UNIFIED QUANTUM INVARIANTS FOR INTEGRAL HOMOLOGY SPHERES
ASSOCIATED WITH SIMPLE LIE ALGEBRAS

KAZUO HABIRO AND THANG T. Q. LÊ

Abstract. For each finite dimensional, simple, complex Lie algebra \(g \) and each root of unity \(\xi \) (with some mild restriction on the order) one can define the Witten-Reshetikhin-Turaev (WRT) quantum invariant \(\tau^g_M(\xi) \in \mathbb{C} \) of oriented 3-manifolds \(M \). In the present paper we construct an invariant \(J_M \) of integral homology spheres \(M \) with values in the cyclotomic completion \(\mathbb{Z}[q] \) of the polynomial ring \(\mathbb{Z}[q] \), such that the evaluation of \(J_M \) at each root of unity gives the WRT quantum invariant of \(M \) at that root of unity. This result generalizes the case \(g = sl_2 \) proved by the first author. It follows that \(J_M \) unifies all the quantum invariants of \(M \) associated with \(g \), and represents the quantum invariants as a kind of “analytic function” defined on the set of roots of unity. For example, \(\tau^g_M(\xi) \) for all roots of unity are determined by a “Taylor expansion” at any root of unity, and also by the values at infinitely many roots of unity of prime power orders. It follows that WRT quantum invariants \(\tau^g_M(\xi) \) for all roots of unity are determined by the Ohtsuki series, which can be regarded as the Taylor expansion at \(q = 1 \), and hence by the Le-Murakami-Ohtsuki invariant. Another consequence is that the WRT quantum invariants \(\tau^g_M(\xi) \) are algebraic integers. The construction of the invariant \(J_M \) is done on the level of quantum group, and does not involve any finite dimensional representation, unlike the definition of the WRT quantum invariant. Thus, our construction gives a unified, “representation-free” definition of the quantum invariants of integral homology spheres.

CONTENTS

1. Introduction 5
 1.1. The WRT invariant 5
 1.2. The ring \(\mathbb{Z}[q] \) of analytic functions on roots of unity 5
 1.3. Main result and consequences 6
 1.4. Formal construction of the unified invariant 9
 1.5. Organization of the paper 11
 1.6. Acknowledgements 11
2. Invariants of integral homology 3-spheres derived from ribbon Hopf algebras 12
 2.1. Modules over \(\mathbb{C}[[h]] \) 12
 2.2. Topological ribbon Hopf algebra 14
 2.3. Topologically free \(\mathcal{H} \)-modules 15
 2.4. Left image of an element 17
 2.5. Adjoint action and ad-invariance 18
 2.6. Bottom tangles 18
 2.7. Universal invariant and quantum link invariants 19
 2.8. Mirror image of bottom tangles 20
 2.9. Braiding and transmutation 21

Date: March 11, 2015.

K.H. was partially supported by the Japan Society for the Promotion of Science, T. T. Q. L. was partially supported in part by National Science Foundation.

2010 Mathematics Classification: Primary 57M27. Secondary 57M25.

Key words and phrases: quantum invariants, integral homology spheres, quantized enveloping algebras, ring of analytic functions on roots of unity.
1. Introduction

The main goal of the paper is to construct an invariant $J^\mathfrak{g}_M$ of integral homology spheres M associated to each finite dimensional simple Lie algebra \mathfrak{g}, which unifies the Witten-Reshetikhin-Turaev quantum invariants at various roots of unity. The invariant $J^\mathfrak{g}_M$ takes values in the completion $\mathbb{D}\mathbb{Z}[q] = \lim_{\leftarrow n} \mathbb{Z}[q]/((1 - q)(1 - q^2) \cdots (1 - q^n))$ of the polynomial ring $\mathbb{Z}[q]$, which may be regarded as a ring of analytic functions on roots of unity. This invariant unifies the quantum invariants at various roots of unity in the sense that for each root of unity ξ, the evaluation $\text{ev}_\xi(J^\mathfrak{g}_M)$ at $q = \xi$ of $J^\mathfrak{g}_M$ is equal to the WRT quantum invariant $\tau^\mathfrak{g}_M(\xi)$ of M at ξ whenever $\tau^\mathfrak{g}_M(\xi)$ is defined. This invariant is a generalization of the sl_2 case constructed in [Ha7].

1.1. The WRT invariant. Witten [Wi], using non-mathematically rigorous path integrals in quantum field theory, gave a physics interpretation of the Jones polynomial [Jo] and predicted the existence of 3-manifold invariants associated to every simple Lie algebra and certain integer, called level. Using the quantum group $U_q(sl_2)$ at roots of unity, Reshetikhin and Turaev [RT2] gave a rigorous construction of 3-manifold invariants, which are believed to coincide with the Witten invariants. These invariants are called the Witten-Reshetikhin-Turaev (WRT) quantum invariants. Later the machinery of quantum groups helps to generalize the WRT invariant $\tau^\mathfrak{g}_M(\xi)$ to the case when \mathfrak{g} is an arbitrary simple Lie algebra, and ξ is a root of unity.

In this paper we will focus on the quantum invariants of an integral homology 3-sphere, i.e. a closed oriented 3-manifold M such that $H_*(M, \mathbb{Z}) = H_*(S^3, \mathbb{Z})$.

Let $\mathcal{Z} \subset \mathbb{C}$ denote the set of all roots of unity. For each simple Lie algebra \mathfrak{g}, there is a subset $\mathcal{Z}_\mathfrak{g} \subset \mathcal{Z}$ and the \mathfrak{g} WRT invariant of an integral homology sphere M gives a function

$$\tau^\mathfrak{g}_M : \mathcal{Z}_\mathfrak{g} \to \mathbb{C},$$

(1)

(We recall the definition of $\tau^\mathfrak{g}_M(\xi)$ in Section 8. The definition of $\tau^\mathfrak{g}_M(\xi)$ for closed 3-manifolds involves a choice of a certain root of ξ, but it turns out that for integral homology spheres this choice is irrelevant.)

We are interested in the behavior of the WRT function (1) associated to each Lie algebra \mathfrak{g}. It is natural to raise the following questions.

- Is it possible to extend the domain of the map $\tau^\mathfrak{g}_M$ to \mathcal{Z} in a natural way?
- How strongly are the values at different roots of unity $\xi, \xi' \in \mathcal{Z}_\mathfrak{g}$ related?
- Is there some restriction on the range of the function? In particular, is $\tau^\mathfrak{g}_M(\xi)$ an algebraic integer for all \mathfrak{g} and ξ?
- How are the quantum invariants related to finite type invariants of 3-manifolds [Oht4, Ha1, Gou]? In particular, is there any relation between the quantum invariants and the Le-Murakami-Ohtsuki invariant [LMO]?

1.2. The ring $\overline{\mathbb{Z}}[q]$ of analytic functions on roots of unity. Define a completion $\overline{\mathbb{Z}}[q]$ of the polynomial ring $\mathbb{Z}[q]$ by

$$\overline{\mathbb{Z}}[q] = \lim_{\leftarrow n} \mathbb{Z}[q]/((q; q)_n),$$

where as usual

$$(x; q)_n := \prod_{j=1}^n (1 - xq^{j-1}).$$
The ring \(\widehat{\mathbb{Z}[q]} \) may be regarded as the ring of “analytic functions defined on the set \(\mathbb{Z} \) of roots of unity” [Ha3, Ha7]. This statement is justified by the following facts. For more details, see Section 1.2 of [Ha7].

For a root of unity \(\xi \in \mathbb{Z} \) of order \(r \), we have \((\xi; \xi)_n = 0 \) for \(n \geq r \). Hence the evaluation map \[\text{ev}_\xi: \mathbb{Z}[q] \to \mathbb{Z}[\xi], \quad f(q) \mapsto f(\xi) \] induces a ring homomorphism \[\text{ev}_\xi: \widehat{\mathbb{Z}[q]} \to \mathbb{Z}[\xi]. \]

We write \(f(\xi) = \text{ev}_\xi(f(q)) \).

Each element \(f(q) \in \widehat{\mathbb{Z}[q]} \) defines a function from \(\mathbb{Z} \) to \(\mathbb{C} \). Thus we have a ring homomorphism
\[
(2) \quad \text{ev}: \widehat{\mathbb{Z}[q]} \to \mathbb{C}^\mathbb{Z}
\]
defined by \(\text{ev}(f(q))(\xi) = \text{ev}_\xi(f(q)) \). This homomorphism is injective [Ha3], i.e., \(f(q) \) is determined by the values \(f(\xi) \) for \(\xi \in \mathbb{Z} \). Therefore, we may regard \(f(q) \) as a function on the set \(\mathbb{Z} \).

In fact, a function \(f(q) \in \widehat{\mathbb{Z}[q]} \) can be determined by values on a subset \(\mathbb{Z}' \) of \(\mathbb{Z} \) if \(\mathbb{Z}' \) has a limit point \(\xi_0 \in \mathbb{Z} \) with respect to a certain topology of \(\mathbb{Z} \), see [Ha3, Theorem 6.3]. In this topology, an element \(\xi \in \mathbb{Z} \) is a limit point of a subset \(\mathbb{Z}' \subseteq \mathbb{Z} \) if and only if there are infinitely many \(\xi' \in \mathbb{Z}' \) such that the orders (as roots of unity) of \(\xi' \xi^{-1} \) are prime powers. For example, each \(f(q) \in \widehat{\mathbb{Z}[q]} \) is determined by the values at infinitely many roots of unity of prime orders.

For \(\xi \in \mathbb{Z} \), there is a ring homomorphism
\[T_\xi: \widehat{\mathbb{Z}[q]} \to \mathbb{Z}[\xi][[q - \xi]] \]
induced by the inclusion \(\mathbb{Z}[q] \subseteq \mathbb{Z}[\xi][[q]] \), since, for \(n \geq 0 \), the element \((q; q)_n^{\text{ord}(\xi)} \) is divisible by \((q - \xi)^n \) in \(\mathbb{Z}[\xi][[q]] \). The image \(T_\xi(f(q)) \) of \(f(q) \in \widehat{\mathbb{Z}[q]} \) may be regarded as the “Taylor expansion” of \(f(q) \) at \(\xi \). The homomorphism \(T_\xi \) is injective [Ha3, Theorem 5.2]. Hence a function \(f(q) \in \widehat{\mathbb{Z}[q]} \) is determined by its Taylor expansion at a point \(\xi \in \mathbb{Z} \). Injectivity of \(T_\xi \) implies that \(\mathbb{Z}[q] \) is an integral domain.

The above-explained properties of \(\widehat{\mathbb{Z}[q]} \) depend on the ground ring \(\mathbb{Z} \) of integers in an essential way. In fact, the similar completion \(\mathbb{Q}[q] = \lim_{\text{lim}} \mathbb{Q}(q)/((q; q)_n) \) is radically different. For example, \(\mathbb{Q}[q] \) is not an integral domain, and quite opposite to the case over \(\mathbb{Z} \), the Taylor expansion map \(T_\xi: \mathbb{Q}[q] \to \mathbb{Q}(\xi)[[[q - \xi]]] \) is surjective but not injective, see [Ha3, Section 7.5].

Recently, Manin [Man] and Marcolli [Mar] have promoted the ring \(\widehat{\mathbb{Z}[q]} \) as a candidate for the ring of analytic functions on the non-existing “field of one element”.

1.3. Main result and consequences. The following is the main result of the present paper.

Theorem 1.1. For each simple Lie algebra \(\mathfrak{g} \), there is a unique invariant \(J_M = J_M^\mathfrak{g} \in \widehat{\mathbb{Z}[q]} \) of an integral homology sphere \(M \) such that for all \(\xi \in \mathbb{Z}[q] \) we have
\[\text{ev}_\xi(J_M) = \tau^\mathfrak{g}_M(\xi). \]
Theorem 1.1 is proved in Section 8.20. It follows from Theorems 2.22, 4.9, 7.3, and 8.1.

The case $g = sl_2$ of Theorem 1.1 is announced in [Ha2] and proved in [Ha7]. For $g = sl_2$, the invariant J_M has been generalized to invariants of rational homology spheres with values in modifications of $\mathbb{Z}[q]$ in [BBIL, Le5, BL, BBuL].

The theorem implies that for integral homology 3-spheres, $\tau^g_M(\xi)$ does not depend on the choice of a root of ξ which is used in the definition of $\tau^g_M(\xi)$.

We list here a few consequences of Theorem 1.1. For the results stated without proof and with the sl_2 case proved in [Ha7], the proof is the same as the proof of the corresponding result in [Ha7].

1.3.1. Analytic continuation of τ^g_M to all roots of unity. Even if a root of unity $\xi \in \mathbb{Z}$ is not contained in \mathbb{Z}_g, the domain of definition of the WRT function τ^g_M, we have a well-defined value $ev_\xi(J_M) \in \mathbb{Z}[\xi]$. By the uniqueness of J_M, it would be natural to define the WRT invariant $\tau^g_M(\xi)$ at $\xi \in \mathbb{Z} \setminus \mathbb{Z}_g$ as $ev_\xi(J_M)$. We may regard it as an analytic continuation of $\tau^g_M : \mathbb{Z}_g \to \mathbb{C}$.

The specializations $ev_\xi(J_M)$ are compatible also with the projective version of the WRT invariant $\tau^g_P(M, \xi) : \mathbb{Z}_P \to \mathbb{C}$, where \mathbb{Z}_P is another subset of \mathbb{Z}. See Section 8.

Proposition 1.2. For an integral homology sphere M and for $\xi \in \mathbb{Z}_P$, we have

$$ev_\xi(J_M) = \tau^g_M(\xi).$$

As a consequence, for $\xi \in \mathbb{Z}_g \cap \mathbb{Z}_P$, we have

$$\tau^g_M(\xi) = \tau^g_P(M, \xi) \tau^g_M(\xi).$$

Remark 1.3. For a closed 3-manifold M which is not necessarily an integral homology sphere we do not have (4) but for some values of ξ we have identities of the form

$$\tau^g_M(\xi) = \tau^g_P(M, \xi) \tau^g_M(\xi)$$

where $\tau^g_M(\xi)$ is an invariant of M satisfying $\tau^g_M(\xi) = 1$ for M an integral homology sphere. For details, see e.g. [Bl, KM, KT, Le4].

1.3.2. Integrality of quantum invariants. An immediate consequence of Theorem 1.1 is the following integrality result.

Corollary 1.4. For any integral homology sphere M and for $\xi \in \mathbb{Z}_g$, we have $\tau^g_M(\xi) \in \mathbb{Z}[\xi]$. In particular, $\tau^g_M(\xi)$ is an algebraic integer.

Here we list related integrality results for quantum invariants for closed 3-manifolds, which are not necessarily integral homology spheres.

H. Murakami [Mu] (see also [MR]) proved that the Psl_2 WRT invariant, also known as the quantum $SO(3)$ invariant [KM], of a closed 3-manifold at $\xi \in \mathbb{Z}$ of prime order is contained in $\mathbb{Z}[\xi]$. This result, for roots of unity of prime orders, has been generalized to sl_n by Masbaum and Wenzl [MW] and independently by Takata and Yokota [TY], and to all simple Lie algebras by the second author [Le4].

The case of roots of non-prime orders, conjectured by Lawrence [La2] in the sl_2 case, has been developed later. The case $g = sl_2$ of Corollary 1.4 is obtained by the first author in [Ha7]. Beliakova,
Chen and the second author [BCL] proved that for any root of unity ξ, $\tau^{sl_2}_M(\xi)$ (which depends on a fourth root of ξ) is an algebraic integer. For general Lie algebras, however, the proof in [BCL] does not work. Corollary 1.4 is the first integrality result, for general Lie algebras, in the case of non-prime orders.

1.3.3. Relationships between quantum invariants at different roots of unity. One can obtain from Theorem 1.1 results about the values of the WRT invariants, more refined than integrality.

Let $Q_{ab} \subset \mathbb{C}$ denote the maximal abelian extension of \mathbb{Q}, which is the smallest extension of \mathbb{Q} containing \mathbb{Z}. The image of the WRT function τ^g_M is contained in the integer ring $O(Q_{ab})$ of Q_{ab}, which is the subring of Q_{ab} generated by \mathbb{Z}. Note that an automorphism $\alpha \in \text{Gal}(Q_{ab}/\mathbb{Q})$ maps each root of unity ξ to a root of unity $\alpha(\xi)$ of the same order as ξ. There is a canonical isomorphism $\text{Gal}(Q_{ab}/\mathbb{Q}) \cong \text{Aut}_\text{Grp}(\mathbb{Z})$, which maps $\alpha \in \text{Gal}(Q_{ab}/\mathbb{Q})$ to its restriction to \mathbb{Z}.

Proposition 1.5. For every integral homology sphere M, the g WRT function $\tau^g_M: \mathbb{Z} \to Q_{ab}$ is Galois-equivariant in the sense that for each automorphism $\alpha \in \text{Gal}(Q_{ab}/\mathbb{Q})$ we have

$$\tau^g_M(\alpha(\xi)) = \alpha(\tau^g_M(\xi))$$

The sl_2 case of Proposition 1.5 is mentioned in [Ha7].

Proposition 1.6 below is proved in Section 8.21.

Proposition 1.6 ([Ha7] for $g = sl_2$). We have $ev_1(J_M) = 1$ for every integral homology sphere M.

Proposition 1.7 ([Ha7] for $g = sl_2$). For $\xi, \xi' \in \mathbb{Z}$ with $\text{ord}(\xi' - 1)$ a prime power, we have

$$\tau^g_M(\xi) \equiv \tau^g_M(\xi') \pmod{\xi' - \xi}$$

in $\mathbb{Z}[\xi, \xi']$.

Proposition 1.7 holds also when $\text{ord}(\xi' - 1)$ is not a prime power, but in this case the statement is trivial since $\xi' - \xi$ is a unit in $\mathbb{Z}[\xi, \xi']$.

Corollary 1.8. For every integral homology sphere M and for every root of unity $\xi \in \mathbb{Z}$ of prime power order, we have

$$\tau^g_M(\xi) - 1 \in (1 - \xi)\mathbb{Z}[\xi].$$

Consequently, we have $\tau^g_M(\xi) \neq 0$.

For $g = sl_2$, a refined version of Corollary 1.8 is given in [Ha7, Corollary 12.10].

1.3.4. Integrality of the Ohtsuki series. When M is a rational homology sphere, Ohtsuki [Oht2] extracted a power series invariant, $\tau^{sl_2}_\infty(M) \in \mathbb{Q}[[q - 1]]$, from the values of $\tau^{sl_2}_M(\xi)$ at roots of unity of prime orders. The Ohtsuki series is characterized by certain congruence relations modulo odd primes. The existence of the Ohtsuki series invariant for other Lie algebras was proved in [Le3, Le4], see also [Roz1].

The Ohtsuki series $\tau^g_\infty(M) \in \mathbb{Q}[[q - 1]]$ and the unified WRT invariant J_M are related as follows.
Proposition 1.9 ([Ha7] for sl_2). For every integral homology sphere M, we have
\[\tau_g^\infty(M) = T_1(J_M) \in \mathbb{Z}[[q - 1]]. \]
In other words, the Ohtsuki series is equal to the Taylor expansion of the unified WRT invariant at $q = 1$. Moreover, all the coefficients in the Ohtsuki series are integers.

The fact $\tau_g^\infty(M) \in \mathbb{Z}[[q - 1]]$, for $g = sl_2$, was conjectured by R. Lawrence [La2], and first proved by Rozansky [Roz2]. Here we have general results for all simple Lie algebras.

1.3.5. Relation to the Le-Murakami-Ohtsuki invariant. The Le-Murakami-Ohtsuki (LMO) invariant [LMO] is a counterpart of the Kontsevich integral for homology 3-spheres; it is a universal invariant for finite type invariants of integral homology 3-spheres [Le1]. The LMO invariant $\tau_{LMO}(M)$ of a closed 3-manifold takes values in an algebra $\mathcal{A}(\emptyset)$ of the so-called Jacobi diagrams, which are certain types of trivalent graphs. For each simple Lie algebra g, there is a ring homomorphism (the weight map)
\[W_g : \mathcal{A}(\emptyset) \to \mathbb{Q}[[h]]. \]
It was proved in [KLO] that
\[W_g(\tau_{LMO}(M)) = \tau_g^\infty(M)|_{q = e^h}. \]
Hence, we have the following.

Corollary 1.10 ([Ha7] for sl_2). For an integral homology 3-sphere M, the LMO invariant totally determines the WRT invariant $\tau_g^\infty(\xi)$ for every simple Lie algebra and every root of unity $\xi \in \mathbb{Z}_g$.

It is still an open question whether the LMO invariant determines the WRT invariant for rational homology 3-spheres.

1.3.6. Determination of the quantum invariants.

Corollary 1.11 ([Ha7] for sl_2). For an integral homology 3-sphere, J_M is determined by the WRT function τ_M^g. (Thus J_M and τ_M^g have the same strength in distinguishing two integral homology 3-spheres.) Moreover, both J_M and τ_M^g are determined by the values of $\tau_M^g(\xi)$ for $\xi \in \mathbb{Z}'$, where $\mathbb{Z}' \subset \mathbb{Z}$ is any infinite subset with at least one limit point in \mathbb{Z} in the sense explained in Section 1.2.

For example, the value of $\tau_M^g(\xi)$ at any root of unity ξ is determined by the values $\tau_M^g(\xi_k)$ at $\xi_k = \exp(2\pi i/2^k)$ for infinitely many integers $k \geq 0$.

1.4. Formal construction of the unified invariant. Here we outline the proof of Theorem 1.1. Since we are not able to directly generalize the proof of the case $g = sl_2$ in [Ha7], we use another approach which involves deep results in quantized enveloping algebras (quantum groups). The conceptual definition of the unified invariant presented here is also different.
1.4.1. First step: construction of J_M. The first step is to construct an invariant $J_M \in \mathbb{Z}[q]$ using the quantum group $U_h(\mathfrak{g})$ of \mathfrak{g}. Here we use neither the definition of $\tau^q_M(\xi)$ nor the quantum link invariants associated to finite-dimensional representations of $U_h(\mathfrak{g})$. Instead, we use the universal quantum invariant of bottom tangles and the full twist forms, which are partially defined functionals T_\pm on the quantum group $U_h(\mathfrak{g})$ and play a role of ± 1-framed surgery on link components.

Every integral homology 3-sphere M can be obtained as the result S^3_L of surgery on S^3 along an algebraically split link L with framing ± 1 on each component. Here a link is said to be algebraically split if the linking number between any two distinct components is 0. Surgery on two algebraically split, ± 1 framing links L and L' gives the orientation-preserving homeomorphic integral homology 3-spheres if and only if L and L' are related by a sequence of Hoste moves (see Figure 7) [Ha6]. Hence, in order to construct an invariant of integral homology 3-spheres, it suffices to construct an invariant of algebraically split, ± 1 framing links which is invariant under the Hoste moves.

To construct such a link invariant, we use the universal quantum invariant of bottom tangles associated to the quantum group $U_h(\mathfrak{g})$. Here a bottom tangle is a tangle in a cube consisting of arc components whose endpoints are on the bottom square in such a way that the two endpoints of each component is placed side by side (see Section 2.6). For an n-component bottom tangle T, the universal \mathfrak{g} quantum invariant $J_T = J_T^g$ of T is defined by using the universal R-matrix and the ribbon element for the ribbon Hopf algebra structure of $U_h(\mathfrak{g})$, and takes values in the n-fold completed tensor power $U_h(\mathfrak{g})^\otimes n$.

The invariant $J_M \in \mathbb{Z}[q]$ is defined as follows. As above, let L be an n-component algebraically split framed link with framings $\epsilon_1, \ldots, \epsilon_n \in \{\pm 1\}$, and assume that $S^3_L \cong M$. Let T be an n-component bottom tangle whose closure is isotopic to L, where the framings of T are switched to 0. Define

$$J_M := (T_{\epsilon_1} \otimes \cdots \otimes T_{\epsilon_n})(J_T).$$

(5)

Here $T_{\pm}: U_h(\mathfrak{g}) \to \mathbb{C}[h]$ are partial maps (i.e. maps defined on a submodule of U_h) defined formally by

$$T_{\pm}(x) = \langle x, r^{\epsilon} \rangle,$$

where $r \in U_h(\mathfrak{g})$ is the ribbon element, and

$$\langle \cdot, \cdot \rangle: U_h(\mathfrak{g}) \otimes U_h(\mathfrak{g}) \to \mathbb{C}[h]$$

is the quantum Killing form, which is a partial map. The tensor product $T_{\epsilon_1} \otimes \cdots \otimes T_{\epsilon_n}$ is not well defined on the whole $U_h(\mathfrak{g})^{\otimes n}$, but is well defined on a $\mathbb{Z}[q]$-submodule $\tilde{K}_n \subset U_h(\mathfrak{g})^{\otimes n}$ and we have a $\mathbb{Z}[q]$-module homomorphism

$$T_{\epsilon_1} \otimes \cdots \otimes T_{\epsilon_n}: \tilde{K}_n \to \mathbb{Z}[q].$$

Here we regard $\mathbb{Z}[q]$ as a subring of $\mathbb{C}[h]$ by setting $q = \exp h$. The module \tilde{K}_n contains J_T for all n-component, algebraically split 0-framed links T. We will prove that J_M as defined in (5) does not depend on the choice of T and is invariant under the Hoste moves. Hence $J_M \in \mathbb{Z}[q]$ is an invariant of an integral homology sphere.

One step in the construction of J_M is to construct a certain integral form of the quantum group $U_h(\mathfrak{g})$ which is sandwiched between the Lusztig integral form and the De Concini-Procesi integral form.
1.4.2. **Second step: specialization to the WRT invariant at roots of unity.** The next step is to prove the specialization property \(ev_\xi(J_M) = \tau_M(\xi) \) for each \(\xi \in \mathbb{Z}_g \). Once we have proved this identity, uniqueness of \(J_M \) follows since every element of \(\widehat{\mathbb{Z}}[g] \) is determined by the values at infinitely many \(\xi \in \mathbb{Z} \) of prime power order, see Section 1.2.

1.5. **Organization of the paper.** In Section 2 we give a general construction of an invariant of integral homology 3-spheres from what we call a **core subalgebra** of a ribbon Hopf algebra. Section 3 introduces the quantized enveloping algebra \(U_h(\mathfrak{g}) \) and its subalgebras. In Section 4 we construct a core subalgebra of the ribbon Hopf algebra \(U_{\sqrt{h}} \), which is \(U_h \) with a slightly bigger ground ring. From the core subalgebra we get invariant \(J_M \) of integral homology 3-spheres. In Section 5 we construct an integral version of the core algebra. Section 6 a (generically non-commutative) grading of the quantum group is introduced. In Section 7 we prove that \(J_M \in \mathbb{Z}[q] \). In Section 8 we show that the WRT invariant can be recovered from \(J_M \), proving the main results. In Appendices we give an independent proof of a duality result of Drinfel’d and Gavarini and provide proofs of a couple of technical results used in the main body of the paper.

1.6. **Acknowledgements.** The authors would like to thank H. Andersen, A. Beliakova, A. Bruguières, C. Kassel, G. Masbaum, Y. Soibelman, S. Suzuki, and N. Xi for helpful discussions. Part of this paper was written while the second author was visiting Aarhus University, University of Zurich, RIMS Kyoto University, ETH Zurich, University of Toulouse, and he would like to thank these institutions for the support.
In this section, we give the part of the proofs of our main results, which can be stated without giving the details of the structure of the quantized enveloping algebra $U_h = U_h(g)$. We introduce the notion of a core subalgebra of a ribbon Hopf algebra and show that every core subalgebra gives rise to an invariant of integral homology 3-spheres.

2.1. Modules over $\mathbb{C}[[h]]$. Let $\mathbb{C}[[h]]$ be the ring of formal power \mathbb{C}-series in the variable h.

Note that $\mathbb{C}[[h]]$ is a local ring, with maximal ideal $(h) = h\mathbb{C}[[h]]$. An element $x = \sum x_k h^k \in \mathbb{C}[[h]]$ is invertible if and only if the constant term x_0 is non-zero.

2.1.1. h-adic topology, separation and completeness. Let V be a $\mathbb{C}[[h]]$-module. Then V is equipped with the h-adic topology given by the filtration $h^k V$, $k \geq 0$. Any $\mathbb{C}[[h]]$-module homomorphism $f : V \to W$ is automatically continuous. In general, the h-adic topology of a $\mathbb{C}[[h]]$-submodule W of a $\mathbb{C}[[h]]$-module V is different from the topology of V induced by the h-adic topology of V.

Suppose I is an index set. Let V^I be the set of all collections $(x_i)_{i \in I}$, $x_i \in V$. We say that a collection $(x_i)_{i \in I} \in V^I$ is 0-convergent in V if for every positive integer k, $x_i \in h^k V$ except for a finite number of $i \in I$. In this case, the sum $\sum_{i \in I} x_i$ is convergent in the h-adic topology of V. If I is finite, then any collection $(x_i)_{i \in I}$ is 0-convergent.

The h-adic completion \hat{V} of V is defined by

$$\hat{V} = \varprojlim_k V/h^k V.$$

A $\mathbb{C}[[h]]$-module V is separated if the natural map $V \to \hat{V}$ is injective, which is equivalent to $\cap_k h^k V = \{0\}$. If V is separated, we identify V with the image of the embedding $V \hookrightarrow \hat{V}$.

A $\mathbb{C}[[h]]$-module V is complete if the natural map $V \to \hat{V}$ is surjective.

For a $\mathbb{C}[[h]]$-submodule W of a completed $\mathbb{C}[[h]]$-module V, the topological completion of W in V is the image of \hat{W} under the natural map $\hat{W} \to \hat{V} = V$. One should not confuse the topological completion of W and the topological closure of W, the latter being the smallest closed (in the h-adic topology) subset containing W. See Example 2.2 below.

2.1.2. Topologically free modules. For a vector space A over \mathbb{C}, let $A[[h]]$ denote the $\mathbb{C}[[h]]$-module of formal power series $\sum_{n \geq 0} a_n h^n$, $a_n \in A$. Then $A[[h]]$ is naturally isomorphic to the h-adic completion of $A \otimes_{\mathbb{C}} \mathbb{C}[[h]]$.

A $\mathbb{C}[[h]]$-module V is said to be topologically free if V is isomorphic to $A[[h]]$ for some vector space A. A topological basis of V is the image by an isomorphism $A[[h]] \cong V$ of a basis of $A \subset A[[h]]$. The cardinality of a topological basis of V is called the topological rank of V.

It is known that a $\mathbb{C}[[h]]$-module is topologically free if and only if it is separated, complete, and torsion-free, see e.g. [Kass, Proposition XVI.2.4].

Let I be a set. Let $\mathbb{C}[[h]]^I = \prod_{i \in I} \mathbb{C}[[h]]$ be the set of all collections $(x_i)_{i \in I}$, $x_i \in \mathbb{C}[[h]]$. Let $((\mathbb{C}[[h]])^I)_0 \subset \mathbb{C}[[h]]^I$ be the $\mathbb{C}[[h]]$-submodule consisting of the 0-convergent collections. Then $(\mathbb{C}[[h]])^I_0 \cong (CI)[[h]]$ is topologically free, where CI is the vector space generated by I.
Then V convergent. Let $a\in (\mathbb{C}[h])_0$ by

$$
(\delta_j)_i = \delta_{j,i} = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j.
\end{cases}
$$

Suppose V is a topologically free $\mathbb{C}[h]$-module with the isomorphism $f : (\mathbb{C}[h])_0 \to V$. Let $e(i) = f(\delta_i) \in V$. For $x \in V$, the collection $(x_i)_{i \in I} = f^{-1}(x)$ is called the coordinates of x in the topological basis $\{e(i)\}$. We have then

$$
x = \sum_{i \in I} x_i e(i),
$$

where the sum on the right hand side converges to x in the h-adic topology of V.

2.1.3. Formal series modules. A $\mathbb{C}[h]$-module V is a formal series $\mathbb{C}[h]$-module if there is a $\mathbb{C}[h]$-module isomorphism $f : \mathbb{C}[h] \to V$ for a countable set I.

Remark 2.1. Besides the h-adic topology, another natural topology on $\mathbb{C}[h] = \prod_{i \in I} \mathbb{C}[h]$ is the product topology. (Recall that the product topology of $\prod_{i \in I} \mathbb{C}[h]$ is the coarsest topology with all the projections $p_i : \prod_{i \in I} \mathbb{C}[h] \to \mathbb{C}[h]$ being continuous.)

Suppose V is a formal series module, with an isomorphism $f : \mathbb{C}[h] \to V$. Let $e(i) = f(\delta_i)$, where δ_i is defined as in (6). The set $\{e(i) \mid i \in I\}$ is called a formal basis of V.

For $x \in V$ the collection $f^{-1}(x) \in \mathbb{C}[h]$ is called the coordinates of x in the formal basis $\{e(i) \mid i \in I\}$. Unlike the case of topological bases, in general the sum $\sum_{i \in I} x_i e(i)$ does not converge in the h-adic topology of V (but does converge to x in the product topology). However, it is often the case that V is a $\mathbb{C}[h]$-submodule of a bigger $\mathbb{C}[h]$-module V' in which $\{e(i) \mid i \in I\}$ is 0-convergent. Then the sum $\sum_{i \in I} x_i e(i)$, though not convergent in the h-adic topology of V, does converge (to x) in the h-adic topology of V'.

Example 2.2. The following example is important for us.

Suppose V is a topologically free $\mathbb{C}[h]$-module with a countable topological basis $\{e(i) \mid i \in I\}$. Assume that $a : I \to \mathbb{C}[h]$ is a function such that $a(i) \neq 0$ for every $i \in I$ and $(a(i))_{i \in I} = 0$-convergent. Let $V(a)$ be the topological completion in V of the $\mathbb{C}[h]$-span of $\{a(i) e(i) \mid i \in I\}$. Then $V(a)$ is topologically free with $\{a(i) e(i) \mid i \in I\}$ as a topological basis.

The submodule $V(a)$ is not closed in the h-adic topology of V. The closure $\overline{V(a)}$ of $V(a)$ in the h-adic topology is a formal series $\mathbb{C}[h]$-module, with an isomorphism

$$
f : \mathbb{C}[h] \to V, \quad \delta_i \mapsto a(i) e(i).
$$

The topology of $\overline{V(a)}$ induced by the h-adic topology of V is the product topology.

If $x \in V(a)$, then we have a unique presentation

$$
x = \sum_{i \in I} x_i (a(i) e(i))
$$

where $(x_i)_{i \in I} \in (\mathbb{C}[h])_0$.

If $x \in V(a)$, then x also has a unique presentation (8), with $(x_i)_{i \in I} \in \mathbb{C}[[h]]^I$.

2.1.4. Completed tensor products. For two complete $\mathbb{C}[[h]]$-modules V and V', the completed tensor product $V \hat{\otimes} V'$ of V and V' is the h-adic completion of $V \otimes V'$, i.e.

$$V \hat{\otimes} V' = \lim_{n} (V \otimes V')/h^n(V \otimes V').$$

Suppose both V and V' are topologically free with topological bases $\{b(i) \mid i \in I\}$ and $\{b'(j) \mid j \in J\}$ respectively. Then $V \hat{\otimes} V'$ is topologically free with a topological basis naturally identified with $\{b(i) \otimes b'(j) \mid i \in I, j \in J\}$.

Proposition 2.3. Suppose W_1, V_1, W_2, V_2 are topologically free $\mathbb{C}[[h]]$-modules, where W_j is a submodule of V_j for $j = 1, 2$.

Then the natural maps $W_1 \otimes W_2 \to V_1 \otimes V_2$ and $W_1 \hat{\otimes} W_2 \to V_1 \hat{\otimes} V_2$ are injective.

Proof. The map $W_1 \otimes W_2 \to V_1 \otimes V_2$ is the composition of two maps $W_1 \otimes W_2 \to W_1 \otimes V_2$ and $W_1 \otimes V_2 \to V_1 \otimes V_2$. This reduces the proposition to the case $W_2 = V_2$, which we will assume.

Let $\iota : W_1 \to V_1$ be the inclusion map. We need to show that $\iota \otimes \text{id} : W_1 \otimes V_2 \to V_1 \otimes V_2$ and $\iota \hat{\otimes} \text{id} : W_1 \hat{\otimes} V_2 \to V_1 \hat{\otimes} V_2$ are injective.

Since $W_1 \otimes V_2$ is separated, we can consider $W_1 \otimes V_2$ as a submodule of $W_1 \hat{\otimes} V_2$. Then $\iota \otimes \text{id}$ is the restriction of $\iota \hat{\otimes} \text{id}$. Thus, it is enough to show that $\iota \hat{\otimes} \text{id}$ is injective.

Suppose $x \in W_1 \hat{\otimes} V_2$ such that $(\iota \hat{\otimes} \text{id})(x) = 0$. We have to show that $x = 0$.

Let $\{b(i), i \in I\}$ be a topological basis of V_2. Using a topological basis of W_1 one sees that x has a unique presentation

$$x = \sum_{i \in I} x_i \otimes b(i),$$

where $x_i \in W_1$, and the collection $(x_i)_{i \in I}$ is 0-convergent in V_1. Then we have

$$0 = (\iota \hat{\otimes} \text{id})(x) = \sum_{i \in I} \iota(x_i) \otimes b(i) \in V_1 \hat{\otimes} V_2.$$

The uniqueness of the presentation of the form (9) for elements in $V_1 \hat{\otimes} V_2$ implies that $\iota(x_i) = 0$ for every $i \in I$. Because ι is injective, we have $x_i = 0$ for every i. This means $x = 0$, and hence $\iota \hat{\otimes} \text{id}$ is injective. \qed

2.2. Topological ribbon Hopf algebra. In this paper, by a topological Hopf algebra $\mathcal{H} = (\mathcal{H}, \mu, \eta, \Delta, \epsilon, S)$ we mean a topologically free $\mathbb{C}[[h]]$-module \mathcal{H} of countable topological rank, together with $\mathbb{C}[[h]]$-module homomorphisms

$$\mu : \mathcal{H} \hat{\otimes} \mathcal{H} \to \mathcal{H}, \quad \eta : \mathbb{C}[[h]] \to \mathcal{H}, \quad \Delta : \mathcal{H} \to \mathcal{H} \hat{\otimes} \mathcal{H}, \quad \epsilon : \mathcal{H} \to \mathbb{C}[[h]], \quad S : \mathcal{H} \to \mathcal{H}$$

which are the multiplication, unit, comultiplication, counit and antipode of \mathcal{H}, respectively, satisfying the usual axioms of a Hopf algebra. For simplicity, we include invertibility of the antipode in the axioms of Hopf algebra.

Note that \mathcal{H} is a $\mathbb{C}[[h]]$-algebra in the usual (non-complete) sense, although \mathcal{H} is not a $\mathbb{C}[[h]]$-coalgebra in general. A (left) \mathcal{H}-module V (in the usual sense) is said to be topologically free if
V is topologically free as a $\mathbb{C}[[h]]$-module. In that case, by continuity the left action $\mathcal{H} \otimes V \rightarrow V$ induces a $\mathbb{C}[[h]]$-module homomorphism

$$\mathcal{H} \otimes V \rightarrow V.$$

For details on topological Hopf algebras and topologically free modules, see e.g. [Kass, Section XVI.4].

Let $\mu^{[n]} : \mathcal{H} \otimes^n \mathcal{H} \rightarrow \mathcal{H}$ and $\Delta^{[n]} : \mathcal{H} \rightarrow \mathcal{H} \otimes^n \mathcal{H}$ be respectively the multi-product and the multi-coproduct defined by

$$\mu^{[n]} = \mu(\text{id} \otimes \mu) \cdots (\text{id} \otimes (n-2) \otimes \mu)(\text{id} \otimes (n-1) \otimes \mu)$$

$$\Delta^{[n]} = (\text{id} \otimes (n-2) \otimes \Delta)(\text{id} \otimes (n-1) \otimes \Delta) \cdots (\text{id} \otimes \Delta) \Delta$$

with the convention that $\Delta^{[1]} = \mu^{[1]} = \text{id}$, $\Delta^{[0]} = \epsilon$, and $\mu^{[0]} = \eta$.

A universal R-matrix [Dr] for \mathcal{H} is an invertible element $R = \sum \alpha \otimes \beta \in \mathcal{H} \otimes \mathcal{H}$ satisfying

$$R \Delta(x) R^{-1} = \sum x_{(2)} \otimes x_{(1)} \quad \text{for } x \in \mathcal{H},$$

$$(\Delta \otimes \text{id})(R) = R_{13} R_{23}, \quad (\text{id} \otimes \Delta)(R) = R_{13} R_{12},$$

where $\Delta(x) = \sum x_{(1)} \otimes x_{(2)}$ (Sweedler’s notation), and $R_{12} = \sum \alpha \otimes \beta \otimes 1$, $R_{13} = \sum \alpha \otimes 1 \otimes \beta$, $R_{23} = \sum 1 \otimes \alpha \otimes \beta$. A Hopf algebra with a universal R-matrix is called a quasitriangular Hopf algebra. The universal R-matrix satisfies

$$R^{-1} = (S \otimes 1)(R) = (1 \otimes S^{-1})(R), \quad (\epsilon \otimes 1)(R) = (1 \otimes \epsilon)(R) = 1$$

$$(S \otimes S)(R) = R.$$

A quasitriangular Hopf algebra (\mathcal{H}, R) is called a ribbon Hopf algebra [RT1] if it is equipped with a ribbon element, which is defined to be an invertible, central element $r \in \mathcal{H}$ satisfying

$$r^2 = u S(u), \quad S(r) = r, \quad \epsilon(r) = 1, \quad \Delta(r) = (r \otimes r)(R_{21} R)^{-1},$$

where $u = \sum S(\beta) \alpha \in \mathcal{H}$ and $R_{21} = \sum \beta \otimes \alpha \in \mathcal{H} \otimes \mathcal{H}$.

The element $g := u r^{-1} \in \mathcal{H}$, called the balanced element, satisfies

$$\Delta(g) = g \otimes g, \quad S(g) = g^{-1}, \quad g r g^{-1} = S^2(x) \quad \text{for } x \in \mathcal{H}.$$

See [Kass, Oht4, Tur] for more details on quasitriangular and ribbon Hopf algebras.

2.3. **Topologically free \mathcal{H}-modules.** The ground ring $\mathbb{C}[[h]]$ is considered as a topologically free \mathcal{H}-module, called the trivial module, by the action of the co-unit:

$$a \cdot x = \epsilon(a) x.$$

Suppose V, W are topologically free \mathcal{H}-modules. Then $V \otimes W$ has the structure of $\mathcal{H} \otimes \mathcal{H}$-module, given by

$$(a \otimes b) \cdot (x \otimes y) = (a \cdot x) \otimes (b \cdot y).$$

Using the comultiplication, $V \otimes W$ has an \mathcal{H}-module structure given by

$$a \cdot (x \otimes y) := \Delta(a) \cdot (x \otimes y) = \sum a_{(1)} x \otimes a_{(2)} y.$$
An element $x \in V$ is called invariant (or \mathcal{H}-invariant) if for every $a \in \mathcal{H}$,
$$a \cdot x = \epsilon(a) x.$$

The set of invariant elements of V is denoted by V^{inv}. The following is standard and well-known.

Proposition 2.4. Suppose V and W are topologically free \mathcal{H}-modules, and $f : V \hat{\otimes} W \to \mathbb{C}[[h]]$ is a $\mathbb{C}[[h]]$-module homomorphism.

(a) An element $x \in V \hat{\otimes} W$ is invariant if and only if for every $a \in \mathcal{H}$,
$$ (S(a) \otimes 1) \cdot x = (1 \otimes a) \cdot x. $$

(b) Dually, f is an \mathcal{H}-module homomorphism if and only if for every $a \in \mathcal{H}$ and $x \in V \hat{\otimes} W$,
$$ f[(a \otimes 1) \cdot (x)] = f[(1 \otimes S(a)) \cdot (x)]. $$

(c) Suppose f is an \mathcal{H}-module homomorphism, and $x \in V$ is invariant. Then the $\mathbb{C}[[h]]$-module homomorphism
$$ f_x : W \to \mathbb{C}[[h]], \quad y \mapsto f(x \otimes y), $$
is an \mathcal{H}-module homomorphism.

(d) Suppose $g : V \to \mathbb{C}[[h]]$ is an \mathcal{H}-module homomorphism. Then for every i with $1 \leq i \leq n$,
$$ (\text{id} \hat{\otimes} (i-1) \otimes g \otimes \text{id} \hat{\otimes} (n-i)) \left((V \hat{\otimes}^n)^{\text{inv}} \right) \subset (V \hat{\otimes}^{n-1})^{\text{inv}}. $$

Proof. (a) Suppose one has (11). Let $a \in \mathcal{H}$ with $\Delta(a) = \sum a_{(1)} \otimes a_{(2)}$. Assume $x = \sum x' \otimes x''$. By definition,
$$ a \cdot x = \sum (a_{(1)} \otimes a_{(2)}) \cdot (x' \otimes x'') = \sum (a_{(1)} \otimes 1)(1 \otimes a_{(2)}) \cdot (x' \otimes x'') $$
$$ = \sum (a_{(1)} \otimes 1)(x' \otimes a_{(2)} \cdot x'') $$
$$ = \sum (a_{(1)} \otimes 1)(S(a_{(2)}) \cdot x' \otimes x'') $$
$$ = \sum (a_{(1)}S(a_{(2)}) \otimes 1)(x' \otimes x'') = \epsilon(a) x, $$
which show that x is invariant.

Conversely, suppose x is invariant. From axioms of a Hopf algebra,
$$ 1 \otimes a = \sum (S(a_{(1)}) \otimes 1) \Delta(a_{(2)}). $$

Applying both sides to x, we have
$$ (1 \otimes a) \cdot x = \sum (S(a_{(1)}) \otimes 1) \cdot (a_{(2)} \cdot x) $$
$$ = \sum (S(a_{(1)}) \otimes 1) \cdot (\epsilon(a_{(2)}) x) \quad \text{by invariance} $$
$$ = (S(a) \otimes 1) \cdot x, $$
which proves (11).

(b) The proof of (b) is similar and is left for the reader. Statement (b) is mentioned in textbooks [Ja, Section 6.20] and [KlS, Section 6.3.2].
presented as an h-

The uniqueness of expression of the form (12) shows that

where a using the topological basis

This proves f_x is an \mathcal{H}-module homomorphism.

(d) The map $\tilde{g} := \text{id}^\otimes (i-1) \otimes g \otimes \text{id}^\otimes (n-i)$ is also an \mathcal{H}-module homomorphism. Hence for every $a \in \mathcal{H}$ and $x \in (V^\otimes n)^\text{inv}$,

This shows $\tilde{g}(x)$ is invariant.

\hfill \square

2.4. Left image of an element. Let V and W be topologically free $\mathbb{C}[[h]]$-modules.

Suppose $x \in V \otimes W$. Choose a topological basis $\{e(i) \mid i \in I\}$ of W. Then x can be uniquely presented as an h-adically convergent sum

$$x = \sum_{i \in I} x_i \otimes e(i),$$

where $\{x_i \in V \mid i \in I\}$ is 0-convergent. The left image V_x of $x \in V \otimes W$ is the topological closure (in the h-adic topology of V) of the $\mathbb{C}[[h]]$-span of $\{x_i \mid i \in I\}$. It is easy to show that V_x does not depend on the choice of the topological basis $\{e(i) \mid i \in I\}$ of W.

Proposition 2.5. Suppose V, W are topologically free \mathcal{H}-modules. Let $x \in V \otimes W$ and let $V_x \subset V$ be the left image of x.

(a) If x is \mathcal{H}-invariant, then V_x is \mathcal{H}-stable, i.e. $\mathcal{H} \cdot V_x \subset V_x$.

(b) If $(f \otimes g)(x) = x$, where $f : V \rightarrow V$ and $g : W \rightarrow W$ are $\mathbb{C}[[h]]$-module isomorphisms, then $f(V_x) = V_x$.

\textbf{Proof.} Let $\{e(i) \mid i \in I\}$ be a topological basis of W, and x_i be as in (12).

(a) By Proposition 2.4(a), the \mathcal{H}-invariance of x implies that for every $a \in \mathcal{H}$,

$$\sum_{i \in I} a \cdot x_i \otimes e(i) = \sum_{j \in I} x_j \otimes S^{-1}(a) \cdot e(j).$$

Using the topological basis $\{e(i)\}$, we have the structure constants

$$S^{-1}(a) \cdot e(j) = \sum_{i \in I} a^i_j \cdot e(j),$$

where $a^i_j \in \mathbb{C}[[h]]$. Using this expression in (13),

$$\sum_{i \in I} a \cdot x_i \otimes e(i) = \sum_{i \in I} \sum_{j \in I} a^i_j x_j \otimes e(i).$$

The uniqueness of expression of the form (12) shows that

$$a \cdot x_i = \sum_{j \in I} a^i_j x_j \in V_x.$$
Since the $\mathbb{C}[[h]]$-span of x_i is dense in V_x and the action of a is continuous in the h-adic topology of V, we have $a \cdot V_x \subset V_x$.

(b) Using $x = (f \otimes g)(x)$, we have

$$x = \sum_i f(x_i) \otimes g(e_i).$$

Since g is a $\mathbb{C}[[h]]$-module isomorphism, $\{g(e_i)\}$ is a topological basis of W. It follows that V_x is the closure of the $\mathbb{C}[[h]]$-span of $\{f(x_i) \mid i \in I\}$. At the same time V_x is the closure of the $\mathbb{C}[[h]]$-span of $\{x_i \mid i \in I\}$. Hence, we have $f(V_x) = V_x$. \hfill \square

2.5. **Adjoint action and ad-invariance.** Suppose \mathcal{H} is a topological ribbon Hopf algebra.

The (left) adjoint action

$$\text{ad}: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$$

of \mathcal{H} on itself is defined by

$$\text{ad}(x \otimes y) = \sum x(1) yS(x(2)).$$

It is convenient to use an infix notation for ad:

$$x \triangledown y = \text{ad}(x \otimes y).$$

We regard \mathcal{H} as a (topologically free) \mathcal{H}-module via the adjoint action, unless otherwise stated. Then $\mathcal{H} \otimes^n$ becomes a topologically free \mathcal{H}-module, for every $n \geq 0$.

To emphasize the adjoint action, we say that a $\mathbb{C}[[h]]$-submodule $V \subset \mathcal{H} \otimes^n$ is ad-stable if V is an \mathcal{H}-submodule of $\mathcal{H} \otimes^n$. An element $x \in \mathcal{H} \otimes^n$ is ad-invariant if it is an invariant element of $\mathcal{H} \otimes^n$ under the adjoint actions. For example, an element of \mathcal{H} is ad-invariant if and only if it is central.

For ad-stable submodules $V \subset \mathcal{H} \otimes^n$ and $W \subset \mathcal{H} \otimes^m$, a $\mathbb{C}[[h]]$-module homomorphism $f : V \to W$ is ad-invariant if f is an \mathcal{H}-module homomorphism.

In particular, a linear functional $f : V \to \mathbb{C}[[h]]$, where $V \subset \mathcal{H} \otimes^n$, is ad-invariant if V is ad-stable and for $x \in \mathcal{H}$, $y \in \mathcal{H}$,

$$f(x \triangledown y) = \epsilon(x)f(y).$$

The main source of ad-invariant linear functionals comes from quantum traces. Here the quantum trace $\text{tr}^V_q : \mathcal{H} \to \mathbb{C}[[h]]$ for a finite-dimensional representation V (i.e. a topologically free \mathcal{H}-module of finite topological rank) is defined by

$$\text{tr}^V_q(x) = \text{tr}^V(gx) \quad \text{for} \quad x \in \mathcal{H},$$

where tr^V denotes the trace in V. It is known that $\text{tr}^V_q : \mathcal{H} \to \mathbb{C}[[h]]$ is ad-invariant.

2.6. **Bottom tangles.** Here we recall the definition of bottom tangles from [Ha4, Section 7.3].

An n-component bottom tangle $T = T_1 \cup \cdots \cup T_n$ is a framed tangle in a cube consisting of n arc components T_1, \ldots, T_n such that all the endpoints of the T_i are in a bottom line and that for each i, the component T_i runs from the 2th endpoint to the $(2i - 1)$th endpoint, where the endpoints are counted from the left. See Figure 1 (a) for an example. In figures, framings are specified by the blackboard framing convention.
Figure 1. (a) A 3-component bottom tangle \(T = T_1 \cup T_2 \cup T_3 \). (b) Its closure \(\text{cl}(L) = L_1 \cup L_2 \cup L_3 \).

Figure 2. Fundamental tangles: vertical line, positive and negative crossings, local minimum and local maximum. Here the orientations are arbitrary.

Figure 3. How to put elements of \(\mathcal{H} \) on the strings. For each string in the positive and the negative crossings, \(\mathcal{S}^{\prime} \) should be replaced by \(\text{id} \) if the string is oriented downward, and by \(\mathcal{S} \) otherwise.

2.7. Universal invariant and quantum link invariants. Reshetikhin and Turaev [RT1] constructed a quantum invariants of framed links colored by finite dimensional representations of a ribbon Hopf algebra, e.g. the quantum group \(\mathbf{U}_h(g) \). Lawrence, Reshetikhin, Ohtsuki and Kauffman [La1, Res, Oht4, Kau] constructed “universal quantum link invariants” of links and tangles with values in (quotients of) tensor powers of the ribbon Hopf algebra, where the links and tangles are not colored by representations. We recall here construction of link invariants via the universal invariant of bottom tangles. We refer the readers to [Ha4] for details.

Fix a ribbon Hopf algebra \(\mathcal{H} \). Let \(T \) be a bottom tangle with \(n \) components. We choose a diagram for \(T \), which is obtained from copies of fundamental tangles, see Figure 2, by pasting horizontally and vertically. For each copy of fundamental tangle in the diagram of \(T \), we put elements of \(\mathcal{H} \) with the rule described in Figure 3.

We set

\[
J_T := \sum x_1 \otimes \cdots \otimes x_n \in \mathcal{H}^{\otimes n},
\]
Figure 4. Assignments on positive and negative crossings.

where each x_i is the product of the elements put on the i-th component T_i, with product taken in the order reversing the order of the orientation. The sum indicates that one takes the sum over (infinitely) many indices, since \mathcal{R}^\pm are (infinite) sums of tensor products. It is known that J_T gives an isotopy invariant of bottom tangles, called the universal invariant of T. Moreover, J_T is ad-invariant ([Ke], see also [Ha4]).

Let $\chi_1, \ldots, \chi_n : \mathcal{H} \to \mathbb{C}[\hbar]$ be ad-invariant. In other words, χ_1, \ldots, χ_n are \mathcal{H}-module homomorphisms. As explained in [Ha4], the quantity

$$J_T \chi_1 \ast \cdots \ast \chi_n \in \mathbb{C}[\hbar]$$

is a link invariant of the closure link $\text{cl}(T)$ of T.

In particular, if χ_1, \ldots, χ_n are the quantum traces $\text{tr}_{q}^{V_1}, \ldots, \text{tr}_{q}^{V_n}$ in finite-dimensional representations V_1, \ldots, V_n, respectively, then

$$(\text{tr}_{q}^{V_1} \ast \cdots \ast \text{tr}_{q}^{V_n}) (J_T) \in \mathbb{C}[\hbar]$$

is the quantum link invariant for $\text{cl}(T)$ colored by the representations V_1, \ldots, V_n.

2.8. Mirror image of bottom tangles.

Definition 1. A mirror homomorphism of a topological ribbon Hopf algebra \mathcal{H} is an h-adically continuous \mathbb{C}-algebra homomorphism $\varphi : \mathcal{H} \to \mathcal{H}$ satisfying

\begin{align*}
(\varphi \hat{\otimes} \varphi) R &= R^{-1}_{21} \\
(\varphi \hat{\otimes} \varphi)^2 R &= R \\
\varphi(g) &= g.
\end{align*}

In general, such a φ is not a $\mathbb{C}[\hbar]$-algebra homomorphism. In fact, what we will have in the future is $\varphi(h) = -h$.

For a bottom tangle T with diagram D let the mirror image of T be the bottom tangle whose diagram is obtained from D by switch over/under crossing at every crossing.

Proposition 2.6. Suppose φ is a mirror homomorphism of a ribbon Hopf algebra \mathcal{H}. If T' is the mirror image of an n-component bottom tangle T, then

$$J_{T'} = \varphi^n(J_T).$$

Proof. Let D be a diagram of T. By rotations if necessary at crossings, we can assume that the two strands at each crossing of D are oriented downwards. Then at each crossing, we assign α and β to the strands if the it is positive, and we assign $\bar{\beta}$ and $\bar{\alpha}$ to the strands if it is negative, at the same spots where we would assign α and β if the crossing were positive, see Figure 4. Here $R = \sum \alpha \otimes \beta$ and $R^{-1} = \sum \bar{\beta} \otimes \bar{\alpha}$. Conditions (14), (15) implies that

$$\sum \bar{\beta} \otimes \bar{\alpha} = \sum \varphi(\alpha) \otimes \varphi(\beta), \quad \sum \alpha \otimes \beta = \sum \varphi(\bar{\beta}) \otimes \varphi(\bar{\alpha}).$$
Figure 5. The clasp tangle C^+. Together with (16) this shows that the assignments to strands of diagram D' of T' can be obtained by applying φ to the corresponding assignments to strands of D. Since φ is a C-algebra homomorphism, we get $J_{T'} = \varphi^{\otimes n}(J_T)$.

2.9. Braiding and transmutation. Let $R = \sum \alpha \otimes \beta$ be the R-matrix. The braiding for \mathcal{H} and its inverse ψ^{-1}:

$$\psi^{\pm 1}: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$$

are given by

$$(17) \quad \psi(x \otimes y) = \sum \beta \triangleright y \otimes \alpha \triangleright x, \quad \psi^{-1}(x \otimes y) = \sum (S(\alpha) \triangleright y) \otimes (\beta \triangleright x).$$

The maps μ, η, ϵ are \mathcal{H}-module homomorphisms. In particular, we have

$$(18) \quad x \triangleright yz = \sum (x(1) \triangleright y)(x(2) \triangleright z) \quad \text{for } x, y, z \in \mathcal{H}.$$

In general, Δ and S are not \mathcal{H}-module homomorphisms, but so are the following twisted versions of Δ and S introduced by Majid (see [Maj1, Maj2])

$$\Delta: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}, \quad S: \mathcal{H} \to \mathcal{H}$$

defined by

$$(19) \quad \Delta(x) = \sum x(1)S(\beta) \otimes (\alpha \triangleright x(2)) = \sum (\beta \triangleright x(2)) \otimes \alpha x(1),$$

$$(20) \quad S(x) = \sum \beta S(\alpha \triangleright x) = \sum S^{-1}(\beta \triangleright x)S(\alpha),$$

for $x \in \mathcal{H}$, respectively. Geometric interpretations of Δ and S are given in [Ha4].

Remark 2.7. $\mathcal{H} := (\mathcal{H}, \mu, \eta, \Delta, \epsilon, S)$ forms a braided Hopf algebra in the braided category of topologically free \mathcal{H}-modules, called the transmutation of \mathcal{H} [Maj1, Maj2].

2.10. Clasp bottom tangle. Let C^+ be the clasp tangle depicted in Figure 5. We call $c = J_{C^+} \in \mathcal{H} \otimes \mathcal{H}$ the clasp element for \mathcal{H}. With $R = \sum \alpha \otimes \beta = \sum \alpha' \otimes \beta'$, we have

$$(21) \quad c = (S \otimes \text{id})(R_{21}R) = \sum S(\alpha)S(\beta') \otimes \alpha' \beta.$$

Let C^- be the mirror image of C^+, see Figure 6, and $c^- = J_{C^-} \in \mathcal{H} \otimes \mathcal{H}$. Let $(C^+)'$ be the tangle obtained by reversing the orientation of the second component of C^+, and $(C^+)'''$ be the result of putting $(C^+)'$ on top of the tangle $\chi^{\otimes 2}$, see Figure 6. By the geometric interpretation of S, see [Ha4, Formula 8–10], we have

$$J_{(C^+)'''} = (\text{id} \otimes S)J_{C^+}.$$

Since $(C^+)'''$ is isotopic to C^-, we have

$$(22) \quad c^- = (\text{id} \otimes S)(c).$$
It is known that every integral homology 3-sphere can be obtained by surgery on S^3 along an algebraically split link with ± 1 framings.

The following refinement of the Kirby–Fenn–Rourke theorem on framed links was first essentially conjectured by Hoste [Ho]. (Hoste stated it in a more general form related to Rolfsen’s calculus for rationally framed links.)

Theorem 2.8 ([Ha6]). Let L and L' be two (non-oriented, non-ordered) algebraically-split ± 1-framed links in S^3. Then L and L' give orientation-preserving homeomorphic results of surgery if and only if L and L' are related by a sequence of ambient isotopy and Hoste moves. Here a Hoste move is a Fenn–Rourke (FR) move between two algebraically-split, ± 1-framed links, see Figure 7.

Theorem 2.8 implies that, to construct an invariant of integral homology spheres, it suffices to construct an invariant of algebraically-split, ± 1-framed links which is invariant under the Hoste moves.

Lemma 2.9. Suppose f is an invariant of oriented, unordered, algebraically-split ± 1-framed links which is invariant under Hoste moves. Then $f(L)$ does not depend on the orientation of the link L. Consequently, f descends to an invariant of integral homology 3-spheres, i.e. if the results of surgery along two oriented, unordered, algebraically-split ± 1-framed links L and L' are homeomorphic integral homology 3-spheres, then $f(L) = f(L')$.

Proof. Suppose K is a component of L so that $L = L_1 \cup K$. We will show that f does not depend on the orientation of K by induction on the unknotting number of K.

First assume that K is an unknot. We first apply the Hoste move to K, then apply the Hoste move in the reverse way, obtaining $L_1 \cup (-K)$, where $-K$ is the orientation-reversal of K. This shows $f(L_1 \cup K) = f(L_1 \cup (-K))$.

Suppose K is an arbitrary knot with positive unknotting number. We can use a Hoste move to realize a self-crossing change of K, reducing the unknotting number. Induction on the unknotting number shows that f does not depend on the orientation of K. \[\square \]
2.12. Definition of the invariant J_M for the case when the ground ring is a field. In this subsection, we explain a construction of an invariant of integral homology spheres associated to a ribbon Hopf algebra over a field k, equipped with “full twist forms”. In this section (Section 2.12), and only in this section, we will assume that H is a ribbon Hopf algebra over a field k. This assumption simplifies the definition of the invariant.

2.12.1. Full twist forms. Recall that $c = J_{C_+} \in H \otimes H$ is the universal invariant of the clasp bottom tangle, and r is the ribbon element.

A pair of ad-invariant linear functionals $T_+, T_- : H \to k$ are called full twist forms for H if

\begin{equation}
(T_+ \otimes \text{id})(c) = r \pm 1.
\end{equation}

The following lemma essentially shows how the universal link invariant behaves under the Hoste move, if there are full twist forms.

Lemma 2.10. Suppose that a ribbon Hopf algebra H admits full twist forms (T_+, T_-). Let $T = T_1 \cup \cdots \cup T_n$ be an n-component bottom tangle ($n \geq 1$) such that the first component T_1 of T is a 1-component trivial bottom tangle (see Figure 8). Let $T' = T_2 \cup \cdots \cup T_n$ be the $(n - 1)$-component bottom tangle obtained from $T \setminus T_1 = T_2 \cup \cdots \cup T_n$ by surgery along the closure of T_1 with framing ± 1 (see Figure 9). Then we have

\begin{equation}
J_{T'} = (T_+ \otimes \text{id} \otimes (n-1))(J_T).
\end{equation}

Proof. If $T_{p,q}$ is a $(p + q + 1)$-component tangle as depicted in Figure 10(a) with $p, q \geq 0$, then we have

\[J_{T_{p,q}} = (\text{id} \otimes \text{id} \otimes \Delta^{p+q})(\text{id} \otimes \Delta^{p+q})(c). \]
The tangle $\mathcal{T}_{p;q,\pm 1}$ obtained from $\mathcal{T}_{p;q} \setminus T_1$ by surgery along the closure of the first component T_1 of $\mathcal{T}_{p;q}$ with framing ± 1 (see Figure 10(b)) has the universal invariant

$$J_{\mathcal{T}_{p;q,\pm 1}} = (\text{id} \otimes p \otimes S^{\otimes q}) \Delta^{[p+q]}(r^{\pm 1}).$$

Since \mathcal{T}_\pm is a full twist form, it follows that

$$(\mathcal{T}_\pm \otimes \text{id}^{[p+q]})(J_{\mathcal{T}_{p;q}}) = J_{\mathcal{T}_{p;q}}.$$

The general case follows from the above case and functoriality of the universal invariant, since T can be obtained from some $\mathcal{T}_{p;q}$ by tensoring and composing appropriate tangles.

2.12.2. Invariant of integral homology 3-spheres. We will show here that a ribbon Hopf algebra \mathcal{H} with full twist forms \mathcal{T}_\pm gives rise to an invariant of integral homology spheres.

Suppose T is an n-component bottom tangle with zero linking matrix and $\varepsilon_1, \ldots, \varepsilon_n \in \{1, -1\}$. Let $M = M(T; \varepsilon_1, \ldots, \varepsilon_n)$ be the oriented 3-manifold obtained by surgery on S^3 along the framed link $L = L(T; \varepsilon_1, \ldots, \varepsilon_n)$, which is the closure link of T with the framing on the i-th component switched to ε_i. Since L is an algebraically split link with ± 1 framing on each component, M is an integral homology 3-sphere. Every integral homology 3-sphere can be obtained in this way.

Proposition 2.11. Suppose \mathcal{H} is a ribbon Hopf algebra with full twist forms \mathcal{T}_\pm, and $M = M(T; \varepsilon_1, \ldots, \varepsilon_n)$ is an integral homology 3-sphere. Then

$$J_M := (\mathcal{T}_{\varepsilon_1} \otimes \ldots \otimes \mathcal{T}_{\varepsilon_n})(J_T) \in \mathfrak{k}$$

is an invariant of M. In other words, if $M(T; \varepsilon_1, \ldots, \varepsilon_n) \cong M(T; \varepsilon_1', \ldots, \varepsilon_n')$, then

$$(\mathcal{T}_{\varepsilon_1} \otimes \ldots \otimes \mathcal{T}_{\varepsilon_n})(J_T) = (\mathcal{T}_{\varepsilon_1'} \otimes \ldots \otimes \mathcal{T}_{\varepsilon_n'})(J_T).$$

Proof. Since \mathcal{T}_\pm are ad-invariant, $(\mathcal{T}_{\varepsilon_1} \otimes \ldots \otimes \mathcal{T}_{\varepsilon_n})(J_T)$ depends only on $\varepsilon_1, \ldots, \varepsilon_n$ and the oriented, ordered framed link $\text{cl}(T)$, but not on the choice of T, see e.g. [Ha4, Section 11.1]. This shows $(\mathcal{T}_{\varepsilon_1} \otimes \ldots \otimes \mathcal{T}_{\varepsilon_n})(J_T)$ is an invariant of framed link $L(T; \varepsilon_1, \ldots, \varepsilon_n)$.

We now show that $(\mathcal{T}_{\varepsilon_1} \otimes \ldots \otimes \mathcal{T}_{\varepsilon_n})(J_T)$ does not depend on the order of the components of L. Suppose $L = L(T; \varepsilon_1, \ldots, \varepsilon_n)$ and L' is the same L, with the orders of the $(i+1)$-th and $(i+2)$-th switched. Then $L' = L(T'; \varepsilon_1', \ldots, \varepsilon_n')$, where T' is T on top of a simple braid of bands which switches the $i+1$ and $i+2$ components, see Figure 11. Also, $\varepsilon_j' = \varepsilon_j$ for $j \neq i+1, i+2$, and $\varepsilon_{i+1}' = \varepsilon_{i+2}$, $\varepsilon_{i+2}' = \varepsilon_{i+1}$.
According to the geometric interpretation of the braiding [Ha4, Proposition 8.1],
\[J_T' = (\text{id} \otimes \psi \otimes \text{id}^{\otimes n-1}) (J_T). \]

By (17),
\[\psi(x \otimes y) = \sum (\beta \triangleright y) \otimes (\alpha \triangleright x), \quad \text{where } R = \sum \alpha \otimes \beta. \]

Since \((\epsilon \otimes \epsilon)(R) = 1 \) and \(T_{\pm} \) are ad-invariant,
\[(T_{e_1} \otimes \cdots \otimes T_{e_n})(J_T) = (T_{e_1}' \otimes \cdots \otimes T_{e_n}') (J_T'). \]

Thus, \((T_{e_1} \otimes \cdots \otimes T_{e_n})(J_T) \) is an invariant of oriented, unordered framed links.

By Proposition 2.10, \((T_{e_1} \otimes \cdots \otimes T_{e_n})(J_T) \) is invariant under the Hoste moves. Lemma 2.9 implies that \((T_{e_1} \otimes \cdots \otimes T_{e_n})(J_T) \) descends to an invariant of integral homology 3-spheres.

2.12.3. Examples of full twist forms: Factorizable case. A finite-dimensional, quasitriangular Hopf algebra over a field \(k \) is said to be factorizable if the clasp element \(c \in H \otimes H \) is non-degenerate in the sense that there exist bases \(\{c'(i), i \in I\} \) and \(\{c''(i), i \in I\} \) of \(H \) such that
\[c = \sum_{i \in I} c'(i) \otimes c''(i). \]

This definition of factorizability is equivalent to the original definition by Reshetikhin and Semenov-Tian-Shansky [RS].

Suppose \(H \) is a factorizable ribbon Hopf algebra. The non-degeneracy condition shows that there is a unique bilinear form, called the clasp form,
\[\mathcal{L}: H \otimes H \to k \]
such that for every \(x \in H \),
\[\sum ((\mathcal{L} \otimes \text{id})(x \otimes c) = x, \quad (\text{id} \otimes \mathcal{L})(c \otimes x) = x. \]

Using the ad-invariance of \(c \), one can show that \(\mathcal{L}: H \otimes H \to k \) is ad-invariant. Since \(r^{\pm 1} \) are ad-invariant, the form \(T_{\pm}: H \to k \) defined by
\[T_{\pm}(x) := \mathcal{L}(r^{\pm 1} \otimes x), \]
is ad-invariant and satisfies (23) due to (25). Hence \(T_{+} \) and \(T_{-} \) are full twist forms for \(H \), and defines an invariant of integral homology 3-sphere according to Proposition 2.11.

Remark 2.12. Given a finite-dimensional, factorizable, ribbon Hopf algebra \(H \), one can construct the Hennings invariant for closed 3-manifolds [He, KR, Oht1, Ke, Ly, Sa, Vi, Ha4]. The invariant given in Proposition 2.11 constructed from the full twist forms in (26) is equal to the Hennings invariant.
2.13. Partially defined twist forms and invariant J_M. Let us return to the case when \mathcal{H} is a ribbon Hopf algebra over $\mathbb{C}[[h]]$. Recall that \mathcal{H} is a topologically free \mathcal{H}-module with the adjoint action. In general \mathcal{H} does not admit full twist forms.

In the construction of the invariant of integral homology 3-spheres in Proposition 2.11, one first constructs the universal invariant of algebraically split tangles J_T, then feeds the result to the functionals $\mathcal{T}_{t_1} \otimes \cdots \otimes \mathcal{T}_{t_n}$ which come from the twist forms \mathcal{T}_\pm. We will show that the conclusion of Proposition 2.11 holds true if the twist forms \mathcal{T}_\pm are defined on a submodule large enough so that the domain of $\mathcal{T}_{t_1} \otimes \cdots \otimes \mathcal{T}_{t_n}$ contains all the values of J_T, with T algebraically split bottom tangles.

2.13.1. Partially defined twist forms. Suppose $\mathcal{X} \subset \mathcal{H}$ is a topologically free $\mathbb{C}[[h]]$-submodule. By Proposition 2.3 all the natural maps $\mathcal{X}^\otimes n \to \mathcal{X}^\otimes n \to \mathcal{H}^\otimes n$ and $\mathcal{X} \otimes \mathcal{H}^{(n-1)} \to \mathcal{H}^\otimes n$ are injective. Hence we will consider $\mathcal{X}^\otimes n$, $\mathcal{X}^\otimes n$, and $\mathcal{X} \otimes \mathcal{H}^{(n-1)}$ as submodules of $\mathcal{H}^\otimes n$. This will explain the meaning of statements like “$c \in \mathcal{X} \otimes \mathcal{H}$”.

Definition 2. A twist system $\mathcal{T} = (\mathcal{T}_\pm, \mathcal{X})$ of a topological ribbon Hopf algebra \mathcal{H} consists of a topologically free $\mathbb{C}[[h]]$-submodule $\mathcal{X} \subset \mathcal{H}$ and a pair of $\mathbb{C}[[h]]$-linear functionals $\mathcal{T}_\pm : \mathcal{X} \to \mathbb{C}[[h]]$ satisfying the following conditions.

(i) \mathcal{X} is ad-stable (i.e. \mathcal{X} is stable under the adjoint action of \mathcal{H}) and \mathcal{T}_\pm are ad-invariant.

(ii) $c \in \mathcal{X} \otimes \mathcal{H}$.

(iii) One has

$$(\mathcal{T}_\pm \otimes \text{id})(c) = r^{\pm 1}.$$

Recall that for an n-component bottom tangle T with zero linking matrix and $\varepsilon_1, \ldots, \varepsilon_n \in \{1, -1\}$, $M(T; \varepsilon_1, \ldots, \varepsilon_n)$ is the integral homology sphere obtained by surgery on S^3 along the framed link $L(T; \varepsilon_1, \ldots, \varepsilon_n)$, which is the closure link of T with the framing on the i-th component switched to ε_i.

Proposition 2.13. Suppose $\mathcal{T} = (\mathcal{T}_\pm, \mathcal{X})$ is a twist system of a topological ribbon Hopf algebra \mathcal{H} such that $J_T \in \mathcal{X}^\otimes n$ for any n-component algebraically split 0-framed bottom tangle T. Let $M = M(T; \varepsilon_1, \ldots, \varepsilon_n)$ be an integral homology 3-sphere. Then

$$J_M := (\mathcal{T}_{t_1} \otimes \cdots \otimes \mathcal{T}_{t_n})(J_T) \in \mathbb{C}[[h]]$$

is an invariant of M. In other words, if $M(T; \varepsilon_1, \ldots, \varepsilon_n) = M(T'; \varepsilon_1', \ldots, \varepsilon_n')$, then

$$(\mathcal{T}_{t_1} \otimes \cdots \otimes \mathcal{T}_{t_n})(J_T) = (\mathcal{T}_{t_1'} \otimes \cdots \otimes \mathcal{T}_{t_n'})(J_{T'}).$$

Proof. First we show the following claim, which is a refinement of Proposition 2.10.

Claim. Let T and T' be tangles as in Proposition 2.10. Then $J_T \in \mathcal{X} \otimes \mathcal{H}^{(n-1)}$, and

$$(27) \quad J_T = (\mathcal{T}_\pm \otimes \text{id}^{(n-1)})(J_T) \in \mathcal{H}^{(n-1)}.$$

Proof of Claim. If $T_{p,q}$ is a $(p+q+1)$-component tangle as depicted in Figure 10(a) with $p, q \geq 0$, then we have

$$J_{T_{p,q}} = (\text{id} \otimes \text{id}^{p} \otimes S^{\otimes q})(\text{id} \otimes \Delta^{[p+q]})(c).$$

Since $c \in \mathcal{X} \otimes \mathcal{H}$, we have

$$J_{T_{p,q}} \in \mathcal{X} \otimes \mathcal{H}^{p+q}.$$
Figure 12. The Borromean tangle

Since T is obtained from $T_{p,q}$ by tensoring and composing appropriate tangles which do not involve the first component, we also have

$$J_T \in \mathcal{X} \hat{\otimes} \mathcal{H} \hat{\otimes} n.$$

The remaining part of the proof follows exactly the proof of Proposition 2.10. One first verifies the case of $T_{p,q}$ using conditions (ii) and (iii) in the definition of twist system, from which the general case follows. This proves the claim.

Using the ad-invariance of T_{\pm} and (27), one can repeat verbatim the proof of Proposition 2.11, replacing \otimes by $\hat{\otimes}$ everywhere, to get Proposition 2.13.

2.13.2. Values of the universal invariant of algebraically split tangles. In Proposition 2.13, we need $J_T \in \mathcal{X} \hat{\otimes} n$ for an n-component bottom tangle T with zero linking matrix. To help proving statement like that, we use the following result.

Let $\mathcal{K}_n \subset \mathcal{H} \hat{\otimes} n$, $n \geq 0$, be a family of subsets. A $\mathbb{C}[[h]]$-module homomorphism $f: \mathcal{U}_h \hat{\otimes} a \to \mathcal{U}_h \hat{\otimes} b$, $a, b \geq 0$, is said to be (\mathcal{K}_n)-admissible if we have

$$f(i,j)(\mathcal{K}_{i+j+a}) \subset \mathcal{K}_{i+j+b}.$$

(28)

for all $i, j \geq 0$. Here $f(i,j) := \text{id} \hat{\otimes} i \hat{\otimes} f \hat{\otimes} \text{id} \hat{\otimes} j$.

Proposition 2.14 (Cf. Corollary 9.15 of [Ha4]). Let $\mathcal{K}_n \subset \mathcal{H} \hat{\otimes} n$, $n \geq 0$, be a family of subsets such that

(i) $1_{\mathbb{C}[[h]]} \in \mathcal{K}_0$, $1_{\mathcal{X}} \in \mathcal{K}_1$, $b \in \mathcal{K}_3$,

(ii) for $x \in \mathcal{K}_n$ and $y \in \mathcal{K}_m$ one has $x \otimes y \in \mathcal{K}_{n+m}$, and

(iii) each of $\mu, \psi^{\pm 1}, S, S$ is (\mathcal{K}_n)-admissible.

Then, we have $J_T \in \mathcal{K}_n$ for any n-component algebraically split, 0-framed bottom tangle T.

Here $b \in \mathcal{U}_h \hat{\otimes} 3$ is the universal invariant of the Borromean bottom tangle depicted in Figure 12.

2.14. Core subalgebra. We define here a core subalgebra of a topological ribbon Hopf algebra, and show that every core subalgebra gives rise to an invariant of integral homology 3-spheres.

In the following we use overline to denote the closure in the h-adic topology of $\mathcal{H} \hat{\otimes} n$.

A topological Hopf subalgebra of a topological Hopf algebra \mathcal{H} is a $\mathbb{C}[[h]]$-subalgebra $\mathcal{H}' \subset \mathcal{H}$ such that \mathcal{H}' is topologically free as a $\mathbb{C}[[h]]$-module and

$$\Delta(\mathcal{H}') \subset \mathcal{H}' \hat{\otimes} \mathcal{H}'$$

$S^{\pm 1}(\mathcal{H}') \subset \mathcal{H}'$.

In general, \mathcal{H}' is not closed in \mathcal{H}.
Definition 3. A topological Hopf subalgebra $\mathcal{X} \subset \mathcal{H}$ of a topological ribbon Hopf algebra \mathcal{H} is called a core subalgebra of \mathcal{H} if

(i) \mathcal{X} is \mathcal{H}-ad-stable, i.e. it is an \mathcal{H}-submodule of \mathcal{H},

(ii) $R \in \mathcal{X} \otimes \mathcal{X}$ and $g \in \mathcal{X}$, and

(iii) The clasp element c, which is contained in $\mathcal{X} \otimes \mathcal{X}$ by (ii) (see below), has a presentation

$$c = \sum_{i \in I} c'(i) \otimes c''(i),$$

where each of the two sets $\{c'(i) \mid i \in I\}$ and $\{c''(i) \mid i \in I\}$ is

- 0-convergent in \mathcal{H}, and
- a topological basis of \mathcal{X}.

Some clarifications are in order. As a topological Hopf subalgebra, \mathcal{X} is topologically free as a $\mathbb{C}[[h]]$-module. By Proposition 2.3, all the natural maps $\mathcal{X}^{\otimes n} \to \mathcal{X}^{\otimes n} \to \mathcal{H}^{\otimes n}$ are injective.

We will consider $\mathcal{X}^{\otimes n}$ as a $\mathbb{C}[[h]]$-submodule of $\mathcal{H}^{\otimes n}$ in (ii) above when we take its closure in the h-adic topology of $\mathcal{H}^{\otimes n}$. Furthermore, since $R^{-1} = (S \otimes \text{id})(R)$ and $g^{-1} = S(g)$, condition (ii) implies that $R^{\pm 1} \in \mathcal{X} \otimes \mathcal{X}$ and $g^{\pm 1} \in \mathcal{X}$. Since J_T, the universal invariant of an n-component bottom tangle T, is built from $R^{\pm 1}$ and $g^{\pm 1}$, condition (ii) implies that $J_T \in \mathcal{X}^{\otimes n}$. In particular, $c \in \mathcal{X} \otimes \mathcal{X}$.

Remark 2.15. A core subalgebra has properties similar to, but still different from, those of both a minimal Hopf algebra [Rad] and a factorizable Hopf algebra [RS]. Note that the notions of a minimal algebra and a factorizable algebra were introduced only for the case when the ground ring is a field. Over $\mathbb{C}[[h]]$ the picture is much more complicated. For example, in [Rad] it was shown that a minimal algebra over a field is always finite-dimensional. Here our core algebras are of infinite rank over $\mathbb{C}[[h]]$.

From now on we fix a core subalgebra \mathcal{X} of a topological ribbon Hopf algebra \mathcal{H}.

Lemma 2.16. Suppose $f : \mathcal{H} \to \mathcal{H}$ is a $\mathbb{C}[[h]]$-module homomorphism such that $f(\mathcal{X}) \subset \mathcal{X}$. Then $f(\mathcal{X}) \subset \mathcal{X}$. In particular, \mathcal{X} is ad-stable.

Proof. Since f is continuous in the topology of \mathcal{H}, we have $f(\mathcal{X}) \subset \mathcal{X}$. \qed

2.14.1. *Clasp form associated to a core subalgebra.* Suppose $\mathcal{X} \subset \mathcal{H}$ is a core subalgebra with the presentation (29) for c. Since $\{c'(i)\}$ is a topological basis of \mathcal{X}, every $y \in \mathcal{X}$ has its coordinates $y'_i \in \mathbb{C}[[h]]$ such that

$$y = \sum_{i \in I} y'_i c'(i),$$

where $(y'_i)_{i \in I}$ is 0-convergent, i.e. $(y'_i)_{i \in I} \in (\mathbb{C}[[h]])^I_0$. The map $y \mapsto (y'_i)$ is a $\mathbb{C}[[h]]$-module isomorphism from \mathcal{X} to $(\mathbb{C}[[h]])^I_0$.

The set $\{c''(i)\}$ is a formal basis of \mathcal{X}, which is a formal series $\mathbb{C}[[h]]$-module. Every $x \in \mathcal{X}$ has its coordinates $x''_i \in \mathbb{C}[[h]]$ such that in the h-adic topology of \mathcal{H},

$$x = \sum_{i \in I} x''_i c''(i),$$

where each of the two sets $\{c'(i) \mid i \in I\}$ and $\{c''(i) \mid i \in I\}$ is

- 0-convergent in \mathcal{H}, and
- a topological basis of \mathcal{X}.
where \((x_i'')_{i \in I} \in \mathbb{C}[[h]]^I\). The map \(x \mapsto (x_i')\) is an \(\mathbb{C}[[h]]\)-module isomorphism from \(\mathbb{T}^\times \) to \(\mathbb{C}[[h]]^I\).

Define a bilinear form \(L = \langle \cdot, \cdot \rangle : \mathbb{X} \otimes \mathbb{X} \to \mathbb{C}[[h]],\) called the \textit{clasp form}, by
\[
\langle x, y \rangle := \sum_{i \in I} x_i'' y_i'.
\]
The sum on the right hand side is convergent since \((y_i')_{i \in I}\) is 0-convergent. The bilinear form is defined so that \(\{c''(i)\}\) and \(\{c'(i)\}\) are dual to each other:
\[
\langle c''(i), c'(j) \rangle = \delta_{ij}.
\]
By continuity (in the \(h\)-adic topology), \(L\) extends to a \(\mathbb{C}[[h]]\)-module map, also denoted by \(L\),
\[
L : \mathbb{T}^\times \otimes \mathbb{X} \to \mathbb{C}[[h]].
\]
The following lemma says that the above bilinear form is dual to \(c\).

Lemma 2.17. (a) One has \(c \in \mathbb{X} \otimes \mathcal{H} \cap \mathcal{H} \otimes \mathbb{X}\).

(b) For every \(x \in \mathbb{T}^\times\) and \(y \in \mathbb{X}\) one has
\[
(\mathbb{L} \otimes \text{id})(x \otimes c) = x
\]
\[
(\text{id} \otimes \mathbb{L})(c \otimes y) = y
\]

Remark 2.18. By part (a), \(c \in \mathbb{X} \otimes \mathcal{H}\), hence \(x \otimes c \in \mathbb{X} \otimes \mathbb{X} \otimes \mathcal{H}\). This is the reason why the left hand side of (32) is well-defined as an element of \(\mathcal{H}\). Similarly the left hand side of (33) is well-defined. With this well-definedness, all the proofs will be the same as in the case of finite-dimensional vector spaces over a field.

Proof. (a) Since \(\{c''(i)\}\) is 0-convergent in \(\mathcal{H}\), \(c = \sum_i c'(i) \otimes c''(i) \in \mathbb{X} \otimes \mathcal{H}\). Similarly, \(c \in \mathcal{H} \otimes \mathbb{X}\).

(b) Suppose \(x\) has the presentation (30). By (31), we have
\[
\langle x, c'(i) \rangle = x''(i).
\]
Thus, we have
\[
x = \sum_i \langle x, c'(i) \rangle c''(i),
\]
which is (32). The identity (33) is proved similarly. \(\square\)

Because \(r^{\pm 1} \in \mathbb{T}^\times\), one can define the \(\mathbb{C}[[h]]\)-module homomorphisms
\[
T_{\pm} : \mathbb{X} \to \mathbb{C}[[h]] \quad \text{by} \quad T_{\pm}(y) = \langle x^{\pm 1}, y \rangle.
\]

Since \(c\) is ad-invariant, one can expect the following.

Lemma 2.19. (a) The clasp form \(L : \mathbb{T}^\times \otimes \mathbb{X} \to \mathbb{C}[[h]]\) is ad-invariant, i.e. it is an \(\mathcal{H}\)-module homomorphism.

(b) The maps \(T_{\pm} : \mathbb{X} \to \mathbb{C}[[h]]\) are ad-invariant.

Proof. (a) By Proposition 2.4(b), \(L\) is ad-invariant if and only if for every \(a \in \mathcal{H}\), \(x \in \mathbb{T}^\times\), and \(y \in \mathbb{X}\),
\[
\langle a \triangleright x, y \rangle = \langle x, S(a) \triangleright y \rangle,
\]
which we will prove now.

Since \(c = \sum_i c'(i) \otimes c''(i) \) is ad-invariant, by Proposition 2.4(a),
\[
\sum_i S(a) \triangleright c'(i) \otimes c''(i) = \sum_i c'(i) \otimes a \triangleright c''(i).
\]
Tensoring with \(x \) on the left, and applying \(\mathcal{L} \otimes \text{id} \),
\[
\sum_i \langle x, S(a) \triangleright c'(i) \rangle c''(i) = \sum_i \langle x, c'(i) \rangle a \triangleright c''(i)
= \sum_i x''(i) a \triangleright c''(i)
= a \triangleright \left(\sum_i x''(i) c''(i) \right) = a \triangleright x.
\]
Tensoring on the right with \(c'(j) \) then applying \(\mathcal{L} \), one has
\[
\langle x, S(a) \triangleright c'(j) \rangle = \langle a \triangleright x, c'(j) \rangle,
\]
which is (37) with \(y = c'(j) \). Since \(\{c'(j)\} \) is a topological basis of \(\mathcal{X} \), (37) holds for every \(y \in \mathcal{X} \).

(b) follows from Proposition 2.4(c).

\[\square \]

\textbf{Proposition 2.20.} Suppose \(f : \mathcal{H} \to \mathcal{H} \) and \(g : \mathcal{H} \to \mathcal{H} \) are \(\mathbb{C}[h] \)-module isomorphisms such that \(f(\mathcal{X}) = \mathcal{X} \), \(g(\mathcal{X}) = \mathcal{X} \), and \((f \otimes g)(c) = c \). Then \(g(\mathcal{X}) = \mathcal{X} \), and for every \(x \in \mathcal{X}, y \in \mathcal{X} \), one has
\[
\langle g(x), f(y) \rangle = \langle x, y \rangle.
\]

\textbf{Proof.} By Lemma 2.16, \(g^{\pm1}(\mathcal{X}) \subset \mathcal{X} \). It follows that \(g(\mathcal{X}) = \mathcal{X} \). One has
\[
c = \sum_i c'(i) \otimes c''(i) = \sum_i f(c'(i)) \otimes g(c''(i)).
\]
Since \(g(x) \in \mathcal{X} \), one can replace \(x \) by \(g(x) \) in (32),
\[
g(x) = (\mathcal{L} \otimes \text{id})(g(x) \otimes c) = \sum_i (\mathcal{L} \otimes \text{id}) \left(g(x) \otimes f(c'(i)) \otimes g(c''(i)) \right)
= \sum_i \langle g(x), f(c'(i)) \rangle g(c''(i))
= g \left(\sum_i \langle g(x), f(c'(i)) \rangle g(c''(i)) \right)
\]
Injectivity of \(g \) implies
\[
x = \sum_i \langle g(x), f(c'(i)) \rangle c''(i).
\]
Comparing with (35) we have, for every \(i \in I \),
\[
\langle g(x), f(c'(i)) \rangle = \langle x, c'(i) \rangle,
\]
which shows that (38) holds for \(y = c'(i), i \in I \). Hence, (38) holds for every \(y \in \mathcal{X} \) since \(\{c'(i)\} \) is a topological basis of \(\mathcal{X} \).

\[\square \]
2.14.2. Twist system from core subalgebra.

Proposition 2.21. The collection \(\mathcal{T} = (T_\pm, \mathcal{X}) \) is a twist system for \(\mathcal{H} \).

Proof. By definition, \(\mathcal{X} \) is ad-stable. By Lemma 2.19, \(T_\pm \) are ad-invariant. By Lemma 2.17(a), \(c \in \mathcal{X} \hat{\otimes} \mathcal{H} \). Finally, Identity (32) with \(x = r^\pm \) gives
\[
(T_\pm \hat{\otimes} \text{id})c = r^\pm.
\]
This shows \(\mathcal{T} = (T_\pm, \mathcal{X}) \) is a twist system.

\[
\square
\]

2.15. From core subalgebra to invariant of integral homology 3-spheres.

Theorem 2.22. Let \(\mathcal{X} \) be a core subalgebra of a topological ribbon Hopf algebra \(\mathcal{H} \), with its associated \(\mathcal{H} \)-module homomorphisms \(T_\pm : \mathcal{X} \to \mathbb{C}[[h]] \). Assume \(T \) is an \(n \)-component bottom tangle with 0 linking matrix, \(\varepsilon_i \in \{\pm 1\} \) for \(i = 1, \ldots, n \), and \(M = M(T; \varepsilon_1, \ldots, \varepsilon_n) \) is the integral homology 3-sphere obtained from \(S^3 \) by surgery along \(\text{cl}(T) \), with framing of the \(i \)-th component changed to \(\varepsilon_i \).

Then \(J_T \in \mathcal{X} \hat{\otimes}^n \), and
\[
J_M := (T_{\varepsilon_1} \hat{\otimes} \ldots \hat{\otimes} T_{\varepsilon_n})(J_T) \in \mathbb{C}[[h]]
\]
defines an invariant of integral homology 3-spheres.

By Propositions 2.13 and 2.21, to prove Theorem 2.22, it is sufficient to show the following

Proposition 2.23. Suppose \(\mathcal{X} \) is a core subalgebra of a topological ribbon Hopf algebra \(\mathcal{H} \) and \(T \) is an \(n \)-component bottom tangle with 0 linking matrix. Then \(J_T \in \mathcal{X} \hat{\otimes}^n \).

The rest of this section is devoted for a proof of this proposition, based on Proposition 2.14.

2.15.1. \((\mathcal{X} \hat{\otimes}^n) \)-admissibility. The following lemma follows easily from the definition.

Lemma 2.24. Suppose \(f : \mathcal{H} \hat{\otimes}^a \to \mathcal{H} \hat{\otimes}^b \) is a \(\mathbb{C}[[h]] \)-module homomorphism having a presentation as an \(h \)-adically convergent sum \(f = \sum_{p \in P} f_p \) such that for each \(p, f_p(\mathcal{X} \hat{\otimes}^a) \subset \mathcal{X} \hat{\otimes}^b, \) where \(P \) is a countable set. (Here, the sum \(f \) being \(h \)-adically convergent means that for each \(j \geq 0 \) we have \(f_p(\mathcal{H} \hat{\otimes}^a) \subset h^j \mathcal{H} \hat{\otimes}^b \) for all but finitely many \(p \in P. \) Then \(f \) is \((\mathcal{X} \hat{\otimes}^n) \)-admissible.

Proposition 2.25. Each of \(\mu, \psi^{\pm 1}, \Delta, S \) is \((\mathcal{X} \hat{\otimes}^n) \)-admissible.

Proof. (a) Because \(\mu(\mathcal{X} \hat{\otimes} \mathcal{X}) \subset \mathcal{X} \), by Lemma 2.24, \(\mu \) is \((\mathcal{X} \hat{\otimes}^n) \)-admissible.

(b) Because \(R \in \mathcal{X} \otimes \mathcal{X}, R \) has a presentation
\[
R = \sum_{p \in P} R_1(p) \otimes R_2(p), \quad R_1(p), R_2(p) \in \mathcal{X},
\]
where the sum is convergent in the h-adic topology of $\mathcal{H} \hat{\otimes} \mathcal{H}$. Using the definitions (17)–(20), we have the following presentations as h-adically convergent sums
\[
\psi = \sum_{p \in P} \psi_p^+ + \sum_{p \in P} \psi_p^- \quad \text{where} \quad \psi_p^+ (x \otimes y) = \sum \mathcal{R}_2(p) \triangleright y \otimes \mathcal{R}_1(p) \triangleright x \\
\psi^{-1} = \sum_{p \in P} \psi_p^- \quad \text{where} \quad \psi_p^- (x \otimes y) = \sum \mathcal{S}(\mathcal{R}_1(p)) \triangleright y \otimes \mathcal{R}_2(p) \triangleright x \\
\Delta = \sum_{p \in P} \Delta_p \quad \text{where} \quad \Delta_p(x) = \sum \mathcal{R}_2(p) \triangleright x(2) \otimes \mathcal{R}_1 x(1) \\
\mathcal{S} = \sum_{p \in P} \mathcal{S}_p \quad \text{where} \quad \mathcal{S}_p(x) = \sum \mathcal{R}_2(p) \mathcal{S}(\mathcal{R}_1 \triangleright x).
\]
Since $\mathcal{R}_1(p), \mathcal{R}_2(p) \in \mathcal{X}$, which is a topological Hopf algebra, we see that $\psi_p^+ (\mathcal{X} \hat{\otimes} \mathcal{X}) \subset \mathcal{X} \hat{\otimes} \mathcal{X}$, $\Delta_p (\mathcal{X}) \subset \mathcal{X} \hat{\otimes} \mathcal{X}$, and $\mathcal{S}_p (\mathcal{X}) \subset \mathcal{X}$. By Lemma (2.24), all $\psi^\pm, \Delta, \mathcal{S}$ are $\mathcal{X}^{\otimes n}$-admissible. \qed

2.15.2. Braided commutator and Borromean tangle

We recall from [Ha1, Ha4] the definitions and properties of the braided commutator for a braided Hopf algebra and a formula for universal invariant of the Borromean tangle.

Define the braided commutator $\Upsilon : \mathcal{H} \hat{\otimes} \mathcal{H} \rightarrow \mathcal{H}$ (for the braided Hopf algebra \mathcal{H}) by
\[
\Upsilon = \mu^3(id \hat{\otimes} \psi \hat{\otimes} id)(id \hat{\otimes} \mathcal{S} \hat{\otimes} \mathcal{S} \hat{\otimes} id)(\Delta \hat{\otimes} \Delta).
\]
As noted in [Ha, Section 9.5], with $c = \sum_i c'(i) \otimes c''(i)$, we have
\[
\textbf{b} = \sum_{i,j \in I} (((id \otimes c' \otimes c''(i) \otimes c''(j)) = \sum_{i,j \in I} c'(i) \otimes c'(j) \otimes \Upsilon(c''(i) \otimes c''(j)).
\]
Let $b_{i,j}$ be the (i, j)-summand of the right hand side. Then each $b_{i,j} \in \mathcal{X} \hat{\otimes} \mathcal{X}$ and $\textbf{b} = \sum_{i,j} b_{i,j}$, with the sum converging in the h-adic topology of $\mathcal{X}^{\hat{\otimes} 3}$. We want to show that the sum $\sum_{i,j} b_{i,j}$ is convergent in the h-adic topology of $\mathcal{X}^{\hat{\otimes} 3}$.

2.15.3. Two definitions of braided commutator

From [Ha4, Section 9.3], we have
\[
\Upsilon = \mu(ad \hat{\otimes} id)(id \hat{\otimes} (\mathcal{S} \hat{\otimes} id)(\Delta)) = \mu(id \hat{\otimes} (ad))(id \hat{\otimes} (\mathcal{S} \hat{\otimes} id)(\Delta)),
\]
where ad is the right adjoint action (of the braided Hopf algebra \mathcal{H}) defined by
\[
ad := \mu^3(id \hat{\otimes} (\mathcal{S} \hat{\otimes} id)(\psi \hat{\otimes} id)(id \hat{\otimes} \Delta)).
\]

Lemma 2.26. For $x, y \in \mathcal{H}$, we have
\[
ad(x \otimes y) = S^{-1}(y) \triangleright x.
\]

Proof. In what follows we use $\mathcal{R} = \sum \mathcal{R}_1 \otimes \mathcal{R}_2 = \sum \mathcal{R}_1' \otimes \mathcal{R}_2' = \sum \mathcal{R}_1'' \otimes \mathcal{R}_2'' = \sum \mathcal{R}_1'' \otimes \mathcal{R}_2''$. One can easily verify
\[
\psi(x \otimes y) := \sum ((\mathcal{R}_2 \mathcal{R}_2' \triangleright x) \otimes \mathcal{R}_1 y S(\mathcal{R}_1')).
\]
We have

\[
\text{ad}^\L(x \otimes y) = \mu^\L(S \otimes \text{id} \otimes \text{id})(\psi \otimes \text{id})(x \otimes \Delta(y))
\]

\[
= \sum \mu^\L(S \otimes \text{id} \otimes \text{id})(\psi(x \otimes y^{(1)} \otimes y^{(2)})
\]

\[
= \sum \mu^\L(S \otimes \text{id} \otimes \text{id})(\psi(x \otimes y^{(1)} \otimes y^{(2)})
\]

\[
= \sum \mu^\L(S \otimes \text{id} \otimes \text{id})(R_2 R'_2 \triangleright y^{(1)} \otimes R_1 x S(R'_1) \otimes y^{(2)}) \quad \text{by (43)}
\]

\[
= \sum \mu^\L(S(R_2 R'_2 \triangleright y^{(1)} \otimes R_1 x S(R'_1) \otimes y^{(2)})
\]

\[
= \sum \mu^\L(S(R_2 R'_2 \triangleright y^{(1)} \otimes R_1 x S(R'_1) \otimes y^{(2)})
\]

where \(\Delta(y) = \sum y^{(1)} \otimes y^{(2)}\). Using

\[
\sum y^{(1)} \otimes y^{(2)} = \sum (R'_2 \triangleright y^{(2)}) \otimes R'_1 y^{(1)},
\]

\[
S(w) = \sum S^{-1}(R''_2 \triangleright w) S(R''_1),
\]

we obtain

\[
\text{ad}^\L(x \otimes y) = \sum \sum S(R_2 R'_2 \triangleright y^{(1)} \otimes R_1 x S(R'_1) \otimes y^{(2)})
\]

\[
= \sum S^{-1}(R''_2 \triangleright (R_2 R'_2 \triangleright (R'_2 \triangleright y^{(2)}))) S(R''_1 \otimes R_1 x S(R'_1) \otimes R'_1 y^{(1)}
\]

\[
= \sum S^{-1}(R''_2 R'_2 R''_1 \triangleright y^{(2)}) S(R''_1 \otimes R_1 x S(R'_1) \otimes R'_1 y^{(1)}
\]

Since \(\sum R''_2 R'_2 S(R''_1) R_1 = \sum R''_2 R'_2 S(R'_1) R''_1 = R^{-1}_{21} R_{21} = 1 \otimes 1\), we obtain

\[
\text{ad}^\L(x \otimes y) = \sum S^{-1}(y^{(2)}) x y^{(1)} = S^{-1}(y) \triangleright x.
\]

This completes the proof of the lemma. \(\square\)

By Lemma 2.26 and \(\text{ad}(\mathcal{H} \hat{\otimes} \mathcal{X}) \subset \mathcal{X}\) we easily obtain

(44) \quad \text{ad}^\L(\mathcal{X} \hat{\otimes} \mathcal{H}) \subset \mathcal{X}.

Lemma 2.27. We have

(45) \quad \Upsilon(\mathcal{H} \hat{\otimes} \mathcal{X}) \subset \mathcal{X},

(46) \quad \Upsilon(\mathcal{X} \hat{\otimes} \mathcal{H}) \subset \mathcal{X}.

Proof. Using (40) and \(\text{ad}(\mathcal{H} \hat{\otimes} \mathcal{X}) \subset \mathcal{X}\), we have

\[
\Upsilon(\mathcal{H} \hat{\otimes} \mathcal{X}) = \mu(\text{ad} \otimes \text{id})(\text{id} \otimes S \otimes \text{id})(\text{id} \otimes \Delta)(\mathcal{H} \hat{\otimes} \mathcal{X})
\]

\[
\subset \mu(\text{ad} \otimes \text{id})(\text{id} \otimes S \otimes \text{id})(\mathcal{H} \hat{\otimes} \mathcal{X} \hat{\otimes} \mathcal{X})
\]

\[
\subset \mu(\text{ad} \otimes \text{id})(\mathcal{H} \hat{\otimes} \mathcal{X} \hat{\otimes} \mathcal{X})
\]

\[
\subset \mathcal{X}.
\]

Using (41) and (44), we can similarly check that \(\Upsilon(\mathcal{X} \hat{\otimes} \mathcal{H}) \subset \mathcal{X}\). \(\square\)
2.15.4. Borromean tangle.

Lemma 2.28. One has $b \in \mathcal{X}^{\otimes 3}$.

Proof. Since $\{c''(i) \mid i \in I\}$ is 0-convergent in \mathcal{H}, we have $c''(i) = h^{k_i} \tilde{c}''(i)$, where $\tilde{c}''(i) \in \mathcal{H}$ and for any $N \geq 0$ we have $k_i \geq N$ for all but finitely many i.

Recall that, by (39), we have

$$b = \sum_{i,j \in I} b_{i,j}, \quad \text{where} \quad b_{i,j} = c'(i) \otimes c'(j) \otimes \Upsilon(c''(i) \otimes c''(j)).$$

By (45) and (46), we have

$$\Upsilon(c''(i) \otimes c''(j)) = h^{k_i} \Upsilon(\tilde{c}''(i) \otimes c''(j)) \in h^{k_i} \mathcal{X},$$

$$\Upsilon(c''(i) \otimes c''(j)) = h^{k_j} \Upsilon(c''(i) \otimes \tilde{c}''(j)) \in h^{k_j} \mathcal{X},$$

respectively. Hence

$$\Upsilon(c''(i) \otimes c''(j)) \in h^{\max(k_i,k_j)} \mathcal{X}.$$

Since $c'(i), c'(j) \in \mathcal{X}$, the sum (47) defines an element of $\mathcal{X}^{\otimes 3}$. \qed

2.15.5. Proof of Proposition 2.23. It is clear that $1 \in \mathcal{X}^0 = \mathbb{C}[\hbar]$, $1 \in \mathcal{X}$, and $\mathcal{X}^{\otimes n} \otimes \mathcal{X}^{\otimes m} \subset \mathcal{X}^{\otimes n+m}$. By Proposition 2.25, each of $\mu, \psi^{\pm 1}, \Delta, S$ is $(\mathcal{X}^{\otimes n})$-admissible. By Lemma 2.28, $b \in \mathcal{X}^{\otimes 3}$. Hence by Proposition 2.14, $J_T \in \mathcal{X}^{\otimes n}$.

This completes the proof of Proposition 2.23 and also the proof of Theorem 2.22.

2.16. Integrality of J_M.

Theorem 2.29. Suppose \mathcal{X} is a core subalgebra of a topological ribbon Hopf algebra \mathcal{H} with the associate twist system $\mathcal{T}_\pm : \mathcal{X} \rightarrow \mathbb{C}[[\hbar]]$. Assume that there is a family of subsets $\tilde{K}_n \subset \mathcal{X}^{\otimes n}$, $n \geq 0$, such that

1. $\mathcal{X} \subset \tilde{K}_1$, $b \in \tilde{K}_3$, each of $\psi^{\pm 1}, \mu, \Delta, S$ is (\tilde{K}_n)-admissible, and $x \otimes y \in \tilde{K}_{n+m}$ for any $x \in \tilde{K}_n, y \in \tilde{K}_m$.

2. For any $\varepsilon_1, \ldots, \varepsilon_n \in \{\pm\},$

$$\left(\mathcal{T}_{\varepsilon_1} \otimes \cdots \otimes \mathcal{T}_{\varepsilon_n}\right)(\tilde{K}_n) \subset \tilde{K}_0.$$

Then the invariant J_M of integral homology 3-spheres has values in \tilde{K}_0.

Proof. Suppose T is an n-component bottom tangle T with zero linking matrix. By Proposition 2.14, Condition (AL1) implies that $J_T \in \mathcal{K}_n$. Condition (AL2) implies that

$$J_M = \left(\mathcal{T}_{\varepsilon_1} \otimes \cdots \otimes \mathcal{T}_{\varepsilon_n}\right)(J_T) \in \tilde{K}_0,$$

where $M = M(T; \varepsilon_1, \ldots, \varepsilon_n)$. \qed

In the paper we will construct a core subalgebra \mathcal{X} and a sequence of $\mathbb{Z}[q]$-submodules $\tilde{K}_n \subset \mathcal{X}^{\otimes n}$ satisfying the assumptions (AL1) and (AL2) of Theorem 2.29 for the quantized universal enveloping algebra (of a simple Lie algebra) with $\tilde{K}_0 = \mathbb{Z}[q]$. By Theorem 2.29, the corresponding invariant of integral homology 3-spheres takes values in $\mathbb{Z}[q]$. We then show that this invariant...
specializes to the Witten-Reshetikhin-Turaev invariant at roots of unity. In a sense, the \((\tilde{K}_n)\) form an integral version of the \((\mathcal{X}^\otimes n)\). The construction of the integral objects \(\tilde{K}_n\) is much more complicated than that of \(\mathcal{X}\).
3. Quantized enveloping algebras

In this section we present basic facts about the quantized enveloping algebras associated to a simple Lie algebra \(g \): the \(h \)-adic version \(U_h(g) \), the \(q \)-version \(U_q(g) \) and its simply-connected version \(\hat{U}_q(g) \). We discuss the well-known braid group actions, various automorphisms of \(U_q \), the universal \(R \)-matrix and ribbon structure, and Poincaré-Birkhoff-Witt bases. New materials include gradings on the quantized enveloping algebras in Section 3.3.2, the mirror automorphism \(\varphi \), and a calculation of the clasp element.

3.1. Quantized enveloping algebras \(U_h, U_q \), and \(\hat{U}_q \).

3.1.1. Simple Lie algebra. Suppose \(g \) is a finite-dimensional, simple Lie algebra over \(\mathbb{C} \) of rank \(\ell \). Fix a Cartan subalgebra \(h \) of \(g \) and a basis \(\Pi = \{ \alpha_1, \ldots, \alpha_\ell \} \) of simple roots in the dual space \(h^* \). Set \(h^*_R = R\Pi \subset h^* \). Let \(Y = \mathbb{Z}\Pi \subset h^*_R \) denote the root lattice, \(\Phi \subset Y \) the set of all roots, and \(\Phi_+ \subset \Phi \) the set of all positive roots. Denote by \(t \) the number of positive roots, \(t = |\Phi_+| \). Let \((\cdot, \cdot) \) denote the invariant inner product on \(h^*_R \) such that \((\alpha, \alpha) = 2 \) for every short root \(\alpha \). For \(\alpha \in \Phi \), set \(d_\alpha = (\alpha, \alpha)/2 \in \{1, 2, 3\} \). Let \(X \) be the weight lattice, i.e. \(X \subset h^*_R \) is the \(\mathbb{Z} \)-span of the fundamental weights \(\alpha_1, \ldots, \alpha_\ell \in h^*_R \), which are defined by \((\alpha_i, \alpha_j) = \delta_{ij}d_{\alpha_i} \).

For \(\gamma = \sum_{i=1}^{\ell} k_i \alpha_i \in Y \), let \(\text{ht}(\gamma) = \sum_{i} k_i \). Let \(\rho \) be the half-sum of positive roots, \(\rho = \frac{1}{2} \sum_{\alpha \in \Phi_+} \alpha \). It is known that \(\rho = \sum_{i=1}^{\ell} \alpha_i \).

We list all simple Lie algebras and their constants in Table 1.

\(A_\ell \)	\(B_\ell \)	\(C_\ell \)	\(D_\ell \)	\(E_6 \)	\(E_7 \)	\(E_8 \)	\(F_4 \)	\(G_2 \)	
\(d \)	1	2	2	1	1	1	2	3	
\(D \)	\(\ell + 1 \)	2	2	4	3	2	1	1	
\(h^\vee \)	\(\ell + 1 \)	\(2\ell - 1 \)	\(\ell + 1 \)	\(2\ell - 2 \)	12	18	30	9	4

Table 1. Constants \(d, D, h^\vee \) of simple Lie algebras

3.1.2. Base rings. Let \(v \) be an indeterminate, and set \(A := \mathbb{Z}[v^{\pm 1}] \subset \mathbb{C}(v) \). We regard \(A \) also as a subring of \(\mathbb{C}[[h]] \), with \(v = \exp(h/2) \). Set \(q = v^2 \).

Remark 3.1. We will follow mostly Janzen’s book [Ja]. However, our \(v \), \(q \) and \(h \) are equal to “\(q \)”, “\(q^2 \)” and “\(-h \)”, respectively, of [Ja]. Since \(q = v^2 \), one could avoid using either \(q \) or \(v \). We will use both \(q \) and \(v \) because on the one hand the use of half-integer powers of \(q \) would be cumbersome, and on the other hand we would like to stress that many constructions in quantized enveloping algebras can be done over \(\mathbb{Z}[q^{\pm 1}] \).

Denote by \(\mathbb{N} \) the set of non-negative integers. For every \(\alpha \in \Phi \), \(n, k \in \mathbb{N} \), set

\[
\begin{align*}
& v_\alpha := v^{d_\alpha}, \quad q_\alpha := q^{d_\alpha} = v_\alpha^2, \\
& [n]_\alpha := v_\alpha^n - v_\alpha^{-n}, \quad [n]_\alpha! := \prod_{i=1}^{n}[i]_\alpha, \quad \left[\begin{array}{c} n \\ k \end{array} \right]_\alpha := \prod_{i=1}^{k}[n - i + 1]_\alpha, \\
& \{n\}_\alpha := v_\alpha^n - v_\alpha^{-n}, \quad \{n\}_\alpha! := \prod_{i=1}^{n}\{i\}_\alpha.
\end{align*}
\]
When α is a short root, we sometimes suppress the subscript α in these expressions.

Recall that for $n \geq 0$ and for any element x in a $\mathbb{Z}[q]$-algebra,

$$(x; q)_n := \prod_{j=0}^{n-1} (1 - xq^j).$$

3.1.3. The algebra U_h. The quantized enveloping algebra $U_h = U_h(\mathfrak{g})$ is defined as the h-adically complete $\mathbb{C}[[h]]$-algebra, topologically generated by $E_\alpha, F_\alpha, H_\alpha$ for $\alpha \in \Pi$, subject to the relations

$$H_\alpha H_\beta = H_\beta H_\alpha,$$

$$H_\alpha E_\beta - E_\beta H_\alpha = (\alpha, \beta) E_\beta, \quad H_\alpha F_\beta - F_\beta H_\alpha = - (\alpha, \beta) F_\beta,$$

$$E_\alpha F_\beta - F_\beta E_\alpha = \delta_{\alpha\beta} \frac{K_\alpha - K_\beta^{-1}}{v_\alpha - v_\beta^{-1}}, \quad \text{where } K_\alpha = \exp(h\alpha/2),$$

$$\sum_{s=0}^r (-1)^s \left[\begin{array}{c} r \\ s \end{array} \right] E_\alpha^{-s} E_\beta E_\alpha^s = 0, \quad \text{where } r = 1 - (\beta, \alpha)/d_\alpha,$$

$$\sum_{s=0}^r (-1)^s \left[\begin{array}{c} r \\ s \end{array} \right] F_\alpha^{-s} F_\beta F_\alpha^s = 0, \quad \text{where } r = 1 - (\beta, \alpha)/d_\alpha.$$

We also write E_i, F_i, K_i respectively for $E_\alpha, F_\alpha, K_\alpha$, for $i = 1, \ldots, \ell$.

For every $\lambda = \sum_{\alpha \in \Pi} k_\alpha \alpha \in \mathfrak{h}_R^*$, define $H_\lambda = \sum_{\alpha} k_\alpha H_\alpha$ and $K_\lambda = \exp(\frac{1}{h} H_\lambda)$. In particular, one can define $K_\alpha := K_\alpha$, for $\alpha \in \Pi$.

3.1.4. Hopf algebra structure. The algebra U_h has a structure of a complete Hopf algebra over $\mathbb{C}[[h]]$, where the comultiplication, counit and antipode are given by:

$$\Delta(E_\alpha) = E_\alpha \otimes 1 + K_\alpha \otimes E_\alpha, \quad \epsilon(E_\alpha) = 0, \quad S(E_\alpha) = - K_\alpha^{-1} E_\alpha,$$

$$\Delta(F_\alpha) = F_\alpha \otimes K_\alpha^{-1} + 1 \otimes F_\alpha, \quad \epsilon(F_\alpha) = 0, \quad S(F_\alpha) = - F_\alpha K_\alpha,$$

$$\Delta(H_\alpha) = H_\alpha \otimes 1 + 1 \otimes H_\alpha, \quad \epsilon(H_\alpha) = 0, \quad S(H_\alpha) = - H_\alpha.$$

3.1.5. The algebra U_q and its simply-connected version \mathbf{U}_q. Let U_q denote the $\mathbb{C}(v)$-subalgebra of $U_h[h^{-1}] = U_h \otimes_{\mathbb{C}[[h]]} \mathbb{C}[h, h^{-1}]$ generated by E_α, F_α, and $K_\alpha^{\pm 1}$ for all $\alpha \in \Pi$. Alternatively, U_q is defined to be the $\mathbb{C}(v)$-subalgebra generated by the elements $K_\alpha, K_\alpha^{-1}, E_\alpha, F_\alpha$ ($\alpha \in \Pi$), with relations (51)–(53) and

$$K_\alpha K_\alpha^{-1} = K_\alpha^{-1} K_\alpha = 1,$$

$$K_\beta E_\alpha = v^{(\beta, \alpha)} E_\alpha K_\beta, \quad K_\beta F_\alpha = v^{- (\beta, \alpha)} F_\alpha K_\beta$$

for $\alpha, \beta \in \Pi$.

The algebra U_q inherits a Hopf algebra structure from $U_h[h^{-1}]$, where

$$\Delta(K_\alpha) = K_\alpha \otimes K_\alpha, \quad \epsilon(K_\alpha) = 1, \quad S(K_\alpha) = K_\alpha^{-1}. $$
Similarly, the simply-connected version \tilde{U}_q is the $\mathbb{C}(v)$-subalgebra of $U_h[h^{-1}]$ generated by E_α, F_α, and $K_\alpha^{\pm 1}$ for all $\alpha \in \Pi$. Again \tilde{U}_q is a $\mathbb{C}(v)$-Hopf algebra, which contains U_q as a Hopf subalgebra. Let U^0_q be the $\mathbb{C}(v)$-algebra generated by $K_\alpha^{\pm 1}, \alpha \in \Pi$. Then

$$U_q = U^0_q U_q.$$

The simply-connected version \tilde{U}_q has been studied in [DKP, Gav, Cal] in connection with quantum adjoint action and various duality results. We need the simply connected version $\tilde{U}_q(g)$ for a duality result, and also for the description of the R-matrix.

3.2. Automorphisms

There are unique h-adically continuous \mathbb{C}-algebra automorphisms $\iota_{\text{bar}}, \varphi, \omega$ of U_h defined by

$$\begin{align*}
\iota_{\text{bar}}(h) &= -h, & \iota_{\text{bar}}(H_\alpha) &= H_\alpha, & \iota_{\text{bar}}(E_\alpha) &= E_\alpha, & \iota_{\text{bar}}(F_\alpha) &= F_\alpha \\
\omega(h) &= h, & \omega(H_\alpha) &= -H_\alpha, & \omega(E_\alpha) &= F_\alpha, & \omega(F_\alpha) &= E_\alpha \\
\varphi(h) &= -h, & \varphi(H_\alpha) &= -H_\alpha, & \varphi(E_\alpha) &= -F_\alpha K_\alpha, & \varphi(F_\alpha) &= -K_\alpha^{-1} E_\alpha,
\end{align*}$$

and a unique h-adically continuous \mathbb{C}-algebra anti-automorphism τ defined by

$$\tau(h) = h, \quad \tau(H_\alpha) = -H_\alpha, \quad \tau(E_\alpha) = E_\alpha, \quad \tau(F_\alpha) = F_\alpha.$$

The map ι_{bar} is the bar operator of [Lu1], and τ, ω are the same τ, ω in [Ja]. All three are involutive, i.e. $\tau^2 = \iota_{\text{bar}}^2 = \omega^2 = \text{id}$. The restrictions of $\iota_{\text{bar}}, \varphi, \tau, \omega$ to $U_h \cap U_q$ naturally extend to maps from U_q to U_q, and we have

$$\begin{align*}
\tau(v) &= \omega(v) = v, & \tau(K_\alpha) &= \omega(K_\alpha) = K_\alpha^{-1}, \\
\iota_{\text{bar}}(v) &= v^{-1}, & \iota_{\text{bar}}(K_\alpha) &= K_\alpha^{-1}, \\
\varphi(v) &= v^{-1}, & \varphi(K_\alpha) &= K_\alpha.
\end{align*}$$

Unlike $\iota_{\text{bar}}, \tau, \omega$, the map φ is a \mathbb{C}-Hopf algebra homomorphism:

Proposition 3.2. The \mathbb{C}-algebra automorphism φ commutes with S and Δ, i.e.

$$\varphi S = S \varphi, \quad (\varphi \hat{\otimes} \varphi) \Delta = \Delta \varphi.$$

Besides $\varphi = \iota_{\text{bar}} \tau \omega S = S \iota_{\text{bar}} \tau \omega$, and

$$\varphi^2(x) = S^2(x) = K_{-2\mu} x K_{2\mu}.$$

Proof. All the statements can be easily checked on generators $h, H_\alpha, E_\alpha, F_\alpha$. \hfill \Box

3.3. Gradings by root lattice

3.3.1. Y-grading

There are Y-gradings on U_h and U_q defined by

$$|E_\alpha| = \alpha, \quad |F_\alpha| = -\alpha, \quad |H_\alpha| = |K_\alpha| = 0.$$

For a subset $A \subset U_h$, denote by $A_\mu, \mu \in Y$, the set of all elements of Y-grading μ in A.

We frequently use the following simple fact: If x is Y-homogeneous and $\beta \in Y$, then

$$K_\beta x = v(\beta, \alpha) \alpha x K_\beta.$$

In the language of representation theory, $x \in U_h$ has Y-grading $\beta \in Y$ if and only if it is an element of weight β in the adjoint representation of U_h.

3.3.2. \((Y/2Y)\)-grading and the even part of \(U_q\).

Proposition 3.3. There is a unique \((Y/2Y)\)-grading on the \(\mathbb{C}(v)\)-algebra \(U_q\) satisfying

\[
\deg(K_\alpha) \equiv \alpha, \quad \deg(E_\alpha) \equiv 0, \quad \deg(F_\alpha) \equiv \alpha \pmod{2Y}
\]

for \(\alpha \in \Pi\).

Proof. Using the defining relations (51)-(55) for \(U_q\), one checks that the \((Y/2Y)\)-grading is well defined. \(\square\)

The degree 0 part of \(U_q\) in the \((Y/2Y)\)-grading, which is generated by \(K_\alpha^{\pm 2}\), \(E_\alpha\), and \(F_\alpha K_\alpha\) for \(\alpha \in \Pi\), is called the even part of \(U_q\) and denoted by \(U_q^{ev}\). Elements of \(U_q^{ev}\) are said to be even.

For each \(\alpha \in Y\), the degree \((\alpha \mod 2Y)\) part of \(U_q\) is \(K_\alpha U_q^{ev}\).

Lemma 3.4. (a) Suppose \(\mu \in Y\). Let \((U_q^{ev})_\mu\) be the grading \(\mu\) part of \(U_q^{ev}\). Then

\[
S((U_q^{ev})_\mu) \subset K_\mu U_q^{ev}, \\
\Delta((U_q^{ev})_\mu) \subset \bigoplus_{\lambda \in Y} K_\lambda (U_q^{ev})_{\mu-\lambda} \otimes (U_q^{ev})_\lambda.
\]

In particular, \(\Delta(U_q^{ev}) \subset U_q \otimes U_q^{ev}\).

(b) The adjoint action preserves the even part, i.e. \(U_q \triangleright U_q^{ev} \subset U_q^{ev}\).

(c) Each of \(\bar{\tau}\), \(\tau\), and \(\varphi\) leaves \(U_q^{ev}\) stable, i.e. \(f(U_q^{ev}) \subset U_q^{ev}\) for \(f = \bar{\tau}, \tau, \varphi\).

Proof. (a) Suppose \(x \in (U_q^{ev})_\mu\). We have to show that

\[
S(x) \in K_\mu U_q^{ev}, \\
\Delta(x) \in \bigoplus_{\lambda \in Y} K_\lambda (U_q^{ev})_{\mu-\lambda} \otimes (U_q^{ev})_\lambda.
\]

If the statements hold for \(x = x_1 \in (U_q^{ev})_{\mu_1}\) and \(x = x_2 \in (U_q^{ev})_{\mu_2}\), then they holds for \(x = x_1 x_2 \in (U_q^{ev})_{\mu_1 + \mu_2}\). Since \(U_q^{ev}\) is generated as an algebra by \(K_\alpha^{\pm 2} \in (U_q^{ev})_0\), \(E_\alpha \in (U_q^{ev})_\alpha\), and \(F_\alpha K_\alpha \in (U_q^{ev})_{-\alpha}\), it is enough to prove the statements when \(x\) is one of \(K_\alpha^{\pm 2}, E_\alpha\), or \(F_\alpha K_\alpha\). For these special values of \(x\), the explicit formulas of \(S(x)\) and \(\Delta(x)\) are given in subsection 3.1.4, from which the statements follow immediately.

(b) For \(x \in U_q\), we have the following explicit formula for the adjoint actions

\[
K_\alpha \triangleright x = K_\alpha x K_\alpha^{-1} \\
E_\alpha \triangleright x = E_\alpha x - K_\alpha x K_\alpha^{-1} E_\alpha \\
F_\alpha \triangleright x = (F_\alpha x - x F_\alpha) K_\alpha.
\]

(59)

If \(x\) is even, then all the right hand sides of the above are even. Since \(U_q\) is generated by \(K_\alpha, E_\alpha, F_\alpha\), we have \(U_q \triangleright U_q^{ev} \subset U_q^{ev}\).

(c) One can check directly that each of \(\bar{\tau}, \tau, \varphi\) maps any of the generators \(K_\alpha^{\pm 2}, E_\alpha, F_\alpha K_\alpha\) of \(U_q^{ev}\) to an element of \(U_q^{ev}\). \(\square\)

Remark 3.5. In Section 6, we refine the \(Y/2Y\)-grading of the \(\mathbb{C}(v)\)-algebra \(U_q\) to a grading of the \(\mathbb{C}(v)\)-algebra \(U_q\) by a noncommutative \(\mathbb{Z}/2\mathbb{Z}\)-extension of \(Y/2Y\).
3.5. Braid group action.

By (56), $\hat{U}_q = \hat{U}_q^0 U_q$, where $\hat{U}_q^0 = \mathbb{C}(v)[\hat{K}_1^{\pm 1}, \ldots, \hat{K}_\ell^{\pm 1}]$. Here we set $\hat{K}_i = \hat{K}_\alpha_i$ for $i = 1, \ldots, \ell$. Let $\hat{U}_q^{ev,0} = \mathbb{C}(v)[\hat{K}_1^{\pm 2}, \ldots, \hat{K}_\ell^{\pm 2}]$ and

$$\hat{U}_q^{ev} := \hat{U}_q^{ev,0} U_q^{ev}.$$

Lemma 3.6. One has $\hat{U}_q^{ev} \supset \hat{U}_q^{ev,0} \subset \hat{U}_q^{ev}$ and $\hat{U}_q^{even} \supset U_q^{even}$.

Proof. The proof is similar to that of Lemma 3.4(b). \(\square\)

3.4. Triangular decompositions and their even versions. Let U_h^+ (resp. U_h^-, U_h^0) be the h-adically closed $\mathbb{C}[[h]]$-subalgebra of U_h topologically generated by E_α (resp. F_α, H_α) for $\alpha \in \Pi$.

Let U_q^+ (resp. U_q^-, U_q^0) denote the $\mathbb{C}(v)$-subalgebra of U_q generated by E_α (resp. F_α, $K_\alpha^{\pm 1}$) for $\alpha \in \Pi$.

It is known that the multiplication map

$$U_q^- \otimes U_q^0 \otimes U_q^+ \rightarrow U_q, \quad x \otimes x' \otimes x'' \mapsto xx'x''$$

is an isomorphism of $\mathbb{C}(v)$-vector spaces. This fact is called the triangular decomposition of U_q.

Similarly,

$$U_h^- \otimes U_h^0 \otimes U_h^+ \rightarrow U_h, \quad x \otimes x' \otimes x'' \mapsto xx'x''$$

is an isomorphism of $\mathbb{C}[[h]]$-modules. These triangular decompositions descend to various subalgebras of U_q and U_h which we will introduce later.

We need also an even version of triangular decomposition for U_q^{even}. Although $U_q^+ \subset U_q^{even}$, the negative part U_q^- is not even.

Let $U_q^{even,-} := \varphi(U_q^+)$, which is the $\mathbb{C}(v)$-subalgebra of U_q^{even} generated by $F_\alpha K_\alpha = -\varphi(E_\alpha)$, $\alpha \in \Pi$. Then $U_q^{even,-} \subset U_q^{even}$. Let $U_q^{even,0}$ be the even part of U_q^{even}, i.e.

$$U_q^{even,0} := U_q^{even} \cap U_q^0 = \mathbb{C}(v)[K_1^{\pm 2}, \ldots, K_\ell^{\pm 2}]$$

Using (58), we obtain the following isomorphisms of vector spaces

\begin{align*}
(60) \quad U_q^{even,-} \otimes U_q^0 \otimes U_q^+ & \rightarrow U_q, \quad x \otimes y \otimes z \mapsto xyz. \\
(61) \quad U_q^{even,-} \otimes U_q^{even,0} \otimes U_q^+ & \rightarrow U_q^{even}, \quad x \otimes y \otimes z \mapsto xyz. \\
(62) \quad U_h^{even,-} \otimes U_h^0 \otimes U_h^+ & \rightarrow U_h^{even}, \quad x \otimes y \otimes z \mapsto xyz.
\end{align*}

where we set $U_h^{even,-} = \varphi(U_h^+)$, which is the h-adically closed $\mathbb{C}[[h]]$-subalgebra of U_h topologically generated by $F_\alpha K_\alpha$, $\alpha \in \Pi$. We call (60), (61), and (62) respectively the even triangular decomposition of U_q^{even}, U_q^{even}, and U_h.

3.5. Braid group action.
3.5.1. Braid group and Weyl group. The braid group for the root system Φ has the presentation with generators T_α for $\alpha \in \Pi$ and with relations
\[
T_\alpha T_\beta = T_\beta T_\alpha \quad \text{for } \alpha, \beta \in \Pi, (\alpha, \beta) = 0,
\]
\[
T_\alpha T_\beta T_\alpha = T_\beta T_\alpha T_\beta \quad \text{for } \alpha, \beta \in \Pi, (\alpha, \beta) = -1,
\]
\[
T_\alpha T_\beta T_\alpha T_\beta = T_\beta T_\alpha T_\beta T_\alpha \quad \text{for } \alpha, \beta \in \Pi, (\alpha, \beta) = -2,
\]
\[
T_\alpha T_\beta T_\alpha T_\beta T_\alpha T_\beta T_\alpha = T_\beta T_\alpha T_\beta T_\alpha T_\beta T_\alpha \quad \text{for } \alpha, \beta \in \Pi, (\alpha, \beta) = -3.
\]

The Weyl group W of Φ is the quotient of braid group by the relations $T_\alpha^2 = 1$ for $\alpha \in \Pi$. We denote the generator in W corresponding to T_α by s_α. We set $T_i = T_{\alpha_i}$, $s_i = s_{\alpha_i}$ for $i = 1, \ldots, \ell$.

Suppose $i = (i_1, \ldots, i_t)$ with $i_j \in \{1, 2, \ldots, \ell\}$. Let $w(i) = s_{i_1}s_{i_2} \cdots s_{i_k} \in W$. If there is no shorter sequence j such that $w(i) = w(j)$, then we say that the sequence i is reduced, and $w(i)$ has length k. It is known that the length of any reduced sequence is less than or equal to $t := |\Phi_+|$, the number of positive roots of \mathfrak{g}. A sequence i is called longest reduced if i is reduced and has length t. There is a unique element $w_0 \in W$ such that for any longest reduced sequence i one has $w(i) = w_0$.

3.5.2. Braid group action. As described in [Ja, Chapter 8], there is an action of the braid group on the $C(v)$-algebra U_q. For $\alpha \in \Pi$, $T_\alpha : U_q \to U_q$ is $C(v)$-algebra automorphism defined by
\[
T_\alpha(K_\gamma) = K_{s_\alpha(\gamma)}, \quad T_\alpha(E_\alpha) = -F_\alpha K_\alpha, \quad T_\alpha(F_\alpha) = -K_\alpha^{-1}E_\alpha,
\]
\[
T_\alpha(E_\beta) = \sum_{i=0}^r (-1)^r v_\alpha^{-i} E_\alpha^{(r-i)} E_\beta E_\alpha^{(i)}, \quad \text{with } r = -(\beta, \alpha)/d_\alpha,
\]
\[
T_\alpha(F_\beta) = \sum_{i=0}^r (-1)^r v_\alpha^{j} F_\alpha^{(i)} F_\beta F_\alpha^{(r-i)}, \quad \text{with } r = -(\beta, \alpha)/d_\alpha,
\]
where $\gamma \in Y$, $\beta \in \Pi \setminus \{\alpha\}$. The restriction of T_α to $U_q \cap U_h$ extends to a continuous $C[[h]]$-algebra automorphism T_α of U_h by setting
\[
T_\alpha(H_\gamma) = H_{s_\alpha(\gamma)} \quad \text{for } \gamma \in Y.
\]

Remark 3.7. Our T_α is the same as T_α of [Ja]. Our $T_i = T_{\alpha_i}$ is $T_{i,1}$ of [Lu1], or $\tilde{T}_{i,-1}$ of [Lu3].

One can easily check that
\[
T_\alpha^{\pm 1}(K_\beta U_q^{ev}) \subset K_{s_\alpha(\beta)} U_q^{ev}.
\]
for $\alpha \in \Pi$, $\beta \in Y$. In particular, the even part U_q^{ev} is stable under $T_\alpha^{\pm 1}$. Thus, we have

Proposition 3.8. The even part U_q^{ev} is stable under the action of the braid group.

3.6. PBW type bases.

3.6.1. Root vectors. Suppose $i = (i_1, \ldots, i_t)$ is a longest reduced sequence. For $j \in \{1, \ldots, t\}$, set
\[
\gamma_j = \gamma_j(i) := s_{i_1}s_{i_2} \cdots s_{i_{j-1}}(\alpha_{i_j}).
\]
It is known that $\gamma_1, \ldots, \gamma_t$ are distinct positive roots and $\{\gamma_1, \ldots, \gamma_t\} = \Phi_+$. The elements
\[
E_{\gamma_j}(i) := T_{\alpha_{i_1}} T_{\alpha_{i_2}} \cdots T_{\alpha_{i_{j-1}}} (E_{\alpha_{i_j}}), \quad F_{\gamma_j}(i) := T_{\alpha_{i_1}} T_{\alpha_{i_2}} \cdots T_{\alpha_{i_{j-1}}} (F_{\alpha_{i_j}})
\]
are called root vectors corresponding to \(i \). The \(Y \)-grading of the root vectors are \(|E_{\gamma_j}(i)| = \gamma_j = -|F_{\gamma_j}(i)| \). It is known that \(E_{\gamma_j}(i) \in U_q^+ \) and \(F_{\gamma_j}(i) \in U_q^- \).

In general, \(E_{\gamma_j}(i) \) and \(F_{\gamma_j}(i) \) depend on \(i \), but if \(\gamma_j \) is a simple root, i.e. \(\gamma_j = \alpha \in \Pi \), then we have \(E_{\gamma_j}(i) = E_\alpha, F_{\gamma_j}(i) = F_\alpha \).

3.6.2. PBW type bases. Fix a longest reduced sequence \(i \). In what follows, we often suppress \(i \) and write \(E_\gamma = E_\gamma(i), F_\gamma = F_\gamma(i) \) for all \(\gamma \in \Phi_+ \).

The divided powers \(E_\gamma^{(n)}, F_\gamma^{(n)} \) for \(\gamma \in \Phi_+, n \geq 0 \) are defined by:

\[
E_\gamma^{(n)} := E_\gamma/[n]_\gamma!, \quad F_\gamma^{(n)} = F_\gamma/[n]_\gamma!.
\]

Recall that \(\mathbb{N} \) is the set of non-negative integers. For \(n \in \mathbb{N}^t \), define

\[
F^{(n)} = \prod_{\gamma_j \in \Phi_+} F_{\gamma_j}^{(n_j)}, \quad E^{(n)} = \prod_{\gamma_j \in \Phi_+} E_{\gamma_j}^{(n_j)}.
\]

Here \(\prod_{\gamma_j \in \Phi_+} \) means to take the product in the reverse order of \((\gamma_1, \gamma_2, \ldots, \gamma_t)\). For example,

\[
F^{(n)} = \prod_{\gamma_j \in \Phi_+} F_{\gamma_j}^{(n_j)} = F_{\gamma_1}^{(n_1)} F_{\gamma_2}^{(n_2-1)} \cdots F_{\gamma_t}^{(n_t)}.
\]

The set \(\{E^{(n)} | n \in \mathbb{N}^t\} \) is a basis of the \(\mathbb{C}(v) \)-vector space \(U_q^+ \), and a topological basis of \(U_h \).

Similarly, the set \(\{F^{(n)} | n \in \mathbb{N}^t\} \) is a basis of \(U_q^- \) and a topological basis of \(U_h^- \).

On the other hand, \(\{K_\gamma | \gamma \in Y\} \) is a \(\mathbb{C}(v) \)-basis of \(U_q^0 \) and \(\{H^k | k \in \mathbb{N}^t\} \), where \(H^k = \prod_{j=1}^t H_j^{k_j} \) for \(k = (k_1, \ldots, k_t) \), is a topological basis of \(U_h \).

Combining these bases and using the even triangular decompositions (60)–(62), we get the following proposition, which describes the Poincaré-Birkhoff-Witt bases of \(U_q, U_q^0, U_h \):

Proposition 3.9. For any longest reduced sequence \(i \),

\[
\{F^{(m)} K_{\gamma} E^{(n)} | m, n \in \mathbb{N}^t, \gamma \in Y\} \text{ is a } \mathbb{C}(v) \text{-basis for } U_q
\]

\[
\{F^{(m)} K_{\gamma}^2 E^{(n)} | m, n \in \mathbb{N}^t, \gamma \in Y\} \text{ is a } \mathbb{C}(v) \text{-basis for } U_q^0
\]

\[
\{F^{(m)} K_{\gamma} H^k E^{(n)} | m, n \in \mathbb{N}^t, k \in \mathbb{N}^t\} \text{ is a topological basis for } U_h,
\]

where

\[
K_n := \prod_{j=1}^t K_{\gamma_j}^{n_j} = K_{-|F^{(n)}} \text{ for } n = (n_1, \ldots, n_t) \in \mathbb{N}^t.
\]

3.7. R-matrix.

3.7.1. Quasi-R-matrix. Fix a longest reduced sequence \(i \). Recall that \(\{k\}_\alpha = v_\alpha^k - v_\alpha^{-k} \).

The quasi-R-matrix \(\Theta \in U_h^\otimes 2 \) is defined by (see [Ja, Lu1])

\[
\Theta = \sum_{n \in \mathbb{N}^t} F_n \otimes E_n.
\]
where for \(n = (n_1, \ldots, n_t) \in \mathbb{N}^t \),

\[
E_n := E^{(n)} = \prod_{j=1}^t \{n_j\}! \prod_{\alpha \in \Phi_+} (v_{\gamma_j} - v_{\gamma_j}^{-1})^{n_j},
\]

\[
F_n := F^{(n)} = \prod_{j=1}^t (-1)^{n_j} v_{\gamma_j}^{-n_j(n_j-1)/2} \prod_{\alpha \in \Phi_+} (-1)^{n_j} v_{\gamma_j}^{-n_j(n_j-1)/2} F_{\gamma_j}^{(n)}.
\]

It is known that \(\Theta \) does not depend on \(i \), and

\[
\Theta^{-1} = (t_{\text{bar}} \otimes t_{\text{bar}})(\Theta) = \sum_{n \in \mathbb{N}^t} F'_n \otimes E'_n
\]

where

\[
F'_n = t_{\text{bar}}(F_n), \quad E'_n = t_{\text{bar}}(E_n).
\]

3.7.2. Universal R-matrix and ribbon element. Define an inner product on \(\mathfrak{h}_R = \text{Span}_{\mathbb{R}}\{H_\alpha \mid \alpha \in \Pi\} \) by \((H_\alpha, H_\beta) = (\alpha, \beta) \). Recall that \(\alpha \)'s are the fundamental weights. Let \(\hat{H}_\alpha = H_\alpha \). Then \(\{\hat{H}_\alpha/d_\alpha, \alpha \in \Pi\} \) is dual to \(\{H_\alpha, \alpha \in \Pi\} \) with respect to the inner product, i.e. \((H_\alpha, \hat{H}_\beta/d_\beta) = \delta_{\alpha,\beta} \) for \(\alpha, \beta \in \Pi \). Define the diagonal part, or the Cartan part, of the R-matrix by

\[
\mathcal{D} = \exp \left(\frac{\hbar}{2} \sum_{\alpha \in \Pi} (H_\alpha \otimes \hat{H}_\alpha/d_\alpha) \right) \in (U_h)_{\otimes 2}.
\]

We have \(\mathcal{D} = \mathcal{D}_{21} \), where \(\mathcal{D}_{21} \in (U_h^0)_{\otimes 2} \) is obtained from \(\mathcal{D} \) by permuting the first and the second tensorands.

A simple calculation shows that, for \(Y \)-homogeneous \(x, y \in U_h \), we have

\[
\mathcal{D}(x \otimes y)\mathcal{D}^{-1} = x K_{|y|} \otimes K_{|x|} y.
\]

The universal R-matrix and its inverse are given by

\[
\mathcal{R} = \mathcal{D} \Theta^{-1}, \quad \mathcal{R}^{-1} = \Theta \mathcal{D}^{-1},
\]

Note that our R-matrix is the inverse of the R-matrix in [Ja].

The quasitriangular Hopf algebra \((U_h, \mathcal{R})\) has a ribbon element \(r \) whose corresponding balanced element (see Section 2.2) is given by \(\mathfrak{g} = K_{-2\rho} \). For \(Y \)-homogeneous \(x \in U_h \) we have

\[
S^2(x) = K_{-2\rho} x K_{2\rho} = q^{-(\rho,|x|)} x.
\]

With \(\mathcal{R} = \sum \mathcal{R}_1 \otimes \mathcal{R}_2 \), the ribbon element and its inverse are given by

\[
r = \sum S(\mathcal{R}_1) K_{-2\rho} \mathcal{R}_2, \quad r^{-1} = \sum \mathcal{R}_1 K_{2\rho} \mathcal{R}_2 = \sum \mathcal{R}_2 K_{-2\rho} \mathcal{R}_1.
\]

One has \(r = J_T \) and \(r^{-1} = J_{T'} \), where \(T \) and \(T' \) are the bottom tangles in Figure 13.

Using (65) and (71), we obtain

\[
r = \sum_{n \in \mathbb{N}^t} F_n K_n r_0 E_n, \quad r^{-1} = \sum_{n \in \mathbb{N}^t} F'_n K_n^{-1} r_0^{-1} E'_n.
\]
where K_n is given by (64) and
\[
 r_0 := K_{-2\rho} \mu(D^{-1}) = K_{-2\rho} \exp\left(-\frac{h}{2} \sum_{\alpha \in \Pi} H_{\alpha} \tilde{H}_{\alpha}/d_\alpha\right).
\]
We also have
\[
 S(r) = \overline{S}(r) = r.
\]

3.8. Mirror homomorphism φ. We defined the \mathbb{C}-algebra homomorphism φ in Section 3.2.

Proposition 3.10. The \mathbb{C}-automorphism φ is a mirror homomorphism for U_h, i.e.
\[
 (\varphi \hat{\otimes} \varphi) (\mathcal{R}) = (\mathcal{R}^{-1})_{21}.
\]

Consequently, if T' is the mirror image of an n-component bottom tangle T, then $J_{T'} = \varphi \otimes^n (J_T)$.

Proof. Identity (75) is part of the definition of φ. One could prove the other two (76) and (77) by direct calculations. Here is an alternative proof using known identities.

By Proposition 3.2, $\varphi = \iota_{\text{bar}} \tau \omega S$. Hence (76) follows from the following four known identities:

\[
 (S \hat{\otimes} S)(\mathcal{R}) = \mathcal{R} \quad \text{by property of R-matrix, Equ. (10)}
\]
\[
 (\tau \hat{\otimes} \tau)(\mathcal{D}) = (\mathcal{D}^{-1}) \quad \text{by [Ja, 7.1(2)]}
\]
\[
 (\omega \hat{\otimes} \omega)(\mathcal{D}^{-1}) = \Theta_{21}^{-1} \mathcal{D} \quad \text{by [Ja, 7.1(3)]}
\]
\[
 (\iota_{\text{bar}} \hat{\otimes} \iota_{\text{bar}})(\Theta_{21}^{-1} \mathcal{D}) = (\Theta_{21}^{-1} \mathcal{D})^* = \mathcal{R}_{21}^{-1} \quad \text{by (68)}.
\]

Identity (77) follows from (57) and (10):
\[
 (\varphi^2 \hat{\otimes} \varphi^2)(\mathcal{R}) = (S^2 \otimes S^2)(\mathcal{R}) = \mathcal{R}.
\]

This shows φ is a mirror homomorphism. By Proposition 2.6, $J_{T'} = \varphi \otimes^n (J_T)$. □

Because the negative twist is the mirror image of the positive one, we have the following.

Corollary 3.11. One has $\varphi(r) = r^{-1}$.

Figure 13. Tangles T (left) and T' determining the ribbon element r and its inverse
3.9. **Clasp element and quasi-clasp element.** Here we calculate explicitly the value of the clasp element \(c = J_{C^+} \in U_h \otimes U_h \), which is the universal invariant of the clasp tangle \(C^+ \) of Figure 5. Recall that we have defined \(E_n, F_n, \) and \(D \) in Section 3.7. We call

\[
\Gamma := cD^2
\]

the **quasi-clasp element**. Like the quasi-\(R \)-matrix, the quasi-clasp element enjoy better integrality than the clasp element itself.

Lemma 3.12. Fix a longest reduced sequence \(i \). We have

\[
c = \sum_{m,n \in \mathbb{N}} q^{-\rho(|E_n|)} (F_mK_m \otimes F_nK_n) (D^{-2}) (E_n \otimes E_m)
\]

(79)

\[
\Gamma = \sum_{m,n \in \mathbb{N}} q^{-\rho(|E_n|)-(|E_m|,|E_n|)} (F_mK_m^{-1}E_n \otimes F_nK_n^{-1}E_m)
\]

(80)

\[
c = (\varphi \otimes S^{-1}\varphi)(c).
\]

(81)

Proof. Let \(D^{-2} = \sum (D^{-2})_1 \otimes (D^{-2})_2 \), and \(\mathcal{R}^{-1} = \sum \mathcal{R}_1 \otimes \mathcal{R}_2 = \sum \mathcal{R}_1' \otimes \mathcal{R}_2' \). By (21), we obtain

\[
c = \sum S(\mathcal{R}_1)S(\mathcal{R}_2') \otimes \mathcal{R}_1' \mathcal{R}_2
\]

\[
= \sum \mathcal{R}_1 S^2(\mathcal{R}_2') \otimes \mathcal{R}_1' \mathcal{R}_2.
\]

We have

\[
\mathcal{R}^{-1} = \Theta D^{-1} = \sum_{m \in \mathbb{N}} F_m(D^{-1})_1 \otimes E_m(D^{-1})_2 = \sum_{m \in \mathbb{N}} F_m K_m(D^{-1})_1 \otimes (D^{-1})_2 E_m.
\]

Using this and (72), we obtain

\[
c = \sum_{m,n \in \mathbb{N}} F_mK_m(D^{-2})_1 S^2(E_n) \otimes F_nK_n(D^{-2})_2 E_m,
\]

which is (79). Identity (80) follows from (79), via (70).

Since \(C^- \) is the mirror image of \(C^+ \), by Proposition 3.10, \(c^- = (\varphi \otimes \varphi)(c) \), which, together with (22), gives (81).

From [Maj2, Proposition 2.1.14], one has

\[
(id \otimes S^2)(c) = c_{21}.
\]

(82)
4. Core subalgebra of $U_{\sqrt{h}}$ and quantum Killing form

In this section we construct a core subalgebra X_h of the ribbon Hopf algebra

$$U_{\sqrt{h}} := U_h \hat{\otimes}_{C[[h]]} C[[\sqrt{h}]],$$

which is the extension of U_h when the ground ring is $C[[\sqrt{h}]]$. We will use the Drinfel’d dual V_h of U_h to construct X_h. To show that X_h is a Hopf algebra we use a stability principle established in Section 4.3, which also finds applications later. We then discuss the clasp form of X_h which turns out to coincide with the well-known quantum Killing form (or Rosso form) when restricted to U_q. Thus, we get a geometric interpretation of the quantum Killing form.

4.1. A dual of U_h. Fix a longest reduced sequence i. For $n = (n_1, \ldots, n_k) \in \mathbb{N}^k$ let

$$\|n\| = \sum_{j=1}^{k} n_j.$$

Let us recall the topological basis of U_h described in Proposition 3.9. For $n = (n_1, n_2, n_3) \in \mathbb{N}^t \times \mathbb{N}^t \times \mathbb{N}^t$, let

$$e_h(n) = F^{(n_1)}K_{n_1}H^{n_2}E^{(n_3)},$$

where $F^{(n_1)}, K_{n_1}, H^{n_2}, E^{(n_3)}$ are defined in Section 3.6.2. By Proposition 3.9,

$$\{e_h(n) \mid n \in \mathbb{N}^{t+t+t}\}$$

is a topological basis of U_h.

Let V_h be closure (in the h-adic topology of U_h) of the $C[[h]]$-span of the set (83)

$$\{h^{|n|}e_h(n) \mid n \in \mathbb{N}^{t+t+t}\}.$$

Then V_h is a formal series $C[[h]]$-module, having the above set (83) as a formal basis. (See Example 2.2 of Section 2.1.) Every $x \in V_h$ has a unique presentation of the form

$$x = \sum_{n \in \mathbb{N}^{t+t+t}} x_n \left(h^{|n|}e_h(n)\right)$$

where $x_n \in C[[h]]$. The map $x \to (x_n)_{n \in I}$ is a $C[[h]]$-module isomorphism between V_h and $C[[h]]^I$, with $I = \mathbb{N}^{t+t+t}$.

In the terminology of Drinfel’d [Dr], V_h is a “quantized formal series Hopf algebra” (QFSH-algebra), see also [CP]. As part of his duality principle, Drinfel’d associates a QFSH-algebra to every so-called “quantum universal enveloping algebra” (QUE-algebra). Gavarini [Gav] gave a detailed treatment of this duality, and showed that the above defined V_h is the QFSH-algebra associated to U_h, which is a QUE-algebra.

For $n \geq 0$ let $V_h^{\otimes n}$ be the topological closure of $V_h^{\otimes n}$ in $U_h^{\otimes n}$. Then $V_h^{\otimes n}$ is the n-th tensor power of V_h in the category of QFSH-algebras, see [Gav, Section 3.5]. The result of Drinfel’d, proved in details by Gavarini [Gav], says that V_h is a Hopf algebra in the category of QFSH-algebras, where the Hopf algebra structure of V_h is the restriction of the Hopf algebra structure of U_h. Thus, we have the following.

Proposition 4.1. One has

$$\mu(V_h^{\otimes 2}) \subset V_h, \quad \Delta(V_h) \subset V_h^{\otimes 2}, \quad S(V_h) \subset V_h.$$
For completeness, we give an independent proof of Proposition 4.1 in Appendix A. Yet another proof can be obtained from Proposition 5.10.

Proposition 4.2. Fix a longest reduced sequence i. Then \mathbf{V}_h is the topological closure (in the h-adic topology of \mathbf{U}_h) of the $\mathbb{C}[[h]]$-algebra generated by $hH_\alpha, hF_\gamma(i), hE_\gamma(i)$ with $\alpha \in \Pi, \gamma \in \Phi_+$.

Proof. Let \mathbf{V}'_h be the topological closure (in the h-adic topology of \mathbf{U}_h) of the $\mathbb{C}[[h]]$-algebra generated by $hH_\alpha, hF_\gamma, hE_\gamma$ with $\alpha \in \Pi, \gamma \in \Phi_+$. One can easily check $K_\gamma \in \mathbf{V}'_h$ for $\gamma \in \gamma$. The set $\{h^{[n]}e_h(n) \mid n \in \mathbb{N}^{t+\ell+t}\}$ is a formal basis of \mathbf{V}_h.

When $n = (n_1, \ldots, n_{t+\ell+t}) \in \mathbb{N}^{t+\ell+t}$ is such that all $n_j = 0$ except for one which is equal to 1, then the basis element $h^{[n]}e_h(n)$ is one of $hH_\alpha, hF_\gamma, hE_\gamma$. It follows that $hH_\alpha, hF_\gamma, hE_\gamma \in \mathbf{V}_h$, and hence $\mathbf{V}'_h \subset \mathbf{V}_h$.

From the definition of $e_h(n)$, for any $n = (m, k, u) \in \mathbb{N}^t \times \mathbb{N}^\ell \times \mathbb{N}^t$,

$$h^{[n]}e_h(n) = a \prod_{\gamma_j \in \Phi_+} (hF_{\gamma_j})^{m_j} \prod_{k_j \in \Phi_+} \prod_{j=1}^\ell (hH_j)^{k_j} \prod_{\gamma_j \in \Phi_+} (hE_{\gamma_j})^{u_j},$$

where $m = (m_1, \ldots, m_\ell), k = (k_1, \ldots, k_\ell), u = (u_1, \ldots, u_\ell)$ and

$$a = \frac{1}{\prod_{j=1}^\ell ([m_j]_{\gamma_j}! [u_j]_{\gamma_j}!)}$$

is a unit in $\mathbb{C}[[h]]$. Since the right hand side of (84) is in \mathbf{V}_h, we have $\mathbf{V}_h \subset \mathbf{V}_h$. Thus, $\mathbf{V}_h = \mathbf{V}'_h$.

4.2. Ad-stability and φ-stability of \mathbf{V}_h. Recall that we defined the left image of an element $x \in \mathbf{U}_h \hat{\otimes} \mathbf{U}_h$ in Section 2.3.

Proposition 4.3. The module \mathbf{V}_h is the left image of the clasp element c in $\mathbf{U}_h \hat{\otimes} \mathbf{U}_h$. Moreover, \mathbf{V}_h is ad-stable, i.e. $\mathbf{U}_h \triangleright \mathbf{V}_h \subset \mathbf{V}_h$.

Proof. For $n = (n_1, n_2, n_3) \in \mathbb{N}^{t+\ell+t}$ let

$$e_h''(n) = F(n_3)K_{n_1}\hat{H}^{n_2}E(n_1),$$

where for $k = (k_1, \ldots, k_\ell) \in \mathbb{N}^\ell$, $\hat{H}^k = \prod_{j=1}^\ell \hat{H}_{\gamma_j}^k$.

Then $\{e_h''(n) \mid n \in \mathbb{N}^{t+\ell+t}\}$ is a topological basis of \mathbf{U}_h. From (79),

$$c = \sum_{n \in \mathbb{N}^{t+\ell+t}} u_h(n) h^{[n]}e_h(n) \otimes e_h''(n),$$

where $u_h(n)$ is a unit $\mathbb{C}[[h]]$ for each $n \in \mathbb{N}^{t+\ell+t}$. The exact value of $u_h(n)$ is as follows: For $n = (n_1, n_2, n_3) \in \mathbb{N}^{t+\ell+t}$,

$$u_h(n_1, n_2, n_3) = q^{-(p, |E_{n_3}|)} u_h'(n_1) u_h'(n_2) u_h'(n_3),$$

where for $k = (k_1, \ldots, k_\ell) \in \mathbb{N}^\ell$ and $m = (m_1, \ldots, m_\ell) \in \mathbb{N}^\ell$,

$$u_h'(k) = \prod_{j=1}^\ell (-1)^{k_j} \frac{k_j!}{d_{\gamma_j}}, \quad u_h'(m) = \prod_{j=1}^\ell \frac{\gamma_j^m}{h^{m_j} \gamma_j^{m_j} d_{\gamma_j}^m}.$$

By definition, the left image of c is the topological closure of the $\mathbb{C}[[h]]$-span of $\{u_h(n) h^{[n]}e_h(n)\}$, which is the same as \mathbf{V}_h, since the $u_h(n)$ are units in $\mathbb{C}[[h]]$.

Since c is ad-invariant, by Proposition 2.5, we have $U_h \triangleright V_h \subset V_h$. □

Remark 4.4. Proposition 4.3 shows that V_h does not depend on the choice of the longest reduced sequence i.

Proposition 4.5. One has $\varphi(V_h) \subset V_h$, i.e. V_h is φ-stable.

Proof. By Lemma 3.12, $c = (\varphi \otimes S^{-1}\varphi)(c)$. Note that $S^{-1}\varphi$ is an $\mathbb{C}[[h]]$-linear automorphism of U_h. By Proposition 2.5(b), φ leaves stable the left image of c, i.e. $\varphi(V_h) = V_h$. □

4.3. Extension of ground ring and stability principle.

Let \sqrt{h} be an intermediate such that $h = (\sqrt{h})^2$. Then $\mathbb{C}[[h]] \subset \mathbb{C}[[\sqrt{h}]]$. For a $\mathbb{C}[[h]]$-module homomorphism $f : V \to V'$, we often use the same symbol f to denote $f \otimes \text{id} : V \otimes_{\mathbb{C}[[h]]} \mathbb{C}[[\sqrt{h}]] \to V' \otimes_{\mathbb{C}[[h]]} \mathbb{C}[[\sqrt{h}]]$.

Suppose the following data are given

(i) a topologically free $\mathbb{C}[[h]]$-module V equipped with a topological base $\{e(i) \mid i \in I\}$, and

(ii) a function $a : I \to \mathbb{C}[[h]]$ such that $a(i) \neq 0$ and $\{a(i), i \in I\}$ is 0-convergent.

Let $V(\sqrt{a})$ be the topologically free $\mathbb{C}[[\sqrt{h}]]$-module with topological basis $\{\sqrt{a(i)}e(i) \mid i \in I\}$, and $V(a) \subset V$ be the closure (in the h-adic topology of V) of the $\mathbb{C}[[h]]$-span of $\{a(i)e(i) \mid i \in I\}$. We call $(V, V(\sqrt{a}), V(a))$ a topological dilatation triple defined by the data given in (i) and (ii).

Proposition 4.6 (Stability principle). Suppose $(V, V(\sqrt{a}), V(a))$ and $(V', V'(\sqrt{a'}), V'(a'))$ are two topological dilatation triples and $f : V \to V'$ is a $\mathbb{C}[[h]]$-module homomorphism such that $f(V(a)) \subset V'(a')$. Then $f(V(\sqrt{a})) \subset V'(\sqrt{a'})$.

Proof. Claim 1. If $x_1, x_2, x_3 \in \mathbb{C}[[h]], x_3 \neq 0$, such that $x_1x_2/x_3 \in \mathbb{C}[[h]]$ then $x_1\sqrt{x_2/x_3} \in \mathbb{C}[[\sqrt{h}]]$.

Proof of Claim 1. Let $x_i = h^{k_i}y_i$, where y_i is invertible in $\mathbb{C}[[h]]$. Assumption $x_1x_2/x_3 \in \mathbb{C}[[h]]$ means $k_1 + k_2 \geq k_3$. Then $k_1 + k_2/2 \geq (k_1 + k_2)/2 \geq k_3/2$, which implies the claim.

Let us now prove the proposition. The $\mathbb{C}[[h]]$-module $V(a)$ is a formal series $\mathbb{C}[[h]]$-module with formal basis $\{a(i)e(i) \mid i \in I\}$, see Example 2.2. Every $x \in V(a)$ has a unique presentation as an h-adically convergent sum

$$x = \sum_{i \in I} x_i(a(i)e(i)), \text{ where } (x_i)_{i \in I} \in \mathbb{C}[[h]]^I.$$

Using the topological bases $\{e(i) \mid i \in I\}$ of V and $\{e(i') \mid i' \in I'\}$ of V', we have

$$f(e(i)) = \sum_{j' \in I'} f_j^i e(j'),$$

where $f_j^i \in \mathbb{C}[[h]]$, and for a fixed i, $\{f_j^i \mid j' \in I'\}$ is 0-convergent. Multiplying by appropriate powers of $\sqrt{a(i)}$, we get

$$f(a(i)e(i)) = \sum_{j' \in I'} \tilde{f}_j^i (a'(j)e(j)) \quad \text{where } \tilde{f}_j^i = \frac{a(i)}{a'(j)} f_j^i,$$

$$f(\sqrt{a(i)}e(i)) = \sum_{j' \in I'} \tilde{f}_j^i \left(\sqrt{a'(j)}e(j)\right) \quad \text{where } \sqrt{f}_j^i = \frac{\sqrt{a(i)}}{\sqrt{a'(j)}} f_j^i.$$

(87)
The assumption \(f(V(a)) \subset V'(a') \) implies that \(\tilde{f}_i^l \in \mathbb{C}[[h]] \), which, together with \(f_i^l \in \mathbb{C}[[h]] \) and Claim 1, shows that \(\tilde{f}_i^l \in \mathbb{C}[[\sqrt{h}]] \). Equation (87) shows that \(f(V(\sqrt{a})) \subset V'(\sqrt{a'}) \). This proves the proposition. \(\square \)

4.4. **Definition of \(X_h \).** Fix a longest reduced sequence \(i \). Recall that \(\{ e_h(n) \mid n \in \mathbb{N}^{t+l+1} \} \) is a topological basis of \(U_h \), see Section 4.1. Let \(a : \mathbb{N}^{t+l+1} \to \mathbb{C}[[h]] \) be the function defined by \(a(n) = \hat{h}^{||n||} \), and consider the topological dilatation triple \((U_h, U_h(\sqrt{a}), U_h(a)) \). Denote the middle one by \(X_h, U_h(\sqrt{a}) = X_h \). Later we show that \(X_h \) does not depend on \(i \).

By definition, \(U_h(a) \) is the closure (in the \(h \)-adic topology of \(U_h \)) of the \(\mathbb{C}[[h]] \)-span of \(\{ h^{||n||} e_h(n) \mid n \in \mathbb{N}^{t+l+1} \} \). Thus, \(U_h(a) = V_h \).

Also by definition, \(X_h \) is the topologically free \(\mathbb{C}[[\sqrt{h}]] \)-module with the topological basis
\[
\{ h^{||n||/2} e_h(n) \mid n \in \mathbb{N}^{t+l+1} \}.
\]
Note that \(X_h \) is a submodule of \(U_{\sqrt{h}} = U_h \otimes_{\mathbb{C}[[h]]} \mathbb{C}[[\sqrt{h}]] \).

The topological closure \(X_h \) of \(X_h \) in \(U_{\sqrt{h}} \) is a formal series \(\mathbb{C}[[\sqrt{h}]] \)-module with (88) as a formal basis.

Theorem 4.7. The \(\mathbb{C}[[\sqrt{h}]] \)-module \(X_h \) is a topological Hopf subalgebra of \(U_{\sqrt{h}} \). Moreover \(U_{\sqrt{h}} \supset X_h \subset X_h \), i.e. \(X_h \) is ad-stable, and \(\varphi(X_h) \subset X_h \).

Proof. We will show that \(X_h \) is closed under all the Hopf algebra operations of \(U_{\sqrt{h}} \).

Let us first show that \(X_h \) is closed under the co-product. Both \((U_h, X_h, V_h) \) and \((U_h^{S^2}, X_h^{S^2}, V_h^{S^2}) \) are topological dilatation triples, and \(\Delta(U_h) \subset U_h^{S^2} \) and \(\Delta(V_h) \subset V_h^{S^2} \) (see Proposition 4.1). Hence, by the stability principle (Proposition 4.6), \(\Delta(X_h) \subset X_h^{S^2} \).

Similarly, applying stability principle to all the operations of a Hopf algebra, namely \(\mu, \eta, \Delta, \epsilon, S \) (using Proposition 4.1), as well as the adjoint actions (using Proposition 4.3) and the map \(\varphi \) (using Proposition 4.5) we get the results. \(\square \)

Corollary 4.8. Fix a longest reduced sequence \(i \). The \(\mathbb{C}[[\sqrt{h}]] \)-algebra \(X_h \) is the topologically complete subalgebra of \(U_{\sqrt{h}} \) generated by \(\sqrt{h} H_\alpha, \sqrt{h} E_\gamma(i), \sqrt{h} F_\gamma(i) \), with \(\alpha \in \Pi, \gamma \in \Phi_+ \).

Proof. Using the fact that \(X_h \) is an algebra, the proof is the same as that of Proposition 4.2. \(\square \)

4.5. **\(X_h \) is a core subalgebra of \(U_{\sqrt{h}} \).** Recall that the definition of a core subalgebra is given in Section 2.14.

Theorem 4.9. The subalgebra \(X_h \) is a core subalgebra of the topological ribbon Hopf algebra \(U_{\sqrt{h}} \).

Proof. For the convenience of the reader, we recall the definition of a core subalgebra: \(X_h \) is a core subalgebra of \(U_{\sqrt{h}} \) means that \(X_h \) is a topological Hopf subalgebra of \(U_{\sqrt{h}} \) and the following (i)–(iii) hold.

(i) \(X_h \) is \(U_{\sqrt{h}} \)-stable,

(ii) \(R \in X_h \otimes X_h \) and \(K_{2p} \in X_h \), and
(iii) The clasp element c has a presentation
\[c = \sum_{i \in I} c'(i) \otimes c''(i), \]
where each of $\{c'(i)\}$ and $\{c''(i)\}$ is 0 convergent in $U_{\sqrt{h}}$ and is a topological basis of X_h.

Let us look at all three statements.

(i) By Theorem 4.7, X_h is a topological Hopf subalgebra of $U_{\sqrt{h}}$, and (i) holds.

(ii) Since $\sqrt{h}H_\alpha \in X_h$ (see Corollary 4.8), $K_{\pm 2} = \exp(\pm \sum_{\alpha \in \Phi_+} hH_\alpha) \in X_h \subset X_h$.

By (71), $R^{-1} = \Theta D^{-1}$, where
\[\Theta = \sum_{n \in \mathbb{N}^t} F_n \otimes E_n \quad \text{and} \quad D^{-1} = \exp(-\frac{h}{2} \sum_{\alpha \in \Pi} hH_\alpha \otimes \hat{H}_\alpha/d_\alpha). \]

As $\sqrt{h}H_\alpha, \sqrt{h}H_\alpha \in X_h$, one has $D^{-1} \in \overline{X_h \otimes X_h}$.

Using the definition (66), (67) of E_n, F_n, and Corollary 4.8, we have
\[F_n \otimes E_n \sim \prod_{\gamma_j \in \Phi_+} (hF_{\gamma_j} \otimes E_{\gamma_j})^{n_j} \in X_h \otimes X_h, \]
where $a \sim b$ means $a = ub$, where u is a unit in $C[[h]]$. Hence $\Theta = \sum F_n \otimes E_n \in X_h \otimes X_h$. It follows that $R^{-1} = \Theta D^{-1} \in \overline{X_h \otimes X_h}$. Since $R = (\text{id} \otimes S)(R^{-1})$, we also have $R \in \overline{X_h \otimes X_h}$. Thus (ii) holds.

(iii) Let $I = \mathbb{N}^{t+\ell+t}$, and for $n \in I$,
\[c'(n) = h^{\|n\|/2}e_h(n), \quad c''(n) = u_h(n)h^{\|n\|/2}e_h''(n), \]
where $u_h(n)$ is the unit of $C[[h]]$ in (86). By (85),
\[c = \sum_n c'(n) \otimes c''(n). \]

By definition, $\{c'(n)\}$ is a topological basis of X_h. Since $\{\hat{H}_\alpha | \alpha \in \Pi\}$ is a basis of $\mathfrak{h}^*_\mathbb{R}$, $\{c''(n)\}$ is also a topological basis of X_h. The factors $h^{\|n\|/2}$ in (89) shows that each set $\{c'(n)\}$ and $\{c''(n)\}$ is 0-convergent. Hence (iii) holds. This completes the proof of the theorem.

By Theorem 2.22, the core subalgebra X_h gives rise to an invariant $J_M \in C[[\sqrt{h}]]$ of integral homology 3-spheres M, via the twists T_\pm which we will study in the next subsections.

4.6. Quantum Killing form

Since X_h is a core subalgebra of $U_{\sqrt{h}}$, according to Section 2.13, one has a clasp form, which is a $U_{\sqrt{h}}$-module homomorphism
\[\mathcal{L} : \overline{X_h \otimes X_h} \to C[[\sqrt{h}]], \]
defined by
\[\mathcal{L}(c''(n) \otimes c'(m)) = \delta_{n,m}, \quad \text{for} \ n, m \in \mathbb{N}^{t+\ell+t} \]
where $c''(n)$ and $c'(m)$ are given by (89). We also denote $\mathcal{L}(x \otimes y)$ by (x, y).

Let us calculate explicitly the form \mathcal{L}. Recall that $F_n, E_n \in U_q$ were defined by (66) and (67), which depend on a longest reduced sequence.
Proposition 4.10. Fix a longest reduced sequence i. For $m, n, n', m' \in \mathbb{N}^l, k, k' \in \mathbb{N}^l, \alpha, \beta \in Y, k, l \in \mathbb{N}$, one has

\begin{align}
\langle F_m K_m h^{k/2} H_\alpha^k E_n, F_{n'} K_{n'} h^{l/2} H_\beta^l E_{m'} \rangle &= \delta_{k,l} \delta_{m,m'} \delta_{n,n'} q^{(\rho,|E_n|)} (-1)^k (\alpha, \beta)^k \\
\langle F_m K_m K_{\mu} E_n, F_{n'} K_{n'} K_{\mu'} E_{m'} \rangle &= \delta_{m,m'} \delta_{n,n'} q^{(\rho,|E_n|)} v^{-\langle \mu, \mu' \rangle / 2}
\end{align}

Proof. Formula (92) is obtained from (91) by a simple calculation, using the definition (89) of $c(n)$ and $c''(n)$. Formula (93) is obtained from (92) using the expansion $K_\mu = \exp(h H_\mu/2) = \sum_k h^k H_\mu^k / (2k)!$. \hfill \Box

Suppose $x, y \in U_q$. There are non-zero $a, b \in \mathbb{C}[v^{\pm 1}]$ such that $ax, by \in X_h$. By (93), $\langle ax, by \rangle \in \mathbb{C}[v^{\pm 1/2}]$. Hence we can define $\langle x, y \rangle = \frac{\langle ax, by \rangle}{ab} \in \mathbb{C}(v^{1/2})$. Thus, we have a $\mathbb{C}(v)$-bilinear form

\begin{equation}
\langle \cdot, \cdot \rangle : U_q \otimes U_q \to \mathbb{C}(v^{1/2}).
\end{equation}

Remark 4.11. The form we construct is not new. On U_q the form \mathcal{L} is exactly the quantum Killing form (or the Rosso form) [Ros, Ta] (see [Ja]), which was constructed via an elaborate process. For example, if one defines the quantum Killing form by (93), then it is not easy to check the Killing form (or the Rosso form) [Ros, Ta] (see [Ja]), which was constructed via an elaborate process.

4.7. Properties of quantum Killing form. We again emphasize that the form \mathcal{L} is ad-invariant, i.e. the map \mathcal{L} in (90) is a $U_{\sqrt{h}}$-module homomorphism, see Lemma 2.19. It follows that the form (94) is U_q-ad-invariant.

Since each of $\{c'(n)\}$ and $\{c''(n)\}$ is a topological basis of X_h and they are dual to each other, the bilinear form (94) is non-degenerate.

From (92), we see that the quantum Killing form is triangular in the following sense. Let $x, x' \in X_h \cap U_h^{\alpha-}, y, y' \in X_h \cap U_h^\beta$, and $z, z' \in X_h \cap U_h^\mu$, then

\begin{equation}
\langle x y z, x' y' z' \rangle = \langle x, z' \rangle \langle y, y' \rangle \langle z, x' \rangle.
\end{equation}

The quantum Killing form is uniquely determined up to a scalar by the ad-invariant, non-degenerate, and triangular properties, see [JL3, Theorem 4.8].

The quantum Killing form is not symmetric. In fact, for $x, y \in X_h$, we have

\begin{equation}
\langle y, x \rangle = \langle x, S^2(y) \rangle = \langle S^{-2}(x), y \rangle,
\end{equation}

which follows from the identity $(\text{id} \otimes S^2)(c) = c_{21}$. If y is central, then $S^2(y) = K_{-2\rho} y K_{2\rho} = y$. Hence

\begin{equation}
\langle x, y \rangle = \langle y, x \rangle \quad \text{if } y \text{ is central}.
\end{equation}

The quantum Killing form extends to a multilinear form

\begin{equation}
\langle \cdot, \cdot \rangle : \overline{X_h^{2n}} \otimes \overline{X_h^{2n}} \to \mathbb{C}[[\sqrt{h}]],
\end{equation}
where \ol{X}_h^n is the topological closure of X_h^n, by
\[
\langle x_1 \otimes \ldots \otimes x_n, y_1 \otimes \ldots \otimes y_n \rangle = \prod_{j=1}^n \langle x_j, y_j \rangle.
\]

Lemma 4.12. Suppose x, y, z are elements of $X_h^0 = X_h \cap U_{\sqrt{h}}^0$. Then
\[
\langle xy, z \rangle = \langle x \otimes y, \Delta(z) \rangle.
\]

Proof. This follows from (92), with $n = m = 0$. \hfill \Box

Note that (97) does not hold for general $x, y, z \in X_h$.

4.8. Twist system associated to X_h and invariant of integral homology 3-spheres

According to the result of Section 2.13, the core subalgebra X_h gives rise to a twist system $T_\pm : X_h \to \mathbb{C}[[\sqrt{h}]]$, defined by
\[
T_\pm(x) = \langle r^{\pm 1}, x \rangle
\]
and an invariant $J_M \in \mathbb{C}[[\sqrt{h}]]$ of integral homology 3-spheres M. Recall that J_M is defined as follows. Suppose T is an n-component bottom tangle with 0 linking matrix and $\varepsilon_i \in \{-1, 1\}$ and M is obtained from S^3 by surgery along the closure link $\text{cl}(T)$ with the framing of the i-th component switched to ε_i. Then
\[
J_M = (T_{\varepsilon_1} \otimes \ldots \otimes T_{\varepsilon_n})(J_T).
\]
In the next few sections we will show that $J_M \in \mathbb{Z}[q]$.

Let us calculate the values of T_\pm on basis elements. Recall that $r_0 = K_{-2\rho} \exp(-\frac{1}{2} \sum_{\alpha \in \Pi} H_{\alpha} \tilde{H}_\alpha / d_{\alpha})$.

Proposition 4.13. (a) Fix a longest reduced sequence i. For $m, n \in \mathbb{N}, \gamma, x \in X_h^0$, one has
\[
\langle y, x \rangle = \langle S^{-1}(y), \varphi(x) \rangle.
\]

(b) For every $x \in X_h$, one has
\[
\langle y, x \rangle = \langle S^{-1}(y), \varphi(x) \rangle.
\]

Proof. (a) By (73),
\[
\mathbf{r} = \sum_{n \in \mathbb{N}} F_n K_n r_0 E_n.
\]
Identity (98) follows from the triangular property of the quantum Killing form. Identities in (99) follow from a calculation using (92) and the explicit expression of r_0.

(b) By (81), $c = (\varphi \otimes S^{-1}(\varphi))(c)$. By Proposition 2.20, for $y \in \ol{X}_h$ and $x \in X_h$, one has
\[
\langle y, x \rangle = \langle S^{-1}(y), \varphi(x) \rangle.
\]

By Corollary 3.11 and (74), $S^{-1}(\varphi^{-1}) = \mathbf{r}$. Using (101) with $y = \mathbf{r}^{-1}$, we get (100). \hfill \Box
4.9. **Twist forms on** U_q. By construction we have twist forms $T_\pm : X_h \to \mathbb{C}[[\sqrt{h}]]$, with domain X_h and codomain $\mathbb{C}[[\sqrt{h}]]$. We can change the domain to get a better image space.

By Proposition 4.13, for $m, n \in \mathbb{N}$ and $\gamma \in Y$,

$$T_+(F_m K_m K_{2\gamma} E_n) = \delta_{m,n} q^{(\rho,|E_n|)} v^{2(\gamma, \rho) - (\gamma, \gamma)} \in \mathbb{Z}[q^{\pm 1}] \subset \mathbb{Z}[v^{\pm 1}].$$

Because $\{F_m K_m K_{2\gamma} E_n | m, n \in \mathbb{N}, \gamma \in Y\}$ is a $\mathbb{C}(v)$-basis of U_q^{ev}, we have

$$T_+(U_q^{ev} \cap X_h) \subset \mathbb{C}(v) \cap \mathbb{C}[[\sqrt{h}]].$$

Using $T_-(x) = T_+(\varphi(x))$ (see Proposition 4.13), and the fact both U_q^{ev} and X_h are φ-stable, we also have

$$T_-(U_q^{ev} \cap X_h) \subset \mathbb{C}(v) \cap \mathbb{C}[[\sqrt{h}]].$$

Because $U_q^{ev} \cap X_h$ spans U_q^{ev} over $\mathbb{C}(v)$, we can extend the restriction of T_\pm on $U_q^{ev} \cap X_h$ to $\mathbb{C}(v)$-linear maps, also denoted by T_\pm:

$$T_\pm : U_q^{ev} \to \mathbb{C}(v).$$

The values of T_+ on the basis elements are given by (102). It is clear that

$$T_\pm(U_q^{ev}) \subset \mathbb{Q}(v).$$
5. INTEGRAL CORE SUBALGEBRA

In Section 4 we constructed a core subalgebra X_h of $U_{\sqrt{h}}$ which gives rise to an invariant J_M of integral homology 3-spheres with values in $\mathbb{C}[[\sqrt{h}]]$. To show that J_M takes values in $\mathbb{Z}[q]$ we need an integral version of the core algebra. This section is devoted to an integral form X_Z of the core algebra X_h.

In order to construct X_Z we first introduce Lusztig’s integral form U_Z and De Concini-Procesi’s integral form V_Z. Then we construct X_Z so that (U_Z, X_Z, V_Z) form an integral dilatation triple corresponding to the topological dilatation triple (U_h, X_h, V_h).

Lusztig introduced U_Z in connection with his discovery (independently with Kashiwara) of canonical bases. De Concini and Procesi introduced V_Z in connection with their study of geometric aspects of quantized enveloping algebras. For the study of the integrality of quantum invariants, Lusztig’s integral form U_Z is too big: it does not have necessary integrality properties. For example, the quantum Killing form $\langle x, y \rangle$ with $x, y \in U_Z$ belongs to $\mathbb{Q}(v^{1/2})$ but not to $\mathbb{Z}[v^{\pm 1/2}]$ in general. On the other hand De Concini-Procesi’s form V_Z is too small in the sense that completed tensor powers of V_Z do not contain the universal invariant of general bottom tangles. (Recently, however, Suzuki [Su1, Su2] proved that, for $g = sl_2$, the universal invariant of ribbon and boundary bottom tangles is contained in completed tensor powers of V_Z.) Our integral form X_Z is the perfect middle ground since it is big enough to contain quantum link invariants and small enough to have the necessary integrality. We believe that X_Z is the right integral form for the study of quantum invariants of links and 3-manifolds.

We will show that De Concini-Procesi’s V_Z is “almost” dual to Lusztig’s U_Z under the quantum Killing form, see the precise statement in Proposition 5.15. This fact can be interpreted as an integral version of the duality of Drinfel’d and Gavarini [Dr, Gav]. Using the duality we then show that the even part of V_Z is invariant under the adjoint action of U_Z, an important result which will be used frequently later. We then show that the twist forms have nice integrality on X_Z.

5.1. Dilatation of based free modules. Let \hat{A} be the extension ring of $A = \mathbb{Z}[v^{\pm 1}]$ obtained by adjoining all $\sqrt{\phi_n(q)}$, $n = 1, 2, \ldots$, to A. Here $\phi_n(q)$ is the n-th cyclotomic polynomial and $q = v^2$. One reason why working over \hat{A} is not too much a sacrifice is the following.

Lemma 5.1. One has $\hat{A} \cap \mathbb{Q}(q) = \mathbb{Z}[q^{\pm 1}]$.

Proof. Since $\sqrt{\phi_k(q)}$ is integral over $\mathbb{Z}[q^{\pm 1}]$, \hat{A} is integral over $\mathbb{Z}[q^{\pm 1}]$. Hence $\hat{A} \cap \mathbb{Q}(q) = \mathbb{Z}[q^{\pm 1}]$. \square

Suppose V is based free A-module, i.e. a free A-module equipped with a preferred base $\{e(i) \mid i \in I\}$. Assume $a : I \to A$ is a function such that for every $i \in I$, $a(i)$ is a product of cyclotomic polynomials in q. In particular, $a(i) \neq 0$ and $\sqrt{a(i)} \not\in \hat{A}$. The based free A-module $V(a) \subset V$, with preferred base $\{a(i)e(i) \mid i \in I\}$, is called a dilatation of V, with dilatation factors $a(i)$. Let $V(\sqrt{a})$ be the based free \hat{A}-module with preferred base $\{\sqrt{a(i)}e(i) \mid i \in I\}$. We call $(V, V(\sqrt{a}), V(a))$ a dilatation triple determined by the based free A-module V and the function a.

We will introduce the Lusztig integral form U_Z, the integral core algebra X_Z, and the De Concini-Procesi integral form V_Z so that (U_Z, X_Z, V_Z) is a dilatation triple.

5.2. Lusztig’s integral form U_Z. Let U_Z be the A-subalgebra of U_q generated by all $E_\alpha^{(n)}, F_\alpha^{(n)}, K_\alpha^{\pm 1}$, with $\alpha \in \Pi$ and $n \in \mathbb{N}$. Set $U_Z^* = U_Z \cap U_q^*$ for $* = -, 0, +$.
Let us collect some well-known facts about U_Z. Recall that $E^{(n)}$ and $F^{(n)}$, defined for $n \in \mathbb{N}^t$ in Section 3.6.2, depend on the choice of a longest reduced sequence.

Proposition 5.2. Fix a longest reduced sequence i.

(a) The \mathcal{A}-algebra U_Z is a Hopf subalgebra of U_q, and satisfies the triangular decomposition

$$U_Z^- \otimes U_Z^0 \otimes U_Z^+ \xrightarrow{\cong} U_Z, \quad x \otimes y \otimes z \mapsto xyz.$$

Moreover, U_Z is stable under the action of $T_{a^\pm 1}, \alpha \in \Pi$.

(b) The set $\{F^{(n)} \mid n \in \mathbb{N}^t\}$ is a free \mathcal{A}-basis of the \mathcal{A}-module U_Z^-. Similarly, $\{E^{(n)} \mid n \in \mathbb{N}^t\}$ is a free \mathcal{A}-basis of U_Z^+.

(c) The Cartan part U_Z^0 is the \mathcal{A}-subalgebra of U_q generated by $K_{a^\pm 1} = (K_{a^\pm 1})_n$, $\alpha \in \Pi, n \in \mathbb{N}$.

(d) The algebra U_Z is stable under $\bar{\tau}$, τ, and φ. Moreover U_Z^- is stable under $\bar{\tau}$ and τ.

Proof. Parts (a)–(c) are proved in [Lu2] and [Lu1, Proposition 41.1.3]. Part (d) can be proved by noticing that each of $\bar{\tau}$, τ, φ maps each of the generators $E^{(n)}_\alpha$, $F^{(n)}_\alpha$, $E^{(n)}_\alpha$, $\alpha \in \Pi$, $n \in \mathbb{N}$, into U_Z, and each of $\bar{\tau}$ and τ maps each of the generators $F^{(n)}_\alpha$ of U_Z^- into U_Z^-. \qed

We will consider U_Z, U_Z^\mp as based free \mathcal{A}-modules with preferred bases described in Proposition 5.2(b). Later we will find a preferred base for the Cartan part U_Z^0.

Let $U_Z^{ev} = U_Z \cap U_q^{ev}$ be the even part of U_Z. From the triangulation of U_Z we have the following even triangulation of U_Z and U_Z^{ev}:

\[(104) \quad U_Z^{ev,-} \otimes U_Z^0 \otimes U_Z^+ \xrightarrow{\cong} U_Z, \quad x \otimes y \otimes z \mapsto xyz\]

\[(105) \quad U_Z^{ev,-} \otimes U_Z^{ev,0} \otimes U_Z^+ \xrightarrow{\cong} U_Z^{ev}, \quad x \otimes y \otimes z \mapsto xyz.\]

Here $U_Z^{ev,0} = U_Z^{ev} \cap U_q^{ev,0}$, with $U_q^{ev,0} = \mathbb{C}(v)[K_{a^\pm 2}, \alpha \in \Pi]$, and $U_Z^{ev,-} = U_Z^{ev} \cap U_q^{ev,-} = \varphi(U_Z^+)$. From Proposition 5.2(b) and $U_Z^{ev,-} = \varphi(U_Z^+)$, we have the following.

Proposition 5.3. The set $\{F^{(n)}K_n \mid n \in \mathbb{N}^t\}$ is a free \mathcal{A}-basis of the \mathcal{A}-module $U_Z^{ev,-}$.

We will consider $U_Z^{ev,-}$ as a based free \mathcal{A}-module with the above preferred basis.

5.3. De Concini-Procesi integral form V_Z.

Let V_Z be the smallest \mathcal{A}-subalgebra of U_Z which is invariant under the action of the braid group and contains $(1 - q_a)E_\alpha$, $(1 - q_a)F_\alpha$ and $K_{a^\pm 1}$ for $\alpha \in \Pi$. For $* = 0, +, -, \bar{\tau}, \bar{\tau}$, set $V_Z^* = V_Z \cap U_q^*$. In the original definition, De Concini and Procesi [DP, Section 12] used the ground ring $\mathbb{Q}[v^\pm 1]$ instead of $\mathcal{A} = \mathbb{Z}[v^\pm 1]$. Our V_Z is denoted by A in [DP].

Remark 5.4. Fix a longest reduced sequence i. For $n = (n_1, \ldots, n_t) \in \mathbb{N}^t$, let

\[(106) \quad (q;q)_n = \prod_{j=1}^t (q_{\gamma_j};q_{\gamma_j})_{n_j}.\]

Note that $(q;q)_n$ depends on i since $\gamma_j = \gamma_j(i)$ depends on i.

Proposition 5.5. Fix a longest reduced sequence i.

(a) The \mathcal{A}-algebra V_Z is a Hopf subalgebra of U_Z.

(b) We have $V_Z^0 = \mathcal{A}[K_1^{\pm 1}, \ldots, K_\ell^{\pm 1}]$ and the triangular decomposition

$$V_Z^- \otimes V_Z^0 \otimes V_Z^+ \xrightarrow{\sim} V_Z, \quad x \otimes y \otimes z \mapsto xyz.$$

(c) The set $\{(q; n) F^{(n)} | n \in \mathbb{N}^\ell\}$ is a free \mathcal{A}-basis of the \mathcal{A}-module V_Z^-. Similarly, $\{(q; n) E^{(n)} | n \in \mathbb{N}^\ell\}$ is a free \mathcal{A}-basis of V_Z^+.

Proof. The proofs for the case when $A = \mathbb{Z}[u^{\pm 1}]$ is replaced by $Q[u^{\pm 1}]$, were given in [DP, Section 12]. The proofs there remain valid for A. Note that in [DP], our V_Z is denoted by A.

The even part $V_Z^{ev} := V_Z \cap U_q^{ev}$ is an \mathcal{A}-subalgebra of V_Z. From the triangular decomposition of V_Z, we have the following even triangular decompositions

$$(107) \quad V_Z^{ev,-} \otimes V_Z^{ev,0} \otimes V_Z^{ev,+} \xrightarrow{\sim} V_Z^{ev}, \quad x \otimes y \otimes z \mapsto xyz,$$

$$(108) \quad V_Z^{ev,-} \otimes V_Z^0 \otimes V_Z^{ev,+} \xrightarrow{\sim} V_Z, \quad x \otimes y \otimes z \mapsto xyz,$$

where $V_Z^{ev,0} := V_Z \cap U_q^{ev,0} = \mathcal{A}[K_1^{\pm 2}, \ldots, K_\ell^{\pm 2}]$ and $V_Z^{ev,-} := V_Z \cap U_q^{ev,-} = \varphi(V_Z^+)$.

From Proposition 5.2(b) and $U_q^{ev,-} = \varphi(U_q^+)$, we have the following.

Proposition 5.6. The set $\{(q; n) F^{(n)} K_n | n \in \mathbb{N}^\ell\}$ is a free \mathcal{A}-basis of the \mathcal{A}-module $V_Z^{ev,-}$.

We will consider $V_Z^{ev,-}$ as a based free \mathcal{A}-module with the above preferred basis. Then $V_Z^{ev,-}$ is a dilatation of $U_q^{ev,-}$. Similarly, we consider V_Z^+ as a based free \mathcal{A}-module with preferred base given in Proposition 5.5. Then V_Z^+ is a dilatation of U_q^+.

5.4. Preferred bases for U_Z^0 and V_Z^0. We will equip U_Z^0 and V_Z^0 with preferred \mathcal{A}-bases such that V_Z^0 is a dilatation of U_Z^0. Recall that $K_j = K_{aj}$, $q_j = q_{aj}$.

For $n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell$ and $\delta = (\delta_1, \ldots, \delta_\ell) \in \{0, 1\}^\ell$ let

$$(109) \quad Q^{ev}(n) := \prod_{j=1}^\ell \frac{K_j^{-2n_j}(q_j)^{-\frac{n_j-1}{2}K_j^2}}{(q_j; q_j)_{n_j}},$$

$$(110) \quad Q(n, \delta) := Q^{ev}(n) \prod_{j=1}^\ell K_j^{\delta_j},$$

$$(111) \quad (q; q)_n := \prod_{j=1}^\ell (q_j; q_j)_{n_j}.$$

Proposition 5.7. (a) The sets $\{Q^{ev}(n) | n \in \mathbb{N}^\ell\}$ and $\{(q; q)_n Q^{ev}(n) | n \in \mathbb{N}^\ell\}$ are respectively \mathcal{A}-bases of $U_Z^{ev,0}$ and $V_Z^{ev,0}$.

(b) The sets $\{Q(n, \delta) | n \in \mathbb{N}^\ell, \delta \in \{0, 1\}^\ell\}$ and $\{(q; q)_n Q(n, \delta) | n \in \mathbb{N}^\ell, \delta \in \{0, 1\}^\ell\}$ are respectively \mathcal{A}-bases of U_Z^{ev} and V_Z^{ev}.
Since \(U_Z^0, V_Z^0 \) are \(\mathcal{A} \)-subalgebras of the commutative algebra \(\mathbb{Q}(v)[K_1^{\pm 1}, \ldots, K_{\ell}^{\pm 1}] \), the proof is not difficult though involves some calculation. We give a proof of Proposition 5.7 in Appendix B.

Remark 5.8. In [Lu3], Lusztig gave a similar, but different, basis of \(U_Z^0 \). Our basis can be obtained from Lusztig by an upper triangular matrix, and hence a proof of the proposition can be obtained this way. We chose the basis in Proposition 5.7 instead of Lusztig’s one for orthogonality reason.

5.5. **Preferred bases of \(U_Z \) and \(V_Z \).** Recall that we have defined \((q; q)_n\) in two cases depending on the length of \(n \), see (106) and (111): either \(n = (n_1, \ldots, n_t) \in \mathbb{N}^t \), in which case,

\[
(q; q)_n = \prod_{j=1}^t (q_{\gamma_j}; q_{\gamma_j})_{n_j},
\]

or \(n = (n_1, \ldots, n_t) \in \mathbb{N}^t \), then

\[
(q; q)_n = \prod_{j=1}^t (q_{\alpha_j}; q_{\alpha_j})_{n_j}.
\]

The first one depends on a longest reduced sequence since \(\gamma_j \) does, while the second one does not.

Introduce another \((q; q)_n\), with length of \(n \) equal \(2t + \ell \). For \(n = (n_1, n_2, n_3) \in \mathbb{N}^{t+\ell+t} \), where \(n_1, n_3 \in \mathbb{N}^t \) and \(n_2 \in \mathbb{N}^t \), define

\[
(q; q)_n := (q; q)_{n_1} (q; q)_{n_2} (q; q)_{n_3}.
\]

Further if \(\delta \in \{0, 1\}^\ell \), let

\[
e^{ev}(n) := F(q_{n_1})K_{n_1}Q_{n_2}^{ev}E(n_3), \quad e(n, \delta) := F(q_{n_1})K_{n_1}Q(n_2, \delta)E(n_3).
\]

Proposition 5.9. (a) The set

\[
\{e(n, \delta) \mid n \in \mathbb{N}^{t+\ell+t}, \delta \in \{0, 1\}^\ell\}
\]

and its dilated set

\[
\{(q; q)_n e(n, \delta) \mid n \in \mathbb{N}^{t+\ell+t}, \delta \in \{0, 1\}^\ell\}
\]

are respectively \(\mathcal{A} \)-bases of \(U_Z \) and \(V_Z \).

(b) The set

\[
\{e^{ev}(n) \mid n \in \mathbb{N}^{t+\ell+t}\}
\]

and its dilated set

\[
\{(q; q)_n e^{ev}(n) \mid n \in \mathbb{N}^{t+\ell+t}\}
\]

are respectively \(\mathcal{A} \)-bases of \(U_Z^{ev} \) and \(V_Z^{ev} \).

Proof. The proposition follows from the even triangular decompositions of \(U_Z \) and \(V_Z \), together with the bases of \(U_Z^{ev-}, U_Z^{ev+}, U_Z^0, U_Z^+, V_Z^{ev-}, V_Z^{ev+}, V_Z^0, V_Z^+ \) in Propositions 5.2, 5.5, and 5.7.

We will consider \(U_Z, U_Z^{ev}, V_Z, V_Z^{ev} \) as based free \(\mathcal{A} \)-modules with the preferred bases described in the above proposition. Then \(V_Z \) is a dilatation of \(U_Z \), and \(V_Z^{ev} \) is a dilatation of \(U_Z^{ev} \).
5.6. Relation between V_Z and V_h.

Proposition 5.10. (a) One has $V^v_Z \subset V_Z \subset V_h$.

(b) Moreover, V_h is the topological closure (in the h-adic topology of U_h) of the $\mathbb{C}[[h]]$-span of V^v_Z. Consequently, V_h is also the topological closure (in the h-adic topology of U_h) of V_Z.

Proof. (a) It is clear that $V^v_Z \subset V_Z$. Let us prove $V_Z \subset V_h$.

Fix a longest reduced sequence i. By Proposition 4.2, V_h is the topological closure of the $\mathbb{C}[[h]]$-subalgebra generated by hH, hF, hE, with $\alpha \in \Pi, \gamma \in \Phi_+$. For every $\gamma \in \Phi_+$, there is a unit $u \in \mathbb{C}[[h]]$ such that $1 - q_\gamma = hu$, and

\[(1 - q_\gamma)F_\gamma = u(hF_\gamma) \in V_h.\]

Similarly, $(1 - q_\gamma)E_\gamma \in V_h$. We already have $K^{\pm 1}_a \in V_h$. Since $(1 - q_\gamma)F_\gamma, (1 - q_\gamma)E_\gamma, K^{\pm 1}_a$ generate V_Z as \mathcal{A}-algebra and V_h is an \mathcal{A}-algebra, we have $V_Z \subset V_h$.

(b) Let V'_h be the topological closure of the $\mathbb{C}[[h]]$-span of V^v_Z. We have to show that $V'_h = V_h$. From part (a) we now have that $V'_h \subset V_h$. It remains to show $V_h \subset V'_h$. It is easy to see that V'_h is a $\mathbb{C}[[h]]$-algebra.

Since $K^2_a \in V^v_Z$ and

\[hH_\alpha = \log(K^2_\alpha) = -\sum_{n=1}^{\infty} \frac{(1 - K^2_\alpha)^n}{n},\]

we have $hH_\alpha \in V'_h$ for any $\alpha \in \Pi$. It follows that $K^{\pm 1}_a = \exp(\pm hH_\alpha/2) \in V'_h$.

From (104),

\[hF_\gamma = u^{-1}(1 - q_\gamma)(F_\gamma K_\gamma)K^{-1}_\gamma \in V'_h, \quad hE_\gamma = u^{-1}(1 - q_\gamma)E_\gamma \in V'_h.\]

Thus, $hH_\alpha, hF_\gamma, hE_\gamma$ are in V'_h for any $\alpha \in \Pi, \gamma \in \Phi_+$. Since V_h is the topological closure of the $\mathbb{C}[[h]]$-algebra generated by $hH_\alpha, hF_\gamma, hE_\gamma$, we have $V_h \subset V'_h$. This completes the proof of the proposition. \qed

Corollary 5.11. The algebra V_h is stable under the braid group action, i.e. $T^{\pm 1}_a(V_h) \subset V_h$ for any $\alpha \in \Pi$.

Proof. Since V_Z is invariant under the braid group actions, and V_h is the topological closure of the $\mathbb{C}[[h]]$-span of V_Z, V_h is also invariant under the braid group actions. \qed

Remark 5.12. Using Corollary 5.11 one can easily prove that V_h is the smallest $\mathbb{C}[[h]]$-subalgebra of U_h which

(i) contains $hE_\alpha, hF_\alpha, hH_\alpha, \alpha \in \Pi$,

(ii) is stable under the action of the braid group.

(iii) is closed in the h-adic topology of U_h.

5.7. Stability of V_Z under $\bar{\iota}, \tau, \varphi$. By Proposition 5.2, U_Z is stable under $\bar{\iota}, \tau$, and φ.

Proposition 5.13. The algebra V_Z is stable under each of τ, φ, and $\bar{\iota}$.

Proof. Recall that V_Z is the smallest A-subalgebra of U_Z containing $(1-q_\alpha)E_\alpha, (1-q_\alpha)F_\alpha, K_\alpha$ for $\alpha \in \Pi$, and is stable under the action of the braid group. Let f be one of $\tau, \varphi, t_{\bar{\alpha}}$.

Claim 1. $f(V_Z)$ is stable under the braid group action.

Proof of Claim 1. (i) The case $f = \tau$. By [Ja, Formula 8.14.10], $\tau T_\alpha = T_\alpha^{-1} \tau$ for every $\alpha \in \Pi$. Since T_α generate the braid group, we conclude that, like V_Z, $\tau(V_Z)$ is also stable under the braid group.

(ii) The case $f = \varphi$. Recall that S is the antipode. By Proposition 3.2, $\varphi = S\kappa = \kappa S$, where $\kappa = t_{\bar{\alpha}} \tau \omega$ is a C-anti-automorphism of U_k. Our κ is the same κ in [DP], where it was observed that κ commutes with the action of the braid group, i.e. $\kappa T_\alpha = T_\alpha \kappa$ for $\alpha \in \Pi$. It follows that $\kappa(V_Z)$ is stable under the braid group. Since $\varphi(V_Z) = \kappa S(V_Z) = \kappa(V_Z)$, $\varphi(V_Z)$ is stable under the braid group.

(iii) The case $f = t_{\bar{\alpha}}$. Checking on the generators, one has $t_{\bar{\alpha}} = \kappa \tau \omega$.

By Formula 8.14.9 of [Ja], if $x \in U_q$ is Y-homogeneous, then $T_\alpha(\omega(x)) \sim \omega T_\alpha(x)$, where $x \sim y$ means $x = uy$ for some unit $u \in A$. As V_Z has an A-basis consisting of Y-homogeneous elements (see Proposition 5.9), we conclude that $\omega(V_Z)$ is stable under the braid group. The results of (i) and (ii) show that $t_{\bar{\alpha}}(V_Z) = \kappa \tau \omega(V_Z)$ is stable under the braid group.

This completes the proof of Claim 1.

Claim 2. One has $V_Z \subset f(V_Z)$.

Proof of Claim 2. Using explicit formulas of f^{-1} in Section 3.2, one sees that each of $f^{-1}((1-q_\alpha)E_\alpha), f^{-1}((1-q_\alpha)F_\alpha), f^{-1}(K_\alpha)$ is in V_Z. It follows that each of $(1-q_\alpha)E_\alpha, (1-q_\alpha)F_\alpha, K_\alpha$ is in $f(V_Z)$. Together with Claim 1, this implies $f(V_Z)$ is an algebra stable under the braid group and contains $f^{-1}((1-q_\alpha)E_\alpha), f^{-1}((1-q_\alpha)F_\alpha), f^{-1}(K_\alpha)$. Hence $f(V_Z) \supset V_Z$. This completes the proof of Claim 2.

Since τ and $t_{\bar{\alpha}}$ are involutions and $\varphi^2(x) = K_{-2\alpha}xK_{2\alpha}$ (by Proposition 3.2), we have $f^2(V_Z) = V_Z$. Applying f to $V_Z \subset f(V_Z)$, we get $f(V_Z) \subset f^2(V_Z) = V_Z$. Hence, $V_Z = f(V_Z)$.

5.8. Simply-connected version of U_Z. Recall that the simply connected version \tilde{U}_q is obtained from U_q by replacing the Cartan part $U_q^0 = \mathbb{C}(v)[K_{1}^{\pm 1}, \ldots, K_{\ell}^{\pm 1}]$ with the bigger $U_q^{0} = \mathbb{C}(v)[\tilde{K}_{1}^{\pm 1}, \ldots, \tilde{K}_{\ell}^{\pm 1}]$. We introduce an analog of Lusztig’s integral form for \tilde{U}_q here.

The $\mathbb{C}(v)$-algebra homomorphism $\tilde{i} : U_q^0 \to U_q^0$, defined by $\tilde{i}(K_\alpha) = \tilde{K}_\alpha, \alpha \in \Pi$, is a Hopf algebra homomorphism. Let

$$\tilde{U}_Z^0 := \tilde{i}(U_Z^0), \quad \tilde{U}_Z^{ev,0} := \tilde{i}(U_Z^{ev,0}).$$

Then $\tilde{U}_Z^0, \tilde{U}_Z^{ev,0}$ are A-Hopf-subalgebra of $\tilde{U}_q^{ev,0}$. Define

$$\tilde{U}_Z := \tilde{U}_Z^0 U_Z, \quad \tilde{U}_Z^{ev} := \tilde{U}_Z^{ev,0} U_Z^{ev}.$$

For $m \in \mathbb{N}^\ell, \delta = (\delta_1, \ldots, \delta_\ell) \in \{0, 1\}^\ell$, define

$$\tilde{Q}^{ev}(m) := \tilde{i}(Q^{ev}(m)), \quad \tilde{Q}(m, \delta) := \tilde{i}(Q(m, \delta))$$
and furthermore for $n = (n_1, n_2, n_3) \in \mathbb{N}^{t + \ell + t}$ define

\begin{equation}
\mathcal{E}^{ev}(n) := F(n_3)K_{n_3}Q^{ev}(n_2)E(n_1), \quad \mathcal{E}(n, \delta) := \mathcal{E}^{ev}(n) \prod_{j=1}^{\ell} K_{\alpha_j}^{(j)}.
\end{equation}

Proposition 5.14. (a) \tilde{U}_Z is an \mathcal{A}-Hopf-subalgebra of \check{U}_q, and \check{U}_Z^{ev} is an \mathcal{A}-subalgebra of \check{U}_Z.

We also have the following even triangular decompositions

\begin{align}
\check{U}_Z^{ev} & \cong \check{U}_Z^{ev,0} \otimes \check{U}_Z^{ev,1} \cong \check{U}_Z^{ev}, \\
\check{U}_Z^{ev} & \cong \check{U}_Z^{ev,0} \otimes \check{U}_Z^{ev,1} \cong \check{U}_Z, \quad x \otimes y \otimes z \mapsto xyz.
\end{align}

(b) The sets \{\mathcal{E}(n, \delta) | n \in \mathbb{N}^{t + \ell + t}, \delta \in \{0, 1\}^{\ell}\} and \{\mathcal{E}^{ev}(n) | n \in \mathbb{N}^{t + \ell + t}\} are respectively \mathcal{A}-bases of \check{U}_Z and \check{U}_Z^{ev}.

(c) One has $\check{U}_Z \triangleright \check{U}_Z^{ev} \subset \check{U}_Z^{ev}$. Consequently, $U_Z \triangleright \check{U}_Z^{ev} \subset \check{U}_Z^{ev}$.

Proof. (a) As an \mathcal{A}-module, U_Z^0 is spanned by

\begin{equation}
f_{a,m,n,k} := \frac{K_{\alpha}^{(m)}(q^{\alpha}_a K_{\alpha}^{(n)} q^{\alpha}_a)}{(q^{\alpha}_a q^{\alpha}_a)},
\end{equation}

with $\alpha \in \Pi$, $m, n, k \in \mathbb{Z}$ and $k \in \mathbb{N}$. Hence $U_Z^0 = \tilde{i}(U_Z^0)$ is \mathcal{A}-spanned by $f_{a,m,n,k} := \tilde{i}(f_{a,m,n,k})$. If $x \in U_Z$ is Y-homogeneous, then, using (58) which describes the commutation between K_{α} and y,

\begin{equation}
f_{a,m,n,k} x = v^{m(x)} q^{m(x)\alpha} f_{a,m,n,k},
\end{equation}

where $n' = n + (|y|, \alpha)/d_\alpha \in \mathbb{Z}$. Hence, U_Z commutes with U_Z^0 in the sense that $U_Z U_Z^0 = U_Z^0 U_Z$.

Since both U_Z and U_Z^0 are \mathcal{A}-Hopf-subalgebras of U_h and they commute in the above sense, $U_Z = U_Z^0 U_Z$ is an \mathcal{A}-Hopf-subalgebra of U_q.

Identity (118) also shows that each of $U_Z^{ev,0}$, U_Z^0 commutes with each of U_Z^0, U_Z^0, U_Z^0. Hence, $U_Z^{ev} = U_Z^{ev,0} U_Z^{ev}$ is an \mathcal{A}-subalgebra of U_Z. The triangular decompositions for U_Z^{ev} and U_Z follows from those of and U_Z^{ev} and U_Z.

(b) Combining the base $\{F(n_3)K_{n_3}\}$ of U_Z^{ev} (see Proposition 5.3), $\{Q^{ev}(n_2)\}$ of $U_Z^{ev,0}$ (by Proposition 5.9 and isomorphism \tilde{i}), $\{E(n_1)\}$ of U_Z^{ev} (see Proposition 5.2), and the even triangular decompositions of U_Z and U_Z^{ev}, we get the bases of U_Z and U_Z^{ev} as described.

(c) Since U_Z contains $E_a^{(n)}$, $F_a^{(n)}$, K_a^{-1}, which generate U_Z, we have $U_Z \subset U_Z$.

Let us prove $U_Z \triangleright U_Z^{ev} \subset U_Z^{ev}$. From the triangular decomposition of U_Z, U_Z^{ev}, U_q, we see that $U_Z^{ev} = U_Z \cap U_q^{ev}$.

Since U_Z is a Hopf algebra, we have $U_Z \triangleright U_Z^{ev} \subset U_Z$. By Lemma 3.6,

\begin{equation}
U_Z \triangleright U_Z^{ev} \subset U_q \triangleright U_q^{ev} \subset U_q^{ev}.
\end{equation}

Hence $U_Z \triangleright U_Z^{ev} \subset U_Z \cap U_q^{ev} = U_Z^{ev}$. This finishes the proof of the proposition.

\hfill \Box

5.9. Integral duality with respect to quantum Killing form

Recall that $\{\mathcal{E}^{ev}(n) | n \in \mathbb{N}^{t + \ell + t}\}$ is an \mathcal{A}-basis of V_Z^{ev} (Proposition 5.9), and $\{\mathcal{E}^{ev}(n) | n \in \mathbb{N}^{t + \ell + t}\}$ is an \mathcal{A}-basis of V_Z^{ev} (Proposition 5.14). We will show that these two bases are orthogonal with each other with respect to the quantum Killing form.
Recall that we defined \((q; q)_n = (q; q)_{n_1}(q; q)_{n_2}(q; q)_{n_3}, \) see Section 5.5.

Proposition 5.15. (a) For \(n, m \in \mathbb{N}^{t+\ell+t}\), there exists a unit \(u(n) \in \mathcal{A}\) such that

\[
\langle e^\text{ev}(n), \tilde{e}^\text{ev}(m) \rangle = \delta_{n,m} \frac{u(n)}{(q; q)_n}.
\]

(b) The \(\mathcal{A}\)-modules \(V^\text{ev}_\mathbb{Z}\) is the \(\mathcal{A}\)-dual of \(\bar{U}^\text{ev}_\mathbb{Z}\) in \(U^\text{ev}_q\) with respect to the quantum Killing form, i.e.

\[
V^\text{ev}_\mathbb{Z} = \{x \in U^\text{ev}_q \mid \langle x, y \rangle \in \mathcal{A} \forall y \in \bar{U}^\text{ev}_\mathbb{Z}\}.
\]

Proof. Define the following units in \(\mathcal{A}\). For \(m = (m_1, \ldots, m_\ell) \in \mathbb{N}^\ell\) and \(k = (k_1, \ldots, k_\ell) \in \mathbb{N}^\ell\) let

\[
u_{1}(m) = \prod_{j=1}^{\ell} m_j^{a_j}, \quad \nu_{2}(k) = \prod_{j=1}^{\ell} q_{a_j}^{\lfloor(k_j+1)/2\rfloor}.
\]

For \(n = (n_1, n_2, n_3) \in \mathbb{N}^{t+\ell+t}\), let

\[
u(n) = q^{(\rho, |E_n|)}u_{1}(n_1)u_{2}(n_2)u_{1}(n_3).
\]

(a) We will use the following lemma whose proof will be given in Appendix B.

Lemma 5.16. For \(k, k' \in \mathbb{N}^\ell\), one has

\[\langle Q^\text{ev}(k), \bar{Q}^\text{ev}(k') \rangle = \delta_{k,k'}\nu(k)/(q; q)_k.\]

For \(p \in \mathbb{N}^\ell\), using the definition of \(E_p, F_p\) in Section 3.7.1, we have

\[
F(p) \otimes E(p) = \frac{u_{1}(p)}{(q; q)_p}(F_p \otimes E_p).
\]

Suppose \(n = (n_1, n_2, n_3)\) and \(m = (m_1, m_2, m_3)\) are in \(\mathbb{N}^{t+\ell+t}\). Using the definition of \(e^\text{ev}(n)\) and \(\tilde{e}^\text{ev}(n)\) from (113) and (115), the triangular property of the quantum Killing form, and Formulas (93) and (119),

\[
\langle e^\text{ev}(n), \tilde{e}^\text{ev}(m) \rangle = \langle F^{(n_1)}K_{n_1}, E^{(m_1)} \rangle \langle Q^\text{ev}(n_2), \bar{Q}^\text{ev}(m_2) \rangle \langle E^{(n_3)}, F^{(m_3)} \rangle K_{m_3}
\]

\[
= \delta_{n_1,m_1}u_{1}(n_1)\delta_{n_2,m_2}u_{2}(n_2)\delta_{n_3,m_3}q^{(\rho, |E_n|)}u_{1}(n_3) = \delta_{n,m}\frac{u(n)}{(q; q)_n}.
\]

(b) By Proposition 5.9, \(\{(q; q)_n e^\text{ev}(n) \mid n \in \mathbb{N}^{t+\ell+t}\}\) is an \(\mathcal{A}\)-basis of \(V^\text{ev}_\mathbb{Z}\) and a \(\mathbb{C}(v)\)-basis of \(U^\text{ev}_q\), and by Proposition 5.14, \(\{\tilde{e}^\text{ev}(n) \mid n \in \mathbb{N}^{t+\ell+t}\}\) is an \(\mathcal{A}\)-basis of \(\bar{U}^\text{ev}_\mathbb{Z}\). Part (b) follows from the orthogonality of part (a). \(\square\)

Remark 5.17. From the orthogonality of Proposition 5.15, we can show that

\[
c = \sum_{n \in \mathbb{N}^{t+\ell+t}} \frac{(q; q)_n e^\text{ev}(n)}{u(n)} \otimes e^\text{ev}(n).
\]
5.10. Invariance of V^e_Z under adjoint action of U_Z. The adjoint action makes U_Z a U_Z-module. The following result, showing that V^e_Z is a U_Z-submodule of U_Z, is important for us and will be used frequently.

Theorem 5.18. We have $\hat{U}_Z \triangleright V^e_Z \subset V^e_Z$. In particular, $U_Z \triangleright V^e_Z \subset V^e_Z$, i.e. V^e_Z is U_Z-ad-stable.

Proof. By Proposition 5.14, $\hat{U}_Z \triangleright \hat{U}_Z^e \subset \hat{U}_Z^e$, and by Proposition 5.15, V^e_Z is the A-dual of \hat{U}_Z^e with respect to the quantum Killing form. Besides, the quantum Killing form is ad-invariant. Hence, one also has $U_Z \triangleright V^e_Z \subset V^e_Z$, as the following argument shows. Recall that we already have $\hat{U}_Z \triangleright U_q^e \subset U_q^e$ (see Lemma 3.6). Suppose $a \in \hat{U}_Z$, $x \in V^e_Z$. We will show $a \triangleright x \in V^e_Z$. We have

$$a \triangleright x \in V^e_Z \iff (a \triangleright x, y) \in A \quad \forall y \in \hat{U}_Z^e$$

by duality, Proposition 5.15

$$\iff (x, S(a) \triangleright y) \in A \quad \forall y \in \hat{U}_Z^e$$

by ad-invariance, Proposition (2.4)(b).

Since $S(a) \triangleright y \in \hat{U}_Z^e$, the last statement $(x, S(a) \triangleright y) \in A$ holds true by Proposition 5.15. Thus we have proved that $U_Z \triangleright V^e_Z \subset V^e_Z$. \hfill \Box

Remark 5.19. We do *not* have $U_Z \triangleright V_Z \subset V_Z$ in general. For example, when $g = A_2$ and $\alpha \neq \beta \in \Pi$,

$$E_{\alpha} \triangleright K_{\beta} = (v - 1)K_{\beta}E_{\alpha} \notin V_Z.$$

However, when $g = A_1$, we do have $U_Z \triangleright V_Z \subset V_Z$, as it easily follows from [Su1, Proposition 3.2], where a more refined statement is given.

5.11. Extension from A to \hat{A}: Stability principle. Recall that \hat{A} is obtained from A by adjoining all square roots $\sqrt{\phi_k(q)}$, $k = 1, 2, \ldots$ of cyclotomic polynomials $\phi_k(q)$.

Suppose V is a based free A-module with preferred base $\{e(i) \mid i \in I\}$ and $a : I \rightarrow A$ is a function such that for every $i \in I$, $a(i)$ is a product of cyclotomic polynomials in q. We already defined the dilatation triple $(V, V(\sqrt{a}), V(a))$ in Section 5.1. Recall that $V(a)$ is the free A-module with base $\{a(i)e(i) \mid i \in I\}$, and $V(\sqrt{a})$ is the free A-module with base $\{\sqrt{a(i)}e(i) \mid i \in I\}$.

For any A-module homomorphism $f : V_1 \rightarrow V_2$ we also use the same notation f to denote the linear extension $f \otimes \text{id} : V_1 \otimes_A \hat{A} \rightarrow V_2 \otimes_A \hat{A}$, which is an A-module homomorphism.

Proposition 5.20 (Stability principle). Let $(V_1, V_1(\sqrt{a_1}), V_1(a_1))$ and $(V_2, V_2(\sqrt{a_2}), V_2(a_2))$ be two dilatation triples, and $f : V_1 \rightarrow V_2$ be an A-module homomorphism. If $f(V_1(a_1)) \subset V_2(a_2)$, then $f(V_1(\sqrt{a_1})) \subset V_2(\sqrt{a_2})$.

Proof. First we prove the following.

Claim. Suppose $a, b, c \in A$, where b, c are products of cyclotomic polynomials $\phi_k(q)$. If $ab/c \in A$ then $a\sqrt{b/c} \in \hat{A}$.

Proof of Claim. Since A is a unique factorization domain, one can assume that b and c are co-prime. Then a must be divisible by c, $a = a'c$ with $a' \in A$. Then $a\sqrt{b/c} = a'\sqrt{bc} \in \hat{A}$, which proves the claim.
The proof of the proposition is now parallel to that in the topological case (Proposition 4.6). Using the bases \(\{ e_1(i) \mid i \in I_1 \} \) and \(\{ e_2(i) \mid i \in I_2 \} \) of \(V_1 \) and \(V_2 \), we can write
\[
f(e_1(i)) = \sum_{k \in I_2} f^k_i e_2(k)
\]
where \(f^k_i = 0 \) except for a finite number of \(k \) (when \(i \) is fixed) and \(f^k_i \in A \).

Multiplying by \(a_1(i) \) and \(\sqrt{a_1(i)} \), we get
\[
f(a_1(i)e_1(i)) = \sum_{k \in I_2} f^k_i \frac{a_1(i)}{a_2(k)} (a_2(k)e_2(k))
\]
(121)
\[
f(\sqrt{a_1(i)}e_1(i)) = \sum_{k \in I_2} f^k_i \sqrt{\frac{a_1(i)}{a_2(k)}} \left(\sqrt{a_2(k)}e_2(k) \right).
\]
(122)

Since \(f(V_1(a_1)) \subset V_2(a_2) \), (121) implies that \(f^k_i \frac{a_1(i)}{a_2(k)} \in A \), which, together with \(f^k_i \in A \) and the Claim, implies that
\[
f^k_i \sqrt{\frac{a_1(i)}{a_2(k)}} \in \tilde{A}.
\]
Now (122) shows that \(f(V_1(\sqrt{a_1})) \subset V_2(\sqrt{a_2}) \). \(\square \)

5.12. The integral core subalgebra \(X_Z \). By Proposition 5.7, we can consider \(U_Z \) as a based free \(A \)-module with the preferred base \(\{ e(n, \delta) \mid n \in \mathbb{N}^{t+\ell+t}, \delta \in \{0, 1\}^\ell \} \).

Let \(a : \mathbb{N}^{t+\ell+t} \times \{0, 1\}^\ell \to A \) be the function defined by \(a(n, \delta) = (q, q_n) \), where \((q; q_n) \) is defined by (112). We will consider the dilatation triple \((U_Z, U_Z(\sqrt{a}), U_Z(a)) \). By Proposition 5.7, \(U_Z(a) \) is \(V_Z \).

Let \(X_Z \) be \(U_Z(\sqrt{a}) \), which by definition is the free \(\tilde{A} \)-module with basis
\[
\{ \sqrt{(q; q_n)} e(n, \delta) \mid n \in \mathbb{N}^{t+\ell+t}, \delta \in \{0, 1\}^\ell \}.
\]
(123)

The even part \(X_Z^{ev} \) of \(X_Z \) is defined to be the \(\tilde{A} \)-submodule spanned by
\[
\{ \sqrt{(q; q_n)} e^{ev}(n) \mid n \in \mathbb{N}^{t+\ell+t} \}.
\]
(124)

Then \(X_Z^{ev} = X_Z \cap (U_Z^{ev} \otimes \tilde{A} \tilde{A}) \), and \((U_Z^{ev}, X_Z^{ev}, V_Z^{ev}) \) is a dilatation triple.

Theorem 5.21. (a) The \(\tilde{A} \)-module \(X_Z \) is an \(\tilde{A} \)-Hopf-subalgebra of \(U_Z \otimes A \tilde{A} \).

(b) The \(\tilde{A} \)-module \(X_Z^{ev} \) is an \(\tilde{A} \)-subalgebra of \(U_Z^{ev} \otimes A \tilde{A} \). Besides, \(X_Z^{ev} \) is

(i) \(U_Z \)-ad-stable,
(ii) stable under the action of the braid groups, and
(iii) stable under \(T \) and \(\varphi \).

(c) The core algebra \(X_h \) is the \(\sqrt{h} \)-adic completion of the \(\mathbb{C}[[\sqrt{h}]] \)-span of \(X_Z^{ev} \) (or \(X_Z \)) in \(U_{\sqrt{h}} \).

Proof. (a) Let us show that \(\Delta(X_Z) \subset X_Z \otimes X_Z \). Since \((U_Z, X_Z, V_Z) \) is a dilatation triple, \((U_Z \otimes U_Z, X_Z \otimes X_Z, V_Z \otimes V_Z) \) is also a dilatation triple. We have \(\Delta(U_Z) \subset U_Z \otimes U_Z \) and \(\Delta(V_Z) \subset V_Z \otimes V_Z \). By the stability principle (Proposition 5.20), we have \(\Delta(X_Z) \subset X_Z \otimes X_Z \), i.e. \(X_Z \) is an \(A \)-coalgebra.
Similarly, applying the stability principle to all the operations of a Hopf algebra, we conclude that X_D is an A-Hopf-subalgebra of $U_Z \otimes_A \bar{A}$.

(b) Because V_D^{ev} is an A-subalgebra of $U^
u_D$, the stability principle for the dilatation triple $(U^
u_D, X_D^{ev}, V_D^{ev})$ shows that X_D^{ev} is an A-algebra.

By Theorem 5.18, V_D^{ev} is U_Z-ad-stable; and by Proposition 5.13, V_D^{ev} is stable under ι_{bar}, φ. Since $U^
u_D$ is U_Z-ad-stable is stable under ι_{bar} and φ (by Proposition 5.2), the stability principle proves that X_D^{ev} is (i) U_Z-ad-stable, (ii) stable under the action of the braid groups, and (iii) stable under ι_{bar} and φ.

(c) Each element of the basis (123) of X_D is in X_h. Hence $X_D \subseteq X_h$. On the other hand, the \bar{A}-basis (124) of X_D^{ev} is also a topological basis of X_h. Hence X_h is the \sqrt{h}-adic completion of the $\C[[\sqrt{h}]]$-span of X_D^{ev} in $U_{\sqrt{h}}$.

Corollary 5.22. (a) The core algebra X_h is stable under the actions of the braid group.

(b) The core algebra X_h is a smallest \sqrt{h}-adically completed topological $\C[[\sqrt{h}]]$-subalgebra of $U_{\sqrt{h}}$ which (i) is closed in the \sqrt{h}-adic topology, (ii) contains $\sqrt{h}E_{\alpha}, \sqrt{h}F_{\alpha}, \sqrt{h}H_{\alpha}$ for each $\alpha \in \Pi$, and (iii) is invariant under the action of the braid groups.

Proof. (a) Since X_h is the \sqrt{h}-adic completion of the $\C[[\sqrt{h}]]$-span of X_D^{ev}, which is stable under the action of the braid group, X_h is also stable under the action of the braid group.

(b) Let X_h' be the smallest completed subalgebra of $U_{\sqrt{h}}$ satisfying (i), (ii), and (iii). Since X_h satisfies (i), (ii), and (iii), we have $X_h' \subseteq X_h$.

For each $\gamma \in \Phi_+$, E_{γ} and F_{γ} are obtained from $E_{\alpha}, F_{\alpha}, \alpha \in \Pi$ by actions of the braid group. Thus X_h' contains all $\sqrt{h}E_{\gamma}, \sqrt{h}F_{\gamma}, \gamma \in \Phi_+$ and $\sqrt{h}H_{\alpha}, \alpha \in \Pi$, which generate X_h as an algebra (after h-adic completion). It follows that $X_h \subseteq X_h'$. Hence $X_h = X_h'$.

Remark 5.23. The disadvantage of X_D is its ground ring is \bar{A}, not A. Let us define

$$X_A = X_D \cap U_Z.$$

Then X_A is an A-algebra. However, X_A is not an A-Hopf algebra in the usual sense, since

$$\Delta(X_A) \not\subseteq X_A \otimes_A X_A.$$

Let us define a new tensor product

$$X_A^{ev} := X_D^{ev} \cap U_Z^{ev}, \quad (X_A^{ev})^{\otimes_n} := (X_A^{ev}) \otimes (U_Z^{ev})^{\otimes n}.$$

Then we have

$$\Delta(X_A) = \Delta(X_D \cap U_Z) \subseteq (X_D \otimes X_D) \cap (U_Z \otimes U_Z) = X_A \otimes X_A.$$

Hence X_A, with this new tensor power, is a Hopf algebra, which is a Hopf subalgebra of both X_D and U_Z.

What we will prove later implies that if T is an n-component bottom tangle with 0 linking matrix, then

$$J_T \in \lim_{k \to \infty} (X_A^{ev})^{\otimes n}/((q;q)_k).$$

However, we will not use X_A in this paper.
5.13. **Integrality of twist forms** T_\pm on X_Z^{ev}. Recall that we have twist forms $T_\pm : X_h \rightarrow \mathbb{C}[[\sqrt{h}]]$. By Theorem 5.21, $X_Z \subset X_h$.

The embedding $A \rightarrow \mathbb{C}[[h]]$ by $v = \exp(h/2)$ extends to an embedding $\tilde{A} \rightarrow \mathbb{C}[[\sqrt{h}]]$. Although there are many extensions, it is easy to see that the image of the extended embedding does not depend on the extension, because the two roots of $\phi_k(q)$ are inverse (with respect to addition) of each other.

Proposition 5.24. One has $T_\pm(X_Z^{ev}) \subset \tilde{A}$.

The proof of this proposition will occupy the rest of this section (subsections 5.13.1–5.13.4.)

5.13.1. **Integrality on the Cartan part.**

Lemma 5.25. (a) The Cartan part $X_Z^{ev,0}$ of X_Z^{ev} is a \tilde{A}-Hopf-subalgebra of X_Z.

(b) Suppose $x, y \in X_Z^{ev,0}$ and $\lambda \in X$. Then $\langle x, y \rangle \in \tilde{A}$ and $\langle x, K_{2\lambda} \rangle \in \tilde{A}$.

Proof. (a) Since $X_Z^{ev,0}$ is an \tilde{A}-subalgebra of the commutative co-commutative Hopf algebra X_Z^0, we need to check that $\Delta(X_Z^{ev,0}) \subset X_Z^{ev,0} \otimes X_Z^{ev,0}$. This follows from the fact that X_Z^0 is an A-Hopf algebra, and $\Delta(K_2^0) = K_2^0 \otimes K_2^0$.

(b) Recall that $i : U_q^0 \rightarrow \hat{U}_q^0$ is the algebra homomorphism defined by $i(K_\alpha) = \hat{K}_\alpha$. Recall that $(U_Z^{ev,0}, X_Z^{ev,0}, V_Z^{ev,0})$ is a dilatation triple. We have $\hat{U}_Z^{ev,0} = i(U_Z^{ev,0})$. Define $X_Z^{ev,0} = i(X_Z^{ev,0})$ and $V_Z^{ev,0} = i(V_Z^{ev,0})$. Then $(\hat{U}_Z^{ev,0}, \hat{X}_Z^{ev,0}, \hat{V}_Z^{ev,0})$ is also a dilatation triple. Then $X_Z^{ev,0}$ and $\hat{X}_Z^{ev,0}$ are free \tilde{A}-modules with respectively bases

$$\{\sqrt{(q; q)_n} Q(n) \mid n \in \mathbb{N}^I\}, \quad \{\sqrt{(q; q)_n} \hat{Q}(n) \mid n \in \mathbb{N}^I\}.$$

Since the inclusion $U_Z^{ev,0} \rightarrow \hat{U}_Z^{ev,0}$ maps $V_Z^{ev,0}$ into $\hat{V}_Z^{ev,0}$, the stability principle (Proposition 5.20) shows that $X_Z^{ev,0} \subset \hat{X}_Z^{ev,0}$. In particular $y \in \hat{X}_Z^{ev,0}$.

The orthogonality (119) and bases (126) show that if $x \in X_Z^{ev,0}$ and $y \in \hat{X}_Z^{ev,0}$ then $\langle x, y \rangle \in \tilde{A}$. Since $K_{2\lambda} \in \hat{X}_Z^{ev,0}$, we also have $\langle x, K_{2\lambda} \rangle \in \tilde{A}$.

5.13.2. **Diagonal part of the ribbon element.** The diagonal part r_0 of the ribbon element (see Section 3.7) is given by

$$r_0 = K_{-2p} \exp(-h \sum_{\alpha \in \Pi} H_\alpha \hat{H}_\alpha / d_\alpha).$$

For $\alpha \in \Pi$ let the α-part of $X_Z^{ev,0}$ be $X_Z^{ev,0,\alpha} := X_Z^{ev,0} \cap \hat{A}[K_\alpha^{\pm 2}]$.

Lemma 5.26. (a) Each $X_Z^{ev,0,\alpha}$ is an \tilde{A}-Hopf-subalgebra of $X_Z^{ev,0}$ and $X_Z^{ev,0} = \bigotimes_{\alpha \in \Pi} X_Z^{ev,0,\alpha}$.

(b) For any $\alpha \in \Pi$, $\langle r_0, X_Z^{ev,0,\alpha} \rangle \in \tilde{A}$.

Proof. By definition, $X_Z^{ev,0}$ has \tilde{A}-basis $\{\sqrt{(q; q)_n} Q^{ev}(n) \mid n \in \mathbb{N}^I\}$, where $Q^{ev}(n) = \prod_{j=1}^I Q(\alpha_j; n_j)$, with

$$Q(\alpha; n) = K_\alpha^{-2(n+1)/2} \frac{(q_{\alpha}^{-1} (n+1) / 2) K_{\alpha^2}; q_{\alpha})_n}{(q_{\alpha}; q_{\alpha})_n}.$$
It follows that \(X_{Z}^{ev,0,\alpha} \) is the \(\hat{A} \)-module spanned by \(\sqrt{(q_{\alpha};q_{\alpha})_{n}Q(\alpha; n)} \), and \(X_{Z}^{ev,0} = \bigotimes_{\alpha \in \Pi} X_{Z}^{ev,0,\alpha} \). Because \(X_{Z}^{ev,0} \) is an \(\hat{A} \)-Hopf-algebra (Lemma 5.25), \(X_{Z}^{ev,0,\alpha} \) is an \(\hat{A} \)-Hopf-subalgebra of \(X_{Z}^{ev,0} \).

(b) We need to show that for every \(n \in \mathbb{N} \), \(\langle r_{0}, \sqrt{(q_{\alpha};q_{\alpha})_{n}Q(\alpha; n)} \rangle \in \hat{A} \). Fix such an \(n \).

Let \(\mathcal{I} \) be the ideal of \(\mathbb{Z}[q_{\alpha}^\pm 1, K_{\alpha}^\pm 2] \) generated by elements of the form \((q^{m}K_{\alpha}^{2}; q_{\alpha})_{n}, m \in \mathbb{N} \). Then \((q_{\alpha}; q_{\alpha})_{n}Q(\alpha; n) \in \mathcal{I} \). By (98)

\[
\langle r_{0}, K^{k}_{2}\alpha \rangle = q_{\alpha}^{-k^{2}+k}.
\]

With \(z = K_{2}\alpha \), the \(\mathbb{Z}[q_{\alpha}^\pm 1] \)-linear map \(\mathcal{L}_{*} : \mathbb{Z}[q_{\alpha}^\pm 1, K_{\alpha}^\pm 2] \to \mathbb{Z}[q_{\alpha}^\pm 1] \) given by \(\mathcal{L}_{*}(K_{k\alpha}^{k}) = \langle r_{0}, K^{k}_{\alpha} \rangle \) is equal to the map \(\mathcal{L}_{-x^{2}+x} : \mathbb{Z}[q_{\alpha}^\pm 1, z^\pm 1] \to \mathbb{Z}[q_{\alpha}^\pm 1] \) of [BCL]. By [BCL, Theorem 2.2], for any \(f \in \mathcal{I} \),

\[
\mathcal{L}_{*}(f) \in \frac{(q_{\alpha}; q_{\alpha})_{n}}{(q_{\alpha}; q_{\alpha})_{[n/2]}} \mathbb{Z}[q_{\alpha}^\pm 1].
\]

As \((q_{\alpha}; q_{\alpha})_{n}Q(\alpha; n) \in \mathcal{I} \), one has

\[
\langle r_{0}, (q_{\alpha}; q_{\alpha})_{n}Q(\alpha; n) \rangle = \mathcal{L}_{*}((q_{\alpha}; q_{\alpha})_{n}Q(\alpha; n)) \in \frac{(q_{\alpha}; q_{\alpha})_{n}}{(q_{\alpha}; q_{\alpha})_{[n/2]}} \mathbb{Z}[q_{\alpha}^\pm 1].
\]

We have

\[
\left(\frac{(q_{\alpha}; q_{\alpha})_{n}}{(q_{\alpha}; q_{\alpha})_{[n/2]}} \right)^{2} = \frac{(q_{\alpha}; q_{\alpha})_{n}}{(q_{\alpha}; q_{\alpha})_{[n/2]}(q_{\alpha}; q_{\alpha})_{[n/2]}} \in \mathbb{Z}[q_{\alpha}^\pm 1],
\]

where the last inclusion follows from the integrality of the quantum binomial coefficients. Hence, from (127),

\[
\langle r_{0}^{3}, \sqrt{(q_{\alpha}; q_{\alpha})_{n}Q(\alpha; n)} \rangle \in \mathbb{Z}[q_{\alpha}^\pm 1] \subseteq \hat{A}.
\]

This completes the proof of the lemma. \(\square \)

Remark 5.27. Theorem [BCL, 2.2], used in the proof of the above lemma, is one of the main technical results of [BCL] and is difficult to prove. Its proof uses Andrews’ generalization of the Rogers-Ramanujan identity. Actually, only a special case of Theorem [BCL, 2.2] is used here. This special case can be proved using other methods.

5.13.3. **Integrality of** \(r_{0} \).

Lemma 5.28. Suppose \(x \in X_{Z}^{ev,0} \), then \(\langle r_{0}, x \rangle \in \hat{A} \).

Proof. We first prove the following claim.

Claim. If \(\langle r_{0}, x \rangle \in \hat{A} \) for all \(x \in \mathcal{H}_{1} \) and for all \(x \in \mathcal{H}_{2} \), where \(\mathcal{H}_{1}, \mathcal{H}_{2} \) are \(\hat{A} \)-Hopf-subalgebras of \(X_{Z}^{ev,0} \), then \(\langle r_{0}, x \rangle \in \hat{A} \) for all \(x \in \mathcal{H}_{1} \mathcal{H}_{2} \).

Proof of Claim. Suppose \(x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2} \). Using the Hopf dual property of the quantum Killing on the Cartan part (97), we have

\[
\langle r_{0}, xy \rangle = (\Delta(r_{0}), x \otimes y).
\]

A simple calculation shows that \(\Delta(r_{0}) = (r_{0} \otimes r_{0})D^{-2} \), where \(D \) is the diagonal part of the \(R \)-matrix,

\[
D^{-2} = \exp(-h \sum_{\alpha} H_{\alpha} \otimes \hat{H}_{\alpha}/d_{\alpha}).
\]
Writing $D^{-2} = \sum \delta_1 \otimes \delta_2$, we have
\[
(r_0, xy) = \sum (r_0 \delta_1, x) (r_0 \delta_2, y) = \sum (r_0, x(1)) (\delta_1, x(2)) (r_0, y(1)) (\delta_2, y(2)) = \sum (r_0, x(1)) (r_0, y(1)) (x(2), y(2)),
\]
where in the last identity we use the fact that $\sum \langle \delta_1, x \rangle \langle \delta_2, y \rangle = \langle x, y \rangle$, which is easy to prove. (Note that on the Cartan part X^0_h, the quantum Killing form is the dual of D^{-2}, which is the Cartan part of the clasp element c.)

Since $x(1) \in \mathcal{H}_1$ and $y(1) \in \mathcal{H}_2$, we have $\langle r_0, x(1) \rangle \langle r_0, y(1) \rangle \in \tilde{A}$. By Lemma 5.25(b), $\langle x(2), y(2) \rangle \in \tilde{A}$. Hence, (128) shows that $\langle r_0, xy \rangle \in \tilde{A}$. This proves the claim.

By Lemma 5.26, $X^{ev,0}_Z = \bigotimes_{\alpha \in \Pi} X^{ev,0,\alpha}_Z$, each $X^{ev,0,\alpha}_Z$ is a Hopf-subalgebra of $X^{ev,0}_Z$, and $\langle r_0, X^{ev,0,\alpha}_Z \rangle \subset \tilde{A}$. Hence from the claim we have $\langle r_0, X^{ev,0}_Z \rangle \subset \tilde{A}$. \hfill \Box

5.13.4. Proof of Proposition 5.24.

Proof. We have to show that for every $x \in X^{ev}_Z$, $\mathcal{T}_+(x) \in \tilde{A}$. First we will show $\mathcal{T}_+(x) \in \tilde{A}$.

It is enough to consider the case when $x = \sqrt{(q; q)_n} e^{ev}(n)$, where $n = (n_1, k, n_3) \in \mathbb{N}^{l+\ell+t}$, since X^{ev}_Z is \tilde{A}-spanned by elements of this form. By the triangular property (95) of the quantum Killing form and (98),
\[
\mathcal{T}_+(x) = \delta_{n_1, n_1} q^{(\rho, |K_{n_1}|)} \langle r_0, \sqrt{(q; q)_n} Q(k) \rangle \in \tilde{A}.
\]
Here the last inclusion follows from Lemma 5.28. This proves the statement for \mathcal{T}_+.

By Theorem 5.21, X^{ev}_Z is ϕ-stable. By (100), we have $\mathcal{T}_-(x) = \mathcal{T}_+(\phi(x)) \in \tilde{A}$. \hfill \Box

5.14. More on integrality of r_0.

Lemma 5.29. Suppose $y \in X^{ev,0}_Z$. Then $\langle r_0^{\pm 1}, K_{2\rho} y \rangle \in v^{(\rho, \rho)} \tilde{A}$.

Proof. Since $X^{ev,0}_Z$ is a Hopf-algebra (Lemma 5.25), we have $\Delta(y) = \sum y(1) \otimes y(2)$ with $y(1), y(2) \in X^{ev,0}_Z$. Using (128) then (99), we have
\[
\langle r_0, K_{2\rho} y \rangle = \sum \langle r_0, K_{2\rho} \rangle \langle r_0, y(1) \rangle \langle K_{2\rho}, y(2) \rangle = v^{(\rho, \rho)} \sum \langle r_0, y(1) \rangle \langle K_{2\rho}, y(2) \rangle,
\]
where we use $\langle r_0, K_{2\rho} \rangle = v^{(\rho, \rho)}$, which follows from an easy calculation. The second factor $\langle r_0, y(1) \rangle$ is in \tilde{A} by Lemma 5.28. The last factor $\langle K_{2\rho}, y(2) \rangle$ is in \tilde{A}. Thus, we have $\langle r_0, K_{2\rho} y \rangle \in v^{(\rho, \rho)} \tilde{A}$.

Using (100), the fact that $X^{ev,0}_Z$ is ϕ-stable, and the above case for r_0, we have
\[
\langle r_0^{\pm 1}, K_{2\rho} y \rangle = \langle r_0, \phi(K_{2\rho} y) \rangle = \langle r_0, K_{2\rho} \phi(y) \rangle \in v^{(\rho, \rho)} \tilde{A}.
\]
This completes the proof of the lemma. \hfill \Box
6. Gradings

In Section 3.3, we defined the Y-grading and the $Y/2Y$-grading on U_q. In this section we define a grading on U_q by a group G, which is a (possibly noncommutative) central $\mathbb{Z}/2\mathbb{Z}$-extension of $Y \times (Y/2Y)$, thus refining both the two gradings by Y and $Y/2Y$. This grading is extended to the tensor powers of $U \times Y$.

The reason for the introduction of the G-grading is the following. The integral core X_G will be enough for us to show that the invariant J_M of integral homology 3-spheres, a priori belonging to $\mathbb{C}[[\sqrt{\hbar}]]$, is in

$$\lim_k \mathbb{Z}[v^{\pm 1}]/((q; q)_k).$$

But we want to show that J_M belongs to a smaller ring, namely $\mathbb{Z}[q] = \lim_k \mathbb{Z}[v^{\pm 1}]/((q; q)_k)$, and the G-grading will be helpful in the proof. In the section 7 we will show that quantum link invariants of algebraically split bottom tangles belong to a certain homogeneous part of this G-grading.

6.1. The groups G and G^{ev}. Let G denote the group generated by the elements \dot{v}, \hat{K}_α, \hat{e}_α ($\alpha \in \Pi$) with the relations

$$\begin{align*}
\dot{v} & \text{ central, } \dot{v}^2 = \hat{K}_\alpha^2 = 1, \quad \hat{K}_\alpha \hat{K}_\beta = \hat{K}_\beta \hat{K}_\alpha, \\
\hat{K}_\alpha \hat{e}_\beta &= \hat{v}(\alpha, \beta) \hat{e}_\beta \hat{K}_\alpha, \\
\hat{e}_\alpha \hat{e}_\beta &= \hat{v}(\alpha, \beta) \hat{e}_\beta \hat{e}_\alpha.
\end{align*}$$

Let G^{ev} be the subgroup of G generated by \dot{v}, \hat{e}_α ($\alpha \in \Pi$).

Remark 6.1. The groups G and G^{ev} are abelian if and only if g is of type A_1 or B_n ($n \geq 2$).

Define a homomorphism $G \to Y$, $g \mapsto |g|$, by

$$|\dot{v}| = |\hat{K}_\alpha| = 0, \quad |\hat{e}_\alpha| = \alpha \quad (\alpha \in \Pi).$$

For $\gamma = \sum_i m_i \alpha_i \in Y$, set

$$\hat{K}_\gamma = \prod_i \hat{K}_{\alpha_i}^{m_i}, \quad \hat{e}_\gamma = \prod_i \hat{e}_{\alpha_i}^{m_i} = \hat{e}_{\alpha_1}^{m_1} \cdots \hat{e}_{\alpha_l}^{m_l}.$$

Note that \hat{e}_γ depends on the order of the simple roots $\alpha_1, \ldots, \alpha_l \in \Pi$.

One can easily verify the following commutation rules:

$$\begin{align*}
g \hat{K}_\lambda &= \hat{v}(\langle |g|, \lambda \rangle) \hat{K}_\lambda g \quad \text{for } g \in G, \lambda \in Y, \\
gg’ &= \hat{v}(\langle |g|, |g’| \rangle) gg’ \quad \text{for } g, g’ \in G^{ev}.
\end{align*}$$

Let N be the subgroup of G generated by \dot{v}. Then N has order 2 and is a subgroup of the center of G. Note that $G/N \cong Y \times (Y/2Y)$ and $G^{ev}/N \cong Y$.

6.1.1. Tensor products of G and G^{ev}. By $G \otimes G = G \otimes_N G$, we mean the “tensor product over N” of two copies of G, i.e.,

$$G \otimes G := (G \times G)/((\dot{v} x, y) \sim (x, \dot{v} y)).$$

Similarly, we can define $G \otimes G^{ev}$, $G^{ev} \otimes G^{ev}$, etc., which are subgroups of $G \otimes G$. Denote by $x \otimes y$ the element in $G \otimes G$ represented by (x, y). Thus we have $\dot{v} x \otimes y = x \otimes \dot{v} y$.
Similarly, we can also define the tensor powers $G^\otimes n = G \otimes \cdots \otimes G$, $(G^{ev})^\otimes n = G^{ev} \otimes \cdots \otimes G^{ev} \subset G^\otimes n$ (each with n tensorands). Define a homomorphism $\iota_n: N \to G^\otimes n$ by

$$\iota_n(v^k) = \hat{v}^k \otimes 1^{\otimes(n-1)}, \quad k = 0,1.$$

We have

$$G^\otimes n/\iota_n(N) \cong Y^n \times (Y/2Y)^n, \quad (G^{ev})^\otimes n/\iota_n(N) \cong Y^n.$$

For $n = 0$, we set

$$G^\otimes 0 = (G^{ev})^\otimes 0 = N.$$

6.2. G-grading of U_q. By a G-grading of U_q we mean a direct sum decomposition of $C(q)$-vector spaces

$$U_q = \bigoplus_{g \in G} [U_q]_g$$

such that $1 \in [U_q]_1$ and $[U_q]_g [U_q]_{g'} \subset [U_q]_{gg'}$ for $g, g' \in G$. If $x \in [U_q]_g$, we write $deg_G(x) = g$.

Proposition 6.2. There is a unique G-grading on U_q such that

$$deg_G(v) = \hat{v}, \quad deg_G(K_{\pm\alpha}) = \hat{K}_\alpha, \quad deg_G(E_\alpha) = \hat{v}^a \hat{e}_\alpha, \quad deg_G(F_\alpha) = \hat{e}_\alpha^{-1} \hat{K}_\alpha.$$

Proof. Since $v^\pm 1, K_\alpha, E_\alpha, F_\alpha$ generates the $C(q)$-algebra U_q, the uniqueness is clear. Let us prove the existence of the G-grading.

Let \hat{U}_q denote the free $C(q)$-algebra generated by the elements $\hat{v}, \hat{v}^{-1}, \hat{K}_\alpha, \hat{K}_\alpha^{-1}, \hat{E}_\alpha, \hat{F}_\alpha$. We can define a G-grading of U_q by

$$deg_G(\hat{v}^\pm 1) = \hat{v}, \quad deg_G(\hat{K}_{\pm\alpha}^{-1}) = \hat{K}_\alpha, \quad deg_G(\hat{E}_\alpha) = \hat{v}^a \hat{e}_\alpha, \quad deg_G(\hat{F}_\alpha) = \hat{e}_\alpha^{-1} \hat{K}_\alpha.$$

The kernel of the obvious homomorphism $\hat{U}_q \to U_q$ is the two-sided ideal in \hat{U}_q generated by the defining relations of the $C(q)$-algebra U_q:

$$\hat{v}^{-1} = \hat{v}^{-1} \hat{v} = 1, \quad \hat{v}^2 = q, \quad \hat{v} \text{ central,}$$

$$\hat{K}_\alpha \hat{K}_\alpha^{-1} = \hat{K}_\alpha^{-1} \hat{K}_\alpha = 1, \quad \hat{K}_\alpha \hat{K}_\beta = \hat{K}_\beta \hat{K}_\alpha,$$

$$\hat{K}_\alpha \hat{E}_\beta \hat{K}_\alpha^{-1} = \hat{v}^{(\alpha,\beta)} \hat{E}_\beta, \quad \hat{K}_\alpha \hat{F}_\beta \hat{K}_\alpha^{-1} = \hat{v}^{-(\alpha,\beta)} \hat{F}_\beta,$$

$$\hat{E}_\alpha \hat{F}_\beta - \hat{F}_\beta \hat{E}_\alpha = \delta_{\alpha,\beta} (q^{d_a} - 1)^{-1} \hat{v}^{d_a} (\hat{K}_\alpha - \hat{K}_\alpha^{-1}),$$

$$\sum_{s=0}^{1-a_{\alpha\beta}} (-1)^s \left[\begin{array}{c} 1 - a_{\alpha\beta} \\ s \end{array} \right] \hat{E}_\alpha^{1-a_{\alpha\beta}-s} \hat{E}_\alpha \hat{F}_\beta \hat{F}_\beta \hat{E}_\alpha = 0 \quad (\alpha \neq \beta),$$

$$\sum_{s=0}^{1-a_{\alpha\beta}} (-1)^s \left[\begin{array}{c} 1 - a_{\alpha\beta} \\ s \end{array} \right] \hat{F}_\alpha^{1-a_{\alpha\beta}-s} \hat{F}_\alpha \hat{E}_\beta \hat{E}_\alpha \hat{F}_\beta = 0 \quad (\alpha \neq \beta).$$

Here, for $n, s \geq 0, \left[\begin{array}{c} n \\ s \end{array} \right]_\alpha$ is obtained from $\left[\begin{array}{c} n \\ s \end{array} \right] \in \mathbb{Z}[v_\alpha, v_\alpha^{-1}]$ by replacing $v_\alpha^{\pm 1}$ by $\hat{v}^{\pm d_a}$. Since the above relations are homogeneous in the G-grading of \hat{U}_q, the assertion holds.
From the definition, we have

\[U_q^{ev} = \bigoplus_{g \in G^{ev}} [U_q]_g. \]

We say that \(x \in U_q \) is \(G \)-homogeneous if \(x \in [U_q]_g \) for some \(g \in G \). Similarly, we say \(x \in U_q \) is \(G^{ev} \)-homogeneous if \(x \in [U_q]_g \) for some \(g \in G^{ev} \).

6.2.1. The \(G^{\otimes m} \)-grading of \(U_q^{\otimes m} \). For \(m \geq 1 \), \(U_q^{\otimes m} \) is \(G^{\otimes m} \)-graded:

\[U_q^{\otimes m} = \bigoplus_{g \in G^{\otimes m}} [U_q^{\otimes m}]_g, \]

where, for \(g = g_1 \otimes \cdots \otimes g_m \in G^{\otimes m} \) (\(g_i \in G \)), we set

\[[U_q^{\otimes m}]_g = [U_q]_{g_1} \otimes [\mathbb{C}(v)]_v \cdots \otimes [\mathbb{C}(v)]_v [U_q]_{g_m} \subset U_q^{\otimes m}. \]

Note that \(\mathbb{C}(v) = U_q^{\otimes 0} \) is \(N(= G^{\otimes 0}) \)-graded: \([\mathbb{C}(v)]_{\phi^k} = v^k \mathbb{C}(q) \), \(k = 0, 1 \). We extend the \(N \)-grading of \(\mathbb{C}(v) \) to a \(G \)-grading by setting

\[[\mathbb{C}(v)]_g = \begin{cases} g \mathbb{C}(q) & \text{if } g = 1 \text{ or } g = v \\ 0 & \text{otherwise} \end{cases}. \]

6.2.2. Total \(G \)-grading of \(U_q^{\otimes m} \) and \(G \)-grading preserving map. For \(g \in G \) and \(a \geq 0 \), set

\[[U_q^{\otimes m}]_g := \sum_{g_1, \ldots, g_m \in G; g_1 \cdots g_m = g} [U_q^{\otimes a}]_{g_1} \otimes \cdots \otimes [U_q^{\otimes a}]_{g_m}. \]

This gives a \(G \)-grading of the \(\mathbb{C}(g) \)-module \(U_q^{\otimes m} \) for each \(a \geq 0 \). (If \(a = 0 \), we have \([U_q^{\otimes 0}]_{\phi^k} = [\mathbb{C}(v)]_{\phi^k} = v^k \mathbb{C}(v) \) for \(k = 0, 1 \), and \([U_q^{\otimes 0}]_g = 0 \) for \(g \in G \setminus \{1, v\} \).

A \(\mathbb{C}[[h]] \)-module map \(f : U_q^{\otimes m} \to U_q^{\otimes m} \) is said to preserve the \(G \)-grading if for every \(g \in G \), \(f([U_q^{\otimes m}]_g) \subset [U_q^{\otimes m}]_g \). Here

\[[U_q^{\otimes n}]_g = [U_q^{\otimes n}]_g \cap U_q^{\otimes m}. \]

6.3. Multiplication, unit, and counit. From the definition of the \(G \)-grading, we have the following.

Proposition 6.3. Each of \(\mu, \eta, \epsilon \) preserves the \(G \)-grading, i.e.

\[\mu([U_q^{\otimes 2}]) \subset [U_q], \quad \eta([\mathbb{C}(v)]) \subset [U_q], \quad \epsilon([U_q]) \subset [\mathbb{C}(v)]. \]

6.4. Bar involution \(\iota_{\text{bar}} \) and mirror automorphism \(\varphi \). From the definition one has immediately the following.

Lemma 6.4. The bar involution \(\iota_{\text{bar}} : U_h \to U_h \) preserves the \(G \)-grading.

Let \(\varphi : G \to G \) be the automorphism given by \(\varphi(\hat{v}) = \hat{v}, \varphi(\hat{K}_\alpha) = \hat{K}_\alpha, \varphi(\hat{\epsilon}_\alpha) = v^{d_\alpha} \hat{\epsilon}_\alpha^{-1} \). From the definition of \(\varphi \) one has the following.

Lemma 6.5. \(g \in G \), we have \(\varphi([U_q]_g) \subset [U_q]_{\varphi(g)} \).
6.5. Antipode. Define a function $\tilde{S}: G \to G$ by

$$\tilde{S}(gK_\gamma) = K_{\gamma + |g|}g = \hat{v}(|\gamma|)gK_{\gamma + |g|}$$

for $g \in G^{ev}, \gamma \in Y$. One can easily verify that \tilde{S} is an involutive anti-automorphism.

Lemma 6.6. For $g \in G$, we have $S([U_q]_g) \subset [U_q]_{\tilde{S}(g)}$. In particular, if $y = S(x)$ where x is G^{ev}-homogeneous, then

$$\tilde{y} = \check{x}K_{|x|} = \check{K}_{|x|}\check{x}.$$

Here $\check{y} = \deg_G(y)$ and $\check{x} = \deg_G(x)$.

Proof. It is easy to check that if $x = v, K_\alpha, E_\alpha, F_\alpha$, then $S(x)$ is homogeneous of degree $\tilde{S}(g)$. If $x, y \in U_q$ are homogeneous of degrees $x, y \in G$, respectively, then $S(xy) = S(y)S(x)$ is homogeneous of degree $\tilde{S}(y)\tilde{S}(x) = \tilde{S}(xy)$. Hence, by induction, we deduce that, for each monomial x in the generators, $S(x)$ is homogeneous of degree $\tilde{S}(x)$. This completes the proof. \hfill \square

6.6. Braid group action. Define a function $\hat{T}_\alpha: G \to G$ by

$$\hat{T}_\alpha(gK_\gamma) = \hat{v}_\alpha^{1r(\alpha+1)}e_\alpha^r gK_{\alpha(\gamma)}$$

where $r = -(|g|, \alpha)/d_\alpha$,

for $g \in G^{ev}, \gamma \in Y$. Note that \hat{T}_α is an involutive automorphism of G, satisfying $\hat{T}_\alpha(G^{ev}) \subset G^{ev}$.

Lemma 6.7. If $g \in G$, then we have

$$T_\alpha([U_q]_g) \subset [U_q]_{T_\alpha(g)}.$$

Proof. It suffices to check that for each generator x of U_q we have $T_\alpha(x) \in [U_q]_{\alpha(d_{deg}(x))}$, which follows from the definitions. \hfill \square

6.7. Quasi-R-matrix. For $\lambda \in Y$, set

$$\check{\theta}_\lambda = e_\lambda^{-1}\check{K}_\lambda \otimes \check{e}_\lambda \in G^{\otimes 2}.$$

We have $\check{\theta}_0 = 1 \otimes 1$. Note that $\check{\theta}_\lambda$ does not depend on the order of the simple roots $\alpha_1, \ldots, \alpha_\ell$.

Lemma 6.8. For $\lambda, \mu \in Y$, we have

$$\check{\theta}_\lambda \check{\theta}_\mu = \check{\theta}_{\lambda+\mu}.$$

Proof.

\[
\check{\theta}_\lambda \check{\theta}_\mu = (e_\lambda^{-1}\check{K}_\lambda \otimes \check{e}_\lambda)(e_\mu^{-1}\check{K}_\mu \otimes \check{e}_\mu)
= \check{e}_\lambda^{-1}\check{K}_\lambda e_\mu^{-1}\check{K}_\mu \otimes \check{e}_\lambda \check{e}_\mu
= \check{e}_\mu^{-1}\check{K}_\mu \check{e}_\lambda \otimes \check{e}_\lambda \check{e}_\mu
= (\check{e}_\mu \check{e}_\lambda)^{-1}\check{K}_{\lambda+\mu} \otimes \check{e}_\lambda \check{e}_\mu
= e_\mu^{-1}\check{K}_{\lambda+\mu} \otimes \check{e}_\lambda \check{e}_\mu
= \check{\theta}_{\lambda+\mu}.
\]

\square
The automorphism $\tilde{T}_\alpha: G \to G$ induces an automorphism
\[\tilde{T}_\alpha^{\otimes 2}: G^{\otimes 2} \to G^{\otimes 2}, \quad g_1 \otimes g_2 \mapsto \tilde{T}_\alpha(g_1) \otimes \tilde{T}_\alpha(g_2). \]

Lemma 6.9. If $\alpha \in \Pi$ and $\lambda \in Y$, then we have
\[\tilde{T}_\alpha^{\otimes 2}(\hat{\theta}_\lambda) = \hat{\theta}_{s_\alpha(\lambda)}. \]

Proof. We have
\[
\begin{align*}
\tilde{T}_\alpha^{\otimes 2}(\hat{\theta}_\lambda) &= \tilde{T}_\alpha^{\otimes 2}(\hat{e}_\lambda^{-1} \hat{K}_\lambda \otimes \hat{e}_\lambda) \\
&= \tilde{T}_\alpha(\hat{e}_\lambda^{-1}) \tilde{T}_\alpha(\hat{K}_\lambda) \otimes \tilde{T}_\alpha(\hat{e}_\lambda) \\
&= \tilde{T}_\alpha(\hat{e}_\lambda)^{-1} \hat{K}_{s_\alpha(\lambda)} \otimes \tilde{T}_\alpha(\hat{e}_\lambda).
\end{align*}
\]

Hence it suffices to show that
\[(132) \quad \tilde{T}_\alpha(\hat{e}_\lambda)^{-1} \otimes \tilde{T}_\alpha(\hat{e}_\lambda) = \hat{e}_{s_\alpha(\lambda)}^{-1} \otimes \hat{e}_{s_\alpha(\lambda)}, \]

which can be verified by using the fact that there is $k \in \{0, 1\}$ such that $\tilde{T}_\alpha(\hat{e}_\lambda) = \hat{v}^k \hat{e}_{s_\alpha(\lambda)}$. \qed

Recall that Θ is the quasi-R-matrix and its definition is given in Section 3.7.1. For $\gamma \in Y_+$, let $\Theta_\gamma \in \mathbb{U}_q^{\otimes 2}$ denote the weight $(-\gamma, \gamma)$-part of Θ, so that we have $\Theta = \sum_{\gamma \in Y_+} \Theta_\gamma$. Similarly, let $\bar{\Theta}_\gamma$ denote the weight $(-\gamma, \gamma)$-part of $\Theta = \Theta^{-1}$.

Lemma 6.10. For $\gamma \in Y_+$, we have $\Theta_\gamma, \bar{\Theta}_\gamma \in [\mathbb{U}_q^{\otimes 2}]_{\bar{\gamma}_\gamma}$.

Proof. Suppose $i = (i_1, \ldots, i_t)$ is a longest reduced sequence. Note that
\[\Theta_\gamma = \sum_{m = (m_1, \ldots, m_t) \in \mathbb{Z}^t, |E_m(i)| = \gamma} \Theta_{m_1}^{[1]} \cdots \Theta_{m_t}^{[1]}, \]

where we set
\[\Theta_{m}^{[i]} := (T_{a_{j_1}} \cdots T_{a_{j_{t-1}}})^{\otimes 2}((-1)^n v_{a_{j_l}}^{-\frac{1}{2} n(n-1)} F_{\alpha_{j_l}}^\gamma \otimes E_{\alpha_{j_l}}^\gamma). \]

For each $\alpha \in \Pi$, we have
\[(-1)^n v_{a_{j_l}}^{-\frac{1}{2} n(n-1)} F_{\alpha}^\gamma \otimes E_{\alpha}^\gamma \in [\mathbb{U}_q^{\otimes 2}]_{\bar{\theta}_{a_{\alpha_l}}}. \]

By Lemma 6.9, we deduce that $\Theta_{m}^{[i]} \in \mathbb{U}_q^{\otimes 2}$ is homogeneous of degree
\[(T_{a_{j_1}} \cdots T_{a_{j_{t-1}}})^{\otimes 2}(\hat{\theta}_{a_{\alpha_l}}) = \hat{\theta}_{a_{\alpha_l} \cdots a_{\alpha_{j_l-1}}(a_{j_l})}. \]

Hence it follows that Θ_γ is homogeneous of degree $\hat{\theta}_\gamma$. The case of $\bar{\Theta}_\gamma$ follows from $\Theta^{-1} = (\bar{\theta}_{\bar{\gamma}} \otimes \bar{\theta}_{\bar{\gamma}})(\Theta)$ and Lemma 6.4 which says $\bar{\theta}_{\bar{\gamma}}$ preserves the G-grading. \qed

Corollary 6.11. Fix a longest reduced sequence i. For $m \in \mathbb{N}^t, \gamma \in Y$,
\[
(133) \quad E_m \otimes K_m F_m, \quad E'_m \otimes K_m F'_m \in \left[\mathbb{U}_Z^{\text{ev}} \otimes \mathbb{U}_Z^{\text{ev}} \right]_{\hat{\lambda}_m} \otimes \hat{\epsilon}_{m-1} \subset \left[\mathbb{U}_Z^{\text{ev}} \otimes \mathbb{U}_Z^{\text{ev}} \right]_1.
\]
\[
(134) \quad F_m K_m K_{2\gamma} E_m \in \left[\mathbb{U}_Z \right]_1.
\]

Here $\lambda_m = |E_m| = |E'_m|$. \quad \[E_m \otimes K_m F_m, \quad E'_m \otimes K_m F'_m \in \left[\mathbb{U}_Z^{\text{ev}} \otimes \mathbb{U}_Z^{\text{ev}} \right]_{\hat{\lambda}_m} \otimes \hat{\epsilon}_{m-1} \subset \left[\mathbb{U}_Z^{\text{ev}} \otimes \mathbb{U}_Z^{\text{ev}} \right]_1.
\]

Proof. We have $\Theta = \sum_m F_m \otimes E_m$ and $\Theta^{-1} = \sum_m F'_m \otimes E'_m$. Hence, (133) follows from Lemma 6.10. In turn, (134) follows from (133), because $K_{2\gamma} = 1$. \qed
6.8. Twist forms. Recall that we have defined $\mathcal{T}_\pm : U^e_{\mathbb{Z}} \to \mathbb{Q}(v)$, see Section 4.9.

Proposition 6.12. Both maps $\mathcal{T}_\pm : U^e_{\mathbb{Z}} \to \mathbb{Q}(v)$ preserve the G-grading, i.e. $\mathcal{T}_\pm ([U^e_{\mathbb{Z}}]) \subset [\mathbb{Q}(v)]_g$.

Proof. (a) First we consider the case of \mathcal{T}_+. The set
\[
\{ F_m K_m K_{2g} E_m \mid n, m \in \mathbb{N}, \gamma \in Y \}
\]
is a $\mathbb{Q}(v)$-basis of $U^e_{\mathbb{Z}} \otimes A Q(v)$. Hence,
\[
\{ v^\gamma F_m K_m K_{2g} E_m \mid n, m \in \mathbb{N}, \gamma, \delta \in \{0, 1\} \}
\]
is a $\mathbb{Q}(q)$-basis of $U^e_{\mathbb{Z}} \otimes A Q(v)$. Each element of this basis is G-homogeneous. By (103),
\[
T_+(v^\gamma F_m K_m K_{2g} E_m) = \delta_{nm} v^\gamma q^{(\gamma, \gamma)}/2 \in v^\gamma \mathbb{Z}[q^{\pm 1}] = [A]_{v^\delta}.
\]
By Corollary 6.11, the G-grading of $v^\gamma F_m K_m K_{2g} E_m$ is v^δ. Hence, we have
\[
(135) \quad T_+ ([U^e_{\mathbb{Z}} \otimes A \mathbb{Q}(v)]) \subset [\mathbb{Q}(v)]_g.
\]
(b) Now consider \mathcal{T}_-. Using (100), Lemma 6.5, and (135), we have
\[
\mathcal{T}_- ([U^e_{\mathbb{Z}} \otimes A \mathbb{Q}(v)]) = \mathcal{T}_+ (\mathcal{P}([U^e_{\mathbb{Z}} \otimes A \mathbb{Q}(v)]) \subset \mathcal{T}_+ ([U^e_{\mathbb{Z}} \otimes A \mathbb{Q}(v)]) \subset [\mathbb{Q}(v)] \mathcal{P}(g) = [\mathbb{Q}(v)]_g,
\]
where the last identity follows from the fact that for the involution \mathcal{P}, we have $\mathcal{P}(1) = 1$ and $\mathcal{P}(v) = v$, and for any $g \notin \{1, v\}$, we have $[\mathbb{Q}(v)]_g = 0$. \hfill \square

6.9. Coproduct.

Lemma 6.13. Suppose $x \in U_q$ is G^e-homogeneous. There exists a presentation
\[
\Delta(x) = \sum x_{(1)} \otimes x_{(2)}
\]
such that each for each $x_{(1)} \otimes x_{(2)}$,

(i) $x_{(1)}$ is G-homogeneous

(ii) $x_{(2)}$ and $x_{(1)} K_{x_{(2)}}$ are G^e-homogeneous, and

\[
(136) \quad \hat{x}_{(1)} K_{x_{(2)}} \hat{x}_{(2)} = \hat{x} = \hat{x}_{(2)} K_{x_{(2)}} \hat{x}_{(1)}.
\]

Remark 6.14. A presentation of $\Delta(x)$ as in Proposition Lemma 6.13 is called a G-good presentation. When x is G^e-homogeneous, we always use a G-good presentation for $\Delta(x)$.

Proof. Suppose x, y are G^e-homogeneous. If $\Delta(x) = \sum_{i} x_i \otimes x_i''$ and $\Delta(y) = \sum_{j} y_j \otimes y_j''$ are G-good presentation of x and y respectively, then it is easy to check that $\sum_{i,j} x_i' y_j' \otimes x_i'' y_j''$ is a G-good presentation of $\Delta(xy)$. Hence, one needs only to check the statement for x equal to generators $K_{2a}, E_n, F_0, K_\alpha$ of U^e_q. For each of these generators, the defining formulas of Δ show that the statement holds. \hfill \square
6.10. **Adjoint action.** Define a map
\[\hat{\text{ad}}: G \otimes G^{ev} \to G^{ev} \]
by
\[\hat{\text{ad}}(g K_\lambda \otimes g') = \hat{v}(\lambda, |g'|)gg' \]
for \(\lambda \in Y \), \(g, g' \in G^{ev} \). Note that for \(g, g' \in G^{ev} \) we have \(\hat{\text{ad}}(g \otimes g') = gg' \).

Lemma 6.15. For \(g, g' \in G^{ev} \) and \(\gamma \in Y \), we have
\[\text{ad}([U_q \otimes U_q^{ev}] g K_\gamma \otimes g') \subset [U_q^{ev}] \hat{\text{ad}}(g K_\gamma \otimes g'). \]
In particular, if \(z = x \triangleright y \) where both \(x, y \) are \(G^{ev} \)-homogeneous, then \(z \) is \(G^{ev} \)-homogeneous with
\[\hat{z} = \hat{x}\hat{y}. \]

Proof. Suppose \(x, y \) are \(G^{ev} \)-homogeneous, and \(\gamma \in Y \). Choose a \(G \)-good presentation \(\Delta(x) = \sum x(1) \otimes x(2) \) (see Section 6.9). By definition,
\[(x K_\gamma) \triangleright y = \sum x(1) K_\gamma y S(x(2) K_\gamma) = \sum x(1) K_\gamma y K_\gamma^{-1} S(x(2)) = \sum v(\gamma, |y|) x(1) y S(x(2)). \]
A term of the last sum is in \([U_q]_u\), where
\[u = \hat{v}(\gamma, |y|) \hat{x}(1) \hat{y} \hat{S}(\hat{x}(2)) \]
\[= \hat{v}(\gamma, |y|) \hat{x}(1) \hat{y} K_{|x(2)|} \hat{x}(2) \]
by Lemma 6.6
\[= \hat{v}(\gamma, |y|) \hat{x}(1) K_{|x(2)|} \hat{x}(2) \hat{y} \]
\[= \hat{v}(\gamma, |y|) \hat{x} \hat{y} \]
by (136).
Hence we have the assertion. \(\square \)
7. Integral values of J_M

By Theorem 2.22, the core subalgebra X_h, constructed in Section 4, gives rise to an invariant J_M of integral homology 3-spheres. A priori, $J_M \in \mathbb{C}[[\sqrt{h}]]$. The main result of this section is to show that $J_M \in \mathbb{Z}[q]$ for any integral homology 3-sphere M. To prove this fact we will construct a family of A-submodules $\tilde{\mathcal{K}}_n \subset X_h^{\otimes n}$ satisfying Conditions (AL1) and (AL2) of Theorem 2.29, with $\tilde{\mathcal{K}}_0 = \mathbb{Z}[q]$. Then by Theorem 2.29, $J_M \in \tilde{\mathcal{K}}_0 = \mathbb{Z}[q]$.

7.1. Module $\tilde{\mathcal{K}}_n$. For $n \geq 0$ let $[(U^v_Z)^{\otimes n}]_1$ denote the G-grading 1 part of $(U^v_Z)^{\otimes n}$. Define

$$K_n := (X^v_Z)^{\otimes n} \cap [(U^v_Z)^{\otimes n}]_1 \subset \left(X^{\hat{n}, n} \cap U_h^{\otimes n} \right).$$

In the notation of (125), $\mathcal{K}_n = [X^{\otimes n}_A]_1$. For example, $\mathcal{K}_0 = \mathbb{Z}[q^{\pm 1}]$. Define filtrations on \mathcal{K}_n by

$$\mathcal{F}_k(\mathcal{K}_n) := (q;q)_k \mathcal{K}_n \subset \left(h^k X^{\hat{n}, n}_h \cap h^k U^{\otimes n}_h \right).$$

Let $\tilde{\mathcal{K}}_n$ be the completion of \mathcal{K}_n by the filtrations $\mathcal{F}_k(\mathcal{K}_n)$ in $U^{\hat{n}, n}_h$, i.e.

$$\tilde{\mathcal{K}}_n := \left\{ x = \sum_{k=0}^{\infty} x_k \mid x_k \in \mathcal{F}_k(\mathcal{K}_n) \right\} \subset \left(X^{\hat{n}, n}_h \cap U^{\hat{n}, n}_h \right).$$

Since $\mathcal{K}_0 = \mathbb{Z}[q^{\pm 1}]$, we have $\tilde{\mathcal{K}}_0 = \mathbb{Z}[q]$. Each $\tilde{\mathcal{K}}_n$ has the structure of a complete $\mathbb{Z}[q]$-module.

Proposition 7.1. The family $(\tilde{\mathcal{K}}_n)$ satisfies Condition (AL2) of Theorem 2.29. Namely, if $\varepsilon_1, \ldots, \varepsilon_n \in \{\pm 1\}$ and $x \in \tilde{\mathcal{K}}_n$ then

$$(T_{\varepsilon_1} \otimes \ldots \otimes T_{\varepsilon_n})(x) \in \tilde{\mathcal{K}}_0 = \mathbb{Z}[q].$$

Proof. By definition, x has a presentation $x = \sum_{k=0}^{\infty} (q;q)_k x_k$, where $x_k \in \mathcal{K}_n \subset X_h$. Since T_{ε} are continuous on the h-adic topology of $X^{\hat{n}, n}_h$, we have

$$((T_{\varepsilon_1} \otimes \ldots \otimes T_{\varepsilon_n})(x) = \sum_{k=0}^{\infty} (q;q)_k (T_{\varepsilon_1} \otimes \ldots \otimes T_{\varepsilon_n})(x_k) \in \mathbb{C}[[\sqrt{h}]].$$

Since $x_k \in \mathcal{K}_n \subset (X^v_Z)^{\otimes n}$, by Proposition 5.24, $(T_{\varepsilon_1} \otimes \ldots \otimes T_{\varepsilon_n})(x_k) \subset \hat{A}$.

Since $x_k \in [(U^v_Z)^{\otimes n}]_1$, by Proposition 6.12, $(T_{\varepsilon_1} \otimes \ldots \otimes T_{\varepsilon_n})(x_k) \subset [Q(v)]_1 = Q(q)$. Hence,

$$(T_{\varepsilon_1} \otimes \ldots \otimes T_{\varepsilon_n})(x_k) \in \hat{A} \cap Q(q) = \mathbb{Z}[q^{\pm 1}],$$

where the last identity is Lemma 5.1. From (138) we have $(T_{\varepsilon_1} \otimes \ldots \otimes T_{\varepsilon_n})(x) \in \mathbb{Z}[q]$. □

7.2. Finer version of $\tilde{\mathcal{K}}_n$. We will show that for an n-component bottom tangle T with 0 linking matrix, $J_T \in \tilde{\mathcal{K}}_n$. Then Proposition 7.1 will show that $J_M \in \mathbb{Z}[q]$ for any integral homology 3-spheres.

For the purpose of proving that J_M recovers the Witten-Reshetikhin-Turaev invariant, we want J_T to belong to smaller subsets of $\tilde{\mathcal{K}}_n$, which we will describe here.

Suppose \mathcal{U} is an A-Hopf-subalgebra of U_Z. Define (with convention $\mathcal{U}^{\otimes 0} = A$)

$$\mathcal{K}_n(\mathcal{U}) := \mathcal{K}_n \cap \mathcal{U}^{\otimes n}, \quad \mathcal{F}_k(\mathcal{K}_n(\mathcal{U})) := \mathcal{F}_k(\mathcal{K}_n) \cap \mathcal{U}^{\otimes n}.$$
Let \(\tilde{K}_n(U) \) be completion of \(K_n(U) \) with respect to the filtration \((F_k(K_n)) \) in \(U_h \), i.e.

\[
\tilde{K}_n(U) := \left\{ x = \sum_{k=0}^{\infty} x_k \mid x_k \in F_k(K_n(U)) \right\}.
\]

Since \(F_k(K_n(U)) \subset F_k(K_n) \) we have \(\tilde{K}_n(U) \subset \tilde{K}_n \subset X^\otimes_n \). We always have \(\tilde{K}_0(U) = \tilde{K}_0 = \mathbb{Z}[q] \).

7.3. Values of universal invariant of algebraically split bottom tangle.

Throughout we fix a longest reduced sequence \(i \).

Recall that \(\Gamma = cD^2 \) is the quasi-clasp element, see Section 3.9. By Lemma 3.12,

\[
\Gamma = \sum_{n \in \mathbb{N}^2} \Gamma_1(n) \otimes \Gamma_2(n),
\]

where for \(n = (n_1, n_2) \in \mathbb{N}^t \times \mathbb{N}^t \),

\[
(139) \quad \Gamma_1(n) = q^{-(\rho_1 \cdot |E_{n_1}| + |E_{n_2}|)} F_{n_1} K_{n_1}^{-1} E_{n_2}, \quad \Gamma_2(n) = F_{n_2} K_{n_2}^{-1} E_{n_1}.
\]

Proposition 7.2. Suppose \(U \) is an \(A \)-Hopf-subalgebra of \(U_Z \) such that \(K_\alpha \in U \) for all \(\alpha \in \Pi \), and \(F_m \otimes E_m, F'_m \otimes E'_m \in U \otimes U \) for all \(m \in \mathbb{N}^t \).

Then the family \((\tilde{K}_n(U)) \) satisfies Condition (AL1) of Theorem 2.29. Namely, the followings hold.

(i) \(1_{\mathbb{C}[|h|]} \in \tilde{K}_0(U), 1_{U_h} \in \tilde{K}_1(U) \), and \(x \otimes y \in \tilde{K}_{n+m}(U) \) whenever \(x \in \tilde{K}_n(U) \) and \(y \in \tilde{K}_m(U) \).

(ii) Each of \(\mu, \psi^\pm, \Delta, \Sigma \) is \((\tilde{K}_n(U)) \)-admissible.

(iii) The Borromean element \(b \) belongs to \(\tilde{K}_n(U) \).

Note that under the assumption of Proposition 7.2, we have \(\Gamma_1(n) \otimes \Gamma_2(n) \in U \otimes U \) for all \(n \in \mathbb{N}^t \).

Before embarking on the proof of the proposition, let us record some consequences.

Theorem 7.3. Suppose \(U \) is an \(A \)-Hopf-subalgebra of \(U_Z \) satisfying the assumption of Proposition 7.2. Then (a) For any \(n \)-component bottom tangle \(T \) with 0 linking matrix, \(J_T \in \tilde{K}_n(U) \). In particular, \(J_T \in \tilde{K}_n \).

(b) For any integral homology 3-sphere \(M, J_M \in \mathbb{Z}[q] \).

Proof. (a) By Proposition 2.14, (i)–(iii) of Proposition 7.2 imply that \(J_T \in \tilde{K}_n(U) \subset \tilde{K}_n \).

(b) By Propositions 7.2 and 7.1, \((\tilde{K}_n(U)) \) satisfies both conditions (AL1) and (AL2) of Theorem 2.29. By Theorem 2.29, \(J_M \in \tilde{K}_0(U) = \mathbb{Z}[q] \).

The remaining part of the section is devoted to the proof of Proposition 7.2. Statement (i) of Proposition 7.2 follows trivially from the definitions. We will prove (ii) and (iii) in this section. We fix \(U \) satisfying the assumptions of Proposition 7.2.

Remark 7.4. (a) One can relax the assumption of the Proposition 7.2, requiring only that \(K_\alpha \in U \) for all \(\alpha \in \Pi \) and both \(\Theta \) are in the topological closure of \(U \otimes U \) (in the \(h \)-adic topology of \(U_h \otimes U_h \)).
(b) Almost identical proof shows that Theorem 7.3 holds true if \(\mathcal{U} \) is an \(\bar{A} \)-Hopf-subalgebra of \(\mathbf{X}_Z \) instead of \(\mathcal{U} \subset \mathbf{U}_Z \).

7.4. Quasi-\(R \)-matrix. Recall that \(\Theta = \sum_{n \in \mathbb{N}} F_n \otimes E_n \), see Section 3.7. For a multiindex \(n = (n_1, \ldots, n_k) \in \mathbb{N}^k \) let \(\max(n) = \max_j(n_j) \) and

\[
o(n) := (q; q)_{\max(n)/2} \in \mathbb{Z}[q^{\pm 1}].
\]

Lemma 7.5. For each \(n \in \mathbb{N}^\ell \), we have

\[
\begin{align*}
E_n, & \quad \tilde{E}_n \in o(n) U^e_Z \\
K_n F_n \otimes E_n, & \quad K_n F'_n \otimes \tilde{E}_n \in o(n)(X^e_Z \otimes U^e_Z).
\end{align*}
\]

Proof. We write \(x \sim y \) if \(x = uy \) with \(u \) a unit in \(A \). From the definition of \(E_n \) (see Section 3.7),

\[
E_n \sim (q; q)^n E(n) \in (q; q)^n U^e_Z \subset o(n) U^e_Z.
\]

Recall that \(E'_n = \bar{u}_n(E_n), F'_n = \bar{u}_n(F_n) \). Since \(\bar{u}_n \) preserves the even part (Proposition 3.4), and \(\bar{u}_n \) leaves both \(U_Z \) and \(X_Z \) stable (Proposition 5.2 and Theorem 5.21), \(\bar{u}_n \) leaves both \(U^e_Z \) and \(X^e_Z \) stable. Hence, we have

\[
\begin{align*}
\tilde{E}_n &= \bar{u}_n(E_n) \subset o(n) \bar{u}_n(U^e_Z) = o(n) U^e_Z,
\end{align*}
\]

which proves (141). Let us now prove (142). We have

\[
\begin{align*}
K_n F_n \otimes E_n & \sim (q; q)^n F(n) K_n \otimes E(n) \sim \sqrt{(q; q)^n} \left(\sqrt{\{q; q\}^n F(n) K_n} \right) \otimes E(n) \\
& \in \sqrt{\{q; q\}^n X^e_Z \otimes U^e_Z} \subset o(n) \sqrt{\{q; q\}^n X^e_Z \otimes U^e_Z}.
\end{align*}
\]

Applying \(\bar{u}_n \), we get

\[
K_n^{-1} F'_n \otimes \tilde{E}'_n \in o(n)(X^e_Z \otimes U^e_Z).
\]

Since \(K_n^2 \in X^e_Z \), we also have \(K_n F'_n \otimes \tilde{E}'_n \in o(n)(X^e_Z \otimes U^e_Z) \).

7.5. On \(F_k(K_n) \).

Lemma 7.6. For any \(k, n \in \mathbb{N} \), one has

\[
\begin{align*}
F_k(K_n) &= (q; q)^k (X^e_Z)^{\otimes n} \cap [(U^e_Z)^{\otimes n}]_1 = (q; q)^k (X^e_Z)^{\otimes n} \cap [(U^e_Z)^{\otimes n}]_1 \\
(q; q)^k (X^e_Z)^{\otimes n} \cap ((U^e_Z)^{\otimes n} \otimes \bar{A}) &= (q; q)^k (X^e_Z)^{\otimes n}.
\end{align*}
\]

Proof. The preferred basis (123) of \(X_Z \) is a dilatation of the preferred basis of \(U_Z \) (described in Proposition 5.9). The basis of \(U_Z \) gives rise in a natural way to an \(\bar{A} \)-basis \(\{e(i) \mid i \in I\} \) of \(U^{\otimes n}_Z \). By construction, there is a function \(a: I \to \bar{A} \) such that \(\{a(i)e(i) \mid i \in I\} \) is an \(\bar{A} \)-basis of \(X^{\otimes n}_Z \). Besides, there is subset \(I^{ev} \subset I \) such that \(\{e(i) \mid i \in I^{ev}\} \) is an \(\bar{A} \)-basis of \((U^e_Z)^{\otimes n} \) and \(\{a(i)e(i) \mid i \in I\} \) is an \(\bar{A} \)-basis of \((X^e_Z)^{\otimes n} \).

Using the \(\bar{A} \)-basis \(\{e(i) \mid i \in I\} \), every \(x \in (U^e_Z)^{\otimes n} \otimes \bar{A} \) has unique presentation

\[
x = \sum_{i \in I} x_i e(i), \quad x_i \in \bar{A}.
\]

Then

(a) \(x \in U^{\otimes n}_Z \) if and only if \(x_i \in \bar{A} \) for all \(i \in I \).

(b) \(x \in (U^e_Z)^{\otimes n} \) if and only if \(x_i \in \bar{A} \) for all \(i \in I \) and \(x_i = 0 \) for \(i \not\in I^{ev} \).
(c) \(x \in ((U_Z^{ev})^n \otimes_A \tilde{A}) \) if and only if \(x_i = 0 \) for \(i \not\in I^{ev} \).
(d) \(x \in (q; q)_k (X_Z)^n \) if and only if \(x_i \in (q; q)_k a(i) \tilde{A} \) for all \(i \in I \).
(e) \(x \in (q; q)_k (X_Z^{ev})^n \) if and only if \(x_i \in (q; q)_k a(i) \tilde{A} \) for all \(i \in I \) and \(x_i = 0 \) for \(i \not\in I^{ev} \).

Proof of (144). By (c) and (d), \(x \in (q; q)_k (X_Z)^n \cap ((U_Z^{ev})^n \otimes_A \tilde{A}) \) if and only if \(x_i \in (q; q)_k a(i) \tilde{A} \) for all \(i \in I \) and \(x_i = 0 \) for \(i \not\in I^{ev} \), which, by (e), is equivalent to \(x \in (q; q)_k (X_Z^{ev})^n \). Hence we have (144).

Proof of (143). Since \(\mathcal{F}_k(K_n) = (q; q)_k \left((X_Z^{ev})^n \cap [(U_Z^{ev})^n]_1 \right) \), we have

\[
\mathcal{F}_k(K_n) \subset (q; q)_k(X_Z^{ev})^n \cap [(U_Z^{ev})^n]_1 \subset (q; q)_k(X_Z^{ev})^n \cap [(U_Z)^n]_1.
\]

It remains to prove the last term is a subset of the first, i.e. if \(y \in (q; q)_k(X_Z^{ev})^n \cap [(U_Z)^n]_1 \), then \(x := y/(q; q)_k \) belongs to \((X_Z^{ev})^n \cap [(U_Z^{ev})^n]_1 \). By definition,

\[
x \in (X_Z^{ev})^n \cap \frac{1}{(q; q)_k} [(U_Z)^n]_1,
\]

and we need to show \(x \in [(U_Z^{ev})^n]_1 \). Since both \(y \) and \((q; q)_k \) have \(G \)-grading 1, \(x = y/(q; q)_k \) is an element of \((U_q)^n \) has \(G \)-grading 1. It remains to show that \(x \in (U_Z^{ev})^n \).

Because \(x \in (X_Z^{ev})^n \), (e) implies \(x_i \in \tilde{A} \) and \(x_i = 0 \) if \(i \not\in I^{ev} \). Because \(x \in \frac{1}{(q; q)_k} (U_Z)^n \), (a) implies \(x_i \in \mathbb{Q}(v) \). It follows that \(x_i \in \tilde{A} \cap \mathbb{Q}(v) = A \) and \(x_i = 0 \) if \(i \not\in I^{ev} \). By (b), \(x \in (U_Z^{ev})^n \). \(\square \)

7.6. Admissibility decomposition. Suppose \(f: (U_h)^{\hat{\circ}a} \to (U_h)^{\hat{\circ}b} \) is a \(\mathbb{C}[[h]] \)-module homomorphism. We also use \(f \) to denote its natural extension \(f: (U_{\sqrt{\pi}})^{\hat{\circ}a} \to (U_{\sqrt{\pi}})^{\hat{\circ}b} \), where \(U_{\sqrt{\pi}} = U_h \otimes_{\mathbb{C}[h]} \mathbb{C}[\sqrt{\pi}] \).

Recall that \(f \) preserves the \(G^{ev} \)-grading if for every \(g \in G^{ev}
\]

\[
f \left([(U_Z^{ev})^n]_g \right) \subset \left((U_Z^{ev})^{\hat{\circ}b} \right)_g,
\]

and \(f \) is \((\tilde{K}_n(U)) \)-admissible if for every \(i, j \in \mathbb{N}, \)

\[
f_{(i,j)}(\tilde{K}_{i+a+j}(U)) \subset \tilde{K}_{i+b+j}(U),
\]

where \(f_{(i,j)} = \text{id}^{\otimes i} \otimes f \otimes \text{id}^{\otimes j} \).

The following definition is useful in showing a map is \((\tilde{K}_n(U)) \)-admissible.

Definition 4. Suppose \(f: (U_h)^{\hat{\circ}a} \to (U_h)^{\hat{\circ}b} \) is a \(\mathbb{C}[[h]] \)-module homomorphism. An admissibility decomposition for \(f \) is a decomposition \(f = \sum_{p \in P_f} f_p \) as an \(h \)-adically converging sum of \(\mathbb{C}[[h]] \)-module homomorphisms \(f_p: (U_h)^{\hat{\circ}a} \to (U_h)^{\hat{\circ}b} \) over a set \(P_f \), satisfying the following conditions (A)–(C).

(A) For \(p \in P_f \), \(f_p \) preserves the \(G^{ev} \)-gradings.
(B) For \(p \in P_f \), \(f_p (U^{\circ a}) \subset U^{\circ b} \).
(C) There are \(m_p \in \mathbb{N} \) for \(p \in P_f \) such that \(\lim_{p \in P_f} m_p = \infty \) and for each \(p \in P_f \) we have

\[
f_p ((X_Z^{ev})^{\circ a}) \subset (q; q)_m (X_Z^{ev})^{\circ b}.
\]

Here, \(\lim_{p \in P_f} m_p = \infty \) means if \(n \geq 0 \), then \(m_p \geq n \) for all but a finite number of \(p \in P_f \). By definition, if \(P_f \) is finite, then we always have \(\lim_{p \in P_f} k_p = \infty \).
Lemma 7.7. If $f: (U_h)^{\otimes a} \rightarrow (U_h)^{\otimes a}$ has an admissibility decomposition then f is $(\tilde{K}_n(U))$-admissible.

Proof. Recall that $\mathcal{F}_k(K_n(U)) = \mathcal{F}_k(K_n) \cap U^{\otimes n}$. From (143),

$$\mathcal{F}_k(K_n(U)) = (q; q)_k(X^c_Z)^{\otimes n} \cap [(U^c_Z)^{\otimes n}]_1 \cap U^{\otimes n}. \tag{145}$$

Let $f = \sum_{p \in P} f_p$ be an admissibility decomposition of f. Suppose $x \in \tilde{K}_{i+a+j}(U)$ with presentation

$$x = \sum x_k, \quad x_k \in \mathcal{F}_k(K_{i+a+j}(U)).$$

Then, with the h-adic topology, we have

$$f_{(i,j)}(x) = \sum_{k,p} (f_p)_{(i,j)}(x_k).$$

We look at each term of the right hand side. Since $x_k \in [(U^c_Z)^{\otimes i+a+j}]_1$, (A) implies that

$$f_p(x_k) \in [(U^c_Z)^{\otimes i+a+j}]_1. \tag{146}$$

Since $x_k \in U^{\otimes i+a+j}$, Condition (B) implies that

$$f_p(x_k) \in U^{\otimes i+a+j}. \tag{147}$$

We have $x_k = (q; q)_k y_k$ with $y_k \in (X^c_Z)^{\otimes i+a+j}$. By Condition (C),

$$(f_p)_{(i,j)}(x_k) = (q; q)_k (f_p)_{(i,j)}(y_k) \in (q; q)_k (q; q)_{m_p} (X^c_Z)^{\otimes i+b+j} \subset (q; q)_{m(k,p)} (X^c_Z)^{\otimes i+b+j},$$

where $m(k,p) = \max(k, m_p)$. Together with (146), (147), and (145), this implies

$$(f_p)_{(i,j)}(x_k) \in \mathcal{F}_{m(k,p)}(K_{i+b+j}).$$

Condition (C) implies that

$$\lim_{(k,p) \in \mathbb{N} \times P_f} m(k,p) = \infty.$$

Hence, $f_{(i,j)}(x) = \sum_{k,p} (f_p)_{(i,j)}(x_k)$ belongs to \tilde{K}_{i+b+j}. \hfill \Box

Remark 7.8. It is not difficult to show that the set of (\tilde{K}_n)-admissible maps are closed under composition and tensor product. Thus there is a monoidal category whose objects are nonnegative integers and whose morphisms from m to n is (\tilde{K}_n)-admissible $\mathbb{C}[[h]]$-module homomorphisms from $U_h^{\otimes m}$ to $U_h^{\otimes n}$. According to Lemma 7.10, this category is braided with $\psi_{1,1} = \psi$, and contains a braided Hopf algebra structure.

7.7. Admissibility of μ.

Lemma 7.9. The multiplication $\mu : U_h \otimes U_h \rightarrow U_h$ is (\tilde{K}_n)-admissible.

Proof. We show that the trivial decomposition, $P_\mu = \{0\}$ and $\mu_0 = \mu$, is an admissibility decomposition for μ.

(A) The fact that μ preserves the G^c-grading is part of Proposition 6.3.

(B) Since \mathcal{U} is a subalgebra of U_Z, $\mu(\mathcal{U} \otimes \mathcal{U}) \subset \mathcal{U}$.

(C) Since X^c_Z is an \hat{A}-algebra, we have $\mu(X^c_Z \otimes X^c_Z) \subset X^c_Z$, which proves (C).
By Lemma 7.7, \(\mu \) is \((\tilde{K}_n)\)-admissible. \(\Box\)

7.8. Admissibility of \(\psi \).

Lemma 7.10. Each of \(\psi^{\pm 1} \) is \((\tilde{K}_n)\)-admissible.

Proof. First consider \(\psi \). Using (71) and (68), we obtain
\[
\psi(x \otimes y) = \nu(|y| + \lambda_m, |x| - \lambda_m) (E'_m \triangleright y) \otimes (F'_m \triangleright x),
\]
with \(\lambda_m = |E'_m| \). We will show this is an admissibility decomposition of \(\psi \).

(A) Suppose \(x, y \in U^\text{ev}_Z \) are \(G^\text{ev} \)-homogeneous. By Lemma 6.10,
\[
E'_m \otimes F'_m \in [U_Z \otimes U_Z]_{\hat{\epsilon}_{\lambda_m} \otimes \hat{K}_m \hat{e}_{\lambda_m}^{-1}}.
\]
From (148) and Lemma 6.15, we have
\[
\psi_m(x \otimes y) \in [(U^\text{ev}_Z)^{\otimes 2}]_u,
\]
where
\[
u = \nu(|y| + \lambda_m, |x| - \lambda_m) \mathcal{a}^{\prime} \mathcal{k} \mathcal{e}_{\lambda_m} \otimes \mathcal{y} \mathcal{e}_{\lambda_m}^{-1} \mathcal{K}_{\lambda_m} \otimes \mathcal{x}
\]
\[
= \nu(|y| + \lambda_m, |x| - \lambda_m) + (\lambda_m, |x|) \mathcal{e}_{\lambda_m} \mathcal{y} \mathcal{e}_{\lambda_m}^{-1} \mathcal{x}
\]
\[
= \nu(|y| + \lambda_m, |x| - \lambda_m) + (\lambda_m, |x|) + (\lambda_m, |y|) + (|x|, |y|) \mathcal{x} \mathcal{y}
\]
\[
= \mathcal{x} \mathcal{y}.
\]
This shows that \(\psi_m \) preserves the \(G^\text{ev} \)-grading.

(B) By assumptions on \(U \), \(E'_m \otimes F'_m \in \mathcal{U} \otimes \mathcal{U} \) and \(\mathcal{U} \) is a Hopf algebra. Now (148) shows that
\[
\psi_m(\mathcal{U} \otimes \mathcal{U}) \subset \mathcal{U} \otimes \mathcal{U}. \quad \text{This proves (B)}.\]

(C) By (141), \(E'_m \otimes F'_m \in o(m)U_Z \otimes U_Z \). Hence, from (148),
\[
\psi_m(X^\text{ev}_Z \otimes X^\text{ev}_Z) \subset o(m)(U_Z \triangleright X^\text{ev}_Z) \otimes (U_Z \triangleright X^\text{ev}_Z) \subset o(m)X^\text{ev}_Z \otimes X^\text{ev}_Z,
\]
where for the last inclusion we use Theorem 5.21(a), which in particular says \(X^\text{ev}_Z \) is \(U_Z \)-stable. This establishes (C) of Lemma 7.7.

By Lemma 7.7, \(\psi \) is \((\tilde{K}_n(\mathcal{U}))\)-admissible.

Now consider the case \(\psi^{-1} \). By computation, we obtain
\[
(\psi^{-1})_m(x \otimes y) = \nu^{-1}(|x|, |y|) (F_m \triangleright y) \otimes (E_m \triangleright x),
\]
for homogeneous \(x, y \in U_h \). The proof is similar to the case of \(\psi \). \(\Box\)

Remark 7.11. One can check that \(\psi^{-1} = (\varphi \Diamond \varphi) \psi(\varphi^{-1} \Diamond \varphi^{-1}) \). Hence, the admissibility of \(\psi^{-1} \) can also be derived from that of \(\psi \).

7.9. Admissibility of \(\Delta \).

Lemma 7.12. The braided co-product \(\Delta \) is \((\tilde{K}_n(\mathcal{U}))\)-admissible.

Proof. Suppose \(x \in U^\text{ev}_Z \) is \(G^\text{ev} \)-homogeneous. By a simple calculation, we have
\[
\Delta = \sum_{m \in \mathbb{N}^l} \Delta_m,
\]
(149)
where, with \(\lambda_m := |E'_m| \),
\begin{equation}
\Delta_m(x) = \sum v^{-|x(2)|\lambda_m} \left(E'_m \triangleright x(2) \right) \otimes \left(K_m F'_m \right) \left(K_{|x(2)|} x(1) \right).
\end{equation}

(A) By Corollary 6.11, \(E'_m \otimes K_m F'_m \in [U^\text{rev}_Z \otimes U^\text{rev}_Z]_{m \otimes m^{-1}} \). We will use a \(G \)-good presentation \(\Delta(x) = \sum x(1) \otimes x(2) \) (see Section 6.9). From Lemma 6.15, each summand of the right hand side of (150) is in \([U^\text{rev}_Z]^{\otimes 2}\) where
\[u = v^{-|x(2)|\lambda_m} \hat{e}_{\lambda_m} \hat{x}(2) e_{\lambda_m}^{-1} K_{|x(2)|} \hat{x}(1) = \hat{x} \hat{x}(1) = \hat{x} \cdot \hat{x}(2) K_{|x(2)|} \hat{x}(1) = \hat{x}. \]

Here the last identity is (136). Thus, \(\Delta_m \) preserves the \(G^\text{rev} \)-grading.

(B) Since \(K_a \in \mathcal{U} \) and \(E'_m \otimes K_m F'_m \in \mathcal{U} \otimes \mathcal{U} \), (150) shows that \(\Delta_m(\mathcal{U}) \subset \mathcal{U} \otimes \mathcal{U} \).

(C) Let \(x \in X^\text{rev}_Z \). By an argument similar to the proof of Lemma 6.13, we see that \(x(2) \otimes K_{|x(2)|} x(1) \in X^\text{rev}_Z \otimes X^\text{rev}_Z \).

By (142),
\[E'_m \otimes K_m F'_m \in o(m) U^\text{rev}_Z \otimes X^\text{rev}_Z \]

Hence, from (150),
\[\Delta_m(x) \in o(m) (U^\text{rev}_Z \triangleright X^\text{rev}_Z) X^\text{rev}_Z \subset o(m) X^\text{rev}_Z, \]
where for the last inclusion we again use the fact the \(X^\text{rev}_Z \) is \(U_Z \)-stable (Theorem 5.21). This shows (C) of Lemma 7.7 holds. By Lemma 7.7, \(\Delta \) is \((\hat{K}(\mathcal{U})) \)-admissible.

7.10. Admissibility of \(S \).

Lemma 7.13. The braided antipode \(S \) is \((\hat{K}(\mathcal{U})) \)-admissible.

Proof. By computation, we obtain \(S = \sum_{m \in N} S_m \), where
\begin{equation}
S_m(x) = S^{-1}(E_m \triangleright x) F_m K_{-|x|}
\end{equation}
for \(\gamma \)-homogeneous \(x \in U_h \). We will assume \(x \) is \(G^\text{rev} \)-homogeneous.

(A) By Lemma 6.6, we have \(S_m(x) \in [U_Z]_g \), where
\[
g = \hat{S}^{-1}(\text{ad}(\hat{e}_{\lambda_m} \hat{x})) \hat{e}_{\lambda_m}^{-1} \hat{K}_{\lambda_m} \hat{K}_{-|x|} = \hat{S}^{-1}(\hat{e}_{\lambda_m} \hat{x}) \hat{e}_{\lambda_m}^{-1} \hat{K}_{\lambda_m} \hat{K}_{-|x|} = \hat{K}_{|x|} \hat{x} \hat{K}_{\lambda_m} \hat{e}_{\lambda_m} \hat{K}_{-|x|} = \hat{x}. \]

(B) Since \(K_a \in \mathcal{U} \) and \(E_m \otimes F_m \in \mathcal{U} \otimes \mathcal{U} \), (151) shows that \(S_m(\mathcal{U}) \subset \mathcal{U} \).

(C) We rewrite (151) as
\begin{equation}
S_m(x) = v^{-|x| |E_m|} S^{-1}(E_m \triangleright x) K_{|E_m|-|x|} K_m F_m.
\end{equation}

By (142), \(E_m \otimes K_m F_m \in o(m) (U_Z \triangleright X^\text{rev}_Z) \). Since \(X^\text{rev}_Z \) is \(U_Z \)-stable,
\[E_m \triangleright x \otimes K_m F_m \in o(m) (U_Z \triangleright X^\text{rev}_Z \otimes X^\text{rev}_Z) \subset o(m) (X^\text{rev}_Z \otimes X^\text{rev}_Z) \]

Hence, from (152) we have
\[S_m(x) \in o(m) X^\text{rev}_Z, \]
which proves property (C).
By Lemma 7.7, \(S\) is \((\widehat{K}_n(U))\)-admissible. \(\square\)

Thus, statement (ii) of Proposition 7.2 holds.

7.11. **Borromean tangle.** The goal now is to establish (iii) of Proposition 7.2. Namely, we will show that \(b \in \widehat{K}_3\), where \(b\) is the universal invariant of the Borromean bottom tangle.

First we recall Formula (39) which expresses \(b\) through the clasp element \(c\) using braided commutator. With \(c = \sum_{n \in \mathbb{N}^2} [\Gamma_1(n) \otimes \Gamma_2(n)] D^{-2}\), Formula (39) says

\[
\mathbf{b} = \sum_{n,m \in \mathbb{N}^2} b_{n,m},
\]

where for \(n, m \in \mathbb{N}^2\),

\[
b_{n,m} := (\hat{\otimes}^2 \otimes \Upsilon) \left([\Gamma_1(n) \otimes \Gamma_1(m) \otimes \Gamma_2(m) \otimes \Gamma_2(n)] D^{-2} D_{23}^{-2} \right).
\]

Here if \(x = \sum x' \otimes x''\) then \(x_{14} = \sum x' \otimes 1 \otimes x''\), \(x_{23} = \sum 1 \otimes x' \otimes x'' \otimes 1\).

Lemma 7.14. For \(n, m \in \mathbb{N}^2\) one has \(b_{n,m} \in o(n,m)\widehat{K}_3(U)\). Consequently, \(b \in \widehat{K}_3(U)\). (Recall that \(o(n,m) = (q,q)_{\max(n,m)/2}\).)

The remaining part of this section is devoted to the proof of Lemma 7.14.

7.11.1. **Quasi-clasp element.** Recall that \(\Gamma_1(n), \Gamma_2(n)\) are given by (139), for \(n \in \mathbb{N}^2\).

Lemma 7.15. Suppose \(n = (n_1, n_2) \in \mathbb{N}^l \times \mathbb{N}^l\). Then

\[
\Gamma_1(n) \otimes \Gamma_2(n) \in \mathcal{K}_2 = (X_Z^{ev})^{\otimes 2} \cap [(U_Z^{ev})^{\otimes 2}]_1
\]

\[
\Gamma_1(n) \otimes \Gamma_2(n) \in o(n)X_Z^{ev} \otimes U_Z^{ev}.
\]

Proof. We write \(x \sim y \) if \(x = uy\) with \(u\) a unit in \(A\). Note that \(\sqrt{q^n} n_1 \in F(n_1), \sqrt{q^n} n_2 \in F(n_2)\) are in \(X^{ev}_Z\), as they are among the preferred basis elements. Using the definition (139) of \(\Gamma_1(n), \Gamma_2(n)\), we have

\[
\Gamma_1(n) \otimes \Gamma_2(n) \sim (q^n) n_1 (q^n) n_2 F(n_1) K_{n_1}^{-1} E(n_2) \otimes F(n_2) K_{n_2}^{-1} E(n_1) \in (X^{ev}_Z)^{\otimes 2}.
\]

From Corollary 6.11, \(\Gamma_1(n) \otimes \Gamma_2(n)\), which is in \((U_Z^{ev})^{\otimes 2}\), has \(G\)-grading equal to

\[
(\hat{e}_{n_1}^{-1} \hat{e}_{n_2}^{-1} \hat{e}_{n_1}^{-1} \hat{e}_{n_2}^{-1}) = 1.
\]

This shows \(\Gamma_1(n) \otimes \Gamma_2(n) \in (X^{ev}_Z)^{\otimes 2} \cap [(U^{ev}_Z)^{\otimes 2}]_1 = \mathcal{K}_2\). This proves (154).

Because \(\sqrt{q^n} n_1 (q^n) n_2 F(n_1) K_{n_1}^{-1} E(n_2) \in X^{ev}_Z\) and \(F(n_2) K_{n_2}^{-1} E(n_1) \in U_Z^{ev}\), from (156), we have

\[
\Gamma_1(n) \otimes \Gamma_2(n) \in \sqrt{q^n} n_1 (q^n) n_2 (X^{ev}_Z) \otimes U^{ev}_Z \subset o(n)(X^{ev}_Z) \otimes U^{ev}_Z.
\]

This proves (155). \(\square\)
7.11.2. Decomposition of $b_{n,m}$. Recall that $D = \exp\left(\frac{\hbar}{2} \sum_{\alpha \in \Pi} H_\alpha \otimes \tilde{H}_\alpha / a_\alpha \right)$ is the diagonal part of the R-matrix. We will freely use the following well-known properties of D:

$$(\Delta \otimes 1)(D) = D_{13}D_{23}, \quad (\epsilon \otimes 1)(D) = 1, \quad (S \otimes 1)(D) = D^{-1},$$

where $D_{13} = \sum D_1 \otimes 1 \otimes D_2, D_{23} = 1 \otimes D \in U_{\hbar}^\otimes$. In the sequel we set

$$D^{-2} = \sum \delta_1 \otimes \delta_2 = \sum \delta'_1 \otimes \delta'_2.$$

Recall (153)

$$b_{n,m} = (\text{id} \otimes \gamma) \left([\Gamma_1(n) \otimes \Gamma_1(m) \otimes \Gamma_2(m) \otimes \Gamma_2(n)] D_{14}^{-2} D_{23}^{-2} \right).$$

By (40), γ is the composition of four maps:

$$\gamma = \mu \circ (\text{ad} \otimes \text{id}) \circ (\text{id} \otimes S \otimes \text{id}) \circ (\text{id} \otimes \Delta).$$

Using the above decomposition, one gets

(157) $$b_{n,m} = f^\mu \circ f^\text{ad}_m \circ f^\Delta (\Gamma_1(n) \otimes \Gamma_2(n)),$$

where

(158) $$f^\Delta : U_{\hbar}^\Delta \to U_{\hbar}^\otimes, \quad f^\Delta(x) = [(\text{id} \otimes \Delta)(xD^{-2})] D_{12}^2 D_{13}^2$$

(159) $$f^\Delta : U_{\hbar}^\otimes \to U_{\hbar}^\otimes, \quad f^\Delta(x) = [(\text{id} \otimes S \otimes \text{id})(xD^{-2}_2)] D_{12}^{-2}$$

(160) $$f^\text{ad}_m : U_{\hbar}^\otimes \to U_{\hbar}^\otimes, \quad f^\text{ad}_m(x) = (\text{id} \otimes \text{ad} \otimes \text{id}) \left([x_1 \otimes \Gamma_1(m) \otimes x_2 \otimes x_3] D_{23}^{-2} D_{14}^{-2} \right) D_{13}^{-2}$$

(161) $$f^\mu : U_{\hbar}^\otimes \to U_{\hbar}^\otimes, \quad f^\mu(x) = (\text{id} \otimes \text{ad} \otimes \mu)(xD_{12}^2 D_{14}^{-2}).$$

Similarly, using (41) instead of (40), we have

(162) $$b_{n,m} = \tilde{f}^\mu \circ \tilde{f}^\text{ad}_n \circ \tilde{f}^\Delta (\Gamma_1(m) \otimes \Gamma_2(m)),$$

where $f^\Delta, f^\otimes, f^\mu$ are as above, and

(163) $$\tilde{f}^\text{ad}_n : U_{\hbar}^\otimes \to U_{\hbar}^\otimes, \quad \tilde{f}^\text{ad}_n(x) = [(\text{id} \otimes \text{ad} \otimes \gamma)(\Gamma_1(n) \otimes x_1 \otimes x_2 \otimes x_3 \otimes \Gamma_2(n)] D_{24}^2 D_{15}^2 \right) D_{24}^2$$

(164) $$\tilde{f}^\mu : U_{\hbar}^\otimes \to U_{\hbar}^\otimes, \quad \tilde{f}^\mu(x) = (\text{id} \otimes \text{ad} \otimes \mu)(xD_{23}^2 D_{25}^{-2}).$$

We will prove that each of $f^\Delta, f^\otimes, f^\mu$ is (\tilde{K}_3)-admissible, while each of $f^\text{ad}_n, \tilde{f}^\text{ad}_n$ maps \tilde{K}_3 to $o(n)\tilde{K}_4$. From here Lemma 7.14 will follow easily.

7.11.3. Extended adjoint action. To study the maps $f^\Delta, f^\otimes, f^\text{ad}_m, \tilde{f}^\text{ad}_n$, we need the following extended adjoint action. For $a \in U_{\sqrt{\hbar}} = U_{\hbar} \otimes C[[\sqrt{\hbar}]]$ and Y-homogeneous $x, y \in U_{\sqrt{\hbar}}$ define

$$a \triangleright (y \otimes x) := [(\text{id} \otimes \text{ad}_a) \left((y \otimes x) D^2 \right)] D^{-2}$$

$$= yK_{2|a_{(2)}} \otimes a_{(1)} x S(a_{(2)}).$$

(165)

It is easy to check that $(a \otimes x \otimes y) \rightarrow a \triangleright (x \otimes y)$ gives rise to an action of $U_{\sqrt{\hbar}}$ on $U_{\sqrt{\hbar}} \otimes U_{\sqrt{\hbar}}$.

Lemma 7.16. (a) Suppose \(a, x, y \in U^\text{ev}_Z \) are \(G^\text{ev} \)-homogeneous, then
\[
\begin{align*}
(166) & \quad a \triangleright (y \otimes x) \in [U^\text{ev}_Z \otimes U^\text{ev}_Z]_{y \otimes \hat{x}} \\
(167) & \quad S^{-1} a \triangleright (y \otimes x) \in [U^\text{ev}_Z \otimes U^\text{ev}_Z]_{y \otimes \hat{x} \hat{a}}
\end{align*}
\]

(b) One has \(U \triangleright (U \otimes U) \subset U \otimes U \).

(c) One has
\[
U_Z \triangleright (X^\text{ev}_Z \otimes X^\text{ev}_Z) \subset X^\text{ev}_Z \otimes X^\text{ev}_Z.
\]

Proof. (a) The right hand side of (165) shows that \(a \triangleright (y \otimes x) \) has \(G^\otimes_2 \)-grading equal to
\[
\hat{y} \otimes \hat{a}(1) \hat{x} \hat{S}(\hat{a}(2)) = \hat{y} \otimes \hat{a}(1) \hat{x} \hat{K}_{|a(2)|} = \hat{y} \otimes \hat{a}(1) \hat{x} \hat{K}_{|a(2)|} \hat{x} = \hat{y} \otimes \hat{a} \hat{x},
\]
where we use \(\hat{a}(1) \hat{a}(2) \hat{K}_{|a(2)|} = \hat{a} \) from (136). This shows the first identity. The second one is proved similarly.

(b) By assumptions on \(U \), \(K^\pm_\alpha \in U \) and \(U \) is a Hopf algebra. Hence, (b) follows from (165).

(b) Suppose \(a \in U_Z, x, y \in X^\text{ev}_Z \), we need to show that \(a \triangleright (y \otimes x) \in X^\text{ev}_Z \otimes X^\text{ev}_Z \). Because \(ab \triangleright (y \otimes x) = a \triangleright (b \triangleright (y \otimes x)) \), it is sufficient to consider the case when \(a \) is one of the generator \(E^{(n)}_\alpha, F^{(n)}_\alpha, K^\pm_\alpha \) of \(U_Z \), where \(\alpha \in \Pi \) and \(n \in \mathbb{N} \). The cases \(a = K^\pm_\alpha \) are trivial.

For \(a = E^{(n)}_\alpha \), a calculation by induction on \(n \) shows that
\[
E^{(n)}_\alpha \triangleright (y \otimes x) = \sum_{j=0}^{n} (-1)^n v_\alpha 2j^{n+1} \binom{n+1}{2} y \left(K^2_\alpha ; q_\alpha \right)_{n-j} \otimes E^{(n-j)}_\alpha \left(E^{(j)}_\alpha \triangleright x \right)
\]
\[
= \sum_{j=0}^{n} (-1)^n v_\alpha 2j^{n+1} \binom{n+1}{2} y \left(\frac{K^2_\alpha ; q_\alpha}{(q_\alpha ; q_\alpha)^{n-j}} \right) \otimes \left[\sqrt{(q_\alpha ; q_\alpha)^{n-j}} E^{(n-j)}_\alpha \right] \left[E^{(j)}_\alpha \triangleright x \right]
\]
The right hand side belongs to \(X^\text{ev}_Z \otimes X^\text{ev}_Z \), since each factor in square brackets is in \(X^\text{ev}_Z \).

The case \(a = F^{(n)}_\alpha \) can be handled by a similar calculation, or can be derived from the already proved case \(a = \varphi(F_\alpha) = K^{-1}_\alpha E_\alpha \), using
\[
(\varphi \otimes \varphi) (a \triangleright (y \otimes x)) = \varphi(a) \triangleright (\varphi(y) \otimes \varphi(x)),
\]
which follows from the fact that \(\varphi \) commutes with \(S, \Delta \) and \(\varphi(K_\alpha) = K_\alpha \).

7.11.4. The map \(f_\Delta \).

Lemma 7.17. The map \(f_\Delta : U^\text{ev}_h \rightarrow U^\text{ev}_h \) is \((\hat{K}_n(U)) \)-admissible.

Proof. Using the definition (158) and the decomposition (149) of \(\Delta \) we have \(f_\Delta = \sum_{u \in \mathbb{N}^*} f^2_\Delta u \), where
\[
f^2_\Delta (y \otimes x) = \sum_{u \in \mathbb{N}^*} y^{\partial_1} \otimes \Delta_a(x^{\partial_2}) D^2_{12} D^2_{13}.
\]
We will show that \(\hat{f} = \sum_{u \in \mathbb{N}} f_{\hat{u}} \) is an admissible decomposition. Using definitions, we have

\[
\sum y \delta_1 \otimes \Delta_u(x \delta_2) = \sum y \delta_1 \otimes E_u \triangleright (x(2)\delta_2(2)) \otimes K_{\lambda_u + |x(2)|} F_u x(1) \delta_2(1)
\]

\[
= \sum y \delta_1 \delta_1' \otimes E_u \triangleright (x(2)\delta_2) \otimes K_{\lambda_u + |x(2)|} F_u x(1) \delta_2'
\]

\[
= \sum y \delta_1 \delta_1' \otimes (E_u(1) x(2) \delta_2) \cdot S((E_u(2)) \otimes K_{\lambda_u + |x(2)|} F_u x(1) \delta_2)
\]

\[
= \sum y K_2(E_u(2)) \delta_1 \delta_1' \otimes (E_u(1) x(2) \delta_2) \cdot S((E_u(2)) \otimes K_{\lambda_u + |x(2)|} F_u x(1) \delta_2)
\]

\[
= \left(\sum y K_2(E_u(2)) \otimes (E_u(1) x(2) \delta_2) \cdot S((E_u(2)) \otimes K_{\lambda_u + |x(2)|} F_u x(1)) \right) \mathcal{D}_{12}^2 \mathcal{D}_{13}^2
\]

\[
= \left(\sum \mu \delta \lambda_u \left(E_u \triangleright (y \otimes x(2)) \otimes (K_u F_u) K_{|x(2)|} \right) \mathcal{D}_{12}^2 \mathcal{D}_{13}^2 \right)
\]

This shows that

\[
(168) \quad f_{\hat{u}}(y \otimes x) = \sum \mu \delta \lambda_u \left(E_u \triangleright (y \otimes x(2)) \right) \otimes \left(K_u F_u \right) K_{|x(2)|} \mathcal{D}_{12}^2 \mathcal{D}_{13}^2
\]

(A) Suppose \(x, y \in U_{Z}^\nu \) are \(G^\nu \)-homogeneous. By \(G \)-good presentation (see Section 6.9) and Lemma 7.16, all the factors in parentheses on the right hand side of (168) are in \(U_{Z}^\nu \).

From (168) and Lemma 7.16, \(f_{\hat{u}}(y \otimes x) \in \left[(U_{Z}^\nu)^{\otimes 3}\right]_g \), where

\[
g = \hat{\delta} \mu \delta \lambda_u \hat{y} \delta \lambda_u \hat{x}(2) \delta \lambda_u \hat{K}_{|x(2)|} \hat{x}(1) = \hat{y} \hat{x}(2) \hat{K}_{|x(2)|} \hat{x}(1) = \hat{y} \hat{x},
\]

with the last equality obtained from (136). This shows \(f_{\hat{u}} \) preserves the \(G^\nu \)-grading.

(B) Suppose \(x, y \in \mathcal{U} \). By assumptions on \(\mathcal{U} \), \(K_u \in \mathcal{U} \) and \(E_u \otimes K_u F_u \in \mathcal{U} \otimes \mathcal{U} \). Now Lemma 7.16 shows that the right hand side of (168) is in \(\mathcal{U}^{\otimes 3} \). Thus, \(f_{\hat{u}}(\mathcal{U}^{\otimes 2}) \subset \mathcal{U}^{\otimes 3} \).

(C) By (142), \(E_u \otimes K_u F_u \in o(\mathcal{U})(U_{Z}^\nu \otimes X_{Z}^\nu) \). Lemma 7.16 and (168) show that

\[
f_{\hat{u}} \left((X_{Z}^\nu)^{\otimes 2} \right) \in o(\mathcal{U})(X_{Z}^\nu)^{\otimes 3}.
\]

By Lemma 7.7, \(f_{\hat{u}} \) is \((\hat{K}_n) \)-admissible. \(\square \)

7.11.5. The map \(f_{\hat{S}} \).

Lemma 7.18. The map \(f_{\hat{S}} : U_{h}^{\otimes 3} \rightarrow U_{h}^{\otimes 3} \) is \((\hat{K}_n(\mathcal{U})) \)-admissible.

Proof. Using the definition (159) and the decomposition (151) of \(S \), we have \(f_{\hat{S}} = \sum_{u \in \mathbb{N}} f_{\hat{u}} \), where

\[
f_{\hat{u}}(y \otimes x \otimes z) = \left[\sum y \delta_1 \otimes S_u(x \delta_2) \otimes z \right] D_{12}^2 = \left(y \otimes 1 \otimes z \right) \left(\sum \delta_1 \otimes S_u(x \delta_2) \otimes 1 \right) D_{12}^2.
\]
Using the definitions, we have

\[
(1 \otimes S_u)(\sum \delta_1 \otimes x \delta_2) = \sum \delta_1 \otimes S_u(x \delta_2) \\
= \sum \delta_1 \otimes S^{-1}(E_u \triangleright (x \delta_2)) F_u K_{-1|x} \\
= \sum \delta_1 \otimes S^{-1}((E_u)_{(1)}(x \delta_2) S((E_u)_{(2)})) F_u K_{-1|x} \\
= \sum \delta_1 \otimes (E_u)_{(2)} S^{-1}(\delta_2) S^{-1}(x) S^{-1}((E_u)_{(1)}) F_u K_{-1|x} \\
= \sum K_2(|x|+|E_u|) \delta_1 \otimes (E_u)_{(2)} S^{-1}(x) S^{-1}((E_u)_{(1)}) F_u K_{-1|x} S^{-1}(\delta_2) \\
= \sum \left[(1 \otimes K_{-1|x} F_u) (S^{-1} \otimes S^{-1}) (E_u \triangleright (K_{-2|x} \otimes x)) \right] \otimes z .
\]

It follows that

\[(169) \quad f_{\tilde{S}}^S(y \otimes x \otimes z) = \sum (y \otimes 1 \otimes 1) \left[(1 \otimes K_{-1|x} F_u) (S^{-1} \otimes S^{-1}) (E_u \triangleright (K_{-2|x} \otimes x)) \right] \otimes z .\]

Assume that \(x, y, z \in U_Z^{ev} \) are \(G^{ev} \)-homogeneous. By Lemma 6.10,

\[F_u \otimes E_u \in [U_Z^{ev} \otimes U_Z^{ev}] \hat{\epsilon}_u^{-1} K_{\lambda u} \otimes \hat{\epsilon}_{\lambda u} . \]

Hence from Lemma 7.16(a), \(f_{\tilde{S}}^S(y \otimes x \otimes z) \in [(U_Z^{ev})^{\otimes 3}]_g \), where

\[g = y \otimes \hat{K}_{|x|} \hat{\epsilon}_u^{-1} K_{\lambda u} \hat{S}^{-1}(\hat{\epsilon}_{\lambda u} \hat{x}) \otimes \hat{z} = y \otimes \hat{x} \otimes \hat{z} , \]

where the last equality follows from a simple calculation. Thus,

\[(170) \quad f_{\tilde{S}}^S(y \otimes x \otimes z) \in [(U_Z^{ev})^{\otimes 3}]_{y \otimes \hat{x} \otimes \hat{z}} .\]

(A) From (170), \(f_{\tilde{S}}^S \) preserves the \(G^{ev} \)-grading.

(B) Assume that \(x, y, z \in U \). Since \(K_{\alpha} \in U \), \(F_u \otimes E_u \in U \otimes U \), Lemma 7.16(b) shows that the right-hand side of (169) is in \(U^{\otimes 3} \).

(C) By (142), \(F_u \otimes E_u \in o(u)X_Z \otimes U_Z \). Lemma 7.16 and (169) show that

\[f_{\tilde{S}}^S((X_Z^{ev})^{\otimes 3}) \subset o(u)(X_Z^{ev})^{\otimes 3} .\]

On the other hand, (170) shows that

\[f_{\tilde{S}}^S((X_Z^{ev})^{\otimes 3}) \subset ((U_Z^{ev})^{\otimes 3} \otimes \tilde{A}) .\]

Because

\[o(u)(X_Z^{ev})^{\otimes 3} \cap ((U_Z^{ev})^{\otimes 3} \otimes \tilde{A}) = o(u)(X_Z^{ev})^{\otimes 3} \]

by (144), we have \(f_{\tilde{S}}^S((X_Z^{ev})^{\otimes 3}) \subset o(u)(X_Z^{ev})^{\otimes 3} \). \(\square \)

7.11.6. The maps \(f^{ad} \) and \(\tilde{f}^{ad} \).

Lemma 7.19. For \(f = f^{ad}_m \) or \(f = \tilde{f}^{ad}_m \), one has \(f(K_{3}(U)) \subset F_{[\max m/2]}(K_4(U)) \).
Proof. Assume $x \otimes y \otimes z \in K_3(U) = (X^\text{ev}_Z)^{\otimes 3} \cap [([U^\text{ev}_Z])^{\otimes 3}]_1 \cap U^{\otimes 3}$. First assume $f = f^\text{ad}_m$. Recall that

$$f^\text{ad}_m(x_1 \otimes x_2 \otimes x_3) = \left[\sum (\text{id} \otimes \text{id} \otimes \text{id}) \left(x_1 S(\delta_1) \otimes \Gamma_1(m) \delta'_1 \otimes \Gamma_2(m) \delta'_2 \otimes x_2 \delta_2 \otimes x_3 \right) \right] D^{-2}_{13}$$

$$= (x_1 \otimes \Gamma_1(m) \otimes 1 \otimes x_3) \left[\sum (\text{id} \otimes \text{id}) \left(S(\delta_1) \otimes \delta'_1 \otimes \Gamma_2(m) \delta'_2 \otimes x_2 \delta_2 \otimes 1 \right) \right] D^{-2}_{13}.$$

We have

$$\text{(id} \otimes \text{id} \otimes \text{id}) \left(\sum S(\delta_1) \otimes \delta'_1 \otimes x \delta'_2 \otimes y \delta_2 \right) = \sum S(\delta_1) \otimes \delta'_1 \otimes (x \delta'_2 \otimes y \delta_2)$$

$$= \sum S(\delta_1) \otimes \delta'_1 \otimes x_{(1)}(\delta'_2)_{(1)} y \delta_2 S((\delta'_2)_{(2)} S(x_{(2)}))$$

$$= \sum S(\delta_1) \otimes K_{-2|y|} \otimes x_{(1)} y \delta_2 S(x_{(2)})$$

$$= \sum K_{2|x_{(2)}|} S(\delta_1) \otimes K_{-2|y|} \otimes x_{(1)} y S(x_{(2)}) \delta_2$$

$$= \left[\sum K_{2|x_{(2)}|} \otimes K_{-2|y|} \otimes x_{(1)} y S(x_{(2)}) \right] D^2_{13}$$

$$= [(x \blacktriangleright y)_{13}(1 \otimes K_{-2|y|} \otimes 1)] D^2_{13}.$$

It follows that

$$f^\text{ad}_m(x_1 \otimes x_2 \otimes x_3) = [(x_1 \otimes \Gamma_1(m) \otimes 1)(\Gamma_2(m) \blacktriangleright x_2)_{13}(1 \otimes K_{-2|x_2|} \otimes 1)] \otimes x_3.$$

Since $\Gamma_1(m) \otimes \Gamma_2(m) \in ([U^\text{ev}_Z])^{\otimes 2}_1$, Lemma 7.16(a) shows that

$$f^\text{ad}_m(x_1 \otimes x_2 \otimes x_3) = [(U^\text{ev}_Z)^{\otimes 4}]_g,$$

where $g = x_1 \Gamma_1(m) \Gamma_2(x_2) x_3 = x_1 x_2 x_3 = 1$. Thus, the right hand side of (171) is in $([U^\text{ev}_Z])^{\otimes 4}_1$.

Since $x \otimes y \otimes z \in U^{\otimes 3}$, Lemma (7.16)(b) shows that the right hand side of (171) is in $U^{\otimes 4}$.

Since $\Gamma_1(m) \otimes \Gamma_2(m) \in o(m)(X^\text{ev}_Z \otimes U^\text{ev}_Z)$ by (155), Lemma (7.16)(c) shows that

$$f^\text{ad}_m(x_1 \otimes x_2 \otimes x_3) \in o(m)(X^\text{ev}_Z)^{\otimes 4}.$$

Hence

$$f^\text{ad}_m(x_1 \otimes x_2 \otimes x_3) \in o(m)(X^\text{ev}_Z)^{\otimes 4} \cap [([U^\text{ev}_Z])^{\otimes 4}]_1 \cap U^{\otimes 4} = F_{[\text{max } m/2]}(K_4(U)),$$

which proves the statement for $f = f^\text{ad}_m$.

The proof for $f = f^\text{ad}_m$ is similar: Using the definition and Formula (42) for ad_m^{-1}, one gets

$$f^\text{ad}_m(x_1 \otimes x_2 \otimes x_3) = \left(\Gamma_1(m) \otimes x_1 \otimes x_2 \otimes 1 \right) \left(K_{2|x_3|+2\lambda m} \otimes (S \otimes \text{id})(S^{-1}(\Gamma_2(m) \blacktriangleright x_3)) \right)_{24}.$$

By Lemma 7.16(a), the right hand side of (172) is in $(U^\text{ev}_Z)^{\otimes 4}$ having G-grading equal to

$$\Gamma_1(m) x_1 x_2 x_3 \Gamma_2(m) = \Gamma_1(m) \Gamma_2(m) = 1.$$

Again, Lemma (7.16)(b) shows that the right hand side of (172) is in $U^{\otimes 4}$, and Lemma (7.16)(c) shows that it is in $o(m)(X^\text{ev}_Z)^{\otimes 4}$. Hence $f^\text{ad}_m(x_1 \otimes x_2 \otimes x_3) \in F_{[\text{max } m/2]} K_4(U)$. □
7.11.7. The maps f^μ and \tilde{f}^μ.

Lemma 7.20. Both f^μ and \tilde{f}^μ are $(\tilde{K}_n(U))$-admissible.

Proof. By definition

$$f^\mu(x_1 \otimes x_2 \otimes x_3 \otimes x_4) = (\text{id} \otimes^2 \mu)((\sum x_1 \delta_1 S(\delta'_1) \otimes x_2 \otimes x_3 \delta'_2 \otimes x_4 \delta_2))$$

$$= (x_1 \otimes x_2 \otimes 1) \left[(\text{id} \otimes^2 \mu)((\sum \delta_1 S(\delta'_1) \otimes 1 \otimes x_3 \delta'_2 \otimes x_4 \delta_2) \right].$$

We have

$$(\text{id} \otimes \mu)((\sum \delta_1 S(\delta'_1) \otimes x \delta'_2 \otimes y \delta_2) = x \sum \delta_1 S(\delta'_1) \otimes x \delta'_2 y \delta_2$$

$$= x \sum \delta_1 S(\delta'_1) K_{2|y} \otimes x y \delta'_2$$

$$= K_{2|y} \otimes x y.$$

It follows that f^μ has a very simple expression

$$f^\mu(x_1 \otimes x_2 \otimes x_3 \otimes x_4) = (x_1 \otimes x_2 \otimes 1)(K_{2|x_4} \otimes 1 \otimes x_3 x_4)$$

$$= x_1 K_{2|x_4} \otimes x_2 \otimes x_3 x_4.$$

The trivial decomposition for f^μ is admissible. Hence, f^μ is $(\tilde{K}_n(U))$-admissible.

Similarly, a simple computation shows that

$$\tilde{f}^\mu(x_1 \otimes x_2 \otimes x_3 \otimes x_4) = x_1 \otimes x_2 K_{2|x_4} \otimes x_3 x_4.$$

The trivial decomposition for \tilde{f}^μ is admissible. Hence, \tilde{f}^μ is $(\tilde{K}_n(U))$-admissible.

7.11.8. **Proof of Lemma 7.14.**

Proof. First suppose $\max(m) \geq \max(n)$. By (157)

$$b_{n,m} = f^\mu \circ f^\mu_m \circ f^\Delta \circ f^\Delta (\Gamma_1(n) \otimes \Gamma_2(n)).$$

By (154), $\Gamma_1(n) \otimes \Gamma_2(n) \in \mathcal{K}_2$. Lemmas 7.17, 7.18, 7.19, and 7.20 show that $b_{n,m} \in o(m)\tilde{K}_3$.

Suppose $\max(n) > \max(m)$. Using (162) instead of (157), we have $b_{n,m} \in o(n)\tilde{K}_3$.

Hence $b_{n,m} \in o(n,m)\tilde{K}_3$. As a consequence, $b = \sum b_{n,m} \in \tilde{K}_3$.

7.12. **Proof of Proposition 7.2.** As noted, statement (i) follows trivially from the definition of $\tilde{K}(U)$. Statement (ii) follows from Lemmas 7.9, 7.10, 7.12, 7.13. Finally, statement (iii) is Lemma 7.14.

7.13. **Integrality of the quantum link invariant.** In [Le2], the second author proved that, for a framed link $L = L_1 \cup \cdots \cup L_n$ in S^3, the quantum g link invariant $J_L(V_{\lambda_1}, \ldots, V_{\lambda_n})$, up to multiplication by a fractional power of q, is contained in $\mathbb{Z}[q, q^{-1}]$. Here we sketch an alternative proof using Theorem 7.3 of the following special case for algebraically split framed links.
Theorem 7.21 ([Le2]). Let $L = L_1 \cup \cdots \cup L_n$ be an algebraically split 0-framed link in S^3. Let $\lambda_1, \ldots, \lambda_n \in X_+$ be dominant integral weights. Then we have

$$ J_L(V_{\lambda_1}, \ldots, V_{\lambda_n}) \in q^p \mathbb{Z}[q, q^{-1}], $$

where $p = (2 \rho, \lambda_1 + \cdots + \lambda_n)$.

It is much easier to prove

$$ J_L(V_{\lambda_1}, \ldots, V_{\lambda_n}) \in q^p \mathbb{Z}[v, v^{-1}], $$

and the difficult part of the proof is to show that the normalized invariant $q^{-p} J_L(V_{\lambda_1}, \ldots, V_{\lambda_n}) \in \mathbb{Z}[v, v^{-1}]$ is contained in $\mathbb{Z}[q, q^{-1}]$. In [Le2], a result of Andersen [An] on quantum groups at roots of unity is involved in the proof. The main idea of the proof below is implicitly the use of the G-grading of the quantum group U_q as $\mathbb{C}(q)$-module described in Section 6.

Sketch proof of Theorem 7.21. Let T be an algebraically split 0-framed bottom tangle such that the closure link of T is L. Recall that the quantum invariant $J_L(V_{\lambda_1}, \ldots, V_{\lambda_n})$ can be defined by using quantum traces

$$ J_L(V_{\lambda_1}, \ldots, V_{\lambda_n}) = (\text{tr}_{q}^{V_{\lambda_1}} \otimes \cdots \otimes \text{tr}_{q}^{V_{\lambda_n}})(J_T). $$

It is not difficult to prove that for $1 \leq i \leq n$, $\lambda \in X_+$, we have

$$ (\text{id}^\otimes i^{-1} \otimes \text{tr}_{q}^{V_{\lambda}} \otimes \text{id}^\otimes n-i)(\tilde{K}_n) \subset q^{(2 \rho, \lambda)} \tilde{K}_{n-1}. $$

Using (175), one can prove that

$$ (\text{tr}_{q}^{V_{\lambda_1}} \otimes \cdots \otimes \text{tr}_{q}^{V_{\lambda_n}})(\tilde{K}_n) \subset q^p \tilde{K}_0 = q^p \mathbb{Z}[q]. $$

Hence, using (174), (176) and Theorem 7.3(a), we have

$$ J_L(V_{\lambda_1}, \ldots, V_{\lambda_n}) \in (\text{tr}_{q}^{V_{\lambda_1}} \otimes \cdots \otimes \text{tr}_{q}^{V_{\lambda_n}})(\tilde{K}_n) \subset q^p \mathbb{Z}[q], $$

which, combined with (173), yields $J_L(V_{\lambda_1}, \ldots, V_{\lambda_n}) \in q^p \mathbb{Z}[q, q^{-1}]$ since we have $\mathbb{Z}[v, v^{-1}] \cap \mathbb{Z}[q] = \mathbb{Z}[q, q^{-1}]$.

\[\square\]
8. Recovering the Witten-Reshetikhin-Turaev invariant

In Section 7 we showed that $J_M \in \hat{Z}[q]$, where J_M is the invariant (associated to a simple Lie algebra g) of an integral homology 3-sphere M. Hence we can evaluate J_M at any root of unity. Here we show that by evaluating of J_M at a root of unity we recover the Witten-Reshetikhin-Turaev invariant. We also prove Theorem 1.1 and Proposition 1.6 of Introduction.

8.1. Introduction. Recall that g is a simple Lie algebra and Z is the set of all roots of unity. Suppose $\zeta \in Z$ and M is closed oriented 3-manifold. Traditionally the Witten-Reshetikhin-Turaev (WRT) invariant (cf. [RT2, BK]) $\tau_M^g(\zeta; \xi) \in C$ is defined when ζ is a root of unity of order $2Dd_k$ with $k > h^\vee$, where h^\vee is the dual Coxeter number, $d \in \{1, 2, 3\}$ is defined as in Section 3.1, and $D = |X/Y|$. Here $\xi = \zeta^{2D}$. In this case, $k - h^\vee$ is called the level of the theory. The definition of $\tau_M^g(\zeta; \xi)$ can be extended to a bigger set Z'_g which is more than all roots of unity of order divisible by $2dD$, see subsection 8.4. For values of d, D, h^\vee of simple Lie algebras, see Table 1 in Section 3.1.

This section is devoted to the proofs of the following theorem and its generalizations.

Theorem 8.1. Suppose M is an integral homology 3-sphere and $\zeta \in Z'_g$. Then

$$\tau_M^g(\zeta; \xi) = J_M|_{q=\xi}.$$

Remark 8.2. (a) Although ξ is determined by ζ, we use the notation $\tau_M(\xi; \zeta)$ since in many cases, $\tau_M^g(\zeta; \xi)$ depends only on ξ, but not a $2D$-th root ζ of ξ. In that case, we write $\tau_M(\xi)$ instead of $\tau_M(\xi; \zeta)$. The set Z_g in Section 1 is defined by $Z_g = \{\zeta^{2D} | \xi \in Z'_g\}$.

(b) The theorem implies that for an integral homology 3-sphere, $\tau_M^g(\xi; \zeta)$ depends only on ξ, but not a $2D$-th root ζ of ξ. This does not hold true for general 3-manifolds.

In subsections 8.3 and 8.4 we recall the definition of the WRT invariant and define the set Z'_g. Subsection 8.6 contains the proof of a stronger version of Theorem 8.1, based on results proved in later subsections. To prove the main results we introduce an integral form U of $U_q g$, which is sandwiched between Lusztig’s integral form U_Z and De Concini-Procesi’s integral form V_Z. For $g = sl_2$, the algebra U was considered by the first author [Ha5, Ha7]. A large part of the proof is devoted to the determination of the center of a certain completion of U. For this part we use, among other things, integral bases of U_Z-modules, the quantum Harish-Chandra isomorphism, and Chevalley’s theorem in invariant theory. In Section 8.13, we give a geometric interpretation of Drinfel’d’s construction of central elements.

8.2. Finite-rank U_h-modules. Suppose V is a topologically free U_h-module. For $\mu \in X$ the weight μ subspace of V is defined by

$$V[\mu] = \{e \in V \mid H_\alpha(e) = (\alpha, \mu)e \quad \forall \alpha \in \Pi\},$$

and $\mu \in X$ is called a weight of V if $V[\mu] \neq 0$. We call V a highest weight module if V is generated by a non-zero element $1_\mu \in V[\mu]$ for some $\mu \in X$ such that $E_\alpha 1_\mu = 0$ for $\alpha \in \Pi$. Then 1_μ is called a highest weight vector of V, and μ the highest weight.

By a finite-rank U_h-module, we mean a U_h-module which is (topologically) free of finite rank as a $\mathbb{C}[[h]]$-module. The theory of finite-rank U_h-modules is well-known and is parallel to that of finite-dimensional g-modules, see e.g. [CP, Ja, Lu1]: Every finite-rank U_h-module is the direct sum of irreducible finite-rank U_h-modules. For every dominant integral weight $\lambda \in X_+: = \{\sum_{\alpha \in \Pi} k_\alpha \bar{\alpha} \mid k_\alpha \geq 0 \}$
there exists a unique finite-rank irreducible U_h-module with highest weight λ, and every finite-rank irreducible U_h-module is one of V_{λ}. The Grothendieck ring of finite-rank U_h-modules is naturally isomorphic to that of finite-dimensional g-modules.

8.3. Link invariants and symmetries at roots of unity.

8.3.1. Invariants of colored links. Suppose L is the closure link of a framed bottom tangle T, with m components. Let V_1, \ldots, V_m be finite-rank U_h-modules. Recall that the quantum link invariant [RT1] can be defined by

$$J_L(V_1, \ldots, V_m) = (\text{tr}_q^{V_1} \otimes \cdots \otimes \text{tr}_q^{V_m})(J_T) \in \mathbb{C}[h].$$

Actually, $J_L(V_1, \ldots, V_m)$ belongs to a subring $\mathbb{Z}[v^{\pm 1}/D]$ of $\mathbb{C}[h]$, where $D = |X/Y|$, see [Le2]. (D is also equal to the determinant of the Cartan matrix.) We say that J is also equal to the determinant of the Cartan matrix.) We say that J is called as the invariant of colored links, which is a generalization of the famous Jones polynomial [Jo].

Let U be the trivial knot with 0 framing. For a finite-rank U_h-modules V, $\dim_q(V) := J_U(V)$ is called as the quantum dimension of V. It is known that for $\lambda \in X_+$,

$$\dim_q(V_{\lambda}) = \sum_{w \in W} \text{sgn}(w) v^{-2(\lambda, \rho),w(\rho)} = q^{-(\lambda, \rho)} \prod_{\alpha \in \Phi_+} q^{(\lambda, \rho)} - 1. \tag{177}$$

Here W is the Weyl group and $\text{sgn}(w)$ is the sign of w as a linear transformation.

One has $\max_{\alpha \in \Phi_+}(\rho, \alpha) = d(h^\vee - 1)$, where h^\vee is the dual Coxeter number of g. Hence, if ξ is root of unity with

$$\text{ord}(\xi) > d(h^\vee - 1), \tag{178}$$

then the denominator of the right hand side of (177) is not 0 under the evaluation $q = \xi$. For this reason we often make the assumption (178).

8.3.2. Evaluation at a root of unity. Throughout we fix a root of unity $\xi \in \mathbb{C}$. Let $\xi = \xi^{2D}$ and $r = \text{ord}(\xi^{2D})$.

For $f \in \mathbb{C}[v^{\pm 1}/D]$ let $\text{ev}_{v^{1/D} = \xi}(f)$ be the value of f at $v^{1/D} = \xi$. Note that if $v^{1/2D} = \xi$, then $q = \xi$. If $f \in \mathbb{C}[q^{\pm 1}]$, then $\text{ev}_{v^{1/D} = \xi}(f)$ is the value of f at $q = \xi$.

Suppose $f, g \in \mathbb{C}[v^{\pm 1}/D]$. If $\text{ev}_{v^{1/D} = \xi}(f) = \text{ev}_{v^{1/D} = \xi}(g)$, then we say $f = g$ at ξ and write

$$f^{(\xi)} = g.$$

We say that $\mu \in X$ is a ξ-period if for every link L, $\text{ev}_{v^{1/D} = \xi}(J_L)$ does not change when the color of a component changes from V_{λ} to $V_{\lambda + \mu}$ for arbitrary $\lambda \in X_+$ such that $\lambda + \mu \in X_+$ (the colors of other components remain unchanged).

The set of all ξ-periods is a subgroup of X. It turns out that if $\text{ord}(\xi) > d(h^\vee - 1)$, then the group of ξ-periods has finite index in X: in [Le2] it was proved that the group of ξ-periods contains $2rY$, which, in turn, contains $(2rD)X$ (because $DX \subset Y$).

When $\text{ord}(\xi) \leq d(h^\vee - 1)$, the behavior of $\text{ev}_{v^{1/D} = \xi}(J_L)$ is quite different. For example, when $\xi = 1$, from (177) and the Weyl dimension formula, one can see that $\dim_q(V_{\lambda})$ is the dimension of the classical g-module of highest weight λ. When $\xi = 1$, the action of the ribbon element on any
\(V_\lambda\) is the identity, and the braiding action \(\psi\) is trivial on any pair of \(U_q\)-modules. Hence, we have the following.

Proposition 8.3. For any framed oriented link \(L\) with \(m\) ordered components and \(\mu_1, \ldots, \mu_m \in X_+\),

\[
e_{v_1/D=1}(J_L(V_{\mu_1}, \ldots, V_{\mu_m})) = \prod_{j=1}^m \dim(V_{\mu_j}).
\]

Here \(\dim(V_{\mu_j})\) is the dimension of the irreducible \(g\)-module with highest weight \(\mu_j\).

8.4. The WRT invariant of 3-manifolds. Here we recall the definition of the WRT invariant.

8.4.1. 3-manifolds and Kirby moves. Suppose \(L\) is a framed link in the standard 3-sphere \(S^3\). Surgery along \(L\) yields an oriented 3-manifold \(M = M(L)\). Surgeries along two framed links \(L\) and \(L'\) give the same 3-manifold if and only if \(L\) and \(L'\) are related by a finite sequence of Kirby moves: handle slide move and stabilization move, see e.g. [Ki, KM]. If one can find an invariant of unoriented framed links which is invariant under the two Kirby moves, then the link invariant descends to an invariant of 3-manifolds.

8.4.2. Kirby color. Let \(B := \mathcal{A} \otimes \mathbb{Z} C = \mathbb{C}[v^\pm 1]\). We call any \(B\)-linear combination of \(V_\lambda, \lambda \in X_+\), a color. By linear extension we can define \(J_L(V_1, \ldots, V_m) \in \mathbb{C}[v^\pm 1/D]\) when each \(V_j\) is a color.

A color \(\Omega\) is called a handle-slide color at level \(v_1/D = \zeta\) if

(i) \(e_{v_1/D=\zeta}(J_L(\Omega, \ldots, \Omega))\) is an invariant of non-oriented links, and

(ii) \(e_{v_1/D=-\zeta}(J_L(\Omega, \ldots, \Omega))\) is invariant under the handle slide move.

Let \(U\) be the unknot with framing \(\pm 1\). A handle-slide color is called a Kirby color (at level \(v_1/D = \zeta\)) if it satisfies the non-degeneracy condition

\[
\tag{179}
J_{U_{\pm}}(\Omega) \neq 0.
\]

Suppose \(\Omega\) is a Kirby color at level \(v_1/D = \zeta\), and \(M = M(L)\) is the 3-manifold obtained by surgery on \(S^3\) along a framed link \(L\). Then

\[
\tag{180}
\tau_M(\Omega) := e_{\zeta}(J_L(\Omega, \ldots, \Omega)/(J_{U_{\pm}}(\Omega))^{\sigma_+}(J_{U_{\pm}}(\Omega))^{\sigma_-})
\]

is invariant under both Kirby moves, and hence defines an invariant of \(M\). Here \(\sigma_+\) (resp. \(\sigma_-\)) is the number of positive (resp. negative) eigenvalues of the linking matrix of \(L\).

8.4.3. Strong Kirby color. All the known Kirby colors satisfy a stronger condition on the invariance under the handle slide move as described below.

A root color is any \(B\)-linear combinations of \(V_\lambda\) with \(\lambda \in Y \cap X_+\). A handle-slide color \(\Omega\) at level \(v_1/D = \zeta\) is a strong handle-slide color if it satisfies the following: Suppose the first component of \(L_1\) is colored by \(\Omega\) and other components are colored by arbitrary root colors \(V_1, \ldots, V_m\). Then a handle slide of any other component over the first component does not change the value of the quantum link invariant, evaluated at \(v_1/D = \zeta\), i.e. if \(L_2\) is the resulting link after the handle slide, then

\[
\tag{181}
J_{L_1}(\Omega, V_1, \ldots, V_m) \overset{(\zeta)}{=} J_{L_2}(\Omega, V_1, \ldots, V_m).
\]
A non-degenerate strong handle-slide color is called a strong Kirby color.

8.4.4. Strong Kirby color exists. Let \(P_\varepsilon \) be the following half-open parallelepiped, which is a domain of translations of \(X \) by elements of the lattice \((2rD)X\),
\[
P_\varepsilon := \left\{ \lambda = \sum_{i=1}^{\ell} k_i \alpha_i \in X_+ \mid 0 \leq k_i < 2rD \right\}.
\]

Let
\[
\Omega^\Theta(\zeta) := \sum_{\lambda \in P_\varepsilon} \dim_q(V_\lambda) V_\lambda, \quad \Omega^{P_\varepsilon}(\zeta) = \sum_{\lambda \in P_\varepsilon \cap Y} \dim_q(V_\lambda) V_\lambda.
\]

In [Le4], it was proved that both \(\Omega^\Theta(\zeta) \) and \(\Omega^{P_\varepsilon}(\zeta) \) are handle-slide colors at level \(v^{1/D} = \zeta \) if \(\text{ord}(\zeta^{2D}) > d(h^\vee - 1) \). Actually, the proof there shows that \(\Omega^\Theta(\zeta) \) and \(\Omega^{P_\varepsilon}(\zeta) \) are strong handle-slide colors at level \(v^{1/D} = \zeta \). Hence, assuming \(\text{ord}(\zeta^{2D}) > d(h^\vee - 1) \), \(\Omega^\Theta(\zeta) \) (resp. \(\Omega^{P_\varepsilon}(\zeta) \)) is a strong Kirby color at \(v^{1/D} = \zeta \) if and only if \(\Omega^\Theta(\zeta) \) (resp. \(\Omega^{P_\varepsilon}(\zeta) \)) is non-degenerate at \(v^{1/D} = \zeta \). There are many cases of \(v^{1/D} = \zeta \) when both \(\text{ord}(\zeta^{2D}) \) and \(\Omega^\Theta(\zeta) \) are strong Kirby colors, and there are many cases when one of them is not. Let \(Z^\sigma_g \) (resp. \(Z^{P_\varepsilon}_g \)) be the set of all roots of unity \(\zeta \) such that \(\Omega^\Theta(\zeta) \) (resp. \(\Omega^{P_\varepsilon}(\zeta) \)) is a strong Kirby color.

For \(\zeta \in Z^\sigma_g \) the \(g \) WRT invariant of an oriented closed 3-manifold \(M \) is defined by
\[
\tau^\sigma_g(M; \zeta; \zeta) = \tau_M(\Omega^\Theta(\zeta)).
\]

Similarly, for \(\zeta \in Z^{P_\varepsilon}_g \) the \(P_\varepsilon \) WRT invariant of an oriented closed 3-manifold \(M \) is defined by
\[
\tau^{P_\varepsilon}(M; \zeta; \zeta) = \tau_M(\Omega^{P_\varepsilon}(\zeta)).
\]

Proposition 8.4. Suppose \(\zeta \) is a root of unity with \(\text{ord}(\zeta^{2D}) > d(h^\vee - 1) \). Then \(\zeta \in Z^\sigma_g \cup Z^{P_\varepsilon}_g \).

More specifically, if \(\text{ord}(\zeta^{2D}) \) is odd then \(\zeta \in Z^\sigma_g \) and if \(\text{ord}(\zeta^{2D}) \) is even then \(\zeta \in Z^{P_\varepsilon}_g \).

We will give a proof of the proposition in Appendix C.3. Actually, in Appendix we will describe precisely the sets \(Z^\sigma_g \) and \(Z^{P_\varepsilon}_g \) (for \(\text{ord}(\zeta^{2D}) > d(h^\vee - 1) \)).

The proposition shows that \(Z^\sigma_g \cup Z^{P_\varepsilon}_g \) is all \(Z \) except for a finite number of elements. This means, \(\tau^\sigma_g(M; \zeta; \zeta) \) or \(\tau^{P_\varepsilon}(M; \zeta; \zeta) \) can always be defined except for a finite number of \(\zeta \).

Remark 8.5. (1) If \(\text{ord}(\zeta) \) is divisible by \(2dD \), the proposition had been well-known, since in this case a modular category, and hence a Topological Quantum Field Theory (TQFT), can be constructed, see e.g. [BK]. The rigorous construction of the WRT invariant and the corresponding TQFT was first given by Reshetikhin and Turaev [RT2] for \(g = sl_2 \). The construction of TQFT for higher rank Lie algebras (see e.g. [BK, Tur]) uses Andersen’s theory of tilting modules [AP]. In [Le4], the WRT invariant was constructed without TQFT (and no tilting modules theory). Here we are interested only in the invariants of 3-manifolds, but not the stronger structure – TQFT. We don’t know if a modular category – the basis ground of a TQFT – can be constructed for every root \(\zeta \) of unity with \(\text{ord}(\zeta^{2D}) > d(h^\vee - 1) \). At least for \(g = sl_n \), if the order of \(\zeta \) is \(2 \pmod{4} \) and \(n \) is even, then according to [Br], the corresponding pre-modular category is not modularizable.

(2) In general, different strong Kirby colors give different 3-manifold invariants. The invariant corresponding to \(\Omega^{P_\varepsilon} \), called the projective version of the WRT invariant, was first defined in [KM]...
for $g = sl_2$, then in [KT] for sl_n, and then in [Le4] for general Lie algebras. When both $\Omega^\theta(\zeta)$ and $\Omega^{P\theta}(\zeta)$ are non-degenerate, the relation between the two invariants $\tau_M(\Omega^p)$ and $\tau_M(\Omega^{P\theta})$ is simple if $\text{ord}(\zeta^{2D})$ is co-prime with dD, but in general the relation is more complicated, see [Le4].

(3) It is clear that in the definition of $\Omega^\theta(\zeta)$ and $\Omega^{P\theta}(\zeta)$, instead of P_ζ, one can take any fundamental domain of any group of ζ-periods which has finite index in Y.

8.4.5. Dependence on $\zeta = \zeta^{2D}$. When components of a framed link L are colored by $\Omega^{P\theta}(\zeta)$, J_L takes values in $\mathbb{C}[q^{\pm1}] \subset \mathbb{C}[q^{\pm1/2D}]$, see [Le4]. Hence, the $P\mathfrak{g}$ WRT invariant $\tau^\mathfrak{g}_M(\zeta; \zeta)$, if defined, depend only on $\zeta = \zeta^{2D}$, but not on any choice of a $2D$-th root ζ of ζ.

The \mathfrak{g} WRT invariant $\tau^\mathfrak{g}_M(\zeta; \zeta)$ does depend on a choice of a $2D$-th root ζ of ζ, even in the case $\mathfrak{g} = sl_2$. We will see that when M is an integral homology 3-sphere, the \mathfrak{g} WRT invariant of M depends only on $\zeta = \zeta^{2D}$, but not on any choice of a $2D$-th root ζ of ζ. However, there are cases when $\zeta^{2D} = \zeta = (\zeta')^{2D}$, but $\zeta \notin \mathbb{Z}_{g}^{\prime}$ and $\zeta' \notin \mathbb{Z}_{g}^{\prime}$. For example, suppose $\mathfrak{g} = sl_2$ and $\zeta = \exp(2\pi i/(2k + 1))$, a root of unity of odd order. Then $\zeta = \exp(2\pi i/(8k + 4))$ and $\zeta' = i\zeta$ are both 4-th roots of ζ (in this case $2D = 4$). But $\zeta \in \mathbb{Z}_{g}^{\prime}$ and $\zeta' \notin \mathbb{Z}_{g}^{\prime}$.

8.4.6. Trivial color at $\zeta = 1$ and the case when $\text{ord}(\zeta) \leq d(h^{\prime} - 1)$.

Proposition 8.6. Let $\Omega = \mathbb{C}[[h]]$ be the trivial U_h-module. Then Ω is a strong Kirby color at level $\zeta = 1$ and $\tau_M(\Omega) = 1$.

This follows immediately from Proposition 8.3 and the defining formula (180) of $\tau_M(\Omega)$.

It is not true that the trivial color is a strong Kirby color for all ζ with $\text{ord}(\zeta^{2D}) \leq d(h^{\prime} - 1)$. For example, if $\mathfrak{g} = sl_6$ and $\text{ord}(\zeta^{2D}) = 4$, then the trivial color is not a strong Kirby color. One can prove that if $n = 0, \pm 1$ (mod r), then the trivial color is a strong Kirby color for sl_n at level ζ with $r = \text{ord}(\zeta^{2D})$.

Remark 8.7. If $\text{ord}(\zeta) = 2dDk$, then the level of the corresponding TQFT is $k - h^{\prime}$. Hence, if the level is non-negative as assumed by physics, we automatically have $\text{ord}(\zeta^{2D}) > d(h^{\prime} - 1)$.

8.5. Stronger version of Theorem 8.1. Proposition 8.4 shows that strong Kirby colors exist at every level ζ, if the order of ζ is big enough. Although different Kirby colors at level ζ might define different 3-manifold invariants, we have the following result for integral homology 3-spheres, which is more general than Theorem 8.1.

Theorem 8.8. Suppose Ω is a strong Kirby color at level $v^{1/D} = \zeta$ and M is an integral homology 3-sphere. Then

$$\tau_M(\Omega) = \text{ev}_{v^{1/D} = \zeta}(J_M) = \text{ev}_{v = \zeta}(J_M).$$

Remark 8.9. There is no restriction on the order of ζ on the right hand side of 8.8. We do not know how to directly define the WRT invariant with $\text{ord}(\zeta^{2D}) \leq d(h^{\prime} - 1)$.

The remaining part of this section is devoted to a proof of this theorem. Throughout we fix a root of unity ζ and a strong Kirby color Ω at level ζ. Let $\xi = \zeta^{2D}$ and $r = \text{ord}(\xi)$.

8.6. Reduction of Theorem 8.8 to Proposition 8.10. Here we reduce Theorem 8.8 to Proposition 8.10, which will be proved later.
8.6.1. Twisted colors Ω_{\pm}. Suppose the j-th component of a link L is colored by $V = V_\lambda$, and L' is obtained from L by increasing the framing of the j-th component by 1, then it is known that

\begin{equation}
J_{L'}(\ldots, V, \ldots) = f_\lambda J_L(\ldots, V, \ldots), \quad \text{where} \quad f_\lambda = q^{(\lambda, \lambda+2\rho)/2} = \frac{\text{tr}_q(\mathbf{r}^{-1})}{\text{dim}_q V}.
\end{equation}

For example, if U_{\pm} is the unknot with framing ± 1, then

\[J_{U_{\pm}}(V_\lambda) = f_\lambda^{-1} \dim_q (V_\lambda) = J_U (f_\lambda^{-1} V_\lambda). \]

By definition Ω is a finite sum $\Omega = \sum c_\lambda V_\lambda$, where $c_\lambda \in B = \mathbb{C}[v^{\pm 1}]$. Define the pair Ω_{\pm} by

\[\Omega_{\pm} = \sum v^{\pm 1/2 - \zeta} (c_\lambda f_\lambda^\pm) V_\lambda, \]

which are \mathbb{C}-linear combinations of finite-rank irreducible U_h-modules.

Suppose a distinguished component of L has framing $\varepsilon = \pm 1$ and color Ω, and L' is the same link with the distinguished component having framing 0 and color Ω_{ε}. Then from (182) and the definition of Ω_{ε} one has

\begin{equation}
J_L(\ldots, \Omega, \ldots) \overset{\text{eq.}}{=} J_{U_{\varepsilon}}(\Omega) J_{L'}(\ldots, \Omega_{\varepsilon}, \ldots).
\end{equation}

8.6.2. Reduction of Theorem 8.8. Here we reduce Theorem 8.8 to the following.

Proposition 8.10. Let Ω be a strong Kirby color. Suppose T is an algebraically split 0-framed bottom tangle T with m ordered components and $(\varepsilon_1, \ldots, \varepsilon_m) \in \{\pm 1\}^m$. Then

\[\left(\text{tr}_q^{\Omega_{\varepsilon_1}} \otimes \cdots \otimes \text{tr}_q^{\Omega_{\varepsilon_m}} \right) (J_T) \overset{\text{eq.}}{=} \left(T_{\varepsilon_1} \otimes \cdots \otimes T_{\varepsilon_m} \right) (J_T). \]

Proof of Theorem 8.8 assuming Proposition 8.10. Suppose T is an m-component bottom tangle, $\varepsilon_1, \ldots, \varepsilon_m \in \{\pm 1\}$, and $M = M(T, \varepsilon_1, \ldots, \varepsilon_m)$. This means, if L is the closure link of T and L' is the same L with framing of the i-th component switched to ε_i, then M is obtained from S^3 by surgery along L'. Every integral homology 3-sphere can be obtained in this way. By construction, $J_M = (T_{\varepsilon_1} \otimes \cdots \otimes T_{\varepsilon_m}) (J_T)$.

From (183) and the definition (180) of $\tau_M(\Omega)$, we have

\[\tau_M(\Omega) = \text{ev}_\zeta \left(\left(\text{tr}_q^{\Omega_{\varepsilon_1}} \otimes \cdots \otimes \text{tr}_q^{\Omega_{\varepsilon_m}} \right) (J_T) \right). \]

By Proposition 8.10, we have $\tau_M(\Omega) = \text{ev}_{v^{1/2} \zeta}(J_M)$. This proves Theorem 8.8. \qed

The rest of this section is devoted to a proof of Proposition 8.10.

8.7. Integral form \mathcal{U} of \mathcal{U}_q. Besides the integral form \mathcal{U}_Z (of Lusztig) and \mathcal{V}_Z (of De Concini-Procesi), we need another integral form \mathcal{U} of \mathcal{U}_q, with $\mathcal{V}_Z \subset \mathcal{U} \subset \mathcal{U}_Z$. Let

\[\mathcal{U} := \mathcal{U}_Z^{-} \mathcal{V}_Z = \mathcal{U}_Z^{-} \delta_Z^+ \mathcal{V}_Z^+ = \mathcal{U}_Z^{ev,-} \delta_Z^0 \mathcal{V}_Z^+ \]

and

\[\mathcal{U}^{ev} := \mathcal{U} \cap \mathcal{U}_Z^{ev} = \mathcal{U}_Z^{ev,-} \delta_Z^{ev,0} \mathcal{V}_Z^+. \]
Theorem 8.11. (a) The A-module \mathcal{U} is an A-Hopf-subalgebra of U_Z.
(b) Each of \mathcal{U} and \mathcal{U}^ev is stable under ι_{bar} and τ.
(c) There are even triangular decompositions
\[U_Z^{ev,-} \otimes V_Z^0 \otimes V_Z^+ \xrightarrow{\sim} \mathcal{U}, \quad x \otimes y \otimes z \mapsto xyz \]
\[U_Z^{ev,-} \otimes V_Z^{ev,0} \otimes V_Z^+ \xrightarrow{\sim} \mathcal{U}^{ev}, \quad x \otimes y \otimes z \mapsto xyz. \]
(d) For any longest reduced sequence, the sets
\[\{ F_m K_m K, E_n \mid n, m \in \mathbb{N}^l, \gamma \in Y \} \]
\[\{ F_m K_m K, E_n \mid n, m \in \mathbb{N}^l, \gamma \in Y \} \]
are respectively A-bases of \mathcal{U} and \mathcal{U}^{ev}.
(e) The Hopf algebra \mathcal{U} satisfies the assumptions of Theorem 7.3, i.e. $K_{\alpha}^{+1} \in \mathcal{U}$ for $\alpha \in \Pi$, $F_n \otimes E_n, F'_n \otimes E'_n \in \mathcal{U} \otimes \mathcal{U}$ for $n \in \mathbb{N}^l$.
(f) One has $T_{\pm}(\mathcal{U}^{ev}) \subset A = \mathbb{Z}[v, v^{-1}]$.
(g) For any $n \geq 0$, one has $(\mathcal{U}^{ev})^n \cap \mathcal{U}^{\otimes n} = (\mathcal{U}^{ev})^{\otimes n}$.

Proof. (a) We have the following statement whose easy proof is dropped.

Claim. If $\mathcal{H}_1, \mathcal{H}_2$ are A-Hopf-subalgebras of a Hopf algebra \mathcal{H} such that $\mathcal{H}_2 \mathcal{H}_1 \subset \mathcal{H}_1 \mathcal{H}_2$, then $\mathcal{H}_1 \mathcal{H}_2$ is an A-Hopf-subalgebra of \mathcal{H}.

We will apply the claim to $\mathcal{H}_1 = U_Z^{-} V_Z^0$ and $\mathcal{H}_2 = V_Z$. By checking the explicit formulas of the co-products and the antipodes of $F_{\alpha}^{(n)}, K_{\alpha}, \alpha \in \Pi, n \in \mathbb{N}$, which generates the A-algebra $\mathcal{H}_1 = U_Z^{-} V_Z^0$, we see that \mathcal{H}_1 is an A-Hopf-subalgebra of U_Z. Since \mathcal{H}_2 is also an A-Hopf-subalgebra of U_Z, it remains to show $\mathcal{H}_2 \mathcal{H}_1 \subset \mathcal{H}_1 \mathcal{H}_2$.

Given x, y in any Hopf algebra, we have $xy = \sum y(2)(S^{-1}(y(1)) \triangleright x)$. Hence, since \mathcal{H}_1 is a Hopf algebra, and $\mathcal{H}_1 \triangleright V_Z^{ev} \subset V_Z^{ev}$ (Theorem 5.18),
\begin{equation}
(184) \quad V_Z^{ev} \mathcal{H}_1 \subset \mathcal{H}_1(\mathcal{H}_1 \triangleright V_Z^{ev}) \subset \mathcal{H}_1 V_Z^{ev}.
\end{equation}

Because $V_Z = V_Z^{ev} V_Z^0$ and $V_Z \mathcal{H}_1 = V_Z^0 U_Z V_Z^0 = U_Z V_Z^0 = \mathcal{H}_1$, we have
\[\mathcal{H}_2 \mathcal{H}_1 = V_Z \mathcal{H}_1 = V_Z^{ev} V_Z^0 \mathcal{H}_1 = V_Z^{ev} \mathcal{H}_1 \subset \mathcal{H}_1 V_Z^{ev} \subset \mathcal{H}_1 \mathcal{H}_2, \]
where we used (184). By the above claim, $\mathcal{H}_1 \mathcal{H}_2$ is an A-Hopf-subalgebra of U_Z.

(b) Let $f = \iota_{\text{bar}}$ or $f = \tau$. By Propositions 5.2 and 5.13, $f(U_Z^{-}) = U_Z^{-} \subset U_Z^{-} V_Z = \mathcal{U}$ and
\[f(V_Z) = V_Z \subset U_Z^{-} V_Z = \mathcal{U}. \]
Hence $f(\mathcal{U}) = f(U_Z V_Z) \subset \mathcal{U}$.

By Proposition 3.4, $f(U_q^{ev}) \subset U_q^{ev}$. Hence
\[f(\mathcal{U}^{ev}) = f(\mathcal{U} \cap U_q^{ev}) \subset f(\mathcal{U}) \cap f(U_q^{ev}) \subset \mathcal{U} \cap U_q^{ev} = \mathcal{U}^{ev}. \]

(c) The even triangular decompositions of U_Z (see Section 5.2) imply the even triangular decompositions of \mathcal{U}.

(d) Since $F_m \sim F^{(m)}$ and $E_n \sim (q; q)_{n} E^{(n)}$, where $a \sim b$ means $a = ub$ with u a unit in A, Propositions 5.3 and 5.5 show that $\{ F_m K_m \}$ and $\{ E_n \}$ are respectively A-bases of $U_Z^{ev,-}$ and V_Z^{+}. It is clear that $\{ \gamma \mid \gamma \in Y \}$ and $\{ K_{2\gamma} \mid \gamma \in Y \}$ are respectively A-bases of V_Z^0 and $V_Z^{ev,0}$.
Using these bases, one can easily show that (8.8).

5.8. Complexification of \(\Omega \)\(\). Corollary 8.12. Let us now show a way an \(A \)-basis of \(U \). If (a) For the case \(\otimes \), \(n \)' by (145), (b) The algebra \(\varphi(U) \neq U \).

(b) Applying \(T_+ \) to a basis element of \(U^{ev} \) in (d), using (98) and (99),

\[T_+(F_mK_mK_{2\gamma}E_n) = \delta_{n,m}q^{(m|E_n)q(\gamma,\gamma)-\gamma/2} \in \mathbb{Z}[q^{\pm 1}] \subset A. \]

It follows that \(T_+(U^{ev}) \subset A. \)

Let us now show \(\Omega(X) \subset A. \) By [Ja, Section 6.20], for any \(x, y \in U_q \), one has

\[\langle \omega S(x), \omega S(y) \rangle = \langle y, x \rangle. \]

Because \(\omega S(r^{-1}) = r^{-1} \), and by (96), \((x, r^{-1}) = \langle r^{-1}, x \rangle = T_-(x) \), we have

\[T_-(x) = T_-(\omega S(x)), \]

which is the same as \(T_-(x) = T_-(\omega S)^{-1}(x) \). Hence,

\[T_-(U^{ev}) = T_-(\omega S)^{-1}(U^{ev}) = T_+(\varphi \circ (\omega S)^{-1}(U^{ev})) \quad \text{by (100)} \]

\[= T_+(\iota_{bar}\tau(U^{ev})) \quad \text{because } \varphi = \iota_{bar}\tau\omega S \text{ by Proposition 3.2} \]

\[\subset T_+(U^{ev}) \subset A, \]

where we have used part (b) which says \(\iota_{bar}\tau(U^{ev}) \subset U^{ev}. \)

(g) It is clear that \((U^{ev})^\otimes n \subset (U_q^{ev})^\otimes n \cap U^{\otimes n} \). Let us prove the converse inclusion.

The \(A \)-basis of \(U \) described in (d) is also a \(C(v) \)-basis of \(U_q \). This basis generates in a natural way an \(A \)-basis \(\{e(i) \mid i \in I\} \) of \(U^{\otimes n} \), which is also a \(C(v) \)-basis of \(U_q^{\otimes n} \). There is a subset \(I^{ev} \subset I \) such that \(\{e(i) \mid i \in I^{ev}\} \) is an \(A \)-basis of \((U^{ev})^\otimes n \) and at the same time a \(C(v) \)-basis of \((U_q^{ev})^\otimes n \).

Using these bases, one can easily show that \((U^{ev})^\otimes n = (U_q^{ev})^\otimes n \cap U^{\otimes n} \). Hence,

\[(U_q^{ev})^\otimes n \cap U^{\otimes n} \subset (U_q^{ev})^\otimes n \cap U^{\otimes n} = (U^{ev})^\otimes n, \]

which is the converse inclusion. The proof is complete.

Theorems 8.11(d) and 7.3 give the following.

Corollary 8.12. If \(T \) is an \(n \)-component bottom tangle with 0 linking matrix, then \(J_T \in \bar{K}_n(U) \).

Remark 8.13. (a) For the case \(g = sl_2 \), the algebra \(U \) was considered by the first author [Ha5, Ha7].

8.8. Complexification of \(\bar{K}_n(U) \). To accommodate the complex coefficients appearing in the definition of \(\Omega_{\pm} \), we often extend the ground ring from \(A = \mathbb{Z}[v^{\pm 1}] \) to \(B = \mathbb{C}[v^{\pm 1}] \). Let

\[\bar{C}[v] := \lim_{k} \mathbb{C}[v^{\pm 1}]/(q; q)_k = \lim_{k} \mathbb{C}[v]/(q; q)_k. \]

By (145),

\[F_k(\bar{K}_n(U)) = (q; q)_k(\mathbb{C}_Z^{ev})^\otimes m \cap [\mathbb{U}_Z^{\otimes m}]_1 \cap U^\otimes m \subset (q; q)_k(\mathbb{C}_Z^{ev})^\otimes m \cap (U^{ev})^\otimes m \quad \text{by Theorem 8.11(g)}. \]
Let
\[\mathcal{F}_k(\mathcal{K}'_m) := ((q:q)_k(X^v_\mathbb{Z})^\otimes m \cap (\mathcal{L}^v)^\otimes m) \otimes_A \mathcal{B} \subset h^k(X_h)^\otimes m \cap h^k U_h^\otimes m. \]
Define the completion
\[\hat{\mathcal{K}}'_m \left\{ x = \sum_{k=0}^{\infty} x_k \mid x_k \in \mathcal{F}_k(\mathcal{K}'_m) \right\} \subset (X_h)^\otimes m \cap (U_h)^\otimes m. \]
Then \(\hat{\mathcal{K}}_m(U) \subset \hat{\mathcal{K}}'_m \), and \(\hat{\mathcal{K}}_0 = \mathbb{C}[v] \). We will work with \(\hat{\mathcal{K}}'_m \) instead of \(\hat{\mathcal{K}}_m(U) \).

8.9. **Integral basis of** \(V_\lambda \). For \(\lambda \in X_+ \) recall that \(V_\lambda \) is the finite-rank \(U_h \)-module of highest weight \(\lambda \). Let \(1_\lambda \in V_\lambda \) be a highest weight element. It is known that the \(U_Z \)-module \(U_Z \cdot 1_\lambda \) is a free \(A \)-module of rank equal to the rank of \(V_\lambda \) over \(\mathbb{C}[[h]] \). Besides, there is an \(A \)-basis of \(U_Z \cdot 1_\lambda \) consisting of weight elements, see e.g. [CP]. We call such a basis an **integral basis** of \(V_\lambda \). For example, the **canonical basis** of Kashiwara and Lusztig [Kash, Lu1] is such an integral basis. An integral basis of \(V_\lambda \) is also a topological basis of \(V_\lambda \).

Recall that \(\hat{U}_Z = \hat{U}_0^0 U_Z \) and \(\hat{U}_q = \hat{U}_0^0 U_q \) are respectively the simply-connected versions of \(U_Z \) and \(U_q \), see Section 5.8. For \(\lambda \in X_+ \) we have the quantum trace map \(\text{tr}^V_\lambda : U_h \to \mathbb{C}[[h]] \). This map extends to \(\text{tr}^V_\lambda : U_h[h^{-1}] \to \mathbb{C}[[h]][h^{-1}] \). In particular, if \(x \in \hat{U}_q \), then one can define \(\text{tr}^V_\lambda(x) \in \mathbb{C}[[h]][h^{-1}] \).

Lemma 8.14. Suppose \(\lambda \) is a dominant weight, \(\lambda \in X_+ \).

- (a) If \(x \in U_Z \) then the \(\text{tr}^V_\lambda(x) \in A \).
- (b) If \(x \in \hat{U}_q \) then \(\text{tr}^V_\lambda(x) \in \mathbb{Q}(v^{\pm 1/D}) \).
- (c) If \(x \in U_Z \) and \(\lambda \in Y \) then \(\text{tr}^V_\lambda(x) \in A \).
- (d) If \(x \in X_Z \) then \(\text{tr}^V_\lambda(x) \in \hat{A} \).

Proof. Fix an integral basis of \(V_\lambda \). Using the basis, each \(x \in U_h \) acts on \(V_\lambda \) by a matrix with entries in \(\mathbb{C}[[h]] \), called the matrix of \(x \).

- (a) If \(x \in U_Z \) then its matrix has entries in \(A \). It follows that \(\text{tr}^V_\lambda(x) = \text{tr}^V_\lambda(x K_{2\mu}) \in A \).
- (b) As a \(\mathbb{Q}(v) \)-algebra, \(\hat{U}_q \) is generated by \(U_q \) and \(K_\alpha, \alpha \in \Pi \). Since \(U_q = U_Z \otimes_A \mathbb{C}(v) \), the matrix of \(x \in U_q \) has entries in \(\mathbb{C}(v) \). For an element \(e \) of weight \(\mu \), we have \(K_\alpha(e) = v^{(\alpha,\mu)} e \). Note that \((\alpha, \mu) \in \frac{1}{D} \mathbb{Z} \). It follows that the matrix of \(K_\alpha(e) \) has entries in \(\mathbb{Q}(v^{\pm 1/D}) \). Hence the matrix of every \(x \in U_q \) has entries in \(\mathbb{C}(v^{\pm 1/D}) \), and \(\text{tr}^V_\lambda(x) \in \mathbb{C}(v^{\pm 1/D}) \).
- (c) As \(A \)-algebra, \(\hat{U}_Z \) is generated by \(U_Z \) and \(f(K_\alpha; n, k) := K_\alpha^{n(\hat{K}_{\alpha}^2 q_\alpha)k} \), \(n \in \mathbb{Z}, k \in \mathbb{N}, \alpha \in \Pi \).

When \(\lambda \in Y \), all the weights of \(V_\lambda \) are in \(Y \). From the orthogonality between simple roots and fundamental weights we have \((\alpha, \mu) \in d_\alpha \mathbb{Z} \) for every \(\alpha \in \Pi \) and \(y \in Y \). Hence
\[f(v^{(\alpha,\mu)}; n, k) = v^n(\alpha,\mu) \frac{(q_\alpha^{(\hat{K}_{\alpha}^2 q_\alpha))k}}{(q_\alpha q_\alpha)k} \in A. \]
Suppose \(e \in V_\lambda \) has weight \(\mu \in Y \). Then
\[f(K_\alpha; n, k)(e) = f(v^{(\hat{K}_{\alpha})}; n, k) e \in Ae. \]
Thus, the matrix of $f(\tilde{K}_n; n, k)$ on V_λ has entries in A. We conclude that the matrix of every $x \in \tilde{U}_Z$ has entries in A, and $\text{tr}_{V_\lambda}^V(x) \in A$.

(d) Because $X_Z \subset U_Z \otimes A \tilde{A}$, by part (a) we have $\text{tr}_{V_\lambda}^V(x) \in \tilde{A}$. \hfill \square

8.10. Quantum traces associated to Ω_\pm. Define

$$\tilde{T}_\pm : U_h \rightarrow \mathbb{C}[h] \quad \text{by} \quad \tilde{T}_\pm(x) = \text{tr}_q^{\Omega_\pm}(x).$$

Note that \tilde{T}_\pm, being quantum traces, are ad-invariant. Since Ω_\pm are \mathbb{C}-linear combination of V_λ, Lemma 8.14 shows that \tilde{T}_\pm restricts to a B-linear map from $U_Z \otimes_A B$ to $B = \mathbb{C}[v^{\pm 1}]$.

Recall that $(\tilde{K}_n')^{\text{inv}}$ denotes the set of elements in \tilde{K}_n' which are U_Z-ad-invariants.

Proposition 8.15. Suppose f is one of T_\pm, \tilde{T}_\pm. Then f is $(\tilde{K}_m')^{\text{inv}}$-admissible in the sense that for $m \geq j \geq 1$,

$$(\text{id}^{\otimes j-1} \otimes f \otimes \text{id}^{\otimes m-j}) \left((\tilde{K}_m')^{\text{inv}} \right) \subset (\tilde{K}_{m-1}')^{\text{inv}}.$$

Proof. Recall that T_\pm, \tilde{T}_\pm are ad-invariant. By Proposition 2.4(d) it is enough to prove

$$(\text{id}^{\otimes j-1} \otimes f \otimes \text{id}^{\otimes m-j}) \left(\tilde{K}_m' \right) \subset \tilde{K}_{m-1}' ,$$

which, in turn, will follow from

$$(187) \quad (\text{id}^{\otimes j-1} \otimes f \otimes \text{id}^{\otimes m-j}) \left(\mathcal{F}_k(\tilde{K}_m') \right) \subset \mathcal{F}_k(\tilde{K}_{m-1}').$$

Let us prove (187) for $f = \tilde{T}_\pm$. By Proposition 5.24,

$$(\text{id}^{\otimes j-1} \otimes \tilde{T}_\pm \otimes \text{id}^{\otimes m-j}) \left((q; q)_{k}(X_Z^{ev})^{\otimes m} \right) \subset (q; q)_{k}(X_Z^{ev})^{\otimes m-1}.$$

By Proposition 8.11(f),

$$(\text{id}^{\otimes j-1} \otimes \tilde{T}_\pm \otimes \text{id}^{\otimes m-j}) \left((U^{ev})^{\otimes m} \right) \subset (U^{ev})^{\otimes m-1}.$$

Because $\mathcal{F}_k(\tilde{K}_m') = ((q; q)_{k}(X_Z^{ev})^{\otimes m} \cap (U^{ev})^{\otimes m}) \otimes_A B$, we have

$$(\text{id}^{\otimes j-1} \otimes \tilde{T}_\pm \otimes \text{id}^{\otimes m-j})\mathcal{F}_k(\tilde{K}_m') \subset \mathcal{F}_k(\tilde{K}_{m-1}').$$

Let us now prove (187) for $f = \tilde{T}_\pm$. Because Ω_\pm is a \mathbb{C}-linear combination of V_λ, by Lemma 8.14(d), $\tilde{T}_\pm(X_Z^{ev}) \subset A \otimes_A B$. Hence,

$$(188) \quad (\text{id}^{\otimes j-1} \otimes \tilde{T}_\pm \otimes \text{id}^{\otimes m-j}) \left((q; q)_{k}(X_Z^{ev})^{\otimes m} \right) \subset (q; q)_{k}((X_Z^{ev})^{\otimes m-1} \otimes_A B).$$

From Lemma 8.14(a), $\tilde{T}_\pm(U) \subset B$, and hence

$$(\text{id}^{\otimes j-1} \otimes \tilde{T}_\pm \otimes \text{id}^{\otimes m-j}) \left((U^{ev})^{\otimes m} \right) \subset (U^{ev})^{\otimes m-1} \otimes_A B,$$

which, together with (188), proves (187). \hfill \square
8.11. Actions of Weyl group on U_h^0 and Chevalley theorem. The Weyl group acts on the Cartan part U_h^0 by algebra automorphisms given by $w(H_\lambda) = H_{w(\lambda)}$. Then $w(K_\alpha) = K_{w(\alpha)}$, and \mathcal{W} restricts and extends to actions on the Cartan parts $U_{Z,v}^0$, $V_{Z,v}^0$, and X_h^0.

We say an element $x \in U_h^0$ is \mathcal{W}-invariant if $w(x) = x$ for every $w \in \mathcal{W}$, and x is \mathcal{W}-skew-invariant if $w(x) = \text{sgn}(w)x$ for every $w \in \mathcal{W}$. As usual, if \mathcal{W} acts on V we denote by $V^{\mathcal{W}}$ the subset of \mathcal{W}-invariant elements.

By Chevalley’s theorem [Che], there are ℓ homogeneous polynomials $e_1, \ldots, e_\ell \in \mathbb{Z}[H_1, \ldots, H_\ell]$ such that $(\mathbb{C}[H_1, \ldots, H_\ell])^{\mathcal{W}} = \mathbb{C}[e_1, \ldots, e_\ell]$, the polynomial ring freely generated by ℓ elements e_1, \ldots, e_ℓ.

Suppose the degree of e_i is k_i. Since $\exp(hH_\alpha) = K_\alpha^2$, we have

\[(189) \quad \tilde{e}_i := \exp(h^{k_i}e_i) \in \mathbb{Z}[K_1^{\pm 2}, \ldots, K_\ell^{\pm 2}]^{\mathcal{W}} \subset (V_{Z,v}^0)^{\mathcal{W}}.\]

Proposition 8.16. (a) One has

\[(190) \quad (U_h^0)^{\mathcal{W}} = \mathbb{C}[e_1, \ldots, e_\ell][[h]];\]

\[(191) \quad (X_h^0)^{\mathcal{W}} = \mathbb{C}[h^{k_i/2}e_1, \ldots, h^{k_\ell/2}e_\ell][[\sqrt{h}]];\]

\[(192) \quad (V_h^0)^{\mathcal{W}} = \mathbb{C}[h^k e_1, \ldots, h^k e_\ell][[h]];\]

\[(193) \quad = \mathbb{C}[\tilde{e}_1, \ldots, \tilde{e}_\ell][[h]].\]

Here the overline in (192) and (193) denotes the topological closure in the h-adic topology of U_h.

Proof. We have

\[(U_h^0)^{\mathcal{W}} = (\mathbb{C}[H_1, \ldots, H_\ell][[h]])^{\mathcal{W}} = (\mathbb{C}[H_1, \ldots, H_\ell])^{\mathcal{W}}[[h]] = \mathbb{C}[e_1, \ldots, e_\ell][[h]],\]

which proves (190). Similarly, using

\[(X_h^0)^{\mathcal{W}} = (\mathbb{C}[h^{1/2}H_1, \ldots, h^{1/2}H_\ell][[h]])^{\mathcal{W}}\]

\[(V_h^0)^{\mathcal{W}} = (\mathbb{C}[hH_1, \ldots, hH_\ell][[h]])^{\mathcal{W}}\]

we get (191) and (192). We have

\[\tilde{e}_i - 1 = h^{k_i}e_i + h(V_h^0)^{\mathcal{W}}.\]

It follows that

\[\mathbb{C}[\tilde{e}_1, \ldots, \tilde{e}_\ell][[h]] = \mathbb{C}[h^{k_i}e_1, \ldots, h^{k_\ell}e_\ell][[h]],\]

from which one has (193). \hfill \square

8.12. The Harish-Chandra isomorphism, center of U_h. Let $3(U_h)$ be the center of U_h, which is known to be U_h^{inv}, the ad-invariant subset of U_h. For any subset $V \subset U_h$ denote $3(V) = V \cap 3(U_h)$, the set of central elements in V.

Let $p_0 : U_h \to U_h^0$ be the projection corresponding to the triangular decomposition. This means, if $x = x_- x_+ x_+$, where $x_- \in U_h^-, x_+ \in U_h^+$ and $x_0 \in U_h^0$, then $p_0(x) = \epsilon(x_-) \epsilon(x_+) x_0$. Here ϵ is the co-unit.

For $\mu \in X$, define the algebra homomorphism $sh_\mu : U_h^0 \to U_h^0$ by $sh_\mu(H_\alpha) = H_\alpha + (\alpha, \mu)$. Then $sh_\mu(K_\alpha) = K^{(\mu, \alpha)}_\alpha$. Since $v(\mu, \alpha) = \langle K_{-2\mu}, K_\alpha \rangle$, we have

\[(194) \quad sh_\mu(K_\alpha) = \langle K_{-2\mu}, K_\alpha \rangle K_\alpha.\]
The Harish-Chandra map is the $\mathbb{C}[[h]]$-module homomorphism
\[
\chi = \text{sh}_\rho \circ p_0 : U_h \to U_h^0 = \mathbb{C}[H_1, \ldots, H_\ell][[h]].
\]
The restriction of χ to the Y-degree 0 part of U_h, denoted χ by abuse of notation, is a $\mathbb{C}[[h]]$-algebra homomorphism, called the Harish-Chandra homomorphism.

One has the following description of the center (see e.g. [CP, Ros]).

Proposition 8.17. The restriction of χ on the center $Z(U_h)$ is an algebra isomorphism from $Z(U_h)$ to $Z(U_0) = \mathbb{C}[[H_1, \ldots, H_\ell]]$.

Remark 8.18. Suppose $\mathcal{H} \subset U_h$ is any subring satisfying the triangular decomposition (like U_Z or V_h). From definition (195)
\[
\chi(\mathcal{H}) \subset (\mathcal{H}^0)^0.
\]
For $\mathcal{H} = U_h$, we have equality in (195) by Proposition 8.17. But in general, the left hand side is strictly smaller than the right hand side. For example, one can show that
\[
\chi(Z(U_Z)) \neq (U_0_Z)^0.
\]

Over the ground ring A, the determination of the image of the Harish-Chandra map is difficult. Later we will determine $\chi(\mathcal{H})$ for two cases, $\mathcal{H} = V_\Lambda^+, \mathcal{H} = X_h$, which is defined over $\mathbb{C}[[\sqrt{h}]]$. In both cases, the duality with respect to the quantum Killing form will play an important role.

8.13. From U_h-modules to central elements. In the classical case, the center of the enveloping algebra of g is isomorphic to the ring of g-modules via the character map. We will recall (and modify) here the corresponding fact in the quantized case.

For a dominant weight $\lambda \in X_+$, recall that V_λ is the irreducible U_h-module of highest weight λ. Since the map $\text{tr}_{q}^{V_\lambda} : U_h \to \mathbb{C}[[h]]$ is ad-invariant and the clasp element c is ad-invariant, by Proposition 2.4(d) the element
\[
z_\lambda := (\text{tr}_{q}^{V_\lambda} \otimes \text{id})(c)
\]
is in $(U_h)^{\text{inv}} = Z(U_h)$. This construction of central elements was sketched in [Dr], and studied in details in [JL3, Bau]. Our approach gives a geometric meaning of z_λ as it shows that $z_\lambda = J_T$, where T is the open Hopf link bottom tangle depicted in Figure 14, with the closed component colored by V_λ. Let us summarize some more or less well-known properties of z_λ, see [Bau, Cal, JL3].

Proposition 8.19. Suppose $\lambda, \lambda' \in X_+$.

(a) For every $x \in \hat{U}_q$,
\[
\text{tr}_{q}^{V_\lambda}(x) = (z_\lambda, x).
\]
(b) One has
\[
\chi(z_{\lambda}) = \sum_{\mu \in \mathcal{X}} \dim(V_{\lambda})_{[\mu]} K_{-2\mu} = \frac{\sum_{w \in \mathcal{W}} \text{sgn}(w) K_{-2w(\lambda + \rho)}}{\sum_{w \in \mathcal{W}} \text{sgn}(w) K_{-2w(\rho)}}.
\]

(c) If \(L \) is the Hopf link, see Figure 14, then
\[
J_L(V_{\lambda}, V_{\lambda'}) = \langle z_{\lambda}, z_{\lambda'} \rangle = \text{tr}^{\lambda}_{q}(z_{\lambda'}),
\]
\[
J_L(V_{\lambda}, V_{\lambda'}) = \langle z_{\lambda}, z_{\lambda'} \rangle = \text{tr}^{\lambda}_{q}(z_{\lambda'}),
\]
\[
\langle z_{\lambda}, x \rangle = \sum \text{tr}^{\lambda}_{q}(c_{1})c_{2}, x
\]
\[
\sum \text{tr}^{\lambda}_{q}(c_{1})c_{2}, x = \sum \text{tr}^{\lambda}_{q}((c_{2}, x)c_{1}) = \text{tr}^{\lambda}_{q}(x).
\]

(b) In [Ja, Chapter 6], it is proved that if \(\lambda \in X_{+} \cap \frac{1}{2}Y \), then
\[
\chi(z_{\lambda}) = \sum_{\mu \in \mathcal{X}} \dim((V_{\lambda})_{[\mu]}) K_{-2\mu},
\]
where \(\dim((V_{\lambda})_{[\mu]} \) is the rank of the weight \(\mu \) submodule. Actually, the simple proof in [Ja, Chapter 6] works for all \(\lambda \in X_{+} \). The second equality of (197) is the famous Weyl character formula, see e.g. [Hum].

(c) Let \(T \) be the open Hopf link bottom tangle depicted in Figure 14, with the closed component colored by \(V_{\lambda} \). Then \(J_{T} = z_{\lambda} \). We have
\[
J_{T}(V_{\lambda}, V_{\lambda'}) = \text{tr}^{\lambda'}_{q}((T) = \langle z_{\lambda'}, J_{T} \rangle = \langle z_{\lambda'}, z_{\lambda} \rangle = \langle z_{\lambda}, z_{\lambda'} \rangle.
\]

(d) Joseph and Letzter [JL2, Section 6.10] (see [Bau, Proposition 5] for another proof) showed that \(z_{\lambda} \in \bar{U}_{q} \triangleright K_{-2\lambda} \). Since \(K_{-2\lambda} \in \bar{U}_{q}^{\text{ev}} \), we have \(z_{\lambda} \in \bar{U}_{q} \triangleright \bar{U}_{q}^{\text{ev}} \subset \bar{U}_{q}^{\text{ev}} \), by Lemma 3.6. If \(\lambda \in Y \), then \(K_{-2\lambda} \in \bar{U}_{q}^{\text{ev}} \), hence \(z_{\lambda} \in \bar{U}_{q}^{\text{ev}} \) again by Lemma 3.6.

Note that the right hand side of (197) makes sense, and is in \((U_{q})^{2\mathfrak{m}} \), for any \(\lambda \in X \) not necessarily in \(X_{+} \cap \frac{1}{2}Y \). For any \(\lambda \in X \), define \(z_{\lambda} \in \mathfrak{z}((U_{q})) \) by
\[
z_{\lambda} = \chi^{-1}\left(\sum_{\mu \in \mathcal{X}} \dim(V_{\lambda})_{[\mu]} K_{-2\mu} \right).
\]

If \(\lambda + \rho \) and \(\lambda' + \rho \) are in the same \(2\mathfrak{m} \)-orbit, then by (197), \(z_{\lambda} = z_{\lambda'} \). On the other hand, if \(\lambda + \rho \) is fixed by a non-trivial element of the Weyl group, then \(z_{\lambda} = 0 \).

When \(\lambda \) is in the root lattice, \(\lambda \in Y \), the right hand side of (197) is in \(\mathcal{A}[K_{\alpha_{1}}^{\pm 2}, \ldots, K_{\alpha_{r}}^{\pm 2}]^{2\mathfrak{m}} \). Actually, the theory of invariant polynomials says that the right hand side of (197), with \(\lambda \in Y \), gives all \(\mathcal{A}[K_{\alpha_{1}}^{\pm 2}, \ldots, K_{\alpha_{r}}^{\pm 2}]^{W} \), see e.g. [Mac, Section 2.3]. Hence, we have the following statement.

Proposition 8.20. The Harish-Chandra homomorphism maps the \(\mathcal{A} \)-span of \(\{z_{\alpha}, \alpha \in Y\} \) isomorphically onto \(\mathcal{A}[K_{\alpha_{1}}^{\pm 2}, \ldots, K_{\alpha_{r}}^{\pm 2}]^{2\mathfrak{m}} \).
8.14. Center of V^v_Z.

Lemma 8.21. Suppose $\beta \in Y$. Then $z_\beta \in V^v_Z$.

Proof. By Proposition 5.15, V^v_Z is the A-dual of \hat{U}_Z^v with respect to the quantum Killing form, i.e.

$$V^v_Z = \{ x \in U^v_q \mid \langle x, y \rangle \in A \ \forall y \in \hat{U}_Z^v \}.$$

Since $z_\beta \in U^v_q$ by Proposition 8.19, it is sufficient to show that for any $y \in \hat{U}_Z^v$, $(z_\beta, y) \in A$.

We can assume that β is a dominant weight, $\beta \in X_+ \cap Y$. By Proposition 8.19

$$\langle z_\beta, y \rangle = \text{tr}_q y(z_\beta) \in A,$$

where the inclusion follows from Lemma 8.14. This shows $z_\beta \in V^v_Z$.

\[\square \]

Proposition 8.22. (a) One has

$$3(V^v_Z) = 3(U^v) = A\text{-span of } \{ z_\alpha \mid \alpha \in Y \}.$$

(b) The Harish-Chandra homomorphism maps $3(V^v_Z)$ isomorphically onto $(V^{v,0})^m$, i.e.

$$\chi(3(V^v_Z)) = (V^{v,0})^m = A[\alpha_1^{\pm 2}, \ldots, \alpha_r^{\pm 2}]^m.$$

Proof. (a) Let us prove the following inclusions

$$3(V^v_Z) \subset 3(U^v) \subset A\text{-span of } \{ z_\alpha \mid \alpha \in Y \} \subset 3(V^v_Z),$$

which implies that all the terms are the same and proves part (a).

The first inclusion is obvious, since $V^v_Z \subset U^v$, while the third is Lemma 8.21.

Because the $U^{v,0} = A[\alpha_1^{\pm 2}, \ldots, \alpha_r^{\pm 2}]$, one has $\chi(3(U^v)) \subset A[\alpha_1^{\pm 2}, \ldots, \alpha_r^{\pm 2}]^m$. Hence, by Proposition 8.20 we have $3(U^v) \subset A\text{-span of } \{ z_\alpha \mid \alpha \in Y \}$, which is the second inclusion in (201). This proves (a).

(b) follows from (a) and Proposition 8.20.

\[\square \]

Proposition 8.23. The Harish-Chandra map χ is an isomorphism between $3(V_h)$ and $(V^{0})^m$.

Proof. Since $\chi(3(V_h)) \subset (V^{0})^m$, it remains to show $(V^{0})^m \subset \chi(3(V_h))$. By (192)

$$\langle V^{0}_h \rangle = \text{span of } \{ \tilde{e}_i \mid [h] \}.$$

By (189) and (200),

$$\tilde{e}_i \in \langle V^{v,0}_Z \rangle = \chi(3(V^v_Z)) \subset \chi(3(V_h)).$$

Hence $(V^{0}_h)^m \subset \chi(3(V_h))$. This completes the proof of the proposition.

\[\square \]

8.15. Center of X_h.

Proposition 8.24. The Harish-Chandra map χ is an isomorphism between $3(X_h)$ and $(X^{0})^m$.

Proof. By the definition, $\chi(3(X_h)) \subset (X^{0})^m$. We need to show that $\chi^{-1}((X^{0})^m) \subset 3(X_h)$. Because $\chi^{-1}((X^{0})^m)$ consists of central elements, one needs only to show $\chi^{-1}((X^{0})^m) \subset X_h$. We will use the stability principle of dilatation triples.

From (190), (191), and (192), the triple $(U^{0}_h)^m, (X^{0}_h)^m, (V^{0}_h)^m$ form a topological dilatation triple (see Section 4.3).
The triple U_h, X_h, V_h also form a topological dilatation triple (see Section 4.4). Since $\chi^{-1}((U_h^0)^{\oplus 2}) \subset U_h$ and $\chi^{-1}((V_h^0)^{\oplus 2}) \subset V_h$ by Proposition 8.23, one also has $\chi^{-1}((X_h^0)^{\oplus 2}) \subset X_h$, by the stability principle (Proposition 4.6).

8.16. Quantum Killing form and Harish-Chandra homomorphism. Since $\chi(x), \chi(y)$ determine x, y for central $x, y \in U_Z$, one should be able to calculate $\langle x, y \rangle$ in terms of $\chi(x), \chi(y)$.

Let D be the denominator of the right hand side of (197), i.e.

$$D := \sum_{w \in \mathcal{W}} sgn(w)K_{-w(2\rho)}.$$

By the Weyl denominator formula,

$$D = \prod_{\alpha \in \Phi_+} (K_\alpha^{-1} - K_\alpha) = K_{2\rho} \prod_{\alpha \in \Phi_+} (K_\alpha^{-2} - 1) \in K_{2\rho}V_Z^{ev}.$$

Let us define

$$d := \langle K_{-2\rho}, D \rangle = \prod_{\alpha \in \Phi_+} (v_\alpha^{-1} - v_\alpha).$$

From the formula for the quantum dimension (177), we have

$$\text{adim}_q(V_\lambda) = \langle K_{-2\rho-2\lambda}, D \rangle.$$

Here is a formula expressing $\langle x, y \rangle$ in terms of $\chi(x), \chi(y)$.

Proposition 8.25. Suppose $x \in \mathfrak{z}(X_h)$, and $y = z, \lambda \in Y$. Then

$$\|D(x, y)\| = \langle \mathbb{D} \chi(x), \mathbb{D} \chi(y) \rangle$$

Proof. As x is central, it acts on V_λ by $c(\lambda, x) \text{id}$, where $c(\lambda, x) \in \mathbb{C}[\hbar]$. Recall that 1_λ is the highest weight vector of V_λ. We have $K_\alpha \cdot 1_\lambda = v(\alpha, \lambda)1_\lambda = \langle K_\alpha, K_{-2\lambda} \rangle 1_\lambda$. Hence for every $z \in U_h$,

$$z \cdot 1_\lambda = \langle x, K_{-2\lambda} \rangle 1_\lambda$$

Since the highest weight vector 1_λ is killed by all $E_\alpha, \alpha \in \Pi$, we have

$$x \cdot 1_\lambda = p_0(x) \cdot 1_\lambda = sh_\rho \chi(x) \cdot 1_\lambda$$

Thus, $c(\lambda, x) = \langle sh_\rho \chi(x), K_{-2\lambda} \rangle$. Further, by (194),

$$\begin{align*}
 c(\lambda, x) & = \langle sh_\rho \chi(x), K_{-2\lambda} \rangle = \langle \langle K_{-2\rho}, \chi(x) \rangle \chi(x), K_{-2\lambda} \rangle \\
 & = \langle K_{-2\rho}, \chi(x) \rangle \langle \chi(x), K_{-2\lambda} \rangle = \langle K_{-2\rho}, \chi(x) \rangle \langle K_{-2\lambda}, \chi(x) \rangle = \langle K_{-2\rho-2\lambda}, \chi(x) \rangle \\
 & = \langle K_{-2\rho-2\lambda}, D \chi(x) \rangle = \frac{\langle K_{-2\rho-2\lambda}, D \chi(x) \rangle}{\langle K_{-2\rho-2\lambda}, D \rangle} = \frac{1}{\text{adim}_q(V_\lambda)} \left(\sum_{w \in \mathcal{W}} sgn(w)K_{-2w(\lambda+\rho)}, D \chi(x) \right) \\
 & = \frac{1}{\|D\|\text{adim}_q(V_\lambda)} \langle \mathbb{D} \chi(z), D \chi(x) \rangle.
\end{align*}$$

Here the last equality on line three follows from (203), and the equality on the line four follows from the fact that $\mathbb{D} \chi(x)$ is \mathcal{W}-skew-invariant and the quantum Killing form is \mathcal{W}-invariant on X_h^0.

Using (196) and the fact that $x = c(\lambda, x) \text{id on } V_\lambda$,
\[\langle x, z_\lambda \rangle = \text{tr}_q^{\chi}(x) = c(\lambda, x) \dim_q(V_\lambda) = \frac{1}{|\mathfrak{M}|} \langle \mathcal{D}(\chi(z_\lambda)), \mathcal{D}(\chi(x)) \rangle, \]
where for the last equality we used the value of $c(\lambda, x)$ calculated above.
\[\square \]

Remark 8.26. It is not difficult to show that Proposition 8.25 holds for every $y \in \mathfrak{Z}(X_h)$.

8.17. Center of \tilde{K}_1'. Recall that \tilde{K}_1' is the set of all elements of the form
\[x = \sum x_k, \quad x_k \in \mathcal{F}_k(K_1'). \]

One might expect that every central element of \tilde{K}_1' has the same form with x_k central. We don’t know if this is true. We have here a weaker statement which is enough for our purpose. In our presentation, x_k is central, but might not be in $\mathcal{F}_k(K_1')$. However, x_k still has enough integrality.

Lemma 8.27. Suppose $x \in \mathfrak{Z}(\tilde{K}_1')$. There are central elements $x_k \in \mathfrak{Z}(X_h)$ such that

(a) one has $|\mathfrak{M}| x = \sum_{k=0}^{\infty} (q; q)_k x_k$,

(b) for every $k \geq 0$, $(q; q)_k x_k$ belongs to $\mathfrak{Z}(V^\mathfrak{ev}_Z \otimes \mathcal{A} \mathcal{B})$,

(c) for every $k \geq 0$, one has $T_x(x_k) \in \frac{1}{q} \mathbb{C}[v^\pm 1]$, and

(d) for every $k \geq 0$, one has $\tilde{T}_x(x_k) \in \frac{1}{q} \mathbb{C}[v^\pm 1]$.

Proof. (a) Recall that $\mathcal{F}_k(K_1') = \left((q; q)_k (X^\mathfrak{ev}_Z) \cap (\mathcal{U}^\mathfrak{ev}) \right) \otimes \mathcal{A} \mathcal{B}$. Hence x has a presentation
\[x = \sum_{k=0}^{\infty} (q; q)_k x'_k, \]
where $x'_k \in X^\mathfrak{ev}_Z \otimes \mathcal{A} \mathcal{B}$ and $(q; q)_k x'_k \in \mathcal{U}^\mathfrak{ev} \otimes \mathcal{A} \mathcal{B}$.

Let $y_k = \sum_{w \in \mathfrak{M}} w(\chi(x'_k))$, which is \mathfrak{M}-invariant. Then $y_k \in (X^0_h)^{\mathfrak{M}}$. By Proposition 8.24, $x_k := \chi^{-1}(y_k)$ is central and belongs to $\mathfrak{Z}(X_h)$.

Using the \mathfrak{M}-invariance of $\chi(x)$ and (206), and using \mathfrak{M}-invariance of $\chi(x)$,
\[|\mathfrak{M}| \chi(x) = \sum_{w \in \mathfrak{M}} w(\chi(x)) = \sum_{k=0}^{\infty} (q; q)_k \sum_{w \in \mathfrak{M}} w(\chi(x'_k)) = \sum_{k=0}^{\infty} (q; q)_k y_k. \]

Applying χ^{-1} to the above, we get the form required in (a): $|\mathfrak{M}| x = \sum_{k=0}^{\infty} (q; q)_k x_k$.

(b) Since $(q; q)_k x'_k \in \mathcal{U}^\mathfrak{ev} \otimes \mathcal{A} \mathcal{B}$ and $\mathcal{U}^\mathfrak{ev,0} = V^\mathfrak{ev,0}_Z$, one has
\[(q; q)_k y_k = (q; q)_k \sum_{w \in \mathfrak{M}} w(\chi(x'_k)) \in V^\mathfrak{ev,0}_Z \otimes \mathcal{A} \mathcal{B}. \]

By Proposition 8.22, $(q; q)_k x_k = \chi^{-1}((q; q)_k y_k) \in \mathfrak{Z}(V^\mathfrak{ev}_Z) \otimes \mathcal{A} \mathcal{B}$.

(c) Because $V^\mathfrak{ev}_Z \subset \mathcal{U}^\mathfrak{ev}$, we have $T_{x}(V^\mathfrak{ev}_Z) \subset \mathcal{A}$, by Theorem 8.11(f). From (b), we have
\[(q; q)_k T_{x}(x_k) \in \mathcal{A} \otimes \mathcal{A} \mathcal{B} = \mathcal{B}, \]
or
\[(207)
\]
A simple calculation shows that \(\chi(r) = v^{(\rho, \rho)} K_{2\rho} r_0 \). Since \(X^\text{ev,0}_Z \) is an \(\hat{\mathbb{A}} \)-Hopf-algebra (Lemma 5.25), we have
\[
\Delta(K_{2\rho} X^\text{ev,0}_Z) \subset K_{2\rho} X^\text{ev,0}_Z \otimes K_{2\rho} X^\text{ev,0}_Z.
\]
Since \(D \in K_{2\rho} V^\text{ev,0}_Z \), we have \(\Delta(D y_k) = \sum K_{2\rho} y'_k \otimes K_{2\rho} y''_k \), where \(y'_k, y''_k \in X^\text{ev,0}_Z \otimes_A B \). Since \(D K_{\pm 2\rho} \in X^\text{ev,0}_Z \), we have \(\Delta(D K_{\pm 2\rho}) = \sum a_1 \otimes a_2 \) with \(a_1, a_2 \in X^\text{ev,0}_Z \). Using (204), we have
\[
d\mathcal{T}_\pm(x_k) = d(\mathcal{r}^{\pm 1}, x_k) = \langle D \chi(r^{\pm 1}), D \chi(x_k) \rangle = v^{(\rho, \rho)} \langle D K_{\pm 2\rho} r^{\pm 1}_0, D y_k \rangle
\]
\[
= v^{(\rho, \rho)} \sum \langle D K_{\pm 2\rho}, K_{2\rho} y'_k \rangle \langle r^{\pm 1}_0, K_{2\rho} y''_k \rangle \quad \text{by (97)}
\]
\[
= v^{(\rho, \rho)} \sum \langle a_1, K_{\pm 2\rho} \rangle \langle a_2, y'_k \rangle \langle r^{\pm 1}_0, K_{2\rho} y''_k \rangle \quad \text{again by (97)}.
\]
The first two factors \(\langle a_1, K_{\pm 2\rho} \rangle \) and \(\langle a_2, y'_k \rangle \) are in \(\hat{B} \) by Lemma 5.25, where \(\hat{B} = \hat{\mathbb{A}} \otimes_A B \). The third factor \(\langle r^{\pm 1}_0, K_{2\rho} y''_k \rangle \) is in \(v^{(\rho, \rho)} \hat{B} \) by Lemma 5.29. Hence \(d\mathcal{T}_\pm(x_k) \in v^{2(\rho, \rho)} \hat{B} = \hat{B} \). Together with (207),
\[
d\mathcal{T}_\pm(x_k) \in \mathbb{C}(v) \cap \hat{B} = B.
\]
(d) By definition, \(\Omega_\pm = \sum c^+_\lambda V_\lambda \), where the sum is finite and \(c^+_\lambda \in \mathbb{C} \). We have
\[
d(\mathcal{T}_\pm(x_k)) = \sum c^+_\lambda d(\text{tr}^{V_\lambda}(x_k)).
\]
Hence, to show that \(d(\mathcal{T}_\pm(x_k)) \in B \), it is enough to show that for any \(\lambda \in X_+ \), \(d(\text{tr}^{V_\lambda}(x_k)) \in B \). Using (196) and (204), we have
\[
|\mathfrak{M}| d(\text{tr}^{V_\lambda}(x_k)) = |\mathfrak{M}| d(\langle z_\lambda, x_k \rangle) = \langle D \chi(z_\lambda), D \chi(x_k) \rangle
\]
\[
= \sum_{w \in \mathfrak{M}} \text{sgn}(w) K_{-2w(\lambda + \rho)} \langle y_k \rangle \quad \text{by (197)}
\]
\[
= \sum_{w \in \mathfrak{M}} \text{sgn}(w) \langle K_{-2w(\lambda + \rho)} y_k \rangle
\]
\[
= \sum_{w \in \mathfrak{M}} \text{sgn}(w) \langle K_{-2w(\lambda + \rho)} \rangle \langle y_k \rangle.
\]
The second factor \(\langle K_{-2w(\lambda + \rho)} y_k \rangle \) is in \(\hat{B} \) by Lemma 5.25. As for the first factor, for any \(\mu \in X \),
\[
\langle K_{2\mu}, D \rangle = \langle K_{2\mu}, \prod_{\alpha \in \Phi_+} (K_{\alpha} - K_{\alpha}^{-1}) \rangle = \prod_{\alpha \in \Phi_+} \langle (K_{2\mu}, K_{\alpha}) - (K_{2\mu}, K_{-\alpha}) \rangle = \prod_{\alpha \in \Phi_+} (v^{-\langle \mu, \alpha \rangle} - v^{\langle \mu, \alpha \rangle}) \in \mathbb{C}[v^{\pm 1}].
\]
Hence, \(d(\text{tr}^{V_\lambda}(x_k)) \in \hat{B} \).

On the other hand, since \((q; q) x_k \in V^\text{ev,0}_Z \otimes_A B \), we have \(\langle z_\lambda, (q; q)x_k \rangle \in \mathbb{B} \). Hence
\[
d(\text{tr}^{V_\lambda}(x_k)) \in \hat{B} \cap \mathbb{C}(v) = \mathbb{C}[v^{\pm 1}].
\]
This completes the proof of the lemma. \(\square \)
Figure 15. Links L_1 (left) and L_2, which is obtained from L_1 by sliding. Here $\varepsilon = -1$

8.18. Comparing \mathcal{T} and $\tilde{\mathcal{T}}$.

Proposition 8.28. Suppose Ω is a strong Kirby color at level ζ, $x \in (\bar{K}_m)^{\text{inv}}$, and $\varepsilon_j = \pm 1$ for $j = 1, \ldots, m$. Then

$$\left(\bigotimes_{j=1}^m \mathcal{T}_{\varepsilon_j} \right) (x) \equiv \left(\bigotimes_{j=1}^m \tilde{\mathcal{T}}_{\varepsilon_j} \right) (x).$$

Proof. We proceed in three steps.

Step 1: $m = 1$ and $x \in (V_Z^\text{ev} \otimes_A B)^{\text{inv}} = Z(V_Z^\text{ev} \otimes_A B)$. By Proposition 8.22, x is a B-linear combination of z_λ, $\lambda \in Y$. We can assume that $x = z_\lambda$ for some $\lambda \in X_+ \cap Y$.

Let L_1 be the disjoint union of $U_{-\varepsilon}$ and U_{ε}, where the first is colored by V_λ and the second by Ω. Sliding the first component over the second, from L_1 we get a link L_2, which is the Hopf link where the first component has framing 0 and the second has framing ε, see Figure 15. From the strong handle slide invariance (181) we get

$$(208) \quad J_{L_1}(V_\lambda, \Omega) \overset{(\zeta)}{=} J_{L_2}(V_\lambda, \Omega).$$

Let us rewrite the left hand side and the right hand side of (208).

LHS of (208) $= J_{U_{-\varepsilon}}(V_\lambda) J_{U_\varepsilon}(\Omega) = \text{tr}_{q^r} V_\lambda^V (r^r) J_{U_\varepsilon}(\Omega) = (z_\lambda, r^r) J_{U_\varepsilon}(\Omega) = \mathcal{T}_\varepsilon(z_\lambda) J_{U_\varepsilon}(\Omega)$.

Let L_0 be the Hopf link with 0 framing on both components. Then

RHS of (208) $= J_{L_2}(V_\lambda, \Omega) = J_{U_\varepsilon}(\Omega) J_{L_0}(V_\lambda, \Omega_\varepsilon)$ by (183)

$$\overset{(\zeta)}{=} J_{U_\varepsilon}(\Omega) \text{tr}_{q^r}^\Omega (z_\lambda) \quad \text{by (198)}$$

$$= J_{U_\varepsilon}(\Omega) \tilde{\mathcal{T}}_\varepsilon(z_\lambda).$$

Comparing the left hand side and the right hand side of (208) we get $\mathcal{T}_\varepsilon(z_\lambda) \overset{(\zeta)}{=} \tilde{\mathcal{T}}_\varepsilon(z_\lambda)$.

Step 2: $m = 1$, and x is an arbitrary element of $(\bar{K}_m')^{\text{inv}} = Z(\bar{K}_m')$. Let $x = \sum_{k=0}^\infty (q; q)_k x_k$ be the presentation of x as described in Lemma 8.27. Since $x_k \in \mathcal{Z}(X_h)$ and all $\mathcal{T}_\pm, \tilde{\mathcal{T}}_\pm$ are continuous in
the h-adic topology of X_h,
\[\mathcal{T}_\pm(x) = \sum_{k=0}^{\infty} (q; q)_k \mathcal{T}_\pm(x_k) \]
\[\tilde{\mathcal{T}}_\pm(x) = \sum_{k=0}^{\infty} (q; q)_k \tilde{\mathcal{T}}_\pm(x_k). \]

Both right hand sides are in $\frac{1}{d} \overline{\mathbb{C}}[v]$ because $\mathcal{T}_\pm(x_k), \tilde{\mathcal{T}}_\pm(x_k) \in \frac{1}{d} \mathbb{C}[v^{\pm 1}]$ by Lemma 8.27. Since $(q; q)_k \stackrel{\text{def}}{=} 0$ if $k \geq r$ and $d \not| \overline{\mathbb{C}}$, we have
\[\mathcal{T}_\pm(x) \stackrel{\text{def}}{=} \sum_{k=0}^{r-1} (q; q)_k \mathcal{T}_\pm(x_k) \]
\[\tilde{\mathcal{T}}_\pm(x) \stackrel{\text{def}}{=} \sum_{k=0}^{r-1} (q; q)_k \tilde{\mathcal{T}}_\pm(x_k). \]

By Lemma 8.27(b), the elements in the big parentheses are in $\mathfrak{J}(\mathfrak{V}_Z^e \otimes \mathcal{A} \mathcal{B})$. Hence, by the result of Step 1, we have $\mathcal{T}_\pm(x) \stackrel{\text{def}}{=} \tilde{\mathcal{T}}_\pm(x)$.

Step 3: general case. Define a_k (for $k = 0, 1, \ldots, m$) and b_k (for $k = 1, \ldots, m$) as follows:
\[a_k = \left(\begin{array}{c} k \\ j=1 \\ m \end{array} \right) \mathcal{T}_{\varepsilon j} \otimes \left(\begin{array}{c} m \\ j=k+1 \end{array} \right) \mathcal{T}_{\varepsilon j} (x), \quad b_k = \left(\begin{array}{c} k-1 \\ j=1 \\ m \end{array} \right) \mathcal{T}_{\varepsilon j} \otimes \text{id} \otimes \left(\begin{array}{c} m \\ j=k+1 \end{array} \right) \mathcal{T}_{\varepsilon j} (x). \]

Then
\[(209) \quad a_{k-1} = \mathcal{T}_{\varepsilon k}(b_k), \quad \text{and} \quad a_k = \tilde{\mathcal{T}}_{\varepsilon k}(b_k). \]

By Proposition 8.15, $b_k \in (\mathcal{K}_1^m)^{\text{inv}}$. By Step 2,
\[\tilde{\mathcal{T}}_{\varepsilon k}(b_k) \stackrel{\text{def}}{=} \mathcal{T}_{\varepsilon k}(b_k). \]

Using (209), the above identity becomes $a_{k-1} \stackrel{\text{def}}{=} a_k$. Since this holds true for $k = 1, 2, \ldots, m$, we have $a_0 \stackrel{\text{def}}{=} a_m$, which is the statement of the proposition. \qed

8.19. Proof of Proposition 8.10. By Theorem 7.3, if T is an algebraically split m-component bottom tangle, then $J_T \in \mathcal{K}_m(U) \subset \mathcal{K}_m$. Hence Proposition 8.10 follows from Proposition 8.28. This also completes the proof of Theorems 8.8 and 8.1.

8.20. Proof of Theorem 1.1. The existence of invariant $J_M = J_M^g \in \overline{\mathbb{Z}}[q]$ is established by Theorem 7.3. Theorem 8.8 shows that $\text{ev}_\xi(J_M^g) = \tau_M^g(\xi)$. The uniqueness of J_M follows from (i) every element of $\overline{\mathbb{Z}}[q]$ is determined by its values at infinitely many roots of 1 of prime power orders (see Section 1.2), and (ii) $\mathcal{Z}_g^{\prime 0}$ contains infinitely many such roots of unity (by Proposition 8.4). This completes the proof of Theorem 1.1.
8.21. The case $\zeta = 1$, proof of Proposition 1.6. Let Ω be the trivial U_h-module $\mathbb{C}[[h]]$. By Proposition 8.6, Ω is a strong Kirby color, and $\tau_M(\Omega) = 1$. By Theorem 8.8, we have $\text{ev}_1(J_M) = 1$. This completes the proof of Proposition 1.6.

Proposition 1.6 can also be proved using the theory of finite type invariants of integral homology 3-spheres as follows. Note that $\text{ev}_1(J_M)$ is the constant coefficient of the Taylor expansion of J_M at $q = 1$, which is a finite type invariant of order 0 (see for example [KLO]). Hence $\text{ev}_1(J_M)$ is constant on the set of integral homology 3-spheres. For $M = S^3$, $\text{ev}_1(J_M) = 1$. Hence $\text{ev}_1(J_M) = 1$ for any integral homology 3-sphere M.
APPENDIX A. ANOTHER PROOF OF PROPOSITION 4.1

In the main text we take Proposition 4.1 from work of Drinfel’d [Dr] and Gavarini [Gav]. Here we give an independent proof.

Each of $U_h^{<0} := (U_h^0 U_h^{-})$ and $U_h^{\geq 0} := (U_h^0 U_h^{+})$, where $(\cdot)^{-}$ denotes the h-adic completion, is a Hopf subalgebra of U_h, and $R \in U_h^{<0} \otimes U_h^{\geq 0}$. Let $A_L \subset U_h^{<0}$ and $A_R \subset U_h^{\geq 0}$ are respectively the left image (see Section 2.4) and the right image of $R \in U_h^{<0} \otimes U_h^{\geq 0}$. Here the right image is the obvious counterpart of the left image and can be formally defined so that $\sigma_{21}(A_R)$ is the left image of $\sigma_{21}(R)$, where $\sigma_{21} : U_h^{<0} \otimes U_h^{\geq 0} \to U_h^{<0} \otimes U_h^{\leq 0}$ is the isomorphism given by $\sigma_{21}(x \otimes y) = y \otimes x$.

Explicitly, A_L and A_R are defined as follows. For $n = (n_1, n_2) \in \mathbb{N}^t \times \mathbb{N}^\ell$ let

$$R'(n) = E^{(n_1)} H^{n_2}, \quad R''(n) = E^{(n_1)} H^{n_2}.$$

Then $\{R'(n) \mid n \in \mathbb{N}^{t+\ell}\}$ is a topological basis of $U_h^{<0}$, and $\{R''(n) \mid n \in \mathbb{N}^{t+\ell}\}$ is a topological basis of $U_h^{\geq 0}$. From (71), there are units $f(n)$ in $\mathbb{C}[[h]]$ such that

$$R = \sum_{n \in \mathbb{N}^{t+\ell}} f(n) h^{\|n\|} R'(n) \otimes R''(n).$$

Then A_L and A_R are respectively the topological closures (in U_h) of the $\mathbb{C}[[h]]$-span of

$$(210) \quad \{h^{\|n\|} R'(n) \mid n \in \mathbb{N}^{t+\ell}\} \quad \text{and} \quad \{h^{\|n\|} R''(n) \mid n \in \mathbb{N}^{t+\ell}\}.$$

For $\mathbb{C}[[h]]$-submodules $\mathcal{H}_1, \mathcal{H}_2 \subset U_h$, let $\mathcal{H}_1 \otimes \mathcal{H}_2$, called the closed tensor product, be the topological closure of $\mathcal{H}_1 \otimes \mathcal{H}_2$ in the h-adic topology of $U_h \otimes U_h$.

Proposition A.1. For each of $A = A_L, A_R$ one has

$$\mu(A \otimes A) \subset A, \quad \Delta(A) \subset A \otimes A, \quad S(A) \subset A.$$

This means, each of A_L, A_R is a Hopf algebra in the category where the completed tensor product is replaced by the closed tensor product.

Remark A.2. When the ground ring is a field, the fact that both A_L, A_R are Hopf subalgebras is proved in [Rad]. Here we modify the proof in [Rad] for the case when the ground ring is $\mathbb{C}[[h]]$.

Proof. We prove the proposition for $A = A_L$ since the case $A = A_R$ is quite analogous.

Let $\bar{R}'(n) = f(n) h^{\|n\|} R'(n)$. Then $R = \sum_n \bar{R}'(n) \otimes R''(n)$. Using the defining relation $(\Delta \otimes \text{id})(R) = R_{13} R_{23}$, we have

$$(211) \quad \sum_n \Delta(\bar{R}'(n)) \otimes R''(n) = \sum_{k,m} \bar{R}'(m) \otimes \bar{R}'(k) \otimes R''(m) R''(k).$$

Since $\{R''(n)\}$ is a topological basis of $U_h^{\geq 0}$, there are structure constants $f_{m,k}^n \in \mathbb{C}[[h]]$ such that

$$R''(m) R''(k) = \sum_n f_{m,k}^n R''(n),$$

and the right hand side converges. Using the above in (211), we have

$$\Delta(\bar{R}'(n)) = \sum_{m,k} f_{m,k}^n \bar{R}'(m) \otimes \bar{R}'(k),$$
with the right hand side convergent in the h-adic topology of $U_h \hat{\otimes} U_h$. This proves $\Delta(A_L) \subset A_L \otimes A_L$. Actually, we just proved that the co-product in A_L is dual to the product in $U_h^{\geq 0}$.

Similarly, using $(\text{id} \otimes \Delta)(\mathcal{R}) = \mathcal{R}_{13} \mathcal{R}_{12}$, one can easily prove that the product in A_L is dual to the co-product in $U_h^{\geq 0}$, i.e.

$$\hat{\mathcal{R}}'(m) \hat{\mathcal{R}}'(k) = \sum_n f_n^{m,k} \hat{\mathcal{R}}'(n), \quad \text{where } \Delta(\mathcal{R}''(n)) = \sum_{m,k} f_n^{m,k} \mathcal{R}''(m) \otimes \mathcal{R}''(k).$$

This proves that $\mu(\overline{A_L} \otimes \overline{A_L}) \subset A_L$.

Next we consider the antipode. We have $(S \hat{\otimes} \text{id})(\mathcal{R}) = (\text{id} \hat{\otimes} S^{-1})(\mathcal{R}) = \mathcal{R}^{-1}$. Let A'_L be the left image of \mathcal{R}^{-1}.

Since S^{-1} is an $\mathbb{C}[[h]]$-module automorphism of $U_h^{\geq 0}$, Identity $(\text{id} \hat{\otimes} S^{-1})(\mathcal{R}) = \mathcal{R}^{-1}$ shows that $A'_L = A_L$.

Identity $(S \hat{\otimes} \text{id})(\mathcal{R}) = \mathcal{R}^{-1}$ shows that $A'_L = S(A_L)$. Thus, we have $A_L = S(A_L)$. \hfill \Box

Proposition 4.1 follows immediately from the following.

Proposition A.3. (a) One has $\overline{A_R} \overline{A_L} = \overline{A_L} \overline{A_R}$. It follows that $\overline{A_L} \overline{A_R}$ is a Hopf algebra with closed tensor products.

(b) One has $\overline{A_R} \overline{A_L} = V_h$.

Proof. We use the following identity in a ribbon Hopf algebra: for every $y \in U_h$ one has

\begin{align*}
(212) \quad \mathcal{R}(y \otimes 1) &= \sum_{(y)} (y(2) \otimes y(1)) \mathcal{R}(1 \otimes S(y(3))) \\
(213) \quad (y \otimes 1) \mathcal{R} &= \sum_{(y)} (1 \otimes S(y(1))) \mathcal{R}(y(2) \otimes y(3)) \\
(214) \quad \mathcal{R}(1 \otimes y) &= \sum_{(y)} (y(3) \otimes y(2)) \mathcal{R}(S^{-1}(y(1) \otimes 1)) \\
(215) \quad (1 \otimes y) \mathcal{R} &= \sum_{(y)} (S^{-1}(y(1) \otimes 1)) \mathcal{R}(y(1) \otimes y(2)),
\end{align*}

which are Identities (6)–(9) in [Rad]. Suppose $x \in A_L$ and $y \in A_R$. We will show that $xy \in \overline{A_R} \overline{A_L}$. This will imply that $\overline{A_L} \overline{A_R} \subset \overline{A_R} \overline{A_L}$. We only need the fact that A_R is a co-algebra in the closed category: $\Delta(A_R) \subset \overline{A_R} \otimes \overline{A_R} \subset U_h^{\geq 0} \otimes U_h^{\geq 0}$.

Since $x \in A_L$, we have a presentation

$$x = \sum_{n \in \mathbb{N}^{t+\ell}} x_n \hat{\mathcal{R}}'(n), \quad x_n \in \mathbb{C}[[h]] \quad \forall n \in \mathbb{N}^{t+\ell}. $$

Let $p : U_h^{\geq 0} \to \mathbb{C}[[h]]$ be the unique $\mathbb{C}[[h]]$-module homomorphism such that $p(\mathcal{R}''(n)) = x_n$. Then $x = \sum_n \hat{\mathcal{R}}'(n) p(\mathcal{R}''(n))$. Hence

$$xy = \sum_n \hat{\mathcal{R}}'(n) y p(\mathcal{R}''(n)) = \sum_n y(2) \hat{\mathcal{R}}'(n) p(y(1) \mathcal{R}''(n) S(y(3))) \in \overline{A_R} \overline{A_L}.$$
Similarly, one can prove $\overline{A_R A_L} \subset \overline{A_L A_R}$, and conclude that $\overline{A_L A_R} = \overline{A_R A_L}$.

(b) The two sets $\{h^{|n|}H^n \mid n \in \mathbb{N}^I\}$ and $\{h^{|n|}H^n \mid n \in \mathbb{N}^f\}$ span the same $\overline{C[[h]]}$-subspace of U^0_h. Using spanning sets (210), we see that $\overline{A_L A_R}$ is the topological closure of the $\overline{C[[h]]}$-span of
\[\{h^{|n|+|m|+|n_3|}F^{(n_1)}H^{m_2}E^{(n_3)} \mid n_1, n_3 \in \mathbb{N}^I, n_2 \in \mathbb{N}^f\}.\]

Comparing this set with the formal basis (83) of V_h, one can easily show that $V_h = \overline{A_L A_R}$.

\[\square\]

\section*{Appendix B. Integral duality}

\subsection*{B.1. Decomposition of $U^0_{v^0_z}$.} Recall that
\[U^0_{v^0_q} = \mathbb{C}(v)[K^\pm_\alpha, \, \alpha \in \Pi], \quad V^0_{v^0_z} = \mathcal{A}_I[K^\pm_\alpha, \, \alpha \in \Pi].\]

For simple root $\alpha \in \Pi$, the even α-part of $U^0_{v^0_z}$ is defined to be $\mathcal{I}_\alpha := \mathbb{C}(v)[K^\pm_\alpha] \cap U^0_{v^0_z}$. Note that \mathcal{I}_α is an \mathcal{A}_I-Hopf-subalgebra of $\mathbb{C}(v)[K^\pm_\alpha]$. From Proposition 5.2, \mathcal{I}_α is \mathcal{A}-spanned by
\begin{equation}
\bigotimes_{\alpha \in \Pi} \mathcal{I}_\alpha \cong \bigotimes_{\alpha \in \Pi} U^0_{v^0_z}, \quad \bigotimes_{\alpha \in \Pi} a_\alpha \rightarrow \prod_{\alpha} a_\alpha.
\end{equation}

Hence, if one can find \mathcal{A}-bases for \mathcal{I}_α, then one can combine them together using (217) to get an \mathcal{A}-basis for $U^0_{v^0_z}$.

Similarly, let $V^0_{v^0_z} \cap \mathbb{C}(v)[K^\pm_\alpha] = \mathcal{A}[K^\pm_\alpha, \, \alpha \in \Pi]$. The analog of (217) is much easier for $V^0_{v^0_z}$, since in this case it is
\begin{equation}
\bigotimes_{\alpha \in \Pi} \mathcal{A}[K^\pm_\alpha] \cong V^0_{v^0_z} = \mathcal{A}[K^\pm_\alpha, \, \alpha \in \Pi], \quad \bigotimes_{\alpha \in \Pi} a_\alpha \rightarrow \prod_{\alpha} a_\alpha.
\end{equation}

\subsection*{B.2. Bases for \mathcal{I}_α and $\mathcal{A}[x^{\pm 1}]$.} Fix $\alpha \in \Pi$, and denote by $x = K^2_\alpha$, and $y = \tilde{K}^2_\alpha$. The even α-part of $V^0_{v^0_z}$ is $\mathcal{A}[x^{\pm 1}]$, and \mathcal{I}_α, the even α-part of $U^0_{v^0_z}$, is now an \mathcal{A}_I-submodule of $Q(v)[x^{\pm 1}]$. The quantum Killing form restricts to the $\mathbb{Q}(v)$-bilinear form
\begin{equation}
\langle \cdot , \cdot \rangle : \mathbb{Q}(v)[x^{\pm 1}] \otimes \mathbb{Q}(v)[y^{\pm 1}] \rightarrow \mathbb{Q}(v) \text{ given by } \langle x^m y^n \rangle = \eta_m^n x^m y^n.
\end{equation}

Let $i : \mathbb{Q}(v)[x^{\pm 1}] \rightarrow \mathbb{Q}(v)[y^{\pm 1}]$ be the $\mathbb{Q}(v)$-algebra map defined by $i(x) = y$. For $n \in \mathbb{N}$, let
\begin{align}
Q'(\alpha ; n) & := x^{-\frac{1}{2}}q_{\alpha}^{\frac{\alpha + 1}{2}} x q_{\alpha}^{-n}, & \tilde{Q}'(\alpha ; n) := i(Q'(\alpha ; n)) \\
Q(\alpha ; n) & := Q'(\alpha ; n), & \tilde{Q}(\alpha ; n) := i(Q(\alpha ; n)).
\end{align}

We will consider $\mathcal{A}[x^{\pm 1}] \subset \mathbb{C}[H_\alpha][[h]]$ by setting $x = \exp(hH_\alpha)$.

\begin{proposition}
(a) The \mathcal{A}-module \mathcal{I}_α is the \mathcal{A}-dual of $\mathcal{A}[y^{\pm 1}]$ with respect to the form (219) in the sense that
\[\mathcal{I}_\alpha = \{ f(x) \in \mathbb{Q}(v)[x^{\pm 1}] \mid \langle f(x), g(y) \rangle \in \mathcal{A} \forall g(y) \in \mathbb{Q}(v)[y^{\pm 1}] \} .\]
(b) The set $\{ Q'(\alpha ; n) \mid n \in \mathbb{N} \}$ is an \mathcal{A}-basis of $\mathcal{A}[x^{\pm 1}]$.
\end{proposition}
(c) One has the following orthogonality

\[
\langle Q(\alpha; n), Q'(\alpha; m) \rangle = \delta_{m,n} q^{-[(n+1)/2]^2}. \tag{221}
\]

(d) The set \{Q(\alpha; n) \mid n \in \mathbb{N}\} is an \(\mathcal{A}\)-basis of \(I_\alpha\).

Proof. (a) In Section B.1, \(I_\alpha\) is the \(\mathcal{A}\)-submodule of \(\mathbb{Q}(v)[x^{\pm 1}]\) spanned by the set (216) with \(K^2_\alpha \) replaced by \(x\). This set spans the module of polynomial with \(q\)-integral values: By [BCL, Proposition 2.6], \(I_\alpha\) is exactly the set of all Laurent polynomials \(f(x) \in \mathbb{Q}(v)[x^{\pm 1}]\) such that \(f(q^k_\alpha) \in \mathcal{A} = \mathbb{Z}[v^{\pm 1}]\) for every \(k \in \mathbb{Z}\).

For \(f(x) \in \mathbb{Q}(v)[x^{\pm 1}]\), \(g(y) \in \mathbb{Q}(v)[y^{\pm 1}]\), and \(k \in \mathbb{Z}\), from (219),

\[
\langle f(x), y^k \rangle = f(q^{-k}_\alpha), \quad \langle x^k, g(y) \rangle = g(q^{-k}_\alpha).
\]

Suppose now \(f(x) \in \mathbb{Q}(v)[x^{\pm 1}]\). Since \(\{y^k \mid k \in \mathbb{Z}\}\) is an \(\mathcal{A}\)-basis of \(\mathcal{A}[y^{\pm 1}]\), \(f(x)\) is in \(\mathcal{A}\)-dual of \(\mathcal{A}[y^{\pm 1}]\) \iff \(\langle f(x), y^k \rangle \in \mathcal{A} \forall k \in \mathbb{Z}\) \iff \(f(q^{-k}_\alpha) \in \mathcal{A} \forall k \in \mathbb{Z}\) \iff \(f(x) \in I_\alpha\).

This proves part (a).

(b) The bijective map \(j : \mathbb{N} \to \mathbb{Z}\) given by \(j(n) = (-1)^{n+1} [\frac{n+1}{2}]\) defines an order on \(\mathbb{Z}\), by \(j(0) < j(1) < j(2) < \ldots\). This order looks as follows:

\[
0 < 1 < -1 < 2 < -2 < 3 < -3 \ldots
\]

We define an order on the set of monomials \(\{x^n \mid n \in \mathbb{Z}\}\) by \(x^n < x^m\) if \(n < m\). Using this order, one can define the leading term of a non-zero Laurent polynomial \(f(x) \in \mathbb{Q}(v)[x^{\pm 1}]\). One can easily calculate the leading term of \(Q'(\alpha; n)\),

\[
Q'(\alpha; n) = (-1)^n x^{j(n)} + \text{ lower order terms.} \tag{223}
\]

It follows that \(\{Q'(\alpha; n) \mid n \in \mathbb{N}\}\) is an \(\mathcal{A}\)-basis of \(\mathcal{A}[x^{\pm 1}]\).

(c) Suppose \(m < n\). By (222),

\[
\langle Q'(\alpha; n), y^{j(m)} \rangle = Q'(\alpha; n)|_{x=q^{-j(m)}_\alpha} = 0,
\]

since \(x = q^{-j(m)}_\alpha\) annihilates one of the factors of \(Q'(\alpha; n)\) when \(m < n\). By expanding \(Q'(\alpha; m)\) using (223), we have

\[
\langle Q'(\alpha; n), Q'(\alpha; m) \rangle = 0 \quad \text{if} \quad m < n.
\]

Similarly, one also has \(\langle Q'(\alpha; n), Q'(\alpha; m) \rangle = 0\) if \(m > n\). It remains to consider the case \(m = n\). Using (223), we have

\[
\langle Q'(\alpha; n), Q'(\alpha; n) \rangle = \langle Q'(\alpha; n), (-1)^n y^{j(n)} \rangle = (-1)^n Q'(\alpha; n)|_{x=q^{-j(n)}_\alpha} = q^{-[(n+1)/2]^2}\alpha_{q^{-n}_\alpha q^{-n}_\alpha},
\]

where the last identity follows from an easy calculation. This proves part (c).

(d) By part (b), \(\{Q'(\alpha; n) \mid n \in \mathbb{N}\}\) is an \(\mathcal{A}\)-basis of \(\mathcal{A}[y^{\pm 1}]\). Because \(I_\alpha\) is the \(\mathcal{A}\)-dual of \(\mathcal{A}[y^{\pm 1}]\) with respect to the form (219), the orthogonality (221) shows that \(\{Q(\alpha; n) \mid n \in \mathbb{N}\}\) is an \(\mathcal{A}\)-basis of \(I_\alpha\). This proves part (d). \(\square\)
B.3. Proof of Proposition 5.7.

Proof. (a) The definition (109) means that, for \(n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell \),
\[
Q^\text{ev}(n) := \prod_{j=1}^\ell Q(\alpha_j; n_j)|_{x=K_j^2} \quad \text{and} \quad (q; q)_n Q^\text{ev}(n) = \prod_{j=1}^\ell Q'(\alpha_j; n_j)|_{x=K_j^2}.
\]

By Proposition B.1(d), \(\{Q(\alpha_j; n)|_{x=K_j^2} \mid n \in \mathbb{N}\} \) is an \(\mathcal{A}\)-basis of \(\mathcal{I}_{\alpha_j} \). Hence the isomorphism (217) shows that \(\{Q^\text{ev}(n) \mid n \in \mathbb{N}^\ell\} \) is an \(\mathcal{A}\)-basis of \(\mathbf{U}_Z^\text{ev,0} \).

Similarly, Proposition B.1(b) and isomorphism (218) shows that \(\{(q; q)_n Q^\text{ev}(n) \mid n \in \mathbb{N}^\ell\} \) is an \(\mathcal{A}\)-basis of \(\mathbf{V}_Z^\text{ev,0} \).

(b) Let \(K^\delta = \prod_j K^\delta_j \) for \(\delta = (\delta_1, \ldots, \delta_\ell). \) We have
\[
\mathbf{V}_Z^0 = \bigoplus_{\delta \in \{0,1\}^\ell} K^\delta \mathbf{V}_Z^\text{ev,0}, \quad \mathbf{U}_Z^0 = \bigoplus_{\delta \in \{0,1\}^\ell} K^\delta \mathbf{U}_Z^\text{ev,0},
\]
where the first identity is obvious and the second follows from Proposition 5.2. Hence (b) follows from (a). This completes the proof of Proposition 5.7. \(\square \)

B.4. Proof of Lemma 5.16.

Proof. For \(\alpha, \beta \in \Pi, (K^2_{\alpha}, K^2_{\beta}) = \delta_{\alpha \beta} q_{\alpha}. \) Hence, with \(Q^\text{ev}(n), \tilde{Q}^\text{ev}(m) \) as in (224),
\[
\langle Q^\text{ev}(n), \tilde{Q}^\text{ev}(m) \rangle = \prod_{j=1}^\ell \langle Q(\alpha_j; n_j), \tilde{Q}(\alpha_j; m_j) \rangle = \delta_{n,m} \prod_{j=1}^\ell q_{j}^{-\frac{1}{2}[(n_j+1)/2]^2},
\]
where the last identity follows from Proposition B.1(c). This proves Lemma 5.16. \(\square \)

APPENDIX C. ON THE EXISTENCE OF THE WRT INVARIANT

Here we prove Proposition 8.4 on the existence of strong Kirby colors at every level \(\zeta \) such that \(\text{ord}(\zeta^{2D}) > d(h^\gamma - 1) \). We also determine when \(\zeta \in \mathbb{Z}_{\phi}' \) and when \(\zeta \in \mathbb{Z}_{\phi}^{P_Y} \) if \(\text{ord}(\zeta^{2D}) > d(h^\gamma - 1) \).

C.1. Criterion for non-vanishing of Gauss sums. Suppose \(\mathfrak{A} \) is a free abelian group of rank \(\ell \) and \(\phi : \mathfrak{A} \times \mathfrak{A} \to \mathbb{Z} \) is a symmetric \(\mathbb{Z} \)-bilinear form. Assume further \(\phi \) is even in the sense that \(\phi(x, x) \in 2\mathbb{Z} \) for every \(x \in \mathfrak{A} \).

The quadratic Gauss sum associated to \(\phi \) at level \(m \in \mathbb{N} \) is defined by
\[
\mathfrak{G}_{\phi}(m) := \sum_{x \in \mathfrak{A}/m\mathfrak{A}} \exp \left(\pi i \frac{\phi(x, x)}{m} \right).
\]

Let \(\mathfrak{A}^*_\phi \) be the \(\mathbb{Z} \)-dual of \(\mathfrak{A} \) with respect to \(\phi \), and
\[
\ker_{\phi}(m) := \{ x \in \mathfrak{A} \mid \phi(x, y) \in m\mathbb{Z} \ \forall y \in \mathfrak{A} \} = m\mathfrak{A}^*_\phi \cap \mathfrak{A}.
\]

We have the following well-known criterion for the vanishing of \(\mathfrak{G}_{\phi}(m) \), see [De, Lemma 1].

Lemma C.1. (a) If \(m \) is odd, then \(\mathfrak{G}_{\phi}(m) \neq 0 \).

(b) \(\mathfrak{G}_{\phi}(m) \neq 0 \) if and only for every \(x \in \ker_{\phi}(m) \) one has \(\frac{1}{2m} \phi(x, x) \in \mathbb{Z} \).
Lemma C.2. For every \(x \in \ker(\phi) \), \(\frac{1}{2m} \phi(x, x) \in \frac{1}{2}\mathbb{Z} \).

Proof. Because \(x \in m\mathfrak{A}^*_\phi \), one has \(\phi(x, x) \in m\mathbb{Z} \). Hence \(\frac{1}{2m} \phi(x, x) \in \frac{1}{2}\mathbb{Z} \). □

C.2. Gauss sums on weight lattice. Recall that \(X, Y \) are respectively the weight lattice and the root lattice in \(h^*_R \), which is equipped with the invariant inner product. The \(\mathbb{Z} \)-dual \(X^* \) of \(X \) is \(\mathbb{Z} \)-spanned by \(\alpha/d, \alpha \in \Pi \).

Lemma C.3. For \(y \in X^* \), we have \((y, y) \in \mathbb{Z}(2) := \{ a/b \mid a, b \in \mathbb{Z}, b \text{ odd} \} \).

Proof. Suppose \(y = \sum k_i \alpha_i/d_i \). Then
\[
(y, y) = \sum_i k_i^2 \frac{(\alpha_i, \alpha_i)}{d_i^2} + 2 \sum_{i < j} \frac{(\alpha_i, \alpha_j)}{d_id_j} = \sum_i k_i^2 \frac{2}{d_i} + \sum_{i < j} \frac{2(\alpha_i, \alpha_j)/d_j}{d_i} = \frac{2}{d} \mathbb{Z}.
\]
Since \(d = 1, 2 \) or 3, we see that \((y, y) \in \mathbb{Z}(2) \). □

Lemma C.4. Suppose \(\zeta \) is a root of 1 of order \(s \). Let \(r = s/\gcd(s, 2D) \) be the order \(\xi = \zeta^{2D} \).

(a) Suppose \(r \) is odd. Then \(\mathfrak{S}^{P\theta}(\zeta) \neq 0 \), where
\[
\mathfrak{S}^{P\theta}(\zeta) := \sum_{\lambda \in P_\xi \cap Y} \zeta^{D(\lambda, \lambda + 2\rho)} = \sum_{\lambda \in P_\xi \cap Y} \xi^{(\lambda, \lambda + 2\rho)/2}.
\]

(b) Suppose \(r \) is even. Then \(\mathfrak{S}^{\theta}(\zeta) \neq 0 \), where
\[
\mathfrak{S}^{\theta}(\zeta) := \sum_{\lambda \in P_\xi} \zeta^{D(\lambda, \lambda + 2\rho)}.
\]

Proof. After a Galois transformation of the form \(\zeta \to \zeta^k \) with \(\gcd(k, s) = 1 \) we can assume that \(\zeta = \exp(2\pi i/s) \).

(a) The following is the well-known completing the square trick:
\[
\mathfrak{S}^{P\theta}(\zeta) = \sum_{\lambda \in P_\xi \cap Y} \xi^{\frac{1}{2}(\lambda, \lambda + 2\rho(r + 1))} \quad \text{since \(\text{ord}(\xi) = r \)}
= \xi^{\frac{(r+1)^2}{2}(\rho, \rho)} \sum_{\lambda \in P_\xi \cap Y} \xi^{\frac{1}{2}(\lambda + (r+1)\rho, \lambda + (r+1)\rho)}
= \xi^{\frac{(r+1)^2}{2}(\rho, \rho)} \sum_{\lambda \in P_\xi \cap Y} \xi^{\frac{1}{2}(\lambda, \lambda)}.
\]
Here the last identity follows because \(2\rho \in Y \) and hence \((r + 1)\rho \in Y \) since \(r + 1 \) is even, and because the shift \(\lambda \to \lambda + \beta \) does not change the Gauss sum for any \(\beta \in Y \).
The expression $\xi^{(\lambda, \lambda)}$, $\lambda \in Y$ is invariant under the translations by vectors in both rY and $2rX$. Hence

$$\mathfrak{G}^g(\zeta) = \xi \prod_{\lambda \in P_\zeta} \xi^{(\lambda, \lambda)/2} = \xi \prod_{\lambda \in \mathfrak{F}(X)} \xi^{(\lambda, \lambda)/2}$$

By Lemma C.1(a) with $A = Y$, $\phi(x, y) = (x, y)$, and $m = r$, the right hand side is non-zero.

(b) Again using the completing the square trick we get

$$\mathfrak{G}^g(\zeta) = \xi^{-D(\rho, \rho)} \prod_{\lambda \in P_\zeta} \xi^{D(\lambda, \lambda)} = \xi^{-D(\rho, \rho)} \prod_{\lambda \in \mathfrak{F}(X)} \exp\left(\frac{\pi i}{s} 2D(\lambda, \lambda)\right)$$

(225)

$$= \xi^{-D(\rho, \rho)} \left(\frac{2Dr}{s}\right)^{\frac{\ell}{2}} \prod_{\lambda \in \mathfrak{F}(X)} \exp\left(\frac{\pi i}{s} 2D(\lambda, \lambda)\right).$$

Note that $\frac{s}{\gcd(s, 2D)}$ is even if and only if

(226)

$$\frac{s}{4D} \in \mathbb{Z}(2).$$

Apply Lemma C.1(b) with $A = X$, $\phi(x, y) = 2D(x, y)$, and $m = s$. Then $s\mathfrak{F}_+ = \frac{s}{2D} X^*$. Suppose $x \in \ker_\phi(s) = s\mathfrak{F}_+ \cap \mathfrak{A} \subset s\mathfrak{F}_+$. Then $x = \frac{s}{2D} y$ with $y \in X^*$.

We have

$$\frac{1}{2s} \phi(x, x) = \frac{s}{4D} (y, y) \in \mathbb{Z}(2)$$

where the last inclusion follows from (226) and Lemma C.3. From Lemma C.2 we have

$$\frac{1}{2s} \phi(x, x) \in \frac{1}{2} \mathbb{Z} \cap \mathbb{Z}(2) = \mathbb{Z}.$$

By Lemma C.1(b), the right hand side of (225) is non-zero.

C.3. Proof of Proposition 8.4.

Proof of Proposition 8.4. By [Le4, Proposition 2.3 & Theorem 3.3], $\Omega^g(\zeta)$ and $\Omega^P_g(\zeta)$ are strong handle-slide colors. Although the formulation in [Le4] only says that $\Omega^g(\zeta)$ and $\Omega^P_g(\zeta)$ are handle-slide colors, the proofs there actually show that $\Omega^g(\zeta)$ and $\Omega^P_g(\zeta)$ are strong handle-slide colors.

It remains to show that $J_{+}(\Omega^g(\zeta)) \neq 0$ if r is even, and $J_{+}(\Omega^P_g(\zeta)) \neq 0$ if r is odd.

From [Le4, Section 2.3], with the assumption $\text{ord}(\zeta^{2D}) > d(h^\vee - 1)$, we have

(227) $$J_{+}(\Omega^g(\zeta)) \equiv \frac{\mathfrak{G}^g(\zeta)}{\prod_{\alpha \in \Phi_+ (1 - \zeta^{(\alpha, \rho)})}, \quad J_{+}(\Omega^P_g(\zeta)) \equiv \frac{\mathfrak{G}^P_g(\zeta)}{\prod_{\alpha \in \Phi_+ (1 - \zeta^{(\alpha, \rho)})}.$$
Besides, $J_{U_+}(\Omega^\theta(\zeta))$ and $J_{U_+}(\Omega^P\theta(\zeta))$ are respectively the complex conjugates of $J_{U_+}(\Omega^\theta(\zeta))$ and $J_{U_+}(\Omega^P\theta(\zeta))$. By Lemma C.4, if $\text{ord}(\zeta^{2D})$ is even then $J_{U_+}(\Omega^\theta(\zeta)) \neq 0$, and if $\text{ord}(\zeta^{2D})$ is odd then $J_{U_+}(\Omega^P\theta(\zeta)) \neq 0$. This completes the proof of Proposition 8.4.

C.4. The sets Z'_g and Z'_P for each simple Lie algebra.

Proposition C.5. (a) One has $\Theta^\theta(\zeta) = 0$ in and only in the following cases:

- $g = A_\ell$ with ℓ odd and $\text{ord}(\zeta) \equiv 2 \pmod{4}$.
- $g = B_\ell$ with $\ell \equiv 2 \pmod{4}$ and $\text{ord}(\zeta) \equiv 4 \pmod{8}$.
- $g = C_\ell$ and $\text{ord}(\zeta) \equiv 4 \pmod{8}$.
- $g = D_\ell$ with ℓ odd and $\text{ord}(\zeta) \equiv 2 \pmod{4}$.
- $g = E_7$ and $\text{ord}(\zeta) \equiv 2 \pmod{4}$.

(b) In particular, if $\text{ord}(\zeta)$ is odd or $\text{ord}(\zeta)$ is divisible by $2dD$, then $\Theta^\theta(\zeta) \neq 0$.

The proof is a careful, tedious, but not difficult check of the vanishing of the Gaussian sum using Lemma C.1 and the explicit description of the weight lattice for each simple Lie algebra, and we drop the details.

Corollary C.6. Suppose $\zeta \in Z$ with $\text{ord}(\zeta^{2D}) > d(h^\vee - 1)$. Then $\zeta \in Z'_g$ if and only if ζ satisfies the condition of Proposition C.5(a).

Similarly, using Lemma C.1, one can prove the following.

Proposition C.7. Let $r = \text{ord}(\xi) = \text{ord}(\zeta^{2D})$.

(a) One has $\Theta^P\theta(\zeta) = 0$ in and only in the following cases:

- $g = A_\ell$ and $\text{ord}_2(r) = \text{ord}_2(\ell + 1) \geq 1$.
- $g = B_\ell$ and $r \equiv 2 \pmod{4}$.
- $g = C_\ell$, r even and $r\ell \equiv 4 \pmod{8}$.
- $g = D_\ell$, r even and $r\ell \equiv 4 \pmod{8}$.
- $g = E_7$ and $r \equiv 2 \pmod{4}$.

Here $\text{ord}_2(n)$ is the order of 2 in the prime decomposition of the integer n.

(b) In particular, if r is co-prime with $2^{\text{ord}_2(D)}$, then $\Theta^P\theta(\zeta) \neq 0$.

Corollary C.8. Suppose $\text{ord}(\zeta^{2D}) > d(h^\vee - 1)$. Then $\zeta \in Z'_P$ if and only if ζ satisfies the condition of Proposition C.7(a).
Appendix D. Table of notations

Notations	defined in	remarks
\(\mathbb{Z}[q], (x; q)_n \)	1.2	
\((\mathbb{C}[h])^f_0 \)	2.1.2	
\(\mathcal{H}, \mu, \eta, \Delta, \epsilon, S \)	2.2, 3.7.2	\(R \)-matrix
\(R \)	2.2, 3.7.2	ribbon element
\(g \)	2.2	balanced element
\(\text{ad}(x \otimes y), x \triangleright y \)	2.5	adjoint action
\(\text{tr}_h \)	2.5	quantum trace
\(J_T \)	2.7	universal invariant of bottom tangle
\(\psi, \Delta, S \)	2.9	braiding, transmutation
\(c, e^-, C^+, C^- \)	2.10	
\(\mathcal{L}(x \otimes y), \langle x, y \rangle \)	2.14, 4.6	Lie algebra, its rank, Cartan subalgebra
\(b \)	2.13	weight lattice, root lattice
\(d, d_\alpha, t, \text{ht}(\gamma) \)	3.1.1	simple roots, all roots, positive roots
\(X, Y \)	3.1.1	
\(\Pi, \Phi, \Phi_+ \)	3.1.1	
\(d, c_\alpha, t, \text{ht}(\gamma) \)	3.1.2	\(q = v^2 = \exp(h), \mathcal{A} = \mathbb{Z}[v^{\pm 1}] \)
\(\mathcal{H}_+, \mathcal{H}_-, \mathcal{H}_0 \)	3.1.3	(anti) automorphisms of \(\mathcal{U}_h \)
\(K_\alpha, K_\pm, K_i \)	3.1.3	\(Y \)-grading
\(\mathcal{U}_q, \mathcal{U}_q^\pm, \mathcal{U}_q^0 \)	3.1.5	even grading
\(\mathcal{U}_h, \mathcal{U}_h^0, \mathcal{T}_a \)	3.5	Weyl group, reflection
\(E_1, F_1, E^{(n)}, F^{(n)}, K_n \)	3.6	braid group action
\(\Theta, E_n, F_n, E_n^+, F_n^- \)	3.7.1	
\(D, H_n, r_0 \)	3.7.2	
\(\Gamma \)	3.9	quasi-clasp element
\(\mathcal{U}_h[q^{-1}] \)	4	\(\mathcal{U}_{\sqrt{h}} := \mathcal{U}_h \otimes \mathbb{C}[h][\sqrt{h}] \)
\(\| n \|, c_h(q), V_h, V_h^{\otimes n} \)	4.1	core subalgebra of \(\mathcal{U}_{\sqrt{h}} \)
\(X_h \)	4.4	
\(\mathcal{A} \)	5.1	
UNIFIED QUANTUM INVARIANTS

Notations

Symbol	Defined in	Remarks
$U_2, U^0_Z, U_*^{ev}, U_{Z^*}^{ev,-}, U_{Z^*}^{ev,0}$	5.2	integral core subalgebra
$V_2, V^{ev}_Z, V^{0}_Z, V_{Z^*}^{ev,-}, V_{Z^*}^{ev,0}$	5.3	$B = \mathbb{C}[u \pm 1]$
$(g; q)_n$	5.3, 5.4, 5.5	
$Q^{ev}(n), Q(n, \delta)$	5.4	
$e^{ev}(n), e(n, \delta)$	5.5	
$\hat{U}_Z, \hat{U}_Z^{0}, \hat{U}_Z^{ev}, \hat{U}_Z^{ev,0}$	5.8	
$\hat{e}^{ev}(n), \hat{e}(n, \delta)$	5.8	
X_2, X_2^{ev}	5.12	
G, G^{ev}, $\hat{v}, \hat{\alpha}, \hat{\alpha}, \hat{x}, [U_q]_g$	6.1	
$[U_q^{\otimes n}]_g$	6.2.2	
$K_n, \tilde{K}_n, F_k(K_n)$	7.1	
$K_n(U), \tilde{K}_n(U), F_k(K_n(U))$	7.2	
$\max(n), o(n)$	7.4	
Z, Z^{ev}_{α}, D	8.1	
$\dim_q(V), U$	8.3	
$ev_{n_1/n_2}(f), f \equiv g$	8.3	
$B, U_{\pm}, \tau_M(\Omega)$	8.4.2	
$\tau^e, \tau^p, Z^e_{\pm}, Z^p_{\pm}$	8.4.4	
Ω_{\pm}	8.6	
U, U^{ev}	8.7	
$K_{m}, F_k(K_{m}), \tilde{K}_{m}$	8.8	
\mathcal{T}_{\pm}	8.10	
$S(U_h), S(V), \chi, \text{sh}_{\mu}$	8.12	
γ_{λ}	8.13	
\mathbb{D}, \mathbb{d}	8.16	

References

- [An] H. H. Andersen, *Quantum group at roots of ± 1*, Comm. Algebra **24** (1996), 3269–3282.
- [AP] H. H. Andersen and J. Paradowski, *Fusion categories arising from semisimple Lie algebras*, Comm. Math. Phys. **169** (1995), no. 3, 563–588.
- [BK] B. Bakalov, A. Kirillov Jr, *Lectures on tensor categories and modular functors*, University Lecture Series, **21**, American Mathematical Society, Providence, RI, 2001.
- [Bau] P. Baumann, *On the center of quantized enveloping algebras*, J. Algebra **203** (1998), 244–260.
- [BBL] A. Beliakova, C. Blanchet, and T. T. Q. Lê, *Unified quantum invariants and their refinements for homology 3-spheres with 2-torsion*, Fund. Math. **201** (2008), 217–239.
- [BCL] A. Beliakova, Q. Chen, and T. T. Q. Lê, *On the integrality of Witten–Reshetikhin–Turaev 3-manifold invariants*, Quantum Topol. **5** (2014), 99–141.
- [BL] A. Beliakova and T. T. Q. Lê, *On the unification of quantum 3-manifold invariants*, Introductory lectures on knot theory, 1–21, Ser. Knots Everything, **46**, World Sci. Publ., Hackensack, NJ, 2012.
- [BBuL] A. Beliakova, I. Bühler, and T. T. Q. Lê, *A unified quantum $SO(3)$ invariant for rational homology 3-spheres*, Invent. Math. **185** (2011), no. 1, 121–174.
- [Bl] C. Blanchet, *Hecke algebras, modular categories and 3-manifolds quantum invariants*, Topology **39** (2000), no. 1, 193–223.
- [Br] A. Bruguières, *Catégories prémodulaires, modularisations et invariants des variétés de dimension 3*, Math. Ann. **316** (2000), 215–236.
- [Cal] P. Caldero *Eléments ad-finis de certains groupes quantiques*, C. R. Acad. Sci. Paris Sér. I Math. **316** (1993), 327–329.
V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press, 1994.

C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782.

C. De Concini, V. G. Kac, and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), 151–189.

C. De Concini and C. Procesi. Quantum group, in “D-modules, representation theory, and quantum groups (Venice, 1992)”, 31–140, Lecture Notes in Math. 1565, Springer, Berlin, 1993.

F. Deloup, Linking form, Reciprocity for Gauss sums and invariants of 3-manifolds, Trans. Amer. Math. Soc. 351 (1999), 1859–1918.

V. Drinfel’d, Quantum groups, Proceedings of the International Congress of Mathematicians, 2 (Berkeley, Calif., 1986), 798–820, Amer. Math. Soc., Providence, RI, 1987.

F. Gavarini, The quantum duality principle, Ann. Inst. Fourier 52 (2002), 809–834.

M. Goussarov, Finite type invariants and n-equivalence of 3-manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 6, 517–522.

K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83.

K. Habiro, On the quantum sl2 invariants of knots and integral homology spheres, Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs, 4, (2002), 55-68.

K. Habiro, Cyclotomic completions of polynomial rings, Publ. Res. Inst. Math. Sci. 40 (2004), 1127–1146.

K. Habiro, Bottom tangles and universal invariants, Algebr. Geom. Topol. 6 (2006), 1113–1214 (electronic).

K. Habiro, An integral form of the quantized enveloping algebra of sl2 and its completions, J. Pure Appl. Algebra 211 (2007), 265–292.

K. Habiro, Refined Kirby calculus for integral homology spheres, Geom. Topol. 10 (2006), 1285–1317.

K. Habiro, A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres, Invent. Math. 171 (2008), 1–81.

M. A. Hennings, Invariants of links and 3-manifolds obtained from Hopf algebras, J. London Math. Soc. 54 (1996), 594–624.

J. Hoste, A formula for Casson’s invariant, Trans. Amer. Math. Soc. 297 (1986) 547–562.

J. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, Springer-Verlag, New York-Berlin, 1972.

J.C. Jantzen, Lecture on quantum groups, Graduate Studies in Mathematics, vol. 6, AMS 1995.

A. Joseph and G. Letzter, Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra 153 (1992), 289–318.

A. Joseph and G. Letzter, Separation of variables for quantized enveloping algebras, Amer. J. Math. 116 (1994), 127–177.

A. Joseph and G. Letzter, Rosso’s form and quantized Kac Moody algebra, Mat. Zeitschrift, 222 (1996), 543–571.

V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335–388.

M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.

C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995.

L.H. Kauffman, Gauss codes, quantum groups and ribbon Hopf algebras, Rev. Math. Phys. 5 (1993) 735–773.

L.H. Kauffman and D.E. Radford, Invariants of 3-manifolds derived from finite dimensional Hopf algebras, J. Knot Theory Ramifications 4 (1995) 131–162.

T. Kerler, Genealogy of nonperturbative quantum-invariants of 3-manifolds: The surgical family, “Geometry and physics”, Lecture Notes in Pure and Applied Physics 184, Marcel Dekker (1996), 503–547.

R. Kirby, A calculus for framed links in S^3, Invent. Math. 45 (1978), no. 1, 35–56.

R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C), Invent. Math. 105 (1991), no. 3, 473–545.

T. Kohno, T. Takata, Level-rank duality for Witten’s 3-manifold invariant, Adv. Studies Pure Math., 24 (1996): Progress in Algebraic Combinatorics, 243–264.

A. Klimyk and K. Schmüdgen, Quantum groups and their representations, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997.

T. Kuriya, T. Ohtsuki, and T. T. Q. Le, The perturbative invariants of rational homology 3-spheres can be recovered from the LMO invariant, J. Topology, 5 (2012), 458–484.

R. J. Lawrence, A universal link invariant, The interface of mathematics and particle physics (Oxford, 1988), Inst. Math. Appl. Conf. Ser. New Ser., 24, 151–156, Oxford University Press, 1990.
Analogues de la forme de Killing et du théorème d’Harish-Chandra pour les groupes quantiques

Invariants of

Ribbon graphs and their invariants derived from quantum groups

Quantum

Minimal quasitriangular Hopf algebras

Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots and Everything, 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.

Rad
d

D. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), 285–315.

Res
d

N. Reshetikhin, Quasitriangular Hopf algebras and invariants of links, (Russian) Algebra i Analiz 1 (1989), 169–188; translation in Leningrad Math. J. 1 (1990), 491–513.

RS
d

N. Reshetikhin, M. Semenov-Tian-Shansky, Quantum R-matrices and factorization problems, J. Geom. Phys. 5 (1988), 533–550.

RT1
d

N. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys., 127 (1990), pp. 262–288.

RT2
d

N.Yu. Reshetikhin and V.G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups Invent. Math. 103 (1991), no. 3, 547–597.

Ros
d

M. Rosso, Analogues de la forme de Killing et du théorème d’Harish-Chandra pour les groupes quantiques, Ann. Sci. École Norm. Sup. (4), 23 (1990), 445–467.
[Roz1] L. Rozansky, Witten’s invariants of rational homology spheres at prime values of K and trivial connection contribution, Comm. Math. Phys. 180 (1996), 297–324.

[Roz2] L. Rozansky, On p-adic properties of the Witten-Reshetikhin-Turaev invariant, in: Primes and Knots. Contemp. Math. 416, 213–236. Am. Math. Soc., Providence, RI (2006).

[Sa] S. F. Sawin, Invariants of Spin three-manifolds from Chern-Simons theory and finite-dimensional Hopf algebras, Adv. Math. 165 (2002), 35–70.

[Su1] S. Suzuki, On the universal sl\(_2\) invariant of ribbon bottom tangles, Algebr. Geom. Topol. 10 (2010), 1027–1061. (electronic)

[Su2] S. Suzuki, On the universal sl\(_2\) invariant of boundary bottom tangles, Algebr. Geom. Topol. 12 (2012), 997–1057. (electronic)

[TY] T. Takata and Y. Yokota, The PSU\(_(N)\) invariants of 3-manifolds are algebraic integers, J. Knot Theory Ramifications 8 (1999), no. 4, 521–532.

[Ta] T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras, Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 941–961.

[Tur] V. G. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter, Berlin New York 1994.

[Vi] A. Virelizier, Kirby elements and quantum invariants, Proc. London Math. Soc. 93 (2006) 474–514.

[Wi] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
E-mail address: habiro@kurims.kyoto-u.ac.jp

School of Mathematics, 686 Cherry Street, Georgia Tech, Atlanta, GA 30332, USA
E-mail address: letu@math.gatech.edu