MASSIVE GALAXIES AT HIGH z: ASSEMBLY PATTERNS, STRUCTURE, AND DYNAMICS
IN THE FAST PHASE OF GALAXY FORMATION

J. Oñorbe1,2, F. J. Martínez-Serrano3, R. Domínguez-Tenreiro1, A. Knebe4, and A. Serna3

1Grupo de Astrofísica, Departamento de Física Teórica, Modulo C-15, Universidad Autónoma de Madrid, Cantoblanco E-28049, Spain
2Department of Physics and Astronomy, The University of California at Irvine, Irvine, CA 92697, USA; jonorbe@uci.edu
3Depto. de Física y A.C., Universidad Miguel Hernández, E-03202 Elche, Alicante, Spain

Received 2010 December 23; accepted 2011 March 14; published 2011 April 20

ABSTRACT

Relaxed, massive galactic objects have been identified at redshifts $z = 4$, 5, and 6 in hydrodynamical simulations run in a large cosmological volume. This allowed us to analyze the assembly patterns of the high-mass end of the galaxy distribution at these high z’s, by focusing on their structural and dynamical properties. Our simulations indicate that massive objects at high redshift already follow certain scaling relations. These relations define virial planes at the halo scale, whereas at the galactic scale they define intrinsic dynamical planes that are, however, tilted relative to the virial plane. Therefore, we predict that massive galaxies must lie on fundamental planes from their formation. We briefly discuss the physical origin of the tilt in terms of the physical processes underlying massive galaxy formation at high z, in the context of a two-phase galaxy formation scenario. Specifically, we have found that it lies on the different behavior of the gravitationally heated gas as compared with cold gas previously involved in caustic formation and the mass dependence of the energy available to heat the gas.

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: formation – galaxies: fundamental parameters – hydrodynamics – methods: numerical

1. INTRODUCTION

One of the outstanding yet most important problems in astrophysics is how and when galaxies formed within the framework of the expanding universe described by the concordance model of cosmology. Massive galaxies at high z become more and more important to study. In fact, the availability of multi-wavelength data from new generations of deep surveys, including wide-field panoramic surveys, allowed searches for such massive galaxy candidates up to $z \simeq 4-6.5$ (Giavalisco et al. 2004; Mobasher et al. 2005; McLure et al. 2006; Yan et al. 2006; Rodighiero et al. 2007; Bouwens et al. 2007; Wiklind et al. 2008; Mancini et al. 2009; Stark et al. 2009; Mobasher & Wiklind 2010; Dahlen et al. 2010; Capak et al. 2011) or even $z \approx 10$ (Bouwens et al. 2011). However, still very little is known about the physical processes underlying the (putative) presence of such massive systems at these high redshifts. In fact, the mere existence of them could seem paradoxical within a direct interpretation of the hierarchical structure formation scenario (e.g., Toomre 1977; White & Rees 1978). Further, such possible contradictions are not necessarily alleviated by the competing monolithic collapse scenario (Eggen et al. 1962; Larson 1974) and hence the question about the existence (and the properties) of massive galaxies at high redshift remains open.

Recently, a scenario has emerged to explain massive galaxy formation that shares characteristics of both the aforementioned classical scenarios, but is nevertheless different. Indeed, analytical models (Salvador-Solé et al. 2005), as well as N-body simulations (Wechsler et al. 2002; Zhao et al. 2003), have shown that two different phases can be distinguished along halo mass assembly: (1) first, a violent, fast phase, with high-mass aggregation (i.e., merger) rates; and (2) later on, a slow phase, where the mass aggregation rates are much lower. Hydrodynamical simulations have confirmed this scenario and its implications for properties of massive galactic objects at low z (see Domínguez-Tenreiro et al. 2006; see also Oser et al. 2010 and Cook et al. 2009). Concerning high z’s, it has been shown that the fast phase has the characteristics of a multiclump collapse, where mergers involve very low relative angular momentum, and, in fact, they are induced by the collapse of flow convergence regions (FCRs) displaying a web-like morphology (Domínguez-Tenreiro et al. 2010).

In this Letter, we investigate the high-mass end of galactic stellar objects at high redshift ($z = 4, 5,$ and 6) obtained by means of self-consistent cosmological simulations within a volume large enough to account for the proper treatment of the large-scale structure yet simultaneously capturing all the relevant small-scale (baryonic) physics. Not only do we investigate their mere presence, we also study whether they had enough time to dynamically relax at such high redshifts. To this end, we have focused on the intrinsic mass (as opposed to luminosity) as well as structural and kinematical properties of these objects at their halo (i.e., virial radius) and stellar/galactic scale (to be defined below) as fingerprints of the physical processes involved in their assembly. Specifically, we investigate the appearance of samples of high-z massive galactic objects with dynamical planes tilted relative to the virial plane (VP) and link their underlying formation physics to the Adhesion Model (Gurbatov et al. 1989; Vergassola et al. 1994).

Our results here are an extension to higher z’s of previous studies on the fundamental plane (FP) at $z = 0$ (Oñorbe et al. 2005, 2006). In these two papers, the different possibilities causing the tilt of the FP relative to the VP are analyzed in detail. It is shown that if both the virial mass to luminosity ratio, M_{vir}/L, and the mass structure coefficient c^FP_{M} (see Equations (2) and (4) in Oñorbe et al. 2005) are independent of mass, then no FP tilt would be measured. Here, because mass is considered instead of luminosity and no projection effects are taken into account, we have instead analyzed the

4 We stick to three-dimensional properties as well as mass (instead of luminosity) for two reasons: (1) projection effects add noise in the statistical analysis (Oñorbe et al. 2006) and (2) we are not aiming at providing observables but rather at understanding the physical processes involved in the formation of these objects.
mass dependence of the ratio $M_{\text{bar}}^{\text{tot}}/M_{\text{vir}}$ and the mass structure coefficient $\rho_{\text{bar}}(\gamma_{\text{bar}}^2) = (GM_{\text{bar}})/(\sigma_{\text{bar}}^2 r_{\text{bar}}^2)$, where $M_{\text{bar}}^\text{tot}$ and $\sigma_{\text{bar}}^\text{tot}$ are the stellar mass and the three-dimensional (3D) stellar velocity dispersion at the galactic scale, respectively, and r_{bar} is the 3D stellar mass effective radius also defined at the galactic scale.\(^5\) We need to stress that a mass dependence of either of these quantities automatically implies a tilt of the dynamical plane relative to the VP.

2. STRUCTURAL AND KINEMATICAL PROPERTIES OF MASSIVE OBJECTS AT HIGH z

The simulations used here are part of the GALFOBS project. They are N-body + SPH simulations that have been performed using an OpenMP parallel version of the DEVA code (Serna et al. 2003) and the methods for star formation and cooling described in Martínez-Serrano et al. (2008). The DEVA code pays particular attention to ensure that conservation laws (e.g., momentum, energy, angular momentum, and entropy) hold as accurately as possible.\(^6\) Star formation is implemented through a Kennicutt–Schmidt-like law with a density threshold ρ_{thres} and a star formation efficiency of c. The values of these parameters implicitly account for star formation regulation by discrete energy injection processes.

The main simulation was carried out in a periodic cube of 80 Mpc side length using 512\(^3\) baryonic and 512\(^3\) dark matter particles with a gravitational softening of $\epsilon_\text{g} = 2.3$ kpc and a minimum hydrodynamical smoothing length half that value. The cosmology applied was a ΛCDM model whose parameters as well as those of the field of primordial density fluctuations (i.e., initial spectrum) have been taken from cosmic microwave background anisotropy data\(^7\) (Dunkley et al. 2009), with $\Omega_m = 0.295$, $\Omega_b = 0.0476$, $\Omega_\Lambda = 0.705$, $h = 0.694$, an initial power-law index $n = 1$, and $\sigma_8 = 0.852$. The mass resolution is $m_{\text{bar}} = 2.42 \times 10^7 M_\odot$ and $m_{\text{dm}} = 1.26 \times 10^8 M_\odot$, and the star formation parameters used were $\rho_{\text{thres}} = 4.79 \times 10^{-25}$ g cm\(^{-3}\) and $c = 0.3$.

When analyzing galaxy formation in numerical simulations, it is desirable to verify that the objects in the simulation are consistent with observations at low z-s. Due to the extreme CPU consumption by hydrodynamical forces, this is not yet possible for the main GALFOBS simulation. As a way out, we ran three sub-volumes of the main cube using a “zoom approach.” In this approach the gravitational forces have been calculated for the full box whereas the hydrodynamical forces (which are exclusively local) were only computed in a sub-box of side length 26 Mpc. These three sub-volumes have been analyzed at redshift $z = 0$ showing that we indeed obtain galaxy populations in agreement with low-redshift observations, as we had also previously shown in Sáiz et al. (2004) using the same approach yet smaller simulation boxes.

Halos in our simulations are identified by the OpenMP+MPI halo finder AHF\(^8\) (Knollmann & Knebe 2009) as well as SKID (Weinberg et al. 1997), and their respective results have been cross-compared to check for completeness. The halo scale of these objects is defined by the virial radius (r_{vir}) based upon the Bryan & Norman (1998) fitting function to determine the overdensity threshold. The so-called galactic scale has been based upon material (stars) inside a sphere of radius $r = 0.15 \times r_{\text{vir}}$, a scale separating the baryon from the dark matter domination (Bailin et al. 2005). This automated procedure has been tested by comparing with individually determined limiting stellar sizes of several hundred of objects based upon their 3D visualization as well as their 3D stellar density profiles. We further asked that our objects are not involved in violent events, either at the halo or at the galactic scale. To exclude this kind of objects at the halo scale, we have used the form factor, c_F, defined via the virial relation $c_F = (GM_{\text{tot}})/(\langle v_{\text{tot}}^2 \rangle^{1/2} r_{\text{vir}})$, where $\sigma_{\text{tot}}^\text{vir}$ is the velocity dispersion and r_{vir} the half-mass radius at the halo scale, and we asked it to be within the expected interval (1.9, 2.5) for virialized objects (Binney & Tremaine 2008) and of the order of unity if we use r_{vir} instead of r_{vir}. The same procedure has been employed on the galactic object scale using—in analogy—the parameter $c_\text{star}^\text{vir} = (GM_{\text{tot}})/(\langle \sigma_{\text{star}}^2 \rangle^{1/2} r_{\text{vir}})$. Again, objects outside a certain range (based upon a manually gauged subsample of 200 objects for each z) have been discarded. Putting a mass threshold of $M_{\text{tot}}^{\text{star}} > 10^{10} M_\odot$, our final samples consists of 137, 521, and 1315 galaxies at $z = 6$, $z = 5$, and $z = 4$, respectively, not involved in violent events at any scale.

Our first result is in fact the mere existence of these samples of high-redshift relaxed massive galaxies. To understand their origin, we first quantify the correlation and inter-relation, respectively, between their mass (M_{vir} and $M_{\text{star}}^\text{tot}$), size (half-mass radii r_{vir} and r_{star}), and velocity dispersion\(^9\) (σ_{vir} and σ_{star}) both at the halo and at the stellar scale using the following variables:

\[
E_{\text{halo}} \equiv \log_{10} M_{\text{vir}}^\text{tot}, \quad r_{\text{halo}} \equiv \log_{10} r_{\text{star}}^\text{tot}, \quad \sigma_{\text{halo}} \equiv \log_{10} \sigma_{\text{star}}^\text{tot};
\]

\[
E_{\text{star}} \equiv \log_{10} M_{\text{star}}^\text{tot}, \quad r_{\text{star}} \equiv \log_{10} r_{\text{star}}^\text{tot}, \quad \sigma_{\text{star}} \equiv \log_{10} \sigma_{\text{star}}^\text{tot}.
\]

We list the average values \bar{E}, \bar{r}, and $\bar{\sigma}$ in Table 1 where we can observe a mild increase of r_{star} alongside a decrease of σ_{halo} while E_{halo} remains constant: as the universe expands, the objects become on average less and less compact due to the decrease of the global density (Padmanabhan 1993). We basically observe the same phenomenon on the stellar scale, however, accompanied by a moderate increase in E_{star}. In fact, the ratios $r_{\text{vir}}/r_{\text{star}}$ and $\sigma_{\text{vir}}/\sigma_{\text{star}}$ show a scaling behavior as a function of either M_{vir} or $M_{\text{star}}^\text{tot}$ (see Table 2 and below).

Going one step further, we search for planes in the (E, r, v) space by performing a principal component analysis (PCA) of all samples. It is made in 3D to circumvent projection effects (Oñorbe et al. 2006). We have found that at all redshifts one of the eigenvalues of the PCA is considerably smaller than the others, so that (massive) objects populate a flattened ellipsoid close to two dimension, both at the halo scale and at the stellar object scale:

\[
E_s - \bar{E}_s = \alpha_s^3 (r_s - \bar{r}_s) + \gamma_s^3 (v_s - \bar{v}_s),
\]

where s refers to the scale of the object, i.e., halo or star. Table 1 also lists the values of the parameters α_s^3 and γ_s^3 of these planes as well as their bootstrapping errors. We find that at the halo scale the planes are close to the VP (defined by $(\sigma_{\text{halo}}^\text{tot})^2 = GM_{\text{halo}}/r_{\text{halo}}^\text{tot}$ or $\sigma_{\text{halo}}^3 = 1, \gamma_{\text{halo}} = 2$), as expected for well-defined halos. At the stellar scale we also find planes to which we refer as the intrinsic dynamical planes (IDPs) and whose observed manifestation is the FP.

\(^5\) Please refer to Table 1 of Oñorbe et al. (2006) where our nomenclature and definitions are more thoroughly introduced.

\(^6\) This in particular implies that a double loop in the neighbor searching algorithm must be used, which considerably increases the CPU time.

\(^7\) http://lambda.gsfc.nasa.gov/prod/mapdr3/params/lcdm_sz_lens_run_wmap5_bao_snall_lyapost.cfm

\(^8\) AHF can be freely downloaded from http://popia.ft.uam.es/AMIGA

\(^9\) We stress that all our objects here are velocity dispersion supported.
possible evolution, we plot them in Figure 1 for
the massive objects, shown in a projection where the
massive objects in the samples are also plotted as circles using darker versions
= 4 (red), and
= 6 (green) IDPs seen in a
projection. The major axes of the ellipses resulting from projections of the
ellipsoid centers. Straight lines have the same directions as
the VP ellipsoids. Two important results arise from this plot and
the major axes of the ellipsoids resulting from projections of the
IDPs seen in the same projection. The 3
sample (long-dashed line). The centers of the ellipses are the corresponding projections of the
eellipsoid centers. Straight lines have the same directions as
the major axes of the ellipsoids resulting from projections of the
VP ellipsoids. Two important results arise from this plot and
Table 1. First, high-
= 4, primarily driven
changes in the average values
= 4 data are edge-on. Ellipses stand for the corresponding projections of the
3D ellipsoids (full lines) or 3
= 4 data are edge-on. Full line ellipses represent the corresponding
1σ ellipsoids seen in the same projection. The 3σ ellipse is also
plotted for the = 4 sample (long-dashed line). The centers of the ellipses are the corresponding projections of the
eellipsoid centers. Data points for all
the massive objects in the samples are also plotted as circles using darker versions
of their respective colors. Short-dashed lines are the projections of the major
axes of the VP ellipsoids.
= 4 (blue), = 5 (red), and = 6 (green) IDPs seen in a
projection where the = 4 data are edge-on. Full line ellipses represent the corresponding
1σ ellipsoids seen in the same projection. The 3σ ellipse is also
plotted for the = 4 sample (long-dashed line). The centers of the ellipses are the corresponding projections of the
eeellipsoid centers. Data points for all
the massive objects in the samples are also plotted as circles using darker versions
of their respective colors. Short-dashed lines are the projections of the major
axes of the VP ellipsoids.
= 4, primarily driven
changes in the average values
= 4 data are edge-on. Ellipses stand for the corresponding projections of the
3D ellipsoids (full lines) or 3
= 4 data are edge-on. Full line ellipses represent the corresponding projections of the corresponding
1σ ellipsoids seen in the same projection. The 3σ ellipse is also
plotted for the = 4 sample (long-dashed line). The centers of the ellipses are the corresponding projections of the
eellipsoid centers. Data points for all
the massive objects in the samples are also plotted as circles using darker versions
of their respective colors. Short-dashed lines are the projections of the major
axes of the VP ellipsoids.

To better view the IDPs, their relation to the VP, and
any possible evolution, we plot them in Figure 1 for = 6 (green),
= 5 (red), and = 4 (blue). Points are the actual data for all
the massive objects, shown in a projection where the = 4 data
are edge-on. Ellipses stand for the corresponding projections of the
1σ 3D ellipsoids (full lines) or 3σ (blue dashed line). The centers of the ellipses are the corresponding projections of the
ellipsoid centers. Straight lines have the same directions as
the major axes of the ellipsoids resulting from projections of the
VP ellipsoids. Two important results arise from this plot and
Table 1. First, high-
= 4, primarily driven
changes in the average values
= 4 data are edge-on. Full line ellipses represent the corresponding projections of the corresponding
1σ ellipsoids seen in the same projection. The 3σ ellipse is also
plotted for the = 4 sample (long-dashed line). The centers of the ellipses are the corresponding projections of the
eellipsoid centers. Data points for all
the massive objects in the samples are also plotted as circles using darker versions
of their respective colors. Short-dashed lines are the projections of the major
axes of the VP ellipsoids.

3. DISCUSSION AND CONCLUSIONS

To shed more light onto the tilt of the IDP with respect to
the VP, and following the discussion in Section 1, we have first checked if there is a mass homology breaking, that is, if the parameter
 depends on
. We have calculated its trend
with stellar mass (log
) and listed the best fit
for
in Table 2. Within the error bars the correlation is consistent
with zero. This means that stars accommodate the product of
their spatial and velocity dispersion distributions (i.e.,
, not the plane parameters
and
). We have calculated its trend
with stellar mass (log
) and listed the best fit
for
in Table 2. Within the error bars the correlation is consistent
with zero. This means that stars accommodate the product of
their spatial and velocity dispersion distributions (i.e.,
, not the plane parameters
and
). We have calculated its trend
with stellar mass (log
) and listed the best fit
for
in Table 2. Within the error bars the correlation is consistent
with zero. This means that stars accommodate the product of
their spatial and velocity dispersion distributions (i.e.,
, not the plane parameters
and
).

Table 1

Results of PCA Analysis

Sample	No.	E	r	v	α ID	γ ID	σ E\|V
z = 6	137	11.321 ± 0.016	1.053 ± 0.007	2.319 ± 0.006	0.930 ± 0.040	1.906 ± 0.050	0.0100 ± 0.0005
z = 5	521	11.326 ± 0.010	1.118 ± 0.005	2.284 ± 0.003	0.822 ± 0.017	2.008 ± 0.024	0.0092 ± 0.0003
z = 4	1315	11.336 ± 0.007	1.188 ± 0.003	2.248 ± 0.003	0.798 ± 0.013	2.053 ± 0.018	0.0105 ± 0.0002

Stellar

z = 6	137	10.189 ± 0.012	0.067 ± 0.007	2.220 ± 0.006	−0.142 ± 0.091	2.096 ± 0.104	0.0297 ± 0.0021
z = 5	521	10.209 ± 0.007	0.119 ± 0.004	2.187 ± 0.004	−0.002 ± 0.059	2.040 ± 0.052	0.0290 ± 0.0010
z = 4	1315	10.237 ± 0.005	0.189 ± 0.003	2.146 ± 0.003	0.077 ± 0.035	1.994 ± 0.027	0.0257 ± 0.0006

Notes. Column 2: number of massive galaxies in the sample. Columns 3, 4, and 5: sample mean values of the E, r, and v variables (log M\|, log kpc, and log km s\(^{-1}\) respectively). Columns 6 and 7: coefficients of the IDP plane. Column 8: IDP orthogonal scatter in the E, r, and v variables. Errors have been obtained from a bootstrapping analysis of the samples.

Table 2

Direct Fits

X	z = 4	z = 5	z = 6	\(\beta \)	z = 4	z = 5	z = 6
\(c_F \)	−0.071 ± 0.009	−0.076 ± 0.014	−0.045 ± 0.033	1.0173	1.0500	0.7267	
\(c_v^{\text{vir}} \)	0.059 ± 0.032	0.019 ± 0.066	0.074 ± 0.142	0.8883	1.2765	0.6917	
\((\alpha_M^{\text{vir}} / \alpha_{\text{star}})^2 \)	−0.121 ± 0.023	−0.131 ± 0.046	−0.137 ± 0.096	1.4470	1.5277	1.5876	
\(\beta_{\text{star}} / \beta_{\text{bo}} \)	0.252 ± 0.025	0.225 ± 0.046	0.256 ± 0.110	−1.5761	−1.3013	−1.6227	
\(M_{\text{star}}^{\text{vir}} / M_{\text{bo}}^{\text{vir}} \)	−0.306 ± 0.029	−0.258 ± 0.057	−0.222 ± 0.116	−2.0301	−1.5159	−1.1264	
\(M_{\text{star}}^{\text{vir}} / M_{\text{bo}}^{\text{vir}} \)	0.789 ± 0.022	0.829 ± 0.040	0.877 ± 0.091	−8.8637	−9.2277	−9.6826	
\(M_{\text{bo}}^{\text{vir}} / M_{\text{bo}}^{\text{star}} \)	−0.061 ± 0.006	−0.048 ± 0.009	−0.032 ± 0.142	−0.1594	−0.2892	−0.4581	

Notes. Correlation between various properties X and M\(^{\text{star}}\)\(_{\odot}\) as derived from fitting log M\(_{\text{bo}}^{\text{star}}\) = \(\beta \) log X + \(\phi \). Errors stand for a 97.5\% confidence level intervals.
mass inside r_{vir} (i.e., $M_{\text{vir}}^{h}/M_{\text{vir}}^{\text{star}}$) as a function of the mass scale. First, we note that mass assembly of the objects we analyze is dominated by cold accretion mode, in consistency with Kereš et al. (2009) results with the entropy-conserving GADGET-2 code. Now, the best-fit parameters to the scaling relation $\log M_{\text{vir}}^{\text{star}} \propto \beta \log M_{\text{vir}}^{h}/M_{\text{vir}}^{\text{star}}$ are given in Table 2 again. There we find that the fraction of hot over cold baryons increases very significantly as we go to higher masses. We can further acknowledge from Table 2 that the overall baryon fraction $f_{\text{b}} \equiv M_{\text{vir}}^{\text{bar}}/M_{\text{vir}}$ does not depend on $M_{\text{vir}}^{\text{star}}$. Both these results taken together imply that massive halos have proportionally less cold gas available to be accreted from the halo and transformed into stars than less massive ones. This explains the trend of $M_{\text{vir}}^{\text{star}} / M_{\text{vir}}$ with the mass scale found above. Further, it is worth noting that all the β slopes in Table 2 change from one z to another only within their errors.

Now, why is more hot gas relative to cold gas enclosed within the virial radius as M_{vir} increases? To answer to this question we have to recall how massive galaxies assemble their mass. Very briefly, our simulations show that massive galaxies form from gaseous mass elements enclosed by overdense sub-volumes within the simulation box. As predicted by the Adhesion Model (Gurbatov et al. 1989; Vergassola et al. 1994) we have found within the simulation box. As predicted by the Adhesion Model approximation; the ensuing transformation of the ordered mechanical energy of contraction into velocity dispersion, and then partially into thermal energy and gas pressure, on the same timescales; and dense gas elements shrinkage, cooling and their transformation into stars. Energy injection is unlikely to substantially change the processes responsible for this high-z FP tilt, because, as explained, they have to do with caustic (i.e., singularity) formation. We conclude that the violent processes described above are responsible for having (1) massive objects at high redshift, (2) hot gas coronae, and (3) less cold gas to form stars as the mass scale increases, because we have more gas heated, implying IDPs tilted relative to VPs, among other results. We see that the same processes are responsible for obtaining massive stellar objects shortly after the big bang as well as having them lying on IDPs: fast FCR contractions at different scales are the engine driving them.

We thank the anonymous referee for useful suggestions that improved the manuscript. We thankfully acknowledge to D. Vicente and J. Narango for the assistance and technical expertise provided at the Barcelona Supercomputing Centre, as well as the computer resources provided by BSC/RES (Spain). We thank DEISA Extreme Computing Initiative (DECI) for the CPU time allowed to GALFOBS project. The Centro de Computación Científica (UAM, Spain) has also provided computing facilities. This work was partially supported by the DGES (Spain) through the grants AYA2009-12792-C03-02 and AYA-2009-12792-C03-03, as well as by the ASTROMADRID network (CAM S2009/ESP-1496). A.K. and J.O. were supported by the MICINN, Spain, through the Ramon y Cajal programme and the “Supercomputación y e-Ciencia” Consolider-Ingenio 2010 project (CSD2007-0050), respectively.

REFERENCES

Bailin, J., et al. 2005, ApJ, 627, L17
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (Princeton, NJ: Princeton Univ. Press)
Birnboim, Y., & Dekel, A. 2003, MNRAS, 345, 349
Bouwens, R. J., Illingworth, G. D., Franx, M., & Ford, H. 2007, ApJ, 670, 928
Bouwens, R. J., et al. 2011, Nature, 469, 504
Bryan, G. L., & Norman, M. L. 1998, ApJ, 495, 80
Capak, P. L., et al. 2011, Nature, 470, 233
Cook, M., Lapi, A., & Granato, G. L. 2009, MNRAS, 397, 534
Dahlen, T., et al. 2010, ApJ, 724, 425
Domínguez-Tenreiro, R., Oñorbe, J., Martínez-Serrano, F. J., & Serna, A. 2010, MNRAS, in press (arXiv:1010.6294)
Domínguez-Tenreiro, R., Oñorbe, J., Sáez, A., Artal, H., & Serna, A. 2006, ApJ, 636, L77
Dunkley, J., et al. 2009, ApJS, 180, 306
Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, ApJ, 136, 748
Giavalisco, M., et al. 2004, ApJ, 600, L103
