Unity in diversity—food plants and fungi of Sakartvelo (Republic of Georgia), Caucasus

Rainer W. Bussmann1*, Narel Y. Paniagua Zambrana1,2, Inayat Ur Rahman3, Zaal Kikvidze1, Shalva Sikharulidze1, David Kikodze1, David Tchelidze1, Manana Khutsishvili1 and Ketevan Batsatsashvili1

Abstract

Background: The Republic of Georgia is part of the Caucasus biodiversity hotspot, and human agricultural plant use dates back at least 6000 years. Over the last years, lots of ethnobotanical research on the area has been published. In this paper, we analyze the use of food plants in the 80% of Georgia not occupied by Russian forces. We hypothesized that (1) given the long tradition of plant use, and the isolation under Soviet rule, plant use both based on home gardens and wild harvesting would be more pronounced in Georgia than in the wider region, (2) food plant use knowledge would be widely and equally spread in most of Georgia, (3) there would still be incidence of knowledge loss despite wide plant use, especially in climatically favored agricultural regions in Western and Eastern Georgia.

Methods: From 2013 to 2019, we interviewed over 380 participants in all regions of Georgia not occupied by Russian forces and recorded over 19,800 mentions of food plants. All interviews were carried out in the participants’ homes and gardens by native speakers of Georgian and its dialects (Imeretian, Rachian, Lechkhumian, Tush, Khevsurian, Psavian, Kakhetian), other Kartvelian languages (Megrelian, Svan) and minority languages (Ossetian, Ude, Azeri, Armenian, Greek).

Results: The regional division was based primarily on historic provinces of Georgia, which often coincides with the current administrative borders. The total number of taxa, mostly identified to species, including their varieties, was 527. Taxonomically, the difference between two food plant groups—garden versus wild—was strongly pronounced even at family level. The richness of plant families was 65 versus 97 families in garden versus wild plants, respectively, and the difference was highly significant. Other diversity indices also unequivocally pointed to considerably more diverse family composition of wild collected versus garden plants as the differences between all the tested diversity indices appeared to be highly significant.

The wide use of leaves for herb pies and lactofermented is of particular interest. Some of the ingredients are toxic in larger quantities, and the participants pointed out that careful preparation was needed. The authors explicitly decided to not give any recipes, given that many of the species are widespread, and compound composition—and with it possible toxic effects—might vary across the distribution range, so that a preparation method that sufficiently reduces toxicity in the Caucasus might not necessary be applicable in other areas.

Conclusions: Relationships among the regions in the case of wild food plants show a different and clearer pattern. Adjacent regions cluster together (Kvemo Zemo Racha, and Zemo Imereti; Samegrelo, Guria, Adjara, Lechkhumi and Kvemo and Zemo Svaneti; Meskheti, Javakheti, Kvemo Kartli; Mtiáneti, Kakheti, Khevsureti, Tusheti. Like in the case of

*Correspondence: rainer.bussmann@iliauni.edu.ge
1 Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Illia State University, Botanikuri St. 1, 0105 Tbilisi, Georgia
Full list of author information is available at the end of the article

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background
Georgia is situated between latitudes 41° and 44° N, and longitudes 40° and 47° E, with an area of 69,700 km², with 20% of the country currently occupied by Russian forces (Fig. 1). Georgia politically associates with European Union and takes part in all major programs of European development and cooperation. Georgia can be defined as a transcontinental country on the divide between Asia and Europe, with its larger part located south to this divide (i.e., in Asia) and smaller but strategically important parts (Khevi, Piriketi Khewsureti, etc.) located north of the continent divide (i.e., in Europe) [1].

The uplift of the Georgian Caucasus started in the late Oligocene and shares the same structural characteristics as the younger mountains of Europe. The Greater Caucasus mostly includes Cretaceous and Jurassic rocks, interspersed with Paleozoic and Precambrian formations in higher regions. Hard, crystalline, metamorphosed rocks like schist and gneisses, as well as pre-Jurassic granites are found in the western part, while softer, Early and Middle Jurassic clayey schist and sandstones in the eastern part. The foot of the Greater Caucasus are built of younger limestone, sandstones, and marls. The Lesser Caucasus in contrast is predominantly formed of Paleogene rocks interspersed with Jurassic and Cretaceous formations. The youngest geological structures of Georgia are represented by the vast volcanic plateaus in the southern part of country. These divisions lead to an extremely complex terrain with pronounced climatic gradients: (1) the mountains of the greater Caucasus with peaks over 5000 m (Shkara, Babis Mta, Chanchakhi, etc.); (2) the inter-mountain plains between the Greater and Lesser Caucasus mountains; (3) the mountains of the Lesser Caucasus with peaks rarely exceeding 3000 m (Mepistskaro, Kheva, Shavi Klde, Kanis Mta, Arsiani); (4)

the garden food plants, species diversity of wild food plants mentioned varied strongly. Climate severity and traditions of the use of wild food plants might play role in this variation. Overall food plant knowledge is widely spread all-across Georgia, and broadly maintained.

Keywords: Republic of Georgia, Caucasus, Traditional Knowledge, Knowledge loss, Food plants, Conservation
the Volcanic plateau of the Southern Georgia with elevations from 1300 to 2200 m [2–4].

Georgia’s climate is influenced by its location in the warm temperate zone stretching from the Black to the Caspian Seas, and the complexity of its terrain. Georgia has a coastline of 330 km with warm climate, the mean temperature reaching 4–7 °C in January and 22–23 °C in July, and high precipitation (1500–2000 mm annually). The warm oceanic-subtropical climate can be found only at lower elevations (less than 650 m); in more elevated terrains and to the north and east the climate becomes moderately warm. The Greater Caucasus bars cold air from the north, while warm and moist air from the Black Sea spreads easily into the coastal lowlands until reaching the Likhi range, which partly impedes further westward movement of the warm and moist air. In central Georgia, precipitation in mountains can be twice that in the plains. In the mountains, weather conditions change to cool and wet quite steeply with increasing elevation and above 2100 m the environment becomes sub-alpine and alpine, with permanent snow and ice above 3600 m [2–4].

Plant use history
The Caucasus is regarded as global biodiversity hotspot [5–8]. Botanical has a long history, and the vegetation composition as well as flora are well-known [2, 3].

The territory of modern-day Georgia (Fig. 1) has been inhabited since the early Stone Age, and agriculture was already well-developed during the early Neolithic [9], although human occupation started already in the Early Pleistocene, with the 1.7-Myr-old hominid fossils of Dmanisi in Southern Georgia being the earliest known hominin-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].

The territory of modern-day Georgia (Fig. 1) has been inhabited since the early Stone Age, and agriculture was already well-developed during the early Neolithic [9], although human occupation started already in the Early Pleistocene, with the 1.7-Myr-old hominid fossils of Dmanisi in Southern Georgia being the earliest known hominin-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].

The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].

The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].

The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].

The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].

The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].

The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].

The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12]. The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].

The history of plant and animal use has been documented since the hominid-site outside of Africa [10–12].
Family / Scientific name	Local Name (Georgian, if not indicated otherwise in parentheses: Arm. = Armenian; Imr. = Imrebian; Khv. = Khevsurian; Psha. = Pshavi; Rach. = Rachaian; Russ. = Russian; Svan. = Svanetian; Tush. = Tushetian)	Use description (for a short explanation of traditional foods see below)	Location
Actinidiaceae			
Actinidia callosa Lindl.	ჯოქ (kvi), აქტინიდია (aktinidia)	Fruit - Eaten raw, used to distill Alcohol, and make Jam Leaves - Phkhali	Garden
Adoxaceae			
Sambucus ebulus L.	ახალე (antsili), ახალე (antsili), გინვი (genghli Svan.), ქარდუ (gencia Svan.)	Fruit - Eaten raw, used to distill Alcohol, and make Jam Leaves - Phkhali	Wild collected, Garden
Sambucus nigra L.	ფოვაჯია (ofialga), თხოფაჯია (tkhopisa), თხოფაჯია (thophial Svan.)	Fruit - Eaten raw, used to distill Alcohol, and to make Jam Leaves - Phkhali	Wild collected
Viburnum lantana L.	უზანი (uzani), თურსა (tursa Tush.), თანდაფახი (tanzof Svan.), ალუდა (alauda Khv.), ურდჰანა (urdzani Khv.), ფრიშზა (frishia Khv.)	Fruit - Eaten raw	Wild collected, Garden
Viburnum opulus L.	დჰუხაქჰელი (dhakhvili), თანდაფახი (tanzof Svan.), სამხაღვი (santhzep Svan.), ბაფხოფი (ts'aants'ofi Svan.), ალუდა (alauda Khv.)	Fruit - Eaten raw, used to distill Alcohol, and for tea	Wild collected
Amaranthaceae			
Amaranthus cruentus L.	ლეგიუჯი-ვალვილი (legiuj'evavalvi), ლეგეთი (legeti)	Leaves - Phkhali	Garden
Amaranthus palmeri S. Watson	ლეგეთი (legeti)	Leaves - Phkhali	Garden, Wild collected, Garden
Amaranthus paniculatus L.	ლეგეთი (legeti), თალიელი (talieli legeti), თალიელი (talieli legeti)	Leaves, Stem - Phkhali	Wild collected
Amaranthus retroflexius L.	ლეგეთი (legeti), ჩხიჰარილა (chxharil), ჩხარიჰარილა (chxharil), პეელიდი (peelidi)	Leaves, Stem - Phkhali, Khachapuri	Wild collected, Garden
Amaranthus spinosus L.	ლეგიუჯი-ვალვილი (legiuj'evavalvi)	Stem - Eaten raw, Phkhali	Garden
Atriplex hortensis L.	ლეგეთი (legeti), თალიელი (talieli legeti), თალიელი (talieli legeti)	Root - Eaten raw	Garden
Beta vulgaris L.	ლეგეთი (legeti), ჩხარhz (chxharil), ჩხარhz (chxharil), პეელი (peelidl)	Leaves - Pickled (lactofermented), Phkhali	Garden
Beta vulgaris L. ssp. cica (L.)	მამიდი (miadi), გოლოგურია (goluguri)	Leaves - Phkhali	Garden
Beta vulgaris L. ssp. esculenta (Salisb.)	ჩხარhz (chxharil), ხუჰი (khui)	Root - Eaten raw and cooked Leaves - Pickled (lactofermented), Phkhali	Garden
Bittium virgatum L.	მამიდი (miadi), გოლოგურია (goluguri)	Leaves, Stem, Seeds - Phkhali	Wild collected
Chenopodium album L.	ნატსარანში (natsaranshi), წართუხილი (zhatuqili)	Leaves, Stem - Phkhali, Khachapuri, Mikhlovana	Garden, Wild collected
Chenopodium bonus-henricus L.	მამიდი (miadi), გოლოგურია (goluguri)	Leaves - Pickled (lactofermented), Phkhali	Garden
Chenopodium sp.	მამიდი (miadi), გოლოგურია (goluguri)	Leaves - Pickled (lactofermented), Phkhali	Garden
Spinacia oleracea L.	პარაჯა (paraja), ნატსარათაში (natsaratsshi)	Leaves - Pickled (lactofermented), Phkhali	Garden
Amaryllidaceae			
Allium ampeloprasum L.	ჭილია (prasi), ჭილია (prasi)	Leaves, Stem, Whole plant - Phkhali	Garden
Allium ascalonicum L.	ჭილია (prasi), ჭილია (prasi)	Leaves, Stem, Whole plant - Phkhali	Garden
Allium atrovilacaeum Boiss	ჭილია (prasi), ჭილია (prasi)	Leaves, Stem, Whole plant - Phkhali	Garden
Allium cepa L.	ჭილია (prasi), ჭილია (prasi)	Leaves - Eaten raw and cooked, Spice Leaves - Phkhali	Garden
Allium fistulosum L.	ჭილია (prasi), ჭილია (prasi)	Bulb, Whole plant, Stem, Leave - Eaten raw and cooked, Spice, Phkhali	Garden
Allium kundianum Vved.	ჭილია (prasi), ჭილია (prasi)	Leaves - Phkhali	Wild collected
Allium pomlicum Miec.	ჭილია (prasi), ჭილია (prasi)	Bulb - Pickled (lactofermented)	Garden
Allium porrum L.	ჭილია (prasi), ჭილია (prasi)	Bulb - Pickled (lactofermented)	Garden
Table 1 (continued)

Plant Species	Common Names (in parentheses)	Plant Parts Used	Processing	Market Place	Source
Allium rotundum L.	Chinese chives (g'anis nior), wild garlic (chil'akvi), mountain garlic (sorkhi), garlic (g'og's sorkhi)	Stem, Bulb - Eaten raw, Phkhali, Pickled (lactofermented)	Garden		
Allium sativum L.	Wild garlic (nior), Chinese chives (rurula nior)	Bulb, Flowers, Leaves, Whole plant	Eaten raw, Cooked, Phkhali	Garden	
Allium sp.		Stem - Eaten raw	Wild collected		
Allium ursinum L.	Wild garlic (ghanziili), wild garlic (mits ghanzili), onion (olenia), onion (sobo), mountain garlic (nihanhandzi Svan.)	Leaves, Whole plant - Phkhali, Pickled (lactofermented)	Wild collected, Garden		
Allium victorialis L.	Wild garlic (ghanziili), wild garlic (mits ghanzili), onion (olenia), onion (sobo), mountain garlic (mits ghanzili), firtsilla	Leaves, Stem, Bulb, Whole plant - Phkhali, Pickled (lactofermented)	Wild collected, Garden		
Gaianthus woronowii Losinsk.	Stunning color (voronovis tetra'vavila), green (endzelia)	Bulb - Eaten raw (NOTE - in other regions regarded as toxic)	Wild collected		
Narcissus sp.	Lilies (nargizil), needle (niora mtenere)	Flower - Eaten raw (NOTE - in other regions regarded as toxic)	Wild collected		
Annonaceae					
Annona cherimola Mill.	Anon (anona)	Fruit - Eaten raw	Garden		
Aplaceae					
Aethusa cynapium L.	Aethusa (marazmazara)	Leaves - Phkhali	Wild collected		
Agastis filliolata (Bieb.) Boiss.	Aethusa (duts), Aethusa (lagi Khev.), Dast (gheh Svan.), Dast (gel Svi.)	Stem, Leaves, Root - Phkhali, Pickled (lactofermented), Chave, Khachapuri	Wild collected		
Anethum graveolens L.	Anethum (k'ma), Anethum (tsretso didi k'ma), Anethum (tsretso)	Leaves, Seeds, Stem, Whole plant - Spice, ingredient of Svan salt, Eaten raw	Garden		
Angelica tatarica Boltz.	Angelica (angeloca)	Stem - Pickled (lactofermented)	Wild collected		
Anthriscus cerefolium (L.) Hoffm.	Anthriscus (ch'tima-pkhali)	Leaves - Stem - Phkhali	Garden		
Anthriscus nemorosus (M. Bieb.) Spreng.	Anthriscus sylvestris L.	Leaves (limi), Anthriscus (ch'qm), Anthriscus (matsara), Anthriscus (g'mis deda), (Mandag Arm.)	Leaves, Seeds, Stem - Pickled (lactofermented), Eaten raw	Wild collected, Garden	
Apium graveolens L.	Apium (niakhrure), Apium (vidi niakhrure), Apium (sona)	Stem, Root, Leaves - Eaten raw, Pickled (lactofermented), Spice, Phkhali	Garden		
Carum carvi L.	Carum (zira), Carum (k'lvi), Carum (k'lvi)	Seeds - Spice, ingredient of Svan salt, Eaten raw, Khinkali, Chave, Pickled (lactofermented)	Garden, Wild collected		
Chaerophyllum aureum L.	Chaerophyllum (dzrents'k'la), Chaerophyllum (g'mi'ora), Chaerophyllum (khuz), Chaerophyllum (g'mi'ora), Chaerophyllum (ghvag Svan.), Chaerophyllum (ch'imi Tush.)	Stem, Root - Pickled (lactofermented)	Wild collected		
Chaerophyllum bulbosum L.	Chaerophyllum (g'mi), Chaerophyllum (a'oi), Chaerophyllum (khi'khola), Chaerophyllum (ch'imi Tush.)	Stem, Leaves, Seeds, Pickled (lactofermented), Khachapuri	Wild collected		
Chaerophyllum caucasicum (Fisch.) B. Schischk	Chaerophyllum (k'iq), Chaerophyllum (k'iq), Chaerophyllum (k'iq), Chaerophyllum (k'iq), Chaerophyllum (khvshuris d'qil), Chaerophyllum (ok'k'na), Chaerophyllum (k'ma)	Leaves, Stem, Root - Phkhali, Pickled (lactofermented), Khachapuri, Pickled (lactofermented)	Wild collected		
Conium maculatum L.	Conium (matut), Conium (k'onio), Conium (mata)	Leaves, Stem - Phkhali, Pickled (lactofermented) (NOTE - in other regions regarded as highly toxic)	Wild collected		
Coriandrum sativum L.	Coriander (kindzi)	Seeds, Leaves, Stem - ingredient of Svan salt, Phkhali, Spice	Garden		
Daucus carota L. ssp. sativus	Daucus (st'apa), Daucus (teriisvai'a), Daucus (ka'la), Daucus (marovkii), (Markova Arm.)	Root, Leaves, Whole plant - Phkhali, Eaten raw	Garden		
Falcaria vulgaris Benth.	Falcaria (zepirokhi'hla), Falcaria (bat'pe'ka)	Leaves, Stem, Pickled (lactofermented)	Wild collected		
Foeniculum vulgare Mill.	Foeniculum (tsretso), Foeniculum (didi k'ma), Foeniculum (ok'k'na), Foeniculum (k'ma)	Stem, Leaves, Seeds, Leaves - Eaten raw, Phkhali, ingredient of Svan salt, Spice	Garden		
Heracleum asperum M. Bieb.	Heracleum (shu'p'a)	Stem, Leaves - Pickled (lactofermented)	Wild collected		
Heracleum esculentum Grossh.	Heracleum (shu'p'a)	Stem, Leaves - Pickled (lactofermented), Sats'ebai, Phkhali	Wild collected		
Heracleum sect. villosum	Heracleum (digi), Heracleum (khevshuris d'qil), Heracleum (dio'na), Heracleum (ch'ed'ka)	Stem, Leaves, Seeds, Stem - Pickled (lactofermented), Phkhali, Sats'ebai, Chave	Wild collected, Garden		
Heracleum sosnowskyi Manden	Heracleum (shu'p'a)	Stem, Leaves - Pickled (lactofermented), Sats'ebai, Phkhali	Wild collected		
Scientific Name	Common Name	Preparation Method	Collection Method		
---	----------------------	---	-----------------------		
Heracleum sp.	Stem (leškhi)	Stem - Pickled (lactofermented)	Wild collected		
Heracleum sp.	Leaves (Pkhali)	Wild collected			
Heracleum sp.	Leaves - Pkhali	Wild collected			
Heracleum sp.	Leaves - Pkhali	Wild collected			
Heracleum sp.	Leaves - Pkhali	Wild collected			
Heracleum wilhelmsii Fisch. & Avé-Lal	Stem - Pickled (lactofermented)	Wild collected			
Hippomarathrum crispum (Pers.) Boiss.	Leaves, Stem - Pkhali	Pickled (lactofermented)	Wild collected		
Levisticum officinale W.D.J. Koch	Leaves, Stem - Pkhali	Chave, Sats'ebai, Pickled (lactofermented)	Wild collected, Garden		
Ligusticum alatum Spreng. (Mill.) Fuss	Leaves - Pkhali	Wild collected	Garden		
Xanthogalum purpurascens Avé-Lal. A.	Stem - Eaten raw	Wild collected			
Arum italicum subsp. abisoothum (Stevens ex Ledeb.) Prime	Leaves - Pkhali	Wild collected			
Arum orientale M. Bieb.	Leaves - Pkhali	Wild collected			
Arum sp.	Leaves - Pkhali	Wild collected			
Arum sp.	Leaves - Pkhali	Wild collected			
Arum sp.	Leaves - Pkhali	Wild collected			
Arum sp.	Leaves - Pkhali	Wild collected			
Asarum asaroides L.	Asarum (aralia)	Flower (hallun), Honey source (Bees)	Garden		
Asparagus officinalis L.	Asparagus officinalis	Human Food, Human Food	Garden, Wild collected		
Asparagus sp.	Human Food	Wild collected			
Asparagus sp.	Human food	Wild collected			
Muscari comosum Schol.	Human Food	Wild collected			
Ophiorhizus convolutus Kashch	Human Food	Wild collected			
Polygonatum glabrumum C. Koch	Human Food	Wild collected			
Ruscus colchicus Yeo	Stem - Eaten raw	Wild collected			
Ruscus hypophyllum L.	Stem - Eaten raw	Wild collected			
Scilla sp.	Stem - Eaten raw	Wild collected			
Asaraceae					
Achillea grandiflora M. Bieb.	Leaves - Pkhali	Wild collected			
Achillea millefolium L.	Whole plant, Leaves - Tea, Khachapuri	Wild collected			
Arctium lappa L.	Leaves - Pkhali	Wild collected			
Artemisia absinthium L.	Leaves, Stem - Pkhali	Eaten raw, Pickled (lactofermented)	Wild collected		
Artemisia dracunculus L.	Leaves - Pkhali	Wild collected			
Artemisia vulgaris L.	Leaves, Root, Stem - Pkhali, Spicy, Eaten raw, Beverage	Wild collected			
Bidentis tripartita L.	Leaved - Pkhali, Sats'ebai	Wild collected			
Cichorium intybus L.	Seeds - Eatn raw	Wild collected			
Cirsiun arvense (L.) Scop.	Roots, Coffee replacement	Wild collected			
Cirsiun sp.	Leaves - Pkhali	Wild collected	Garden, Wild collected		
Cirsiun vulgar (Savi) Ten.	Leaves - Sats'ebai	Wild collected			
Crepis sp.	Flower (hallun), Honey source (Bees)	Wild collected			
Cynara cardunculus L.	Leaves - Pkhali	Wild collected			
Echinops sp.	Flower - Eaten raw	Wild collected	Garden		
Eruca vesicaria (L.) Cav.	Seeds - Eatn raw	Wild collected			
Helianthus annuus L.	Leaves - Pkhali	Wild collected	Garden		
Helianthus tuberosus L.	Leaves, Roots - Pkhali, Eaten raw	Wild collected			
Lactuca salvia L.	Roots - Cooked	Wild collected			
Lactuca salvia L.	Leaves - Pkhali	Wild collected			
Lactuca semper L.	Leaves - Pkhali	Wild collected	Garden		
Lapsana communis L.	Leaves - Pkhali	Wild collected			
Lapsana grandiflora M. Bieb	Leaves - Pkhali	Wild collected			
Matricaria chamomilla L.	Leaves - Pkhali	Wild collected			

(Continued)
Table 1 (continued)

Species	Common Name	Part Used	Collection Method	
Petasites albus (L.) Gaertn.	Buena (buera), ēlōna (dılma), dūndul (buur'gū)	Leaves - Phkhali	Wild collected	
Petasites hybridus (L.) G. Gaertn., B. Mey. & Scherb.	Buena (buera), dūndul gurassh, gurgh (gurghīl gurash), dūndul (dılmia), buerog (buruhīl Svan.), buerog (baranmī Ajar.), ēlōna (ēlona) (Gurī)	Leaves - Phkhali, Chave, Pickled (lactofermented)		
Serratula quinquefolia Bieb. ex Willd.	Levhul (šahīl), ēlōna (dılmia), ēlahul (ēlona), ēlahul (ēlona), ēlahul (ēlona), ēlahul (ēlona)	Leaves - Phkhali, Chave, Pickled (lactofermented)		
Solidago canadensis L.	ḍēvīlī (dēvīlī) (quavis'se'rla)	Flower - Eatn raw	Wild collected	
Sonchus asper (L.) Hill.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī)	Leaves - Phkhali	Wild collected, Garden	
Stevia sp.	ḍēvīlī (dēvīlī)	Leaves - Sweetener	Garden	
Tagetes patula L.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī)	Flowers, Leaves - Spice, ingredient of Svan salt	Garden, Wild collected	
Taraxacum confusum Schischk.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), (Burushshīla Tush.), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī)	Leaves - Phkhali, Chave, Root - Phkhali	Wild collected	
Taraxacum officinale Wigg.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī)	Leaves - Phkhali, Chave, Tea, Sweetener, Eaten raw		
Tragopogon sp.	ḍēvīlī (dēvīlī) (pampa'pa), (Śindz Arm.)	Root, Stem, Leaves, Latex - Eaten raw, Pickled (lactofermented), Phkhali	Wild collected, Garden	
Tussilago farfara L.	ḍēvīlī (dēvīlī) (virīltar'pa)	Leaves - Tea	Wild collected	
Xanthium strumarium L.	ḍēvīlī (dēvīlī) (gūrīs birk'a), ḍēvīlī (dēvīlī)	Leaves - Phkhali	Garden, Wild collected	
Begoniaceae	Begonia rex Putz.	Seeds	Garden	
Berberidaceae	Berberis vulgaris L.	Fruit, Leaves, Root - Phkhali, Tkemali, Phkhali	Wild collected	
		Leaves - Compote		
Betulaceae	Alnus glutinosa C.A. Mey.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī)	Leaves - Tea	Wild collected
Betula albofusca Dolch.	ḍēvīlī (dēvīlī)	Juice - Drunk raw	Wild collected	
Betula sp.	ḍēvīlī (dēvīlī)	Juice - Drunk raw	Wild collected	
Corylus avellana L.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), (shakhī Svan.), (khaka Svan.), (mema Svan.)	Fruit - Eaten raw	Garden, Wild collected	
Corylus colurna L.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī)	Fruit - Eaten raw	Garden, Wild collected	
Corylus pontica K. Koch.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), (shakhī Svan.), (khaka Svan.), (mema Svan.)	Fruit - Eaten raw	Garden, Wild collected	
Fagus orientalis Lipsky	ḍēvīlī (dēvīlī)	Leaves - Phkhali	Wild collected	
Boraginaceae	Myosotis sp.	Leaves - Phkhali, Khachapuri	Wild collected	
Symphytum grandiflorum DC.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), (shakhī Svan.), (khaka Svan.), (mema Svan.)	Leaves - Phkhali, Khachapuri	Wild collected, Garden	
Brassicaceae	Armoracia rusticana G. Gaertn., B. Mey. & Scherb.	ḍēvīlī (dēvīlī) (pīrshshukhīl), ḍēvīlī (khe'ten)	Root, Leaves - Phkhali, Eaten raw	Garden
Brassica juncea (L.) Czern.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), (shakhī Svan.), (khaka Svan.), (mema Svan.)	Leaves - Phkhali	Garden	
Brassica montana Pourr.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), (shakhī Svan.), (khaka Svan.), (mema Svan.)	Leaves - Phkhali	Garden	
Brassica oleracea L.	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), (shakhī Svan.), (khaka Svan.), (mema Svan.)	Leaves - Phkhali, Eaten raw, Pickled (lactofermented)	Garden, Wild collected	
Brassica oleracea L. var. botrytis	ḍēvīlī (dēvīlī), (shakhī Svan.), (shakhī Svan.), (shakhī Svan.)	Leaves - Phkhali, Pickled (lactofermented)	Garden	
Brassica oleracea L. var. gemmifera	ḍēvīlī (dēvīlī), (shakhī Svan.), (shakhī Svan.), (shakhī Svan.), (shakhī Svan.), (shakhī Svan.)	Leaves - Phkhali	Garden	
Brassica oleracea L. var. gongylodes	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), (shakhī Svan.), (khaka Svan.), (mema Svan.)	Leaves - Phkhali	Garden	
Brassica oleracea L. var. Italica	ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), ḍēvīlī (dēvīlī), (shakhī Svan.), (khaka Svan.), (mema Svan.)	Leaves - Phkhali	Garden	
Brassica rapa subsp. campestris (L.) C. Meissn.	ḍēvīlī (dēvīlī)	Leaves - Phkhali	Wild collected	
Brassica rapa subsp. oleifera (DC) Meissn.	ḍēvīlī (dēvīlī)	Leaves - Phkhali, Sats'ēs Island, Pickled (lactofermented), Eaten raw	Wild collected	
Table 1 (continued)

Species	Parts Used	Collection Method				
Brassica rapa L. subsp. *rapifera* Metzger	Root, Leaves - Pickled	Garden				
Bunias orientalis L.	Seeds - Eaten raw	Garden				
Capsella bursa-pastoris L.	Leaves, Flowers - Eaten raw	Wild collected				
Cardamine hirsuta L.	Leaves, Stem - Pickhilai	Wild collected				
Erysimum cheiri L.	Leaves - Pickhilai	Garden				
Lepidium sativum L.	Leaves, Stem - Pickhilai	Wild collected				
Raphanus raphanistrum subsp. *sativus* L.	Root, Leaves - Pickhilai	Garden				
Sinapis arvensis L.	Stem, Leaves, Root - Pickhilai	Wild collected, Garden				
Campanulaeae						
Campanula allianifolia Wild.	Leaves - Pickhilai	Wild collected				
Campanula biebersteiniana Roem. & Schult.	Flower - Eaten raw	Wild collected				
Campanula glomerata L.	Leaves, Stem - Pickhilai	Wild collected				
Campanula raphanistrum L.	Leaves, Root - Sats'ebai	Wild collected				
Gadellia lactiflora (M. Bieb.) Shulikina	Leaves, Stem - Pickhilai	Wild collected				
Humulus lupulus L.	Seeds - ingredient of Svan salt, Eaten raw, Oil	Garden, Wild collected, Garden				
Lonicera caucasia Pall.	Flower, Leaves - ingredient for Beer, Pickhilai,					
Caryophyllaceae						
Melandrium divaricatum Boiss.	Leaves - Pickhilai	Wild collected				
Melandrium sp.	Leaves, Stem - Pickhilai	Wild collected				
Obemna acora Sims	Leaves, Stem - Pickhilai	Wild collected				
Obemna wallichiana Ikonn.*	Leaves, Stem - Pickhilovana	Wild collected, Garden				
Silene sibirica (L.) Pers.*	Leaves, Stem - Pickhilai	Wild collected				
Stellaria media (L.) VIII.	Leaves - Khachapuri	Wild collected				
Convulvulus arvensis L.						
Cornaceae						
Cornus mas L.	Fruit - Eaten raw, Jam, Juice, Compote	Garden, Wild collected				
Swida australis (C.A. Mey.) Pojark ex Grosh.						
Crassulaceae						
Sedum caucasicum Boriss.	Leaves - Pickhilai	Wild collected				
Sempervivum caucasicum Rupr. ex Boiss.	Leaves - Pickhilai	Wild collected				
Cucurbitaceae						
Bryonia dioica Jacq.	Leaves - Pickhilai	Wild collected				
Citrus lanatus (Thunb.)	Fruit - Pickled (lactofermented), Eaten raw	Garden, Garden				
Fuss. & Naikai	Fruit - Eaten raw	Garden				
Cucurbita maxima L.	Fruit, Flowers - Salad, eatten raw, Pickled (lactofermented), Dye for pickles	Garden				
Family	Genus	Species	Common Names	Habitat	Collection Method	Notes
-----------------------	------------------------------	--------------------------------	--------------	--------------------------	---------------------------	------------------------------
Cucurbitaceae	Cucurbita pepo L.					
					Fruit, Seeds, Leaves - Pickled	
					(lactofermented), Phkhali, Eaten raw	
					Gardan	
Cucurbitaceae	Cucurbita pepo L. var. giromonta				Fruit, Flowers - Eaten raw, cooked	
					Gardan	
Cucurbitaceae	Cucurbita pepo L. var. pattison				Fruit - Eaten raw, cooked	
					Gardan	
Cucurbitaceae	Lagenaria siceraria (Molina Standl.)				Fruit - Eaten raw, cooked	
					Gardan	
Cucurbitaceae	Cupressaceae	Juniperus sabina L.			Stem, Root - Eaten raw as famine food	Wild collected
					NOTE - in other regions regarded as toxic	
Dipsacaceae	Cephaleria gigantea (Ledeb.)	Bobrov			Stem - Eaten raw	Wild collected
Dryopteridaceae	Dryopteris flex-mas (L.) Schott.				Leaves - Phkahli, Pickled (lactofermented)	Wild collected
					(NOTE - in other regions regarded as toxic)	
Ebenaceae	Diospyros lotus L.				Fruit - Eaten raw and dried	Gardan, Wild collected
Ebenaceae	Diospyros sp.				Gardan	
Ebenaceae	Diospyros virginiana L.				Fruit - Eaten raw and dried	Gardan, Wild collected
Ebenaceae	Elaeagnus sp.				Gardan	
Ebenaceae	Hippophae thomsonioides L.				Fruit - Eaten raw and dried	Wild collected
Ebenaceae	Shepherdia argentea Nutt.				Fruit - Eaten raw and dried	Wild collected
Ebenaceae	Shepherdia sp.				Leaves - Phkahli	Gardan, Wild collected
Ericaceae	Empetrum hermaphroditum				Fruit - Eaten raw	Wild collected
Oxyccoccus quadripetalus Gilib.					Wild collected	
Vaccinium arctostaphylos L.					Wild collected	
Vaccinium myrtillus L.					Wild collected	
Vaccinium vitis-idaea L.					Wild collected	
Euphorbiaceae	Aleurites moluccanus L.	Wild			Seeds - Oil	Gardan
Fabaceae	Astragalus caudatus Pall.				Seeds - Eatened cooked	Wild collected
Fabaceae	Cicer arietinum L.				Leaves - Tea	Wild collected
Fabaceae	Coronilla varia L.				Leaves - Khachapuri	Wild collected
Fabaceae	Galega orientalis Lam.				Leaves, Stem - Pickled	Wild collected
Fabaceae	Glycine max (L.) Merr.				Seeds, Phkahli	Wild collected
Fabaceae	Glycyrhiza glabra L.				Seeds - eaten cooked	Wild collected
Fabaceae	Lathyrus roseus Steven				Root - Sweetener	Wild collected
Fabaceae	Lathyrus tuberosus L.				Leaves, Stem - Phkahli	Wild collected
Fabaceae	Lathyrus sphaericus L.				Tuber - Eaten cooked	Wild collected
Fabaceae	Lathyrus villosus L.				Wild collected	
Table 1 (continued)

L. corsicana L.	Seeds - Eaten cooked	Garden
Phaseolus sativus L.	Fruit, Seeds - eaten cooked	Garden
Pisum sativum L.	Seeds - Eaten cooked	Garden
Robinia pseudoacacia L.	Flower - Honey source (Bees), Eaten raw Flowers, Young Stem - Pickled (lactofermented)	Wild collected, Garden
Thymus colchicus Bieb.	Leaves - Tea	Wild collected
Trigonella caerulea (L.) Ser.	Leaves, Flowers - Phikhal	Wild collected
Vicia faba L.	Seeds - Eaten cooked	Garden
Vicia sativa L.	Leaves - Satsabal	Garden
Vigna angularis (Willd.) Ohwi & H. Ohashi	Seeds - Eaten cooked	Garden

Fabaceae

Castanea sativa Mill.	Seeds, Leaves - Phikhal, Eaten cooked	Wild collected, Garden
Fagus orientalis Lipsky	Seeds, Leaves - Phikhal, Eaten cooked	Wild collected
Quercus iberica M. Bieber	Seeds - Eaten cooked	Wild collected

Gentianaceae

| Gentiana lutea Fisch & C.A. Mey. | Leaves - Chave | Wild collected |

Geraniaceae

Erodium cicutarium (L.) L'Hérit. ex Aiton	Leaves, Stem - Phikhal	Wild collected
Geranium robertianum L.	Leaves - Phikhal	Wild collected
Geranium sp.	Leaves, Stem - Phikhal	Wild collected

Grossulariaceae

Grossularia reclinata (L.) Mill.	Fruit - Eaten raw, Compote	Garden, Wild collected
Ribes biebersteinii Berl. ex DC	Fruit - Eaten raw, Jam	Wild collected
Ribes grossularia L.	Fruit - Eaten raw, Compote	Garden, Wild collected
Ribes nigrum L.	Fruit - Eaten raw, Jam	Wild collected
Ribes orientale Desf.	Fruit - Eaten raw, Jam, Compote, Jam	Garden, Wild collected
Ribes rubrum L.	Fruit - Eaten raw, Jam	Garden, Wild collected
Ribes sp.	Fruit - Eaten raw, Jam	Garden, Wild collected
Ribes uralensis L.	Fruit - Eaten raw, Jam	Garden, Wild collected

Guttiferae

| Hypericum perforatum L. | Flowers, Leaves - Tea, ingredient for beer | Wild collected, Garden |

Indet.

Acaena (acara)	Fruit - Eaten raw	Garden
Brasidiz (brassidiz)	Fruit - Eaten raw	Garden
Draba (ts'hahul)	Fruit - Eaten raw	Garden
Draba (ts'hahul) (dedehala Svan.)	Fruit - Eaten raw	Wild collected
Draba (ts'hahul) (dedehala Khevi)	Leaves - Phikhal	Wild collected
Draba (nesnval Svan.)	Leaves - Phikhal	Wild collected
Draba (ts'hahul Svan.)	Leaves - Phikhal	Wild collected
Draba (ts'hahul Khevi)	Leaves - Phikhal	Wild collected
Draba (hainer Svan.)	Leaves - Phikhal	Wild collected
(Achali Arm.)	Fruit - Eaten raw	Wild collected
(Tatjarana Arm.)	Stem - Pickled (lactofermented)	Wild collected
(Teteri Arm.)	Fruit - Eaten raw	Wild collected
(Urenee Arm.)	Fruit - Eaten raw	Wild collected
(Vertishk Arm.)	Leaves - Phikhal	Wild collected
(ch'harehi)	Leaves - Phikhal	Wild collected
(bril)	Fruit - Eaten raw	Wild collected
(barishindi)	Leaves - Phikhal	Wild collected
(k'ak'la)	Leaves, Stem - Phikhal	Wild collected
Family	Genus	Species	Common Name	Part(s) Used	Preparation	Source
Iridaceae	Crocos sativus L.			Flowers - Eaten raw	Garden	
Juglandaceae	Juglan mandshurica Maxim.			Fruits - Tea	Garden	
Juglan regia L.				Seeds - Eaten raw, Phkhali	Garden, Wild collected	
					Churkholha, Svan	
Pterocarya pterocarpa (Michx.)				Fruit - Tea, Spice, Jam	Garden	
Kunth ex Iljinik.	Lamiaceae			Seeds - Eaten raw	Garden	
Lamium album L.				Whole plant, Leaves - Phkhali	Wild collected	
Leontis leonurus (L.) R. Br.				Leaves - Ster, Phkhali	Wild collected	
Mentha aquatica L.				Leaves - Ster, Phkhali, Chuvelevi	Wild collected, Garden	
Mentha longifolia (L.) L.				Tea, Spice, Tkhmali	Garden	
Mentha pulegium L.				Leaves - Ster, Phkhali, Sulpugani	Garden	
Mentha sp.				Tea, Spice	Garden	
Mentha x piperita L.				Leaves - Ster, Phkhali, Sulpugani	Garden	
Nepeta mussini Spreng.				Human Food - Tea	Garden	
Ocimum basilicum L.				Leaves - Ster, Phkhali, Svan salt, Eaten raw	Wild collected	
Ocimum basilicum var.				Leaves - Ster, Phkhali, Svan salt, Eaten raw	Wild collected	
Purpurasum Benth.					Garden	
Origanum vulgare L.				Leaves - Ster, Tea, ingredient of Svan salt, Spice sold	Wild collected, Garden	
Salvia verticillata				Leaves - Ster, Phkhali, Tea, ingredient of Svan salt, Spice, Eaten raw	Wild collected, Garden	
Satureja hortensis L.					Garden	
Satureja laxiflora K. Koch				Leaves - Ster, Phkhali, Eaten raw	Wild collected	
Satureja spicigera (C. Koch) Boiss.					Garden	
Thymus caucasicus Wild. ex Benth.					Garden	
Thymus collinus Bieb.					Garden	
Thymus sp.					Garden	
Thymus transcaucasicus Ronniger					Garden	
Thymus puschkinii Adams.					Garden	
Thymus serpylicasea M. Bieb.					Garden	
Lauraceae	Laurus nobilis L.			Flowers - Eaten raw	Garden	
Persea americana Mill.				Fruit - Eaten raw	Garden	
Liliaceae	Fritillaria lutea Mill.			Flowers - Eaten raw	Garden	
Geaea sp.	Lilium szovitsianum Fisch. & Ave-Lal.			Leaves - Phkhali	Wild collected	
Linaceae	Linum usitatissimum L.			Seeds - Eaten raw, Cooked, Oil	Garden	
Family	Species/Species Complex	Local Names	Uses/Products	Collection Method		
---------------------	-------------------------	-------------	--	---------------------------		
Lythraceae	Punica granatum L.	Fruit - Eaten raw, Tkhemali	Garden, Wild collected			
Malvaceae	Alcea rosea L.	Leaves - Phikhalli	Wild collected			
	Althaea spp.	Leaves, Stem - Phihkali	Wild collected			
	Malva neglecta Presl.	Leaves, Stem - Phikhalli, Khachapuri	Wild collected, Garden			
	Tilia begonifolia Stev.	Flowers - Tea	Wild collected			
	Tilia cordata (Clos.)	Flowers - Tea, Honey source (Bees)	Wild collected			
		Leaves - Phihkali	Wild collected			
Melanthiaceae	Veratrum lobelianum Borr.	Leaves - Phikhalli	Wild collected			
Moraceae	Ficus carica L.	Fruit - Jam, Eaten raw, to distill Alcohol	Garden, Wild collected			
	Morus alba L.	Fruit - Jam, Eaten raw, to distill Alcohol	Garden, Wild collected			
	Morus nigra L.	Fruit - Jam, Eaten raw, to distill Alcohol	Garden, Wild collected			
Musaceae	Musa x paradisiaca L.	Fruit - Eaten raw	Garden			
	Acca sellowiana (O. Berg.)	Fruit - Eaten raw	Garden			
	Bureen	Fruit - Eaten raw	Garden			
Oleaceae	Fraxinus excelsior L.	Leaves - Phikhalli	Wild collected			
	Ligustrum vulgare L.	Fruit - Eaten raw	Wild collected			
Onagraceae	Chamaener angustifolium (L.) Holub.	Leaves - Khachapuri	Wild collected			
Onocleaceae	Matteuccia struthiopteris (L.) Tod.	Leaves - Ster, Pickled (lactofermented), Phihkali	Garden			
	Orobanchaceae	Leaves - Phikhalli	Wild collected			
	Paeiculcus sp.	Fruit - Eaten raw	Garden			
	Oxalidaceae	Leaves - Phikhalli	Wild collected			
	Averrhoa carambola L.	Fruit - Eaten raw	Garden			
	Oxalis acetosella L.	Leaves - Phihkali	Wild collected			
	Oxalis corniculata L.	Leaves - Phihkali	Wild collected			
Papaveraceae	Papaver somnifemum L.	Whole plant, Buds, Flowers, Seeds, Leaas, Stem - Khinkali, Phihkali	Garden, Wild collected			
Phyllolaccaeanae	Phyllotacca amercana L.	Fruit - Wine Leaves, Stem Pickled (lactofermented), Phihkali	Wild collected, Garden			
Pinaceae	Abies nordmanniana (Steven) Spach	Branches, leaves - Tea, Phihkali	Wild collected			
	Cedrus sp.	Young Cones - Jam Resin - Masticant	Garden, Wild collected			
	Picea orientalis (L.) Petern.	Leaves, Young Cones - Phihkali, Young Cones - Jam Bark - Famine food	Garden, Wild collected			
	Pinus kochiana Klotzsch ex K Koch	Leaves, Young Cones - Phihkali, Young Cones - Jam Bark - Famine food	Garden, Wild collected			
Piperaceae	Piper nigrum L.	Seeds - ingredient of Svan salt	Bought			
Plantaginaceae	Plantago major L.	Leaves, Stem - Phihkali	Wild collected			
	Valeriiana officinalis L.	Leaves - Tea	Wild collected			
Poaceae	Avena sativa L.	Seeds - Eaten raw and cooked Young Cones - Pickled (lactofermented)	Garden, Wild collected			
	Bambusa sp.	Seeds - Eaten cooked, Pheveer, Ghomli, Flour Leaves, Stem - Salad Seeds - Beer, to distill Alcohol, Flour	Garden, Wild collected			
	Digitaria milianana (Rondile) Stafp.	Leaves, Stem - Salad Seeds - Beer, to distill Alcohol, Flour	Garden, Wild collected			
	Echinocloa crus-galli L.	Seeds - Eaten raw and cooked Young Cones - Pickled (lactofermented)	Garden, Wild collected			
	Hordeum vulgare L.	Seeds - Eaten cooked, Pheveer, Ghomli, Flour Leaves, Stem - Salad Seeds - Beer, to distill Alcohol, Flour	Garden, Wild collected			

Notes: The table lists various plants and their uses in the context of ethnobotany. The uses include food, medicine, and traditional practices. The plants are primarily found in the context of the Svan region. The collection methods range from wild collection to cultivation. The uses are often associated with specific cultural practices and traditional knowledge.
Scientific Name	Common Name	Use	Region
Hondeum vulgare L. ssp. vulgare var. coelestrotum	Kershveili	Seeds - Flour	Garden
Secale cereale L.	Malt, Malti	Seeds - Beer, to distill Alcohol	Garden
Setaria italica (L.) P. Beauv.	Gomi, Flour	Seeds - Gomi, Flour	Garden
Sorghum bicolor (L.) Moench	Mamal, Dik'ka	Seeds - Flour	Garden
Triticum aestivum L.	Flour	Seeds - Flour	Garden
Triticum carthlicum Neve	Dik'ka	Seeds - Flour	Garden
Triticum dicoccum Schrank ex Schübel	Flour	Seeds - Flour	Garden
Zea mays L.	Kobai	Seeds - Flour	Garden
Polygonaceae			
Pogonurus tataricicum (L.)	Tsatsuka, Yupka	Seeds - Eaten cooked	Garden
Koenigia alpina (All.)	Stem - Prickhi, Pickled	Leaves, Stem - Prickhi, Wild collected	
Schust. & Reve	Khachapuri, Pickled	Leaves - Prickhi, Wild collected	
Koenigia paniculata (Krarkev.) T.M. Schust & Reve	Stem - Eaten raw	Leaves - Prickhi, Wild collected, Garden	
Polygonum aviculare L.	Leaves, Stem - Prickhi	Leaves - Prickhi, Wild collected	
Polygonum campanum Koch	Leaves, Stem - Prickhi	Leaves - Prickhi, Wild collected	
Polygonum sp.	Leaves, Stem - Prickhi	Leaves - Prickhi, Wild collected, Garden	
Rheum habbaranum L.	Leaves, Stem - Prickhi	Leaves, Stem - Prickhi, Pickled (lactofermented), Sat'k'bai	
Rumex acetosa L.	Mazauna, Kvetian	Leaves, Stem - Prickhi, Chave, Pickled (lactofermented)	Garden
Rumex acetosella L.	Mazauna, Chomake (Kok'omhava)	Leaves - Prickhi, Khachapuri, Wild collected, Garden	
Rumex alpinus L.	G'holo, G'holo, Khovash (g'holo, G'holo, G'holo)	Leaves, Stem - Prickhi, Prickled (lactofermented)	
Rumex crispus L.	G'holo (Avelug Arm.)	Leaves, Stem - Prickhi, Pickled (lactofermented)	
Rumex scutatus L.	Lahk'ara, Kevish (Kviishis mazhavia), Zhamsh' Laz.	Leaves, Stem - Prickhi, Pickled (lactofermented)	
Rumex sp.	G'holo (G'holo), Mts' G'holo (Mts' G'holo), G'ol (G'ol Ossetian)	Leaves, Stem - Prickhi, Pickled (lactofermented)	
Rumex tuberosus L.	Mavauna	Leaves - Spice	Garden
Polyplodiaceae			
Polypodium vulgare L.	Dzartz'k'ba, Kvitomira (Kitamor)	Root - Sweetener, Eaten raw	Garden
Portulacaceae			
Portulaca oleracea L.	Danduri, Sukana, Kafkat'ka	Leaves, Stem - Prickhi	Wild collected
Primulaceae			
Cyclamen vernalum Sweet	Chuvahvaria	Root - Pickled (lactofermented)	Wild collected
Primula latifolia Rupe	Vashisulsa Tush	Leaves - Sats'ebai	Wild collected
Primula sp.	Purisula, Purisula (Purisula), Sats'ebai (Purisula)	Leaves - Sats'ebai	Wild collected
Primula vulgaris subsp. rubra	Purisula, Sats'ebai (Purisula)	Leaves, Flowers - Prickhi	Wild collected
Primula venus subsp. macrocaulis	Purisula, Vashisulsa Tush	Leaves, Stem - Pickled	Wild collected
Primula waronowiolowensis	Fiks purisula, Vashisulsa Tush	Leaves, Stem - Pickled, Prickhi, Chave	Wild collected
Ranunculaceae			
Adonis aestivula L.	Mek'endzali, Tserifafu (Sats'ebai)	Leaves, Stem - Prickhi	Wild collected
Clematis vitalba L.	Kholi, Sats'ebai (Sats'ebai)	Leaves, Stem, Branches - Prickhi	Wild collected
Ranunculus repens L.	Noxhura, Ts'qili niakhura	Whole plant - Prickhi	Wild collected
Rhhamnaceae			
Crambe foliosa (Booth, Petz. & Kirch.) W. Vent.	Kholi, Gogosa	Fruit - Eaten raw	Wild collected
Ziziphus jujuba Mill.	Unabi, Unabi	Fruit - Eaten raw	Garden, Wild collected
Rhododendraceae			
Rhododendron caucasicum Pall.	Dik'ka, Shgver (Shgver Svan)	Branches, Leaves, Flowers - ingredient for Beer, Tea, Sats'ebai	Wild collected
Rhododendron yuletum Sweet	Ieli, Ieli, Dik'ka (Dik'ka)	Leaves - Tea, Prickhi	Wild collected
Rhododendron ponticum L.	Shk'eri, Shk'eri (Shk'eri), Shgver (Shgver Svan)	Leaves - Tea, Prickhi	Wild collected
Table 1 (continued)			

Rosaceae			
Amygdalus communis L.	Frukt - Eaten raw	Garten	
Aruncus vulgans Raf.	Blätter, Zweige, Blüten, Stengel - Wild collected, Garten		
Cotoneaster multiflorus Bunge	Frucht - Eaten raw	Wild collected	
Crataegus curvipespala Lindm.	Frucht, Blätter, Zweige, Getrocknet (Chinesischer Svan.)	Wild collected	
Crataegus pentagyna Waldst.	Blüten (Kernfrucht), Beere (Sahv Kurnel), Frucht (Tsentsi Svan.)	Wild collected	
Crataegus sp.	Frucht, Blätter, Zweige - Wild collected		
Cynonia oblonga L.	Frucht, Blätter, Zweige - Wild collected		
Fragaria indica Andrews	Frucht - Eaten raw	Garten	
Fragaria vesca L.	Frucht - Eaten raw, Jam, Pickled, Tkhermai		
Fragaria vesca L. Alibaba	Frucht - Eaten raw	Garten	
Fragaria virginiana Mill.	Frucht - Eaten raw	Garten	
Fragaria x ananassa	Frucht, Blätter, Zweige - Wild collected		
Duchesne ex Rozier	Frucht, Blätter, Zweige - Wild collected		
Malus orientalis Uglitz.	Frucht - Eaten raw, to distill Alcohol, \(\text{ingredient}\) of Svan salt, Jam, Thlapai		
Malus domestica (Suckow) Borkh.	Menschenfutter (samo tikhsis vashil).		
Mespilus germanica L.	Frucht - Eaten raw	Garten	
Prunus armeniaca L.	Frucht - Eaten raw, Jam, Compote, Garten		
Prunus avium (L.) L.	Frucht - Eaten raw, to distill Alcohol, Garten		
Prunus cerasus L.	Frucht - Eaten raw, to distill Alcohol, Compote, Jam, Leaves - Pickhali		
Prunus divaricata Ladeb.	Frucht - Eaten raw, to distill Alcohol, Tkhermai, Wine, Jam, Compote, Thlapai		
Prunus insititia L.	Frucht - Eaten raw, to distill Alcohol, Wild collected		
Prunus laurocerasus L.	Frucht - Eaten raw, Wine Leaves - Pickhali		
Prunus padus L.	Frucht - Eaten raw, Jam, Leaves - Pickhali		
Prunus persica (L.) Batsch	Frucht - Eaten raw, Jam, Compote, to distill Alcohol		
Prunus sp.	Frucht - Eaten raw, Chave, to distill Alcohol		
Prunus spinosa L.	Frucht - Eaten raw, Knoblauch (kwanthar), Knoblauch (fëlis muraki)		
Prunus vachshchilli Bregase	Frucht - Eaten raw, Thlapai		
Pyracantha coccinea M. Roem.	Flower - Tea, Wild collected		
Pyrus caucasicus Fed.	Frucht - Eaten raw, Jam, to distill Alcohol, Pickled, Compote, Syrup, Spice		
Pyrus communis L.	Frucht - Eaten raw, Jam, to distill Alcohol, Leaves - Pickhali		
Raphiolepis bifas (Lour.) Galasso & Banfi	Frucht - Eaten raw, Wild collected		
Rosa canina L.	Frucht, Blüten, Stengel (japonuri) - Wild collected		
Rosa pimpinellifolia Boiss.	Frucht, Blüten, Stengel (shavi askhill), Knoblauch (askhili)		
Rosa sp.	Frucht, Blüten, Stengel (japonuri) - Wild collected		
Rubus caesius L.	Frucht - Eaten raw, Wild collected		
Table 1 (continued)

Species	Common Names	Uses	Location
Rubus fruticosus L.	Red raspberry	Fruit - Eaten raw, to distill Alcohol, Jam, Compost	Garden
		Batik, (bariti)	
Rubus idaeus L.	Blackberry	Fruit - Eaten raw, Jam, Compost	Garden
		Leaves - Tea	
Rubus saxatilis L.	Blackberry	Fruit - Eaten raw, ingredient of Chave	Wild
		Wild collected	
Rubus sp.		Fruit - Eaten raw, to distill Alcohol, Jam	Wild
Sorbus aucuparia K. Koch	Red elderberry	Fruit - Eaten raw, to distill Alcohol, Jam	Wild
Sorbus boissieri C.K. Schmid.		Fruit - Eaten raw, to distill Alcohol, Jam	Wild
Sorbus caucasi gera Kom.	Red elderberry	Fruit - Eaten raw, to distill Alcohol, Jam	Wild
Sorbus terminialis (L.) Crantz.	Red elderberry	Fruit - Eaten raw, to distill Alcohol, Jam	Wild
Rutaceae			
Citrus limon (L.) Burm. f.	Lemon	Fruit - Eaten raw, Jam, Compost	Garden
Citrus reticulata Blanco	Mandarin	Fruit - Eaten raw, Jam, Compost	Garden
Citrus sinensis Osbeck	Mandarin	Fruit - Eaten raw, Jam, Compost	Garden
Citrus unshiu Marcov.	Satsuma	Fruit - Eaten raw, Jam, Compost	Garden
Salicaceae			
Salix caprea L.	Willow	Seeds - Beverage (coffee)	Garden
Sapindaceae			
Acer pseudoplatanus L.	Siberian Elm	Flower - Tea	Wild
Smilacaceae			
Smilax excelsa L.	Tarragon	Leaves, Young Stem - Phkhali	Wild
Solaraceae			
Allium giganteum Moenchel	Garlic	Fruit, Leaves - Phkhali	Wild
Capsicum annuum L.	Capsicum	Fruit, Seeds - Eaten raw, Pickled (lactofermented)	Garden
Capsicum annuum L. Sweet			
Bulgarian		Fruit - Eaten raw, ingredient of Svan salt	Garden
Lycopersicum esculentum L.	Tomato	Fruit - Eaten raw, Pickled (lactofermented)	Garden
Solarium melongena L.	Longan	Fruit, Leaves, Human Food - Phkhali	Garden
Solarium pseudo capsicum L.			
Solarium tuberosum L.			
Staphyleaceae			
Staphylea colchica Steven	Chervenleigh	Flower, Young Fruits, Young Stem - Pickled (lactofermented)	Wild
Taxaceae			
Taxus brevifolia L.	Yew	Fruit - Jam	Wild
Theaceae			
Camellia sinensis L.	Tea Plant	Leaves - Tea	Garden
Tropaeolaceae			
Tropaeolum majus L.	Indian Smoke	Leaves - Phkhali	Garden
Ulmaceae			
Ulmus glabra Huds.	Horse Chestnut	Bark - Cooked as famine food	Wild
Urticaceae			
Urtica dioica L.	Devil's Bit	Leaves - Stem - Phkhali, Khinkali, Khachapuri, Tea	Wild
Violaceae			
Viola arvensis L.	Pansy	Leaves - Phkhali (NOTE - in other regions regarded as toxic)	Wild
Viola sp.			

* Depiction of the image content is not possible.*
| Table 1 (continued) |
|---------------------|
| **Vitaceae** |
| Vitis labruscana L. |
| Vitis vinifera L. |
| Zingiberaceae |
| *Eleutherocaridanum* (L.) Maton |
| Leaves - Khachapuri |
| Leaves, Stern, Whole plant - Phichali |
| (NOTE - in other regions regarded as toxic) |
| Fruit - Eaten raw Garden |
| Fruit - Eaten raw Wild collected |
| Fruit - Wine, Eaten raw, Khardali Garden, Wild collected |
| Leaves - Phkichal |
| Seeds used as Spice Garden |
| **FUNGI** |
| *Agaricaceae* |
| *Agaricus arvensis* Schaeff. |
| *Agaricus campesstri* L. |
| *Agaricus tabularis* Peck |
| *Bovista sp.* |
| *Bovista gigantea* (Batsch) Gray |
| *Coprinus comatus* (O.F. Müll.) Pers. |
| *Lycopodium* perlatum Pers. |
| *Macrolepiota* procera (Scop.) Springer |
| *Amanita caesarea* (Scop.) Pers. |
| *Amanita muscaria* (L.) Lam. |
| *Auricularia auricula-judae* (Bull.) Quél. |
| *Bankeraceae* |
| *Hydnum repandum* L. |
| *Sarcodon imbricatus* (L.) P. Karst. |
| *Boletaceae* |
| *Boletus edulis* Bull. |
| *Leccinum scabrum* (Bull.) Gray |
| *Neoboletus* erythropus (Pers.) C. Hahn. |
| *Cantarellaceae* |
| *Cantarellus* cibarius Fr. |
| *Clavariadelphaceae* |
| *Clavariadelphus platyphyllus* (L.) Donk |
| *Cortinariaceae* |
| *Cortinarius violaceus* (L.) Fr. Gray |
| *Fistulina* hepatica (Schaeff.) Witt. |
| *Fungi indet.* |
| Anthracina (kojuba) |
| Cephalophyllum (tetrisoko) |
| *Cercopagispora* (trana solko) |
| *Dactyloidea* (rostreilla Russ.) |
| *Armillaria* (archekali Khv.) |
| *Boletus* (bukthmisoko) |
| *Gigaspora* (gigacharxa) |
| *Gloeopleretrium* (viteili) |
| *Lactarius* (talicha) |
| *Lactarius* (tashki) |
| *Lactarius* (theliasoko) |
| *Lactarius* (tvinineli) |
| *Lactarius* (tianasoko) |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Fruiting body cooked as food Wild collected |
| Plant Family | Species | Common Name | Description | Collection Method |
|-------------|---------|-------------|-------------|------------------|
| Gomphaceae | Ramia flava (Schaeff.) Quel. | | Fruiting body cooked as food | Wild collected |
| Hericaceae | Hericium erinaceus Bull. Pers. | | Fruiting body cooked as food | Wild collected |
| Leptotrichaceae | Macroplectra procera (Scop.) Springer | | Fruiting body cooked as food | Wild collected |
| Marasmiaceae | Marasmius oreades (Bolton) Fr. | | Fruiting body cooked as food | Wild collected |
| Morchellaceae | Morchella conica Pers. | | Fruiting body cooked as food | Wild collected |
| Physaliaceae | Pterygotaella meles (Vahl) P. Kumm | | Fruiting body cooked as food | Wild collected |
| Pleurotaceae | Pleurotus componia (Poulet) Rolland | | Fruiting body cooked as food | Wild collected |
| Pleurotaceae | Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm | | Fruiting body cooked as food | Wild collected |
| Pluteaceae | Pluteus cervinus (Schaeffer ex Fr.) P. Kumm | | Fruiting body cooked as food | Wild collected |
| Polyporaceae | Polyporus squamosus (Huds.) Fr. | | Fruiting body cooked as food | Wild collected |
| Phallaceae | Coprinopsis atramentaria (Bull.) Redhead, Vilgalys & Moncalvo | | Fruiting body cooked as food | Wild collected |
| Russulaceae | Ramia flava (Schaeff.) Quel. | | Fruiting body cooked as food | Wild collected |
| Russulaceae | Lactarius deliciosus (L. ex Fr.) S.F. Grey | | Fruiting body cooked as food | Wild collected |
| Russulaceae | Lactarius piparius (L.) Roussel | | Fruiting body cooked as food | Wild collected |
| Russulaceae | Lactarius volesius (Fr.) Kuntze | | Fruiting body cooked as food | Wild collected |

Table 1 (continued)
and samples in which we had no more details about the purpose of usage of plants, i.e., in cases where plants were used as human food, but we did not know exactly for which kind of food. We considered regions and five altitudinal ranges (0–500 m, 501–1000 m, 1001–1500 m, 1501–2000 m, 2001–2500 m) as factors within our ordinations. We conducted non-metric multidimensional scaling (NMDS) followed by a permutational multivariate analysis of variance (PERMANOVA) with Euclidean distance and 999 permutations using the “RVAideMemoire” package [72].

Results

The total number of taxa, mostly identified to species, was 527 (Tables 1 and 2, Appendix Tables 5, 6). Ninety-five species of fungi were consumed. Trees contributed 71 species (13.47%), Shrubs—43 (8.1%), Herbs—333 (60.32%), Climbers -5 (0.09%), and Fungi—95 (18.02%). Of all species 388 were wild, i.e., not cultivated, although some of them occurred on ruderal places and as weeds in gardens. In case of 20 vascular plants and 45 fungal species, the collected material did not allow a certain identification, and these species are thus indicated as “indet.” in Table 1. Taxonomically, the difference between two food plant groups—garden versus wild (“forest”)—was strongly pronounced even at family level. Only one plant species (*Piper nigrum* with four mentions) was bought in markets. Over 62% of the mentions (12,255) referred to cultivated plants, 7352 (37%) to wild collections, and some plants were found both collected in the wild and in gardens; however, this was a very small percentage (189 mentions, less than 1%). The great majority of mentions (> 99%) were either from families found either in gardens (62%) or in the wild (37%). Over 41% of all mentions referred to the use of fruits, 21% to leaves, about 7% to seeds, and 5% to fruiting bodies, leaves/stems and stems. Whole plants were only used very infrequently. Of all the families, Rosaceae, Apiaceae, Lamiaceae, Amaryllidaceae and Solanaceae showed the highest importance. At a generic level, *Allium*, *Pyrus*, *Malus* and *Brassica* received the highest number of use report. Only 30 species (6% of the total) represented 46% of all use mentions, but only *Malus orientalis* (3.5%), *Pyrus communis* (3.2%),

Table 1 (continued)

Rhusa cemtica (Schaaff.) Pers.	დამუხვა (bahgavana)	Fruiting body cooked as food	Wild collected
Rhusa rosea Pers.	ლიერი (ts'tliio)	Fruiting body cooked as food	Wild collected
Rhusa virescens (Schaaff.) Fr. Strophariaceae	ვირჯაკი (khaliwlio)	Fruiting body cooked as food	Wild collected
Hymenoloma fasciulare (Huds.) P. Kumm.	რამრამი (mat'ahtrqu)	Fruiting body cooked as food	Wild collected
Suillus granulatus (L.) Roussel	ლულო თონუ (duma soko), Mazaria (Mastiata Russ.)	Fruiting body cooked as food	Wild collected
Suillus luteus (L.) Roussel	ზეთთანა (zethiana)	Fruiting body cooked as food	Wild collected
Tricholomataceae			
Leptota sordida (Schumach.) Singer	მწვარინგი (ghrubelia), ლუროენაში (melnisdiaza), ძირცნობე (melano)	Fruiting body cooked as food	Wild collected
Tricholoma aurantium (Schaaff.) Ricken	მწვარინგი (ghrubelia), ლუროენაში (melnisdiaza), ძირცნობე (melano)	Fruiting body cooked as food	Wild collected
Tricholoma portentosum (Fr.) Quel.	შარბუმი (shavohokha), თათგუშ (taguna)	Fruiting body cooked as food	Wild collected

Table 2: Regions of our fieldwork and number of food plant mentions recorded

Region	Number of mentions
Guria	2125
Khevsureti	2012
Zemo Svaneti	1942
Adjara	1866
Tori	1750
Tusheti	1633
Kvemo Svaneti	1406
Kakheti	1085
Lechkhumi	1017
Samegrelo	853
Meskheti	776
Kvemo Racha	708
Javakheti	699
Kvemo Kartli	678
Zemo Imereti	631
Mtianeti	342
Zemo Racha	277

Chavre: made of dried herbs by boiling them, adding flour, fat (with or without meat) and salt; Dolma: grape leaves and others filled with herbs and meat; Mkhlovana: bread filled with beetroot leaves, spinach, herbs; Khachapuri: bread filled with cheese and herbs; Khinkali: dumplings with herbs and meat; Phkhali: minced herbs, sometimes mixed with walnuts, eaten as spread or cooked in pie; Sats’ebal: fresh herbs dipped in sour milk, Thlapi: fruit lather
Georgia than in the wider region, (2) food plant use knowledge would be widely and equally spread in most of Georgia, (3) there would still be incidence of knowledge loss despite wide plant use, especially in climatically favored agricultural regions in Western and Eastern Georgia.

Materials and methods
Ethnobotanical interviews
From 2013 to 2019, we interviewed over 380 participants in all regions of Georgia not occupied by Russian forces on their general plant use, recording over 32,000 individual uses. The analyses of all uses have been published in a variety of papers [41–50]. However, of all uses over 19,800 mentions were of food plants, which is why we regarded it as prudent to present a separate analysis of these. Interviews using semi-structured questionnaires were conducted after obtaining the oral prior informed consent of the participants, which were selected by snowball sampling, trying to reach gender balance and representing different age groups. Most participants were however over 50 years old, as interviews targeted remote villages where only very few younger people remain. All interviews were carried out in the participants’ homes and gardens by native speakers of Georgian and its dialects (Imeretian, Rachian, Lechkhumian, Tush, Khevsurian, Psavian, Kakhetian), other Kartvelian languages (Megrelian, Svan) and minority languages (Ossetian, Ude, Azeri, Armenian, Greek). The languages in which a plant was mentioned are indicated in Table 1. Interviews were subsequently translated into English. Plants grown in home gardens were used as prompts, while wild-collected species were free listed. We classified species as “garden” when they were grown/collected in cultivated areas, and as “forest/wild-collected” when growing and

Table 3 Plant family diversity assessed by various indices

Index	Garden	Wild	P-value
Dominance, D	0.096	0.053	0.0001
Shannon H	2.709	3.525	0.0001
Evenness e^H/S	0.227	0.346	0.0001
Simpson index, 1—D	0.904	0.947	0.0001
Equitability J	0.647	0.769	0.0001
Fisher alpha	9.168	15.9	0.0001
Berger–Parker, BP	0.219	0.166	0.0001

P-values are calculated using randomization tests (or Permutation test, software PAST 4.2)
harvested in the wild. We maintained the distinction of "forest" and "garden" because it was used in our previous publications from the region [50], to maintain consistency. In contrast to many other countries Georgia benefits from a complete flora [65–69] and a broad inventory of vernacular names in all languages [68]. Species were identified directly in the field, using this literature, and vouchers collected and deposited in the National Herbarium of Georgia (TBI). The nomenclature of all species follows www.tropicos.org, under APGIII [70]. Collection permits were provided through the Institute of Botany, Ilia State University, Tbilisi.

Data analysis
Data were tabulated using excel sheets and a combined matrix was constructed with plant entries in rows and plant data in columns including date, place, participant’s age and gender, interviewer, plant identity (Latin, Georgian vernacular, local names), the use category, which parts were used, and the source (garden or forest). We compared species diversity among groups of species (forest versus garden, various provinces) using sample-based rarefaction as well as widely used diversity indices: Dominance \((D) \), Shannon \((H) \), Evenness \((e^H/S) \), Simpson index, \((1 - D) \), Equitability \((J) \), Fisher alpha, Berger–Parker (BP), given that no single index may sufficiently show the importance of certain species. Similarity of species composition among groups of plants were analyzed using non-metric multidimensional scaling (nMDS). All these analyses were performed using software PAST4.02 [71].

Test if the usage of plants based on family and genus, plant system used, and general and specific plant parts differ between regions and different altitudinal ranges. I predict that these components will be different, since there will be a different plant composition among regions and along an altitudinal gradient, and that different human communities have their own ethnobotany knowledge, even though they are from the same country.

We compared the usage of plants based on their (i) family and (ii) genus, (iii) system (root, shoot, or both), and (iv) general (vegetative, reproductive, or both) and (v) more specific (bark, branches, buds, bulb, cones, flowers, fruit, latex, leaves, resin, roots, seeds, shoots, silk, stem, timber, tuber, whole plant) parts used between regions and altitudinal ranges. We also compared (vi) for what purpose plants are used between regions and altitudinal ranges. We removed from our analyses any data that was not possible to make any further identification, such as plants identification above family, and uncertain plant parts. We also removed fungi from our analyses.
and *Vitis vinifera* (2.7%) had over 2% of mentions, and *Chenopodium album* and *Urtica dioica* were the only not cultivated plants reaching over 1% of mentions. In most regions at all altitudinal ranges, the aboveground parts were mist frequently used (Fig. 2),

Most plants (65%) were eaten without complicated preparation, either raw (55%), or fried/cooked (e.g., 8% that were fungi). A full 5% of all mentioned plant-uses were for pickles / lactofermented (often stems), and a full 18% of all use reports were for *Phkhali* (boiled herb pie, especially in spring), 4% were used as spices, and around 2% for the distillation of alcohol. All other use categories (35) had much fewer mentions.

The richness of plant families was 66 in garden versus 97 families of wild plants, respectively, and the difference was highly significant. Other diversity indices also unequivocally pointed to a considerably more diverse family composition of wild versus garden plants as the differences between all the tested diversity indices appeared to be highly significant (Table 3).

The regions of Georgia could be divided into three groups by the similarity of garden food plants as can be seen on the nMDS ordination graph (Fig. 3). This ordination seems to be influenced on the presence of large markets: Adjara, Samegrelo, Guria, and Kakheti which are lowland regions with large cities are joined by minimum distance versus Tori, Zemo Svaneti, Khevsureti, Tusheti and Javakheti, which are the most remote places. Kvemo Svaneti, Lechkhumi, Meskheti, Kvemo Kartli, Zemo Imereti, Zemo and Kvemo Racha, Mtianeti are moderately remote from large markets. The grouping of the regions closer to large markets might however have another distinct reason: Adjara, Samegrelo, Guria, and Kakheti are also the climatically warmest regions in Georgia, with the longest growing seasons. This allows the production of food plants almost all year round, and greatly reduces the dependency on foraging wild species.

For comparison, we assessed the usage of plants between regions based on their family, genus, specific parts used (root, shoot, or both) used, reproductive stages used (vegetative, reproductive, or both) and their specific parts used (bark, branches, buds, bulb, cones, flowers, fruit, latex, leaves, resin, roots, seeds, shoots, silk, stem, timber, tuber, whole plant), but at regional level and within different altitudinal ranges through non-metric dimensional scaling (NMDS) followed by permutational multivariate analysis of variance (PERMANOVA) with 999 permutations and Euclidean distance. The detailed results are given in Table 4 and Appendix Tables 7, 8, 9, 10 and 11.

The regions varied strongly in their species richness, based on species used (Fig. 4). These differences also might reflect the remoteness from large markets and severity of local climate.

Relationships among the regions in the case of wild food plants show a different and clearer pattern (Fig. 5). Adjacent regions in particular cluster together (Kvemo Zemo Racha, and Zemo Imereti; Samegrelo, Guria, Adjara, Lechkhumi and Kvemo and Zemo Svaneti; Meskheti, Javakheti, Kvemo Kartli; Mtianeti, Kakheti, Khevsureti, Tusheti). Like in the case of the garden food

Table 4	Pairwise comparisons with FDR p-value adjustment method of the different variables evaluated (plant family, plant genus, system used, general plant parts used, specific plant parts used, the usage) between altitudinal ranges after significant PERMANOVA analysis (Table Permanova)			
Plant family	0–500	1001–1500	1501–2000	2001–2500
1001–1500	0.0013	0.0013	0.0013	0.0013
1501–2000	0.0013	0.0013	0.0013	0.0013
2001–2500	0.0013	0.0013	0.0013	0.0013
0–500	0.0049	0.0044	0.0013	0.0013
Plant genus	0–500	1001–1500	1501–2000	2001–2500
1001–1500	0.0011	0.0011	0.0011	0.0011
1501–2000	0.0011	0.0011	0.0011	0.0011
2001–2500	0.0011	0.0011	0.0011	0.0011
0–500	0.0018	0.0011	0.0011	0.0011
General plant parts used	0–500	1001–1500	1501–2000	2001–2500
1001–1500	0.0300	0.0300	0.0300	0.0300
1501–2000	0.3550	0.0300	0.3550	0.3550
2001–2500	0.4144	0.0300	0.3550	0.3550
0–500	0.0420	0.6270	0.0833	0.0300
General plant parts used	0–500	1001–1500	1501–2000	2001–2500
1001–1500	0.0017	0.0017	0.0017	0.0017
1501–2000	0.0722	0.0017	0.0017	0.0017
2001–2500	0.0017	0.0017	0.0017	0.0017
0–500	0.0271	0.6840	0.0288	0.0017
Specific plant parts used	0–500	1001–1500	1501–2000	2001–2500
1001–1500	0.0017	0.0017	0.0017	0.0017
1501–2000	0.0225	0.0017	0.0017	0.0017
2001–2500	0.0017	0.0017	0.0017	0.0017
0–500	0.0222	0.6670	0.0025	0.0017
Usage	0–500	1001–1500	1501–2000	2001–2500
1001–1500	0.0133	0.0133	0.0133	0.0133
1501–2000	0.0050	0.0957	0.0050	0.0957
2001–2500	0.0050	0.0840	0.3020	0.3020
0–500	0.0450	0.2833	0.0917	0.1750

Analyses were based on Euclidean distance and 999 permutations
plants, species diversity of the wild food plants mentioned varied strongly (Fig. 6). Climate and the need for of the use of wild food plants (especially in high altitude villages) play a role in this variation. As we already showed in various previous publications, language, cultural group, ethnicity, education, or gender of the participants had no impact on the main use of food plants, nor any other uses [41–50].

Phkali and Pickles—emblematic foods of the Caucasus

Of all food preparations the use of plants as ingredient of boiled herb preparations (mostly as გაზაფხული ფქალი —gazapkhuli pkhali = Spring Pkhkali, as the first vitamin source after winter), and as lacto-fermented or vinegar-based pickles are probably the most emblematic ones in the Caucasus, given that almost 50% of all food mentions were for phkhali, and almost 12% for pickled plants, and 8% for teas.

While the overall distribution of families, genera and their uses were similar between regions, overall most species were used in Guria. However, the knowledge distribution was most uneven for these food categories (Fig. 7). The altitudinal range between 1001 and 1500 m, followed by 1501–2000 m were clearly predominant when it came to diversity of plants used as well as uses (Fig. 8). This very unequal distribution of the most important families/genera, as well as their respective uses is reflected in Fig. 9. The altitudinal differences do not necessarily indicate however that the respective species did not grow also at lower altitudes. They simply indicate that at lower altitudes the participants rather preferred other food plants, and due to a lack of necessity were not interested in wild harvesting greens.

Only 60% of participants reported making pickles / lactofermented preparations. Of these, over 16% each came from Zemo Imereti and Khevsureti, and 12% each from Zvemo Svaneti, the Javakheti-Plateau, and Guria. The first regions represent all high altitude—short growing season areas, where the population does need to preserve food for winter. Guria is relatively warm—but very wet and snow-rich, which also might explain the prevalence of pickles. No participants whatsoever from Adjara, Samegrelo (the most subtropical regions) and Mtianeti (close to the capital Tbilisi) reported making pickles. Unsurprising, Kakhetians were also not enthusiastic about this form of preparation, because Kakheti...
is also a region famous for its large agricultural production. In contrast, in Tori and Tusheti there are simply less products that can be pickled. Preferred species (of a total of 79) for pickles were mostly Amaranthaceae (*Amaranthus, Chenopodium*), Apiaceae (especially the stems of *Anthriscus, Chaerophyllum* and *Heracleum* were picked, but also, stems of *Conium maculatum*), Amarilloidaceae (all *Allium* species), and Polygonaceae (*Polygonum* and *Rumex*). In addition, *Aruncus vulgaris* (Rosaceae), *Stapyla colchica* (Staphyleaceae). All of these were more important as pickles than "traditional European style species (*Cucumis sativus, Capsicum* etc.). The fermentation of the ferns *Mattheucia struthiopteris* (Onocleaceae) and *Dryopteris filix-mas* (Dryopteridaceae) was similar to what we observed, e.g., in the Himalayas.

The participants clearly indicated that some plants (e.g., *Conium maculatum, Dryopteris filix-mas, Galanthus* sp., *Narcissus* sp.) needed careful preparations, due to possible toxicity. However, given that these species might have even higher toxicity in other regions, e.g., Central Europe, the authors decided to not elaborate any further on preparation methods, given that these might not be sufficient to remediate toxicity of the same species outside the Caucasus.

In case of Pkhali, over 93% of all participants—from all regions—reported to use such boiled herbs, normally in Spring. This was surprising, as we had expected much more limited use in the climatically favorable regions. Nevertheless, Zemo Imereti (19% of all Pkhali preparations), Tori and Kvemo Racha (16% each), Tusheti (15%) and Khevsureti (14%)—all mountain regions with long winters, stood out as the real "herb eater" areas. In contrast to the pickled species, essentially only young leaves were used for phkhali, with great emphasis on the same families indicated in pickles. (All pickled plant species were also used for phkhali.) The overall number of species fused or phkhali was however much higher (197). The elaboration of phkhali often involves many steps to reduce the toxicity of species used, and in most cases a wide variety of herbs are included in each preparation. Interesting examples for the use of toxic species included the leaves of *Solanum tuberosum, Veratrum lobelianum* and *Viola* sp. *Solanum tuberosum* leaves for example are regarded as toxic worldwide, but are being eaten in the Caucasus and Albania [48]. *Veratrum album* (closely

![Fig. 5 nMDS ordination of regions by wild food plant species composition](image-url)
related to *Veratrum lobelianum*, and growing especially in Europe, is highly toxic), and *Viola* sp. (although especially the flowers are widely used in gastronomy) contains toxic Saponins. In all cases careful preparation was mentioned to make these species palatable. The authors explicitly decided to not give any recipes, given that many of the species are widespread, and compound composition—and with it possible toxic effects—might vary across the distribution range, so that a preparation method that sufficiently reduces toxicity in the Caucasus might not necessary be applicable in other areas.

Discussion

The use of food plant in Georgia while varied showed distinct overlap with other studies. However, the number of food plant species used—both cultivated and foraged in this rather small territory—was far higher than in most published studies from either wider region or the Mediterranean and Eurasia. Of all species, 388 were wild/wild collected, although a few of them also occurred as weeds in gardens. Even when deducting the fungal species (95), the remaining 293 vascular plant species are a mostly a much higher number than found in any other study in the wider region [73–106] (73:148 species; 74:87 species; 75:41 species; 76:40 species; 77:276 species; 78:119 species; 79:84 species; 80:68 species; 81:30–100 species for different European regions; 82:112 species; 83:139 species; 84:49 species; 85:15 species (although focusing on weeds only); 86:78 species; 87:419 species for all of Spain; 88:36; 89:77 species; 90:40 species; 91:11 species; 92:48 species; 93:83 species; 94:105 species; 95:73 species; 96:47 species; 97:115 species; 98:67 species; 99:78 species; 100:79 species; 101:35 species; 102:52 species; 103:63 species; 104:80 species; 105:88 species; 106:51 species).

Interestingly, even studies conducted in pastoralist cultures well-known for their use of wild foraged plants for food, e.g., in relatively close-by Kurdistan [107, 108] (107:54 species; 108:65 species), and Turkey [109] with 74 species showed a much more limited use of plants for food, even when not considering the 20% of taxa found in Georgia that were fungi. In many areas of the same cultural space, e.g., Dagestan [110] with 24 species, Azerbaijan [111, 112] (111:72 species; 112:73 species).
and Amenia [113] with 66 species) the use of wild plants for food has been shown as in steep decline, although a strong signature of food plant use could still be found in markets of the Armenian capital Yerevan [114] with 148 species.

Outside the region, e.g., in China, it has been shown that typical agricultural communities use a very large number of wild species [115–117] (115: 185 vascular plant species and 17 fungal folk taxa; 116: 224 species; 117: 168 species). In many cases, however, wild plant use fell far short from the species numbers found in the Caucasus, e.g., [118–120] (118: 81 species; 119: 59 species; 120: 54 vascular plant species and 22 fungi).

The use of food species was not closely related to different vegetation zones in Georgia. This is a specific feature of food plants and differs from the use of plants in other categories, as has been previously shown [38–50].

The large number of species used in comparison with other areas confirmed our first hypothesis that given the long tradition of plant use, and the isolation under Soviet rule, plant use both based on home gardens and wild harvesting would be more pronounced in Georgia than in the wider region. In addition, the very large number of wild vegetables in Georgia might underline the hypothesis that the use of such wild "greens" is a byproduct of

Fig. 7 Relationship between families, genera and usage within regions
the Neolithic revolution, given that the region is indeed a cradle of agriculture as indicated previously [9, 13, 14]. We found a rather widespread use of foodplants across Georgia, which can partly be explained by mixture of populations from varied regions through migration and Soviet population moves, which also confirmed our hypothesis that food plant use knowledge would be widely and equally spread in most of Georgia.

Finally, we indeed found that in the very fertile agricultural regions in Eastern (Kakheti) and Western (lower Ajara, Samegrelo) Georgia, plant use knowledge was indeed more limited. However, this does not explicitly confirm our third hypothesis that such regions would show knowledge loss, as the limited use of plants may already have persisted a long time, and historic comparative data are not available.

Conclusions
This study reported on 535 plant and fungal taxa used in Georgia as food. As many mountain regions all over the world, the rural areas of the Georgian Caucasus have suffered a constant population decline for decades, due to harsh economic conditions and lack of modern infrastructure [1, 24, 121–124]. While this has greatly

Fig. 8 Relationship between families, genera and usage within the altitudinal gradients
accelerated the loss of traditional agricultural practices, it seems to have affected the use of wild gathered food plants as well as species grown in home gardens to a much more limited extent in Georgia. The home gardens in Georgia clearly continue serving as socio-ecological memory, and an irreplaceable part of Georgian culture, rather than the widely growing popularity of gardening and foraging found all over Europe [125]. The great variety of food plant species used in the Georgian Caucasus provides a reservoir for food security for the region, as well as a source of important food plant germplasm for international agriculture. This greatly underlines the importance of Georgia as an ancient center of crop domestication and diversification, making Georgia clearly one of the most diverse food plant cultures in wider Eurasia, and the center of what we would like to coin as "Caucasus—Asia Minor—Balkans cultural complex."

Appendix

See Tables 5, 6, 7, 8, 9, 10 and 11.
Table 5 Species of identified food plants and fungi and the number of their mentions recorded

Plant / Fungal family	Plant / Fungal species	Mentions
Actinidiaceae	Actinidia callosa Lindl	28
Adoxaceae	Sambucus ebulus L	83
Adoxaceae	Sambucus nigra L	9
Adoxaceae	Viburnum lantana L	21
Adoxaceae	Viburnum opulus L	21
Agaricaceae	Agaricus arvensis Schaeff	165
Agaricaceae	Agaricus campestris L	4
Agaricaceae	Agaricus tabularis Peck	1
Agaricaceae	Bovista sp.	12
Agaricaceae	Bovista sp. / Lycoperdon sp.	4
Agaricaceae	Clavatia gigantea (Batsch) Rostk	14
Agaricaceae	Coprinus comatus (O.F. Müll) Pers	2
Agaricaceae	Lycoperdon perlatum Pers. / Lycoperdon pyriforme Schaeff	2
Amanitaceae	Amanita caesarea (Scop.) Pers	15
Amanitaceae	Amanita muscaria (L.) Lam	1
Amanitaceae	Amananthus palmeri S. Watson	16
Amanitaceae	Amananthus paniculatus L	24
Amanitaceae	Amananthus retrofitus L	132
Amanitaceae	Amananthus speciosus L	1
Amanitaceae	Amananthus spinosus L	3
Amanitaceae	Atriplex hortensis L	35
Amanitaceae	Beta vulgaris L	311
Amanitaceae	Beta vulgaris L. ssp. cicla (L.) Moq	36
Amanitaceae	Beta vulgaris L. ssp. esculenta (Salsib.) Gürke var. altissima Rössig = Beta vulgaris saschanfiera Alef	3
Amanitaceae	Chenopodium album L	203
Amanitaceae	Chenopodium bonus-henicicus L	1
Amanitaceae	Chenopodium filosum (Moench) Asch	35
Amanitaceae	Chenopodium sp.	1
Amanitaceae	Spinacia oleracea L	44
Amaryllidaceae	Allium ampeloprasum L	3
Amaryllidaceae	Allium ascalonicum L	7
Amaryllidaceae	Allium atrovialaceum Boiss	10
Amaryllidaceae	Allium cepa L	309
Amaryllidaceae	Allium fistulosum L	97
Amaryllidaceae	Allium junthianum Vved	2
Amaryllidaceae	Allium ponticum Miscz	5
Amaryllidaceae	Allium porum L	56
Amaryllidaceae	Allium rotundum L	20
Amaryllidaceae	Allium sativum L	340
Amaryllidaceae	Allium sp.	3
Amaryllidaceae	Allium ursinum L	54
Amaryllidaceae	Allium victorialis L	231
Amaryllidaceae	Galanthus sp.	10
Amaryllidaceae	Galanthus waronowii Losinsky	3
Amaryllidaceae	Narcissus sp.	5
Annonaceae	Annona cherimola Mill	1
Apiaceae	Aethusa cynapium L	1
Apiaceae	Agasaylis latifolia (Bieb.) Boiss	91
Apiaceae	Anethum graveolens L	301
Apiaceae	Angelica tataricae Bordz	2
Apiaceae	Anthriscus cerefolium (L.) Hoffm	4
Apiaceae	Anthriscus nemorosus (M. Bieb.) Spreng	16
Apiaceae	Anthriscus sylvestris L	15
Plant / Fungal family	Plant / Fungal species	Mentions
-----------------------	------------------------	---------
Apiaceae	Apium graveolens L	128
Apiaceae	Carum carvi L	60
Apiaceae	Chaerophyllum aureum L	16
Apiaceae	Chaerophyllum bulbosum L	10
Apiaceae	Chaerophyllum caucasicum (Fisch.) B. Schischk	95
Apiaceae	Conium maculatum L	10
Apiaceae	Conium salebrosum L	348
Apiaceae	Daucus carota L. ssp. sativus	251
Apiaceae	Falcana siodes Asch	1
Apiaceae	Falcana vulgaris Bernh	25
Apiaceae	Foeniculum vulgare Mill	79
Apiaceae	Heracleum asperum M. Bieb	30
Apiaceae	Heracleum leskovi Grossh	5
Apiaceae	Heracleum sect. villosum	2
Apiaceae	Heracleum sosnowskyi Manden	59
Apiaceae	Heracleum sp.	36
Apiaceae	Heracleum wilhelmsii Fisch. & Ave-Lall	30
Apiaceae	Hippomarathrum crispum (Pers.) Bosss	4
Apiaceae	Hippomarathrum microcarpum Petrov	1
Apiaceae	Levisticum officinale W.D.J. Koch	2
Apiaceae	Libanotis transcaucasica Schischk	15
Apiaceae	Ligusticum alatum Spreng	4
Apiaceae	Petroselinum crispum (Mill.) Fuss	268
Apiaceae	Xanthogalum purpurascens Ave-Lall	3
Araceae	Anum albispatum Stev. ex Lebed	2
Araceae	Anum orientale M. Bieb	7
Araceae	Anum sp.	20
Araliaceae	Aralia spinosa L	1
Asparagaceae	Asparagus officinalis L	30
Asparagaceae	Asparagus sp.	4
Asparagaceae	Muscari sosnowskyi Schchian	2
Asparagaceae	Ornithogalum woronowii Kasch	2
Asparagaceae	Polygonatum glaberrimum C. Koch	13
Asparagaceae	Ruscus colchicus Yeo	1
Asparagaceae	Ruscus hypophyllum L	2
Asparagaceae	Scilla siberica Andrews	6
Asparagaceae	Scilla sp.	6
Asteraceae	Achillea grandiflora M. Bieb	1
Asteraceae	Achillea millefolium L	5
Asteraceae	Arctium lappa L	32
Asteraceae	Artemisia absinthium L	8
Asteraceae	Artemisia dracunculus L	125
Asteraceae	Artemisia vulgaris L	3
Asteraceae	Bidens tripartita L	4
Asteraceae	Cichorium intybus L	11
Asteraceae	Cinium incanum (S.G. Gmel.) Fisch. ex M. Bieb	13
Asteraceae	Cinium sp.	5
Asteraceae	Cinium vulgare L	3
Asteraceae	Crepis sp.	3
Asteraceae	Cynara cardunculus L	6
Asteraceae	Echinops sp.	2
Asteraceae	Eruca sativa Mill	12
Asteraceae	Helianthus annuus L	17
Plant / Fungal family	Plant / Fungal species	Mentions
-----------------------	------------------------	----------
Asteraceae	Helianthus tuberosus L	17
Asteraceae	Lactuca sativa L	165
Asteraceae	Lactuca sativa L "greek"	1
Asteraceae	Lactuca serriola	17
Asteraceae	Lapsana communis L	9
Asteraceae	Lapsana grandiflora M. Bieber	2
Asteraceae	Matricaria chamomilla L	5
Asteraceae	Petasites albus (L.) Gaertn	14
Asteraceae	Petasites hybridus (L.) G. Gaert, B. Mey. & Scherb	51
Asteraceae	Senatula quinqueloba Bieber. ex Wild	20
Asteraceae	Solidago canadensis L	4
Asteraceae	Sonchus asper (L.) Hill	7
Asteraceae	Stevia sp.	2
Asteraceae	Tagetes patula L	114
Asteraceae	Tanaxacum confusum Schischk	2
Asteraceae	Tanaxacum officinale Wigg	41
Asteraceae	Tragopogon sp.	19
Asteraceae	Tussilago farfara L	1
Asteraceae	Xanthium strumarium L	3
Auriculariaceae	Auricula auricula-juda (Bull.) Quél	10
Bankenaceae	Hydnum repandum Fr	2
Bankenaceae	Sarcodon imbricatus (L.) P. Karts	8
Begoniaceae	Begonia rex Putz	10
Berberidaceae	Berberis vulgaris L	54
Betulaceae	Alnus barbata C.A. Mey	1
Betulaceae	Betula litwinowi Doluch	3
Betulaceae	Betula sp.	2
Betulaceae	Corylus avela (L.) C. pontica K. Koch	200
Betulaceae	Corylus iberica L	4
Boletaceae	Boletus edulis Bull	16
Boletaceae	Neoboletus erythropus (Pers.) C. Hahn	2
Boletaceae	Leccinum scabrum (Bull.) Gray	3
Boraginaceae	Myosotis sp.	2
Boraginaceae	Symphyrum graniflorum DC	14
Boraginaceae	Trachysternon orientalis (L.) G. Don	6
Brassicaceae	Armoracia rusticana (G. Gaertn.) B. Mey. & Scherb	33
Brassicaceae	Brassica campestris L	1
Brassicaceae	Brassica campestris L. ssp. oleifera DC	9
Brassicaceae	Brassica juncea (L.) Czern	3
Brassicaceae	Brassica montana Pouri	36
Brassicaceae	Brassica oleracea L	361
Brassicaceae	Brassica oleracea L. red	9
Brassicaceae	Brassica oleracea L. var. botrytis cauliflower	25
Brassicaceae	Brassica oleracea L. var. gynmifera Brussles Sprouts	1
Brassicaceae	Brassica oleracea L. var. gynoglydes	47
Brassicaceae	Brassica oleracea L. var. italicca	21
Brassicaceae	Brassica rapa L. subsp. rapifera Metzger	67
Brassicaceae	Brassica rapa var. rapa L	45
Brassicaceae	Bunias orientalis L	27
Brassicaceae	Cappella bursa-pastoris L	26
Brassicaceae	Cardamine hirsuta L	10
Brassicaceae	Chorisanthus cheri L	1
Brassicaceae	Lepidium sativum L	52
Plant / Fungal family	Plant / Fungal species	Mentions
-----------------------	------------------------	----------
Brassicaceae	*Raphanus raphanistrum* subsp. *sativus* (L.) Domin	17
Brassicaceae	*Raphanus sativus* L. var. *major*	179
Brassicaceae	*Raphinastrum rugosum* L. All	13
Brassicaceae	*Sinapis arvensis* L.	15
Campanulaceae	*Campanula alliariifolia* Wild	2
Campanulaceae	*Campanula biebersteiniana* Roem. & Schult	1
Campanulaceae	*Campanula glomerata* L	7
Campanulaceae	*Campanula lactiflora* M. Bieb	70
Campanulaceae	*Campanula latractifolia* L	11
Campanulaceae	*Campanula rapunculosoides* L	20
Cannabaceae	*Cannabis sativa* L	30
Cannabaceae	*Humulus lupulus* L	22
Cannabaceae	*Cannabina sativa* L	36
Caprifoliaceae	*Lonicera caucasica* Pall	3
Caryophyllaceae	*Melandrum balansae* Boiss	5
Caryophyllaceae	*Melandrum boissianum* Schischk	9
Caryophyllaceae	*Oberea wallachiana* (Klotzsch) Ikonn	3
Caryophyllaceae	*Silene lacera* Steven	15
Caryophyllaceae	*Silene sibirica* (L.) Pers	2
Caryophyllaceae	*Silene wallachiana* Klotzsch	9
Caryophyllaceae	*Stellaria media* (L.) Vill	9
Clavariadelphaceae	*Clavariadelphus pistillaris* (L.) Donk	5
Convolvulaceae	*Convolvulus arvensis* L	17
Cornaceae	*Svidia australis* (C.A. Mey.) Pojark ex Geosch	5
Cotoniariaceae	*Cotinus oviolatus* (L.) Fr. Gray	1
Crassulaceae	*Sedum caicivus* Boriss	8
Crassulaceae	*Sedum oppositifolium* Sims	5
Crassulaceae	*Sedum stoloniferum* Gmel	5
Crassulaceae	*Sempervivum caucasicum* Rupe ex Boiss	14
Cucurbitaceae	*Bryonia dioica* Jacq	3
Cucurbitaceae	*Citrus lanatus* (Thunb.) Matsum. & Nakai	16
Cucurbitaceae	*Cucumis melo* L	4
Cucurbitaceae	*Cucumis sativus* L	363
Cucurbitaceae	*Cucurbita maxima* L	14
Cucurbitaceae	*Cucurbita pepo* L	201
Cucurbitaceae	*Cucurbita pepo* L. var. *giromontis*	39
Cucurbitaceae	*Cucurbita pepo* L. var. *patisson*	9
Cucurbitaceae	*Cucurbita sp.*	14
Cucurbitaceae	*Lagenaria siciana* (Molina) Standl	2
Cupressaceae	*Juniperus sabina* L	2
Dipsacaceae	*Cephalania gigantea* (Lede.) Bobrov	1
Dryopteridaceae	*Dryopteris filix-mas* (L.) Schott	35
Ebenaceae	*Diospyros lotus* L	54
Ebenaceae	*Diospyros sp.*	4
Ebenaceae	*Diospyros virginiana* L	5
Elaeagnaceae	*Elaeagnus sp.*	3
Elaeagnaceae	*Hippophae rhamnoides* L	3
Elaeagnaceae	*Shepherdia argentea* Nutt	1
Elaeagnaceae	*Shepherdia sp.*	3
Ericaceae	*Empetrum hermaphroditum* Hagenup	21
Ericaceae	*Oxyccocus quinquepelta* Gilib	1
Ericaceae	*Vaccinium arctostaphylos* L	190
Plant / Fungal family	Plant / Fungal species	Mentions
-----------------------	---------------------------------	----------
Ericaceae	Vaccinium myrtillus L	209
Ericaceae	Vaccinium sp.	4
Ericaceae	Vaccinium uliginosum L	2
Ericaceae	Vaccinium vitis-idaea L	49
Euphorbiaceae	Alnus moluccanaus (L.) Willd	1
Fabaceae	Astragalus caucasisus Pall	1
Fabaceae	Cicer arietinum L	25
Fabaceae	Coronilla vana L	5
Fabaceae	Galega orientalis Lam	9
Fabaceae	Glycine max (L.) Merr	35
Fabaceae	Glycyrrhiza glabra	1
Fabaceae	Lathyrus roseus Steven	42
Fabaceae	Lathyrus tuberosus L	3
Fabaceae	Lens comicularis L	16
Fabaceae	Phaseolus sativus L	86
Fabaceae	Phaseolus vulgaris L	66
Fabaceae	Pisiurn sativum L	6
Fabaceae	Robinia pseudoacacia L	45
Fabaceae	Triticum sp.	5
Fabaceae	Trigonella caerulea (L.) Ser	56
Fabaceae	Vicia faba L	54
Fabaceae	Vicia sativa L	1
Fabaceae	Vigna angularis (Willd.) Ohwi & H. Ohashi	1
Fagaceae	Castanea sativa Mill	79
Fagaceae	Fagus orientalis Lipsky	53
Fagaceae	Quercus ibex M. Bieb	9
Fistulinaceae	Fistulina hepatica (Schaeff.) With	6
Fungi	Unidentified fungus	227
Gentianaceae	Swertia iberica Fisch & C.A. Mey	1
Geraniaceae	Erodium cicutarium (L.) L'Héř. ex Alton	4
Geraniaceae	Geranium robertianum L	3
Geraniaceae	Geranium sp.	6
Grossulariaceae	Grossularia reclinata (L.) Mill	27
Grossulariaceae	Ribes brambertini Berl. ex DC	59
Grossulariaceae	Ribes grossularia L	22
Grossulariaceae	Ribes nigrum L	73
Grossulariaceae	Ribes orientale Desf	4
Grossulariaceae	Ribes rubrum L	103
Grossulariaceae	Ribes sp.	24
Grossulariaceae	Ribes uva-crispa L	13
Guttiferae	Hypericum perforatum L	22
Hencicineae	Hencicum renaceae (Buill.) Pers	1
Iridaceae	Crocus sativus L	9
Juglandaceae	Juglans mandshurica Maxim	7
Juglandaceae	Juglans regia L	235
Juglandaceae	Pterocarya pterocarpa (Michx.) Kunth ex Iljin	7
Lamiaceae	Lamium album L	32
Lamiaceae	Lamium purpureum L	6
Lamiaceae	Leonotis leonurus (L.) R. Br	1
Lamiaceae	Mentha aquatica L	3
Lamiaceae	Mentha longifolia (L.) L	158
Lamiaceae	Mentha pulegium L	81
Lamiaceae	Mentha sp.	8
Table 5 (continued)

Plant / Fungal family	Plant / Fungal species	Mentions
Lamiaceae	Mentha x piperita L	143
Lamiaceae	Nepeta mugunv Spreng	2
Lamiaceae	Ocimum basilicum L	198
Lamiaceae	Ocimum basilicum var. purpurascens Benth	8
Lamiaceae	Origanum vulgare L	50
Lamiaceae	Salvia verticillata L	3
Lamiaceae	Satureja hortensis L	92
Lamiaceae	Satureja laxiflora K. Koch	7
Lamiaceae	Satureja spicigera Boiss	31
Lamiaceae	Thymus caucasicus Willd. ex Benth	30
Lamiaceae	Thymus cohnus Bieb	21
Lamiaceae	Thymus sp.	29
Lamiaceae	Thymus transcaucasicus Ronninger	17
Lamiaceae	Zoilphia puschkini Adams	18
Lamiaceae	Zoilphia serpyacea M. Bieb	16
Lauraceae	Laurus nobilis L	25
Lauraceae	Persea americana Mill	2
Lepiotaceae	Macrolepiota procera (Scop.) Springer	51
Liliaceae	Fritillaria lutea Mill	11
Liliaceae	Gagea sp.	3
Liliaceae	Lilium sp.	1
Liliaceae	Lilium zovitsianum Fisch. & Avé-Lall	11
Liliaceae	Omithogalum woronowii Kasch	6
Linaceae	Linum usitatissimum L	7
Lythraceae	Punica granatum L	32
Malvaceae	Alcea rosea L	1
Malvaceae	Althaea spp.	11
Malvaceae	Malva neglecta L	38
Malvaceae	Malva sylvestris L	10
Malvaceae	Malva sylvestris L / M. neglecta L	59
Malvaceae	Tilia begonfolia Stev	2
Malvaceae	Tilia caucasicus Rupr	49
Marasmiaceae	Marasmius oreades (Bolton) Fr	12
Melanthiaceae	Veratum lobelianum Bieb	5
Moraceae	Ficus carica L	142
Moraceae	Morus alba L	99
Moraceae	Morus nigra L	7
Morchellaceae	Morchella conica Pers	1
Morchellaceae	Morchella esculenta (L.) Pers	12
Musaceae	Musa x paradisiaca L	3
Myrtaceae	Acca sellowiana (O. Berg.) Burret	11
Oleaceae	Fraxinus excelsior L	5
Oleaceae	Ligustrum vulgare L	2
Onagraceae	Chamaenerion angustifolium (L.) Holub	1
Onocleaceae	Mattheuccia struthiopteris (L.) Todd	35
Orobanchaceae	Pedicularis sp.	5
Oxlidaceae	Avenhoa carambola L	1
Oxlidaceae	Oxalis acetosella L	1
Oxlidaceae	Oxalis corniculata L	1
Papaveraceae	Papaver somniferum L	32
Physalacriaceae	Ammianella mellea (Vahl) P Kumm	93
Phytolaccaceae	Phytolaccia americana L	12
Pinaceae	Abies nordmanniana (Steven) Spach	7
Table 5 (continued)

Plant / Fungal family	Plant / Fungal species	Mentions
Pinaceae	Cedrus sp.	3
Pinaceae	Picea orientalis (L.) Peterm	17
Pinaceae	Pinus kochiana Klotzsch ex K. Koch	10
Pinaceae	Pinus sibirica Nakai	8
Piperaceae	Piper piperitum L.	4
Plantaginaceae	Plantago major L.	2
Plantaginaceae	Valeriana officinalis L.	1
Pleurotaceae	Pleurotus cornicopiae (Paulet) Rolland	4
Pleurotaceae	Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm	90
Pluteaceae	Pluteus cervinus (Schaeffer ex Fr.) P. Kumm	28
Poaceae	Avena sativa L.	42
Poaceae	Hordeum vulgare L.	97
Poaceae	Hordeum vulgare L. ssp. vulgare L. var. coelestre L.	5
Poaceae	Panicum miliaceum Rendle	38
Poaceae	Secale cereale L.	65
Poaceae	Setaria italica (L.) P. Beauv	16
Poaceae	Sorghum bicolor (L.) Moench	2
Poaceae	Triticum aestivum L.	144
Poaceae	Triticum carthlicum Nevski	4
Poaceae	Triticum dicoccum Schrank	2
Poaceae	Triticum sp.	2
Poaceae	Zea mays L.	195
Polygonaceae	Fagopyrum tataricum (L.) Gaertn	9
Polygonaceae	Polygonum alpinum All	57
Polygonaceae	Polygonum aviculare L	9
Polygonaceae	Polygonum carneum C. Koch	74
Polygonaceae	Polygonum panjutini Kharkev	5
Polygonaceae	Polygonum sp.	6
Polygonaceae	Rheum rhabarbarum L.	3
Polygonaceae	Rumex acerosa L.	77
Polygonaceae	Rumex acerosella L.	19
Polygonaceae	Rumex alpinus L.	84
Polygonaceae	Rumex crispus L.	44
Polygonaceae	Rumex icturnus L.	6
Polygonaceae	Rumex sp.	20
Polygonaceae	Rumex tuberosus L.	1
Polyopodiumaceae	Polyopodium vulgare L.	10
Polyopodiumaceae	Polyopodium squamosus (Huds.) Fr	9
Portulacaceae	Portulaca oleracea L.	85
Primulaceae	Cyclamen vernalum Sweet	5
Primulaceae	Primula leuka Rupr	1
Primulaceae	Primula macrocalyx Bunge	24
Primulaceae	Primula sp.	4
Primulaceae	Primula vulgaris subsp. rubra (Sm.) Arcang	3
Primulaceae	Primula warzowii Losinsk	18
Psathyrellaceae	Coprinus atramentarius (Bull.) Redhead, Vilgalys & Moncalvo	24
Rhamnaceae	Rhamnas flava (Schaeff) Quél	18
Ranunculaceae	Adonis aestivalis L.	2
Ranunculaceae	Clematis vitalba L.	11
Ranunculaceae	Ranunculus repens L.	2
Rhamnaceae	Rhamnas dementia Booth, Petz. & Kirchn	1
Plant / Fungal family	Plant / Fungal species	Mentions
-----------------------	------------------------	----------
Rhamnaceae	Ziziphus jujuba Mill	2
Rhododendraceae	Rhododendron caucasicum Pall	79
Rhododendraceae	Rhododendron luteum Sweet	15
Rhododendraceae	Rhododendron ponticum L	27
Rosaceae	Amelanchier vulgaris Lam	2
Rosaceae	Aruncus vulgaris Raf	31
Rosaceae	Cornus mas L	133
Rosaceae	Cotoneaster multiflorus Bunge	4
Rosaceae	Crataegus curvipespal L	34
Rosaceae	Crataegus pentagyna Waldst	48
Rosaceae	Crataegus sp.	13
Rosaceae	Cydonia oblonga L	80
Rosaceae	Dicranus indica (Andrews) Teschem	6
Rosaceae	Enkبوتia japonica (Thunb.) Lindl	27
Rosaceae	Fraxinella veica L	74
Rosaceae	Fraxinella veica L "Albaba"	1
Rosaceae	Fraxinella virginiana Mill	12
Rosaceae	Fraxinella x ananassa Duschesne ex Rozier	35
Rosaceae	Malus orientalis Uglizk	685
Rosaceae	Malus pumila Mill var. paradisica C.K. Schneid	3
Rosaceae	Malus germanica L	81
Rosaceae	Prunus racemosa (Lam.) Gilib	27
Rosaceae	Prunus luscinus Batsch	1
Rosaceae	Prunus armeniaca L	30
Rosaceae	Prunus avium (L.) L L	187
Rosaceae	Prunus cerasus L	78
Rosaceae	Prunus divaricata Ledeb	282
Rosaceae	Prunus ritisit L	62
Rosaceae	Prunus laurocerasus L	63
Rosaceae	Prunus padus L	2
Rosaceae	Prunus persica (L.) Batsch	74
Rosaceae	Prunus sp.	33
Rosaceae	Prunus spinosa L	41
Rosaceae	Prunus vachusinitii Bregaze	20
Rosaceae	Prunus vulgaris Mill	4
Rosaceae	Prunus x domestica L	296
Rosaceae	Pyracantha coccinea M. Roem	3
Rosaceae	Pyrus caucasicus Fed	232
Rosaceae	Pyrus communis L	628
Rosaceae	Rosa canina L	11
Rosaceae	Rosa pimpinellifolia Boiss	13
Rosaceae	Rosa sp.	140
Rosaceae	Rubus caesius L	27
Rosaceae	Rubus fruticosus L	104
Rosaceae	Rubus idaeus L	268
Rosaceae	Rubus saxatilis L	19
Rosaceae	Rubus sp.	60
Rosaceae	Sorbus aucuparia K. Koch	18
Rosaceae	Sorbus boissieri C.K. Schneid	2
Rosaceae	Sorbus caucasicena Kom	57
Rosaceae	Sorbus terminalis C.Crantz	20
Rubiaceae	Coffea arabica L	1
Russulaceae	Lactarius deliciosus (L. ex Fr.) S.F. Grey	31
Table 5 (continued)

Plant / Fungal family	Plant / Fungal species	Mentions
Russulaceae	*Lactarius piperatus* (L.) Pers	27
Russulaceae	*Lactifluus piperatus* (L.) Roussel	18
Russulaceae	*Lactifluus volvatus* (Fr.) Kuntze	14
Russulaceae	*Russula adusta* Pers. Fr	6
Russulaceae	*Russula emetica* (Schaeff.) Pers	6
Russulaceae	*Russula rosea* Pers	23
Russulaceae	*Russula virens* (Schaeff.) Fr	2
Rutaceae	*Citrus limon* (L.) Burm. f	15
Rutaceae	*Citrus recticulata* Blanco	5
Rutaceae	*Citrus sinensis* Osbeck	8
Rutaceae	*Citrus unshiu* Marcov	4
Rutaceae	*Citrus x paradisi* Macfald	2
Salicaceae	*Salix caprea* L	1
Sapindaceae	*Acer pseudoplatanus* L	2
Smilacaceae	*Smilax excelsa* L	91
Solanaceae	*Capsicum annuum* L	204
Solanaceae	*Capsicum annuum* L *"Sweet Bulgarian"*	100
Solanaceae	*Lycopersicum esculentum* L	316
Solanaceae	*Physalis alkekengi* L	7
Solanaceae	*Solanum melongena* L	63
Solanaceae	*Solanum pseudocapsicum* L	2
Solanaceae	*Solanum tuberosum* L	347
Sparassidaceae	*Sparassis crispa* Wulfen	6
Staphyleaceae	*Staphylea colchica* Steven	116
Strophariaceae	*Hypholoma fasciculare* (Huds.) P. Kumm	6
Suillaceae	*Suillus granulatus* (L.) Roussel	14
Suillaceae	*Suillus luteus* (L.) Roussel	17
Taxaceae	*Taxus baccata* L	12
Theaceae	*Camellia sinensis* L	2
Tricholomataceae	*Lepista sordida* (Schumach.) Singer	18
Tricholomataceae	*Tricholoma aurantium* (Schaeff.) Ricken	1
Tricholomataceae	*Tricholoma portentosum* (Fr.) Quél	17
Tropaeolaceae	*Tropaeolum majus* L	1
Ulmaceae	*Ulmus globra* Huds	3
Unidentified	Unidentified species	153
Urticaceae	*Urtica dioica* L	289
Violaceae	*Viola arvensis* L	1
Violaceae	*Viola sp.*	41
Vitaceae	*Vitis labrusca* L	26
Vitaceae	*Vitis sylvestris* W. Bartram	2
Vitaceae	*Vitis vinifera* L	538
Zingiberaceae	*Elattaria cardamomum* (L.) Maton	4

Table 6

Distribution of mentions in plant families between garden and wild plants

Families	Garden	Wild	Families	Garden	Wild
Actinidiaceae	28	0	Liliaceae	6	39
Adoxaceae	6	128	Linaceae	0	1
Agaricaceae	6	225	Lythraceae	19	13
Amanitaceae	0	16	Malvaceae	14	157
Amaranthaceae	497	350	Marasmiaceae	0	12
Families	Garden	Wild	Families	Garden	Wild
---------------------	--------	------	---------------------	--------	------
Amaryllidaceae	853	302	Melanthiaceae	0	5
Annonaceae	1	0	Moraceae	237	11
Apiaceae	1422	490	Morchellaceae	0	13
Araceae	10	19	Musaceae	3	0
Araliaceae	1	0	Myrtaceae	11	0
Asparagaceae	7	52	Oleaceae	0	7
Asteraceae	492	252	Onagraceae	0	1
Auriculatiaceae	0	10	Onocleaceae	4	31
Bankeraceae	0	10	Orobancheace	0	5
Begoniaceae	10	0	Oxalidaceae	2	1
Berberidaceae	10	42	Papaveraceae	4	28
Betulaceae	81	127	Physalacriaceae	0	93
Boletaceae	0	21	Phytolaccaceae	0	12
Boraginaceae	2	20	Pinaceae	3	44
Brassicaceae	899	99	Plantaginaceae	1	2
Campanulaceae	1	110	Pleurotaceae	2	92
Cannabaceae	39	13	Pluteaceae	0	28
Cantharellaceae	0	36	Poaceae	609	9
Caprifoliaceae	0	3	Polygonaceae	29	385
Caryophyllaceae	7	50	Polypodaceae	0	10
Clavariadelphaceae	0	5	Polyoporusaceae	0	9
Convolvulaceae	15	2	Portulacaceae	6	79
Cornaceae	22	117	Prunulaeceae	0	55
Cortinariaceae	0	1	Psathyrellaceae	0	24
Corylaceae	1	3	Ramariaece	0	12
Crassulaceae	0	32	Ranunculaceae	5	22
Cucurbitaceae	662	3	Rhamnaceae	1	2
Cupressaceae	0	2	Rhododendraceae	1	120
Dipsacaceae	0	1	Rosaciae	2683	1249
Dryopteridaceae	0	35	Rubiacaceae	1	0
Ebenaceae	53	10	Russulaceae	3	124
Elaeagnaceae	1	9	Rutaceae	34	0
Ericaceae	4	472	Salicaceae	0	1
Euphorbiaceae	1	0	Sapindaceae	0	2
Fabaceae	738	101	Smilacaceae	0	91
Fagaceae	11	128	Solanaceae	1020	19
Fiscinulaceae	0	6	Sparassidaceae	0	6
Fungi	2	225	Staphylocaceae	29	87
Gentianaceae	0	1	Strophariaceae	0	6
Geraniaceae	0	13	Suilaceae	0	31
Gomphaceae	0	6	Taxaceae	0	12
Grossulariaceae	226	99	Theaceae	2	0
Guttiferae	1	11	Tricholomataceae	0	36
Hencricaceae	0	1	Tropaeolaceae	1	0
Indet	24	126	Ulmaceae	0	3
Iridaceae	9	0	Urticaceae	31	258
Juglandaceae	222	27	Violaceae	0	42
Lamiaceae	550	403	Vitaceae	553	8
Lauraceae	23	4	Zingiberaceae	4	0
Lepiotinae	0	24			
Table 7 Pairwise comparisons with FDR p-value adjustment method of plant family usage between regions after significant PERMANOVA analysis (Table Permanova)

	Adjara	Guria	Javakheti Plateau	Kakheti	Khevsureti	Kvemo Kartli	Kvemo Racha	Kvemo Svaneti	Lechkhumi	Meskheti	Mtianeti	Samegrelo	Tori	Tusheti	Zemo Imereti	Zemo Racha
Guria	0.0019															
Javakheti Plateau	0.0019	0.0031														
Kakheti	0.0019	0.0019	0.0159													
Khevsureti	0.0019	0.0019	0.0044	0.0019												
Kvemo Kartli	0.0019	0.0072	0.0019	0.0370	0.0031											
Kvemo Racha	0.0117	0.0362	0.0019	0.0019	0.0019	0.0019										
Kvemo Svaneti	0.0209	0.0031	0.0019	0.0044	0.0019	0.0019	0.0019									
Lechkhumi	0.0608	0.0031	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019								
Meskheti	0.0209	0.0378	0.0019	0.0031	0.0031	0.0082	0.0159	0.0126	0.0019							
Mtianeti	0.0290	0.1400	0.0019	0.0290	0.0044	0.0544	0.0209	0.0095	0.1068	0.0019						
Samegrelo	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019					
Toli	0.0107	0.0299	0.0019	0.0019	0.0019	0.0031	0.0117	0.0031	0.0019	0.0393	0.0107	0.0019				
Tusheti	0.0019	0.0019	0.0031	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0031	0.0019	0.0019				
Zemo Imereti	0.0031	0.0685	0.0019	0.0290	0.0019	0.0038	0.0019	0.0019	0.0126	0.0032	0.0019	0.0019				
Zemo Racha	0.0044	0.0710	0.0082	0.0229	0.0019	0.0366	0.0159	0.0019	0.0117	0.0561	0.0019	0.0031	0.0126			0.0181
Zemo Svaneti	0.0299	0.0019	0.0019	0.0019	0.0019	0.0058	0.0082	0.0031	0.0474	0.0181	0.0019	0.0209	0.0019	0.0031	0.0019	

Analyses were based on Euclidean distance and 999 permutations.
	Adjara	Guria	Javakheti Plateau	Kakheti	Khevsureti	Kvemo Kartli	Kvemo Racha	Kvemo Svaneti	Ledkhumi	Meskheti	Mtiantei	Samegrelo	Tori	Tusheti	Zemo Imereti	Zemo Racha
Guria	0.0012															
Javakheti Plateau	0.0012	0.0012														
Kakheti	0.0012	0.0012	0.0012													
Khevsureti	0.0012	0.0012	0.0012	0.0012												
Kvemo Kartli	0.0012	0.0012	0.0012	0.0012	0.0012											
Kvemo Racha	0.0012	0.0022	0.0012	0.0012	0.0012	0.0012										
Kvemo Svaneti	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012									
Lechkhumi	0.0012	0.0065	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012								
Meskheti	0.0012	0.0022	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012							
Mtiantei	0.0055	0.0670	0.0012	0.0153	0.0012	0.0022	0.0073	0.0073	0.0012	0.0264						
Samegrelo	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012						
Tori	0.0012	0.0022	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012					
Tusheti	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012				
Zemo Imereti	0.0012	0.0073	0.0012	0.0022	0.0012	0.0012	0.0012	0.0012	0.0012	0.0083	0.0012	0.0012				
Zemo Racha	0.0033	0.0584	0.0012	0.0073	0.0012	0.0022	0.0065	0.0012	0.0012	0.0103	0.0012	0.0012	0.0033			
Zemo Svaneti	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012		

Analyses were based on Euclidean distance and 999 permutations.
Table 9: Pairwise comparisons with FDR p-value adjustment method of different plant system used (root, shoot, or both) between regions after significant PERMANOVA analysis (Table Permanova)

	Adjara	Guria	Javakheti Plateau	Kakheti	Khevsureti	Kvemo Kartli	Kvemo Racha	Kvemo Svaneti	Lechkhumi	Meskheti	Mtianeti	Samegrelo	Tori	Tusheti	Zemo Imereti	Zemo Racha
Guria		0.0065														
Javakheti Plateau	0.0187	0.0038														
Kakheti	0.4754	0.2596		0.5112												
Khevsureti	0.4093	0.0038	0.0121	0.4054												
Kvemo Kartli	0.4093	0.0139	0.0865	0.9340	0.4054											
Kvemo Racha	0.0038	0.1808	0.0038	0.0139	0.0038	0.0065										
Kvemo Svaneti	0.5393	0.0038	0.0231	0.7329	0.5763	0.6930	0.0038									
Lechkhumi	0.2596	0.2546	0.0038	0.1539	0.0744	0.0544	0.0252	0.0415								
Meskheti	0.5393	0.1396	0.0038	0.3965	0.3660	0.1808	0.0065	0.2546	0.2343							
Mtianeti	0.7807	0.2720	0.0038	0.5731	0.5139	0.4038	0.0691	0.4871	0.2629	0.6245						
Samegrelo	0.0038	0.0038	0.0065	0.0209	0.0038	0.0038	0.0038	0.0038	0.0038	0.0038	0.0038					
Tori	0.0038	0.5112	0.0038	0.0038	0.0038	0.2343	0.0038	0.0139	0.0038	0.0358	0.0038					
Tusheti	0.4054	0.0038	0.0647	0.7222	0.7025	0.6091	0.0038	0.7323	0.0375	0.2629	0.4559	0.0065				
Zemo Imereti	0.0774	0.7439	0.0038	0.0680	0.0139	0.0340	0.2125	0.0321	0.0301	0.1104	0.2510	0.0038	0.4334	0.0163		
Zemo Racha	0.6609	0.4054	0.0038	0.5273	0.4054	0.4038	0.1247	0.4054	0.6800	0.6800	0.7444	0.0065	0.1060	0.4054	0.4054	
Zemo Svaneti	0.3660	0.1060	0.0038	0.1554	0.1396	0.1168	0.0038	0.1248	0.7108	0.6622	0.6887	0.0038	0.0095	0.1168	0.2149	0.7807

Analyses were based on Euclidean distance and 999 permutations
Table 10 Pairwise comparisons with FDR p-value adjustment method of different general plant parts used (vegetative, reproductive, or both) between regions after significant PERMANOVA analysis (Table Permanova). Analyses were based on Euclidean distance and 999 permutations.

	Adjara	Guria	Javakheti Plateau	Kakheti	Khevsureti	Kvemo Kartli	Kvemo Racha	Kvemo Svaneti	Ledkhumi	Meskheti	Mtkianeti	Samegrelo	Tori	Tusheti	Zemo Imereti	Zemo Svaneti
Guria	0.0020															
Javakheti Plateau	0.0020	0.0054														
Kakheti	0.0020	0.0086	0.4630													
Khevsureti	0.0020	0.0115	0.0115	0.3372												
Kvemo Kartli	0.0020	0.0071	0.6074	0.6437	0.1026											
Kvemo Racha	0.0020	0.3166	0.0020	0.0020	0.0020											
Kvemo Svaneti	0.6074	0.0071	0.0020	0.0101	0.0020	0.0020										
Lechkhumi	0.0020	0.0054	0.0020	0.0020	0.0020	0.0020										
Meskheti	0.0302	0.3671	0.0020	0.1709	0.1593	0.0158	0.0158	0.0517	0.0020							
Mtkianeti	0.0915	0.4792	0.0020	0.5124	0.6437	0.1560	0.0666	0.0915	0.0020	0.7760						
Samegrelo	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020						
Tori	0.0020	0.1593	0.0020	0.0020	0.0020	0.0020	0.4439	0.0020	0.0020	0.0020	0.0038	0.0020				
Tusheti	0.0020	0.0038	0.1885	0.3411	0.0857	0.5533	0.0020	0.0020	0.0020	0.0130	0.1676	0.0020	0.0020		0.0020	0.3992
Zemo Imereti	0.0020	0.5440	0.0038	0.0783	0.0260	0.0558	0.0920	0.0020	0.0020	0.0915	0.1916	0.0020	0.0020	0.0508		
Zemo Racha	0.0020	0.2997	0.0526	0.3309	0.0915	0.2964	0.0535	0.0054	0.0020	0.0581	0.1511	0.0020	0.0020	0.4792	0.3992	
Zemo Svaneti	0.2802	0.0260	0.0020	0.0020	0.0020	0.0020	0.0086	0.1119	0.0020	0.0250	0.0645	0.0020	0.0101	0.0020	0.0038	0.0020
Table 11 Pairwise comparisons with FDR p-value adjustment method of specific plant parts used (bark, branches, buds, bulb, cones, flowers, fruit, latex, leaves, resin, roots, seeds, shoots, silk, stem, timber, tuber, whole plant) between regions after significant PERMANOVA analysis (Table Permanova)

Region 1	Adjara	Guria	Javakheti Plateau	Kakheti	Khevsureti	Kvemo Kartli	Kvemo Racha	Kvemo Svaneti	Lechkhumi	Meskheti	Mtianeti	Samegrelo	Tori	Tusheti	Zemo Imereti	Zemo Racha
Guria	0.0018															
Javakheti Plateau	0.0018	0.0018														
Kakheti	0.0018		0.0018	0.0267												
Khevsureti	0.0018		0.0018	0.0033	0.0697											
Kvemo Kartli	0.0018		0.0018	0.0033	0.0697		0.3999	0.0057								
Kvemo Racha	0.0018		0.01692	0.0018	0.0018	0.0018	0.0033	0.0018	0.0018							
Kvemo Svaneti	0.2045	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018							
Lechkhumi	0.0057	0.0057	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018							
Meskheti	0.0046	0.1608	0.0018	0.0603	0.0018	0.0018	0.0046	0.0173	0.0018							
Mtianeti	0.0267	0.3522	0.0018	0.3078	0.0096	0.0057	0.0324	0.0537	0.0018		0.0018					
Samegrelo	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018		0.0018	0.0018				
Tori	0.0018	0.0355	0.0018	0.0018	0.0018	0.0018	0.1349	0.0018	0.0018		0.0018	0.0018				
Tusheti	0.0018	0.0018	0.0148	0.0633	0.0433	0.0714	0.0018	0.0018	0.0018		0.0018	0.0018				
Zemo Imereti	0.0018	0.2145	0.0018	0.0870	0.0033	0.0109	0.0222	0.0018	0.0018		0.0222	0.1272	0.0018			
Zemo Racha	0.0018	0.1711	0.0018	0.2492	0.0083	0.1305	0.0267	0.0018	0.0018	0.0324	0.0668	0.0018				
Zemo Svaneti	0.0083	0.0057	0.0018	0.0018	0.0018	0.0018	0.0787	0.0046	0.0018		0.0018	0.0018				

Analyses were based on Euclidean distance and 999 permutations.
Acknowledgments
The authors thank all participants for their generous hospitality and friendship. We are hopeful that this and sub-sequent work in the area will help the communities meet their needs and aspirations.

Authors’ contributions
RWB, NYPZ, SS, ZK, DK, MK, DT, and KB designed the study; RWB, NYPZ, SS, ZK, DT, MK, and KB conducted the fieldwork, ZK and IUR conducted the main statistical analysis; RBU, NYPZ, and ZK analyzed the data and wrote the manuscript; all authors read, corrected and approved the manuscript.

Funding
This study was funded through Saving Knowledge funds. The funding body itself has no direct role in the design of the study, collection or analysis of the data and use of results.

Availability of data and materials
The anonymized raw data are deposited under Open Science Network: https://osf.io/9kdtw/?view_only=93a8748c003f4770bc4a2bb332b647429

Declarations

Ethics statement
Before conducting interviews, prior informed consent was obtained from all participants. No further permissions or ethics approval were required.

Consent for publication
This manuscript does not contain any individual person’s data, and further consent for publication is not required.

Competing interests
The authors declare that they have no competing financial interest.

Author details
1. Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Botanikuri St. 1, 0105 Tbilisi, Georgia. 2. Herbario Nacional de Bolivia, Instituto de Ecología-UMSA, Campus Universitario, Cota Cota Calle 27, La Paz, Bolivia. 3. Department of Botany, Hazara University, Mansehra 21300, KP, Pakistan.

Received: 27 July 2021 Accepted: 19 October 2021
Published online: 31 December 2021

References
1. Bussmann RW, Paniagua-Zambrana NY, Sikharulidze S, Kikvidze Z, Stanisic M, editors. Legal aspects of european forest sustainable development. Forstwiss Beitr. 2006;35:176–181.
2. Javakhishvili I. Sakartvelos ekonomiuri istoria (Economic History of Georgia), (Ed. 2). Vol.S. Metsniereba: Tbilisi, 1987. (In Georgian).
3. Finlayson C. Biogeography and evolution of the genus Homo. Tr Ecol Evol. 2005;20(8):457–63.
4. Galabura L, Vekua A, Swischer C, Ferling R, Justus A, Nioradze M, Ponce de Leon M, Tappen M, Tvalchrelidze M, Zollikofer C. Earliest Pleistocene hominoid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 2000;288(5578):85–89.
5. Galabura L, Vekua AA. Plio-Pleistocene hominid from Dmanisi, East Georgia. Caucasus Nature. 1995;373(6514):509–12.
6. Adler DS, Bar-Oz G. Seasonal patterns of prey acquisition during the Middle and Upper Paleolithic of the southern Caucasus. In: Hublin JJ, Richards M, editors. The evolution of hominin diets: Integrating approaches to the study of Palaeolithic subsistence. Leipzig: Springer; 2009. p. 127–40.
7. Melikishvili G, editor. Sakartvelos istoris narkvevebi (Historical essays of Georgia). Tbilisi, 1970. (In Georgian).
8. Ramishvili R, Dikarastuishi vinograd Zakavakaia (Wild Grape of the South Caucasus). Ganatleba Tbilisi, 1988. (In Russian)
9. Markopishvili I, Kvavadze E. Some popular medicinal plants and diseases of the Upper Palaeolithic in Western Georgia. J Ethnopharmacol. 2015;166:42–52.
10. Dekaprelevich L, Menabde V. Kizucheniu polevykh kultur zapadnoi kavkasionze (Materials on zonal distribution of cultivated plants in the Greater Caucasus). Agricultural National Committee Press: Tbilisi, 1928. (In Georgian).
11. Ketskhoveli N. Masalë kulturul mtsenareta zonalobis shesastsavlad kavkasonze (Materials on zonal distribution of cultivated plants in the Greater Caucasus). Tbilisi: Georgian Academy of Sciences Press; 1938. (In Georgian).
12. Menabde V. Pshenitsi Gruzii (Wheats of Georgia). Tbilisi: Georgian Academy of Sciences Press; 1948. (In Russian).
13. Akhalkatsi M. Conservation and sustainable use of crop wild relatives in food and agriculture in Georgia. Ministry of Agriculture: Tbilisi; 2008.
14. Alizade V, Kikodze D, Geltman D, Ekim T. Development of Plant Red List in Georgia. Caucasus Nature. 1995;373(6514):509–12.
15. Bussmann RW, Paniagua-Zambrana NY, Sikharulidze S, Kikvidze Z, Stanisic M, editors. Legal aspects of european forest sustainable development. Forstwiss Beitr. 2006;35:176–181.
33. Akhalkatsi M, Girgviliani T. Landraces and wild species of the Secale genus in Georgia (Caucasus ecoregion). Agr Res Tech. 2016;1(4).

34. Castañeda-Alvarez NP, Khoury CK, Achicanoay BA, Bernau V, Dimpewolf H, Eastwood RJ, Guarrini L, Harker RH, Jarvis A, Maitland M, Muller JV, Ramirez-Villejas J, Sosa CC, Struk-P, Vincent H, Toll J. Global conservation priorities for crop wild relatives. Nat Plants. 2016; https://doi.org/10.1038/NPLANTS.2016.22.

35. Kan M, Kucukcan M, Kusmankin A, Ozdemir F, Qislet C. Wheat landraces in farmer’s fields in Turekey. Food and Agricultural Organization of the United Nations: Ankara; 2015.

36. Asanidze Z, Akhalkatsi M, Gvritishvili M. Comparative morphometric study and relationships between the Caucasian species of wild pear (Pyrus spp.) and local cultivars in Georgia. Flora. 2011;206:974–86.

37. Akhalkatsi M, Kimeridze M, Maisaia I, Mosulishvili M. Flawless Profits. Cauc Env. 2005;4(13):34–7.

38. Pieroni A, Sõukand R, Bussmann RW. The inextricable link between food and linguistic diversity: wild food plants among diverse minorities in NE Georgia. Caucasus Econ Bot. 2020;74:379–97.

39. Batsatsashvili K, Kikvidze Z, Bussmann RW, editors. Ethnobotany of mountain regions - far Eastern Europe. Cham: Springer International Publishing; 2020.

40. Batsatsashvili K, Kikvidze Z, Bussmann RW, editors. Ethnobotany of Mountain Regions - Central Asia and Altai. Cham: Springer International Publishing; 2020.

41. Bussmann RW, editor. Ethnobotany of the Caucasus. Cham: Springer International Publishing; 2017.

42. Bussmann RW, Panagia Zambrana NY, Sifikarilude S, Kikvidze Z, Darchidze M, Manvelidze Z, Khvitsishvili M, Batsatsashvili K, Hart RE. Form the sea to the mountains - plant use in Ajara, Samegrelo and Kvemo Svaneti, Sakartvelo (Republic of Georgia). Caucasus. Ethnobot Res Appl 2020;20(9): https://doi.org/10.32859/era.2019.1-34.

43. Bussmann RW, Panagia Zambrana NY, Sifikarilude S, Kikvidze Z, Kikokide D, Tchelidze D, Khvitsishvili M, Batsatsashvili K, Hart RE. An ethnobotany of Kakhiyetti and Kvemo Kartli, Sakartvelo (Republic of Georgia). Caucasus. Ethnobot Res Appl. https://doi.org/10.32859/era.19.471-28.

44. Bussmann RW, Panagia Zambrana NY, Sifikarilude S, Kikvidze Z, Kikokide D, Tchelidze D, Batsatsashvili K, Hart RE. Unequal brothers - plant and fungal use in Guria and Racha, Sakartvelo (Republic of Georgia). Caucasus Ind J Trad Know. 2018;17(1):7–33.

45. Bussmann RW, Panagia Zambrana NY, Sifikarilude S, Kikvidze Z, Kikokide D, Tchelidze D, Batsatsashvili K, Hart RE. Plant and fungal use in Tusheti, Khvevureti and Pshavi, Sakartvelo (Republic of Georgia). Caucasus. Act Soc Bot Pol. 2017;86(2):3517. https://doi.org/10.5586/aspb.3517.

46. Bussmann RW, Panagia Zambrana NY, Sifikarilude S, Kikvidze Z, Kikokide D, Tchelidze D, Batsatsashvili K, Hart RE. Plants in the spa - the medicinal plant market of Borjomi, Sakartvelo (Republic of Georgia). Caucasus. Ind J Trad Know. 2017;16(1):25–34.

47. Bussmann RW, Panagia Zambrana NY, Sifikarilude S, Kikvidze Z, Kikokide D, Tchelidze D, Batsatsashvili K, Hart RE. Ethnobotany of Samtskhe-Javakheti, Sakartvelo (Republic of Georgia). Caucasus. Ind J Trad Know. 2017;16(1):7–24.

48. Bussmann RW, Panagia Zambrana NY, Sifikarilude S, Kikvidze Z, Kikokide D, Tchelidze D, Batsatsashvili K, Hart RE. Ethnobotany of the Iberian peninsula: description, motivation for gardening, and gross financial benefits. J Sust Agr. 2010;8(1):1–15.

49. Bussmann RW, Panagia Zambrana NY, Sifikarilude S, Kikvidze Z, Kikokide D, Tchelidze D, Batsatsashvili K, Hart RE. Home gardens: a study in three mountain areas of the Iberian peninsula. Econ Bot. 2010;64(3):235–47.

50. Vogl-Lukasser B, Vogl CR, Günter M, Heckler S. Plant species with spontaneous reproduction in home gardens in Eastern Tyrol (Austria): perception and management by women farmers. Ethnobot Res Appl. 2010:8–1.

51. Haghdad R. Vascular Plants of Georgia. A Nomenclatural Checklist. Metsniereba; 2005. (In. დაცუბინის ქართული ფეხლივთა ჩსხეულივში. თხეთ კართულკარგული დღე ქართული. 2005).

52. Makashvili A. 1991. Botanical Dictionary. Plant Names. 3rd ed. Tbilisi.

53. Makashvili A. Flora of Tbilisi and environs. Metsniereba: Tbilisi; 1952–1953. (In. თბილისის ქართული ფეხლივთა სპონტანური გარშემოვანი დღე ქართული. თხეთ კართულკარგული დღე ქართული. 1952–1953).

54. Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc. 2009;161(1):105–21.

55. Bussmann et al. Journal of Ethnobiology and Ethnomedicine (2021) 17:72 Page 44 of 46
Bussmann, J. Ethnobiol Ethnomed. 2015;11:26. https://doi.org/10.1186/s13002-015-0002-x.

75. Dogan Y, Nedelcheva A. Wild plants from open markets on both sides of the Bulgarian-Turkish border. Ind J Trad Know. 2015;14(3):351–8.

76. Ferrier, J, Sacirbey L, Trakli S, Chen ECH, Gendron RL, Guenier A., Balick MJ, Redić S, Alkadić E, Arnason JT. An ethnobotany of the Lukomir Highlanders of Bosnia & Herzegovina. J Ethnobiol Ethnomed. 2015;11:81. https://doi.org/10.1186/s13002-015-0066-5.

77. Guarrera A, Savo V. Wild food plants used in traditional vegetable mixtures in Italy. J Ethnopharmacol. 2015;165:202–34.

78. Licata M, Tuttolomondo T, Leco C, Virga G, Cammalleri I, Gennaro MC, La Bella S. A survey of wild plant species for food use in Sicily (Italy) - results of a 3-year study in four Regional Parks. J Ethnobiol Ethnomed. 2016;12:12. https://doi.org/10.1186/s13002-015-0074-7.

79. Łuczaj Ł, Dolina K. A hundred years of change in wild vegetable use in southern Herzegovina. J Ethnopharmacol. 2015;166:297–304.

80. Łuczaj Ł, Pieroni A, Poleszyk T. Traditional plant knowledge in the white Carpathians: ethnobotany of wild food plants and crop wild relatives in the Czech Republic. Hum Ecol. 2017;45(1):1–17. https://doi.org/10.1007/s10722-017-9938-x.

81. Łuczaj Ł, Szymański WM. Wild vascular plants gathered for consumption and future alternatives for traditionally consumed wild vegetables. J Ethnopharmacol. 2014;149(4):44–67.

85. Molina M, Tardío J, Aceituno-Mata L, Morales R, Reyes-García V, Pardo-de-Santayana M. Traditional uses of wild food plants, medicinal plants, and domestic remedies in Albanian, Aromanian and Macedonian villages in South-Eastern Albania. J Ethnopharmacol. 2015;166:361–74.

98. Nedelcheva A, Pieroni A, Dogan Y. Folk food and medicinal botanical knowledge among the last remaining Yörüks of the Balkans. Act Soc Bot Pol. 2017;86(2):5522. https://doi.org/10.5386/aspb.5522.

99. Pawera L, Łuczaj L, Pieroni A, Poleszyk T. Traditional plant knowledge among Albanians and Aromanians living in the Rraicë and Mokra District, Pakistan. Sustainability. 2021;13:1500. https://doi.org/10.3390/su12115002.

102. Pieroni A, Sõukand R, Amin HIM, Zahir H, Kukk T. Celebrating multicultural and religious co-existence in Central Kurdistan: the bio-culturally diverse traditional gathering of wild vegetables among Yazidis, Assyrians, and Muslim Kurds. Hum Ecol. 2018;46:217–27. https://doi.org/10.1007/s10745-018-9978-y.

103. Pieroni A, Sõukand G, Amin HIM, Zahir H, Kukk T. Celebrating multicultural and religious co-existence in Central Kurdistan: the bioculturally diverse traditional gathering of wild vegetables among Yazidis, Assyrians, and Muslim Kurds. Hum Ecol. 2018;46:217–27. https://doi.org/10.1007/s10745-018-9978-y.

104. Mattila G, Sõukand R, Corvo P, Pieroni A. Dissymmetry at the border: wild food and medicinal ethnobotany of Slovenes and Friulians in NE Italy. Econ Bot. 2020;74(1):1–14.

105. Mattila G, Sõukand R, Corvo P, Pieroni A. Wild food thistle gathering and pastoralism: an intricate link in the biocultural landscape of Barbagia, Central Sardinia (Italy). Sustainability. 2020;12:5103. https://doi.org/10.3390/su1225105.

106. Mattila G, Sõukand R, Pieroni A, Sõukand R. Knowledge transmission patterns at the border: ethnobotany of Hutuls living in the Carpathian Mountains of Bukovina (SW Ukraine and NE Romania). J Ethnobiol Ethnomed. 2020;16:41. https://doi.org/10.1186/s13002-020-00991-3.

107. Kaliszewska I, Kołodziejska-Degórska I. The social context of wild food in the Greater Caucasus Range. Azerbaijan Biodiv Cons. 2015;66:1495–513.
113. Pieroni A, Housepyan R, Manduzai AK, Sóukand R. Wild food plants traditionally gathered in central Armenia: archaic ingredients or future sustainable foods? Env Dev Sust. 2021;23:2358–81. https://doi.org/10.1007/s10668-020-00678-1.

114. Nanagulyan S, Zakaryan N, Kartashyan N, Piwowarczyk R, Łuczaj Ł. Wild plants and fungi sold in the markets of Yerevan (Armenia) Nanagulyan et al. J Ethnobiol Ethnomed. 2020;16:26. https://doi.org/10.1186/s13002-020-00375-3.

115. Kang Y, Łuczaj L, Kang J, Zhang S. Wild food plants and wild edible fungi in two valleys of the Qinling Mountains (Shaanxi, central China). J Ethnobiol Ethnomed. 2013;9:26.

116. Luo B, Liu B, Zhang H, Zhang H, Li X, Ma L, Wang Y, Bai Y, Zhang X, Li J, Yang J, Long C. Wild edible plants collected by Hani from terraced rice paddies agroecosystem in Honghe Prefecture, Yunnan. China J Ethnobiol Ethnomed. 2019;15:56. https://doi.org/10.1186/s13002-019-0336-x.

117. Ju Y, Zhao J, Liu B, Long C. Eating from the wild: diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan, China. J Ethnobiol Ethnomed. 2013;9:28.

118. Kang Y, Łuczaj L, Kang J, Wang F, Hou J, Guo Q. Wild food plants used by the Tibetans of Gongba Valley (Zhouqu county, Gansu, China). J Ethnobiol Ethnomed. 2014;10:20.

119. Li F, Zhao J, Liu B, Jarvis D, Long C. Ethnobotanical study on wild plants used by Lhoba people in Milin County, Tibet J Ethnobiol Ethnomed. 2015;11:23. https://doi.org/10.1186/s13002-015-0009-3.

120. Kang J, Kang Y, Ji X, Guo Q, Jacques G, Pietras M, Łuczaj N, Li D, Łuczaj Ł. Wild food plants and fungi used in the mycophilous Tibetan community of Zhagana (Tewo County, Gansu, China). J Ethnobiol Ethnomed. 2016;12:21. https://doi.org/10.1186/s13002-016-0094-y.

121. Akhalkatsi M, Mosulisvili M, Kimeridze M, Miasai M. Conservation and sustainable utilization of rare medicinal plants in Samechke-Javakheti. Tbilisi, 2008. p. 1–200.

122. Akhalkatsi M, Fritsch RM, Maisaic I, Nakhsutrsivili G, Pistrick K. Habits of Allium species in Georgia. Keusgen M, Fritsch RM, editors. Proceedings of the first Kabegi workshop on „Botany, taxonomy and phytochemistry of wild Allium L. species of the Caucasus and Central Asia,” June 4–8; 2007. p. 45–52.

123. Nakhsutrsivili G, Akhalkatsi M, Abdaladze O. Main threats to mountain biodiversity in Georgia. Mt For Bull. 2009;9(2):15–8.

124. Akhalkatsi M, Ekhaia J, Mosulisvili M, Nakhsutrsivili G, Abdaladze O, Batatsashvili K. Reasons and processes leading to the erosion of crop genetic diversity in mountainous regions of Georgia. Mt Res Dev. 2010;30(3):304–10.

125. Schunko C, Grasser S, Vogl CR. Explaining the resurgent popularity of the wild: motivations for wild plant gathering in the Biosphere Reserve Grosses Walsertal, Austria. J Ethnobiol Ethnomed. 2015;11:55. https://doi.org/10.1186/s13002-015-0032-4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.