Miniaturised Instrumentation for the Detection of Biosignatures in Ocean Worlds of the Solar System

Julian Chela-Flores

This review of miniaturised instrumentation is motivated by the ongoing and forthcoming exploration of the confirmed, or candidate ocean worlds of the Solar System. It begins with a section on the evolution of instrumentation itself, ranging from the early efforts up to the current rich-heritage miniaturised mass spectrometers approved for missions to the Jovian system. The geochemistry of sulphur stable isotopes was introduced for life detection at the beginning of the present century. Miniaturised instruments allow the measurement of geochemical biosignatures with their underlying biogenic coding, which are more robust after death than cellular organic molecules. The role of known stable sulphur isotope fractionation by sulphate-reducing bacteria is discussed. Habitable ocean worlds are discussed, beginning with analogies from the first ocean world known in the Solar System that has always being available for scientific exploration, our own. Instrumentation can allow the search for biosignatures, not only on the icy Galilean moons, but also beyond. Observed sulphur fractionation on Earth suggests a testable “Sulphur Hypothesis”, namely throughout the Solar System chemoautotrophy, past or present, has left, or are leaving biosignatures codified in sulphur fractionations. A preliminary feasible test is provided with a discussion of a previously formulated “Sulphur Dilemma”: It was the Galileo mission that forced it upon us, when the Europan sulphur patches of non-ice surficial elements were discovered. Biogenic fractionations up to and beyond $\delta^{34}S = -70\%$ denote biogenic, rather than inorganic processes, which are measurable with the available high sensitivity miniaturised mass spectrometers. Finally, we comment on the long-term exploration of ocean worlds in the neighbourhood of the gas and ice giants.

Keywords: habitability, Ocean worlds, miniaturisation of mass spectrometers, stable isotope geochemistry, sulphur geochemistry, JUpiter ICy moons Explorer mission, Europa Clipper, terrestrial analogies

REVISITING THE “SULPHUR DILEMMA”

Information on Ocean Worlds that is Coded in Stable Isotopes

We should take a look at what the Galileo mission taught us, regarding the search for life. In the near future, with the JUpiter ICy moons Explorer (JUICE) mission Grasset et al. (2013a) and the NASA proposed Europa Clipper mission (Howell and Pappalardo, 2020), there are several options for interpreting the information that is coded in the sulphur isotopes that have been deposited on the Galilean moons.
The epoch-making Galileo Mission was responsible for the discovery of intriguing surficial deposits of sulphur (patches) on Europa’s frozen surface. Subsequent measurements ratified this discovery. It was the first proposal that was put forward, that these chemical elements may be exogenous, namely that their origin may have been from the neighbouring satellite Io. Sulphur was detected by the Galileo mission on the Europian surficial patches. The presence of sulphur compounds on the Europian surficial ice was confirmed by NIMS measurements, Near-Infrared Mapping Spectrometer (Carlson et al., 2002). The data matches the endogenous, including, Solid-State Imaging (SSI), NIMS and the conclusion that the source of the sur.

2007). A suite of measurements, still from Galileo have led us to the conclusion that the source of the surficial sulphur is endogenous, including, Solid-State Imaging (SSI), NIMS and the Ultraviolet Spectrometer (UVS) (Fanale et al., 1999).

A Europa Lander Mission Concept for Solving the Sulphur Dilemma

The Europian endogenous surficial sulphur could have been metabolically processed by a submarine biota. This hypothesis is testable, as at the level of isotopic modifications the sulphur could have left measurable traces. They would be detectable with the sensitivity of the available instrumentation that has already been approved for the forthcoming missions. All of these queries can be summarised in a Sulphur Dilemma, which was first formulated soon after the Galileo mission ended its activities on September 23, 2003 (Chela-Flores, 2006):

What is the source of the S patches? Could they be endogenous and at the same time biogenic?

A NASA Europa lander, which at present is only a proposed astrobiology mission concept Pitesky and Hand (2020) has, nevertheless, been advocated for over two decades (Phillips and Chyba, 2001). Such a lander could search for the biosignatures, which we have pointed out in earlier publications and especially in this review. Likely sites for can be retrieved from the NIMS data (cf., Information On Ocean Worlds that is Coded in Stable Isotopes). These measurements suggest that a Europa lander be placed especially on the area close to 0–30°N and longitudes 240 and 270, in correspondence with the S patches, as suggested by our comments above (McCord et al., 1998).

Autochthonous Microbes Could Alter the Surface of Europa

It is possible to answer the question whether the early Earth microbial life could mirror the emergence of Europian microorganisms, at least as far as their biochemistry is concerned. Metabolism of autochthonous microbes could alter substantially the S surficial deposits. The answer lies encoded in the isotopic fractionation of the sulphur atoms that would have been involved. Such alterations are measurable with the accuracy that is available in the latest miniaturised mass spectrometers that would be compatible with payloads allowed for a Europa lander.

OCEAN WORLDS PAST AND PRESENT

Past Ocean Worlds on Venus and Mars

Both Venus and Mars were possible hosts of ancient oceans, probably not unlike the terrestrial ones. Firstly, the possibility of an early Venussian life-friendly environment was raised earlier on (Donahue et al., 1982). In addition, on the question of habitability of Venus, additional papers were published in the early 1980s: Firstly, numerical simulations suggested that habitability of Venussian oceans was not excluded in its first billion years, with oceans persevering for possible up to twice that time (Grinspoon and Bullock, 2007). There is evidence that initially Venus was an ocean world (Kasting et al., 1984; Kasting, 1988; Donahue and Russell, 1997; Grinspoon and Bullock, 2003).

In addition to the early approaches to the question of an early Venussian ocean, a recent three-dimensional model militates in favour of the ocean lasting until recent geological times, including potential habitability conditions (Way et al., 2016). The possibility of some form of extremophilic life has also been discussed in a variety of possible environments and the possibility of panspermia to and from our own planet (Schulze-Makuch and Irwin, 2004).

Secondly, on a second terrestrial planet—Mars—there could have been a global ocean in its northern hemisphere, so that the Red Planet can be added to the list of (past) ocean worlds (Clifford and Parker, 2001; Fairen et al., 2003).

Volcanic eruptions, contemporary with the presence of the early ocean, were possible sources of abundant sulphur compounds. These chemical elements would be expected to have been deposited on the ancient Martian surface. An early ecosystem can be tested by ruling out, or detecting, fractionation codified in the sulphur compounds that were deposited. Testing S isotopes as biosignatures is a possibility that has already been raised for Mars (Chela-Flores, 2018). Such identification of biosignatures will be in a more favourable position with the forthcoming landing missions Tianwen-1 (CNSA, landed on May 14, 2021), Perseverance (NASA, landed on February 18, 2021) and Rosalind Franklin (Roscosmos and ESA, expected to land in 2023).

Analogies From the First Ocean World Known in the Solar System

Some of the confirmed ocean worlds (OWs) have icy surfaces over subsurface oceans. On Earth we have a valuable analogy in Antarctica’s McMurdo Dry Valley Lakes (DVL). These lacustrine environments (Doran et al., 2010; Chela-Flores and Seckbach, 2011) have biotopes that are known to survive under difficult constraints, including being permanently covered by ice (cf., Tables 1–3).

Lake Joyce is an interesting lake, also ice covered all the year-round. An analogous water environment lying underneath an icy cover is Lake Untersee, whose maximum depth is 169 m (Wand et al., 1997). Being in central Queen Maud Land in East Antarctica, Untersee is significant as an analogy for the ocean worlds: The lake ice cover is 2–6 m thick which may have
persisted for over 100,000 years. Below 80 m hydrogen sulfide is present, associated with decreased sulfate concentrations, probably arising from bacterial reduction of sulfate. It is known that stromatolites are present in the lake bottom (Andersen et al., 2011). But resurfacing also hints at submerged geologic activity. The icy Galilean moons cryovolcanism may resemble terrestrial silicate volcanism. Earth-like geologic activity includes a candidate for the origin of life, namely, hydrothermal vents (Wächtershäuser, 1990).

Confirmed Ocean Worlds in the Jovian System

Going beyond the Martian orbit, we could persevere with a systematic search for sulphurous material on the surface of the Galilean icy worlds. We may assume a testable "Sulphur Hypothesis" (throughout the Solar System chemosynthesis, past or present, has left, or are leaving biosignatures codified in sulphur fractionations).

Under this hypothesis, the non-ice chemical elements may have their source in the moon’s interior biota; for a test we should identify surficial locations, where it is most likely to detect chemical elements arising from the subsurface ocean. One prominent spot is undoubtedly the dark and red-coloured material in the young depression Castalia Macula (0°N, 225°W), which has been pointed out by Louise Prockter and Paul Schenk in the first decade of this century (Prockter and Schenk, 2005). The tests we have proposed earlier (cf., *Stable Isotopes From Ore Genesis Can Be Used as Biosignatures*) can detect, or rule out, the presence of a significant biogenic signal if surficial sulphur has been processed by oceanic microbial life.

One of the natural phenomena that could contribute to yield the ocean chemical contents in places like Castalia Machia is cryovolcanism (Fagents, 2003). The patchy nature of the surficial S deposits argues strongly against the possible source being from the neighbouring volcanic Galilean moon, Io (Carlson et al., 1999).

In the foreseeable future, direct geochemical tests on the furthest ocean worlds are not possible, but as we will see in this section much information has been gathered for including their moons, as either confirmed, or candidate ocean worlds.

Confirmed Ocean Worlds in the Saturnian System

Two satellites of Saturn have been the focus of attention for several missions including the two confirmed ocean worlds Enceladus and Titan (Hendrix et al., 2018). Enceladus

Lake or pond	Maximum depth (meters)	Elevation (meters above sea level)	Lake type	References
Lake Hoare	34	73	Perennial ice cover; liquid water	Chela-Flores and Seckbach, (2011)
Lake Vanda	69	123	Perennial ice cover; liquid water	Chela-Flores and Seckbach, (2011)
Lake Joyce	37	1677	Perennial ice cover; liquid water	Chela-Flores and Seckbach, (2011)
Lake Untersee	169	565	Perennial ice cover; liquid water	Wand et al. (1997)

TABLE 2 | Microbial life in the Dry Valleys lakes, Antarctica (Chela-Flores, and Seckbach, 2011).

Organism	Domain	Habitat
Cyanobacteria	Bacteria	Lakes Chad, Fryxell, and Vanda
Leptothrix	Bacteria	Lakes Fryxell and Hoare
Achronema	Bacteria	Lakes Fryxell and Hoare
Clostridium	Bacteria	Lakes Fryxell and Hoare
Chlamydomonas subcaudata	Eucarya	Lakes Bonney (east lobe) and Hoare
Diatoms (Phylum bacillariophyta)	Eucarya	Hoare and Vanda
Bryum (a moss)	Eucarya	Lake Vanda

TABLE 3 | A few examples of eukaryotes present in Antarctica.

Organism	Domain	Habitat	
Diatom shells	Eucarya (bacillariophyta)	Lake Vostok (ice core, at depth of 2375 m)	Chela-Flores, and Seckbach, (2011)
Caloneis ventricosa	Eucarya (bacillariophyta)	Lakes Chad, Fryxell, Hoare, and Vanda	Chela-Flores, and Seckbach, (2011)
Navicula cryptocephala	Eucarya (bacillariophyta)	Lakes Bonney, Fryxell, Hoare, and Vanda	Chela-Flores, and Seckbach, (2011)
Chlamydomonas subcaudata	Eucarya (chlorophyta)	Lakes Bonney and Hoare	Chela-Flores, and Seckbach, (2011)
Tetracystis sp.	Eucarya (chlorophyta)	Lakes Fryxell, Hoare, and Vanda	Chela-Flores, and Seckbach, (2011)
Yeast	Eucarya (Ascomycota)	Lake Vostok (ice core)	Chela-Flores, and Seckbach, (2011)
Possibility (Hendrix et al., 2018). However, new missions for Iapetus, where there is only basic foundation for this, are presently candidate ocean worlds: Mimas, Tethys, Rhea, and land at new sites to characterize the habitability of Titan and anoxic conditions, can be thought of as models of possible Europan biota that a hydrobot-type of probe could eventually detect with an appropriate payload.

THE EVOLUTION OF INSTRUMENTATION UP TO MINIATURISED MASS SPECTROMETERS

The Exploration of Confirmed or Candidate Ocean Worlds
In the long-term planning, the search of biosignatures should focus mainly on two of the Galilean moons, Europa and Ganymede (cf., \textit{The Robustness of Geochemical Biosignatures}), since there are missions by ESA and NASA that in the short term will be equipped with appropriate instrumentation. The case of Mars as a previous ocean world is also discussed. Clearly, it is instructive to review the evolution of instrumentation towards a stage when they have been approved by the space agencies.

Cryobots and Hydrobots for the Exploration of Ocean Worlds
Soon after the Galileo mission arrived in the Jovian system, it was suggested that for icy moons with internal oceans coupled instruments could be useful. The hydrobot-cryobot intended to melt through the icy surface into the ocean underneath (cf., \textit{Figure 1A}).

It is at present no longer being considered feasible as we proposed it. However, we should underline that the cryobot-type of instrumentation, as a melting drill head for the exploration of subsurface planetary ice layers has subsequently attracted the attention of researchers (Weiss et al., 2008).

The question remains open whether in the future the exploration of ocean worlds may benefit from a more advanced version of hydrobots. For instance, the proposal of a hydrobot submersible has been used subsequently by the concept mission ENDURANCE. This probe could eventually be used for the direct exploration of an ocean world, such as Europa (Bortman, 2010). The possibility of extremophiles that are known on terrestrial conditions to persevere and survive in anoxic conditions, can be thought of as models of possible Europan biota that a hydrobot-type of probe could eventually detect with an appropriate payload.

Penetrators as Alternative Instruments for Ocean Worlds
A second suggestion that we found as an attractive instrument for probing the icy surfaces of the ocean worlds was called a penetrator (Gowen et al., 2011, cf., \textit{Figure 1B}), which had previously been suggested for use in the context of lunar exploration (Smith et al., 2009).

These mini-missiles would have been delivered from orbit to reach and penetrate the icy surface. In spite of its advantages some subsequent variations the main space agencies have not included them in payloads of future missions. Yet, at present there is still considerable interest in penetrators (Bagrov et al., 2021).

\begin{table}[h]
\centering
\caption{Mass spectrometers for studying ocean worlds of the Solar System.}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Miniaturised instrumentation} & \textbf{Details} & \textbf{References} \\
\hline
NGMS: Neutral Gas (NG) Mass Spectrometer MS & A Time of Flight (TOF) MS & Wurz et al. (2012) \\
Laser-Induced Breakdown Spectroscopy (LIBS) & Can be used to distinguish bacteria with few constraints, which has advantages when adopted for space research & Multi et al. (2010) \\
Laser Desorption Mass Spectrometry & Potentially applicable for the detection of amino acids on the icy surfaces of ocean worlds & Ligerink et al. (2020) \\
Laser Ionization Mass Spectrometry (LIMS) & Adopted for space research & (Fiedo et al., 2012), (2013a) \\
The MAss SPectrometer for Planetary EXploration/ Europa (MASPEX) & Incorporated in the payload for Europa clipper & Howell and Pappalardo, (2020) \\
\hline
\end{tabular}
\end{table}

Explorer is a mission concept by the German Aerospace Center together with German universities for an unprecedented coupled system for probing this moon’s exterior, orbiter and its interior, at least its surficial ice (cf., Table 4 for references and full names of all the missions referred to below). In addition, coming from NASA, Christopher McKay, and colleagues have proposed to measure biosignatures on Enceladus, the ELSAH mission, with a payload that would include a sophisticated instrumentation, for mass spectrometry (McKay, 2008). On the other hand, and once again focusing on the same intriguing ocean world, the ELF mission hopes to probe its subsurface ocean. Instead, not only for Enceladus, but also for Titan, the E2T mission is an international collaboration between two major space agencies dedicated to both Enceladus and Titan.

In spite of the rich assortment of options, in 2019 NASA gave a priority in their New Frontier Programme to the mission Dragonfly to Titan to characterize the habitability of Titan. The Dragonfly would use a lander with rotors to take off, fly, and land at new sites to characterize the habitability of Titan’s environment and to search for biosignatures.

Finally, there is a set of another four Saturnian satellites that are presently candidate ocean worlds: Mimas, Tethys, Rhea, Iapetus, where there is only basic foundation for this possibility (Hendrix et al., 2018). However, new missions for the Saturnian system is required to promote these four Saturnian moons to the rank of confirmed ocean worlds. Exceptionally, at the end of 2004 and in 2007, there were close flybys of Iapetus during the Cassini mission.
It should not escape our attention that the basic idea of the penetrator, as a means to deliver an impacting descent probes for the Galilean moons has subsequently been extended. The alternative projectile has been suggested in order to simplify the costs and technological challenges of direct exploration of the icy surfaces of ocean worlds with landers (Wurz et al., 2017). But the possible alternative impacting probe would be an implementation of an earlier Europa Descent Probe of approximately cubic shape, unlike the traditional cylindrical penetrator.

After these pioneering efforts for exploring the ocean worlds, which we have illustrated in Figure 1A,B, a significant string of publications has followed with the view of participating in the forthcoming missions to the Galilean moons. We have presented the corresponding evolution of instrumentation as the timeline in Table 5:

Heritage of Miniaturised Instruments for Forthcoming Missions

The most successful instruments that have been selected for forthcoming space missions are mass spectrometers. From the point of view of probing the ocean worlds for biosignatures, they have many advantages to which we shall return in *Biosignatures From the Geochemistry of Stable Isotopes*. Their most attractive feature is the degree of miniaturisation that has been achieved (Tulej et al., 2015).
Miniaturisation of mass spectrometers has been developed specifically for space exploration. In various previous applications, miniaturised mass spectrometers have been used in the payload of space orbiters, as well as in rovers. There are many studies aiming at the exploration of the Solar System (Tulej et al., 2011; Tulej et al., 2016; Wiesendanger et al., 2017; Wiesendanger et al., 2018a; Wiesendanger et al., 2018b).

In Figure 1C, we illustrate a recent example of the process of miniaturisation of mass spectrometry. It shows one of its components—a mass analyzer—which takes ionized masses and separating them according to charge to mass ratios. This instrument is responsible to deliver the information received to the detector, where it is converted into a digital output.

Some more exciting recent research is relevant in this context. Firstly, cutting-edge instrumentation that is currently ready for the flight on the PEP JUICE mission (including the NIM instrument), which will fly in 2022. The NIM instrument is designed to measure exospheres of Jupiter satellites during flyby (Lasi et al., 2020). This work addresses instruments designed for a future Europa lander. Secondly, miniaturized mass spectrometry with the intention of being included in future payloads is also being considered (Föhn et al., 2021). Finally, some work now is focusing on a lander instrument on Europa, particularly on a coupling of the mass analyser with sample introduction/laser ablation/desorption ion source (Origin instrument). This instrument is more like LMS with the laser ablation/desorption ion source (Ligterink et al., 2020).

To implement the experimental tests on biogeochronal biomarkers on Europa and Ganymede, we have to wait some time for the results of two forthcoming missions.

There are two possibilities for the use this instrumentation in the exploration of the icy Galilean moons. The first of the two missions to launch will be the ESA mission JUpiter ICy moons Explorer (JUICE), whose main objective will be on Ganymede (Grasset et al., 2013b). In this mission there has been significant progress in relevant miniaturised mass spectrometry. In fact, JUICE will include in its payload a Particle Environment Package, which includes a Neutral and Ion Gas Mass Spectrometer (Abplanalp et al., 2009; Meyer et al., 2017). Potentially, this new instrumentation is capable of testing whether isotopes of sulphur can be used as biomarkers, as explained in Biosignatures From the Geochemistry of Stable Isotopes below.

The second mission to launch will be the NASA EuropaClipper mission. After the major work achieved by the Galileo mission, it intends to investigate habitability of Europa. It has the capability to measure biogenic stable S-isotope fractionation. Besides, a mission concept for a landed spacecraft to the surface of Europa is under consideration. The Mass SPECTrometer for Planetary EXploration/Europa (MASPEX) will be included in the Europa Clipper scientific payload (Pappalardo et al., 2013).

Even as a mission concept, a Europa lander remains an appealing project of NASA (Figure 1D).

This lander has been discussed in the scientific community for a long time, going back at least to the Sixth Trieste Conference (Phillips and Chyba, 2001). The possibility of including a mass spectrometer in its payload Pitesky and Hand (2020) would add significantly to the first possibility of testing the Sulphur Hypothesis, a critical question in efforts to search for biomarkers (cf., Biosignatures From the Geochemistry of Stable Isotopes).

BIOSIGNATURES FROM THE GEOCHEMISTRY OF STABLE ISOTOPES

The Robustness of Geochemical Biosignatures

The distribution of life in the Universe is the third “chapter” of astrobiology, which has been given a suggestive name, a Second Genesis (McKay et al., 2001). We are suggesting in this paper and some of our previous ones that one way to search for a second genesis is with the help of stable isotope biochemistry. Metabolic alteration of the environment, seems to be more robust than the alternative search for the biomolecules of life, amongst them the amino acids, lipids or the monomers of the nucleic acids, as it is often done (Zhang et al., 2021). To test for the difference between biogenic as opposed to abiogenic remains as one of the outstanding challenges in astrobiology (McKay, 2008).

Stable Isotopes From Ore Genesis Can Be Used as Biosignatures

Ore is a term which applies to any mineral (metalliferous, or non-metal) from which the metallic, or non-metallic element may be profitably extracted. Ore genesis refers to mineral deposits formation underneath the terrestrial surface. Based on the analysis of 34S/32S, petroleum geologists used the analysis of ore genesis for understanding the provenance of sulphur. Besides, the light stable isotopes, including S, have provided information about mineral deposition,
demonstrating that ore formation is a surficial phenomenon, rather than having their origin in magmas. This topic has been reviewed earlier (Ohmoto, 1986). As opposed to the above work on ore genesis, astrobiologists can use the experience of geochemists by taking advantage of an extraordinary phenomenon in microbiology that has been widely studies since the middle of last century (Kaplan, 1975): sulphur is highly fractionated by microbes, in such a way that biogenically processed S can readily be distinguished from terrestrial mantle sulphur (Ireland, 2013). This is a remarkable phenomenon in the context of astrobiology. Indeed, biogeochemical biomarkers have long been used in astrobiology (Chela-Flores, 2006). This approach for the detection of biologic, rather than inorganic fractionation processes, is currently being exploited in a terrestrial context (Kring et al., 2021). This work goes back to its roots based on the well-established studies of ore genesis.

We refer to our earlier discussions for details related to the introduction of the “delta parameter” $\delta^{34}\text{S}$. This term is significant for the search of geochemical biosignatures (Chela-Flores and Seckbach, 2011; Chela-Flores et al., 2015):

$$\delta^{34}\text{S} = \left[\frac{^{34}\text{S}}{^{32}\text{S}} \right]_{\text{sample}} - 1 \times 10^3 \times \left[0/00, \text{CDM} \right]$$

where a standard is chosen referring to a troilite from the Barringer crater in the Canyon Diablo meteorite (CDM). To sum up, we already possess the technology which will facilitate the measurements with the necessary sensibility to test the icy surface for signs of life in the European ocean.

Distribution of Sulphur in the Solar System

In spite of remarkable progress in chemical evolution since the landmark paper of Stanley Miller (1953), there is yet no consensus for a theory of life’s origin (Davis and McKay, 1996). This situation suggests that one possibility to make further progress in life’s emergence would be to make testable hypotheses to find pathways for deeper aspects of the origin of life in the Universe.

There is wide past experience in assessing the presence of biogenicity in terrestrial environments. (Canfield and Thamdrup, 1994; Kohn et al., 1998; Popa et al., 2004; Shen and Buick, 2004; Sim et al., 2011; Kring et al., 2021).

Motivated by the Solar System S abundances, we adopt a ‘Sulphur Hypothesis’:

Throughout the Solar System, sulphur-processing microorganisms emerged early and have left, or are leaving, biosignatures codified in sulphur fractionations.

This is a testable hypothesis with the available instrumentation. One motivation for the Hypothesis is the role in chemoautotrophy by a type of bacteria that consumes sulphate and produces sulphide, as a waste product. These microorganisms are ancient sulphate-reducers. We will return to them.

For a long time, we have known from the exploration of the inner Solar System that sulphur is ubiquitous (Gibson, 1982), examples of which have been given more recently. Sulphur is present, not only on the Earth, but also on the other terrestrial planets: Mercury (Weider et al., 2016), Venus (Sandor et al., 2010) and Mars (McLennan and Grotzinge, 2009). But more significantly, the missions Galileo and Cassini support this view, since the giant planets have no less abundances of “metals” (elements heavier than helium), relative to hydrogen than the inner planets. Indeed, in those giant planets S abundances are much higher than observed in the Sun (Owen et al., 1999). In fact, the Jovian S abundance (measured by Galileo) exceeds Solar by a factor of three (Atreya et al., 2003).

Returning to our own planet, sulphur in the fossil record extends some three billion years before the present. There is evidence for the ancient emergence of sulphate-reducing microorganisms, which go back to the Archean: The phenomenon of sulphate reduction has been confirmed in terrestrial sediments 3.47 billion years before the present. At that time, in Australia they produced strong stable isotope depletions in pyrite embedded in barite (Shen et al., 2001; Shen and Buick, 2004).

DISCUSSION OF INNOVATIVE MISSIONS FOR THE GAS AND ICE GIANTS

Biogeochemical Biosignatures Beyond Mars and Jupiter

Due to the large distances involved, in the foreseeable future it will not be possible to apply the robust biogeochemical biosignatures discussed in *Biosignatures From the Geochemistry of Stable Isotopes* of the present review, but the planning still continues in the main space agencies. In spite of this handicap, the preliminary efforts of previous missions, Cassini, New Horizons and Dawn have given us a general view of the 19 confirmed and candidate ocean worlds of the Solar System, although, alas it will not be in the near future when we will have the first indications of an extant inhabited world in our cosmic neighbourhood.

In Table 6 we have gathered information on the exploration of some of the possibly habitable worlds of the outer Solar System of which we have little information. Some mission concepts have been formulated for some time now. Even though they have not received support from the main space agencies, they should be considered amongst astrobiology’s most urgent future projects.

Candidate Ocean Worlds Amongst the Moons of the Ice Giants

The search for biosignatures should be an objective for the Ice Giants Uranus and Neptune, especially the candidate ocean worlds amongst their moons: The Neptunian satellite Triton and the five Uranian moons, which are candidates for ocean worlds (Miranda, Ariel, Umbriel, Titania, Oberon). In spite of the fact that they are likely ocean worlds, in the future we still need orbiters around Uranus, as in the past it was the case for the
Saturnian system with its Cassini mission (Hofstadter et al., 2017).

In Table 7 we have gathered some proposals of missions, not supported in the current programmes of the main space agencies, which may throw some light on additional ocean moons around and beyond Uranus and Neptune, for instance: the Neptunian moon Triton, Pluto, Ceres, and the Saturnian moon Dione.

Candidate Ocean Worlds in Our Cosmic Neighbourhood

We have some remarkable moons in the outer Solar System, Triton being one of them (Gaeman et al., 2012; Nimmo and Spencer, 2014). It is conceivable that the geochemical biosignatures could eventually be applicable in those strange environments. The work of Hussmann and co-workers (2006) has taken into consideration, not only the above-mentioned satellite of Neptune, but in addition, moons of Saturn, Uranus, and Pluto as well (Rhoden et al., 2015).

Even tantalising opportunities are waiting in planetary science for deeper insights on the ocean worlds beyond the gas giants (Chela-Flores, 2017). But as mentioned in Biogeochemical Biosignatures Beyond Mars and Jupiter, this aspect of the exploration of the Solar System has not been favoured by the space-faring nations. Some of the most significant proposals for future missions to the ice giants await the exploration of the least known ocean worlds of our cosmic neighbourhood.

REFERENCES

Abplanalp, D., Wurz, P., Huber, L., Leya, I., Kopp, E., Rohner, U., et al. (2009). A Neutral Gas Mass Spectrometer to Measure the Chemical Composition of the Stratosphere. *Adv. Space Res.* 44, 870–878. doi:10.1016/j.asr.2009.06.016

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

FUNDING

This review follows a kind invitation from one of the associate editors to join the very new section Microgravity in the Frontiers journal Space Technology. We acknowledge our gratitude for having been granted a full waiver.

ACKNOWLEDGMENTS

The author would like to thank Professor Alan Smith, Director Space Domain, Mullard Space Science Laboratory, University College London for kind permission to publish Figure 1B. He is also grateful to Marek Tulej, member of Laser Mass Spectrometry Laboratory in Physics Institute Planetary Sciences and Space Research Division, University of Bern, Switzerland, for his wise counselling regarding recent work on instrumentation that is intended for exploration of the Jovian ocean worlds. He would also like to thank Ian Crawford, Professor of Planetary Science and Astrobiology, Department of Earth and Planetary Sciences, Birbeck College, University of London, UK for help in the later stages of writing the present work.
Wächtershäuser, G. (1990). Evolution of the First Metabolic Cycles. PNAS. 87, 200–204. doi:10.1073/pnas.87.1.200

Wand, U., Schwarz, G., Bruggemann, E., and Brauer, K. (1997). Evidence for Physical and Chemical Stratification in Lake Untersee (central Dronning Maud Land, East Antarctica). Antarctic Sci. 9 (1), 4345. doi:10.1017/s0954102097000060

Way, M. J., Del Genio, A. D., Kiang, N. Y., Sohl, I. E., Grinspoon, D. H., Aleinov, I., et al. (2016). Was Venus the First Habitable World of Our Solar System? Geophys. Res. Lett. 43, 8376–8383. doi:10.1002/2016GL069790

Weider, S. Z., Nittler, L. R., Murchie, S. L., Peplowski, P. N., McCoy, T. J., Kerber, L., et al. (2016). Evidence From MESSENGER for Sulfur- and Carbon-Driven Explosive Volcanism on Mercury. Geophys. Res. Lett. 43, 3653–3661. doi:10.1002/2016gl068325

Weiss, P., Yung, K. L., Ng, T. C., Komle, N., Kargl, G., and Kaufmann, E. (2008). Study of a Melting Drill Head for the Exploration of Subsurface Planetary Ice Layers. Planet. Space Sci. 56, 1280–1292. doi:10.1016/j.pss.2008.04.004

Wiesendanger, R., Tulej, M., Riedo, A., Frey, S., Shea, H., Wurz, P., et al. (2017). Improved Detection Sensitivity for Heavy Trace Elements Using a Miniature Laser Ablation Ionisation Mass Spectrometer. J. Anal. Atom Spectrom. 32 (11), 2182–2188. doi:10.1039/c7ja00193b

Wiesendanger, R., Tulej, M., Grimaudo, V., Cedeño-López, A., Lukmanov, R., Riedo, A., et al. (2018a). A Method for Improvement of Mass Resolution and Isotope Accuracy for Laser Ablation Time-of-flight Mass Spectrometers. J. Chemometrics - Wiley. 33, e3081. doi:10.1002/jchem.3081

Wiesendanger, R., Wacey, D., Tulej, M., Neubecck, A., Ivarsson, M., Grimaudo, V., et al. (2018b). Chemical and Optical Identification of Micrometer-Sized 1.9 Billion-Year-Old Fossils by Combining a Miniature Laser Ablation Ionization Mass Spectrometry System with an Optical Microscope. Astrobiology. 18, 1071–1080. doi:10.1089/ast.2017.1780

Wurz, P., Abplanalp, D., Tulej, M., and Lammer, H. (2012). A Neutral Gas Mass Spectrometer for the Investigation of Lunar Volatiles. Planet. Space Sci. 74, 264–269. doi:10.1016/j.pss.2012.05.016

Wurz, P., Lasi, D., Thomas, N., Piazza, D., Galli, A., Jutzi, M., et al. (2017). An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter. Physics, Geology. Earth, Moon, Planets. 120, 113. doi:10.1007/s11038-017-9508-7

Zhang, L., Zeng, F., McKay, C. P., Navarro-González, R., and Sun, H. J. (2021). Optimizing Chiral Selectivity in Practical Life-Detection Instruments. Astrobiology. 21, 5. doi:10.1089/ast.2020.2381

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Chela-Flores. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.