Regulation of regulatory T cells in cancer

OTHER ARTICLES PUBLISHED IN THIS SERIES
Regulatory T cells in cancer: where are we now? Immunology 2019, 157: 187-189.
Immune- and non-immune-mediated roles of regulatory T-cells during wound healing. Immunology 2019, 157: 190-197.
Treg programming and therapeutic reprogramming in cancer. Immunology 2019, 157: 198-209.
Phosphoinositide 3-kinase δ is a regulatory T-cell target in cancer immunotherapy. Immunology 2019, 157: 210-218.
Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity. Immunology 2019, 157: 232-247.

Summary
The inflammatory response to transformed cells forms the cornerstone of natural or therapeutically induced protective immunity to cancer. Regulatory T (Treg) cells are known for their critical role in suppressing inflammation, and therefore can antagonize effective anti-cancer immune responses. As such, Treg cells can play detrimental roles in tumour progression and in the response to both conventional and immune-based cancer therapies. Recent advances in our understanding of Treg cells reveal complex niche-specific regulatory programmes and functions, which are likely to extrapolate to cancer. The regulation of Treg cells is reliant on upstream cues from haematopoietic and non-immune cells, which dictates their genetic, epigenetic and downstream functional programmes. In this review we will discuss how Treg cells are themselves regulated in normal and transformed tissues, and the implications of this cross talk on tumour growth.

Keywords: cancer; chemokine/chemokine receptors; cytokines/cytokine receptors; regulatory T cells; tumour immunology.

Introduction
The interplay between cancer and inflammation is noteworthy in both its importance and its complexity. It is now appreciated that the immune system has a critical importance in both carcinogenesis and tumour rejection. Whereas inflammation can contribute to carcinogenesis and thereby serve a deleterious role, the effect of immune activation during tumour progression is often beneficial and can promote tumour rejection. Although superficially paradoxical, this disparity can be explained by differences in disease stage, location and host, among many other factors. Nevertheless, it is generally accepted that certain inflammatory signatures correspond with either pro- or anti-tumorigenic potential. Cytotoxic lymphocytes, such as natural killer or CD8+ T cells, or type 1 helper CD4+ T (Th1) cells, have potent direct and indirect anti-cancer tumour activity and their presence in human tumours is frequently associated with favourable outcomes (reviewed in ref. 1). In contrast, regulatory T (Treg) cells suppress the function of conventional T (Tconv) cells including CD4+ and CD8+ T cells and although this function is required to prevent unwanted autoimmune and allergic inflammation, it is now known that Treg cells play a critical role in suppressing immune responses in cancer. Treg cells also have a number of non-classical functions, some of which may directly influence tumour cell biology, or act in a tissue-specific manner. Hence, it is imperative to resolve the role of Treg cells at each distinct stage of cancer, from carcinogenesis to tumour progression and metastasis. In this review we will focus on the known and proposed mechanisms that regulate the recruitment, local homeostasis, and function of Treg cells during cancer progression.

Identification of Treg cells
Treg cells are a suppressive subset of CD4+ T cells required to prevent lethal inflammation. In mice, Treg cells arising early in neonatal life are required for tolerance to self-antigens, a conclusion made from the paradoxical observation that neonatal thymectomy results in a lethal inflammatory disorder, that is reversible by the transfer of CD4+ CD25+ Treg cells. Treg cells are dependent upon the lineage-specifying transcription factor Foxp3 and mice and humans carrying inactivating mutations of Foxp3 succumb to lethal inflammatory disease within approximately
3 weeks and in early infancy, respectively.5–14 Whereas Foxp3 expression is predominantly restricted to Treg cells in mouse, FOXP3 is expressed in both Treg and Tconv cells upon acute activation in humans.15–17 Hence, although Foxp3 expression usefully distinguishes murine Treg cells from CD4+ Tconv cells, human FOXP3+ T cells may comprise both Treg and Tconv cells, especially during ongoing immune responses. Instead, demethylation of the intronic Foxp3 cis-regulatory element CNS2 (conserved non-coding sequence 2) is a cardinal feature of Treg cells, both in human and mouse.18,19

Dual ontogeny of Treg cells

Thymus-derived (tTreg) cells develop in response to high-affinity interactions between the T-cell receptor (TCR) of double-positive and CD4 single-positive thymocytes and self-peptide–major histocompatibility complex (MHC) complexes in the thymus, and, among other functions, suppress autoimmune reactions directed against self-antigens. As a product of this selection process in the thymus, tTreg cells have a largely distinct TCR repertoire to conventional CD4+ T cells.20,21 Thymic selection results in differentiation of Treg cells with specificity for self-antigens, but tolerance to innocuous foreign antigens unanticipated in the thymus is mediated by peripheral Treg (pTreg) cells, induced in peripheral tissues.22 This occurs when antigens are encountered by naive CD4+ T cells in the absence of optimal co-stimulation or in the presence of transforming growth factor-\(\beta\) (TGF-\(\beta\)) abundant at mucosal sites but also within tumours. As a result, pTreg cells prevent inflammation directed against innocuous antigens often found at mucosal sites, including antigens expressed by commensal microflora or dietary components. Whereas tTreg and pTreg cell development have important similarities, such as their dependency upon the activity of the transcription factors such as ROR-\(c\), GATA3 and IRF4 to expression a similar repertoire of transcription factorsFOX3 and BACH2,23–26 their distinct ontology is reflected in differences in gene regulatory mechanisms underlying their development. This is best illustrated by the finding that an intronic Foxp3 cis-regulatory element, CNS1, which contains SMAD3 binding sites, is necessary for pTreg cell differentiation but dispensable for tTreg cell differentiation.27 Although deletion of Foxp3 leads to loss of both tTreg and pTreg cells and to lethal multi-organ auto-inflammation, selective ablation of the pTreg cell pool resulting from deletion of the CNS1 locus only leads to a mild late-onset mucosal type 2 inflammation in the gut and the lungs.28 Additionally, the TCR specificity of tTreg cells and pTreg cells is largely distinct.22,29

Functional specialization of Treg cells

Treg cells suppress inflammation through a number of mechanisms and it is now apparent that Treg cells undergo functional specialization to share some of the molecular characteristics of the cell types that they control.30,31 For example, expression of the Th1 cell-associated transcription factor, T-bet, promotes Treg-mediated restraint of type 1 inflammation.32,33 Similarly, Treg cells expressing other CD4+ helper T lineage-specific transcription factors such as ROR-\(\gamma\), GATA3 and IRF4 exert specialized functions suited to suppression of inflammation driven by their cognate Th cell counterparts.34–37 It is notable that despite expressing lineage-specifying transcription factors in some cases required for production of helper cytokines by Th cells, Treg cell subsets are configured to suppress these cell types. Mechanisms by which specialized Treg cell subsets suppress their cognate T helper counterparts are unclear, expression of lineage-specifying transcription factors such as T-bet or GATA3 may drive Treg cells to express a similar spectrum of chemokine receptors permitting more effective co-localization with cognate Th cells. It may also promote a similar responsiveness to environmental cues as their cognate Th counterparts.

Non-classical functions of Treg cells

Recent research has uncovered a pleiotropy of non-classical mechanisms by which Treg cells contribute to homeostasis with diverse roles in physiological processes as control of tissue metabolism, stem cell maintenance and wound healing. It is significant that these processes also play fundamental roles in cancer pathophysiology. For instance, pioneering work on adipose tissue Treg cells, which express the transcription factor PAPR \(\gamma\), demonstrate that these resident cells play critical roles in controlling tissue metabolism and insulin sensitivity.38,39 Importantly, adipose tissue Treg cells exert their function in concert with a number of other tissue-resident immune cells, such as macrophages, and group 2 innate lymphoid cells (reviewed in ref. 40). Other tissues, such as the muscle, harbour similar tissue-resident Treg cell populations, which, upon detection of tissue-damage, activate tissue-regenerative programmes.41 Skin Treg cells have also been observed in close association with the stem-cell-containing dermal follicular regions.42 Surprisingly, Treg cells were in dynamic equilibrium with hair-regrowth phases, and influenced follicular stem cell quiescence by expression of the Notch1 ligand Jagged 1. Similarly, Treg cells play an active role in protecting the intestinal epithelial, and bone marrow stem cell niche.43,44 Finally, tissue-resident Treg cells also express certain genes involved in epithelial cell repair, such as the growth factor amphiregulin (Areg),41,45 and thereby contribute to wound healing. Hence, our appreciation of Treg cell biology is rapidly evolving, and it is likely that ‘non-classical’ functions of Treg cells are co-opted by cancer.
Regulation of Treg cells in cancer

Origin of Treg cells within tumours

In human tumours, the frequency of FOXP3+ cells relative to total CD3+ T cells or CD8+ T cells is negatively correlated with survival in multiple cancer types, including renal cell carcinoma, non-small-cell lung carcinoma, pancreatic cancer, gastric cancer, cervical cancer, ovarian cancer, breast cancer and colorectal cancer. The frequency of Treg cells as a ratio of total CD4+ T cells can be extremely high – as high as 60–80% of total CD4+ T cells in murine orthotopic B16 tumours where Treg cells can be unambiguously defined using intranuclear Foxp3 staining. The size of Treg cell populations within tumours can be affected by a number of processes: the conversion of conventional CD4+Foxp3−/CD25+ (Tconv cells) into pTreg cells under the influence of tumour-derived factors including TGF-β, recruitment of Treg cells from the periphery into tumours, the rate of proliferation and survival of recruited, peripherally induced or tissue-resident Treg cells (Fig. 1). We will hereafter review the evidence in favour or against each of these hypotheses.

Conversion of Tconv into pTreg cells

An initial study by Valzasia et al. revealed that CD4+CD25−/CD127+ Tconv cells transferred into tumour-bearing hosts could convert into Foxp3+ Treg cells within tumours. In addition, conditioned media from murine tumour cells could convert CD4+CD25− to CD4+CD25+ Foxp3+ T cells. Because a blocking antibody to TGF-β reversed this effect, the authors concluded that the secretion of TGF-β by tumour cells promotes an environment favourable to the peripheral conversion of Tconv cells into tolerogenic pTreg cells. Along the same lines, the group of Zitvogel showed that rodent tumour cells induced the production of TGF-β by immature myeloid dendritic cells that in turn sustain the proliferation of Treg cells. Similarly, myeloid-derived suppressor cell-derived interleukin-10 (IL-10) and TGF-β supports Treg cell development both in vitro and in experiments where myeloid-derived suppressor cells and T cells are adoptively transferred into irradiated tumour-bearing mice.

Recently, expression of the surface protein Neuropilin-1 and the transcription factor Helios have been proposed to distinguish tTreg cells from pTreg cells, although whether expression of these markers faithfully reports tTreg cells has been called into question. This may explain contradictory reports regarding the relative frequency of pTreg and tTreg cells assessed using these markers in transplantable tumour models in mice. TCR repertoire analyses of mouse and human tumour-infiltrating lymphocytes have been proposed to provide evidence of a low frequency of Tconv to pTreg conversion within tumours, as the TCR repertoire of tumour-infiltrating Treg cells was found to be largely distinct from that of tumour-infiltrating Tconv cells. However, the efficiency of pTreg induction is affected by antigen dose in addition to cytokine signalling and it is not inconceivable that pTreg cells arising from Tconv cells could have a substantially skewed repertoire to Tconv cells, having expanded from a small fraction of naive CD4+ T cells among the total Tconv pool.

Hence, it has been difficult to precisely discern the role of pTreg cells in Treg-mediated tumour immunosuppression, although comparison of tumour growth
and immune infiltrates in wild-type and Foxp3 CNS1 knockout mice should allow the functional contribution of pTreg cells to be defined. However, it has been proposed that decreased susceptibility of mice lacking T-cell intrinsic expression of all three isoforms of the oxygen-sensing prolyl hydroxylase family is attributable to defective pulmonary pTreg cell differentiation.74

Evidence that iTregs can contribute to tumour immunosuppression is much clearer. Malchow et al.72 used an autochthonous mouse model of prostate cancer driven by the restricted expression of the SV40 oncogene in the prostate to study the TCR reactivity of tumour-associated Treg cells. On a fixed TCR-β background, TCR-α sequencing revealed that one TCR-α sequence was recurrently expressed by Treg cells isolated from tumours of distinct animals, suggesting that Treg cells of a single specificity are recurrently enriched within these prostate tumours. They further showed that this sequence was only overrepresented in the prostate tumour and draining lymph node, but not in the spleen or the thymus, in line with the idea of a tumour-specific enrichment. Repertoire analysis also confirmed the absence of overlap between Tconv and Treg cells isolated from these tumours. Interestingly, transgenic expression of this TCR on a Rag1−/− background led to the spontaneous accumulation of activated transgenic T cells in the prostate and draining lymph nodes of male tumour-free mice, whereas in female mice transgenic T cells showed no signs of activation. Further analysis showed that thymic development of Treg cells expressing the transgenic TCR was dependent on the autoimmune regulator Aire. Altogether, these results clearly demonstrate that pre-existing tTreg cells reactive to self-antigens are expanded upon tumorigenesis.

Recruitment and retention of Treg cells to tumours

Identification of the chemokines and their cognate receptors involved in specific Treg cell recruitment and/or retention into tumour lesions is an active area of research, given their potential as druggable targets. In human ovarian cancer, Curiel et al.53 showed that, similar to blood CD4+CD25+ Treg cells, CD4+CD25+ T cells isolated from malignant ascites express the chemokine receptor CCR4. Furthermore, the authors found that CCL22, the ligand of CCR4, is highly expressed in the ascites and tumour tissue of patients with ovarian cancer in comparison with control groups. They demonstrated with in vitro migration assays that CD4+CD25+ Treg cells migrate to malignant ascites, and that this effect is abolished upon addition of an anti-CCL22 antibody. Other authors later reported the same observation in prostate, breast and gastric tumours.75–77 In the context of cancer, CCL22 is probably derived from activated myeloid cells, although lymphocytes and tumour cells are potential alternative sources.78–80 Upstream, CCL22 is strongly induced by IL-4 and IL-13, which can be produced by adaptive and innate lymphoid cells, as well as some myeloid cell types.81 CCL17, another ligand for CCR4, is also implicated as a chemoattractant in cancer, although it is suggested that, due to different affinities for conformational isoforms of CCR4 leading to distinct signalling characteristics, CCL17 is more important in recruiting CCR4+ effector T cells.82,83 Additionally, the Sakaguchi group further ascribed high CCR4 expression in human T cells to a subset of effector Treg cells, defined as FOXP3hiCD45RA−, in both melanoma tissues and peripheral blood.84 Ex vivo depletion of CCR4+ cells using an anti-CCR4 monoclonal antibody selectively ablated effector Treg cells in healthy donors and individuals with melanoma, and was associated with an increase in CD4+ and CD8+ T-cell responses to the cancer-germline antigen NY-ESO-1 upon in vitro re-stimulation. Furthermore, in vivo administration of Mogamulizumab, a CCR4-depleting monoclonal antibody, in two adults with T-cell leukaemia-lymphoma diminished the percentage of blood effector Treg cells. In one patient whose leukaemic cells expressed NY-ESO-1, the reduction in effector Treg cells was further associated with an enhanced NY-ESO-1-specific CD8+ T-cell response.

Apart from CCL22, CCL28 produced by ovarian tumour cells under hypoxia has also been implicated in the preferential recruitment of Treg cells, both in in vitro migration assays using mouse and human Treg cells and in an in vivo model of ascitic ovarian tumours,85 CCR10, rather than CCR3, was shown to be the receptor involved in this effect.

In human breast cancer, RNA-sequencing analyses of tumour-infiltrating CD4+CD25+ Treg cells revealed high expression of the genes encoding the chemokine receptors CCR5, CCR8, CCR10, CX3CR1, CXCR3 and CXCR6 compared with blood CD4+CD25+ Treg cells.70 Among these, some were also shared with tumour-infiltrating Tconv cells (CCR5, CXCR3 and CXCR6), suggesting that Treg cells may employ both unique and shared pathways to migrate to breast tumour lesions. The authors further focused on CCR8, and showed that its surface expression was restricted to Treg cells and to a subset of natural killer T cells among CD45+ and non-CD45 cells within tumours. CCR8 expression was shared by Treg cells infiltrating breast, lung and colorectal cancers, as well as in melanoma and in angiosarcoma.70,86 Functionally, sorted tumour-infiltrating CD4+CD25+ Treg cells were able to migrate more robustly than Tconv cells towards the CCR8 ligand CCL1.70 Consistent with its tumour-specific pattern of expression, robust CCR8 expression by Treg cells was shown to require TCR engagement as well as soluble tumour-derived factors using tumour explant co-cultures. Finally, analysis of the breast samples from the The Cancer Genome Atlas data sets revealed a strong
association of CCR8 mRNA amounts normalized to FOXP3, but not FOXP3 mRNA amounts alone, with poor prognosis, suggesting a detrimental role for CCR8-expressing T cells in breast cancer progression.

High endothelial venules (HEV) which can be associated with tertiary lymphoid structures are present within tumours. The presence of HEV is promoted by activation of Tconv cells and dependent upon tumour necrosis factor receptor signalling. As HEV themselves drive further T-cell recruitment, it has been proposed that this supportive relationship between Tconv cells and HEV forms the potential for a self-amplifying loop that can drive tumour destruction. HEV neogenesis is indirectly inhibited by Treg cells through their suppression of Tconv cell activation. However, tertiary lymphoid structures contain Treg cells and whether and how HEV play an active role in recruitment of Treg cells is unclear. L-selectin expression is required for appropriate trafficking and tissue distribution of Treg cells under physiological conditions. Whereas a majority of Treg cells in tumours are activated and express low levels of L-selectin, it is possible that L-selectin+ Treg cells are recruited by tumour HEV, which subsequently down-regulate L-selectin expression in response to the activating environment of the tumour. This may represent a physiological regulatory feedback mechanism in inflamed tissues that is co-opted by tumours to counteract an otherwise beneficial self-reinforcing feedback loop of Tconv-driven HEV neogenesis in cancer, which could be subject to therapeutic intervention.

It is worth noting that the pathways described above may not only account for Treg cell recruitment but also for their retention within the tumour, thanks to the continuous secretion of chemo-attractants by either tumour cells or their associated stroma. In addition, recent evidence suggests that the early activation marker CD69 could play a role in Treg cell retention within tumours, as a large proportion of tumour-infiltrating Treg cells express high levels of this protein. Indeed, CD69 has been shown to be crucial for T-cell trafficking by interfering with the expression of S1P1, so preventing lymphocyte egress from peripheral tissues. Interestingly, CD69 is also linked to Treg cell function as CD69-deficient Treg cells display an altered suppressive function in vitro and in vivo. How CD69 affects Treg cell retention and function at the molecular level remains to be addressed.

There is now evidence to support the rationale of targeting chemokine receptors to alter Treg cell accumulation and/or retention in several types of tumours. However, it is worth noting that these pathways may also be shared with Tconv, and may not be unique to cancer, providing a potential for on-target side effects. Moreover, the mechanisms driving chemokine receptor expression among Treg cells are unclear but there may be considerable overlap with the mechanisms that drive such receptor expression among cognate T helper counterparts, including the involvement of lineage-specifying transcription factors of the T helper lineages that are also expressed in Treg cells.

Local expansion of tissue-resident Treg cells

Recent developments in the field have led to the emerging idea that tissue-resident Treg cells may contribute to the accumulation of Treg cells seen within tumour lesions. Although some markers of tissue-resident Treg cells appear to be present in Treg cells in multiple tissues, large-scale transcriptional analyses also suggest that tissue-resident Treg cells within distinct tissues have unique phenotypes. Pan-tissue tissue-resident Treg markers include the IL-33 receptor ST2 (encoded by gene IIrl1), the activation marker KLRG1, the transcription factor GATA-3 and the growth factor Amphiregulin.

In searching for a potential role of tissue-resident Treg cells in tumour progression, Green et al. analysed transplantable lung tumours in mice and found that tumour-infiltrating Treg cells expressed higher levels of Amphiregulin compared with normal lung Treg cells. In one of the two lung tumour models tested, conditional deletion of Areg in Treg cells resulted in a decreased tumour volume. Although the authors excluded both immune and tumour cells, the precise identity of the cells targeted by the Treg-derived Amphiregulin remains to be addressed. In line with these data, an increased proportion of Treg cells were shown to be ST2+ in both primary orthotopic mouse mammary carcinoma and lung metastases, and ST2+ lung tumour Treg cells, but not ST2−, were shown to produce Amphiregulin.

In human breast tumour and healthy adjacent tissue, RNA-sequencing analyses from the Plitas et al. study described above revealed that the gene expression profile of tumour-infiltrating Treg cells was similar to those of the tissue-resident Treg cells of the normal breast parenchyma, but distinct from the profile of the CD45RO+ activated Treg cells isolated from peripheral blood, used here as a reference of activated Treg cells. Surprisingly though, extraction of the TCR repertoire of these cells from RNA-sequencing data did not support the hypothesis of local tissue-resident Treg cell expansion: only low clonal overlap was found between the tumour-infiltrating Treg cells and those from the normal adjacent tissue.

Altogether, there is not much evidence supporting the hypothesis of the local amplification of tissue-resident Treg cells within tumour lesions. However, this does not imply that they do not make a significant contribution to tumour progression. Alternatively, their pre-existence in the tissue-of-origin of cancer may...
position them to contribute to early events in carcinogenesis and metastasis through classical or non-classical functions. Further studies will be needed to address these hypotheses.

Signals regulating Treg cells within tumours

Co-stimulatory and co-inhibitory receptors

Tumour-associated Treg cells are known to express numerous co-stimulatory (i.e. ICOS, OX40, GITR) and co-inhibitory (i.e. Lag-3, Klrk1, Tim-3, TIGIT, PD-1) receptors that modulate their function (Fig 2). Resolving the functional role of such receptors is important, but is complicated by their frequent expression on conventional T and other immune cell-types. Hence, lineage-specific deletion experiments are often required to fully understand their role in cancer. Many potential therapeutic strategies targeting these co-receptors are primarily aimed at promoting effector T cells in cancer but could induce changes that either help or hinder the therapeutic response, highlighting the importance of considering their role on tumour-associated Treg cells.

Co-stimulatory receptors

Inducible T-cell co-stimulator (ICOS) is important in Treg cell homeostasis and function, and is highly expressed by activated Treg cells in prostate cancer and melanoma. In the context of cancer, ICOS ligand (ICOSL) can be expressed by tumour cells as well as myeloid infiltrates, primarily antigen-presenting cells, including transformed follicular lymphoma B cells and dendritic cells. These findings, in conjunction with studies on the function of ICOS/ICOSL signalling in non-tumour settings, suggest that this pathway is instructive in supporting local Treg cell expansion and function.

The tumour necrosis factor receptor superfamily (TNFRSF) members, including GITR, OX40, CD27 and 4-1BB are important co-stimulatory molecules on T cells. In addition to influencing Treg cell development in the thymus, TNFRSF members are critical for the maintenance of Treg cells in peripheral tissues, in part via nuclear factor-κB/RelA-mediated signalling.

GITR is highly expressed by Treg cells, and plays an important role in Treg cell expansion. However, GITR signalling has been proposed to impair Treg cell suppressive capacity, although interrogation of this receptor is complex because of concurrent effects on conventional CD4+ and CD8+ T cells. As for ICOSL, GITR ligand (GITRL) is mainly expressed by antigen-presenting cells, but also endothelial and neuronal cells. In the context of cancer, in vitro studies show that tumour-derived TGF-β can induce GITRL on dendritic cells, which subsequently support expansion of Treg cells. Interestingly, an association was observed between single nucleotide polymorphisms in GITR (and OX40) and poor survival in ovarian cancer.

OX40 is expressed constitutively by a subset of Treg cells, but also on activated non-Treg cells. In cancer, Treg cells can comprise a significant proportion of tumour-resident OX40+ cell types. Although OX40-agonistic reagents are used to stimulate anti-tumour T-cell responses, the effect on Treg cells in cancer is not well understood. In wild-type mice, OX40 is important for Treg cell development in the thymus, as well as expansion in the periphery, although its effect on Treg cell function is less clear. Administration of agonistic reagents demonstrates that OX40-signalling reduces Treg cell suppressive function in vitro and in vivo; however, other studies suggest that Treg cells are not impaired. One potential explanation is that the context of OX40 ligand (OX40L) expression can have different effects on Treg cells. In the context of cancer, OX40L is expressed by glioblastoma, especially under hypoxic conditions. In vitro experiments indicated that OX40L expression promoted OX40-driven activation of Treg cells. In another study of patients with hepatocellular carcinoma, liver-resident monocytes and macrophages expressed OX40L (in response to concurrent hepatitis C virus infection), which in turn promoted liver Treg cell expansion. Moreover, two studies identified an association between single nucleotide polymorphisms in OX40L and increased occurrence of breast cancer.

4-1BB is expressed by both lymphoid and myeloid cell types and among T cells, it is expressed by Treg cells and activated CD4+ and CD8+ T cells. 4-1BB activation provides a potent stimulus for anti-tumour natural killer, CD4+ and CD8+ T cells and 4-1BB agonistic antibodies can provoke rejection of tumours in multiple mouse models but non-specific agonism results in generalized T-cell activation, cytokine release and systemic inflammation. Despite initial signs of efficacy, clinical development of agonistic clinical 4-1BB agonists urelumab and utomilumab has been hampered by inflammatory liver toxicity at moderate systemic doses. Similar to OX40, 4-1BB is expressed both on Treg cells and activated CD4+ and CD8+ Tconv cells. Consequently, it has been difficult to distinguish the effect of therapy on either subset alone and there is contradictory evidence for the effect of 4-1BB ligation on Treg cells, with some studies demonstrating an inhibitory effect on their immunoregulatory function and others suggesting a stimulatory effect on proliferation. Hence, there is a need to dissect the effect of 4-1BB agonists on Treg and Tconv cells both in the context of anti-tumour immunity and the on-target toxicity that they provoke.

CD27 is expressed mainly by naive and subsets of memory CD4+ and CD8+ T cells, as well as Treg cells. CD70 can be expressed by antigen-presenting cells, but
Also by tumour-infiltrating Treg and effector T cells.129 Engagement of CD27 with CD70 within tumours is important for expansion of Treg cells within tumours.129 Intriguingly, it was proposed that this activity is indirect, and acts through the ability of CD27-CD70 signalling to drive IL-2 production by Tconv cells, although evidence supporting this hypothesis was derived from \textit{in vitro} experiments.

In summary, it is clear that co-stimulatory receptor signalling is critical not only for anti-tumour immunity, but also influences local Treg cell biology. It is likely that contact-mediated regulation of Treg cells varies greatly depending on tissue- and tumour-type, and the presence of a shared niche containing cell-types that express co-stimulatory ligands.

\textbf{Co-inhibitory receptors}

The co-inhibitory receptor T-cell immunoglobulin and ITIM domain (TIGIT) marks a population of Treg cells with enhanced suppressive capacity in tumours.130,131 Interestingly, TIGIT+ Treg cells preferentially suppress Th1 and Th17 (but not Th2) cells, the former being important in anti-tumour immunity. Moreover, TIGIT competes for its ligands CD112 and CD155 with the co-stimulatory receptor CD226 which, unlike conventional T cells, is associated with functionally suppressed Treg cells.132 This study suggests that the CD226/TIGIT ratio correlates with Treg cell stability, and clinical outcome in individuals with melanoma. Moreover, both CD112 and CD155 over-expression is reported in cancer,133 although further work is required to delineate the interaction dynamics with the multiple TIGIT-expressing cell-types.

Although the role of the inhibitory receptor programmed-death 1 (PD-1) on conventional T cells is well established, its function in Treg cells is less clear. Work by the Sharpe laboratory demonstrated that PD-1 and its ligand PD-L1 are important for pTreg cell development and function.134 Subsequently, PD-1 was demonstrated to contribute to Treg cell stability in Foxp3low conditions.135 Moreover, PD-L1 expression on antigen-presenting cells can expand Treg cells in patients after allogeneic bone marrow transplants.136 However, in the context of cancer, PD-1 expression by Treg cells has been associated with their dysfunction.137

The inhibitory receptor lymphocyte activation gene 3 (Lag-3) is expressed on Treg cells, in addition to other lymphocytes, and binds to two known ligands (MHC-II and LSECtin). Lag-3 also promotes suppressive function of Treg cells in homeostasis and cancer.138,139 In addition to Treg cell modulation, Lag-3/MHC-II interactions are proposed to suppress the maturation of MHC-II+ dendritic cells.140 Moreover, LSECtin expression has been reported on tumour cells, suggesting potential Lag-3-dependent mechanisms of Treg cell regulation.141 T-cell immunoglobulin and mucin domain 3 (Tim-3) is a co-inhibitory receptor expressed by different myeloid and lymphoid cells, including Treg cells, and binds to several identified ligands (i.e. galectin-9, HMGB1, caecam-1, phosphatidyl serine, reviewed in ref.142). Tim-3+ Treg cells are detected in many murine and human tumour samples, and have increased suppressive capacity. Conversely, Tim-3 ligands are widely expressed on both immune and non-immune cell types in cancer and homeostasis. Another co-inhibitory receptor, killer cell lectin-like receptor G1 (Klrg1) is expressed by many immune cells including Treg cells, and binds to its ligands (E- and N-cadherin). Although Klrg1 is used to identify Treg cell subsets, little is known about its functional role. In the gut, Klrg1-signalising on Treg cells impairs their suppressive function.143 Interestingly, loss of E-cadherin has been shown in cancer progression, suggesting a potential mechanism by which tumour cells promote Treg cell-mediated immunosuppression.144

In summary, cell-to-cell interactions via co-stimulatory or co-inhibitory receptors are important for local regulation of Treg cell function in cancer. Importantly, the function of these receptors also frequently differs in Treg cells compared with Tconv cells. Moreover, their expression often overlaps with other immune cell-types, highlighting the need for careful dissection of functional effects on Treg cells.

\textbf{Cytokines}

\textit{Interleukin-2}. Treg cells are mainly dependent upon IL-2 signalling for both their thymic and peripheral differentiation and for their survival, although IL-15 and IL-7 can partially substitute for IL-2 in maintaining Treg cell survival in the genetic absence of IL-2145 or following Treg-specific disruption of CD25 expression,146 respectively. This leads to the question of whether IL-2 production within tumours is required for maintenance of intra-tumoural Treg cell populations and what the dominant cellular source of IL-2 is within tumours (reviewed in ref.147). There is contradictory evidence regarding the role of IL-2 in intra-tumoural Treg homeostasis. Consistent with a role for IL-2 in tumour immunosuppression, IL-2 neutralization has been shown to retard the growth of implanted renal cell carcinoma tumours.148 Administration of IL-2 to mice bearing syngeneic B16 melanoma tumours results in an increase in the frequency of Foxp3+ cells within the intra-tumoural CD4+ T-cell pool.149 However, the frequency of Treg cells in tumours of mice bearing methylcholanthrene-induced fibrosarcomas was not affected by administration of IL-2/anti-IL-2 complexes though this does not exclude the possibility that endogenous intra-tumoural IL-2 levels are already at functionally saturating levels in such tumours or that other limits to the size of the Treg pool prevent further Treg cell...
In humans, whereas high-dose IL-2 therapy is an established treatment for metastatic melanoma and can drive striking clinical responses in a small subset of patients, IL-2 therapy can also drive expansion of ICOS+ Treg cells, the extent of which correlates with worse clinical outcomes following therapy. In general, CD4+ and CD8+ Tconv cells are the major cellular source of IL-2 in vivo although the cytokine is also expressed by B cells and dendritic cells. It is important to note that not all Tconv cells produce IL-2. Cells in the early stages of differentiation, such as naive and memory CD8+ T cells, produce IL-2 upon stimulation whereas cells that have undergone full effector differentiation do not. Indeed, loss of the ability of Tconv populations to produce IL-2 upon full effector differentiation is associated with a catastrophic decline in Treg cell numbers during infection of wild-type mice with Toxoplasma gondii and of perforin-deficient mice with lymphocytic choriomeningitis virus. Given this exclusively supportive role of Tconv cells in the early stages of differentiation to Treg cell survival, it is important to test whether such cells are present and functionally relevant within tumours. Indeed, a proportion of CD8+ T cells within tumours have an early memory phenotype and it will be interesting to determine whether these cells produce IL-2 and whether similar

Ligand	Receptor	Co-stimulatory receptors expressed by Treg cells
ICOSL	ICOS	APCs and Tumour cells
GITRL	GITR	APCs and Endothelial cells
OX40L	OX40	APCs and Tumour cells
4-1BBL	4-1BB	APCs and Tumour cells
CD70	CD27	APCs and T cells

Ligand	Receptor	Co-inhibitory receptors expressed by Treg cells
CD155	TIGIT	APCs and Tumour cells
CD112	PD-1	APCs and Tumour cells
PD-L1	PD-1	APCs and Tumour cells
MHC II	Lag3	APCs and Tumour cells
Galectin-9		Tumour cells
E-Cadherin		Tumour cells
KLRG1		Tumour cells

Cytokines	Receptor
IL-2	IL-2R
IL-33	IL-33R

Figure 2. Co-stimulatory, co-inhibitory and cytokine receptors expressed by regulatory T (Treg) cells in tumours. Co-stimulatory (left) and co-inhibitory (middle) molecules, as well as cytokine receptors (right), deliver signals to Treg cells following engagement by their ligands expressed by immune and/or non-immune cell types within the tumour. Positive and negative signs in the Treg cell indicate either a positive effect on proliferation (Prolif.) or function (Funct.) or an inhibitory effect (i.e. reduced function), respectively, after receptor engagement. Question marks (?) indicate that the outcome of the receptor engagement in the Treg cell warrants further investigation.
early memory cells contribute to intratumoral Treg cell maintenance using mouse models. Given the ability of IL-15 and IL-7 to act as surrogates for the absence of IL-2 signalling, it would also be interesting to determine whether these cytokines play a role in Treg cell maintenance in tumours. Finally, Treg cells differ in their requirement for IL-2 signalling, with CD25lo Treg cells less dependent and intrinsically short-lived compared with CD25hi cells whose longevity requires CD25 signalling. Hence, the role of IL-2 will need to be considered in the context of heterogeneity of Treg cell populations and differential requirements for IL-2.

Interleukin-33. Accumulating evidence indicates that IL-33 is an important homeostatic factor for Treg cells in multiple tissue sites, in line with their expression of the IL-33 receptor ST2. Direct action of IL-33 on Treg cells has been shown to enhance their expansion in the colonic lamina propria, or in the visceral adipose compartment for example. Interleukin-33 is mostly produced by non-haematopoietic cells, including fibroblasts and epithelial cells, but also by some activated myeloid cells. Although the precise mechanism remains unclear, it is believed that IL-33 is released from cells upon certain types of cell death. IL-33 further functions as an alarmin through the binding to its receptor complex, composed of ST2 and IL1RacP, expressed on a variety of immune cells, so including Treg cells. In cancer, the role of IL-33 remains controversial, with both pro-tumorigenic and anti-tumorigenic effects reported across different cancer types and cellular sources. Whether the IL-33/ST2 axis on Treg cells plays a role in tumour progression has yet to be established. Interestingly, administration of IL-33 to tumour-bearing mice was shown to expand tumour-infiltrating Treg cells, in line with the aforementioned IL-33-driven expansion of Treg cells in healthy tissues. Recent generation of Foxp3-Cre × Il1rl1fl/fl mice should shed light on the relevance of this pathway in vivo.

Metabolic fitness

Co-stimulatory ligands, cytokines and chemokines are well-established contributors to tTreg cell preferential expansion/maintenance in the tumour microenvironment, but recent evidence points also towards a peculiar cell-intrinsic metabolism as a means by which tTreg cells survive, expand and exert their function within tumours. Importantly, tumour-infiltrating Treg cells display high expression of the glucose transporter Glut1 compared with splenic Treg cells, and are capable of increased glucose uptake in mouse tumour models. Such an improved glucose usage may in turn fuel fatty acid biosynthesis, in line with observations of a tTreg high neutral lipid content. Given the important role of both the glycolytic and lipid pathways in tTreg proliferation, suppressive function and trafficking, it is tempting to speculate that the adaptation of Treg cell metabolism to ensure exquisite function at the expense of other T cells within the tumour bed is a feature that may be promoted under the influence of tumour and/or stromally derived factors. Identification of such specific cues and pathways may reveal promising therapeutic targets in the near future.

Future direction and conclusion

Our understanding of Treg cells is rapidly evolving, addressing both long-standing questions in Treg cell ontogeny and antigen-specificity while simultaneously exploring new frontiers in the realm of tissue-residency and interactions with non-haematopoietic cell types. These new findings may have significant impact in our understanding of tumour immunology, given the clear evidence of Treg cell enrichment, association with poor prognosis, and immune-regulatory functions in cancer. Importantly, it is clear that Treg cell identity and function are influenced by their niche. In conclusion, our understanding of how Treg cells are themselves regulated will be essential to design novel immunotherapies and leverage existing cancer treatments with greater effect.

Acknowledgements

This study is supported by the Wellcome Trust (TH – 204622/Z/16/Z) and Cancer Research UK (TH/JS – A24995).

Disclosures

None.

References

1 Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140:883 – 99.
2 Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12:298–306.
3 Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8:523–32.
4 Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunol Today 2008; 30:636–45.
5 Josefowics SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012; 30:531–64.
6 Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008; 133:785–87.
7 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155:1511–64.
8 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299:1057–61.
9 Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for scurfyn in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4:337–42.
10 Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4:330–6.
REVIEW SERIES: TREGS IN CANCER: WHERE ARE WE NOW?

11 Bennett CL, Christie J, Ramsdell F, Broukow ME, Ferguson PJ, Whitesell LS, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27:20–1.

12 Broukow ME, Jeffrey SW, Hsyriel KA, Parmer B, Clark LB, Yasukoa SA, et al. Disruption of a novel autoimmune helios protein, scarfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27:68–73.

13 Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmune-allergic dysgammaglobulinemia syndrome. J Clin Invest 2000; 106:875–81.

14 Wildin RS, Ramsdell F, Peake J, Faravelli P, Casanova JL, Buist N et al. X-linked neonatal diabetes, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27:18–20.

15 Walker MR, Kasprowicz DJ, Gersek BH, Van Landeghen M, Buckner JH et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25+ T cells. J Clin Invest 2001; 112:1437–47.

16 Romagiero G, Brown PJ, Maestre L, Huer S, Martinez-Torrejicaradilla JL, Ling KL et al. Analysis of FOXP3’s protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 2003; 35:1681–91.

17 Morgan ME, Bilen JS, Bakker AM, Hermenskerk B, Schilliam MW, Hartgers PC et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ regulatory T cells in humans. Hum Immunol 2003; 66:13–20.

18 Baron U, Flores S, Wierczak G, Baumann K, Gratiau A, Dong J et al. DNA demethylation in the human FOXP3 locus regulates regulatory T cells from activated FOXP3+ conventional T cells. J Exp Med 2007; 205:2378–89.

19 Flores S, Fejer J, Ssmart C, Baron U, Olek S, Polansky J et al. Epigenetic control of the foxp3 locus in regulatory T cells. Proc Natl Acad Sci 2007; 5:38.

20 Hecht CS, Zheng Y, Liang Y, Fontemot JD, Rudensky AY. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 2006; 7:401–10.

21 Wong I, Obst R, Correa-Neves M, Lossey G, Mathis D, Benoit C. Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol 2007; 178:7032–41.

22 Yadav M, Stepman S, Blustone JA. Peripherally induced Tregs – role in immune homeostasis and autoimmunity. Front Immunol 2013; 4:232.

23 Ziegler SF. FOXP3+ mice and men. Annu Rev Rev Immunol 2008; 26:209–26.

24 Roychoudhuri R, Hirahara K, Mousavi K, Clever D, Klebanoff CA, Bonetti M et al. BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature 2013; 498:506–10.

25 Igarski K, Kurosaki T, Roychoudhuri R. BACH transcription factors in innate and adaptive immunity. Nat Rev Immunol 2017; 17:457–66.

26 Kim EH, Gasper DJ, Lee SH, Pischk EH, Saremi J, Saremi M. Bach2 regulates house- osts of Foxp3 regulatory T cells and protects against fatal lung disease in mice. J Immunol 2014; 192:985–95.

27 Zheng Y, Joesowicz S, Chaudhry A, Peng XF, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010; 463:808–12.

28 Josowicz S, Niec RE, Kim HY, Trainting P, Chien T, Zheng Y et al. Extraembryonically generated regulatory T cells control mucosal TH2 inflammation. Nature 2012; 482:959–95.

29 Lathrop SK, Sacturnaz NA, Pham D, Luo J, Hsieh CS. Antigen-specific peripheral shaping of the natural regulatory T cell population. J Exp Med 2008; 205:3105–17.

30 Chaudhry A, Rudensky AY. Control of inflammation by integration of environmental cues by regulatory T cells. J Clin Invest 2013; 123:939–44.

31 Shervach EM. Foxp3+ regulatory T cells: still many unanswered questions-A perspective after 20 years of study. Front Immunol 2018; 9:1048.

32 Koch MA, Tucker-Heard G, Perdue KN, Kilelle KB, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 2009; 10:395–602.

33 Levine AG, Mendoza A, Hemmers S, Moltedo B, Niec RE, Schizas M. BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature 2013; 498:506–10.

34 Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al. Intraperitoneal CD8+ tumor-infiltrating lymphocytes and a high CD8+ regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102:8538–43.

35 Curiel T, Coukos G, Zou L, Alvarez X, Cheng P, Motttrap PM et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10:942–9.

36 Bates GE, Fox SB, Han C, Lek RD, Garcia JP, Harris AL et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24:5375–80.

37 Hoosar C, Spierer J, Spierer C. The δ-fatooent gene proximal enhancer: localization, cell specificity and modulation by deoxmaethone. Nucleic Acids Res 1990; 18:6277–82.

38 Roychoudhuri R, El RL, Clever D, Klebanoff CA, Sukumar M, Grant FM et al. The transcription factor BACH2 promotes tumor immunosuppression. J Clin Invest 2016; 126:599–604.

39 Valansina B, Piconese S, Guiducci C, Colombo MP. Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25+ lymphocytes is thymus and proliferation independent. Cancer Res 2006; 66:4488–95.

40 Liu YC, Wang LY, Jiang T, Shah AH, Park I, Yang X et al. Tumor evasion of the immune system by converting CD4+CD25+ T cells into CD4+CD25+ regulatory T cell’s role of tumor-derived TGF-β. J Immunol 2007; 178:2683–92.

41 Chirgahelli F, Poit PE, Roux S, Parcellier A, Schmitt E, Solary E et al. Tumor cells convert immature dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 2005; 202:919–29.

42 Huang B, Pan LY, Li Q, Sato AI, Levy DE, Bromberg J et al. FOXP3+ regulatory T cells mediate the development of tumour-induced regulatory T cells and T-cell anergy in tumors-bearing host. Cancer Res 2006; 66:1233–31.

43 DeMartini B, Kury F, Deayon P, Weidheir AM, Murray PE, Rekeid Y et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3 regulatory T cells. J Clin Immunol 2010; 30:343–53.

44 Yadav M, Louvert C, Davini D, Gardner JM, Martinez-Oloirdia M, Bailey-Bucktrout S et al. Neurophil-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subtypes in vivo. J Exp Med 2012; 209:1713–22, e1–19.
Regulation of Treg cells in cancer

63 Gottschalk RA, Coeze E, Allison JP. Expression of Helios in peripherally induced Foxp3+ regulatory T cells. J Immunol 2012; 188:976–80.

64 Szurek E, Cebula A, Wojciech I, Putrzaek M, Rempala G, Kisielow P et al. Differences in expression level of Helios and neuropilin-1 do not distinguish thymus-derived from extrathymically induced CD4+Foxp3+ regulatory T cells. PLoS One 2015; 10:e0141161.

65 Weiss JM, Bilate AM, Gobert M, Ding Y, Curroto de Lafaille MA, Parkhurst CN et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ Treg cells. J Exp Med 2012; 209:72–42; 51.

66 Hansen W, Hatzler M, Abel S, Alter C, Stockmann C, Kliche S et al. Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. J Immunol Res 2015; 2015:1–20.

67 Delgoffe GM, Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4A axis. Nature 2013; 501:252–6.

68 Hindley JP, Ferreira C, Jones E, Laufer SN, Leddell K, Wynn KK et al. Analysis of the T-cell receptor repertoire of tumor-infiltrating and constitutive regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Cancer Res 2011; 71:736–46.

69 Sainz-Perez A, Lim A, Lemercur B, Leclerc C. The T-cell receptor repertoire of Neuropilin 1, is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ Treg cells. J Exp Med 2012; 209:1901–26.

70 Delgoffe GM, Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4A axis. Nature 2013; 501:252–6.

71 Zhang L, Yu X, Zheng L, Yang Y, Li Y, Fang Q et al. T-cell receptor repertoire of regulatory T cells recruited through CCL22/CCR7 signaling controls Foxp3 expression via PI3K, Akt, and mTOR. J Immunol 2016; 196:142–2.

72 Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP et al. macrophage-derived chemokine (MDC) CC chemokine acts specifically on chronically activated Th2 lymphocytes and regulates their migration through the tumor microenvironment. J Immunol 2008; 180:2524–32.

73 Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M et al. A distinct chemokine axis does not account for enrichment of Foxp3+ CD4+ T cells in carcinogen-induced fibrocarcinomas. Immunology 2013; 143:94–104.

74 De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C et al. Cutting edge: Foxp3+ T cells in carcinogen-induced fibrocarcinomas. J Immunol 2013; 190:47–51.

75 Shioz IB, Rosen JD, Drickova N, Xu Y, An J, Lanier LL et al. CD69 acts downstream of interferon-α to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 2006; 440:50–4.

76 Mackay L, Braun A, MacLeod BL, Collins N, Tebartz V, Redouso E et al. Cutting edge: Foxp3–/– mice show a marked increase in Th17 cells and a decrease in Th2 cells. J Immunol 2004; 173:5649–54.

77 Deng J, Xue J, He Y, Zeng H, Chen Y, Guo B et al. Foxp3+ Treg cells recruited through CCL22/CCR7 signaling controls Foxp3 expression via PI3K, Akt, and mTOR. J Immunol 2016; 196:142–2.

78 Vercello BM, Sanchez-Diaz R, Berouale EB, Barreiro O, Lasseter S, Mateus-Marin M et al. A distinct chemokine axis does not account for enrichment of Foxp3+ CD4+ T cells in carcinogen-induced fibrocarcinomas. Immunology 2013; 143:94–104.

79 De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C et al. Cutting edge: Foxp3+ T cells in carcinogen-induced fibrocarcinomas. J Immunol 2013; 190:47–51.

80 Herman AE, Freeman GJ, Mathis D, Benoist C. CD4+CD25+ T regulatory cells depend on GITR ligand. J Immunol 2004; 173:5888–95.

81 De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C et al. Cutting edge: Foxp3+ T cells in carcinogen-induced fibrocarcinomas. J Immunol 2013; 190:47–51.

82 Vercello BM, Sanchez-Diaz R, Berouale EB, Barreiro O, Lasseter S, Mateus-Marin M et al. A distinct chemokine axis does not account for enrichment of Foxp3+ CD4+ T cells in carcinogen-induced fibrocarcinomas. Immunology 2013; 143:94–104.

83 De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C et al. Cutting edge: Foxp3+ T cells in carcinogen-induced fibrocarcinomas. J Immunol 2013; 190:47–51.

84 Herman AE, Freeman GJ, Mathis D, Benoist C. CD4+CD25+ T regulatory cells depend on GITR ligand. J Immunol 2004; 173:5888–95.

85 Herman AE, Freeman GJ, Mathis D, Benoist C. CD4+CD25+ T regulatory cells depend on GITR ligand. J Immunol 2004; 173:5888–95.

86 De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C et al. Cutting edge: Foxp3+ T cells in carcinogen-induced fibrocarcinomas. J Immunol 2013; 190:47–51.

© 2019 The Authors. Immunology Published by John Wiley & Sons Ltd, Immunology, 157, 219–231
110 O’Keeffe GW, Gutierrez H, Pandolfini PP, Riccardi C, Davies AM. NGF-promoted axon growth and target innervation requires GITLG–GTR1 signaling. Nat Neurosci 2008; 11:35–42.

111 Ni XY, Sui SX, Liu Y, Ke SZ, Wang YN, Gao FG. TGF-β of lung cancer microenvironment upregulates B7H1 and GITLG expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep 2012; 28:615–21.

112 Goede EL, DeSylve M, Kall K, Oberg AL, Cunningham JM, Maurer MJ et al. Inherited variants in regulatory T cell genes and outcome of ovarian cancer. PLoS One 2012; 5:e39863.

113 Buchan SL, Rogel A, Al-Shamkani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood 2013; 121:39–48.

114 Timperli E, Pacella I, Schinanzi V, Vacca G, Sacco L, Faralli F et al. Regulatory T cells with multiple suppressive and potentially pro-tumor activities accumulate in human colorectal cancer. Oncotarget 2016; 7:e177800.

115 Montier R, Bell RB, Thalhofer C, Leidner R, Feng Z, Fox BA et al. 4-1BB-dependent inhibition of OX40+ regulatory T cells in cutaneous squamous cell carcinoma suppresses effector T-cell responses and associates with metastatic potential. Clin Cancer Res 2016; 22:4236–48.

116 Valinas A, Guiducci G, Diulchi H, Killeen N, Weinberg AD, Colombo MP. Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 in its combination with GITLG. Blood 2005; 106:2845–51.

117 Sibahara I, Saito R, Zhang X, Chou CY, Hara F et al. LSECtin expressed on glioblastoma modulates adaptive immunity depending on the microenvironment for a cure for successful immunotherapy. Mol Cancer 2015; 14:41.

118 Piconese S, Timperli E, Pacella I, Schinanzi V, Tripodi C, Rossi M et al. Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatic virus-infected liver tissue. Hepatology 2014; 60:1494–507.

119 Valik Montferd R, Maysaehly F. OX40L gene polymorphism and breast cancer in Iranian population. Exp Oncol 2018; 40:132–37.

120 Wenqiang Y, Danlu L, Lidan X, Yonggang C, Shuang C, Yanhong L et al. Association of OX40L polymorphisms with sporadic breast cancer in northeast Chinese Han population. PLoS One 2012; 7:e41277.

121 Barfkowicz T, Curran MA. 4-1BB agonists: multi-potent potentiators of tumor immunit. Front Immunol 2015; 5:117.

122 Chester G, Sammaded MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 2018; 131:49–57.

123 Smith SE, Hoelzinger DR, Dominguez AL, Van Snick J, Lustjagen G. Signals through 4-1BB inhibit T regulatory cells by blocking IL-9 production enhancing antitumor responses. Cancer Immunol Immunother 2011; 60:1775–87.

124 Choi BK, Bae JS, Choi EM, Kang WJ, Sakaguchi S, Vinay DS et al. 4-1BB-dependent inhibition of unsuppression by activated CD4+CD25+ T cells. J Immunol 2004; 173:5865–9.

125 Zheng G, Wang R, Chen A. The 4-1BB costimulation augmentation provides the proliferation of CD4+CD25+ regulatory T cells. J Immunol 2004; 173:2428–34.

126 Elpek KG, Yolcu ES, Frankie DD, Lacelle C, Schabowski RH, Shirwan H. Ex vivo expansion of CD4+CD25+FoxP3+ T regulatory cells based on synergy between IL-2 and 4-1BB signaling. J Immunol 2007; 179:7295–304.

127 Claus G, Birtcher C, Schuch C, Matter MS, Hilsenrath T, Ochsrein AF. CD25 sigaling increases the frequency of regulatory T cells and promotes tumor growth. Can Res Dr 2012; 72:366–47.

128 Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 2014; 40:569–81.

129 Kjurtau S, Sakaihu K, Ngwof SJ, Joller N, Tan DJ, Treng MV et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 2015; 125:4053–62.

130 Fourcade J, Sun Z, Chauvin JM, Ka M, Davar D, Pagliano O et al. CD266 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 2018; 3:e121157.

131 Kucan Brlic P, Lenac Rovis T, Cinamon G, Tsukerman P, Mandelboim O, Jonjic S. Targeting TCR (CD3/5) and its receptors in anti-tumor therapy. Cell Mol Immunol 2016; 19:513–63.

132 Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Teng MW et al. Association of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 in its combination with GITLG. Blood 2005; 106:2845–51.

133 Yi T, Li X, Yao S, Wang L, Chen Y, Zhao D et al. Host APCs augment 4-1BB in cancer. Proc Natl Acad Sci USA 2016; 113:8495–50.
Regulation of Treg cells in cancer

161 Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amerquita R et al. Phospho-enolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 2015; 162:1217–28.

162 Pacella I, Procaccini C, Focaccetti C, Miaci S, Timperi E, Fucicchia D et al. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci USA 2018; 115:E6546–55.

163 Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M et al. The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity 2016; 44:712.

164 Kishore M, Chen PG, Fu H, Bonazza F, Wang G, Cire D et al. Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity 2017; 47:875–89 e10.