Disrupted iron regulation in the brain and periphery in cocaine addiction

KD Ersche1,2, J Acosta-Cabronero3, PS Jones4, H Ziauddeen1,2,5, RPL van Swelm6,7, CMM Laarakkers6,7, R Raha-Chowdhury3 and GB Williams4

Stimulant drugs acutely increase dopamine neurotransmission in the brain, and chronic use leads to neuroadaptive changes in the mesolimbic dopamine system and morphological changes in basal ganglia structures. Little is known about the mechanisms underlying these changes but preclinical evidence suggests that iron, a coenzyme in dopamine synthesis and storage, may be a candidate mediator. Iron is present in high concentrations in the basal ganglia and stimulant drugs may interfere with iron homeostasis. We hypothesised that morphological brain changes in cocaine addiction relate to abnormal iron regulation in the brain and periphery. We determined iron concentration in the brain, using quantitative susceptibility mapping, and in the periphery, using iron markers in circulating blood, in 44 patients with cocaine addiction and 44 healthy controls. Cocaine-addicted individuals showed excess iron accumulation in the globus pallidus, which strongly correlated with duration of cocaine use, and mild iron deficiency in the periphery, which was associated with low iron levels in the red nucleus. Our findings show that iron dysregulation occurs in cocaine addiction and suggest that it arises consequent to chronic cocaine use. Putamen enlargement in these individuals was unrelated to iron concentrations, suggesting that these are co-occurring morphological changes that may respectively reflect predisposition to, and consequences of cocaine addiction. Understanding the mechanisms by which cocaine affects iron metabolism may reveal novel therapeutic targets, and determine the value of iron levels in the brain and periphery as biomarkers of vulnerability to, as well as progression and response to treatment of cocaine addiction.

Translational Psychiatry (2017) 7, e1040; doi:10.1038/tp.2016.271; published online 21 February 2017

INTRODUCTION

Neuroscientific research in stimulant drug addiction has greatly advanced our understanding of the neurobiology of addiction. Although these advances have not yet translated into more effective treatments or prevention strategies, they have clearly demonstrated that addiction is a brain disorder. Critical to this has been accumulating evidence of the association of morphological brain changes with stimulant drug addiction, the most robust of these being the enlargement of the putamen, which is frequently seen in stimulant-addicted individuals. Preclinical animal models have shown that this abnormality is caused by drug effects, as the stimulant-induced decline in dopamine D2 receptors in the ventral striatum is directly linked with the volume increase in the dorsal striatum (putamen). This is thought to reflect a hypothesized ventral-to-dorsal progression in the behavioural shift from voluntary drug use to compulsive drug-taking and increased putamen volume may thus reflect a neural substrate of the transition to addiction. However, as it has also been observed in unaffected first-degree relatives of stimulant-addicted individuals and in patients with obsessive-compulsive disorder (OCD), putamen enlargement may partly represent a predisposing factor for compulsive behaviours.

Although these morphological brain changes in addiction have been well-characterized, the mechanisms by which stimulant drugs, whose primary pharmacological effect is to increase dopamine transmission, result in such changes remains unknown. One potential candidate mediator may be iron, which has a vital role in a many physiological processes, including in the synthesis of dopamine by providing energy for dopamine metabolism and storage. Given the pivotal role that iron plays in both health and disease, its metabolism is very tightly regulated. As an essential micronutrient, iron must be obtained from the diet and cannot be excreted (except by blood loss). Iron homeostasis is particularly critical in the brain because excess iron can result in neuronal death through the production of reactive oxygen species, and iron deficiency will impair dopamine synthesis and monoamine metabolism. Homeostasis is thus carefully controlled through various, highly complex transport systems and feedback loops. Disruptions in the regulation of iron may therefore occur at various levels, resulting in a variety of different pathologies, prominent among which are neurodegenerative disorders.

Critical to the regulation of iron is the blood–brain barrier, which decouples iron levels in the periphery from the brain. Iron enters the brain as diferric transferrin (Tf) via the transferrin receptors (TfR1) and the divalent metal transporter 1 (DMT1). The transmembrane protein ferroportin 1 transports iron from the luminal to the abluminal side of a cell, where it is stored as a ferritin, mainly in the oligodendrocytes but also in microglia and...
Iron in cocaine addiction
KD Ersche et al

RESULTS
Demographics and peripheral iron markers
The two groups were matched in terms of age, gender, handedness, body mass, and alcohol consumption (Table 1). The groups did not differ on vital signs, indicating that CUD patients were not acutely intoxicated.

The estimated iron absorption calculated from dietary iron intake did not differ between CUD and controls ($t_{df} = −0.02$, $P = 0.988$). CUD patients had significantly lower serum iron levels than controls and significantly higher levels of the acute-phase reactants CRP and ferritin, indicative of inflammation (Table 1). Levels of transferrin (iron transporter) and hepcidin (iron regulatory protein) did not differ between the groups but CUD patients had significantly lower transferrin saturation, suggesting iron deficiency. Ferritin concentration was correlated with hepcidin levels in controls ($r = 0.40$, $P = 0.008$) and less strongly in CUD ($r = 0.38$, $P = 0.016$), suggesting that in patients the increase in ferritin may also be related to inflammation and other factors. The haematological profile in CUD patients further indicates mild iron deficiency with a microcytic blood picture (Table 1).

Gray matter volume and brain iron concentration
Compared with the control group, gray matter volume at whole brain level was significantly increased in CUD in the putamen and the cerebellum, and significantly reduced in the insula, orbitofrontal, medial frontal, anterior cingulate and temporoparietal cortices (Figure 1a). Similarly, comparison of voxel-wise iron
normal ageing is altered in cocaine addiction. \(P = 0.005 \), suggesting that the pattern of iron accumulation with control volunteers, and voxels colored in red indicate brain areas in which CUD patients have abnormally increased gray matter volume. The statistical results are overlaid on the FSL MINI152 standard T1-image and the numbers beneath each section of the image refer to its position (mm) relative to the inter-commissural plane in standard stereotactic space. (B) Group comparison of iron concentration as estimated by quantitative susceptibility mapping (QSM) at whole brain level. Clusters colored in turquoise indicate greater iron concentration in CUD patients compared with control volunteers.

As shown in Figure 2b, the duration of cocaine use correlated strongly with QSM in the GPe \((r = 0.49, P = 0.001 \)\), the substantia nigra \((r = 0.34, P = 0.028 \)\) and dentate nucleus \((r = 0.33, P = 0.034 \)\), but not in the GPi \((r = 0.28, P = 0.069 \)\). QSM in the red nucleus was significantly correlated with low transferrin saturation in CUD patients \((r = 0.54, P < 0.001, \text{Figure 2c} \) but not in controls \((r = 0.08, P = 0.628 \)\). Only in the dentate nucleus was QSM correlated with transferrin saturation in both groups \((\text{CUD: } r = 0.43, P = 0.005, \text{controls: } r = 0.31, P = 0.045 \)\). For further details, see Supplementary Material.

Predictors of iron accumulation in the GP

Multiple regression revealed that a third of the variance (34%) of QSM in the GPe was explained by drug dependency \((R^2 = 0.34; F_{7,74} = 5.1832, P < 0.001 \)\), with cocaine dependence \((\beta = 0.57, P = 0.036 \)\) and the absence of opiate dependence \((\beta = -0.47, P = 0.001 \)\) being the strongest predictors in the model. For the GPi, the same model explained only 18% of the variance of QSM \((R^2 = 0.18; F_{7,74} = 2.27, P = 0.038 \)\) with the absence of opiate dependence being the only significant predictor \((\beta = -0.37, P = 0.018 \)\); see Supplementary Material for details.

Given the strong negative relationship with opiate dependence, the CUD group was divided post hoc into two subgroups with and without comorbid opiate dependence (CUD+O, \(n = 27 \); CUD−O, \(n = 14 \)\). There were no significant demographic differences between the CUD-subgroups. As shown in Figure 3b, one-way ANOVA revealed significant group differences in QSM in GPe \((F_{2,81} = 13.21, P < 0.001 \)\) such that QSM was increased in both CUD-subgroups compared with controls (both Tukey’s \(P < 0.05 \)\) and significantly increased in CUD−O compared with CUD+O \((P = 0.013 \)\). As shown in Figures 3d and e, the duration of cocaine use was significantly correlated with QSM in CUD+O \((r = 0.48, P = 0.017 \)\) and in CUD−O \((r = 0.54, P = 0.047 \)\) (Fisher’s z-score = −0.34, \(P = 0.737 \)\). The group effect in QSM in the GPe \((F_{2,81} = 6.87, P = 0.002 \)\) was driven by significantly higher levels of QSM in CUD−O compared with controls \((P = 0.001 \)\). Differences between CUD+O and controls \((P = 0.253 \)\) and CUD+O and CUD−O

Brain iron accumulation as a function of age and cocaine use

Consistent with prior work in healthy ageing, iron concentration was correlated with age in the putamen \((r = 0.67, P < 0.001 \)\), red nucleus \((r = 0.64, P < 0.001 \)\), substantia inominata \((r = 0.49, P = 0.001 \)\), substantia nigra \((r = 0.48, P = 0.001 \)\), motor cortex \((r = 0.43, P = 0.005 \)\), and caudate nucleus \((r = 0.39, P = 0.010 \)\). However, in CUD patients, these correlations were only seen in the motor cortex \((r = 0.44, P = 0.005 \)\) and substantia nigra \((r = 0.43, P = 0.005 \)\), suggesting that the pattern of iron accumulation with normal ageing is altered in cocaine addiction.
We demonstrate for, we believe, the first time in humans that chronic cocaine use is associated with excessive iron accumulation in the brain, which is localised to the GP and correlates strongly with the duration of regular cocaine use, but is unrelated to GP volume. We further report a significant reduction in serum levels of transferrin-bound iron (transferrin saturation), which was associated with low iron concentration in the red nucleus. These findings suggest that iron regulation is disrupted in cocaine addiction. Although we replicated the established findings of putamen enlargement in CUD, we did not find supporting evidence for this being related to iron accumulation either in the GP or the putamen, suggesting that both are separate, co-occurring morphological changes in cocaine addiction (Supplementary Table S3).

Iron accumulation in the GP: a putative consequence of cocaine exposure?
Excessive brain iron accumulation is a recognised pathological change in neurodegenerative diseases and conditions caused by inherited abnormalities of iron metabolism, but not one that has been described previously in cocaine addiction. Indeed, the highly localized iron accumulation in the GP in CUD patients is reminiscent of the ‘eye of the tiger’ sign on T2-weighted magnetic resonance imaging in pantothenate kinase-associated neurodegeneration (formerly Hallervorden-Spatz syndrome); a rare, rapidly progressive neurodegenerative disorder with childhood onset and prominent extrapyramidal symptoms. This condition is characterised by disturbances of systemic iron metabolism caused by mutations in the PANK2 gene. It thus demonstrates a clear link between iron dysregulation, basal ganglia dysfunction and excessive iron accumulation selectively in the GP, which may be very relevant to understanding our finding in CUD, though the precise mechanisms of how this arises and relates to the progression of the clinical syndrome remain to be determined.

High concentrations of iron are generally seen in the oligodendrocytes in dopamine-rich basal ganglia structures, the highest being in the GABAergic interneurons of the GP. Although the GP itself is not a dopamine-rich structure, its function within the basal ganglia network is, however, dependent on dopaminergic inputs. Unlike other regions such as the putamen, which accumulate iron slowly but steadily throughout the lifespan, iron concentration in the GP increases rapidly during the first two decades of life (when iron is essential for growth and myelination),

(P = 0.070) were non-significant (Figure 3c). No relationships were found between QSM in GPI and the duration of cocaine use or the duration of opiate use (Supplementary Material).

DISCUSSION

We demonstrate for, we believe, the first time in humans that chronic cocaine use is associated with excessive iron accumulation in the brain, which is localised to the GP and correlates strongly with the duration of regular cocaine use, but is unrelated to GP volume. We further report a significant reduction in serum levels of transferrin-bound iron (transferrin saturation), which was associated with low iron concentration in the red nucleus. These findings suggest that iron regulation is disrupted in cocaine addiction. Although we replicated the established findings of putamen enlargement in CUD, we did not find supporting evidence for this being related to iron accumulation either in the GP or the putamen, suggesting that both are separate, co-occurring morphological changes in cocaine addiction (Supplementary Table S3).
and then begins to plateau around the age of 30 years. GP iron concentration in our CUD group not only exceeded that of age-matched healthy volunteers (mean age 40 years), but also correlated strongly with the duration of cocaine use (Figure 2). Preclinical work in monkeys has shown a similarly selective increase in iron concentration in the GP following exposure to methamphetamine, at a magnitude 2.5 times that in control animals. In humans, bilateral GP infarction is a common symptom of cocaine overdose. Taken together, these findings suggest that this excess iron accumulation in the GP is a regionally specific effect of stimulant drug exposure.

Mechanisms and functional implications of excess iron accumulation in the GP

Evidence from animal models and human studies revealed that the stimulant-induced iron increase in the GPe occurs with a delay of up to 18 months after exposure. Although iron accumulation has primary been regarded as a dopamine-driven mechanism, this abnormal iron increase in the GP appears to reflect compensatory GABAergic adaptations to excessive stimulant-induced dopaminergic excitation in the striatum. However, the putative involvement of GABA and glutamate in iron homeostasis might also play a role in this process. Though iron concentrations in CUD patients were significantly increased in both segments of the GP, they were only related to the duration of cocaine use in the GPe. This cocaine-related iron accumulation further appeared to be attenuated by comorbid opiate addiction (Figure 3); a finding that requires further investigation. Consistent with previous work, the majority of our CUD+O reported using heroin in particular to alleviate cocaine-induced over-excitability and to enhance their control over their cocaine use. Whether these experiences are related to the attenuated iron increase in the GP remains to be determined.

The GPe and the subthalamic nucleus form the so-called indirect striatal pathway, which has been hypothesized to act as a ‘brake’ for inhibiting ongoing behaviour and to mediate learning of aversive outcomes—functions that are substantially impaired in stimulant-dependent individuals. Owing to its ‘strategic location’, the GPe has been suggested to exert a powerful inhibitory control on basal ganglia output structures, which are implicated in habit learning and automaticity. The indirect striatocortical pathway is thought to be modulated via striatal dopamine receptor type 2 function, which has been shown to decline following repeated stimulant drug exposure and to underlie compulsive drug-taking in addicted individuals. Intriguingly, selective damage of the GP has repeatedly been associated with compulsive behaviours unrelated to drug taking; it is thus conceivable that GP dysfunction contributes to disruptions in the balance between goal-directed and habitual action control that characterises cocaine addiction. However, despite existing histological evidence of the stimulant-induced increase in the GP and preliminary preclinical evidence suggesting that an imbalance between direct and indirect striatal pathway activity might mediate the transition to addiction, the underlying mechanisms and functional effects of iron dysregulation on addictive behaviour require further investigation.

Iron dysregulation in the periphery in cocaine addiction

We found evidence of dysregulation of peripheral iron metabolism in our CUD sample with significantly reduced levels of iron and...
transferrin saturation (Table 1). Given that transferrin is the major iron transporter protein, one would anticipate increased rather than decreased transferrin saturation in mild iron deficiency. However, during acute inflammation (as reflected by increased CRP levels, and abnormal eosinophil, lymphocyte and neutrophil counts), ferritin levels may increase disproportionately due to hepatic ferritin production, while iron release remains proportionate to the cellular ferritin content, resulting in low transferrin saturation as seen in the present study. The rather modest increase in ferritin during inflammation in CUD patients further supports the notion of peripheral iron dysregulation.

As iron crosses the blood–brain barrier bound to transferrin,67 the correlation between peripheral transferrin saturation and low iron levels in the red nucleus in CUD patients also concurs with the notion of peripheral iron deficiency (Figure 2c). In conditions of iron overload, the exact opposite pattern has been reported, namely excessive iron accumulation in the red nucleus and increased transferrin saturation in the periphery.68

A possible mediating role of peripheral inflammation in central iron accumulation?

Given that we see elevated serum CRP and ferritin levels in the CUD, it may be that inflammation is a mediator of the increased iron brain iron concentration. Although we found no significant correlations between CRP levels and QSM, this does not rule out this possibility, as QSM cannot separately detect the ferritin L-isof orm, which is associated with inflammation. Ferritin has two dominant isoforms, light polypeptide (L-ferritin) and heavy polypeptide (H-ferritin). H-ferritin has a critical regulatory role in iron metabolism, whereas the physically more stable L-ferritin is more involved in iron storage of iron.59 H-ferritin is involved myelination and adenosine triphosphate (ATP)70 and predominates in the young adult brain. However with aging, L-ferritin levels in the brain increase with the accumulation of myelin debris and the breakdown of neuromelanin,13 and L-ferritin is thought to play a critical role in neurodegeneration.69 To examine the association between iron accumulation in the brain and inflammation, it is necessary to specifically measure L-ferritin, which is not possible at present with QSM, and this remains an important area of future research.

Putamen enlargement is unrelated to iron levels

Though we replicated the finding of putamen enlargement in chronic stimulant drug users2–8 in our CUD group, we did not find supporting evidence for relationships between volumetric changes and abnormal iron concentration. Despite the group differences in putamen volume, iron concentration in the putamen did not significantly differ between the two groups (Figure 4). However, unlike the control group, CUD patients showed no correlation between putamen iron and age. Clearly, the pattern seen in CUD does not seem to accord with either a normal ageing19 or a neurodegenerative picture.71 Given that enlargement of the putamen has also been observed in their unaffected biological siblings,1 it likely represents a vulnerability factor to, rather than a consequence of, cocaine addiction.

Strengths and weaknesses

The strengths of the study are its methodology, the simultaneous examination of central and peripheral iron and the relatively large sample size. For the measurements of brain iron QSM has proven...
precise mechanisms by which stimulant drugs interact with vulnerability factors leading to the observed neuropathology. In this study, we provide first evidence of a potential mechanism, which seems to arise consequent to cocaine exposure, namely the dysregulation of iron metabolism. Future research is warranted to identify the precise mechanisms by which stimulant drugs interact with iron regulation, that is, changing the permeability of the blood-brain-barrier, altering intracellular iron trafficking, or disrupting cellular iron management. Another possibility that requires further exploration is the role of peripheral inflammation in CUD, and its contributory or mediating role in iron accumulation in the brain, given the growing evidence of inflammatory conditions affecting iron homeostasis through a process of translational regulation of ferritin.25

The demonstration of iron dysregulation in cocaine addiction raises several important questions including, how this develops over time, whether iron deficiency increases the vulnerability to developing stimulant addiction, contributes to the persistence of the disorder, or leads to the long-term sequelae such as accelerated brain ageing and behavioural and motor rigidity that continue in recovery. These will require longitudinal studies to evaluate the temporal course and stability of imbalances in iron regulation, and relate them to other key aspects of the illness. A more critical question that follows from the above is whether impaired iron regulation increases the vulnerability to modify disease course, or by slowing or reversing the central accumulation of iron.

Implications and outlook

Over the last three decades there has been a major conceptual shift in our understanding of drug addiction, from simply being a behavioural problem to a brain disorder.1,74 There have also been significant advances in addressing the basic question of causality, namely as to whether the observed brain changes in addicted individuals were causal or consequential to drug addiction. However, we know surprisingly little about the neurobiological mechanisms by which stimulant drugs interact with vulnerability factors leading to the observed neuropathology. In this study, we provide first evidence of a potential mechanism, which seems to arise consequent to cocaine exposure, namely the dysregulation of iron metabolism. Future research is warranted to identify the precise mechanisms by which stimulant drugs interact with iron regulation, that is, changing the permeability of the

Table 1. Demographics, haematological and peripheral iron measures

Demographics	Control Group	Cocaine Group	Group Comparison
Gender ratio (male: female)	40: 3	39: 2	Fisher’s 1.000
Handedness (right: left: ambidextrous)	37: 5: 1	34: 6: 1	Fisher’s 0.875
Age (years)	41.7 (±10.6)	40.5 (±7.6)	0.60 0.553
Body mass index	24.8 (±3.1)	23.4 (±4.1)	1.75 0.084
Alcohol consumption (AUDIT score)	3.9 (±1.9)	4.0 (±4.8)	1.24 0.222

Selected markers related to iron status

Dietary iron (mg)	11.6 (±3.7)	13.4 (±6.2)	−1.66 0.100
Serum iron (μmol l⁻¹)	17.9 (±5.9)	12.8 (±5.5)	4.03 <0.001
Serum ferritin (μg l⁻¹)	65.0 (±46.1)	103.2 (±75.2)	−2.80 0.008
Serum transferrin (g l⁻¹)	2.8 (±0.4)	2.6 (±0.4)	1.13 0.332
Transferrin saturation (%)	29.1 (±9.0)	21.9 (±10.3)	3.32 0.001
Serum hepcidin-25 (nmol l⁻¹)	3.4 (±3.8)	3.7 (±3.0)	710.5 0.125

Selected inflammatory marker

| C-reactive protein (mg l⁻¹) | 2.5 (±2.6) | 9.2 (±9.8) | 436.5 <0.001 |

Selected haematology markers

Haemoglobin (g l⁻¹)	143.9 (±7.5)	136.9 (±12.1)	3.15 0.002
Haematocrit (I l⁻¹)	0.4 (±0.02)	0.4 (±0.04)	2.43 0.018
Red blood cells (10¹² per l)	4.8 (±0.3)	4.6 (±0.4)	−3.37 0.001
White blood cells (10⁹ per l)	5.9 (±1.3)	7.4 (±2.6)	1.73 0.088
Eosinophils (%)	1.8 (±1.1)	3.3 (±1.7)	−4.73 <0.001
Lymphocytes (%)	2.83 (±6.4)	33.7 (±10.2)	−2.92 0.005
Monocytes (%)	7.50 (±18.1)	8.6 (±2.5)	−2.31 0.024
Neutrophils (%)	61.8 (±7.0)	53.7 (±11.7)	3.82 <0.001
Basophils (%)	0.6 (±0.3)	0.7 (±0.4)	−0.90 0.369
Mean cell volume (Fl)	89.4 (±4.6)	88.8 (±6.4)	0.52 0.602
Mean cell haemoglobin (Pg)	30.3 (±1.7)	29.7 (±2.4)	1.18 0.242
Mean corpuscular haemoglobin concentration	338.5 (±6.9)	334.63 (±8.3)	2.27 0.026

Other biomarkers

Creatinine (μmol l⁻¹)	79.9 (±14.4)	79.7 (±16.1)	0.04 0.970
Total bilirubin (μmol l⁻¹)	14.2 (±9.8)	6.5 (±3.3)	302.5 <0.001
Conjugated bilirubin (μmol l⁻¹)	3.9 (±2.5)	2.5 (±1.3)	555.5 0.003

Abbreviations: Std., standard deviation. Means and standard deviations appear in parentheses.
CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
We thank all participants for their contributions to this study, the clinical study officers of the Mental Health Research Network and the Cambridge BioResource for their help with volunteer recruitment, and the staff at the NIHR Clinical Research Facility at Addenbrooke’s Hospital and the Wolfson Brain Imaging Centre for their dedicated support throughout this study. A special word of thanks goes to Claire Whiteロック, Ilse Lee and Miriam Pollard for their assistance with data collection and to LawrenceBilling for assistance with the calculation of the iron absorption ratio.

We also thank Trevor Robbins for helpful comments on an earlier version of the manuscript. We also acknowledge the contribution of the staff and participants of the EPIC-Norfolk Study in the development of the Food Frequency Questionnaire, which we used in the present study. The study was jointly sponsored by the Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge. This work was funded by research grants from the Medical Research Council (G0701497 and MR/J012084/1) and supported by the NIHR Cambridge Biomedical Research Centre and the Behavioural and Clinical Neuroscience Institute (which was supported by a joint award from the Medical Research Council and the Wellcome Trust). The Food Frequency Questionnaire and related analysis software were used in the study. These instruments were initially developed as part of the EPIC-Norfolk Study, which was supported by the Medical Research Council programme grants (G0401527, G1000143) and Cancer Research UK programme grant (C864/AB257).

REFERENCES
1. Volkow NK, Koob G. Brain disease model of addiction: why is it so controversial? Lancet Psychiatry 2016; 2: 677–679.
2. Chang L, Cluck C, Patterson K, Grob C, Miller EN, Ernst T. Enlarged striatum in abstinent methamphetamine abusers: a possible compensatory response. Biol Psychiatry 2005; 57: 967–974.
3. Churchwell JC, Carey PD, Ferrett HL, Stein DJ, Yurgelun-Todd DA. Abnormal striatal circuitry and intensified novelty seeking among adolescents who abuse methamphetamine and cannabis. Dev Neurosci 2012; 34: 310–317.
4. Ersche KD, Barnes A, Jones PS, Morein-Zamir S, Robbins TW, Bullmore ET. Abnormal structure of frontostriatal brain systems is associated with aspects of cocaine addiction in healthy young adults. Am J Psychiatry 2001; 158: 486–499.
5. Jan R, Lin J, Miles S, Kyyd R, Russell B. Striatal volume increases in active methamphetamine-dependent individuals and correlation with cognitive performance. Brain Sci 2012; 2: 553–572.
6. Jernigan TL, Garst AC, Archibald SL, Fennema-Notestine C, Gottschalk C, Kosten TR, Krystal JH. Quantitative morphometry of the caudate and putamen in patients with cocaine dependence. Ann J Psychiatry 2001; 158: 870–873.
7. Groman S, Morales A, Lee B, London E, Jentisch J. Methamphetamine-induced increases in putamen gray matter associate with inhibitory control. Psychopharmacology 2013; 229: 527–538.
8. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005; 8: 1481–1489.
9. Radua J, van den Heuvel OA, Surguladze S, Mataix-Cols D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch Gen Psychiatry 2010; 67: 701–711.
10. Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 2013; 14: 551–564.
11. Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004; 5: 863–873.
12. Burnhams MS, Dalley A, Beard Z, Wiesinger J, Murray-Kolb L, Jones BC et al. Iron deficiency: differential effects on monoamine transporters. Nutr Neurosci 2005; 8: 31–38.
13. Andrews NC. Iron homeostasis: insights from genetics and animal models. Nat Rev Genet 2000; 1: 208–217.
14. Moos T, Nielsen TR, Skjærring T, Morgan EH. Iron trafficking inside the brain. J Neurochem 2003; 85: 1730–1740.
15. Leu PT, Heiskala M, Peterson PA, Yang Y. The roles of iron in health and disease. Mol Aspects Med 2001; 22: 1–87.

Iron in addiction and cognitive function.
Iron in cocaine addiction
KD Ersche et al

Shoham S, Wertman E, Ebstein RP. Iron accumulation in the rat basal ganglia after excitatory amino acid injections-Dissociation from neuronal loss. Exp Neurol 1992; 118: 227–241.

Hill JM. Iron concentration reduced in ventral pallidum, globus pallidus, and substantia nigra by GABA-transaminase inhibitor, gamma-vinyl GABA. Brain Res 1985; 342: 18–25.

Leri F, Bruneau J, Stewart J. Understanding polydrug use: review of heroin and cocaine co-use. Addiction 2003; 98: 7–22.

Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 2014; 17: 1022–1030.

Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 2011; 34: 441–466.

Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 2010; 66: 896–907.

Frank MJ, Seeberger LC, O’Reilly RC. By carrot or by stick: cognitive reinforcement learning in Parkinsonism. Science 2004; 306: 1940–1943.

Ersche KD, Gillan CM, Jones PS, Williams GB, Ward LHE, Luijten M et al. Carrots and sticks fail to change behavior in cocaine addiction. Science 2016; 352: 1468–1471.

Morein-Zamir S, Jones PS, Bullmore ET, Robbins TW, Ersche KD. Prefrontal hypoactivity associated with impaired inhibition in stimulant-dependent individuals but evidence for hyperactivation in their unaffected siblings. Neuropsychopharmacology 2013; 38: 1945–1953.

Shink E, Smith Y. Differential synaptic innervation of neurons in the internal and external segments of the globus-pallidus by the gaba-containing and glutamate-containing terminals in the squirrel-monkey. J Comp Neurol 1995; 358: 119–141.

Ashby FG, Turner BD, Horvitz JC. Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci 2010; 14: 208–215.

Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 2006; 9: 1050–1056.

Volkow ND, Tomasi D, Wang GJ, Logan J, Alexoff DL, Jayne M et al. Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers. Mol Psychiatry 2014; 19: 1037–1043.

Moussawi K, Kalivas PW, Lee JW. Abstinence from drug dependence after bilateral globus pallidus hypoxic-ischemic injury. Biol Psychiatry 2016; 80: e79–e80.

Escalona PR, Adair JC, Roberts BB, Graeber DA. Obsessive-Compulsive disorder following bilateral globus pallidus infarction. Biol Psychiatry 1997; 42: 410–412.

Djodari-Iran A, Klein J, Banzhaf J, Joel D, Heinz A, Harnack D et al. Activity modulation of the globus pallidus and the nucleus entopeduncularis affects compulsive checking in rats. Behav Brain Res 2011; 219: 149–158.

Nicholas AP, Earnst KS, Marson DC. Atypical Hallervorden-Spatz disease with preserved cognition and obstrusive obsessions and compulsions. Mov Disord 2005; 20: 880–886.

Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: role in drug addiction. Neuroscience 2015; 301: 529–541.

Bradbury MW. Transport of Iron in the blood-brain-cerebrospinal fluid system. J Neurochem 1997; 69: 443–454.

Nielsen JE, Jensen LN, Krabbe K. Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome. J Neurol Neurosurg Psychiatry 1995; 59: 318–321.

Friedman A, Arosio P, Finazzi D, Koziorowski D, Galazka-Friedman J. Ferritin as an important player in neurodegeneration. Parkinsonism Relat Disord 2011; 17: 423–430.

Duck KA, Connor JR. Iron uptake and transport across physiological barriers. Biometals 2016; 29: 573–591.

Sanchez-Castaneda C, Squitieri F, Di Paola M, Dayan M, Pettorini M, Sabatini U. The role of iron in gray matter degeneration in huntington’s disease: a Magnetic Resonance Imaging Study. Hum Brain Mapp 2015; 36: 50–66.

Deistung A, Schaefer A, Schweser F, Biedermann U, Turner R, Reichenbach JR. Toward in vivo histology: a comparision of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R-2*-imaging at ultra-high magnetic field strength. Neuroimage 2013; 65: 299–314.

Langkammer C, Liu T, Khalil M, Enzinger C, Jehna M, Fuchs S et al. Quantitative susceptibility mapping in multiple sclerosis. Radiology 2013; 267: 531–539.

Leshner AI. Addiction is a brain disease, and it matters. Science 1997; 278: 45–47.

White K, Munro HN. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels. J Biol Chem 1988; 263: 8938–8942.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/