Сосудистые нарушения на фоне полихимиотерапии онкологических заболеваний

Ключевые слова: кардиоонкология, сердечно-сосудистые заболевания, осложнения химиотерапии, дисфункция эндотелия

Ссылка для цитирования: Беленков Ю.Н., Привалова Е.В., Кожевникова М.В., Кириченко Ю.Ю. Сосудистые нарушения на фоне полихимиотерапии онкологических заболеваний. Кардиология. 2018;58(S9):4–9

Резюме

Развитие и применение новых противоопухолевых препаратов привело к повышению выживаемости онкологических пациентов на 5 лет и более. Однако применение многих современных химиопрепаратов связано с развитием сердечно-сосудистой токсичности, что повышает риск возникновения таких заболеваний, как артериальная гипертензия, СН, тромбозы и тромбоэмболии, кардиомиопатии и аритмии. Эти побочные эффекты могут ограничивать возможности противоопухолевого лечения и снижать дальнейшие перспективы благоприятного исхода. Соответственно необходима тщательная оценка и управление ФР развития ССЗ у онкологических больных с помощью кардиологов и онкологов, работающих вместе.

Belenkov Yu. N., Privalova E. V., Kozhevnikova M. V., Kirichenko Y. Y. I.M. Sechenov First Moscow State Medical University (Sechenov University)

Vascular Complications Of Cancer Chemotherapy

Keywords: cardioangiology, cardiovascular diseases, complications of cancer chemotherapy, dysfunction of endothelium

For citation: Belenkov Yu. N., Privalova E. V., Kozhevnikova M. V., Kirichenko Y. Y. Vascular Complications Of Cancer Chemotherapy. Kardiologiia. 2018;58(S9):4–9

Summary

Development and use of new anticancer drugs has resulted in the improving of 5-year survival rates in patients with cancer. However, many of the modern chemotherapies are associated with cardiovascular toxicities that increases cardiovascular risk in cancer patients, including hypertension, heart failure, thrombosis and thromboembolism, cardiomyopathy, and arrhythmias. These side effects limitation restrict treatment options and farther perspectives. With increasing use of modern chemotherapies and prolongation of the cancer patients survival, the incidence of cardiovascular disease in this patient population will continue to increase. Accordingly, careful assessment and management of cardiovascular risk factors in cancer patients by oncologists and cardiologists working together is essential for optimal care.

Онкологические заболевания занимают второе место в структуре причин смертности населения в мире после ССЗ. В настоящее время в мире с диагнозом «рак» живут около 32,5 млн. человек, из которых ежегодно умирают 8,8 млн. [1].

В последние годы были достигнуты значительные успехи в лечении различных видов онкологических заболеваний. Современная химико- и лучевая терапия в комплексе с оперативным лечением позволяют сохранять жизнь и работоспособность больных в течение десятилетий. Один заболевания на определенной стадии могут быть полностью излечены (лимфома Ходжкина, хронический миелома), при других на фоне лечения удается достичь длительной ремиссии (рак молочной железы). В основе современной терапии онкологических заболеваний лежит использование эффективных комбинаций химиопрепаратов и лучевой терапии. Однако применение этих препаратов у отдельных больных становится причиной развития различных осложнений. С увеличением средней продолжительности жизни пациентов и сроков наблюдения за ними повышается и количество регистрируемых осложнений полихимиотерапии. Все это приводит к тому, что на фоне успешного лечения онкологического заболевания на первый план выходят другие причины снижения качества и продолжительности жизни. Прогноз у пациента часто определяется не столько основным заболеванием, сколько сопутствующей патологией – в первую очередь болезнями сердца и сосудов, такими как артериальная гипертензия (АГ), тромбозы и тромбоэмболии, СН, кардиомиопатии и аритмии [2–4]. Так, по данным Национального института рака США, 5-летняя выживаемость больных с впер-
вые установленным диагнозом «рак» составляет 67%. Из тех, кто не выживает в этот период, онкологическое заболевание является причиной смерти лишь у половины, в то время как кардиальная патология влечет за собой смерть у 30% пациентов [5]. Кумулятивный риск смерти больных с лимфомой Ходжкина в течение 25 лет составляет 24,2%, от сердечно-сосудистых осложнений – 6,9%. В ближайшие 10 лет после последнего курса полихимиотерапии умирают 15–30% пациентов с лимфомой Ходжкина, из них в 80% случаев – от прогрессирования опухолевого процесса. В последующие годы в качестве основных причин смерти на первый план выходят поздних опухолевого процесса. В последние годы в качестве основных причин смерти на первый план выходят поздние осложнения терапии [6]. В работе Е. И. Емелиной и соавт., посвященной исследованию состояния сердечно-сосудистой системы у 112 больных лимфопролиферативными заболеваниями, получавших антрациклины, кардимопатия со сниженной ФВ была выявлена в 27,6% случаев [7]. Согласно данным И. А. Королевой и соавт., частота развития острой кардиотоксичности у женщин, больных раком молочной железы и получающих полихимиотерапию, составляет 39,3% во время плановых визитов и 75,2% во время внеплановых [8].

Становится все сложнее выявить «золотую середину» между эффективной дозой противоопухолевой терапии и снижением риска развития сердечно-сосудистых осложнений. Все это в последние годы привело к необходимости формирования новой специальности – кардионкологии или онкокардиологии, целью которой является изучение поражения структуры сердца и сосудов организма и ее роль в развитии сосудистой токсичности.

О механизмах поражения сердечной мышцы на фоне применения химиопрепаратов, в частности, антрациклиновых антибиотиков, широко применяемых при различных типах опухолей, и антагонистов рецептора HER2, используемых преимущественно при лечении рака молочной железы и желудка, известно давно. Имеется немало исследований, раскрывающих механизм возникновения и развития поражения сердечной мышцы. В то же время влияние полихимиотерапии на сосуды организма и ее роль в развитии сосудистой токсичности изучены недостаточно [4, 9]. В последнее десятилетие внимание исследователей приковано к изучению структурных и функциональных изменений эндотелия сосудов при различных патологических состояниях. Эндотелий представляет собой однослойный пласт клеток, покрывающей сосуды изнутри, и является аутокринным, паракринным и эндокринным органом с множеством регуляторных функций. Эндотелий принимает участие в регуляции тонуса сосудов, гемостазе, иммунном ответе, синтезе факторов роста и воспаления и их ингибиторов [10]. В качестве маркеров дисфункции эндотелия в настоящее время выделяют оксид азота (NO) и его метаболиты, тканевой активатор плазминогена и его ингибитор, фактор Виллебранда, количество циркулирующих эндотелиоцитов, сосудистый эндотелиальный фактор роста (vascular endothelial growth factor, VEGF) и др. В ряде исследований показано, что и само онкологическое заболевание, и последующая полихимиотерапия негативно влияют на функцию эндотелия [11, 12]. Сосудистые осложнения химиотерапии возникают в результате «нецелевых» воздействий препарата или в результате значительного перекрывания сигналных путей, необходимых для функционирования как нормальных сосудов, так и тех, которые вовлечены в процесс роста опухоли. Сосудистая токсичность полихимиотерапии ассоциируется с дисфункцией эндотелия и проявляется потерей вазорелаксантных эффектов и подавлением противовоспалительных и сосудистых репаративных функций. Эти эффекты могут служить стимулом для инициирования и дальнейшего прогрессирования АГ и атеротромбоза. В дополнение к прокоагулянтовому действию раковой опухоли активность тромбоцитов дополнительно усиливается вследствие снижения биодоступности эндотелиальных NO. Все это проявляется в виде повышения уровня спонтанного перекисного окисления липидов и снижения уровня антиоксидантной защиты, цитокинового дисбаланса, изменениями динамики маркеров повреждения эндотелия [9].

В этом обзоре мы постараемся раскрыть наиболее важные клинические аспекты сердечно-сосудистой токсичности, связанной с основными классами химотерапевтических препаратов.

Алкилирующие агенты
Алкилирующие агенты, включающие цисплатин и циклофосфамид, повреждают структуру ДНК, что приводит к цитотокическому эффекту и гибели кардиомиоцитов. При гистологическом исследовании выявляют интерстициальное кровоизлияние, отек и некроз [5, 9].

Производные платины. Применение цисплатина связывают с ранними и поздними сердечно-сосудистыми побочными эффектами, включающими АГ, ишемию миокарда и ИМ, тромбоэмболии и цереброваскулярные заболевания [9, 13]. Артериальная гипертензия – частое осложнение химиотерапии на основе цисплатина, распространенность которой варьирует, по сообщениям различных авторов [11, 12, 14, 15]. Н. Sagstuen и соавт. (2005 г.) выявили развитие АГ через 11 лет после окончания лече-

1 – Ries LAG, Young JL, Keel GE, Eisner MP, Lin YD, Horner M-J (editors). SEER Survival Monograph: Cancer Survival Among Adults: U. S. SEER Program, 1988–2001, Patient and Tumor Characteristics. National Cancer Institute, SEER Program, NIH Pub. No. 07–6215, Bethesda, MD, 2007. Доступно на: https://seer.cancer.gov/archive/publications/survival/seer_survival_mono_lowres.pdf
ниятность у 53% пациентов, получавших терапию высокими дозами цисплатина (отношение шансов — ОШ 2,3 при 95% доверительном интервале — ДИ от 1,5 до 3,7, в сравнении с контрольной группой) [14]. По данным других авторов, распространенность АГ через 7–14 лет после окончания полициклохимотерапии варьировала от 14 до 39% соответственно [13, 15, 16]. D. Strumberg и соавт. обнаружили развитие диастолической АГ в 25% случаев, в отсутствие значительного повышения САД через 13 лет наблюдения [17]. В большинстве исследований показано, что у пациентов после терапии препаратами на основе платины развивалась стойкая АГ, которую авторы связывали с активацией эндотелиальных клеток, их дальнейшим повреждением и последующей дисфункцией эндотелия [11–13, 15].

Тромбозы. Химиотерапия препаратами платины связана с 9%-м риском развития тромбоэмболических осложнений [11, 18]. Механизмы, способствующие образованию тромбов, включают повреждение и дисфункцию эндотелиальных клеток, которые, в свою очередь, провоцируют гиперкоагуляцию с активацией, адгезией и агрегацией тромбоцитов, повышение уровня фактора Виллеbrandа и уменьшение биодоступности NO [9, 19, 20]. При тромбозе in situ вследствие дисфункции эндотелия или тромбоэмболии могут возникать цереброваскулярные осложнения [11].

Результаты не менее чем 10-летнего наблюдения за пациентами, получавшими терапию цисплатином по поводу метастатического рака яичек, показали смертность (по сравнению с общей популяцией) увеличение риска развития кардиальных осложнений: 5 (6%) пациентов, из них у 2 – ИМ, у 3 – стенокардия с доказанной ишемией миокарда [13]. Кроме того, продемонстрирован стойкое формирование ФР развития ССЗ, включая дислипидемию и АГ у пациентов, ранее получавших плацентосдерживающие препараты [13, 21]. C. Fung и соавт. продемонстрировали почти пятикратное увеличение смертности от сердечно-сосудистых причин в первый год после терапии цисплатином у больных раком яичек по сравнению с пациентами, которым было проведено только хирургическое лечение [22]. Дальнейшее наблюдение показало значительное снижение риска развития тромбоэмболических осложнений через 1 год после лечения. Это исследование демонстрирует кратко- и среднесрочные эффекты химиотерапии на основе платины и позволяет предположить, что раннее токсическое воздействие этих препаратов преобладает над возможным развитием неблагоприятных сердечно-сосудистых исходов в долгосрочной перспективе.

Описаны случаи спровоцированного цисплатином вазоспазма, который может привести к стенокардии, ОКС и инсульту [13]. Кроме того, гипомагниемия, развивающаяся в ответ на терапию цисплатином, может способствовать развитию аритмий и изменению тонуса коронарных и церебральных сосудов [19, 23].

Некротиксичность. Является еще одним неблагоприятным эффектом применения препаратов платины с дозозависимым и необратимым снижением функции почек, развивается приблизительно у 20% пациентов [24–26]. Возможными механизмами являются повреждение эндотелия и эндотелиальных клеток с последующей дисфункцией [27]. При патоморфологическом исследовании почечной ткани выявляют поражение проксимальных канальцев с десквамацией эпителия, вплоть до очагового некроза дистальных канальцев и собирающих трубочек [26, 28]. У пациентов, леченных платиносдерживающими препаратами, отмечена высокая распространенность микроальбуминурии [29]. Микроальбуминурия встречается по крайней мере у 22% пациентов с диагнозом метастатического рака яичек через 10 лет после химиотерапии на основе цисплатина [13]. Авторы также отмечали наличие более высоких уровней САД и ДАД по сравнению с пациентами без МАУ. Это подтверждает гипотезу в отношении того, что дисфункция эндотелия и ассоциированная с ней некротиксичность могут способствовать развитию АГ, связанной с химиотерапией цисплатином.

Циклофосфамид. Наиболее распространенными сосудистыми осложнениями этого алкилирующего препарата являются АГ, ИМ, инсульт, синдром Рейно и печеночные тромбозы. Концентрация циркулирующего VEGF заметно снижается при непрерывном введении циклофосфамida в низких дозах, что может приводить к дисфункции эндотелия. Замечено, что циклофосфамид может приводить к развитию интерстициальной пневмонии и легочного фиброза. При биопсии легкого выявляют склерозированные сосуды и признаки легочной гипертензии [11]. Это связывают со снижением активности ангиотензинпревращающего фермента, а также с адгезией и агрегацией моноцитов, нейтрофилов и тромбоцитов на участках поврежденного эндотелия [11].

Антиметаболиты: 5-фторурацил

5-Фторурацил (5-FУ) и его пролекарство капецитабин вызывают кардиотоксические эффекты в 1–68% случаев, которые обычно проявляются через 72 ч после введения препарата [9, 30]. Риск их возникновения повышается при повторном введении высоких доз и непрерывной инфузии. Наиболее часто встречающимся эффектом является ишемия миокарда, которую связывают со спазмом коронарных артерий, тромбозом или дисфункцией эндотелия [4, 9, 19, 31]. Проявления ишемии миокарда могут выражаться в широких пределах: от бессимптомных изменений сегмента ST на ЭКГ до стенокардии, ИМ и внезапной сердечно-сосудистой смерти [4]. Хотя повреждение
клеток эндотелия и тромбоэзы могут приводить к ишемии миокарда, авторы считают, что именно спазм коронарных артерий является главным патогенетическим фактором [19, 32]. 5-ФУ может оказывать также прямое токсическое воздействие на сосудистый эндотелий в виде снижения активности эндотелиальной NO-синтазы и активации эндотелийнезависимой вазоконстрикторной системы посредством протеинкиназы C [11, 33]. К этим эффектам особенно чувствителен эндотелий коронарных артерий, что в конечном счете приводит к появлению стенокардии типа Принцметала [11]. Хотя 5-ФУ и оказывает выраженное воздействие на сосуды сердца, на фоне его применения авторы не выявили ускорения спастического компонента состояния эндотелия [34].

Снижение вазодилатирующих свойств эндотелия, скорость кровотока, что предрасполагает к тромбообразованию дозозависимое повышение вязкости крови и снижение резистенции сосудистой системы у 20 больных раком молочной железы, получавших либо антрациклины, либо трастузумаб. Авторы выявили значительное увеличение конечных диастолического и систолического объемов ЛЖ с течением времени (р<0,04 и р<0,00 соответственно), ФВ также выраженно снижалась за период наблюдения (р<0,002).

Болезни. Противопоказания к терапии бевацизумаба оказываются синергическим с 5-ФУ действием на сосуды, что согласуется с теорией о том, что сердечно-сосудистые эффекты в данном случае более связаны с вазоспазмом и измененной сосудистой реакцией. В то же время известно, что 5-ФУ вызывает дозозависимое повышение вязкости крови и снижение скорости кровотока, что предрасполагает к тромбообразованию [11].

Противораковые антибиотики

Антрациклины. Препараты этого класса являются одним из наиболее эффективных химиотерапевтических препаратов и широко применяются для лечения как гематологических, так и солидных новообразований. С кокалажа, они обладают выраженной кардиотоксичностью и оказывают неблагоприятное отдаленное влияние на структуру и функции сердца. Частота повреждения сердца при лечении антрациклинами варьирует от 5 до 57%. Смертность от кардиальных причин достигает 7%, а в случае развития застойной СН – 27–60% [34]. Основным механизмом действия препаратов является ингибиторирование топоизомеразы 2b, что приводит к разрывам в обеих цепочках ДНК и гибели кардиомиоцитов [35]. Антрациклоновые антибиотики оказывают влияние и на тонус сосудов микроциркуляторного русла миокарда, метаболиты которых связываются с сократительными белками мышечного слоя сосудистой стенки, нарушают синтез нуклеиновых кислот и белков, изменяют активность ферментов и гомеостаз ионов кальция. Установлено, что начальные явления дисфункции миокарда проявляются еще до сдвигов биомаркеров и структурных изменений сердечной мышцы.

Заключение

Сердечно-сосудистые осложнения полихимиотерапии довольно распространены и частота их продолжает увеличиваться одновременно с повышением выживаемости при онкологических заболеваниях. В целях повышения безопасности противоопухолевого лечения очень важно оценивать риск развития сердечно-сосудистых осложнений у онкологического больного до начала лечения. Необходимо выявлять пациентов, имеющих высокий риск развития сердечно-сосудистой патологии, и пациентов, которые уже имеют ССЗ. Представляется оправданно срочно начинать антиаритмическую терапию, а при отсутствии эффекта – проводить подбор лекарственного препарата с учетом возможных противопоказаний.
данных оценить спектр возможных осложнений, связанных с планируемым к применению химиопрепаратом, при выборе оптимального режима лечения пациента. Однако оптимальные стратегии диагностики, наблюдения и лечения сердечно-сосудистых осложнений у пациентов, получающих химотерапевтическое лечение, остаются неопределенными и представляют собой сложную задачу. Дисфункция эндотелия при онкологических заболеваниях является маркером риска развития сердечно-сосудистых осложнений и тесно коррелирует с традиционными ФР развития ССЗ у здоровых пациентов. Таким образом, оценка функции эндотелия является важным звеном для выявления бессимптомных пациентов с высоким риском развития сердечно-сосудистых осложнений и стратификации риска среди пациентов с известным ССЗ до назначения химиотерапии. В то же время остается незвестным, имеет ли неинвазивная оценка функции эндотелия высокую ценность в прогнозировании рисков. Этот вопрос особенно важен в свете того, что эндотелий сосудов играет ключевую роль в патофизиологических процессах, лежащих в основе сосудистой токсичности. Следует соблюдать осторожность в лечении онкологических пациентов, чтобы максимально сбалансировать наиболее эффективное противопуховое лечение с минимальным токсическим воздействием на сердце и сосуды. Для этого необходимо наращивать базу знаний о возможных токсических эффектах полихимиотерапии с целью разработки потенциальных стратегий защиты сердца и сосудов у пациентов и для успешного лечения осложнений, если они произойдут. Все это требует создания рабочих групп, состоящих из кардиологов и онкологов, для междисциплинарного управления и принятия решений в отношении пациентов, которые нуждаются и в онкологической, и в сердечно-сосудистой поддержке, для достижения главной цели – повышения качества и продолжительности жизни пациентов.

Список литературы/References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012: Globocan 2012. International Journal of Cancer. 2015;136 (5):E3359–86. DOI:10.1002/jic.29210

2. Truong J, Yan AT, Cramarossa G, Chan KKW. Chemotherapy-induced cardiotoxicity: detection, prevention, and management. Can J Cardiol. 2014;30 (8):869–78. DOI:10.1016/j.cjca.2014.04.029

3. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nature Reviews Cardiology. 2010;7 (10):564–75. DOI:10.1038/nrcardio.2010.121

4. Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. European Heart Journal. 2013;34 (15):1102–11. DOI:10.1093/eurheartj/ehs181

5. Bovelli D, Plataniotis G, Roila F, ESMO Guidelines Working Group. Cardiovascular safety in patients with solid tumors: a review of current evidence. Ann Oncol. 2010;21 Suppl 5:s277–82. DOI:10.1093/annonc/mdq200

6. Aleman BMP, van den Belt-Dusebout AW, De Bruin ML, van’t Veer MB, Hodaaiens MHA, Boven JL, et al. Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood. 2007;109 (5):1878–86. DOI:10.1182/blood-2006-07-34405

7. Емелина Е. И., Гендлин Г. Е., Сторожаков Г. И., Лепков С. В., Деми-Ермолова А. Н. Ардиотоксичность при проведении химиотерапии онкологических заболеваний. Российский Медицинский Журнал. 2007; (1):7–11.

8. Казюлин А. Н., Вальшер А. З., Королева И. А., Кучерый Ю. А. Кардиотоксичность при проведении химиотерапии онкологических заболеваний. Медицина критических состояний. 2010;1 (1):62–70.

9. Гадер ИН, Яблонский А. И., Коробко Л. С. Клиническое значение неинвазивной оценки функции эндотелия сосудов в прогнозировании риска сердечно-сосудистых осложнений. Кардиология. 2018;58(S9)

ISSN 0022-9040. Кардиология. 2018;58(S9)
22. Fung C, Fossa SD, Milano MT, Sahasrabudhe DM, Peterson DR, Travis LB. Cardiovascular Disease Mortality After Chemotherapy or Surgery for Testicular Nonseminoma: A Population-Based Study. Journal of Clinical Oncology. 2015;33 (28):3105–15. DOI:10.1200/JCO.2014.60.3654
23. Lajer H, Daugaard G. Cisplatin and hypomagnesemia. Cancer Treatment Reviews. 1999;25 (1):47–58. DOI:10.1053/ctrv.1999.0097
24. El-Awady SE, Moustafa YM, Abo-Elmatty DM, Radwan A. Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. European Journal of Pharmacology. 2011;650 (1):335–41. DOI:10.1016/j.ejphar.2010.09.085
25. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platining agents. Cancer Treatment Reviews. 2007;33 (1):9–23. DOI:10.1016/j.ctrv.2006.09.006
26. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin Nephrotoxicity: A Review. The American Journal of the Medical Sciences. 2007;334 (2):115–24. DOI:10.1097/MAJ.0b013e31812dfe1e
27. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin Nephrotoxicity. Toxins. 2010;2 (11):2490–518. DOI:10.3390/toxins2112490
28. Pabla N, Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney International. 2008;73 (9):994–1007. DOI:10.1038/sj.ki.1003334
29. Nuver J, Smit AJ, Sleijfer DT, van Gessel AI, van Roon AM, van der Meer J et al. Microalbuminuria, decreased fibrinolysis, and inflammation as early signs of atherosclerosis in long-term survivors of disseminated testicular cancer. European Journal of Cancer. 2004;40 (5):701–6. DOI:10.1016/j.ejca.2003.12.012
30. Brana I, Tabenero J. Cardiotoxicity. Annals of Oncology. 2010;21 (Supplement 7):vii173–9. DOI:10.1093/annonc/mdq295
31. Stewart T, Pavlakis N, Ward M. Cardiotoxicity with 5-fluorouracil and capetibine: more than just vasospastic angina: Fluoropyrimidine cardiotoxicity. Internal Medicine Journal. 2010;40 (4):303–7. DOI:10.1111/j.1445-5994.2009.02144.x
32. Cwikiel M, Eskilson J, Albertsson M, Stavenow L. The influence of 5-fluorouracil and methotrexate on vascular endothelium. An experimental study using endothelial cells in the culture. Annals of Oncology. 1996;7 (7):731–7. DOI:10.1093/oxfordjournals.annonc.a010723
33. Alter P, Herzum M, Soufi M, Schaefer J, Maisch B. Cardiotoxicity of 5-Fluorouracil. Cardiovascular & Hematological Agents in Medicinal Chemistry. 2006;4 (1):1–5. DOI:10.2174/187152506775268785
34. Wakabayashi I, Groschner K. Vascular Actions of Anthracycline Antibiotics. Current Medicinal Chemistry. 2003;10 (5):427–36. DOI:10.2174/0929867033368259
35. Vejpongsa P, Yeh ETH. Prevention of Anthracycline-Induced Cardiotoxicity. Journal of the American College of Cardiology. 2014;64 (9):938–45. DOI:10.1016/j.jacc.2014.06.1167
36. Новаковская С. А., Арчакова Л. И. Ультраструктурная реорганизация сосудов микроциркуляторного русла миокарда при различных формах антрациклиновой кардиомиопатии. Материалы IX Международной научно-практической конференции «Дисфункция эндотелия: экспериментальные и клинические исследования», Витебск, 27 мая 2016 г [Internet]. -Витебск: ВГМУ; 2016. p. 46–8. [Novakovskaya S. A., Archakova L. I. Ultrastructural reorganization of the vessels of the microcirculatory bed of the myocardium with various forms of anthracycline cardiomyopathy. Materials of the 9th International conference «Endothelial dysfunction: Experimental and Clinical Studies». – Vitebsk: VSU, 2016. – P. 46-48. ISBN 978-985-466-850-5. Available at: https://www.vsmu.by/downloads/conf/endothelial_dysfunction.pdf]
37. Avelar E, Truong QA, Inyangetor D, Marfatia R, Yang C, Kaloudis E et al. Effect of Adjuvant Chemotherapy on Left Ventricular Remodelling in Women with Newly Diagnosed Primary Breast Cancer: A Pilot Prospective Longitudinal Cardiac Magnetic Resonance Imaging Study. Journal of Thoracic Imaging. 2017;32 (6):365–9. DOI:10.1097/RTI.0000000000002825

Материал поступил в редакцию 03/07/2018