High-power density monolithic fuel cell stack

Steven Pirou (ste pir@dtu.dk)
Technical University of Denmark
https://orcid.org/0000-0002-3202-5371

Belma Talic
Technical University of Denmark

Karen Brodersen
Technical University of Denmark

Anne Hauch
Technical University of Denmark

Henrik Frandsen
Technical University of Denmark

Theis Skafte
Technical University of Denmark
https://orcid.org/0000-0001-5193-5592

Åsa Persson
Technical University of Denmark

Jens Høgh
Technical University of Denmark

Henrik Henriksen
Technical University of Denmark

Maria Navasa
Technical University of Denmark

Xing-Yuan Miao
Technical University of Denmark

Xanthi Georgolamprou
Technical University of Denmark

Søren Foghmoes
Technical University of Denmark

Peter Hendriksen
Technical University of Denmark

Eva Nielsen
Technical University of Denmark

Jimmi Nielsen
Technical University of Denmark

Anders Wulff
Technical University of Denmark
Keywords: Transportation Sector, Solid Oxide Fuel Cells, Heavy Freight, Single Heat Treatment, High Power Density, Thermal Cycling Robustness

DOI: https://doi.org/10.21203/rs.3.rs-634938/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The transportation sector is currently undergoing a technology shift from internal combustion engines to electric motors powered by batteries. However, their limited range and long charging times limit widespread adoption. Electrified transportation powered by solid oxide fuel cells (SOFCs) offer an attractive alternative especially for heavy freight and long-range transportation, as this technology can provide high-efficiency and flexible fuel choices. Thus far, the technology is mostly used for stationary applications owing to the high operating temperature, low volumetric and gravimetric power density, and poor robustness towards thermal cycling and mechanical vibrations of conventional ceramic-based cells. Here, we present a novel metal-based monolithic fuel cell design to overcome these issues. Highly cost-competitive and scalable manufacturing methods are employed for fabrication, and only a single heat treatment is required, as opposed to two or three for conventional SOFCs. The design is further optimised through three-dimensional multiphysics modelling, nanoparticle infiltration, and corrosion-mitigating treatments. The monolithic fuel cell shows exceptionally high power density (5.6 kW/L) and excellent thermal cycling robustness, revealing the vast potential of SOFC technology for transport applications.

Main Text

Societies worldwide are transforming their energy systems to gradually become independent of fossil fuels. The transport sector accounts for ca. ¼ of the total energy consumption\(^1\). Fuel cell powered electric vehicles and ships or use of fuel cells as range extenders help in reducing greenhouse gas emissions from transport. Fuel cells convert the chemical energy of sustainable e-fuels, such as green hydrogen, green ammonia, or green methane, directly into electricity with a high electrical efficiency, above 45 %\(^2–4\). When hydrogen and ammonia are used as fuels, there is no emission of particles, NO\(_x\), or CO\(_2\) during power production (zero emissions). Fuel cells provide exceptionally long driving ranges, rapid re-fuelling\(^5\), and efficient conversion of liquid e-fuels to power in ocean-going ships. However, to ensure the widespread use of fuel cells in transportation, they should exhibit high efficiency, low cost, high volumetric and gravimetric power density, and sufficient durability.

Low-temperature fuel cells (proton-exchange membrane fuel cells (PEMFCs)) have achieved a certain degree of technological maturity for automotive applications\(^6–8\); several large automotive and bus manufacturing companies are producing such vehicles in small series (around 25 000 vehicles were in operation at the end of 2019\(^9\)). However, PEMFCs require high hydrogen purity and are relatively expensive owing to the use of noble metals. On the other hand, high-temperature fuel cells (solid oxide fuel cells (SOFCs)) are commonly used for stationary applications; their high operating temperatures (600–1000 °C) make them particularly efficient for combined heat and power systems\(^10–11\). They are also attractive for transport applications as noble metals are not required, and higher efficiencies of 60 %\(^12\) (compared to 45–50 % for PEMFCs\(^13,14\)) can be achieved. Furthermore, they can be operated using less pure hydrogen, ammonia, methane, and other liquid fuels.
Although the first usage of SOFCs as range extenders in vehicles was demonstrated during the last decade15,16, the technology was considered less suitable for vehicles because of the high operating temperature, limited thermal cycling robustness of the ceramic-based cells17, and low power density (typical commercial SOFCs currently operate in the range of 0.1–1.0 kW/L15,18).

This study presents a novel concept for fabricating a metal-based monolithic, high-temperature fuel cell stack with exceptionally high power density (5.6 kW/L) and excellent thermal cycling robustness using cost-competitive and scalable manufacturing methods.

The concept of the metal-based monolithic stack is illustrated in Fig. 1 and compared to the conventional stacking of ceramic anode-supported fuel cell stacks with metallic interconnects. In a conventional stack, the cell support, gas channels, and interconnects constitute the thickest layers (few hundred micrometers), while the active part of the cell is in the range of few tens of micrometers. The monolith concept integrates the cell support, gas channels, and the interconnects into a single layer, thereby reducing the stack height by a factor of 2–4. This considerably increases the volumetric and gravimetric power density of the stack, which are important parameters considering the space and weight constraints in vehicles. More specifically, the power per volume (and per weight) is significantly improved, and values of 6–8 kW/L are feasible.

In addition to the advantage of high power density, the metal-based monolith stack is significantly cheaper than a conventional stack. The volume reduction alone reduces the materials costs, and further reduction is achieved by using cost-effective metals19 (Fe is much cheaper than Ni and zirconia (ZrO\textsubscript{2}) used in the conventional stack) for the thickest component of the monolith. The high metal content also reduces temperature differences across the stack during operation and provides greater robustness to fast thermal cycles. This is important for hybrid automotive applications integrating SOFCs and electrical battery systems20.

The following sections present the underlying concepts for monolith design, manufacturing methods, achieved module, and electrochemical performance of the monolith.

Concept For Monolith Stack Design

The schematic illustration of the monolith stack is shown in Fig. 1. The electrolyte, composed of scandia-doped yttria-stabilised zirconia (ScYSZ, 10 µm), is sandwiched between two porous electrodes (ScYSZ-Fe\textsubscript{22}Cr composite, 15 µm) with dense sealing strips (ScYSZ-Fe\textsubscript{22}Cr, 15 µm) along the sides. These are placed between thicker layers corresponding to gas distribution channels (250 µm) and metallic interconnects (dense Fe\textsubscript{22}Cr, 150 µm). The single repeating unit (SRU) monolith is co-sintered in one firing step, which results in more robust interfaces than those in conventional stack designs and reduces the total number of firing steps in the manufacturing process. The integrated seals placed between the metallic interconnects and the ceramic electrolyte are laterally joined to the cermet electrodes to ensure gas tightness and improved thermocycling stability. To avoid thermal expansion coefficient mismatches
with the surrounding components, while maintaining the electronic insulating property required for SOFC applications, the seals are made of a 5:1 volume ratio of ceramic to metal.

The main design advantage of the monolith is the integration of gas flow channels into a co-sintered block containing both a metallic substrate and ceramic cell interlayers. This results in extremely high power density and improved in-plane thermal distribution. The gas channels are placed between the interconnects and the electrodes to efficiently feed gases to the electrodes and minimise the volume of the cell. They are formed via honeycomb pore-former tapes containing exclusively organic materials that burn off during the firing step.

The gas channel dimensions (250 × 500 µm²) are studied via a 3D multiphysics model built in COMSOL Multiphysics and optimised to obtain a tolerable pressure drop. In this model, the overall conservation laws are solved on a homogenised volume, and the microstructural details are introduced through effective material parameters. The model includes current, heat, and mass transport, including gas flows in channels, and finally, an assessment of the mechanical stresses in the structure.

An example of the model simulation is shown in Supplementary Fig. 1. Here, the calculated relation between the gas overblow, pressure drop, and inlet gas temperature, which ensures that the stack temperature never exceeds 700°C, is reproduced when the stack is operated at 0.67 A/cm². The calculations confirm that cooling of the monolith stack is feasible with achievable gas channel dimensions (250 × 500 µm²) and a maximum pressure drop of 300 mbar.

Manufacturing

The monolith is fabricated using tape casting, lamination, co-sintering, and catalyst infiltration, which are well-known methods for the manufacture of high-temperature fuel cells²¹,²².

The manufacturing of monolithic stacks is challenging as it requires the sintering of various ceramic and metallic particles while maintaining a hierarchical microstructure for the main gas flows and gas diffusion paths. One of the most complex steps is the binder burnout of these large and compact monolithic cells. To identify the process parameters required to achieve an optimized monolith (avoiding disintegration and warpage during debinding), a 3D model simulating the debinding process was developed using COMSOL Multiphysics. The model describes the pressure inside the hierarchical microstructure when the organics are burned. Kinetic models for the combustion of organics were developed together with a description of diffusion in the gradually changing microstructure as the organics burn. The model was used to identify the optimal heating ramps and the composition of the organics to minimise the overpressure inside the microstructure. For example, the calculations indicate that using a graphite/poly(methyl methacrylate) (PMMA) mixture in the sacrificial “pore-former” tapes is beneficial compared to using only PMMA (see Supplementary Fig. 2), as the decomposition is spread over a larger temperature span. Another difficult task is the co-sintering of the SRU monolith. The sintering shrinkage of the different layers must be matched to ensure that the cell structure withstands
unavoidable mechanical stresses and prevents cracking of the monolith. Hence, the shrinkage of each single layer was investigated by dilatometry and adjusted by optimising the particle size distribution, composition, shape, and ratio of raw materials and organic additives. Complex casting techniques, such as co-casting and side-by-side casting, were used to improve the adhesion of the layers. The composition of the FeCr/ScYSZ electrodes and seals was tuned to match the macroscopic thermal expansion of these layers with that of the metal support and the electrolyte (see Supplementary Fig. 3). All these process optimisations were required to obtain flat and crack-free monoliths as shown in Figs. 1 and 2.

Fuel Cell Functionalisation

The electrochemical activity was introduced by infiltrating various suitable nitrate solutions, that is Gd-doped ceria without (CGO) and with nickel (Ni-CGO), and lanthanum strontium cobalt (LSC), on the fuel and oxygen sides, respectively. Stoichiometric amounts of the required nitrates were mixed with deionised water and surfactant (Pluronic P123) to obtain a concentration of 1–2 M. Because the electrodes in the monolithic design do not have exposed surfaces, the nitrates must be injected through the gas channels and spread to the porous electrode structure. This was accomplished using a clamping device (see Supplementary Fig. 4) that can hold the individual monolith (one cell or an entire stack) in place, while a slight pressure pushes nitrates through the open gas channels. Subsequently, the monolith was heated to 325°C at 2°C/min to evaporate water, decompose nitrate salts, and form the desired phase (see Supplementary Fig. 5 for thermogravimetric analysis). The procedure was repeated to achieve sufficient coverage; this ensures electrochemical activity and corrosion protection. The EDS mapping image with elemental distribution analysis of a typical coverage after three infiltration cycles is shown in Supplementary Fig. 6. The weight gain of the monolith increased after each infiltration cycle and plateaued after approximately 10 cycles (see Supplementary Fig. 7).

Corrosion Stability

In addition to providing electrochemical activity, the second important function of the CGO layer is to provide corrosion protection of the metallic phase in the electrode backbone, gas distribution layer, and the interconnect. On the fuel side, the most corrosive location is near the gas outlet (highest water vapour pressure). To increase the overall system efficiency, high fuel utilisation is required; outlet gas compositions containing less than 20 % H₂ and more than 80 % steam are relevant operating conditions, as reported previously. The corrosion rate on the air side is lower than that in steam, considering the relatively low target operating temperature (650°C). Nevertheless, a protective layer is needed to prevent evaporation of Cr from the metal as it can poison the air electrode.

Figure 2.c shows the cross-sectional SEM images of the monolith after oxidation in air (ambient H₂O level) and 80 % H₂O–20 % H₂ for 100 h at 650°C. From the images of the non-coated monolith, it is evident that corrosion protection is most critical at the fuel side of the monolith. After oxidation in air, the metal is covered by a thin Cr-rich layer (most likely Cr₂O₃), while after oxidation in the fuel side
atmosphere, a large amount of non-protective iron oxide is formed. By infiltrating the monolith once with CGO and pre-oxidising the monolith at 850°C in H₂–N₂ to densify the layer, oxidation was strongly mitigated. However, some areas of the electrode backbone exposed to the fuel atmosphere showed signs of iron oxide formation. This is likely due to insufficient coverage by the CGO layer. The coverage improved after three rounds of infiltration, and no iron oxide formation was observed (see Supplementary Fig. 8). Pre-oxidation alone had a minor role in reducing the detrimental oxidation (see Supplementary Fig. 8).

Electrochemical Performance

A special test fixture was developed to test the SRU monolith, as described in the Supplementary Fig. 9. Figure 6.a shows the initial electrochemical performance of the SRU monolith cell at 780 °C. An open circuit voltage (OCV) of 1065 mV was measured. Under the given test conditions, this corresponds to ∼1.75 % of the O₂ at the oxygen electrode leaking to the fuel electrode side, assuming that the lower OCV compared to the theoretical Nernst potential is solely due to leakage from the oxygen side of the cell. Note that the leak could have originated from the test fixture. The measured OCV is considered acceptable for a cell in the early stage of development. However, electrolyte gas tightness and sealing need to be further improved.

The tested monolith cell had an active cell area of ∼18 cm²; based on the i–V curve depicted in Fig. 3.a, this can be translated to an area-specific-resistance of 0.49 Ωcm² for data from OCV to 0.6 A/cm². Note that at a current density of ∼0.67 A/cm², the course of the i–V curve suggests that mass transport and/or fuel starvation negatively affect the performance of the monolith cell. Assuming a cross-over leak of 1.75 % of oxygen to the fuel electrode, the H₂ utilisation was 24% at 0.67 A/cm² indicating scope for improvement with regard to the H₂ feed and distribution to the active sites.

Figure 3.b shows the comparison of the initial electrochemical performances of the monolith cell and the state of the art (SoA) commercially available Ni/YSZ anode supported ceramic SOFCs described in the literature. The proposed compact monolith SOFC design is attractive for mobile applications where power per volume is an important parameter; this is compared in Fig. 3.b. To the best of our knowledge, no experimentally validated metal-based monolith SOFC stack design has been reported so far, and we therefore compare the height of the SRU monolith design developed in this work with those of common commercially available stacks, spanning from 1.4 to 4 mm. The monolith cell achieved an impressive value of 5.6 kW/L, on a par with the best performing SoA Ni/YSZ anode supported ceramic SOFCs which have been optimised over decades.

To conclude, a novel metal-based monolithic SOFC was fabricated using cost-effective and scalable manufacturing techniques. Initial electrochemical tests revealed an exceptionally high power density (5.6 kW/L), which indicates their immense potential for mobile applications. We expect that this design, or similar, will enable large-scale production of electrified transportation powered by fuel cells with
considerably increased range, decreased charging times, and lower cost. Furthermore, it is believed that these findings will create renewed interest for the development of other metal-based monolithic designs for SOFCs, solid oxide electrolysers, and other electrochemical devices.

References

1. U.S. Energy Information Administration, International Energy Outlook 2017. (Accessed on September 14, 2017). Available at: https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf

2. Salameh Z. Chapter 4: Energy Storage. in Renewable Energy System Design (Elsevier, 2014).

3. Stolten, D., Can Samsun, R. & Garland, N. Fuel Cells: Data, Facts and Figures (Wiley, 2016).

4. Mekhilef, S., Saidur, R., & Safari, A. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 16, 981–989 (2012).

5. Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

6. Yoshida, T. & Kojima, K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 24, 45–49 (2015).

7. Alaswad, A. et al. Developments in fuel cell technologies in the transport sector. Int. J. Hydrogen Energy 41, 16499–16508 (2016).

8. Wilberforce, T., Alaswad, A., Palumbo, A., Dassisti, M. & Olabi, A. G. Advances in stationary and portable fuel cell applications. Int. J. Hydrogen Energy 41, 16509–16522 (2016).

9. Samsun, R. C., Antoni, L. & Rex, M. Advanced Fuel Cells Technology Collaboration Programme Report on Mobile Fuel Cell Application: Tracking Market Trends (2020). Available at: https://fdocuments.in/document/advanced-fuel-cells-technology-collaboration-the-fuel-cell-technology-can-provide.html.

10. Williams, M. C., Vora, S. D. & Jesionowski, G. A. Worldwide status of solid oxide fuel cell technology. ECS Trans. 96, 1–10 (2020).

11. Elcogen, Convion supply SOFC CHP systems to business district smart grid project in Finland. Fuel Cells Bull. February 2018, 1 (2018).

12. Convion products. (2020). Available at: https://convion.fi/products/.

13. Kharel, S. & Shabani, B. Hydrogen as a long-term large-scale energy storage solution to support renewables. Energies 11, (2018)
14. Bizon, N. Improving the PEMFC energy efficiency by optimizing the fueling rates based on extremum seeking algorithm. *Int. J. Hydrogen Energy* **39**, 10641–10654 (2014).

15. Boldrin, P. & Brandon, N. P. Progress and outlook for solid oxide fuel cells for transportation applications. *Nat. Catal.* **2**, 571–577 (2019).

16. Nissan unveils world’s first solid-oxide fuel cell vehicle. (Accessed on August 4, 2016). https://usa.nissannews.com/en-US/releases/nissan-unveils-world-s-first-solid-oxide-fuel-cell-vehicle#.

17. Nielsen, J., Persson, Å. H., Muhl, T. T. & Brodersen, K. Towards high power density metal supported solid oxide fuel cell for mobile applications. *J. Electrochem. Soc.* **165**, F90–F96 (2018).

18. Leah, R. T. *et al.* Development of high efficiency steel cell technology for multiple applications. *ECS Trans.* **78**, 2005–2014 (2017).

19. Tucker, M. C., Lau, G. Y., Jacobson, C. P., DeJonghe, L. C. & Visco, S. J. Performance of metal-supported SOFCs with infiltrated electrodes. *J. Power Sources* **171**, 477–482 (2007).

20. Bessekony, Y., Zielke, P., Wulff, A. C. & Hagen, A. Simulation of a SOFC/battery powered vehicle fuel cell. *Int. J. Hydrogen Energy* **44**, 1905–1918 (2018).

21. Kim, K. J. *et al.* Micro solid oxide fuel cell fabricated on porous stainless steel: A new strategy for enhanced thermal cycling ability. *Sci. Rep.* **6**, 22443 (2016).

22. Dogdibegovic, E. *et al.* Scaleup and manufacturability of symmetric-structured metal-supported solid oxide fuel cells *J. Power Sources* **489**, 229439 (2021).

23. Klemensø, T. *et al.* Characterization of impregnated GDC nano structures and their functionality in LSM based cathodes *Solid State Ionics* **224**, 21–31 (2012).

24. Ovtar, S., Chen, M., Samson, A. J. & Kiebach, R. In-situ formed Ce$_{0.8}$Gd$_{0.2}$O$_{1.9}$ barrier layers on yttria stabilized zirconia backbones by infiltration - A promising path to high performing oxygen electrodes of solid oxide cells. *Solid State Ionics* **304**, 51–59 (2017).

25. Hagen, A., Barfod, R., Hendriksen, P. V., Liu, Y.-L. & Ramousse, S. Degradation of anode supported SOFCs as a function of temperature and current load. *J. Electrochem. Soc.* **153**, A1165 (2006).

26. Linder, M. *et al.* Cr$_2$O$_3$ scale growth rates on metallic interconnectors derived from 40,000 h solid oxide fuel cell stack operation. *J. Power Sources* **243**, 508–518 (2013).

27. Malzbender, J., Batfalsky, P., Vaßen, R., Shemet, V. & Tietz, F. Component interactions after long-term operation of an SOFC stack with LSM cathode. *J. Power Sources* **201**, 196–203 (2012).
28. Essuman, E., Meier, G. H., Żurek, J., Hänsel, M. & Quadakkers, W. J. The effect of water vapor on selective oxidation of Fe-Cr alloys. *Oxid. Met.* **69**, 143–162 (2008).

29. Nakajo, A., Mueller, F., Brouwer, J., Van, J. & Favrat, D. Mechanical reliability and durability of SOFC stacks. Part II: Modelling of mechanical failures during ageing and cycling. *Int. J. Hydrogen Energy* **37**, 9269–9286 (2012).

Methods

Manufacturing of one repeating unit of monolith

All the components of the monolith were fabricated via tape casting. Initially, a suspension composed of ceramic (ScYSZ) and/or metallic (Fe22Cr) powder(s), solvent, and polymers (binder, plasticizers, dispersant) was homogenised for 4 days by ball milling. The electrode suspensions were made of 60 vol. % ScYSZ and 40 vol.% Fe22Cr and also contained graphite and PMMA as pore former. The seals were composed of 80 vol.% ScYSZ and 20 vol% Fe22Cr. Prior to tape casting, the suspensions were degassed under vacuum to completely eliminate trapped air bubbles.

The seal/electrode/seal structure was fabricated first via side-by-side casting using a doctor blade trough, separated in compartments where the suspensions could be poured without mixing. Then, a pore-former tape previously cast and laser-cut into a honeycomb shape was laminated onto the electrodes using heated rolls in a double-roll set up. The interconnects were co-cast on top of the laminated structure. The complete SRU monolith was obtained by laminating a ScYSZ electrolyte between two blocks of interconnect/pore former/seal-electrode-seal rotated by 90°. The lamination was performed via an isostatic press at 85°C under a pressure of 30 MPa. The green monoliths were debinded at 600°C for 4 h in air and then sintered at 1290°C for 6 h in 5% H2/N2.

Monolith infiltration

A 2 M CGO precursor solution with 0.8:0.2 molar ratio was obtained by dissolving stoichiometric amounts of Ce(NO3)3 6H2O and Gd(NO3)3·xH2O. Similarly, a 1 M Ni-CGO precursor solution was prepared from Ni(NO3)3 6H2O, and a 1 M La0.588Sr0.392CoO3−δ precursor solution from La(NO3)3 6H2O, Sr(NO3)2 6H2O, and Co(NO3)2 6H2O. Pluronic P123 was added at a concentration of 1 g per 100 mL. The cells were first infiltrated twice with CGO on both the fuel and oxygen electrode sides to form a thin ceramic barrier layer on steel, thereby mitigating corrosion during operation. Following each infiltration cycle of CGO, the monoliths were heated to 325°C at a rate of 2°C/min in stagnant air and held for 0.25 h before cooling. This evaporates the water, decomposes the nitrate salts, and forms the desired fluorite phase23,24. After the first infiltration cycle of CGO, the monolith cells were pre-oxidized by heating to 850°C at a rate of 2°C/min and holding for 2 h in 5% H2/N2. This is an additional step used to mitigate subsequent corrosion of Fe22Cr steel30 by forming a dense chromia layer; it has the advantage of partially densifying
the infiltrated CGO layer as well. Subsequently, the fuel and oxygen electrodes were infiltrated with one cycle of Ni-CGO and LSC, respectively and heat treated in air at 400°C for 0.5 h.

Corrosion study

To investigate the oxidation resistance, the sintered monoliths infiltrated with 0, 1, or 3 rounds of CGO were cut into ca. 2 × 2 cm2 pieces using a diamond blade. The pieces were placed on an alumina support and heat treated in air (ambient H$_2$O content, ca. 2–4 %) or 80% H$_2$O–20% H$_2$ for 100 h at 650°C using a heating and cooling rate of 120°C/h. An 80% H$_2$O–20% H$_2$ atmosphere was achieved by mixing H$_2$ and O$_2$ at the furnace inlet, which are directly combusted owing to the high temperature. After oxidation, the monolith pieces were cast in epoxy and polished to reveal the cross sections.

Characterisation techniques

Optical dilatometry was used to determine the shrinkage characteristics of the interconnect, electrode, seal, and electrolyte tapes during both the debinding and sintering steps. To study the debinding step, the measurements were carried out in a TOMMI optical dilatometer (Fraunhofer Institut Silicatforschung ISC, Germany) in air atmosphere using green tapes rolled into a cylinder (5 mm diameter, 10 mm length). To study the sintering step, the measurements were carried out in TOM_metal (Fraunhofer-Center for High Temperature Materials and Design, Germany) under a reducing atmosphere using debinded rolled tapes.

The fractured and polished cross-sectional microstructures of the as-prepared and the tested monoliths were investigated by scanning electron microscopy (SEM) using a Zeiss Merlin scanning electron microscope equipped with a field emission gun and a Hitachi TM3000 equipped with a Bruker energy dispersive X-ray spectroscopy (EDS) system.

Electrochemical performance tests

The single-cell monoliths were tested in a commercially available FuelCon Evaluator test rig. A metallic test house was constructed for these cells. The metallic test house enables fast heating and cooling. The monolith was placed in the metallic test house using mica sheets for external sealing. Gas tightness was achieved by joining the two parts of the cell house with screws. The voltage and the current probes were placed equidistantly from the sides of the cell. The fuel inlet/outlet was located on the long side of the monolith, while the air inlet/outlet was placed perpendicularly on the short side to ensure crossflow, as shown in the design of the monolith (see Supplementary Fig. 9).

The monolith was heated to 650°C at 10°C/h, feeding 5% H$_2$ balanced with N$_2$ (10 N$_2$L/h) to the fuel electrode and air (10 N$_2$L/h) to the oxygen electrode. At 650°C, 5% H$_2$/N$_2$ was replaced with pure H$_2$ (10 N$_2$L/h). The cell voltage was measured during start-up and throughout the cell tests. The initial electrochemical performance of the SRU monolith cell was measured at 780 °C, feeding pure H$_2$ (25 N$_2$L/h) to the fuel electrode and O$_2$ (100 N$_2$L/h) to the oxygen electrode.
Data availability

The data that support the findings of this study are available on demand from the corresponding.

Code availability

The codes that support the findings of this study are available on demand from the corresponding author.

Methods references

30. Talic, B., Molin, S., Hendriksen, P. V. & Lein, H. L. Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU. Corros. Sci. 138, 189–199 (2018).

Declarations

Author contributions

S.P., B.T., K.B., T.L.S., and A.Hau. designed the experiments leading to the final monolith design. S.P. and K.B. manufactured the samples. S.P., K.B., A.H.P. and S.P.V.F. carried out preliminary experiments on manufacturing. T.L.S., S.P. and B.T. contributed to the fuel cell functionalization. B.T. contributed to the corrosion study. S.P. and B.T. performed the microscopy analyses. A.Hau., J.V.T.H. and H.H. conducted electrochemical tests. M.N., H.L.F. and X-Y.M. contributed to the modeling study. A. Hag., E.R.N., B.T., J.N. and P.V.H. supervised the research. J.N, A.C.W., S.H.J., P.Z., H.L.F. and A.Hag. contributed to the initial monolith design. X.G. and S.P. contributed to the design of the figures. S.P, B.T., A.Hau., T.L.S., A.Hag. and H.F.L. contributed to writing the manuscript. A.H.P, M.N., X.G., P.V.H., J.N., A.C.W., S.H.J. and P.Z revised the manuscript.

Acknowledgments

The authors gratefully acknowledge financial support from Plastic Omnium. We are also thankful to Henrik Paulsen for assistance in preparing samples for SEM/EDS analyses. We thank Enzo Moretti, Ilaria Ritucci, and Ragnar Kiebach for improving the images of the monoliths. We are grateful to Søren Christensen for assisting with the preparation of slurries for tape casting.

Ethics declaration

The authors declare no competing interests.

Figures
Figure 1

Metal-based monolithic stack design. a, Illustrations of conventional and monolith fuel cell stacks with five repeat units. The numbers 1, 2, and 3 correspond to the interconnects, fuel cells (electrolyte and electrodes), and cell supports, respectively. b, Photograph of three modules of SRU monolith. c, Illustration of an exploded view of 1 RU monolith. The numbers 4, 5, 6, and 7 correspond to interconnects and gas distribution channels (400 µm thick including 250 µm high gas channels), electrodes (10 µm), electrolyte (10 µm), and sealing (10 µm), respectively.
Figure 2

Microstructural analyses of the monolith. a, Cross-sectional SEM image showing the SRU monolith with a gas channel enlarged. The annotations E, El, and IC correspond to electrode, electrolyte, and interconnect, respectively. b, High-magnification cross-sectional SEM images of the cell layers. c, Cross-sectional SEM images of the monoliths after oxidation in air or 80% H2O−20% H2 for 100 h at 650 °C. Note the scale difference.
Figure 3

Electrochemical performance and comparison with the SoA SOFCs. a, i–V curve and power density of single monolith cell with an active cell area of ~18 cm² measured at 780 °C, dry H₂ (25 l/h) to the fuel electrode, and O₂ to the oxygen electrode. b, Comparison of initial electrochemical performance of the monolith cell with that of SoA commercially available Ni/YSZ anode supported SOFCs. The power density in terms of power per volume is based on a SRU height of 830 µm for the monolith and in the range of 1400–4000 µm for the SoA anode supported SOFCs design.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformation.docx