Corrigendum for the comparison theorems in ”A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations”.

Mariko Arisawa
GSIS, Tohoku University
Aramaki 09, Aoba-ku, Sendai 980-8579, JAPAN
E-mail: arisawa@math.is.tohoku.ac.jp

In this note, we shall present the correction of the proofs of the comparison results in the paper [1]. In order to show clearly the correct way of the demonstration, we shall simplify the problem to the following.

(Problem (I)) : \[F(x, u, \nabla u, \nabla^2 u) - \int_{\mathbb{R}^N} u(x + z) - u(x) \]
\[-1_{|z| \leq 1}(z, \nabla u(x))q(dz) = 0 \quad \text{in} \quad \Omega, \quad (1)\]

(Problem (II)) : \[F(x, u, \nabla u, \nabla^2 u) - \int_{\{z \in \mathbb{R}^N | x + z \in \Omega\}} u(x + z) - u(x) \]
\[-1_{|z| \leq 1}(z, \nabla u(x))q(dz) = 0 \quad \text{in} \quad \Omega, \quad (2)\]

where \(\Omega \subset \mathbb{R}^N \) is open, and \(q(dz) \) is a positive Radon measure such that \(\int_{|z| \leq 1} |z|^2 q(dz) + \int_{|z| > 1} 1q(dz) < \infty \). Although in [1] only (II) was studied, in order to avoid the non-essential technical complexity, here, let us give the explanation mainly for (I). For (I), we consider the Dirichlet B.C.:
\[u(x) = g(x) \quad \forall x \in \Omega^c, \quad (3) \]
where g is a given continuous function in Ω^c. For (II), we assume that Ω is a precompact convex open subset in \mathbb{R}^N with C^1 boundary satisfying the uniform exterior sphere condition, and consider either the Dirichlet B.C.:

$$u(x) = h(x) \quad \forall x \in \partial \Omega,$$

(4)

where h is a given continuous function on $\partial \Omega$, or the Neumann B.C.:

$$\langle \nabla u(x), n(x) \rangle = 0 \quad \forall x \in \partial \Omega,$$

(5)

where $n(x) \in \mathbb{R}^N$ the outward unit normal vector field defined on $\partial \Omega$. The above problems are studied in the framework of the viscosity solutions introduced in [1]. Under all the assumptions in [1], for (I) the following comparison result holds, and for (II), although the proofs therein are incomplete, the comparison results stated in [1] hold, and we shall show in a future article.

Theorem 1.1 (Problem I with Dirichlet B.C.) Assume that Ω is bounded, and the conditions for F in [1] hold. Let $u \in USC(\mathbb{R}^N)$ and $v \in LSC(\mathbb{R}^N)$ be respectively a viscosity subsolution and a supersolution of (1) in Ω, which satisfy $u \leq v$ on Ω^c. Then, $u \leq v$ in Ω.

To prove Theorem 1.1, we approximate the solutions u and v by the sup-convolution: $u^r(x) = \sup_{y \in \mathbb{R}^N} \{u(y) - \frac{1}{2r^2}|x - y|^2\}$ and the infconvolution: $v^r(x) = \inf_{y \in \mathbb{R}^N} \{v(y) + \frac{1}{2r^2}|x - y|^2\} \ (x \in \mathbb{R}^N)$, where $r > 0$.

Lemma 1.2 (Approximation for Problem (I)) Let u and v be respectively a viscosity subsolution and a supersolution of (1). For any $\nu > 0$ there exists $r > 0$ such that u^r and v^r are respectively a subsolution and a supersolution of the following problems.

$$F(x, u, \nabla u, \nabla^2 u) - \int_{\mathbb{R}^N} u(x + z) - u(x) - 1_{|z| < 1} \langle z, \nabla u(x) \rangle q(dz) \leq \nu,$$

(6)

$$F(x, v, \nabla v, \nabla^2 v) - \int_{\mathbb{R}^N} v(x + z) - v(x) - 1_{|z| < 1} \langle z, \nabla v(x) \rangle q(dz) \geq -\nu,$$

(7)

in $\Omega_r = \{x \in \Omega | \ dist(x, \partial \Omega) > \sqrt{2Mr}\}$, where $M = \max\{\sup_{\Omega}|u|, \sup_{\Omega}|v|\}$.

2
Remark that u' is semiconvex, v_r is semiconcave, and both are Lipschitz continuous in \mathbb{R}^N. We then deduce from the Jensen’s maximum principle and the Alexandrov’s theorem (deep results in the convex analysis, see [2] and [3]), the following lemma, the last claim of which is quite important in the limit procedure in the nonlocal term.

Lemma 1.3 Let U be semiconvex and V be semiconcave in Ω. For \(\phi(x, y) = \alpha|x - y|^2 \) (\(\alpha > 0 \)) consider $\Phi(x, y) = U(x) - V(y) - \phi(x, y)$, and assume that (x, y) is an interior maximum of Φ in $\overline{\Omega} \times \overline{\Omega}$. Assume also that there is an open precompact subset O of $\Omega \times \Omega$ containing (x, y), and that $\mu = \sup_{O} \Phi(x, y) - \sup_{\partial O} \Phi(x, y) > 0$. Then, the following holds.

(i) There exists a sequence of points $(x_m, y_m) \in O$ (\(m \in \mathbb{N} \)) such that $\lim_{m \to \infty} (x_m, y_m) = (x, y)$, and $(p_m, X_m) \in J_{\Omega}^+ U(x_m)$, $(p'_m, Y_m) \in J_{\Omega}^- V(y_m)$ such that $\lim_{m \to \infty} p_m = \lim_{m \to \infty} p'_m = 2\alpha(x_m - y_m) = p$, and $X_m \leq Y_m \quad \forall m$.

(ii) For $P_m = (p_m - p, -(p'_m - p))$, $\Phi_m(x, y) = \Phi(x, y) - \langle P_m, (x, y) \rangle$ takes a maximum at (x_m, y_m) in O.

(iii) The following holds for any $z \in \mathbb{R}^N$ such that $(x_m + z, y_m + z) \in O$.

\[
U(x_m + z) - U(x_m) - \langle p_m, z \rangle \leq V(y_m + z) - V(y_m) - \langle p'_m, z \rangle. \tag{8}
\]

By admitting these lemmas here, let us show how Theorem 1.1 is proved.

Proof of Theorem 1.1. We use the argument by contradiction, and assume that $\max_{\overline{\Omega}} (u - v) = (u - v)(x_0) = M_0 > 0$ for $x_0 \in \Omega$. Then, we approximate u by u' (supconvolution) and v by v_r (infconvolution), which are a subsolution and a supersolution of (6) and (7), respectively. Clearly, $\max_{\overline{\Omega}} (u' - v_r) \geq M_0 > 0$. Let $x \in \Omega$ be the maximizer of $u' - v_r$. In the following, we abbreviate the index and write $u = u'$, $v = v_r$ without any confusion. As in the PDE theory, consider $\Phi(x, y) = u(x) - v(y) - \alpha|x - y|^2$, and let (\hat{x}, \hat{y}) be the maximizer of Φ. Then, from Lemma 1.3 there exists $(x_m, y_m) \in \Omega$ (\(m \in \mathbb{N} \)) such that $\lim_{m \to \infty} (x_m, y_m) = (\hat{x}, \hat{y})$, and we can take (ϵ_m, δ_m) a pair of positive numbers such that $u(x_m + z) \leq u(x_m) + \langle p_m, z \rangle + \frac{1}{2} \langle X_m z, z \rangle + \delta_m |z|^2$, $v(y_m + z) \geq v(y_m) + \langle p'_m, z \rangle + \frac{1}{2} \langle Y_m z, z \rangle - \delta_m |z|^2$, for $\forall |z| \leq \epsilon_m$. From the definition of the viscosity solutions, we have

\[
F(x_m, u(x_m), p_m, X_m) - \int_{|z| \leq \epsilon_m} \frac{1}{2} \langle X_m + 2\delta_m I \rangle z \rangle dq(z)
- \int_{|z| \geq \epsilon_m} u(x_m + z) - u(x_m) - 1_{|z| \leq \epsilon_m} (z, p_m) q(dz) \leq \nu,
\]
\[
F(y_m, v(y_m), p'_m, Y_m) - \int_{|z| \leq \varepsilon_m} \frac{1}{2} \langle (Y_m - 2\delta_m I) z, z \rangle dq(z) \\
- \int_{|z| \geq \varepsilon_m} v(y_m + z) - v(y_m) - 1_{|z| \leq 1} \langle z, p'_m \rangle q(dz) \geq -\nu.
\]

By taking the difference of the above two inequalities, by using (8), and by passing \(m \to \infty \) (thanking to (8), it is now available), we can obtain the desired contradiction. The claim \(u \leq v \) is proved.

Remark 1.1. To prove the comparison results for (II) (in [1]), we do the approximation by the supconvolution: \(u_r(x) = \sup_{y \in \Omega} \{ u(y) - \frac{1}{2r^2} |x - y|^2 \} \), and the inconvolution: \(v_r(x) = \inf_{y \in \Omega} \{ v(y) + \frac{1}{2r^2} |x - y|^2 \} \) as in Lemma 1.2. Because of the restriction of the domain of the integral of the nonlocal term and the Neumann B.C., a slight technical complexity is added. The approximating problem for (2)-(5) in \(\overline{\Omega} \) is as follows.

\[
\min \{ F(x, u(x), \nabla u(x), \nabla^2 u(x)) + \min_{y \in \Omega, |x - y| \leq \sqrt{2Mr}} \{ -\int \langle z, \nabla u(x) \rangle q(dz), \min_{y \in \partial \Omega, |x - y| \leq \sqrt{2Mr}} \{ \langle n(y), \nabla u(x) \rangle + \rho \} \leq \nu \} \}
\]

\[
\max \{ F(x, v(x), \nabla v(x), \nabla^2 v(x)) + \max_{y \in \Omega, |x - y| \leq \sqrt{2Mr}} \{ -\int \langle z, \nabla v(x) \rangle q(dz), \max_{y \in \partial \Omega, |x - y| \leq \sqrt{2Mr}} \{ \langle n(y), \nabla v(x) \rangle - \rho \} \geq -\nu \} \}
\]

We deduce the comparison result from this approximation and Lemma 1.3, by using the similar argument as in the proof of Theorem 1.1.

References

[1] M. Arisawa, A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations.

[2] M.G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the AMS, vol.27, no. 1 1992.

[3] W.H. Fleming and H.M. Soner, Controlled Markov processes and Visco-sity solutions, Springer-Verlag 1992.