Polarized retinal pigment epithelium generates electrical signals that diminish with age and regulate retinal pathology

Cao, L., Liu, J., Pu, J., Milne, G., Chen, M., Xu, H., Shipley, A., Forrester, J. V., McCaig, C. D., & Lois, N. (2018). Polarized retinal pigment epithelium generates electrical signals that diminish with age and regulate retinal pathology. Journal of Cellular and Molecular Medicine, 22(11), 5552-5564. Advance online publication. https://doi.org/10.1111/jcmm.13829

Published in:
Journal of Cellular and Molecular Medicine

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen’s research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen’s academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:04. Jan. 2024
Polarized retinal pigment epithelium generates electrical signals that diminish with age and regulate retinal pathology

Lin Cao1,2 | Jie Liu3 | Jin Pu1 | Gillian Milne1 | Mei Chen4 | Heping Xu4 | Alan Shipley5 | John V Forrester1 | Colin D McCaig1 | Noemi Lois4

1School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
2Yizhou International Proton Medical Centre and Cancer Hospital, He Bei, China
3Department of Ophthalmology, Frist Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
4Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, UK
5Biological Research & Development, University of New England, Biddeford, Maine

Correspondence: Colin D. McCaig, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK (c.mccaig@abdn.ac.uk).
and
Noemi Lois, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, BT9 7BL, UK (n.lois@qub.ac.uk).

Funding Information
Fight for Sight, Grant/Award Number: 1712/13, 1361/1362; NHS Grampian Endowments, Friends of ANCHOR, Action Medical Research, Grant/Award Number: GN2299

1 | BACKGROUND

The retinal pigment epithelium (RPE) is a polarized epithelial monolayer which lies between the photoreceptor cells of the retina and the choriocapillaris layer of the choroid. The RPE has many functions, for example light absorption, trans-epithelial transport, phagocytosis, secretion of growth factors and protection of the neural retina. Dysfunction and death of RPE cells play critical roles in the pathogenesis of several retinal disorders.1,2 For example, RPE dysfunction occurs very early on in diabetic retinopathy, even before...
visual loss or overt diabetic retinopathy is evident clinically. One feature of healthy RPE is the generation of a trans-epithelial potential difference (TEP) of around 3.5 mV (apical side positive). Because the RPE has an average thickness of about ~50 μm, the voltage gradient across the RPE (TEP) gives rise to a physiological electrical field (EF) of ~70 mV/mm. The TEP is created by the establishment of ionic gradients across the RPE. These are driven for example by membrane transporters such as the polarized Na+/K+-ATPase pumps and maintained by tight junctions between epithelial cells. These have a high trans-epithelial electrical resistance (TEER) of 448 Ω cm² that prevents ionic back flux and so preserves the ionic gradients.

The functional role of the TEP across the RPE is not fully understood, but in other tissues endogenous electrical signals regulate a variety of cellular and molecular functions. Direct measurements have shown that an extracellular electrical signal of 42 mV/mm is present at a bovine corneal wound and that similar or smaller applied electric fields (EFs) directed migration of corneal epithelial cells (CECs) and RPE cells. In addition, division of CECs is oriented by a small applied EF. The TEP also influences the transport of fluid/substances across the RPE, as it does for instance, in the kidney and urothelium, where the TEP contributes to tubular reabsorption and to ATP release. We hypothesize therefore that the TEP may play a functional role in maintaining the normal health of the retina.

Pigment epithelium-derived factor (PEDF) is a naturally occurring glycoprotein secreted from the apical side of RPE cells. It has broad bioactive properties for the health of normal retina, including neuroprotective, antiangiogenic and anti-senescent functions. Local expression of PEDF is decreased significantly in the RPE of patients with AMD, and this is responsible in part for the pathogenesis of the disorder.

The double knockout mice CCL2/CX3CR1 without rd8 mutation (DKO mice) which we used here have deletions of the chemokine CCL2 and receptor CX3CR1 which predispose mice to age- and light-mediated RPE and retinal damage, but does not include pathogenic retinal angiogenesis. In addition, Ccl2-knockout (Ccl2−−/) mice develop drusen-like changes, accumulations of extracellular material between Bruch’s membrane and the RPE and also RPE atrophy. RPE degeneration occurs by 9 months in Ccl2-deficient mice and a significant decrease in PEDF expression in mouse retina and RPE was found in vivo and in cultured DKO RPE cells. We sought therefore to determine the interactions between TEP and PEDF secretion and also the functional roles of each signal on healthy and diseased RPE.

2 | MATERIALS AND METHODS

2.1 | Animals

Three to fifteen months-old DKO mice (n = 18, 6 at 3-4 months, 4 at 6 months, 4 at 9 month and 4 at 15 months) and age-matched C57BL/6J wild-type (WT) control mice were used. CCL2/CX3CR1 DKO mice were kindly supplied by Prof. Xu (Queens University, Belfast). The DKO mice do not carry Crb1 rd8 mutation. DKO mice were maintained in a standard animal housing room with a 12-hour light/dark cycle in the Biological Research Unit (BRU) at Queen’s University Belfast. WT mice were obtained from the Medical Research Facility, University of Aberdeen. All in vivo procedures were undertaken under the regulation of UK Home Office Animals (Scientific Research) Act 1986. The study was conducted in compliance with the Association for Research in Vision & Ophthalmology Statement for the Use of Animals in Ophthalmology and Vision Research.

2.2 | RPE cell isolation and culture

RPE cells were isolated and cultured from WT, DKO mice eyes and normal person’s eyes as described previously. Using eyes provided by the Bristol and Manchester Eye Banks and after the cornea was removed for the purpose of transplantation, RPE cells were gathered and 9 human RPE cell lines, 3 from persons less than 50 years old (“young”) and 6 from over 70 year old persons (“old”), established. In brief, after removal of the anterior segment of the eye and the lens, the neuronal retinas were pooled off from the eyecups under the dissecting microscope. The RPE/choroid/sclera cups were filled with 0.5% (w/v) trypsin-EDTA (ICN Flow, Irvine, UK) and incubated at 37°C for 1 hour. For mice, the eye was incubated for digestion after cornea and lens removal. Then, the RPE was peeled off from the choroid under microscope for cell culture and Western blotting. The RPE cells were released from the basement membrane by gentle aspiration. After two washes, single cell suspensions were cultured in a 35-mm dish with Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) containing 10% (v/v) foetal calf serum (FCS, Sigma). The first passage was used for protein expression assays using Western blot. Second and third passage cells were used for measurement of trans-epithelial electrical resistance (TEER), trans-epithelial potential difference (TEP) and other experiments.

2.3 | TEP detections using Millicell-ERS system

1-2 × 10⁵ primary cultured RPE cells from wild type and DKO mice were seeded on 24-well cell culture inserts to form monolayers (Millipore). The inserts contain a 0.4-μm pore size polycarbonate membrane pre-coated with collagen type I. The medium was replaced every 48 hours. TEER and TEP were determined using a Millicell ERS-2 Voltmeter (MERS00002, EMD Millipore) at 1-4 weeks.

2.4 | Measuring the electrical current on the RPE

The scanning vibrating electrode technique (SVET, Applicable Electronics) was used to determine the endogenous electrical current of the RPE. The probe vibration is controlled by a piezoceramic displacement device allowing vibration amplitudes from 1 to 30 μm (perpendicular to the sample surface). Every 35-μm one measurement point of the vertical component of the current density was recorded to build up the entire current density map. The RPE cells were seeded in a 35-mm dish to form a monolayer after 21 days culture. All system parameters, including the xyz scanning mechanism, piezo actuator and lock-in amplifier, are controlled via a PC using ASET software from Science Wares Inc., USA.
2.5 | Immunofluorescent staining and imaging

Cells were fixed in 4% paraformaldehyde for 20 minutes, followed by permeabilization (5 minutes) and blocking (30 minutes). The cells were stained for 2 hours with antibodies to Na⁺/K⁺-ATPase (α1 and β1 subunits, EMD Millipore), E-cad (BD Biosciences) and ZO-1 (Invitrogen, UK), respectively, and then were incubated with secondary antibodies (Invitrogen) and phalloidin-TRITC (Sigma-Aldrich, UK) for 1 hour. Images were obtained with the Zeiss Axio Observer Z1 inverted fluorescence microscope and Confocal Zeiss 710 LSM (Carl Zeiss, Germany).

2.6 | Immunohistochemistry staining

Mouse eyes were fixed with 2% paraformaldehyde for 2 hours. After paraffin embedding, the eyeballs were cut into 5-μm-thick sections and mounted on charged glass slides. Slides were de-paraffinized and subjected to citrate-based antigen retrieval. Paraffin sections were re-treated with the DAKO high pH antigen retrieval system (DAKO, Carpinteria, CA) using a domestic 600 kW microwave oven. Nonspecific antibody binding was blocked by incubating sections in 4% BSA followed by 10% non-immune goat serum (Zymed Corp., San Francisco, CA). Primary antibody was applied at a 1:200 to 400 dilutions overnight at room temperature. Sections then were incubated with secondary antibody for 30 minutes. The localization of target proteins was demonstrated with pre-diluted streptavidin-horseradish peroxidase (Zymed) and 0.05% 3,3'-diaminobenzidine in TBS, with H₂O₂ as the substrate. All sections were counterstained lightly with haematoxylin.

2.7 | Western blot

Western blot (WB) was performed as described previously. Primary antibodies used included anti-ATP1A1 (Abcam), ATP1B1 (EMD Millipore), E-cadherin (BD Biosciences), ZO-1 (Invitrogen, UK), PEDF and GAPDH (Santa Cruz, USA). The immunoblots were detected by Clarity Western ECL Substrate (Bio-Rad). Cell lysates were collected using RIPA buffer for further WB experiments.

2.8 | Applied electrical stimulation in vitro

DC electric fields were applied to primary cultured RPE cells in electrostatic chambers as described before (Figure 6A). A DC electric field of 50-100 mV/mm was applied and measured directly using an ammeter (34410A digital multimeter, Agilent Technologies). The samples were exposed to an applied EF for 1 and 3 hours, and then, cell pellets were prepared for protein assays.

2.9 | Detection of neurotrophic factors secretion from RPE by ELISA

The conditioned medium was collected from different side of cultured RPE cells in a transwell cell culture system (Millipore). The concentration of PEDF, HGF and BDNF was determined by ELISA using commercial kits (RayBiotech UK). ELISA was performed using the manufacturer's instructions.

2.10 | Microarray data analysis

The microarray data sources were from the Gene Expression Omnibus (GEO). Two data sets (series accession number of GSE29801 and GSE10965) were not subjected to any additional normalization, as all had been normalized when these were
obtained. Using the GSE10965 data set, the gene expression of retinal pigment epithelium/choroid from young and old animals was compared, including 4 samples from young mice and 4 samples from old mice. Each sample contained 4 retinal pigment epithelium/choroid from 2 animals. Using GSE29801, a systems-level transcriptome analysis of the retina and retinal pigment epithelium (RPE)-choroid complex from 31 normal, 26 AMD and 11 potential pre-AMD human eyes was performed using Agilent-014850 Whole Human Genome Microarray. We analysed the expression of ATP1B1 and PEDF in these published microarray data sets on line. The identity of genes across microarray data sets was established using public annotations, primarily based on UniGene.

2.11 | Statistical analysis

A minimum of three replicates was undertaken and analysed for each experiment presented. Data are shown as the mean ± SEM. Student’s t test was used to test for significant differences between groups. Differences were considered statistically significant if the P value was <0.05.

3 | RESULTS

3.1 | Reduced ATP1B1 expression in RPE of aged mice and retina from patients with AMD

We analysed the microarray data on Gene Expression Omnibus (GSE29801 and GSE10965). In these group microarray data, we analysed expression of ATP1B1 and ATP1A1 in RPE of young and old mice and 175 samples from the macular or extramacular region of human donor eye RPE-choroids and 118 samples from the macular or extramacular region of human donor retina with no reported ocular disease, possible preclinical AMD or AMD. The results showed that ATP1B1 was down-regulated significantly in old mice (Figure 1A). In sample analysis from patients with AMD, there was much higher expression of ATP1B1 in macula of human retina (P < 0.001), but no significant difference in expression of ATP1A1 between macula and extramacula retina (Figure 1B and C). Importantly, we found that the expression of ATP1B1 was reduced significantly in macula of AMD with CNV (Choroidal Neovascularization) and GA (geographic atrophy) (P < 0.05). Our analysis suggested strongly that the decreased expression of...
ATP1B1 could be a specific factor which may correlate with wet AMD and GA.

3.2 Secretion of PEDF and other neurotrophic factors was reduced in cultured RPE

Next we checked the secretion of PEDF in cultured RPE cells from people of different ages. We confirmed the RPE identity of our cells from their expression of the RPE-specific marker CRALBP (Cellular Retinaldehyde-binding Protein, Figure 2A and B). After 2-week culture, we harvested the culture medium and assessed the concentrations of PEDF, BDNF and HGF from "young" and "old" patients (see Methods: Figure 2C-E). We found that PEDF was reduced in the "old" age group from 15,489 ± 230 ng/mL to 7,560 ± 180 ng/mL, BDNF from 145.9 ± 62 pg/mL to 100.2 ± 26 pg/mL and HGF from 5,727 ± 1,100 pg/mL to 2,268.2 ± 230 pg/mL (all statistically significant, P < 0.01). These data indicate that the expression of ATP1B1 (Figure 1A) and secretion of PEDF in retina falls off with increasing age (Figure 2C-E).

3.3 Reduced ATP1B1 and PEDF expression in RPE and retina in DKO mice

DKO mice are a well-recognized model of retinal dysfunction diseases with RPE degeneration. We compared the expression of ATP1A1 (Na+/K+-ATPase alpha1), ATP1B1 (Na+/K+-ATPase beta1), E-Cad (adhesion junction, E-cadherin) and PEDF in RPE from DKO and age-matched WT
mice. In WT mice, ATP1B1 was located more on the apical side (including the photoreceptor layer) than on the basal side of RPE and was distributed widely in different layers of the retina (Figure 3A-D).

In DKO mice, the expression of ATP1B1 on the apical side of RPE and on the photoreceptor outer segment layer was reduced significantly by 6 months (Figure 3C and E). Expression of ATP1B1, E-Cad and PEDF also was reduced significantly in 6 month DKO RPE (western blots, Figure 3F and G). ATP1A1 expression, however, was unchanged in DKO mice (Figure 3F). Formation of tight cell-cell connections (functions of E-Cad and ZO-1) and apical localization of the subunits of Na+/K+-ATPase on the RPE are essential to generate the electrical signal that is the TEP. Collectively, these data indicate that the TEP may be reduced with AMD, because it depends on the ageing epithelium maintaining Na+/K+-ATPase and tight junction (TJ) functions in RPE.

3.4 | Age and AMD reduce ATP1B1, ZO-1 and the TEP in RPE

Adult human RPE has an apically positive TEP of 3.5 mV. The TEP is an inherent property of transporting epithelia and arises from spatial variations in ion pumps, channels and leak conductances across layers of cells. The Na+/K+-ATPase and cell-cell tight junctions are important in the generation and maintenance, respectively, of the TEP and incorrect localization of Na+/K+-ATPase can cause disease, for example autosomal dominant polycystic kidney disease. We found ATP1B1 expression was reduced in aged mice and mice with AMD. Perhaps retinal disease is also associated with a reduction in TEP. In cultured epithelial cells, the expression of Na+/K+-ATPase increases with time as the polarity develops. We found that the expression of ATP1B1 was up-regulated in WT mouse RPE cells (3 days in culture;
Figure 4A), but that expression levels of ATP1B1 and ZO-1 were reduced significantly in DKO RPE and became up-regulated only much later, after 14 days in culture (Figures 4B and 5A, C and D). In transepithelial cultures, RPE monolayers polarize and develop a trans-epithelial potential difference (TEP) and a transepithelial electrical resistance (TEER).49 Here, the TEP and TEER were measured using a Millicell-ERS-2 Voltammeter and a transwell culture system. We found that the TEP across DKO RPE were as much as fourfold less than that from WT mice in 3-week cultures (0.25 ± 0.2 mV DKO, compared to 1.1 ± 0.2 mV, positive apically, $P < 0.05$; Figure 4C) and the TEER was reduced significantly in RPE from DKO mice (Figure 5B). According to Ohm’s law ($I = V/R$), we calculated the electric current flowing across 2 week cultured RPE and found that the I_{DKO} was $0.93 ± 0.21 \mu\text{A/cm}^2$ nearly 30% less than the I_{WT} which was $1.19 ± 0.13 \mu\text{A/cm}^2$ (apical positive, with current directed inward). To confirm our data, we determined the change of electrical current using scanning vibrating electrode technology (SVET) which sensitively maps current flow on the surface of primary cultured RPE cells. We found an inward electrical current (negative value) that was fourfold lower in RPE of DKO mice than in WT mice (after 2 weeks in culture; $−0.21 ± 0.1 \mu\text{A/cm}^2$ compared with $−0.92 ± 0.1 \mu\text{A/cm}^2$, $P < 0.01$) (Figure 4D). These data confirm that the TEP was reduced significantly in mice with a deficiency of CCL2/CX3CR1, most probably because of the down-regulation of Na+/K+-ATPase and the defective TJs.

3.5 Reduced levels of PEDF and BNDF in DKO mice are rescued by an applied EF

We showed above that the expression of ATP1B1, E-Cad, PEDF and TEP all were reduced significantly in 6 month DKO RPE. These data
indicate again that the TEP (based on Na⁺/K⁺-ATPase and cell-cell connections) and PEDF may be linked in retinal degenerative disease. Here, we used an applied EF, similar in strength to the endogenous TEP, to stimulate the RPE and determine the correlation between TEP and PEDF in vitro. First, we showed that PEDF and BNDF expression increased significantly in WT RPE over time in culture during the process of monolayer polarization, but that this did not happen in DKO mice (7 days culture; Figure 6A and D). Then, we showed that an applied EF of 50-100 mV/mm (equivalent to the TEP), markedly up-regulated PEDF and BNDF expression (in a voltage-dependent manner) in both WT and DKO RPE (Figure 6B, C, E and F), indicating that the TEP across RPE regulates PEDF expression and controls the PEDF secretion from RPE. Importantly, an applied EF restored the reduced PEDF levels in DKO mice to normal. This suggests that a reduced TEP may contribute to the retinal degeneration which arises from a reduction in PEDF expression in RPE.

Furthermore, our data suggest that EF-induced secretion of PEDF may represent a new therapeutic means of treating retinal disease.

3.6 An applied electric field increased PEDF secretion

Finally we determined whether the applied EF regulated the secretion of PEDF from RPE (Figure 7A). Firstly, we checked the secretion of PEDF into the culture medium with/without ouabain which is an inhibitor of the TEP. We found that ouabain reduced the secretion of PEDF almost fourfold in transwell cultures of RPE (Figure 7B). Next we stimulated the RPE cells by applying an EF with the anode at the apical side, the normal physiological polarity and with a field strength of 100 mV/mm (similar to the TEP; Figure 7C). After 5 hours, PEDF secretion had increased about fourfold (from 55.9 ± 12 ng/mL to 200.8 ± 14 ng/mL; Figure 7C) and was still elevated by about 50%
after 24-hour EF stimulation (from 310.2 ± 110 ng/mL to 478.2 ± 115 ng/mL; Figure 7C). In striking contrast, PEDF secretion remained unchanged with an EF of the same physiological strength, but with the cathode at the apical side, the reverse of the normal physiological polarity (Figure 7D). These data show that applying an EF of both physiological magnitude and polarity to mimic the TEP across the RPE regulated the secretion of PEDF.

4 | DISCUSSION

People with AMD lose their central vision, severely impairing their ability to read, watch television or drive. The epicentre of the disease is the retinal pigment epithelium (RPE), a single layer of cells in the retina adjacent to the photoreceptor cells. Dysfunction and death of RPE cells play a critical role in the pathogenesis of AMD. Pigment epithelium-derived factor (PEDF) is a 50 kDa naturally occurring glycoprotein, a member of the serpin superfamily that is secreted by RPE cells from their apical membranes.16-18 PEDF acts as a neurotrophic factor and has neuroprotective properties. RPE cells secrete pigment epithelium-derived factor (PEDF) into the interphotoreceptor matrix of the retina,50,51 but the regulation of PEDF secretion is poorly understood. Here, we found that the endogenous TEP (the electrical potential difference across the RPE) regulates secretion of PEDF and may maintain the level of PEDF apically as the RPE ages.

4.1 | Reduced ATP1B1 and TJ proteins cause a lower TEP

The Na+/K+-ATPase is composed of three major polypeptides, α, β and γ-subunit.52,53 The α-subunit is a multi-span membrane protein with a molecular mass of 112 000 Da and is responsible for the
catalytic and ion transport properties. The β-subunit is a transmembrane polypeptide with a molecular weight between 40 000 and 60 000 Da. The β-subunit is essential for the normal activity of the enzyme and may facilitate the processing and insertion of the α-subunit into the plasma membrane. Wetzel et al indicate that the subunits of sodium pumps in the different apical/basal faces imply that the Na⁺/K⁺-ATPase has distinct physiological functions in the epithelium and that its activity is likely to be regulated by different mechanisms, for example sodium gradient formation for osmotic gradient and water diffusion. The Na⁺/K⁺-ATPase (sodium pump) allows Na⁺ to accumulate in the apical extracellular space of the RPE, because it pumps three Na⁺ from the cytoplasm electrogenerically out into the extracellular fluid, in exchange for two K⁺ ions entering the cells. In addition, high-resistance electrical “seals” which are dependent on specific proteins (eg, TJ protein ZO-1 and adherent protein E-cadherin) exist between neighbouring cells in the RPE and these greatly reduce the electrical conductivity (and increase the resistance) between the apical and basal extracellular spaces. The same basic elements of polarized channels, pumps and tight junctions are found in most other epithelia, for example skin, cornea, kidney and also establish a TEP in these tissues. Therefore, normally a high concentration of Na⁺ will accumulate at the apical side of RPE and form a trans-RPE electrical potential difference with the apical side positive. Here we found that the ATP1B1 in older and DKO mice RPE was lower (by ~50%) than in younger and wild-type mice. Consequently, the TEP in older and DKO mice should be lower. Using transwell culture (the Ussing chamber technique), we confirmed a much reduced TEP in DKO mice. These data are consistent with a conclusion that the reduced expressions of both ATP1B1 and of cell-cell tight junction proteins underpin the age-related decline in both TEP and TEER. Because the TEP plays functional roles in cell migration, division, polarization and development, we speculated that a reduced RPE TEP may play a role in age-related retinal dysfunction diseases.

4.2 A blunted TEP reduced the secretion of PEDF in AMD

Pigment epithelial derived factor is a potent neurotrophic, anti-inflammatory and anti-senescence glycoprotein that protects the retinal neurons and photoreceptors against apoptosis during retinal degeneration and light-induced retinal damage, and its down-regulation is linked to senescence in cultured fibroblast cells. Polarized hES-RPE (human embryonic stem cell-derived RPE) and polarized iRPE (foetal RPE) secreted PEDF at mg/ml levels; in contrast, non-polarized hES-RPE or iRPE and ARPE19 cells (a human retinal pigment epithelial cell line with differentiated properties) secreted PEDF at levels approximately 100-fold less (P < 0.001). In addition, PEDF is one of the more potent anti-angiogenic factors with demonstrable inhibitory activity against ocular neovascularization in vivo and a reduced PEDF expression in DKO mice contributes to retinal degeneration. In transwell culture, our data showed that the inhibition of ATPase and so the TEP with ouabain significantly reduced the secretion of PEDF from RPE cells.

Applied electric fields (EFs) that mimic the endogenous TEP regulate the behaviour of a variety of cells by determining their orientation, proliferation, differentiation, migration, polarization and expression of growth factors. Electric stimulation triggers NGF (nerve growth factor) production and secretion by electrically induced protein kinase C (PKC) activation. RPE cells secrete pigment epithelium-derived factor (PEDF) into the interphotoreceptor matrix of the retina, but the regulation of PEDF secretion is poorly understood. Using an applied EF to mimic the TEP, we found that the expression of PEDF and secretion of PEDF significantly increased in RPE cells. In addition, in RPE from DKO mice with deficient expression of ATP1B1, an applied EF still increased the expression of PEDF, suggesting that the applied EF regulated the expression of PEDF directly. These data further indicate that the

![Figure 8](image-url)
TEP and PEDF release may be linked mechanistically and play a role in retinal degenerative disease (Figure 7).

4.3 Applying an EF to treat retinal disease

We have shown that applying an EF, to mimic the physiological TEP, could be of therapeutic use in retinal disease through regulation of secretion of PEDF by the RPE (Figure 7). However, the high complexity of structure and function in the eye is an obstacle to applying EFs in vivo. Recently, Ho et al have developed a wireless method to transfer electrical power deep into tissues. Their microimplant is 2 mm long, weighs 70 mg and can be transplanted into the chest to control the heart.69 This technology may be modifiable to supply an EF to treat retinal degeneration in vivo. In addition, the TEP can be amplified by specifically targeted drugs, such as aminophylline, AgNO₃, PGE₂ (prostaglandin E) and in corneal epithelium a drug-amplified EF enhanced directed nerve and epithelial cell growth and promoted faster wound healing.70 Therefore, chemical regulators of the TEP may provide another clinical treatment for retinal diseases, perhaps in combination with an applied EF.

Electrical treatments such as heart pacemakers, deep brain stimulators and cochlear implants continue to have major clinical success. Similar treatments for retinal regeneration will only succeed if effective ways of harnessing and delivering an applied EF are identified. Our work paves the way for this and opens up new electrical therapeutic possibilities with significant clinical potential.

ACKNOWLEDGEMENTS

We are grateful to Kevin S. Mackenzie in our imaging core facility. This work was supported by Fight for Sight (1712/13). The work was in part supported by NHS Grampian Endowments, Friends of ANCHOR, Action Medical Research (GN2299), and Fight for Sight (1361/1362, HX and MC).

AUTHOR CONTRIBUTIONS

LC, JL, JP, NL and CDM designed the experiments and analysed the data. LC, JL, JP, GM and AS performed the experiments. LC, JP, CDM, JVF and NL wrote and revised the manuscript. MC and HX supplied CCL2−/−/CX3CR1−/− mice. All the authors reviewed the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

ORCID

Jin Pu http://orcid.org/0000-0003-3827-8924

REFERENCES

1. Dorey CK, Wu G, Ebenstein D, Garda S, Weiter JJ. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30:1691-1699.
2. Dunaief JL, Dentechev T, Ying GS, Milam AH. The role of apoptosis in age-related macular degeneration. Arch Ophthalmol. 2002;120:1435-1442.
3. Samuels IS, Bell BA, Pereira A, Saxon J, Peachey NS. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes. J Neurophysiol. 2015;113:1085-1099.
4. Quinn RH, Miller SS. Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1992;33:3513-3527.
5. McCaig CD, Song B, Rajnicek AM. Electrical dimensions in cell science. J Cell Sci. 2009;122:4267-4276.
6. Barker AT, Jaffe LF, Vanable JW Jr. The glabrous epidermis of caviomorphs contains a powerful battery. Am J Physiol. 1982;242:R358-R366.
7. Borgens RB, Vanable JW Jr, Jaffe LF. Role of subdermal current shunts in the failure of frogs to regenerate. J Exp Zool. 1979;209:49-56.
8. Jaffe LF. Vanable JW Jr. Electric fields and wound healing. Clin Dermatol. 1984;2:34-44.
9. Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol. 2003;58:1-26.
10. Chiang M, Robinson KR, Vanable JW Jr. Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye. Exp Eye Res. 1992;54:999-1003.
11. Zhao M, Song B, Pu J, et al. Electrical signals control wound healing through phosphatidylinositol-3-0H kinase-gamma and PTEN. Nature. 2006;442:457-460.
12. Zhao M. Electrical fields in wound healing—An overriding signal that directs cell migration. Semin Cell Dev Biol. 2009;20:674-682.
13. Gamboa OL, Pu J, Townend J, et al. Electrical stimulation of retinal pigment epithelial cells. Exp Eye Res. 2010;91:195-204.
14. Zhao M, Forrester JV, McCaig CD. A small, physiological electric field orients cell division. Proc Natl Acad Sci USA. 1999;96:4942-4946.
15. Mitchell CH. Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol. 2001;534:193-202.
16. Becerra SP, Fariss RN, Wu YQ, Montuenga LM, Wong P, Pfeffer BA. Pigment epithelium-derived factor in the monkey retinal pigment epithelium and interphotoreceptor matrix: apical secretion and distribution. Exp Eye Res. 2004;78:223-234.
17. Tombran-Tink J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res. 1991;53:411-414.
18. Steele FR, Chader GJ, Johnson LV, Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci USA. 1993;90:1526-1530.
19. Bilak MM, Corse AM, Bilak SR, Lehar M, Tombran-Tink J, Kuncel RW. Pigment epithelium-derived factor (PEDF) protects motor neurons from chronic glutamate-mediated neurodegeneration. J Neurophotol Exp Neurol. 1999;58:719-728.
20. Cao W, Tombran-Tink J, Chen W, Mrazek D, Elias R, McGinnis JF. Pigment epithelium-derived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death. J Neurosci Res. 1999;57:789-800.
21. Lu H, Tran VV, Hu Y, Mark Saltzman W, Barnstable CJ, Tombran-Tink J. A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Exp Eye Res 2006;83:824-833.
22. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285:245-248.

23. Mori K, Duh E, Gehlbach P, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol. 2001;188:253-263.

24. Simonovic M, Gettins PG, Volz K. Crystal structure of human PEDF, a potent anti-angiogenic and neurite growth-promoting factor. Proc Natl Acad Sci USA. 2001;98:11131-11135.

25. Palmieri D, Watson JM, Rinehart CA. Age-related expression of PEDF/EPC-1 in human endometrial stromal fibroblasts: implications for interactive senescence. Exp Cell Res. 1999;247:142-147.

26. Kojima T, Nakahama K, Yamamoto K, Uematsu H, Morita I. Age- and cell cycle-dependent changes in EPC-1/PEDF promoter activity in human diploid fibroblast-like (HDF) cells. Mol Cell Biochem. 2006;293:63-69.

27. Bhattu IA, McLeod DS, Hasegawa T, et al. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp Eye Res. 2006;82:99-110.

28. Combiadere C, Feumi C, Raoul W, et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Investig. 2007;117:2920-2928.

29. Raoul W, Feumi C, Keller N, et al. Lipid-bloated subretinal microglial cells are at the origin of drusen appearance in CX3CR1-deficient mice. Ophthalmic Res. 2008;40:115-119.

30. Chan CC, Ross RJ, Shen D, et al. Ccl2/Cx3cr1-deficient mice: an animal model for age-related macular degeneration. Ophthalmic Res. 2008;40:124-128.

31. Tuo J, Bojanowski CM, Zhou M, et al. Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci. 2007;48:3827-3836.

32. Chen M, Hombrebueno JR, Luo C, et al. Age- and light-dependent development of localised retinal atrophy in CCL2-/-/CX3CR1(GFP/GFP) mice. PLoS ONE. 2013;8:e61381.

33. Ambati J, Anand A, Fernandez S, et al. An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med. 2003;9:1390-1397.

34. Luhmann UF, Robbie S, Munro PM, et al. The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci. 2009;50:5934-5943.

35. Wang Y, Subramanian P, Shen D, Tuo J, Becerra SP, Chan CC. Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration. ASN Neuro. 2013;5:e00126.

36. Chen M, Muckersie E, Robertson M, Fraczek M, Forrester JV, Xu H. Characterization of a spontaneous mouse retinal pigment epithelial cell line B6-RPE07. Invest Ophthalmol Vis Sci. 2008;49:3699-3706.

37. Doyle JW, Dowgier R, Buzney SM. Retinoic acid metabolism in cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1995;36:708-717.

38. Livesiderge J, Sewell HF, Thomson AW, Forrester JV. Lymphokine-induced MHC class II antigen expression on cultured retinal pigment epithelial cells and the influence of cyclosporin A. Immunology. 1988;63:313-317.

39. Lutz A, van den Berg O, Van Damme J, et al. A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Appl Mater Interfaces. 2015;7:175-183.

40. Pu J, Zhao M. Golgi polarization in a strong electric field. J Cell Sci. 2005;118:1117-1128.

41. Zhao M, Dick A, Forrester JV, McCaig CD. Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibroactin and laminin. Mol Biol Cell. 1999;10:1259-1276.

42. Barrett T, Edgar R. Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol. 2006;411:352-369.

43. Chen H, Liu B, Lukas TJ, Neufeld AH. The aged retinal pigment epithelium/choroid: a potential substrate for the pathogenesis of age-related macular degeneration. PLoS ONE. 2008;3:e2339.

44. Newman AM, Gallo NB, Hancox LS, et al. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med. 2012;4:16.

45. Hara T, Miyazaki M, Hakuno F, Takahashi S, Chida K. PKCeta promotes a proliferation to differentiation switch in keratinocytes via upregulation of p27Kip1 mRNA through suppression of JNK-C-Jun signaling under stress conditions. Cell Death Dis. 2011;2:e157.

46. Wilson PD. Epithelial cell polarity and disease. Am J Physiol. 1997;272:F434-F442.

47. Wilson PD. Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta. 2011;1812:1239-1248.

48. Yang B, Cao L, Liu B, McCaig CD, Pu J. The transition from proliferation to differentiation in colorectal cancer is regulated by the calcium activated chloride channel A1. PLoS ONE. 2013;8:e60861.

49. Davis AA, Bernstein PS, Bok D, Turner J, Nachtigal M, Hunt RC. A human retinal pigment epithelial cell line that retains epithelial characteristics after prolonged culture. Invest Ophthalmol Vis Sci. 1995;36:955-964.

50. Tombran-Tink J, Johnson LV. Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells. Invest Ophthalmol Vis Sci. 1989;30:1700-1707.

51. Wu YQ, Notario V, Chader GJ, Becerra SP. Identification of pigment epithelium-derived factor in the interphotoreceptor matrix of bovine eyes. Protein Expr Purif. 1995;6:447-456.

52. Reeves AS, Collins JH, Schwartz A. Isolation and characterization of (Na, K)-ATPase protoeplid. Biochem Biophys Res Comm. 1980;95:1591-1598.

53. Collins JH, Leszyk J, The, “gamma subunit“ of Na-K-ATPase: a small, amphipilic protein with a unique amino acid sequence. Biochemistry. 1987;26:8665-8668.

54. Jack-Hays MG, Xie Z, Wang Y, Huang WH, Askari A. Activation of Na+/K(+)-ATPase by fatty acids, acylglyceroles, and related amhiphiles: structure-activity relationship. Biochim Biophys Acta. 1996;1279:43-48.

55. Fambrough DM. The sodium pump becomes a family. Trends Neuosci. 1988;11:325-328.

56. Geering K. Posttranslational modifications and intracellular transport of sodium pumps: importance of subunit assembly. Soc Gen Physiol Ser. 1991;46:31-43.

57. Geering K. The functional role of the beta-subunit in the maturation and intracellular transport of Na,K-ATPase. FEBS Lett. 1991;285:189-193.

58. Wetzel RK, Sweadner KJ. Immunocytochemical localization of Na-K-ATPase isoforms in the rat and mouse ocular cilary epithelium. Invest Ophthalmol Vis Sci. 2001;42:763-769.

59. Zhao M, Agius-Fernandez A, Forrester JV, McCaig CD. Orientation and directed migration of cultured corneal epithelial cells in small electric fields are serum dependent. J Cell Sci. 1996;109(Pt 6):1405-1414.

60. Cayouette M, Smith SB, Becerra SP, Gravel C. Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis. 1999;6:523-532.

61. Cao W, Tombran-Tink J, Elias R, Sezate S, Mrazek D, McGinnis JF. In vivo protection of photoreceptors from light damage by pigment epithelium-derived factor. Invest Ophthalmol Vis Sci. 2001;42:1646-1652.

62. Takita H, Yoneya S, Gehlbach PL, Duh EJ, Wei LL, Mori K. Retinal neuroprotection against ischemic injury mediated by intracocular gene transfer of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci. 2003;44:4497-4504.
63. Pang IH, Zeng H, Fleenor DL, Clark AF. Pigment epithelium-derived factor protects retinal ganglion cells. *BMC Neurosci*. 2007;8:11.

64. Pignolo RJ, Cristofalo VJ, Rotenberg MO. Senescent WI-38 cells fail to express EPC-1, a gene induced in young cells upon entry into the G0 state. *J Biol Chem*. 1993;268:8949-8957.

65. Zhu D, Deng X, Spee C, et al. Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotes retinal progenitor cell survival. *Invest Ophthalmol Vis Sci*. 2011;52:1573-1585.

66. Cao L, McCaig CD, Scott RH, et al. Polarizing intestinal epithelial cells electrically through Ror2. *J Cell Sci*. 2014;127:3233-3239.

67. Bai H, Forrester JV, Zhao M. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors. *Cytokine*. 2011;55:110-115.

68. Koyama S, Haruyama T, Kobatake E, Aizawa M. Electrically induced NGF production by astroglial cells. *Nat Biotechnol*. 1997;15:164-166.

69. Ho JS, Yeh AJ, Neofytou E, et al. Wireless power transfer to deep-tissue microimplants. *Proc Natl Acad Sci USA*. 2014;111:7974-7979.

70. Song B, Zhao M, Forrester J, McCaig C. Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo. *J Cell Sci*. 2004;117:4681-4690.

How to cite this article: Cao L, Liu J, Pu J, et al. Polarized retinal pigment epithelium generates electrical signals that diminish with age and regulate retinal pathology. *J Cell Mol Med*. 2018;00:1–13. https://doi.org/10.1111/jcmm.13829