[18F]2-Fluoro-2-deoxy-D-glucose incorporation by AGS gastric adenocarcinoma cells in vitro during response to epirubicin, cisplatin and 5-fluorouracil

SA Suttie1, KGM Park1 and TAD Smith*2

1Department of Surgery, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZN, UK; 2John Mallard PET Centre, Department of Biomedical Physics, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZN, UK

Decreased tumour [18F]2-fluoro-2-deoxy-D-glucose (18FDG) incorporation is related to response however its significance at the cell level in gastro-oesophageal cancer and how it relates to cell death is unknown. Here human gastric adenocarcinoma (AGS) cells were treated with lethal dose 10 and 50 (LD\textsubscript{10} and LD\textsubscript{50}), determined by using the MTT assay, of the three drugs, epirubicin, 5-fluorouracil and cisplatin, commonly used in the treatment of patients with gastro-oesophageal cancer. 18FDG incorporation was determined after 48 and 72 h of treatment with each drug and related to drug-induced changes in glucose transport, hexokinase activity, cell cycle distribution and annexin V-PE binding (a measure of apoptosis). Treatment of cells for 48 and 72 h with LD\textsubscript{50} doses of cisplatin resulted in reductions in 18FDG incorporation of 27 and 25\% respectively and of 5-fluorouracil reduced 18FDG incorporation by 34 and 33\% respectively, epirubicin treatment reduced incorporation by 30 and 69\% respectively. Cells that had been treated for 72 h with each drug were incubated in drug-free media for a further 6 days to determine their ability to recover. Comparison of the ability to recover from the chemotherapy agent, with 18FDG incorporation before the recovery period allowed an assessment of the predictive ability of 18FDG incorporation. Cells treated with either 5-fluorouracil or cisplatin demonstrated recovery on removal of the drug. In contrast, cells treated with epirubicin did not recover corresponding with the greatest 72 h treatment decrease in 18FDG incorporation. In contrast to adherent cells treated with cisplatin or 5-fluorouracil, adherent epirubicin-treated cells also exhibited very high levels of apoptosis. Glucose transport was decreased after each treatment whilst hexokinase activity was only decreased after 72 h of treatment with each drug. There was no consistent relationship observed between 18FDG incorporation and cell cycle distribution. Our results show that at the tumour cell level in gastric tumour cells, decreased 18FDG incorporation and glucose transport, accompanies therapeutic growth inhibition. 18FDG incorporation is particularly diminished in cells exhibiting apoptosis.

Keywords: glucose transport; hexokinase; FDG-PET; apoptosis; gastric

Combination chemotherapy may improve the length and quality of survival in a proportion of patients with advanced gastro-oesophageal cancer. With currently available chemotherapy regimens, only 40–60\% of patients will respond to treatment (Gilbert et al., 2002). Present chemotherapy regimens for gastro-oesophageal cancer include epirubicin, cisplatin and 5-fluorouracil (5-FU). If patients are to avoid unnecessary treatment with particularly toxic agents, it is important that non-responders are identified at an early stage.

A number of studies (Couper et al., 1998; Weber et al., 2001; Kroep et al., 2003; Ott et al., 2003) have demonstrated that a reduction in tumour uptake of the glucose analogue, 18F2-fluoro-2-deoxy-D-glucose (18FDG), is observed during and upon completion of chemotherapy in gastro-oesophageal cancer. Although decreased tumour 18FDG uptake has been shown to be associated with response (and may in fact predict tumour response), its significance at the gastro-oesophageal tumour cell level is not known. Response to chemotherapy, as seen on 18FDG-PET with a corresponding reduction in uptake in solid tumours, may be related to a decrease in tumour cellularity or a decrease in 18FDG uptake per cell, or a combination of both. In solid tumours, tumour cells can recover and it is not known if this decreased 18FDG uptake during response is due to modulation in 18FDG uptake by cells that will not recover. This reduction in cellular uptake of 18FDG may occur prior to reduction in tumour volume and therefore may reflect apoptosis. To further confuse matters, a flare phenomenon has been recorded in the early period following exposure to chemotherapy (Basu and Alavi, 2007). In addition chemotherapy may alter 18FDG cellular uptake by hexokinase (HK) and/or glucose transport modulation.

The fluorinated glucose analogue, 18FDG, is transported into tumour cells via a family of glucose transporter proteins, then phosphorylated by the enzyme HK to 18FDG-6-phosphate after which it undergoes little further metabolism. Due to low levels of G-6-Pase in tumour cells this is considered an irreversible reaction (Weber and Cantero, 1955; Warburg, 1956; Gallagher et al., 1978).
Higher levels of HK, namely, HK2 (Torizuka et al, 1995; Mathupala et al, 1997) and GLUT, especially GLUT1 (Mueckler, 1994; Younes et al, 1996; Smith, 1999) and low levels of G-6-Pase (Nelson et al, 1996) have been reported in tumour tissue compared with corresponding normal tissue. Both glut proteins and HK activity have been implicated as the rate limiting step in cellular \[^{18}\text{FDG}\] uptake (Higashi et al, 1997; Waki et al, 1998; Brown et al, 1999; Kurokawa et al, 2004; Tohma et al, 2005; Zhao et al, 2005), although plasma (or media) glucose concentrations may have more of an impact (Aloj et al, 1999; Zhao et al, 2002; Burrows et al, 2004).

We have determined the effect of three commonly used chemotherapeutic agents (epirubicin, cisplatin and 5-FU) in the treatment of upper gastro-intestinalal tumours on the cellular incorporation of \[^{18}\text{FDG}\] and on steps associated with its incorporation, that is, glucose transport and HK activity. As tumour cells within solid tumours are likely to be exposed to different drug concentrations, we have treated cells with both lethal dose 50 (LD50) and drug doses that have a low cell growth inhibition (LD10, 5 – 10% cell death). Previous work on AGS (human gastric adenocarcinoma) cells has shown that they can recover from treatment with cytotoxic doses of combinational regimes of 5-FU and cisplatin but not when epirubicin is included in the combination (Couper and Park, 2003). However, the design of Coupers’ study meant that this effect could not be specifically related to epirubicin rather than triple combination chemotherapy. Our study evaluated the effect of each individual chemotherapeutic agent. Growth curves for AGS cells were established after exposure to each epirubicin, cisplatin and 5-FU, with LD10 and LD50 established for each agent at 48 h. Growth curves were taken to 216 h to determine the extent to which cells were irreversibly damaged by the chemotherapeutic agents. All subsequent experiments on \[^{18}\text{FDG}\] uptake and its relationships to glucose transport, HK activity, cell viability, cell cycling and apoptosis were undertaken at 48 and 72 h.

The aims of this study were to elucidate the effect, on cellular (AGS cells) \[^{18}\text{FDG}\] incorporation, of exposure to three commonly used chemotherapeutic agents in the treatment of gastro-oesophageal cancer and to determine the mechanisms behind these changes in \[^{18}\text{FDG}\] cellular incorporation and their relationship with apoptosis.

MATERIALS AND METHODS

Cell line

A human gastric adenocarcinoma cell line (AGS) (ECACC, Porton Down, Salisbury, UK) was cultured in HAM F-12 media (Sigma, Dorset, UK) (supplemented with sodium hydrogen carbonate, penicillin G, streptomycin sulphate and l-glutamine and 10% fetal calf serum (Labtech International, East Sussex, UK)) at 37°C in a humidified incubator with 5% CO\textsubscript{2}; 95% air.

The cells were subcultured in vented 80 cm2 flasks (Nunclon Delta Surface, Roskilde, Denmark). Cell suspensions were obtained by trypsinisation (ethylenediaminetetraacetic acid (EDTA)/trypsin) (Sigma) of the adherent cell monolayer, with 5 ml of EDTA/trypsin, when cells reached 70 – 80% confluence. Cell counts were performed using a haemocytometer (Bright-Line Haemocytometer, Sigma).

A seeding density of 7500 cells per 0.35 cm2, based on previous work (Couper and Park, 2003), was used for all experiments.

Cytotoxicity assays

These were performed to identify the LD\textsubscript{10} (5 – 10% cell death) and LD\textsubscript{50} doses of three chemotherapeutic agents, commonly used in the treatment of gastro-oesophageal cancers, using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay (Mosmann, 1983; Carmichael et al, 1987).

Cells were plated in HAM F-12 media, at optimal seeding density, and returned to the incubator for 24 h to allow cell adherence to the plate. Media supplemented with varying concentrations of the chemotherapeutic agents epirubicin (Pharmacia and Upjohn Ltd., Milton Keynes, UK) (0.0039 – 0.5 μg ml-1), cisplatin (Faulding Pharmaceuticals, Warwickshire, UK) (0.156 – 20 μg ml-1) and 5-FU (Faulding Pharmaceuticals) (0.156 – 80 μg ml-1) was then added and the plate returned to the incubator for either 48 or 72 h. A background of media and a control of media and cells were also set up.

After 48 or 72 h of exposure to the chemotherapy agents, MTT (Sigma) was added and then incubated for a further 4 h at 37°C. Using a scanning multi-well spectrophotometer (Dynatech MR5000, Dynatech Labarotaries Inc., Chantilly, VA, USA) measuring spectrophotometric absorbance at 570 nm, the plates were analysed using Biolinx 2.0 software (Biolinx 2.0, Dynatech Labarotaries Inc.). All experiments were repeated three times with six replicates per experiment. All subsequent cell work was based on the LD\textsubscript{10} and LD\textsubscript{50} concentrations of the chemotherapy agents at 48 h so that time was the only variable.

Quantifying \[^{18}\text{FDG}\] uptake

Cells were seeded and incubated for 24 h, with control flasks were seeded at half the optimum seeding density so that cell density was similar in the control and treated flasks at the time of the \[^{18}\text{FDG}\] uptake measurement. Control, LD\textsubscript{10} and LD\textsubscript{50} flasks were set up in triplicate and the corresponding concentrations of each chemotherapeutic agent and returned to the incubator for either 48 or 72 h. The incorporation of \[^{18}\text{FDG}\] (obtained from the John Mallard PET Centre, Aberdeen) was determined by incubation of treated and control cells with \[^{18}\text{FDG}\] (1 kBq ml-1) for 20 min at 37°C followed by rapid washing with phosphate buffered saline (PBS) as described previously (Smith et al, 2006). \[^{18}\text{FDG}\] uptake was expressed relative to protein content (milligram of cellular protein) and per treated flask.

Protein assay

Protein content was assessed by the bicinchoninic acid protein assay kit according to the manufacturers’ instructions (Sigma).

Glucose transport

Initially the linear phase of \[^{3}\text{H}\text{O-methylglucose} ([^{3}\text{H-OMG}\])] uptake, a measure of glucose transport (Cloherty et al, 2002), was determined by incubating cells with \[^{3}\text{H-OMG}\] for 1, 2, 3, 5, 15 and 30 s. \[^{3}\text{H-OMG}\] uptake in control AGS cells was very rapid, with the linear part of the time activity curve for \[^{3}\text{H-OMG}\] uptake at 37°C complete within 2 s of beginning incubation. Experiments were, therefore, conducted at 25°C with an exposure to \[^{3}\text{H-OMG}\] of 1 s.

Glucose transport rates were determined at both 48 and 72 h following the addition of required dose of chemotherapeutic agent, by incubation with media and \[^{3}\text{H-OMG}\] (0.5 μCi ml-1) (specific activity 111GBq mmol-1), at 25°C as described previously (Smith et al, 2006) except that the incubations were performed for 1 s. \[^{3}\text{H-OMG}\] uptake was expressed in terms of protein content (milligram of cellular protein).

Hexokinase activity assay

AGS cells were set up and treated with chemotherapy as per \[^{18}\text{FDG}\] uptake. Following the incubation for 48 or 72 h with chemotherapy the media was removed, and each flask was washed twice with
ice-cold PBS. Cells were then trypsinised and centrifuged with the cell pellet washed a further two times with ice-cold PBS. The resulting cell pellet was then stored at –70°C until the HK activity was assessed based on a modification to the methods by Miccoli et al (1996) as described previously (Smith et al, 2006).

Enzyme activity was expressed as mU mg⁻¹ cellular protein using the extinction coefficient for NADPH of 6.3 × 10⁴ mol⁻¹ cm⁻¹.

Flow cytometry DNA quantification

AGS cells were set up and incubated in chemotherapy as previously described for [¹⁸F]FDG uptake. After the required incubation period the media was discarded and the cells were harvested and cell cycle distribution was determined as described previously (Al-Saeedi et al, 2005).

Cell regrowth following exposure to chemotherapy

Cells were plated as for MTT assay and treated for 72 h with LD₅₀ and LD₁₀ doses of each chemotherapy agent. Following this, the media was removed and the cells were washed with warm (37°C) PBS to remove any traces of residual chemotherapy. Fresh media (without chemotherapy) was then added and the plates were returned to the incubator. After 24, 48, 72, 120 and 144 h incubation, MTT assays were performed to determine the latent cytotoxicity of the chemotherapeutic agents. Each experiment was repeated in triplicate with six replicates for each agent and time point.

Annexin V-PE flow cytometry

Annexin V flow cytometry was used to discriminate between intact cells, early apoptotic and late apoptotic or necrotic cells. AGS cells were set up as per [¹⁸F]FDG uptake. Control and cells treated for 72 h with chemotherapy agents were detached by incubating the cells in non-enzymatic cell dissociation solution in PBS (Sigma) and added to fresh media. The cell concentration was then adjusted to 3 × 10⁵ cells ml⁻¹, and 1 ml of this cell suspension was then transferred to FACS tubes and centrifuged. The cell pellet was re-suspended in 1 ml of binding buffer (140 mM sodium chloride, 25 mM calcium chloride, 10 mM HEPES (N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulphonic acid) hemisodium salt), 500 mM distilled water; Sigma). Following further centrifugation and removal of the supernatant, 15 µl of annexin V staining buffer (10 µl Via-Probe (7-N acetylomycin D), 5 µl annexin V-PE) (BD Biosciences Pharmingen, Oxford, UK) was added to each cell sample. The samples were stored in the dark at room temperature for 15 min after which 400 µl of binding buffer was added and annexin V flow cytometry was performed within 1 h, analysing 10000 cell events.

Annexin V flow cytometry was performed on a Becton Dickinson FACS Calibur (San Jose, CA, USA), and results analysed using CellQuest software (Becton Dickinson).

Statistics

Results are expressed as means, ± s.e.m. [¹⁸F]FDG, [³H]-OMG uptake and HK activity were expressed as a percentage of the control. Significance of difference between means was determined by using the paired t-test (Statistical Package for the Social Sciences V13.1, SPSS Inc., Chicago, IL, USA), with a P-value of < 0.05 indicating statistical significance.

RESULTS

Cytotoxicity assay

Cytotoxic doses resulting in a 5–10% decrease in cell number (LD₁₀) and LD₅₀ doses of chemotherapy after 48 h exposure were for cisplatin 0.156 and 5 µg ml⁻¹, 5-FU 0.156 and 20 µg ml⁻¹ and epirubicin 0.0039 and 0.125 µg ml⁻¹ respectively (Table 1).

Effect of chemotherapy on [¹⁸F]FDG uptake

[¹⁸F]FDG uptake per untreated control flask (expressed as cpm per 20 min per flask) was 8714 ± 1182 and 14 753 ± 986 respectively after 48 and 72 h incubation periods. [¹⁸F]FDG uptake, expressed as counts per milligram of cells per minute in untreated control flasks, was 783 ± 94 and 984 ± 35 (cpm per 20 min per mg protein) respectively following 48 and 72 h incubation periods.

All three chemotherapeutic agents caused a reduction in [¹⁸F]FDG uptake per flask of treated cells (Figure 1A and B), with the greatest reduction occurring following 72 h exposure to epirubicin. Upon 48 h exposure to LD₁₀ epirubicin, there was a non-significant reduction in [¹⁸F]FDG uptake per flask (P = 0.104), with a significant reduction upon exposure to LD₅₀ (P = 0.006) compared with

Chemotherapy	Dose	48 h	72 h
Epirubicin	LD₁₀	70	55
	LD₅₀	27	35
Cisplatin	LD₁₀	70	55
	LD₅₀	34	35
5-Fluorouracil	LD₁₀	43	55
	LD₅₀	19	55

Table 1 Chemotherapy dose–time relationship and cell death

Results of MTT assay performed at 48 and 72 h.
and 72 h incubation periods. LD10 dose of 5-FU resulted in S phase arrest, whilst the LD50 caused G1 arrest, irrespective of incubation periods (Table 2).

Effect of chemotherapy on glucose transport

3H-OMG cellular uptake rate was reduced upon exposure to epirubicin, cisplatin and 5-FU, with the greatest reduction (35%) in 3H-OMG uptake resulting from 72 h exposure to LD50 epirubicin (Figure 3A and B). Forty-eight hours exposure to LD50 epirubicin, cisplatin and 5-FU resulted in a significant reduction in cellular 3H-OMG uptake compared to controls (P = 0.037, P = 0.005 and P = 0.002 respectively) as did 72 h exposure (P = 0.002, P = 0.035 and P = 0.001 respectively). LD10 48 h exposure resulted in a non-significant decrease in 3H-OMG uptake for epirubicin, cisplatin and 5-FU (P = 0.064, P = 0.539 and P = 0.05 respectively). LD10 exposure at 72 h caused a significant reduction in uptake for epirubicin (P = 0.033) but not for cisplatin or 5-FU (P = 0.304 and P = 0.212 respectively).

Effect of chemotherapy on cellular HK activity

LD10 48 h exposure to epirubicin, cisplatin and 5-FU resulted in a non-significant increase in cellular HK activity (Figure 4A and B) in comparison to controls (P = 0.575, P = 0.982 and P = 0.465 respectively). Exposure to 48 h LD10 cisplatin and 5-FU also caused a non-significant increase in cellular HK activity (P = 0.727 and P = 0.282 respectively) whereas with epirubicin there was a non-significant reduction in HK activity (P = 0.451).

Exposure to cisplatin and epirubicin for 72 h decreased HK activity, with the greatest reduction caused by exposure to LD50 cisplatin (65%). Hexokinase activity was significantly reduced by exposure for 72 h to cisplatin and 5-FU (cisplatin P = 0.047 and P = 0.011, 5-FU P = 0.016 and P = 0.018 respectively for LD10 and LD50). Exposure for 72 h to epirubicin caused a significant reduction in HK activity with the LD50 dose (P = 0.02) but not the LD10 dose (P = 0.202).

Table 2 Cell cycle analysis following exposure to chemotherapeutic agents

Chemotherapy	Time (h)	Treatment	G1 (%)	S (%)	G2 (%)
Control	48		50 (1)	31 (1)	19 (1)
	72		35 (1)	30 (2)	27 (6)
5-Fluorouracil	48	LD10	36 (2)	48 (0)	14 (1)
		LD50	77 (1)	9 (0)	16 (1)
	72	LD10	14 (1)	64 (3)	19 (1)
		LD50	54 (2)	14 (3)	30 (2)
Cisplatin	48	LD10	57 (0)	24 (5)	19 (6)
		LD50	30 (1)	22 (0)	47 (1)
	72	LD10	48 (1)	27 (2)	24 (1)
		LD50	30 (0)	16 (0)	61 (0)
Epirubicin	48	LD10	59 (0)	21 (1)	21 (0)
		LD50	31 (1)	13 (3)	59 (2)
	72	LD10	46 (1)	25 (2)	28 (1)
		LD50	26 (2)	10 (1)	63 (2)

Flow cytometry was performed on a Becton Dickinson FACSorter (San Jose, CA, USA), using blue light (488 nm), detecting forward and 90° angle light scatter. Cell cycle analysis was performed using FlowJo v4.5.2 analysis software (Tree Star Inc., OR, USA), utilising the Dean–Jett–Fox model, analysing 10,000 events.
Latent cytotoxicity of chemotherapeutic agents

Following 72 h exposure to both LD_{10} and LD_{50} of each individual chemotherapeutic agent, cells were washed and fresh media was added followed by further incubation for up to 6 days. Cells were able to recover from exposure to 5-FU and cisplatin when the drug was removed. However, epirubicin-treated cells did not recover even after 6 days of incubation in fresh media (Figure 5A – C).

Annexin V-PE flow cytometry revealed that AGS cells exposed to 72 h LD_{50} epirubicin resulted in 69% cell death, 39% of surviving cells were annexin V-PE positive and 7-AAD negative, indicating this group of cells were in the early stages of apoptosis (Table 3).

DISCUSSION

Chemotherapy for tumours at or around the gastro-oesophageal junction is varied, with most regimes including one of epirubicin, cisplatin or 5-FU (Cunningham et al., 2006). All three chemotherapeutic agents caused a reduction in \(^{18}\text{F}\)FDG uptake by AGS cells with epirubicin having the greatest effect, followed by 5-FU then...
cisplatin. Previous work on the AGS cell line using the same three chemotherapeutic agents and exposure times identified similar LD₅₀ concentrations of each agent, 5-FU 10 µg ml⁻¹, cisplatin 10 µg ml⁻¹ and epirubicin 0.25 µg ml⁻¹ (Couper and Park, 2003). In common with previous studies, exposure to epirubicin and cisplatin induced dose-dependent G₁ (LD₁₀) and G₂ (LD₅₀) cell cycle arrest (Barry et al, 1990; Sorenson et al, 1990; Shapiro et al, 1998; Zoli et al, 2004). 5-FU exposure resulted in a build up of cells in S phase (LD₁₀) and G₁ (LD₅₀). Epirubicin, an anthracycline derivative of doxorubicin, exerts its anti-tumour effects via its action as a DNA intercalating agent and as an inhibitor of topoisomerase II (Cersosimo and Hong, 1986; Bartkowiak et al, 1992; Zoli et al, 2004). The arrest of AGS cells at higher concentrations of epirubicin may be related to peak activity of topoisomerase II (Chow and Ross, 1987). Exposure to cisplatin, an alkylating agent, results in the binding of cisplatin to DNA, forming cisplatin-DNA adducts which cause an alteration in the conformation of DNA leading to cell cycle arrest and apoptosis (Jordan and Carmo-Fonseca, 2000; Gonzalez et al, 2001; Wang et al, 2004). Cell cycle arrest following exposure to cisplatin occurs mainly within G₂ (Eastman, 1990; Sorenson et al, 1990), although this may be tumour type dependent (Sekiguchi et al, 1996; Shapiro et al, 1998). The main mechanism of action of 5-FU is related to its conversion to 5-fluoro-2'-deoxy-5'-monophosphate (via the pyrimidine pathway) leading to the inhibition of thymidylate synthase and hence DNA synthesis (Pinedo and Peters, 1988). Studies have revealed an increase S-phase fraction in tumour cells, caused by 5-FU (Barry et al, 1990; Yamane et al, 1999; Park et al, 2004), including gastric carcinomas (Inada et al, 1997).

Dittmann et al (2002), evaluating ¹⁸FDG uptake in a squamous cell carcinoma oesophageal cell line, reported that 24 h incubation periods in concentrations of 5-FU and cisplatin, resulting in 22.8 and 60.6% cell death respectively, had no effect on cellular ¹⁸FDG uptake, following a 24 h period of incubation in chemotherapy-free media prior to uptake experiments. Furthermore, after 24 h exposure to these same concentrations of drugs the S-phase fraction was elevated considerably, yet had no impact on ¹⁸FDG uptake. Smith et al (2000) investigating tomodex, which is a more specific thymidylate synthase inhibitor than 5-FU, and oxalaplatin (a platinum agent similar to cisplatin) on a colonic tumour cell line found that exposure to tomodex for 24 and 48 h resulted in increasing levels of cellular ³²P-DG uptake with increasing exposure to the agent. This increase in uptake was paralleled with an increase in the S-phase fraction. The contrasts between these studies and ours may be in part explained by Yamane et al (1999), who revealed that although increasingly lengthy exposure to 5-FU resulted in S-phase accumulation of colorectal cancer cells with increased apoptosis, the Ki-67 labelling index decreased. Therefore, this S-phase accumulation is not proliferative but lethal. Exposure to oxalaplatin (Smith et al, 2000) resulted in decreased levels of cellular ¹⁸F-DG uptake compared to controls with a varied cell cycle distribution. Although ¹⁸FDG uptake in this study was found to be decreased after treatment with each agent, the effect on cell cycle was agent-specific suggesting that the changes in ¹⁸FDG uptake are not cell cycle-specific, a finding previously reported by others (Higashi et al, 1993; Haberkorn et al, 1994).

Another type of hypermetabolism associated with ¹⁸FDG incorporation is observed in the AGS cell line using the same three drugs (Barros et al, 2002) by an analysis (Barros et al, 2003) of the relationship between the accumulation of ¹⁸F-DG and the cell cycle distribution. Although ¹⁸FDG uptake in this study was found to be decreased after treatment with each agent, the effect on cell cycle was agent-specific suggesting that the changes in ¹⁸FDG uptake are not cell cycle-specific, a finding previously reported by others (Higashi et al, 1993; Haberkorn et al, 1994). The main mechanism of action of 5-FU is related to its conversion to 5-fluoro-2'-deoxy-5'-monophosphate (via the pyrimidine pathway) leading to the inhibition of thymidylate synthase and hence DNA synthesis (Pinedo and Peters, 1988). Studies have revealed an increase S-phase fraction in tumour cells, caused by 5-FU (Barry et al, 1990; Yamane et al, 1999; Park et al, 2004), including gastric carcinomas (Inada et al, 1997).
appreciable cell death so the initial response would have been complete.

Comparing 18FDG incorporation after 48 and 72 h of treatment, when expressed relative to cellular protein, the decrease in 18FDG incorporation is seen to plateau for treatment with cisplatin and 5-FU but not with epirubicin in which 18FDG incorporation continues to decline. This may be explained by the high proportion (77%) of apoptotic cells in cell populations treated with LD50 epirubicin for 72 h compared with cells exposed to cisplatin and 5-FU, suggesting that 18FDG incorporation by apoptotic cells is decreased compared with viable cells. Following on from this, determination of the growth inhibitory effect of each agent by performing MTT measurements 6 days after treatment with each agent showed that AGS cells can recover from treatment with 5-FU and cisplatin but not after treatment with epirubicin. In assessing two chemotherapy regimens for gastro-oesophageal cancer, Couper and Park (2003) noted that AGS cells exposed to a combination of LD50 of both cisplatin and 5-FU were able to recover following clearance of the chemotherapy. The addition of epirubicin to the combination of cisplatin and 5-FU resulted in a continual growth inhibitory effect (Couper and Park, 2003). The nature of Couper’s study meant that this effect may be due to the combined effect of three chemotherapeutic agents rather than specifically related to epirubicin. Engles et al treated MCF-7 breast carcinoma cells for 24 h with doxorubicin (an anthracycline similar to epirubicin) and 5-FU then re-incubated the cells in chemotherapy-free medium for a further 72 h. They found that cell number in populations treated with doxorubicin continued to decrease during the 72 h in doxorubicin-free medium (Engles et al, 2006), but addition of 5-FU-free media to MCF-7 cells treated for 24 h with 5-FU was associated with an increase in cell number indicative of recovery. It appears that the efficacy of epirubicin is associated with reduced cellular glycolytic rate (Zhou et al, 2002).

One of the limitations of our study is the extrapolation from in vitro to in vivo. Our studies are performed on well-perfused cells with a good nutrient and oxygen supply in an environment with neutral pH. Within solid tumours in vivo there are regions with compromised blood flow and consequent nutrient deprivation, lactic acid production and acidic pH. These are all factors that may influence 18FDG incorporation. Burgman et al (2001) showed that induction of hypoxia resulted in increased 18FDG incorporation by MCF-7 cells whilst HK activity is influenced by environmental pH (Miccoli et al, 1996). However, the region of tumour growth will have a good blood supply and is where most of the 18FDG is likely to reach.

To simulate the uptake of 18FDG within solid tumours, 18FDG uptake was also expressed as activity per flask. The uptake of 18FDG by detached cells could not be determined as steps to wash away non-incorporated 18FDG would involve centrifugation, which would be a problem with detached cells as these are generally late dying/dead cells with fragile or damaged cell membranes. However, cells that were undergoing early apoptosis, for example, cells treated with epirubicin, were still attached and would be included in the analyses. Furthermore, in vivo, dead cells are rapidly removed by macrophages. So the contribution of dead cells in vivo is likely to be small.

In summary, treatment of gastric adenocarcinoma cells with cisplatin, 5-FU and epirubicin results in decreased 18FDG incorporation. The greatest reduction in 18FDG uptake per cell is induced by epirubicin. In contrast to cisplatin and 5-FU treated cells, epirubicin-treated cells did not recover when the drug was removed from the medium, corresponding with the annexin V-PE results, suggesting that the level of change in 18FDG incorporation is predictive of tumour cell response. Each chemotherapeutic agent decreased glucose transport suggesting that glucose transport is the rate-limiting step for 18FDG incorporation by AGS cells.

ACKNOWLEDGEMENTS

This work was supported by Association of International Cancer Research grant 04-300 and patient donations to the Department of Upper Gastro-Intestinal Surgery, Aberdeen Royal Infirmary, United Kingdom.

REFERENCES

Al-Saeedi F, Welch AE, Smith TA (2005) [methyl-(3)H]Choline incorporation into MCF7 tumour cells: correlation with proliferation. Eur J Nucl Med Mol Imaging 32: 660 – 667

Alo J, Caraco C, Jagoda E, Eckelman WC, Neumann RD (1999) Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Res 59: 4709 – 4714

Barros LF, Porras OH, Bittner CX (2005) Why glucose transport in the brain matters for PET. Trends Neurosci 28: 117 – 119

Barry MA, Behnke CA, Eastman A (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 40: 2353 – 2362

Barlowski D, Hemmer J, Rottinger E (1992) Dose dependence of the cytokinetic and cytotoxic effects of epirubicin in vitro. Cancer Chemother Pharmacol 30: 189 – 192

Basu S, Alavi A (2007) Defining co-related parameters between ’metabolic’ flare and ‘clinical’, ‘biochemical’, and ‘osteoelastic’ flare and establishing guidelines for assessing response to treatment in cancer. Eur J Nucl Med Mol Imaging 34: 441 – 443

Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL (1999) Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 40: 556 – 565

Burgman P, Odonoghue JA, Humm JL, Ling CC (2001) Hypoxia-Induced increase in FDG uptake in MCF7 cells. J Nucl Med 42: 170 – 175

Burrows RC, Freeman SD, Charlop AW, Wiseman RW, Adamsen TC, Krohn KA, Spence AM (2004) [18F]-2-fluoro-2-deoxyglucose transport kinetics as a function of extracellular glucose concentration in malignant glioma, fibroblast and macrophage cells in vitro. Nucl Med Biol 31: 1 – 9

Carmichael J, DeGrassi WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tantalum-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936 – 942

Cersosimo RJ, Hong WX (1986) Epirubicin: a review of the pharmacology, clinical activity, and adverse effects of an adriamycin analogue. J Clin Oncol 4: 425 – 439

Chow KC, Ross WE (1987) Topoisomerase-specific drug sensitivity in relation to cell cycle progression. Mol Cell Biol 7: 3119 – 3123

Cloherty EK, Levine KB, Graybill C, Carruthers A (2002) Cooperative nucleotide binding to the human erythrocyte sugar transporter. Biochemistry 41: 12639 – 12651

Couper G, Park K (2003) In vitro response to chemotherapy: evidence of resistance to neo-adjuvant chemotherapy in upper gastrointestinal cancer. Br J Surg 90: 50

Couper GW, McAteer D, Wallis F, Norton M, Welch A, Nicolson M, Park KG (1998) Detection of response to chemotherapy using positron emission tomography in patients with oesophageal and gastric cancer. Br J Surg 85: 1403 – 1406

Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, Smith DB, Langley RE, Verma M, Weeden S, Chua YF, Participants MT (2006) Perioperative chemotherapy vs surgery alone for resectable gastroesophageal cancer. N Engl J Med 355: 11 – 20

Dittmann H, Dohmen BM, Kehlbach R, Bartusek G, Pritzok M, Sarbia M, Bares R (2002) Early changes in [18F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 29: 1462 – 1469
Eastman A (1990) Activation of programmed cell death by anticancer drugs: cisplatin as a model system. Cancer Cell 2: 273–280

Engles JM, Quarless SA, Mambo E, Ishimori T, Cho SY, Wahl RL (2006) Stunning and its effect on 3H-FDG uptake and key gene expression in breast cancer cells undergoing chemotherapy. J Nucl Med 47: 603–608

Fujibayashi Y, Waki A, Sakahara H, Konishi J, Yonekura Y, Ishii Y, Yokoyama A (1997) Transient increase in glycolytic metabolism in cultured tumor cells immediately after exposure to ionizing radiation: from gene expression to deoxyglucose uptake. Radiat Res 147: 729–734

Gallagher BM, Fowler JS, Guttner NN, MacGregor RR, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]-2-deoxy-2-fluoro-o-glucose. J Nucl Med 19: 1154–1167

Gilbert PJ, Park J, Thompson AM (2002) Scottish Audit of Gastric and Oesophageal Cancer: Report 1997–2000 – A prospective audit. http://www.show.scot.nhs.uk/crag

Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59: 657–663

Haberkorn U, Obergföer D, Klenner T, Strauss LG, Stohr M, Wallich R, Altmann A, Kaick GV (1994) Metabolic and transcriptional changes in osteosarcoma cells treated with chemotherapeutic drugs. Nucl Med Biol 21: 835–845

Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancers? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34: 414–419

Higashi T, Tamaki N, Honda T, Torizuka T, Kimura T, Inokuma T, Ohashi H, Hosotani R, Inamura M, Konishi J (1997) Expression of glucose transporters in human pancreatic tumors compared with increased FDG accumulation in PET study. J Nucl Med 38: 1337–1344

Inada T, Ichikawa A, Igarashi S, Kubota T, Ogata Y (1997) Effect of preoperative 5-Fluorouracil on apoptosis of advanced gastric cancer. J Surg Oncol 65: 106–110

Jordon P, Carmo-Fonseca M (2000) Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci 57: 1229–1235

Kostakoglu L, Goldsmith SJ (2004) PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the oesophagus. J Nucl Med 45: 755–761

Krepp JF, Van Groeningen CJ, Cuesta MA, Craenen ME, Hoekstra OS, Comans EF, Bloemen E, Hoekstra CJ, Golding RP, Twisk JW, Peters GJ, Pinedo HM, Lammtsera AA (2003) Positron emission tomography using 2-deoxy-2-[18F]-fluoro-o-glucose for response monitoring in locally advanced gastroesophageal cancer; a comparison of different analytical methods. Mol Imaging Biol 5: 337–346

Kubota R, Yamada S, Kubota K, Ishiwata S, Tamagoshi N, Idoo T (1992) Intratumoral distribution of fluoride-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33: 1972–1980

Kurokawa T, Yoshida Y, Kawahara K, Tsushima T, Okazawa H, Fujibayashi Y, Yonekura Y, Kotsuji F (1992) Effect of preoperative 5-Fluorouracil on S-phase accumulation in human breast cancer cells immediately after exposure to ionizing radiation: from gene expression to deoxyglucose uptake. Radiat Res 147: 729–734

Kroep JR, Van Groeningen CJ, Cuesta MA, Craenen ME, Hoekstra OS, Comans EF, Bloemen E, Hoekstra CJ, Golding RP, Twisk JW, Peters GJ, Pinedo HM, Lammtsera AA (2003) Positron emission tomography using 2-deoxy-2-[18F]-fluoro-o-glucose for response monitoring in locally advanced gastroesophageal cancer; a comparison of different analytical methods. Mol Imaging Biol 5: 337–346

Kubota R, Yamada S, Kubota K, Ishiwata S, Tamagoshi N, Idoo T (1992) Intratumoral distribution of fluoride-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33: 1972–1980

Kurokawa T, Yoshida Y, Kawahara K, Tsushima T, Okazawa H, Fujibayashi Y, Yonekura Y, Kotsuji F (1992) Effect of preoperative 5-Fluorouracil on S-phase accumulation in human breast cancer cells immediately after exposure to ionizing radiation: from gene expression to deoxyglucose uptake. Radiat Res 147: 729–734

Luo Y, Meisetschlager G, Busch R, Siewert JR, Schwaiger M, Fink U (2001) Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 21: 4604–4610

Park JG, Lee SH, Kang JH, Nishio K, Saijo N, Kuh HJ (2004) Synergistic interaction between gefitinib (Iressa, ZD1839) and paclitaxel against human gastric carcinoma cells. Anticancer Drugs 15: 809–818

Pinedo HM, Peters GF (1988) Fluorouracil: biochemistry and pharmacology. J Clin Oncol 6: 1653–1664

Sekiguchi I, Suzuki M, Tamada T, Shinomiya N, Tsuru S, Murata M (1996) Effects of cisplatin on cell cycle kinetics, morphological change, and cleavage pattern of DNA in two human ovarian carcinoma cell lines. Oncology 53: 19–26

Shapiro GI, Edwards CD, Even ME, Rollsii BJ (1998) p16INK4A participates in a G1 arrest checkpoint in response to DNA damage. Mol Cell Biol 18: 378–387

Smith TA (1999) Facilitative glucose transporter expression in human cancer tissue. Br J Biomed Sci 56: 285–292

Smith TA (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57: 170–178

Smith TA, Maisey NR, Titley JC, Jackson LE, Leach MO, Ronen SM (2000) Treatment of SW620 cells with Tomudez and oxaliplatin induces changes in 2-deoxy-o-glucose incorporation associated with modifications in glucose transport. J Nucl Med 41: 1753–1759

Smith TA, Sharma RI, Thompson AM, Paulin FE (2006) Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. J Nucl Med 47: 1525–1530

Sorensen CM, Barry MA, Eastman A (1990) Analysis of events associated with cell cycle arrest at G2 and cell death induced by cisplatin. J Natl Cancer Inst 82: 749–755

Tohama T, Okazumi S, Makino H, Cho A, Mochiduki R, Shuto K, Kudo H, Matsuoka K, Gunji H, Ochiai T (2005) Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepatogastroenterology 52: 486–490

Torizuka T, Tamaki N, Inokuma T, Magata Y, Sasaayama S, Yonekura Y, Tanaka A, Yamaoka Y, Yamamoto K, Konishi J (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 36: 1811–1817

Waki A, Kato H, Yano R, Sadato N, Yokoyama A, Ishii Y, Yonekura Y, Fujibayashi Y (1998) The importance of glucose transport activity as the rate-limiting step of 2-deoxyglucose uptake in tumor cells in vitro. Nucl Med Biol 25: 593–597

Wang G, Reed E, Li QQ (2004) Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer (Review). Oncol Rep 12: 985–995

Welch WR (1956) On the origin of cancer cells. Science 123: 306–314

Weber G, Cantero A (1955) Glucose-6-phosphate activity in normal, pre-cancerous, and neoplastic tissues. Cancer Res 15: 105–108

Weber WA, Ott K, Becker K, Dittler HJ, Helmberger H, Aryan NE, Meisetschlager G, Busch R, Siewert JW, Schwager M, Fink U (2001) Prediction of response to preoperative chemotherapy in adenocarcinoma of the esophagogastric junction by metabolic imaging. J Clin Oncol 19: 3058–3065

Yamane N, Makino M, Kaibara N (1999) S-phase accumulation precedes apoptosis induced by preoperative treatment with 5-fluorouracil in human colorectal carcinoma cells. Cancer 85: 309–317

Younes M, Lechago LV, Somoano JR, Morshaf M, Lechago J (1996) Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 56: 1164–1167

Zhao S, Kuge Y, Mochizuki T, Takahashi T, Nakada K, Sato M, Takei T, Tamaki N (2005) Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med 46: 825–831

Zhao S, Kuge Y, Tsukamoto E, Mochizuki T, Kato T, Hikosaka K, Nakada K, Hosokawa M, Kohanawa M, Tamaki N (2002) Fluorodeoxyglucose uptake and glucose transporter expression in experimental inflammatory lesions and malignant tumours: effects of insulin and glucose loading. Nucl Med Commun 23: 541–549

Zhou R, Vander Heiden MG, Rudin CM (2002) Genotoxic exposure is associated with alterations in glucose uptake and metabolism. Cancer Res 62: 3515–3520