The nature of intraspecific genome size variation in taxonomically complex eyebrights

Authors:

Hannes Becher¹, Robyn F. Powell², Max R. Brown¹,³, Chris Metherell⁴, Jaume Pellicer²,⁵, Ilia J. Leitch², Alex D. Twyford¹,⁶,⁷

¹ Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
² Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
³ current address: Wellcome Trust Genome Campus, Hinxton, Saffron Walden CB10 1RQ
⁴ Botanical Society of Britain and Ireland, 4 High Firs Crescent, Harpenden, Hertfordshire AL5 1NA, UK
⁵ Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia sn, 08038, Barcelona, Spain
⁶ Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
⁷ correspondence: Alex.Twyford@ed.ac.uk

Word counts:

Total word count for the main body of the text (Introduction, Materials and Methods, Results, Discussion): 5826

Section word counts: Into 1035, M&M 1320, Results 1730, Discussion 1741

Figures: 3, all colour

Tables: 1

Supporting Figures: 2

Supporting Tables: 2
Summary

- Genome size (GS) is a key trait related to morphology, life history, and evolvability. Although GS is, by definition, affected by presence/absence variants (PAVs), which are ubiquitous in population sequencing studies, GS is often treated as an intrinsic property of a species. Here, we studied intra- and interspecific GS variation in taxonomically complex British eyebrights (*Euphrasia*).

- We generated GS data for 192 individuals of diploid and tetraploid *Euphrasia* and analysed GS variation in relation to ploidy, taxonomy, population affiliation, and geography. We further compared the genomic repeat content of 30 samples.

- We found considerable genuine intraspecific GS variation, and observed isolation-by-distance for GS in outcrossing diploids. Tetraploid *Euphrasia* showed contrasting patterns, with GS increasing with latitude in outcrossing *Euphrasia arctica*, but little GS variation in the highly selfing *Euphrasia micrantha*. Interspecific differences in GS genomic repeat percentages were small.

- We show the utility of treating GS as the outcome of polygenic variation. Like other types of genetic variation, such as single nucleotide polymorphisms, GS variation may be increased through hybridisation and population subdivision. In addition to selection on associated traits, GS is predicted to be affected indirectly by selection due to pleiotropy of the underlying PAVs.

Keywords: Genome size, polygenic trait, *Euphrasia*, ploidy, intraspecific variation, selection, pleiotropy, genomic repeats
INTRODUCTION

Genome size (GS), defined as the amount of DNA in an individual’s unreplicated haploid nucleus (Greilhuber et al., 2005), is associated with an organism’s life history strategy, development, physiology, ecology, and gene and genome dynamics and evolution (Van’t Hof & Sparrow, 1963; Beaulieu et al., 2008; Šímová & Herben, 2012; Greilhuber & Leitch, 2013; Simonin & Roddy, 2018; Bilinski et al., 2018; Novák et al., 2020a; Roddy et al., 2020). Genome size is estimated to show a c. 64,000-fold variation across Eukaryotes, and c. 2440-fold variation in flowering plants (Pellicer et al., 2018). Much is known about broad-scale variation in GS across land plants and algae, with different phyla characterised by different GS ranges (Pellicer & Leitch, 2020), and showing, in many cases, a strong phylogenetic signal (e.g. Weiss-Schneeweiss et al., 2006; Vallès et al., 2013; Wang et al., 2016; Bainard et al., 2019; Cacho et al., 2021). Genome size has also been explored in polyploid species, with studies showing that while whole genome duplication events initially lead to an increase in GS, their subsequent evolution is often accompanied by genome downsizing over time (Leitch et al., 2008; Leitch & Leitch, 2008; Pellicer et al., 2010; Wong & Murray, 2012; Wendel, 2015; Zenil-Ferguson et al., 2016). Recently, community ecology studies have started to include data on GS and demonstrate its influence in shaping plant diversity (Guignard et al., 2016, 2019). While representative GS estimates have been obtained for approximately two thirds of flowering plant families (Pellicer & Leitch, 2020), variation between individuals and populations within species has typically received less attention, despite the increasing realisation that such variation may be common (e.g. Šmarda et al., 2010; Kolář et al., 2017).

GS has often been considered a property of a species, and there has been much debate as to whether it genuinely varies within species (Greilhuber, 2005; Gregory & Johnston, 2008; Šmarda & Bureš, 2010). Genuine intraspecific differences in DNA content have been reported or are predicted between individuals with: (1) heteromorphic sex chromosomes (Costich et al., 1991; Renner et al., 2017), (2) different numbers of B chromosomes (Leitch et al., 2007) dysploidy and aneuploidy, or (3) the presence/absence of specific DNA sequences such as (a) structural variants including insertion-deletion polymorphisms (indels), (b) copy number variation in protein-coding genes, commonly found in pan-genome studies (Hirsch et al., 2014; Wang et al., 2018b; Gao et al., 2019; Hübner et al., 2019; Göktaş et al., 2020), and (c) copy number variation of rDNA copies (Long et al., 2013) or of other genomic repeats (Chia et al., 2012; Haberer et al., 2020). Some differences, such as small indels, can be as small as one base pair, while others are large-scale (many megabases), including sequence duplications or loss of a
dispensable chromosome. The above types of genetic variation can be subsumed under the
term presence/absence variants (PAVs), a type of structural genomic variation, and may be
detectable by methods for estimating GS, such as flow cytometry. Modern protocols using flow
cytometry with appropriate reference standards, and following best practice approaches, can be
accurate and highly precise (Greilhuber et al., 2007; Pellicer et al., 2021) and reveal genuine
intraspecific variation that can be confirmed by genome sequencing. Such sequencing has also
been used to reveal that repeat differences can be useful genetic markers, including
microsatellites and AFLPs. Consequently, there are an increasing number of well-documented
reports of genuine intraspecific GS variation (e.g. Achigan-Dako et al., 2008; Šmarda et al.,
2010; Díez et al., 2013; Hanušová et al., 2014; Blommaert, 2020).

Our study considers such variation as polygenic, meaning heritable, and with a value affected
by multiple independent loci in the genome (Figure 1). Many polygenic traits are known, with the
most renowned example being human height (Fisher, 1919). Loci underpinning polygenic
variation need not be protein-coding genes, but may also involve non-coding sequences
including introns, promoters, trans elements, or genomic repeats. Loci underpinning a polygenic
trait may differ in their effect sizes, as shown by Koornneef et al. (1991) for flowering time in
Arabidopsis thaliana (see also Napp-Zinn, 1955). Further, variants at a genetic locus are
commonly pleiotropic, affecting multiple traits and thus potentially being the target of multiple
selective effects. An early example of treating GS as such is the study of Meagher et al. (2005)
on the relationship between GS and flower size in Silene latifolia, that showed correlations
between floral traits and GS in male plants.
Figure 1. Schematic illustration of a polygenic trait, and its variability after hybridisation.

Each red or blue line represents an individual’s genome. Squares represent genetic variants with different effect sizes on a trait. The bar charts indicate individuals’ trait values, relative to the individual with the lowest value. (a) A population (or species) with genetic variability for the trait. The effect of hybridisation between populations with different trait values depends on the genetic architecture of the trait difference. If the populations differ in many variants with small effects (b), recombinant offspring (denoted by mixed red and blue lines) are likely to have similar trait values. If, however, trait differences are due to a few variants with large effects (c), segregation in the recombinant offspring can produce higher trait variation. Applied to GS, open squares correspond to DNA missing and filled squares to DNA present at some site in the genome, as detailed in the main text.
Here we explore GS variation in British eyebrights (*Euphrasia* L., Orobanchaceae), a recently radiating group of facultative hemiparasites. They comprise five diploid (2n = 2x = 22) and 15 tetraploid species (2n = 4x = 44) (Metherell & Rumsey, 2018), with genomic sequencing showing that British tetraploids are closely related allotetraploids, with one sub-genome derived from, or closely related to, British diploids (Becher et al., 2020). The genus is an ideal model group for investigating GS variation within and between closely related species because species diversification is frequently postglacial (Gussarova et al., 2008; Wang et al., 2018a), with many taxa being narrow endemics or recent hybrid species. *Euphrasia* therefore provides multiple opportunities to study GS changes at the early stages of species divergence. Heterogeneous ecological conditions may promote local adaptation, and extensive hybridisation may result in local geographic homogenisation with variation in GS structured by geography rather than by taxonomy, as seen previously in microsatellite and AFLP studies of population structure (Kolseth & Lönn, 2005; French et al., 2008).

To investigate the nature of GS variation in British *Euphrasia* species, we generated a comprehensive dataset of 192 GS estimates across 13 species and 10 hybrid combinations, supplemented with genomic sequence data to estimate the abundance of genomic repeats for 30 diverse diploids and tetraploids. Our study aims to answer the following questions: (1) How variable is GS within species, between species, and between ploidy levels? (2) What is the contribution of genomic repeats to GS variation in British *Euphrasia*, and how does repeat content differ between the ploidy levels? (3) Does GS variation correspond with known patterns of genetic structure and/or environmental variables in British *Euphrasia*? We discuss our results in the light of polygenic variation, and we argue for a closer integration of population genomics research with research on GS variation.

METHODS

Population and species-level genome size variation

Population sampling. Our sampling for GS estimation aimed to collect from across the diversity of British *Euphrasia* taxa, and from a wide geographic area. Samples from 90 populations comprising 13 species and 10 hybrid combinations were either wild-collected and used directly for GS estimates (54 samples) or collected as seeds and grown at the Royal Botanic Garden Edinburgh following Brown et al. (2020) prior to GS estimation (138 samples). A
full list of samples analysed including their origin is given in Supplementary Information Table S1. The identification of species and hybrids were made by the *Euphrasia* taxonomic expert Chris Metherell, based on morphology.

Genome size measurements. Nuclear DNA content of *Euphrasia* samples was estimated by flow cytometry using propidium iodide (PI) stained nuclei, following the one step method (see Pellicer et al., 2021). Briefly, for each *Euphrasia* accession, two small leaves (c. 1-2 cm) were chopped together with the internal standard *Oryza sativa* ‘IR36’ (1C = 0.5 pg; Bennett & Smith, 1991) using a new razor blade, in a petri dish containing 1 mL of ‘general purpose isolation buffer’ (GPB; Loureiro et al., 2007), supplemented with 3% PVP-40 and 0.4 μL of β-mercaptoethanol. An additional 1 mL of buffer was added to the homogenate, and then this was filtered through a 30 μm nylon mesh to discard debris. Finally, the sample was stained with 100 μL of PI (1 mg/mL, Sigma) and incubated for 20 min on ice. For each accession analysed, one sample was prepared, and this was run three times on the flow cytometer. The nuclear DNA content of each sample run was estimated by recording at least 5,000 particles (c.1,000 nuclei per fluorescence peak) using a Cyflow SL3 flow cytometer (Sysmex-Partec GmbH, Munster, Germany) fitted with a 100-mW green solid-state laser (Cobolt Samba). Resulting output histograms were analysed using the FlowMax software (v. 2.9, Sysmex-Partec GmbH) for statistical calculations. We report only GS estimates for samples where the coefficients of variation (CV) of the sample and standard peaks in the flow histogram were less than 5% (see Supporting Information Figure S1a and b for illustrative histograms of each ploidy level).

Where differences in GS were detected within a species, combined samples containing at least two accessions were prepared following the same procedure as for individual runs. Genuine intraspecific variation was confirmed where multiple fluorescence peaks were identified from the combined run.

Throughout the paper we give 1C values in pg, where necessary converting published GS values reported in Gbp to pg using a conversion factor of 0.978 following Doležel et al. (2003).

Repeat content variation

Sequence data generation. We used a combination of existing and newly generated genomic sequencing data to investigate repeat variation in 31 samples comprising seven diploids and 23 tetraploids of *Euphrasia* plus *Bartsia alpina* as an outgroup. We downloaded short-read Illumina data from the sequence read archive (SRA, see Supplementary Information Table S2). These
included 18 samples in total, including 12 tetraploid samples from the isolated island of Fair Isle (Shetland, Scotland) generated for the study of Becher et al. (2020), which allowed us to study genomic repeat profiles in sympatric populations. This dataset also included a total of six representative diploid and tetraploid species from elsewhere in Britain.

We supplemented this previous data with newly generated sequence data from eleven additional UK samples representing a wider range of species and geographic locations, including 11 UK Euphrasia samples, an Austrian sample of Euphrasia cuspidata intended as a close outgroup to UK species, and Bartsia alpina as an outgroup to the full sample set. Genomic DNA was extracted from 12 silica-dried samples and herbarium material of E. cuspidata using the Qiagen Plant Mini Kit (Qiagen, Manchester, UK), and used to prepare NEBUltra PCR-based libraries. Pooled libraries were sent to Edinburgh Genomics where they were run on a single lane of HiSeq 2500 using high output mode with 125 bp paired-end sequencing.

Repeat content. We ran the RepeatExplorer2 (RE) pipeline (https://repeatexplorer-elixir.cerit-sc.cz/; Novák et al., 2010, 2013, 2020) on a data set of 25,000 randomly selected read pairs of each of the 31 samples (1,550,000 reads in total). This slightly exceeded the maximal number of reads that can be analysed with default settings (which depends on the data). Our dataset was therefore down-sampled to approximately 20,500 read pairs per sample. In comparative RE analyses, read numbers are often supplied in proportion to genome sizes to assure repeats of similar genome proportion can be detected in all samples (e.g. Novák et al., 2020a). This logic does not apply here, where the British samples comprise 23 closely related tetraploids and six closely related diploids, with the diploid genome very similar to one of the tetraploid sub-genomes (Becher et al., 2020). No matter what genome proportion is chosen per sample, there will always be more of the shared sub-genome than of the sub-genome restricted to tetraploids. To minimise mate overlaps of short insert sizes, each read was trimmed to 100 nucleotides. Further, we only used reads where at least 90 nucleotides had phred quality scores > 30. To analyse the genomic repeat content, we excluded clusters annotated by RE as plastid DNA or Illumina process controls. Our numbers thus deviate slightly from RE’s automatic annotation.

Statistical analyses. Most GS analyses were conducted across all individuals or populations. However, for E. arctica, E. anglica, and E. micrantha, where sampling covered most of their large geographical range in Britain, we also analysed data from each species separately. All analyses were done using R version 3.6.1 (R Core Team, 2019). For analyses of variance (ANOVAs) we used the function aov(). To test whether sample means of GS were significantly
different, we used the function `t.test()`, with Bonferroni correction in cases of multiple testing. To analyse how GS variation was partitioned by ploidy, taxon, and population we used ANOVA. To test the effect of ‘species’, we then re-ran the ANOVAs without hybrids (Table 1). To test the significance of GS variance differences between species pairs, we divided the population mean genome sizes by each species’ grand mean (centring) and then applied an F test (R function `var.test()`).

We tested the association between GS and latitude using a mixed effect model (R package `nlme`, function `lme()`). For species analysed separately, we used linear models. We carried out Mantel tests to assess the relationship between geographic distance and GS difference across all samples as done by Duchoslav et al. (2013). Unlike genetic data, which require population information, these Mantel tests could be carried out on individual-based genome size differences or population means. Isolation by distance was assessed using Mantel tests (R package `vegan` version 2.5-6) with 999 permutations.

To analyse genomic repeat patterns, we used hierarchical clustering and PCA on a matrix of the per-sample genome proportions of the 100 largest repeat clusters in R using the functions `hclust()` and `prcomp()`. *Bartsia alpina* was removed from the final PCA data set, because its divergence from *Euphrasia* accounted for most of the variance in the data set, obscuring variation within *Euphrasia*. To identify repeat clusters with large contributions to the first principal component, we selected those clusters which had absolute values > 0.1 in the first eigenvector. We further used binomial-family generalised linear models to estimate the average genomic proportion individually for each repeat cluster. For each estimate, we computed the residual sum of squares as a measure of the variation in genomic abundance between individuals. We used linear models to assess the differences in relative abundance of individual repeat types between ploidy levels.

To investigate a possible association of individual repeat clusters with GS, we used nine tetraploid samples for which we had both an estimate of the population average GS and repeat data (samples marked with asterisks in Supporting Information Table S2). We used the function `cor.test()` to assess the significance level of any associations between the genome proportion of each individual repeat cluster and population average GS.

Results
Population and species-level genome size variation

Genome size estimates from all 192 individuals passed our quality checks. These samples came from 13 different species and 10 hybrid combinations, including 40 diploid and 152 tetraploid individuals (Supporting Information Table S1). Our samples covered a particularly wide geographic range for the large-flowered species *E. anglica* (diploid, 552 km) and *E. arctica* (tetraploid, 1152 km), and the small-flowered and highly selfing *E. micrantha* (tetraploid, 962 km).

The mean GS across all tetraploids was 1.18 pg (s.e. 0.004 pg), which is 11% less than twice the mean GS of the diploids (0.66 pg, s.e. 0.008 pg). In the diploids, individual values ranged 1.2-fold, from 0.60 pg in *E. anglica* (population BED) to 0.73 pg in *E. anglica* in Dumfriesshire (E4E0085). In tetraploids there was 1.3-fold variation, from 0.99 pg in *E. foulaensis* in Fair Isle (FIA105) to 1.33 pg in *E. arctica* in Orkney (E4E0033).

Intraspecific GS ranges were widest in *E. arctica* (n = 43) and *E. foulaensis* (n = 13) (both 1.3-fold), and *E. anglica* (n = 23) (1.2-fold). *Euphrasia confusa* (n = 6), *E. nemorosa* (n = 22), *E. pseudokernerii* (n = 9), and *E. rostkoviana* (n = 9) had GS ranges greater than 1.1-fold. While individuals with different GS values were often found in distant populations, such as in *E. anglica* (0.6 pg and 0.73 pg, 525 km apart), and in *E. arctica* (1.04 pg and 1.33 pg, 903 km apart), we also found considerable GS variation between populations in close proximity in *E. foulaensis* (0.99 pg and 1.25 pg, 2.5 km apart) and in *E. confusa* (1.14 pg and 1.32 pg, same population). In all cases, tests to distinguish genuine intraspecific variation from technical artefacts confirmed the GS differences reported between individuals (see Methods and Supporting Information Figure S1c and d). Generally, we found wider GS ranges in taxa with more populations sampled. A notable exception was *E. micrantha* (GS range 1.14-1.21 pg from 17 individuals analysed from 9 populations, up to 962 km apart), which is discussed below.

In ANOVAs, the vast majority of the overall GS variation was explained by ‘ploidy’, while ‘taxon’ and ‘population’ accounted for smaller significant fractions (Table 1). ‘Population’ accounted for considerably more variation than ‘taxon’ – 3 or 8 times, depending on whether hybrids were included in the analysis or not. This difference is due to the few data available for most hybrids (Figure 2a, Supplementary Information Table S1). The fact that ‘taxon’ generally accounts for only a small amount of variance is reflected by the near-continuous distribution of GSs within each ploidy level (Figure 2b). The distribution of tetraploid GS values has two gaps, caused by a
few exceptional individuals with extreme outliers in their GS values. While most tetraploid GS values are between 1.07 and 1.26 pg (red horizontal lines in Figure 2b), six samples had lower (E. arctica, E. foulaensis, and E. foulaensis x marshallii), and seven higher, GS (E. arctica).

Table 1. Partitioning of GS variation across Euphrasia species and hybrids. Top analysis includes all 192 samples from 13 species and 10 hybrids, and the lower analysis 157 samples comprising just the 13 species (lower analysis). Both ANOVA tables detail the variance components (Sum Sq) accounted for by ploidy, taxon and population.

	df	Sum Sq	Mean Sq	F	p	
With hybrids	Ploidy	1	8.67	8.67	9505.96	< 2.0×10⁻¹⁶
	Taxon	21	0.11	0.01	6.00	4.1×10⁻¹⁰
	Population	67	0.34	0.01	5.48	7.8×10⁻¹⁵
	Residuals	102	0.09	0.00		
Without hybrids	Ploidy	1	7.96	7.96	8763.74	< 2.0×10⁻¹⁶
	Taxon	11	0.04	0.00	4.17	6.9×10⁻⁵
	Population	62	0.33	0.01	5.92	1.5×10⁻¹³
	Residuals	82	0.07	0.00		
Figure 2. Patterns of GS variation in British Euphrasia.

a The distribution of population-average GS for 90 populations of 23 taxa (13 species and 10 hybrids). Vertical bars indicate the GS range within each population where more than one individual was analysed.

b Distribution of individual GS estimates for all 192 samples. Horizontal red lines indicate the limits of the
continuous part of the tetraploid GS distribution. c Population average genome sizes plotted against latitude for the three most widely sampled species. The solid purple line indicates a significant statistical relationship of GS with latitude across 17 populations of *E. arctica*. This relationship was only marginally significant for 11 populations of *E. anglica* (dashed blue line). No significant association was found across nine populations of the highly selfing *E. micrantha*.

Analyses of the three geographically widespread species with wider population sampling revealed that GS variation was significantly partitioned by population for mixed-mating *E. anglica* (*F*_{10,12}=9.86, *p*=2.3×10⁻⁴) and *E. arctica* (*F*_{17,25}=10.5, *p*< 1.7×10⁻⁷), but not for highly selfing *E. micrantha* (*F*_{8,8}=0.31, *p*=0.94). Further, the variance in population average GS was significantly lower in *E. micrantha* than in *E. anglica* (*F*_{10,8}=11.65, *p*=9.6×10⁻⁴) or *E. arctica* (*F*_{17,8}=5.32, *p*=2.3×10⁻⁴).

Individual-based Mantel tests to link geographic distance and GS variation were significant over all 40 diploid samples (Mantel statistic *r*=0.25, *p*=0.001) and all 152 tetraploids (*r*=0.04, *p*=0.01). We then carried out Mantel tests based on population averages to exclude the very local distance component. These tests were significant over all diploids (*r*=0.27, *p*=0.002) but not over all tetraploid populations (*r*=0.04, *p*=0.09). However, *E. arctica*, the most widespread tetraploid species, showed a pattern of isolation-by-distance at this level (*r*=0.24, *p*=0.015).

We confirmed a strong relationship between ploidy and latitude (ANOVA *F*_{1,190}=18.79, *p*=2.4×10⁻⁵), with diploids generally limited to lower latitudes (being particularly abundant in southern England, Supporting Figure S2) while tetraploids extend to the very north of Britain. However, there was no significant association between GS and latitude within ploidy levels (treating taxon as a random effect, *t*=0.63, *p*=0.53). We then analysed the data for each of the three widely sampled species individually using linear models (Figure 2c). There was a non-significant trend for the diploid *E. anglica* (slope=0.013 pg/(degree latitude), *F*_{1,9}=4.23, *p*=0.07, *r*²=0.24). Of the tetraploids, *E. arctica* did show that GS increases significantly with latitude (slope=0.013 pg/(degree latitude), *F*_{1,16}=9.36, *p*=0.008, *r*²=0.31), whereas *E. micrantha* did not (*F*_{1,7}=0.34, *p*=0.577).

Variation in genomic repeat content
To investigate the nature of the PAVs underpinning GS variation, we analysed the genomic repeat content from whole genome sequencing data in 31 samples using the RE pipeline. RE’s output includes a set of annotated repeat clusters, representing individual repeat types. Our samples included *B. alpina* (Orobanchaceae), 29 British *Euphrasia* samples (six diploids and 23 tetraploids), and one Austrian diploid (Supporting Information Table S2). Overall, 69.9% of all *Euphrasia* reads analysed were identified as derived from repetitive DNA (i.e. they formed repeat clusters with genome proportions > 0.01%). The average genomic repeat contents of diploid and tetraploid *Euphrasia* samples differed, being 71.4% and 69.1%, respectively ($F_{1,28}=8.14$, $p=0.008$). The repeat content for *B. alpina* was only 42.4%, which is an underestimate because repeats private to the species may have failed to form individual clusters given our sampling design and cut-off threshold.

The most abundant repeat family, ranging from 25% in *E. anglica* (AN1) to 30% in *E. cuspidata* (CU), was Angela, a type of Ty1/Copia long terminal repeat retrotransposon (LTR), which is typically c. 8.5 kbp in length. Overall, all types of Ty1/Copia elements identified accounted for 30-39% of each *Euphrasia* genome, while Ty3/Gypsy elements typically occupied just 3-6% of the genome (Supplementary Information Table S2).

To assess how well genomic repeat profiles in samples from different populations correspond with species identity based on morphology, we used two unsupervised machine learning techniques: hierarchical clustering and principal component analysis (PCA). We focussed our analyses on the largest 100 repeat clusters, which together account for approximately 50% of each genome, no matter if diploid or tetraploid. Each smaller repeat cluster had a genomic proportion of < 0.7% in each sample. Hierarchical clustering resulted in a tree that grouped samples largely by ploidy, rather than species identity, with the exception of (i) a sample of the Austrian alpine *E. cuspidata* (CU), a species considered diploid, which grouped as sister to the tetraploids, and (ii) tetraploid *E. arctica* from Cornwall (AR5), which grouped as sister to all other *Euphrasia* samples (Figure 3a). All species with multiple samples formed mixed branches with other species in this tree. Among the sympatric samples from Fair Isle, *E. micrantha* (MI1-3) clustered separately from *E. arctica* (AR1-3) and *E. foulaensis* (FO1-4), both of which were mixed with other species, similar to previous patterns of clustering from SNP-based analyses (Becher *et al.*, 2020).
Figure 3. Clustering of *Euphrasia* samples based on genomic repeat content.

Hierarchical clustering shows grouping largely by ploidy. **a** A PCA of the relative proportions of the top 100 repeat clusters in 30 samples of *Euphrasia*. Diploids are shown in black and tetraploids in orange. **c** Contribution of each repeat cluster to the first principal component (of panel b). Clusters with negative values are enriched in diploids while those with positive values are enriched in tetraploids. **d** The extent of variation in the genomic proportions of all individuals for each repeat cluster. The codes in **a** and **b** are: Balp-*Bartsia alpina* (outgroup), five diploid species (seven samples): AN-*E. anglica*, CU-*E. cuspidata*, VI-*E. vigursii*, RI-*E. rivularis*, RO-*E. rostkoviana*, seven tetraploid species and two tetraploid hybrids: AR-*E. arctica*, FO-*E. foulaensis*, MI-*E. micrantha*, NE-*E. nemorosa*, FH-*E. fharaidensis*, OS-*E. ostenfeldii*, TE-*E. tetraquetra*, and X-tetraploid hybrids.

PCA without the outgroup *B. alpina* yielded a PC1 that explained 34% of the variance in our repeat data, separating the diploid and tetraploid samples (Figure 3b), whereas there was no clear separation by species. The samples for some species were spread widely across the plot (e.g. *E. arctica* (AR0-5) and *E. vigursii* (VI0, VI1)), while those of *E. micrantha* (MI0-5) grouped relatively tightly. Although this does not preclude the possibility of species-specific repeat patterns in *Euphrasia*, it is clear that there are no major differences in the relative abundance of the common repeat types between the species. Within the 138 largest repeat clusters, none was species-specific (i.e. present in individuals of only one species). Within the largest 701 clusters, none was diagnostic for a species (i.e., none was present in all samples of one species but absent in all other samples).

To further analyse which repeat clusters separate diploids and tetraploids in the PCA (Figure 3b), we plotted the elements of eigenvector 1, which correspond to the effect of each repeat cluster on the position of a sample along PC1 (Figure 3c). Seven repeat clusters have a large effect on PC1, the satellite clusters CL1, CL2 and CL5, and all clusters of the 45S ribosomal DNA (CL24, CL26, CL42, and CL56). Satellite clusters CL1 and CL2 have monomer size peaks of approximately 145 nucleotides as commonly seen in centromeric repeats. In addition, some reads of CL1 and CL2 had paired-end mates in CL22, indicating physical proximity of the repeats within the genome. CL22, in turn, had been annotated as CRM, which is a type of Ty3/Gypsy chromovirus retrotransposon that commonly targets centromeric sequences (Nagaki *et al.*, 2003; Neumann *et al.*, 2011).

Among all 17 broad repeat types identified by RE (see Supplementary Information Table S2), we found significant differences between ploidy levels for two. Diploid genomes contained higher average proportions of 45S rDNA (4.9%) than tetraploids (2.0%, *F*$_{1,28}$=20.4, *p*$_{corr}$<0.001), with the genomic proportion ranging from 1.7% to 5.7% in diploids and from 0.8% to 3.4% in
tetraploids. Tetraploids contained, on average, more Ty1/copia Ale elements (0.15%) than diploids (0.09%, $F_{1,28}=11.18$, $p_{corr}=0.018$). While our PCA approach had identified some satellites as highly differentiated in copy number (see above), differences over all satellites were not significant. This is because there was differential enrichment in the ploidy levels for CL1 versus CL2 and CL5 (Figure 3c). Overall, there is comparatively little differentiation in genomic repeats between the ploidy levels.

We also assessed the variation in repeat content over all samples for each repeat cluster. The eight most variable clusters (i.e. having the biggest differences in repeat proportions between individuals, Figure 3d), are all tandem repeats (satellites including rDNA). The first seven are the same repeats that separated the ploidy levels in the PCA. The eighth most variable repeat (CL67), which is variable in both ploidy levels, corresponds to the 5S rDNA.

Of the samples analysed with RE, nine tetraploids were from populations which also had GS estimates obtained in this study. Testing the largest 100, 200, and 1000 repeat clusters for correlations between GS and abundance of individual repeat clusters, and correcting for multiple testing by Bonferroni correction, no repeat cluster showed a significant correlation between its abundance in an individual and the population-average genome size. All evidence from repetitive elements suggests that the GS differences between Euphrasia individuals of the same ploidy levels are not due to large changes in the genomic proportion of any one specific repeat.

Discussion

In this study, we investigated the nature of GS variation across taxonomically complex diploid and tetraploid British Euphrasia. We complemented an extensive population survey of GS variation with an analysis of genomic repeat composition from seven diploids and 23 tetraploid Euphrasia. Overall, we find notable GS variation between populations of the same species, representing a wide range of genuine intraspecific GS variation. Within ploidy levels there is a continuum of GS variation, though ploidy levels have discrete GS ranges. These differences within and between ploidy levels are not attributable to large copy number changes of an individual DNA repeat, but rather to multiple segregating PAVs. Here, we first discuss the link between GS variation and population dynamics and speciation history, highlighting how GS is shaped by many similar processes as population-level sequence variation. We then consider
the landscape of repeat dynamics and the potential association with *Euphrasia* polyploid genome history. Finally, we consider the wider implications of framing GS variation in a population genetic framework.

Genome size variation mirrors population genetic patterns

Euphrasia are renowned as a taxonomically complex group where species are recent in origin and show subtle morphological differences, and taxa readily hybridise in areas of secondary contact (Gussarova *et al.*, 2008; Wang *et al.*, 2018a). Previous population genetic analysis have shown genetic variation is not clearly partitioned by species (Kolseth & Lönn, 2005; French *et al.*, 2008; Becher *et al.*, 2020), particularly in widespread co-occurring outcrossers, with only certain taxa, like the moorland selfing species *E. micrantha*, being genetically diverged. Here, we find GS variation mirrors these findings of population genetic structure inferred from molecular data. Our results add doubt to the distinctiveness of species, with taxa clearly not showing distinct GS ranges indicative of reproductive isolation. Moreover, previous findings have reported a considerably higher mean GS of 2.73 pg for five samples of diploid *E. rostkoviana* from Bosnia and Herzegovina (Siljak-Yakovlev *et al.*, 2010) compared with our estimates that ranged 0.62 -0.71 pg. This notable discrepancy raises a number of non-mutually exclusive hypotheses: (1) heterogeneous GS variation within currently named species may be a consequence of different taxonomic concepts applied across Europe; (2) lower GS variation within British *Euphrasia* may be a consequence of hybridisation and homogenisation of GS variation in Britain or a distinct polyploid history elsewhere in Europe; (3) identification problems or technical issues may affect previous GS estimates.

The continuous GS distribution across species boundaries within ploidy levels in *Euphrasia* resembles the findings of Hanušová *et al.* (2014) for species of the lycophyte *Diphasiastrum* at allopatric and sympatric sites. These authors concluded that considerable GS variation within species resulted from introgression from other sympatric species. Depending on the sizes and number of segregating PAVs (see Figure 1b and c), hybridisation between divergent populations may homogenise local GS, or introduce GS differences. In our study, three populations from Fair Isle (one *E. foulaensis* x *E. marshallii* and two *E. foulaensis*) located within 5 km of each other show likely signals of introgression. Their GS estimates were more than 10% lower than the mean GS of all tetraploids, including all other Fair Isle samples (Figure 2a). While these populations might have independently evolved lower GS, it seems more plausible that they share large GS difference variants (such as missing dispensable chromosomes or
chromosome regions, Figure 1c). An explanation of genomic homogenisation in sympatry is in keeping with the growing body of plant research showing gene flow at the early stages of species divergence, or between closely related species (e.g. Strasburg & Rieseberg, 2008; Papadopulos et al., 2011; Brandvain et al., 2014; Sawangproh et al., 2020). Such observations of divergence with gene flow are often coupled with species differences being maintained by a few diverged regions under strong selection maintaining species identities (e.g. Twyford & Friedman, 2015), a possibility we are currently investigating in Euphrasia.

Within three of the widespread species that we sampled extensively, we found considerably higher GS variation in the mainly outcrossing E. anglica and E. arctica than in highly selfing E. micrantha. Unlike the outcrossing species, E. micrantha shows no increase in GS at higher latitudes. Lower diversity is expected for several reasons in young selfing lineages such as E. micrantha. Firstly, selfing reduces the effective population size, resulting in lower genetic variation (Nordborg, 1997), presumably including PAVs. Secondly, the reduced effective rate of crossing over between the chromosomes of a selfing species further reduces the effective population size (Conway et al., 1999). Thirdly, selfing species are rarely polymorphic for B chromosomes (Burt & Trivers, 2008), one source of GS variation in the Orobanchaceae, for instance in closely related Rhinanthus (Wulff, 1939; Hambler, 1953). Finally, partially selfing species are less likely to acquire GS variants through introgression (e.g. Pajkovic et al., 2014). Older highly selfing lineages may, however, have diversified ecologically and become restricted to different habitats, and might evolve GS differences.

Genome size differences and genomic repeats

We found very low differentiation of genomic repeats between species of British Euphrasia, with few species-specific repeats. Consistent with phylogenetic work (Gussarova et al., 2008; Wang et al., 2018a), there were no examples where all species samples cluster together based on repeat content (Figure 3a). The fact that species of British Euphrasia are closely related and often hybridise, makes lineage-specific large-scale gains or losses of individual repeat groups, as seen in other plants (Piegu et al., 2006; Macas et al., 2015; McCann et al., 2020), an unlikely cause for the observed GS variation. Instead, the observed differences are likely due to changes in numerous different repeats segregating within the Euphrasia gene pool. At present, it is hard to tell whether these PAVs comprise numerous individual repeat copies or whether
there are (also) larger-scale PAVs like the loss or gain of chromosome fragments as hypothesised in hybridising species of *Anacyclus* (Agudo *et al*., 2019; Vitales *et al*., 2020). The high frequency of hybridisation in *Euphrasia* may lead to increased levels of structural rearrangements due to ectopic recombination, which may be more common between heterozygous genomic repeats (Morgan, 2001).

Between ploidy levels of *Euphrasia*, we found allotetraploids had an 11% lower mean GS compared with the value predicted from doubling the mean GS of diploids. This discrepancy may have originated from genome downsizing, commonly seen during re-diploidisation. It may also be explained by the fusion of two diverged diploid genomes of different size, as seen in allopolyploid *Gossypium* (Hendrix & Stewart, 2005) and *Arabidopsis suecica* (Burns *et al*., 2021). However, the absence of interploidy repeat divergence in *Euphrasia* differs from other allotetraploid systems, where diverged sub-genomes tend to show differences in genomic repeats (Zhao *et al*., 1998; Hawkins *et al*., 2006; Renny-Byfield *et al*., 2015; Dodsworth *et al*., 2020). This lack of repeat differentiation is notable because nuclear k-mer spectra (Becher *et al*., 2020) and rDNA sequences (Wang *et al*., 2018a) suggest considerable sequence divergence between the tetraploid sub-genomes, corresponding to a split of approximately 8 million years (Gussarova *et al*., 2008).

Tandem repeats such as rDNA and other satellite DNAs are generally found to be the fastest evolving fraction of the repeatome, showing divergence in both copy number and sequence between closely related species (e.g. Tek *et al*., 2005; Ambrozová *et al*., 2011; Renny-Byfield *et al*., 2012; Becher *et al*., 2014; Ávila Robledillo *et al*., 2020) and populations (Ananiev *et al*., 1998). We confirmed this in *Euphrasia*, where tandem repeats accounted for the eight repeat clusters with the highest inter-individual variation in genomic abundance (Figure 3d). While differing across individuals, repeat content did not show any clear signal of divergence between particular species. For example, the comparison between *E. micrantha* and divergent tetraploids such as *E. arctica*, did not reveal a signal of divergence in repeat content. This is surprising not just because of their morphological distinctiveness, but their difference in outcrossing rate, with theory predicting that the copy-number and equilibrium frequency of transposable elements depends on the level of selfing in a population (Morgan, 2001; Dolgin & Charlesworth, 2006). A likely explanation is that the shift to high-selfing in *E. micrantha* is relatively recent compared to the time it takes for the genomic repeat content to reach equilibrium level.
Evolution of genome size variation

The continuous GS variation within and between *Euphrasia* species, coupled with these differences likely being a product of segregating PAV across the genome, underlines the polygenic nature of GS variation. Regarding GS differences as the result of segregating (i.e. genetic) variants blurs the classic distinction between genotype and nucleotype, where “nucleotype” refers to “conditions of the nucleus that affect the phenotype independently of the informational content of the DNA”, essentially identical to GS (Bennett, 1971, 1977). Because GS has been shown to be correlated with many traits including cell size, stomatal pore size, the duration of cell division, and life-history differences (e.g. Šímová & Herben, 2012; Bilinski et al., 2018; Roddy et al., 2020), it is plausible the GS is affected indirectly by selection on such traits. There might be additional indirect selection on GS according according to the mutational-hazard hypothesis (e.g. Lynch, 2011), which proposes that large GS may be selected against because there is more opportunity for the accumulation of deleterious mutations.

It follows that individual PAVs may be under different kinds of simultaneous selection, potentially of different directionality. For instance, there might be positive selection on an adaptive insertion, which is simultaneously selected against because it increases GS. Further, because selection at one locus affects regions that are physically linked (i.e. selection at linked sites, Maynard Smith & Haigh, 1974; Charlesworth et al., 1993), the footprint of selection on genome regions is modified by the (effective) rate of crossing over, which varies along genomes and between mating systems.

Research on GS is somewhat decoupled from studies on sequence-based variation in populations. We suggest future research into GS evolution should consider both patterns of total GS and the population processes underlying this variation. In addition to furthering our understanding of intraspecific GS diversity in *Euphrasia* and other plant groups, answers to these questions will also improve our understanding of GS evolution between species and across phylogenies, which starts at the population level.

Acknowledgements

ADT was supported by NERC research grants NE/L011336/1 and NE/N006739/1. The Royal Botanic Garden Edinburgh (RBGE) is supported by the Scottish Government’s Rural and
Environment Science and Analytical Services Division. JP was supported by a Ramón y Cajal Fellowship (RYC-2017-2274) funded by the Ministerio de Ciencia y Tecnología (Gobierno de España). We thank Alistair Godfrey, Andrew Shaw, Anne Haden, C.W. Hurfurt, Chris Miles, David Harris, David Nash, Dot Hall, Elizabeth Sturt, Francis Farrow, Geoffrey Hall, Graeme Coles, Jim Hurley, John Crossley, John Wakely, John and Monika Walton, Margaret Chapman, Paul Kirby, Philip H. Smith, Rosemary Parslow, S.J. Bungard, and Stephanie Miles for providing Euphrasia samples; Natacha Frachon, Laura Gallagher and Ross Irvine for care of plants; Edgar Wong for preparing NGS libraries; Fergal Waldron for laboratory assistance; Deborah Charlesworth for extensive comments on an earlier version of the manuscript.

Author Contributions

• HB analysed the data with input from MRB and ADT
• ADT, CM, HB, and MRB collected samples.
• CM confirmed species identifications.
• ADT and IJL designed the study.
• RFP, JP, and IJL generated the GS data.
• HB and ADT wrote the manuscript.
• All authors read and commented on the manuscript.

Data Availability

The whole genome-sequencing data are available from the sequence read archive, Bioprojects PRJNA624746 and PRJNA678958. The scripts and data required to replicate our results are available from GitHub, repository: zzzzzzz (to be added upon acceptance).
Achigan-Dako EG, Fuchs J, Ahanchede A, Blattner FR. 2008. Flow cytometric analysis in *Lagenaria siceraria* (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. *Plant Systematics and Evolution* 276: 9.

Agudo AB, Torices R, Loureiro J, Castro S, Castro M, Álvarez I. 2019. Genome Size Variation in a Hybridizing Diploid Species Complex in *Anacyclus* (Asteraceae: Anthemideae). *International Journal of Plant Sciences* 180: 374–385.

Ambrozová K, Mandáková T, Bures P, Neumann P, Leitch IJ, Koblízková A, Macas J, Lysak M a. 2011. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of *Fritillaria* lilies. *Annals of Botany* 107: 255–268.

Ananiev E V, Phillips RL, Rines HW. 1998. A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: Are chromosome knobs megatransposons? *Proceedings of the National Academy of Sciences* 95: 10785 LP – 10790.

Ávila Robledillo L, Neumann P, Koblízková A, Novák P, Vrbová I, Macas J. 2020. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. *Molecular Biology and Evolution* 37: 2341–2356.

Bainard JD, Newmaster SG, Budke JM. 2019. Genome size and endopolyploidy evolution across the moss phylogeny. *Annals of Botany* 125: 543–555.

Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. *New Phytologist* 179: 975–986.

Becher H, Brown MR, Powell G, Metherell C, Riddiford NJ, Twyford AD. 2020. Maintenance of species differences in closely related tetraploid parasitic *Euphrasia* (Orobanchaceae) on an isolated island. *Plant Communications*: 100105.

Becher H, Ma L, Kelly LJ, Kovařík A, Leitch IJ, Leitch AR. 2014. Endogenous pararetrovirus sequences associated with 24 nt small RNAs at the centromeres of *Fritillaria imperialis* L. (Liliaceae), a species with a giant genome. *The Plant journal*: for cell and molecular biology 80: 823–833.

Bennett MD. 1971. The duration of meiosis. *Proceedings of the Royal Society of London*.
Bennett MD. 1977. The time and duration of meiosis. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 277: 201–226.

Bennett MD, Smith JB. 1991. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 334: 309–345.

Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K, Yang J, Ross-Ibarra J. 2018. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLOS Genetics 14: e1007162.

Blommaert J. 2020. Genome size evolution: towards new model systems for old questions. Proceedings of the Royal Society B: Biological Sciences 287: 20201441.

Brandvain Y, Kenney AM, Flagel L, Coop G, Sweigart AL. 2014. Speciation and Introgression between Mimulus nasutus and Mimulus guttatus. PLoS Genetics 10: e1004410.

Brown MR, Frachon N, Wong ELY, Metherell C, Twyford AD. 2020. Life history evolution, species differences, and phenotypic plasticity in hemiparasitic eyebrights (Euphrasia). American Journal of Botany 107: 456–465.

Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY, Nordborg M. 2021. Gradual evolution of allopolyploidy in Arabidopsis suecica. bioRxiv: 2020.08.24.264432.

Burt A, Trivers R. 2008. Genes in conflict: The biology of selfish genetic elements. Cambridge (Massachusetts): Harvard University Press.

Cacho NI, McIntyre PJ, Kliebenstein DJ, Strauss SY. 2021. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. Annals of Botany.

Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, et al. 2012. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics 44: 803–807.

Conway DJ, Roper C, Oduola AMJ, Arnot DE, Kremsner PG, Grobusch MP, Curtis CF,
Greenwood BM. 1999. High recombination rate in natural populations of Plasmodium falciparum. Proceedings of the National Academy of Sciences 96: 4506 LP – 4511.

Costich DE, Meagher TR, Yurkow EJ. 1991. A rapid means of sex identification in Silene latifolia by use of flow cytometry. Plant Molecular Biology Reporter 9: 359–370.

Diez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Eguiarte LE, Tenaillon MI. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytologist 199: 264–276.

Dodsworth S, Guignard MS, Pérez-Escobar OA, Struebig M, Chase MW, Leitch AR. 2020. Repetitive DNA restructuring across multiple Nicotiana allopolyploidisation events shows a lack of strong cytoplasmic bias in influencing repeat turnover. Genes 11.

Doležel J, Bartoš J, Voglmayr H, Greilhuber J. 2003. Letter to the editor. Cytometry 51A: 127–128.

Dolgin ES, Charlesworth B. 2006. The fate of transposable elements in asexual populations. Genetics 174: 817–827.

Duchoslav M, Šafářová L, Jandová M. 2013. Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum (Amaryllidaceae) on a continental scale. Annals of Botany 111: 419–431.

Fisher RA. 1919. XV.—The correlation between relatives on the supposition of mendelian inheritance. Transactions of the Royal Society of Edinburgh 52: 399–433.

French GC, Hollingsworth PM, Silverside AJ, Ennos RA. 2008. Genetics, taxonomy and the conservation of British Euphrasia. Conservation Genetics 9: 1547–1562.

Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, et al. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics 51: 1044–1051.

Göktay M, Fulgione A, Hancock AM. 2020. A new catalog of structural variants in 1,301 A. thaliana lines from africa, eurasia, and north america reveals a signature of balancing selection at defense response genes. Molecular Biology and Evolution.
Gregory TR, Johnston JS. 2008. Genome size diversity in the family Drosophilidae. *Heredity* 101: 228–238.

Greilhuber J. 2005. Intraspecific variation in genome size in angiosperms: Identifying its existence. *Annals of Botany* 95: 91–98.

Greilhuber J, Doležel J, Lysák MA, Bennett M. 2005. The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-Value’ to describe nuclear DNA contents. *Annals of Botany* 95: 255–260.

Greilhuber J, Leitch IJ. 2013. Genome size and the phenotype: Physical Structure, Behaviour and Evolution of Plant Genomes. In: Greilhuber J, Dolezel J, Wendel JF, eds. Plant Genome Diversity Volume 2. Vienna: Springer, 323–344.

Greilhuber J, Temsch EM, Loureiro JCM. 2007. Nuclear DNA content measurement. *Flow Cytometry with Plant Cells*: 67–101.

Guignard MS, Crawley MJ, Kovalenko D, Nichols RA, Trimmer M, Leitch AR, Leitch IJ. 2019. Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland. *Proceedings of the Royal Society B: Biological Sciences* 286: 20182619.

Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila C-A, Trimmer M, Leitch IJ, Leitch AR. 2016. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. *New Phytologist* 210: 1195–1206.

Gussarova G, Popp M, Vitek E, Brochmann C. 2008. Molecular phylogeny and biogeography of the bipolar *Euphrasia* (Orobanchaceae): Recent radiations in an old genus. *Molecular Phylogenetics and Evolution* 48: 444–460.

Haberer G, Kamal N, Bauer E, Gundlach H, Fischer I, Seidel MA, Spannagl M, Marcon C, Ruban A, Urbany C, et al. 2020. European maize genomes highlight intraspecies variation in repeat and gene content. *Nature Genetics* 52: 950–957.

Hambler DJ. 1953. Prochromosomes and supernumerary chromosomes in *Rhinanthus minor* Ehrh. *Nature* 172: 629–630.

Hanušová K, Ekrt L, Vít P, Kolář F, Urbus T. 2014. Continuous morphological variation
correlated with genome size indicates frequent introgressive hybridization among *Diphasiastrum* species (Lycopodiaceae) in Central Europe. *PLOS ONE* **9**: e99552.

Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. 2006. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in *Gossypium*. *Genome Research* **16**: 1252–1261.

Hendrix B, Stewart JM. 2005. Estimation of the nuclear DNA content of *Gossypium* species. *Annals of Botany* **95**: 789–797.

Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, *et al.* 2014. Insights into the maize pan-genome and pan-transcriptome. *The Plant Cell* **26**: 121–135.

Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Ziegler E, Lee JS, Baute GJ, Owens GL, Grassa CJ, *et al.* 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. *Nature Plants* **5**: 54–62.

Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. *Trends in Plant Science* **22**: 1041–1055.

Kolseth A-K, Lönn M. 2005. Genetic structure of *Euphrasia stricta* on the Baltic island of Gotland, Sweden. *Ecography* **28**: 443–452.

Koornneef M, Hanhart CJ, van der Veen JH. 1991. A genetic and physiological analysis of late flowering mutants in *Arabidopsis thaliana*. *Molecular and General Genetics MGG* **229**: 57–66.

Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak Ma, Fay MF. 2007. Punctuated genome size evolution in Liliaceae. *Journal of evolutionary biology* **20**: 2296–308.

Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR. 2008. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). *Annals of Botany* **101**: 805–814.

Leitch AR, Leitch IJ. 2008. Genomic plasticity and the diversity of polyploid plants. *Science* **320**: 481–3.
Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, Zhang Q, Vilhjálmsen BJ, Korte A, Nizhynska V, et al. 2013. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nature Genetics 45: 884–890.

Loureiro J, Rodriguez E, Doležel J, Santos C. 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 Species. Annals of Botany 100: 875–888.

Lynch M. 2011. Statistical inference on the mechanisms of genome evolution. PLOS Genetics 7: e1001389.

Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, Fuková I, Doležel J, Kelly LJ, Leitch IJ. 2015. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabaceae. PLOS ONE 10: e0143424.

McCann J, Macas J, Novák P, Stuessy TF, Villaseñor JL, Weiss-Schneeweiss H. 2020. Differential genome size and repetitive DNA evolution in diploid species of Melampodium sect. Melampodium (Asteraceae). Frontiers in Plant Science 11: 362.

Meagher TR, Gilies ACM, Costich DE. 2005. Genome size, quantitative genetics and the genomic basis for flower size evolution in Silene latifolia. Annals of Botany 95: 247–254.

Metherell C, Rumsey FJ. 2018. Eyebrights (Euphrasia) of the UK and Ireland (J Edmondson, Ed.). Bristol: Botanical Society of Britain and Ireland.

Morgan MT. 2001. Transposable element number in mixed mating populations. Genetical Research 77: 261–275.

Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, et al. 2003. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163: 759–770.

Napp-Zinn K. 1955. Genetische Grundlagen des Kältebedürfnisses bei Arabidopsis thaliana (L.)Heynh. Naturwissenschaften 42: 650.

Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J. 2011. Plant centromeric retrotransposons: a structural and cytogenetic
perspective. *Mobile DNA* **2**: 4.

Nordborg M. 1997. Structured coalescent processes on different time scales. *Genetics* **146**: 1501 LP – 1514.

Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S, Kovařík A, Pellicer J, Wang W, et al. 2020a. Repeat-sequence turnover shifts fundamentally in species with large genomes. *Nature Plants* **6**: 1325–1329.

Novák P, Neumann P, Macas J. 2010. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. *BMC Bioinformatics* **11**: 378.

Novák P, Neumann P, Macas J. 2020b. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. *Nature Protocols* **15**: 3745–3776.

Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. 2013. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. *Bioinformatics* **29**: 792–793.

Pajkovic M, Lappe S, Barman R, Parisod C, Neuenschwander S, Goudet J, Alvarez N, Guadagnuolo R, Felber F, Arrigo N. 2014. Wheat alleles introgress into selfing wild relatives: empirical estimates from approximate Bayesian computation in *Aegilops triuncialis*. *Molecular Ecology* **23**: 5089–5101.

Papadopulos AST, Baker WJ, Crayn D, Butlin RK, Kynast RG, Hutton I, Savolainen V. 2011. Speciation with gene flow on Lord Howe Island. *Proceedings of the National Academy of Sciences* **108**: 13188–13193.

Pellicer J, Garcia S, Canela MÁ, Garnatje T, Korobkov AA, Twibell JD, Vallès J. 2010. Genome size dynamics in *Artemisia* L. (Asteraceae): following the track of polyploidy. *Plant Biology* **12**: 820–830.

Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. *Genes* **9**: 88.

Pellicer J, Leitch IJ. 2020. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. *New Phytologist* **226**: 301–305.
Pellicer J, Powell RF, Leitch IJ. 2021. The application of flow cytometry for estimating genome size, ploidy level endopolyploidy, and reproductive modes in plants BT - Molecular Plant Taxonomy: Methods and Protocols. In: Besse P, ed. New York, NY: Springer US, 325–361.

Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, et al. 2006. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome research 16: 1262–9.

R Core Team. 2019. R: A Language and Environment for Statistical Computing.

Renner SS, Heinrichs J, Sousa A. 2017. The sex chromosomes of bryophytes: Recent insights, open questions, and reinvestigations of Frullania dilatata and Plagiochila asplenioides. Journal of Systematics and Evolution 55: 333–339.

Renny-Byfield S, Gong L, Gallagher JP, Wendel JF. 2015. Persistence of subgenomes in paleopolyploid cotton after 60 My of evolution. Molecular Biology and Evolution 32: 1063–1071.

Renny-Byfield S, Kovarik A, Chester M, Nichols RA, Macas J, Novak P, Leitch AR. 2012. Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PloS one 7: e36963.

Roddy AB, Theroux-Rancourt G, Abbo T, Benedetti JW, Brodersen CR, Castro M, Castro S, Gilbride AB, Jensen B, Jiang G-F, et al. 2020. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. International Journal of Plant Sciences 181: 75–87.

Sawangproh W, Hedenas L, Lang AS, Hansson B, Cronberg N. 2020. Gene transfer across species boundaries in bryophytes: evidence from major life cycle stages in Homalothecium lutescens and H. sericeum. Annals of Botany 125: 565–579.

Siljak-Yakovlev S, Pustahija F, Solic EM, Bogunic F, Muratovic E, Basic N, Catrice O, Brown SC. 2010. Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Advanced Science Letters 3: 190–213.

Simonin KA, Roddy AB. 2018. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLOS Biology 16: e2003706.
Šimová I, Herben T. 2012. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. *Proceedings of the Royal Society B: Biological Sciences* 279: 867–875.

Šmarda P, Bureš P. 2010. Understanding intraspecific variation in genome size in plants. *Preslia* 82: 41–61.

Šmarda P, Horová L, Bureš P, Hralová I, Marková M. 2010. Stabilizing selection on genome size in a population of *Festuca pallens* under conditions of intensive intraspecific competition. *New Phytologist* 187: 1195–1204.

Strasburg JL, Rieseberg LH. 2008. Molecular demographic history of the annual sunflowers *Helianthus annuus* and *H. petiolaris* - Large effective population sizes and rates of long-term gene flow. *Evolution* 62: 1936–1950.

Tek AL, Song J, Macas J, Jiang J. 2005. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. *Genetics* 170: 1231–1238.

Twyford AD, Friedman J. 2015. Adaptive divergence in the monkey flower *Mimulus guttatus* is maintained by a chromosomal inversion. *Evolution* 69: 1476–1486.

Vallès J, Canela MÁ, García S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Garnatje T. 2013. Genome size variation and evolution in the family Asteraceae. *Caryologia* 66: 221–235.

Van’t Hof J, Sparrow AH. 1963. A relationship between DNA content, nuclear volume, and minimum mitotic cycle time. *Proceedings of the National Academy of Sciences of the United States of America* 49: 897–902.

Vitales D, Álvarez I, García S, Hidalgo O, Nieto Feliner G, Pellicer J, Vallès J, Garnatje T. 2020. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in *Anacyclus* (Asteraceae). *Annals of Botany* 125: 611–623.

Wang X, Gussarova G, Ruhsam M, de Vere N, Metherell C, Hollingsworth PM, Twyford AD. 2018a. DNA barcoding a taxonomically complex hemiparasitic genus reveals deep divergence between ploidy levels but lack of species-level resolution. *AoB PLANTS* 10.

Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang
F, et al. 2018b. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557: 43–49.

Wang N, McAllister HA, Bartlett PR, Buggs RJA. 2016. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae). Annals of Botany 117: 1023–1035.

Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM. 2006. Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. American Journal of Botany 93: 148–156.

Wendel JF. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102: 1753–1756.

Wong C, Murray BG. 2012. Variable changes in genome size associated with different polyploid events in Plantago (Plantaginaceae). Journal of Heredity 103: 711–719.

Wulff HD. 1939. Chromosomenstudien an der schleswigholsteinischen Angiospermen-Flora. Berichte der Deutschen Botanischen Gesellschaft 57: 84–91.

Zenil-Ferguson R, Ponciano JM, Burleigh JG. 2016. Evaluating the role of genome downsizing and size thresholds from genome size distributions in angiosperms. American Journal of Botany 103: 1175–1186.

Zhao X-. P, Si Y, Hanson RE, Crane CF, Price HJ, Stelly DM. 1998. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Research 8.

SUPPLEMENTAL DATA
Figure S1. Flow cytometry histograms. A diploid (a) and a tetraploid (b) sample. IntraspecificGS variation in a diploid (c) and a tetraploid (d) species.
Figure S2. Genome size plotted against latitude.

Table S1. Sample information and genome size information
(Submitted separately)

Table S2. Details of the whole-genome sequencing data sets generated and genomic proportions of repeat types.
(Submitted separately)