Excessive fluid intake as a novel cause of proteinuria

William F. Clark MD, Claude Kortas MD ME, Rita S. Suri MD MSc, Louise M. Moist MD MSc, Marina Salvadori MD, Matt A. Weir MD, Amit X. Garg MD PhD, for the WEL Investigators

We are currently conducting a longitudinal population cohort study in the community of Walkerton, Ontario, to determine health outcomes after the municipal water supply was contaminated with Escherichia coli O157:H7 and Campylobacter in 2000. We identified 100 adults who had proteinuria and polyuria but no medical history or medication use to explain their condition. Fifty-six of the 100 participants underwent both initial and confirmatory urine concentration tests, which showed that their urine osmolality could reach normal levels. We then instructed them to reduce their fluid intake to less than 2 L/d for 1 week. The proteinuria and polyuria were largely reversed by this manoeuvre. We do not know at this time whether the proteinuria associated with excessive fluid intake in these otherwise healthy people will affect their kidney function in the long term.

CMAJ 2008;178(2):173-5

Research letter

As part of a community screening study to assess the long-term health outcomes among residents of Walkerton, Ontario, after contamination of its municipal water supply by Escherichia coli O157:H7 and Campylobacter in 2000, we identified 100 adults who had proteinuria and polyuria but no medical history or medication use to explain their condition. Fifty-six of the 100 participants underwent both initial and confirmatory urine concentration tests, which showed that their urine osmolality could reach normal levels. We then instructed them to reduce their fluid intake to less than 2 L/d for 1 week. The proteinuria and polyuria were largely reversed by this manoeuvre. We do not know at this time whether the proteinuria associated with excessive fluid intake in these otherwise healthy people will affect their kidney function in the long term.

CMAJ 2008;178(2):173-5

Abstract

As part of a community screening study to assess the long-term health outcomes among residents of Walkerton, Ontario, after contamination of its municipal water supply by Escherichia coli O157:H7 and Campylobacter in 2000, we identified 100 adults who had proteinuria and polyuria but no medical history or medication use to explain their condition. Fifty-six of the 100 participants underwent both initial and confirmatory urine concentration tests, which showed that their urine osmolality could reach normal levels. We then instructed them to reduce their fluid intake to less than 2 L/d for 1 week. The proteinuria and polyuria were largely reversed by this manoeuvre. We do not know at this time whether the proteinuria associated with excessive fluid intake in these otherwise healthy people will affect their kidney function in the long term.

CMAJ 2008;178(2):173-5

We are currently conducting a longitudinal population cohort study in the community of Walkerton, Ontario, to determine health outcomes after the municipal water supply was contaminated with Escherichia coli O157:H7 and Campylobacter in 2000. We identified 100 adults who had proteinuria and polyuria but no medical history or medication use to explain their condition. Fifty-six of the 100 participants underwent both initial and confirmatory urine concentration tests, which showed that their urine osmolality could reach normal levels. We then instructed them to reduce their fluid intake to less than 2 L/d for 1 week. The proteinuria and polyuria were largely reversed by this manoeuvre. We do not know at this time whether the proteinuria associated with excessive fluid intake in these otherwise healthy people will affect their kidney function in the long term.

CMAJ 2008;178(2):173-5

We attempted to discern the cause of the unexplained proteinuria and polyuria. Of the 100 people, 63 agreed to confirmatory 24-hour urine collection to measure protein excretion, followed by a urine osmolality measurement after overnight water deprivation. The 24-hour confirmatory urine samples had a mean protein content of 0.43 g (standard deviation [SD] 0.21 g, 95% confidence interval [CI] 0.36–0.49 g), and the mean volume of urine was 3.7 L (SD 1.2 L, 95% CI 3.3–4.1 L). This group was similar to the overall cohort of 2253 adults in terms of age (mean 47 [range 15–72] and 47 [range 15–92] years, respectively), sex (68% and 61% women), history of hypertension (28.0% and 35.2%) and gastroenteritis (61.0% and 60.4%).

We attempted to discern the cause of the unexplained proteinuria and polyuria. Of the 100 people, 63 agreed to confirmatory 24-hour urine collection to measure protein excretion, followed by a urine osmolality measurement after overnight water deprivation. The 24-hour confirmatory urine samples had a mean protein content of 0.43 g (standard deviation [SD] 0.21 g, 95% confidence interval [CI] 0.36–0.49 g), and the mean volume of urine was 3.7 L (SD 1.2 L, 95% CI 3.3–4.1 L). This group was similar to the overall cohort of 2253 adults in terms of age (mean 47 [range 15–72] and 47 [range 15–92] years, respectively), sex (68% and 61% women), history of hypertension (28.0% and 35.2%) and gastroenteritis (61.0% and 60.4%).

From the Department of Medicine (Nephrology), London Health Sciences Centre (Clark, Kortas, Suri, Moist, Weir, Garg), and the Division of Infectious Diseases, Children’s Hospital of Western Ontario (Salvadori), University of Western Ontario, London, Ont.
Research

not differ significantly between the 56 people who participated in the complete testing (39 who required only 1 test plus 17 who completed 2 tests) and the 44 people who did not participate in the complete testing.

The 56 participants were then asked to voluntarily reduce their total daily fluid intake to fewer than 8 large glasses (< 2.0 L/d) for 1 week, on the last day of which they provided another 24-hour urine sample. The mean urine volume following the voluntary water-reduction intervention decreased to 1.81 L in 24 hours (95% CI 1.54–2.07 L), and the amount of protein excreted decreased to a mean of 0.16 g in 24 hours (95% CI 0.12–0.20 g) (Table 2). The mean urine creatinine level did not change significantly from the baseline level before or after the intervention (Table 2). The relation between urine volume and protein excretion was similar for the 56 participants regardless of whether they had had symptoms of gastroenteritis at the time of the water contamination in 2000.

When asked about their fluid consumption, the 56 participants indicated that they were drinking large volumes of fluid because they perceived it to be a healthy lifestyle choice. The water contamination and resultant temporary switch to bottled water may have led some to assume a habit of overconsumption. However, most said that their overconsumption preceded the water contamination. Although our participants did not fit the classic description of the compulsive water drinker, their attenuated concentration response did.

Our unexpected finding of a 4.4% rate of proteinuria associated with polyuria in seemingly healthy people stemmed from observations that had been made during a community-based screening program. The reversible nature of the proteinuria and polyuria after reduction of the total fluid intake to less than 2 L/d makes any explanation other than voluntary excessive fluid intake unlikely. In a study of the effect of water loading on urinary albumin excretion in 18 healthy volunteers, Viberti and colleagues* noted that water loading was associated with a short-lived but significant increase in urine albumin levels. We did not characterize the proteinuria, nor do we know at this time whether the reversible proteinuria associated with large fluid intake in these otherwise healthy people could affect their kidney function in the long term.7–11 If the proteinuria was largely tubular in origin, owing to tubular washout, rather than glomerular in origin, one might pre-

Test	No. of participants	Osmolality, mOsm/kg
Overnight water deprivation (n = 63)		
Concentrated urine	39	451–1069
Unconcentrated urine	24	59–450

*Seventeen of the 24 participants who initially had unconcentrated urine (osmolality ≤ 450 mOsm/kg) agreed to undergo a repeat overnight water-deprivation test 1 week after the first, followed by an 8-hour observed water-deprivation test. The observed water-deprivation test ended as soon as patients demonstrated concentrated urine; the number of participants achieving this at each point is shown.

Test	Time of measurement; mean value (95% confidence interval)		
Measurement	At baseline	Before intervention	After intervention
Urine volume, L	3.69 (3.44–3.95)	3.35 (2.89–3.82)	1.81 (1.54–2.07)
Protein level, g	0.41 (0.36–0.45)	0.38 (0.31–0.46)	0.16 (0.12–0.20)
Creatinine level, mmol	10.61 (10.08–11.14)	12.04 (11.14–12.94)	12.50 (10.56–14.44)
Protein:creatinine ratio	0.04 (0.04–0.04)	0.03 (0.03–0.04)	0.02 (0.01–0.02)
sume that progressive kidney injury would be less likely.⁹ Until such data are available from our longitudinal study, it may be advisable to discourage otherwise healthy people from consuming large volumes of fluid.

This article has been peer reviewed.

Competing interests: None declared.

Contributors: All of the authors contributed to the intellectual content of this report and take responsibility for the content. All approved the final version.

REFERENCES

1. The investigative report of the Walkerton outbreak of waterborne gastroenteritis, May–June, 2000. Owen Sound (ON): Bruce–Grey–Owen Sound Health Unit; 2000. Available: http://enve.coe.drexel.edu/outbreaks/WalkertonReportOct2000/REPORT_Octo.pdf (accessed 2007 Nov 7).
2. Garg AX, Macnab J, Clark W, et al. Long-term health sequelae following E. coli and Campylobacter contamination of municipal water — population sampling and assessing non-participation biases. Can J Public Health 2005;96:125-30.
3. Orsonneau JL, Douset P, Massoucre C, et al. An improved pyrogallol red-molybdate method for determining total urinary protein. Clin Chem 1989;35:2335-6.
4. Couchoud C, Pozet N, Labeew M, et al. Screening early renal failure: cut-off values for serum creatinine as an indicator of renal impairment. Kidney Int 1999;55:1076-84.
5. Clark WF, Macnab J, Chen SI, et al. Evaluation of GFR estimating equations in the general community: implications for screening. Clin J Am Soc Nephrol 2006;1:797-9.
6. Garofeanu CG, Weir M, Rosas-Arellano MP, et al. Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis 2005;45:626-37.
7. Barlow ED, De Wardener HE. Compulsive water drinking. Q J Med 1959;28:235-58.
8. Viberti GC, Mogensen CE, Keen H, et al. Urinary excretion of albumin in normal man: the effect of water loading. Scand J Clin Lab Invest 1982;42:147-57.
9. Praga M, Morales E. Renal damage associated with proteinuria. Kidney Int Suppl 2002 Dec;(82):42-6.
10. Ruggenenti P, Gaspari F, Perma A, et al. Cross sectional longitudinal study of spot morning urine protein:creatinine ratio, 24 hour urine protein excretion rate, glomerular filtration rate, and end stage renal failure in chronic renal disease in patients without diabetes. BMJ 1998;316:504-9.
11. Hebert LA, Greene T, Levey A, et al. High urine volume and low urine osmolality are risk factors for faster progression of renal disease. Am J Kidney Dis 2003;41:62-71.

Correspondence to: Dr. William F. Clark, Department of Medicine (Nephrology), London Health Sciences Centre, Rm. A2-343, 800 Commissioners Rd. E, London ON N6A 4G5; fax 519 685-8047; william.clark@lhsc.on.ca

WEL (Walkerton E. coli Long-term) Investigators: William F. Clark, Rita S. Suri, Louise M. Moist, Amit X. Garg and John Howard, Department of Medicine (Nephrology), London Health Sciences Centre, London, Ont.; Marina Salvadori, Division of Infectious Diseases, Children’s Hospital of Western Ontario, London, Ont.; and Douglas Matsell, Department of Pediatrics, University of British Columbia, Vancouver, BC