TWO RESULTS ON $x^r + y^r = dz^p$

NUNO FREITAS AND FILIP NAJMAN

Abstract. This note proves two theorems regarding Fermat-type equation $x^r + y^r = dz^p$ where $r \geq 5$ is a prime. Our main result shows that, for infinitely many integers d, the previous equation has no non-trivial primitive solutions such that $2 \mid x + y$ or $r \mid x + y$, for a set of exponents p of positive density. We use the modular method with a symplectic argument to prove this result.

1. Introduction

We consider Fermat-type equations of the form

$$x^r + y^r = dz^p,$$

where $r, p > 3$ are primes and d is an odd positive integer, not an r-th power and $r \nmid d$. A solution (a, b, c) to (1.1) is called primitive if $\gcd(a, b, c) = 1$ and non-trivial if $abc \neq 0$.

We will study the above equation via the modular method. Since d is not a r-th power, we have $d \neq 1$; this avoids the trivial solution $(1, 0, 1)$ which is a well known obstruction. Indeed, the modular method aims to obtain a contradiction with the existence of a solution, which is usually not possible once a solution does exist. More precisely, for $d = 1$, in the elimination stage of the method, we would have to distinguish the mod p representation of the Frey curve attached to a non-trivial putative solution (a, b, c) from the mod p representation of the Frey curve attached to the solution $(1, 0, 1)$. Currently, with the exception of very few special cases, there are no techniques available to do this. The hypothesis that d is odd avoids the solution $(1, 1, 1)$ for $d = 2$ but it also plays (together with $r \nmid d$) an essential rôle in the proof of Theorem 1.2 below (see Remark 3.2).

Equation (1.1) has been the focus of various recent works. It has been completely resolved for $(r, d) = (5, 3), (13, 3)$ and all $p \geq 2$ in [3, 2], and for $(r, d) = (7, 3)$ in [4]; moreover, in [12] it is shown for $d = 1$ and many values of $r < 150$ that it admits no non-trivial primitive solutions (a, b, c) with c even. Under the extra assumptions that d is not divisible by p-th powers and is divisible only by primes $q \equiv 1 \pmod{r}$, an older result due to Kraus implies that, fixed both r and p, the set of coefficients d for which (1.1) has a non-trivial primitive solution is finite (see [11, Théorème 1]).

Given that we will focus on asymptotic results, i.e. for large enough p, we can also assume that p is large compared to r and $p \nmid d$. We will prove the following theorem.

The second author was supported by the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004) and by the Croatian Science Foundation under the project no. IP-2018-01-1313. The first author is partially supported by the PID2019-107297GB-I00 grant of the MICINN (Spain).
Theorem 1.2. Let \(r \) and \(d \) be as above. For a set of prime exponents \(p \) of positive density, the equation (1.1) has no non-trivial primitive solutions \((a, b, c)\) such that \(2 \mid a + b \) or \(r \mid a + b \).

This result has no constraints on the value of \(r \) and \(d \) beyond those introduced in the first paragraph. Instead we have 2-adic or \(r \)-adic restrictions on the solutions, that naturally occur in the study of Fermat-type equations. In particular, the condition \(r \mid a + b \) is equivalent to \(r \mid c \) and this is analogous to what Darmon calls a first case solution to the Fermat-type equations \(x^p + y^p = z^r \) (see [5, Definition 3.6] and results in §3 of loc. cit.). A result of similar flavor to ours regarding \(x^p + y^p = z^r \) is given in [1], more precisely, it is shown this equation has no non-trivial primitive solutions with \(r \mid ab \) and \(2 \nmid ab \). We remark that although in loc. cit. the proof uses Darmon’s higher dimensional abelian varieties instead of Frey elliptic curves, the condition \(r \mid ab \) plays a similar role to ours \(r \mid a + b \) in that it forces the Frey varieties to have multiplicative reduction at \(r \).

The proof of Theorem 1.2 was inspired by [10] and relies on combining the modular method with the symplectic argument. We refer the reader to [7] for a quick introduction to Diophantine applications of the symplectic argument; for a comprehensive study of symplectic criteria and further Diophantine applications we refer to [8].

We will also prove the following theorem about (1.1) where the 2-adic and \(r \)-adic conditions are replaced by a \(p \)-adic condition.

Theorem 1.3. Let \(r \) and \(d \) be as above. Then for prime exponents \(p \equiv \pm 1 \pmod{r} \) large enough the equation (1.1) has no non-trivial primitive solutions \((a, b, c)\) such that \(p \mid a + b \).

2. The Frey curve

We first recall the construction of a Frey curve from [6]. Let \(r \geq 5 \) be a prime and \(\zeta = \zeta_r \) a fixed primitive \(r \)-th root of unity. Let \(K = \mathbb{Q}(\zeta_r) \) be the maximal real subfield of \(\mathbb{Q}(\zeta_r) \).

Define the polynomials

\[
f_1 := x^2 + (\zeta^2 + \zeta^{-2})xy + y^2 \quad \text{and} \quad f_2 := x^2 + (\zeta + \zeta^{-1})xy + y^2
\]

and the constants

\[
\alpha = \zeta(1 - \zeta)(1 - \zeta^2), \quad \beta = (1 - \zeta)(1 - \zeta^{-1}), \quad \gamma = -(1 - \zeta^2)(1 - \zeta^{-2}).
\]

We set also

\[
A = A_{a, b} = \alpha(a + b)^2, \quad B = B_{a, b} = \beta f_1(a, b), \quad C = C_{a, b} = \gamma f_2(a, b)
\]

and define the Frey curve

\[
F_{a, b} : Y^2 = X(X - A_{a, b})(X + B_{a, b}).
\]

By construction we have \(A + B = C \) and the following standard invariants

\[
c_4(F_{a, b}) = 2^4(A_{a, b}^2 + A_{a, b}B_{a, b} + B_{a, b}^2),
\]

\[
c_6(F_{a, b}) = 2^5(2A_{a, b}^3 + 3A_{a, b}^2B_{a, b} - 3A_{a, b}B_{a, b}^2 - 2B_{a, b}^3),
\]

\[
\Delta(F_{a, b}) = 2^4(A_{a, b}B_{a, b}C_{a, b})^2.
\]

For \(n \in \mathbb{Z}_{>0} \) and \(x \in K \) denote by \(\text{Rad}_n(x) \) the product of the primes in \(K \) not dividing \(n \). Also let \(p_r \) denote the unique prime in \(K \) above \(r \).
Proposition 2.2. Let \((a, b, c)\) a primitive solution to (1.1) such that \(\gcd(a, b) = 1\). Then the conductor \(N_F\) of the curve \(F = F_{a,b}\) is of the form
\[
2^p \alpha \cdot \text{Rad}_r(a + b)
\]
where \(\alpha\) is a squarefree product of primes in \(K\) dividing \(c\).
Moreover, \(s = 1\) if \(2 \mid a + b\) and \(t = 1\) if \(r \mid a + b\).

Proof. Since \(\alpha, \beta, \gamma\) are of the form \(\pm \zeta^\alpha(1 - \zeta^z)(1 - \zeta^w)\), where neither \(t\) nor \(u\) are \(\equiv 0 \pmod{r}\), this means that the only prime dividing \(\alpha \beta \gamma\) is \(p_r\) and \(v_{p_r}(\alpha \beta \gamma) = 3\).

Recall the factorisation
\begin{equation}
2^r + 2^r = (a + b)\Phi_r(a, b) = dc^p
\end{equation}
where \(\Phi_r(a, b)\) is the \(r\)-th cyclotomic polynomial; we have \(\gcd(a + b, \Phi_r(a, b)) = 1\) or \(r\) since \(a, b\) are coprime. Moreover, the polynomials \(f_1(a, b)\) and \(f_2(a, b)\) in the definitions of \(B\) and \(C\) are factors of \(\Phi_r(a, b)\) over \(K\); see [6, §2] for proofs of these elementary properties (in particular, Corollary 2.2 and the discussion after Corollary 2.6 in loc. cit.).

Let \(q \mid 2r\) be a prime in \(K\). Then \(v_q(\Delta(F)) = 2(v_q(A) + v_q(B) + v_q(C))\).

If \(q \mid a^r + b^r\) we have \(v_q(\Delta(F)) = 0\), so \(q\) is a prime of good reduction.

Assume \(q \mid a^r + b^r\). Then \(q \mid A\) or \(q \mid \Phi_r(a, b)\) and not both simultaneously.

If \(q \mid \Phi_r(a, b)\) and \(q \mid BC\), then \(q\) is a prime of good reduction.
Otherwise, either \(q \mid A\) and \(q \mid BC\) or \(q \mid A\) and \(q \mid BC\). In both cases, we get \(v_q(\Delta(F)) > 0\) and \(v_q(c_4(F)) = 0\), so \(q\) is a prime of multiplicative reduction.

We now consider the prime \(p_r\) above \(r\). Assume \(r \mid a + b\). We have
\[
v_{p_r}(c_4) = 4, \quad v_{p_r}(c_6) = 6, \quad v_{p_r}(\Delta) = 10 + 4v_{p_r}(a + b).
\]

Since \(v_{p_r}(a + b) \geq (r - 1)/2\) the equation is non-minimal and after a coordinate change we have \(v_{p_r}(c_4) = 0\) and \(v_{p_r}(\Delta) > 0\). Thus \(F\) has bad multiplicative reduction, i.e. \(v_{p_r}(N_F) = 1\).

Finally we consider a prime \(q_2 \mid 2\). As 2 is unramified in \(K\) we will use [13, Table IV] to read the conductor at \(q_2\) in terms of the \(q_2\)-adic valuations of the standard invariants \((c_4, c_6, \Delta)\).

Assume \(2 \mid a + b\) so \(2 \nmid \Phi(a, b)\). Since \(p > 3\), the shape of equation (1.1) implies \(8 \mid a + b\). Moreover,
\[
v_{q_2}(c_4) = 4, \quad v_{q_2}(c_6) = 6, \quad v_{q_2}(\Delta) = 10 + 4v_{q_2}(a + b).
\]

The corresponding entries in [13, Table IV] give us Tate case 7 with \(v_{q_2}(N_F) = 4\) or the equation for \(F\) is non-minimal as \(v_{q_2}(a + b) \geq 3\). We will apply [13, Prop. 4] to show that we are in the non-minimal case; we state it here for convenience.

Proposition 2.4. Let \(K/\mathbb{Q}_2\) be a finite extension with ring of integers \(\mathcal{O}\) and uniformizer \(\pi\). Let \(W/K\) be an elliptic curve given by a Weierstrass model \((W)\) with standard invariants \(a_i\) and \(b_i\). Assume that \((W)\) is in a Tate case \(\geq 7\).

(a) There is \(r \in \mathcal{O}\) such that
\[
b_8 + 3r b_6 + 3r^2 b_4 + r^3 b_2 + 3r^4 \equiv 0 \pmod{\pi^5}
\]
Let $z = -\zeta_r - \zeta_r^{-1}$. Using $a \equiv -b \pmod{q_2^2}$ we get
\[
B = (2 + z)(a^2 + (z^2 - 2)ab + b^2) = (2 + z)((a + b)^2 - (z^2 - 4)ab)
\equiv (z + 2)(z^2 - 4)ab \equiv -b^2(z + 2)^2(z - 2) \pmod{q_2^2}.
\]
Moreover,
\[
2 - z = (\zeta_r^{\frac{r+1}{2}} + \zeta_r^{-\frac{r+1}{2}})^2
\]
with $\zeta_r^{\frac{r+1}{2}} + \zeta_r^{-\frac{r+1}{2}} \in \mathcal{O}_K$ because it is fixed by complex conjugation; thus B is a square mod q_2^2 so part (b) is satisfied and we are in the non-minimal case. After a change of variables we get
\[
\tag{2.5}
\nu_{q_2}(c_4) = \nu_{q_2}(c_6) = 0, \quad \nu_{q_2}(\Delta(F)) = -8 + 4\nu_{q_2}(a + b) > 0,
\]
from which we see that F has multiplicative reduction, i.e $\nu_{q_2}(N_F) = 1$. \qed

Recall from [6, §2] that $\gcd(a + b, \Phi_r(a,b)) = 1$ or r and $\Phi_r(a,b)$ is divisible only by r and primes $q \equiv 1 \pmod{r}$. Write $d = d_0d_1$ where a prime $q \mid d_1$ if and only if $q \equiv 1 \pmod{r}$.

Proposition 2.6. For large enough p the following holds. For all primitive solutions (a, b, c) of \eqref{1.1} with $\gcd(a, b) = 1$ the representation $\overline{\rho}_{F, p}$ is irreducible and modular of weight 2. Moreover, it’s Serre level is $2^s p_r'R \text{Rad}_{2r}(d_0d_1')$ where $q \mid d_1'$ if and only if $q \mid d_1$ and $q \mid c$ where s, t and c are as in Proposition 2.2.

Proof. From [6, Theorems 4.3 and 4.4], it follows that there exists a constant C_r, depending only on r, such that for all $p > C_r$ the representation $\overline{\rho}_{F, p}$ is modular of weight 2 and absolutely irreducible.

Let $q \nmid 2r$ be a prime dividing $a + b$. From Proposition 2.2, we know q is a prime of bad multiplicative reduction.

From \eqref{2.3} we have $a + b = 2^{sp} \cdot r^k \cdot d_0 \cdot c_0^p$ with $s, k \geq 0$ and $c_0 \mid c$. Thus
\[
\tag{2.7}
\nu_q(\Delta(F)) = 2\nu_q(A) = 4\nu_q(a + b) = 4\nu_q(d_0) + 4\nu_q(c_0) \equiv 4\nu_q(d_0) \pmod{p}.
\]
When $\nu_q(d_0) \neq 0$ then $4\nu_q(d_0) \not\equiv 0 \pmod{p}$ for large enough p; further enlarging p we can assume $p \mid d$. Hence the primes $q \mid 2r$ dividing $a + b$ that also divide the Serre level of $\overline{\rho}_{E, p}$ are precisely those dividing d_0.

Finally, the multiplicative primes $q \mid c$ divide the Serre level if and only if $q \mid d_1$. Indeed, recall that p_1 is the only prime that can divide both B and C, and that they are both coprime to $a + b$ as well (and hence to d_0) so both B and C are p-th powers times a divisor in \mathcal{O}_K of d_1r. We have
\[
\tag{2.8}
\nu_q(\Delta(F)) \equiv 2\nu_q(\Delta(d_1)) \pmod{p},
\]
hence, for large \(p \), a prime \(q \mid c \) satisfies \(v_q(\Delta(F)) \not\equiv 0 \pmod{p} \) if and only if \(q \mid d_1 \).

\[\square \]

3. Proof of Theorem 1.2

We will use the following lemma several times, so we state it here before proceeding further.

Lemma 3.1 ([10, Lemma 1.6]). Let \(E \) and \(E' \) be two elliptic curves over \(\mathbb{Q} \) and \(p, \ell_1, \ell_2 \) three distinct primes with \(p > 2 \). Suppose \(E[p] \) and \(E'[p] \) are isomorphic. Suppose \(E \) and \(E' \) have multiplicative reduction at \(\ell_1 \) and \(p \) does not divide \(v_{\ell_1}(\Delta(E)) \), which implies that \(p \) does not divide \(v_{\ell_1}(\Delta(E')) \). Then the reduction mod \(p \) of \(v_{\ell_1}(\Delta(E))v_{\ell_2}(\Delta(E))v_{\ell_1}(\Delta(E'))v_{\ell_2}(\Delta(E')) \) is a square in \(\mathbb{F}_p \).

Note that from a non-trivial solution \((a, b, c)\) to equation (1.1) with \(m = \gcd(a, b) > 1 \) and \(\gcd(a, b, c) = 1 \), we obtain a non-trivial primitive solution to \(x^r + y^r = d^r z^p \) with \(\gcd(a, b) = 1 \) where \(d = \frac{d'}{m^r} \). Since \(d \) is not an \(r \)-power, the same is true for \(d' \). Clearly \(d' \) is also odd and \(r \notdiv d' \), hence we are reduced to the case of solutions satisfying \(\gcd(a, b) = 1 \). The argument below is inspired by [10, Theorem 2.1] and it will show by contradiction that these latter solutions do not exist for \(p \) in a set of primes of density \(> 0 \).

Suppose there is a non-trivial primitive solution \((a, b, c)\) to (1.1) with \(a, b \) coprime\(^1\).

By Proposition 2.6, for sufficiently large \(p \), we have \(\bar{\rho}_{F,p} \simeq \bar{\rho}_{f,p} \), where \(f \) is a Hilbert newform of level \(2^r \cdot p \cdot \text{Rad}_{2r}(d_0d'_1) \), where \(p \) is a prime in the field of coefficients \(K_f \) of \(f \). Since the field of coefficients of \(F \) is \(\mathbb{Q} \), by enlarging \(p \) if needed, we can assume that \(K_f = \mathbb{Q} \). Moreover, since \(d \notdiv 1 \), there is at least one prime \(q \) in \(K \) dividing \(\text{Rad}_{2r}(d_0d'_1) \), which is a Steinberg prime of \(f \). Therefore, by the Eichler-Shimura correspondence for \(f \), there is an isogeny class of elliptic curves defined over \(K \) corresponding to \(f \). Let \(E \) denote an elliptic curve in that isogeny class. Since \(F \) has full 2-torsion over \(K \), by further enlarging \(p \) if necessary, we can also assume that \(E \) has full 2-torsion; see [9, §2.4 and §4] for the previous claims.

From the above, in particular, we have an isomorphism of \(G_K \)-modules \(\phi : F[p] \rightarrow E[p] \).

(1) Suppose \(2 \mid a + b \). Let \(q_2 \mid 2 \) and \(q \mid d \) be primes in \(K \).

Recall that \(d = d_0d_1 \) where a prime \(q \mid d_1 \) if and only if \(q \equiv 1 \pmod{r} \).

(1a) Assume that \(q \mid d_0 \). Then the curve \(F \) has multiplicative reduction at \(q_2 \) and \(q \) by Proposition 2.2; we will apply Lemma 3.1.

Note that \(a + b = 2^{sp} \cdot r^k \cdot d_0 \cdot c_0^s \) with \(s \geq 1 \), therefore from (2.5) and (2.7) we have,

\[
v_{q_2}(\Delta(F)) \equiv -8 \pmod{p} \quad \text{and} \quad v_q(\Delta(F)) \equiv 4v_q(d_0) \not\equiv 0 \pmod{p}.
\]

Therefore, by Lemma 3.1 we must have

\[
-2v_q(d_0) = v_{q_2}(\Delta(E))v_q(\Delta(E)) \in (\mathbb{F}_p^*)/(\mathbb{F}_p^*)^2.
\]

\(^1\)In the paper [6] where our Frey curve \(F \) was introduced, a solution \((a, b, c)\) is called primitive when \(\gcd(a, b) = 1 \). Here we decided to use the condition \(\gcd(a, b, c) = 1 \) instead because this is more standard in the context of the generalized Fermat equation \(Ax^{r} + By^{q} = Cz^p \).
Let \(k \) be the number of isogeny classes of elliptic curves over \(K \) with full 2-torsion and conductor \(2 \cdot \text{Rad}_{2^s}(d) \cdot p_i^s \). For \(i = 1, \ldots, k \), we let \(E_i \) be a representative of each isogeny class and set

\[
n_i := -2n_q(d_0)v_q(\Delta(E_i))v_q(\Delta(E_i))
\]

which are negative integers as the valuations used in their definition are positive.

Observe that our result now follows if, for a positive density of primes \(p \), we have that \(n_i \) is not a square modulo \(p \) for all \(i \). We claim that the set of such primes is non-empty. Then the Dirichlet density theorem guarantees that this set has density \(\geq (1/2)^k \).

To finish the proof we now prove the claim. Choose \(p \equiv 7 \pmod{8} \) such that for all odd primes \(q \mid v_q(d_0) \prod n_i \) the condition \(\left(\frac{q}{p} \right) = 1 \) is satisfied. Such primes exist by the Dirichlet density theorem. Let \(n_i = -2^s q_{i_1}^{e_1} \ldots q_{i_j}^{e_j} \) be the prime factorisation. Then

\[
\left(\frac{n_i}{p} \right) = \frac{-1 \cdot 2^s q_{i_1}^{e_1} \ldots q_{i_j}^{e_j}}{p} = \left(\frac{-1}{p} \right) \left(\frac{2}{p} \right)^s \cdot 1 \cdot \ldots \cdot 1 = -1,
\]

that is, \(n_i \) is not a square mod \(p \) for all \(i \), as desired.

(1b) Assume now \(q \mid d_1 \). Thus \(q \nmid a + b \) and, after replacing \(q \) by a conjugate if needed, we can assume that \(q \mid c \) where \(c \) is given by Proposition 2.2. Thus \(F \) has multiplicative reduction at \(q_2 \) and \(q \). From (2.8) we also know that \(v_q(\Delta(F)) \equiv 2v_q(\Delta(d_1^s)) \neq 0 \pmod{p} \). The conclusion now follows similar to the previous case where the integers \(n_i \) are instead defined by \(n_i := -v_q(d_1^s)q_2(\Delta(E_i))v_q(\Delta(E_i)) \).

(2) Suppose \(r \mid a + b \). Now the curve \(F \) has multiplicative reduction at \(p_r \) and \(q \) by Proposition 2.2. Because \(v_r(\Phi_r(a, b)) = 1 \) when \(r \mid a + b \), we have \(a + b = 2^{sp} \cdot r^{k_p - 1} \cdot d \cdot r_{i}^{j} \). Therefore it follows from the proof of Proposition 2.2 that a minimal discriminant at \(p_r \) for \(F \) satisfies

\[
v_{p_r}(\Delta) = 10 + 4v_{p_r}(a + b) - 12 = -2 + 4(sp - 1) \frac{r - 1}{2} \equiv -2r \pmod{p}
\]

We now apply Lemma 3.1 with primes \(p_r \) and \(q \). Recall that \(v_q(\Delta(F)) \equiv 4v_q(d) \pmod{p} \), leading to

\[
v_q(\Delta(F))v_{p_r}(\Delta(F)) = -2v_q(d)r \in (\mathbb{F}_p)^*/(\mathbb{F}_p)^2
\]

and

\[
n_i = -2v_q(d)r \cdot v_{q_2}(\Delta(E_i))v_{p_r}(\Delta(E_i)).
\]

Since the \(n_i \) are again all negative we complete the proof analogously to case (1). \(\square \)

Remark 3.2. The argument above succeeds due to the negative sign in the definition of the integers \(n_i \). More precisely, this sign arises due to the congruence \(v_{q_2}(\Delta(F)) \equiv -8 \pmod{p} \) in case (1) and \(v_{q_r}(\Delta(F)) \equiv -2r \pmod{p} \) in case (2). We observe these congruences hold only because \(d \) is odd and not divisible by \(r \).

4. Proof of Theorem 1.3

As in Theorem 1.2 we apply the modular method with the Frey curve \(F \). Moreover, the simplifications at the start of the proof of Theorem 1.2 also apply.
Namely, let \((a, b, c)\) be a non-trivial solution to (1.1) such that \(p \mid a + b \) and \(\gcd(a, b) = 1\). For primes \(p\) sufficiently large, we obtain \(\tilde{\rho}_{E, p} \simeq \tilde{\rho}_{E, f, p}\), where \(E_f\) is an elliptic curve with full 2-torsion associated with a Hilbert newform \(f\) of level \(2^s \cdot p^r \cdot \text{Rad}_{2r}(d_0 d'_1)\).

Furthermore, \(E_f\) has good reduction at all primes \(p \mid p\) in \(K\) as \(p \notdiv 2rd\), and \(F\) has multiplicative reduction at all \(p \mid p\) as \(p\) \(a + b\) by Proposition 2.2.

The assumption \(p \equiv \pm 1 \pmod{r}\) implies that \(p\) splits completely in \(K = \mathbb{Q}(\zeta_r)^+\). In particular, locally at any \(p \mid p\) the curves \(F\) and \(E_f\) become curves over \(\mathbb{Q}_p\); therefore, by restricting \(\tilde{\rho}_{F, p} \simeq \tilde{\rho}_{E_f, p}\) to decomposition subgroups at \(p\), we also have the isomorphism

\[
\tilde{\rho}_{F, p}|_{\text{Gal}(\mathbb{Q}_p/\mathbb{Q}_p)} \simeq \tilde{\rho}_{E_f, p}|_{\text{Gal}(\mathbb{Q}_p/\mathbb{Q}_p)},
\]

where the representation on the right is the reduction of a crystalline representation and the one on the left is the reduction of a semistable non-crystalline representation. More precisely, the \(p\)-adic representation \(\rho_{F, p}\) when restricted to \(D_p \simeq \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)\) is given by the first case in [14, §2.2.3] with \(e = 1\) whilst \(\rho_{E_f, p}\) restricted to \(D_p\) is given by the second case also with \(e = 1\). In particular, their semisimplifications are given by

\[
(\rho_{E_f, p}|_{D_p})^{ss} \simeq \eta_{a}^{-1}\chi \oplus \eta_{a} \quad \text{and} \quad (\rho_{F, p}|_{D_p})^{ss} \simeq \eta_{a}^{-1}\chi \oplus \eta_{a} \cdot \eta_{a} - 1,
\]

where the characters \(\eta_{a}, \eta_{1}\) are unramified, \(\eta_{-1}\) is quadratic, \(a \in \{0, 1\}\), \(\chi\) is the \(p\)-adic cyclotomic character and \(a_p(E_f/\mathbb{Q}_p) = u^{-1}p + u\) with \(u = \eta_{a}(\text{Frob}) \in \mathbb{Z}_p^*\). By putting together the reduction mod \(p\) of the representations in (4.2) with the semisimplification of (4.1) we conclude that either

\[
(\eta_{a}^{-1}\chi, \eta_{a}) \equiv (\eta_{a}^{-1}\chi, \eta_{a} - 1) \quad \text{or} \quad (\eta_{a}^{-1}\chi, \eta_{a}) \equiv (\eta_{a} - 1\chi, \eta_{a} - 1\chi) \quad \text{(mod } p\text{)}.
\]

Since \(\chi\) (mod \(p\)) is the mod \(p\) cyclotomic character which is ramified and \(\eta_{a}, \eta_{1}\) are unramified we must be in the first case. Therefore,

\[
a_p(E_f/\mathbb{Q}_p) = u^{-1}p + u \equiv u = \eta_{a}(\text{Frob}) \equiv \eta_{a}^{-1}(\text{Frob}) = \pm 1 \quad \text{(mod } p\text{)}.
\]

Since \(a_p(E_f) = a_p(E_f/\mathbb{Q}_p)\) we have

\[
a_p(E_f) \equiv \pm 1 \quad \text{(mod } p\text{)} \implies a_p(E_f) = \pm 1 + kp, \quad k \in \mathbb{Z}.
\]

Furthermore, from the Weil bound, we get

\[
|a_p(E_f)| \leq 2\sqrt{\text{Norm}(p)} \implies (\pm 1 + kp)^2 \leq 4p
\]

since \(\text{Norm}(p) = p\) because \(p\) splits completely in \(K\). The previous inequality does not hold for large \(p\) unless \(k = 0\), that is \(a_p(E_f) = \pm 1\).

On the other hand, since \(E_f\) has full 2-torsion over \(\mathbb{Q}\) and reduction modulo a rational prime \(q\) of good reduction is injective on \(E_f(\mathbb{Q})_{\text{tors}}\), it follows that \(a_q(E_f)\) is even for all primes \(\ell\) in \(K\) of good reduction; in particular, \(a_p(E_f)\) is even, a contradiction. \(\square\)

References

[1] N. Billerey, I. Chen, L. Dieulefait, N. Freitas, A result on the equation \(x^p + y^p = z^r\) using Frey abelian varieties, Proc. Amer. Math. Soc. 145 (2017), 4111–4117.

[2] N. Billerey, I. Chen, L. Dembele, L. Dieulefait and N. Freitas, Some extensions of the modular method and Fermat equations of signature \((13, 13, n)\), Publ. Math. to appear.

[3] N. Billerey, I. Chen, L. Dieulefait, N. Freitas, A multi-Frey approach to Fermat equations of signature \((r, r, p)\), Trans. Amer. Math. Soc. 371 (2019), 8651–8677.
[4] N. Billerey, I. Chen, L. Dieulefait, and N. Freitas. Appendix by F. Najman, *On Darmon’s program for the generalized Fermat equation*, preprint. Available at https://arxiv.org/pdf/2205.15861.pdf

[5] H. Darmon, *Rigid local systems, Hilbert modular forms, and Fermat’s last theorem*, Duke Math. J. 102 (2000), 413–449.

[6] N. Freitas, *Recipes for Fermat-type equations of the form $x^r + y^r = Cz^p$*, Math. Z. 279 (2015), 605–639.

[7] N. Freitas and A. Kraus, *An application of the symplectic argument to some Fermat-type equations*, C. R. Math. Acad. Sci. Paris 354 (2016), no. 8, 751–755.

[8] N. Freitas and A. Kraus, *On the symplectic type of isomorphisms of the p-torsion of elliptic curves*, Mem. Amer. Math. Soc. 277 (2022), no. 1361, v+105 pp.

[9] N. Freitas and S. Siksek, *The Asymptotic Fermat’s Last Theorem for Five-Sixths of Real Quadratic Fields*, Compositio Mathematica 151 (2015), no. 8, 1395–1415.

[10] E. Halberstadt and A. Kraus, *Courbes de Fermat: résultats et problèmes*, J. Reine Angew. Math. 548 (2002), 167–234.

[11] Kraus, A. *Une question sur les équations $x^m - y^m = Rz^n$ (A Question on the Equations $x^m - y^m = Rz^n$)*, Compositio Mathematica 132, 1–26 (2002).

[12] D. Mocanu, *Asymptotic Fermat for signatures (r, r, p) using the modular approach*, preprint. Available at https://arxiv.org/pdf/2212.10627.pdf

[13] I. Papadopoulos, *Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3*, J. Number Theory 44 (1993), 119–152.

[14] M. Volkov, *Les représentations l-adiques associées aux courbes elliptiques sur Q_p*, J. Reine Angew. Math. 535 (2001), 65–101.

Instituto de Ciencias Matemáticas, CSIC, Calle Nicolás Cabrera 13–15, 28049 Madrid, Spain

Email address: nuno.freitas@icmat.es

University of Zagreb, Faculty of Science, Department of Mathematics, Bijenička cesta 30, 10000 Zagreb, Croatia

Email address: fnajman@math.hr