電子情報学専攻 修士論文審査会

Future Person Localization in First-Person Videos
(一人称視点映像における人物位置予測)

19/02/04
佐藤洋一研究室
八木 拓真 (Takuma Yagi)
First-person vision

- Use body-worn wearable cameras
- Analyze videos which reflect wearer’s action and interest
Future person localization in third-person videos

(1) The use of appearance feature
- Learns preference of walkable area [Kitani+, ECCV’12]
- The use of holistic visual attributes [Ma+, CVPR’17]

(2) The use of interaction between people
- Computer simulation (Social force) [Helbing+, ‘95]
- Data-driven approach (Social LSTM) [Alahi+, CVPR’16]
Future person localization in third-person videos

Social LSTM [Alahi+, CVPR’16]
- Model each pedestrian by a LSTM
- Social pooling layer squashes the features of neighboring people into a fixed-size vector

Cannot directly apply to first-person videos
First-Person future person localization

Egocentric Future Localization [Park+, CVPR’16]

Predicts the wearer’s future position
Future person localization in first-person videos

Our Challenge:
To develop a future person localization method tailored to first-person videos
Our approach

- Incorporating both **pose** and **ego-motion** as a salient cue in first-person videos
- Multi-stream CNN to predict the future locations of a person

Pose indicates future direction

Ego-motion captures interactive locomotion
Proposed method: tri-stream 1D-CNN

Input: sequence of each feature
- Location & scale
- Poses
- Ego-motions

Multi-stream conv-net
Proposed method: tri-stream 1D-CNN

Input: sequence of each feature

Locations & scales
Poses
Ego-motions

Concatenate

Multi-stream conv-net

Single-stream deconv-net

Output: sequence of future locations and scales

Locations & scales
Poses
Ego-motions

Input: sequence of each feature

Concatenate

Multi-stream conv-net

Single-stream deconv-net

Output: sequence of future locations and scales
Feature representation

Target feature
- Location-scale cue (3 dims)
 - Location (2 dims) + scale (1 dim)
 - Captures perspective effect by the apparent size
- Pose cue (2D×18 keypoints=36 dims)
 - Used pretrained OpenPose [Cao+, CVPR’17]
 - Normalized position and scale
 - Imputed missing detections

Ego-motion feature
- Ego-motion cue (6 dims)
 - Camera pose estimation from multiple frames [Zhou+, CVPR’17]
 - Translation (3 dims) + rotation (3 dims)
 - Accumulate local movement between frames
Data collection

- Recorded walking video sequences in diverse cluttered scenes
 - One subject, total 4.5 hours, captured over 5,000 people
 - Annotations by tracking people

☐: tracked \geq 2s, ☐: tracked < 2s
Baseline methods

- **Constant**: Use location at the final input frame as prediction
- **ConstVel**: Assume a constant velocity model using the mean speed of inputs
- **NNeighbor**: Extracts $k (=16)$ nearest neighbor input sequences, then produce output as the mean of the corresponding locations.
- **Social LSTM** [Alahi+, CVPR’16]: The state-of-the-art method on fixed cameras
Prediction example (input: 1sec, output: 1sec)

GT

Proposed

Social LSTM

[Alahi+, CVPR’16]
Prediction example (input: 1sec, output: 1sec)

- Input
- GT
- NNeighbor
- Social LSTM
- Proposed
Quantitative evaluation

One-second prediction error (unit: % against frame width)

Method	Error Rate (%)
Constant	8.54
ConstVel	8.37
NNeighbor	7.69
Social LSTM	9.25
Proposed	6.04

Equivalent to 60cm physical error
Ablation study

One-second prediction error (unit: % against frame width)

Features	Walking direction			
	Toward	Away	Average	
Location + scale	9.26%	6.02%	6.40%	
+ Ego-motion	8.80%	5.80%	6.18%	
+ Pose	8.38%	6.00%	6.29%	
Proposed	**8.06%**	**5.76%**	**6.04%**	

- Pose (■) contributes to predicting who comes **Towards** the wearer
- Ego-motion (■) contributes to predicting who walks **Away** from the wearer
Effect of prediction length

- Prediction error linearly increases with prediction length
- Error increase rate is lower than the Social LSTM baseline
Predicting longer-term future

two-second prediction error (unit: % against frame width)

Method	Walking direction			
	Toward	Away	Average	Average (1.0s)
Social LSTM	22.12	17.56	17.75	9.23
Proposed	13.68	9.54	9.75	6.04 (%)

- Input: 0.6sec, output: 2.0sec
- Able to predict longer-term future with modest error increase
Failure case (existence of obstacles)
Failure case (sudden direction change of the wearer)
Study in social interactions dataset [Fathi+, CVPR’12]

- Head-mounted videos in a theme park (more challenging setting)
Quantitative evaluation

1 second prediction error (unit: % against frame width)

- Constant: 11.65%
- ConstVel: 13.34%
- NNeighbor: 12.65%
- Social LSTM: 13.9%
- Proposed: 9.10%

Modest performance even in head-mounted videos
Prediction examples (input: 1sec, output: 1sec)

-0.9s

Current

+1.0s

Input GT Proposed
Summary

New Problem
- Future person localization in first-person videos

Finding
- Both target’s pose and wearer’s ego-motion were shown to be effective cues

Limitations
- Cross-subject evaluation (assume a single wearer in this work)
- Offline inference (currently not real-time)

Future Directions
- Forecasting under uncertainty
- Separating prediction of the wearer and the target
Publications

- **International conference (refereed)**
 - Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani and Yoichi Sato, Future Person Localization in First-Person Videos, In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 7593-7602, 2018. *(Spotlight oral, acceptance rate: 8.9%)*

- **Domestic research workshop (non-refereed)**
 - 八木拓真, マンガラムカーティケヤ, 米谷竜, 佐藤洋一, 一人称視点映像における人物位置予測, 第21回画像の認識・理解シンポジウム (MIRU), 2018.
 - 八木拓真, マンガラムカーティケヤ, 米谷竜, 佐藤洋一, 一人称視点映像における人物位置予測, 第211回CVIM研究会, 2018.