LOCAL SENSITIVITY ANALYSIS AND SPECTRAL CONVERGENCE OF THE STOCHASTIC GALERKIN METHOD FOR DISCRETE-VELOCITY BOLTZMANN EQUATIONS WITH MULTI-SCALES AND RANDOM INPUTS

SHI JIN
School of Mathematical Sciences, Institute of Natural Sciences
MOE-LSEC and SHL-MAC
Shanghai Jiao Tong University, Shanghai 200240, China

YINGDA LI
Department of Mathematics
University of Wisconsin-Madison, Madison, WI 53706, USA

(Communicated by Seung-Yeal Ha)

Abstract. In this paper we study the general discrete-velocity models of Boltzmann equation with uncertainties from collision kernel and random inputs. We follow the framework of Kawashima and extend it to the case of diffusive scaling in a random setting. First, we provide a uniform regularity analysis in the random space with the help of a Lyapunov-type functional, and prove a uniformly (in the Knudsen number) exponential decay towards the global equilibrium, under certain smallness assumption on the random perturbation of the collision kernel, for suitably small initial data. Then we consider the generalized polynomial chaos based stochastic Galerkin approximation (gPC-SG) of the model, and prove the spectral convergence and the exponential time decay of the gPC-SG error uniformly in the Knudsen number.

1. Introduction. In this paper, we are interested in the discrete-velocity models (DVMs) of the Boltzmann equations with multi-scales and random inputs. The study of DVMs of the Boltzmann equations is of considerable interest in the kinetic theory of gases, which describes the time evolution of particles of gases in the case where the particles are allowed to move in the space with finitely many velocities.

Starting from 1970s, there have been plenty of works that studied the discrete-velocity Boltzmann kinetic models. The diffusive limit for the Carleman-type kinetic models were investigated in [36, 33, 38, 37], while the L^1-stability was established in [9]. The decay of solutions of the Carleman model was given in [13, 14] without any scaling. For another example of DVMs, the Broadwell model, Inoue and Nishida showed the decay of solution in one dimension and the hydrodynamical limit in the compressible Euler scaling, as the mean free path goes to zero [15]. For general DVMs, we would like to mention the framework that Kawashima constructed [28, 24, 29, 25, 42, 39, 26]. In particular, he proved the global existence and long-time...
behavior for general type of DVMs and also applied this framework to systems of hyperbolic-parabolic-type equations [39]. Later on, the analysis for the diffusive limit of general DVMs was showed in [33, 2]. Interested readers could also consult an early review [35] for references. However, there has been no work studying the long-time behavior of solutions in diffusive scaling.

Deterministic models are ideal to mathematicians. In reality, there are many aspects of uncertainties contributed to the models, due to, for example, the lack of knowledge of the interaction mechanism between particles, and inaccurate measurements of initial or/and boundary data. Therefore, understanding and analyzing the impact of uncertainties, often entering into the problem via random inputs, are crucial to the assessment, validation and calibration of kinetic modeling. The main goal of this paper is to study the general DVMs of the Boltzmann equations under the influence of random uncertainties from the collision kernel and initial data.

In the last two decades, uncertainty quantification (UQ) became a hot topic in many areas of science and engineering. However, the UQ for kinetic equations remains untouched until recent years [21]. One of the typical numerical methods for UQ is the generalized polynomial chaos approximation based on stochastic Galerkin (gPC-SG) methods [44, 43]. Compared to direct simulation methods such as Monte Carlo [1, 5], gPC-SG is more efficient and accurate if the solution is smooth enough in the random space. Another typical difficulty in kinetic modeling is due to small scales determined by the mean free path, relaxation time, etc. To cope with this difficulty, an efficient computational framework called asymptotic-preserving (AP) scheme was usually adopted [16]. Such framework is able to mimic the asymptotic transitions from kinetic equations to their diffusive or hydrodynamic limit in the numerically discrete space (see for examples [8, 17, 20, 30, 31]).

Some recent works attempt to address the two aforementioned difficulties in kinetic equations. The first such work is introduced by Jin, Xiu, and Zhu [19], in which the notion of stochastic asymptotic-preserving (s-AP) was introduced. Clearly, the convergence of s-AP methods requires the regularity in the random space. Subsequently, a series of regularity and/or local sensitivity analysis for various types of kinetic equations were conducted, including the linear semiconductor Boltzmann equation [19], linear transport equation [18], and Vlasov-Poisson-Fokker-Planck System [22]. In addition, the uniform regularity for the general linear transport equations conserving mass based on hypocoercivity is established in [32]. Uniform regularity is also obtained for nonlinear kinetic equations, such as the Vlasov-Poisson-Fokker-Planck system [22], the Fokker-Planck-incompressible Navier-Stokes system [40], and a general framework for nonlinear collisional kinetic equations was provided in [34]. See a recent review article for uncertainty quantification on kinetic equations [12]. As typical in hypocoercivity theory [10, 7, 34], the Lyapunov functional includes mixed space-velocity derivative, which is not available in the discrete-velocity setting.

In this paper, by extending the framework of Kawashima for deterministic models to the case of random DVMs, we carry out the regularity and local sensitivity analysis for DVMs with random inputs in the initial data and collision coefficients, in diffusive scaling under periodic boundary condition. Specifically, we establish a uniform regularity in the random space with the help of a Lyapunov-type functional, and a uniformly exponential decay towards the global equilibrium, under certain smallness assumption on the random perturbation of the collision kernel, for suitably small initial data. We use a weighted norm that is first introduced in [18]. This is
the so-called sensitivity analysis [41], since it shows the insensitivity of the solution to the random perturbation under the assumed conditions. Then we consider the gPC-SG approximation for the same model, and prove the spectral convergence of the method and the exponential time decay of the gPC-SG error uniformly in the Knudsen number.

The study of discrete velocity kinetic models is not just of theoretical interest. It will also have an impact for numerical computations, since any numerical kinetic model needs to discretize velocity, thus becomes \textit{de facto} discrete-velocity models. Moreover, the lattice Boltzmann methods [6], popular in numerical simulations of incompressible flows, are also discrete-velocity models.

This paper is organized as follows. In Section 2, we introduce the generalized form of DVMs of the Boltzmann equations with randomness and describe the notations used in this paper. In Section 3, we show the regularity of the solutions of DVMs, which results in the decay toward global equilibrium. Section 4 proves the spectral convergence and error estimates of the gPC-SG method.

2. DVM of Boltzmann equations with random inputs.

2.1. The basic setup. In this article, we consider the initial value problem for discrete-velocity Boltzmann equation in dimensionless form as following

\[
\begin{aligned}
\frac{\partial f_i}{\partial t} + \frac{1}{\varepsilon} v_i \cdot \nabla_x f_i &= \frac{1}{\varepsilon^2} B_i(f, f), \quad i = 1, 2, \ldots, m, \\
f(0, x, z) &= f_0(x, z), \quad x \in \omega \subset T^d, \quad z \in I_z \subset \mathbb{R},
\end{aligned}
\]

(1)

where \(f_i = f_i(t, x, z)\) represents the mass density of particles with velocity \(v_i \in \mathbb{R}^d\) at time \(t\) and position \(x\), depending on a random variable \(z\) with \(\pi(z)\) as its probability density function. \(d \geq 1\) is the dimension of space and velocity. The random variable \(z\) lies in \(I_z\). \(f\) is a vector function with component \(f_i\). \(\varepsilon\) is the Knudsen number, the ratio of the mean free path over a typical length scale of the problem. Each \(B_i\) is a binary collision operator given by

\[
B_i(f, g) = \sigma(z) B_i(f, g),
\]

(2)

where

\[
B_i(f, g) = \frac{1}{2\alpha_i} \sum_{j,k,l} \{A_{ij}^{kl}(f_k g_l + f_l g_k) - A_{ij}^{kl}(f_i g_j + f_j g_i)\},
\]

\(\alpha_i\) are positive constants, and \(A_{ij}^{kl}\) are non-negative constants. \(A_{ij}^{kl}\) are so-called transition rates related to the collisions

\[
(v_i, v_j) \leftrightarrow (v_k, v_l).
\]

The transition rates are positive constants which, according to the indistinguishability property of the gas particles and the reversibility of the collision, satisfy

\[
A_{ij}^{kl} = A_{ji}^{lk} = A_{ki}^{jl} \quad \text{and} \quad A_{ij}^{kl} = A_{ij}^{kl} \quad \text{for all} \quad i, j, k, l = 1, 2, \ldots, m.
\]

(3)

Remark 1. For discrete velocity Boltzmann equations, it is easy to deduce the high dimensional problems to one dimension [26].

Here we consider periodic boundary condition, i.e. \(T = [-\pi, \pi]\).
2.2. **Examples of DVMs.** One famous example of discrete-velocity model of the Boltzmann equation is the Carleman Model [4],

\[\frac{\partial}{\partial t} f_1 + \frac{1}{\varepsilon} v \frac{\partial}{\partial x} f_1 = \frac{1}{\varepsilon^2} (f_2^2 - f_1^2), \]

\[\frac{\partial}{\partial t} f_2 - \frac{1}{\varepsilon} v \frac{\partial}{\partial x} f_2 = \frac{1}{\varepsilon^2} (f_1^2 - f_2^2), \]

where \(f = (f_1, f_2)^T, V = \text{diag}(v, -v). \)

The other example is the Broadwell model [3],

\[\frac{\partial}{\partial t} f_1 + \frac{1}{\varepsilon} v \frac{\partial}{\partial x} f_1 = \frac{1}{\varepsilon^2} (f_2^2 - f_1 f_3), \]

\[\frac{\partial}{\partial t} f_2 = \frac{1}{2\varepsilon^2} (f_1 f_3 - f_2^2), \]

\[\frac{\partial}{\partial t} f_3 - \frac{1}{\varepsilon} v \frac{\partial}{\partial x} f_3 = \frac{1}{\varepsilon^2} (f_2^2 - f_1 f_3), \]

where \(f = (f_1, f_2, f_3)^T, V = \text{diag}(v, 0, -v). \) Here \(v \) is a positive constant and \(\sigma(z) = 1. \)

2.3. **Notations.** In this paper, we will work on vector functions

\[f = (f_1, f_2, \ldots, f_m)^T \in \mathbb{R}^m. \]

If \(f \) and \(g \) are two complex-valued vectors, then the standard dot product (multiplication) in \(C \) is defined as

\[(f, g) = \sum_{j=1}^{m} f_j \overline{g_j}. \]

Denote the inner product as

\[\langle f, g \rangle_x = \int_T (f, g) dx = \int_T \sum_{j=1}^{m} f_j \overline{g_j} dx, \quad \text{with norm } \|f\|_x^2 = \langle f, f \rangle_x, \]

\[\langle f, g \rangle_\mu = \int_{I_z} (f, g) d\mu = \int_{I_z} \sum_{j=1}^{m} f_j \overline{g_j} d\mu, \quad \text{with norm } \|f\|_\mu^2 = \langle f, f \rangle_\mu, \]

\[\langle f, g \rangle = \int_{I_z} \int_T (f, g) dx \, d\mu = \int_{I_z} \int_T \sum_{j=1}^{m} f_j \overline{g_j} dx \, d\mu, \quad \text{with norm } \|f\|^2 = \langle f, f \rangle, \]

where \(d\mu = \pi(z) dz. \) For functions \(f = f(x) \), we define the Sobolev norm (with \(x \) derivatives):

\[\|f\|_{H_x^s}^2 = \sum_{0 \leq \alpha \leq s} \|\partial_x^\alpha f\|_{L_x}^2. \]

For functions \(f = f(x, z) \), the above norm is actually a function of \(z \), we define the expect value of sum of square of Sobolev norm (including both \(z \) and \(x \) derivatives):

\[\|f\|_{H_z^s H_x^r}^2 = \sum_{0 \leq \gamma \leq r} \int_{I_z} \|\partial_z^\gamma f\|_{H_x^r}^2 d\mu. \]

In particular, \(\|f\|_{H_z^s L_x^r} = \int_{I_z} \|f\|_{H_x^r}^2 d\mu. \) In addition, define

\[\|f\|_{L_z^\infty(H_x^r)}^2 = \sup_{z \in I_z} \|f\|_{H_x^r}^2. \]
Besides, for functions \(f = f(z) \), we define the Sobolev norm in the random space as
\[
\|f\|_{H^r}^2 = \sum_{0 \leq \gamma \leq r} \|\partial_\gamma^2 f\|_{L^2}^2.
\]

3. **Uniformly exponential decay to the global equilibrium.** In this section, we extend the deterministic framework of Kawashima [23, 26, 27] about convergence toward the global equilibrium for the DVMs of Boltzmann equation to the case with uncertainty.

In particular, we will consider a solution which is a small perturbation of the global equilibrium. To this aim, we shall introduce basic concepts concerning (1) and summarize their properties [23, 26, 2] which will be used later.

3.1. **Preliminaries.**

Definition 3.1. A vector \(\psi = (\psi_1, \ldots, \psi_m)^T \) is called a summational invariant if
\[
A_{kl}^{ij} \left(\frac{\phi_i}{\alpha_i} + \frac{\phi_j}{\alpha_j} - \frac{\phi_k}{\alpha_k} - \frac{\phi_l}{\alpha_l} \right) = 0, \quad \text{for all } i, j, k, l = 1, \ldots, m.
\]

We denote by \(\mathcal{M} \) the set of summational invariants. Then \(0 < \dim \mathcal{M} < m \) because \((\alpha_1, \ldots, \alpha_m)^T \in \mathcal{M} \) and \(\mathcal{M} \neq \mathbb{R}^m \).

Denote \(f = (f_1, \ldots, f_m) > 0 \) if \(f_i > 0 \) for all \(i = 1, \ldots, m \). Let \(d = \dim \mathcal{M} \) and \(\psi^{(j)}, j = 1, \ldots, d \) and \(\phi^{(l)}, k = d + 1, \ldots, m \), be constant vectors such that
\[
\{\psi^{(1)}, \ldots, \psi^{(d)}\} \text{ is a basis of } \mathcal{M}, \quad \text{and } \{\phi^{(d+1)}, \ldots, \phi^{(m)}\} \text{ is a basis of } \mathcal{M}^\perp,
\]
where \(\mathcal{M}^\perp \) denotes the orthogonal complement of \(\mathcal{M} \) in \(\mathbb{R}^m \). For \(f \in \mathbb{R}^m \), we define
\[
w = (w_1, \ldots, w_d), \quad w_j = (f, \psi^{(j)}), \quad j = 1, \ldots, d.
\]

Each \(w_j \) is the \(j \)-th moment of \(f \).

Definition 3.2. A vector \(f = (f_1, \ldots, f_m) > 0 \) is called a local equilibrium if
\[
A_{kl}^{ij} (f_i f_j - f_k f_l) = 0, \quad \text{for all } i, j, k, l = 1, \ldots, m.
\]
In particular, \(f > 0 \) is called a global equilibrium if it is a locally equilibrium and is independent of \(t \) and \(x \), which means it is a constant vector.

Let \(B(f, g) = (B_1(f, g), \ldots, B_m(f, g))^T \) and \(B(f, g) = \sigma(z) B(f, g) \).

Lemma 3.3. Let \(f = (f_1, \ldots, f_m) > 0 \). The following four statements are equivalent.

1. \(f \) is a local equilibrium.
2. \(A_{kl}^{ij} \log \left(\frac{f_i f_j}{f_k f_l} \right) = 0 \) for all \(i, j, k, l = 1, \ldots, m \), that is,
\[
(\alpha_1 \log f_1, \ldots, \alpha_m \log f_m) \in \mathcal{M}.
\]
3. \(B(f, f) = 0 \).
4. \(\sum \alpha_i \log f_i B_i(f, f) = 0 \).

Definition 3.4. A vector \(M > 0 \) is called the local equilibrium state associated with \(f > 0 \) if \(M \) is a local equilibrium state and satisfies \(M = f \) on \(\mathcal{M} \).

Lemma 3.5. Let \(f > 0 \) be a given vector. Then there exists uniquely a local equilibrium state \(M \) associated with \(f \). Moreover, \(M \) can be completely determined by its moments \(w = (w_1, \ldots, w_d) \), where \(w_i = (M, \psi^j) \).
All the definitions and the lemmas above can be found in [23, 26].

Let M be the global equilibrium, which can be uniquely determined by the initial data. We shall seek the solution of (1)-(2) in the form

$$ f = M + \varepsilon^2 \Lambda^{1/2} g, \quad (7) $$

where $M = (M_1, \ldots, M_m)^T > 0$ and

$$ \Lambda = \text{diag}\{M_1/\alpha_1, \ldots, M_m/\alpha_m\}. $$

The fluctuation g satisfies

$$ g_t + \frac{1}{\varepsilon} V g_x + \frac{1}{\varepsilon^2} L g = B(g, g), $$

$$ g_0 = \frac{1}{\varepsilon^2} \Lambda^{-1/2} (f_0 - M), \quad (8) $$

where $V = \text{diag}\{v_1, v_2, \ldots, v_m\}$ and

$$ L g = \sigma(z) L g = \sigma(z)(-2\Lambda^{-1/2} B(M, \Lambda^{1/2} g)). \quad (9) $$

The operators L and B have the following properties [23].

Lemma 3.6.

1. L is real symmetric and positive semi-definite; its null space is given by

$$ \text{Null}(L) = \text{span}\{\Lambda^{1/2} M\}. $$

2. B is bi-linear and satisfies $B(f, g) \in \text{Null}(L)^\perp$ for any $f, g \in \mathbb{R}^m$, where $\text{Null}(L)^\perp$ is the orthogonal complement of $\text{Null}(L)$ in \mathbb{R}^m.

3. There exist λ_0 and λ_1 such that

$$ \lambda_0 |P^\perp f|^2 \leq (L f, f), \quad (10) $$

and

$$ |L f|^2 \leq \lambda_1 |P^\perp f|^2, \quad (11) $$

where P^\perp denotes the orthogonal projection onto $\text{Null}(L)^\perp$.

Proof. The proof of 1 and 2 can be found in [23]. (10) and (11) can also be found in [2, 23, 25].

Remark 2. (10) is also called “hypocoercivity”.

Denote P as the projection operator onto $\text{Null}(L)$, then it is not hard to find:

Lemma 3.7.

$$ \frac{1}{\sqrt{2\pi}} \int_T (P g(x, t))_j \, dx = 0. \quad (12) $$

Proof. Note that g is the perturbation around the global equilibrium M. Since f and M share the same moments, this directly yields this lemma.

3.2. The estimate for the linearized equation. Let’s first consider linearized equation of (8) with the same initial data,

$$ g_t + \frac{1}{\varepsilon} V g_x + \frac{1}{\varepsilon^2} L g = 0, $$

$$ g_0 = \frac{1}{\varepsilon^2} \Lambda^{-1/2} (f_0 - M), \quad (13) $$

where $L = \sigma(z) L$ is the bounded linear collision operator defined by (9).

We also assume that (13) is “dissipative” in the following sense (see [23, 24, 26]):
Assumption. For any complex-valued vector function f, there exists a bounded real anti-symmetric matrix M such that the symmetric part of $MV + L$ is positive definite. That is, there exist a constant $\lambda_2 > 0$ such that

$$\langle [MV]' + L \rangle f, f \rangle \geq \lambda_2 |f|^2,$$

where $[MV]'$ denotes the symmetric part of MV.

Next we want to show the decay estimate following the framework of Kawashima [28, 26] using the Fourier transform. Suppose g can be written as

$$g(t, x, z) = \frac{1}{\sqrt{2\pi}} \sum_{k \in \mathbb{Z}} \hat{g}_k(t, z) e^{ikx},$$

where the Fourier coefficient $\hat{g}_k = \frac{1}{\sqrt{2\pi}} \int g(x) e^{-ikx} dx$. We first state a technical lemma with more assumptions for the collision kernel.

Lemma 3.8. Assume

$$\sigma(z) = \sigma_0 + \varepsilon \sigma_1(z),$$

and for $n = 1, \ldots, r$, $0 < \sigma_{\min} \leq \sigma(z) \leq \sigma_{\max}$, and $|\partial_x^n \sigma| \leq \sigma_{\max}$ for some constant σ_{\min} and σ_{\max}. Besides, assume that the Fourier coefficients \hat{g}_k of the initial data is in H^s_T. Then for all integer $0 \leq n \leq r$ and for all $k \in \mathbb{Z}/\{0\}$, there exist positive constants $c_{r, j}, a_{r, j}$ and c_n such that

$$\frac{1}{2} \partial_t \left| \partial_x^n \hat{g}_k \right|^2 + \sum_{j=0}^{n-1} c_{nj} \left| \partial_x^j \hat{g}_k \right|^2$$

$$- \frac{\varepsilon \alpha_k}{1+k^2} (iM \partial_x^n \hat{g}_k, \partial_x^n \hat{g}_k) - \sum_{j=0}^{n-1} c_{nj} \frac{\varepsilon \alpha_j}{1+k^2} (iM \partial_x^j \hat{g}_k, \partial_x^j \hat{g}_k)$$

$$+ \frac{\lambda_2 \alpha_k}{4} \frac{k^2}{1+k^2} \left| \partial_x^n \hat{g}_k \right|^2 + \sum_{j=0}^{n-1} \frac{\lambda_2 \alpha_j}{4} \frac{k^2}{1+k^2} \left| \partial_x^j \hat{g}_k \right|^2$$

$$\leq - \frac{c_n}{\varepsilon^2} \left(|P^\perp \partial_x^n \hat{g}_k|^2 + \sum_{j=0}^{n-1} a_{nj} |P^\perp \partial_x^j \hat{g}_k|^2 \right).$$

Remark 3. The Lyapunov functional

$$E^{\alpha, n} = |\partial_x^n \hat{g}_k|^2 + \sum_{j=0}^{n-1} c_{nj} |\partial_x^j \hat{g}_k|^2 - \frac{\varepsilon \alpha_k}{1+k^2} (iM \partial_x^n \hat{g}_k, \partial_x^n \hat{g}_k) - \sum_{j=0}^{n-1} c_{nj} \frac{\varepsilon \alpha_j}{1+k^2} (iM \partial_x^j \hat{g}_k, \partial_x^j \hat{g}_k),$$

is positive and equivalent to the Sobolev norm for α_j small.

Proof. We will use mathematical induction in this proof. For $n = 0$, taking the Fourier transform in x, for $k \neq 0$ one gets

$$\partial_t (\hat{g}_k) + \frac{i}{\varepsilon} kV + \frac{1}{\varepsilon^2} L \hat{g}_k = 0.$$

Taking inner product with \hat{g}_k (in \mathbb{C}^n), and since V and L are real symmetric, then the real part of (19) reads

$$\partial_t \left(\frac{1}{2} |\hat{g}_k|^2 \right) + \frac{1}{\varepsilon^2} Re(L \hat{g}_k, \hat{g}_k) = 0.$$
Multiply \(-\varepsilon i k M\) and take inner product with \(\tilde{g}_k\). Since \(iM\) is Hermitian, then the real part is

\[
\partial_t \left\{ -\frac{1}{2} \varepsilon k (iM \tilde{g}_k, \tilde{g}_k) \right\} + k^2 \text{Re} \left(([MV]' + L) \tilde{g}_k, \tilde{g}_k \right) - k^2 \text{Re} (L \tilde{g}_k, \tilde{g}_k) = \frac{1}{\varepsilon} \text{Re} \left\{ i k (M L \tilde{g}_k, \tilde{g}_k) \right\}.
\]

Thus we have

\[
\partial_t \left(\frac{1}{2} |\tilde{g}_k|^2 \right) + \lambda_0 \sigma_{\min} \frac{1}{\varepsilon^2} |P^\perp \tilde{g}_k|^2 \leq 0,
\]

\[
\partial_t \left\{ -\frac{1}{2} \varepsilon k (iM \tilde{g}_k, \tilde{g}_k) \right\} + \lambda_1 k^2 |\tilde{g}_k|^2 - \lambda_1 \sigma_{\max}^2 k^2 |P^\perp \tilde{g}_k|^2 \leq \frac{1}{2\varepsilon^2} \left(\frac{\sigma_{\max}^2 C_M}{\lambda_2} |L \tilde{g}_k|^2 + \delta_0 k^2 |\tilde{g}_k|^2 \right).
\]

Here we use the boundedness of the matrix \(M\). If one choose \(\delta_0 = \frac{\varepsilon \lambda_2}{2}\), then it follows

\[
\partial_t \left(\frac{1}{2} |\tilde{g}_k|^2 \right) + \lambda_0 \sigma_{\min} \frac{1}{\varepsilon^2} |P^\perp \tilde{g}_k|^2 \leq 0,
\]

\[
\partial_t \left\{ -\frac{1}{2} \varepsilon k (iM \tilde{g}_k, \tilde{g}_k) \right\} + \lambda_1 k^2 |\tilde{g}_k|^2 - \lambda_1 \sigma_{\max}^2 k^2 |P^\perp \tilde{g}_k|^2 \leq \frac{1}{2\varepsilon^2} \frac{\sigma_{\max}^2 C_M}{\lambda_2} |L \tilde{g}_k|^2 \leq 0.
\]

One multiplies the first and the second inequalities by \((1 + k^2)\) and \(\alpha_0\), respectively, and then adds them up. It follows

\[
\frac{1}{2\varepsilon^2} \left(\frac{\alpha_0 \varepsilon}{2} (1 + k^2) |\tilde{g}_k|^2 - \alpha_0 \varepsilon k (iM \tilde{g}_k, \tilde{g}_k) \right) + \frac{\alpha_0 \lambda_2}{2} \lambda_1 k^2 |\tilde{g}_k|^2 + \left(\frac{\lambda_0 \sigma_{\min} \varepsilon}{2} (1 + k^2) - \lambda_1 \sigma_{\max}^2 \alpha_0 k^2 - \frac{1}{2\varepsilon^2} \frac{\alpha_0 \lambda_1 \sigma_{\max}^2 C_M}{\lambda_2} \right) |P^\perp \tilde{g}_k|^2 \leq 0.
\]

Choosing \(\alpha_0\) such that

\[
\frac{\lambda_0 \sigma_{\min}}{2\varepsilon^2} \geq \frac{1}{2\varepsilon^2} \frac{\lambda_1 \alpha_0 \sigma_{\max}^2 C_M}{\lambda_2} \quad \text{and} \quad \frac{\lambda_0 \sigma_{\min}}{2\varepsilon^2} \geq \lambda_1 \alpha_0 \sigma_{\max}^2,
\]

(24) gives

\[
\frac{1}{2\varepsilon^2} \partial_t \left\{ |\tilde{g}_k|^2 - \frac{\alpha_0 \varepsilon}{2} \frac{k}{1 + k^2} (iM \tilde{g}_k, \tilde{g}_k) \right\} + \frac{\alpha_0 \lambda_2}{2} \frac{k^2}{1 + k^2} |\tilde{g}_k|^2 \leq -\frac{\lambda_0 \sigma_{\min}}{2\varepsilon^2} |P^\perp \tilde{g}_k|^2.
\]

In this case, \(c_{00} = a_{00} = 1\) and \(c_0 = \frac{\lambda_0 \sigma_{\min}}{2\varepsilon^2}\).

Assume that the inequality (17) holds true for all \(n \leq r\). After adding all those inequalities, one arrives at

\[
\frac{1}{2\varepsilon^2} \partial_t \left\{ \sum_{j=0}^{r} \left| \partial_j^l \tilde{g}_k \right|^2 + \sum_{j=1}^{r-l} \sum_{j=0}^{l} \sum_{j=0}^{r} c_{lj} |\partial_j^l \tilde{g}_k|^2 - \frac{\varepsilon k}{1 + k^2} \sum_{j=0}^{r} \alpha_j (iM \partial_j^l \tilde{g}_k, \partial_j^l \tilde{g}_k) \right\}
\]

\[
- \frac{\varepsilon k}{1 + k^2} \sum_{l=1}^{r-l} \sum_{j=0}^{l} \sum_{j=0}^{r} \alpha_j c_{lj} (iM \partial_j^l \tilde{g}_k, \partial_j^l \tilde{g}_k) \right\}.
\]
then the real part gives
\[\partial_z \hat{g}_k \]
where
\[\partial_z^\perp \hat{g}_k = \sum_{j=1}^{r} \frac{c_j}{\varepsilon^2} |\partial_z^\perp \hat{g}_k|^2 - \sum_{l=1}^{r-1} \sum_{j=0}^{l-1} \frac{c_j}{\varepsilon^2} a_{lj} |\partial_z^\perp \hat{g}_k|^2 \]
\[\leq \frac{c}{\varepsilon^2} (|P^\perp \hat{g}_k|^2 + \sum_{j=1}^{r} |\partial_z^\perp \hat{g}_k|^2) \]
\[\leq \frac{c}{\varepsilon^2} \sum_{j=0}^{r} |\partial_z^\perp \hat{g}_k|^2, \]
where \(c = \min\{c_0, \ldots, c_n\} \). If we rewrite the equation, it follows
\[\frac{1}{2} \partial_t \left\{ \sum_{j=0}^{r} d_{rj} |\partial_z^\perp \hat{g}_k|^2 - \frac{\varepsilon k}{1+k^2} \sum_{j=0}^{r} d_{rj} \alpha_j (iM \partial_z^\perp \hat{g}_k, \partial_z^\perp \hat{g}_k) \right\} + \frac{\lambda_r \alpha_r}{4} \frac{k^2}{1+k^2} \sum_{j=0}^{r} d_{rj} |\partial_z^\perp \hat{g}_k|^2 \leq \frac{c}{\varepsilon^2} \sum_{j=0}^{r} b_{rj} |P^\perp \hat{g}_k|^2, \]
where
\[d_{rj} = \begin{cases} 1 + \sum_{l=0}^{r-j} c_{l0} & \text{for } j = 0, \\ 1 + \sum_{l=0}^{r-j} c_{lj} & \text{for } 1 \leq j \leq r - 1, \\ 1 & \text{for } j = r - 1, \end{cases} \]
\[b_{rj} = \begin{cases} 1 + \sum_{l=0}^{r-j} a_{l0} & \text{for } j = 0, \\ 1 + \sum_{l=0}^{r-j} a_{lj} & \text{for } 1 \leq j \leq r - 1, \\ 1 & \text{for } j = r - 1, \end{cases} \]
and \(\alpha_r = \min\{\alpha_0, \ldots, \alpha_r\} \).

For \(n = r + 1 \), take derivative with respect to \(z \) variable to the equation.
\[\partial_t (\partial_z^{r+1} \hat{g}_k) + \frac{i}{\varepsilon} kV (\partial_z^{r+1} \hat{g}_k) + \frac{1}{\varepsilon^2} \mathcal{L} (\partial_z^{r+1} \hat{g}_k) = -\frac{1}{\varepsilon^2} \sum_{l=0}^{r} \left(r + 1 \right) \partial_z^{r+1-l} \mathcal{L} (z) \partial_z^l \hat{g}_k, \]
where \(\partial_z^{r+1-l} \mathcal{L} (z) = \partial_z^{r+1-l} \sigma (z)L. \)
After taking inner product with \(\partial_z^{r+1} \hat{g}_k \), the real part becomes
\[\frac{1}{2} \partial_t (|\partial_z^{r+1} \hat{g}_k|^2) + \frac{1}{\varepsilon^2} \Re (\mathcal{L} \partial_z^{r+1} \hat{g}_k, \partial_z^{r+1} \hat{g}_k) \]
\[= -\frac{1}{\varepsilon^2} \sum_{l=0}^{r} \left(r + 1 \right) \Re (\partial_z^{r+1-l} \mathcal{L} \partial_z^l \hat{g}_k, \partial_z^{r+1} \hat{g}_k), \]
which yields
\[\frac{1}{2} \partial_t (|\partial_z^{r+1} \hat{g}_k|^2) + \frac{\lambda_0 \sigma_{\min}}{\varepsilon^2} |P^\perp \partial_z^{r+1} \hat{g}_k|^2 \]
\[\leq \frac{1}{\varepsilon^2} \sum_{l=0}^{r} \left(r + 1 \right) \sum_{l=0}^{r} \left(r + 1 \right) \partial_z^{r+1-l} \mathcal{L} \partial_z^l \hat{g}_k |^2 + \frac{1}{\varepsilon^2} \frac{\delta k^2}{1+k^2} |\partial_z^{r+1} \hat{g}_k|^2. \]

Multiplying (29) by \(-\varepsilon ikM\) to both sides and taking inner product with \(\partial_z^{r+1} \hat{g}_k \), then the real part gives
\[-\frac{1}{2} \partial_t \left\{ k \varepsilon (iM \partial_z^{r+1} \hat{g}_k, \partial_z^{r+1} \hat{g}_k) \right\} + k^2 \text{Re}((MV^\prime + \mathcal{L}) \partial_z^{r+1} \hat{g}_k, \partial_z^{r+1} \hat{g}_k) \right\} + k^2 \text{Re}(\mathcal{L} \partial_z^{r+1} \hat{g}_k, \partial_z^{r+1} g_k) \\
= \frac{1}{\varepsilon} \text{Re} \left\{ i k (M \mathcal{L} \partial_z^{r+1} \hat{g}_k, \partial_z^{r+1} \hat{g}_k) \right\}.
\]

Thus
\[-\frac{1}{2} \partial_t \left\{ k \varepsilon (iM \partial_z^{r+1} \hat{g}_k, \partial_z^{r+1} \hat{g}_k) \right\} + \lambda_2 k^2 |\partial_z^{r+1} \hat{g}_k|^2 - \lambda_1 k^2 \sigma_{\max}^2 |P \partial_z^{r+1} g_k|^2 \leq \frac{1}{\varepsilon} \left(\frac{\sigma_{\max}^2}{4 \delta_1} \sum_{l=0}^{r} \left(r + 1 \right) \delta_1 \left(L(z) \partial_z^l \hat{g}_k \right)^2 + \delta_1 k^2 |\partial_z^{r+1} \hat{g}_k|^2 \right). \]

If one chooses \(\delta_1 = \frac{\lambda \varepsilon}{4k} \), it follows
\[-\frac{1}{2} \partial_t \left\{ k \varepsilon (iM \partial_z^{r+1} \hat{g}_k, \partial_z^{r+1} \hat{g}_k) \right\} + \lambda_2 k^2 |\partial_z^{r+1} \hat{g}_k|^2 - \lambda_1 k^2 \sigma_{\max}^2 |P \partial_z^{r+1} g_k|^2 \leq \frac{1}{\varepsilon^2} k^2 \lambda_2 \sum_{l=0}^{r} \left(r + 1 \right) \sum_{l=0}^{2r+1-l} \left(L(z) \partial_z^l \hat{g}_k \right)^2 + \frac{1}{\varepsilon^2} \lambda_1 \sigma_{\max}^2 C M \sum_{l=0}^{r} \left(r + 1 \right) \sum_{l=0}^{2r+1-l} |P \partial_z^l \hat{g}_k|^2. \]

Similar to the case of the zero-th derivative in \(z \), one times inequality (34) by \(\frac{\sigma_{\max}^2}{4 \delta_1} \) and adds it with inequality (31) to get
\[-\frac{1}{2} \partial_t \left\{ |\partial_z^{r+1} \hat{g}_k|^2 - \frac{\varepsilon \alpha_{r-1} + k}{1 + k^2} (iM \partial_z^{r+1} \hat{g}_k, \partial_z^{r+1} \hat{g}_k) \right\} + \frac{\alpha_{r+1} \lambda_2 \sigma_{\max}^2 C M}{1 + k^2} \left(\sum_{l=0}^{r} \left(r + 1 \right) \sum_{l=0}^{2r+1-l} |P \partial_z^l \hat{g}_k|^2 \right) \leq \frac{1}{\varepsilon} \left(\frac{\sigma_{\max}^2}{4 \delta_1} \sum_{l=0}^{r} \left(r + 1 \right) \sum_{l=0}^{2r+1-l} \left(L(z) \partial_z^l \hat{g}_k \right)^2 + \frac{1}{\varepsilon^2} \lambda_1 \sigma_{\max}^2 C M \sum_{l=0}^{r} \left(r + 1 \right) \sum_{l=0}^{2r+1-l} |P \partial_z^l \hat{g}_k|^2 \right). \]
\[
+ \frac{1}{\varepsilon^2} \frac{1 + k^2}{k^2} \varepsilon^2 \sigma_{\text{max}}^2 C_M \sum_{l=0}^r \binom{r+1}{l}^2 \sum_{l=0}^r |P^l \partial_z^l \tilde{g}_k|^2
\leq \frac{1}{1 + k^2} \frac{1}{\varepsilon^2} \alpha_{r+1} \lambda_1 \sigma_{\text{max}}^2 C_M \sum_{l=0}^r \binom{r+1}{l}^2 \sum_{l=0}^r |P^l \partial_z^l \tilde{g}_k|^2
+ \frac{1}{\varepsilon^2} 2 \sigma_{\text{max}}^2 C_M \sum_{l=0}^r \binom{r+1}{l}^2 \sum_{l=0}^r |P^l \partial_z^l \tilde{g}_k|^2,
\]
where \(|\partial_z^{r+1} L(z) \partial_z^l \tilde{g}_k| \leq \varepsilon^2 \sigma_{\text{max}}^2 |P^l \partial_z^l \tilde{g}_k|^2 \) and \(\frac{1 + k^2}{\varepsilon^2} \leq 2 \) for \(k \geq 1 \).

As what was done before, choose \(\alpha_{r+1} \) such that
\[
\alpha_{r+1} \leq \frac{\lambda_0 \lambda_2 \sigma_{\text{min}}^2}{2 \lambda_1 \sigma_{\text{max}}^2 C_M} \quad \text{and} \quad \alpha_{r+1} \leq \frac{1}{\varepsilon^2} \frac{\lambda_0 \sigma_{\text{min}}}{2 \lambda_1 \sigma_{\text{max}}}.
\]

It follows
\[
\frac{1}{2} \partial_k \left(|\partial_z^{r+1} \tilde{g}_k|^2 - \frac{\varepsilon \alpha_{r+1}}{1 + k^2} \binom{r+1}{k} (iM \partial_z^{r+1} \tilde{g}_k, \partial_z^l \tilde{g}_k) \right) + \frac{\alpha_{r+1} \lambda_2}{4} \frac{k^2}{1 + k^2} |\partial_z^{r+1} \tilde{g}_k|^2
+ \frac{\lambda_0 \sigma_{\text{min}}}{2 \varepsilon^2} |P^l \partial_z^l \tilde{g}_k|^2
\leq \frac{1}{\varepsilon^2} \frac{2 \sigma_{\text{max}}^2 C_M}{\lambda_2 \alpha_{r+1}} \sum_{l=0}^r \binom{r+1}{l}^2 \sum_{l=0}^r |P^l \partial_z^l \tilde{g}_k|^2
+ \frac{1}{\varepsilon^2} 2 \sigma_{\text{max}}^2 C_M \sum_{l=0}^r \binom{r+1}{l}^2 \sum_{l=0}^r |P^l \partial_z^l \tilde{g}_k|^2.
\]

Multiplying (26) with \(\beta \), which will be determined later, and adding it to (36) yields
\[
\frac{1}{2} \partial_k \left(|\partial_z^{r+1} \tilde{g}_k|^2 + \sum_{j=0}^r \beta d_{r_j} |\partial_z^l \tilde{g}_k|^2 - \frac{\varepsilon \alpha_{r+1}}{1 + k^2} \binom{r+1}{k} (iM \partial_z^{r+1} \tilde{g}_k, \partial_z^l \tilde{g}_k) \right)
+ \frac{\alpha_{r+1} \lambda_2}{4} \frac{k^2}{1 + k^2} |\partial_z^{r+1} \tilde{g}_k|^2
+ \frac{\lambda_2 \alpha_{r}}{4} \frac{k^2}{1 + k^2} \sum_{j=0}^r \beta d_{r_j} |\partial_z^l \tilde{g}_k|^2
\leq - \frac{\lambda_0 \sigma_{\text{min}}}{2 \varepsilon^2} |P^l \partial_z^l \tilde{g}_k|^2 - \sum_{j=0}^r \frac{c}{\varepsilon^2} \beta b_{r_j} |P^l \partial_z^l \tilde{g}_k|^2
+ \frac{1}{\varepsilon^2} 2 \sigma_{\text{max}}^2 C_M \sum_{l=0}^r \binom{r+1}{l}^2 \sum_{l=0}^r |P^l \partial_z^l \tilde{g}_k|^2
+ \frac{1}{\varepsilon^2} 2 \sigma_{\text{max}}^2 C_M \sum_{l=0}^r \binom{r+1}{l}^2 \sum_{l=0}^r |P^l \partial_z^l \tilde{g}_k|^2
= - \frac{\lambda_0 \sigma_{\text{min}}}{2 \varepsilon^2} |P^l \partial_z^l \tilde{g}_k|^2
+ \sum_{j=0}^r \left(\frac{c}{\varepsilon^2} \beta b_{r_j} - \frac{\lambda_0 \sigma_{\text{max}}^2 C_M}{\varepsilon^2} 4^{r+1} - \frac{1}{\varepsilon^2} \frac{2 \sigma_{\text{max}}^2 C_M}{\lambda_2 \alpha_{r+1}} 4^{r+1} \right) |P^l \partial_z^l \tilde{g}_k|^2.
Then we finish proving our lemma.

Then by Parseval’s identity, one gets

\[
\left(\frac{c}{\varepsilon^2} \beta_{rj} - \frac{1}{\varepsilon} \frac{\lambda_0 \sigma_{\text{max}}^2 C_M}{2^{r+1}} - \frac{1}{\varepsilon^2} \frac{2 \sigma_{\text{max}}^2 C_M}{\lambda_2 \alpha_{r+1}} \right) |P^\perp \partial_z^r \hat{g}_k|^2 \right].
\]

If we choose \(\beta \) such that

\[
\frac{c}{\varepsilon^2} \beta_{rj} - \frac{1}{\varepsilon} \frac{\lambda_0 \sigma_{\text{max}}^2 C_M}{2^{r+1}} - \frac{1}{\varepsilon^2} \frac{2 \sigma_{\text{max}}^2 C_M}{\lambda_2 \alpha_{r+1}} 4^{r+1} > 0,
\]

then we can set

\[
\frac{2 \varepsilon^2}{\lambda_0 \sigma_{\text{min}}} \left(\frac{c}{\varepsilon^2} \beta_{rj} - \frac{1}{\varepsilon} \frac{\lambda_0 \sigma_{\text{max}}^2 C_M}{2^{r+1}} - \frac{1}{\varepsilon^2} \frac{2 \sigma_{\text{max}}^2 C_M}{\lambda_2 \alpha_{r+1}} 4^{r+1} \right) = a_{r+1,j}, \beta d_{rj} = d_{r+1,j}.
\]

Finally, it follows

\[
\begin{align*}
\frac{1}{2} \partial_t \left(|\partial_z^{r+1} \hat{g}_k|^2 + \sum_{j=0}^r d_{r+1,j} |\partial_z^j \hat{g}_k|^2 - \varepsilon k \frac{\alpha_{r+1} + k^2}{1 + k^2} (iM \partial_z^{r+1} \hat{g}_k, \partial_z^{r+1} \hat{g}_k) \right) & \leq - \lambda_0 \sigma_{\text{min}} \left(|P^\perp \partial_z^r \hat{g}_k|^2 + \sum_{j=0}^r a_{r+1,j} |P^\perp \partial_z^j \hat{g}_k|^2 \right).
\end{align*}
\]

Then we finish proving our lemma.

Next we obtain the time decay of \(g \) for the linearized equation (13).

Theorem 3.9. With the assumption in Lemma 3.8, let \(M \) be the global equilibrium with positive components. Suppose that the initial data \(g_0 \in H^s_x H^r_z, r \geq 0, s \geq 0, \) and \(\|g_0\|_{H^s_x H^r_z}^2 \) is small enough, then the solution of the linearized equation (13) satisfies

\[
\|g(t)\|_{H^s_x H^r_z}^2 \leq e^{-\delta t} \|g_0\|_{H^s_x H^r_z}^2
\]

for some constant \(\delta > 0 \) independent of \(\varepsilon \).

Proof. We expand \(g(t, x, z) \) by the Fourier transform in \(x \) direction

\[
g(t, x, z) = \frac{1}{\sqrt{2\pi}} \sum_{k \in \mathbb{Z}} \hat{g}_k(t, z) e^{ikx} = \frac{1}{\sqrt{2\pi}} P^\perp \hat{g}_0(t, z) + \frac{1}{\sqrt{2\pi}} \sum_{k \in \mathbb{Z}} \hat{g}_k(t, z) e^{ikx}. \tag{38}
\]

Then by Parseval’s identity, one gets

\[
\int_T |g(t, x)|^2 dx = \sum_{k \in \mathbb{Z}} |\hat{g}_k(0)|^2 = |P^\perp \hat{g}_0(t)|^2 + |P^\perp \hat{g}_0(t)|^2 + \sum_{k \in \mathbb{Z}} |\hat{g}_k(t)|^2. \tag{39}
\]

Take \(k = 0 \) in (19), we have
Applying P^\perp to (40) and multiplying it by the complex conjugate of $P^\perp \tilde{g}_0$, it follows
\[
\frac{1}{2} \frac{d}{dt} |P^\perp \tilde{g}_0|^2 \leq -\frac{\lambda_0}{\varepsilon^2} |P^\perp \tilde{g}_0|^2,
\]
which implies
\[
|P^\perp \tilde{g}_0(t)|^2 \leq e^{-\frac{\lambda_0 t}{\varepsilon^2}} |P^\perp \tilde{g}_0(0)|^2.
\]
For each component j, one chooses $k = 1, \ldots, m$, using (12) one has
\[
(P\tilde{g}_0(t))_j = \frac{1}{\sqrt{2\pi}} \int_T (Pg(x,t))_j dx = 0.
\]
Thus $|P\tilde{g}_0(t)|^2 = \sum_{j=1}^m (P\tilde{g}_0(t))_j^2 = 0$.

For $k \neq 0$, from Lemma 3.8, one can have
\[
\frac{1}{2} \partial_t \left\{ |\partial_z^r \tilde{g}_k|^2 + \sum_{j=0}^{r-1} c_{rj} |\partial_z^j \tilde{g}_k|^2 - \frac{\varepsilon \alpha_j}{1 + k^2} (iM \partial_z^r \tilde{g}_k, \partial_z^j \tilde{g}_k) \right\}
\]
\[
- \sum_{j=0}^{r-1} c_{rj} \frac{\varepsilon \alpha_j}{1 + k^2} (iM \partial_z^r \tilde{g}_k, \partial_z^j \tilde{g}_k)
\]
\[
+ \frac{\lambda_2 \alpha_j}{4} \frac{k^2}{1 + k^2} |\partial_z^r \tilde{g}_k|^2
\]
\[
+ \sum_{j=0}^{r-1} c_{rj} \frac{\lambda_2 \alpha_j}{4} \frac{k^2}{1 + k^2} |\partial_z^j \tilde{g}_k|^2
\]
\[
\leq - c_r \left(|P^\perp \partial_z^r \tilde{g}_k|^2 + \sum_{j=0}^{r-1} a_{rj} |P^\perp \partial_z^j \tilde{g}_k|^2\right) \leq 0.
\]
As long as $\alpha_j \quad j = 1, \ldots, r$ are small enough, we can construct
\[
E^{\alpha_1, \ldots, \alpha_r} = |\partial_z^r \tilde{g}_k|^2 + \sum_{j=0}^{r-1} c_{rj} |\partial_z^j \tilde{g}_k|^2 - \frac{\varepsilon \alpha_j}{1 + k^2} (iM \partial_z^r \tilde{g}_k, \partial_z^j \tilde{g}_k)
\]
\[
- \sum_{j=0}^{r-1} c_{rj} \frac{\varepsilon \alpha_j}{1 + k^2} (iM \partial_z^r \tilde{g}_k, \partial_z^j \tilde{g}_k)
\]
satisfying
\[
\frac{1}{2} \left\{ |\partial_z^r \tilde{g}_k|^2 + \sum_{j=0}^{r-1} c_{rj} |\partial_z^j \tilde{g}_k|^2 \right\} \leq E^{\alpha_1, \ldots, \alpha_r} \leq 2 \left\{ |\partial_z^r \tilde{g}_k|^2 + \sum_{j=0}^{r-1} c_{rj} |\partial_z^j \tilde{g}_k|^2 \right\},
\]
If one chooses $\alpha = \min\{\alpha_0, \ldots, \alpha_r\}$, then
\[
(E^{\alpha_1, \ldots, \alpha_r})_t + \frac{\lambda_2 \alpha}{4} \frac{k^2}{1 + k^2} E^{\alpha_1, \ldots, \alpha_r} \leq 0.
\]
This inequality implies
\[
|\tilde{g}_k(t)|^2_{H^{\alpha_r}} \leq e^{-\frac{\lambda_2 \alpha}{4} \frac{k^2}{1 + k^2} t} |\tilde{g}_k(0)|^2_{H^{\alpha_r}} \leq e^{-\frac{\delta t}{4}} |\tilde{g}_k(0)|^2_{H^{\alpha_r}},
\]
where $\delta = \frac{\lambda_2 \alpha}{4}$ and
\[
|\tilde{g}_k(t)|^2_{H^{\alpha_r}} := |\partial_z^r \tilde{g}_k|^2 + \sum_{j=0}^{r-1} c_{rj} |\partial_z^j \tilde{g}_k|^2.
\]
Note we defined a weighted Sobolev norm
\[\| f \|_{H^r_z}^2 = \int_{I_x} |f(z)|^2 \pi(z) dz \] (48)
that is equivalent to the standard Sobolev norm \(\| f \|_{H^r} \) in the random space. Then one can have \(\| \hat{g}_k(t) \|_{H^r_z}^2 \leq CE^{-\delta t} \| \hat{g}_k(0) \|_{H^r_z}^2 \), which implies
\[\| g(t) \|_{H^r_z}^2 \leq CE^{-\delta t} \| g(0) \|_{H^r_z}^2, \] (49)
where \(C \) is a constant independent of \(\varepsilon \). And
\[\delta = \frac{\lambda_2 \alpha}{4}, \]
where \(\alpha = \min\{\alpha_0, \ldots, \alpha_r\} \) for \(\alpha_i \leq \min\{\frac{\lambda_0 \lambda_2 \sigma_{\min}}{2 \lambda_1 \sigma_{\max}}, \frac{1}{\varepsilon}, \frac{\lambda_0 \sigma_{\min}}{2 \lambda_1 \sigma_{\max}}\} \). It is easy to generate to higher regularity in \(x \) space, since we can have
\[\| g(t) \|_{H^r_z}^2 = \sum_{0 \leq \alpha \leq k} \sum_{s,k \in \mathbb{Z}} \| \hat{g}_k(t) \|_{H^r_z}^2 |ik|^{2\alpha} \leq CE^{-\delta t} \sum_{0 \leq \alpha \leq k} \sum_{s,k \in \mathbb{Z}} \| \hat{g}_k(0) \|_{H^r_z}^2 |ik|^{2\alpha} = CE^{-\delta t} \| g(0) \|_{H^r_z}^2. \] (50)

Remark 4. Note that although \(\delta \) depends on \(\varepsilon \) (through \(\alpha \)), it depends on \(\varepsilon \) in a good way. For example, without loss of generality one can assume \(\varepsilon \leq 1 \), then (50) yields a uniform exponential decay.

The next result states that one can still obtain exponential decay of the solution to (8) even with the bilinear operator \(B \), if the initial data is small enough.

Theorem 3.10. With the assumption in Theorem 3.9, the solution of the generalized discrete-velocity model of Boltzmann equation (8) satisfies
\[\| g(t) \|_{H^r_z}^2 \leq e^{-\delta t} \| g_0 \|_{H^r_z}^2. \] (51)

Proof. Consider a semi-group generated by
\[G = -\frac{1}{\varepsilon} V \partial_x - \frac{1}{\varepsilon^2} L. \]
Therefore, one gets the formula
\[g(t) = e^{tG} g(0) + \int_0^t e^{(t-\tau)G} B(g,g)(\tau) d\tau, \] (52)
which implies
\[\| g(t) \|_{H^r_z}^2 \leq \| e^{tG} g(0) \|_{H^r_z}^2 + \int_0^t \| e^{(t-\tau)G} B(g,g)(\tau) \|_{H^r_z}^2 d\tau \leq CE^{-\delta t} \| g(0) \|_{H^r_z}^2 + C \int_0^t e^{-\delta \tau} \left(\| g(\tau) \|_{H^r_z}^2 \right)^2 d\tau. \] (53)
Set \(G(t) = \sup_{0 \leq \tau \leq t} e^{\delta \tau} \| g(\tau) \|_{H^r_z} \). By the definition of \(G(t) \), the last term on the right-hand side of (53) is dominated by \(G(t)^2 \int_0^t e^{-\delta \tau} e^{-\delta \tau} d\tau \). Therefore we arrive at the inequality
\[G(t) \leq CE_0 + CG(t)^2, \] (54)
where \(E_0 = \| g(0) \|_{H^r_z} \), from which follows the desired estimate \(G(t) \leq CE_0 \) if \(E_0 \) is small enough. \(\square \)
Remark 5. The results of Theorem 3.10 prove that the random fluctuation g decays exponentially, thus f of the solution to (8) converges to the deterministic global equilibrium M. In other words, the solution is insensitive to the random inputs in initial data and collision kernel $\sigma(z)$ under the assumption (16).

4. The spectral convergence of the gPC-SG method. In this section, we will first give a brief review of the generalized polynomial chaos approach in the stochastic Galerkin (SG) framework, state some properties of the SG solution and then prove the spectral convergence of the SG method and the exponential decay in time toward the global equilibrium of its solution.

4.1. The gPC-SG approximation. Let $\{\phi_k(z)\}_{k=1}^{\infty}$ be the series of orthonormal polynomial basis in the Hilbert space $W_{\mu}^{\infty}(I_z)$ corresponding to a random measure $d\mu$, where

$$\langle \phi_i(z), \phi_j(z) \rangle_{\mu} = \delta_{ij}$$

and

$$W_{\mu}^{\infty}(I_z) = \{ f : I_z \rightarrow \mathbb{R} : f \in \text{span}\{\phi_k(z)\}_{k=1}^{\infty} \}. \quad (55)$$

Here δ_{ij} is the Kronecker delta function. One can expand f as

$$f(t, x, z) = \sum_{k=1}^{\infty} \tilde{f}^k(t, x) \phi_k(z),$$

where

$$\tilde{f}^k(t, x) = \int_{I_z} f(t, x, z) \phi_k(z) d\mu$$

is the coefficient of the gPC expansion. For any fixed integer K, define the projection operator $P^K : W_{\mu}^{\infty}(I_z) \rightarrow W_{\mu}^K$ where W_{μ}^K is the subspace spanned by $\{\phi_k(z)\}_{k=1}^{K}$. Then

$$P^K f = \sum_{k=1}^{K} \tilde{f}^k(t, x) \phi_k(z).$$

We seek the solution in W_{μ}^K, that is in the form of

$$f^K = \sum_{k=1}^{K} f^k(t, x) \phi_k(z). \quad (56)$$

Correspondingly,

$$g^K = \sum_{k=1}^{K} g^k(t, x) \phi_k(z), \quad (57)$$

where $g^K = \frac{1}{\varepsilon^2} \Lambda^{-1/2}(f^K - M)$. Insert this ansatz into equation (8), one obtains the gPC-SG system for g^k:

$$\partial_t g^k(t, x) + \frac{1}{\varepsilon} V g^k_x(t, x) + \frac{1}{\varepsilon^2} \mathcal{L}_k(g^K) = \mathcal{B}_k(g^K, g^K),$$

$$g^k(0, x) = g^0_k(x), \quad (58)$$

for each $1 \leq k \leq K$ and the initial condition is given by

$$g^0_k = \int_{I_z} g_0(x, z) \phi_k(z) \pi(z) dz.$$

The collision operators are given by

$$\mathcal{L}_k(g^K) = \sum_{i=1}^{K} \tilde{S}_{ik} L g^i, \quad \mathcal{B}_k(g^K, g^K) = \sum_{i,j=1}^{K} S_{ijk} B(g^i, g^j), \quad (59)$$
where
\[\tilde{S}_{ik} = \int_{I_z} \sigma(z) \phi_i(z) \phi_k(z) \pi(z) dz, \quad S_{ijk} = \int_{I_z} \sigma(z) \phi_i(z) \phi_j(z) \phi_k(z) \pi(z) dz. \]

4.2. **Estimate for the gPC coefficients.** To get the spectral convergence of the gPC method, we follow the argument in [40]. We shall get an estimate on the solutions first. Assume that
\[\| \phi_k \|_\infty \leq C k^p, \quad \forall k, \quad (60) \]
for some positive constant \(p \). Then it follows that
\[|S_{ijk}| \leq \sigma_{\text{max}} \| \phi_i \|_\infty \| \phi_j \|_\infty |\phi_k| \leq \sigma_{\text{max}} \| \phi_i \|_\infty \leq Ci^p. \quad (61) \]
Here are some examples satisfying (61). For the case \(I_z = [-1, 1] \) with uniform distribution, \(\phi_k \) is the normalized Legendre polynomials, and (61) holds for \(p = \frac{1}{2} \).
For the case \(I_z = [-1, 1] \) with the distribution \(\pi(z) = \frac{2}{\pi \sqrt{1 - z^2}} \), \(\phi_k \) are the normalized Chebyshev polynomials, and (61) holds with \(p = 0 \). Since \(\phi_k \) is a \((k - 1)^{\text{th}} \) degree polynomial, orthogonal to all lower order polynomials and if we are assuming that \(\sigma(z) \) is linearly depending on \(z \), \(S_{ijk} = 0 \) if \((i - 1) + (j - 1) + 1 < k - 1 \). Thus \(S_{ijk} \) may be nonzero only when
\[i + j \geq k \quad (62) \]
holds. Note that there is symmetry for \(i, j, k \) in \(S_{ijk} \), and \(S_{ijk} \) may be nonzero also when
\[j + k \geq i, \quad k + i \geq j \quad (63) \]
hold. One can derive from (61) that
\[|S_{ijk}| \leq C \cdot \min\{i, j, k\}^p. \quad (64) \]
Define the energy by
\[E^K(t) := \sum_{k=1}^{K} \| k^q g^K_k \|^2_{L^2_z}, \quad (65) \]
and we want to estimate this energy. To this aim, after multiplying \(k^q \) to system (58), one arrives
\[\partial_t (k^q g^K_k) + \frac{1}{\varepsilon} V \partial_z (k^q g^K_k) + \frac{1}{\varepsilon^2} \mathcal{L}_k (k^q g^K_k) = k^q B_k(g^K_k, g^K_k). \quad (66) \]

Then we have the following lemma:

Lemma 4.1. Assume condition (60). Let \(q > p + 2 \) and suppose the collision kernel linearly depends on \(z \), i.e. \(\sigma(z) = \sigma_0 + \sigma_1 z \). Then
\[\sum_{k=1}^{K} k^{2q} \| B_k(g^K_k, g^K_k) \|^2_{L^2_z} \leq C(p, q) \sum_{i=1}^{K} \| i^p g^i \|^2_{L^2_z} \sum_{j=1}^{K} \| j^p g^j \|^2_{L^2_z}. \quad (67) \]

Proof. We begin by rewriting the left side of (67) into
\[\sum_{k=1}^{K} k^{2q} \| B_k(g^K_k, g^K_k) \|^2_{L^2_z} = \sum_{k=1}^{K} k^{2q} \| S_{i,j,k} B(i^q g^i, j^q g^j) \|^2_{L^2_z}. \quad (68) \]
Consider the case of \(i \geq j \). Since \(i^q \geq \left(\frac{k}{2} \right)^q \) and (64), then
\[\frac{k^{2q}}{i^{2q} j^{2q}} |S_{i,j,k}|^2 \leq C \frac{k^{2q}}{i^{2q} j^{2q}} j^{2p} \leq C 2^{2q} j^{2(p-q)}, \quad (69) \]
Thus the $i \geq j$ term in RHS of (68) can be estimated by
\[
\sum_{k=1}^{K} \frac{k^{2q}}{2^{2q} j^{2q}} \left\| \sum_{i,j=1\atop i \geq j}^{K} \chi_{ijk} S_{ijk} B(i^q g^i, j^q g^j) \right\|_{H^2_x}^2
\leq C(q) \sum_{i,j,k=1}^{K} j^{2(p-q)} \chi_{ijk} \| i^q g^i \|_{H^2_x}^2 \| j^q g^j \|_{H^2_x}^2
\leq C(q) \sum_{i,j,k=1}^{K} j^{2(p-q)} \chi_{ijk} \| i^q g^i \|_{H^2_x}^2 \| j^q g^j \|_{H^2_x}^2,
\] (70)
where in the second inequality we use (69), and χ_{ijk} is the indicator function for index (i,j,k). If fixing i, one can rewrite the RHS of (70) as
\[
\sum_{k=1}^{K} \| i^q g^i \|_{H^2_x}^2 \cdot I_i, \quad I_i = \sum_{j,k=1}^{K} j^{2(p-q)} \| j^q g^j \|_{H^2_x}^2 \chi_{ijk}.
\] (71)

By (62) and (63), $\chi_{ijk} = 0$ only when $i - j \leq k \leq i + j$. It means that there are at most $2j$ terms in I_i above. With assumption $q > p + 2$, it holds that
\[
I_i \leq 2 \sum_{j=1}^{K} j^{2(p-q)+1-\frac{1}{2}} \| j^q g^j \|_{H^2_x}^2 \leq 2 \sum_{j=1}^{K} j^{p-q+\frac{1}{2}} \| j^q g^j \|_{H^2_x}^2 \leq C \sum_{j=1}^{K} \| j^q g^j \|_{H^2_x}^2.
\]

For the case of $i \leq j$, one can exchange the indexes i and j to have the same estimate. Then we finish the proof.

Remark 6. The assumption on the linearity in z is a common practice in UQ research. It is known that uncertainties are usually modelled by stochastic process, and according to the Karhunen-Loeve theory, any stochastic process can be approximated by a linear combination of uncorrelated random variables (z in this paper). Our analysis could be extended to more general function of z but the algebra will become messy and lose the clarity of the analysis, so we do not carry it out here.

Next we obtain the exponential decay of $E^K(t)$ for $\sigma(z)$ with a smaller random perturbation.

Theorem 4.2. Assume condition (60). Let $q > p + 2$ and suppose the collision kernel linearly depends on z in the following way, $\sigma(z) = \sigma_0 + \varepsilon \sigma_1 z$ with $0 < \sigma_\text{min} \leq \sigma(z) \leq \sigma_\text{max}$. And if $\varepsilon \leq \sqrt{\frac{\lambda^2 \sigma_\text{min}^2}{\sigma_\text{max} C^2 M^2 \lambda^2 + 2^q}}$, then the energy defined by (65) can be estimated as
\[
E^K(t) \leq C e^{-\delta t} E^K(0).
\] (72)

Proof. The proof is similar to Theorem 3.10, the interested reader will find them in Appendix 5.

Once we obtain the estimate of energy, we can get exponential decay of the gPC solutions.

Corollary 1. With the assumption above, there exist constants C and C' which are independent of ε and K so that
\[
\| g^K \|_{L^2_{\infty}}^2 (H^2_x) \leq C_0 e^{-\delta t},
\] (73)
and
\[\|g^K\|_{H^2_z L^2_t}^2 \leq C_0 e^{-\delta t}, \] (74)

Proof.
\[\|g^K\|_{L^2_z(\mathcal{H}_z^2)}^2 = \sup_{z \in \mathcal{I}_z} \| \sum_{k=1}^{K} k^q g_k(z) \|_{H^2_z}^2 \leq C \sum_{k=1}^{K} \|g_k\|_{H^2_z}^2 k^{2p} \]
\[\leq C \left(\sum_{k=1}^{K} \|k^q g_k\|_{H^2_z}^2 \right) \leq C_0 e^{-\delta t}, \] (75)
due to \(q > p + 2 \). In addition,
\[\|g^K\|_{H^2_z L^2_t}^2 = \int_{\mathcal{I}_z} \|g^K\|_{L^2_z}^2 d\mu \leq C \int_{\mathcal{I}_z} \|g^K\|_{L^2_z(\mathcal{H}_z^2)}^2 d\mu \leq C_0 e^{-\delta t}. \] (76)

4.3. **The gPC error estimate.** In order to estimate the gPC error \(g - g^K \), we denote
\[g^e = g - g^K = g - \underbrace{R^K g}_{\mathcal{R}^K} + \underbrace{P^K g - g^K}_{\mathcal{E}^K}, \]
where \(\mathcal{R}^K \) and \(\mathcal{E}^K \) refer to truncation error and projection error, respectively. Then using the strategy of [34], we can have the following theorem.

Theorem 4.3. Assume condition (60). Let \(q > p + 2 \) and suppose the collision kernel linearly depending on \(z \), i.e., \(\sigma(z) = \sigma_0 + \varepsilon^2 \sigma_1 z \) with \(\sigma_0, \sigma_1 \) independent of \(z \) (thus \(0 < \sigma_{\min} \leq \sigma(z) \leq \sigma_{\max} \)). If initially \(\|g_0\|_{H^2_z H^2_t} \leq C_1 \), \(\|g_0\|_{H^2_z L^2_t} \leq C_0 \), and if \(C_0 = C_0 \max\{C_\varepsilon C_0, 1\} \) such that
\[\frac{3C_0}{\delta} < 1, \] (77)
where \(\delta \) is defined in Theorem 4.2 and \(C_\pi \) is a constant independent of \(K \) and \(\varepsilon \), then the gPC error has following estimate
\[\|g^e\|_{H^2_z L^2_t}^2 \leq C(T) \frac{e^{-\delta t}}{K^{2r-1}}, \] (78)
where \(C \) (linearly depending on \(T \)) and \(\delta \) are constants independent of \(K \) and \(\varepsilon \).

Proof. By Theorem 3.10 and standard estimate for truncation error of orthogonal polynomial approximations
\[\|\mathcal{R}^K\|_{H^2_z L^2_t} \leq \|\mathcal{R}^K\|_{H^2_z H^2_t} \leq C_\pi \frac{\|g\|_{H^2_z L^2_t}^2}{K^{2r}} \leq C_\pi C_0 \frac{e^{-\delta t}}{K^{2r}}, \] (79)
where \(C_\pi \) is a constant independent on \(K \). Let the projection error be
\[\mathcal{E}^K(t, x, z) = \sum_{k=1}^{K} (\mathcal{g}^k - g^k) \phi_k = \sum_{k=1}^{K} e^k(t, x) \phi_k(z), \]
where \(\mathcal{g}^k = \int_{\mathcal{I}_z} g \phi_k d\mu \) and we denote \(\mathbf{e} = [e^1, \ldots, e^K] \).

Let
\[\mathcal{T}(f) = \partial_t f + \frac{1}{\varepsilon} V \partial_x f + \frac{1}{\varepsilon^2} \mathcal{L}(f) - \mathcal{B}(f, f). \] (80)
Then (83) becomes an equation for g_k.

$$\langle T(g^K), \phi_k \rangle_\mu = 0. \quad (81)$$

Due to $\langle T(g), \phi_k \rangle_\mu = 0$, one can have

$$\langle T(g) - T(g^K), \phi_k \rangle_\mu = 0. \quad (82)$$

For the first term inside of T, it follows

$$\langle \partial_t g - \partial_t g^K, \phi_k \rangle_\mu = \langle \partial_t R_k, \phi_k \rangle_\mu + \langle \partial_t E_k, \phi_k \rangle_\mu = \langle \partial_t E_k, \phi_k \rangle_\mu,$$

since

$$\langle \partial_t R_k, \phi_k \rangle_\mu = \langle \partial_t g, \phi_k \rangle_\mu - \langle \partial_t g^K, \phi_k \rangle_\mu = 0.$$

Similarly, one can show $\langle \partial_x R_k, \phi_k \rangle_\mu = 0$. Then (82) becomes

$$\langle \partial_t E_k + \frac{1}{\varepsilon} V \partial_x E_k + \frac{1}{\varepsilon^2} \mathcal{L}(E_k), \phi_k \rangle_\mu = 0.$$

Then (83) becomes an equation for $e^{k}(t, x)$.

$$\partial_t e^k + \frac{1}{\varepsilon} V e^k_x + \frac{1}{\varepsilon^2} \mathcal{L}_k(e^k) = (B_k(g - g^K, g) + B_k(g^K, g - g^K)) - \frac{1}{\varepsilon^2} \mathcal{L}_k(R_k)^{\lambda}$$

$$:= B^\lambda_k(t, x) + \frac{1}{\varepsilon^2} \mathcal{L}_k(R_k). \quad (84)$$

Since

$$\mathcal{L}_k(R_k) = \int_{I_z} (\sigma_0 + \varepsilon^2 \sigma_1(z)) L \left(\sum_{i=k+1}^{\infty} \langle g, \phi_i \rangle_\mu \right) \phi_i(z) d\mu$$

$$= \varepsilon^2 \int_{I_z} \sigma_1 z L \left(\sum_{i=k+1}^{\infty} \langle g, \phi_i \rangle_\mu \right) \phi_i(z) d\mu,$$

(84) is indeed

$$e^k_t + \frac{1}{\varepsilon} V e^k_x + \frac{1}{\varepsilon^2} \mathcal{L}_k(e^k) = B^\lambda_k(t, x) + \int_{I_z} \sigma_1 z \mathcal{L}(R_k) \phi_k(z) d\mu \quad (85)$$

Let

$$\mathcal{G}_k = -\frac{1}{\varepsilon} V \partial_x - \frac{1}{\varepsilon^2} \mathcal{L}_k.$$

Then by similar analysis in Theorem 4.2, one has

$$e^k(t, x) = e^{\mathcal{G}_k t} e^k(0, x) + \int_0^t e^{\mathcal{G}_k (t - \tau)} B^\lambda_k(\tau, x) d\tau$$

$$+ \int_0^t e^{\mathcal{G}_k (t - \tau)} \int_{I_z} \sigma_1 z \mathcal{L}(R_k) \phi_k(z) d\mu d\tau. \quad (86)$$
Taking L^2_x norm and summing them from $k = 1$ to $k = K$, it follows
\begin{equation}
\sum_{k=1}^{K} \|e^k\|_{L^2_x}^2 \leq 3e^{-\delta t} \|e^k(0)\|_{L^2_x}^2 + 3 \int_0^t e^{-\delta(t-\tau)} \left(\sum_{k=1}^{K} \|B_k^0(\tau)\|_{L_x}^2 \right) d\tau + 3 \int_0^t e^{-\delta(t-\tau)} \sum_{k=1}^{K} \left\| \sigma_1 zL(R^K)\phi_k(z) d\mu \right\|_{L_x}^2 d\tau.
\end{equation}
(87)

One can follow the proof in [11] to treat the non-linear term in (87) as:
\begin{align}
&\|B_k(g - g^K, g) + B_k(g^K, g - g^K)\|_{L^2_x}^2 \\
&= \int_T \left(\int_{I_x} [B_k(g - g^K, g) + B_k(g^K, g - g^K)] \phi_k(z) d\mu \right) dx \\
&\leq \int_T \left(\int_{I_x} [B_k(g - g^K, g) + B_k(g^K, g - g^K)]^2 d\mu \right) dx \\
&\leq 2 \int_{I_x} (\|B(g - g^K, g)\|_{L_x}^2 + \|B(g^K, g - g^K)\|_{L_x}^2) d\mu \\
&\leq 2 \hat{C} \int_{I_x} (\|\phi\|_{L^2_x}^2 (\|g - g^K\|_{L_x}^2 + \|g^K\|_{L_x}^2)) d\mu \\
&\leq 2 \hat{C} \int_{I_x} (\|\phi\|_{L^2_x}^2 + \|g^K\|_{L_x}^2) \left(\int_{I_x} \|g - g^K\|_{L_x}^2 d\mu \right) \\
&\leq C_0 e^{-\delta t} \int_{I_x} \|g - g^K\|_{L_x}^2 d\mu \\
&\leq C_0 e^{-\delta t} \left(\|R^K\|_{L_x}^2 + \|\varepsilon^K\|_{L_x}^2 \right) d\mu \\
&\leq C_0 e^{-\delta t} \left(\frac{C_\pi C_0 e^{-\delta t}}{K^{2r}} + \|\varepsilon^K\|^2 \right) \\
&\leq \tilde{C}_0 e^{-\delta t} \left(\frac{e^{-\delta t}}{K^{2r}} + \|\varepsilon^K\|^2 \right),
\end{align}
where \tilde{C}_0 is a constant from initial data ($\|g^K(0)\|$ and $\|g(0)\|$) and independent of K and ε. In the above estimate, we use the Cauchy-Schwartz inequality in the first and fourth inequalities, and the fifth one is due to (51) and (74). In the last inequality, we use (79). Similarly,
\begin{equation}
\left\| \int_{I_x} \sigma_1 zL(R^K)\phi_k(z) d\mu \right\|_{L_x}^2 \leq \tilde{C}_0 \sigma_{\max}^2 e^{-\delta t} K^{-2r}.
\end{equation}
(89)

Then (87) becomes
\begin{align}
\sum_{k=1}^{K} \|e^k\|_{L^2_x}^2 &\leq 3e^{-\delta t} \sum_{k=1}^{K} \|e^k(0)\|_{L^2_x}^2 + 3 \int_0^t e^{-\delta(t-\tau)} K \tilde{C}_0 \sigma_{\max}^2 e^{-\delta t} K^{-2r} d\tau \\
&\quad + 3 \int_0^t e^{-\delta(t-\tau)} \tilde{C}_0 e^{-\delta t} K \left(\frac{e^{-\delta t}}{K^{2r}} + \|\varepsilon^K\|^2 \right) d\tau \\
= &3e^{-\delta t} \sum_{k=1}^{K} \|e^k(0)\|_{L^2_x}^2 + 3 \int_0^t e^{-\delta(t-\tau)} K \tilde{C}_0 \sigma_{\max}^2 e^{-\delta t} K^{-2r} d\tau
\end{align}
(90)
\[+ 3 \int_0^t e^{-\delta(t-\tau)} \hat{C}_0 e^{-\delta \tau} K \left(\frac{e^{-\delta \tau}}{K^{2r}} + \sum_{k=1}^K \|e^k\|_{L^2_x}^2 \right) d\tau. \]

Set \(S(t) = \sup_{0 \leq \tau \leq t} K^{2r-1} e^{\delta \tau} \sum_{k=1}^K \|e^k\|_{L^2_x}^2 \). Multiplying \(K^{2r-1} e^{\delta t} \) to both sides of (90), one has

\[S(t) \leq 3 e^{-\delta t} K^{2r-1} S(0) + 3 \hat{C}_0 \delta \sum_{k=1}^K \|e^k\|_{L^2_x}^2 + 3 \hat{C}_0 \delta S(t) + 3 \hat{C}_0 \delta' \sigma^2_{\text{max}} T. \]

(91)

One can usually choose \(E^K(0) = 0 \). Hence, one may obtain from (77) that

\[S(t) \leq C(T), \]

(92)

that is

\[\|E^K\| \leq \frac{C(T) e^{-\frac{\delta}{2} t}}{K^{r-\frac{1}{2}}}, \]

(93)

where \(C(T) \) (linearly depending on \(T \)) and \(\delta \) are constants independent of \(K \) and \(\varepsilon \).

For higher derivatives in \(x \), one can take \(H^s_x \) norm on equation (86) and sum those \(K \) equations. Then by similar analysis, one will have

\[\|E^K\|^2_{L^2_x} \leq \frac{C(T) e^{-\delta t}}{K^{2r-1}}. \]

(94)

Then combining with (79), we finish the proof.

\[\square \]

Acknowledgments. The authors thank the referees for their careful readings and critical remarks which helped to improve significantly the paper.

Appendix

5. **Proof of Theorem 4.2.**

Proof. Let’s consider the linearized equation.

\[\partial_t (k^q g^k) + \frac{1}{\varepsilon} V \partial_x (k^q g^k) + \frac{1}{\varepsilon^2} L_k (k^q g^k) = 0. \]

(95)

Similar to the proof of the Lemma 3.8, one will arrive at

\[\frac{1}{2} \partial_t \left\{ \frac{|j^q \hat{g}^q_j|^2}{\varepsilon^2} - \frac{\varepsilon \alpha^K k}{1+k^2} (iK j^q \hat{g}^q_j, k^q \hat{g}^q_j) \right\} + \frac{\alpha^K \lambda_2}{2} \frac{k^2}{1+k^2} |j^q \hat{g}^q_j|^2 + \frac{1}{\varepsilon^2} k^2 \left(\frac{\lambda_0 \sigma^2_{\text{min}}}{\varepsilon^2} - \lambda_1 \sigma_{\text{max}}^2 \alpha^K k^2 + \frac{1}{\varepsilon^2} \lambda_1 \sigma_{\text{max}}^2 C_M \alpha^K \right) |P^\perp j^q \hat{g}^q_j|^2 \leq \frac{\lambda_1 \sigma_{\text{max}}^2 C_M \alpha^K}{\lambda_2} \sum_{i=1,i \neq j}^K |P^\perp j^q \hat{g}^q_j|^2 \chi_{ij} + \frac{1}{\varepsilon^2} \lambda_2 \sigma_{\text{max}} C_M \sum_{i=1,i \neq j}^K |P^\perp j^q \hat{g}^q_j|^2 \chi_{ij}. \]

(96)

Here we need

\[\alpha^K \leq \frac{\lambda_0 \sigma_{\text{min}}}{2 \sigma_{\text{max}}^2 C_M \lambda_1 \varepsilon^2} \]

and

\[\alpha^K \leq \frac{\lambda_0 \sigma_{\text{min}} \lambda_2}{\sigma_{\text{max}}^2 \lambda_1}, \]

i.e.

\[\alpha^K \leq \frac{\lambda_0 \sigma_{\text{min}}}{2 \sigma_{\text{max}}^2 C_M \lambda_1 \varepsilon^2} \min \left\{ \frac{1}{\varepsilon^2} \lambda_2 \right\}. \]
to get
\[
\frac{1}{2} \partial_t \left(|j^q g_{k,j}^q|^2 - \frac{\varepsilon \alpha K k}{1 + k^2} (iK_j^q \bar{g}_{k,j}^q, k^q \bar{g}_{k,j}^q) \right) + \frac{\alpha K \lambda_2}{2} \frac{k^2}{1 + k^2} |j^q g_{k,j}^q|^2 + \frac{\lambda_0 \sigma_{\min}}{2\varepsilon^2} |P_{\perp} j^q g_{k,j}^q|^2
\leq \frac{\lambda_1 \sigma_{\max}^2 C_M \alpha K}{\lambda_2} \sum_{i=1, i \neq j}^K |P_{\perp} j^q g_{k,j}^q|^2 \chi_{ij} + \frac{1}{\varepsilon^2} \frac{2\sigma_{\max}^2 C_M}{\lambda_2 \alpha K} \sum_{i=1, i \neq j}^K |P_{\perp} j^q g_{k,j}^q|^2 \chi_{ij},
\]

where \(\chi_{ij} \) is the indicator function of the set of indexes \((i, j)\) such that \(\tilde{S}_{ij} \neq 0 \), namely,
\[
\chi_{ij} = \begin{cases}
0, & \tilde{S}_{ij} = 0, \\
1, & \tilde{S}_{ij} \neq 0.
\end{cases}
\]

Since \(\sigma \) is linear in \(z \) and \(\phi_k \) is \((k-1)\)th degree polynomials, \(\tilde{S}_{ij} \) is 0 when \((i-1)+1 < (j-1)\). Thus there are only three choices for \(i \):
\[
i = j + 1, \quad j, \text{ or } i - 1,
\]
and equivalently \(j = i - 1, \ i, \text{ or } i + 1 \), which implies
\[
\frac{j}{2} \leq \frac{i + 1}{2} \leq i.
\]

In this case, we assume \(\sigma(z) = \sigma_0 + \varepsilon^{3/2} \sigma_1 z \) as stated before, one will arrive at
\[
\frac{1}{2} \partial_t \left(|j^q g_{k,j}^q|^2 - \frac{\varepsilon \alpha K k}{1 + k^2} (iK_j^q \bar{g}_{k,j}^q, k^q \bar{g}_{k,j}^q) \right) + \frac{\alpha K \lambda_2}{2} \frac{k^2}{1 + k^2} |j^q g_{k,j}^q|^2 + \frac{\lambda_0 \sigma_{\min}}{2\varepsilon^2} |P_{\perp} j^q g_{k,j}^q|^2
\leq \frac{\lambda_1 \sigma_{\max}^2 C_M \alpha K 2^q}{\lambda_2} \left(|P_{\perp} (j-1)^q g_{k,j}^q - i^q_+ |^2 + |P_{\perp} (j + 1)^q g_{k,j}^q - i^q_+ |^2 \right)
\leq \frac{1}{\varepsilon^2} \frac{\sigma_{\max}^2 C_M 2^{q+1}}{\lambda_2 \alpha K} \left(|P_{\perp} (j-1)^q g_{k,j}^q - i^q_+ |^2 + |P_{\perp} (j + 1)^q g_{k,j}^q - i^q_+ |^2 \right)
\leq \kappa \left(|P_{\perp} (j-1)^q g_{k,j}^q - i^q_+ |^2 + |P_{\perp} (j + 1)^q g_{k,j}^q - i^q_+ |^2 \right),
\]

where
\[
\kappa = \frac{\lambda_1 \sigma_{\max}^2 C_M \alpha K 2^q}{\lambda_2} + \frac{1}{\varepsilon^2} \frac{\sigma_{\max}^2 C_M 2^{q+1}}{\lambda_2 \alpha K}.
\]

If one gathers (100) from \(j = 1 \) to \(j = K \), it follows
\[
\sum_{j=1}^K \left\{ \frac{1}{2} \partial_t \left(|j^q g_{k,j}^q|^2 - \frac{\varepsilon \alpha K k}{1 + k^2} (iK_j^q \bar{g}_{k,j}^q, k^q \bar{g}_{k,j}^q) \right) + \frac{\alpha K \lambda_2}{4} \frac{k^2}{1 + k^2} |j^q g_{k,j}^q|^2 \right\}
\leq \kappa \left(\sum_{j=1}^{K-1} |P_{\perp} j^q g_{k,j}^q|^2 + \sum_{j=2}^K |P_{\perp} j^q g_{k,j}^q|^2 \right)
\leq 2\kappa \left(\sum_{j=1}^K |P_{\perp} j^q g_{k,j}^q|^2 \right).
\]
In this way, if there exists α^K such that
\[
2K = \frac{\lambda_1\sigma^2_{\text{max}}CM\lambda^K_{2g+1}}{\lambda_2} + \frac{1}{\varepsilon^2}\frac{\sigma^2_{\text{max}}CM^{2\nu+2}}{\lambda_2\alpha^K} \leq \frac{\lambda_0\sigma_{\text{min}}}{4\varepsilon^2},
\]
then the RHS can be bounded by the term $\frac{\lambda_0\sigma_{\text{min}}}{4\varepsilon^2}\sum_{j=1}^{K} |P_j| j^\nu g_j^2$. Rewrite (102), it follows
\[
\lambda_1\sigma^2_{\text{max}}CM^{2\nu+1}(\alpha^K)^2 - \frac{\lambda_0\lambda_0\sigma_{\text{min}}}{4\varepsilon^2}\alpha_K + \frac{\sigma^2_{\text{max}}CM^{2\nu+2}}{\varepsilon^2} \leq 0.
\]
Since $\varepsilon \leq \sqrt{\frac{\lambda_0\lambda_0\sigma_{\text{min}}}{4\varepsilon^2}}$, that is $(\frac{\lambda_0\lambda_0\sigma_{\text{min}}}{4\varepsilon^2})^2 - 4\lambda_1\sigma^2_{\text{max}}CM^{2\nu+1}(\alpha^K)^2 > 0$, there is indeed an α_K satisfying (102). This leads to the exponential decay of the solution of the linearized equation (95). Let
\[
\mathcal{G}_k = -\frac{1}{\varepsilon}V\partial_x - \frac{1}{\varepsilon^2}L_k k^q.
\]
Then with Lemma 4.1, one has
\[
k^q g^k(t, x) = e^{\mathcal{G}_k t} k^q g^k(0, x) + \int e^{\mathcal{G}_k(t-\tau)} k^q B_k(g^K, g^K) d\tau.
\]
Taking H^α_x norm and summing them from $k = 1$ to $k = K$, it follows
\[
\sum_{k=1}^{K} \|k^q g^k(t)\|_{H^\alpha_x}^2 \leq \sum_{k=1}^{K} \|e^{\mathcal{G}_k t} k^q g^k(0)\|_{H^\alpha_x}^2 + \int \sum_{k=1}^{K} \|e^{\mathcal{G}_k(t-\tau)} k^q B_k(g^K, g^K)\|_{H^\alpha_x}^2 d\tau
\]
\[
\leq e^{-\delta t} \sum_{k=1}^{K} \|k^q g^k(0)\|_{H^\alpha_x}^2 + \int e^{-\delta(t-\tau)} \left(\sum_{k=1}^{K} \|k^q g^k(t)\|_{H^\alpha_x}^2 \right)^2 d\tau.
\]
Then with similar argument in Theorem 3.10, one obtains uniform exponential decay for $E^K(t) := \sum_{k=1}^{K} \|k^q g^k\|_{H^\alpha_x}^2$.

REFERENCES

[1] A. Barth, C. Schwab and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numerische Mathematik, 119 (2011), 123–161.
[2] A. Bellouquid, A diffusive limit for nonlinear discrete velocity models, Mathematical Models and Methods in Applied Sciences, 13 (2003), 35–58.
[3] J. E. Broadwell, Shock structure in a simple discrete velocity gas, The Physics of Fluids, 7 (1964), 1243–1247.
[4] T. Carleman, Problèmes Mathématiques dans la Théorie Cinétique de Gaz, vol. 2, Almqvist & Wiksell, 1957.
[5] J. Charrier, R. Scheichl and A. L. Teckentrup, Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods, SIAM Journal on Numerical Analysis, 51 (2013), 322–352.
[6] S. Chen and G. D. Doolen, Lattice boltzmann method for fluid flows, Annual Review of Fluid Mechanics, 30 (1998), 329–364.
[7] C. Villani, Hypocoercivity, American Mathematical Soc., 2009.
[8] F. Golse, S. Jin and C. D. Levermore, The convergence of numerical transfer schemes in diffusive regimes I: Discrete-ordinate method, SIAM Journal on Numerical Analysis, 36 (1999), 1333–1369, http://epubs.siam.org/doi/abs/10.1137/S0036142997315986.
[9] S.-Y. Ha and A. E. Tzavaras, Lyapunov functionals and l1-stability for discrete velocity boltzmann equations, Communications in Mathematical Physics, 239 (2003), 65–92.
[10] F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the fokker-planck equation with a high-degree potential, Archive for Rational Mechanics and Analysis, 171 (2004), 151–218.
[11] J. Hu and S. Jin, A Stochastic Galerkin method for the Boltzmann equation with uncertainty, Journal of Computational Physics, 315 (2016), 150–168, http://dx.doi.org/10.1016/j.jcp.2016.03.047.

[12] J. Hu and S. Jin, Uncertainty quantification for kinetic equations, Uncertainty Quantification for Hyperbolic and Kinetic Equations, 14 (2018), 193–229.

[13] R. Illner and M. C. Reed, The decay of solution of the Carleman model, Mathematical Method in the Applied Sciences, 3 (1981), 121–127.

[14] R. Illner and M. C. Reed, Decay to equilibrium for the Carleman model in a box, SIAM Journal on Applied Mathematics, 44 (1984), 1067–1075.

[15] K. Inoue and T. Nishida, On the Broadwell model of the Boltzmann equation for a simple discrete velocity gas, Applied Mathematics and Optimization, 3 (1976), 27–49.

[16] S. Jin, Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations, SIAM Journal on Scientific Computing, 21 (1999), 441–454.

[17] S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Lecture Notes for Summer School on Methods and Models of Kinetic Theory (M&MKT), Porto Ercole (Grosseto, Italy), 3 (2012), 177–216.

[18] S. Jin, J.-G. J. Liu and Z. Ma, Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro macro decomposition-based asymptotic-preserving method, Res Math Sci, 4 (2017), Paper No. 15, 25 pp.

[19] S. Jin and L. Liu, An asymptotic-preserving stochastic galerkin method for the semiconductor boltzmann equation with random inputs and diffusive scalings, SIAM Journal on Multiscale Model & Simulation, 15 (2017), 157–183.

[20] S. Jin, L. Pareschi and G. Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations, SIAM Journal on Numerical Analysis, 35 (1998), 2405–2439.

[21] S. Jin, D. Xiu and X. Zhu, Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings, Journal of Computational Physics, 289 (2015), 35–52.

[22] S. Jin and Y. Zhu, Hypocoercivity and uniform regularity for the vlasov–poisson–fokker–planck system with uncertainty and multiple scales, SIAM Journal on Mathematical Analysis, 50 (2018), 1790–1816.

[23] S. Kawashima, Global existence and stability of solutions for discrete velocity models of the Boltzmann equation, North-Holland Mathematics Studies, 98 (1984), 59–85, https://www.sciencedirect.com/science/article/pii/S0304020808714920.

[24] S. Kawashima, Smooth global solutions for two-dimensional equations of electro-magneto-fluid dynamics, Japan Journal of Applied Mathematics, 1 (1984), 207–222.

[25] S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, PhD thesis, Kyoto University, 1984.

[26] S. Kawashima, Large-time Behavior of Solutions of the Discrete Boltzmann Equation, Physics, 589 (1987), 563–589.

[27] S. Kawashima, The boltzmann equation and thirteen moments, Japan Journal of Applied Mathematics, 7 (1990), 301–320.

[28] S. Kawashima, A. Matsumura and T. Nishida, On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation, Communications in Mathematical Physics, 70 (1979), 97–124.

[29] S. Kawashima, M. Okada and Others, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 58 (1982), 384–387.

[30] A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit, SIAM Journal on Numerical Analysis, 35 (1998), 1073–1094.

[31] M. Lemou and L. Mielssens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM Journal on Scientific Computing, 31 (2008), 334–368.

[32] Q. Li and L. Wang, Uniform regularity for linear kinetic equations with random input based on hypocoercivity, SIAM/ASA Journal on Uncertainty Quantification, 5 (2017), 1–20.

[33] P. L. Lions and G. Toscani, Diffusive limit for finite velocity Boltzmann kinetic models, Revista Matematica Iberoamericana, 13 (1997), 473–513.
[34] L. Liu and S. Jin, Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic galerkin approximation to collisional kinetic equations with multiple scales and random inputs, *Multiscale Modeling & Simulation*, 16 (2018), 1085–1114.

[35] T. Platkowski and R. Illner, Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory, *SIAM Review*, 30 (1988), 213–255.

[36] A. Pulvirenti and G. Toscani, Fast diffusion as a limit of a two-velocity kinetic model, *Circ. Mat. Palermo Suppl.*, 45 (1996), 521–528.

[37] F. Salvarani and G. Toscani, The diffusive limit of Carleman-type models in the range of very fast diffusion equations, *Journal of Evolution Equations*, 9 (2009), 67–80.

[38] F. Salvarani and J. J. L. Vázquez, The diffusive limit for Carleman-type kinetic models, *Nonlinearity*, 18 (2005), 1223–1248.

[39] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, *Hokkaido Mathematical Journal*, 14 (1985), 249–275.

[40] R. Shu and S. Jin, Uniform regularity in the random space and spectral accuracy of the stochastic galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime, *ESAIM: Mathematical Modelling and Numerical Analysis*, 52 (2018), 1651–1678.

[41] R. C. Smith, *Uncertainty Quantification: Theory, Implementation, and Applications*, vol. 12, Computational Science & Engineering, 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014.

[42] T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics, *Japan Journal of Applied Mathematics*, 1 (1984), 435–457.

[43] D. Xiu, *Numerical Methods for Stochastic Computations: A Spectral Method Approach*, Princeton University Press, 2010.

[44] D. Xiu and G. E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations, *SIAM Journal on Scientific Computing*, 24 (2002), 619–644.

Received May 2018; revised February 2019.

E-mail address: shijin-m@sjtu.edu.cn
E-mail address: yli678@wisc.edu