Covariant Light-Front Approach for B_c transition form factors

Wei Wanga, Yue-Long Shenb, and Cai-Dian Lüa,c

a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, Peoples’ Republic of China
b Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100, Peoples’ Republic of China
c Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190, Peoples’ Republic of China

In the covariant light-front quark model, we investigate the form factors of B_c decays into $D, D^*, D_s, D_s^*, \eta_c, J/\psi, B, B^*, B_s, B_s^*$ mesons. The form factors in the spacelike region are directly evaluated. To extrapolate the form factors to the physical region, we fit the form factors by adopting a suitable three-parameter form. At the maximally recoiling point, $b \to u, d, s$ transition form factors are smaller than $b \to c$ and $c \to d, s$ form factors, while the $b \to u, d, s, c$ form factors at the zero recoiling point are close to each other. In the fitting procedure, we find that parameters in $A_{2B_cB^*}^{B_c}$ and $A_{2B_cB^*}^{B_c}$ strongly depend on decay constants of B^* and B_s^* mesons. Fortunately, semileptonic and nonleptonic B_c decays are not sensitive to these two form factors. We also investigate branching fractions, polarizations of the semileptonic B_c decays. $B_c \to (\eta_c, J/\psi)l\nu$ and $B_c \to (B_s, B_s^*)l\nu$ decays have much larger branching fractions than $B_c \to (D, D^*, B, B^*)l\nu$. For the three kinds of $B_c \to Vl\nu$ decays, longitudinal contributions are comparable with the transverse contributions. These predictions will be tested on the ongoing and forthcoming hadron colliders.

PACS numbers: 13.20.He, 12.39.Ki

I. INTRODUCTION

B meson decays provide a golden place to extract magnitudes and phases of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, which can test the origins of CP violation in and beyond the standard model (SM). There has been remarkable progress in the study of semileptonic and nonleptonic B meson decays. Experimentally, the two B factories have accumulated more than 10^9 $B\bar{B}$ events. Some rare decays with branching fractions of the order 10^{-7} have been observed. On the theoretical side, great successes have also been achieved: apart from contributions proportional to the form factors, the so-called nonfactorizable diagrams and some other radiative corrections are taken into account. All of them make B physics suitable for the precise test of the SM and the search of new phenomena (See Ref. [1] for a recent review).

Compared with B mesons, B_c meson is heavier: the mass of a $B_c\bar{B}_c$ pair has exceeded the threshold of $\Upsilon(4S)$, thus B_c mesons can not be produced on the B factories. But B_c meson has a promising prospect on the hadron colliders. The Large Hadron Collider (LHC) experiment, which is scheduled to run in the very near future, will produce plenty of B_c events. With more data accumulated in the future, the study on B_c mesons will be of great importance. B_c meson can decay not only via the $b \to q$ ($q=u, d, s, c$) transition like the lighter $B_{u,d,s}$ mesons, but also through the $c \to q$ ($q=u, d, s$) transitions. The CKM matrix element in the $c \to s$ transition $|V_{cb}| \sim 1$ is much larger than the CKM matrix element $|V_{cb}| \sim 0.04$ in $b \to c$ transition. Although the phase space in $c \to d, s$ decays is smaller than that in $b \to c$ transition, the former decays provide about 70% to the decay width of B_c. This results in a larger decay width, and a much smaller lifetime for the B_c meson: $\tau_{B_c} < \frac{1}{3}\tau_B$. The two heavy b and \bar{c} quarks can annihilate to provide a new kind of weak decays with sizable partial decay widths. The purely leptonic annihilation decay $B_c \to l\bar{\nu}$ can be used to extract the decay constant of B_c and the CKM matrix element V_{cb}.

Semileptonic B_c decays are much simpler than nonleptonic decays: the leptonic part can be straightforwardly evaluated using perturbation theory leaving only hadronic form factors. In two-body nonleptonic B_c decays, most channels are also dominated by the B_c transition form factors. Thus the B_c transition form factors have already
received considerable theoretical interests \[17\]. In the present work, we will use the light-front quark model to analyze these form factors. The light front QCD approach has some unique features, which are particularly suitable to describe a hadronic bound state \[17\]. Based on this approach, a light-front quark model is employed to analyze these form factors. The light front QCD approach has some unique features, which are particularly suitable to describe a hadronic bound state \[17\]. Based on this approach, a light-front quark model with many advantages is developed \[18, 19, 20, 21, 22\]. This model provides a relativistic treatment of the hadron and also gives a fully treatment of the hadron spin by using the so-called Melosh rotation. The light front wave functions, which describe the hadron in terms of their fundamental quark and gluon degrees of freedom, are independent of the hadron momentum and thus are explicitly Lorentz invariant. In the covariant light-front quark model \[22\], the spurious contribution, which is dependent on the orientation of the light-front, becomes irrelevant in the study of decay constants and form factors and that makes the light-front quark model more selfconsistent. This covariant model has been successfully extended to investigate the decay constants and form factors of the s-wave and p-wave mesons \[23, 24\], the heavy quarkonium \[25\].

Our paper is organized as follows. The formalism of the covariant light-front quark model is presented in the next section. Numerical results for the form factors and decay rates of semileptonic B_c decays are given in Section \[III\]. We also compare our predictions of form factors with those evaluated in the literature. Our conclusions are given in Section \[IV\]. In the Appendix A, we give the relation between the form factors defined in various studies on B_c decays and the widely used Bauer-Stech-Wirbel (BSW) form factors \[26\]. In the Appendix B, we collect some specific rules when performing the p^- integration.

II. COVARIANT LIGHT-FRONT QUARK MODEL

$B_c \rightarrow P, V$ (P, V denotes a pseudoscalar and a vector meson, respectively) form factors induced by vector and axial-vector currents are defined by

\[
\langle P(P'')|V_{\mu}|B_c(P')\rangle = f_+(q^2)P_{\mu} + f_-(q^2)q_{\mu},
\]

(1)

\[
\langle V(P'', \varepsilon''\gamma^{\mu})|V_{\mu}|B_c(P')\rangle = \varepsilon_{\mu\nu\alpha\beta} \varepsilon''^{\nu\gamma} P^\alpha q^\beta g(q^2),
\]

(2)

\[
\langle V(P'', \varepsilon''\gamma^{\mu})|A_{\mu}|B_c(P')\rangle = -i \left\{ \varepsilon''^\mu f(q^2) + \varepsilon''^\mu \cdot P \left[P_{\mu}a_+(q^2) + q_{\mu}a_-(q^2) \right] \right\},
\]

(3)

where $P = P' + P''$, $q = P' - P''$ and the convention $\epsilon_{0123} = 1$ is adopted. The vector and axial-vector currents are defined as $\bar{\psi} \gamma_{\mu} \psi$ and $\bar{\psi} \gamma_{\mu} \gamma_5 \psi$. In $b \rightarrow q$ ($q = u, d, s, c$) transition, ψ and ψ' denotes the q quark field and the b quark field, respectively; while in $c \rightarrow q'$ ($q' = u, d, s$) transition, $\bar{\psi}$ and $\bar{\psi}'$ denotes the q' quark field and the c quark field, respectively. In the literature, the Bauer-Stech-Wirbel (BSW) \[26\] form factors are more frequently used:

\[
\langle P(P'')|V_{\mu}|B_c(P')\rangle = \left(P_{\mu} - \frac{m_{B_c}^2 - m_{P'}^2}{q^2} q_{\mu} \right) F_1^{B_cP}(q^2) + \frac{m_{B_c}^2 - m_{P'}^2}{q^2} q_{\mu} F_0^{B_cP}(q^2),
\]

(4)

\[
\langle V(P'', \varepsilon''\gamma^{\mu})|V_{\mu}|B_c(P')\rangle = -\frac{1}{m_{B_c} + m_V} \varepsilon_{\mu\nu\alpha\beta} \varepsilon''^{\nu\gamma} P^\alpha q^\beta V_{\mu\nu}(q^2),
\]

(5)

\[
\langle V(P'', \varepsilon''\gamma^{\mu})|A_{\mu}|B_c(P')\rangle = i \left\{ (m_{B_c} + m_V) \varepsilon''^\mu A_1^{B_cV}(q^2) - \frac{\varepsilon''^\mu \cdot P}{m_{B_c} + m_V} P_{\mu} A_2^{B_cV}(q^2) \right. \\
\left. -2m_V \frac{\varepsilon''^\mu \cdot P}{q^2} q_{\mu} [A_3^{B_cV}(q^2) - A_0^{B_cV}(q^2)] \right\}.
\]

(6)

These two kinds of form factors are related to each other via:

\[
F_1^{B_cP}(q^2) = f_+(q^2), \quad F_0^{B_cP}(q^2) = f_+(q^2) + \frac{q^2}{m_{B_c}^2 - m_{P'}^2} f_-(q^2),
\]

\[
V_{B_cV}(q^2) = -(m_{B_c} + m_V) g(q^2), \quad A_1^{B_cV}(q^2) = -\frac{f(q^2)}{m_{B_c} + m_V},
\]

\[
A_2^{B_cV}(q^2) = (m_{B_c} + m_V) a_+(q^2), \quad A_3^{B_cV}(q^2) - A_0^{B_cV}(q^2) = \frac{q^2}{2m_V} a_-(q^2),
\]

(7)
invariant mass of the meson system. The definition of the internal quantities for the outgoing meson is similar. To where is depicted in Fig. 1 and the contributions \[22\]. Physical quantities such as decay constants and form factors can be calculated in terms of Feynman Jaus has proposed the covariant light-front approach which provides a systematical way to deal with the zero-mode problem of non-covariance because of the missing zero-mode contributions. In order to solve this problem, quantities can be extracted from the plus component of the current matrix elements. However, this framework suffers from the problem of non-covariance because of the missing zero-mode contributions. In order to solve this problem, Jaus has proposed the covariant light-front approach which provides a systematical way to deal with the zero-mode contributions \[22\]. Physical quantities such as decay constants and form factors can be calculated in terms of Feynman momentum loop integrals which are manifestly covariant. For example, the lowest order contribution to a form factor is depicted in Fig. [1] and the \(P \to P \) transition amplitude is given by:

\[
B^{\mu PP} = \frac{-i^3}{(2\pi)^4} \int dq^4 p^\mu_i H^\mu_i H^\nu_i S^\nu_i \]

(13)
where $N_1^{(n)} = p_1^{(n)2} - m_1^{(n)2}$, $N_2 = p_2^2 - m_2^2$.

\[S_{\mu}^{PP} = \text{Tr} \left[\gamma_5 (p_1' + m_1') \gamma_\mu (p_1 + m_1) \gamma_5 (-p_2 + m_2) \right] \]
\[= 2p_1' \mu [M'^2 + M^{'2} - q^2 - 2N_2 - (m_1' - m_2)^2 - (m_1 - m_2)^2] \]
\[+ q_\alpha [q^2 - 2M'^2 + N_1' - N_1^{'2} + 2N_2 + 2(m_1' - m_2)^2 - (m_1 - m_2)^2] \]
\[+ P_\mu [q^2 - N_1' - N_1^{'2} - (m_1' - m_1^{'2})^2]. \]
(14)

In practice, we use the light-front decomposition of the loop momentum and perform the integration over the minus component using the contour method. If the covariant vertex functions are not singular when performing the integration, the transition amplitude will pick up the singularities in the anti-quark propagator. The integration then leads to:

\[n^{(n)} \to \tilde{n}^{(n)} = x_1 (M'^{n2} - M'^{02}), \]
\[H_M^{(n)} \to h_M^{(n)}, \]
\[W_M^{(n)} \to w_M^{(n)}, \]
\[\int \frac{d^3 p_1'}{N_1' N_2'} H_p H_{p'} S \to -i\pi \int \frac{dx_2 dp_1'}{x_2 N_1' N_1^{'2}} h_p h_{p'} S, \]
(15)

where

\[M'^{02} = \frac{p'^2 + m_1'^2}{x_1} + \frac{p_2'^2 + m_2^2}{x_2}, \]
(16)

with $p_2' = p_2 - x_2 q_\perp$. The explicit forms of h_p' and w_M' for the pseudoscalar and vector meson are given by:

\[h_p' = h_V' = (M'^2 - M'^{02}) \sqrt{\frac{x_1 x_2}{N_1' N_2'}} \varphi', \]
\[w_V' = M_0' + m_1' + m_2, \]
(17)

where φ' is the light-front wave function for pseudoscalar and vector mesons. After this integration, the conventional light-front model is recovered but manifestly the covariance is lost as it receives additional spurious contributions proportional to the lightlike four vector $\tilde{\omega} = (0, 2, 0, \perp)$. The undesired spurious contributions can be eliminated by the inclusion of the zero mode contribution which amounts to performing the p^- integration in a proper way. The specific rules under this p^- integration are derived in Ref. [22, 23] and the relevant ones in this work are collected in the Appendix B.

Using Eqs. (14)–(17) and taking the advantage of the rules in Ref. [22, 23], we obtain expressions for the $P \to P$ form factors:

\[f_+ (q^2) = \frac{N_c}{16\pi^4} \int dx_2 dp_1' \frac{h_p h_{p'}}{x_2 N_1' N_2'} \left[\frac{1}{N_1'} + \frac{1}{N_2'} \right] \left[x_1 (M'^2 + M'^{02}) + x_2 q^2 \right] \]
\[- x_2 (m_1' - m_1^{'2})^2 - x_1 (m_1' - m_2)^2 - x_1 (m_1^{'2} - m_2^2)^2, \]
\[f_- (q^2) = \frac{N_c}{16\pi^4} \int dx_2 dp_1' \frac{2h_p h_{p'}}{x_2 N_1' N_1^{'2}} \left[\frac{1}{N_1'} + \frac{1}{N_2'} \right] \left[x_1 x_2 M'^2 - p_2'^2 - m_1' m_2 + (m_1^{'2} - m_2)(x_2 m_1' + x_1 m_2) \right] \]
\[+ 2q \cdot P \left(\frac{p_2'^2 + (p_1' \cdot q_\perp)^2}{q^2} + 2 \frac{(p_1' \cdot q_\perp)^2}{q^2} - \frac{p_1' \cdot q_\perp}{q^2} [M'^2 - x_2 (q^2 + q \cdot P) \]
\[-(x_2 - x_1)M'^2 + 2x_2 M'^{02} - 2(m_1' - m_2)(m_1' + m_1^{'2})] \right]. \]
(18)
Similarly, the $P \to V$ transition amplitudes are given by:

$$B_{\mu \nu}^{PV} = -i^3 \frac{N_c}{(2\pi)^4} \int q^4 p_1' \frac{H_{\mu}^{I}(iH_{\nu}^{I})}{N_1'N_1''N_2'} S_{\mu \nu}^{PV} \varepsilon_{\nu \nu},$$ \hspace{1cm} (19)$$

where

$$S_{\mu \nu}^{PV} = (S_{\nu}^{PV} - S_{\mu}^{PV})_{\mu \nu}$$

$$= \text{Tr} \left[\left(\gamma_\nu - \frac{1}{W_{\nu}^{PV}} \left(p_1'' - p_2\right) \gamma_\nu \right) \left(p_1'' + m_\nu'' \right) \left(\gamma_\mu - m_\nu' \gamma_5 \right) \left(p_1' + m_\nu' \gamma_5 \right) \left(-p_2 + m_2 \right) \right]$$

$$= -2i\epsilon_{\mu \nu \alpha \beta} \left\{ p_1^{\alpha} P^{\beta}(m_1'' - m_1') + p_1^{\alpha'} q^{\beta}(m_1'' + m_1' - 2m_2) + q^{\beta} P^{\beta} m_1' \right\}$$

$$+ \frac{1}{W_{\nu}^{PV}} (4p_1'' - 3q_\nu - P_\nu) i\epsilon_{\mu \nu \alpha \beta} P^{\alpha} q^{\beta} P^{\nu}$$

$$+ 2g_{\mu \nu} \left\{ m_2 (q^2 - N_1' - N_1'' - m_1'^2 - m_1''^2) - m_1 (M_1'^2 - N_1'' - N_2 - m_1'^2 - m_2') \right\}$$

$$- m_1' (M_1'^2 - N_1' - N_2 - m_1'^2 - m_2') - 2m_1'' m_2$$

$$+ 8p_1'' p_1'^\nu (m_2 - m_1') - 2(p_\mu q_\nu + q_\mu P_\nu + 2q_\nu q_\nu) m_1' + 2p_1^{\mu} P_\nu (m_1'' - m_1')$$

$$+ 2p_1^\nu q_\nu (3m_1' - m_1'' - 2m_2 + 2P_\nu p_1'^\nu (m_1'' + m_1') + 2q_\nu p_1'^\nu (3m_1' + m_1'' - 2m_2)$$

$$+ \frac{1}{2W_{\nu}^{PV}} (4p_1'' - 3q_\nu - P_\nu) \left\{ 2p_1^{\mu} [M_1'^2 + M_1''^2 - q^2 - 2N_2 + 2(m_1' - m_2)](m_1' + m_2) \right\}$$

$$+ q_\nu [q^2 - 2M_2 + N_1' - N_1'' + 2N_2 - (m_1 + m_1'^2 + 2(m_1' - m_2)^2]$$

$$+ P_\mu [q^2 - N_1' - N_1'' - (m_1' + m_1'')^2] \right\}. \hspace{1cm} (20)$$

The above equations give the expression for $P \to V$ form factors:

$$g(q^2) = -\frac{N_c}{16\pi^3} \int dx_2 d^2 p_1' \frac{2h_{\mu}^{I} h_{\nu}^{I}}{x_2 N_1' N_1''} \left\{ x_2 m_1' + x_1 m_2 + (m_1' - m_1'') \frac{p_1'^\nu \cdot q_1}{q^2} + \frac{2}{w_{\nu}^{PV}} \left[p_1'^\nu + (\frac{p_1'^{\nu} \cdot q_1}{q^2}) \right] \right\},$$

$$f(q^2) = \frac{N_c}{16\pi^3} \int dx_2 d^2 p_1' \frac{h_{\mu}^{I} h_{\nu}^{I}}{x_2 N_1' N_1''} \left\{ 2x_1 (m_2 - m_1) (M_0'^2 + M_0''^2) - 4x_1 m_1'' M_0'^2 + 2x_1 m_1' q \cdot P \right. \right.$$

$$+ 2m_2 q^2 - 2x_1 m_2 (M_1'^2 + M_1''^2) + 2(m_1' - m_2) (m_1'' + m_1'^2 + 8(m_1' - m_2) \left[p_1'^\nu + (\frac{p_1'^{\nu} \cdot q_1}{q^2}) \right] \right.$$

$$+ 2(m_1' + m_1'') (q^2 + q \cdot P) \frac{p_1'^\nu \cdot q_1}{q^2} - 4 \frac{q^2 p_1'^{\nu} + (p_1'^{\nu} \cdot q_1)^2}{q^2 w_{\nu}^{PV}} \left[2x_1 (M_1'^2 + M_1''^2) - q^2 - q \cdot P \right.$$

$$- 2 (q^2 + q \cdot P) \frac{p_1'^\nu \cdot q_1}{q^2} - 2(m_1' - m_1'') (m_1' - m_2) \right\},$$

$$a_+(q^2) = \frac{N_c}{16\pi^3} \int dx_2 d^2 p_1' \frac{2h_{\mu}^{I} h_{\nu}^{I}}{x_2 N_1' N_1''} \left\{ (x_1 - x_2) (x_2 m_1' + x_1 m_2) - 2x_1 m_2 + m_1'' + (x_2 - x_1) m_1' \frac{p_1'^\nu \cdot q_1}{q^2} \right.$$

$$- \frac{2x_2 q^2 + p_1'^\nu \cdot q_1}{x_2 q^2 w_{\nu}^{PV}} \left[p_1'^\nu + (x_1 m_2 + x_2 m_1') (x_1 m_2 - x_2 m_1') \right] \right\},$$

$$a_-(q^2) = \frac{N_c}{16\pi^3} \int dx_2 d^2 p_1' \frac{h_{\mu}^{I} h_{\nu}^{I}}{x_2 N_1' N_1''} \left\{ 2(2x_1 - 3)(x_2 m_1' + x_1 m_2) - 8(m_1' - m_2) \right[p_1'^\nu + 2 (\frac{p_1'^{\nu} \cdot q_1}{q^4}) \right.$$

$$- [(14 - 12x_1) m_1' - 2m_1'' - (8 - 12x_1) m_2] \frac{p_1'^{\nu} \cdot q_1}{q^2} \right.$$

$$+ \frac{4}{w_{\nu}^{PV}} \left[(M_1'^2 + M_1''^2 - q^2 + 2(m_1' - m_2) (m_1'' + m_2)] (A_3^{(2)} + A_4^{(2)} - A_2^{(1)}) \right.$$

$$+ Z_2 (3A_2^{(1)} - 2A_1^{(2)} - 1) + \frac{1}{2} [x_1 (q^2 + q \cdot P) - 2M_1'^2 - 2p_1'^\nu \cdot q_1 - 2m_1' (m_1'' + m_2)] \right\}.$$
\[-2m_2(m'_1 - m_2)](A^{(1)}_1 + A^{(1)}_2 - 1)q \cdot P \left[\frac{p'^2}{q^2} + \frac{(p'_1 \cdot q_1)^2}{q^4} \right] \left(4A^{(1)}_2 - 3 \right) \right). \tag{21}

The functions Z_2 and $A^{(1)}_1$, $A^{(1)}_2$, $A^{(2)}_3$, $A^{(2)}_4$, and Z_2 are given in the Appendix B. Expressions for the BSW form factors can be directly obtained through the simple relation given in Eq. (7).

III. NUMERICAL RESULTS

The $\bar{q}q$ meson state is described by the light-front wave function which can be obtained by solving the relativistic Schrödinger equation. But in fact except for some limited cases, the exact solution is not obtainable. In practice, we usually prefer to employ a phenomenological wave function to describe the hadronic structure. In this work, we will use the simple Gaussian-type wave function which has been extensively examined in the literature:

\[
\varphi' = \varphi'(x_2, p'_L) = 4 \left(\frac{\pi}{\beta'^2} \right)^{\frac{3}{2}} \sqrt{dp'_z dx_2} \exp \left(-p'^2_z + \frac{p'^2}{2\beta'^2} \right),
\]

\[
\frac{dp'_z}{dx_2} = \frac{e'_1 e'_2}{x_1 x_2 M_0}.
\tag{22}

The parameter β', which describes the momentum distribution, is expected to be of order Λ_{QCD}. It is usually fixed by meson’s decay constant whose analytic expression in the covariant light-front model is given in [23]. The decay constant of $f_{J/\psi}$ can be determined by the leptonic decay width

\[
\Gamma_{ee} \equiv \Gamma(J/\psi \to e^+e^-) = \frac{4\pi\alpha_m Q^2 f_{J/\psi}^2}{3m_{J/\psi}},
\tag{23}
\]

where $Q_c = +2/3$ denotes the electric charge of the charm quark. Using the measured results for the electronic width of J/ψ [27]:

\[
\Gamma_{ee} = (5.55 \pm 0.14 \pm 0.02)\text{keV},
\tag{24}
\]

we obtain $f_{J/\psi} = (416 \pm 5)$ MeV. Under the factorization assumption, the decay constant of η_c has been extracted by CLEO collaboration from $B \to \eta_c K$ decays [28]:

\[
f_{\eta_c} = (335 \pm 75)\text{MeV},
\tag{25}
\]

where the central value is about 20% smaller than that of J/ψ. In this work, we will assume the same decay constant for η_c as that of J/ψ. We also introduce an uncertainty of 20% to this value. Decay constants for charged pseudoscalars are usually derived through the purely leptonic decays:

\[
\Gamma(P \to l\bar{\nu}) = \frac{G_F^2 |V_{\text{CKM}}|^2}{8\pi} f_P^2 m_l^2 m_P (1 - \frac{m_l^2}{m_P^2})^2.
\tag{26}
\]

The experimental results for the decay constants of charmed mesons are averaged as [29]:

\[
f_{D^*} = (273 \pm 10)\text{MeV}, \quad f_D = (205.8 \pm 8.9)\text{MeV}.
\tag{27}
\]

As clearly shown in the above equation, the uncertainties for these decay constants are less than 5%. It provides a solid foundation for the precise study on B_c transition form factors. In the heavy quark limit, the decay constant f_{D^*} of a vector heavy meson D^* is related to that of a pseudoscalar meson through:

\[
f_{D^*} = f_D \times \sqrt{\frac{m_D}{m_{D^*}}}. \tag{28}
\]
Decay constants of the vector B mesons. These values are slightly smaller than results provided by Lattice QCD [30].

Shape parameters β's determined from these decay constants, together with the constituent quark masses used in the calculation, are shown in Table I. The consistent quark masses are close to the ones used in Ref. [23, 24]. To estimate the uncertainties caused by these quark masses, we will introduce the uncertainties of 0.03 GeV and 0.1 GeV to the light quark masses and the heavy quark masses, respectively. The masses (in units of GeV) of hadrons are used as:

$$m_{u,d} = 2.676, \quad m_D = 1.8645, \quad m_{D^*} = 2.0067, \quad m_{D_s} = 1.9682, \quad m_{D_s^*} = 2.112,$$

$$m_{B_s} = 2.9804, \quad m_{J/\psi} = 3.0969, \quad m_B = 5.279, \quad m_{B^*} = 5.325, \quad m_{B_s} = 5.3675,$$

$$m_{B_s^*} = m_{B^*} + m_{B_s} - m_B.$$

If a light meson is emitted in exclusive nonleptonic decays, only the form factor at maximally recoiling point ($q^2 \approx 0$) is required but the q^2-dependent behavior in the full $q^2 > 0$ region is required in semileptonic B_c decays. Because of the condition $q^+ = 0$ imposed during the course of calculation, form factors can be directly studied only at spacelike momentum transfer $q^2 = -q^2_{\perp} \leq 0$, which are not relevant for the semileptonic processes. It has been proposed in [23] to parameterize form factors as explicit functions of q^2 in the space-like region and one can analytically extend them to the time-like region. To shed light on the momentum dependence, we will choose the parametrization for the b quark decays:

$$F(q^2) = F(0) \exp(c_1 \hat{s} + c_2 \hat{s}^2),$$

where $\hat{s} = q^2/m_{B_s}^2$ and F denotes anyone of the form factors F_1, F_0 and V, A_0, A_1, A_2. But for $c \rightarrow u, d, s$ transitions, we find that the fitted values for the two parameters c_1, c_2 are not stable and thus we adopt the optional three-parameter form:

$$F(q^2) = \frac{F(0)}{1 - \frac{q^2}{m_{J/\psi}^2} + \delta(\frac{q^2}{m_{J/\psi}^2})^2}.$$
In the procedure to fit the form factors $A_2^{B_1B_2}$ and $A_2^{B_1B_2^*}$, we find that the shape parameters (m_{fit}, δ) strongly depend on the decay constants f_{B_1} and f_{B_2}. In this case, our predictions on these two form factors are unreliable, thus we refrain from predicting these two form factors. Fortunately, the ambiguity of $A_2^{B_1B_2}$ and $A_2^{B_1B_2^*}$ will not affect the physical quantities in various physical decay channels. As we can see from equation (3), the masses of B^*_1, B^*_2 mesons are very close to that of B_c, thus the second term in the right hand side is negligible. The form factor A_0, which is relevant for the nonleptonic $B_c \rightarrow B^*(B^*_s)P$ decays, receives small contributions from A_2. Contributions from A_2 to the $B_c \rightarrow B^*(B^*_s)\ell\nu$ decays and $B_c \rightarrow B^*(B^*_s)V$ decays are also small which will be shown in the following.

Our predictions of the remnant form factors are collected in table IV and table V. The first kind of uncertainties shown in these tables are from those in decay constants of the B_c meson and the final mesons; while the second kind of uncertainties are from those in constituent quark masses. Several remarks are given in order. First, from these two tables, we can see that the $B_c \rightarrow D, D^*, D_s, D^*_s$ form factors at maximally recoiling point ($q^2 = 0$) are smaller than the other ones. It can be understood as follows. In $B_c \rightarrow D, D^*, D_s, D^*_s$ transitions, the initial charm quark is almost at rest and its momentum is of order m_c; in the final state, the meson moves very fast and the charm quark tends to have a very large momentum of order m_b. In this transition, the overlap between the wave functions is limited which will produce small values for the form factors. In $B_c \rightarrow \eta_c, J/\psi$ transitions, the spectator charm antiquark in $\eta_c, J/\psi$ play the same role with the charm quark generated from the weak vertex. The light-front wave function of the charmonium is expected to have a maximum at $E = \frac{m_{\eta_c} + m_{c}}{4m_{c}} \sim \frac{m_{b}}{4} \approx m_{c}$. The overlap between the initial and final states’ light-front wave functions in $B_c \rightarrow \eta_c, J/\psi$ becomes larger, which certainly induces larger form factors. It is also similar for the $B_c \rightarrow B, B_s$ form factors. Secondly, the $B_c \rightarrow D_s, \eta_c$ form factors at the zero recoiling point are close to each other. The initial charm quark is almost at rest and its momentum is of order m_c. In these two kinds of transitions, the charm spectator in the final states tends to possess a momentum of order m_c. The overlaps of the wave functions in $B_c \rightarrow D_s, \eta_c$ transitions are expected to be in similar size. Thirdly, the SU(3) symmetry breaking effects in $B_c \rightarrow D, D_s$ and $B_c \rightarrow D^*, D^*_s$ form factors are quite large, as the decay constant of D_s is about one third larger than that of the D meson. But in $B_c \rightarrow B, B_s$ and $B_c \rightarrow B^*, B^*_s$ transitions, the SU(3) breaking effect is small, because the decay constants $f_{B(\rightarrow, B^*_s)}$ are in similar size. Fourthly, since the uncertainties from decay constants of $D, D_s, J/\psi$ are very small, the relevant uncertainties to the form factors are also very small.

In the literature, there already exist lots of studies on B_c transition form factors 12, 13, 14, 15, 16 and their results are collected in table IV and table V. Since J/ψ can be easily reconstructed by a lepton pair on the hadron collider, the $B_c \rightarrow J/\psi$ form factors have been widely studied in many theoretical frameworks. In a very recent paper 15, the authors have derived two kinds of wave functions for the charmonium state under harmonic oscillator potential and Coulomb potential. They also used these wave functions to investigate the $B_c \rightarrow \eta_c, J/\psi$ form factors under the perturbative QCD approach. Compared with their results, our predictions are typically smaller. The main reason is that they have used a much larger decay constant f_{B_c}. Regardless of this effect, our results are consistent with theirs. Results collected in IV (including ours) have large differences which can be discriminated by the future LHC experiments. The $B_c \rightarrow D_s, D^*_s$ is described as the FCNC $b \rightarrow s$ transition at the quark level which is purely loop effects in the SM. As a consequence, this transition has a very small Wilson coefficient and the $B_c \rightarrow D_s, D^*_s$ form factors are less studied in the literature. Similar with the $b \rightarrow u, s, c$ transitions, predictions of the $c \rightarrow u, s$ transition form factors have large differences between different methods. As indicated from these two tables, results evaluated in Refs. 8, 9, 12, 14 are different with the other ones and ours to a large extent. In Ref. 9, all of the results except for the B_c to charmonium transitions are larger than the other results: the authors have taken into account the α_s/v corrections and the form factors are enhanced by three times due to the Coulomb renormalization of quark-meson vertex for the heavy quarkonium B_c. Moreover, small decay constants for the B meson are adopted which also give large form factors: $f_B = 140 - 170$ MeV, $f_{B^*}/f_B = 1.11$ and $f_{B^*_s}/f_B = 1.16$. In Ref. 14, the authors have chosen the chiral correlation functions to derive the form factors in the light-cone sum rules. Although only the twist-2 distribution amplitudes (DAs) contribute and contributions from the twist-3 DAs
vanish, uncertainties of the continuum and the higher resonance interpolated by both of the axial-vector current and vector current are expected to be larger. In Ref. [12], the authors also adopted the three-point QCD sum rules but different correlation functions are chosen. The form factors $A^B_B^*$ and $A^B_B^*$ in Ref. [8] have different signs with the other results. The large differences in different models can be used to distinguish them in the future.

At the quark level, the $B_c \rightarrow P(V)\bar{u}\bar{t}$ decays are described as $b \rightarrow c(u)W^- \rightarrow c(u)\bar{u}\bar{t}$ or $c \rightarrow d(s)W^+ \rightarrow d(s)l^+\nu$. Integrating out the highly offshell intermediate degrees of freedom at tree level, the effective electroweak Hamiltonian for $b \rightarrow ul\bar{t}l$ transition, as an example, is

$$H_{eff}(b \rightarrow ul\bar{t}l) = \frac{G_F}{\sqrt{2}}V_{ub}\bar{u}\gamma_\mu(1 - \gamma_5)b\bar{l}\gamma_\mu(1 - \gamma_5)l\nu.$$ (34)
Since radiative corrections due to strong interactions only happen between the b quark and the u quark, they characterize the interactions at the low energy and the Wilson coefficient which contains the physics above the m_b scale is not altered. With the masses of leptons taken into account, the differential decay widths of $B_c \to Pl\bar{v}$ and $B_c \to Vl\bar{v}$ ($l = e, \mu, \tau$) are given by:

$$\frac{d\Gamma(B_c \to Pl\bar{v})}{dq^2} = \left(\frac{g^2 - m_l^2}{q^2}\right)^2 \frac{\lambda(m^2_{B_c}, m^2_{B}, q^2)Q^2_F |V_{CKM}|^2}{384m_{B_c}^2 \pi^3} \times \frac{1}{q^2} \times \left\{ (m^2_l + 2q^2)\lambda(m^2_l, m^2_{B}, q^2)F_1(q^2) + 3m^2_l(m^2_{B} - m^2_l)^2 F_0(q^2) \right\},$$

$$\frac{d\Gamma_L(B_c \to Vl\bar{v})}{dq^2} = \left(\frac{g^2 - m_l^2}{q^2}\right)^2 \frac{\lambda(m^2_{B_c}, m^2_{V}, q^2)Q^2_F |V_{CKM}|^2}{384m_{B_c}^2 \pi^3} \times \frac{1}{q^2} \left[3m^2_l \lambda(m^2_{B_c}, m^2_{V}, q^2)A_0^2(q^2) + (m^2_l + 2q^2) \frac{1}{2m_{B}} \left(\frac{m^2_{B_c} - m^2_{V} - q^2}{m_{B_c} + m_{V}} A_1(q^2) \right) \right] \right\}$$

$$\times \left(\lambda(m^2_{B_c}, m^2_{V}, q^2) \right) \left(\frac{V(q^2)}{m_{B_c} + m_{V}} \pm \frac{m_{B} + m_{V}}{\sqrt{\lambda(m^2_{B_c}, m^2_{V}, q^2)}} \right)^2,$$

(36)

where the subscript $+$ ($-$) denotes the right-handed (left-handed) states of vector mesons. $\lambda(m^2_{B_c}, m^2_{V}, q^2) = (m^2_{B_c} + m^2_{l} - q^2)^2 - 4m^2_{B_c} m^2_{l}$ with $i = P, V$. The combined transverse and total differential decay widths are given by:

$$\frac{d\Gamma_T}{dq^2} = \frac{d\Gamma^+}{dq^2} + \frac{d\Gamma^-}{dq^2}, \quad \frac{d\Gamma_L}{dq^2} = \frac{d\Gamma_T}{dq^2} + \frac{d\Gamma}{dq^2}.$$

(37)

As we have mentioned in the above, the form factors A^{B,B^*} and A^{B,B^*}_2 only give small contributions to semileptonic B_c decays. In these two channels, the two small variables $m^2_{B_c} - m^2_{l}$ and q^2 satisfy the inequality: $q^2 \leq q^2_{\text{max}} = (m_{B_c} - m_{V})^2 \leq (m_{B_c} - m_{V})(m_{B_c} + m_{V}) = m^2_{B_c} - m^2_{V}$. One can expand the decay width in terms of small variables. The variable $\lambda(m^2_{B_c}, m^2_{V}, q^2)$ can be expanded as: $\lambda(m^2_{B_c}, m^2_{V}, q^2) = (m^2_{B} - m^2_{V})^2 - 4(m^2_{B} + m^2_{V})q^2 + q^4 \sim (m^2_{B_c} - m^2_{V})^2$. From Eq. (30), we can see that the contribution from A_2 to the longitudinal differential decay width contains a
TABLE V: $B_c \rightarrow \eta_c, J/\psi, B, B^*, B_s, B_s^*$ form factors at $q^2 = 0$ evaluated in the literature.

$F_1^{B_c, \eta_c}$	$F_0^{B_c, J/\psi}$	$A_0^{B_c, J/\psi}$	$A_0^{B_s, J/\psi}$	$A_2^{B_s, J/\psi}$	$V^{B_c, J/\psi}$
DW[^a]	0.420	0.408	0.416	0.431	0.591
CNP[^3]	0.20	0.26	0.27	0.28	0.38
KT[^4]	0.23	0.21	0.21	0.23	0.33
KLO[^5]	0.66	0.60	0.63	0.69	1.03
NW[^7]	0.5359	0.532	0.524	0.509	0.736
IKS[^8]	0.76	0.69	0.68	0.66	0.96
Kiselev[^9][c]	0.66[0.7]	0.60[0.66]	0.63[0.66]	0.69[0.66]	1.03[0.94]
EFG[^10]	0.47	0.40	0.50	0.73	0.49
IKS2[^11]	0.61	0.57	0.56	0.54	0.83
HNV[^13]	0.49	0.45	0.49	0.56	0.61
HZ[^14]	0.87	0.27	0.75	1.69	1.69
SDY[^15]	0.87	0.27	0.75	1.69	1.69
DSV[^16]	0.58	0.58	0.63	0.74	0.91

$F_1^{B_c, B} = F_0^{B_c, B} A_0^{B_c, B} A_0^{B_s, B} A_2^{B_s, B} V^{B_c, B}$

$F_1^{B_c, B_s}$	$F_0^{B_c, B_s}$	$A_0^{B_c, B_s}$	$A_2^{B_s, B_s}$	V^{B_c, B_s}$	
DW[^2][a]	0.662	0.682	0.729	1.240	5.690
CNP[^3]	0.3	0.35	0.34	0.23	1.97
NW[^7]	0.4504	0.269	0.291	0.538	1.94
IKS[^8][d]	0.58	0.35	0.27	−0.60	3.27
Kiselev[^9][c]	1.27[1.38]	0.55[0.51]	0.84[0.81]	4.06[4.18]	15.7[15.9]
EFG[^10]	0.39	0.20	0.42	2.89	3.94
AS[^12]	...	0.28	0.17	−1.10	0.09
HNV[^13][c]	0.39	0.34	0.38	0.80	1.69
HZ[^14]	0.90	0.27	0.90	7.9	7.9
DSV[^16]	0.41	0.42	0.63	2.74	4.77

$F_1^{B_s, B_s} = F_0^{B_s, B_s} A_0^{B_s, B_s} A_2^{B_s, B_s} V^{B_s, B_s}$

$F_1^{B_c, B_s}$	$F_0^{B_c, B_s}$	$A_0^{B_c, B_s}$	$A_2^{B_s, B_s}$	V^{B_c, B_s}$	
DW[^2][a]	0.715	0.734	0.821	1.909	5.657
CNP[^3]	0.30	0.39	0.38	0.35	2.11
CKM[^5][d]	0.403	0.433	0.487	1.155	3.367
NW[^7]	0.5917	0.445	0.471	0.787	2.81
IKS[^8][d]	0.61	0.39	0.33	−0.40	3.25
Kiselev[^9][c]	1.3[1.1]	0.56[0.47]	0.69[0.70]	2.34[3.51]	12.9[12.9]
EFG[^10]	0.50	0.35	0.49	2.19	3.44
HNV[^13][c]	0.58	0.52	0.55	0.98	2.29
HZ[^14]	1.02	0.36	1.01	9.04	9.04
DSV[^16]	0.55	0.57	0.79	3.24	5.19

[^a]We quote the results with $\omega = 0.6$ GeV.
[^b]We quote the values where the Coulomb corrections are taken into account.
[^c]The results out (in) the brackets are evaluated in sum rules (potential model).
[^d]We add a minus sign to the form factors F_1, A_0, A_1, A_2
[^e]We add a minus sign for their predictions on the form factors.
[^f]We quote the results which correspond to $m_t = 4.9$ GeV and $\omega = 0.4$ GeV.
TABLE VI: Branching ratios (in units of %) and polarizations $\frac{\Gamma}{2}$ of $B_c \to Ml\bar{\nu}$ decays. The first kind of uncertainties is from the B_c decay constants and the decay constant of the final state mesons, while the second one is from the quark masses. The last kind of uncertainties is from the decay width of B_c and the CKM matrix element V_{ub}. The mass difference between an electron and a muon does not provide sizable effects in $B_c \to D^{(*)}l\bar{\nu}$ and $B_c \to \eta_c(J/\psi)l\bar{\nu}$ decays, but it does in $B_c \to B^{(*)}l\bar{\nu}$ and $B_c \to B^{(*)}_s l\bar{\nu}$ decays.

$B_c \to D\bar{\nu}_c$	$B_c \to D_s\bar{\nu}_c$	$B_c \to D^{*}\bar{\nu}_c$	$B_c \to \eta_c\bar{\nu}_c$	$B_c \to \eta_s\bar{\nu}_c$
BR	BR	BR	BR	BR
$0.0030^{+0.0002}_{-0.0002}$	$0.0030^{+0.0002}_{-0.0002}$	$0.0021^{+0.0002}_{-0.0002}$	$0.0030^{+0.0002}_{-0.0002}$	$0.0030^{+0.0002}_{-0.0002}$

The form factors at zero-recoiling point roughly respect: partly because there are three kinds of polarizations for vector mesons. Among the four kinds of transitions at the B_c and μ do not have sizable effects on BR, as the uncertainties in decay constants of D_s are very small, as the uncertainties in decay constants of B_s are very small.

$\lambda(m_{B_c}^2, m_{B_s}^2, q^2)$ while the A_1 term is of the order $\sqrt{\lambda(m_{B_c}^2, m_{B_s}^2, q^2)}$. Numerical results show that the ratio $\frac{\lambda(m_{B_c}^2, m_{B_s}^2, q^2)}{(m_{B_c}+m_B)^2(m_{B_c}+m_{B_s}^2-q^2)}$ and $\frac{\lambda(m_{B_c}^2, m_{B_s}^2, q^2)}{(m_{B_c}+m_{B_s}^2)^2(m_{B_c}+m_{B_s}^2-q^2)}$ is smaller than 0.083 and 0.075 in the full region for q^2, respectively. It implies that the form factors $A_2^{B_s,B^*}$ and $A_2^{B_s,B^*}$ can be safely neglected in the decay width.

Integrating the differential decay widths over the variable q^2, one obtains partial decay widths and polarization fractions. The lifetime of the B_c meson and the relevant CKM matrix elements are used as $\frac{\Gamma}{2}$:

$$\tau_{B_c} = (0.46 \pm 0.07)\text{ps}, \quad |V_{cb}| = 41.2 \times 10^{-3}, \quad |V_{ub}| = (3.93 \pm 0.36) \times 10^{-3}, \quad |V_{cd}| = 0.230, \quad |V_{cs}| = 0.973,$$ (39)

where the small uncertainties in the other CKM matrix elements are neglected. Our predictions of branching ratios and polarization quantities $\frac{\Gamma}{2}$ in semileptonic B_c decays are given in Table VI. The three kinds of uncertainties are from: the decay constants of the B_c meson and the meson in the final state; the constituent quark masses; the lifetime of B_c together with the CKM matrix elements. The first kind of uncertainties in the $B_c \to (D, D_s, J/\psi)l\bar{\nu}$ decays is very small, as the uncertainties in decay constants of D and J/ψ are small. The different mass between the electron and muon does not have sizable effects on $b \to u, c$ semileptonic decays, but the branching ratios of $c \to u, s$ transitions are altered by roughly 5%. Branching ratios of $B_c \to P\nu\bar{\nu}$ decays are smaller than the corresponding $B_c \to Vl\bar{\nu}$ ones, partly because there are three kinds of polarizations for vector mesons. Among the four kinds of transitions at the quark level, there is an inequation in chain:

$$\text{BR}(B_c \to D^*l\nu) < \text{BR}(B_c \to B^*l\nu) < \text{BR}(B_c \to J/\psi l\nu) < \text{BR}(B_c \to B_s^*l\nu),$$ (40)

where we have taken decays involving a vector meson as an example. To understand this inequation, three points are essential. The CKM matrix elements for these four kinds of decays are given as:

$$|V_{ub}| < |V_{cb}| < |V_{cd}| < |V_{cs}|.$$ (41)

The form factors at zero-recoiling point roughly respect:

$$F(B_c \to D^*) < F(B_c \to J/\psi) \sim F(B_c \to B^*) \sim F(B_c \to B_s^*).$$ (42)

1 In $B_c \to (B^*, B_s^*)V$ decays, the analysis is similar: q^2 is replaced by the mass square of the vector meson m_V^2.
The phase spaces in $B_c \to D^*$ and $B_c \to J/\psi$ transitions are much larger than those in $B_c \to B^*, B^*_s$ transitions, which can compensate for the small CKM matrix element in $B_c \to J/\psi l\bar{\nu}$ decay. These predictions will be tested at the ongoing and forthcoming hadron colliders.

IV. CONCLUSION

Due to the rich data, measurements on the CKM matrix elements are becoming more and more accurate. B_c meson decays provide another promising place to continue the errand in B meson decays. They also offer a new window to explore the structure of weak interactions. Although the B_c meson can not be produced on the two B factories, it has a promising prospect on the ongoing and forthcoming hadron colliders. Because of these interesting features, we have studied the B_c transition form factors in the covariant light-front quark model, which are relevant for the semileptonic B_c decays.

Comparing our predictions with results for the form factors in the literature, we find large discrepancies which may be useful to distinguish various theoretical methods. Our results for the form factors A_2 in $B_c \to B^*$ and $B_c \to B^*_s$ transitions strongly depend on the decay constants of the B^* and B^*_s mesons, which gives large theoretical uncertainties to the form factors. For $B_c \to BP$ decays, the relevant form factor A_0 is almost independent of A_2: $A_0 \approx A_1$. For semileptonic B_c decays (also $B_c \to B^*V$ decays), contributions from A_2 are at least suppressed by a factor of 0.08 compared with those from A_1. Thus the large uncertainties from A_2 will not affect the physical observables.

$B_c \to D, D^*, D_s, D_s^*$ form factors at maximally recoiling point are smaller than $B_c \to \eta_c, J/\psi, B, B^*, B_s, B_s^*$, while the $B_c \to D, D_s, \eta_c$ form factors at zero recoiling point are close to each other. The SU(3) symmetry breaking effects in $B_c \to D, D_s$ and $B_c \to D^*, D_s^*$ are quite large; but in $B_c \to B, B_s$ and $B_c \to B^*, B_s^*$ transitions, the SU(3) breaking effects are not large. Semileptonic $B_c \to (\eta_c, J/\psi)l\bar{\nu}$ and $B_c \to (B_s, B_s^*)l\bar{\nu}$ decays have much larger branching fractions than the other two kinds of semileptonic B_c decays. In the three kinds of $B_c \to Vl\bar{\nu}$ decays, contributions from the longitudinal polarized vector is comparable with those from the transversely polarized vector. These predictions will be tested at the ongoing and forthcoming hadron colliders.

Acknowledgement

This work is partly supported by the National Natural Science Foundation of China under Grant Numbers 10735080, 10625525, and 10805037. We would like to acknowledge J.F. Sun and F. Zuo for useful discussions.

APPENDIX A: RELATIONS OF DIFFERENT DEFINITIONS OF FORM FACTORS

In the literature, various conventions for the $B_c \to V$ form factors have been adopted. In this appendix, we will collect their conventions and compare them with the BSW form factors. In Refs. [3, 4, 6, 9], the authors defined the $B_c \to V$ form factors as:

$$
\langle V(P', \epsilon')|V_{\mu}|\bar{B}_c(P') \rangle = -\epsilon_{\mu\alpha\beta\gamma}^{v} q^\gamma F_{\alpha}^{V}(q^2),
$$

$$
\langle V(P', \epsilon')|A_{\mu}|\bar{B}_c(P') \rangle = iF_{0}(q^2)\epsilon^{''\mu}_{\alpha} + iF_{+}(q^2)(\epsilon^{''\mu} \cdot P)P_{\mu} + iF_{-}(q^2)(\epsilon^{''\mu} \cdot P)q_{\mu},
$$

(A1) (A2)

These form factors are related to the BSW form factors by:

$$
V_{PV}^{PV} = (m_{B_c} + m_{V})F_{V}, \quad A_{1}^{PV} = \frac{F_{0}}{m_{B_c} + m_{V}}, \quad A_{2}^{PV} = -(m_{B_c} + m_{V})F_{+},
$$

(A3)
\[A_0 = \frac{m_{B_c} + m_V}{2m_V} A_1^{PV}(q^2) - \frac{m_{B_c} - m_V}{2m_V} A_2^{PV}(q^2) + \frac{q^2}{2m_V} F_- \]

(App. A)

The definition of form factors \(g, f, a_+, a_- \) in Ref. [1] is similar with ours in Eqs. (13) except for a phase \(i \). In Ref. [11, 13], the following definition for the form factors is adopted:

\[
\langle V(P'', \epsilon'')|V_\mu - A_\mu|\bar{B}_c(P') \rangle = \frac{i}{m_{B_c} + m_V} \epsilon'^*_{\mu*} (-g^{\mu\nu} P \cdot q A_0 + P''^\mu P'^\nu A_+ + q^\mu P'^\nu A_- + i\epsilon^{\mu\nu\rho\sigma} P_\rho q_\sigma V),
\]

(App. B)

where \(A_+ \) corresponds to the BSW form factor \(A_2^{PV} \) and their form factor \(A_0^{IKS2} \) is related to the BSW form factor \(A_4^{PV} \):

\[
A_1^{PV} = \frac{A_0^{IKS2}(m_{B_c} - m_V)}{m_{B_c} + m_V}.
\]

(App. C)

In Ref. [14], the \(B_c \to V \) form factors are defined as:

\[
\langle V(P'', \epsilon'')|V_\mu - A_\mu|\bar{B}_c(P') \rangle = -i\epsilon'^*_{\mu*} (m_{B_c} + m_V) A_1 + iP_\mu(\epsilon'' \cdot q) \frac{A_+}{m_{B_c} + m_V} + iq_\mu(\epsilon'' \cdot q) \frac{A_-}{m_{B_c} + m_V}
\]

\[
+ \epsilon_{\mu\nu\rho\sigma} \epsilon'^*_{\sigma*} q_\rho P_\nu \frac{V}{m_{B_c} + m_V},
\]

(App. D)

The form factors \(A_1^{PV} \) and \(V^{PV} \) are the same with the relevant BSW form factors; their form factor \(A_+ \) corresponds to the BSW form factor \(A_2^{PV} \).

APPENDIX B: SOME SPECIFIC RULES UNDER THE \(p^- \) INTEGRATION

When performing the \(p^- \) integration, one needs to include the zero-mode contribution. This amounts to performing the integration in a proper way in this approach. To be more specific, for \(\hat{p}'_1 \) under integration we use the following rules [22, 23]:

\[
\hat{p}'_{1\mu} \triangleq P_\mu A_1^{(1)} + q_\mu A_2^{(1)}, \hat{N}_2 \to Z_2,
\]

\[
\hat{p}'_{1\mu} \hat{p}'_{1\nu} \triangleq g_{\mu\nu} A_1^{(2)} + P_\mu P_\nu A_2^{(2)} + (P_\mu q_\nu + q_\mu P_\nu) A_3^{(2)} + q_\mu q_\nu A_4^{(2)},
\]

(App. E)

where the symbol \(\triangleq \) reminds us that the above equations are true only after integration. \(A_j^{(i)} \) are functions of \(x_{1,2}, p_+^2, p_-^2, q_\pm \) and \(q^2 \), and their explicit expressions have been studied in Ref. [22, 23]:

\[
Z_2 = \hat{N}_2' + m_{c1}^2 - m_2^2 + (1 - 2x_1)M^2 + (q^2 + q \cdot P) \frac{p_+^2 \cdot q_\perp}{q^2},
\]

\[
A_1^{(1)} = \frac{x_1}{2}, A_2^{(1)} = A_1^{(1)} - \frac{p_+^2 \cdot q_\perp}{q^2}, A_2^{(2)} = -p_+^2 - \frac{(p_+^2 \cdot q_\perp)^2}{q^2},
\]

\[
A_3^{(2)} = A_1^{(1)} A_2^{(1)} - A_4^{(2)} = (A_2^{(1)})^2 - \frac{1}{q^2} A_1^{(2)}.
\]

(App. F)

We do not show the spurious contributions in Eq. (B2) since they are numerically vanishing.

[1] B, D and K decays, M. Artuso et al., Eur. Phys. J. C 57, 309 (2008) [arXiv:0801.1833 [hep-ph]], and references therein.
[2] D. s. Du and Z. Wang, Phys. Rev. D 39, 1342 (1989).
[3] P. Colangelo, G. Nardulli and N. Paver, Z. Phys. C 57, 43 (1993).
[4] V. V. Kiselev and A. V. Tkabladze, Phys. Rev. D 48, 5208 (1993).
[5] D. Choudhury, A. Kundu and B. Mukhopadhyaya, arXiv:hep-ph/9810339
[6] V. V. Kiselev, A. K. Likhoded and A. I. Onishchenko, Nucl. Phys. B 569, 473 (2000) [arXiv:hep-ph/9905359]; Phys. Atom. Nucl. 63 (2000) 2123 [Yad. Fiz. 63 (2000) 2219].
[7] M. A. Nabor and R. M. Woloshyn, J. Phys. G 26, 1079 (2000) [arXiv:hep-ph/0005056].
[8] M. A. Ivanov, J. G. Korner and P. Santorelli, Phys. Rev. D 63, 074010 (2001) [arXiv:hep-ph/0007169].
[9] V. V. Kiselev, A. E. Kovalsky and A. K. Likhoded, Nucl. Phys. B 585, 353 (2000) [arXiv:hep-ph/0002127]; V. V. Kiselev, arXiv:hep-ph/0211021.
[10] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 68, 094020 (2003) [arXiv:hep-ph/0306306]; D. Ebert, R. N. Faustov and V. O. Galkin, Eur. Phys. J. C 32, 29 (2003) [arXiv:hep-ph/0308149].
[11] M. A. Ivanov, J. G. Korner and P. Santorelli, Phys. Rev. D 71, 094006 (2005) [Erratum-ibid. D 75, 019901 (2007)] [arXiv:hep-ph/0501051].
[12] T. M. Aliev and M. Savci, Eur. Phys. J. C 47, 413 (2006) [arXiv:hep-ph/0601267].
[13] E. Hernandez, J. Nieves and J. M. Verde-Velasco, Phys. Rev. D 74, 074008 (2006) [arXiv:hep-ph/0607150].
[14] F. Zuo and T. Huang, Chin. Phys. Lett. 24, 61 (2007) [arXiv:hep-ph/0611113]; Eur. Phys. J. C 51, 833 (2007) [arXiv:hep-ph/0702147].
[15] M. Wirbel, B. Stech and M. Bauer, Z. Phys. C 29, 637 (1985).
[16] J. F. Sun, D. S. Du and Y. L. Yang, arXiv:0808.3619 [hep-ph].
[17] S. J. Brodsky, H. C. Pauli and S. S. Pinsky, Phys. Rept. 301, 299 (1998) [arXiv:hep-ph/9705477].
[18] W. Jaus, Phys. Rev. D 41, 3394 (1990).
[19] W. Jaus, Phys. Rev. D 44, 2851 (1991).
[20] H. Y. Cheng, C. Y. Cheung and C. W. Hwang, Phys. Rev. D 55, 1559 (1997) [arXiv:hep-ph/9607332].
[21] H. M. Choi, C. R. Ji and L. S. Kisslinger, Phys. Rev. D 65, 074032 (2002) [arXiv:hep-ph/0110222].
[22] W. Jaus, Phys. Rev. D 60, 054026 (1999).
[23] H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69, 074025 (2004) [arXiv:hep-ph/0310359].
[24] H. Y. Cheng and C. K. Chua, Phys. Rev. D 69, 094007 (2004) [arXiv:hep-ph/0401141].
[25] C. W. Hwang and Z. T. Wei, J. Phys. G 34, 687 (2007) [arXiv:hep-ph/0609036].
[26] J. L. Rosner and S. Stone, arXiv:0802.1043 [hep-ex] and review in PDG [27].
[27] T. W. Chiu, T. H. Hsieh, C. H. Huang and K. Ogawa [TWQCD Collaboration], Phys. Lett. B 651, 171 (2007) [arXiv:0705.2797 [hep-lat]].
[28] W. Wang, Y. L. Shen and C. D. Lu, Eur. Phys. J. C 51, 841 (2007) [arXiv:0704.2493 [hep-ph]].