RESEARCH ARTICLE

Surgical benefit of mandibular morphometric analysis: A new tool to standardize mandibular reconstruction

Alice Prevost,*, Franck Delanoe, Zoé Cavallier, Samuel Muller, Raphael Lopez, Frédéric Lauwers

1 Plastic and Maxillo-Facial Surgery Department, University Hospital Center of Toulouse, Toulouse, France, 2 Clinique de l’Union, Plastic and Maxillo-Facial Surgery Department, Saint Jean, France, 3 Anatomy Laboratory, Paul Sabatier-Toulouse III University, Toulouse, France

* prevost.a@chu-toulouse.fr

Abstract

Purpose

The gold-standard for reconstruction of large mandibular defects is the use of free flaps of vascularized autologous bone with the fibula as the preferred donor site. The use of "custom cutting guides" for this indication is becoming increasingly prevalent. But cost of the procedure averages around 2,500 dollars per patient excluding treatment and entails selection criteria. We think it is possible to standardize mandibular reconstructions from an anatomical mean. The objective of this study was to perform a mandibular morphometric analysis in order to obtain a set of "mean" measurements, which can be used by all surgeons interested in mandibular reconstruction.

Methods

We performed a morphometric analysis consisting of three-dimensional mandibular reconstructions of 30 men and 30 women. Several reference points were set and defined to evaluate specific lengths and angles of interest. We conducted an intra and inter-sexual descriptive analysis of measurements obtained.

Results

We did not identify any major intra-sexual differences within each group. The gonial angle is more open in women and the measurements characterizing the basilar contour are more prominent in men. We did not identify any differences in alveolar region parameters.

Conclusion

The results of this study constitute a morphological tool for surgeons, from bone graft to free flap. These results also confirm us that the use of "custom cutting guides" for mandibular reconstruction may be excessive. It is pertinent to examine the value of "custom made" mandibular reconstructions since the differences observed are of the order of millimeters.
Introduction

Mandibular reconstruction remains a major morphological and functional challenge. The currently accepted gold-standard for reconstruction of large mandibular defects is the use of free flaps of vascularized autologous bone with the fibula as the preferred donor site [1, 2].

The use of custom cutting guides for this indication is becoming increasingly prevalent and is widely accepted to significantly reduce the length of time required for the surgical procedures and appears to improve the accuracy of the reconstruction [3–5]. The cost of the procedure averages around 2,500 dollars per patient excluding treatment and entails selection criteria (more complex cases, fragile patients, patients’ ability to assume the cost, etc. . .). Having used custom cutting guides since 2008, we have noted a number of elements that have led us towards consideration of a possible alternative: using an universal cutting guide for fibula free flap micro-anastomosis based on an anatomical average.

The objective of this study is to perform a mandibular morphometric analysis in order to obtain a set of “mean” measurements, which can be used by all surgeons interested in mandibular reconstruction, from bone graft to free flap.

Materials and methods

Ethics statements

In this retrospective study, no change to the current clinical practice or randomization was performed. Due to the retrospective nature of this study, it was granted a written exemption from approval by the ethics committee of the Toulouse University Hospital, according to Articles L. 1121–1 paragraph 1 and R 1121–2, paragraph 1 of the French Public Health Code. The authors’ Institutional Review Board (IRB) waived the requirement for informed consent. All data were fully anonymized.

The first stage of our work therefore consisted in obtaining a large enough number of three-dimensional reconstructions of non-pathological mandibles (without fracture or tumor process).

Measurements included in the database

Three-dimensional reconstructions of mandibles were obtained from CT scans (computed tomography scan, Scanner General Electric Medical System, model Optima CT660, slice thickness of 0.6mm). The CT scans of patients included in the study were performed at the emergency room of the University Hospital Center of Toulouse Purpan, France, between January 1st, 2017 and June 1st, 2017. These images were taken to investigate suspected facial fractures or to assess facial cellulitis. Thirty men and 30 women were included in the analysis [6, 7].

To be included in the study, patients had to:

• Be of adult age, in order to avoid any confounding mandibular developmental phenomena [8, 9].

• Have undergone a CT scan of the facial bone structure in the presence or absence of contrast medium.

Criteria for exclusion were:

• Presence of a tumor or traumatic lesion

• Edentulism (to exclude any confounding secondary bone atrophy)
• Presence of major dental artifacts impeding the quality of the three-dimensional analysis.
• Dental agenesis or the presence of a supernumerary tooth

Images were subsequently exported as de-identified DICOM files (Digital Imaging and Communications in Medicine).

A three-dimensional reconstruction of the mandible based on a DICOM file series was performed using the "OsiriX MD" software. Mandibular reconstructions were subsequently saved as a stereolithographic format (stl).

Definition of landmarks

The geometry of an object can be quantified using a number of different approaches, including contour curves or surfaces [10, 11], but the landmark method was used exclusively for the purposes of the current study. This method relies on the analysis of LM coordinates to capture an object's geometry. It is essential that these reference points are correctly defined to allow different individual conformations to be compared. The "Viewbox Cephalometric" Software was used to import and process previously obtained STL files. This software allows STL files to be visualized and analyzed within the orthonormal reference frame, by placing landmarks (LM) on the surface of the reconstructed mandibles. Eighteen LMs were placed per patient (Figs 1 and 2).

All measurements were performed by the same observer.

We opted to minimize the number of LMs in order to reduce the complexity of mandibular geometry and focused our analysis on variables relevant to surgical practice.

Protocol for the analysis of measurements

Previously listed LMs were used to calculate the lengths and angles of interest as defined below (Table 1).

We have defined a method for calculating these variables with the Viewbox software.

Statistical analyses of the metric variables were performed using version 8.0 of the GraphPad Prism software (GraphPad Software, La Jolla, USA).

The parametric function of our series was tested with a Shapiro-Wilk test. Quantitative data were analyzed using the ANOVA or Friedman test, based on the distribution of variables around the mean.

A p-value less than 5% were considered statistically significant.

To test concordance of the LM reference points, 5 repeat measurements were performed on 10 randomly selected patients. The methodical error was assessed by intraclass correlation coefficient (ICC). Rosner [12] suggested that ICC < 0.4 indicated poor reliability, 0.4 ≤ ICC < 0.75 as fair to good reliability, and ICC ≥ 0.75 as excellent reliability.

Results

Population characteristics

The mean age of the female group was 33.66 years (SD: 12.45 years). The mean age of the male group was 31.57 years (SD: 11.14 years). The two groups were comparable, there were no statistically significant differences for this endpoint studied (p = 0.49).

The large standard deviation reflects our intent to include patients of all ages, as long as they fulfilled both the criteria for inclusion and exclusion criteria, since age does not influence the mandibular configuration upon completion of development.
Intra-sexual variability

ICC ranged from 0.729 to 0.987 for the different measures studied, that indicated an excellent reliability.

1. Women

Values obtained for each angle are collated in Table 2.

We observed the following:

- Bilateral measurements are considered symmetrical with a maximal difference of 4.3˚ tolerated (basilar angle).
- The gonial angle was the most variable inter-individual measurement taken. The standard deviation (and therefore the coefficient of variation) is higher for the measurement of the gonial angle than for any other angle.

All individual length measurements are collated in Table 2.

We observed the following:
• Measurements obtained for respective sides of the same individual are symmetric and display a tighter distribution around the mean than the angle measurements.

• Length of the basilar symphysis and symphyseal height are the parameters which varied most (coefficient of variation of 12.9% and 12.0% respectively).

Fig 2. Simplified geometry of the mandible. a: the intersection of the tangents to the basilar edge of the symphysis and the basilar edge of the horizontal branch defines the position of the basilar inflexion reference point. b: the position of the "alveolar inflexion" reference point is defined by the intersection of the tangents to the alveolar vestibular borders of the incisor/canine and the molar regions. c: the gonial angle is defined as the angle between the tangent to the posterior border of the ramus and the tangent to the basilar edge of the mandibular body (horizontal branch). The gonion is the bony projection along the line that bisects the gonial angle.

https://doi.org/10.1371/journal.pone.0240558.g002
2. Men

All angle and length measurements are collated in Table 2:

- For angle, the observed distribution is identical to that determined in the group of women
- As was observed in the female group, the length of the basilar symphysis in the group of men is also the variable with the highest coefficient of variation.

Women-men variables were compared with the sexual dimorphism study.

Table 1. Metric analysis protocol defining the measurements used for conventional morphometric analysis.

Bilateral measurements	Gonial angle	Basilar symphysis angle	Canine angle	Vertical posterior dimension	Length of dentate region of the horizontal branch	Basilar length of the horizontal branch
	The angle measured between the tangent to the posterior border of the ramus and the tangent to the basilar edge of the mandibular body (horizontal branch).	The angle between the tangents to the basilar edge of the symphysis and the basilar edge of the horizontal branch.	The angle between the straight lines of the incisor-canine and canine-molar region.	Distance between the "gonion" and the upper condyle reference point	Alveolar distance between the canine and the second molar	Basilar distance between the gonion and the "basilar inflection" reference point.

Table 2. Descriptive statistical analysis of the different angles and length measurements.

Angles (n = 30)	Women	Men		
Right gonial angle	128.5 ± 8.9	6.9%	125.9 ± 5.7	4.5%
Left gonial angle	129.3 ± 8.9	6.9%	125.4 ± 6.1	4.9%
Right canine angle	114.6 ± 3.8	3.3%	114.2 ± 4.8	4.2%
Left canine angle	114.5 ± 3.6	3.2%	112.9 ± 4.3	3.8%
Right basilar angle	122.5 ± 5.1	4.2%	119.2 ± 6.9	5.8%
Left basilar angle	118.2 ± 6.5	5.6%	117.1 ± 5.6	4.8%

Lengths (n = 30) (centimeters)	Women	Men		
Right vertical posterior dimension	6.0 ± 0.4	6.2%	6.3 ± 0.6	8.7%
Left vertical posterior dimension	6.0 ± 0.4	7.0%	6.4 ± 0.5	8.4%
Length of dentate region of the right horizontal branch	3.8 ± 0.2	4.2%	4.0 ± 0.3	6.3%
Length of dentate region of the left horizontal branch	3.8 ± 0.2	5.1%	4.0 ± 0.3	7.6%
Basilar length of the right horizontal branch	7.2 ± 0.6	7.9%	8.0 ± 0.6	7.0%
Basilar length of the left horizontal branch	7.5 ± 0.5	6.6%	8.2 ± 0.6	7.2%
Length of basilar symphysis	2.5 ± 0.3	12.9%	3.0 ± 0.5	15.6%
Length of the alveolar symphysis	2.8 ± 0.2	6.5%	2.9 ± 0.2	7.4%
Symphyseal height	2.7 ± 0.3	12.0%	3.1 ± 0.3	8.3%
Bi-gonial length	8.8 ± 0.6	6.5%	9.6 ± 0.6	6.6%

https://doi.org/10.1371/journal.pone.0240558.t002
Sexual dimorphism of the mandible

As the asymmetry between the two "hemi-mandibles" was expected to interfere with the sexual dimorphism analysis, all subsequent analyses were performed on the mean of each individual's bilateral variables.

With respect to the angles studied, a statistically significant difference between the two groups examined was only observed for the gonial angle: with the angle found to be more obtuse in women (128.9˚ vs 125.7˚, p = 0.011) (Fig 3).

Canine and basilar angles were also found to be more open in the female group, although this difference did not reach statistical significance.

With respect to the different length measurements (Fig 4), we observed the following:

- The vertical posterior dimension is statistically significantly longer in the men compared to the women (5.9cm vs 6.4cm, p<0.0001)
- There were no statistically significant differences between the length of dentate region of the horizontal branch (from the canine to the distal surface of the second molar) and between the length of the alveolar symphysis of the women and the men.
- The basilar length of the horizontal branch is statistically longer in the group of men compared to the group of women (8.0cm vs 7.3cm, p<0.0001)
- The basilar symphysis length is statistically longer in the group of men compared to the group of women (3.0cm vs 2.5cm, p<0.0001)
- The symphyseal height length is statistically longer in the group of men compared to the group of women (3.1cm vs 2.7cm, p = 0.001)
- The bi-gonial length is statistically longer in the group of men compared to the group of women (9.6cm vs 8.8cm, p<0.0001)

Fig 3. Histogram of the different angle measurements obtained illustrating sexual dimorphism. Gonial angle: women: 128.9˚ ±8.9˚, men: 125.7˚ ± 5.9˚, p = 0.011. Canine angle: women: 114.6˚ ± 3.7˚, men: 113.6˚ ± 4.6˚, p = 0.74. Basilar angle: women: 120.3˚ ± 6.2˚, men: 118.2˚ ± 6.3˚, p = 0.16, n = 30 in each of the groups studied. *ns: not statistically significant, *: p <0.05.

https://doi.org/10.1371/journal.pone.0240558.g003
There was no statistically significant difference between groups with respect to the length of the alveolar symphysis.

There appears to be a more pronounced sexual dimorphism affecting length compared to angle measurements.

Angles obtained in women also appear to be more open than in men, but the distances measured are larger in men than in women.

Discussion

Mandibular anatomical studies appear to be of interest to many surgeons in order to facilitate mandibular reconstructions. Anatomical studies already performed, differ from our morphometric study by the methodology used [13].

Some authors have studied anatomical criteria on panoramic radiographs [14], or using others landmarks [15].
Our results are comparable to those in the literature. Nobis and al [15] describe a length "canine-canine" of 26.21mm. Symphysial angle was measured to be 120.39° ± 1.68° for the left side and 120.68° ± 1.44° for the right side.

Our study is the only one to differentiate basal and alveolar parameters.

Concerning our mandible sexual dimorphism analysis, our results are consistent with those reported in the literature [16, 17]. The gonial angle is more open in women and the measurements characterizing basilar contour are more prominent in men. We did not identify any differences in alveolar region parameters.

The overall shape of a man’s face can be described as somewhat rectangular, while the lines appear more curved in women [18]. This is a multifactorial observation which is not solely reliant on bone relief. Indeed, masseter muscles are more developed in men [19], while subcutaneous adipose tissue is more prominent in women [20]. These soft tissue factors are very important in mandibular reconstructions, but they are never taken into consideration because they are difficult to evaluate from preoperative imaging data and difficult to control during surgery.

It is pertinent to examine the importance placed on the differentiation between the mandibular reconstruction of men and women since the differences observed are of the order of millimeters. A clear distinction needs to be established between "computer" and "surgical" accuracy by investigating the clinical relevance of identifying a difference in the millimeter range.

Regarding intra-sexual variability, we did not identify any major intra-sexual differences within each group. Indeed, the largest coefficients of variation were obtained with the "gonial angle", "basilar symphysis length" and "symphyseal height" parameters, with standard deviations of the order of one millimeter.

We consider the reconstruction of gonial region and ramus deficits to be a separate issue: the significant intra- and inter-sexual variations in the gonial angle measurement as well as its significant occlusal functional impact would appear to require a reconstructive approach adapted to each individual patient, and therefore does not seem accessible to a universal reconstruction.

The standardization of fibular conformation seems to be judicious for anterior mandibular reconstructions, without compromising postoperative morphological results. Basilar reconstruction seems to be preferred at alveolar reconstitution [21, 22]. Number of fibular osteotomies varies according to the authors, but it is accepted that bone perfusion decreases with number of bone segments [23, 24]. Small bone fragments can compromise vascularization. A length of a minimum of 15 mm is ideal[23]. Ours results respect microvascularization imposed criteria.

Conclusion

Computer-assisted surgery (CAS) for mandibular reconstruction is booming and indications in maxillofacial reconstruction are more and more numerous.

The use of custom cutting guides for this indication significantly reduce the length of time required for the surgical procedures [25], improves dental restoration, postoperative appearance [26] and appears to improve the accuracy of the reconstruction. Quality of mandibular reconstruction is all the more important as we use a fibular cutting guide and positioning guide [27].

But the cost of the procedure averages around 2,500 dollars per patient. Some authors have developed low-cost, self-made CAD/CAM-guiding system for mandibular reconstruction [28, 29]. These procedures make it possible to avoid the high cost of production, but require too much preoperative planning and printing time.
We thus therefore propose to use an "universal" cutting guide for fibular osteotomies to obtain a symphysis angle of 120˚ and symphysis length of 25mm. We think it is useless to distinguish men and women’s mandibular reconstruction.

The "universal cutting guide", designed from anatomical means, would expand the indications of guided mandibular reconstructions, allowing a larger number of patients to benefit guided reconstructions, without high cost and manufacturing time. The manufacture of this "universal guide" has already begun. We bring to your attention that studied population concerned only dentate patients. Some parameters may be changed in edentulous patients due to alveolar bone resorption.

In conclusion, results of this study constitute a tool for improving mandibular reconstructions, which remain a major morphological and functional challenge, especially for centers that do not have access to "custom cutting guides".

Supporting information

S1 File. (TXT)

S2 File. (TXT)

S3 File. (DOCX)

S4 File. (XLS)

Acknowledgments

Declarations

We have nothing to disclose, the manuscripts and the results presented herein have not been previously published and are not under consideration elsewhere. This article was presented at the 24th International Conference on Oral and Maxillofacial Surgery, Rio de Janeiro, Brazil, May 2019.

Author Contributions

Conceptualization: Alice Prevost, Franck Delanoe, Zoé Cavallier, Samuel Muller, Frédéric Lauwers.

Data curation: Alice Prevost, Samuel Muller.

Formal analysis: Alice Prevost, Samuel Muller.

Funding acquisition: Alice Prevost.

Methodology: Alice Prevost, Franck Delanoe, Zoé Cavallier, Raphael Lopez, Frédéric Lauwers.

Software: Alice Prevost.

Supervision: Franck Delanoe, Raphael Lopez, Frédéric Lauwers.

Visualization: Franck Delanoe, Frédéric Lauwers.

Writing – original draft: Alice Prevost.
Writing – review & editing: Alice Prevost.

References
1. Hidalgo. Fibula free flap: a new method of mandible reconstruction. PRS journal. 1989; 84:71–9.
2. Hidalgo DA, Pusic AL. Free-flap mandibular reconstruction: a 10-year follow-up study. PRS journal. 2002 Aug; 110(2):438–49–discussion450–1. https://doi.org/10.1097/00006534-200208000-00010 PMID: 12142657
3. Avraham T, Franco P, Brecht LE, Ceradini DJ, Saadeh PB, Hirsch DL, et al. Functional Outcomes of Virtually Planned Free Fibula Flap Reconstruction of the Mandible. PRS journal. 2014 Oct; 134(4):626e–634e. https://doi.org/10.1097/PRS.0000000000000513 PMID: 25357057
4. Chang EJ, Jenkins MP, Patel SA, Topham NS. Long-Term Operative Outcomes of Preoperative Computed Tomogram-Guided Virtual Surgical Planning for Osteocutaneous Free Flap Mandible Reconstruction. PRS journal. 2016 Feb; 137(2):619–23.
5. Wang YY, Zhang HQ, Fan S, Zhang DM, Huang ZQ, Chen WL, et al. Mandibular reconstruction with the vascularized fibula flap: comparison of virtual planning surgery and conventional surgery. Int J Oral Maxillofac Surg. International Association of Oral and Maxillofacial Surgery; 2016 Nov 1; 45(11):1400–5. https://doi.org/10.1016/j.ijom.2016.06.015 PMID: 27427546
6. Lancaster GA, Dodd S, Williamson PR. Design and analysis of pilot studies: recommendations for good practice. Journal of Evaluation in Clinical Practice. John Wiley & Sons, Ltd; 2004 May 1; 10(2):307–12. https://doi.org/10.1111/j.2002.384. doc.x PMID: 15189396
7. Browne RH. On the use of a pilot sample for sample size determination. Statistics in Medicine. John Wiley & Sons, Ltd; 1995 Sep 15; 14(17):1933–40. https://doi.org/10.1002/sim.4780141709 PMID: 8532986
8. Bjork A. Facial growth in man, studied with the aid of metallic implants. Acta Odontol Scand. 1955 Jun; 13(1):9–34. https://doi.org/10.3109/00016355509028170 PMID: 14398173
9. Bjork A. Prediction of mandibular growth rotation. Am J Orthod. 1969 Jun; 55(6):585–99. https://doi.org/10.1016/0002-9416(69)90036-0 PMID: 5253957
10. Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: Ten years of progress following the “revolution.” Ital J Zool. 2004 Jan; 71(1):5–16.
11. Gunz P, Mitteroecker P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix It J Mamm. 2013.
12. Rosner B. Fundamentals of Biostatistics. BrooksCole, editor. 2010.
13. Matros E, Santamaria E, Cordeiro P. Standardized Templates for Shaping the Fibula Free Flap in Mandible Reconstruction. J reconstr Microsurg. 2013 Oct 18; 29(09):619–22. https://doi.org/10.1055/s-0033-1356645 PMID: 24057690
14. Pirgousis P, Brown D, Fernandes R. Digital measurements of 120 mandibular angles to determine the ideal fibula wedge osteotomy to re-create the mandibular angle for microvascular reconstruction. J Oral Maxillofac Surg. 2013 Dec; 71(12):2169–75.
15. Nobis C-P, Kesting MR, Wolff K-D, Frohwitter G, Rau A, Weitz J. Development of a template tool for facilitating fibula osteotomy in reconstruction of mandibular defects by digital analysis of the human mandible. Clinical Oral Investigations; 2020 Jan 17;:1–7. https://doi.org/10.1007/s00784-019-03089-3 PMID: 31677052
16. G V, Gowri S R M, J A. Sex determination of human mandible using metrical parameters. J Clin Diagn Res. 2013 Dec; 7(12):2671–3. https://doi.org/10.7860/JCDR/2013/7621.3728 PMID: 24551607
17. Rosas A, Bastir M. Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. Am J Phys Anthropol. 2002 Feb 7; 117(3):236–45. https://doi.org/10.1002/ajpa.10023 PMID: 11842403
18. Morrison SD, Vyas KS, Motakel S, Gast KM, Chung MT, Rashidi V, et al. Facial Feminization, PRS journal. 2016 Jun; 137(6):1759–70. https://doi.org/10.1097/PRS.0000000000002171 PMID: 27219232
19. Kiliaridis S, Kålebo P. Masseter Muscle Thickness Measured by Ultrasonography and its Relation to Facial Morphology. J Dent Res. 2016 Nov 8; 70(9):1262–5.
20. Nedungadi T, Clegg DJ. Sexual dimorphism in body fat distribution and risk for cardiovascular diseases. J Cardiovasc Transl Res. 2009 Sep; 2(3):321–7. https://doi.org/10.1007/s12268-009-9101-1 PMID: 20560019
21. Strackee SD, Krohn FH, Jaspers JE, Bos KE. Modeling a fibula transplant in mandibular reconstructions: evaluation of the effects of a minimal number of osteotomies on the contour of the jaw. PRS
22. Antony AK, Chen WF, Kolokythas A, Weimer KA, Cohen MN. Use of Virtual Surgery and Stereolithography-Guided Osteotomy for Mandibular Reconstruction with the Free Fibula. PRS journal. 2011 Nov; 128(5):1080–4. https://doi.org/10.1097/PRS.0b013e31822b6723 PMID: 22030490

23. Bähr W. Blood supply of small fibula segments: an experimental study on human cadavers. Journal of Cranio-Maxillofacial Surgery. 1998 Jun; 26(3):148–52. https://doi.org/10.1016/s1010-5182(98)80004-8 PMID: 9702632

24. Fichter A, Ritschl L, Georg R, Kolk A, Kesting M, Wolff K-D, et al. Effect of Segment Length and Number of Osteotomy Sites on Cancellous Bone Perfusion in Free Fibula Flaps. J reconstr Microsurg. 2019 Jan 30; 35(02):108–16. https://doi.org/10.1055/s-0038-1667364 PMID: 30099731

25. Ayoub N, Ghassemi A, Rana M, Gerressen M, Riediger D, Izle FH, et al. Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial. Trials. Trials; 2014 Apr 9; 15(1):1–13. https://doi.org/10.1186/1745-6215-15-114 PMID: 24716651

26. Zhang W-B, Yu Y, Wang Y, Mao C, Liu X-J, Guo C-B, et al. Improving the accuracy of mandibular reconstruction with vascularized iliac crest flap: Role of computer-assisted techniques. J Craniomaxillofac Surg. 2016 Nov; 44(11):1819–27. https://doi.org/10.1016/j.jcms.2016.08.014 PMID: 27713054

27. Lim S-H, Kim M-K, Kang S-H. Precision of fibula positioning guide in mandibular reconstruction with a fibula graft. Head Face Med. BioMed Central; 2016 Jan 27; 12(1):7–10.

28. Orabona GD, Abbate V, Maglittó F, Bonavolonta P, Salzano G, Romano A, et al. Low-cost, self-made CAD/CAM-guiding system for mandibular reconstruction. Surgical Oncology. Elsevier Ltd; 2018 Mar 29;1–21.

29. Numajiri T, Nakamura H, Sowa Y, Nishino K. Low-cost Design and Manufacturing of Surgical Guides for Mandibular Reconstruction Using a Fibula. PRS Journal—Global Open. 2016 Jul; 4(7):e805–9.