RESEARCH ARTICLE

Tropical moduli spaces as symmetric Δ-complexes

Daniel Allcock¹ | Daniel Corey² | Sam Payne²

¹UT Department of Mathematics, University of Texas at Austin, Austin, Texas, USA
²Institut für Mathematik, Technische Universität Berlin, Berlin, Germany

Correspondence
Sam Payne, UT Department of Mathematics, University of Texas at Austin, 2515 Speedway, PMA 8.100, Austin, TX 78712, USA.
Email: sampayne@utexas.edu

Funding information
Simons Foundation, Grant/Award Number: 429818; NSF, Grant/Award Numbers: DMS1502553, DMS-2001502, DMS-2053261

Abstract
We develop techniques for studying fundamental groups and integral singular homology of symmetric Δ-complexes, and apply these techniques to study moduli spaces of stable tropical curves of unit volume, with and without marked points. As one application, we show that Δ_g and $\Delta_{g, n}$ are simply connected, for $g \geq 1$. We also show that Δ_3 is homotopy equivalent to the 5-sphere, and that Δ_4 has 3-torsion in H_5.

MSC (2020)
14T20 (primary), 14H10, 57Q05 (secondary)

1 | INTRODUCTION

In this paper, we study the topology of Δ_g, the link of the vertex in the moduli space M_g^{trop} of stable tropical curves of genus $g \geq 2$. The full moduli space M_g^{trop}, as defined and studied in [1, 6], is contractible because it is a cone, but the link Δ_g has exceedingly rich and interesting topology. Indeed, the rational homology of Δ_g is naturally identified with both Kontsevich’s graph homology and also with the top weight cohomology of the algebraic moduli space M_g; applications of this perspective include the proof that $\dim_Q H^{4g-6}(M_g; Q)$ grows exponentially with g [9]. The homotopy type of Δ_g is an invariant of the algebraic moduli stack M_g [10], and here we focus on its integral homology and homotopy groups.

The points of Δ_g naturally correspond with isomorphism classes of stable tropical curves of genus g and volume 1. Here a tropical curve is a tuple $G = (G, \ell, w)$, where G is a connected graph (possibly with loops and multiple edges), ℓ is a positive real length assigned to each edge, and w is a non-negative integer weight assigned to each vertex. The genus is $g(G) = h^1(G) + \sum_{v \in V(G)} w(v)$, the volume is $\text{Vol}(G) = \sum_{e \in E(G)} \ell(e)$, and the stability condition states that every vertex v of weight zero has valence at least 3.
The space Δ_g has the structure of a symmetric Δ-complex, that is, it is constructed by gluing quotients of simplices by finite groups in a manner analogous to the construction of a Δ-complex by gluing simplices [9, Section 3.2]. We recall the precise definition of a symmetric Δ-complex in Section 2. In Sections 3–6, we develop tools for computing fundamental groups of symmetric Δ-complexes and apply them to Δ_g.

Theorem 1.1. The space Δ_g is simply connected.

In addition, we develop tools for computing homology of symmetric Δ-complexes with integer coefficients and for proving contractibility of subcomplexes. We apply these to Δ_g, with particular attention to examples where g is small. The space Δ_2 has two maximal cells, each homeomorphic to a triangle, and these are glued along an edge. In particular, Δ_2 is contractible. Using the comparison to graph homology, it is also easy to see that Δ_3 and Δ_4 have the rational homology of S^5 and a point, respectively.

Theorem 1.2. The space Δ_3 is homotopy equivalent to S^5.

Theorem 1.3. The reduced integral homology $\tilde{H}_k(\Delta_4, \mathbb{Z})$ contains nontrivial 3-torsion for $k = 5$ and nontrivial 2-torsion for $k = 6, 7$. It vanishes for $k \neq 5, 6, 7$.

In particular, Δ_4 is not contractible.

Our methods apply equally well to moduli spaces of stable tropical curves with marked points. For non-negative integers g and n, such that $2g - 2 + n > 0$, the moduli space $M_{g,n}^{\text{trop}}$ of stable tropical curves of genus g with n marked points has pure dimension $3g - 3 + n$. In particular, when $3g - 3 + n > 0$, the link $\Delta_{g,n}$ is not empty. A point of $\Delta_{g,n}$ corresponds to a tropical curve (G, ℓ, w) of volume 1, together with a marking function $m : \{1, \ldots, n\} \to V(G)$, and the stability condition states that, for every vertex v of weight zero, the valence of v plus $|m^{-1}(v)|$ is at least 3. The topology of $\Delta_{g,n}$ is relatively simple when g is small. Indeed, $\Delta_{0,n}$ is homotopy equivalent to a wedge sum of $(n-2)!$ spheres of dimension $n-4$ [14]. Also, $\Delta_{1,n}$ is contractible for $n = 1, 2$, and homotopy equivalent to a wedge sum of $(n-1)!/2$ spheres of dimension $n-1$, for $n \geq 3$ [8, Theorem 1.2]. Note, in particular, that $\Delta_{0,4}$ is not connected, and $\Delta_{0,5}$ is connected but not simply connected.

Theorem 1.4. The space $\Delta_{g,n}$ is simply connected for $(g, n) \neq (0, 4), (0, 5)$.

The p-skeleton of a symmetric Δ-complex is the union of all cells of dimension at most p. In Section 3, we show that the fundamental group of a symmetric Δ-complex is generated by loops in the 1-skeleton. However, for $k > 1$, we give examples showing that π_k (respectively, H_k) is not generated by spheres (respectively, cycles) in the k-skeleton. Even for $k = 1$, the relations among spheres (respectively, cycles) in the k-skeleton are not necessarily generated by boundaries of balls (respectively, chains) in the $(k+1)$-skeleton. In particular, the relations in π_1 among the classes of loops in the 1-skeleton are not always generated by boundaries of discs in the 2-skeleton.

In Section 4, we describe the spectral sequence associated to the filtration by p-skeleta. Taken with rational coefficients, this spectral sequence recovers the rational cellular homology theory developed in [9]. With integer coefficients, it provides new information on torsion in homology of symmetric Δ-complexes. We refine this approach by considering an analogous spectral sequence relative to a subcomplex, which is essential for the proof of Theorem 1.3. The idea of computing
homology of moduli spaces of tropical curves relative to large contractible subcomplexes is not new; contractibility of $\Delta_{g,n}^{br}$, the closure of the locus of tropical curves with bridges, is essential to the main results in [8]. Here we use an even larger contractible subcomplex, given by Theorem 6.1.

The techniques we develop to study $\Delta_{g,n}$ as a symmetric Δ-complex apply to more general filtered spaces, in which a p-skeleton is obtained from a $(p-1)$-skeleton as the mapping cone for a continuous map from a disjoint union of quotients of $(p-1)$-spheres by finite subgroups of the orthogonal group. We call these symmetric CW-complexes, and Theorems 3.1, 4.2, and 4.3 are proved for this more general class of spaces. Symmetric CW-complexes that are not symmetric Δ-complexes appear naturally in algebraic geometry as dual complexes of boundary divisors in nonsimplicial toroidal compactifications, such as the Voronoï compactifications of moduli spaces of principally polarized abelian varieties.

Remark 1.5. The space Δ_g has several natural interpretations in algebraic geometry, low-dimensional topology, and geometric group theory (see [9, p. 565]). Notably, it is the quotient of Harvey’s complex of curves on a closed orientable surface of genus g by the action of the mapping class group, and is also the quotient of the simplicial completion of Culler–Vogtmann Outer Space by the action of $\text{Out}(F_g)$. It is homotopy equivalent to the one point completion of the quotient of Outer Space itself by the action of $\text{Out}(F_g)$. Nevertheless, the rational homology of Δ_g has little relation to the rational homology of $\text{Out}(F_g)$ [8, Section 7], and we do not know of any greater relation between the torsion homologies. For an alternate proof of Theorem 1.1, using ideas from geometric group theory, see Remark 6.2.

Remark 1.6. Theorem 1.3 is not the first observed instance of torsion in the homology of the spaces $\Delta_{g,n}$. Indeed, $H_n(\Delta_{2,n},\mathbb{Z})$ has torsion in degree $n + 1$, for odd $n \geq 5$ [7]. However, it is the first instance of torsion in degree less than $\max\{2g - 1, 2g - 3 + n\}$, the bound on low-degree rational homology induced of $\Delta_{g,n}$ induced by vanishing of high-degree cohomology on the algebraic moduli space \mathcal{M}_g [8, Theorem 1.6].

2 | STRUCTURE OF SYMMETRIC Δ-COMPLEXES

We begin by recalling the definition of symmetric Δ-complexes, following [9, Section 3]. Let \mathcal{I} be the category with objects $\{p\} = \{0, \ldots, p\}$, for $p \geq 0$, with morphisms given by injective maps. Recall that a symmetric Δ-complex is a functor $X : \mathcal{I}^{\text{op}} \to \text{Sets}$. Such a functor is determined by a set $X_p = X([p])$ for each $p \geq 0$, actions of the symmetric group \mathfrak{S}_{p+1} on X_p for all p, and face maps $d_i : X_p \to X_{p-1}$ for $p \geq 1$, obtained by applying the functor X to the unique order-preserving injective map $[p-1] \to [p]$ whose image does not contain i. The face maps satisfy the usual simplicial identities as well as a compatibility with the symmetric group action.

An injection $\vartheta : [p] \to [q]$ determines an inclusion of standard simplices $\vartheta_* : \Delta^p \to \Delta^q$, whose image is the p-face with vertices corresponding to the image of ϑ. The geometric realization of a symmetric Δ-complex X is

$$|X| = \left(\prod_{p=0}^{\infty} X_p \times \Delta^p \right) / \sim,$$ \hspace{1cm} (2.1)

where \sim is the equivalence relation generated by $(x, \vartheta_* a) \sim (\vartheta^* x, a)$. Each $x \in X_p$ determines a map of topological spaces $x : \Delta^p \to |X|$, which factors through the quotient of Δ^p by the stabilizer
$H_x < \mathfrak{S}_{p+1}$, and X may be recovered from the topological space $|X|$ together with this set of maps from simplices.

Let $X_p \subset X_p$ be a subset consisting of one representative of each \mathfrak{S}_{p+1}-orbit. Then $|X|$ is partitioned into cells

$$|X| = \coprod_p \coprod_{x \in X_p} (\Delta^p)^{\circ}/H_x,$$

each isomorphic to the quotient of an open simplex by a linear finite group action. Note that the closure of each p-cell meets only finitely many other cells, each of dimension less than p. The properties of this stratification are hence closely analogous to the properties of a CW-complex, except that the cells are quotients of open balls by finite groups, rather than ordinary open balls. We capture this analogy with the following definition.

Definition 2.1. A symmetric CW-complex is a Hausdorff topological space X together with a partition into locally closed cells, such that, for each cell $C \subset X$, there is a continuous map from the quotient of the closed unit ball in some \mathbb{R}^p by a finite subgroup of the orthogonal group such that

1. the quotient of the open unit ball maps homeomorphically onto C, and
2. the image meets only finitely many cells, each of dimension less than p.

We require furthermore that a subset of X is closed if and only if its intersection with the closure of each cell is closed.

We say that a symmetric CW-complex is finite if it has only finitely many cells. All of the applications we consider involve only finite symmetric CW-complexes.

Definition 2.2. The p-skeleton of a symmetric CW-complex, denoted $X^{(p)} \subset X$, is the union of its cells of dimension at most p.

Suppose X has p-cells $\{C_i : i \in I\}$. Let $G_i \leq O(p)$ be a subgroup of the orthogonal group for which there is a continuous map $B^p/G_i \to X$ taking $(B^p)^{\circ}/G_i$ homeomorphically onto C_i. Note that B^p/G_i is cone shaped around the image of the origin, and that $X^{(p)}$ is naturally identified with the mapping cone of the attaching map

$$\coprod_{i \in I} \partial B^p/G_i \to X^{(p-1)}.$$

The total space X is the direct limit of its skeleta $X^{(p)}$.

Example 2.3. Let X be a symmetric Δ-complex. Then $|X|$, together with its partition into cells, is a symmetric CW-complex.

Example 2.4. Let Δ be a generalized cone complex, as defined in [1], obtained as the colimit of a diagram of rational polyhedral cones with face maps. Then the geometric realization $|\Delta|$ is partitioned into cells by the images of the relative interiors of the cones in the diagram. The link of the vertex, with its induced partition into cells, is a symmetric CW-complex.
Remark 2.5. Example 2.4 shows that symmetric CW-complexes appear naturally in algebraic geometry, as dual complexes of boundary divisors in toroidal embeddings. In cases where the toroidal embedding is non-simplicial, as is the case in such well-studied examples as the perfect cone and second Voronoï toroidal compactifications of moduli spaces of principally polarized abelian varieties, the resulting symmetric CW-complex is not a symmetric Δ-complex. While the applications to moduli spaces of tropical curves stated in the introduction require only the special case of symmetric Δ-complexes, we expect that symmetric CW-complexes will be useful for future applications, for example, for studying the top weight cohomology of the moduli space of abelian varieties. Since the proofs of our basic technical results (Theorems 3.1, 4.2, and 4.3) work equally well for symmetric CW-complexes, we present them in this greater level of generality.

3 HOW ATTACHING p-CELLS AFFECTS HOMOLOGY AND HOMOTOPY GROUPS OF SYMMETRIC CW-COMPLEXES

Let X be a symmetric CW-complex obtained from a subcomplex X' by attaching cells of dimension p. In stark contrast with ordinary CW-complexes, the pair (X, X') is not necessarily $(p-1)$-connected, that is, the inclusion $X' \hookrightarrow X$ need not induce isomorphisms on homotopy groups π_i for $i < p-1$ and a surjection for $i = p-1$ (see Examples 3.2–3.7). Hence, the classical cellular approximation theorems for CW-complexes do not extend to symmetric CW-complexes. The following theorem is the key technical step in the proof of Theorems 1.1 and 1.4; it shows that cellular approximation holds in dimension 1, even though it fails in all higher dimensions.

Theorem 3.1. Let X be a finite symmetric CW-complex with $x \in |X^{(1)}|$. Then the natural map $\pi_1(|X^{(1)}|, x) \to \pi_1(|X|, x)$ is surjective.

Proof. It suffices to show that, if X is obtained from a subcomplex X' by attaching a single cell of dimension $n \geq 2$, then the induced map $\pi_1(|X'|, x) \to \pi_1(|X|, x)$ is surjective. We may assume X and X' are connected. In this case, $|X|$ is the identification space obtained from $|X'|$ and B^n/G by identifying the points of S^{n-1}/G with their images in $|X'|$ under the attaching map, where $G \leq O(n)$ is finite. We write 0 for the origin in B^n and express $|X|$ as the union of the open sets $|X| - \{0\}$ and $(B^n - S^{n-1})/G$. Their intersection is homeomorphic to $\mathbb{R} \times (S^{n-1}/G)$, hence connected. By van Kampen’s theorem, $\pi_1(|X|)$ is generated by the images under inclusion of $\pi_1(|X| - \{0\})$ and $\pi_1((B^n - S^{n-1})/G)$. The first of these coincides with the image under inclusion of $\pi_1(|X'|)$. This is because the radial deformation retraction of $B^n - \{0\}$ onto S^{n-1} is G-equivariant and therefore induces a deformation retraction from $(B^n - \{0\})/G$ into S^{n-1}/G. Since $\pi_1((B^n - S^{n-1})/G)$ is trivial, $\pi_1(|X|)$ is generated by the image under the inclusion of $\pi_1(|X'|)$, as required.

It follows from Theorem 3.1 that H_1 is also generated by loops in the 1-skeleton of a finite-dimensional symmetric CW-complex. This surjectivity on H_1 and π_1 looks like a weak result, but it is the only general result of this nature that one can expect. Suppose $k > 0$. We will exhibit a finite symmetric Δ-complex X whose dimension n is larger than $k + 1$, such that the inclusion of $|X^{(n-1)}| \to |X|$ induces non-injective maps on H_k and π_k and non-surjective maps on H_{k+1} and π_{k+1}. We begin with symmetric CW-complex examples because they make the essentials more visible. See Remark 6.3 for an example in nature of a symmetric Δ-complex X such that kth homology and homotopy groups of the k-skeleton do not surject onto those of X.
Example 3.2 (Attaching a symmetric n-cell can kill π_1 and H_k for odd $k < n - 1$). Suppose $n > 2$, let $G \leq O(n)$ be generated by the negation map, and consider B^n/G. The CW complex structure on $|X'| = S^{n-1}/G \cong \mathbb{R}P^{n-1}$ is not important. We regard B^n/G as a single symmetric n-cell, attached to $|X'|$ in the obvious way. The result is contractible. Therefore, attaching this symmetric n-cell kills not just $H_{n-1}(\mathbb{R}P^{n-1}; \mathbb{Z})$ but also $\pi_1(\mathbb{R}P^{n-1}) \cong \mathbb{Z}/2\mathbb{Z}$ and $H_i(\mathbb{R}P^{n-1}; \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ where $i < n - 1$ is positive and odd.

Example 3.3 (Attaching a symmetric n-cell can kill π_k and H_k for $2 \leq k < n - 1$). As a variation on the previous example, take $2 \leq k \leq n - 2$ and let $g \in O(n)$ act on \mathbb{R}^n by fixing pointwise a $(k - 1)$-dimensional subspace and acting by negation on its orthogonal complement. Write $G \cong \mathbb{Z}/2\mathbb{Z}$ for the group generated by g. Again B^n/G is contractible, but this time $|X'| = S^{n-1}/G$ is the join of $\mathbb{R}P^{n-k}$ and S^{k-2}. Taking the join of a space with S^{k-2} is the same as (unreducedly) suspending it $k - 1$ times. So, the reduced homology of $|X'|$ is obtained by shifting the reduced homology of $\mathbb{R}P^{n-k}$ up $k - 1$ degrees. In particular, the first non-zero homology group of $|X'|$ in positive degree is $H_k(|X'|; \mathbb{Z}) \cong H_1(\mathbb{R}P^{n-k}; \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$. Since we chose $k \geq 2$, we always suspend at least once, so $|X'|$ is simply connected. Combined with the Hurewicz theorem, this shows that the first nontrivial homotopy group of $|X'|$ is $\pi_k(|X'|) \cong H_k(|X'|; \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$. So the maps on H_k and π_k induced by $|X'| \to |X|$ are not injective, even though X is obtained from X' by attaching a single symmetric n-cell.

The next few examples are quotients of a standard simplex. Let $G \leq \mathfrak{S}_{n+1}$. Then the quotient $X = \Delta^n/G$ naturally inherits the structure of a symmetric Δ-complex, with X_q being the set of G-orbits of q-faces of Δ^n. Then $|X^{(n-1)}|$ is the quotient of the boundary of the simplex by G. The geometric realization $|X|$ is contractible because it is the cone over $|X^{(n-1)}|$.

Example 3.4 (Analogue of Example 3.3 for symmetric Δ-complexes). Suppose $k \geq 3$ is given, choose ℓ satisfying $3 \leq \ell \leq k$, and set $n = k + \ell - 1$. Consider the subgroup G of $O(n)$ generated by the involution g that fixes all but the first 2ℓ vertices of Δ^n, which it permutes by $(01)(23) \cdots (2\ell - 2 2\ell - 1)$. This makes sense since $2\ell \leq n + 1$. We make the affine span of $\Delta^n \subseteq \mathbb{R}^{n+1}$ into a vector space V by taking its barycenter as the origin. It is easy to see that g acts on V by negating an ℓ-dimensional subspace and pointwise fixing its orthogonal complement, which has dimension $k - 1$. We can identify the unit sphere in V with the boundary of Δ^n by radial projection. This extends to a G-equivariant identification of Δ^n with the unit ball in V. Therefore, every feature of the previous example carries over to the symmetric Δ-complex Δ^n/G. In particular, the maps on π_k and H_k induced by $|\Delta^n/G|^{(n-1)} \to |\Delta^n/G|$ are not injective. We needed the restriction $\ell \geq 3$ to get $n > k + 1$, and we needed $\ell \leq k$ so that the permutation of the vertices of Δ^n makes sense. Hence, these examples only occur for $k \geq 3$. For $k = 1, 2$ we refer to the following examples.

Example 3.5 (Attaching a symmetric 3-simplex can kill π_1 and H_1). We construct a 3-dimensional contractible symmetric Δ-complex whose 2-skeleton is not simply connected. Take $G \cong \mathbb{Z}/4\mathbb{Z}$ to be the subgroup of $O(3)$ generated by an element that permutes the vertices of Δ^3 cyclically as in Figure 1. The cube is a visual aid, and the tetrahedron is inscribed in it. The encircling arrows indicate this transformation, namely the composition of a $\pi/2$ rotation and the reflection across the equatorial plane. The shaded face is a fundamental domain, and the arrows on its boundary indicate the identifications arising from the quotient map. As a result, $\partial \Delta^3/G$ is homeomorphic...
to $\mathbb{R}P^2$. Taking $X = \Delta^3/G$, it follows that $|X|$ is simply connected, even though its 2-skeleton is not: $\pi_1(|X^{(2)}|) \cong \pi_1(\mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z}$.

Example 3.6 (Attaching a symmetric 4-simplex can kill π_2 and H_2). We construct a 4-dimensional contractible symmetric Δ-complex whose 3-skeleton is simply connected and has nontrivial H_2 (hence π_2). Take $X = \Delta^4/G$ where $G \cong \mathbb{Z}/4\mathbb{Z}$ fixes one vertex and permutes the others cyclically. This example contains the previous one; the quotient of the boundary of Δ^4 is the unreduced suspension of $\mathbb{R}P^2$. The suspension points are the fixed points of G, namely the fixed vertex and the barycenter of the opposite facet.

Example 3.7 (Non-surjectivity of π_k and H_k). Take X as in any of the previous examples, and define Z as the symmetric CW-complex or symmetric Δ-complex obtained by identifying the two copies of X along their $(n-1)$-skeleta. So $Z^{(n-1)} = X'$ in the notation of the previous examples. Let $k > 1$ be the smallest degree for which $H_k(|X'|; \mathbb{Z}) \neq 0$. Since Z is the (unreduced) suspension of X', we have $H_{k+1}(|Z|; \mathbb{Z}) \neq 0$. The Hurewicz theorem shows that $\pi_{k+1}(|Z|)$ is also nonzero. On the other hand, the natural maps $H_{k+1}(|X'|; \mathbb{Z}) \to H_{k+1}(|Z|; \mathbb{Z})$ and $\pi_{k+1}(|X'|) \to \pi_{k+1}(|Z|)$ are the zero maps because $|X'| \to |Z|$ factors through the contractible space $|X|$. So, the induced maps on H_{k+1} and π_{k+1} are not surjective.

4 | Computing Homology Using the Filtration by Skeleta

Let A be an abelian group. Any finite filtration of a topological space Y by subspaces

$$\emptyset = Y^{-1} \subset Y^0 \subset Y^1 \subset \cdots \subset Y^n = Y$$

induces a filtration on the singular chain complex with coefficients in A,

$$0 \subset C(Y^0; A) \subset C(Y^1; A) \subset \cdots \subset C(Y^n; A) = C(Y; A).$$

This filtration on $C(Y)$ gives rise to a spectral sequence with

$$E^0_{p,q} = C_{p+q}(Y^p, Y^{p-1}; A) = C_{p+q}(Y^p; A)/C_{p+q}(Y^{p-1}; A),$$
and

\[E^1_{p,q} = H_{p+q}(Y^p, Y^{p-1}; A) \]

that converges to

\[E^\infty_{p,q} = \frac{\text{im}(H_{p+q}(Y^p; A) \to H_{p+q}(Y; A))}{\text{im}(H_{p+q}(Y^{p-1}; A) \to H_{p+q}(Y; A))}. \]

Remark 4.1. The higher differentials in this spectral sequence may be understood as follows. An element of \(E^1_{p,q} \) is represented by a \((p + q)\)-chain \(\sigma \) in \(Y^p \) whose boundary \(\partial \sigma \) is a \((p + q - 1)\)-cycle in \(Y^{p-1} \). If \(\partial \sigma \) is contained in \(Y^{p-r} \) but not in \(Y^{p-r-1} \), then \([\sigma]\) survives to \(E^r \), and \(d_r : E^r_{p,q} \to E^r_{p-r,q+r-1} \) maps \([\sigma]\) to \([\partial \sigma]\) in the surviving subquotient of \(H_{p+q-1}(Y^{p-r}, Y^{p-r-1}; A) \).

This spectral sequence will be our main tool for understanding the homology of symmetric CW-complexes. When applied to the filtration by skeleta, it gives the following.

Theorem 4.2. Let \(X \) be a finite-dimensional symmetric CW-complex whose \(p \)-cells are \(\{C_i \cong (B^p)^\circ / G_i : i \in IP\} \), for some finite subgroups \(G_i \subset O(p) \). Then there is a spectral sequence with

\[E^1_{0,q} = H_q(|X^{(0)}|; A), \quad \text{and} \quad E^1_{p,q} = \bigoplus_{i \in IP} \tilde{H}_{p+q-1}(S^{p-1}/G_i; A), \]

for \(p \geq 1 \), that converges to

\[E^\infty_{p,q} = \frac{\text{im}(H_{p+q}(|X^{(p)}|; A) \to H_{p+q}(|X|; A))}{\text{im}(H_{p+q}(|X^{(p-1)}|; A) \to H_{p+q}(|X|; A))}. \]

Proof. Consider the spectral sequence associated to the filtration of \(X \) by its skeleta \(X^{(p)} \), which has \(E^1_{p,q} = H_{p+q}(|X^{(p)}|, |X^{(p-1)}|; A) \). For \(p > 0 \), each connected component of \(|X^{(p)}|/|X^{(p-1)}| \) is homeomorphic to the wedge sum of unreduced suspensions \(S(S^{(p-1)}/G_i) \) associated to \(p \)-cells \(C_i = B^p/G_i \) in that component, and the theorem follows. \(\square \)

If we take \(A = \mathbb{Q} \), then \(E^1_{p,q} \) vanishes for \(q \neq 0 \), so we get a single chain complex, the \(q = 0 \) row of \(E^1 \), that computes the rational homology of \(|X| \). When \(X \) is a symmetric \(\Delta \)-complex, this is precisely the rational cellular chain complex presented in [9].

For our applications to \(\Delta_{g,n} \), which typically has many cells and contains a large contractible subcomplex, we use the following variant of Theorem 4.2.

Theorem 4.3. Let \(X \) be a finite-dimensional symmetric CW-complex, let \(Z \subset X \) be a subcomplex, and let \(\{C_i \cong (B^p)^\circ / G_i : i \in IP\} \), be the cells of \(X \) that are not in \(Z \). Then there is a spectral sequence with

\[E^1_{0,q} = H_q(|Z| \cup X^{(0)}; A), \quad \text{and} \quad E^1_{p,q} = \bigoplus_{i \in IP} \tilde{H}_{p+q-1}(S^{p-1}/G_i; A) \]
for $p \geq 1$, that converges to

$$E_{p,q}^{\infty} = \frac{\text{im}(H_{p+q}([X^{(p)}];A) \to H_{p+q}([X];A))}{\text{im}(H_{p+q}([X^{(p-1)}];A) \to H_{p+q}([X];A))}.$$

Proof. The argument is identical to the proof of Theorem 4.2, using the filtration of X by the subcomplexes $W^{(p)} = Z \cup X^{(p)}$.

5 QUOTIENTS WITH REFLECTIONS

As explained above, a symmetric CW-complex is filtered by its p-skeleta, and the associated graded of the induced filtration on singular homology is the abutment of a spectral sequence whose E_1-page is a direct sum of homology groups of quotients of spheres by finite subgroups of orthogonal groups. The topology of such quotients of spheres is understood in only a few special cases. Swartz considered the case where the subgroup of the orthogonal group is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^k$ [13], and Lange classified the cases where the quotient is a PL-sphere [11] or a topological sphere [12]. See also [3] for applications of Lange’s results to quotients of S^{n-1} by subgroups of the permutation group \mathfrak{S}_{n+1}.

Proposition 5.1. Let $H < O(n)$ be a finite subgroup that contains a reflection. Then S^{n-1}/H is contractible.

Proof. Let $K < H$ be the subgroup generated by reflections. Each reflection in K fixes a hyperplane pointwise, and we let C be a chamber, that is, the closure of a component of the complement of the union of these hyperplanes. Every point in \mathbb{R}^n is K-equivalent to exactly one point in C [5, V.3.3], and hence $C \to \mathbb{R}^n/K$ is a homeomorphism. Furthermore, since K is normal in H, we have homeomorphisms

$$S^{n-1}/H \cong (S^{n-1}/K)/(H/K) \cong (S^{n-1} \cap C)/H_C,$$

where $H_C < H$ is the stabilizer of C. We now show that $(S^{n-1} \cap C)/H_C$ is contractible.

There is a point v in the interior of C that is invariant under H_C, for example, choose any point in the interior of C and take the sum of the points in its H_C-orbit. Composing straight line flow toward v with radial projection to the unit sphere gives a deformation retraction of $S^{n-1} \cap C$ to the point $v/|v|$. This deformation retraction is H_C-equivariant, and hence induces a deformation retraction of $(S^{n-1} \cap C)/H_C$ to a point.

6 APPLICATIONS TO MODULI SPACES OF TROPICAL CURVES

One strategy for studying the topology of $\Delta_{g,n}$ is to identify large contractible subcomplexes. The largest contractible subcomplex identified in [8, Theorem 1.1] is the locus $\Delta^{br}_{g,n}$ of tropical curves with bridges, cut vertices, loop edges, repeated markings, or vertices of positive weight; it is the closure of the locus of tropical curves with bridges. We now use Proposition 5.1 to produce an even larger contractible subcomplex.
Theorem 6.1. The subcomplex $\Delta_{g,n}^{bm} \subset \Delta_{g,n}$ parameterizing tropical curves with bridges, cut vertices, loops, repeated markings, vertices of positive weight, or multiple edges is contractible, for $g \geq 1$.

The superscript bm reflects the fact that this subcomplex is the closure of the locus of tropical curves with bridges or multiple edges.

Proof. First, note that contracting an edge in a graph with a multiple edge produces a graph with either a loop edge or a multiple edge. Hence, $\Delta_{g,n}^{bm}$ is a subcomplex.

Note that $\Delta_{g,n}^{bm}$ is obtained from the subcomplex $\Delta_{g,n}^{br}$ as an iterated mapping cone, for a finite sequence of continuous maps from quotients of spheres $S^{p−1}/\text{Aut}(G)$, where G is a graph with multiple edges. Interchanging a pair of edges between the same endpoints acts by a reflection, and hence the quotient $S^{p−1}/\text{Aut}(G)$ is contractible, by Proposition 5.1.

If Y is contractible and $f : Y \to Z$ is continuous, then the inclusion of Z into the mapping cone of f is a homotopy equivalence. Applying this observation to the iterated mapping cone construction discussed above, we see that the inclusion of $\Delta_{g,n}^{br}$ in $\Delta_{g,n}^{bm}$ is a homotopy equivalence. The subcomplex $\Delta_{g,n}^{br}$ is contractible [8, Theorem 1.1], and the theorem follows. □

We now show that $\Delta_{g,n}$ is simply connected, for $(g,n) \neq (0,4),(0,5)$.

Proof of Theorem 1.4. First, note that $\Delta_{0,n}$ is simply connected for $n \geq 6$, because it is homotopic to a wedge of spheres of dimension $n−4$ [14]. We therefore assume that $g \geq 1$. We claim that the 1-skeleton of $\Delta_{g,n}$ is contained in $\Delta_{g,n}^{bm}$, for $g \geq 1$. To see this, note that $\Delta_{g,n}^{(1)}$ parameterizes stable tropical curves with 1 or 2 edges. Either one of the edges is a bridge, all of the edges are loops, or there are two edges that together form a loop. In particular, the underlying graph has either a loop, bridge, or multiple edges. This proves the claim. Next, recall that the fundamental group is generated by loops in $\Delta_{g,n}^{(1)}$, by Theorem 3.1. If $g \geq 1$, then all such loops can be contracted in $\Delta_{g,n}^{bm}$, by Theorem 6.1, and hence $\Delta_{g,n}$ is simply connected. □

Remark 6.2. We briefly sketch an alternate proof that Δ_{g} is simply connected, suggested by A. Putman. A theorem of Armstrong [2] states that, when a group G acts simplicially on a simply connected simplicial complex X, the fundamental group of the quotient space X/G is the quotient of G by the subgroup generated by elements of G that fix some point of X. In particular, since Δ_{g} is the quotient of Harvey’s complex of curves on a closed orientable surface of genus g by the action of the mapping class group, and since the mapping class group is generated by Dehn twists, each of which fixes points in the curve complex, the quotient Δ_{g} is simply connected. Variations on this argument are possible as well, for example, using the description of Δ_{g} as the quotient of the simplicial completion of Culler–Vogtmann Outer Space by the action of $\text{Out}(F_g)$, or using the action of the pure mapping class group on the complex of curves on a punctured surface to give an alternate proof of Theorem 1.4.

Next, we show that Δ_{3} is homotopy equivalent to S^{5}.

Proof of Theorem 1.2. First, note that Δ_{3} is homotopy equivalent to $\Delta_{3}/\Delta_{3}^{bm}$, by Theorem 6.1. Enumerating stable graphs of genus 3 shows that the only one without bridges, cut vertices, loops, multiple edges, or vertices of positive weight is the complete graph K_{4}. The cell of Δ_{3} corresponding to K_{4} is the quotient of the open 5-simplex, whose vertices correspond to the 2-element subsets of a 4-element set, by the permutation group \mathfrak{S}_{4}.
It follows Δ_3/Δ_3^{bm} is homeomorphic to the unreduced suspension $S(S^4/\mathfrak{S}_4)$. Each transposition in \mathfrak{S}_4 acts by a double transposition on the vertices of the 5-simplex. This is a rotation in the sense of [11], meaning that its fixed-point set has codimension 2. Any quotient of S^{n-1} by a finite group generated by such rotations is PL-homeomorphic to S^{n-1} [11]. In particular, S^4/\mathfrak{S}_4 is homeomorphic to S^4, and hence Δ_3 is homotopy equivalent to $S(S^4) \cong S^5$. □

We conclude by showing that Δ_4 has nontrivial 3-torsion in H_5 and nontrivial 2-torsion in H_6 and H_7. The proof uses Theorems 4.3 and 6.1, together with explicit computations of the integral homology of certain quotients of spheres S^{p-1} by subgroups of the permutation group \mathfrak{S}_{p+1}. These computations were carried out with computer assistance. We considered the Δ-complex structure on $S^{p-1}/\mathfrak{S}_{p+1}$ induced by barycentric subdivision on the boundary of Δ^p, and used a python script to generate matrices for the simplicial chain complex. We then used Magma [4] to compute the homology. The code may be found at the following link.

https://github.com/dcorey2814/homologyQuotientSpheres.git

Proof of Theorem 1.3. We compute the E^1-page of the spectral sequence given by Theorem 4.3, using the contractible subcomplex $Z = \Delta_4^{bm}$.

By enumerating the stable graphs of genus 4, we see that there are precisely 3 cells in Δ_4 that are not contained in Δ_4^{bm}. These are the edge graph G of a square pyramid, the edge graph G' of a triangular prism, and the complete bipartite graph $K_{3,3}$. For each graph, we computed the reduced homology of the corresponding sphere quotient. The nonzero reduced homology groups are as follows:

$$\tilde{H}_k(S^6/\text{Aut}(G);\mathbb{Z}) = \begin{cases} \mathbb{Z}/4\mathbb{Z}, & \text{for } k = 4, \\ \mathbb{Z}/2\mathbb{Z}, & \text{for } k = 5; \end{cases}$$

$$\tilde{H}_k(S^7/\text{Aut}(G');\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & \text{for } k = 5, \\ \mathbb{Z}/2\mathbb{Z}, & \text{for } k = 6; \end{cases}$$

$$\tilde{H}_k(S^7/\text{Aut}(K_{3,3});\mathbb{Z}) = \begin{cases} \mathbb{Z}/3\mathbb{Z}, & \text{for } k = 4, \\ \mathbb{Z}/4\mathbb{Z}, & \text{for } k = 5, \\ \mathbb{Z}/2\mathbb{Z}, & \text{for } k = 6. \end{cases}$$

Consider the spectral sequence given by Theorem 4.3 for $X = \Delta_4$ and $Z = \Delta_4^{bm}$. The nonzero terms on the E^1-page, aside from $E^1_{0,0} = \mathbb{Z}$, are:

$$E^1_{7,-2} = \mathbb{Z}/4\mathbb{Z},$$

$$E^1_{7,-1} = \mathbb{Z}/2\mathbb{Z},$$

and

$$E^1_{8,-3} = \mathbb{Z}/3\mathbb{Z},$$

$$E^1_{8,-2} = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z},$$

$$E^1_{8,-1} = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$$
There are no differentials between nonzero terms on E^r, for $r > 1$, so the sequence degenerates at E^2. The only differentials between nonzero terms on E^1 are $E^1_{8,-2} \to E^1_{7,-2}$ and $E^1_{8,-1} \to E^1_{7,-1}$. Each source is larger than its target, so we conclude that both $E^\infty_{8,-2}$ and $E^\infty_{8,-1}$ contain nontrivial 2-torsion. It follows that $H_6(\Delta_4; \mathbb{Z})$ and $H_7(\Delta_4; \mathbb{Z})$ contain nontrivial 2-torsion. Similarly, we see that $E^\infty_{8,-3} = \mathbb{Z}/3\mathbb{Z}$ and conclude that $H_5(\Delta_4; \mathbb{Z})$ contains nontrivial 3-torsion.

Remark 6.3. In the proof of Theorem 1.3, we have seen that $\Delta^{(6)}_4$ is contained in a contractible subcomplex Δ^b_{4m}. However, Δ_4 has nontrivial H_5 and H_6. We conclude that $H_5(\Delta_4; \mathbb{Z})$ and $H_6(\Delta_4; \mathbb{Z})$ are not generated by cycles in the 5-skeleton and 6-skeleton, respectively. By the Hurewicz theorem, we see also that $\pi_5(\Delta_4; \mathbb{Z})$ is not generated by maps of spheres into the 5-skeleton.

Acknowledgements

We thank Ben Blum-Smith for helpful conversations related to quotients of spheres by subgroups of permutation groups and A. Putman for explaining the alternate proof that Δ_g is simply connected, presented in Remark 6.2. The work of Daniel Allcock is supported in part by Simons Foundation Collaboration Grant 429818, the work of Daniel Corey is supported in part by NSF RTG Award DMS1502553 and “Symbolic Tools in Mathematics and their Application” (TRR 195, project-ID 286237555), and the work of Sam Payne is supported in part by NSF DMS-2001502 and DMS-2053261.

Journal Information

The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

References

1. D. Abramovich, L. Caporaso, and S. Payne, *The tropicalization of the moduli space of curves*, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 4, 765–809.
2. M. A. Armstrong, *On the fundamental group of an orbit space*, Proc. Cambridge Philos. Soc. 61 (1965), 639–646.
3. B. Blum-Smith and S. Marques, *When are permutation invariants Cohen-Macaulay over all fields?* Algebra Number Theory 12 (2018), no. 7, 1787–1821.
4. W. Bosma, J. Cannon, and C. Playoust, *The Magma algebra system. I. The user language*, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265; Computational algebra and number theory (London, 1993).
5. N. Bourbaki, *Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines*, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.
6. S. Brannetti, M. Melo, and F. Viviani, *On the tropical Torelli map*, Adv. Math. 226 (2011), no. 3, 2546–2586.
7. M. Chan, *Topology of the tropical moduli spaces $M_{2,n}$*, to appear Beitr. Algebra Geom. https://doi.org/10.1007/s13366-021-00563-6.
8. M. Chan, S. Galatius, and S. Payne, *Topology of moduli spaces of tropical curves with marked points*, Facets of algebraic geometry: A collection in honor of William Fulton’s 80th birthday, Vol. 472, London Mathematical Society Lecture Notes, Cambridge University Press, 2022.
9. M. Chan, S. Galatius, and S. Payne, *Tropical curves, graph complexes, and top weight cohomology of M_g*, J. Amer. Math. Soc. 34 (2021), no. 2, 565–594.
10. A. Harper, *Factorization for stacks and boundary complexes*, arXiv:1706.07999, 2017.
11. C. Lange, *Characterization of finite groups generated by reflections and rotations*, J. Topol. 9 (2016), no. 4, 1109–1129.
12. C. Lange, *When is the underlying space of an orbifold a manifold?*, Trans. Amer. Math. Soc. **372** (2019), no. 4, 2799–2828.

13. E. Swartz, *Matroids and quotients of spheres*, Math. Z. **241** (2002), no. 2, 247–269.

14. K. Vogtmann, *Local structure of some Out(F_n)-complexes*, Proc. Edinburgh Math. Soc. (2) **33** (1990), no. 3, 367–379.