Health risk assessment quantification from heavy metals contamination in the urban soil and urban surface deposited sediment

Mohamed Y. Hanfi¹,²,³ and Illia V. Yarmoshenko¹

¹Ural Federal University, Ekaterinburg, Russia; ²Institute of Industrial Ecology UB RAS, Ekaterinburg, Russia; ³Department of Medical and Radiation Research, Nuclear Materials Authority, Cairo, Egypt

ABSTRACT

Urban soil and urban surface deposited sediments (USDS) are a large basin for receiving heavy metal contaminants from natural resources and anthropogenic activities. The present study is a review carried out the previous studies determine metal impacts in the urban environment on potential health hazards. The environmental risk index (Eᵣ) values follow a trend for different urban soils and USDS: the high Eᵣ value in the period 1980–1990 in urban areas is due to Cd, followed by Pb, Cu, Zn, and Ni. The health risk assessment varied with the type of heavy metal, the time of year, the level of contamination, environmental pollution, and the human age. No significant risk was identified for adults and children in different urban areas.

ARTICLE HISTORY

Received 16 October 2018
Revised 18 February 2020
Accepted 20 February 2020

KEYWORDS

Heavy metal; urban soil; road-deposited sediment; ecological potential risk; risk assessment

1. Introduction

Urban sediments are leaves, debris, and organic and inorganic materials present in the urban environment [1]. Urban sediments occur from natural sources; soil and rock weathering and atmospheric deposition [2–7], as well as anthropogenic sources; these include emissions from agriculture, municipal levels, road traffic, industrial and residential areas, and domestic emissions [8–11]. Sediments collect on various surfaces, such as roofs, roads, and driveways, during dry weather, in river bed and sewage systems, and in receiving reservoirs. Urban sediments can be divided into two categories – those that are deposited on surfaces and are primarily affected – air processes (urban surface deposited sediments, USDS), besides of deposits in the aquatic environment [12,13].

In recent years, sediment deposition in urban areas has received considerable attention due to the ease of sampling sediment material and its ability to act as an indicator of urban pollution levels [13,14]. USDS are particles consisting of sediments, soil, leaves, debris, and organic and inorganic materials [12,15]. They do not stay long in one place, but rather are suspended in atmospheric particles containing metal concentrations or precipitation washes plus solid urban roads and catchments dissolved [16,17]. Consequently, it is important to focus on the contamination in urban soil and USDS simply due to the amount of heavy metal accumulated in the soil and USDS that it depends on the geological origin, soil texture, chemical and physical properties of the urban soil and USDS [20–23]. USDS reduce the quality of the environment and contribute to the perception of an unfavourable urban environment. Moreover, high levels of heavy metals in urban areas are a sign of rapid urbanization of our environment due to population growth and land use [24,25]. Furthermore, development in an urban environment can affect human health [26]. One of the three major mechanisms, ingestion, inhalation, and dermal contact, induced toxic health effects in the body [26–30]. In the urban environment, atmospheric deposition plays a role, where, USDS contains small particulate matter (PM), including PM2.5 and PM10 fractions, which poses a significant health risk [31].

Therefore, to help mitigate heavy metal exposure strategies, the main purpose of the present review was to provide background data to legislators, developers, and governments to understand better the effect of land use patterns on pollution hotspots and the health risks of soil metals and USDS. The objectives were to (1) assess the distribution of metals in the soil and USDS in the world, (2) Evaluate land use effect on metal distribution, (3) assess potential indicators, the potential environmental risk index (Eᵣ) and the environmental risk index (RI) imposed by the assessment of the risk for heavy metals and the health impact that metals in the soil and USDS represent.

CONTACT Mohamed Y. Hanfi m.nruc2012@gmail.com, m.nuclearegypt2011@yahoo.com Ural Federal University, Mira St 19, Ekaterinburg, 620002, Russia; Nuclear Materials Authority, Maadi, 520, Egypt

Supplemental data for this article can be accessed here. https://doi.org/10.1080/16583655.2020.1735735

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Materials and methods

This study provides an overview of the worldwide risk assessment of heavy metal in the urban environment. The analysis covers 2,776 samples collected from various urban landscapes. The analysis of heavy metal concentrations in urban soil and USDS was compiled throughout the period 1979–2018 from various online articles databases such as Web of Science, Science Direct, Scopus and Google Scholar publications. The quote system followed paper after paper with a link through end-to-end links. Various analytical methods used by researchers for the digestion of heavy metals. The urban samples were collected regularly and randomly from urban surfaces used in sweeping tools such as brush or a plastic scoop, and then transferred to the laboratory through a plastic bag before drying at various temperatures. To determine the concentration of heavy metal in the collected samples, various acids such as HNO\textsubscript{3}, HClO\textsubscript{4}, H\textsubscript{2}SO\textsubscript{4}, H\textsubscript{2}O\textsubscript{2}, and H\textsubscript{3}BO\textsubscript{3} used for digesting process shown in Figure 1. From Figure 1, the most common method used for digesting is HNO\textsubscript{3} + HCl and HNO\textsubscript{3} + HF + HClO\textsubscript{4}.

Heavy metal in the collected samples from various landscapes areas were analyzed using different analytical approaches, such as inductively coupled plasma (ICP), atomic absorption spectroscopy (AAS), Instrumental neutron activation analysis (INAA) and X ray fluorene (XRF). The analytical methods distribution is shown in Figure 2. From Figure 2, AAS is the most analytical method used to determine the concentrations of heavy metal. This is because it considers a destructive technique, but it does have good reliability and accuracy. Recently, various types of ICP have been developed and widely used.

Figure 1. Various acids used in the digestion process.

Figure 2. The distribution of analytical techniques.

2.1. Heavy metal risk assessment

2.1.1. Potential ecological risk index

In urban soil and USDS, the toxicity and ecological hazards posed by heavy metal suggested by ZHU et al. [32] and first reported by Hakanson [33]. According to this methodology the potential risk of individual metal element can be determined as follows:

$$E_i = C_i \times T_i = \left(\frac{C_i}{C_{ir}} \right) \times T_i$$ \hspace{1cm} (1)

where, T_i is the toxic-response factor for a single heavy metal contamination was taken as, 1 for Zn, 5 for Cu, Pb and Co, 10 for As and 30 for Cd [34,35]. C_i is an index for contamination of a given heavy metal, C_i is the present concentration of heavy metal in the urban soil and USDS and C_{ir} is the reference value of heavy metal in the urban soil. The references values of the average shale in the urban environment used in this work are from Fadigas et al. [36]. These values are: Cu 35.1, Cd 0.5, Pb 17, Zn 59.9 and Ni 13.2 mg kg-1. The sum of potentially individual risks (E_i) is the potential ecological risk index (RI) can be
AF is the skin adherence factor for soil (mg/cm²-day), using Equations (3–5):

The potential ecological hazard and the risk criteria as resulted in heavy metal accumulation in the urban soil and USD$S are classified into risk categories given in Table 1.

2.1.2. Health risk assessment

In the urban environment, three main pathways of human exposure to heavy metal. These pathways are: via various pathways [39–41]: (1) ingestion (D_{inh}); (2) inhalation (D_{inh}); and (3) dermal contact [37,38]. The health risks via the main pathways can be detected using Equations (3–5):

$$D_{inh} = \frac{C \times R_{inh} \times ED \times EF}{AT \times BW} \times 10^{-6}$$ \hspace{1cm} (3)$$

$$D_{inh} = \frac{C \times R_{inh} \times ED \times EF}{AT \times BW \times PEF} \times 10^{-6}$$ \hspace{1cm} (4)$$

$$D_{dermal} = \frac{C \times AF \times SA \times ED \times EF \times ABS}{AT \times BW} \times 10^{-6}$$ \hspace{1cm} (5)$$

where, C is the concentration of heavy metal (mg/kg), R_{inh} is the ingestion rate (mg/day), ED is the exposure frequency (days/year), AT is the averaging time, BW is the average body weight (kg), (days), R_{inh} is the inhalation rate (mg/cm²), PEF is the particle emission factor (m³/kg), AF is the skin adherence factor for soil (mg/cm²-day), SA is the surface area of the exposed skin that is in contact with the sample (cm²), and ABS is the dermal absorption factor (unitless). Exposure factors used in the non-Carcinogenic Risk D_{dermal} estimate given in Table 2.

2.1.3. Non-carcinogenic risk assessment

The concentrations of heavy metal were applied to assess the adult and children’s health risks both carcinogenic and non-carcinogenic. Hazard quotient (HQ) calculated to determine non-carcinogenic health risk for each individual heavy metal element as described in Equation (6) [39]:

$$HQ = \frac{D}{RFD}$$ \hspace{1cm} (6)$$

where, RFD Where, RFD reflects the chronic reference dose for each heavy metal (mg/kg-day) as given in Table 3 [43].

A risk index (HI) has been developed to measure the risk of carcinogenic health effects pose by heavy metal. HI HI is the sum of three major pathways’ hazard quotient as shown in Equation (7) [42]:

$$HI = \sum HQ = HQ_{ inh} + HQ_{ inh} + HQ_{ derma}$$ \hspace{1cm} (7)$$

The values of HI are classified into two categories. When HI < 1 is no harmful effect to the health, while HI > 1 There is no potential for adverse effects on health.

2.1.4. Carcinogenic risk assessment

The life time cancer risk (LCR) was estimated to determine the health risk for carcinogenic heavy metal by calculating the cumulative life cancer risk rating using Equation (8) for each exposure pathway:

$$LCR = D \times SF = \sum cancer risk = cancer risk_{ inh} + cancer risk_{ inh} + cancer risk_{ derma}$$ \hspace{1cm} (8)$$

Where, SF is the slope factor for carcinogenicity (by mg/kg-day) was presented by USEPA, 2012 for the related heavy metal Cd, Pb are 6.3, and, 0.0085 mg/kg/day [43]. In overall, the acceptable threshold value of LCR 1×10^{-4} is considered to have significant health effects LCR of $1 \times 10^{-6} – 1 \times 10^{-4}$ is widely considered acceptable, and LCR below 1×10^{-6} is regarded as negligible [44].
Table 4. Concentrations of heavy metal (mg kg$^{-1}$) in urban soils and USDS in the different cities around the world.

City	Country	Cu	Pb	Zn	Ni	Cd	References
Lancaster	UK	143	1880	534	35	4.6	[49]
Scotland	Great Britain	NC	756	422	NC	NC	[50]
Lancaster	England	19.9	20	20.2	NC	20	[51]
Various sites	Hong-Kong	91.5	1556	2377	14.5		[52]
New York	USA	356	2583	1811	NC	8	[53]
Various sites	Nigeria	12	111	31	1.9	0.7	[54]
Halkyn, North Wales	Great Britain	200	480	1166	NC	0.8	[55]
Athens	Greece	NC	121	125	128.45	2.4	[20]
London	UK	NC	1030	680	NC	3.5	[56]
Kuala Lumpur	Malaysia	NC	2466	344	NC	3	[57]
Cuenca	Equador	NC	108	218	NC	0.33	[58]
London	England	73	294	183	NC	1	[24]
Various sites	Bahrain	NC	697	152	126	7	[59]
Various areas	Bahrain	NC	742	67	12	1.5	[60]
Seoul	Korea	101	2582.5	1811	NC	3	[61]
Sault Ste Marie	Canada	87.3	90.5	227	26.5	0.85	[62]
Oslo	Norway	123	182	412	41	1.4	[63]
Taejon	Korea	57	52	214	NC	NC	[64]
California Bight	USA	15	10.9	59	18.1	0.33	[65]
Seoul	Korea	269	144	532	NC	NC	[51]
Kowloon Peninsular	Hong Kong	24.8	93.4	168	NC	2.8	[25]
Bursa	Turkey	NC	210	57	NC	3.1	[67]
Istanboul	Turkey	152	184	477	30.36	2.11	[16]
Birmingham	UK	466.9	48	534	41.1	1.62	[68]
Karak	Jordan	11.3	11.2	13.1	4.2	NC	[69]
Luanda	Angola	42	315	317	10	1.1	[17]
Kayseri	Turkey	36.9	74.8	112	44.9	2.53	[70]
Amman	Jordan	243	737	293	67	6.9	[71]
Urumqi	China	94.54	53.53	294.47	43.28	1.17	[72]
Hangzhou	China	116.04	202.16	321.4	25.88	1.59	[19]
Baqii	China	123.17	408.41	715.1	48.83	NC	[73]
Kavala	Greece	124	301	272	58	0.2	[74]
Delta	Egypt	102	308	1840	38.5	2.98	[75]
Ulsan	Korea	148	118	NC	38.5	1.5	[76]
Intertidal Bohai Bay	China	24	25.6	73	28	0.12	[77]
Murree	Pakistan	156.9	145.8	890	47.8	8.4	[78]
Gorimedium	India	202.24	156.63	222.46	NC	6.54	[79]
Intertidal Laizhou Bay	China	10.99	13.37	50.63	17.38	0.19	[80]
Intertidal Jiaozhou Bay	China	38.8	55.2	107.4	NC	0.4	[81]
Tijuana	Mexico	50.2	31.8	NC	0.1	[1]	
Jiaozhou Bay	China	27.31	38.54	76	32.35	0.304	[18]
Villavicencio	Colombia	126.3	87.5	133.3	5.3	NC	[27]
Villavicencio	Colombia	47.7	20.7	118.1	1.3	0.04	[82]
Ekerenburg SnDS	Russia	105	103	455			[83]
Nizhnyi Novgorod USDS	Russia	33	21	147			[10,14]

Note: NC: Not counted.

3. Data analysis

Contamination of heavy metal is becoming more common in the world because of the economic and population development. Numerous studies indicate ranges the concentration of heavy metal observed in urban soil and USDS in particles consisting of leaves, debris, and organic and inorganic materials [1,13,45]. The concentration of heavy metal Cu, Pb, Zn, Ni and Cd in urban soil and USDS are shown in Table 4 and Figure 3.

3.1. Heavy metal concentrations in urban soils and USDS

Table 4, shows Cu, Pb, Zn, Ni, and Cd concentrations in urban soils and USDS in different cities around the world based on collected published data obtained from another studies. It results in varying the concentrations of heavy metal in urban soil and in USDS (Figure 3), where few cities have higher concentrations of heavy metals than others [36]. Moreover, the highest Cu pattern values between the outer and inner ring roads were found in Birmingham, UK, [46]. As a consequence, Cu will occur due to mechanical vehicle abrasion and high-value position in Birmingham. However, vehicle emissions, Kuala Lumpur (Malaysia) with the highest Pb concentrations, followed by New York (USA) and Seoul (Korea) are the main source of Pb on urban soil and USDS. However, with reference, the annual change in Pb is decreasing, despite an increase in traffic volume due to non-use of lead fuel. Furthermore, Zn's origins on urban soil and USDS are metal parts of vehicles and exhaust gases from automobiles. Additionally, there is a wide range to the annual spread of Zn concentrations. automobile emissions in Athens (Greece) and various locations in Bahrain, however, are the most important of Ni concentration. Thus, with subsequent years, the annual increase in concentration of Nickel decreases.
Figure 3. Boxplots of the concentrations of heavy metal (mg/kg) for the sampling sites examined in the urban regions of the various cities around the world.

High levels of Cd in USDS in various places in Bahrain are the product of household dust, which may be due to the abrasion of the rubber corrosion on carpets [47,48], as well as a fragment of car tires. In general, heavy metal contamination is based on anthropogenic land use sources and rapid urbanization, while traffic and population are important factors.

3.2. Environmental ecological risk assessment

The distribution of the possible ecological risk index for heavy metals from 1979 to 2018 over the last decades is shown in Figure 4. \(E_r \) values follow the trend for different urban soils and USDS: according to Table 1 and Figure 4, \(E_r \) is divided into two main categories, low and moderate, while the second is high and very high in the years studied. It is evident that in the various cities surveyed during the years studied, RI has a significant trend in urban soil and USDS. It has been found that high and very high-risk accounts for 90% of total environmental risk in the 1980–1990 period, which was the highest ecological risk measured in all urban areas. This indicated a high potential \(E_r \) risk in urban areas due to Cd 7200, followed by Pb 662, Cu 42, Zn 23, and Ni 6. At the same time, the low and moderate risk is zero for the same duration.
Figure 4. Ecological risk assessment of heavy metal in urban soil and USDS over the decades (share of cities assigned to low, moderate, high and very high categories by ER).

3.3. Health risk assessment

Several studies have documented the threats to public health associated with different sediment types. This study demonstrates elevated and potentially carcinogenic concentrations of heavy metals in urban sediments. The assessment of health risk differed depending on the type of heavy metal, time of year, emission level, toxicity of the atmosphere and human age [84]. The assessment of human health risk from urban sediments for adults and children for three main exposure routes is estimated and reported in Tables S1 and S2. The ingestion of urban soil and USDS particles was established as the main route for non-carcinogenic risk through exposure to heavy metal in adults and children, with subsequent skin contact [17,82,85,86]. For general, as shown in Tables S1 and S2, all adults and children have healthy because the values of HI (< 1), with the exception of two Eastern American metropolitan areas (USA and Canada). Nevertheless, the HI levels were higher for children than for adults. Lower body weight and higher ingestion levels in children can be linked to higher ingestion and skin contact risk values, respectively [87]. However, encouraging good hygienic practices is advised to reduce the potential risk to children. To prevent the health risks associated with USDS exposure in adults, both shortening outdoor time and wearing appropriate masks could have an impact [87]. The average HI values for these metals for an individual fall in the following order: Pb > Cd > Cu > Zn > Ni. The LCR values for the three main paths appearing in Figure 5.

Figure 5. LCR values of Pb and Cd for three main pathways both adult and child was attributed from the urban soil and USDS.
resulted from Pb and Cd. In most urban areas, except for certain urban areas that exceeded this value, the LCR was below the threshold value (1E-06–10-04E). Nevertheless, it is important to pay attention to possible health risks due to exposure in areas with higher metal concentrations, especially for children, cleaners, public transport drivers and residents of the region.

4. Conclusion

Cities around the world vary in population, growth, and rapid urbanization. In the urban environment, there are various sources of heavy metal. The intensity of use of these heavy metals and their distribution depend on the properties of each city. Furthermore, the result also indicates Cu, Pb, Zn, and Cd concentrations in the urban soil and USDS are mostly originated from anthropogenic sources. However, the geogenic sources is mostly origin of Ni. Thus, the highest concentrations of heavy metal in the urban environment were affected population, industrial activity, and traffic. While, the places with low traffic and a small population have the lowest concentrations. As clarified that the modern cities development, as well as rapid urbanization, are the main causes of heavy metal contamination in the urban soil and USDS. An ecological risk assessment in an urban environment is a high and very high risk, which accounts for 90% of the total environmental risk in the period 1980–1990. Moreover, the health risk assessment influenced by various factors such as on the type of heavy metal, the time of year, the level of pollution, and the human age. Finally, no significant risk was contributed for adults and children in the urban environment.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Quiñonez-Plaza A, Wakida FT, Temores-Peña J, et al. Total petroleum hydrocarbons and heavy metals in road-deposited sediments in Tijuana, Mexico. J Soils Sediment. 2017;17:2873–2886. doi:10.1007/s11368-017-1778-1.
[2] Singh KP, Mohan D, Singh VK, et al. Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. J Hydrol (Amst). 2005;312:14–27. doi:10.1016/j.jhydrol.2005.01.021.
[3] Demirak A, Yilmaz F, Tuna A, et al. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere. 2006;63:1451–1458. doi:10.1016/j.chemosphere.2005.09.033.
[4] Khaled A, El Nem A, El Sikaily A. An assessment of heavy-metal contamination in surface sediments of the Suez Gulf using geoaccumulation indexes and statistical analysis. Chem Ecol. 2006;22:239–252. doi:10.1080/02757540600658765.
[5] Çevik F, Ziya M, Göksu L. An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ Monit Assess. 2009;309–317. doi:10.1007/s10661-008-0317-3.
[6] Wijesiri B, Egodawatta P, McGree J, et al. Process variability of pollutant build-up on urban road surfaces. Sci Total Environ. 2015;518–519:434–440. doi:10.1016/j.scitotenv.2015.03.014.
[7] Ma Y, Egodawatta P, McGree J, et al. Human health risk assessment of heavy metals in urban stormwater. Sci Total Environ. 2016;557–558:764–772. doi:10.1016/j.scitotenv.2016.03.067.
[8] Zereni F, Alt F. Palladium emissions in the environment. Netherlands: Springer; 2006.
[9] De Silva S, Ball AS, Huyhn T, et al. Metal accumulation in roadside soil in Melbourne, Australia: effect of road age, traffic density and vehicular speed. Environ Pollut. 2016;208:102–109. doi:10.1016/j.envpol.2015.09.032.
[10] Hanfi MY, Mostafa YA, Zhukovsky MV. Heavy metal contamination in urban surface sediments: sources, distribution, contamination control, and remediation. Environ Monit Assess. 2020;192:1–21. doi:10.1007/s10661-019-7947-5.
[11] Winther M, Slento E. (2010). Heavy metal emissions for Danish road transport. National Environmental Research Institute, Denmark.
[12] Perry C, Taylor K. (2007). Environmental sedimentology.
[13] Taylor KG, Owens PN. Sediments in urban river basins: a review of sediment-contaminant dynamics in an environmental system conditioned by human activities. J Soils Sediment. 2009;9:281–303. doi:10.1166/jss.2009.0103-2.
[14] Selezniev AA, Yarmoshenko IV, Malinovsky GP. Assessment of total amount of surface sediment in urban environment using data on solid matter content in snow-dirt sludge. Environ Processes. 2019;6:581–595.
[15] Biggins DE, Harrison RM. Chemical speciation of lead compounds in street dusts. Environ Sci Technol. 1980;14:336–339.
[16] Charlesworth S, Everett M, McCarthy R, et al. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ Int. 2003;29:563–573. doi:10.1016/S0160-4120(03)00015-1.
[17] Ferreira-Baptista L, De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ. 2005;39:4501–4512. doi:10.1016/j.atmosenv.2005.03.026.
[18] Liang X, Song J, Duan L, et al. Source identification and risk assessment based on fractionation of heavy metals in surface sediments of Jiaozhou Bay, China. Mar Pollut Bull. 2018;128:548–556. doi:10.1016/j.marpolbul.2018.02.008.
[19] Lu X, Wang L, Lei K, et al. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J Hazard Mater. 2009;161:1058–1062. doi:10.1016/j.jhazmat.2008.04.052.
[20] Yassoglou N, Kosmas C, Asimakopoulos J, et al. Heavy metal contamination of roadside soils in the Greater Athens area. Environ Pollut. 1987;47:293–304. doi:10.1016/0269-7491(87)90149-7.
[21] Bak J, Jensena J, Larsenb MM, et al. A heavy metal monitoring-programme in Denmark. Sci Total Environ. 1997;207:179–186.
[22] Wong CSC, Li X, Thornton I. Urban environmental geochemistry of trace metals. Environ Pollut. 2006;142:1–16. doi:10.1016/j.envpol.2005.09.004.
[23] Zheng Y, Chen T, He J. Relationship between heavy metals and soil minerals (subject editor: Stefan Norra) multivariate geostatistical analysis of heavy metals in topsoils from. Soils, Sect 2 Heavy Metal Soil Miner. 2008:831–58. doi:10.1065/js2007.08.245.

[24] Thornton I. Metal contamination of soils in urban areas. In: P Bullock, PJ Greg, editors. Soils in the urban environment. 1991. Chap 4: p. 47–75.

[25] Li X, Poon CS, Liu PS. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem. 2001;16:1361–1368. doi:10.1016/S0883-2927(01)00045-2.

[26] Wei B, Yang L. A review of heavy metal contamination in urban soils, urban road dusts and agricultural soils from China. Microchem J. 2010;94:99–107. doi:10.1016/j.microc.2009.09.014.

[27] Trujillo-gonzález JM, Torres-mora MA, Keesstra S, et al. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci Total Environ. 2016;533:636–642. doi:10.1016/scitotenv.2016.02.101.

[28] Khoder MI, Al Ghamdi MA, Shiboob M. Heavy metal distribution in street dust of urban and industrial areas in Jeddah, Saudi Arabia. Met Env Agric Sci. 2012;2:55–75. doi:10.4197/Met.23-2-4.

[29] Massadeh A, Al-sharif L, Hassan M. Imported sheep meat and organs using atomic. Environ Monit Assess. 2006:87–93. doi:10.1007/s10661-006-6497-9.

[30] De Miguel E, Charlesworth S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere. 2007;66:505–513. doi:10.1016/chemosphere.2006.05.065.

[31] Zhang J, Wu J, Hua P, et al. The influence of land use on source apportionment and risk assessment of polycyclic aromatic hydrocarbons in road-deposited sediment. Environ Pollut. 2017;229:705–714. doi:10.1016/j.envpol.2017.07.019.

[32] Zhu H, Yuan X-Z, Zeng G-M, et al. Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Trans Nonferrous Met Soc China. 2012;22:1470–1477. doi:10.1016/s1003-6326(11)61343-5.

[33] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach. Water Res. 1980;14:975–1001.

[34] Guo G, Wu F, Xie F, et al. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J Environ Sci. 2012;24:410–418. doi:10.1016/S1001-0742(11)60762-6.

[35] Islam ARMT, Rakib MA, Islam MS. Assessment of health hazard of metal concentration in groundwater of Bangladesh. Am Chem Sci J. 2015;5:41–49. doi:10.9734/ACJS/2015/13175.

[36] Fadigas FDS, Nelson MB, Sobrinho A, et al. Estimation of reference values for Cobalt, Chromium, Copper, Nickel, Lead, and Zinc in Brazilian soils. Commun Soil Sci Plant Anal. 2014;37:945–959. doi:10.1080/00103620135583885.

[37] Lee S, Lee B, Kim J, et al. As contamination in the abandoned metal mine areas, Korea. Environ Monit Assess. 2006:233–244. doi:10.1007/s10661-005-9024-5.

[38] Luo X, Ding J, Xu B, et al. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci Total Environ. 2012;424:88–96. doi:10.1016/j.scitotenv.2012.02.053.

[39] USEPA. (1989). Risk assessment guidance for superfund volume I human health evaluation manual (part A). I.

[40] USEPA. (1996). Acid digestion of sediments, sludges, and soils. 1–12.

[41] Zheng N, Liu J, Wang Q, et al. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci Total Environ. 2010;408:726–733. doi:10.1016/j.scitotenv.2009.10.075.

[42] USEPA. (2002). Supplemental guidance for developing soil screening office of emergency and remedial response.

[43] USEPA. (2012). Integrated risk information system of the US environmental protection agency.

[44] Li Z, Ma Z, Jan T, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ. 2014;468-469:843–853. doi:10.1016/j.scitotenv.2013.08.090.

[45] Biggins DE, Harrison RM. (1980). Chemical speciation of lead compounds in street dusts.

[46] Jiries AG, Hussein HH, Halaseh Z. The quality of water and sediments of street runoff in Amman. Jordan. 2001;824:815–824. doi:10.1002/hyp.186.

[47] Solomon RL, Hartford JW. Lead and cadmium in dusts and soils in a small urban community. Environ Sci Technol. 1976;10:773–777.

[48] Fergusson JE, Kim ND. Trace elements in street and house dusts: sources and speciation. Sci Total Environ. 1991;100:125–150.

[49] Harrison RM. Toxic metals in street and household dusts. Sci Total Environ. 1979;11:89–97. doi:10.1016/0048-9697(79)90036-6.

[50] Wade KJ, Flanagan JT, Currie A, et al. Roadside gradients of lead and zinc concentrations in surfacing: dwellings invertebrates. Environ Pollution Ser B, Chem Phys. 1980;1:87–93. doi:10.1016/1438-8890(80)90029-4.

[51] Harrison RM, Laxen DPH, Wilson SJ. Chemical associations of lead, cadmium, copper, and zinc in street dusts and roadside soils. Environ Sci Technol. 1981;15:1378–1383. doi:10.1021/es00093a013.

[52] Lau WM, Wong HM. An ecological survey of lead contents in roadside dusts and soils in Hong Kong. Environ Res. 1982;28:39–54. doi:10.1016/0013-9351(82)90152-9.

[53] Fergusson JE. The elemental composition of street dust from large and small urban areas related to city type, source and particle size. Sci Total Environ. 1984;34:101–116.

[54] Ndikwoke CL. A study of heavy metal pollution from motor vehicle emissions and its effect on roadside soil, vegetation and crops in Nigeria. Environ Pollut. 1984;7:35–42. doi:10.1016/0043-1488(84)90035-1.

[55] Davies BE, Elwood PC, Gallacher J, et al. The relationships between heavy metals in garden soils and house dusts in an old lead mining area of North Wales, Great Britain. Environ Pollution Ser B, Chem Phys. 1985;9:255–266. doi:10.1016/0013-9351(85)80002-3.

[56] Schwar MJR, Moorcroft JS, Laxen DPH, et al. Baseline metal-in-dust concentrations in Greater London. Sci Total Environ. 1981;5:255–265. doi:10.1016/0048-9697(81)90065-9.

[57] Ramam MN, Badri MA. Heavy metals in tropical city street dust and roadside soils: a case of Kuala Lumpur, Malaysia. Environ Technol Lett. 1989;10:435–444. doi:10.1080/0959338909384759.

[58] Nicholas Hewitt C, Candy GBB. Soil and street dust heavy metal concentrations in and around Cuenca, Ecuador. Environ Pollut. 1990;63:129–136. doi:10.1016/0269-7491(90)90063-4.

[59] Akhter M, Madany I. Heavy metals in street and house dust in Bahrain. Water Air Soil Pollut. 1993;66:111–119. doi:10.1007/BF00477063.
MiguelDE, LlamasJF, ChaconE, et al. Origin and patterns of heavy metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environ Geochem Health. 1995;17:139–146. doi:10.1007/BF00126082.

Stone M, Marsalek J. Trace metal composition and speciation in street sediment: Sault Ste. Marie, Canada. Water Air Soil Pollut. 1996;87:149–169. doi:10.1007/BF0696834.

Miguel DE, Llamas JF, Chacon E, et al. Origin and patterns of distribution of trace elements in street dust. Unleaded Petrol and Urban Lead. 1997;31:2733–2740.

Kim KW, Myung JH, Ahn JS, et al. Heavy metal contamination of soils and dusts in Taejon area, Korea. J Geochemical Explor. 1998;64:409–419. doi:10.1016/S0375-6742(98)00045-4.

Schiff KC, Weisberg SB. Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Mar Environ Res. 1999;48:161–176. doi:10.1016/S0141-1136(99)00033-1.

Yun ST, Choi BY, Lee PK. Distribution of heavy metals (Cu, Zn, Pb, Cd, As) in roadside sediments, Seoul metropolitan city, Korea. Environ Technol (United Kingdom). 2000;21:989–1000. doi:10.1080/09593332108618045.

Arslan H. Heavy metals in street dust in Bursa, Turkey. J Trace Microprobe Tech. 2001;19:439–445. doi:10.1081/TMA-100105058.

Sezgin N, Ozcan HK, Demir G, et al. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environ Int. 2004;29:979–985. doi:10.1016/S0160-4120(03)00075-8.

Al-Khashman OA. Heavy metal distribution in dust, street dust and soils from the work place in Karak industrial estate, Jordan. Atmos Environ. 2004;38:6803–6812. doi:10.1016/j.atmosenv.2004.09.011.

Tokalioğlu Ş, Kartal Ş. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the organized industrial district in Kayseri (Turkey). Atmos Environ. 2006;40:2797–2805. doi:10.1016/j.atmosenv.2006.01.019.

Al-Khashman OA. Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environ Geochem Health. 2007;29:1–10. doi:10.1007/s10653-006-9067-8.

Mingkui Z, Hao W. Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou, China. J Environ Sci. 2009;21:625–631. doi:10.1016/S1001-0742(08)62317-7.

Christoforidis A, Stamatis N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma. 2009;151:257–263. doi:10.1016/j.geoderma.2009.04.016.

Wei B, Jiang F, Li X, et al. Heavy metal induced ecological risk in the city of Urumqi, NW China. Environ Monit Assess. 2010;160:33–45. doi:10.1007/s10661-008-0655-1.

Khairy MA, Barakat AO, Mostafa AR, et al. Multielement determination by flame atomic absorption of road dust samples in delta region, Egypt. Microchem J. 2011;97:234–242. doi:10.1016/j.microc.2010.09.012.

Duong TT, Lee BK. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manage. 2011;92:554–562. doi:10.1016/j.jenvman.2010.09.010.

Gao X, Li P. Concentration and fractionation of trace metals in surface sediments of intertidal Bohai Bay, China. Mar Pollut Bull. 2012;64:1529–1536. doi:10.1016/j.marpollbul.2012.04.026.

Abassi MN, Tufail M, Chaudhry MM. Assessment of heavy elements in suspended dust along the murree highway near capital city of Pakistan. World Appl Sci J. 2013;21:1266–1275. doi:10.5829/idosi.wasj.2013.21.9.155.

Khan AB, Kathi S. Evaluation of heavy metal and total petroleum hydrocarbon contamination of roadside surface soil. Int J Environ Sci Technol. 2014;11:2259–2270. doi:10.1007/s13762-014-0626-8.

Zhang J, Gao X. Heavy metals in surface sediments of the intertidal Laizhou Bay, Bohai Sea, China: Distributions, sources and contamination assessment. Mar Pollut Bull. 2015;98:320–327. doi:10.1016/j.marpollbul.2015.06.035.

Xu F, Qiu L, Cao Y, et al. Trace metals in the surface sediments of the intertidal Jiaozhou Bay, China: sources and contamination assessment. Mar Pollut Bull. 2016;104:371–378. doi:10.1016/j.marpollbul.2016.01.019.

Trujillo-González JM, Torres-Mora MA, Jiménez-Ballesta R, et al. Land-use-dependent spatial variation and exposure risk of heavy metals in road-deposited sediment in Villavicencio, Colombia. Environ Geochem Health. 2018;6. doi:10.1007/s10653-018-0160-6.

Seleznev AA, Yarmoshenko IV, Sergeev AP. Method for reconstructing the initial baseline relationship between potentially harmful element and conservative element concentrations in urban puddle sediment. Geoderma. 2018;326:1–8. doi:10.1016/j.geoderma.2018.04.003.

Hanfi MY, Yarmoshenko IV, Seleznov AA, et al. The gross beta activity of surface sediment in different urban landscape areas. J Radioanal Nucl Chem. 2019;362.doi:10.1007/s10967-019-06657-9.

Li F, Zhang J, Huang J, et al. Heavy metals in road dust from Xiandao District, Changsha city, China: characteristics, health risk assessment, and integrated source identification. Environ Sci Pollut Res. 2016. doi:10.1007/s11356-016-6458-y.

Liu E, Yan T, Birch G, et al. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci Total Environ. 2014;476:477–523. doi:10.1016/j.scitotenv.2014.01.055.

Men C, Liu R, Xu F, et al. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci Total Environ. 2018;612:138–147. doi:10.1016/j.scitotenv.2017.08.123.