Blocking the FKBP12 induced dendrimeric burst in aberrant aggregation of α-synuclein by using the ElteN378 synthetic inhibitor

Gabriella Caminati, Maria Raffaella Martina, Stefano Menichetti & Piero Procacci

To cite this article: Gabriella Caminati, Maria Raffaella Martina, Stefano Menichetti & Piero Procacci (2019) Blocking the FKBP12 induced dendrimeric burst in aberrant aggregation of α-synuclein by using the ElteN378 synthetic inhibitor, Journal of Enzyme Inhibition and Medicinal Chemistry, 34:1, 1711-1715

To link to this article: https://doi.org/10.1080/14756366.2019.1667342

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Blocking the FKBP12 induced dendrimeric burst in aberrant aggregation of α-synuclein by using the ElteN378 synthetic inhibitor

Gabriella Caminati¹,², Maria Raffaella Martina¹,², Stefano Menichetti¹ and Piero Procacci¹

¹Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; ²Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, Italy

ABSTRACT

α-Synuclein (α-syn), a disordered cytoplasmatic protein, plays a fundamental role in the pathogenesis of Parkinson’s disease (PD). Here, we have shown, using photophysical measurements, that addition of FKBP12 to α-syn solutions, dramatically accelerates protein aggregation, leading to an explosion of dendritic structures revealed by fluorescence and phase-contrast microscopy. We have further demonstrated that this aberrant α-syn aggregation can be blocked using a recently discovered non-immunosuppressive synthetic inhibitor of FKBP12, ElteN378. The role of FKBP12 and of ElteN378 in the α-syn aggregation mechanism has been elucidated using molecular dynamics simulations based on an effective coarse-grained model. The reported data not only reveal a new potent synthetic drug as a candidate for early stage treatment of α-syn dependent neurodegenerations but also pave the way to a deeper understanding of the mechanism of action of FKBP12 on α-syn oligomeric aggregation, a topic which is still controversial.

Introduction

The plastic α-syn protein is a key player in the pathogenesis of Parkinson’s disease (PD)¹⁻⁴. In pathological conditions, this protein is present in the brain cells in fibrilar, aggregated forms called Lewy bodies. Members of the FK506-binding protein (FKBP) family were recently shown to be implicated in neurological disorders and structure formation⁵⁻⁷. The involvement of FKBP12 in the pathogenesis of α-syn-dependent neurodegeneration has been repeatedly shown in post-mortem studies on the brain of patients with neurodegenerative diseases⁵⁻⁶. Recent investigations revealed an unbalance of the endogenous FKBP12 concentration in the very early stages of PD⁶, as well as the presence of FKBP12 in Lewy bodies⁶. Beeklandt and coworkers⁵ proposed that proteins of the FKBP family, and notably FKBP12, induce a faster aggregation of amyloid α-syn, by binding α-syn via the prolyl peptidyl isomerase domain⁸ to one of the proline in the hydrophilic C-terminus of the monomer⁵. Despite the cited mounting evidence about a possible role for FKBP12 in synucleopathies and neurological disorders through the enhancement of α-syn aggregation, the mechanism of such enhancement has not been unraveled yet.

In Figure 1, we show a ribbon representation of α-syn monomer along with the FKBP12 protein. The α-syn monomer primary structure comprises three distinct segments. The C terminus (92–140) is a polar coil region bearing a strong negative charge (−15e) and hosting all five prolines in α-syn. The equally polar 1–40 N α-helical⁹ terminus has a mixture of negatively and positively charged residues with a slight prevalence of the latter (+3e). The central NAC domain, including amino-acids 40 to 92, is characterised by a sequence of mostly hydrophobic residues and is involved in β-sheet formation¹⁰. Several studies have shown that α-syn fibrils are characterised by a β-rich hydrophobic solvent protected core¹¹⁻¹⁵ with external hydrophilic filaments due to the C and N termini.

Using a combined approach of experimental measurements and molecular dynamics simulations, in this contribution we aim at elucidating the role of FKBP12 in α-syn aggregation kinetics and aggregate morphology suggesting at the same time a possible therapeutic agent, the synthetic ElteN378 FKBP12 inhibitor¹⁶, in PD neuropathies. ElteN378 is a low atomic weight FKBP12 ligand and with affinity comparable to that of the natural binder FK506. This ligand is affordable from commercially available precursors and, as shown in Supplementary Figure S1 in Supporting Information, has been designed to optimally expose the two contiguous carbonyl oxygen atoms in the proline-mimetic chain for H-bond-driven FKBP12 docking¹⁶.

Aggregation of α-syn was studied in vitro following the change in the photophysical behaviour of the fluorescent probe ThT in three different systems: α-syn, α-syn/FKBP12 1:1 and α-syn/FKBP12 1:1 inhibited by ElteN378. Imaging of mature aggregates of the previous systems was obtained with fluorescence and phase-contrast microscopy. The collected experimental evidence on aggregation kinetics and morphology was interpreted using extensive MD simulations based on a coarse-grained model (CG) for α-syn and α-syn-bound FKBP12 monomers with inter- and intra-molecular interactions driven by a potential mean force effectively accounting for the amphiphilic nature of the α-syn monomer. The results showed striking similarities between the
structures obtained from the CG simulations and the experimentally observed morphology of the aggregates suggesting that the mechanism and fate of the aggregation process can be dramatically modified by altering the balance between hydrophilic and hydrophobic forces.

Aggregation kinetics

Unseeded samples were incubated at 37 °C in glass vials under gentle constant stirring. We used 1 μM concentration for both α-syn and FKBP12 in Tris buffer. The physiological cytosolic concentration of α-syn is brain cells was reported to be 18 in the low micromolar range and is probably even below this level. On the other hand, FKBP12 is especially abundant in brain20 with physiological concentrations reaching 3 μM, according to recent studies.21

Aliquots of the incubated solutions were withdrawn and characterised at different time intervals for 20 weeks. ThT was added only before each measurement to avoid probe-induced artifacts on aggregation. At the working ThT concentration used in this work (3 μM), the probe is present in solution exclusively as monomer and the corresponding emission spectrum shows a single weak emission band centred at 445 nm (Supplementary Figure S4a) upon excitation at 350 nm, as commonly found for ThT monomer in protic solvents. Control experiments exclude ThT interaction with native α-syn or with the globular FKBP12, in agreement with literature reports. Further details on the experimental procedures are reported in Supporting Information.

When ThT was added to α-syn solutions we observed a significant change in the position and the intensity of the excitation and emission bands: in Figure 2, we report the ThT fluorescence intensity at λ_{em} = 480 nm with λ_{exc} = 410 nm as a function of time for all examined systems. For free α-syn, in the absence of any added seed, ThT emission intensity changes with time following the well-known sigmoidal curve22,23 although the lag phase is contracted in this time scale. The curve is consistent with a nucleation-dependent elongation model of fibril formation.24 After 18 days, aggregation proceeds through elongation of the protofibrils without further change in ThT emission. In the equimolar α-syn-FKBP12 system, fluorescence emission increases at a faster rate reaching larger intensity values at a much earlier stage (10 days), before decreasing to a plateau value.

Addition of 200 nM ElteN378 inhibitor in the FKBP12-α-syn system results in a similar kinetic profile but with a reduction of the aggregated phase, followed, once more, by a decrease in ThT signal. While rarely reported in conventional aggregation studies, the decrease in ThT fluorescence in aged α-syn containing solutions, consistently detected in all analysed independent samples can be explained by a combination of chemical-physical effects that include (i) redistribution of the ThT probe in other sites of the growing oligomers characterised by a shift of the maximum of ThT emission band, (ii) formation of mature aggregates with different morphology and exposed β-sheet content (interconverting structures), and (iii) partial loss of emission intensity due to deposition of fibrillar tangles. The stabilisation of the ThT fluorescence signal in long term measurements allows for the exclusion of progressive sedimentation of large aggregates.

In order to elucidate the observed aggregation kinetics, we have done extensive MD simulations based on an elementary CG model for α-syn and α-syn-bound FKBP12 using the program ORAC.39,40 Computational details on the CG approach are provided in Supporting Information. Briefly, we adopt a 15 beads CG representation of the monomeric α-syn chain, made up of three distinct parts of five beads length each: a central hydrophobic part representing the NAC domain and two terminal hydrophilic parts. The five beads approach is based on a recent model for the α-syn mature fibrils based on a five strands monomer.11,31,32 We use a solvent-free model with renormalised bead-bead non-bonded interactions so as to mimic, in a water environment, the aggregation of hydrophobic moieties and solubilisation of the hydrophilic groups. We further assume that, when proline-bound to the C terminus of α-syn, the globular protein FKBP12 exposes an unsaturated β-strand acting as a seed for the binding of the β-sheet forming NAC domain, as illustrated in Figure 1.

The FKBP12 addition at the onset of α-syn aggregation is hence modelled by simply replacing one of the terminal hydrophilic beads with a hydrophobic one in a fraction, say ϕ, of α-syn monomers computed according to the nominal concentration of the species and to the equilibrium dissociation constant for the FKBP12-α-syn complex estimated to be in the micromolar range (see Supporting Information). The effect of the tight-binding ElteN378 inhibitor in the α-syn-FKBP12 solution is simply that of reducing the FKBP12-effective concentration in a strictly dose-dependent manner. In Figure 3, we show the calculated CG kinetics for the pure α-syn and for samples with different fractions ϕ of FKBP12-modified α-syn monomers. Inspection of Figure 3 shows that the kinetics is accelerated with increasing fraction of FKBP12-modified α-syn molecules. Correspondingly, the final stationary value of the average number n_{mol} grows with the fraction of FKBP12-bound α-syn monomers, ending up with only few supramolecular macro-aggregates for ϕ > 0.5. In the inset, we report the final value of n_{mol} as a function of ϕ evidencing the non-linear effect of FKBP12 addition. Up to ϕ = 0.3, the aggregation kinetics resembles that observed in the sample of pure α-syn. Above the threshold fraction of ϕ > 0.3, the aggregation kinetics undergoes an abrupt regime cross-over, exhibiting a much faster growth.

Aggregation morphology

Aliquots of the mature incubated solutions were imaged by means of fluorescence and phase-contrast microscopy. Typical fluorescence images, consistently observed in all independent samples, are reported in Figure 4 while typical phase contrast results are shown in Supplementary Figure S2. As shown in the upper panel left image of Figure 4, images of α-syn at very long aggregation times show the presence of a high concentration of linear structures as found also by other authors.41
The linear morphology of the fibril in α-syn aggregation has been rationalised in terms of an in-register parallel β-sheet structure with systematic stacking of the hydrophobic NAC domains of the monomers along the fibril axis. The central upper panel of Figure 4 shows images of samples taken from an equimolar solution of FKBP12-α-syn. The observed aggregation pattern is dramatically different, exhibiting an impressive dendritic explosion of highly branched structures. Remarkably, such quasi-fractal growth is strongly reduced when ElteN378 is present in the α-syn/FKBP12 system: the number of branching nodes is drastically scaled down resulting in much smaller and less abundant aggregates with a cross-like morphology. The rational for the observed behaviour lies in the strong binding affinity of ElteN378 for FKBP12, previously reported by us. The presence of the tightly bound ElteN378 in the FKBP12 substrate pocket prevents the possibility of FKBP12 to interact with the proline-rich C terminus of α-syn. This translates in a reduction of the concentration of “active” FKBP12 seeds for explosive branching of α-syn aggregates.

The lower panel of Figure 4 refers to the end states of the CG simulations for different fraction of FKBP12-doped α-syn. In striking correspondence with the experimental observations, the
sample containing only a-syn (φ=0) spontaneously aggregates in linear fibrils exposing the hydrophilic filaments towards the solvent, roughly perpendicularly to the fibril axis. When one-third of the a-syn monomers are FKBP12-doped (φ=0.3), the final supramolecular aggregates are poorly branched (right lower panel). The same morphology is observed experimentally in the ElteN378-FKBP12 a-syn mixture. As above outlined, when φ>0.3, the kinetics undergoes a drastic change, with the sample ending up in forming few highly branched macro-aggregates (central lower panel). In Supporting Information, we estimate that in the equimolar FKBP12-a-syn solution the fraction a-syn monomers bearing a bound FKBP12 is in the range φ=0.3:0.4. The estimate is based on the measure of the fluorescence quenching of the strong tryptophan emission band at 300–350 nm occurring in FKBP12 solutions upon ligand addition. The presence of the tight-binding inhibitor ElteN378 in FKBP12-a-syn mixture lowers this fraction below 0.3, corresponding to the value for the cross-over regime reported in the inset of Figure 3).

Conclusions
We have shown using ThT fluorescence and microscopy, that FKBP12 and a-syn in a 1:1 molar ratio spontaneously aggregate forming a dendritic explosion of aggregated structures. This process can be tamed, in a dose-dependent manner, using the non-immunosuppressive ElteN378 synthetic inhibitor. CG simulations showed that the aggregation of a-syn in linear fibrils as well as in complex branched supramolecular aggregates is elicited by the hydrophobic aggregation of the central non-polar NAC residues of the monomeric unit. Remarkably, our rudimental CG model for the a-syn monomer was able to reproduce the essential morphological features of the supramolecular aggregates in the final stages with no necessity of introducing any detail on the secondary structure, therefore hinting that a continuous and variegate β-reorganisation process follows the primary event of hydrophobic-driven association of the NAC domains in oligomers.

Acknowledgements
We thank MIUR-Italy (“Progetto Dipartimenti di Eccellenza 2018-2022” allocated to Department of Chemistry “Ugo Schiff”).

Disclosure statement
No potential conflict of interest was reported by the authors.

References
1. Avramut M, Achim C. Immunophilins and their ligands: insights into survival and growth of human neurons. Physiol Behav 2002;77:463–8.
2. Shults CW. Lewy bodies. Proc Natl Acad Sci USA 2006;103:1661–8.
3. Gerard M, Deleersnijder A, Daniels V, et al. Inhibition of FK506 binding proteins reduces a-synuclein aggregation and Parkinson’s disease-like pathology. J Neurosci 2010;30:2454–63.
4. Nilsson A, Sköld K, Sjögren B, et al. Increased striatal mRNA and protein levels of the immunophilin FKBP-12 in experimental Parkinson’s disease and identification of FKBP-12-binding proteins. J Proteome Res 2007;6:3952–61.
5. Sugata H, Matsuo K, Nakagawa T, et al. A peptidyl-prolyl isomerase, FKBP12, accumulates in Alzheimer neurofibrillary tangles. Neurosci Lett 2009;459:96–9.
6. Honjo Y, Ayaki T, Horibe T, et al. FKBP12-immunopositive inclusions in patients with a-synucleinopathies. Brain Res 2018;1680:39–45.
7. Deleersnijder A, Van Rompuy AS, Desender L, et al. Comparative analysis of different peptidyl-prolyl isomerases reveals FK506-binding protein 12 as the most potent
enhancer of \(\alpha\)-synuclein aggregation. J Biol Chem 2011;286:26687–701.

Gerard M, Debyser Z, Desender L, et al. FKS06 binding protein 12 differentially accelerates fibril formation of wild type alpha-synuclein and its clinical mutants A30P or A53T. J Neurochem 2008;106:121–33.

Meuvis J, Gerard M, Desender L, et al. The conformation and the aggregation kinetics of \(\alpha\)-synuclein depend on the proline residues in its C-terminal region. Biochemistry 2010;49:9345–52.

Haney CM, Petersson EJ. Fluorescence spectroscopy reveals N-terminal order in fibrillar forms of \(\alpha\)-synuclein. Chem Commun 2018;54:833–6.

Vilar M, Chou HT, Lührs T, et al. The fold of alpha-synuclein fibrils. Proc Natl Acad Sci USA 2008;105:8637–42.

Chen M, Margittai M, Chen J, Langen R. Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem 2007;282:24970–9.

Cho MK, Kim HY, Fernandez CO, et al. Conserved core of amyloid fibrils of wild type and A30P mutant \(\alpha\)-synuclein. Protein Sci 2011;20:387–95.

Sweers KKM, van der Werf KO, Bennink ML, Subramaniam V. Atomic force microscopy under controlled conditions reveals structure of C-terminal region of \(\alpha\)-synuclein in amyloid fibrils. ACS Nano 2012;6:5952–60.

Xu L, Bhattacharya S, Thompson D. Re-designing the \(\alpha\)-synuclein tetramer. Chem Commun 2018;54:8080–3.

Martina MR, Tenori E, Bizzarri M, et al. The precise chemical-physical nature of the pharmacore in FK506 binding protein inhibition: ElteX, a new class of nanomolar FKB12 ligands. J Med Chem 2013;56:1041–51.

Brown JWP, Meisl G, Knowles TPJ, Buell AK, et al. Kinetic barriers to \(\alpha\)-synuclein protofilament formation and conversion into mature fibrils. Chem Commun 2018;54:7854–7.

Iwai A, Masliah E, Yoshimoto M, et al. The precursor protein of non-A\(\beta\) component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995;14:467–75.

Iljina M, Garcia GA, Horrocks MH, et al. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proc Natl Acad Sci USA 2016;113:E1206–E1215.

Lyons W, Steiner JP, Snyder SH, Dawson TM. Neuronal regeneration enhances the expression of the immunophilin FKBP-12. J Neurosci 1995;15:2985–94.

Galphé E, Pitt SJ, Venturi E, et al. FKBP126 activates the cardiac ryanodine receptor Ca\(^{2+}\)-release channel and is antagonised by FKBP126. PLoS One 2012;7:e31956–16.

Amdursky N, Erez Y, Huppert D. Molecular rotors: what lies behind the high sensitivity of the Thioflavin-T fluorescent marker. Acc Chem Res 2012;45:1548–57.

Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010;1804:1405–12.

Ghosh D, Singh PK, Sahay S, et al. Structure based aggregation studies reveal the presence of helixrich intermediate during \(\alpha\)-Synuclein aggregation. Sci Rep 2015;5:9228.

Sulatskaya AI, Maskевич AA, Kuznetsova IM, et al. Fluorescence quantum yield of Thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS One 2010;5:e15385–7.

Wood J, Wypych J, Steavenson S, et al. \(\alpha\)-Synuclein fibrillogenesis is nucleation-dependent: implications for the pathogenesis of Parkinson’s disease. J Biol Chem 1999;274:19509–12.

Bharathi P, Nagabhushan P, Rao K. Mathematical approach to understand the kinetics of \(\alpha\)-synuclein aggregation: relevance to Parkinson’s disease. Comput Biol Med 2008;38:1084–93.

Lindberg DJ, Wranne MS, Gatty MG, et al. Steady state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by A\(\beta\)(1-40) and A\(\beta\)(1-42). Biochem Biophys Res Commun 2015;458:418–23.

Procacci P. Hybrid MPI/OpenMP implementation of the ORAC molecular dynamics program for generalized ensemble and fast switching alchemical simulations. J Chem Inf Model 2016;56:1117–21.

Procacci P. Orac 6. 2017. Available from: http://www.chim.unifi.it/orac. [last accessed 13 Sep 2019].

Esteban-Martín S, Silvestre-Ryan J, Bertoncini CW, Salvatella X. Identification of fibril-like tertiary contacts in soluble monomeric \(\alpha\)-synuclein. Biophys J 2013;105:1192–8.

Hashemi Shabestari M, Kumar P, Segers-Nolten I, et al. Three line residues in its C-terminal region. Biochemistry 2010;49:601–7.

Amdursky N, Erez Y, Huppert D. Molecular rotors: what lies behind the high sensitivity of the Thioflavin-T fluorescent marker. Acc Chem Res 2012;45:1548–57.