Calculation of Chemical Reaction Energies Using the AM05 Density Functional

RICHARD P. MULLER,1 ANN E. MATTSSON,1 CURTIS L. JANSSON2
1Multiscale Dynamic Material Modeling, Sandia National Laboratories, Albuquerque, New Mexico
2Scalable Computing Research and Development, Sandia National Laboratories, Livermore, California

Received 12 August 2009; Revised 29 September 2009; Accepted 27 October 2009
DOI 10.1002/jcc.21472
Published online 19 January 2010 in Wiley InterScience (www.interscience.wiley.com).

Abstract: We present results that compare the accuracy of the AM05 density functional (Armiento and Mattsson, Phys Rev B 2005, 72, 085108; Mattsson et al., J Chem Phys 2008, 128, 084714) to a set of chemical reaction energies. The reactions were generated from the singlet species in the well-known G2 test suite (Curtiss et al., J Chem Phys 1991; Curtiss et al., J Chem Phys 1997; 106, 1063). Our results show that, in general, the AM05 functional performs nearly as well as the other “pure” density functionals, but none of these perform as well as the hybrid B3LYP functional. These results are nonetheless encouraging because the AM05 functional arises from very simple assumptions, and does not require the calculation of the Hartree-Fock exchange integrals.

© 2010 Wiley Periodicals, Inc. J Comput Chem 31: 1860–1863, 2010

Key words: quantum chemistry; dft; AM05

Introduction

Density functional theory (DFT)5, 6 has become a central method in computational chemistry for understanding the energetics involved in structural changes to molecules and clusters. Conventional wisdom in the field states that hybrid density functionals, that is, functionals that combine the traditional DFT exchange with some amount of Hartree-Fock (HF) exchange,1 are required to produce chemical accuracy in molecules. The use of hybrid functionals is often associated with Becke7 and the B3LYP functional, which combines HF exchange with the Becke 88 exchange functional8 and the Lee et al.9 correlation functional, and is the most widely used DFT functional in chemistry. However, the use of hybrid exchange is not limited to B3LYP, and has been included in many other functionals.10–12

The difficulty with the inclusion of any amount of HF exchange is that its computation is substantially more expensive. In nonperiodic systems, molecules and clusters, this expense is normally small compared to the overall cost of the calculation. In solids, however, computation of the HF exchange represents a substantial portion of the overall computational expense. The situation presents something of a conundrum for those interested in chemical reactions in the condensed phase: the inclusion of the exchange is necessary for chemical accuracy, but renders the calculation intractable. Proper treatment of, say, heterogeneous catalysis, with DFT requires that the functional perform equally well for both molecules and solids. We therefore seek a pure density functional (one without HF exchange) that is capable of describing both molecules and solids.

The AM05 density functional1, 2 is one solution to this problem. AM05 is a simple density functional designed to describe electronic surfaces accurately. AM05 uses a subsystem functional approach13, 14 to include the effect of electronic surfaces via the Airy gas,13 while still retaining the physical consistency arising from the uniform electron gas approximation in the local density approximation. In recent investigations,2 it has been shown to provide the same accuracy as hybrid functionals in calculations of bulk properties of solids, at a fraction of the computational cost. Our goal in the current paper is to understand how well this functional performs for chemical reactions.

As the spin-polarized version of AM05 is currently under development,15 we chose the subset of the G2 test suite3, 4 having singlet ground states, computed the optimized structures for these compounds using the AM05, BLYP, PBE,16 and B3LYP density functionals. We then compute a wide range of chemical reaction energies using the total energies from these calculations. Our results suggest that, although none of the pure density functionals (i.e., BLYP, PBE, and AM05) perform as well as the hybrid functional we consider, AM05 performs roughly as well as the other two, suggesting that it can be used for accurate calculation of chemical reaction energetics in solids, where such numbers might otherwise be impossible to compute.

Correspondence to: R.P. Muller; e-mail: rmuller@sandia.gov

© 2010 Wiley Periodicals, Inc.
Chemical Reaction Energies Using AM05

Table 1. Errors in Hydrogenation Reactions Relative to the G2 Reference Energies, in kcal/mol.

Reaction	B3LYP	BLYP	PBE	AM05
C2H4 + H2 → C2H6	3.090	0.807	5.227	7.077
C2H2 + 2 H2 → C2H6	8.557	1.252	12.744	16.046
CO + H2 → H2CO	4.717	3.295	8.944	11.333
Li2 + H2 → 2 LiH	2.169	2.605	1.633	1.346
SiH4 + H2 → 2 SiH2	1.217	10.118	2.194	8.040
SiH4 + H2 → 2 SiH2	0.825	0.151	3.170	3.640
N2 + 2 H2 → H2NNH2	3.136	6.872	8.112	11.406
C3H6(cyclopropene) + H2 → C3H8	1.283	3.828	2.242	3.956
CH2 = C = CH2 + H2 = CH3CH = CH2	0.447	5.228	0.378	1.547
CH3CH = CH2 + H2 = propane	1.845	2.226	3.687	5.225
2-Butyne + 2 H2 = trans-butyne	2.509	5.174	6.013	8.882
Butadiene + 2 H2 = trans-butyne	2.270	6.426	5.706	9.024
H2 + COO → HCOOH	1.055	3.138	1.152	3.189
(CH3)2CO + H2 = (CH3)2CHOH	2.680	7.267	1.663	0.268
MAE	2.557	4.170	4.490	6.498

Hydrogenation Reactions

Table 1 shows the errors in the various hydrogenation energy relative to the G2 reference energies. In general, the AM05 errors in the hydrogenation energies are similar to, but greater than, the errors produced by the other standard density functionals (BLYP and PBE), all of which are significantly greater than the errors produced by the hybrid functional B3LYP. For AM05, the most problematic reactions involve the hydrogenation of triple bonds such as in C2H2 or N2, a difficulty that is also reflected to a lesser degree in the other pure density functionals.

Oxygenation Reactions

Table 2 shows the errors in the various oxygenation energies relative to the G2 reference energies. Here, the AM05 functional performs very well compared to the others, with a MAE of 9.115, close to the value of 8.140 achieved by B3LYP and better than that of the other pure density functionals. The largest error for AM05 comes from the reaction CO + H2O = CO2 + H2, which potentially continues the trend with triple bonds giving difficulties for the AM05 functional relative to other chemical moieties.

Nitrogen Addition Reactions

Table 3 shows the errors in the various nitrogen addition reactions, relative to the G2 reference energies. Here all functionals perform fairly well, with MAE values that span from 4.8 to 6.6 kcal/mol, with B3LYP being the best of these, and AM05 being the worst. It is difficult to draw too many conclusions about the trends in the AM05 behavior. The worst behavior is for the reaction C2H2 + HCN = CH2=CHCN, and one would be tempted to attribute the poor behavior to the triple bond, which is problematic in other reactions studied in this article, but the reaction CH4 + HCN = CH3CN+H2, also containing the HCN molecule, is one of the reactions on which AM05 performs best. AM05 also does poorly on the formation of acetamide, CH3CHO+N3 = CH3CONH2+H2, but as the other functionals all do similarly poorly, this is not a fault of AM05 alone.

Halogenation Reactions

Table 4 shows the errors in the various halogenation energies, relative to the G2 reference energies. In general, this is another class

Table 2. Errors in Oxygenation Reactions Relative to the G2 Reference Energies, in kcal/mol.

Reaction	B3LYP	BLYP	PBE	AM05
CH4 + H2O → CH3OH + H2	2.975	4.826	3.731	3.627
HOOH + H2 → 2 H2O	11.638	18.062	14.898	12.998
CO + H2O → CO2 + H2	10.540	15.447	17.742	19.681
C2H2 + HOOH → CH3COH + 2 H2	0.598	4.033	0.465	1.606
C2H2 + HOOH → CH3CH2OH + H2O	9.212	13.839	11.593	9.595
C2H2 + HOOH → CH2=O + H2O	5.350	9.626	3.379	0.302
CH3SCl2H + HOOH =	18.618	19.367	16.493	14.979
(CH3)2SO + H2O	6.189	7.805	8.646	10.131
MAE	8.140	11.626	9.618	9.115

Journal of Computational Chemistry DOI 10.1002/jcc

Computational Method

The AM05 functional is described at length in ref. 1. The Massively Parallel Quantum Chemistry program[17] was used for the calculation of the electronic structure of all species considered for each of the functionals. We used the 6-31G** double-ζ-plus-polarization basis set in all calculations, and computed optimized geometries for each structure. The total energy of each structure was used to compute the reaction energy for the range of reactions being considered. In the computation of DFT energies, we do not include corrections due to zero-point vibrational energy, that can be substantial for some of the reactions we consider.

Results

In this section, we report the reaction energies for a variety of reactions constructed from the singlet molecules in the G2 test suite. Our aim in this comparison is to demonstrate that, although there can be quite substantial differences in the total energies that result from AM05 as compared to other density functionals, this functional can still be used to study the energy of a variety of chemical reactions. To facilitate the discussion in this section, we have grouped the reactions into broad categories related to the chemistry occurring in each case. Such a grouping is not intended to be canonical, as in some cases a reaction could be categorized in multiple groups, but rather as an aid to the discussion of the broad trends of the results. In each section, we present the reactions and their energies with the different density functionals, with the results presented as mean absolute errors (MAE), with respect to the G2 reference energies.
of reactions in which the AM05 functional outperforms the other pure density functionals, and performs nearly as well as the hybrid B3LYP functional. There are two important points to make for these reactions. First, although it is true that AM05 performs as well or

Reaction	B3LYP	BLYP	PBE	AM05
H₂ + Cl₂ ⇌ 2 HCl	0.580	4.481	1.480	0.360
H₂ + F₂ ⇌ 2 FH	23.405	33.663	28.971	25.092
Liₙ + F₂ ⇌ LiF	9.105	13.410	19.087	20.025
Naₙ + Cl₂ ⇌ 2 NaCl	7.042	13.570	13.730	13.651
CH₄ + HCl ⇌ H₂ + CH₃Cl	0.314	1.666	1.256	0.767
BF₃ + 1.5 Cl₂ ⇌ BCl₃ + 1.5 F₂	4.596	10.478	17.640	15.730
AlF₃ + 1.5 Cl₂ ⇌ AlCl₃ + 1.5 F₂	9.264	12.460	20.075	19.923
OF₂ + H₂ ⇌ H₂O + F₂	10.376	18.948	16.657	15.702
SiH₄ + 2 Cl₂ ⇌ SiCl₄ + 2 H₂	19.143	25.110	16.551	14.393
SiH₂ + 2 F₂ ⇌ SiF₄ + 2 H₂	21.755	35.139	37.307	33.667
NH₂ + 1.5 F₂ ⇌ NF₃ + 1.5 H₂	1.436	6.433	7.725	11.038
PH₃ + 1.5 F₂ ⇌ PF₃ + 1.5 H₂	17.440	23.814	24.934	22.103
0.5 Cl₂ + 1.5 F₂ ⇌ ClF₃	13.499	8.868	3.407	0.587
C₂H₄ + 2 F₂ ⇌ C₂F₆ + 2 H₂	6.814	13.234	8.701	0.732
C₂H₂ + 2 Cl₂ ⇌ C₂Cl₄ + 2 H₂	8.313	8.717	0.772	5.688
CH₄ + F₂ ⇌ CH₃F₂ + H₂	8.458	12.965	12.123	9.813
CH₃ + 1.5 F₂ ⇌ CHF₃ + 1.5 H₂	9.812	16.821	14.100	8.001
CH₄ + Cl₂ ⇌ CH₂Cl₂ + H₂	1.777	2.353	0.347	1.555
CH₄ + 1.5 Cl₂ ⇌ CHCl₃ + H₂	5.393	5.569	0.897	1.248
CH₂CN + 1.5 F₂ ⇌ CF₂CN + 1.5 H₂	7.316	12.613	10.114	4.164
C₂H₂ + HF ⇌ CH₂ = CHF	14.903	15.049	19.056	20.759
C₂H₂ + HCl ⇌ CH₂Cl₂	2.509	0.169	5.702	7.201
C₂H₂ + HCl ⇌ CH₂ = CHCl	5.646	3.971	9.986	11.702
H₂O + Cl₂ ⇌ HOCl + HCl	4.894	6.023	6.145	6.190
CH₂Cl + HCl ⇌ CH₂ = ClH₂	0.759	1.920	3.869	5.057
CH₂ = CH₂ + Cl₂ ⇌ C₂H₃Cl₂ + 2 Cl₂	9.398	6.919	13.189	16.952
H₂CO + F₂ ⇌ CF₂O + H₂	2.352	6.475	2.348	3.367
CH₂CHO + HF ⇌ CH₂COF + HCl	9.197	12.441	11.810	12.479
MAE	8.403	11.903	11.713	10.966

Table 4. Errors in Halogenation Reactions Relative to the G2 Reference Energies, in kcal/mol.

better than the other density functionals for these reactions, in general the reaction energies for these reactions have larger errors than do the other reaction groups we consider here. Moreover, there are a number of systems, in particular those containing F atoms, which

Table 5. Errors in Sulfur Addition Reactions Relative to the G2 Reference Energies, in kcal/mol.

Reaction	B3LYP	BLYP	PBE	AM05
CH₄ + SH₂ ⇌ CH₃SH + H₂	0.682	0.302	0.873	0.730
CO₂ + CS₂ ⇌ 2 COS	0.272	0.752	0.061	0.367
C₂H₂ + SH₂ ⇌ C₂H₃S + H₂	0.449	0.526	5.266	7.418
C₂H₂ + SH₂ ⇌ CH₃CH₂SH + H₂	2.203	1.238	0.348	0.395
C₂H₂O + SH₂ ⇌ C₂H₃S + H₂O	11.591	13.387	10.263	10.813
MAE	3.040	3.241	3.362	3.945

Table 5 shows the errors in the various sulfur addition reactions, relative to the G2 reference energies. There are too few reactions here to draw very extensive conclusions about trends in the energetics. In general all of the functionals perform well for these reactions, with the AM05 functional yielding slightly higher errors relative to the G2 reference energies than the other reactions. Notable is that AM05 shows a higher error for the formation of C₂H₄S, which has considerable ring strain, than do the other functionals. This might indicate a difficulty with ring strain, although the somewhat analogous reaction C₂H₄ + HOOH ⇌ C₂H₃O + H₂O forming oxirane rather than thioxirane is a reaction that AM05 has a much smaller error relative to the G2 reference energies than do the other functionals.

Isomerization Reactions

Table 6 shows the errors in the various isomerization reactions, relative to the G2 reference energies. In general, the performance of all
the functionals is quite good. Here, the AM05 functional does worse than either of the other pure functionals. We note, in particular, that the trend of the errors being highest for reactions that either have ring strain or triple bonds continues with these reactions as well.

Carbon or Silicon Addition Reactions

Table 7 shows the errors in the various carbon and silicon addition reactions, relative to the G2 reference energies. Several species in this category reveal problems for the AM05 functional. The reactions containing CO show the problem that AM05 has shown in other reactions with triple bonds. But of greatest concern is the results for benzene formation from acetylene, which shows an error in the reaction energy of 38.4 kcal/mol. The latter reaction also poses significant trouble for the PBE and B3LYP functionals. It is also worth restating that throughout this study we are comparing pure DFT total energy values to G2 values that have additional corrections, such as zero-point vibrational energy, that are substantial for some of these reactions.

Conclusion

None of the pure density functionals achieves the accuracy, compared to the G2 data, that the hybrid B3LYP functional achieves. The data presented in Tables 1–7 are summarized in Table 8. We find, for the set of chemistry we consider here, that the B3LYP functional has only 5.32 kcal/mol MAE with respect to the G2 data. In contrast, the PBE functional has 7.63 kcal/mol, the BLYP functional 7.29 kcal/mol, and the AM05 functional has 8.08 kcal/mol MAE as compared to the G2 data.

It is dangerous to draw too many conclusions from the grouped reaction energies as displayed in Table 8 about why different functionals perform well in some cases and poorly in others. In general, the AM05 functional performs most poorly in systems with ring strain and triple bonds. Because the AM05 functional is based on two model systems that are infinite, the uniform electron gas and the Airy gas, there are problems in systems with confined densities, which will be addressed in the successors to the AM05 functional.

In spite of the fact that the AM05 functional performs slightly worse with respect to the G2 data than the PBE and BLYP functionals, we are heartened by the results here. In the derivation of the AM05 functional, no adjustable parameters, and no knowledge of chemistry or even molecules were used. The lack of adjustable parameters, and the lack of a need for the HF exchange to be computed are shared by the BLYP and PBE functionals. The superior performance of the AM05 functional in solids, which was one of the motivating factors in this study, coupled with the good performance in chemical reaction energies, suggests that AM05 is a good choice when considering reaction energies in the solid phase. Furthermore, the AM05 functional has been constructed in a very different way from other functionals, with no information about chemistry or molecules used in its design. The fact that this functional performs nearly as well as the standard functionals is encouraging, because it suggests new directions and new ideas that may be used for the development of further improved functionals.

Acknowledgments

Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000.

References

1. Armiento, R.; Mattsson, A. E. Phys Rev B, 2005, 72, 085108.
2. Mattsson, A. E.; Armiento, R.; Paier, J.; Kresse, G.; Wills, J. M.; Mattsson, T. R. J Chem Phys 2008, 128, 084714.
3. Curtiss, L.; Raghavachari, K.; Trucks, G.; Pople, J. J Chem Phys 1991, 94, 7221.
4. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. J. A. J Chem Phys 1997, 106 1063.
5. Hohenberg, P.; Kohn, W. Phys Rev B 1964, 36, B864.
6. Kohn, W.; Sham, L. J. Phys Rev 1965, 140, 1133.
7. Becke, A. D. J Chem Phys 1993, 98, 5648.
8. Becke, A. Phys Rev A 1988, 38, 3098.
9. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys Rev B 1988, 37, 785.
10. Adamo, C.; Barone, V. J Chem Phys 1999, 110, 6158.
11. Xu, X.; Zhang, Q.; Muller, R. P.; Goddard, W. A. J Chem Phys 2005, 122, 014105.
12. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J Chem Theor Comput 2006, 2, 364.
13. Kohn, W.; Mattsson, A. E. Phys Rev Lett 1998, 81, 3487.
14. Armiento, R.; Mattsson, A. E. Phys Rev B 2002, 66, 165117.
15. Mattsson, A. E.; Armiento, R. Phys Rev B 2009, 79, 155101.
16. Perdew, J. Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.
17. Jansen, C. L.; Nielsen, I. B.; Leininger, M. L.; Valeev, E. F.; Kenny, J. P.; Seidl, E. T. The Massively Parallel Quantum Chemistry Program (MPQC), Version 3.0. Sandia National Laboratories, 2009. Available at: http://www.mpqc.org.

Table 7. Errors in Carbon or Silicon Addition Reactions Relative to the G2 Reference Energies, in kcal/mol.

Reaction	B3LYP	BLYP	PBE	AM05
CH$_4$ + SiH$_4$ \rightarrow CH$_3$SiH$_3$ + H$_2$	2.572	2.159	0.816	0.636
HCOOH + CH$_4$ \rightarrow HCOOCH$_3$ + H$_2$	0.311	1.248	0.259	0.033
CH$_4$ + CO \rightarrow CH$_2$CO + H$_2$	4.779	8.435	11.136	13.789
CH$_4$ + CO \rightarrow CH$_3$CHO	3.829	2.969	9.871	13.148
2CH$_3$OH \rightarrow CH$_2$OCH$_3$ + H$_2$O	1.739	1.897	1.504	1.369
CH$_2$OH + CH$_3$CHO \rightarrow C$_2$H$_5$OCH$_3$ + H$_2$O	2.039	2.182	1.791	1.655
3C$_2$H$_2$ \rightarrow C$_6$H$_6$	18.150	9.755	30.222	38.383
MAE	4.774	4.092	7.943	9.859

Table 8. Summary of the Results Presented in Tables 1–7. MAE, in kcal/mol, with respect to the G2 energies.

Reaction class	B3LYP	BLYP	PBE	AM05
Hydrogenation reactions	2.557	4.170	4.490	6.498
Oxygenation reactions	8.140	11.626	9.618	9.115
Nitrogenation reactions	4.787	5.870	6.449	6.644
Halogenation reactions	8.403	11.903	11.713	10.966
Sulfur addition reactions	3.040	3.241	3.362	3.945
Isomerization reactions	1.239	2.172	3.138	4.510
Carbon/silicon addition reactions	4.774	4.092	7.943	9.859
All reactions	5.322	7.296	7.633	8.081