Genetic Drift and Indel Mutation in the Evolution of Yeast Mitochondrial Genome Size

Shujie Xiao^1,†, Duong T. Nguyen^1,†, Baojun Wu^1,2, and Weilong Hao^1,*

^1Department of Biological Sciences, Wayne State University
^2Present address: Department of Biology, Clark University, Worcester, MA

†These authors contributed equally to this work.
*Corresponding author: E-mail: haow@wayne.edu.

Accepted: November 7, 2017

Data deposition: This project has been deposited to GenBank under the accessions KU920675-KU920682 and KY989226-KY989234.

Abstract

Mitochondrial genomes (mitogenomes) are remarkably diverse in genome size and organization, but the origins of dynamic mitogenome architectures are still poorly understood. For instance, the mutational burden hypothesis postulates that the drastic difference between large plant mitogenomes and streamlined animal mitogenomes can be driven by their different mutation rates. However, inconsistent trends between mitogenome sizes and mutation rates have been documented in several lineages. These conflicting results highlight the need of systematic and sophisticated investigations on the evolution and diversity of mitogenome architecture. This study took advantage of the strikingly variable mitogenome size among different yeast species and also among intraspecific strains, examined sequence dynamics of introns, GC-clusters, tandem repeats, mononucleotide repeats (homopolymers) and evaluated their contributions to genome size variation. The contributions of these sequence features to mitogenomic variation are dependent on the timescale, over which extant genomes evolved from their last common ancestor, perhaps due to a combination of different turnover rates of mobile sequences, variable insertion spaces, and functional constraints. We observed a positive correlation between mitogenome size and the level of genetic drift, suggesting that mitogenome expansion in yeast is likely driven by multiple types of sequence insertions in a primarily nonadaptive manner. Although these cannot be explained directly by the mutational burden hypothesis, our results support an important role of genetic drift in the evolution of yeast mitogenomes.

Key words: genome size, mitogenome, intron, GC-cluster, tandem repeats, genetic drift.

Introduction

Since their origin of an alpha-proteobacterial endosymbiont, mitochondrial genomes (mitogenomes) have undergone substantial reduction in gene content, but adopted radically different shapes and sizes with highly variable intronic and intergenic sequences (Burger et al. 2003; Shao et al. 2009; Sloan et al. 2012; Freel et al. 2014; Del Vasto et al. 2015; Smith and Keeling 2015). Studies on these radically different mitogenomes are important for mitochondrial genetics and evolutionary biology, but also important for the understanding of mitochondrial DNA mutation and maintenance, which are crucial in areas such as pathogenicity, ageing, and diseases. There are several evolutionary genetic mechanisms proposed to explain the evolution of mitogenomes. Mitogenomes in animals may have undergone recurrent adaptive evolution (Bazin et al. 2006). In plants, the evolution of mitogenomes can be driven by changes in recombinational processes (Sloan et al. 2012) and differences in DNA repair efficiency (Christensen 2013). The mutational burden hypothesis (MBH) proposed a potentially unifying explanatory framework arguing for a central role for nonadaptive processes such as mutation and genetic drift in the evolution of organelle genome size (Lynch et al. 2006). According to the MBH, introns and noncoding DNAs increase the size of the mutational target and are mutational liabilities, which have a greater tendency to accumulate in a mitogenome with a low mutation rate as opposed to one with a high rate of mutation. The MBH has gained support in a number of
genomic studies (Smith and Lee 2010; Boussau et al. 2011; Chong and Mueller 2013; Smith et al. 2013), whereas inconsistency to the MBH has also been reported (Alverson et al. 2010; Whitney et al. 2010).

A lesson learned from recent studies is that the variation of genome architecture can be driven by distinct molecular mechanisms. For instance, larger eukaryotic genomes are subject to expansion of presumably deleterious transposable elements and remnants due to strong genetic drift (Lynch and Conery 2003). In bacterial genomes, in which sequence deletion is prevalent (Mira et al. 2001), genetic drift tends to fix deleterious genome reduction in lineages with smaller effective population sizes (Kuo et al. 2009), resulting a genome size trend different from that seen in eukaryotes (Daubin and Moran 2004). Furthermore, genetic mechanisms underlying the variation of genome architecture may differ over different evolutionary timescales. In pneumococcal bacteria, short-term within-lineage genomic variation is characterized by movement of phages and shuffling of variable restriction-modification systems, whereas different lineages are distinguished by infrequent transfers of stable loci (Croucher et al. 2014). In fungal nuclear genomes, genetic drift is shown to be responsible only for large-scale genome expansions, whereas small-scale modifications in genome size are independent of drift (Kelkar and Ochman 2012). Thus, to better understand the evolution of mitogenome architecture, it is important to recognize and reconcile conflicting genomic data.

As genetic variation is the substrate of evolution, study of mitogenome architecture and complexity among closely related mitogenomes of significant variation would be ideal for understanding their underlying mechanisms. This study took advantage of the yeast family Saccharomycetaceae, as their mitogenomes differ over 5-fold in size, ranging from 20.1 kb in Candida glabrata (Koszul et al. 2003) to 107.1 kb in Nakaseoryces bidestiporosus (Bouchier et al. 2009). These mitogenomes exhibit not only striking interspecific divergence but also great intraspecific (within-species) diversity. For instance, mitogenomes among closely related species can vary substantially in intron presence/absence and sequence variation, and in the distribution of GC-rich transposable elements (GC-clusters) (Jung et al. 2012; Wu and Hao 2014, 2015; Wolters et al. 2015; Wu et al. 2015). Such enriched diversity and divergence in yeast mitogenomes, for which many genomic resources are available, provide an excellent opportunity to directly test the MBH and whether genetic drift plays a central role in evolution of mitogenome architecture.

To obtain broader mitogenome divergence and higher resolution intraspecific variation, we generated additional 17 complete mitogenomes from eight yeast species. We examined mitogenome size variation among different species and also among intraspecific strains, and compared mitochondrial sequence contents and characteristics at different evolutionary scales. Our results show that rapid turnover of mobile sequences (e.g., introns and GC-clusters) can lead to significant genome size variation, but likely occur at limited insertion sites; whereas expansion and contraction of small repeats per event may cause only subtle genomic variation, but take place at a persistent manner. Such differences can sometimes lead to Simpson’s paradox, that is, reverse trends between intra-specific and inter-specific comparisons. We also discuss the role of genetic drift and relaxed functional constraints on the evolution of mitogenome size in yeast.

Materials and Methods

Mitogenome Sequencing, Assembly, and Annotation

The Candida bracarensis (n = 1), Candida nivariensis (n = 1), Naumovozyma dairenensis (n = 1), Naumovozyma castellii (n = 4), Kazachstania unispora (n = 1), Torulaspora delbrueckii (n = 4), Torulaspora microellipsoides (n = 1), and Zygosaccharomycetes melsis (n = 1) strains were obtained from the National Center of Agricultural Utilization Research (IL). Three Torulaspora quercuum strains were kindly provided by Prof. Feng-Yan Bai (Chinese Academy of Sciences). Genomic DNA of each strain was extracted from a 2-day culture of a single colony inoculation. Seventeen mitogenomes were sequenced at read depths ranging from 338 to 3,484 x by the Illumina MiSeq platform (Paired-End 250 bp, or PE250), and assembled using SPAdes v3.7.1 (Bankevich et al. 2012) with k-mers of 55, 75, 89, 97, and 127. Each assembly was validated by visualizing mapping of raw reads versus assembled genome using BWA-MEM v0.7.12 (Li and Durbin 2012) with k-mers of 55, 75, 89, 97, and 127. Genomic DNA of each strain was extracted from a 2-day culture of a single colony inoculation. Seventeen mitogenomes were sequenced at read depths ranging from 338 to 3,484 x by the Illumina MiSeq platform (Paired-End 250 bp, or PE250), and assembled using SPAdes v3.7.1 (Bankevich et al. 2012) with k-mers of 55, 75, 89, 97, and 127. Each assembly was validated by visualizing mapping of raw reads versus assembled genome using BWA-MEM v0.7.12 (Li and Durbin 2009) and Integrative Genomics Viewer (IGV v2.3.60) (Robinson et al. 2011). All 17 mitogenomes were assembled into single, circularized genomes of length 24.3–46.4 kb (Supplementary Table S1, Supplementary Material online). The genomes were annotated using MFannot (Nadimi et al. 2012), followed by manual correction of intron boundaries. These mitogenomes have been deposited to GenBank (Supplementary Table S1, Supplementary Material online).

Phylogenetic Construction

The yeast phylogenetic relationship was constructed based on the concatenated sequences of seven mitochondrial protein genes (atp6, atp8, atp9, cob, cox1, cox2, and cox3). The var1 (or rps3) gene was excluded due to its extremely high level of sequence variation. Homologous nucleotide sequences were aligned based on their amino acid sequences using MUSCLE (Edgar 2004) implemented in SEAVIEW v4.5.3 (Gouy et al. 2010). Phylogenetic construction was performed using PhyML v3.1 (Guindon et al. 2010) under a GTR + I + I nucleotide substitution model with 100 bootstraps.
Calculating the π_d/π_s and K_d/K_s Ratios among Intraspecific Strains

The ratio of nonsynonymous nucleotide diversity to synonymous nucleotide diversity (K_d/K_s for two strains, π_d/π_s for more than two strains) was calculated on the concatenated alignments (5,375–5,520 sites in length) of seven mitochondrial genes for species having sequence data in two or more strains using DnaSP v5.10.01 (Rozas et al. 2003). In Saccharomycetaceae, 12 species currently have complete mitogenomes in two or more strains (supplementary table S1, Supplementary Material online). Kazachstania unispora and Kazachstania servazii have available sequences for the seven core mitochondrial genes in two or more strains generated in an unpublished study. The sequence alignments in each of these 14 species were analyzed and the data are available at http://haolab.wayne.edu/. Seven species that had sufficient synonymous nucleotide diversity ($\pi_s > 0.02$ or $K_s > 0.02$ based on the K_s divergence between the closest interspecific pair Torulaspora franciscae and T. pretoriensis being 0.043) were subject to subsequent analyses. These seven species are Eremothecium gossypii (Ego), Kazachstania servazii (Kse), Kazachstania unispora (Kun), Lachancea kluyveri (Lkl), Saccharomyces cerevisiae (Sce), Saccharomyces paradoxus (Spa), and Torulaspora globosa (Tgl).

Analysis of Mitochondrial Intron Turnover

Intron presence/absence and turnover rates were analyzed as previously done in the analyses of GC-clusters (Wu and Hao 2015). Briefly, pairwise diversity in intron presence/absence polymorphism was calculated as $\frac{\text{number of different sites}}{\text{total sites}}$. Intron gain and loss at homologous sites were modeled as a two-state continuous-time Markov process, with states 0 (absence) and 1 (presence) on a phylogeny. Intron turnover rates were measured by the R package DiscML (Kim and Hao 2014) using tree branch lengths as estimators of relative time scale, and the rates are expressed as the number of gains/losses per site per nucleotide substitution (Hao and Golding 2006; Wu and Hao 2014). To allow direct and meaningful comparisons, we focused our intron analyses on the same set of S. cerevisiae ($n = 18$) and S. paradoxus ($n = 15$) genomes using the same procedures as in our previous study on GC-clusters (Wu and Hao 2015). Due to the low divergence among intraspecific strains, concatenated sequences of 630 nuclear-encoded single-copy genes present in all 18 S. cerevisiae and 15 S. paradoxus strains were used to construct intraspecific phylogenies as done previously (Wu and Hao 2015).

Identification of GC Clusters, Tandem, and Homopolymer Repeats

Our previous study (Wu and Hao 2015) classified GC clusters in mitogenomes from disperse repeats detected by a GUI (graphical user interface) -based UGene program (Okonechnikov et al. 2012). To perform batch analysis on 184 mitogenomes in this study, we conducted BLASTN searches (Camacho et al. 2009) using command line to identify disperse repeats with parameters “-W 7 -t 1 -q 4 -G 60 -E 40 -F.” Since these yeast mitogenomes are highly AT rich (GC content ranging from 10.9% to 26.7%), A/T nucleotides at the ends of disperse repeats were trimmed off and GC clusters were required to have >50% GC content and >20 nucleotides in length.

Tandem repeats were identified using the TRF (tandem repeats finder) program with default parameters (Benson 1999). Overlapped tandem repeat sequences in genomic locations were merged for further analyses. Homopolymer runs were scanned using an in-house PERL script, and the total nucleotides in homopolymer runs ($n \geq 5$ and $n \geq 6$) were counted (supplementary table S1, Supplementary Material online). Unless mentioned otherwise, only homopolymer runs ($n \geq 5$) were used in interspecific and intraspecific comparisons.

Ancestral Mitogenome Size Reconstruction

Ancestral mitogenome sizes (with 95% confidence interval) were reconstructed using maximum likelihood under a Brownian motion model by the ACE function of the R package APE (Paradis et al. 2004). When multiple intraspecific mitogenomes were available in an extant species, the average genome size was used in the reconstruction.

High-Resolution Analysis of Short Indels between Mitogenomes

In order to best determine fine-scale indel differences, we focused on intraspecific mitogenomes that have identical intron distribution and constructed intraspecific whole genome alignments using the Mauve program (Darling et al. 2004). Since short indels between genome sequences can potentially be confounded by PCR bias in library preparation, sequencing, and assembly errors (Hao et al. 2012; Fungtammasan et al. 2015; Schirmer et al. 2015), we took advantage of the long PE250 reads generated from PCR free library preparation in this study and thoroughly examined four pairs of intraspecific mitogenomes, where short indels can be unambiguously validated within high-coverage PE250 reads by visual inspection of the mapped raw reads. Naumovozyma castellii Y12630 and Y12631 have only two single-guanine (G) indels but no nucleotide substitutions. Indel information for the remaining three mitogenome pairs is summarized in table 1, and detailed information is provided in supplementary table S2, Supplementary Material online, for Torulaspora delbrueckii Y1535 and Y11634, supplementary table S3, Supplementary Material online, for Torulaspora quercuum XZ-46 A and XZ-129 and supplementary table S4, Supplementary Material online, for Naumovozyma castellii Y664 and Y12630.
Evolution of Mitogenome Size

Intraspecific and Interspecific Variation in Mitogenome Size Is Driven by Different Factors

To understand mitogenomic dynamics on short evolutionary timescales, we compared mitogenomes among intraspecific
strains. Our analyses were performed on three species that have more than or equal to nine complete intraspecific mitogenomes, that is, *Saccharomyces cerevisiae*, *Saccharomyces paradoxus*, and *Lachancea thermotolerans*. The results of intraspecific strains are strikingly different from those of interspecific comparison. 1) Introns show the highest variance in sequence length among intraspecific mitogenomes (fig. 3), whereas tandem repeats show the highest variance in length among species (fig. 2A). 2) Intron sequences are significantly overrepresented in large intraspecific mitogenomes in *Saccharomyces cerevisiae* and *Lachancea thermotolerans* (fig. 4), but not among 33 different species (fig. 2B). 3) Although GC-clusters and tandem repeats are significantly overrepresented in large genomes among the 33 yeast species (fig. 2B), such a trend is not directly evident among intraspecific genomes (fig. 4). The genomic fraction of tandem-repeat sequences is even negatively correlated with mitogenome size in *S. cerevisiae*. These findings suggest that different genomic features impact mitogenome variation on different evolutionary timescales.

Given the fact that introns are the most variable sequences among intraspecific mitogenomes and may overshadow
variations involving other genomic features, we further examined GC-clusters, tandem-, and homopolymer-repeats in a fraction of genome sequences after the removal of introns (excluding-introns). Our results show that GC-clusters become significantly overrepresented in a fraction of large mitogenomes after the removal of introns in *S. cerevisiae* and *S. paradoxus*, and homopolymer repeats are overrepresented in *S. cerevisiae* (fig. 5). The observed negative correlation between mitogenome size and genomic fraction of tandem repeats among intraspecific strains (fig. 4) holds in *S. cerevisiae* and becomes significant in *S. paradoxus* after the removal of introns (fig. 5). These results suggest that introns and GC-clusters are important genomic features driving intraspecific mitogenomic variation in yeast. Unlike in interspecific genomic variation, tandem repeats do not play a major role in driving intraspecific mitogenomic variation.

GC-Biased Homopolymer Indels and AT-Biased Tandem-Repeat Indels in Genome Alignments of Intraspecific Strains

We performed genome-wide comparison to determine small indels and nucleotide substitutions. The number of nucleotides involving small indels is 2 for *Naumovozyma castellii* Y664 and Y12630 (supplementary table S3, Supplementary Material online), 155 for *Naumovozyma castellii* Y664 and Y12630 (supplementary table S3, Supplementary Material online), and 266 for *Torulaspora delbrueckii* Y1535 and Y11634 (supplementary table S4, Supplementary Material online). In comparison, the number of nucleotide substitutions between each genome pair is 0, 5, 22, and 41, respectively. Thus, small indels lead to significantly more nucleotide differences in mitogenome variation than nucleotide substitutions.

All four genome pairs contain indels in homopolymer regions, which are biased toward poly-G or poly-C [(G)n or (C)n] regions. The only two different nucleotides between *Naumovozyma castellii* Y12630 and Y12631 are both in (G)n regions. Three homopolymer indels between *Naumovozyma castellii* Y664 and Y12630 are all in (G)n or (C)n regions (supplementary table S3, Supplementary Material online). Between *Torulaspora delbrueckii* Y1535 and Y11634, 76-nucleotide differences are in (G)n or (C)n homopolymer indels, whereas only 8-nucleotide differences are in (A)n or (T)n homopolymer indels (supplementary table S4, Supplementary Material online). Between *Torulaspora quercuum* XZ-46A and XZ-129, (G)n or (C)n homopolymer indels lead to 4-nucleotide differences, (A)n or (T)n homopolymer indels lead to 6-nucleotide differences (supplementary table S2, Supplementary Material online). Since yeast mitogenomes are highly AT-rich, the total nucleotides in (A)n or (T)n homopolymer regions greatly outnumber those in (G)n or (C)n regions.

FIG. 2.—Contribution of introns, GC-clusters, tandem-, and homopolymer-repeats to mitogenome variation among 33 yeast species. (A) Beeswarm plot (with variances) of sequence lengths of introns, GC-clusters, tandem-, and homopolymer (HP)-repeats. (B–E) Scatter plots (with Spearman’s correlation coefficient ρ and P value) of mitogenome size against the proportion of (B) introns, (C) GC-clusters, (D) tandem-, and (E) homopolymer-repeats in each mitogenome. To ease readability, significantly positive correlations are colored in red, whereas nonsignificant (NS) correlations are in black.

FIG. 3.—Beeswarm plots (with variances) of sequence lengths of introns, GC-clusters, tandem-, and homopolymer (HP)-repeats among conspecific mitogenomes in *Saccharomyces cerevisiae* (n = 109), *Saccharomyces paradoxus* (n = 15), and *Lachancea thermotolerans* (n = 9), respectively.
homopolymer regions. For instance, in Torulaspora quercuum XZ-46A, there are in total 18,684 nucleotides in (A)$_{n\geq2}$ or (T)$_{n\geq2}$ regions, only 2,020 nucleotides in (G)$_{n\geq2}$ or (C)$_{n\geq2}$ regions. The observed four nucleotides in (G)$_{n\geq2}$ or (C)$_{n\geq2}$, compared with six nucleotides in (A)$_{n\geq2}$ or (T)$_{n\geq2}$ homopolymer indels in Torulaspora quercuum are a significant overrepresentation of (G)$_{n\geq2}$ or (C)$_{n\geq2}$ nucleotides (P value = 0.012, Fisher’s exact test). These results suggest that G or C homopolymer regions in mitogenomes are particularly susceptible to small indel mutations. Such bias has been previously observed in bacterial genomes (Sagher et al. 1999; Dettman et al. 2016), nuclear genomes in yeast (Gragg et al. 2002), Caenorhabditis elegans (Denver et al. 2004), Daphnia pulex (Sung et al. 2010), and mammalian cells (Boyer et al. 2002), possibly due to a higher level of DNA polymerase slippage in C/G than in A/T homopolymer regions (Schlotterer and Tautz 1992; Gragg et al. 2002).

All genome pairs but the nearly identical Naumovozyma castellii pair (Y12630 and Y12631) have indels in short tandem repeats. These indels in short tandem repeats show a strong bias toward A/T nucleotides over G/C nucleotides, for example, 84 As/Ts—9 Gs/Cs in Torulaspora quercuum,
20 As/Ts—2 Gs/Cs in *Naumovozyma castellii*, 65 As/Ts—2 Gs/Cs in *Torulaspora delbrueckii* (table 1). The total GC content of these indels is only 7.1% (169 As/Ts—13 Gs/Cs), much lower than the lowest genomic GC content (18.2% of *Torulaspora quercuum*) among the three genome pairs (P value = 0.003, χ² test). Furthermore, indels in tandem repeats have significantly more nucleotides than homopolymer indels in *Torulaspora quercuum* (supplementary table S2, Supplementary Material online) and in *Naumovozyma castellii* (supplementary table S3, Supplementary Material online). Thus, extremely AT-rich short tandem repeats are a major source of small indels. Small indels in tandem repeats are generally believed to arise from DNA replication slippage (Levinson and Gutman 1987; Ellegren 2004), unequal cross-over or biased gene conversion (Smith 1976; Richard and Paques 2000). Given the shape contrast between G/C biased homopolymer indels and A/T biased tandem-repeat indels, the molecular mechanisms underlying DNA replication slippage in homopolymer indels and tandem-repeat indels are perhaps very different. In this study, pairwise genome comparison cannot determine the directionality of DNA slippage events. During genome evolution, the expansion and contraction of repeats are likely driven by properties of the repeat sequences, genetic drift, and selection. It has been observed in humans that short microsatellite repeats tend to expand, whereas long microsatellite repeats tend to contract (Lai and Sun 2003); and changes in repeat units can have fitness consequences, on which selection will act (Wei et al. 2014).

Small indels are also present in disperse repeats, for example, GC-clusters, and nonrepeat sequences. There is a 132-nucleotide indel between *Naumovozyma castellii* Y664 and Y12630 (starting at alignment position 94). The first 46 nucleotides of this indel are highly AT-rich (GC 8.7%) and show no detectable homology to any other sequences in *Naumovozyma castellii*, whereas the remaining 86 nucleotides of the same indel are highly GC-rich (GC 57.0%) and share 81 identical nucleotides (94.2%) with the immediate upstream sequence from alignment positions 8–93 (supplementary table S3, Supplementary Material online). The three GC-rich indels between *Torulaspora delbrueckii* Y1535 and Y11634 all have paralogs within *Torulaspora delbrueckii*, and the two long indels share 41 common nucleotides.
Contrast Correlations between GC Content and Mitogenome Size on Different Evolutionary Timescales

Given the strikingly skewed GC-content of homopolymer indels, tandem-repeat indels, and GC-clusters, we assessed their impacts on genomic GC-content. Among different yeast species, there is a negative correlation (Spearman’s $\rho = -0.46$, P value = 0.007) between mitogenome size and genomic GC-content (fig. 6A). An opposite trend, however, is evident among intraspecific mitogenomes in *S. cerevisiae* ($\rho = 0.45$, P value $= 9.6 \times 10^{-7}$) and in *S. paradoxus* ($\rho = 0.60$, P value = 0.018). In other words, when comparing different species, larger mitogenomes have lower GC-contents; in contrast, within either *S. cerevisiae* or *S. paradoxus*, larger mitogenomes tend to have higher GC-contents (fig. 6B). Such a sharp contrast between interspecific and intraspecific comparisons could be due to different dynamics of introns, GC-clusters, GC-rich homopolymer indels, and AT-rich tandem-repeat indels on different evolutionary timescales. AT-rich tandem repeats can vary substantially among different species (fig. 2A) and lead to mitogenicomic GC-content variation. For instance, the largest mitogenome of *Nakaseomyces bacillisporus* is of the most tandem repeats and lowest genomic GC-content (at 10.9%). Among intraspecific strains, mitogenomic variation is predominantly driven by introns (fig. 3), whose GC-content is typically higher than the genomic GC-content (supplementary table S1, Supplementary Material online). Furthermore, even though GC-clusters and tandem repeats seemed to have comparable variance of sequences and play comparable roles in intraspecific genome length variation; GC-rich clusters, compared with AT-rich tandem repeats, lead to much more dramatic alternation of GC-content in the already very AT-rich mitogenomes in intraspecific comparisons.

Rapid Intron and GC-Cluster Turnover, and Different Sequence Insertion Spaces

Introns and GC-clusters are mobile and of presence/absence polymorphism among intraspecific mitogenomes (Wu and Hao 2014, 2015; Wu et al. 2015). Given the fact that the variance of intron sequences among intraspecific mitogenomes is over an order of magnitude higher than that of GC-clusters (fig. 3), we sought to address whether introns undergo higher rates of sequence turnover than GC-clusters. We determined intron presence/absence patterns in the same set of *S. cerevisiae* ($n = 18$) and *S. paradoxus* ($n = 15$) genomes, in which GC-clusters have been identified and mapped (Wu and Hao 2015). Both introns and GC42, the most abundant GC-cluster in *S. cerevisiae* and *S. paradoxus*, show much higher pairwise diversity per site (per intron-insertion-site or per GC42-insertion-site) than synonymous nucleotide substitution; however, introns do not show higher pairwise diversities than GC42 in either *S. cerevisiae* or *S. paradoxus* (fig. 7). We then separately calculated turnover rates of GC42 and introns in *S. cerevisiae* and *S. paradoxus*, respectively (table 2). The turnover rates of introns, and GC42 are all about two orders of magnitude higher than nucleotide substitution rates. A higher turnover rate of introns over GC42 is only evident in *S. cerevisiae*, but not in *S. paradoxus*. Thus, the consistently higher intraspecific variance of intron sequences than GC-clusters is likely due to other reasons, for example, the long sequence length of introns.

Intron variation dominates mitogenicomic variation among intraspecific strains, but becomes nonsignificant among different species as divergence increases. This is likely because introns undergo rapid sequence turnover but have very limited insertion sites. Previously, we have analyzed 40 mitogenomes in 21 yeast species and identified only 17 homologous intron positions in three genes, *cox1*, *cob*, and 21 S rRNA (Wu
et al. 2015). In this study, we have examined 184 mitogenomes in 33 species, with just one exception of an atp9 intron in Kluyveromyces marxianus, all introns are in cox1, cob, or 21S rRNA (supplementary table S1, Supplementary Material online). In comparison, GC-clusters among different species often have very different insertion sites, and share little or no similarity at the sequence level (de Zamaroczy and Bernardi 1986; Wu and Hao 2015). GC-clusters thus should have larger insertion space than introns (illustrated in fig. 8). Consistently, GC-clusters are overrepresented in larger genomes in both interspecific (fig. 2) and intraspecific comparisons (in S. cerevisiae and in S. paradoxus, fig. 5). Homopolymer repeats and tandem repeats are also believed to have reasonably large insertion spaces, that is, many repeat units at various genomic regions. Even though slippage mutations are often in regions of high repeat units (Xu et al. 2000; Sung et al. 2010), the minimum number of repeat units in the indels observed in this study can be as low as only 1–2 (table 1; supplementary tables S2 and S3, Supplementary Material online).

Table 2

	Introns	GC42
Saccharomyces cerevisiae	282.9 ± 46.8	165.1 ± 9.8
Saccharomyces paradoxus	330.4 ± 57.2	489.3 ± 64.9

Note.—The rate unit is the number of gains/losses per site per nucleotide substitution (see Materials and Methods for details). The presence-absence patterns of introns and GC42 were from the same set of mitogenomes in each species.

Genetic Drift and Mitogenome Size

We investigated the role of genetic drift on mitogenome size evolution using the ratio of nonsynonymous over synonymous rates as a proxy for the level of genetic drift (Daubin and Moran 2004; Kuo et al. 2009; Lefebure et al. 2017). Among seven yeast species that have sufficient intraspecific diversity, there is a significant positive correlation between the genome-wide *K_a/K_s* (or *π_a/π_s*) and mitogenome size (*ρ* = 0.82, *P* = 0.034) (fig. 9). This suggests an important role of genetic drift on yeast mitogenome expansion. This finding is also consistent with the previously suggested notion that mitochondrial introns, GC-clusters, and repeats are mostly deleterious (Bernardi 2005; Wu and Hao 2014, 2015; Wu et al. 2015). The largely deleterious mitochondrial introns, GC-clusters, tandem-, and homopolymer-repeats are more likely accumulated and fixed under stronger genetic drift. In addition, the functional constraint on mitochondria can
be different among yeast species. For instance, mitochondrial function in yeast species after whole (nuclear-) genome duplication might have undergone relaxation (Jiang et al. 2008). The petite positive phenotype, the ability to tolerate the loss of mtDNA, is sporadically distributed among yeast species (Fekete et al. 2007).

It is important to note the limitation of our analyses. First, there are only seven yeast species of sufficient nucleotide diversity among their respective intraspecific mitogenomes. The two most extreme species with respect to mitogenome size, Nakaseomyces bacillisporus and Candida glabrata, each has only a single complete mitogenome, and was not included in the analysis. To further assess the robustness of the observed trend, abundant intraspecific mitogenomes from a variety of divergent species are desired. Secondly, phylogenetic independent contrast has been previously recommended (Whitney et al. 2010; Kelkar and Ochman 2012), but our analysis was not completely phylogenetically independent. In our analysis, however, the effect of phylogenetic dependence is believed to be minimal, as genome size varies substantially among closely related mitogenomes and many dramatic genome size alterations have taken place on the external branches (fig. 1).

Conclusion

Our results show that mitogenomic variation at different evolutionary time scales, for example, intraspecific versus interspecific, is dominated by different types of noncoding sequences, which have different insertion spaces in mitogenomes. The insertion and expansion of different sequences, thus increases in mitogenome size, are generally deleterious and likely to take place when the level of genetic drift is high. Unlike what the MBH would predict, there is no direct evidence that mutation rates play an important role on the evolution of yeast mitogenome sizes. Our findings, however, fit within a broader framework of genome evolution through primarily nonadaptive processes. Noncoding sequences are mutational liabilities in yeast mitogenomes, not simply because they increase the target for degenerative mutations (i.e., the mutational burden), but because the expansion and proliferation of noncoding sequences (via rapid sequence insertions and persistent DNA slippages) are the main selective cost.

Supplementary Material

Supplementary data are available at Genome Biology and Evolution online.

Acknowledgments

The authors are grateful for the grid computing service from Computing & Information Technology of Wayne State University. This work was supported by funds from Wayne State University (to W.H.).

References

Alverson AJ, et al. 2010. Insights into the evolution of mitochondrial genome size from complete sequences of Citrus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol. 27(6):1436–1448.
Bakkevich A, et al. 2012. SPAkeds: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.
Bazin E, Glemm S, Galtier N. 2006. Population size does not influence mitochondrial genetic diversity in animals. Science 312(5773):570–572.
Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27(2):573–580.
Bernardi G. 2005. Lessons from a small, dispensable genome: the mitochondrial genome of yeast. Gene 354:189–200.
Bouchier C, Ma L, Créno S, Dujon B, Fairhead C. 2009. Complete mitochondrial genome sequences of three Nakaseomyces species reveal invasion by palindromic GC clusters and considerable size expansion. FEMS Yeast Res. 9(8):1283–1292.
Boussaa B, Brown JM, Fujita MK. 2011. Nonadaptive evolution of mitochondrial genome size. Evolution 65(9):2706–2711.
Broyer JC, et al. 2002. Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. Hum Mol Genet. 11(6):707–713.
Burger G, Gray MW, Lang BF. 2003. Mitochondrial genomics: anything goes. Trends Genet. 19(12):709–716.
Camacho C, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.
Chong RA, Mueller RL. 2013. Evolution along the mutation gradient in the dynamic mitochondrial genome of salamanders. Genome Biol Evol. 5(9):1652–1660.
Christensen AC. 2013. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol Evol. 5(6):1079–1086.
Croucher NJ, et al. 2014. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun. 5:5471.
Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14(7):1394–1403.
Daubin V, Moran NA. 2004. Comment on “The origins of genome complexity.” Science 306(5698):978; author reply 978.
de Zamaroczy M, Bernardi G. 1986. The GC clusters of the mitochondrial genome of yeast and their evolutionary origin. Gene 41(1):1–22.
Del Vasto M, et al. 2015. Massive and widespread organelle genomic expansion in the green algal genus Dunaliella. Genome Biol Evol. 7(3):656–663.
Dewey DR, et al. 2004. Abundance, distribution, and mutation rates of homopolymeric nucleotide runs in the genome of Caenorhabditis elegans. J Mol Evol. 58(5):584–595.
Dettman JR, Sztepanaciz JL, Kassen R. 2016. The properties of spontaneous mutations in the opportunistic pathogen Pseudomonas aerugi-
osa. BMC Genomics 17:27.
Dujon B. 2010. Yeast evolutionary genomics. Nat Rev Genet. 11(7):512–524.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797.
Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 5(6):435–445.
Fekete V, Cierna M, Poláková S, Piskur J, Sulo P. 2007. Transition of the ability to generate petites in the Saccharomyces/Kluyveromyces complex. FEMS Yeast Res. 7(8):1237–1247.
Freel KC, Friedrich A, Hou J, Schacherer J. 2014. Population genomic analysis reveals highly conserved mitochondrial genomes in the yeast species Lachancea thermotolerans. Genome Biol Evol. 6(10):2586–2594.

Literature Cited
Evolution of Mitogenome Size

Fungammasan A, et al. 2015. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications. Genome Res. 25(5):736–749.

Gabaldon T, et al. 2013. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics 14:623.

Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiformat graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 27(2):221–224.

Gragg H, Harfe BD, Jinks-Robertson S. 2002. Base composition of mononucleotide runs affects DNA polymerase slippage and removal of frameshift intermediates by mismatch repair in Saccharomyces cerevisiae. Mol Cell Biol. 22(4):8756–8762.

Guindon S, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307–321.

Hao W, et al. 2012. Phylogenetic incongruence in E. coli O104: understanding the evolutionary relationships of emerging pathogens in the face of homologous recombination. PLoS One 7(4):e33971.

Hao W, Golding GB. 2006. The fate of laterally transferred genes: the in the fast lane to adaptation or death. Genome Res. 16(5):636–643.

Jiang H, Guan W, Pinney D, Wang W, Gu Z. 2008. Relaxation of yeast mitochondrial functions after whole-genome duplication. Genome Res. 18(9):1466–1471.

Joardar V, et al. 2012. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. BMC Genomics 13:698.

Jung PP, Friedrich A, Reisser C, Hou J, Schacherer J. 2012. Mitochondrial genome evolution in a single protoploid yeast species. G3 (Bethesda) 2:1103–1111.

Karzu AM, Wingfield BD, Steenkamp ET, Naado S, van der Merwe NA. 2016. Intron derived size polymorphism in the mitochondrial genomes of closely related chrysoporthe species. PLoS One 11(6):e0156104.

Kelkar YD, Ochman H. 2012. Causes and consequences of genome expansion in fungi. Genome Biol Evol. 4(1):13–23.

Kim T, Hao W. 2014. DiscML: an R package for estimating evolutionary rates of discrete characters using maximum likelihood. BMC Bioinformatics 15(1):320.

Koszul R, et al. 2003. The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS Lett. 534(1–3):39–48.

Kuo CH, Moran NA, Ochman H. 2009. The consequences of genetic drift for bacterial genome complexity. Genome Res. 19(9):1450–1454.

Lai Y, Sun F. 2003. The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evol. 20(12):2123–2131.

Lang BF, et al. 2014. Massive programmed translational jumping in mitochondria. Proc Natl Acad Sci U S A. 111(16):5926–5931.

Lefebure T, et al. 2017. Less effective selection leads to larger genomes. Genome Res. 27(6):1016–1028.

Levinson G, Gutman GA. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 4:203–221.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.

Lynch M, Conery J. 2003. The origins of genome complexity. Science 302(5649):1401–1404.

Lynch M, Koskella B, Schack S. 2006. Mutation pressure and the evolution of organelle genomic architecture. Science 311(5768):1727–1730.

Mira A, Ochman H, Moran NA. 2001. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17(10):589–596.

Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF. 2012. Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Mol Biol Evol. 29(9):2199–2210.

Okonechnikov K, Golosova O, Fursov M, team U. 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8):1166–1167.

Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290.

R Development Core Team. 2016. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.

Richard GF, Paques F. 2000. Mini- and microsatellite expansions: the recombination connection. EMBO Rep. 1(2):122–126.

Robinson JT, et al. 2011. Integrative genomics viewer. Nat Biotechnol. 29(1):24–26.

Rozas J, Sanchez-DelBarrio JC, Meseguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497.

Sagher D, Hsu A, Strauss B. 1999. Stabilization of the intermediate in frameshift mutation. Mutat Res. 423(1–2):73–77.

Schirmer M, et al. 2015. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43(6):e37.

Schlotterer C, Tautz D. 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20(2):211–215.

Shao R, Kirkness EF, Barker SC. 2009. The single mitochondrial chromosome of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus. Genome Res. 19(5):904–912.

Sloan DB, et al. 2012. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 10(1):e1001241.

Smith DR, et al. 2013. Organelle genome complexity scales positively with organism size in volvovacean green algae. Mol Biol Evol. 30(4):793–797.

Smith DR, Keeling P. 2015. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A. 112(33):10177–10184.

Smith DR, Lee RW. 2010. Low nucleotide diversity for the expanded organelle and nuclear genomes of Volvociss carteri supports the mutational-hazard hypothesis. Mol Biol Evol. 27(10):2244–2256.

Smith GP. 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191(4227):528–535.

Sung W, Tucker A, Bergeron RD, Lynch M, Thomas WK. 2010. Simple sequence repeat variation in the Daphnia pulex genome. BMC Genomics 11:691.

Wei KH, Grenier JK, Barbash DA, Clark AG. 2014. Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster. Proc Natl Acad Sci U S A. 111(52):18783–18789.

Weilller G, Schueller CM, Schweyen RJ. 1989. Putative target sites for mobile G+C-rich clusters in yeast mitochondrial DNA: single elements and tandem arrays. Mol Gen Genet. 218(2):272–283.

Whitney KD, Garland T, Moran NA Jr. 2010. Did genetic drift increase in genome complexity? PLoS Genet. 6(8):e1001080.

Wolters JF, Chiu K, Fiumera HL. 2015. Population structure of mitochondrial genomes in Saccharomyces cerevisiae. BMC Genomics 16:451.

Wu B, Buljic A, Hao W. 2015. Extensive horizontal transfer and homologous recombination generate highly chimeric mitochondrial genomes in yeast. Mol Biol Evol. 32(10):2559–2570.

Wu B, Hao W. 2014. Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns. G3 (Bethesda) 4(6):605–612.

Wu B, Hao W. 2015. A dynamic mobile DNA family in the yeast mitochondrial genome. G3 (Bethesda) 5(6):1273–1282.

Xu X, Peng M, Fang Z. 2000. The direction of microsatellite mutations is direction-dependent upon allele length. Nat Genet. 24(4):396–399.

Zhang Y, et al. 2015. Comparison of mitochondrial genomes provides insights into intron dynamics and evolution in the caterpillar fungus Cordyceps militaris. Fungal Genet Biol. 77:95–107.

Associate editor: Dennis Lavrov