On Dris conjecture about odd perfect numbers

Paolo Starni

School of Economics, Management, and Statistics
Rimini Campus, University of Bologna
Via Angherà 22, 47921 Rimini, Italy
e-mail: paolo.starni@unibo.it

Received: 12 June 2017
Accepted: 31 January 2018

Abstract: The Euler’s form of odd perfect numbers, if any, is \(n = \pi^\alpha N^2 \), where \(\pi \) is prime, \((\pi, N) = 1\) and \(\pi \equiv \alpha \equiv 1 \pmod{4}\). Dris conjecture states that \(N > \pi^\alpha \). We find that \(N^2 > \frac{1}{2} \pi^\gamma \), with \(\gamma = \max\{\omega(n) - 1, \alpha\}; \omega(n) \geq 10 \) is the number of distinct prime factors of \(n \).

Keywords: Odd perfect numbers, Dris conjecture.

2010 Mathematics Subject Classification: 11A05, 11A25.

1 Introduction

Without explicit definitions all the numbers considered in what follows must be taken as strictly positive integers. Let \(\sigma(n) \) be the sum of the divisors of a number \(n \); \(n \) is said to be perfect if and only if \(\sigma(n) = 2n \). The multiplicative structure of odd perfect numbers, if any, is

\[n = \pi^\alpha N^2, \]

where \(\pi \) is prime, \(\pi \equiv \alpha \equiv 1 \pmod{4} \) and \((\pi, N) = 1\) (Euler, cited in [3, p. 19]); \(\pi^\alpha \) is called the Euler’s factor. From equation (1) and from the fact that the \(\sigma \) is multiplicative, it results also

\[n = \frac{\sigma(\pi^\alpha)}{2} \sigma(N^2), \]

where \(\sigma(N^2) \) is odd and \(2\|\sigma(\pi^\alpha) \). Many details concerning the Euler’s factor and \(N^2 \) are given, for example, in [2, 5, 8, 9, 10].

Regarding the relation between the magnitude of \(N^2 \) and \(\pi^\alpha \) it has been conjectured by Dris that \(N > \pi^\alpha \) [4]. The result obtained in this paper is a necessary condition for odd perfection (Theorem 2.1) which provides an indication about Dris conjecture.
Indicating with \(\omega(n) \) the number of distinct prime factors of \(n \), we prove that (Corollary 2.3):

\[
(i) \quad N^2 > \frac{1}{2} \pi^\gamma, \text{ where } \gamma = \max\{\omega(n) - 1, \alpha\}.
\]

Since \(\omega(n) \geq 10 \) (Nielsen, [6]), it follows:

\[
(i_1) \quad N^2 > \frac{1}{2} \pi^0; \text{ this improves the result } N > \pi \text{ claimed in [1] by Brown in his approach to Dris conjecture.}
\]

Besides

\[
(i_2) \quad \text{If } \omega(n) - 1 > 2\alpha, \text{ then } N > \pi^\alpha,
\]

so that

\[
(i_3) \quad \text{If } \omega(n) - 1 > 2\alpha \text{ for each odd perfect number } n, \text{ then Dris conjecture is true.}
\]

Now, some questions arise: \(\omega(n) \) depends on \(\alpha \)? Is there a maximum value of \(\alpha \)? The minimum value of \(\alpha \) is 1? The only possible value of \(\alpha \) is 1 (Sorli, [7, conjecture 2]) so that Dris conjecture is true? Without ever forgetting the main question: do odd perfect numbers exist?

2 The proof

Referring to an odd perfect number \(n \) with the symbols used in equation (1), we obtain:

Lemma 2.1. If \(n \) is an odd perfect number, then

\[
N^2 = A \frac{\sigma(\pi^\alpha)}{2} \quad \text{and} \quad \sigma(N^2) = A\pi^\alpha.
\]

Proof. From equation (2) and from the fact that \((\sigma(\pi^\alpha), \pi^\alpha) = 1\), it follows

\[
N^2 = A \frac{\sigma(\pi^\alpha)}{2},
\]

where \(A \) is an odd positive integer given by

\[
A = \frac{\sigma(N^2)}{\pi^\alpha}.
\]

In relation to the odd parameter \(A \) in Lemma 2.1, we give two further lemmas:

Lemma 2.2. If \(A = 1 \), then \(\alpha \geq \omega(n) - 1 \) and \(N^2 > \frac{1}{2} \pi^\alpha \).

Proof. Let \(q_k, k = 1, 2, ..., \omega(N) = \omega(N^2) \), are the prime factors of \(N^2 \); from hypothesis and from (4) we have
\[\pi^\alpha = \sigma(N^2) = \sigma(\prod_{k=1}^{\omega(N)} 2^{\beta_k}) = \prod_{k=1}^{\omega(N)} q_k^{2\beta_k} = \prod_{k=1}^{\omega(N)} \sigma(\delta_k) \]

in which \(\alpha = \sum_{k=1}^{\omega(N)} \delta_k \geq \sum_{k=1}^{\omega(N)} 1_k = \omega(N) \).

Since \(\omega(n) = \omega(N) + 1 \), it results in
\[\alpha \geq \omega(n) - 1. \]

Besides, from Equation (3) it follows
\[N^2 = \frac{1}{2} \sigma(\pi^\alpha) > \frac{1}{2} \pi^\alpha. \]

Lemma 2.3. If \(A > 1 \), then \(N^2 > \frac{3}{2} \pi^\alpha \).

Proof. From Equation (3) it results \(A \geq 3 \). Thus
\[N^2 \geq \frac{3}{2} \sigma(\pi^\alpha) > \frac{3}{2} \pi^\alpha. \]

The following theorem summarizes a necessary condition for odd perfection.

Theorem 2.1. If \(n \) is an odd perfect number, then
\[(\neg a \land d) \lor (a \land b \land c) \lor (b \land c \land d), \]
where: \(a \cong (A = 1), \neg a \cong (A > 1), b \cong (\alpha \geq \omega(n) - 1), c \cong (N^2 > \frac{1}{2} \pi^\alpha), d \cong (N^2 > \frac{3}{2} \pi^\alpha). \)

Proof. We combine Lemmas 2.2 and 2.3, setting
\[\left\{ \begin{array}{l}
\text{lemma 2.2: } (a \implies b \land c) \\
\text{lemma 2.3: } (\neg a \implies d)
\end{array} \right. \] \tag{5}

where, since it cannot be \(A < 1 \), it is \((a) \cong (A = 1) \) and \((\neg a) \cong (A > 1) \). One obtains from (5)
\[(\neg a \lor (b \land c)) \land (a \lor d), \]
which is equivalent to
\[(\neg a \land d) \lor (a \land b \land c) \lor (b \land c \land d). \] \tag{6}

Considering cases in which the necessary condition for odd perfection (6) is false, we obtain the following corollaries:

Corollary 2.1. If \(n \) is an odd perfect number, then \(N^2 > \frac{1}{2} \pi^\alpha \).

Proof. We have
\[(\neg c \land \neg d)(\cong N^2 < \frac{1}{2} \pi^\alpha) \implies n \text{ is not an odd perfect number}. \] \tag{7}

From the contrapositive formulation of (7) it follows the proof.
Corollary 2.2. If \(n \) is an odd perfect number, then

\[
N^2 > \frac{3}{2} \pi^{\omega(n)-1} > \frac{1}{2} \pi^{\omega(n)-1}.
\]

Proof. We have

\[
(\neg b \land \neg d) \Leftarrow N^2 < \frac{3}{2} \pi^{\omega(n)-1} \implies n \text{ is not an odd perfect number.}
\]

From the contrapositive formulation of (8) it follows the proof.

Combining these two corollaries, we have

Corollary 2.3. If \(n \) is an odd perfect number, then

\[
N^2 > \frac{1}{2} \pi^\gamma, \text{ where } \gamma = \max\{\omega(n) - 1, \alpha\}.
\]

Proof. Immediate.

Acknowledgements

I thank Professor P. Plazzi (University of Bologna) for the useful comments and advice.

References

[1] Brown, P. (2016) A partial proof of a conjecture of Dris, http://arxiv.org/abs/1602.01591v1.

[2] Chen, S. C., & Luo, H. (2011) Odd multiperfect numbers, http://arxiv.org/abs/1102.4396.

[3] Dickson, L. E. (2005) History of the Theory of Numbers, Vol. 1, Dover, New York.

[4] Dris, J. A. B. (2008), Solving the odd perfect number problem: some old and new approaches, M.Sc. thesis, De La Salle University, Manila, http://arxiv.org/abs/1204.1450.

[5] MacDaniel, W. L., & Hagis, P. (1975) Some results concerning the non-existence of odd perfect numbers of the form \(\pi^\alpha M^{2\beta} \), Fibonacci Quart., 131, 25–28.

[6] Nielsen, P. P. (2015) Odd perfect numbers, Diophantine equations, and upper bounds, Math. Comp., 84, 2549–2567.

[7] Sorli, R. M. (2003) Algorithms in the study of multiperfect and odd perfect numbers, Ph.D. thesis, University of Technology, Sydney, http://epress.lib.uts.edu.au/research/handle/10453/20034.
[8] Starni, P. (1991) On the Euler’s factor of an odd perfect number, *J. Number Theory*, 37, 366–369.

[9] Starni, P. (1993) Odd perfect numbers: a divisor related to the Euler’s factor, *J. Number Theory*, 44, 58–59.

[10] Starni, P. (2006) On some properties of the Euler’s factor of certain odd perfect numbers, *J. Number Theory*, 116, 483–486.