Microstructural neuroimaging using spherical convolutional neural networks

Leevi Kerkelä1*, Kiran Seunarine2, Filip Szczepankiewicz3, and Chris A. Clark1

1 UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
2 Great Ormond Street Hospital, London, United Kingdom
3 Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden

* Corresponding author: leevi.kerkela.17@ucl.ac.uk; Developmental Imaging & Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, WC1N 1EH, London, United Kingdom

Abstract

Diffusion-weighted magnetic resonance imaging is sensitive to the microstructural properties of brain tissue. However, estimating clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem. This paper presents a novel framework for estimating microstructural parameters using recently developed orientationally invariant spherical convolutional neural networks and efficiently simulated training data with a known ground truth. The network was trained to predict the ground-truth parameter values from simulated noisy data and applied to imaging data acquired in a clinical setting to generate microstructural parameter maps. Our model could estimate model parameters from spherical data more accurately than conventional non-linear least squares or a multi-layer perceptron applied on powder-averaged data (i.e., the spherical mean technique, a popular method for orientationally invariant microstructural parameter estimation). Importantly, our method is generalizable and can be used to estimate the parameters of any Gaussian compartment model.
1 Introduction

Neuroimaging enables non-invasively measuring functional and structural properties of the brain, and it is of crucial importance in modern neuroscience. Diffusion-weighted magnetic resonance imaging (dMRI), the most commonly used imaging modality for quantifying microstructural properties of the brain, is sensitive to the displacements of water molecules at the microscopic level and thus sensitive to tissue microstructure. dMRI has been used to localize microstructural alterations associated with, for example, learning [1], healthy development [2], ageing [3], neurodevelopmental disorders [4], and neurodegenerative diseases [5]. However, accurately inferring clinically and scientifically relevant properties of tissue microstructure (e.g., cell morphology or distribution of cell types) from the measured signal remains a highly challenging inverse problem [6]. Most dMRI data analysis methods are based on signal models that express the measured signal as a function of parameters of interest and can be fit to data by numerically minimizing an objective function [7].

An important requirement for microstructural neuroimaging methods is orientational invariance (i.e., estimated parameters should not depend on how the subject’s head is oriented in the scanner). Furthermore, it is often desirable for the parameter estimates not to depend on the orientation distribution of the microscopic structures (e.g., an estimate of neurite density should not depend on whether the neurites are aligned or crossing). These two requirements are often achieved by averaging over the acquired diffusion encoding directions, a method known as “powder averaging” like in the field of solid-state nuclear magnetic resonance (NMR). Fitting signal models to powder-averaged signals is often referred to as the "spherical mean technique" (a term introduced by Kaden et al. [8]). While it enables the estimation of various microstructural parameters [8–13], a significant amount of information is lost during averaging.

In recent years, parameter estimation using supervised machine learning has received significant attention as a potential solution to some issues with conventional model fitting such as slow convergence, poor noise robustness, and terminating at local minima [14–24]. In the context of microstructural neuroimaging, a particularly promising development in the field of deep learning has been the invention of spherical convolutional neural networks (sCNNs) [25–27]. sCNNs are SO(3)-equivariant artificial neural networks (ANNs) that enable orientationally invariant classification and regression, making them potentially well-suited for estimating microstructural parameters from dMRI data.

This paper presents a novel framework for estimating microstructural parameters from dMRI data using the sCNN architecture by Esteves et al. [26] and efficiently simulated training data. We trained an sCNN to estimate the parameters of a constrained 2-compartment model by Kaden et al. [11] which is regularly used in neuroscience to study white matter [28–32]. The sCNN could estimate apparent neurite density and diffusivity from spherical data more accurately than conventional non-linear least squares (NLLS) or a multi-layer perceptron (MLP) applied to powder-averaged data. To demonstrate that our method is applicable to any Gaussian compartment model, the network was also trained to estimate the parameters of a constrained 3-compartment model by Gyori et al. [18] that enables the estimation of apparent neural soma density using tensor-valued diffusion encoding [33].
2 Method

2.1 Spherical harmonics

Signals and orientation distribution functions (ODFs) were represented in the spherical harmonics domain to efficiently simulate training data and perform spherical convolutions with learnable zonal (i.e., symmetric with respect to the z-axis) filters.

Any square-integrable function on the sphere $f : S^2 \rightarrow \mathbb{C}$ can be expanded in the spherical harmonic basis:

$$f(x) = \sum_{l=0}^{b} \sum_{m=-l}^{l} \hat{f}_l^m Y_l^m(x),$$

(1)

where x is a point on the sphere, b is the bandwidth of f, l is the order of the spherical harmonic, m is the degree of the spherical harmonic, \hat{f}_l^m is an expansion coefficient, and Y_l^m is a spherical harmonic defined as

$$Y_l^m(\theta, \phi) = \sqrt{\frac{2l+1}{4\pi}} \frac{(l-m)!}{(l+m)!} P_l^m(\cos \theta)e^{im\phi},$$

(2)

where $\theta \in [0, \pi]$ is the polar coordinate, $\phi \in [0, 2\pi]$ is the azimuthal coordinate, and P_l^m is the associated Legendre function.

The expansion coefficients are given by

$$\hat{f}_l^m = \int_{S^2} d\mathbf{x} \ f(x)Y_l^m,$$

(3)

which can be evaluated exactly as a finite sum using the sampling theorem by Driscoll and Healy [34]. Considering that diffusion encoding directions do not usually follow the sampling theorem, we used the least-squares solution by Brechbühler et al. [35] to compute the expansion coefficients.

Since the reconstructed dMRI signals are real-valued and antipodally symmetric, the following basis was used:

$$S_l^m = \begin{cases}
0 & \text{if } l \text{ is odd} \\
\sqrt{2} \Im(Y_l^{-m}) & \text{if } m < 0 \\
Y_l^0 & \text{if } m = 0 \\
\sqrt{2} \Re(Y_l^m) & \text{if } m > 0
\end{cases}$$

(4)

2.2 Spherical convolution

Convolution of a spherical signal f by a spherical filter h is defined as

$$(f * h)(x) = \int_{\mathbb{R}^{SO(3)}} d\mathbf{R} \ f(\mathbf{R}\hat{\mathbf{e}_z})h(\mathbf{R}^{-1}x),$$

(5)

where $\hat{\mathbf{e}_z}$ is a unit vector aligned with the z-axis. If f and h are band-limited, the above equation can be efficiently evaluated as a point-wise product in the spherical harmonics domain [34]:

$$(f * h)_l^m = 2\pi \frac{4\pi}{2l+1} \hat{f}_l^m \hat{h}_l^0$$

(6)
2.3 Simulations

Compartment models represent the measured signal as a sum of signals coming from different microstructural environments (e.g., intra-neurite diffusion). For details, see [7]. Here, we focus on models with Gaussian compartments. The signal along \hat{n} is expressed as

$$S(\hat{n}) = \int_{R \in SO(3)} dR \text{ODF}(R\hat{e}_3)K(R^{-1}\hat{n}),$$

(7)

where K is the microstructural kernel response function:

$$K(\hat{n}) = \sum_{i=1}^{N} f_i \exp(-b : D_i),$$

(8)

where N is the number of compartments, f_i is the signal fraction of the ith compartment, b is the b-tensor corresponding to \hat{n} and a b-value equal to $\text{Tr}(b)$, $: \text{ denotes the generalized scalar product (} b : D = \sum_{i=1}^{3} \sum_{j=1}^{3} b_{ij}D_{ij} \text{)}$ [36], and D_i is a diffusion tensor aligned with the z-axis corresponding to the ith compartment.

We simulated training data by evaluating Equation 7 in the spherical harmonics domain. The response function values were evaluated along 768 directions uniformly distributed over the surface of the sphere according to the HEALPix sampling scheme [37, 38] and expanded in the spherical harmonics domain with spherical harmonics until order 8.

Rician noise was added to the simulated signals:

$$S_{\text{noisy}} = \sqrt{(S + X)^2 + Y^2},$$

(9)

where S is the simulated signal without noise and X and Y were sampled from a normal distribution with zero mean and standard deviation of $1/\text{SNR}$, where SNR is the signal-to-noise ratio. SNR was chosen to match the SNR in the imaging experiments.

2.4 Network architecture

Our network consisted of three spherical convolution layers with 16, 32, and 64 output layers followed by three fully connected layers with a hidden layer size of 128. The number of input channels was equal to the number of shells in the data and the number of outputs was equal to the number of predicted parameters. Each spherical convolution layer was followed by a rectified linear unit (ReLU) applied in the signal domain. Each hidden fully connected layer was followed by batch normalization [39] and a ReLU. Global average pooling was applied in the signal domain after the final spherical convolution layer to obtain a 64-dimensional orientationally invariant feature vector that was passed to the first fully connected layer. There were 38,562 trainable parameters in the network predicting the 2-compartment model parameters and 39,300 in the network predicting the 3-compartment model parameters.

3 Experiments

We trained our sCNN to estimate the parameters of two microstructural models and applied the trained network to imaging data acquired in a clinical setting to generate microstructural parameter maps. The
sCNN was compared to NLLS using the software by Kaden et al. [11] and to an MLP similar to the ones used by Gyori et al. [18,23]. The MLP had three hidden layers with 256 nodes each and was trained to predict the model parameters from powder-averaged data. Each hidden layer was followed by batch normalization and a ReLU. The MLP for predicting the 2-compartment model parameters had 134,402 trainable parameters and the MLP predicting the 3-compartment model parameters had 136,452 trainable parameters. The MLP went through the same training as the sCNN.

3.1 Imaging data

The brains of four healthy adult volunteers were scanned on a Siemens Magnetom Prisma 3T (Siemens Healthcare, Erlangen, Germany) at Great Ormond Street Hospital, London, United Kingdom. Data was denoised [40] using MRtrix3 [41] and distortion/motion corrected using FSL [42,43]. SNR was estimated as the inverse of the standard deviation of the normalized signals without diffusion-weighting.

3.1.1 High-angular resolution diffusion imaging

Three volunteers were scanned using a standard clinical two-shell high-angular resolution diffusion imaging (HARDI) protocol with two non-zero b-values of 1 and 2.2 ms/µm² with 60 directions over half a sphere each. Other relevant scan parameters were the following: diffusion time (Δ) = 28.7 ms; diffusion encoding time (Δ) = 16.7 ms; echo time (TE) = 60 ms; repetition time (TR) = 3,050 ms; field of view (FOV) = 220 × 220 ms; voxel size = 2 × 2 × 2 mm³; slice gap = 0.2 mm; 66 slices; phase partial Fourier = 6/8; multiband acceleration factor = 2. Fourteen images were acquired without diffusion-weighting, one of which had the phase encoding direction reversed. The total scan time was 7 minutes. SNR was 30. Fibre ODFs were estimated with multi-tissue constrained spherical deconvolution [44]. Spherical harmonics until order 8 were included when expanding signals in the spherical harmonics domain.

3.1.2 Tensor-valued diffusion imaging

One volunteer was scanned using a prototype spin echo sequence that enables tensor-valued diffusion encoding [45]. Data was acquired using numerically optimized [46] and Maxwell-compensated [47] gradient waveforms encoding linear and planar b-tensors. The acquisitions with linear b-tensors were performed with b-values of 0.5, 1, 2, 3.5, and 5 ms/µm² with 12, 12, 20, 20, and 30 directions over half a sphere, respectively. The acquisitions with planar b-tensors were performed with b-values of 0.5, 1, and 2 ms/µm² with 12, 12, and 20 directions over half a sphere, respectively. Other relevant scan parameters were the following: TE = 82 ms; TR = 4.2 s; FOV = 220 × 220 ms; voxel size = 2 × 2 × 2 mm³; slice gap = 0.2 mm; 66 slices; phase partial Fourier = 6/8; multiband acceleration factor = 2. Fourteen images were acquired without diffusion-weighting, one of which had the phase encoding direction reversed. The total scan time was 12 minutes. SNR was 20. When expanding the signals in the spherical harmonics domain, we included spherical harmonics until order 4 for shells with 20 or more directions and 2 otherwise.

3.2 2-compartment model

The so-called ”standard model” of diffusion in white matter consists of a one-dimensional compartment representing diffusion inside neurites and a coaxial axially symmetric extra-cellular compartment. We used
Figure 1: Loss during training of the networks for estimating the 2-compartment model parameters. The sCNN required more training but achieved smaller loss than the MLP.

Figure 1: Loss during training of the networks for estimating the 2-compartment model parameters. The sCNN required more training but achieved smaller loss than the MLP.

3.2.1 Training

Training was done over 10^5 batches of simulated data generated during training. Each batch contained signals from 10^3 microstructural configurations produced by random sampling. ODFs were sampled from one of the volunteer scans, normalized, and randomly rotated. $f \sim U(0,1)$ and $d \sim U(0,3 \, \mu m^2/\text{ms})$. Validation and test datasets were constructed similarly, except that they contained 10^5 and 10^6 microstructural configurations, respectively, and the ODFs were sampled from different subjects. The network was trained with ADAM [48] and an initial learning rate of 10^{-3}, which was reduced by 90% at batches $5 \cdot 10^4$ and $7 \cdot 10^4$. Mean squared error (MSE) was used as the loss function, and d was scaled by $\frac{1}{3}$ so it would range from 0 to 1 like f. Training the sCNN took 7 h on NVidia’s Tesla T4 graphical processing unit (GPU) with 16 GB of memory. Loss during training is shown in Figure 1.

3.2.2 Results

The sCNN outperformed NLLS and the MLP (Table 1). Figure 2 shows the estimated values against the ground-truth values. In 16% of the test dataset, the NLLS fit failed and estimated f to be within 10^{-3} of the lower or upper bound (this can cause highly inaccurate black voxels to appear in white matter in maps of f). In cases where the NLLS fit failed, the mean ground-truth value of f was 0.66. In 39% of these cases, the MLP predicted f to be within 0.05 from 0.6, failing to make meaningful predictions. The sCNN did not suffer from this issue. The sCNN was the most accurate method even when evaluated on the test dataset.

a constrained version of the standard model [11] that enables model parameters to be estimated from powder-averaged data using NLLS. The model contains two parameters: intra-neurite signal fraction f and intra-neurite diffusivity d. Axial and radial diffusivities of the extra-cellular compartment are d and $(1 - f)d$, respectively.
\begin{tabular}{|l|l|l|}
\hline
\textbf{Method} & \textbf{MSE}(d) & \textbf{MSE}(f) \\
\hline
sCNN & $0.76 \cdot 10^{-2}$ & $0.52 \cdot 10^{-2}$ \\
NLLS & $3.01 \cdot 10^{-2}$ & $3.75 \cdot 10^{-2}$ \\
MLP & $1.54 \cdot 10^{-2}$ & $1.27 \cdot 10^{-2}$ \\
\hline
\end{tabular}

\textit{Table 1: Mean squared error of the 2-compartment model parameter estimates on the test dataset. Values of d are in the units of $\mu m^2/ms$.}

\textit{Figure 2: Estimated 2-compartment model parameters against the ground-truth values of the test dataset. Values of d are in the units of $\mu m^2/ms$.}
after removing the datapoints where the NLLS fit failed. The sCNN generated whole-brain maps of d and f (Figure 3) within seconds on the GPU.

Since the sampling errors occurring when moving between the signal and spherical harmonics domains can be significant, and the non-linearity applied in the signal domain can make the signal not band-limited, the orientational variance of the sCNN was evaluated. We simulated signals from 10^4 randomly selected microstructural configurations of the test dataset rotated over 729 Euler angles given by the sampling theorem by Kostelec and Rockmore [49]. No noise was added to the signals to exclude the effects of noise. The mean coefficient of variation (CV = $\sigma/\mu \cdot 100\%$) was 0.04% for d and 0.06% for f, showing that the neural network architecture is nearly orientationally invariant.

3.3 3-compartment model

Palombo et al. [16] added a spherical compartment representing neural soma to the standard model to make it more suitable for gray matter. We used the 3-compartment model by Gyori et al. [18] that uses tensor-valued diffusion encoding to make neural soma imaging more feasible without custom high-performance gradient hardware. The model contains four parameters: intra-neurite signal fraction f_i, spherical compartment signal fraction f_{sph}, intra-neurite diffusivity d_i, and spherical compartment diffusivity d_{sph}. Axial and radial diffusivities of the extra-cellular compartment are $d_i(1 - f_i - f_{sph})^{1/2}f_{sph}/(f_{sph} + f_i)$ and $d_i(1 - f_i - f_{sph})(1/2f_{sph} + f_i)/(f_{sph} + f_i)$, respectively.

3.3.1 Training

Training done the same way as with the 2-compartment model. $f_i \sim U(0, 1)$, $f_{sph} \sim U(0, f_i)$, $d_i \sim U(0, 3 \mu m^2/ms)$, and $d_{sph} \sim U(0, \max(d_i, 0.5 \mu m^2/ms))$. The upper limit of d_{sph} was chosen to correspond to a sphere with a diameter of 25 μm using the Monte Carlo simulator Disimpy [50].

3.3.2 Results

Table 2 summarizes the performance of the sCNN and MLP. The sCNN performed better than the MLP. Figure 4 shows the parameters estimated by the sCNN against the ground-truth values. As expected based
Table 2: Mean squared error of the 3-compartment model parameter estimates on the test dataset. Values of d_i and d_{sph} are in the units of $\mu m^2/\text{ms}$.

Method	MSE(d_i)	MSE(d_{sph})	MSE(f_i)	MSE(f_{sph})
sCNN	$7.52 \cdot 10^{-2}$	$0.83 \cdot 10^{-2}$	$0.83 \cdot 10^{-2}$	$1.59 \cdot 10^{-2}$
MLP	$10.20 \cdot 10^{-2}$	$0.94 \cdot 10^{-2}$	$1.89 \cdot 10^{-2}$	$2.29 \cdot 10^{-2}$

Figure 4: 3-compartment model parameters estimated by the sCNN against the ground-truth values of the test dataset. Values of d_i and d_{sph} are in the units of $\mu m^2/\text{ms}$.

on previous work [16, 18, 51], estimation of d_{sph} and f_{sph} was difficult, especially for low f_{sph}. However, the modelling details are outside the scope of this work. Figure 5 shows whole-brain maps that the sCNN generated from preprocessed dMRI data within seconds on the GPU.
Figure 5: 3-compartment model parameter maps generated by the sCNN.
4 Discussion

The primary purpose of this study was to investigate if sCNNs can improve the accuracy of microstructural parameter estimation from noisy dMRI data. We focused on a constrained 2-compartment model widely used in neuroscience research to study human white matter in vivo. Our sCNN was able to estimate the ground-truth parameter values from simulated noisy spherical data more accurately than NLLS or an MLP applied on powder-averaged data. In neuroimaging studies, effect sizes are often small, and acquiring data is expensive, making it essential to optimize methods proven to be sensitive to clinically relevant microstructural alterations. However, parameter estimates must be interpreted cautiously as broken model assumptions and training data distribution can reduce their accuracy [23,52–54]. To demonstrate the generalizability of our method, we trained the sCNN to predict the parameters of a recently developed 3-compartment model and found an improvement compared to an MLP applied on powder-averaged data. Previous studies on apparent neural soma imaging predicted model parameters from powder-averaged data [16,18].

To our best knowledge, only a few studies have used sCNNs to analyze dMRI data previously. Sedlar et al. [22] trained an sCNN to estimate the parameters of a constrained 2-compartment model from subsampled data and showed an improvement in accuracy compared to NLLS and previously used ANNs. Goodwin-Allcock et al. [55] showed that sCNNs can improve the robustness of diffusion tensor estimation from data with just a few directions. Furthermore, sCNNs have been used to estimate ODFs [21] and [20]. This study is the first time sCNNs have been trained to predict microstructural parameters from simulated training data with a known ground truth. Although we implemented spherical convolution layers as described by Esteves et al. [26], other architectures also exist and warrant investigation in the context of microstructural neuroimaging. For example, the sCNNs by Cohen et al. [25] use cross-correlation and learnable non-zonal filters, Kondor et al. [56] developed efficient quadratic non-linearities in the spherical harmonics domain, and the graph-based sCNN by Perraudin et al. [27] is suitable for spherical data with very high angular resolution. Besides optimizing network architecture, future studies should also focus on optimizing hyperparameters, acquisition protocols, microstructural models, and other aspects outside the scope of this study.

In conclusion, our work demonstrates that sCNNs can improve the accuracy of microstructural neuroimaging and provide a compelling alternative to estimating parameters from powder-averaged data.
References

[1] Y. Sagi, I. Tavor, S. Hofstetter, S. Tzur-Moryosef, T. Blumenfeld-Katzir, and Y. Assaf, “Learning in the fast lane: new insights into neuroplasticity,” *Neuron*, vol. 73, no. 6, pp. 1195–1203, 2012. [Online]. Available: https://www.doi.org/10.1016/j.neuron.2012.01.025

[2] C. Lebel, S. Treit, and C. Beaulieu, “A review of diffusion mri of typical white matter development from early childhood to young adulthood,” *NMR in Biomedicine*, vol. 32, no. 4, p. e3778, 2019. [Online]. Available: https://doi.org/10.1002/nbm.3778

[3] E. V. Sullivan and A. Pfefferbaum, “Diffusion tensor imaging and aging,” *Neuroscience & Biobehavioral Reviews*, vol. 30, no. 6, pp. 749–761, 2006. [Online]. Available: https://doi.org/10.1016/j.neubiorev.2006.06.002

[4] C. R. Gibbard, J. Ren, D. H. Skuse, J. D. Clayden, and C. A. Clark, “Structural connectivity of the amygdala in young adults with autism spectrum disorder,” *Human brain mapping*, vol. 39, no. 3, pp. 1270–1282, 2018. [Online]. Available: https://doi.org/10.1002/hbm.23915

[5] Y. Zhang, N. Schuff, A.-T. Du, H. J. Rosen, J. H. Kramer, M. L. Gorno-Tempini, B. L. Miller, and M. W. Weiner, “White matter damage in frontotemporal dementia and alzheimer’s disease measured by diffusion mri,” *Brain*, vol. 132, no. 9, pp. 2579–2592, 2009. [Online]. Available: https://doi.org/10.1093/brain/awp071

[6] V. G. Kiselev, “Fundamentals of diffusion mri physics,” *NMR in Biomedicine*, vol. 30, no. 3, p. e3602, 2017. [Online]. Available: https://doi.org/10.1002/nbm.3602

[7] D. S. Novikov, E. Fieremans, S. N. Jespersen, and V. G. Kiselev, “Quantifying brain microstructure with diffusion mri: Theory and parameter estimation,” *NMR in Biomedicine*, vol. 32, no. 4, p. e3998, 2019. [Online]. Available: https://doi.org/10.1002/nbm.3998

[8] E. Kaden, F. Kruggel, and D. C. Alexander, “Quantitative mapping of the per-axon diffusion coefficients in brain white matter,” *Magnetic resonance in medicine*, vol. 75, no. 4, pp. 1752–1763, 2016. [Online]. Available: https://doi.org/10.1002/mrm.25734

[9] S. N. Jespersen, H. Lundell, C. K. Sønderby, and T. B. Dyrbø, “Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments,” *NMR in Biomedicine*, vol. 26, no. 12, pp. 1647–1662, 2013. [Online]. Available: https://doi.org/10.1002/nmr.2999

[10] S. Lasić, F. Szczepankiewicz, S. Eriksson, M. Nilsson, and D. Topgaard, “Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion mri with magic-angle spinning of the q-vector,” *Frontiers in Physics*, vol. 2, p. 11, 2014. [Online]. Available: https://doi.org/10.3389/fphy.2014.00011

[11] E. Kaden, N. D. Kelm, R. P. Carson, M. D. Does, and D. C. Alexander, “Multi-compartment microscopic diffusion imaging,” *NeuroImage*, vol. 139, pp. 346–359, 2016. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2016.06.002
[12] F. Szczepankiewicz, D. van Westen, E. Englund, C.-F. Westin, F. Ståhlberg, J. Lätt, P. C. Sundgren, and M. Nilsson, “The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (divide),” *Neuroimage*, vol. 142, pp. 522–532, 2016. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2016.07.038

[13] R. N. Henriques, S. N. Jespersen, and N. Shemesh, “Correlation tensor magnetic resonance imaging,” *Neuroimage*, vol. 211, p. 116605, 2020. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2020.116605

[14] V. Golkov, A. Dosovitskiy, J. I. Sperl, M. I. Menzel, M. Czisch, P. Sämann, T. Brox, and D. Cremers, “Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans,” *IEEE transactions on medical imaging*, vol. 35, no. 5, pp. 1344–1351, 2016. [Online]. Available: https://doi.org/10.1109/TMI.2016.2551324

[15] S. Barbieri, O. J. Gurney-Champion, R. Klaassen, and H. C. Thoeny, “Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI,” *Magnetic resonance in medicine*, vol. 83, no. 1, pp. 312–321, 2020. [Online]. Available: https://doi.org/10.1002/mrm.27910

[16] M. Palombo, A. Ianus, M. Guerreri, D. Nunes, D. C. Alexander, N. Shemesh, and H. Zhang, “Sandi: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI,” *Neuroimage*, vol. 215, p. 116835, 2020. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2020.116835

[17] D. Karimi, C. Jaimes, F. Machado-Rivas, L. Vasung, S. Khan, S. K. Warfield, and A. Gholipour, “Deep learning-based parameter estimation in fetal diffusion-weighted MRI,” *NeuroImage*, vol. 243, p. 118482, 2021. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2021.118482

[18] N. G. Gyori, C. A. Clark, D. C. Alexander, and E. Kaden, “On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol,” *NeuroImage*, vol. 239, p. 118303, 2021. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2021.118303

[19] J. P. de Almeida Martins, M. Nilsson, B. Lampinen, M. Palombo, P. T. While, C.-F. Westin, and F. Szczepankiewicz, “Neural networks for parameter estimation in microstructural MRI: Application to a diffusion-relaxation model of white matter,” *NeuroImage*, vol. 244, p. 118601, 2021. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2021.118601

[20] A. Elaldi, N. Dey, H. Kim, and G. Gerig, “Equivariant spherical deconvolution: Learning sparse orientation distribution functions from spherical data,” in *International Conference on Information Processing in Medical Imaging*. Springer, 2021, pp. 267–278. [Online]. Available: https://doi.org/10.1007/978-3-030-78191-0_21

[21] S. Sedlar, T. Papadopoulo, R. Deriche, and S. Deslauriers-Gauthier, “Diffusion MRI fiber orientation distribution function estimation using voxel-wise spherical u-net,” in *Computational Diffusion MRI*. Springer, 2021, pp. 95–106. [Online]. Available: https://doi.org/10.1007/978-3-030-73018-5_8

[22] S. Sedlar, A. Alimi, T. Papadopoulo, R. Deriche, and S. Deslauriers-Gauthier, “A spherical convolutional neural network for white matter structure imaging via dMRI,” in *International Conference on Medical Image Computing and Computer-Assisted Intervention*. Springer, 2021, pp. 529–539. [Online]. Available: https://doi.org/10.1007/978-3-030-87199-4_50
[23] N. G. Gyori, M. Palombo, C. A. Clark, H. Zhang, and D. C. Alexander, “Training data distribution significantly impacts the estimation of tissue microstructure with machine learning,” *Magnetic resonance in medicine*, vol. 87, no. 2, pp. 932–947, 2022. [Online]. Available: https://doi.org/10.1002/mrm.29014

[24] L. Kerkełä, K. Seunarine, R. N. Henriques, J. D. Clayden, and C. A. Clark, “Improved reproducibility of diffusion kurtosis imaging using regularized non-linear optimization informed by artificial neural networks,” *arXiv preprint arXiv:2203.07327*, 2022. [Online]. Available: https://arxiv.org/abs/2203.07327

[25] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical cnns,” *arXiv preprint arXiv:1801.10130*, 2018. [Online]. Available: https://arxiv.org/abs/1801.10130

[26] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis, “Learning so (3) equivariant representations with spherical cnns,” in *Proceedings of the European Conference on Computer Vision (ECCV)*, 2018, pp. 52–68. [Online]. Available: https://doi.org/10.1007/978-3-030-01261-8_4

[27] N. Perraudin, M. Defferrard, T. Kacprzak, and R. Sgier, “Deepsphere: Efficient spherical convolutional neural network with healpix sampling for cosmological applications,” *Astronomy and Computing*, vol. 27, pp. 130–146, 2019. [Online]. Available: https://doi.org/10.1016/j.ascom.2019.03.004

[28] S. E. Collins, M. Spencer-Smith, I. Münner-Lavanchy, C. E. Kelly, P. Pyman, L. Pascoe, J. Cheong, L. W. Doyle, D. K. Thompson, and P. J. Anderson, “White matter microstructure correlates with mathematics but not word reading performance in 13-year-old children born very preterm and full-term,” *NeuroImage: Clinical*, vol. 24, p. 101944, 2019. [Online]. Available: https://doi.org/10.1016/j.nicl.2019.101944

[29] I. Voldsbekk, I. Groote, N. Zak, D. Roelfs, O. Geier, P. Due-Tønnessen, L.-L. Løkken, M. Strømstad, T. Y. Blakstvedt, Y. S. Kuiper *et al.*, “Sleep and sleep deprivation differentially alter white matter microstructure: A mixed model design utilising advanced diffusion modelling,” *NeuroImage*, vol. 226, p. 117540, 2021. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2020.117540

[30] S. M. Toescu, P. W. Hales, E. Kaden, L. M. Lacerda, K. Aquilina, and C. A. Clark, “Tractographic and microstructural analysis of the dentato-rubro-thalamo-cortical tracts in children using diffusion mri,” *Cerebral Cortex*, vol. 31, no. 5, pp. 2595–2609, 2021. [Online]. Available: https://doi.org/10.1093/cercor/bhaa377

[31] R. Rahmanzadeh, R. Galbusera, P.-J. Lu, E. Bahn, M. Weigel, M. Barakovic, J. Franz, T. D. Nguyen, P. Spincemaille, S. Schiavi *et al.*, “A new advanced mri biomarker for remyelinated lesions in multiple sclerosis,” *Annals of neurology*, vol. 92, no. 3, pp. 486–502, 2022. [Online]. Available: https://doi.org/10.1002/ana.26441

[32] M. Battocchio, S. Schiavi, M. Descoteaux, and A. Daducci, “Bundle-o-graphy: improving structural connectivity estimation with adaptive microstructure-informed tractography,” *NeuroImage*, vol. 263, p. 119600, 2022. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2022.119600

[33] D. Topgaard, “Multidimensional diffusion mri,” *Journal of Magnetic Resonance*, vol. 275, pp. 98–113, 2017. [Online]. Available: https://doi.org/10.1016/j.jmr.2016.12.007
[34] J. R. Driscoll and D. M. Healy, “Computing fourier transforms and convolutions on the 2-sphere,” *Advances in applied mathematics*, vol. 15, no. 2, pp. 202–250, 1994. [Online]. Available: https://doi.org/10.1006/aama.1994.1008

[35] C. Brechbühler, G. Gerig, and O. Kübler, “Parametrization of closed surfaces for 3-d shape description,” *Computer vision and image understanding*, vol. 61, no. 2, pp. 154–170, 1995. [Online]. Available: https://doi.org/10.1006/cviu.1995.1013

[36] C.-F. Westin, H. Knutsson, O. Pasternak, F. Szczepankiewicz, E. Özarslan, D. van Westen, C. Mattisson, M. Bogren, L. J. O’Donnell, M. Kubicki et al., “Q-space trajectory imaging for multidimensional diffusion mri of the human brain,” *Neuroimage*, vol. 135, pp. 345–362, 2016. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2016.02.039

[37] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, “Healpix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere,” *The Astrophysical Journal*, vol. 622, no. 2, p. 759, 2005. [Online]. Available: https://doi.org/10.1086/427976

[38] A. Zonca, L. P. Singer, D. Lenz, M. Reinecke, C. Rosset, E. Hivon, and K. M. Gorski, “healpy: equal area pixellization and spherical harmonics transforms for data on the sphere in python,” *Journal of Open Source Software*, vol. 4, no. 35, p. 1298, 2019. [Online]. Available: http://doi.org/10.21105/joss.01298

[39] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” *arXiv preprint arXiv:1502.03167*, 2015. [Online]. Available: https://arxiv.org/abs/1502.03167

[40] J. Veraart, D. S. Novikov, D. Christiaens, B. Ades-Aron, J. Sijbers, and E. Fieremans, “Denoising of diffusion mri using random matrix theory,” *Neuroimage*, vol. 142, pp. 394–406, 2016. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2016.08.016

[41] J.-D. Tournier, R. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens, B. Jeurissen, C.-H. Yeh, and A. Connelly, “Mrtrix3: A fast, flexible and open software framework for medical image processing and visualisation,” *Neuroimage*, vol. 202, p. 116137, 2019. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2019.116137

[42] J. L. Andersson and S. N. Sotiropoulos, “An integrated approach to correction for off-resonance effects and subject movement in diffusion mr imaging,” *Neuroimage*, vol. 125, pp. 1063–1078, 2016. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2015.10.019

[43] M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, “Fsl,” *Neuroimage*, vol. 62, no. 2, pp. 782–790, 2012. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2011.09.015

[44] B. Jeurissen, J.-D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers, “Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion mri data,” *NeuroImage*, vol. 103, pp. 411–426, 2014. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2014.07.061

[45] F. Szczepankiewicz, J. Sjölund, F. Ståhberg, J. Lätt, and M. Nilsson, “Tensor-valued diffusion encoding for diffusional variance decomposition (divide): Technical feasibility in clinical mri systems,” *PLoS One*, vol. 14, no. 3, p. e0214238, 2019. [Online]. Available: https://doi.org/10.1371/journal.pone.0214238
[46] J. Sjölund, F. Szczepankiewicz, M. Nilsson, D. Topgaard, C.-F. Westin, and H. Knutsson, “Constrained optimization of gradient waveforms for generalized diffusion encoding,” *Journal of magnetic resonance*, vol. 261, pp. 157–168, 2015. [Online]. Available: https://doi.org/10.1016/j.jmr.2015.10.012

[47] F. Szczepankiewicz, C.-F. Westin, and M. Nilsson, “Maxwell-compensated design of asymmetric gradient waveforms for tensor-valued diffusion encoding,” *Magnetic resonance in medicine*, vol. 82, no. 4, pp. 1424–1437, 2019. [Online]. Available: https://doi.org/10.1002/mrm.27828

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” *arXiv preprint arXiv:1412.6980*, 2014. [Online]. Available: https://arxiv.org/abs/1412.6980

[49] P. J. Kostelec and D. N. Rockmore, “Ffts on the rotation group,” *Journal of Fourier analysis and applications*, vol. 14, no. 2, pp. 145–179, 2008. [Online]. Available: https://doi.org/10.1007/s00041-008-9013-5

[50] L. Kerkelä, F. Nery, M. G. Hall, and C. A. Clark, “Disimpy: A massively parallel monte carlo simulator for generating diffusion-weighted mri data in python,” *Journal of Open Source Software*, vol. 5, no. 52, p. 2527, 2020. [Online]. Available: https://doi.org/10.21105/joss.02527

[51] M. Afzali, M. Nilsson, M. Palombo, and D. K. Jones, “Spheriously? the challenges of estimating sphere radius non-invasively in the human brain from diffusion mri,” *NeuroImage*, vol. 237, p. 118183, 2021. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2021.118183

[52] B. Lampinen, F. Szczepankiewicz, J. Mårtensson, D. van Westen, P. C. Sundgren, and M. Nilsson, “Neurite density imaging versus imaging of microscopic anisotropy in diffusion mri: a model comparison using spherical tensor encoding,” *Neuroimage*, vol. 147, pp. 517–531, 2017. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2016.11.053

[53] R. N. Henriques, S. N. Jespersen, and N. Shemesh, “Microscopic anisotropy misestimation in spherical-mean single diffusion encoding mri,” *Magnetic resonance in medicine*, vol. 81, no. 5, pp. 3245–3261, 2019. [Online]. Available: https://doi.org/10.1002/mrm.27606

[54] L. Kerkelä, F. Nery, R. Callaghan, F. Zhou, N. G. Gyori, F. Szczepankiewicz, M. Palombo, G. J. Parker, H. Zhang, M. G. Hall et al., “Comparative analysis of signal models for microscopic fractional anisotropy estimation using q-space trajectory encoding,” *NeuroImage*, vol. 242, p. 118445, 2021. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2021.118445

[55] T. Goodwin-Allcock, J. McEwen, R. Gray, P. Nachev, and H. Zhang, “How can spherical cnns benefit ml-based diffusion mri parameter estimation?” *arXiv preprint arXiv:2207.00572*, 2022. [Online]. Available: https://arxiv.org/abs/2207.00572

[56] R. Kondor, Z. Lin, and S. Trivedi, “Clebsch–gordan nets: a fully fourier space spherical convolutional neural network,” *Advances in Neural Information Processing Systems*, vol. 31, 2018.