Arthritis as a risk factor for carpal tunnel syndrome: a meta-analysis

R Shiri
Finnish Institute of Occupational Health, Helsinki, Finland

Objectives: The effects of inflammatory and degenerative arthritis on carpal tunnel syndrome (CTS) are not well known. This systematic review and meta-analysis aimed to assess whether rheumatoid arthritis (RA) and osteoarthritis (OA) increase the risk of CTS.

Method: Literature searches were conducted in PubMed, Embase, Web of Science, Scopus, Google Scholar, and ResearchGate until January 2015. Twenty-three (five cohort, 10 case control, and eight cross sectional) studies qualified for the meta-analyses. A random-effects meta-analysis was used and heterogeneity and publication bias were assessed.

Results: Both RA and OA were associated with CTS. Pooled unadjusted odds ratios (ORs) were 1.91 [95% confidence interval (CI) 1.33–2.75, I² = 55.2%, nine studies, n = 10 688] for arthritis (either inflammatory or degenerative), 2.91 (95% CI 2.33–3.62, I² = 22.3%, 11 studies, n = 74 730) for RA, and 2.13 (95% CI 1.65–2.76, I² = 39.2%, five studies, n = 20 574) for OA of any joint. Pooled confounder-adjusted ORs were 1.96 (95% CI 1.21–3.18, I² = 73.1%, six studies, n = 11 542) for arthritis, 1.96 (95% CI 1.57–2.44, I² = 32.2%, eight studies, n = 72 212) for RA, and 1.87 (95% CI 1.64–2.13, I² = 0%, two studies, n = 19 480) for OA. There was no evidence of publication bias, and excluding cross-sectional studies or studies appraised as having a high risk of selection bias did not change the magnitude of the associations.

Conclusions: The findings of this systematic review and meta-analysis suggest that both RA and OA increase the risk of CTS. Further prospective studies on the effect of wrist OA on CTS are needed.

Carpal tunnel syndrome (CTS) is a common upper extremity disorder (1, 2) and carpal tunnel release is one of the commonly performed upper extremity orthopaedic procedures (3). However, the contribution of chronic medical conditions to the aetiology of CTS is not well known. Some chronic medical conditions such as obesity (4), diabetes mellitus (5), rheumatoid arthritis (RA) (6), and hypothyroidism (6, 7) have been suggested as possible risk factors for CTS.

The carpal tunnel consists of the carpal bones and transverse carpal ligament. In the carpal tunnel, in addition to the median nerve there are nine flexor tendons (8). Each flexor tendon is covered by a synovial sheath. RA can cause tenosynovitis, swelling and oedema of the synovial sheaths of the flexor tendons in the carpal tunnel (9). RA patients with flexor tenosynovitis of the hand are reported to have a higher prevalence of CTS than RA patients without tenosynovitis (10). A long duration of RA can lead to histopathological changes in the tendons of the wrist such as synovial proliferation or tendon damage (11).

To date, only one meta-analysis has been conducted on the association between RA and CTS (6). That meta-analysis included seven studies published between 1984 and 2002 and found a twofold increased risk of CTS in RA patients. However, of the seven primary studies included in the meta-analysis, two (12, 13) were conducted in CTS patients but there was no control group, and two (14, 15) estimated the effect of any arthritis. The aim of the current systematic review and meta-analysis was to assess whether RA and osteoarthritis (OA) increase the risk of CTS.

Method

Search strategy

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used to develop the review protocol and to report the results of this meta-analysis (16). Literature searches were systematically conducted in PubMed, Embase, Web of Science, Scopus, Google Scholar, and ResearchGate up to
January 2015. The following predefined keywords were used: [carpal tunnel syndrome OR median neuropathy OR median nerve OR carpal tunnel (text word only) OR carpal canal (text word only) OR CTS (text word only)] AND [rheumatoid arthritis OR arthritis OR joint diseases OR rheumatic diseases OR rheumatism OR osteoarthritis OR antirheumatic agents OR chronic disease]. Both MeSH terms and text words were used in PubMed, and Emtree terms and text words were used in Embase. The reference lists of the included reports and the full text of studies on other risk factors for CTS, such as smoking (17), obesity (4), diabetes (5), thyroid disease (7), hand anthropometric measurements (18), and computer use (19), were looked at for additional studies on the relationship between arthritis and CTS.

Inclusion and exclusion criteria

Cross-sectional studies, both population-based and hospital-based case–control studies, and cohort studies were included in the systematic review. There was no restriction on language. Studies that reported a quantitative result for the association between any inflammatory or degenerative arthritis and CTS were eligible to be included in the review. The CTS case definition required symptoms consistent with CTS plus a nerve conduction study and/or physical examination finding(s) consistent with CTS. Carpal tunnel release surgery was also considered to meet the CTS case definition.

Published studies that were conducted among CTS patients with no control group, studies on arthritis patients lacking a control group, and studies with insufficient quantitative results were excluded from the review. In addition, studies on the symptoms of CTS that were not verified by a clinical diagnosis or a nerve conduction study were excluded from the meta-analysis.

Quality assessment

The quality of included studies was appraised using the criteria adapted from the Effective Public Health Practice Project (EPHPP) tool for observational studies (20). Five sources of bias were assessed: selection bias, performance bias, detection bias, confounding, and attrition bias (Supplementary Table S1).

Meta-analysis

A crude prevalence ratio for cross-sectional studies (2, 21–24), a crude odds ratio (OR) for case–control studies (14, 25–27), and a crude risk ratio (RR) for a cohort study (28) were estimated. Woolf confidence intervals (CIs) were calculated for the estimated ORs (29). All of the included studies, except three, reported adjusted ORs. As the risk of CTS is less than 5%, the ORs are similar to the RRs. A prevalence ratio or RR was not therefore converted to an OR. Zero-cell correction was used for studies (27, 30, 31) with a zero-cell count using the Mantel-Haenszel fixed effect. Some studies reported two or more risk estimates for the associations of different types of arthritis with CTS. To obtain an overall risk estimate for arthritis (either inflammatory or degenerative) or OA of any joint, a method (32) suggested for combining multiple outcomes within a single study was used to correct the variance of the pooled estimate.

A random-effects meta-analysis was used to combine the estimates of the studies (33). The presence of heterogeneity across the studies was assessed by the I² statistic (34). The influence of each study on the summary estimate and heterogeneity was examined by repeating the meta-analysis with one study removed at a time. Sensitivity analyses were performed with regard to study design and risk of bias in the included studies. Publication bias was assessed by a funnel plot. The Egger test was used to examine funnel plot asymmetry and the trim-and-fill method was used to explore the number of missing studies attributed to publication bias (35, 36). Statistical significance for publication bias was based on a p-value < 0.10 (32). Stata version 13 (Stata Corp, College Station, TX, USA) was used for the meta-analysis.

Results

Study selection

The study selection process is presented in Supplementary Figure S1. The searches initially identified 2612 abstracts. Fifty-two relevant studies were then identified. Twenty-nine studies were excluded from the meta-analysis: seven studies on CTS patients lacking a control group, 17 studies on patients with arthritis lacking a control group, four studies defining CTS by a nerve conduction study only, and one study not providing quantitative results. Finally, 23 (five cohort, 10 case control, and eight cross sectional) studies qualified for the meta-analyses. The sample size of the included studies ranged between 65 and 47 406 individuals (Table 1 and Supplementary Table S2). Twelve studies controlled their risk estimates for some potential confounders including age and sex. Only a few studies controlled their estimates for occupational factors, body mass index (BMI), or diabetes.

Arthritis and CTS

Eleven (two cohort, four case–control, and five cross-sectional) studies explored the association between any inflammatory or degenerative arthritis and CTS (Table 1 and Supplementary Table S2). The symptoms of CTS were confirmed by a nerve conduction study in seven studies and by a clinical diagnosis in two studies. Moreover, the assessment of CTS was based on medical
Table 1. Studies included in the meta-analysis on the association between arthritis and carpal tunnel syndrome (CTS) or carpal tunnel release (CTR).

First author, year (ref.)	Country	Design	Population	Mean age; age range (years)	Gender	Sample size	Arthritis	Outcome	Adjustment
Evanoff 2013 (28)	USA	Prospective cohort	Occupational population	31	Both	711	Arthritis	CTS	Unadjusted
Harris-Adamson 2013 (37)	USA	Prospective cohort	Occupational population	31; ≥ 18	Both	3375	RA	CTS	Adjusted
Garg 2012 (38)	USA	Prospective cohort	Occupational population	41; 19–68	Both	429	Arthritis, OA	CTS	Adjusted
Gell 2006 (39)	USA	Prospective cohort	Occupational population	39 (cases), 38 (controls); 19–69	Both	432	RA	CTS	Unadjusted
Werner 2005 (31)	USA	Prospective cohort	Occupational population	48	Both	189	RA	CTS	Unadjusted
Coggon 2013 (40)	UK	Case–control	CTS patients + patient controls	20–64	Both	1230	Arthritis, RA	CTS	Adjusted
Karadag 2012 (26)	Turkey	Case–control	RA patients + healthy controls	51 (cases), 47 (controls); 24–76	Both	145	RA	CTS	Unadjusted
Tseng 2012 (41)	Taiwan	Case–control	National insurance claim population	20% ≤ 19, 69% 20–59, 11% ≥ 60	Both	47 406	RA	CTS	Adjusted
Mattioli 2009 (42)	Italy	Case–control	CTS patients + patient controls	18–65	Both	476	RA	CTR	Adjusted
Geoghegan 2004 (43)	UK	Case–control	General practice population	46 (cases); 16–96	Both	16 995	RA, OA	CTS, CTR	Adjusted
Ferry 2000 (44)	UK	Case–control	General practice population	42	Female	2528	Arthritis, RA, OA	CTS	Adjusted
Solomon 1999 (15)	USA	Case–control	Medicare or Medicaid population	≥ 45	Both	4244	Arthritis	CTR	Adjusted
de Krom 1990 (14)	Netherlands	Case–control	CTS patients + healthy controls	25–74	Both	629	Arthritis	CTS	Unadjusted
Wieslander 1989 (25)	Sweden	Case–control	CTS patients + healthy and patient controls	20–66	Male	177	RA	CTR	Adjusted
Barnes 1987 (27)	UK	Case–control	RA patients + patient controls	Not reported	Both	65	RA	CTS	Adjusted
Eleferthou 2012 (45)	Greece	Cross-sectional	Occupational population	45	Both	461	RA	CTS	Unadjusted
Shin 2012 (23)	South Korea	Cross-sectional	Elderly population	75, 66–96	Both	368	OA	CTS	Unadjusted
Burt 2011 (22)	USA	Cross-sectional	Occupational population	41; 19–68	Both	455	Arthritis	CTS	Adjusted
Raighani 2009 (24)	Iran	Cross-sectional	Patients with upper extremity disorders	Not reported	Both	1000	Arthritis	CTS	Unadjusted
Majhsoudipour 2008 (30)	Iran	Cross-sectional	Occupational population	30 (cases), 28 (controls)	Both	395	Arthritis	CTS	Unadjusted
Melchior 2006 (46)	France	Cross-sectional	Occupational population	38, 20–59	Both	2656	Arthritis	CTS	Adjusted
Atrashi 1999 (3)	Sweden	Cross-sectional	General population	25–74	Both	2466	RA	CTS	Unadjusted
Atchison 1998 (21)	USA	Cross-sectional	Patients with upper extremity disorders	25–54	Both	297	Arthritis, RA, OA	CTS	Unadjusted

RA, Rheumatoid arthritis; OA, osteoarthritis.
records in two studies. Four studies qualified as having a high risk of selection bias.

The pooled OR of CTS for any inflammatory or degenerative arthritis was 1.91 (95% CI 1.33–2.75, $I^2 = 55.2\%$) in the meta-analysis of nine studies consisting of 10 688 individuals that reported estimates not controlled for any confounder (Figure 1). Excluding one study (15) on carpal tunnel release from the meta-analysis decreased the value of I^2 to 24.5% and the pooled OR to 1.71 (95% CI 1.21–2.40). Excluding studies with a high risk of selection bias did not change the result (pooled unadjusted OR 1.83, 95% CI 1.22–2.75, $I^2 = 61.4\%$).

The pooled OR was the same (1.96, 95% CI 1.21–3.18, $I^2 = 73.1\%$) in the meta-analysis of six studies (n = 11 542 individuals) that reported estimates controlled for some potential confounders. The I^2 value fell to 37.3% and the pooled OR to 1.59 (95% CI 1.06–2.38) after excluding one study (15) on carpal tunnel release. The I^2 value dropped further to 0% (pooled OR 1.89, 95% CI 1.27–2.80) after also excluding another study (40). Excluding studies with a high risk of selection bias did not change the result (pooled adjusted OR 2.21, 95% CI 1.44–3.41, $I^2 = 46.7\%$).

RA and CTS

Fourteen (three cohort, eight case–control, and three cross-sectional) studies assessed the association between RA and CTS (Table 1 and Supplementary Table S2). The symptoms of CTS were confirmed by a nerve conduction study in nine studies and by a clinical diagnosis in two studies. ICD codes were used for the assessment of CTS in three studies. The risk of selection bias was high for four studies.

Ten studies consisting of 74 254 individuals reported unadjusted estimates for the association between RA and CTS (pooled OR 2.88, 95% CI 2.25–3.69, $I^2 = 25.9\%$; Figure 2). Only one study reported an unadjusted estimate for carpal tunnel release. The pooled OR was 2.91 (95% CI 2.33–3.62, $I^2 = 22.3\%$, n = 74 730) for CTS and carpal tunnel release combined.

First author and year of publication

Unadjusted estimates

First author and year of publication	OR (95% CI)	Weight, %
Evanoff 2013	1.04 (0.26, 4.12)	5.44
Garg 2012	3.80 (1.47, 9.79)	9.29
Burt 2011	1.98 (1.20, 3.26)	17.07
Raigani 2009	1.67 (0.56, 4.93)	7.75
Maghsoudipour 2008	2.42 (0.10, 5.870)	1.24
Ferry 2000	1.71 (1.01, 2.90)	16.46
Solomon 1999	3.10 (2.40, 4.10)	22.15
Atcheson 1998	1.75 (0.92, 3.31)	14.15
de Krom 1990	0.38 (0.11, 1.30)	6.46
Subtotal (1$^2 = 55.2\%, P = 0.022$)	1.91 (1.33, 2.75)	100.00

Confounder-adjusted estimates

First author and year of publication	OR (95% CI)	Weight, %
Coggon 2013	1.06 (0.70, 1.61)	22.22
Garg 2012	3.66 (1.32, 10.16)	12.20
Burt 2011	2.03 (1.02, 4.04)	17.31
Melchior 2006	2.06 (0.29, 14.36)	5.01
Ferry 2000	1.45 (0.82, 2.55)	19.49
Solomon 1999	3.10 (2.20, 4.20)	23.77
Subtotal (1$^2 = 73.1\%, P = 0.002$)	1.96 (1.21, 3.18)	100.00

Figure 1. A meta-analysis of 11 studies on the association between arthritis and carpal tunnel syndrome (CTS) or carpal tunnel release. The size of the grey shaded area indicates the weight of each study. Horizontal lines show the 95% confidence intervals (CIs). OR, odds ratio.
The pooled confounder-adjusted OR was 1.88 (95% CI 1.43–2.49, I² = 51.5%) for CTS in the meta-analysis of six studies consisting of 71 559 individuals and 2.34 (95% CI 1.45–3.75, I² = 0%) for carpal tunnel release in the meta-analysis of three studies consisting of 17 608 individuals (Figure 2). The pooled adjusted OR was 1.96 (95% CI 1.57–2.44, I² = 32.2%, eight studies, n = 72 212) for CTS and carpal tunnel release combined. Excluding studies with a high risk of selection bias did not change the result (pooled adjusted OR 2.12, 95% CI 1.78–2.54, I² = 12.7%).

OA and CTS

There were five (one cohort, two case–control, and two cross-sectional) studies on the association between OA and CTS (Table 1 and Supplementary Table S2). The diagnosis of CTS was based on symptoms and a nerve conduction study in two studies, symptoms and a clinical diagnosis in one study, and medical records in two studies. Two studies qualified as having a high risk of selection bias.

In the meta-analysis of five studies consisting of 20 574 individuals, the pooled unadjusted OR of CTS for OA in any joint was 2.13 (95% CI 1.65–2.76, I² = 39.2%; Figure 3). The magnitude of association did not change after excluding two studies with a high risk of selection bias (pooled OR 2.30, 95% CI 1.78–2.99, I² = 39.8%) or after excluding two cross-sectional studies (pooled OR 2.55, 95% CI 2.25–2.89, I² = 0%).

The pooled confounder-adjusted OR of two studies consisting of 19 480 individuals was 1.87 (95% CI 0.25 – 10.68, P = 0.205)
1.64–2.13, $I^2 = 0\%$). These two studies were neither cross-sectional nor appraised as having a high risk of selection bias.

Publication bias

A funnel plot of 11 studies on arthritis (five unadjusted and six adjusted estimates) was symmetrical (p for the Egger test $= 0.39$) and the trim-and-fill method imputed no missing studies (Supplementary Figure S2). A funnel plot of 14 studies on RA showed no publication bias (p for the Egger test $= 0.57$, Supplementary Figure S3) and the trim-and-fill method did not impute any missing studies.

Discussion

This systematic review and meta-analysis found an increased risk of CTS in individuals who suffer from RA or OA. These results of an approximately twofold increased risk were relatively consistent for both types of arthritis regardless of which study inclusion method was used. The observed associations are most probably not due to selection bias, confounding factors, or publication bias.

RA and OA may not share similar mechanistic risks for CTS. CTS does not predict a new onset of arthritis (47) whereas it seems that arthritis does predict the development of CTS. RA may increase the risk of CTS by causing flexor tenosynovitis in the carpal tunnel (9). The symptoms and signs of CTS may be transient in RA patients and resolve within a year (48). Cervical or basal joint OA commonly coexists with idiopathic CTS (49). Osseous hypertrophy of the carpal bones can make the carpal canal smaller. Therefore, wrist OA may be one of the underlying causes of idiopathic CTS.

CTS and carpal tunnel release are more common in women than men (1). Of the studies included in this meta-analysis, only two that recruited both sexes performed a sex-specific analysis on the role of arthritis in CTS. One of these studies (46) had low statistical power and the other (41) showed a similar association between RA and CTS in both men and women. Women are also at higher risk of developing RA (50) and hand OA (51). RA and hand OA may explain a minor portion of the increased risk of CTS for women.

This systematic review and meta-analysis has some limitations. Many studies included in this meta-analysis did not control their risk estimates for potential confounding factors. Age and sex are known risk factors for RA, OA, and CTS.
The included studies that reported confounder-adjusted estimates controlled their risk estimates for both age and sex. Obesity is a known risk factor for CTS and a possible risk factor for RA (52, 53) and hand OA (54, 55). In the current meta-analysis, only a few primary studies adjusted their observed associations for BMI. The associations of RA and OA with CTS may therefore have been overestimated. Another limitation is that there were only a few prospective cohort studies, and all except one recruited a small population. Furthermore, some studies defined CTS based on symptoms and clinical diagnosis and did not use a nerve conduction study. More than half of the included studies assessed arthritis using self-reports. In addition, only a few studies explored the effect of wrist OA on CTS.

In summary, this meta-analysis suggests that RA and OA are possible risk factors for CTS. Further prospective studies on the effect of wrist OA on CTS are needed.

References
1. Shiri R, Varonen H, Heliovaara M, Viikari-Juntura E. Hand dominance in upper extremity musculoskeletal disorders. J Rheumatol 2007;34:1076–82.
2. Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I. Prevalence of carpal tunnel syndrome in a general population. JAMA 1999;282:153–8.
3. Jain NB, Higgins LD, Losina E, Collins J, Blazar PE, Katz JN. Epidemiology of musculoskeletal upper extremity ambulatory surgery in the United States. BMC Musculoskelet Disord 2014;15:4.
4. Shiri R, Pourmernah M, Fahal-Hassani K, Viikari-Juntura E. The effect of excess body mass on the risk of carpal tunnel syndrome: a meta-analysis of 58 studies. Obes Rev 2015;16:1094–104.
5. Pourmernah M, Shiri R. Diabetes as a risk factor for carpal tunnel syndrome: a systematic review and meta-analysis. Diabet Med 2016;33:10–16.
6. van Dijk MA, Reitsma JB, Fischer JC, Sanders GT. Indications for surgery in the United States. BMC Musculoskelet Disord 2016;17:291.
7. Shiri R. Hypothyroidism and carpal tunnel syndrome: a meta-analysis. Muscle Nerve 2014;49:1437–44.
8. Ghasemi-Rad M, Nosair E, Vegh A, Motammam A, Akkad A, Lesha E, et al. A handy review of carpal tunnel syndrome: from anatomy to diagnosis and treatment. World J Radiol 2014;6:284–300.
9. Sturm T, Kisslinger E, Wessinghage D, Bayer M. Carpal tunnel syndrome in patients with rheumatoid arthritis - Long term follow-up. Zeitschrift fur Rheumatologie 1995;54:56–62.
10. Gray RG, Gottlieb NL. Hand flexor tenosynovitis in rheumatoid arthritis. Prevalence, distribution, and associated rheumatic features. Arthritis Rheum 1977;20:1003–8.
11. Filippucci E, Gabba A, Di Geso L, Girolimetti R, Salaffi F, Grassi W. Hand tendon involvement in rheumatoid arthritis: an ultrasound study. Semin Arthritis Rheum 2012;41:752–60.
12. Bahou YG. Carpal tunnel syndrome: a series observed at Jordan University Hospital (JUH), June 1999–December 2000. Clin Neurol Neurosurg 2002;104:49–53.
13. Stevens RC, Beard CM, O’Fallon WM, Kurland LT. Conditions associated with carpal tunnel syndrome. Mayo Clin Proc 1992;67:541–8.
14. de Krom MC, Kester AD, Knipschild PG, Spaans F. Risk factors for carpal tunnel syndrome. Am J Epidemiol 1990;132:1102–10.
15. Solomon DH, Katz JN, Bohn R, Mogun H, Avorn J. Nonoccupation risk factors for carpal tunnel syndrome. J Gen Intern Med 1999;14:310–14.
16. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
17. Pourenmeh MH, Viikari-Juntura E, Shiri R. Smoking and carpal tunnel syndrome: a meta-analysis. Muscle Nerve 2014;49:345–50.
18. Shiri R. A square-shaped wrist as a predictor of carpal tunnel syndrome: a meta-analysis. Muscle Nerve 2015;52:709–13.
19. Shiri R, Fahal-Hassani K. Computer use and carpal tunnel syndrome: a meta-analysis. J Neurol Sci 2015;349:15–19.
20. Armiño-Ólivo S, Stiles CR, Hagen NA, Biondo PD, Cummings GG. Assessment of study quality for systematic reviews: a comparison of the cochrane collaboration risk of bias tool and the effective public health practice project quality assessment tool: methodological research. J Eval Clin Pract 2012;18:12–18.
21. Atcheson SG, Ward JR, Lowe W. Concurrent medical disease in workers with carpal tunnel syndrome. Arch Intern Med 1998;158:1506–12.
22. Burt S, Crombie K, Jin Y, Wurzelbacher S, Ramsey J, Deddens J. Workplace and individual risk factors for carpal tunnel syndrome. Occup Environ Med 2011;68:928–33.
23. Shin CH, Paik NJ, Lim JY, Kim TK, Kim KW, Lee JJ, et al. Carpal tunnel syndrome and radiographically evident basal joint arthritis of the thumb in elderly Koreans. J Bone Joint Surg Am 2012;94:e1201–16.
24. Raigani M, Mokhtairad M, Bahrami M, Eliaaspoor D, Valaei N. Prevalence and associated factors of carpal tunnel syndrome among patients with upper extremity disorders. Pajohounhadeh 2009;70:219–23.
25. Wieslander G, Norback D, Gothe CJ, Juhlín L. Carpal tunnel syndrome (CTS) and exposure to vibration, repetitive wrist movements, and heavy manual work: a case-referent study. Br J Ind Med 1989;46:43–7.
26. Karadag O, Kalyoncu U, Akdogan A, Karadag YS, Bilgen SA, Ozbakr S, et al. Sonographic assessment of carpal tunnel syndrome in rheumatoid arthritis: prevalence and correlation with disease activity. Rheumatol Int 2012;32:2313–19.
27. Barnes CG, Currey HL. Carpal tunnel syndrome in rheumatoid arthritis. A clinical and electrodiagnostic survey. Ann Rheum Dis 1967;26:226–33.
28. Evanoff B, Zeringue A, Franzblau A, Dale AM. Using job-title-based physical exposures from O*NET in an epidemiological study of carpal tunnel syndrome. Hum Factors 2013;56:166–77.
29. Wulf B. On estimating the relation between blood group disease. Ann Hum Genet 1955;19:251–3.
30. Maghsoudipour M, Moghimi S, Dehghaen F, Rahimpanah A. Association of occupational and non-occupational risk factors with the prevalence of work related carpal tunnel syndrome. J Occup Rehabil 2008;18:152–6.
31. Werner RA, Franzblau A, Gell N, Hartigan AG, Ebersole M, Armstrong TJ. Incidence of carpal tunnel syndrome among automobile assembly workers and assessment of risk factors. J Occup Environ Med 2005;47:1044–50.
32. Borenstein M, Hedges L, Higgins J, Rothstein H. Cochrane handbook for systematic reviews of interventions version 5.1.0, updated March 2011. (http://handbook.cochrane.org/). Accessed 28 October 2015.
33. Higgins J, Green S, eds. Cochrane handbook for systematic reviews of interventions version 5.1.0, updated March 2011. (http://handbook.cochrane.org/). Accessed 28 October 2015.
34. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539–58.
35. Rothstein H, Sutton A, Borenstein M. Publication bias in meta-analysis: prevention, assessment and adjustments. Chichester, UK: Hoboken, NJ: Wiley, 2005.
36. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000;56:455–63.
37. Harris-Adamson C, Eisen EA, Dale AM, Evanoff B, Hegmann KT, Thiese MS, et al. Personal and workplace psychosocial risk factors for carpal tunnel syndrome: a pooled study cohort. Occup Environ Med 2013;70:529–37.
38. Garg A, Kapellusch J, Hegmann K, Wertsch J, Merryweather A, Deckow-Schaefer G, et al. The Strain Index (SI) and Threshold Limit Value (TLV) for Hand Activity Level (HAL): risk of carpal tunnel syndrome (CTS) in a prospective cohort. Ergonomics 2012;55:396–414.
39. Gell N, Werner RA, Franzblau A, Ulin SS, Armstrong TJ. A longitudinal study of industrial and clerical workers: incidence of carpal tunnel syndrome and assessment of risk factors. J Occup Rehabil 2005;15:47–55.

40. Coggon D, Ntani G, Harris EC, Linaker C, Van der Star R, Cooper C, et al. Differences in risk factors for neurophysiologically confirmed carpal tunnel syndrome and illness with similar symptoms but normal median nerve function: a case-control study. BMC Musculoskelet Disord 2013;14:240.

41. Tseng CH, Liao CC, Kuo CM, Sung FC, Hsieh DP, Tsai CH. Medical and non-medical correlates of carpal tunnel syndrome in a Taiwan cohort of one million. Eur J Neurology 2012; 19:91–7.

42. Mattioli S, Baldasseroni A, Bovenzi M, Curti S, Cooke RM, Campo G, et al. Risk factors for operated carpal tunnel syndrome: a multicenter population-based case-control study. J Hand Surg Br 2003;28:215–20.

43. Geoghegan JM, Clark DI, Bainbridge LC, Smith C, Hubbard R. Risk factors in carpal tunnel syndrome. J Hand Surg Br 2004;29:315–20.

44. Ferry S, Hannaford P, Warskyj M, Lewis M, Croft P. Carpal tunnel syndrome: a nested case-control study of risk factors in women. Am J Epidemiol 2000;151:566–74.

45. Eleftheriou A, Rachiotis G, Varitimidis SE, Koutis C, Malizos KN, Hadjichristodoulou C. Cumulative keyboard strokes: a possible risk factor for carpal tunnel syndrome. J Occup Med Toxicol 2012;7:16.

46. Melchior M, Roquelaure Y, Evanno F, Chastang JF, Ha C, Imbernon E, et al. Why are manual workers at high risk of upper limb disorders? The role of physical work factors in a random sample of workers in France (the Pays de la Loire study). Occup Environ Med 2006;63:754–61.

47. de Rijk MC, Vermeij FH, Suntjen M, van Doorn PA. Does a carpal tunnel syndrome predict an underlying disease? J Neurol Neurosurg Psychiatry 2007;78:635–7.

48. Chamberlain MA, Corbett M. Carpal tunnel syndrome in early rheumatoid arthritis. Ann Rheum Dis 1970;29:149–52.

49. Kim JH, Gong HS, Lee HJ, Lee YH, Hae SH, Baek GH. Pre- and post-operative comorbidities in idiopathic carpal tunnel syndrome: cervical arthritis, basal joint arthritis of the thumb, and trigger digit. J Hand Surg Eur Vol 2013;38:50–6.

50. van Vollenhoven RF. Sex differences in rheumatoid arthritis: more than meets the eye. BMC Med 2009;7:12.

51. Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage 2005;13:769–81.

52. Crowson CS, Matteson EL, Davis JM 3rd, Gabriel SE. Contribution of obesity to the rise in incidence of rheumatoid arthritis. Arthritis Care Res (Hoboken) 2013;65:71–7.

53. Lu B, Hiraki LT, Sparks JA, Malspeis S, Chen CY, Awosogha JA, et al. Being overweight or obese and risk of developing rheumatoid arthritis among women: a prospective cohort study. Ann Rheum Dis 2014;73:1914–22.

54. Yusuf E, Nelissen RG, Ioan-Facsinay A, Stojanovic-Susulic V, DeGroot J, van Osch G, et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis 2010;69:761–5.

55. Carman WJ, Sowers M, Hawthorne VM, Weissfeld LA. Obesity as a risk factor for osteoarthritis of the hand and wrist: a prospective study. Am J Epidemiol 1994;139:119–29.

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Supplementary Table S1. Quality assessment of the included studies.

Supplementary Table S2. Studies included in the meta-analysis on the association between arthritis and carpal tunnel syndrome.

Supplementary Figure S1. Flow chart of the search strategy and selection of studies. CTS, carpal tunnel syndrome.

Supplementary Figure S2. Funnel plot for publication bias in 11 studies on arthritis.

Supplementary Figure S3. Funnel plot for publication bias in 14 studies on rheumatoid arthritis.

Please note that the editors are not responsible for the content or functionality of any supplementary material supplied by the authors. Any queries should be directed to the corresponding author.

www.scandjrheumatol.dk