Anisotropic Lattice Deformation of InAs Self-Assembled Quantum Dots Embedded in GaNAs Strain Compensating Layers

N. MATSUMURA*, S. MUTÔ¹, S. GANAPATHY², I. SUEMUNE², K. NUMATA¹ and K. YABUTA³

Institute for Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
¹Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
²Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
³CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan

(Received October 27, 2005; accepted November 30, 2005; published online January 6, 2006)

Lattice deformations of InAs self-assembled quantum dots, which were grown on (001)GaAs substrates and embedded in GaNAs strain compensating layers (SCLs), were examined with an ion-channeling method in Rutherford backscattering spectrometry. The channeling experiments demonstrated that the increase of the nitrogen concentrations in the GaNAs SCLs caused the indium lattice displacements along the [001] growth direction while those parallel to the (001) crystal plane were kept unchanged. [DOI: 10.1143/JJAP.45.L57]

KEYWORDS: GaNAs, strain compensation, InAs self-assembled quantum dots, lattice deformation, ion channeling

It is well-known that InAs self-assembled quantum dots (SAQDs) on (001)GaAs are grown via the lattice mismatch of about 7% between InAs and GaAs. Due to their high crystalline quality of InAs SAQDs, a lot of studies have been performed on their applications to optoelectronic devices. Especially the applications of SAQDs to optical-fiber communications require SAQDs emission wavelengths at 1.3 or 1.55 μm to fit the minimum optical absorption bands. Although the emission wavelength of 1.3 μm has been achieved by a number of groups, the wavelength of 1.55 μm has been difficult due to the compressive strain induced within InAs SAQDs during the embedding processes with GaAs. This strain issue has been challenged with apparently opposite methods. One method is to embed InAs SAQDs in InGaAs strain reducing layers (SRLs), which apparently reduce the interface lattice mismatch between InAs SAQDs and InGaAs SRLs by increasing indium (In) content in the SRLs. However the higher In concentration in the SRLs the amount of overall compressive strain in the system are accumulated, which may degrade the photoluminescence (PL) efficiencies by the possible generations of nonradiative recombination centers due to the excess strain. Another is to embed InAs SAQDs in tensile-strained GaNAs strain compensating layers (SCLs). This method may increase the mismatch at the InAs/GaNAs interfaces, but the overall average strain in the system can be minimized by compensating the compressive strain in the InAs SAQDs with the tensile strain in the GaNAs SCLs. Ganapathy et al. realized 1.55 μm emission from InAs SAQDs embedded in GaNAs SCLs with the nitrogen (N) concentration of 2.7%. Although GaNAs usually shows degraded PL efficiencies with the increase of the N concentration, the luminescence from the InAs SAQDs embedded in the GaNAs SCLs showed the improved efficiencies up to 5-times with the increase of the N concentration. However, the details of the strain distribution within and around the InAs SAQDs are not well understood.

In this letter, the lattice deformations of InAs SAQDs embedded in GaNAs SCLs were examined with Rutherford backscattering spectrometry (RBS)-channeling method. The channeling investigation is highly sensitive to atomic displacements. Clear dependence of the anisotropic In lattice displacements on the N concentration in the GaNAs SCLs are demonstrated, and the strain relation between the InAs SAQDs and the GaNAs SCLs are discussed.

All the InAs SAQDs samples were grown on (001)GaAs substrates by metalorganic molecular-beam epitaxy (MOMBE). The metalorganic precursors used in this study were triethylgallium (TEGa), triethylindium (TEIn), trisdimethylaminoarsenic (TDMAAs), and monomethylhydrazine (MMHy) for Ga, In, As, and N, respectively. A 300-nm-thick GaAs buffer layer was firstly grown at the substrate temperature of 550°C. Subsequently the substrate temperature was lowered to 450°C and about 2.0 MLs of InAs were grown. A transition from the two-dimensional to three-dimensional growth mode, i.e., the initiation of the Straniski-Krstanow (SK) growth mode of the InAs layer was monitored with reflection high-energy electron diffraction. A 10-nm-thick GaNAs SCL and a 10-nm-thick GaAs layer were subsequently grown at the same substrate temperature of 450°C. Following this sequence, three stacks of the InAs SAQDs layers were grown. Three samples with the N concentrations of 0.7, 1.4, and 2.65% in the GaNAs SCLs were prepared. A schematic drawing for the sample structure is shown in Fig. 1.

A standard experimental arrangement for RBS-channeling was used with a tandem-type ion accelerator at Kanagawa High-Technology Foundations. The samples were set on a four-axis goniometer. 2.34 MeV He ions were used as

Fig. 1. Schematic drawing for InAs SAQDs sample embedded in GaNAs SCL.
probe beams to investigate both the [001] and (110) channeling properties. The scattering angle and the beam spot were 160° and $1\,\text{mm}$, respectively. To evaluate the lattice deformation, the normalized minimum backscattering yield, χ_{min}, which is defined as a ratio of aligned yield to random (off-axis) one, was used.

Since the InAs SAQDs on GaAs(001) host lattice were grown via SK mode, i.e., InAs layer changed its strain status with InAs coverage, χ_{min} reflects the atomic displacements from the GaAs host lattice.

One of the RBS spectra measured under the random, [001] and (110) channeling geometries are shown in Fig. 2. The InAs SAQDs shown in Fig. 2 were embedded in the GaNAs SCL with the N concentration of 0.7%. The inset shows In signals detected around the channel number of 430. The open circles, filled circles, and open triangles indicate the signals detected around the channel number of 400. The inset shows In signals near 430 ch.

Fig. 2. Typical RBS/channeling spectra for InAs SAQDs embedded in GaNAs SCL. Inset shows In signals near 430 ch.

The tetragonal lattice distortions suggested by the results observed as previously discussed in Fig. 2. These reversed trends are attributed to the strain-induced lattice distortions. The tetragonal lattice distortions suggested by the results shown in Figs. 3 and 4 critically influence the (110) channeling direction, which is inclined relative to the (001) surface, compared with the [001] direction normal to

dominates with the increase of the N concentration in the GaNAs SCLs.

In addition to the examination of the In lattices in the InAs SAQDs, the channeling properties of the Ga and As lattices around the channel number of 400 were studied, where the 10-nm-thick GaNAs SCLs/10-nm-thick GaAs layers burying the InAs SAQDs close to the sample surface mainly contribute. Figure 4 summarizes the χ_{min}’s as a function of the N concentration. Although the χ_{min} [001] for the Ga and As lattices remained almost unchanged, the χ_{min} (110) showed clear increase for the higher N concentration in the GaNAs SCLs. This N concentration dependence is similar to that observed for the In atoms.

As discussed in the lattice deformation of the In atoms, these behaviour indicate that the Ga and As lattices in the GaNAs SCLs are mainly in the vertical direction to the (001) plane. Since the χ_{min} (110) reflects lattice deformation in the direction of both horizontal and vertical to the (001) plane, these RBS measurements shown in Figs. 3 and 4 demonstrate that the deformations of both the In lattices in the InAs SAQDs and the Ga and As lattices in the GaNAs SCLs are mainly in the vertical direction to the (001) plane.

In the present RBS measurements, the reversal of the χ_{min}’s in the [001] and (110) channeling directions was observed as previously discussed in Fig. 2. These reversed trends are attributed to the strain-induced lattice distortions.
the (001) surface by the deformation vertical to the (001) plane.

We have previously shown that χ_{min} measured in (100) channeling directions depend on the sizes of InAs SAQDs buried near the sample surfaces, i.e., χ_{min} measured from samples with larger-sized dots is larger than that measured from samples with smaller-sized dots.\(^{19}\) In this regard, the InAs SAQDs in the present study were prepared under the same conditions for all the samples. Although there remains the possibility that the sizes and shapes of InAs SAQDs may change during the embedding processes, the observation of the nearly constant χ_{min} in the [001] direction in this study excludes such deformation of InAs SAQDs during the embedding processes with the GaNAs SCLs.

The concept of the InGaAs SRLs\(^{7,8}\) is based on the reduced interface lattice mismatch between the InAs/ (In)GaAs heterointerfaces. The formation of the InAs/ GaNAs heterointerfaces in this regard apparently increases the interface lattice mismatch. The present observations showed that the In lattices in the (001) crystal planes of the InAs SAQDs were not much affected through the embedding processes with the GaNAs SCLs. On open InAs SAQD surfaces, however, the surface In atoms experience the stress-free condition and the lattice extensions in both surface normal and lateral directions take place. Formation of As–Ga bonds on this surface induces the compressive strain in the surface In–As bonds and tensile strain in the adsorbed As–Ga bonds. S. B. Zhang et al. discussed the surface-reconstruction-enhanced solubility of N in III–V semiconductors based on a calculation of the substitutional incorporation in the As sites in the compressively strained surface anion dimers by the N incorporation in the sub-surface lattice sites. The present situation is similar in the sense that the N incorporation in the As sites in the compressively strained surface In–As bonds reduces the compressive strain underneath the surface-formed As–Ga bonds. This mechanism may help us to keep the overall coherent growth condition which keeps the (001) lattice structure unchanged.

Figure 5 shows the schematics of the deformations of the In lattices in the InAs SAQDs and the Ga and As lattices in the GaNAs SCLs in the direction normal to the (001) crystal plane and their deformation enhancements with the increase of the N concentration in the GaNAs SCLs observed in this work. The InAs lattices experience bi-axial compression and extend toward the direction normal to the (001) surface. However embedding them with GaAs layer induces the additional compressive strain normal to the (001) surface. The partial replacement of the GaAs embedding layer with the tensile-strained GaNAs layers shrink themselves normal to the (001) surface and this allows the InAs lattice to recover the expansion normal to the (001) surface as shown in Fig. 5. This strain release in the InAs SAQDs explains the observed red-shift up to 1.55 μm with the GaNAs SCLs reported in ref. 10.

In summary, the lattice deformation of the InAs SAQDs was examined with the RBS ion-channeling method. The InAs SAQDs embedded in GaNAs SCLs exhibited the significant increase of the backscattering yield in the (110) channeling direction with the N concentration in the GaNAs SCLs, while the backscattering yield in the [001] channeling direction kept unchanged with the N concentration. These results demonstrated that the lattice distortions caused by the embedding processes of the InAs SAQDs with the GaNAs SCLs are dominated in the direction normal to the (001) surfaces.

\begin{thebibliography}{99}
\item 1) Y. Arakawa and H. Sasaki: Appl. Phys. Lett. 40 (1982) 939.
\item 2) M. Tabuchi, S. Noda and A. Saako: Sci. Technol. Mesosc. Structures (1992) 379.
\item 3) D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars and P. M. Petroff: Appl. Phys. Lett. 63 (1993) 3203.
\item 4) N.-T. Yeh, T.-E. Nee, J.-I. Chyi, T. M. Hsu and C. C. Huang: Appl. Phys. Lett. 76 (2000) 1567.
\item 5) For example, K. Mukai and M. Sugawara: Appl. Phys. Lett. 74 (1999) 3963.
\item 6) H. Saito, K. Nishi and S. Sugou: Appl. Phys. Lett. 73 (1998) 2742.
\item 7) K. Nishi, H. Saito, S. Sugou and J.-S. Lee: Appl. Phys. Lett. 74 (1999) 1111.
\item 8) J. Tatebayashi, M. Nishioka and Y. Arakawa: Appl. Phys. Lett. 78 (2001) 3469.
\item 9) X. Q. Zhang, S. Ganapathy, H. Kumano, K. Uesugi and I. Suemune: J. Appl. Phys. 92 (2002) 6813.
\item 10) K. Takemoto, Y. Sakuma, T. Usuki and N. Yokoyama: Jpn. J. Appl. Phys. 43 (2004) L349.
\item 11) J. Riikonen, J. Sormunen, M. Mattila, M. Sopanen and H. Lipsanen: Jpn. J. Appl. Phys. 44 (2005) L158.
\item 12) T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu and Y. Arakawa: Jpn. J. Appl. Phys. 44 (2005) L620.
\item 13) P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot and S. Loualiche: Jpn. J. Appl. Phys. 44 (2005) L1069.
\item 14) S. Iwamoto, K. Tatebayashi, T. Fukuda, T. Nakaoka, S. Ishida and Y. Arakawa: Jpn. J. Appl. Phys. 44 (2005) 2579.
\item 15) S. Ganapathy, X. Q. Zhang, H. Kumano, K. Uesugi and I. Suemune: Jpn. J. Appl. Phys. 42 (2003) 5598.
\item 16) X. Q. Zhang, S. Ganapathy, I. Suemune, H. Kumano, K. Uesugi, Y. Nabetani and T. Matsumoto: Appl. Phys. Lett. 83 (2003) 4524.
\item 17) T. Haga, T. Kimura, Y. Abe, T. Fukui and H. Saito: Appl. Phys. Lett. 47 (1985) 1162.
\item 18) L. C. Feldman, J. W. Mayer and S. T. Picraux: Material Analysis by Ion Channeling (Academic, New York, 1982).
\item 19) N. Matsumura, T. Haga, S. Muto, Y. Nakata and N. Yokoyama: J. Appl. Phys. 89 (2001) 160.
\item 20) S. B. Zhang and A. Zunger: Appl. Phys. Lett. 71 (1997) 677.
\end{thebibliography}