A study of $\bar{B} \to \Xi_c \bar{\Lambda}_c^-$ and $\bar{B} \to \Lambda_c^+ \bar{\Lambda}_c^- K$ decays at BABar
Name	Affiliation
F. Simonetto, R. Stroili, C. Voci, E. Ben-Haim, H. Briand, G. Calderini, J. Chauveau, P. David, L. Del Buono, Ch. de la Vaissière, O. Hamon, Ph. Leruste, J. Malcles, J. Ocariz, A. Perez, J. Prendki, L. Gladney, M. Biasini, R. Covarelli, E. Manoni, C. Angelini, G. Batignani, S. Bettarini, M. Carpinelli, R. Cenci, A. Cervelli, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, M. A. Mazur, M. Morganti, N. Neri, E. Paoloni, G. Rizzo, J. J. Hollar, F. Bellini, D. del Re, E. Di Marco, R. Faccini, F. Ferrarotto, F. Feroni, M. Gaspero, D. P. Jackson, L. Giol, M. A. Mazzoni, S. Morganti, G. Piredda, F. Polci, F. Renga, C. Vena, M. Ebert, T. Hartmann, H. Schröder, R. Waldi, T. Adye, G. Castelli, B. Franek, E. O. Olaiya, W. Roethel, F. F. Wilson, S. Emery, M. Escalier, A. Gaidot, S. F. Ganzhur, G. Hamel de Monchenault, W. Kozanecki, G. Vasseur, Ch. Yèche, M. Zito, X. R. Chen, M. V. Purohit, R. M. White, J. R. Wilson, M. T. Allen, D. Aston, R. Bartoldus, P. Bechtle, R. Claus, J. P. Coleman, M. R. Convery, J. C. Dingfelder, J. Drafan, G. P. Dubois-Felsmann, W. Dunwoodie, R. C. Field, T. Glanzman, S. J. Gowdy, M. T. Graham, P. Grenier, C. Hast, W. R. Innes, J. Kaminski, M. H. Kelsey, H. Kim, P. Kim, M. L. Kocian, D. W. G. S. Leith, S. Li, S. Luitz, V. Luth, H. L. Lynch, D. B. MacFarlane, H. Marsiske, R. Messner, D. R. Muller, C. P. O’Grady, I. Ofte, A. Peruzzo, M. Perl, T. Pulliam, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, A. Snyder, D. Su, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Va’ra, A. P. Wagner, M. Weaver, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritt, K. Y, C. C. Young, V. Ziegler, P. R. Burchat, A. J. Edwards, S. A. Majewski, T. S. Miyashita, B. A. Petersen, L. Wilden, S. Ahmed, M. S. Alam, R. Bula, J. A. Ernst, V. Jain, B. Pan, M. A. Saeed, F. R. Wappler, S. B. Zain, M. Krishnamurthy, S. M. Spanier, R. Eckmann, J. L. Ritchie, A. M. Rudall, J. C. Schilling, R. F. Schwitters, J. M. Izen, X. C. Lou, S. Ye, F. Bianchi, F. Gallo, D. Gamba, M. Pellecchia, M. Bomben, L. Bosio, C. Cartaro, F. Cossutti, G. Della Ricca, L. Lanceri, L. Vitale, V. Azzolini, N. Lopez-March, F. Martinez-Vidal, D. A. Milanes, A. Oyanguren, J. Albert, J. Ocariz, L. Bhuyan, K. Hamano, R. Kowalewski, I. M. Nugent, J. M. Roney, R. J. Sobie, P. F. Harrison, J. Ilic, T. E. Latham, G. B. Mohanty, H. R. Band, X. Chen, S.Dasu, K. T. Flood, J. J. Hollar, P. E. Kutter, Y. Pan, M. Pierini, R. Prepost, S. L. Wu, and H. Neal (The BABAR Collaboration)	

1. Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2. Université de Barcelone, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3. Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
4. University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5. Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6. University of Birmingham, Birmingham, B15 2TT, United Kingdom
7. Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8. University of Bristol, Bristol BS8 1TL, United Kingdom
9. University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10. Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11. Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12. University of California at Irvine, Irvine, California 92697, USA
13. University of California at Los Angeles, Los Angeles, California 90024, USA
14. University of California at Riverside, Riverside, California 92521, USA
15. University of California at San Diego, La Jolla, California 92039, USA
16. University of California at Santa Barbara, Santa Barbara, California 93106, USA
17. University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18. University of California at Santa Cruz, Institute of Technology, Pasadena, California 91125, USA
19. University of Cincinnati, Cincinnati, Ohio 45221, USA
20. University of Colorado, Boulder, Colorado 80309, USA
21. Colorado State University, Fort Collins, Colorado 80523, USA
22. Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
23. Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24. Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
25. University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
26. Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
27. Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
We report measurements of B-meson decays into two- and three-body final states containing two charmed baryons using a sample of 230 million $T(4S) \to B\bar{B}$ decays. We find significant signals in two modes, measuring branching fractions $B(B^- \to \Lambda_c^+ K^-) = (1.14 \pm 0.15 \pm 0.17 \pm 0.60) \times 10^{-3}$ and $B(B^- \to \Sigma_c^+ \Lambda_c^-) = B(\Sigma_c^0 \to \Xi_c^- \pi^+) = (2.08 \pm 0.65 \pm 0.29 \pm 0.54) \times 10^{-3}$, where the uncertainties are statistical, systematic, and from the branching fraction $B(\Lambda_c^+ \to pK^+ \pi^+)$, respectively. We also set upper limits at the 90\% confidence level on two other modes: $B(\Sigma_c^0 \to \Xi_c^- \pi^+) \times B(\Sigma_c^0 \to \Xi_c^- \pi^+)$,
Bottom (B) mesons are heavy enough to decay into charmed baryons, and do so at a rate of roughly 5% \[1,2\]. The dominant decay mechanism is via $b \to W^-\bar{c}$ transitions, with W^- coupling to $\bar{c}s$ or $\bar{c}d$ \[3\], both of which are Cabibbo-allowed. Theoretical predictions for the branching fractions of B mesons to baryon-antibaryon pairs have been made within the diquark model \[4\] and with QCD sum rules \[5\]. These suggest that decays to two B mesons have high relative momentum, since this requires the production may apply to decays in which the two baryons have high relative momentum, since this requires the exchange of two high-momentum gluons. The rate of $B\to \Lambda_c^+\bar{A}_c^0K$ decays could also be enhanced by final-state interactions, or by intermediate charmonium resonances.

In this paper, we present measurements of the branching fraction of the decays $B^-\to \Lambda_c^+\bar{A}_c^-K^-$, $B^-\to \Xi_c^0\bar{A}_c^-$, $B^0\to \Xi_c^+\bar{A}_c^-$, and $B^0\to \Lambda_c^+\bar{A}_c^0K^0$, and investigate three-body decays for the possible presence of intermediate resonances. The data were collected with the BABAR detector \[12\] at the PEP-II asymmetric-energy e^+e^- storage rings and represent an integrated luminosity of approximately 210 fb$^{-1}$ collected at a center-of-mass energy $\sqrt{s}=10.58$ GeV, corresponding to the mass of the $\Upsilon(4S)$ resonance. The BABAR detector is a magnetic spectrometer with 92% solid angle tracking coverage in the center-of-mass frame. Charged particles are detected and their momenta are measured in a five-layer double-sided silicon vertex tracker and a forty-layer drift chamber, both operating in a 1.5 T magnetic field. Charged particle identification (PID) is provided by the average energy loss (dE/dx) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector. Photons are detected with a CsI(Tl) electromagnetic calorimeter. The instrumented flux return for the solenoidal magnet provides muon identification.

Simulated events with B mesons decaying into the relevant final states are generated with EvtGen \[10\] and PYTHIA \[11\], while GEANT4 \[18\] is used to simulate the detector response. Inclusive Monte Carlo (MC) samples of $\Upsilon(4S)$ and $e^+e^-\to q\bar{q}$ ($q=u,d,s,c$) events at $\sqrt{s}=10.58$ GeV are also used, corresponding to more than 1.5 times the integrated luminosity of the data.

The Λ_c^+ candidates are reconstructed in the three decay modes $pK^-\pi^+$, pK_s^0, and $\Lambda\pi^+$; Ξ^0_c candidates in the two decay modes $\Xi^-\pi^+\pi^+$ and $\Lambda\bar{K}^-\pi^+$; and Ξ^+_c candidates in the decay mode $\Xi^-\pi^+\pi^+$. We begin by reconstructing the long-lived strange hadrons: $K^0\to\pi^+\pi^-$ and $\Lambda\to p\pi^-$ candidates are reconstructed from two oppositely charged tracks, and $\Xi^-\to\Lambda\pi^-$ from a Λ candidate and a negatively charged track. In each case, we fit the daughters to a common vertex and compute their invariant mass. The mass is required to be within 3σ of the central value, where σ is the experimental resolution and is approximately 4.0, 4.5, and 6.0 MeV/c^2 for K^0_L, Λ, and Ξ^-, respectively. Candidates with a χ^2 probability below 10^{-4} are rejected. For Λ candidates, we also require the daughter proton to satisfy PID criteria. The mass of the K^0_L, Λ, or Ξ^- candidate is constrained to its nominal value \[1\] for subsequent fits.

We suppress background by requiring the transverse displacement between the event and decay vertices to be greater than 0.2 centimeters for K^0_L, Λ, and Ξ^-, each
we compute the energy-substituted mass $m_{ES} \equiv (s/4 - p^2_B)^{1/2}$ and the energy difference $\Delta E \equiv E^*_B - \sqrt{s}/2$, where p^2_B, E^*_B, and \sqrt{s} are the momentum and energy of the B meson and the e^+e^- collision energy, respectively, all calculated in the e^+e^- center-of-mass frame. For a correctly reconstructed signal decay, the m_{ES} distribution peaks near the nominal mass of the B meson with a resolution of approximately 2.5 MeV/c2, and ΔE peaks near zero with a resolution of 6.0–7.8 MeV depending on the final state. Figure 1 shows the m_{ES} and ΔE distributions for $B^- \to \Lambda^+_c \Lambda^-_c K^-$ candidates.

Background arises from several sources, including mis-reconstructed B decays to two charmed baryons, B decays to a single charmed baryon, $e^+e^- \to e\bar{e}$ events containing charmed baryons, and random combinations of tracks. We use inclusive MC simulations and events from the sidebands of m_{ES}, ΔE, and charmed baryon mass in data to study the background. We consider as background B-meson decays with the same final state that do not proceed via an intermediate charmed baryon—for example, $B^- \to \Xi^-_c pK^-\pi^+$ misinterpreted as $B^- \to \Xi^-_c K^-\pi^-$. Decays of this kind are distributed as signal in m_{ES} and ΔE but have a smooth distribution for the mass spectrum of the misreconstructed charmed baryon, unlike signal decays which also peak in the charmed baryon mass. In studies of the Ξ^-_c and Λ_c mass sidebands, we find no evidence for these processes and conclude that their contribution is negligible.

Another important source of background is feed-down from related processes. The B meson can undergo a quasi-two-body decay via an excited charmed baryon such as $\overline{B} \to \Xi^-_c K^-$, or a non-resonant multi-body decay such as $\overline{B} \to \Xi^-_c \Lambda^-\pi$. These events have similar distributions to the signal for m_{ES} and the charmed baryon invariant masses, but are displaced in ΔE by an amount that depends on the final state but is generally more than 50 MeV. We remove these backgrounds by requiring that signal candidates satisfy $|\Delta E| < 22$ MeV. Finally, we require $5.2 < m_{ES} < 5.3$ GeV/c2. The average number of reconstructed B candidates per selected event varies between 1.00 and 1.14 depending on the final state. In events with more than one candidate, the one with the smallest $|\Delta E|$ is chosen. We verify with MC and events from data sidebands that this does not introduce any bias in the signal extraction. Studies of simulated events show that 1%–3% of signal events are incorrectly reconstructed with one or more tracks originating from the other B in the event; this effect is taken into account implicitly by the efficiency correction described later.

The signal yields are extracted from an unbinned extended maximum likelihood fit to the m_{ES} distribution. We use separate probability density functions (PDFs) for signal and background events. The likelihood function

![FIG. 1: The m_{ES} and ΔE distributions for $B^- \to \Lambda^+_c \Lambda^-_c K^-$ candidates, summing over five different final states. Plot (b) shows the scatterplot of m_{ES} vs. ΔE, and (a) and (c) show the m_{ES} and ΔE projections for $|\Delta E| < 0.022$ GeV and for $m_{ES} > 5.27$ GeV/c2, respectively. The dashed horizontal and vertical lines in (b) indicate the signal regions used for the projection in (a) and (c), respectively.](image)
function with σ fixed to a value obtained from a fit to simulated signal events. The Gaussian mean is also fixed to the value obtained with simulated signal events, except for $B^- \rightarrow \Lambda_c^+ \Xi^- K^-$ where there is sufficient signal in the data to fit this parameter. The background PDF is parameterized as an ARGUS function $[19]$. We allow the ARGUS shape parameter to vary within a physically reasonable range in the fit to the data.

The fitted m_{ES} distributions of the four final states are shown in Fig. 2. Clear signals are seen in the $B^- \rightarrow \Lambda_c^+ \Xi^- K^-$ and $B^- \rightarrow \Xi^0 \Lambda_c^-$ decay modes. A measure of the significance of each peak is given by $S = \sqrt{2\Delta \ln L}$, where $\Delta \ln L$ is the difference in likelihood (incorporating the fitting systematic uncertainty) for fits where the signal yield is allowed to vary and where it is fixed to zero, respectively. The results of the fits are shown in Table II. The efficiency is determined by applying the same analysis procedure to simulated signal events. For the three-body B-meson decays, the efficiency depends upon the distribution in the Dalitz plane. We weight the simulated events to reproduce the efficiency-corrected, background-subtracted distribution seen in data for $B^- \rightarrow \Lambda_c^+ \Xi^- K^-$. As a crosscheck, we also compute the efficiency assuming a phase-space distribution and find a difference of less than 10% in each case.

We then obtain each branching fraction as:

$$ \mathcal{B}(B \rightarrow X_c \Lambda_c^- [K]) = \frac{\sum_j n_{Sj}}{N_B \sum_j (\varepsilon_j \prod_i \mathcal{B}_{ij})} $$

(2)

where X_c is the charmed baryon (Λ_c^+, Ξ_c^0, or Ξ_c^+), n_{Sj} is the signal yield extracted from the fit to the data for the jth sub-mode, $\prod_i \mathcal{B}_{ij}$ is the product of the daughter branching fractions, N_B is the number of neutral or charged B mesons, and ε_j is the signal detection efficiency. We assume equal decay rates of the $T(4S)$ to

Table I: Fitted signal yield, detection efficiency ε, significance S, measured branching fraction B, and (for $S < 2$) the upper limit on B for each decay mode. The uncertainties on B are statistical, systematic, and the uncertainty from the branching fraction $B(\Lambda_c^+ \rightarrow pK^- \pi^+)$ for final states containing Ξ_c^0 or Ξ_c^+, B includes a factor of $B(\Xi_c^0 \rightarrow \Xi^- \pi^+ \pi^-)$ or $B(\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+)$, respectively.

Decay Mode	Signal Yield ε(%)	S	B	Upper Limit on B	
$B^- \rightarrow \Lambda_c^+ \Xi^- K^-$	74.6 ± 9.8	—	$9.6 (1.14 \pm 0.15 \pm 0.17 \pm 0.60) \times 10^{-3}$		
$A_c^+ \rightarrow pK^- \pi^+ \Xi^- K^-$	42.7 ± 7.7	7.1	7.1	$(1.07 \pm 0.19 \pm 0.16 \pm 0.56) \times 10^{-3}$	
$A_c^+ \rightarrow pK^- \pi^+ \Xi^- K^-$	14.5 ± 4.0	8.8	5.9	$(1.81 \pm 0.50 \pm 0.30 \pm 0.94) \times 10^{-3}$	
$A_c^+ \rightarrow pK^- N^- \Xi^- K^-$	11.4 ± 3.7	7.1	4.8	$(1.42 \pm 0.45 \pm 0.24 \pm 0.74) \times 10^{-3}$	
$A_c^+ \rightarrow pK^- \Xi^- K^-$	2.5 ± 1.8	6.3	2.0	$(0.55 \pm 0.40 \pm 0.09 \pm 0.28) \times 10^{-3}$	
$A_c^+ \rightarrow p\pi^+ \Xi^- K^-$	3.5 ± 2.0	6.4	2.7	$(0.74 \pm 0.43 \pm 0.12 \pm 0.38) \times 10^{-3}$	
$B^- \rightarrow \Xi_c^0 \Lambda_c^-$	14.0 ± 4.4	—	6.4	$(2.08 \pm 0.65 \pm 0.29 \pm 0.54) \times 10^{-5}$	
$\Xi_c^0 \rightarrow \Xi^- \pi^+ \Xi^- \pi^-$	8.0 ± 2.8	4.3	6.1	$(2.51 \pm 0.89 \pm 0.29 \pm 0.65) \times 10^{-5}$	
$\Xi_c^0 \rightarrow \Lambda K^- \pi^+ \Xi^- \pi^-$	6.0 ± 3.4	4.5	2.1	$(1.70 \pm 0.93 \pm 0.30 \pm 0.44) \times 10^{-5}$	
$B_c^0 \rightarrow \Xi_c^0 \Lambda_c^-$	2.8 ± 2.0	2.6	1.8	$(1.50 \pm 1.07 \pm 0.20 \pm 0.39) \times 10^{-5}$	$< 5.6 \times 10^{-5}$ @ 90% C.L.
$B_c^0 \rightarrow \Lambda_c^+ \Xi^- K^-$	3.3 ± 2.7	4.4	1.4	$(0.38 \pm 0.31 \pm 0.05 \pm 0.20) \times 10^{-3}$	$< 1.5 \times 10^{-5}$ @ 90% C.L.

FIG. 2: The fitted m_{ES} distributions observed for the decay modes (a) $B^- \rightarrow \Lambda_c^+ \Xi^- K^-$, combining 5 exclusive final states; (b) $B^- \rightarrow \Xi_c^0 \Lambda_c^-$, combining 2 exclusive final states; (c) $B_c^0 \rightarrow \Xi_c^0 \Lambda_c^-$; (d) $B_c^0 \rightarrow \Lambda_c^+ \Xi^- K^-$. Points with error bars represent the data, dashed lines the background PDF, and solid lines the sum of the signal and background PDFs.
The branching fraction $B(A^+ \rightarrow p K^- \pi^+)$ has been measured previously to be $(5.0 \pm 1.3)\%$ [1]. Because the branching fractions of Ξ^0_c and Ξ^+_c decays have not been determined experimentally, we quote the products of the branching fractions, $B(B^- \rightarrow \Xi^0_c \bar{\Lambda}^-_c) \times B(\Xi^0_c \rightarrow \Xi^- \pi^+)$ and $B(\Xi^0_c \rightarrow \Xi^+_c \bar{\Lambda}^+_c) \times B(\Xi^+_c \rightarrow \Xi^- \pi^+)$. For the $\Xi^0_c \rightarrow AK^- \pi^+$ decay mode we scale the measured branching fraction by the ratio $B(\Xi^0_c \rightarrow \Xi^- \pi^+)/B(\Xi^0_c \rightarrow AK^- \pi^+) = 1.07 \pm 0.14 [1]$, so that its value can also be expressed as the product of the same two branching fractions.

For each decay mode, Table I gives the values of n_S, ε, the significance, and the branching fraction. For each mode with a significance below 2 standard deviations, we calculate the Bayesian upper limit [1] on the branching fraction including systematic uncertainties and obtain $B(\Xi^0_c \rightarrow \Xi^+_c \bar{\Lambda}^+_c K^0) < 1.5 \times 10^{-3}$ and $B(\Xi^0_c \rightarrow \Xi^+_c \bar{\Lambda}^-_c) < 5.6 \times 10^{-5}$ at the 90% confidence level.

Table I lists the main systematic uncertainties and their sum in quadrature. The largest uncertainty is from the charged track reconstruction efficiency, evaluated with control samples of τ decays. A small correction is also included due to a known data/MC difference in tracking efficiency. Other sources of systematic uncertainty considered include: the number of BB pairs in the data sample; the limited size of the signal MC samples; the PID efficiency, which is evaluated with control samples of $A \rightarrow p \pi^- \pi^-$, $D^{*+} \rightarrow D^0(K^- \pi^+)\pi^+$, and $\phi \rightarrow K^+K^-$ decays; possible differences in ΔE resolution between data and MC, which are estimated with control samples of $B \rightarrow D\bar{D}\bar{K}$ decays; charysed baryon branching ratios relative to the control modes [1]; the A branching fraction [1]; the presence of intermediate resonances in the charmed baryon decay and possible structure in the 3-body B-meson decays; and the assumption that $B(\gamma(4S) \rightarrow B\bar{B}^0) = B(\gamma(4S) \rightarrow B^+B^-) = 0.5$. For fit parameters which are fixed to values from fits to the signal MC, we vary the value by the uncertainty and take the largest change as a systematic uncertainty. Dividing out the absolute A^+_c branching fraction also introduces a large systematic uncertainty, which we quote separately.

To investigate whether the three-body mode $B^- \rightarrow A^+_c \bar{\Lambda}^-_c K^-$ contains intermediate resonances, we examine the Dalitz plot structure of candidates in the signal region ($m_{\text{ES}} > 5.27\text{GeV}/c^2$), shown in Fig. 3. After taking into account the expected background (estimated from the m_{ES} sidebands), the $A^+_c K^-$ mass spectrum of the data is inconsistent with a phase-space distribution (χ^2 probability of 1.5×10^{-4}). Fitting the data with a single, non-relativistic Breit-Wigner lineshape convolved with a Gaussian function for experimental resolution, we obtain $m = 2931 \pm 3(\text{stat}) \pm 5(\text{syst})$ MeV/c^2 and $\Gamma = 36 \pm 7(\text{stat}) \pm 11(\text{syst})$ MeV. We do not see any such structure in the m_{ES} sideband region. This description is in good agreement with the data (χ^2 probability of 22%) and could be interpreted as a single Ξ^0_c resonance with those parameters, though a more complicated explanation (e.g. two narrow resonances in close proximity) cannot be excluded. Due to the limited statistics, the helicity angle distribution does not distinguish between spin hypotheses.

In summary, we have studied B-meson decays to charmed baryon pairs in four decay modes using a sample of 230 million $\gamma(4S) \rightarrow BB$ events. The branching fraction of $B^- \rightarrow A^+_c \bar{\Lambda}^-_c K^-$ is found to be larger than the previous measurement [11] and is comparable to the $O(10^{-3})$ branching fraction predicted for two-body decays to a pair of charmed baryons. The other results are consistent with the previous values [9, 10]. The data in the Dalitz plot and two-body mass projections of $B^- \rightarrow A^+_c \bar{\Lambda}^-_c K^-$ are inconsistent with a phase-space distribution and suggest the presence of a Ξ^0_c resonance in the decay.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, Ministerio de Educación y Cien-

TABLE II: Summary of relative systematic uncertainties (%) on the branching fractions. The uncertainty on the A^+_c branching fraction is 26% and is quoted separately.

Source	$A^+_c \bar{\Lambda}^+_c K^-$	$\Xi^0_c \bar{\Lambda}^-_c K^0$	$\Xi^+_c \bar{\Lambda}^-_c K^+$	$\Xi^+_c \bar{\Lambda}^+_c K^+$
Tracking efficiency	9.9	10.0	11.4	11.4
B counting	1.1	1.1	1.1	1.1
MC sample size	0.8	1.6	2.4	1.5
PID efficiency	4.6	3.5	3.0	4.0
ΔE resolution	3.0	3.0	3.0	3.0
Intermediate BF s	3.4	6.9	0.8	0.1
$A^+_c \rightarrow p K^- \pi^+$ Dalitz	2.9	1.8	1.8	3.6
$B \rightarrow A^+_c \bar{\Lambda}^-_c K^-$ Dalitz	6.9	—	—	4.2
$\gamma(4S)$ BF	3.0	3.0	3.0	3.0
Fit related	2.0	1.4	3.5	2.5
Total	14.5	13.7	13.4	14.3
FIG. 3: Reconstructed $B^- \rightarrow \Lambda^+_c \bar{\Lambda}^- K^-$ candidates in the signal region ($m_{ES} > 5.27$ GeV/c^2, $\Delta E < 22$ MeV), shown as (a) the Dalitz plot, (b) the $\Lambda^+_c K^-$ invariant mass distribution, and (c) the $\Lambda^+_c \bar{\Lambda}^-$ invariant mass distribution. Data from the signal region are shown as black points. Signal events from a phase-space simulation are shown as small grey points in (a) and as a histogram in (b) and (c). Data from the sideband region $5.20 < m_{ES} < 5.26$ GeV/c^2 are shown as a shaded histogram in (b) and (c), normalized according to the expected background yield in the signal region. The masses of the B-meson candidates are not constrained.

* Deceased

† Now at Tel Aviv University, Tel Aviv, 69978, Israel

‡ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy

§ Also with Università della Basilicata, Potenza, Italy

[1] Particle Data Group, W.-M. Yao et al., J. Phys. G33, 1 (2006).
[2] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 75, 012003 (2007).
[3] Throughout this paper, for any given mode, the corresponding charge-conjugate mode is also implied.
[4] V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. B 345, 137 (1990).
[5] F. Ball and H. G. Dosch, Z. Phys. C 51, 445 (1991).
[6] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 75, 072002 (2007).
[7] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 95, 142003 (2005).
[8] Belle Collaboration, R. Seuster et al., Phys. Rev. D 73, 032002 (2006).
[9] Belle Collaboration, R. Chistov et al., Phys. Rev. D 74, 111105 (2006).
[10] Belle Collaboration, N. Gabyshev et al., Phys. Rev. Lett. 97, 202003 (2006).
[11] K. K. Sharma and R. C. Verma, Eur. Phys. Jour. C 7, 217 (1999).
[12] Belle Collaboration, N. Gabyshev et al., Phys. Rev. Lett. 90, 121802 (2003).
[13] H. Y. Cheng, C. K. Chua and S. Y. Tsai, Phys. Rev. D 73, 074015 (2006).
[14] C. H. Chen, Phys. Lett. B 638, 214 (2006).
[15] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).
[16] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
[17] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).
[18] S. Agostinelli et al., Nucl. Instr. Methods Phys. Res., Sect. A 506, 250 (2003).
[19] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 241, 278 (1990).