orders of magnitude higher than its suspended counterpart in isooctane (containing 30% (v/v) tetrahydrofuran (THF) to aid in substrate solubility). Both enzymes are strongly activated in hydrophobic organic solvents. Addition of small concentrations of water (< 0.2 and 1% (v/v) in isooctane/THF and AcOEt, respectively) results in up to a 150-fold activation of α-chymotrypsin-catalyzed peptide synthesis. Importantly, added water did not promote hydrolysis in either isooctane/THF or AcOEt; thus, α-chymotrypsin is highly selective toward peptide synthesis in the nearly anhydrous organic solutions (Fig.). Using α-chymotrypsin, a variety of tripeptides were produced from dipeptide amino-acid esters (Table 2). Reactivity of D-amino-acid amides as acyl acceptors and partially unblocked amino-acid acyl donors further expands the generality of the use of organic solvent-soluble enzymes as peptide-synthesis catalysts.

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH₂ proceeds 500-times faster than with the suspended enzyme in isooctane containing 30% (v/v) THF.

Figure. Effect of water on α-chymotrypsin-catalyzed peptide synthesis in isooctane/THF and AcOEt

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH₂ proceeds 500-times faster than with the suspended enzyme in isooctane containing 30% (v/v) THF.

Figure. Effect of water on α-chymotrypsin-catalyzed peptide synthesis in isooctane/THF and AcOEt

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH₂ proceeds 500-times faster than with the suspended enzyme in isooctane containing 30% (v/v) THF.

Figure. Effect of water on α-chymotrypsin-catalyzed peptide synthesis in isooctane/THF and AcOEt

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH₂ proceeds 500-times faster than with the suspended enzyme in isooctane containing 30% (v/v) THF.

Figure. Effect of water on α-chymotrypsin-catalyzed peptide synthesis in isooctane/THF and AcOEt

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH₂ proceeds 500-times faster than with the suspended enzyme in isooctane containing 30% (v/v) THF.

Figure. Effect of water on α-chymotrypsin-catalyzed peptide synthesis in isooctane/THF and AcOEt

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH₂ proceeds 500-times faster than with the suspended enzyme in isooctane containing 30% (v/v) THF.

Figure. Effect of water on α-chymotrypsin-catalyzed peptide synthesis in isooctane/THF and AcOEt

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH₂ proceeds 500-times faster than with the suspended enzyme in isooctane containing 30% (v/v) THF.

Figure. Effect of water on α-chymotrypsin-catalyzed peptide synthesis in isooctane/THF and AcOEt

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH₂ proceeds 500-times faster than with the suspended enzyme in isooctane containing 30% (v/v) THF.
orders of magnitude higher than its suspended counterpart in isoctane (containing 30% (v/v) tetrahydrofuran (THF) to aid in substrate solubility). Both enzymes are strongly activated in hydrophobic organic solvents. Addition of small concentrations of water (< 0.2 and 1% (v/v) in isoctane/THF and AcOEt, respectively) results in up to a 150-fold activation of \(\alpha \)-chymotrypsin-catalyzed peptide synthesis. Importantly, added water did not promote hydrolysis in either isoctane/THF or AcOEt; thus, \(\alpha \)-chymotrypsin is highly selective toward peptide synthesis in the nearly anhydrous organic solutions (Fig.).

Using \(\alpha \)-chymotrypsin, a variety of tripeptides were produced from dipeptide amino-acid esters (Table 2). Reactivity of D-amino-acid amides as acyl acceptors and partially unblocked amino-acid acyl donors further expands the generality of the use of organic solvent-soluble enzymes as peptide-synthesis catalysts.

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH\(_2\) proceeds 500-times faster than with the suspended enzyme in isoctane containing 30% (v/v) THF.

Figure. Effect of water on \(\alpha \)-chymotrypsin-catalyzed peptide synthesis in isoctane/THF and AcOEt

2. Preparation of ‘Plastic enzymes’

The solubility of enzymes in organic solvents led us to develop an approach for the incorporation of enzymes into vinyl-based polymers. These polymers form the basis of a wide range of plastics such as poly(methyl methacrylate) (PMMA) and poly(styrene). Activity of the enzymes embedded the plastic matrix in hexane are up to 30-fold higher than the native chymotrypsin suspended in the solvent. The results for peptide synthesis using the PMMA-entrapped chymotrypsin are particularly striking. The condensation between N-Bz-Tyr-OEt and Leu-NH\(_2\) proceeds 500-times faster than with the suspended enzyme in isoctane containing 30% (v/v) THF.

Figure. Effect of water on \(\alpha \)-chymotrypsin-catalyzed peptide synthesis in isoctane/THF and AcOEt

Importance of Natural Chemical Resources in Drug Discovery

Louis J. Nisbet*

'The most important consequence of the structural change in the worldwide pharmaceutical markets is the reduction in R & D returns ... the industry will not realize a satisfactory return on its R & D investment unless research productivity increases substantially'.

(Lehman Brothers, PharmaPipelines, 1994)

It is a widely held view in the drug industry today that good margins will only be achieved with innovative drugs that produce significant therapeutic advantage. Also, new markets will be dominated by the first 2-3 drugs approved and, thus, speed in identifying high-quality drug leads provides a competitive edge in pharmaceuticals R & D.

In pursuing new drug leads, the industry has focused on chemical diversity and screening intensity, at times with a focus on vastness of numbers rather than the quality of outputs. Chemical libraries must be biologically relevant and diversity of pharmacophore is much more critical than hundreds of thousands of simple and similar chemicals. Combinatorial chemistry is an exciting and promising new tool but is appropriately gaining a more realistic perspective contrary to its earlier hype.

It has been estimated, that combinatorial chemistry could have provided possibly 10% of the drugs under development today and that methods development might only double this. Therefore, 80% of new drugs will come from other approaches including medicinal chemistry, computational chemistry and natural-products chemistries.

Another important element of success in drug discovery is the use of genomic information to define processes that drive disease and to convert these processes into high throughput screens. The number of screens in large companies are growing from 10 targets per year in the late 1980s to 30 per year in 1995 and over 100 targets per year by the late 1990s. Also, there is a need to extend screening to incorporate in vivo factors, including absorption, distribution, biological half-life, metabolism and toxicity.

Correspondence: Dr. L.J. Nisbet Xenova Ltd. Slough Berkshire, SL1 4EF, UK
Rational Enzyme Design: Computer Modeling and Site-directed Mutagenesis for the Modification of Catalytic Specificity in Organophosphorus Hydrolase

Kaihua Laia), Janet K. Grimsleyb), Barbara D. Kohlmannb), Leonardo Scapozzaa), Steven P. Harveyc), Joseph J. DeFrankc), Jan E. Kolakowskid), and James R. Wilde)*

Organophosphorus neurotoxins are widely used as insecticides in crop production, municipal hygiene, and disease vector control as well as providing the major classes of chemical warfare neurotoxins (V-agents and G-agents). Organophosphorus hydrolase (OPH) is a bacterial metalloenzyme which performs a hydrolytic cleavage of a variety of organophosphorus neurotoxins including common insecticides and chemical nerve agents. The enzyme is capable of hydrolyzing P–O, P–F, P–S, and P–CN bonds of toxic inhibitors of acetyl- and/or butyryl-cholinesterases (AChEs and BChEs) as well as neurotoxic esterases (NTEs). While there are numerous 'OP Anhydrolases' (E.C. 3.1.8.1) in many different organisms, most of them have limited substrate specificities, and there are dramatic differences in the hydrolytic capacity between classes of substrates: phosphotriesters (P–O bonds), fluorophosphonates (P–F bonds), and phosphorothiates (P–S bonds).

The enzyme has extremely high efficiency in hydrolysis of many different phosphotriester and phosphothiolester pesticides (P–O bond) such as parathion ($k_{cat} > 5,000 \text{ s}^{-1}$) and coumaphos ($k_{cat} = 800 \text{ s}^{-1}$) or fluorophosphonate (P–F) neurotoxins such as DFP ($k_{cat} = 350 \text{ s}^{-1}$) and the chemical warfare agent Sarin ($k_{cat} = 350 \text{ s}^{-1}$). In contrast, the enzyme has poor specificities for phosphorothioate insecticides such as acephate ($k_{cat} = 5 \text{ s}^{-1}$) and the nerve agent VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) ($k_{cat} = 0.3 \text{ s}^{-1}$) and its analogues as reflected by the specificity constants (k_{cat}/K_m values for VX $\sim 0.75 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$ as compared to $5.5 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$ for parathion). Different metal-associated forms of the enzyme with Co or Zn at the binuclear metal-active center demonstrated significantly different hydrolytic capabilities for VX and its analogues; the activity of OPH (Co) was consistently greater than that of OPH (Zn) by five- to ten-fold. Significant improvement of the catalytic activity (k_{cat}) and substrate specificity (k_{cat}/K_m) of this stable, quite flexible enzyme (OPH) has been achieved through site-directed mutagenesis of histidyl residues affecting the metal content of the enzyme and apparently modifying the boundaries of the active site. Individual mutants have been developed which have demonstrated 20-fold improvement in activity against analogues of VX and 30-fold improvement in activity against Soman. Many of these mutants retain excellent catalytic activity and specificity for the native enzyme's preferred phosphotriester substrates such as parathion, despite the loss of one of the two molecules of metal present in each native enzyme. X-Ray crystallographic coordi-