Contamination of Intestinal Parasites in Vegetables from Kuching

Ahmad Syatir Tahar¹, Lesley Maurice Bilung¹, Constance Suk Kim Goh¹, Elexson Nillian¹, Yvonne Ai-Lian Lim², Reena Leeba Richard³, Hashimatul Fatma Hashim¹, Kasing Apun¹

¹Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia; ²Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia; ³Department of Science and Technology Studies, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.

INTRODUCTION

Foodborne infections cause worldwide morbidity and mortality, while foodborne infections caused by intestinal parasites are more common in tropical countries. There are many etiological agents of foodborne intestinal parasitic infections (IPIs) in humans and these include parasites associated with contamination of fresh produce such as Cryptosporidium, Giardia, Cyclospora, Angiostrongylus, hookworm, Ascaris lumbricoides, Echinococcus, Fasciolopsis buski and Toxocara spp.1,2 In developing countries, parasitic infections are underreported because of asymptomatic cases and lack of established diagnosis and reporting systems.1,4

Given concerns about heat-labile nutritional contents (e.g. flavonoids, polyphenolic compounds) and natural tastes, many consumers now are more prone to consume vegetables fresh, raw or undercooked.5 However, the current trends of healthy diet by eating raw vegetables as well as increasing number of susceptible individuals have exacerbated the risks of vegetable-associated IPIs. Potential of vegetables being a source of parasitic infections should not be underestimated as many parasites are zoonotic and non-endemic in a particular area.6

Contaminations involving parasites associated with fresh produces have been documented at many points of cultivation (i.e. pre-harvest and post-harvest contaminations) until

ABSTRACT

Background: Contaminated vegetables with intestinal parasites, particularly those eaten raw, represent a proportion of risks for humans acquiring foodborne parasitic diseases worldwide. Unfortunately, the risk is often neglected as limited studies have been reported about the parasitic occurrence from vegetables retailed in Malaysia.

Objective: This study was conducted to determine the occurrence of intestinal parasites in fresh retailed vegetables in Kuching and Kota Samarahan, Sarawak.

Methods: A total of 108 vegetables (comprising leafy and root-type vegetables) were purchased from three supermarkets and three wet markets in Kuching and Kota Samarahan. The samples were processed with 0.95% sodium chloride solution and underlaid with Sheather’s sucrose solution. Cryptosporidium and Giardia were detected using AquaGlo™ G/C antibody reagent and 4’,6-diamidino-2-phenylindole stain. Other parasites were detected using Lugol’s iodine stain.

Results: A total of 24 out of 108 vegetables samples (22.2%) were contaminated with nematode larvae (range: 0.01 – 0.71 larvae/g), Cryptosporidium oocysts (range: 0.01 – 0.03 oocysts/g), hookworm ova (range: 0.01 – 0.02 ova/g) and Giardia cyst (0.01 cysts/g). There were no significant differences (p > 0.05) for means of parasite concentrations in vegetables from supermarkets and wet markets, as well as parasite concentrations from leafy-type and root-type vegetables.

Conclusion: The findings revealed relatively high numbers of intestinal parasites detected from fresh retailed vegetables, signifying potential foodborne transmission of parasitic infections if the vegetables are not prepared hygienically or cooked well. Besides, a high proportion of such infection risk may be reduced if farmers also take part in proper sanitation practices during vegetable production and transportation.

Key Words: Cryptosporidium, Giardia, Helminth, Intestinal parasites, Protozoa, Vegetables

Received: 20.09.2020 Revised: 22.10.2020 Accepted: 24.11.2020 Published: 23.02.2021
being in retails. For instance, in water irrigation10,11, the soil of cultivation sites10,11, organic farms11, and directly from vegetables and fruits.6,12 In the context of Malaysia, there is still a wide gap of information about parasitological contaminations in vegetables. Thus far, there have been three studies conducted, translating the state of neglection about IPIs.13–15 A study by Zeehaida et al.14 detected S. stercoralis rhabditiform larvae in pegaga (pennywort), kesus (Vietnamese coriander) and water spinach with parasite counts of 152 larvae/kg, 9 larvae/kg and 16 larvae/kg, respectively retrieved from wet markets. Whereas, Yusof et al.13 found a different variety of intestinal parasites in retrieved vegetables from a wet market, namely unidentified fluke, Strongyloides larva, Entamoeba spp., Blastocystis spp. and Diphyllobothrium egg from pegaga (pennywort), kesus (Vietnamese coriander) and kangkung (water spinach).

Generally, most human parasites are widespread, nonetheless geographical and basis of location may show different occurrences of such contaminations. Thus, this study was conducted to assess the occurrence of parasitological contamination on fresh vegetables that were reailed in Kuching and Kota Samarahan, Sarawak.

MATERIALS AND METHODS

Sample collection
A total of 108 vegetables were purchased from six markets (three supermarkets [i.e., Supermarket A, B and C] and three wet markets [i.e., Wet markets A, B and C]) in Kuching and Kota Samarahan, Sarawak. Sample collection was conducted with three-time frequency at each market. Three leaf-type vegetables (e.g. cabbage, lettuce, water spinach) and three root-type vegetables (e.g. ginger, potato, carrot) were purchased from each market during each sampling trip as shown in Table 1 and 2. All vegetables were collected fresh from shelves or racks and placed in sterile stomacher bags. Afterwards, they were transported directly to the Molecular Microbiology Laboratory, Faculty of Resource Science and Technology at Universiti Malaysia Sarawak.

Vegetable sample processing
Sample processing was conducted as described by Erdog’rul and Şener16. Each vegetable sample was weighed (i.e. whole vegetables including leaves, stem or roots) for 200 g and placed into a sterile stomacher bag and washed with 0.95% sodium chloride solution with shaking at 120 rpm for 20 min. The washed solutions were transferred into conical flasks and left for approximately 12 hr at room temperature. Afterwards, the supernatants were discarded (i.e. leaving about 200 ml supernatants with pellets) and the leftovers were centrifuged at 2,100 × g for 15 min. Later, the supernatants were discarded.

Sucrose flotation method
This method was by the method by Kuczynska and Shelton7. Briefly, the pellet was mixed with sucrose solution (1.27 specific gravity) until 12 ml in a 15 ml centrifuge tube. The tube was centrifuged at 400 × g for 5 min. Afterwards, extra sucrose solution was added until it formed a negative meniscus. A glass coverslip was placed on top of the meniscus and left for 30 min. Then, the glass coverslip was scrapped, and the washed solution was inserted into a 50 ml centrifuge tube. The sucrose solution was washed by centrifuging at 1000 × g for 10 min. The supernatant was discarded and transferred into a 1.5 ml microcentrifuge tube and spun at 6000 rpm for 10 min. Then, the pellet was brought to 100 µl and divided into 50 µl for Cryptosporidium and Giardia detection and 50 µl for other parasites detection.

Detection of Cryptosporidium and Giardia
Immunofluorescence assay for Cryptosporidium and Giardia complied with the recommended procedure by Waterborne, Inc. (New Orleans, USA). A volume of 50 µl of the sample concentrate after the sucrose flotation was placed on a 4 × 9 mm well microscope slide (Hendley-Essex, UK). The sample was air-dried and stained with 4’′,6-diamidino-2-phenylindole (DAPI) (2 µg/ml) for 4 min before being washed with 100 µl of phosphate-buffered saline (PBS). Next, one drop of Aqua-GloTM G/C antibody reagent (Waterborne, Inc., New Orleans, USA) was added and incubated at 37 °C for 25 min and washed with 100 µl of PBS. Then, a drop of mounting medium containing PBS/glycerol (1:1) was added on the slide and the coverslip was sealed by using nail polish. Cryptosporidium parvum and Giardia lamblia (oo) cysts (Waterborne, Inc., New Orleans, USA) were used as a positive control, while distilled water was used as a negative control. Lastly, the slide was viewed at 400× and 600× magnifications under a fluorescence microscope (IX51, Olympus, Japan) by using analySIS pro software. Cryptosporidium oocyst was recognised as spherical-shaped in a range of 4 – 6 µm in size and Giardia cyst was identified as spherical to oval-shaped in a range of 5 – 15 × 8 – 18 µm in size. Both appeared as apple green-coloured with distinct bright apple green cell wall.

Detection of other parasites
A volume of 50 µl concentrate was added on a microscope slide and one drop of the Lugol’s iodine solution was added on each sample. After the slide was covered with a coverslip, it was observed at 200× to 400× magnifications under a compound microscope (BX15, Olympus, Japan) by using cell4 D software (Olympus, Japan) to measure the size of parasite eggs. Identification of the parasites was performed by referring to WHO18.
Statistical analysis
The concentrations of the detected parasites were expressed as ova/larvae/cysts/oocysts per gram of each sample. Two-sample t-test analysis with equal variance was utilised to find the significant difference of human intestinal parasites occurrence in vegetables sold at supermarkets and wet markets, as well as between human parasites occurrence in leafy and root-type vegetables. The statistical significance was set at \(p < 0.05 \). This statistical analysis was conducted utilising Microsoft Office Excel 2016.

RESULTS

Overall
A total of 24 out of 108 vegetables samples (22.2%) from six selected markets (i.e. supermarkets and wet markets) examined in this study were contaminated with nematode larvae (range: 0.01 – 0.71 larvae/g) followed with Cryptosporidium (range: 0.01 – 0.03 oocysts/g), hookworm (range: 0.01 – 0.02 ova/g) and Giardia (0.01 cysts/g) as displayed in Tables 1 and 2, and Figure 1. The parasite concentration in all samples ranged from 0.01 – 0.71 parasites per gram of sample. In general, the types of vegetables found to be contaminated both from the wet markets and supermarkets were mustard greens, lettuce, Chinese kale, spinach, water spinach, sweet potato, ginger and carrot.

Contamination with parasites based on localizations and vegetable types
A comparative analysis amongst the three sampled supermarkets found that Supermarket C had the highest number of contaminated sampled vegetables (6/18 vegetables), followed by Supermarket A (5/18) and lastly Supermarket B (1/18) (Table 1 and 2). At Supermarket A, the types of vegetables discovered to be contamination were mustard greens (Cryptosporidium = 0.02 oocyst/g), lettuce (Cryptosporidium = 0.01 oocyst/g), Chinese kale (Cryptosporidium = 0.03 oocyst/g), sweet potato (nematode = 0.02 larvae/g) and ginger (nematode = 0.35 larvae/g). Whilst at Supermarket B, a vegetable detected to be contaminated was ginger (nematode = 0.06 larvae/g). At supermarket C, the contaminated vegetables were Chinese kale (nematode = 0.05 and 0.10 larvae/g; hookworm = 0.02 ova/g), mustard greens (nematode = 0.01 larvae/g), potato (nematode = 0.02 larvae/g), carrot (Cryptosporidium = 0.02 oocyst/g) and ginger (nematode = 0.01 larvae/g).

As for wet markets, both Wet Markets A and C had 5 (of 18) sampled vegetables contaminated whilst Wet Market B had 2 (of 18) sampled vegetables contaminated (Table 1 and 2). Types of vegetables that were found to be contaminated in the wet markets include at Wet Market A which were spinach (nematode = 0.01 larvae/g; Giardia = 0.01 cyst/g), water spinach (nematode = 0.03 larvae/g), mustard greens (nematode = 0.03 larvae/g) and ginger (nematode = 0.02 and 0.13 larvae/g). At Wet Market B, the types of contaminated vegetables were Chinese Kale (nematode = 0.01 larvae/g) and potato (0.03 larvae/g). Whilst at Wet Market C, the contaminated vegetables were water spinach (nematode = 0.03 larvae/g), spinach (nematode = 0.03 larvae/g), lettuce (hookworm = 0.01 ova/g), ginger (nematode = 0.04 and 0.71 larvae/g).

The level of parasitological contamination of retailed vegetables at wet markets (i.e. Wet market A, B and C) (total: 12/54 positive samples; 109 intestinal parasites) was higher compared to supermarkets (i.e. Supermarket A, B and C) (total: 12/54 samples; 72 intestinal parasites). However, the two-sample t-test of equal variance analysis showed no significant difference in mean comparison for parasite concentrations in purchased vegetables from supermarkets and wet markets (\(p > 0.05 \)). Comparison of parasitological contamination based on vegetable types revealed that root-type vegetables (total: 11/54 samples; 140 intestinal parasites) was higher contaminated than leafy-type vegetables (total: 13/54 samples; 40 intestinal parasites). Nevertheless, there was no significant difference of parasite concentration from leafy-type and root-type vegetables (\(p > 0.05 \)). The results of the statistical analyses are displayed in Table 3.

DISCUSSION
This study revealed vegetables retailed at supermarkets and wet markets in Kuching and Samarahan were contaminated with intestinal parasites. The highest parasite count detected on vegetables was nematode larvae (range: 0.01–0.71 larvae/g) followed with Cryptosporidium oocyst (range: 0.01 – 0.03 oocysts/g), hookworm ova (range: 0.01 – 0.02 ova/g) and Giardia cyst (0.01 cysts/g). Nematode larvae were detected from both leafy-type vegetables (\(n = 10/54 \) samples; i.e. Chinese kale, mustard greens, spinach and water spinach) and root-type vegetables (\(n = 10/54 \); i.e. ginger, carrot, sweet potato and potato). Whereas, hookworm ova were detected from leafy-type vegetables (\(n = 2/54 \) samples; i.e. Chinese kale and lettuce). No hookworm ova were detected from root-type vegetable samples. In this study, nematode larvae were detected solely based on morphological identification. Molecular analysis was not performed to identify the species. Besides, hookworm eggs cannot cause infection, but the third-stage of the larvae can penetrate the skin of individuals involved in contacts. Cryptosporidium oocysts were detected in leafy-type vegetables (\(n = 3/54 \) samples; i.e. mustard greens, Chinese kale, lettuce) and root-type vegetables (\(n = 1/54 \) samples; i.e. carrot). Giardia cyst was detected from one leafy-type vegetable (\(n = 1/54 \) samples; i.e. spinach). However, no Giardia cyst was detected from root-type vegetables. Both Cryptosporidium and Giardia were listed as...
the fifth and eleventh top foodborne parasites from the global perspective.2 Ingestion of these two protozoan parasites leading to invasion of the intestinal epithelium, thus infected individuals may manifest symptoms of gastroenteritis such as diarrhoea, vomiting, nausea and weight loss.22,23 Foodborne IPIs are partly due to the persistency of the parasites on food matrices, viability at normal food storage conditions and low infectious doses. Cryptosporidium can adhere strongly on apple surfaces attributed by extracellular matrix of the oocysts24 and internalise into stomata of leafy vegetables.25 Cryptosporidium exhibits remarkably high resilience that allows the coccidia survives in harsh external environments. Intestinal parasites (e.g. Cryptosporidium and Giardia) remain viable at damp and cool storage conditions such as in the household refrigerator. The parasites still manifest infectivity even being stored at 4 °C for 8 days26 and 6 °C for a month.24,25 The infectious dose of Cryptosporidium is as low as 30 oocysts27, while Giardia is as low as 10 to 100 cysts.28

During the initial part of this study, it was postulated that wet markets would be contaminated with higher count of parasites compared to supermarkets. This was assumed due to the lower sanitation practices as the retailed vegetables at wet markets were likely to be traditionally homegrown. Besides, root-type vegetables would be contaminated with a higher number of parasites than leafy-type vegetables as they are exposed to the contaminated soil. However, statistical analysis revealed that the contamination level by the parasites in vegetables retailed at supermarkets versus wet markets, as well as leafy-type versus root-type vegetables, showed no significant differences ($p > 0.05$). Thus, based on the present samples, results indicate that all vegetables (i.e. leafy and root-type vegetables) from both types of the market may possess equivalent risks of sourcing foodborne intestinal parasites to consumers. It is suggested that a high proportion of contaminations might occur in the farms than in retails.

In this recent study, of 108 vegetables examined, high concentrations of intestinal parasite were evident from gingers (0.13, 0.35 and 0.71 larvae/g). This is suggested that it was attributed by its crinkle and irregular shape resulting in large surface area for contact with soil like the finding in Hassan et al.29 with parasitic contamination in root-type vegetables (radish and carrot) were among the highest contaminated. However, the authors enlightened that there were no significant differences in parasite occurrences based on the type of vegetables.29 Nonetheless, leafy-type vegetables are prone to high contamination particularly the ones with an uneven and large area of surfaces. This facilitates stacking of parasites on the leaves especially during washing or watering. The occurrence of IPIs in this study might have sourced during different phases of contaminations. There are three evident routes of parasitological contaminations in food chains; from food and raw materials on the farm, contaminated water used in the processing, and transmission via food preparers during production, service or domestic settings.31 Tackling real risks is crucial to be established before any actual incidents take place. At the farm level, such contamination can be sourced from the contaminated fertiliser, soil and water.32 Whereas, at the processing and preparation stages, contamination can take place from materials used in the processing and by food preparers. Washing vegetables with contaminated water possesses a risk of contamination. Inversely, inadequate washing may contribute to the persistency of the sticking foodborne parasites on the vegetable surfaces. Several studies have demonstrated that inadequate washing may cause persistency of parasites in vegetables.33-36 Furthermore, personal hygienic practices among vegetable preparers or hawkers (e.g. washing hands, cutting nails), where the areas under the fingers are difficult to clean and may contain the highest number of microorganisms among all parts of human body.37

Based on many studies that assessed risk factors of intestinal parasitisms in Malaysia, it was found that there were significant associations between demeanour of consuming raw vegetables with the high rate of IPIs.38-42 Moreover, the risks of IPIs are also high in immunocompromised individuals. For instance, a study by Li et al.43 presented eating raw fruits and vegetables, that were never or occasionally washed, represented a risk factor to IPIs among the patients with a chronic disease. Vegetables are normally fried, boiled or steamed but in some instances, they are consumed raw such as in burger, salad, coleslaw, vegetable juices and chutney to retain natural tastes and heat-sensitive nutrients.44 As to prevent and control IPIs, disinfections are the crucial stage for reducing the risks through vegetable consumption.45

CONCLUSIONS

The findings provided evidence that retailed vegetables were contaminated with intestinal parasites. This highlighted the potential of transmitting parasitic infections via vegetables especially if the vegetables are not prepared hygienically (e.g. washed, cooked, steamed, boiled) to render the parasites non-infectious for safe human consumption. Nevertheless, steps can be taken to reduce the risk if farmers adopt proper sanitation practices during vegetable production and transportation.

ABBREVIATIONS

DAPI: 4',6-diamidino-2-phenylindole; IPIs: intestinal parasitic infections; PBS: phosphate-buffered saline

ACKNOWLEDGEMENTS

Authors acknowledge the immense help received from the staff of Faculty of Resource Science and Technology, Un-
versiti Malaysia Sarawak for their assistance. The authors are also grateful to the scholars whose articles are cited and included in references of this manuscript as well as the editors and publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Availability of Data and Materials: All data generated or analysed during this study are included in the published article.

Authors’ Contributions: LMB was involved in the study designation; CSKG was involved in the sample collection; AST and CSKG were involved in the laboratory experiments; AST, LMB, YAL and RLR were involved in the manuscript drafting. All the authors read approved the final version of the manuscript.

Conflicts of Interest: The authors declare that no conflicts of interest in this study.

Financial Support: This study was supported by the Tun Zaidi Chair, F07/TZC/1595/2017.

Ethics Approval and Consent to Participate: Not applicable.

Consent for Publication: Not applicable.

Competing Interests: The authors declare that they have no competing interests.

REFERENCES

1. Dorny P, Praet N, Deckers N, Gabriël S. Emerging food-borne parasites. Vet Parasitol 2009;163(3):196-206.
2. Multicriteria-based ranking for risk management of food-borne parasites Food and Agriculture Organization of the United Nations, FAO. 2012.
3. Baldursson S, Karanis P. Waterborne transmission of protozoan parasites: review of worldwide outbreaks--an update 2004–2010. Water Res 2011;45(20):6603-6614.
4. Lim YA, Nissapatorn V. Transmission of waterborne parasites in the Association of Southeast Asian Nations (ASEAN): Overview and direction forward. Food Waterborne Parasitol 2017;8:75-83.
5. Ikura M, Yi S, Ichimura Y, Hori A, Izumi S, Sugiyama H, et al. Effect of pesticide residues on Cryptosporidium oocysts and Giardia cysts in fresh produce. PLoS One 2013;8(7):e68290.
6. Robertson LJ, Gjerde B. Occurrence of parasites on fruits and vegetables in Norway. J Food Prot 2001;64(11):1793-1798.
7. Amorós I, Alonso JL, Cuesta G. Cryptosporidium oocysts and Giardia cysts on salad products irrigated with contaminated water. J Food Protection 2010;73(6):1138-1140.
8. Chaidez C, Soto M, Gortares P, Mena K. Occurrence of Cryptosporidium and Giardia in irrigation water and its impact on the fresh produce industry. Int J Environ Health Res 2005;15(5):339-345.
9. Steele M, Odumeru J. Irrigation water as source of foodborne pathogens on fruit and vegetables. J Food Prot 2004;67(12):2839-2849.
10. Armon R, Gold D, Brodsky M, Oron G. Surface and subsurface irrigation with effluents of different qualities and presence of Cryptosporidium oocysts in soil and on crops. Water Sci Technol 2002;46(3):115-122.
11. Klapac T, Borecka A. Contamination of vegetables, fruits and soil with geohelmins eggs on organic farms in Poland. AAEM 2012;19(3).
12. Dixon B, Parrington L, Cook A, Pollari F, Farber J. Detection of Cyclospora, Cryptosporidium, and Giardia in ready-to-eat packaged leafy greens in Ontario, Canada. J Food Prot 2013;76(2):307-313.
13. Yusof AM, Mohammad M, Abdullahi MA, Mohamed Z, Zakaria R, Wahab RA. The occurrence of intestinal parasitic contamination in select consumed local raw vegetables and fruits in Kuala Lumpur, Malaysia. Trop Life Sci Res 2017;28(1):23.
14. Zeehaïda M, Zairi NZ, Rahmah N, Maintunah A, Madihah B. Research Note Strongyloides stercoralis in common vegetables and herbs in Kota Bharu, Kelantan. Trop Biomed 2011;28(1):188-193.
15. Anuar AK, Ramachandran CP. A study on the prevalence of soil-transmitted helminths among lettuce leaves sold in local markets in Penang, Malaysia. Med J Malaysia 1977;31(4):262-265.
16. Erdogru İ, Şener H. The contamination of various fruit and vegetable with Enterobius vermicularis, Ascaris eggs, Entamoeba histolytica cysts and Giardia cysts. Food Control 2005;16(6):557-560.
17. Kuczynska E, Shelton DR. Method for detection and enumeration of cryptosporidium parvum oocysts in feces, manures, and soils. Appl Environ Microbiol 1999;65(7):2820-2826.
18. World Health Organization, WHO. Manual of basic techniques for a health laboratory. 2013.
19. Dueu KO, Yarnie EA, Tetteh-Quarcoo PB, Attah SK, Donkor ES, Ayeh-Kumi PF. A comparative survey of the prevalence of human parasites found in fresh vegetables sold in supermarkets and open-air markets in Accra, Ghana. BMC Res Notes 2014;7(1):1-6.
20. Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao S. Hookworm infection. New Engl J Med 2004;351(8):799-807.
21. Ly MN, Bethel SL, Usmani AS, Lambert DR. Cutaneous Strongyloides stercoralis infection: an unusual presentation. J Am Acad Dermatol 2003;49(2):157-160.
22. Adler S, Widerström M, Lindh J, Lilja M. Symptoms and risk factors of Cryptosporidium hominis infection in children: data from a large waterborne outbreak in Sweden. Parasitol Res 2017;116(10):2613-2618.
23. Robertson LJ, Hanevik K, Escobedo AA, Morch K, Langeland N. Giardiasis--why do the symptoms sometimes never stop? Trends Parasitol 2010;26(2):75-82.
24. Macarisi D, Santin M, Bauchan G, Fayer R. Infectivity of Cryptosporidium parvum oocysts after storage of experimentally contaminated apples. J Food Prot 2010;73(10):1824-1829.
25. Macarisi D, Bauchan G, Fayer R. Spinacia oleracea L. leaf contamination. Int J Food Safety 2012;19(3).
26. Erdogrul O, Şener H. The contamination of various fruit and vegetables in Penang, Malaysia. Med J Malaysia 1977;31(4):262-265.
27. Erdogru İ, Şener H. The contamination of various fruit and vegetable with Enterobius vermicularis, Ascaris eggs, Entamoeba histolytica cysts and Giardia cysts. Food Control 2005;16(6):557-560.
28. World Health Organization, WHO. Manual of basic techniques for a health laboratory. 2013.
29. Dueu KO, Yarnie EA, Tetteh-Quarcoo PB, Attah SK, Donkor ES, Ayeh-Kumi PF. A comparative survey of the prevalence of human parasites found in fresh vegetables sold in supermarkets and open-air markets in Accra, Ghana. BMC Res Notes 2014;7(1):1-6.
30. Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao S. Hookworm infection. New Engl J Med 2004;351(8):799-807.
31. Ly MN, Bethel SL, Usmani AS, Lambert DR. Cutaneous Strongyloides stercoralis infection: an unusual presentation. J Am Acad Dermatol 2003;49(2):157-160.
32. Adler S, Widerström M, Lindh J, Lilja M. Symptoms and risk factors of Cryptosporidium hominis infection in children: data from a large waterborne outbreak in Sweden. Parasitol Res 2017;116(10):2613-2618.
33. Robertson LJ, Hanevik K, Escobedo AA, Morch K, Langeland N. Giardiasis--why do the symptoms sometimes never stop? Trends Parasitol 2010;26(2):75-82.
34. Macarisi D, Santin M, Bauchan G, Fayer R. Infectivity of Cryptosporidium parvum oocysts after storage of experimentally contaminated apples. J Food Prot 2010;73(10):1824-1829.
35. Macarisi D, Bauchan G, Fayer R. Spinacia oleracea L. leaf contamination. Int J Food Safety 2012;19(3).
36. Erdogrul O, Şener H. The contamination of various fruit and vegetables in Penang, Malaysia. Med J Malaysia 1977;31(4):262-265.
37. Erdogru İ, Şener H. The contamination of various fruit and vegetable with Enterobius vermicularis, Ascaris eggs, Entamoeba histolytica cysts and Giardia cysts. Food Control 2005;16(6):557-560.
38. World Health Organization, WHO. Manual of basic techniques for a health laboratory. 2013.
39. Dueu KO, Yarnie EA, Tetteh-Quarcoo PB, Attah SK, Donkor ES, Ayeh-Kumi PF. A comparative survey of the prevalence of human parasites found in fresh vegetables sold in supermarkets and open-air markets in Accra, Ghana. BMC Res Notes 2014;7(1):1-6.
40. Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao S. Hookworm infection. New Engl J Med 2004;351(8):799-807.
29. Hassan A, Farouk H, Abdul-Ghani R. Parasitological contamination of freshly eaten vegetables collected from local markets in Alexandria, Egypt: A preliminary study. Food Control 2012;26(2):500-503.
30. Eraky MA, Rashed SM, Nasr ME, El-Hamshary AM, Salah El-Ghanam A. Parasitic contamination of commonly consumed fresh leafy vegetables in Benha, Egypt. J Parasitol Res 2014;2014.
31. Dawson D. Foodborne protozoan parasites. Int J Food Microbiol 2005;103(2):207-227.
32. Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, Frankel G. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 2010;12(9):2385-2397.
33. Avcioglu H, Soykan E, Tarakci U. Control of helminth contamination of raw vegetables by washing. Vector Borne Zoonotic 2011;11(2):189-191.
34. Fallah AA, Pirali-Kheirabadi K, Shirvani F, Saei-Dehkordi SS. Prevalence of parasitic contamination in vegetables used for raw consumption in Shahrkord, Iran: influence of season and washing procedure. Food Control 2012;25(2):617-620.
35. Kozan E, Gonen B, Sarimehmetoglu O, Aycicek H. Prevalence of helmint eggs on raw vegetables used for salads. Food Control 2005;16(3):239-242.
36. Shahnaazi M, Jafari-Sabet M. Prevalence of parasitic contamination of raw vegetables in villages of Qazvin Province, Iran. Foodborne Pathog Dis 2010;7(9):1025-1030.
37. Sahlemariam Z, Mekete G. Examination of fingernail contents and stool for ova, cyst and larva of intestinal parasites from food handlers working in student cafeterias in three Higher Institutions in Jimma. Ethiop J Health Sci 2001;11(2).

Table 1: Intestinal parasites detected from leafy-type vegetables purchased from supermarkets and wet markets in this study

Market	First sampling visit	Second sampling visit	Third sampling visit
Supermarket A	Cabbage	Mustard greens	Chinese kale
		Cryptosporidium = 0.02 oocyst/g	Cryptosporidium = 0.03 oocyst/g
			Pak choy
Supermarket B	Cabbage	Mustard greens	Chinese kale
			Pak choy
Supermarket C	Cabbage	Mustard greens	Chinese kale
			Cabbage

38. Al-Delaimy AK, Al-Mekhlafi HM, Nasr NA, Sady H, Atroosh WM, Nashiry M, Anuar TS, Moktar N, Lim YA, Mahmud R. Epidemiology of intestinal polyparasitism among Orang Asli school children in rural Malaysia. PLoS Negl Trop Dis. 2014;8(8): e3074.
39. Anuar TS, Al-Mekhlafi HM, Ghani MK, Osman E, Yasin AM, Nordin A, et al. Giardiasis among different tribes of Orang Asli in Malaysia: highlighting the presence of other family members infected with Giardia intestinalis as a main risk factor. Int J Parasitol 2012;42(9):871-880.
40. Anuar TS, Al-Mekhlafi HM, Ghani MK, Osman E, Yasin AM, Nordin A, et al. Prevalence and risk factors associated with Entamoeba histolytica/dispar/moshkovskii infection among three Orang Asli ethnic groups in Malaysia. PLoS One 2012;7(10): e48165.
41. Choy SH, Al-Mekhlafi HM, Mahdy MA, Nasr NN, Sulaiman M, Lim YA, et al. Prevalence and associated risk factors of Giardia infection among indigenous communities in rural Malaysia. Sci Rep 2014;4:6909.
42. Mohammed Mahdy AK, Lim YA, Surin J, Wan KL, Al-Mekhlafi MH. Risk factors for endemic giardiasis: highlighting the possible association of contaminated water and food. Trans R Soc Trop Med 2008;102(5):465-70.
43. Li XX, Chen JX, Wang LX, Tian LG, Zhang YP, Dong SP, et al. Intestinal parasite co-infection among pulmonary tuberculosis cases without human immunodeficiency virus infection in a rural county in China. Am J Trop Med 2014;90(1):106-113.
44. Nyarango RM, Aloo PA, Kabiru EW, Nyanchongi BO. The risk of pathogenic intestinal parasite infections in Kisii Municipality, Kenya. BMC Public Health 2008;8(1):237.
45. Robertson LJ. Cryptosporidium as a foodborne pathogen. New York, NY, USA: Springer; 2014.
Table 1: (Continued)

Market	First sampling visit	Second sampling visit	Third sampling visit
Wet market A	Spinach	Spinach	Water spinach
	-	Nematode = 0.01 larvae/g	
	-	Giardia = 0.01 cyst/g	
	-	Water spinach	Cabbage
Wet market B	Gain lan	Spinach	Water spinach
	-	-	
	Mustard greens	Chinese kale	Cabbage
	-	Nematode = 0.01 larvae/g	
	Lettuce	Lettuce	Mustard greens
Wet market C	Water spinach	Chinese kale	Spinach
	Nematode = 0.03 larvae/g		Nematode = 0.03 larvae/g
	Mustard greens	Mustard greens	Lettuce
	-	-	Hookworm = 0.01 ova/g
	Lettuce	Water spinach	Cabbage
	-	-	

Total = 13/54 positive samples (24.1%)

Bold denotes positive sample with intestinal parasite(s), '-' denotes negative sample with intestinal parasite(s)

Table 2: Intestinal parasites detected from root-type vegetables purchased from supermarkets and wet markets in this study

Market	First sampling visit	Second sampling visit	Third sampling visit
Supermarket A	Potato	Potato	Potato
	-	-	-
	Carrot	Carrot	Sweet potato
	-	-	Nematode = 0.02 larvae/g
	Garlic	Ginger	Ginger
	-	-	Nematode = 0.35 larvae/g
Supermarket B	Potato	Potato	Potato
	-	-	-
	Carrot	Carrot	Carrot
	-	-	-
	Garlic	Ginger	Ginger
	-	-	Nematode = 0.06 larvae/g
Supermarket C	Potato	Potato	Potato
	-	-	-
	Carrot	Carrot	Carrot
	-	-	-
	Ginger	Ginger	Ginger
	-	-	-
Wet market A	Potato	Potato	Potato
	-	-	-
	Turmeric	Sweet potato	Carrot
	-	-	-
	Ginger	Ginger	Ginger
	-	-	Nematode = 0.13 larvae/g
Table 2: (Continued)

Market	First sampling visit	Second sampling visit	Third sampling visit
Wet market B	Potato	Potato	Potato
	-	-	Nematode = 0.03 larvae/g
Carrot	-	Carrot	Sweet potato
Sweet Potato	-	Ginger	Ginger
Wet market C	Potato	Potato	Potato
	-	-	-
Carrot	-	Sweet potato	Sweet potato
Ginger	Nematode = 0.71 larvae/g	Sweet potato	Ginger
		-	Nematode = 0.04 larvae/g
Total	**11/54 positive samples (20.4%)**		

Bold denotes positive sample with intestinal parasite(s), '-' denotes negative sample with intestinal parasite(s)

Table 3: Two-sample t-test analysis of mean comparison of parasite concentrations in purchased vegetables from wet markets and supermarkets, and comparison parasite concentration in leafy-type and root-type vegetables

Comparison parasite concentration in vegetables purchased from supermarkets and wet markets	Two-tailed ($\alpha = 0.05$)
Comparison parasite concentration in leafy-type and root-type vegetables	0.211

Figure 1: Photomicrographs of detected human intestinal parasites from the purchased vegetable samples in this study. A: Cryptosporidium oocyst (5.89 × 4.69 µm) positively stained with AquaGlo™ G/C antigen reagent (Waterborne, Inc., USA), B: Cryptosporidium oocyst as in ‘A’ that was negative with DAPI, C: Giardia cyst (11.04 × 6.15 µm) positively stained with AquaGlo™ G/C antigen reagent (Waterborne, Inc., USA), D: Giardia cyst as in ‘C’ that was negative with DAPI, E: Hookworm ova (76.03 × 48.59 µm), F: Hookworm ova (90.16 × 49.82 µm), G: Nematode larvae (388.77 × 19.68 µm), H: Nematode larvae (370 × 50 µm) and I: A group of nematode larvae (331.16 - 362.25 × 16.80 - 20.08 µm).