Imperfect Best-Response Mechanisms

Diodato Ferraioli

DIAG
Sapienza Università di Roma

joint work with
Paolo Penna
Best-response mechanisms [Nisan et al., 2011]

- At each time step, a subset of agents is adversarially chosen
- The selected agents adopt their best-response
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium
Best-response mechanisms [Nisan et al., 2011]

- At each time step, a subset of agents is adversarially chosen
- The selected agents adopt their best-response
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium

Examples

- BGP
- some TCP variants
- GSP auctions
- Interns-Hospital Matching (IHM)
Convergence & Incentive-Compatibility

Convergence

- The dynamics will eventually converge to a Nash equilibrium
Convergence & Incentive-Compatibility

Convergence

- The dynamics will eventually converge to a Nash equilibrium.

Incentive Compatibility

- If a player does not play the best response whenever is selected, the dynamics will reach a different equilibrium.
- The utility for this player at new equilibrium is lower than in the equilibrium reached by always playing the best response.
NBR-solvable games [Nisan et al., 2011]

NBR-solvable game

- NBR strategy: a strategy that can never be a best-response
- A game solvable by iterated elimination of NBR strategies
NBR-solvable games [Nisan et al., 2011]

NBR-solvable game

- **NBR strategy**: a strategy that can never be a best-response
- A game solvable by iterated elimination of NBR strategies

Clear outcome

- A NBR solvable game has clear outcome if for each player \(i \)...
- ...there is a sequence of eliminations of NBR strategies...
- ...such that the equilibrium maximizes the utility of \(i \)...
- ...at the first time that \(i \) eliminate a strategy in this sequence
NBR-solvable games [Nisan et al., 2011]

NBR-solvable game

- **NBR strategy**: a strategy that can never be a best-response
- A game solvable by iterated elimination of NBR strategies

Clear outcome

- A NBR solvable game has clear outcome if for each player i...
- ...there is a sequence of eliminations of NBR strategies...
- ...such that the equilibrium maximizes the utility of i...
- ...at the first time that i eliminate a strategy in this sequence

BGP, TCP, GSP & IHM are NBR-solvable with clear outcomes
In this work...

Theorem (Nisan et al., 2011)

- If a game is NBR-solvable, then the best-response mechanism converges

- If the NBR-solvable game has a clear outcome, then the best-response mechanism is also incentive-compatible
In this work...

Theorem (Nisan et al., 2011)

- If a game is NBR-solvable, then the best-response mechanism converges
- If the NBR-solvable game has a clear outcome, then the best-response mechanism is also incentive-compatible

Our contribution

- What happen if an agent can sometimes take a wrong action?
- How resistant are these results to small perturbations?
- Are convergence and incentive-compatibility robust?
Imperfect best-response mechanisms

Best-response mechanism

- At each time step, a subset of agents is adversarially chosen
- The selected agents adopt their best-response
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium
Imperfect best-response mechanisms

Best-response mechanism

- At each time step, a subset of agents is adversarially chosen
- The selected agents adopt their best-response
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium

\(p \)-imperfect best-response mechanism

- At each time step, a subset of agents is chosen by a non-adaptive adversary
- The selected agents adopt their best-response, except with probability \(p \)
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium
Does the convergence result hold?
Does the convergence result holds?

Obviously, if p is small...
Does the convergence result holds?

Obviously, if p is small...

WRONG!

- Even for p exponentially small in the number of players...
- there is a schedule of players such that for any $t > 0$...
- the p-imperfect mechanism is in the equilibrium at time t...
- with probability at most ε
Convergence: a negative result

The game

- n players with strategies s_0 and s_1
- player i prefers strategy s_1 only if $1, \ldots, i - 1$ are playing s_1
Convergence: a negative result

The game

- n players with strategies s_0 and s_1
- player i prefers strategy s_1 only if $1, \ldots, i-1$ are playing s_1

The p-imperfect mechanism

- if $1, \ldots, i-1$ play s_1, player i gets wrong with probability p
- otherwise, she gets the wrong strategy with probability $q \ll p$
Convergence: a negative result

The game

- n players with strategies s_0 and s_1
- player i prefers strategy s_1 only if $1, \ldots, i - 1$ are playing s_1

The p-imperfect mechanism

- if $1, \ldots, i - 1$ play s_1, player i gets wrong with probability p
- otherwise, she gets the wrong strategy with probability $q \ll p$
- The non-adaptive schedule repeat the following sequence:
 12131214121312151213121412131216\ldots

Contribution 8
Convergence: a negative result

The game

- n players with strategies s_0 and s_1
- player i prefers strategy s_1 only if $1, \ldots, i - 1$ are playing s_1

The p-imperfect mechanism

- if $1, \ldots, i - 1$ play s_1, player i gets wrong with probability p
- otherwise, she gets the wrong strategy with probability $q \ll p$
- The non-adaptive schedule repeat the following sequence: 12131214121312151213121412131216
 - Between two consecutive occurrence of i always appears $j > i$
Convergence: a negative result

The game

- n players with strategies s_0 and s_1
- player i prefers strategy s_1 only if $1, \ldots, i-1$ are playing s_1

The p-imperfect mechanism

- if $1, \ldots, i-1$ play s_1, player i gets wrong with probability p
- otherwise, she gets the wrong strategy with probability $q \ll p$
- The non-adaptive schedule repeat the following sequence:
 12131214121312151213121412131216\ldots
 - Between two consecutive occurrence of i always appears $j > i$
 - The length of the sequence is 2^{n-1}
Convergence: a negative result

The game

- n players with strategies s_0 and s_1
- player i prefers strategy s_1 only if $1, \ldots, i - 1$ are playing s_1

The p-imperfect mechanism

- if $1, \ldots, i - 1$ play s_1, player i gets wrong with probability p
- otherwise, she gets the wrong strategy with probability $q \ll p$
- The non-adaptive schedule repeat the following sequence:
 12131214121312151213121412131216 \ldots
 - Between two consecutive occurrence of i always appears $j > i$
 - The length of the sequence is 2^{n-1}
 - n appears only at the end of the sequence
Convergence: a negative result

The game

- n players with strategies s_0 and s_1
- player i prefers strategy s_1 only if $1, \ldots, i - 1$ are playing s_1

The p-imperfect mechanism

- if $1, \ldots, i - 1$ play s_1, player i gets wrong with probability p
- otherwise, she gets the wrong strategy with probability $q \ll p$
- The non-adaptive schedule repeat the following sequence: $12131214121312151213121412131216 \ldots$
 - Between two consecutive occurrence of i always appears $j > i$
 - The length of the sequence is 2^{n-1}
 - n appears only at the end of the sequence
- if $p = \Omega \left(\frac{1}{2^{n-1}} \right)$ and $q \to 0$, then n always plays s_0 w.h.p.
Convergence: a positive result

Convergence is not robust

- For best-response mechanisms, convergence result holds regardless of the schedule
- For p-imperfect mechanism, convergence results must depend on the schedule
Convergence: a positive result

Convergence is not robust

- For best-response mechanisms, convergence result holds regardless of the schedule
- For p-imperfect mechanism, convergence results must depend on the schedule

A positive result

- If p is small enough and the game is NBR-solvable...
- then a p-imperfect mechanism converges...
Convergence: a positive result

Convergence is not robust

- For best-response mechanisms, convergence result holds regardless of the schedule
- For p-imperfect mechanism, convergence results must depend on the schedule

A positive result

- If p is small enough and the game is NBR-solvable...
- then a p-imperfect mechanism converges...
- but the bound on p depends on the schedule
Incentive-compatibility: a negative result

	left	right
top	2,1	1,0
bottom	0,0	0,c

It is a NBR-solvable game with clear outcome.

If the row player gets wrong with prob. \(p \) and \(c = \Omega(1/p) \), then the column player prefers to play right.

We need a quantitative definition of clear outcome.
Incentive-compatibility: a negative result

- It is a NBR-solvable game with clear outcome

	left	right
top	2,1	1,0
bottom	0,0	0,c
Incentive-compatibility: a negative result

- It is a NBR-solvable game with clear outcome
- If the row player gets wrong with prob. p and $c = \Omega(1/p)$, then the column player prefers to play right
Incentive-compatibility: a negative result

\begin{center}
\begin{tabular}{ccc}
 & left & right \\
\hline
\text{top} & 2,1 & 1,0 \\
\text{bottom} & 0,0 & 0,c \\
\end{tabular}
\end{center}

- It is a NBR-solvable game with clear outcome
- If the row player gets wrong with prob. p and $c = \Omega(1/p)$, then the column player prefers to play right

We need a quantitative definition of clear outcome
Incentive-compatibility: a positive result

Theorem
A p-imperfect mechanism is incentive-compatible if for each i

$$u_i(NE) \geq \frac{1}{1-2\delta} \left(2\delta \cdot u^*_i + u^k_i \right)$$

- $\delta = \delta(p) > 0$
- u^k_i: max utility player i achieves at her first elimination
- u^*_i: max utility player i achieves in the entire game

Proof idea.
- If the player follows the p-imperfect mechanism...
- ...then she gets $u_i(NE)$
- Otherwise she gets at most u^*_i with prob. depending on p...
- ...and she gets at most u^k_i with remaining probability
What happens for larger classes of games?

Different behavior for different schedules

	0	1
0	1,1	0,0
1	0,0	1,1
What happens for larger classes of games?

Different behavior for different schedules

\[
\begin{array}{cc}
0 & 1 \\
0 & 1,1 & 0,0 \\
1 & 0,0 & 1,1 \\
\end{array}
\]

Different behavior for different best-response mechanisms

\[
\begin{array}{cc}
0 & 1 \\
0 & 0,0 & 0,1 \\
1 & 0,1 & 1,0 \\
\end{array}
\]
Other results

- We try to describe how p-imperfect mechanism behave
Other results

- We try to describe how p-imperfect mechanism behave
- ... with an application to PageRank games
Thank you!