On the ergodicity of supercooled molecular glass-forming liquids at the dynamical arrest: the o-terphenyl case

Francesco Mallamace1,2, Carmelo Corsaro1, Nancy Leone3, Valentina Villari3, Norberto Micali3 & Sow-Hsin Chen2

1Dipartimento di Fisica e Scienze della Terra, Università di Messina I-98168, Messina, Italy, 2Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, 3CNR-IPCF Istituto per i Processi Chimico-Fisici, I-98158 Messina Italy.

The dynamics of supercooled ortho-terphenyl has been studied using photon-correlation spectroscopy (PCS) in the depolarized scattering geometry. The obtained relaxation curves are analyzed according to the mode-coupling theory (MCT) for supercooled liquids. The main results are: i) the observation of the secondary Johari-Goldstein relaxation (β) that has its onset just at the dynamical crossover temperature T_B ($T_M > T_B > T_g$); ii) the confirmation, of the suggestion of a recent statistical mechanical study, that such a molecular system remains ergodic also below the calorimetric glass-transition temperature T_g. Our experimental data give evidence that the time scales of the primary (α) and this secondary relaxations are correlated. Finally a comparison with recent PCS experiments in a colloidal system confirms the primary role of the dynamical crossover in the physics of the dynamical arrest.

The so-called dynamic arrest phenomenon (DA), accompanied by a remarkable dynamic slowing down at the glass transition temperature T_g, marks a dramatic change in the properties of a physical system. The clarification of the microscopic origin of the DA slowing down represents an hot topic of much current research. The phenomenon is customarily studied by exploring the transport coefficients (e.g., viscosity η, self-diffusion constant D_s, and relaxation time τ) temperature dependence of the supercooled liquid into a metastable state below its melting temperature T_M. The study of the way of their approaching to these limiting values may provide information about the nature of the process. A special situation regards these coefficients, and τ in particular, as T decreases below T_M, it can change by several orders of magnitude (more than 15), surpassing the time required for experimental accessibility. In some cases, this behaves, as proposed by the mode-coupling theory (MCT), the breaking of the system’s ergodicity in the amorphous glass phase at or below the glass transition temperature.

Considering the various open questions on the related basic processes, the DA constitutes an exciting and challenging research topic today while strongly debated also with conflicting opinions. One of these deals with a possible “DA criticality”: i.e., whether transport parameters reflect an underlying phase transition to a state in which these quantities diverge at a finite temperature (the “dynamic divergence”). Another one instead focuses on the occurrence, or not, of the system non-ergodicity inside the glass phase originally observed in hard colloidal solutions and explained according to the MCT theory. For this latter argument it has been recently proposed that grafted polydisperse colloids and molecular liquids with internal degrees of freedom remain ergodic at all temperatures and therefore statistical mechanics can be applied to describe the arrest process.

The parametrization of transport coefficients inside the supercooled regime, has been extensively treated in the recent years by means of the empirical Vogel-Fulcher-Tammann (VFT or super Arrhenius) form: $\eta = \eta_0 \exp\left(BT_0(T - T_0)\right)$. That indicates a finite diverging temperature $T_0 \ll T_g$ (associated with the Kauzmann temperature T_k). Furthermore, the VFT was used to classify liquids in two separate categories: “fragile” or “strong” glass former. Whereas “strong” liquids exhibit pure Arrhenius T-dependence: $\ln(\eta/\eta_0) = E/k_BT$, the “fragile” ones have a marked VFT behavior. The so called steepness index, $m = \left(\frac{d \ln \eta}{d\left(T_g/T\right)}\right)_{T \rightarrow T_g}$, can be used to measure the system fragility. The VFT has been treated as a “universal” feature, despite the fact that it has been questioned; recent studies, in fact, propose that the validity of this form must be reconsidered because different experimental and theoretical reasoning show that it lacks physical meaning.
In addition to the VFT validity, various recent studies also suggest the necessity to study the supercooled liquid dynamics in a broader range of temperatures at least two dynamic regimes are necessary. Hence, an intriguing phenomenon occurring at a temperature \(T_B \) well above \(T_g \) the so-called fragile to strong dynamic crossover (FSDC) becomes of great interest. Lately, \(T_B \) has been also recognized as a milestone on the way with which systems approach DA since a lot of exceptional processes disclose their properties there.

Thus, several significant phenomena should be explored, such as:

1. The increasing broadening of the structural relaxation time distribution that can be described by means of a stretched exponential function:
 \[F(t) = F_0 \exp{\left[-\left(t/t_F \right)^\beta_1 \right]} \]
 accompanied in some cases by the loss of ergodicity observed when \(F(q, t) \) approaches an almost constant value for long times; \(T_B \) is the high-temperature \(T \) relaxation into the primary (\(s \)) and the Johari-Goldstein \(\beta_{JG} \) relaxation times (also named secondary or \(\beta_{low} \));
2. The violation of the Stokes-Einstein (SE) relation with a fractional behavior and the decoupling between the translational and the rotational diffusion (for \(T < T_B \)). In the high \(T \)-regime, as evidenced by the SE, the translational diffusion, \(D_s \), tracks the inverse of the shear viscosity \(\eta \) whereas for \(T < T_B \) \(D_s \) declines far less rapidly by decreasing \(T \) as \(D_s \sim \eta^{-\frac{1}{2}} \), with \(\xi \approx 0.75 \); instead \(D_{rot} \) (or the rotational correlation time) remains proportional to the inverse of the shear viscosity down to \(T_B ^{21-25} \). For this reason any experimental technique that looks only to the \(D_{rot} \) cannot observe the violation; (iv) for a broad set of supercooled systems \(\eta(T_B) = 10^{2-2.5} \text{ sec} \) and \(\eta(T_g) \approx 10^2 \text{ Pa sec} \) are near-universal\(^{26,27} \) and if we consider the \(T \rightarrow P \) phase diagram: \(\eta(T, T_B) = \text{const} \) for a given glass former; (v) it is believed that the dynamical crossover is closely related to the appearing of dynamical heterogeneities (DH), although some pure Arrenius systems show them\(^{28,29} \). DH refers to the presence of transient spatially separated regions with vastly different relaxation times\(^{21-25,29} \). (vi) Usually a fragile to less fragile (or strong) transformation occurs when passing \(T_B \), with \(T < T_B \) and finally the hopping extended MCT (EMCT) identifies \(T_B \) with the MCT critical temperature \(T_c^{20,21,23,24} \). \(T_B \) can be evaluated by means of different methods, such as by means of a plot based on the \(T \)-derivative of the \(\alpha \)-relaxation time\(^{21} \).

Exploration of all these phenomena can help to stress more the importance of the dynamical crossover\(^{30,31} \) and its universality\(^{32,33} \).

Different approaches for estimating \(T_B \) have been recently proposed: one is based on the MCT\(^{20,21,23,24,29} \), the second employs the constraints of the Adam–Gibbs theory\(^{34,35} \) and the most recent one explores the apparent enthalpy space properties\(^{36,37} \). All of them stress the basic importance of the dynamical crossover in the DA physics. The dynamic crossover concept can be considered of true interest not only for the way in which a system arrests its dynamics but also for the new science frontiers towards the mesoscales. In fact very recently the crossover has been explicitly considered as a way with which multiscale materials can model the mesoscale, i.e. how the understanding of mechanisms at the microscale can enable predictions of functional behavior at the macroscale\(^{38} \). For these reasons \(T_B \) appears to be of central interest in material science.

As already mentioned, a recently proposed statistical mechanical theory of the glass transition from molecular liquids with internal degrees of freedom suggests that supercooled liquids can remain ergodic also at the DA\(^{31} \). To substantiate this idea, we have modeled the liquid OTP (ortho-terphenyl) by taking into account its internal degrees of freedom.

Furthermore, we explore, by detecting the depolarized light scattering (DLS), using a photon correlation spectroscopy (PCS) method, the OTP dynamics below the dynamical crossover temperature \(T_B \) (also for \(T < T_B \)). The measured correlators are studied in the current MCT frames with the following main objectives: a) to obtain a careful verification on whether the primary \(\alpha \)-relaxation together with the secondary Johari-Goldstein \(\beta_{JG} \)-relaxation can be observed; b) to explore whether the system maintains the ergodicity near and below the calorimetric glass transition temperature, and whether the dynamical crossover exists with this property; c) to accurately compare the obtained data with the related findings recently observed in colloidal systems\(^{39} \).

Results

It is well known that in the DLS regime the field autocorrelation function is the convolution of the translational and diffusional modes\(^{40} \). For a scattering geometry in which the scattering plane is the \(x = y \) one, whereas the incident field propagates along \(x \) with a \(z \) linear polarization, the correlation is:

\[
S_{11}^H(q, t) = \sum_i [S_i^q \Omega(t) S_i^q \Omega(0) \exp{i q \left(\mathbf{r}_i(t) - \mathbf{r}_i(0) \right)}] \tag{1}
\]

where \(z \) is the molecular polarizability tensor, \(\Omega \) the orientation vector and \(r_i \) represents the position of the \(j \)-th molecule and the brackets is the ensemble average. \(S_i^q \Omega(t) \), and hence the \(g_i^V(t, q) \), includes dynamical correlations in both orientation and position between all pairs of molecules. To be precise, whereas the translational motion is represented by the exponential terms (in other words the density-density correlation) the rotational ones are in the remaining part. It is important to stress that the \(g_i^V(t, q) \) includes information on the dynamical coupling between translations and rotations of the scattering element\(^{41} \). On these bases the present PCS experiment measures both the mutual translational and the rotational diffusion.

Figure 1 illustrates the measured \(g_i(q, t) \) for \(T = 263, 255, 248, 246 \) and 243 \(K \), whereas in the inset are reported the measured spectral PSD at the same temperatures; in both cases data also below the calorimetric \(T_B \) are reported. All the \(g_i(q, t) \) curves are characterized by a bimodal relaxation and also by the decay to zero in finite times, even below \(T_B \). Hence, the system ergodicity is fully preserved, for \(T < T_B \) also below the calorimetric \(T_B \). The OTP evolution towards a very slow dynamics is also observable, in the same \(T \)-region, by the marked \(S(q, \omega) \) increases in the lowest frequency region by decreasing \(T \) (inset).

The \(g_i(q, t) \) curves have been analyzed, according to the MCT, as the superposition of a short-time decay (the \(\beta \) contribution) and a long-time stretched tail (the \(\alpha \)-decay), weighted for the non-ergodicity factor \(f_c \). In principle, also two stretched forms can be used, a situation avoided for the parameters redundancy. From the data fitting (continuous lines in **Figure 1**) we obtain \(f_c \), the times \(\tau_a \) and \(\tau_b \), and the stretched exponent \(\beta_{JG} \), that will be discussed in the following section.

Discussion

The OTP together with water, is certainly the most studied supercooled liquid, and can be considered as the prototype of molecular glass forming materials, therefore up to now, it represented a test system of the MCT suggestions (see e.g.). For this reason it has been extensively studied with many different experimental approaches\(^{42} \) including: light (PCS\(^{43} \), DLS\(^{44,45} \), optical Kerr effect (OKE), combinations of different light scattering approaches like the double grating monochromators (DM) and tandem Fabry-Pérot interferometry (TFPI\(^{46} \)), neutrons\(^{47} \), viscoelasticity\(^{48} \), dielectric relaxation (DE)\(^{49,50,51} \), calorimetry\(^{52} \) and nuclear magnetic resonance (NMR)\(^{53,54} \). In considering these studies and a recent NMR experiment\(^{55} \), the characteristic temperatures of the system are: \(\tau_B \approx 328 \text{ K}, T_c \approx 247 \text{ K} \) and \(T_B \approx 285 \text{ K} \). For our study, we stress again that our main interest is to find out what happens for \(T < T_B \).

As it is well known, the ideal MCT clearly evidences the existence of a precursor phenomenon exhibiting anomalous ("glassy") dynamics, connected to a "critical temperature" \(T_{cr} \) at the transition from liquid to amorphous solid well prior to \(T_B \). The ideal MCT
Figure 1 | The correlator $g_1(q, t)$ for $T = 263, 255, 250, 248, 246$ and 243 K. The inset reports the power spectral density (PSD), $S(q, \omega)$, measured at the same temperatures. All the $g_1(q, t)$ curves are characterized by a bimodal relaxation and also by the decay to zero in finite times and show that the system relaxation times span about 6 decades. Ergodicity is preserved below the glass transition temperature T_g as proposed by the theory.\(^{(13)}\)

The MCT has been intensively studied by means of experimental and simulation approaches in molecular systems and colloids. There is however a difference in these systems: for the same molecular glass formers the transition from an ideal MCT regime to an activated one has been experimentally demonstrated.\(^{(29)}\) For colloidal hard spheres the situation remains essentially unclear for the limited range of the corresponding dynamical data. If compared with the 15 orders of magnitude for which the molecular fluids dynamic data are measurable, for colloids is in fact available a much smaller range, typically five decades or less. To be precise, one must note the experimental time window available for these two classes of systems; whereas in the case of molecular materials the x-relaxation can be explored in a time relaxation interval ranging from 10^{-13} to 10^2 sec, for colloidal systems this range can be actually, by means of a proper use of the dynamical light scattering technique (DLS),\(^{(13)}\) 10^{-4} to 10^2 sec. In the past by means of traditional DLS the range for colloids was very limited: 10^{-3} to 1 sec.\(^{(29)}\)

where γ is a non-universal exponent. The same law holds for $\phi (t \sim (\phi_c - \phi)^{-\gamma})$, $\phi_c = 0.57-0.59$ are the most accepted values for the location of the colloidal glass transition; it has been also widely believed that a truly nonergodic state is obtained at larger ϕ. Eq. 2 describes well transport data of supercooled fluids in the region $T_M > T > T_c \approx T_B$, and thus in the temperature region from the liquid stable phase to the coupled fluid phase, i.e., the moderately supercooled state. In the same region MCT characterizes the measured structural relaxations as the bimodal decay (primary x- and secondary β-processes) in $F(q, t)$ observing the way in which molecules explore all the available cage space. In the quasielastic scattering (QES) time regime, the two contributions are superimposed, with the β contribution at the lowest time (w_{fast}) and $\sigma = Cx$ as the so called separation parameter, the MCT proposes precise scaling laws and exponents for both these relaxations (see e.g. ref. 2). The ideal MCT divergence is represented by these scaling law forms.
The MCT also considers the possibility of more qualitative approaches by assuming that the long time decays (\(\tau\)) of the density correlation function are caused by the presence of a hierarchical multi-exponential temporal relaxation observable as a stretched exponential. Such an approach can help us to illustrate how a liquid does become a glass in a spatially heterogeneous fashion. A Laplace transform resolves \(\exp[-(t/\tau)^{\beta_s}]\) into a weighted linear superposition of pure exponents: \(\exp[-(t/\tau)^{\beta_s}] = \sum W_{\beta_s}(\tau) \exp[-(t/\tau)\beta_s]\), where \(W_{\beta_s}\) is the weight function. As \(T_B\) decreases below \(T_B\), \(\beta_s\) decreases, causing a broadening in \(W_{\beta_s}(\tau)\) that reasonably can be interpreted as an evidence for DH: many different dynamical regions that have a simple exponential relaxation. These distinct regions of space change independently in structure and contents with time exhibiting strong dynamic correlations where transport parameters can decouple so that the Stokes-Einstein relation is violated and their structural relaxation time can differ by orders of magnitude from the average over the entire system. Rotational and translational dynamics average differently over these space-time heterogeneities; whereas the translational motion is very sensitive to the relaxation of these structures, being directly coupled with them, the local molecular rotation is relatively more independent. Near the arrest, the time required for reequilibration of local environments is two or more orders of magnitude larger than the corresponding rotational correlation time.

From a more precise theoretical point of view, the dynamical crossover and these two broad classes of behavior, the Arrhenius and the more intriguing non-Arrhenius variation, are more correctly described in the frame of energy landscape (or the so-called inherent structures)\(^{23}\). Whereas the Arrhenius behavior is observed when a single particle hops over barriers of uniform height, the cooperative structural arrest is observed when the barriers have a broad frequency (and thus correlation time) distribution of heights. In addition, whereas the potential-energy surface associated with ‘strong’ \(T\)-dependence should be relatively smooth, the corresponding one giving rise to fragile behavior should be quite rough. Hence, the fast dynamics of supercooled liquids corresponds to an intrabasin motion and the long-time slow dynamics to an interbasin one (the hopping). At the lowest \(T\) the multibasin dynamics, i.e., the arrest behavior, is favored. Each of these basins is characterized by a temperature dependent weight factor and the \(T\) decreasing implies not only their progressive numerical reduction but also a decreasing of their weight up to negligible values. At this stage the only relevant dynamics is the molecule hopping from a cluster to another, i.e., a process with only one typical energy scale: the Arrhenius energy. In this framework the crossover phenomenon — the transition from gradual to accelerated variations in behavior — can be expected whenever different existing mechanisms compete, and the dominance of one over the other depends on the local environment (or the driving force).

The existence of a temperature marking dynamical changes of fragile supercooled liquids below \(T_{gb}\) has been already considered in the past\(^{3,4,10,46}\). By considering these suggestions, recently it has been proposed that \(T_c \approx T_{gb}\)^{10,11}. A way to explain these findings on microscopic bases, as proposed by the energy landscape model, is the extended MCT (EMCT)\(^2\). By considering a Lennard-Jones system it is showed that, for the self diffusion coefficient, \(T_B\) just occurs near the critical temperature of the idealized version of the theory as due to the change in the dynamics from the one determined by the cage effect to a second one dominated by hopping processes\(^{30,48}\).

In the EMCT frame, the scale decoupling is explained by assuming that the relaxation is due to two diffusional contributions: i.e. a very long time thermally activated hopping process (\(D^{\text{hop}}\)) and the cage affected one typical of the ideal MCT (\(D^s\)); thus the self-diffusion coefficient can be represented as \(D_1 \approx D^{\text{hop}} + D^s\), with the calculated values characterized by the dynamical crossover at \(T \approx T_{gb}\) from \(D \approx D^{\text{hop}}\) to \(D^{\text{hop}} - D^s\), characterizing the kinetic glass transition (the first step of the DA) must vanish at \(T_{gb} / T = 1\) with a power law \(D^s \approx (T - T_{gb})^\gamma\) just reflecting the predictions by the idealized theory. Hence, the dynamical behavior of the supercooled liquid for \(T < T_{gb}\) towards \(T_g\) (and below it) is dominated by the hopping process with only one energy barrier (the second DA step). Before discussing the relaxation times we measured, we consider, in Figure 2, the obtained non-ergodicity factor \(f_c\) and the stretched exponent \(\beta_s\) by comparing, in the frame of the MCT, our results with the previous ones obtained for OTP. We aim to stress that the overall behavior of these quantities (new and early reported data) is fully coherent with the theory.

The inset of Figure 2 illustrates the \(f_c\) behavior for different temperatures in the range 243 < \(T\) < 263 K. We found that \(f_c\) has a value of about 0.4 and appears to be \(T\)-dependent; these behaviors in the same \(T\)-range have also been observed in other literature\(^3\). The MCT predicts that this parameter increases, as the temperature decreases for \(T < T_{gb}\) according to \(T_{gb} - T\)^{\(1/2\}. The data reported in the figure appear to agree with such scaling law (dashed line) although the reported data are far from \(T_{gb}\) and the experimental error is fairly large in order to draw a definitive conclusion on this respect. However, there is, near \(T_{gb}\), a sudden slowing down in which \(f_c\) becomes \(T\)-independent. This result agrees with the main findings of a recent neutron scattering experiment on a “strong” molecular glass forming system\(^5\).

Finally we consider the \(T\)-dependence of \(\beta_s\). In Figure 2 we plot the data of the stretched exponent measured in the actual study together with data coming from previous experiments. In the \(T\) range studied we report our data (dark red circles), PCS data (open green diamonds\(^{39}\) and TFP/DM data (blue circles\(^{35}\); and for comparison data measured well above \(T_{gb}\) in the range \(T > 320\) K are also reported. As it can be observed there is a difference in the measured average values above and below the crossover: for \(T > T_{gb}\) \(\beta_s \approx 0.78\) whereas for \(T < T_{gb}\) we have \(\beta_s \approx 0.65\). According to the other reported experimental data, the behavior is consistent with the MCT time-temperature superposition principle\(^6\), no temperature dependence in this stretching parameter is observed above \(T_{gb}\). Below the dynamical crossover the situation is different, data coming out from the present and the two mentioned PCS experiments seem to have comparable and constant behavior by increasing \(T\) up to about 250 K; below it and on approaching \(T_{gb}\) our data are instead characterized by a marked increase towards \(\beta_s \approx 1\), indicating the recovering of a single exponential temporal behavior. Such a situation (if confirmed) seems to indicate that the relaxation time decays also have to obey to the same precise two-stage activation process indicated by the \(T\)-behavior of transport parameters, in a way fully consistent with the hopping process of the EMCT.

Figure 3 reports \(\tau_o\) and \(\tau_p\) obtained in our experiments (dark red full circles and squares, respectively) and compared with the literature data coming out from several experiments like dielectric relaxations (DE - green circles\(^{41,43}\), PCS (reversed red triangles\(^3\)), depolarized light scattering from the measurement of the Ralileigh-Wing contribution (DLS - dark pink circles\(^{36}\)) and the combination of a tandem Fabry-Perot interferometer with a double monochromator (TFP/DM - dark pink triangles and reversed blue triangles\(^{35}\)). Figure 3 also reports both the Johari Goldstein (JGR) relaxation (\(\tau_{\beta_{JGR}}\)) as blue open diamonds and the fast one (\(\tau_{\beta_{fast}}\)) as green closed diamonds, respectively measured by means of DE\(^5\) and neutron scattering\(^{44}\). Our data measured in the range 263 > \(T\) > 243 K show these behaviors: 1) a general agreement is observable in \(\tau_o(T)\) (dark red full circles) in the large temperature range reported in the figure, although collected data come out from different studies; within statistical errors data are mutually consistent and the dynamical crossover at \(T_{gb}\) can be easily observed; 2) a bifurcation from the \(\tau_o\) process appears close to \(T_{gb}\) (at the relaxation time of \(\approx 10^{-7}\) sec) where \(\tau_{\beta_s}\)
(dark red full squares) has its onset showing an Arrhenius T-dependence that persists also inside the glass state. Some experimental points of the cage relaxation time τ_{cage}, are reported as reference. It has been measured in the OTP by means of neutron scattering and has an order of magnitude of 10^{-12} sec. In the actual study, the window of the used experimental time allows only the τ_{JG} measurement.

From Figure 3 one can also observe that τ_B and τ_{JG} measured by means of the DE technique (the most used to observe such a relaxation) have a similar temperature behavior, although there is a difference in the two relaxation times of about one order of magnitude. Both τ_B and τ_{JG} are however, localized in the time interval 10^{-6} – 10^{-3} sec in the temperature region between T_B and T_g. This suggests that the measured τ_B may represent just the JGR, a molecular process, that is supposedly to be an universal feature in glassy dynamics with strong connections to the structural α-relaxation in all glass formers. On this aspect, there is a certain experimental evidence that this latter bears nontrivial connections in dynamic and thermodynamic properties to the structural α–process. A satisfactory proof of this was obtained, by using the NMR spectroscopic technique, for some glass former liquids (including the OTP) by showing that these two relaxations are correlated.

In the DE spectra the JGR appears as a peak if it is resolved, but manifests itself as an excess wing on the high frequency flank of the primary relaxation when not resolved. However, in spite of the invoked ubiquity, and on the different experimental techniques used, there are some small molecular glass formers that give no evidence of such a phenomenon. Possible reasons of this can be the instrumental resolution for the thermodynamical conditions (e.g. proper pressure and temperature value) or for the secondary relaxation that is sandwiched between the more intense α- and a faster secondary γ-relaxation (local and non-cooperative, characterized by a very fast dynamics) (see e.g. the references reported in ref. 52).

Eq. 1 explains why the observed secondary relaxation may be the JGR, as previously mentioned the function $g_1^{(V)}(q,t)$ measures the dynamical correlations in both orientation and position between all pairs of molecules. Whereas the corresponding translational mutual diffusion is reflected in the α–process, the roto-translational coupling gives rise to the JG contribution. In principle the $g_1^{(V)}(q,t)$ contains all the possible molecular dynamics and, depending on the probe used and under special experimental conditions, can be separately measured. In other words these modes, characterized by characteristic dynamics covering wide temporal (and frequency) intervals can be selected by the proper choice of the experimental window. Our choice to probe the system, only in the temperature region below T_B (where there is a slowing down in the system dynamics) in the temporal window from 2×10^{-4} to 100 sec, where both the principal α– and of the JG relaxations have been previously measured with different techniques, gives us the possibility to observe and detail with the PCS this latter one. In addition, the fact that the ensemble average, in Eq. 1, for pure fluids, cannot, in principle, be factorized in two separate modes gives us a proof that the two observed relaxations are coupled.

All the PCS data here reported for the OTP stress the significant role in the dynamical arrest of the dynamical crossover. Although all the observed processes related with the crossover temperature evidence that for many aspects T_B is more relevant than $T_c^{(V)}$, here we have a confirmation on this that comes out from the preservation of the system ergodicity experimentally observed here and for poly-disperse grafted colloids also above the MCT glass transition concentration (ϕ_r).
The hypothesis that molecular glass formers fluids are characterized by a cutoff mechanism suppressing the MCT divergence was originally proposed for compressible fluids by means of a field-theory approach. At the same time, for the same systems the transition from an ideal MCT regime to an activated one has been experimentally demonstrated. In connection with the JGR, we have to stress that M. Goldstein recently suggested that the JG relaxation, like the primary α-, can involve transitions between different energy basins, and that a closer connection between this relaxation and the phenomenon of dynamic heterogeneity should be possible.

In recent years the viewpoint that colloids possess the property of the MCT divergence suppressions, has been a subject of special interest. It has been debated that extended MCT, in particular the ideal MCT regime, has been a subject of special interest. It has been debated that extended MCT, in particular the one represented by a cutoff mechanism suppressing the MCT divergence was originally proposed for compressible fluids by means of a field-theory approach. At the same time, for the same systems the transition from an ideal MCT regime to an activated one has been experimentally demonstrated. In connection with the JGR, we have to stress that M. Goldstein recently suggested that the JG relaxation, like the primary α-, can involve transitions between different energy basins, and that a closer connection between this relaxation and the phenomenon of dynamic heterogeneity should be possible.

In recent years the viewpoint that colloids possess the property of the MCT divergence suppressions, has been a subject of special interest. It has been debated that extended MCT, in particular the one represented by a cutoff mechanism suppressing the MCT divergence was originally proposed for compressible fluids by means of a field-theory approach. At the same time, for the same systems the transition from an ideal MCT regime to an activated one has been experimentally demonstrated. In connection with the JGR, we have to stress that M. Goldstein recently suggested that the JG relaxation, like the primary α-, can involve transitions between different energy basins, and that a closer connection between this relaxation and the phenomenon of dynamic heterogeneity should be possible.

In recent years the viewpoint that colloids possess the property of the MCT divergence suppressions, has been a subject of special interest. It has been debated that extended MCT, in particular the one represented by a cutoff mechanism suppressing the MCT divergence was originally proposed for compressible fluids by means of a field-theory approach. At the same time, for the same systems the transition from an ideal MCT regime to an activated one has been experimentally demonstrated. In connection with the JGR, we have to stress that M. Goldstein recently suggested that the JG relaxation, like the primary α-, can involve transitions between different energy basins, and that a closer connection between this relaxation and the phenomenon of dynamic heterogeneity should be possible.

In recent years the viewpoint that colloids possess the property of the MCT divergence suppressions, has been a subject of special interest. It has been debated that extended MCT, in particular the one represented by a cutoff mechanism suppressing the MCT divergence was originally proposed for compressible fluids by means of a field-theory approach. At the same time, for the same systems the transition from an ideal MCT regime to an activated one has been experimentally demonstrated. In connection with the JGR, we have to stress that M. Goldstein recently suggested that the JG relaxation, like the primary α-, can involve transitions between different energy basins, and that a closer connection between this relaxation and the phenomenon of dynamic heterogeneity should be possible.

The hypothesis that molecular glass formers fluids are characterized by a cutoff mechanism suppressing the MCT divergence was originally proposed for compressible fluids by means of a field-theory approach. At the same time, for the same systems the transition from an ideal MCT regime to an activated one has been experimentally demonstrated. In connection with the JGR, we have to stress that M. Goldstein recently suggested that the JG relaxation, like the primary α-, can involve transitions between different energy basins, and that a closer connection between this relaxation and the phenomenon of dynamic heterogeneity should be possible.

Figure 3 | The OTP τ_a and τ_p here measured (dark red full symbols), compared with literature data: dielectric relaxation (DE - green circles), PCS (reversed red triangles), DLS from the measurement of the Rayleigh-Wing contribution (dark pink circles) and the combination of a tandem Fabry-Perot interferometer with a double monochromator (TFPI/DM - dark pink triangles and reversed blue triangles). The figure also reports both the Johary Goldstein (JGR) relaxation (τ_{JGR}) as blue open diamonds and the fast one (τ_{fast} order of magnitude is of 10^{-12} sec) as green closed diamonds, respectively measured by means of DE and neutron scattering. Our data measured in the range $263 > T > 243$ K show that a bifurcation from the α process occurs close to T_B (at the relaxation time of $\sim 10^{-7}$ sec), where τ_p has its onset with an Arrhenius T-dependence that persists also inside the glass state.
that, in our interpretation, such as the case of OTP and the grafted colloid dynamics, studied in ref. 13, they can be driven by the FSDC, with the only difference that in this latter case, instead of T, the control parameter is the volume fraction \(\varphi \). In these terms the observed apparent singularity at \(\varphi \), suggests that this concentration value is, like \(T_B = T_s \) in the OTP case, a FSDC concentration: \(\varphi_B \). From the theoretical point of view, just in the MCT terms, such interpretation for attractive colloid (like the grafted) is correct, hence \(\varphi_B \) can separate two dynamical behavior before \((\varphi < \varphi_B) \) and after it \((\varphi > \varphi_B) \). In the first case the measured \(\tau_B \) has to obey the MCT scaling law and in the second one a concentration activated process takes place. Such an interpretation well agrees with the main finding of the ref. 13: the first stage of the dynamical slowing down can be described by an MCT divergence at a critical volume fraction \(\varphi_B \), upon further compression a crossover to another dynamical stage is observed. A definitive confirmation of this is in the observation, obtained from the measurement of the colloidal four-point dynamical susceptibility, that the process is accompanied by a similar cross-over for the growth of dynamical correlations.

In conclusion, we report a set of new dynamical relaxation measurement results in the supercooled OTP, above and below the calorimetric glass transition temperature \(T_g \), that firmly establishes the absolute relevance of the dynamical crossover temperature \(T_B \) in the dynamics and thermodynamics of the dynamical arrest phenomenon. The comparison of these data with the main findings of the recent study on grafted colloids highlights that molecular and colloidal systems behave, on this respect, at the same way. This is another support to the idea that \(T_B \) plays an essential role for the understanding of the dynamical arrest process in glassy liquids.

Methods

In order to study the OTP dynamics below \(T_B \) we use a special PCS experimental setup for light scattering working in both the heterodyne and homodyne detection mode. In the first case with the modulation of the reference beam through a controlled optical delay of amplitude and frequency, the frequency resolution is improved. The setup, that works in the \(\nu_s \) polychromatic scattering geometry (DLS) is specially designed to explore the slow relaxation processes of supercooled glass-forming systems in the sub-Hertz frequency domain. The system measures directly, at a given wave vector \(q \), the scattered power spectral density (PSD), \(N(Q, \omega) \), proportional to the squared modulus of the Fourier transform of the sampled data. The Fourier transform is performed in real time with a sampling frequency that can go up to 104 sec. The stored data can be used to directly calculate the PSD, \(|X(q, \omega)|^2 \), with an accuracy of 100 samples.

The advantage of this detection mode is that it gives access to the integral of the scattered field, on the contrary of the homodyne mode that gives the intensity correlation function, \(g(0, t) \), through the Siegert’s relation in a large part of the quasistationary regime. Such an interpretation well agrees with the main finding of the recent study on grafted colloids, that firmly establishes the absolute relevance of the dynamical crossover temperature and the arrest in glass-forming fluids.

We have focused our interest in the OTP dynamics only for \(T < T_B \) also below \(T_B \) more precisely in the range 263–243 K, by maintaining a thermal stability of 0.02 K by two sets of separate experiments \((\varphi = 90\%) \). A first set of experiments was devoted to explore by means of separate measurements of \(g(0, t) \) and \(g(\pm q, t) \) the validity of the Siegert’s relation in a large part of the \(T \) range of interest up to 250 K (i.e. ~ 35 K below \(T_B \) and some degrees, near \(T_s \)). We observe that for a typical overall experimental time of about 2 hours the system has for these correlation functions a Gaussian statistics. Because at the lowest temperatures very long experimental times (averaging times) are necessary and in order to improve the signal/noise ratio we have considered

1. Debenedetti, P. G. *Metastable Liquids: Concepts and Principles* (Princeton Univ. Press, Princeton, 1996).
2. Götze, W. *Complex Dynamics of Glass-Forming Liquids A mode-coupling theory* (Oxford Univ. Press, Oxford, 2009).
3. Lubchenko, V. & Wolynes, P. G. Theory of structural glasses and supercooled liquids. *Ann. Rev. Phys. Chem.* 58, 235–266 (2007).
4. Stillinger, F. H. Supercooled liquids, glass transition, and the Kauzmann paradox. *J. Chem. Phys.* 88, 7818–7825 (1988).
5. Eckmann, J. P. & Procaccia, I. Ergodicity and slowing down in glass-forming systems with soft potentials: No finite-temperature singularities. *Phys. Rev. E* 78, 011503 (2008).
6. Martínez-García, J. C., Martínez-García, J., Rozoska, S. J. & Hulliger, J. The new insight into dynamic crossover in glass forming liquids from the apparent entropy analysis. *J. Chem. Phys.* 137, 064501 (2012).
7. Hecksher, T., Nielsen, A. L., Boye Olsen, N. & Dyre, J. C. Little evidence for dynamic divergences in ultramicellar molecular liquids. *Nat. Phys.* 4, 737–741 (2008).
8. Mauro, J. C. *et al.* Viscosity of glass-forming liquids. *Proc. Natl. Acad. Sci. USA* 106, 19780–19784 (2009).
9. Martínez-García, J. C., Tamarit, J. L. L. & Rozoska, S. J. Enthalpy space analysis of the evolution of the primary relaxation time in ultrasiloxan systems. *J. Chem. Phys.* 134, 024512 (2011).
10. Drozd-Rzoska, A., Rozoska, S. J., Pawlus, S., Martínez-García, J. C. & Tamarit, J. L. Evidence for critical-like behavior in ultrasiloxan glass-forming systems. *Phys. Rev. E* 82, 031501 (2010).
11. Pusey, P. N. & van Mengen, W. Phase-behavior of concentrated suspensions of nearly hard spheres. *Nature* 320, 340–342 (1986).
12. van Mengen, W. *et al.* Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition. *Phys. Rev. E* 58, 6073–6085 (1998).
13. Brambilla, G. *et al.* Probing the Equilibrium Dynamics of Colloidal Hard Spheres above the Mode-Coupling Glass Transition. *Phys. Rev. Lett.* 102, 085703 (2009).
14. Roue, L., Hentschel, H. G. E., Ilyin, V. & Procaccia, I. Statistical Mechanics of Glass Formation in Molecular Liquids with OTP as an Example. *J. Phys. B* 115, 141–14310 (2011).
15. Adams, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation processes in glass-forming liquids. *J. Chem. Phys.* 43, 139–146 (1965).
16. Angell, C. A. Formation of glasses from liquids and biopolymers. *Science* 267, 1924–1935 (1995).
17. Hansen, C. *et al.* Dynamics of glass-forming liquids. 3. Comparing the dielectric alpha- and beta-relaxation of 1-propanol and o-terphenyl. *J. Chem. Phys.* 107, 1086–1093 (1997).
18. Tanaka, H. Relation between thermodynamics and kinetics of glass-forming liquids. *Phys. Rev. Lett.* 90, 055701 (2003).
19. Mallamace, F. *et al.* Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. *Proc. Natl. Acad. Sci. USA* 107, 22457 (2010).
20. Johari, G. P. & Goldstein, M. Viscous liquids and glass transition. 2. Secondary relaxation in glasses of rigid molecules. *J. Chem. Phys.* 53, 2372–2388 (1970).
21. Mapes, M. K., Swallen, S. F. & Ediger, M. D. Self-diffusion of supercooled o-terphenyl near the glass transition temperature. *J. Chem. Phys.* 100, 507 (2002).
22. Tardieu, G. & Kivelson, D. Breakdown of the Stokes-Einstein relation in supercooled liquids. *J. Chem. Phys.* 103, 3071–3073 (1995).
23. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. *Ann. Rev. Phys. Chem.* 51, 99–128 (2000).
24. Swallen, S. F., Bonvallet, P. A., McMahon, R. J. & Ediger, M. D. Self-diffusion of tri-naphthylbenzene near the glass transition temperature. *Phys. Rev. Lett.* 90, 015501 (2003).
25. Fujiara, F., Geil, B., Sillescu, H. & Fleischer, G. Translational and rotational diffusion in supercooled ortho-terphenyl close to the glass transition. *Z. Phys. B* 88, 195–204 (1992).
26. Drozd-Rzoska, A., Rozoska, S. J., Pawlus, S. & Tamarit, J. L. Dynamics crossover and dynamic scaling description in vitrification of orientationally disordered crystal. *Phys. Rev. B* 73, 224205 (2006).
27. Novikov, V. N. & Sokolov, A. P. Universality of the dynamic crossover in glass-forming liquids: A “magic” relaxation time. *Phys. Rev. E* 67, 031507 (2003).
28. Zuriaga, M. J., Perez, S. C., Pardo, L. C. & Tamarit, J. L. L. Enthalpy space analysis of the apparent entropy analysis. *J. Chem. Phys.* 109, 064501 (2002).
29. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. *Nature* 410, 259 (2001).
30. Chong, S. H. Connections of activated hopping processes with the breakdown of the Stokes-Einstein relation and with aspects of dynamical heterogeneities. *Phys. Rev. E* 78, 041501 (2008).
31. Mallamace, F., Corsaro, C., Stanley, H. E. & Chen, S. H. The role of the dynamic crossover temperature and the arrest in glass-forming fluids. *Eur. Phys. J. E* 34, 11094–7 (2011).
32. Stickel, F., Fisher, E. W. & Richert, R. Dynamics of glass-forming liquids. I. Temperature-derivative analysis of dielectric relaxation data. J. Chem. Phys. 102, 6251–6257 (1995).
33. Yip, S. & Short, M. P. Multiscale materials modelling at the mesoscale. Nat. Mater. 12, 774–777 (2013).
34. Berne, B. J. & Pecora, R. Dynamic Light Scattering with Applications to chemistry, biology and physics (John Wiley and Sons inc. New York 1976).
35. Bartsch, E.
36. Hwang, Y. H. & Shen, G. Q. A neutron-scattering study of the Van der Waals liquid Ortho-Terphenyl. J. Phys. Condens. Matter 21, 124502 (2009).
37. Paluch, M., Ngai, K. L. & Hensel-Bielowka, S. Pressure and temperature dependences of the relaxation dynamics of cresolphthalein-dimethylether: Evidence of contributions from thermodynamics and molecular interactions. J. Chem. Phys. 114, 15872 (2001).
38. Toelle, A. Neutron scattering studies of the model glass former ortho-terphenyl. Rep. Prog Phys. 64, 1473–1532 (2001).
39. Richter, R. On the dielectric susceptibility spectra of supercooled o-terphenyl. J. Chem. Phys. 123, 154502 (2005).
40. Paluch, M., Ngai, K. L. & Hensel-Bielowka, S. Pressure and temperature dependences of the relaxation dynamics of cresolphthalein-dimethylether: Evidence of contributions from thermodynamics and molecular interactions. J. Chem. Phys. 114, 15872 (2001).
41. Chang, S. S. & Bestul, A. B. Heat-capacity and thermodynamical properties of ortho-terphenyl crystal, glass and liquid. J. Chem. Phys. 56, 503–516 (1972).
42. Dries, T. H. et al. H2-NMR Study of the glass-transition in supercooled ortho-terphenyl. J. Chem. Phys. 88, 2139–2145 (1988).
43. Mallamace, F. et al. Thermodynamical properties of glass forming systems: A Nuclear Magnetic Resonance analysis. J. Non-Cryst. Solids 223, 207–222 (1998).
44. Mallamace, F. et al. Percolation and viscoelasticity of triblock copolymer micellar solutions. Physica A 266, 123–135 (1999).
45. Richert, R. & Angell, C. A. Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016–9026 (1998).
46. Chong, S. H., Chen, S. H. & Mallamace, F. A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition. J. Phys.: Condens. Matter 21, 104101 (2009).
47. Caponi, S. et al. Ergodicity breaking in strong and network-forming glassy systems. Phys. Rev. B 79, 172201 (2009).
48. Singh, A. P. et al. Structural relaxation in ortho-terphenyl: a schematic mode-coupling-theory model analysis. J. Non-Cryst. Solids 235–237, 66–70 (1998).
49. Bartsch, E. et al. Dynamic anomalies and their relation to the glass-transition - a neutron-scattering study of the Van der Waals liquid Ortho-Terphenyl. Ber. Bunsenges. Phys. Chem. 95, 1146–1153 (1991).
50. Prevosto, D. et al. Does the entropy and volume dependence of the structural alpha-relaxation originate from the Johari-Goldstein beta-relaxation? J. Non-Cryst. Solids. 355, 705–711 (2009).
51. Böhmer, R. et al. Correlation of primary and secondary relaxations in a supercooled liquid. Phys. Rev. Lett. 97, 135701 (2006).
52. Das, S. P. & Mazenko, G. F. Fluctuating nonlinear hydrodynamics and the liquid-glass transition. Phys. Rev. A 34, 2265–2282 (1986).
53. Goldstein, M. Communications: Comparison of activation barriers for the Johari-Goldstein and alpha relaxations and its implications. J. Chem. Phys. 132, 04104 (2010).
54. Berthier, L. & Kob, W. The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture. J. Phys. Condens. Matter 19, 205130 (2007).
55. Szamel, G. & Fenner, E. Independence of the relaxation of a supercooled fluid from its microscopic dynamics: Need for yet another extension of the mode-coupling theory. Europhys. Lett. 67, 779–785 (2004).
56. van Megen, W. & Williams, S. R. Comment on “Probing the Equilibrium Dynamics of Colloidal Hard Spheres above the Mode-Coupling Glass Transition”. Phys. Rev. Lett. 104, 169601 (2010).
57. Weysser, R. F. & Fuchs, M. Comment on “Probing the Equilibrium Dynamics of Colloidal Hard Spheres above the Mode-Coupling Glass Transition”. Phys. Rev. Lett. 105, 169604 (2010).
58. van Megen, W., Martinez, V. A. & Bytant, G. Arrest of Flow and Emergence of Activated Processes at the Glass Transition of a Suspension of Particles with Hard Sphere-like Interactions. Phys. Rev. Lett. 102, 168301 (2009).
59. Richert, E. Comment on “Decoupling of Time Scales of Motion in Polybutadiene Close to the Glass Transition”. Phys. Rev. Lett. 69, 1620 (1992).
60. Leone, N., Villari, V. & Micali, N. Modulated heterodyne light scattering set-up for measuring long relaxation time at small and wide angle. Rev. Sci. Instrum. 83, 083102 (2012).

Acknowledgments
Research at MIT was supported by the Office of Basic Energy Sciences, U. S. Department of Energy under contract No. DE-FG02-90ER45429. CC thanks the Fondazione Frisoni for its support.

Author contributions
N.L., V.V. and N.M. carried out the PCS measurements. F.M., C.C., V.V. and N.M. performed data analysis. F.M., N.M. and S.H.C. supervised the research project. All authors discussed the results and reviewed this manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Mallamace, F. et al. On the ergodicity of supercooled molecular glass-forming liquids at the dynamical arrest: the o-terphenyl case. Sci. Rep. 4, 3747; DOI:10.1038/srep03747 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0

www.nature.com/scientificreports