THE \(L\)-SERIES OF A CUBIC FOURFOLD

KLAUS HULEK AND REMKE KLOOSTERMAN

Abstract. We study the \(L\)-series of cubic fourfolds. Our main result is that, if \(X/\mathbb{C}\) is a special cubic fourfold associated to some polarized \(K3\) surface \(S\), defined over a number field \(K\) and satisfying \(S^{[2]}(K) \neq \emptyset\), then \(X\) has a model over \(K\) such that the \(L\)-series of the primitive cohomology of \(X/K\) can be expressed in the \(L\)-series of \(S/K\). This allows us to compute the \(L\)-series for a discrete dense subset of cubic fourfolds in the moduli spaces of certain special cubic fourfolds. We also discuss a concrete example.

1. Introduction

After the proof of the Taniyama-Shimura-Weil conjecture by Wiles, Taylor and others, many efforts were made to prove similar results for other classes of varieties. The most natural class to investigate is that of Calabi-Yau varieties. In the case of \(K3\) surfaces Shioda and Inose [18] had already determined the zeta-function of singular \(K3\) surfaces defined over some number field \(K\). In the case that the singular \(K3\) surface \(S\) is defined over \(\mathbb{Q}\), Livné [13] has shown that the \(L\)-series associated to the 2-dimensional transcendental lattice of \(S\) comes from a weight 3 modular form with complex multiplication in some quadratic imaginary field \(L\). For rigid Calabi-Yau threefolds defined over \(\mathbb{Q}\), Dieulefait and Manoharmayum [9] have proved modularity under mild restrictions on the primes of bad reduction. Further examples and results are now also known for certain non-rigid Calabi-Yau threefolds and some higher dimensional examples. For a survey see [11].

The main purpose of this paper is to show that there are many cubic fourfolds whose \(L\)-series can be computed. A cubic fourfold \(X\) is called special if it contains a surface \(T\) which is not homologous to a multiple of the class \(h^2\) where \(h\) is the class of the hyperplane section. The discriminant of \(X\) is the discriminant of the saturated rank 2 sublattice of \(H^4(X, \mathbb{Z})\) spanned by \(h^2\) and \(T\). These cubic fourfolds were studied extensively by Hassett [10]. He proved the following result: if the discriminant \(d\) is greater than 6 and if \(d \equiv 0, 2 \mod 6\), then the special fourfolds of discriminant \(d\) are parameterized by a non-empty 19-dimensional quasi-projective variety \(\mathcal{C}_d\). These cubic fourfolds are closely related to \(K3\) surfaces, more precisely if \(d = 2(n^2 + n + 1)\) for some \(n \in \mathbb{Z}_{>1}\), then there exists a non-empty open subset of \(\mathcal{C}_d\) such that the Fano variety \(F(X)\) of a cubic fourfold belonging to this open

This work was partially supported by the DFG Schwerpunktprogramm “Globale Methoden in der komplexen Geometrie” under grant HU 337/5-3. It was started while the first named author enjoyed the hospitality of the Fields Institute in Toronto. We are grateful to a number of mathematicians whose help was crucial to us, in particular to V. Batyrev whose question about the \(L\)-series of cubic fourfolds started this work and to B. Hassett who taught us about the geometry of cubic fourfolds, in particular in connection with our example. We also profited from discussions or exchanges of e-mails with M. Artebani, A. Beauville, S. Kondo, A. Laface, M. Lehn, S. Mukai, K. Oguiso, S. Popescu, A. Sarti, M. Schütt and D.-Q. Zhang.
set is isomorphic to the desingularized second symmetric product $S^{[2]}$ of some $K3$ surface S.

Fix such a $K3$-surface S. Consider the composition

$$\psi : S^{[2]} \hookrightarrow \text{Gr}(1, 5) \hookrightarrow \mathbb{P}^{14}.$$

The first inclusion is given by $F(X) \cong S^{[2]}$, the second by the Plücker embedding. To ψ we can associate a line bundle L.

It turns out that L is isomorphic to $O(n\Delta + f)$, where Δ is the exceptional divisor on $S^{[2]}$ and $O(f)$ is a line bundle on S pushed forward via the diagonal embedding. We call $O(f)$ the associated line bundle to the isomorphism $F(X) \cong S^{[2]}$.

Our main result (Theorem 4.11) now says the following:

Theorem 1.1. Let K be a number field. Let S/K be a $K3$ surface. Suppose $S^{[2]}(K) \neq \emptyset$. Assume there is a cubic fourfold X/\mathbb{C} such that $F(X) \cong S^{[2]}_\mathbb{C}$ and that the associated line bundle on S descends to K.

Then X has a model over K, $F(X) \cong S^{[2]}$ and

$$H^4_{\text{ét}}(X, \mathbb{Q}_\ell) = H^2_{\text{ét}}(S, \mathbb{Q}_\ell)(1) \oplus \mathbb{Q}_\ell[\Delta](1).$$

In the case where the $K3$ surface S is singular (i.e., has Picard number 20), we can then determine the L-series of X explicitly (see Corollary 4.14). Since the singular $K3$ surfaces are everywhere dense (in the \mathbb{C}-topology) in the 19-dimensional moduli space \mathcal{C}_d of degree d polarized $K3$ surfaces, we have in this way found a countable number of points in a non-empty Zariski open subset of $\mathbb{C}^{n^2 + n + 1}$ such that the corresponding fourfolds have a model over an explicitly known number field K and where the L-function can be computed in terms of Hecke Grössencharakters.

The organization of this paper is as follows. In Section 2 we rephrase some results on the cohomology of cubic fourfolds, their Fano varieties, and symmetric products in terms of étale cohomology. In Section 3 we recall Hassett’s results from [10] on special cubic fourfolds. In Section 4 we prove that the isomorphism $F(X) \cong S^{[2]}$ descends to any field K for which $S^{[2]}(K) \neq \emptyset$. The proof uses a classical description of morphisms onto a Grassmannian variety in terms of vector bundles and descent theory for vector bundles. In Section 5 we relate the L-function of the Fermat cubic fourfold with the L-function of a weight 3 Hecke eigenform.

1.1. **Convention:** Suppose X/S is a scheme. Given a morphism $T \to S$, we denote by X_T the base change of X with respect to $T \to S$. In the case that $T = \text{Spec } R$ we write X_R instead of $X_{\text{Spec } R}$.

2. **Geometry of cubic fourfolds**

In this section we recall basic facts about the geometry of cubic fourfolds. Fix a number field K and a cubic fourfold $X \subset \mathbb{P}^5_K$.

The general cubic fourfold contains only surfaces whose cycle class is a multiple of h^2, where h is the hyperplane section. Our main interest, however, lies in so-called special cubic fourfolds.

Definition 2.1. A cubic fourfold X is called (geometrically) special if X_K contains an algebraic surface T/K which is not homologous to h^2, where h is the class of the hyperplane section.

Let X be a special cubic fourfold and $T \subset X$ a surface which is not homologous to a multiple of h^2. We denote by L_T the saturated sublattice of $H^4(X, \mathbb{Z})$ spanned
by the classes of T and h^2. The discriminant $d(X, T)$ of the pair (X, T) is defined as the discriminant of the lattice L_T. We call a cubic fourfold X a special cubic fourfold of discriminant d if it contains a surface T such that $d(X, T) = d$.

It was shown by Hassett [10] Theorem 1.0.1] that $d > 6$ and $d \equiv 0, 2 \mod 6$ is a necessary and sufficient condition for the existence of special cubic fourfolds. (See also Proposition 5.1.) Note that the discriminant of a special cubic fourfold is not uniquely determined by X itself. In general, X can (and will) often be special with respect to more than one discriminant.

It is a classical fact (cf. [1]) that X is covered by lines. We denote by $F(X)$ the Fano variety of X, i.e.,

$$F(X) = \{ \ell \in \text{Gr}(1, 5); \ell \subset X \}.$$

Let $U \subset \text{Gr}(1, 5) \times \mathbf{P}^5$ be the universal line and let p and q denote the projection from U onto the first and second factor respectively. Especially, since X is covered by lines, the morphisms p and q give a correspondence between X and $F(X)$.

By Lefschetz’ hyperplane theorem, we have that $H^i_{\text{et}}(X, \mathbb{Q}_\ell) \cong H^i_{\text{et}}(\mathbf{P}^5, \mathbb{Q}_\ell)$ for $i \neq 4$. From Bott’s formula and the comparison theorem between sheaf and étale cohomology we obtain that $H^4_{\text{et}}(X, \mathbb{Q}_\ell)$ is a 23-dimensional Galois module. We proceed by proving some results on $H^4_{\text{et}}(X, \mathbb{Q}_\ell)$.

For any Galois module M, we denote by $M(k)$ the k-th Tate twist of M.

Proposition 2.2. We have that $p_* q^*: H^4_{\text{et}}(X, \mathbb{Q}_\ell) \to H^2_{\text{et}}(F(X), \mathbb{Q}_\ell)(1)$ is an isomorphism of Galois modules.

Proof. It follows from [1] Proposition 6] that the map between the sheaf cohomology groups $p_* q^*: H^4(X, \mathbb{C}) \to H^2(F(X), \mathbb{C})$ is an isomorphism, hence has no kernel and cokernel. From the comparison theorem between sheaf and étale cohomology it follows that $p_* q^*: H^4_{\text{et}}(X, \mathbb{Q}_\ell) \to H^2_{\text{et}}(F(X), \mathbb{Q}_\ell)$ is an isomorphism of \mathbb{Q}_ℓ-vector spaces.

Note that p_* is given by taking the inverse of the Poincaré dual of the map $p^*: H^6_{\text{et}}(F(X), \mathbb{Q}_\ell) \to H^6_{\text{et}}(U, \mathbb{Q}_\ell)$. By Poincaré duality $H^6_{\text{et}}(U, \mathbb{Q}_\ell) \cong H^0_{\text{et}}(U, \mathbb{Q}_\ell)^{\vee}(5)$ and $H^6_{\text{et}}(F(X), \mathbb{Q}_\ell)^{\vee}(5) \cong H^2_{\text{et}}(F(X), \mathbb{Q}_\ell)(1)$ which shows that $p_* q^*: H^4_{\text{et}}(X, \mathbb{Q}_\ell) \to H^2_{\text{et}}(F(X), \mathbb{Q}_\ell)(1)$ is Galois-equivariant. Combining this with the fact that it is an isomorphism of vector spaces, we obtain that $p_* q^*$ is an isomorphism of Galois-modules. \qed

Remark 2.3. The map $p_* q^*$ is called the Abel-Jacobi map.

Remark 2.4. Beauville and Donagi [4] also proved that the Fano variety $F(X)_C$ is a symplectic 4-manifold. More precisely, they show that $F(X)_C$ is a deformation of a variety $S^{[2]}$ where S is a complex $K3$ surface and $S^{[2]}$ is the Hilbert scheme of 0-cycles of length 2. It is easy to see that $S^{[2]}$ is the blow-up of the second symmetric product of the $K3$ surface S along its (singular) diagonal. Alternatively, we can blow up the product $S \times S$ along the diagonal and then take the quotient with respect to the involution ι given by interchanging the two factors.

The above remark shows that there is a close relation between symmetric products of some $K3$ surfaces S and cubic fourfolds X.
Fix a $K3$-surface S/K and consider the diagram

$$\begin{array}{ccc}
\widetilde{S} \times S & \xrightarrow{r} & S \times S \\
\downarrow g & & \downarrow f \\
S^{[2]} & \xrightarrow{g'} & \text{Sym}^2 S,
\end{array}$$

where r is the blowup of $S \times S$ along $f(S)$ and f is the diagonal embedding $S \to S \times S$. Let $S^{[2]}$ be the minimal resolution of $\text{Sym}^2 S$ given by resolving the transversal A_1-singularity along the diagonal and denote by E the exceptional divisor of r. Let Δ denote $g_*(E)_{\text{red}}$. The analogue of the following proposition is well known for singular cohomology (see [4, Proposition 6]).

Proposition 2.5. The diagonal embedding f induces an isomorphism of Galois modules

$$H^2_{\text{ét}}(S^{[2]}, \mathbb{Q}_\ell) \cong H^2_{\text{ét}}(S, \mathbb{Q}_\ell) \oplus \mathbb{Q}_\ell[\Delta].$$

Proof. Since S is a $K3$ surface we have that $H^1_{\text{ét}}(S, \mathbb{Q}_\ell) = 0$. Hence the Künneth decomposition implies

$$H^2_{\text{ét}}(S \times S, \mathbb{Q}_\ell) \cong H^0_{\text{ét}}(S, \mathbb{Q}_\ell) \otimes H^2_{\text{ét}}(S, \mathbb{Q}_\ell) \oplus H^2_{\text{ét}}(S, \mathbb{Q}_\ell) \otimes H^0_{\text{ét}}(S, \mathbb{Q}_\ell).$$

Let ι be the involution of $S \times S$ sending (x, y) to (y, x). Clearly ι^* acts on $H^2(S \times S, \mathbb{Q}_\ell)$ as (with respect to the Künneth decomposition)

$$\left(\begin{array}{cc} 0 & I_{22} \\ I_{22} & 0 \end{array} \right).$$

Hence ι^* has 22 eigenvalues 1 and 22 eigenvalues -1. Since ι^* fixes the 22-dimensional module $H^2_{\text{ét}}(S, \mathbb{Q}_\ell)$ (embedded via f) we obtain that

$$H^2_{\text{ét}}(S \times S, \mathbb{Q}_\ell)^{\iota^*} \cong H^2_{\text{ét}}(S, \mathbb{Q}_\ell).$$

Let τ be the involution on $\widetilde{S} \times S$ associated to g. One easily sees that

$$H^2_{\text{ét}}(S^{[2]}, \mathbb{Q}_\ell) \cong H^2_{\text{ét}}(\widetilde{S} \times \widetilde{S}, \mathbb{Q}_\ell)^{\tau^*} \cong H^2_{\text{ét}}(S, \mathbb{Q}_\ell) \oplus \mathbb{Q}_\ell[\Delta].$$

Corollary 2.6. Let S/K be a $K3$ surface. Let X/K be a cubic fourfold. Assume that $F(X) \cong S^{[2]}$. Then

$$H^4_{\text{ét}}(X, \mathbb{Q}_\ell) \cong H^2_{\text{ét}}(S, \mathbb{Q}_\ell)(1) \oplus \mathbb{Q}_\ell[\Delta](1)$$

as Galois-modules.

In Section 4 we prove that there exist $K3$ surfaces S satisfying the assumptions of this corollary. Using this corollary and the Hodge conjecture (which is proven for cubic fourfolds), one obtains that if $F(X) \cong S^{[2]}$ then X is a special cubic fourfold. Using lattice theory one can show that if X is special of discriminant d then S admits a polarization of degree d. (See [10].)
3. Moduli of cubic fourfolds

The coarse moduli space C of cubic fourfolds is the GIT-quotient $C = V//SL(6;\mathbb{C})$, where $V \subset P(H^0(P^5, O_{P^5}))$ is the Zariski-open subset of cubic equations whose zero-locus is smooth. Recall that all points in V are properly stable in the sense of GIT. The variety C is a quasi-projective variety of dimension 20. We define C_d as the set of all special cubic fourfolds X that contain a surface T such that $d(X,T) = d$.

Proposition 3.1. Let $d > 6, d \equiv 0, 2 \mod 6$. Then C_d is a non-empty irreducible divisor in the variety C.

Proof. This is [10, Theorem 1.0.1]. □

We say that a $K3$ surface S is of degree d if S has a polarization of degree d (here d is necessarily even).

Theorem 3.2. Assume that d equals $2(n^2 + n + 1)$ where n is an integer at least 2. Then there exists an open set U_d of C_d such that for every $X \in U_d$ there exists a $K3$ surface S of degree d such that $F(X) \sim S^{[2]}$.

Proof. This is [10, Theorem 1.0.3]. □

4. Descent

Fix a number field K. There are many examples of fourfolds X such that $F(X)_C \equiv S^{[2]}$ where S/C is a $K3$ surface and $S^{[2]}$ is the minimal desingularization of $\text{Sym}^2 S$ (see Proposition 5.1). Suppose S is defined over K. In this section we prove that then both X and the isomorphism $S^{[2]} \rightarrow F(X)$ descend to K, provided that $S^{[2]}(K) \neq \emptyset$ and the associated line bundle to $S^{[2]} \rightarrow F(X)_C$ descends.

Definition 4.1. Let T be a Noetherian scheme. A family of quotients of O_T^r parameterized by T is a coherent sheaf F flat over T, together with a surjective O_T-linear homomorphism $q : O_T^r \rightarrow F$. Two pairs (F, q) and (F', q') are called isomorphic if $\text{ker}(q) = \text{ker}(q')$. Consider the functor from (Noetherian) schemes to sets

$$T \mapsto \left\{ \text{Isomorphism classes of locally free quotients of } O_T^{r+1} \xrightarrow{q} F, \right. \text{parameterized by } T, \text{ with } \text{rank } F = k + 1. \right\}.$$

This functor is representable ([15]) by a scheme which we denote by $\text{Gr}(k, n)$. We call $\text{Gr}(k, n)$ the Grassmannian of k-dimensional subspaces in P^n.

A vector bundle on X/T is a locally free sheaf on X, flat over T.

Suppose L is a field. Then one easily shows that the variety $\text{Gr}(r, n)_L$ parameterizes dimension r linear subspaces of P^n_L.

The following classical result describes all morphisms to Grassmann varieties:

Proposition 4.2. Let R be a ring with unit. Let Y be a projective scheme over $\text{Spec } R$. Giving a morphism $\varphi : Y \rightarrow \text{Gr}(k, n)_R$ is equivalent to giving a rank $k + 1$ vector bundle V on Y together with a surjective morphism of schemes $R^{n+1} \otimes O_Y \rightarrow V$ up to multiplication by an element in R. The composition of φ with the Plücker embedding is given by the morphism associated to $\wedge^{k+1} R^{n+1} \otimes O_Y \rightarrow \wedge^{k+1} V$.
Proof. See [2] Proposition 2.1] for the case that \(R \) is a field. The general case is a formal consequence of the fact that Quot-functors on Noetherian relative projective schemes are representable. For this formal deduction we refer to [19], Example 2.7], for a proof of the representability of the Quot-functor we refer to [15]. \(\square \)

Lemma 4.3. Let \(L \) be a field. Fix positive integers \(k, n \). Suppose \(2k < n - 1 \). Let \(m = \binom{n+1}{k+1} - 1 \). Suppose \(P \) is a plane contained in the image of the Plücker embedding of \(\text{Gr}(k, n)_K \) in \(\mathbf{P}^m_K \). Then \(\dim P \leq n - k \).

Moreover if \(\dim P = n - k \) then \(P \) corresponds to the family of \(k \)-dimensional planes containing a fixed \(k - 1 \)-dimensional plane. Conversely, every \(k - 1 \)-dimensional plane gives such a family.

Proof. The first claim is an easy exercise in Plücker relations.

The second claim is an exercise in decomposable tensors: we illustrate this for the case \(k = 1 \). In this case we need to show that a maximal linear subspace has dimension \(n - 1 \) in \(\text{Gr}(1, n) \), and that this subspace correspond to lines throug a fixed point.

First let \(v_1 \) and \(v_2 \) be two decomposable \(2 \)-tensors. If the corresponding lines \(l_1 \) and \(l_2 \) in \(\mathbf{P}^2_L \) are skew, then we can assume \(v_1 = e_0 \wedge e_1 \) and \(v_2 = e_2 \wedge e_3 \). But then \(v_1 \wedge v_2 \neq 0 \) and the Plücker relations are, therefore, not satisfied, i.e., the line spanned by \(v_1 \) and \(v_2 \) is not in the Grassmannian. For this to happen, we must have \(v_1 = e_0 \wedge e_1 \) and \(v_2 = e_0 \wedge e_2 \) (after choosing a suitable basis). Assume we have a third decomposable \(2 \)-tensor \(v_3 \) such that every tensor in the plane spanned by \(v_1, v_2 \) and \(v_3 \) is decomposable. Then the line \(l_3 \) corresponding to \(v_3 \) must meet \(l_1 \) and \(l_2 \). This can happen in two ways. If \(l_3 \) is in the plane spanned by \(l_1 \) and \(l_2 \), then we can assume \(v_3 = e_1 \wedge e_2 \). This gives us a plane in the Grassmannian, namely the plane parametrizing all lines in a given \(\mathbf{P}^2_L \). If \(n = 3 \) this is indeed a maximal dimensional subspace of \(\text{Gr}(1, 3)_L \), but then \(2k = n - 1 \). Again using the Plücker relations one sees that the plane spanned by \(v_1 = e_0 \wedge e_1 \), \(v_2 = e_0 \wedge e_2 \) and \(v_3 = e_1 \wedge e_2 \) is not contained in any higher dimensional linear subspace contained in the Grassmannian. The second possibility for \(l_3 \) is that it meets the point of intersection of \(l_1 \) and \(l_2 \), in which case \(v_3 = e_0 \wedge e_3 \), again in a suitable basis. We can now complete this argument to conclude that any \((n - 1) \)-dimensional linear subspace of the Grassmannian is spanned by tensors of the form \(e_0 \wedge e_1, \ldots, e_0 \wedge e_n \), i.e., all lines containing the point given by \(e_0 \). \(\square \)

Lemma 4.4. Let \(L \) be a field. Fix non-negative integers \(k, n \). Suppose that \(2k < n - 1 \). Then \(\text{Aut}(\text{Gr}(k, n)_{L}) = \text{Aut}(\mathbf{P}^2_L) \).

Proof. Let \(m = \binom{n+1}{k+1} - 1 \) and let \(\varphi : \text{Gr}(k, n)_K \to \mathbf{P}^m_K \) be the Plücker embedding.

We shall prove the lemma by induction on \(k \). The statement is clear for \(k = 0 \). From Lemma [4.3] it follows that an automorphism of \(\text{Gr}(k, n)_L \) induces an automorphism of \(\text{Gr}(k - 1, n)_L \) by considering its action on maximal dimensional subspaces. By induction, this automorphism is induced from an automorphism of \(\mathbf{P}^2_L \). Now suppose that we have an automorphism \(\sigma \) of \(\text{Gr}(k, n)_L \) inducing the identity on \(\text{Gr}(k - 1, n)_L \). We claim that \(\sigma \) is the identity on \(\text{Gr}(k, n)_L \). Indeed, consider a subspace \(\mathbf{P}^k_L \). For any subspace \(\mathbf{P}^{k-1}_L \) we know that \(\sigma(\mathbf{P}^{k-1}_L) \) also contains \(\mathbf{P}^{k-1}_L \). Hence \(\sigma(\mathbf{P}^k_L) = \mathbf{P}^k_L \). \(\square \)
Remark 4.5. The Grassmannian $\text{Gr}(1, 3)_K$ contains two families of planes (they are usually called α-planes and β-planes). There is an automorphism of the Grassmannian $\text{Gr}(1, 3)_K$ (which is a quadric in \mathbb{P}^5_K), which interchanges the two types of planes and is, therefore, not induced by a linear map of \mathbb{P}^1_K.

Fix a $K3$ surface S/K. Assume that there exists a number field $L \supset K$ and a cubic fourfold X/L such that $F(X) \cong S^{[2]}_L$, where $F(X) \subset \text{Gr}(1, 5)$ denotes the Fano variety of lines of X.

For the rest of the section fix a rank 2 vector bundle V on $S^{[2]}_L$ yielding an isomorphism $S^{[2]}_L \cong F(X) \subset \text{Gr}(1, 5)$. We proceed now by proving that V descends to $S^{[2]}$ under the assumption that $\det(V)$ descends to $S^{[2]}$.

From here on we will assume that $\det(V)$ on $S^{[2]}_L$ is isomorphic to the pullback of a line bundle on $S^{[2]}$. We express this by saying that $\det(V)$ is defined over K. This is equivalent to stating that the associated line bundle (cf. Section 1) on S descends to K. One can show that $\det(V)$ is a combination of the associated line bundle and δ, the square root of the exceptional divisor Δ. So we need to prove that δ is defined over K. For any element $\sigma \in \text{Gal}(K/K)$ we have $\delta \otimes \delta = \Delta = \delta^\sigma \otimes \delta^\sigma$. Since $\text{Pic}(S^{[2]})_{\text{tor}}$ is trivial this implies that $\delta^\sigma \cong \delta$. Since $S^{[2]}(K)$ is non-trivial we can ‘rigidify’ δ. Using descent theory as in [12, Theorem 2.5] one can show that δ is defined over K.

To assume that $\det(V)$ is defined over K is not a severe restriction: one can show that for all examples produced by Hassett [10] $\det(V)$ is a linear combination of the polarizing class of S and the square root δ. The exceptional divisor is defined over K. In general it is not hard to check whether the polarizing class is defined over K.

Diagram 4.6. Let $R := L \otimes_K L$ and $R' := L \otimes_K L \otimes_K L$. Denote by $h_i : \text{Spec } L \to \text{Spec } R$ and by $h_{j,k} : \text{Spec } R' \to \text{Spec } R$ the morphism induced by the inclusion on the i-th and on the j-th and k-th factor, respectively. Similarly, denote by $s_n : \text{Spec } R' \to \text{Spec } R$ the morphism induced by the inclusion of the n-th factor. The morphism p_i is the morphism $S^{[2]}_R \to S^{[2]}_L$ induced by the base change h_i, the morphism $p_{j,k}$ is defined analogously. Set $n = j$ if $i = 1$, or $n = k$ if $i = 2$. Then we obtain the following commutative diagram:

Remark 4.7. Suppose for the moment that L/K is Galois. Write $L := K[t]/(f)$, for some polynomial $f \in K[t]$ of degree d. Then

$$R = L \otimes_K L = (K[t]/(f)) \otimes_K L = L[t]/(f) \cong L^d,$$

where the isomorphism follows from the Chinese remainder theorem. In particular, $\text{Spec } R$ consists of d closed points.

One can show that we can choose the isomorphism $L \otimes_K L \to L^d$ such that

$$w \otimes 1 \mapsto (w, w, \ldots, w) \text{ and } 1 \otimes w \mapsto (w, g_1(w), g_2(w), \ldots, g_{d-1}(w)),$$
where $\text{Gal}(L/K) = \{1, g_1, \ldots, g_{d-1}\}$.

Similarly, one can show that $S^{[2]}_R$ is the disjoint union of d copies of $S^{[2]}_L$.

Remark 4.8. Suppose we sheafify the functor B from K-schemes to sets given by

$$T \mapsto \{\text{Isomorphism classes of locally free sheaves of rank } r \text{ on } X_T\}/\text{Pic}(T)$$

in the étale, fpqc or fppf topology. Denote the sheafified functor by B'. The following lemma shows that $V \in B'(\text{Spec } K)$. (In this context, our aim is to prove that $V \in B(\text{Spec } K)$.)

Remark 4.9. Let $f : S^{[2]} \to \text{Spec } K$ be the structure map. We say that $f_*\mathcal{O}_{S^{[2]}} \cong \mathcal{O}_{\text{Spec } K}$ holds universally, if there is an isomorphism $\psi : f_*\mathcal{O}_{S^{[2]}} \to \mathcal{O}_{\text{Spec } K}$ such that for any morphism of schemes $h : T \to \text{Spec } K$ we have that the base-changed morphism of \mathcal{O}_T-modules $\psi_T : f_{T*}\mathcal{O}_{S^{[2]}} \to \mathcal{O}_T$ is an isomorphism.

In [12] Answer to exercise 3.11 it is shown that if X/B is a proper and flat family, with connected and reduced fibers, then $f_*\mathcal{O}_X \cong \mathcal{O}_B$ holds universally. Since we are working with a projective variety over a field, we are in this situation.

Proposition 4.10. Suppose $S^{[2]}(K) \neq \emptyset$ and $\det V$ descend to $S^{[2]}$. Then the vector bundle V on $S^{[2]}_L$ descends to $S^{[2]}_R$.

Proof. Assume the notation from Diagram [4.6]. Without loss of generality we may assume that L/K is Galois. This implies that $\text{Spec } R \to \text{Spec } L$ is a finite union of points.

We start by constructing an isomorphism $w : p_1^*V \to p_2^*V$. Consider the embedding φ_1 associated with $\wedge^2 p_1^*V$. Since $\wedge^2 p_1^*V \cong \wedge^2 p_2^*V$ we obtain that the image of φ_1 and φ_2 differ by an automorphism of $\mathbf{P}^{14}_R/\text{Spec } (R)$ fixing the Plücker embedding of $\text{Gr}(1,5)_R$. Since $\text{Gr}(1,5)_R = \sqcup \text{Gr}(1,5)_L$, we obtain from Lemma [4.34] that $\text{Aut}(\text{Gr}(1,5)_R/\text{Spec } (R)) \cong \text{Aut}(\mathbf{P}^3_R/\text{Spec } R) = \text{PGL}_6(R)$. In particular there is a commutative diagram

$$
\begin{array}{ccc}
\mathcal{O}^6_{S^{[2]}_R} & \longrightarrow & p_1^*V \\
\downarrow w_1 & & \downarrow w \\
\mathcal{O}^6_{S^{[2]}_R} & \longrightarrow & p_2^*V \\
\end{array}
$$

where the vertical arrows are isomorphisms.

By descent theory (e.g., [13] Theorem I.2.23) it suffices to show that the automorphism

$$\tau := (p_{13}^*w)^{-1} \circ p_{23}^*w \circ p_{12}^*w$$

of q_1^*V is trivial.

Consider the quotient

$$s : \mathcal{O}^6_{S^{[2]}_R} \longrightarrow V_R$$

induced by the embedding $S^{[2]}_R \to \text{Gr}(1,5)_R$. Then $\tau \circ s$ gives another embedding $S^{[2]}_R \to \text{Gr}(1,5)_R$. As above we can compose these two embedding with the Plücker embedding and we get two embeddings into \mathbf{P}^{14}_R that differ by an automorphism of $\text{Gr}(1,5)_R/\text{Spec } R$. Each such automorphism is coming from an automorphism
Proof. By [10, Theorem 1.0.3] there is a set S/K such that for every $K3$ surface S over K there exists a cubic fourfold X such that S/C corresponds to a point in V_d there exists a cubic fourfold X/C such that $S/C \cong F(X)$.

THE L-SERIES OF A CUBIC FOURFOLD

9

of $P^5_{R'}$. Equivalently, we have a vector bundle V on $S[K]$ such that for every $K3$ surface S over K, $S/K \cong H^0(Gl_6(O_S^{[2]}))$. Fix a point in $S^{[2]}(K)$ and let $g : Spec K \hookrightarrow S^{[2]}$ be the corresponding morphism. Then by the definition of fibre products and the fact that $g_{R'}$ corresponds to a K-rational point we obtain that $g_{R'}^* \tau_1$ is trivial. Now, $\tau_1 \in H^0(Gl_6(O_S^{[2]})) = H^0(Gl_6(f_*O_{S^{[2]}_{R'}})) \psi^* H^0(Gl_6(O_{Spec R'}))$ (as groups). Since $\psi_{R'} : f_*O_{S^{[2]}_{R'}} \cong O_{Spec R'}$, we have that the induced map $\psi^*_{R'}$ is an isomorphism of groups. Since $g_{R'}^* \tau_1$ is trivial we obtain that $\psi^*_{R'}(\tau_1)$ is also trivial. This implies that τ is trivial, hence V descends to $S^{[2]}$. □

Theorem 4.11. Let S/K be a $K3$ surface such that $S^{[2]}(K)$ is non-empty and such that over some finite extension L/K we have $S^{[2]}_L \cong F(X)$ with X/L a cubic fourfold. Suppose the associated line bundle (cf. Section 1) descends to X/K. Then the cubic fourfold X can be defined over K in such a way that $S^{[2]} \cong F(X)$.

Proof. It follows from Proposition 4.10 that V is vector bundle on $S^{[2]}$. Consider the evaluation map $\omega : H^0(V) \otimes O_{S^{[2]}} \to V$. Since forming cohomology commutes with flat base change, and ω_L is surjective, it follows that ω is surjective. This implies that the vector bundle V is globally generated.

By Proposition 4.22 we obtain that the associated map $\psi : S^{[2]} \to Gr(1,5)$ is defined over K. Let $U \subset Gr(1,5) \times P^5$ be the universal line and p and q the projections. If X'/K is the image of $p^{-1}(\psi(S^{[2]}))$ under q, then, by construction, we have $X' \cong X$. Hence X' is a model of X, so X has a model over K and $\psi : S^2 \to F(X')$. □

Corollary 4.12. Fix $n \geq 2$ and let $d = 2(n^2 + n + 1)$. There is a non-empty Zariski open set V_d of the moduli space F_d of polarized $K3$ surfaces of degree $2d$ such that if

(1) K is a subfield of C;
(2) S/K a $K3$ surface such that S_C corresponds to a point in V_d;
(3) the set $S^{[2]}(K)$ is non-empty;
(4) all ample line bundles of degree d on S descend to K;

then there exists a cubic fourfold X/K such that $F(X) \cong S^{[2]}$.

Proof. By [10, Theorem 1.0.3] there is a set V_d such that for every $K3$ surface S/C corresponding to a point in V_d there exists a cubic fourfold X/C such that $S/C \cong F(X)$.

Assume S can be defined over K. Consider the subscheme T of the Hilbert scheme of $\text{Gr}(1, 5)$ corresponding to subvarieties of $\text{Gr}(1, 5)$ that are geometrically isomorphic to $S^{[2]}$, and the isomorphism can be given by an element of $\text{Aut}(\mathbb{P}^5_\mathbb{C}) \subset \text{Aut}(\text{Gr}(1, 5)_\mathbb{C})$. It easy to see that T is defined over K. By assumption T is not empty, hence $T(\overline{K}) \neq \emptyset$. In particular, there exists a finite extension L/K for which $T(L) \neq \emptyset$. Hence $S_L^{[2]}$ can be embedded in $\text{Gr}(1, 5)_L$. Since $q^p - (S_L^{[2]})$ is a cubic fourfold, we obtain that $S_L^{[2]} \cong F(X)$ for some cubic fourfold X/L. From [10] Theorem 1.0.3 it follows that the associated line bundle is an ample line bundle of degree d. Since all ample line bundles of degree d are defined over K, we have that the associated line bundle to $F(X) \cong S^{[2]}$ is defined over K. Now apply Theorem 4.11.

We can now relate the zeta function of the cubic fourfold X to the zeta function of the $K3$ surface S.

Corollary 4.13. Let S, X, K be as before. Then we have the following equality of zeta functions

$$Z_K(X, s) \cong Z_K(S, s - 1)\zeta_K(s) \zeta_K(s - 2) \zeta_K(s - 4).$$

Here \cong means equality up to, possibly, finitely many local Euler factors.

Proof. First recall that $H^1(X, \mathcal{O}_X) = H^3(X, \mathcal{O}_X) = 0$ and that $H^2(X, \mathcal{O}_X) = \mathbb{Q}h$ where h is the class of the hyperplane section. Moreover $H^1(S, \mathcal{O}_X) = 0$. It follows from Corollary 2.6 that

$$H^3_{et}(X, \mathbb{Q}_l) \cong H^3_{et}(S, \mathbb{Q}_l)(1) \oplus \mathbb{Q}_l[\Delta](1).$$

Hence we have that

$$\frac{Z_K(X, s)}{\zeta_K(s) \zeta_K(s - 1) \zeta_K(s - 3) \zeta_K(s - 4)} \cong \frac{Z_K(S, s - 1) \zeta_K(s - 2)}{\zeta_K(s - 1) \zeta_K(s - 3)}.$$

which gives the claim. \qed

If the surface S is singular, we can determine the zeta function explicitly. Recall that a $K3$ surface S/K is called singular if its geometric Picard number $\rho(S_K)$ equals 20. Singular $K3$ surfaces were classified by Shioda and Inose [13]. The isomorphism classes of these surfaces are in 1-to-1 correspondence with $\text{SL}(2, \mathbb{Z})$-isomorphism classes of even binary quadratic forms. This correspondence is given by associating to a singular $K3$ surface S its transcendental lattice $T(S)$. The discriminant of the surface S is defined as the discriminant of the lattice $T(S)$. Shioda and Inose showed that every singular $K3$ surface S is either the Kummer surface of a product $E \times F$, where E and F are isogenous elliptic curves with complex multiplication (CM), or S has a (rational) double cover by such a surface. The elliptic curve E has CM in the field $\mathbb{Q}(\sqrt{-d_0})$ where d_0 is the discriminant of the surface S. The construction of Shioda and Inose allows one to have control over the field of definition K.

Using this classification, Shioda and Inose have computed the zeta function of singular $K3$ surfaces ([13] Theorem 6). If the field K is chosen big enough, namely such that the Néron-Severi group can be generated by elements defined over K (this means essentially that the points of order 2 of the curves E and F are defined over K), then the zeta function of S is a product whose factors are either (twisted) Dedekind zeta functions or the L-function of a suitable Hecke Grössencharakter. For
a recent account of Hecke Grössencharakters and their associated Hecke eigenforms, in particular in connection with $K3$ surfaces, we refer the reader to [10]. It is a consequence of our descent Theorem 4.14 that there is a cubic fourfold X defined over K with $S^{[2]} \cong F(X)$. As a consequence we can compute the zeta function of the variety X.

We recall that the singular $K3$ surfaces form a countable set in the moduli space \mathcal{F}_d which is dense in the \mathbb{C}-topology. This can be proved in the same way as the density in the period domain of all $K3$ surfaces (see the proof of [3 Corollary VIII.8.5]). This shows, using Theorem 3.2, that for every value of ε_3.

Corollary 4.14. Assume S satisfies the assumptions of Corollary [4.12]. In particular, there exists a cubic fourfold X/K with $S^{[2]} \cong F(X)$. Moreover assume that $\rho(S) = \rho(SR) = 20$, that the square root of the negative of the discriminant of the transcendental lattice of S is contained in K and that the Néron-Severi group of S can be generated by divisors defined over K. Then there exists a Grössencharakter ψ such that

$$Z_K(X, s) = \zeta_K(s) \zeta_K(s - 1) \zeta_K(s - 2)^{21} \zeta_K(s - 3) \zeta_K(s - 4) L(\psi^2, s - 1) L(\overline{\psi}, s - 1).$$

Proof. From [18, Theorem 6] it follows that there exists a Grössencharakter ψ such that

$$L(S, s) = \zeta_K(s) \zeta_K(s - 1)^{20} \zeta_K(s - 2) L(\psi^2, s) L(\overline{\psi}, s).$$

Combine Corollaries [4.12] and [4.13] to conclude the proof. □

If a singular $K3$ surface S can be defined over \mathbb{Q}, then the transcendental lattice $T(S)$ is a 2-dimensional Galois module. Livné [13, Example 1.6] has shown that in this case the L-function defined by $T(S)$ is that of a Hecke eigenform of weight 3. Assume that $S^{[2]} \cong F(X)$ for some cubic fourfold. Then we can, by our descent theorem, assume that X is defined over \mathbb{Q}. The sublattice of $H^4(X, \mathbb{Z})$ generated by algebraic cycles has rank 21. We denote its orthogonal complement by $T(X)$ and refer to this as the transcendental lattice of X.

Corollary 4.15. Assume that S is a singular $K3$ surface defined over \mathbb{Q}, and that it satisfies the assumptions of Corollary [4.12] in particular $S^{[2]} \cong F(X)$ for some cubic fourfold X defined over \mathbb{Q}. Then there exists a weight 3 Hecke eigenform f such that

$$L(T(X), s) = L(f, s - 1).$$

Proof. Proposition [22] implies that $T(X)$ and $T(S)(1)$ are isomorphic. □

5. The Fermat cubic

We shall now present an explicit example, showing that the weight 3 form associated to the Fermat cubic is the level 27 newform.

Our example will be a special case of the Pfaffian construction due to Beauville and Donagi [5]. For this we shall consider a cubic fourfold X containing two planes P and Q, which we can assume to be $P = \{u = v = w = 0\}$ and $Q = \{x = y = z = 0\}$.
The defining polynomial for X can be written in the form $F - G$ where F, G are bihomogeneous in $\mathbb{C}[u, v, w; x, y, z]$ of bidegrees $(2, 1)$ and $(1, 2)$ respectively. Such a fourfold is always rational. Indeed, a general line joining the two planes P and Q will meet X in a third point. In this way we obtain a birational map $\pi_1 \times \pi_2 : X \dashrightarrow \mathbb{P}^2 \times \mathbb{P}^2$. The lines contained in X correspond to the complete intersection S given by $F = G = 0$. The surface S is a complete intersection of bidegree $(2, 1), (1, 2)$ and hence a $K3$-surface. Via the Segre embedding $\mathbb{P}^2 \times \mathbb{P}^2 \dashrightarrow \mathbb{P}^8$, where it is of degree 14. This corresponds to the case $n = 2$ in Theorem 3.2.

The inverse birational map is given by the linear system $|L|$ of bidegree $(2, 2)$ forms on $\mathbb{P}^2 \times \mathbb{P}^2$ vanishing along S. In this case, as was shown by Hassett (see [2] page 41), the map $S^{[2]} \dashrightarrow F(X)$ which was described in [4] Proposition 5 is no longer an isomorphism. However, there is a birational map $S^{[2]} \dashrightarrow F(X)$, which will be good enough for our purposes: Take a point $s + t \in S^{[2]}$ and consider the lines l_i spanned by $\pi_i(s)$ and $\pi_i(t)$ for $i = 1, 2$. If s and t are sufficiently general, then $l_1 \times l_2 \subset \mathbb{P}^2 \times \mathbb{P}^2$ intersects S in precisely five points. Two of these points are s and t, call the other three points u, v, w. Let C be the $(1, 1)$ curve on $l_1 \times l_2$ passing through u, v, w. Since the three points u, v, w lie on S, the linear series $|L|$ restricted to C has degree 1, and hence C is mapped to a line in \mathbb{P}^5. One can show that the general line on X is obtained in this way, giving the desired birational map.

In order to present an explicit example, consider the surface S, given by the complete intersection of

$$F = xu^2 + yv^2 + zw^2 = 0 \text{ and } G = x^2u + y^2v + z^2w = 0.$$

This surface was considered in [2] as an example for a $K3$-surface in characteristic 2 such that the automorphism group has a quotient that is not isomorphic to a subgroup of the Mathieu group M_{23}, proving that Mukai’s classification of finite groups acting symplectically on complex $K3$ surfaces does not extend to characteristic 2.

The surface S contains many lines. An easy calculation, using the intersection pairing, shows that $\rho(S) = 20$. Moreover, the discriminant of the transcendental lattice $T(S)$ equals 3 up to a square. One can also show that 3 is the only prime of bad reduction. In particular, $L(S, s) \cong L(f, s - 1)$, with f a weight 3 Hecke newform of level 3^b, for some b. There are precisely three such forms, namely the newform of level 27 and two twists of this newform, by the standard cubic character and the square of the standard cubic character. The Fourier coefficients at 7 of these three forms are pairwise distinct.

We will determine b and f: Let p be a prime of good reduction and let \mathcal{S} be the reduction of S modulo p. Consider the action of Frobenius Fr on the cohomology of \mathcal{S}. On $H^2_f(S, \mathbb{Q}_p)$ Frobenius acts as multiplication by p^2, on $H^1_f(S, \mathbb{Q}_p)$ as multiplication by 1. It is well-known to the experts that the trace of Frobenius on $NS(\mathcal{S}) \otimes \mathbb{Q}_p \subset H^2_{et}(\mathcal{S}, \mathbb{Q}_p)$ is 0 modulo p. From the Lefschetz trace formula it follows that

$$\text{Tr} \text{Fr}^* | T(\mathcal{S}) \equiv \#(\mathbb{F}_p) - 1 \mod p.$$

For primes $p \equiv 2 \mod 3$, one easily shows, using the form of the equations, that this trace is $0 \mod p$. For primes $p \equiv 1 \mod 3$ a straightforward calculation by
Since the form f corresponds to the Galois representation of the transcendental lattice, the Fourier coefficients of f coincide with $\text{Tr} \text{Fr}^* \mid T(S)$. Using the tables from [16] one concludes that f is the unique newform of level 27 up to a twist by a cubic character, unramified outside 3. By class field theory there are three such characters, say χ, χ^2 and the trivial character. One easily sees that the Fourier coefficients of f, $f \otimes \chi$ and $f \otimes \chi^2$ at 7 are different. From this we conclude that f is the correct form.

The corresponding fourfold X can easily be determined explicitly. The linear system of forms of bidegree $(2, 2)$ which vanish on S defines the map

$$(xF : yF : zF : uG : vG : wG) : \mathbb{P}^2 \times \mathbb{P}^2 \to \mathbb{P}^5$$

and an easy calculation shows that the image satisfies the equation

$$F - G = xu^2 - ux^2 + vy^2 - vy^2 + zw^2 - z^2 w$$

which is the equation of the associated fourfold X. The birational map $\psi : S^{[2]} \to F(X)$ induces an isomorphism $T(S) \cong T(F(X))$ of Galois modules. (This follows from the fact that ψ induces an isomorphism $\psi^* : H^{2,0}(S) \oplus H^{0,2}(S) \to H^{2,0}(F(X)) \oplus H^{0,2}(F(X))$.) As in Corollary 4.14 it now follows that

$$L(T(X), s) \cong L(f, s - 1)$$

where $T(X)$ is the transcendental lattice of X and f is the weight 3 Hecke eigenform of level 27 from above.

Since the equation of X is the sum of three terms which only depend on two variables each, it follows that $X_{\mathbb{Q}(\sqrt{-3})}$ is isomorphic to the Fermat cubic X'

$$u^3 + v^3 + w^3 + x^3 + y^3 + z^3.$$

This isomorphism does not descend to \mathbb{Q}. This can be shown as follows. The automorphism group of X' is generated by permutations of the coordinates and by multiplying the coordinates by a third root of unity (see [17]). This implies that $\# \text{Aut}(X')(\mathbb{Q}) = \#S_6 = 720 = 6^2 \cdot 20$. One can easily find many \mathbb{Q}-rational automorphisms of X. For example the automorphisms $[x, u, y, v, z, w] \mapsto [-u, -x, y, v, z, w]$ and $[x, u, y, v, z, w] \mapsto [u - x, -x, y, v, z, w]$ generate a subgroup of order 6. Considering the same automorphisms for the pairs (y, v) and (z, w) gives a subgroup of order 6^3 in $\text{Aut}(X)(\mathbb{Q})$. In particular, $\# \text{Aut}(X)(\mathbb{Q}) \neq \text{Aut}(X')(\mathbb{Q})$.

This implies that X and X' are not isomorphic and that the K3 surface associated to X' is a twist of our surface S. However, we shall show that the associated newform to X' is the same form f.

The Galois representation on $T(X')$ is a twist of the Galois representation on $T(X)$ by the quadratic character χ_{-3}. In particular, the Hecke newform f' associated to X' has level 3^2, so it is one of the three above mentioned forms. From $\#X'(\mathbb{F}_7) = 3690$ one deduces, as above, that $f' = f$.

The zeta function of the Fermat cubic was also considered by Goto in [3]. His approach, however, is entirely different, since he considered this over the field $\mathbb{Q}(\sqrt{-3})$ and he used Weil’s classical approach using Jacobi sums.
References

[1] A.B. Altman and S.L. Kleiman. Foundations of the theory of Fano schemes. Compositio Math., 34:3–47, 1977.
[2] E. Arrondo. Subvarieties of grassmannians. Lecture notes of a seminar at the University of Trento.
[3] W.P. Barth, K. Hulek, C.A.M. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, second edition, 2004.
[4] A. Beauville. Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom., 18(4):755–782 (1984), 1983.
[5] A. Beauville and R. Donagi. La variété des droites d’une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math., 301:703–706, 1985.
[6] L. Dieulefait and J. Manoharmayum. Modularity of rigid Calabi-Yau threefolds over \mathbb{Q}. In Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001), volume 38 of Fields Inst. Commun., pages 159–166. Amer. Math. Soc., Providence, RI, 2003.
[7] I. Dolgachev and S. Kondō. A supersingular K_3 surface in characteristic 2 and the Leech lattice. Int. Math. Res. Not. 2003:1–23.
[8] Y. Goto. The L-series of cubic hypersurface fourfolds. Appendix to N. Yui. The L-series of Calabi-Yau Orbifolds of CM Type. Preprint.
[9] B. Hassett. Special Cubic Fourfolds. PhD thesis, University of Chicago, 1998.
[10] B. Hassett. Special cubic fourfolds. Compositio Math., 120:1–23, 2000.
[11] K. Hulek, R. Kloosterman and M. Schütt. Modularity of Calabi-Yau varieties. Preprint. Available at arxiv:math.AG/0601238 2005.
[12] S.L. Kleiman. The Picard Scheme. Lecture notes of a school held at the ICTP 2002. To appear in B. Fantechi, L. Goettsche, L. Illusie, S. Kleiman, N. Nitsure, and A. Vistoli, Fundamental Algebraic Geometry: Grothendieck’s FGA Explained. Also available at arxiv:math.AG/0504020 2005.
[13] R. Livné. Motivic orthogonal two-dimensional representations of $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$. Israel J. Math., 92(1-3):149–156, 1995.
[14] J. S. Milne. Étale cohomology, volume 33 of Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1980.
[15] N. Nitsure. Construction of Hilbert and Quot Schemes. Lecture notes of a school held at the ICTP 2002. To appear in B. Fantechi, L. Goettsche, L. Illusie, S. Kleiman, N. Nitsure, and A. Vistoli, Fundamental Algebraic Geometry: Grothendieck’s FGA Explained. Also available at arxiv:math.AG/0504159 2005.
[16] M. Schütt. Hecke eigenforms with rational coefficients and complex multiplication. Preprint, available at arxiv:math.NT/0511228 2005.
[17] T. Shioda, Arithmetic and geometry of Fermat curves In Algebraic Geometry Seminar (Singapore, 1987), pages 95–102. World Sci. Publishing, Singapore, 1988.
[18] T. Shioda and H. Inose. On singular K_3 surfaces. In Complex analysis and algebraic geometry, pages 119–136. Iwanami Shoten, Tokyo, 1977.
[19] A. Vistoli. Notes on Grothendieck topologies, fibered categories and descent theory. Lecture notes of a school held at the ICTP 2002. To appear in B. Fantechi, L. Goettsche, L. Illusie, S. Kleiman, N. Nitsure, and A. Vistoli, Fundamental Algebraic Geometry: Grothendieck’s FGA Explained. Also available at arxiv:math.AG/0412512 2004.