Multivariate Analysis of Factors Associated with Mortality from COVID-19 after Adjusting for Age among Residents (N = 124) of Facility A, June 15 - July 21, 2020

Conclusion. While implementation of optimal IPC measures in the pre-COVID-19 vaccination era had no impact on the infections in residents who were likely already infected or exposed at the onset of the outbreak, these measures along with non-pharmacologic strategies were effective in halting the spread among HCWs.

Disclosures. All Authors: No reported disclosures

433. Role of Community Vaccination Coverage in Controlling Future COVID-19 Outbreaks in Nursing Homes: A Modeling Study

Brajendra K. Singh, PhD MSc1; Joseph Walker, MPH2; Prabasaj Paul, PhD, MPH2; Sujan Reddy, MD, MSc2; John A. Jernigan, MD, MS1; John A. Jernigan, MD, MS1; Rachael Slayton, PhD, MPH3; Centers for Disease Control and Prevention, Atlanta, Georgia; CDC, Atlanta, Georgia

Session: P-19. COVID-19 Infection Prevention

Background. As of May 2, 2021, U.S. nursing homes (NHs) have reported >651,000 COVID-19 cases and >132,000 deaths to CDC’s National Healthcare Safety Network. Since U.S. COVID-19 vaccination coverage is increasing, we investigate the role of vaccination in controlling future COVID-19 outbreaks.

Methods. We developed a stochastic, compartmental model of SARS-CoV-2 transmission in a theoretical 100-bed NH with a staff of 99 healthcare personnel (HCP) in a community of 20,000 people. We modeled admission and discharge of residents (parameterized with Centers for Medicare & Medicaid Services data), assuming the following: temporary replacement of HCP when tested positive; daily visits to NH residents; isolation of COVID-19 positive residents; personal protective equipment (PPE) use by HCP, and symptom-based testing of residents and staff plus weekly asymptomatic testing of HCP and facility-wide outbreak testing once a COVID-19 case is identified. We systematically varied coverage of an mRNA vaccine among residents and HCP, and in the community. Simulations also varied PPE adherence, defined as the percentage of time in the facility that HCP properly used recommended PPE (25%, 50% or 75% of the time). Infection was initialized in the community with 40 infected cases, and initial infection in the NH was allowed after 14 days of vaccine dose 1. Simulations were run for 6 months after dose 2 in the NH. Results were summarized over 1000 simulations.

Results. At 60% community coverage, expected cumulative symptomatic resident cases over 6 months were ≤5, due to low importation of COVID-19 infection from the community, with further reduction at higher coverage among HCP (Figure 1). Uncertainty bounds narrowed as NH resident coverage or PPE adherence increased. Results were similar if testing of staff and residents stopped. Probability of an outbreak within 4 weeks of dose 2 remained below 5% with high community coverage (Figure 2).

Conclusion. Increasing community vaccination coverage reduces the risk of future COVID-19 outbreaks in NHs.

Figure 1. Drop in symptomatic cases in nursing home (NH) residents with rise in COVID-19 vaccine coverage in the community, increase in personal protective equipment (PPE) adherence, or increase in coverage among NH residents.

Figure 2. Probability of a COVID-19 outbreak in a nursing home (NH) decreased with increase in vaccine coverage in the community or in healthcare personnel (HCP).

An outbreak is defined as an occurrence of 2 or more cases within 4 weeks of dose 2. Probability of no outbreak was calculated by counting how many simulations out of a total of 1000 simulations had ≤1 symptomatic case in NH residents or HCP within 4 weeks after dose 2 was administered in the nursing home. The first vaccine dose in residents and HCP was assumed to be given on day 1, and the second dose 28 days later. A probability value and its 90%-confidence interval (CI) at a given community and HCP coverage level was calculated by pooling model outputs for 9 sets (3 PPE adherence values x 3 resident coverage levels) of model simulations. Simulations were performed assuming no asymptomatic testing or facility-wide outbreak testing.

Conclusion. Results suggest that increasing community vaccination coverage leads to fewer infections in NH residents. Testing asymptomatic residents and staff may have limited value when vaccination coverage is high. High adherence to recommended PPE may increase the likelihood that future COVID-19 outbreaks can be contained.

Disclosures. John A. Jernigan, MD, MS, Nothing to disclose

435. Outcomes for E484K Mutation Negative COVID-19 Patients Cohorted with E484K Mutation Positive COVID-19 Patients: A Retrospective Cohort Study

Fahad Buskandar, MB, BCH, BA1; Amber L. Linkeheld-Struk, BA, M. LT, CIC1; Victoria R. Williams, MPH CIC1; Adrienne Chan, MD, MPH1; Lorraine Maze Dit Mieursment, RN, MN, CIC1; Natasha Salt, BSc BSc CIC2; Jerome A. Leis, MD MSc FRCPG1; University of Toronto, Toronto, Ontario, Canada; Sunnybrook Health Sciences Centre, Pickering, Ontario, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Toronto, ON, Canada

Session: P-19. COVID-19 Infection Prevention

Background. The emergence of the E484K mutation of SARS-CoV-2 poses a risk of immune evasion but the risk of re-infection during acute infection is not well defined. Our aim was to assess the risk of re-infection among patients with existing acute E484K mutation negative COVID-19 infection who were exposed to an E484K mutation positive SARS-CoV-2 infected patient.

Methods. We performed a retrospective cohort study of patients admitted with acute E484K negative COVID-19 infection and shared a hospital room with a patient who was E484K mutation positive during their period of communicability. The primary outcome was laboratory confirmed and/or clinical evidence of re-infection within the E484K negative population within 30 days of exposure and the secondary outcome was the 30-day risk of death or re-admission to hospital due to COVID-19.

Results. We included 41 patients who were E484K mutation negative who shared a hospital room with some of the identified 34 E484K positive patients. Six (14%) underwent repeat COVID-19 testing and remained E484K negative and none developed signs or symptoms of COVID-19 re-infection during the 30 days following exposure. The mortality rate was 7% (3/41) and re-admission rate was zero at 30 days from exposure.

Conclusion. Despite the small sample size, we did not observe any evidence of re-infection among patients with COVID-19 who shared a hospital room with E484K positive patients during their acute infection. If necessary due to high hospital occupancy, patients with discordant E484K results can safely cohorted in a shared room.

Disclosures. All Authors: No reported disclosures

436. U-shaped aggressiveness of SARS-CoV-2: Period Between Initial Symptoms and Clinical Progression to COVID-19 Susception. A Population-Based Cohort Study

Bruno G. Buitano, n/a1; Dan Morgenstern, n/a1; Juan Talaver, Professor2; Andrea Zaldivar, n/a2; Mercedes Martinez, n/a3; Universidad Anahuac México, Mexico City, Distrito Federal, Mexico; ABC Hospital México, Mexico City, Distrito Federal, Mexico

Session: P-19. COVID-19 Infection Prevention

Background. In the period between initial symptoms and clinical progression, we aimed to identify the period of higher risk of severe COVID-19. The period between the start of symptoms and clinical progression is described as the U-shaped aggressiveness period of SARS-CoV-2.

Methods. We used data from 14,058 patients who tested positive for SARS-CoV-2 infection in a population-based cohort study in the USA. We measured the period between initial symptoms and hospital admission. We used a Cox proportional hazards model to estimate the hazard ratio for hospitalization, admission to the intensive care unit (ICU), and death within 14 days of symptom onset. We also estimated the 15-day cumulative incidence of hospitalization, ICU admission, and death.

Results. The period between initial symptoms and clinical progression was U-shaped. The highest risk of hospitalization, ICU admission, and death was observed in the first 3 days after symptom onset. The risk decreased thereafter, reaching a minimum at 10 days after symptom onset, and then increased again. The 15-day cumulative incidence of hospitalization, ICU admission, and death was highest in the first 3 days after symptom onset and decreased thereafter, reaching a minimum at 10 days after symptom onset, and then increased again.

Conclusion. The period between initial symptoms and clinical progression to COVID-19 is U-shaped. The highest risk of hospitalization, ICU admission, and death is observed in the first 3 days after symptom onset. The risk decreases thereafter, reaching a minimum at 10 days after symptom onset, and then increases again.

Disclosures. All Authors: No reported disclosures