Efeito do tratamento com antileucotrieno em contratura capsular: estudo experimental

Effect of antileukotriene treatment on capsular contracture: an experimental study

CRISTINA PIRES CAMARGO1*
HELOISA ANDRADE CARVALHO1
MARCIA SALDANHA KUBRUSLY1
SOFIA AMARAL MEDEIROS1
JULIO MORAIS BESTEIRO1
ROLF GEMPERLI1

Instituição: Universidade de São Paulo, São Paulo, SP, Brasil.

Resumo

Introdução: 40% dos pacientes submetidos à radioterapia após reconstrução de mama por implante de prótese de silicone podem desenvolver encapsulamento da prótese. Diversas estratégias já foram testadas para prevenir a contratura da cápsula com resultados insatisfatórios. Este estudo analisou o efeito do antileucotrieno (AL) tópico na formação de contratura capsular em ratos com implantes de silicone associados à irradiiação.

Métodos: Foram implantados blocos de silicone na região dorsal em 20 ratas fêmeas, espécie Wistar com peso variando de 200-250g. Os animais foram divididos em dois grupos: controle (injeção de solução fisiológica 0,9% no tecido ao redor do implante) e grupo intervenção (injeção de 10mg de AL no tecido ao redor do implante). Imediatamente após a cirurgia os animais foram irradiados com dose única de 10Gy. Após dois meses, coletamos amostras de cápsulas para análise histológica e análise da expressão gênica dos seguintes biomarcadores: iNOS, VEGF-a e MMP-9.

Resultados: A densidade vascular foi menor no grupo AL quando comparado ao grupo controle (55,4±30,0 vs. 81,8±26,7, p=0,05, respectivamente). Da mesma forma, o VEGF-a teve o mesmo comportamento (grupo controle - 0,34±0,1 vs. grupo AL - 0,02±0,001, p=0,04).

Conclusão: Este estudo sugeriu que o tratamento com AL diminui a angiogênese em animais submetidos a implantes de silicone e submetidos à radioterapia.

Descritores: Radioterapia; Rato; Contratura capsular em implante; Fator A de crescimento do endotélio vascular; Inibidores de metaloproteinases de matriz.
INTRODUÇÃO

Implantes mamários são rotineiramente utilizados em cirurgia plástica de mama estética e reparadora, segundo a Sociedade Americana de Cirurgia Plástica, em 2016, 290.467 implantes para fins estéticos e 109.256 implantes para procedimentos reparadores. Embora bastante utilizado, há risco de contratar capsular em 10,6% dos casos operados. Porém, ao se realizar cirurgia reparadora, como reconstrução mamária, várias pacientes deverão se submeter à radioterapia, como tratamento local do câncer de mama, nesses casos a prevalência dessa complicação é maior do que 40% e a necessidade de retirada da prótese é de 15%.

Quando materiais inertes, como silicone, são implantados no corpo humano, o organismo forma uma cápsula de tecido conectivo em volta do implante para isolá-lo dos tecidos adjacentes. Em alguns casos devido a trauma, infecção e outras causas desconhecidas esse invólucro torna-se fibrótico (contratara capsular). Dependendo do grau de fibrose pode causar deformidade estética, dor e inflamação do local do implante. Quando houver o encapsulamento da prótese, o tratamento deve ser cirúrgico com a retirada da prótese e substituição por outra prótese em outro plano anatômico, por exemplo, se a prótese for colocada acima do músculo peitoral e houver contrataura, a mesma deve ser substituída por outra prótese implantada abaixo do músculo. Esse procedimento tem o objetivo de evitar recidiva da contratara capsular.

MÉTODO

Objetivo

Este estudo analisará o efeito do Montelukast em modelos animais de contrataura capsular radioinduzida. Portanto, este trabalho teve como objetivo analisar o efeito de droga antileucotrienio (Montelukast) na formação de contrataura capsular em ratos com implante de silicone que se submeteram à radioterapia no intervalo de dois meses.

MÉTODOS

Foram analisadas 20 ratas Wistar, com peso variando entre 250-300g. Todos os animais foram mantidos em biotério com temperatura controlada.
entre 22-23°C, ciclo dia/noite de 12.12h, água e alimento ad libitum. Este estudo seguiu as regras nacionais de padronização de estudos em animais de laboratório (CONCEA) e foi aprovado pelo comitê de ética de uso de animal da Faculdade de Medicina da Universidade de São Paulo (CEUA-FMUSP) sob registro 067/2017.

Procedimento cirúrgico

Os animais foram anestesiados por uma solução composta de 100mg/kg de peso de cloridrato de quetamina (Ketamin®, Cristália, Brazil) e 10mg/kg de peso de cloridrato de xylazina (Rompun®, Bayer, Brazil) por via intraperitoneal.

Após anestesia intraperitoneal, os animais foram posicionados em decúbito ventral. A seguir foi realizada tricotomia em uma área de 6cm² na região da linha média da coluna logo abaixo das escápulas. Foi utilizado clorexidina tópica para antissepsia dessa região.

Foi realizado, através do uso de bisturi lâmina 15, incisão de 2cm horizontal. Dissecção de loja de 6cm² abaixo do plano do panículo carnoso do animal e hemostasia com bisturi elétrico. Antes de realizar o fechamento da loja foi implantado bloco de silicone de 2x2cm. E a seguir os animais foram randomizados em dois grupos: controle (n=10), injeção tissular ao redor do bloco de silicone utilizando 1ml de soro fisiológico 0,09%; grupo antileucotrieno (n=10), injeção tissular ao redor do bloco de silicone utilizando 1ml de antileucotrieno (Singulair®, Merck Sharp & Dohme, Campinas, Brasil) diluído em soro fisiológico 0,9%.

Radioterapia

Todos os animais foram submetidos no pós-operatório imediato a uma sessão de radioterapia. A radiação foi efetuada irradiador específico para animais de pequeno porte (Rad Source RS2000, Quastar™), com raio-X de 160KV de 25mAs.

Os animais foram posicionados em decúbito lateral contidos por um imobilizador que possibilitasse a emissão dos raios no plano tangencial como utilizado em pacientes. Ainda foi inserida uma placa de chumbo de 5mm que possuía uma janela para a irradiação do animal garantindo o tratamento apenas na região desejada. Foi utilizada dose única de 10Gy em dois campos opostos (5Gy por campo), com carda de 6Gy/min.

Análise histólogica

Após dois meses os animais foram eutanasiados por injeção intraperitoneal de cloridrato de quetamina (Ketamin®, Cristália, Brazil) na dose de 180mg/kg de peso, associada à xylazina (Rompun®, Bayer, Brazil) na dose de 15mg/kg e, a seguir, colocados em câmara de CO² a 100%.

Foram coletadas amostras da cápsula ao redor do bloco de silicone através de uma incisão no dorso dos animais. Parte das amostras foram fixadas com formalina 4% por 24h e a seguir coradas com hematoxilina-eosina (HE) e picrosirius para análise sob microscopia (Nikon eclipse E600®, Japan) na magnificação de 200 e 400 vezes.

As lâminas coradas por hematoxilina-eosina analisaram a presença de células inflamatórias e densidade vascular (contagem de artériolas) em 10 campos ao longo dos cortes histológicos. As lâminas coradas pelo método de picrosirius demonstraram graficamente a deposição de colágeno ao longo da cápsula ao redor do bloco de silicone.

Análise da expressão gênica

Extração de RNA total

As amostras de panículo carnoso foram maceradas com o uso do aparelho Tissue Lyser LT (Qiagen, Germantown, EUA). Aos tubos de microcentrifuga com as amostras adicionou-se 1,0ml de trizol®(Invitrogen-Life Technologies, Carlsbad, EUA) e esferas de aço inoxidável. A fragmentação foi realizada por 6 minutos a 50Hz.

Após a retirada das esferas, adicionou-se 0,2ml de clorofórmio (Merck). As amostras foram centrífugadas por 15 minutos a 12.000rpm a 4°C. Após a centrifugação, a fase aquosa foi transferida para novo tubo de microcentrifuga e adicionou-se 0,5ml de álcool isopropílico gelado (Merck) para precipitação do RNA. As amostras foram incubadas à temperatura ambiente por 10 minutos e depois centrifugadas a 12.000rpm por 10 minutos a 4°C. O sobrenadante foi descartado e o precipitado de RNA lavado com 1,0ml de etanol 75%. Centrifugou-se por 5 minutos a 10.000rpm a 4°C. O pellet de RNA foi ressuspensio em 50 a 100µL de água ultrapura estéril livre de DNase/RNase (Invitrogen-Life Technologies, Carlsbad, EUA).

Determinou-se a concentração dos RNAs extraídos em espectrofotômetro NanoDrop™ ND-1000 (NanoDrop Technologies, Inc., Wilmington, EUA). O grau de pureza foi avaliado pela relação 260/280nm, sendo utilizados apenas os RNAs cuja relação foi ≥1,8.

Síntese de cDNA

Para a síntese de cDNA, a partir do RNA total, foi utilizado o kit High Capacity RNA-to-cDNA (Applied Biosystems) em termociclador GeneAmp 2400 (Applied Biosystems). Em volume final de 20µL: 1,0µL de
Tratamento com antileucotrieno em contratura capsular

284
Rev. Bras. Cir. Plást. 2021;36(3):281-286

Tratamento com antileucotrieno em contratura capsular

284
Rev. Bras. Cir. Plást. 2021;36(3):281-286

Reação em cadeia da polimerase em tempo real (qRT-PCR)

A análise da expressão dos níveis de mRNA dos genes de interesse foi realizada por qRT-PCR no termociclador StepOnePlus™ (Applied Biosystems) com o sistema TaqMan® Gene Expression Assays (Applied Biosystems). As sondas e os primers para os genes C5AR1 (Rn02134203), ICAM 1 (Rn 00564227), NOS2 (Rn 00561646), VEGF (Rn 01511602) e para o controle endógeno ACTB (Rn 00667869) foram adquiridas da lista de ensaios inventariados da empresa Applied Biosystems.

A qRT-PCR foi realizada em duplicata para cada amostra utilizando-se: 10,0µL TaqMan® Universal Master Mix II 2X; 1µL TaqMan® Gene Expression Assay 20X e 4µL de cDNA diluído (diluição 1:5) em volume final de 20µL, em placas de 96 poços cobertas com selante óptico.

As condições de reação foram 50ºC por 2 minutos, 95 por 10 minutos, seguidos de 40 ciclos a 95ºC por 15 segundos e 60ºC por 1 minuto.

Para o cálculo do nível de expressão de cada gene alvo, utilizou-se o software GenEx Standard 6.1 (MultiD Analyses AB), que utiliza o método 2-delta delta Ct para a quantificação relativa, onde Ct (threshold cycle) é o ciclo da PCR em tempo real, no qual a amplificação atinge a fase logarítmica, onde delta Ct é a diferença de expressão entre gene alvo e controle endógeno de uma determinada amostra, e delta delta Ct corresponde à diferença entre o delta Ct da amostra e o delta Ct do controle.

Análise histológica

A análise pelo método de histomorfometria não demonstrou diferença quanto ao número de células inflamatórias. Porém, houve diminuição da densidade vascular no grupo tratado com AL ao se comparar com o grupo controle (55,4±30,0 (AL) vs. 81,8±26,7 (controle); p=0.05) (Tabela 1 e Figura 1).

Tabela 1. Análise pelo método de histomorfometria referente às células inflamatórias e densidade vascular no grupo controle e no grupo AL.

	Controle (n=7)	Antileucotrieno (n=9)
	média±DP	média±DP
Células inflamatórias	8,25±5,9	4,4±4,0
Densidade vascular	81,8±26,7	55,4±30,0

As lâminas coradas por picrosirius demonstraram maior quantidade de colágeno no grupo controle (Figura 2).

Análise estatística

As variáveis foram submetidas à análise descritiva. Após a verificação da distribuição e variâncias dos dados os dois grupos foram comparados utilizando-se teste Wilcoxon rank sum (distribuição não normal), considerando-se p de alfa de 0.05. Foi utilizado programa STATA versão 14 (StataCorp., 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP, EUA).

RESULTADOS

Três animais no grupo controle e um animal no grupo AL apresentaram, deiscência e extrusão do bloco de silicone após quatro semanas da irradiiação.

Análise da expressão génica de biomarcadores (iNOS, VEGF-a, MMP-9)

O grupo AL mostrou menor quantidade de VEGF-a ao se comparar com o grupo controle (0,02±0,001 vs. 0,34±0,1, respectivamente, p=0,04) (Tabela 2).
DISCUSSÃO

Leucotrienos são lipídeos (eicosanoide) pertencentes à família de substâncias mediadoras da inflamação. Agem na contração de músculo liso (broncoconstrição), além de aumentar a permeabilidade microvascular perpetuando a reação inflamatória9. Os antileucotrienos, portanto, têm como função diminuir e prevenir a contração da musculatura lisa e diminuir a permeabilidade vascular. Embora o mecanismo de ação ainda não esteja elucidado, vários estudos demonstraram o efeito benéfico dos antileucotrienos em diminuir ou minimizar a contratura capsular após implantes aloplásticos mamários6-8,10. Nossa hipótese foi analisar o efeito de AL sobre a reação inflamatória local (diminuição de neoangiogênese tardia e diminuição de células inflamatórias), bem como a inibição da formação de fibrose. Para potencializar os resultados deste estudo e para imitar a situação clínica de tratamento adjuvante à reconstrução de câncer de mama, todos os animais receberam uma dose de irradiação imediatamente após a cirurgia.

Este estudo demonstrou diminuição de 50% da contagem de células inflamatórias no grupo AL (4,4±4,0) ao se comparar com o grupo controle (8,25±5,9). Embora não tenha alcançado significância, há uma tendência a se observar menor reação inflamatória do grupo AL. Já na análise histórica quanto à densidade vascular, este estudo demonstrou menor contagem de vasos neoformados no grupo AL (55,4±30,0 vs. 81,8±26,7, respectivamente; p=0,05). Esses dois achados sugerem diminuição da inflamação crônica na cápsula do implante de silicone. Kang et al. (2015)11 analisaram o uso de Zafirlukast na formação de cápsula de implante de silicone. Esses autores já analisaram outras metaloproteinases, com o objetivo de se estudar o metabolismo de gelatinase (componente da matriz extracelular). Outro desfecho intermediário analisado neste estudo, foi a expressão gênica de MMP-9, que corresponde ao metabolismo de colágeno na regeneração tissular14,15. Este estudo não encontrou diferença na gelatinase (MMP-9) entre os grupos. Contudo, este estudo apresentou algumas limitações: a estrutura anatômica do modelo murino adotado neste estudo apresentou algumas diferenças (panniculus carnosum) em relação ao ser humano.

CONCLUSÃO

Este estudo sugere que AL tratamento com AL diminui a angiogênese em animais submetidos a implantes de silicone e submetidos à radioterapia.

AGRADECIMENTOS

Este estudo não seria possível sem a colaboração da Sra. Silvana Aparecida Biagion, Sra. Edna Maria Rodrigues dos Santos, Sra. Roqueline Alves Lago e Sr. Bruno Valério do Rosário.
COLABORAÇÕES
Análise e/ou interpretação dos dados, Análise estatística, Aprovação final do manuscrito, Conceitualização, Concepção e desenho do estudo, Metodologia, Redação - Revisão e Edição

CPC

Análise e/ou interpretação dos dados, Análise estatística, Aprovação final do manuscrito, Conceitualização, Concepção e desenho do estudo, Metodologia, Redação - Revisão e Edição

HAC

Análise e/ou interpretação dos dados, Concepção e desenho do estudo, Investigação, Metodologia, Realização das operações e/ou experimentos, Redação - Revisão e Edição

Coleta de Dados, Investigação, Metodologia, Realização das operações e/ou experimentos, Redação - Preparação do original

MSK

Coleta de Dados, Realização das operações e/ou experimentos, Redação - Preparação do original

SAM

Análise e/ou interpretação dos dados, Concepção e desenho do estudo, Metodologia, Redação - Revisão e Edição

Aprovação final do manuscrito, Concepção e desenho do estudo, Redação - Revisão e Edição, Supervisão, Visualização

RG

REFERÊNCIAS
1. American Society of Plastic Surgeons (ASPS). 2016 National plastic surgery statistics – cosmetic & reconstructive procedure trends [Internet]. Arlington Heights: ASPS; 2017; [acesso em 2017 Mai 15]. Disponível em: https://d2wirezt3b6wjm.cloudfront.net/News/Statistics/2016/2016-plastic-surgery-statistics-report.pdf
2. Kronowitz SJ, Robb GL. Radiation therapy and breast reconstruction: a critical review of the literature. Plast Reconstr Surg. 2009 Ago;124(2):395-408.
3. Headon H, Kasem A, Mokbel K. Capsular contracture after breast augmentation: an update for clinical practice. Arch Plast Surg. 2015 Set;42(5):532-43. DOI: https://doi.org/10.5999/aps.2015.42.5.532
4. Steiert AE, Boyce M, Sorg H. Capsular contracture by silicone breast implants: possible causes, biocompatibility, and prophylactic strategies. Medical Devices. 2013 Jun;6:211-8. DOI: https://doi.org/10.2147/MDER.S49522
5. Collis N, Coleman D, Foo ITH, Sharpe DT. Ten-year review of a prospective randomized controlled trial of textured versus smooth subglandular silicone gel breast implants. Plast Reconstr Surg. 2009 Set;106(4):786-91.
6. Miller AS, Tarpley SK, Willard VV, Reynolds GD. Alteration of fibrous capsule formation by use of immunomodulation. Aesthet Surg J. 1998 Set/Out;18(5):346-52.
7. Schlesinger SL, Ellenbogen R, Desvigne MN, Svehlak S, Heck R. Zafirlukast (Accolate): a new treatment of a difficult problem. Aesthet Surg J. 2002 Jul;22(4):329-36.
8. Bastos EM, Sabino Neto M, Garcia ÉB, Veiga DF, Han YA, Denadai R, et al. Effect of zafirlukast on capsular contracture around silicone implants in rats. Acta Cir Bras. 2012;27(1):1-6. DOI: https://dx.doi.org/10.1590/S0102-86552012000100001
9. Peters-Golden MD, Henderson Junior WR. Leukotrienes. N Engl J Med. 2007 Nov;357(18):1841-54. DOI: https://doi.org/10.1056/NEJMra071371
10. Vieira VJ, D'Acampora A, Neves FS, Mendes PR, Vasconcellos ZA, Neves RD, et al. Capsular contracture in silicone breast implants: insights from rat models. An Acad Bras Ciênc. 2016 Set;88(3):1459-70. DOI: https://doi.org/10.1590/0001-3765201620150874
11. Kang SH, Shin KC, Kim WS, Bae TH, Kim HK, Kim MK. The preventive effect of topical zafirlukast instillation for peri-implant capsule formation in rabbits. Arch Plast Surg. 2015 Mar;42(2):179-85. DOI: https://doi.org/10.5999/aps.2015.42.2.179
12. McNeill E, Crabtree MJ, Sahgal N, Patel J, Chuaihpichai S, Iqbal AI, et al. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radic Biol Med. 2015 Feb;79:206-16. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.10.075
13. Butler CT, Reynolds AL, Tosetto M, Dillon ET, Guiry PJ, Cagney G, et al. A quininib analogue and cysteinyl leukotriene receptor antagonist inhibits vascular endothelial growth factor (VEGF)- independent angiogenesis and exerts an additive antiangiogenic response with bevacizumab. J Biol Chem. 2017 Mar;292(9):3352-67. DOI: https://doi.org/10.1074/jbc.M116.747766
14. Ulrich D, Ulrich F, Fallua N, Eisenmann-Klein M. Effect of tissue inhibitors of metalloproteinases and matrix metalloproteinases on capsular formation around smooth and textured silicone gel implants. Aesthetic Plast Surg. 2009 Jul;33(4):555-62. DOI: https://doi.org/10.1007/s00266-009-9335-y
15. Chen CZ, Raghunath M. Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis - state of the art. Fibrogenesis Tissue Repair. 2009 Dec;2:7. DOI: https://doi.org/10.1186/1755-1536-2-7

*Autor correspondente:
Cristina Pires Camargo
Avenida Brigadeiro Luis Antonio, n° 4161 - Jardim Paulista, São Paulo, SP, Brasil
CEP 01402-002
E-mail: cristinacamargo@usp.br