THE DESCENT STATISTIC OVER 123-AVOIDING PERMUTATIONS

MARILENA BARNABEI, FLAVIO BONETTI, AND MATTEO SILIMBANI

Abstract We exploit Krattenthaler’s bijection between 123-avoiding permutations and Dyck paths to determine the Eulerian distribution over the set $S_n(123)$ of 123-avoiding permutations in S_n. In particular, we show that the descents of a permutation correspond to valleys and triple falls of the associated Dyck path. We get the Eulerian numbers of $S_n(123)$ by studying the joint distribution of these two statistics on Dyck paths.

Keywords: restricted permutations, Dyck paths, Eulerian numbers.

AMS classification: 05A05, 05A15, 05A19.

1. Introduction

A permutation $\sigma \in S_n$ avoids a pattern $\tau \in S_k$ if σ does not contain a subsequence that is order-isomorphic to τ. The subset of S_n of all permutations avoiding a pattern τ is denoted by $S_n(\tau)$. Pattern avoiding permutations have been intensively studied in recent years from many points of view (see e.g. [1], [4] and references therein).

In the case $\tau \in S_3$, it has been shown that the cardinality of $S_n(\tau)$ equals the n-th Catalan number, for every pattern τ, and hence the set $S_n(\tau)$ is in bijection with the set of Dyck paths of semilength n. Indeed, the six patterns in S_3 are related as follows:

- $321 = 123^{rev}$,
- $231 = 132^{rev}$,
- $213 = 132^c$,
- $312 = (132^c)^{rev}$,

where rev and c denote the usual reverse and complement operations. Hence, in order to determine the distribution of the descent statistic over $S_n(\tau)$, for every $\tau \in S_3$, it is sufficient to examine the distribution of descents over two sets $S_n(132)$ and $S_n(123)$.

In both cases, the two bijections due to Krattenthaler [1] allow to translate the descent statistic into some appropriate statistics on Dyck paths.
In the case $\tau = 132$, the descents of a permutation are in one-to-one correspondence with the valleys of the associated Dyck path (see [5]).

In this paper we investigate the case $\tau = 123$. In particular, we exploit a variation of Krattenthaler’s map to translate the descents of a permutation $\sigma \in S_n(123)$ into peculiar subconfigurations of the associated Dyck path, namely, valleys and triple falls.

For that reason, we study the joint distribution of valleys and triple falls over the set \mathcal{P}_n of Dyck paths of semilength n, and we give an explicit expression for its trivariate generating function

$$A(x, y, z) = \sum_{n \geq 0} \sum_{D \in \mathcal{P}_n} x^n y^v(D) z^{tf(D)} = \sum_{n,p,q \geq 0} a_{n,p,q} x^n y^p z^q,$$

where $v(D)$ denotes the number of valleys in D and $tf(D)$ denotes the number of triple falls in D. This series specializes into some well known generating functions, such as the generating function of Catalan numbers, Motzkin numbers, Narayana numbers, and seq. A092107 in [5] (see also [2]).

2. DYCK PATHS

A Dyck path is a lattice path in the integer lattice $\mathbb{N} \times \mathbb{N}$ starting from the origin, consisting of up-steps $U = (1, 1)$ and down steps $D = (1, -1)$, never passing below the x-axis, and ending at ground level.

We recall that a return of a Dyck path is a down step ending on the x-axis. An irreducible Dyck path is a Dyck path with exactly one return.

We observe that a Dyck path \mathcal{D} can be decomposed according to its last return (last return decomposition) into the juxtaposition of a (possibly empty) Dyck path \mathcal{D}' of shorter length and an irreducible Dyck path \mathcal{D}''.

For example, the Dyck path $\mathcal{D} = U^5 D^2 U D U D U^3 D U D^3$ decomposes into $\mathcal{D}' \oplus \mathcal{D}''$, where $\mathcal{D}' = U^5 D^2 U D U D$ and $\mathcal{D}'' = U^3 D U D^3$, as shown in Figure 1.

3. KRATTENTHALER’S BIJECTION

In [1], Krattenthaler describes a bijection between the set $S_n(123)$ and the set \mathcal{P}_n of Dyck paths of semilength n. We present a slightly modified version of this bijection.
Let $\sigma = \sigma(1) \ldots \sigma(n)$ be a 123-avoiding permutation. Recall that a left-to-right minimum of σ is an element $\sigma(i)$ which is smaller than $\sigma(j)$, with $j < i$ (note that the first entry $\sigma(1)$ is a left-to-right minimum). Let x_1, \ldots, x_s be the left-to-right minima in σ. Then, we can write

\[
\sigma = x_1 w_1 \ldots x_s w_s,
\]

where w_i are (possibly empty) words. Moreover, since σ avoids 123, the word $w_1 w_2 \ldots w_s$ must be decreasing.

In order to construct the Dyck path $\kappa(\sigma)$ corresponding to σ, read the decomposition (1) from left to right. Any left-to-right minimum x_i is translated into $x_{i-1} - x_i$ up steps (with the convention $x_0 = n + 1$) and any subword w_i is translated into $l_i + 1$ down steps, where l_i denotes the number of elements in w_i.

For example, the permutation $\sigma = 5 7 2 6 4 3 1$ in $S_7(123)$ corresponds to the path in Figure 2.
4. The descent statistic

We say that a permutation σ has a descent at position i if $\sigma(i) > \sigma(i + 1)$. We denote by $\text{des}(\sigma)$ the number of descents of the permutation σ.

In this section we determine the generating function

$$E(x, y) = \sum_{n \geq 0} \sum_{\sigma \in S_n(123)} x^n y^{\text{des}(\sigma)} = \sum_{n \geq 0} \sum_{k \geq 0} e_{n,k} x^n y^k,$$

where $e_{n,k}$ denotes the number of permutations in $S_n(123)$ with k descents.

Proposition 1. Let σ be a permutation in $S_n(123)$, and $D = \kappa(\sigma)$. The number of descents of σ is

$$\text{des}(\sigma) = v(D) + tf(D),$$

where $v(D)$ is the number of valleys in D and $tf(D)$ is the number of triple falls in D, namely, the number of occurrences of DDD in D.

Proof Let $\sigma = x_1 w_1 \ldots x_s w_s$ be a 123-avoiding permutation. The descents of σ occur precisely in the following positions:

1. between two consecutive symbols in the same word w_i (we have $l_i - 1$ of such descents),
2. before every left-to-right minimum x_i, except for the first one.

The proof is completed as soon as we remark that:

1. every word w_i is mapped into a descending run of $\kappa(\sigma)$ of length $l_i + 1$. Such descending run contains $l_i - 1$ triple falls, that are therefore in bijection with the descents contained in w_i,
2. every left-to-right minimum x_i with $i \geq 2$ corresponds to a valley in $\kappa(\sigma)$.

⋄

The preceding result implies that we can switch our attention from permutations in $S_n(123)$ with k descents to Dyck paths of semilength n with k among valleys and triple falls. Hence, we study the joint distribution of valleys and triple falls over P_n, namely, we analyze the generating function

$$A(x, y, z) = \sum_{n \geq 0} \sum_{\varnothing \in P_n} x^n y^{v(\varnothing)} z^{tf(\varnothing)} = \sum_{n,p,q \geq 0} a_{n,p,q} x^n y^p z^q.$$
We determine the relation between the function $A(x, y, z)$ and the generating function

$$B(x, y, z) = \sum_{n \geq 0} \sum_{\mathcal{D} \in \mathcal{IP}_n} x^n y^{v(\mathcal{D})} z^{f(\mathcal{D})} = \sum_{n, p, q \geq 0} b_{n,p,q} x^n y^p z^q$$

of the same joint distribution over the set \mathcal{IP}_n of irreducible Dyck paths in \mathcal{P}_n.

Proposition 2. For every $n > 2$, we have:

\begin{equation}
 b_{n,p,q} = a_{n-1,p,q-1} - a_{n-2,p-1,q-1} + a_{n-2,p-1,q}.
\end{equation}

Proof An irreducible Dyck path of semilength n with p valleys and q triple falls can be obtained by prepending U and appending D to a Dyck path of semilength $n-1$ of one of the two following types:

1. a Dyck path with p valleys and q triple falls, ending with UD,
2. a Dyck path with p valleys and $q-1$ triple falls, not ending with UD.

We remark that:

1. the paths of the first kind are in bijection with Dyck paths of semilength $n-2$ with $p-1$ valleys and q triple falls, enumerated by $a_{n-2,p-1,q}$.

2. in order to enumerate the paths of the second kind we have to subtract from the integer $a_{n-1,p,q-1}$ the number of Dyck paths of semilength $n-1$ with p valleys and $q-1$ triple falls, ending with UD. Dyck paths of this kind are in bijection with Dyck paths of semilength $n-2$ with $p-1$ valleys and $q-1$ triple falls, enumerated by $a_{n-2,p-1,q-1}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{dyck_path}
\caption{The Dyck path $U^5D^3U^2D^3UD^2$ with 2 valleys and 2 triple falls is obtained by appending UD to the path $U^4D^3U^2D^3$ with 1 valley and 2 triple falls, and then elevating.}
\end{figure}
Figure 4. The Dyck path $U^5D^3U^2D^2UD^3$ with 2 valleys and 2 triple falls is obtained by elevating the path $U^4D^3U^2D^2UD^2$ with 2 valleys and 1 triple fall.

Proposition 3. For every $n > 0$, we have:

\[a_{n,p,q} = b_{n,p,q} + \sum_{i=1}^{n-1} \sum_{j,s>0} b_{i,j,s} a_{n-i,p-j-1,q-s}. \]

Proof Let \mathcal{D} be a Dyck path of semilength n and consider its last return decomposition $\mathcal{D} = \mathcal{D}' \oplus \mathcal{D}''$. If \mathcal{D}' is empty, then \mathcal{D} is irreducible. Otherwise:

- $v(\mathcal{D}) = v(\mathcal{D}') + v(\mathcal{D}'') + 1$,
- $tf(\mathcal{D}) = tf(\mathcal{D}') + tf(\mathcal{D}'')$.

Identities (2) and (3) yield the following relations between the two generating functions $A(x, y, z)$ and $B(x, y, z)$:

Proposition 4. We have:

\[B(x, y, z) = (A(x, y, z) - 1)(xz + x^2y - x^2yz) + 1 + x + x^2 - x^2z, \]
\[A(x, y, z) = B(x, y, z) + y(B(x, y, z) - 1)(A(x, y, z) - 1) \]

Proof Observe that recurrence (2) holds for $n > 2$. This fact gives rise to the correction terms of degree less than 3 in Formula (4).

Combining Formulæ (4) and (5) we obtain the following:

Theorem 5. We have:

\[A(x, y, z) = \frac{1}{2xy(xyz - z - xy)} \left(-1 + xy + 2x^2y - 2x^2y^2 + xz - 2xyz - 2x^2yz + 2x^2y^2z + \sqrt{1 - 2xy - 4x^2y + x^2y^2 - 2xz + 2x^2yz + x^2z^2}\right) \]
This last result allows us to determine the generating function $E(x, y)$ of the Eulerian distribution over $S_n(123)$. In fact, previous arguments show that

$$E(x, y) = A(x, y, y)$$

and hence:

Theorem 6. We have:

$$E(x, y) = \frac{-1 + 2xy + 2x^2y - 2xy^2 - 4x^2y^2 + 2x^2y^3 + \sqrt{1 - 4xy - 4x^2y + 4x^2y^3}}{2xy^2(xy - 1 - x)}.$$

The first values of the sequence $e_{n,d}$ are shown in the following table:

n/d	0	1	2	3	4	5	6
0	1						
1	1						
2	1	1					
3	0	4	1				
4	0	2	11	1			
5	0	0	15	26	1		
6	0	0	5	69	57	1	
7	0	0	0	56	252	120	1

Needless to say, the series $A(x, y, z)$ specializes into some well known generating functions. In particular, $A(x, 1, 1)$ is the generating function of Catalan numbers, $A(x, 1, 0)$ the generating function of Motzkin numbers, $yA(x, y, 1)$ the generating function of Narayana numbers, and $A(x, 1, z)$ the generating function of seq. A092107 in [5].

REFERENCES

[1] C.Krattenthaler, Permutations with restricted patterns and Dyck paths, *Adv. in Appl. Math.*, 27 (2001), 510-530.
[2] A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, *Discrete Math.*, 307 (2007), 2909-2924.
[3] R.Simion, Combinatorial statistics on noncrossing partitions, *J. Combin. Theory Ser. A*. 66 (1994), no. 2, 270-301.
[4] R.Simion, F.W.Schmidt, Restricted permutations, *Europ. J. Combin*, 6 (1985), 383-406.
[5] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.
[6] C. Stump, On bijections between 231-avoiding permutations and Dyck paths, *Sém. Lothar. Combin.* 60 (2009).

[7] M. Zabrocki, Private communication.

Department of Mathematics, University of Bologna, P.zza di Porta San Donato 5, 40126 Bologna

E-mail address: barnabei@dm.unibo.it, bonetti@dm.unibo.it, silimban@dm.unibo.it