HIGH p_T PHENOMENA IN HEAVY ION COLLISIONS
AT $\sqrt{s} = 20$ and 200 AGeV

Miklos Gyulassy1 and Peter Levai1,2

1Physics Department, Columbia University, New York, NY 10027
2KFKI Research Institute for Particle and Nuclear Physics,
P.O. Box 49, Budapest, 1525, Hungary

9 September 1998

Abstract

Jet quenching as observed via high p_T hadron production is studied in the HIJING1.35 model. We test the model on recent WA98 data on 160 AGeV $Pb + Pb \rightarrow \pi^0$ up to 4 GeV/c. The results depend sensitively on the model of the Cronin effect. At (RHIC) collider energies ($\sqrt{s} > 200$ AGeV), on the other hand, semi-hard hadron production becomes insensitive to the above model and is thus expected to be a cleaner probe of jet quenching signature associated with non-Abelian radiative energy loss.

WA98 $Pb + Pb \rightarrow \pi^0$ data [1] in the 2 GeV $< p_{\perp} < 4$ GeV range were analyzed recently by Wang [2] via a parton model. He showed that the parton model [3] is capable of reproducing the observed π^0 invariant inclusive cross sections simultaneously in $p + p$, $S + S$ [4], and central $Pb + Pb$ [1] in the CERN/SPS energy range, $\sqrt{s} \sim 20$ AGeV. That analysis is interesting because it seems to imply the absence of quenching of high transverse momenta hadrons that should arise if partons lose energy in dense matter [5, 6]. The $S + S$ and $Pb + Pb$ data clearly reveal, on the other hand, the expected Cronin enhancement [7] of moderate p_{\perp} pions, as seen first in $p + A$. The pp data confirm the need to supplement the LLA with non-perturbative intrinsic k_{\perp} [8, 9]. We address this problem here, following Ref. [10], using the HIJING event generator [11, 12].

*Talk given at the 8th Int. Workshop on Multiparticle Production, June 14-21, 1998, Mátraháza, Hungary
Figure 1: WA98 results\(^1\) on central (10\%) \(Pb + Pb \rightarrow \pi^0\) at 158 AGeV. Data (solid dots) are compared FRITIOF7.02 (open squares)\(^{14}\), VENUS4.12 (open circles)\(^{13}\), and parton model\(^2\) calculations. Inset shows the ratios of the results of the Monte Carlo codes to data. Figure is from WA98 Coll., Ref.\(^1\).

Figure 1 displays the prediction of VENUS\(^{13}\) and FRITIOF\(^{14}\) models also for the Pb+Pb collision. It can be clearly seen that at high \(p_T\) VENUS overpredict the experimental data of WA98 by a factor of 2.5 and FRITIOF underpredict it by order of magnitude. A similar discrepancy was reported for S+Au collisions\(^4\). The solid curve in Figure 1 is the parton model result\(^2\).

We note that the spectra can also be fit well with a simple Boosted Fireball model\(^{15}\) (see Figure 2 for S+Au). However such fits are far less informative than the parton model model one since the observed \(A^{1/3}\) scaling of the high \(p_T\) tails is predicted and in accord with the parton model, while that dependence is not predicted in the fireball model. The WA98 data\(^1\) can also be reproduced by more detailed scaling hydrodynamic calculations with suitable initial and final freeze-out criteria\(^{16}\). Again the real power of pQCD is its prediction without parameters of the \(A\) dependence.
Figure 2: Boosted Fireball model fit to $S + Au \rightarrow \pi^0$ reaction. Figure is from WA80 Coll., Ref. 4.

In central heavy ion reactions at the SPS, conservative estimates of the initial energy density suggest that $\varepsilon(1 \text{fm/c}) \approx 1 \sim 5 \text{ GeV/fm}^3$, are reached. The gluon radiative energy loss of partons in such dense matter is expected to exceed $dE/dx \sim 1 \text{ GeV/fm}$ [6]. Recent theoretical analysis [17] predicts in fact a much larger non-linear energy loss $\Delta E \sim (\Delta x)^2 \text{ GeV/fm}^2$ if a parton traverses a quark-gluon plasma of thickness Δx. On the other hand, the WA98 data seem to rule out $dE/dx > 0.1 \text{ GeV/fm}$, as Wang showed in Ref. [2]. In this work, we consider this problem using the nuclear collision event generator, HIJING [11, 12].

Recall that in the LLA, pQCD predicts that the single inclusive hadron cross
section is given by Refs. [3, 9]

\[
\frac{d\sigma^{AB\to hX}}{dyd^2p_T} = K \sum_{abcd} \int d^2\vec{\kappa}_a d^2\vec{\kappa}_b g(\kappa_a)g(\kappa_b)
\int dx_a dx_b f_{a/A}(x_a, Q^2)f_{b/B}(x_b, Q^2)
\]

\[
\frac{d\sigma}{dt}(ab \to cd) \frac{D^0_{h/c}(z_c, Q^2)}{\pi z_c}.
\]

This formula convolutes the elementary pQCD parton-parton cross sections, \(d\sigma(ab \to cd)\), with non-perturbative lowest order fits of the parton structure functions, \(f_{a/A}\), and the parton fragmentation functions, \(D_{h/c}\), to \(ep\) and \(e^+e^-\) data. Here \(\kappa_a, \kappa_b\) are the intrinsic transverse momenta of the colliding partons.

The model includes a \(K \approx 2\) factor to simulate next-to leading order corrections \([18]\) at a hard scale \(Q \sim p_T/z_c\). The scale dependence of the structure and fragmentation functions account for the multiple soft collinear radiative effects. However, below energies \(\sqrt{s} < 100\) GeV, it is well known \([8]\) that LLA significantly underpredicts the \(p_T < 10\) GeV cross section, and additional non-perturbative effects must be introduced to bring LLA into agreement with data. Unfortunately, as emphasized in Ref. \([3]\), the results are then quite model dependent below collider (RHIC) energies. As we show below, the good news is that this \(p_T\) broadening dependence is reduced significantly at collider (RHIC) energies.

In spite of the inherent ambiguity of the parton model analysis at SPS energies, a successful phenomenological approaches to this problem has been developed via the introduction \([3]\) of intrinsic transverse momenta of the colliding partons as in \([1]\). Originally, a Gaussian form for that distribution with \(\langle k_T^2 \rangle \sim 1\) GeV\(^2\) was proposed in Ref. \([3]\). However, in order to reproduce \(pp\) data more accurately and to take into account the Cronin effect, the Gaussian ansatz was generalized in Ref. \([2]\) to include \(Q^2\) and \(A\) dependence. With \(g(\kappa) \to g_a(\kappa, Q^2, A)\), excellent fits \([2]\) to the WA98 data could be obtained assuming a factorized Gaussian distribution with

\[
\langle \kappa^2(b) \rangle_A = \left(1 + 0.2 Q^2 \alpha_s(Q^2) + \frac{0.23 \sigma_{pp} t_A(b) \ln^2 Q}{1 + \ln Q} \right) (\text{GeV}/c)^2 \tag{2}
\]

where \(Q^2\) is measured here in (GeV/c\(^2\)). In \([2]\) \(\sigma_{pp} t_A(b)\) is the average number of inelastic scatterings a nucleon suffers traversing nucleus \(A\) at impact parameter \(b\). The nuclear thickness function, \(t_A(b)\), is normalized as usual to \(\int d^2b t_A(b) = A\). Eq.\(2\) is the main source of the model dependence in Ref. \([2]\).

The HIJING1.35 Monte Carlo model \([11, 12]\) incorporates pQCD jet production together with initial and final state radiation according to the PYTHIA algorithm \([13]\). In addition, it incorporates a variant of the soft string phenomenology similar to the Lund/FRITIOF \([26]\) and DPM \([27]\) models to simulate beam jet fragmentation and jet hadronization physics. Low transverse
momenta inelastic processes are of course highly model dependent, and the parameters must be fit to pp and AB data \[11,12\]. It is of interest to apply HIJING to the present study because it incorporates in addition to the above soft and hard dynamics, a model of soft (Cronin) multiple initial state collision effects as well as a simple jet quenching scheme. With these features, we are able to study how competing aspects of the reaction mechanism influence hadronic observables and explore the magnitude of theoretical uncertainties.

In the HIJING model, excited baryon string are assumed to pick up random transfer momentum kicks in each inelastic scattering according to the following distribution

$$g(\vec{\kappa}) \propto \left\{(\kappa^2 + p_1^2)(\kappa^2 + p_2^2)(1 + e^{(\kappa - p_3)/p_3})\right\}^{-1},$$

where $p_1 = 0.1$, $p_2 = 1.4$, $p_3 = 0.4$ GeV/c were chosen to fit low energy ($p_{\perp} < 1$ GeV/c) multiparticle production data in Refs. \[11,12\]. A flag, IHPR2(5)(=1 or 0), makes it possible to compute spectra with and without this effect as shown in part (a) of Figure 3. The present study is the first test of this model up to 4 GeV/c in the SPS energy range.

Jet quenching is modeled via gluon splitting according to the number of mean free paths, $\lambda = 1$ fm, traversed by a gluon through the cylindrical nuclear reaction volume. In each partonic inelastic interaction a gluon of energy $\Delta E = \Delta x dE/dx$ is assumed to be split off the parent jet and incorporated as a kink in another baryonic string \[11\]. The (constant) energy loss per unit length is an input parameter (HIPR1(14) in HIJING \[11\]) and can switched on and off via IHPR2(4) (=1 or 0) to test the sensitivity of spectra to jet quenching as shown in Figure 3. Figure 3 compares the predictions of HIJING1.35 \[11,12\] without jet quenching ($dE/dx = 0$) for the invariant π^0 cross section in central nuclear collisions at SPS and RHIC energies. The cross section for central $A + A$ collisions are computed integrating over the impact parameters up to b_{max} chosen to reproduce experimental trigger cross sections. For WA98 $Pb + Pb$ and RHIC $Au + Au$ we took $b_{\text{max}} = 4.5$ fm, while for the WA80 $S + S$ we took $b_{\text{max}} = 3.4$ fm. The multiple collision eikonal geometry in HIJING is based on standard Wood-Saxon nuclear densities.

The parton model fit to the WA98 data are labeled by 'Wang' from Ref. \[2\]. (The normalization of both the WA98 data and Wang’s latest calculations (not shown) have increased $\sim 20 - 40\%$ relative to Ref. \[2\].) We note that the HIJING1.35 calculation for this interaction given by the solid jagged line also reproduces remarkably well the π^0 invariant cross sections without jet quenching. However, for the lighter $S + S$ reaction, HIJING, underestimates the $p_{\perp} > 1$ GeV/c tail significantly. This error is traced to the failure of the model to reproduce the pp high p_{\perp} data at these energies, in contrast to its successful account of higher energy data \[17\]. This can be seen by comparing the filled squares to the dot-dashed curves as explained below. Therefore, we find that the agree-
ment with the WA98 data is accidental and the observed A scaling of the high \(p_\perp \) region at SPS energies is not reproduced.

Figure 3a shows that the soft transverse momentum kick model is the source for the agreement of HIJING with the \(Pb+Pb \) data. The dot-dashed curves show what happens if the soft \(p_\perp \) kicks modeled with eq.(3) is turned off. The very strong decrease of the pion yield in the \(Pb+Pb \) case and the somewhat smaller but still large decrease in the \(S+S \) case shows clearly the important role multiple transverse kicks at these energies. In fact both \(S+S \) and \(Pb+Pb \) dot-dashed curves are found to coincide with the calculated \(pp \rightarrow \pi \) differential cross section scaled by the wounded nucleon factor \(W_A \sigma_{AA}/\sigma_{NN} \), where \(W_A = 21, 172 \) is the average number of wounded projectile nucleons and \(\sigma_{AA} = 32, 363, 636 \) mb for \(A = 1, 32, 207 \).

On the other hand, the data follow closely the shape of the measured \(pp \rightarrow \pi^+ \) data taken from [2] and scaled to \(AA \) by multiplying by the Glauber binary collision number factor, \(T_{AA}\sigma_{AA} \). From HIJING the average number of binary collisions in these systems is 45, 751 resp. The fact that the WA98 data scale with the above Glauber factor within a factor of three, suggests that the additional \(p_\perp \) broadening due to initial state collisions is relatively small. The very large \(A \) dependence of the HIJING \(p_\perp \) tail at SPS energies is due to the \(A^{1/3} \) times convolution of the distribution (8). This problem is avoided in the parton model calculation [2] using (2) through the separation of larger intrinsic momentum effects and smaller \(A^{1/3} \) dependent contributions.

We conclude that the missing intrinsic transverse momentum component of HIJING precludes an accurate simultaneous reproduction of \(pp, SS, PbPb \) data at SPS energies. However, unlike the parton model where no global conservation laws have to be enforced, it is not clear how to incorporate intrinsic momenta in a global event generator like HIJING without destroying the satisfactory reproduction of low \(p_\perp < 1 \) GeV/c data. We do not attempt to solve this problem here.

Our main point is that this problem goes away fortunately at higher (RHIC) collider energies \((\sqrt{s} = 200 \) AGeV). As seen in Figure 3a, the effect of multiple soft interactions is very much reduced at that energy. This is due to the well known effect that as the beam energy increases, the \(p_\perp \) spectra become harder and additional \(p_\perp \) smearing from initial state effects becomes relatively less important. It is the extreme steepness of the cross sections at SPS energies that amplifies so greatly the sensitivity of the moderate \(p_\perp \) yields to this aspect of multiple collision dynamics.

In Figure 3b we consider next the sensitivity of the pion yields to the sought after parton energy loss dynamics. The striking difference between Figure 3a and Figure 3b, is that in Figure 3b the SPS yield is not sensitive to the energy loss model in HIJING, while at RHIC energies the suppression of semi-hard hadrons is seen to be sensitive to jet quenching as predicted in Ref. [6]. This seems counter intuitive at first because the increasing steepness with decreasing beam energy is naively expected to result in greater quenching for a fixed jet energy
loss. However, in this model the observed p_\perp range is dominated by multiple soft collisions. The moderate $p_\perp < 5$ GeV quarks, which fragment into the observed pions, are not produced in rare pQCD semi-hard interactions but are gently nudged several times into that p_\perp range. Since in HIJING jet-quenching is restricted to only those partons that suffer a semi-hard pQCD interaction with p_\perp at least $p_0 = 2$ GeV/c (the mini-jet scale), no quenching arises at this energy.

In conclusion, we found that HIJING1.35 fits the WA98 data with or without jet quenching. However, this model fails to account for the weak A dependence of the data that scale approximately with the Glauber T_{AA} factor, and therefore the fit must be viewed as accidental. The hydrodynamic model fits [16] of WA98 data [1] unfortunately make no prediction for the A dependence. On the other hand, another Monte Carlo parton cascade model [22] overpredicted the π^0 cross section at 4 GeV/c by a factor of 10. Those results and ours emphasize the strong model dependence of the SPS spectra due to non-perturbative aspects of the problem. Those aspects, while phenomenologically interesting, make it difficult to identify perturbative QCD phenomena and search for jet quenching.

The main point of this work is to emphasize the good news that at collider energies there is much less sensitivity to the above uncertain element of the reaction mechanism. At $\sqrt{s} > 100$ AGeV the expected jet quenching signature should be readily observable in the $p_\perp \sim 10$ GeV range. Such experiments will commence in 1999 at RHIC and should provide important tests of the theory of non-Abelian multiple collisions and energy loss [3, 7].

Acknowledgments

We would like to thank T. Csörgö for the kind hospitality at Mátraháza. We also thank X.N. Wang, K. Eskola and D. Rischke for the extensive discussions, and T. Peitzmann for making the WA98 preliminary data available. This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract No. DE-FG02-93ER40764 and partly by US/Hungarian Science and Technology Joint Fund No.652/1998. and the OTKA Grant No.T025579.

References

[1] M.M. Aggarwal et al., WA98 Coll., nucl-ex/9806004
[2] X.N. Wang, hep-ph/9804384 (1998), to be published.
[3] J. F. Owens, Rev. Mod. Phys. 59, 465 (1987).
[4] R. Albrecht et al., WA80 Collab., Eur. Phys. J. C5, 255 (1998)
[5] M. Gyulassy and M. Plümer, Phys. Lett. B 243, 432 (1990); M. Gyulassy, M. Plümer, M. H. Thoma and X.-N. Wang, Nucl. Phys. A 538, 37c (1992). M. Gyulassy and X.-N. Wang, Nucl. Phys. B 420, 583 (1994).

[6] X.-N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).

[7] J. Cronin et al, Phys. Rev. D11 (1975) 3105; T. Ochiai, et al., Prog. Theor. Phys. 75, 288 (1986); P.B. Straub et al., E605 Collab., Phys. Rev. Lett. 68 (1992) 452.

[8] R. P. Feynman, R.D. Field, and G.C. Fox, Nucl. Phys. B128, 1 (1977); Phys. Rev. D18, 3320 (1978).

[9] R. D. Field, Applications of Perturbative QCD, Frontiers in Physics Lecture, Vol. 77, Ch. 5.6 (Addison Wesley, 1989).

[10] M. Gyulassy and P. Levai, CU-TP-900, hep-ph/9807247, to be published.

[11] X.-N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501 (1991); Comp. Phys. Comm. 83, 307 (1994).

[12] X.-N. Wang, Phys. Rep. 280, 287 (1997)

[13] K. Werner, Phys. Rep. 232, 87 (1993).

[14] B. Andersson, G. Gustafsson, and H. Pi, Z. Phys. C57, 485 (1993)

[15] U.A. Wiedemann and U. Heinz, Phys. Rev. C56, 3265 (1997).

[16] A. Dumitru and D.H. Rischke, Yale preprint 1998, nucl-th/9806003, to be published.

[17] R. Baier, Yu.L. Dokshitzer, A.H. Mueller, S. Peigné, D. Schiff, Nucl. Phys. B483 (1997) 291, B484 (1997) 265, hep-ph/9804212 (1998) to be published.

[18] K. J. Eskola and X.-N. Wang, Int. J. Mod. Phys. A 10, 3071 (1995).

[19] T. Sjostrand, Comp. Phys. Comm. 82, 74 (1994).

[20] B. Andersson, et al., Nucl. Phys. B281, 289 (1987); Comp. Phys. Commun. 43, 387 (1987)

[21] A. Capella, U. Sukhatme, C. I. Tan and J. Tran Thanh Van, Phys. Rep. 236, 225 (1994)

[22] K. Geiger and D. Shrivastava, Phys. Rev. C56 (1997) 2718.
Figure 3: Invariant $A + A \rightarrow \pi^0$ cross section for central collision at SPS and RHIC energies are compared. a) The WA80 $S + S$ data 4 (triangles) and the WA98 $Pb + Pb$ data 1 (dots) are compared to HIJING1.35 11 with soft p_T kicks (full lines) and without p_T kicks (dot-dashed curves). The later scale with the wounded projectile number times σ_{AA} times the invariant distribution calculated for pp. The parton model curve is from Ref. 2 is labeled by 'Wang'. The filled squares show $pp \rightarrow \pi^+$ data scaled by the (Glauber) number of binary collisions times σ_{AA} for both SS and $PbPb$. b) Jet quenching, predicted at RHIC energies 6, is not significant at SPS energies in the HIJING model.