Fullerene in Carbon Nanoring: A Saturn-Like Supramolecular Complex

Jie Zhang, a,b Chunru Wang, a and Taishan Wang a *

a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b University of Chinese Academy of Sciences, Beijing 100049, China

Email: wangtais@iccas.ac.cn (T. W.)

Abstract Fullerenes have attracted much attention because of their unique electronic structure and spherical cage shape. Specially, fullerenes have been widely used as guest in supramolecular chemistry due to their spherical structures. Recently, the supramolecular complexes of fullerenes and several types of carbon nanorings have been constructed and investigated. The complex of fullerene in carbon nanoring is like a Saturn, and this unique kind of supramolecular complexes will have potential applications in chemical, material and physical fields. In this review, various complexes of fullerene in carbon nanoring and their special properties are described. We hope to expand the application of these supramolecular complexes in various fields.

Keywords fullerene, carbon nanoring, host-guest interaction, supramolecular complex

Introduction

Since 1985, the fullerenes have been widely studied and many applications have been found for this cage-shaped carbon nanomaterials.[1] Fullerenes and fullerene derivatives are well-known spherical aromatic molecules that have unique properties, such as electron affinity, which makes fullerenes attractive for photovoltaic device applications. Furthermore, fullerenes can be easily chemically modified to improve the water solubility and then to develop their application as nanomedicine.[2,3]

Specially, fullerenes have been widely used as guest in supramolecular chemistry due to their spherical structures. As guest molecules, fullerenes have been entrapped in cyclodextrin, porphyrin, large aromatic compounds, porous materials, etc., and varied host-guest interactions have been disclosed.[4] In these kinds of supramolecular systems, many chemical and physical phenomenons have been revealed. Recently, the supramolecular complexes of fullerenes and several types of carbon nanorings have been constructed and investigated. For example, the cycloparaphenylenes (CPPs) and their analogs have attracted wide attention because of their beautiful nanoring structure and π-conjugated system.[5] Nanoring of CPPs can easily form a Saturn-like supramolecular structure with fullerenes. As far as we know, the term “Nano Saturn” was originally used in the theoretical research. In 2016, McKee et al. reported their research results entitled “Saturn system”, which is about a theoretical study of supramolecular complexes of various hydrocarbon nanocycles and C60.[6] In this minireview, various complexes of fullerene in carbon nanoring and their special properties are described.

Supramolecular Complexes of Fullerene and Carbon Nanoring

In the current literature reports, the ring moieties are divided into two categories according to their shape. The first type is the belt-like ring, whose benzene plane adheres to the guest fullerene via π-π interaction. This type of nanoring is represented by the cycloparaphenylenes (CPPs). Because of the large contact area between the ring and the guest molecule, they can be closely combined. The second type is the disk-like ring. This type of ring interacts with the fullerene mainly through CH-π (or X-π) interactions.[6] Herein, we mainly introduce the supramolecular complexes of fullerene with above two types of carbon nanoring.

In 2003, Kawase and Oda et al. reported a supramolecular complex using CPPA(cyclic paraphenyleneacetylene) as the host molecule. The complex of bis (ethoxy carbonyl) methanofullerene and [6]CPPA was crystallized and X-ray crystallographic data confirmed the orientation of the CPPA phenyl rings in proximity to the [5 : 6] fullerene fusions (Figure 1).[7] Subsequently, they used other fullerenes and larger CPPA derivatives to study their associative properties. Briefly, the [6]CPPA and [7]CPPA have similar association ability to C70, while the [8]CPPA size is larger and its association ability to fullerene is weaker. These results indicate that the cavity size is an important factor in host-guest association.[8]

Figure 1 Crystallographic structures of a [6]CPPA and methanofullerene complex.

Although CPPA derivatives tend to form tight complexes with fullerene, their unstable nature hinders further experimental studies. On the contrary, completely sp2-hybridized CPPs(cycloparaphenylenes) derivatives are sufficiently stable and can similarly encapsulate fullerene molecules.[9] Despite their simple structures, however, the synthesis of CPPs was only achieved in 2008 from curved molecular precursors after intensive efforts by Jasti and co-workers.[9] Afterwards, Iwamoto et al. reported initial saturn-like complexes of CPPs with fullerene. They found that
C₆₀ can be selectively encapsulated by [10]CPP (Figure 2). This finding opens the possibility of utilizing CPPs as size- and shape-selective host molecules for various fullerenes. Since several CPPs with different sizes are available, they would also serve as selective hosts for certain fullerenes depending on their varied size.⁹¹²

In 2015, Yuan et al. explored the intrinsic nature of π–π noncovalent interactions of the CPPs and fullerene host-guest systems using computational method. The position orientation of C₆₀ in [n]CPP (n = 10, 11 and 12) was studied emphatically. According to the relative values of the binding energies and thermodynamic information, the guest C₆₀ is apt to adopt lying, standing, and half-lying orientations in the cavities of [10]CPP, [11]CPP, and [12]CPP, respectively (Figure 3). These results suggest that size and shape fitting are very important for the relative orientation of fullerene in these supramolecular complexes.

In 2018, Xu et al. achieved the synthesis of two [2]rotaxanes consisting of one [10]CPP moiety binding to a central fullerene with bis-adduct binding site and another two fullerene hexakisadduct stoppers using a concave-convex π–π template strategy.⁹³⁹ Later, Wegner and coworkers investigated the complex between the azafullerene dimer (C₆₀N)₂ and [10]CPP. Two stage binding constants were determined to be K₁ = 8.4 × 10⁴ M⁻¹ and K₂ = 3.0 × 10⁶ M⁻¹, respectively.⁹⁴

In 2019, Du, Yang and co-workers achieved the synthesis of two novel π-extended crown-like molecules (TCR and HCR) with embedded curved nanographene units. They proposed a strategy to further increase the binding affinity of [n]CPPs for fullerenes is to increase the π-surface by inserting annelated moieties into the ring (Figure 4). Moreover, the photocurrent experiments showed that these complexes can form photoconductive heterojunctions. It is helpful to apply the complex to the field of optoelectronic materials.⁹⁹

In order to mimic the Saturn shape precisely, it is better to use a planar disk-shaped ring to include a spherical fullerene. Iyoda et al. synthesized oligothiophene macrocycles with ethynylene or ethenylene linkers. High resolution STM investigation of monolayers revealed that the presence of two individual bithiophene units as well as the size of the macrocycle led to the formation of a superstructure with a 1 : 2 stoichiometry. The fullerene units were located around the periphery of the bithiophene units, indicating the donor-acceptor interaction between C₆₀ and the electron-rich bithiophene units (Figure 5). In addition, they found that the inner cavities of oligothiophene macrocycles are easily adjustable to guest molecules through selecting numbers of 2,5-thiénylene, ethynylene, and vinylene units. Thus, they concluded the cavity size of macroring can adjusted fullerenes to produce Saturn-like complexes.⁹⁶

Okada et al. theoretically investigated the possibility of a carbon nanomaterial with Saturn shape as a novel inclusion compound consisting of C₆₀ and cyclohexabiphenylene based on total energy calculations using density functional theory. They found that nano-Saturn is energetically stable with similar or lower total energy to that of the other C₆₀ inclusion compounds experimentally synthesized to date. Later, they theoretically investigated a nanoscale model of Saturn consisting of C₆₀ and [24]circulene as a novel inclusion compound (Figure 6). Because this molecule is fully conjugated and completely planar, it might be an ideal ring motif for nano-Saturns.⁹⁷

In order to mimic the Saturn shape precisely, it is better to use a planar disk-shaped ring to include a spherical fullerene. Iyoda et al. synthesized oligothiophene macrocycles with ethynylene or ethenylene linkers. High resolution STM investigation of monolayers revealed that the presence of two individual bithiophene units as well as the size of the macrocycle led to the formation of a superstructure with a 1 : 2 stoichiometry. The fullerene units were located around the periphery of the bithiophene units, indicating the donor-acceptor interaction between C₆₀ and the electron-rich bithiophene units (Figure 5). In addition, they found that the inner cavities of oligothiophene macrocycles are easily adjustable to guest molecules through selecting numbers of 2,5-thiénylene, ethynylene, and vinylene units. Thus, they concluded the cavity size of macroring can adjusted fullerenes to produce Saturn-like complexes.⁹⁶

Okada et al. theoretically investigated the possibility of a carbon nanomaterial with Saturn shape as a novel inclusion compound consisting of C₆₀ and cyclohexabiphenylene based on total energy calculations using density functional theory. They found that nano-Saturn is energetically stable with similar or lower total energy to that of the other C₆₀ inclusion compounds experimentally synthesized to date. Later, they theoretically investigated a nanoscale model of Saturn consisting of C₆₀ and [24]circulene as a novel inclusion compound (Figure 6). Because this molecule is fully conjugated and completely planar, it might be an ideal ring motif for nano-Saturns.⁹⁷

In order to mimic the Saturn shape precisely, it is better to use a planar disk-shaped ring to include a spherical fullerene. Iyoda et al. synthesized oligothiophene macrocycles with ethynylene or ethenylene linkers. High resolution STM investigation of monolayers revealed that the presence of two individual bithiophene units as well as the size of the macrocycle led to the formation of a superstructure with a 1 : 2 stoichiometry. The fullerene units were located around the periphery of the bithiophene units, indicating the donor-acceptor interaction between C₆₀ and the electron-rich bithiophene units (Figure 5). In addition, they found that the inner cavities of oligothiophene macrocycles are easily adjustable to guest molecules through selecting numbers of 2,5-thiénylene, ethynylene, and vinylene units. Thus, they concluded the cavity size of macroring can adjusted fullerenes to produce Saturn-like complexes.⁹⁶

Okada et al. theoretically investigated the possibility of a carbon nanomaterial with Saturn shape as a novel inclusion compound consisting of C₆₀ and cyclohexabiphenylene based on total energy calculations using density functional theory. They found that nano-Saturn is energetically stable with similar or lower total energy to that of the other C₆₀ inclusion compounds experimentally synthesized to date. Later, they theoretically investigated a nanoscale model of Saturn consisting of C₆₀ and [24]circulene as a novel inclusion compound (Figure 6). Because this molecule is fully conjugated and completely planar, it might be an ideal ring motif for nano-Saturns.⁹⁷
presence of nano-Saturns with disk-type hydrocarbon rings.[18]

After that, they reported the macrocyclic compounds composed of six anthracene units formed saturn-like complexes with fullerene C_{60} as ellipsoidal objects, and found that the binding constant of host-guest interaction between them was twice that of C_{60}. Despite the different relative orientations of the C_{60} in the macrorings, the host-guest interaction is still similar, revealing the great versatility of the host for non-spherical fullerenes.[19]

Moreover, the internal “spheres” can be divided into two categories, one is hollow fullerene, and another is metallofullerene. Hollow fullerenes are mainly C_{60} and C_{70}, which have been widely studied in many host-guest systems. The endohedral metallofullerenes have metal cluster(s) embedded in fullerene cage, which greatly enrich the structures and properties of fullerene materials.[21] When the endohedral metallofullerene and the carbon nanoring form a supramolecular complex, different host-guest interactions may occur.

In 2014, Nakanishi et al. demonstrated the selective complexation of C_{60}-based metallofullerenes with [11]CPP. They found that [11]CPP has a high affinity for C_{60}-based metallofullerenes.[20] Furthermore, the complexation can be applied to the facile extraction and enrichment of Gd@C_{60} from crude mixture. Later, Iwamoto et al. reported [11]CPP selectively encapsulates La@C_{60} to form the shortest possible metallofullerene-carbon nanotube (CNT) peapod, La@C_{60}[11]CPP, in solution and in the solid state.[21]

In 2015, Itami et al. reported the Li^+@C_{60}[10]CPP-X^-.[22] X-ray crystallography confirmed the molecular structure of Li^+@C_{60}[10]CPP-X^- and uncovered the formation of an ionic crystal (Figure 7). The strong charge-transfer interaction between [10]CPP and Li^+@C_{60} was confirmed by electrochemical measurement and spectroscopic analyses, resulting in significant delocalization of the positive charge to the whole complex.[22]

![Figure 7](Image 7)

Figure 7 The change in positive-charge delocalization of Li^+, Li^+@C_{60}, and Li^+@C_{60}[10]CPP complex.

Interestingly, above systems exhibit varying degrees of charge-transfer behaviour. The use of [10]CPP as a supramolecular junction to generate modular dyads between a zinc porphyrin electron donor and five representative fullerene electron acceptor was recently described by Jasti’s group with Guidi and Drewello. The syntheses of these systems are typically non-trivial, as they require a covalent linkage between the porphyrin and fullerene components. A porphyrin-functionalized [10]CPP was used to to encapsulate C_{60}, allowing for through-space charge transfer between the porphyrin and fullerene (Figure 8).[23]

![Figure 8](Image 8)

Figure 8 Supramolecular structure of porphyrin-functionalized [10]CPP and C_{60} with charge-transfer behaviour.

In 2019, Zhao et al. used the [12]CPP to hoop the C_{60}-based metallofullerene Y_2N@C_{60} and azafullerene Y_2@C_{70}N, resulting in a stable supramolecular complex, induced molecule orientation, changed assembly behavior, and tunable spin state. Moreover, the electron spin in paramagnetic Y_2@C_{70}N was employed to perceive the host-guest interaction, and it showed anisotropic spin-metal couplings due to its insufficient rotational averaging in a confined space of the nanoring. The special spin character of Y_2@C_{70}N was also investigated in its solid state, and it exhibits the independent spin of Y_2@C_{70}N separated by a nanoring.[24] Then they found that when the Y_2@C_{70}N and [4]CHBC are combined, a new peak will appear, revealing a strong host-guest interaction.[25]

Conclusions and Perspectives

Saturn-like supramolecular systems have been constructed by various carbon nanoring and spherical fullerene molecules through host-guest interactions. The carbon nanoring molecules are designed and synthesized by organic chemists. Fullerenes are selected to encapsulate into the cavity of nanoring to form varied saturn-like supramolecular complexes. The properties of host-guest interactions, charge-transfer behaviour, fluorescent emission, magnetic modulation, photoconductivity, etc., have been revealed in these Saturn-like supramolecular systems. Although the syntheses of new carbon nanorings and related supramolecular complexes have been developed rapidly in the past decade, the applications of these supramolecular complexes in the fields of electronic devices, molecular sensing and molecular machines still need to be further explored. For example, charge transfer is often accompanied by the formation of these supramolecular complexes, and it can result in high photoconductivity for their films. In addition, the unique magnetic sensing effect of paramagnetic metallofullerenes in Saturn-like supramolecular complexes can be used to design molecular magnetic probe as well as quantum bit. Moreover, it is reasonable to expect that these Saturn-like supramolecular complexes will attract huge research interests, and lead to many unprecedented applications as nanomaterials in the future.

Conflict of Interest

The authors declare no conflict of interest.

Copyright © 2021 Jie Zhang, Chunru Wang, Taishan Wang. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
References

[1] Kroto, H. W.; Allaf, A. W.; Balm, S. P. C20: Buckminsterfullerene. Nature 1985, 9, 1213.
[2] Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 2000, 63, 843.
[3] Sota, S.; Takashi, Y.; Hiroyuki, I. Solid-state structures of peapod bearings composed of finite single-wall carbon nanotube and fullerene molecules. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 8374–8379.

Wu, D.; Cheng, W.; Ban, X. T.; Xia, J. L. Cycloparaphenylenes (CPPs): An Overview of Synthesis, Properties, and Potential Applications. J. Org. Chem. 2018, 7, 2161–2181.

Yuan, K.; Guo, Y. J.; Yang, T.; Ding, J. S.; Zhao, P.; Li, Q. Z.; Zhao, X. Theoretical insights into the host-guest interactions between [8]cycloparaphenyleneacetylene and its anthracene-containing derivative and fullerene C70. J. Phys. Org. Chem. 2014, 27, 772–782.

Toyota, S.; Tsumuraki, E. Exploration of Nano-Saturns: A Spectacular Sphere-Ring Supramolecular System. Chem.-Eur. J. 2019, 25, 6878–6890.

[7] Evans; Paul, J.; Jasti, R. Molecular Belts. Top. Curr. Chem. 2014, 349, 249–290.

[8] Kawasaki, T.; Tanaka, K.; Seirai, Y.; Shiono, N.; Oda, M. Complexation of Carbon Nanorings with Fullerences: Supramolecular Dynamics and Structural Tuning for a Fullerene Sensor. Angew. Chem. Int. Ed. 2003, 115, 5755–5758.

[9] Xu, Y. Z.; Delius, M. V. The Supramolecular Chemistry of Strained Carbon Nano hoops. Angew. Chem. Int. Ed. 2020, 59, 559–573.

[10] Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylenes: Carbon Nano hoop Structures. J. Am. Chem. Soc. 2008, 130, 17646–17647.

[11] Iwamoto, T.; Watanabe, Y.; Sadahiro, T.; Haino, T.; Yamagoe, S. Size-selective encapsulation of C60 by [10]-cycloparaphenylenes: formation of the shortest fullerene-peapod. Angew. Chem. Int. Ed. 2011, 123, 8492–8494.

[12] Yuan, K.; Guo, Y. J.; Zhao, X.; Nature of Noncovalent Interactions in the [n]Cycloparaphenylenecarbon (n = 10, 11, and 12) Host-Guest Complexes: A Theoretical Insight into the Shortest C20-Carbon Nano tube Peapod. J. Phys. Chem. C. 2015, 119, 5168–5179.

[13] Xu, Y. Z.; Kaur, R.; Wang, B. Z.; Minameyer, M. B.; Gsanger, S.; Meyer, B.; Drewwilo, T.; Guid, D. M.; Delius, M. V. Concave-Convex pi-pi Template Approach Enables the Synthesis of [10]-Cycloparaphenylenefullerenes [2]Rotaxanes. J. Am. Chem. Soc. 2018, 140, 13413–13420.

[14] Rio, J.; Beeck, B.; Rotas, G.; Ahles, S.; Jacquemin, D.; Tagmatachis, N.; Ewels, C.; Wegner, H. A. Electronic Communication between two [10]-Cycloparaphenylenes and Bis(azafullerene) (C10N2) Induced by Cooperative Complexation. Angew. Chem. Int. Ed. 2018, 57, 6930–6934.

[15] Huang, Q.; Zhuang, G. L.; Jia, H. X.; Qian, M. M.; Cui, S. S.; Yang, S. F.; Du, P. W. Photoconductive curved-Nanographene/fullerene Supramolecular Heterojunctions. Angew. Chem. Int. Ed. 2019, 58, 6244–6249.

[16] Iyoda, M.; Shimizu, M. Multifunctional n-expanded oligothiophene macrocycles. Chem. Soc. Rev. 2015, 44, 6411–6424.

[17] Kigure, S.; Haruka, H.; Hisanori, S.; Susumu, O. Nano-Saturn: Energetics of the Inclusion Process of C60 into Cyclohexabi phenylene. J. Phys. Chem. C. 2015, 119, 8931–8936.

[18] Yamamoto, Y.; Tsumuraki, E.; Wakamatsu, K.; Toyota, S. Nano-Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60. Angew. Chem. Int. Ed. 2018, 57, 8199–8202.

[19] Toyota, S.; Yamamoto, Y.; Wakamatsu, K.; Tsurumaki, E.; Muñoz-Castro, A.; Nano-Saturn with an Ellipsoidal Body: Anthracene Macrocyclic Ring–C60 Complex. Bull. Chem. Soc. Jpn. 2019, 92, 1721–1728.

[20] Nakano, Y.; Omachi, H.; Matsuura, S.; Miyata, Y.; Kitaura, R.; Segawa, Y.; Itami, K.; Shinohara, H. Size-Selective Complexation and Extraction of Endohedral Metallofullerenes with Cycloparaphenylenes. Angew. Chem. Int. Ed. 2014, 53, 3102–3106.

[21] Iwamoto, T.; Slanina, Z.; Mizorogi, N.; Guo, J. D.; Akasaka, T.; Nagase, S.; Takaya, H.; Yasuda, N.; Kato, T.; Yamago, S. Partial Charge Transfer in the Shortest Possible Metallofullerene Peapod, La@C82[C11]Cycloparaphenylenes. Chem.-Eur. J. 2014, 20, 1–8.

[22] Ueno, H.; Nishihara, T.; Segawa, Y.; Itami, K. Cycloparaphenylenes-based ionic donor-acceptor supramolecule: isolation and characterization of Li(+)@C60 subset[10]CPP. Angew. Chem. Int. Ed. 2015, 54, 3707–3711.

[23] Leonhardt, E. J.; Jasti, R. Emerging applications of carbon nanohoops. Nat. Rev. Chem. 2019, 3, 672–686.

[24] Zhang, J.; Zhao, C.; Meng, H. B.; Nie, M. Z.; Li, Q.; Xiang, J. F.; Zhang, Z. X.; Wang, C. R.; Wang, T. S. Size-selective encapsulation of metallofullerenes by [12]Cycloparaphenylenes and dissociation using metal-organic framework. Carbon 2020, 161, 694–701.

[25] Zhao, C.; Meng, H. B.; Nie, M. Z.; Wang, X.; Cai, Z. F.; Chen, T.; Wang, D.; Wang, C. R.; Wang, T. S. Supramolecular Complexes of C60-Based Metallofullerenes with [12]Cycloparaphenylenes Nanoring and Altered Property in a Confined Space. J. Phys. Chem. C 2019, 123, 12514–12520.

[26] Zhao, C.; Meng, H.; Nie, M.; Huang, Q.; Du, P.; Wang, C.; Wang, T. Chem. Commun. 2019, 55, 11511–11514.

Received October 13, 2021
Accepted December 9, 2021