Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors

Junshuang Zhou*, Na Li*, Faming Gao, Yufeng Zhao, Li Hou & Ziming Xu

Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.

Electrochemical capacitors (EC) have received tremendous interest due to their high potential to satisfy the urgent demand in many advanced applications. The development of new electrode materials is considered to be the most promising approach to enhance the EC performance substantially. Herein, we present a high-capacity capacitor material based on vertically-aligned BC_N nanotube arrays (VA-BC_NNTAs) synthesized by low temperature solvothermal route. The obtained VA-BC_NNTAs display the good aligned nonbuckled tubular structure, which could indeed advantageously enhance capacitor performance. VA-BC_NNTAs exhibit an extremely high specific capacitance, 547 F g⁻¹, which is about 2–6 times larger than that of the presently available carbon-based materials. Meanwhile, VA-BC_NNTAs maintain an excellent rate capability and high durability. All these characteristics endow VA-BC_NNTAs an alternative promising candidate for an efficient electrode material for electrochemical capacitors (EC).

Much more consideration of energy conservation and environment protection brings about urgent demands on clean, sustainable and renewable resources. However, most of the renewable energy (e.g. solar and wind power) is intermittent and cannot meet the needs for casual use. This situation demands energy storage systems to store the electricity generated from renewable sources. Batteries and electrochemical capacitors emerge at this moment. However, future systems ranging from portable systems to automotive applications and large industrial equipments need a storage device with the capability to obtain higher energy and power density. EC have attracted great attention very recently. They have a higher power density, quicker charge/discharge rate, and longer life-cycle compared with batteries. EC are expected to be an important candidate in complementing or replacing batteries in the energy storage field. Consequently, many governments and enterprises have invested tremendous amounts of time and money into exploring, researching, and developing EC technologies.

To meet the higher requirements of future systems, the performance of EC should be improved substantially. One of the most intensive approaches is the development of new electrode materials. In recent years, the huge progress in nanoscience and nanotechnology has provided an impetus for the development of new supercapacitor electrode structures. Many materials have been investigated as the electrode materials in supercapacitors, including transition metal oxides, carbonaceous materials, and conducting polymers. Properties of electrode materials play an important role in determining the performances of the supercapacitors. Carbon materials, which possess stable physicochemical properties, high surface areas, good conductivity, and low cost, have been commercially applied in EC for years. Even so, in spite of their large specific surface areas for charge storage, the EC performance cannot be enhanced illimitably. It is because the charges physically stored in porous electrode layers are limited, and the electrical conductivity suffers from a decrease with increasing porosity. Therefore, a new type of nanomaterial with good electrical conductivity and superior EC performance are highly desirable. The supercapacitor performance can also be enhanced by chemical functionalization of carbon materials with various heteroatoms, which could provide redox characteristics for improved pseudocapacitance. Recent studies have shown that N and B co-doping of carbon materials could enhance its specific capacitance due to a synergistic pseudocapacitive effect. Herein, we report an unusually high capacitance (547 F g⁻¹ at the current density of 0.2 A g⁻¹ in 6.0 M aqueous KOH electrolyte) for our newly developed vertically-aligned BC_N nanotube arrays (VA-BC_NNTAs) by simple low temperature solvothermal route without post-processing. The well-defined aligned pore channels combining favorable polar bond structure make VA-BC_NNTAs exhibit superior ability for EC technologies. The aligned morphology of VA-BC_NNTAs could effectively facilitate the transportation of electrolyte ions, and the nonbuckled tubular structure guarantees the large surface area to ensure abundant...
electrolyte ions transport during the charge/discharge process. Both the polar bond structure of VA-BC$_2$NNTAs and the aligned nonbuckled hollow tube structure could contribute to the high specific capacitance for VA-BC$_2$NNTAs. Compared with the nonaligned BC$_2$N nanotubes (BC$_2$NNTs) and vertically-aligned carbon nanotubes (VA-CNTs) with nonpolar bond, VA-BC$_2$NNTAs show the highest specific capacitance with an excellent rate capability and high durability, and thus are attractive as electrode materials for EC applications.

Scanning electron microscopy (SEM) image of as-synthesized VA-BC$_2$NNTAs was shown in Figure 1a. It clearly exhibits the highly ordered 3D array structures and a very good alignment of BC$_2$N nanotube arrays with high packing densities. Meanwhile, SEM image of the resulting electrode (see Supplementary Fig. S1a online) reveals that the material in the final electrode is still aligned BC$_2$N nanotubes, and the mean free path length of the ions (ca. 9.5 μm) is much longer than the distance between nanotubes. Selected area electron diffraction (SAED) pattern recorded from VA-BC$_2$NNTAs confirms their high crystallinity (Figure 1b). The values of SAED pattern correspond to (002), (100), and (110) planes of BC$_2$N structure, which are fairly consistent with the theoretical XRD pattern (JCPDS file no. 52–0233). High-resolution transmission electron microscopy (HRTEM) image of an individual BC$_2$N nanotube is shown in Figure 1c. The lattice spacing is 0.323 nm, which is consistent with the (002) lattice planes of BC$_2$N. Both HRTEM and SAED patterns confirm that the composition of the products is BC$_2$N. The SEM images for the non-aligned BC$_2$N nanotubes (BC$_2$NNTs) and the corresponding resulting electrode can be found as Supplementary Fig. S2a, and Fig. S1b online.

TEM image of an individual BC$_2$N nanotube (Figure 1e) reveals that the VA-BC$_2$NNTAs have clean and smooth surfaces with the straight nonbuckled hollow tube structure, which is in contrast to the previously reported bamboo-like structures of BCN nanotubes$^{18–24}$, but in line with the single-wall BCN nanotubes obtained via bias-assisted hot filament CVD route25. The straight hollow tube geometry was also confirmed by a top-view SEM image shown in Figure 1d, from which can be seen the straight nonbuckled tubular structure along the nanotube length. From the research results so far reported, most directly synthesized BCN nanotubes exhibit bamboo-like structure$^{18–24}$. In particular interest, for the products obtained by our simple method, VA-BC$_2$NNTAs display a characteristic feature of the smooth hollow cores without transverse layers shown in Figure 1d,e. This structure is noteworthy because it could indeed advantageously enhance capacitor performance (see below).

In order to study the distribution of B, C, and N species in VA-BC$_2$NNTAs, the energy-dispersive X-ray (EDX) spectroscopy elemental mapping of VA-BC$_2$NNTAs were carried out. Figure 1f–i shows a low-magnified SEM image of VA-BC$_2$NNTAs, as well as elemental maps, representing B, C, and N, respectively. The elemental mapping of two single BC$_2$N nanotubes (see Supplementary Fig. S3 online) reveals that B, C, and N species are homogeneously distributed in an individual BC$_2$N nanotube, thus we can conclude that VA-BC$_2$NNTAs possess a consistent B-C-N structure. The presence of B, C, and N in the grown nanotubes was confirmed by EELS analysis of the K-edges of B, C, and N on the different parts of a single nanotube, shown in Figure 2. All EELS exhibit
ionisation edges at ca. 191, 283 and 398 eV, corresponding to the K-shell of B, C and N, respectively. Two characteristic peaks at 283 and 293 eV for C K-edge confirm the presence of graphitic carbon in the nanotube. These two peaks are attributed to a 1s-π* transition and a series of 1s-σ* transitions, respectively. The defined π* and σ* fine structure features of the C K-edge are signs of well-graphitized sp²-bonding carbon networks. The B and N K-edge signals also show a discernible π* peak as well as a σ* band. It indicates that the B and N atoms are in the same sp²-hybridized state as their C counterparts. The low-energy peak (191 eV) for B K-edge can be accounted for B bonded to C, and the high-energy peak (198 eV) originates from B bonded to N. These results clearly revealed that the resultant nanotubes are made up of B, C, and N, and the EELS obtained from different parts of a single nanotube are almost the same, indicating VA-BC₂NNTAs with the homogeneous distribution of B, C, and N species.

The chemical composition of VA-BC₂NNTAs was determined quantitatively from EELS. For EELS elemental quantification, among the chemically bonded C, B, and N atoms, the C content of VA-BC₂NNTAs (55%) dominates over B (19%) and N (26%), the overall stoichiometry reveals the local chemical composition, B₁₉C₅₅N₂₆, of the ternary BCN compound. The ratio of B, C and N is approximately constant with the ratio of 1 : 2 : 1, which is close to BC₂N. Recent studies have showed that N and B co-doping of porous carbon could enhance its specific capacitance due to a synergetic pseudocapacitive effect. Generally, Nitrogen atoms can easily be introduced into the carbon layer, whereas the synthesis of B-doped carbons is much more difficult than the case of N-doped carbons. The previous reports on the B-doping effect contain a very small amount of boron. The obtained BCN nanotubes contains a larger amount of boron in the carbon layer (B/C is ca.0.345), thereby making the synergetic effect of N and B co-doping more remarkable. It may be another reason why our obtained BCN nanotubes have the higher capacitance.

The ternary bonding nature of the VA-BC₂NNTAs was further confirmed by X-ray photoelectron spectroscopy (XPS) characterization. Figure 3a shows XPS survey spectrum of VA-BC₂NNTAs. The presence of an O 1s peak around 532 eV in VA-BC₂NNTAs is possibly due to the incorporation of physically adsorbed oxygen. The high-resolution B 1s XPS spectrum given in Figure 3b could be deconvoluted into mainly two subpeaks at 189.6 and 191.5 eV, arising from the B-C and B-N bond, respectively. The relatively higher intensity of the B-C peak than that of B-N indicates that a greater number of B is attached to C in the network. The predominant asymmetric C 1s peak shown in Figure 3c indicates the existence of C-N or C-B bonds in the graphitic network. The four deconvoluted peaks in the C 1s spectrum at 283.6, 284.6, 286.2, and 288.5 eV could be assigned to C-B, C-C, C-N, and C-O bonds, respectively. The high-resolution N 1s XPS spectrum in Figure 3d has been fitted with three subpeaks at 397.4, 398.5, and 399.8 eV, attributable to the N-B bond, graphitic N-C bond, and pyridinic N-C bond, respectively. The amount of pyridinic N is relatively smaller than the graphitic nitrogen. From the XPS spectra of B 1s and N 1s core-level electrons, the presence of sp² B-C, C-N, and B-N bonding states can be clearly identified.

To evaluate the properties of VA-BC₂NNTAs as EC electrodes, cyclic voltammetry (CV) was used in determination of electrochemical properties of the samples. Figure 4a compares CV curves of VA-CNTs, BC₂NNTs, and VA-BC₂NNTAs electrodes for a three-electrode cell at a scan rate of 5 mV/s. The TEM image of VA-CNTs
can be found as Supplementary Fig. S2b online. From the CV curves shown in Figure 4a, the remarkable differences in CV curve shape between VA-CNTs, BC2NNTs, and VA-BC2NNTAs can be easily recognized. In detail, VA-CNTs exhibited small rectangular curve corresponding to a low capacitance, while BC2NNTs presents capacitive behavior with the appearances of a larger rectangular-like shape in CV curve. From the bigger CV loop observed for BC2NNTs than that of the VA-CNTs, it indicates a thicker double-layer region for BC2NNTs electrode. This phenomenon may be due to the heteropolar B-N bonding, which could induce an extra dipole moment and may enhance the wettability between the electrolyte and electrode materials, thus could improve the electric double-layer capacitance. Compared with VA-CNTs and BC2NNTs, VA-BC2NNTAs present the best capacitive performance with a largest rectangular-like shape and clear humps of the voltammetry characteristics. It implies that the aligned nonbuckled hollow tube structure can contribute to the high specific capacitance for VA-BC2NNTAs.

It is worth noting that the electrochemical behavior of randomly entangled BC2NNTs electrode shows a rather limited capacitance compared to VA-BC2NNTAs. It is most probably because the randomly entangled BC2NNTs are unable to support a facilitated access of the electrolyte ions due to the mismatch between the irregular pore structures. (see Figure 4b) Unlike BC2NNTs, superior electrochemical properties of VA-BC2NNTAs originate from better ion diffusivity of VA-BC2NNTAs stemming from the aligned pore structures compared with BC2NNTs, hence showing a much higher capacitance compared with BC2NNTs.

The galvanostatic charge/discharge measurement is considered to be a more accurate technique especially for pseudocapacitances. Therefore, galvanostatic charge/discharge experiments are performed with various current densities between −0.8 and 0.2 V in order to further investigate the performances of all samples. Figure 4c shows the V–t plots of all samples at the constant current of 0.2 A/g. The specific capacitance of the VA-BC2NNTAs electrode in 6 M KOH is 547 F/g, which is significantly higher than that of BC2NNTs (70.18 F/g) and VA-CNTs (41 F/g). VA-BC2NNTAs display the highest specific capacitance. We attribute this excellent capacitive performance to the facile ion transport in the open aligned structure. From Supplementary Fig. S1a online, it can be seen that the mean free path length of the ions is much longer than the distance between BCN nanotubes. The aligned morphology of VA-BC2NNTAs could effectively facilitate the transportation of electrolyte ions during the charge/discharge process, thus improve the capacitance.

Moreover, we compared our results with major published data on carbon-based materials (see Table S1) and listed the major characteristics of each report, such as the origin, used electrolytes, the specific capacitances (C_s) and the cycling stability. The C_s values of these carbon-based materials ranged from 80 F/g to 385 F/g. Clearly, our C_s value of VA-BC2NNTAs, 547 F/g is much higher than any of the involved carbon-based materials, and also much larger than that of the aligned BCN nanoatubes with bamboo-like structure (312.0 F/g)18. It indicated that in spite of the aligned structure inherent in VA-BC2NNTAs, the unique nonbuckled tubular structure could be
another key factor for the contribution of the high Cs. This is because
the nonbuckled tubular morphology of our obtained BC$_2$N nanotubes
could effectively facilitate the transportation of electrolyte ions
during the charge/discharge process. For the BCN nano-tubes with
bamboo-like structure, the transverse layers possess higher ion
diffusion barriers in the inner region of the electrode, resulting in
higher internal resistance and inferior capacitance performance.
Consequently, this structure inherent in VA-BC$_2$NNTAs can
dramatically enhance the specific capacitance and VA-BC$_2$NNTAs are
attractive to be used as electrode materials for EC applications.

Figure 4d represents the relationships between specific capacitance
and charge/discharge current density to study the rate capability
of the electrode materials. The capacitance retention is defined as the
ratio of the specific capacitance of various current densities to that at
0.2 A/g. The capacitance retention of VA-BC$_2$NNTAs retains 84% as
current density increases from 0.2 to 2 A/g, which is significantly
higher than that of the BC$_2$NNTs (68%) and VA-CNTs (66%).
Obviously, VA-BC$_2$NNTAs are demonstrated to have very high
rate-capability. The unique structural feature has remarkably
improved the capacitance performance of VA-BC$_2$NNTAs electrode
at high charge/discharge rate, and this is very important for the
applications where a high rate of discharge-recharge is required.
Long cycling life is another important requirement for EC. The cycl-
ing life test was carried out by repeating the charge/discharge test at a
current density of 1 A/g for the first 1500 cycles, and 5 A/g for the last
2000 cycles. As can be seen from Figure 4e, the VA-BC$_2$NNTAs electrode
exhibits an excellent electrochemical stability with only 3% deterioration after 3500 cycles.

In summary, our studies have outlined a general and rational
strategy to fabricate the high-density packed VA-BC$_2$NNTAs by
simple low temperature solvothermal route. Such VA-BC$_2$NNTAs possess
an ingenious structure with vertically-aligned morphology
containing non transverse layers which endow an unusually high
capacitance. These studies represent substantial progress towards
high capacitance, excellent rate capability, and outstanding cycling
stability produced by VA-BC$_2$NNTAs, opening the possibility to
engineer capacitor electrodes based on VA-BC$_2$NNTAs in order to
target a wide range of applications. These advances may extend the
frontier of EC research and open up new paths to accelerate develop-
ment of EC applications.

Experimental Section

Materials synthesis. The vertically-aligned BC$_2$N nanotube arrays
(VA-BC$_2$NNTAs) were synthesized as follow. In our experiments,
methyl cyanide (CH$_3$CN) was distilled at 82 °C to remove the
impurities and moisture. The other reagents were analytically pure
and used without further purification. The solvothermal reaction was
Carried out in a stainless steel autoclave (40 mL in total capacity)
under autogenous pressure. All the manipulations were carried out
in a dry glove box with flowing N$_2$. In the typical process, 2.5 g
sodium azide (NaN$_3$), 2.5 g ammonium fluoroborate (NH$_4$BF$_4$)
and 0.5 g hexadecyl trimethyl ammonium bromide (CTAB) were
put into a stainless steel autoclave, and then the autoclave was
filled with 4 mL anhydrous CH$_3$CN and 24 mL benzene. The
autoclave was sealed and maintained at 400 °C for 14 h in a
furnace, then it was allowed to cool to room temperature naturally.
The products were collected and washed with distilled water,
absolute ethanol and hydrochloric acid several times to remove the
impurities. Then the final product was dried in vacuum at 65 °C for
8 h. For comparison purposes, nonaligned BC$_2$N nanotubes
(BC$_2$NNTs) were grown under similar conditions except for
CTAB. VA-CNTs was purchased from Beijing DK nano-technology
Co., LTD, and used without purification.

Characterization. The morphology of the nanotubes was analyzed by
scanning electron microscopy (SEM, Hitachi S-4800) and
transmission electron microscopy (TEM, Hitachi H-7650). A few
powder samples were placed onto silver glue, which was adhered
to the SEM stainless steel sample holder. TEM samples were
prepared by placing a droplet (20 μL) of our sample onto a 3 mm
carbon-coated copper grid for 5 min. Afterwards, the excess water
evaporated at room temperature. The TEM investigations were
operated at 120 kV for imaging. High–resolution transmission elec-
tron microscopy (HRTEM) and selected-area electron diffraction
(AED) were used to investigate the phase structure of sample by
TEM using a JEM-2100 transmission electron microscope.

The electron energy-loss spectroscopy (EELS) and energy dispersive
x-ray spectroscopy (EDX) based elemental mapping were used to
determine the chemical composition of the sample. X-ray
photoelectron spectroscopic (XPS) measurements were performed
on a ESCALAB 250 X-ray Photoelectron-Spectroscopy.

Electrochemical measurements. Electrodes were fabricated by
mixing 80 wt% VA-BC$_2$NNTAs, similarly other active materials
(i.e., VA-CNTs or BC$_2$NNTs), 10 wt% acetylene black, and 10 wt%
poly tetra fluoro ethylene (PTFE) binder. The loading amount of
all materials in final electrodes is 2.6 mg. The mixture was mixed with
absolute ethyl alcohol and heated at 60 °C in water bath to form
slurries. The homogenous slurries were coated onto nickel mesh
(1 cm2 area) and further dried at 120 °C for 12 h under vacuum.
As-formed electrodes were then pressed at a pressure of 4 MPa.
Cyclic voltammetric (CV) studies were performed by CHI 832C
electrochemical workstation (Shanghai Chenhua, China) in the
potential range of −0.8 ~ 0 V vs Hg/HgO at the scan rate of
5 mVs$^{-1}$. Galvanostatic charge/discharge cycles were measured by
a Land cell tester (CT2001A) at 0.2 ~ 2 Ag$^{-1}$ over a voltage range of
−0.8 ~ 0.2 V vs Hg/HgO. The electrochemical cell used here was
three-electrode cell filled with the electrolyte of 6.0 M KOH aqueous
solution. A standard three–electrode cell was employed with an Hg/
HgO electrode as reference electrode, a platinum plate as counter
electrode, and the active material composite (i.e., VA-CNTs,
BC$_2$NNTs or VA-BC$_2$NNTAs) was used as working electrode.
The specific capacitance (Cs) of the systems was calculated according to
the following equation:

$$Cs = \frac{I \times \Delta t}{\Delta V \times m} \quad (1)$$

where Cs (Fg$^{-1}$) is the specific capacitance, I (A) refers to the
discharge current, ΔV (V) represents the potential change within the
discharge time Δt (s), and m (g) corresponds to the amount of active
material on the electrode. All the experiments were conducted at
room temperature (25 ± 1 °C).

1. Abruna, H. D., Kiya, Y. & Henderson, J. C. Batteries and electrochemical
capacitors. *Phys. Today* **61**, 43–47 (2008).
2. Miller, J. R. & Burke, A. F. Electrochemical capacitors: Challenges and
opportunities for real-world applications. *Electrochem. Soc. Interf.* **17**, 53–57
(2008).
3. Lota, G., Centeno, T. A., Frackowiak, E. & Stoeckli, F. Improvement of the
structural and chemical properties of a commercial ac-citron-bated carbon for its
application in electrochemical capacitors. *Electrochim. Acta* **5**, 2210–2216
(2008).
4. Frackowiak, E. Carbon Materials for Supercapacitor Application. *Phys. Chem.
Chem. Phys.* **9**, 1774–1785 (2007).
5. Pandolfo, A. G. & Hollenkamp, A. F. Carbon properties and their role in
supercapacitors. *J. Power Sources* **157**, 11–27 (2006).
6. Simon, P. & Gogot, J. M. Materials for electrochemical capacitors. *Nat Mater* **7**,
845–854 (2008).
7. Ma, R., Bando, Y., Zhang, L. & Sasaki, T. Layered MnO$_2$ nanobelts: hydrothermal
application in electrochemical capacitors. *J. Mater. Chem.* **21**, 3818–3823 (2011).
8. Zhang, L. L. & Zhao, X. S. Carbon-based materials as supercapacitor electrodes.
Chem. Soc. Rev. **38**, 2520–2531 (2009).
10. Largest, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y. & Simon, P. Electric Double-Layer Capacitor. *J. Am. Chem. Soc.* **130**, 2730–2731 (2008).

11. Sivakumar, S. R. & Saraswathi, R. Performance evaluation of polyn- (N-methylaniline) and polyisothianaphthene in charge-stroage devices. *J. Power Sources* **137**, 322–328 (2004).

12. Snook, G. A., Kao, P. & Best, A. S. Conducting polymer-based supercapacitor devices and electrodes. *J. Power Sources* **196**, 1–12 (2011).

13. Frackowiak, E. & Beuguin, F. Carbon materials for the electrochemical storage of energy in capacitors. *Carbon* **39**, 937–950 (2001).

14. Wang, G., Zhang, L. & Zhang, J. A review of electrode materials for electrochemical supercapacitors. *Chem. Soc. Rev.* **41**, 797–828 (2012).

15. Li, L., Liu, E., Shen, H., Yang, Y., Huang, Z., Xiang, X. & Tian, Y. Charge storage performance of doped carbons prepared from polyalanine for supercapacitors. *J Solid State Electrochem* **15**, 175–182 (2011).

16. Hulicova-Jurcakova, D., Seredych, M., Lu, G. Q. & Bandosz, T. J. Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. *Adv. Funct. Mater.* **19**, 438–447 (2009).

17. Guo, H. & Gao, Q. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. *J. Power Sources* **186**, 551–556 (2009).

18. Iyyamperumal, E., Wang, S. & Dai, L. Vertically Aligned BCN Nanotubes with High Supercapacitance. *ACS Nano* **6**, 5259–5265 (2012).

19. Wang, S., Iyyamperumal, E., Roy, A., Xue, Y., Yu, D. & Dai, L. Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergistic Effect by Co-Doping with Boron and Nitrogen. *Angew. Chem., Int. Ed.* **50**, 11756–11760 (2011).

20. Bai, X. D., Guo, J. D., Yu, J., Wang, E. G., Yuan, J. & Zhou, W. Synthesis and field-emission behavior of highly oriented boron carbide nitride nanofibers. *Appl. Phys. Lett.* **76**, 2624–2626 (2000).

21. Bai, X. D., Wang, E. G., Yu, J. & Yang, H. CNx/Carbon Nanotube Junctions Synthesized by Microwave. *Appl. Phys. Lett.* **77**, 67–69 (2000).

22. Guo, J. D., Zhi, C. Y., Bai, X. D. & Wang, E. G. Boron carbonitride nanojunctions. *Appl. Phys. Lett.* **80**, 124–126 (2002).

23. Han, W.-Q., Cumino, J. & Zettl, A. Pyrolytically grown arrays of highly aligned BxCyNz nanotubes. *Appl. Phys. Lett.* **78**, 2769–2771 (2001).

24. Zhi, C. Y., Guo, J. D., Bai, X. D. & Wang, E. G. Adjustable boron carbide nitride nanotubes. *J. Appl. Phys.* **91**, 5325–5333 (2002).

25. Wang, W. L., Bai, X. D., Liu, K. H., Xu, Z., Golberg, D., Bando, Y. & Wang, E. G. Direct Synthesis of B-C-N Single-Walled Nanotubes by Bias-Assisted Hot Filament Chemical Vapor Deposition. *J. Am. Chem. Soc.* **128**, 6530–6531 (2006).

26. Stéphan, O., Aijayan, P. M., Colliex, C., Cyrot-Lackmann, F. & Sandré, É. Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry. *Phys. Rev. B* **53**, 13824–13829 (1996).

27. Ewels, C. P. & Glerup, M. Nitrogen doping in carbon nanotubes. *J. Nanosci. Nanotechnol.* **5**, 1345–1363 (2005).

28. Stephan, O., Aijayan, P. M., Colliex, C., Redlich, P., Lambert, J. M., Bernier, P. & Lefin, P. Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen. *Science* **260**, 1683–1685 (2009).

29. Terrones, M., Grobert, N. & Terrones, H. Synthetic route: onanoscale BxCyNz architectures. *Carbon* **40**, 1665–1669 (2002).

30. Golberg, D., Bando, Y., Bourgeois, L., Kurashima, K. & Sato, T. B- and N-doped carbon nanotube bundles. *Carbon* **38**, 2017–2027 (2000).

31. Golberg, D., Bando, Y., Han, W., Kurashima, K. & Sato, T. Comparative study of BxNyCz nanotubes. *Chem. Phys. Lett.* **308**, 337–342 (1999).

32. Zhi, C., Bando, Y., Tan, C. & Golberg, D. Effective precursor for high yield synthesis of pure BN nanotubes. *Solid State Commun.* **135**, 67–70 (2005).

33. Kwon, T., Nishihara, H., Itoi, H., Yang, Q. & Kyotani, T. Enhancement Mechanism of Electrochemical Capacitance in Nitrogen-Boron-Doped Carbons with Uniform Straight Nanochannels. *Langmuir* **25**, 11961–11968 (2009).

34. Shiiraishi, S., Kibe, M., Yokoyama, T., Kurthara, H., Patel, N., Oya, A., Kaburagi, Y. & Hishiyama, Y. Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect. *Appl. Phys. A* **82**, 585–591 (2006).

35. Wang, D. W., Li, F., Chen, Z. G., Lu, G. Q. & Cheng, H. M. Synthesis and Electrochemical Property of Boron-Doped Mesoporous Carbon in Supercapacitor. *Chem. Mater.* **20**, 7195–7200 (2008).

36. Collins, P. G., Bradley, K., Ishigami, M. & Zettl, A. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. *Science* **287**, 1801–1804 (2000).

37. Jhi, S.-H. & Kwon, Y.-K. Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage. *Phys. Rev. B* **69**, 2454071–2454074 (2004).

38. Zhao, L., Fan, L.-Z., Zhou, M.-Q., Guan, H., Qiao, S., Antonietti, M. & Titirici, M.-M. Nitrogen-Containing Hydrothermal Carbons with Superior Performance in Supercapacitors. *Adv. Mater.* **22**, 5202–5206 (2010).

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grant No. 21071122, 21371149, 21101134) and the Natural Science Foundation of Hebei (Grant No. E2010001169, ZD2010112, 14961107D).

Author contributions

J.Z., N.L and F.G. wrote the main manuscript text and Y.Z., L.H. and Z.X. prepared figures. All authors reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/srep. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/