Title
Novel subjet observables for jet quenching in heavy-ion collisions

Permalink
https://escholarship.org/uc/item/6m75x0pg

Journal
The European Physical Journal C, 78(6)

ISSN
1434-6044

Authors
Apolinário, Liliana
Milhano, José Guilherme
Ploskon, Mateusz
et al.

Publication Date
2018-06-01

DOI
10.1140/epjc/s10052-018-5999-2

Peer reviewed
Novel subjet observables for jet quenching in heavy-ion collisions

Liliana Apolinário1,2,a, José Guilherme Milhano1,2,3,b, Mateusz Ploskon4,c, Xiaoming Zhang5,d

1 LIP, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
2 IST University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
3 Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
4 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
5 Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

Received: 26 October 2017 / Accepted: 18 June 2018 / Published online: 28 June 2018
© The Author(s) 2018

Abstract Using a novel observable that relies on the momentum difference of the two most energetic subjets within a jet ΔS_{12} we study the internal structure of high-energy jets simulated by several Monte Carlo event generators that implement the partonic energy-loss in a dense partonic medium. Based on inclusive jet and dijet production we demonstrate that ΔS_{12} is an effective tool to discriminate between different models of jet modifications over a broad kinematic range. The new quantity, while preserving the collinear and infrared safety of modern jet algorithms, it is experimentally attractive because of its inherent resilience against backgrounds of heavy-ion collisions.

1 Introduction

Interactions of high-energy partons with a strongly coupled hot partonic medium – a quark-gluon plasma (QGP) \cite{1–4} – created in heavy-ion collisions, leading to modifications of the internal jet structure (jet quenching), was first proposed in \cite{5} and is studied as a sensitive probe of the medium properties \cite{6–8}. Experiments at RHIC and the LHC observed a strong suppression of high transverse momentum particle yields \cite{9–15}, suppression of inclusive and semi-inclusive yields of fully reconstructed jets \cite{16–20}, and, more recently, the internal structure of the jets \cite{21–25} for detailed studies of jet quenching. However, in all these measurements the treatment of the background originating from the copiously produced particles not associated to hard scatterings poses an experimental challenge for precise and unbiased measurements. Previous works that addressed the effect of filtering on subjet analysis \cite{26} and the recent analytic calculations of the momentum distributions of subjets \cite{27–29} and groomed jet mass distributions \cite{30–32} that were recently measured in proton-proton collisions \cite{33,34}, provide a strong motivation for novel studies. In this writeup, following previous works \cite{35}, we propose observables that are sensitive to the internal jet structure but significantly alleviate the difficulties associated to the effects of the background. Our approach is attractive from the experimental point of view and obeys the theoretical requirements of the infrared and collinear safety.

While jet substructure techniques are extensively used in the high-energy pp collisions \cite{36–38} the first studies in the heavy-ion context \cite{24,39} are recent (see \cite{35} for a first attempt of using subjets as a phenomenological tool for jet quenching studies). In this manuscript we propose an observable that uses only the highest and next-to-highest energetic fully reconstructed subjets within a jet. This choice aims to minimize the impact of the heavy-ion background on the extracted jet properties allowing for better experimental control.

2 Observable definition and setup

We introduce a new jet substructure observable ΔS_{12} defined as the difference between the fractions of transverse momentum of a jet z_1 and z_2.

\begin{equation}
\Delta S_{12} = z_1 - z_2 ,
\end{equation}

where

\begin{equation}
z_i = p_{T,i} / p_{T,jet} .
\end{equation}

The subjets used to evaluate Eq. (1) are obtained as follows:
1. For each event, reconstruct jets with the anti-\(k_T\) algorithm [40] provided by the FASTJET package [41] with radius \(R\) and within pseudo-rapidity \(|\eta_{\text{jet}}| < 7\)max.
2. Within each jet, find subjets by reclustering the jet components with a smaller radius parameter \(R_{\text{sj}} < R\). Retain the two hardest (highest-\(p_T\)) subjets.

The subjet samples used in this study were obtained with \(\eta_{\text{max}} = 2.5\) and \(R = 0.5\). In general, the reclustering of the jet components into subjets in step (ii) above can be carried out with a different jet algorithm from that chosen to reconstruct the jet to which they belong. We chose to use anti-\(k_T\) after assessing the discriminating power of \(\Delta S_{12}\) for subjets reconstructed with different algorithms and checking its sensitivity to hadronization effects (see Sects. 4.2 and 4.4). The subjet radius parameter was set to \(R_{\text{sj}} = 0.15\) except when assessing, in Sect. 4.2, the dependence of \(\Delta S_{12}\) on \(R_{\text{sj}}\) (where the range \(0.1 < R_{\text{sj}} < 0.2\) was considered), and when comparing, in Sect. 4.5, with the analysis [24] (where we used \(R_{\text{sj}} = 0.1\)).

The bulk of soft particles produced in high-energy collisions is not a priori distinguishable from the particles produced from the hadronisation of an energetic parton shower. The presence of these background particles is the main experimental confounding factor when establishing the jet energy scale and jet energy resolution in jet quenching studies (see for example [42]). Moreover, unlike in measurements of proton-proton collisions with high event pile-up probability within the detectors, the background in heavy-ion collisions is complex. It consists of region to region fluctuations, modified particle production as compared to pp collisions, and particle correlations caused by the collective expansion of the QGP. In consequence, experimental observables at relatively low jet energies at the LHC (\(p_T < 150\) GeV) are prone to systematic uncertainties related to complicated multi-dimensional unfolding procedures that are susceptible to large correction factors.

The substructure observable \(\Delta S_{12}\) defined in Eq. (1) has been constructed to minimize correlated background contributions. Take [43]

\[
\Delta S_{12} = \frac{p_{T,1}^{\text{true}} - p_{T,2}^{\text{true}}}{p_{T,\text{jet}}} = \frac{(p_{T,1} - p_{T,1} - \rho_1 A_1) - (p_{T,2} + \rho_2 A_2)}{p_{T,\text{jet}}},
\]

where \(p_{T,1}^{\text{true}}\) is the true subject momentum, \(A_i\) is the area of a subjet, \(\rho_i\) is the level of noise corresponding to the amount of transverse momentum added to each subjet per unit area by the background, and the \(p_{T,1}^{\text{rec}}\) is the experimentally reconstructed subjet momentum containing the background contribution \(\rho_i A_i\). For subjets reconstructed with the same radius parameter \(R_{\text{sj}}\) (in our case \(R_{\text{sj}} = 0.15\)) with the anti-\(k_T\) algorithm, the corresponding active areas are necessarily very similar \(A_1 \approx A_2\). In an ideal case, where \(\rho_1 = \rho_2\), the background term in the numerator of \(\Delta S_{12}\) vanishes. For real events, where subjets sit close by, \(\rho_1\) and \(\rho_2\) can only differ by very localized fluctuations and thus should be on average still very similar. Thus, the background effect in the numerator of Eq. (1) is small.

A variety of observables similar to \(\Delta S_{12}\) can be defined. In particular, \(z_i\) in Eq. (2) could be redefined by replacing the denominator by the sum of the momenta of the leading and subleading subjects, such that \(z_i = \frac{p_{T,j}}{p_{T,1} + p_{T,2}}\). Although such a definition could have some welcome consequences in reducing the influence of background effects in the reconstructed jet transverse momentum \(p_{T,\text{jet}}\) (denominator of Eq. 2), all information on the overall hardness of the jet fragmentation, that is the fraction of jet momentum carried by the two hardest subjets, would be neglected.

3 Models

To assess the potential of the proposed observable we consider a set of Monte Carlo event generators which rely on different implementations of jet quenching. This allows both for a comparison between theoretical calculations that is not limited by systematic uncertainties of the putative experimental measurement and to assess the potential of the observable as a discriminant of different modelling scenarios.

Below we provide a short description of each event generator considered in this study – Q-PYTHIA v1.0.2 [44], JEWEL v2.0.0 [45], and PyQuen v1.5.1 [46] – emphasising only the main characteristics and details of the setup we adopted (for further details please see the corresponding references). All samples used in this work were generated for central (0-10% most central) PbPb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV.

Q-PYTHIA is a modification of PYTHIA 6.4 [47] where the splitting probability in the final state parton shower is enhanced by an additional term that follows the BDMPS-Z radiation spectrum [48]. The medium is modelled by a single parameter, a local in space and time transport coefficient \(\hat{q}\) that translates the averaged transverse momentum squared \(\langle q_T^2 \rangle\) exchanged between a parton and the medium per mean free path \(\lambda\) in that medium, such that \(\hat{q} = \langle q_T^2 \rangle / \lambda\). The time and spatial variation of \(\hat{q}\) is modelled following the PQM prescription [49]. We considered two different average \(\hat{q}\) values (\(\hat{q} = 1\) GeV\(^2\) fm\(^{-1}\) and \(\hat{q} = 4\) GeV\(^2\) fm\(^{-1}\)) known to capture the main jet quenching features observed in dijets [50].

JEWEL implements a description of jet evolution that takes into account both elastic and inelastic energy losses as all scatterings with the medium are described by infra-red continued leading order matrix elements for \(2 \rightarrow 2\) processes. Additional medium-induced radiation is also taken into account during the jet development and can be induced
by several coherent scatterings, as predicted by the LPM effect [51,52]. We kept all default settings and used the medium implementation with Bjorken expansion described in detail in [53] validated on a large set of jet quenching observables [45].

PYQUEN is a modification (afterburner) of standard PYTHIA 6.4 jet events in which both radiative and collisional accumulated energy losses are applied during the parton shower development. The former is calculated for an expanding medium within the BDMPS framework, where the angular distribution follows three simple parameterisations (small, wide and collinear angular distributions) that are used for comparison purposes. The latter is calculated in the high-momentum transfer approximation. Additional in-medium gluon radiation is added at the end of the parton shower, before hadronization. We chose the internal parameters that characterise the QGP formation expected for central PbPb collisions at the LHC.

While a typical Monte Carlo reference for jet production in pp collisions is constructed with PYTHIA [47] each of the models provides their own implementation and/or modifications of PYTHIA original routines and consequently their own pp reference. Therefore, when comparing the medium-modified jets with jets showering in vacuum we take the model-provided proton-proton collision equivalent.

4 Results

We provide examples of how ΔS_{12} can be used to discriminate between the different implementations of jet quenching (Sect. 4.1) and evaluate its sensitivity to the choice of algorithm for subjet clustering and subjet radius R_sj (Sect. 4.2). Section 4.3 illustrates how ΔS_{12} combined with a dijet analysis can be used to study jet quenching more differentially as compared to the inclusive measurements. In Sect. 4.4 we show the robustness of the results against hadronization effects. Finally, Sect. 4.5 provides an overview of the relation between ΔS_{12} and the recently explored z_g observable in vacuum.

4.1 ΔS_{12} as a model discriminant

The distribution of the difference ΔS_{12} between the fractions of the jet total transverse momentum carried by the leading and subleading subjets is shown in Fig. 1.

In vacuum – Q- PYTHIA (vac) and JEWEL (vac) (top panel), and PYTHIA 6 (bottom panel) – the distribution displays a pronounced maximum for $\Delta S_{12} > 0.9$ and a tail towards lower ΔS_{12} values. Medium effects in Q- PYTHIA and JEWEL (top panel) modify the ΔS_{12} distribution in incompatible directions. JEWEL enhances significantly the maximum of the distribution and mildly depletes its tail. Q- PYTHIA softens the peak at high ΔS_{12} and produces a flat tail towards values of $\Delta S_{12} \lesssim 0.7$ with the effects more pronounced for increasing \vec{q}. These observations are consistent with a collimation of jets in JEWEL and broadening in Q- PYTHIA as compared to their vacuum references. PYQUEN (Coll) (bottom panel) modifies the ΔS_{12} similarly to JEWEL. PYQUEN (Small) gives a distribution with features resembling those found for Q- PYTHIA, and PYQUEN (Wide) displays an intermediate behaviour.

While the above features directly reflect the behaviour of the z_1 and z_2 distributions (see appendix A), we emphasise that, from the experimental point of view, studies of ΔS_{12} are more attractive as compared to the individual z distributions since the difference $z_1 - z_2$ removes, by construction, a large fraction of the correlated background. Although the effect of the uncorrelated background is enhanced in ΔS_{12} ratio with respect to z_2 on a jet-by-jet basis, we found that this effect is small when taking the integrated/inclusive distributions, and subsequently their moments. Moreover, ΔS_{12} is more robust for low momentum jets for which z_2 becomes gradually (with decreasing p_T) dominated by background particles.

To further expose the differences among models we now turn our focus to the quartiles of the ΔS_{12} distribution, considering med/vac ratios R, where med refers to calculations
including jet quenching effects and \(\text{vac} \) to the corresponding model specific no-quenching baseline

\[
\mathcal{R}_{Q_1|\Delta S_{12}} = \frac{Q_1[\Delta S_{12}]^{med}}{Q_1[\Delta S_{12}]^{\text{vac}}}.
\]

(4)

While the \(\text{med/vac} \) ratio of the medians of the \(\Delta S_{12} \) distributions as a function of \(p_T^{\text{jet}} \) display a clear evolution and discrimination power among the models (data not shown), we find that to characterise the modifications to the subjet structure for models that show jet collimation – JEWEL and PYQUEN (Coll) – the ratios of the first quartile (\(Q_1 \)) of \(\Delta S_{12} \) distributions is preferable. The criteria of selecting the best discriminant was made by calculating the relative standard deviation (RSD) given by the models in each discriminant was made by calculating the relative standard deviation (RSD) given by the models in each category. The edges of the five considered jet \(p_T \) bins (10–50, 50–120, 120–300, 300–500, 500–1000 GeV/c) are shown on the top of the figure.

![Fig. 2](image1.png)

Fig. 2 Top panel: \(R_{Q_1|\Delta S_{12}} \) as a function of \(p_T^{\text{jet}} \); bottom panel: RSD of \(R_{Q_1|\Delta S_{12}} \) as a function of \(p_T^{\text{jet}} \). The edges of the five considered jet \(p_T \) bins (10–50, 50–120, 120–300, 300–500, 500–1000 GeV/c) are shown on the top of the figure.

Further, we find that the interquartile range \(\text{IQR} = Q_3 - Q_1 \), that characterises the width of the \(\Delta S_{12} \) distribution, gives additional information. Figure 3 shows \(R_{\text{IQR}|\Delta S_{12}} \) as a function of jet transverse momentum for the different quenching models with the corresponding RSD calculated in each \(p_T \) bin. Here again, models that result in jet collimation, characterised by a similar or narrower \(\Delta S_{12} \) distribution than its vacuum reference (\(R_{\text{IQR}|\Delta S_{12}} \leq 1 \)), are clearly separated from those that broaden the jet, where \(\Delta S_{12} \) is typically broader with respect to the vacuum reference (\(R_{\text{IQR}|\Delta S_{12}} > 1 \)).

Moreover, for Q-PYTHIA, JEWEL and PYQUEN(Coll), \(R_{\text{IQR}|\Delta S_{12}} \) converges quickly to a constant value with increasing jet \(p_T \). Importantly, it also allows to better discriminate between the two models that destroy the vacuum subjet asymmetry: while Q-PYTHIA is well separated from its vacuum reference for all \(p_T > 100 \) GeV/c, PYQUEN(Small) evolves slowly towards more asymmetric jets with increasing \(p_T \). Thus, \(R_{\text{IQR}|\Delta S_{12}} \) provides relevant complementary information to identify the main characteristics of jet quenching within specific models, in particular for jets with \(100 < p_T < 200 \) GeV/c, where the first quartile \(Q_1 \) of the \(\Delta S_{12} \) is suppressed with respect to the vacuum reference in all models. Comparing the RSD of \(Q_1|\Delta S_{12} \) and \(R_{\text{IQR}|\Delta S_{12}} \), we find that for low \(p_T \) jets (jets with \(p_T < 120 \) GeV/c), the \(R_{Q_1|\Delta S_{12}} \) has a higher discrimination power while \(R_{\text{IQR}|\Delta S_{12}} \) is preferable for higher \(p_T \) jets. Nonetheless, it should be noted that \(\text{IQR} \) is also more sensitive to hadronisation effects (see Sect. 4.4).

We also investigated the evolution of \(\Delta S_{12} \) with the relative distance \(\Delta R_{\text{subjet}} \) in \((\eta, \phi)\) space between the leading and subleading subjets, in particular of the \text{med/vac} of its
median value Q_2 and interquartile range IQR. The corresponding RSD are calculated in each $ΔR_{subjet}$ bin.

The median ratio (Fig. 4) shows a clear separation between models – Q-PYTHIA and PYQUEN(Small) – that broaden the jet structure. In Q-PYTHIA the two leading subjets become more symmetric with increasing $ΔR_{subjet}$ (the ratio is below one and decreases). The same behaviour is seen for PYQUEN(Small) up to $ΔR_{subjet} = 0.25$, but interestingly, vacuum-like behaviour is recovered for larger separations. In contrast, the median ratio in JEWEL and PYQUEN(Coll) show a dependence on $ΔR_{subjet}$ similar to their vacuum references with the ratio nearly independent of the distance between the two leading subjets. The large reduction of the interquartile range ($R_{IQR}[ΔS_{12}] < 0.5$) for all $ΔR_{subjet}$ observed (Fig. 5) in these models provides another clear signature of the jet collimation effect.

From the RSD values the interquartile ratio allows to have a wider spread between the models, although the transition from PYQUEN(Small) to vacuum-like behaviour is more noticeable through the median ratio.

4.2 Dependence on the choice of subjet clustering algorithm and subjet radius

To investigate the dependence of the proposed observable and its sensitivity to the effects of jet quenching we varied the subjet reconstruction algorithm as well as the subjet radius parameter $R_{sj} < R$.

We find no significant differences in $ΔS_{12}$ subjet distributions when changing the clustering algorithm from anti-k_T [40] to k_T [54] or Cambridge-Aachen (C/A) [55]. However, $ΔR_{subjet}$ depends, by construction, on the reconstruction algorithm. Figure 6 shows the med/vac ratio of the medians of $ΔR_{subjet}$ distributions for different models for $p_T > 150$ GeV/c jets with the subject reconstruction algorithm with radius of $R_{sj} = 0.15$ for anti-k_T jets with $p_T > 150$ GeV/c. Despite the finite differences between clustering algorithms, we find that the power of discrimination between the different models is largely independent of the choice of the algorithm. This observation, together with the results obtained in Sect. 4.4, where we study the effect of different hadronization models on the reconstructed subjets, allow us to conclude that the anti-k_T algorithm provides the most promising option when optimising for jet quenching effects. We therefore adopt this clustering algorithm as the standard setting for the remainder of this work.
Fig. 7 Evolution of the med/vac ratio of the medians of ΔS_{12} distributions $R_{Q2}[\Delta S_{12}]$ (top panel) and corresponding RSD (bottom panel) with the subjet radius R_{sj} for anti-k_T jets with $p_T > 150$ GeV/c

Figure 7 shows the dependence on R_{sj} of the med/vac ratio of the medians of ΔS_{12} distributions for subjets reconstructed with the anti-k_T algorithm. The RSD is also shown in the bottom panel, now calculated for each algorithm separately. Here, we find that an increased discrimination between models resulting in jet collimation and the models preferring jet broadening is achieved with $R_{sj} \in [0.1; 0.15]$. Further, we find a clear difference in the energy distribution inside the jet that results from the different models. On the one hand, Q- Pythia and PyQuen(Small) increase the leading subjet p_T when the subjet radius is increased, indicating broadening of the jet structure. On the other hand, in the models that produce collimated jets by medium effects, the energy in the leading subjet is nearly independent of the chosen subjet radius as it is highly concentrated close to the jet core.

4.3 Subjets in dijet pairs

In a back-to-back dijet pair propagating through the QGP, the sub-leading jet has typically lost more energy than its leading partner [56]. This quenching asymmetry can be combined with ΔS_{12} to experimentally further constrain the nature of jet quenching. We have performed an analysis of dijet pairs with $R = 0.5$ anti-k_T jets within with $|\eta_{jet}| < 2$ where the leading jet was required to have $p_T > 120$ GeV/c and the recoil jet $p_T > 50$ GeV/c. The jets in the pair were required to be separated in azimuth by at least $5/6\pi$. The med/vac ratios of medians of the ΔS_{12} distribution, $R_{Q2}[\Delta S_{12}]$, as a function of $x_J = p_T^{\text{recoil jet}}/p_T^{\text{leading jet}}$ are shown in Fig. 8. The upper figures show results for leading jets and the bottom figures those for recoil jets. Again, the upper panels of each figure show the evolution of all models and the bottom panels the corresponding spread quantified through the RSD calculated in each asymmetry bin.

Models that collimate jets towards their core – JEWEL and PyQuen(Coll) – display leading jets with a (slightly) enhanced asymmetric subjet momentum balance as compared to their vacuum references, while the recoil jets have a more balanced subjet momentum distribution than in vacuum. In contrast, in models that broaden the jet structure – Q- Pythia, PyQuen(Small), and to a more limited extent PyQuen(Wide) – both leading and recoil jets have a more balanced subjet momentum distribution than in vacuum with the modification significantly stronger for recoil jets. In all cases, the leading jet is modified independently of the pair asymmetry, while the momentum sharing between subjets becomes increasingly balanced (with respect to vacuum) with increasing dijet asymmetry (decreasing x_J) for recoil jets.

Similar findings are also present in the ratio of the interquartile range of the distributions, for both leading and recoil jets, shown in Fig. 9. However, differences between leading jets are more noticeable through the asymmetry of the ΔS_{12} distribution while recoil jets show a larger spread among models through $R_{Q2}[\Delta S_{12}]$.
4.4 Hadronization effects on the reconstructed subjets

Small radii jets are known to be more sensitive to hadronization effects [57]. For this reason, we investigate the role of different hadronization models in the distributions that were presented so far by using both PYTHIA 8 and HERWIG 7 [58, 59]. The former is based solely on the Lund string fragmentation framework [60] while the later applies a cluster model [61] to hadronize the resulting partonic final state to produce hadrons. Although such study is not ideal to accurately assess the uncertainties induced by hadronization effects, including in-medium hadronization modifications [62], it can provide an estimate of the robustness of the proposed observable, ΔS_{12}.

We have found that $Q_2[\Delta S_{12}]$ is almost insensitive to the hadronization model, with relative differences (taking PYTHIA 8 as reference) smaller than 1% for any choice of subjet radius or clustering algorithm and jets with a transverse momentum $p_{T,jet} > 100$ GeV/c. For low momentum jets ($p_{T,jet} < 100$ GeV/c), this difference goes up to 2% for $R_{subjet} = 0.15$ and 10% for $R_{subjet} = 0.1$.

As for the first quartile of the distribution, $Q_1[\Delta S_{12}]$, the relative change of HERWIG 7 with respect to PYTHIA 8 is $\sim [2–5]\%$ for anti-k_T subjets with $R_{subjet} \leq 0.15$. Any other choice of clustering algorithm or subjet radius provide a relative difference of $\sim [5–10]\%$ independently of the jet transverse momentum.

Finally, the interquartile range, $IQR[\Delta S_{12}]$ that is able to provide, in general, a larger dispersion between the jet quenching models, is also able to discriminate more among hadronization models. The relative change in low momentum jets ($p_{T,jet} < 100$ GeV/c) between the interquartile range provided by the two Monte Carlo event generators is around [4–10]% for any clustering algorithm and subjets reconstructed with $R_{subjet} \leq 0.15$. For $R_{subjet} = 0.2$, this change increases to 17%, independently of the clustering algorithm. In high momentum jets ($p_{T,jet} > 250$ GeV/c) the relative difference is around [20–40]%.

The general large sensitivity of the interquartile range to the choice of the hadronization model comes from the fact that this observable is designed to promote the tails of the distributions. While it is the preferable region to tag energy loss modifications imprinted on the jet, it is also the region dominated by a fragmentation pattern that promotes the existence of one ($\Delta S_{12} \sim 1$) or two ($\Delta S_{12} \sim 2$) subjets mainly composed by very soft particles. Any modification on the hadronization mechanism would imply a stronger deviation on both $Q_1[\Delta S_{12}]$ (as observed from the increase of the relative differences with respect to $Q_2[\Delta S_{12}]$ and $Q_3[\Delta S_{12}]$).

These observations validate our choice of using clustered anti-k_T subjets with $R_{subjet} = 0.15$ as to maximize jet quenching phenomena with respect to hadronization effects.

4.5 Sub-jet momentum fraction z_g and ΔS_{12}

Recent studies of the momentum fraction z_g in jets [24] prompt for a comparison of z_g with ΔS_{12}. We have performed an analysis of (vacuum) PYTHIA jets with $p_T > 150$ GeV/c using settings of the Soft Drop algorithm [63, 64] as in [24]. Figure 10 shows the z_g as a function of ΔS_{12} for two
cases: one, where all jets where used; and a second, where jets with $\Delta R_{sj} < 0.1$ between the subjets used to calculate z_g are discarded. ΔS_{12} was calculated with $R_{subjet} = 0.1$ in both cases. We find a strong correlation between ΔS_{12} and the calculation of z_g when using the ΔR_{sj} cut as in [24]. Without the cut on ΔR_{sj} the distributions have two dominating structures. One is the diagonal, but the other is largely independent of the ΔS_{12} at $\Delta S_{12} > 0.8$.

A comment on the differences of behaviour between these two observables in the presence of a QGP is in order. One of the proposed explanations [65] for the observed modification of the z_g distribution in nucleus-nucleus collisions relies on the ability of subjets to collect contributions from the QGP. As argued in that work, this QGP backreaction process implies a distinctive increase in size (measured girth) of the subjets. Since in ΔS_{12} we explicitly impose, by specifying a radius parameter R_{sj} for the subjet reconstruction, a size for the subjets, contributions from the QGP to both subjets will be of the same order, and thus, will cancel in ΔS_{12}. This makes ΔS_{12} and z_g, well correlated in vacuum, complementary observables in the presence of a QGP that can be used to disentangle the role of QGP backreaction from other dynamical processes that conceivably modify the jet substructure.

5 Discussion

JEWEL. Results from JEWEL are consistent with a jet collimation effect, i.e., most of the radiation is transported outside of the cone leaving the energy core of the jet almost un-modified with respect to the vacuum reference but in a narrower region of phase space. We note, that in this analysis we have used JEWEL in its “recoil-off” mode which discards the medium partons that interacted with the jet. In this way, the results are independent of the medium-response, whose impact was recently analysed in [65]. As a consequence, the ΔS_{12} is closer to unity for the medium modified jets and it does not change with the chosen subjet subjet radius. Moreover, the comparison of properties of the leading and sub-
leading jets from a dijet event shows that the medium-induced gluon radiation is evenly distributed in phase space up to very large distances as the radiation is essentially kept near the core with few particles going to very large angles. This angular distribution is similar to the jet vacuum development, which makes this model undistinguishable from the vacuum reference for jets with a large transverse momentum and/or leading jets in dijet systems. On the other hand, the PyQuen(Coll) mode, constrained to elastic energy loss only, affects mainly the softest jet constituents by such elastic collisions, whose energy is “absorbed” by the medium. As such, jets become more collimated, as it happens in JEWEL.

Considerations of the RSD distributions show that the $R_{Q1}(\Delta S_{12})$ carries the largest discrimination power for high-p_T jets, although there is an associated uncertainty of $[10–25\%]$ due to hadronization effects. For low-p_T jets ($p_T \lesssim 120$ GeV/c) and/or recoil-jets in dijet systems the use of the $R_{Q1}(\Delta S_{12})$ and/or the median $R_{Q2}(\Delta S_{12})$ may prove more advantageous, with hadronization uncertainties that are smaller than 5% for the chosen subjet parameters.

Finally, we reiterate that inclusive or semi-inclusive measurements of nuclear modification factor(s) for jets that fall within a range of ΔS_{12} and $\Delta R_{subjets}$ can provide a rather straightforward insight into the properties of jet quenching (see [35] for example).

6 Conclusions

We have presented observables of subjet structure that by minimizing the impact of the particle backgrounds in heavy-ion collisions are advantageous from the experimental point of view. At the same time, the introduced ΔS_{12} distribution and $\Delta R_{subjets}$ can be used as a sensitive tool to discriminate between different quenching mechanisms. We have shown that it is possible to use the quartiles of those distributions, together with
the widths and/or use of dijets to make an accurate assessment of the main jet quenching characteristics, in particular, to determine the angular structure of the medium-induced gluon radiation and to investigate further the role of collisional energy loss in the in-medium shower development.

Acknowledgements The authors would like to thank to N. Armesto, M. Verweij and K. Zapp for useful discussions. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-05CH11231 (MP, XZ) and by the Fundação para a Ciência e Tecnologia (Portugal) under contracts CERN/FIS-NUC/0049/2015, Investigador FCT – Development Grant IF/00563/2012 (JGM) and SFRH/BPD/103196/2014 (LA).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP³.

Appendix: A leading and subleading subjects

The gross features of the differences between the models have been discussed in terms of ΔS_{12} in Sect. 4.1. In this appendix we present the individual z_1 distributions only for completeness and with a limited analysis. The distribution of the fraction z_1 of the jet total transverse momentum carried by the leading subjet in jets with $p_T > 150$ GeV/c is shown in Fig. 11 for (top panel) Q- PYTHIA and JEWEL, and (bottom panel) PYQUEN with its three radiation pattern variants. The vacuum references for each model – Q- PYTHIA (vac), JEWEL (vac), and PYTHIA (for PYQUEN) – are also shown. Clearly Q- PYTHIA and JEWEL modify the z_1 distribution in incompatible directions. As noted for ΔS_{12} these observations are consistent with a collimation of jets within JEWEL and broadening in Q- PYTHIA as compared to their vacuum references. For PYQUEN (bottom panel) we find a clear separation of its different parametrisations of the angular distribution of medium induced radiation. The z_2 distribution (the p_T fraction carried by the subleading subjet) shown in Fig. 12 is, by definition, limited to the $0 - 0.5$ interval. The differences among the z_2 distributions obtained from the different models mirror those observed for z_1. Globally, the p_T fraction z_2 carried by the subleading subjet reflects the strongly peaked z_1 distribution at large-z which necessarily places the average z_2 to be below 0.1.

References

1. H. Satz, Rept. Prog. Phys. 63, 1511 (2000). https://doi.org/10.1088/0034-4885/63/9/203
2. S.A. Bass, M. Gyulassy, H. Stoecker, W. Greiner, J. Phys. G25, R1 (1999). https://doi.org/10.1088/0954-3899/25/3/013
3. E.V. Shuryak, Phys. Rept. 115, 151 (1984)
4. J. Cleymans, R. Gavai, E. Suhonen, Phys. Rept. 130, 217 (1986). https://doi.org/10.1016/0370-1573(86)90169-9
5. J.D. Bjorken (1982)
6. U.A. Wiedemann, pp. 521–562 (2010). https://doi.org/10.1007/978-3-642-01539-7_17
7. K.M. Burke et al., Phys. Rev. C 90(1), 014909 (2014). https://doi.org/10.1103/PhysRevC.90.014909
8. Y. Mehtar-Tani, J.G. Milhano, K. Tywoniuk, Int. J. Mod. Phys. A 28, 1340013 (2013). https://doi.org/10.1142/S0217751X13400137
9. J. Adams et al., Nucl. Phys. A 757, 102 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085
10. K. Adcox et al., Nucl. Phys. A 757, 184 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086
11. I. Arsene et al., Nucl. Phys. A 757, 1 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.130
12. B. Back et al., Nucl. Phys. A, 757, 28 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.084
13. A. Aamodt et al., Phys. Lett. B 696, 30 (2011). https://doi.org/10.1016/j.physletb.2010.12.020
14. K. Aamodt et al., Phys. Rev. Lett. 108, 092301 (2012). https://doi.org/10.1103/PhysRevLett.108.092301
15. S. Chatrchyan et al., Eur. Phys. J. C 72, 1945 (2012). https://doi.org/10.1140/epjc/s10052-012-1945-x
16. G. Aad et al., Phys. Rev. Lett. 105, 252303 (2010). https://doi.org/10.1103/PhysRevLett.105.252303
17. S. Chatrchyan et al., Phys. Rev. C 84, 024906 (2011). https://doi.org/10.1103/PhysRevC.84.024906
18. J. Adam et al., Phys. Lett. B 746, 1 (2015). https://doi.org/10.1016/j.physletb.2015.04.039
19. L. Adamczyk et al., Phys. Rev. C 96(2), 024905 (2017). https://doi.org/10.1103/PhysRevC.96.024905
20. J. Adam et al., JHEP 09, 170 (2015). https://doi.org/10.1007/JHEP09(2015)170
21. G. Aad et al., Phys. Lett. B 739, 320 (2014). https://doi.org/10.1016/j.physletb.2014.10.065
22. S. Chatrchyan et al., Phys. Lett. B 730, 243 (2014). https://doi.org/10.1016/j.physletb.2014.01.042
23. S. Chatrchyan et al., JHEP 1210, 087 (2012). https://doi.org/10.1007/JHEP10(2012)087
24. A.M. Sirunyan et al., Phys. Rev. Lett. 120(14), 142302 (2018). https://doi.org/10.1103/PhysRevLett.120.142302
25. L. Cunqueiro, Nucl. Phys. A 956, 593 (2016). https://doi.org/10.1016/j.nuclphysa.2016.02.060
26. M. Rubin, JHEP 05, 005 (2010). https://doi.org/10.1007/JHEP05(2010)005
27. Z.B. Kang, F. Ringer, W.J. Waalewijn, JHEP 07, 064 (2017). https://doi.org/10.1007/JHEP07(2017)064
28. A.J. Larkoski, S. Marzani, J. Thaler, Phys. Rev. D 91(11), 111501 (2015). https://doi.org/10.1103/PhysRevD.91.111501
29. A. Larkoski, S. Marzani, J. Thaler, A. Tripathee, W. Xue, Phys. Rev. Lett. 119(13), 132003 (2017). https://doi.org/10.1103/PhysRevLett.119.132003
30. C. Frye, A.J. Larkoski, M.D. Schwartz, K. Yan, JHEP 07, 064 (2016). https://doi.org/10.1007/JHEP07(2016)064
31. S. Marzani, L. Schunk, G. Soyez, JHEP 07, 132 (2017). https://doi.org/10.1007/JHEP07(2017)132
32. S. Marzani, L. Schunk, G. Soyez, Eur. Phys. J. C 78(2), 96 (2018). https://doi.org/10.1140/epjc/s10052-018-5579-9
33. A.M. Sirunyan et al. (2018). https://doi.org/10.3204/PUBDB-2018-02200
34. M. Aaboud et al. (2017). arXiv:1711.08341
35. X. Zhang, L. Apolinário, J.G. Milhano, M. Ploskon, Nucl. Phys. A 956, 597 (2016). https://doi.org/10.1016/j.nuclphysa.2016.02.028
36. S. Chatrchyan et al., JHEP 05, 090 (2013). https://doi.org/10.1007/JHEP05(2013)090
37. G. Aad et al., JHEP 05, 128 (2012). https://doi.org/10.1007/JHEP05(2012)128
38. A. Tripathee, W. Xue, A. Larkoski, S. Marzani, J. Thaler, Phys. Rev. D 96(7), 074003 (2017). https://doi.org/10.1103/PhysRevD.96.074003
39. K. Kauder, Nucl. Part. Phys. Proc. 289–290, 137 (2017). https://doi.org/10.1016/j.nuclphysbps.2017.05.028
40. M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008). https://doi.org/10.1088/1126-6708/2008/04/063
41. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012). https://doi.org/10.1140/epjc/s10052-012-1896-2
42. B. Abelev et al., JHEP 1203, 053 (2012). https://doi.org/10.1007/JHEP03(2012)053
43. M. Cacciari, G.P. Salam, Phys. Lett. B 659, 119 (2008). https://doi.org/10.1016/j.physletb.2007.09.077
44. N. Armesto, L. Cunqueiro, C.A. Salgado, Eur. Phys. J. C 63, 679 (2009). https://doi.org/10.1140/epjc/s10052-009-1133-9
45. K.C. Zapp, Eur. Phys. J. C 74(2), 2762 (2014). https://doi.org/10.1140/epjc/s10052-014-2762-1
46. I.P. Lokhvin, A.M. Snigirev, Eur. Phys. J. C 45, 211 (2006). https://doi.org/10.1140/epjc/s2005-02426-3
47. T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026
48. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 484, 265 (1997). https://doi.org/10.1016/S0550-3213(96)00581-0
49. A. Dainese, C. Loizides, G. Paic, Eur. Phys. J. C 38, 461 (2005). https://doi.org/10.1140/epjc/s2004-02077-x
50. L. Apolinario, N. Armesto, L. Cunqueiro, JHEP 02, 022 (2013). https://doi.org/10.1007/JHEP02(2013)022
51. L.D. Landau, I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 535 (1953)
52. A.B. Migdal, Phys. Rev. 103, 1811 (1956). https://doi.org/10.1103/PhysRev.103.1811
53. K.C. Zapp, Phys. Lett. B 735, 157 (2014). https://doi.org/10.1016/j.physletb.2014.06.020
54. S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993). https://doi.org/10.1103/PhysRevD.48.3160
55. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, JHEP 08, 001 (1997). https://doi.org/10.1088/1126-6708/1997/08/001
56. J.G. Milhano, K.C. Zapp, Eur. Phys. J. C 76(5), 288 (2016). https://doi.org/10.1140/epjc/s10052-016-4130-9
57. M. Dasgupta, L. Magnea, G.P. Salam, JHEP 02, 055 (2008). https://doi.org/10.1088/1126-6708/2008/02/055
58. M. Bahr et al., Eur. Phys. J. C 58, 639 (2008). https://doi.org/10.1140/epjc/s10052-008-0798-9
59. J. Bellm et al., Eur. Phys. J. C 76(4), 196 (2016). https://doi.org/10.1140/epjc/s10052-016-4018-8
60. B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rept. 97, 31 (1983). https://doi.org/10.1016/0370-1573(83)90080-7
61. A. Kupco, pp. 292–300 (1998)
62. A. Beraudo, J.G. Milhano, U.A. Wiedemann, Phys. Rev. C 85, 031901 (2012). https://doi.org/10.1103/PhysRevC.85.031901
63. M. Dasgupta, A. Fregoso, S. Marzani, G.P. Salam, JHEP 09, 029 (2013). https://doi.org/10.1007/JHEP09(2013)029
64. A.J. Larkoski, S. Marzani, G. Soyez, J. Thaler, JHEP 05, 146 (2014). https://doi.org/10.1007/JHEP05(2014)146
65. J.G. Milhano, U.A. Wiedemann, K.C. Zapp (2017) https://doi.org/10.1016/j.physletb.2018.01.029