Precision measurement of the Λ^0_b baryon lifetime

The LHCb collaboration

Abstract

The ratio of the Λ^0_b baryon lifetime to that of the B^0 meson is measured using 1.0 fb$^{-1}$ of integrated luminosity in 7 TeV center-of-mass energy pp collisions at the LHC. The Λ^0_b baryon is observed for the first time in the decay mode $\Lambda^0_b \rightarrow J/\psi pK^-$, while the B^0 meson decay used is the well known $B^0 \rightarrow J/\psi \pi^+ K^-$ mode, where the $\pi^+ K^-$ mass is consistent with that of the $K^{*0}(892)$ meson. The ratio of lifetimes is measured to be $0.976 \pm 0.012 \pm 0.006$, in agreement with theoretical expectations based on the heavy quark expansion. Using previous determinations of the B^0 meson lifetime, the Λ^0_b lifetime is found to be $1.482 \pm 0.018 \pm 0.012$ ps. In both cases the first uncertainty is statistical and the second systematic.

Submitted to Phys. Rev. Lett.

© CERN on behalf of the LHCb collaboration, license [CC-BY-3.0](https://creativecommons.org/licenses/by/3.0/)

†Authors are listed on the following pages.
LHCb collaboration

R. Aaij40, B. Adeva36, M. Adinolfi45, C. Adrover6, A. Affolder51, Z. Ajaltouni5, J. Albrecht9, F. Alessio37, M. Alexander50, S. Ali40, G. Alkhazov29, P. Alvarenga Cartelle36, A.A. Alves Jr24,37, S. Amato2, S. Amerio21, Y. Amhis7, L. Anderlini17, J. Anderson39, R. Andreae36, J.E. Andrews57, R.B. Appleby53, O. Aquines Gutierrez10, F. Archilli18, A. Artamonov34, M. Artuso58, E. Aslanides6, G. Auriemma24, M. Baalouch5, S. Bachmann11, J.J. Back47, V. Baesso59, V. Balagura30, W. Baldini16, R.J. Barlow53, C. Barschel37, S. Barsuk7, W. Barter46, Th. Bauer46, A. Bay38, J. Beddow50, F. Bedeschi22, I. Bediaga1, S. Belogurov30, K. Belous34, I. Belyaev30, E. Ben-Haim8, G. Bencivenni18, S. Benson49, J. Benton45, A. Berezhnoy31, R. Bernet39, M.-O. Bettler46, M. Van Beuzekom40, A. Bien11, S. Bifani44, T. Bird53, A. Bizzeti17, P.M. Bjornstad53, T. Blake37, F. Blanc38, J. Blouw11, S. Blusk58, V. Bocci24, A. Bondar34, N. Bondar29, W. Bonivento15, S. Borghi53, A. Borgia58, T.J.V. Bowcock51, E. Bowser39, C. Bozzi16, T. Brambach9, J. van den Brand41, J. Bressieux38, D. Brott53, M. Britsch10, T. Britton58, N.H. Brook45, H. Brown51, I. Burducea28, A. Bursche49, G. Busetto21, J. Buytaert37, S. Cadeddu38, J. Calvi20, J. Camilo Gomez35, A. Camboni35, P. Campana18,37, D. Campora Perez37, A. Carbone14c, G. Carboni23, R. Cardinale19, A. Cardini15, H. Carranza-Mejia49, L. Carson52, K. Carvalho Akiba2, G. Casse51, L. Castillo Garcia37, M. Cattaneo37, Ch. Caquet9, R. Cenci57, M. Charles54, Ph. Charpentier37, P. Chen30,38, N. Chiapolini39, M. Chrzaszcz25, K. Ciba37, X. Cid Vidal47, G. Ciezarek32, P.E.L. Clarke49, M. Clemencic37, H.V. Cliff46, J. Closier37, C. Cocoa29, V. Coco40, J. Cogan6, E. Cogneras5, P. Collins37, A. Comerma-Montells35, A. Contu15,37, A. Cook45, M. Combes45, S. Coquereau8, G. Corti37, B. Couturier37, G.A. Cowan49, D.C. Craik47, S. Cunliffe52, R. Currie49, D. C’Ambrosio37, P. David8, P.N.Y. David40, A. Davis56, I. De Bonis4, K. De Bruyn40, S. De Capua53, M. De Cian11, J.M. De Miranda1, L. De Paula2, W. De Silva56, P. De Simone18, D. Decamp4, M. Deckenhoff69, L. Del Buono6, N. Deléage4, D. Derkach54, O. Deschamps5, F. Dettori31, A. Di Canto11, H. Dijkstra37, M. Dogaru28, S. Donlevy51, F. Dordel11, A. Dosil Suárez36, D. Dossett47, A. Dovbnya24, F. Duprat38, P. Durante37, R. Dzhelyadin34, A. Dziurda25, A. Dzyuba29, S. Easo48, U. Egede52, V. Egorychev30, S. Eidem63, D. van Eijk50, S. Eisenhardt49, U. Eitschberger4, R. Ekelhof9, L. Eklund50,37, I. El Rifai9, Ch. Elsasser9, A. Falabella14c, C. Färber11, G. Fardell49, C. Farinelli46, S. Farry51, D. Ferguson49, V. Fernandez Albors36, F. Ferreia Rodrigues4, M. Ferro-Luzzi37, S. Filippov32, M. Fiore16, C. Fitzpatrick37, M. Fontana10, F. Fontanelli19, J. Forty37, O. Francisc2, M. Frank37, C. Frei37, M. Froisini17, J.F. Furler57, E. Furfaro23, A. Gallas Torreira36, D. Galli14c, M. Gandelman2, P. Gandini58, Y. Gao3, J. Garofoli58, P. Garosi53, J. Garra Tico46, L. Garrido35, C. Gaspar37, R. Gauld54, E. Gersabeck11, M. Gersabeck33, T. Gershon17, Ph. Ghez4, V. Gibson60, L. Giubega28, V.V. Gligorov37, C. Göbel59, D. Golobkov30, A. Golovtsov52,30,37, A. Gomes2, P. Gorbounov30,37, H. Gordon54, M. Grabeloso Gándara5, R. Graciani Diaz15, L.A. Granado Cardoso37, E. Graugés35, G. Graziani17, A. Greco28, E. Greening54, S. Gregson46, P. Griffith44, O. Grünberg60, B. Gui58, E. Gushchin32, Yu. Guz34,37, T. Gys37, C. Hadjivasiliou58, G. Haefeli38, C. Haen57, S.C. Haines46, S. Hall52, B. Hamilton57, T. Hampson45, S. Hansmann-Menzemer11, N. Harnew54, S.T. Harnew45, J. Harrison53, T. Hartmann60, J. He37, T. Head37, V. Heijne40, K. Hennessy51, P. Henrard5, J.A. Hernando Morata36, E. van Herwijnen37, A. Hicheur1, E. Hicks51, D. Hill54, M. Hoballah5, C. Hombach53, P. Hopchev4, W. Hulsbergen40, P. Hunt54, T. Huse51, N. Hussain54,
R. Silva Coutinho47, M. Sirendi46, T. Skwarnicki58, N.A. Smith51, E. Smith54, J. Smith46, M. Smith53, M.D. Sokoloff56, F.J.P. Soler50, F. Soomre18, D. Souza45, B. Souza De Paula7, B. Spana9, A. Sparkes49, P. Spradlin50, F. Stagni37, S. Stahl11, O. Steinkamp39, S. Stevenson54, S. Stoicea28, S. Stone58, B. Storaci39, M. Straticiuc28, U. Straumann39, V.K. Subbiah37, L. Sun56, S. Swientek9, V. Syropoulos41, M. Szczecinski27, P. Szczypka38, T. Szumlak26, S. T’Jampens4, M. Teklishyn7, E. Teodorescu26, F. Teubert37, C. Thomas54, E. Thomas37, J. van Tilburg11, V. Tisserand4, M. Tobin38, S. Tolk41, D. Tonelli37, S. Topp-Joergensen54, N. Torr54, E. Tournefier4,52, S. Tourneux38, M.T. Tran38, M. Tresch49, A. Tsaregorodtsev6, P. Tsopelas40, N. Tuning40, M. Ubeda Garcia37, A. Ukleja27, D. Urner53, A. Ustyuzhanin52, P. Uwer11, V. Vagnoni14, G. Valenti14, A. Vallier7, M. Van Dijk45, R. Vazquez Gomez18, P. Vazquez Regueiro36, C. Vázquez Sierra36, S. Vecchi16, J.J. Velthuis45, M. Veltri17, G. Veneziano38, M. Vesterinen37, B. Viana2, D. Vieira2, X. Vilasis-Cardona35, A. Vollhardt39, D. Volyansky10, D. Voong45, A. Vorobyev29, V. Vorobyev33, C. Vog60, H. Voss10, R. Wald60, C. Wallace47, R. Wallace12, S. Wandernoth11, J. Wang58, D.R. Ward46, N.K. Watson44, A.D. Webber53, D. Websdale52, M. Whitehead47, J. Wicht37, J. Wiechczynski25, D. Wiedner11, L. Wiggers40, G. Wilkinson54, M.P. Williams47,48, M. Williams55, F.F. Wilson48, J. Wimberley57, J. Wishahi9, W. Wislicki27, M. Witek25, S.A. Wotton46, S. Wu3, K. Wyllie37, Y. Xie49,37, Z. Xing58, Z. Yang3, R. Young49, X. Yuan3, O. Yushchenko34, M. Zangoli14, M. Zavertyaev10, F. Zhang3, L. Zhang58, W.C. Zhang12, Y. Zhang3, A. Zhelezov11, A. Zhokhov38, L. Zhong4, A. Zvyagin37.

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland
13 Sezione INFN di Bari, Bari, Italy
14 Sezione INFN di Bologna, Bologna, Italy
15 Sezione INFN di Cagliari, Cagliari, Italy
16 Sezione INFN di Ferrara, Ferrara, Italy
17 Sezione INFN di Firenze, Firenze, Italy
18 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
20 Sezione INFN di Milano Bicocca, Milano, Italy
21 Sezione INFN di Padova, Padova, Italy
22 Sezione INFN di Pisa, Pisa, Italy
23 Sezione INFN di Roma Tor Vergata, Roma, Italy
24 Sezione INFN di Roma La Sapienza, Roma, Italy
25 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
26 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
27 National Center for Nuclear Research (NCBJ), Warsaw, Poland
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore, Pisa, Italy
Evaluations from experimental data of fundamental parameters, such as CKM matrix elements \(^1\), and limits on physics beyond that described by the standard model, often rely on theoretical input \(^2\). One of the most useful models, the heavy quark expansion (HQE) \(^3\)–\(^5\), is based on the operator product expansion \(^6\); it is used, for example, to extract values for \(|V_{ub}| \) and \(|V_{cb}| \) from measurements of inclusive semileptonic \(B \) meson decays \(^7\). In the free quark model the lifetimes of all \(b \)-flavored hadrons are equal, because the decay width is determined by the \(b \) quark lifetime. This model is too naïve, since effects of other quarks in the hadron are not taken into account \(^8\). Early predictions using the HQE, however, supported the idea that \(b \)-hadron lifetimes were quite similar, due to the absence of correction terms \(\mathcal{O}(1/m_b) \). In the case of the ratio of lifetimes of the \(\Lambda_b^0 \) baryon, \(\tau_{\Lambda_b^0} \), to the \(B^0 \) meson, \(\tau_{B^0} \), the corrections of order \(\mathcal{O}(1/m_b^2) \) were found to be small, initial estimates of \(\mathcal{O}(1/m_b^3) \) \(^9\)–\(^10\) effects were also small, thus differences of only a few percent were expected \(^8\)–\(^9\), \(^11\). Measurements at LEP, however, indicated that \(\tau_{\Lambda_b^0}/\tau_{B^0} \) was lower: in 2003 one widely quoted average of all data gave \(0.798 \pm 0.052 \) \(^12\), while another gave \(0.786 \pm 0.034 \) \(^13\). Some authors sought to explain the small value of the ratio by including additional operators or other modifications \(^14\), while some thought that the HQE could be pushed to provide a ratio of \(\sim 0.9 \) \(^15\). Recent measurements have shown indications that a higher value is possible \(^16\), although the uncertainties are still large. Therefore, a precision measurement of \(\tau_{\Lambda_b^0}/\tau_{B^0} \) is necessary to provide a confirmation of the HQE, or show definitively that the theory is deficient.

In this Letter we present the experimental determination of \(\tau_{\Lambda_b^0}/\tau_{B^0} \) using a data sample corresponding to \(1.0 \text{ fb}^{-1} \) of integrated luminosity accumulated by the LHCb experiment in 7 TeV center-of-mass energy \(pp \) collisions. The \(\Lambda_b^0 \) baryon is detected in the \(J/\psi pK^- \) decay mode, while the \(B^0 \) meson is found in \(J/\psi \pi^+K^- \) decays. Mention of a particular decay channel implies the additional use of the charge-conjugate mode. This \(\Lambda_b^0 \) decay mode has not been observed before \(^\text{1}\). On the other hand, the \(B^0 \) decay is well known, and we impose the further requirement that the invariant mass of the \(\pi^+K^- \) combination be within \(\pm 100 \text{ MeV} \) of the \(K^{*0}(892) \) mass \(^2\) in order to simplify the simulation and reduce systematic uncertainties. These decays have the same decay topology into four charged tracks, thus facilitating the cancellation of uncertainties.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5 \), described in detail in Ref. \(^17\). Events selected for this analysis are triggered \(^18\) by a \(J/\psi \to \mu^+\mu^- \) decay, where the \(J/\psi \) is required at the software level to be consistent with coming from the decay of a \(b \)-hadron by use either of IP requirements or detachment of the \(J/\psi \) from the associated primary vertex. The simulated events used in this analysis are produced using the software described in Refs. \(^19\).

Events are preselected and then are further filtered using a multivariate analyzer based on the boosted decision tree (BDT) technique \(^20\). In the preselection, all hadron track candidates are required to have \(p_T \) larger than 250 MeV, while for muon candidates the requirement is more than 550 MeV. Events must have a \(\mu^+\mu^- \) combination that forms

\(^1\) Measurement of the branching fraction is under study, and will be reported in a subsequent publication.

\(^2\) We work in units where \(c = 1 \).
a common vertex with $\chi^2 < 16$, and an invariant mass between -48 and $+43$ MeV of the J/ψ mass. Candidate $\mu^+\mu^-$ combinations are then constrained to the J/ψ mass for subsequent use in event selection. The two charged final state hadrons must have a vector summed p_T of more than 1 GeV, and are also required to form a vertex with $\chi^2 < 10$ for one degree of freedom, and a common vertex with the J/ψ candidate with $\chi^2 < 50$ for five degrees of freedom. This b-hadron candidate must have a momentum vector that, when parity inverted, points to the primary vertex within an angle smaller than 2.56°. Particle identification requirements differ in the two modes. We use the difference in the logarithm of the likelihood, DLL($h_1 - h_2$), to distinguish between the two hypotheses: h_1 and h_2 as described in [21]. In the Λ_0^b decay the kaon candidate must have $\text{DLL}(K - \pi) > 4$ and $\text{DLL}(K - p) > -3$, while the proton must have $\text{DLL}(p - \pi) > 10$ and $\text{DLL}(p - K) > -3$. For the \bar{B}^0 decay, the requirements on the pion candidate are $\text{DLL}(\pi - \mu) > -10$ and $\text{DLL}(\pi - K) > -10$, while $\text{DLL}(K - \pi) > 0$ is required for the kaon.

The BDT selection is based on the minimum DLL($\mu - \pi$) of the $\mu^+\mu^-$ candidates, the p_T of each of the two charged hadrons, and their sum, the A^0_b p_T, the A^0_b vertex χ^2, and the impact parameter χ^2 of the A^0_b candidate, where the latter results from calculating the difference in χ^2 by using the hypothesis that the IP is zero. These variables are chosen with the aim of having the selection efficiency be independent of decay time. The BDT is trained on a simulated sample of either $A^0_b \rightarrow J/\psi pK^-$ signal events and a background data sample from the mass sidebands of the A^0_b signal peak. It is then tested on independent samples from the same sources. The BDT selection is implemented to maximize $S^2/(S + B)$, where S indicates the signal and B the background event yields. This optimization includes the requirement that the A^0_b baryon decay time be greater than 0.5 ps. The same BDT selection is used for the $\bar{B}^0 \rightarrow J/\psi \pi^-K^+$ mode.

The $J/\psi pK^-$ mass distribution after the BDT selection is shown in Fig. 1. There is a large and significant signal. Backgrounds can be combinatorial in nature, but can also be formed by reflections from B meson decays where the particle identification fails. As long as these backgrounds do not peak near the A^0_b mass they cannot cause incorrect determinations of the A^0_b signal yield. The shapes of the main B meson reflections are determined from simulation and shown on Fig. 1. The shapes are smooth and do not peak in the signal region. To estimate the contributions of the reflections we take each of the candidates in the $J/\psi pK^-$ sideband regions 60 – 200 MeV on either side of the A^0_b mass peak, reassign proton to kaon and pion mass hypotheses, respectively, and fit the resulting signal peaks determining signal yields of $5576 \pm 95 \bar{B}^0_\psi$ and $1769 \pm 192 \bar{B}^0$ decays. To translate these yields to those within ± 20 MeV of the A^0_b peak, we use simulations of $\bar{B}^0_\psi \rightarrow J/\psi K^+K^-$ with the K^+K^- mass distribution matched to that obtained in our previous analysis of this final state [22], and a simulation of $\bar{B}^0 \rightarrow J/\psi \pi^+K^-$ decays, leading to $1186\pm35 \ J/\psi K^+K^-$ and $308\pm33 \ J/\psi \pi^+K^-$ reflected decays, respectively.

To determine the A^0_b signal yield we perform an unbinned maximum likelihood fit to the $J/\psi pK^-$ invariant mass spectrum shown in Fig. 1 in the region between 5500 and 5750 MeV. The fit function is the sum of the A^0_b signal component, combinatorial background and the contribution from the $\bar{B}^0_\psi \rightarrow J/\psi K^+K^-$ and $\bar{B}^0 \rightarrow J/\psi \pi^+K^-$ reflections. The signal is modeled by a triple-Gaussian function with common means; the effective r.m.s.
Figure 1: Invariant mass spectrum of $J/\psi pK^-$ combinations. The signal region is between the vertical long dashed (blue) lines. The sideband regions extend from the dotted (red) lines to the edges of the plot. The fit to the data between 5500 and 5750 MeV is also shown by the (blue) solid curve, with the A_0^b signal shown by the dashed-dot (magenta) curve. The (black) dotted line is the combinatorial background and $B^0_s \rightarrow J/\psi K^+ K^-$ and $B^0 \rightarrow J/\psi \pi^+ K^-$ reflections are shown with the (red) dashed-dot-dot and (green) dashed shapes, respectively. The width is 5.5 MeV. The combinatorial background is described by an exponential function. The event yields of the reflections are included in the fit as Gaussian constraints. The mass fit gives 15581 ± 178 signal and 5535 ± 50 combinatorial background candidates together with $1235 \pm 35 \ B^0_s \rightarrow J/\psi K^+ K^-$ and $313 \pm 26 \ B^0 \rightarrow J/\psi \pi^+ K^-$ reflection candidates within ± 20 MeV of the A_0^b mass peak.

To view the background subtracted pK^- mass spectrum, we perform fits, as described above, to the $m(J/\psi pK^-)$ distributions in bins of $m(pK^-)$ and extract the signal yields within ± 20 MeV of the A_0^b mass peak. The resulting pK^- mass spectrum is shown in Fig. 2. A distinct peak is observed in the pK^- invariant mass distribution near 1520 MeV, together with the other resonant and non-resonant structures over the entire kinematical region. The peak corresponds to the $\Lambda(1520)$ resonance [23]. Simulations of the $\Lambda(1520)$ decay are weighted to reproduce this mass distribution.

The $J/\psi \pi^+ K^-$ mass spectrum, after the BDT selection, is shown in Fig. 3. There is a large signal peak at the B^0 mass and a much smaller one at the B^0_s mass. Triple-Gaussian functions each with common means are used to fit the signal peaks; the effective r.m.s. width is 6.7 MeV. An exponential function is used to fit the combinatorial background. The mass fit gives 97506 ± 447 signal and 3660 ± 74 background candidates within ± 20 MeV of the B^0 mass peak. Reflections are possible from both $B^0_s \rightarrow J/\psi K^+ K^-$ and $A_0^b \rightarrow J/\psi pK^-$ decays. Following the same procedure as outlined above using the sidebands of the B^0 signal we find no evidence of a reflection from the B^0_s state and a small, non-peaking, contribution of 506 ± 19 events from the A_0^b state, in the B^0 signal region, that is ignored.
The decay time for each candidate is given by \(t = \frac{m\vec{d} \cdot \vec{p}}{|\vec{p}|^2} \), where \(m \) is the mass, \(\vec{d} \) the distance vector from the primary vertex to the decay point, and \(\vec{p} \) is the measured \(b \) hadron momentum. Here, we do not constrain the two muons to the \(J/\psi \) mass to avoid

![Figure 2: Background subtracted \(m(pK^-) \) distribution obtained by fitting the \(m(J/\psi pK^-) \) distribution in bins of \(m(pK^-) \).](image2)

![Figure 3: Fit to the invariant mass spectrum of \(J/\psi \pi^+K^- \) combinations with \(\pi^+K^- \) invariant mass within \(\pm100 \) MeV of the \(K^{*0} \) mass. The \(B^0 \) signal is shown by the (magenta) solid curve, the combinatorial background by the (black) dotted line, the \(B^0_s \rightarrow J/\psi \pi^+K^- \) signal by the (red) dashed curve, and the total by the (blue) solid curve.](image3)
systematic biases. The decay time resolutions are 40 fs for the Λ^0_b decay and 37 fs for the \bar{B}^0 decay. In addition, the decay time acceptances are also almost equal. For equal acceptances, the ratio of events, $R(t)$, as a function of decay time is given by

$$R(t) = \frac{N_{\Lambda^0_b}(0)}{N_{\bar{B}^0}(0)} e^{-t/\tau_{\Lambda^0_b}} = R(0)e^{-t\Delta_{\Lambda B}},$$

(1)

where $\Delta_{\Lambda B} = \left(1/\tau_{\Lambda^0_b} - 1/\tau_{\bar{B}^0}\right)$. Effects of the different decay time resolutions in the two modes are negligible above 0.5 ps. First order corrections for a decay time dependent acceptance ratio can be taken into account by modifying Eq. (1) with a linear function

$$R(t) = R(0)[1 + a \cdot t]e^{-t\Delta_{\Lambda B}},$$

(2)

where a represents the slope of the acceptance ratio as a function of decay time.

The decay time acceptances for both modes are determined by simulations that are weighted to match either the pK^- or π^+K^- invariant mass distributions seen in data, as well as to match the measured p and p_T distributions of the b hadrons. In addition, we further weight the samples so that the simulation matches the hadron identification efficiencies obtained from $D^{*+} \rightarrow \pi^+(D^0 \rightarrow \pi^+K^-)$ events for pions and kaons, and $\Lambda^0 \rightarrow p\pi^-$ for protons.

The ratio of the decay time acceptances is shown in Fig. 4. Here we have removed the minimum requirement on decay time so we can view the distributions in the region close to zero time. The individual acceptances in both cases can be described with a linear function above 0.5 ps. In order to minimize possible systematic effects we use candidates with decay times larger than 0.6 ps. We also choose an upper time cut of 7.0 ps, because the acceptance is poorly determined beyond this value. The acceptance ratio is fitted with
a linear function between 0.6 and 7.0 ps. The slope is $a = 0.0033 \pm 0.0024$ ps$^{-1}$, and the χ^2/number of degrees of freedom (ndf) of the fit is 81/62.

We determine the event yields in both decay modes by fitting the invariant mass distributions in 16 bins of decay time, each bin 0.4 ps wide, using the same signal and background shapes obtained in the aforementioned mass fits. Since the bin size is approximately ten times the resolution, there is no effect due to the small difference of time resolution ($<7\%$) between the two modes. The resulting distributions are shown in Fig. 5(a). Here the fitted signal yields in both modes are placed at the average of the decay time within a bin determined by the B^0 data in order to correct for the exponential decrease of the decay time distributions across the bin. The decay time ratio distribution fitted with the function given in Eq. (2) is shown in Fig. 5(b). The χ^2/ndf of the fit is

![Graph](image-url)

Figure 5: (a) Decay time distributions for $\Lambda_b^0 \rightarrow J/\psi pK^-$ shown as (blue) circles, and $B^0 \rightarrow J/\psi K^{*0}(892)$ decays shown as (green) squares. For most entries the error bars are smaller than the points. (b) Yield ratio of $\Lambda_b^0 \rightarrow J/\psi pK^-$ to $B^0 \rightarrow J/\psi K^{*0}(892)$ events fitted as a function of decay time.
18/14, with a p-value of 21%. The fitted value of the reciprocal lifetime difference is

$$\Delta_{AB} = 16.4 \pm 8.2 \pm 4.4 \text{ ns}^{-1}.$$

Whenever two uncertainties are quoted, the first is the statistical and the second systematic; the latter will be discussed below. Numerically, the ratio of lifetimes is

$$\frac{\tau_{A^0_b}}{\tau_{B^0}} = \frac{1}{1 + \tau_{B^0} \Delta_{AB}} = 0.976 \pm 0.012 \pm 0.006,$$

where we use the world average value $\tau_{B^0} = 1.519 \pm 0.007 \text{ ps}$ \cite{23}. Multiplying the lifetime ratio by this value we determine

$$\tau_{A^0_b} = 1.482 \pm 0.018 \pm 0.012 \text{ ps}.$$

Our result is consistent with, but higher and more accurate, than the current world average of 1.429±0.024 ps \cite{23}.

The absolute systematic uncertainties are listed in Table 1. There is an uncertainty due to the decay time range used because of the possible change of the acceptance ratio at short decay times. This uncertainty is ascertained by changing the fit range to be 1–7 ps and using the difference with the baseline fit. To determine the acceptance slope uncertainty we vary the value of a by its error determined from the fit to the simulation samples and propagate this change to the results. For the signal shape uncertainty, we repeat the measurement of Δ_{AB} using a double-Gaussian signal shape in the mass fits. The uncertainty in the background parameterization is assigned by letting the background parameters vary in the fits to the time dependent yields and comparing the difference in final results. Effects of changes in the acceptance for the A^0_b mode due to the angular decay distributions are evaluated by weighting the simulation by the observed pK^- helicity angle in addition to the pK^- invariant mass, and redoing the analysis. The acceptance function uncertainty is evaluated by using a parabola instead of a linear function. The total systematic uncertainty is obtained by adding all of the elements in quadrature.

Table 1: Absolute systematic uncertainties on Δ_{AB}, the lifetime ratio, and the A^0_b lifetime.

Source	Δ_{AB} (ns$^{-1}$)	$\tau_{A^0_b}/\tau_{B^0}$	$\tau_{A^0_b}$ (fs)
Decay time fit range	3.2	0.0045	6.9
Acceptance slope	2.3	0.0033	5.0
Signal shape	1.4	0.0021	3.2
Background model	1.2	0.0017	2.6
pK^- helicity	0.1	0.0002	0.2
Acceptance function	0.1	0.0001	0.2
B^0 lifetime	-	0.0001	6.8
Total	4.4	0.0062	11.7
In conclusion, our value for $\tau_{\Lambda^0_b}/\tau_{B^0} = 0.976 \pm 0.012 \pm 0.006$ shows that the Λ^0_b and B^0 lifetimes are indeed equal to within a few percent, as the original advocates of the HQE claimed [3,4,9], without any need to find additional corrections. Adding both uncertainties in quadrature, the lifetimes are consistent with being equal at the level of 1.9 standard deviations; thus we do not exclude that the Λ^0_b baryon has a longer lifetime than the B^0 meson. Using the world average measured value for the B^0 lifetime we determine $\tau_{\Lambda^0_b} = 1.482 \pm 0.018 \pm 0.012$ ps.

We are thankful for many useful and interesting conversations with Prof. Nikolai Uraltsev who unfortunately passed away in Feb. 2013, and contributed greatly to theories describing heavy hadron lifetimes. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania); MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.

References

[1] R. Kowalewski and T. Mannel, Determination of $|V_{ub}|$ and $|V_{cb}|$ in Review of particle physics, Phys. Rev. D86 (2012) 010001
F. U. Bernlochner et al., Towards a global fit to extract the $B \rightarrow X_s \gamma$ decay rate and $|V_{ub}|$, PoS ICHEP2010 (2010) 229,
[arXiv:1011.5838]

[2] J. Laiho, E. Lunghi, and R. Van de Water, Flavor physics in the LHC era: the role of the lattice, PoS LATTICE2011 (2011) 018,
[arXiv:1204.0791]
S. Stone, New physics from flavour, [arXiv:1212.6374]

[3] I. I. Bigi, The QCD perspective on lifetimes of heavy flavor hadrons, [arXiv:hep-ph/9508408]
I. I. Bigi et al., Nonleptonic decays of beauty hadrons: from phenomenology to theory, [arXiv:hep-ph/9401298] in “B Decays,” edited by S. Stone (World Scientific, Singapore, 1994).

[4] N. Uraltsev, Heavy quark expansion in beauty and its decays, [arXiv:hep-ph/9804275]

[5] M. Neubert, B decays and the heavy quark expansion, Adv. Ser. Direct. High Energy Phys. 15 (1998) 239, [arXiv:hep-ph/9702375]
[6] K. Wilson and W. Zimmermann, *Operator product expansions and composite field operators in the general framework of quantum field theory*, Commun. Math. Phys. 24 (1972) 87; G. Buchalla, A. J. Buras, and M. E. Lautenbacher, *Weak decays beyond leading logarithms*, Rev. Mod. Phys. 68 (1996) 1125, arXiv:hep-ph/9512380.

[7] A. F. Falk, *The CKM matrix and the heavy quark expansion*, arXiv:hep-ph/0007339; A. J. Buras, *Climbing NLO and NNLO summits of weak decays*, arXiv:1102.5650.

[8] H.-Y. Cheng, *Phenomenological analysis of heavy hadron lifetimes*, Phys. Rev. D56 (1997) 2783, arXiv:hep-ph/9704260.

[9] M. Neubert and C. T. Sachrajda, *Spectator effects in inclusive decays of beauty hadrons*, Nucl. Phys. B483 (1997) 339, arXiv:hep-ph/9603202.

[10] N. Uraltsev, *On the problem of boosting nonleptonic b baryon decays*, Phys. Lett. B376 (1996) 303, arXiv:hep-ph/9602234; UKQCD collaboration, M. Di Pierro, C. T. Sachrajda, and C. Michael, *An Exploratory lattice study of spectator effects in inclusive decays of the Lambda(b) baryon*, Phys. Lett. B468 (1999) 143, arXiv:hep-lat/9906031.

[11] J. L. Rosner, *Enhancement of the Λ^0_b decay rate*, Phys. Lett. B379 (1996) 267, arXiv:hep-ph/9602265.

[12] M. Battaglia et al., *The CKM matrix and the unitarity triangle*, arXiv:hep-ph/0304132.

[13] C. Tarantino, *Beauty hadron lifetimes and B meson CP violation parameters from lattice QCD*, Eur. Phys. J. C33 (2004) S895, arXiv:hep-ph/0310241; E. Franco, V. Lubicz, F. Mescia, and C. Tarantino, *Lifetime ratios of beauty hadrons at the next-to-leading order in QCD*, Nucl. Phys. B633 (2002) 212, arXiv:hep-ph/0203089.

[14] T. Ito, M. Matsuda, and Y. Matsui, *New possibility of solving the problem of the lifetime ratio τ(Λ^0_b)/τ(B_d)*, Prog. Theor. Phys. 99 (1998) 271, arXiv:hep-ph/9705402; F. Gabbiani, A. I. Onishchenko, and A. A. Petrov, *Λ^0_b lifetime puzzle in heavy quark expansion*, Phys. Rev. D68 (2003) 114006, arXiv:hep-ph/0303235; F. Gabbiani, A. I. Onishchenko, and A. A. Petrov, *Spectator effects and lifetimes of heavy hadrons*, Phys. Rev. D70 (2004) 094031, arXiv:hep-ph/0407004.

[15] N. Uraltsev, *Topics in the heavy quark expansion*, arXiv:hep-ph/0010328.

[16] ATLAS collaboration, G. Aad et al., *Measurement of the Λ^0_b lifetime and mass in the ATLAS experiment*, Phys. Rev. D87 (2013) 032002, arXiv:1207.2284; CMS collaboration, S. Chatrchyan et al., *Measurement of the Λ^0_b lifetime in pp collisions at √s = 7 TeV*, arXiv:1304.7495; CDF collaboration, T. Aaltonen et al., *Measurement of the Λ^0_b lifetime in Λ^0_b → Λ^+_c π^- decays in pp collisions at √s = 1.96 TeV*, Phys. Rev. Lett. 104 (2010) 102002, arXiv:0912.3566; CDF collaboration, T. Aaltonen
et al., Measurement of b hadron lifetimes in exclusive decays containing a J/ψ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 106 (2011) 121804, arXiv:1012.3138.

D0 collaboration, V. M. Abazov et al., Measurement of the Λ_b^0 lifetime in the exclusive decay $\Lambda_b^0 \rightarrow J/\psi \Lambda$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. D85 (2012) 112003, arXiv:1204.2340.

[17] LHCb collaboration, A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

[18] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.

[19] T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175. I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155. GEANT4 collaboration, S. Agostinelli et al., GEANT4 - a simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250. GEANT4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270. M. Clemencic et al., The LHCb simulation application, GAUSS: design, evolution and experience, J. Phys.: Conf. Ser. 331 (2011) 032023. D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.

[20] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, USA, 1984.

[21] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C73 (2013) 2431, arXiv:1211.6759.

[22] LHCb collaboration, R. Aaij et al., Amplitude analysis and branching fraction measurement of $B^0_s \rightarrow J/\psi K^+K^-$, Phys. Rev. D87 (2013) 072004, arXiv:1302.1213.

[23] Particle Data Group, J. Beringer et al., Review of particle physics and 2013 partial update for the 2014 edition, Phys. Rev. D86 (2012) 010001.