Note on generating all subsets of a finite set with disjoint unions

David Ellis

November 2008

Abstract

We call a family $G \subset \mathcal{P}[n]$ a k-generator of $\mathcal{P}[n]$ if every $x \subset [n]$ can be expressed as a union of at most k disjoint sets in G. Frein, Lévéque and Sebő [1] conjectured that for any $n \geq k$, such a family must be at least as large as the k-generator obtained by taking a partition of $[n]$ into classes of sizes as equal as possible, and taking the union of the power-sets of the classes. We generalize a theorem of Alon and Frankl [2] in order to show that for fixed k, any k-generator of $\mathcal{P}[n]$ must have size at least $k2^{n/k}(1 - o(1))$, thereby verifying the conjecture asymptotically for multiples of k.

1 Introduction

We call a family $G \subset \mathcal{P}[n]$ a k-generator of $\mathcal{P}[n]$ if every $x \subset [n]$ can be expressed as a union of at most k disjoint sets in G. Frein, Lévéque and Sebő [1] conjectured that for any $n \geq k$, such a family must be at least as large as the k-generator

$$F_{n,k} := \bigcup_{i=1}^{k} \mathcal{P}V_i \setminus \{\emptyset\}$$

where (V_i) is a partition of $[n]$ into k classes of sizes as equal as possible. For $k = 2$, removing the disjointness condition yields the stronger conjecture of Erdős – namely, if $G \subset \mathcal{P}[n]$ is a family such that any subset of $[n]$ is a union (not necessarily disjoint) of at most two sets in G, then G is at least as large as

$$F_{n,2} = \mathcal{P}V_1 \cup \mathcal{P}V_2 \setminus \{\emptyset\}$$

where (V_1, V_2) is a partition of $[n]$ into two classes of sizes $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$. We refer the reader to for example Furedi and Katona [5] for some results around the Erdős conjecture. In fact, Frein, Lévéque and Sebő [1] made the analogous conjecture for all k. (We call a family $G \subset \mathcal{P}[n]$ a k-base of $\mathcal{P}[n]$ if every $x \subset [n]$ can be expressed as a union of at most k sets in G; they conjectured that for any $k \leq n$, any k-base of $\mathcal{P}[n]$ is at least as large as $F_{n,k}$.)
In this paper, we show that for \(k \) fixed, a \(k \)-generator must have size at least \(k^{2n/k}(1 - o(1)) \); when \(n \) is a multiple of \(k \), this is asymptotic to \(f(n, k) = |\mathcal{F}_{n, k}| = k(2^{n/k} - 1) \). Our main tool is a generalization of a theorem of Alon and Frankl, proved via an Erdos-Stone type result.

We first remark that for a \(k \)-generator \(G \), we have the following trivial bound on \(|G| = m \). The number of ways of choosing at most \(k \) sets in \(G \) must be at least the number of subsets of \([n]\), i.e.:

\[
\sum_{i=0}^{k} \binom{m}{i} \geq 2^n
\]

For fixed \(k \), the number of subsets of \([n]\) of size at most \(k - 1 \) is \(\sum_{i=0}^{k-1} \binom{m}{i} = \Theta(1/m) \binom{m}{k} \), so

\[
\sum_{i=0}^{k} \binom{m}{i} = (1 + \Theta(1/m)) \binom{m}{k} = (1 + \Theta(1/m))m^k/k!
\]

Hence,

\[
m \geq (k!)^{1/k} 2^{n/k}(1 - o(1))
\]

We will improve the constant from \((k!)^{1/k} \approx k/e \) to \(k \) by showing that for any fixed \(k \in \mathbb{N} \) and \(\delta > 0 \), if \(m \geq 2^{(1/(k+1)+\delta)n} \), then any family \(G \subset \mathbb{P}[n] \) of size \(m \) contains at most

\[
\left(\frac{k!}{k^k} + o(1) \right) \binom{m}{k}
\]

unordered \(k \)-tuples \(\{A_1, \ldots, A_k\} \) of pairwise disjoint sets, where the \(o(1) \) term tends to 0 as \(m \to \infty \) for fixed \(k, \delta \). In other words, if we consider the ‘Kneser graph’ on \(\mathbb{P}[n] \), with edge set consisting of the disjoint pairs of subsets, the density of \(K_k \)'s in any sufficiently large \(G \subset \mathbb{P}[n] \) is at most \(k!/k^k + o(1) \). (This generalizes Theorem 1.3 in [2].) From the trivial bound above, any \(k \)-generator \(G \subset \mathbb{P}[n] \) has size \(m \geq 2^{n/k} \), so putting \(\delta = 1/k(k+1) \), we will see that the number of unordered \(k \)-tuples of pairwise disjoint sets in \(G \) is at most

\[
\left(\frac{k!}{k^k} + o(1) \right) \binom{m}{k}
\]

so

\[
2^n \leq \left(\frac{k!}{k^k} + o(1) + \Theta(1/m) \right) \binom{m}{k} = \left(\frac{m}{k} \right)^k (1 + o(1))
\]

and therefore

\[
m \geq k 2^{n/k}(1 - o(1))
\]

where the \(o(1) \) term tends to 0 as \(n \to \infty \) for fixed \(k \in \mathbb{N} \).
2 A preliminary Erdős-Stone type result

We will need the following generalization of the Erdős-Stone theorem:

Theorem 1 Given \(r \leq s \in \mathbb{N} \) and \(\epsilon > 0 \), if \(n \) is sufficiently large depending on \(r, s \) and \(\epsilon \), then any graph \(G \) on \(n \) vertices with at least

\[
\frac{s(s-1)(s-2) \ldots (s-r+1)}{s^r} n^r \left(\begin{array}{c} n \\vline \kern-2.5pt \cr r \end{array} \right) + \epsilon\left(\begin{array}{c} n \\vline \kern-2.5pt \cr r \end{array}\right)
\]

\(K_r \)'s contains a copy of \(K_{s+1}(t) \), where \(t \geq C_{r,s,\epsilon} \log n \) for some constant \(C_{r,s,\epsilon} \) depending on \(r, s, \epsilon \).

Note that the density \(\eta = \eta_{r,s} := \frac{s(s-1)(s-2) \ldots (s-r+1)}{s^r} \) above is the density of \(K_r \)'s in the \(s \)-partite Turán graph with classes of size \(T \), \(K_s(T) \), when \(T \) is large.

Proof:

Let \(G \) be a graph with \(K_r \) density at least \(\eta + \epsilon \); let \(N \) be the number of \(l \)-subsets \(U \subset G \) such that \(G[U] \) has \(K_r \)-density at least \(\eta + \epsilon / 2 \). Then, double counting the number of times an \(l \)-subset contains a \(K_r \),

\[
N\left(\begin{array}{c} l \\vline \kern-2.5pt \cr r \end{array}\right) + \left(\begin{array}{c} n \\vline \kern-2.5pt \cr r \end{array}\right) (\eta + \epsilon / 2)\left(\begin{array}{c} l \\vline \kern-2.5pt \cr r \end{array}\right) \geq (\eta + \epsilon)\left(\begin{array}{c} n \\vline \kern-2.5pt \cr r \end{array}\right)\left(\begin{array}{c} n-r \\vline \kern-2.5pt \cr l-r \end{array}\right)
\]

so rearranging,

\[
N \geq \frac{\epsilon / 2}{1 - \eta - \epsilon / 2} \left(\begin{array}{c} n \\vline \kern-2.5pt \cr l \end{array}\right) \geq \frac{\epsilon}{2}\left(\begin{array}{c} n \\vline \kern-2.5pt \cr l \end{array}\right)
\]

Hence, there are at least \(\frac{\epsilon}{2}\left(\begin{array}{c} n \\vline \kern-2.5pt \cr l \end{array}\right) \) \(l \)-sets \(U \) such that \(G[U] \) has \(K_r \)-density at least \(\eta + \epsilon / 2 \). But Erdős proved that the number of \(K_r \)'s in a \(K_{s+1} \)-free graph on \(l \) vertices is maximized by the \(s \)-partite Turán graph on \(l \) vertices (Theorem 3 in [3]), so provided \(l \) is chosen sufficiently large, each such \(G[U] \) contains a \(K_{s+1} \).

Each \(K_{s+1} \) in \(G \) is contained in \(\left(\begin{array}{c} n-s-1 \\vline \kern-2.5pt \cr l-s-1 \end{array}\right) \) \(l \)-sets, and therefore \(G \) contains at least

\[
\frac{\epsilon}{2}\left(\begin{array}{c} n \\vline \kern-2.5pt \cr l \end{array}\right) \geq \frac{\epsilon}{2}(n/l)^{s+1}
\]

\(K_{s+1} \)'s, i.e. a positive density of \(K_{s+1} \)'s. Let \(a = s + 1 \), \(c = \frac{\epsilon}{2\log t} \) and apply the following 'blow up' theorem of Nikiforov (a slight weakening of Theorem 1 in [4]):

Theorem 2 Let \(a \geq 2 \), \(c^a \log n \geq 1 \). Then any graph on \(n \) vertices with at least \(cn^a \) \(K_a \)'s contains a \(K_a(t) \) with \(t = \lceil c^a \log n \rceil \).

We see that provided \(n \) is sufficiently large depending on \(r, s \) and \(\epsilon \), \(G \) must contain a \(K_{s+1}(t) \) for \(t = \lceil c^{s+1} \log n \rceil = \lfloor (\frac{\epsilon}{2\log t})^{s+1} \log n \rfloor \geq C_{r,s,\epsilon} \log n \), proving Theorem 1. \(\square \)
3 Density of K_k’s in large subsets of the Kneser graph

We are now ready for our main result, a generalization of Theorem 1.3 in [2]:

Theorem 3 For any fixed $k \in \mathbb{N}$ and $\delta > 0$, if $m \geq 2^{\left(\frac{1}{k+1}+\delta\right)n}$, then any family $\mathcal{G} \subset \mathcal{P}[n]$ of size $|\mathcal{G}| = m$ contains at most

$$\left(\frac{k!}{k^k} + o(1)\right) \binom{m}{k}$$

unordered k-tuples $\{A_1, \ldots, A_k\}$ of pairwise disjoint sets, where the $o(1)$ term tends to 0 as $m \to \infty$ for fixed k, δ.

Proof:

By increasing δ if necessary, we may assume $m = 2^{\left(\frac{1}{k+1}+\delta\right)n}$. Consider the subgraph G of the ‘Kneser graph’ on $\mathcal{P}[n]$ induced on the set \mathcal{G}, i.e. the graph G with vertex set \mathcal{G} and edge set $\{xy : x \cap y = \emptyset\}$. Let $\epsilon > 0$; we will show that if n is sufficiently large depending on k, δ and ϵ, the density of K_k’s in G is less than $\frac{k!}{k^k} + \epsilon$. Suppose the density of K_k’s in G is at least $\frac{k!}{k^k} + \epsilon$; we will obtain a contradiction for n sufficiently large. Let $l = m^f$ (we will choose $f < \frac{\delta}{2(k+1)\delta}$ maximal such that m^f is an integer). By the argument above, there are at least $\frac{\epsilon}{2} \binom{m}{l}$ l-sets U such that $G[U]$ has K_k-density at least $\frac{k!}{k^k} + \frac{\epsilon}{2}$. Provided m is sufficiently large depending on k, δ and ϵ, by Theorem 1, each such $G[U]$ contains a copy of $K := K_{k+1}(t)$ where $t \geq C_{k,k,\epsilon/2} \log l = f C'_{k,\epsilon} \log m = C'_{k,\delta,\epsilon} \log m$. Any copy of K is contained in $\binom{m - (k+1)t}{l-1-(k+1)t}$ l-sets, so G must contain at least

$$\frac{\epsilon}{2^{\left(m^f - (k+1)^f\right)}} \geq 2^{\left(m/l\right)^{(k+1)f}}$$

copies of K.

But we also have the following lemma of Alon and Frankl (Lemma 4.3 in [2]), whose proof we include for completeness:

Lemma 4 G contains at most $(k+1)2^n(1-\delta t)\binom{m}{t}^{k+1} \frac{1}{(k+1)!}$ copies of $K_{k+1}(t)$.

Proof:

The probability that a t-subset $\{A_1, \ldots, A_t\}$ chosen uniformly at random from \mathcal{G} has union of size at most $\frac{n}{k+1}$ is at most

$$\sum_{S \subseteq [n] : |S| \leq n/(k+1)} \binom{2|S|}{t}/\binom{m}{t} \leq 2^n (2^{n/(k+1)}/m)^t = 2^n(1-\delta t)$$

Choose at random $k+1$ such t-sets; the probability that at least one has union of size at most $n/(k+1)$ is at most

$$(k+1)2^n(1-\delta t)$$
But this condition holds if our \(k + 1 \) \(t \)-sets are the vertex classes of a \(K_{k+1}(t) \) in \(G \). Hence, the number of copies of \(K_{k+1}(t) \) in \(G \) is at most
\[
(k + 1)2^{n(1-\delta t)} \binom{m}{t}^{k+1} \frac{1}{(k+1)!}
\]
as required. \(\square \)

If \(m \) is sufficiently large depending on \(k, \delta \) and \(\epsilon \), we may certainly choose \(t \geq \lceil \frac{4}{\delta} \rceil \), and comparing our two bounds gives
\[
\epsilon \leq 2^{n(1-\delta t)} \binom{m}{k}^{(k+1)t}
\]
Substituting in \(l = m^t \), we get
\[
\epsilon \leq 2^{n(1-\delta t)} m^{f(k+1)t}
\]
Substituting in \(m = 2\left(\frac{k+1+\delta}{k}\right)^n \), we get
\[
\epsilon \leq 2^{n(1-t(\delta-f(1+(k+1)\delta)))} \leq 2^{-n}
\]
since we chose \(f < \frac{\delta}{2(1+(k+1)\delta)} \) and \(t \geq 4/\delta \). This is a contradiction if \(n \) is sufficiently large, proving Theorem 3. \(\square \)

As explained above, our result on \(k \)-generators quickly follows:

Theorem 5 For fixed \(k \in \mathbb{N} \), any \(k \)-generator \(\mathcal{G} \) of \(\mathbb{P}[n] \) must contain at least \(k2^{n/k}(1-o(1)) \) sets.

Proof: Let \(\mathcal{G} \) be a \(k \)-generator of \(\mathbb{P}[n] \), with \(|\mathcal{G}| = m \). As observed in the introduction, the trivial bound gives \(m \geq 2^{n/k} \), so applying Theorem 4 with \(\delta = 1/k(k+1) \), we see that the number of ways of choosing \(k \) pairwise disjoint sets in \(\mathcal{G} \) is at most
\[
\binom{k!}{k^k + o(1)} \binom{m}{k}
\]
The number of ways of choosing less than \(k \) pairwise disjoint sets is, very crudely, at most \(\sum_{i=0}^{k-1} \binom{m}{i} = \Theta(1/m) \binom{m}{k} \); since every subset of \([n] \) is a disjoint union of at most \(k \) sets in \(\mathcal{G} \), we obtain
\[
2^n \leq \left(\frac{k!}{k^k + o(1) + \Theta(1/m)} \right) \binom{m}{k} = \left(\frac{m}{k} \right)^k (1 + o(1))
\]
(where the \(o(1) \) term tends to 0 as \(m \to \infty \)), and therefore
\[
m \geq k2^{n/k}(1-o(1))
\]
(where the \(o(1) \) term tends to 0 as \(n \to \infty \)). \(\square \)

Note: The author wishes to thank Peter Keevash for bringing to his attention the result of Erdős in [3], after reading a previous draft of this paper in which a weaker, asymptotic version of Erdős’ result was proved.
References

[1] Frein, Y., Lévêque, B., Sebő, A., Generating All Sets With Bounded Unions, *Combinatorics, Probability and Computing* 17 (2008) pp. 641-660

[2] Alon, N., Frankl, P., The Maximum Number of Disjoint Pairs in a Family of Subsets, *Graphs and Combinatorics* 1 (1985), pp. 13-21

[3] Erdős, P., On the number of complete subgraphs contained in certain graphs, *Publ. Math. Inst. Hung. Acad. Sci., Ser. A* 7 (1962), pp. 459-464

[4] Nikiforov, V., Graphs with many r-cliques have large complete r-partite subgraphs, *Bulletin of the London Mathematical Society* Volume 40, Issue 1 (2008) pp. 23-25

[5] Furedi, Z., Katona, G.O.H., 2-bases of quadruples, *Combinatorics, Probability and Computing* 15 (2006) pp. 131-141