The prognostic value of neutrophil-to-lymphocyte ratio in patients with traumatic brain injury: A systematic review

Sherief Ghozy1,2*, Amr Ehab El-Qushayri3, Joseph Varney4, Salah Eddine Oussama Kacimi5, Esakh I. Bahbah6, Mostafa Ebraheem Morra7, Jaffer Shah8, Kevin M. Kallmes9,10, Alzhraa Salah Abbas3, Mohamed Elfi11,13, Badrah S. Alghamdi12,13, Ghulam Ashrafi14, Rowa Alhabbab15,16 and Adam A. Dmytriw17,18

1Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States, 2Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom, 3Faculty of Medicine, Minia University, Minya, Egypt, 4School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten, 5Faculty of Medicine, University of Tiemen, Tiemen, Algeria, 6Faculty of Medicine, Al-Azhar University, Damietta, Egypt, 7Faculty of Medicine, AlAzhar University, Cairo, Egypt, 8Drexel University College of Medicine, Drexel University, Philadelphia, PA, United States, 9Nestled Knowledge, Saint Paul, MN, United States, 10Superior Medical Experts, Saint Paul, MN, United States, 11Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States, 12Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia, 13Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, 14Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates, 15Department of Medical Neurological Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia, 16Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, 17Neurointerventional Program, Departments of Medical Imaging and Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada, 18Neuroendovascular Program, Massachusetts General Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States

Traumatic brain injury (TBI) places a heavy load on healthcare systems worldwide. Despite significant advancements in care, the TBI-related mortality is 30–50% and in most cases involves adolescents or young adults. Previous literature has suggested that neutrophil-to-lymphocyte ratio (NLR) may serve as a sensitive biomarker in predicting clinical outcomes following TBI. With conclusive evidence in this regard lacking, this study aimed to systematically review all original studies reporting the effectiveness of NLR as a predictor of TBI outcomes. A systematic search of eight databases was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) recommendations. The risk of bias was assessed using the Quality in Prognostic Studies (QUIPS) tool. Eight studies were ultimately included in the study. In most of the studies interrogated, severity outcomes were successfully predicted by NLR in both univariate and multivariate prediction models, in different follow-up durations up to 6 months. A high NLR at 24 and 48 h after TBI in pediatric patients was associated with worse clinical outcomes. On pooling the NLR values within studies assessing its association with the outcome severity (favorable or not), patients with favorable outcomes had 37% lower NLR values than those with...
Introduction

As one of the leading causes of death worldwide, traumatic brain injury (TBI) places a heavy burden on healthcare systems worldwide despite significant advancements in care (1). A recently published epidemiological study suggested that the age-adjusted mortality rate of TBI was 13–17 per 100,000 subjects (2). Furthermore, many reports have shown that the frequency of TBI mortality is 30–50% and that most cases involve adolescents or young adults (3–5). An additional socioeconomic burden on patients’ families and community is a frequent consequence of major disabilities among survivors of TBI (1).

While primary brain damage is irreparable, secondary brain injury due to trauma-induced oxidative stress, ischemia, edema, and systemic response to inflammation can be remedied (1, 6–11). The inflammatory response following TBI is not fully understood, yet recent literature has demonstrated that such an inflammatory response might be prompted by damaged neuronal tissue. This damage triggers the production of proinflammatory cytokines and several angiogenic factors (12). This process further progresses to degeneration of tight junctions and protein extravasation (13). The uncontrolled release of inflammatory mediators, as well as the improper activation of endothelial cells, can affect the integrity of the blood-brain barrier (BBB), leading to fluid leakage to the interstitium and marked leukocytic infiltration (14). An in vitro study revealed that alteration of the BBB after the neuronal inflammatory response facilitates the migration of neutrophils into the injured area within the first hour of brain trauma, which may further affect the circulating white blood cells (WBCs) (15).

Assessment of peripheral WBCs, in terms of total and differential cell counts, is a straightforward and inexpensive test that provides a broad view of the entire systemic inflammatory process. Elevated WBC count was observed after delayed cerebral ischemia and deemed an independent risk factor for cerebral vasospasm after subarachnoid bleeding (16). Furthermore, the neutrophil-to-lymphocyte ratio (NLR) was proposed as a sensitive predictor of the inflammatory response in various neurological and non-neurological diseases such as stroke, Alzheimer’s disease, and cardiovascular disorders (17–19). Moreover, it has been associated with poor clinical outcomes in certain types of cancer (20, 21). Similarly, reports have demonstrated that the NLR may serve as a sensitive biomarker in predicting clinical outcomes following TBI. Although conclusive evidence in this regard is lacking, these findings warrant further larger studies (22, 23). Therefore, this study aimed to systematically review all original studies reporting the effectiveness of NLR as a predictor of TBI outcomes.

Methods

Search strategy and study selection

We performed this systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) recommendations (24) using the AutoLit platform (Nested Knowledge, St. Paul, MN). We formulated the PICO question according to the following: population: patients with TBI; intervention: the neutrophil/lymphocyte sampling; comparator: healthy individuals/controls whenever available; outcome: the prognostic value of the NLR (e.g., mortality, morbidity, or improvement). After collecting the appropriate keywords for developing a search term (neutrophil* OR lymphocyte*) AND ratio* AND (Brain Injuries, Traumatic[MeSH] OR Trauma[Title]), we performed a systematic search for collecting relevant studies followed by a manual search from references to avoid missing any relevant papers. For databases not supporting MeSH terms, we used a combination of all possible keywords. The search was conducted on January 30, 2021, in eight databases: PubMed, Google Scholar, Embase, Scopus, Web of Science, The New York Academy of Medicine (NYAM), Virtual Health Library (VHL), and the System for Information on Grey Literature in Europe (SIGLE).
We included original studies that investigated the prognostic value of the NLR in patients with TBI. We excluded studies if they were (1) animal studies, (2) non-English articles, (3) non-original investigations such as protocols, reviews, posters, abstracts, and (4) case reports and case series of <5 patients. Title and abstract screening and full-text screening were done by at least two reviewers. The senior author was responsible for solving conflicts between the two reviewers.

Data extraction

We conducted a pilot extraction of a few included studies for constructing a data extraction sheet. Then, two reviewers retrieved the necessary data from each of the included papers. The extraction sheet included the study design of the included papers, reference ID, demographic of the included population, outcomes of interest, and risk of bias tool. The senior author was responsible for solving conflicts between the two extractors.

Risk of bias

Three independent reviewers evaluated the risk of bias in included studies. The risk of bias was assessed using the Quality in Prognostic Studies (QUIPS) tool (25, 26). Any discrepancy between the reviewers was solved by discussion.

Statistical analysis

All data were analyzed using R software version 4.2.1. and the "meta" package. We did a priori sensitivity analysis comparing Standardized Mean Difference and Ratio of Means (RoM) computed results; in the case of similar results, RoM and its 95% confidence intervals (CI) were adopted due to easier interpretation of the results (27, 28). The analysis was conducted using a random-effects model due to considerable heterogeneity among the included studies. Heterogeneity was assessed with Q statistics and I² test considering it significant with I² value >50% or P-value <0.05 (29, 30). Due to the small number of the included studies (<10 per the analysis), neither Egger's regression test for assessing publication bias nor meta-regression was possible (31).

Results

Search results

Following the combination of search results from all databases, a total of 1,568 records were retrieved. After removing duplicates using EndNote software (Clarivate Analytics, Philadelphia, PA), 1318 unique records were retained. The title and abstract screening filtered irrelevant papers to 29 records, which were further filtered by the full-text screening to seven relevant papers. We found one relevant paper using manual search methods to include a total of eight papers in the current study (Figure 1).

Characteristics of the included studies

Details of the studies included in this systematic review are available in Table 1. Participants were included from several countries, including the United States (US), Turkey, China, Poland, and Australia. Of the eight included studies, seven were retrospective, and one employed a prospective study design. The timeframe of these studies was from January 1st, 2004, through December 31, 2017. The sample sizes ranged from 144 to 1291 patients. The seven retrospective studies used several severity measurements and scores. All retrospective studies used the Glasgow Coma Scale (GCS). Other metrics including Glasgow Outcome Scale-Extended Pediatric Version (GOS-E Peds), level of consciousness, post-traumatic amnesia, and Extended Glasgow Outcome Scale (GOSE). The prospective study by Akilli et al. (32) used the GCS, Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE-II), and Sequential Organ Failure Assessment (SOFA) severity measurements. Generally, all included studies investigated the prognostic role of NLR. The retrospective study by Corbett et al. (33), which was based in Australia, specifically included patients who underwent decompressive craniectomy following severe TBI. Moreover, the retrospective study by Kimball et al. (22) based in the US specifically included patients aged 0 to 18. Three of the included studies (32, 34, 35) excluded patients with ages <18 and a history of hepatic or hematologic disease. Additionally, two of the eight studies (32, 35) screened out pregnant patients. Furthermore, we excluded studies that appeared as online only.

Characteristics of the included patients

Details of patient characteristics are in Table 1. The US retrospective study (15) had a mean patient age of 9.49 (SD: 6.70) years with a median length of stay of 3 (range: 1–48) days. The other five retrospective studies had mean ages ranging from 45.40 (14.85) to 47.03 (16.88) years and median ages ranging from 33 to 56 years. The Australia-based study had a median length of stay of 23 (IQR: 13–45) days (21). The prospective study by Akilli et al. (32) had a median patient age of 74 years with a median length of stay of 6.0 (IQR: 9.1) days. The gender distribution of the retrospective studies ranged from 63 to 92% male, with the prospective study having 54.4% male patients. Only two studies included survival data, which were 96% for the US study (15) in 2020 and 64% for
Chen et al. (34) in 2018. The one prospective study had a median patient GCS score of 12 on admission (8). Chen et al. (34) conducted a retrospective study that included patients’ clinical characteristics, including means of 130.54 (SD: 25.50) mmHg for systolic arterial pressure, 76.85 (SD: 15.53) mmHg for mean arterial pressure, 95.12 (SD: 17.93) mmHg for diastolic arterial pressure, 85.7 (SD: 25.2) beats/min for heart rate, 36.86 (SD: 0.68) °C for body temperature, 95.35% (SD: 4.37%) blood oxygen saturation, 9.75 (SD: 3.41) mmol/L for blood glucose, and 5.95 (SD: 1.69) GCS score on admission. The 2019 retrospective study by Chen et al. (23) demonstrated clinical characteristics, including medians of 136 (IQR: 123–150) mmHg for systolic arterial pressure, 79 (IQR: 70–88) mmHg for diastolic arterial pressure, 89.5 (IQR: 79–109) beats/min for heart rate, 36.8 (IQR: 36.6–37.2) °C for body temperature, 8.7 (IQR: 7.4–10.38) mmol/L for blood glucose, and 7 (IQR: 5–8) for GCS score on admission.

Quality assessment of the included studies

QUIPS quality scores for risk of bias are presented in Table 2. Overall, the methodological quality of the included studies was satisfactory. Study participation and attrition were rated at a high risk of bias in one of the studies (34). All of the studies had a low to moderate risk of bias for prognostic factor measurement and outcome measurement. Furthermore, all of the studies were deemed acceptable with minimal risk of bias on statistical analysis and reporting.

NLR value and prognosis

Relevant data of NLR values, outcome(s), outcome scale(s), and multivariate prediction model results (when applicable) are
TABLE 1 Study and baseline characteristics of included studies and participants.

Study and baseline characteristics	Kimball et al. (22)	Acar et al. (47)	Akilli et al. (32)	Chen et al. (34)	Zhao et al. (36)	Chen et al. (23)	Siwicka-Gieroba et al. (35)	Corbett et al. (33)
Study characteristics	USA	Turkey	Turkey	China	China	China	Poland	Australia
Country	Retrospective	Retrospective	Prospective	Retrospective	Retrospective	Retrospective	Retrospective	
Study design	January 01, 2007	January 01, 2013	January 01, 2013	December 2004	December 2017	December 2017	Retrospective NR	Retrospective
Time frame	December 31, 2017	December 31, 2014	August 10, 2013	April 2012	January 2017	January 2017	Retrospective	Retrospective 2004 - 2016
Sample size	N = 188	N = 373	N = 688	N = 1291	N = 316	N = 144	N = 388	
Inclusion criteria	Age 0–18 years, isolated TBI, and at least one CBC panel with differential taken within 84 h of the time of injury	Patients with minor head trauma with isolated head trauma	Patients who had 2 of the 4 systemic inflammatory response syndrome criteria	CT scan confirmed patients with TBI, CT signs of TBI, patients had to be > 14 years of age, Patients had to be admitted within 6 h after injury	Patients with TBI with traumatic injury to a body region other than the brain with an Abbreviated Injury Severity score > 3 and those with (34) penetrating brain injury	Patients aged < 18 years, pregnant women, patients with drug overdoses, patients with a history of neoplastic, cardiac, hepatic diseases, or renal diseases.		
Exclusion criteria	Severe comorbidities, prior neurological disease, anticoagulant, steroids, or immunosuppressants use, and prior systemic disease	Patients with GCS scores below 15, multiple traumas, chest pain, anemia, or chronic renal failure	Age <18 years, pregnancy, hematologic disease, previous chemotherapy, blood transfusion, chronic hepatic disease, trauma, or poisoning.	Age <18 years, time from injury to admission > 6 h, previous head trauma, ischemic or hemorrhagic stroke, antithrombotic, anticoagulants, steroids, immunosuppressants use presence of prior systemic diseases	History of head trauma or other major diseases such as stroke, tumor, uremia, and heart failure. Missing data or loss to follow-up.	None		
Severity measurement/scores	GOS-E Peds, LOC, GCS, PTA	CT scan findings	GCS, APACHE II, SOFA	GOS, GCS	GCS, GOS	GCS, GOS	GCS, GOSE	GOS, GCS
Baseline characteristics of included participants	Age, years	9.49 ± 6.70a	35.25 ± 20.25a	74 (19)b	45.40 ± 14.85a	47.03 ± 16.88a	56 (43–63)b	48 (32–59)b

(Continued)
Study and baseline characteristics	Kimball et al. (22)	Acar et al. (47)	Akilli et al. (32)	Chen et al. (34)	Zhao et al. (36)	Chen et al. (23)	Siwicka-Gieroba et al. (35)	Corbett et al. (33)
Length of Hospital Admission, days	3, (1–48)b	NR	6.0 (9.1)b	NR	NR	18 (12–25.75)	NR	23 (13–45)b
Gender								
Male	118 (63 %)	151 (75.5 %)	203 (54.4 %)	557 (81 %)	982 (76.1 %)	256 (81.0 %)	118 (92 %)	310 (80 %)
Type of injury								
Skull fracture	NR	28 (14%)	NR	NR	299 (23.2 %)	NR	NR	NR
Diffusion axonal injury	NR	NR	NR	NR	46 (3.6 %)	NR	NR	NR
Epidural hematoma	NR	27 (14%)	NR	NR	368 (28.5 %)	NR	NR	24 (6 %)
Subdural hematoma	NR	24 (12%)	NR	NR	378 (29.3 %)	NR	NR	NR
Subarachnoid hemorrhage	NR	15 (08%)	NR	NR	649 (50.3 %)	NR	NR	361 (93 %)
Intracerebral hematoma	NR	06 (03%)	NR	NR	860 (66.6 %)	NR	19 (13.2 %)	NR
Clinical characteristics								
Systolic arterial pressure, mm Hg	NR	NR	NR	130.54 ± 25.50a	NR	136 (123–150)b	NR	NR
Diastolic arterial pressure, mm Hg	NR	NR	NR	76.85 ± 15.53a	NR	79 (70–88)b	NR	NR
Mean arterial pressure, mm Hg	NR	NR	NR	95.12 ± 17.93a	NR	NR	NR	NR
Heart rate, beats/min	NR	NR	NR	85.7 ± 25.2a	NR	89.5 (79–109)b	NR	NR
Body temperature, °C	NR	NR	NR	36.86 ± 0.68a	NR	36.8 (36.6–37.2)b	NR	NR
Blood oxygen saturation, %	NR	NR	NR	95.35 ± 4.37a	NR	NR	NR	NR
Blood glucose level, mmol/L	NR	NR	NR	9.75 ± 3.41a	NR	8.7 (7.4–10.38)b	NR	NR
GCS Score on Admission	NR	NR	12 (8)b	5.95 ± 1.69a	11.21 ± 3.70a	7 (5–8)b	5 (3–6)b	8 (5–11)b
Survival	181 (96 %)	184 (92 %)*	NR	440 (64 %)	NR	NR	NR	NR

TBI, Traumatic brain injury; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Scale; GOS-E Peds, Glasgow Outcome Scale-Extended Pediatric; APACHE II, Acute Physiology And Chronic Health Evaluation II; SOFA, Sequential Organ Failure Assessment score; LOC, Loss of consciousness; PTA, Post Traumatic Amnesia; NA, Not applicable; NR, Not reported; a, Mean ± SD; b, Median (IQR); *number of dead is unknown.
The statistical analysis is appropriate for the design of the study? Important potential confounders are accounted for? The outcome of interest is adequately measured in study subjects? Does the study sample provide outcome data adequate? The study sample represents the population of interest on key characteristics? The study confounding 6. Statistical analysis 7. Outcome measurement 8. Prognostic factor measurement

Study	1. Study participation	2. Study attrition	3. Prognostic factor measurement	4. Outcome measurement	5. Study confounding	6. Statistical analysis	7. Outcome measurement	8. Prognostic factor measurement	
Kimball et al. (22)	Yes	Partly	Fail	No	Not clear	Not clear	Yes	Yes	No
Corbett et al. (33)	Partly	Partly	Fail	No	Not clear	Not clear	Yes	Yes	Yes
Zhao et al. (34)	No	Fail	Partially	Yes	Yes	Yes	Yes	Yes	Yes
Chen et al. (35)	Yes								
Acar et al. (36)	Yes								
Siwicka-Gieroba et al. (37)	Yes	Partially	Yes						

Studies were assessed under six domains of the QUIPS tool and given a rating (yes, no, partly, unclear; Hayden et al. (20)). A “yes” response indicates that the study has been designed and conducted to sufficiently limit the potential bias in that domain. An “unclear” or “partly” response arises when the answer to an item is not reported or is not reported clearly.

Discussion

TBI affects millions of individuals worldwide on a yearly basis (37). This creates a taxing burden on healthcare systems in terms of financial resources or associated mortality. The pathophysiology of TBI is a highly complex process that relies on the primary brain injury resulting from the external injury (38) and the secondary injury that takes place within minutes of the primary one and can continue for several days.
TABLE 3 NLR value and prediction according to worse outcomes.

Source timeline	Outcome	Outcome score	NLR value	Multivariate prediction model of outcome						
			Favorable/ alive*	Unfavorable/ dead*	Significance	Variables included				
			GOS-E 1 - 2	GOS-E 3 - 6	GOS-E 7 - 8	P = 0.38	NR	NR	NR	NR
< 12 h Severity	GOS-E Peds	4.15 ± 5.87a	6.79 ± 8.42a	4.13 ± 4.94a	P = 0.004	NR	NR	NR	NR	
24 h Severity	GOS-E Peds	4.25 ± 3.43a	7.84 ± 4.27a	9.08 ± 4.55a	P = 0.003	NR	NR	NR	NR	
48 h Severity	GOS-E Peds	4.92 ± 3.05a	5.86 ± 2.98a	11.22 ± 1.95a	P = 0.80	OR (95 % CI) 1.003 (0.972–1.035)	IMPACT predicted risk; Hemoglobin, g/dL; Total white blood cells, ×109/L; NLR; Platelets, ×109/L; Fibrinogen, g/L; INR; aPTT, sec; DIC score; Glucose, mmol/L			
72 h Severity	GOS-E Peds	7.96 ± 12.50a	6.45 ± 3.58a	11.45 ± 2.85a	P = 0.996	NR	NR	NR	NR	
18 month Severity	GOS	6 (2–12)b	NA	6 (3–11)b	P < 0.05	Adj OR (95 % CI) 0.91 (0.89 - 0.93)	P = 0.001	White blood cells, ×109/L; Neutrophil ratio; Lymphocyte ratio; NLR		
28 day Mortality	NA	NA	NA	NA	P < 0.05	NR	NR	NR	NR	
6 month Severity	GOS	07.68 ± 06.54a	24.71 ± 12.52a	P < 0.001	OR (95 % CI) 1.197 (1.125–1.273)	P < 0.001	Day 1 NLR; Admission GCS score			
12 day (NLR peak) Severity	GOS	11.55 (08.62–14.11)b	17.62 (13.08–20.89)b	P < 0.001	OR (95 % CI) 1.197 (1.125–1.273)	P < 0.001	Day 1 NLR; Admission GCS score			
1 Year Mortality	NA	13.75 ± 6.27a	18.75 ± 7.76a	P < 0.001	Model I: OR (95 % CI) 1.141 (1.085–1.200)	P < 0.001	NLR; Deterioration; Mechanical ventilation			
					Model II: OR (95 % CI) 1.158 (1.094–1.226)	P < 0.001	Temperature, ∘C; NLR; Deterioration; Mechanical ventilation			

(Continued)
null
Comparison of neutrophil-lymphocyte ratio (NLR) in patients with favorable outcomes to those with unfavorable ones.

upon admission and the presence of post-traumatic amnesia failed to show any significance in predicting clinical outcomes. Higher values of the NLR at 24 and 48 hours were associated with less favorable outcomes in pediatric patients suffering from TBI. Furthermore, patients who lost consciousness also had a significantly elevated NLR compared with patients who maintained consciousness (22).

In patients with minor head trauma, a retrospective study of 200 patients used computerized tomography (CT) scanning and blood markers to assess brain dysfunction in patients whose GCS were graded as 15 (47). Patients with normal CT scans served as the controls in this study. Blood values that were clinically significant included NLR and troponin-T. The NLR had a specificity of 90% when a cutoff value of 4.29 was implemented in assessing patients with detectable brain pathology on head CT in comparison with those who did not (47). This suggests that the NLR may have utility in patient assessment, not only in TBI but also in minor head trauma.

In a large study based in China, 855 patients (only 688 were included in the final analysis) who suffered from severe TBI were assessed for ∼5 years. The initial NLR was calculated, as was the follow-up until 1 year after the TBI or death, whichever came first. Unfavorable outcomes were reported in 73.8% of patients at the 1-year follow-up of head trauma. In this group, an NLR upon admission for severe TBI was associated with a worse clinical outcome. Sensitivity and specificity of elevated NLR in predicting a negative outcome at the 1-year follow-up were found to be 60.2 and 71.1%, respectively (34).

A recent study was conducted to assess the prognostic utility of hematological markers after TBI. This study took place in Western Australia and involved 388 patients who underwent decompressive craniectomy after severe TBI (33). Unfavorable outcomes at 18 months were reported in 38.9% of patients and found to correlate with hematological abnormalities such as hemoglobin level, disseminated intravascular coagulation score, plasma glucose level, activated partial thromboplastin time, international normalized ratio (INR), and fibrinogen. Interestingly, an increased NLR was not associated with an increase in the incidence of unfavorable outcomes at 18 months post-decompressive craniectomy after severe TBI. After adjusting for the predicted risk of the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT), the study concluded that the INR was the best blood parameter for 18-month survival in patients with severe TBI undergoing decompressive craniectomy (33).

The peak of the NLR in patients with severe TBI has been studied to assess its utility in predicting 1-year outcomes. A 4-year study of 316 patients reported that 81.3% experienced unfavorable clinical outcomes. The peak of NLR was found to be an independent predictor of unfavorable outcomes following severe TBI. Furthermore, the NLR on day one and the initial GCS score were found to be independently correlated with increased peak NLR (23). A large study was completed on TBI that involved 1,291 patients. The factors that were found to be independent predictors of negative outcomes after 6 months were age and admission GCS scores along with the presence of subdural hematoma, intraparenchymal hemorrhage, traumatic subarachnoid hemorrhage, or coagulopathy (36).

Poor outcomes were associated with an increased NLR. When combined with certain standard prognostic factors such as age, GCS score, and coagulopathy, the NLR was reported to be capable of predicting the 6-month mortality more accurately (36).

Beyond the TBI, NLR was assessed in other neurological conditions, such as stroke. Khanzadeh et al. conducted a meta-analysis of 15 studies to evaluate using NLR to detect early poststroke infection (PSI) (48). They found significantly higher NLR levels in stroke patients with PSI compared to those without it (SMD = 0.98; 95% CI = 0.81–1.14; p < 0.001); however, the levels were comparable in terms of poststroke

![Comparison of neutrophil-lymphocyte ratio (NLR) in patients with favorable outcomes to those with unfavorable ones.](image-url)
Figure 3: Underlying pathophysiology of traumatic brain injury. DAMPs, Damage-associated molecular patterns; iNOS, inducible nitric oxide synthase; MP-TF, micro particles tissue factor; ROS, reactive oxygen species; SIRS, systemic inflammatory response syndrome; tPA, tissue plasminogen activator.
ventriculitis, sepsis, and urinary tract infections (48). In another
meta-analysis of 3641 acute ischemic stroke patients - who
received intravenous thrombolysis-, higher NLR levels were
linked to higher odds of hemorrhagic transformation (OR =
1.33; 95% CI = 1.14–1.56; p < 0.001) and poor 90-day
functional outcome (OR = 1.64; 95% CI = 1.38–1.94; p < 0.001)
(49). In the same context, stroke patients with early neurological
deterioration (END) had higher NLR levels than those without
END (SMD = 0.73; 95% CI = 0.42–1.05; p < 0.001) (50).

Despite the limited evidence about NLR in TBI patients,
our intellectual thoughts from the current evidence suggest
that an increased NLR ratio correlates with poor prognosis
in TBI patients. Nevertheless, the heterogeneity in the
included studies, in terms of measurement intervals, follow-
up points, and definitions of different outcomes, makes it
impossible to draw any concrete conclusions. Further trials
are needed to confirm the correlation between the NLR ratio
and prognosis.

Conclusions

A relatively inexpensive test, NLR can be easily and
rapidly obtained in the emergency department. In this
study, a high NLR at 24 and 48 h after TBI in pediatric
patients was associated with worse clinical outcomes. In
patients with minor TBI, the NLR was found to be an
important prognostic marker when used in conjunction
with head CT. NLR may be a useful predictor of the 6-
month and 1-year mortalities. However, the overwhelming
heterogeneity in current literature keeps the prognostic value
of the neutrophil-to-lymphocyte ratio for TBI outcomes under
investigation, and there are certainly more cost-effective and
quick approaches to predict TBI outcomes, such as Glasgow
Outcome Scale and Pupillary Light Reflex. Further studies
are warranted to confirm the utility of NLR in predicting
TBI outcomes.

Data availability statement

The original contributions presented in the study are
included in the article/Supplementary material, further inquiries
can be directed to the corresponding author/s.

Author contributions

All authors listed have made a substantial, direct,
and intellectual contribution to the work and approved it
for publication.

Funding

This research work was funded by the Institutional Fund
Projects under Grant No. (IFPDP-77-22).

Acknowledgments

Authors gratefully acknowledge technical and financial
support from Ministry of Education and Deanship of
Scientific Research (DSR), King Abdulaziz University, Jeddah,
Saudi Arabia.

Conflict of interest

KK was employed by Nested Knowledge.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fneur.2022.1021877/full#supplementary-material

References

1. Brain Trauma F. American Association of Neurological S, Congress of
Neurological S, Joint Section on N, Critical Care AC, Bratton SL, et al. Guidelines
for the management of severe traumatic brain injury VIII Intracranial pressure
thresholds. J Neurotrauma. (2007) 24:S55–8.

2. Cheng P, Yin P, Ning P, Wang L, Cheng X, Liu Y, et al. Trends
in traumatic brain injury mortality in China, 2016-2013: a population-based
longitudinal study. PLoS Med. (2017) 14:e1002332. doi: 10.1371/journal.pmed.1
002332
44. McKee AC. The neuropathology of chronic traumatic encephalopathy: the status of the literature. *Semin Neurol.* (2020) 40:359–69. doi: 10.1055/s-0040-1713632

45. Bieniek KF, Cairns NJ, Crary JF, Dickson DW, Folkerth RD, Keene CD, et al. The second NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. *J Neuropathol Exp Neurol.* (2021) 80:210–9. doi: 10.1093/jnen/nlab001

46. Zhuang D, Sheng J, Peng G, Li T, Cai S, Din F, et al. Neutrophil to lymphocyte ratio predicts early growth of traumatic intracerebral hemorrhage. *Ann Clin Transl Neurol.* (2021) 8:1601–9. doi: 10.1002/acn3.51409

47. Acar E, Demir A, Alatas OD, Beydilli H, Yildirim B, Kirli U, et al. Evaluation of hematological markers in minor head trauma in the emergency room. *Eur J Trauma Emerg Surg.* (2016) 42:611–6. doi: 10.1007/s00068-015-0378-8

48. Khanzadeh S, Lucke-Wold B, Eshghyar F, Rezaei K, Clark A. The neutrophil to lymphocyte ratio in poststroke infection: a systematic review and meta-analysis. *Dis Markers.* (2022) 2022:1983455. doi: 10.1155/2022/1983455

49. Wang C, Zhang Q, Li M, Mang J, Xu Z. Prognostic value of the neutrophil-to-lymphocyte ratio in acute ischemic stroke patients treated with intravenous thrombolysis: a systematic review and meta-analysis. *BMC Neurol.* (2021) 21:191. doi: 10.1186/s12883-021-02222-8

50. Sarejloo S, Khoradjooh H, Haghi SE, Hosseini S, Gargari MK, Azarhomayoun A, et al. Neutrophil-to-lymphocyte ratio and early neurological deterioration in stroke patients: a systematic review and meta-analysis. *Biomed Res Int.* (2022) 2022:8656864. doi: 10.1155/2022/8656864