Zero Mach Number Limit of the Compressible Primitive Equations Part I: Well-prepared Initial Data

Xin Liu∗ and Edriss S. Titi†

May 22, 2019

Abstract
This work concerns the zero Mach number limit of the compressible primitive equations. The primitive equations with the incompressibility condition are identified as the limiting equations. The convergence with well-prepared initial data (i.e., initial data without acoustic oscillations) is rigorously justified, and the convergence rate is shown to be of order $O(\varepsilon)$, as $\varepsilon \to 0^+$, where ε represents the Mach number. As a byproduct, we construct a class of global solutions to the compressible primitive equations, which are close to the incompressible flows.

Contents

1 Introduction 2
 1.1 The compressible primitive equations 2
 1.2 The low Mach number limit problem and main theorem . . . 3

2 Preliminaries 15

∗Department of Mathematics, Texas A&M University, College Station, TX 77843, USA. Email: stleonliu@gmail.com
†Department of Mathematics, Texas A&M University, College Station, TX 77840, USA. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Email: titi@math.tamu.edu and Edriss.Titi@damtp.cam.ac.uk

Mathematics Subject Classification: 35B25 / 35B40 / 76N10

Keywords: Low Mach number limit, Compressible primitive equations, incompressible primitive equations.
1 Introduction

1.1 The compressible primitive equations

The compressible primitive equations (see (CPE), below) are used by meteorologists to perform theoretical investigations and practical weather predictions (see, e.g., [57]). In comparison with the general hydrodynamic and thermodynamic equations, the vertical component of the momentum equations is missing in the compressible primitive equations. Instead, it is replaced by the hydrostatic balance equation (see (CPE)3, below), which is also known as the quasi-static equilibrium equation. From the meteorologists’ point of view, such an approximation is reliable and useful for two reasons: the balance of gravity and pressure dominates the dynamics in the vertical direction; and the vertical velocity is usually hard to observe in reality (see, e.g., [74, Chapter 4]). On the other hand, by formally taking the zero limit of the aspect ratio between the vertical scale and the planetary horizontal scale, the authors in [21] derive the compressible primitive equations from the compressible hydrodynamic equations. Such a deviation is very common in planetary scale geophysical models, which represents the fact that the vertical scale of the atmosphere (or ocean) is significantly smaller than the planetary horizontal scale. We refer, for more comprehensive meteorological studies, to [74, 81]. See also, [26, 42, 45, 64] for more general discussions on multi-scale analysis.

As far as we know, there are very few mathematical studies concerning the compressible primitive equations (referred to as CPE hereafter). Lions, Temam, and Wang first introduced CPE into the mathematical community in [57]. They formulated the commonly known primitive equations (referred
to as PE hereafter) with the incompressibility condition as the representation of the compressible primitive equations in the pressure coordinates \((p\text{-coordinates})\) instead of the physical ones with the vertical spatial coordinate. On the other hand, as mentioned before, the authors in [21] introduce these equations with a formal deviation, and a rigorous justification is still an open question for now. In [21], the stability of weak solutions is also investigated (see also [78]). The stability is meant in the sense that a sequence of weak solutions, satisfying some entropy conditions, contains a subsequence converging to another weak solution, i.e., a very weak sense of stability. The existence of such weak solutions is recently constructed in [61, 80] (see also [20, 29] for the existence of global weak solutions to some variant of compressible primitive equations in two spatial dimension). In [62], we also construct local strong solutions to CPE in two cases: with gravity but no vacuum; with vacuum but no gravity.

In analogy to the low Mach number limit in the study of compressible hydrodynamic equations, this and our subsequent works are aiming at studying the low Mach number limit of the compressible primitive equations without gravity and Coriolis force. It is worth mentioning that while taking into account the Coriolis force would not change much our proof, considering gravity in our system causes challenging difficulties. Let \(\varepsilon\) denote the Mach number, and let \(\rho^\varepsilon \in \mathbb{R}, v^\varepsilon \in \mathbb{R}^2, w^\varepsilon \in \mathbb{R}\) be the density, the horizontal and the vertical velocities, respectively. System \((\text{CPE})\), below, is obtained by rescaling the original CPE, which is similar to the rescaling of the compressible Navier–Stokes equations (see, e.g., [26]):

\[
\begin{align*}
\partial_t \rho^\varepsilon + \text{div}_h (\rho^\varepsilon v^\varepsilon) + \partial_z (\rho^\varepsilon w^\varepsilon) &= 0 \quad \text{in } \Omega_h \times (0, 1), \\
\partial_t (\rho^\varepsilon v^\varepsilon) + \text{div}_h (\rho^\varepsilon v^\varepsilon \otimes v^\varepsilon) + \partial_z (\rho^\varepsilon w^\varepsilon v^\varepsilon) &= \frac{1}{\varepsilon^2} \nabla_h P(\rho^\varepsilon) - \text{div}_h S(v^\varepsilon) + \partial_{zz} v^\varepsilon \quad \text{in } \Omega_h \times (0, 1), \\
\partial_z P(\rho^\varepsilon) &= 0 \quad \text{in } \Omega_h \times (0, 1),
\end{align*}
\]

where \(P(\rho^\varepsilon) = (\rho^\varepsilon)^\gamma\) and \(S(v^\varepsilon) = \mu (\nabla_h v^\varepsilon + \nabla_h^T v^\varepsilon) + (\lambda - \mu) \text{div}_h v^\varepsilon I_2\) represent the pressure potential and the viscous stress tensor, respectively, with the shear and bulk viscosity coefficients \(\mu\) and \(\lambda - \mu + \frac{\gamma}{2} \mu = \lambda - \frac{2}{\gamma} \mu\). The physical requirements of \(\mu, \lambda, \gamma\) are \(\lambda - \frac{1}{\gamma} \mu > 0, \mu > 0\) and \(\gamma > 1\). Moreover, we focus our study on the case when \(\Omega_h := T^2 \subset \mathbb{R}^2\). \((\text{CPE})\) is complemented with the following stress-free and impermeability physical boundary conditions:

\[
\partial_z v^\varepsilon \big|_{z=0,1} = 0, \quad w^\varepsilon \big|_{z=0,1} = 0.
\]

Hereafter, we have and will use \(\nabla_h, \text{div}_h\) and \(\Delta_h\) to represent the horizontal gradient, the horizontal divergence, and the horizontal Laplace operator,
respectively; that is,
\[\nabla_h := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right), \quad \text{div}_h := \nabla_h \cdot, \quad \Delta_h := \text{div}_h \nabla_h. \]

Notice that if we consider system (CPE) subject to periodic boundary conditions, with fundamental periodic domain \(\Omega_h \times 2\mathbb{T} \), where \(2\mathbb{T} \) denotes the periodic domain in \(\mathbb{R} \) with period 2; and subject to the following symmetry:

\(v^\varepsilon \) and \(w^\varepsilon \) are even and odd, respectively, in the \(z \)-variable, (SYM-CPE)

then its solutions obey the above symmetry. Moreover, when such solutions are restricted to the physical domain \(\Omega_h \times (0, 1) \) they automatically satisfy the physical boundary conditions (BC-CPE).

We recall the incompressible primitive equations:

\[
\begin{cases}
\text{div}_h v_p + \partial_z w_p = 0 & \text{in } \Omega_h \times (0, 1), \\
\rho_0 (\partial_t v_p + v_p \cdot \nabla_h v_p + w_p \partial_z v_p) + \nabla_h (c_s^2 \rho_1) = \mu \Delta_h v_p + \lambda \nabla_h \text{div}_h v_p + \partial_{zz} v_p & \text{in } \Omega_h \times (0, 1), \\
\partial_z (c_s^2 \rho_1) = 0 & \text{in } \Omega_h \times (0, 1),
\end{cases}
\]

(PE)

complemented with stress-free and impermeability physical boundary conditions:

\[\partial_z v_p \big|_{z=0,1} = 0, \quad w_p \big|_{z=0,1} = 0. \] (BC-PE)

We observe again that if we consider system (PE) subject to periodic boundary conditions, with fundamental periodic domain \(\Omega_h \times 2\mathbb{T} \), and subject to the following symmetry

\(v_p \) and \(w_p \) are even and odd respectively in the \(z \) variable, (SYM-PE)

then its solutions obey the above symmetry. Moreover, when such solutions are restricted to the physical domain \(\Omega_h \times (0, 1) \) they automatically satisfy the physical boundary conditions (BC-PE).

We aim at investigating the asymptotic behavior, as \(\varepsilon \to 0^+ \), of the solutions to (CPE). Owing to the symmetry property in (SYM-CPE) and the boundary conditions in (BC-CPE), it suffices to study the following system:

\[
\begin{cases}
\partial_t \rho^\varepsilon + \text{div}_h (\rho^\varepsilon v^\varepsilon) + \partial_z (\rho^\varepsilon w^\varepsilon) = 0 & \text{in } \Omega_h \times 2\mathbb{T}, \\
\partial_t (\rho^\varepsilon v^\varepsilon) + \text{div}_h (\rho^\varepsilon v^\varepsilon \otimes v^\varepsilon) + \partial_z (\rho^\varepsilon w^\varepsilon v^\varepsilon) \\
+ \frac{1}{\varepsilon^2} \nabla_h P(\rho^\varepsilon) = \mu \Delta_h v^\varepsilon + \lambda \nabla_h \text{div}_h v^\varepsilon + \partial_{zz} v^\varepsilon & \text{in } \Omega_h \times 2\mathbb{T}, \\
\partial_z \rho^\varepsilon = 0 & \text{in } \Omega_h \times 2\mathbb{T},
\end{cases}
\] (1.1)
subject to the periodic boundary condition and symmetry (SYM-CPE). We will show that the asymptotic system of (1.1), as $\varepsilon \to 0^+$, is the incompressible primitive equations, subject to the periodic boundary condition and symmetry (SYM-PE):

\begin{equation}
\begin{aligned}
\text{div}_h v_p + \partial_z w_p &= 0 \quad \text{in } \Omega_h \times 2\mathbb{T}, \\
\rho_0 (\partial_t v_p + v_p \cdot \nabla_h v_p + w_p \partial_z v_p) + \nabla_h (c_s^2 \rho_1) &= \mu \Delta_h v_p + \lambda \nabla_h \text{div}_h v_p + \partial_{zz} v_p \quad \text{in } \Omega_h \times 2\mathbb{T}, \\
\partial_z (c_s^2 \rho_1) &= 0 \quad \text{in } \Omega_h \times 2\mathbb{T},
\end{aligned}
\end{equation}

with $c_s^2 = \gamma \rho_0^{\gamma-1}$ and $\rho_0 = \text{constant}$. Here ρ_1 is the Lagrangian multiplier for the constraint (1.2) satisfying

\begin{equation}
\int_{\Omega_h \times 2\mathbb{T}} \rho_1 \, d\vec{x} = 0.
\end{equation}

In addition, due to the conservation of linear momentum of (1.2), we can impose the following condition for v_p:

\begin{equation}
\int_{\Omega_h \times 2\mathbb{T}} v_p \, dx dy dz = 0,
\end{equation}

for any time $t \geq 0$ as long as the solution exists.

We remark again that the restrictions of the solutions of (1.1) and (1.2) to the physical domain $\Omega_h \times (0,1)$ solve the original system (CPE), with physical boundary conditions (BC-CPE), and system (PE), with the physical boundary conditions (BC-PE), respectively, due to symmetry (SYM-CPE) and (SYM-PE), provided the solutions exist and are regular enough.

Historically, the limit system (1.2), besides being as the representation of the CPE in the p-coordinates, is introduced as the limit system of Boussinesq equations (referred to as BE hereafter) when the aspect ratio between the vertical scale and the horizontal scale is very small, while the Boussinesq equations are the limit equations of the full compressible hydrodynamic equations with small Mach number and low stratification (see, e.g., [56]). That is to say, starting from the compressible hydrodynamic equations, by taking the low Mach number limit and then the small aspect ratio limit (referred to as LMSAR), one will arrive, formally, at the BE and then at the PE. On the other hand, by taking the small aspect ratio limit and then the low Mach number limit (referred to as SARLM), at least formally, the limit system of the compressible hydrodynamic equations is also the PE with the CPE as a middle state. Depending on the order of asymptotic limits, this
gives us two directions from the hydrodynamic equations to the PE, which we will refer to as the PE diagram (see Figure 1 below). The LMSAR part of the PE diagram has been shown to hold on solid ground in various settings (see, e.g., [1, 27, 52, 70, 72, 83]). However, the validity of the SARLM part is relatively open. In order to fully justify the PE diagram, we investigate the low Mach number limit of the CPE in this work, which, as mentioned above, leads to the PE as the limit system. We remark that, the stratification effect of the gravity has been neglected in this work.

Each of the equations in the PE diagram have its own significances and have been studied separately in a large number of literatures. It will be certainly too ambitious to review all of those works. We refer readers to the study of compressible hydrodynamic equations in, e.g., the books [22, 59, 60, 65]. As the limit system of the PE diagram, the primitive equations (PE) have been investigated intensively since they are introduced in [54–57]. For instance, the global weak solutions are established in [56]. Local well-posedness with general data and global well-posedness with small data of strong solutions to the PE in three spatial dimensions have been studied in [32] by Guillén-González, Masmoudi and Rodríguez-Bellido. Petcu and Wirosoetisno in [71] investigate the Sobolev and Gevrey regularity of the solutions to the PE. In [36], in a domain with small depth, the authors address the global existence of strong solutions to PE. The well-posedness of unique global strong solutions is obtained by Cao and Titi in [12] (see, also, [7, 11, 13, 15, 30, 33, 34, 37, 46, 47, 49, 51] and the references therein for related studies). Considering the inviscid primitive equations, or hydrostatic incompressible Euler equations, the existence of solutions in the analytic function space and in the H^s space are established in [5, 48, 68]. Renardy in [73] shows that the linearization of the equations at certain shear flows is
ill-posed in the sense of Hadamard. Recently, the authors in [6,82] construct finite-time blowup for the inviscid PE in the absence of rotation (i.e., without the Coriolis force).

In this work, we show that the PE can be viewed as the limit system of the CPE with the zero Mach number limit. The zero Mach number limit of the compressible hydrodynamic equations is a vast subject which has been studied for decades. Fruitful results have been obtained since the early works of Klainerman and Majda in [40,41], where the authors investigate the vanishing Mach number limit of compressible Euler equations with well-prepared initial data (see also [76,77]). Later by Ukai [79], the theory of low Mach number limit of compressible Euler equations is extended to ill-prepared initial data (or called general data in some literatures). We remark here that the difference between the well-prepared and ill-prepared initial data, as in [69], is that the well-prepared initial data have excluded the acoustic waves, while the ill-prepared initial data allow the interaction of the solutions with the high-frequency acoustic waves. In \(\mathbb{R}^n \), \(n = 2,3 \), such high-frequency acoustic waves disperse as shown in [79], which implies strong convergences as the Mach number goes to zero. This can be also proved by applying the Strichartz’s estimate (see, e.g., [31,39,53]) for linear wave equations to the acoustic equations (see, e.g., [19]). In \(\mathbb{T}^n \), \(n = 2,3 \), the high-frequency acoustic waves interact with each other and lead to fast oscillations and weak convergences when taking the low Mach number limit. Such a fast oscillation phenomenon was first systematically studied in [28,75] for hyperbolic and parabolic systems, and by Lions and Masmoudi for compressible Navier-Stokes equations in [58]. We refer, for the comparison of the whole space case, i.e., in \(\mathbb{R}^n \) and the periodic domain case, i.e., in \(\mathbb{T}^n \), to [69]. See also, [16,18] for the studies in the Besov spaces. We acknowledge that the discussion here barely unveils the theory of the low Mach number limit, and we refer the reader to [1,3,23,27,58,67,69,70,72,83] and the references therein for more comprehensive studies and recent progress.

In this work, we will focus on investigating the low Mach number limit of (1.1) with well-prepared initial data. The convergence of the solutions of the CPE to the solution of the PE is in the strong sense. Furthermore, we are also able to obtain explicit convergence rate (see Theorem 1.2 below). In particular, we obtain a class of global large solutions to (1.1) with \(\varepsilon \) small enough.

We remark that in an upcoming paper [63], we will consider the low Mach number limit of (1.1) with ill-prepared initial data, i.e., initial data with large, high-frequency acoustic waves.
1.2 The low Mach number limit problem and main theorem

In order to describe the aforementioned asymptotic limit, we study \((1.1)\) with \((\rho^\varepsilon, v^\varepsilon, w^\varepsilon)\) close to an asymptotic state \((\rho_0, v_p, w_p)\), where \((\rho_0, v_p, w_p)\) satisfies \((1.2)\). For any \(\varepsilon > 0\), the following ansatz is imposed:

\[
\begin{align*}
\rho^\varepsilon &:= \rho_0 + \varepsilon^2 \rho_1 + \xi^\varepsilon, \\
v^\varepsilon &:= v_p + \psi^{\varepsilon,h}, \\
w^\varepsilon &:= w_p + \psi^{\varepsilon,z}.
\end{align*}
\]

(1.5)

Recall that \(\rho_1\) has zero average in the domain (see \((1.3)\)). This is motivated by \([35]\). In addition, we shall employ the notation

\[
\zeta^\varepsilon := \varepsilon^2 \rho_1 + \xi^\varepsilon = \rho^\varepsilon - \rho_0.
\]

For the sake of convenience, from time to time hereafter, we may drop the superscript \(\varepsilon\) from the functions. That is, we employ the notations \(\rho = \rho^\varepsilon, v = v^\varepsilon, w = w^\varepsilon, \xi = \xi^\varepsilon, \psi^h = \psi^{\varepsilon,h}, \psi^z = \psi^{\varepsilon,z}, \zeta = \zeta^\varepsilon\) throughout this work whenever there is no confusion. Consequently, from \((1.1)\) and \((1.2)\), the new unknown \((\xi, \psi^h, \psi^z)\) is governed by the following system:

\[
\begin{align*}
\partial_t \xi + \rho_0 (\text{div}_h \psi^h + \partial_z \psi^z) &= - (\text{div}_h (\xi v) + \partial_z (\xi w)) \\
&\quad - \varepsilon^2 (\partial_t \rho_1 + \text{div}_h (\rho_1 v) + \partial_z (\rho_1 w)) \\
\rho \partial_t \psi^h + \rho v \cdot \nabla_h \psi^h + \rho w \partial_z \psi^h + \nabla_h (\varepsilon^{-2} (\rho^\gamma - \rho_0^\gamma - \varepsilon c_s^2 \rho_1)) &= \mu \Delta_h \psi^h + \lambda \nabla_h \text{div}_h \psi^h + \partial_{zz} \psi^h + \rho_0^{-1} (\varepsilon^2 \rho_1 + \xi) \\
&\quad \times (\nabla_h (c_s^2 \rho_1) - \mu \Delta_h v_p - \lambda \nabla_h \text{div}_h v_p - \partial_{zz} v_p) \\
&\quad - \rho \psi^h \cdot \nabla_h v_p - \rho \psi^z \partial_z v_p \\
\partial_t \xi &= 0
\end{align*}
\]

(1.6)

Observe that owing to the symmetry in \((\text{SYM-CPE})\) and \((\text{SYM-PE})\), the following conditions hold automatically

\[
(\partial_z v, \partial_z v_p, \partial_z \psi^h)|_{z \in \mathbb{Z}} = 0, \quad (w, w_p, \psi^z)|_{z \in \mathbb{Z}} = 0,
\]

(1.7)

for smooth enough functions, i.e., whenever one can make sense of these traces for \(z \in \mathbb{Z}\). Recalling that \(c_s^2 = \gamma \rho_0^{-1}\), we note that

\[
\rho^\gamma - \rho_0^\gamma - \varepsilon^2 c_s^2 \rho_1 = \gamma \rho_0^{-1} (\rho - \rho_0) + \gamma (\gamma - 1) \int_{\rho_0}^\rho (\rho - y) y^{\gamma-2} \, dy - \varepsilon^2 c_s^2 \rho_1
\]

\[
= c_s^2 \xi + \mathcal{R},
\]

8
where
\[
R = R(\zeta) := \gamma(\gamma - 1) \int_{\rho_0}^{\rho} (\rho - y) y^{\gamma - 2} \, dy \leq C \zeta^2 \leq C (\varepsilon^4 \rho_1^2 + \xi^2),
\] (1.8)
with \(C = C(\| \rho \|_L^\infty, \| \rho_0 \|_L^\infty) \). Therefore, by denoting
\[
Q_p := \rho_0^{-1} (\nabla h(c_s^2 \rho_1) - \mu \Delta h v_p - \lambda \nabla h \text{div}_h v_p - \partial_z v_p),
\]
\[
F_1 := \zeta Q_p,
\]
\[
F_2 := -\rho \psi_h \cdot \nabla h v_p - \rho \psi^z \partial_z v_p,
\]
\[
G_1 := -(\text{div}_h (\xi v) + \partial_z (\xi w)),
\]
\[
G_2 := -\varepsilon^2 (\partial_t \rho_1 + \text{div}_h (\rho_1 v) + \partial_z (\rho_1 w)),
\] (1.9)
we can write system (1.6) as,
\[
\begin{aligned}
\partial_t \xi + \rho_0 (\text{div}_h \psi^h + \partial_z \psi^z) &= G_1 + G_2 \quad \text{in } \Omega_h \times 2T, \\
\rho \partial_t \psi^h + \rho v \cdot \nabla h \psi^h + \rho w \partial_z \psi^h + \nabla h (\varepsilon^2 c_s^2 \xi) &= \mu \Delta h \psi^h + \lambda \nabla h (\varepsilon^{-2} \zeta^2) \quad \text{in } \Omega_h \times 2T, \\
\partial_z \xi &= 0 \quad \text{in } \Omega_h \times 2T.
\end{aligned}
\] (1.10)

In order to recover the vertical velocity perturbation \(\psi^z \) from (1.1), we introduce the following notations, for any function \(f \) in \(\Omega_h \times 2T \), which is also even in the \(z \)-variable:
\[
\overline{f}(x, y, t) := \int_0^1 f(x, y, z', t) \, dz' \quad \text{and} \quad \tilde{f} := f - \overline{f}.
\]
The periodicity and symmetry of \(f \) imply that \(\overline{f}(x, y, t) = \int_k^{k+1} f(x, y, z', t) \, dz' \) for any \(k \in \mathbb{Z} \). Notice that from (1.11), \(\rho \) is independent of the vertical variable \(z \). Then by averaging (1.11) over the vertical direction, thanks to (1.7), one will get
\[
\partial_t \rho + \text{div}_h (\rho \overline{v}) = 0, \quad \text{and after comparing with (1.11),}
\]
\[
\text{div}_h (\rho \overline{v}) + \partial_z (\rho w) = 0.
\]
In particular, from the above, the vertical velocity \(w \) is determined through \(\rho, v \) by the formula, thanks to (1.7):
\[
\rho w = -\int_0^z \text{div}_h (\rho \overline{v}) \, dz' = -\int_0^z (\rho \text{div}_h v_p + \rho \text{div}_h \psi^h - \rho \text{div}_h \overline{\psi^h})
\]
\[v \cdot \nabla_h \rho - \nabla \cdot (\nabla_h \rho) \]
and therefore

\[\rho \psi^z = \rho w - \rho w_p = -\int_0^z (\rho \text{div}_h \tilde{\psi}^h + \tilde{\psi} \cdot \nabla_h \rho) \, dz' \]

\[= -\int_0^z (\text{div}_h (\rho \tilde{\psi}^h) + \tilde{v}_p \cdot \nabla_h \rho) \, dz', \]
(1.12)

where we have substituted the following identity thanks to (1.2) and (1.7),

\[w_p = -\int_0^z \text{div}_h v_p \, dz'. \]
(1.13)

Such facts imply that in (1.1), (1.2) and (1.10), the vertical velocities and the vertical perturbation, i.e., \(w^\varepsilon, w_p^\varepsilon, \psi^\varepsilon, \), are fully determined by \(v^\varepsilon, v_p^\varepsilon, \rho^\varepsilon \).

Therefore, there is no need to impose initial data for \(w^\varepsilon, w_p^\varepsilon, \psi^\varepsilon, \).

System (1.10) (or equivalently (1.6)) is complemented with initial data,

\[(\xi, \psi^h)|_{t=0} = (\xi_{in}, \psi_{in}^h) \in H^2(\Omega_h \times 2\mathbb{T}; \mathbb{R}) \times H^2(\Omega_h \times 2\mathbb{T}; \mathbb{R}^2) , \]

where \(\partial_z \xi_{in} = 0 \) and \(\psi_{in}^h \) is even in the \(z \)-variable,

\[(\xi_{in,1}, \psi_{in,1}^h) \in L^2(\Omega_h \times 2\mathbb{T}) \times L^2(\Omega_h \times 2\mathbb{T}), \]

with the compatibility conditions:

\[\begin{align*}
\xi_{in,1} &= -\rho_0 (\text{div}_h \psi_{in}^h + \partial_z \psi_{in}^z) - (\text{div}_h (\xi_{in} v_{in}^\varepsilon) + \partial_z (\xi_{in} w_{in}^\varepsilon)) \\
&\quad - \varepsilon^2 (\rho_{1, in,1} + \text{div}_h (\rho_{1, in} v_{in}^\varepsilon) + \partial_z (\rho_{1, in} w_{in}^\varepsilon)) \quad \text{in } \Omega_h \times 2\mathbb{T}, \\
\rho_{in}^\varepsilon \psi_{in,1}^h + \rho_{in}^\varepsilon v_{in}^\varepsilon \cdot \nabla_h \psi_{in}^h + \rho_{in}^\varepsilon w_{in}^\varepsilon \partial_z \psi_{in}^h \\
&\quad + \nabla_h (\varepsilon^2 (\rho_{in}^\varepsilon - \rho_0 - \varepsilon^2 \varepsilon_{s, in}^2)) = \mu \Delta_h \psi_{in}^h + \lambda \text{div}_h \psi_{in}^h \\
&\quad + \partial_{zz} \psi_{in}^h + \rho_0^\varepsilon (\varepsilon^2 \rho_{in,1} + \xi_{in}) (\nabla_h (\varepsilon_{s, in}^2) - \mu \Delta v_{p, in} \\
&\quad - \lambda \text{div}_h v_{p, in} - \partial_{zz} v_{p, in} - \rho_{in}^\varepsilon \psi_{in}^h \cdot \nabla_h v_{p, in} - \rho_{in}^\varepsilon \psi_{in}^h \partial_z v_{p, in} \\
&\quad \text{in } \Omega_h \times 2\mathbb{T}, \quad \partial_z \xi_{in} = 0 \text{ and } \partial_z \xi_{in,1} = 0 \quad \text{in } \Omega_h \times 2\mathbb{T}, \quad \text{with } (\xi_{in,1}, \psi_{in,1}^h) \end{align*} \]

\[(1.15)\]

where \(\rho_{in}^\varepsilon = \rho_0 + \varepsilon^2 \rho_{1, in} + \xi_{in}, \ v_{in}^\varepsilon = v_{p, in} + \psi_{in}^h, \ w_{in}^\varepsilon = w_{p, in} + \psi_{in}^z, \) and \(\psi_{in}^z \)

is given by

\[\rho_{in}^\varepsilon \psi_{in}^z = -\int_0^z (\text{div}_h (\rho_{in}^\varepsilon \tilde{\psi}_{in}^h) + \tilde{v}_{p, in} \cdot \nabla_h \rho_{in}^\varepsilon) \, dz'. \]

Here \(v_{p, in}, \rho_{in,1}, \rho_{1, in,1}, w_{p, in} \) are initial values of \(v_p, \rho_1, \partial_z \rho_1, w_p \), respectively, while \(w_{p, in} \) is given by \(w_{p, in} = -\int_0^z \text{div}_h v_{p, in} \, dz'. \)

It is worth stressing that we will chose the initial time derivatives of the perturbations, i.e., \(\varepsilon^{-1} \xi_{in,1}, \psi_{in,1}^h \) in (1.15), to be bounded, uniformly in \(\varepsilon \).
\(\text{(1.13)} \)

\[\rho \in H^1(\Omega_h \times 2T), \]

\[\text{div} v_{p,\text{in}} = 0, \quad \text{in} \Omega_h \times 2T. \]
for some positive constants c, C. In addition, if $v_{p,\text{in}} \in H^s(\Omega_h \times 2T)$ for any integer $s \geq 2$, there is a positive constant $C_{p,\text{in},s}$ depending only on $\|v_{p,\text{in}}\|_{H^s}$ such that

$$\sup_{0 \leq t < \infty} \left(\|v_p(t)\|_{H^s}^2 + \|\partial_t v_p(t)\|_{H^{s-2}}^2 \right) + \int_0^\infty \left(\|v_p(t)\|_{H^{s+1}}^2 \right) dt \leq C_{p,\text{in},s}.$$

Proof. The local well-posedness of solutions to (1.2) in the function space H^s has been established in [71]. What is left is the global regularity estimate, which is a direct consequence of Proposition 3, below.

Remark 2. We only have to be careful about the different estimates caused by the viscosity tensor. In particular, it is the L^q estimate of v_p, below in section 5, that requires the constraints on the viscosity coefficients. For solutions with H^2 initial data, the result can be found in [52]. The new thing we treat here is the case when $v_{p,\text{in}} \in H^s$, for $s > 2$.

Now we can state our main theorem in this work.

Theorem 1.2 (Low Mach number limit of the CPE). For $\lambda < 4\mu < 12\lambda$, suppose $v_{p,\text{in}} \in H^s(\Omega_h \times 2T)$, with integer $s \geq 3$, and it satisfies the compatibility conditions (1.17). Also, we complement (1.10) with initial data $(\xi_{\text{in}}, \psi_{\text{in}}^h) \big|_{t=0} = (\xi_{\text{in}}, \psi_{\text{in}}^h) \in H^2(\Omega_h \times 2T) \times H^2(\Omega_h \times 2T)$ as in (1.14), which satisfies the compatibility conditions (1.15). Recall that we also require $v_{p,\text{in}}, \psi_{\text{in}}^h$ be even in the z-variable. Then there exists a positive constant $\epsilon_0 \in (0, 1)$ small enough, such that if $\epsilon \in (0, \epsilon_0)$ and $E_{\text{in}} \leq \epsilon^2$, there exists a global unique strong solution $(\xi^\epsilon, \psi^{\epsilon,h})$ to system (1.10). In particular, the following regularity is satisfied:

$$\xi^\epsilon \in L^\infty(0,\infty; H^2(\Omega_h \times 2T)),$$

$$\partial_t \xi^\epsilon \in L^\infty(0,\infty; L^2(\Omega_h \times 2T)) \cap L^2(0,\infty; L^2(\Omega_h \times 2T)),$$

$$\nabla_h \xi^\epsilon \in L^2(0,\infty; H^1(\Omega_h \times 2T)),$$

$$\psi^{\epsilon,h} \in L^\infty(0,\infty; H^2(\Omega_h \times 2T)),$$

$$\partial_t \psi^{\epsilon,h} \in L^\infty(0,\infty; L^2(\Omega_h \times 2T)) \cap L^2(0,\infty; H^1(\Omega_h \times 2T)),$$

$$\nabla \psi^{\epsilon,h} \in L^2(0,\infty; H^2(\Omega_h \times 2T)).$$
In addition, we have the following estimate:

\[
\begin{align*}
\sup_{0 \leq t < \infty} & \left\{ \| \psi^{\varepsilon,h}(t) \|_{H^2}^2 + \| \partial_t \psi^{\varepsilon,h}(t) \|_{L^2}^2 + \| \varepsilon^{-1} \xi^{\varepsilon}(t) \|_{H^2}^2 \\
& + \| \partial_t \xi^{\varepsilon}(t) \|_{L^2}^2 \right\} + \int_0^\infty \left\{ \| \nabla \psi^{\varepsilon,h}(t) \|_{H^2}^2 + \| \varepsilon \partial_t \psi^{\varepsilon,h}(t) \|_{H^3}^2 \\
& + \| \varepsilon^{-1} \nabla \xi^{\varepsilon}(t) \|_{H^1}^2 + \| \partial_t \xi^{\varepsilon}(t) \|_{L^2}^2 \right\} dt \leq C \varepsilon^2.
\end{align*}
\]

for some positive constant \(C \) depending only on \(\| v_{p,\text{in}} \|_{H^3} \), which is independent of \(\varepsilon \). In particular, \((\rho^\varepsilon, v^\varepsilon, w^\varepsilon)\) as in (1.5) is a globally defined strong solution to (1.1) and the following asymptotic estimate holds:

\[
\begin{align*}
\sup_{0 \leq t < \infty} & \left\{ \| \psi^\varepsilon(t) - \psi(t) \|_{H^2}^2 + \| \rho^\varepsilon(t) - \rho_0 \|_{H^2}^2 \\
& + \| w^\varepsilon(t) - w(t) \|_{H^1}^2 \right\} \leq C \varepsilon^2,
\end{align*}
\]

for some positive constant \(C \) depending only on \(\| v_{p,\text{in}} \|_{H^3} \), which is independent of \(\varepsilon \), where \(w^\varepsilon, w \) are given as in (1.11), (1.13), respectively.

Remark 3. According to (1.18), the time derivatives, in comparison to the spatial derivatives, have larger perturbations. However, thanks to the well-prepared data setting, they are bounded.

Remark 4. In addition to (1.3), thanks to the conservation of mass and momentum in (1.1), we can impose the following conditions for \(\rho, v \):

\[
\int_{\Omega_h \times 2T} \rho \, dx \, dy \, dz = \rho_0 |\Omega_h \times 2T|, \quad \int_{\Omega_h \times 2T} \rho v \, dx \, dy \, dz = 0.
\]

Then with a little more effort, under the same assumptions as in Theorem 1.2, one can further conclude that the perturbation energy \(\mathcal{E}(t) \) exponentially decays as time grows. This can be shown as follows. Consider any integer \(s \geq 1 \) and initial data \(v_{p,\text{in}} \in H^s(\Omega) \), satisfying the compatibility condition (1.17), as in Theorem 1.1. Then the estimates in Theorem 1.1 hold. Next, in the proof of Proposition 3, below, the differential inequalities (for example, (5.26) with \(s = s - 1 \)) yield:

\[
\frac{d}{dt} \| v_p \|_{H^s}^2 + c' \| v_p \|_{H^{s+1}}^2 \leq \mathcal{Y} \| v_p \|_{H^s}^2,
\]

\[13\]
for any $s \geq 1$ and some positive constant c' with $\int_0^\infty Y dt < \infty$. This implies,

$$\frac{d}{dt} \left\{ e^{c't} \| v_p \|_{H^s}^2 \right\} \leq Y e^{c't} \| v_p \|_{H^s}^2.$$

Thus after applying Grönwall’s inequality, one can obtain that

$$\| v_p(t) \|_{H^s}^2 \lesssim e^{-c't}.$$

Furthermore, multiply (1.21) with $e^{c''t}$, for some $c'' \in (0, c')$, and integrate the resultant in the time variable; we deduce that, for arbitrary positive time $T \in (0, \infty),$

$$\int_0^T e^{c''t} \| v_p(t) \|_{H^{s+1}}^2 dt \leq \int_0^T Y(t) e^{c''t} \| v_p(t) \|_{H^s}^2 dt + \| v_p(0) \|_{H^s}^2$$

$$- e^{c''T} \| v_p(T) \|_{H^s}^2 + c'' \int_0^T e^{c''t} \| v_p(s) \|_{H^s}^2 dt < \infty.$$

Then, we have the following estimate of the H^s norm of v_p:

$$\sup_{0 \leq t < \infty} e^{c_s t} \| v_p(t) \|_{H^s}^2 + \int_0^\infty e^{c_s t} \| v_p(t) \|_{H^{s+1}}^2 < \infty,$$

for $s \geq 1$ and some positive constant c_s. With such estimates, similar arguments as in the proof of Proposition 3 (see, for example, (5.29)), one can conclude that the time derivative of v_p will have similar estimates. That is:

$$\begin{cases}
\int_0^\infty e^{c_s t} \| \partial_t v_p(t) \|_{L^2}^2 < \infty, \\
\sup_{0 \leq t < \infty} e^{c_s t} \| \partial_t v_p(t) \|_{H^{s+2}}^2 + \int_0^\infty e^{c_s t} \| \partial_t v_p(t) \|_{H^{s+1}}^2 < \infty,
\end{cases}$$

for $s \geq 2$.

Then, following the same lines as in Corollary 1 below, will yield

$$\int_0^\infty e^{c_P t} \mathcal{H}_p(t) dt < \infty,$$

(1.22)

for some positive constant c_p, where $\mathcal{H}_p(t)$ is defined in (3.4), below.

On the other hand, from the conservation of mass and momentum (1.20), one can derive the Poincaré type inequalities,

$$\| \psi^{t,h} \|_{L^2} \lesssim \| \nabla \psi^{t,h} \|_{L^2} + \tilde{Q}_2, \quad \| \xi^t \|_{L^2} \lesssim \| \nabla \xi^t \|_{L^2},$$
where \tilde{Q}_2 is at least quadratic of the perturbations. After applying these inequalities, the inequality in (3.51), below, can be written as,

$$\frac{d}{dt}E_{LM} + C_1 E_{LM} \lesssim \mathcal{H}_p \varepsilon^2,$$

for some positive constant C_1, provided $E \lesssim \varepsilon^2$ and ε small enough. Here, \mathcal{E} and E_{LM} are defined in (2.2) and (3.48), respectively. Thus together with (1.22), this inequality implies

$$e^{C_2 t} E_{LM}(t) < \infty,$$

for some positive constant C_2. Relation (3.50) yields the decay of the perturbation energy E as we claim. We leave the details to readers.

This work will be organized as follows. In section 2, we summarize the notations which will be commonly used in later paragraphs. Section 3 focuses on the ε-independent a priori estimates, which are the foundation of the low Mach number limit. In section 4, we focus on the proof of Theorem 1.2. This will be shown through a continuity argument. Finally in section 5, we summarize the proof of Theorem 1.1.

2 Preliminaries

We use the notations

$$\int \cdot \, d\vec{x} = \int_{\Omega_h \times 2T} \cdot \, dx \, dy \, dz, \quad \int_{\Omega_h} \cdot \, dx \, dy,$$

to represent the integrals in Ω and Ω_h respectively. Hereafter, $\partial_h \in \{\partial_x, \partial_y\}$ represents the horizontal derivatives, and ∂_z represents the vertical derivative.

We will use $|\cdot|$, $\|\cdot\|$ to denote norms in $\Omega_h \subset \mathbb{R}^2$ and $\Omega_h \times 2T \subset \mathbb{R}^3$, respectively. After applying Ladyzhenskaya’s and Agmon’s inequalities in Ω_h and Ω, directly we have

$$\|f\|_{L^4} \leq C \|f\|_{L^2}^{1/2} \|\nabla_h f\|_{L^2}^{1/2} + |f|_{L^\infty} \leq C \|f\|_{L^2}^{1/2} |f|_{H^2}^{1/2},$$

$$\|f\|_{L^3} \leq C \|f\|_{L^2}^{1/2} \|\nabla f\|_{L^2}^{1/2} + \|f\|_{L^2},$$

for the function f with bounded right-hand sides. Also, applying Minkowski’s and Hölder’s inequalities yields

$$\|F\|_{L^q} \leq \int_0^1 |f(z)|_{L^q} \, dz \leq C \|f\|_{L^r},$$

where \tilde{Q}_2 is a constant.
and hence \(\| \tilde{f} \|_{L^q} \leq C \| f \|_{L^q}, \ q \in [1, \infty) \).

We use \(\delta > 0 \) to denote an arbitrary constant which will be chosen later adaptively small. Correspondingly, \(C_\delta \) is some positive constant depending on \(\delta \). In addition, for any quantities \(A \) and \(B \), \(A \lesssim B \) is used to denote that there exists a positive constant independent of the solutions such that \(A \leq CB \).

The following energy and dissipation functionals will be employed
\[
\begin{align*}
\mathcal{E}(t) &:= \| \psi^h(t) \|^2_{H^2} + \| \varepsilon \psi^h(t) \|^2_{L^2} + \| \varepsilon^{-1} \xi(t) \|^2_{H^2} + \| \xi(t) \|^2_{L^2}, \quad (2.2) \\
\mathcal{D}(t) &:= \| \nabla \psi^h(t) \|^2_{H^2} + \| \varepsilon \psi^h(t) \|^2_{H^1} + \| \varepsilon^{-1} \nabla \xi(t) \|^2_{H^1} \\
&\quad + \| \xi(t) \|^2_{L^2}. \quad (2.3)
\end{align*}
\]

Then \(\mathcal{E}(0) = \mathcal{E}_{in} \), where \(\mathcal{E}_{in} \) is as in (1.16). In this work, we shall use \(Q(\mathcal{E}) \) to denote a polynomial quantity, with positive coefficients, of \(\sqrt{\mathcal{E}} \) and \(Q(0) = 0 \). In general, \(Q(\cdot) \) is a generic polynomial quantity, with positive coefficients, of the arguments and \(Q(0) = 0 \).

3 \(\varepsilon \)-independent a priori estimate

This section is devoted to show the following:

Proposition 1. For any \(T > 0 \), \(t \in [0, T] \), suppose that the solution \((v_p, \rho_1)\) with \(w_p \) given by (1.13) to (1.2) satisfies
\[
\begin{align*}
\| v_p(t) \|_{H^3}, \| v_p(t) \|_{L^2}, \| \rho_1(t) \|_{H^2}, \| \rho_1(t) \|_{L^2}, \| w_p(t) \|_{H^1} &\leq C, \\
\int_0^T (\| v_p(t) \|^2_{H^3} + \| v_p(t) \|^2_{H^1} + \| \rho_1(t) \|^2_{L^2} + \| \rho_1(t) \|^2_{H^1}) \ dt &\leq C, \quad (3.1)
\end{align*}
\]

for some positive constant \(C \), and
\[
\frac{1}{2} \rho_0 < \rho < 2\rho_0 \quad \text{in} \ (\Omega_h \times 2T) \times [0, T). \quad (3.2)
\]

Then any solution \((\psi^h, \xi)\) to (1.10), with initial data as in (1.14), provided that it exists in the time interval \([0, T]\), with \(\psi^\varepsilon \) given by (1.12), satisfies,
\[
\begin{align*}
\sup_{0 \leq t \leq T} \mathcal{E}(t) + \int_0^T \mathcal{D}(t) \ dt &\leq C' e^{C'Q(\mathcal{E}(t))} \left\{ \varepsilon^2 + \mathcal{E}_{in} \right. \\
&\quad + \left(\varepsilon^2 + (\varepsilon^2 + 1)Q(\mathcal{E}(t)) \right) \int_0^T \mathcal{D}(t) \ dt \Bigg\}.
\end{align*}
\quad (3.3)
\]
for some positive constant C' depending only on the bounds in (3.1). In particular, C' is independent of ε and T.

Remark 5. We remark here that, from the definition of $E(t)$ in (2.2) and (1.5), (3.2) automatically holds for ε small enough if $\sup_{0 \leq t \leq T} E(t) < \infty$ and (3.1) holds.

Throughout the rest of this section, it is assumed that (ξ, ψ^h) with ψ^z given by (1.12) is a solution to (1.10) which is smooth enough such that the estimates below can be established. To justify the arguments, one can employ the local well-posedness theory and the standard different quotient method to the corresponding lines below (replaced the differential operators by different quotients, for example). See, for instance, similar arguments in [61, 62].

We denote by $\mathfrak{G}_p(t)$ a polynomial, with positive coefficients, quantity of the arguments

$$
\| v_p(t)\|_{H^3}, \| v_{p,t}(t)\|_{L^2}, \| \rho_1(t)\|_{H^2}, \| \rho_{1,t}(t)\|_{L^2}, \| w_p(t)\|_{H^1},
$$

and

$$
\mathfrak{H}_p(t) := \| v_p(t)\|_{H^3}^2 + \| v_{p,t}(t)\|_{H^1}^2 + \| \rho_{1,t}(t)\|_{L^2}^2 + \| \rho_{1,t}(t)\|_{H^1}^2
$$

$$
+ \| \rho_1(t)\|_{H^2}^2 + \| w_p(t)\|_{H^2}^2 + \| v_p(t)\|_{H^2}.
$$

In particular, (3.1) of Proposition 1 is equivalent to

$$
\sup_{0 \leq t \leq T} \mathfrak{G}_p(t) + \int_0^T \mathfrak{H}_p(t) \, dt < C,
$$

for some positive constant C. For the sake of convenience, we will shorten the notations $\mathfrak{G}_p = \mathfrak{G}_p(t), \mathfrak{H}_p = \mathfrak{H}_p(t)$, below. We also remind the reader that we have assumed that (3.1) and (3.2) hold throughout this section.

3.1 Temporal derivatives

We start by performing the time derivative estimate to the solutions to system (1.10). Applying ∂_t to system (1.10) we will have the following system:

\[
\begin{align*}
\partial_t \xi_t + \rho_0(\text{div}_h \psi^h_t + \partial_z \psi^z_t) = & \, \mathcal{G}_{1,t} + \mathcal{G}_{2,t} & \text{in } \Omega_h \times 2\mathbb{T}, \\
\rho \partial_t \psi^h_t + \rho v \cdot \nabla_h \psi^h_t + \rho w \partial_z \psi^h_t + \nabla_h(\varepsilon^{-2} c_s^2 \xi_t) + \Delta_h \psi^h_t + \nabla_h(\varepsilon^{-2} \mathcal{R}_t) + \mathcal{H}_t = & \, \mathcal{F}_{1,t} + \mathcal{F}_{2,t} & \text{in } \Omega_h \times 2\mathbb{T},
\end{align*}
\]

(3.5)
Lemma 1. In addition to the assumptions in Proposition 1, suppose that (ξ, ψ^h), with ψ^z given by (1.12), is a smooth solution to (1.10) in the time interval $[0, T]$. We have

\[
\begin{align*}
\mathcal{H}_t &:= -\rho_t \psi^h_t - (\rho_t v + \rho v_z) \cdot \nabla h \psi^h - (\rho_t w + \rho w_z) \partial_z \psi^h. \\
\text{(3.6)}
\end{align*}
\]

We will show the following:

Proof. Take the L^2-inner product of (3.5) with $\varepsilon^2 \psi^h_t$. After applying integration by parts and substituting (1.1), we have the following:

\[
\begin{align*}
\frac{d}{dt} \left\{ \frac{1}{2} \varepsilon^2 \rho \left| \psi^h_t \right|^2 \right\} &- \int c_s^2 \varepsilon \xi_t \text{div}_h \psi^h_t \, d\bar{x} + \int \varepsilon \mu \varepsilon \nabla_h \psi^h_t \, d\bar{x} \\
&+ \lambda \varepsilon \text{div}_h \psi^h_t + \varepsilon \partial_z \psi^h_t \, d\bar{x} = \int \varepsilon^2 \mathcal{F}_{1,t} \cdot \psi^h_t \, d\bar{x} \\
&+ \int \varepsilon^2 \mathcal{F}_{2,t} \cdot \psi^h_t \, d\bar{x} - \int \nabla_h \mathcal{R}_t \cdot \psi^h_t \, d\bar{x} + \int \varepsilon^2 \mathcal{H}_t \cdot \psi^h_t \, d\bar{x}.
\end{align*}
\]

We substitute (3.5) into the second term on the left-hand side of the above equation and compute the identity, thanks to (1.7),

\[
\begin{align*}
- \int c_s^2 \xi_t \text{div}_h \psi^h_t \, d\bar{x} &= \int \rho_0^{-1} c_s^2 \xi_t (\partial_t \xi + \rho_0 \partial_z \bar{\psi}_t - \mathcal{G}_{1,t} - \mathcal{G}_{2,t}) \, d\bar{x} \\
&= \frac{d}{dt} \left\{ \frac{c_s^2}{2\rho_0} \int \xi_t^2 \, d\bar{x} \right\} - \rho_0^{-1} c_s^2 \int \xi_t \mathcal{G}_{1,t} \, d\bar{x} - \rho_0^{-1} c_s^2 \int \xi_t \mathcal{G}_{2,t} \, d\bar{x}.
\end{align*}
\]
Notice that

$$\zeta$$

Consequently, we have,

$$\frac{d}{dt}\left\{ \frac{1}{2}\|\rho^{1/2}\varepsilon\psi_{t}^{h}\|_{L^{2}}^{2} + \frac{c_{2}^{2}}{2\rho_{0}}\|\xi_{t}\|_{L^{2}}^{2}\right\} + \mu\|\varepsilon\nabla_{h}\psi_{t}^{h}\|_{L^{2}}^{2}$$

$$+ \lambda\|\varepsilon\text{div}_{h}\psi_{t}^{h}\|_{L^{2}}^{2} + \|\varepsilon\partial_{2}\psi_{t}^{h}\|_{L^{2}}^{2} = \int \varepsilon^{2}\mathcal{F}_{1,t} \cdot \psi_{t}^{h} \, d\vec{x}$$

$$+ \int \varepsilon^{2}\mathcal{F}_{2,t} \cdot \psi_{t}^{h} \, d\vec{x} + \rho_{0}^{-1}c_{2}^{2} \int \xi_{t}\mathcal{G}_{1,t} \, d\vec{x} + \rho_{0}^{-1}c_{2}^{2} \int \xi_{t}\mathcal{G}_{2,t} \, d\vec{x}$$

$$+ \int \varepsilon^{2}\mathcal{H}_{t} \cdot \psi_{t}^{h} \, d\vec{x} - \int \nabla_{h}\mathcal{R}_{t} \cdot \psi_{t}^{h} \, d\vec{x} =: \sum_{i=1}^{6} I_{i}. \tag{3.8}$$

Next we estimate the right-hand side of (3.8). After substituting (3.6) into \(I_{5}\), it can be written as

$$I_{5} = - \int \zeta_{t}|\varepsilon\psi_{t}^{h}|^{2} \, d\vec{x} - \int (\varepsilon^{2}\zeta_{t}v \cdot \nabla_{h}\psi_{t}^{h} + \varepsilon^{2}\rho v_{t} \cdot \nabla_{h}\psi_{t}^{h} \cdot \psi_{t}^{h}) \, d\vec{x}$$

$$- \int (\varepsilon^{2}\zeta_{t}w_{2}\partial_{2}\psi_{t}^{h} + \varepsilon^{2}\rho w_{t}\partial_{2}\psi_{t}^{h} \cdot \psi_{t}^{h}) \, d\vec{x} =: I_{5}^{1} + I_{5}^{2} \tag{3.8}$$

Notice that \(\zeta = \varepsilon^{2}\rho_{1} + \xi\) is independent of the \(z\) variable. Then, for every \(\delta > 0\) there exists a positive constant \(C_{\delta}\) such that

$$I_{5}^{1} \lesssim |\zeta_{t}|_{L^{2}} \int_{1}^{1} |\varepsilon\psi_{t}^{h}|^{2} \, d\vec{x} \, dz = |\zeta_{t}|_{L^{2}} \int_{0}^{1} |\varepsilon\psi_{t}^{h}|^{2} \, d\vec{x} \, dz$$

$$\lesssim |\zeta_{t}|_{L^{2}} \int_{0}^{1} \left(|\varepsilon\psi_{t}^{h}|_{L^{2}}|\varepsilon\nabla_{h}\psi_{t}^{h}|_{L^{2}} + |\varepsilon\psi_{t}^{h}|_{L^{2}}^{2}\right) \, dz$$

$$\lesssim |\zeta_{t}|_{L^{2}}(\|\varepsilon\psi_{t}^{h}\|_{L^{2}}\|\varepsilon\nabla_{h}\psi_{t}^{h}\|_{L^{2}} + \|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{2}) \lesssim \delta \|\varepsilon\nabla_{h}\psi_{t}^{h}\|_{L^{2}}$$

$$\quad + \delta \|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{2} + C_{\delta}(\varepsilon^{2}\rho_{1}, \rho_{2})^{2} \|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{2},$$

where we have applied the Minkowski, H"{o}lder’s, the Sobolev embedding and Young’s inequalities. On the other hand, \(I_{5}^{2}\) can be estimated directly using H"{o}lder’s, the Sobolev embedding and Young’s inequalities:

$$I_{5}^{2} \lesssim \varepsilon \|\zeta_{t}\|_{L^{2}} \|v\|_{L^{\infty}} \|\nabla_{h}\psi_{t}^{h}\|_{L^{2}}(\|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{1/2} \|\varepsilon\nabla_{h}\psi_{t}^{h}\|_{L^{2}}^{1/2} + \|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{2})$$

$$+ \|\rho\|_{L^{\infty}}(\|\varepsilon\|_{L^{2}} \|\psi_{t}^{h}\|_{L^{2}} + \|\varepsilon\psi_{t}^{h}\|_{L^{2}}) \|\nabla_{h}\psi_{t}^{h}\|_{L^{2}}$$

$$\times (\|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{1/2} \|\varepsilon\nabla_{h}\psi_{t}^{h}\|_{L^{2}}^{1/2} + \|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{2})$$

$$\lesssim \delta \|\varepsilon\nabla\psi_{t}^{h}\|_{L^{2}}^{2} + \delta \|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{2} + C_{\delta}(Q(\mathcal{E}))(\|\nabla_{h}\psi_{t}^{h}\|_{L^{2}}^{2} + \|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{2})$$

$$+ C_{\delta}(Q(\mathcal{E}) + 1 + \mathcal{G}_{\rho})\mathcal{H}_{\rho}(\|\psi_{t}^{h}\|_{L^{2}}^{2} + \|\varepsilon\psi_{t}^{h}\|_{L^{2}}^{2}).$$
On the other hand, from (1.11) (or (1.12)), we have the identities:

\[w = w_p - \int_0^z \left(\text{div}_h \tilde{\psi}^h + \tilde{v} \cdot \nabla_h \log \rho \right) dz' = w_p + \psi^z, \]

\[w_t = w_{p,t} - \int_0^z \left(\text{div}_h \tilde{\psi}^h_t + \tilde{v}_t \cdot \nabla_h \log \rho + \tilde{v} \cdot \nabla_h (\log \rho)_t \right) dz' \]

\[= w_{p,t} + \psi^z_t. \]

Therefore, \(I_5''' \) can be written as

\[I_5''' = - \int \varepsilon^2 (\zeta (z w_p + \rho w_{p,t}) \partial_z (\psi^h \cdot \psi^h_t)) dz \]

\[+ \int \varepsilon^2 \int_0^z \left(\text{div}_h \tilde{\psi}^h + \tilde{v} \cdot \nabla_h \log \rho \right) dz' \times \left(\zeta (z \partial_z \psi^h \cdot \psi^h_t) \right) dz \]

\[+ \int \varepsilon^2 \int_0^z (\rho \text{div}_h \tilde{\psi}^h_t) dz' \times \left(\partial_z \psi^h \cdot \psi^h_t \right) dz \]

\[+ \varepsilon \int \left(\int_0^z \left| \nabla_h \psi^h \right|_{L^8} dz' \right) \times \left(\left| \zeta \right|_{L^2} \left| \partial_z \psi^h \right|_{L^8} \left| \psi^h_t \right|_{L^8} \right) dz \]

\[+ \varepsilon \int \left(\int_0^z \left| \nabla_h \psi^h \right|_{L^8} dz' \right) \times \left(\left| \nabla_h \zeta \right|_{L^8} \left| \partial_z \psi^h \right|_{L^8} \left| \psi^h_t \right|_{L^8} \right) dz \]

\[+ \varepsilon \int \left(\int_0^z \left| v_{p,t} \right|_{L^4} dz' \right) \times \left(\left| \rho \right|_{L^\infty} \left| \partial_z \nabla_h \psi^h \right|_{L^2} \left| \psi^h_t \right|_{L^4} \right) dz \]

\[+ \left| \rho \right|_{L^\infty} \left| \partial_z \psi^h \right|_{L^1} \left| \nabla_h \psi^h_t \right|_{L^2} \right) dz \leq \varepsilon (\left| \zeta \right|_{L^2} \left| v_p \right|_{H^2} \right) \]

\[+ \left| \nabla_h \zeta \right|_{L^1} \left| v_{p,t} \right|_{L^2} + \left| \rho \right|_{L^\infty} \left| v_{p,t} \right|_{H^1} \left| \partial_z \psi^h \right|_{H^1} \]

\[\times \left(\left| \varepsilon \nabla_h \psi^h_t \right|_{L^2} + \left| \psi^h_t \right|_{L^2} \right) \leq \delta \left| \varepsilon \nabla_h \psi^h_t \right|_{L^2}^2 + \delta \left| \psi^h_t \right|_{L^2}^2 \]

\[+ C_\delta (Q(E) + 1 + \mathcal{G}_p) \mathcal{G}_p \left| \psi^h \right|_{H^2}^2. \]
On the other hand, a straightforward estimate shows that

\[
I_{5,2}'' \lesssim \int_0^1 \left(|\nabla_h \psi^h|_{L^8} + |v|_{L^\infty} |\nabla_h \zeta|_{L^8} \right) \, dz \times \int_0^1 |\zeta_t|_{L^2} |\partial_z \psi^h|_{L^8} \, \varepsilon \psi_t^h \, dz
\]

\[
\lesssim \varepsilon \| \zeta \|_{L^2} \left(\| \nabla_h \psi^h \|_{H^1} + \| v \|_{H^2} \| \nabla_h \zeta \|_{H^1} \right) \| \partial_z \psi^h \|_{H^1}
\]

\[
\times \left(\| \varepsilon \nabla \psi_t^h \|_{L^2} + \| \varepsilon \psi_t^h \|_{L^2} \right) \lesssim \delta \| \varepsilon \nabla \psi^h \|_{L^2}^2 + \delta \| \varepsilon \psi^h \|_{L^2}^2
\]

\[
+ C_\delta Q(\mathcal{E}) \| \partial_z \psi^h \|_{H^1}^2 + C_\delta (Q(\mathcal{E}) + 1 + \mathcal{G}_p) \| \psi^h \|_{H^2}^2,
\]

To estimate \(I_{5,3}''' \), we apply integration by parts as below,

\[
I_{5,3}''' = \int \left[\varepsilon^2 \int_0^z \left(\rho \div h \tilde{\psi}_t^h + \tilde{h}_t \cdot \nabla_h \rho - \zeta_t \varepsilon_t \cdot \nabla_h \log \rho - \zeta_t \div_h \varepsilon \right) \right] \, dz
\]

\[
\times (\partial_z \psi^h \cdot \psi_t^h) \right] \, dz - \int \left[\varepsilon^2 \int_0^z \zeta_t \varepsilon_t \, dz \cdot \nabla_h (\partial_z \psi^h \cdot \psi_t^h) \right] \, dz,
\]

from which, we infer

\[
I_{5,3}''' \lesssim \int_0^1 \left(|\rho|_{L^\infty} \| \varepsilon \nabla \psi^h_t \|_{L^2} + |v_t|_{L^4} |\nabla_h \zeta|_{L^4} \right) \, dz
\]

\[
\times \int_0^1 |\partial_z \psi^h|_{L^4} \| \varepsilon \psi_t^h \|_{L^4} \, dz + \int_0^1 |\partial_z \psi^h|_{L^8} \| \varepsilon \psi_t^h \|_{L^4} \, dz
\]

\[
\times \int_0^1 \left(\varepsilon |\zeta_t|_{L^2} |v|_{\infty} |\nabla_h \zeta|_{L^8} + \varepsilon |\zeta_t|_{L^2} |\nabla_h v|_{L^8} \right) \, dz
\]

\[
+ \int_0^1 \left(|\partial_z \psi^h|_{L^\infty} \| \varepsilon \nabla \psi^h_t \|_{L^2} + |\nabla_h \partial_z \psi^h|_{L^4} \| \varepsilon \psi^h_t \|_{L^4} \right) \, dz
\]

\[
\times \int_0^1 \varepsilon |\zeta_t|_{L^2} |v|_{L^\infty} \, dz \lesssim \left(\| \rho \|_{L^\infty} \| \varepsilon \nabla \psi^h_t \|_{L^2}
\]

\[
+ \| \varepsilon v_{\rho_t} \|_{H^1} + \| \nabla_h \zeta \|_{H^1} \| \psi^h_t \|_{H^1} \| \varepsilon \psi^h_t \|_{L^2}^{1/2}
\]

\[
+ \| \varepsilon \psi^h_t \|_{L^2} + \| \nabla_h \zeta \|_{H^1} \| \psi^h_t \|_{H^1} \| \varepsilon \psi^h_t \|_{L^2} \| \nabla_h \psi_t^h \|_{L^2}
\]

\[
+ \| \varepsilon \psi^h_t \|_{L^2}^2 + \| \varepsilon v \|_{H^2} \| \nabla_h \zeta \|_{H^1} \| \psi^h_t \|_{H^2} \| \zeta_t \|_{L^2} \times \left(\| \varepsilon \nabla \psi^h_t \|_{L^2} + \| \varepsilon \psi^h_t \|_{L^2} \right)
\]

\[
\lesssim \delta \| \varepsilon \nabla \psi^h_t \|_{L^2}^2 + \delta \| \psi^h_t \|_{L^2}^2 + \varepsilon^2 C_\delta (Q(\mathcal{E}) + \mathcal{G}_p) \| \psi^h \|_{H^2}^2
\]

\[
+ C_\delta Q(\mathcal{E}) \| \varepsilon \psi^h_t \|_{L^2} \| \partial_z \psi^h \|_{H^1}^2 + C_\delta (Q(\mathcal{E}) + 1 + \mathcal{G}_p) \| \psi^h \|_{H^2}^2 \times \left(\| \psi^h \|_{H^2}^2 + \| \varepsilon \psi_t^h \|_{L^2}^2 \right).
\]
Therefore, we have shown

\[
I_5 \lesssim \delta \| \varepsilon \nabla \psi^h \|_{L^2}^2 + \delta \| \varepsilon \psi^h \|_{L^2}^2 + \varepsilon^2 C_\delta (Q(\mathcal{E}) + \mathfrak{S}_p) \| \psi^h \|_{H^2}^2 \\
+ C_\delta Q(\mathcal{E})(\| \varepsilon \psi^h \|_{L^2}^2 + \| \nabla \psi^h \|_{H^1}^2) \\
+ C_\delta (Q(\mathcal{E}) + 1 + \mathfrak{S}_p) \mathfrak{S}_p (\| \psi^h \|_{H^2}^2 + \| \varepsilon \psi^h \|_{L^2}^2).
\]

(3.10)

Next, after substituting (1.9) into \(I_2 \), it follows that

\[
I_2 = - \int \varepsilon^2 (\rho \psi^h \cdot \nabla_h v_{p,t} + \zeta \psi^h \cdot \nabla_h v_p + \rho \psi^h \cdot \nabla_h v_p) \cdot \psi^h \, d\overrightarrow{x} \\
- \int \varepsilon^2 (\rho \psi^h \cdot \nabla_h v_{p,t} + \zeta \psi^h \cdot \nabla_h v_p + \rho \psi^h \cdot \nabla_h v_p) \cdot \psi^h \, d\overrightarrow{x} =: I_2' + I_2''.
\]

Similarly as before,

\[
I_2' \lesssim \| \rho \|_{L^\infty} \| \nabla_h v_{p,t} \|_{L^2} \| \varepsilon \psi^h \|_{L^3} \| \psi^h \|_{L^2} + \varepsilon \| \rho \|_{L^\infty} \| \nabla_h v_{p,t} \|_{L^2} \\
\times \| \psi^h \|_{L^6} \| \psi^h \|_{L^3} + \varepsilon \| \nabla_h v_p \|_{L^\infty} \| \psi^h \|_{L^6} \| \nabla_h v_p \|_{L^2} \| \varepsilon \psi^h \|_{L^3} \\
\lesssim \| \rho \|_{H^2} \| \nabla_h v_{p,t} \|_{L^2} (\| \varepsilon \psi^h \|_{L^2}^3/2 \| \varepsilon \nabla \psi^h \|_{L^2}^{1/2} + \| \varepsilon \psi^h \|_{L^2}^2) \\
+ \varepsilon \| \psi^h \|_{H^1} \| \nabla_h v_{p,t} \|_{L^2} (\| \varepsilon \psi^h \|_{L^2}^{1/2} \| \varepsilon \nabla \psi^h \|_{L^2}^{1/2} + \| \varepsilon \psi^h \|_{L^2}^2) \\
+ \varepsilon \| \nabla_h v_p \|_{H^2} \| \psi^h \|_{H^1} \| \zeta \|_{L^2} (\| \varepsilon \psi^h \|_{L^2}^{1/2} \| \varepsilon \nabla \psi^h \|_{L^2}^{1/2} + \| \varepsilon \psi^h \|_{L^2}^2) \\
\lesssim \delta \| \varepsilon \nabla \psi^h \|_{L^2} + C_\delta Q(\mathcal{E}) \| \varepsilon \psi^h \|_{L^2}^2 + C_\delta (Q(\mathcal{E}) + 1 + \mathfrak{S}_p) \mathfrak{S}_p \| \varepsilon \psi^h \|_{L^2}^2 \\
+ \varepsilon^2 C_\delta \mathfrak{S}_p.
\]

On the other hand, after substituting (3.9), \(I_2'' \) can be written as

\[
I_2'' = \int \left[\varepsilon^2 \int_0^z \left(\text{div}_h \tilde{\psi}^h + \bar{v} \cdot \nabla_h \log \rho \right) \, dz \times \left(\rho \partial_z v_{p,t} + \zeta \partial_z v_p \cdot \psi^h \right) \right] \, d\overrightarrow{x} \\
+ \int \left[\varepsilon^2 \int_0^z \left(\text{div}_h \tilde{\psi}^h + \bar{v} \cdot \nabla_h \log \rho + \bar{v} \cdot \nabla_h (\log \rho)_t \right) \, dz \times \left(\rho \partial_z v_p \cdot \psi^h \right) \right] \, d\overrightarrow{x} =: I_{2,1}'' + I_{2,2}''.
\]

Then we have the following estimate:

\[
I_{2,1}'' \lesssim \int_0^1 \left(\| \nabla_h \psi^h \|_{L^4} + \| \bar{v} \|_{L^\infty} \| \nabla_h \zeta \|_{L^4} \right) \, dz \times \int_0^1 \left(\| \partial_z v_{p,t} \|_{L^2} \\
+ \varepsilon \| \zeta \|_{L^2} \| \partial_z v_p \|_{L^\infty} \| \varepsilon \psi^h \|_{L^4} \right) \, dz \lesssim (\| \bar{v} \|_{H^2} \| \nabla_h \zeta \|_{H^1}.
\]

22
\[+ \| \nabla_h \psi^h \|_{H^1} (\varepsilon \| \partial_z v_p \|_{L^2} + \varepsilon \| \zeta_t \|_{L^2} \| \partial_z v_p \|_{H^2}) \]
\[\times (\varepsilon \psi^h_t \|_{L^2}^{1/2} \| \varepsilon \nabla_h \psi^h \|_{L^2}^{1/2} + \| \varepsilon \psi^h_t \|_{L^2}) \lesssim \delta \| \varepsilon \nabla_h \psi^h \|_{L^2}^2 \]
\[+ C\delta Q(\mathcal{E}) \| \varepsilon \psi^h_t \|_{L^2}^2 + C\delta Q(\mathcal{E}) + 1 + \| \mathfrak{S}_p \|_p \| \varepsilon \psi^h_t \|_{L^2}^2 + \varepsilon^2 C\delta \delta_p. \]

To estimate \(I_{2,2}' \), we first apply integration by parts as below,
\[I_{2,2}' = \int \left[\varepsilon^2 \int_0^\epsilon \left(\rho \text{div}_h \widetilde{\psi}_t^h + \tilde{v} \cdot \nabla_h \rho - \zeta_t \tilde{v} \cdot \nabla_h \log \rho - \zeta_t \text{div}_h \tilde{v} \right) \right] d\tilde{x} - \int \left[\varepsilon^2 \left(\int_0^\epsilon \zeta_t \tilde{v} dz \right) \cdot \nabla_h (\partial_z v_p \cdot \psi^h_t) \right] d\tilde{x}, \]
which yields, similarly to the estimate of \(I_{5,3}' \),
\[I_{2,2}' \lesssim \int_0^1 \left(|\rho|_{L^\infty} |\varepsilon \nabla_h \psi^h_t|_{L^2} + |\varepsilon v_t|_{L^4} |\nabla_h \zeta|_{L^4} \right) dz \]
\[\times \int_0^1 |\partial_z v_p|_{L^4} |\varepsilon \psi^h_t|_{L^4} dz + \int_0^1 |\partial_z v_p|_{L^8} |\varepsilon \psi^h_t|_{L^8} dz \]
\[\times \int_0^1 \left(|\zeta_t|_{L^2} |v|_{L^\infty} |\nabla_h \zeta|_{L^8} + |\zeta_t|_{L^2} |\nabla_h v|_{L^8} \right) dz \]
\[+ \int_0^1 \left(|\partial_z v_p|_{L^\infty} |\varepsilon \nabla_h \psi^h_t|_{L^2} + |\nabla_h \partial_z v_p|_{L^4} |\varepsilon \psi^h_t|_{L^4} \right) dz \]
\[\times \int_0^1 |\zeta_t|_{L^2} |v|_{L^\infty} dz \lesssim (\| \rho \|_{L^\infty} \| \varepsilon \nabla_h \psi^h_t \|_{L^2} \]
\[+ \| \varepsilon v_p \|_{H^1} \| \nabla_h \zeta \|_{H^1}) \| \partial_z v_p \|_{H^1} (\| \varepsilon \psi^h_t \|_{L^2}^{1/2} \| \varepsilon \nabla_h \psi^h \|_{L^2}^{1/2} \]
\[+ \| \varepsilon \psi^h_t \|_{L^2}) \times \| \nabla_h \zeta \|_{H^1} + \| v \|_{H^2} (1 + \| \nabla_h \zeta \|_{H^1} \]
\[\times \| \partial_z v_p \|_{H^2} \| \zeta_t \|_{L^2} \] \[\lesssim \delta \| \varepsilon \nabla_h \psi^h \|_{L^2}^2 + C\delta Q(\mathcal{E}) \| \varepsilon \psi^h_t \|_{L^2}^2 + C\delta Q(\mathcal{E}) + 1 + \| \mathfrak{S}_p \|_p \| \varepsilon \psi^h_t \|_{L^2}^2 \]
\[\times (\| \varepsilon \psi^h_t \|_{L^2}^2 + \varepsilon^2). \]

Therefore,
\[I_2 \lesssim \delta \| \varepsilon \nabla_h \psi^h \|_{L^2}^2 + C\delta Q(\mathcal{E}) \| \varepsilon \psi^h_t \|_{L^2}^2 \]
\[+ C\delta Q(\mathcal{E}) + 1 + \| \mathfrak{S}_p \|_p \| \varepsilon \psi^h_t \|_{L^2}^2 + \varepsilon^2. \] (3.11)
Now, we will estimate I_3, which reads

$$
I_3 = -\rho_0^{-1} c_s^2 \int \left(\xi_t \text{div}_h (\xi_t v) + \xi_t \text{div}_h (\xi_t v_t) + \xi_t \partial_z (\xi_t w)
+ \xi_t \partial_z (\xi_t w_t) \right) \, d\vec{x} = -\frac{c_s^2}{2\rho_0} \int |\xi_t|^2 \text{div}_h \psi^h \, d\vec{x}

- \rho_0^{-1} c_s^2 \int \left(\xi_t \xi_t \text{div}_h \psi_t^h + \xi_t v_t \cdot \nabla_h \xi \right) \, d\vec{x}

\leq \delta \| \epsilon \|_{L^2} \| \xi_t \|_{L^2} \| \nabla_h \psi_t^h \|_{H^2} \| \nabla_h \psi_t^h \|_{L^2}, \tag{3.12}
$$

Here we have employed the facts that ξ is independent of the z-variable and that $\int_0^1 \text{div}_h v_p \, dz = \int_0^1 \text{div}_h v_{p,t} \, dz = 0$. The rest is straightforward. For instance, substituting (1.9) in I_1 yields

$$
I_1 = \rho_0^{-1} \int \epsilon \xi_t \left(\nabla_h (c_s^2 \rho_1 - \mu \Delta_h v_p - \lambda \nabla_h \text{div}_h v_p - \partial_{zz} v_p) \cdot \epsilon \psi_t^h \right) \, d\vec{x}

+ \rho_0^{-1} \int \epsilon \nabla_h (c_s^2 \rho_{1,t} - \mu \Delta_h v_{p,t} - \lambda \nabla_h \text{div}_h v_{p,t} - \partial_{zz} v_{p,t}) \cdot \epsilon \psi_t^h \, d\vec{x}

= \rho_0^{-1} \int \epsilon \xi_t \left(\nabla_h (c_s^2 \rho_1) - \mu \Delta_h v_p - \lambda \nabla_h \text{div}_h v_p - \partial_{zz} v_p \right) \cdot \epsilon \psi_t^h \, d\vec{x}

- \rho_0^{-1} \int \left(\epsilon c_s^2 \rho_{1,t} \nabla_h (\epsilon \psi_t^h) - \epsilon \mu \nabla_h v_{p,t} : \nabla_h (\epsilon \psi_t^h) \right) \, d\vec{x}

- \epsilon \lambda \text{div}_h v_{p,t} \text{div}_h (\epsilon \psi_t^h) - \epsilon \partial_z v_{p,t} \partial_z (\epsilon \psi_t^h) \right) \, d\vec{x}

\leq \epsilon \left(\| \nabla_h \rho_1 \|_{H^1} + \| \nabla v_p \|_{H^2} \right) \| \xi_t \|_{L^2} \left(\| \epsilon \nabla \psi_t^h \|_{L^2} + \| \epsilon \psi_t^h \|_{L^2} \right) \tag{3.13}
$$

We list estimates for I_4, I_6 below:

$$
I_4 = -\rho_0^{-1} c_s^2 \epsilon^2 \int \left(\xi_t (\rho_{1,tt} + \rho_{1,t} \text{div}_h \psi^h + v \cdot \nabla_h \rho_{1,t}) \right) \, d\vec{x} \lesssim \epsilon^2 \| \xi_t \|_{L^2} \left(\| \rho_{1,tt} \|_{L^2} \right)

+ \| \rho_{1,t} \|_{L^2} \| \nabla_h \psi^h \|_{H^2} + \| \nabla_h \rho_{1,t} \|_{L^2} \| v \|_{H^2}
$$
Indeed, after integrating (1.10) for some positive constant to (1.7), embedding inequalities, then directly, we have, after applying the Minkowski, Hölder and Sobolev (3.8) completes the proof.

where we have used the fact that from (1.8)

\[\int R_t \partial_t \psi_t^h \, d\bar{x} \leq \| \nabla h \psi_t^h \|_{L^2}^2 + \| \nabla \varphi \|_{H^1}^2 + \| \nabla \nabla h \|_{H^1} \approx \delta \| \nabla \psi_t^h \|_{L^2}^2 + \delta \| \nabla \psi_t^h \|_{H^2} + \varepsilon^2 C_\delta (Q(\mathcal{E}) + 1 + \Omega_{\rho_p}) \delta_p, \]

(3.14)

where we have used the fact that from (1.8)

\[|R_t| = |\gamma (\gamma - 1) \int_{\rho_0}^\rho \rho_t |\gamma - 2 \, dy| \leq |\gamma \rho_t (\rho^{-1} - \rho_0^{-1})| \leq C |\zeta| \| \zeta \|. \]

Summing up inequalities (3.10), (3.11), (3.12), (3.13), (3.14), (3.15) and (3.8) completes the proof.

The next lemma follows directly from system (1.10), and it shows the estimates of the temporal derivatives of \(\xi, \psi_t^h \) in terms of the spatial derivatives.

Lemma 2. Under the same assumptions as in Lemma 7, \[\| \xi_t \|_{L^2}^2 \leq C \| \nabla h \psi_t^h \|_{L^2}^2 + \varepsilon^2 Q(\mathcal{E})(\| \nabla h \psi_t^h \|_{H^1}^2 + \| \nabla \psi_t^h \|_{H^1}^2) \]

\[\| \nabla \nabla h \|_{H^1}^2 + \varepsilon^2 C_\delta (Q(\mathcal{E}) + 1 + \Omega_{\rho_p}) \delta_p, \]

(3.16)

for some positive constant \(C \) independent of \(\varepsilon \).

Proof. Indeed, after integrating (1.10) in the \(z \) variable, we have, thanks to (1.7),

\[\partial_t \xi + \rho_0 \nabla h \psi_t^h = -\nabla h (\xi) - \varepsilon^2 (\partial_t \rho_1 + \nabla h (\rho_1 \bar{v})). \]

Then directly, we have, after applying the Minkowski, Hölder and Sobolev embedding inequalities,

\[\| \xi_t \|_{L^2} = |\xi_t|_{L^2} \lesssim \int_0^1 |\nabla h \psi_t^h|_{L^2} \, dz + \int_0^1 (|\xi|_{L^4} \nabla h v|_{L^4} + |\nabla h \xi|_{L^4} \nabla h |_{L^4} + |\nabla \nabla h \psi_t^h|_{L^4}) \, dz \lesssim \| \nabla h \psi_t^h \|_{L^2} + \| \nabla \psi_t^h \|_{H^1} + \varepsilon \| \partial_t \psi_t^h \|_{H^1} + \varepsilon \| \psi_t^h \|_{H^1} + \| \xi_t \|_{H^1} \| \nabla h \psi_t^h \|_{H^1} + \varepsilon \| \partial_t \psi_t^h \|_{H^1} + \varepsilon \| \psi_t^h \|_{H^1} + \varepsilon^{-1} \| \xi_t \|_{H^1} \]

25
\[+ \varepsilon^2 \left(\| \rho_{1,t} \|_{L^2} + \| \rho_1 \|_{H^2} \| v_p \|_{H^2} + \| \rho_1 \|_{H^2} \| \psi^h \|_{H^2} \right) . \]

Taking square on both sides of the above inequality yields (3.16).

On the other hand, from (1.10), we have
\[\rho \partial_t \psi^h = -\rho v \cdot \nabla_h \psi^h - \rho w \partial_z \psi^h - \nabla_h (\varepsilon^{-2} \zeta^2 \xi) + \mu \Delta_h \psi^h + \lambda \nabla_h \text{div}_h \psi^h + \partial_{zz} \psi^h + F_1 + F_2 - \nabla_h (\varepsilon^{-2} R) . \]

Directly, we have
\[\| \psi^h \|_{L^2} \lesssim \| \rho \|_{L^\infty} \| v \|_{L^\infty} \| \nabla_h \psi^h \|_{L^2} + \varepsilon^{-1} \| \nabla_h \xi \|_{L^2} + \| \nabla^2 \psi^h \|_{L^2} \]
\[+ \| \varepsilon^{-1} \xi \|_{L^3} \| \nabla_h \xi \|_{L^6} + \| F_1 \|_{L^2} + \| F_2 \|_{L^2} + \| \rho w \partial_z \psi^h \|_{L^2} \]
\[\lesssim \varepsilon^{-1} \| \nabla_h \xi \|_{L^2} + \| \psi^h \|_{H^1} + Q(E) \| \varepsilon^{-1} \nabla h \xi \|_{H^1} + \| \nabla^2 h \|_{H^2} \]
\[+ (Q(E) + \varepsilon \| \rho_1 \|_{H^1}) \varepsilon \| \rho_1 \|_{H^2} + \| v_p \|_{H^2} \| \nabla_h \psi^h \|_{L^2} \]
\[+ \| F_1 \|_{L^2} + \| F_2 \|_{L^2} + \| \rho w \partial_z \psi^h \|_{L^2} , \]

where we have substituted the following inequality from (1.8),
\[|\nabla_h R| = |\gamma (\gamma - 1) \int_{\rho_0}^h \nabla_h \rho y^{\gamma-2} dy| \leq |\gamma \nabla_h \rho (\rho^{\gamma-1} - \rho_0^{\gamma-1})| \lesssim |\nabla h \zeta| \zeta . \]

From (1.11), (1.12), one has,
\[\rho w \partial_z \psi^h = \rho w_p \partial_z \psi^h = \int_0^z \rho \partial \psi^h v_p + \nabla_h \rho dz \partial_z \psi^h , \]
\[F_1 = \zeta Q_p , \]
\[F_2 = \rho \partial \psi^h v_p + \left(\int_0^z (\rho \partial \psi^h v_p + \nabla_h \rho dz) \partial_z v_p \right) \partial_z v_p . \]

Therefore,
\[\| F_1 \|_{L^2} + \| F_2 \|_{L^2} + \| \rho w \partial_z \psi^h \|_{L^2} \lesssim \| \zeta \|_{L^\infty} \| Q_p \|_{L^2} \]
\[+ \| \rho \|_{L^\infty} \| w_p \|_{L^3} \| \partial_z \psi^h \|_{L^6} + \| \psi^h \|_{L^\infty} \| \nabla_h v_p \|_{L^2} \]
\[+ \| \nabla h \psi^h \|_{L^3} \| \partial_z \psi^h \|_{L^3} + \| \nabla^2 \psi^h \|_{L^3} \| \partial_z v_p \|_{L^6} \]
\[\lesssim (\varepsilon^2 \| \rho_1 \|_{H^2} + \varepsilon \| \xi \|_{H^2}) \left(\| \rho_1 \|_{H^2} + \| v_p \|_{H^2} \right) \]
\[+ \| v_p \|_{H^2} + \| v_p \|_{H^2} + \| \nabla^2 \psi^h \|_{H^1} \| \psi^h \|_{H^2} \]
\[+ \| v_p \|_{H^2} + \| \psi^h \|_{H^2} \lesssim \varepsilon^2 \| \rho_1 \|_{H^2} + \varepsilon \| \xi \|_{H^2} + \| \nabla h \xi \|_{H^1} . \]

Summing the above inequalities yields (3.17). \qed
3.2 Horizontal derivatives

We derive the required estimates for the horizontal derivatives in this subsection. After applying $\partial_{hh} = \partial_h^2$ to system \((1.10)\), we obtain the following system:

$$ \begin{aligned} \partial_t \xi_{hh} + \rho_0 (\text{div}_h \psi_{hh}^h + \partial_z \psi_{hh}^z) &= G_{1, hh} + G_{2, hh} \quad \text{in } \Omega, \\
\rho \partial_t \psi_{hh}^h + \rho v \cdot \nabla_h \psi_{hh}^h + \rho w \partial_z \psi_{hh}^h + \nabla_h (\varepsilon^{-2} c_s^2 \xi_{hh}) &= \mu \Delta_h \psi_{hh}^h + \lambda \nabla_h \text{div}_h \psi_{hh}^h + \partial_z \psi_{hh}^h + F_{1, hh} \\
& \quad + F_{2, hh} - \nabla_h (\varepsilon^{-2} R_{hh}) + H_{hh} \quad \text{in } \Omega, \end{aligned} \tag{3.19} $$

where

$$ H_{hh} := -\rho_{hh} \psi_{t}^h - (\rho v)_{hh} \cdot \nabla_h \psi^h - (\rho w)_{hh} \partial_z \psi^h - 2 \rho_h \psi_{hh}^h \\
- 2(\rho v)_h \cdot \nabla_h \psi_{hh}^h - 2(\rho w)_h \partial_z \psi_{hh}^h. \tag{3.20} $$

Lemma 3. Under the same assumptions as in Lemma \(7\), we have

$$ \frac{d}{dt} \left\{ \frac{1}{2} \| \rho^{1/2} \psi_{hh}^h \|_{L^2}^2 + \frac{\varepsilon^2}{2 \rho_0} \| \varepsilon^{-1} \xi_{hh} \|_{L^2}^2 \right\} + C_{\mu, \lambda} \| \nabla \psi_{hh}^h \|_{L^2}^2
\leq \delta (\| \nabla \psi^h \|_{H^2}^2 + \| \varepsilon^{-1} \nabla_h \xi \|_{H^2}^2 + \| \varepsilon \nabla \psi_t^h \|_{L^2}^2 \\
+ \| \varepsilon \psi_t^h \|_{L^2}^2) + C_{\delta} (E(\xi) + 1 + G_p) \delta_p (\| \psi^h \|_{H^2}^2 + \| \varepsilon^{-1} \xi \|_{H^2}^2 + \varepsilon^2), \tag{3.21} $$

for some positive constant $C_{\mu, \lambda}$, which is independent of ε.

Proof. Take the inner product of \((3.19)_2\) with ψ_{hh}^h and integrate the resultant over Ω. Similarly as before, we will have the following:

$$ \begin{aligned} \frac{d}{dt} \left\{ \frac{1}{2} \| \rho^{1/2} \psi_{hh}^h \|_{L^2}^2 \right\} &- \int \varepsilon^{-2} c_s^2 \xi_{hh} \text{div}_h \psi_{hh}^h \, d\vec{x} + \mu \| \nabla_h \psi_{hh}^h \|_{L^2}^2 \\
+ \lambda \| \text{div}_h \psi_{hh}^h \|_{L^2}^2 + \| \partial_z \psi_{hh}^h \|_{L^2}^2 = \int F_{1, hh} \cdot \psi_{hh}^h \, d\vec{x} \\
+ \int F_{2, hh} \cdot \psi_{hh}^h \, d\vec{x} - \int \nabla_h (\varepsilon^{-2} R_{hh}) \cdot \psi_{hh}^h \, d\vec{x} + \int H_{hh} \cdot \psi_{hh}^h \, d\vec{x}. \end{aligned} $$

Again, we employ equation \((3.19)_1\) to derive that,

$$ - \int \varepsilon^{-2} c_s^2 \xi_{hh} \text{div}_h \psi_{hh}^h \, d\vec{x} = \int \left(\varepsilon^{-2} \rho_0^{-1} c_s^2 \xi_{hh} (\partial_t \xi_{hh} + \rho_0 \partial_z \psi_{hh}^z) - G_{1, hh} \right) \, d\vec{x}. $$
- \mathcal{G}_{2,hh} \right) \, d\bar{x} = \frac{d}{dt} \left\{ \frac{c_s^2}{2\rho_0} \int \epsilon^{-2} |\xi_{hh}|^2 \, d\bar{x} \right\} - \rho_0^{-1} c_s^2 \int \epsilon^{-2} \xi_{hh} \mathcal{G}_{1,hh} \, d\bar{x} \\
- \rho_0^{-1} c_s^2 \int \epsilon^{-2} \xi_{hh} \mathcal{G}_{2,hh} \, d\bar{x}.

Therefore, the following equality holds:

\begin{equation}
\frac{d}{dt} \left\{ \frac{1}{2} \| \rho^{1/2} \psi^h_t \|_{L^2}^2 + \frac{c_s^2}{2\rho_0} \| \epsilon^{-1} \xi_{hh} \|_{L^2}^2 \right\} + \mu \| \nabla_h \psi^h_t \|_{L^2}^2 \\
+ \lambda \| \text{div}_h \psi^h_{hh} \|_{L^2}^2 + \| \partial_z \psi^h_{hh} \|_{L^2}^2 = \int \mathcal{F}_{1,hh} \cdot \psi^h_{hh} \, d\bar{x} \\
+ \int \mathcal{F}_{2,hh} \cdot \psi^h_{hh} \, d\bar{x} + \rho_0^{-1} c_s^2 \int \epsilon^{-2} \xi_{hh} \mathcal{G}_{1,hh} \, d\bar{x} \\
+ \rho_0^{-1} c_s^2 \int \epsilon^{-2} \xi_{hh} \mathcal{G}_{2,hh} \, d\bar{x} + \int \mathcal{H}_{hh} \cdot \psi^h_{hh} \, d\bar{x} \\
- \int \nabla_h (\epsilon^{-2} \mathcal{R}_{hh}) \cdot \psi^h_{hh} \, d\bar{x} =: \sum_{i=7}^{12} I_i. \tag{3.22}
\end{equation}

In the following, we shall estimate the terms on the right-hand side of (3.22). \(I_{11} \) can be written, after substituting (3.20), as

\begin{align*}
I_{11} &= - \int \left(\xi_{hh} \psi^h_t \cdot \psi^h_{hh} + 2 \xi_{hh} \psi^h_t \cdot \psi^h_{hh} \right) \, d\bar{x} - \int \left(\rho v \psi^h_t \cdot \nabla_h \psi^h_{hh} \right) \\
&+ 2(\rho v) \cdot \nabla_h \psi^h_{hh} \cdot \psi^h_{hh} \, d\bar{x} - \int \left(\rho w \psi^h_t \cdot \psi^h_{hh} \right) \\
&+ 2(\rho w) \partial_z \psi^h_{hh} \cdot \psi^h_{hh} \, d\bar{x} =: I_{11}^{\prime} + I_{11}^{\prime\prime} + I_{11}^{m}.
\end{align*}

Straightforward estimates show the following inequalities:

\begin{align*}
I_{11}^{\prime} &\lesssim |\xi_{hh}|_{L^2} \int_0^1 |\psi^h_t|_{L^4} |\psi^h_{hh}|_{L^4} \, dz + |\xi_{hh}|_{L^2} \int_0^1 |\psi^h_t|_{L^2} |\psi^h_{hh}|_{L^4} \, dz \\
&\lesssim \| \epsilon^{-1} \nabla \xi \|_{H^1} \left(\| \epsilon \nabla_h \psi^h_t \|_{L^2} + \| \epsilon^2 \psi^h_t \|_{L^2} \right) \\
&\times \left(\| \psi^h_{hh} \|_{L^2}^{1/2} \| \nabla_h \psi^h_{hh} \|_{L^2}^{1/2} + \| \psi^h_{hh} \|_{L^2} \right) \lesssim \| \nabla_h \psi^h_{hh} \|_{L^2}^2 \\
&+ \delta \| \nabla_h \psi^h_t \|_{L^2}^2 + \| \epsilon \psi^h_t \|_{L^2}^2 + C_8 Q(\mathcal{E}) \| \nabla \psi^h \|_{H^1}^2 \\
&+ C_6 (\mathcal{S}_p + 1) \delta_p \| \psi^h \|_{H^2}^2, \\
I_{11}^{\prime\prime} &\lesssim \left(\| \xi_{hh} \|_{L^2} \| v \|_{L^\infty} + \| \rho \|_{L^\infty} \| \psi^h_{hh} \|_{L^2} + \| \xi_{hh} \|_{L^2} \| \psi^h_{hh} \|_{L^6} \right) \\
&\times \| \nabla_h \psi^h \|_{L^6} |\psi^h_{hh}|_{L^6} \, dz + \left(\| \xi_{hh} \|_{L^6} \| v \|_{L^\infty} + \| \rho \|_{L^\infty} \| \psi^h_{hh} \|_{L^6} \right)
\end{align*}

28
Similarly, after applying the Hölder, Sobolev embedding and Young inequalities, we have

\[\times (\| \psi_h \|_{L^2}^{1/2} \| \nabla \psi_h \|_{L^2}^{1/2} + \| \psi_h \|_{L^2}) \lesssim \delta \| \nabla \psi_h \|^2_{L^2} \]

\[+ C_{\delta} Q(E) \| \nabla \psi_h \|^2_{H^1} + C_{\delta}(Q(E) + 1 + \mathcal{G}^p) \delta p \| \psi_h \|^2_{H^2}. \]

In order to estimate \(I''_{11} \), we first take \(\partial_h, \partial_{hh} \) in (3.31) to obtain the identities:

\[
w_h = w_{p,h} - \int_0^z \left(\text{div}_h \psi_h^h + \bar{v} \cdot \nabla_h \log \rho + \bar{v} \cdot \nabla_h (\log \rho)_h \right) dz \\
= w_{p,h} + \psi_h^\bar{z},
\]

\[
w_{hh} = w_{p, hh} - \int_0^z \left(\text{div}_h \psi_h^h + \bar{v}_{hh} \cdot \nabla_h \log \rho + 2 \bar{v} \cdot \nabla_h (\log \rho)_h \right) dz = w_{p, hh} + \psi_h^\bar{z}.
\]

Then \(I''_{11} \) can be written as

\[
I''_{11} = - \int (\zeta_{hh} w_p + 2 \zeta_h w_{p,h} + \rho w_{p, hh}) \partial_z \psi_h^h \cdot \psi_h^h d\bar{x}
\]

\[
- 2 \int (\zeta_h w_p + \rho w_{p,h}) \partial_z \psi_h^h \cdot \psi_h^h d\bar{x} + \int \left(\int_0^z \rho \bar{v} \cdot \nabla_h (\log \rho)_{hh} dz \right)
\]

\[
\times \left(\partial_z \psi_h^h \cdot \psi_h^h \right) d\bar{x} + \int \left[\int_0^z \left(\zeta_{hh} \text{div}_h \psi_h^h + \zeta_{hh} \bar{v} \cdot \nabla_h \log \rho \right.
ight.
\]

\[
+ 2 \zeta_h \text{div}_h \psi_h^h + 2 \zeta_h \bar{v} \cdot \nabla_h \log \rho + 2 \zeta_h \bar{v} \cdot \nabla_h (\log \rho)_h + \rho \text{div}_h \psi_h^h
\]

\[
+ \rho \bar{v}_{hh} \cdot \nabla_h \log \rho + 2 \rho \bar{v}_{hh} \cdot \nabla_h (\log \rho)_h \right) d\bar{x} \times \left(\partial_z \psi_h^h \cdot \psi_h^h \right)
\]

\[
+ 2 \int \left[\int_0^z \left(\zeta_h \text{div}_h \psi_h^h + \zeta_h \bar{v} \cdot \nabla_h \log \rho + \rho \text{div}_h \psi_h^h + \rho \bar{v}_{hh} \cdot \nabla_h \log \rho \right.
ight.
\]

\[
+ \rho \bar{v} \cdot \nabla_h (\log \rho)_h \right) d\bar{x} \times \left(\psi_h^h \cdot \psi_h^h \right) d\bar{x} =: \sum_{i=1}^5 I''_{11,i}.
\]

Similarly, after applying the Hölder, Sobolev embedding and Young inequalities, one has

\[
I''_{11,1} + I''_{11,2} \lesssim \left(\| \zeta_{hh} \|_{L^2} \| w_p \|_{L^\infty} + \| \zeta_h \|_{L^6} \| w_{p,h} \|_{L^3} \right.
\]

\[
+ \| \rho \|_{L^\infty} \| w_{p, hh} \|_{L^2} \| \partial_z \psi_h^h \|_{L^6} \| \psi_h^h \|_{L^3}
\]

\[
+ \left(\| \zeta_h \|_{L^6} \| w_p \|_{L^6} + \| \rho \|_{L^\infty} \| w_{p,h} \|_{L^3} \right) \| \partial_z \psi_h^h \|_{L^2} \| \psi_h^h \|_{L^6}
\]

\[
\lesssim \delta \| \nabla \psi_h^h \|^2_{L^2} + \delta \| \psi_h^h \|^2_{L^2} + C_{\delta}(Q(E) + 1 + \mathcal{G}^p) \delta p \| \psi_h \|^2_{H^2}.
\]
On the other hand, after applying integration by parts, $I_{11,3}$ is written as

$$
I_{11,3}''' = - \int \left(\int_0^z (\log \rho)_{hh}(\rho \text{div}_h \bar{v} + \bar{v} \cdot \nabla_h \zeta) \, dz \right) \times (\partial_z \psi^h \cdot \psi^h_{hh}) \, d\bar{x} \\
- \int \left(\int_0^z (\log \rho)_{hh}\bar{v} \, dz \right) \cdot \nabla_h (\partial_z \psi^h \cdot \psi^h_{hh}) \, d\bar{x},
$$

which can be estimated as below:

$$
I_{11,3}''' \lesssim \int_0^1 (|\zeta hh|_{L^2} + |\zeta hh|^2_{L^4}) (|\rho|_{L^\infty} |\nabla_h v|_{L^8} + |v|_{L^\infty} |\nabla_h \zeta|_{L^8}) \, dz \\
\times \int_0^1 |\partial_z \psi^h|_{L^8} |\psi^h_{hh}|_{L^4} \, dz + \int_0^1 (|\zeta hh|_{L^2} + |\zeta hh|^2_{L^4}) |\rho|_{L^\infty} |v|_{L^\infty} \, dz \\
\times \int_0^1 (|\partial_z \psi^h|_{L^8} |\nabla_h \psi^h_{hh}|_{L^2} + |\nabla_h \partial_z \psi^h|_{L^4} |\psi^h_{hh}|_{L^4}) \, dz \\
\lesssim (\| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{H^1}^2) (\| \rho \|_{L^\infty} \| v \|_{H^2} + \| v \|_{H^2} \| \zeta \|_{H^2}) \\
\times \| \partial_z \psi^h \|_{H^1} (\| \psi^h_{hh} \|_{L^4}^{1/2} \| \nabla_h \psi^h_{hh} \|_{L^2}^{1/2} + \| \psi^h_{hh} \|_{L^2}) \\
\times \| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{H^1}^2 \| \rho \|_{L^\infty} \| v \|_{H^2} (\| \partial_z \psi^h \|_{L^2}^{1/2} \\
\times \| \nabla_h \zeta \|_{H^2} \| \nabla_h \psi^h_{hh} \|_{L^2} + (\| \nabla_h \partial_z \psi^h \|_{L^4}^{1/2} \| \nabla_h \partial_z \psi^h \|_{L^2}^{1/2} \\
\times \| \nabla_h \partial_z \psi^h \|_{L^2} (\| \psi^h_{hh} \|_{L^4}^{1/2} \| \nabla_h \psi^h_{hh} \|_{L^2}^{1/2} \\
\times \| \psi^h_{hh} \|_{L^4}) \lesssim \delta \| \nabla^3 \psi^h \|_{L^2}^2 + C_\delta Q(\mathcal{E}) \| \nabla \psi^h \|_{H^3}^2 \\
+ C_\delta (Q(\mathcal{E}) + 1 + \mathcal{G}_0) \mathcal{H}_p \| \psi^h \|_{H^2}^2.
$$

Applying the Hölder, Minkowski, Sobolev embedding and Young inequalities implies,

$$
I_{11,4}''' \lesssim \int_0^1 \left(|\zeta hh|_{L^2} \| \nabla_h \psi^h \|_{L^8} + |\zeta hh|_{L^2} \| v \|_{L^\infty} \| \nabla_h \zeta \|_{L^8} + |\zeta hh|_{L^4} \| \nabla_h \psi^h_{hh} \|_{L^2} \\
\times (|\nabla_h \zeta \|_{L^2} + |\nabla_h \zeta \|_{L^4}^2) \right) \, dz \times \int_0^1 |\partial_z \psi^h|_{L^8} |\psi^h_{hh}|_{L^4} \, dz \\
\lesssim (\| \nabla_h \zeta \|_{H^1} \| \nabla \psi^h \|_{H^1} + (\| \nabla_h \zeta \|_{H^1}^2 + \| \nabla_h \zeta \|_{H^1}^3) \| v \|_{H^2} \\
+ \| \rho \|_{H^2} \| \nabla_h \psi^h_{hh} \|_{L^2} + \| \rho \|_{H^2} \| v \|_{H^2} (\| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{H^1}^2) \right)
$$
\[
\times \left\| \partial_z \psi_h \right\|_{H^1} \times \left(\left\| \psi_{hh} \right\|_{L^2} \left\| \nabla_h \psi_{hh} \right\|_{L^2}^{1/2} + \left\| \psi_{hh} \right\|_{L^2} \right)
\]
\[
\lesssim \delta \left\| \nabla \psi_{hh} \right\|_{L^2}^{\frac{3}{2}} + C_\delta Q(\mathcal{E}) \left\| \nabla \psi_h \right\|_{H^1}^{\frac{3}{2}} + C_\delta (Q(\mathcal{E}) + 1 + \Theta_p) \delta_p \left\| \psi_h \right\|_{H^2},
\]
\[
I''_{11,5} \lesssim \int_0^1 \left(|\zeta_h|_{L^4} |\nabla_h \psi_h|_{L^4} + |\zeta_h|_{L^4} |v|_{L^\infty} |\nabla_h \zeta|_{L^4} + |\rho|_{L^\infty} |\nabla_h \psi_{hh}|_{L^2}
\right.
\]
\[
+ |\rho|_{L^\infty} |v|_{L^4} |\nabla_h \zeta|_{L^4} + |\rho|_{L^\infty} |v|_{L^\infty} (|\nabla^2_h \zeta|_{L^2} + |\nabla_h \zeta|_{L^4}) \right) dz
\]
\[
\times \int_0^1 \left(|\partial_z \psi_{hh}|_{L^4} |\nabla_h \psi_{hh}|_{L^4} \right) dz \lesssim \left(\left\| \zeta \right\|_{H^2} \left\| \psi_h \right\|_{H^2} + \left\| v \right\|_{H^2} + \left\| \zeta \right\|_{H^2} \right)
\]
\[
+ \left\| \rho \right\|_{L^\infty} \left\| \psi_h \right\|_{H^2} + \left\| \nu \right\|_{L^\infty} \left\| v \right\|_{H^2} \left\| \zeta \right\|_{H^2} + \left\| \rho \right\|_{L^\infty} \left\| v \right\|_{H^2}
\]
\[
\times \left(\left\| \zeta \right\|_{H^2} + \left\| \zeta \right\|_{H^2} \right) \left(\left\| \partial_z \psi_{hh} \right\|_{L^2} + \left\| \psi_{hh} \right\|_{L^2} \right)
\]
\[
\lesssim \delta \left\| \nabla \psi_{hh} \right\|_{L^2}^{\frac{3}{2}} + C_\delta Q(\mathcal{E}) \left\| \nabla \psi_h \right\|_{H^1}^{\frac{3}{2}} + C_\delta (Q(\mathcal{E}) + 1 + \Theta_p) \delta_p \left\| \psi_h \right\|_{H^2}.
\]

Therefore, we have established the following estimate
\[
I_{11} \lesssim \delta \left\| \nabla^3 \psi_h \right\|_{L^2}^{\frac{2}{2}} + \delta \left\| \psi_{hh} \right\|_{L^2}^{\frac{2}{2}} + \delta \left\| \varepsilon \nabla \psi_h \right\|_{L^2}^{\frac{2}{2}} + \delta \left\| \varepsilon \psi_h \right\|_{L^2}^{\frac{2}{2}}
\]
\[
+ C_\delta Q(\mathcal{E}) \left\| \nabla \psi_h \right\|_{H^1}^{\frac{2}{2}} + C_\delta (Q(\mathcal{E}) + 1 + \Theta_p) \delta_p \left\| \psi_h \right\|_{H^2}.
\]

Other terms on the right-hand side of (3.22) can be estimated in the same manner. We will list them below. In order to estimate I_8, notice
\[
F_{2, hh} = -\left(\rho \psi_h \right)_{hh} \cdot \nabla_h v_p + (\rho \psi^z)_{hh} \partial_z v_p - 2(\rho \psi_h)_{h} \cdot \nabla_h v_{p,h}
\]
\[
- 2(\rho \psi^z)_{h} \partial_z v_{p,h} - \rho \psi^z \cdot \nabla_h v_{p,h} - \rho \psi^z \partial_z v_{p,h}.
\]

Then I_8 can be written as
\[
I_8 = -\int \left(\left(\left(\rho \psi^z \right)_{hh} \cdot \nabla_h v_p + 2(\rho \psi_h)_{h} \cdot \nabla_h v_{p,h} + \rho \psi^z \cdot \nabla_h v_{p,h} \right) \cdot \psi_{hh} \right) \psi_{hh} d\bar{x}
\]
\[
- \int \left(\left(\left(\rho \psi^z \right)_{hh} \partial_z v_p + 2(\rho \psi^z)_{h} \partial_z v_{p,h} + \rho \psi^z \partial_z v_{p,h} \right) \cdot \psi_{hh} \right) \psi_{hh} d\bar{x} := I'_{8} + I''_{8},
\]

with the estimate
\[
I'_{8} \lesssim \left(\left\| \zeta_{hh} \right\|_{L^2} \left\| \psi^z \right\|_{L^\infty} \left\| \nabla_v v_p \right\|_{L^5} + \left\| \zeta_h \right\|_{L^6} \left\| \psi_h \right\|_{L^3} \left\| \nabla_v v_p \right\|_{L^5}
\right.
\]
\[
+ \left\| \rho \right\|_{L^\infty} \left\| \psi_{hh} \right\|_{L^2} \left\| \nabla_h v_p \right\|_{L^2} + \left\| \zeta_h \right\|_{L^6} \left\| \psi^z \right\|_{L^6} \left\| \nabla_h v_{p,h} \right\|_{L^2}
\]
\[
+ \left\| \rho \right\|_{L^\infty} \left\| \psi_h \right\|_{L^5} \left\| \nabla_h v_{p,h} \right\|_{L^2} + \left\| \rho \right\|_{L^\infty} \left\| \psi_h \right\|_{L^5} \left\| \nabla_h v_{p,h} \right\|_{L^2}
\right)
\[
\times \| \psi_{hh}^t \|_{L^2} \lesssim (\| \nabla_h \zeta \|_{H^1} \| \psi^h \|_{H^2} \| v_p \|_{H^2} + \| \rho \|_{L^\infty} \| \psi^h \|_{H^2} \| v_p \|_{H^2})
\]
\[
\times (\| \psi_{hh}^t \|_{L^2}^{1/2} \| \nabla \psi_{hh}^t \|_{L^2}^{1/2} + \| \psi_{hh}^t \|_{L^2})
\]
\[
\lesssim \delta \| \nabla \psi_{hh}^t \|_{L^2}^2 + \delta \| \psi_{hh}^t \|_{L^2}^2 + C_{\delta}(Q(E) + 1 + |\mathcal{G}|_h) \delta \| \psi_{hh}^t \|_{H^2}^2.
\]

Next, after substituting (3.33) and (3.23) into the term \(I''_8 \), we have the following:

\[
I''_8 = \int \int_0^z \left(\zeta_{hh}(\text{div}_h \tilde{\psi}^h + \tilde{v} \cdot \nabla_h \log \rho) + 2\zeta_h(\text{div}_h \tilde{\psi}^h \right.
\]
\[
+ \tilde{v}_h \cdot \nabla_h \log \rho + \tilde{v} \cdot \nabla_h (\log \rho) + \rho(\text{div}_h \tilde{\psi}^h + \tilde{v}_h \cdot \nabla_h \log \rho) + 2\tilde{v}_h \cdot \nabla_h (\log \rho) \bigg) dz \times (\partial_z v_p \cdot \psi_{hh}^t)
\]
\[
\times (\partial_z v_p \cdot \psi_{hh}^t) \bigg) dx + \int \int_0^z \rho(\text{div}_h \tilde{\psi}^h + \tilde{v} \cdot \nabla_h \log \rho) + \rho(\text{div}_h \tilde{\psi}^h
\]
\[
+ \tilde{v}_h \cdot \nabla_h \log \rho + \tilde{v} \cdot \nabla_h (\log \rho) \bigg) dz \times (\partial_z v_{p,h} \cdot \psi_{hh}^t)
\]
\[
\times (\partial_z v_{p,h} \cdot \psi_{hh}^t) \bigg) dx =: I''_{8,1} + I''_{8,2} + I''_{8,3} + I''_{8,4}.
\]

Applying integration by parts in \(I''_{8,2} \) yields the following:

\[
I''_{8,2} = -\int \int_0^z \left((\log \rho)_{hh} \rho \text{div}_h \tilde{\psi} + (\log \rho)_{hh} \tilde{v} \cdot \nabla_h \rho \right) dz
\]
\[
\times (\partial_z v_p \cdot \psi_{hh}^t) \bigg) dx - \int \int_0^z (\log \rho)_{hh} \rho \tilde{v} \cdot \nabla_h (\partial_z v_p \cdot \psi_{hh}^t) dx dz
\]
\[
\lesssim \int_0^1 \left(|\zeta_{hh}|_{L^2} + |\zeta_{hh}|_{L^1}^2 \right) \left(|\rho|_{L^\infty} |\nabla_h \psi_{hh}^t|_{L^4} + |v|_{L^\infty} |\nabla_h \zeta|_{L^4} \right) dz
\]
\[
\times \int_0^1 |\partial_z v_p|_{L^\infty} |\psi_{hh}^t|_{L^4} dz + \int_0^1 \left(|\zeta_{hh}|_{L^2} + |\zeta_{hh}|_{L^1}^2 \right) |\rho|_{L^\infty} |v|_{L^\infty} dz
\]
\[
\times \int_0^1 \left(|\nabla_h \partial_z v_p|_{L^4} |\psi_{hh}^t|_{L^4} + |\partial_z v_p|_{L^\infty} |\nabla_h \psi_{hh}^t|_{L^2} \right) dz
\]
\[
\lesssim (\| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{H^1}^2) \left((\| \rho \|_{L^\infty} \| \nabla v \|_{H^1} + \| v \|_{H^2} \| \nabla h \zeta \|_{H^1})
\]
\[
\times (\| \partial_z v_p \|_{L^\infty} + \| \rho \|_{L^\infty} \| v \|_{H^2} \| \nabla h \partial_z v_p \|_{L^4})
\]
\[
\times (\| \psi_{hh}^t \|_{L^2}^{1/2} \| \nabla_h \psi_{hh}^t \|_{L^2}^{1/2} + \| \psi_{hh}^t \|_{L^2}) + (\| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{H^1}^2)
\]

32
\[
\times \| \rho \|_{L^\infty} \| v \|_{H^2} \| \partial_z v_p \|_{L^\infty} \| \nabla_h \psi_{hh}^h \|_{L^2} \lesssim \delta \| \nabla \psi_{hh}^h \|_{L^2}^2
\]
\[
+ \delta \| \psi_{hh}^h \|_{L^2}^2 + C_\delta (Q(\mathcal{E}) + 1 + \mathcal{S}_p) \mathcal{S}_p (\varepsilon^4 + \varepsilon^2 \| \varepsilon^{-1} \xi \|_{H^2}^2).
\]

The estimates of the rest of I_8'' are listed below:

\[
I_8'' \lesssim \int_0^1 \left(|\zeta_h|_{L^2} \left(|\nabla_h \psi^h|_{L^4} + |v|_{L^\infty} |\nabla_h \zeta|_{L^4} \right) + |\zeta_h|_{L^2} \left(|\nabla_h \psi_{hh}^h|_{L^2} + |v_h|_{L^4} |\nabla_h \zeta|_{L^4} \right) \right) \, dz
\]
\[
+ \| \rho \|_{L^\infty} \| v \|_{H^2} \| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{L^2}^2 \| v \|_{H^1} + \| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{H^1}^2) \right) \, dz
\]
\[
\times \int_0^1 \left(|\zeta_h|_{L^2} \left(|\nabla_h \psi_{hh}^h|_{L^2} + |v_h|_{L^4} |\nabla_h \zeta|_{L^4} \right) \right) \, dz
\]
\[
+ \| \rho \|_{L^\infty} \| v \|_{H^2} \| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{L^2}^2 \| v \|_{H^1} + \| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{H^1}^2) \right) \, dz
\]
\[
\lesssim \| \nabla_h \zeta \|_{H^2} \| v \|_{H^2} + \| \nabla_h \zeta \|_{H^2}^2 + \| \psi_{hh}^h \|_{L^2} + \| \psi_{hh}^h \|_{L^2}^2 + \| v \|_{L^\infty} |\nabla_h \zeta|_{L^4} \right) \right) \, dz
\]
\[
\lesssim \| \rho \|_{L^\infty} \| |\nabla \psi^h|_{H^1} + \| v \|_{H^2} \| \nabla_h \zeta \|_{H^1} \| v_p \|_{L^2} \| \nabla_h \zeta \|_{H^1} \right) \, dz
\]
\[
+ \| \nabla_h \zeta \|_{H^2} \| v \|_{H^2} + \| \nabla_h \zeta \|_{H^2}^2 + \| \psi_{hh}^h \|_{L^2} + \| \psi_{hh}^h \|_{L^2}^2 + \| v \|_{L^\infty} |\nabla_h \zeta|_{L^4} \right) \right) \, dz
\]
\[
\lesssim \| \rho \|_{L^\infty} \| |\nabla \psi^h|_{H^1} + \| v \|_{H^2} \| \nabla_h \zeta \|_{H^1} \| v_p \|_{L^2} \| \nabla_h \zeta \|_{H^1} \right) \, dz
\]
\[
+ \| \nabla_h \zeta \|_{H^2} \| v \|_{H^2} + \| \nabla_h \zeta \|_{H^2}^2 + \| \psi_{hh}^h \|_{L^2} + \| \psi_{hh}^h \|_{L^2}^2 + \| v \|_{L^\infty} |\nabla_h \zeta|_{L^4} \right) \right) \, dz
\]
\[
\lesssim \| \rho \|_{L^\infty} \| |\nabla \psi^h|_{H^1} + \| v \|_{H^2} \| \nabla_h \zeta \|_{H^1} \| v_p \|_{L^2} \| \nabla_h \zeta \|_{H^1} \right) \, dz
\]
\[
+ \| \nabla_h \zeta \|_{H^2} \| v \|_{H^2} + \| \nabla_h \zeta \|_{H^2}^2 + \| \psi_{hh}^h \|_{L^2} + \| \psi_{hh}^h \|_{L^2}^2 + \| v \|_{L^\infty} |\nabla_h \zeta|_{L^4} \right) \right) \, dz
\]
\[
+ \| \nabla_h \zeta \|_{H^2} \| v \|_{H^2} + \| \nabla_h \zeta \|_{H^2}^2 + \| \psi_{hh}^h \|_{L^2} + \| \psi_{hh}^h \|_{L^2}^2 + \| v \|_{L^\infty} |\nabla_h \zeta|_{L^4} \right) \right) \, dz
\]
\[
+ \| \nabla_h \zeta \|_{H^2} \| v \|_{H^2} + \| \nabla_h \zeta \|_{H^2}^2 + \| \psi_{hh}^h \|_{L^2} + \| \psi_{hh}^h \|_{L^2}^2 + \| v \|_{L^\infty} |\nabla_h \zeta|_{L^4} \right) \right) \, dz
\]
Hence, we have got

\[
I_8 \lesssim \delta \| \nabla \psi_h \|_{L^2}^2 + \delta \| \psi_h \|_{L^2}^2 + C_\delta (Q(E) + 1 + \Psi_p)\mathcal{F}_p
\times (\| \psi \|_{H^2}^2 + \epsilon^4 + \epsilon^2 \| \nabla \xi \|_{H^2}^2).
\]

Next, we establish the estimate of \(I_9 \). Notice, by making use of the facts that \(\xi_{hh}, \xi_h, \xi \) are independent of the \(z \)-variable, and that \(\int_0^1 \text{div}_h v_{p,h} dz = \int_0^1 \text{div}_h v_p dz = 0 \), thanks to (1.7), one can derive

\[
I_9 = -\rho_0^{-1} c_s^2 \int \varepsilon^{-2} \xi_{hh} \text{div}_h (\xi_{hh} v + 2\xi_h v_h + \xi v_{hh}) \, d\bar{x}
= -\rho_0^{-1} c_s^2 \int \left(\varepsilon^{-2} \xi_{hh} \left(\frac{1}{2} \xi_{hh} \text{div}_h \psi^h + 2\xi_h \text{div}_h \psi_h^h + 2v_h \cdot \nabla \xi_h \right) + \xi \text{div}_h \psi_{hh} + v_{hh} \cdot \nabla \xi_h \right) \, d\bar{x}
\lesssim \| \varepsilon^{-1} \nabla \xi \|_{H^1} \left(\int_0^1 \| \nabla \psi^h \|_{L^\infty} \right) d\bar{x}
\lesssim \| \varepsilon^{-1} \nabla \xi \|_{L^2} \left(\| \varepsilon^{-1} \xi_h \|_{L^4} \int_0^1 \| \nabla \psi^h \|_{L^4} \right)
\lesssim \| \varepsilon^{-1} \nabla \xi \|_{H^1} \left(\| \nabla \psi^h \|_{H^2} + \| v_p \|_{H^3} + \| \varepsilon^{-1} \nabla \xi \|_{H^1} \| \varepsilon^{-1} \xi \|_{H^2}
\times \| \nabla \psi_{hh} \|_{L^2} \lesssim \delta \| \nabla \psi_h \|_{L^2}^2 + C_\delta Q(E) \| \varepsilon^{-1} \nabla \xi \|_{H^1}^2
+ C_\delta Q(E) \mathcal{F}_p \| \varepsilon^{-1} \xi \|_{H^2}^2.
\]

Similarly, \(I_7, I_{10}, I_{12} \) can be estimated as follows:

\[
I_7 = \rho_0^{-1} \int \xi_{hh} \left(\nabla_h \left(c_s^2 \rho_1 \right) - \mu \Delta_h v_p - \lambda \nabla_h \text{div}_h v_p - \partial_{zz} v_p \right) \cdot \psi_h^h \, d\bar{x}
+ 2\rho_0^{-1} \int \xi_{hh} \left(\nabla_h \left(c_s^2 \rho_1 \right) - \mu \Delta_h v_{p,h} - \lambda \nabla_h \text{div}_h v_{p,h} - \partial_{zz} v_{p,h} \right) \cdot \psi_h^h \, d\bar{x}
\lesssim \| \xi_{hh} \|_{L^2} \| \nabla_h \left(c_s^2 \rho_1 \right) - \mu \Delta_h v_p - \lambda \nabla_h \text{div}_h v_p - \partial_{zz} v_p \|_{L^3} \| \psi_h^h \|_{L^3}
+ \| \nabla_h \left(c_s^2 \rho_1 \right) - \mu \Delta_h v_{p,h} - \lambda \nabla_h \text{div}_h v_{p,h} - \partial_{zz} v_{p,h} \|_{L^2}
\times \left(\| \xi_{hh} \|_{L^6} \| \psi_h^h \|_{L^3} + \| \xi \|_{L^\infty} \| \psi_{hh}^h \|_{L^2} \right) \lesssim \delta \| \nabla \psi_{hh} \|_{L^2}^2
+ \delta \| \psi_{hh}^h \|_{L^2}^2 + C_\delta (Q(E) + 1 + \Psi_p)\mathcal{F}_p (\epsilon^2 + \epsilon^2 \| \varepsilon^{-1} \xi \|_{H^2}^2),
\]

\[
I_{10} = -\rho_0^{-1} c_s^2 \int \xi_{hh} \left(\partial_t \rho_{1,h} + \rho_{1,h} \text{div}_h \psi^h + 2\rho_{1,h} \text{div}_h \psi^h + \rho_1 \text{div}_h \psi_{hh}^h \right)
\]
\(+ v \cdot \nabla_h \rho_{1, hh} + 2v_h \cdot \nabla_h \rho_{1, h} + v_{hh} \cdot \nabla_h \rho_1 \) \(\frac{d\bar{x}}{\rho} \lesssim \| \nabla_h \xi \|_{H^1} \)

\[\times \left(\| \partial_t \rho_{1, hh} \|_{L^2} + \| \rho_{1, hh} \|_{L^3} \| \nabla_h \psi^h \|_{L^6} + \| \rho_{1, h} \|_{L^\infty} \| \nabla_h \psi^h \|_{L^2} \right. \\
+ \| \rho_1 \|_{L^\infty} \| \nabla_h \psi^h \|_{L^2} + \| \psi \|_{H^2} \| \rho_1 \|_{H^3} + \| v_h \|_{L^6} \| \nabla_h \rho_{1, h} \|_{L^3} \\
+ \left. \| v_{hh} \|_{L^2} \| \nabla_h \rho_1 \|_{L^\infty} \right) \lesssim \delta \| \nabla_h \psi^h \|_{L^2}^2 + \delta \| \epsilon^{-1} \nabla_h \xi \|_{H^1}^2 \\
+ C_\delta (1 + \mathcal{E}_p) \delta_p (\epsilon^2 + \epsilon^2 \| \epsilon^{-1} \xi \|_{H^2}^2 + \epsilon^2 \| \psi \|_{H^2}^2) \right), \\
(3.28) \]

\[I_{12} = \int \epsilon^{-2} \mathcal{R}_{hh} \div_h \psi^h_{hh} \frac{d\bar{x}}{\rho} \lesssim \epsilon^{-2} \left(\| \zeta_{hh} \|_{L^2} \| \zeta \|_{L^\infty} + \| \zeta_h \|_{L^4} \right) \\
\times \| \nabla_h \psi^h_{hh} \|_{L^2} \lesssim \delta \| \nabla_h \psi^h_{hh} \|_{L^2}^2 \\
+ C_\delta (Q(\mathcal{E}) + \mathcal{E}_p) \delta_p (\epsilon^4 + \epsilon^2 \| \epsilon^{-1} \xi \|_{H^2}^2). \right) \\
(3.29) \]

Here we have applied (3.18) and that

\[|\mathcal{R}_{hh}| = |\gamma(\gamma - 1) \int_{\rho_0}^\rho \rho_{hh} \gamma^{-2} dy + \gamma(\gamma - 1) \rho^2 \rho \gamma^{-2} | \lesssim |\zeta_{hh}| |\zeta| + |\zeta_h|^2. \] \\
(3.30)

Therefore, (3.21) follows from (3.22) and inequalities (3.24), (3.25), (3.26), (3.27), (3.28), (3.29), above.

Next, we will derive the required estimate of \(\xi_{hh} \). After integrating (1.10) over \(z \in (0, 1) \), we have the following equation, thanks to (1.17):

\[\rho \partial_t \psi^h + \int_0^1 (\rho v \cdot \nabla_h \psi^h - \rho w \cdot \psi^h) \, dz + \nabla_h (\epsilon^{-2} c_s \psi) \\
= \mu \Delta_h \psi^h + \lambda \nabla_h \div_h \psi^h - \nabla_h (\epsilon^{-2} \mathcal{R}) + \int_0^1 (\mathcal{F}_1 + \mathcal{F}_2) \, dz. \] \\
(3.31)
After applying \(\partial_h \) to (3.31), one has

\[
\varepsilon^{-2}\psi_h^2 \nabla_h \xi_h = -\zeta_h \partial_t \psi_h - \rho \partial_t \psi_h - \int_0^1 \left(\zeta_h v \cdot \nabla_h \psi_h^{h} + \rho v_h \cdot \nabla_h \psi_h^{h} + \rho \nu \cdot \nabla_h \psi_h^{h} \right) dz \\
+ \int_0^1 \left(\zeta_h w_z \psi_h^{h} + \rho w_{hz} \psi_h^{h} + \rho w_z \psi_h^{h} \right) dz \\
+ \mu \Delta_h \psi_h^{h} + \lambda \nabla_h \text{div}_h \psi_h^{h} - \nabla_h (\varepsilon^{-2} \mathcal{R}_h) + \int_0^1 \left(F_{1,h} + F_{2,h} + 1 \right) dz.
\]

(3.32)

What we need is to estimate the \(L^2 \)-norm of the terms on the right-hand side of (3.32). In fact, after applying the Minkowski, Hölder and Sobolev embedding inequalities, one has

\[
|R_1|_{L^2} \lesssim \int_0^1 \left| \zeta_h \right|_{L^4} \left| \partial_t \psi_h^{h} \right|_{L^4} dz + \int_0^1 \left| \rho \right|_{L^\infty} \left| \partial_t \psi_h^{h} \right|_{L^2} dz \lesssim \left\| \zeta_h \right\|_{H^1} \\
\times \left(\left\| \partial_t \psi_h^{h} \right\|_{L^2}^{1/2} \left\| \nabla_t \psi_h^{h} \right\|_{L^2}^{1/2} + \left\| \partial_t \psi_h^{h} \right\|_{L^2} \right) + \left\| \rho \right\|_{L^\infty} \left\| \partial_t \psi_h^{h} \right\|_{L^2} \\
\lesssim \left\| \nabla \partial_t \psi_h^{h} \right\|_{L^2} + \left(\varepsilon^{-1} \xi \right)_{H^2} + \left(\varepsilon \rho \right)_{H^2} \left\| \varepsilon \partial_t \psi_h^{h} \right\|_{L^2},
\]

\[
|R_2|_{L^2} \lesssim \int_0^1 \left(\left| \zeta_h \right|_{L^4} \left| v \right|_{L^\infty} \left| \nabla_h \psi_h^{h} \right|_{L^4} + \left| \rho \right|_{L^\infty} \left| v_h \right|_{L^4} \left| \nabla_h \psi_h^{h} \right|_{L^4} + \left| \rho \right|_{L^\infty} \\
\times \left\| v \right\|_{L^\infty} \left\| \nabla_h \psi_h^{h} \right\|_{L^2} \right) dz \lesssim \left(\left\| \zeta \right\|_{H^2} + \left\| \rho \right\|_{L^\infty} \right) \left\| v \right\|_{H^2} \left\| \nabla_h \psi_h^{h} \right\|_{H^1},
\]

\[
|R_3|_{L^2} \lesssim \int_0^1 \left| \nabla_h \psi_h^{h} \right|_{H^2} dz + \varepsilon^{-2} \left(\left| \zeta_h \right|_{L^2} \left| \zeta_h \right|_{L^\infty} + \left| \zeta_h \right|_{L^4} \right) \lesssim \left\| \nabla_h \psi_h^{h} \right\|_{H^2} \\
+ \varepsilon^2 \left(\left\| \rho \right\|_{H^2}^2 + \left\| \varepsilon^{-1} \xi \right\|_{H^2} \left\| \varepsilon^{-1} \nabla_h \xi \right\|_{H^1}.\right.
\]

On the other hand, after substituting (3.41) and (3.46), below, we have

\[
R_3 = \int_0^1 \left(\left[w_{p,z} - \left(\text{div}_h \psi_h^{h} + \bar{v} \cdot \nabla_h \log \rho \right) \right] \left(\zeta_h \psi_h^{h} + \rho \psi_h^{h} \right) + \rho \psi_h^{h} w_{p,hz} \\
- \left(\text{div}_h \psi_h^{h} + \bar{v}_h \cdot \nabla_h \log \rho + \bar{v} \cdot \nabla_h (\log \rho)_h \right) \right) dz.
\]

36
Therefore, one has
\[
|R_3|_{L^2} \lesssim \int_0^1 \left(|w_{p.z}|_{L^4} + |\nabla h \psi^h|_{L^4} + |v|_{L^\infty} |\nabla h \zeta|_{L^4} \right) \\
\times \left(|\zeta h|_{L^4}|\psi^h|_{L^\infty} + |\rho|_{L^\infty}|\psi^h|_{L^4} \right) \\
\times \left(|w_{p,hz}|_{L^2} + |\nabla h \psi^h|_{L^2} + |v_h|_{L^4} |\nabla h \zeta|_{L^4} \right) \\
+ |v|_{L^\infty}\left(|\zeta h|_{L^2} + |\zeta h|^2_{L^2} \right) \right) \, dz \\
\lesssim Q(\mathcal{E})(\|\nabla h \psi^h\|_{H^1} + \varepsilon \|\varepsilon^{-1}\nabla h \xi\|_{H^1}) + (Q(\mathcal{E}) + 1 + \Theta_p) \delta_p^{1/2}.
\]

After substituting (1.9), we obtain
\[
R_5 = \int_0^1 \left(\zeta h Q_p + \zeta h Q_{p,h} - \zeta h \psi^h \cdot \nabla h v_p - \rho \psi^h \cdot \nabla h v_p - \rho \psi^h \cdot \nabla h v_{p,h} \\
+ \psi^h_p (\zeta h v_p + \rho v_p) + \rho v_p \psi^h_{p_z} \right) \, dz = \int_0^1 \left(\zeta h Q_p + \zeta h Q_{p,h} - \zeta h \psi^h \cdot \nabla h v_p \\
- \rho \psi^h \cdot \nabla h v_p - \rho \psi^h \cdot \nabla h v_{p,h} - (\text{div}_h \psi^h + \tilde{v} \cdot \nabla h \log \rho) (\zeta h v_p + \rho v_{p,h}) \\
- (\text{div}_h \tilde{v}^h + \tilde{v} \cdot \nabla h \log \rho + \tilde{v} \cdot \nabla h (\log \rho)_h) \rho v_p \right) \, dz.
\]

Hence, applying the Minkowski, Hölder and Sobolev embedding inequalities implies
\[
|R_5|_{L^2} \lesssim \int_0^1 \left(|\zeta h|_{L^4}|Q_p|_{L^4} + \|\zeta h p_{,h}\|_{L^2} + \|\zeta h|_{L^4}|\psi^h|_{L^\infty} |\nabla h v_p|_{L^4} \right) \\
+ |\rho|_{L^\infty}|\psi^h|_{L^4} |\nabla h v_p|_{L^4} + |\rho|_{L^\infty}|\psi^h|_{L^\infty} |\nabla h v_{p,h}|_{L^2} \\
+ \left(|\nabla h \psi^h|_{L^4} + |v|_{L^\infty} |\nabla h \zeta|_{L^4} \right) \left(|\zeta h|_{L^4}|v_p|_{L^\infty} + |\rho|_{L^\infty}|v_{p,h}|_{L^4} \right) \\
+ |\rho|_{L^\infty}|v_p|_{L^\infty}\left[|\nabla h \psi^h|_{L^2} + |v_h|_{L^4} |\nabla h \zeta|_{L^4} \right] \\
+ |v|_{L^\infty}\left(|\zeta h|_{L^2} + |\zeta h|^2_{L^2} \right) \right) \, dz \\
\lesssim (Q(\mathcal{E}) + 1 + \Theta_p) \delta_p^{1/2}(\|\psi^h\|_{H^2} + \varepsilon).
\]

Summing up these estimates, we get the following inequality from (3.32),
\[
\|e^{-1} \xi h\|_{L^2}^2 \lesssim \varepsilon^2 \|e^{-2} \xi h\|_{L^2}^2 \lesssim \sum_{i=1}^{5} \varepsilon^2 |R_i|_{L^2}^2 \lesssim \|e \nabla \partial_t \psi^h\|_{L^2}^2 \\
+ \varepsilon^2 \|\nabla \psi^h\|_{L^2}^2 + \varepsilon^2 Q(\mathcal{E}) \left(\varepsilon^{-1} \|\nabla h \xi\|_{H^1}^2 + \|\nabla \psi^h\|_{H^1}^2 \right) \\
+ \|e \nabla \psi^h\|_{L^2}^2) + \varepsilon^2 (Q(\mathcal{E}) + 1 + \Theta_p) \delta_p.
\]

37
We summarize the result in the following:

Lemma 4. Under the same assumptions as in Lemma 7, the following holds:

\[
\|(\varepsilon^{-1} \nabla h \xi)^2\|_{H^1} \leq C \|(\varepsilon^{-1} \nabla h \xi)^2\|_{L^2} + \varepsilon^2 \|(\nabla \psi^h)^2\|_{H^2} + \varepsilon^2 C Q(E) \|(\varepsilon^{-1} \nabla h \xi)^2\|_{H^1} + \varepsilon^2 \|(\nabla \psi^h)^2\|_{H^2} \]

(3.34)

for some positive constant C independent of \(\varepsilon\).

Proof. This is the direct consequence of (3.33) and the Poincaré inequality.

\[\square\]

3.3 Vertical derivatives estimates

Now we turn to the required estimates of vertical derivatives. To do so, we first apply \(\partial_z\) to system (1.10) and write down the resultant system as follows:

\[
\begin{align*}
\rho_0 (\text{div}_h \psi^h + \partial_z \psi^h) &= G_{1,z} + G_{2,z} & \text{in } \Omega, \\
\rho \partial_t \psi^h_z + \rho v \cdot \nabla_h \psi^h_z + \rho w \partial_z \psi^h_z &= \mu \Delta_h \psi^h_z + \lambda \nabla_h \text{div}_h \psi^h_z + \partial_{zz} \psi^h_z + F_{1,z} + F_{2,z} + \mathcal{H}_z & \text{in } \Omega, \\
\end{align*}
\]

(3.35)

where

\[\mathcal{H}_z := -\rho v_z \cdot \nabla_h \psi^h_z - \rho w_1 \partial_z \psi^h_z.\]

(3.36)

Then we apply \(\partial_z\) to system (3.35) again and obtain the following system:

\[
\begin{align*}
\rho_0 (\text{div}_h \psi_{zz}^h + \partial_z \psi_{zz}^h) &= G_{1,zz} + G_{2,zz} & \text{in } \Omega, \\
\rho \partial_t \psi_{zz}^h + \rho v \cdot \nabla_h \psi_{zz}^h + \rho w \partial_z \psi_{zz}^h &= \mu \Delta_h \psi_{zz}^h + \lambda \nabla_h \text{div}_h \psi_{zz}^h + \partial_{zzz} \psi_{zz}^h + F_{1,zz} + F_{2,zz} + \mathcal{H}_{zz} & \text{in } \Omega, \\
\end{align*}
\]

(3.37)

where

\[\mathcal{H}_{zz} := -\rho v_{zz} \cdot \nabla_h \psi^h_z - 2 \rho v_z \cdot \nabla_h \psi^h_z - \rho w_{zz} \partial_z \psi^h_z - 2 \rho w_z \partial_z \psi^h_z.\]

(3.38)

Notice, here we have employed the fact that \(\rho, \xi, \rho_1, \mathcal{R}\) are independent of the \(z\) variable. Also (3.37) is a parabolic equation of \(\psi_{zz}^h\). Now we perform standard \(L^2\) estimate on system (3.37).
Lemma 5. Under the same assumptions as in Lemma [7], we have

\[
\frac{d}{dt} \left\| \rho^{1/2} \psi^h_z \right\|_{L^2}^2 + C_{\mu, \lambda} \left\| \nabla \psi^h_z \right\|_{L^2}^2 \leq \delta \left\| \nabla \psi^h_z \right\|_{L^2}^2 + \delta \left\| \psi^h_z \right\|_{L^2}^2 + C_\delta Q(\mathcal{E}) \left\| \nabla \psi^h_z \right\|_{H^1}^2 + C_\delta (Q(\mathcal{E}) + 1 + \mathcal{G}_p) \delta_p \left(\left\| \psi^h_z \right\|_{H^2}^2 + \varepsilon^2 \right),
\]

for some positive constant $C_{\mu, \lambda}$ independent of ε.

Proof. After taking the L^2-inner product of (3.37) with ψ^h_{zz}, we have the following:

\[
\frac{d}{dt} \left\{ \frac{1}{2} \left(\left\| \rho^{1/2} \psi^h_z \right\|_{L^2}^2 \right) \right\} + \mu \left\| \nabla_h \psi^h_z \right\|_{L^2}^2 + \lambda \left\| \text{div}_h \psi^h_z \right\|_{L^2}^2 + \int \mathcal{F}_{1,zz} \cdot \psi^h_{zz} \, d\mathbf{x} + \int \mathcal{F}_{2,zz} \cdot \psi^h_{zz} \, d\mathbf{x} + \int \mathcal{H}_{zz} \cdot \psi^h_{zz} \, d\mathbf{x} =: I_{13} + I_{14} + I_{15}.
\]

Again, we shall estimate the terms on the right-hand side of (3.40). We begin with the term I_{15}. Notice first, after taking $\partial_z, \partial_{zz}$ to (1.11), we have the following identities:

\[
w_z = w_{p,z} - \left(\text{div} \, \psi^h_z + \bar{v} \cdot \nabla_h \log \rho \right) = w_{p,z} + \psi^z_z,
\]

\[
w_{zz} = w_{p,zz} - \left(\text{div} \, \psi^h_z + \bar{v}_z \cdot \nabla_h \log \rho \right) = w_{p,zz} + \psi^z_{zz}.
\]

Consequently, after substituting (3.11) in I_{15}, it can be estimated as follows:

\[
I_{15} = -\int \left(\rho (v_{zz} \cdot \nabla h \psi^h + 2v_z \cdot \nabla h \psi^h_z + w_{p,zz} \partial_z \psi^h_z)
\right.
\]

\[
- \text{div} \, \psi^h_z \partial_z \psi^h_z - \bar{v}_z \cdot \nabla_h \log \rho \partial_z \psi^h_z + 2w_{p,z} \partial_z \psi^h_z
\]

\[
- 2\text{div} \, \psi^h_z \partial_z \psi^h_z - \bar{v}_z \cdot \nabla_h \log \rho \partial_z \psi^h_z \right) \, d\mathbf{x}
\]

\[
\lesssim \left\| \rho \right\|_{L^\infty} \left\| \psi^h_z \right\|_{L^2} \left(\left\| v_{zz} \right\|_{L^2} \left\| \nabla_h \psi^h \right\|_{L^6} + \left\| v_z \right\|_{L^6} \left\| \nabla_h \psi^h_z \right\|_{L^2}
\right.

\]

\[
+ \left\| w_{p,zz} \right\|_{L^2} \left\| \partial_z \psi^h \right\|_{L^6} + \left\| \nabla_h \psi^h_z \right\|_{L^2} \left\| \partial_z \psi^h_z \right\|_{L^6} + \left\| \nabla_h \psi^h \right\|_{L^6} \left\| v \right\|_{L^\infty} \left\| \partial_z \psi^h_z \right\|_{L^2}
\]

\[
\lesssim \left\| \rho \right\|_{L^\infty} \left(\left\| \psi^h_z \right\|_{L^2} \left\| \nabla^h \psi^h \right\|_{L^2} + \left\| \psi^h_z \right\|_{L^2} \right)
\]

39
\[
\times (\|v_p\|_{H^2} + \|\nabla \psi^h\|_{H^1} + \|\partial_z w_p\|_{H^1} + \|\nabla_h \zeta\|_{H^1} \|v\|_{H^2})
\times \|\nabla \psi^h\|_{H^1} \lesssim \delta \|\nabla \psi^h_{zz}\|_{L^2}^2 + \delta \|\psi^h_{zz}\|_{L^2}^2 \\
+ C_\delta Q(\mathcal{E}) \|\nabla \psi^h\|_{H^1}^2 + C_\delta (Q(\mathcal{E}) + 1 + \mathcal{E}_p) \mathfrak{D}_p \|\psi^h\|_{H^2}^2.
\]

The estimates of the terms \(I_{13}, I_{14}\) are listed below:

\[
I_{14} = -\int \left(\rho \left(\psi^h \partial_z v_p + 2\psi^h \partial_z v_{p,z} + \psi^h \partial_z v_{p,zz} + \psi^h \partial_z v_p \partial_z v_p \right) \\
+ 2\psi^h \partial_z v_{p,z} + \psi^h \partial_z v_{p,zz} \right) \, dx = -\int \left(\rho \left(\psi^h \partial_z v_p + 2\psi^h \partial_z v_{p,z} + \psi^h \partial_z v_{p,zz} + \psi^h \partial_z v_p \partial_z v_p \right) \\
+ 2\psi^h \partial_z v_{p,z} + \psi^h \partial_z v_{p,zz} \right) \, dx \\
= \int \int \left(\rho \partial_z v_{p,zz} \psi^h \partial_z v_{p,zz} \partial_z v_{p,zz} \right) \, dz \times (\partial_z v_{p,zz} \partial_z v_{p,zz}) \, dx \\
\lesssim \|\rho\|_{L^\infty} \|\psi^h_{zz}\|_{L^2} \|\psi^h_{zz}\|_{L^2} \|\nabla_h v_p\|_{L^6} + \|\psi^h\|_{L^6} \|\nabla_h v_{p,z}\|_{L^2} \\
+ \|\psi^h\|_{L^6} \|\nabla_h v_{p,zz}\|_{L^2} + \|\nabla_h \psi^h_{zz}\|_{L^2} \|\partial_z v_p\|_{L^6} \\
+ \|\psi^h\|_{L^6} \|\nabla_h \zeta\|_{L^3} \|\partial_z v_p\|_{L^6} \|\nabla_h \psi^h_{zz}\|_{L^2} \|\partial_z v_{p,zz}\|_{L^2} \\
+ \|\psi^h\|_{L^6} \|\partial_z v_{p,zz}\|_{L^2} + \|\psi^h\|_{L^6} \|\partial_z v_{p,zz}\|_{L^2} \\
+ \|\partial_z v_{p,zz}\|_{L^2} \|\psi^h\|_{L^4} \|\nabla_h \zeta\|_{L^4} \|\partial_z v_{p,zz}\|_{L^2} \|\psi^h\|_{L^4} \|\nabla_h \zeta\|_{L^4} \|\partial_z v_{p,zz}\|_{L^2} \\
\lesssim \left(\|\psi^h_{zz}\|_{L^2} \|\nabla \psi^h_{zz}\|_{L^2}^{1/2} \right) + \|\psi^h_{zz}\|_{L^2} \|\nabla_h \psi^h_{zz}\|_{L^2} \|\partial_z v_p\|_{H^3} \|\nabla_h \zeta\|_{H^1} \|\partial_z v_{p,zz}\|_{L^2} \\
+ \|\psi^h\|_{H^1} \|\psi^h\|_{H^2} + \|\nabla_h \zeta\|_{H^3} \|\partial_z v_{p,zz}\|_{H^1} \|\nabla_h \psi^h_{zz}\|_{H^2} \\
+ \|\psi^h\|_{H^2} \|\nabla_h \zeta\|_{H^2} \|\partial_z v_{p,zz}\|_{H^1} \|\nabla_h \psi^h_{zz}\|_{H^2} \\
+ \|\partial_z v_{p,zz}\|_{H^2} \|\psi^h_{zz}\|_{L^2} \|\nabla_h \psi^h_{zz}\|_{L^2} \|\partial_z v_{p,zz}\|_{H^2} \|\psi^h_{zz}\|_{L^2} \\
+ C_\delta (Q(\mathcal{E}) + 1 + \mathcal{E}_p) \mathfrak{D}_p \|\psi^h\|_{H^2}^2 + \|\psi^h\|_{H^2} \|\psi^h\|_{H^2} \|\psi^h\|_{H^2} \|\psi^h\|_{H^2} \\
+ C_\delta (Q(\mathcal{E}) + \mathcal{E}_p) \mathfrak{D}_p \|\psi^h\|_{H^2}^2.
\]

After summing the estimates for \(I_{13}, I_{14}, I_{15}\), above, and \((3.40)\), we conclude \((3.39)\).
3.4 Mixed horizontal and vertical derivatives estimates

What is left is to estimate the L^2 norm of $\partial_{hz} \psi^h$. We apply ∂_h to \eqref{3.35} and write down the resultant system:

$$
\begin{aligned}
\rho_0 (\text{div}_h \psi^h_{hz} + \partial_z \psi^h_{hz}) &= \mathcal{G}_{1,hz} + \mathcal{G}_{2,hz} \\
\rho \partial_t \psi^h_{hz} + \rho v \cdot \nabla_h \psi^h_{hz} + \rho w \partial_z \psi^h_{hz} &= \mu \Delta_h \psi^h_{hz} \\
&+ \lambda \nabla_h \text{div}_h \psi^h_{hz} + \partial_{zz} \psi^h_{hz} + \mathcal{F}_{1,hz} + \mathcal{F}_{2,hz} + \mathcal{H}_{hz} \\
\end{aligned}
$$

\hspace{1cm} \text{in } \Omega,

\begin{align}
\mathcal{H}_{hz} &:= -\zeta_h \partial_t \psi^h_{hz} - \zeta_h v_z \cdot \nabla_h \psi^h - \rho(v_z \cdot \nabla_h \psi^h_{hz}) - \zeta_h w_z \partial_z \psi^h \\
&- \rho(w_z \partial_z \psi^h_{hz}) - \zeta_h v \cdot \nabla_h \psi^h_{hz} - \rho v_h \cdot \nabla_h \psi^h_{hz} - \zeta_h w \partial_z \psi^h_{hz} \\
&- \rho w_h \partial_z \psi^h_{hz}.
\end{align}

Lemma 6. Under the same assumptions as in Lemma 7, we have

$$
\frac{d}{dt} \left\{ \frac{1}{2} \| \rho^{1/2} \psi^h_{hz} \|^2_{L^2} + C_{\mu, \lambda} \| \nabla \psi^h_{hz} \|^2_{L^2} \right\} \leq \delta \left(\| \nabla^3 \psi^h \|^2_{L^2} + \| \psi^h \|^2_{L^2} \right) \\
+ \| \varepsilon \nabla \partial_t \psi^h \|^2_{L^2} + C_{\delta} Q(\mathcal{E}) \| \nabla \psi^h \|^2_{H^1} \\
+ C_{\delta} (Q(\mathcal{E}) + 1 + \Theta_p) \| \psi^h \|^2_{L^2},
$$

for some positive constant $C_{\mu, \lambda}$, which is independent of ε.

Proof. Take the L^2 inner produce of \eqref{3.42} with ψ^h_{hz}. It follows,

$$
\frac{d}{dt} \left\{ \frac{1}{2} \| \rho^{1/2} \psi^h_{hz} \|^2_{L^2} \right\} + \mu \| \nabla \psi^h_{hz} \|^2_{L^2} + \lambda \| \text{div}_h \psi^h_{hz} \|^2_{L^2} \\
+ \| \partial_z \psi^h_{hz} \|^2_{L^2} = \int \mathcal{F}_{1,hz} \cdot \psi^h_{hz} \, d\bar{x} + \int \mathcal{F}_{2,hz} \cdot \psi^h_{hz} \, d\bar{x} \\
+ \int \mathcal{H}_{hz} \cdot \psi^h_{hz} \, d\bar{x} =: I_{16} + I_{17} + I_{18}.
$$

As before, we shall estimate the terms on the right-hand side of \eqref{3.35}. Notice that, we have the following identity after taking ∂_h to \eqref{3.41}:

$$
w_{hz} = w_{p,hz} - (\text{div}_h \tilde{\psi}^h + \tilde{\psi} \cdot \nabla_h \log \rho \log \rho + \tilde{\psi} \cdot \nabla_h (\log \rho)_h) = w_{p,hz} + \psi^h_{hz}. \tag{3.46}
$$

Therefore, after substituting \eqref{3.43} and \eqref{3.46} into I_{18}, we have

$$
I_{18} = -\int \left(\zeta_h \partial_t \psi^h_{hz} + \zeta_h v_z \cdot \nabla_h \psi^h - \rho v_{hz} \cdot \nabla_h \psi^h + T \cdot \nabla_h \psi^h \right)
$$
+ \zeta_h \psi_h + \rho \psi_h \delta_z \psi_h + \rho w_p \partial_x \psi_h \nabla h \log \rho \\
+ \bar{v} \cdot \nabla h \log \rho (\zeta_h \partial_x \psi_h + \rho \delta_z \psi_h) - \rho (\partial_x \psi_h + \bar{v} \cdot \nabla h \log \rho \\
+ \bar{v} \cdot \nabla h (\log \rho) \delta_z \psi_h + \zeta_h v \cdot \nabla h \psi_h^h + \rho v h \cdot \nabla h \psi_h^h + \zeta_h w_p \partial_z \psi_h \\
+ \rho w_p \partial_z \psi_h \Big) \cdot \psi_h^h \; d\bar{x} + \int_0^\infty \int \zeta_h (\partial_x \psi_h + \bar{v} \cdot \nabla h \log \rho) \; d\bar{x} \\
	imes (\partial_x \psi_h + \partial_z \psi_h) + \int_0^\infty \rho (\partial_x \psi_h + \bar{v} \cdot \nabla h (\log \rho)) \; d\bar{x}

\times (\partial_x \psi_h + \partial_z \psi_h) \right] \; d\bar{x} \lesssim \left\| \psi_h \right\|_{L^3} \times \left(\left\| \varepsilon^{-1} \zeta_h \right\|_{L^6} \left\| \varepsilon \partial_x \psi_h \right\|_{L^2} \\
+ \left\| \zeta_h \right\|_{L^6} \left\| v_z \right\|_{L^4} \left\| \nabla h \psi_h \right\|_{L^4} + \left\| \rho \right\|_{L^\infty} \left\| \psi_h \right\|_{L^2} \left\| \nabla h \psi_h \right\|_{L^6} \\
+ \left\| \rho \right\|_{L^\infty} \left\| v_z \right\|_{L^6} \left\| \nabla h \psi_h \right\|_{L^2} + \left\| \zeta_h \right\|_{L^6} \left\| w_p \right\|_{L^3} \left\| \partial_z \psi_h \right\|_{L^6} \\
+ \left\| \rho \right\|_{L^\infty} \left\| w_p \right\|_{L^2} \left\| \partial_z \psi_h \right\|_{L^6} + \left\| \rho \right\|_{L^\infty} \left\| \psi_h \right\|_{L^6} \left\| \nabla h \psi_h \right\|_{L^2} \\
+ \left\| \nabla h \psi_h \right\|_{L^6} \left(\left\| \zeta_h \right\|_{L^2} + \left\| \zeta_h \right\|_{L^4} \right) \right) \\
+ \left\| \zeta_h \right\|_{L^6} \left\| v \right\|_{L^\infty} \left\| \nabla h \psi_h \right\|_{L^2} + \left\| \rho \right\|_{L^\infty} \left\| \psi_h \right\|_{L^6} \left\| \nabla h \psi_h \right\|_{L^2} \\
+ \left\| \zeta_h \right\|_{L^6} \left\| v_h \right\|_{L^\infty} \left\| \partial_z \psi_h \right\|_{L^6} + \left\| \rho \right\|_{L^\infty} \left\| \psi_h \right\|_{L^2} \left\| \partial_z \psi_h \right\|_{L^6} \\
+ \left\| \zeta_h \right\|_{L^6} \left\| v \right\|_{L^\infty} \left\| \partial_z \psi_h \right\|_{L^6} + \left\| \rho \right\|_{L^\infty} \left\| w_p \right\|_{L^2} \left\| \partial_z \psi_h \right\|_{L^6} \\
+ \int_0^1 \left(\left\| \zeta_h \right\|_{L^4} \left(\left\| \nabla h \psi_h \right\|_{L^4} + \left\| v \right\|_{L^\infty} \left\| \nabla h \zeta \right\|_{L^4} \right) + \left\| \rho \right\|_{L^\infty} \left(\left\| \nabla h \psi_h \right\|_{L^2} + \left\| v \right\|_{L^\infty} \left\| \nabla h \zeta \right\|_{L^4} \right) \right) \; d\bar{x} \\
\times \int_0^1 \left(\left\| \nabla h \zeta \right\|_{L^4} \left\| \nabla h \psi_h \right\|_{L^4} \right) \; d\bar{x} \lesssim \left(\left\| \psi_h \right\|_{L^2} \left\| \nabla h \psi_h \right\|_{L^2} + \left\| \psi_h \right\|_{L^2} \right) \\
\times \left(\left\| \nabla h \zeta \right\|_{H^1} + \left\| \zeta \right\|_{H^2} + \left\| \zeta \right\|_{H^2} \right) + \left\| \psi_h \right\|_{L^2} + \left\| \nabla h \zeta \right\|_{H^1} + \left\| \zeta \right\|_{H^2} + \left\| \zeta \right\|_{H^2} \\
+ \left\| \rho \right\|_{L^\infty} \left(\left\| \zeta \right\|_{H^2} + \left\| \rho \right\|_{L^\infty} \left\| \zeta \right\|_{H^2} \right) \left(\left\| \psi_h \right\|_{H^2} + \left\| v \right\|_{H^2} \right) \\
+ \left\| w_p \right\|_{H^1} \left(\left\| \nabla h \psi_h \right\|_{H^1} + \left\| \nabla h \zeta \right\|_{H^1} \right) \left(\left\| \zeta \right\|_{H^2} + \left\| \zeta \right\|_{H^2} \right) + \left\| \rho \right\|_{L^\infty} \left(\left\| \nabla h \zeta \right\|_{H^1} \right) \\
+ \left\| \nabla h \zeta \right\|_{H^2} + \left\| \nabla h \zeta \right\|_{H^1} + \left\| \rho \right\|_{L^\infty} \left(\left\| w_p \right\|_{H^1} + \left\| \nabla h \psi_h \right\|_{H^1} \right) \\
+ \left\| v \right\|_{H^2} \left(\left\| \nabla h \psi_h \right\|_{L^2} + \left\| \nabla h \psi_h \right\|_{L^2} \right) \right) \\
\lesssim \delta \left\| \nabla h \psi_h \right\|_{L^2}^2 + \delta \left\| \nabla h \psi_h \right\|_{L^2}^2 + C_6 Q(E) \left\| \nabla h \psi_h \right\|_{H^1}^2.
+ C_3(Q(E) + 1 + ∂_p)\|\psi^h\|^{2}_{H^2}.

Similarly, after substituting (1.9), (3.23) and (3.41), we have

\[I_{17} = -\int \left[(\zeta_h \psi^h_{v^h} \cdot \nabla_h v_p + \zeta_h \psi^h \cdot \nabla_h v_{p,z} - \zeta_h (\text{div}_h \tilde{\psi}^h \\
+ \bar{v} \cdot \nabla_h \log \rho)\partial_z v_p + \rho \psi^h_{v^h} \cdot \nabla_h v_p + \rho \psi^h \cdot \nabla_h v_{p,z} \\
- \rho (\text{div}_h \tilde{\psi}^h + \bar{v}_h \cdot \nabla_h \log \rho + \bar{v} \cdot \nabla_h (\log \rho))\partial_z v_p \\
+ \rho \psi^h \cdot \nabla_h v_{p,h} + \rho \psi^h \cdot \nabla_h v_{p,h} - \rho (\text{div}_h \tilde{\psi}^h \\
+ \bar{v} \cdot \nabla_h \log \rho)\partial_z v_{p,h}) \cdot \psi^h_{v^h} \right] d\bar{x} + \int \int \left(\text{div}_h \tilde{\psi}^h \\
+ \bar{v} \cdot \nabla_h \log \rho \right) d\bar{x} \times (\zeta_h \partial_z v_{p,z} \cdot \psi^h_{v^h} + \rho \partial_z v_{p,h} \cdot \psi^h_{v^h}) \\
+ \int^2_0 \left(\text{div}_h \tilde{\psi}^h + \bar{v}_h \cdot \nabla_h \log \rho + \bar{v} \cdot \nabla_h (\log \rho) \right) d\bar{x} \times (\zeta_h \partial_z v_{p,z} \cdot \psi^h_{v^h}) \right] d\bar{x} \lesssim \left(\| \nabla_h \zeta \|_{L^1} (\| \psi^h \|_{H^2} \\
+ \| v \|_{H^2} \| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{H^1}) + \| \rho \|_{L^\infty} (\| \psi^h \|_{H^2} \\
+ \| v \|_{H^2} (\| \nabla_h \zeta \|_{H^1} + \| \nabla_h \zeta \|_{H^1})) \right) \| v_p \|_{H^3} \\
\times \left(\| \psi^h_{v^h} \|_{L^2}^{1/2} \| \nabla^h_{v^h} \|_{L^2}^{1/2} + \| \psi^h_{v^h} \|_{L^2} \right) + \int^1_0 \left(\| \nabla_h \psi^h \|_{L^4} \\
+ \delta \| \nabla h^2 \|_{L^2} + \delta \| \psi^h_{v^h} \|_{L^2} + C_3(Q(E) + 1 + \partial_0) \| \psi^h \|_{L^2} \\
\times \delta \| \nabla^2 \|_{L^2} + \varepsilon^2) \right. \\
\left. + \int^1_0 \left(\zeta_h \partial_z v_{p,z} \| \partial_z v_{p,z} \|_{L^4} \| \psi^h_{v^h} \|_{L^4} \\
+ \| \rho \|_{L^\infty} \| \partial_z v_{p,h} \|_{L^4} \| \psi^h_{v^h} \|_{L^4} \right) d\bar{x} + \int^1_0 \left(\| \nabla_h \psi^h \|_{L^2} + \| v_h \|_{L^4} \| \nabla_h \zeta \|_{L^4} \\
+ \| v \|_{L^\infty} (\zeta_h \| \partial_z v_{p,h} \|_{L^4} \| \psi^h_{v^h} \|_{L^4} \right. \\
\times \left(\| \psi^h \|_{H^2}^2 + \varepsilon^2) \right. \\
\left. I_{16} = \int (\zeta_h Q_{p,z} \cdot \psi^h_{v^h} + \zeta Q_{p,h} \cdot \psi^h_{v^h}) d\bar{x} = -\int (\zeta_h Q_p \cdot \psi^h_{v^h} \\
+ \zeta Q_{p,h} \cdot \psi^h_{v^h}) d\bar{x} \lesssim \delta \| \psi^h_{v^h} \|_{L^2}^2 + C_3(Q(E) + \partial_0) \| \psi^h \|_{L^2}^2 \varepsilon^2. \right. \]

Therefore after summing up the estimates of \(I_{16}, I_{17}, I_{18}, \) above, and (3.45),
we conclude the proof of (3.44). \(\square \)
3.5 Proof of Proposition 1

After applying similar arguments as in the proofs of Lemma 3, Lemma 5 and Lemma 6, one can easily check the following inequalities hold:

\[
\frac{d}{dt} \left\{ \frac{1}{2} \delta \left(\| \psi^h \|_{H^1}^2 + \| \psi_{z}^h \|_{H^1}^2 \right) + C_\delta \left(\| \psi^h \|_{H^1}^2 + \| \psi_{z}^h \|_{H^1}^2 \right) \right\} \\
\leq \delta \left(\| \nabla \psi^h \|_{L^2}^2 + \| \nabla \psi_{z}^h \|_{L^2}^2 \right) + C_\delta \left(\| \psi^h \|_{H^1}^2 + \| \psi_{z}^h \|_{H^1}^2 \right)
\]

Therefore, the above inequalities, together with (3.7), (3.16), (3.17), (3.21), (3.31), (3.39) and (3.44), imply that there exist positive constants \(c_i, i \in \{1, 2, \ldots, 10\}\), such that

\[
\frac{d}{dt} \mathcal{E}_{LM} + \mathcal{D}_{LM} \leq (\delta + \varepsilon^2 C_\delta Q(\mathcal{E}) + 1 + C_\delta) \mathcal{D} + C_\delta (Q(\mathcal{E}) + 1 + C_\delta) \mathcal{D} \quad (3.47)
\]

where we denote by

\[
\mathcal{E}_{LM} = \mathcal{E}_{LM}(t) := \frac{c_1}{2} \| \rho^{1/2} \varepsilon \psi_{t}^h \|_{L^2}^2 + \frac{c_2 c_3}{2 \rho_0} \| \xi_t \|_{L^2}^2 + \frac{c_2}{2} \| \rho^{1/2} \nabla \psi^h \|_{L^2}^2 \\
+ \frac{c_2 c_3}{2 \rho_0} \| \nabla \psi^h \|_{L^2}^2 + c_3 \| \rho^{1/2} \psi_{z}^h \|_{L^2}^2 + c_4 \| \rho^{1/2} \nabla \psi_{z}^h \|_{L^2}^2 \\
+ \frac{c_5}{2} \| \rho^{1/2} \nabla \psi^h \|_{L^2}^2 + \frac{c_5 c_2}{2 \rho_0} \| \nabla \psi^h \|_{L^2}^2 + c_6 \| \rho^{1/2} \psi_{z}^h \|_{L^2}^2 \\
+ \frac{c_7}{2} \| \rho^{1/2} \psi_{z}^h \|_{L^2}^2 + \frac{c_7 c_2}{2 \rho_0} \| \xi_t \|_{L^2}^2, (3.48)
\]

\[
\mathcal{D}_{LM} = \mathcal{D}_{LM}(t) := c_1 \| \varepsilon \psi_{t}^h \|_{L^2} + c_2 \| \nabla \psi_{z}^h \|_{L^2}^2 + c_3 \| \nabla \psi_{z}^h \|_{L^2},
\]
+ c_4 \left\| \nabla \nabla h \psi_z^h \right\|^2_{L^2} + c_5 \left\| \nabla \nabla h \psi_z^h \right\|^2_{L^2} + c_6 \left\| \nabla \psi_z^h \right\|^2_{L^2} \\
+ c_7 \left\| \nabla \psi_z^h \right\|^2_{L^2} + c_8 \left\| \xi_t \right\|^2_{L^2} + c_9 \left\| \varepsilon^{-1} \nabla h \xi \right\|^2_{H^1} + C_{10} \left\| \varepsilon \rho \psi_t^h \right\|^2_{L^2}. \tag{3.49}

Under the assumption (3.2), it is easy to check that
\[E \lesssim E_{LM} \lesssim E, \quad D \lesssim D_{LM} \lesssim D, \tag{3.50} \]
where \(E = E(t) \) and \(D = D(t) \) are defined in (2.2) and (2.3), respectively. Therefore (3.47) can be written, after choosing \(\delta \) small enough, as
\[
\frac{d}{dt} E_{LM} + D_{LM} \leq (\varepsilon^2 C(Q(E) + 1 + \mathcal{E}_p) + (1 + \varepsilon^2)Q(E)) D_{LM} \\
+ C(Q(E) + 1 + \mathcal{E}_p) D_{LM}(\varepsilon^2 + E_{LM}). \tag{3.51}
\]

Then after applying Grönwall’s inequality to (3.51), one concludes that,
\[
\sup_{0 \leq t \leq T} E_{LM}(t) + \int_0^T D_{LM}(t) \, dt \lesssim e^{C \int_0^T (Q(E) + 1 + \mathcal{E}_p) \, dt} \cdot \left\{ \varepsilon^2 + E_{LM}(0) + \int_0^T \left[(\varepsilon^2 C(Q(E) + 1 + \mathcal{E}_p) + (1 + \varepsilon^2)Q(E)) D_{LM} \right] \, dt \right\}.
\]

Under the assumptions of Proposition 1, this completes the proof of (3.3).

4 Low Mach number limit

In this section, we will establish the asymptotic behavior of \((\xi, \psi^h) = (\xi^\varepsilon, \psi^{\varepsilon,h})\) as \(\varepsilon \to 0^+ \). In particular, we prove Theorem 1.2 in this section.

First, as a consequence of Theorem 1.1, we have the following:

Corollary 1. Under the same assumptions of Theorem 1.1, consider any integer \(s \geq 3 \). Then (3.1) holds true for \(v_{p,in} \in H^s(\Omega_h \times 2 \mathbb{T}) \), with the compatibility conditions as in (1.17).

Proof. Directly from the conclusion of Theorem 1.1 for \(s \geq 3 \) and \(v_{p,in} \in H^s(\Omega) \) as stated in the theorem, one has
\[
\sup_{0 \leq t < \infty} \left(\left\| v_p(t) \right\|_{H^3} + \left\| v_{p,t}(t) \right\|_{L^2} \right) + \int_0^\infty \left(\left\| v_p(t) \right\|^2_{H^1} + \left\| v_{p,t}(t) \right\|^2_{H^1} \right) \, dt \leq C_{p,in,3} + 1,
\]
where we have used the Gagliardo-Nirenberg interpolation inequality:

\[
\int_0^\infty \| v_p(t) \|^2_{H^2} dt \lesssim \int_0^\infty \| v_p(t) \|^{1/3}_{L^2} \| v_p(t) \|^{2/3}_{H^3} dt \\
\lesssim \int_0^\infty e^{-\frac{\delta^2 t}{4}} dt \times C_{p,\text{in},3}^{1/2} \leq C_{p,\text{in},3} + 1.
\]

Moreover, applying the Minkowski and H"older inequalities to the expression of \(w_p \) as in (1.2) yields

\[
\sup_{0 \leq t < \infty} \| w_p(t) \|_{H^1} \leq \sup_{0 \leq t < \infty} \| v_p(t) \|_{H^2} \leq C_{p,\text{in},2} + 1,
\]

\[
\int_0^\infty \| w_p(t) \|^2_{H^2} dt \leq \int_0^\infty \| v_p(t) \|^2_{H^3} dt \leq C_{p,\text{in},2}.
\]

What is left is to estimate

\[
\| \rho_1 \|_{H^2}, \| \rho_{1,t} \|_{L^2}, \int_0^\infty \left(\| \rho_{1,t} \|^2_{L^2} + \| \rho_{1,t} \|^2_{H^1} + \| \rho_1 \|^2_{H^2} \right) dt.
\]

To do so, we write down the elliptic problem for \(\rho_1 \), which is obtained by taking average over the \(z \)-variable and then taking \(\text{div} \) in (1.2), below:

\[
-\partial_s^2 \Delta h \rho_1 = \rho_0 \int_0^1 \text{div} h \left(\text{div} (v_p \otimes v_p) \right) dz \quad \text{in } \Omega_h, \quad \int_{\Omega_h} \rho_1 \, dx dy = 0. \quad (4.1)
\]

Then the \(L^p \) estimate of the Riesz transform implies, together with the Minkowski, H"older and Sobolev embedding inequalities,

\[
\| \rho_1 \|_{H^2} \leq |\rho_1|_{H^2} \lesssim \| v_p \|^2_{H^2} \lesssim \| v_p \|^2_{H^2}.
\]

Consequently, for \(s \geq 2 \),

\[
\sup_{0 \leq t < \infty} \| \rho_1(t) \|_{H^2} + \int_0^\infty \| \rho_1(t) \|^2_{H^2} dt \lesssim \sup_{0 \leq t < \infty} \| v_p(t) \|^2_{H^2} \lesssim \| v_p \|^2_{H^2} \quad (4.2)
\]

\[
+ \sup_{0 \leq t < \infty} \| v_p(t) \|^2_{H^2} \times \int_0^\infty \| v_p(t) \|^2_{H^2} dt \leq (1 + C_{p,\text{in},2})C_{p,\text{in},2}.
\]

Furthermore, after taking time derivatives of (4.1), we have the following elliptic problems:

\[
\begin{aligned}
-\partial_s^2 \Delta h \rho_{1,t} &= 2\rho_0 \int_0^1 \text{div} h \left(\text{div} (v_p \otimes v_{p,t}) \right) dz \quad \text{in } \Omega_h, \\
\int_{\Omega_h} \rho_{1,t} \, dx dy &= 0; \quad (4.3)
\end{aligned}
\]
\[
\left\{ -c_s^2 \Delta_h \rho_{t,t} = 2 \rho_0 \int_0^1 \text{div}_h \left(\text{div}_h (v_p \otimes v_{p,tt} + v_{p,t} \otimes v_{p,t}) \right)
ight\} dz \\
\text{in } \Omega_h, \quad \int_{\Omega_h} \rho_{1,t} \, dx \, dy = 0. \tag{4.4}
\]

Thus similarly, one has, for \(s \geq 3, \)
\[
\| \rho_{1,t} \|_{L^2} \lesssim \| v_p \|_{L^2} \| \rho_{p,t} \|_{L^2} \lesssim \| v_p \|_{H^2} \| \rho_{p,t} \|_{L^2} \leq C_{p, in, 2},
\]
\[
\int_0^\infty \| \rho_{1,t} \|_{H^1}^2 \, dt \lesssim \int_0^\infty \left(\| \nabla_h v_p \|_{L^2}^2 + \| v_p \|_{H^1}^2 \| \nabla_h v_{p,t} \|_{L^2}^2 \right) \, dt \lesssim \int_0^\infty \| v_p \|_{H^2} \| \rho_{p,t} \|_{H^1} \, dt \lesssim \sup_{0 \leq t < \infty} \| v_p \|_{H^2}^2
\]
\[
\times \int_0^\infty \| v_{p,t} \|_{H^1}^2 \, dt \leq C_{p, in, 2}^2,
\]
\[
\int_0^\infty \| \rho_{1,t} \|_{L^2}^2 \lesssim \int_0^\infty \left(\| v_p \|_{L^2}^2 + \| v_{p,t} \|_{L^2}^2 \right) \, dt \lesssim \int_0^\infty \left(\| v_p \|_{H^2}^2 + \| v_{p,t} \|_{H^1}^2 \right) \, dt \lesssim \sup_{0 \leq t < \infty} \| v_p \|_{H^2}^2 \times \int_0^\infty \| v_{p,t} \|_{L^2}^2 \, dt + \sup_{0 \leq t < \infty} \| v_{p,t} \|_{H^1}^2
\]
\[
\times \int_0^\infty \| v_{p,t} \|_{H^1}^2 \leq C_{p, in, 2} \int_0^\infty \| v_{p,t} \|_{L^2}^2 \, dt + C_{p, in, 3}^2.
\tag{4.5}
\]

On the other hand, after taking time derivative of \(\| [2]_2 \), we have the identity,
\[
\rho_{0} v_{p,t} = -\rho_0 (v_p \cdot \nabla_h v_p + w_p \partial_z v_p) - c_s^2 \nabla_h \rho_{1,t}
\]
\[
+ \mu \Delta_h v_{p,t} + \lambda \nabla_h \text{div}_h v_{p,t} + \partial_{zz} v_{p,t}.
\]

Therefore, directly one has,
\[
\| v_{p,tt} \|_{L^2} \lesssim \| \rho_{1,t} \|_{H^1} + \| v_{p,t} \|_{H^2} + \| v_p \cdot \nabla_h v_{p,t} \|_{L^2} + \| v_{p,t} \cdot \nabla_h v_p \|_{L^2}
\]
\[
+ \| w_p \partial_z v_{p,t} \|_{L^2} + \| w_p \partial_z v_p \|_{L^2} \lesssim \| \rho_{1,t} \|_{H^1} + \| v_{p,t} \|_{H^2}
\]
\[
+ \| v_p \|_{H^2} \| v_{p,t} \|_{H^1} + \| v_p \|_{H^2} \| v_{p,t} \|_{H^1} + \| v_{p,t} \|_{L^2} \| v_p \|_{H^3}
\]
\[
\lesssim \| \rho_{1,t} \|_{H^1} + \| v_{p,t} \|_{H^2} + \| v_p \|_{H^3} \| v_{p,t} \|_{H^1},
\]

where we have applied the Minkowski, Sobolev embedding and Hölder inequalities, and the following inequalities as the consequence of \(\| [1,3] \),
\[
\| w_p \|_{H^2} \leq \| v_p \|_{H^3}, \quad \| w_{p,t} \|_{L^2} \leq \| v_{p,t} \|_{H^1}.
\]

47
Consequently, one concludes that, for \(s \geq 3 \),
\[
\int_0^\infty \| v_{p,t} \|_{L^2}^2 \, dt \lesssim \int_0^\infty \| \rho_{1,t} \|_{H^1}^2 \, dt + (1 + \sup_{0 \leq t < \infty} \| v_p \|_{H^3}) \times \int_0^\infty \| v_{p,t} \|_{H^2}^2 \, dt \lesssim C_{p,in,2}^2 + (1 + C_{p,in,3}) C_{p,in,3},
\]
where we have substituted inequality (4.5)\(_2\). Thus (4.5)\(_3\) yields
\[
\int_0^\infty \| \rho_{1,t} \|_{L^2}^2 \lesssim C_{p,in,3}^2 + C_{p,in,2}(C_{p,in,2}^2 + (1 + C_{p,in,3})C_{p,in,3}) < \infty.
\]
This completes the proof. \(\square\)

Now, given \(v_{p,in} \in H^s(\Omega_h \times 2T) \), for any integer \(s \geq 3 \), which is even in the \(z \)-variable and satisfies the compatibility conditions (1.17), one can apply the conclusion of Proposition 1 to establish the global bound of the perturbation energy \(\mathcal{E} \), provided it is initially small. This is done through a continuity argument. We state first the proposition concerning the local well-posedness of solutions to system (1.10) with \(\mathcal{E}_{in} \) small enough:

Proposition 2. Let \(v_p \) be the solution to system (1.12), as stated in Theorem (1.4) with initial data \(v_{p,in} \in H^s(\Omega_h \times 2T) \), for an integer \(s \geq 3 \). Consider the initial data \((\xi_{in},\psi_{in}^h) \in H^2(\Omega_h \times 2T) \times H^2(\Omega_h \times 2T) \) as in (1.14) and satisfying the compatibility condition (1.15). There is a positive constant \(\bar{\varepsilon} \in (0,1) \), small enough, and a positive time \(T_{\bar{\varepsilon}} \in (0,\infty) \), such that if \(\varepsilon \in (0,\bar{\varepsilon}) \) and \(\mathcal{E}_{in} \leq \varepsilon \), there exists a unique strong solution \((\xi^\varepsilon,\psi^{\varepsilon,h}) \in L^\infty(0,T_{\bar{\varepsilon}}; H^2(\Omega_h \times 2T)) \), with \(\psi^{\varepsilon,z} \) as in (1.12), to system (1.10) in the time interval \([0,T_{\bar{\varepsilon}}] \). The existence time \(T_{\bar{\varepsilon}} \) depends only on \(\bar{\varepsilon} \) and \(\| v_{p,in} \|_{H^3} \) and is independent of \(\varepsilon \). Here \(\mathcal{E}_{in} \) is as in (1.16). Moreover, \((\partial_t \xi^\varepsilon,\partial_t \psi^{\varepsilon,h}) \in L^\infty(0,T_{\bar{\varepsilon}}; L^2(\Omega_h \times 2T)) \), \(\rho = \rho_0 + \varepsilon^2 p_1 + \xi^\varepsilon \in (\frac{1}{2}\rho_0,2\rho_0) \) in \(\Omega \times [0,T_{\bar{\varepsilon}}] \), and there is a constant \(C'' > 0 \), independent of \(\varepsilon \), such that,
\[
\sup_{0 \leq t \leq T_{\bar{\varepsilon}}} \mathcal{E}(t) \leq C'' \mathcal{E}_{in},
\]
where \(\mathcal{E}(t) \) is as in (2.2).

The proof of Proposition 2 can be done via a fixed point argument similar to that in our previous work [62] and it is omitted here.

Now we are ready to establish the proof of Theorem 1.2
Proof of Theorem 1.2. Consider $s \geq 3$ and $\varepsilon \in (0, \bar{\varepsilon})$ with $\bar{\varepsilon} \in (0, 1)$ as given in Proposition 2. Let the initial data $(\xi_{in}, \psi_{in}) \in H^2(\Omega_h) \times H^2(\Omega_h \times 2\mathbb{T})$ satisfy (1.14), the compatibility conditions (1.15), and $E_{in} \leq \varepsilon^2$, where E_{in} is as in (1.16). Then $E_{in} \leq \bar{\varepsilon}$, and there is a strong solution to system (1.10) as stated by Proposition 2 in the time interval $[0, T_{\bar{\varepsilon}}]$, for some $T_{\bar{\varepsilon}} \in (0, \infty)$, independent of ε. The strong solution satisfies

$$\rho \in \left(\frac{1}{2}\rho_0, 2\rho_0\right) \text{ in } (\Omega_h \times 2\mathbb{T}) \times [0, T_{\bar{\varepsilon}}],$$

and

$$\sup_{0 \leq t \leq T_{\bar{\varepsilon}}} E(t) \leq C^m E_{in} \leq C^m \varepsilon^2.$$

Such estimates, together with Theorem 1.1 and Corollary 1, imply that the assumptions in Proposition 1 hold true in the time interval $[0, T_{\bar{\varepsilon}}]$. Therefore applying (3.3) yields

$$\sup_{0 \leq t \leq T_{\bar{\varepsilon}}} E(t) + \int_0^{T_{\bar{\varepsilon}}} D(t) \, dt \leq C' e^{C' + Q(C'\varepsilon^2)} \left\{ \varepsilon^2 + \varepsilon^2
+ \left(\varepsilon^2 + (\varepsilon^2 + 1)Q(C''\varepsilon^2) \right) \int_0^{T_{\bar{\varepsilon}}} D(t) \, dt \right\} \leq 2C' e^{2C' \varepsilon^2} + \frac{1}{2} \int_0^{T_{\bar{\varepsilon}}} D(t) \, dt,$$

provided $\varepsilon \in (0, \varepsilon_1) \subset (0, \bar{\varepsilon})$, where ε_1 is small enough such that $Q(C''\varepsilon_1^2) \leq C'$ and $C'e^{2C'}(\varepsilon_1^2 + (\varepsilon_1^2 + 1)Q(C''\varepsilon_1^2)) \leq 1/2$. This inequality yields that,

$$\sup_{0 \leq t \leq T_{\bar{\varepsilon}}} E(t) + \int_0^{T_{\bar{\varepsilon}}} D(t) \, dt \leq C'' \varepsilon^2 < \bar{\varepsilon}, \quad (4.6)$$

where $C'' = 4C' e^{2C'}$, and provided ε_1 is small such that $C'' \varepsilon_1^2 < \bar{\varepsilon}$. In particular, $E(T_{\bar{\varepsilon}}) \leq \varepsilon$. We apply Proposition 2 again in the time interval $[T_{\bar{\varepsilon}}, 2T_{\bar{\varepsilon}}]$, which states that there exists a strong solution satisfying

$$\rho \in \left(\frac{1}{2}\rho_0, 2\rho_0\right) \text{ in } (\Omega_h \times 2\mathbb{T}) \times [T_{\bar{\varepsilon}}, 2T_{\bar{\varepsilon}}],$$

and

$$\sup_{T_{\bar{\varepsilon}} \leq t \leq 2T_{\bar{\varepsilon}}} E(t) \leq C'' E(T_{\bar{\varepsilon}}) \leq C'' \varepsilon^2.$$

Together with (4.6), this implies

$$\sup_{0 \leq t \leq 2T_{\bar{\varepsilon}}} E(t) \leq C'' \varepsilon^2 \text{ with } C'' = \max\{C'', C''C'''\},$$

and

$$\sup_{0 \leq t \leq \bar{T_{\bar{\varepsilon}}}} E(t) \leq C''' \varepsilon^2.$$

49
Consequently Proposition 1 applies. In particular, (3.3) yields
\[
\sup_{0 \leq t \leq 2T} \mathcal{E}(t) + \int_0^{2T} \mathcal{D}(t) \, dt \leq C' e^{C'' (C''')^2} \left\{ \varepsilon^2 + \varepsilon^2 \right\}
\]
\[
+ \left(\varepsilon^2 + (\varepsilon^2 + 1)Q(C''') \right) \int_0^{2T} \mathcal{D}(t) \, dt \right\}.
\]
As above, this implies
\[
\sup_{0 \leq t \leq 2T} \mathcal{E}(t) + \int_0^{2T} \mathcal{D}(t) \, dt \leq C'''' \varepsilon^2 < \varepsilon,
\] (4.7)
provided \(\varepsilon \in (0, \varepsilon_2) \subset (0, \varepsilon_1) \subset (0, \varepsilon) \), for \(\varepsilon_2 \) small enough such that \(Q(C''') \leq Q(C''')^2 \). Then inductively, without needing to determine the smallness of \(\varepsilon \) again, the arguments from (4.6) to (4.7) hold true for \(T \varepsilon, 2T \varepsilon \) replaced by \(nT \varepsilon, (n+1)T \varepsilon, \) \(n \geq 2 \), respectively. In particular, (4.7) holds true for \(2T \varepsilon \) replaced by \((n+1)T \varepsilon \). Recall that \(T \varepsilon \) is independent of \(\varepsilon \). This concludes the proof of (1.18). (1.19) is a direct consequence of (1.18), (1.5), (1.11), (1.13) and the fact that \(\| \rho_1 \|_{H^2} < \infty \) as in (1.2). Therefore let \(\varepsilon_0 = \varepsilon_2 \), and we complete the proof of Theorem 1.2.

5 Global regularity estimates of the solution to the primitive equations

Let us recall the primitive equations (1.2) first. We shorten the notations \(v = v_p, w = w_p \) in this section. Recall that
\[
\begin{align*}
\text{div}_h v + \partial_z w &= 0 \\
\rho_0 \left(\partial_t v + v \cdot \nabla_h v + w \partial_z v \right) + \nabla_h (c_s^2 \rho_1) &= \mu \Delta_h v \\
+ \lambda \nabla_h \text{div}_h v + \partial_z v &= 0 \\
\partial_z (c_s^2 \rho_1) &= 0
\end{align*}
\] (1.2)
in \(\Omega_h \times 2T \),
where \(\mu > 0, \lambda > \frac{1}{3} \mu > 0 \). Here the symmetry (SYM-PE) and the side condition (1.3) are imposed. We will make further assumptions on the viscous coefficients later.

In this section, we will study the global regularity of the solution \((\rho_1, v, w)\) to (1.2) with initial data \(v_{p,in} \in H^s(\Omega_h \times 2T) \) for arbitrary integer \(s \in \{1, 2, 3 \cdots \} \), with \(v_{p,in} \) being even in the \(z \)-variable and satisfying the compatible conditions:
\[
\int_{\Omega_h \times 2T} v_{p,in} \, d\bar{x} = 0, \quad \text{div}_h \overline{v_{p,in}} = 0.
\]
We will show the following proposition:

Proposition 3. For $0 < \lambda < 4\mu < 12\lambda$, suppose \((1.2)\) is complemented with initial data $v_{p,in} \in H^1(\Omega_h \times 2\mathbb{T})$ as above. Then the unique solution v to the primitive equations \((1.2)\), satisfies

$$
\sup_{0 \leq t < \infty} \| v(t) \|_{H^1}^2 + \int_0^\infty \left(\| \nabla v(t) \|_{L^2}^2 + \| \partial_t v(t) \|_{L^2}^2 \right) dt \leq C_{p,in},
$$

for some positive constant $C_{p,in}$ depending only $\| v_{p,in} \|_{H^1}$. Furthermore,

$$
\| v(t) \|_{L^2}^2 \leq C e^{-ct} \| v_{p,in} \|_{L^2}^2 \quad t \in [0, \infty),
$$

for some positive constants c, C. Moreover, for any integer $s \geq 2$, if $v_{p,in} \in H^s(\Omega_h \times 2\mathbb{T})$, there is a constant $C_{p,in,s}$ depending only on $\| v_{p,in} \|_{H^s}$ such that

$$
\sup_{0 \leq t < \infty} \left(\| v(t) \|_{H^s}^2 + \| \nabla v(t) \|_{H^{s-2}}^2 \right) + \int_0^\infty \left(\| \nabla v(t) \|_{H^{s+1}}^2 + \| \partial_t v(t) \|_{H^{s-1}}^2 \right) dt \leq C_{p,in,s}.
$$

As in \[52\], we focus on the \textit{a priori} estimates below. In fact, the local-in-time regularity in Sobolev and analytic function spaces has been studied in \[71\], and therefore following a continuity argument, one can check the validity of the proof below.

Basic energy estimate

Take the L^2-inner product of \((1.2)\) with v. We have

$$
\frac{d}{dt} \left\{ \frac{\rho_0}{2} \| v \|_{L^2}^2 \right\} + \mu \| \nabla h v \|_{L^2}^2 + \lambda \| \div h v \|_{L^2}^2 + \| \partial_z v \|_{L^2}^2 = 0. \quad (5.1)
$$

Integrating the above equation in the time variable yields

$$
\sup_{0 \leq t < \infty} \left\{ \frac{\rho_0}{2} \| v(t) \|_{L^2}^2 \right\} + \int_0^\infty \left(\mu \| \nabla h v(t) \|_{L^2}^2 + \lambda \| \div h v(t) \|_{L^2}^2 \right) dt = \frac{\rho_0}{2} \| v_{p,in} \|_{L^2}^2. \quad (5.2)
$$

Moreover, under the assumption \((1.4)\), after applying the Poincaré inequality in \((5.1)\), we have the inequality

$$
\frac{d}{dt} \| v \|_{L^2}^2 + c \| v \|_{L^2}^2 \leq 0,
$$

51
for some positive constant c. Thus one can derive from above that
\[
\|v(t)\|_{L^2}^2 \lesssim e^{-ct} \|v_{p,in}\|_{L^2}^2,
\] for all $t \in [0, \infty)$.

H^1 estimate

After applying ∂_t to (1.2), we write down the following equation:
\[
\rho_0(\partial_t v_z + v \cdot \nabla_h v_z + w \partial_z v_z) = \mu \Delta_h v_z + \lambda \nabla_h \text{div}_h v_z + \partial_{zz} v_z - \rho_0(v_z \cdot \nabla_h v + w \partial_z v).
\] Then take the L^2 inner product of (5.4) with v_z. It follows, after substituting (1.13), that
\[
\frac{d}{dt} \left\{ \frac{\rho_0}{2} \|v_z\|_{L^2}^2 \right\} + \mu \|\nabla_h v_z\|_{L^2}^2 + \lambda \|\text{div}_h v_z\|_{L^2}^2 + \|\partial_z v_z\|_{L^2}^2
\]
\[
= -\rho_0 \int (v_z \cdot \nabla_h v) \cdot v_z \, d\vec{x} + \rho_0 \int \nabla_h v(\partial_z v \cdot v_z) \, d\vec{x} =: L_1 + L_2.
\]

After applying integration by parts, one will have
\[
L_1 = \rho_0 \int (v_z \cdot \nabla_h v_z) \cdot v \, d\vec{x} + \rho_0 \int (v \cdot v_z) \text{div}_h v_z \, d\vec{x},
\]
\[
L_2 = -2\rho_0 \int (v \cdot \nabla_h v_z) \cdot v_z \, d\vec{x}.
\]

Therefore, let p, q be some positive constants, to be determined later, satisfying
\[
\frac{1}{p} + \frac{1}{q} = \frac{1}{2}, \quad 2 < p < 6 \quad \text{(equivalently} \quad q > 3). \quad (5.6)
\]

After applying Hölder’s, the Gagliardo-Nirenberg interpolation and Young’s inequalities, one has
\[
L_1 + L_2 \lesssim \|v_z\|_{L^p} \|\nabla_h v_z\|_{L^2} \|v\|_{L^q} \lesssim \|v_z\|_{L^2}^{3/p-1/2} \|\nabla v_z\|_{L^2}^{3/2-3/p}
\times \|\nabla_h v_z\|_{L^2} \|v\|_{L^q} \lesssim \delta \|\nabla v_z\|_{L^2}^2 + C_\delta \|v_z\|_{L^2} \|v\|_{L^q}^{4p/(6-p)}
\]
\[
= \delta \|\nabla v_z\|_{L^2}^2 + C_\delta \|v_z\|_{L^2}^2 \|v\|_{L^q}^{2q/(q-3)}.
\]

Hence, after choosing $\delta > 0$, sufficiently small, in the above estimate, we have
\[
\frac{d}{dt} \left\{ \frac{\rho_0}{2} \|v_z\|_{L^2}^2 \right\} + \mu \|\nabla_h v_z\|_{L^2}^2 + \lambda \|\text{div}_h v_z\|_{L^2}^2 + \frac{1}{2} \|\partial_z v_z\|_{L^2}^2
\]
Integrating the above inequality in the time variable yields

\[
\sup_{0 \leq t < \infty} \| v_z(t) \|_{L^2}^2 + \int_0^\infty \| \nabla v_z(t) \|_{L^2}^2 \, dt \lesssim \sup_{0 \leq t < \infty} \| v(t) \|_{L^2}^{\frac{2q}{q+2}}
\]

\[
\times \int_0^\infty \| \nabla v(t) \|_{L^2}^2 \, dt + \| v_{p, in, z} \|_{L^2}^2 \lesssim \sup_{0 \leq t < \infty} \| v(t) \|_{L^2}^{\frac{2q}{q+2}} \quad (5.7)
\]

\[
\times \| v_{p, in} \|_{L^2}^2 + \| v_{p, in, z} \|_{L^2}^2,
\]

for \(q \in (3, \infty) \), where we have substituted (5.2).

On the other hand, after applying \(\partial_\nu \) to (1.2), one gets the equation:

\[
\rho_0(\partial_\nu v + v \cdot \nabla_h v + w \partial_z v_h) + \nabla_h(c^2 \rho_1 h) = \mu \Delta_h v_h + \lambda \nabla_h \text{div}_h v_h + \partial_{zz} v_h - \rho_0(v_h \cdot \nabla_h v + w_h \partial_z v).
\]

Then after taking \(L^2 \)-inner product of (5.8) with \(v_h \), we have

\[
\frac{d}{dt} \left\{ \frac{\rho_0}{2} \| v_h \|_{L^2}^2 \right\} + \mu \| \nabla_h v_h \|_{L^2}^2 + \lambda \| \text{div}_h v_h \|_{L^2}^2 + \| \partial_z v_h \|_{L^2}^2
\]

\[
= -\rho_0 \int (v_h \cdot \nabla_h v) \cdot v_h \, d\vec{x} - \rho_0 \int w_h (\partial_z v \cdot v_h) \, d\vec{x} =: L_3 + L_4.
\]

Now we estimate the terms on the right-hand side of the above equality. As before, let \(q > 3, \frac{1}{p} + \frac{1}{q} = \frac{1}{2} \). After applying integration by parts and the Hölder, Gagliardo-Nirenberg interpolation and Young inequalities, one has

\[
L_3 = \rho_0 \int \left((v_h \cdot \nabla_h v_h) \cdot v + (v \cdot v_h) \text{div}_h v_h \right) \, d\vec{x} \lesssim \int \| v \| | \nabla_h v | || \nabla^2 v | | d\vec{x}
\]

\[
\lesssim \| \nabla_h v \|_{L^p} \| \nabla^2 v \|_{L^2} \| v \|_{L^q} \lesssim \| \nabla_h v \|_{L^2}^{3/p-1/2} \| \nabla^2 v \|_{L^2}^{3/2-3/p} \times \| \nabla^2 v \|_{L^2} \| v \|_{L^q} \lesssim \delta \| \nabla_h v \|_{L^2} \| v \|_{L^q}^{2/3} + C_\delta \| \nabla_h v \|_{L^2} \| v \|_{L^q}^{2/3}.
\]

On the other hand, after substituting (1.3) in the term \(L_4 \) and applying the Minkowski, Hölder’s, the Gagliardo-Nirenberg interpolation and Young’s inequalities, one has

\[
L_4 = \rho_0 \int \left(\int_0^z \text{div}_h v_h \, dz \right) \times (\partial_z v \cdot v_h) \, d\vec{x} \lesssim \int_0^1 | \nabla^2 v |_{L^2} \, dz
\]

\[
\times \int_0^1 | v_z |_{L^4} | v_h |_{L^4} \, dz \lesssim \| \nabla^2 v \|_{L^2} \| v_z \|_{L^2}^{1/2} \| \nabla_h v_z \|_{L^2}^{1/2}.
\]
Similarly, take the $L^q \succ \delta \to L^2$ inner product of (1.2) with v_t. One has,

\[
\frac{d}{dt} \left\{ \frac{\mu}{2} \left\| \nabla h v_t \right\|_{L^2}^2 + \frac{\lambda}{2} \left\| \text{div}_h v \right\|_{L^2}^2 + \frac{1}{2} \left\| \partial_z v \right\|_{L^2}^2 \right\} + \rho_0 \left\| \partial_t v \right\|_{L^2}^2 \\
= -\rho_0 \int (v \cdot \nabla h v) \cdot v_t \, d\vec{x} - \rho_0 \int w(\partial_z v \cdot v_t) \, d\vec{x} =: L_5 + L_6.
\]

As before, applying the H"older, Minkowski, Gagliardo-Nirenberg interpolation and Young inequalities yield, for $q \succ 3, \frac{1}{p} + \frac{1}{q} = \frac{1}{2},$

\[
L_5 \lesssim \left\| \nabla h v \right\|_{L^p} \left\| v_t \right\|_{L^p} \left\| v \right\|_{L^q} \lesssim \left\| \nabla h v \right\|_{L^2}^{3/p-1/2} \left\| \nabla \nabla h v \right\|_{L^2}^{3/2-3/p} \times \left\| v_t \right\|_{L^2} \left\| v \right\|_{L^q} \lesssim \delta \left(\left\| v_t \right\|_{L^2}^2 + \left\| \nabla \nabla h v \right\|_{L^2}^2 \right) \\
+ C_\delta \left\| \nabla h v \right\|_{L^2}^2 \left\| v \right\|_{L^q}^{2q/(q-3)},
\]

\[
L_6 = \rho_0 \int \left(\int_0^z \text{div}_h v \, dz \right) \times (\partial_z v \cdot v_t) \, d\vec{x} \lesssim \int_0^1 \left\| \nabla h v \right\|_{L^4} \, dz \\
\times \int_0^1 \left\| \partial_z v \right\|_{L^4} \left\| v_t \right\|_{L^2} \, dz \lesssim \left\| \nabla h v \right\|_{L^2}^{1/2} \left\| \nabla^2 h v \right\|_{L^2}^{1/2} \left\| v_t \right\|_{L^r}^{1/2} \left\| \nabla h v_z \right\|_{L^2}^{1/2} \\
\times \left\| v_t \right\|_{L^2} \lesssim \delta \left(\left\| v_t \right\|_{L^2}^2 + \left\| \nabla^2 h v \right\|_{L^2}^2 \right) + C_\delta \left\| v_t \right\|_{L^2} \left\| \nabla h v_z \right\|_{L^2}^2 \\
\times \left\| \nabla h v \right\|_{L^2}^2.
\]

After summing (5.9), (5.10) and the estimates of L_3, L_4, L_5, L_6 above with sufficiently small δ, one has

\[
\frac{d}{dt} \left\{ \frac{\rho_0}{2} \left\| v_h \right\|_{L^2}^2 + \frac{\mu}{2} \left\| \nabla h v \right\|_{L^2}^2 + \frac{\lambda}{2} \left\| \text{div}_h v \right\|_{L^2}^2 + \frac{1}{2} \left\| \partial_z v \right\|_{L^2}^2 \right\} \\
+ \frac{\mu}{2} \left\| \nabla h v_h \right\|_{L^2}^2 + \lambda \left\| \text{div}_h v_h \right\|_{L^2}^2 + \frac{1}{2} \left\| \partial_z v_h \right\|_{L^2}^2 + \rho_0 \frac{\mu}{2} \left\| \partial_t v \right\|_{L^2}^2 \\
\lesssim \left\| \nabla h v \right\|_{L^2}^2 \left\| v \right\|_{L^q}^{2q/(q-3)} + \left\| v_z \right\|_{L^2} \left\| \nabla h v_z \right\|_{L^2}^2 \left\| \nabla h v \right\|_{L^2}^2.
\]

54
Then after applying the Grönwall’s inequality, it follows
\[
\sup_{0 \leq t < \infty} \left\| \nabla v(t) \right\|_{L^2}^2 + \int_0^\infty \left(\left\| \nabla v_h(t) \right\|_{L^2}^2 + \left\| \partial_t v(t) \right\|_{L^2}^2 \right) dt \leq e^{C \int_0^\infty \left\| v(t) \right\|_{L^2}^2 dt} \sup_{0 \leq t < \infty} \left\| v(t) \right\|_{L^2}^{\frac{2q}{1+q}} + \sup_{0 \leq t < \infty} \left\| v(t) \right\|_{L^2}^{\frac{2q}{1+q}},
\]
(5.11)

for some positive constant \(C \) and \(q \in (3, \infty) \), where we have substituted (5.2) and (5.7).

\(L^q \) \textit{estimate}

We take the \(L^2 \)-inner product of (1.2) with \(|v|^{q-2}v \). It follows that,
\[
\frac{d}{dt} \left\{ \rho_0 \left\| v \right\|_{L^q}^q \right\} + \mu \int \left(|v|^{q-2} \left| \nabla_h v \right|^2 + (q-2)|v|^{q-2} \left| \nabla_h |v| \right|^2 \right) d\vec{x} + \lambda \int |v|^{q-2} \left| \text{div}_h v \right|^2 d\vec{x} + \int \left(|v|^{q-2} \left| \partial_{\vec{x}} v \right|^2 + (q-2)|v|^{q-2} \left| \partial_{\vec{x}} |v| \right|^2 \right) d\vec{x} = \int c_5^2 \rho_1 \text{div}_h (|v|^{q-2} v) d\vec{x} - \lambda (q-2) \int |v|^{q-3} (v \cdot \nabla_h |v|) \text{div}_h v d\vec{x} =: L_7 + L_8.
\]
(5.12)

By using the Cauchy-Schwarz inequality, it holds,
\[
L_8 \leq \lambda (q-2) \int |v|^{q-2} \left| \nabla_h v \right| \left| \text{div}_h v \right| d\vec{x} \leq \lambda \int |v|^{q-2} \left| \text{div}_h v \right|^2 d\vec{x} + \frac{\lambda (q-2)^2}{4} \int |v|^{q-2} \left| \nabla_h |v| \right|^2 d\vec{x}.
\]
Therefore, (5.12) implies

\[
\frac{d}{dt} \left(\frac{\rho_0}{q} \| v \|_{L^q}^q \right) + \mu \| v \|_{L^2}^2 \\nabla_h v \|^2_{L^2} + \| v \|_{L^2}^2 \partial_z v \|^2_{L^2} \\
\lesssim \frac{d}{dt} \left(\frac{\rho_0}{q} \| v \|_{L^q}^q \right) + \int \left(\mu \| v \|_{L^2}^2 \| \nabla_h v \|^2 \right. \\
+ (\mu(q - 2) - \frac{\lambda(q - 2)^2}{4}) \| v \|_{L^2}^2 \| \nabla_h v \|^2 \left. \right) \, dx \\
+ \int \left(\| v \|_{L^2}^2 \| \partial_z v \|^2 + (q - 2) \| v \|_{L^2}^2 \| \partial_z v \|^2 \right) \, dx \leq L_7,
\]

provided

\[q - 2 \geq 0 \text{ and } \mu - \frac{\lambda(q - 2)}{4} \geq 0, \text{ or equivalently, } 2 \leq q \leq \frac{4\mu}{\lambda} + 2. \]

In order to estimate \(L_7 \), we first derive an estimate for the “pressure” \(\rho_1 \). Recall the elliptic problem (4.11),

\[-c_5^2 \Delta_h \rho_1 = \rho_0 \int_0^1 \text{div}_h (\text{div}_h (v \otimes v)) \, dz \quad \text{in } \Omega_h, \quad \text{with } \int_{\Omega_h} \rho_1 \, dx dy = 0. \]

Now we consider the \(L^{p_1} \) estimate of \(\rho_1 \). In fact, as the consequence of the \(L^p \) estimate of the Riesz transform, one has

\[
\| \rho_1 \|_{L^{p_1}} = \| \rho_1 \|_{L^{p_1}} \lesssim \int_0^1 \| v \|_{L^{p_1}} \, dz = \int_0^1 \| v \|_{L^{2p_1}} \, dz \lesssim \int_0^1 \| v \|_{L^4} \| v \|_{L^{4p_1/(4 - p_1)}} \, dz \\
= \int_0^1 \| v \|_{L^4} \| v \|_{L^{8p_1/(8 - p_1)}} \, dz \lesssim \int_0^1 \| v \|_{L^4} \| \nabla_h v \|_{L^{2}} \| v \|_{L^{2p_1/(4 - p_1)}} \, dz \\
\lesssim \| v \|_{L^2} \| \nabla_h v \|_{L^2} \| v \|_{L^{4p_1/(4 - p_1)}} \, dz \lesssim \| v \|_{L^2} \| \nabla_h v \|_{L^2} \| v \|_{L^{2p_1/(4 - p_1)}} \, dz, \]

provided

\[p_1 > 2, \quad \frac{1}{4} < \frac{1}{p_1} < \frac{1}{q} + \frac{1}{4}, \quad q \geq 2, \]

where we have applied the Minkowski, Hölder and Gagliardo-Nirenberg interpolation inequalities. Let \(q_1 > 0 \) be such that

\[\frac{1}{p_1} + \frac{1}{q_1} = \frac{1}{2}, \]

56
Then we have, after applying the Minkowski, Hölder and Gagliardo-Nirenberg interpolation inequalities,

$$L_7 \lesssim \int |\rho_1| |v|^{\frac{q}{2}-1} |\nabla_h v| |v|^{\frac{q}{2}-1} \, dx \lesssim |\rho_1|_{L^{p_1}}$$

$$\times \int_0^1 \|v\|^{\frac{q}{2}-1} |\nabla_h v|_{L^2} \|v\|^{\frac{q}{2}-1} \|\nabla_h v\|_{L^{q_1}} \, dz = \|\rho_1\|_{L^{p_1}}$$

$$\times \int_0^1 \|v\|^{\frac{q}{2}-1} |\nabla_h v|_{L^2} \|v\|^{\frac{q}{2}-1} \|\nabla_h v\|_{L^{q_1}} \, dz \lesssim \|\rho_1\|_{L^{p_1}}$$

$$\times \int_0^1 \|v\|^{\frac{q}{2}-1} |\nabla_h v|_{L^2} \|v\|^{\frac{q}{2}-1} \|\nabla_h v\|_{L^{q_1}} \, dz \lesssim \|\rho_1\|_{L^{p_1}}$$

$$\times \|v\|^{\frac{q}{2}-1} |\nabla_h v|_{L^2} \|v\|^{\frac{q}{2}-1} \|\nabla_h v\|_{L^{q_1}} \, dz \lesssim \|\rho_1\|_{L^{p_1}}$$

$$\lesssim \|\rho_1\|_{L^{p_1}} \|v\|^{\frac{q}{2}-1} |\nabla_h v|_{L^2} \|v\|^{\frac{q}{2}-1} \|\nabla_h v\|_{L^{q_1}} \lesssim \delta \|v|^{\frac{q}{2}-1} |\nabla_h v|_{L^2}^2 + C_\delta \|v\|^{\frac{q}{2}-1} |\nabla_h v|_{L^2}^2 \|v\|^{q}_{L^q},$$

provided

$$0 < \frac{1}{q_1} < \frac{1}{2} - \frac{1}{q}, \quad \text{or equivalently,} \quad \frac{1}{q} < \frac{1}{p_1} \quad \text{and} \quad q > 2,$$

where we have substituted (5.15) in the second but last inequality. Therefore after combining (5.14), (5.16), (5.18), for q satisfying

$$2 < q \leq \frac{4\mu}{\lambda} + 2,$$

we conclude from (5.13) and (5.17),

$$\frac{d}{dt} \left\{ \rho_0 \frac{q}{2} \|v\|_{L^q} \right\} + \frac{\mu}{2} \|v|^{\frac{q}{2}-1} |\nabla_h v|_{L^2}^2 + \|v|^{\frac{q}{2}-1} |\partial_z v|_{L^2}^2 \lesssim \|v\|^{\frac{q}{2}-1} |\nabla_h v|_{L^2}^2 \|v\|_{L^q}^q,$$

after choosing δ sufficiently small above. Applying Grönwall’s inequality to the above inequality implies, for $2 < q \leq \frac{4\mu}{\lambda} + 2,$

$$\sup_{0 \leq t < T} \|v(t)\|_{L^q}^q + \int_0^\infty \|v|^{\frac{q}{2}-1} \nabla v(t)\|_{L^2}^2 \, dt \lesssim C_q e^{C_f T} \|v(t)\|_{L^2}^\infty \|\nabla v(t)\|_{L^2}^2 \|v_{p, in}\|_{L^q}^q$$

$$\lesssim C_q e^{C_f} \|v_{p, in}\|_{L^2}^4 \|v_{p, in}\|_{L^q}^q,$$
for some positive constant C and C_q depending on q.

Therefore, after summing up the inequalities (5.2), (5.7), (5.11), (5.20), for $\lambda < 4\mu < 12\lambda$, one will have

\[
\sup_{0 \leq t < \infty} \| v(t) \|^2_{H^1} + \int_0^\infty \left(\| \nabla v(t) \|^2_{H^1} + \| \partial_t v(t) \|^2_{L^2} \right) dt \leq C_{p,in} \left(\| v_{p,in} \|_{H^1}, \| v_{p,in} \|_{L^q} \right),
\]

for some positive constant $C_{p,in}$ depending on $\| v_{p,in} \|_{H^1}, \| v_{p,in} \|_{L^q}$ with

\[
3 < q \leq \frac{4\mu}{\lambda} + 2, \quad \frac{4\mu}{\lambda} \in (1, 12).
\]

In particular, it suffices to take

\[
q = \begin{cases}
4 & \text{if } \frac{4\mu}{\lambda} \in [4, 12), \\
\frac{4\mu}{\lambda} + 2 & \text{if } \frac{4\mu}{\lambda} \in (1, 4),
\end{cases}
\]

such that $q \in [2, 6]$, and therefore,

\[
C_{p,in}(\| v_{p,in} \|_{H^1}, \| v_{p,in} \|_{L^q}) = C_{p,in}(\| v_{p,in} \|_{H^1})
\]

depends only on $\| v_{p,in} \|_{H^1}$ by noticing that $\| v_{p,in} \|_{L^q} \lesssim \| v_{p,in} \|_{H^1}$ in this case.

H^s estimates

Next, we will show the global regularity of the solution v to system (1.2) with more regular initial data $v_{p,in}$. That is, we complement (1.2) with the initial data $v_{p,in} \in H^s(\Omega)$, with $s \geq 2$. In fact, we will use the mathematical induction principle to show that for any $s \geq 1, s \in \mathbb{Z}^+$,

\[
\begin{aligned}
\sup_{0 \leq t < \infty} \| v(t) \|^2_{H^1} + \int_0^\infty \left(\| v(t) \|^2_{H^2} + \| \partial_t v(t) \|^2_{L^2} \right) dt & \leq C_{p,in,1} \quad \text{if } s = 1, \\
\sup_{0 \leq t < \infty} \left(\| v(t) \|^2_{H^s} + \| v_t(t) \|^2_{H^{s-1}} + \int_0^\infty \left(\| v(t) \|^2_{H^{s+1}} + \| \partial_t v(t) \|^2_{H^{s-1}} \right) dt \leq C_{p,in,s} \quad \text{if } s \geq 2,
\end{aligned}
\]

for some positive constant $C_{p,in,s}$ depending on $\| v_{p,in} \|_{H^s}$. Notice, the case when $s = 1$ has been shown in (5.21).
First, for any integer $s \geq 1$, it is assumed that (5.23) holds true. Our goal is to show that the same estimate is also true for s replaced by $s + 1$. In order to do so, we apply ∂^{s+1} to (1.2) with $\partial \in \{\partial_x, \partial_y, \partial_z\}$ and denote the k-order derivative by $\cdot_k := \partial^k$. For any $k \in \{0, 1, 2 \cdots s + 1\}$. Then we have the following equation:

$$\begin{align*}
\rho_0 (\partial_t v_{s+1} + v \cdot \nabla_h v_{s+1} + w \partial_z v_{s+1}) + \nabla_h (v^2 \rho_1 v_{s+1}) &= \mu \Delta_h v_{s+1} + \lambda \nabla_h \text{div}_h v_{s+1} + \partial_{zz} v_{s+1} \\
&- \rho_0 (\partial^{s+1} (v \cdot \nabla_h v) - v \cdot \nabla_h v_{s+1} + \partial^{s+1} (w \partial_z v) - w \partial_z v_{s+1}).
\end{align*}$$

(5.24)

Take the L^2-inner product of (5.24) with v_{s+1}. It follows,

$$\begin{align*}
\frac{d}{dt} \left\{ \frac{\rho_0}{2} \| v_{s+1} \|^2_{L^2} \right\} + \mu \| \nabla_h v_{s+1} \|^2_{L^2} + \lambda \| \text{div}_h v_{s+1} \|^2_{L^2} \\
+ \| \partial_z v_{s+1} \|^2_{L^2} &= \rho_0 \left(v \cdot \nabla_h v_{s+1} - \partial^{s+1} (v \cdot \nabla_h v) \right) \cdot v_{s+1} \, dx \\
+ \rho_0 \int (w \partial_z v_{s+1} - \partial^{s+1} (w \partial_z v)) \cdot v_{s+1} \, dx =: K_1 + K_2.
\end{align*}$$

(5.25)

We estimate K_1, K_2 on the right-hand side of (5.25) below. First, notice that K_1, K_2 can be written as

$$K_1 = -\rho_0 \sum_{i=0}^{s} \left(\frac{s + 1}{i} \right) \int (v_{s+1-i} \cdot \nabla_h v_i) \cdot v_{s+1} \, dx =: \sum_{i=0}^{s} K_{1,i},$$

$$K_2 = -\rho_0 \sum_{i=0}^{s} \left(\frac{s + 1}{i} \right) \int w_{s+1-i} \partial_z v_i \cdot v_{s+1} \, dx =: \sum_{i=0}^{s} K_{2,i}.$$

We consider the estimates of $K_{j,i}$, for $j \in \{1, 2\}$ and $i \in \{0, 1, 2 \cdots s\}$ in three cases:

$$\begin{align*}
2 \leq i &\leq s, \\
i &= 1, \\
i &= 0.
\end{align*}$$

In the case when $i \geq 2$, we have

$$s + 1 - i \leq s - 1, \quad 3 \leq 1 + i \leq s + 1.$$

Therefore, applying the Hölder, Sobolev embedding and Young inequalities implies

$$K_{1,i} \lesssim \| v_{s+1-i} \|_{L^3} \| \nabla_h v_i \|_{L^6} \| v_{s+1} \|_{L^2} \lesssim \| v \|_{H^{s+2-i}} \| v \|_{H^{s+2}} \| v_{s+1} \|_{L^2}.$$
Similarly, we apply the Minkowski, Hölder, Sobolev embedding and Young inequalities to estimate $K_{2,i}$. On the one hand, if $w_{s+1-i} = \partial^{s+1-i}w = \partial_h^{s+1-i}w$, we have, thanks to (1.13),

$$K_{2,i} = \rho_0 \left(\frac{s+1}{i} \right) \int \left(\partial_h^{s+1-i} \left(\int_0^2 \text{div}_h v \, dz' \right) \times (\partial_z v_i \cdot v_{s+1}) \right) \, d\vec{x}$$

$$\lesssim \int_0^1 |v_{s+2-i}|_{L^4} \, dz' \times \int_0^1 |\partial_z v_i|_{L^2} |v_{s+1}|_{L^2} \, dz$$

$$\lesssim \int_0^1 |v_{s+2-i}|_{L^2} |v_{s+3-i}|_{L^2} \, dz' \times \int_0^1 |\partial_z v_i|_{L^2} |\partial_z v_{i+1}|_{L^2} |v_{s+1}|_{L^2} \, dz$$

$$\lesssim \| v \|_{H^{s+2-i}} \| v \|_{H^{s+3-i}} \| v \|_{H^{s+1}} \| v \|_{H^{s+2}} \| v_{s+1} \|_2$$

$$\lesssim \| v \|_{H^{s+2}} \| v \|_{H^{s+1}} \| v \|_{H^{s+2}} \| v_{s+1} \|_2 \lesssim \delta \| v \|_{H^{s+2}}^2 + C_\delta \| v \|_{H^{s+1}}^2 \| v_{s+1} \|_{L^2}^2.$$

On the other hand, if $w_{s+1-i} = \partial_z w_{s-i}$, we have

$$K_{2,i} = \rho_0 \left(\frac{s+1}{i} \right) \int \text{div}_h v_{s-i} \partial_z v_i \cdot v_{s+1} \, d\vec{x} \lesssim \| v_{s+1-i} \|_{L^6} \| \partial_z v_i \|_{L^6} \| v_{s+1} \|_{L^2}$$

$$\lesssim \delta \| v \|_{H^{s+2}}^2 + C_\delta \| v \|_{H^{s+1}} \| v_{s+1} \|_{L^2}^2.$$

In the case when $i = 1$, direct application of the Hölder, Sobolev embedding and Young inequalities yields,

$$K_{1,1} \lesssim \| v_s \|_{L^3} \| v_2 \|_{L^2} \| v_{s+1} \|_{L^6} \lesssim \| v \|_{H^{s+1}} \| v \|_{H^2} \| v \|_{H^{s+2}}$$

$$\lesssim \delta \| v \|_{H^{s+2}}^2 + C_\delta \| v \|_{H^{s+1}}^2 \| v_{s+1} \|_{L^2}.$$

Meanwhile, to estimate $K_{2,1}$, we will again apply the Minkowski, Hölder, Sobolev embedding and Young inequalities. If $w_s = \partial_h^s w$, we have, after substituting (1.13),

$$K_{2,1} = \rho_0 \left(\frac{s+1}{1} \right) \int \left(\left(\int_0^2 \text{div}_h \partial_h^s v \, dz' \right) \times (\partial_z v_i \cdot v_{s+1}) \right) \, d\vec{x}$$

$$\lesssim \int_0^1 |\text{div}_h v_s|_{L^4} \, dz' \times \int_0^1 |\partial_z v_i|_{L^2} |v_{s+1}|_{L^2} \, dz$$

$$\lesssim \int_0^1 |\text{div}_h v_s|_{L^2} |\nabla_h v_{s+1}|_{L^2} \, dz' \times \int_0^1 |\partial_z v_i|_{L^2} |v_{s+1}|_{L^2} \, dz.$$

60
\[\lesssim \| v \|_{H^{s+1}} \| v \|_{H^{s+2}} \| v \|_{H^2} \lesssim \delta \| v \|_{H^{s+2}}^2 + C_\delta \| v \|_{H^2}^2 \| v \|_{H^{s+1}}^2. \]

If \(w_s = \partial_z w_{s-1} \), we have

\[
K_{2,1} = \rho_0 \left(\begin{array}{c} s+1 \\ 1 \end{array} \right) \int \text{div}_h v_{s-1} \partial_z v_1 \cdot v_{s+1} \, d\vec{x} \lesssim \| v_s \|_{L^3} \| v \|_{L^2} \| v_{s+1} \|_{L^6} \lesssim \delta \| v \|_{H^{s+2}}^2 + C_\delta \| v \|_{H^2}^2 \| v \|_{H^{s+1}}^2.
\]

Finally, in the case when \(i = 0 \), we apply the Hölder, Sobolev embedding and Young inequalities to get

\[
K_{1,0} \lesssim \| v_{s+1} \|_{L^6} \| \nabla_h v \|_{L^3} \| v \|_{H^{s+1}} \| v \|_{H^2} \| v_{s+1} \|_{L^2} \lesssim \delta \| v \|_{H^{s+2}}^2 + C_\delta \| v \|_{H^2}^2 \| v_{s+1} \|_{L^2}^2.
\]

When \(w_{s+1} = \partial_s w_s \), applying the Minkowski, Hölder, Sobolev embedding and Young inequalities yields, after substituting (1.13),

\[
K_{2,0} = \rho_0 \left(\begin{array}{c} s+1 \\ 0 \end{array} \right) \int \text{div}_h v_s \partial_z v \cdot v_{s+1} \, d\vec{x} \lesssim \| v_{s+1} \|_{L^6} \| \nabla v \|_{L^3} \| v_{s+1} \|_{L^2} \lesssim \delta \| v \|_{H^{s+2}}^2 + C_\delta \| v \|_{H^2}^2 \| v_{s+1} \|_{L^2}^2.
\]

From the above estimates, one can conclude from (5.25) that for any integer \(s \geq 1 \),

\[
\frac{d}{dt} \left\{ \rho_0 \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \| v_{s+1} \|_{L^2}^2 \right\} + \mu \| \nabla_h v_{s+1} \|_{L^2}^2 + \lambda \| \text{div}_h v_{s+1} \|_{L^2}^2
+ \| \partial_z v_{s+1} \|_{L^2}^2 \lesssim \delta \| v \|_{H^{s+2}}^2 + C_\delta \| v \|_{H^{s+2}}^2 \| v \|_{H^{s+1}}^2
+ C_\delta \| v \|_{H^1}^2 \| v \|_{H^2}^2 \| v_{s+1} \|_{L^2}^2 \lesssim \delta \| \nabla v_{s+1} \|_{L^2}^2
+ (\delta + C_\delta \| v \|_{H^1}^2) \| v \|_{H^{s+1}}^2 + C_\delta (\| v \|_{H^{s+1}}^2 + \| v \|_{H^1}^2 \| v \|_{H^2}^2)
\times \| v_{s+1} \|_{L^2}^2.
\]

(5.26)
Here we have used the notation $\| v_{s+1} \|_{L^2}^2$ to denote $\sum_{\partial \in \{ \partial_x, \partial_y, \partial_z \}} \| \partial^{s+1} v \|_{L^2}^2$. Then after taking $\delta > 0$ small enough and applying Grönwall’s inequality, together with the inequalities (5.23) and (5.21), we have

\[
\sup_{0 \leq t < \infty} \| v(t) \|_{H^{s+1}}^2 + \int_0^\infty \| v(t) \|_{H^{s+2}}^2 \, dt \lesssim e^{C \int_0^\infty (\| v(t) \|_{H^{s+1}}^2 + \| v(t) \|_{H^1}^2 + \| \nabla_h v(t) \|_{H^2}^2) \, dt} (\| v_{p, in} \|_{H^{s+1}}^2 + \int_0^\infty (1 + \| v(t) \|_{H^3}^2) \, dt) \lesssim e^{C_{p, in} + C_{p, in, 1}^2}
\]

\[
\times (\| v_{p, in} \|_{H^{s+1}}^2 + C_{p, in, s} + C_{p, in, s}^2),
\]

where $C_{p, in} = C_{p, in} (\| v_{p, in} \|_{H^1})$ is as in (5.22).

On the other hand, after replacing $s + 1$ by s in (5.24), we have the identity:

\[
\rho_0 \partial_t v_s = -\nabla_h (c_s^2 \rho_{1, s}) + \mu \Delta_h v_s + \lambda \nabla_h \nabla_h v_s + \partial_{zz} v_s - \rho_0 \partial^s (v \cdot \nabla_h v) - \rho_0 \partial^s (w \partial_z v).
\]

After taking the L^2-inner product of (5.28) with $\partial_t v_s$ and noticing the fact that

\[- \int \nabla_h (c_s^2 \rho_{1, s}) \cdot \partial_t v_s \, dx = \int c_s^2 \rho_{1, s} \nabla_h \partial_t v_s \, dx = 0,
\]

this implies

\[
\| \partial_t v_s \|_{L^2} \lesssim \| \nabla v_{s+1} \|_{L^2}^2 + \| \partial^s (v \cdot \nabla_h v) \|_{L^2}^2 + \| \partial^s (w \partial_z v) \|_{L^2}^2
\]

\[
\lesssim \| \nabla v_{s+1} \|_{L^2}^2 + \sum_{i=0}^s (\| v_i \cdot \nabla_h v_{s-i} \|_{L^2}^2 + \| w_i \partial_z v_{s-i} \|_{L^2}^2)
\]

\[
\lesssim (1 + \| v \|_{H^{s+1}}^2) \| v \|_{H^{s+2}},
\]

where we have applied the inequalities below: since $s \geq 1$,

\[
\| v_i \cdot \nabla_h v_{s-i} \|_{L^2} \lesssim \| v_i \|_{L^3} \| \nabla_h v_{s-i} \|_{L^6} \lesssim \| v \|_{H^{s+1}} \| v \|_{H^{s+2}}
\]

\[
\lesssim \| v \|_{H^{s+1}}^2 \| v \|_{H^{s+2}}^2,
\]

\[
\| w_i \partial_z v_{s-i} \|_{L^2} \lesssim \| w \|_{H^{s+1}} \| v \|_{H^{s+2}} \| v \|_{H^{s+2}} \lesssim \| v \|_{H^{s+1}}^2 \| v \|_{H^{s+2}}^2
\]

\[
\lesssim \| v \|_{H^{s+1}}^2 \| v \|_{H^{s+2}}^2,
\]

due to the fact that from (1.13),

\[
\| w \|_{H^{s+1}} = \| \int_0^z \nabla_h v \, dz' \|_{H^{s+1}} \lesssim \| v \|_{H^{s+2}}.
\]

62
Here we have applied the Minkowski, Hölder and Sobolev embedding inequalities. Similarly, taking $s = s - 1$ in (5.29) yields

$$
\| \partial_t v_{s-1} \|_{L^2}^2 \lesssim (1 + \| v \|_{H^s}^2) \| v \|_{H^{s+1}}^2.
$$

(5.30)

Integrating (5.27) in the time variable, together with (5.29), (5.30), implies (5.23) with s replaced by $s + 1$. This finishes the mathematical induction. Hence, this concludes the proof of Proposition 3.

Acknowledgements This work was supported in part by the Einstein Stiftung/Foundation - Berlin, through the Einstein Visiting Fellow Program, and by the John Simon Guggenheim Memorial Foundation.

References

[1] Thomas Alazard. Incompressible limit of the non-isentropic Euler equations. Available at http://talazard.perso.math.cnrs.fr/Ad.pdf.

[2] Thomas Alazard. Low Mach number flows and combustion. *SIAM J. Math. Anal.*, 38(4):1186–1213, 2006.

[3] Thomas Alazard. Low Mach number limit of the full Navier–Stokes equations. *Arch. Ration. Mech. Anal.*, 180(1):1–73, 2006.

[4] Pascal Azérad and Francisco Guillén. Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. *SIAM J. Math. Anal.*, 33(4):847–859, 2001.

[5] Yann Brenier. Homogeneous hydrostatic flows with convex velocity profiles. *Nonlinearity*, 12(3):495–512, 1999.

[6] Chongsheng Cao, Slim Ibrahim, Kenji Nakanishi, and Edriss S. Titi. Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. *Commun. Math. Phys.*, 337(2):473–482, 2015.

[7] Chongsheng Cao, Jinkai Li, and Edriss S. Titi. Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity. *J. Differential Equations*, 257(11):4108–4132, 2014.

[8] Chongsheng Cao, Jinkai Li, and Edriss S. Titi. Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity. *Arch. Ration. Mech. Anal.*, 214(1):35–76, 2014.
[9] Chongsheng Cao, Jinkai Li, and Edriss S. Titi. Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion. *Commun. Pure Appl. Math.*, 69(8):1492–1531, 2016.

[10] Chongsheng Cao, Jinkai Li, and Edriss S. Titi. Strong solutions to the 3D primitive equations with only horizontal dissipation: Near H^1 initial data. *Journal of Functional Analysis*, 272(11):4606–4641, 2017.

[11] Chongsheng Cao, Jinkai Li, and Edriss S. Titi. Global well-posedness of the 3D primitive equations with horizontal viscosity and vertical diffusivity. Available at [arXiv:1703.02512](https://arxiv.org/abs/1703.02512), 2017.

[12] Chongsheng Cao and Edriss S. Titi. Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. *Ann. Math.*, 166(1):245–267, 2007.

[13] Chongsheng Cao and Edriss S. Titi. Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. *Commun. Pure Appl. Math.*, 56(2):198–233, 2003.

[14] Chongsheng Cao and Edriss S. Titi. Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion. *Commun. Math. Phys.*, 310(2):537–568, 2012.

[15] Michele Coti Zelati, Aimin Huang, Igor Kukavica, Roger Temam, and Mohammed Ziane. The primitive equations of the atmosphere in presence of vapour saturation. *Nonlinearity*, 28(3):625–668, 2015.

[16] Raphaël Danchin. Zero Mach number limit for compressible flows with periodic boundary conditions. *Am. J. Math.*, 124(6):1153–1219, 2002.

[17] Raphaël Danchin. Zero Mach number limit in critical spaces for compressible Navier–Stokes equations. *Ann. Scient. Éc. Norm. Sup.*, 35(1):27–75, 2002.

[18] Raphaël Danchin. Low Mach number limit for viscous compressible flows. *ESAIM Math. Model. Numer. Anal.*, 39(3):459–475, 2005.

[19] Benoit Desjardins and Emmanuel Grenier. Low Mach number limit of viscous compressible flows in the whole space. *Proc. R. Soc. A Math. Phys. Eng. Sci.*, 455(1986):2271–2279, 1999.

[20] Mehmet Ersoy and Timack Ngom. Existence of a global weak solution to compressible primitive equations. *C. R. Acad. Sci. Paris, Ser. I*, 350(7-8):379–382, 2012.
[21] Mehmet Ersoy, Timack Ngom, and Mamadou Sy. Compressible primitive equations: Formal derivation and stability of weak solutions. *Nonlinearity*, 24(1):79–96, 2011.

[22] Eduard Feireisl. *Dynamics of Viscous Compressible Fluids*. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, 2004.

[23] Eduard Feireisl. Flows of viscous compressible fluids under strong stratification: Incompressible limits for long-range potential forces. *Math. Model. Methods Appl. Sci.*, 21(01):7–27, 2011.

[24] Eduard Feireisl, Rupert Klein, Antonín Novotný, and Ewelina Zatorska. On singular limits arising in the scale analysis of stratified fluid flows. *Math. Model. Methods Appl. Sci.*, 26(03):419–443, 2016.

[25] Eduard Feireisl, Josef Málek, Antonín Novotný, and Ivan Straškraba. Anelastic approximation as a singular limit of the compressible Navier–Stokes system. *Communications in Partial Differential Equations*, 33(1):157–176, 2008.

[26] Eduard Feireisl and Antonín Novotný. *Singular Limits in Thermodynamics of Viscous Fluids*. Advances in Mathematical Fluid Mechanics. Springer International Publishing, Cham, 2017.

[27] Eduard Feireisl and Maria E. Schonbek. On the Oberbeck-Boussinesq approximation on unbounded domains. In *Nonlinear Partial Differ. Equations*, pages 131–168. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[28] Isabelle Gallagher. Applications of Schochet’s methods to parabolic equations. *J. Math. Pures Appl.*, 77(10):989–1054, 1998.

[29] Bair V. Gatatov and Aleksandr V. Kazhikhov. Existence of a global solution to one model problem of atmosphere dynamics. *Sib. Math. J.*, 46(5):805–812, 2005.

[30] David Gerard-Varet, Nader Masmoudi, and Vlad Vicol. Well-posedness of the hydrostatic Navier–Stokes equations. *J. Math. Fluid Mech.*, 14(2):355–361, 2018.

[31] Jean Ginibre and Giorgio Velo. Generalized Strichartz inequalities for the wave equation. *Journal of Functional Analysis*, 133(1):50–68, 1995.
[32] Francisco M. Guillén-González, Nader Masmoudi, and María Á. Rodríguez-Bellido. Anisotropic estimates and strong solutions of the primitive equations. *Differential and Integral Equations*, 14(11):1381–1408, 2001.

[33] Matthias Hieber and Takahito Kashiwabara. Global strong well-posedness of the three dimensional primitive equations in L^p-Spaces. *Arch. Ration. Mech. Anal.*, 221(3):1077–1115, 2016.

[34] Sabine Hittmeir, Rupert Klein, Jinkai Li, and Edriss S. Titi. Global well-posedness for passively transported nonlinear moisture dynamics with phase changes. *Nonlinearity*, 30:3676–3718, 2017.

[35] David Hoff. The zero-mach limit of compressible flows. *Commun. Math. Phys.*, 192:543–554, 1998.

[36] Changbing Hu, Roger Temam, and Mohammed Ziane. The primitive equations on the large scale ocean under the small depth hypothesis. *Discret. Contin. Dyn. Syst.*, 9(1):97–131, 2002.

[37] Mihaela Ignatova, Igor Kukavica, and Mohammed Ziane. Local existence of solutions to the free boundary value problem for the primitive equations of the ocean. *J. Math. Phys.*, 53(10):103101, 2012.

[38] Song Jiang and Yaobin Ou. Incompressible limit of the non-isentropic Navier–Stokes equations with well-prepared initial data in three-dimensional bounded domains. *J. Math. Pures Appl.*, 96(1):1–28, 2011.

[39] Markus Keel and Terence Tao. Endpoint Strichartz estimates. *Am. J. Math.*, 120(5):955–980, 1998.

[40] Sergiu Klainerman and Andrew Majda. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. *Commun. Pure Appl. Math.*, 34(4):481–524, 1981.

[41] Sergiu Klainerman and Andrew Majda. Compressible and incompressible fluids. *Commun. Pure Appl. Math.*, 35(5):629–651, 1982.

[42] Ruper Klein, Nicola Botta, Thomas Schneider, Claus-Dieter Munz, Sabine Roller, Andreas Meister, L. Hoffmann, and Thomas Sonar. Asymptotic adaptive methods for multi-scale problems in fluid mechanics. *J. Eng. Math.*, 39(1/4):261–343, 2001.
[43] Rupert Klein. Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. ZAMM, 80(11-12):765–777, 2000.

[44] Rupert Klein. Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM Math. Model. Numer. Anal., 39(3):537–559, 2005.

[45] Rupert Klein. Scale-dependent models for atmospheric flows. Annu. Rev. Fluid Mech., 42(1):249–274, 2010.

[46] Georgij M. Kobelkov. Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations. C. R. Acad. Sci. Paris, Ser. I, 343(4):283–286, 2006.

[47] Igor Kukavica, Yuan Pei, Walter Rusin, and Mohammed Ziane. Primitive equations with continuous initial data. Nonlinearity, 27(6):1135–1155, 2014.

[48] Igor Kukavica, Roger Temam, Vlad C. Vicol, and Mohammed Ziane. Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. J. Differential Equations, 250(3):1719–1746, 2011.

[49] Igor Kukavica and Mohammed Ziane. On the regularity of the primitive equations of the ocean. Nonlinearity, 20(12):2739–2753, 2007.

[50] Igor Kukavica and Mohammed Ziane. The regularity of solutions of the primitive equations of the ocean in space dimension three. C. R. Acad. Sci. Paris, Ser. I, 345(5):257–260, 2007.

[51] Jinkai Li and Edriss S. Titi. Existence and uniqueness of weak solutions to viscous primitive equations for a certain class of discontinuous initial data. SIAM J. Math. Anal., 49(1):1–28, 2017.

[52] Jinkai Li and Edriss S. Titi. The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: Rigorous justification of the hydrostatic approximation. J. Math. Pures Appl., pages 1–31, 2018.

[53] Hans Lindblad and Christopher D. Sogge. On existence and scattering with minimal regularity for semilinear wave equations. Journal of Functional Analysis, 130(2):357–426, 1995.

[54] Jacques-Louis Lions, Roger Temam, and Shouhong Wang. Models of the Coupled Atmosphere and Ocean (CAO I) Part I. Comput. Mech. Adv., 1(1):5 – 54, 1993.
[55] Jacques-Louis Lions, Roger Temam, and Shouhong Wang. Geostrophic asymptotics of the primitive equations of the atmosphere. *Topol. Methods Nonlinear Anal.*, 4:253 – 287, 1994.

[56] Jacques-Louis Lions, Roger Temam, and Shouhong Wang. On the equations of the large-scale ocean. *Nonlinearity*, 5(5):1007–1053, 1992.

[57] Jacques-Louis Lions, Roger Temam, and Shouhong Wang. New formulations of the primitive equations of atmosphere and applications. *Nonlinearity*, 5(2):237–288, 1992.

[58] Pierre-Louis Lions and Nader Masmoudi. Incompressible limit for a viscous compressible fluid. *J. Math. Pures Appl.*, 77(6):585–627, 1998.

[59] Pierre-Louis Lions. *Mathematical Topics in Fluid Mechanics. Volume 1. Incompressible Models*. Oxford Lecture Series in Mathematics and Its Applications, 3. Oxford University Press, 1996.

[60] Pierre-Louis Lions. *Mathematical Topics in Fluid Mechanics. Volume 2. Compressible Models*. Oxford Lecture Series in Mathematics and Its Applications, Vol 2, No 10. Oxford University Press, 1998.

[61] Xin Liu and Edriss S. Titi. Global existence of weak solutions to compressible primitive equations with degenerate viscosities. Available at [arXiv:1808.03975](https://arxiv.org/abs/1808.03975), accepted by *SIAM J. Math. Anal.*, 2019.

[62] Xin Liu and Edriss S. Titi. Local well-posedness of strong solutions to the three-dimensional compressible primitive equations. Available at [arXiv:1806.09868](https://arxiv.org/abs/1806.09868), 2018.

[63] Xin Liu and Edriss S. Titi. Zero Mach number limit of the compressible primitive equations Part II: Ill-prepared initial data. In preperation.

[64] Andrew Majda. *Introduction to PDEs and Waves for the Atmosphere and Ocean*. Courant Lecture Notes in Mathematics 9. American Mathematical society, 2003.

[65] Andrew J. Majda and Andrea L. Bertozzi. *Vorticity and Incompressible Flow*. Number 27. Cambridge University Press, 2002.

[66] Nader Masmoudi. Incompressible, inviscid limit of the compressible Navier–Stokes system. *Ann. Inst. Henri Poincaré, Anal. non linéaire* 18(2):199–224, 2001.
[67] Nader Masmoudi. Rigorous derivation of the anelastic approximation. *J. Math. Pures Appl.*, 88(3):230–240, 2007.

[68] Nader Masmoudi and Tak Kwong Wong. On the H^s theory of hydrostatic euler equations. *Arch. Ration. Mech. Anal.*, 204(1):231–271, 2012.

[69] Guy Métivier and Steve Schochet. The incompressible limit of the non-isentropic Euler equations. *Arch. Ration. Mech. Anal.*, 158(1):61–90, 2001.

[70] Antonín Novotný, Michael Růžička, and Gudrun Thäter. Rigorous derivation of the anelastic approximation to the Oberbeck–Boussinesq equations. *Asymptot. Analysys*, 75:93–123, 2011.

[71] Madalina Petcu and Djoko Wirosoetisno. Sobolev and Gevrey regularity results for the primitive equations in three space dimensions. *Appl. Anal.*, 84(8):769–788, 2005.

[72] K.R. Rajagopal, M. Ruzicka, and A.R. Srinivasa. On the Oberbeck–Boussinesq approximation. *Math. Model. Methods Appl. Sci.*, 06(08):1157–1167, 1996.

[73] Michael Renardy. Ill-posedness of the hydrostatic Euler and Navier–Stokes equations. *Arch. Ration. Mech. Anal.*, 194(3):877–886, 2009.

[74] Lewis F. Richardson. *Weather Prediction by Numerical Process*. Cambridge University Press, 2007.

[75] Steve Schochet. Fast singular limits of hyperbolic PDEs. *J. Differential Equations*, 114(2):476–512, 1994.

[76] Steve Schochet. The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit. *Commun. Math. Phys.*, 104(1):49–75, 1986.

[77] Steven Schochet. Asymptotics for symmetric hyperbolic systems with a large parameter. *J. Differential Equations*, 75(1):1–27, 1988.

[78] Tong Tang and Hongjun Gao. On the stability of weak solution for compressible primitive equations. *Acta Appl. Math.*, 140(1):133–145, 2015.

[79] Seiji Ukai. The incompressible limit and the initial layer of the compressible Euler equation. *J. Math. Kyoto Univ.*, 26(2):323–331, 1986.
[80] Fengchao Wang, Changsheng Dou, Quansen Jiu. Global weak solutions to 3D compressible primitive equations with density-dependent viscosity. Available at arXiv:1712.04180, 2017.

[81] Warren M. Washington and Claire L. Parkinson. An Introduction to Three-Dimensional Climate Modeling. University Science Books, 2005.

[82] Tak Kwong Wong. Blowup of solutions of the hydrostatic Euler equations. Proc. Am. Math. Soc., 143(3):1119–1125, 2014.

[83] Aneta Wróblewska-Kamińska. The asymptotic analysis of the complete fluid system on a varying domain: from the compressible to the incompressible flow. SIAM J. Math. Anal., 49(5):3299–3334, 2017.