Dujardin, Marie, Madan, Vanesa, Gandhi, Neha S., Cantrelle, Francois-Xavier, Launay, Helene, Huvent, Isabelle, Bartenschlager, Ralf, Lippens, Guy, & Hanoulle, Xavier (2019)
Cyclophilin A allows the allosteric regulation of a structural motif in the disordered domain 2 of NS5A and thereby fine-tunes HCV RNA replication. Journal of Biological Chemistry, 294(35), pp. 13171-13185.

This file was downloaded from: https://eprints.qut.edu.au/131471/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Submitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appearance. If there is any doubt, please refer to the published source.

https://doi.org/10.1074/jbc.RA119.009537
Cyclophilin A allows the allosteric regulation of a structural motif in the disordered domain 2 of NS5A and thereby fine-tunes HCV RNA replication

Marie Dujardin¹,⁰, Vanesa Madan²,⁵,⁶,⁷, Neha S. Gandhi³,⁴, François-Xavier Cantrelle¹, Hélène Launay¹,⁵, Isabelle Huvent¹, Ralf Bartenschlager², Guy Lippens¹,‡, and Xavier Hanoulle¹,*

From the ¹Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; ²Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany; ³School of Mathematical Sciences and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane QLD 4000, Australia.

Running title: Conformational regulation of NS5A-D2 by CypA

*These authors contributed equally to this work

⁰Present address: Dujardin, M., University of Lyon, CNRS, UMR 5086, MMSB, Molecular Microbiology and Structural Biochemistry, F-69367 Lyon, France.

⁶Present address: Madan, V., MRC- Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH, Cambridge, UK.

⁷Present address: Launay H., University of Aix-Marseille, CNRS, UMR 7281, BIP, Bioénergétique et Ingénierie des Protéines, F-13402 Marseille, France.

‡Present address: Lippens, G., Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, INSA, University of Toulouse, CNRS, INRA, F-31077 Toulouse, France.

* To whom correspondence should be addressed: Xavier Hanoulle, Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Campus CNRS de la Haute-Borne, 50 Avenue du Halley, 59000 Lille, France; Tel. +33 (0)362 531 716; E-mail: xavier.hanoulle@univ-lille.fr

Keywords: Intrinsically disordered protein (IDP); Conformer ensemble; Nuclear magnetic resonance (NMR); Proline; Peptidyl-prolyl cis/trans isomerase (PPIase); Allosteric regulation; Cyclophilin A; Hepatitis C Virus (HCV), RNA replication; nonstructural protein 5A (NS5A).

Abstract
Implicated in numerous human diseases, intrinsically disordered proteins (IDPs) are dynamic ensembles of interconverting conformers that often contain many proline residues. Whether and how proline conformation regulates the functional aspects of IDPs remains an open question, however. Here, we studied the disordered domain 2 of nonstructural protein 5A (NS5A-D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short structural motif (PW-turn) embedded in a proline-rich sequence, whose interaction with the human prolyl isomerase cyclophilin A (CypA) is essential for viral RNA replication. Using NMR, we show here that the PW-turn motif exists in a conformational equilibrium between folded and disordered states. We found that the fraction of conformers in the NS5A-D2 ensemble that adopt the structured motif is allosterically modulated both by the cis/trans isomerization of the surrounding prolines that are CypA substrates and by substitutions conferring resistance to cyclophilin inhibitor. Moreover, we noted that this fraction is directly correlated with HCV RNA replication efficiency. We conclude that CypA can fine-tune the dynamic ensemble of the disordered NS5A-D2, thereby regulating viral RNA replication efficiency.

Hepatitis C virus (HCV) is a positive sense single-stranded RNA (~9.6kb) virus, belonging to the Flaviviridae family. It is estimated that worldwide ~71 million people have a chronic HCV infection (1). This can lead to progressive hepatic injuries, such as cirrhosis.
or even hepatocellular carcinoma (2). Each year, chronic hepatitis C is responsible for the death of roughly 400,000 people with ~25% of all liver cancer cases being linked to HCV infection.

The HCV genome has one large open reading frame, encoding a polyprotein precursor that is proteolytically processed into 10 mature proteins by both host and viral proteases. The structural proteins (core, E1 and E2) constitute the viral particle, and the non-structural (NS) proteins (p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B) are involved in virion formation and RNA replication (3, 4). NS3 to NS5B, bound to double-membrane vesicles (DMV) derived from the host endoplasmic reticulum (ER), constitute the viral replication machinery (5–7). This complex, by means of the RNA-dependent RNA polymerase activity of NS5B, replicates the viral genome (8, 9).

NS5A is a key multifunctional phosphoprotein (49 kDa) that is essential for HCV genome replication (10, 11) and that is also involved in virion production (12). NS5A is known to interact with numerous viral and host proteins (4, 13–15). NS5A, which is bound to the ER membrane via an N-terminal amphipathic helix (16), is composed by a folded cytoplasmic domain (NS5A-D1) (11) and two intrinsically disordered domains (NS5A-D2 and -D3) (17–19) (Fig. 1a). No enzymatic activity has been identified for any of these domains. Different homodimeric structures of NS5A-D1 (11, 20, 21) suggested it might be implicated in RNA-binding (22). Importantly, this domain is the molecular target for direct-acting antivirals (DAAs) against NS5A (23, 24). NS5A-D2 and -D3 are intrinsically disordered, and thus exist as a dynamic ensemble of conformers. NS5A-D2 is required for viral RNA replication (10) whereas NS5A-D3 is involved in viral particle production and assembly (12). We and others have shown that NS5A-D2 and -D3 interact with and are substrates of human Cyclophilin A (CypA) (25–27), a peptidyl-prolyl cis/trans isomerase (PPIase) that is an essential host factor for HCV replication (28). Detailed analysis assigned the main CypA binding site to a small region (about 20 amino acid residues) in NS5A-D2 that contains 5 strictly conserved residues across the seven HCV genotypes, amongst which are 3 proline residues (25, 29). An even shorter peculiar structural motif, called PW-turn (314PxWA317 in the Con1 strain, genotype 1b), that is essential for HCV RNA replication was identified in this region (30) (Fig. 1a). Disruption of the PW-turn weakens the molecular interaction between NS5A-D2 and CypA, but is required for efficient prolyl cis/trans isomerase activity of CypA towards the 313M-314P bond, contrary to the other prolyl bonds of the domain (30). The interaction between NS5A-D2 and CypA can be inhibited by Cyclosporin A (CsA) or its non-immunosuppressive analogs such as alisporivir (ALV), SCY-635 or NIM-811, or by other small-molecule cyclophilin inhibitors (smCypI) (31–34). These compounds thereby act as host-targeted antivirals (HTAs). NS5A hence can be equally targeted by DAAs (via NS5A-D1) or by HTAs (via NS5A-D2 through its interaction with CypA). Of note, studies of HCV NS5A and CypA paved the way for the use of CypI for other viral infections such as human coronaviruses (e.g. MERS or SARS) that also require CypA for their replication (35).

The role(s) of CypA in HCV replication and the mechanism of action (MOA) of cyclophilin inhibitors (CypIs) are complex and still not completely understood. CypIs bind host CypA in a single hydrophobic pocket that contains both its enzymatic PPIase and binding activities, and thereby disrupt both the molecular interaction between CypA and NS5A-D2 as well as the putative CypA PPIase activity towards selected prolyl bonds in NS5A-D2 (25, 36, 37). Therefore, all CypA catalytic mutants are also impaired in their binding properties. Several laboratories have demonstrated that CypIs inhibit the de novo formation of the DMVs, the HCV-induced membrane structures that hold the replication complex (38, 39). A remodeling of the ER in the presence of CypIs has also been observed in HCV-infected cells (40). Most of the identified CypI-resistance mutations, such as D320E, D320E-Y321N and Y321H (41, 28, 42), are located in the immediate proximity of the PW-turn in NS5A-D2. These mutations confer a moderate resistance (~2-4 fold) to CypIs and hence a partial CypA-independence, but do not abolish the interaction between CypA and NS5A-D2 (27, 43, 44). A better understanding of the functional role(s) of both CypA and NS5A, and specifically of the disordered domains of the latter, in the HCV life cycle could shed light on the underlying molecular mechanisms of this resistance.

Intrinsically disordered proteins (or regions) (IDPs/IDRs) are functional despite not
having a stable 3D structure (45, 46). They are best described as dynamic ensembles of interconverting conformers. Their biological functions are usually related to their capacity to interact with numerous partners, with a high specificity often related to low affinity (even if sub-nM affinities have been reported (47)). As a consequence, they are often described as molecular hubs. IDPs/IDRs, despite any enzymatic activity, are nonetheless involved in cell signaling and regulatory processes, which can be physiological or pathological. Indeed, their implication has been demonstrated in numerous human diseases, including cancer, neurodegeneration, diabetes and viral infections (48). IDPs/IDRs can interact with a biological partner while remaining disordered and form fuzzy complexes (49), but they can also establish interactions using short peptide motifs, including short linear motifs (SLiMs) (50), molecular recognition features (MoRFs) (51), or pre-structured motifs (PreSMos) (52), and then fold upon binding. The biological functions of IDPs/IDRs are further regulated by alternative splicing and post-translational modifications (PTMs), including phosphorylation, ubiquitination and glycosylation (53). These PTMs can modulate the structural and conformational properties of IDPs/IDRs and thereby break or promote interactions. IDPs are also enriched in proline residues (54), but whether these have any functional role has not yet been described in a conclusive manner. More recently, the concept of allostery has been expanded from its original paradigm (55) and allosteric regulations have been described in disordered protein (56, 57). It has been shown that allosteric perturbations (ligand binding, PTMs, mutations) can change the functional properties of IDPs/IDRs by remodeling their energy landscape or conformational ensemble (i.e. population shift). This extreme complexity allows IDPs/IDRs to exert a fine modulation of biological processes (58).

Here, we combine nuclear magnetic resonance (NMR) spectroscopy with molecular dynamics (MD) simulations to decipher the role of the proline residues on the structural disorder in HCV NS5A-D2, and link it to its functional consequences. The detailed conformational behavior of NS5A-D2 (JFH1 strain, genotype 2a) with its PW-turn structural motif centered on 310Pawa313 confirms its pan-genotypic importance for HCV. Using the W312 resonance as a probe, we show that the NS5A-D2 region encompassing the PW-turn exhibits a peculiar dynamic behavior whereby it may adopt, at least, 2 conformational states, one structured with the PW-turn conformation fully formed and one totally disordered. These two states are in the fast-exchange NMR regime. Unexpectedly, we find that the cis/trans isomerization state of the 5 surrounding proline residues affects the ratio of conformers that adopt or not the PW-turn motif in the NS5A-D2 ensemble. Hence, this structural motif is allosterically regulated by proline cis/trans equilibria. CypA, through catalyzing the interconversion for distinct prolines, can thereby connect these different ensembles on a sub-second time scale. Importantly, we find that the CypI-resistance mutations in NS5A-D2 correspond to similar allosteric perturbations as they favour ensembles with a decreased structured PW-turn population. Using a cell-based assay, we show that the population of the structured PW-turn motif in the ensemble directly correlates with HCV RNA replication efficiency. Our results reveal a complex mechanism in which CypA modulates NS5A-D2’s function.

Results

NMR characterization of NS5A-D2 and its PW-turn motif

The 1H,15N-HSQC NMR spectrum of NS5A-D2 of the HCV JFH1 strain (genotype 2a) (Fig. 1b) displays a narrow 1H chemical shift dispersion that confirms the high level of intrinsic disorder in this domain (18). The secondary structure propensity analysis, based on the 13C chemical shifts, indicates the presence of several residual α-helices and extended regions in the N-terminal half (Fig. 1c). This is similar to the observations made on NS5A-D2 from the HCV strains HC-J4 and Con1 (both genotype 1b) (59, 30). Comparison of the experimental 1H and 15N chemical shifts of NS5A-D2 (JFH1) with those predicted for a truly disordered protein (60) highlights unexpected values for the tryptophan 312 (W312) residue in the C-terminal part of the domain (Fig. 1d and Figs. S1 and S2). A similar observation was made for the equivalent W316 residue in NS5A-D2 of the HCV Con1 strain and was attributed to the presence of the PW-turn structural motif in the most conserved
region of NS5A-D2 (30). The primary sequence of the PW-turn in the Con1 strain is 14PIWA37, whereas it is 30PAWA33 in JFH1. In this motif, all positions but the second are strictly conserved in all HCV genotypes. We used a 20-mer peptide (pepD2-WT) to obtain an atomic description of this region in NS5A-D2 (JFH1) (Fig. S3). All the NMR data (1H, 15N, 13C chemical shifts, NOE contacts, as well 3J$_{HN-HN}$ couplings) were used to calculate a NMR structural model of this PW-turn (Fig. 2 and Fig. S4a). The local RMSD values suggest that beyond the core of the PW-turn (i.e. 30PAWA33), where the ring of P310 and the aromatic side-chain of W312 are engaged in a CH/π interaction (61), the residues at its C-terminus also adopt a certain degree of order (Fig. 2b). The interaction of the PW-turn motif, and specifically the W312 residue, with the Y317 side-chain and the rings of P319 and P320 (Fig. 2c) agree with a similar extension of the motif as described in the peptide when bound to the MOBKL1B protein (62). Conformations of pepD2-WT, free in solution (this study), are closely related to its structure in the crystallographic complex with MOBKL1B (Fig. S4b).

The plot of the 1H,15N-HSQC peak intensity along the NS5A-D2 sequence reveals that the resonances in the N-terminal moiety are narrower than those in the C-terminal half (Fig. 1e). 15N spin relaxation data on the full-length domain confirmed this, with higher R2 values for the region 304-321 of NS5A-D2. Heteronuclear-NOE values in this region are also clearly positive, whereas they are negative or close to zero for most residues in the N-terminal half of the fragment. We hence conclude that this region, encompassing the PW-turn and corresponding to the host CypA binding site (25), is characterized by an increased rigidity while simultaneously experiencing exchange broadening (63) (Fig. 1f-h). We next measured the residual dipolar couplings (RDC$_{NH}$) of the individual HN vectors in NS5A-D2 using a partially oriented sample (Fig. 1i). The residues in the region 304-321 display RDC$_{NH}$ values higher than expected for an IDR (64). The highest value (32.8 Hz) was observed for the W312 residue in the PW-turn motif. The RDC$_{NH}$ values from the W312 and W325 side-chains were 40 Hz and 24 Hz, respectively (data not shown). Altogether, these data confirm that the CypA-binding site contains a structured PW-turn motif with nevertheless a peculiar structural dynamics.

We have previously reported that the I315G mutation in a peptide derived from NS5A-D2 of the Con1 strain precludes the presence of the PW-turn motif without making any change on the conserved residues. To investigate the functional role of the PW-turn motif in the JFH1 strain, we introduced the analogous mutation, A311G, in NS5A-D2. We found that this mutation also efficiently disrupts the PW-turn in NS5A-D2 because in the different NMR spectra acquired on this NS5A-D2 mutant, the proton amide and 13Cα resonances of W312 and A313 move toward their expected frequencies for a fully disordered region (Figs. S1b and S5). The NS5A-D2 A311G mutant hence provides a way to assess the structural and functional role(s) played by the PW-turn motif in the CypA-binding site.

Proline conformations induced a linear chemical shift pattern for W312

Upon closer examination of the 1H,15N-HSQC of NS5A-D2 WT, we identified up to six resonances that could be assigned to the same W312 residue (Fig. 3a). Based on the peak intensity, there are one major (W312_1) and five minor (W312_2 to W312_6) W312 resonances. As the W312 residue is surrounded by 5 different proline residues in NS5A-D2, we hypothesized that this conformational heterogeneity with slow exchange on the time scale imposed by the chemical shift differences between the individual resonances could correspond to the cis/trans equilibria of these individual proline residues. Evidence was found in the 1H,15N,13C-3D experiments used for the assignment of the fragment. Starting from the proton amide W312_6 resonance and using the 13C chemical shifts (Cα, Cβ and Cγ), we connected it in a sequential fashion, to a minor resonance of the A311 residue (A311_6), which is itself linked to a residue with 13C chemical shifts typical of a cis-proline (62.4 and 34.3 ppm for Cα and Cβ, respectively) (65) (Fig. S6). Thus, the minor W312_6 resonance originates from the cis conformation of the P310 residue. Likewise, the other minor W312 resonances are also related to the cis conformation of proline residues. Indeed, in a 1H,15N-heteronuclear zz-exchange experiment (66) in the presence of a catalytic amount of CypA, we identified exchange cross-peaks connecting each of the minor W312 resonances...
(W312_2 to W312_6) to the major one (W312_1) (Fig. 3b). To link each of the minor W312 resonances to a particular proline residue, we compared the 1H, 15N-HSQC spectra of NS5A-D2 Pro-to-Ala mutants (NS5A-D2 P306A, P310A, P315A, P319A and P320A) with that of the WT construct (Figs. S7-S11) (67). In each mutant spectrum, a minor W312 resonance is missing. We therefore could unambiguously assign the minor W312 resonances in the 1H, 15N-HSQC of NS5A-D2 WT to sub-populations of the peptide with a single prolyl bond in the cis conformation (Fig. 3a). The W312_1 resonance thereby corresponds to the trans conformation of P306, P310, P315, P319 and P320.

All of these W312 resonances fall along a line and form a linear chemical shift pattern (Fig. 3). A similar spectral behavior was observed for the residue A313 (Fig. S12), which is also part of the PW-turn motif. A linear pattern of chemical shifts was previously interpreted as a proof that this residue exists in (at least) two conformational states with distinct chemical shift environments in fast exchange on the NMR timescale (68). Even if the W312_6 and W312_1 resonances do not exactly match with the two pure states of this fast-exchange system, these resonances can be used as proxies for the two conformational states at the extremity of the linear chemical shift pattern. Considering the frequency difference between the W312_1 and W312_6 resonances ($\Delta \omega$ \sim420Hz, $\Delta \omega$ 13N \sim300Hz), the timescale of this exchange is faster than 1-0.1ms. Moreover, the observed line broadening or equivalent enhanced R2 rates for this residue suggest that the exchange is close to this µs-ms time range.

Allosteric regulation of the PW-turn motif by proline cis/trans equilibria

In order to further characterize the PW-turn in each of these distinct conformers, we analysed the same NMR parameters as for the major all-trans form for the distinct conformers: deviations between experimental 1H, 15N-combined chemical shift or 13Cα chemical shift values and their expected neighbour-corrected random coil values, the RDC$_{\text{NIJ}}$ for each of the W312 resonances and the difference between the proton chemical shift values of W312 Hβ2 and Hβ3, respectively. As a result, we firmly established a linear correlation between each of these structural NMR parameters and either the 1H or the 15N experimental chemical shift values of the W312 resonances (Fig. 4 and Fig. S13). The left-most point (W312_6) on the linear chemical shift pattern, corresponding to the cis conformer of P310, is close to both the W312 resonance in the A311G mutant and to the expected position for random-coil region, whereas the experimental parameters used to derive the atomic structure of the structured PW-turn (Fig. 2) correspond to the all-trans right-most point (W312_1). The position of the W312 resonance along the linear chemical shift pattern corresponds to the population-weighted average between these two states. The folding-unfolding of the PW-turn structural motif in the disordered NS5A-D2 thus is allosterically regulated by the cis/trans conformation of 5 different proline residues, i.e. P306, P310, P315, P319 and P320. Adopting a cis conformation for any single proline residue reduces the structured population in the conformational ensemble. The impact of these cis-prolines on the PW-turn is not directly proportional to the distance to W312 in the primary sequence. The P319cis and P320cis, which are at a distance of 7 and 8 residues, respectively, have for example a more pronounced effect on the PW-turn than the P306cis that is at a distance of 6 residues (Fig. S14). Interestingly, the three proline residues having a major effect on the structured PW-turn content, i.e. P310, P315 and P319, respectively (Fig. 3 and Fig. S14), correspond to the ones having the most pronounced functional impact on HCV RNA replication (28).

CypA-inhibitor resistance mutations correspond to allosteric perturbations

The model of NS5A-D2 with a population-weighted average between a structured PW-turn motif and its disordered counterpart is further strengthened by the analysis of the NMR spectra of NS5A-D2 mutants. We examined the position of the major W312 resonance (i.e. W312_1) in the 1H, 15N-HSQC spectra of two NS5A-D2 mutants with CypA-inhibitor resistance mutations (D316E or D316E-Y317N (DEYN), respectively). These mutations confer to HCV a moderate resistance (~2-4 fold) to CypIs and a reduced CypA-dependency (41, 43, 27, 44). Comparing them to W312’s position in NS5A-D2 Pro-to-Ala mutants (P306A, P310A, P315A, P319A and P320A) (Fig. 5) and the A311G mutant, in which the PW-turn motif is absent (see Fig. S1b), we find that the W312 peak in all these
mutants displays a colinear chemical shift perturbation (CCSP) pattern (68) (Fig. 5a), that coincides with the one previously defined by the cis forms of individual prolines in NS5A-D2 WT (Fig. 4a). This further confirms the PW-turn as a dynamic, rapidly inter-converting ensemble wherein individual mutations directly influence the population of folded and unfolded conformers. The 1H and 15N chemical shift values of the W312 resonance from the mutants correlate linearly with several structural NMR parameters (13Cα, δ NH) (Fig. 5b,c and Fig. S15), and indicate that all but the P320A mutation reduce the population of the structured PW-turn motif in the dynamic ensemble (Fig. 5a). To verify whether the effect of the Cyp-resistant mutants was direct rather than indirectly mediated through an altered proline cis/trans ratio, we explicitly measured the cis/trans ratio of each Proline in the pepD2-WT or its D316E counterpart (Fig. 5d and Fig. S16).

Our combined results demonstrate that the short structural PW-turn motif (310PAWA313) identified in NS5A-D2 is structurally coupled to a larger region encompassing the 304-323 residues, whereby this larger peptide can adopt a structured motif (the PW-turn) in equilibrium with a disordered conformer. Any perturbation in this region has its impact on this equilibrium (Fig. S17). The different amino acid substitutions (A311G, D316E, DEYN, P306A, P310A, P315A, P319A and P320A) and the cis-proline conformation of P306, P310, P315, P319 and P320, all constitute a library of allosteric perturbations. We used the chemical shift projection analysis (CHESPA) method (69, 70) on the two linear chemical shift patterns described in Fig. 4a and Fig. 5a, respectively (Fig. 5e). To this end, the W312_6 (disordered) and W312_1 (structured) have been considered as the extremities of the linear pattern. The projection angle (cosθ) defines the direction of the perturbation and also shows if the observed residue (here W312) is affected by the perturbation through nearest-neighbor effects. All perturbations resulted in a cosθ value of <1, which is expected for a linear pattern. The only exception is for the A311G mutation that has a stronger nearest-neighbor effect on the W312 resonance. The fractional shift (X) allows the quantification of the two states (here disordered/structured) in the presence of one of the perturbations (here, cis-Pro or mutations). The D316E and DEYN mutations, the cis-P315 conformation or the A311G mutation thereby correspond to ensembles wherein 82%, 61%, 55%, or 7% of the conformers, respectively, adopt the structured PW-turn motif.

Molecular dynamics of the PW-turn

To validate our NMR based conclusions by an independent approach, we performed Gaussian Accelerated Molecular Dynamics (MD) simulations (~280ns, 140000 frames) on five 20-mer peptides (pepD2-WT, -D316E, -DEYN, -A311G, and -P315cis). For each simulation, a dihedral principal component analysis (dPCA) (71, 72) was performed on the backbone dihedral angles (phi and psi) of residues 309 to 316, and a clustering of the structures was performed using the two first vectors of the dPCA (Fig. S18a). The percent of the time that each cluster is present was determined. Then, using our NMR structure as a reference, we probed the presence of the PW-turn motif in every cluster of each calculation. In the MD simulations, the PW-turn motif was found in 90%, 73%, 66%, 65% and 2% of the conformers (called the PW_fraction) for the pepD2-WT, pepD2-D316E, pepD2-DEYN, pepD2-P315cis and pepD2-A311G, respectively (Fig. 6a). Ensemble average proton amide (1H and 15N) chemical shift predictions, performed with ShiftX2 (73) on the MD structures, showed linear patterns for W312 and A313, confirming the experimental observations (Fig. S18b,c). There is a strong linear correlation between the PW_fractions from the MD simulations and the experimental 1H or 15N chemical shifts of W312 in the HSQC spectra of NS5A-D2 (Fig. 6b,c). We also found a linear correlation (R² = 0.94) between the MD PW_fractions and the fractional shift (X) from the CHESPA analysis (Fig. 6d), illustrating the validity of the model.

The interaction with CypA is modulated by the fraction of the structured PW-turn in NS5A-D2

We have previously shown that the disruption of the structured PW-turn motif weakens threefold the molecular interaction between CypA and NS5A-D2 (in the context of the Con1 strain) (30). As the CypA-inhibitor resistance mutation D316E reduces the fraction of the NS5A-D2 conformers that retain this
structural element (Fig. 6), the molecular interaction between NS5A-D2 D316E and CypA was assessed. Using 15N-labeled CypA, NMR titration experiments were acquired with increasing amounts of either unlabeled PepD2-WT, PepD2-D316E or PepD2-A311G peptides (Fig. 7 and Fig. S19a-c). The dissociation constants (K_D) were determined from the chemical shift perturbations of CypA induced by the addition of the peptides. The affinity between CypA and PepD2-WT (K_D = 0.74 mM), which hold the structured PW-turn, is ~2 times higher than the one with the fully disordered Pep D2-A311G peptide (K_D = 1.37 mM). These affinities are similar to the ones that we have previously measured between CypA and the similar peptides derived from the HCV Con1 strain (0.53 and 1.38 mM, respectively) (30). With respect to the interaction between CypA and the peptide pepD2-D316E, an intermediate K_D value of 1.18 mM was measured. The affinities between CypA and the NS5A-D2 derived peptides, even being in the same order of magnitude, are correlated with the fraction of the conformers that own the structured PW-turn motif in the NS5A-D2 ensemble, as determined by NMR spectroscopy and MD simulations (Fig. S19d,e).

The fraction of structured PW-turn motif in NS5A-D2 ensemble tunes the HCV replication level

The PW-turn motif in NS5A-D2 is essential for HCV RNA replication (30, 10), but has the dynamic equilibrium between the structured and disordered states that we identified in this study any functional relevance? In order to address this question, we measured the replication of subgenomic HCV replicons (JFH1 strain) encoding a firefly luciferase gene. These replicon RNAs were transfected into Huh-7 cells and replication was determined by quantifying luciferase in lysates of cells that were harvested at different time points after transfection. We have earlier shown that luciferase activity is a direct measure of viral RNA replication with the 4 h value serving as baseline because it reflects transfection efficiency. To study the importance of the equilibrium shift of the PW-turn motif, we compared replication capacity of the wild-type (WT) replicon or replicon variants containing distinct mutations in NS5A-D2 (A311G, P310A, DEYN and A311I) (Fig. 8a). The A311G substitution in NS5A reduced RNA replication to background levels as determined with the replication-dead replicon encoding an enzymatically inactive NS5B polymerase (mutant ΔGDD). By contrast, the replication efficiency of the A311I mutant was similar to that of the NS5A-WT consistent with the notion that the structural PW-turn motif in the disordered NS5A-D2 domain is essential for viral RNA replication. Indeed, in the HCV Con1 strain, the position 311 corresponds to an isoleucine residue (30). Mutations P310A and DEYN in NS5A affected RNA replication, showing phenotypes intermediate between those of the WT and A311G mutant. Of note, we found a striking correlation between RNA replication efficiencies measured in-cellulo and the NMR data acquired on purified NS5A-D2 in vitro (Fig. 8b,c and Fig. S20). Indeed, RNA replication levels of NS5A WT and its NS5A mutants correlate with the position (1H and 15N) of the W312 resonance in their corresponding 1H,15N-HSQC spectra. This strong correlation suggests that the structured PW-turn motif in the NS5A-D2 ensemble is required for robust HCV RNA replication, provided the CypA PPIase activity allows to reach, on a sub-second time scale, sub-ensembles in which the structured PW-turn population is reduced. It means that the conformational equilibrium of the PW-turn motif in NS5A-D2 has to be finely regulated in order to be fully functional. Hence, our data also provide an explanation for the striking antiviral potency of CypIs.

Discussion

RNA replication, a central step in the HCV life cycle, requires the formation of a replication complex that includes the viral NS5B and NS5A proteins associated to membrane structures (DMVs) (7, 74). NS5B with its RNA-dependent RNA-polymerase activity (8) is the catalytic core of this functional complex. In contrast, the absence of measurable enzymatic activity and the presence, alongside its first well-structured domain (11, 20, 21), of two intrinsically disordered domains (NS5A-D2 and -D3) (17–19), make the role of NS5A in the HCV replicase much less obvious. Human CypA, as an essential cellular protein required for the viral replication process (75), has been functionally linked to NS5A-D2 by the accumulation of Cyp1-resistance mutations in this disordered domain (41, 76), and by the
identification of a physical interaction between these two proteins (25, 37). However, the role(s) of these two proteins in the replication of HCV remains elusive, which is in part due to the fact that the PPIase activity and the binding properties of CypA cannot be uncoupled.

The precise role of human cyclophilins in a viral life cycle has been best studied in the context of HIV capsid (de)stabilization (77). CypA is incorporated into newly produced HIV virions through its interaction with a proline-rich loop (CypA-loop) in the viral capsid protein (CA) (78–80). Although the P90 residue in CA is required for both the interaction with CypA and viral replication, the importance of other surrounding proline residues (P85, P93 and P99) in viral replication was also pointed out (79). CypA displays in vitro catalytic PPIase activity towards the G89-P90 peptidyl bond in the CypA-loop of the CA protein in the intact HIV-1 virion (81), but the functional role of this activity remains uncertain. CA mutations such as A92E and G94D, obtained during HIV-1 passage in HeLa cells under CypA inhibition (82), allow these HIV-1 mutants to escape CypA dependence, without altering the interaction with CypA (83). However, the infectivity of these mutants drops by 90% in HeLa cells, which could be fully recovered upon CypA inhibition (83). Recently, it has been reported that the CypA-loop of the A92E and G94D CA mutants in the assembled capsid structures adopts comparable dynamics as the loop in the wild-type CA when bound to CypA (84). Hence, both selected resistance mutations and CypA binding seemingly lead to the same dynamic effect on this CA loop, but cannot be combined without the risk of overshooting the dynamical requirements for optimal infectivity. Along these lines, the rhesus monkey Trim5α induces global attenuation of the capsid dynamics even beyond the CA loop and may ultimately promote its disassembly (85). From this data on HIV-1 CA-CypA interaction, one can conclude that fine tuning of dynamical aspects of viral proteins (here CA) is an additional mean used by viruses to optimize infectivity.

Our present work on HCV NS5A-D2 and its relationship with CypA points towards the same direction. We detect the PW-turn structural motif in the mainly disordered NS5A-D2 domain from the HCV JFH-1 strain (Figs. 1 and 2), thereby confirming our previous results in the Con1 strain (30). Moreover, we show that the structural motif extends beyond the 310PAWA313 sequence to include at least 4 more proline residues (P306, P315, P319 and P320) (Fig. 3 and Fig. S17). However, this motif is not static. Using NMR chemical shifts as atomic-resolution sensors, we demonstrate that the PW-turn motif exists as an equilibrium between two states, a structured state and a disordered state, which interconvert in fast exchange on the NMR time scale (Fig. 4). This equilibrium, probed via the W312 resonance, is modulated by the cis/trans equilibria of the 5 surrounding prolines (P306, P310, P315, P319 and P320). This translates into one major and 5 minor resonances for the W312 amide function that make a linear chemical shift pattern in the 1H,15N-HSQC of NS5A-D2 WT (Figs. 4 and 5). The linear pattern is bordered on the structured side by the all-trans form used to derive the structure of the PW-turn (Fig. 3), and by the cis-P310 form on the almost completely disordered side (Figs. 3 and 4). As these different equilibria are separated by the conformation (trans or cis) of distinct prolyl bonds, they are separated by the slow time scale of the spontaneous cis/trans isomerization of each of these bonds. CypA can lower this barrier through its PPIase activity, and thereby connect these different ensembles at a sub-second time scale (Fig. 3b and refs (25, 30)). As such, the PPIase activity of CypA do not alter the folded and unfolded states of the PW-turn but rather allows to fast reach NS5A-D2 sub-ensembles in which the structured PW-turn population is reduced (Fig. S21). The CypI resistance mutations in NS5A-D2, D316E or DEYN, lead to similar effect as they reduce the population of the structured PW-turn motif in the dynamic ensemble (Fig. 5 and Fig. S21). The folded conformer population, with all prolines in trans, drops from nearly ~100 % in NS5A-D2 WT to 82 % in the D316E mutant (i.e. the same population as in the cis-P319 sub-ensemble in the WT), and to 62 % in the DEYN mutant (comparable to that of the cis-P315 sub-ensemble in the WT) (Figs. 3 and 5). Both mutations confer some CypA independence, but lower the replication level when measured in cell lines where CypA is present (41, 43, 27, 44). Moreover, in a similar way to what was observed for the mutations in the CypA-loop of HIV-1 CA, the replication capacity of the DEYN HCV mutant has been shown to be higher when CypA was silenced (28). As the W312 chemical shift (1H and 15N) of the mutants correlates linearly with the RNA
Conformational regulation of NS5A-D2 by CypA

replication efficiency (log10 scale) in a cell-based assay (Fig. 8), we conclude that CypA is fine tuning the dynamics of the PW-turn motif in NS5A-D2.

The relationships involving CypA/CA from HIV-1 or CypA/NS5A-D2 from HCV are strikingly similar. A short sequence involving a conserved proline residue constitutes the CypA binding site (G89-P90 or 310PAWA312, respectively); the residues C-terminal to this binding site trigger peculiar conformational properties and are involved in the replication efficiency of the viruses; Cypl-resistance mutations conferring (partial) relief of the CypA-dependence are localized next to the CypA binding site; and finally, CypA exerts a fine modulation of the dynamics of the viral proteins (the CypA-loop of CA or the PW-turn motif in NS5A-D2). HIV-1 and HCV seem to have evolved in order to use the host CypA as a fine-tuning rheostat, which allows them to keep their functional systems in a rather sharp optimal window. Finally, in the presence of the Cypl-resistance mutations, CypA is detrimental as it over-attenuates the dynamics of the CypA-loop in HIV-1 CA or it over-reduces the fraction of the PW-turn in HCV NS5A.

Whereas we show that the fraction of the structured PW-turn motif in the NS5A-D2 conformational ensemble, which is allosterically regulated by both the cis/trans isomerisation of 5 prolines residues (P306, P310, P315, P319 and P320) and by Cypl-resistance mutations, correlates with the HCV RNA replication efficiency (Fig. 8), the question of how a structured PW-turn motif in NS5A-D2 contributes to viral replication remains open. NS5A was shown to play a role in the formation of DMVs and functional replication complexes contained therein, through remodelling the ER membrane, and Cypl could interfere with this role for NS5A. Alternatively, NS5A-D2 directly interacts with the dynamic molecular machine that is the NS5B RNA polymerase (86), and thereby might allosterically regulates its RNA binding (15) and/or enzymatic activity (87). Different conformational ensembles of the disordered NS5A-D2, with varying fractions of (un)folded PW-turn motif, might be required for these multiple functional roles. Our present data add further complexity to this picture, whereby allosteric regulation of the NS5A-D2 domain through its proline conformations might be modulated by the enzymatic function of the host factor CypA. Simultaneously, though, it shows that targeting the dynamical aspects of viral protein(s) can open new avenues in the discovery of antivirals.

Experimental procedures

Expression and purification of NS5A-D2 and CypA

The synthetic sequence coding for domain 2 of the HCV NS5A protein from JFH1 strain (GenBank accession number AB047639, genotype 2a) was introduced in the bacterial expression vector pT7.7 with a His6 tag. The resulting recombinant domain 2 of HCV NS5A (NS5A-D2; residues 248-341) has extra M- and -LQHHHHHHH extensions at the N and C termini, respectively. The NS5A-D2 mutants (A311G, P306A, P310A, P315A, P319A, P320A, C298S-C338S-M254C, C298S, C338S, D316E, D316E-Y317N) were generated by site-directed mutagenesis on the pT7-7-NS5A-D2 WT plasmid using the forward and reverse primers listed in Table S1.

The expression, in Escherichia coli BL21(DE3), and purification of 15N (or 15N,13C)-labeled NS5A-D2 was performed as previously described (25, 30).

The production and purification of both unlabeled and 15N-labelled CypA were performed as previously described by Hanoulle and co-workers (25).

Conservation of NS5A-D2 sequence among HCV Genotypes

NS5A-D2 derived peptides

15N,13C-labeled peptides [PepD2-WT (GFPRLPAWARPDPYNPLVE), PepD2-A311G (GFPRLPGWARPDYNPLVE), PepD2-D316E (GFPRLPAWARPEYNPLVE)] corresponding to residues 304-323 of NS5A-D2 JFH1 were produced as fusion-proteins in E. coli, cleaved, and then purified as described previously (30). The resulting 15N,13C-labelled PepD2-WT, PepD2-A311G and PepD2-D316E peptides thus contain an extra N-terminal proline residue resulting from the DP chemical cleavage site.

The unlabeled peptides (PepD2-WT, PepD2-A311G and PepD2-D316E) were purchased from Genecust (Luxembourg).

Conformational regulation of NS5A-D2 by CypA
The NS5A-D2 sequence from HCV JFH1 strain (AB047639, genotype 2a) is numbered as in the full-length NS5A protein. The amino acid repertoire was deduced from the ClustalW multiple alignments of 28 representative NS5A sequences from all confirmed HCV genotypes and subtypes (see the European HCV Database (88)) using the Network Protein Sequence Analysis webserver tools(89). Amino acids observed at a given position in less than two distinct sequences are not included. The degree of amino acid conservation at each position can be inferred from the extent of variability (with the observed amino acid listed in decreasing order of frequency from top to bottom) together with the similarity index according to ClustalW convention (asterisk, invariant; colon, highly similar; dot, similar).

NMR spectroscopy

All NMR experiments were performed at 298 K using Bruker Avance 600 MHz or Bruker 900 MHz NMR spectrometers, both equipped with a cryogenic triple resonance probe (Bruker, Karlsruhe, Germany). The proton chemical shifts were referenced using the methyl signal of TMSP (sodium 3-trimethylsilyl-[2,2,3,3-d4] propionate) at 0 ppm. Spectra were processed and analysed with the Bruker TopSpin software package 3.2. Data analysis, peak picking, and calculation of peak volumes were done with Sparky software (90).

Assignments of NS5A-D2 JFH1 (WT) backbone resonances were taken from reference (25) (BMRB accession code 16165). Two NMR datasets were acquired on each peptide (PepD2-WT, PepD2-A311G and PepD2-D316E). The first set, which contains 1H-1H TOCSY, 1H-1H NOESY, and 1H-15N HSQC spectra at 600 MHz were acquired on the unlabeled peptides at natural abundance. The second dataset was acquired on uniformly 15N,13C-labeled peptide and comprises 1H,15N HSQC and three-dimensional HNCA,CB, HNCO, and HNHA spectra. Assignment of PepD2-WT, PepD2-A311G and PepD2-D316E were performed both manually and using an in-house software based on the product plane approach (91).

The 1H,15N-combined chemical shift perturbations were calculated using the Equation 1, whereby \(\Delta \delta(1H) \) and \(\Delta \delta(15N) \) are the chemical shift perturbations in the 1H and 15N dimensions, respectively. The normalization factor of 0.08 for the nitrogen frequency shift derives here from the ratio of the maximum proton frequency shift over the maximum nitrogen frequency shift.

\[
\Delta \delta = |\Delta \delta(1H)| + 0.08 \times |\Delta \delta(15N)|
\] (Eq. 1)

Residual dipolar couplings measurements

The RDCs were collected on a 100 µM sample of 15N NS5A-D2 aligned in a liquid crystalline medium consisting of 6.6 % (wt/vol) polyoxy-ethylene 5-lauryl ether (C12E5) and 3% (wt/vol) 1-hexanol (Sigma), yielding a D2O splitting of 35 Hz. 1DNH dipolar couplings were measured on a Bruker Avance III 900 MHz spectrometer equipped with a cryogenic triple resonance probe, using 2D 15N IPAP-HSQC experiments (92) which allow the spin coupling measurements in the 15N dimension. The difference between the couplings acquired either in isotropic or anisotropic media were calculated to get the RDCs.

Spin relaxation experiments

15N R1, 15N R2 and 1H-15N NOE measurements were acquired at a 600 MHz 1H frequency. 15N R1 values were measured from spectra recorded with ten different delays (T= 10, 100, 200, 400, 600, 800, 1000, 1200, 1500, 2000 ms). 15N R2 values were determined from spectra recorded with eleven different delays (T = 15.77, 31.54, 47.31, 63.08, 78.85, 94.62, 126.16, 157.7, 189.24, 220.78, 252.32 ms). The spin echo consisted of a train of 15N hard π pulses (82µs) separated by a 900µs inter-pulse delay. In the 1H-15N R1 and 15N R2 experiments, a relaxation delay of 1 s was applied. 1H-15N NOE values were determined from spectra recorded either in the presence or the absence of a proton pre-saturation period of 3 s, and a relaxation delay of 5 s.

NMR structure calculation

The NMR structure calculation was performed as previously described in(30). From the different NMR datasets acquired both on unlabelled and 15N,13C-labeled peptide PepD2-WT (residues 304–323, JFH1), distance-based (NOEs) and backbone dihedral angle-based experimental restraints were derived. NOE intensities used as input for structure calculations were obtained from the NOESY spectrum recorded with a 400 ms mixing time. According to their intensity NOEs were classified in three categories, which were then
Conformational regulation of NS5A-D2 by CypA

Protons without stereospecific assignments were treated as pseudo-atoms. From the 1H, 15N, and 13C chemical shifts, dihedral angle constraints, calculated with Talos (93), were introduced. Peptide structures were generated, from the experimental NOE distances and dihedral angles, using CNS (94) with the standard torsion angle molecular dynamics protocol, the standard force field and default parameter set. From the initial set of 100 structures which was calculated, with the dynamical annealing protocol, to widely sample the conformational space, only structures with no distance restraint violations were retained. The 23 final selected structures, with the lowest energies, were compared by pairwise root mean square deviation over the backbone atom coordinates (N, Cα, and C’). Ramachandran analysis performed on the final structures showed that 89%, 11%, and 0% of the residues were in favoured, allowed, and outliers regions, respectively. The PyMOL software (PyMOL Molecular Graphics System, version 1.8; Schrödinger) was used for molecular graphics (95).

NMR PPIase assay

PPIase activity of CypA on NS5A-D2 WT was assessed using 1H, 15N z-exchange spectra (66), where the exchange was monitored on the basis of novel cross peaks connecting a trans and cis peak. 1H, 15N z-exchange spectra, with a 200 or 400 ms mixing time, were recorded on a 600 MHz spectrometer equipped with a cryogenic triple resonance probe. Exchange spectra were acquired on a 400 µM 15N-NS5A-D2 sample in the presence or the absence of 5 µM CypA in 30 mM NaH$_2$PO$_4$/Na$_2$HPO$_4$, pH 6.4, 30 mM NaCl, 1 mM DTT.

Chemical shift projection analysis (CHESPA)

The NMR chemical shift projection analysis was performed as described in references (69, 70), from the 1H, 15N-HSQC of NS5A-D2. We calculated $\cos \theta$, which represents the angle between vectors A (defined by the W312_6 and W312_1 peaks) and B (defined by the W312_6 peak and the W312 resonance from a mutant or corresponding to a minor form). Next, we calculated the fractional shift X, which corresponds to the projection of the vector B on the vector A. For the calculations, a scaling factor of 0.1 was applied to the 15N-chemical shift.

Molecular dynamics

Gaussian accelerated molecular dynamics (GaMD) simulations (~280 ns) were performed with AMBER17 (96, 97) on five different peptides corresponding to the 304-323 residues in NS5A-D2 [pepD2-WT (WT), pepD2-D316E (D316E), pepD2-DEYN (DEYN), pepD2-P315cis (P325e) and pepD2-A311G (A311G)], and each trajectory was collected with ~140,000 frames. The detailed molecular dynamics protocol is described in the Supporting information.

Briefly, the peptides were built using Tleap in AmberTools16 and all simulations were performed using pme.md.cuda of AMBER17 on graphics processing units P100 (98). Amber ff99SB*-ILDN force field (99, 100) was used in all simulations. The peptides were then solvated in a cubic water box of 75.5 \times 75.5 \times 75.5 Å3 pre-equilibrated TIP3P water molecules. The simulations were performed with 40mM NaCl and at the temperature of 298 K, as in the experimental NMR studies. GaMD (101) simulations (~280 ns) were used to explore the conformational space of the peptides and the coordinates were saved every 2 ps. CPPTRAJ (102) was used to analyse root mean square deviation (RMSD), secondary structure, dihedral torsions and hydrogen bonds from the GaMD simulation trajectories. The sampled conformations of the peptides were analysed using the dihedral principal component analysis (dPCA) method (71, 72) considering the backbone atoms of residues 309 to 316. The lowest energy conformations were identified by projecting the trajectories of the first two principal components onto a three-dimensional free energy (AG) (see Equation 2 below), in which R is the universal gas constant, T is the temperature, x, y, and z, are the calculated structural properties from the trajectory.

$$ΔG = −RT \ln \left(\frac{P_{\text{max}}}{P_{\text{new}}} \right)$$ (Eq. 2)

Then, a clustering of the structures was performed using the two first vectors (PC1 and PC2) of the dPCA. For each MD simulation, the PyReweighting toolkit was used to reweight the GaMD simulation to compute the free energy landscape from the PCA components PC1 and PC2. The percent of the time that a particular
Conformational regulation of NS5A-D2 by CypA

Cluster is present was determined. Next, using our NMR PepD2-WT structure as a reference, the presence of the structured PW-turn motif was probed in every cluster of each simulation. For clusters of each simulations, the centroid structures were fitted on the NMR reference structure using all atoms of residues 310-313. Then, backbone dihedral angles (phi and psi) of residues 310 to 313 and chi1 and chi2 angles from W312 were measured using cpptraj in AMBER package. The presence of the structured PW-turn motif was assessed from the sum of squares of the differences between angles from the reference and centroid structures. Chemical shift predictions (1H and 15N) were performed with SHIFTX2 (73) from the MD simulations data. For each peptide, SHIFTX2 was used in the “ensemble mode” on all structures of each cluster. Then, from these predictions for a given peptide, a population-weighted average chemical shift value (1H or 15N) was calculated. The error bars represent the population-weighted standard deviations.

RNA replication assay

The protocol used for generation and electroporation of HCV RNAs has been described elsewhere (38). For transient replication assays, 400 µl of single cell suspensions of Huh-7 cells (10^7 cells/ml) were mixed with 5 µg in vitro transcribed subgenomic replicon RNA and transfected by electroporation. After transfection, cells were resuspended in 41 ml of complete DMEM, and 1.5 ml of the cell suspension was seeded in duplicate in each well of a 12-well plate. To measure luciferase activity, cells were washed with PBS 4, 24, 48 and 72 h after electroporation and lysed by addition of 350 µl of lysis buffer (0.1% Triton X-100, 25 mM glycylglycine, pH 7.8, 15 mM MgSO4, 4 mM EGTA, and 1 mM DTT). Lysates were immediately frozen at -70 °C, and after thawing, 100 µl of the lysate was mixed with 360 µl of assay buffer (25 mM glycylglycine, 15 mM MgSO4, 4 mM EGTA, 1 mM DTT, 2 mM adenosine triphosphate, and 15 mM K2PO4, pH 7.8). Luciferase activity was measured for 20 s in a luminometer (Lumat LB9507; Berthold, Freiburg, Germany) after addition of 200 µl of luciferin solution (200 mM luciferin, 25 mM glycylglycine, pH 8.0). Replication efficiency was calculated by normalizing values of the different time points to the respective value obtained at 4 h, which reflects transfection efficiency.

Interaction between CypA and NS5A-D2 derived peptides

To study the interaction between CypA and either PepD2-WT, PepD2-A311G or PepD2-D316E, 1H,15N-HSQC experiments were acquired on 400 µM 15N-CypA with increasing amounts of unlabelled peptides (the molar ratios CypA:PepD2 were 1:2; 1:8; 1:15 and 1:25). The combined chemical shift perturbations following peptides addition were calculated using the Equation 3, whereby ∆δ (1H) and ∆δ (15N) are the chemical shift perturbations in the 1H and 15N dimensions, respectively.

\[\Delta \delta = |\Delta \delta(1HN)| + 0.2 \times |\Delta \delta(15N)| \]

(Eq. 3)

For determination of dissociation constant (K_D), the combined chemical shift perturbations (ΔΔ, ppm) were plotted as a function of the molar ratio [PepD2] / [15N-CypA], and the resulting curve was fitted to Equation 4 which describes a 1:1 biomolecular interaction, and where Δδ is the measured chemical shift perturbation, Δδ_max is the maximum value for this parameter, X corresponds to the ratio [PepD2] / [15N-CypA], and [CypA] is the 15N-CypA concentration.

\[\Delta \delta = \frac{\Delta \delta_{\text{max}}}{2} \times \left(1 + X + \frac{K_D}{[\text{CypA}]_{\text{free}}} - \sqrt{\left(1 + X + \frac{K_D}{[\text{CypA}]_{\text{free}}} \right)^2 - 4 \times X} \right) \]

(Eq. 4)

Accession numbers

NMR assignment of the peptide PepD2-WT (residues 304–323 of the domain 2 of NS5A, JFH1 strain) have been deposited in the Biological Magnetic Resonance Data Bank under accession code 30037. The NMR structure of the pepD2-WT (strain JFH-1) has been deposited in the Protein Data Bank (PDB) with the code 6HT4 (http://www.pdb.org).
Conflict of interest
The authors declare that they have no conflicts of interest with the contents of this article.
References

1. World Health Organization (2017) Hepatitis C: fact sheet. WHO. [online] http://www.who.int/mediacentre/factsheets/fs164/en/ (Accessed June 28, 2017)
2. Stanaway, J. D., Flaxman, A. D., Naghavi, M., Fitzmaurice, C., Vos, T., Abubakar, I., Abu-Raddad, L. J., Assadi, R., Bhala, N., Cowie, B., Forouzanfar, M. H., Groeger, J., Hanafiah, K. M., Jacobsen, K. H., James, S. L., MacLachlan, J., Malekzadeh, R., Martin, N. K., Mokdad, A. A., Mokdad, A. H., Murray, C. J. L., Plass, D., Rana, S., Rein, D. B., Richardus, J. H., Sanabria, J., Saylan, M., Shahrzad, S., So, S., Vlassov, V. V., Weiderpass, E., Wiersma, S. T., Younis, M., Yu, C., El Sayed Zaki, M., and Cooke, G. S. (2016) The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. The Lancet. 388, 1081–1088
3. Moradpour, D., Penin, F., and Rice, C. M. (2007) Replication of hepatitis C virus. Nat. Rev. Microbiol. 5, 453–63
4. Moradpour, D., and Penin, F. (2013) Hepatitis C virus proteins: from structure to function. Curr. Top. Microbiol. Immunol. 369, 113–142
5. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L., and Bartenschlager, R. (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 285, 110–3
6. Romero-Brey, I., Merz, A., Chiramela, A., Lee, J.-Y., Chplanda, P., Hasselman, U., Santarella-Mellwig, R., Habermann, A., Hoppe, S., Kallis, S., Walther, P., Antony, C., Krijnse-Locker, J., and Bartenschlager, R. (2012) Three-dimensional architecture and biogenesis of membrane structures associated with Hepatitis C Virus replication. PLoS Pathog. 8, e1003056
7. Paul, D., Hoppe, S., Saher, G., Krijnse-Locker, J., and Bartenschlager, R. (2013) Morphological and biochemical characterization of the membranous Hepatitis C Virus replication compartment. J. Virol. 87, 10612–10627
8. Lohmann, V., Korner, F., Herian, U., and Bartenschlager, R. (1997) Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J. Virol. 71, 8416–28
9. Bressanelli, S., Tomei, L., Roussel, A., Incitti, I., Vitale, R. L., Mathieu, M., De Francesco, R., and Rey, F. A. (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl. Acad. Sci. U. S. A. 96, 13034–9
10. Tellinghuisen, T. L., Foss, K. L., Treadaway, J. C., and Rice, C. M. (2008) Identification of residues required for RNA replication in domains II and III of the hepatitis C virus NS5A protein. J. Virol. 82, 1073–83
11. Tellinghuisen, T. L., Marcotrigiano, J., and Rice, C. M. (2005) Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. Nature. 435, 374–9
12. Appel, N., Zayas, M., Miller, S., Krijnse-Locker, J., Schaller, T., Frieebe, P., Kallis, S., Engel, U., and Bartenschlager, R. (2008) Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog. 4, e1000035
13. Ahn, J., Chung, K.-S., Kim, D.-U., Won, M., Kim, L., Kim, K.-S., Nam, M., Choi, S.-J., Kim, H.-C., Yoon, M., Chae, S.-K., and Hoe, K.-L. (2004) Systematic identification of hepatocellular proteins interacting with NS5A of the hepatitis C virus. J. Biochem. Mol. Biol. 37, 741–748
14. de Chassey, B., Navratil, V., Tafforeau, L., Hiet, M. S., Aublin-Gex, A., Agaugue, S., Meiffren, G., Pradezynski, F., Faria, B. F., Chantier, T., Le Breton, M., Pellet, J., Davoust, N., Mangeot, P. E., Chaboud, A., Penin, F., Jacob, Y., Vidalain, P. O., Vidal, M., Andre, P., Rabourdin-Combe, C., and Lottreau, V. (2008) Hepatitis C virus infection protein network. Mol. Syst. Biol. 4, 230
15. Bessa, L. M., Launay, H., Dujardin, M., Cantrelle, F.-X., Lippens, G., Landrieu, I., Schneider, R., and Hanouille, X. (2017) NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B. J. Biol. Chem. 292, 18024–18043
16. Penin, F., Brass, V., Appel, N., Ramboarina, S., Montserret, R., Ficheux, D., Blum, H. E., Bartenschlager, R., and Moradpour, D. (2004) Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. J. Biol. Chem. 279, 40835–43
17. Liang, Y., Ye, H., Kang, C. B., and Yoon, H. S. (2007) Domain 2 of nonstructural protein 5A
Conformational regulation of NS5A-D2 by CypA

15

(NS5A) of hepatitis C virus is natively unfolded. *Biochemistry.* **46**, 11550–8

18. Hanoulle, X., Badillo, A., Verdegem, D., Penin, F., and Lippens, G. (2010) The domain 2 of the HCV NS5A protein is intrinsically unstructured. *Protein Pept. Lett.* **17**, 1012–8

19. Hanoulle, X., Verdegem, D., Badillo, A., Wieruszeski, J.-M., Penin, F., and Lippens, G. (2009) Domain 3 of non-structural protein 5A from hepatitis C virus is natively unfolded. *Biochem. Biophys. Res. Commun.* **381**, 634–638

20. Love, R. A., Brodsky, O., Hickey, M. J., Wells, P. A., and Cronin, C. N. (2009) Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis C virus. *J. Virol.* **83**, 4395–403

21. Lambert, S. M., Langley, D. R., Garnett, J. A., Angell, R., Hedgethorne, K., Meanwell, N. A., and Matthews, S. J. (2014) The crystal structure of NS5A domain 1 from genotype 1a reveals new clues to the mechanism of action for dimeric HCV inhibitors. *Protein Sci.* **23**, 723–734

22. Huang, L., Hwang, J., Sharma, S. D., Hargittai, M. R., Chen, Y., Arnold, J. J., Raney, K. D., and Cameron, C. E. (2005) Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA-binding protein. *J. Biol. Chem.* **280**, 36417–28

23. Gao, M., Nettles, R. E., Belema, M., Snyder, L. B., Nguyen, V. N., Fridell, R. A., Serrano-Wu, M. H., Langley, D. R., Sun, J. H., O’Boyle, D. R., Lemm, J. A., Wang, C., Knipe, J. O., Chien, C., Colombo, R. J., Grasa, D. M., Meanwell, N. A., and Hamann, L. G. (2010) Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. *Nature.* **465**, 96–100

24. Verdegem, D., Badillo, A., Wieruszeski, J.-M., Landrieu, I., Bartenschlager, R., Penin, F., and Lippens, G. (2009) Domain 3 of NS5A protein from the Hepatitis C Virus has intrinsic alpha-helical propensity and is a substrate of cyclophilin A. *J. Biol. Chem.* **286**, 20441–20454

25. Verdugue, X., Badillo, A., Wieruszeski, J. M., Verdegem, D., Landrieu, I., Bartenschlager, R., Penin, F., and Lippens, G. (2009) Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B. *J. Biol. Chem.* **284**, 13589–601

26. Yang, F., Robotham, J. M., Grise, H., Frausto, S., Madan, V., Zayas, M., Bartenschlager, R., Robinson, M., Greenstein, A. E., Nag, A., Logan, T. M., Bienkiewicz, E., and Tang, H. (2010) A major determinant of cyclophilin dependence and cyclosporine susceptibility of hepatitis C virus identified by a genetic approach. *PLoS Pathog.* **6**, e1001118

27. Fernandes, F., Ansari, I. U., and Striker, R. (2010) Cyclophilin inhibitors, cyclosporin A does not correlate with a resistance of the NS5A-cyclophilin A interaction to cyclophilin inhibitors. *J. Hepatol.* **53**, 50–6

28. Ma, S., Boerner, J. E., TiongYip, C., Weidmann, B., Ryder, N. S., Cooreman, M. P., and Lin, K. (2006) NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis C virus alone or in combination with alpha interferon. *Antimicrob. Agents Chemother.* **50**, 2976–82
Conformational regulation of NS5A-D2 by CypA

34. Ahmed-Belkacem, A., Colliandre, L., Ahnou, N., Nevers, Q., Gelin, M., Bessin, Y., Brillet, R., Cala, O., Douguet, D., Bourguet, W., Krimm, I., Pawlotsky, J.-M., and Guichou, J.-F. (2016) Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities. Nat. Commun. 10.1038/ncomms12777

35. Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S., and Bartenschlager, R. (2018) Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov. 17, 35–56

36. Yang, F., Robotham, J. M., Nelson, H. B., Irsigler, A., Kenworthy, R., and Tang, H. (2008) Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro. J. Virol. 82, 5269–78

37. Chatterji, U., Bobardt, M., Selvarajah, S., Yang, F., Tang, H., Sakamoto, N., Vuagniaux, G., Parkinson, T., and Gallay, P. (2009) The isomerase active site of cyclophilin A is critical for hepatitis C virus replication. J. Biol. Chem. 284, 16998–7005

38. Madan, V., Paul, D., Lohmann, V., and Bartenschlager, R. (2014) Inhibition of HCV Replication by Cyclophilin Antagonists Is Linked to Replication Fitness and Occurs by Inhibition of Membranous Web Formation. Gastroenterology. 146, 1361–1372

39. Chatterji, U., Bobardt, M., Tai, A., Wood, M., and Gallay, P. A. (2015) Cyclophilin and NS5A Inhibitors, but not other Anti-HCV Agents, Preclude HCV-Mediated Formation of Double Membrane Vesicle Viral Factories. Antimicrob. Agents Chemother. 10.1128/AAC.04958-14

40. Chatterji, U., Bobardt, M., Schaffer, L., Wood, M., and Gallay, P. A. (2016) Cyclophilin Inhibitors Remodel the Endoplasmic Reticulum of HCV-Infected Cells in a Unique Pattern Rendering Cells Impervious to a Reinfection. PLOS ONE. 11, e0159511

41. Goto, K., Watashi, K., Inoue, D., Hijikata, M., and Shimotohno, K. (2009) Identification of cellular and viral factors related to anti-hepatitis C virus activity of cyclophilin inhibitor. Cancer Sci. 100, 1943–50

42. Nevers, Q., Ruiz, I., Ahnou, N., Donati, F., Brillet, R., Softic, L., Chazal, M., Jouvenet, N., Fourati, S., Baudesson, C., Bruscella, P., Gelin, M., Guichou, J.-F., Pawlotsky, J.-M., and Ahmed-Belkacem, A. (2018) Characterization of the Anti-Hepatitis C Virus Activity of New Nonpeptidic Small-Molecule Cyclophilin Inhibitors with the Potential for Broad Anti-Flaviviridae Activity. Antimicrob. Agents Chemother. 62, e00126-18

43. Garcia-Rivera, J. A., Bobardt, M., Chatterji, U., Hopkins, S., Gregory, M. A., Wilkinson, B., Lin, K., and Gallay, P. A. (2012) Multiple mutations in hepatitis C virus NS5A domain II are required to confer a significant level of resistance to alisporivir. Antimicrob. Agents Chemother. 56, 5113–5121

44. Coelmont, L., Hanoulle, X., Chatterji, U., Berger, C., Snoeck, J., Bobardt, M., Lim, P., Vliegen, I., Paeshuyse, J., Vuagniaux, G., Vandamme, A. M., Bartenschlager, R., Gallay, P., Lippens, G., and Neyts, J. (2010) DEB025 (Alisporivir) inhibits hepatitis C virus replication by preventing a cyclophilin A induced cis-trans isomerisation in domain II of NS5A. PLoS One. 5, e13687

45. Tompa, P. (2002) Intrinsically unstructured proteins. Trends Biochem Sci. 27, 523–37

46. Uversky, V. N. (2013) A decade and a half of protein intrinsic disorder: Biology still waits for physics: Protein Intrinsic Disorder. Protein Sci. 22, 693–724

47. Borgia, A., Borgia, M. B., Bugge, K., Kissling, V. M., Heidarsson, P. O., Fernandes, C. B., Sottini, A., Soranno, A., Buholzer, K. J., Nettels, D., Kragelund, B. B., Best, R. B., and Schuler, B. (2018) Extreme disorder in an ultrahigh-affinity protein complex. Nature. 555, 61–66

48. Uversky, V. N., Oldfield, C. J., and Dunker, A. K. (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biochem. 77, 215–46

49. Tompa, P., and Fuxreiter, M. (2008) Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem. Sci. 33, 2–8

50. Gould, C. M., Diella, F., Via, A., Puntervoll, P., Gemünd, C., Chabanis-Davidson, S., Michael, S., Sayadi, A., Bryne, J. C., Chica, C., Seiler, M., Davey, N. E., Haslam, N., Weatheritt, R. J., Budd, A., Hughes, T., Paš, J., Rychlewski, L., Travé, G., Aasland, R., Helmer-Citterich, M., Linding, R., and Gibson, T. J. (2010) ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res. 38, D167–D180

51. Vacic, V., Oldfield, C. J., Mohan, A., Radijovac, P., Cortese, M. S., Uversky, V. N., and Dunker, A. K. (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J. Proteome Res. 6, 2351–66
Conformational regulation of NS5A-D2 by CypA

52. Fuxreiter, M., Simon, I., Friedrich, P., and Tompa, P. (2004) Preformed Structural Elements Feature in Partner Recognition by Intrinsically Unstructured Proteins. J. Mol. Biol. 338, 1015–1026

53. Zhou, J., Zhao, S., and Dunker, A. K. (2018) Intrinsically Disordered Proteins Link Alternative Splicing and Post-translational Modifications to Complex Cell Signaling and Regulation. J. Mol. Biol. 430, 2342–2359

54. Theillet, F.-X., Kalmar, L., Tompa, P., Han, K.-H., Selenko, P., Dunker, A. K., Daughdrill, G. W., and Uversky, V. N. (2013) The alphabet of intrinsic disorder I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically Disord. Proteins. 1, 1–13

55. Changeux, J.-P. (2013) 50 years of allostery interactions: the twists and turns of the models. Nat. Rev. Mol. Cell Biol. 14, 819–829

56. Hilser, V. J., and Thompson, E. B. (2007) Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl. Acad. Sci. 104, 8311–8315

57. Motlagh, H. N., Wrabl, J. O., Li, J., and Hilser, V. J. (2014) The ensemble nature of allostery. Nature. 508, 331–339

58. Bah, A., and Forman-Kay, J. D. (2016) Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. J. Biol. Chem. 291, 6696–6705

59. Feuerstein, S., Solyom, Z., Aladag, A., Favier, A., Schwarten, M., Hoffmann, S., Willbold, D., and Brutscher, B. (2012) Transient structure and SH3 interaction sites in an intrinsically disordered fragment of the hepatitis C virus protein NS5A. J. Mol. Biol. 420, 310–323

60. Ahuja, P., Cantrelle, F.-X., Huvent, I., Hanoulle, X., Lopez, J., Smet, C., Wieruszeski, J.-M., Landrieu, I., and Lippens, G. (2016) Proline Conformation in a Functional Tau Fragment. J. Mol. Biol. 428, 79–91

61. Farrow, N. A., Zhang, O., Forman-Kay, J. D., and Kay, L. E. (1994) A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J Biomol NMR. 4, 727–34

62. Saleh, T., Jankowski, W., Sriram, G., Rossi, P., Shah, S., Lee, K.-B., Cruz, L. A., Rodriguez, A. J., Birge, R. B., and Kalodimos, C. G. (2016) Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Nat. Chem. Biol. 12, 117–123

63. Stollar, E. J., Lin, H., Davidson, A. R., and Forman-Kay, J. D. (2012) Differential Dynamic Engagement within 24 SH3 Domain: Peptide Complexes Revealed by Co-Linear Chemical Shift Perturbation Analysis. PLoS ONE. 7, e51282

64. Selvaratnam, R., VanSchouwen, B., Fogolari, F., Mazhab-Jafari, M. T., Das, R., and Melacini, G. (2012) The Projection Analysis of NMR Chemical Shifts Reveals Extended EPAC Autoinhibition Determinants. Biophys. J. 102, 630–639

65. Selvaratnam, R., Chowdhury, S., VanSchouwen, B., and Melacini, G. (2011) Mapping allostery through the covariance analysis of NMR chemical shifts. Proc. Natl. Acad. Sci. 108, 6133–6138

66. Mu, Y., Nguyen, P. H., and Stock, G. (2005) Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins Struct. Funct. Bioinforma. 58, 45–52

67. Ilizaliturri-Flores, I., Correa-Basurto, J., Bello, M., Rosas-Trigueros, J. L., Zamora-López, B.,
Conformational regulation of NS5A-D2 by CypA

Benítez-Cardoza, C. G., and Zamorano-Carrillo, A. (2016) Mapping the intrinsically disordered properties of the flexible loop domain of Bcl-2: a molecular dynamics simulation study. J. Mol. Model. 10.1007/s00894-016-2940-1

73. Han, B., Liu, Y., Ginzinger, S. W., and Wishart, D. S. (2011) SHIFTX2: significantly improved protein chemical shift prediction. J. Biomol. NMR. 50, 43–57

74. Egger, D., Wolk, B., Gosert, R., Bianchi, L., Blum, H. E., Moradpour, D., and Bientz, K. (2002) Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol. 76, 5974–84

75. Liu, Z., Yang, F., Robotham, J. M., and Tang, H. (2009) Critical role of cyclophilin A and its prolyl-peptidyl isomerase activity in the structure and function of the hepatitis C virus replication complex. J. Virol. 83, 6554–65

76. Fernandes, F., Poole, D. S., Hoover, S., Andrei, A. C., Gerstner, J., and Striker, R. (2007) Sensitivity of hepatitis C virus to cyclosporine A depends on nonstructural proteins NS5A and NS5B. Hepatology. 46, 1026–33

77. Liu, C., Perilla, J. R., Ning, J., Lu, M., Hou, G., Ramalho, R., Himes, B. A., Zhao, G., Bedwell, G. J., Byeon, I.-J., Ahn, J., Gronenborn, A. M., Prevelige, P. E., Roussou, I., Aiken, C., Polenova, T., Schulten, K., and Zhang, P. (2016) Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nat. Commun. 7, 10714

78. Luban, J., Bosossi, K. L., Franke, E. K., Kalpana, G. V., and Goff, S. P. (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell. 73, 1067–1078

79. Franke, E. K., Yuan, H. E. H., and Luban, J. (1994) Specific incorporation of cyclophilin A into HIV-1 virions. Nature. 372, 359–362

80. Thali, M., Bukovsky, A., Kondo, E., Rosenwlrth, B., Walsh, C. T., Sodroski, J., and Göttlinger, H. G. (1994) Functional association of cyclophilin A with HIV-1 virions. Nature. 372, 363–365

81. Bosco, D. A., Eisenmesser, E. Z., Pochapsky, S., Sundquist, W. I., and Kern, D. (2002) Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc Natl Acad Sci U A. 99, 5247–52

82. Aberham, C., Weber, S., and Phares, W. (1996) Spontaneous mutations in the human immunodeficiency virus type 1 gag gene that affect viral replication in the presence of cyclosporins. J. Virol. 70, 3536–3544

83. Ylinen, L. M. J., Schaller, T., Price, A., Fletcher, A. J., Noursadeghi, M., James, L. C., and Towers, G. J. (2009) Cyclophilin A Levels Dictate Infection Efficiency of Human Immunodeficiency Virus Type 1 Capsid Escape Mutants A92E and G94D. J. Virol. 83, 2044–2047

84. Quinn, C. M., Wang, M., Fritz, M. P., Runge, B., Ahn, J., Xu, C., Perilla, J. R., Gronenborn, A. M., and Polenova, T. (2018) Dynamic allosteric stability of cyclophilin A–HIV capsid interaction with the restriction factor TRIM5α identified by magic-angle spinning NMR and molecular dynamics simulations. Proc. Natl. Acad. Sci. 115, 11519–11524

85. Rosnollet, C., Fritzttering, B., Legrand, D., Launay, H., Wieruszkesi, J.-M., Lippens, G., and Hanouille, X. (2012) Hepatitis C Virus NS5B and host cyclophilin A share a common binding site on NSSA. J. Biol. Chem. 287, 44249–44260

86. Ngure, M., Issur, M., Shkriabai, N., Liu, H.-W., Cosa, G., Kvaratskhelia, M., and Gütte, M. (2016) Interactions of the disordered domain II of Hepatitis C Virus NS5A with cyclophilin A, NS5B, and viral RNA show extensive overlap. ACS Infect. Dis. 10.1021/acsinfectdis.6b00143

87. Combet, C., Garnier, N., Charavay, C., Grando, D., Crisan, D., Lopez, J., Dehne-Garcia, A., Geourjon, C., Bettler, E., Hulo, C., Le Mercier, P., Bartenschlager, R., Diepolder, H., Moradpour, D., Pawlotsky, J. M., Rice, C. M., Trepo, C., Penin, F., and Deleage, G. (2007) euHCVdb: the European hepatitis C virus database. Nucleic Acids Res. 35, D363-6

88. Lee, W., Tonelli, M., and Markley, J. L. (2015) NMRFAM-SPARKY: enhanced software for
biomolecular NMR spectroscopy. *Bioinforma. Oxf. Engl.* 31, 1325–1327
91. Verdegem, D., Dijkstra, K., Hanoulle, X., and Lippens, G. (2008) Graphical interpretation of Boolean operators for protein NMR assignments. *J. Biomol. Nmr.* 42, 11–21
92. Ottiger, M., Delaglio, F., and Bax, A. (1998) Measurement of J and Dipolar Couplings from Simplified Two-Dimensional NMR Spectra. *J. Magn. Reson.* 131, 373–378
93. Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. *J. Biomol. Nmr.* 42, 11–21
94. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. *Acta Crystallogr Biol Crystallogr.* 54, 905–21
95. Schrodinger (2015) The PyMOL Molecular Graphics System, Version 1.8
96. Salomon-Ferrer, R., Case, D. A., and Walker, R. C. (2013) An overview of the Amber biomolecular simulation package: Amber biomolecular simulation package. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 3, 198–210
97. Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., and Woods, R. J. (2005) The Amber biomolecular simulation programs. *J. Comput. Chem.* 26, 1668–1688
98. Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., and Walker, R. C. (2013) Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. *J. Chem. Theory Comput.* 9, 3878–3888
99. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. *Proteins Struct. Funct. Bioinforma.* 65, 712–725
100. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., and Shaw, D. E. (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. *Proteins Struct. Funct. Bioinforma.* 10.1002/prot.22711
101. Miao, Y., Feher, V. A., and McCammon, J. A. (2015) Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. *J. Chem. Theory Comput.* 11, 3584–3595
102. Roe, D. R., and Cheatham, T. E. (2018) Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data. *J. Comput. Chem.* 39, 2110–2117
FOOTNOTES

This work was supported by French National Agency for Research (ANR) Grant ANR-11-JSV8-005 and French National Agency for Research on AIDS and Viral Hepatitis (ANRS) Grant A02014-2. The NMR facility was supported by the European Community, the CNRS (IR RMN THC, FR-3050), the University of Lille, the Région Hauts-de-France (France), and the Pasteur Institute of Lille (IPL). We acknowledge support by FRABIO (CNRS, FR-3688). M. D. was funded by a fellowship from Lille University. Work by V.M and R.B. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project Number 112927078 - TRR 83.

The abbreviations used are: ALV, alisporivir; CA, capsid protein; CHESPA, chemical shift projection analysis; CCSP, colinear chemical shift perturbation; CypA, cyclophilin A; CypIs, cyclophilin inhibitors; CsA, cyclosporin A; dPCA, dihedral principal component analysis; DAAs, direct-acting antivirals; DMV, double-membrane vesicles; ER, endoplasmic reticulum; GaMD, gaussian accelerated molecular dynamics; HTAs, host-targeted antivirals; HCV, Hepatitis C virus; HSQC, heteronuclear single quantum correlation; IDPs/IDRs, intrinsically disordered proteins (or regions); MOA, mechanism of action; MoRFs, molecular recognition features; MD, molecular dynamics; NOE, nuclear overhauser effect; NMR, nuclear magnetic resonance; NS, non-structural proteins; NS5A, nonstructural protein 5A; NS5A-D1, domain 1 of NS5A; NS5A-D2, domain 2 of NS5A; NS5A-D3, domain 3 of NS5A; PepD2-WT, peptide corresponding to residues 304–323 of NS5A-D2; PPIase, peptidyl-prolyl cis/trans isomerase; PTMs, post-translational modifications; PreSMos, pre-structured motifs; PW fraction, fraction of the conformers that hold the structured PW-turn motif; PW-turn, short structural motif in NS5A-D2; SLiMs, short linear motifs; smCypI, small-molecule cyclophilin inhibitors; SSP, secondary structure propensity; TMSP, sodium 3-trimethylsilyl-[2,2,3,3-d4] propionate.

Biological Magnetic Resonance Data Bank = BMRB # 30037
Research Collaboratory for Structural Bioinformatics Protein Databank = PDB # 6HT4
Figure 1. NMR structural dynamics of NS5A-D2.

(a) Schematic representation of HCV NS5A protein anchored to the cytoplasmic side of the endoplasmic reticulum (ER) membrane via a N-terminal amphipathic helix (AH). Its folded domain 1 (NS5A-D1) is shown as a white hexagon whereas its disordered domains 2 and 3 (NS5A-D2 and -D3) are represented by white rectangles. The CypA-binding site, which comprises the PW-turn motif (dashed black line), is shown as a grey area.

(b) NS5A-D2 amino acid sequence (residue 248-342) from HCV JFH1 strain (genotype 2a). Below is the similarity deduced from the alignment of reference sequences from all confirmed HCV genotypes and subtypes. The light grey shaded region corresponds to the PepD2-WT peptide, which is also the CypA binding site.

d) Secondary structure propensity analysis from experimental 13C$_\alpha$ and 13C$_\beta$ chemical shifts of NS5A-D2. Positive and negative scores indicate helical tendencies and extended regions, respectively, whereas values close to 0 indicate a fully disordered state.

e) Deviation of experimental 1H,1H-1N-combined chemical shift values from neighbour-corrected IDP values calculated from the primary NS5A-D2 sequence.

(f) Peak intensities in the 1H,1H-HSQC spectrum, shown in Fig S1a.

(g) Longitudinal R_1 (Hz) and transverse R_2 (Hz) relaxation rates in NS5A-D2, measured at 600MHz and 298K. R_1 and R_2 were calculated by fitting peak heights in a series of spectra to a decaying exponential, using Sparky. The error bars indicate the standard error of the fit. For 1H-1H NOE the error bars were calculated from the root sum square of (noise/signal) in the spectra with and without saturation.

(i) 1DN dipolar couplings measured using 2D 15N IPAP-HSQC experiments recorded both in isotrope and anisotrope conditions. The error bars represent experimental errors, calculated from the linewidths at half height in the 15N dimension and the signal to noise ratio.
Conformational regulation of NS5A-D2 by CypA
Figure 2. Structure of the PW-turn. a, Superimposition of the 23 final NMR conformers of pepD2-WT (JFH1) (residues 304-323, GFPRALPAWARPDYNPPLVE), shown as Cα traces. b, Local RMSD values (Å) for the backbone atoms (N, Cα and CO) of each residue in the final bundle of structures. The region shaded in light grey corresponds to the PW-turn motif (Pro310 to Ala313). c, Structure of the PW-turn motif (in yellow) in stick representation. Figures were prepared using PyMol (PyMOL Molecular Graphics System, Version 1.8, Schrödinger, LLC).
Figure 3. A linear chemical shift pattern for W312 and proline cis/trans equilibria in NS5A-D2.

\(a\), Zoomed-in view of the W312’s resonances in the \(\text{H}, \text{N}\)-HSQC spectrum of NS5A-D2 WT (box shaded in light grey in the upper left panel). A major (W312_1) and 5 minor (W312_2 to W312_6) NMR resonances were assigned to the W312 residue, which is surrounded by 5 proline residues in the NS5A-D2 sequence (see sequence at the top). Each minor W312 resonance arises from the cis conformation of one of these proline residues (indicated in red) and is in slow-exchange (red arrows), on the NMR time scale, with the main W312 resonance when all the surrounding proline residues are in trans. The linear chemical shift pattern is highlighted by a dashed grey line.

\(b\), \(\text{H}, \text{N}\) heteronuclear exchange spectra, recorded at 600 MHz, on \(\text{N}\)-NS5A-D2 samples (400 \(\mu\)M) alone (mixing times of 200 ms) (in black) or in the presence of catalytic amounts of unlabelled CypA (5\(\mu\)M) (mixing time of 400 ms) (in red). Exchange peaks connecting each minor W312 resonances (W312_2 to W312_6) with the main one (W312_1) are highlighted by dashed grey boxes.
Figure 4. Allosteric regulation of the PW-turn. a, The position (i.e. its 1H chemical shift) of each W312 resonances along the linear pattern (highlighted by a dashed grey line) in the 1H,15N-HSQC spectrum correlates with: the differences between experimental 13Cα chemical shift (b) values and their expected neighbour-corrected random coil values; the differences (in 1H ppm) between the two Hβ resonances of W312 (c) in a 1H,1H-TOSCY experiment acquired on an unlabelled pepD2-WT (Fig. S13c); and also with its experimental NH residual dipolar coupling (d). There is a two-states fast-exchange between the structured PW-turn and its disorder counterpart (blue arrow in (a)). The position of the W312 resonance is the population-weighted average of the pure structured and disordered states. The cis/trans conformation of each surrounding proline residues corresponds to an allosteric effector. The linear correlations with their corresponding correlation coefficients (R^2) are shown in grey.
Figure 5. Allosteric perturbations of the PW-turn. a, Overlay of the 1H,15N-HSQC spectrum of NS5A-D2 WT (in black) with that of the mutants P306A (in red), P319A (in green), P315A (in dark blue), D316E (in orange), DEYN (D316E+Y317N, in violet), P310A (in salmon), A311G (in light blue) and P320A (in light grey), respectively. The spectra are centred on the W312 resonance. The linear chemical shift pattern is highlighted by a dashed grey line exactly as in Figs. 3 and 4. b and c, Linear correlations between the experimental W312 1H chemical shift values and (b) the differences between experimental and expected neighbour-corrected random coil 1H,15N-combined chemical shift values, or (c) experimental 13Cα chemical shifts, respectively. The linear correlations with their corresponding correlation coefficients (R^2) are shown in grey. d, Quantification of the cis conformation for each proline residues around W312, both in the pepD2-WT and pepD2-D316E peptides. The cis contents (in %) were calculated by using the peak heights of the Hα-N resonances corresponding to the trans and cis proline conformers in 1H,15N-Hα(Cα)N experiments recorded on 15N,13C-doubly labelled peptides. Error bars were calculated based on the signal-to-noise ratio with uncertainties propagations. e, CHESPA analysis. Both the fractional structuration (X, grey bars) and the projection angle (cosθ, white bars) were calculated for the linear chemical shift patterns shown in Fig. 3 and Fig. 5a, respectively. In both cases, the W312_1 (All_trans) and W312_6 (P310cis) resonances of NS5A-D2 WT were taken as the extremities of the linear patterns.
Figure 6. Molecular dynamics of the PW-turn. a, MD simulations were performed on the peptides pepD2-WT (WT), pepD2-D316E (D316E), pepD2-DEYN (DEYN), pepD2-P315cis (P325c) and pepD2-A311G (A311G). The presence of the PW-turn motif (PW_fraction) in each simulation was quantified as described in the Methods section, using our NMR structural model as a reference. b and c, Plots of the PW_fraction of each peptide, from MD simulations, vs. the experimental W312 1H (b) or 15N (c) chemical shift. d, Plot of the PW_fraction from MD simulations vs. the fractional shift (X) from the NMR CHESPA analysis. The linear correlations with their respective correlation coefficients (R^2) are shown in grey.
Figure 7. Interaction of CypA with NS5A-D2 derived peptides: pepD2-WT (a), pepD2-D316E (b) and pepD2-A311G (c). 1H,15N-HSQC spectra of 15N-CypA (0.1 mM) were acquired in presence of increasing amounts of unlabeled NS5A-D2 derived peptides (0, 0.2, 0.8, 1.5 and 2.5 mM). The CypA 1H,15N combined chemical shift perturbations ($\Delta \delta$, ppm) are plotted as a function of the peptide/CypA ratios. The K_D values correspond to the mean (\pmSD) calculated over five CypA resonances (I56, L98, M100, S110 and G124) (Fig. S19).
Figure 8. Functional relevance of the PW-turn. *a*, Subgenomic JFH1 replicons (Luc-NS3-5B) containing or not (WT) single mutations (A311G, P310A, DEYN or A311I) in NS5A or a defective polymerase inhibiting replication (ΔGDD) were electroporated into Huh-7 cells. The cells were lysed 4, 24, 48 and 72h after transfection and luciferase activity (representing RNA replication) was measured. The data were normalised to their respective 4h value reflecting transfection efficiency. Mean values (mean ± SEM) of 3 independent experiments (n = 3) are shown (2 independent experiments for the A311I and DEYN mutants). The horizontal dashed line corresponds to the background level as determined with the ΔGDD replicon. *b* and *c*, Plots of the RNA replication efficiencies (*i.e.* luciferase activity values, of the different subgenomic replicons in (*a*)) vs. the experimental W312 1H chemical shift (*b*) or the fractional shift (X) from the NMR CHESPA analysis (*c*). The exponential correlations with their respective coefficients (R^2) are shown in grey.