X-ray spectral components of the blazar and binary black hole candidate OJ 287 (2005-2020)

Komossa, S.; Grupe, D.; Parker, M.L.; Gómez, J.L.; Valtonen, M.J.; Nowak, M.A.; Jorstad, S.G.; Haggard, D.; Chandra, S.; Ciprini, S.; Dey, L.; Gopakumar, A.; Hada, K.; Markoff, S.; Neilsen, J.

DOI
10.1093/mnras/stab1223

Publication date
2021

Document Version
Final published version

Published in
Monthly Notices of the Royal Astronomical Society

Link to publication

Citation for published version (APA):
Komossa, S., Grupe, D., Parker, M. L., Gómez, J. L., Valtonen, M. J., Nowak, M. A., Jorstad, S. G., Haggard, D., Chandra, S., Ciprini, S., Dey, L., Gopakumar, A., Hada, K., Markoff, S., & Neilsen, J. (2021). X-ray spectral components of the blazar and binary black hole candidate OJ 287 (2005-2020). Monthly Notices of the Royal Astronomical Society, 504(4), 5575-5587. https://doi.org/10.1093/mnras/stab1223
X-ray spectral components of the blazar and binary black hole candidate OJ 287 (2005–2020)

S. Komossa,1,⋆ D. Grupe,2 M. L. Parker,3,4 J. L. Gómez,5 M. J. Valtonen,6,7 M. A. Nowak,8 S. G. Jorstad,9,10 D. Haggard,11,12 S. Chandra,13 S. Ciprini,14,15 L. Dey,16 A. Gopakumar,16 K. Hada,17 S. Markoff,18 and J. Nielsen19

Affiliations are listed at the end of the paper

Accepted 2021 April 23. Received 2021 April 16; in original form 2021 January 13

ABSTRACT

We present a comprehensive analysis of all XMM–Newton spectra of OJ 287 spanning 15 yr of X-ray spectroscopy of this bright blazar. We also report the latest results from our dedicated Swift UVOT and XRT monitoring of OJ 287, which started in 2015, along with all earlier public Swift data since 2005. During this time interval, OJ 287 was caught in extreme minima and outburst states. Its X-ray spectrum is highly variable and encompasses all states seen in blazars from very flat to exceptionally steep. The spectrum can be decomposed into three spectral components: Inverse Compton (IC) emission dominant at low-state, supersoft synchrotron emission that becomes increasingly dominant as OJ 287 brightens, and an intermediately-soft (steep). The spectrum can be decomposed into three spectral components: Inverse Compton (IC) emission dominant at low-state, supersoft synchrotron emission that becomes increasingly dominant as OJ 287 brightens, and an intermediate-soft (steep).

Key words: galaxies: active – galaxies: jets – galaxies: nuclei – quasars: individual: OJ 287 – X-rays: galaxies.

1 INTRODUCTION

The blazar OJ 287 is perhaps the first identified multimessenger source among extragalactic supermassive black holes (SMBHs). As one of the best candidates for hosting a compact supermassive binary black hole (SMBBH) and known as a bright blazar, it has been intensely observed across the electromagnetic regime. Further, modelling of its optical/IR light curve has revealed evidence for mild orbital shrinkage due to the emission of gravitational waves (GWs; Valtonen et al. 2008; Laine et al. 2020). While not yet directly detected, GWs from this system may become measurable with the next generation of pulsar-timing arrays (PTAs) based on planned radio-telescope facilities (Yardley et al. 2010).1

Coalescing SMBBHs that form in galaxy mergers are the loudest sources of low-frequency GWs in the universe (Centrella et al. 2010; Kelley et al. 2019). An intense electromagnetic search for wide and close binaries in all stages of their evolution is therefore ongoing (review by Komossa & Zensus 2016). While wide pairs can be identified by spatially resolved imaging spectroscopy, indirect methods are required for detecting the most compact, evolved systems. These latter systems are well beyond the ‘final parsec’ in their evolution (Begelman, Blandford & Rees 1980; Colpi 2014) and in a regime where GW emission contributes to, or dominates, their orbital shrinkage. Semi-periodicity in light curves has become a tool for selecting these small-separation SMBBH candidates (e.g. Graham et al. 2015).

OJ 287 is a nearby, bright BL Lac object at redshift $z = 0.306$ and among the best candidates to date for hosting a compact SMBBH (Sillanpaa et al. 1988; Valtonen et al. 2016). Its unique optical light curve spans more than a century and dates back to the late 19th century. It shows optical double peaks every ~12 yr, which have been interpreted as arising from the orbital motion of a pair of SMBHs, with an orbital period on that order (~9 yr in the system’s rest frame).

While different variants of binary scenarios of OJ 287 were considered in the past (e.g. Lehto & Valtonen 1996; Katz 1997; Villata et al. 1998; Valtaoja et al. 2000; Liu & Wu 2002; Qian 2015; Britzen et al. 2018; Dey et al. 2018), the best explored and most successful model explains the double peaks as the times when the secondary SMBH impacts the disc around the primary twice during its ~12-yr orbit (‘impact flares’ hereafter). The most recent orbital two-body modelling is based on 4.5 order post-Newtonian dynamics and successfully reproduces the overall long-term light curve of OJ 287 until 2019 (Valtonen et al. 2016; Dey et al. 2018; Laine et al. 2020, and references therein), with impact flares observed most recently in 2015 and 2019. The model requires a compact binary with a semimajor axis of 9300 AU with a massive primary SMBH of $1.8 \times 10^{10} M_\odot$, and a secondary of $1.5 \times 10^8 M_\odot$. Because of the strong general-relativistic precession of the secondary’s orbit, $\Delta \Phi = 38^\circ$ per orbit, the impact flares are not always separated by 12 yr, instead their separation varies strongly with time in a predictable

* E-mail: astrokomossa@gmx.de

1PTAs detect GWs by measuring their effect on pulsar timing.
manner. In addition to the impact flares, the model predicts ‘after-flares’ when the impact disturbance reaches the inner accretion disc (Sundelius et al. 1997; Valtonen et al. 2009; Pihajoki et al. 2013), identified most recently with the bright X-ray–UV–optical outburst in 2020 (Komossa et al. 2020a).

First detected as a radio source during the Vermilion River Observatory Sky Survey (Dickel et al. 1967) and the Ohio Sky Survey (Kraus 1977), OJ 287 has been studied extensively in the radio regime. Its relativistic jet is pointing at us with an average viewing angle of ≈2° (Jorstad et al. 2005; Agudo et al. 2012) and shows remarkable short-time-scale variability interpreted as a turbulent injection process and/or a clumpy accretion disc structure (Agudo et al. 2012) or as a binary-induced wobble (Valtonen & Pihajoki 2013; Dey et al. 2021). The inner jet is the source of highly variable γ-rays (e.g. Agudo et al. 2011; Hodgson et al. 2017) and displays strong and variable radio polarization (e.g. Aller et al. 2014; Cohen et al. 2018; Myserlis et al. 2018). Though only faintly detectable in the very-high-energy (VHE) band (≈100 GeV; Mukherjee et al. 2017; O’Brien 2017), OJ 287 is a well-known X-ray emitter and has been detected with most major X-ray observatories, including Einstein (Madejski & Schwartz 1988), EXOSAT (Sambruna et al. 1994), ROSAT (Comastri, Molendi & Ghisellini 1995), BeppoSAX (Massaro et al. 2003), ASCA (Iesawa et al. 1997), the Neil Gehrels Swift observatory (Swift hereafter; Massaro et al. 2008), Suzaku (Seta et al. 2009), XMM–Newton (Ciprini et al. 2007), and most recently with NuSTAR (Komossa et al. 2020a). These observations established OJ 287 as a bright and variable X-ray source, and allowed single-component X-ray spectral fits. Its (0.5–10) keV X-ray spectrum was interpreted as a mix of synchrotron and inverse-Compton (IC) emission, with the former more variable (Urry et al. 1996). OJ 287 is found most of the time in a rather flat spectral state with a photon index Γ_x ≈ 1.5–1.9, though Γ_x is as steep as 2.6 during one ROSAT observation (Urry et al. 1996) in the band (0.1–2.4) keV. Its steepest state, with an equivalent Γ_x = 2.8, (better fit with a logarithmic parabolic model) was detected with XMM–Newton in the band (0.3–10) keV, which caught the source right at the peak of one of the brightest X-ray outbursts measured so far (Komossa et al. 2020a). Imaging with the Chandra X-ray observatory has revealed a long, curved X-ray jet consisting of multiple knots and extending out to 20 arcsec or a de-projected scale of 1 Mpc, and bright central emission (Marscher & Jorstad 2011).

The optical spectrum of OJ 287 is often featureless, even though some narrow emission lines and broad Hα are occasionally detected in low states and have been used to determine the redshift of OJ 287 (Sitko & Junkkarinen 1985; Stickel, Fried & Kuehr 1989). Hα had decreased by a factor of 10 when re-observed in 2005–2008 (Nilsson et al. 2010). The overall faintness of the broad Balmer lines is the basis for the classification of OJ 287 as a BL Lac object.

We are carrying out a dedicated multiyear, multifrequency monitoring program of OJ 287 with Swift and in the radio regime. This MOMO program (for Multiwavelength Observations and Modelling of OJ 287) includes a search for outbursts and explores and tests facets of the binary SMBH model. Previous results from this program were presented by Komossa et al. (2017, flux and spectral evolution during the 2016/2017 outburst with Swift), by Myserlis et al. (2018, radio monitoring), and by Komossa et al. (2020a, 2020b, 2020 outburst and long-term light curve; ‘paper I’ hereafter). Exceptional outbursts or low states of OJ 287 detected by us with Swift were initially reported within days in a sequence of Astronomer’s Telegrams (e.g. Komossa et al. 2015; Grupe, Komossa & Gomez 2016; Grupe, Komossa & Falcone 2017; Komossa, Grupe & Gomez 2018, 2020b; Komossa et al. 2020c,d) to inform the community and encourage observations in bands not densely covered by our campaigns, like the near-infrared (Kushwaha et al. 2018). Independent of the binary’s presence, OJ 287 is a nearby bright blazar, and dense multifrequency monitoring and high-resolution X-ray spectroscopy are powerful diagnostics of jet and accretion physics in blazars. Results of the MOMO program continue to be presented in a sequence of publications. Here, in the fourth study, we present XMM–Newton and Swift X-ray spectroscopy of OJ 287, spanning a time interval of 1.5 decades and covering the most extreme X-ray flux and spectral states so far observed.

This paper is structured as follows. In Section 2 we discuss the long-term Swift data with focus on the X-ray spectral variability properties and a softer-when-brighter variability pattern. A spectral and temporal analysis of all XMM–Newton data of OJ 287 is provided in Section 3. In Section 4, implications for emission models and the binary SMBH nature of OJ 287 are discussed. A summary and conclusions are provided in Section 5. A cosmology (Wright 2006) with h_0 = 70 km s^{-1} Mpc^{-1}, Ω_M = 0.3, and Ω_Λ = 0.7 is used throughout this paper.

2 SWIFT DATA ANALYSIS AND SPECTRAL FITS

2.1 Swift XRT

We have monitored OJ 287 with Swift (Gehrels et al. 2004) since 2015 December (Komossa et al. 2017, 2020a, our Fig. 1). A cadence of ~3–7 d was employed and increased to 1–2 d at some epochs of outbursts or low states. We also enhanced the already dense monitoring cadence of OJ 287 during the epochs of the Event Horizon Telescope (EHT hereafter; Event Horizon Telescope Collaboration et al. 2019) coverage in 2017 April and 2018.

Our monitoring was resumed in 2020 September (Fig. 2; OBS-ID 35905-89, ..., 35905-117), when OJ 287 became visible again after its Swift Sun constraint. We found that the bright 2020 April–May outburst was over, and OJ 287 was caught in a deep low-state at all wavebands. The light curve is reported here for the first time. The community was informed about the low-state in an Astronomer’s Telegram (Komossa et al. 2020d). During these new 2020 observations, the Swift XRT (Burrows et al. 2005) was operating in photon counting (PC) mode (Hill et al. 2004). Exposure times range between 0.5 and 2 ks.

To inspect the long-term light curve, and obtain the X-ray and UVOT flux evolution before and after the epochs of the early XMM–Newton observations (Section 3) as well, we have also created the Swift UVOT and XRT light curve of OJ 287 between 2005 and 2015 based on all public archival data. Further, we have added all of the few data after 2015 that were not part of our own dedicated monitoring program. Before late 2015, the Swift coverage of OJ 287 was overall more sparse, with the exception of a dense monitoring campaign in mid-2015 (Pi. R. Edelson). Many of the remaining pre-2015 data were obtained in the course of a blazar monitoring program (Massaro et al. 2008; Stroh & Falcone 2013; Williamson et al. 2014; Siejkowski & Wierochska 2017) and a dedicated early study of OJ 287 (Valtonen et al. 2016). The majority of these XRT data were taken in PC mode, while data above ~1 counts s^{-1} were obtained in windowed timing (WT) mode (Hill et al. 2004).

X-ray count rates were determined using the XRT product tool at the Swift data centre in Leicester (Evans et al. 2007). To carry out the X-ray spectral analysis, source photons were extracted within a circle of 47-arcsec radius. OJ 287 is off-axis in most observations, as is typical for Swift monitoring programs. The source extraction size does include the 20-arcsec X-ray jet detected with the Chandra.
Figure 1. Swift X-Ray Telescope (XRT) and UV–Optical Telescope (UVOT) light curves of OJ 287 between 2005 and 2020 December since the beginning of Swift monitoring. Epochs of XMM–Newton observations are marked by vertical, dashed, red lines. The observed X-ray flux (0.3–10 keV, corrected for Galactic absorption) and the optical–UV fluxes (corrected for extinction) are given in units of 10^{-11} erg s$^{-1}$ cm$^{-2}$.

observatory. However, the integrated Chandra ACIS-S jet emission of ~ 0.03 counts s$^{-1}$ with an average $\Gamma_x = 1.61$ (Marscher & Jorstad 2011) only amounts to a Swift XRT count rate of 0.009 counts s$^{-1}$, negligibly contributing to the integrated emission even in X-ray low states. Background photons were collected in a nearby circular region of radius 236 arcsec. X-ray spectra in the band (0.3–10) keV were then generated and the software package XSPEC (version 12.10.1f; Arnaud 1996) was used for analysis.

Swift data above a count rate of ~ 0.7 counts s$^{-1}$ are affected by pile-up. To correct for it, the standard procedure was followed of first creating a region file where the inner circular area of the PSF was excluded from the analysis. The loss in counts is then corrected by creating a new ancillary response file based on this annular region that is used in XSPEC to correct the flux measurement.

Spectra were fit with single power laws of photon index Γ_x adding Galactic absorption (Wilms, Allen & McCray 2000) along our line-
Figure 2. 2020 Swift light curve (XRT count rate in counts s$^{-1}$, photon index Γ, and observed UVOT magnitudes in the VEGA system) of OJ 287 obtained in the course of the MOMO program, including the 2020 April–June outburst (Komossa et al. 2020a) and the newly detected deep 2020 September optical–UV low state when OJ 287 emerged from Swift Sun constraint. Error bars are always reported, but are often smaller than the symbol size.

OJ 287 displays a strong softer-when-brighter variability pattern, shown in Fig. 3. During outbursts, the photon index increases as the count rate rises, and then saturates at the highest count rates. OJ 287 is never found in a flat-spectrum state when brightest. A correlation analysis for the whole data set gives a Spearman rank order correlation coefficient $r_s = 0.61$ and a Student’s T-test of $T_5 = 23$. For $N = 681$ observations, this corresponds to a probability of a random result of $P < 10^{-8}$. For the epoch including the 2016/2017 outburst (blue data points of Fig. 3), we find $r_s = 0.55$, $T_5 = 7.4$, and $P < 10^{-8} (N = 125)$, and for the 2020 outburst (red data points), we obtain $r_s = 0.8$, $T_5 = 11.8$, and $P < 10^{-8} (N = 79)$. This analysis shows that the data are correlated. Always, the probability of a random result is $P < 10^{-8}$.

2.2 Swift UVOT

We also observed OJ 287 with the UVOT (Roming et al. 2005) in all six filters [V (5468 Å), B (4392 Å), U (3465 Å), $UVW1$ (2600 Å), $UVM2$ (2246 Å), $UVW2$ (1928 Å); where values in brackets are the filter central wavelengths] since the end of 2015 to obtain spectral energy distribution information of this rapidly varying blazar. Public archival data since 2005 were added to the analysis.
when OJ 287 was at low- to intermediate-brightness states. The 2020 high-state observation was acquired in small-window mode. In these partial-window modes, only a part of the whole CCD is used to collect data in order to minimize the effect of photon pile-up.

The XMM–Newton data were reduced using the Science Analysis Software (SAS) version 18.0.0. Data were checked for epochs of flaring particle background, and the corresponding time intervals were excluded from the analysis resulting in effective exposure times listed in Table 1. EPIC-pn and EPIC-MOS spectra (Strüder et al. 2001) were extracted in a circular region of 20-arcsec radius centred on the source position, while background photons were collected in a nearby region of ∼50-arcsec for the pn and ∼100-arcsec for the MOS instruments. Reflection Grating Spectrometer (RGS; den Herder et al. 2001) data of the 2018 observation were inspected. We used RGSPROC with standard settings to extract the spectra and background for each detector, and combined the first-order spectra from the two instruments into a single higher signal spectrum. The pn and MOS data were binned to a signal-to-noise ratio of at least 6, and to oversample the instrumental resolution by a factor of at least 3. The RGS spectrum was rebinned by a factor of 8.

3.2 Spectral fits

To carry out the spectral analysis, spectra were fit with several emission models (Table 2) that are typical for the X-ray spectra of blazars, including a power law, a power law plus soft excess emission parametrized either as a blackbody component or second power law or a curved logarithmic parabolic power-law model (logpar hereafter). These latter models are power laws with an index that varies as a log parabola in energy (Massaro et al. 2004), with \(N(E) = N_0 (E/E_1)^{-\alpha - \beta \log(E/E_1)} \), where \(N_0 \) is the number of photons, \(N_0 \) is the normalization, \(E_1 \) is the pivot energy fixed at 1 keV, \(\beta \) is the curvature parameter, and \(\alpha \) is the slope at the pivot energy. The various models are chosen with different scenarios in mind: The single power law is the most common emission model and visualizes the deviations from such a simple model, if any. In two-component models, a power law is always included to represent the high-energy emission component of OJ 287 typically of IC origin. A blackbody emission component is added to represent any kind of soft excess, including possibly (but unlikely) from any temporary accretion disc of the secondary SMBH. The logpar model is representative of a sum of different synchrotron components and is commonly used in the analysis of blazar spectra. Neutral absorption along our line of sight within our Galaxy is always included (modelled with TBnew\(^3\); Wilms et al. 2000). In single-component power-law fits, additional absorption at \(z = 0.306 \) was added and left free to vary.\(^4\) \(\chi^2 \) statistics were used to evaluate the goodness of the fit when carrying out the X-ray spectral analysis.

3.3 Spectral fit results

Results from single power-law fits of all data sets are displayed in Fig. 5. It is common to display fit residuals of single power-law fits because these allow to visualize the residuals of this simple standard

\(^3\)https://pulsar.sternwarte.uni-erlangen.de/wilms/research/tbabs/.

\(^4\)The most common source of absorption in blazars is the interstellar medium of the host galaxy. In rare cases, single BLR (or NLR) clouds of large column density can be located along the line of sight between the jet (knot) and the observer. Other sources of absorption (ionized or neutral) can be accretion-disc winds or ionized outflows driven by jet-cloud interactions.

Figure 3. Variability of the photon index \(\Gamma \) of OJ 287 versus Swift XRT count rate. A softer-when-brighter pattern is apparent (Section 2.1), confirming results of paper I. The time intervals including the two superoutbursts of OJ 287, in 2016–2017 and 2020, are overplotted in blue (MJD 57673 – 58000) and red (MJD 58800 – 59100), respectively. Observations between 2005 and end of 2020 November are included in this plot. The eight XMM–Newton data sets were added for comparison (green triangles).

3 XMM–NEWTON DATA ANALYSIS AND SPECTRAL FITS

3.1 Data preparation

We have analysed all XMM–Newton (Jansen et al. 2001) observations of OJ 287 (Table 1). This includes our PI data from 2018 to 2020 (PI: S. Komossa/N. Schartel) and 2005 to 2011 (PI: S. Ciprini) and an observation from 2015 (PI: R. Edelson).

While some XMM–Newton observations have been published before (e.g. Ciprini et al. 2007; Valtonen, Ciprini & Lehto 2012; Gallant, Gallo & Parker 2018; Gaur et al. 2018; Pal et al. 2020; Komossa et al. 2020a), here, we carry out a systematic analysis and comparison of all data sets in the context of the same model prescriptions and using the latest calibration data, and with some focus on our 2018 observation of April 18. That observation was carried out quasi-simultaneous with the EHT observation of OJ 287 on 2018 April 26–27 and with the GMVA+ALMA observation on 2018 April 15.

The observations span a wide range in spectral and flux states (Fig. 4). The majority of them was carried out in large-window mode

\(^2\)https://www.swift.ac.uk/analysis/uvot/index.php.
Table 1. Summary of XMM–Newton X-ray observations of OJ 287, where OBS-ID is the observation identification number, Δt_{total} is the observation duration in ks, and Δt_{eff} is the effective exposure time after epochs of flaring particle background were removed.

Observation mode	OBS-ID	Date	MJD	Δt_{total} (ks)	Δt_{eff} (ks)	Comment
Large-window	0300480201	2005-04-12	53472	18.5	4.6	Hardest state, low flux level
Large-window	0300480301	2005-11-03	53677	39.0	23	
Large-window	0401060201	2006-11-17	54056	45.0	42	
Large-window	0502630201	2008-04-22	54578	53.6	20	Brightest state at $E > 5$ keV
Large-window	0761500201	2015-05-07	57149	121.4	60	
Large-window	0830190501	2018-04-18	58226	22.3	10.5	Quasi-simultaneous with EHT observation
Small-window	0854591201	2020-04-24	58963	13.3	9	Supersoft state; highest flux level, taken at peak of 2020 outburst

Figure 4. Comparison of all XMM–Newton EPIC-pn spectra of OJ 287 in the observer’s frame between 2005 and 2020, corrected for the effective area of the detector and uncorrected for Galactic absorption. Our 2018 data are highlighted in red, while other observations are marked with different colours and labelled by year of observation. Two spectral states are apparent. A ‘hard state’ dominated by flat power-law emission, and a ‘soft state’ with an additional low-energy component that becomes increasingly dominant when OJ 287 is X-ray bright. The supersoft emission component strongly dominates the 2020 outburst spectrum.

model, and facilitate comparison of past and future data of OJ 287 and also of other blazar X-ray spectra in a homogeneous way, using the same type of model description. Based on Fig. 5, we proceed with the discussion of X-ray spectral fit results.

As can be seen from Fig. 5, two XMM–Newton low-state spectra, taken in 2005a and 2008, are fit well by a single power-law component. Additional components are not required by the fit and are therefore largely unconstrained in a free fit. We return to these low-state spectra below, then taking into account what we have learned from fitting the other spectra.

The remaining spectra are not well fit by a single power law. The fit quality is not significantly improved when allowing for additional absorption intrinsic to OJ 287, which always turns out to be consistent with zero. The spectra require the presence of a second spectral component in addition to a single power law. Adding a second power-law component or a logarithmic parabolic model fits the spectra well (Table 2 and Fig. 6), and with the exception of the 2020 data set when OJ 287 was brightest, the two models cannot be distinguished in terms of fit quality. The higher energy component of the two-component power-law fit is always consistent with a photon index of $\Gamma_X = 1.5$ within the errors. Γ_X was therefore fixed to that value in the logpar plus power-law models.

The steeper power law with photon index in the range $\Gamma_X \simeq 2–2.8$ (or the logarithmic parabolic model) accounts for the soft (low-energy) emission component that breaks into a harder power-law component with $\Gamma_X \simeq 1.5$ (in the two-component power-law models) up to 10 keV. A notable exception is the 2020 outburst spectrum that requires a significantly steeper hard X-ray component. Fit results of the 2020 data were reported in paper I, and are provided in Table 2 for comparison.

The phenomenological blackbody representation of the soft emission component does not provide a successful fit to most of the spectra, including the highest quality 2020 outburst spectrum that had the strongest soft excess, and we therefore do not discuss it any further, but keep it in Table 2 for comparison purposes.
Flux changes of OJ 287 are not only driven by the strength of the soft emission component; the hard X-ray emission is variable, too, albeit generally with lower amplitude. The 2011 XMM–Newton spectrum of OJ 287 stands out as showing the brightest flux above ~5 keV. The break energy, where the soft and hard spectral components intersect, is located around 2 keV. It shifts to <1 keV in the 2005b and 2006 low-state spectra, and to 4 keV in the 2020 outburst spectrum (Fig. 6).

Finally, we return to the low-state spectra of 2005a and 2008, which could be fit with single power laws. Since the two-component power-law fits of the other data sets always require a higher energy spectral component with \(\Gamma_x \approx 1.5 \) and a lower-energy soft component, it is plausible to assume that the same holds for the 2005a and 2008 data, where the low photon statistics prevented a two-component spectral decomposition. As an example, we analysed the 2008 data further, where \(\Gamma_x = 1.75 \). For a quantitative evaluation of the remaining contribution of a low-energy soft emission component to this spectrum, we have enforced a two-component fit with \(\Gamma_x = 1.5 \). Then, \(\Gamma_{\text{soft}} \leq 2 \), and up to 50 per cent of the flux can be contained in such a soft component.

3.4 The 2018 data quasi-simultaneous with EHT

The 2018 observation, quasi-simultaneous with EHT, shows OJ 287 in an intermediate-flux state. The spectrum shows two components. A hard power-law component with \(\Gamma_x = 1.5 \), and a second soft emission component with \(\Gamma_x = 2 \). Given possible hints of spectral complexity below ~1 keV (Figs 5 and 7), the 2018 data were carefully compared with the 2015 exposure where OJ 287 was in a similar flux state. Further, the pn and MOS spectra of the 2018 observation were inspected and compared, revealing that fine structures around 0.8 keV in the pn data are not present in MOS and are therefore
Figure 5. Mosaic of single power-law model fits of the XMM–Newton data of OJ 287 and fit residuals in the observer’s frame. Each subplot corresponds to one XMM–Newton observation of OJ 287 as marked in the upper right-hand corner. The fit statistics are reported in the lower right-hand corner. The residuals are plotted in units of standard deviations, so that structure at low energies is visible and the residuals are not dominated by noisy low-signal bins at high energies.
not statistically significant (Fig. 7). Independently, RGS data were inspected for the presence of strong narrow emission or absorption features. None were individually identified (Fig. 8). When an ionized absorber component is added to the spectral fit using the XABS model (Steenbrugge et al. 2003), the quality of the spectral fit is not significantly improved. Most likely, the small deficit of photons below 1 keV in 2018 as compared to 2015 is due to a slightly fainter soft emission component in 2018.

3.5 Short time-scale variability

The longest observation of OJ 287 was carried out in 2015 with a duration of 121 ks. Since OJ 287 is highly variable on time-scales of days and longer, this light curve was inspected for shorter time-scale variability and flaring. Since \sim50 per cent of the observation was affected by episodes of background flaring that dominate the emission at >2 keV, only the full (0.3–1.5) keV light curve was analysed. Some limited variability is visible on relatively long time-scales (10 s of ks), with no clear evidence for rapid variability. We calculate the fractional root mean square (rms) variability amplitude F_{var} (e.g. Vaughan et al. 2003) for this light curve, finding a small but significant (dimensionless) value of $F_{\text{var},s} = 0.033 \pm 0.002$. Since the hard X-ray band is affected by multiple episodes of background flaring (Section 3.1), we only analysed the first good contiguous 40 ks of the hard-band light curve and find $F_{\text{var},h} = 0.04 \pm 0.01$.

4 DISCUSSION

The spectral energy distribution (SED) of blazars shows two emission maxima (for reviews, see Marscher 2009; Ghisellini 2015). One at low energies peaking between the submm and EUV, sometimes extending into the X-ray regime, and explained as synchrotron radiation of the jet electrons. And a second maximum in the hard X-ray/\gamma-ray regime, usually explained as IC radiation from photons located either within the jet (synchrotron-self-Compton process, SSC) or from external seed photons emitted by the broad-line region or torus (external Comptonization, EC). Other radiation mechanisms might contribute as well. In hadronic models the high-energy emission is
Figure 7. 2018 XMM–Newton EPIC pn and EPIC MOS spectra of OJ 287 it was at intermediate-flux level, observed quasi-simultaneous with EHT. The upper panel shows a comparison between the 2015 and 2018 EPIC pn data, where OJ 287 was overall in a similar state but shows a small low-energy deficiency in flux in 2018. The lower panels compare the EPIC pn and EPIC MOS data of 2018.

Figure 8. 2018 RGS spectrum of OJ 287 (upper panel) in comparison with the RGS spectrum of a Seyfert galaxy (lower panel; both spectra in observer frame) that exhibits strong emission lines from common elements and transitions, labelled in blue (Mrk 335; Parker et al. 2019). No narrow features are detected in the RGS spectrum of OJ 287.

4.1 Softer-when-brighter variability pattern

OJ 287 exhibits a softer-when-brighter variability pattern in our multiyear Swift light curve (Fig. 3; see also Komossa et al. 2017), previously sporadically seen on long time-scales when combining a few Einstein, EXOSAT, ROSAT, and ASCA data (Urry et al. 1996; Isobe et al. 2001), but absent at another epoch (Seta et al. 2009; Siejkowski & Wierzcholska 2017).

The Swift XRT light curve, containing 681 data points obtained with the same instrument, for the first time puts the softness-brightness behaviour on a firm statistical basis and also traces short time-scales of days, weeks, and months, and reveals details of the correlation. While the short snapshot observations with Swift do not contain enough photons to permit multicomponent spectral decompositions, the much deeper observations with the more sensitive detectors aboard XMM–Newton allowed us to decompose the spectra into multiple components spanning 15 yr of observations. These components will be discussed in the next sections. In particular, the spectral analysis of the XMM–Newton observation of 2011 has shown that variability of the high-energy spectral component (Fig. 4) contributes to the scatter in the softer-when-brighter variability at low count rates (\(<0.5 \text{ counts s}^{-1}\)). This epoch of observation coincides with \(\gamma\)-ray flaring activity of OJ 287 (e.g. Escande & Schinzel 2011; Hodgson et al. 2017; Goyal et al. 2018) of which we see the low-energy tail in the XMM–Newton band.

4.2 Synchrotron component(s) at high state

Which mechanism drives the supersoft component of the X-ray spectrum in high-states: accretion or jet (synchrotron) activity? We can safely establish that the 2020 outburst is powered by jet emission because (1) the rapid X-ray variability is inconsistent with the large SMBH mass of the primary (faster than the light crossing time at the last stable orbit of the accretion disc; paper I); (2) the accompanying radio flare in 2020 (Komossa et al. 2020c) implies jet emission in the radio regime; (3) the high optical polarization (Zola et al. 2020) implies jet emission in the optical too; and (4) the correlated (radio-)optical–UV–X-ray emission then implies jet emission in all bands.

The second large X-ray outburst of OJ 287 was in late 2016 to early 2017 (our Fig. 1; Komossa et al. 2017), and given its similarities with the 2020 outburst and additional arguments, we argue that it was also jet-powered. It shows the very same softer-when-brighter variability pattern (established in our Fig. 3), it was accompanied by a radio dominated by ultrarelativistic protons (Böttcher 2019). The SED type of OJ 287 was classified as LSP (low synchrotron peak frequency; \(<10^{14} \text{ Hz};\) Abdo et al. 2010) or ISP (intermediate synchrotron peak frequency; between \(10^{14}\) and \(10^{15} \text{ Hz}\); Ackermann et al. 2011). An additional thermal component in its broad-band SED was identified at epochs close to the impact flare predicted by the SMBBH model (Ciprini et al. 2007; Valtonen et al. 2012; Ciprini 2018).

Previous observations suggested that variability in X-rays of OJ 287 is driven primarily by a mix of the SSC component and synchrotron emission. However, most previous missions did not allow multicomponent spectral fits, and during the 2020 XMM–NuSTAR high state (paper I), the high-energy power-law component was steeper than expected for pure IC emission models that produce hard spectra with \(\Gamma_X \approx 1.5\) (Kubo et al. 1998; Isobe et al. 2001). We discuss implications from the XMM–Newton spectral fits as follows.
outburst (Myserlis et al. 2018; Lee et al. 2020) and by VHE emission (O’Brien 2017), and the radio emission was very high during a contemporaneous ALMA observation (Goddi et al. 2021).

Interestingly, during the 2020 outburst, when we obtained a dedicated XMM–Newton and NuSTAR observation at the peak of the outburst, the X-ray spectrum is more complicated than a superposition of a low-energy synchrotron and high-energy IC component. Besides the soft emission component well described by a logpar model, the power-law component that extends well above 10 keV is steeper than expected from IC emission alone and we therefore consider it to be a third spectral component. It may plausibly indicate a mix of a flat IC component with a second independent synchrotron component extending well above 10 keV only appearing at outburst, or alternatively could represent temporary enhanced emission from an accretion disc corona. While we resolve the emitting components spectroscopically, high-resolution radio observations hold the promise to locate the synchrotron emission components spatially. No EHT observations were carried out in 2020, but they are expected to continue in upcoming years. The unusual second 2020 (synchrotron or coronal) high-state component adds to making OJ 287 an interesting target in upcoming EHT campaigns.

The rapid variability of the multiple synchrotron components is reminiscent of the erratic jet model of Agudo et al. (2012), who involve multiple injections from a turbulent and/or clumpy disc to explain (short-term) erratic wobbling of the inner jet observed in VLBA data of OJ 287 of the order of months. The frequent secondary impacts on the accretion disc around the primary predicted by the binary SMBH model of OJ 287 might contribute to enhancing inhomogeneities/turbulence in the accretion disc of OJ 287. Additionally, Valtonen & Pihajoki (2013) and Dey et al. (2021) explain the long-term systematic trends in the wobble by variations in the initial jet launching angle in the binary system.

4.3 Low-state emission

During X-ray low states of OJ 287, the soft (synchrotron) component is much fainter or entirely absent, and the XMM–Newton X-ray spectrum is well fit by a flat power-law component as flat as Γx ≈ 1.5, indicating IC emission (in the framework of leptonic jet models). Similarly, the flattest X-ray states of OJ 287 detected with Swift are well described by a single power law with photon index 1.5.

We use the 2008 low state of OJ 287 measured with XMM–Newton to estimate the low-state isotropic X-ray luminosity, and take it as a strict upper limit on any long-lived accretion disc contribution to the X-ray spectrum of OJ 287. With Lx,iso = 1.3 × 10^45 erg s^{-1}, this gives Lx/L_{Edd} ≤ 5.6 × 10^{-3} (M_{BH,primary} = 1.8 × 10^{10} M⊙) or Lx/L_{Edd} ≤ 6.7 × 10^{-2} (M_{BH,secondary} = 1.5 × 10^8 M⊙) for any accretion disc contribution in X-rays.

4.4 Binary black hole model

In the context of the SMBBH model of OJ 287 (recently reviewed by Dey et al. 2019), the main site of multiwavelength emission is still the jet of the primary SMBH, but there are also episodes where the thermal bremsstrahlung emission from the secondary’s impact on the accretion disc around the primary (Ivanov, Igumenshchev & Novikov 1998) dominates the spectrum in the IR to UV bands (e.g., Laine et al. 2020). In addition, there is delayed temporary enhanced accretion on the primary (triggering new jet activity), following the disc impact events. Even though the observed low-state X-rays of OJ 287 are dominated by jet activity and consistent with IC emission, we used the low-state X-ray flux to estimate an upper limit on any long-lived emission from the accretion disc in X-rays (Section 4.3). Assuming a factor-of-10 bolometric correction (Elvis et al. 1994), this then translates into a very low Lx/L_{Edd} ≤ 5.6 × 10^{-3} for M_{BH,primary} = 1.8 × 10^{10} M⊙. However, this estimate is uncertain for several reasons. For instance, we do not know the disc emission efficiency η, and it is possible that OJ 287 accretes near Eddington, but the gas emissivity is low. Second, as the SMBH mass increases, we expect to see less (multitemperature blackbody) emission from the actual accretion disc extending into the soft X-ray regime (Done et al. 2012), but still expect the presence of hard emission from the corona above the disc (and reprocessing signatures at soft X-rays).

5 SUMMARY AND CONCLUSIONS

Based on 1.5 decades of XMM–Newton spectroscopy and Swift monitoring of OJ 287 (densely since 2015 in our dedicated MOMO program aimed at testing facets of the binary SMBH model and studying disc and jet physics of this nearby, bright blazar), the following conclusions are reached:

(i) OJ 287 displays a strong softer-when-brighter spectral variability pattern, clearly established on the basis of ~700 Swift observations.

(ii) The spectral variability between 0.3 and 10 keV is extreme. It encompasses all spectral states observed in blazars in that band, from ultrasteep to very flat (Γx = 2.8–1.5).

(iii) With XMM–Newton and NuSTAR, we distinguish between three different spectral components of OJ 287: (1) The first spectral
state is a low/hard state with photon index $\Gamma_s \simeq 1.5$, dominated by IC emission. (2) The second spectral state is a high/soft state dominated by synchrotron emission well described by a logarithmic parabolic power-law model or with an equivalent single photon index as steep as parabolic power-law model or with an equivalent single photon dominated by synchrotron emission well described by a logarithmic by IC emission. (2) The second spectral state is a high/soft state respectively.

We would like to thank the Chairs (CRC) program. We acknowledge the use of data we have retrieved from the Swift and XMM–Newton archives at https://swift.gsfc.nasa.gov/archive/ and https://www.cosmos.esa.int/web/xmm-newton, respectively.

REFERENCES

Abdo A. A. et al., 2010, ApJ, 716, 30
Ackermann M. et al., 2011, ApJ, 743, 171
Agudo I. et al., 2011, ApJ, 735, L10
Agudo I., Marscher A. P., Jorstad S. G., Gómez J. L., Peruchon M., Piner B. G., Rioja M., Dodson R., 2012, ApJ, 747, 63
Aller M. F., Hughes P. A., Aller H. D., Latimer G. E., Hovatta T., 2014, ApJ, 791, 53
Arnaud K. A., 1996, in Jacoby G. H., Barnes E., eds, Astron. Soc. Pac. Conf. Ser. Vol. 101, Astronomical Data Analysis Software and Systems V. Astron. Soc. Pac., San Francisco, p. 17
Begelman M. C., Blandford R. D., Rees M. J., 1980, Nature, 287, 307
Böttcher M., 2019, Galaxies, 7, 20
Breeveld A. A. et al., 2010, MNRAS, 406, 1687
Britzin S. et al., 2018, MNRAS, 478, 3199
Burrows D. N. et al., 2005, Space Sci. Rev., 120, 165
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Centrella J., Baker J. G., Kelly B. J., van Meter J. R., 2010, Rev. Mod. Phys., 82, 3069
Ciprini S., 2018, Proc. Sci., The Binary Supermassive Black Hole Conjecture for Jetted Active Galactic Nuclei. SISSA, Trieste, PoS(APCS2018)041
Ciprini S. et al., 2007, Mem. Soc. Astron. Ital., 78, 741
Cohen M. H. et al., 2018, ApJ, 862, 1
Colpi M., 2014, Space Sci. Rev., 183, 189
Comastri A., Molendi S., Ghisellini G., 1995, MNRAS, 277, 297
den Herder J. W. et al., 2001, A&A, 365, L7
Dey L. et al., 2018, ApJ, 866, 11
Dey L. et al., 2019, Universe, 5, 108
Dey L., Valtonen M. J., Gopakumar A., Lico R., Gómez J. L., Susobhanan A., Komossa S., Pihajoki P., 2021, MNRAS, 503, 4400
Dickel J. R., Yang K. S., McVittie G. C., Swenson G. W., 1967, AJ, 72, 757
Done C., Davis S. W., Jin C., Blaes O., Ward M., 2012, MNRAS, 420, 1848
Elvis M. et al., 1994, ApJS, 95, 1
Escande L., Schinzel F. K., 2011, Astron. Telecop. 1560, 1
Evans P. A. et al., 2007, A&A, 469, 379
Event Horizon Telescope Collaboration et al., 2019, ApJ, 875, L1
Gallant D., Gallo L. C., Parker M. L., 2018, MNRAS, 480, 1999
Gaur H., Mohan P., Wierzcholska A., Gu M., 2018, MNRAS, 473, 3638
Gehrels N. et al., 2004, ApJ, 611, 1005
Ghisellini G., 2015, J. High Energy Astropart., 7, 163
Goddi C. et al., 2021, ApJ, 910, L14
Goyal A. et al., 2018, ApJ, 863, 175
Graham M. J. et al., 2015, MNRAS, 453, 1562
Grue D., Komossa S., Leighly K. M., Page K. L., 2010, ApJ, 716, 30
Grue D., Komossa S., Gomez J. L., 2016, Astron. Telecop. 9629, 1
Grue D., Komossa S., Falcone A., 2017, Astron. Telecop. 10043, 1
Hill J. E. et al., 2004, in Flanagan K. A., Siegmund O. H. W., eds, Proc. SPIE Conf. Ser. Vol. 5165, X-Ray and Gamma-Ray Instrumentation for Astronomy XIII. SPIE, Bellingham, p. 217
Hodgson J. A. et al., 2017, A&A, 597, A80
