Manifestations of Horndeski theory in binary systems with pulsars.

Nikita Avdeev¹,⁎, Polina Dyadina²,³,⁎⁎ and Stanislav Alexeyev³,⁴,⁎⁎⁎

¹Department of Celestial Mechanics, Astrometry and Gravimetry, Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, Moscow 119991, Russia
²1Department of Astrophysics and Stellar Astronomy, Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, Moscow, 119991, Russia
³Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky Prospekt, 13, Moscow 119991, Russia
⁴Department of Quantum Theory and High Energy Physics, Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, Moscow 119991, Russia

Abstract. Subclass of Horndeski gravity without Vainstein screening mechanism is tested in strong field regime of binary pulsars. Two specific cases of the Horndeski gravity are considered: the hybrid metric-Palatini f(R)-gravity and massive Brans-Dicke theory. The observational data of PSR J1738+0333, PSR J0737-3039, PSR J1012+5307 is used for obtaining constraints.

1 Introduction

There are two problems in modern physics, which cannot be explained by the generally recognized gravitational theory (General Relativity (GR)). The first of them is Dark Matter (DM), its invisible matter, which fills up in galaxies and manifests itself only in the gravitational interaction [1]. The second problem is Dark Energy (DE), this phenomenon is responsible for accelerated expansion of the Universe [2]. One of the ways to solve these problems is to develop modified gravity. Adding the scalar field to GR is one of possible expansions of gravitational theory.

The Horndeski theory is the most general scalar-tensor theory with the second-order field equations which evades Ostrogradski instabilities [3]. Horndeski gravity suggests solutions for some GR’s problems. For example, the scalar field can play the role of DE and explain the accelerating expansion of the Universe [4]. This theory has recently been studied extensively in the context of cosmology [5] and physics of black holes [6] and it has already been tested in cluster lensing [7], the cosmic microwave background (CMB) data [8] etc. Special attention should be paid to the recent work [9], where constraints for this theory were obtained by comparing LIGO data for event GW170817 [10] and the concomitant gamma-ray burst GRB 170817A [11]. In our work we also study the gravitational radiation in Horndeski gravity but use the binary pulsars data. In work [12] authors study the similar problem, but they restrict their consideration with massless case.

⁎ e-mail: NAAvdeev1995@mail.ru
⁎⁎ e-mail: guldur.anwo@gmail.com
⁎⁎⁎ e-mail: alexeyev@sai.msu.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
In our work we test the subclass of Horndeski gravity without Vainstein screening mechanism in the strong field regime of binary pulsars. The discovery of binary pulsar PSR 1913 + 16 in 1974 [13] has opened a new possibility for testing gravitational theories [14]. In such systems gravitational field is stronger than in Solar System. Moreover, high stability of the pulse arrival allows to extract the dynamics of the orbital motion with such accuracy at which the effects of gravitational waves emission could appear. It provides an additional opportunity to verify the predictions of theories.

In this work, we test the Horndeski gravity in mixed binary systems and neutron star-neutron star binary (PSR J0737-3039) with quasi-circular orbits and impose restrictions on the parameters of Horndeski model.

2 Horndeski theory

2.1 Action

The action of Horndeski theory is given by [18]:

\[
S = \frac{c^4}{16\pi G} \sum_{i=2}^{5} \int d^4x \sqrt{-g} L_i + S_m, \tag{1}
\]

where \(c\) is the speed of light, \(g\) is the determinant of the metric, and \(S_m\) is the standard matter action. \(L_i\) are the gravitational Lagrangian densities:

\[
L_2 = G_2(\phi, X), \quad L_3 = -G_3(\phi, X)\Box\phi, \quad L_4 = G_4(\phi, X)R + G_{4X}(\Box\phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2, \]

\[
L_5 = G_5(\phi, X)G_{\mu\nu} \nabla_\mu \nabla_\nu \phi - \frac{G_{5X}}{6} \left((\Box \phi)^3 + 2(\nabla_\mu \nabla_\nu \phi)^3 - 3(\nabla_\mu \nabla_\nu \phi)^2 \Box \phi \right), \tag{2}
\]

where \(G_{\mu\nu}\) is the Einstein tensor, \(R\) is Ricci scalar, \(\phi\) is the scalar field, \(X = -1/2 \nabla_\mu \phi \nabla^\mu \phi\), \(\nabla_\mu\) is the covariant derivative, \(\Box\phi = \eta^{\mu\nu} \nabla_\mu \nabla_\nu \phi\), \(G_i(\phi, X)\) are arbitrary functions of the scalar field \(\phi\) and its kinetic term \(X\), \(G_{iX} = \partial G_i / \partial X\). In subclass of Horndeski theory without Vainstein mechanism, where arbitrary functions take the following form:

\[
G_2(\phi, X) = G_2(\phi, X), \quad G_3(\phi, X) = G_3(\phi), \quad G_4(\phi, X) = G_4(\phi), \quad G_{4X} = 0, \quad G_5(\phi, X) = 0 \tag{3}
\]

where \(G_2(\phi, X)\) contains no more than the first order in \(X\).

The weak and strong equivalence principles are violated in some modified gravitational models. In scalar-tensor theories the inertial mass and internal structure depend on the scalar field. Eardley first showed that in the scalar-tensor gravity the influence of the scalar field on the internal structure of the body can be expressed through the assumption that the mass of the body is an arbitrary function of the scalar field [15]. So the matter action for a system of point-like masses can be written as

\[
S_m = -c^2 \sum_a \int m_a(\phi) d\tau_a, \tag{4}
\]

where \(m_a(\phi)\) are inertial masses of particles labeled by \(a\) and \(\tau_a\) is the proper time of the particle \(a\) measured along its world-line \(x^\mu_a\).
2.2 Field equations

Pulsars have the strong surface gravitational potential \(\Phi_{NS} = (G_N M_{NS})/(c^2 R_{NS}) = 0.2 \) (where \(G_N \) is Newtonian gravitational constant, \(M_{NS} \) is the mass of the neutron star, \(R_{NS} \) is its radius), but we intend to calculate the energy flux carried away by gravitational radiation from binary pulsars at large distances from the source, and surface gravitational potential does not have a significant influence on the metric \(g_{\mu\nu} \) and the scalar field \(\phi \). Therefore, we can expand the scalar and tensor fields in the approximation of weak field limit and small velocities \((v/c \ll 1) \) around cosmological background \(\phi_0 \) and Minkowski background \([19] \) \(\eta_{\mu\nu} \) (post-Newtonian limit (PN) [20]):

\[
\phi = \phi_0 + \varphi, \quad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu},
\]

\(h_{\mu\nu} \) and \(\varphi \) are the small perturbations of tensor and scalar fields of order \(O(v^2/c^2) \), respectively. Also four arbitrary functions \(G_2(\phi, X), G_3(\phi, X), G_4(\phi, X), G_5(\phi, X) \) can be expanded in Taylor’s series around the scalar cosmological background:

\[
G(\phi, X) = \sum_{m,n=0}^{\infty} G_{(m,n)} \varphi^m X^n, \quad G_{(m,n)} = \frac{1}{m!n!} \frac{\partial^{m+n}}{\partial \phi^m \partial X^n} G(\phi, X) \bigg|_{\phi=\phi_0, X=0},
\]

where \(G_{(m,n)} \) are constants.

Also we can write stress-energy tensor, its trace, and \(\frac{\partial T}{\partial \varphi} \) in the near zone in terms of Eardly method \([19]\) for point mass approximation (binary system case):

\[
T^{\mu\nu} = \sum_a m_a(\phi) u^\mu u^\nu \left(1 - \frac{b^2}{2} - \frac{v^2}{2c^2} + s_a \frac{\varphi}{\phi_0} \right) \delta^3(\vec{r} - \vec{r}_a(t)),
\]

\[
T = -c^2 \sum_a m_a(\phi) \left(1 - \frac{b^2}{2} - \frac{v^2}{2c^2} + s_a \frac{\varphi}{\phi_0} \right) \delta^3(\vec{r} - \vec{r}_a(t)),
\]

\[
\frac{\partial T}{\partial \varphi} = -c^2 \sum_a \frac{m_a(\phi)}{\phi_0} s_a \left(1 - \frac{b^2}{2} - \frac{v^2}{2c^2} \right) \left(s'_a - \frac{c^2}{a} + s_a \frac{\varphi}{\phi_0} \right) \delta^3(\vec{r} - \vec{r}_a(t)),
\]

where \(v_a \) is the velocity of the object labeled in \(a \). The quantities \(s_a \) and \(s'_a \) are the "first and second sensitivities". These parameters firstly were introduced by Eardly [15]:

\[
s_a = \left. \frac{\partial (\ln m_a)}{\partial (\ln \phi)} \right|_{\phi_0}, \quad s'_a = \left. \frac{\partial^2 (\ln m_a)}{\partial (\ln \phi)^2} \right|_{\phi_0}.
\]

If we want to consider gravitational radiation in far zone at the point of detector, we must solve a field equation in near zone, where gravitational radiation is generated. The field equations within the post-Newtonian (PN) approximation in the 1st PN order \(O(v/c)^2 \) take the form [21]:

\[
\Box g_{\mu\nu} = -\frac{16\pi G}{c^4 G_{4(0,0)}} T_{\mu\nu},
\]

\[
\Box \varphi - m_{\varphi}^2 \varphi = \frac{16\pi G}{c^4} c_{\varphi} S,
\]

where

\[
m_{\varphi}^2 = \frac{G_{2(2,0)}}{2G_{4(1,0)} - G_{20,11} - 3 G_{20,00}}, \quad c_{\varphi} = -\frac{G_{4(1,0)}}{2G_{4(0,0)} - 2G_{3(1,0)} - 3 G_{20,00}},
\]

\[
S = T - \frac{2G_{4(0,0)} \partial T}{G_{4(1,0)} \partial \varphi}.
\]
In these equations we also use the following notations:

\[\theta_{\mu\nu} = h_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} h - \frac{G_{4(1,0)}}{G_{4(0,0)}} \eta_{\mu\nu} \varphi, \quad \theta = -h - 4 \frac{G_{4(1,0)}}{G_{4(0,0)}} \varphi, \]

(12)

and transverse gauge \(\partial_{\mu} \theta^{\mu} = 0 \). The Eq.(10) is analogue of inhomogeneous Klein-Gordon-Fock equation, where the parameter \(m_{\varphi} \) is the inverse Compton wavelength of the scalar field.

In this paper we work in the CGS system thus here and further the scalar field mass \(m_{\varphi} \) has the dimension of inverse centimeter \((cm^{-1})\).

Let’s obtain the solution of these equations at leading order. For the scalar field, it takes the following form [21]:

\[\varphi = \frac{4c_{\varphi}}{c^2} \sum_a \frac{G m_a}{r_a} \left(1 - \frac{2s_a}{\phi_0} \right) e^{-m_{\varphi} r_a}, \]

(13)

where \(r_a = |\vec{r} - \vec{r}_a(t)| \). Then we solve Eq.(9) within the 1PN approximation in the near zone [21]:

\[\theta_{00} = \frac{4}{c^2 G_{4(0,0)}} \sum_a \frac{G m_a}{r_a} + O\left(\frac{c}{v} \right)^4, \quad \theta_{ij} = \frac{4v_i v_j}{c^2 G_{4(0,0)}} \sum_a \frac{G m_a}{r_a} + O\left(\frac{c}{v} \right)^6, \]

\[\theta = -\frac{4}{c^2 G_{4(0,0)}} \sum_a \frac{G m_a}{r_a} + O\left(\frac{c}{v} \right)^4. \]

(14)

It is important to emphasize that in scalar-tensor theories weak equivalence principle (WEP) can be violated [22]. So that is why we must modify equations of motion. In Horndeski theory the changes are following: gravitational constant becomes a function of the scalar field, parameters of the theory, sensitivities and distance between objects. We obtain the explicit form for Kepler’s third law using the A. Einstein, L. Infeld, and B. Hoffmann (EIH) method [23]:

\[a^3 (2\pi/P_b)^2 = G_{12} m \]

(15)

and the orbital binding energy of such system is

\[E = -\frac{G_{12} m \mu}{2a}, \]

(16)

here \(a \) is the semi-major axis, \(m = m_1 + m_2 \), and \(\mu = m_1 m_2/m \), \(P_b \) is the orbital period of a binary system, \(G_{12} \) is the effective gravitational coupling constant between two compact objects:

\[G_{ab} = \frac{G}{G_{4(0,0)}} \left\{ 1 + (1 + m_{\varphi} r_{ab}) e^{-m_{\varphi} r_{ab}} \left[2c_{\varphi} G_{4(1,0)} \left(1 - \frac{2s_b}{\phi_0} G_{4(1,0)} \right) - \frac{4s_a c_{\varphi} G_{4(0,0)}}{\phi_0} \left(1 + \frac{2s_b}{\phi_0} G_{4(1,0)} \right) \right] \right\}. \]

(17)

In this work we use approximation where scalar field is responsible for DE effect: \(m_{\varphi} r_{ab} \ll 1 \) and \(e^{-m_{\varphi} r_{ab}} \rightarrow 1 \).

For obtaining constraint on parameters of Horndeski theory, we selected the binary systems where the most significant dissipative effect is caused by gravitational radiation. Therefore, the energy losses can be expressed via the first derivative of the orbital period using Eq.(15) and Eq.(16):

\[\frac{\dot{E}}{E} = -\frac{2 \dot{P}_b}{3 P_b}. \]

(18)

Further, we’ll use this expression for obtaining constraints.
3 Gravitation radiation from binary pulsars

Energy flux of binary system is defined as [19]

$$\langle E \rangle = -cr^2 \int d\Omega \langle t_{0i} \rangle,$$

where t_{0i} is component of stress-energy pseudotensor. For calculation pseudotensor, we use Noether current (24):

$$t^\mu_i = \frac{c^4}{16\pi G} \left[\frac{G_{40(0)}}{2} \partial_G \theta^\mu \theta^\nu \theta^\alpha \partial^\sigma \theta_{\gamma \nu} + \frac{G_{40(0)}}{2G_{40(0)} \partial G_{40(0)}} \partial^\mu \theta^\nu \theta^\sigma \theta_{\gamma \nu} + \delta^ \mu_\gamma \left(\frac{G_{2(0,0)}/2}{4} \partial_\alpha \theta^\nu \theta^\sigma \theta_{\gamma \nu} - \frac{G_{2(0,0)}}{4} \partial_\gamma \theta^\nu \theta^\sigma \theta_{\gamma \nu} \right) \right].$$

(20)

The energy flux consists of two parts: tensor and scalar. The tensor part is

$$\langle E_g \rangle = -\frac{32\mu^2(4\mu^2)\pi}{k^2G_{40(0),R}^2} \left[1 \left[2c_gG_{4(1,0)} \left(1 - \frac{2\pi G_{40(0)}}{\phi_0 G_{4(1,0)}} \right) \right] - \frac{4s_gG_{40(0)}}{\phi_0} \left(1 - \frac{2\pi G_{40(0)}}{\phi_0 G_{4(1,0)}} \right) \right]^3,$$

(21)

where R is radius of the reduced mass μ orbit and in the case of quasi-circular orbit in Eq.(15) $R = a$. The quantity G_{12} is the effective gravitational constant between components of binary system (17). The scalar part is

$$\langle E_\phi \rangle = -\frac{32\mu^2(4\mu^2)\pi}{k^2G_{40(0),R}^2} \left[1 \left[2c_gG_{4(1,0)} \left(1 - \frac{2\pi G_{40(0)}}{\phi_0 G_{4(1,0)}} \right) \right] - \frac{4s_gG_{40(0)}}{\phi_0} \left(1 - \frac{2\pi G_{40(0)}}{\phi_0 G_{4(1,0)}} \right) \right] \frac{4\pi}{1} + \frac{G_{40(0)}e_\gamma}{3} A^\mu_\gamma \left[1 \left[2c_gG_{4(1,0)} \left(1 - \frac{2\pi G_{40(0)}}{\phi_0 G_{4(1,0)}} \right) \right] - \frac{4s_gG_{40(0)}}{\phi_0} \left(1 - \frac{2\pi G_{40(0)}}{\phi_0 G_{4(1,0)}} \right) \right] \frac{4\pi}{1}.$$

(22)

where $A_d, \tilde{A}_d, A_q, A_o$ are functions of theory parameters, sensitivities and cosmological background. As seen from (22), the scalar part includes dipole term (term with A_d), PN correction to dipole term (term with \tilde{A}_d), quadrupole term (term with A_q), dipole-octupole term (term with A_o). In contrast to the tensor part, which includes only the quadrupole term.

We can obtain the expression for first derivative of orbital period:

$$P' = -\frac{192\pi \mu}{5m} \left(\frac{2\pi Gm}{c^3G(4,0)} \right)^{3/2} \int \left[1 \left[2c_gG_{4(1,0)} \left(1 - \frac{2s_2 G_{4(0,0)}}{\phi_0 G_{4(1,0)}} \right) - \frac{4s_1 c_gG_{4(0,0)}}{\phi_0} \left(1 - \frac{2s_2 G_{4(0,0)}}{\phi_0 G_{4(1,0)}} \right) \right] \right] \frac{1}{4} + \frac{G_{40(0)}c_g}{4c_2 m} \left[1 \left[2c_gG_{4(1,0)} \left(1 - \frac{2s_2 G_{4(0,0)}}{\phi_0 G_{4(1,0)}} \right) - \frac{4s_1 c_gG_{4(0,0)}}{\phi_0} \left(1 - \frac{2s_2 G_{4(0,0)}}{\phi_0 G_{4(1,0)}} \right) \right] \right] \frac{1}{4} + \frac{G_{40(0)}c_g}{4c_2 m} \left[1 \left[2c_gG_{4(1,0)} \left(1 - \frac{2s_2 G_{4(0,0)}}{\phi_0 G_{4(1,0)}} \right) - \frac{4s_1 c_gG_{4(0,0)}}{\phi_0} \left(1 - \frac{2s_2 G_{4(0,0)}}{\phi_0 G_{4(1,0)}} \right) \right] \right] \frac{1}{4}.$$

(23)
Figure 1. Brans-Dicke theory. a) Dependence of the \(\omega_{BD}\) upon the scalar field mass in the case of the PSR J1738+0333. The solid line and region of vertical dot-dash lines correspond to the results of the article [16]. The bold line and region of horizontal dot-dash lines describe the results of our work. The vertical bold line is the critical value of scalar mass \((m_\phi = \omega/c)\). b) Dependence of the \(\omega_{BD}\) upon the scalar field mass. The solid line corresponds to the PSR J1738+0333. The bold line describes the results for the PSR J1012+5307. The line with triangles represents the PSR J0737-3039. The region with vertical dotted lines contains the allowable values obtained from binary pulsars. The region with horizontal dotted lines contains the allowable values obtained from Cassini data for \(\gamma_{PPN}\) [28]. Dependence of the scalar field mass upon scalar field background value. Figure c) represent allowable regions at different scales. The region with oblique dotted lines corresponds to allowable values in the case of the PSR J0737-3039, the horizontal solid lines are the critical value of scalar mass \((m_\phi = 2\omega/c)\), the vertical dotted lines describe allowable values in the case of the PSR J1738+0333, the horizontal dot-dash lines correspond to allowable values from the \(\gamma_{PPN}\).

\[
\frac{16s_2s_1'm_2}{m_1}+16s_1s_2'-16s_2s_1'\left[1+\left(2c_\phi G_{4(1,0)}\left(1-\frac{2s_2}{G_{4(1,0)}\phi_0}\right)-\frac{4s_1c_\phi G_{4(0,0)}}{\phi_0}\left(1-\frac{2s_2}{G_{4(0,0)}\phi_0}\right)\right)^{-\frac{1}{2}}\right]
\times\left[1-\left(\frac{P_{sc}c_\phi}{2\pi}\right)^2\right]^{\frac{1}{2}}\frac{G_{4(1,0)}c_\phi}{3}\left(1-\frac{2G_{4(0,0)}(s_2m_1 + s_1m_2)}{G_{4(1,0)}\phi_0}\right)^2\left[1-\left(\frac{P_{sc}c_\phi}{4\pi}\right)^2\right]^{\frac{1}{2}}\frac{c_\phi}{96}\frac{2G_{4(0,0)}(s_2 - s_1)}{\phi_0}\right]
\times\left(\frac{m_1 - m_2}{m}\frac{s_2m_1^2 - s_1m_2^2}{m^2}\right)^{\frac{1}{2}}\left[1-\left(\frac{P_{sc}c_\phi}{2\pi}\right)^2\right]^{\frac{1}{2}}\right]. \quad (23)
\]

4 Observational constrains on Horndeski gravity and special cases from binary pulsars

For obtaining constraints on the theories we use the following method:

\[
\left|\frac{\dot{P}_{GR}^b}{\dot{P}_{GR}^b} - \frac{\dot{P}_{GR}^{obs}}{\dot{P}_{GR}^b}\right| \leq 2\sigma. \quad (24)
\]

Here we compare the predicted quantity \(\dot{P}_{GR}^b\) and the observational quantity \(\dot{P}_{GR}^{obs}\) at 95% confidence level, where \(\sigma\) is the observational uncertainty.

For case with sensitivities we obtain the constraints from PSR J1738+0333 [26]:

\[
\left|\frac{G_{4(0,0)^2}}{G_{4(0,0)^2}}\left[1 + \frac{s_2}{s_2' G_{4(1,0)}}\right]\left(1 - \frac{m_2^2}{4e^2}\right)^2\left[\frac{G_{4(0,0)}(s_{SWD})^2}{G_{4(1,0)}\phi_0^2}\right] - 0.93\right| \leq 0.26. \quad (25)
\]
Here we compare the predicted quantity $\dot{\pi}_m$. For obtaining constraints on the theories we use the following method:

Observational constraints on Horndeski gravity and special cases

1. Brans-Dicke theory. We can pass over to consideration of this case via following transformations:

$$G_2 = \frac{2\omega_{BD}}{\phi} X + V(\phi), \quad G_3 = 0, \quad G_4 = \phi, \quad G_5 = 0,$$

The dependence of the quantity ϕ_0 upon ω_{BD} for massive and massless Brans-Dicke cases [16] is

$$\phi_0 = \frac{4 + 2\omega_{BD}}{3 + 2\omega_{BD}}.$$

Manifestations of Brans Dicke theory in binary pulsars has already account in this article [16], but in this work we take into consideration PN corrections to the scalar dipole term and scalar dipole-octupole term. This difference present in Fig.1a. Constraints for this theory from binary pulsars and Solar System are presented on Fig.1b. The best result is provided by combining PSR J1012+5307[25] and Solar System test [28]:

$$\omega_{BD} \geq 36000, \quad m_\phi \leq 4 \times 10^{-15}(cm^{-1}).$$

Now, let's consider hybrid $f(R)$-gravity [29]. Transfer from Horndeski theory to this theory is given by:

$$G_2 = -\frac{3X}{\phi} - V(\phi), \quad G_3 = 0, \quad G_4 = 1 + \phi, \quad G_5 = 0$$

Constraints on parameters of this theory from binary pulsars and Solar System are presented on Fig.1c and Fig.1d. The bests results is provided by combining PSR J1738+0333 and Solar System tests [28]:

$$\phi_0 \leq 0.00004, \quad m_\phi \leq 1.4 \times 10^{-14}(cm^{-1}).$$

5 Conclusion

In this paper we obtained constraints in the strong-field regime on the subclass of Horndeski theories without the Vainstein mechanism for case with (25) and without sensitivities(26). We showed that more accurate than in [16] consideration significant. As we can see on Fig.1b and Fig.1c the constraints in the Solar system are better than the restrictions from pulsars in the case of massless theories, but in the case of massive theories, both kinds of constraints make their unique contribution.

References

[1] F. Zwicky, Helv. Phys. Acta 6, 110 (1933); J. H. Oort, Bull. Astron. Inst. Neth.6, 249 (1932).

[2] M. S. Turner, The Third Stromlo Symposium: The Galactic Halo 165, 431 (1999).
[3] G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[4] A. De Felice and S. Tsujikawa, J. Cosmol. Astropart. Phys. 1202, 007 (2012).
[5] C. Germani and P. Martin-Moruno, Phys. Dark Univ. 18, 1 (2017); J. Kennedy, L. Lombriser, and A. Taylor, Phys. Rev. D 96, 084051 (2017); N.J. Nunes, P. Martin-Moruno, and F.S.N. Lobo, Univ. 3, 33 (2017).
[6] D. A. Tretyakova and B. N. Latosh, Univ. 4, 2, 26 (2018); D. A. Tretyakova, J. Exp. Theor. Phys. 125, 403 (2017); D. A. Tretyakova and T. M. Adyev, (2016), arXiv:1610.07300; D. A. Tretyakova and D. V. Melkoserov, (2016), arXiv:1606.08569.
[7] T. Narikawa, T. Kobayashi, D. Yamauchi, and R. Saito, Phys. Rev. D 87, 124006 (2013).
[8] V. Salvatelli, F. Piazza, and C. Marinoni, J. Cosmol. Astropart. Phys. 1609, 027 (2016); J. Renk, M. Zumalacarregui, and F. Montanari, ibid 1607, 040 (2016).
[9] J. M. Ezquiaga and M. Zumalacarregui, Phys. Rev. Lett. 119, 251304 (2017).
[10] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017).
[11] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. Lett. 848, L13 (2017).
[12] S. Hou and Y. Gong, Eur. Phys. J. C 78, 247 (2018).
[13] R. A. Hulse and J. H. Taylor, Astrophys. J. Lett. 195, L51 (1975).
[14] M. Pshirkov, A. Tuntsov, and K. Postnov, Phys. Rev. Lett. 101, 261101 (2008).
[15] D. M. Eardley, Astrophys. J. Lett. 196, L59 (1975).
[16] J. Alsing, E. Berti, C. M. Will, and H. Zaglauer, Phys. Rev. D 85, 064041 (2012).
[17] X. Zhang, T. Liu, and W. Zhao, Phys. Rev. D 95, 104027 (2017).
[18] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Prog. Theor. Phys. 126, 511 (2011).
[19] C. M. Will, Theory and Experiment in Gravitational Physics, (Cambridge University Press, London, 1981); Liv. Rev. Relat., 17, 4 (2014); E. Poisson and C. M. Will, Gravity: Newtonian, Post-Newtonian, Relativistic, (Cambridge University Press, London, 2014).
[20] A. S. Eddington, The Mathematical Theory of Relativity, (Cambridge University Press, London, 1922); K. Nordtvedt, Phys. Rev. 169, 1017 (1968); C. M. Will, Astrophys. J. 163, 611 (1971); C. M. Wil, K. Nordtvedt, Astrophys. J. 177, 757 (1972).
[21] M. Hohmann, Phys. Rev. D bf 92, 064019 (2015).
[22] E. Di Casola, S. Liberati, and S. Sonego, Am. J. Phys. 83, 39 (2015).
[23] A. Einstein, L. Infeld, and B. Hoffmann, Ann. Math. 20, 39, 65 (1938).
[24] A. Saffer, N. Yunes, and K. Yagi, (2017), arXiv:1710.08863.
[25] K. Lazaridis et al., Mon. Not. R.Astron.Soc. 400, 2, 805 (2009).
[26] J. Antoniadis et al., Mon. Not. R. Astron. Soc. 423, 4, 3316 (2012); P. C. C. Freire et al., ibid 423, 4, 3328 (2012).
[27] M. Burgay et al., Nature 426, 531 (2003); M. Kramer, et al., Science 341, 97 (2006).
[28] B. Bertotti, L. Iess, and P. Tortora, Nature 425, 374 (2003).
[29] P. Teyssandier and P. Tourrenc , J. Math. Phys. 24, 2793 (1983).