On the Structure of the Solution Set of a Sign Changing Perturbation of the p-Laplacian under Dirichlet Boundary Condition

J. V. Goncalves M. R. Marcial
Universidade Federal de Goiás
Instituto de Matemática e Estatística
74001-970 Goiânia, GO - Brasil
Email: goncalves.jva@gmail.com

Abstract

In a recent paper D. D. Hai showed that the equation
\[-\Delta_p u = \lambda f(u)\] in Ω, under Dirichlet boundary condition, where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial \Omega$, Δ_p is the p-Laplacian, $f : (0, \infty) \rightarrow \mathbb{R}$ is a continuous function which may blow up to $\pm \infty$ at the origin, admits a solution if $\lambda > \lambda_0$ and has no solution if $0 < \lambda < \lambda_0$. In this paper we show that the solution set S of the equation above, which is not empty by Hai's results, actually admits a continuum of positive solutions.

Mathematics Subject Classification: 35J25, 35J55, 35J70

1 Introduction

In this paper we establish existence of a continuum of positive solutions of

\[(P)_{\lambda} \quad \begin{cases} -\Delta_p u = \lambda f(u) + h & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases} \]

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial \Omega$, $\lambda > 0$ is a real parameter, $f : (0, \infty) \rightarrow \mathbb{R}$ is a continuous function which may blow up to $\pm \infty$ at the origin and $h : \Omega \rightarrow \mathbb{R}$ is a nonnegative L^∞-function.

Definition 1.1 By a solution of $(P)_\lambda$ we mean a function $u \in W^{1,p}_0(\Omega)$ such that

\[
\int_{\Omega} |\nabla u|^{p-2}\nabla u.\nabla \varphi dx = \lambda \int_{\Omega} f(u)\varphi dx + \int_{\Omega} h\varphi dx, \quad \varphi \in W^{1,p}_0(\Omega). \tag{1.1}
\]

Definition 1.2 The solution set of $(P)_\lambda$ is

\[
S := \{(\lambda, u) \in (0, \infty) \times C(\overline{\Omega}) \mid u \text{ is a solution of } (P)_\lambda \}. \tag{1.2}
\]
It was shown by Hai [13] that there is a positive number λ_0 such that $(P)_\lambda$ admits: a solution if $\lambda > \lambda_0$ and no solution if $\lambda < \lambda_0$. Our aim is to investigate existence of connected components of S. By adapting estimates in [13] we succeeded in showing the existence of a continuum $\Sigma \subset S$ such that $\text{Proj}_R \Sigma = (\lambda_0, \infty)$.

The assumptions on f are:

$$(f)_1 \quad f : (0, \infty) \to \mathbb{R} \text{ is continuous and } \lim_{u \to \infty} \frac{f(u)}{u^{p-1}} = 0,$$

$$(f)_2 \quad \text{there are positive numbers } a, \beta, A \text{ with } \beta < 1 \text{ such that }$

\begin{align*}
(i) \quad & f(u) \geq \frac{a}{u^\beta} \text{ for } u > A, \\
(ii) \quad & \limsup_{u \to 0} u^\beta |f(u)| < \infty.
\end{align*}

We give below a few examples of functions f satisfying $(f)_1$, $(f)_2$. Those functions appear in several earlier works on existence of solutions, cf. section 2.,

\begin{align*}
a) \quad & u^q - \frac{1}{u^\beta}, \quad \beta > 0, \quad 0 < q < p - 1, \\
b) \quad & \frac{1}{u^\beta} - \frac{1}{u^\alpha}, \quad 0 < \beta < \alpha < 1, \\
c) \quad & a - \frac{1}{u^\alpha}, \quad a > 0, \quad 0 < \alpha < 1, \\
d) \quad & \frac{1}{u^\alpha} + u^q, \quad 0 < \alpha < 1, \quad 0 < q < p - 1, \\
e) \quad & \frac{1}{u^\alpha}, \quad 0 < \alpha < 1, \\
f) \quad & \ln u.
\end{align*}

The main results of this paper are,\n
Theorem 1.1 Assume $(f)_1 - (f)_2$. Then there is a number $\lambda_* > 0$ and a connected subset Σ of $[\lambda_*, \infty) \times C(\Omega)$ satisfying,

\begin{align*}
\Sigma \subset S, \\
\Sigma \cap (\{\lambda\} \times C(\Omega)) \neq \emptyset, \quad \lambda_* \leq \lambda < \infty. \quad (1.3) \quad (1.4)
\end{align*}

The prove of theorem [1.1] will be achieved by at first proving the following result.

Theorem 1.2 Assume $(f)_1 - (f)_2$. Then there is a number $\lambda_* > 0$ and for each $\Lambda > \lambda_*$ there is a connected set $\Sigma_\Lambda \subset ([\lambda_*, \Lambda] \times C(\Omega)$ satisfying

\begin{align*}
\Sigma_\Lambda \subset S, \\
\Sigma_\Lambda \cap (\{\lambda_*\} \times C(\Omega)) \neq \emptyset, \quad (1.5) \quad (1.6) \\
\Sigma_\Lambda \cap (\{\Lambda\} \times C(\Omega)) \neq \emptyset. \quad (1.7)
\end{align*}

Remark 1.1 The present work is motivated by Hai [13]. We will use C, C_1, C_2, \tilde{C} to denote positive cumulative constants.
2 Background

The Dirichlet problem

\[- \Delta_p u = f(x,u) \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \tag{2.1}\]

where \(f : \Omega \times (0, \infty) \to \mathbb{R} \) is a function satisfying a condition like \(f(x,r) \to +\infty \) as \(r \to 0 \), referred to as singular at the origin has been extensively studied in the last years.

In the pioneering work [5], it was shown by Crandall, Rabinowitz & Tartar through the use of topological methods, e.g. Schauder Theory and Maximum Principles, that the problem

\[
\begin{align*}
-\Delta u &= u^{-\gamma} \text{ in } \Omega, \\
u &> 0 \text{ in } \Omega, \\
u &= 0 \text{ on } \partial \Omega,
\end{align*}
\]

where \(\gamma > 0 \), admits a solution \(u \in C^2(\Omega) \cap C(\overline{\Omega}) \), (see also the references of [5]).

Subsequently, Lazer & McKenna in [14], established, among other results, the existence of a solution \(u \in C^{2+\alpha}(\Omega) \cap C(\Omega) \) \((0 < \alpha < 1)\) for the problem

\[
\begin{align*}
-\Delta u &= p(x)u^{-\gamma} \text{ in } \Omega, \\
u &> 0 \text{ in } \Omega, \\
u &= 0 \text{ on } \partial \Omega,
\end{align*}
\]

where \(p \in C^\alpha(\overline{\Omega}) \) is a positive function.

Several techniques have been employed in the study of (2.1). In [26], by using lower and upper solutions, Zhang showed that there is some number \(\lambda \in (0, +\infty) \) such that the problem

\[
\begin{align*}
-\Delta u + \frac{1}{u^\alpha} &= \lambda u^p \text{ in } \Omega, \\
u &> 0 \text{ in } \Omega, \\
u &= 0 \text{ in } \partial \Omega,
\end{align*}
\]

where \(\alpha, p \in (0, 1) \), admits a solution \(u_\lambda \in C^{2+\gamma}(\Omega) \cap C(\overline{\Omega}) \cap H^1_0(\Omega) \) with \(u_\lambda^{-\alpha} \in L^1(\Omega) \) for each \(\lambda > \bar{\lambda} \) and no solution in \(C^2(\Omega) \cap C(\overline{\Omega}) \) for \(\lambda < \bar{\lambda} \). It was also shown that the problem above admits no solution in \(C(\overline{\Omega}) \cap H^1_0(\Omega) \) if \(\alpha \geq 1, \lambda > 0 \) and \(p > 0 \).

In [9], Giacomoni, Schindler & Takac employed variational methods to investigate the problem

\[
\begin{align*}
-\Delta'_p u &= \frac{\lambda}{u^\delta} + u^q \text{ in } \Omega, \\
u &> 0 \text{ in } \Omega, \\
u &= 0 \text{ on } \partial \Omega,
\end{align*}
\]

where \(1 < p < \infty, p - 1 < q < p* - 1, \lambda > 0 \) and \(0 < \delta < 1 \) with \(p* = \frac{Np}{n-p} \) if \(1 < p < N, p* \in (0, \infty) \) large if \(p = N \) and \(p* = \infty \) if \(p > N \). Several results were shown in that paper, among them existence, multiplicity and regularity of solutions.
In [20], Perera & Zhang used variational methods to prove existence of solution for the problem
\[
\begin{cases}
-\Delta_p u = a(x)u^{-\gamma} + \lambda f(x,u) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
where \(1 < p < \infty, \gamma, \lambda > 0\) are numbers, \(a \geq 0\) is a measurable, not identically zero function and \(f: \Omega \times [0, \infty) \rightarrow \mathbb{R}\) is a Carathéodory satisfying
\[
\sup_{(x,t) \in \Omega \times [0,T]} |f(x,t)| < \infty
\]
for each \(T > 0\).

There is a broad literature on singular problems and we further refer the reader to Gerghu & Radulescu [8], Goncalves, Rezende & Santos [11], Hai [12, 13], Mohammed [17], Shi & Yao [21], Hoang Loc & Schmitt [16], Montenegro & Queiroz [18] and their references.

3 Some Auxiliary Results

We gather below a few technical results. For completeness, a few proofs will be provided in the Appendix. The Euclidean distance from \(x \in \Omega\) to \(\partial \Omega\) is
\[
d(x) = \text{dist}(x, \partial \Omega).
\]
The result below derives from Gilbarg & Trudinger [10], Vázquez [25].

Lemma 3.1 Let \(\Omega \subset \mathbb{R}^N\) be a smooth, bounded, domain. Then
\begin{enumerate}
\item[(i)] \(d \in \text{Lip}(\Omega)\) and \(d\) is \(C^2\) in a neighborhood of \(\partial \Omega\),
\item[(ii)] if \(\phi_1\) denotes a positive eigenfunction of \((-\Delta_p, W^{1,p}_0(\Omega))\) one has,
\[
\phi_1 \in C^{1,\alpha}(\overline{\Omega}) \text{ with } 0 < \alpha < 1, \quad \frac{\partial \phi_1}{\partial \nu} < 0 \text{ on } \partial \Omega,
\]
and there are positive constants \(C_1, C_2\) such that
\[
C_1 d(x) \leq \phi_1(x) \leq C_2 d(x), \quad x \in \Omega.
\]
\end{enumerate}

The result below is due to Crandall, Rabinowitz & Tartar [5], Lazer & McKenna [14] in the case \(p = 2\) and Giacomoni, Schindler & Takac [9] in the case \(1 < p < \infty\).

Lemma 3.2 Let \(\beta \in (0,1)\) and \(m > 0\). Then the problem
\[
\begin{cases}
-\Delta_p u = \frac{m}{u^\beta} & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
(3.1)
admits an only weak solution \(u_m \in W^{1,p}_0(\Omega)\). Moreover \(u_m \geq \epsilon_m \phi_1\) in \(\Omega\) for some constant \(\epsilon_m > 0\).
Remark 3.1 By the results in [15, 9], there is $\alpha \in (0, 1)$ such that $u_m \in C^{1,\alpha}(\Omega)$.

The result below, which is crucial in this work, and whose proof is provided in the Appendix, is basically due to Hai [13].

Lemma 3.3 Let $g \in L^\infty_{\text{loc}}(\Omega)$. Assume that there is $\beta \in (0, 1)$ and $C > 0$ such that

$$|g(x)| \leq \frac{C}{d(x)^\beta}, \quad x \in \Omega. \quad (3.2)$$

Then there is an only weak solution $u \in W^{1,p}_0(\Omega)$ of

$$\begin{cases}
-\Delta_p u = g & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega.
\end{cases} \quad (3.3)$$

In addition, there exist constants $\alpha \in (0, 1)$ and $M > 0$, with M depending only on C, β, Ω such that $u \in C^{1,\alpha}(\Omega)$ and $||u||_{C^{1,\alpha}(\Omega)} \leq M$.

Remark 3.2 The solution operator associated to (3.3) is: let

$$\mathcal{M}_{\beta,\infty} = \{g \in L^\infty_{\text{loc}}(\Omega) \mid |g(x)| \leq \frac{C}{d(x)^\beta}, \quad x \in \Omega\},$$

$$S : \mathcal{M}_{\beta,\infty} \to W^{1,p}_0(\Omega) \cap C^{1,\alpha}(\overline{\Omega}), \quad S(g) := u.$$

Notice that

$$||S(g)||_{C^{1,\alpha}(\overline{\Omega})} \leq M,$$

for all $g \in \mathcal{M}_{C,d,\beta,\infty}$ with M depending only on C, β, Ω.

Corollary 3.1 Let $g, \tilde{g} \in L^\infty_{\text{loc}}(\Omega)$ with $g \geq 0$, $g \not= 0$ satisfying (3.2). Then, for each $\epsilon > 0$, the problem

$$\begin{cases}
-\Delta_p u_\epsilon = g \chi_{\{d>\epsilon\}} + \tilde{g} \chi_{\{d<\epsilon\}} & \text{em } \Omega; \\
u_\epsilon = 0 & \text{em } \partial \Omega
\end{cases} \quad (3.4)$$

admits an only solution $u_\epsilon \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0, 1)$. In addition, there is $\epsilon_0 > 0$ such that

$$u_\epsilon \geq \frac{u}{2} \quad \text{in } \Omega \quad \text{for each } \epsilon \in (0, \epsilon_0),$$

where u is the solution of (3.3).

A proof of the Corollary above will be included in the Appendix.
4 Existence of Lower and Upper Solutions

In this section we present two results, essentially due to Hai [13], on existence of lower and upper solutions of $(P)_\lambda$. At first some definitions.

Definition 4.1 A function $u \in W^{1,p}_0(\Omega)$ with $u > 0$ in Ω such that
\[
\int_\Omega |\nabla u|^{p-2}\nabla u \cdot \nabla \varphi \, dx \leq \lambda \int_\Omega f(u) \varphi \, dx + \int_\Omega h \varphi \, dx, \quad \varphi \in W^{1,p}_0(\Omega), \; \varphi \geq 0
\]
is a lower solution of $(P)_\lambda$.

Definition 4.2 A function $\pi \in W^{1,p}_0(\Omega)$ with $\pi > 0$ in Ω such that
\[
\int_\Omega |\nabla \pi|^{p-2}\nabla \pi \cdot \nabla \varphi \, dx \geq \lambda \int_\Omega f(\pi) \varphi \, dx + \int_\Omega h \varphi \, dx, \quad \varphi \in W^{1,p}_0(\Omega), \; \varphi \geq 0.
\]
is an upper solution of $(P)_\lambda$.

Theorem 4.1 Assume $(f)_1 - (f)_2$. Then there exist $\lambda^* > 0$ and a non-negative function $\psi \in C^{1,\alpha}(\overline{\Omega})$, with $\psi > 0$ in Ω, $\psi = 0$ on $\partial\Omega$, $\alpha \in (0,1)$ such that for each $\lambda \in [\lambda^*, \infty)$, $u = \lambda^r \psi$ with $r = 1/(p + \beta - 1)$, is a lower solution of $(P)_\lambda$.

Proof of Theorem 4.1 By $(f)_2(i)-(ii)$ there is $b > 0$ such that
\[
f(s) > -\frac{b}{s^\beta} \text{ for } s > 0. \tag{4.1}
\]
By lemma 3.2 there are both a function $\phi \in C^{1,\alpha}(\overline{\Omega})$, with $\alpha \in (0,1)$, such that
\[
\begin{cases}
-\Delta_p \phi = \frac{1}{\phi^{\beta}} \text{ in } \Omega, \\
\phi > 0 \text{ in } \Omega, \\
\phi = 0 \text{ on } \partial\Omega,
\end{cases} \tag{4.2}
\]
and a constant $C_1 > 0$ such that $\phi \geq C_1 d$ in Ω. Take $\delta = a^{\frac{p-1}{\beta}}$ and $\gamma = 2\beta b_0^{\frac{\beta}{p-1}}$, where a is given in $(f)_2(i)$.

By corollary 3.1 there is a constant $\epsilon_0 > 0$ such that for each $\epsilon \in (0, \epsilon_0)$, the problem
\[
\begin{cases}
-\Delta_p \psi = \delta \phi^{-\beta} \chi_{d > \epsilon} - \gamma \phi^{-\beta} \chi_{d < \epsilon} \text{ in } \Omega, \\
\psi > 0 \text{ in } \Omega, \\
\psi = 0 \text{ on } \partial\Omega,
\end{cases} \tag{4.3}
\]
admits a solution $\psi \in C^{1,\alpha}(\overline{\Omega})$ satisfying
\[
\psi \geq (\delta^{1/(p-1)}/2) \phi. \tag{4.4}
\]
Set \(\underline{u} = \lambda r \psi \) where \(r = 1/(p + \beta - 1) \) and \(\lambda > 0 \). Take \(\lambda_* = [2A/(C_1 \epsilon \delta \frac{1}{p-1})]^\frac{1}{r} \), with \(\epsilon \in (0, \epsilon_0) \) and \(A \) given by \((f)_2\).

Claim \(\underline{u} \) is a lower solution of \((P)_\lambda \) for \(\lambda \geq \lambda_* \).

Indeed, take \(\xi \in W^{1,p}_0(\Omega), \xi \geq 0 \). Using \((4.3)\) we have

\[
\int_\Omega |\nabla \underline{u}|^{p-2} \nabla \underline{u} \nabla \xi dx = \lambda \int_\{d>\epsilon\} \frac{\xi}{\phi_\beta^\delta} dx - \lambda \int_\{d<\epsilon\} \frac{\xi}{\phi_\beta^\delta} dx. \tag{4.5}
\]

We distinguish between two cases.

Case 1 \(d > \epsilon \)

For each \(\lambda \geq \lambda_* \) we have by using \((4.4)\),

\[
\underline{u} = \lambda r \psi \geq \lambda r \frac{\delta \frac{1}{p-1}}{2} \phi \geq \lambda r \frac{\delta \frac{1}{p-1}}{2} C_1 d > \lambda r \frac{\delta \frac{1}{p-1}}{2} C_1 \epsilon > A.
\]

So \(\underline{u}(x) > A \) for each \(\lambda \geq \lambda_* \) with \(d(x) > \epsilon \). By \((4.2)\) and \((4.3)\),

\[
-\Delta_p \delta \frac{1}{p-1} \phi = \frac{\delta}{\phi_\beta^\delta} \geq - \Delta_p \psi. \tag{4.6}
\]

It follows by the weak comparison principle that

\[
\delta \frac{1}{p-1} \phi \geq \psi \quad \text{in } \Omega. \tag{4.6}
\]

Using \((f)_2(i)\) and \((4.6)\) we have,

\[
\lambda \int_{d>\epsilon} f(\underline{u}) \xi dx \geq \lambda a \int_{d>\epsilon} \frac{\xi}{\underline{u}^\beta} dx = \lambda a \int_{d>\epsilon} \frac{\xi}{\psi^\beta} dx \geq \lambda r^{(p-1)} \frac{4}{\delta \frac{1}{p-1}} \int_{d>\epsilon} \frac{\xi}{\phi_\beta^\delta} dx = \lambda r^{(p-1)} \delta \int_{d>\epsilon} \frac{\xi}{\phi_\beta^\delta} dx. \tag{4.7}
\]

Case 2 \(d < \epsilon \).

Using \((4.1)\) and \((4.4)\) we have

\[
\lambda \int_{\{d<\epsilon\}} f(\underline{u}) \xi dx \geq -\lambda b \int_{\{d<\epsilon\}} \frac{\xi}{\underline{u}^\beta} dx = -\lambda 1-r \beta \int_{d<\epsilon} \frac{\xi}{\psi^\beta} dx \geq -\lambda r^{(p-1)} \frac{2}{\delta \frac{1}{p-1}} \int_{d<\epsilon} \frac{\xi}{\phi_\beta^\delta} dx = -\lambda r^{(p-1)} \gamma \int_{d<\epsilon} \frac{\xi}{\phi_\beta^\delta} dx. \tag{4.8}
\]

Using \((4.7)-(4.8)\) we get

\[
\lambda \int_\Omega f(\underline{u}) \xi dx + \int_\Omega h \xi dx \geq \int_\Omega |\nabla \underline{u}|^{p-2} \nabla \underline{u} \nabla \xi dx,
\]

showing that \(\underline{u} = \lambda r \psi \) is a lower solution of \((P)_\lambda \) for each \(\lambda \geq \lambda_* \), ending the proof of theorem 4.1.

Next, we show existence of an upper solution.
Theorem 4.2 Assume $(f)_1-(f)_2$ and take $\Lambda > \lambda_*$ with λ_* as in theorem 4.1. Then for each $\lambda \in [\lambda^*, \Lambda]$, $(P)_\lambda$ admits an upper solution $\overline{u} = \overline{u}_\lambda = M\phi$ where $M > 0$ is a constant and ϕ is given by (4.2).

Proof of Theorem 4.2 Choose $\bar{\epsilon} > 0$ such that
\[
\Lambda\bar{\epsilon}\|\phi\|_{\infty}^{p-1+\beta} < \frac{1}{4}.
\] (4.9)

By $(f)_1$ and $(f)_2$ there are $A_1 > 0$ and $C > 0$ such that
\[
|f(u)| \leq \bar{\epsilon}u^{p-1} \text{ for } u > A_1
\] (4.10)

and
\[
|f(u)| \leq \frac{C}{u^\beta} \text{ for } u \leq A_1.
\] (4.11)

Choose
\[
M \geq \left\{ \Lambda^r \delta^{\frac{1}{p-1+\beta}}, (4\Lambda C)^{\frac{1}{p-1+\beta}}, (4\|h\|_\infty\|\phi\|_\infty^{\frac{1}{p-1+\beta}}) \right\}.
\] (4.12)

Using (4.9) and (4.12) we get
\[
\Lambda\bar{\epsilon}(M\|\phi\|_\infty)^{p+\beta-1} + \Lambda C \leq \frac{M^{p+\beta-1}}{4} + \frac{M^{p+\beta-1}}{4} = \frac{M^{p+\beta-1}}{2}.
\] (4.13)

Let $\overline{\pi} = M\phi$. Using (4.10)-(4.11) and picking $\lambda \leq \Lambda$ we have
\[
\lambda f(\overline{\pi}) \leq \lambda |f(\overline{\pi})|
\]
\[
\leq \lambda \left[\bar{\epsilon} \overline{\pi}^{p-1} \chi(\overline{\pi} > A_1) + \frac{C}{\overline{\pi}^\beta} \chi(\overline{\pi} \leq A_1) \right]
\]
\[
\leq \lambda \left[\bar{\epsilon} \overline{\pi}^{p-1} \chi(\overline{\pi} > A_1) + \bar{\epsilon} \overline{\pi}^{\beta-1} \chi(\overline{\pi} \leq A_1) + \frac{C}{\overline{\pi}^\beta} \chi(\overline{\pi} \leq A_1) + \frac{C}{\overline{\pi}^\beta} \chi(\overline{\pi} > A_1) \right]
\]
\[
= \lambda \left[\bar{\epsilon} \overline{\pi}^{p-1} + \frac{C}{\overline{\pi}^\beta} \right].
\] (4.14)

Thus
\[
\lambda f(M\phi) \leq \lambda \left[\frac{\overline{\pi}(M\|\phi\|_\infty)^{p+\beta-1} + C}{[M\phi]^\beta} \right]
\]
\[
\leq \Lambda \frac{\overline{\pi}(M\|\phi\|_\infty)^{p+\beta-1}}{[M\phi]^\beta} + \Lambda \frac{C}{[M\phi]^\beta}.
\] (4.15)

Replacing (4.12) and (4.13) in (4.15),
\[
\lambda f(M\phi) \leq \frac{M^{p+\beta-1}}{2[M\phi]^\beta} = \frac{M^{p-1}}{2\phi^\beta}.
\]
It follows from (4.12) that
\[h \leq \frac{M^{p-1}}{2\phi^\beta} \leq \frac{M^{p-1}}{2\phi^\beta}. \]
Thus
\[\lambda f(\bar{u}) + h \leq \frac{M^{p-1}}{\phi^\beta}. \]
Taking \(\eta \in W^{1,p}_0(\Omega) \) with \(\eta \geq 0 \) we have by using (4.2),
\[
\lambda \int_\Omega f(\bar{u})\eta dx + \int_\Omega h\eta dx \leq M^{p-1} \int_\Omega \frac{\eta}{\phi^\beta} dx
\]
\[
= M^{p-1} \int_\Omega |\nabla \phi|^{p-2} \nabla \phi \cdot \nabla \eta dx
\]
\[
= \int_\Omega |\nabla (M\phi)|^{p-2} \nabla (M\phi) \cdot \nabla \eta dx
\]
\[
= \int_\Omega |\nabla u|^{p-2} \nabla \bar{u} \cdot \nabla \eta dx,
\]
showing that \(\bar{u} = M\phi \) is an upper solution of \((P)_\lambda\) for \(\lambda \in [\lambda_*, \Lambda]. \)

5 Proofs of the Main Results

At first we introduce some notations, remarks and lemmas. Take \(\Lambda > \lambda_* \) and set
\(I_\Lambda := [\lambda_*, \Lambda]. \) For each \(\lambda \in I_\Lambda. \) By theorem 4.1
\[
\bar{u} = u_\lambda = \lambda^r \psi
\]
is a lower solution of \((P)_\lambda. \) Pick \(M = M_\Lambda \geq \Lambda^{p-1} \delta r^{\frac{1}{p-1}}. \) By theorem 4.2
\[u = u_\lambda = M_\Lambda \phi \]
is an upper solution of \((P)_\lambda. \) It follows by (4.6) that
\[u = \lambda^r \psi \leq \Lambda^{p-1} \delta r^{\frac{1}{p-1}} \phi \leq M\phi = \bar{u}. \] (5.1)
The convex, closed subset of \(I_\Lambda \times C(\overline{\Omega}), \) defined by
\[G_\Lambda := \{ (\lambda, u) \in I_\Lambda \times C(\overline{\Omega}) \mid \lambda \in I_\Lambda, u \leq u \leq \bar{u} \text{ and } u = 0 \text{ on } \partial\Omega \} \]
will play a key role in this work.
For each \(u \in C(\overline{\Omega}) \) define
\[f_\Lambda(u) = \chi_{S_1}f(u) + \chi_{S_2}f(u) + \chi_{S_3}f(\bar{u}), \quad x \in \Omega, \] (5.2)
where
\[S_1 := \{ x \in \Omega \mid u(x) < \underline{u}(x) \}, \]
\[S_2 := \{ x \in \Omega \mid \underline{u}(x) \leq u(x) \leq \bar{u}(x) \}, \]
\[S_3 := \{ x \in \Omega \mid \bar{u}(x) < u(x) \}, \]
and \(\chi_{S_i} \) is the characteristic function of \(S_i \).

Lemma 5.1 For each \(u \in C(\Omega) \), \(f_\Lambda(u) \in L^\infty_{\text{loc}}(\Omega) \) and there are \(C > 0, \beta \in (0,1) \) such that
\[
|f_\Lambda(u)(x)| \leq \frac{C}{d(x)^\beta}, \quad x \in \Omega. \tag{5.3}
\]

Proof Indeed, let \(K \subset \Omega \) be a compact subset. Then both \(\underline{u} \) and \(\bar{u} \) achieve a positive maximum and a positive minimum on \(K \). Since \(f \) is continuous in \((0, \infty)\) then \(f_\Lambda(u) \in L^\infty_{\text{loc}}(\Omega) \).

Verification of (5.3): Since \(\Omega = \bigcup_{i=1}^3 S_i \) it is enough to show that
\[
|f(u(x))| \leq \frac{C}{d(x)^\beta}, \quad x \in S_i, \quad i = 1, 2, 3.
\]

At first, by \((f)_{2(ii)}\) there are \(C, \delta > 0 \) such that
\[
|f(s)| \leq \frac{C}{s^\beta}, \quad 0 < s < \delta.
\]

Let
\[
\Omega_\delta = \{ x \in \Omega \mid d(x) < \delta \}.
\]

Recalling that \(\underline{u} \in C^1(\overline{\Omega}) \), let
\[
D = \max_{\underline{u}} d(x), \quad \nu_\delta := \min_{\underline{u}} d(x), \quad \nu^\delta := \max_{\underline{u}} d(x),
\]
and notice that both \(0 < \nu_\delta \leq \nu^\delta \leq D < \infty \) and \(f([\nu_\delta, \nu^\delta]) \) is compact.

On the other hand, applying theorems [4.1, 4.2] lemmas [3.1, 3.2] and inequality [4.4] we infer that
\[
0 < \lambda_*^\psi \underline{u} \leq \bar{u} = M \phi \text{ in } \Omega
\]
and
\[
\frac{1}{\underline{u}^\beta}, \quad \frac{1}{\bar{u}^\beta}, \leq \frac{1}{(\lambda_*^\psi(x))}\beta \leq \frac{C}{d(x)^\beta}, \quad x \in \Omega_\delta.
\]

To finish to proof, we distinguish among three cases:

(i) \(x \in S_1 \): in this case,
\[
f_\Lambda(u(x)) = f(u(x)).
\]

If \(x \in S_1 \cap \Omega_\delta \) we infer that
\[
|f_\Lambda(u(x))| \leq \frac{C}{u(x)^\beta} \leq \frac{C}{d(x)^\beta}.
\]
If \(x \in S_1 \cap \Omega_\delta^c \). Pick positive numbers \(d_i, i = 1, 2 \) such that
\[
d_1 \leq u(x) \leq d_2, \ x \in \Omega_\delta^c.
\]
Hence
\[
|f(x)| \leq \frac{C}{d(x)^\beta}, \ x \in \Omega.
\]

(ii) \(x \in S_2 \): in this case,
\[
0 < \lambda \psi \leq u \leq M \phi.
\]
and as a consequence,
\[
|f(x)| \leq \frac{C}{u(x)^\beta}, \ x \in \Omega_\delta.
\]
Hence, there is a positive constant \(\tilde{C} \) such that
\[
|f(x)| \leq \tilde{C}, \ x \in \Omega_\delta.
\]
Thus
\[
|f(x)| \leq \begin{cases} \tilde{C} & \text{if } x \in \Omega_\delta^c, \\ \frac{C}{d(x)^\beta} & \text{if } x \in \Omega_\delta. \end{cases}
\]

On the other hand,
\[
\frac{1}{D^\beta} \leq \frac{1}{d(x)^\beta}, \ x \in \Omega_\delta^c,
\]
and therefore there is a constant \(C > 0 \) such that
\[
|f(x)| \leq \begin{cases} \frac{C}{D^\beta} & \text{if } x \in \Omega_\delta^c, \\ \frac{C}{d(x)^\beta} & \text{if } x \in \Omega_\delta. \end{cases}
\]
Therefore,
\[
|f(x)| \leq \frac{C}{d(x)^\beta}, \ x \in S_2, \ u \in \mathcal{G}_\Lambda.
\]

Case \(x \in S_3 \): in this case
\[
f_\Lambda(u(x)) = f(u(x)).
\]
If \(x \in S_3 \cap \Omega_\delta \) we infer that
\[
|f_\Lambda(u(x))| \leq \frac{C}{\overline{u}(x)^\beta} \leq \frac{C}{d(x)^\beta}.
\]
If \(x \in S_3 \cap \Omega_\delta^c \). Pick positive numbers \(d_i, i = 1, 2 \) such that
\[
d_1 \leq \overline{u}(x) \leq d_2, \ x \in \Omega_\delta^c.
\]
Hence
\[
|f_\Lambda(u(x))| \leq \frac{C}{d(x)^\beta}, \ x \in \Omega.
\]
This ends the proof of lemma 5.1.
Remark 5.1 By lemmas 3.3, 5.1 and remark (3.2), for each \(v \in C(\overline{\Omega}) \) and \(\lambda \in I_\Lambda \),
\[
(\lambda f_\Lambda(v) + h) \in L^\infty_{\text{loc}}(\Omega) \text{ and } |(\lambda f_\Lambda(v) + h)| \leq \frac{C_\Lambda}{d^\beta(x)} \text{ in } \Omega \tag{5.4}
\]
where \(C_\Lambda > 0 \) is a constant independent of \(v \) and \(\beta \in (0, 1) \). So for each \(v \),
\[
\left\{ \begin{array}{l}
-\Delta_p u = \lambda f_\Lambda(v) + h \text{ in } \Omega, \\
u = 0 \text{ on } \partial \Omega
\end{array} \right. \tag{5.5}
\]
admits an only solution \(u = S(\lambda f_\Lambda(v) + h)) \in W^{1,p}_0(\Omega) \cap C^{1,\alpha}(\overline{\Omega}) \).

Set
\[
F_\Lambda(u)(x) = f_\Lambda(u(x)), \quad u \in C(\overline{\Omega}).
\]

and consider the operator
\[
T : I_\Lambda \times C(\overline{\Omega}) \to W^{1,p}_0(\Omega) \cap C^{1,\alpha}(\overline{\Omega}),
\]

\[
T(\lambda, u) = S(\lambda F_\Lambda(u) + h)) \text{ if } \lambda_* \leq \lambda \leq \Lambda, \quad u \in C(\overline{\Omega}).
\]

Notice that if \((\lambda, u) \in I_\Lambda \times C(\overline{\Omega}) \) satisfies \(u = T(\lambda, u) \) then \(u \) is a solution of
\[
\left\{ \begin{array}{l}
-\Delta_p u = \lambda f_\Lambda(u) + h \text{ in } \Omega, \\
u = 0 \text{ on } \partial \Omega
\end{array} \right. \tag{5.6}
\]

Lemma 5.2 If \((\lambda, u) \in I_\Lambda \times C(\overline{\Omega}) \) and \(u = T(\lambda, u) \) then \((\lambda, u) \in G_\Lambda \).

Proof Indeed, let \((\lambda, u) \in I_\Lambda \times C(\overline{\Omega}) \) such that \(T(\lambda, u) = u \). Then
\[
\int_\Omega |\nabla u|^{p-2}\nabla u.\nabla \varphi dx = \lambda \int_\Omega f_\Lambda(u) \varphi dx + \int_\Omega h \varphi dx, \quad \varphi \in W^{1,p}_0(\Omega).
\]

We claim that \(u \geq u \). Assume on the contrary, that \(\varphi := (u - u)^+ \neq 0 \). Then
\[
\int_\Omega |\nabla u|^{p-2}\nabla u.\nabla \varphi dx = \int_{u < u} |\nabla u|^{p-2}\nabla u.\nabla \varphi dx
\]
\[
= \lambda \int_{u < u} f_\Lambda(u) \varphi dx + \int_{u < u} h \varphi dx
\]
\[
= \lambda \int_{u < u} f(u) \varphi dx + \int_{u < u} h \varphi dx
\]
\[
\geq \int_{u < u} |\nabla u|^{p-2}\nabla u.\nabla \varphi dx
\]
\[
= \int_\Omega |\nabla u|^{p-2}\nabla u.\nabla \varphi dx.
\]
Hence
\[\int_\Omega \left[|\nabla u|^{p-2}\nabla u - |\nabla u|^p \right] : \nabla (u - \bar{u}) \, dx \leq 0. \]

It follows by lemma 6.1 that
\[\int_\Omega |\nabla (u - \bar{u})|^p \, dx \leq 0, \] contradicting \(\varphi \not\equiv 0. \) Thus, \((u - \bar{u})^+ = 0\), that is, \(\bar{u} - u \leq 0 \), and so \(\bar{u} \leq T(\lambda, u) \).

We claim that \(u \geq \bar{u}. \) Assume on the contrary that \(\varphi := (u - \bar{u})^+ \not\equiv 0. \) We have
\[
\int_\Omega |\nabla u|^{p-2}\nabla u, \nabla \varphi \, dx = \int_{\pi < u} |\nabla u|^{p-2}\nabla u, \nabla \varphi \, dx
= \lambda \int_{\pi < u} f(\pi) \varphi \, dx + \int_{\pi < u} h \varphi \, dx
\leq \int_{\pi < u} |\nabla \pi|^{p-2}\nabla \pi, \nabla \varphi \, dx
= \int_\Omega |\nabla \pi|^{p-2}\nabla \pi, \nabla \varphi \, dx,
\]

Therefore,
\[
\int_\Omega \left[|\nabla u|^{p-2}\nabla u - |\nabla \pi|^{p-2}\nabla \pi \right] : \nabla (u - \pi) \, dx \leq 0.
\]

contradicting \(\varphi \not\equiv 0. \) So \((u - \bar{u})^+ = 0\) so that \(u - \bar{u} \leq 0 \), which gives \(\bar{u} \geq T(\lambda, u) \).

As a consequence of the arguments above \(u \in G_\Lambda \), showing lemma 5.2.

Remark 5.2 By the definitions of \(f_\Lambda \) and \(G_\Lambda \), for each \((\lambda, u) \in G_\Lambda \)
\[
f_\Lambda(u) = f(u), \quad x \in \Omega. \tag{5.7}
\]

Remark 5.3 By remark 3.2, there is \(R_\Lambda > 0 \) such that \(G_\Lambda \subseteq B(0, R_\Lambda) \subseteq C(\bar{\Omega}) \) and
\[
T \left(I_\Lambda \times B(0, R_\Lambda) \right) \subseteq B(0, R_\Lambda).
\]

Notice that, by (5.7) and lemma 5.2, if \((\lambda, u) \in I_\Lambda \times C(\bar{\Omega})\) satisfies \(u = T(\lambda, u) \) then \((\lambda, u)\) is a solution of \((P)_\lambda\). By remark 5.2, to solve \((P)_\lambda\) it suffices to look for fixed points of \(T \).

Lemma 5.3 \(T : I_\Lambda \times B(0, R_\Lambda) \to B(0, R_\Lambda) \) is continuous and compact.

Proof Let \(\{(\lambda_n, u_n)\} \subseteq I_\Lambda \times B(0, R_\Lambda) \) be a sequence such that
\[
\lambda_n \to \lambda \text{ and } u_n \to u \text{ in } C(\bar{\Omega}).
\]

Set
\[
\nu_n = T(\lambda_n, u_n) \text{ and } \nu = T(\lambda, u)
\]
so that
\[v_n = S(\lambda_n F_A(u_n) + h) \quad \text{and} \quad v = S(\lambda F_A(u) + h). \]

It follows that
\[\int_{\Omega} \left[|\nabla v_n|^{p-2} \nabla v_n - |\nabla v|^{p-2} \nabla v \right] \nabla (v_n - v) \, dx = \lambda_n \int_{\Omega} (f_A(u_n) - f_A(u))(v_n - v) \, dx \]
\[\leq C \int_{\Omega} |f_A(u_n) - f_A(u)| \, dx. \]

Since
\[|f_A(u_n) - f_A(u)| \leq \frac{C}{d(x)^\beta} \in L^1(\Omega) \]
and
\[f_A(u_n(x)) \to f_A(u(x)) \ \text{a.e.} \ x \in \Omega, \]
it follows by Lebesgue’s Theorem that
\[\int_{\Omega} |f_A(u_n) - f_A(u)| \, dx \to 0. \]

Therefore \(v_n \to v \) in \(W^{1,p}_0(\Omega) \).

On the other hand, since \(u_n \overset{C(\overline{\Omega})}{\to} u \), by the proof of lemma 5.1,
\[(\lambda_n f_A(u_n) + h) \in L^1_{\text{loc}}(\Omega) \] and
\[|(\lambda_n f_A(u_n) + h)| \leq \frac{C_A}{d(x)^\beta} \in \Omega. \]

By lemma 5.3 there is a constant \(M > 0 \) such that
\[||v_n||_{C^{1,\alpha}(\overline{\Omega})} \leq M \]
so that \(v_n \overset{C(\overline{\Omega})}{\to} v \). This shows that \(T : I_A \times \overline{B(0,R_A)} \to \overline{B(0,R_A)} \) is continuous.

The compactness of \(T \) follows from the arguments in the five lines above.

5.1 Proof of Theorem 1.2

Some notations and technical results are needed. At first, we recall the Leray-Schauder Continuation Theorem (see [2],[3]).

Theorem 5.1 Let \(D \) be an open bounded subset of the Banach space \(X \). Let \(a, b \in \mathbb{R} \) with \(a < b \) and assume that \(T : [a, b] \times \overline{D} \to X \) is compact and continuous. Consider \(\Phi : [a, b] \times \overline{D} \to X \) defined by \(\Phi(t, u) = u - T(t, u) \). Assume that

(i) \(\Phi(t, u) \neq 0 \), \(t \in [a, b], \ u \in \partial D \), (ii) \(\text{deg}(\Phi(t, \cdot), D, 0) \neq 0 \) for some \(t \in [a, b] \).

and set
\[S_{a,b} = \{(t, u) \in [a, b] \times \overline{D} \mid \Phi(t, u) = 0\}. \]
Then, there is a connected compact subset \(\Sigma_{a,b} \) of \(S_{a,b} \) such that
\[
\Sigma_{a,b} \cap \{a\} \times D \neq \emptyset
\]
and
\[
\Sigma_{a,b} \cap \{b\} \times D \neq \emptyset.
\]
The Leray-Schauder Theorem above will be applied to the operator \(T \) in the settings of Section 5. Remember that \(T \) continuous, compact and \(T(I_{\Lambda} \times \overline{B(0, R_{\Lambda})}) \subset B(0, R_{\Lambda}) \). Consider \(\Phi : I_{\Lambda} \times \overline{B(0, R)} \rightarrow B(0, R) \) defined by
\[
\Phi(\lambda, u) = u - T(\lambda, u).
\]

Lemma 5.4 \(\Phi \) satisfies:

(i) \(\Phi(\lambda, u) \neq 0 \) \((\lambda, u) \in I_{\Lambda} \times \partial B(0, R_{\Lambda}) \),

(ii) \(\deg(\Phi(\lambda, .), B(0, R_{\Lambda}), 0) \neq 0 \) for each \(\lambda \in I_{\Lambda} \),

Proof The verification of (i) is straightforward since \(T(I_{\Lambda} \times \overline{B(0, R_{\Lambda})}) \subset B(0, R_{\Lambda}) \).

To prove (ii), set \(R = R_{\Lambda} \), take \(\lambda \in I_{\Lambda} \) and consider the homotopy
\[
\Psi_{\lambda}(t, u) = u - tT(\lambda, u), \quad (t, u) \in [0, 1] \times \overline{B(0, R)}.
\]

It follows that \(0 \notin \Psi_{\lambda}(I \times \partial B(0, R)) \). By the invariance under homotopy property of the Leray-Schauder degree
\[
\deg(\Psi_{\lambda}(t, .), B(0, R), 0) = \deg(\Psi_{\lambda}(0, .), B(0, R), 0) = 1, \quad t \in [0, 1].
\]

Setting
\[
\Phi(\lambda, u) = u - T(\lambda, u), \quad (\lambda, u) \in I_{\Lambda} \times \overline{B(0, R)},
\]
we also have
\[
\deg(\Phi(\lambda, .), B(0, R), 0) = 1, \quad \lambda \in I_{\Lambda}.
\]

Set
\[
S_{\Lambda} = \{(\lambda, u) \in I_{\Lambda} \times \overline{B(0, R)} \mid \Phi(\lambda, u) = 0 \} \subset G_{\Lambda}.
\]

By the Leray-Schauder Continuation Theorem, there is a connected component \(\Sigma_{\Lambda} \subset S_{\Lambda} \) such that
\[
\Sigma_{\Lambda} \cap \{\lambda_{*}\} \times \overline{B(0, R)} \neq \emptyset
\]
and
\[
\Sigma_{\Lambda} \cap \{\Lambda\} \times \overline{B(0, R)} \neq \emptyset.
\]
We point out that S_{Λ} is the solution set of the auxiliary problem

$$\begin{cases}
 -\Delta p u &= \lambda f_{\Lambda}(u) + h \quad \text{in} \quad \Omega, \\
 u &= 0 \quad \text{on} \quad \partial \Omega
\end{cases}$$

and since $\Sigma_{\Lambda} \subset S_{\Lambda} \subset G_{\Lambda}$ it follows using the definition of f_{Λ} that

$$\begin{cases}
 -\Delta p u &= \lambda f(u) + h \quad \text{in} \quad \Omega, \\
 u &= 0 \quad \text{on} \quad \partial \Omega
\end{cases}$$

for $(\lambda, u) \in \Sigma_{\Lambda}$, showing that $\Sigma_{\Lambda} \subset S$. This ends the proof of theorem 1.2.

5.2 Proof of Theorem 1.1

We shall employ topological arguments to construct a suitable connected component of the solution set S of $(P)_{\lambda}$. To this aim some notations are needed.

Let $M = (M, d)$ be a metric space and denote by $\{\Sigma_{n}\}$ be a sequence of connected components of M. The upper limit of $\{\Sigma_{n}\}$ is defined by

$$\lim \Sigma_{n} = \{ u \in M \mid \text{there is } (u_{n}) \subseteq \bigcup \Sigma_{n} \text{ with } u_{n} \in \Sigma_{n}, \text{ and } u_{n} \to u \}. $$

Remark 5.4 $\lim \Sigma_{n}$ is a closed subset of M.

We shall apply theorem 2.1 in Sun & Song [23], stated below for the reader’s convenience.

Theorem 5.2 Let M be a metric space and $\{\alpha_{n}\}, \{\beta_{n}\} \in \mathbb{R}$ be sequences satisfying

$$\cdots < \alpha_{n} < \cdots < \alpha_{1} < \beta_{1} < \cdots < \beta_{n} < \cdots$$

with

$$\alpha_{n} \to -\infty \quad \text{and} \quad \beta_{n} \to \infty.$$

Assume that $\{\Sigma_{n}^{*}\}$ is a sequence of connected subsets of $\mathbb{R} \times M$ satisfying,

(i) $\Sigma_{n}^{*} \cap (\{\alpha_{n}\} \times M) \neq \emptyset$,

(ii) $\Sigma_{n}^{*} \cap (\{\beta_{n}\} \times M) \neq \emptyset$,

for each n. For each $\alpha, \beta \in (-\infty, \infty)$ with $\alpha < \beta$,

(iii) $\left(\bigcup \Sigma_{n}^{*} \right) \cap ([\alpha, \beta] \times M)$ is a relatively compact subset of $\mathbb{R} \times M$.

Then there is a connected component Σ^{*} of $\lim \Sigma_{n}^{*}$ such that

$$\Sigma^{*} \cap (\{\lambda\} \times M) \neq \emptyset \quad \text{for each } \lambda \in (\lambda_{*}, \infty).$$
Proof of Theorem 1.1 (finished) Consider Λ as introduced in Section 5 and take a sequence $\{\Lambda_n\}$ such that $\lambda_* < \Lambda_1 < \Lambda_2 < \cdots$ with $\Lambda_n \to \infty$. Set $\beta_n = \Lambda_n$ and take a sequence $\{\alpha_n\} \subset \mathbb{R}$ such that $\alpha_n \to -\infty$ and $\cdots < \alpha_n < \cdots < \alpha_1 < \lambda_*$. Following the notations of Section 5 consider the sequence of intervals $I_n = [\lambda_*, \Lambda_n]$. Set $M = C(\Omega)$ and let

$$G_{\Lambda_n} := \{(\lambda, u) \in I_n \times \overline{B}_{R_n} \mid u \leq u, u = 0 \text{ on } \partial \Omega\},$$

where $R_n = R_{\Lambda_n}$. Consider the sequence of compact operators

$$T_n : [\lambda_*, \Lambda] \times \overline{B}_{R_n} \to \overline{B}_{R_n}$$

defined by

$$T_n(\lambda, u) = S(\lambda F_{\Lambda_n}(u) + h)) \text{ if } \lambda_* \leq \lambda \leq \Lambda_n, \ u \in \overline{B}_{R_n}.$$

Next consider the extension of T_n, namely $\tilde{T}_n : \mathbb{R} \times \overline{B}_{R_n} \rightarrow \overline{B}_{R_n}$ defined by

$$\tilde{T}_n(\lambda, u) = \begin{cases} T_n(\lambda_* , u) & \text{if } \lambda \leq \lambda_*, \\ T_n(\lambda, u) & \lambda_* \leq \lambda \leq \Lambda_n, \\ T_n(\Lambda_n, u) & \lambda \geq \Lambda_n. \end{cases}$$

Notice that \tilde{T}_n is continuous, compact.

Applying theorem 5.1 to $\tilde{T}_n : [\alpha_n, \beta_n] \times \overline{B}_{R_n} \rightarrow \overline{B}_{R_n}$ we get a compact connected component Σ_n^* of

$$\mathcal{S}_n = \{(\lambda, u) \in [\alpha_n, \beta_n] \times \overline{B}_{R_n} \mid \Phi_n(\lambda, u) = 0\},$$

where

$$\Phi_n(\lambda, u) = u - \tilde{T}_n(\lambda, u).$$

Notice that Σ_n^* is also a connected subset of $\mathbb{R} \times M$. By theorem 5.2 there is a connected component Σ^* of $\lim \Sigma_n^*$ such that

$$\Sigma^* \cap (\{\lambda\} \times M) \neq \emptyset \text{ for each } \lambda \in \mathbb{R}.$$

Set $\Sigma = ([\lambda_*, \infty) \times M) \cap \Sigma^*$. Then $\Sigma \subset \mathbb{R} \times M$ is connected and

$$\Sigma \cap (\{\lambda\} \times M) \neq \emptyset, \ \lambda_* \leq \lambda < \infty.$$

We claim that $\Sigma \subset \mathcal{S}$. Indeed, at first notice that

$$\tilde{T}_{n+1}|_{([\lambda_*, \Lambda_n] \times \overline{B}_{R_n})} = \tilde{T}_n|_{([\lambda_*, \Lambda_n] \times \overline{B}_{R_n})} = T_n. \quad (5.8)$$

If $(\lambda, u) \in \Sigma$ with $\lambda > \lambda_*$, there is a sequence $(\lambda_n, u_n) \in \cup \Sigma_n^*$ with $(\lambda_n, u_n) \in \Sigma_n^*$ such that $\lambda_n \to \lambda$ and $u_n \to u$. Then $u \in B_{R_N}$ for some integer $N > 1$.

17
We can assume that \((\lambda_n, u_n) \in [\lambda_s, \Lambda_N] \times B_{R_N}\). On the other hand, by (5.8),
\[
u_n = T_n(\lambda_n, u_n) = T_N(\lambda_n, u_n).
\]
Passing to the limit we get
\[
u = T_N(\lambda, u)
\]
which shows that \((\lambda, u) \in \Sigma_N\) and so
\[(\lambda, u) \in S := \{ (\lambda, u) \in (0, \infty) \times C(\overline{\Omega}) \mid u \text{ is a solution of } (P)_\lambda \}.
\]
This ends the proof of theorem 1.1.

6 Appendix

In this section we present proofs of lemma 3.3, corollary 3.1 and recall some results referred to in the paper. We begin with the Browder-Minty Theorem, (cf. Deimling [6]). Let \(X\) be a real reflexive Banach space with dual space \(X^*\). A map \(F : X \to X^*\) is monotone if
\[
\langle Fx - Fy, x - y \rangle \geq 0, \quad x, y \in X,
\]
\(F\) is hemicontinuous if
\[
F(x + ty) \rightharpoonup Fx \text{ as } t \to 0,
\]
and \(F\) is coercive if
\[
\frac{\langle Fx, x \rangle}{|x|} \to \infty \text{ as } |x| \to \infty.
\]

Theorem 6.1 Let \(X\) be a real reflexive Banach space and let \(F : X \to X^*\) be a monotone, hemicontinuous and coercive operator. Then \(F(X) = X^*\). Moreover, if \(F\) is strictly monotone then it is a homeomorphism.

The inequality below, (cf. [22], [19]), is very useful when dealing with the \(p\)-Laplacian.

Lemma 6.1 Let \(p > 1\). Then there is a constant \(C_p > 0\) such that
\[
(|x|^{p-2}x - |y|^{p-2}y, x - y) \geq \begin{cases}
C_p |x - y|^p & \text{if } p \geq 2, \\
\frac{C_p |x - y|^p}{(1 + |x| + |y|)^{p-2}} & \text{if } p \leq 2,
\end{cases}
\]
where \(x, y \in \mathbb{R}^N\) and \((.,.)\) is the usual inner product of \(\mathbb{R}^N\).

The Hardy Inequality (cf. Brézis [3]) is:

Theorem 6.2 There is a positive constant \(C\) such that
\[
\int_\Omega |\frac{u}{d}|^\beta \, dx \leq C \int_\Omega |\nabla u|^p, \quad u \in W_0^{1,p}(\Omega).
\]
Proof of lemma 3.3 By the H"older inequality,
\[\int_\Omega |\nabla u|^{p-1} |\nabla v| dx \leq ||u||_{1,p'}||v||_{1,p}, \] (6.2)
where $1/p + 1/p' = 1$, and so the expression
\[\langle -\Delta_p u, v \rangle := \int_\Omega |\nabla u|^{p-2} \nabla u \cdot \nabla v dx, \quad u, v \in W^{1,p}_0(\Omega), \] (6.3)
defines a continuous, bounded (nonlinear) operator namely
\[\Delta_p : W^{1,p}_0(\Omega) \rightarrow W^{-1,p'}(\Omega) \]
\[u \mapsto -\Delta_p u. \]

By (6.1), $-\Delta_p$ it is strictly monotone and coercive, that is
\[\langle -\Delta_p u - (-\Delta_p v), u - v \rangle > 0, \quad u, v \in W^{1,p}_0(\Omega), \quad u \neq v \]
and
\[\frac{\langle -\Delta_p u, u \rangle}{||u||_{1,p} \rightarrow \infty} \rightarrow \infty. \]

By the Browder-Minty Theorem, $\Delta_p : W^{1,p}_0(\Omega) \rightarrow W^{-1,p'}(\Omega)$ is a homeomorphism. Consider
\[F_g(u) = \int_\Omega gudx, \quad u \in W^{1,p}_0(\Omega). \]

Claim $F_g \in W^{-1,p'}(\Omega)$.

Assume for a while the Claim has been proved. Since $-\Delta_p : W^{1,p}_0(\Omega) \rightarrow W^{-1,p'}(\Omega)$ is a homeomorphism, there is an only $u \in W^{1,p}_0(\Omega)$ such that
\[-\Delta_p u = F_g, \]
that is
\[\langle -\Delta_p u, v \rangle = \int_\Omega gvdx, \quad v \in W^{1,p}_0(\Omega) \]

Verification of the Claim. Let V be an open neighborhood of $\partial \Omega$ such that
\[0 < d(x) < 1 \quad \text{for} \quad x \in V \quad \text{so that} \]
\[1 < \frac{1}{d(x)^\beta} < \frac{1}{d(x)}, \quad x \in V. \]

Now, if $v \in W^{1,p}_0(\Omega)$ we have
\[|F_g(v)| \leq \int_\Omega |g||v|dx = \int_{V^c} |g||v|dx + \int_V |g||v|dx \leq C||v||_{1,p} + \int_\Omega \frac{|v|}{d} dx. \]

19
Applying the Hardy Inequality in the last term above we get to,

\[|F_g(v)| \leq C||v||_{1,p}, \]

showing that \(F_g \in W^{-1,p'}(\Omega) \), proving the Claim.

Regularity of \(u \): At first we treat the case \(p = 2 \). By [5] there is a solution \(v \) of

\[
\begin{cases}
-\Delta v = \frac{1}{v^\beta} & \text{in } \Omega, \\
v > 0 & \text{in } \Omega, \\
v = 0 & \text{on } \partial\Omega,
\end{cases}
\]

which belongs to \(C^1(\overline{\Omega}) \) and by the Hopf theorem \(\frac{\partial v}{\partial \nu} < 0 \) on \(\partial\Omega \). Since also \(d \in C^1(\overline{\Omega}) \) and \(\frac{\partial d}{\partial \nu} < 0 \) on \(\partial\Omega \) there a constant \(C > 0 \) such that

\[v \leq Cd \text{ in } \Omega. \]

Moreover,

\[-\Delta v = \frac{1}{v^\beta} \geq \frac{C}{d^\beta}. \]

Consider the problem

\[
\begin{cases}
-\Delta \tilde{u} = |g| & \text{in } \Omega, \\
\tilde{u} = 0 & \text{on } \partial\Omega.
\end{cases}
\]

By [9] theorem B.1,

\[\tilde{u} \in C^{1,\alpha}(\overline{\Omega}) \text{ and } ||\tilde{u}||_{C^{1,\alpha}(\overline{\Omega})} \leq M_0, \]

for some positive constant \(M_0 \). By the Maximum Principle,

\[\tilde{u} \leq v \leq Cd \text{ in } \Omega. \]

Setting \(\overline{u} = u + \tilde{u} \) we get

\[-\Delta \overline{u} = g + |g| \geq 0 \text{ in } \Omega \]

and by the arguments above, \(\overline{u} \leq Cd \text{ in } \Omega \). Thus, as a consequence of [9] theorem B.1, the are \(\alpha \in (0, 1) \) and \(M_0 > 0 \) such that

\[\overline{u}, \tilde{u} \in C^{1,\alpha}(\overline{\Omega}) \text{ and } ||\overline{u}||_{C^{1,\alpha}(\overline{\Omega})}, ||\tilde{u}||_{C^{1,\alpha}(\overline{\Omega})} \leq M_0, \]

ending the proof of lemma 3.3 in the case \(p = 2 \).

In what follows we treat the case \(p > 1 \). Let \(u \) be a solution of (3.3). It follows that

\[-\Delta_p u = g \leq \frac{C}{d^\beta} \text{ and } -\Delta_p(-u) = (-1)^{p-1}g \leq \frac{C}{d^\beta}. \]

By lemma 3.2 the problem

\[
\begin{cases}
-\Delta_p v = \frac{C}{v^\beta} & \text{in } \Omega \\
v = 0 & \text{on } \partial\Omega
\end{cases}
\]
admits an only positive solution \(v \in W^{1,p}_0(\Omega) \cap C^{1,\alpha}(\overline{\Omega}) \) for some \(\alpha \in (0,1) \) with \(v \leq Cd \) in \(\Omega \). Hence,
\[
-\Delta_p(v) = \frac{C}{v^\beta} \geq \frac{1}{d^\beta} \text{ in } \Omega.
\]
Therefore,
\[
-\Delta_p |u| \leq \frac{C}{d^\beta} \leq -\Delta_p v.
\]
By the weak comparison principle,
\[
|u| \leq v \leq Cd \text{ in } \Omega,
\]
showing that \(u \in L^\infty(\Omega) \). Pick \(w \in C^{1,\alpha}(\overline{\Omega}) \) such that
\[
-\Delta w = g \text{ in } \Omega, \quad w = 0 \text{ on } \partial \Omega.
\]
We have
\[
\text{div}(|\nabla u|^{p-2} \nabla u - \nabla w) = 0 \text{ in } \Omega
\]
in the weak sense. By Lieberman [15, theorem 1] the proof of lemma 3.3 ends.

Proof of Corollary 3.1

Existence of \(u_\epsilon \) follows directly by lemma 3.3. Moreover there are \(M > 0 \) and \(\alpha \in (0,1) \) such that
\[
||u||_{C^{1,\alpha}(\overline{\Omega})}, \quad ||u_\epsilon||_{C^{1,\alpha}(\overline{\Omega})} < M.
\]
By Vázquez [25, theorem 5], \(\frac{\partial u}{\partial \nu} < 0 \) on \(\partial \Omega \) and recalling that \(d \in C^1(\overline{\Omega}) \) and \(\frac{\partial d}{\partial \nu} < 0 \) on \(\partial \Omega \) it follows that
\[
u \geq Cd \text{ in } \Omega. \quad (6.4)
\]
Multiplying the equation
\[
-\Delta_p u - (-\Delta_p u_\epsilon) = g - \left(h\chi_{[d(x) > \epsilon]} + \tilde{g}\chi_{[d(x) < \epsilon]} \right)
\]
by \(u - u_\epsilon \) and integrating we have
\[
\int_{\Omega} (|\nabla u|^{p-2} \nabla u - |\nabla u_\epsilon|^{p-2} \nabla u_\epsilon) \cdot \nabla (u - u_\epsilon) \, dx \leq 2M \int_{d(x) < \epsilon} |g - \tilde{g}| \, dx.
\]
Using lemma 6.1, we infer that \(||u - u_\epsilon||_{1,p} \to 0 \) as \(\epsilon \to 0 \). By the compact embedding \(C^{1,\alpha}(\overline{\Omega}) \hookrightarrow C^1(\overline{\Omega}) \) it follows that
\[
||u - u_\epsilon||_{C^{1,\alpha}(\overline{\Omega})} \leq C d,
\]
and using (6.4),
\[
u_\epsilon \geq u - \frac{C}{2} d \geq u - \frac{u}{2} = u.
\]
References

[1] A. Anane, *Simplicité et isolation de la premiè re valeur propre du p-Lapacien avec poids*, CRAS Paris Série I (1987) 725-728.

[2] L. Boccardo, F. Murat & J. P. Puel, *Résultats d’existence pour certains problèmes elliptiques quasilinéaires*, Annali Scuola Normale Superiore Pisa 2 (1984) 213-235.

[3] H. Brézis, *Functional Analysis, Sobolev Spaces and partial differential equations*. Springer (2011).

[4] D. G. Costa & J.V. Goncalves, *Existence and Multiplicity Results for a Class of Nonlinear Elliptic Boundary Value Problems at Resonance*, J. Math. Anal. Appl. 84 (1981) 328-337.

[5] M. G. Crandall, P. H. Rabinowitz & L. Tartar, *On a Dirichlet problem with a singular nonlinearity*, Comm. Partial Differential Equations 2 (1977) 193-222.

[6] K. Deimling, *Nonlinear Functional Analysis*, Springer-Verlag, Berlin, (1985).

[7] E. DiBenedetto, *$C^{1+\alpha}$-local regularity of weak solutions of degenerate elliptic equations*, Nonlinear Anal. 7 (1983), 827-850.

[8] M. Ghergu & V. Radulescu, *Sublinear singular elliptic problems with two parameters*, J. Diff. Equations 195 (2003) 520-536.

[9] J. Giacomoni, I. Schindler & P. Takac, *Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (1) (2007) 117-158.

[10] D. Gilbarg & N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, New York, (1983).

[11] J.V. Goncalves, M.C. Rezende & C.A. Santos, *Positive solutions for a mixed and singular quasilinear problem*, Nonlinear Anal. 74 (2011) 132-140.

[12] D.D. Hai, *Singular boundary value problems for the p-Laplacian*, Nonlinear Anal. 73 (2010) 2876-2881.

[13] D. D. Hai, *On a class of singular p-Laplacian boundary value problems*, J. Math. Anal. Appl. 383 (2011) 619-626.

[14] A. C. Lazer & P. J. McKenna, *On a singular nonlinear elliptic boundary value problem*, Proceedings American Mathematical Society 111 (1991) 721-730.

[15] G. M. Liebermann, *Boundary regularity for solutions of degenerate elliptic equations*, Nonlinear Anal. 12 (1988) 1203-1219.
[16] N. H. Loc & K. Schmitt, Boundary value problems for singular elliptic equations, Rocky Mountain J. Math. 41 (2011) 555-572.

[17] A. Mohammed, Positive solutions of the p-Laplace equation with singular nonlinearity, J. Math. Anal. Appl. 352 (2009) 234-245.

[18] M. Montenegro & O. S. de Queiroz, Existence and regularity to an elliptic equation with logarithmic nonlinearity, J. Differential Equations 246 (2009) 482-511.

[19] I. Peral, Multiplicity of Solutions for the p-Laplacian, Second School on Nonlinear Functional Analysis and Applications to Differential Equations - Trieste, Italy, (1997).

[20] K. Perera & Z. Zhang, Multiple positive solutions of singular p-Laplacian problems by variational methods, Boundary Value Problems (2005) 377-382.

[21] J. Shi & M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 138 (1998) 1389-1401.

[22] J. Simon, Regularité de la solution d’une equation non linéaire dans \mathbb{R}^N, Lecture Notes in Mathematics # 665, Springer-Verlag, (1978).

[23] Jingxian Sun & Fumin Song, A property of connected components and its applications, Topology and its Applications 125 (2002) 553-560.

[24] P. Tolksdorff, Regularity for a more general class of quasilinear elliptic equations, J. Diff. Equations 51 (1984), 126-150.

[25] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984) 191-202.

[26] Z. Zhang, On a Dirichlet problem with a singular nonlinearity, J. Math. Anal. Appl. 194 (1995) 103-113.