PAPER

The study of alpha particle induced reactions on bismuth-209 isotopes using computer code COMPLET

Yihunie Hibstie Asres¹,², Manny Mathuthu¹ and Ermias Yitayew Beyene³

¹ Center for Applied Radiation Science and Technology, North West University (Mafikeng), Mmabatho 2735, South Africa
² Natural and Computational Science College, Department of Physics, Debrec Markos University, Debrec Markos, Ethiopia
³ Author to whom any correspondence should be addressed.

E-mail: yihuniehibs@gmail.com, manny.mathuthu@nwu.ac.za and ermiasyitayew@gmail.com

Keywords: EXFOR, COMPLET, Bi-209, reaction channel, nuclear reaction

Abstract

Calculations of the excitation function of ⁰⁹⁰⁹Bi (α, n)⁰⁲¹₂At, ⁰⁹⁰⁹Bi (α, 2n)⁰¹¹¹At and ⁰⁹⁰⁹Bi (α, 3n)⁰²¹⁰At reactions have been focussed on alpha induced reaction. Energy ranges of alpha particles were taken into computations as 10 MeV to 70 MeV. The objective of this study is to compare the computed results with the experimental data existing in the literature for each reactions. The calculated ⁰⁹⁰⁹Bi(α,xn) reaction cross-sections were computed using computer code COMPLET and were then compared with the experimental nuclear reaction data obtained from EXFOR library in the literature. This calculated data was analyzed and interpreted with tabular and graphical descriptions. Good agreement was found between the experimental and theoretical data. The results were briefly discussed within the text of this research work.

1. Introduction

Nuclear reaction is said to occur when a nuclear particle comes into close contact with another particle. During interaction, an exchange of energy and momentum are characterized by the incoming nuclei and the outgoing reaction products [1, 2]. Studying nuclear reaction leads to several fundamental discoveries and an understanding of the mechanism for the production of a new state of matter [3, 4]. The reaction mechanism is considered to proceed through equilibrium (EQ) as well as pre-equilibrium (PE) emission of particles of moderate excitation energies [2].

Theoretical calculations on the production cross-section of radioisotopes have an undeniable importance for the investigation of the new production routes as it can be seen from the many studies in the literature [5, 6]. Results from cross-section calculations have been compared with the experimental data taken from the EXFOR database [7].

Although the excitation function for Bismuth-209 was measured earlier by few groups, their research results differ to a large extent, hence precise and accurate measurements are still needed [8, 9]. A lot of work has been done on the study of excitation function of alpha-induced reactions for various target nuclei over a wide range of energy. The comparisons between theory and experiment of ⁰⁹⁰⁹Bi-isotopes have not been studied well [5, 10]. A theoretical analysis of the data has been carried out under the calculations based on hybrid and geometry dependent hybrid models using the computer code COMPLET which contains both compound and PE processes [9, 10]. With this motivation the present work was undertaken to calculate the excitation function for ⁰⁹⁰⁹Bi with 10 MeV to 70 MeV alpha-particle energy and compare the computed results with the experimental data existing in the literature for each reactions.

In this research work, the reaction cross-sections have been calculated for ⁰⁹⁰⁹Bi (α, n)⁰²¹₂At, ⁰⁹⁰⁹Bi (α, 2n)⁰¹¹¹At and ⁰⁹⁰⁹Bi (α, 3n)⁰²¹⁰At using computer code COMPLET and EXFOR data centre [6, 11]. Considering the importance of the best level density parameters and exciton numbers that influence the calculation of cross-section, the outputs of calculated results have been analysed and compared with the experimental data taken from EXFOR database [12].

© 2019 The Author(s). Published by IOP Publishing Ltd
In our previous paper we discussed fission reaction of the target uranium isotopes for the given parameter of neutron-neutron converter [2]. This paper addressed the problem of evaluating the significance/correlation on the underlying theory and experimental aspects of nuclear physics inorder to find answers to the unanswered questions for the 21st century.

2. Methodologies

2.1. EXFORE data center
EXFOR is the ‘ExchangeFormat’ for the formation of experimental reaction data between national and international nuclear data centers [13]. The EXFOR (ExchangeFormat) format was designed for the collection, exchange and dissemination of microscopic neutron-induced reaction data based on a combination of keywords, coded information and free text [14–16]. The EXFOR format was further developed to cover charged-particle induced and photo-nuclear reaction data in addition to neutron-induced reaction data. The format is flexible in order to record all the necessary information to explain the measured data, but it also defines computer readable coded information [17, 18]. It is used for the benefits of researchers, scholars and nuclear users in all countries. It is the library and format for the collection, storage, exchange and retrieval of experimental nuclear reaction data. Although the EXFOR format can be used for both compilation and dissemination, centres may have their own formats for data services.

EXFOR is derived from ‘ExchangeFormat’ experimental nuclear reaction data compiled regularly through the network of nuclear reaction data centers [14, 19].

2.2. Computer code COMPLET
Various computer codes were developed based on different nuclear models which are enable to study nuclear structure and reaction mechanisms. The computer code COMPLET is an improved version of ALICE-91 [20]. This code is capable of calculating equilibrium and pre-equilibrium reaction cross-sections. This computer code system is used for the analysis and prediction of nuclear reactions and helped us to determine both the compound and pre compound excitation functions [17]. This code has been instrumental in producing numerous nuclear data evaluations. The structure of the code has become very complicated and somewhat cumbersome to upgrade or even simply maintain [2]. The advent of the modern FORTRAN (Formula-Translation) 90/95 scientific language has open the path toward modern and higher-level programing techniques that can be implemented efficiently to create a modern and powerful version of the computer code COMPLET [20]. Infact, the COMPLET computer code is really a collection of such FORTRAN modules, each dealing with a specific part of the nuclear reaction sequence calculations [7].

Excitation function is a function of energy and the theoretical results are compared with the experimental data obtained from EXFOR database [18, 21].

The nuclear level density parameters which are very essential quantity, influence the shape and the height of the calculated excitation functions [10]. The default value for the level density parameter and exciton number is taken to be taken as (8, 9, 10) and (4, 5 and 6) respectively [17, 22].

The theoretical and experimental reaction cross-sections results of bismuth–209 induced by alpha particle using computer code COMPLET as seen in (figures 1 to 3 and tables 1 to 3) are compared using scientific research method [10, 21]. The best level density parameter has been choosen for each reaction and radioisotope activities.

Figure 1. Comparison between theory and experiment of 209Bi (α, n)212At reaction cross-section.
Table 1. Results from the computer code COMPLET evaluation of 209Bi$(\alpha, n)^{212}$At reaction cross section compared with experimental data [23].

Energy (MeV)	Experimental	Pre compound (theo)	Compound (theo)
16.00	0.039	0.333 ± 0.000	0.333 ± 0.0
16.25	0.066	0.498 ± 0.000	0.498 ± 0.0
16.50	0.121	0.737 ± 0.000	0.737 ± 0.0
17.00	0.295	1.57 ± 0.799	1.57 ± 0.799
17.50	0.740	3.21 ± 0.559	3.21 ± 0.559
18.00	3.580	6.33 ± 0.397	6.33 ± 0.397
18.75	5.430	16.4 ± 0.247	16.4 ± 0.247
19.00	7.550	22.1 ± 0.213	22.1 ± 0.213
19.25	11.29	29.4 ± 0.184	29.4 ± 0.184
19.50	15.60	38.7 ± 0.161	38.7 ± 0.161
19.75	21.80	45.7 ± 0.148	45.6 ± 0.148
20.00	27.50	55.6 ± 0.134	55.5 ± 0.134
20.25	37.90	69.9 ± 0.120	69.8 ± 0.120
20.50	49.40	84.2 ± 0.109	84.1 ± 0.109
20.75	57.30	74.4 ± 0.116	74.2 ± 0.116
21.00	66.80	77.8 ± 0.113	77.5 ± 0.114
21.25	47.80	85.3 ± 0.108	84.7 ± 0.109
21.50	78.60	90.9 ± 0.105	90.1 ± 0.105
22.00	75.50	66.8 ± 0.122	65.6 ± 0.123
22.50	65.10	73.9 ± 0.116	72.1 ± 0.118
23.00	52.00	52.7 ± 0.138	50.5 ± 0.141
23.50	39.00	41.4 ± 0.155	38.5 ± 0.161
24.00	38.20	27.9 ± 0.189	25.0 ± 0.200

2.3. Computer code COMPLET calculations

Computer code COMPLET employed Weisskopf-Ewing model for the statistical component and Hybrid as well as geometry dependent hybrid model of Blann for PE emission [8, 21].

Many experimental methods have been developed to evaluate the reaction cross-section of various nuclear reactions. The nuclear reaction cross-section data are significant for several technical applications such as medical radionuclide production, accelerator-driven system, fission, fusion, dosometry, radiation therapy etc [20]. The calculated data has been compared with available experimental cross-sections data and theoretical data which is latest theoretical data for use in nuclear science and technology applications.

The calculated (α, n) and $(\alpha, 2n)$ $(\alpha, 3n)$ reaction cross sections for 209Bi$(\alpha, n)^{212}$At, 209Bi$(\alpha, 2n)^{211}$At and 209Bi$(\alpha, 3n)^{210}$At are shown in figures 3.1 to 3.4 [1]. The obtained results were then compared with the experimental data existing in the EXFOR databases [24, 25]. The values of the cross section were expressed in $(10^{-3}$ barns), while that of energies in (MeV) [15].

The data is collected using computer code COMPLET, from the experimental Data Center (EXFOR, IAEA) [14, 18]. These organized data are described graphically with the help of spreadsheet, analysed and interpreted accordingly and compared with the experimental data [2, 14].

The level density parameter influences the shape as well as the height of the calculated excitation functions. The level density parameter $a = \Lambda/\bar{a}$ was used for all nuclei, where Λ is the mass number of the nucleus [2].

2.4. Comparisons between experimental and theoretical results

The general characteristics and procedures for irradiation, activity assessment and data evaluation (including estimation of uncertainties) were similar as in many of our earlier works. The correlation between the theoretical and experimental total cross-section results were evaluated using Pearson’s correlation coefficient (R) [2]:

$$R = \frac{\sum_{i=1}^{N} (XT_i - \langle XT \rangle)(XE_i - \langle XE \rangle)}{(N - 1)(SXT)(SX})$$

(1)

Where R is correlation coefficient and unit less, $\langle XT \rangle$ and $\langle XE \rangle$ are the mean theoretical and experimental reaction cross-sections respectively, XT_i and XE_i are the theoretical and experimental total cross-sections of the ith value respectively, N is the number of the theoretical and experimental data, SXT and SX are the standard deviation of the theoretical and experimental total cross-sections respectively. If $0 < R < 0.3$, the correlation is weak and positive, $0.3 < R < 0.7$ describes moderate correlation and $0.7 < R < 1$, the correlation is strong.
and positive. This formulation is simple and convenient to find correlations between theory and experimental aspects of figures 1 to 3.

3. Results and discussions

3.1. The reaction channels of alpha and 209Bi

The calculated results of 209Bi (α, xn) reaction cross-section using computer code COMPLET and the experimental data from EXFOR database are presented in tables 1 to 3 and figures 1 to 3 [10, 26]. Figures 1 to 3 show the agreement between the calculated results and the experimental one. All figures show plots of Energy (MeV) versus reaction cross-section (mb) for (α, xn) reaction channels [15].

The maximum 209Bi (α, xn) reaction cross-sections for each channel are very well predicted [19]. Level density parameter, probably related and very sensitive parameter, is an important factor in the calculation of cross-sections [10].

3.2. 209Bi (α, n)212At nuclear reaction

When 209Bi is bombarded by alpha particle, it can produce a neutron and a daughter particle 212At [10, 21]. Excitation functions for 209Bi (α, n)212At nuclear reaction are summarized in table 1 and plotted in figure 1. Figure 1 is the graph of projectile energy versus reaction cross-section for this reaction channel. The plots of reaction cross-section against the energy of the incident particle describes the Excitation function of the daughter product.

Where: A is the graph of experimental reaction cross-section of 209Bi (α, n)212At, B is the graph of compound reaction cross-section of 209Bi (α, n)212At, C is the graph of pre compound reaction cross-section of 209Bi (α, n)212At.

From figure 1, both the theoretical pre equilibrium and equilibrium reaction cross-section evaluations of 209Bi (α, n)212At are in a good agreement with the experimental data in the energy range from 16 MeV to 20 MeV [18, 21]. At higher energies from 22.50 MeV to 23.50 MeV, the theoretical results have weak correlations to the experimental one. The computer code COMPLETE on areas of higher energies gives non-uniform nuclear data in consistent approach as shown in figure 1 [5]. The correlation coefficient of figure 1 for low energy ranges between the compound reaction cross-section mechanisms and the experimental data is $R = 0.898$, and between the pre–compound reaction cross section and the experimental data is: $R = 0.901$. Based on the correlation coefficient results, both the theoretical results show strong and positive correlation coefficients with the experimental one in this energy range.

3.3. 209Bi (α, 2n)211At nuclear reaction

When 209Bi is bombarded by alpha particle, it can produce 211At with two neutrons [8, 25]. Based on the EXFOR database and computer code COMPLETE, the results for (α, 2n) reaction channel are tabulated as in table 2 [18, 19]. Figure 2 and table 2 show the excitation functions for the 209Bi (α, 2n)211At nuclear reaction. Figure 2 expressed the experimental and the theoretical excitation functions in the energy range of 21.10 MeV to 29.20 MeV of the channel.

For the given energy range, the experimental and the theoretical excitation functions of 209Bi (α, 2n)211At are plotted in figure 2.

Where: A is the graph of experimental reaction cross-section of 209Bi (α, 2n)211At, B is the graph of compound reaction cross-section of 209Bi (α, 2n)211At, C is the graph of pre compound reaction cross-section of 209Bi (α, 2n)211At.

In figure 2, the compound nucleus reaction mechanism of 209Bi (α, 2n)211At in the energy range of 21.1 MeV to 23.1 MeV remains higher than the experimental one. The pre–compound nucleus reaction mechanism of 209Bi (α, 2n)211At in the energy range of 23.8 MeV to 29.2 MeV dominates. From figure 2, evaluations of reaction cross-section results of 209Bi (α, 2n)211At show an agreement between the experimental data [17, 24].

The correlation coefficient between the compound nucleus reaction cross-section mechanism and the experimental one has a coefficient of $R = 0.991$, and between the pre compound nucleus reaction cross section and the experimental one is $R = 0.991$. Hence, both the theoretical results show strong and positive correlation coefficient with the experimental one.

3.4. 209Bi (α, 3n)210At nuclear reaction

When 209Bi is bombarded by alpha particle, it can produce 210At with three neutrons [27, 28]. The results for 209Bi (α, 3n)210At from EXFOR data center and COMPLETE computer code are tabulated as in table 3 [18, 19]. The theoretical prediction and the measured data for 209Bi (α, 3n)210At nuclear reaction are shown in table 3 and plotted in figure 3.
Table 2. Results of the computer code COMPLET evaluation of 209Bi (α, 2n)211At cross section Compared with experimental data.

Energy (MEV)	Reaction cross section (mb)	Pre-comp (mb)	Compound (mb)
21.1	10.1	77.1 ± 0.114	55.5 ± 0.134
21.4	12.8	102.4 ± 0.099	81.8 ± 0.110
22.0	68.3	195.6 ± 0.072	167.4 ± 0.077
22.2	72.2	222.0 ± 0.067	197.1 ± 0.071
22.9	164.3	323.3 ± 0.056	299.2 ± 0.058
23.1	195.0	353.0 ± 0.053	333.5 ± 0.055
23.8	309.8	463.7 ± 0.046	461.5 ± 0.046
24.0	348.8	491.3 ± 0.045	493.4 ± 0.045
24.7	432.2	578.8 ± 0.042	597.1 ± 0.041
24.8	450.5	599.8 ± 0.041	614.0 ± 0.040
25.6	561.8	692.7 ± 0.038	721.3 ± 0.037
26.4	589.6	784.9 ± 0.036	819.9 ± 0.035
26.8	715.2	823.6 ± 0.035	865.3 ± 0.034
27.7	761.1	898.7 ± 0.033	946.3 ± 0.033
28.1	826.7	935.1 ± 0.033	978.6 ± 0.032
28.4	837.7	959.5 ± 0.032	1003 ± 0.032
29.2	906.5	920.4 ± 0.033	949.1 ± 0.032

Table 3. Results of the Computer code COMPLET evaluation of 209Bi (α, 3n)210At cross section compared with experimental data.

Energy (MEV)	Reaction cross section (mb)	Pre-comp (mb)	
29.0	36.10	122.2 ± 0.090	71.4 ± 0.118
32.5	421.5	791.4 ± 0.036	798.8 ± 0.035
35.7	796.6	1088 ± 0.037	1370.0 ± 0.027
38.7	939.7	1170 ± 0.029	1559.0 ± 0.025
41.6	785.6	1035 ± 0.031	1349.0 ± 0.027
44.2	570.2	787.2 ± 0.035	783.4 ± 0.035
46.8	462.4	566.7 ± 0.042	476.7 ± 0.046
49.2	392.6	469.7 ± 0.046	209.6 ± 0.069
Table 3 shows that the energy of alpha particlees varies from 29.0 MeV to 49.2 MeV. Where; A is the graph of experimental reaction cross section of 209Bi (α, 3n)210At, B is the graph of compound reaction cross section of 209Bi (α, 3n)210At, C is the graph of pre compound reaction cross section of 209Bi (α, 3n)210At. All the reaction mechanisms (A, B and C) show quadratic behavior with a maxima alpha energy of 39 MeV. For alpha particle energies higher than 45.2 MeV, the pre-compound nucleus reaction mechanism is dominating [17, 18].

In figure 3, the cross–section results of 209Bi (α, 3n)210At show good agreements with the experimental data [17, 18]. The experimental data agree very well with the calculated results. The correlation coefficient between the compound nucleus reaction cross-section mechanism and the experimental one has a coefficient of $R = 0.973$, and between the pre compound nucleus reaction cross section and the experimental one is $R = 0.942$. Hence, both pre-equilibrium and equilibrium show strong and positive correlation with the experimental data.

3.5. General discussions
A validation of experimental data from EXFOR data library and the calculated result for (α, n) (α, 2n) and (α, 3n) reaction channels using computer code COMPLET shows good agreement. These results in tables 1 to 3 and figures 1 to 3 from this research work demonstrated that the quality of the EXFOR database and computer code COMPLET are correlated [29].

The best level density parameter/calculation has been chosen for each reactions, and reaction cross-sections have been calculated with this level density parameter. All level density parameters/calculations have similar shapes and height with the experimental data taken from EXFOR database [13].

The shell structure effects are usually introduced as level density parameter dependence on the excitation functions. By varying the recommended level density parameters (8,9,10) and exciton numbers (4,5,6) the most theoretical values closest to the corresponding experimental one are taken to the analysis [2].

4. Conclusions
The theoretical expression of nuclear reaction cross-section in this research work confirmed that incident alpha-particle (charged and massive) must have sufficient energy to break the barrier in order to induce the equilibrium and pre-equilibrium effects on 209Bi (α, n)212At, 209Bi (α, 2n)211At, 209Bi (α, 3n)210At and 208Bi(α, xn)$^{212-8}$At reactions. These results could be useful in evaluating experimental values for 209Bi(α, xn) nuclear reaction and provide correct prediction of testing nuclear reaction cross-sections.

The simulated results using computer code COMPLET have been compared and confirmed to be in good agreement with the experimental values obtained using the EXFORE database. COMPLET code is a good tool for the prediction of nuclear reaction cross section, and this research work can be useful in the production of the radioisotopes of Bisthmus-209 and possible future needs.

Nuclear Reaction Data Center has played a crucial role for collection, exchange and dissemination of nuclear reaction data. The scope of EXFOR compilation has been extended from neutron-induced reaction cross sections to various projectiles and quantities, and today a large number of articles are newly scanned and added.
in a timely manner. We are trying to increase the quality of the database by removal of collection error and to improve accessibility for users.

In order to obtain a better agreement between the measured and calculated excitation functions, the level density parameters and exciton numbers were highly modified within the recommended limits. The comparisons for the reaction cross-section calculations have been performed by employing the experimental data between 10 MeV to 70 MeV.

Acknowledgments

The financial assistance of the National Research Foundation (NRF) and The World Academy of Science (TWAS) for grant number UID: 109797 towards this research is hereby acknowledged by the corresponding author. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF-TWAS.

ORCID iDs

Yihunie Hibstie Asres https://orcid.org/0000-0003-1671-780X
Manny Mathuthu https://orcid.org/0000-0001-7608-2610

References

[1] Tárnok F, Dittrö F, Takács S, Hermannse A and Ignatyuk V A 2018 Activation cross-sections of longer-lived products of proton induced nuclear reactions on dysprosium up to 36 MeV Annals of Nuclear Energy (https://doi.org/10.1016/j.anucene.2017.04.030)
[2] Yihunie H, Mathuthu M and Marelen D B 2018 Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET Appl. Radiat. Isot. 139 81–5
[3] Martine V 2013 Nuclear reactions with heavy ion incident beams Acta Phys. Slovaca 63 1–104
[4] Simakov P S 2011 Nuclear data activities at the IAEA nuclear data section 20th Int. Conf. on Nuclear Energy for new Europe Bovice, Slovenia/septembre 12–5
[5] Sergey Y, Vladimir I, Andrey G and Oleg G 2002 Theoretical approach and computer code system for nuclear data evaluation of 20–1000 MeV neutron induced reactions on heavy nuclei J. Nucl. Sci. Technol. 39 sup2 104–7
[6] Titarenko E Y, Batyaev F V, Karpikhin I E, Zhivun M V, Ignatyuk V A, Lunev P V, Titarenko N N, Shubin NY and Barashenkov S V 2009 Experimental and theoretical studies of the yields of residual product nuclei produced in thin Pb and Bi targets irradiated by 40–2600 MeV protons INDC Nuclear Data Committee, INDC (CCP)-0447
[7] Talou P, Chadwick B M, Young G P and Kawano T 2005 The Nuclear Reaction Code McGNASH, Los Alamos National Laboratory, Los Alamos, NM, 87545, vol.769 (https://doi.org/10.1063/1.1945207)
[8] Proceedings of the II Symposium on Positron Emission Tomography 127 (Krakow, September 2014) 21–24
[9] Ozdoğan H, Şekerci M, Çapalı V and Kaplan A 2016 Cross-section calculations of (γ, xn) and (p, xn) Reactions for 197Au Cu Amhuriyet University Faculty of Science Journal (CSJ) 37
[10] David J, Boudard A, Cugnon J, Ghali S, Leray S, Mancusi D and Zanini L 2014 Astatine production in a lead-bismuth target bombarded by a proton beam: a detailed study using INCL4.6-Abla07 Progress in Nuclear Science and Technology 4 486–90
[11] Liang F and Signorini C 2005 Fusion induced by radioactive ion beams International Journal of Modern Physics E 14 1121–30
[12] Ozdoğan H, Şekerci M, Sarpun H I and Kaplan A 2018 Investigation of level density parameter effects on (p, n) and (p, 2n) reactions cross-sections for the fusion structural materials 70Ni, 64Cu and 137Cs Appl. Radiat. Isot. 140 29–34
[13] Smith L D and Otuka N 2012 Experimental nuclear reaction data uncertainties: basic concepts and documentation Nucl. Data Sheets 113 2006–3053
[14] Otuka N, Dunaeva S, Dupont E, Schwerer O and Blokhin A 2011 The role of the nuclear reaction data centres in experimental nuclear data knowledge sharing J. Korean Phys. Soc. 59 1292–7
[15] Dauda A, Jonah A S, Hassan M and Muhammad G 2017 Nuclear model calculation of excitation functions of neutron induced reactions on the structural materials of the miniature neutron source reactor World Scientific News 66 86–96
[16] Emmeric D, Arjan J K and Naohiko O 2011 Exploratory data analysis of the EXFOR database J. Korean Phys. Soc. 59 1333–6
[17] Dittrö F, Tárnok F, Takács S and Hermannse A 2014 Proton-induced cross-sections of nuclear reactions on lead up to 37 MeV Applied Radiation and Isotopes (https://doi.org/10.1016/j.apradiso.2014.04.006)
[18] Zerkina V V and Pritychenkob B 2018 The Experimental Nuclear Reaction Data (EXFOR):Extended Computer Database and Web Retrieval System physics.com-ph Nuclear Instruments and Methods in Physics Research Section A arXiv:1802.05714v1 (https://doi.org/10.1016/j.nima.2018.01.045)
[19] Karimi Z, Sadeghi M and Matarzi-Kojouri N 2018 64Cu, a powerful positron emitter for immunoimaging and theranostics: production via natZnO and natZnO-NPs Appl. Radiat. Isot. 137 56–61
[20] Kabiru M, Onimisi Y M and Jonah A S 2011 Investigation of the shell effect on neutron induced cross section of actinides Journal of Nuclear and Particle Physics 1 6–9
[21] Semkova V, Reimer P, Altzitzoglou T, Plompen M J A, Quiétel C, Sudar S, Vogl J A, Qaim M S and Smith L D 2009 Neutron Activation cross section on lead isotopes Phys. Rev. C 80 024610
[22] Noël C, Marcillac P, Gérard D, Jacques L and Jean-Pierre M 2003 Experimental detection of α-particles from the radioactive decay of natural bismuth Nature 422 876–8
[23] Karpuzan, Bozb C M, MAVIB B and Akkurta I 2015 Cross sections Calculation of (γ, n) Reactions for some elements, special issue of the international conference on computational and experimental science and engineering Acta Phys. Pol. A 128
[25] Srivastava S C and Mausner L F 2013 Therapeutic radionuclides: production, physical characteristics, and applications Therapeutic Nuclear Medicine. Medical Radiology ed R Baum (Berlin Heidelberg: Springer) (https://doi.org/10.1007/174_2012_782)

[26] Semkova V and Pritychenko B 2017 EXFOR—a global experimental nuclear reaction Data repository: Status and new developments, EPJ Web of Conferences, National Nuclear Data Center, Brookhaven National Laboratory, October 04, BNL-114412-2017-JA

[27] Report 2013 Technical Meeting on, Alpha Emitting Radionuclides and Radiopharmaceuticals for Therapy (Austria: IAEA Headquarters, Vienna) 24–8

[28] Balkin R, Hamlin K, Gagnon K, Chyan M, Pal S, Watanabe S and Scott D 2013 Evaluation of a wet chemistry method for isolation of cyclotron produced 211At astatine Appl. Sci. 3 636–55

[29] Koning J A, Qaim M S and Smith L D 2009 Neutron activation cross sections on lead isotopes Phys. Rev. C 80 24610