCs were greater \((P<0.05)\) in treated rabbits except BP1 compared with the C group. Furthermore, the BP2 bucks had the highest Hgb concentration by \((21.5\%, \ P<0.05)\). Also, the PCV ratio in BP2 and DPP2 rabbits were highest \((P<0.05)\) compared with the C group by \((20.74\%\) and \(17.65\%, \ \text{respectively})\).

Table 3: Effect of date palm pollen (DPP) or bee pollen (BP) on blood hematological parameters, and immune indices of V-line rabbit bucks

Traits	C	DPP1	DPP2	BP1	BP2	P-value
Red blood cell parameters						
RBCs \((10^6/mm^3)\)	1.63 ±0.02^b	1.87 ±0.02^a	1.93 ±0.02^a	1.77 ±0.05^{ab}	1.90 ±0.06^b	0.001
Hgb (g/dl)	10.70 ±0.21^b	11.70 ±0.21^{ab}	12.70 ±0.56^{ab}	12.00 ±0.37^{ab}	13.00 ±0.37^b	0.001
PCV (%)	32.30 ±0.76^b	35.00 ±0.63^a	38.00 ±1.67^a	36.30 ±0.92^{ab}	39.00 ±1.10^b	0.001
White blood cell parameters						
WBCs \((10^3/mm^3)\)	21.01 ±0.37^c	21.30 ±0.21^c	25.70 ±0.21^a	22.70 ±1.12^{bc}	24.3 ±0.56^{ab}	0.001
Lymphocyte (%)	40.01 ±0.97^c	41.01 ±0.37^b	43.01 ±0.37^{ab}	41.01 ±0.31^c	44.30 ±0.56^a	0.001
Monocyte (%)	6.30 ±0.21^c	6.30 ±0.21^c	6.30 ±0.56^a	6.70 ±0.42^{bc}	6.30 ±0.21^c	0.958
Basophils (%)	1.00 ±0.01	1.00 ±0.01	0.67 ±0.21^a	0.67 ±0.21^a	1.00 ±0.01	0.098
Eosinophils (%)	11.30 ±0.56^{ab}	11.01 ±0.37^{abc}	9.33 ±0.21^c	12.70 ±0.56^a	10.70 ±0.21^{bc}	0.001
Neutrophils (%)	41.30 ±1.69	40.70 ±0.56	40.70 ±1.17	39.01 ±0.63	37.70 ±0.56	0.055
Immune indices						
PA (%)	20.30 ±0.21^c	24.00 ±0.73^b	22.30 ±0.56^{bc}	21.70 ±0.42^{bc}	23.00 ±0.37^{ab}	0.001
PI (%)	1.90 ±0.03^b	2.17 ±0.04^a	2.03 ±0.02^{ab}	2.07 ±0.05^{ab}	1.97 ±0.06^b	0.001
BA (%)	41.00 ±0.37^{ab}	41.00 ±0.37^{ab}	41.70 ±0.56^a	41.70 ±0.56^a	39.30 ±0.56^b	0.004
LA (%)	0.13 ±0.01	0.12 ±0.01	0.13 ±0.01	0.12 ±0.01	0.12 ±0.01	0.662

Means within the same row with different superscripts are significantly different at \((P < 0.05)\).

C = Control, DPP1 = 150 mg/kg BW, DPP2 = 300 mg /kg BW, BP1 = 200 mg/kg BW, BP2 = 400 mg/kg BW. WBCs = white blood cells, RBCs = Red blood cells, Hgb = Hemoglobin, PCV= Packed cell volume, PA= Phagocyte activity; PI= Phagocytic index; BA= Bacteriocidic activity; LA= Lysosome activity.
The present study results indicated that treating rabbits with DPP and BP had improved the hematological variables, which are in agreement with the previous results of Abuoghaba et al., (2017), El-Neney and El-Kholy, (2014), Khalil et al., (2015), and Taghian, et al. (2017). Treatment with both 250 and 500 mg BP/buck of rabbit bucks raised in hot, humid environments showed significant improvement in the RBCs, lymphocytes, and neutrophils parameters (Abuoghaba et al., 2017). Also, BP significantly increased RBC and WBC counts in rabbits compared with control (Neney and El-Kholy, 2014). In addition, treatment with BP significantly increased the levels of RBCs, neutrophils, and lymphocytes in Baladi rabbit bucks (Khalil et al., 2015). The increased total WBCs, lymphocytes, neutrophils, and RBCs count and Hgb concentrate for treated bucks may be due to the vital role of DPP and BP in enhancing the immune functions (Abuoghaba et al., 2017). Besides, the improvement of the RBCs ratio increased the packed cell volume ratio represented by PCV, PA, PI, and BA. Furthermore, the positive effect of DPP and BP on hematological variables can be attributed to the presence of a lot of nutrient subjects (antioxidants, vitamins, mineral, essential fatty acids, amino acids, enzymes, etc.) components in the DPP and BP which can improve the nutrient value of the feed as well as feed digestibility and absorption (Leja et al., 2007; Šarić et al., 2009; Taghian, et al., 2017), which accordingly improved the hematological variables of the treated rabbits.

Blood metabolites parameters

Within the treated rabbits, the glucose concentration was highest (P < 0.05) in DPP1 bucks (77.0 ± 0.36 mg/dl) compared with their counterparts (Table 4). Regarding the protein profiles, no differences (P>0.05) were found in the the total protein and globulin concentrations between the rabbit groups. Meanwhile, the albumin concentration was lowest (3.20 ± 0.03 g/dl, P<0.05) in the C bucks compared with DPP and BP groups. However, the α-globulin level was highest (P<0.05) in the BP1 group (1.27 ± 0.04 mg/dl) compare with the other rabbit groups. However, the β-globulin level was lowest (P<0.05) in the DPP2 bucks (0.86 ± 0.02 mg/dl) compare with their counterparts except BP1 group (Table 4). In considering the lipid profiles, the total lipid concentration was lowest (P<0.05) in the treated rabbits compare with the C bucks. Also, the triglyceride level was highest (P<0.05) in the C group (122.70 ± 2.79 mg/dl) compared with the other groups. Besides, the LDL and VLDL concentrations were highest (P<0.05) in the C rabbits compared with DPP and BP groups. Contrariwise, the HDL level was highest (P < 0.05) in treated bucks compared with the C group (Table 4). Concerning the liver enzymes, there was a decrease (P < 0.05) in the ALT levels.
Table 4: Effect of date palm pollen (DPP) or bee pollen (BP) on serum biochemical parameters of V-line rabbit bucks

Variables	C	DPP1	DPP2	BP1	BP2	P-value
Glucose (mg/dl)	76.01 ±0.73^b	77.01 ±0.36^a	75.01 ±0.36^b	74.31 ±0.91^c	74.01 ±0.73^c	0.024
Total Protein (g/dl)	6.10 ±0.03	6.30 ±0.109	6.40 ±0.07	6.40 ±0.07	6.40 ±0.07	0.258
Albumin (g/dl)	3.20 ±0.03^b	3.43 ±0.07^a	3.53 ±0.04^a	3.43 ±0.02^c	3.00 ±0.03^c	0.001
Globulin (g/dl)	2.90 ±0.03	2.87 ±0.08	2.87 ±0.09	2.97 ±0.07	2.80 ±0.03	0.567
α-globulin (mg/dl)	1.13 ±0.02^b	1.17 ±0.02^a	1.23 ±0.02^a	1.27 ±0.04^a	1.17 ±0.02^a	0.013
β-globulin (mg/dl)	1.00 ±0.03^b	1.00 ±0.03^a	0.86 ±0.02^b	0.90 ±0.03^a	0.96 ±0.04^b	0.033
γ-globulin (mg/dl)	0.76 ±0.05^a	0.70 ±0.06^a	0.76 ±0.01	0.80 ±0.09	0.66 ±0.02	0.724
Lipid profile						
Total Lipids (g/dl)	4.60 ±0.03^b	4.40 ±0.03^b	4.30 ±0.03^b	4.37 ±0.00^b	4.13 ±0.02^b	0.001
Triglyceride (mg/dl)	122.70 ±2.79^a	111.70 ±1.05^b	110.01 ±1.83^b	111.7 ±2.79^a	110.01 ±1.83^b	0.005
Total cholesterol (mg/dl)	155.01 ±2.39^a	152.01 ±2.28	149.71 ±2.01	153.01 ±1.59	152.01 ±1.26	0.378
HDL (mg/dl)	35.70 ±0.91<sup)b</sup>	39.01 ±1.10^a	41.01 ±0.73^b	41.3 ±0.92^b	41.7 ±0.56^a	0.003
LDL (mg/dl)	95.01 ±1.32^b	90.70 ±1.17^a	86.71 ±1.48^a	89.30 ±0.76^c	88.31 ±0.76^c	0.004
VLDL (mg/dl)	24.3±0.56^a	22.3±0.21^b	22.0±0.37^b	22.3±0.56^a	22.0±0.36^b	0.005
Liver functions						
ALP (U/L)	9.00 ±0.63	8.33 ±0.84	9.33 ±0.55	9.67 ±0.84	8.67 ±0.55	0.753
ALT (U/L)	59.70 ±0.76^b	57.70 ±0.55^a	56.30 ±0.21^b	57.30 ±0.55^b	55.70 ±0.21^a	0.009
AST (U/L)	48.01 ±0.96^b	48.01 ±0.36^a	45.70 ±1.48^a	45.70 ±1.28	43.30 ±0.34	0.053
Kidney functions						
Urea (mg/dl)	22.01 ±0.36	20.70 ±0.092	20.70 ±0.21	21.00 ±0.36	20.00 ±0.36	0.088
Creatinine (mg/dl)	1.27 ±0.006	1.27 ±0.006	1.20 ±0.10	1.23 ±0.02	1.27 ±0.04	0.933
Antioxidant status						
TAC (mmol/l)	2.10 ±0.01^c	2.15 ±0.01^b	2.15 ±0.01^c	2.13 ±0.01^c	2.16 ±0.01^c	0.004
MAD (mmol/ml)	11.70 ±0.21^b	10.70 ±0.56^a	11.30 ±0.21^a	11.7 ±0.56^a	10.0 ±0.37^a	0.062
Male hormone						
Testosterone (mg/dl)	2.43 ±0.04^b	2.67 ±0.07^c	2.77 ±0.02^b	2.57 ±0.02^b	2.77 ±0.02^b	0.001

^{a,b,c} Means within the same row with different superscripts are significantly different at (P < 0.05).

C = Control, DPP1 = 150 mg/kg BW, DPP2 = 300 mg/kg BW, BP1 = 200 mg/kg BW, BP2 = 400 mg/kg BW. HDL = High density lipoprotein, LDL = Low density lipoprotein, VLDL = Very low-density lipoprotein, ALP = Alkaline phosphatase, ALT = Alanine amino transferase, AST = Aspartate aminotransferase, TAC = Total antioxidant capacity, MAD = Malonaldehyde.
of the treated groups compared with the C rabbits. Likewise, the AST and urea levels of BP2 bucks were lowest numerically compared with the other groups (Table 4). Moreover, there was an increase ($P<0.05$) in the TAC concentration in the treated groups in particular BP2 group compared with the C rabbits (Table 4).

In addition, the plasma testosterone levels had increased ($P<0.05$) in treated rabbits compared with the C bucks. Besides, the DPP2 and BP2 bucks had the highest ($P<0.05$) levels of testosterone compared with the C bucks by 13.99% (Table 4).

The current study results indicated that rabbits treated with 300 mg DPP/kg body weight have a greater blood glucose level. The increased glucose levels might be due to the positive effect of the previous treatment on increased glucose availability, especially for two biochemical and physiological body functions. On the other hand, results show that the bucks treated with DPP and BP had higher total protein and albumin concentrations than those of the control. These are in the contract of the results obtained by Abuoghaba et al., (2017), who indicate that treated rabbits with BP had improved the blood total protein and albumin levels. Also, improvement of the ratio of the total protein in the treated groups could be due to the better crude protein digestibility, which increases the amino acids in the circulation. However, Attia et al., (2014) indicate that albumin and globulin levels of growing rabbits were insignificantly affected by BP supplementation in the diet. While, the current results show that α-globulin levels were highest in the BP1 group compared with the other rabbit groups. Also, the β-globulin level was lowest in the DPP2 bucks compared with their counterparts, suggested that maybe rabbit’s immunity had improved, which reproduces healthier liver efficacy in synthesizing enough globulins for immunologic action.

The present study results show that treated bucks with DPP and BP cause improvement in their lipid profile throughout decreasing the total lipids, triglyceride, LDL, and VLDL levels and increased HDL concentration. The achieved findings are in agreement with previous reports of El-Neney and El-Kholy (2017), who demonstrated that treated New Zealand White (NZW) male rabbits with BP at 200, 500 and 700 mg/kg BW leaded to a reduction in plasma total lipids as well as cholesterol. The improvement of the lipid metabolism in treated bucks might be due to the influence of phospholipids and linolenic fatty acid in the BP (Xu et al., 2009). Also, these may be due to high volatile unsaturated fatty acid contents and flavonoid compounds in the DPP, which play a vital role as potent antioxidants (Saleh et al., 2021). Additionally, unsaturated fatty acids have a positive effect on preventing the accumulation of lipid peroxidation products (Abuoghaba et al., 2017).
Regarding the liver enzymes, the present consequences revealed that treated bucks with DPP or BP improved their liver function, exemplified by decreased plasma ALT. These results agree with the finding of Abuoghaba et al., (2017) who showed that treated bucks with BP had significantly lowered ALT than those of the control bucks. Similarly, treated rabbit’s doe with BP significantly decreased concentrations of ALT in serum than those of the control (Hedia et al., 2007). Furthermore, the present study suggests that treating rabbits’ bucks with DPP or BP hasn’t any adverse impact on the liver tissues and their functions. In the same trend, the current results show that treated bucks with DPP or BP improved the kidney function represented by decreased urea concentration in the blood. These could be due to the higher metabolic rate and the improved digestibility and immune activity in treated rabbits. In rabbit bucks treated with 250 and 500 mg BP/buck (Aboghaba et al., 2017), and in laying hens treated with 1.25, 2.5, and 5.0 g DPP/kg, proliferative, developmental, and differentiation of intestinal cells were enhanced, improving the conditions of intestinal microbial activity. That might be due to the bioactive potent antioxidant component in the DPP and BP.

The present study showed that blood testosterone concentration in treated rabbits was higher than the control bucks. This result agrees with the previous reports of Al-Samarrai et al., (2017) who indicated that treating adult male rabbits with 30, 60, and 90 mg/kg/day of oily DPP for 4 weeks significantly increased blood testosterone levels. However, the differences of blood testosterone concentrations were insignificant in rabbit bucks treated with 250 and 500 mg BP/buck (Aboghaba et al., 2017). The improvement in testosterone level might be due to the positive effect of DPP on the testicular function of male rabbits (Al-Samarrai et al., 2017). Also, the enhancement of testosterone concentration in treated rabbits may be due to the great subjects of BP, principally in phospholipids, vitamins, minerals, and antioxidant factors (Šarić et al., 2009). Furthermore, treated rabbits with DPP cusses increased in the blood level of Luteinizing hormone (LH) (Al-Samarrai et al., 2017), which caused a rise of testosterone production by Leydig cell in rabbit’s testes.

Semen properties and fertility traits

The semen characteristics are shown in Table (5). As presented, the sperm advanced motility percentage in the DPP1 was highest ($P<0.05$) compared with the C group only by (6.90%). TMS of the groups DPP1 and BP2 were significantly better than the control group by (28.5% and 25.4%, respectively). Besides, the DPP2 bucks had the highest live sperm ratio ($P<0.05$) compared with the C group by (5.34%). Nevertheless, the dead sperm was higher ($P<0.05$) in C bucks compared with their counterparts (Table 5). Accordingly, the total litter size at birth and alive were higher ($P<0.05$) in treated groups compared with the C rabbits (Table 5).
Table 5: Effect of date palm pollen (DPP) or bee pollen (BP) on semen characteristics and fertility traits of V-line rabbit bucks

Variables	C	DPP1	DPP2	BP1	BP2	P-value
Reaction time (sec)	9.60 ±0.62	8.07 ±0.52	8.66 ±0.37	8.13 ±0.56	8.54 ±0.71	0.322
Ejaculate volume (ml)	0.57 ±0.03	0.66 ±0.04	0.62 ±0.06	0.64 ±0.03	0.67 ±0.05	0.365
Sperm concentration (10⁶/ml)	276.5 ±14.10	289.0 ±13.80	290.0 ±13.50	293.6 ±12.20	287.2 ±14.6	0.922
TSO (10⁶/ml)	157.7 ±8.45	189.6 ±8.69	177.5 ±7.36	181.3 ±7.70	188.6 ±9.94	0.051
Advanced motility (%)	72.50 ±1.54	77.50 ±1.14	76.40 ±1.07	76.00 ±1.01	76.20 ±1.07	0.048
TMS (10⁶/ml)	114.6 ±6.88	147.3 ±7.76	135.4 ±5.74	138.1 ±6.54	143.7 ±7.93	0.014
Live sperm (%)	80.50 ±0.84	83.60 ±0.78	84.80 ±0.84	83.10 ±0.85	82.90 ±0.81	0.004
Dead sperm (%)	7.33 ±0.41	5.79 ±0.37	5.38 ±0.34	5.93 ±0.39	6.57 ±0.40	0.006
Abnormal sperm (%)	12.20 ±0.65	10.60 ±0.60	9.80 ±0.74	11.01 ±0.56	10.60 ±0.27	0.059
TLS (10⁶/ml)	127.0 ±7.21	158.9 ±8.11	150.5 ±6.11	150.7 ±6.87	156.4 ±8.42	0.024
TLSB (kits/doe)	7.09 ±0.39	8.12 ±0.18	8.62 ±0.21	8.29 ±0.24	8.79 ±0.24	0.001
TLSBL (kits/doe)	6.82 ±0.40	7.82 ±0.15	8.39 ±0.14	8.14 ±0.25	8.50 ±0.17	0.001
Fertility (%)	63.40 ±7.73	88.40 ±7.26	88.4 ±7.26	76.7 ±12.20	86.7 ±13.30	0.285

a,b Means within the same row with different superscripts are significantly different at (P < 0.05).

C = Control, DPP1 = 150 mg/kg BW, DPP2 = 300 mg/kg BW, BP1 = 200 mg/kg BW, BP2 = 400 mg/kg BW. TSO = Total sperm output, TMS = Total motile sperm, TLS = Total live sperm, TLSB = Total litter size at birth, TLSBL = Total litter size at birth a live.

The improvement of semen characteristics of treated bucks in the current study is in agreement with previous results of Laghouati et al. (2021), who indicated that various concentrations (20, 40, and 80mg/mL) of DPP aqueous extract improved sperm characteristics, such as motility, viability, acrosome reaction, and lipid peroxidation as well as increased spermatogenesis. Improved sperm quality might be due to provided better protection against oxidative damages (Laghouati et al., 2021). Likewise, BP contains a noticeable source of compounds with health-protective potential and antioxidant activity (Hajkova et al., 2013). Thus, BP could play a vital role in improved sperm characteristics and proposed defense.
antioxidative damages. Furthermore, amino acids, vitamins, and trace elements of BP are nutritionally beneficial for improving sperm quality and the environmental conditions for the spermatogenesis process. Besides, the semen quality improvement in the current study is related to the enhancement of testosterone level, which caused increasing active spermatogenesis with a significant rise in the number of mature sperms (Andrew et al., 2009; Fouad et al., 2014).

Seminal plasma biochemical constituents

As shown in Table (6), Regarding the protein profiles, the total protein and albumin concentrations were higher ($P<0.05$) in the seminal plasma of treated groups compared with the C rabbits. Furthermore, the DPP1 buck’s seminal plasma had the highest globulin concentration (0.27 ± 0.01 g/dl, $P<0.05$) compared with the other groups.

Besides, the α and β-globulin levels were highest ($P<0.05$) in the seminal plasma of DPP2 bucks (0.09 ± 0.01, and 0.08 ± 0.01 mg/dl, respectively) compared with their counterparts. However, the DPP2 bucks had the lowest ($P<0.05$) concentration of the seminal plasma γ-globulin (Table 6). On the other hand, the total lipid concentration was highest ($P<0.05$) in the seminal plasma of the treated rabbits compared with the C bucks. However, no differences ($P>0.05$) founded between the rabbit groups for triglyceride and total cholesterol parameters (Table 6). Concerning the antioxidant parameters in the seminal plasma, the SOD levels had increased ($P<0.05$) in treated rabbits compared with the C bucks. Also, the DPP2 and BP2 groups had the highest ($P<0.05$) concentration of the catalase in the seminal plasma compare with the C bucks by (16.67% and 15.67%, respectively). Besides, the level of the seminal plasma GPX was highest ($P<0.05$) in the DPP1, and DPP2 bucks compared with the C group by (38.68% and 41.32%, respectively). Furthermore, the MAD concentration had increased ($P<0.05$) in treated rabbits compared with the C bucks (Table 6). Likewise, the testosterone levels had increased ($P<0.05$) in treated bucks compared with the C group (Table 6).

In the same trend, treat bucks with DPP or BP in the present study had improved the seminal plasma biochemical components’ level like total protein, albumin, globulin, total lipid, antioxidant parameters and testosterone concentration. Propolis has been successfully used to reduce thiobarbituric acid-reactive substance levels and activate antioxidant enzymes such as superoxide dismutase and catalase against free radicals (Hashem et al., 2013). Also, some *in vitro* findings have shown the positive effect of DPP extract supplementation to sperm extender in preserving and maintaining semen quality during cryopreservation in humans’ males, buffalo bulls, and stallions (Al-Dujaily et al., 2012; El-Sheshtawy et al., 2014; El-Sisy et al., 2018; Mohamed and Talal 2020). In human sperm, Al-Dujaily et al. (2012) observed that *in vitro* sperm motility was
Table 6: Effect of date palm pollen (DPP) or bee pollen (BP) on seminal plasma biochemical parameters of V-line rabbit bucks

Variables	C	DPP1	DPP2	BP1	BP2	P-value
Protein constituents						
Total Protein (g/dl)	0.43±0.02^c	0.60±0.01^a	0.57±0.02^a	0.50±0.01^b	0.50±0.01^b	0.00
Albumin (g/dl)	0.25±0.01^c	0.33±0.01^b	0.39±0.02^a	0.31±0.01^b	0.34±0.01^b	1
Globulin (g/dl)	0.19±0.02^b	0.27±0.01^a	0.18±0.01^b	0.19±0.01^b	0.16±0.01^b	0.00
α-globulin (mg/dl)	0.09±0.01^{ab}	0.08±0.01^b	0.09±0.01^b	0.08±0.01^b	0.07±0.01^b	0.00
β-globulin (mg/dl)	0.07±0.01^b	0.07±0.01^b	0.08±0.01^b	0.07±0.01^b	0.06±0.01^b	0.00
γ-globulin (mg/dl)	0.03±0.01^b	0.12±0.01^a	0.01±0.01^b	0.03±0.01^b	0.02±0.01^b	0.00
Lipid profile						
Total Lipids (g/dl)	0.10±0.01^b	0.20±0.01^a	0.20±0.01^b	0.20±0.01^b	0.20±0.01^b	0.00
Triglyceride (mg/dl)	36.70±5.27^c	33.30±4.59^a	33.30±3.80^a	33.3±4.59^a	33.3±5.87^a	0.98
Total cholesterol (mg/dl)	28.70±2.74^c	28.30±2.60^a	28.70±1.87^a	26.70±2.43^a	26.00±2.22^a	0.91
Antioxidant status						
SOD (IU/g)	8.60±0.07^c	8.83±0.16^{bc}	9.13±0.18^{ab}	9.20±0.22^a	9.20±0.07^c	0.00
Catalase (IU/g)	30.00±0.36^c	32.00±0.73^{ab}	35.00±0.96^a	33.30±0.92^{ab}	34.70±1.38^c	0.00
GPX (mg/L)	3.80±0.13^b	5.27±0.43^a	5.37±0.65^a	4.80±0.63^{ab}	4.73±0.29^{ab}	0.02
TAC (mmol/L)	1.43±0.02^c	1.45±0.03^a	1.42±0.01^a	1.42±0.06^a	1.43±0.01^a	0.95
MAD (nmole/ml)	5.26±0.02^c	5.34±0.02^a	5.34±0.01^a	5.30±0.01^b	5.34±0.01^a	0.00
Male hormone						
Testosterone (ng/dl)	0.13±0.02^b	0.23±0.02^a	0.27±0.02^a	0.23±0.01^b	0.27±0.01^b	0.00

^{a,b,c} Means within the same row with different superscripts are significantly different at (P < 0.05).

C = Control, DPP1 = 150 mg/kg BW, DPP2 = 300 mg/kg BW, BP1 = 200 mg/kg BW, BP2 = 400 mg/kg BW. HDL = High density lipoprotein, LDL = Low density lipoprotein, VLDL = Very low-density lipoprotein, SOD = Superoxide dismutase, GPX = Glutathione peroxidase, TAC = Total antioxidant capacity, MAD = Malonaldehyde.
improved when 20% of DPP extract is added to the extender. Also, it has been shown by El-Shestawy et al. (2014), that aqueous extract of DPP added to Tris citrate-fructose extender (with or without egg yolk) improved sperm motility in bulls, providing a good capacity for the preservation of chilled sperm at 30 mg/mL and frozen-thawed sperm at 30, and 50 mg/mL. Moreover, the addition of 20 mg of pollen grain extract per mL of modified INRA-82 extender improved the chilling and freezing process of Arabian sperm (El-Sisy et al., 2018). Additionally, Mohammed and Talal (2020) found that using DPP extract at 0.04 mg/mL extender in Holstein bulls improved sperm motility both during thawing and 1, 2, and 3 months following cooling. DPP beneficial effect on spermatozoon could be attributed to its antioxidant properties (El-Sisy et al., 2018), and its powerful free radical scavenging capacity (El-Kashlan et al., 2015). Similarly, the BP is rich in polyphenolic substances, flavonoids, phytosterols, and other health-promoting elements, which show the presence of free radical hunting and antioxidants activity (Carpes et al., 2007; Campos et al., 2010). Thus, BP could play an essential role in enhancing the seminal plasma medium, which carries, protect, and nourish spermatozoon after ejaculation up to fertilization. Thus, treating bucks with DPP or BP in the present study had improved the fertility traits represented by the total litter size at birth and alive than those of the control group.

CONCLUSION

Based on the current study results, it could be concluded that treating V-line adult male rabbits with DPP or BP had improved the blood hematological, biochemical variables, and sperm quality and seminal plasma biochemical components. Thus, the positive effect of the previous treatments, especially for the biochemical, immunological, and physiological body functions, resulted in enhancement of the buck’s reproductive performance. However, no clear difference was noticeable between both treatments. Accordingly, from an economic point of view, it could recommend using DPP (150 mg/kg BW) or BP (200 mg/kg BW) as a growth promoters’ addition for the V-line adult male rabbits without any adverse effect. Also, further studies with more rabbits and flocks are needed to confirm this result and determine the optimal concentration and the possible impact of DPP or BP on the rabbit buck’s productivity.

REFERENCES

Abuoghaba, A.A., El-Hammady, H.Y., Abd El-Fattah, M.G. 2017. Productive performance, blood constituents and some physiological parameters of rabbit bucks administered with bee pollen under hot conditions prevalent in assiut. Egyptian Journal of Rabbit Science, 27 (1): 23-41. DOI: 10.21608/EJRS.2017.41822.
Al-Dujaily, S.S., Al-Shahery, N.J., Zabbon, A.A. 2012. Effect of Phoenix dactylifera pollen on in vitro sperm activation of infertile men. Al-Mustansiriyah J Sci. 23:27–34.

Al-Samarrai, R.R.H., Al-Samarrai, A.S.M., Al-Samarrai, A.M.H. 2017. Effect evaluation of Iraqi Date Palm pollen on sex hormones level of male local rabbits. Chem Adv Mater. 2(4): 53–59.

Almaraz-Abarca, N., Campos, M.G., Avila-Reyes, J.A., Naranjo-Jimenez, N., Herrera-Corral, J., Gonzalez-Valdez, L.S. 2004. Variability of antioxidant activity among honeybee-collected pollen of different botanical origin. Interciencia, 29: 574-578.

Andrew, S.M., Haolin, C., Vassilios, P., Barry, R.Z. 2009. Leydig cell aging and the mechanisms of reduced testosterone synthesis. Molecular and Cellular Endocrinology, 299: 23-31. DOI: 10.1016/j.mce.2008.07.016.

Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis, 18th Edn. Gaithersburg, MD: Association of Official Analytical Chemists.

Attia, Y.A., Bovera, F., EL-Tahawy, W.S., EL-hanoun, A.M., AL-harthi, M.A., Habiba, H.I. 2015. Productive and reproductive performance of rabbits does as affected by bee pollen and/or propolis, inulin and/or mannoooligosaccharides. World Rabbit Sci. 2015, 23: 273-282. https://doi.org/10.4995/wrs.2015.3644.

Attia, Y.A, El-Hanoun, A.M., Bovera, F., Monastra, G., El-Tahawy, W.S., Habiba, H.I. 2014. Growth performance, carcass quality, biochemical and hematological traits and immune response of growing rabbits as affected by different growth promoters. Journal of Animal Physiol. Anim. Nutr., 98: 128–139. DOI: 10.1111/jpn.12056.

Baliga, M.S, Baliga, B.R.V., Kandathil, S.M., Bhat, H.P., Vayalil, P.K. 2011. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int. 44(7): 1812–1822. http:// dx.doi. org/10.1016/j.foodres.2010.07.004

Blaxhall, P, and Daisley, K. 1973. Routine haematological methods for use with fish blood. Journal Fish Biology, 5: 771-781.

Blom, E. 1950. A one-minute live–dead sperm stain by means of eosin–nigrosin. Journal Fertility and Sterility, 1: 176–177.

Campos, M.G., Mitchel, K., Cunha, A., Markham, K. 1997. A systematic approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochemical Analyses 8, 181–185.
Campos, M.G.R., Frigerio, C., Lopes, J., Bogdanov, S. 2010. What is the future of Bee Pollen? Journal of Applied Product and Applied Medical Sci., 2: 131-144. DOI:10.3896/IBRA.4.02.4.01

Carpes, S.T., Begini, R., De Alencar, S.M. 2007. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciênc. Agrotec. Lavras, 31:1818-1825. https://doi.org/10.1590/S1413-7054_2007_0006_00032

Carpes, S.T., Prado, A., Moreno, I.A.M., Mourão, G.B., Alencar, S.M., Masson, M.L. 2008. Avaliação do potencial antioxidante do pollen apícola produzido na região sul do Brasil. Química Nova., 31: 660-1664.

Dalle Zotte, A., Szendró, Z. 2011. The role of rabbit meat as functional food. Meat Sci. 88(3):319–331. DOI: 10.1016/j.meatsci.2011.02.017.

Dias, D.M.B., Maria, C.O., Diones, M.S., Nadielli, P.B., Daniel C.C., Wilson, A.M. 2013. Bee pollen supplementation in diets for rabbit does and growing rabbits. Acta Scientiarum Animal Sciences, 35: 425-430. https://doi.org/10.4025/actascianimsci.v35i4.18950

Duncan, D.B. (1955). Multiple Range and Multiple F tests. Biometrics, 11:1-42.

El-Hanoun, A.M., Hedia, H., El-Sbeiy, M.S., Kamel, K.I. 2007. Effect of bee pollen supplementation on some productive, reproductive and biochemical traits of growing male rabbits during winter and summer seasons. 5th Int. Conf. on Rabbit Prod. in Hot Seasons, Hurghada, Egypt, 4–7 December, 417–433.

El-Kashlan AM, Nooh MM, Hassan WA, Rizk SM. 2015. Therapeutic potential of date palm pollen for testicular dysfunction induced by thyroid disorders in male rats. PLoS One. 10(10): e0139493.

El-Neney, B.A.M., El-Kholy, K.H. 2014. Effect of natural additive (bee pollen) on immunity and productive and reproductive performances in rabbits. 1-Growth performance, digestive and immune responses in growing rabbits. Egypt. Poult. Sci., 34: 579-606. DOI: 10.21608/epsj.2013.32572

El-Sheshtawy, R.I., El-Nattat, W.S, Ali, A.H, Sabra, H.A. 2014. The effect of Phoenix dactylifera pollen grains tris-infusion on semen preservability of local bull breeds. Glob Vet. 13: 728–732.

El-Sisy, G.A., El-Badry, D.A., El-Sheshtawy, R.I., El-Nattat, W.S. 2018. Effects of Phoenix dactylifera pollen grains extract supple mentation on post-thaw quality of Arabian stallion semen. Bulg J Vet Med. 21(1):40–49.

Fallahi, S., Rajaei, M., Malekzadeh, K., Kalantar, S.M. 2015. Would Phoenix dactylifera pollen (palm seed) be considered as a treatment agent against Males’ infertility? A systematic review. Electron Physician. 7(8):1590–1596. doi: 10.19082/1590
Fouad, M., Mehrzad, J., Mehdi, A., Hossein, S., Behzad, J., Mostafa, M., Hebatollah, S. 2014. Effects of date palm pollen (Phoenix dactylifera L.) and Astragalus ovinus on sperm parameters and sex hormones in adult male rats. *Iranian Journal of Reproductive Medicine, 12*(10), 705-712. PMC4248157

García, M., Pérez-Arquillue, C., Juan, T., Juan, M.I., Herrera, A. 2001. Note: pollen analysis and antibacterial activity of Spanish honeys. *Int. J. Food Sci. Technol.*, 7: 155–158. https://doi.org/10.1177/1082013200700208

Hajkova, Z., Toman, R., Hluchý, S., Gálik, B., Bíro, D., Martiniaková, M., Omelka, R., Boboňová, I. 2013. The effect of pollen on the structure of the small intestine in rats after an experimental addition in diet. *Anim. Sci. and Bio.*, 46: 232-237.

Haščík, P., Elimam, I.O., Garlík, J. 2012. The effect of addition bee pollen to feed mixtures on internal fat of broiler Ross 308. *JMBFS.*, 2: 246-252.

Hawks, C., Dennett, T. 1989. A color atlas of comparative veterinary hematology. *Wolf Publishing limited, London, England.*

Hedia, H.A., Kamel, I.K., El-Sbeiy, M.S., El-Hanoun, A.M. 2007. Effect of Egyptian bee pollen supplementation on some reproductive performance and hematobiological constituents of female rabbits during winter and summer seasons. *4PthP World Poul. Conf.*, 27–30 March, Sharm El-Sheik, 579-594.

Hernandez, P., Dalle Zotte, A. 2010. Influence of diet on rabbit meat quality. In: The nutrition of the rabbit. *de Blas and Wiseman editors. Oxon (UK): CABI Publishing; pp 163–178.*

International Rabbit Reproduction Group, IRRG. 2005. Guidelines for the handling of rabbit bucks and semen. *World Rabbit Science, 13*: 71 - 91. https://doi.org/10.4995/wrs.2005.527

Kawahara, E., Ueda, T., Nomura, S. 1991. In vitro Phagocytic activity of white-spotted shark cells after injection with Aermonas salmonicida extra cellular products. *Japan, Gyobyo Kenkyu*, 26: 213-214.

Khalil, H.A., Yaseen, M.A., Hamdy, A.M.M. 2015. Behavioral Activities, Physiological Body Reactions, Hematological Parameters and Hormonal Profiles for Bucks of New Zealand Whiteand Baladi Red Rabbits Exposed to Short Term of High Temperature. *Asian Journal of Poultry Science, 9*: 191-202. DOI: 10.3923/ajpsaj.2015.191.202
Laghouati, A., Belabbes, R., Castellini, C., Mattioli, S., Dal Bosco, A., Benberkane, A., Iguer-Ouada, M. 2021. Impact of Algerian date palm pollen aqueous extract on epididymal and ejaculated rabbit sperm motility during in vitro incubation. *Italian Journal of Animal Science*, 20:1, 717-727. https://doi.org/10.1080/1828051X.2021.1911696

Leblanc, B.W., Davis, O.K., Boue, S., DeLuca, A., Deeby, T. 2009. Antioxidant activity of Sonoran Desert bee pollen. *Food Chem.*, 115:1299-1305. https://doi.org/10.1016/j.foodchem.2009.01.055

Leja, M., Mareczek, A., Wyzgolik, G., Klepacz-Baniak, J., Czekonska, K. 2007. Antioxidative properties of bee pollen in selected plant species. *Food Chemistry* 100, 237-240.

Mohamed, O.A., Talal, A.A. 2020. Some post-cryopreserved semen characteristics of holstein bulls as influenced by adding aqueous extract of urtica dioica and date palm pollen powder to tris extender. *Plant Arch.* 1:461-467.

NRC, 1994. National Research Council, Nutrient Requirements of Poultry 9th (Eds.). National Academy Press, Washington, DC.

Perić, L., Tikić, D., Lukić, M., 2009. Application of alternative growth promoters in broiler production. *Biotechnology in Animal Husbandry*, 25: 387-397.

Petracci, M., Bianchi, M., Cavani, C. 2009. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids. *Nutrients*. 1(2):111–118. doi: 10.3390/nu1020111

Proestos, C., Chorianopoulos, N., Nichas, G.J.E., Komaitis, M. 2005. RP-HPLC analysis of the phenolic compounds of plant extracts: investigation of their antioxidant capacity and antimicrobial activity. *Journal Agricultural Food Chemistry*, 53:1190–1195. DOI: 10.1021/jf040083t

Šarić, A.; Balog, T.; Soboc’anec, S.; Kuś’ic, B.; S’verko, V.; Rusak, G.; Likić, S.; Bubalo, D.; Pinto, B.; Reali, D.; and Marotti, T. 2009. Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. *Food and Chemical Toxicology* 47, 547– 554. DOI: 10.1016/j.fct.2008.12.007

Saleh, M., Kokoszyński, D., Mousa, M.A., Abuoghaba, A.A. 2021. Effect of Date Palm Pollen Supplementation on the Egg Production, Ovarian Follicles Development, Hematological Variables and Hormonal Profile of Laying Hens. *Animals, 11*, 69. https://doi.org/10.3390/ani11010069

SAS Institute. 2002. SAS/STAT User’s guide statistics. *SAS Institute INC., Cary, NC, USA.*

Schalm, O. 1986. Veterinary hematology. 4th Ed., *Lea and Febiger, Philadelphia.*
Smith, J., Mayer, D. 1955. Evaluation of sperm concentration by the hemacytometer method. Comparison of four counting fluids. *Fertility and Sterility*, 6:271–275.

Taghian, Raghd A.S., Abd El-Ati M.N., Allam, F.M., Mahmoud, G.B. 2017. Effect of Date Palm Pollen and Bee Pollen as Growth Promoters on the Performance of Saidi Rams. *Assiut J. Agric. Sci.*, (48) No. (5) 2017 (86-98).

Tietz, N. 1982. *Fundamental Of Clinical Chemistry*. Edition by Norbert Sounder Company.

Xu, X., Sun, L., Dong, J., Zhang, H. 2009. Breaking the cells of rape bee pollen and consecutive extraction of functional oil with supercritical carbon oxide. *Innovative Food Sci. and Emerging Tech.*, 10: 42–46.

تأثير استخدام حبوب لقاح النخيل أو حبوب لقاح نحل العسل على المكونات الكيميائية الحيوية للدم، وخصائص السائل المنوي والأداء التناسلي لذكور أرانب الفيلاليين

صابر شحاته حسن ؛ حسام عبد المنعم محمد شهاب ؛ محمد محسن منصور 1
1 قسم الإنتاج الحيواني والداخلي، كلية الزراعة، جامعة دمنهور، دمنهور، 22516، البحيرة، مصر.
2 محدد بحوث الإنتاج الحيواني، وزارة الزراعة، مركز البحوث الزراعية، القهالي، 12816، الجيزة، مصر.

أجريت الدراسة الحالية بهدف مقارنة تأثير تجريع المعلق المائي لحبوب لقاح النخيل أو حبوب لقاح النحل عن طريق الفم على الأداء الفسيولوجي والتناسلي في ذكور أرانب الفيلاليين. تم استخدام عدد 50 ذكر عند عمر 20 أسبوع وقسمت إلى خمس مجموعات متساوية (10 ذكور/ معاملة) كالآتي: مجموعة التحكم تم اطعامها دواء وهمي عبارة عن 2 مل ماء، مجموعتين حبوب لقاح النخيل تم اطعامها 2 مل ماء تحتوي على 50 ملجم/ كجم من وزن الجسم و 300 ملجم/ كجم من وزن الجسم على التوالي، ومجموعتين حبوب لقاح النحل تم اطعامها 2 مل ماء تحتوي على 200 ملجم/ كجم من وزن الجسم و 500 ملجم/ كجم من وزن الجسم على التوالي. خلال 12 أسبوع (فترة التجريبة) كان يتم تجريع الذكور 3 مرات أسبوعياً (الأحد، الاثنين، والخميس من كل أسبوع). جمعت عينات الدم في الأسبوع 32 لفحص مكونات الدم الكيميائية والحيوية، وأيضاً، عند عمر 28 أسبوع تم جمع السائل المنوي مرة واحدة أسبوعياً لتقييم جودة السائل المنوي والمكونات الكيميائية الحيوية للبلارما المنوية.
وأشارت النتائج إلى: أن خلايا الدم البيضاء وكذلك الخلايا الليفية قد زادت بشكل ملحوظ عند المستوى المرتفع لكل المكملات مقارنة بمجموعة التحكم. بينما لم يتم زيادة في خلايا الدم الحمراء والهيموجلوبين، وحجم كرات الدم. وانخفاض معنويًّا مستوي البوريا مقارنةً مع مجموعة التحكم دون أي اختلافات معنوية بين المعاملات. علاوةً على ذلك، زادت الدهون عالية الكثافة والテストيرون في الأرانب المعالمة، وانخفاض الدهون منخفضة الكثافة، والدهون المنخفضة الكثافة جداً والأللأمينو ترانسفيراز بشكل ملحوظ عند المقارنة مع مجموعة الكنترول. كما أنه زادت القدرة الكلية لمضادات الأكسدة وتركيز هرمون التستيرون في كل المعاملات مقارنة بمجموعة الكنترول. تستنتج من هذه النتائج أن حبوب لقاح النخيل أو حبوب لقاح النحل تعتبر إضافات طبيعية أمنة كما أنها حسمت الصرفات المناعية والفيزيولوجية والأداء التناسلي لذكور الأرانب، التوصية: ومن وجهة النظر الاقتصادية، يمكن التوصية باستخدام مستويات حبوب النخيل ببعد 150 ملجم/ كجم من وزن الجسم أو حبوب نحل العسل ببعد 200 ملجم/ كجم من وزن الجسم، لتحسين صفات الدم الطبيعية والبيوكيميائية والصفات المناعية والفيزيولوجية، وبالتالي الأداء التناسلي لذكور الأرانب.

الكلمات الدالة: أرآنب الفي لابلن، جودة السائل المنوي، التستيرون، حبوب لقاح النخيل، حبوب لقاح نحل العسل.