Randomised controlled clinical trial of a structured cognitive rehabilitation in patients with attention deficit following mild traumatic brain injury: study protocol

Norhamizan Hamzah, Vairavan Narayanan, Norlisah Ramli, Nor Atikah Mustapha, Nor Adibah Mohammad Tahir, Li Kuo Tan, Mahmoud Danaee, Nor Asiah Muhamad, Avril Drummond, Roshan das Nair, Sing Yau Goh, Mazlina Mazlan

ABSTRACT

Objectives To measure the clinical, structural and functional changes of an individualised structured cognitive rehabilitation in mild traumatic brain injury (mTBI) population.

Setting A single centre study, Malaysia.

Participants Adults aged between 18 and 60 years with mTBI as a result of road traffic accident, with no previous history of head trauma, minimum of 9 years education and abnormal cognition at 3 months will be included. The exclusion criteria include pre-existing chronic illness or neurological/psychiatric condition, long-term medication that affects cognitive/psychological status, clinical evidence of substance intoxication at the time of injury and major polytrauma. Based on multiple estimated calculations, the minimum intended sample size is 50 participants (Cohen’s d effect size=0.35; alpha level of 0.05; 85% power to detect statistical significance; 40% attrition rate).

Interventions Intervention group will receive individualised structured cognitive rehabilitation. Control group will receive the best patient-centred care for attention disorders. Therapy frequency for both groups will be 1 hour per week for 12 weeks.

Outcome measures Primary: Neuropsychological Assessment Battery-Screening Module (S-NAB) scores.

Secondary: Diffusion Tensor Imaging (DTI) parameters and Goal Attainment Scaling score (GAS).

Results Results will include descriptive statistics of population demographics, CogniPlus cognitive program and metacognitive strategies. The effect of intervention will be the effect size of S-NAB scores and mean GAS T scores. DTI parameters will be compared between groups via repeated measure analysis. Correlation analysis of outcome measures will be calculated using Pearson’s correlation coefficient.

Conclusion This is a complex clinical intervention with multiple outcome measures to provide a comprehensive evidence-based treatment model.

Ethics and dissemination The study protocol was approved by the Medical Research Ethics Committee.

Strengths and limitations of this study

► To our knowledge, this is the first randomised controlled trial of a cognitive intervention in an adult mild traumatic brain injury (mTBI) population, conducted in a low/middle-income country (Southeast Asia region).

► A study from this region, with various ethnic groups, may better represent the study population and in turn add further knowledge on the pattern of the impairment following mTBI.

► This trial incorporates technology in the intervention arm consistent with the changing face of health service delivery in Malaysia, aiming at both resource efficiency and treatment effectiveness, although the tailored treatment approach is appropriate for the local setting.

► Owing to the paucity of scientific and clinical knowledge, this trial will also contribute to the evidence-based cognitive treatment model for the mTBI population.

► We anticipate challenges in the recruitment phase and with treatment compliance due to known and reported high attrition rate in the traumatic brain injury population.

BACKGROUND

Mild traumatic brain injury (mTBI) is defined as a traumatic injury that induces transient physiological disruption of the brain function.1 mTBI is often used interchangeably with concussion and is a clinical diagnosis. The most common aetiology in the low-income and middle-income countries is road traffic
accident (RTA) that disproportionately affects young men (15–29 years of age). Statistically, 20–50 million people sustained non-fatal injuries worldwide as a result of RTA and with an increasing rate in the low/middle-income countries.

Cognitive deficit is rarely singular in mTBI. Commonly reported symptoms are attention, memory and executive function deficits, each with varying severity and recovery pattern. Specifically, attention deficit is extremely common in TBI. Attention is known to be the basis of all other cognitive abilities. About 40%–60% of individuals with mTBI are reported to have attention deficits in the first 3 months postinjury. In the majority of individuals, resolution of mixed cognitive deficits begins in the first month and up to 1-year postinjury. A proportion of this population often progresses to have chronic cognitive disability that is overlooked due to the initial ‘mild’ presentation. At least one-third of survivors fail to return to full functional status at 6 months and may, indeed continue to have neurocognitive functional deficits beyond 1 year of injury.

Cognitive rehabilitation in mTBI

Currently, there is no standard cognitive rehabilitation treatment for mTBI population. The heterogeneity of cognitive deficits, varied intervention methodology, different reporting style and variable treatment outcomes challenge professionals in standardising mTBI treatment. The early neuropsychological model of attention has already made the assumption that attention should be the focus of rehabilitation, even before more advanced cognitive abilities.

The objectives are:

- To measure the clinical effect of a 12-week individualised structured cognitive rehabilitation, which addresses attention deficit and overall cognitive status.
- To analyse the effect of treatment on brain structures and functional changes.

Clinical, imaging and functional outcome measures in mTBI

A combination of clinical, imaging and functional outcome measures is a comprehensive approach to analyse cognitive intervention that can make an impact in the clinical practice. Scientific reviews and guidelines have recommended the use of neuropsychological assessment as an appropriate clinical outcome measure. In adult mTBI, a test that is sensitive across various cognitive domains has become accepted as a non-invasive tool that is able to quantify microstructural brain changes in mTBI. Changes in its parameters are indicative of microstructural remodelling at acute and chronic stages of injury, potentially explaining the persistence of symptoms that would otherwise be attributed to other causes.

A longitudinal DTI study may increase our understanding of the brain structural transformation in mTBI.

The most important outcome following mTBI is the ability for patients to return to their previous functional state and quality of life. Commonly used scales to measure disability and function are usually sensitive to cognitive deficits but not necessarily specific to the TBI population. Many studies have also reported specific outcome measures for TBI that has good validity, reliability and practical in a clinical setting, such as Goal Attainment Scaling (GAS) and Extended Glasgow Outcome Scale and Functional Assessment Measure.

This trial evaluates a complex clinical intervention, which will provide evidence on the effect of cognitive rehabilitation in mTBI. The outcome measures include anatomical, clinical and functional aspects to provide a comprehensive evidence-based treatment model.
Figure 1 Flow chart showing the stages of recruitment in this study. DTI, Diffusion Tensor Imaging; GAS, Goal Attainment Scaling; S-NAB, Neuropsychological Assessment Battery-Screening Module.

To correlate clinical effects following cognitive rehabilitation with structural brain changes and participants’ overall functional outcomes.

Design
This will be a prospective double blind, randomised controlled trial with two parallel groups. The study design is summarised in figure 1.

Participants and recruitment process
This trial will be conducted at a single centre, University Malaya Medical Centre (UMMC), Malaysia. UMMC is a government-funded academic medical institution situated in the urban area of the nation’s capital city Kuala Lumpur with a population of 1.76 million. Apart from providing acute medical services, this hospital is also a tertiary referral and training centre in Malaysia. UMMC also houses Department of Rehabilitation Medicine that provides the facility for this study. This department includes the main rehabilitation services (neurorehabilitation, spinal cord rehabilitation, prosthetic rehabilitation and orthotic rehabilitation, paediatric rehabilitation and cardiac rehabilitation) for both inpatient and outpatient setting. Other services also include return to work/driving rehabilitation.

We will recruit participants through the emergency medicine department (ED), UMMC from 1 August 2017. ED physicians, radiologists and neurosurgeons will refer mTBI cases to a research assistant for recruitment. Potential cases will also be screened through the UMMC digital medical record system. Screening stages will be performed at 72 hours, 2 and 6 weeks following mTBI.

Inclusion criteria
mTBI is defined as physiological disruption of brain function as a result of trauma with symptoms of loss of consciousness 30 min or less, focal neurological deficit that may/may not be transient, altered mental state with Glasgow Coma Scale of 13–15 and loss of memory with post-traumatic amnesia not greater than 24 hours. The inclusion criteria for this study are mTBI as a result of RTA; adult aged between 18 and 60 years old; Malaysian resident; no previous history of head trauma; minimum of 9 years education; persistently abnormal Neuropsychological Assessment Battery-Screening Module (S-NAB) Attention Domain score at 3 months of mTBI; ability to give consent and willingness to comply with cognitive rehabilitation programme. Persistently abnormal S-NAB Attention Domain score is defined as Standard Score <85 (below average category) at screening phase and at enrolment phase as set by the NAB test manual (table 1).

Exclusion criteria
The exclusion criteria include pre-existing chronic illness that causes neurological symptoms or complications; severe comorbid neurological or psychiatric disorder; on long-term medication that alters or affects cognitive and psychological status; clinical evidence of substance intoxication at the time of injury; major polytrauma and absolute contraindications for MRI (metal or implant not compatible for MRI, claustrophobia) (table 1).

Intervention
Potential participants will undergo screening before enrolment and randomisation (figure 1). The education component will include reassurance on recovery, self-monitoring of symptom(s) and advice on gradual return to daily activities and physical exertion. Symptom(s) evaluation will include clinical review of physical, cognitive and psychological status. The first medical responder, that is, ED physicians will perform this review at 72 hours of injury. At 2 and 6 weeks after injury, a rehabilitation medicine physician who is not involved with the study (RP-1) will repeat the education component and symptom evaluation. Early treatment or referral to other medical specialty will be made if indicated during these reviews.

At 3 months after injury, potential participants will undergo a repeat of clinical review and S-NAB test. Eligibility criteria will include (1) an abnormal S-NAB Attention Domain score at 3 months post-mTBI or (2) deficits in more than one S-NAB domain, not including the attention domain. The concomitant domain deficit(s) will also
Table 1 The study criteria

Criteria	IG	SG	HG
Inclusion criteria			
18-60 years old of age	✓	✓	✓
No previous history of head trauma	✓	✓	✓
Minimum of 9 years education	✓	✓	✓
Consented	✓	✓	✓
mTBI as a result of motor vehicle accidents only	✓	✓	
Abnormal S-NAB Attention Domain score at 3 months of mTBI	✓	✓	
Willingness to comply with rehabilitation programme			
Exclusion criteria			
Pre-existing chronic illness or neurological or psychiatric condition	✓	✓	✓
On long-term medication that can alter or affect cognitive and/or psychological status	✓	✓	✓
Clinical evidence of alcohol intoxication at the time of injury	✓	✓	
Major polytrauma (multiple bone fractures, nerve injury)	✓	✓	
Absolute contraindication for MRI	✓	✓	

IG-individualised structured cognitive rehabilitation group. HG, healthy control group; mTBI, mild traumatic brain injury; SG, standard care group; S-NAB, Neuropsychological Assessment Battery-Screening Module.

be evaluated on completion of therapy. The cognitive intervention will be conducted at the Neurorehabilitation Therapy Unit, Department of Rehabilitation Medicine, UMMC as an outpatient setting. Participants will be assigned to different treatment groups via the randomisation process. Written records of the intervention will be recorded and kept by the therapist of each treatment arm until treatment completion. This will include the participant’s goals, symptom(s), cognitive strategy/method and participant’s feedback.

Individualised structured cognitive rehabilitation group

Intervention group participants will receive a 2-part 12-week individualised structured cognitive rehabilitation. The first part will be Direct Attention Training, a deficit-oriented computer-based attention-training programme called CogniPlus.45 Each session last 30 min, once a week.

CogniPlus is a computer-based software programme with interactive multimedia approach for multiple attention cognitive training modules. The training programs are ALERT (focused and sustained attention), FOCUS (focused attention), VIG (sustained attention), SELECT (selective attention) and DIVID (divided attention). Each attention-training category is designed based on real-life scenarios. The screen graphics are three-dimensional. This program has an artificial intelligence capacity that can automatically adapt to an individual’s performance and alter the training difficulty level (hierarchical difficulty).

The second part of this intervention will be strategy approach (metacognitive awareness and compensatory strategy) performed after CogniPlus training. Metacognitive awareness includes feedback on the participant’s CogniPlus performance to improve their awareness of impairment severity. This process is intended to regulate learning experience and in turn instil the practise of self-monitoring and self-regulation through learning activities. Compensatory strategy component involves instilling cognitive awareness in recognising impairment that is present in daily activities. This will be followed by the application of cognitive methods to ameliorate the deficit to maximise daily functioning. A participant will identify the deficit(s) and will apply problem-solving method(s) learnt from the therapist. Feedback and review of performance will be repeated in the next following therapy session. The metacognitive strategies applied will also be recorded in writing during the participant’s feedback sessions. This session will last for 30 min and a will be conducted by a trained and certified occupational therapist (OT-1) in cognitive therapy and CogniPlus.

Standard care group

This group will receive the best standard care for attention disorders. This is a patient-centred cognitive therapy. It is based on a patient’s complaint(s), symptom(s) and therapy aim(s) (self-realisation of deficits or guided by therapist). Symptom(s) management may include physical (eg, imbalance, fatigue and sleep dysregulation), psychological (eg, mild anxiety or depression) and cognitive (eg, forgetfulness). Referral to relevant service(s) may be required such as physiotherapy, return to work/driving rehabilitation and counselling. Compensatory strategy includes task-specific training (patient prioritised), for
example, return to driving may involve driving simulation training, and visuospatial training. The frequency of sessions will be 1 hour per week, for 12 weeks. A trained OT in cognitive therapy (OT-2), who is not involved with the intervention group treatment, will conduct all the sessions (table 2).

Control group
This will consist of healthy individuals demographically matched for age, gender and education years to the intervention groups (table 1). They will undergo S-NAB, DTI imaging and psychological screening tools, which will include the Generalised Anxiety Disorder 7-item (GAD-7) and Patient Health Questionnaire-9 (PHQ-9). Their lifestyle aspects will also be reviewed and recorded (spiritual practice, diet, physical exercise, occupation and driving). The data will be collected for comparison purpose.

Randomisation, consent and blinding
Participants with mTBI who fulfil the study criteria will be randomised via computer-generated random permuted block assignment, gender stratified into equally proportioned intervention and control group numbers. The study schedule, procedures and blinding of coinvestigators are presented in table 2.

Modification, withdrawal and unblinding within the intervention
Participants can withdraw their consent from this study at any time and for any reason. Investigators can also withdraw a participant from the study if he/she becomes non-compliant with the treatment protocol. This includes poor treatment attendance (non-attendance of >50% of total therapy sessions) or the participant’s request for withdrawal from the study. We will also provide necessary treatment to participants who require immediate medical attention that is otherwise not part of the study intervention throughout the study duration. In the case where unblinding of a participant is necessary (eg, medical emergency), an investigator (MM) will be informed of the cause and stage of intervention. He/she may continue in the study and follow all study procedures. The participant will only be withdrawn from this study if the immediate treatment violates the study criteria. We will retain all of participant’s data (although the participant is no longer blinded) up to the point of participant’s removal from the study.

Adherence strategies
Adherence to treatment is encouraged for both groups. This will be achieved by providing: (1) participants with clear information on purpose, method and treatment goals during treatment sessions, (2) an appointment card with specific date and time of therapy sessions and (3) a reminder through phone calls a day before each therapy appointment and a week before DTI scan date.

Outcome measures
All measures will be performed at baseline and at 12 weeks of intervention after randomisation. The primary outcome measure for this study is the change in attention deficit and other cognitive domains within intervention groups and direct comparison of each intervention group with the healthy control group. This will be measured by NAB (PAR, Florida, USA). It consists of six modules: Screening Module and five Domain Specific Modules: Attention, Language, Memory, Spatial and Executive Function. This study will only apply the Screening Module (S-NAB) because it measures the same five functional domains similar or identical to the main NAB modules. It consists of 12 individual tests screening all five mentioned cognitive domains for adults aged 18–97 years, validated and sensitive for use in healthy and cognitively impaired brain injured population. S-NAB also provides two parallel assessment sets (Record Form 1 and Form 2) that will be applied in an alternate fashion to participants in both groups to avoid practice effect. S-NAB Domain Attention test items and score are interpreted as a marker of an individual’s attentional capacity, working memory, psychomotor speed, selective attention, divided attention and information processing. S-NAB has also been applied in our previous cohort study with good validation outcome in our Malaysian mTBI population.

The secondary outcome measures are microstructural white matter tract (WMT) parameters and GAS scores. The DTI MRI scan is a Siemens Magnetom Prisma 3T MRI (Siemens AG, Munich, Germany). This study will analyse fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) parameter changes at preintervention and postintervention. These parameters quantify the direction and degree of tissue water diffusion within the WMT. FA, which measures the direction of the diffusion, is an index expressed in a range from 0 to 1, with a higher score indicating a higher integrity of white matter consisting of highly parallel fibres. MD measures the average magnitude of the diffusion while RD quantifies pathology in the myelin. Changes in the index values of the parameters at different injury timeline will indicate the pathological changes of the WMT.

The tool to measure functional goal outcome will be the GAS. The difficulty and importance of rehabilitation goals will be individually set according to his/her current levels of functional performance to reinforce realistic expectations. The sensitivity of GAS is increased by the quantifiable set goals relevant and specific to the participant. Each goal is rated on a 5-point scale and score is given on the extent to which a patient’s individual goals are achieved in the course of the intervention. The overall GAS scores calculation will generate a standardised measure (T score) (mean of 50 SD ±10). The details of each goal outcome will be recorded in the GAS Record Sheet by a cognitive therapist from each study arm (OT-1 and OT-2) trained in GAS application.
Time point	Coinvestigator (initials)	Prestudy screening	Prestudy screening	Prestudy screening	Baseline/ randomisation	Study visit 1	Study visit 2 onwards	Last study visit	Outcome measures
Enrolment:									
Eligibility screen	Research assistant	X							
Informed consent	MM	X							
Allocation	MM	X							
S-NAB Test (Form 1)	NH	X							
S-NAB Test (Form 2)	NH	X							
DTI test	VN/NR	X							
DTI post processing	LKT	X							
GAS	NAM (OT-1) and NAMT (OT-2)	X	X	X	X	X	X		
Interventions:									
Education component/ symptom(s) evaluation	ED team/RP-1 (ED team)	X	X	X					
Individualised structured cognitive rehabilitation	NAM (OT-1)	X	X	X	X	X	X		
Best standard care	NAMT (OT-2)	X	X	X	X	X	X		
Outcome measures:									
S-NAB test	NH	X							
DTI	VN/NR	X							

Continued
Another important factor to note is the participant’s psychological status following mTBI. This study will also perform a screening of anxiety and depression symptoms by using GAD-7 and PHQ-9 screening tools at each study timeline. Participant’s lifestyle changes/modifications such as spiritual practice, diet change, physical exercise, return to work/education, return to driving, litigation issues and insurance claims will also be reviewed and recorded. Although these parameters will not be part of the study outcome measure, they, however, remain relevant in influencing treatment adherence and outcome.

Sample size and power calculation

In order to fulfil our study objectives, we will base the intended sample size calculation on a previous study that had applied a similar treatment approach and which had a similar outcome measure to our study. This study applied the non-commercial statistical power analysis program G*Power V.3.1.9.2. An effect size of 0.58, which was the functional cognitive outcome of attention, is used to calculate the statistical power a priori. We will apply analysis of variance (ANOVA): repeated measures, within-between interaction, setting an alpha level of 0.05, and approximately 10 participants will provide 89% power to detect a statistical significance. Recruitment is doubled (n=20) for both arms and inflated to 28 to counter 40% attrition rate.

To have a bigger sample size, we, therefore, also decided on a more conservative effect size value and calculated the sample size through estimation of Cohen’s d effect size value of 0.35. By using similar statistical power analysis program, medium effect size Cohen’s d of 0.35, setting an alpha level of 0.05, approximately 38 participants will provide 85% power to detect statistical significance. Recruitment will be inflated to 50 participants to enable a 40% attrition rate.

Based on the multiple estimated calculations, the minimum intended sample size is 50 participants. From UMMC local data, a 12-month data collection is sufficient to yield the target sample size.

Ethics considerations

We will obtain written consent from participants. During consenting, participant will be provided with a patient information sheet detailing the purpose of study, reason for participation, study investigation and intervention methods, withdrawal from the study and contact details of investigators. Once consent is given, the consent form and all other documents with the participant’s personal details will be stored immediately in a locked filing cabinet by the consent taker. This will be accessible only to a small number of investigators. Study ID codes will be allocated after consent is obtained and subsequent study documentation will only use the ID code.

Other issues included will be (1) early information sharing of treatment/investigation results in the event of incidental clinical findings that requires urgent treatment by other medical specialty, (2) treatment compliance,
(3) cost of investigation and treatment, and (4) participant involvement in litigation issues. In the event of information sharing being required for medical reasons, the participant will be informed immediately, followed by referral to the relevant professional, either based at UMMC, or a different centre of choice. However, costs of further investigation or treatment that is not part of this study will not be funded from the study grants. Treatment compliance will be achieved through our adherence strategy. We strictly adhere to the privacy and confidentiality of participant’s medical information. Any information sharing with a third party for various reasons will be managed in accordance with UMMC professional and legal code of conduct.

Patient and public involvement

We applied the Medical Research Council’s Developing and Evaluating Complex Intervention: New Guidance (2006) and Multiphase Optimization Strategy (MOST) framework to guide the development and design of this study. The treatment approach was based on the relevant theoretical evidence whereas treatment approach was evinced through our systematic review, clinical experience and practice setting of interest. We conducted (1) a pilot study and (2) Expert Panel review to evaluate the study design and treatment method that may require further focus.

Participants in the pilot study were recruited in the testing of the treatment method, clinical practicality, fidelity of treatment and treatment compliance. We have additionally identified several components required for the optimisation of the intervention. These findings were also assessed by the Expert Panel reviewers.

The panel comprised of clinicians who were credentialed in brain injury management and cognitive rehabilitation, with minimum of 10 years clinical experience working in Malaysia. Panels were made up of seven rehabilitation medicine consultants, one neurosurgery consultant, one neuroimaging consultant, five cognitive OT and one clinical psychologist. The focus of discussion was on the feasibility of structured cognitive rehabilitation for patients with mTBI in Malaysia, guided by the current evidence, current practise of cognitive rehabilitation in local setting, reviewers’ clinical experience and our pilot study findings. A summary of the pilot study outcomes and Expert Panel recommendations are best illustrated in table 3.

Table 3	A summary of recommendations from pilot study findings and expert panel review
Pilot study	**Expert panel review**
Design: a case–controlled study	Design: Randomisation was recommended in clinical trial design
Study components:	Review components:
Non-randomisation—to identify participant’s willingness to attend therapy as a measure of good compliance.	Fidelity of treatment
Treatment application—treatment was given at early stage of injury (2 weeks postinjury) to measure the treatment effect vs spontaneous’ recovery.	1. Clear information on purpose, method and treatment goals during treatment sessions.
Treatment accessibility—outpatient hospital-based treatment is feasible.	2. An appointment card with specific date and time of therapy sessions.
Treatment compliance–high attrition rate (50%), which compromised the treatment fidelity. Reasons for poor treatment compliance were:	3. A reminder through phone calls a week and a day before each therapy
▶ Treatment frequency and intensity (>1 hour/weekly for the first 3 months followed by monthly session the following 3 months)	4. Review at 72 hours, 2 weeks, 6 weeks and 3 months (baseline) to increase sensitivity towards participant selection, early medical intervention if required and to improve adherence.
▶ Mental fatigue.	Treatment method
▶ ‘Unreadiness’ to receive treatment.	1. As outpatient setting, with frequency 1 hour/week for 12 weeks duration.
▶ Treatment and transportation costs.	2. Individualised treatment approach with standardisation through direct attention training and metacognitive strategy
▶ Work demand (limited time off work and income lost).	3. To clarify the metacognitive strategies applied in therapy such as ‘self-monitoring’, ‘self-instructional procedure’, ‘self-evaluation’, ‘rehearsal’, ‘self-pacing’, ‘positive self-statement’, use of internal/external strategy.
Treatment method—clinical application of treatment was acceptable to participants.	Outcome measure
Treatment effect—the application of effect size measurement is consistent with MOST recommendation.	Neuropsychological assessment as a practice standard
Outcome measure application—S-NAB was able to measure score differences in its five domains. DTI parameters reported changes consistent with current literature evidence in mTBI population.	

DTI, Diffusion Tensor Imaging; GAS, Goal Attainment Scaling; MOST, Multiphase Optimisation Strategy; mTBI, mild traumatic brain injury; S-NAB, Neuropsychological Assessment Battery-Screening Module.
Following the commencement of this study, the input from participants (experience, feedback and outcomes) will be recorded. The data and study materials will belong to UMMC, Malaysia. We will inform our participants of the result of the study following its completion, even if he/she did not complete the study unless he/she has requested no contact.

Statistical analysis

Descriptive statistics will be conducted on the data obtained from all groups to provide a demographic overview of our study population. A p<0.05 will be considered statistically significant. We will also report additional relevant data, which may affect the study outcome. This will include lifestyle modifications, litigation cases, changes in socioeconomic status, physical symptoms and psychological status.

The measure of treatment effect will be changes in neuropsychological assessment scores. We will calculate the effect size of each S-NAB mean Domain Standard score (Attention, Language, Memory, Spatial and Executive Function domains) as well as the Total Index Score within each intervention group. Cohen’s d moderate (>0.5) to large effect size (>0.8) is considered to be clinically significant. Another treatment effect analysis will include reporting on the CogniPlus Attention task difficulty level achieved for each program (ALERT, FOCUS, VIG, SELECT and DIVID), the change of response time and measurement of errors.

Similarly, functional changes will be measured by using the effect size calculation of mean GAS T scores obtained at preintervention and postintervention. We will also compare the mean change in GAS T score between groups and report on the type and preference of meta-cognitive strategies used by participants of both groups.

The secondary analysis will include measurement of structural brain changes following intervention. These data will be obtained from the DTI MRI scan performed at preintervention and postintervention, for all groups. We will identify FA, MD and RD parameters with statistically significant mean values (p<0.05) via whole brain analysis known as Tract-Based Spatial Statistics (TBSS) and region of interest approach which is part of the FSL (V.5.0.6; University of Oxford, Oxford UK) and AFNI (V.2011_12_21_1014; National Institute of Mental Health, Bethesda, Maryland, USA) software packages. The DTI parameters of both intervention groups at 3 and 6 months study timelines will be compared with the healthy control group by using repeated measure analysis. This is in the assumption that the study fulfils the healthy control group by using repeated measure analysis. This is in the assumption that the study fulfils the healthy control group by using repeated measure analysis. This is in the assumption that the study fulfills the healthy control group by using repeated measure analysis. This is in the assumption that the study fulfills the healthy control group by using repeated measure analysis. This is in the assumption that the study fulfills the healthy control group by using repeated measure analysis. This is in the assumption that the study fulfills the healthy control group by using repeated measure analysis. This is in the assumption that the study fulfills the healthy control group by using repeated measure analysis.

The results of this study will provide a comprehensive overview on the effect of cognitive rehabilitation in mTBI. Owing to the paucity of scientific and clinical knowledge, this trial will also contribute to the evidence-based cognitive treatment model for mTBI population.

Trial status

At the time of manuscript preparation, 30 potential participants have been recruited at 3 months post-injury. Fifteen participants were consented and received treatment following randomisation. Recruitment is due to finish in April 2019. Data lock has not yet occurred and no analyses have been performed.

Data management

All data obtained including from non-adherence or voluntarily withdrawn participants will also be reviewed and included in the study analysis where applicable. All study documents will be securely kept at the study site. Participant information will be stored in locked filing cabinets and will only be accessible to selected investigators. All data documents, administrative forms, reports and analysis documents will only have coded participant ID to avoid identification by any investigator of the study. Data entry will only be performed by an appointed research assistant. Any other document that has a participant’s name such as consent form will be kept in a separate cabinet accessible by a selected investigator (MM).

DISCUSSION

To our knowledge, this is the first randomised control trial of cognitive intervention in adult mTBI population, conducted in a low/middle-income country, Southeast Asia region. Previous studies have been conducted in the Western population with a predominantly Caucasian ethnic group and limited ethnic variation. A study from this region with various ethnic group involvements of both genders may better represent the study population and in turn add further knowledge on the pattern of impairment following mTBI. Uniquely, cultural practice and belief system may also influence treatment response and outcome. Development of the intervention approach was based on current evidence, a pilot study and expert panel review. This trial incorporates technology in the treatment application, consistent with the changing face of health service delivery in Malaysia, aiming at resource efficiency and treatment effectiveness, although using a tailored treatment approach appropriate for the local setting. The results of this study will provide a comprehensive overview on the effect of cognitive rehabilitation in mTBI. Owing to the paucity of scientific and clinical knowledge, this trial will also contribute to the evidence-based cognitive treatment model for mTBI population.

Author affiliations

1Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
2Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
3Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
4Department of Rehabilitation Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
5Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Acknowledgements We thank all our mTBI participants involved in the pilot control study as well as expert panels involved in the review of our intervention development and study.

Contributors NH initiated the study, applied for study funding and is the principal investigator. NH, MM, VN, NR, AD, RoDn and SYG were involved in the conception, development of the intervention and design of the study. NAM and NAMT implemented the cognitive intervention. KLT provided the consultation on DTI processing and analysis. MD and NAM provided important statistical contributions. All authors provided feedback on drafts of this paper, read and approved the final manuscript. NH, MM, VN and NR are the guarantors for the study and accept full responsibility for the work and/or the conduct of the study, had access to data, and controlled the decision to publish. MM is the corresponding author and attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding This study is partially funded by High Impact Research Grant UM.C/625/1/HIR/MOHE/CHAN12 and fully funded by Post Graduate Research Grant (PPPG) PPPC-C1-2016/DG/U1/01 and Malaysian Ministry of Science and Innovation (MOSTI) grant (MOSTI Flagship Project FP0911F001). Sponsor: University of Malaya, Malaysia.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval This study is approved by Medical Research Ethics Committee UMMC, REC ID NO: 2016/29–493 and UM/EC Ref: 947.15 for the application of cognitive treatment on patients with mTBI.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

1. Holm L, David Cassidy J, Carroll L et al. Summary of the who collaborating centre for neurotrauma Task force on mild traumatic brain injury. J Rehabil Med 2005;37:137–41.

2. World Health Organization (WHO). Global status report on road safety 2015. 2015. Available: https://www.who.int/violence_injury_prevention/road_safety_status/2015/en/ [Accessed Oct 2018].

3. Jamaluddin SF, Abd Wahab M, Abdul Wahab MY et al. National trauma database January 2009 to December 2009—fourth report, 2011. Available: http://www.acrmo.mcr.in/rntr/report/rntrReport_2009.pdf [Accessed July 2011].

4. Department of Statistics Malaysia. Statistics on causes of death, Malaysia, 2018. 2018. Available: https://www.dosm.gov.my/v1/index.php?c=themeByCat&cat=401&bul_id=1&wg2VjJk2z2H1yCdExM3JQG5oleTVzZ9d8f=1&theme_id=1&pg=4343143223

5. Cassidy JD, Cassidy JD, Peloso P et al. Prognosis for mild traumatic brain injury: results of the who collaborating centre Task force on mild traumatic brain injury. J Rehabil Med 2004;36:84–105.

6. Ponsford J et al. Impact of early intervention on outcome following moderate head injury in adults. J Neurol Neurosurg Psychiatry 2002;73:330–2.

7. Belanger HG, Curtiss G, Demery JA et al. Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. J Int Neuropsychol Soc 2005;11:215–27.

8. Heitger MH, Jones FD, Dalrymple-Alford JC et al. Motor deficits and recovery during the first year following mild closed head injury. Brain Inj 2006;20:807–24.

9. Landre N, Poppe C, Davis N et al. Cognitive functioning and postconcussive symptoms in trauma patients with and without mild TBI. Arch Clin Neuropsychol 2006;21:255–73.

10. Stulmeijer M, van der Werf S, Born GF et al. Early prediction of favourable recovery 6 months after mild traumatic brain injury. J Neurol Neurosurg Psychiatry 2008;79:936–42.

11. Rohling ML, Binder LM, Demakis GJ et al. A meta-analysis of neuropsychological outcome after mild traumatic brain injury: reanalyses and reconsiderations of binder et al. (1997), Frencham et al. (2005), and Pertab et al. (2009). Clin Neuropsychol 2011;25:608–33.

12. Cassidy JD, Cancelliere C, Carroll LJ et al. Systematic review of self-reported prognosis in adults after mild traumatic brain injury: results of the International collaboration on mild traumatic brain injury prognosis. Arch Phys Med Rehabil 2014;95:S132–51.

13. Köhns M, de Kiever JF, Oosterlaan J. Post-Traumatic amnesia predicts intelligence impairment following traumatic brain injury: a meta-analysis. J Neurol Neurosurg Psychiatry 2012;83:1048–55.

14. Brewar TL, Metzger BL, Therrien B. Trajectories of cognitive recovery following a minor brain injury. Res Nurs Health 2002;25:269–81.

15. Bennett TL, Dittmar C, Ho M. The neuropsychology of traumatic brain injury. In: Horton Jr AM, Wedding D, Webster J, eds. The neuropsychology Handbook: behavioral and clinical perspectives. New York: Springer Publishing Company, 1997: 123–72.

16. Tsoussides T, Gordon WA. Cognitive rehabilitation following traumatic brain injury: assessment to treatment. Mt Sinai J Med 2009;76:173–81.

17. Haskins EC, Cicerone K, Dams-O’Connor K et al. Cognitive rehabilitation manual translating evidence-based recommendations into practice. Virginia, USA: ACRM Publishing, 2014.

18. Warden DL, Gordon E. Neuropsychological function and behavioral sequelae of traumatic brain injury. Neurobehavioral guidelines Working Group. guidelines for the pharmacologic treatment of neurobehavioral sequelae of traumatic brain injury. J Neurotrauma 2006;23:1468–501.

19. Prince C, Bruhns M. Evaluation and treatment of mild traumatic brain injury: the role of neuropsychology. Brain Sci 2017;7:105–14.

20. Donovon J, Cancelliere C, Cassidy JD. Summary of the findings of the International collaboration on mild traumatic brain injury prognosis. Chiropr Man Therap 2014;22.

21. Karr JE, Areshenkoff CN, Garcia-Barrera MA. The neuropsychological outcomes of concussion: a systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neurorehabil Neurorecovery 2014;28:321–36.

22. Pertab JL, James KM, Bigler ED. Limitations of mild traumatic brain injury meta-analyses. Brain Injury 2009;23:498–508.

23. Hartvengs J, Boyle E, Cassidy JD et al. Mild traumatic brain injury after motor vehicle collisions: what are the symptoms and who treats them? A population-based 1-year inception cohort study. Arch Phys Med Rehabil 2014;95:S286–S294.

24. Veeramuthu V, Narayanam V, Kuo TL et al. Diffusion tensor imaging parameters in mild traumatic brain injury and its correlation with early neuropsychological impairment: a longitudinal study. J Neurotrauma 2015;32:1497–509.

25. Theadom A, Parag V, Dowell T et al. Persistent problems 1 year after mild traumatic brain injury: a longitudinal population study in New Zealand. Br J Gen Pract 2016;66:e16–23.

26. De Silva MJ, Roberts I, Perel P et al. Patient outcome after traumatic brain injury in high-, middle- and low-income countries: analysis of data on 8927 patients in 46 countries. Int J Epidemiol 2009;38:452–8.

27. New South Wales Motor Accident Authority. Guidelines for mild traumatic brain injury following head injury, 2008. Available: http://braininjuryhelp.ca/wp-content/uploads/2014/04/NSW-MAA-Guidelines_for_Mild_Traumatic_Brain_Injury_Following_Closed_Head_Injury_1.pdf [Accessed Jul 2017].

28. Marshall S, Bleyay M, McCullagh S et al. Updated clinical practice guidelines for concussion/mild traumatic brain injury and persistent symptoms. Brain Injury 2015;29:688–700.

29. Kashluba S, Hanks RA, Casey JE et al. Neuropsychological and functional outcome after complicated mild traumatic brain injury. Arch Phys Med Rehabil 2008;89:904–11.

30. Cicerone KD, Langenhahn DM, Braden C et al. Evidence-Based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil 2011;92:519–30.

31. Lu J, Gary KW, Neimeier JP et al. Cognitive and when? Brain Injury 2001;15:71–94.

32. Coppa SF, Benke T, Clarke S et al. EFNS guidelines on cognitive rehabilitation: report of an EFNS Task force. Eur J Neurol 2005;12:665–80.
