STABLE COHOMOLOGY OF THE PERFECT CONE
TOROIDAL COMPACTIFICATION OF \mathcal{A}_g

SAMUEL GRUSHEVSKY, KLAUS HULEK, AND ORSOLA TOMMASI

Abstract. We show that the cohomology of the perfect cone (also called first Voronoi) toroidal compactification $\mathcal{A}^{\text{Perf}}_g$ of the moduli space of complex principally polarized abelian varieties stabilizes, in close to the top degree. Moreover, we show that this stable cohomology is purely algebraic, and we compute it in degree up to 13. Our explicit computations and stabilization results apply in greater generality to various toroidal compactifications and partial compactifications, and in particular we show that the cohomology of the matroidal partial compactification $\mathcal{A}^{\text{Matr}}_g$ stabilizes in fixed degree, and forms a polynomial algebra. For degree up to 8, we describe explicitly the generators of the cohomology, and discuss various approaches to computing all of the stable cohomology in general.

1. Introduction

The stabilization of cohomology is of great interest in the study of the geometry of moduli spaces. The most notable results in this direction are the stabilization of the cohomology of the moduli space \mathcal{A}_g of g-dimensional complex principally polarized abelian varieties (ppav), proved by Borel [Bor74] and of the moduli space \mathcal{M}_g of non-singular algebraic curves of genus g, first proved by Harer in [Har85]. In both cases, the cohomology with \mathbb{Q} coefficients is shown to stabilize, in the sense that the degree k cohomology group of the moduli space is independent of g when g is sufficiently large with respect to k. In both cases, stable cohomology is freely generated by classes whose geometric meaning is well understood: the odd λ-classes in the case of \mathcal{A}_g and the κ-classes in the case of \mathcal{M}_g. However, while this description of the cohomology of \mathcal{A}_g in the stable range follows directly from Borel’s methods, the description of the stable cohomology of \mathcal{M}_g, conjectured

Research of the first author is supported in part by National Science Foundation under the grant DMS-12-01369.

Research of the second and third authors is supported in part by DFG grants Hu-337/6-1 and Hu-337/6-2.
by Mumford at the beginning of the eighties, was proved much later by Madsen and Weiss [MW07] using homotopy-theoretic methods.

It is natural to wonder whether similar stability phenomena also occur when studying the cohomology of compactifications of moduli spaces. This is clearly not the case for the Deligne–Mumford compactification \overline{M}_g of M_g, because it is known that the rank of the Picard group of \overline{M}_g, and hence its second cohomology, grows linearly in g. On the other hand, it was shown by Charney and Lee [CL83] that the cohomology of the minimal compactification of A_g, the so-called Satake compactification A^{Sat}_g, stabilizes in the same range as $H^k(A_g)$. Besides the Satake compactification, there is a whole family of compactifications of A_g that are significant for geometric purposes: they are the toroidal compactifications introduced in [AMRT75]. As observed in [Gr09, §6], the existence of stable cohomology for toroidal compactifications is a completely open problem. It is not at all clear whether to expect stabilization of cohomology in any range and as we shall see the answer also depends on the chosen compactification. Moreover the question is also interesting for partial compactifications of A_g such as the matroidal partial toroidal compactification. An important feature of stable cohomology of compactifications and partial compactifications of A_g (if such stable cohomology exists) is its structure as graded Hopf algebra. As was pointed out to us by Nicholas Shepherd-Barron, when the cohomology of a (partial) compactification \overline{A}_g of A_g stabilizes, the stable cohomology can be identified with the cohomology of the inductive limit \overline{A}_∞ of the sequence of maps $\cdots \to \overline{A}_g \to \overline{A}_{g+1} \to \cdots$. In particular, whenever the map $\overline{A}_{g_1} \times \overline{A}_{g_2} \to \overline{A}_{g_1+g_2}$ defined by taking the product of abelian varieties extends to a map of compactifications $\overline{A}_{g_1} \times \overline{A}_{g_2} \to \overline{A}_{g_1+g_2}$ for all $g_1, g_2 \geq 0$, the inductive limit \overline{A}_∞ has a natural structure as an H-space. Then one can apply Hopf’s theorem (see e.g. [Hat02 Thm. 3C.4]) to conclude that the rational cohomology of \overline{A}_∞, i.e. the stable cohomology of \overline{A}_g, is a free graded-commutative algebra, the tensor product of an exterior algebra on odd-degree generators and a polynomial algebra on even-degree generators. In particular it is known that the product map extends to the perfect cone and second Voronoi toroidal compactifications, and the matroidal partial compactification and thus if for any of these the cohomology stabilizes, it must form a free graded-commutative algebra.

The main purpose of this paper is to show the stabilization of cohomology in close to the top degree for the perfect cone toroidal compactification A_g^{perf} of A_g. Throughout the paper we work with cohomology with \mathbb{Q} coefficients, and our main result is the following
Theorem 1.1 (Main theorem). The cohomology of the perfect cone compactification stabilizes in close to the top degree, i.e. the cohomology $H^{g(g+1)-k}(A_g^{\text{Perf}})$ (with \mathbb{Q} coefficients) is independent of g for $k < g$.

The method of our proof is by noting that A_g^{Perf} admits a stratification with strata corresponding to various cones in the perfect cone or first Voronoi decomposition. We argue that the cohomology of each stratum stabilizes, and then use the Gysin exact sequence to compute the cohomology of the union of all strata, using the specifics of the perfect fan to argue that the resulting cohomology stabilizes. In particular, this allows us to see where the stable cohomology classes come from, proving the next result:

Theorem 1.2. The stable cohomology groups $H^{g(g+1)-k}(A_g^{\text{Perf}}, \mathbb{Q})$ for $k < g$ are generated by algebraic classes.

The constructions involved in the proof of Theorem 1.1 can be extended in a straightforward way to homology, giving an analogous description of the stabilization in close to top degree. Our choice to state all results only in cohomology is motivated by stylistic reasons. However, this choice has the disadvantage that the cycle map is defined a priori only for homology, so when we refer to the cohomology of singular spaces and speak of algebraic classes in the stable range, as we do in Theorem 1.2, we actually refer to the fact that the corresponding homology classes are algebraic.

We note that since the perfect cone toroidal compactification is singular, there is no a priori Poincaré duality relating the cohomology in close to the top degree and close to the bottom degree (where the previously known stabilization results are formulated). However, as was recently shown by Dutour Sikirić, Schürmann, and the second author in [DSHS13], for $g \geq 4$ the locus of singular points of the stack A_g^{Perf} has codimension 10 in A_g^{Perf} (while A_g^{Perf} is smooth as a stack for $g \leq 3$). In particular, by [Dur95] Prop. 3] we have $IH^k(A_g^{\text{Perf}}, \mathbb{Q}) = H^{g(g+1)-k}(A_g^{\text{Perf}}, \mathbb{Q})$ for $k \leq 10$ for the middle perversity intersection cohomology of A_g^{Perf}. Moreover, by the results in [BBF+95] algebraic cycles can always be lifted to intersection homology. Combining this with the two theorems above, we get that the stable cohomology $H^{g(g+1)-k}(A_g^{\text{Perf}}, \mathbb{Q})$ can be lifted to $IH^k(A_g^{\text{Perf}}, \mathbb{Q})$. This motivates the following

Question 1.3. Does the intersection cohomology of the perfect cone compactification stabilize, i.e. does $IH^k(A_g^{\text{Perf}}) \cong H^{g(g+1)-k}(A_g^{\text{Perf}})$ (with \mathbb{Q} coefficients) hold for all $k < g$?
In principle our method allows computing the entire stable cohomology of \(\mathcal{A}_{\text{Perf}}^g \), but combinatorially this becomes extremely complicated. Still, for low degree we obtain the result.

Theorem 1.4. The stable Betti numbers of the perfect cone compactification (i.e. \(\dim \mathbb{Q} H^{g(g+1) - k} (\mathcal{A}_{\text{Perf}}^g, \mathbb{Q}) \) for \(k < g \)) in even degree are as follows:

\(k \)	0	2	4	6	8	10	12
\(\dim \mathbb{Q} H^{g(g+1) - k} (\mathcal{A}_{\text{Perf}}^g, \mathbb{Q}) \)	1	2	4	9	18	38	83

Moreover, the stable cohomology \(H^{g(g+1) - k} (\mathcal{A}_{\text{Perf}}^g, \mathbb{Q}) \) vanishes for odd \(k \leq 13 \).

We note that similar questions are currently under investigation by J. Giansiracusa and G. K. Sankaran [GS13]. Their techniques are mostly topological, and it appears that their results are in a sense rather complementary to ours, as their aim is to prove the stabilization at the other end of the range, that is to compute \(H^k (\mathcal{A}_{\text{Perf}}^g) \) for \(k \ll g \). In particular, at the moment it appears that they have a proof for the stabilization of cohomology of the matroidal locus in low degree. It seems that one major advantage of their approach is that their results would yield stabilization with \(\mathbb{Z}[1/2] \) or possibly even with \(\mathbb{Z} \); however, in our approach we are able to compute some of the dimensions of the stable cohomology, and describe the generators — problems to which it seems their topological methods are less applicable.

In fact, our technique also applies for the matroidal locus, for which we also obtain stabilization. Indeed, recall that the matroidal locus \(\mathcal{A}_{\text{Matr}}^g \) is a partial toroidal compactification of \(\mathcal{A}_g \) obtained by taking the union of strata corresponding to all matroidal cones. Melo and Viviani [MV12] showed that a cone is contained in both the perfect cone decomposition and the second Voronoi decomposition if and only if it is a matroidal cone. In particular the matroidal locus is the biggest partial toroidal compactification contained in both \(\mathcal{A}_{\text{Perf}}^g \) and \(\mathcal{A}_{\text{Vor}}^g \) as a Zariski open subset. Thus the results of Alexeev and Brunyate [AB11] imply that the Torelli map \(\mathcal{M}_g \rightarrow \mathcal{A}_g \) extends to a morphism \(\mathcal{M}_g \rightarrow \mathcal{A}_{\text{Matr}}^g \) from the Deligne–Mumford compactification. Our result for the matroidal locus is the following:

Theorem 1.5. The cohomology of the matroidal partial toroidal compactification stabilizes, i.e. \(H^k (\mathcal{A}_{\text{Matr}}^g, \mathbb{Q}) \) does not depend on \(g \) for \(k < g \). The stable cohomology is generated by algebraic classes.

Note that the coarse moduli space of \(\mathcal{A}_{\text{Matr}}^g \) is a rational homology manifold, because all matroidal cones are simplicial by [ER94, Theorem...
and therefore they define rationally smooth toric varieties. Hence the stability result for cohomology in Theorem 1.5 is equivalent to a stability result for cohomology with compact support in close to the top degree.

Similarly to the above, as a corollary of our work for the perfect cone compactification we obtain (essentially simply by omitting all the non-matroidal strata) the stable cohomology of the matroidal locus in degree up to 12:

Theorem 1.6. The stable cohomology of the matroidal locus in low degree vanishes in odd degree and is given by the following table in even degree

k	0	2	4	6	8	10	12
dim $H^k(A^\text{Matr}_g, \mathbb{Q})$	1	2	4	9	18	37	78

Let us recall that the stable cohomology of A^Matr_g has a natural structure of a commutative and associative graded Hopf algebra coming from the H-space structure of A^Matr_∞. Then the two theorems above, together with some results from Section 12, imply the following:

Corollary 1.7. The stable cohomology of A^Matr_g is a polynomial algebra generated by algebraic classes. In low degree $k \leq 12$, a possible choice of generators is given by λ_1, λ_3, λ_5, the fundamental classes of the strata of A^Matr_g corresponding to the matroidal cones of dimension smaller than or equal to 6, one additional generator in degree 10 and two in degree 12.

In Section 12 we will also discuss two natural subrings of the cohomology ring of the partial compactification consisting of all the simplicial (i.e. corresponding to stack-smooth strata) cones of A^Perf_g, which includes the smooth locus and the matroidal locus A^Matr_g as open subsets. More precisely we will investigate what we call the *strata algebra*, which is generated by the fundamental classes of the strata corresponding to the various simplicial cones in the decomposition, and the *boundary algebra*, which is generated by polynomials in divisorial boundary components of $A^\text{Perf}_g(2)$ invariant under the deck group action, where in each case we also add the Hodge classes λ_i. This gives a supply of geometrically defined cohomology classes. It turns out that neither of these subrings suffices to generate the entire cohomology.

Proposition 1.8. Neither the strata algebra nor the boundary algebra span the stable cohomology of A^Perf_g.
This proposition is simply a numerical statement — at the end of the paper we will see that both the boundary algebra and the strata algebra in degree 12 have dimension less than the stable cohomology.

Note that one expects the geometrical interpretation of stable cohomology to be easier when restricting to suitable open subsets of A^perf_g, such as the matroidal locus A^Matr_g. A first step in this direction is Theorem 9.7, where we prove that the stable cohomology of the union A^Std_g of the strata of A^perf_g corresponding to the standard cones $\langle x_1^2, \ldots, x_n^2 \rangle$ is freely generated over the stable cohomology of A_g by the fundamental classes of the strata.

Finally, we note that for the Satake compactification it is easy to see that cohomology in close to top degree stabilizes, and in fact we can determine the stable cohomology completely:

Theorem 1.9. The cohomology $H^g(g+1)-k(A^\text{Sat}_g, \mathbb{Q})$ is independent of g for $k < g$, and is dual to the truncated free algebra generated by the Chern classes $\lambda_i := c_i(E) \in H^{2i}(A^\text{Sat}_g)$ of the Hodge vector bundle (we recall [Mum77], [FC90, §V.2] that E extends as a vector bundle on any toroidal compactification, and that λ_i are well-defined in $H^{2i}(A^\text{Sat}_g)$).

We recall that the starting point for the study of the stable cohomology of A_g is the theorem of Borel (see Theorem 3.1 below), which says that the cohomology $H^k(A_g)$ for $k < g$ is freely generated by the classes $\lambda_1, \lambda_3, \lambda_5, \ldots$. Thus the theorem above says that the stable cohomology in close to top degree of A^Sat_g is dual to this. For comparison, recall that the stable cohomology of the Satake compactification was computed by Charney and Lee:

Theorem 1.10 ([CL83]). For k fixed and $g > k$ the rational cohomology $H^k(A^\text{Sat}_g, \mathbb{Q})$ does not depend on g, and the stable cohomology ring is freely generated by the classes $\lambda_1, \lambda_3, \lambda_5, \ldots$, and also the classes $\alpha_3, \alpha_5, \alpha_7, \ldots$ where the degree of α_j is $2j$.

It appears that the classes $\alpha_i \in H^{2i}(A^\text{Sat}_g, \mathbb{Q})$ are non-algebraic — in particular by the results of [Hai02] there is a non-algebraic class (it has a wrong Tate twist) in $H^6(A^\text{Sat}_g)$, which is likely to be α_3, and it follows from the results of [HT12] that there is also a non-algebraic class in $H^8(A^\text{Sat}_g)$, which is likely to be $\alpha_3 \lambda_1$. Thus it appears that the stable cohomology in close to top degree of the Satake compactification is dual to only the algebraic subring of the stable cohomology of the Satake compactification in low degree (again, recall that A^Sat_g is highly singular and thus there is no reason to expect it to satisfy Poincaré duality), which in turn, by the results of Borel, is actually isomorphic.
to the stable cohomology of \(\mathcal{A}_g \) itself (see Theorem 3.1 below for a precise statement).

Acknowledgements

The first author is grateful to Dmitry Zakharov for many stimulating discussions on topics related to the cohomology of families of abelian varieties. We are grateful to Ben Moonen for bringing results of Thompson [Tho07] to our attention, and indicating how they relate to the questions we address in this paper. We thank Jayce Getz who asked us in a talk whether a statement such as Theorem 1.2 could hold. We thank Nicholas Shepherd-Barron and Giulio Codogni for comments and explanations regarding stable cohomology having the Hopf algebra structure. We are indebted to Eduard Looijenga for useful discussions and suggestions, and Mathieu Dutour Sikirić for answering our questions on the combinatorics of cone decompositions. The second author would like to thank Barbara Fantechi for discussions on stacks and their singularities. Finally, the third author would like to thank Dick Hain for answering her questions about the stable cohomology of non-trivial local systems over \(\mathcal{A}_g \).

2. Method of proof

The method of our proof is rather similar to the previous works [HT10] and [HT12] of the second and third authors, where the cohomology of \(\mathcal{A}_3 \) and (almost all of) the cohomology of \(\mathcal{A}_4 \) was computed (in genus 3, the central cone, perfect cone, and second Voronoi toroidal compactifications coincide, while in genus 4 the central and perfect cone compactifications coincide, and the second Voronoi compactification is the blowup of them at their unique (stack) singular point). We now review the ideas and the techniques involved in computing cohomology of toroidal compactifications, while highlighting the new difficulties encountered in dealing with arbitrary genus, but also pointing out where working in the stable range simplifies the argument, as compared to explicit computations for \(g = 3, 4 \).

Indeed, the stable cohomology of \(\mathcal{A}_g \), being a \(K(\text{Sp}(2g, \mathbb{Z}), 1) \), is equal to the stable cohomology of the group \(\text{Sp}(2g, \mathbb{Z}) \), and was computed by Borel [Bor74, Bor81]. Moreover, it is also known that the stable cohomology of all non-trivial irreducible rational local systems on \(\mathcal{A}_g \) (equivalently, of irreducible rational representations of the algebraic group \(\text{Sp}(2g) \)) is simply zero by a strengthening [Hai97, Theorem 3.2] of Borel’s stability theorem.
We now proceed to compute the cohomology of various partial toroidal compactifications of A_g obtained by adding various boundary strata. Throughout this work we shall make use of the perfect cone toroidal compactification A^perf_g. To explain this, we first recall that any toroidal compactification A^tor_g of A_g admits a natural map $\varphi : A^\text{tor}_g \to A^\text{Sat}_g$ to the Satake compactification. The latter is the disjoint union

\[A^\text{Sat}_g = A_g \sqcup A_{g-1} \sqcup \ldots \sqcup A_0, \]

and we set $\beta_i := \varphi^{-1}(A^\text{Sat}_{g-i})$ and $\beta_i^0 := \beta_i \setminus \beta_{i-1} = \varphi^{-1}(A_{g-i})$. Each β_i^0 in turn is stratified by sets $\beta(\sigma)$ where σ runs through all cones in the perfect cone decomposition of $\text{Sym}^2_{\geq 0}(\mathbb{R}^i)$ whose general element has rank i. We shall refer to such cones as rank i cones. The stratum $\beta(\sigma)$ is the quotient of a torus bundle $\mathcal{T}(\sigma)$ over the i-fold fiber product $X_{g-i}^{\times i} := X_{g-i} \times \ldots \times X_{g-i} \to A_{g-i}$ of the universal family by a finite group $G(\sigma)$, namely the stabilizer of the cone σ in $GL(i, \mathbb{Z})$. The codimension of $\beta(\sigma)$ in A^perf_g equals the dimension of σ. Our method of computing the stable cohomology of A^perf_g, and the outline of the paper, are as follows. In Section 3 we recall the relevant results of Borel and Hain, and other necessary background on representations of the symplectic group. At the end of that section, as a warmup, we prove by using Gysin’s exact sequence the stabilization (in close to top degree) of the cohomology of the Satake compactification, proving Theorem 1.9.

For the toroidal case, in Section 4 we compute the stable cohomology of the universal family X_g. This result will be generalized later in Section 6 to a computation of the stable cohomology of the fibre product $X_g^{\times n}$ for n fixed. Since Mumford’s partial toroidal compactification $A_g \sqcup \beta_1^0$ is equal to $A_g \sqcup (X_{g-1}/ \pm 1)$, by using the Gysin exact sequence, in Section 5 we are then able to compute the stable cohomology of the partial toroidal compactification. Note that these computations are in fact easier in the stable cohomology than similar calculations in [HT10, HT12] for $g = 3, 4$, as it turns out that in the stable range only the even degree part of cohomology is non-zero, and thus the long exact sequence degenerates at E_1.

This idea — of computing the cohomology of an individual stratum, and then gluing it to the union of the previously considered strata — is the method that allows us to prove the existence of the stable cohomology of the perfect cone compactification (and by restriction — of the matroidal locus) in general. In Section 7 we review the construction of the perfect cone toroidal compactification, and prove its various combinatorial properties. In Section 8 we then use the Leray...
spectral sequence to argue that the cohomology of the torus bundles $\mathcal{T}(\sigma)$, with σ fixed, and g varying, stabilizes, and moreover (only in the stable range!) vanishes in odd degree.

This computation requires dealing with certain local systems V_{μ} corresponding to irreducible representations of the algebraic group $Sp(2g)$ indexed by some partition μ. By the results of Borel and Hain we know the stable cohomology $H^k(\mathcal{A}_g, V_{\mu})$, for $k < g$, of which we have to compute the $G(\sigma)$-invariant part. We finally compute the stable cohomology (still in low degree, as opposed to the close to top degree) of each individual stratum $\beta(\sigma)$, and note that this computation in fact works for any cone, not necessarily just a perfect cone.

Adding the strata one by one, we use the Gysin (excision) exact sequence for cohomology with compact support to compute the stable cohomology of various partial toroidal compactifications of \mathcal{A}_g. For this, we need both the new stratum itself, and the total space obtained to be smooth, so that we can use Poincaré duality to identify H^{top-k}_c with the previously computed H^k (for $k < g$). In Section 9 we argue that this process indeed stabilizes, thus proving our main Theorem 1.1 on the stabilization of the cohomology of $\mathcal{A}_g^{\text{Perf}}$ in close to top degree; our proof also yields the stabilization of the cohomology of $\mathcal{A}_g^{\text{Matr}}$ in low degree, Theorem 1.5. Finally, we use the same techniques to describe the stable cohomology of the open subset of $\mathcal{A}_g^{\text{Matr}}$ consisting of degenerations given by standard cones and prove that its stable cohomology is freely generated by the odd λ-classes and the fundamental classes of the boundary strata (Theorem 9.7).

In Section 10 we demonstrate how this process works, by dealing explicitly with β^0_2, which is the union of two strata corresponding to semiabelic varieties with the normalization of the toric part being $\mathbb{P}^1 \times \mathbb{P}^1$ and two copies of \mathbb{P}^2, respectively. Moreover, applying methodically the procedure described above yields in particular $H^{top-k}_c(\mathcal{A}_g^{\text{Perf}}, \mathbb{Q})$ for $k \leq 13$, and we give the results of these computations in Section 11, proving Theorem 1.4 from which Theorem 1.6 easily follows. We note that computing the entire stable cohomology of $\mathcal{A}_g^{\text{Perf}} \setminus \mathcal{A}_g^{\text{Perf,sing}}$ or of the matroidal locus by our method currently seems out of reach, as it would involve going through all the possible combinatorics of the strata. Finally in Section 12 we construct algebraic representatives for (much of) the stable cohomology in low degree. Moreover we discuss the strata algebra and the boundary algebra.
3. Review of stable cohomology of local systems on A_g

Symplectic local systems over A_g play a central role in our computations. Let us start by fixing the notation. Let $\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_g)$ be a Young diagram with at most g rows. Equivalently, we can view μ as an arbitrary partition of length at most g. If we denote by V the standard rational representation of the group scheme $\text{Sp}(2g)$, then the representation ∇_μ of $\text{Sp}(2g)$ is the irreducible representation of highest weight in the tensor product

$$\text{Sym}^{\mu_1-\mu_2}(V) \otimes \text{Sym}^{\mu_2-\mu_3}(V) \otimes \cdots \otimes \text{Sym}^{\mu_g-1-\mu_g}(V) \otimes \bigotimes_{i=1}^{g-1}(\bigwedge^i V) \otimes \bigotimes_{i=g}^g(\bigwedge^i V)^{\otimes \mu_i}.$$

One can generalize the definition of ∇_μ to obtain a local system over A_g, by applying the same construction as above, but now setting V to be the local system $R^1 \pi_* \mathbb{Q}$, where $\pi : \mathcal{X}_g \to A_g$ is the universal family over A_g. Note that ∇_μ, defined in this way, is naturally a Hodge module of weight equal to the weight $\sum_{i=1}^g \mu_i$ of μ. One can obtain more Hodge modules by taking Tate twists of ∇_μ. We will denote such Tate twists by $\nabla_\mu^{(k)} = \nabla_\mu \otimes \mathbb{Q}(k)$ for all Young diagrams μ with at most g rows and all $k \in \mathbb{Z}$; the Hodge weight of $\nabla_\mu^{(k)}$ is then $w(\mu) - 2k$. Such Tate twists can be interpreted in the context of representation theory by working with representations of the group of symplectic similitudes

$$\text{GSp}(2g, \mathbb{Q}) = \left\{ M \in \text{Mat}(2g, 2g) | MJ^t M = \eta J, \eta \in \mathbb{Q}^* \right\},$$

where $J = \left(\begin{array}{cc} 0 & 1_g \\ -1_g & 0 \end{array} \right)$ denotes the symplectic matrix. The Tate Hodge module $\mathbb{Q}(-1)$ is the inverse η^{-1} of the multiplier representation $\eta : \text{GSp}(2g, \mathbb{Q}) \to \mathbb{Q}^*$, and V is the product of the standard representation of $\text{GSp}(2g, \mathbb{Q})$ and η^{-1}.

Theorem 3.1 ([Bor74, Bor81], [Hai97, Theorem 3.2]). For the group cohomology of the symplectic group with coefficients in the rational representation ∇_μ, for all $k < g$ we have

$$H^k(\text{Sp}(2g, \mathbb{Z}), \nabla_\mu) = \begin{cases} \mathbb{Q}[x_2, x_6, x_{10}, \ldots, x_k] & \text{if } \mu = 0 \\ 0 & \text{otherwise,} \end{cases}$$

where in the first case this is the degree k subspace of the graded ring generated by classes x_i. In particular the stable cohomology is zero in every odd degree.
The classes x_i in fact are algebraic and have a geometric meaning; the geometric content of the above theorem is the following

Corollary 3.2 (Borel [Bor74, Bor81]). The stable cohomology of A_g is freely generated by the Chern classes $\lambda_{2i+1} := c_{2i+1}(E)$ of the Hodge bundle, i.e. for $k < g$ the vector space $H^k(A_g, \mathbb{Q})$ is the vector space generated by monomials of total degree k in $\lambda_1, \lambda_3, \ldots$ (where the degree of λ_{2i+1} is equal to $4i + 2$).

As a warmup, and to show one little step of our general machinery, we now prove Theorem 1.9 on the stable cohomology of the Satake compactification, by using the Gysin sequence (to be discussed in more detail below).

Proof of Theorem 1.9. Indeed, recall that the Satake compactification A^Sat_g is the union $A_g \sqcup A_{g-1} \sqcup \ldots \sqcup A_0$, i.e. we have $A^\text{Sat}_g = A_g \sqcup \partial A^\text{Sat}_{g-1}$. Thus by Gysin exact sequence for a closed subvariety $A^\text{Sat}_{g-1} \subset A^\text{Sat}_g$ (see [PS08, Cor. 5.51])

\[\ldots \to H^{\ell-1}(A^\text{Sat}_{g-1}, \mathbb{Q}) \to H^\ell_c(A_g, \mathbb{Q}) \to H^{\ell}(A^\text{Sat}_g, \mathbb{Q}) \to \]

\[\to H^\ell(A^\text{Sat}_{g-1}, \mathbb{Q}) \to H^{\ell+1}_c(A_g, \mathbb{Q}) \to \ldots \]

In the stable range $g > k$ we have $\ell = g(g + 1) - k > g(g - 1) = 2 \dim_{\mathbb{C}} A^\text{Sat}_{g-1}$, hence the cohomology of A^Sat_{g-1} vanishes, so that we simply get $H^\ell_{c}(A^\text{Sat}_g, \mathbb{Q}) = H^\ell_{c}(A_g, \mathbb{Q})$ for $g > k$. The latter cohomology by the Poincaré duality for the smooth (stack) A_g is dual to $H^\ell(A_g)$, which equals $\mathbb{Q}[\lambda_1, \ldots, \lambda_{2m+1}, \ldots, k]$ by Borel’s stability theorem (see corollary 3.2). This implies our claim.

Remark 3.3. We note that if trying to compute the stable cohomology of the image of the Deligne–Mumford compactification \overline{M}_g of the moduli space of curves in $\mathcal{A}_g^{\text{Var}}, \mathcal{A}_g^{\text{Perf}}$, or $\mathcal{A}_g^{\text{Matr}}$, to which the Torelli maps extends by [Nam80], [AB11], [MV12], respectively, we would fail, i.e. the cohomology would not stabilize. Indeed, for any $i > 1$ the Torelli map on the boundary divisor $\Delta_i \subset \overline{M}_g$ would extend to an embedding of $M_i \times \overline{M}_{g-i}$ into the Satake compactification of \overline{M}_g, and then to any compactification of A_g, so that we would have $[g/2] - 2$ loci in the Torelli image of \overline{M}_g each of codimension 3, which similarly to above would each contribute a class to the stable cohomology in degree top -6.

Our proof of stabilization theorems 1.1 and 1.5 for $\mathcal{A}_g^{\text{Perf}}$ and $\mathcal{A}_g^{\text{Matr}}$ will also use the Gysin exact sequence to compute the cohomology step-by-step by gluing the strata together. However, notice that the
situation will be much more involved, as in both of these cases the boundary has complex codimension 1, and its cohomology will play a role in the computation. We will thus need to understand the stable cohomology of individual boundary strata, and will start by investigating the first one, the boundary of the partial toroidal compactification, which is the universal Kummer family.

4. **Leray spectral sequence and the stable cohomology of the universal family of ppav** $\mathcal{X}_g \to \mathcal{A}_g$

In this section we use the Leray spectral sequence to set up the computation of the stable cohomology of a fixed stratum in a toroidal compactification, and demonstrate how this method works by computing the stable cohomology of the universal family of ppav.

Indeed, let $\pi : \mathcal{X}_g \to \mathcal{A}_g$ be the universal family of ppav, considered as a stack. In particular all fibers of π are abelian varieties, whereas the generic fiber of the associated map on coarse moduli spaces is actually the Kummer variety, as any ppav has the involution -1.

The Leray spectral sequence computes the cohomology of the universal family $H^\bullet(\mathcal{X}_g, \mathbb{Q})$ in terms of local systems on the base. Indeed, it has terms of the form $E_2^{p,q} := H^p(\mathcal{A}_g, R^q\pi_*\mathbb{Q})$, and converges $E_\infty^{p,q} \Rightarrow H^{p+q}(\mathcal{X}_g, \mathbb{Q})$. To understand the higher direct images under π_*, recall that the cohomology of an abelian variety is the exterior algebra over the space of one-forms, i.e. $H^\bullet(A, \mathbb{Q}) = \bigwedge^\bullet H^1(A, \mathbb{Q})$. This description globalizes to describe the higher direct images of the constant sheaf \mathbb{Q} on \mathcal{X}_g. Since globally the first cohomology gives the local system \mathbb{V}_1 on \mathcal{A}_g (corresponding to the standard representation of $\text{Sp}(2g)$ on \mathbb{Q}^{2g}), we need to recall the formula for the decomposition of exterior powers of the standard representation of the symplectic group into a sum of irreducible representations, which by [FH91, Theorem 17.5] is

$$\bigwedge^i \mathbb{V}_1 = \bigoplus_{j=0}^{\lfloor i/2 \rfloor} \mathbb{V}_{1^{i-2j}}(-j)$$

for $i \leq g$. We thus obtain

Lemma 4.1. For the universal family $\pi : \mathcal{X}_g \to \mathcal{A}_g$, for any $q \leq g$

$$R^q\pi_*\mathbb{Q} = \bigwedge^q (\mathbb{V}_1) = \mathbb{V}_{1^q}(0) \oplus \mathbb{V}_{1^{q-2}}(-1) \oplus \cdots \oplus \mathbb{V}_{p(q)}(-\lfloor q/2 \rfloor),$$

with $p(q)$ being the remainder of q modulo 2.

Remark 4.2. The cohomology of local systems of odd weight over \mathcal{A}_g vanishes in odd degrees. In particular, this means that the cohomology
of $R^q\pi_*Q$ vanishes if q is odd. This reflects the fact that the cohomology of \mathcal{X}_g (recall that we always work with rational coefficients) coincides with the cohomology of its coarse moduli space, the universal Kummer family, and that the odd degree cohomology of the Kummer variety A/ι is 0 for every abelian variety A because it is simply the subspace of the cohomology of the ppav A that is invariant under the involution $1: z \mapsto -z$.

Using the Leray spectral sequence now allows us to compute the stable cohomology of the universal family:

Proposition 4.3. The stable cohomology of the universal family \mathcal{X}_g is generated over the stable cohomology of A_g by the class Θ of the universal theta divisor trivialized along the zero section. More precisely, this means that for any $k < g$, the vector space $H^k(\mathcal{X}_g)$ is generated by degree k monomials in the classes Θ, λ_1, λ_3, …, where Θ has degree 2 and λ_{2i+1} has degree $4i+2$. In particular the stable cohomology in any odd degree is zero.

Proof. Indeed, combining Lemma 4.1 above with Theorem 3.1 on the stable cohomology of local systems on A_g, we get for $p < g$

$$E_2^{p,q} = H^p(A_g, R^q\pi_*Q) = \begin{cases} H^p(A_g, Q) & \text{if } p \text{ and } q \text{ are even} \\ 0 & \text{else} \end{cases}$$

From a theorem of Deligne [Del68] it follows that the Leray spectral sequence for the projective map π degenerates at E_2. In our case this is in fact immediate to see directly: in the stable range $p + q \leq g$ only the terms of E_2 with both p and q even are non-zero, thus for any differential

$$d_r: E_r^{p,q} \to E_r^{p+r,q-r+1}$$

either the source or the target space is zero, and therefore all differentials vanish. We thus obtain

$$H^k(\mathcal{X}_g, Q) = \bigoplus_{p+q=2k} E^{p,q}_\infty = \bigoplus_{p+q=2k} E^{p,q}_2 = \bigoplus_{i=0}^k H^{2i}(A_g, Q)(i-k),$$

for $k = 2j < g$ even, while $H^k(\mathcal{X}_g, Q) = 0$ for $k < g$ odd. (Here we have a direct sum of Hodge structures because for $p + q = k < g$ all $E^{p,q}_2$ carry Tate Hodge-structures of the same weight.) In words, the above statement says that the stable cohomology of \mathcal{X}_g in degree $2j$ is the sum of stable cohomology of A_g in all even degrees up to $2j$, i.e. for each $i \leq j$ we have a copy of $H^{2i}(A_g)$. This means that as an algebra over the stable cohomology of A_g, the stable cohomology of \mathcal{X}_g
is generated by one element, of degree 2 and Hodge type \((1, 1)\). Indeed, denote by \(\Theta \subset X_g\) the universal symmetric theta divisor trivialized along the zero section. Then under the decomposition \(H^2(X_g, \mathbb{Q}) = H^0(A_g, R^2\pi_*\mathbb{Q})(-1) \oplus H^2(A_g, \mathbb{Q})\) we see that \(\Theta\) has zero projection onto the second summand, and thus it generates the first summand, which implies that it is a generator of the stable cohomology of \(X_g\) over the stable cohomology of \(A_g\), as claimed. Moreover, since the class \(\Theta_g\) on \(X_g\) is algebraically equivalent to \(g! \times \) the zero section of the universal abelian variety, see [DM91], [Hai13], [Voi12], it follows that \(\Theta\) is stably algebraically independent with the classes pulled back from \(A_g\).

5. Gysin exact sequence and the stable cohomology of the partial toroidal compactification

In this section we set up the method, using the Gysin exact sequence, to compute the cohomology of the union of some partial toroidal compactification and one more stratum, and demonstrate how this method works by computing the stable cohomology of Mumford’s partial toroidal compactification \(A'_g\) of \(A_g\).

Recall that Mumford’s [Mum83] partial toroidal compactification is the union \(A'_g = A_g \sqcup (X_g - 1/\pm 1)\) (where \(X_g - 1/\pm 1\) is still considered as a stack, i.e. is the universal Kummer family). The Gysin (aka excision) long exact sequence for a closed subvariety of a quasi-projective variety is then the following:

\[
\cdots \to H^{\ell-1}(X_g - 1, \mathbb{Q}) \to H^{\ell}(A_g, \mathbb{Q}) \to H^{\ell}(A'_g, \mathbb{Q}) \to H^{\ell}(X_g - 1, \mathbb{Q}) \to H^{\ell+1}(A_g, \mathbb{Q}) \to \cdots
\]

We remark here that this sequence respects mixed Hodge structures (see [PS08, Cor. 5.51]). Since both \(A'_g\) and \(X_g - 1\) are smooth Deligne–Mumford stacks, it follows from the usual Poincaré duality that the cohomology \(H^c\) is dual to \(H^{\top - c}\), where \(\top\) denotes the real dimension of the space. Noticing that the boundary \(X_g - 1\) has complex codimension 1 in \(A'_g\), from the above we thus get the dual long exact sequence (where to keep track of things we denote \(k = \dim_{\mathbb{R}} A_g - \ell = \dim_{\mathbb{R}} X_g - 1 + 2 - \ell\))

\[
\cdots \to H^{k-2}(X_g - 1, \mathbb{Q})(-1) \to H^k(A'_g, \mathbb{Q}) \to H^k(A_g, \mathbb{Q}) \to H^{k-1}(X_g - 1, \mathbb{Q})(-1) \to \cdots
\]

In general, for \(k\) and \(g\) arbitrary, this exact sequence is non-trivial. For instance, the connecting homomorphisms are non-trivial already for \(g = 3, 4\), as described in [HT10, HT12]. However, in the stable range
the situation is very simple, as all the odd cohomology of each term turns out to be zero, and we immediately obtain the stable cohomology of Mumford’s partial toroidal compactification.

Proposition 5.1. The stable cohomology of Mumford’s partial toroidal compactification \(\mathcal{A}_g' \) is generated by the classes \(\lambda_i \) and by the class \(D \) of the boundary. More precisely, for any \(k < g \), the vector space \(H^k(\mathcal{A}_g') \) is generated by degree \(k \) monomials in the classes \(D, \lambda_1, \lambda_3, \ldots \), where \(D \) has degree 2 and \(\lambda_{2i+1} \) has degree \(4i + 2 \).

Proof. We use the Gysin exact sequence (5) above to obtain the stable cohomology of \(\mathcal{A}_g' \). Recall that in the stable range the cohomology of \(\mathcal{A}_g \) was computed by Borel, see Corollary 3.2, and the stable cohomology of the universal Kummer family is given in Proposition 4.3. In particular, both of them vanish in odd degree, and thus the long exact sequence (5) splits into short exact sequences. We thus obtain

\[
H^k(\mathcal{A}_g') = H^k(\mathcal{A}_g) \oplus H^{k-2}(\mathcal{X}_{g-1})(-1)
\]

for \(k = 2j \), while all the odd-dimensional stable cohomology of \(\mathcal{A}_g' \) is zero. For \(k = 2 \) we see that the two generators are \(\lambda_1 \) for the first summand, and the fundamental class of the boundary — which we denote \(D \) — for the second summand. It follows from [Mum83 Prop. 1.8] or [vdG98, Lemma 1.1] that \(D|_D = -2\Theta \). The result now follows from Proposition 4.3. \(\square\)

Remark 5.2. We observe that the stable cohomology of \(\mathcal{A}_g' \) is equal to that of \(\mathcal{X}_g \). The above proof gives a geometric reason for this: we consider the inclusion \(\mathcal{X}_{g-1} \hookrightarrow \mathcal{A}_g' \), and pull back cohomology under it. Then the classes \(\lambda_i \) on \(\mathcal{A}_g' \) pull back to \(\lambda_i \) on \(\mathcal{X}_{g-1} \), while the class \(D \) pulls back to \(-2\Theta \).

While the above proposition does not let us deduce anything about the stabilization of \(H^k(\mathcal{A}_g^\text{perf}) \) for \(k \ll g \), on the dual side we have computed the first few cohomology groups with compact support:

Corollary 5.3. For \(g > 4 \) we have

\[
H^{g(g+1)}(\mathcal{A}_g^\text{perf}, \mathbb{Q}) = \mathbb{Q} \cdot 1, \quad H^{g(g+1)-2}(\mathcal{A}_g^\text{perf}, \mathbb{Q}) = \mathbb{Q} \cdot \lambda_1^\vee \oplus \mathbb{Q} \cdot D^\vee,
\]

\[
H^{g(g+1)-1}(\mathcal{A}_g^\text{perf}, \mathbb{Q}) = H^{g(g+1)-3}(\mathcal{A}_g^\text{perf}, \mathbb{Q}) = 0,
\]

where \(\lambda_1^\vee \) and \(D^\vee \) denote the images under \(H_c^\bullet(\mathcal{A}_g', \mathbb{Q}) \to H_c^\bullet(\mathcal{A}_g^\text{perf}, \mathbb{Q}) = H^\bullet(\mathcal{A}_g^\text{perf}, \mathbb{Q}) \) of the cohomology classes in \(H_c^{g(g+1)-2}(\mathcal{A}_g', \mathbb{Q}) \) that are Poincaré dual to \(\lambda_1 \) and \(D \), respectively.
Proof. Since \mathcal{A}_g' is smooth, applying Poincaré duality the above proposition yields the statement that for $k < g$ the group $H_c^{g+1-k}(\mathcal{A}_g')$ is generated by classes dual to λ_{2j+1} and to D. The complement $\mathcal{A}_g^{\text{Perf}} \setminus \mathcal{A}_g'$ has real codimension 4 in $\mathcal{A}_g^{\text{Perf}}$. Indeed, this is a special case of Proposition 7.1 (we note that this is special to the perfect cone compactification, and for example does not hold for the second Voronoi compactification, for which we thus have no result).

Hence for $k < 4$ we have $H_c^{g+1-k}(\mathcal{A}_g^{\text{Perf}} \setminus \mathcal{A}_g') = 0$ and thus, by Gysin exact sequence for $(\mathcal{A}_g^{\text{Perf}} \setminus \mathcal{A}_g') \subset \mathcal{A}_g^{\text{Perf}}$, for $k < 4$ we have $H_c^{g+1-k}(\mathcal{A}_g^{\text{Perf}}) = H_c^{g+1-k}(\mathcal{A}_g')$. Since $\mathcal{A}_g^{\text{Perf}}$ is compact, we finally have $H_c^{g+1-k}(\mathcal{A}_g^{\text{Perf}}) = H^{g+1-k}(\mathcal{A}_g^{\text{Perf}})$ and this gives the corollary. \[\square \]

6. Stabilization of the cohomology of $\mathcal{X}_g^{\times n}$

In this section we describe the stable cohomology of the nth fiber product $\mathcal{X}_g^{\times n}$ of the universal family $\mathcal{X}_g \to \mathcal{A}_g$, for a fixed n. It turns out (we thank Ben Moonen for pointing this out and explaining it to us) that the description of the subring in the cohomology of a very general ppav generated by divisors follows from the results of Thompson [Tho07] on invariant theory for the symplectic group (this construction is also a special case of a much more general deep construction of Looijenga and Lunts [LL97] in cohomology and of Moonen [Moo11] in the Chow ring). The results of Thompson [Tho07] are formulated in terms of representation of the symplectic group, which we think of as local systems on \mathcal{A}_g; we give the reformulation in terms of cohomology classes.

Indeed, $\mathcal{X}_g^{\times n}$ admits projection maps $p_i : \mathcal{X}_g^{\times n} \to \mathcal{X}_g$ for $i = 1, \ldots, n$, and $p_{jk} : \mathcal{X}_g^{\times n} \to \mathcal{X}_g^{\times 2}$ for $1 \leq j < k \leq n$. Let $\Theta \subset \mathcal{X}_g$ be the class of the universal theta divisor trivialized along the zero section, and let $P \subset \mathcal{X}_g^{\times 2}$ be the class of the universal Poincaré divisor trivialized along the zero section. Denote then $T_i := p_i^* \Theta$, and $P_{jk} := p_{jk}^* P$. For a very general ppav A, the restrictions of these classes to A^n generate the Néron–Severi group. We will now prove that these classes freely generate the stable cohomology of $\mathcal{X}_g^{\times n}$.

Theorem 6.1. The cohomology $H^k(\mathcal{X}_g^{\times n})$ is independent of g for $k < g$, and as an algebra over the stable cohomology of \mathcal{A}_g, is generated by the classes T_i, P_{jk}. In particular, all stable cohomology classes on $\mathcal{X}_g^{\times n}$ are algebraic.
Proof. We want to compute the stable cohomology of the \(n \)-th fibre product of the universal family using the Leray spectral sequence associated with the natural map \(\pi^{\times n} : \mathcal{X}^{\times n}_g \to \mathcal{A}_g \). Since \(\pi^{\times n} \) is a projective map, the Leray spectral sequence degenerates at \(E_2 \), so that we have

\[
E_{\infty}^{p,q} = E_2^{p,q} = H^p(\mathcal{A}_g, R^q\pi^{\times n}_*\mathbb{Q}).
\]

Recall that the constant local system \(\mathbb{Q} = \mathcal{V}_0 \) is the only one with non-trivial stable cohomology. A first consequence of this is that in the stable range \(p < g \) the \(E_{\infty} \)-terms carry Tate Hodge-structures of weight \(p + q \), and hence

\[
H^m(\mathcal{X}^{\times n}_g, \mathbb{Q}) = \bigoplus_{p+q=m} E_{\infty}^{p,q} = \bigoplus_{p+q=m} H^p(\mathcal{A}_g, R^q\pi^{\times n}_*\mathbb{Q})
\]

holds for \(m \leq g \).

To compute the stable cohomology of \(\mathcal{X}^{\times n}_g \), it only remains to compute the \(\text{Sp}(2g) \)-invariant part of \(H^q(\mathcal{Y}_n, \mathbb{Q}) \) for an abelian \(g \)-fold \(\mathcal{Y}_n \) and \(q \leq g \), because this is what contributes the trivial summands in the local system \(R^q\pi^{\times n}_*\mathbb{Q} \). As local systems of odd weight have trivial cohomology, we only have to deal with the case \(q = 2l \).

The cohomology ring of an abelian variety is the exterior algebra of its first cohomology group, so that we have

\[
H^{2l}(\mathcal{Y}_n, \mathbb{Q}) = \bigwedge (H^1(\mathcal{Y}, \mathbb{Q}) \otimes \mathbb{Q}^n).
\]

and by [Tho07, Theorem 3.7], for \(2l \leq g \) the \(\text{Sp}(2g) \)-invariant part of the above cohomology group is isomorphic to \(\text{Sym}^l(\text{Sym}^2 \mathbb{Q}^n) \).

The restriction to \(\mathcal{Y}_n \) of the classes \(T_i, P_{jk} \) lies in \(H^{1,1}(\mathcal{Y}_n) \), and thus the action of the symplectic group on their span is given by the symmetric square of the standard representation of \(\text{Sp}(2g) \) acting on \(H^1(\mathcal{Y}_n) \). Therefore, for \(l = 1 \) the \(\text{Sp}(2g) \)-invariant part of the cohomology is generated by these classes, so that we can identify \(\text{Sym}^2 \mathbb{Q}^n \) with the span of the classes \(T_i, P_{jk} \) and \(\text{Sym}^l(\text{Sym}^2 \mathbb{Q}^n) \) with the space of degree \(l \) polynomials in \(T_i, P_{jk} \). In view of the isomorphism (6), this implies that in the stable range \(m \leq g \) the classes \(T_i, P_{jk} \in H^2(\mathcal{X}^{\times n}_g, \mathbb{Q}) \) are algebraically independent generators of the cohomology of \(\mathcal{X}^{\times n}_g \) as an algebra over the stable cohomology of \(\mathcal{A}_g \). \(\square \)

Remark 6.2. Thompson’s results allow to describe completely the subalgebra of the rational cohomology of \(\mathcal{X}^{\times n}_g \) generated by \(T_i, P_{jk} \), also outside the stable range. Specifically, Theorem 3.4 of [Tho07] corresponds to the statement that the ideal of relations among the classes \(T_i \) and \(P_{jk} \) is generated by \((g+1)\)'st powers of divisors, i.e. by relations of
the form \((\sum m_i^2 T_i + \sum m_j m_k P_{jk})^{g+1} = 0\), for arbitrary \(m_1, \ldots, m_n \in \mathbb{Z}\) (in fact [Tho07, Theorem 3.7] describes the cohomology \(H^\bullet(A^n)\) as an irreps of the symplectic group).

In the following sections, we will often consider the action of the group \(\text{GL}(n, \mathbb{Z})\) on \(X_g^{x^n}\). Indeed, on each fiber \(A_n\) of the map \(X_g^{x^n} \to A_g\) a matrix \(N \in \text{GL}(n, \mathbb{Z})\) acts by the corresponding automorphism \(M = tN^{-1}\), adding the points together: \((a_1, \ldots, a_n) \mapsto M(a_1, \ldots, a_n)\) considered as points of \(A^n\). Since the classes \(T_i\) and \(P_{ij}\) lie in \(H^{1,1}(A^n)\), the action on them is given by the symmetric square of the action of \(M\) on \(H^{1,1}(A^n)\). To write it down explicitly, it is convenient to denote \(P_{ii} := 2T_i\) for \(i = 1, \ldots, n\) (and also \(P_{ij} := P_{ji}\) for \(i > j\)), and then the action is given by the symmetric square of the standard representation of the symmetric group (we are grateful to Ben Moonen and Dmitry Zakharov for discussions on these topics)

\[
M(P_{ij}) = \sum_{1 \leq a \leq n} \sum_{1 \leq b \leq n} M_{ia} M_{jb} P_{ab}.
\]

7. The perfect cone compactification and details of our approach

Our results are specific to the perfect cone compactification. As we shall make use of some of the properties of the perfect cone (also known as first Voronoi) fan decomposition, we shall review this here. For the original definition of this fan we refer the reader to [Vor08a], [Vor08b], [Vor09], for modern treatments and further results see [Nam80], [SB06], or [MV12].

To define the perfect cone decomposition, we consider the open cone \(\text{Sym}_{<0}^2(\mathbb{R}^g)\) of all real positive definite \(g \times g\) matrices and its rational closure \(\text{Sym}_{\text{rc}}^2(\mathbb{R}^g)\), i.e. the cone of all semi-positive definite matrices whose kernel is defined over \(\mathbb{Q}\). The function

\[
\mu : \text{Sym}_{\text{rc}}^2(\mathbb{R}^g) \to \mathbb{R}_{>0}
\]

\[
\mu(Q) := \min\{Q(\xi) \mid \xi \in \mathbb{Z}^g \setminus 0\}
\]

defines for every \(Q \in \text{Sym}_{<0}^2(\mathbb{R}^g)\) a finite and non-empty set

\[
M(Q) := \{\xi \in \mathbb{Z}^g \mid Q(\xi) = \mu(Q)\}.
\]

The perfect cone decomposition is then given by the union of the convex hulls

\[
\sigma(Q) := \sum_{\xi \in M(Q)} \mathbb{R}_{>0}^t \xi \xi.
\]

The group \(\text{GL}(g, \mathbb{Z})\) operates on the collection of these cones with a finite number of orbits. In the proof that the cohomology stabilizes we
use a special property of the perfect cone decomposition, namely the fact that the number of codimension i strata stabilizes, i.e. is independent of g if $i \leq g$. This follows easily from the above definition (see Proposition 7.1).

This is indeed a special property of the perfect cone decomposition. In particular, one cannot expect that the second Voronoi decomposition has stable cohomology. Recall that the boundary divisors of a toroidal compactification correspond to the set of orbits under $GL(g, \mathbb{Z})$ of 1-dimensional cones in the corresponding fan. There is only one such cone in the perfect cone decomposition, namely the square of a primitive linear form. Let $l(g)$ be the number of inequivalent 1-dimensional cones in the second Voronoi decomposition. Note that $l(g)$ is the number of components of the boundary of $\mathcal{A}_g^{\text{Vor}}$, so that $l(g) = \dim H^g(g+1)-2(\partial \mathcal{A}_g^{\text{Vor}})$ holds. As $H^g(g+1)-1(\mathcal{A}_g)$ vanish (it is Poincaré dual to $H^1(\mathcal{A}_g)$), the Gysin long exact sequence associated with the inclusion of the boundary into $\mathcal{A}_g^{\text{Vor}}$ implies that $H^g(g+1)-2(\mathcal{A}_g^{\text{Vor}})$ surjects into $H^g(g+1)-2(\partial \mathcal{A}_g^{\text{Vor}})$, so that $\dim H^g(g+1)-2(\mathcal{A}_g^{\text{Vor}}) \geq l(g)$ holds. It is well known that $l(2) = l(3) = 1$, then we have $l(4) = 2$ [Vor08a, ER88], $l(5) = 9$ [DG04], while $l(6) \geq 20,000$ [DG04].

In general, and this was pointed out to us by V. Alexeev, we have at least $l(g) \geq g - 3$. This estimate comes from the root lattices D_n. Indeed, the quadratic form associated to such a root lattice defines a second Voronoi cone and by the results of Baranovskii and Grishukhin [BG01] the barycentric rays of these cones for $4 \leq n \leq g$ give independent rigid forms.

We have already introduced the stratification of $\mathcal{A}_g^{\text{Perf}}$ into the closed subvarieties β_i which lie over $\mathcal{A}_g^{\text{Sat}}$ under the map $\varphi : \mathcal{A}_g^{\text{Perf}} \to \mathcal{A}_g^{\text{Sat}}$, see [1]. Recall that $\beta_i^0 = \beta_i \setminus \beta_{i-1}$. As for any toroidal compactification, the locally closed sets β_i^0 are further stratified into strata $\beta(\sigma) \subset \beta_i$, corresponding to the orbits of rank i cones σ. More precisely let $\sigma \subset \text{Sym}^2_n(\mathbb{R}^i)$ be a rank i cone in the perfect cone decomposition. Given such a cone σ, one associates with it a torus bundle $q(\sigma) : T(\sigma) \to X_{g-i}^{\times i}$ over the i-fold symmetric fiber product $X_{g-i}^{\times i} := X_{g-i} \times \ldots \times X_{g-i}$. The fiber of the symmetric bundle $q(\sigma)$ is the torus $T_i/T(\sigma)$ where $T_i = \text{Sym}^2(Z^i) \otimes \mathbb{C}^*$ and $T(\sigma) \subset T_i$ is given by $T(\sigma) = (\text{Span}(\sigma) \cap \text{Sym}^2(Z^i)) \otimes \mathbb{C}^*$. Denoting by $p_i : X_{g-i}^{\times i} \to \mathcal{A}_{g-i}$ the universal i-fold product, we thus have a double fibration $\pi(\sigma) = p_i \circ q(\sigma) : T(\sigma) \to X_{g-i}^{\times i}$ over $X_{g-i} \to \mathcal{A}_{g-i}$. The stratum associated to σ is then equal to the quotient $\beta(\sigma) = G(\sigma) \setminus T(\sigma)$ where $G(\sigma)$ is the stabilizer of σ in $\text{GL}(i, \mathbb{Z})$. We
have $\beta_0 = \bigcup_{\sigma \text{ of rank } i} \beta(\sigma)$ and $\beta_i = \bigcup_{\sigma \text{ of rank } \geq i} \beta(\sigma)$. Recall that the complex codimension of $\beta(\sigma)$ in A^Perf_g is equal to $\dim \sigma$.

In the previous sections we discussed the topology of the partial compactification A'_g. We now want to add further boundary strata and at this point it becomes important to us that we make use of specific properties of the perfect cone decomposition. The most important property of the perfect cone decomposition for our purposes is that the stratum β_i has complex codimension i within A^Perf_g, a fact we have already used in Corollary 5.3. As we have pointed out before, the situation is very different for example for A^Vor_g, where boundary divisors appear arbitrarily deep into the boundary.

Proposition 7.1. The following holds for the perfect cone decomposition A^Perf_g:

(i) The codimension of β_i is equal to i.

(ii) Let ℓ be an integer. If $g \geq \ell$, then the number of strata $\beta(\sigma)$ of codimension ℓ in A^Perf_g is given by an integer $N(\ell)$ independent of g.

Proof. (i) We first show that the codimension of β_i is at most i. This follows since the standard cone $\langle x_2^1, \ldots, x_i^2 \rangle$ belongs to the perfect cone decomposition, has dimension and rank i. Conversely, consider a cone $\sigma \subset \text{Sym}^2_{rc}(\mathbb{R}^2)$ in the perfect cone decomposition of rank i. Since the rays of σ are spanned by rank 1 matrices, there must be at least i independent generators of σ and thus the dimension of σ is at least i. Therefore, the same holds for the codimension of $\beta(\sigma)$.

(ii) Let σ be a cone which gives rise to a stratum of codimension ℓ, i.e. assume that σ is of dimension ℓ, and rank i. Then $i \leq \ell$. Choose i rays in σ such that the corresponding linear forms are independent (over \mathbb{Q}). These linear forms generate a (not necessarily saturated) sublattice L in \mathbb{Z}^g; let L' be its saturation. Since the general element in σ has rank i it follows that $\sigma \subset \text{Sym}^2_{rc}(L' \otimes \mathbb{R})$. After acting by a suitable element in $\text{GL}(g, \mathbb{Z})$ we can assume that L' is the sublattice of \mathbb{Z}^g spanned by the first i unit vectors and thus that $\beta(\sigma) \subset \beta^0_0$ and in particular $\beta(\sigma) \subset A^\text{Perf}_g \setminus \beta_{\ell+1}$. Hence these strata are enumerated by the $\text{GL}(m, \mathbb{Z})$-orbits of the cones in the perfect cone decompositions of $\text{Sym}^2(\mathbb{Z}^m)$ for all integers $m \leq \ell$. Clearly, the number $N(\ell)$ of such orbits is independent of g, for $g \geq \ell$. \qed

As we already said, our approach is that we use Gysin sequences to successively compute the cohomology of A^Perf_g. We start with the strata $\beta(\sigma)$ associated to rank i cones σ to compute the cohomology of β^0_0 and then keep going deeper into the boundary to prove results about the cohomology of A^Perf_g itself.
Proposition 7.2. For T whose fibre is the torus T_a subtorus of which is $(T^g)_{g \leq i}$, let us define line bundles S_{jk} on X_{g-i}^x by setting $S_{jk} = p_{jk}^*(P^{-1}) \otimes L^{-1/2}$ if $j < k$ and $S_{jk} = p_j^*(\Theta^{-2}) \otimes L^{-1}$ if $j = k$, where L denotes the pull-back of the line bundle of modular forms on A_{g-i}. Then the torus bundle $T_{i}^* \to X_{g-i}^x$ is isomorphic to the

\[
g_1 = \begin{pmatrix} 1_i & 0 & S & 0 \\
0 & 1_{g-i} & 0 & 0 \\
0 & 0 & 1_i & 0 \\
0 & 0 & 0 & 1_{g-i} \end{pmatrix}, \text{ where } S = iS \in \text{Sym}^2(\mathbb{Z}^i).
\]

These matrices generate the center $P'(U)$ of the unipotent radical of $P(U)$ and dividing out by this (normal) subgroup gives $T_i \times \mathbb{C}^{(g-i)} \times \mathbb{H}_{g-i}$ where $T_i = \text{Sym}^2(i) \otimes \mathbb{C}^*$. The second set of generators is of the form

\[
g_2 = \begin{pmatrix} 1_i & 0 & 0 & 0 \\
0 & A & 0 & B \\
0 & 0 & 1_i & 0 \\
0 & C & 0 & C \end{pmatrix}, \text{ where } \begin{pmatrix} A & B \\
C & D \end{pmatrix} \in \text{Sp}(2(g-i), \mathbb{Z}),
\]

respectively

\[
g_3 = \begin{pmatrix} 1_i & M & 0 & N \\
0 & 1_{g-i} & iN & 0 \\
0 & 0 & 1_i & 0 \\
0 & 0 & -iM & 1_{g-i} \end{pmatrix}, \text{ where } M, N \in \text{Mat}_\mathbb{Z}(i, g-i).
\]

Note that the elements of type g_2, g_3 generate a Jacobi group the quotient by which is $T_i \to X_{g-i}^x \to A_{g-i}$, where the i-fold universal family $X_{g-i}^x \to A_{g-i}$ is the quotient of $\mathbb{C}^{(g-i)} \times \mathbb{H}_{g-i}$ by the Jacobi group, and the fiber of the first projection is isomorphic to T_i. The cone σ defines a subtorus T_σ of T_i and correspondingly a subbundle T_σ of T_i, with $T(\sigma) = T_i/T_\sigma$.

For later use, it is also useful to consider the torus bundle $T_{i}^* \to X_{g-i}^x$, whose fibre is the torus $T_{i}^* = \text{Sym}^2(\mathbb{Z}^i)^\vee \otimes \mathbb{C}^*$ dual to T_i.

Proposition 7.2. For $1 \leq j \leq k \leq i$, let us define line bundles S_{jk} on X_{g-i}^x by setting $S_{jk} = p_{jk}^*(P^{-1}) \otimes L^{-1/2}$ if $j < k$ and $S_{jk} = p_j^*(\Theta^{-2}) \otimes L^{-1}$ if $j = k$, where L denotes the pull-back of the line bundle of modular forms on A_{g-i}. Then the torus bundle $T_{i}^* \to X_{g-i}^x$ is isomorphic to the
fiber product of the \mathbb{C}^*-bundles S^0_{jk} obtained by removing the 0-section from the S_{jk}.

Proof. Let us denote by $\{\tau_{r,s}\}_{1 \leq r \leq s \leq i}$ the basis of $\text{Sym}^2(\mathbb{R}^i)^\vee$ dual to the basis $\{x_1x_s + x_sx_1\}_{1 \leq r \leq s \leq i}$ and by M the lattice generated by the $\tau_{r,s}$. Then $s_{jk} := e^{2\pi \sqrt{-1} T_{jk}}$ define coordinates on the fibre $M \otimes \mathbb{C}^* \cong (\mathbb{C}^*)^{(i+1)}$ of \mathcal{T}_i^*. Next, we look at the transformation law for the s_{jk} under the subgroup $(\mathbb{Z}^{2(g-i)}i) \cong \text{Mat}_\mathbb{Z}(i, g - i)$ of the Jacobi group generated by transformations \mathfrak{g} of type g_3. For all $1 \leq j \leq k \leq i$ and $M, N \in \text{Mat}_\mathbb{Z}(i, g - i)$, one gets

$$\big(\mathcal{M}, \mathcal{N}\big)s_{jk} = e^{2\pi \sqrt{-1} \sum_{l=1}^{g-i} (m_{j\alpha} \tau_{k,g-i+l} + m_{k\beta} \tau_{j,g-i+l}) + \sum_{\alpha, \beta = 1}^{g-i} m_{j\alpha} m_{k\beta} \tau_{g-i+\alpha, g-i+\beta}} s_{jk}.$$

In particular, the matrix N acts trivially on s_{jk}.

To prove the claim, it suffices to show that s_{jk} is a local section of S_{jk} for all $1 \leq j \leq k \leq i$. If $j = k$ holds, this transformation behavior agrees with that of $\theta(\Omega, Z)^{-2}$ for $\Omega = (\tau_{g-i+\alpha, g-i+\beta}) \in \mathbb{H}_{g-i}$ and $Z = (\tau_{k,g-i+1}, \ldots, \tau_{k,g}) \in \mathbb{Z}^i$, hence s_{jj} is a local section of the bundle $p_j^*\mathcal{T}'$ for $\Theta' = \Theta \otimes L^{1/2}$.

For $j < k$ one sees from (9) that S_{jk} is the pull-back of the line bundle S'_{12} over $\mathcal{X}_{g-i} \times A_{g-i} \mathcal{X}_{g-i}$. Again, comparing with the transformation behavior of the theta function yields that the restriction of S'_{12} to the fibre $A \times A$ of $\mathcal{X}^{x^2}_{g-i}$ is the inverse of the Poincaré bundle twisted by $L^{1/2}$. Indeed, for every $[A] \in A_{g-i}$, the restriction of S'_{12} to $\{0\} \times A$ and $A \times \{0\}$ is trivial, whereas the restriction of S'_{12} to the diagonal $\mathcal{X}_{g-i} \leftrightarrow \mathcal{X}^{x^2}_{g-i}$ gives $(\Theta')^{-2}$.

Finally the parabolic subgroup $P(U)$ contains elements of the form

$$g_4 = \begin{pmatrix} tQ^{-1} & 0 & 0 & 0 \\ 0 & 1_{g-i} & 0 & 0 \\ 0 & 0 & Q & 0 \\ 0 & 0 & 0 & 1_{g-i} \end{pmatrix}, \text{ where } Q \in \text{GL}(i, \mathbb{Z}).$$

In order to obtain $\beta(\sigma)$ from $\mathcal{T}(\sigma)$ we consider all Q such that the action on the space $\text{Sym}^2(\mathbb{Z}^i)$ given by

$$\text{GL}(i, \mathbb{Z}) \ni Q : M \mapsto tQ^{-1}M Q^{-1}.$$

maps the cone σ to itself. This gives us a finite group $G(\sigma)$ and $\beta(\sigma) = G(\sigma) \backslash \mathcal{T}(\sigma)$. At this point we would also like to point out that the Jacobi group is a normal subgroup of $P(U)/P(U)$ and that
elements of the form \(g_2 \) and \(g_4 \) commute. We will use these facts without mentioning them explicitly when first dealing with the cohomology of \(T(\sigma) \) and only then taking the part invariant under \(G(\sigma) \).

To compute the cohomology of one such stratum \(\beta(\sigma) \), one uses two Leray spectral sequences, namely those for the torus bundle \(q(\sigma) \) and for \(\pi(\sigma) : T(\sigma) \to A_{g-1} \). Indeed, in a first step, for \([A] \in A_{g-1}\) the cohomology of \(\pi(\sigma)^{-1}([A]) \) can be computed from the Leray spectral sequence of the torus bundle restricted to the fibre \(p^{-1}([A]) \cong A^i \) of the universal family \(X \times_{\mathbb{G}_m} \).

\[
E_2^{p,q}(q(\sigma)) = H^q(T/T(\sigma)) \otimes H^p(A^i) \implies H^{p+q}(\pi(\sigma)^{-1}([A])).
\]

Since the group \(G(\sigma) \) acts fiberwise, one can then compute the \(G(\sigma) \)-invariant part \(\tilde{E}_2^{p,q}(q(\sigma)) \) of the cohomology of the fibers of \(\pi(\sigma) \). Varying the fiber over \(A_{g-1} \), one thus obtains a direct sum of local systems on \(A_{g-1} \). In the second step of the argument we then use the Leray spectral sequence for the map \(\pi(\sigma) \). To write \(E_2^{p,q}(\pi(\sigma)) = H^q(A_{g-1}, R^p \pi(\sigma)_* \mathbb{Q}) \), we consider \(E_2^{p,q}(q(\sigma)) \) as giving rise to a spectral sequence of local systems converging to \(R^p \pi(\sigma)_* \mathbb{Q} \). Provided one can control the differentials of the spectral sequence and one knows the cohomology of the local systems, from the \(G(\sigma) \)-invariant terms \(\tilde{E}_2^{p,q}(q(\sigma)) \) one can thus compute the cohomology of the stratum \(\beta(\sigma) \).

Our aim is to compute stable cohomology. This simplifies the situation considerably since stable cohomology only comes from trivial local systems. In other words we only have to take into consideration the part \(\tilde{E}_2^{p,q}(q(\sigma)) \) of \(\tilde{E}_2^{p,q}(q(\sigma)) \) which gives rise to trivial local systems on \(A_{g-1} \). This allows to work with a smaller spectral sequence, which still converges to the stable cohomology of \(\beta(\sigma) \). Moreover, we will be able to argue that in the stable range not only the cohomology of \(X_{g^i}^{x} \) but also that of every open torus bundle is zero in any odd degree. This will drastically simplify dealing with the spectral sequences.

8. Stable cohomology of strata

The aim of this section is to prove a stabilization result for the cohomology of the strata \(\beta(\sigma) \) of toroidal compactifications of \(\mathcal{A}_g \). This kind of stabilization occurs independently of the choice of the compactification. To set up notation, let us assume that we have an admissible collection \(\Sigma = \{ \Sigma_g \}_{g \in \mathbb{N}} \) of admissible fans \(\Sigma_g \) in \(\text{Sym}_c^2(\mathbb{R}^g) \) or in a \(GL(g,\mathbb{Z}) \)-invariant open subset of \(\text{Sym}_c^2(\mathbb{R}^g) \). This means that for all \(g < g' \), the intersection of \(\Sigma_{g'} \) with \(\Sigma_g \) coincides with \(\Sigma_g \), where we
identify \mathbb{R}^g with the subspace of \mathbb{R}^g generated by the first g coordinate vectors. Then for each g, we define $\overline{\mathcal{A}}_g^{\Sigma}$ to be the (possibly partial) toroidal compactification \mathcal{A}_g defined by this admissible collection of fans.

Let σ be a rank i cone of dimension ℓ in Σ. Then $i \leq \ell$ and σ defines a stratum $\beta_g(\sigma) \subset \overline{\mathcal{A}}_g^{\Sigma}$ for any genus $g \geq i$. This is the quotient of a torus bundle $T_g(\sigma)$ over $\mathcal{X}_{g-i}^{\times i}$ by a finite group $G(\sigma)$. The rank of the torus fiber is $i(i+1)/2 - \ell$. The group $G(\sigma)$ and the fiber of the torus bundle do not depend on g, but $\beta_g(\sigma)$ itself does.

In what follows we must be very careful as to which space we are working in, and will thus keep the subscript g everywhere.

Theorem 8.1. For a given cone σ the cohomology groups $H^k(T_g(\sigma))$ and $H^k(\beta_g(\sigma))$ stabilize for $k < g - i - 1$.

Moreover, the cohomology in this range is algebraic, and explicitly one has

$$H^\bullet_{\text{stable}}(T_g(\sigma)) \cong \mathbb{Q}[\lambda_1, \lambda_3, \ldots] \otimes \text{Sym}^\bullet(\text{Span}(\sigma) \cap \text{Sym}^2(\mathbb{Q}^i)),$$

where the generators of $\text{Span}(\sigma)$ have degree 2. The stable cohomology of $\beta(\sigma)$ is the invariant part of the stable cohomology of $T_g(\sigma)$ under the natural action of the stabilizer $G(\sigma)$ of the cone σ in $\text{GL}(i, \mathbb{Z})$.

Remark 8.2. More precisely, there is an isomorphism

$$H^\bullet_{\text{stable}}(T_g(\sigma)) \cong \mathbb{Q}[\tau_{rs}, \lambda_{2m+1}|1 \leq r \leq s \leq i, m \in \mathbb{Z}] / (\sigma^\perp \cap M)$$

where $\{\tau_{rs}\}$ denotes the basis of $M = \text{Sym}^2(\mathbb{Z}^i)^\vee$ dual to $\{x_i x_s + x_s x_r\}$ and $\sigma^\perp = \{\phi \in \text{Sym}^2(\mathbb{R}^i)^\vee | \phi(\xi) = 0 \ \forall \xi \in \sigma\}$ is the orthogonal complement of σ.

One should interpret this isomorphism as a description of the stable cohomology of $T_g(\sigma)$ as a quotient of the stable cohomology of $\mathcal{X}_{g-i}^{\times i}$, by identifying τ_{rs} with the class $-2T_r \in H^2_{\text{stable}}(\mathcal{X}_{g-i}^{\times i})$ if $r = s$ and with the class $-P_{rs} \in H^2_{\text{stable}}(\mathcal{X}_{g-i}^{\times i})$ if $r \neq s$.

Proof. Let us recall that for $g < g'$ the stabilization map on the moduli spaces of abelian varieties is induced by the map $\mathcal{A}_g \to \mathcal{A}_{g'}$ given by mapping $[A] \in \mathcal{A}_g$ to $[A \times B] \in \mathcal{A}_{g'}$, where B is a fixed abelian variety of dimension $g - g'$. (Different choices of B lead to the same map in cohomology). For the universal family, the stabilization map is given by mapping $(A, x) \in \mathcal{X}_g$ to $(A \times B, x_0 B)$, where 0 denotes the identity element of B. These stability maps can be lifted to $\beta_g(\sigma)$ to
obtain the following commutative diagram

\[
\begin{array}{ccc}
\mathcal{T}_g(\sigma) & \longrightarrow & \mathcal{T}_{g'}(\sigma) \\
\pi(\sigma) \downarrow & & \downarrow \pi(\sigma) \\
\mathcal{X}^{\times i}_{g-i} & \longrightarrow & \mathcal{X}^{\times i}_{g'-i} \\
\pi_i & & \pi_i \\
\mathcal{A}_{g-i} & \longrightarrow & \mathcal{A}_{g'-i},
\end{array}
\]

where the map \(\mathcal{T}_g(\sigma) \to \mathcal{T}_{g'}(\sigma) \) is well-defined due to the fact that the fibers of the maps \(q(\sigma) \) are independent of the genus \(g \). The finite automorphism group \(G(\sigma) \), being the stabilizer of \(\sigma \) in its \(\mathbb{Q} \)-span, which is isomorphic to \(\text{Sym}^2 \geq_0 (Q^i) \), does not depend on \(g \) and acts equivariantly on the diagram, thus defining the stabilization map \(\beta_g(\sigma) \to \beta_{g'}(\sigma) \).

Let us consider the Leray spectral sequence associated with \(\pi(\sigma) \), with \(E_2 \) term \(E_2^{p,q} = H^p(\mathcal{A}_g, R^q\pi(\sigma)_*\mathbb{Q}) \). By the stability Theorem 3.1, in the stable range \(p < g-i \) over \(\mathcal{A}_{g-i} \) the cohomology of the non-trivial symplectic local systems \(\nabla_\mu \) vanishes, hence \(E_2^{p,q} \) only depends on the trivial summands of the local system \(R^q\pi(\sigma)_*\mathbb{Q} \), or, equivalently, by the part of the cohomology of the fiber of \(\pi(\sigma) \) that is invariant under the action of the symplectic group. In Lemma 8.3 below we will show that this cohomology stabilizes in degree \(p < g-i \) and that in this range it is isomorphic to the truncation of the symmetric algebra of a \(\mathbb{Q} \)-vector space \(M_{\mathbb{Q}}/W_{\mathbb{Q}} \) which is isomorphic to the \(\mathbb{Q} \)-span of the extremal rays of the cone \(\sigma \).

In particular, the stabilization map induces an isomorphism between the \(E_2 \) terms \(E_2^{p,q} = H^p(\mathcal{A}_g, R^q\pi(\sigma)_*\mathbb{Q}) \) in the range \(p, q < g-i \) of the Leray spectral sequences associated with \(\pi(\sigma) \) for \(g \) and for \(g' \). Next, we observe that the generators of \(M_{\mathbb{Q}}/W_{\mathbb{Q}} \) represent algebraic classes in the cohomology, hence the \(E_2^{p,q} \) with \(p, q < g-i \) vanish if \(p+q \) is odd and carry Tate Hodge-structures of weight \((p+q)/2 \) if \(p+q \) is even. The vanishing for odd \(p+q \) implies that all differentials \(d_r : E_r^{p,q} \to E_r^{p+r,q-r+1} \) with \(p+r < g-i \) and \(q < g-i \) are trivial, so that \(E_2 = E_\infty \) holds. In particular, this is the case for \(p+q < g-i-1 \), and therefore for \(k < g-i-1 \) we have

\[
H^k(\mathcal{T}_g(\sigma), \mathbb{Q}) = H^k(\mathcal{T}_g(\sigma), \mathbb{Q}) = \bigoplus_{p+q=k} H^p(\mathcal{A}_{g-i}, R^q\pi(\sigma)_*\mathbb{Q}),
\]

which in view of Lemma 8.3 is 0 for odd \(k \) and isomorphic to

\[
\bigoplus_{p'+q'=k/2} H^{2p'}(\mathcal{A}_{g-i}, \mathbb{Q}) \otimes \text{Sym}^{q'}(M_{\mathbb{Q}}/W_{\mathbb{Q}})
\]
for even k.

This proves the claim for the cohomology of $\mathcal{T}_g(\sigma)$.

The strata $\beta_g(\sigma)$ and $\beta_{g'}(\sigma)$ are the quotient of $\mathcal{T}_g(\sigma)$, respectively, of $\mathcal{T}_{g'}(\sigma)$ by the finite group $G(\sigma)$. Therefore, the cohomology of $\beta_g(\sigma)$ (resp., $\beta_{g'}(\sigma)$) is the $G(\sigma)$-invariant part of the cohomology of $\mathcal{T}_g(\sigma)$ (resp., of $\mathcal{T}_{g'}(\sigma)$). Since the diagram (11) is $G(\sigma)$-equivariant, the cohomology of $\beta_g(\sigma)$ stabilizes in the same range as that for $\mathcal{T}_g(\sigma)$. The explicit description of the stable cohomology and its algebraicity come from taking the $G(\sigma)$-invariant part in the description of the stable cohomology of $\mathcal{T}_g(\sigma)$. The proof is thus completed by proving the following lemma.

Lemma 8.3. In degree less than $g - i$, the $\text{Sp}(2g - 2i)$-invariant part of the cohomology of the fiber $\Psi_{g,A} = \pi(\sigma)^{-1}([A]) \subset \mathcal{T}_g(\sigma)$ is algebraic and independent of g. In particular, the cohomology vanishes in odd degree.

Furthermore, if we denote the basis of $\text{Sym}^2(\mathbb{R}^1)^\vee$ dual to the basis $\{x_r x_s + x_s x_r\}_{1 \leq r,s \leq i}$ by $\{\tau_{r,s}\}_{1 \leq r,s \leq i}$, the lattice generated by the $\tau_{r,s}$ by M and the intersection $\sigma^+ \cap M$ by W, in even degree $k < g - i$, the cohomology of Ψ_{A} is isomorphic to the degree $k/2$ part of the symmetric algebra generated by the quotient M_Q/W_Q with $M_Q = M \otimes \mathbb{Z} Q$, $W_Q = W \otimes \mathbb{Z} Q$.

Proof. To proceed, we want to describe more precisely the torus bundle $\mathcal{T}_g(\sigma)$. We recall that its fibre is the torus $T_i/T(\sigma)$, where $T_i = \text{Sym}^2(\mathbb{Z}^i) \otimes \mathbb{C}^*$ and $T(\sigma) \subset T_i$ is given by $T(\sigma) = (\text{Span}(\sigma) \cap \text{Sym}^2(\mathbb{Z}^i)) \otimes \mathbb{C}^*$. Thus duality defines a canonical isomorphism between the quotient $T_i/T(\sigma)$ and the torus $T(\sigma^+) = (\sigma^+ \cap M) \otimes \mathbb{C}^*$. This enables us to view $\mathcal{T}_g(\sigma)$ as a subbundle of the dual torus bundle T_i^* of Proposition 7.2.

Let us choose a \mathbb{Z}-basis ϕ_1, \ldots, ϕ_m ($m = i(i + 1)/2$) of $W := \sigma^+ \cap M$ and write $\phi_j = \sum_{1 \leq k_1 \leq k_2 \leq i} \alpha_{j,k_1,k_2} \tau_{k_1,k_2}.$ Then setting $w_j := e^{2\pi \sqrt{-1} \phi_j} = \prod_{1 \leq k_1 \leq k_2 \leq i} \alpha_{j,k_1,k_2} s_{k_1,k_2}$ for $j = 1, \ldots, m$ defines a natural set of parameters for the fiber $T(\sigma^+)$ of the torus bundle $\mathcal{T}_g(\sigma)$. Note that by Proposition 7.2, each w_j defines a local sections of the bundle $L_j := \otimes S_{k_1,k_2}^{\alpha_{j,k_1,k_2}}$ over $X_{g-i}^{\times i}$. Hence, if we denote the complement of the 0-section by L_j^0, the torus bundle $\mathcal{T}_g(\sigma)$ is contained in the direct sum of the L_j as

$$\mathcal{T}_g(\sigma) = L_1^0 \times X_{g-i}^{\times i} \cdots X_{g-i}^{\times i} L_m^0.$$

Now, let us consider $\Psi_{g,A}$, which by definition is the restriction to $A^{\times i} \cong p_i^{-1}([A])$ of the torus bundle $\mathcal{T}_g(\sigma)$. The stabilization map commutes with $\pi(\sigma)$, hence its restriction to A^i induces a map $\Psi_{g,A} \to \Psi_{g',A'}$, where $A' = A \times B$ is given by the image of the point $[A] \in A_{g-i}$.
under the stabilization map $A_{g-i} \to A_{g'-i}$. To study the cohomology of $\Psi_{g,A}$ and $\Psi_{g',A'}$, we use the Leray spectral sequence of the torus bundle $\Psi_{g,A} \to A^1$ and $\Psi_{g',A'} \to A'^1$, which we denote by $E^{p,q}_*$ and $E'_{p,q}^*$, respectively. The E_2-terms are of the form

$$E_2^{p,q} = H^q(T(\sigma^1), \mathbb{Q}) \otimes H^p(A^1, \mathbb{Q}) = \bigwedge^q W_\mathbb{Q} \otimes \bigwedge^p H^1(A, \mathbb{Q})^i,$$

where we used the isomorphism $W_\mathbb{Q} \cong H^1(T(\sigma^1), \mathbb{Q})$. Let us denote by $E^{p,q}_{r,\text{inv}}$ the $\text{Sp}(2g - 2i)$-invariant part of $E^{p,q}_r$, and by $E'_{p,q}^{r,\text{inv}}$ the $\text{Sp}(2g' - 2i)$-invariant part of $E'^{p,q}_r$. Then the description of E_2 given above, combined with Theorem 6.1, implies that the stabilization map $\Psi_{g,A} \to \Psi_{g',A'}$ induces an isomorphism $E_{2,\text{inv}}^{p,q} \cong E'^{p,q}_{2,\text{inv}}$ if $p \leq g - i$. Furthermore, for $p \leq g - i$ the term $E_{2,\text{inv}}^{p,q}$ vanishes for p odd and is given by

$$E_{2,\text{inv}}^{p,q} = \bigwedge^q W_\mathbb{Q} \otimes \mathbb{Q}[T_k, P_{k_1k_2}]_{p/2} \cong \bigwedge^q W_\mathbb{Q} \otimes \text{Sym}^{p/2} M_\mathbb{Q}$$

for p even. Here we identified the symmetric algebra $\text{Sym}^r M_\mathbb{Q}$ with $\mathbb{Q}[T_k, P_{k_1k_2}]_r$ using the map $\tau_{kk'} \mapsto -2T_k, \tau_{kk'} \mapsto -P_k$, $k < k'$. Furthermore, in view of the structure of $T_\mathbb{Q}(\sigma)$ as product of \mathbb{C}-bundles, the Leray spectral sequence of $T_\mathbb{Q}(\sigma)$ degenerates at E_3, and the d_2-differentials are determined by the Euler classes of the \mathbb{C}-bundles, i.e. by the Chern class of the line bundles L_1, \ldots, L_m. By construction, and by the description of the bundles S_{jk} given in Proposition 7.2 one has $c_1(L_j) = -\sum_{1 \leq k_1 < k_2 \leq 1} \alpha_{j,k_1k_2} P_{k_1k_2} - 2 \sum_{1 \leq k \leq 1} T_k$, where the coefficients of this linear combination are independent of g. In particular, in the stable range also the differentials in the spectral sequences $E_{\bullet,\text{inv}}$ and $E'_{\bullet,\text{inv}}$ coincide.

We can rephrase the description of d_2 in terms of multilinear algebra by saying that

$$E_{2,\text{inv}}^{2r,q} = \bigwedge^q W_\mathbb{Q} \otimes \text{Sym}^r M_\mathbb{Q} \xrightarrow{d_2} E_{2,\text{inv}}^{2r+2,q-1} = \bigwedge^{q-1} W_\mathbb{Q} \otimes \text{Sym}^{r+1} M_\mathbb{Q}$$

is the differential of the degree $r + q$ strand of the dual Koszul complex associated to the inclusion $W_\mathbb{Q} \hookrightarrow M_\mathbb{Q}$ of \mathbb{Q}-vector spaces (see [Eis95, A2.6.1]), provided both $E_{2,\text{inv}}^{2r,q}$ and $E_{2,\text{inv}}^{2r+2,q-1}$ are in the stable range. As this Koszul complex is exact, this immediately yields $E_{3,\text{inv}}^{p,q} = 0$ for $q \geq 1$ in the range $p + q < g - i$, as well as

$$E_{3,\text{inv}}^{k,0} = \text{Sym}^{k/2} M_\mathbb{Q}/(\phi_1, \ldots, \phi_m) = \text{Sym}^{k/2}(M_\mathbb{Q}/W_\mathbb{Q})$$

for even $k < g - i$ and the vanishing of $E_{3,\text{inv}}^{k,0}$ for odd $k < g - i$. □
8.1. Standard cones. We close this section by illustrating Theorem 8.1 in the concrete case of the i-dimensional standard cone

$$\sigma = \langle x_1^2, x_2^2, \ldots, x_i^2 \rangle.$$

As the rank of σ is equal to i, we get a commutative diagram

$$
\begin{array}{ccc}
\mathcal{T}(\sigma) & \xrightarrow{(\mathbb{C}^*)^m\text{-bundle}} & \mathcal{X}_{g-i}^{\times i} \\
\downarrow /G(\sigma) & & \downarrow \pi(\sigma) \\
\beta_g(\sigma) & \xrightarrow{\pi(\sigma)^{G(\sigma)}} & \mathcal{A}_{g-i}
\end{array}
$$

where the rank of the torus bundle is $m = \binom{i}{2}$. To proceed, we describe more precisely the torus bundle $\mathcal{T}(\sigma)$ and the group $G(\sigma)$. As explained in the previous section, the fibre of $\mathcal{T}(\sigma)$ is given by the torus $W \otimes \mathbb{Z} \mathbb{C}^*$, where W denotes the integral points of the orthogonal complement of σ. As σ^\perp is spanned by τ_{jk} for all $1 \leq j < k \leq i$, one has

$$\sigma^\perp = \text{Span}(-\tau_{12}, \ldots, -\tau_{i-1,i}).$$

From Proposition 7.2 it follows that exponentiating the coordinate $-\tau_{jk}$ gives rise to a local section of the Poincaré bundle P_{jk}. Therefore, we have that $\mathcal{T}(\sigma)$ is the fiber product of the Poincaré bundles P_{jk} over $\mathcal{X}_{g-i}^{\times i}$ with the 0-section removed.

The stabilizer $G(\sigma)$ of the standard cone in $\text{GL}(i, \mathbb{Z})$ is generated by sign changes and permutations of the coordinates x_1, \ldots, x_i. In particular, its action on $\text{Span}(\sigma) \cap \text{Sym}^2(\mathbb{Q}^i)$ factors through the action of the symmetric group S_i permuting x_1^2, \ldots, x_i^2. If we identify $\text{Span}(\sigma)$ with the quotient of the dual space $\text{Sym}^2(\mathbb{R}^i)^\vee = \text{Span}(\tau_{11}, \tau_{12}, \ldots, \tau_{ii})$ by $\sigma^\perp = \text{Span}(\tau_{jk} | j < k)$, we get the standard representation of S_i on $\text{Span}(\tau_{11}, \ldots, \tau_{ii})$.

From this it follows that we can identify the stable cohomology of the torus bundle $\mathcal{T}(\sigma)$ with the quotient of the stable cohomology of $\mathcal{X}_{g-i}^{\times i}$ by the Euler classes $P_{12}, \ldots, P_{i-1,i}$ of the factors of $\mathcal{T}(\sigma)$, or, equivalently, with the subalgebra of the stable cohomology of $\mathcal{X}_{g-i}^{\times i}$ generated by T_1, \ldots, T_i. As the stable cohomology of $\beta(\sigma)$ is the S_i-invariant part of the stable cohomology of $\mathcal{T}(\sigma)$, we get the following result:

Lemma 8.4. For the standard cone $\sigma = \langle x_1^2, \ldots, x_i^2 \rangle$ the cohomology groups $H^k(\beta_g(\sigma))$ stabilize for $k < g-i-1$. The stable cohomology of $\beta_g(\sigma)$, as an algebra over the stable cohomology of \mathcal{A}_{g-i}, is freely generated by classes $\epsilon_j \in H^2(\beta_g(\sigma))$ for $1 \leq j \leq i$, where ϵ_j can be viewed as the degree j symmetric polynomials in the classes $T_1, \ldots, T_i \in H^2(\mathcal{X}_{g-i}^{\times i})$.
9. Stabilization of cohomology of A^Perf_g

We can turn our attention to the (open) strata β^0_i in the perfect cone compactification A^Perf_g, which are disjoint unions of the strata described in the previous section. To compute their cohomology, we will use the Gysin exact sequence. We note that each individual stratum $\beta(\sigma)$ is a finite quotient of a smooth variety, namely the quotient of $T_g(\sigma)$ by $G(\sigma)$, and hence Poincaré duality holds between cohomology and cohomology with compact support of complementary degree. We would like to point out that this is no longer true for the strata β^0_i themselves as they will, in general, be singular, and thus we will now want to work with cohomology with compact support, in close to top degree.

In the proof of Theorem 8.1, we observed that the cohomology of $\beta(\sigma)$ stabilizes with respect to a well-defined map $\beta_g(\sigma) \to \beta_g'(\sigma)$. Clearly, these maps extend to a morphism $A^\text{Perf}_g \to A^\text{Perf}_g'$. This follows from the fact that in the toroidal construction, also the gluing of the strata $\beta(\sigma)$ commutes with the stabilization morphisms induced by $A_g \to A_g'$. Hence, by restriction we also get maps $A^\text{Perf}_g' \supset \beta^0_{i,g} \to \beta^0_{i,g'} \subset A^\text{Perf}_g'$ which induce the pullback maps $H^k(\beta^0_{i,g}) \to H^k(\beta^0_{i,g'})$. However, if $\beta^0_{i,g}$ is singular, there is no natural associated map $H^{\top,k-\top}(\beta^0_{i,g'}) \to H^{\top,k-\top}(\beta^0_{i,g})$, due to the fact that the dimension of $\beta^0_{i,g}$ depends on g.

Remark 9.1. As explained in the introduction, this is the first section the results of which do not apply to an arbitrary toroidal compactification. To simplify notation and statements, we will formulate everything for the perfect cone toroidal compactification, and make use of Proposition 7.1 which is specific to the perfect cone compactification. However, we would like to point out that in fact the results below hold in greater generality: indeed, property (ii) of Proposition 7.1 follows from combining admissibility with property (i). Hence every admissible collection Σ satisfying the property (i) from the statement of Proposition 7.1 defines a sequence of toroidal compactifications $\{\overline{A}_g^\Sigma\}$ to which our stability results (Proposition 9.2 and Lemma 9.4) extend. Thus our main result, the stabilization and algebraicity given by Theorems 1.1 and 1.2 apply for any such Σ, possibly after replacing cohomology with cohomology with compact support in the case that \overline{A}_g^Σ is a partial compactification.

As we will see at the end of this section, some natural examples of such sequences of partial compactifications are the matroidal partial compactification A^Matr_g (and applying the machinery below gives the stabilization results in this case), as well as the smooth locus A^Perf_g' or the simplicial locus $A^\text{Perf}_g'^\text{simp}$ within A^Perf_g.
Proposition 9.2. The strata $\beta^0_{i,g}$ have stable cohomology with compact support in degree close to the top degree as g goes to infinity.

More precisely, the cohomology groups $H^c_k(\beta^0_{i,g}, \mathbb{Q})$ satisfy

$$H^c_k(\beta^0_{i,g}, \mathbb{Q}) = \bigoplus_{\text{rank} \sigma = i} H^c_k(\beta_g(\sigma), \mathbb{Q})$$

if $k > \text{top} - g + i + 1$. Furthermore, in this range the cohomology groups with compact support are independent of g and are all algebraic, so that in particular all odd cohomology vanishes.

Proof. We first recall from Theorem 8.1 that the cohomology of the strata $\beta_g(\sigma)$ stabilizes in degree $k > g - i - 1$ and is algebraic in this range. As each $\beta_g(\sigma)$ is the global quotient of the smooth space $\mathcal{T}_g(\sigma)$ by a finite group, Poincaré duality holds and the cohomology with compact support of $\beta_g(\sigma)$ stabilizes and is algebraic in degree $k > 2 \dim C \beta_g(\sigma) - g + i + 1 \leq \text{top} - g + i + 1$. Hence, equality (12) implies the rest of the claim.

By definition of the toroidal compactification, the locus $\beta^0_{i,g} \subset \mathcal{A}_g^\text{Perf}$ is stratified by the locally closed subvarieties $\beta_g(\sigma)$ defined by the rank i cones σ in the perfect cone decomposition. The dimension of these cones ranges from i to $i(i+1)/2$. Therefore, we have

$$\beta^0_{i,g} = \bigsqcup_{0 \leq j \leq i(i+1)/2-i} W_{j,g}$$

where we denoted by $W_{j,g}$ the (disjoint) union of all $\beta_g(\sigma)$ with σ of rank i and dimension $i(i+1)/2-j$. Note that the closures $\overline{W}_{j,g}$ define a filtration on $\beta^0_{i,g}$ and that the Gysin spectral sequence associated with this filtration has E_1 term

$$E_1^{p,q} = H^c_{p+q}(W_{p,g}, \mathbb{Q})$$

where we set $W_{p,g}$ to be empty if no cone of rank i and dimension $i(i+1)/2 - p$ exists. As the cohomology with compact support of $W_{p,g}$ is the direct sum of the cohomology with compact support of its locally closed strata $\beta_g(\sigma)$, to show the claim (12), it suffices to show that the spectral sequence associated with $\{\overline{W}_{j,g}\}$ degenerates at E_1 in the range $p+q > \text{top} - g + i + 1$.

To this end, let us note that Theorem 8.1 implies that $E_1^{p,q}$ vanishes if $p+q$ is odd and $p+q > 2 \dim C W_{p,g} - g + i + 1$, i.e. for $q > g^2 - i^2 - 2i + p + 1$. In particular, in the non-trivial columns, where $i(i+1)/2 - i \leq p \leq i(i+1)/2$ holds, all differentials of the form

$$E_r^{p,q} \rightarrow E_r^{p+r,q-r+1} \text{ or } E_r^{p-r,q+r-1} \rightarrow E_r^{p,q}$$
with \(p + q > 2 \dim_{\mathbb{C}} \beta_{i+1, g} - g + i + 1 = g^2 - i + 1 \) are in this range. Hence, either the source or the target space of the differential vanishes. From this it follows that \(E_{1}^{p,q} = E_{\infty}^{p,q} \) holds for \(p + q > \top - g + i + 1 \). □

Remark 9.3. The proposition above holds for any admissible collection \(\Sigma \). The proof can be easily extended to this more general case. This only requires to keep track of the fact that the top degree may be larger than \(g(g + 1) - 2i \).

Lemma 9.4. The cohomology of the open subset \(\mathcal{A}^{\text{Perf}}_{g} \backslash \beta_{i+1, g} \) stabilizes in close to the top degree, i.e. the cohomology group \(H_{\top}^{g(g+1)-k}(\mathcal{A}^{\text{Perf}}_{g} \backslash \beta_{i+1, g}, \mathbb{Q}) \) is independent of \(g \) for \(k < g \). Furthermore, in this range the cohomology groups with compact support are all algebraic, so that in particular all odd cohomology vanishes.

Proof. The main idea of the proof is the same as in the previous proposition: we consider an appropriate stratification of \(\beta_{i+1, g} \) into locally closed subsets, we prove that the \(E_{1}^{p,q} \)-terms of the associated Gysin spectral sequence stabilize for \(p + q < 2 \dim_{\mathbb{C}} \mathcal{A}^{\text{Perf}}_{g} - g = g^2 \) and that moreover also all differentials with either source or target in this stable range vanish, so that they stabilize as well. In this case, the natural approach is to stratify \(\mathcal{A}^{\text{Perf}}_{g} \backslash \beta_{i+1, g} \) as the union of the strata \(\beta_{1} \) for \(j = 0, \ldots, i \). Then the associated Gysin spectral sequence in cohomology with compact support has \(E_{1} \) term

\[
E_{1}^{p,q} = H_{\top}^{p+q}(\beta_{0}^{g} - p, \mathbb{Q}),
\]

which in view of Proposition 9.2 stabilize and are algebraic for \(p + q > 2 \dim_{\mathbb{C}} \beta_{j-1, g} - g + i - p + 1 = g^2 - i + p + 1 \). In the case of the strata \(\beta_{0} = \mathcal{A}_{g} \) and \(\beta_{1} = \mathcal{X}_{g} \), however, the bound given in Theorem 3.1 and Proposition 4.3 is slightly better, so that we have \(p + q > 2 \dim_{\mathbb{C}} \beta_{j-1, g} - g + i - p = g^2 - i + p + 1 \) as stability range for \(p \in \{ i - 1, i \} \). At this point, we observe that all \(E_{1}^{p,q} \)-terms with either \(p + q > g^2 \) or \(p + q > g^2 - 1 \) and \(p < i \) lie in the stable range, and that they vanish if \(p + q \) is odd. This implies that \(E_{1}^{p,q} = E_{\infty}^{p,q} \) stabilizes for \(p + q > g^2 \), so that we have \(H_{\top}^{k}(\mathcal{A}^{\text{Perf}}_{g} \backslash \beta_{i+1, g}, \mathbb{Q}) = \bigoplus_{0 \leq j \leq i} H_{\top}^{k}(\beta_{j, g}, \mathbb{Q}) \) for \(k > g^2 \). This is enough to prove the stability of cohomology with compact support for \(k > g^2 \). The fact that the classes are algebraic follows from the corresponding results for the \(\beta_{j, g} \).

We can now finally prove that the cohomology of \(\mathcal{A}^{\text{Perf}}_{g} \) with compact support, in degree close to top, stabilizes. The method is similar to the one developed in the previous sections: to compute \(H_{\top}^{\top - k}(\mathcal{A}^{\text{Perf}}_{g}, \mathbb{Q}) \), we need to analyze all the strata of complex codimension up to \(\lfloor k/2 \rfloor \).
in \(\mathcal{A}_{g}^{\text{Perf}} \). As we have pointed out before, the mere fact that for \(g \gg k \) there is a finite fixed collection of such cones, which was shown in Proposition 7.1, is special to the perfect cone decomposition. We are now ready to prove our main result, the stabilization of cohomology \(H^{g(g+1)-k}(\mathcal{A}_{g}^{\text{Perf}}, \mathbb{Q}) \) for \(k < g \).

Proof of the main theorem, Theorem 1.1. As each \(\beta_{i} \) has codimension \(i \) in \(\mathcal{A}_{g}^{\text{Perf}} \) and \(\mathcal{A}_{g}^{\text{Perf}} \) is compact, the cohomology of \(\mathcal{A}_{g}^{\text{Perf}} \) in degree \(g(g+1)-k \) for \(k < g \) coincides with the cohomology with compact support of \(\mathcal{A}_{g}^{\text{Perf}} \setminus \beta_{\lceil g/2 \rceil +1,g} \). Then the claim follows from the isomorphism

\[
H^{g(g+1)-k}(\mathcal{A}_{g}^{\text{Perf}} \setminus \beta_{\lceil g/2 \rceil +1,g}, \mathbb{Q}) \cong H^{g(g+1)-k}(\mathcal{A}_{g}^{\text{Perf}} \setminus \beta_{\lceil g/2 \rceil +1,g'}, \mathbb{Q})
\]

described in Lemma 9.4 for \(k < g < g' \). \(\square \)

The singularities of the space \(\mathcal{A}_{g}^{\text{Perf}} \) and the ensuing failure of Poincaré duality have forced us to switch to cohomology with compact support. We will now discuss open subsets of \(\mathcal{A}_{g}^{\text{Perf}} \) where this problem does not arise. The first question is to understand the singularities of \(\mathcal{A}_{g}^{\text{Perf}} \) better. To be precise, we are interested in those singularities which come from the perfect cone compactification itself, rather than those that arise from the non-neatness of the group \(\text{Sp}(2g, \mathbb{Z}) \), which do not give singular points of the stack \(\mathcal{A}_{g}^{\text{Perf}} \) but only of its coarse moduli space. As the latter singularities do not occur on suitable level covers they are no obstruction to Poincaré duality as long as one works with rational coefficients. We shall denote the locus of these singularities that are not resolved by going to a level cover by \(\mathcal{A}_{g,\text{sing}}^{\text{Perf}} \). Indeed this is the singular locus of the stack \(\mathcal{A}_{g}^{\text{Perf}} \). We have the following recent result of Dutour Sikirić, Schürmann, and the second author:

Proposition 9.5 (see [DSHS13]). The stack \(\mathcal{A}_{g}^{\text{Perf}} \) is smooth for \(g \leq 3 \) and the (complex) codimension of its singular locus \(\mathcal{A}_{g,\text{sing}}^{\text{Perf}} \) is equal to 10 for any \(g \geq 4 \).

We denote the underlying variety of the smooth locus of the stack \(\mathcal{A}_{g}^{\text{Perf}} \) by

\[
\mathcal{A}_{g,\text{smooth}}^{\text{Perf}} := \mathcal{A}_{g}^{\text{Perf}} \setminus \mathcal{A}_{g,\text{sing}}^{\text{Perf}}.
\]

From the toroidal point of view, we can view \(\mathcal{A}_{g,\text{smooth}}^{\text{Perf}} \) as the partial toroidal compactification of \(\mathcal{A}_{g} \) defined by the cone decomposition one obtains by considering only those perfect cones that are basic. We recall that a cone is called basic if its generators form a \(\mathbb{Z} \)-basis of \(\text{Sym}^{2}(\mathbb{Z}^{g}) \). In fact recall more generally that a cone is called simplicial if its generators form a \(\mathbb{R} \)-basis of \(\text{Sym}^{2}(\mathbb{R}^{g}) \), and in this case the toric
variety is locally the quotient of a smooth space by a finite abelian group.

The union of all simplicial cones defines an open subset $A_{g,\text{simp}}^\text{Perf}$ of A_g^Perf. Since the singularities of A_g^Perf in codimension 10 arise from the non-simplicial cone D_4 (see [DSHS13] Theorem 1 (ii)), it follows that the codimension of the complement of $A_{g,\text{simp}}^\text{Perf}$ in A_g^Perf is also 10. The main advantage of working with the simplicial locus (and suitable open subsets) is that all its points are rationally smooth. This follows from rational smoothness of simplicial toric varieties, see e.g. [CLS11, Theorem 11.4.8]. Note that rational smoothness ensures that rational cohomology coincides with the middle perversity intersection cohomology of A_g. Theorem 11.4.8].

Proposition 9.6. (i) The cohomology stabilizes for the smooth and for the simplicial locus within A_g^Perf, i.e. the cohomology groups $H^k(A_{g,\text{smooth}}^\text{Perf})$ and $H^k(A_{g,\text{simp}}^\text{Perf})$ are both independent of g for $k < g$.

(ii) For $k < 19$ there are isomorphisms

$$H^\text{top}-k(A_g^\text{Perf}, \mathbb{Q}) \cong H^k(A_{g,\text{smooth}}^\text{Perf}, \mathbb{Q}) \cong H^k(A_{g,\text{simp}}^\text{Perf}, \mathbb{Q})$$

induced by the Poincaré duality on $A_{g,\text{smooth}}^\text{Perf}$ and $A_{g,\text{simp}}^\text{Perf}$, respectively.

Proof. (i) As explained in Remark 9.1, the proof of the main result above also serves to show that $H^\text{top}(A_{g,\text{simp}}^\text{Perf} \setminus \beta_{i+1}, \mathbb{Q})$ is independent of g for $k < g$. In particular, this holds for $i = \lceil g/2 \rceil + 1$. As the codimension of β_i is i, one gets

$$H^\text{top}(A_{g,\text{simp}}^\text{Perf} \setminus \beta_{i+1}, \mathbb{Q}) \cong H^\text{top}(A_{g,\text{simp}}^\text{Perf}, \mathbb{Q}) \cong H^\text{top}(A_{g,\text{simp}}^\text{Perf}, \mathbb{Q})$$

where the last isomorphism is Poincaré duality for the rationally smooth $A_{g,\text{simp}}^\text{Perf}$. This shows the stabilization of the cohomology of $A_{g,\text{simp}}^\text{Perf}$. The proof for $A_{g,\text{smooth}}^\text{Perf}$ is completely analogous.

(ii) We first note that $H^\text{top}-k(A_g^\text{Perf}, \mathbb{Q}) \cong H^\text{top}-k(A_{g,\text{simp}}^\text{Perf}, \mathbb{Q})$ holds since A_g^Perf is compact. By the Gysin sequence applied to the inclusion of $A_{g,\text{sing}}^\text{Perf}$ into A_g^Perf we obtain an isomorphism $H^\text{top}-k(A_g^\text{Perf}, \mathbb{Q}) \cong H^\text{top}-k(A_{g,\text{sing}}^\text{Perf}, \mathbb{Q})$ for $k < 2 \cdot \text{codim}_{\mathbb{C}}A_{g,\text{sing}}^\text{Perf} - 1 = 19$. Finally, we have by Poincaré duality $H^\text{top}-k(A_{g,\text{smooth}}^\text{Perf}, \mathbb{Q}) \cong H^k(A_{g,\text{smooth}}^\text{Perf}, \mathbb{Q})$. The same proof applies to the simplicial locus since Poincaré duality also holds there. \qed
The third open locus of A^Perf_g which is of interest to us is the matroidal locus A^Matr_g. The importance of this locus was pointed out by Melo and Viviani [MV12], who identified it as the biggest partial compactification of A_g contained in both the second Voronoi and the perfect cone compactification. This means that we can think of A^Matr_g as the “intersection” of A^Vor_g and A^Perf_g. The matroidal locus is defined as the partial compactification obtained by taking all matroidal cones. Recall that a matrix $A \in \text{Mat}_\mathbb{Z}(g,n)$ is called totally unimodular if every square sub matrix has determinant -1, 0 or 1. A matrix $A \in \text{Mat}_\mathbb{Z}(g,n)$ is called unimodular if there exists a matrix $B \in \text{GL}(g,\mathbb{Z})$ such that BA is totally unimodular. A cone in $\text{Sym}^2(\mathbb{R}^g)$ is called matroidal if it is spanned by the rank 1 forms defined by the columns of a unimodular matrix. It is known that all matroidal cones are simplicial [ER94, Theorem 4.1] and thus $A^\text{Matr}_g \subset A^\text{Perf}_g$. We also know that the codimension of the complement of A^Matr_g in A^Perf_g is 5, due to the existence of a non-matroidal dimension 5 cone in genus 5 (namely the cone σ_{NS} discussed below among the codimension 5 strata).

As matroidal cones are simplicial, we have that A^Matr_g is again rationally smooth. In particularly it satisfies Poincaré duality (with rational coefficients), so that the same argument as in the proof of part (i) of Proposition 9.6 applies to A^Matr_g, thus providing a proof of the stabilization of the rational cohomology of A^Matr_g in degree $k < g$ (Theorem 1.5).

Finally, the considerations above also apply to even smaller open loci of A^Perf_g. For instance, one can take the partial compactification of A_g given by taking the union of all strata associated with standard cones, i.e. of all $\beta_g(\sigma)$ with σ a cone of the form $\sigma = \langle x^2_1, x^2_2, \ldots, x^2_i \rangle$ for $0 \leq i \leq g$ (see §8.1). We will denote this union of the standard strata by A^Std_g. As there is just one standard cone in each dimension, and standard cones are always basic, it is easy to adapt the proof of part (i) of Proposition 9.6 to prove that the rational cohomology of A^Std_g stabilizes in degree $k < g$ and is generated by algebraic classes. However, as the stable cohomology of strata associated with standard cones is known by Lemma 8.4 in this case we can compute this stable cohomology explicitly.

Theorem 9.7. The cohomology of the partial toroidal compactification defined by the standard cones stabilizes, i.e. $H^k(A^\text{Std}_g, \mathbb{Q})$ does not depend on g for $k < g$. The stable cohomology is the polynomial algebra generated by the odd λ-classes and the fundamental classes $[\beta_i] \in H^{2i}(A^\text{Std}_g, \mathbb{Q})$ of the boundary strata.
Proof. As remarked in the introduction, the stable cohomology of $\mathcal{A}_g^{\text{Std}}$ coincides with the cohomology of the inductive limit $\mathcal{A}_g^{\text{Std}}$ of the sequence $\mathcal{A}_g^{\text{Std}} \to \mathcal{A}_{g+1}^{\text{Std}}$ defined by taking products with a fixed element of \mathcal{A}_1. Let us observe that there is a well-defined product $\mathcal{A}_g^{\text{Std}} \times \mathcal{A}_g^{\text{Std}} \to \mathcal{A}_g^{\text{Std}}$ for all $g_1, g_2 \geq 0$. These products define a structure of H-space on $\mathcal{A}_g^{\text{Std}}$, so in particular its cohomology is a commutative and associative graded Hopf algebra over \mathbb{Q}. Hence, by Hopf’s theorem, the stable cohomology of $\mathcal{A}_g^{\text{Std}}$ is a free graded-commutative algebra. However, in the case of $\mathcal{A}_g^{\text{Std}}$ we know that the stable cohomology is concentrated in even degree, so that the stable cohomology is a polynomial algebra. At this point, it only remains to identify the generators.

Let us recall from Lemma 8.4 that the stable cohomology of the stratum $\beta_i^0 \cap \mathcal{A}_g^{\text{Std}}$ is isomorphic to the polynomial algebra $\mathbb{Q}[\eta_j, \lambda_{2k+1} \mid 1 \leq j \leq i, k \geq 0]$ generated by the odd λ-classes and by i other classes $\eta_j \in H^{2j}(\beta_i^0 \cap \mathcal{A}_g^{\text{Std}}, \mathbb{Q})$. By the Gysin exact sequence associated with the stratification $\{\beta_i^0 \cap \mathcal{A}_g^{\text{Std}}\}$ of $\mathcal{A}_g^{\text{Std}}$ we have

\begin{equation}
H^k(\mathcal{A}_g^{\text{Std}}, \mathbb{Q}) \cong \bigoplus_{i \geq 0} H^{k-2i}(\beta_i^0 \cap \mathcal{A}_g^{\text{Std}}, \mathbb{Q})(-i)
\end{equation}

in the stable range $k < g$.

Combining this with Lemma 8.4 we obtain that the rank of the stable cohomology in degree k coincides with the rank of the polynomial algebra $\mathbb{Q}[\eta_j, \lambda_{2k+1} \mid j, k \geq 0]$ with $\deg \eta_j = 2j$, $\deg \lambda_{2k+1} = 4k + 2$. Therefore, to prove the claim it suffices to notice that for all $i \geq 1$, the fundamental class of $[\beta_i^0]$ is not a product of classes $[\beta_j]$ with $j < i$ and λ-classes. This is indeed the case, as $[\beta_i^0] \in H^{2j}(\mathcal{A}_g^{\text{Std}}, \mathbb{Q})$ vanishes under the pull-back of the open inclusion $\mathcal{A}_g^{\text{Std}} \setminus \beta_i^0 \hookrightarrow \mathcal{A}_g^{\text{Std}}$. Note that $[\beta_i^0] \neq 0$ follows from (13) and the degeneration at E_1 of the Gysin exact sequence associated with the stratification of $\mathcal{A}_g^{\text{Std}}$ by boundary strata. □

10. AUTOMORPHISMS AND THE STABLE COHOMOLOGY OF THE NEXT STRATUM

To further demonstrate that our method can give explicit results, in this section we will compute the stable cohomology of the “second partial” compactification of \mathcal{A}_g obtained by adding to \mathcal{A}_g' the locus of semiabelic varieties of torus rank 2 (which now come in two flavors, depending on whether the toric part is $\mathbb{P}^1 \times \mathbb{P}^1$ or two copies of \mathbb{P}^2, so that we have two strata to deal with). Note that this part is still the same for the perfect cone, matroidal, second Voronoi, and central cone toroidal compactifications.
More precisely, the perfect cone decomposition of \(\text{Sym}^2_0 \mathbb{R}^g \) contains exactly two \(\text{GL}(g, \mathbb{Z}) \) orbits of cones whose general element is a form of rank 2, namely the orbits of the cones

\[
\sigma_{1+1} := \langle x_1^2, x_2^2 \rangle \quad \text{and} \quad \sigma_{K_3} := \langle x_1^2, x_2^2, (x_1 - x_2)^2 \rangle.
\]

This implies that the locus within \(\mathcal{A}_g^\text{Perf} \) of semiabelic varieties of torus rank 2 is the union of an open stratum \(\beta(\sigma_{1+1}) \), where the normalization of the corresponding semiabelic variety is an irreducible \(\mathbb{P}^1 \times \mathbb{P}^1 \) bundle, and a closed stratum \(\Delta := \beta(\sigma_{K_3}) \). In the following, we will determine the stable cohomology of these strata and of their union using Theorem 8.1 and the Gysin exact sequence. Both these strata are fibrations over \(\mathcal{X}_{g-2} \times \mathcal{A}_{g-2} \). By Theorem 8.1 the stable cohomology \(H^k(\mathcal{X}_{g-2}) \) for \(k < g - 2 \) is generated by the classes \(T_1, T_2 \) of the two pullbacks of the theta divisor, and the class \(P := P_{12} \) of the universal Poincaré divisor, all trivialized along the zero section.

For the open stratum \(\beta(\sigma_{1+1}) \) we know from [Mum83, p. 356], see also [HT12, Section 5], that it is the quotient by automorphisms of the total space of the universal Poincaré line bundle \(\mathcal{P} \to \mathcal{X}_{g-2}^{\times 2} \), with its zero section removed (where the Poincaré bundle is trivialized along the zero section \(\mathcal{A}_{g-2} \to \mathcal{X}_{g-2}^{\times 2} \)). This description indeed agrees with that given in Section 8.1 for the \(i \)-dimensional standard cone, in the case \(i = 2 \). Lemma 8.4 gives us the following result:

Lemma 10.1. The cohomology of \(\beta(\sigma_{1+1}) \) stabilizes in degree \(k < g - 3 \). More precisely, in this range \(H^k(\beta(\sigma_{1+1}), \mathbb{Q}) \), as an algebra over the stable cohomology of \(\mathcal{A}_{g-2} \), is isomorphic to the polynomial algebra \(\mathbb{Q}[T_1 + T_2, T_1T_2] \) on two generators, of degrees 2 and 4, respectively.

Our approach to the locally closed stratum \(\Delta = \beta(\sigma_{K_3}) \) is analogous. In this case, the toroidal description yields that \(\Delta \) is the quotient of \(\mathcal{X}_{g-2}^{\times 2} \) by the group \(G(\sigma_{K_3}) \) generated by the following three involutions:

\[
(14) \quad (x_1, x_2) \leftrightarrow (-x_1, -x_2)
\]
\[
(15) \quad (x_1, x_2) \leftrightarrow (x_2, x_1)
\]
\[
(16) \quad (x_1, x_2) \leftrightarrow (x_1, x_1 - x_2).
\]

Note that the involution \((14) \) acts trivially on \(\text{Sym}^2(\mathbb{R}^2) \), whereas \((15) \) can be viewed as the involution \(x_1^2 \leftrightarrow x_2^2 \) and \((16) \) as \(x_2^2 \leftrightarrow (x_1 - x_2)^2 \). From this it follows that the action of \(G(\sigma_{K_3}) \) on \(\text{Span}(\sigma_{K_3}) \) factors through the standard representation of the symmetric group \(S_3 \) on the generators of \(\sigma_{K_3} \). Let us recall from Theorem 8.1 that the stable cohomology of \(\beta(\sigma_{K_3}) \) is the \(G(\sigma_{K_3}) \)-invariant part of the symmetric algebra on the generators of \(\sigma_{K_3} \), tensored with \(H^\bullet_{\text{stable}}(\mathcal{A}_{g-2}) \). If we
denote by \((\alpha_1, \alpha_2, \alpha_3) = (x_1^2, x_2^2, (x_1 - x_2)^2)\) the \(\mathbb{Z}\)-basis given by the generators of \(\sigma_{K_3}\) and by

\[
(\gamma_1, \gamma_2, \gamma_3) = (\tau_{11} + \tau_{12}, \tau_{12} + \tau_{22}, -\tau_{12})
\]

the dual basis, we have

\[
H^\bullet_{\text{stable}}(\beta(\sigma_{K_3})) \cong H^\bullet_{\text{stable}}(A_{g-2}) \otimes (\text{Sym}^\bullet(\mathbb{Q}\gamma_1 + \mathbb{Q}\gamma_2 + \mathbb{Q}\gamma_3))^S_3,
\]

so that by the theory of symmetric functions the stable cohomology of \(\beta(\sigma_{K_3})\) is freely generated by the elementary symmetric functions in the \(\gamma_j\). The geometric meaning of these generators can be made more explicit by using the correspondence between the exponentials of the coordinates \(\tau_{jk}\) and the classes \(T_j, P_{jk} \in H^2(\mathcal{X}_{g-2})\) coming from Remark 8.2 and Proposition 7.2. This yields the following description of the three generators \(\xi, \eta, \zeta\):

\[
-\gamma_1 - \gamma_2 - \gamma_3 = -\tau_{11} - \tau_{12} - \tau_{22} \mapsto \xi = 2(T_1 + T_2) + P,
\]

\[
\gamma_1 \gamma_2 + \gamma_2 \gamma_3 + \gamma_3 \gamma_1 = \tau_{11} \tau_{22} - \tau_{12}^2 \mapsto \eta = 4T_1T_2 - P^2,
\]

\[
-\gamma_1 \gamma_2 \gamma_3 = (\tau_{11} + \tau_{12})(\tau_{12} + \tau_{22}) \mapsto \zeta = P(2T_1 + P)(2T_2 + P).
\]

This proves the following result:

Lemma 10.2. The cohomology of \(\Delta = \beta(\sigma_{K_3})\) stabilizes in degree \(< g - 3\), and in this range is generated over the stable cohomology of \(A_g\) by the classes \(\xi, \eta, \zeta\) that have degrees 2, 4 and 6, respectively.

Since each of the two substrata of \(\beta_0^2\) are smooth, we can translate our results into cohomology with compact support, and using the Gysin spectral sequence we can thus compute the cohomology \(H^k_{\text{top}}(\beta_0^2, \mathbb{Q})\) with compact support in the stable range \(k < g - 3\) (where top := \(g(g + 1) - 4\) is the (real) dimension of \(\beta_0^2\). Recall that the stratum \(\beta_0^2\) is smooth, as all rank 2 cones are basic. In particular, Poincaré duality gives an isomorphism \(H^k(\beta_0^2, \mathbb{Q}) \cong H^{k}_{\text{top}}(\beta_0^2, \mathbb{Q})\), so that we can state stability results for \(\beta_0^2\) directly in terms of cohomology.

For later use we notice in particular that

Corollary 10.3. For \(g > 11\), the Betti numbers of \(\beta_0^2\) in even degree are as follows:

\(k\)	0	2	4	6	8
\(\dim H^k(\beta_0^2, \mathbb{Q})\)	1	3	6	11	19

Moreover, the stable cohomology vanishes in odd degree \(k \leq 8\).
11. Further computations: stable cohomology of A^Perf_g in degree up to 12

In this section we outline the technical difficulties encountered in extending the explicit computations of stable cohomology to higher degree, and list the results of this computation for the next couple of cases. As a result, we compute $H^{\text{top}}(-k)(A^\text{Perf}_g, \mathbb{Q})$ for $k \leq 12$, proving Theorem 1.4 (and then from the computations also easily deduce $H^{\text{top}}(-k)(A^\text{Matr}_g, \mathbb{Q})$, proving Theorem 1.6). To do this, for each of the (many) cones, we will list the rank 1 forms generating it (as in [Val03, Chapter 4]) and the automorphism group preserving the cone (for most cases these have been computed by the second and third authors in [HT10] and [HT12], we provide the couple extra computations necessary). We then describe the action of the automorphism groups on the cohomology of the torus fiber.

We also recall that from Lemma 8.3 and Proposition 9.2 and their proofs we know that the cohomology of each stratum is purely algebraic, all odd cohomology vanishes, that $E^{p,q}$ vanishes for p odd, and that the Leray spectral sequence for the map to A_{g-k} degenerates at E_2. Thus our job amounts to computing the invariant part of the cohomology of each toric fiber, and then following the method of Lemma 8.3 and Proposition 9.2.

11.1. Strata of codimension 3. There is only one stratum of A^Perf_g of (complex) codimension 3 that we have not considered yet; it is the standard degeneration of torus rank 3, given by the cone

$$\sigma_{1+1+1} = \langle x_1^2, x_2^2, x_3^2 \rangle.$$

In this case, we can apply Lemma 8.4 for rank $i = 3$, which gives us that the stable cohomology of $\beta(\sigma_{1+1+1})$ is freely generated by the elementary symmetric polynomials in the T-classes

$$T_1 + T_2 + T_3, \ T_1T_2 + T_2T_3 + T_3T_1, \ T_1T_2T_3$$

and the odd λ-classes. Recall that to compute $H^{2g(g+1)-12}(A^\text{Perf}_g) = H^{\leq 12}(A^\text{Perf}_g)$ (see Proposition 9.6), we will only need $H^{\leq 6}$ of this stratum. The dimensions of the stable cohomology are thus given by

k	$\dim H^k_{\text{stable}}(\beta(\sigma_{1+1+1}), \mathbb{Q})$
0	2
2	4
4	6
6	8

11.2. Strata of codimension 4. We have three strata of codimension 4, of which one (the standard cone) has torus rank 4, and two others correspond to torus rank 3 degenerations, i.e. define strata in β^0_0 (we refer to [GH11] for the detailed description of all strata of codimension
up to 5, and of course to \[^{[HTT2]}\] for more details). The standard torus
rank 4 cone is
\[\sigma_{1+1+1+1} = \langle x_1^2, x_2^2, x_3^2, x_4^2 \rangle. \]

As above, we can apply Lemma \[^{[8.4]}\] to \(\beta(\sigma_{1+1+1+1}) \), which yields
the following values for the dimension of the stable cohomology in degree \(k \leq 4 \):
\[
\begin{array}{c|cccc}
k & \dim H^k_{\text{stable}}(\beta(\sigma_{1+1+1+1}), \mathbb{Q}) \\
\hline
0 & 2 & 4 \\
1 & 2 & 4 \\
\end{array}
\]

The other two cones of codimension 4 have torus rank 3. One is
\[\sigma_{K_3+1} = \langle x_1^2, x_2^2, (x_1 - x_2)^2, x_3^2 \rangle. \]

In this case \(\mathcal{T}(\sigma_{K_3+1}) \) is a torus bundle of rank 2, with parameters \(s_{1,2}^1, s_{2,3}^1 \). Therefore \(\mathcal{T}(\sigma_{K_3+1}) \) is isomorphic to a product of the Poincaré bundles \((P_{1,3} \otimes L^{1/2})^0\) and \((P_{2,3} \otimes L^{1/2})^0\) with the 0-section removed. The reduced automorphism group of \(\sigma_{K_3+1} \), i.e., the automorphism group divided by \(\pm 1 \), was computed in \[^{[HT10]}\], and is equal to \(S_3 \times (\mathbb{Z}/2\mathbb{Z}) \). Its action on \(\text{Span}(\sigma) \) factors through the action of \(S_3 \) permuting the first three generators of \(\sigma \) and fixing the last one. Then Theorem \[^{[8.1]}\] implies that the stable cohomology
of \(\beta(\sigma_{K_3+1}) \) is isomorphic to an algebra \(H^\bullet_{\text{stable}}(A_g) \otimes \mathbb{Q}[f_2, g_2, g_4, g_6] \) where the subscript identifies the degree of the free generators. The generator \(f_2 \) can be identified with \(x_3^2 \), whereas \(g_{2i} \) corresponds to the degree \(i \) elementary polynomial in \(x_1^2, x_2^2, (x_1 - x_2)^2 \).

Using the same approach and notation as in Lemma \[^{[10.2]}\] this yields the isomorphism
\[
H^\bullet_{\text{stable}}(\beta(\sigma_{K_3+1})) = \mathbb{Q}[\tau_3, \xi, \eta, \zeta, \lambda_{2m+1} | m \in \mathbb{Z}] \subset H^\bullet_{\text{stable}}(X_g^{\times 3})
\]
for the classes \(\xi = 2(T_1 + T_2) + P, \ \eta = 4T_1T_2 - P^2, \ \zeta = P(2T_1 + P)(2T_2 + P) \). This yields the following formula:
\[
\begin{array}{c|cccc}
k & \dim H^k_{\text{stable}}(\beta(\sigma_{K_3+1}), \mathbb{Q}) \\
\hline
0 & 2 & 4 \\
1 & 3 & 7 \\
\end{array}
\]

Finally, we have the last codimension 4 cone given by
\[\sigma_{C_4} = \langle x_1^2, x_2^2, (x_1 - x_3)^2, (x_2 - x_3)^2 \rangle. \]

This cone was studied in \[^{[HT10]}\] Section 5.4: a natural choice of parameters for \(\mathcal{T}(\sigma_{C_4}) \) is given by \(s_{1,2}^{-1}, s_{1,3}s_{2,3}s_{3,3} \); the automorphism group of \(\sigma_{C_4} \) is \(S_4 \), and it is generated by the three involutions sending the point \((x_1, x_2, x_3) \in \mathbb{R}^3\) to
\[
(x_2, x_1, x_1 + x_2 - x_3); \ (x_1 - x_3, -x_2, -x_3); \ (x_3 - x_2, -x_2, x_1 - x_2)
\]
respective. As \(S_4 \) permutes the generators of \(\sigma_{C_4} \), the stable cohomology of \(\beta(\sigma_{C_4}) \) is freely generated over the stable cohomology of \(A_g \) by four classes of degree \(2, 4, 6, 8 \) respectively, corresponding to the elementary symmetric functions in the generators of \(\sigma_{C_4} \). To identify them as elements of the stable cohomology of \(X_g \times \mathbb{R}^3 \), we need to extend the generators of \(\sigma_{C_4} \) to a basis of \(\text{Sym}^2(\mathbb{R}^3) \) in such a way that the span of the two additional generators \(f, g \) is a subrepresentation of \(S_4 \), eg. by setting

\[
\begin{align*}
 f &= -x_1^2 + 6x_1x_2 - x_2^2 - 2x_1x_3 - 2x_2x_3 + 2x_3^2, \\
 g &= 2x_1^2 + 2x_2^2 - 2x_1x_3 - 2x_2x_3 - x_3^2.
\end{align*}
\]

Then dualizing gives the following description of the dual elements \(\gamma_1, \ldots, \gamma_4 \) (multiplied by 3 by convenience) of the generators \(\alpha_1, \ldots, \alpha_4 \) of \(\sigma_{C_4} \):

\[
\begin{align*}
 \gamma_1 &= 3\tau_{11} + \tau_{33} + 2\tau_{12} + 4\tau_{13} + \tau_{23} \mapsto -6T_1 - 2T_3 - 2P_{12} - 4P_{13} - P_{23} \\
 \gamma_2 &= 3\tau_{22} + \tau_{33} + 2\tau_{12} + \tau_{13} + 4\tau_{23} \mapsto -6T_2 - 2T_3 - 2P_{12} - P_{13} - 4P_{23} \\
 \gamma_3 &= \tau_{33} - \tau_{12} - 2\tau_{13} + \tau_{23} \mapsto -T_3 + P_{12} + 2P_{13} - P_{23} \\
 \gamma_4 &= \tau_{33} - \tau_{12} + \tau_{13} - 2\tau_{23} \mapsto -T_3 + P_{12} - P_{13} + 2P_{23}
\end{align*}
\]

From this it follows that the stable cohomology of \(\beta(\sigma_{C_4}) \) is generated by the elementary symmetric functions in the \(\gamma_i \). In particular, the degree 2 generator is

\[
\xi' = 3T_1 + 3T_2 + 4T_3 + 2P_{23} + 2P_{13} + P_{12}, \quad \text{(degree 2)}
\]

and the degree 4 generator is

\[
\eta' = -P_{12}^2 - P_{12}P_{13} - P_{13}^2 - P_{12}P_{23} - P_{23}^2 + 12T_1T_2 + 12T_1T_3 + 12T_2T_3 + 6P_{13}T_2 + 6T_1P_{23} + 4P_{13}P_{23} + 4P_{12}T_3 + 8P_{13}T_3 + 8P_{23}T_3 + 8T_3^2.
\]

11.3. **Strata of codimension 5.** For the codimension 5 strata the full computation of automorphism groups and of invariant classes becomes more elaborate. Note, however, that for our purposes we are only interested in the cohomology in degrees up to 2. Since each of these strata \(\beta(\sigma) \) is connected, the \(H^0 \) is always one-dimensional, and generated by the Poincaré dual of the fundamental class. By Theorem 8.1 the \(H^1 \) vanishes and the \(H^2 \) is generated by \(\lambda_1 \) and by classes coming from the \(G(\sigma) \)-invariant subspace of \(\text{Span}(\sigma) \).

The first stratum of codimension 5 corresponds to semiabelic varieties of torus rank 3, and was also treated in [HT10] and in [HT12],
From this it follows that the \(\sigma \) where it is denoted simply by \(\sigma^{(5)} \). It is given by

\[
\sigma_{K_{4-1}} = \langle x_1^2, x_2^2, x_3^2, (x_1 - x_3)^2, (x_2 - x_3)^2 \rangle,
\]

and the full automorphism group was computed in [HT12, §6.5], and it coincides with the subgroup of the automorphism group of \(C_4 \) fixing \(x_2^2 \). From this it follows that the \(G(\sigma_{K_{4-1}}) \)-invariant part of \(\text{Span}(\sigma_{K_{4-1}}) \) is two-dimensional, generated by \(x_3^2 \) and by the sum of the other generators. Dually, this can be viewed inside the stable cohomology of \(X_g^{\times 3} \) as the span of the two invariants \(\iota_1 = T_1 + T_2 \) and \(\iota_2 = 4T_3 + P_{12} + 2P_{13} + 2P_{23} \) computed in [HT12].

Next, there are three strata in torus rank 4, namely those corresponding to the cones

\[
\sigma_{K_{3+1+1}} = \langle x_1^2, x_2^2, (x_1 - x_2)^2, x_3^2, x_4^2 \rangle,
\]

\[
\sigma_{C_{4+1}} = \langle x_1^2, x_2^2, (x_1 - x_3)^2, (x_2 - x_3)^2, x_4^2 \rangle
\]

and

\[
\sigma_{C_5} = \langle x_1^2, x_2^2, (x_1 - x_4)^2, (x_2 - x_3)^2, (x_3 - x_4)^2 \rangle.
\]

In the case of \(\sigma_{K_{3+1+1}} \) the automorphism acts on \(\text{Span}(\sigma_{K_{3+1+1}}) \) as the product \(S_3 \times S_2 \), where the first factor permutes the first three generators of \(\sigma_{K_{3+1+1}} \) (as in the case of \(\sigma_{K_3} \)) and the second factor interchanges the last two generators. Therefore, the invariant subspace of \(\text{Span}(\sigma_{K_{3+1+1}}) \) is two-dimensional, generated by \(x_1^2 + x_2^2 + (x_1 - x_2)^2 \) and \(x_3^2 + x_4^2 \).

For \(\sigma_{C_{4+1}} \) the automorphism group coincides with that of \(\sigma_{C_4} \) and acts trivially on \(x_4^2 \). Therefore, the invariant subspace of \(\text{Span}(\sigma_{C_{4+1}}) \) is again two-dimensional, generated by \(x_1^2 + x_2^2 + (x_1 - x_3)^2 + (x_2 - x_3)^2 \) and \(x_4^2 \).

Finally, the automorphism group \(G(\sigma_{C_5}) \) acts on \(\text{Span}(\sigma_{C_5}) \) by permuting the 5 generators. Therefore the invariant part of \(\text{Span}(\sigma_{C_5}) \) is one-dimensional.

We now encounter a new feature: indeed, as explained in [GH12b], correcting [GH11], there exist two cones in the perfect cone decomposition of codimension 5 and torus rank 5. The first one is the standard cone given by

\[
\sigma_{1+1+1+1+1} = \langle x_1^2, x_2^2, x_3^2, x_4^2, x_5^2 \rangle,
\]

for which Lemma [8.4] implies that the invariant part of \(\text{Span}(\sigma_{1+1+1+1+1}) \) is one-dimensional.

The other case corresponds to the non-standard 5-dimensional cone given by

\[
\sigma_{NS} := \langle x_1^2, \ldots, x_4^2, (2x_5 - x_1 - x_2 - x_3 - x_4)^2 \rangle.
\]
Table 1. Betti numbers of stable cohomology

degree	0	2	4	6	8	10	12
\mathcal{A}_g	1	1	1	2	2	3	4
β^0_1	1	2	3	5	7	10	
β^0_2	1	3	6	11	18		
$\beta(\sigma_{1+1+1})$	1	2	4	8			
codim. 4 strata	3	7	15				
codim. 5 strata	6	15					
codim. 6 strata	13						
Tot.	1	2	4	9	18	38	83

Its reduced automorphism group is generated by the group S_5 permutating the five generators of σ_{NS}. Therefore, the invariant part of $\text{Span}(\sigma_{NS})$ is generated by the sum $x_1^2 + \cdots + x_4^2 + (2x_5 - x_1 - x_2 - x_3 - x_4)^2$.

11.4. Strata of codimension 6. For the strata of (complex) codimension 6, note that by the Gysin spectral sequence their only cohomology that matters for the computation of $H^{\leq 12}(\mathcal{A}_g^{\text{Perf}})$ is the H^0. Since each such stratum is connected, its H^0 is one-dimensional, and we simply note that there are in total 13 strata. These correspond to the non-degenerate 6-dimensional cones of which there are 1, 4, 5 and 3 in genus 3, 4, 5 and 6 respectively, see [EVGS10]. Note that the 6-dimensional cones in genus 3 and 4 are all matroidal. In genus 5, four of them — the cones associated with the graphical lattices C_6, $C_5 + 1$, $C_4 + 1 + 1$ and $C_3 + 1 + 1 + 1$ — are matroidal; the remaining cone contains σ_{NS} and is therefore non-matroidal.

From the definition of matroidal cones, it follows that the standard cone (up to the GL(g, \mathbb{Z})-action) is the only g-dimensional cone of rank g. Hence, of the three 6-dimensional perfect cones of genus 6 one is matroidal and the other two are not.

Finally, we are ready to compute the cohomology of $\mathcal{A}_g^{\text{Perf}}$ in degree up to 12.

Proof of Theorem 1.4. From the proof of Theorem 1.1 it follows that for $k < g$, the cohomology of $\mathcal{A}_g^{\text{Perf}}$ in degree $\geq \text{top} - k$ is the direct sum of the stable cohomology with compact support of the strata $\beta(\sigma)$ of codimension $\leq \lceil g/2 \rceil$. This means that for $g \geq 13$ we can calculate the cohomology of $\mathcal{A}_g^{\text{Perf}}$ in degree larger than or equal to $\text{top} - 12$ by collecting the stable Betti numbers calculated in the previous sections and adding them as shown in Table 1. From this the claim follows. □

The cohomology of $\mathcal{A}_g^{\text{Matr}}$ in low degree is computed analogously.
Proof of Theorem 1.6. To compute the stable cohomology of A_{Matr}^g we simply need to subtract from Table 1 the contribution of the non-matroidal cones and then use Poincaré duality to pass from cohomology with compact support in degree $-k$ to cohomology in degree k. Indeed, the only changes occur in dimension 10, where we lose one generator corresponding to the fundamental class of the non-standard torus rank 5 codimension 5 cone, and in dimension 12 — where we lose one generator for each of the three non-matroidal cones of dimension 6, and two more generators, for the H^2 of the non-matroidal dimension 5 cone.

12. Algebraic generators for cohomology

Above we have computed the dimensions of the stable cohomology groups $H^{\text{top}, -k}(A_{\text{Perf}}^g, \mathbb{Q}) \cong H^k(A_{\text{Perf}}^g, \mathbb{Q}) \cong H^k(A_{\text{Perf}}^g, \mathbb{Q})$ for $k \leq 12$. We will now identify geometrically generators for the cohomology groups for $k \leq 8$, most of H^7, and then discuss the phenomena present for H^8. To be more precise, we shall construct certain geometric cycles on the open part A_{Perf}^g, simp of A_{Perf}^g, where the cycle map $cl : A_{\text{Perf}}^g, \text{simp} \rightarrow H^\bullet(A_{\text{Perf}}^g, \mathbb{Q})$ is well defined and a ring homomorphism, see [Ful98, Corollary 19.2]. Naturally this approach also works for the open sets $A_{\text{Perf}}^g, \text{smooth}$ and A_{Matr}^g which are (proper) subsets of A_{Perf}^g.

We will use two methods for constructing cohomology classes, the strata algebra — generated by the fundamental classes of the strata in A_{Perf}^g corresponding to various perfect cone cones — and the boundary algebra — generated by suitable polynomials in irreducible divisorial components of the boundary of the level cover $A_{\text{Perf}}^g(2)$ — both taken together with the algebra generated by the Hodge classes λ_{2i+1}.

More precisely, for the first construction, we consider the algebra generated by the fundamental classes of the (closures of the) strata $\beta(\sigma)$, where σ is a simplicial cone — we call this the strata algebra by analogy with the subalgebra of the cohomology of the moduli space of curves generated by the fundamental classes of the strata of stable curves of fixed topological type. From now on when we speak about the class of the stratum, we mean the cohomology class of its closure. In order to keep the notation manageable, in this section we will denote the corresponding cohomology class also by σ.

The second construction is by going to a level cover $A_{\text{Perf}}^g(2)$, where the boundary becomes a reducible divisor, with its irreducible components D_m labeled by vectors $m \in (\mathbb{Z}/2\mathbb{Z})^{2g} \setminus \{0\}$. The boundary
components in $A^\text{perf}_g(2)$ corresponding to a basic cone intersect gener-
ically transversally. By writing polynomials in the classes of D_m in-
variant under the action of the deck group $\text{Sp}(2g, \mathbb{Z}/2\mathbb{Z})$ of the cover $A^\text{perf}_g(2) \to A^\text{perf}_g$ we obtain classes in suitable open subsets of $A^\text{perf}_g(2)$
(such as the simplicial locus) which descend to A^perf_g. To avoid unnec-
esary multiplicities in our notation we normalize the pushforward by
dividing by the order of the deck group, as was also done in [GH12a,
Section 4]. This construction provides us with well defined cohomology
classes on the simplicial locus $A^\text{perf}_g, \text{simp}$. It was used in [GH12a], where
especially in Sections 8 and 9 similar constructions were performed, and
we freely use the notation and results from there. We recall that the
intersection of two different boundary divisors $D_{m_1} \cap D_{m_2} \subset A^\text{perf}_g(2)$ is
non-empty if and only if m_1 and m_2 span an isotropic subspace, i.e. if
and only if the scalar product $m_1 \cdot m_2 = 0 \in (\mathbb{Z}/2\mathbb{Z})$. We note that
the orbit under $\text{Sp}(2g, \mathbb{Z}/2\mathbb{Z})$ of a k-tuple $m_1, \ldots, m_k \in (\mathbb{Z}/2\mathbb{Z})^{2g} \setminus \{0\}$
such that each pair m_i, m_j is isotropic consists of all k-tuples of vectors
satisfying the same set of linear relations over $\mathbb{Z}/2\mathbb{Z}$ (in particular, if
some m_i are the same, then in the orbit some of the elements must also
be the same). Thus the generators for the vector space of polynomials
in D_m invariant under the action of $\text{Sp}(2g, \mathbb{Z}/2\mathbb{Z})$ are given by sums of
products of the boundary divisors of the form $\sum m_i D_{m_1} \ldots D_{m_k}$ subject
to a fixed set of linear relations of the form $m_{i_1} + \ldots + m_{i_k} = 0$. We will
thus proceed by enumerating all such polynomials in D_m of degree up
to 6 (calling such polynomial a pure boundary class), and multiplying
them by suitable polynomials in the Chern classes λ_{2i+1} of the Hodge
bundle. To prove that one obtains the entire stable cohomology in a
given degree one then has to compare these classes to the ones which
we used to prove stability in Sections 9 and 10 and to compute the
explicit numbers in Theorem 1.4.

We will see that in degree up to 8 the strata algebra and the bound-
dary algebra are equal, and both equal to the stable cohomology, while
in degree 10 neither of them generates the entire stable cohomology
$H^{10}(A^\text{perf}_{g, \text{smooth}}, \mathbb{Q})$, and it appears that they give different codimension
1 subspaces of it, while in degree 12 it appears likely that the strata
algebra, boundary algebra, $H^{12}(A^\text{perf}_{g, \text{smooth}}, \mathbb{Q})$, and $H^{12}(A^\text{matr}_{g}, \mathbb{Q})$ are
all different.

Case $k = 0$. Here we of course have one class, which is simply 1.

Case $k = 2$. We have already treated this in Corollary 5.3. Here we
have one class λ_1, which already exists on A_g and one class β_1, which
on the one hand is the (closure) of the stratum given by the unique
rank 1 cone σ_1 and on the other hand is nothing but the boundary
and can in the spirit of the above discussion be identified with the sum $\sum D_m$. Thus we have identified both generators of the stable cohomology $H^2(\mathcal{A}_g^{\text{Perf}})$.

Case $k = 4$. In our previous discussion we saw that the stable cohomology in degree 4 has rank 4. The only degree 4 class which already lives on \mathcal{A}_g is λ_1^2. The boundary is the closure of the stratum σ_{1+1}, which contributes the classes $\lambda_1 \beta_1$ and β_1^2. Here we note that β_1^2 equals the class given by T on σ_1 (and the latter is nothing but the universal abelian variety in genus $g - 1$). Finally the class of the (closure of) the stratum σ_{K3} also lies in H^4. In terms of boundary components of $\mathcal{A}_g^{\text{Perf}}(2)$ the first of these classes is λ_1^2, whereas the last is given by $\sum_{m \neq m'} D_m D_{m'}$. Finally, β_1^2 corresponds to $(\sum D_m)^2 = \sum D_m^2 + \sum_{m \neq m'} D_m D_{m'}$.

Case $k = 6$. Here we need to be a bit more methodical. By Theorem 1.4 the stable $H^6(\mathcal{A}_g^{\text{Perf, smooth}})$ has dimension 9. There are five classes which are products of classes of degree at most 4, and which we have thus already identified before, with the λ-classes: these are the two classes from \mathcal{A}_g, namely λ_1^3 and λ_3, then the degree 2 classes supported on the boundary multiplied with λ_1^2, i.e. $\lambda_1^2 \beta_1$, and finally from the degree 4 classes supported on the boundary we obtain $\lambda_1 \beta_1^2$ and $\lambda_1 \beta_2$. So far we have thus constructed five classes that are not obtained as cubic expressions in D_m.

We will now enumerate cubic expressions in D; this has actually been studied in detail in [GH12a]. However, to set up the more methodical search below, we review how this can be done. Indeed, first of all in a cubic expression some indices m_i may coincide (equivalently, this is a linear relation $m_i + m_j = 0$). The expressions where there are some coincidences are thus $\sum D_m^3$ and $\sum D_m^2 D_{m_2}$, where from now on we use the convention that each such sum is over all possible m_1, \ldots, m_k satisfying no additional relations in addition to the ones stated — so in particular in the second sum m_1 and m_2 are assumed to be distinct.

If we have a cubic expression with no m_i coinciding, there are actually two cases, corresponding to whether the sum of the three indices is zero or not (these are the so-called local and global, corresponding to whether the three divisors intersect within β_2^0 or β_3^0). We thus have the two expressions $\sum_{m_1 + m_2 + m_3 = 0} D_{m_1} D_{m_2} D_{m_3}$ and $\sum D_m D_{m_2} D_{m_3}$ (where recall in the second sum we enforce $m_1 + m_2 + m_3 \neq 0$). Also, from now on, when writing such sums, we will implicitly divide by the suitable product of factorials so that each summand appears only once, that is both of these cubics should be divided by 6, while say $\sum D_{m_1}^2 D_{m_2}^2$ would be divided by 4.
Thus we have a total of 4 classes that are cubics in D_m. Indeed these four classes, together with the five classes described above generate the stable cohomology in degree 6. To see this we note that the condition $m_1 + m_2 + m_3 = 0$ means that the three boundary divisors D_m intersect locally, i.e. the generic point of this intersection is contained in β^0 and this intersection is (the closure of) the stratum $\beta(\sigma_{K_3})$. On the other hand the condition $m_1 + m_2 + m_3 \neq 0$ means that the three divisors intersect “globally”, i.e. their intersection is contained in β^3. In fact this intersection is irreducible and equals β^3, which in turn in the (closure of) the stratum σ_{1+1+1}.

For what follows it is useful to use a better formalism for describing homogeneous polynomials in the D_m. To make the formulas readable, we write $\{m_1^{i_1} \ldots m_l^{i_l}\}$ for $\sum D_{m_1}^{i_1} \ldots D_{m_l}^{i_l}$, where we order the powers so that $i_1 \geq i_2 \geq \ldots \geq i_l$, and furthermore we order the indices so that if $i_{a-1} > i_a = \ldots = i_b > i_{b+1}$, then $m_a > \ldots > m_b$. We further note the linear relations in parenthesis, so that eg. (123) means $m_1 + m_2 + m_3 = 0$. Thus for example we have $\{1\} = \sum D_m$; $\{12\} = \sum_{i<j} D_i D_j = \beta^2$, and $\{122\} = \sum_{i \neq j} D_i^2 D_j$.

In degree 3 we thus have the four possibilities $\{1^3\}$, $\{1^22\}$, $\{123\}$, $\{123(123)\}$. They relate to the fundamental classes of strata of $\mathcal{A}_g^{\text{perf}}$ as follows: $\beta^3_1 = \{1^3\} + 3\{1^22\} + 6\{123\} + 6\{123(123)\}$, $\beta_1 \beta_2 = \{1^22\} + 3\{123\} + 3\{123(123)\}$, $\sigma_{K_3} = \{123(123)\}$ and $\sigma_{1+1+1} = \{123\}$. Hence the space of classes spanned by the four possible cubic polynomials in the D_m equals the span of $\beta^3_1, \beta_1 \beta_2, \sigma_{K_3}, \sigma_{1+1+1}$. We note that β^3_1 is the class T^2 on $\beta(\sigma_1)$ and $\beta_1 \beta_2$ is the class of $T_1 + T_2$ on σ_{1+1}, see the proof of Lemma [10.1] and thus it follows from Section [11] that the classes obtained as polynomials in the D_m together with the λ-classes generate the stable cohomology in degree 6.

Case $k = 8$. From Theorem [4.4] we know that the rank of the stable cohomology in degree 8 is 18. Above we have described 9 classes in degree 6. Multiplying these with λ_1 and also taking $\lambda_3 \beta_1$ we obtain 10 independent classes. The remaining stable cohomology can be generated by classes which do not contain a factor which is a λ-class and, according to Sections [10] and [11] is generated by the image of the classes $T^3 \sigma_1, (T_1 + T_2)^2 \sigma_{1+1}, (T_1 T_2) \sigma_{1+1}, (T_1 + T_2 + T_3) \sigma_{1+1+1}, (2(T_1 + T_2) - P) \sigma_{K_3}, \sigma_{1+1+1+1}, \sigma_{K_3+1}, \sigma_{C_4}$ in $H^{\text{top}} \mathcal{A}_g^{\text{perf}}(\mathbb{Q})$.

We will now show how to obtain (the span of) these classes by the quartic polynomials in D. For this we first have to enumerate these. This situation was studied in detail in [GH12a, Proposition 8.4]. The possibilities are

$$\{1^4\}, \{1^32\}, \{1^22^2\}, \{1^223(123)\}, \{1^223\},$$
\{1234(123)\}, \{1234(1234)\}, \{1234\},

so that altogether we get 8 classes. As discussed in [GH12a], their span is equal to the span of the classes \(\beta_1, \beta_1^2 \beta_2, \beta_2^3, \beta_1 \beta_3, \beta_1(\sigma_{K_3} + \sigma_{1+1+1}), \beta_4, \{1234\} + \{1234(123)\} + \{1234(1234)\}\), and \{1234(1234)\}. The stratum \(\beta_4\) is irreducible, and we have \(\beta_4 = \sigma_{1+1+1+1}\), which corresponds to the polynomial \{1234\}. From the definition of the cones \(\sigma_{K_3+1}\) and \(\sigma_{C_4}\) we find that these strata correspond to \{1234(123)\} and \{1234(1234)\}. Next \(\beta_1 \beta_3\) gives the class coming from \((T_1 + T_2 + T_3)\sigma_{1+1+1+1}\). Since \(\sigma_{1+1+1} = \beta_3\) we obtain, modulo \(\beta_1 \beta_3\), that \(\beta_1(\sigma_{K_3} + \sigma_{1+1+1})\) gives the unique degree 2 class on \(\sigma_{K_3}\) which, by the proof of Lemma \ref{lem:10.2} is \((2(T_1 + T_2) - P)\sigma_{K_3}\). Modulo the classes already enumerated we then see that \(\beta_2^2\), which corresponds to \{12\}, gives \((T_1 T_2)\sigma_{1+1}\). Similarly \(\beta_1^3 \beta_2\), which corresponds to \{1\}^2\{12\}, gives, again modulo classes already enumerated, the class \((T_1 + T_2)^2 \sigma_{1+1}\). Finally \(\beta_1^4\) gives \(T^3 \sigma_1\) plus classes from above. This shows that we obtain the entire stable cohomology in degree 8 by using either the strata algebra or the polynomials in \(D_m\).

Case \(k = 10\). Here we will see that neither the boundary algebra nor the strata algebra span all of \(H^{10}(A^\text{Perf}_{g,\text{smooth}}, \mathbb{Q})\), while it could be that they span it.

Indeed, we know from Theorem (1.4) that stable \(H^{10}(A^\text{Perf}_{g,\text{smooth}}, \mathbb{Q}) = \mathbb{Q}^{38}\). Above we have seen that all 19 stable classes of degree 8 lie in the strata algebra and in the boundary algebra. Multiplying each of these 18 classes by \(\lambda_4\) gives a degree 10 class in the stable cohomology of \(A^\text{Perf}_g\). We also have the class \(\lambda_5\) in the stable cohomology of \(A_g\) (which also extends to \(A^\text{Perf}_g\)). Furthermore, we can construct more classes as a product of \(\lambda_3\) and a suitable boundary class. For this, we would need a polynomial in boundary strata of codimension 4, and there are of course two such classes, \(\beta_1^2\) and \(\beta_2\) (the same space is the linear span of \(\beta(\sigma_1)^2\) and \(\beta(\sigma_{1+1})\)). Thus altogether we have constructed \(21 = 18 + 1 + 2\) degree 10 classes involving a \(\lambda\)-class. We thus need to account for the remaining 17 classes in \(H^{10}(A^\text{Perf}_{g,\text{smooth}})\).

To understand pure boundary strata in \(H^{10}\), we need to study the possible quintics in \(D_m\); these are enumerated in the proof of [GH12a, Proposition 9.1], and in our notation are as follows:

\[\{1^5\}, \{1^42\}, \{1^32^2\}, \{1^323\}, \{1^323(123)\}, \{1^22^3\}, \{1^22^23(123)\},\]
\[\{1^2234\}, \{1^2234(1234)\}, \{1^2234(123)\}, \{1^2234(234)\}, \{12345\},\]
\[\{12345(1234)\}, \{12345(1234)\}, \{12345(123)\}, \{12345(123, 145)\},\]

which gives a total of 16 quintic polynomials in \(D_m\). Thus the dimension of pure boundary algebra is 16, and together with the 21
classes enumerated above these are insufficient to generate the stable \(H^{10}(A_{g_{\text{smooth}}}^{\text{perf}}, \mathbb{Q}) \). Thus the boundary algebra is smaller than \(H^{10}(A_{g_{\text{smooth}}}^{\text{perf}}, \mathbb{Q}) \).

Similarly, for the strata algebra in degree 10, as per the discussion in Section (11), we note that there are 6 boundary strata of complex codimension 5. These can be related to polynomials in the \(D_m \) as follows:

\[
\sigma_{1+1+1+1+1} = \{12345\}, \quad \sigma_{K_{3+1+1}} = \{12345(123)\}
\]

\[
\sigma_{4+1} = \{12345(1234)\}, \quad \sigma_{K_{4-1}} = \{12345(123, 145)\}
\]

while we have

\[
\sigma_{5} + \sigma_{\text{NS}} = \{12345(12345)\},
\]

where we recall that \(\sigma_{\text{NS}} \) denotes the non-standard non-matroidal cone. The last identity follows since the 5-tuples given by the generators of the cones \(\sigma_{5} \) and \(\sigma_{\text{NS}} \) coincide mod 2. Thus all 5 quintics in \(D_m \) that involve 5 different indices can be expressed in terms of boundary strata, but not vice versa. We now investigate further degree 10 classes in the strata algebra. For polynomials that involve a boundary class of complex codimension 4, we have

\[
\sigma_1 \sigma_{1+1+1+1+1} = *\{1^2234\} + *\{12345\} + *\{12345(12345)\}
\]

\[
\sigma_1 \sigma_{K_{3+1+1}} = *\{1^2234(123)\} + *\{1^2234(234)\} + *\{12345(123)\}
\]

\[
+ *\{12345(123, 145)\}
\]

\[
\sigma_1 \sigma_{4+1} = *\{1^2234(1234)\} + *\{12345(1234)\}
\]

where * denotes the various combinatorial non-zero coefficients appearing. Using these expressions, together with the expressions for the quintics involving five different \(D_m \), obtained above, we can express \(\{1^2234\} \) and \(\{1234(1234)\} \) as linear combinations of polynomials in boundary strata. Note, however, that so far we are only able to express a suitable linear combination \(*\{1^2234(123)\} + *\{1^2234(234)\} \) as a polynomial in boundary strata — but not the two summands individually.

For the elements of the (pure, not involving the \(\lambda \)'s) strata algebra involving a cone of complex codimension 3, we similarly have

\[
\sigma_1^2 \sigma_{1+1+1+1+1} = *\{1^323\} + *\{1^22^23\} + X
\]

\[
\sigma_1^2 \sigma_{K_{3}} = *\{1^323(123)\} + *\{1^22^23(123)\} + X
\]

\[
\sigma_{1+1} \sigma_{1+1+1+1+1} = *\{1^22^23\} + X
\]

\[
\sigma_{1+1} \sigma_{K_{3}} = *\{1^22^23(123)\} + X
\]
where X in each case denotes various explicit linear combinations of quintics involving at least 4 different D_m. Thus from the above expressions, we can express each of the four quintic polynomials \{1^323\}, \{1^323(123)\}, \{1^22^23(123)\}, as a linear combination of monomials in boundary strata and quintics involving at least 4 different D_m, while we get no further information or relations that could allow us to distinguish $\ast\{1^2234(123)\}$ and $\ast\{1^2234(234)\}$ (or σ_{NS} and σ_{C_5}).

It remains to enumerate elements of the strata algebra that only involve classes of codimension at most 2; that is to say, we now need to write monomials in σ_1 and $\beta(\sigma_{1+1})$ only. Again, now denoting X any linear combinations of quintics involving at least 3 different D_m, we get

$$\sigma_1^5 = \ast\{1^5\} + \ast\{1^42\} + \ast\{1^32^2\} + X$$
$$\sigma_1^3\sigma_{1+1} = \ast\{1^42\} + \ast\{1^32^2\} + X$$
$$\sigma_1\sigma_{1+1}^2 = \ast\{1^32^2\} + X$$

so that again these monomials can be expressed in terms of the polynomials in the strata algebra and the monomials we have studied previously. We thus obtain

Summary 12.1. There exist 16 pure boundary classes (quintics in D_m) and 16 pure strata classes (monomials in the classes of the strata), such that:

(i) each pure boundary class except $\{1^2234(123)\}$ and $\{1^2234(234)\}$ lies in the pure strata algebra; moreover, a suitable linear combination $\ast\{1^2234(123)\} + \ast\{1^2234(234)\}$ lies in the pure strata algebra

(ii) each pure strata class, except σ_{C_5} and σ_{NS} lies in the pure boundary algebra; moreover, $\sigma_{C_5} + \sigma_{NS}$ also lies in the pure boundary algebra (in fact, is equal simply to $\{12345(12345)\}$)

We thus obtain

Proposition 12.2. Neither the strata algebra nor the boundary algebra generate the cohomology rings of either the smooth or the simplicial locus of A^Perf_g.

We furthermore conjecture that in fact both the boundary algebra and the strata algebra in degree 10 have dimension 37, that together they span $H^{10}(A^\text{Perf}_g, \text{smooth}, \mathbb{Q})$, and moreover that the boundary algebra actually is equal to $H^{10}(A^\text{Matr}_g)$. As the stratum σ_{NS} does not belong to A^Matr_g, the dimension of the restriction of the strata algebra to A^Matr_g is only 36 in degree 10, it is clear that the strata algebra cannot give all stable cohomology of A^Matr_g.
Case $k = 12$. Here we will see that $H^{12}(\mathcal{A}_{g,\text{smooth}}^{\text{Perf}}, \mathbb{Q})$, $H^{12}(\mathcal{A}_g^{\text{Matr}}, \mathbb{Q})$, the boundary and the strata algebra all seem to have different dimensions, and thus we will make conjectures on how they relate to each other. We recall that by Theorem 1.4 and Theorem 1.6 we have $H^{12}(\mathcal{A}_{g,\text{smooth}}^{\text{Perf}}, \mathbb{Q}) = \mathbb{Q}^{83}$ and $H^{12}(\mathcal{A}_g^{\text{Matr}}, \mathbb{Q}) = \mathbb{Q}^{78}$.

For both the boundary and the strata algebra, we shall first enumerate those classes which involve λ-factors. Here we have 4 classes in the interior: λ_1^6, $\lambda_1^3 \lambda_3$, $\lambda_1 \lambda_5$, $3 \cdot 1$ classes by multiplying the $k = 10$ interior classes by the unique pure boundary class $\{1\}$ (which is the same as the pure stratum class σ_1, of course), $2 \cdot 2$ classes by multiplying the $k = 8$ interior classes by the two pure boundary/strata classes in degree 4, $2 \cdot 4$ classes by multiplying the $k = 6$ interior classes by the two pure boundary/strata classes in degree 6, $1 \cdot 8$ classes by multiplying the $k = 4$ interior class λ_1^2 by the pure boundary/strata classes in degree 8, and $1 \cdot 16$ classes by multiplying λ_1 by the quintics in D_m (which are different from the 16 pure strata classes, but the dimension is the same), for a total of $4 + 3 + 4 + 8 + 8 + 16 = 43$ classes.

Next we discuss the pure boundary classes, i.e. sextic polynomials in D_m. We have

\{1^6\}, \{1^52\}, \{1^42^2\}, \{1^32^3\}, \{1^423\}, \{1^423(123)\}, \{1^32^23(123)\},
\{1^22^32\}, \{1^22^32(123)\}, \{1^3234\}, \{1^3234(1234)\}, \{1^3234(123)\},
\{1^3234(234)\}, \{1^2234\}, \{1^2234(1234)\}, \{1^2234(123)\}, \{1^2234(134)\},
\{1^22345\}, \{1^22345(12345)\}, \{1^22345(1234)\}, \{1^22345(2345)\},
\{1^22345(123)\}, \{1^22345(234)\}, \{1^22345(123, 145)\}, \{1^22345(123, 245)\},
\{123456\}, \{123456(123456)\}, \{123456(12345)\}, \{123456(1234)\},
\{123456(1234, 1256)\}, \{123456(1234, 156)\}, \{123456(123)\},
\{123456(123, 145)\}, \{123456(123, 145, 246)\}, \{123456(123, 456)\}

for a total of 36 sextics, so that the total dimension of the boundary algebra in degree 12 is at most $43 + 36 = 79$ (it could be less as we have not ruled linear relations among the above, which, however, seem unlikely to exist).

We will now discuss the pure strata classes, and will take this opportunity to set up this approach more systematically. We first list the cones of the perfect classes of boundary strata, in each codimension:
To compute the number of pure strata classes in degree k is to compute the number of monomials in the classes of these cones, of appropriate degree. Thus we need to sum over all partitions $k = 2n_1 + \ldots + 2n_i$ with the products of the numbers of cones in codimension $2n_i$, from the table above. We have of course implicitly used this throughout the computations above, but there we also were able to identify the individual monomials with the stable cohomology generators or with the boundary algebra. Here we only do the combinatorics; the result is given by the following table, where the results for degree up to 10 simply summarize the previous discussion, and the number of pure strata classes in degree 12 is what we wanted.

Codim	Cones	# of Cones
2	σ_1	1
4	σ_{1+1}	1
6	$\sigma_{K_3}, \sigma_{1+1+1+1}$	2
8	$\sigma_{K_3+1}, \sigma_{1+1+1+1}$	3
10	$\sigma_{K_4-1}, \sigma_{K_3+1+1}, \sigma_{C_4+1}, \sigma_{C_5}, \sigma_{1+1+1+1+1}, \sigma_{NS}$	6
12	...	13

Summary 12.3. We thus have

(i) The dimension of the strata algebra in degree 12 is equal to at most 80, of which at most 37 are the pure strata classes.

(ii) The dimension of the boundary algebra in degree 12 is equal to at most 79, of which at most 36 are the pure boundary classes.

It thus follows that neither the strata nor the boundary algebra in degree 12 generate all of $H^{12}(\mathcal{A}_{g, \text{smooth}}^\text{perf}, \mathbb{Q})$ — which of course is not surprising given that this fails already in degree 10. We would like to close with the following:
Conjecture 12.4. There are no stable relations in the strata or boundary algebra, i.e. no polynomial in λ_{2i+1} and either the classes of boundary strata, or a polynomial in D_m is identically zero for g sufficiently large.

Question 12.5. Is it true that the strata and the boundary algebras together generate the stable cohomology of $A_{g,\text{smooth}}^{\text{perf}}$?

Question 12.6. What is (stably) the intersection of the strata and the boundary algebra?

Question 12.7. Is it true that the boundary algebra generates the stable cohomology of $A_{g,\text{Matr}}^{\text{Matr}}$?

We hope that we, or others, would be able to address some of these questions in the future.

References

[AB11] V. Alexeev and A. Brunyate. Extending Torelli map to toroidal compactifications of Siegel space. Invent. Math., 188(1):175–196, 2011.

[AMRT75] A. Ash, D. Mumford, M. Rapoport and Y. Tai. Smooth compactification of locally symmetric varieties. Lie Groups: History, Frontiers and Applications, Vol. IV, Math. Sci. Press, Brookline, Mass., 1975.

[BBF+95] G. Barthel, J.-P. Brasselet, K.-H. Fieseler, O. Gabber, and L. Kaup. Relèvement de cycles algébriques et homomorphismes associés en homologie d’intersection. Ann. of Math. (2), 141(1):147–179, 1995.

[BG01] E. Baranovskii and V. Grishukhin. Non-rigidity degree of a lattice and rigid lattices. European J. Combin., 22(7):921–935, 2001.

[Bor74] A. Borel. Stable real cohomology of arithmetic groups. Ann. Sci. Ecole Norm. Sup., 7:235–272, 1974.

[Bor81] A. Borel. Stable real cohomology of arithmetic groups ii. In Manifolds and Groups, Papers in Honor of Yozo Matsushima, volume 14 of Progr. Math., pages 21–55. Birkhäuser Verlag, Basel, 1981.

[CL83] R. Charney and R. Lee. Cohomology of the Satake compactification. Topology, 22(4):389–423, 1983.

[CLS11] D. Cox, J. Little, and H. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.

[Del68] P. Deligne. Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst. Hautes ÉtudesSci. Publ. Math., (35):259–278, 1968.

[DG04] M. Deza and V. Grishukhin. Nonrigidity degree of root lattices and their duals. Geom. Dedicata, 104:15–24, 2004.

[DM91] C. Deninger and J. Murre. Motivic decomposition of abelian schemes and the Fourier transform. J. Reine Angew. Math., 422:201–219, 1991.

[DSHS13] M. Dutour Sikirić, K. Hulek, and A. Schürmann. Smoothness and singularities of the perfect form compactification of A_g. 2013. Preprint arXiv:1303.5846.
