Discovering QCD-Coupled Axion Dark Matter with Polarization Haloscopes

Asher Berlin1,2,* and Kevin Zhou3,†

1 Theory Division, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
2 Superconducting Quantum Materials and Systems Center (SQMS), Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
3 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

In the presence of QCD axion dark matter, atoms acquire time-dependent electric dipole moments. This effect gives rise to an oscillating current in a nuclear spin-polarized dielectric, which can resonantly excite an electromagnetic mode of a microwave cavity. We show that with existing technology such a “polarization haloscope” can explore orders of magnitude of new parameter space for QCD-coupled axions. If any cavity haloscope detects a signal from the axion-photon coupling, an upgraded polarization haloscope has the unique ability to test whether it arises from the QCD axion.

I. INTRODUCTION

The QCD axion is a long-standing, well-motivated dark matter candidate [1–7] that can also explain why the neutron’s electric dipole moment (EDM) is at least 10^{10} times smaller than generically expected [8]. It is a pseudoscalar field α defined by its coupling to gluons

$$\mathcal{L} \supset \theta_a \frac{\alpha_s}{8\pi} G^{\mu\nu} \tilde{G}_{\mu\nu},$$

where $\theta_a \equiv a/f_a$ and f_a is the axion decay constant. At temperatures below the QCD phase transition, this effect gives rise to an oscillating current in a nuclear spin-polarized dielectric, which can resonantly excite an electromagnetic mode of a microwave cavity. We show that with existing technology such a “polarization haloscope” can explore orders of magnitude of new parameter space for QCD-coupled axions. If any cavity haloscope detects a signal from the axion-photon coupling, an upgraded polarization haloscope has the unique ability to test whether it arises from the QCD axion.

Currently, the most stringent laboratory constraints on axion dark matter at GHz frequencies come from cavity haloscopes [27, 28], which rely on the axion’s coupling to photons, $\mathcal{L} \supset g_{a\gamma\gamma} F^{\mu\nu} F_{\mu\nu}/4$. In these experiments, axion dark matter produces an effective current $j_{a\gamma\gamma} = g_{a\gamma\gamma} B \partial_t a$ inside a microwave cavity with background magnetic field B, which can resonantly excite a mode of angular frequency m_a. While there are many other recent proposals to search for the axion (see Refs. [29–31] for reviews), the cavity haloscope concept is currently the most well-developed, with many collaborations reporting new results [32–50] and some operating near or beyond the standard quantum limit [34, 36, 37, 42]. These experiments are well-motivated, as the axion-gluon coupling of Eq. (1) is known to induce an axion-photon coupling. However, their relation is indirect: the coefficient $g_{a\gamma\gamma}$ can vary by orders of magnitude within simple models [51–54], and an axion with an electromagnetic coupling is not necessarily the QCD axion. Definitively discovering or excluding the QCD axion thus requires confronting the axion-gluon coupling directly.

In this work, we present the first method to probe the axion-gluon coupling at GHz frequencies. In the presence of axion dark matter, atoms have oscillating EDMs of 10^{-14}. Other potential detection avenues involve nuclear magnetic resonance [15–17], spin precession in storage rings [18–23], atomic and molecular spectroscopy [24, 25], and mechanical oscillations in piezoelectric materials [26]. However, none of these probes are sensitive at the GHz frequencies motivated by standard misalignment production of axion dark matter.

In this work, we present the first method to probe the axion-gluon coupling at GHz frequencies. In the presence of axion dark matter, atoms have oscillating EDMs of magnitude d_A directed along their nuclear spin [55], analogous to the neutron EDM in Eq. (4). A dielectric thus carries a polarization density $P_{\text{EDM}} \sim n_A d_A$, where n_A is the density of nuclear spin-polarized atoms. A time-varying polarization induces a physical electromagnetic current $J_{\text{EDM}} = \partial_t P_{\text{EDM}}$, which can be resonantly amplified by placing the dielectric in a microwave cavity with a mode of angular frequency m_a. We call this system, depicted in Fig. 1, a polarization haloscope.

To quickly estimate its potential, we may compare the current in a polarization haloscope to that produced in a typical cavity haloscope. For the benchmark DFSZ model,
Figure 1. Atoms carry EDMs proportional to the field line (left), aligned with the nuclear spin \(I \). The axion's time variation thus produces a current \(J_{\text{EDM}} \) in a nuclear spin-polarized dielectric, whose effect can be amplified in a resonant cavity. For higher axion masses, the geometric overlap factor in Eq. (19) can be maximized using layers of inert dielectric (top) or alternating spin polarization (bottom).

where \(g_{a\gamma\gamma} \simeq 0.87 \times 10^{-3} / f_a \) [56, 57], the ratio is

\[
\frac{J_{\text{EDM}}}{J_{a\gamma\gamma}} \simeq 10^{-3} \times \frac{d_A}{d_n} \left(\frac{n_A}{5 \times 10^{22} \text{ cm}^{-3}} \right) \left(\frac{8 \text{ T}}{B} \right),
\]

which suggests that the signal in a cavity haloscope is larger. Furthermore, \(J_{\text{EDM}} \) is more difficult to calculate, as it depends sensitively on nuclear, atomic, and material properties. For these reasons, the polarization haloscope idea was briefly raised and discarded thirty years ago [58]. However, the rapid recent progress in cavity haloscopes motivates a thorough analysis of its potential. In section II we show that \(d_A \sim d_n \) can be achieved for certain atoms. We then consider the factors necessary to develop an effective polarization haloscope, such as cavity design (section III), material choice (section IV), and nuclear spin polarization (section V). We estimate experimental sensitivity in section VI and conclude in section VII, laying out a path towards reaching the QCD axion.

II. AXION-INDUCED EDMs

The dominant nuclear contribution to the EDM of an atom with atomic number \(Z \) arises from the \(P, T \)-violating piece of the effective nuclear electric potential [59–64]

\[
\phi_N^{(\text{eff})}(x) = \left(1 + \frac{1}{Ze} \mathbf{d}_N \cdot \nabla \right) \phi_N(x),
\]

which includes the usual electric potential \(\phi_N \) of the nucleus and the response of the atomic electrons to the nuclear EDM \(\mathbf{d}_N \). The leading \(P, T \)-violating term in a multipole expansion of \(\phi_N^{(\text{eff})} \) is the dipole, but it simply vanishes, in accordance with Schiff’s theorem [65] which states that the nuclear EDM is efficiently screened by the atomic electrons. The next \(P, T \)-violating term is the octupole. Its traceless part corresponds to an electric octupole moment, whose effects are suppressed by the centrifugal barrier near the nucleus [59]. The traceful part yields the dominant contribution to the atomic EDM and is described by the Schiff moment [60],

\[
\mathbf{S} = \frac{1}{10} \int d^3x \rho_N(x) r^2 \left(\mathbf{x} - \frac{5}{3} \frac{\mathbf{d}_N}{Ze} \right),
\]

where \(\rho_N \) is the nuclear charge density; \(\mathbf{S} \) sources a \(P, T \)-violating electric field that polarizes the atomic electrons, perturbing the electronic Hamiltonian by

\[
V_S = - \sum_{i=1}^{Z} e \mathbf{S} \cdot \nabla \delta^3(x_i),
\]

where the nucleus is at the origin. The interaction \(V_S \) mixes opposite parity states, which to first order in perturbation theory gives rise to a non-vanishing atomic EDM, parallel to the nuclear spin \(I \), of the form

\[
d_A \simeq \sum_n \frac{\langle n|V_S|0\rangle \langle 0|\mathbf{D}|n\rangle}{E_n - E_0} + \text{h.c.},
\]

where \(|n\rangle \) are atomic states of energy \(E_n \) and \(\mathbf{D} = \sum_{i=1}^{Z} e \mathbf{x}_i \) is the atomic EDM operator. The result scales as \(d_A \sim Z^2 S, \) with a moderate relativistic enhancement for the heaviest nuclei. Scaling numeric results for \(^{225}\text{Ra} \) from Refs. [66–69] yields

\[
d_A \sim - (0.27 \times 10^{-3} \text{ fm}) \langle S_z \rangle / (e \text{ fm}^3)
\]

for \(^{161}\text{Dy} \), with values within 20% for the other nuclei we will consider below. Here, \(\langle S_z \rangle \) is the lab-frame expectation value of the Schiff moment directed along the nuclear spin for a maximally-polarized nucleus, \(M = I \) [63].

In perturbation theory, the Schiff moment is

\[
\langle S_z \rangle \simeq \sum_n \frac{\langle n|V_{PT}|0\rangle \langle 0|S_z|n\rangle}{E_n - E_0} + \text{h.c.},
\]

which yields the parametric estimate

\[
\langle S_z \rangle \sim 10^{-2} \frac{e R_0^2}{m_n} \theta_a \sim (0.1 \times e \text{ fm}^3) \theta_a \left(\frac{A}{10^2} \right)^2,
\]

in agreement with detailed calculations [26, 59, 60, 70–74]. This yields only a small atomic EDM, \(d_A \ll d_n \), but for nonspherical nuclei there can be a large intrinsic Schiff moment \(S_{\text{int}} \) in the body-fixed frame. Evaluating Eq. (7) gives \(S_{\text{int}} \propto \beta_2 \beta_3 Ze R_0^3 \), where \(\beta_2 \) and \(\beta_3 \) parametrize the quadrupole and octupole deformation of the nuclear radius. The lab-frame Schiff moment is then determined by
Applying Eq. (10), we find that for these nuclei, d_a which, as anticipated above, is comparable to d_a. It can be calculated perturbatively with an expression analogous to Eq. (11), the main difference being that octupole deformations imply states with small energy gaps, $E_n - E_0 \sim 50$ keV. For significantly octupole-deformed nuclei, $\beta_3 \sim \beta_3 \sim O(0.1)$, various numeric factors cancel, leaving [70–74]

$$\langle S_z \rangle \sim 10^{-2} \frac{ZeR_0^3}{m_n} \theta_a,$$

which is crucially enhanced by Z relative to Eq. (15). Applying Eq. (10), we find that for these nuclei,

$$|d_A| \sim (\text{few} \times 10^{-3}) \ e \ \text{fm} \times \theta_a \left(\frac{Z}{10^2}\right)^3 \left(\frac{A}{10^2}\right)^{\frac{3}{2}},$$

which, as anticipated above, is comparable to d_a.

Most octupole-deformed nuclei are short-lived and thus infeasible to gather in the macroscopic quantities required. Of the nuclei highlighted in Refs. [69, 75, 79], we identify 161Dy, 153Eu, and 155Gd as the most promising. They are absolutely stable and, as indicated in Table I, are inexpensive and expected to possess fairly large axion-induced Schiff moments and atomic EDMs. However, the existence of octupole deformation in these nuclei is not completely settled [80]. This work motivates further experimental study. Even if none of these nuclei are octupole deformed, it may still be possible to achieve comparable EDMs via magnetic quadrupole moments, which are enhanced by well-established nuclear quadrupole deformations [75].

III. CAVITY EXCITATION

The axion field oscillates with a phase offset and amplitude varying over the coherence time $\tau_a \sim Q_a/m_a$, where $Q_a \sim 10^6$. For all axion masses we consider, spatial gradients of the axion field are negligible. The cavity response is therefore very similar to that of a conventional haloscope, with $J_{\alpha \gamma \gamma}$ replaced by $J_{\text{EDM}} \simeq m_a n_A d_A$. In our case, there is also an associated physical charge density $\rho_{\text{EDM}} = -\nabla \cdot \mathbf{P}_{\text{EDM}}$ in the cavity, which produces small electric fields, but it is not of interest because it cannot excite resonant modes [81–83].

We suppose a portion V_p of the volume V of the cavity is filled with dielectric of fractional nuclear spin polarization f_p along the \hat{p} direction, so that $n_A = f_p n_0$ where n_0 is the number density of relevant nuclei. Adapting a standard result [84], the power deposited to the ith mode of the cavity on resonance, $m_i \simeq \omega_i$, is

$$P_{\text{sig}} \simeq m_a (f_p n_0 d_A)^2 (V/\epsilon) \eta^2 \min(Q_a, Q_i),$$

where d_A is now the time-independent amplitude of the atomic EDM, Q_i is the quality factor of the mode, and the last factor accounts for the spectral width of the axion. The typical dielectric permittivity inside the cavity is ϵ, and the geometric overlap factor is

$$\eta_i = \frac{\int_{V_p} d^3 x \mathbf{E}_i \cdot \hat{p}}{\sqrt{V_{V_p} d^3 x (\epsilon/\epsilon) E_i^2}}.$$

This definition is chosen so that $\eta_i \sim 1$ when the cavity is completely filled with dielectric polarized along \hat{p} parallel to the electric field \mathbf{E}_i of the cavity mode. Below, we suppress mode subscripts to simplify notation.

To probe the lowest possible axion masses, a cylindrical cavity can be completely filled with a dielectric with \hat{p} along the cylinder’s axis, which yields $\eta \simeq 0.83$ for the TM$_{010}$ mode. In Fig. 1, we show two concrete ways to guarantee $O(1)$ geometric overlap for heavier axions coupled to higher resonant modes of the cavity. First, one can insert layers of another dielectric. For example, rutile TiO_2 has a high permittivity at cryogenic temperatures, $\epsilon \gtrsim 10^4$ [85], thin layers would suffice to preserve a large overlap factor. Alternatively, the cavity can be filled with dielectric whose spin polarization alternates in direction. In either case, the mode frequency can be coarsely tuned by changing the number of layers, and finely tuned by introducing gaps and moving the dielectric layers or endcaps along the cylinder’s axis.

Such layered structures have been proposed, prototyped, operated, and tuned for haloscopes targeting the axion-photon coupling [86–93]. Axions can also be effectively coupled to higher-order modes by loading cavities with dielectric wedges or cylindrical shells [84, 94–98]. At high axion masses, scanning can become impeded by mode crowding. Many innovative approaches have been considered to avoid this issue, such as open resonators [91, 92], phase-matched, coupled, or sub-divided cavities [39, 47, 99–108], rod or wire metamaterials [109–111], and thin-shell geometries [112, 113]. Most of these ideas can be adapted to polarization haloscopes, though some tuning mechanisms must be adjusted. For concreteness, we take $\eta = 1$, assume a cylindrical cavity with aspect ratio $L/R = 5$, and require the intermediate layers in Fig. 1 be at least 1 cm thick, so that there is a reasonable number to tune. This determines the mass range probed in Fig. 2.
IV. MATERIAL PROPERTIES

To maximize the signal strength, we consider dielectric materials with a high density of the nuclei in Table I. Unlike other approaches that require the material to be ferroelectric [15] or piezoelectric [26], we only require the material to be insulating at low temperatures.

Some semiconducting or insulating candidate materials are nitrides XN [114], oxides XO, and sesquioxides X2O3 for X = Dy, Eu, Gd. Though many alternatives exist, these materials are simple and well-studied, and most are commercially available. For a prototype setup, we consider EuN where the abundance of 153Eu is 52% (see Table I). Following other proposals [15, 26], we assume complete isotope separation for a full-scale experiment, using DyN where the dysprosium is entirely 161Dy. In both cases, the number density of rare earth atoms is 3×10^{22} cm$^{-3}$ [115, 116].

The structure of the material also directly affects the strength of the signal. The most important effect, displayed in Eq. (18), is that dielectrics shield electric fields, reducing the signal power by a factor of the permittivity ε. For our projections we take $\varepsilon \simeq 7$, based on the static permittivity of DyN [117]. This choice is conservative, as permittivity decreases at higher frequencies.

In addition, the effective atomic EDM may be modified within a crystal, where atomic orbitals are deformed. This effect is quantified by the “electroaxionic” tensor defined in Ref. [26], and calculating the tensor components requires a dedicated relativistic many-body calculation for each material. In PbTiO₃, two groups found suppressions of 25% [118] and 50% [119], but with comparably large uncertainties. Thus, for this initial study we simply take d_A to be the value for an isolated atom.

The other key material property is the dielectric loss tangent $\tan \delta$. For a cavity entirely filled with dielectric, the quality factor Q of a mode obeys $1/Q = 1/Q_c + \tan \delta$, where Q_c is the quality factor due to cavity wall losses. Thus, to realize a desired Q, one must have $\tan \delta \lesssim 1/Q_c$.

At room temperature, dielectrics display high losses due to thermal phonons. However, these “intrinsic” losses fall steeply with temperature [120], and are negligible at the cryogenic temperatures of polarization haloscopes. Instead, extrinsic losses due to defects and impurities dominate [121, 122] and depend on crystal quality. Very low losses have been measured [123–126], at the level of 10^{-9} for sapphire and 10^{-8} for rutile and YAG.

These are all centrosymmetric crystals, and thereby avoid additional loss mechanisms that would appear in more complex crystals, e.g. through acoustic phonons in piezoelectrics [120] or domain wall motion in ferroelectrics [127]. The candidate materials we have listed above are also all simple centrosymmetric crystals. However, their dielectric losses are unknown, and dedicated cryogenic measurements in high-quality crystals are needed. These should be carried out at low electric field amplitudes, because high field amplitudes can mask losses due to two-level systems [128–130].

V. NUCLEAR SPIN POLARIZATION

The current in a polarization haloscope is proportional to the fractional nuclear spin polarization f_p, which is $O(1\%)$ in thermal equilibrium in typical cavity haloscope conditions (see Table I). However, for both polarization haloscopes and other approaches [15, 26] an $O(1)$ polarization is required for optimal sensitivity. Below we describe two potential approaches to realize this.

First, one could simply subject the dielectric to a high magnetic field $B \gtrsim 10$ T and ultra-low temperature. At $T = 2$ mK, as achieved by specialized dilution fridges [131, 132]. 153Eu nuclei possess an $O(1)$ equilibrium polarization. For this technique, the key unknown is the time needed to thermalize the spins. At such high B/T, theoretical estimates suggest that it is prohibitively long [133, 134], but measured spin-lattice relaxation times are much shorter than predicted [135, 136], which could be explained by exotic relaxation mechanisms [137–139]. Relaxation times might be further reduced by the electric quadrupole moments of the nuclei we consider, which coupler more strongly to the lattice than magnetic dipole moments [140], or by the addition of relaxation agents [141, 142].

Another option is frozen spin dynamic nuclear polarization (DNP), in which electrons are polarized in a few-Tesla field at $T \sim 1$ K, and their polarization is transferred to the nuclear spins by applying ~ 1 W/kg of microwave power. This method achieves almost complete proton spin polarization and has been extended to heavier nuclei for NMR studies [143–146]. It requires the sample to contain a concentration $\sim 10^{-3}$ of paramagnetic centers, produced by chemical doping or ionizing radiation. To “freeze” the nuclear spins, the microwave field is removed and the sample is further cooled to slow relaxation.

This approach has been used for decades to polarize targets for particle physics experiments [147, 148]: notably, the Spin Muon Collaboration at CERN produced frozen spin targets of liter scale [149]. Currently, frozen spin DNP is primarily developed in nuclear physics experiments [150–155]. The resulting spin polarization is robust, with spin-lattice relaxation times of nearly a year observed in practice [156]. For polarization haloscopes, the next step is to see how this approach can be scaled to larger volumes, while maintaining low dielectric losses.

VI. PROJECTED SENSITIVITY

The signal-to-noise ratio is given by the Dicke radiometer equation [160],

$$\text{SNR} \simeq \frac{P_{\text{sig}}}{T_n} \sqrt{\frac{t_{\text{int}}}{\Delta \nu_s}}, \quad (20)$$

where t_{int} is the time spent probing each axion mass, and $\Delta \nu_s = m_a/(2\pi \max(Q, Q_0))$ is the signal bandwidth. The noise temperature $T_n = T + T_{\text{amp}}$ receives comparable contributions from thermal noise, determined by the
When thermal noise dominates, we assume the cavity is
with a quality factor of the cavity mode with dielectric losses
improves the SNR by a factor of Q/m_a. Following existing haloscope experiments, we as-
sume an operating temperature of $T = 40$ mK [40] and an amplifier operating at the quantum limit,
$T_{\text{amp}} \simeq m_a$. When thermal noise dominates, we assume the cavity is
optimally overcoupled to the readout, which modestly
improves the SNR by a factor of $\sqrt{T/T_{\text{amp}}}$ [161].

The “prototype” projection, shown in dark blue, is modeled on the ADMX haloscope [34] and assumes a volume $V = 100$ L, quality factor $Q = 10^5$, and magnetic field $B = 8$ T, which produces a thermal spin polarization $f_p \simeq 5\%$ for 155Eu. This benchmark shows that new parameter space can be explored with minimal investment.
(However, this parameter space may be in tension with the stability of white dwarfs [162].)

The light blue projection considers a cubic meter cavity with $Q = 10^6$ and complete spin polarization, $f_p = 1$. Such an experiment would require a large dilution fridge, like those developed for other precision experiments [163–167], and several tons of dielectric material. In other words, it would require investment comparable to ongo-
ing WIMP dark matter searches [168, 169]. Though it does not reach the canonical QCD axion line defined by Eq. (2), it could probe orders of magnitude of unexplored parameter space, including non-minimal, mildly tuned QCD axion models which solve the strong CP problem with exponentially smaller $m_a f_a$ [170, 171].

If ADMX, CAPP, or any other GHz-frequency halo-
scope [172–176] detects a signal consistent with axion
dark matter, a “post-discovery” setup, shown in dashed blue, can probe the same mass. Since it sits at a single fre-
duency, the SNR is enhanced by $Q_d^{1/2} \sim 10^3$ for $t_{\text{int}} = 1$ yr, as compared to a scanning experiment. We assume noise is reduced, relative to the counter meter setup, by cooling to 10 mK and reducing amplifier noise by 34 dB using demonstrated vacuum squeezing techniques [37]. We also assume a quality factor of $Q = 10^8$. To achieve this quality factor one needs a material with $\tan \delta \lesssim 10^{-8}$, which has been measured for a number of compounds. As for wall losses, one can achieve $Q_c \gg 10^6$ with a superconducting cavity, since polarization haloscopes do not require large static magnetic fields. Alternatively, the mode profile can be shaped with dielectrics, a technique which has achieved $Q \sim 10^7$ in a liter-scale copper cavity [97]. With these enhancements, a polarization haloscope has the unique ability to probe the minimal QCD axion.

VII. DISCUSSION

The QCD axion is an exceptional dark matter candi-
date, which arises automatically in theories which solve
other problems of the Standard Model, with a simple and
predictive production mechanism. The minimal QCD ax-
ion also has the unique advantage of possessing a defining
coupling to the Standard Model, which provides a sharp
target for laboratory searches.

A polarization haloscope naturally targets higher
frequencies than nuclear magnetic resonance experi-
ments [15]. Both approaches detect the electromagnetic fields generated by spin polarized nuclei, but polarization haloscopes do not involve changes in the spin direction and hence do not require long spin coherence times. One could also target kHz to MHz frequencies with our approach by replacing the magnetic field in an LC circuit haloscope [177–179] with a polarized dielectric.

We have laid out a path towards definitively prob-
ing the QCD axion with polarization haloscopes. No
fundamentally new technologies are required, but many
uncertainties remain. Precisely computing the signal re-
quires expertise in theoretical nuclear, atomic, and solid
state physics, while the cavity design and the selection
and polarization of the material require experimental in-
vestigation. Together, such efforts may enable the next
definitive search for dark matter.
ACKNOWLEDGMENTS

We thank John Behr, Raphael Cervantes, Andrei Derevianko, Victor Flambaum, Roni Harnik, Anson Hook, Yoni Kahn, Amalia Madden, Surjeet Rajendran, Gray Rybka, Alex Sushkov, and Natalia Toro for helpful discussions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under the contract No. DE-AC02-07CH11359. Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DEAC02-07CH11359 with the United States Department of Energy. KZ is supported by the NSF GRFP under grant DGE-1656518.

[1] R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
[2] R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D 16 (1977) 1791–1797.
[3] S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40 (1978) 223–226.
[4] F. Wilczek, “Problem of Strong P and T Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
[5] J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B 120 (1983) 127–132.
[6] L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B 120 (1983) 133–136.
[7] J. Alexander, “Overview of the Cosmic Axion Spin Precession Experiment (CASPEr),” arXiv:2204.01454 [hep-ex].
[8] D. F. Jackson Kimball et al., “Overview of the Cosmic Axion Spin Precession Experiment (CASPEr),” Springer Proc. Phys. 245 (2020) 105–121, arXiv:1711.08999 [physics.ins-det].
[9] I. Schulthess et al., “New Limit on Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance,” Phys. Rev. Lett. 126 (2021) no. 14, 141802, arXiv:2101.01241 [hep-ex].
[10] M. Pospelov and A. Ritz, “Theta induced electric dipole moment of the neutron via QCD sum rules,” Phys. Rev. Lett. 83 (1999) 2526–2529, arXiv:hep-ph/9904483.
[11] O. Kim and Y. K. Semertzidis, “Axion dark matter: How to see it?,” Sci. Adv. 8 (2022) no. 8, eabm9928, arXiv:2104.14831 [hep-ph].
[12] J. Alexander et al., “The storage ring proton EDM experiment,” arXiv:2205.00830 [hep-ph].
[13] JEDI Collaboration, S. Karanth et al., “First Search for Axionlike Particles in a Storage Ring Using a Polarized Deuteron Beam,” Phys. Rev. X 13 (2023) no. 3, 031004, arXiv:2208.07293 [hep-ex].
[14] P. Sikivie, “Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr),” arXiv:2205.00830 [hep-ph].
[15] P. Sikivie, “Experimental Tests of the Invisible Axion,” Phys. Rev. Lett. 51 (1983) 1415–1417. [Erratum: Phys.Rev.Lett. 52, 695 (1984)].
[16] P. Sikivie, “Two Applications of Axion Electrodynamics,” Phys. Rev. Lett. 58 (1987) 1799.
[17] P. Sikivie, “Invisible Axion Search Methods,” Rev. Mod. Phys. 93 (2021) no. 1, 015004, arXiv:2003.02206 [hep-ph].
[18] A. Arvanitaki, A. Madden, and K. Van Tilburg, “The Piezaoxionic Effect,” arXiv:2112.11466 [hep-ph].
[19] I. G. Irastorza and J. Redondo, “New experimental approaches in the search for axion-like particles,” Prog. Part. Nucl. Phys. 102 (2018) 89–159, arXiv:1801.08127 [hep-ph].
[20] Y. K. Semertzidis and S. Youn, “Axion dark matter: How to see it?,” Sci. Adv. 8 (2022) no. 8, eabm9928, arXiv:2104.14831 [hep-ph].
[33] ADMX Collaboration, T. Braine et al., “Extended Search for the Invisible Axion with the Axion Dark Matter Experiment,” Phys. Rev. Lett. 124 (2020) no. 10, 101303, arXiv:1910.08638 [hep-ex].

[34] ADMX Collaboration, C. Bartram et al., “Search for Invisible Axion Dark Matter in the 3.3–4.2 µeV Mass Range,” Phys. Rev. Lett. 127 (2021) no. 26, 261803, arXiv:2110.06096 [hep-ex].

[35] B. M. Brubaker et al., “First results from a microwave cavity axion search at 24 µeV,” Phys. Rev. Lett. 118 (2017) no. 6, 061302, arXiv:1610.02580 [astro-ph.CO].

[36] HAYSTAC Collaboration, L. Zhong et al., “Results from phase 1 of the HAYSTAC microwave cavity axion experiment,” Phys. Rev. D 97 (2018) no. 9, 092001, arXiv:1803.03690 [hep-ex].

[37] HAYSTAC Collaboration, K. M. Backes et al., “A quantum-enhanced search for dark matter axions,” Nature 590 (2021) no. 7845, 238–242, arXiv:2008.01853 [quant-ph].

[38] S. Lee, S. Ahn, J. Choi, B. R. Ko, and Y. K. Semertzidis, “Axion Dark Matter Search around 6.7 µeV,” Phys. Rev. Lett. 124 (2020) no. 10, 101802, arXiv:2001.05102 [hep-ex].

[39] J. Jeong, S. Youn, S. Bae, J. Kim, T. Seong, J. E. Kim, and Y. K. Semertzidis, “Search for Invisible Axion Dark Matter with a Multiple-Cell Haloscope,” Phys. Rev. Lett. 125 (2020) no. 22, 221302, arXiv:2008.10141 [hep-ex].

[40] CAPP Collaboration, O. Kwon et al., “First Results from an Axion Haloscope at CAPP around 10.7 µeV,” Phys. Rev. Lett. 126 (2021) no. 19, 191802, arXiv:2012.10764 [hep-ex].

[41] Y. Lee, B. Yang, H. Yoon, M. Ahn, H. Park, B. Min, D. Kim, and J. Yoo, “Searching for Invisible Axion Dark Matter with an 18 T Magnet Haloscope,” Phys. Rev. Lett. 128 (2022) no. 24, 241805, arXiv:2206.08845 [hep-ex].

[42] J. Kim et al., “Near-Quantum-Noise Axion Dark Matter Search at CAPP around 9.5 µeV,” Phys. Rev. Lett. 130 (2023) no. 9, 091602, arXiv:2207.13597 [hep-ex].

[43] ADMX Collaboration, C. Boutan et al., “Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter,” Phys. Rev. Lett. 121 (2018) no. 26, 261302, arXiv:1901.00920 [hep-ex].

[44] T. Gernet, R. Ballou, Q. Basto, K. Martineau, P. Perrier, P. Pugnat, J. Quevillon, N. Roch, and C. Smith, “The Grenoble Axion Haloscope platform (GrAHal): development plan and first results,” arXiv:2110.14406 [hep-ex].

[45] TASEH Collaboration, H. Chang et al., “Taiwan axion search experiment with haloscope: Designs and operations,” Rev. Sci. Instrum. 93 (2022) no. 8, 084501, arXiv:2205.01477 [physics.ins-det].

[46] TASEH Collaboration, H. Chang et al., “First Results from the Taiwan Axion Search Experiment with a Haloscope at 19.6 µeV,” Phys. Rev. Lett. 129 (2022) no. 11, 111802, arXiv:2205.05574 [hep-ex].

[47] CAST Collaboration, A. A. Melcón et al., “First results of the CAST-RADES haloscope search for axions at 34.67 µeV,” JHEP 21 (2020) 075, arXiv:2104.13798 [hep-ex].

[48] D. Alesini et al., “Search for invisible axion dark matter of mass $m_a = 43$ µeV with the QUAX-γγ experiment,” Phys. Rev. D 103 (2021) no. 10, 102004, arXiv:2112.09498 [hep-ex].

[49] B. T. McAllister, G. Flower, J. Kruger, E. N. Ivanov, M. Goryachev, J. Bourhill, and M. E. Tobar, “The ORGAN Experiment: an axion halooscope above 15 GHz,” Phys. Dark Univ. 18 (2017) 67–72, arXiv:1706.00209 [physics.ins-det].

[50] A. P. Quiskamp, B. T. McAllister, P. Altin, E. N. Ivanov, M. Goryachev, and M. E. Tobar, “Direct search for dark matter axions excluding ALP cogenesis in the 63- to 67-µeV range with the ORGAN experiment,” Sci. Adv. 8 (2022) no. 27, abq3765, arXiv:2203.12152 [hep-ex].

[51] D. B. Kaplan, “Opening the Axion Window,” Nucl. Phys. B 260 (1985) 215–226.

[52] S. L. Cheng, C. Q. Geng, and W. T. Ni, “Axion-photon couplings in invisible axion models,” Phys. Rev. D 52 (1995) 3132–3135, arXiv:hep-ph/9506295.

[53] L. Di Luzio, F. Mescia, and E. Nardi, “Redefining the Axion Window,” Phys. Rev. Lett. 118 (2017) no. 3, 031801, arXiv:1610.07593 [hep-ph].

[54] L. Di Luzio, F. Mescia, and E. Nardi, “Window for preferred axion models,” Phys. Rev. D 96 (2017) no. 7, 071303, arXiv:1705.05370 [hep-ph].

[55] V. V. Flambaum and H. B. Tran Tan, “Oscillating nuclear electric dipole moment induced by axion dark matter produces atomic and molecular electric dipole moments and nuclear spin rotation,” Phys. Rev. D 100 (2019) no. 11, 111301, arXiv:1904.07609 [hep-ph].

[56] A. P. Zhiltzitskii, “Possible suppression of axion-hadron interactions,” Sov. J. Nucl. Phys. (Engl. Transl.); (United States) https://www.osti.gov/biblio/7063072.

[57] M. Dine, W. Fischler, and M. Srednicki, “A Simple Solution to the Strong CP Problem with a Harmless Axion,” Phys. Lett. B 104 (1981) 199–202.

[58] J. Hong, J. E. Kim, and P. Sikivie, “Nuclear dipole radiation from f oscillations,” Phys. Rev. D 42 (Sep, 1990) 1847–1850. https://link.aps.org/doi/10.1103/PhysRevD.42.1847.

[59] I. B. Khriplovich and S. K. Lamoreaux, CP violation without strangeness: Electric dipole moments of particles, atoms, and molecules. Springer Berlin, Heidelberg, 1997.

[60] O. P. Sushkov, V. V. Flambaum, and I. B. Khriplovich, “Possibility of investigating p- and t-odd nuclear forces in atomic and molecular experiments,” Sov. Phys. - JETP (Engl. Transl.); (United States) https://www.osti.gov/biblio/5511886.

[61] J. Engel, J. L. Friar, and A. C. Hayes, “Nuclear octupole correlations and the enhancement of atomic time reversal violation,” Phys. Rev. C 61 (2000) 035502, arXiv:nucl-th/9910008.

[62] N. Auerbach, V. V. Flambaum, and V. Spevak, “Collective T- and P-odd electromagnetic moments in nuclei with octupole deformations,” Phys. Rev. Lett. 76 (1996) 4316–4319, arXiv:nucl-th/9601046.

[63] V. Spevak, N. Auerbach, and V. V. Flambaum, “Enhanced T-odd, P-odd electromagnetic moments in reflection asymmetric nuclei,” Phys. Rev. C 56 (1997) 1357–1369, arXiv:nucl-th/9612044.

[64] J. S. M. Ginges and V. V. Flambaum, “Violations of
fundamental symmetries in atoms and tests of unification theories of elementary particles,” *Phys. Rept.* **397** (2004) 63–154, arXiv:physics/0309054.

[65] L. I. Schiff, “Measurability of Nuclear Electric Dipole Moments,” *Phys. Rev.* **132** (1963) 2194–2200.

[66] V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, “Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced by the nuclear Schiff moment and limits on time reversal violating interactions,” *Phys. Rev. A* **66** (2002) 012111, arXiv:hep-ph/0203202.

[67] V. A. Dzuba, V. V. Flambaum, and S. G. Porsev, “Calculation of \((P, T)\)-odd electric dipole moments for the diamagnetic atoms \(^{129}\text{Xe},\ 171\text{Yb},\ 199\text{Hg},\ 211\text{Ra},\ 225\text{Ra}\),” *Phys. Rev. A* **80** (2009) 032120, arXiv:0906.5437 [physics.atom-ph].

[68] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, “Atomic electric dipole moments of He and Yb induced by nuclear Schiff moments,” *Phys. Rev. A* **76** (2007) 034501, arXiv:0705.4001 [physics.atom-ph].

[69] V. V. Flambaum and H. Feldmeier, “Enhanced nuclear Schiff moment in stable and metastable nuclei,” *Phys. Rev. C* **101** (2020) no. 1, 015502, arXiv:1907.07438 [nucl-th].

[70] V. F. Dmitriev, I. B. Khriplovich, and V. B. Telitsin, “Nuclear magnetic quadrupole moments in the single-particle approximation,” *Phys. Rev. C* **50** (1994) 2368–2361, arXiv:nucl-th/9405016.

[71] J. de Vries, E. Epelbaum, L. Girianda, A. Gnech, E. Mereghetti, and M. Viviani, “Parity- and Time-Reversal-Violating Nuclear Forces,” *Front. in Phys.* **8** (2020) 218, arXiv:2001.09050 [nucl-th].

[72] V. V. Flambaum, D. DeMille, and M. G. Kozlov, “Time-reversal symmetry violation in molecules induced by nuclear magnetic quadrupole moments,” *Phys. Rev. Lett.* **113** (2014) 103003, arXiv:1406.6479 [physics.atom-ph].

[73] W. C. Haxton and E. M. Henley, “Enhanced \(T\)-nonconserving nuclear moments,” *Phys. Rev. Lett.* **51** (Nov, 1983) 1937–1940.

[74] A. Griffiths and P. Vogel, “One-body parity and time reversal violating potentials,” *Phys. Rev. C* **43** (1991) 2844–2848.

[75] F. Dalton, V. V. Flambaum, and A. J. Mansour, “Enhanced Schiff and magnetic quadrupole moments in deformed nuclei and their connection to the search for axion dark matter,” arXiv:2302.00214 [hep-ph].

[76] R. K. Harris, E. D. Becker, S. M. C. De Menezes, R. Goodfellow, and P. Grainger, “NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC recommendations 2001),” *Pure and Applied Chemistry* **73** (2001) no. 11, 1795–1818.

[77] Institute for Rare Earths and Metals, “Rare earth prices in February 2020,” https://en.institut-seltene-erden.de/rare-earth-prices-in-february-2020/. Accessed: 2022-08-10.

[78] K. F. Stupic, Z. I. Cleveland, G. E. Pavlovskaya, and T. Meersmann, “Hyperpolarized \(^{131}\text{Xe}\) NMR spectroscopy,” *Journal of Magnetic Resonance* **208** (2011) no. 1, 58–69.

[79] V. V. Flambaum and V. A. Dzuba, “Electric dipole moments of atoms and molecules produced by enhanced nuclear Schiff moments,” *Phys. Rev. A* **101** (2020) no. 4, 042504, arXiv:1912.03598 [physics.atom-ph].

[80] J. A. Behr, “Nuclei with enhanced Schiff moments in practical elements for atomic and molecular EDM measurements,” arXiv:2203.06758 [nucl-ex].

[81] E. U. Condon, “Forced oscillations in cavity resonators,” *Journal of Applied Physics* **12** (1941) no. 2, 129–132.

[82] W. B. Smythe, *Static and dynamic electricity*. New York, NY (USA); Hemisphere Publishing, 1988.

[83] R. E. Collin, *Field theory of guided waves*, vol. 5. John Wiley & Sons, 1990.

[84] J. Kim, S. Youn, J. Jeong, W. Chung, O. Kwon, and Y. K. Semertzidis, “Exploiting higher-order resonant modes for axion haloscopes,” *J. Phys. G* **47** (2020) no. 3, 035203, arXiv:1910.00793 [physics.ins-det].

[85] R. A. Parker, “Static dielectric constant of rutile (\(\text{TiO}_2\)), 1.6-1060\(^{\circ}\)K,” *Phys. Rev. 124* (Dec, 1961) 1719–1722.

[86] D. E. Morris, “Electromagnetic detector for relic axions.” https://www.osti.gov/biblio/6446664.

[87] P. Sikivie, D. B. Tanner, and Y. Wang, “Axion detection in the \(10^{-4}\) eV mass range,” *Phys. Rev. D* **50** (1994) 4744–4748, arXiv:hep-ph/9305264.

[88] G. Rybka, A. Wagner, A. Brill, K. Ramos, R. Percival, and K. Patel, “Search for dark matter axions with the Orpheus experiment,” *Phys. Rev. D* **91** (2015) no. 1, 011701, arXiv:1403.3121 [physics.ins-det].

[89] B. Phillips, “The Electric Tiger experiment: a proof-of-concept for the periodic dielectric loaded resonator.” Talk given at the 2nd Workshop on Microwave Cavities and Detectors for Axion Research, 2017.

[90] J. Egge, S. Knirck, B. Majorovits, C. Moore, and O. Reimann, “A first proof of principle booster setup for the MADMAX dielectric haloscope,” *Eur. Phys. J. C* **80** (2020) no. 5, 392, arXiv:2001.04363 [physics.ins-det].

[91] R. Cervantes et al., “Search for 70 \(\mu\)eV Dark Photon Dark Matter with a Dielectrically Loaded Multiwavelength Microwave Cavity,” *Phys. Rev. Lett.* **129** (2022) no. 20, 201301, arXiv:2204.03818 [hep-ex].

[92] R. Cervantes et al., “ADMX-Orpheus first search for 70 \(\mu\)eV dark photon dark matter: Detailed design, operations, and analysis,” *Phys. Rev. D* **106** (2022) no. 10, 102002, arXiv:2204.09475 [hep-ex].

[93] C. Lee and O. Reimann, “T-RAX: Transversely Resonant Axion eXperiment,” *Phys. Rev. Applied* **9** (2022) 007, arXiv:2203.15487 [astro-ph.IM].

[94] A. P. Quiskamp, B. T. McAllister, G. Rybka, and M. E. Tobar, “Dielectric-Boosted Sensitivity to Cylindrical Azimuthally Varying Transverse-Magnetic Resonant Modes in an Axion Haloscope,” *Phys. Rev. Applied* **14** (2020) no. 4, 044051, arXiv:2006.05641 [physics.ins-det].

[95] B. T. McAllister, G. Flower, L. E. Tobar, and M. E. Tobar, “Tunable Supermode Dielectric Resonators for Axion Dark-Matter Haloscopes,” *Phys. Rev. Applied* **9** (2018) no. 1, 014028, arXiv:1705.06028 [physics.ins-det].

[96] QUAX Collaboration, D. Alesini et al., “Realization of a high quality factor resonator with hollow dielectric cylinders for axion searches,” *Nucl. Instrum. Meth. A* **985** (2021) 164641, arXiv:2004.02754 [physics.ins-det].

[97] R. Di Vora et al., “High-Q Microwave Dielectric...
Resonator for Axion Dark-Matter Haloscopes,” *Phys. Rev. Applied* **17** (2022) no. 5, 054013, arXiv:2201.04223 [physics.ins-det].

[98] D. Alesini et al., “Search for Galactic axions with a high-Q dielectric cavity,” *Phys. Rev. D* **106** (2022) no. 5, 052007, arXiv:2208.12670 [hep-ex].

[99] J. Jeong, S. Youn, S. Ahn, C. Kang, and Y. K. Semertzidis, “Phase-matching of multiple-cavity detectors for dark matter axion search,” *Astropart. Phys.* **97** (2018) 33–37, arXiv:1707.05925 [astro-ph.IM].

[100] J. Yang, J. R. Gleason, S. Jois, I. Stern, P. Sikivie, N. S. Sullivan, and D. B. Tanner, “Search for 5–9 μeV Axions with ADMX Four-Cavity Array,” *Phys. Rev. Lett.* **123** (2019) no. 14, 141802, arXiv:1904.11872 [hep-ph].

[101] A. Díaz-Morcillo et al., “The 3 Cavity Prototypes of RADES: An Axion Detector Using Microwave Filters at CAST,” *Springer Proc. Phys.* **245** (2020) 53–62.

[102] M. Maroudas, “Search for dark matter axions with CAST-CAPP.” Talk given at the 16th Patras Workshop on Axions, WIMPs and WISPs, 2021.

[103] M. Goryachev, B. T. Mcallister, and M. E. Tobar, “Axion detection with negatively coupled cavity arrays,” *Phys. Lett. A* **382** (2018) 2199–2204, arXiv:1703.07207 [physics.ins-det].

[104] A. A. Meléndez et al., “Axion Searches with Microwave Filters: the RADES project,” *JCAP* **05** (2018) 040, arXiv:1803.01243 [hep-ex].

[105] S. Arguedas Cuendis et al., “Design of New Resonant Filters: the RADES project,” *Phys. Lett. B* **777** (2018) 412–419, arXiv:1710.06969 [astro-ph.IM].

[106] A. Díaz-Morcillo et al., “Scalable haloscopes for axion dark matter detection in the 30 μeV range with RADES,” *JHEP* **07** (2020) 084, arXiv:2002.07639 [hep-ex].

[107] A. Díaz-Morcillo et al., “Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration,” *Universe* **8** (2021) no. 1, 5, arXiv:2111.14510 [physics.ins-det].

[108] J. Jeong, S. Youn, S. Ahn, J. E. Kim, and Y. K. Semertzidis, “Concept of multiple-cell cavity for axion dark matter search,” *Phys. Lett. B* **777** (2018) 412–419, arXiv:1710.06969 [astro-ph.IM].

[109] J. Jeong, S. Youn, and J. E. Kim, “Multiple-cell cavity design for high mass axion searches: An extended study,” *Nucl. Instrum. Meth. A* **1053** (2023) 168327, arXiv:2205.03139 [hep-ex].

[110] M. Lawson, A. J. Millar, M. Pancaldi, E. Vitagliano, and F. Wilczek, “Tunable axion plasma haloscopes,” *Phys. Rev. Lett.* **123** (2019) no. 14, 141802, arXiv:1904.11872 [hep-ph].

[111] M. Wooten, A. Droster, A. Kenany, D. Sun, S. M. Lewis, and K. van Bibber, “Exploration of Wire Array Metamaterials for the Plasma Axion HaloScope,” arXiv:2203.13945 [hep-ex].

[112] S. Bae, S. Youn, and J. Jeong, “Tunable photonic crystal haloscope for high-mass axion searches,” *Phys. Rev. D* **107** (2023) no. 1, 015012, arXiv:2205.08885 [hep-ex].

[113] C.-L. Kuo, “Large-Volume Centimeter-Wave Cavities for Axion Searches,” *JCAP* **06** (2020) 010, arXiv:1910.04156 [physics.ins-det].

[114] C.-L. Kuo, “Symmetrically Tuned Large-Volume Conic Shell-Cavities for Axion Searches,” *JCAP* **02** (2021) 018, arXiv:2010.04337 [physics.ins-det].

[115] F. Natali, B. J. Ruck, N. O. Plank, H. J. Trodahl, S. Granville, C. Meyer, and W. R. Lambrecht, “Rare-earth mononitrides,” *Progress in Materials Science* **58** (2013) no. 8, 1316–1360.

[116] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The Materials Project: A materials genome approach to accelerating materials innovation,” *APL Materials* **1** (2013) no. 1, 011002.

[117] I. Petousis, D. Mrdjennovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T. D. Schladt, K. A. Persson, and F. B. Prinz, “High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials,” *Scientific data* **4** (2017) no. 1, 1–12.

[118] D. Xue, K. Betzler, and H. Hesse, “Dielectric constants of binary rare-earth compounds,” *Journal of Physics: Condensed Matter* **12** (2000) no. 13, 3113.

[119] L. V. Skripnikov and A. V. Titov, “LCAO-based theoretical study of Pb/TiO3 crystal to search for parity and time reversal violating interaction in solids,” *The Journal of Chemical Physics* **145** (2016) no. 5, 054115.

[120] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The Materials Project: A materials genome approach to accelerating materials innovation,” *APL Materials* **1** (2013) no. 1, 011002.

[121] I. Petousis, D. Mrdjennovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T. D. Schladt, K. A. Persson, and F. B. Prinz, “High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials,” *Scientific data* **4** (2017) no. 1, 1–12.

[122] D. Xue, K. Betzler, and H. Hesse, “Dielectric constants of binary rare-earth compounds,” *Journal of Physics: Condensed Matter* **12** (2000) no. 13, 3113.

[123] N. M. Alford, J. Breeze, X. Wang, S. Penn, S. Dalla, S. Webb, N. Ljepojevic, and X. Aupi, “Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K,” *Journal of the European Ceramic Society* **21** (2001) no. 15, 2605–2611.

[124] X. Aupi, J. Breeze, N. Ljepojevic, L. J. Dunne, N. Malde, A.-K. Axelsson, and N. M. Alford, “Microwave dielectric loss in oxides: Theory and experiment,” *Journal of applied physics* **95** (2004) no. 5, 2639–2645.

[125] V. Braginsky, V. Ichenko, and K. S. Bagdassarov, “Experimental observation of fundamental microwave absorption in high-quality dielectric crystals,” *Physics Letters A* **120** (1987) no. 6, 300–305.

[126] M. E. Tobar, J. Krupka, E. N. Ivanov, and R. A. Woode, “Anisotropic complex permittivity measurements of mono-crystalline rutile between 10 and 300 K,” *Journal of Applied Physics* **83** (1998) no. 3, 1604–1609.

[127] J. Krupka, K. Derzakowski, M. Tobar, J. Hartnett, and R. G. Geyer, “Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials,” *IEEE Transactions on Microwave Theory and Techniques* **47** (1999) no. 6, 752–759.

[128] J. Krupka, K. Derzakowski, M. Tobar, J. Hartnett, and R. G. Geyer, “Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures,” *Measurement Science and Technology* **10** (1999) no. 5, 387.

[129] G. Liu, S. Zhang, W. Jiang, and W. Cao, “Losses in ferroelectric materials,” *Materials Science and Engineering: R: Reports* **89** (2015) 1–48.
[162] R. Balkin, J. Serra, K. Springmann, S. Stelzl, and A. Weiler, “White dwarfs as a probe of light QCD axions,” arXiv:1912.11048 [hep-ph].

[163] CUORE Collaboration, C. Ligi et al., “The CUORE Cryostat: A 1-Ton Scale Setup for Bolometric Detectors,” J. Low Temp. Phys. 184 (2016) no. 3-4, 590–596, arXiv:1603.03306 [physics.ins-det].

[164] C. Alduino et al., “The CUORE cryostat: An infrastructure for rare event searches at millikelvin temperatures,” Cryogenics 102 (2019) 9–21, arXiv:1904.05745 [physics.ins-det].

[165] M. I. Hollister, R. C. Dhuley, and G. L. Tatkowski, “A large millikelvin platform at Fermilab for quantum computing applications,” IOP Conf. Ser. Mater. Sci. Eng. 1241 (2022) 012045, arXiv:2108.10816 [physics.ins-det].

[166] P. Astone et al., “First Cooling Below 0.1 K of the New Gravitational-Wave Antenna “Nautilus” of the Rome Group,” EPL 16 (1991) 231–235.

[167] M. Cerdonio et al., “The ultracryogenic gravitational-wave detector AURIGA,” Class. Quant. Grav. 14 (1997) 1491–1494.

[168] DEAP Collaboration, M. G. Boulay, “DEAP-3600 Dark Matter Search at SNOLAB,” J. Phys. Conf. Ser. 375 (2012) 012027, arXiv:1203.0694 [astro-ph.IM].

[169] XENON Collaboration, E. Aprile et al., “Projected WIMP sensitivity of the XENONnT dark matter experiment,” JCAP 11 (2020) 031, arXiv:2007.08796 [physics.ins-det].

[170] L. Di Luzio, B. Gavela, P. Quilez, and A. Ringwald, “An even lighter QCD axion,” JHEP 05 (2021) 184, arXiv:2102.00012 [hep-ph].

[171] L. Di Luzio, B. Gavela, P. Quilez, and A. Ringwald, “Dark matter from an even lighter QCD axion: trapped misalignment,” JCAP 10 (2021) 001, arXiv:2102.01082 [hep-ph].

[172] N. Crisosto, P. Sikivie, N. S. Sullivan, D. B. Tanner, J. Yang, and G. Rybka, “ADMX SLIC: Results from a Superconducting LC Circuit Investigating Cold Axions,” Phys. Rev. Lett. 124 (2020) no. 24, 241101, arXiv:1911.05772 [astro-ph.CO].

[173] DMRadio Collaboration, L. Brouwer et al., “DMRadio-m²: A Search for the QCD Axion Below 1 µeV,” arXiv:2204.13781 [hep-ex].

[174] C. Gatti and S. Tocci, “FLASH: A proposal for a 100-300 MHz haloscope.” Talk given at the Workshop on Physics Opportunities at 100-500 MHz Haloscopes, 2022.

[175] A. Díaz-Morcillo, “RADES at babyIAXO in the 400 MHz frequency range.” Talk given at the Workshop on Physics Opportunities at 100-500 MHz Haloscopes, 2022.

[176] M. A. Hassan, “Dielectric-loaded cavities for ADMX low-frequency searches.” Talk given at the APS April Meeting, 2022.

[177] P. Sikivie, N. Sullivan, and D. B. Tanner, “Proposal for Axion Dark Matter Detection Using an LC Circuit,” Phys. Rev. Lett. 112 (2014) no. 13, 131301, arXiv:1310.8545 [hep-ph].

[178] S. Chaudhuri, P. W. Graham, K. Irwin, J. Mardon, S. Rajendran, and Y. Zhao, “Radio for hidden-photon dark matter detection,” Phys. Rev. D 92 (2015) no. 7, 075012, arXiv:1411.7382 [hep-ph].

[179] Y. Kahn, B. R. Safdi, and J. Thaler, “Broadband and Resonant Approaches to Axion Dark Matter Detection,” Phys. Rev. Lett. 117 (2016) no. 14, 141801, arXiv:1602.01086 [hep-ph].