On the Caginalp for a Conserve Phase-Field with a Polynomial Potential of Order $2p - 1$

Narcisse Batangouna, Cyr Sérabinh Ngamouyih Moussata, Urbain Cyriaque Mavoungou

Abstract

Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potential of order $2p - 1$. In this part, one treats the conservative version of the problem of generalized phase field. We consider a regular potential, more precisely a polynomial term of the order $2p - 1$ with edge conditions of Dirichlet type. Existence and uniqueness are analyzed. More precisely, we precisely, we prove the existence and uniqueness of solutions.

Keywords

A Conserved Phase-Field, Polynomial Potential of Order $2p - 1$, Dirichlet Boundary Conditions, Maxwell-Cattaneo Law

1. Introduction

The Caginalp phase-field model

\[
\frac{\partial u}{\partial t} - \Delta u + f(u) = \theta \tag{1}
\]

\[
\frac{\partial \theta}{\partial t} - \Delta \theta = \frac{\partial u}{\partial t} \tag{2}
\]

proposed in [1], has been extensively studied (see, e.g., [2]-[7] and [8]). Here, u denotes the order parameter and θ the (relative) temperature.

Furthermore, all physical constants have been set equal to one. This system models, e.g., melting-solidification phenomena in certain classes of materials.

The Caginalp system can be derived as follows. We first consider the (total) free energy

\[
\psi(u, \theta) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + f(u) - u\theta - \frac{1}{2} \theta^2 \right) \, dx, \tag{3}
\]
where \(\Omega \) is the domain occupied by the material.

We then define the enthalpy \(H \) as

\[
H = - \frac{\partial \psi}{\partial \theta}
\]

where \(\partial \) denotes a variational derivative, which gives

\[
H = u + \theta.
\]

The governing equations for \(u \) and \(\theta \) are then given by (see [9])

\[
\frac{\partial u}{\partial t} = - \frac{\partial \psi}{\partial u},
\]

\[
\frac{\partial H}{\partial t} + \text{div} q = 0,
\]

where \(q \) is the thermal flux vector. Assuming the classical Fourier Law

\[
q = -\nabla \theta,
\]

we find (1) and (2).

Now, a drawback of the Fourier Law is the so-called “paradox of heat conduction”, namely, it predicts that thermal signals propagate with infinite speed, which, in particular, violates causality (see, e.g. [10] and [11]). One possible modification, in order to correct this unrealistic feature, is the Maxwell-Cattaneo Law.

\[
\frac{\partial^2 \theta}{\partial t^2} + \frac{\partial \theta}{\partial t} - \Delta \theta = 0,
\]

This model can also be derived by considering, as in [12] (see also [13]-[20]), the Caginalp phase-field model with the so-called Gurtin-Pipkin Law

\[
q(t) = -\int_0^\infty k(s)\nabla \theta(t-s)ds.
\]

for an exponentially decaying memory kernel \(k \), namely,

\[
k(s) = e^{-s}.
\]

Indeed, differentiating (11) with respect to \(t \) and integrating by parts, we recover the Maxwell-Cattaneo Law (9).

Now, in view of the mathematical treatment of the problem, it is more convenient to introduce the new variable

\[
\alpha = \int_0^t \theta(s)ds, \quad \theta = \frac{\partial \alpha}{\partial t},
\]

and we have, integrating (10) with respect to \(s \in [0,1] \).
\[\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial \alpha}{\partial t} - \Delta \alpha = \frac{\partial u}{\partial t} \]

(14)

where

\[\alpha(t,x) = \int_0^t T(\tau,x) \, d\tau + \alpha_0(x) \]

(15)

is the conductive thermal displacement. Noting that \(T = \frac{\partial \alpha}{\partial t} \), we finally deduce from (33) and (36)-(37) the following variant of the Caginalp phase-field system (see [17]):

\[\frac{\partial u}{\partial t} - \Delta u + f(u) = \frac{\partial \alpha}{\partial t} \]

(16)

\[\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial \alpha}{\partial t} - \Delta \alpha = -\frac{\partial u}{\partial t} \]

(17)

In this paper, we consider the following conserved phase-field model:

\[\frac{\partial u}{\partial t} + \Delta^2 u - \Delta f(u) = -\Delta \frac{\partial \alpha}{\partial t} \]

(18)

\[\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial \alpha}{\partial t} - \Delta \alpha = -\frac{\partial u}{\partial t} \]

(19)

These equations are known as the conserved phase-field model (see [21]-[30]) based on type II heat conduction and with two temperatures (see [3] and [4]), conservative in the sense that, when endowed with Neumann boundary conditions, the spatial average of the order parameter is a conserved quantity. Indeed, in that case, integrating (18) over the spatial domain \(\Omega \), we have the conservation of mass,

\[\langle u(t) \rangle = \langle u(0) \rangle, \quad t \geq 0 \]

(20)

\[\langle \rangle = \frac{1}{vol\Omega} \int_\Omega dx \]

(21)

denotes the spatial average. Furthermore, integrating (19) over, we obtain

\[\langle \alpha(t) \rangle = \langle \alpha(0) \rangle, \quad t \geq 0 \]

(22)

Our aim in this paper is to study the existence and uniqueness of solution of (17)-(39). We consider here only one type of boundary condition, namely, Dirichlet (see [31] [32] [33]).

2. Setting of the Problem

We consider the following initial and boundary value problem

\[\frac{\partial u}{\partial t} + \Delta^2 u - \Delta f(u) = -\Delta \frac{\partial \alpha}{\partial t} \]

(23)

\[\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial \alpha}{\partial t} - \Delta \alpha = -\frac{\partial u}{\partial t} \]

(24)

\[u \big|_t = \Delta u \big|_t = \alpha \big|_t = 0, \quad \text{on } \partial \Omega, \]

(25)
As far as the nonlinear term f is concerned, we assume that

$$f \in C^\infty(R), f(0) = 0$$

Consider the following polynomial potential of order $2p - 1$

$$f(s) = \sum_{i=1}^{2p+1} a_i s^i, p \in \mathbb{N}^*, p \geq 2, a_{2p-1} = 2 \mathbb{p}_{2p} \geq 0$$

The function f satisfies the following properties

$$\frac{1}{2} a_{2p-1} s^{2p} - c_i \leq f(s) s \frac{3}{2} a_{2p-1} s^{2p} + c_i,$$

$$f'(s) \geq \frac{1}{2} a_{2p-1} s^{2p-1} - c_2 \geq -k, \forall s \in R, k \geq 0$$

where

$$F(s) = \int_0^s f(\tau) d\tau$$

such as

$$\frac{1}{4p} a_{2p-1} s^{2p} - c_3 \leq F(s) \leq \frac{3}{4p} a_{2p-1} s^{2p} + c_3$$

Remark 2.1. We take here, for simplicity, Dirichlet Boundary Conditions. However, we can obtain the same results for Neumann Boundary Conditions, namely,

$$\frac{\partial u}{\partial \nu} = \frac{\partial \Delta u}{\partial \nu} = \frac{\partial \varphi}{\partial \nu} \text{ on } \Gamma$$

where ν denotes the unit outer normal to Γ. To do so, we rewrite, owing to (23) and (24), the equations in the form

$$\frac{\partial u}{\partial t} + \Delta^2 \varphi - \Delta\left(f(u) - \langle f(u) \rangle\right) = -\Delta \frac{\partial \varphi}{\partial t}$$

$$\frac{\partial \varphi}{\partial \nu} = \frac{\partial \varphi}{\partial \nu} - \Delta \varphi = \frac{\partial u}{\partial \nu},$$

where $\varphi = v - \langle v \rangle$, $\|v_0\| \leq M_1$, $\|v_0\| \leq M_2$, for fixed positive constants M_1 and M_2. Then, we note that

$$v \rightarrow \left(\|(-\Delta)^{-1} v\|^2 + \langle v \rangle^2\right)^{\frac{1}{2}}$$

where, here, $-\Delta$ denotes the minus Laplace operator with Neumann boundary conditions and acting on functions with null average and where it is understood that

$$\langle \cdot \rangle = \frac{1}{\text{vol}(\Omega)}\langle \cdot \rangle_{H^{-1}(\Omega), H^0(\Omega)}$$

Furthermore

\[v \mapsto \left(\|v\|^2 + \langle v, v \rangle \right)^{\frac{1}{2}}, \]

\[v \mapsto \left(\|\nabla v\|^2 + \langle v, v \rangle \right)^{\frac{1}{2}}, \]

\[v \mapsto \left(\|\Delta v\|^2 + \langle v, v \rangle \right)^{\frac{1}{2}} \]

are norms in \(H^{-1}(\Omega), \ L^2(\Omega), \ H^1(\Omega) \) and \(H^2(\Omega) \), respectively, which are equivalent to the usual ones. We further assume that

\[f(s) \leq \varepsilon F(s) + c_s, \ \forall \varepsilon > 0, \ s \in \mathbb{R}, \]

which allows to deal with term \(f(u) \).

3. Notations

We denote by \(\|\cdot\| \) the usual \(L^2 \)-norm (with associated product scalar \(\langle \cdot, \cdot \rangle \) and set \(\|\cdot\|_1 = \left\| (-\Delta)^{-\frac{1}{2}} \cdot \right\| \), where \(-\Delta\) denotes the minus Laplace operator with Dirichlet Boundary Conditions. More generally, \(\|\cdot\|_X \) denote the norm of Banach space \(X \).

Throughout this paper, the same letters \(c_1, c_2 \) and \(c_3 \) denote (generally positive) constants which may change from line to line, or even a same line.

4. A Priori Estimates

The estimates derived in this subsection will be formal, but they can easily be justified within a Galerkin scheme. We rewrite (23) in the equivalent form

\[(-\Delta)^{-1} \frac{\partial u}{\partial t} - \Delta u + f(u) = \frac{\partial \alpha}{\partial t}. \]

We multiply (35) by \(\frac{\partial u}{\partial t} \) and have, integrating over \(\Omega \) and by parts;

\[\frac{d}{dt} \left(\|\nabla u\| + 2 \int_\Omega F(u) \, dx \right) + 2 \left\| \frac{\partial u}{\partial t} \right\|_1 = 2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right) \]

We then multiply (24) by \(\frac{\partial \alpha}{\partial t} \) to obtain

\[\frac{d}{dt} \left(\|\nabla \alpha\| + \left\| \frac{\partial \alpha}{\partial t} \right\| \right) + 2 \left\| \frac{\partial \alpha}{\partial t} \right\| = -2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right) \]

Summing (36) and (37), we find the differential inequality of the form

\[\frac{d}{dt} \left(\|\nabla u\|^2 + 2 \int_\Omega F(u) \, dx + \|\nabla \alpha\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \right) + 2 \left\| \frac{\partial u}{\partial t} \right\|^2 + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^2 = 0 \]

Integrating from 0 to \(t \) with \(t \in [0; T] \) we obtain
\[
\int_0^1 \left(\frac{d}{dt} \| \nabla u \|^2 + 2 \int_0^1 F(u) \, dx + \| \nabla \alpha(s) \|^2 + \left\| \frac{\partial \alpha(s)}{\partial t} \right\|^2 \right) \, ds \\
+ 2 \int \left\| \frac{\partial \alpha(s)}{\partial t} \right\|^2 \, ds + 2 \int \left\| \frac{\partial \alpha(s)}{\partial t} \right\|^2 \, ds = 0
\]

of (35) we deduce
\[
F(u_0) \leq \frac{3}{4} a_{2p-1} u_0^{2p} + c_3
\]
which involves
\[
2 \int_0^1 F(u_0) \, dx \leq \frac{3}{2p} a_{2p-1} \| u_0 \|_{L^p}^{2p} + 2c_3 |\Omega|
\]
still of (35) we have
\[
\frac{3}{4} a_{2p-1} u_0^{2p} - c_3 \leq F(u)
\]
which involves
\[
\frac{1}{2p} a_{2p-1} \| u_0 \|_{L^p}^{2p} - 2c_3 |\Omega| \leq F(u)
\]
where
\[
E(t) + 2 \int_0^t \left(\left\| \frac{\partial \alpha(s)}{\partial t} \right\|^2 + \left\| \frac{\partial \alpha(s)}{\partial t} \right\|^2 \right) \, ds \leq C
\]
with
\[
E(t) = \| \nabla u(t) \|^2 + \frac{1}{2p} a_{2p-1} \| u_0 \|_{L^p}^{2p} + \| \alpha_0 \|^2 + \| \nabla \alpha_0 \|^2 + C_3
\]
and \(C = \| \nabla u_0 \|^2 + \frac{3}{2p} a_{2p-1} \| u_0 \|_{L^p}^{2p} + \| \alpha_0 \|^2 + \| \nabla \alpha_0 \|^2 + C_3 \).

Finally, we conclude that
\[
u \in L^\infty \left(R^d; H_0^1(\Omega) \cap L^p(\Omega) \right) \cap H^{1,p}(\Omega) \cap L^2(\Omega) \cap L^2(0,T;H^{-1}(\Omega));
\]
\[
\frac{\partial u}{\partial t} \in L^2 \left(0,T;H^{-1}(\Omega) \right); \frac{\partial \alpha}{\partial t} \in L^\infty \left(R^d; L^2(\Omega) \right) \cap L^2 \left(0,T;L^2(\Omega) \right) \forall T > 0
\]

Theorem 4.1. (Existence) We assume
\[
(u_0, \alpha_0, \alpha_t) \in \left(H_0^1(\Omega) \cap L^p(\Omega) \right) \times H^1(\Omega) \times L^2(\Omega) \]
then the system (18)-(19) possesses at least one solution \((u, \alpha)\) such that
\[
u \in L^\infty \left(R^d; H_0^1(\Omega) \cap L^p(\Omega) \right) \cap H^{1,p}(\Omega) \cap L^2(\Omega) \cap L^2(0,T;H^{-1}(\Omega));
\]
\[
\frac{\partial u}{\partial t} \in L^2 \left(0,T;H^{-1}(\Omega) \right); \frac{\partial \alpha}{\partial t} \in L^\infty \left(R^d; L^2(\Omega) \right) \cap L^2 \left(0,T;L^2(\Omega) \right) \forall T > 0
\]

Theorem 4.2. (Uniqueness) Let the assumptions of Theorem 4.1 hold. Then, the system (18)-(19) possesses a unique solution \((u, \alpha)\) such that
Let \(u \) be a solution to the equation \(\frac{\partial u}{\partial t} + \Delta u - \Delta \left(f \left(u \right) - f \left(u^2 \right) \right) = 0 \) on \(\Gamma \) with initial data \(u(0) = u_0 \). Then, we have \(u \) satisfies the equation \(\frac{\partial u}{\partial t} + \Delta u - \Delta \left(f \left(u \right) - f \left(u^2 \right) \right) = 0 \) on \(\Gamma \) with initial data \(u(0) = u_0 \).
which involves
\[
\left\| f(u') - f(u^2) \right\| \leq \sum_{k=1}^{2p-1} |a_k| \left\| u^{(i)} - u^{(2)} \right\| + \frac{1}{k-1} \sum_{j=1}^{k-2} \left\| u^{(i)} \right\|^{k-j} + \left\| u^{(2)} \right\|^{k-1}.
\]

Based on Young’s inequality, we have
\[
\sum_{j=1}^{k-2} \left| u^{(i)} \right|^{k-j} \left| u^{(2)} \right|^j \leq \left(k-1 \right) \left| u^{(i)} \right|^{k-1} + \frac{1}{k-1} \sum_{j=1}^{k-2} \left(k-1 \right) \left| u^{(2)} \right|^{k-1}.
\]

As
\[
\sum_{j=1}^{k-2} j = \frac{(k-2)(k-1)}{2}
\]
then
\[
\sum_{j=1}^{k-2} \left| u^{(i)} \right|^{k-j} \left| u^{(2)} \right|^j \leq \left(k-2 \right) \left| u^{(i)} \right|^{k-1} + \frac{k-2}{2} \left| u^{(2)} \right|^{k-1} - \frac{k-2}{2} \left| u^{(i)} \right|^{k-1}
\]
\[
\leq \frac{k-2}{2} \left(\left| u^{(i)} \right|^{k-1} + \left| u^{(2)} \right|^{k-1} \right).
\]

We know that
\[
\forall k \in N \; ; \; k - 2 \leq k \; \text{then} \; \frac{k-2}{2} \leq \frac{k}{2} \leq k
\]
\[
\sum_{j=1}^{k-2} \left| u^{(i)} \right|^{k-j} \left| u^{(2)} \right|^j \leq k \left(\left| u^{(i)} \right|^{k-1} + \left| u^{(2)} \right|^{k-1} \right)
\]
which gives
\[
\left\| f(u') - f(u^2) \right\| \leq \sum_{k=1}^{2p-1} |a_k| \left\| u^{(i)} - u^{(2)} \right\| \left((k+1) \left| u^{(i)} \right|^{k-1} + (k+1) \left| u^{(2)} \right|^{k-2} \right)
\]
\[
\leq |u| \sum_{k=1}^{2p-1} \left(k+1 \right) \left| a_k \right| \left(\left| u^{(i)} \right|^{k-1} + \left| u^{(2)} \right|^{k-1} \right).
\]

\exists k > 0 \; \text{such as}
\[
(k+1) |a_k| \leq k \; ; \; \forall k \in 1, 2, \cdots, 2p-1
\]
so
\[
\left\| f(u') - f(u^2) \right\| \leq |u| k \sum_{k=1}^{2p-1} \left(\left| u^{(i)} \right|^{k-1} + \left| u^{(2)} \right|^{k-1} \right).
\]

Based on Young’s inequality, we have \forall k \geq 2
\[
\left| u^{(i)} \right|^{k-1} \leq \frac{k-1}{2p-2} \left(\left| u^{(i)} \right|^{k-1} + \left| u^{(2)} \right|^{k-1} \right).
\]

DOI: 10.4236/jamp.2020.812203
and
\[
|u^{(2)}|^{\sigma-1} \leq \frac{k-1}{2p-2} \left(|u^{(0)}|^{\sigma-1} \right)^{\frac{2p-2}{k-1}} + \frac{2p-k-1}{2p-2}
\]
that involve
\[
\left| f(u') - f(u^2) \right| \leq |u| \frac{k}{2p-2} \sum_{i=1}^{2p-2} \left((k-1) \left(|u^{(0)}|^{p-2} + |u^{(2)}|^{p-2} \right) + 2 \left(\frac{2p-k-1}{2p-2} \right) \right)
\]

\[
\leq c |\varepsilon| \left(|u^{(0)}|^{p-2} + |u^{(2)}|^{p-2} + 1 \right).
\]

We finally
\[
\int_\Omega |f(u') - f(u^2)| \left\| \frac{\partial u}{\partial t} \right\| dx \leq c \int_\Omega |\varepsilon| \left(|u^{(0)}|^{p-2} + |u^{(2)}|^{p-2} + 1 \right) \left\| \frac{\partial u}{\partial t} \right\| dx.
\] (47)

The second member of (45) is increased in \(R^n \) for \(n = 1, 2, 3 \).

If \(n = 1 \); \(u' \in H^1_0(\Omega) \subset H^1(\Omega) = W^{1,2}(\Omega) \) for \(i = 1, 2 \).

Thanks to the continuous injection \(H^1(\Omega) \subset C(\overline{\Omega}) \), then \(C > 0 \), by applying Holder’s inequality, we get
\[
\int_\Omega |f(u') - f(u^2)| \left\| \frac{\partial u}{\partial t} \right\| dx \leq C |\varepsilon| \left\| \frac{\partial u}{\partial t} \right\|
\] (48)

which involves using the compact injection \(H^1(\Omega) \subset L^2(\Omega) \), we have
\[
\int_\Omega |f(u') - f(u^2)| \left\| \frac{\partial u}{\partial t} \right\| dx \leq C |\varepsilon| \left\| \frac{\partial u}{\partial t} \right\|
\]

If \(n = 2 \) then \(H^1(\Omega) \subset L^q(\Omega) \), \(\forall q \in [1, \infty[\).

Based on Holder’s inequality, we have
\[
\int_\Omega |u| \left(|u^{(0)}|^{p-2} + |u^{(2)}|^{p-2} + 1 \right) \left\| \frac{\partial u}{\partial t} \right\| dx \leq C |\varepsilon| \left\| \frac{\partial u}{\partial t} \right\|
\]

Finally
\[
\int_\Omega |f(u') - f(u^2)| \left\| \frac{\partial u}{\partial t} \right\| dx \leq C |\varepsilon| \left\| \frac{\partial u}{\partial t} \right\|
\]

If \(n = 3 \), then \(H^1(\Omega) \subset L^q(\Omega) \) with \(q \in [1, 6] \).

In this case, we also
\[
\int_\Omega |u| \left(|u^{(0)}|^{p-2} + |u^{(2)}|^{p-2} + 1 \right) \left\| \frac{\partial u}{\partial t} \right\| dx \leq C |\varepsilon| \left\| \frac{\partial u}{\partial t} \right\|
\]

So
\[
\int_\Omega |f(u') - f(u^2)| \left\| \frac{\partial u}{\partial t} \right\| dx \leq C |\varepsilon| \left\| \frac{\partial u}{\partial t} \right\|
\]

We notice that in \(R^n \) for \(n = 1, 2, 3 \), we have
\[
\int_\Omega |f(u') - f(u^2)| \left\| \frac{\partial u}{\partial t} \right\| dx \leq C |\varepsilon| \left\| \frac{\partial u}{\partial t} \right\|
\]

Using Young’s inequality, we have
Inserting (49) into (46), we find
\[
\frac{d}{dt} E_2 + 2 \left\| \frac{\partial u}{\partial t} \right\|^2 + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \leq C \left\| u \right\|^2 + \left\| \frac{\partial u}{\partial t} \right\|^2
\]
and recalling the interpolation inequality
\[
\left\| \nabla u \right\|^2 \leq C \left(\left\| \nabla u \right\|^2 + \left\| \nabla \alpha \right\|^2 \right)
\]
with \(E_2 = \left\| \nabla u \right\|^2 + \left\| \nabla \alpha \right\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \)

Finally
\[
\frac{d}{dt} E_2 + c \left\| \frac{\partial u}{\partial t} \right\|^2 + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \leq CE_2, \quad C > 0
\]

Theorem 4.3. (Second theorem of the solution’s existence) The existence and uniqueness of the solution of the (23)-(25) problem being proven, now we seek the solution of (23)-(25) with more regularity.

Assume
\[
(u_0, a_0) \in H^2(\Omega) \cap H^1_0(\Omega) \cap L^p(\Omega)
\times (u_0, a_0) \in H^2(\Omega) \cap H^1_0(\Omega) \cap L^p(\Omega) \times H^1_0(\Omega),
\]
then the (23)-(24) system admits a unique \((u, \alpha)\) solution such as
\[
u \in L^\infty \left(0, T; H^2(\Omega) \cap H^1_0(\Omega) \right), \alpha \in L^\infty \left(0, T; H^2(\Omega) \cap H^1_0(\Omega) \right),
\]
\[
\frac{\partial \alpha}{\partial t} \in L^\infty \left(0, T; H^2(\Omega) \cap H^1_0(\Omega) \right) \cap L^\infty \left(0, T; H^2(\Omega) \cap H^1_0(\Omega) \right),
\]
and
\[
\frac{\partial u}{\partial t} \in L^2 \left(0, T; H^{-1}(\Omega) \right)
\]

Theorems of existence (23) and uniqueness (24) being proven then
\[
\frac{\partial \alpha}{\partial t} \in L^\infty \left(0, T; H^2(\Omega) \cap H^1_0(\Omega) \right) \cap L^\infty \left(0, T; L^2(\Omega) \right) \quad \text{and} \quad \frac{\partial u}{\partial t} \in L^\infty \left(0, T; H^{-1}(\Omega) \right), \quad \forall T > 0.
\]

We multiply (23) by \((-\Delta)^{-1} \frac{\partial u}{\partial t}\) and have, integrating over \(\Omega\), we have
\[
\frac{d}{dt} \left(\left\| \nabla u \right\|^2 + 2 \int_\Omega F(u) \, dx \right) + 2 \frac{\partial u}{\partial t} \frac{\partial \alpha}{\partial t} = 2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right)
\]

Multiplying (24) by \(\frac{\partial \alpha}{\partial t}\), we have
\[
\frac{d}{dt} \left(\left\| \nabla \alpha \right\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \right) + 2 \frac{\partial \alpha}{\partial t} \frac{\partial \alpha}{\partial t} = -2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right)
\]

Now summing (51) and (52) we obtain
\[
\frac{d}{dt} \left(\left\| \nabla u \right\|^2 + 2 \int_\Omega F(u) \, dx + \left\| \nabla \alpha \right\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \right) + 2 \frac{\partial u}{\partial t} \frac{\partial \alpha}{\partial t} + 2 \frac{\partial \alpha}{\partial t} \frac{\partial \alpha}{\partial t} = 0
\]
where

\[E_2 = \|\nabla u\|^2 + 2 \int_{\Omega} F(u) \, dx + \|\nabla \alpha\|^2 + \frac{\partial \alpha}{\partial t} \int_{\Omega} \]
Phase-Field Equations. *Journal of Dynamics and Differential Equations*, 4, 375-398. https://doi.org/10.1007/BF01049391

[6] Brezis, H. (1973) Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, London, American Elsevier Publishing Co. Inc., New York.

[7] Brochet, D., Hilhorst, D. and Chen, X. (1993) Finite-Dimensional Exponential Attractor for the Phase Field Model. *Applicable Analysis*, 49, 197-212. https://doi.org/10.1080/000368191108840173

[8] Brokate, M. and Sprekels, J. (1996) Hysteresis and Phase Transitions. Vol. 121 of Applied Mathematical Sciences, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-4048-8

[9] Landau, L.D. and Lifshitz, E.M. (1980) Statistical Physics I. 3rd Edition, Butterworth-Heinemann, Oxford.

[10] Caginalp, G. and Socolovsky, E.A. (1989) Efficient Computation of a Sharp Interface by Spreading via Phase Field Methods. *Applied Mathematics Letters*, 2, 117-120. https://doi.org/10.1016/0893-9659(89)90002-5

[11] Caginalp, G. (1986) An Analysis of a Phase Field Model of a Free Boundary. *Archive for Rational Mechanics and Analysis*, 92, 205-245. https://doi.org/10.1007/BF00254827

[12] Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968) A Note on Non-Simple Heat Conduction. *Journal of Applied Physics (ZAMP)*, 19, 969-970. https://doi.org/10.1007/BF01602278

[13] Chepyzhov, V.V. and Vishik, M.I. (2002) Attractors for Equations of Mathematical Physics. Vol. 49 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence. https://doi.org/10.1090/coll/049

[14] Chill, R., Fašangová, E. and Prüss, J. (2006) Convergence to Steady State of Solutions of the Cahn-Hilliard and Caginalp Equations with Dynamic Boundary Conditions. *Mathematische Nachrichten*, 279, 1448-1462. https://doi.org/10.1002/mana.200410431

[15] Dupaix, C., Hilhorst, D. and Kostin, I.N. (1999) The Viscous Cahn-Hilliard Equation as a Limit of the Phase Field Model: Lower Semicontinuity of the Attractor. *Journal of Dynamics and Differential Equations*, 11, 333-353. https://doi.org/10.1023/A:1021985631123

[16] Doumbe, B. (2013) Étude de modeles de champ de phase de type Caginalp. PhD Thesis, Université de Poitiers.

[17] Efendiev, M., Miranville, A. and Zelik, S. (2000) Exponential Attractors for a Nonlinear Reaction-Diffusion System in R^d. *Comptes Rendus de l’Académie des Sciences—Series I—Mathematics*, 330, 713-718. https://doi.org/10.1016/S0764-4442(00)00259-7

[18] Efendiev, M., Miranville, A. and Zelik, S. (2004) Exponential Attractors for a Singularly Perturbed Cahn-Hilliard System. *Mathematische Nachrichten*, 272, 11-31. https://doi.org/10.1002/mana.200310186

[19] Elliott, C.M. and Stuart, A.M. (1993) The Global Dynamics of Discrete Semilinear Parabolic Equations. *SIAM Journal on Numerical Analysis*, 30, 1622-1663. https://doi.org/10.1137/0730084

[20] Miranville, A. and Quintanilla, R. (2009) Some Generalizations of the Caginalp Phase-Field System. *Applicable Analysis*, 88, 877-894. https://doi.org/10.1080/00036810903042182

[21] Miranville, A. (2014) Some Mathematical Models in Phase Transition. *Discrete &
Continuous Dynamical Systems Series S, 7, 271-306.
https://doi.org/10.3934/dcoss.2014.7.271

[22] Miranville, A. and Quintanilla, R. (2016) A Caginalp Phase-Field System Based on Type III Heat Conduction with Two Temperatures. Quarterly of Applied Mathematics, 74, 375-398. https://doi.org/10.1090/qam/1430

[23] Penrose, O. and Fife, P.C. (1990) Thermodynamically Consistent Models of Phase-Field Type for the Kinetics of Phase Transitions. Journal of Physics D, 43, 44-62. https://doi.org/10.1088/0167-2789/43/1/001

[24] Quintanilla, R. (2009) A Well-Posed Problem for the Three-Dual-Phase-Lag Heat Conduction. Journal of Thermal Stresses, 32, 1270-1278. https://doi.org/10.1080/01495730903310599

[25] Temam, R. (1997) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Vol. 68 of Applied Mathematical Sciences, 2nd Edition, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-0645-3

[26] Mavoungou, U.C. (2016) Existence and Uniqueness of Solution for Caginalp Hyperbolic Phase-Field System with a Singular Potential. https://doi.org/10.3233/ASY-151306

[27] Fakih, H. (2015) A Cahn Hilliard Equation with a Proliferation Term for Biological and Chemical Applications. Asymptotic Analysis, 94, 71-104. https://doi.org/10.3934/Math.2016.2.144

[28] Ntsokongo, A.J. and Batangouna, N. (2016) Existence and Uniqueness of Solutions for a Conserved Phase-Field Type Model. AIMS Mathematics, 1, 144-155. https://doi.org/10.3934/CPAA.2005.4.683

[29] Raugel, G. (2002) Global Attractors in Partial Differential Equations. In: Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, 885-982. https://doi.org/10.1016/S1874-575X(02)80038-8

[30] Stuart, A.M. and Humphries, A.R. (1996) Dynamical Systems and Numerical Analysis. Vol. 2 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.

[31] Temam, R. (1969) Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Archive for Rational Mechanics and Analysis, 33, 377-385. https://doi.org/10.1007/BF00247696

[32] Zhang, Z. (2005) Asymptotic Behavior of Solutions to the Phase-Field Equations with Neumann Boundary Conditions. Communications on Pure & Applied Analysis, 4, 683-693. https://doi.org/10.3934/cpaa.2005.4.683

[33] Zhu, C. (2015) Attractor of a Semi-Discrete Benjamin-Bona-Mahony Equation on R1. Annales Polonici Mathematici, 115, 219-234. https://doi.org/10.4064/ap115-3-2