Fekete-Szegö inequality for Classes of \((p, q)\)-Starlike and \((p, q)\)-Convex Functions

Nusrat Raza
Mathematics Section, Women’s College, AMU, Aligarh-202002,
nraza.maths@gmail.com

and

Eman S. A. AbuJarad
Department of Mathematics, AMU, Aligarh-202002,
emanjarad2@gmail.com

and

Gautam Srivastava
Department of Mathematics and Computer Science, Brandon University, 270 18th
Street, Brandon, Canada, R7A 6A9
srivastavag@brandonu.ca

Research Center for Interneural Computing, China Medical University, Taichung 40402,
Taiwan, Republic of China

and

H. M. Srivastava
Department of Mathematics and Statistics, University of Victoria, Victoria, British
Columbia V8W 3R4, Canada,
harimsri@math.unvi.ca

Department of Medical Research, China Medical University Hospital, China Medical
University, Taichung 40402, Taiwan, Republic of China

and

Mohammed H AbuJarad
Department of Statistics and Operations Research, AMU, Aligarh-202002,
m.jarad@gu.edu.ps

Abstract: In the present paper, the new generalized classes of \((p, q)\)-starlike and \((p, q)\)-convex functions
are introduced by using the \((p, q)\)-derivative operator. Also, the \((p, q)\)-Bernardi integral operator for
analytic function is defined in the open unit disc \(U = \{z \in \mathbb{C} : |z| < 1\}\). Our aim for these classes is
to investigate the Fekete-Szegö inequalities. Moreover, Some special cases of the established results are
discussed. Further, certain applications of the main results are obtained by applying the \((p, q)\)-Bernardi
integral operator.

Keywords: \((p, q)\)-starlike functions, \((p, q)\)-convex functions, Fekete-Szegö inequality, \((p, q)\)-Bernardi
integral operator.

Mathematics Subject Classification Code: 30C45.

1 Introduction

The \(q\)-analysis is a generalization of the ordinary analysis without using the limit notation. The first
application and usage of the \(q\)-calculus was introduced by Jackson [11] and [12]. Moreover, several
applications in various fields of Mathematics and physics (see for details [22], [26]). Recently, there is an
extension of \(q\)-calculus, denoted by \((p, q)\)-calculus which obtained by substituting \(q\) by \(q/p\) in \(q\)-calculus.
The \((p, q)\)-integer was considered by Chakrabarti and Jagannathan [5], see also, [2], [3] and [19]. The two
important geometric properties of analytic functions are starlikeness and convexity. So that, there are
many publications in Geometric Function Theory by using the q-differential operator, for example. A generalization of starlike functions S^* were investigated by Ismail et al. [10]. Further, Close-to-convexity of a certain family of q- Mittag-Leffler functions were studied by [27]. Also, the coefficient inequality q-starlike functions were discussed by [30]. Recently, Coefficient estimates of q-starlike and q-convex functions were studied by [28]. Further, new subclasses of analytic functions associated with q-differential operators were introduced and discussed, see for example [1], [9], [21], [15], [23], [24] and [30]. Motivated by an emerging idea of (p, q)-analysis as a generalization of q-analysis, in this paper, we extend the idea of q-starlikeness and q-convexity to (p, q)-starlikeness and (p, q)-convexity, then we will obtain the Fekete-Szegö inequalities for these classes. Also, we will apply these results on the introduced (p, q)-Bernardi integral operator.

We recall some basic notations and definitions from (p, q)-calculus, which are used in this paper.

The (p, q)-derivative of the function f is defined as [29]:

$$D_{p,q}f(z) = \frac{f(pz) - f(qz)}{(p-q)z} \quad (z \neq 0; \ 0 < q < p \leq 1);$$

(1.1)

From equation (1.1), it is clear that if f and g are the two functions, then

$$D_{p,q} (f(z) + g(z)) = D_{p,q}f(z) + D_{p,q}g(z)$$

(1.2)

and

$$D_{p,q} (cf(z)) = cD_{p,q}f(z),$$

(1.3)

where c is constant.

We note that $D_{p,q}f(z) \rightarrow f'(z)$ as $p \rightarrow 1$ and $q \rightarrow 1^-$, where f' is the ordinary derivative of the function f.

In particular, using equation (1.1), the (p, q)-derivative of the function $h(z) = z^n$ is as follows:

$$D_{p,q}h(z) = [n]_{p,q}z^{n-1},$$

(1.4)

where $[n]_{p,q}$ denotes the (p, q)-number and is given as:

$$[n]_{p,q} = \frac{p^n - q^n}{p - q} \quad (0 < q < p \leq 1).$$

(1.5)

Since, we note that $[n]_{p,q} \rightarrow n$ as $p \rightarrow 1$ and $q \rightarrow 1^-$, therefore in view of equation (1.4), $D_{p,q}h(z) \rightarrow h'(z)$ as $p \rightarrow 1$ and $q \rightarrow 1^-$, where $h'(z)$ denotes the ordinary derivative of the function $h(z)$ with respect to z.

Also, the (p, q)-integral of the function f on $[0, z]$ is defined as [14]:

$$\int_0^z f(t)d_{p,q}t = (p-q)z \sum_{k=0}^{\infty} \frac{q^k}{p^{k+1}}f\left(\frac{q^k}{p^{k+1}}z\right),$$

where $\left|\frac{q}{p}\right| < 1$ and $0 < q < p \leq 1$.

In particular, the (p, q)-integral of the function $h(z) = z^n$ is given by

$$\int_0^z h(t)d_{p,q}t = \frac{z^{n+1}}{[n+1]_{p,q}},$$

(1.6)

where $n \neq -1$ and $[n]_{p,q}$ is given by equation (1.5).

Again, since $[n+1]_{p,q} \rightarrow n + 1$ as $p \rightarrow 1$ and $q \rightarrow 1^-$, therefore for the same choices of p and q, equation (1.6) reduces to $\int_0^z h(t)dt = \frac{z^{n+1}}{n+1}$, which is the ordinary integral of the function $h(z)$ on $[0, z]$.

2
In this paper, we consider the class A consisting of functions of the following form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$ \hspace{1cm} (1.7)

and analytic in the open unit disc $U = \{ z \in \mathbb{C} : |z| < 1 \}$.

Also, using equations (1.2), (1.3) and (1.4), we get the (p,q)-derivative of the function f, given by equation (1.7) as:

$$D_{p,q}f(z) = 1 + \sum_{n=2}^{\infty} [n]_{p,q} a_n z^{n-1} \hspace{1cm} (0 < q < p \leq 1)$$ \hspace{1cm} (1.8)

where $[n]_{p,q}$ is given by equation (1.5).

For the analytic functions f and g in U, we say that the function g is subordinate to f in U \[17\], and write

$$g(z) \prec f(z) \hspace{1cm} \text{or} \hspace{1cm} g \prec f$$

if there exists a Schwarz function w, which is analytic in U with

$$w(0) = 0 \text{ and } |w(z)| < 1,$$

such that

$$g(z) = f(w(z)) \hspace{1cm} (z \in U).$$ \hspace{1cm} (1.9)

Ma-Minda \[16\] defined the classes of starlike and convex functions, denoted by $S^*(\phi)$ and $C(\phi)$, respectively, by using the subordination principle between certain analytic functions. These subclasses are defined as follows:

$$S^*(\phi) = \left\{ f \in A : \frac{zf'(z)}{f(z)} \prec \phi(z) \right\}$$ \hspace{1cm} (1.10)

and

$$C(\phi) = \left\{ f \in A : \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \phi(z) \right\},$$ \hspace{1cm} (1.11)

where the function $\phi(z)$ is analytic in U with $\Re(\phi(z)) > 0$, $\phi(0) = 1$ and $\phi'(0) > 0$. It is clear that $S^*(\phi)$ and $C(\phi)$ are the subclasses of A.

The classes of q-starlike and q-convex functions, denoted by $S_q^*(\phi)$ and $C_q(\phi)$, respectively, are defined by using the subordination principle as \[4\]:

$$S_q^*(\phi) = \left\{ f \in A : zD_qf(z) \prec \phi(z) \right\}$$ \hspace{1cm} (1.12)

and

$$C_q(\phi) = \left\{ f \in A : D_q(zf_qf(z)) \prec \phi(z) \right\},$$ \hspace{1cm} (1.13)

where the function $\phi(z)$ is analytic in U with $\Re(\phi(z)) > 0$, $\phi(0) = 1$ and $\phi'(0) > 0$. These classes are the subclasses of A.

The Fettke-Szegö problem \[7\] is to find the coefficients estimates for second and third coefficients of functions in any class of analytic function having a specified geometric property. In this paper, we introduce the classes of (p,q)-starlike and (p,q)-convex functions by using the (p,q)-derivative in terms of the subordination principle. Also, we find the Fekete-Szegö inequalities which is obtained by the maximizing the absolute value of the coefficient $|a_3 - a_2^2|$ for the functions belonging to these classes, see for example \[6\], \[8\], \[13\], \[25\] and \[28\]). Further, the (p,q)-Bernardi integral operator for analytic functions, is defined in the open unit disc U to discuss the application of the results established in this paper.

3
2 Main Results

First, we define the classes of \((p, q)\)-starlike functions and \((p, q)\)-convex functions, denoted by \(S^{*}_{p,q}(\phi)\) and \(C_{p,q}(\phi)\), respectively, in terms of the subordination principle by taking the \((p, q)\)-derivative in place of \(q\)-derivative in the respective definitions of the classes of \(q\)-starlike and \(q\)-convex functions.

The respective definitions of the classes \(S^{*}_{p,q}(\phi)\) and \(C_{p,q}(\phi)\) are as follows:

Definition 2.1. The function \(f \in A\) is said to be \((p, q)\)-starlike if it satisfies the following subordination:

\[
\frac{zD_{p,q}f(z)}{f(z)} \prec \phi(z) \quad (0 < q < p \leq 1),
\]

where the function \(\phi(z)\) is analytic in \(U\) with \(\Re(\phi(z)) > 0\), \(\phi(0) = 1\) and \(\phi'(0) > 0\).

Definition 2.2. The function \(f \in A\) is said to be \((p, q)\)-convex if it satisfies the following subordination:

\[
\frac{D_{p,q}(zD_{p,q}f(z))}{D_{p,q}f(z)} \prec \phi(z) \quad (0 < q < p \leq 1),
\]

where the function \(\phi(z)\) is analytic in \(U\) with \(\Re(\phi(z)) > 0\), \(\phi(0) = 1\) and \(\phi'(0) > 0\).

![Figure 1: The class \(S^{*}_{0,2,0.5}(1+z/1-z)\) for the complex number \(z = x + iy, \ x, y \in \mathbb{R}\).](image)

Remark 2.1. We note that, for \(p = 1\) the classes \(S^{*}_{p,q}(\phi)\) and \(C_{p,q}(\phi)\), reduce to the classes \(S^{*}_{q}(\phi)\) and \(C_{q}(\phi)\), which are defined by equations (1.12) and (1.13), respectively. Again, for \(p = 1\) and \(q \rightarrow 1^-\), the classes \(S^{*}_{p,q}(\phi)\) and \(C_{p,q}(\phi)\) reduce to the classes \(S^{*}(\phi)\), defined by equation (1.10) and \(C(\phi)\), defined by equation (1.11), respectively.

First of all, we need to mention the following lemma [16]:

Lemma 2.1. If \(p(z) = 1 + c_1z + c_2z^2 + \ldots\) is a function with \(\Re(p(z)) > 0\) and \(\mu \in \mathbb{C}\), then

\[
|c_2 - \mu c_1^2| \leq 2 \max \{1; |2\mu - 1|\}.
\]

The result is sharp for giving two choices of the function \(p(z)\) as follows:
Figure 2: The class $C_{0.2.0.5} \left(\frac{1 + z}{1 - z} \right)$ for the complex number $z = x + iy$, $x, y \in \mathbb{R}$.

\[
p(z) = \frac{1 + z^2}{1 - z^2} \quad \text{and} \quad p(z) = \frac{1 + z}{1 - z}.
\]

Now, we investigate the Fétete-Szegő inequality of the class $S_{p,q}^*(\phi)$ in the following result:

Theorem 2.1. Let $\phi(z) = 1 + b_1 z + b_2 z^2 + \ldots$, with $b_1 \neq 0$. If f, given by equation (1.7), belongs to the class $S_{p,q}^*(\phi)$, then

\[
|a_3 - \mu a_2^2| \leq \frac{|b_1|}{|3|_{p,q} - 1} \max \left\{ 1; \left| \frac{b_2}{b_1} + \frac{b_1}{|2|_{p,q} - 1} \left(1 - \frac{|3|_{p,q} - 1}{|2|_{p,q} - 1} \mu \right) \right| \right\},
\]

where $b_1, b_2, \ldots \in \mathbb{R}$, $\mu \in \mathbb{C}$ and $0 < q < p \leq 1$. The result is sharp.

Proof. Let $f \in S_{p,q}^*(\phi)$, then in view of Definition 2.1, the function f satisfies the subordination (2.1). Thus, by using equation (1.9), there is a Schwarz function w such that

\[
\frac{z^{D_{p,q}f}(z)}{f(z)} = \phi(w(z)).
\]

We define the function

\[
p(z) = 1 + c_1 z + c_2 z^2 + \ldots
\]

in terms of the function $w(z)$ as:

\[
p(z) = \frac{1 + w(z)}{1 - w(z)},
\]

which gives

\[
w(z) = \frac{p(z) - 1}{p(z) + 1}.
\]

Using equations (2.3) and (2.6), we get

\[
\phi(w(z)) = \phi \left(\frac{c_1 z + c_2 z^2 + \ldots}{2 + c_1 z + c_2 z^2 + \ldots} \right) = \phi \left(\frac{1}{2} \left[c_1 z + \left(c_2 - \frac{1}{2} c_1 \right) z^2 + \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) z^3 + \ldots \right] \right).
\]

Since $\phi(z) = 1 + b_1 z + b_2 z^2 + \ldots$, therefore, equation (2.7) gives

\[
\phi(w(z)) = 1 + \frac{b_1 c_1}{2} z + \left[\frac{b_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{b_2 c_1^2}{4} \right] z^2 + \ldots.
\]
Now, using equations \((1.7)\) and \((1.8)\), we get
\[
\frac{zD_{p,q}f(z)}{f(z)} = \frac{z + \sum_{n=2}^{\infty} [r_{p,q} a_n z^n]}{z + \sum_{n=2}^{\infty} a_n z^n} = 1 + ([2]_{p,q} - 1) a_2 z + \big(([3]_{p,q} - 1) a_3 - ([2]_{p,q} - 1) a_2^2 \big) z^2 + \ldots \tag{2.9}
\]

Using equations \((2.8)\) and \((2.9)\) in equation \((2.4)\), then comparing the coefficients of \(z\) and \(z^2\) from the both sides of the resultant equation and simplifying, we get
\[
a_2 = \frac{b_1 c_1}{2([2]_{p,q} - 1)} \tag{2.10}
\]
and
\[
a_3 = \frac{b_1}{2([3]_{p,q} - 1)} \left[c_2 - \frac{1}{2} \left(1 - \frac{b_2}{b_1} - \frac{b_1}{[2]_{p,q} - 1} \right) c_1^2 \right]. \tag{2.11}
\]

Next, for \(\mu \in \mathbb{C}\), using equations \((2.10)\) and \((2.11)\), we have
\[
a_3 - \mu a_2^2 = \frac{b_1}{2([3]_{p,q} - 1)} \left[c_2 - \frac{1}{2} \left(1 - \frac{b_2}{b_1} - \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q} - 1 - \mu}{[2]_{p,q} - 1} \right) \right) c_1^2 \right]. \tag{2.12}
\]
If we take
\[
v = \frac{1}{2} \left(1 - \frac{b_2}{b_1} - \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q} - 1 - \mu}{[2]_{p,q} - 1} \right) \right), \tag{2.13}
\]
then, from equation \((2.12)\), we get
\[
|a_3 - \mu a_2^2| = \frac{|b_1|}{2([3]_{p,q} - 1)} |c_2 - vc_1^2| \tag{2.14}
\]

Hence, by applying Lemma 2.1, equation \((2.14)\), gives the Feteke-Szegő inequality, given by equation \((2.3)\), for the class \(S^*_p(\phi)\).

Further, our result is sharp, that is, the equality holds, when \(p(z) = p_1(z) = \frac{1 + z}{1 - z} = 1 + 2z + 2z^2 + \ldots\) and equation \((2.4)\), gives
\[
\frac{zD_{p,q}f(z)}{f(z)} = \phi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right) = \phi(z) = 1 + b_1 z + b_2 z^2 + \ldots \tag{2.15}
\]

Then, by comparing equations \((2.8)\) and \((2.15)\), we have \(c_1 = 2\) and \(c_2 = 2\), then equation \((2.12)\) gives the equality sign in the place of inequality in assertion \((2.3)\).

Similarly, for \(p(z) = p_2(z) = \frac{1 + z^2}{1 - z^2} = 1 + 2z^2 + \ldots\), equation \((2.4)\) gives
\[
\frac{zD_{p,q}f(z)}{f(z)} = \phi \left(\frac{p_2(z) - 1}{p_2(z) + 1} \right) = \phi(z^2) = 1 + b_1 z^2 + \ldots \tag{2.16}
\]

Then, by comparing equations \((2.8)\) and \((2.16)\), we have \(c_1 = 0\) and \(c_2 = 2\) and hence equation \((2.12)\) gives the equality sign in the place of inequality in assertion \((2.3)\).

Taking \(p = 1\) and \(q \longrightarrow 1^-\) in Theorem 2.1, we get the following corollary:

Corollary 2.1. Let \(\phi(z) = 1 + b_1 z + b_2 z^2 + \ldots\), with \(b_1 \neq 0\). If \(f\) given by equation \((1.7)\) belongs to the class \(S^*_p(\phi)\), then
\[
|a_3 - \mu a_2^2| \leq \frac{|b_1|}{2} \max \left\{ 1; \frac{b_2}{b_1} + b_1 (1 - 2\mu) \right\},
\]
where \(b_1, b_2, \ldots \in \mathbb{R}\) and \(\mu \in \mathbb{C}\). The result is sharp.

Remark 2.2. For \(p = 1\), inequality \((2.3)\), gives the Feteke-Szegő inequality \([4]\) for the class \(S^*_p(\phi)\) .
Next, we investigate the Feteke-Szegő inequality for the class $C_{p,q}(\phi)$ in the following result:

Theorem 2.2. Let $\phi(z) = 1 + b_1 z + b_2 z^2 \ldots$ with $b_1 \neq 0$. If f, given by equation (1.7), belongs to the class $C_{p,q}(\phi)$, then

\[
|a_3 - \mu b_2^2| \leq \frac{|b_1|}{|3|_{p,q}([3]_{p,q} - 1)} \max \left\{ 1; \frac{|b_2|}{|b_1|} + \frac{|b_1|}{|2|_{p,q} - 1} \left(1 - \frac{|3|_{p,q}([3]_{p,q} - 1)}{|2|_{p,q}([2]_{p,q} - 1)} \right) \right\},
\]

(2.17)

where $b_1, b_2, \ldots \in \mathbb{R}$, $\mu \in \mathbb{C}$ and $0 < q < p \leq 1$. The result is sharp.

Proof. Let $f \in C_{p,q}(\phi)$, then in view of Definition 2.2 the function f satisfies the subordination (2.2), thus, by using equation (1.9), there is a Schwarz function w such that

\[
\frac{D_{p,q}(zD_{p,q}(f(z)))}{D_{p,q}(f(z))} = \phi(w(z)),
\]

(2.18)

where w is given by equation (2.6) and $\phi(w(z))$ is given by equation (2.8).

Using equations (1.7) and (1.8), we get

\[
\frac{D_{p,q}(zD_{p,q}(f(z)))}{D_{p,q}(f(z))} = \frac{z + \sum_{n=2}^{\infty} |n|_{p,q} a_n z^n}{z + \sum_{n=2}^{\infty} |n|_{p,q} a_n z^n} = 1 + [2]_{p,q}([2]_{p,q} - 1) a_2 z + \left([3]_{p,q}([3]_{p,q} - 1) a_3 - [2]_{p,q}([2]_{p,q} - 1) a_2 \right) z^2 + \ldots
\]

(2.19)

Comparing the coefficients of z and z^2 in equations (2.8) and (2.19) and simplifying, we obtain

\[
a_2 = \frac{b_1 c_1}{2[2]_{p,q}([2]_{p,q} - 1)}
\]

(2.20)

and

\[
a_3 = \frac{b_1}{2[3]_{p,q}([3]_{p,q} - 1)} \left[c_2 - \frac{1}{2} \left(1 - \frac{b_2}{b_1} \right) \left(1 - \frac{|3|_{p,q}([3]_{p,q} - 1)}{|2|_{p,q}([2]_{p,q} - 1)} \right) c_1^2 \right].
\]

(2.21)

Next, for $\mu \in \mathbb{C}$, equations (2.20) and (2.21), give

\[
a_3 - \mu a_2^2 = \frac{b_1}{2[3]_{p,q}([3]_{p,q} - 1)} \left[c_2 - \frac{1}{2} \left(1 - \frac{b_2}{b_1} \right) \left(1 - \frac{|3|_{p,q}([3]_{p,q} - 1)}{|2|_{p,q}([2]_{p,q} - 1)} \right) c_1^2 \right].
\]

(2.22)

If we take

\[
v = \frac{1}{2} \left(1 - \frac{b_2}{b_1} \right) \left(1 - \frac{|3|_{p,q}([3]_{p,q} - 1)}{|2|_{p,q}([2]_{p,q} - 1)} \right),
\]

(2.23)

then using equations (2.22) and (2.23), we get

\[
|a_3 - \mu a_2^2| = \frac{|b_1|}{2[3]_{p,q}([3]_{p,q} - 1)} |c_2 - vc_1^2|.
\]

(2.24)

Now, by applying Lemma 2.1, equation (2.24), gives the Feteke-Szegő inequality, given by equation (2.17) for the class $C_{p,q}(\phi)$.

Further, our result is sharp, when $p(z) = p_1(z) = \frac{1 + z}{1 - z} = 1 + 2z + 2z^2 + \ldots$ and equation (2.18), gives

\[
\frac{D_{p,q}(zD_{p,q}(f(z)))}{D_{p,q}(f(z))} = \phi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right) = \phi(z) = 1 + b_1 z + b_2 z^2 + \ldots
\]

(2.25)

Then, by comparing equations (2.8) and (2.25), we have $c_1 = 2$ and $c_2 = 2$ and hence equation (2.22) gives the equality sign in the place of inequality in assertion (2.17).
Similarly, when \(p(z) = p_2(z) = \frac{1 + z^2}{1 - z^2} = 1 + 2z^2 + \ldots \), equation (2.18) gives
\[
\frac{D_{p,q}(zD_{p,q}f(z))}{D_{p,q}f(z)} = \phi \left(\frac{p_2(z) - 1}{p_2(z) + 1} \right) = \phi(z^2) = 1 + b_1z^2 + \ldots,
\]
then, by comparing equations (2.8) and (2.26), we have \(c_1 = 0 \) and \(c_2 = 2 \) and hence equation (2.22) gives the equality sign in the place of inequality in assertion (2.17).

Taking \(p = 1 \) and \(q \to 1^- \) in Theorem 2.2, we get the following corollary [3]:

Corollary 2.2. Let \(\phi(z) = 1 + b_1z + b_2z^2 + \ldots \), with \(b_1 \neq 0 \). If \(f \) given by equation (1.7) belongs to the class \(\mathcal{C}(\phi) \), then
\[
|a_3 - \mu a_2^2| \leq \frac{|b_1|}{6} \max \left\{ 1; \left| \frac{b_2}{b_1} + b_1 \left(1 - \frac{3}{2}\mu \right) \right| \right\},
\]
where \(b_1, b_2, \ldots \in \mathbb{R} \) and \(\mu \in \mathbb{C} \). The result is sharp.

Remark 2.3. For \(p = 1 \), inequality (2.17) gives the Fekete-Szegő inequality for the class \(\mathcal{C}_q(\phi) \) [4].

In the next section, we discuss the coefficient bounds of the first and third coefficients of the functions belonging to the classes \(\mathcal{S}_{p,q}^* (\phi) \) and \(\mathcal{C}_{p,q}(\phi) \).

3 Coefficient bounds

In this section, we estimate the coefficient bounds for the coefficients of \(z \) and \(z^2 \) of \((p,q)\)-starlike and \((p,q)\)-convex functions.

First, we need to mention the following lemma [16]:

Lemma 3.1. If \(p(z) = 1 + c_1z + c_2z^2 + \ldots \) is a function with \(\Re(p(z)) > 0 \), then
\[
|c_2 - vc_1^2| \leq \begin{cases} -4v + 2, & \text{if } v \leq 0; \\ 2, & \text{if } 0 \leq v \leq 1; \\ 4v - 2, & \text{if } v \geq 1. \end{cases}
\]

Also, the above upper bound is sharp, and it can be improved as follows when \(0 < v < 1 \):
\[
|c_2 - vc_1^2| + v|c_1|^2 \leq 2 \left(0 < v \leq \frac{1}{2} \right)
\]
and
\[
|c_2 - vc_1^2| + (1 - v)|c_1|^2 \leq 2 \left(\frac{1}{2} \leq v < 1 \right).
\]

Now, we establish the following result for estimation of the coefficient bound for the functions belonging to the class \(\mathcal{S}_{p,q}^* (\phi) \):
Theorem 3.1. Let $\phi(z) = 1 + b_1 z + b_2 z^2 \ldots$ with $b_1 > 0$ and $b_2 \geq 0$. Let

$$\sigma_1 = \frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2(b_2 - b_1)}{(3|p,q| - 1)b_1^2}, \quad (3.4)$$
$$\sigma_2 = \frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2(b_2 + b_1)}{(3|p,q| - 1)b_1^2}, \quad (3.5)$$
$$\sigma_3 = \frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2b_2}{(3|p,q| - 1)b_1^2}. \quad (3.6)$$

If f, given by equation (1.7), belongs to the class $S^*_{p,q}(\phi)$, then

$$|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{b_2}{3|p,q| - 1} + \frac{b_1^2}{(2|p,q| - 1)\mu} \left(\frac{1}{2|p,q| - 1} - \frac{1 - |2|p,q| - 1 - \mu}{2|p,q| - 1} \right) |a_2|^2, & \text{if } \mu \leq \sigma_1; \\
\frac{b_1}{3|p,q| - 1}, & \text{if } \sigma_1 \leq \mu \leq \sigma_2; \\
\frac{b_2}{(2|p,q| - 1)\mu} \left(\frac{1}{2|p,q| - 1} - \frac{1 - |2|p,q| - 1 - \mu}{2|p,q| - 1} \right), & \text{if } \mu \geq \sigma_2.
\end{cases} \quad (3.7)$$

Further, if $\sigma_1 < \mu \leq \sigma_3$, then

$$|a_3 - \mu a_2^2| + \frac{(2|p,q| - 1)\mu}{(3|p,q| - 1)b_1^2} \left(1 - \frac{|3|p,q| - 1 - \mu}{2|p,q| - 1} \right) |a_2|^2 \leq \frac{b_1}{3|p,q| - 1}. \quad (3.8)$$

and if $\sigma_3 \leq \mu < \sigma_2$, then

$$|a_3 - \mu a_2^2| + \frac{(2|p,q| - 1)\mu}{(3|p,q| - 1)b_1^2} \left(1 - \frac{|3|p,q| - 1 - \mu}{2|p,q| - 1} \right) |a_2|^2 \leq \frac{b_1}{3|p,q| - 1}. \quad (3.9)$$

Proof. For $v \leq 0$, equation (2.13) gives

$$\mu \leq \frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2(b_2 - b_1)}{(3|p,q| - 1)b_1^2}.$$

Let $\frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2(b_2 - b_1)}{(3|p,q| - 1)b_1^2} = \sigma_1$, then from the above relation, we have $\mu \leq \sigma_1$.

Let $p(z)$ be a function, given by equation (2.5), with $\Re(p(z)) > 0$ and $f(z)$, given by equation (1.7), be a member of the class $S^*_{p,q}(\phi)$, then equation (2.14) holds. Thus using Lemma 3.1 for $v \leq 0$ in equation (2.14), we get

$$|a_3 - \mu a_2^2| \leq \frac{b_1}{2(|3|p,q| - 1)}(-4v + 2),$$

which on using equation (2.13), gives

$$|a_3 - \mu a_2^2| \leq \frac{b_1}{3|p,q| - 1} \left(\frac{b_2}{b_1} + \frac{b_1}{2|p,q| - 1} \left(1 - \frac{|3|p,q| - 1 - \mu}{2|p,q| - 1} \right) \right), \quad (3.10)$$

where $\mu \leq \sigma_1$.

Simplifying the right hand side of inequality (3.10), we get the first inequality of assertion (3.7).

Again, if we take $0 \leq v \leq 1$, then equation (2.14), gives
\[
\sigma_1 \leq \mu \leq \frac{([2]_{p,q} - 1)b_1^2 + ([2]_{p,q} - 1)^2(b_2 + b_1)}{([3]_{p,q} - 1)b_1^2},
\]
where \(\sigma_1\) is given by equation (3.4).

Let \(\frac{([2]_{p,q} - 1)b_1^2 + ([2]_{p,q} - 1)^2(b_2 - b_1)}{([3]_{p,q} - 1)b_1^2} = \sigma_2\), then from the above relation, we have \(\sigma_1 \leq \mu \leq \sigma_2\).

Now, using Lemma 3.1 for \(0 \leq v \leq 1\) in equation (2.14), we get
\[
|a_3 - \mu a_2^2| \leq \frac{b_1}{[3]_{p,q} - 1},
\]
which gives the second inequality of assertion (3.7).

Next, if we take \(v \geq 1\), then equation (2.13), gives that \(\mu \geq \sigma_2\).

Now, using Lemma 3.1, for \(v \geq 1\) in equation (2.14), we get
\[
|a_3 - \mu a_2^2| \leq \frac{b_1}{2([3]_{p,q} - 1)}(4v - 2),
\]
which on using equation (2.13), gives
\[
|a_3 - \mu a_2^2| \leq \frac{b_1}{3[3]_{p,q} - 1} \left(-\frac{b_2}{b_1} - \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{3[3]_{p,q} - 1 - \mu}{2[2]_{p,q} - 1} \right) \right).
\]
(3.11)

Inequality (3.11) gives the third inequality of assertion (3.7).

Further, if \(0 < v \leq \frac{1}{2}\), then using equation (2.13), we have
\[
0 < \frac{1}{2} \left(1 - \frac{b_2}{b_1} - \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{3[3]_{p,q} - 1 - \mu}{2[2]_{p,q} - 1} \right) \right) \leq \frac{1}{2},
\]
which on simplifying, gives
\[
\sigma_1 < \mu \leq \frac{([2]_{p,q} - 1)b_1^2 + ([2]_{p,q} - 1)^2b_2}{([3]_{p,q} - 1)b_1^2},
\]
(3.12)
where \(\sigma_1\) is given by equation (3.4).

Let \(\frac{([2]_{p,q} - 1)b_1^2 + ([2]_{p,q} - 1)^2b_2}{([3]_{p,q} - 1)b_1^2} = \sigma_3\), then from relation (3.12), we have \(\sigma_1 < \mu \leq \sigma_3\).

Now, using equations (2.10) and (3.4), we get
\[
|a_3 - \mu a_2^2| + (\mu - \sigma_1)|a_2| = |a_3 - \mu a_2^2| + \left(\mu - \frac{([2]_{p,q} - 1)b_1^2 + ([2]_{p,q} - 1)^2b_2}{([3]_{p,q} - 1)b_1^2} \right) \frac{b_1|c_1|^2}{4([2]_{p,q} - 1)^2},
\]
(3.13)
which on using equation (2.14), we get
\[
|a_3 - \mu a_2^2| + (\mu - \sigma_1)|a_2|^2 = \frac{b_1}{2([3]_{p,q} - 1)} \left(|c_2 - vc_1|^2 + \frac{1}{2} \left(1 - \frac{b_2}{b_1} - \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{3[3]_{p,q} - 1 - \mu}{2[2]_{p,q} - 1} \right) \right) |c_1|^2 \right).
\]
Using equation (2.13) in equation (3.14), we get
\[
|a_3 - \mu a_2^2| + (\mu - \sigma_1)|a_2|^2 = \frac{b_1}{[3]_{p,q} - 1} \left(\frac{1}{2} \left(|c_2 - vc_1|^2 + v|c_1|^2 \right) \right).
\]
which in view of inequality (3.2), gives

\[|a_3 - \mu a_2^2| + (\mu - \sigma_1)|a_2|^2 \leq \frac{b_1}{|3|_{p,q} - 1}. \]

(3.15)

Now, using inequality (3.15) in equation (3.13), we get

\[|a_3 - \mu a_2^2| + \left(\mu - \frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2(b_2 - b_1)}{|3|_{p,q} - 1} \right) |a_2|^2 \leq \frac{b_1}{|3|_{p,q} - 1}, \]

where \(\sigma_1 < \mu \leq \sigma_3. \)

Simplifying the above inequality, we obtain the assertion (3.8).

Similarly, if \(\frac{1}{2} < v < 1, \) then using equation (2.13), we get \(\sigma_3 \leq \mu < \sigma_2, \) where \(\sigma_2 \) and \(\sigma_3 \) are given by equations (3.5) and (3.6), respectively.

Now, using equations (2.10) and (3.5), we get

\[|a_3 - \mu a_2^2| + (\sigma_2 - \mu)|a_2|^2 = |a_3 - \mu a_2^2| + \left(\frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2(b_2 + b_1)}{|3|_{p,q} - 1} - \mu \right) \frac{c_1^2}{2|p,q| - 1} \]

(3.16)

Using equation (2.14) in equation (3.16), we get

\[|a_3 - \mu a_2^2| + (\sigma_2 - \mu)|a_2|^2 = \frac{b_1}{2|3|_{p,q} - 1} \left(|c_2 - vc_1|^2 + \frac{1}{2} \left(1 + \frac{b_2}{b_1} + \frac{b_1}{2|p,q| - 1} \left(1 - \frac{|3|_{p,q} - 1}{|3|_{p,q} - 1} \right) \right) |c_1|^2 \right), \]

(3.17)

which, on using equation (2.13), gives

\[|a_3 - \mu a_2^2| + (\sigma_2 - \mu)|a_2|^2 = \frac{b_1}{2|3|_{p,q} - 1} \left(\frac{1}{2} \left(|c_2 - vc_1|^2 + (1 - v)|c_1|^2 \right) \right). \]

(3.18)

Now, since \(\frac{1}{2} < v < 1, \) therefore using inequality (3.3) of Lemma 3.1, equation (3.18) gives

\[|a_3 - \mu a_2^2| + (\sigma_2 - \mu)|a_2|^2 \leq \frac{b_1}{|3|_{p,q} - 1}. \]

(3.19)

Using inequality (3.19) in equation (3.16), we get

\[|a_3 - \mu a_2^2| + \left(\frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2(b_2 + b_1)}{|3|_{p,q} - 1} - \mu \right) |a_2|^2 \leq \frac{b_1}{|3|_{p,q} - 1}, \]

where \(\sigma_3 \leq \mu < \sigma_2. \)

Finally, on simplifying the above inequality, we obtain the assertion (3.9).

Taking \(p = 1 \) in Theorem 3.1, we get the following corollary for the class \(S^*_p(\phi): \)

Corollary 3.1. Let \(\phi(z) = 1 + b_1z + b_2z^2 \ldots \) with \(b_1 > 0 \) and \(b_2 \geq 0. \) Let

\[\sigma_1 = \frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2(b_2 - b_1)}{|3|_{p,q} - 1} \],

(3.20)

\[\sigma_2 = \frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2(b_2 + b_1)}{|3|_{p,q} - 1} \],

(3.21)

\[\sigma_3 = \frac{(2|p,q| - 1)b_1^2 + (2|p,q| - 1)^2b_2}{|3|_{p,q} - 1} \].

(3.22)
If \(f \), given by equation (1.7), belongs to the class \(S^*_p(\phi) \), then

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{b_2}{[3]_q - 1} + \frac{b_1^2}{[2]_q - 1} \left(\frac{1}{[3]_q - 1} - \frac{\mu}{[2]_q - 1} \right), & \text{if } \mu \leq \sigma_1; \\
\frac{b_1}{[3]_q - 1}, & \text{if } \sigma_1 \leq \mu \leq \sigma_2; \\
-\frac{b_2}{[3]_q - 1} - \frac{b_1^2}{[2]_q - 1} \left(\frac{1}{[3]_q - 1} - \frac{\mu}{[2]_q - 1} \right), & \text{if } \mu \geq \sigma_2.
\end{cases}
\] (3.23)

Further, if \(\sigma_1 < \mu \leq \sigma_3 \), then

\[
|a_3 - \mu a_2^2| + \frac{(2)_q - 1)^2}{(3)_q - 1} \left[b_1 - b_2 - \frac{b_1^2}{[2]_q - 1} \left(1 - \frac{[3]_q - 1}{[2]_q - 1} \right) |a_2|^2 \right] \leq \frac{b_1}{[3]_q - 1} \] (3.24)

and if \(\sigma_3 \leq \mu < \sigma_2 \), then

\[
|a_3 - \mu a_2^2| + \frac{(2)_q - 1)^2}{(3)_q - 1} \frac{b_1 + b_2 + \frac{b_1^2}{[2]_q - 1} \left(1 - \frac{[3]_q - 1}{[2]_q - 1} \right) |a_2|^2 \frac{b_1}{[3]_q - 1} \] (3.25)

Next, we obtain the coefficient bound for the functions belonging to the class \(C_{p,q}(\phi) \):

Theorem 3.2. Let \(\phi(z) = 1 + b_1 z + b_2 z^2 \ldots \) with \(b_1 > 0 \) and \(b_2 \geq 0 \). Let

\[
\rho_1 = \frac{[2]_p,q([2]_{p,q} - 1)b_2^2 + ([2]_{p,q}[2]_{p,q} - 1)^2(b_2 - b_1)}{[3]_{p,q}([3]_{p,q} - 1)b_1^2},
\] (3.26)

\[
\rho_2 = \frac{[2]_p,q([2]_{p,q} - 1)b_2^2 + ([2]_{p,q}[2]_{p,q} - 1)^2(b_2 + b_1)}{[3]_{p,q}([3]_{p,q} - 1)b_1^2},
\] (3.27)

\[
\rho_3 = \frac{[2]_p,q([2]_{p,q} - 1)b_2^2 + ([2]_{p,q}[2]_{p,q} - 1)^2b_2}{[3]_{p,q}([3]_{p,q} - 1)b_1^2}.
\] (3.28)

If \(f \), given by equation (1.7), belongs to the class \(C_{p,q}(\phi) \), then

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{b_2}{[3]_{p,q}([3]_{p,q} - 1)} + \frac{b_1^2}{[2]_{p,q} - 1} \left(\frac{1}{[3]_{p,q}([3]_{p,q} - 1)} - \frac{\mu}{[2]_{p,q}([2]_{p,q} - 1)} \right), & \text{if } \mu \leq \rho_1; \\
\frac{b_1}{[3]_{p,q}([3]_{p,q} - 1)}, & \text{if } \rho_1 \leq \mu \leq \rho_2; \\
-\frac{b_2}{[3]_{p,q}([3]_{p,q} - 1)} - \frac{b_1^2}{[2]_{p,q} - 1} \left(\frac{1}{[3]_{p,q}([3]_{p,q} - 1)} - \frac{\mu}{[2]_{p,q}([2]_{p,q} - 1)} \right), & \text{if } \mu \geq \rho_2.
\end{cases}
\] (3.29)

Further, if \(\rho_1 < \mu \leq \rho_3 \), then

\[
|a_3 - \mu a_2^2| + \frac{[2]_{p,q}([2]_{p,q} - 1)^2}{[3]_{p,q}([3]_{p,q} - 1)b_1^2} \left[b_1 - b_2 - \frac{b_1^2}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q}([3]_{p,q} - 1)}{[2]_{p,q}([2]_{p,q} - 1)} \mu \right) |a_2|^2 \right] \leq \frac{b_1}{[3]_{p,q}([3]_{p,q} - 1)},
\] (3.30)

and if \(\rho_3 \leq \mu < \rho_2 \), then

\[
|a_3 - \mu a_2^2| + \frac{[2]_{p,q}([2]_{p,q} - 1)^2}{[3]_{p,q}([3]_{p,q} - 1)b_1^2} \left[b_1 + b_2 + \frac{b_1^2}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q}([3]_{p,q} - 1)}{[2]_{p,q}([2]_{p,q} - 1)} \mu \right) |a_2|^2 \right] \leq \frac{b_1}{[3]_{p,q}([3]_{p,q} - 1)}.\] (3.31)
Proof. For \(v \leq 0 \), equation (2.23) gives
\[
\mu \leq \frac{[2]_{p,q} ([2]_{p,q} - 1) b_1^2 + ([2]_{p,q} [2]_{p,q} - 1)^2 (b_2 - b_1)}{[3]_{p,q} ([3]_{p,q} - 1) b_1^2}.
\]
Let \([2]_{p,q} ([2]_{p,q} - 1) b_1^2 + ([2]_{p,q} [2]_{p,q} - 1)^2 (b_2 - b_1) = \rho_1 \), then from the above relation we have \(\mu \leq \rho_1 \).

Let \(p(z) \) be a function given by equation (2.5) with \(\Re (p(z)) > 0 \) and \(f(z) \), given by equation (1.7), be a member of the class \(C_{p,q}(\phi) \), then equation (2.24) holds. Thus, using Lemma 3.1, for \(v \leq 0 \), in equation (2.24), we get
\[
|a_3 - \mu a_2^2| \leq \frac{b_1}{2 [3]_{p,q} ([3]_{p,q} - 1)} (-4v + 2),
\]
which on using equation (2.23), gives
\[
|a_3 - \mu a_2^2| \leq \frac{b_1}{[3]_{p,q} ([3]_{p,q} - 1) ([2]_{p,q} ([2]_{p,q} - 1) \mu)} \left(\frac{b_2}{b_1} + \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q} ([3]_{p,q} - 1)}{[2]_{p,q} ([2]_{p,q} - 1) \mu} \right) \right), \tag{3.32}
\]
where \(\mu \leq \rho_1 \).

Inequality (3.32) gives the first inequality of assertion (3.29).

Again, if we take \(0 \leq v \leq 1 \), then equation (2.23) gives
\[
\rho_1 \leq \mu \leq \frac{[2]_{p,q} ([2]_{p,q} - 1) b_1^2 + ([2]_{p,q} [2]_{p,q} - 1)^2 (b_2 + b_1)}{[3]_{p,q} ([3]_{p,q} - 1) b_1^2}.
\]
Let \([2]_{p,q} ([2]_{p,q} - 1) b_1^2 + ([2]_{p,q} [2]_{p,q} - 1)^2 (b_2 + b_1) = \rho_2 \), then \(\rho_1 \leq \mu \leq \rho_2 \), where \(\rho_1 \) is given by equation (3.26).

Now, using Lemma 3.1, for \(0 \leq v \leq 1 \), in equation (2.24), we get
\[
|a_3 - \mu a_2^2| \leq \frac{b_1}{[3]_{p,q} ([3]_{p,q} - 1)},
\]
which gives the second inequality of assertion (3.29).

Next, if we take \(v \geq 1 \), then equation (2.23) gives that \(\mu \geq \rho_2 \).

Now, using Lemma 3.1, for \(v \geq 1 \) in equation (2.24), we get
\[
|a_3 - \mu a_2^2| \leq \frac{|b_1|}{2 [3]_{p,q} ([3]_{p,q} - 1)} (4v - 2),
\]
which on using equation (2.23) gives
\[
|a_3 - \mu a_2^2| \leq \frac{b_1}{[3]_{p,q} ([3]_{p,q} - 1)} \left(-\frac{b_2}{b_1} - \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q} ([3]_{p,q} - 1)}{[2]_{p,q} ([2]_{p,q} - 1) \mu} \right) \right), \tag{3.33}
\]
where \(\mu \geq \rho_2 \).

Simplifying the right hand side of inequality (3.33), we get the third inequality of assertion (3.29).

Further, if \(0 < v \leq \frac{1}{2} \), then using equation (2.23), we have
\[
0 < \frac{1}{2} \left(1 - \frac{b_2}{b_1} - \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q} ([3]_{p,q} - 1)}{[2]_{p,q} ([2]_{p,q} - 1) \mu} \right) \right) \leq \frac{1}{2},
\]
which on simplifying, gives

$$\rho_1 < \mu \leq \frac{[2]_{p,q}^2([2]_{p,q} - 1)b_1^2 + ([2]_{p,q}[2]_{p,q} - 1)^2b_2}{[3]_{p,q}([3]_{p,q} - 1)b_1^2}. \quad (3.34)$$

Let \(\frac{[2]_{p,q}^2([2]_{p,q} - 1)b_1^2 + ([2]_{p,q}[2]_{p,q} - 1)^2b_2}{[3]_{p,q}([3]_{p,q} - 1)b_1^2} = \rho_3 \), then from (3.34), we have \(\rho_1 < \mu \leq \rho_3 \), where \(\rho_1 \) is given by (3.26).

Now, using equations (2.20) and (3.26), we get

$$|a_3 - \mu a_2^2| + (\mu - \rho_1)|a_2|^2 = |a_3 - \mu a_2^2| + \left(\mu - \frac{[2]_{p,q}^2([2]_{p,q} - 1)b_1^2 + ([2]_{p,q}[2]_{p,q} - 1)^2(b_2 - b_1)}{[3]_{p,q}([3]_{p,q} - 1)b_1^2} \right) \frac{b_1^2|c_1|^2}{4[2]_{p,q}([2]_{p,q} - 1)^2}, \quad (3.35)$$

which on using equation (2.24), we get

$$|a_3 - \mu a_2^2| + (\mu - \rho_1)|a_2|^2 = b_1 \frac{1}{2[3]_{p,q}([3]_{p,q} - 1)} \left(|\epsilon_2 - v\epsilon_1|^2 + \frac{1}{2} \left(1 - \frac{b_2}{b_1} \right) \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q}([3]_{p,q} - 1)}{[2]_{p,q}([2]_{p,q} - 1)\mu} \right) |c_1|^2 \right), \quad (3.36)$$

Again, using equation (2.23) in equation (3.36), we have

$$|a_3 - \mu a_2^2| + (\mu - \rho_1)|a_2|^2 = b_1 \frac{1}{2[3]_{p,q}([3]_{p,q} - 1)} \left(|\epsilon_2 - v\epsilon_1|^2 + v|c_1|^2 \right), \quad (3.37)$$

which in view of inequality (3.2) gives

$$|a_3 - \mu a_2^2| + (\mu - \rho_1)|a_2|^2 \leq b_1 \frac{1}{2[3]_{p,q}([3]_{p,q} - 1)}. \quad (3.38)$$

Now, using equation (2.20) and inequality (3.37) in equation (3.35), we get

$$|a_3 - \mu a_2^2| + \left(\mu - \frac{[2]_{p,q}^2([2]_{p,q} - 1)b_1^2 + ([2]_{p,q}[2]_{p,q} - 1)^2(b_2 - b_1)}{[3]_{p,q}([3]_{p,q} - 1)b_1^2} \right) |a_2|^2 \leq b_1 \frac{1}{[3]_{p,q}([3]_{p,q} - 1)}. \quad (3.39)$$

Simplifying the above inequality, we obtain the assertion (3.30).

Similarly, if \(\frac{1}{2} \leq v < 1 \), then using equation (2.23), we get \(\rho_3 < \mu < \rho_2 \).

Now, using equations (2.20) and (3.27), we get

$$|a_3 - \mu a_2^2| + (\rho_2 - \mu)|a_2|^2 = \frac{|a_3 - \mu a_2^2| + \left(\frac{[2]_{p,q}^2([2]_{p,q} - 1)b_1^2 + ([2]_{p,q}[2]_{p,q} - 1)^2(b_2 + b_1)}{[3]_{p,q}([3]_{p,q} - 1)b_1^2} - \mu \right) \frac{b_1^2|c_1|^2}{4[2]_{p,q}([2]_{p,q} - 1)^2}}{2[3]_{p,q}([3]_{p,q} - 1)} \left(|\epsilon_2 - v\epsilon_1|^2 + \frac{1}{2} \left(1 + \frac{b_2}{b_1} \right) \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q}([3]_{p,q} - 1)}{[2]_{p,q}([2]_{p,q} - 1)\mu} \right) |c_1|^2 \right), \quad (3.38)$$

Using equation (2.24) in equation (3.38) and then simplifying, we get

$$|a_3 - \mu a_2^2| + (\rho_2 - \mu)|a_2|^2 = b_1 \frac{1}{2[3]_{p,q}([3]_{p,q} - 1)} \left(|\epsilon_2 - v\epsilon_1|^2 + \frac{1}{2} \left(1 + \frac{b_2}{b_1} \right) \frac{b_1}{[2]_{p,q} - 1} \left(1 - \frac{[3]_{p,q}([3]_{p,q} - 1)}{[2]_{p,q}([2]_{p,q} - 1)\mu} \right) |c_1|^2 \right), \quad (3.39)$$

which on using equation (2.23), gives

$$|a_3 - \mu a_2^2| + (\rho_2 - \mu)|a_2|^2 = \frac{|b_1|}{2[3]_{p,q}([3]_{p,q} - 1)} \left(\frac{1}{2} \left(|\epsilon_2 - v\epsilon_1|^2 + (1 - v)|c_1|^2 \right) \right). \quad (3.39)$$
Now, since $\frac{1}{2} \leq v < 1$, therefore using inequality (3.3) of Lemma 3.1 in equation (3.39), we get
\[
|a_3 - \mu a_2^2| + (\rho_2 - \mu)|a_2|^2 \leq \frac{b_1}{|3|_{p,q}(|3|_{p,q} - 1)}.
\] (3.40)

Using inequality (3.40) in equation (3.38), gives
\[
|a_3 - \mu a_2^2| + \left(\frac{2|q|(|2|q - 1)b_1^2 + (|2|q^2 - 1)^2(b_2 - b_1)}{|3|_{p,q}(|3|_{p,q} - 1)b_1^2} - \mu\right)|a_2|^2 \leq \frac{b_1}{|3|_{p,q}(|3|_{p,q} - 1)},
\]
where $\rho_3 \leq \mu < \rho_2$.

Finally, on simplifying the above inequality, we obtain assertion (3.31).

For $p = 1$, Theorem 2.2, gives the following corollary for the class $C_q(\phi)$:

Corollary 3.2. Let $\phi(z) = 1 + b_1 z + b_2 z^2 \ldots$ with $b_1 > 0$ and $b_2 \geq 0$. Let
\[
\rho_1 = \frac{|2|q|(|2|q - 1)b_1^2 + (|2|q^2 - 1)^2(b_2 - b_1)}{|3|_{q}(|3|_{q} - 1)b_1^2},
\]
\[
\rho_2 = \frac{|2|q|(|2|q - 1)b_1^2 + (|2|q^2 - 1)^2(b_2 + b_1)}{|3|_{q}(|3|_{q} - 1)b_1^2},
\]
\[
\rho_3 = \frac{|2|q|(|2|q - 1)b_1^2 + (|2|q^2 - 1)^2b_2}{|3|_{p,q}(|3|_{p,q} - 1)b_1^2}.
\]

If f, given by equation (1.7), belongs to the class $C_q(\phi)$, then
\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{b_2}{|3|_{q}(|3|_{q} - 1)} + \frac{b_1^2}{|2|_q - 1} \left(\frac{1}{|3|_{q}(|3|_{q} - 1)} - \frac{\mu}{|2|_q^2(|2|_q - 1)}\right), & \text{if } \mu \leq \rho_1; \\
\frac{b_1}{|3|_{q}(|3|_{q} - 1)}, & \text{if } \rho_1 \leq \mu \leq \rho_2; \\
\frac{-b_2}{|3|_{q}(|3|_{q} - 1)} + \frac{b_1^2}{|2|_q - 1} \left(\frac{1}{|3|_{q}(|3|_{q} - 1)} - \frac{\mu}{|2|_q^2(|2|_q - 1)}\right), & \text{if } \mu \geq \rho_2.
\end{cases}
\] (3.44)

Further, if $\rho_1 < \mu \leq \rho_3$, then
\[
|a_3 - \mu a_2^2| + \frac{|2|q|(|2|q - 1)^2}{|3|_{q}(|3|_{q} - 1)b_1^2} \left(b_1 - b_2 - \frac{b_1^2}{|2|_q - 1} \left(1 - \frac{|3|_{q}(|3|_{q} - 1)}{|2|_q^2(|2|_q - 1)}\right)\right)|a_2|^2 \leq \frac{b_1}{|3|_{q}(|3|_{q} - 1)}.\] (3.45)

and if $\rho_3 \leq \mu < \rho_2$, then
\[
|a_3 - \mu a_2^2| + \frac{|2|q|(|2|q - 1)^2}{|3|_{q}(|3|_{q} - 1)b_1^2} \left(b_1 + b_2 + \frac{b_1^2}{|2|_q - 1} \left(1 - \frac{|3|_{q}(|3|_{q} - 1)}{|2|_q^2(|2|_q - 1)}\right)\right)|a_2|^2 \leq \frac{b_1}{|3|_{q}(|3|_{q} - 1)}.\] (3.46)

In the next section, we discuss some applications of the results, established in Sections 1. and 2. .

4 Application

We recall that the Bernardi integral operator F_c is given by [2]:
\[
F_c(f(z)) = \frac{1 + c}{z^c} \int_0^z t^{c-1} f(t)dt \quad (f \in \mathcal{A}, \ c > -1).
\]
Now, in view of above equation, we introduce the \((p,q)\)-Bernardi integral operator \(L(z)\) as:

\[
L(z) := F_{c,p,q}(f(z)) = \frac{[1 + c]_{p,q}}{z^\beta} \int_0^z t^{e-1} f(t) d_{p,q} t \quad c = 0, 1, 2, 3, \ldots \quad (4.1)
\]

Let \(f \in A\), then using equations (1.6) and (1.8), we obtain the following power series for the function \(L\) in the open unit disc \(U = \{ z \in \mathbb{C} : |z| < 1 \}:

\[
L(z) = z + \sum_{n=2}^\infty \frac{[1 + c]_{p,q}}{[n + c]_{p,q}} a_n z^n \quad (c = 1, 2, 3, \ldots; 0 < q < p \leq 1; f \in A). \quad (4.2)
\]

It is clear that \(L(z)\) is analytic in open disc \(U\).

We note that, by taking \(p = 1\) in equation (4.1), we get \(q\)-Bernardi integral operator [18].

Let

\[
L_n = \frac{[1 + c]_{p,q}}{[n + c]_{p,q}} \quad n \geq 1. \quad (4.3)
\]

Now, applying the Theorem 2.1 to the function \(L(z)\), defined by equation (4.2), we get the following application of the theorem:

I. Let \(\phi(z) = 1 + b_1 z + b_2 z^2 + \ldots\) with \(b_1 \neq 0\). If \(\mathcal{L}\), given by equation (4.3), belongs to the class \(\mathcal{S}_{p,q}^*(\phi)\), then

\[
|a_3 - \mu a_2| \leq \frac{|b_1|}{|3|_{p,q} L_3 - 1} \max \left\{ \frac{b_3}{b_1}, \frac{b_2}{b_1} + \frac{b_1}{2|q|_{p,q} L_2 - 1} \right\} \left(1 - \frac{|3|_{p,q} L_3 - 1}{|2|_{p,q} L_2 - 1} \right) \phi^2(z),
\]

where \(L_2\) and \(L_3\) are given by equation (4.3), \(b_1, b_2, \ldots \in \mathbb{R}, \mu \in \mathbb{C}, 0 < q < p \leq 1\).

Next, applying the Theorem 2.2 to the function \(L(z)\), defined by equation (4.2), we get the following application of the theorem:

II. Let \(\phi(z) = 1 + b_1 z + b_2 z^2 + \ldots\) with \(b_1 \neq 0\). If \(\mathcal{L}\), given by equation (4.2), belongs to the class \(\mathcal{C}_{p,q}^*(\phi)\), then

\[
|a_3 - \mu a_2| \leq \frac{|b_1|}{|3|_{p,q} L_3 (|2|_{p,q} L_2 - 1)} \max \left\{ \frac{b_3}{b_1}, \frac{b_2}{b_1} + \frac{b_1}{2|q|_{p,q} - 1} L_2 \right\} \left(1 - \frac{|3|_{p,q} L_3 (|3|_{p,q} L_3 - 1)}{|2|_{p,q} L_2 (|2|_{p,q} L_2 - 1)} \right) \phi(z),
\]

where \(L_2\) and \(L_3\) are given by equation (4.3), \(b_1, b_2, \ldots \in \mathbb{R}, \mu \in \mathbb{C}, 0 < q < p \leq 1\).

Further, applying the Theorem 3.1 to the function \(L(z)\), defined by equation (4.2), we get the following application of the theorem:

III. Let \(\phi(z) = 1 + b_1 z + b_2 z^2 + \ldots\) with \(b_1 > 0\) and \(b_2 \geq 0\). Let

\[
\sigma_1 = \frac{([2]_{p,q} L_2 - 1)b_2^2 + ([2]_{p,q} L_2 - 1)^2(b_2 - b_1)}{([3]_{p,q} L_3 - 1)b_1^2},
\]

\[
\sigma_2 = \frac{([2]_{p,q} L_2 - 1)b_2^2 + ([2]_{p,q} L_2 - 1)^2(b_2 + b_1)}{([3]_{p,q} L_3 - 1)b_1^2},
\]

\[
\sigma_3 = \frac{([2]_{p,q} L_2 - 1)b_2^2 + ([2]_{p,q} L_2 - 1)^2b_2}{([3]_{p,q} L_3 - 1)b_1^2}.
\]
If L, given by equation (4.2), belongs to the class $S_{p,q}^*(\phi)$, then

$$|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{b_2}{|3|_{p,q} - 1} + \frac{b_2^2}{|2|_{p,q} - 1} \left(\frac{1}{|3|_{p,q} - 1} - \frac{\mu}{|2|_{p,q} - 1} \right), & \text{if } \mu \leq \sigma_1; \\
\frac{b_1}{|3|_{p,q} - 1}, & \text{if } \sigma_1 \leq \mu \leq \sigma_2; \\
\frac{-b_2}{|3|_{p,q} - 1} - \frac{b_2^2}{|2|_{p,q} - 1} \left(\frac{1}{|3|_{p,q} - 1} - \frac{\mu}{|2|_{p,q} - 1} \right), & \text{if } \mu \geq \sigma_2.
\end{cases}$$

(4.4)

Further, if $\sigma_1 < \mu \leq \sigma_3$, then

$$|a_3 - \mu a_2^2| \leq \left(\frac{2|p,q|L_2 - 1}{|3|_{p,q}L_3 - 1} \frac{1}{b_2^2} \left(1 - \frac{|3|_{p,q}L_3 - 1}{|2|_{p,q}L_2 - 1} \frac{1}{\mu} \right) \right) |a_2|^2 \leq \frac{b_1}{|3|_{p,q}L_3 - 1},$$

and if $\sigma_3 \leq \mu < \sigma_2$, then

$$|a_3 - \mu a_2^2| \leq \left(\frac{2|p,q|L_2 - 1}{|3|_{p,q}L_3 - 1} \frac{1}{b_2^2} \left(1 - \frac{|3|_{p,q}L_3 - 1}{|2|_{p,q}L_2 - 1} \frac{1}{\mu} \right) \right) |a_2|^2 \leq \frac{b_1}{|3|_{p,q}L_3 - 1},$$

where L_2 and L_3 are given by equation (4.3).

Finally, applying the Theorem 3.1 to the function $L(z)$, defined by equation (4.2), we get the following application of the theorem:

IV. Let $\phi(z) = 1 + b_1 z + b_2 z^2 \ldots$ with $b_1 > 0$ and $b_2 \geq 0$. Let

$$\rho_1 = \frac{2|p,q|(2|p,q|L_2 - 1)b_2^2 + (2|p,q|L_2|2|p,q|L_2 - 1)^2(b_2 - b_1)}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)b_2^2},$$

$$\rho_2 = \frac{2|p,q|L_2(2|p,q|L_2 - 1)b_2^2 + (2|p,q|L_2|2|p,q|L_2 - 1)^2(b_2 + b_1)}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)b_2^2},$$

$$\rho_3 = \frac{2|p,q|L_2(2|p,q|L_2 - 1)b_2^2 + (2|p,q|L_2|2|p,q|L_2 - 1)^2b_2}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)b_2^2}.$$

If L, given by equation (4.2), belongs to the class $C_{p,q}^*(\phi)$, then

$$|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{b_2}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)} + \frac{b_2^2}{|2|_{p,q}L_2 - 1} \left(\frac{1}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)} - \frac{\mu}{|2|_{p,q}L_2(|2|_{p,q}L_2 - 1)} \right), & \text{if } \mu \leq \rho_1; \\
\frac{b_1}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)}, & \text{if } \rho_1 \leq \mu \leq \rho_2; \\
\frac{-b_2}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)} - \frac{b_2^2}{|2|_{p,q}L_2 - 1} \left(\frac{1}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)} - \frac{\mu}{|2|_{p,q}L_2(|2|_{p,q}L_2 - 1)} \right), & \text{if } \mu \geq \rho_2.
\end{cases}$$

Further, if $\rho_1 < \mu \leq \rho_3$, then

$$|a_3 - \mu a_2^2| \leq \left(\frac{2|p,q|L_2(2|p,q|L_2 - 1)^2}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)b_2^2} \left(b_1 - b_2 - \frac{b_2^2}{|2|_{p,q}L_2 - 1} \left(1 - \frac{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)}{|2|_{p,q}L_2(|2|_{p,q}L_2 - 1)} \frac{1}{\mu} \right) \right) \right) |a_2|^2 \leq \frac{b_1}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)}.$$

and if $\rho_3 \leq \mu < \rho_2$, then

$$|a_3 - \mu a_2^2| \leq \left(\frac{2|p,q|L_2(2|p,q|L_2 - 1)^2}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)b_2^2} \left(b_1 + b_2 + \frac{b_2^2}{|2|_{p,q}L_2 - 1} \left(1 - \frac{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)}{|2|_{p,q}L_2(|2|_{p,q}L_2 - 1)} \frac{1}{\mu} \right) \right) \right) |a_2|^2 \leq \frac{b_1}{|3|_{p,q}L_3(|3|_{p,q}L_3 - 1)},$$

where L_2 and L_3 are given by equation (4.3).
5 Conclusion

In our results, by using the \((p,q)\)-derivative operator, the generalized classes of \((p,q)\)-starlike and \((p,q)\)-convex functions were introduced which are a generalization of starlike and convex functions. Also, the \((p,q)\)-Bernardi integral operator for analytic functions were defined in the open unit disc \(U = \{z \in \mathbb{C} : |z| < 1\}\). In our main results, the Fekete-Szegő inequalities. For the validity of our results can be applicable for our introduced \((p,q)\)-Bernardi integral operator. Moreover, Some special cases of the results were established. Further, certain applications of the main results for the \((p,q)\)-starlike and \((p,q)\)-convex functions were obtained by applying the \((p,q)\)-Bernardi integral operator.

References

[1] Aldweby, H.; Darus, M., Coefficient estimates of classes of \(Q\)-starlike and \(Q\)-convex functions, Advanced Studies in Contemporary Mathematics 26,1,2016, 21-26.

[2] Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135,2016,429-446.

[3] Bukweli-Kyemba, J.D.; Honkononou, M.N., Quantum deformed algebras: coherent states and special functions, arXiv preprint arXiv:1301.0116, 2013.

[4] Cetinkaya, A.; Kahramaner, Y.; Polatoglu, Y., Fekete-Szegő inequalities for \(q\)-starlike and \(q\)-convex functions, Acta Universitatis Apulensis 53, 2018, 55-64.

[5] Chakrabarti, R.; Jagannathan, R. A (p, q)-oscillator realization of two-parameter quantum, Journal of Physics A: Mathematical and General 24, 13, 1991, L711.

[6] Darus, M.; Thomas, D. K., On the Fekete-Szegő problem for close-to-convex functions, Math. Japon. 47, 1998, 125-132.

[7] Fekete, M.; Szegő, G., Eine Bemerkung über ungerade schlichte Funktionen, Journal of the London Mathematical Society 1, 2, 1933, 85-89.

[8] Frasin, B. A.; Darus, M., On the Fekete-Szegő problem, Int. J. Math. Math. Sci. 24, 2000, 577-581.

[9] Frasin, B.; Ramachandran, C.; Soupramanien, T., New subclasses of analytic function associated with \(q\)-difference operator, European Journal of Pure and Applied Mathematics 10, 2, 2017, 348-362.

[10] Ismail, M. E. H.; Merkes, E.; Styer, D., A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal

[11] Jackson, F. H., On \(q\)-definite integrals, Quart. J. Pure Appl. Math. 41, 1910, 193-203.

[12] Jackson, F. H. \(q\)-difference equations. Am. J. Math. 32, 305-4, 1910.

[13] Kanas, S.; Darwish, H. E., Fekete-Szegő problem for starlike and convex functions of complex order, Appl. Math. Lett. 23, 2010, 777-782.

[14] Kang, S. M.; Rafiq, A.; Acu, A. M.; Faisal, A.; Young Cheol, K., Some approximation properties of \((p,q)\)-Bernstein operators, Journal of Inequalities and Applications 1, 2016, 169.

[15] Mahmood, S.; Ahmad, Q. Z.; Srivastava, H. M.; Khan, N.; Khan, B.; Tahir, M., A certain subclass of meromorphically \(q\)-starlike functions associated with the Janowski functions, Journal of Inequalities and Applications 1, 2019, 88.

[16] Ma, W.; Minda, D., A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin 1992, 157-169.

[17] Miller, S. S.; Mocanu, P. T., Differential subordinations: theory and applications, CRC Press, 2000.

[18] Noor, K. I.; Riaz, S.; Noor, M. A., On \(q\)-Bernardi Integral Operator, TWMS J. Pure Appl. Math 8, 1, 2017, 3-11.
[19] Sadjang, P. N., On the fundamental theorem of \((p, q)\)-calculus and some \((p, q)\)-Taylor formulas, arXiv preprint arXiv:1309.3934 2013.

[20] Seoudy, T. M.; Aouf, M. N.; Coefficient estimates of new classes of \(q\)-starlike and \(q\)-convex functions of complex order J. Math. Inequal 10,1, 2016, 135-145.

[21] Seoudy, T. M.; Aouf, M. K. Coefficient estimates of new classes of \(q\)-starlike and \(q\)-convex functions of complex order, J. Math. Inequal 10,1, 2016, 135-145.

[22] Sofonea, D. F., Some new properties in \(q\)-calculus, Gen. Math 16,1, 2008, 47-54.

[23] Srivastava, H. M.; Tahir, M.; Khan, B.; Ahmad, Q. Z.; Khan, N., Some general classes of \(q\)-starlike functions associated with the Janowski functions, Symmetry 11,2, 2019, 292.

[24] Srivastava, H. M.; Shigeyoshi, Owa., Univalent functions, fractional calculus, and their applications, Ellis Horwood; New York; Toronto: Halsted Press 1989.

[25] Srivastava, H. M.; Mishra, A. K.; Das, M. K., The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44, 2001, 145-163.

[26] Srivastava, H. M., Some generalizations and basic (or \(q\)-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci, 3, 2011, 390-444.

[27] Srivastava, H. M.; Bansal, D., Close-to-convexity of a certain family of \(q\)-Mittag-Leffler functions, J. Nonlinear Var. Anal. 19,1, 2017, 61.

[28] Tang, H.; Srivastava, H. M.; Sivasubramanian, S.; Gurusamy, P., The Fekete-Szegö functional problems for some subclasses of \(m\)-fold symmetric bi-univalent functions, J. Math. Inequal 10, 2016, 1063-1092.

[29] Tuncer, A.; Ali, A.; Syed Abdul, M., On Kantorovich modification of \((p, q)\)-Baskakov operators, Journal of Inequalities and Applications 1, 2016, 98.

[30] Uçar, H. E. Ö.; Coefficient inequality for \(q\)-starlike functions; Applied Mathematics and Computation 276, 2016, 122-126.