Guidance for the practical management of the direct oral anticoagulants (DOACs) in VTE treatment

Allison E. Burnett¹ · Charles E. Mahan² · Sara R. Vazquez³ · Lynn B. Oertel⁴ · David A. Garcia⁵ · Jack Ansell⁶

Published online: 16 January 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Venous thromboembolism (VTE) is a serious medical condition associated with significant morbidity and mortality, and an incidence that is expected to double in the next forty years. The advent of direct oral anticoagulants (DOACs) has catalyzed significant changes in the therapeutic landscape of VTE treatment. As such, it is imperative that clinicians become familiar with and appropriately implement new treatment paradigms. This manuscript, initiated by the Anticoagulation Forum, provides clinical guidance for VTE treatment with the DOACs. When possible, guidance statements are supported by existing published evidence and guidelines. In instances where evidence or guidelines are lacking, guidance statements represent the consensus opinion of all authors of this manuscript and are endorsed by the Board of Directors of the Anticoagulation Forum.

The authors of this manuscript first developed a list of pivotal practical questions related to real-world clinical scenarios involving the use of DOACs for VTE treatment. We then performed a PubMed search for topics and key words including, but not limited to, apixaban, antidote, bridging, cancer, care transitions, dabigatran, direct oral anticoagulant, deep vein thrombosis, edoxaban, interactions, measurement, perioperative, pregnancy, pulmonary embolism, reversal, rivaroxaban, switching, thrombophilia, venous thromboembolism, and warfarin to answer these questions. Non-English publications and publications over 10 years old were excluded. In an effort to provide practical information about the use of DOACs for VTE treatment, answers to each question are provided in the form of guidance statements, with the intent of high utility and applicability for frontline clinicians across a multitude of care settings.

Keywords DOACs · NOACs · Direct thrombin inhibitors · Factor Xa inhibitors · Antidotes · Care transitions · Bridging anticoagulation · Drug interactions

Introduction

The availability of the new direct oral anticoagulants (DOACs) has significantly changed the therapeutic landscape of anticoagulation and these agents may eventually displace conventional VTE treatment with a rapid-acting parenteral anticoagulant overlapped with a vitamin K antagonist (e.g. warfarin) in appropriately selected patients. As a class, the DOACs exhibit comparable efficacy and a significantly lower bleeding risk compared to warfarin among patients with acute symptomatic VTE [1, 2]. For patients who need extended anticoagulation for secondary VTE prevention, the safety record of the DOACs is strong [3–5].

In this paper we will examine key questions pertaining to the practical management of DOACs for VTE treatment,
summarize the evidence (where it exists) pertaining to those questions, and finally, provide guidance that may be applied to real-world practice by frontline clinicians.

Methods

To provide guidance on the practical management of the DOACs, we first developed a number of pivotal practical questions that apply to DOACs as they might be used in the treatment of VTE. (Table 1). Questions were developed by consensus of the authors. The medical literature was reviewed using PubMed for topics and key words including, but not limited to, adherence, anticoagulant, apixaban, appropriate patient selection, bleed, bridging, care transitions, adherence, CYP, dabigatran, deep venous thrombosis (DVT), direct, edoxaban, education, follow-up, hemorrhage, initiation, interaction, measurement, monitoring, novel, oral, peri-operative, p-glycoprotein, practical management, prothrombin complex concentrate (PCC) pulmonary embolism (PE), reversal, rivaroxaban, safety, switching, target-specific, temporary interruption (TI), and venous thromboembolism (VTE). Non-English language publications and publications >10 years old were excluded. Guidance provided in this document is, whenever possible, based on the best available evidence. For some issues, however, published evidence is lacking. In all instances, guidance statements represent the consensus opinion(s) of all authors and are endorsed by the Anticoagulation Forum’s Board of Directors.

Guidance

1. Which VTE patients are (and are not) good candidates for DOAC therapy?

The DOACs have been studied extensively in clinical trials and the results demonstrate they are at least as safe and effective as conventional treatment in the majority of typical VTE patients. However, many specific subgroups were excluded or underrepresented in these studies and the safety and efficacy of DOACs within these subgroups has yet to be established. The inclusion criteria for the VTE treatment trials included patients age ≥18 (no pediatric studies have been published) with an acute symptomatic proximal DVT and/or PE. Exclusion criteria varied slightly among the trials, but in general, patients were excluded if they had any of the following: need for thrombolytic therapy, another indication for anticoagulation, high risk of bleeding, clinically significant liver disease (acute or chronic hepatitis, cirrhosis, or alanine aminotransferase level greater than three times the upper limit of normal), creatinine clearance (CrCl) <30 mL/min (for apixaban the threshold was 25 mL/min), life expectancy of <3–6 months, aspirin use >100 mg/day, using interacting medications, uncontrolled hypertension, breastfeeding or pregnant or of childbearing potential without appropriate contraceptive measures [3–10]. Table 2 represents potential advantages and disadvantages of DOACs in comparison to conventional therapy that should be considered by both clinicians and patients before deciding on an anticoagulant regimen. Table 3 provides selection criteria for patients suitable for DOAC therapy. Table 4 provides further considerations regarding patient-controlled aspects.

Table 1	Guidance questions to be considered
1. Which VTE patients are (and are not) good candidates for DOAC therapy?	
2. How should DOACs be initiated for VTE treatment?	
3. How should the anticoagulant activity of DOACs be measured?	
4. How should VTE patients who require temporary interruption of DOAC therapy be managed?	
5. How should patients with DOAC drug–drug interactions be managed?	
6. How should patients transition between anticoagulants?	
7. How should DOAC-associated bleeding be managed?	
8. What is an appropriate care transitions and follow-up strategy for VTE patients on DOAC therapy?	
9. How can patients enhance safety and efficacy of their DOAC therapy?	

Table 2	Potential advantages and disadvantages of DOACs compared to VKAs [119]
Advantages	**Disadvantages**
No routine monitoring	No reliable, readily available measurement assay
Improved safety profile	Dose reduction or avoidance in renal impairment and avoidance in moderate or severe hepatic impairment
Rapid onset (may preclude the need for induction or bridging therapy)	No specific antidote
Short half-life (advantageous for invasive procedures or in the setting of active bleed)	Short half-life (mandates strict adherence)
Fixed dosing	Less flexibility in dosing
Greater convenience, patient satisfaction and quality of life	Fewer studies and approved indications (e.g., contraindicated in mechanical valve replacement)
Potentially more cost-effective from health system perspective	Potentially higher drug acquisition costs for patients
Fewer drug, disease and diet interactions	DOAC drug interactions do exist that may preclude use
such as adherence, values and preferences as each of these will have a direct impact on outcomes with DOAC therapy.

Pregnancy and breastfeeding

Animal studies of dabigatran and rivaroxaban demonstrated pregnancy loss and fetal harm [11, 12], and one study demonstrated that dabigatran does cross the human placenta [13]. A case report of maternal rivaroxaban use during weeks 1–19 of pregnancy (when pregnancy discovered at week 19, the patient was switched to enoxaparin) resulted in a full-term, low growth percentile, otherwise healthy infant [14]. Apixaban has no human data in pregnancy, but showed no maternal or fetal harm in animal studies [15]. Edoxaban animal studies demonstrated no fetal harm. The edoxaban VTE treatment trial reported 10 pregnancies, with edoxaban exposure during the first 6 weeks of gestation (4 full-term births, 2 pre-term births, 1 first-trimester spontaneous abortion, and 3 elective pregnancy terminations) [16]. It is unknown whether any of the DOACs are excreted in breast milk. Because of the potential for infant harm, a decision should be made to either avoid breastfeeding or use an alternative anticoagulant, such as warfarin, in these women.

Body weight extremes

Patients at extremes of weight represented a very small proportion of subjects in DOAC VTE treatment trials [3–10]. The mean weight was around 84 kg, with the majority of patients weighing between 60 and 100 kg. Underweight patients (<50–60 kg) comprised 2–13% of the study populations and roughly 14–19% of patients were >100 kg. Approximately 30% of patients in the EINSTEIN, AMPLIFY and RE-COVER studies had a BMI ≥ 30 kg/m², and in the AMPLIFY and RE-COVER studies, only 12% of subjects had a BMI ≥ 35 kg/m². Based on very limited data, extremes of weight do not appear to affect peak concentrations or bioavailability of dabigatran [17]. The pharmacokinetics and pharmacodynamics of factor Xa inhibitors may be affected by weight [10, 15, 18–20], but the clinical impact of these effects remains unknown. Pending further evidence in patients at extremes of weight (e.g., <50 kg, >120 kg or BMI ≥ 35 kg/m²) it is advisable to limit DOAC use to situations where vitamin K antagonists cannot be used.

Thrombophilia

Patients with thrombophilias represented 2–18% of DOAC VTE clinical trial populations [3–9]. A posthoc subgroup analysis of thrombophilia patients within the REMEDY trial was recently presented [21]. Results showed that the frequencies of VTE-related death and PE did not differ between dabigatran and warfarin patients. The authors concluded that dabigatran’s efficacy in preventing recurrent VTE is not influenced by the presence of thrombophilia. Conversely, six cases citing possible failure of rivaroxaban or dabigatran to prevent thrombosis in patients with antiphospholipid antibody syndrome were recently published [22, 23]. While it is possible the DOACs

Table 3: DOAC patient selection criteria

Criteria for DOAC use	Comment(s)
Patient preference for and willingness to take DOAC	Patients should be presented with all therapeutic options and their respective perceived advantages and disadvantages (See Table 2)
No contraindication to DOAC therapy	E.g. pregnancy, breastfeeding, mechanical heart valve
Adequate organ function	Clinicians should regularly monitor renal function, particularly for DOACs with greater reliance on renal elimination (see Tables 5, 6 and 12) and, if there are other factors that may increase DOAC exposure (e.g. age, unavoidable use of concomitant p-gp/CYP3A4 inhibitors). Avoid in moderate or severe hepatic dysfunction
No significant drug–drug interactions	See Tables 13 and 14 for detailed guidance
No significant disease state interactions	Patients taking any anticoagulant with antiplatelet agents or NSAIDs have a significantly higher risk of bleeding. To minimize bleeding, avoid these drug combinations when possible
Highly likely to be adherent with DOAC therapy and follow-up plan	VTE patients with a history of GI bleeding or at risk for GI bleeding may be better candidates for warfarin, apixaban, or edoxaban, as there may be a higher risk of bleeding or GI adverse effects with dabigatran and rivaroxaban
Confirmed ability to obtain DOAC on a longitudinal basis from a financial, insurance coverage and retail availability standpoint	The drug costs of DOACs may be prohibitive for some patients, as compared with generic warfarin plus laboratory monitoring

There are patient assistance programs available via the pharmaceutical companies, and this should be arranged prior to prescribing.
may be a viable option for VTE treatment in patients with weaker underlying thrombophilias (e.g., heterozygous Factor V Leiden), caution or avoidance, especially in highly pro-thrombotic states such as antiphospholipid antibody syndrome or heparin-induced thrombocytopenia, is suggested until further evidence becomes available.

Cancer

Four meta-analyses of DOAC VTE clinical trials including approximately 1000 cancer patients (patients with a history of cancer or some with active cancer) demonstrated similar efficacy and safety for the DOACs compared to conventional therapy of a vitamin K antagonist overlapped with LMWH [24–27]. Previous trials, which included approximately 2000 patients with active cancer (many in advanced stages), indicate that vitamin K antagonists are inferior to long-term LMWH monotherapy for treatment of cancer-related VTE [28–31]. While most evidence to date is with dalteparin, the recent CATCH study [32] showing a trend \(p = 0.07 \) towards superiority of tinzaparin over warfarin for prevention of recurrent symptomatic DVT and reduction in clinically relevant non-major bleeding suggests this may be a class effect of the LMWHs. Whether DOACs convey similar benefit as LMWH monotherapy for

Table 4 Patient adherence assessments when choosing anticoagulant therapies [118–123]

Taking medications	How often does the patient miss or forget to take doses of their medication(s)?
	• If a warfarin patient frequently misses doses, switching to a shorter half-life DOAC may more rapidly predispose the patient to risk of thrombosis
	• Often, a subtherapeutic INR is a reliable indicator to the clinician and patient that warfarin doses have been missed
	• Without the requirement for laboratory monitoring with the DOACs, there is no such alert to indicate opportunities to improve adherence
	Is a once-daily or a twice-daily medication dosing frequency preferred?
	• If patient is adherent with other twice daily medications, any of the DOACs may be appropriate
	• Conversely, if patient prefers once daily medications, rivaroxaban or edoxaban may be preferred
Laboratory	**monitoring**
	• Patients with transportation challenges, difficult venous access, inflexible work or school schedules or other reasons for difficulty complying with INR monitoring may significantly benefit from DOAC therapy
Health care	**responsibility**
	• Clinicians should remind DOAC patients that renal function and a complete blood count should be monitored at least annually or more frequently as the clinical situation dictates
	Is the patient reliable to notify health care providers about changes to health and pertinent medical issues?
	• It is important for the patient to make all health care providers aware he or she is taking an anticoagulant medication, as this information will aid in:
	– design of peri-procedural anticoagulation plans
	– addressing medication interactions
	– consideration of other health status changes
	• Patients who may be unreliable to report pertinent issues to the clinician may be better suited to warfarin so that at least some of these may be uncovered during INR follow-up
	• DOAC patients and their clinicians may elect to interact via clinic visit, phone, or electronic media at a regular interval

INR International normalized ratio, *DOAC* direct oral anticoagulant

Table 5 Drug characteristics to consider when deciding which DOAC to prescribe for VTE [3–12, 15, 16]

DOAC	Parenteral lead-in	Single-drug approach	Switch or dose de-escalation	Dosing frequency	Renal elimination	Potential for increased adverse effects
Dabigatran	✅	✅	✅	BID	++++	MI, GIB, dyspepsia
Rivaroxaban	✅	✅	✅	BID × 21 days, then once daily	++	GIB
Apixaban	✅	✅	✅	BID	+	N/A
Edoxaban	✅	✅	✅	Once daily	++	N/A

BID twice daily, *GIB* gastrointestinal bleed, *MI* myocardial infarction
VTE treatment in cancer patients remains unknown. Data from head-to-head randomized controlled trials or robust comparative effectiveness studies is needed and future research in this area is encouraged. Until then, among patients with cancer-associated VTE, long-term LMWH is the preferred first-line therapy for anticoagulant treatment (see chapter by Khorana et al.). However, for those patients who cannot (or will not) use long term LMWH, either a DOAC or VKA could be prescribed as a second-line option. Given their improved safety profile compared to warfarin, DOACs may well be preferred in these instances, particularly among patients with a perceived increased risk for bleeding. However, it is important to emphasize the lack of experience with DOACs compared to warfarin in cancer patients who may have profound thrombocytopenia and other clinical challenges pertaining to anticoagulation. The lack of readily available measurement assays for DOACs may be particularly problematic in the setting of drug interactions, nephrotoxic chemotherapy, and potential disruption in absorption due to short gut or malnutrition, common issues in a cancer population.

History of bleeding

Much of the available data on DOACs and gastrointestinal (GI) bleeding is from atrial fibrillation trials, which generally consisted of older patients with more comorbidities than the VTE treatment populations. In a real-world study of Medicare claims data among new users of dabigatran or warfarin for non-valvular atrial fibrillation [33], there was a 28% overall increased risk for gastrointestinal bleeding among dabigatran patients compared to warfarin patients. This was most pronounced in women among dabigatran patients compared to warfarin patients.

Intracranial hemorrhage (ICH) is the most feared complication of anticoagulant therapy. A significant advance with DOAC therapy over warfarin has been a reduction in the rates of ICH in atrial fibrillation. Numerically lower rates of both ICH and fatal bleeding were seen in all DOAC arms of the VTE trials [3–10], with the exception of intracranial hemorrhage in the EINSTEIN-DVT trial (2 events in the rivaroxaban arm vs. none in the warfarin arm) [4]. A systematic review and meta-analysis of 12 randomized controlled trials including over 100,000 patients with either NVAF or VTE showed that DOACs are associated with less major bleeding, fatal bleeding, intracranial bleeding, clinically relevant non-major bleeding, and total bleeding compared to warfarin [35]. This provides a compelling argument to favor these agents over conventional therapy for VTE treatment whenever possible.

Guidance statement DOACs are suggested as an alternative to conventional therapy for VTE treatment in patients who meet appropriate patient selection criteria. For all other patients, we suggest VTE treatment with conventional therapy. Until further data are available, we suggest avoiding DOACs for VTE in patients with antiphospholipid antibody syndrome and patients at extremes of weight. LMWH monotherapy remains first line for patients with cancer-related VTE, but DOACs may be considered in select patients unwilling or unable to receive subcutaneous injections.
these trials, as that would likely lead to excessive anticoagu-
lation based on the rapid onset of the DOACs. Dabi-
gatran was initiated at 150 mg BID. Edoxaban was
initiated at 60 mg once daily, with a dose reduction to
30 mg once daily in patients with a creatinine clearance of
30–50 mL/min or a body weight of 60 kg or less or in
patients who were receiving concomitant treatment with
potent P-glycoprotein inhibitors. Package labelling for
dabigatran and edoxaban also indicates the required
5–10 days of parenteral anticoagulation prior to their ini-
tiation for acute VTE, which closely approximates the
conventional approach to VTE treatment.

For patients with acute VTE selected for treatment with
edoxaban or dabigatran, for lead-in therapy we suggest use
of subcutaneous (SC) anticoagulants LMWH or fonda-
parinux over unfractionated heparin (UFH) when possible
due to improved safety and efficacy [36, 37] and facilita-
tion of outpatient therapy in eligible patients. (See care
transitions section for more details). When switching from
lead-in parenteral therapy within the acute VTE treatment
phase, edoxaban or dabigatran should be initiated at the
time that a heparin infusion is discontinued or the time the
next dose of SC anticoagulant is due.

In clinical trials of apixaban [5] and rivaroxaban [4, 8], a
single-drug approach was employed without parenteral
anticoagulation. A higher dose was used in the initial
period followed by a dose reduction(s). Apixaban was
initiated with 10 mg BID for the first 7 days and reduced to
5 mg BID thereafter. Rivaroxaban was initiated at 15 mg
BID for 21 days followed by 20 mg once daily. Less than
2 % of patients in apixaban and rivaroxaban VTE treat-
ment trials received >2 days of parenteral anticoagulation
before randomization which reinforces that these agents
can be safely used as an oral, single-drug strategy for
VTE treatment. Rivaroxaban and apixaban monotherapy
should be initiated as soon as it is determined that no
invasive procedures are needed. If the patient has been
receiving empiric or temporary UFH or SC anticoagulant
therapy for acute treatment of VTE, apixaban or
rivaroxaban should be initiated at the time that the hep-
arin infusion is discontinued or at the time the next dose of
SC anticoagulant is due.

Guidance statement We suggest that a thorough patient
evaluation be conducted prior to DOAC initiation which
should include assessment of baseline laboratory values,
comitant drug therapies, and comorbidities. We do not
recommend initial DOAC therapy in patients who are
hospitalized with extensive DVT or who have PE with
hepatic instability in whom thrombolysis or
thrombectomy may be indicated. We suggest that the
unique characteristics of each DOAC, their distinct dosing
for VTE treatment, and patient preferences should be
considered when selecting a DOAC for VTE treatment.

3. How should the anticoagulant activity of DOACs be
measured?

The specificity, predictability and wide therapeutic index
of the DOACs allow for fixed dosing without a need for
routine monitoring. However, there are instances during

Table 6 Dosing of DOACs for VTE treatment [3–12, 15, 16]
Dabigatran
Acute VTE
Prevention of VTE recurrence
Dosage adjustments and/or thresholds for avoidance

DOAC direct-acting oral anticoagulant, VTE venous thromboembolism, BID twice daily, P-gp P-glycoprotein, CrCl creatinine clearance, CYP3A4 cytochrome P-450 3A4
which measurement of DOAC activity would be useful to
direct therapy and inform long-term treatment decisions
(Table 7) [38–40]. When these situations occur, clinicians
need to be familiar with the role, limitations and local
availability of various coagulation assays as they relate to
DOACs (Tables 7, 8; Fig. 1).

The INR does not vary significantly from hour to hour
due to the long half-life of warfarin and the timing of INR
in relation to the last warfarin dose is not important. In
contrast, the timing of last DOAC dose relative to the
coagulation assay is important for interpretation given the
relatively short half-life of the DOACs [39]. Most scenar-
ios that would trigger laboratory testing for DOACs are
urgent (e.g. bleeding or thrombosis) thus lab results will
often be random out of necessity. In the bleeding patient,
it is likely sufficient to have a rapidly available quantitative
test that will reliably determine whether DOAC is present
in measurable quantities (yes or no). In the setting of
thrombosis or suspected treatment failure, the ideal test
would indicate not only whether drug was present but also
if the concentration was consistent with observed on-
treatment levels. In the event of concern for DOAC accu-
mulation due to renal insufficiency or drug interactions,
trough levels are preferred [39]. For detailed information of
the impact of individual DOACs on various anticoagulant
assays, please refer to the pharmacology chapter of this
compendium by Nutescu et al.

A systematic review regarding laboratory measurement
of OAC activity was recently published and provides
support for following guidance statements: [40]

Guidance statement We suggest that clinicians do not
routinely measure DOAC activity. If measurement of a
DOAC is indicated, we suggest that clinicians use assays
that are validated either locally or in a reference labora-
tory and that are readily available. The chosen assay

Table 7 Potential indications for DOAC measurement [38–40]

Detection of clinically relevant levels	Detection of expected on-therapy levels	Detection of excessive levels
Urgent or emergent invasive procedure	Assessing adherence	Hemorrhage
Neuraxial anesthesia	Breakthrough thrombosis	Diminished/changing renal function
Major trauma		Hepatic impairment
Potential thrombolysis in acute thromboembolism		Accidental or intended overdose
Hemorrhage		Drug interactions

Table 8 Suggestions for laboratory measurement of DOACs [40]

Clinical objective	Drug	Determine if clinically relevant below on-therapy drug levels are present	Estimate drug levels within on-therapy range	Determine if above on-therapy drug levels are present			
		Suggested test	Interpretation	Suggested test	Interpretation	Suggested test	Interpretation
		Dabigatran TT	Normal TT likely excludes clinically relevant drug levels	Dilute TT, ECA, ECT	aPTT, dilute TT, ECA, ECT	Normal aPTT likely excludes excess drug levels; only dilute TT, ECA, and ECT are suitable for quantitation	
		Rivaroxaban Anti-Xa	Normal anti-Xa activity likely excludes clinically relevant drug levels	Anti-Xa	Anti-Xa, PT	Normal PT likely excludes excess drug levels; only Anti-Xa is suitable for quantitation	
		Apixaban Anti-Xa	Normal anti-Xa activity likely excludes clinically relevant drug levels	Anti-Xa	Anti-Xa	Normal PT may not exclude excess drug levels; only Anti-Xa is suitable for quantitation	
		Edoxaban Anti-Xa	Normal anti-Xa activity likely excludes clinically relevant drug levels	Anti-Xa	Anti-Xa, PT	Normal PT likely excludes excess drug levels; only Anti-Xa is suitable for quantitation	

* aPTT Activated partial thromboplastin time, ECA ecarin chromogenic assay, ECT ecarin clotting time, PT prothrombin time, TT thrombin time, need permission from Cuker et al. JACC 2014 [40]
4. How should VTE patients who require temporary interruption (TI) of DOAC therapy be managed?

Use of bridge therapy

Approximately 10% of patients require temporary interruption (TI) of their anticoagulant for a procedure on an annual basis [41] with additional patients requiring interruption due to bleeding or other non-bleeding adverse events [42–44]. Relatively little direct medical literature exists on studies in the VTE treatment population and TI of DOACs; however, some information may be extrapolated from data in other populations as well as guidelines and other practical recommendations. [42–44]. In the RELY and the ROCKET atrial fibrillation (AF) trials, 25 and 33% of enrolled participants underwent one or more TI during the study period with 17 and 8.2% utilizing bridging with unfractionated heparin (UFH)/low molecular weight heparin (LMWH) therapy for dabigatran 150 mg and rivaroxaban, respectively [42, 43]. In the RELY trial, there were numerically more bleeding events among dabigatran patients who received bridging therapy compared to warfarin patients receiving bridging therapy (295 for dabigatran 150 mg BID vs. 276 for warfarin). There was no significant difference in the incidence of perioperative major bleeding (4.6% vs. 5.1%) or the composite of cardiovascular death, ischemic stroke, and non-central nervous system and pulmonary embolism (1.2% vs. 1.5%) for warfarin and dabigatran 150 mg BID, respectively. Other bleeding outcomes, including fatal bleeding, bleeding requiring reoperation or transfusion of red blood cells, and minor bleeding were also similar between groups [42]. For rivaroxaban, perioperative major bleeding (0.99%/30 days vs. 0.79%/30 days) and the composite of stroke/systemic embolism/myocardial infarction/death (0.66%/30 days vs. 0.95%/30 days) were not significantly different for the rivaroxaban and warfarin groups that received bridging therapy, respectively. Overall in the ROCKET AF trial in TI patients, there was numerically higher major/non-major clinically relevant bleeding for those who received bridging therapy versus those who did not (4.83% vs. 3.02%) [43]. The data from these sub-analyses suggests that bridging therapy with LMWH/UFH should be minimized or avoided in DOAC patients. The pharmacokinetic similarities of these two anticoagulant classes further support avoidance of overlapping therapies to prevent over anticoagulation.
Managing DOAC interruptions for invasive procedures

Determining the optimal approach to management of DOACs around elective invasive procedures involves addressing a few key clinical questions. For elective procedures, clinicians should first consider whether the procedure can be delayed until a time that the patient may not

MINIMAL bleed risk procedures that may not require interruption of anticoagulant therapy	LOW bleeding risk procedures requiring interruption of anticoagulant therapy	HIGH bleeding risk procedures requiring interruption of anticoagulant therapy
Central venous catheter removal	Abdominal hernia repair	Any major surgery (procedure duration >45 min)
Dental procedures	Abdominal hysterectomy	Abdominal and gastrointestinal surgeries
Extraction of 1–2 teeth	Carpal tunnel repair	Bowel resection
Periodontal surgery	Cholecystectomy	Abdominal aortic aneurysm repair
Incision of abscess	Dental procedures	Breast cancer surgery
Implant positioning	Extraction of 3 or more teeth	Cardiac surgeries
Endoscopy without surgery	Dilatation and curettage	Coronary artery bypass
Ophthalmology	Electrophysiological study or radiofrequency catheter ablation for supraventricular tachycardia (including left-sided ablation via single transseptal puncture)	Heart valve replacement
Cataract or glaucoma intervention	Endoscopy with biopsy or tissue removal	Cardiac procedures
Superficial surgery	Gastrointestinal endoscopy ± biopsy, enteroscopy, biliary/pancreatic stent without sphincterotomy, endosonography without fine-needle aspiration	Complex left-sided ablation (pulmonary vein isolation; VT ablation)
Abscess incision	Hemorrhoidal surgery	Implantation of a pacemaker, implantable cardioverter defibrillator, or cardiac resynchronization therapy defibrillator
Small dermatology excisions	Hydrocele repair	Endoscopically guided fine-needle aspiration
	Non-coronary angiography bronchoscopy ± biopsy	Head or neck surgery
	Ophthalmology	Hepatic surgeries and procedures including liver biopsy
	Non-cataract eye surgery	Major orthopedic surgery
	Prostate or bladder biopsy	Joint replacement/arthroplasty
	Shoulder/foot/hand surgery and arthroscopy	Prosthetic revision

Table 9 Procedural bleed risk [41, 46, 47]
Table 10 Patient-specific risk factors for bleeding [36, 124, 125]

General risk factors	Medical patient risk factors
Active or metastatic cancer	Age—increasing
Age (e.g. >65 years)	Active cancer
Anemia	Anemia and other blood dyscrasias
Comorbidity and reduced functional capacity	Current liver disease
Concomitant medications such as NSAIDs, antiplatelets or other anticoagulants administered possibly in a transition period	Central venous catheter placement
Diabetes	History of bleeding
Alcohol abuse	Hospital stay of ≥3 days
Frequent falls	ICU/CCU stay
Hepatic or renal dysfunction	Male gender
History of bleeding complications	Previous or active gastroduodenal ulcer
Previous stroke	Thromboembolic stroke
Recent surgery	Recent re-hospitalization
Thrombocytopenia	Renal failure

NSAIDs Nonsteroidal anti-inflammatory drugs, ICU intensive care unit, CCU cardiac care unit

Guidance for the practical management of the direct oral anticoagulants (DOACS) in VTE...

5. How should patients with DOAC drug–drug interactions be managed?

Currently, the majority of available DOAC drug interaction data only illustrate changes in drug exposure conducted in pharmacokinetic studies of healthy volunteers. Available pharmacokinetic drug interaction data in actual patients are limited to subsets of the larger atrial fibrillation population clinical trials. It is unknown if these pharmacokinetic changes translate to pharmacodynamic effect resulting in excess bleeding or thrombotic events.
Table 11: Cessation and resumption of DOAC for TI

Renal function	Estimated half-life	Low bleeding risk surgery	High bleeding risk surgery	Resumption
	(mL/min)	(allow 2–3 t$_{1/2}$ between last dose and surgery)	(allow 4–5 t$_{1/2}$ between last dose and surgery)	
CrCl > 80	t$_{1/2}$ ~ 14	Hold time: 28–42 h	Hold time: 56–70 h	1 day after procedure (~24 h post-op)
		# doses to hold: 2	# doses to hold: 5–6	
CrCl > 50–79	t$_{1/2}$ ~ 17	Hold time: 34–51 h	Hold time: 68–85 h	
		# doses to hold: 3–4	# doses to hold: 6–7	
CrCl 30–49	t$_{1/2}$ ~ 19	Hold time: 38–57 h	Hold time: 76–95 h	
		# doses to hold: 4–5	# doses to hold: 7–8	
CrCl 15–29	t$_{1/2}$ ~ 28	Hold time: 56–84 h	Hold time: 112–140 h	
		# doses to hold: 5–7	# doses to hold: 9–12	
CrCl < 15b	Unknown	Hold until resolved (e.g. if acute kidney injury) or consider transition to warfarin or UFH		

Dabigatran (BID dosing)

CrCl > 80	t$_{1/2}$ ~ 8	Hold time: 16–24 h	Hold time: 32–40 h	
		# doses to hold: 1	# doses to hold: 2	
CrCl > 50–79	t$_{1/2}$ ~ 9	Hold time: 18–27 h	Hold time: 36–45 h	
		# doses to hold: 1	# doses to hold: 2	
CrCl 15–29	t$_{1/2}$ ~ 10	Hold time: 20–30 h	Hold time: 40–50 h	
		# doses to hold: 1–2	# doses to hold: 2–3	
CrCl < 15b	Unknown	Hold until resolved (e.g. if acute kidney injury) or consider transition to warfarin or UFH		

Rivaroxaban (Once daily dosing)

CrCl > 50	t$_{1/2}$ ~ 7–8	Hold time: 14–24 h	Hold time: 28–40 h	
		# doses to hold: 2	# doses to hold: 4	
CrCl 15–49	t$_{1/2}$ ~ 17	Hold time: 34–54 h	Hold time: 68–90 h	
		# doses to hold: 3–4	# doses to hold: 6–7	
CrCl < 15b	Unknown	Hold until resolved (e.g. if acute kidney injury) or consider transition to warfarin or UFH		

Apixaban (BID dosing)

CrCl > 50	t$_{1/2}$ ~ 8–9	Hold time: 16–27 h	Hold time: 32–45 h	
		# doses to hold: 1	# doses to hold: 2	
CrCl 30–49	t$_{1/2}$ ~ 9–10	Hold time: 18–30 h	Hold time: 36–50 h	
		# doses to hold: 1	# doses to hold: 2	
CrCl 15–29	t$_{1/2}$ ~ 17	Hold time: 34–51 h	Hold time: 68–85 h	
		# doses to hold: 2	# doses to hold: 3–4	
CrCl < 15b	Unknown	Hold until resolved (e.g. if acute kidney injury) or consider transition to warfarin or UFH		

Edoxaban (Once daily dosing)

CrCl > 50	t$_{1/2}$ ~ 8–9	Hold time: 16–27 h	Hold time: 32–45 h	
		# doses to hold: 1	# doses to hold: 2	
CrCl 30–49	t$_{1/2}$ ~ 9–10	Hold time: 18–30 h	Hold time: 36–50 h	
		# doses to hold: 1	# doses to hold: 2	
CrCl 15–29	t$_{1/2}$ ~ 17	Hold time: 34–51 h	Hold time: 68–85 h	
		# doses to hold: 2	# doses to hold: 3–4	
CrCl < 15b	Unknown	Hold until resolved (e.g. if acute kidney injury) or consider transition to warfarin or UFH		

a Applies to both elective procedures and procedures among hospitalized patients on DOAC treatment

b Consider earlier cessation of DOAC for patients with additional bleed risk factors listed in Table 10

c CrCl calculated using Cockroft–Gault method and actual body weight (ABW)

d Estimated t$_{1/2}$ based on renal clearance

e Aiming for mild to moderate residual anticoagulant effect at surgery (12–25 %)

f Aiming for no or minimal residual anticoagulant effect (3–6 %) at surgery

g For patients at high risk for thromboembolism and bleeding after surgery, consider administering a prophylactic dose of anticoagulant on the first postoperative day. If the patient tolerates this, they may then be increased to treatment doses at 48–72 h post-procedure

h Consider laboratory measurement with appropriate assay to determine when it is safe to proceed with surgery
Each of the DOACs is a substrate of permeability-glycoprotein (p-gp), an efflux transporter located in the membranes of the small intestine, blood–brain barrier, liver, and kidneys that regulates absorption of drugs into the bloodstream and tissues [48, 49] (Fig. 2). Hepatic enzyme Cytochrome 3A4 (CYP 3A4) metabolizes rivaroxaban and apixaban to varying degrees (33 and 25 %, respectively). Dabigatran is not a CYP3A4 substrate, and less than 4 % of edoxaban is metabolized via CYP3A4 (Table 12). Drugs that induce (increase the function of) p-gp and/or CYP3A4 may decrease DOAC plasma concentrations and increase the risk for thromboembolic events, while drugs that inhibit (decrease the function of) p-gp and/or CYP3A4 may increase DOAC concentrations and increase bleeding risk.

Given that each of the DOACs has some proportion of renal elimination (dabigatran 80 %, rivaroxaban 33 %, apixaban 25 %, edoxaban 50 %) [49] (Table 12), patients with renal impairment or over age 75 years taking DOACs may be at a higher risk of bleeding complications [48, 50–56], especially if they also have potential concomitant drug interactions (e.g. taking a p-gp and/or CYP3A4 inhibitor). It is important to note that these same patient characteristics (increasing age, impaired renal function and drug interactions) have been shown to convey an increased bleeding risk with warfarin as well [57].

In VTE treatment trials, dyspepsia and gastrointestinal (GI) bleeding were more common in patients taking dabigatran as compared to warfarin or placebo [6, 7]. Patients with these adverse effects may be frequently prescribed proton-pump inhibitors (PPIs). Even though dabigatran requires an acidic gastric environment for absorption [58], pharmacokinetic studies have not shown a clinically significant reduction in dabigatran exposure with concomitant PPI [14, 59]. Therefore, PPIs may be safely co-administered with dabigatran without need for dose adjustment. Tables 13 and 14 provide an evidence-based summary of drug interactions with dabigatran and the anti-Xa inhibitors. Additionally, the product labeling for each of the DOACs contains detailed dosing information and necessary adjustments that consider route of metabolism and elimination and degree of renal impairment.

Table 12 Drug transport/metabolism/elimination characteristics of the direct oral anticoagulants [11, 12, 15, 16, 48, 49, 128, 129]

Drug	P-gp substrate	CYP3A4 substrate (% of drug metabolized via CYP3A4)	% renal elimination
Dabigatran	Yes	No	≈ 80
Rivaroxaban	Yes (≈ 33)		≈ 33
Apixaban	Yes (≈ 25)		≈ 25
Edoxaban	Yes	No	≈ 50

CYP3A4 Cytochrome 3A4, p-gp permeability-glycoprotein

* Total of ≈ 66 % hepatic metabolism equally distributed between CYP3A4 and CYP2J2
* Total of ≈ 25 % hepatic metabolism, mostly by CYP3A4, with minor contributions by CYP1A2, 2J2, 2C8, 2C9, and 2C19

Each of the DOACs is a substrate of permeability-glycoprotein (p-gp), an efflux transporter located in the membranes of the small intestine, blood–brain barrier, liver, and kidneys that regulates absorption of drugs into the bloodstream and tissues [48, 49] (Fig. 2). Hepatic enzyme Cytochrome 3A4 (CYP 3A4) metabolizes rivaroxaban and apixaban to varying degrees (33 and 25 %, respectively). Dabigatran is not a CYP3A4 substrate, and less than 4 % of edoxaban is metabolized via CYP3A4 (Table 12). Drugs that induce (increase the function of) p-gp and/or CYP3A4 may decrease DOAC plasma concentrations and increase the risk for thromboembolic events, while drugs that inhibit (decrease the function of) p-gp and/or CYP3A4 may increase DOAC concentrations and increase bleeding risk.

Given that each of the DOACs has some proportion of renal elimination (dabigatran 80 %, rivaroxaban 33 %, apixaban 25 %, edoxaban 50 %) [49] (Table 12), patients with renal impairment or over age 75 years taking DOACs may be at a higher risk of bleeding complications [48, 50–56], especially if they also have potential concomitant drug interactions (e.g. taking a p-gp and/or CYP3A4 inhibitor). It is important to note that these same patient characteristics (increasing age, impaired renal function and drug interactions) have been shown to convey an increased bleeding risk with warfarin as well [57].

In VTE treatment trials, dyspepsia and gastrointestinal (GI) bleeding were more common in patients taking dabigatran as compared to warfarin or placebo [6, 7]. Patients with these adverse effects may be frequently prescribed proton-pump inhibitors (PPIs). Even though dabigatran requires an acidic gastric environment for absorption [58], pharmacokinetic studies have not shown a clinically significant reduction in dabigatran exposure with concomitant PPI [14, 59]. Therefore, PPIs may be safely co-administered with dabigatran without need for dose adjustment. Tables 13 and 14 provide an evidence-based summary of drug interactions with dabigatran and the anti-Xa inhibitors. Additionally, the product labeling for each of the DOACs contains detailed dosing information and necessary adjustments that consider route of metabolism and elimination and degree of renal impairment.

Antiplatelet agents and non-steroidal anti-inflammatory drugs (NSAIDs)

When each of the DOACs were studied in combination with dual antiplatelet therapy (aspirin and clopidogrel) for acute coronary syndromes, investigators observed a...
Table 13 Permeability glycoprotein (p-gp) drug–drug interactions with dabigatran and edoxaban [16, 48, 59, 130–135] (list is not exhaustive)

P-gp inducers	Interacting drug’s effect on dabigatran and edoxaban concentrations	Suggested management
Barbiturates	↓, no specific studies	Avoid use of dabigatran or edoxaban with p-gp inducers
Carbamazepine	↓, no specific studies	
Dexamethasone	↓, no specific studies	
Phenytoin	↓, no specific studies	
Rifampin	↓ dabigatran exposure by 66 %	
	↓ edoxaban exposure	
St John’s Wort	↓, no specific studies	

P-gp inhibitors	Interacting drug’s effect on dabigatran and edoxaban concentrations	Suggested management
Amiodarone	↑, dabigatran exposure by 12-58 %	
	↑, edoxaban exposure by 40 %	
Carvedilol	↑, no specific studies	
Clarithromycin	↑, dabigatran exposure by 49 %	
	↑, no specific studies with dabigatran	
	↑, edoxaban exposure	
Conivaptan	↑, no specific studies	
Cyclosporine	↑, dabigatran exposure in in vitro studies	
	↑, edoxaban exposure	
Diltiazem	↑, no specific studies	
Dronedarone	↑, dabigatran exposure by 70–140 %	
	↑, edoxaban exposure by 85 %	
Erythromycin	↑, no specific studies with dabigatran	
	↑, edoxaban exposure	
Grapefruit	↑, no specific studies	
Indinavir	↑, no specific studies	
Itraconazole	↑, dabigatran exposure in in vitro studies	
	↑, no specific studies with dabigatran	
Ketoconazole	↑, dabigatran exposure by 153 %	
	↑, edoxaban exposure	
Lapatinib	↑, no specific studies	
Mefloquine	↑, no specific studies	
Nelfinavir	↑, dabigatran exposure in in vitro studies	
	↑, no specific studies with edoxaban	
Nicardipine	↑, no specific studies	
Propafenone	↑, no specific studies	
Quinidine	↑, dabigatran exposure by 53 %	
	↑, edoxaban exposure by 77 %	
Ritonavir	↑, dabigatran exposure in in vitro studies	
	↑, no specific studies with edoxaban	
Saquinavir	↑, no specific studies	
Tacrolimus	↑, dabigatran exposure in in vitro studies	
	↑, no specific studies with edoxaban	
Tamoxifen	↑, no specific studies	
Verapamil	↑, dabigatran exposure by 23–54 %	
	↑, edoxaban exposure by 53 %	

CrCl Creatinine clearance, p-gp permeability glycoprotein
clinically significant increase in major bleeding in patients taking triple therapy [60–62]. The DOAC VTE treatment trials permitted low-dose concomitant aspirin, and dual antiplatelet therapy was permitted in the dabigatran and rivaroxaban trials. The rate of low-dose aspirin use in the study populations for dabigatran, rivaroxaban, and apixaban ranged from 8 to 14 % and was not reported in the edoxaban trial [4, 5, 7–10, 63]. In a sub-analysis of the rivaroxaban VTE treatment trial, patients taking rivaroxaban and low-dose aspirin had a significantly higher risk of clinically relevant bleeding (hazard ratio (HR) 1.81, 95 % CI 1.36–2.41) and a non-significant increase in major bleeding (HR 1.50, 95 % CI 0.63–3.61) compared to rivaroxaban-only patients [63].

Each of the VTE treatment trials allowed concomitant NSAID use (the edoxaban trial restricted NSAID use to <4 days per week [4, 5, 7–10], with 43 % of dabigatran patients and 23 % of rivaroxaban patients reporting concomitant NSAID use) [7, 60]. Patients taking rivaroxaban and NSAIDs had a 2.5-fold higher rate of major bleeding (HR 2.56, 95 % CI 1.21–5.39) and a 2-fold higher rate of clinically relevant bleeding (HR 1.9, 95 % CI 1.45–2.49) compared to those not taking NSAIDs. In this study, 14 % of the clinically relevant bleeding events were gastrointestinal [63].

Potential drug interactions should be assessed to determine if an alternative non-interacting medication is available to treat the patient’s condition. The duration of
interaction exposure should be evaluated, as well as the patient’s risk for a recurrent VTE or major bleeding. Patients at high risk of recurrent VTE (VTE event in the last 3 months or with ongoing VTE risk factors) or at a high risk of bleeding may be particularly vulnerable to DOAC drug interactions. Conversely, patients at a lower risk of recurrent VTE or bleeding may be able to tolerate a moderate drug–drug interaction combination without substantially increasing their risk of adverse events. As always, it is imperative to educate and involve the patient in the discussion. If there is no clear guidance from the literature regarding a specific drug interaction, explain this to the patient and the potential risks involved of each possible approach to management, including alternate therapy. Regular follow-up is advised to assess for adverse events.

Guidance statement DOAC drug–drug interaction management must be patient-specific and incorporate multiple clinical parameters, such as concomitant renal impairment, extremes of body weight or advanced age. We suggest that clinicians avoid concomitant use of dabigatran and edoxaban with a strong inducer or inhibitor of p-gp and avoid use of rivaroxaban and apixaban with combined strong inducers and inhibitors of p-gp and CYP3A4.

For patients requiring concomitant DOAC therapy with a p-gp and/or CYP3A4 inhibitor, we suggest clinicians closely follow the detailed dose adjustments or avoidance provided in the product labeling. We suggest concomitant antiplatelet or NSAIDs be avoided during DOAC therapy unless the potential benefit clearly justifies the increased bleeding risk.

6. How should patients transition between anticoagulants?

In general, the need to switch between agents exposes the patient to periods of increased thromboembolic and bleeding risks. In the ROCKET AF [64] and ARISTOTLE trials [65] of rivaroxaban and apixaban, respectively, a 4-fold increase risk of stroke or bleeding was seen at the end of the study period, attributable to lack of a structured approach to ensuring study patients did not have a “gap” in therapeutic levels of anticoagulation while transitioning to warfarin [66]. This underscores the importance of having a carefully constructed and thoughtful approach for anticoagulant transitions, especially for transition to warfarin.

A recent study from a large outpatient anticoagulation clinic showed approximately 4–6% of their warfarin patients are being switched to a DOAC annually [67]. A Danish study among atrial fibrillation patients found that the majority (51.2%) of patients prescribed a DOAC had switched to a VKA within 6 months. Reasons for the high rate of switching in this study are not known. However, these two studies collectively suggest that switches between anticoagulants are not infrequent and may be expected to increase [68].

There are a variety of reasons patients may switch between anticoagulants [66]. Patients may require a switch from parenteral anticoagulants to DOAC for longer-term outpatient management. Patients may also be switched from warfarin to a DOAC, or DOAC to DOAC, if they experience a therapeutic failure, have drug intolerance (e.g., rash, dyspepsia, etc.) or if they express a preference for DOAC therapy and are deemed to be an appropriate candidate based on criteria previously discussed [66].

In addition, there may be times when a patient needs to be switched from a DOAC to warfarin, for many of the same reasons, such as drug intolerance, failure or preference. Patients may also acquire a new condition or comorbidity that is a contraindication to DOAC therapy, such as pregnancy, severe renal impairment, placement of a mechanical valve or need for dual antiplatelet therapy that necessitates a switch [66].

Other situations that might warrant a switch include gastric bypass surgery where gastric absorption may be significantly altered or the need for new medication, such as protease inhibitor, that poses a major drug interaction with a DOAC. In these instances it may be best to maintain the patient on warfarin therapy so levels of anticoagulation can be readily monitored. Patients may also not be able to tolerate oral medications during the perioperative period (e.g. bowel resection or NPO status) and thus may need to be transitioned from a parenteral back to a DOAC or from prophylactic-dose DOAC to treatment-dose DOAC [66].

If a VTE patient requires a switch between anticoagulants, clinicians should employ a carefully constructed approach that takes into consideration the patient’s anticoagulation status at the time of the switch, their renal function and the pharmacokinetics of the individual DOAC to avoid significant under- or over anticoagulation of their patient.

Tables 15 and 16 provide information regarding appropriate switching strategies for heparin, LMWH and the DOACs.

Guidance statement Switching from warfarin to a DOAC:

When switching from warfarin to dabigatran, apixaban, rivaroxaban or edoxaban, discontinue warfarin and start the DOAC when the International Normalized Ratio (INR) has decreased to <2 for dabigatran and apixaban (<3 for rivaroxaban, <2.5 for edoxaban) to avoid periods of inadequate or excessive anticoagulation. In cases where the target INR was 2.5–3.5 or higher due to recurrent VTE, initiate the DOAC when the INR is near 2.5 or the lower end of the specified range.
Switching from non-warfarin anticoagulant to a DOAC:
When switching from a DOAC to a different DOAC or from LMWH/fondaparinux to a DOAC, start the new DOAC 0–2 h prior to the next scheduled administration of the original anticoagulant and then discontinue the original anticoagulant.

When switching from IV UFH to a DOAC, stop the heparin infusion and begin administration of the DOAC at the time of UFH discontinuation.

When switching from SC UFH treatment to a DOAC, stop the SC UFH and initiate the DOAC approximately 4–5 h after the last dose of SC UFH.

For additional information regarding switching from a DOAC to warfarin or a non-warfarin anticoagulant, readers are also referred to the respective chapters within this compendium by Wittkowsky and Witt.

7. How should DOAC-associated bleeding be managed?

In both VTE treatment trials and atrial fibrillation trials, rates of major bleeding were shown to be comparable or lower with DOACs than with conventional approaches using LMWH and warfarin [3–10, 64, 65, 69, 70]. There is encouraging evidence to suggest that DOAC patients who develop a major bleed require less blood or factor products, have shorter lengths of hospital stay and potentially have better outcomes compared to patients experiencing VKA-associated major hemorrhage [71–73]. Despite early concerns regarding excessive bleeding with dabigatran, post-marketing surveillance data from the FDA supports a favorable risk–benefit profile [74].

Nevertheless, DOAC-treated patients may experience a hemorrhagic episode and require intervention (Fig. 3). Hospitals should develop evidence-based antithrombotic bleeding and reversal protocols that contain clinical decision support for providers and are easy to access and use in high-stress urgent or emergent situations. The general approach to a bleeding patient, regardless of anticoagulant, includes withholding the anticoagulant, hemodynamic monitoring, resuscitation with fluid and blood products, mechanical compression if possible, and definitive procedural intervention to identify and treat the source of bleed if indicated. In addition to supporting blood pressure, assertive fluid resuscitation will promote renal elimination of DOACs, particularly dabigatran. If DOAC ingestion within the last 6 h can be confirmed, clinicians may consider use of oral activated charcoal for any of the DOACs. In addition to determining time of last DOAC ingestion, clinicians should also rapidly evaluate the patient’s renal function to estimate remaining duration of drug exposure, and potential need for additional interventions, such as hemodialysis. Hemodialysis may be considered for dabigatran patients, particularly if they have impaired renal function and will have prolonged exposure to dabigatran without the aid of extracorporeal removal. Hemodialysis is not an effective option for removal of direct Xa inhibitors due to their extensive protein binding.

If a patient is refractory to general approaches, clinicians may consider non-specific reversal strategies. Several studies of clotting factor concentrates, such as activated and non-activated prothrombin complex concentrates (PCCs) or recombinant Factor VIIa, for DOAC reversal have been reported. This evidence, recently summarized in a systematic review, is of very low quality, as it is limited to in vitro studies, animal models or studies in healthy human volunteers and often shows conflicting results [75]. Additionally, most of these studies evaluated surrogate outcomes, such as normalization of global coagulation assays, instead of relevant clinical outcomes of in vivo hemostasis and mortality. Overall, results suggest that either inactive 4-Factor PCC (KCentra®) 50 U/kg or active PCC (aPCC, FEIBA®) 80 U/kg are reasonable options for reversal of direct Xa inhibitors and direct thrombin inhibitors, respectively [76–85]. These agents contain procoagulant factors II, VII, IX and X. Activated PCC may pose a greater risk of thrombosis, but may be considered if inactive 4-Factor PCC is not available. Recombinant Factor VIIa is not recommended as a first-line reversal agent. Unlike the PCCs, rFVIIa is not formulated with marginal amounts of anticoagulants (e.g. Protein C, Protein S, Antithrombin, heparin) to mitigate thrombotic risk. Meta-analyses suggest that use of rFVIIa results in higher rates of

Table 15 Switching to DOACs
Warfarin to DOAC
Dabigatran*
Rivaroxaban*
Apixaban*
Edoxaban*
LMWH to DOAC
Dabigatran
Rivaroxaban
Apixaban
Edoxaban
(iv) UFH to DOAC
Dabigatran*
Rivaroxaban*
Apixaban*
Edoxaban*

As a general rule, we suggest that as INR drops below 2.5, a DOAC can be started
As a general rule, we suggest that each DOAC can be started within 30 min after stopping (iv) UFH

*Recommendations adapted from company’s package insert
They III studies show these agents to be safe and effective in Phase II studies and preliminary data from Phase and Xa inhibitors have been completed or are underway been summarized in several recent reviews [75, 88–90].

Adjunctive therapies if the patient is failing to respond. (tranexamic acid, aminocaproic acid) may be considered as concomitant antiplatelet therapy. Antifibrinolytics agents events, such as fluid overload. Desmospressin or platelet urgent or emergent situations are likely to lead to adverse events, such as fluid overload. Desmopressin or platelet transfusion may be considered in DOAC patients recently on concomitant antiplatelet therapy. Antifibrinolytics agents (tranexamic acid, aminocaproic acid) may be considered as adjunctive therapies if the patient is failing to respond.

Until more robust data or specific antidotes are available, clinicians are limited to existing approaches that have been summarized in several recent reviews [75, 88–90].

Several clinical trials of specific antidotes for both DTIs and Xa inhibitors have been completed or are underway [91–104]. Phase II studies and preliminary data from Phase III studies show these agents to be safe and effective in providing complete and sustained DOAC reversal. They have received expedited review from the FDA and are expected to be commercially available within the next few years.

Guidance statement We suggest hospitals develop evidence-based antithrombotic reversal and bleeding protocols that contain clinical decision support for providers and are easy to access and use in urgent or emergent situations. We suggest that general approaches to bleed management be employed for all patients presenting with severe hemorrhage. For DOAC patients, clinicians should attempt to rapidly determine time of last DOAC ingestion and patient’s renal function to estimate remaining duration of exposure and potential utility of additional interventions. Until specific antidotes are available, we suggest clinicians consider use of non-specific reversal strategies in patient’s refractory to standard therapies. For direct Xa inhibitors, non-activated 4-Factor PCC 50 U/kg may be considered. For direct thrombin inhibitors, either 4-Factor non-activated PCC 50 U/kg or activated PCC 80 U/kg may be considered. However, it is reasonable to withhold these strategies given the associated thrombosis risk and the low quality of evidence that they are beneficial in this setting.

8. What is an appropriate care transitions and follow-up strategy for VTE patients on DOAC therapy?

Inadequate care transitions have been implicated in an estimated annual $25–45 billion in wasted healthcare dollars in the US [105]. Thus, the importance of care transitions has been brought to forefront through numerous national quality initiatives that have emerged in recent years. When looking at approaches specific to anticoagulation patients, implementation of pharmacy-directed anticoagulation services (PDAS) has been shown to significantly improve adherence with specified care transition metrics as well as clinical outcomes [106]. Also, PDAS have been shown to improve patient satisfaction with their care, which now has a direct impact on Medicare reimbursement to hospitals [107]. In efforts to further systematize the delivery of anticoagulation care, reduce adverse drug events and improve care transitions in this high-risk population, a recent consensus statement from EHR Task Force of the New York State Anticoagulation Coalition has called for the incorporation of key anticoagulation-related features into existing EHRs or specialized anticoagulation management systems [108].

There are important nuances in the management of DOACs for VTE, and some of these are not well known. Each of the DOACs requires a dose de-escalation or switch from parenteral therapy at a specified time. The importance of this was recently highlighted in an ISMP alert (https://www.ismp.org/newsletters/acute-care/issue.aspx?id=82) in which a patient prescribed rivaroxaban was given both the

Table 16 Switching to warfarin
DOAC to warfarin
Dabigatran*
Start warfarin and overlap with dabigatran;
CrCl ≥50 mL/min, overlap 3 days
CrCl 30–50 mL/min, overlap 2 days
CrCl 15–30 mL/min, overlap 1 day
Rivaroxaban*
Stop DOAC; start warfarin and LMWH at time of next scheduled DOAC dose and bridge until INR ≥ 2.0
Apixaban*
For 60 mg dose, reduce dose to 30 mg and start warfarin concomitantly
For 30 mg dose reduce dose to 15 mg and start warfarin concomitantly
Edoxaban*
Stop edoxaban when INR ≥ 2.0

Overlap intended to avoid under-anticoagulation while warfarin effect developing. When DOAC overlapped with warfarin, measure INR just before next DOAC dose since DOAC can influence INR.

As a general rule, we believe either approach (i.e. stop DOAC then start LMWH and warfarin; or overlap warfarin with DOAC, measure INR just before next DOAC dose and stop DOAC when INR ≥ 2.0) can be used for all DOAC to warfarin transitions.

 CrCl creatinine clearance
* Recommendations adapted from company’s package insert
15 mg BID and 20 mg once daily prescriptions prior to discharge. The patient erroneously took both the 15 mg tablets and the 20 mg tablets for several days before the error was discovered. This underscores the importance of clinician familiarity with dosing strategies combined with strong infrastructures, educational processes and thorough handoffs that support accurate and timely implementation of these changes to avoid adverse events [109, 110].

Similar to conventional therapies for VTE treatment, clinicians should evaluate patient eligibility for outpatient or early discharge DOAC therapy, as this has been shown to be safe and effective and provides significant cost savings to the healthcare system [111]. The advent of LMWH and fondaparinux significantly enhanced the feasibility of outpatient treatment during transition to warfarin. Outpatient VTE treatment is made even more feasible with the availability of the DOACs. As with conventional therapies, DOAC patients must meet certain clinical, behavioral and social criteria to be considered a viable candidate for outpatient therapy [111]. For stable patients with acute DVT that does not warrant thrombolysis or thrombectomy, outpatient therapy is an option as long as they are deemed likely to be adherent with medications and follow up, have confirmed ability to obtain the anticoagulant(s), have expressed understanding of their condition and what to do in the event of bleeding or clotting, and have a good social support system at home. Clinicians tend to be less comfortable treating patients with a pulmonary embolism in the outpatient setting. However, evidence for this strategy in appropriately selected patients is increasing. There are clinical prediction tools, such as the modified Pulmonary Embolism Severity Index (PESI) score [112] that aid in identifying PE patients with a low risk of adverse outcomes that may be considered for outpatient treatment (Table 17).

Care transitions can also occur within the hospital, such as when patients transfer to or from the ICU. At each transition, a review of the patient’s medication profile and communication of therapeutic plans for each patient issue should be affected between the previous and current multidisciplinary teams. Surgical patients on DOACs warrant particular attention during care transitions within the hospital, as clinicians have far more experience with managing temporary interruptions in warfarin therapy, and staff may not be familiar with management of DOACs in the perioperative period, or even recognize DOACs as anticoagulants. Thus, potential transitions between drug therapies and across care settings (e.g. medical ward to OR and back) require thoughtful consideration and planning.

While DOACs do not require routine outpatient monitoring and adjustment, a standardized follow-up strategy needs to be delineated to facilitate periodic patient evaluation for clinically relevant issues [110, 113].

Guidance statement We suggest that hospitals implement systematic DOAC management and documentation processes that address appropriate patient selection, dose initiation,
perioperative management, switches between anticoagulants and transitions between care settings. Whenever possible, implementation of a specialized inpatient and outpatient anticoagulation services is strongly encouraged. We also strongly recommend that clinicians utilize a DOAC discharge checklist (Table 18) to ensure all key aspects of patient care and DOAC therapy are addressed.

9. How can patients enhance safety and efficacy of their DOAC therapy?

Studies have shown that patients who are actively engaged in their healthcare experience have better care experiences, improved outcomes and lower overall healthcare costs [114, 115]. One method to “activate” patients and caregivers is to increase their health literacy via education about their disease state and medication therapies. DOAC education for patients and caregivers should be individualized, drug specific and provided in the patient’s preferred language at an appropriate literacy level. As the number of indications and evidence for DOACs expands, educational tools can quickly become outdated. It is important to involve anticoagulation resources, such as a PDAS, in regularly updating DOAC educational materials or obtaining them from contemporary, reliable sources (Tables 19, 20, and 21).

It is recommended to employ multiple modalities of education, such as verbal, written and video to reinforce key points as this will help achieve better outcomes [116]. Unfortunately, this is not always done. According to a survey conducted by the ISMP [117], 1 in 4 nurses indicate they do not provide written information to accompany verbal information provided to patients about their medications. Common reasons cited included no written materials being available, written materials not available in languages other than English, or written materials not appropriate for patients with poor literacy skills. Written materials should be developed to provide helpful reinforcement and reminders of safety issues.

Understanding how patients prefer to learn, type of media they value most and determining in advance how visual or hearing impairments may impact the educational process will help determine the best educational approach.

As education is provided, confirmation of a patient’s comprehension of their disease and care plan is key. The teachback method (can the patient/caregiver accurately explain the information back to the educating clinician using their own words?) is a widely accepted means of assessing comprehension and should be integrated into all DOAC educational efforts. Including family members, caregivers or significant others in the education process may improve patient care and outcomes.

Table 5 summarizes key characteristics specific to each DOAC that are relevant to optimal use of these agents.

Table 17 Simplified PESI (Pulmonary Embolism Severity Index) score [112]

Variable	Score
Age >80 years	1
History of cancer	1
History of chronic cardiopulmonary disease	1
Systolic blood pressure <100 mm Hg	1
Heart rate >110	1
O₂ saturation <90 %	1

Score of 0 = low risk (consider outpatient therapy)
Score >0 = high risk

Table 18 DOAC discharge checklist for optimal care transitions

| Patient is an appropriate DOAC candidate |
| Assess patient’s eligibility for outpatient treatment |
| Consistent access to DOAC (affordability, retail availability) |
| If transitioning to rehabilitation or skilled nursing facility, ensure DOAC on formulary |
| DOAC identified and understood as an oral anticoagulant by patient, caregivers and providers |
| Provision of thorough DOAC education to patient and/or caregiver in their preferred language and at an appropriate literacy level |
| Safety net phone number provided to patient/caregiver (Who to call with questions) |
| Referral or handoff to appropriate provider (anticoagulation clinic, PCP, etc.) |
| Time of last drug administration in current setting and time of next scheduled dose in new setting |
| Prescribed strategy for appropriate dose change after initial therapy (either switch to DOAC or DOAC dose de-escalation) |
| Consolidated documentation and communication to next care setting of key information such as |
| Indication for anticoagulation |
| Intended duration of therapy |
| DOAC dose and scheduled time of administration |
| Contact information for anticoagulation provider |
| Follow-up arranged for periodic (every 3–12 months) assessment of the following |
| Renal function |
| Liver function |
| Upcoming invasive procedures |
| New drug interactions |
| New contraindications |

DOAC direct-acting oral anticoagulant, PCP primary care physician

These characteristics should be incorporated into comprehensive DOAC patient education processes and should be considered prior to prescribing.

Patients and caregivers are also more actively engaged when their values and preferences are considered.
Table 19 Patient education resources

Web-based patient and family educational resources
Patient Guides published by manufacturer (accompanies Product Insert)
www.xarelto-us.com
www.eliquis.com
http://www.savaysa.com
Agency for Healthcare Research and Quality (ARHQ)
This is specific to warfarin. However general patient safety and disease-specific information is helpful
Anticoagulation forum—Centers of Excellence Resource Center/Patient and Family Education Pillar
Patient education video
Blood thinner pills: your guide to using them safely http://www.ahrq.gov/patients-consumers/diagnosis-treatment/treatments/btpills/btpills.html |

Table 20 Drug-specific educational points for DOACs and VTE treatment [11, 12, 15, 16]

Patient and family educational needs
Warfarin
Daily, dose-adjusted
Missed dose
Take if before midnight on same day
Call warfarin manager
Do not double up to make up for missed dose
+/− food
Weekly pill planner can aid compliance
Can crush, mix with food
Numerous drug:drug interactions, report all to warfarin manager

Inform provider of all medication changes, including over-the-counter and herbas
Carry “anticoagulant ID wallet card” to alert emergency medical responders
DO NOT stop taking without a physician order (get prescriptions refilled on time)
Report signs and symptoms of bleeding and/or potential clotting
Inform all health care providers before invasive procedures or surgery, including dental
Inform health care provider if pregnant or plan to become pregnant
Inform health care provider if breastfeeding
Careful planning and communication around transition of care episodes

DOAC direct oral anticoagulant, VTE venous thromboembolism, NG nasogastric
Developing an appreciation for patients’ values and preferences is important to determine the best drug therapy option for them and requires a thoughtful, thorough discussion. The DOACs have many advantages and disadvantages (Table 2) that should be reviewed with patients. For example, no requirement for lab monitoring may be perceived as highly beneficial but there may be significant concern about lack of an antidote. Each of these points should be presented to the patient and/or caregiver for consideration, as it may not only influence the choice of anticoagulant, but also adherence to therapy and clinical outcomes [118].

Guidance statement We suggest use of a comprehensive, multi-media educational approach with patients and families to maximize the efficacy and safety associated with anticoagulation in the VTE population. Information should be provided in the patient’s preferred language and at an appropriate level of health literacy.

Conclusion

The arrival of the DOACs has rapidly expanded VTE treatment options over the span of just a few years. While barriers remain for specific segments of the VTE population, the DOACs offer treatment options that are not only more convenient, but likely safer than conventional therapy. Although the DOACs represent a significant advance in VTE treatment, complexity of DOAC dosing regimens, potential for drug interactions, and variable effects on commonly available coagulation assays demand expertise from the prescribing clinician and effective patient education to ensure optimal outcomes for patients treated with

Table 21 Patient education and safety tips to optimize DOAC use

Suggested patient action	Comment
Ask questions and express your values and preferences in regards to your anticoagulant therapy	Consider all of the possible advantages and disadvantages of DOAC therapy and choose an anticoagulation regimen that you are most likely to be adherent with
Make sure you are familiar with and understand the DOAC education provided to you by healthcare staff	If there is something you do not understand or that concerns you, let the healthcare staff know as soon as possible
Obtain and wear a Medic Alert bracelet or carry a wallet card stating you are on anticoagulant	Have the healthcare provider give you a safety net phone number to call in case you have questions at a later time
Follow drug-specific administration and storage recommendations provided to you	This will notify medical personnel that you are on an anticoagulant in case you are unable to verbally tell them
Establish a set time for taking your DOAC and communicate this to medical providers, especially in an emergency situations	e.g. take with food, store in original container, etc.
Schedule follow-up phone calls with your anticoagulation provider at pre-determined times to discuss any issues or difficulties in taking or refilling your DOAC	
Make sure you are familiar with both the generic and brand names of your DOAC and always check your refill for accuracy before leaving the pharmacy	If you develop kidney or liver problems, let your anticoagulation provider know as soon as possible
Make sure your anticoagulation provider or another provider is regularly checking your kidney and liver function to make sure it is still okay for you to take a DOAC	What medications have you stopped/started?
Go to or participate in all scheduled follow-up visits with your anticoagulation provider so they can ask you questions that might be important for safe and effective use of your DOAC	What kidney/liver problems have you had?
What side effects have you had from your DOAC?	What problems have you had getting your DOAC refilled?
What problems have you had with getting your DOAC refilled?	What extra or missed doses of your DOAC have you had?
What upcoming surgical or dental procedures do you have?	

DOAC Direct oral anticoagulant
Table 22 Summary of guidance statements

Question	Guidance statement
Which VTE patients are (and are not) good candidates for DOAC therapy?	DOACs are suggested as an alternative to conventional therapy for VTE treatment in patients who meet appropriate patient selection criteria. For all other patients, we suggest VTE treatment with conventional therapy. Until further data are available, we suggest avoiding DOACs for VTE in patients with antiphospholipid antibody syndrome and patients at extremes of weight. LMWH monotherapy remains first line for patients with cancer-related VTE, but DOACs may be considered in select patients unwilling or unable to receive subcutaneous injections.
How should DOACs be initiated for VTE treatment?	We suggest that a thorough patient evaluation be conducted prior to DOAC initiation which should include assessment of baseline laboratory values, concomitant drug therapies, and comorbidities. We do not recommend initial DOAC therapy in patients who are hospitalized with extensive DVT or who have PE with hemodynamic instability in whom thrombolysis or thrombectomy may be indicated. We suggest that the unique characteristics of each DOAC, their distinct dosing for VTE treatment, and patient preferences should be considered when selecting a DOAC for VTE treatment.
How should VTE patients who require temporary interruption of DOAC therapy be managed?	For VTE patients on DOAC therapy requiring TI for an invasive procedure, we suggest a carefully constructed, thoughtful approach that emphasizes communication between the provider managing the DOAC therapy, the clinician performing the procedure, and the patient and/or caregiver about the management of the DOAC. If TI is deemed necessary, we suggest that clinicians consider the patient’s renal function, the DOAC t1/2 and the associated bleeding risk when determining timing of cessation and resumption of the DOAC. We suggest avoiding routine use of bridge therapy during DOAC interruption.
How should patients with DOAC drug–drug interactions be managed?	DOAC drug–drug interaction management must be patient-specific and incorporate multiple clinical parameters, such as concomitant renal impairment, extremes of body weight or advanced age. We suggest that clinicians avoid concomitant use of dabigatran and edoxaban with a strong inducer or inhibitor of p-gp and avoid use of rivaroxaban and apixaban with combined strong inducers and inhibitors of p-gp and CYP3A4. For patients requiring concomitant DOAC therapy with a p-gp and/or CYP3A4 inhibitor, we suggest clinicians closely follow the detailed dose adjustments or avoidance provided in the product labeling. We suggest concomitant antiplatelet or NSAIDs be avoided during DOAC therapy unless the potential benefit clearly justifies the increased bleeding risk.
How should patients transition between anticoagulants?	**Switching from warfarin to a DOAC**

When switching from warfarin to dabigatran, apixaban, rivaroxaban or edoxaban, discontinue warfarin and start the DOAC when the International Normalized Ratio (INR) has decreased to <2 for dabigatran and apixaban (<3 for rivaroxaban, <2.5 for edoxaban) to avoid periods of inadequate or excessive anticoagulation. In cases where the target INR was 2.5–3.5 or higher due to recurrent VTE, initiate the DOAC when the INR is near 2.5 or the lower end of the specified range.

Switching from non-warfarin anticoagulant to a DOAC

When switching from a DOAC to a different DOAC or from LMWH/fondaparinux to a DOAC, start the new DOAC 0–2 h prior to the next scheduled administration of the original anticoagulant and then discontinue the original anticoagulant.

When switching from IV UFH to a DOAC, stop the heparin infusion and begin administration of the DOAC at the time of UFH discontinuation.

When switching from SC UFH treatment to a DOAC, stop the SC UFH and initiate the DOAC approximately 4–5 h after the last dose of SC UFH. |
Table 22 continued

Question	Guidance statement
How should DOAC-associated bleeding be managed?	We suggest hospitals develop evidence-based antithrombotic reversal and bleeding protocols that contain clinical decision support for providers and are easy to access and use in urgent or emergent situations. We suggest that general approaches to bleed management be employed for all patients presenting with severe hemorrhage. For DOAC patients, clinicians should attempt to rapidly determine time of last DOAC ingestion and patient’s renal function to estimate remaining duration of exposure and potential utility of additional interventions. Until specific antidotes are available, we suggest clinicians consider use of non-specific reversal strategies in patient’s refractory to standard therapies. For direct Xa inhibitors, non-activated 4-Factor PCC 50 units/kg may be considered. For direct thrombin inhibitors, either 4-Factor non-activated PCC 50 U/kg or activated PCC 80 U/kg may be considered. However, it is reasonable to withhold these strategies given the associated thrombosis risk and the low quality of evidence that they are beneficial in this setting.
What is an appropriate care transitions and follow-up strategy for VTE patients on DOAC therapy?	We suggest that hospitals implement systematic DOAC management and documentation processes that address appropriate patient selection, dose initiation, perioperative management, switches between anticoagulants and transitions between care settings. Whenever possible, implementation of a specialized inpatient and outpatient anticoagulation services is strongly encouraged. We also strongly recommend that clinicians utilize a DOAC discharge checklist (Table 18) to ensure all key aspects of patient care and DOAC therapy are addressed.
How can patients enhance safety and efficacy of their DOAC therapy?	We suggest use of a comprehensive, multi-media educational approach with patients and families to maximize the efficacy and safety associated with anticoagulation in the VTE population. Information should be provided in the patient’s preferred language and at an appropriate level of health literacy.

DOACs for VTE. Table 22 summarizes these guidance statements.

Acknowledgments We wish to acknowledge the support provided by Myelin and Associates with the preparation of this manuscript for submission. The work contained in this manuscript was partially funded by support from the following companies: Boehringer Ingelheim, Daiichi Sankyo and Janssen Pharmaceuticals. This guidance document is endorsed by the Anticoagulation Forum’s Board of Directors: Mark Crowther, MD, MSc, FRCPC, Jack E. Ansell, MD, Allison Burnett, PharmD, Nathan Clark, PharmD, Adam Cuker, MD, David Garcia, MD, Scott Kaatz, DO, MSc, FACP, Renato D. Lopes, MD, PhD, Tracy Minichiello, MD, Edith Nutescu, PharmD, FCCP, Lynn Oertel, MS, ANP, CACP, Eva Kline-Rogers, MS, RN, NP, Terri Schnurr, RN, CCRC, Michael Streiff, MD, Diane Wirth, ANP, CACP, BCPS, CACP, Daniel Witt, Pharm D, Ann Wittkowsky, PharmD, CACP, FASHP, FCCP.

Compliance with ethical standards

Disclosures A Burnett: Nothing to disclose. C Mahan: has received investigator-initiated grants from Sanofi-Aventis and funding from the North American Thrombosis Forum Traveling Fellowship Award, served as a consultant for Point of Care Software Systems, Daiichi-Sanyko, Sanofi-Aventis, Boehringer Ingelheim, J&J, Polymedix Inc., Leo, Eisai and New York Hospital Association; served on advisory boards for Daiichi-Sankyo, Janssen, Leo, Eisai, Sanofi, and Pfizer; and served as a speaker for Janssen, Bristol Myers Squibb, Pfizer, Sanofi-Aventis, and Boehringer Ingelheim. S Vazquez: no disclosures. L Oertel: Consultant, advisory boards for the following: Boehringer Ingelheim Pharmaceuticals, Inc., Bristol-Myers Squibb Company. National Certification Board for Anticoagulation Providers, Chairperson of Board Medical and Scientific Advisory Board (MASAB) Member, National Blood Clot Alliance Advisory Council, Anticoagulation Forum. D Garcia; Consultancy for Bristol Meyers Squibb, Daiichi Sankyo, Boehringer Ingelheim, Pfizer, Portola, Janssen, CSL Behring, and Genzyme. Research funding for Bristol Myers Squibb, Daiichi Sankyo, Janssen, and Portola. J Ansell: Consulting activities and/or honoraria from the following companies: Bristol Myers Squibb; Pfizer; Boehringer Ingelheim; Daiichi Sankyo; Janssen; Perosphere; Roche Diagnostics; Alere, Inc; Instrumentation Laboratories. Equity interest in the following companies: Perosphere, Inc.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Van der Hulle T, Kooiman J, den Exter PL et al (2014) Effectiveness and safety of novel oral anticoagulants as compared with vitamin K antagonists in the treatment of acute symptomatic venous thromboembolism: a systematic review and meta-analysis. J Thromb Haemost 12:320–328. doi:10.1111/jth.12485
2. Mantha S, Ansell J (2014) Indirect comparison of dabigatran, rivaroxaban, apixaban and edoxaban for the treatment of acute
venous thromboembolism. J Thromb Thrombolysis. doi:10.1007/s11239-014-1102-5
3. Schulman S, Kearon C, Kakkar AK et al (2013) Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N Engl J Med 368:709–718. doi:10.1056/NEJMoa1113697
4. EINSTEIN Investigators, Bauersachs R, Berkowitz SD et al (2010) Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med 363:2499–2510. doi:10.1056/NEJMoa1009703
5. Agnelli G, Buller HR, Cohen A et al (2013) Apixaban for extended treatment of venous thromboembolism. N Engl J Med 368:699–708. doi:10.1056/NEJMoa1207541
6. Schulman S, Kearon C, Kakkar AK et al (2009) Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med 361:2342–2352. doi:10.1056/NEJMoa0906598
7. Schulman S, Kakkar AK, Goldhaber SZ et al (2014) Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation 129:764–772. doi:10.1161/CIRCULATIONAHA.113.044550
8. EINSTEIN–PE Investigators, Bølling HR, Prins MH et al (2012) Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N Engl J Med 366:1287–1297. doi:10.1056/NEJMoa1113572
9. Agnelli G, Buller HR, Cohen A et al (2013) Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med 369:799–808. doi:10.1056/NEJMoa1302507
10. Bølling FN, Hokusai-VTE Investigators et al (2013) Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med 369:1406–1415. doi:10.1056/NEJMoa1306638
11. XARELTO-PM-ENG-10JUL2014-172618.pdf. http://www.bayer.com/files/XARELTO-PM-ENG-10JUL2014-172618.pdf. Accessed 11 Nov 2014
12. Boehringer Ingelheim Canada Ltd (2014) Pradaxa product monograph. http://www.boehringer-ingelheim.ca/content/dam/internet/opu/ca_EN/documents/humanhealth/product_monograph/PradaxaPMEN.pdf. Accessed 11 Nov 2014
13. Bapat P, Kedar R, Lubetsky A et al (2014) Transfer of dabigatran and dabigatran etexilate mesylate across the dually perfused human placenta. Obstet Gynecol 123:1256–1261. doi:10.1097/AOG.0000000000000277
14. Königshügel O, Langer M, Hayde M et al (2014) Oral anticoagulation with rivaroxaban during pregnancy: a case report. Thromb Haemost. doi:10.1160/TH14-04-0393
15. Pfizer Canada Inc Eliguis Product Monograph. http://www.pfizer.ca/en/our_products/products/monograph/313. Accessed 11 Nov 2014
16. Savaysa Edoxaban PI. http://dsi.com/prescribing-information-portlet/getPIContent?productName=Savaysa&inline=true. Accessed 22 Sept 2015
17. Stangier DJ, Stühle H, Rathgen K, Fuhr R (2008) Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. Clin Pharmacokinet 47:47–59. doi:10.2165/00003188-200804100-00005
18. Frost CE, Nepal S, Barrett Y et al (2009) Effects of age and gender on the single-dose pharmacokinetics (PK) and pharmacodynamics (PD) of apixaban. J Thromb Haemost 7(suppl 2): 455
19. Upreti VV, Wang J, Barrett YC et al (2013) Effect of extremes of body weight on the pharmacokinetics, pharmacodynamics, safety and tolerability of apixaban in healthy subjects. Br J Clin Pharmacol 76:908–916
20. Kubitz D, Becka M, Zuehlsdorf M, Mueck W (2007) Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. J Clin Pharmacol 47(2):218–226
21. Schulman S et al (2014) ASH 56th annual meeting San Francisco, CA Dec 2014, session 332 abstract 1544
22. Win K, Rodgers GM (2014) New oral anticoagulants may not be effective to prevent venous thromboembolism in patients with antiphospholipid syndrome. Am J Hematol. doi:10.1002/ajh.23797
23. Schafer JK, McBane RD, Black DF et al (2014) Failure of dabigatran and rivaroxaban to prevent thromboembolism in antiphospholipid syndrome: a case series of three patients. Thromb Haemost. doi:10.1160/TH14-03-0427
24. Larsen TB, Nielsen PB, Skjøth F et al (2014) Non-vitamin antagonist oral anticoagulants and the treatment of venous thromboembolism in cancer patients: a semi-systematic review and meta-analysis of safety and efficacy outcomes. PLoS ONE 9:e114445
25. Vedovati MC, Germini F, Agnelli G, Becattini C (2014) Direct oral anticoagulants in patients with venous thromboembolism and cancer: a systematic review and meta-analysis. Chest. doi:10.1378/chest.14-0402
26. van der Hulle T, den Exter PL, Kooiman J et al (2014) Meta-analysis of the efficacy and safety of new oral anticoagulants in patients with cancer-associated acute venous thromboembolism. J Thromb Haemost 12:1116–1120
27. Sardar P, Chatterjee S, Herzog E et al (2015) New oral anticoagulants in patients with cancer: current state of evidence. Am J Ther 22:460–468
28. Lee AYY, Levine MN, Baker RI et al (2003) Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med 349:146–153. doi:10.1056/NEJMoa025313
29. Meyer G, Marjanovic Z, Valkic J et al (2002) Comparison of low-molecular-weight heparin and warfarin for the secondary prevention of venous thromboembolism in patients with cancer: a randomized controlled study. Arch Intern Med 162(15): 1729–1735
30. Hull RD, Pinoe GF, Brant RF, Mah AF, Burke N, Dear R et al (2006) Long-term low-molecular-weight heparin versus usual care in proximal-vein thrombosis patients with cancer. Am J Med 119(12):1062–1072
31. Deitcher SR, Kessler CM, Merli G et al (2006) Secondary prevention of venous thromboembolic events in patients with active cancer: enoxaparin alone versus initial enoxaparin followed by warfarin for a 180 day period. Clin Appl Thromb Hemost 12:389–396.
32. Lee A, Kamphuisen PW, Meyer G et al (2015) Tinzaparin vs warfarin for treatment of acute venous thromboembolism in patients with active cancer: a randomized clinical trial. JAMA 314(7):677–686. doi:10.0001/jama.2015.9243
33. Graham DJ, Reichman ME, Wernecke M et al (2015) Cardiovascular, bleeding, and mortality risks in elderly medicare patients treated with dabigatran or warfarin for nonvalvular atrial fibrillation. Circulation 131(2):157–164
34. Sipahi I, Celik S, Tozun N (2014) A comparison of results of the us food and drug administration’s mini-sentinel program with randomized clinical trials: the case of gastrointestinal tract bleeding with dabigatran. JAMA Intern Med 174:150–151. doi:10.1001/jamainternmed.2013.12217
35. Chai-Adisaksopha C, Crowther M, Isayama T, Lim W (2014) The impact of bleeding complications in patients receiving target-specific oral anticoagulants: a systematic review and meta-analysis. Blood 124(15):2450–2458
36. Kearon C, Akl EA, Comerota AJ et al (2012) Antithrombotic therapy for VTE disease. Chest 141(2 Suppl):e419S–e494S. doi:10.1378/chest.11-2301
37. Erkens PM, Prins MH (2010) Fixed dose subcutaneous low molecular weight heparins versus adjusted dose unfractionated
heparin for venous thromboembolism. Cochrane Database Syst Rev 9:CD001100

38. Funk DM (2012) Coagulation assays and anticoagulant monitoring. Hematology 2012;460–465. doi:10.1182/asheducation-2012.1.460

39. Tripodi A (2013) The laboratory and the direct oral anticoagulants. Blood 121:4032–4035. doi:10.1182/blood-2012-12-453076

40. Cuker A, Siegal DM, Crowther MA, Garcia DA (2014) Laboratory measurement of the anticoagulant activity of the non-vitamin K oral anticoagulants. J Am Coll Cardiol 64:1128–1139. doi:10.1016/j.jacc.2014.05.065

41. Douketis J (2012) Perioperative management of antithrombotic therapy: antithrombotic therapy and prevention of thrombosis, 9th edn: ACCP. Chest 141:e326s–e350S

42. Healey JS, Eikelboom J, Douketis J et al (2012) Periprocedural bleeding and thromboembolic events with dabigatran compared with warfarin: results from the randomized evaluation of long-term anticoagulation therapy (RE-LY) randomized trial. Circulation 126:343–348. doi:10.1161/CIRCULATIONAHA.111.090464

43. Sherwood MW, Douketis JD, Patel MR et al (2014) Outcomes of temporary interruption of rivaroxaban compared with warfarin in patients with nonvalvular atrial fibrillation: results from the rivaroxaban once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation (ROCKET AF). Circulation 129:1850–1859. doi:10.1161/CIRCULATIONAHA.113.005754

44. Garcia D, Alexander JH, Wallentin L et al (2014) Management and clinical outcomes in patients treated with apixaban versus warfarin undergoing procedures. Blood 124(25):3692–3698

45. Horlocker TT, Wedel DJ, Rowlinson JC et al (2010) Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (3rd Edition). Reg Anesth Pain Med 35(1):64–101 https://www.ismp.org/newsletters/acutecare/issue.aspx?id=82. Accessed 27 Nov 2014

46. Spyropoulos AC, Douketis JD (2012) How I treat anticoagulated patients undergoing an elective procedure or surgery. Blood 120:2954–2962. doi:10.1182/blood-2012-06-415943

47. Baron TH, Kamath PS, McBane RD (2013) Management of antithrombotic therapy in patients undergoing invasive procedures. N Engl J Med 368:2113–2124. doi:10.1056/NEJMo1206531

48. Wistler JL, Grip LT, Mendell J, Giugliano RP (2013) The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol 61:2495–2502. doi:10.1016/j.jacc.2012.02.058

49. Gong Y, Kim RB (2013) Importance of pharmacokinetic profile and variability as determinants of dose and response to dabigatran, rivaroxaban, and apixaban. Can J Cardiol 29:S24–33. doi:10.1016/j.cjc.2013.04.002

50. Feinberg J, Grabowitz L, Rotman-Pikielny P et al (2014) Dabigatran etexilate linked to fatal gastrointestinal hemorrhage. Isr Med Assoc 16(6):388–389

51. Lo JC-Y, Gerona RR (2014) A case of rivaroxaban associated intracranial hemorrhage. West J Emerg Med 15:375–377. doi:10.5811/westjem.2014.2.19440

52. Stöllberger C, Zuntner G, Bastovansky A, Finsterer J (2013) Cerebral hemorrhage under rivaroxaban. Int J Cardiol 167: e179–e181. doi:10.1016/j.ijcard.2013.03.185

53. Fountzilas C, George J, Levine R (2013) Dabigatran overdose secondary to acute kidney injury and amiodarone use. N Z Med J 126:110–112

54. Stöllberger C, Finsterer J (2014) Prolonged anticoagulant activity of rivaroxaban in a polymorphid elderly female with non-convulsive epileptic state. Heart Lung 43:262–263. doi:10.1016/j.hrtlng.2014.03.004

55. Marcum ZA, Vande Griek JP, Linnebur SA (2012) FDA drug safety communications: a narrative review and clinical considerations for older adults. Am J Geriatr Pharmacother 10:264–271. doi:10.1016/j.amjpharm.2012.05.002

56. Harper P, Young L, Merriman E (2012) Bleeding risk with dabigatran in the frail elderly. N Engl J Med 366:864–866. doi:10.1056/NEJMmc1112874

57. Schulman S, Beyth RJ, Kearon C et al (2008) Hemorrhagic complications of anticoagulant and thrombolytic treatment: ACCP evidence-based clinical practice guidelines (8th edn). Chest 133:2578–2988

58. Hankey GJ, Eikelboom JW (2011) Dabigatran etexilate: a new oral thrombin inhibitor. Circulation 123:1436–1450. doi:10.1161/CIRCULATIONAHA.110.004424

59. Liesenfeld K-H, Lehr T, Dansirikul C et al (2011) Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J Thromb Haemost 9:2168–2175. doi:10.1111/j.1538-7836.2011.04948.x

60. Oldgren J, Budaj A, Granger CB et al (2011) Dabigatran vs. placebo in patients with acute coronary syndromes on dual antiplatelet therapy: a randomized, double-blind, phase II trial. Eur Heart J 32:2781–2789. doi:10.1093/eurheartj/ehh13

61. Mega JL, Braunwald E, Wiviott SD et al (2012) Rivaroxaban in patients with a recent acute coronary syndrome. N Engl J Med 366:9–19. doi:10.1056/NEJMoa1112277

62. Alexander JH, Lopes RD, James S et al (2011) Apixaban with antiplatelet therapy after acute coronary syndrome. N Engl J Med 365:699–708. doi:10.1056/NEJMoai1085819

63. Davidson BL, Verheijen S, Lensing AA et al (2014) Bleeding risk of patients with acute venous thromboembolism taking nonsteroidal anti-inflammatory drugs or aspirin. JAMA Intern Med 174:947–953. doi:10.1001/jamainternmed.2014.9496

64. Patel MR, Mahaffey KW, Garg J et al (2011) Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 365:883–891. doi:10.1056/NEJMoa1009638

65. Granger CB, Alexander JH, McMurray JVV et al (2011) Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 365:981–992. doi:10.1056/NEJMoai1107039

66. Abo-Salem E, Becker R (2014) Transitioning to and from the novel oral anticoagulants: a management strategy for clinicians. J Thromb Thrombolysis 37:372–379. doi:10.1007/s11239-014-1060-y

67. Atay JK, Fanikos J, Barnes GD et al (2013) Effect of dabigatran on referrals to and switching from warfarin in two academic anticoagulation management services. Am J Cardiol 112:387–389. doi:10.1016/j.amjcard.2013.03.046

68. Pottégård A, Poulsen BK, Larsen MD, Hallas J (2014) Dynamics of vitamin K antagonist and new oral anticoagulants use in atrial fibrillation: a Danish drug utilization study. J Thromb Haemost 12:1413–1418

69. Connolly SJ, Ezekowitz MD, Yusuf S et al (2009) Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 361:1139–1151. doi:10.1056/NEJMoa0905561

70. Giugliano RP, Ruff CT, Braunwald E et al (2013) Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 369:2093–2104. doi:10.1056/NEJMoa1310907

71. Majeed A, Hwang H-G, Connolly SJ et al (2013) Management and outcomes of major bleeding during treatment with dabigatran or warfarin. Circulation 128:2325–2332. doi:10.1161/CIRCULATIONAHA.113.002332

72. Piccini JP, Garg J, Patel MR et al (2014) Management of major bleeding events in patients treated with rivaroxaban vs. warfarin: results from the ROCKET AF trial. Eur Heart J 35:1873–1880. doi:10.1093/eurheartj/ehu083
Guidance for the practical management of the direct oral anticoagulants (DOACS) in VTE… 231

73. Hylek E, Held C, Alexander JH et al (2014) Major bleeding in patients with atrial fibrillation receiving apixaban or warfarin: the ARISTOTLE trial: predictors, characteristics, and clinical outcomes. J Am Coll Cardiol 63:2141–2147

74. Research C for DE and drug safety and availability—FDA Drug Safety Communication: FDA study of medicare patients finds risks lower for stroke and death but higher for gastrointestinal bleeding with Pradaxa (dabigatran) compared to warfarin. http://www.fda.gov/drugs/drugsafety/ucm396470.htm. Accessed 27 Nov 2014

75. Siegal DM, Cuker A (2014) Reversal of target-specific oral anticoagulants. Drug Discov Today. doi:10.1016/j.drudis.2014.05.013

76. Van Ryn J, Schurer J, Kink-Eiband M, Clemens A (2011) The successful reversal of dabigatran-induced bleeding by coagulation factor concentrates in a rat tail bleeding model do not correlate with ex vivo markers of anticoagulation. Blood 118(21):1004

77. Van Ryn J et al (2008) 13th congress of the European Hematology Association, Copenhagen, Denmark, June 12–15, 2008. Haematologica 93(s-1):148

78. Pragt I, Zeitler SH, Doerr B, Kaspareit FH, Herzog E, Dickneite G et al (2012) Reversal of dabigatran anticoagulation by prothrombin complex (Beriplex P/N) in a rabbit model. J Thromb Haemostas 10(9):1841–1848

79. Martin AC, LeBonniec B, Fischer AM (2013) Evaluation of recombinant activated factor VII, prothrombin complex concentrate, and fibrinogen concentrate to reverse apixaban in a rabbit model of bleeding and thrombosis. J Int Card 168(4):4228–4233. doi:10.1016/j.jicard.2013.07.152

80. Perzborn E, Gruber A, Tinel H et al (2013) Reversal of rivaroxaban anticoagulation by haemostatic agents in rats and primates. Thromb Haemost 110(1):162–172

81. Zahir H, Brown KS, Vandell AG et al (2015) Edoxaban effects on rivaroxaban anticoagulant effect of edoxaban—full text view—ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT02220725?term=NCT02297255&rank=1. Accessed 27 Nov 2014

82. Godier A, Miclot A, LeBonniec B, Durand M, Fischer A-M, Emmerich J et al (2012) Evaluation of prothrombin complex concentrate and recombinant activated factor VII to reverse rivaroxaban in a rabbit model. Anesthesiology 116(1):94–102

83. Marlu R, Hodaj E, Paris A et al (2012) Effect of non-specific reversal agents on anticoagulant activity of dabigatran and rivaroxaban: a randomized crossover ex vivo study in healthy volunteers. Thromb Haemost 108:217–247

84. Eerenberg ES, Kamphuisen PW, Sijpkins MK et al (2011) Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation 124:1573–1579

85. Dager WE, Gosselin RC, Roberts AJ et al (2013) Reversing dabigatran in life-threatening bleeding occurring during cardiac ablation with factor eight inhibitor bypassing activity. Crit Care Med 41(5):42–46

86. Dentali F, Marchesi C, Pierfranceschi MG et al (2011) Safety of prothrombin complex concentrates for rapid anticoagulation reversal of vitamin K antagonists: a meta-analysis. Thromb Haemost 106:429–438. doi:10.1160/TH11-01-0052

87. Levi M, Levy JH, Andersen HF, Truloff D (2010) Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med 363:1791–1800. doi:10.1056/NEJMoa1006221

88. Siegal DM, Garcia DA, Crowther MA (2014) How I treat target-specific oral anticoagulant–associated bleeding. Blood 123:1152–1158. doi:10.1182/blood-2013-09-529784

89. Kaatz S, Koudes PA, Garcia DA et al (2012) Guidance on the emergent reversal of oral thrombin and factor Xa inhibitors. Am J Hematol 87:S141–S145. doi:10.1002/ajh.23202

90. Kaatz S, Crowther M (2013) Reversal of target-specific oral anticoagulants. J Thromb Thrombolysis 36:195–202. doi:10.1007/s11239-013-0923-y

91. van Ryn J et al (2014) American Heart Association Scientific Sessions 2014, Chicago, USA. http://www.abstractsonline.com/pp8/#/3547/presentation/41579

92. Glund S (2013) 1765—A specific antidote for dabigatran: immediate, complete and sustained reversal of dabigatran induced anticoagulation in healthy male volunteers. Paper presented at the American Heart Association Scientific Sessions, Dallas, Texas, 16–20 November 2013

93. NCT02104947 clinicaltrials.gov

94. Hutchchaleelaha A et al (2012) European society of cardiology annual meeting, Munich, Germany

95. Lu G, DeGuzman FR, Hollenbach SJ et al (2013) A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med 19(4):446–451

96. Crowther M; ASH 2014 San Francisco abstract #4269 Session 332. antithrombotic therapy; poster III Monday, December 8

97. Crowther M, et al; ASH 2013. Abstract 3636, session 332. antithrombotic therapy; poster III Monday, December 9, 2013

98. Crowther M, et al; ISTH 2013 Amsterdam

99. A study in older subject to evaluate the safety and ability of andexanet alfa to reverse the anticoagulation effect of rivaroxaban—full text view—ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT02297255?term=NCT02207252&rank=1. Accessed 27 Nov 2014

100. A study in older subjects to evaluate the safety and ability of andexanet alfa to reverse the anticoagulation effect of apixaban—full text view—ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT02207252?term=NCT02207252&rank=1. Accessed 27 Nov 2014

101. Laulicht B, Bakhru S, Jiang X, et al (2013) Antidote for new oral anticoagulants: mechanism of action and binding specificity of PER977. Presented at the 24th congress of the international society on thrombosis and haemostasis, Amsterdam, June 29–July 4, 2013. Abstract (http://www.eventonline.com/enen/abstract/2013/07/324

102. Ansell JE, Bakhru S, Laulicht BE, Steiner SS, Grosso M, Brown K, Dishy V, Noveck RJ (2014) Use of PER977 to reverse the anticoagulant effect of edoxaban. N Eng J Med 371:2141–2142

103. Pollack CV Jr, Reilly PA, Eikelboom J et al (2015) Idarucizumab for Dabigatran Reversal. N Engl J Med 373(6):511–520. doi:10.1056/NEJMoa1502000

104. Crowther MA, et al (2015) ISTH Congress 2015 abstract LB004

105. Burton R (2012) Improving care transitions. Robert Wood Johnson Foundation Health Policy Brief Sept 13, 2012. www.rwjf.org/content/dam/darm/pol/reports/issue_briefs/2012/rwjf401314

106. Schillig K, Kaatz S, Hudson M et al (2011) Clinical and safety impact of an inpatient pharmacist-directed anticoagulation service. J Hosp Med 6:322–328. doi:10.1002/jhm.910

107. Makowski CT, Jennings DL, Nemirovski CW et al (2013) The impact of pharmacist-directed patient education and anticoagulant care coordination on patient satisfaction. Ann Pharmacother 47:805–810. doi:10.1345/aph.1R686

108. Spyropoulos AC, Viscusi A, Singhal N et al (2014) Features of electronic health records necessary for the delivery of optimized anticoagulant therapy consensus of the EHR Task Force of the New York State Anticoagulation Coalition. Ann Pharmacother. doi:10.1177/1060028014555176

109. Cowell RW (2014) Direct oral anticoagulants: integration into clinical practice. Postgrad Med J 90:529–539. doi:10.1136/postgradmedj-2013-132474

110. Michota F (2013) Transitions of care in anticoagulated patients. J Multidiscip Healthc 6:215–228. doi:10.2147/JMDH.S4068
111. Spyropoulos AC, Kardos J, Wigal P (2000) Outcome analyses of the outpatient treatment of venous thromboembolic disease using the low-molecular-weight heparin enoxaparin in a managed care organization. J Manag Care Pharm 6:298–304

112. Jiménez D, Aujesky D, Moore L et al (2010) Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 170:1383–1389. doi:10.1001/archinternmed.2010.199

113. Heidbuchel H, Verhamme P, Alings M et al (2013) European Heart Rhythm Association Practical Guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation. Eur Heart J 34:625–651. doi:10.1093/eurheartj/eut083

114. James J (2013) patient engagement. In: Health affairs. http://www.healthaffairs.org/healthpolicybriefs/brief.php?brief_id=86. Accessed 27 Nov 2014

115. Hibbard JH, Greene J, Overton V (2013) Patients with lower activation associated with higher costs; delivery systems should know their patients’ “Scores”. Health Aff 32:216–222. doi:10.1377/hilthaff.2012.1064

116. Johnson A, Sandford J, Tyndall J (2003) Written and verbal information versus verbal information only for patients being discharged from acute hospital settings to home. Cochrane Database Syst Rev. doi:10.1002/14651858.CD003716

117. Institute for Safe Medication Practices (ISMP) (2003) https://www.ismp.org/Survey/surveyresults/NursingSurvey.asp. Accessed 27 Nov 2014

118. Ageno W, Crowther M, Palareti G et al (2013) Selection and assessment of patients treated with the novel oral anticoagulant drugs: a recommendation from the Subcommittee on Control of Anticoagulation of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost 11(1):177–179

119. Bauer KA (2013) Pros and cons of new oral anticoagulants. Hematol Am Soc Hematol Educ Program 2013:464–470. doi:10.1182/asheducation-2013.1.464

120. Cushman M (2013) Treating acute venous thromboembolism—shift with Care. N Engl J Med 369(9):865–866

121. Thachil J (2014) The newer direct oral anticoagulants: a practical guide. Clin Med 14:165–175. doi:10.7861/clinmedicine.14-2-165

122. Weitz JI, Gross PL (2012) New oral anticoagulants: which one should my patient use? Hematology 2012:536–540. doi:10.1124/asheducation-2012.1.536

123. Schulman S (2014) New oral anticoagulant agents—general features and outcomes in subsets of patients. Thromb Haemost 111(4):575–582

124. Mahan CE, Spyropoulos AC, Fisher MD et al (2013) Antithrombotic medication use and bleeding risk in medically ill patients after hospitalization. Clin Appl Thromb Hemost 19:504–512. doi:10.1177/1076029612470967

125. Decousus H, Tapson VF, Bergmann J-F et al (2011) Factors at admission associated with bleeding risk in medical patients: findings from the improve investigators. Chest 139:69–79. doi:10.1378/chest.09-3081

126. IPRO MAPP tool. http://qio.ipro.org/wp-content/uploads/2012/12/MAP2014_5_01.pdf

127. Kaatz S, Mahan CE (2014) Stroke prevention in patients with atrial fibrillation and renal dysfunction. Stroke 45:2497–2505. doi:10.1161/STROKEAHA.114.005117

128. Lippi G, Favaloro EJ, Mattiuzzi C (2014) Combined administration of antibiotics and direct oral anticoagulants: a renewed indication for laboratory monitoring. Semin Thromb Hemost 40:756–765

129. Wang L, Zhang D, Raghavan N et al (2010) In vitro assessment of metabolic drug–drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab Dispos 38:448–458

130. Härtter S, Koenen-Bergmann M, Sharma A et al (2012) Decrease in the oral bioavailability of dabigatran etexilate after co-medication with rifampicin. Br J Clin Pharmacol 74:490–500. doi:10.1111/j.1365-2125.2012.04218.x

131. Kishimoto W, Ishiguro N, Ludwig-Schwellinger E et al (2014) In vitro predictability of drug–drug interaction likelihood of P-glycoprotein-mediated efflux of dabigatran etexilate based on [I]2/IC50 threshold. Drug Metab Dispos 42:257–263. doi:10.1124/dmd.113.053769

132. Mendell J, Zahir H, Matsushima N et al (2013) Drug–drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs 13:331–342. doi:10.1007/s40256-013-0029-0

133. Delavenne X, Ollier E, Basset T et al (2013) A semi-mechanistic absorption model to evaluate drug–drug interaction with dabigatran: application with clarithromycin. Br J Clin Pharmacol 76(1):107–113. doi:10.1111/bcp.12055

134. Hansten PD, Horn JR (2012) The top 100 drug interactions: a guide to patient management. 2012th edn. Freeland, WA

135. FDA document: drug interactions and labeling > drug development and drug interactions: table of substrates, inhibitors, and inducers. http://www.fda.gov/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm093664.htm

136. Risselada AJ, Visser MJ, van Roon EN (2013) Pulmonary embolism due to interaction between rivaroxaban and carba-mazepine. Ned Tijdschr Geneeskd 157:A6568

137. Altuna R, van Roon E, Folkerlinga R et al (2014) Clinical challenges related to novel oral anticoagulants: drug–drug interactions and monitoring. Haematologica 99:e26–e27. doi:10.3324/haematol.2013.097287

138. Mueck W, Kubitza D, Becka M (2013) Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol 76:455–466. doi:10.1111/bcp.12075

139. Gnoth MJ, Buetehorn U, Muenster U et al (2011) In vitro and in vivo P–glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther 338:372–380. doi:10.1124/jpet.111.180240