Metal Ion-dependent Effects of Clioquinol on the Fibril Growth of an Amyloid β Peptide*

Received for publication, January 10, 2005, and in revised form, February 16, 2005
Published, JBC Papers in Press, February 16, 2005, DOI 10.1074/jbc.M500309200

Bakthisaran Raman†‡§, Tadato Ban†, Kei-ichi Yamaguchi‡, Miyo Sakai‡, Tomoji Kawai‡, Hironobu Naiki**†§§, and Yuji Goto‡ †‡

From the †Institute for Protein Research, Osaka University, and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan, the ‡Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Andhra Pradesh, India, the §Institute for Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan, the **Faculty of Medical Science, University of Fukui, and §§CREST, Japan Science and Technology Agency, Matsuoka, Fukui 910-1193, Japan

Although metal ions such as Cu$^{2+}$, Zn$^{2+}$, and Fe$^{3+}$ are implicated to play a key role in Alzheimer disease, their role is rather complex, and comprehensive understanding is not yet obtained. We show that Cu$^{2+}$ and Zn$^{2+}$ but not Fe$^{3+}$ renders the amyloid β peptide, β_{1-40}, non-fibrillogenic in nature. However, preformed fibrils of β_{1-40} were stable when treated with these metal ions. Consequently, fibril growth of β_{1-40} could be switched on/off by switching the molecule between its apo- and holo-forms. Clioquinol, a potential drug for Alzheimer disease, induced resumption of the Cu$^{2+}$-suppressed but not the Zn$^{2+}$-suppressed fibril growth of β_{1-40}. The observed synergistic effect of clioquinol and Zn$^{2+}$ suggests that Zn$^{2+}$-clioquinol complex effectively retards fibril growth. Thus, clioquinol has dual effects; although it disaggregates the metal ion-induced aggregates of β_{1-40} through metal chelation, it further retards the fibril growth along with Zn$^{2+}$. These results indicate the mechanism of metal ions in suppressing Aβ amyloid formation, as well as providing information toward the use of metal ion chelators, particularly clioquinol, as potential drugs for Alzheimer disease.

Alzheimer disease (AD) is a neurodegenerative disease characterized by cerebral deposits of extracellular amyloid plaques, intracellular tangles, and intravascular or extravascular deposits (1, 2). The deposits are comprised of a mixture of 39–43-amino-acid polypeptides generally designated as amyloid-β (Aβ) peptide (3, 4). Aβ peptides are secreted by proteolytic processing of several membrane proteins, which are alternative splicing products of the gene coding the amyloid precursor protein (APP) (5–7). Accumulation of the Aβ peptides as insoluble amyloid deposits occurs in AD due to yet unclear mechanism(s).

The role of metal ions, notably Cu$^{2+}$, Zn$^{2+}$, and Fe$^{3+}$, in AD and metal ion chelators as therapeutic agents has been the subject of interest over recent years (8–10). Supplementing Cu$^{2+}$ in drinking water leads to development of the disease in rabbit model (11). High concentrations of Cu$^{2+}$ (0.4 mM) and Zn$^{2+}$ (1 mM) have been reported in the senile plaques of the diseased brain, extracellular Cu$^{2+}$ concentration reaching to 15 μM (12). In contrast, Cu$^{2+}$ has been reported to decrease Aβ deposits in APP23 transgenic mice (13). Moreover, overexpression of human Aβ peptides in transgenic mice leads to a decrease in brain Cu$^{2+}$ (14). APP knock-out mice show an increase in Cu$^{2+}$ (15). Thus, the role of metal ions is rather complicated; it is not clear whether the accumulation of metal ions is the cause or the consequence of AD or a biological defense response to decrease progression of the disease.

The Aβ peptides bind Cu$^{2+}$ and Zn$^{2+}$ with high affinity (16–21). Although histidine residues, especially His-13, are involved in binding Cu$^{2+}$ and Zn$^{2+}$ (20–22), Cu$^{2+}$ and Zn$^{2+}$ differ in their coordination to His-13 (22). Cu$^{2+}$ and Zn$^{2+}$ trigger aggregation and precipitation of Aβ peptides (19, 23–28), which are distinct from the amyloid fibrils, especially in the β-sheet content (27, 28). Toxicity of granular aggregates is a target of recent extensive studies (29, 30). In this respect, the use of “metal-protein attenuation compounds” is proposed as a potential strategy for treating AD (31, 32). The antibiotic, clioquinol (CQ), which is also known to be a transition metal ion chelator (33, 34), has been found to dissolve deposits of the AD brain tissue (8) and to yield promising results in an animal model for AD in decreasing the number of deposits (8, 36). CQ has been the focus of attention as a potential drug (8). However, its effect on the amyloid fibril formation, especially in conjunction with Cu$^{2+}$ or Zn$^{2+}$, has not been understood so far. Therefore, it is important to obtain comprehensive understanding of the interactions with metal ions and their impact on the aggregation and amyloid fibril formation of Aβ peptides.

In the present study, we investigated the role of some metal ions on the aggregation and fibrillogenic propensities of β_{1-40}. The results show that Cu$^{2+}$ and Zn$^{2+}$, but not Fe$^{3+}$, render β_{1-40} less fibrillogenic or non-fibrillogenic under conditions in which no significant metal ion-induced aggregation occurs. We used this system to examine the effects of metal ion chelators, EDTA and CQ, on the fibril growth of β_{1-40}. The results revealed the dual effects of CQ, explaining the underlying mechanism of clioquinol as a potential drug for Alzheimer disease.

EXPERIMENTAL PROCEDURES

Materials—Human β_{1-40} was purchased from the Peptide Institute, Inc. (Osaka, Japan). CuCl$_2$ dihydrate, anhydrous ZnCl$_2$, and anhydrous FeCl$_3$ were purchased in their purest forms from Aldrich. CQ (5-chloro-7-ido-8-hydroxyquinoline, commonly known as clioquinol)
was procured from Calbiochem. “Protein assay Coomassie Brilliant Blue solution” was purchased from Nacalai Tesque Inc. (Kyoto, Japan).

Effects of CQ and Buffer Conditions on Metal Ion-induced Aggregation of Aβ₁₋₄₀—In HEPES buffer containing 100 mM NaCl (pH 6.6 or 7.4), both 50 μM Zn²⁺ and 50 μM Cu²⁺ largely decreased the percentage of recovery of Aβ₁₋₄₀ (Fig. 1A and B). The Cu²⁺-induced decrease in the percentage of recovery was more significant at pH 6.6 than at pH 7.4, indicating the pH dependence of the Cu²⁺ effects. Although 100 μM CQ did not itself exhibit notable effect on the aggregation of Aβ₁₋₄₀, it suppressed the metal ion-induced aggregation of the peptide, increasing its recovery (Fig. 1A and B). Thus, in HEPES buffer, Cu²⁺ and Zn²⁺ induce aggregation of Aβ₁₋₄₀ in agreement with the earlier studies (19, 23–28), which can be suppressed by CQ. The atomic force microscopy images (Fig. 1D) indicated that metal ion-induced aggregates are amorphous in nature, supporting earlier reports (27, 28).

Importantly, metal ion-induced aggregation of Aβ₁₋₄₀ depended on buffer conditions. In buffer A, we did not observe metal ion-induced loss of Aβ₁₋₄₀ (Fig. 1C). Furthermore, sedimentation velocity measurements showed that the metal ion-treated or untreated Aβ₁₋₄₀ do not exhibit significant change in their sedimentation property (Fig. 2). The apparent sedimentation coefficients of Aβ₁₋₄₀ in buffer A alone and in the presence of 50 μM Zn²⁺ and 50 μM Cu²⁺ were calculated to be 0.86, 0.86, and 1.05 s, respectively. Thus, our result shows that the metal ions do not promote significant aggregation of Aβ₁₋₄₀ in buffer A.

One possible reason for the observation made in buffer A could be that the formation of the phosphate complexes of these metal ions prevents their interaction with the Aβ peptide. However, our following results on the effects of Cu²⁺ and Zn²⁺ on the fibril growth and β-sheet formation of the peptide indicate that the peptide interacts with these metal ions in buffer A. Moreover, Cu²⁺ binding to the peptide in buffer A is further supported by the fluorescence quenching studies presented later on in this study. Thus, taking together these evidences, we presume that the observed lack of metal ion-induced aggregation in buffer A is not due to the lack of metal ion binding. Rather, it represents the conditions in which the metal ion-bound peptide exhibits less or no aggregation. In this context, it is important to note that two different laboratories have earlier made contradictory observations on the susceptibility of Aβ peptide toward the Zn²⁺-induced aggregation (23, 25). Huang et al. (26) clarified that the susceptibility of the Aβ peptide to the Zn²⁺-induced aggregation is sensitive to “complex factors in buffer milieu that impact upon the peptide’s
conformation and polymerization state.” Therefore, interestingly, our observation that metal ion-induced aggregation is less pronounced in buffer A is useful to understand the relative fibrillogenic propensities of the metal-free (apo) and metal-bound (holo) Aβ_{1–40}.

Effect of Cu^{2+}, Zn^{2+}, and Fe^{3+} on the Fibril Growth of Aβ_{1–40}—The relative fibrillogenic propensities of the apo- and holo-forms of Aβ peptides have not been understood so far. Since Cu^{2+} or Zn^{2+} does not induce detectable aggregation in buffer A, this system is useful to address the issue. We have investigated the effects of Cu^{2+}, Zn^{2+}, and Fe^{3+} on the amyloid fibril growth of Aβ_{1–40} in buffer A (pH 7.4). Even at substoichiometric concentrations, Cu^{2+} retarded the fibril growth (Fig. 3A). At a molar ratio less than 0.4 of the metal ion to Aβ_{1–40}, Cu^{2+} increased the time lag of the onset of the fibril growth (despite providing the fibril seed for nucleation). At the molar ratio more than or equal to 0.4, fibril growth was not observed significantly during the observed time period. However, the fibril growth occurred slowly to the extent of the control (without the metal ion) by 2 days of incubation at the molar ratio less than 0.6 (data not shown). At the molar ratio of 1.0, Cu^{2+} prevented the fibril growth completely; there was no fibril growth even after 5 days (data not shown). Zn^{2+} also exhibited a similar effect in preventing the amyloid fibril growth of Aβ_{1–40} (Fig. 3B). On the other hand, Fe^{3+} did not prevent the fibril growth of Aβ_{1–40} at concentrations comparable with those of Cu^{2+} or Zn^{2+} (Fig. 3B) as well as at its molar ratio as high as 4.0 (data not shown).

We examined by TIRFM the samples of ThT-bound fibril seed, the Aβ amyloid fibrils, and the samples of the Aβ peptide and the seed incubated along with Cu^{2+} or Fe^{3+} (Fig. 3C). Fibril growth of Aβ_{1–40} occurred to the order of a few micrometers in buffer A alone (Fig. 3C, image 2) and even in the presence of 0.2 mM Fe^{3+} (Fig. 3C, image 3). On the other hand, we could see only fibril seeds in Cu^{2+}-treated (Fig. 3C, image 4) or Zn^{2+}-treated (data not shown) samples. Thus, Cu^{2+} or Zn^{2+} but not Fe^{3+} prevents the fibril growth of Aβ_{1–40}.

Cu^{2+} and Zn^{2+} Prevent the β-Sheet Formation—Amyloid fibrils exhibit characteristic well ordered cross-β-sheet structure (40, 41). Aβ_{1–40} freshly dissolved in buffer A exhibited random coil conformation as revealed in its far UV-CD spectrum (Fig. 4, curve 1). Incubation of the peptide in the presence of fibril seeds for 80 min generated a characteristic far-UV CD spectrum for β-sheet structure with a minimum around 218 nm (Fig. 4, curve 2). Such an association-induced generation of β-sheet structure also occurred in the presence of Fe^{3+} (Fig. 4, curve 3). However, induction of β-sheet structure did not occur in the presence of Cu^{2+} or Zn^{2+} (Fig. 4, curves 4 and 5). Thus, Cu^{2+} or Zn^{2+} but not Fe^{3+} prevents the generation of β-sheet structure, consistent with the effects on fibril growth monitored by ThT fluorescence (Fig. 3).

Copper Binding to Aβ_{1–40} in Buffer A—Prevention of the fibril growth and the association-induced β-sheet formation shows that the metal ions, Cu^{2+} and Zn^{2+}, interact with the Aβ peptide in buffer A, where phosphate complexation of the metal ions is also favored. We further investigated the Cu^{2+} binding by fluorescence spectroscopy.

The sequence of Aβ_{1–40} does not contain any tryptophan residue but a single tyrosine residue at position 10 in addition to two phenylalanine residues at positions 19 and 20. The intrinsic fluorescence of the peptide thus predominantly represents the fluorescence of the sole tyrosine residue upon exciting at 280 nm. The intrinsic fluorescence of Aβ_{1–28} is known to be quenched upon binding to Cu^{2+} (20). We have investigated the effect of the metal ions on the intrinsic fluorescence of Aβ_{1–40} peptide. The fluorescence intensity of the peptide progressively decreased upon the addition of the paramagnetic ion, Cu^{2+} (Fig. 5A). This observed quenching of the fluorescence is not due to the general collisional quenching of the fluorescence by the paramagnetic ion, Cu^{2+}, as the fluorescence of N-acetyl tyrosine amide was not significantly quenched under the concentration range of the metal ion used (Fig. 5B). Thus, the specific quenching of the intrinsic fluorescence of Aβ_{1–40} observed in buffer A is due to the specific binding of Cu^{2+}, leading to proximal interactions between the quencher (Cu^{2+}) and the fluorophore (the tyrosine residue of the peptide). Using the fluorescence quenching data (Fig. 5C), the dissociation constant (K_d) of copper binding to Aβ_{1–40} was calculated to be 8×10^6 M. The addition of the diamagnetic ion, Zn^{2+}, however, did not lead to quenching of the fluorescence of Aβ_{1–40} (Fig. 5C). Thus, the fluorescence experiment shows that Cu^{2+} binds to the Aβ peptide in buffer A, under the condition in which the metal ion-induced prevention of fibril growth but not the metal ion-induced aggregation was observed. We presume that Zn^{2+} also interacts with or binds to Aβ_{1–40} in buffer A.
Fig. 3. **Effect of metal ions on the amyloid fibril growth of Aβ1–40 A**. The amyloid fibril growth of Aβ1–40 (50 μM) in buffer A alone (○), in the presence of 5 (●), 10 (▲), 15 (▲), and 20 μM (△) Cu2+. B, the percentage of prevention of the fibril growth as a function of the molar ratio of metal ion to Aβ1–40. Metal ions used are Cu2+ (○), Zn2+ (●), and Fe3+ (▲). The percentage of prevention of the fibril growth was calculated using the formula, \[(1 - (P_{obs} - P_{max})/(P_{max} - P_{min})) \times 100\], where \(P_{obs}\) and \(P_{max}\) are the ThT fluorescence intensities at zero time in the absence and in the presence of the metal ions and \(P_{max}\) and \(P_{min}\) are the fluorescence intensities after a 90-min incubation in the absence and in the presence of the metal ions, respectively. C, TIRFM images of fibril seeds (image 1); fibrils formed in buffer A alone (image 2); and the Aβ1–40 samples incubated along with fibril seeds and 0.2 mM Fe3+ (image 3) and 30 μM Cu2+ (image 4). The yellow bar in the images represents 5 μm.

Fig. 4. **Effect of metal ions on the fibril growth-associated generation of β-sheet**. Far-UV CD spectra of Aβ1–40 peptide (curve 1) and the sample of the Aβ peptide (50 μM) incubated at 37 °C with 5 μg/ml fibril seed for 80 min in the absence (curve 2) and presence of 200 μM Fe3+ (curve 3), 50 μM Zn2+ (curve 4), or 30 μM Cu2+ (curve 5) are shown.

since Zn2+ behaved similarly to Cu2+ on the fibril growth of Aβ1–40 (Fig. 3B)

Switching On / Off the Fibril Growth—One of the reasons for our observation that fibril growth is prevented by the metal ions is that the metal ions destabilize the fibrils. However, incubation of the fibrils of the Aβ peptide with the metal ions at 37 °C did not result in significant dissociation of the fibrils as judged by ThT binding (data not shown), thus ruling out the possibility of fibril instability as one of the reasons for the observed metal-induced prevention of the fibril growth. Since Cu2+-treated fibrils are stable but Cu2+ prevents the fibril growth, it was possible to switch on/off the fibril growth by switching Aβ1–40 to its fibrillogenic apo- and non-fibrillogenic holo-forms (Fig. 6). The results show that one of the key factors determining the Aβ fibril growth is the environmental concentrations of metal ions.

Metal Ion-dependent Effects of CQ on the Fibril Growth—The antibiotic CQ, which can bind both Cu2+ and Zn2+ with the same stoichiometry but with different coordination geometry (33), has been proposed to serve as a potential drug for AD (8, 31, 32). It would be pertinent to study the effects of CQ on the Aβ amyloid fibril growth as well as on the metal ion-induced suppression of the fibril growth.

CQ alone did not affect the fibril growth of Aβ1–40 significantly (Fig. 7A). The addition of CQ or EDTA to the sample of Cu2+-treated Aβ1–40 led to resumption of the Cu2+-suppressed fibril growth (Fig. 7B). Interestingly, the addition of EDTA, but not CQ, led to resumption of the fibril growth suppressed by Zn2+ (Fig. 7C). Since 8-hydroxyquinoline derivatives are well known transition metal ion chelators (33, 34) and CQ forms complexes with both Zn2+ and Cu2+ with a similar stoichiometry of 2:1 (33), it is unlikely that the lack of resumption of the Zn2+-suppressed fibril growth is because CQ does not chelate...
Effects of metal chelators on the metal ion-induced suppression of the fibril growth of Aβ1–40 A, the effect of CQ on the amyloid fibril growth of Aβ1–40. The fibril growth in the absence (○) and presence (●) of 160 μM CQ, B, the effect of the metal chelators, 100 μM EDTA (○) and 160 μM CQ (●), on the 50 μM Cu2+-suppressed fibril growth. C, the effect of 100 μM EDTA (○) and 160 μM CQ (●) on the 50 μM Zn2+-suppressed fibril growth. The arrows indicate the addition of chelators. The final concentration of methanol due to the addition of CQ in this experiment was ~4% (this did not affect the fibril growth significantly).

Zn2+. Since complexes of 8-hydroxyquinoline derivatives with Zn2+ are relatively less stable when compared with those with Cu2+ (33, 34), a second possibility could be that the possible lesser stability of the Zn2+-CQ complex may lead to shuttling of Zn2+ between CQ and the Aβ peptide, which may transiently increase the population of holo-form of Aβ1–40 that is less competent for fibril growth. The third possibility is that the Zn2+-CQ complex exhibits novel retardation effect on fibril growth. We, therefore, attempted to verify these possibilities as follows.

At 10 μM Zn2+, the fibril growth of the peptide was prevented only partially (Fig. 8A). Since CQ itself does not exhibit significant effect on the fibril growth, the addition of CQ to the sample should not have any effect in the presence of Zn2+ if the first possibility of the lack of metal chelation by CQ is valid. If the second possibility is the primary reason, then in the presence of Zn2+ and CQ, the fibril growth profile would be expected to be in between that of the control and that of the sample in the presence of Zn2+ alone. Surprisingly, the addition of CQ led to further retardation of the fibril growth, indicating a synergistic effect of CQ and Zn2+ on the fibril growth of Aβ1–40 fibril growth. The conditions of amyloid fibril growth of Aβ1–40 were in buffer A alone (○), in the presence of 20 μM CQ (●), 10 μM metal ions (△), or a mixture of 20 μM CQ and 10 μM respective metal ions (●).

FIG. 6. Switching on/off the fibril growth of Aβ1–40 by Cu2+ and EDTA monitored by ThT fluorescence. The left vertical dashed line represents the addition of 30 μM Cu2+, and the right vertical line represents the addition of 50 μM EDTA. Buffer A was used.

FIG. 7. Effects of metal chelators on the metal ion-induced suppression of the fibril growth of Aβ1–40. A, the effect of CQ on the amyloid fibril growth of Aβ1–40. The fibril growth in the absence (○) and presence (●) of 160 μM CQ, B, the effect of the metal chelators, 100 μM EDTA (○) and 160 μM CQ (●), on the 50 μM Cu2+-suppressed fibril growth. C, the effect of 100 μM EDTA (○) and 160 μM CQ (●) on the 50 μM Zn2+-suppressed fibril growth. The arrows indicate the addition of chelators. The final concentration of methanol due to the addition of CQ in this experiment was ~4% (this did not affect the fibril growth significantly).

FIG. 8. Distinct effects of CQ complexation of Zn2+ and Cu2+ on the fibril growth of Aβ1–40. A, synergistic effect of clioquinol and Zn2+ in retarding the fibril growth of Aβ1–40. B, effect of CQ and Cu2+ on the Aβ1–40 fibril growth. The conditions of amyloid fibril growth of Aβ1–40 were in buffer A alone (○), in the presence of 20 μM CQ (●), 10 μM metal ions (△), or a mixture of 20 μM CQ and 10 μM respective metal ion (●).

FIG. 9. Analysis of the sedimentation pattern of Aβ1–40 in the presence of CQ complexes of metal ions. The In(r/r0) versus ω²t plot for the Aβ1–40 in buffer A alone (○) and in the presence of 50 μM Zn2+ and 100 μM CQ (●) and 50 μM Cu2+ and 100 μM CQ (●). The apparent sedimentation coefficients of the peptide in buffer alone, in the presence of Zn2+-CQ and Cu2+-CQ, were calculated to be 0.9, 0.88, and 1.2 s, respectively.

Discussion

There has been an increasing interest in the role of transition metal ions in AD (8–10) as Aβ peptides exhibit high affinity binding to Cu2+ and Zn2+ (16–22). Our study provides two important findings toward the understanding of the role of metal ions and metal ion chelators in AD.

Firstly, our study demonstrates that the soluble holo-forms (Cu2+- or Zn2+-bound) of Aβ1–40 are less fibrillogenic or non-fibrillogenic in nature, which was not understood earlier. Al-
though Fe^{3+} is also found at high concentration in AD brain (12), it does not exhibit a significant effect on the fibrillogenic propensity of Aβ_{1-40}. It appears that high affinity binding of Cu^{2+} and Zn^{2+} may actually be beneficial as it does not favor fibril formation. On the other hand, high concentrations of metal ion under certain buffer conditions, as shown in Fig. 1, lead to aggregation and precipitation of the peptide, which may be toxic (29, 30).

The second important finding is that CQ exhibits unique metal ion-dependent effects on the fibril growth of the Aβ_{1-40}. Chelation of the metal ions such as Cu^{2+} and Zn^{2+} by EDTA leads to conditions favorable for amyloid fibril growth. Animal experiments with CQ have provided encouraging results as a potential drug (8, 31, 32). However, we cannot completely rule out the possibility of shuttling of Zn^{2+} between CQ and Aβ_{1-40} due to the possible lesser stability of Zn^{2+}-complexes of 8-hydroxyquinoline derivatives (33, 34), leading to the transient formation of the less fibrillogenic holocomplex. Both of these mechanisms should prove advantageous for the therapeutic use of CQ in AD. Monomeric Aβ is not toxic to the cells (29, 30, 35). Toxicity has been reported to be associated with β-sheet generation and fibril formation (35). On the other hand, granular aggregates, formed before fibril formation, were found to be more toxic than the fibrils, although the toxicity depends on the size of the aggregates (29, 30). In this respect, CQ can disaggregate the metal-induced-aggregates of Aβ_{1-40} under certain buffer conditions (Fig. 1) and, along with Zn^{2+}, it can retard fibril growth (Figs. 5 and 6).

Although our results suggest that the Zn^{2+}-complex, but not the Cu^{2+}-complex of CQ, retards the fibril growth of Aβ_{1-40}, how the complexes distinctly affect fibril propagation is not clear. We consider that the difference in the observed coordination geometry of the complexes of Cu^{2+} and Zn^{2+} (33) may have some role to play. The planar nature of the complex of Cu^{2+} may lead to stacking of the aromatic ring, promoting self-association of the complex. Such stacking is not favorable due to the fifth coordination involving a water molecule as well as due to puckered configuration of the Zn^{2+}-complex of CQ (33), which can increase the availability of the complex molecule to interact or interfere in the amyloid fibril growth of the Aβ peptide, probably through hydrophobic interactions.

We conclude that Cu^{2+} and Zn^{2+}, but not Fe^{3+}, significantly prevent the amyloid fibril growth of Aβ_{1-40}. Our study demonstrates for the first time that the soluble holo-form of the peptide is non-fibrillogenic in nature and that the fibril growth of the peptide can be switched on/off by switching the molecule between its apo- and holo-forms. CQ exhibits distinct effects on the Cu^{2+}- and Zn^{2+}-induced suppression of the fibril growth. Particularly, complexation of Zn^{2+} with CQ may have dual beneficial effects in not only disaggregating the metal ion-induced aggregates but also in retarding the fibril growth of Aβ_{1-40}. Our study should prove useful in understanding the role of the transition metal ions in amyloid fibril propagation of Aβ peptides in AD and provide information concerning the use of metal chelators, particularly CQ, as potential drugs for AD.