Number of Edges in Random Intersection Graph on Surface of a Sphere.

by

Bhupendra Gupta

Faculty of Engineering and Sciences, Indian Institute of Information Technology (DM)-Jabalpur, India.

Abstract

In this article, we consider ‘N’ spherical caps of area $4\pi p$ were uniformly distributed over the surface of a unit sphere. We study the random intersection graph G_N constructed by these caps. We prove that for $p = \frac{c}{N^\alpha}$, $c > 0$ and $\alpha > 2$, the number of edges in graph G_N follow the Poisson distribution. Also we derive the strong law results for the number of isolated vertices in G_N: for $p = \frac{c}{N^\alpha}$, $c > 0$ for $\alpha < 1$, there is no isolated vertex in G_N almost surely i.e., there are at least $N/2$ edges in G_N and for $\alpha > 3$, every vertex in G_N is isolated i.e., there is no edge in edge set E_N.

AMS 2000 subject classifications: 05C80, 91D30.

Keywords: Angular radius, random intersection graph, random caps, threshold function.

1Corresponding Author. Email: gupta.bhupendra@gmail.com, bhupen@iiitdm.in
1 Introduction.

Random intersection graphs are introduced in [8], and defined as:

Let us consider a set V with n vertices and another set of objects W with m objects. Define a bipartite graph $G^*(n, m, p)$ with independent vertex sets V and W. Edges between $v \in V$ and $w \in W$ exist independently with probability p. The random intersection graph $G(n, m, p)$ derived from $G^*(n, m, p)$ is defined on the vertex set V with vertices $v_1, v_2 \in V$ are adjacent if and only if there exists some $w \in W$ such that both v_1 and v_2 are adjacent to w in $G^*(n, m, p)$. Also define W_v be a random subset of W such that each element of W_v is adjacent to $v \in V$. Any two vertices $v_1, v_2 \in V$ are adjacent if and only if $W_{v_1} \cap W_{v_2} \neq \phi$, and edge set $E(G)$ is defined as

$$E(G) = \{\{v_i, v_j\} : v_i, v_j \in V, W_{v_i} \cap W_{v_j} \neq \phi\}.$$

Dudley, [5], derive the distribution of the degree of a vertex of random intersection graph. Also show that if n be the number of vertices and $\lceil n^\alpha \rceil$ be the number of objects, the vertex degree changes sharply between $\alpha < 1$, $\alpha = 1$ and $\alpha > 1$. Bhupendra Gupta [3] derive the strong threshold for the connectivity between any two arbitrary vertices of vertex set V, and determine the almost sure probability bounds for the vertex degree of a typical vertex of random intersection graph.

Our Model. In this paper we considered the random intersection graph generated by the spherical caps on the surface of a 3-dimensional unit sphere.

Let C_1, C_2, \ldots, C_N be the spherical caps and X_1, X_2, \ldots, X_N are their respective centers on the surface of a unit sphere. Let X_1, X_2, \ldots, X_N are Uniformly distributed over the surface of unit sphere. Now define a random intersection graph G_N on the surface of unit sphere, with vertex set $\mathcal{X}_N = \{X_1, X_2, \ldots, X_N\}$ and edge set $\mathcal{E}_N = \{X_i X_j : C_i \cap C_j \neq \phi, i \neq j\}$.

The aim of this paper is to investigate the evolution of edges in the graph G_N with vertex set $\mathcal{X}_N = \{X_1, X_2, \ldots, X_N\}$, $N = 1, 2, \ldots$, where the vertices are independently
and uniformly distributed on the surface of a unit sphere. H. Maehara, [6] gives the asymptotic results for the various properties of random intersection graph of random spheriacal caps on surface of unit sphere. Also Bhupendra Gupta, [2] gives the strong threshold function $p_0(N) = o\left(\frac{\log N}{N}\right)$ for the coverage of the surface of a unit sphere by the spherical caps. Bhupendra Gupta shown that for large N, if $\frac{Np}{\log N} > 1/2$ the surface of sphere is completely covered by the N caps almost surely, and if $\frac{Np}{\log N} \leq 1/2$ a partition of the surface of sphere is remains uncovered by the N caps almost surely.

2 Supporting Results.

Let C_1, C_2, \ldots, C_N be the spherical caps on the surface of a unit sphere with their centers X_1, X_2, \ldots, X_N and Uniformly distributed over the surface of unit sphere. We defined a random intersection graph G_N on the surface of unite sphere, with vertex set $\mathcal{X}_N = \{X_1, X_2, \ldots, X_N\}$ and edge set $\mathcal{E}_N = \{X_iX_j : C_i \cap C_j \neq \phi, i \neq j\}$.

Let $p := p(a)$ be the probability that a point ‘x’ on the surface of unit sphere is covered by a specified spherical cap of angular radius ‘a’. Then the area of the spherical cap of angular radius ‘a’ is equal to $4\pi p$.

Poisson Approximation.

Let $|\mathcal{E}|$ denote the cardinality of the edge set i.e., the number of edges in the graph G_N.

Define a indicator function

$$\xi_i = \begin{cases} 1, & C_i \cap C_j \neq \phi, i \neq j; \\ 0, & \text{otherwise.} \end{cases} \quad (2.1)$$

that is if X_i is an end point of an edge, then ξ_i is equal to 1, and hence $|\mathcal{E}| = \sum_{i \in I} \xi_i$, where $I := \{i : X_iX_j \in \mathcal{E}, i \neq j\}$ is the index set.
\[
E \mid \mathcal{E} = E\left[\sum_{i=1}^{n} \xi_i \right]
\]
\[
= \sum_{i=1}^{n} E[\xi_i] = \left(\frac{N}{2}\right)4p(1-p)
\]
\[
= 2N(N-1)p(1-p) \leq 2N^2p(1-p).
\] (2.2)

Theorem 2.1 (Arratia 1989, [1]) Suppose \(\xi_i, i \in I \) is a finite collection of Bernoulli random variables. Set \(p_i := E[\xi_i] = P[\xi_i = 1] \), and \(p_{ij} := E[\xi_i \xi_j] \). Let \(\lambda := \sum_{i \in I} p_i \), and suppose \(\lambda \) is finite. Let \(|\mathcal{E}| := \sum_{i \in I} \xi_i \). Then

\[
d_{TV}(|\mathcal{E}|, Po(\lambda)) \leq \min(3, \lambda^{-1}) \left(\sum_{i \in I} \sum_{j \in \mathcal{N}_i \setminus \{i\}} p_{ij} + \sum_{i \in I} \sum_{j \in \mathcal{N}_i} p_i p_j \right).
\] (2.3)

where, \(\mathcal{N}_i \) be the adjacency neighborhood of \(i \), i.e., the set \(\{i\} \cup \{j \in I : X_i X_j \in \mathcal{E}\} \).

3 Weak Law Results.

Theorem 3.1 For \(p := p(a) = \frac{c}{N^\alpha} \), where \(c > 0 \) and \(\alpha > 2 \). Then sufficiently large \(N \),

\[
d_{TV}(|\mathcal{E}|, Po(\lambda)) \rightarrow 0,
\] (3.4)

i.e., the number of edges in the graph \(G_N \) is a Poisson random variable with parameter \(\lambda = \sum_{i \in I} p_i < \infty \).

Proof. First we consider,

\[
p_i = E[\xi_i] = P[\xi_i = 1].
\] (3.5)

We know there exists an edge between \(X_i \) and \(X_j \) iff \(C_i \cap C_j \neq \emptyset \), i.e. the distance between \(X_i \) and \(X_j \) is less than \(2a \). Now consider another spherical cap \(D_i \) centered at \(X_i \) and of radius \(2a \).

\[
P[\xi_i = 1] = P[C_i \cap C_j \neq \emptyset]
\]
\[
= P[X_j \in D_i] = p(2a).
\] (3.6)
Now, from equation (2.1), of Bhupendra [2], we have
\[p := p(a) = \sin^2(a/2). \]
(3.7)

Using (3.7) in (3.6), we get
\[P[\xi_i = 1] = \sin^2(a) = \frac{1}{2}(1 - \cos(2a)) = 4p(1 - p). \]
(3.8)

Using (3.8) in (3.5), we get
\[p_i = E[\xi_i] = 4p(1 - p). \]
(3.9)

Now consider
\[p_{ij} = E[\xi_i \xi_j] = 1.P[\xi_i = 1, \xi_j = 1] = \sum_{l=1, l \neq i}^{n} \sum_{k=1, k \neq j}^{n} P[(C_i \cap C_l) \neq \phi, (C_k \cap C_j) \neq \phi] - P[(C_i \cap C_j) \neq \phi] \]
\[= \sum_{l=1, l \neq i}^{n} P[(C_i \cap C_l) \neq \phi] \sum_{k=1, k \neq j}^{n} P[(C_k \cap C_j) \neq \phi] - P[(C_i \cap C_j) \neq \phi] \]
\[= (4(N - 1)p(1 - p))^2 - 4p(1 - p) \]
\[= 16((N - 1)p(1 - p))^2 \left(1 - \frac{1}{4(N - 1)^2p(1 - p)}\right) \]
\[\leq 16((N - 1)p(1 - p))^2. \]
(3.10)

Now by Theorem 2.1, we have
\[d_{TV}(|\mathcal{E}|, Po(\lambda)) \leq \min(3, \lambda^{-1}) \left(\sum_{i \in I} \sum_{j \in N \setminus \{i\}} p_{ij} + \sum_{i \in I} \sum_{j \in N_i} p_ip_j\right). \]

Using (3.9) and (3.10), we get
\[d_{TV}(|\mathcal{E}|, Po(\lambda)) \leq \min(3, \lambda^{-1}) \left(\sum_{i \in I} \sum_{j \in N \setminus \{i\}} (4(N - 1)p(1 - p))^2 + \sum_{i \in I} \sum_{j \in N_i} 4p(1 - p)4p(1 - p)\right) \]
\[\leq \min(3, \lambda^{-1}) \left(\frac{N(N - 1)^3}{2} (4p(1 - p))^2 + \frac{N(N - 1)}{2} (4p(1 - p))^2\right). \]

Taking \(p = \frac{c}{N^\alpha} \) and \(\alpha > 2 \) in above, we get
\[d_{TV}(|\mathcal{E}|, Po(\lambda)) \to 0, \quad N \to \infty. \]
4 Strong Law Results.

Proposition 4.1 Let G_N be a random intersection graph. Let $p = \frac{c}{N^\alpha}$, then

i. For $0 < \alpha < 1$, there is no isolated vertex in G_N almost surely.

ii. For $\alpha < 2$ at least one isolated vertex in G_N almost surely.

iii. For $\alpha > 3$, every vertex in G_N is an isolated vertex.

Proof. Let $\mathcal{X}[B]$ denote that number of vertices of the finite set point \mathcal{X} that lies in the set B. Let D_i spherical cap centered at X_i and of radius $2a$.

\[
P[\text{at least one isolated vertex in } G_N] = P[\bigcup_{i=1}^{N-1} (\mathcal{X}[D_i] < 1)] \\
\leq \sum_{i=1}^{N-1} P[\mathcal{X}[D_i] < 1] \\
= \sum_{i=1}^{N-1} (1 - p(2a))^{N-1} = N(1 - p(2a))^{N-1} \\
\leq (N - 1) \exp(-(N - 1)p(2a)) \\
= (N - 1) \exp(-4(N - 1)p(1 - p)),
\]

since $p(2a) = 4p(1 - p)$. Now taking $p = \frac{c}{N^\alpha}$, we get

\[
P[\text{at least one isolated vertex in } G_N] \leq (N - 1) \exp\left(-\frac{4(N - 1)}{N^\alpha} \left(1 - \frac{1}{N^\alpha}\right)\right). \quad (4.11)
\]

The above probability is summable for $0 < \alpha < 1$, i.e.,

\[
\sum_{N=1}^{\infty} P[\text{at least one isolated vertex in } G_N] < \infty.
\]

Then by the Borel-Cantelli’s Lemma, we have

\[
P[\text{no isolated vertex in } G_N, \quad i.o.] = 1.
\]

This implies that for $\alpha < 1$ there is no isolated vertex in G_N almost surely.
For the second part of proposition, we consider

\[P\{\text{every vertex is an isolated vertex in } G_N\} = \prod_{i=1}^{N-1} P\{X[D_i] < 1\} \]
\[\leq (1 - p(2a))^{N-1} \left(1 - p(2a) \right)^{N-1} \]
\[\leq \exp\left(-(N-1)p(2a) \right)^{N-1} \]
\[\leq \exp\left(-4(N-1)^2p(1-p) \right), \]

since \(p(2a) = 4p(1-p) \). Now taking \(p = \frac{c}{N^\alpha} \), we get

\[P\{\text{every vertex is an isolated vertex in } G_N\} \leq \exp\left(-4(N-1)^2p(1-p) \right). \] (4.12)

The above probability is summable for \(\alpha < 2 \), i.e.,

\[\sum_{N=1}^{\infty} P\{\text{every vertex is an isolated vertex in } G_N\} < \infty. \]

Then by the Borel-Cantelli’s Lemma, we have

\[P\{\text{at least one isolated vertex in } G_N, \ i.o.\} = 1. \]

This implies that for \(\alpha < 2 \) there is at least one isolated vertex in \(G_N \) almost surely.

For the third part of proposition, we consider

\[P[\mathcal{E} \neq \emptyset] \leq P[|\mathcal{E}| \geq \epsilon]. \] (4.13)

By the Chebyshev’s inequality, we have

\[P[|\mathcal{E}| \geq \epsilon] \leq \frac{E[|\mathcal{E}|]}{\epsilon} \]
\[\leq \frac{2}{\epsilon} N^2 p(1-p). \] (4.14)
Taking $p = \frac{c}{N^\alpha}$, we get
\[P(||E|| \geq \epsilon) \leq \frac{2N^2}{\epsilon} \frac{c}{N^\alpha}. \]
Hence from (4.13), we have
\[P[E \neq \phi] \leq \frac{2N^2}{\epsilon} \frac{c}{N^\alpha}. \quad (4.15) \]
The above probability is summable for $\alpha > 3$, i.e.,
\[\sum_{N=1}^{\infty} P[E \neq \phi] < \infty. \]
Then by the Borel-Cantelli’s Lemma, we have
\[P[E = \phi, \text{i.o.}] = 1. \]
This implies that
\[|E| = 0, \quad \text{almost surely}, \]
i.e., if $p = \frac{c}{N^\alpha}$; $\alpha > 3$, then there is no edge in the intersection graph almost surely, and hence every vertex is an isolated vertex almost surely.

Theorem 4.2 Let G_N be a random intersection graph. Let $p = \frac{c}{N^\alpha}$, then for $\alpha < 1$, there are at least $N/2$ edges in G_N almost surely. For $\alpha > 3$, there is no edge in edge set E_n.

Proof. From the Proposition 4.1, we have for $\alpha < 1$, there is no isolated vertex in G_N almost surely, i.e., every vertex is connected with at least one other vertex. This implies that at least $N/2$ edges in G_n almost surely.

For $\alpha > 3$, every vertex in G_N is isolated almost surely, implies that there is no edge in G_N almost surely.
References

[1] Arrata, R., Goldstein, L. and Gordon, L., 1989. Two moments suffice for Poisson approximation: the Chen-Stein method. The Annals of Probability, Vol. 17, pp 9-25.

[2] Bhupendra Gupta 2008, A Strong threshold for the size of random caps to cover a sphere. Communicated.

[3] Bhupendra Gupta 2008, Vertex Degree of Random Intersection Graph. Communicated.

[4] Chow, Y.S., Teicher, H. 2004, Probability Theory, third edition, Springer Text in Statistics.

[5] D. Stark. The vertex degree distribution of random intersection graphs, Random Structures and Algorithms, Vol. 24(3): 249 - 258, (2004).

[6] Maehara, H. 2004, On the intersection graph of random caps on a sphere. European Journal of Combinatorics, Vol. 25, pp 707-718.

[7] Shiryayev, A.N. 1984, Probability, second edition, Springer-Verlag, New York Inc.

[8] Karonski, M., Scheinerman, E.R. and Singer, K.B.-Cohen, (1999), On random intersection graphs: the subgraph problem. Combinatorics, Probability and Computing, Vol. 8, pp 131-159.