Basic and Clinical Studies of Pharmacologic Effects on Recovery from Brain Injury

Larry B. Goldstein

Department of Medicine (Neurology) and The Center for Health Policy Research and Education
Duke University Medical Center and Durham Veterans Administration Medical Center
Durham, North Carolina, USA

ABSTRACT

Investigations in laboratory animals indicate that certain drugs that influence specific neurotransmitters can have profound effects on the recovery process. Even small doses of some drugs given after brain injury facilitate recovery while others are harmful. Preliminary clinical studies suggest that the same drugs that enhance recovery in laboratory animals (e.g., amphetamine) may have similar effects in humans after stroke. In addition, some of the drugs that impair recovery of function after focal brain injury in laboratory animals (e.g., haloperidol, benzodiazepines, clonidine, prazosin, phenytoin) are commonly given to stroke patients for coincident medical problems and may interfere with functional recovery in humans. Until the impact of pharmacologic agents on the recovering brain is better understood, the available data suggest that care should be exercised in the selection of drugs used in the treatment of the recovering stroke patient. Pharmacologic enhancement of recovery after focal brain injury may be possible in humans.

KEY WORDS
head injury, stroke, recovery of function, drugs, motor function, aphasia, humans, rats

INTRODUCTION

Stroke and traumatic brain injury are major causes of neurologic disability. Although many stroke survivors have significant deficits, most recover some degree of function /53/. This recovery can continue over a period of years in certain individuals /6/; however, spontaneous improvement is largely completed by one month after stroke (Fig. 1) /53,114,124,139,188,189/. Traumatic brain injury affects 200-400 persons per 100,000

Reprint address:
Larry B. Goldstein, M.D.
Box 3651
Duke University Medical Center
Durham, NC 27710, USA
population in the United States /70/. Although most of these individuals have only minor injuries and do not come to medical attention /70/, moderate head injury (Glasgow Coma Scale 9-12) affects 60-75,000 cases per year /132/. Of patients with moderate head trauma, two-thirds are moderately to severely disabled 3 months after the injury /155/.

Because of the prevalence of stroke and traumatic brain injury, therapies that improve recovery would have significant medical, social and economic importance. This review discusses recent insights into the functional processes underlying recovery that have led to the preliminary clinical applications of new treatment strategies designed to enhance function after brain injury.

RECOVERY AFTER FOCAL BRAIN INJURY

Biologic processes that influence functional recovery after focal brain damage can be empirically divided into two main, but interrelated, groups. These groups of processes entail the resolution of the pathologic sequellae of the injury and the adaptive responses of brain tissue that was not damaged by the primary lesion (Table 1). The adaptive responses can be further divided into rapidly and more slowly developing processes.

TABLE 1

Biologic processes influencing functional recovery after focal brain damage

I. Resolution of pathologic sequellae
1. Cerebral edema
2. Diaschisis
3. Denervation supersensitivity
4. Rapid changes in dendritic spines

II. Adaptive responses
1. Rapid adaptive responses
- Un-masking
- Re-learning
2. Slow adaptive responses (neuronal rearrangements)
- Regeneration
- Pruning
- Collateral sprouting
- Ingrowth

Pathologic sequellae

Cerebral edema commonly accompanies brain injury. Its complex pathophysiology has been extensively reviewed (see /112/). Cytotoxic cerebral edema involves the accumulation of intracellular fluid whereas vasogenic edema entails leakage of proteins and fluid from damaged blood vessels (a defect of the blood-brain barrier). Cerebral edema may produce local functional depression in the area immediately surrounding the primary area of injury. Remote functional depression can be caused by compression of distant normal structures. Clinical worsening and spontaneous improvement in patients after acute brain injury may be due, in part, to the development and subsequent resolution of edema.

Diaschisis, a term originated by the German pathologist Von Monakow /187/, refers to sudden functional depression of brain regions distant from the site of primary injury. Diaschisis has been reviewed by Feeney and is discussed elsewhere in this issue /57,58/. Diaschisis has been demonstrated experimentally in a variety of laboratory animal model systems /31,65,109,183/. In humans, reductions of blood flow and metabolism following hemispheric stroke have been demonstrated by positron emission tomography in the non-injured ipsilateral cerebral hemisphere, the contralateral cerebral hemisphere, and the contralateral cerebellum /68,118,133,182/. Crossed cerebellar-cortical diaschisis occurs in patients with unilateral cerebellar infarction /19/. Capsular or thalamic stroke also can have remote effects on metabolism in the cerebral cortex and cerebellum /142/. The pathophysiologic mechanism underlying diaschisis is not understood /31,58/. Depression of metabolic activity in brain regions distant from the primary site of injury might be a reflection of regional changes in cerebral blood flow. Alternatively, decreased regional cerebral blood flow may be a secondary phenomenon reflecting locally depressed cerebral metabolism. These remote areas of depressed cerebral metabolic activity could result from injury to excitatory projections from the injured region. It has also been suggested that diaschisis could be caused by the release of vasoactive or neuroactive substances from the damaged brain /168/.

JOURNAL OF NEURAL TRANSPLANTATION & PLASTICITY
As in the peripheral nervous system, lesions in the central nervous system may also result in enhanced responses of targets to neurotransmitters (denervation supersensitivity) /40/. The potential relationship of this phenomenon to behavioral recovery has been extensively reviewed (see /67/). Briefly, partial damage to the dendritic tree results in an acute decrease in the amount of neurotransmitter available at the synapse. An up-regulation of post-synaptic receptors ensues. Subsequent presentation of a smaller amount of neurotransmitter then results in an exaggerated physiologic response that may restore function. A variety of other short-term synaptic changes may occur /199/ and rapid morphological changes in dendritic spines have been observed in different species under a variety of conditions /76,199/.

Rapid adaptive responses

Distinct from processes involved in the resolution of the pathologic sequelae of brain injury, adaptive responses refer to the mechanisms by which uninjured brain assumes functions that were previously performed by injured neurons. Several theoretical types of adaptive responses may occur. One hypothesis is that redundant neural networks may perform functions lost due to brain injury. This hypothesis was suggested by Lashley /117/ and Luria /126,127/ and has also been discussed as un-masking /192/. More recent studies with positron emission tomography in human stroke patients demonstrate metabolic changes that are consistent with unmasking. In uninjured humans, motor movement is associated with increases in regional cerebral blood flow (rCBF) in a circumscribed region in the contralateral primary sensorimotor cortex. However, in patients recovered from stroke that had resulted in hemiparesis, movement of the previously affected limb is associated with significant changes in rCBF in widespread areas of the brain including both ipsilateral and contralateral sensorimotor cortex and cerebellar hemispheres /32,196/.

A second general hypothesis is that the cellular mechanisms that may be responsible for normal learning and memory is long-term potentiation (LTP) /14-16/. LTP has been described by Collingridge and Bliss as a "kind of activity-dependent change in synaptic efficacy that is assumed to provide the physiological basis of information storage in the brain" /37/. In the hippocampal formation, LTP is induced by a single, transient, high-frequency stimulation of excitatory neural inputs. This produces an increase in synaptic responses that can last for prolonged periods of time /15,16/. LTP has been best characterized in the hippocampal formation, but has also been demonstrated in several other brain regions including hypothalamus /38/, visual cortex /4,5/ and motor cortex /113/.

Slow adaptive responses

A variety of neuronal rearrangements occur after many types of brain injuries /39,46,67,110,125,152, 153/. Some of these rearrangements would be expected to be beneficial while others are potentially maladaptive and could contribute to the ultimate functional deficit. Davis has classified neuronal rearrangements into four major groups /46/. *Regeneration* refers to the regrowth of an injured neuron's axon to innervate the denervated target. Axonal regeneration would be the ideal rearrangement to restore function. Although controversial and difficult to demonstrate, functional regeneration of axons may occur in the central nervous system /12,69/. *Pruning* occurs in highly collateralized neurons (single neurons with many axons). When one axon is injured, collateral branches extend to reinervate the target /166/. Unlike regeneration, pruning has been clearly demonstrated in the adult brain and should be a beneficial adaptive rearrangement /73-75,91,92, 147/. *Collateral sprouting*, the most extensively studied neuronal rearrangement, refers to neurite outgrowth from an uninjured nerve in response to damage to an adjacent fiber. Sprouting has been demonstrated in the central nervous system /39/ and can result in the formation of electrophysiologically functional synapses /176,185/. Collateral sprouting may be maladaptive because it usually results in the hyperinnervation of the target. *Ingrowth* is the response of an uninjured nerve to a remote injury. A foreign neuron grows to innervate a target in
response to the loss of the target's normal innervation. The most extensively studied example of ingrowth is the expansion of sympathetic fibers from surface blood vessels into the brain parenchyma after certain lesions /43/. Sympathetic ingrowth interferes with recovery after various specific experimental lesions in laboratory animals /93,94/.

DRUGS AND FUNCTIONAL RECOVERY: FUNDAMENTAL STUDIES

Drugs can influence recovery through a variety of mechanisms affecting the resolution of pathologic sequelae of brain injury as well as both rapid and slow adaptive brain responses. An individual drug could impact on all of these processes. These drug effects may be either beneficial or detrimental (Table 2).

Transmitter/Drug	Effect on Recovery
Norepinephrine	+
Amphetamine	+
Clonidine	-
Haloperidol	-
Prazosin	-
Propranolol	0
GABA	-
Diazepam	-
Muscimol	-
Phenotoin	-
Ro 15-1788	+
Acetylcholine	+
Scopolamine	-
Glutamate	
MK-801	

"+" indicates a beneficial effect on recovery, "+" indicates a detrimental effect, and "0" indicates no effect. Revised from Goldstein /80/. See text for references.

Catecholamines

Amphetamine is among the most extensively studied drugs with the capacity to facilitate recovery after focal brain injury. It was recognized as early as 1946 that treatment with amphetamine restored righting and other postural activity in low decerebrate cats /130/. Placing responses returned in hemidecorticate and neodecorticate cats following amphetamine administration /61,128,136/. More recently, an enduring recovery of function has been demonstrated in cats that had been subjected to bilateral visual cortex ablations /62,106/. This lesion results in a complete and permanent deficit of stereopsis. Treatment with amphetamine, when combined with visual experience, resulted in recovery of binocular depth perception. Relearning of a visual discrimination task in visually decorticated rats is also facilitated by amphetamine /25/.

Because motor function is a particularly important determinant of physical function and independence in activities of daily living after brain injury in humans /119/, the impact of drugs on motor recovery after focal cortex injury has been the subject of extensive laboratory investigations. A sensorimotor cortex lesion in the rat does not result in a dramatic motor deficit when the animals are observed on a flat field, but becomes obvious when the animals traverse a narrow elevated beam (beam-walking ability) /29,129/. Feeney et al. devised a simple system for grading this motor deficit and found that a single dose of D-amphetamine administered 24 hours following unilateral sensorimotor cortex ablation accelerated the rate of functional recovery /59,60/. Post-lesion treatment with amphetamine also enhanced motor recovery in cats with unilateral or bilateral frontal cortex ablation /104,136,179/.

Understanding the pharmacologic mechanism of amphetamine-facilitated recovery has been hampered because the drug has diverse central and peripheral effects. Systemic administration of amphetamine may produce raised blood pressure with reflex bradycardia, behavioral arousal and hypermotility /197/. Dextroamphetamine also may induce changes in regional cerebral blood flow and metabolism /134,135/. Furthermore, amphetamine's central actions may be mediated through...
noradrenergic, dopaminergic, or serotonergic neurons /72/. The pharmacologic and behavioral effects of amphetamine are also dose dependent. For example, the levels of norepinephrine in rat brain are decreased when amphetamine is administered in a relatively high dose. This effect is most likely caused by depletion of granular amine stores combined with an inhibition of the re-uptake mechanism /72/. However, acute pharmacologic effects of the drug may also be related to the release of extragranular accumulations of catecholamines /72/. In addition, amphetamine may induce a disaggregation of brain polysomes thereby influencing protein synthesis /138/. The dose-effect curve for amphetamine-facilitated motor recovery in rats formed an inverted 'U' with a decline in response at higher doses /80/. This decline is likely due to amphetamine-induced stereotypes.

One strategy that has been employed to study the pharmacologic basis of the amphetamine effect has been to measure the impact of a series of specific agonists and antagonists on functional recovery. Coadministration of haloperidol blocks amphetamine-promoted recovery /60,105/ and haloperidol impairs motor recovery when given alone /60/. Although haloperidol is a butyrophenone, in addition to its action as a dopamine receptor antagonist, it has antagonist effects at noradrenergic receptors /35,47,146/. Other lines of evidence suggest that amphetamine-promoted recovery of function is noradrenergically mediated. Intraventricular /21/ or cerebellar /22/ infusions of norepinephrine facilitate recovery. Intraventricular administration of dopamine in combination with a dopamine-β-hydroxylase inhibitor or dopamine alone had no effect /21/. Treatment with a centrally acting α₁-adrenergic receptor antagonist (i.e., prazosin) interferes with motor recovery /177,195/. Post-lesion systemic administration of an α₂-adrenergic receptor antagonist (i.e., yohimbine, idazoxan) is beneficial /79,89,177,178,195/, whereas the α₂-adrenergic receptor agonist clonidine impairs motor recovery when given soon after brain injury /85/ and reinstates motor deficits in recovered rats /175,177,178,195/. Furthermore, pretreatment with the neurotoxin DSP-4, a drug that selectively depletes central norepinephrine, slows beam-walking recovery /20,83/. Taken together, these data suggest that amphetamine influences recovery through its effects on central norepinephrine. Although this work was largely carried out in rats with aspiration lesions of the cerebral cortex, the effect of noradrenergic agents on recovery is similar in traumatic cerebral contusion and cortex infarction injury models /49,66,107,108/.

GABA

Intracortical infusion of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) increases the hemiparesis produced by a small motor cortex lesion in rats /23/. The deleterious effect of GABA is increased by the systemic administration of phenytoin /24/, which may act through a GABA-mediated mechanism /33/. The short-term administration of diazepam, a benzodiazepine that acts as an indirect GABA agonist, permanently impedes recovery from the sensory asymmetry caused by anteromedial neocortex damage in the rat /163/. This long-term deleterious effect of diazepam is mimicked by short-term infusion of the GABA agonist, muscimol, into the sensorimotor cortex adjacent to the lesion /100/ and is blocked by coadministration of the benzodiazepine antagonist Ro 15-1788 /97/. Ro 15-1788 alone produces a transient facilitation of recovery /165/. Thus, GABA or GABA agonists interfere with the recovery process whereas GABA antagonists may be beneficial.

Acetylcholine

In 1942 Ward and Kennard reported that cholinergic agonists increased the rate of motor recovery after motor cortex lesions in monkeys /193/. The beneficial effects of cholinergic agonists were blocked by administration of phenytoin /194/. Recent data suggest that the anticholinergic drug, scopolamine, interferes with motor recovery following cortex infarction in rats /48/. As reviewed by Feeney and Sutton, acetylcholine administration appears to enhance recovery of function /63/.

N-Methyl-D-aspartate (NMDA)

The availability of drugs which competitively and non-competitively block specific subtypes of the glutamate receptor has led to trials of these agents
in experimental ischemia. The non-competitive NMDA receptor antagonists MK-801 /13,26,115, 141,143,144/, dextromethorphan and dextrorphan /170-172/, and the competitive NMDA receptor antagonists CGS 19755 and CPP /17,27/ reduce brain injury following focal ischemia. In contrast to the potentially beneficial effect of MK-801 on the local damage caused by ischemia, the administration of this NMDA receptor antagonist reinstated sensory deficits in rats that had recovered from anteromedial frontal cortex injury /8/. The drug had a slightly beneficial effect if given soon after the brain injury. MK-801 had no effect on beam-walking recovery in rats regardless of whether it was administered to the animals soon after the injury or after spontaneous recovery was complete /82/.

Growth factors/transplants

The use of growth factors to improve functional outcome following brain injury is the topic for a separate review (see /121/). There are a large number of substances that can promote neuronal survival or growth /121/. Treatment with nerve growth factor (NGF), one of the first of these substances identified, improves spatial learning following nucleus basalis magnocellularis lesions in rats /131/ and prevents neuronal death after brain trauma /116/. Although originally considered a neuronotrophic factor, GM1 ganglioside may have several mechanisms of action /30,54/. Laboratory studies suggest that post lesion administration of gangliosides may improve functional outcome /140,158,159/.

An extensive literature is available that provides evidence for successful structural and functional grafts of homotypic fetal brain tissue (see /184/). For example, fetal neurons grafted to the brains of adult rats with ischemic lesions of the hippocampus become structurally incorporated and establish connections with the host brain /184/. Intracerebral chromaffin cell autografts accelerate functional recovery in adult cats with unilateral frontal cortex ablation /180/.

DRUGS AND FUNCTIONAL RECOVERY: MECHANISMS

It is logical that slow adaptive responses to injury such as certain neuronal rearrangements could result in a functional reorganization of the brain that leads to behavioral recovery. However, drugs such as amphetamine have acute, but enduring effects on recovery. In the case of motor function after sensorimotor cortex injury, enhanced recovery occurs within one hour of amphetamine administration with the effect persisting long after the drug has been metabolized /60/. Although several general hypotheses have been offered, the cellular mechanisms underlying these relatively rapid drug effects remain largely speculative. Drugs that influence the release or action of central neurotransmitters could have an impact on both the pathologic sequellae and rapid responses to brain injury in a temporal frame consistent with behavioral observations.

Potential drug effects on pathologic sequellae of brain injury

It has been proposed that drugs such as amphetamine may accelerate the resolution of diaschisis and thereby facilitate the functional recovery. As discussed by Feeney previously /57,65/ and elsewhere in this issue, there is considerable experimental evidence in support of this general hypothesis. Exogenous manipulation of the relative levels of central neurotransmitters could also influence the behavioral effects of post-synaptic denervation supersensitivity or impact on the resolution of cerebral edema.

Potential drug effects on rapid adaptive responses to brain injury

Understanding the mechanisms of drug effects on rapid adaptive responses is complicated because their impacts may vary depending upon the nature and location of the injury, the specific behavior being measured and the timing of drug administration. Amphetamine administration improved motor outcome after focal cortex injury from an aspiration lesion /60,80/, cerebral contusion /64/ and focal infarction /49,107,108,160/, but had no effect on spatial memory impaired after transient
global ischemia /36/. The administration of pentylenetrazol (PTZ) facilitated recovery from the sensory asymmetry which resulted from unilateral sensorimotor cortex injury in the rat /98,99/. However, PTZ had no effect on motor recovery in these same rats. The potential impact of lesion location and pathophysiologic mechanism is exemplified by the effects of the anticholinergic scopolamine. Treatment with scopolamine accelerated recovery of consciousness following closed head injury in rats /95/. In contrast, scopolamine interfered with motor recovery following unilateral infarction of the rat sensorimotor cortex /48/. The timing of drug administration with respect to the injury may also be critical. The detrimental effect of diazepam on recovery from the sensory asymmetry following unilateral anteriomedial cortex damage in the rat decreased as time between the injury and drug administration increased /98/. MK-801 had a slightly beneficial effect on sensory function in rats if given soon after cortex injury, but was detrimental if given to recovered animals /8/. Despite these complexities, several hypotheses have been offered to explain drug effects on recovery based on their impacts on potential rapid adaptive brain responses. One hypothesis is that certain drugs might facilitate the use of alternative neural networks to perform functions lost due to brain injury (un-masking). Treatment with stimulant drugs such as amphetamine may promote the use of alternative pathways by increasing the size of the cortical receptive field responding to specific peripheral stimuli in rats with cortex injury /49/. Depressants (i.e., GABA or GABA agonists) could interfere with this process and would be expected to be detrimental /165/. The expected effects of drugs on the resolution of diascisis /57/ would be similar to their effects on un-masking.

As discussed above, another hypothesis is that the cellular mechanisms that underlie behavioral recovery may also be responsible for normal learning. This re-learning hypothesis is particularly intriguing because both pre- and post-lesion experience can have an important effect on recovery /86,96,173,174/ and because the impact of certain drugs such as amphetamine is dependent on concomitant task-specific experience /60,62,86,87, 96,104,174/. The best understood putative cellular mechanism of learning and memory is long-term potentiation (LTP) /16/. Catecholamines influence the induction of LTP /103/ and have been implicated in learning and memory /56,161,169/. The administration of amphetamine both facilitates the development of LTP in a dose dependent manner /78/ and enhances memory retrieval /2/. The impact of other classes of drugs on recovery may also be predicted based on their effects on the induction of LTP /80/. For example, stimulation of inhibitory GABAergic inputs to the hippocampal formation /50,51/ as well as the administration of indirect GABA agonists (e.g., benzodiazepines) /154,162/ suppress the induction of LTP. The administration of benzodiazepines impairs learning and memory /123,156/ and they are detrimental if given during the recovery period. Acetylcholine would be expected to facilitate the induction of LTP by suppressing voltage-activated potassium conductance /37/. Activation of the muscarinic cholinergic receptor facilitates the induction of LTP in the rat dentate gyrus /28/. Anticholinergics are potent amnestic agents and impair motor recovery after cortex injury.

Despite the attractiveness of the re-learning hypothesis, it is clear that the effects of all drugs on recovery cannot by predicted solely on the basis of their impact on the induction of LTP. For example, β-adrenergic receptor antagonists interfere with LTP induction /44,45/. However, propranolol has no effect on motor recovery after sensorimotor cortex injury /66/. The development of LTP is mediated, at least in part, by the NMDA sub-type of glutamate receptor /37,181,198/. The administration of NMDA receptor antagonists blocks the induction of LTP, disrupts learning and memory /11,90,137/ and therefore would be expected to be particularly harmful during recovery. The administration of the NMDA receptor antagonist MK-801 reinstated sensory deficits in rats that had recovered from anteromedial frontal cortex injury /8/. However, as discussed above, we recently completed a series of experiments in which we were unable to demonstrate any effect of the MK-801 on beam-walking recovery after unilateral sensorimotor cortex suction-ablation lesions in the rat /82/.

In summary, no single hypothesis is consistent with all of the available behavioral data. The effects of drugs on the recovery process are complex and
could have an impact on a variety of pathologic sequellae and rapid adaptive responses.

Potential drug effects on slow adaptive responses to brain injury

Because the acute effects of certain drugs on behavioral recovery are long-lasting, the relatively rapidly developing physiologic effects must result in more permanent changes in neurons and their connections. Tissue injury can lead to activity-dependent, neuropeptide-mediated neuronal plasticity /52/. Neurotransmitters can have dramatic effects on neurite growth cone development and neurite elongation in vitro and on neural development in vivo (see /122/). In this regard, norepinephrine has been implicated in trophic changes in the central nervous system. The importance of norepinephrine in cortical plasticity was demonstrated by Kasamatsu and coworkers in a classic series of experiments /111/. These investigators used changes in visual cortex ocular dominance that followed brief monocular deprivation as an index of cortical plasticity. Local perfusion of 6-hydroxydopamine blocked the effects of monocular light deprivation in kittens. Local infusion of norepinephrine reinstated plasticity in animals that were no longer sensitive to visual deprivation. Norepinephrine released in the cerebral cortex from locus coeruleus projection fibers has been suggested to lead to synaptic plasticity that may encode learning /42/.

In contrast to the effects of norepinephrine, Schallert and coworkers have found that chronic administration of diazepam after anteromedial cortex injury in the rat has significant detrimental effects on subcortical structures receiving projections from the damaged regions /165/. The striatum was smaller and substantia nigra pars reticulata neuronal loss was greater ipsilateral to the cortex lesion in diazepam-treated animals /164,167/. Thus, both norepinephrine and GABA (in addition to a variety of other neurotransmitters /122/) may influence both rapid and longer-term adaptive responses to brain injury.

DRUGS AND FUNCTIONAL RECOVERY: CLINICAL STUDIES

The use of drugs to improve recovery after brain injury in humans had been attempted as early as the 1940s. More recent preliminary clinical studies indicate that many of the same drugs that influence recovery in laboratory animals have similar effects on recovery in humans.

Amphetamine facilitated recovery in humans

Anecdotal reports indicate that treatment with amphetamine improves cognitive function in young adults with post-traumatic organic brain syndrome /55,120/. Motivation in elderly patients refractory to rehabilitation procedures also improves with amphetamine treatment /34/. These effects are likely due to the stimulant effects of the drug. However, several other anecdotal reports and small controlled trials suggest that treatment with amphetamine may enhance functional recovery after focal brain injury under certain conditions.

A small prospective, double-blind study was carried out to determine whether amphetamine-facilitated motor recovery occurs in humans after stroke /41/. The study was carefully designed to simulate the paradigm used in the laboratory experimental studies. A group of eight patients with stable motor deficits within 10 days of ischemic stroke were randomized to receive either a single dose of amphetamine or placebo. Motor function was measured with a reliable and validated scale, the Fugl-Meyer Assessment /71/. Within three hours of drug administration, all of the patients underwent intensive physical therapy (i.e., drug administration was coupled with task-specific experience). The following day, the patients' abilities to use their affected limbs were reassessed. Overall, the amphetamine-treated group had a significant improvement in motor performance while there was little change in the placebo-treated group (Fig. 2). However, because this study involved only a small group of highly selected patients, the results may not be applicable to stroke patients with other types of deficits. Because only short-term motor recovery was measured, the longer-term efficacy of amphetamine treatment is unknown. Until recently, this study provided some of the only controlled data
of a beneficial effect of amphetamine treatment on motor recovery in humans.

Boruc and colleagues presented a preliminary report of a double-blind, placebo-controlled study designed to determine whether treatment with amphetamine would enhance motor recovery in patients undergoing inpatient stroke rehabilitation /18/. Five patients were treated with amphetamine and five received a placebo daily for 17 days with a final assessment one week after the last day of drug administration. The effect on motor performance was measured with the Fugl-Meyer Assessment. Although the final motor score was higher in amphetamine-treated patients (70±16 vs. 37±7), the difference was not statistically significant. In contrast to the prior trial, this study included a more heterogeneous group of stroke patients treated with amphetamine or placebo beginning a longer period of time after stroke. Importantly, it is uncertain whether the patients received physical therapy in conjunction with drug administration.

A second double-blind, placebo-controlled trial of the effects of amphetamine on motor recovery in rehabilitation patients has recently been performed /190/. This study also included five amphetamine-treated and five placebo-treated patients. Drug or placebo was given once every 4 days for 10 sessions beginning 15 to 30 days after stroke. Each dose was given in conjunction with a session of intensive physical therapy. Motor function was again measured with the Fugl-Meyer Assessment with the final evaluation one week after the last dose. Patients treated with amphetamine had significantly greater improvements in motor scores compared to placebo-treated patients (median change in Fugl-Meyer score of 26 vs 13 points, p=0.047). Although preliminary, these results suggest that amphetamine may enhance motor recovery in human stroke patients when drug administration is combined with task-relevant experience.

Speech pathologists have been particularly interested in studying the effects of drugs on language recovery after stroke. Preliminary studies indicate that the administration of bromocriptine improves fluency in certain aphasics /1,7,157/ and that treatment with amphetamine may accelerate recovery from aphasia in stroke patients /102/. A larger feasibility study of the effects of amphetamine on language recovery after stroke was recently carried out (Fig. 3) /191/. Six aphasic patients had language function rated with the Porch Index of Communicative Ability /148/ 10 to 30 days after stroke. Based on this initial evaluation, 6 month language scores were predicted for each patient. All patients were then given 10 mg of D-amphetamine followed by speech therapy every 4th day for 10 sessions. The patients' actual scores after 3 months were then compared with their 6 month predicted scores. Most patients achieved or exceeded their 6 month predicted scores by the time of the 3 month evaluation. A randomized prospective trial is now planned.

![Fig. 2: Amphetamine and motor recovery after stroke. In a double blind trial, eight patients with stable motor deficits were randomized to receive a single dose of 10 mg of D-amphetamine or placebo followed by physical therapy within 10 days of ischemic stroke. The differences in Fugl-Meyer scores between baseline and 24 hours after treatment for the amphetamine-treated stroke patients and controls are shown. See text for details. Modified from Crisostomo et al. /41/](image-url)
Other drugs and recovery in humans

Early reports suggested that cholinergic agents might facilitate recovery following brain injury in humans /145,186/. However, much of the data concerning the impact of cholinergic drugs on recovery of function is old and inadequate by current standards.

GM1-ganglioside has been the subject of clinical trials for the treatment of patients with a variety of neurologic disorders including a recent report of benefit in individuals with spinal cord injury /77/. Small trials in stroke patients suggest that the drug may be of some benefit /3,9,10/. However, the clinical significance of the reported effects in these studies is unclear and one trial failed to demonstrate any impact of the drug on recovery in stroke patients /101/. The preliminary results of a large clinical trial of GM1-ganglioside in the treatment of patients with acute stroke have recently been presented /161/.

"Deleterious" drugs after stroke

Although the previous discussion has focused on the use of drugs to enhance recovery after stroke, it is important to recognize that the laboratory studies suggest that some drugs may be detrimental (Table 2). We carried out a retrospective study of physician prescribing patterns to determine what drugs were used in the treatment of stroke patients /84/. Over 80% of individuals were taking at least one drug at the time of the stroke. Sixty-five percent of patients were receiving multiple drugs. Antihypertensives such as clonidine and prazosin and sedative hypnotics including benzodiazepines were among the most commonly prescribed agents (Fig. 4). Thus, several of the drugs that have deleterious effects on recovery of function in laboratory animals were commonly prescribed for stroke patients for the treatment of coincident medical conditions.

Determining whether the detrimental effects of drugs anticipated from laboratory studies also occur in humans recovering from stroke is difficult. Largely anecdotal reports indicate that treatment with haloperidol /63,149/ and certain antihypertensives /150/ may interfere with language recovery in patients with aphasia following stroke. We performed a retrospective study that tested the hypothesis that drugs that are harmful during recovery in laboratory animals would interfere with motor recovery in human stroke patients /88/. These potentially deleterious drugs included the antihypertensives clonidine and prazosin, neuroleptics, benzodiazepines, and phenytoin. The motor recoveries of stroke patients who received one or a combination of these drugs were compared to the recoveries of a similar group of patients who were not given any of these agents. The two groups
of patients were similar with respect to a variety of characteristics including age, blood pressure, gender, and medical comorbidity. Motor function was measured prospectively with the Fugl-Meyer Assessment by observers who were blind to the study hypothesis. Although the results of this study need to be interpreted with caution, patients who received one or a combination of the hypothesized “detrimental” drugs at the time of stroke or during the subsequent hospitalization had significantly slower motor recoveries than a comparable group of patients who did not receive one of these drugs (Fig. 5). A multivariate analysis indicated a significant effect of “drug group” after correcting for the contributions of other variables including the initial severity of the deficit.

![Graph](image)

Fig. 4: Drugs prescribed after stroke. The drugs prescribed for patients admitted to the hospital within 48 hours of a carotid distribution ischemic stroke were recorded /84/. The percentages of patients prescribed the indicated drugs are shown. This study indicates that several of the drugs that have deleterious effects on recovery of function in laboratory animals are commonly prescribed for stroke patients for the treatment of coincident medical conditions. From Goldstein /81/.

Fig. 5: “Detrimental” drugs and motor recovery after stroke. Motor function was measured prospectively with the Fugl-Meyer Assessment in a cohort of patients with ischemic stroke /71/. The medications taken by these patients at the time of stroke or during the subsequent hospitalization were determined by review of their medical records. The patients were then divided into two groups. One group (“detrimental” drug group) had received one or a combination of the drugs hypothesized to be harmful based on laboratory animal experiments (see text). The remaining patients, all of whom had received at least one drug, were included in the “neutral” drug group. Patients in the “detrimental” drug group had greater initial deficits and recovered motor function slower than patients in the “neutral” drug group. Reproduced from Goldstein et al. /88/.

SUMMARY

The development of an understanding of the basic neurobiology underlying functional recovery after focal brain injury is leading to new strategies for the treatment of patients with stroke and
traumatic brain injury. It is clear that certain drugs influence behavioral recovery in laboratory animals after brain injury. These drug effects can be either beneficial or detrimental. Similar drug effects may occur in humans. It is important to recognize that some of the drugs used to treat coexisting medical conditions may be harmful. Until we better understand the true impact of these potentially detrimental drugs on recovery, care should be exercised in the use of these drugs in the treatment of patients after brain injury. In combination with new treatments designed to limit acute damage and salvage injured neurons, new strategies aimed at facilitating functional recovery offer the hope of improved outcomes for the brain-injured patient.

REFERENCES

1. Albert ML, Bachman DL, Morgan A, Helm-Estabrooks N. Pharmacotherapy for aphasia. Neurology 1988; 38: 877-879.
2. Altman HJ, Quartermain D. Facilitation of memory retrieval by centrally administered catecholamine stimulating agents. Behav Brain Res 1983; 7: 51-63.
3. Argentino C, Sacchetti ML, Toni D, Savoini G, D'Arcangelo E, Emino F, Federico F, Milone FF, Gallai V, Gambi D, Mamoli A, Ottonello GA, Ponari O, Rebucci G, Senin U, Feischi C. GM1 ganglioside therapy in acute ischemic stroke. Stroke 1989; 20: 1143-1149.
4. Aroniadou VA, Tayler TJ. The role of NMDA receptors in long-term potentiation (LTP) and depression (LTD) in rat visual cortex. Brain Res 1991; 562: 136-143.
5. Artola A, Singer W. NMDA receptors and developmental plasticity in visual neocortex. In: Collingridge GL, Watkins JC, eds, The NMDA Receptor. Oxford: Oxford University Press, 1989; 153-166.
6. Bach-y-Rita P. Central nervous system lesions: Sprouting and unmasking in rehabilitation. Archives of Physical Medicine and Rehabilitation 1981; 62: 413-417.
7. Bachman DL, Morgan A. The role of pharmacotherapy in the treatment of aphasia. Aphasiology 1988; 3-4: 225-228.
8. Barth TM, Grant ML, Schallert T. Effects of MK-801 on recovery from sensorimotor cortex lesions. Stroke 1990; 21 (Suppl. III): 153-153-157.
9. Bassi S, Albizzati MG, Sbaczzi M, Frattola L, Massarotti M. Double-blind evaluation of monosialoganglioside (GM1) therapy in stroke. J Neurosci Res 1984; 12: 493-498.
25. Braun JJ, Meyer PM, Meyer DR. Sparing of a brightness habit in rats following visual cortical resection. J Comp Physiol Psychol 1986; 61: 79-82.

26. Buchan AM, Slivka A, Zue D. The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res 1992; 574: 171-177.

27. Bullock R, McColloch J, Graham DI, Lowe D, Chen MH, Teasdale GM. Focal ischemic damage is reduced by CPP-ene. Studies in two animal models. Stroke 1990; 21 (Suppl III): 33-34-43.

28. Burgarel EC, Sarvey JM. Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci Lett 1990; 116: 34-39.

29. Buytendijk FJJ. An experimental investigation into the influence of cortical lesions on the behaviour of rats. Arch Neerl Physiol L'Homme Anim 1932; 17: 370-434.

30. Carolei A, Fieschi C, Bruno R, Toffano G. Monosialogangioside GM1 in cerebral ischemia. Cerebrovasc Brain Metab Rev 1991; 3: 134-157.

31. Castella Y, dietrich WD, Watson BD, Busto R. Acute thrombotic infarction suppresses metabolic activation of ipsilateral somatosensory cortex: evidence for functional diaschisis. J Cereb Blood Flow Metab 1989; 9: 329-341.

32. Chollet F, DiPicco V, Wise RJS, Brooks DJ, Dolan RJ, Frackowiak RSI. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 1991; 29: 63-71.

33. Chweh AY, Swinyard EA, Wolf HH. Involvement of a GABAergic mechanism in the pharmacologic action of phenytoin. Pharmacol Biochem Behav 1986; 24: 1301-1304.

34. Clark ANG, Mankikar GD. d-Amphetamine in elderly patients refractory to rehabilitation procedures. J Am Geriatr Soc 1979; 27: 174-177.

35. Cohen BM, Lipinski JF. In vivo potencies of antipsychotic drugs in blocking alpha 1 noradrenergic and dopamine D2 receptors: implications for drug mechanisms of action. Life Sci 1986; 39: 2571-2580.

36. Colbourne F, Corbett D. Effects of d-amphetamine on the recovery of function following cerebral ischemic injury. Pharmacol Biochem Behav 1992; 42: 705-710.

37. Collingridge GL, Bliss TVP. NMDA receptors - their role in long-term potentiation. TINS 1987; 10: 288-293.

38. Corbett D. Long term potentiation of lateral hypothalamic self-stimulation following parabrachial lesions in the rat. Brain Res Bull 1980; 5: 637-642.

39. Cotman CW, Nieto-Sampedro M, Harris EW. Synapse replacement in the nervous system of adult vertebrates. Physiol Rev 1981; 61: 684-784.

40. Creese I, Burt D, Snyder S. Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 1977; 197: 596-598.

41. Crisostomo EA, Duncan PW, Propst MA, Dawson DB, Davis JN. Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann Neurol 1988; 23: 94-97.

42. Crow TJ. Cortical synapses and reinforcement: a hypothesis. Nature 1968; 219: 736-737.

43. Crutcher KA. Sympathetic sprouting in the central nervous system: a model for studies of axonal growth in the mature mammalian brain. Brain Res Rev 1987; 12: 203-233.

44. Dahl D, Sarvey JM. Norepinephrine induces pathway-specific long-lasting potentiation and depression in the hippocampal dentate gyrus. Proc Natl Acad Sci USA 1989; 86: 4776-4780.

45. Dahl D, Sarvey JM. Beta-adrenergic agonist induced long-lasting synaptic modifications in hippocampal dentate gyrus require activation of NMDA receptors, but not electrical activation of afferents. Brain Res 1990; 526: 347-350.

46. Davis JN. Neuronal rearrangements after brain injury: A proposed classification. In: Becker DP, Povlishock JT, eds, NIH Central Nervous System Trauma Status Report. Washington, D.C.: National Institutes of Health 1985; 491-501.

47. Davis JN, Arnett CD, Hoyler E, Stalvey LP, Daly JW, Skolnick P. Brain alpha-adrenergic receptors: comparison of [3H]WB4101 binding with norepinephrine-stimulated cyclic AMP accumulation in rat cerebral cortex. Brain Res 1978; 159: 125-135.

48. De Ryck M, Duyschaever H, Janssen PAJ. Ionic channels, cholinergic mechanisms, and recovery of sensorimotor function after neocortical infarcts in rats. Stroke 1990; 21 (Suppl III): III-158-III-163.

49. Dietrich WD, Alonso O, Busto R, Ginsberg MD. Influence of amphetamine treatment on somatosensory function of the normal and infarcted rat brain. Stroke 1990; 21 (Suppl III): III-147-III-150.

50. Douglas RM, Goddard GV, Rieves M. Inhibitory modulation of long-term potentiation: evidence for a postsynaptic locus of control. Brain Res 1982; 240: 259-272.

51. Douglas RM, McNaughton BL, Goddard GV. Commisural inhibition and facilitation of granule cell discharge in fascia dentata. J Comp Neurol 1983; 219: 285-294.

52. Dubner R, Ruda MA. Activity-dependent neuronal plasticity following tissue injury and inflammation. TINS 1992; 15: 36-103.

53. Duncan PW, Goldstein LB, Divine GW, Matchar DB, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 1992; 23: 1084-1089.

54. Emerich DF. Behavioral effects of gangliosides: anatomical considerations. J Neu Transplant Plast 1992; 3: 1-19.
55. Evans RW, Gualtieri CT, Patterson D. Treatment of closed head injury with psychostimulant drugs: A controlled case study as an appropriate evaluation procedure. J Nervous Mental Dis 1987; 175: 106-110.

56. Everitt BJ, Robbins TW, Gaskin M. The effects of lesions to ascending noradrenergic neurons on discrimination learning and performance in the rat. Neuroscience 1983; 10: 397-410.

57. Feeney DM. Pharmacologic modulation of recovery after brain injury: a reconsideration of diaschisis. J Neurol Rehab 1991; 5: 113-128.

58. Feeney DM, Baron J-C. Diaschisis. Stroke 1986; 17: 817-830.

59. Feeney DM, Gonzalez A, Law WA. Amphetamine restores locomotor function after motor cortex injury in the rat. Proc West Pharmacol Soc 1981; 24: 15-17.

60. Feeney DM, Gonzalez A, Law WA. Amphetamine haloperidol and experience interact to affect the rate of recovery after motor cortex injury. Science 1982; 217: 855-857.

61. Feeney DM, Hovda DA. Amphetamine restores tactile placing after motor cortex lesions. Fed Proc 1980; 39: 1095. (Abstract)

62. Feeney DM, Hovda DA. Reinstatement of binocular depth perception by amphetamine and visual experience after visual cortex ablation. Brain Res 1985; 342: 352-356.

63. Feeney DM, Sutton RL. Pharmacotherapy for recovery of function after brain injury. CRC Crit Rev Neurobiol 1987; 3: 135-197.

64. Feeney DM, Sutton RL. Catecholamines and recovery of function after brain damage. In: Stein DG, Sabel BA, eds. Pharmacological Approaches to the Treatment of Brain and Spinal Cord Injury. New York: Plenum Publishing Corp. 1988; 121-142.

65. Feeney DM, Sutton RL, Boyeson MG, Hovda DA, Dail WG. The locus-coeruleus and cerebral metabolism: Recovery of function after cortical injury. Physiol Psychol 1985; 13: 197-203.

66. Feeney DM, Westerberg VS. Norepinephrine and brain damage: alpha noradrenergic pharmacology alters functional recovery after cortical trauma. Canadian J Psychol 1990; 44: 233-252.

67. Finger S, Stein DG. Brain Damage and Recovery. New York: Academic Press 1982.

68. Fiorelli M, Blin J, Bakhchine S, Laplane D, Baron JC. PET studies of cortical diaschisis in patients with motor hemi-neglect. J Neurol Sci 1991; 104: 135-142.

69. Foerster AP. Spontaneous regeneration of cut axons in adult rat brain. J Comp Neurol 1982; 210: 335-356.

70. Frankowski RF, Fugl-Meyer AR, Jaasko L, Leyman I, Otson S, Steglin S. The post-stroke hemiplegic patient. I. A method for evaluation of physical performance. Scand J Rehab Med 1975; 7: 13-31.

71. Fuxe K, Ungerstedt U. Histochemical, biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration. In: Costa E, Garattini S, eds. Amphetamines and Related Compounds. New York: Raven Press, 1970; 257-288.

72. Geisler FH, Bjorklund A, Stenevi U. Local regulation of compensatory noradrenergic hyperactivity in the partially denervated hippocampus. Nature 1983; 819: 819-821.

73. Gold PE, Delanoy RL, Merrin J. Modulation of long-term potentiation by peripherally administered amphetamine and epinephrine. Brain Res 1984; 305: 103-107.

74. Goldstein LB. Amphetamine-facilitated functional recovery after stroke. In: Ginsberg MD, Dietrich WD, eds. Cerebrovascular Diseases. Sixteenth Research (Princeton) Conference. New York: Raven Press, 1989; 303-308.

75. Goldstein LB, Pharmacology of recovery after stroke. Stroke 1980; 21 (Suppl. III): III-139-III-142.

76. Goldstein LB, Pharmacologic modulation of recovery after stroke: clinical data. J Neuro Rehab 1991; 5: 129-140.

77. Goldstein LB, Davis JN. Physiologic prescribing patterns after ischemic stroke. Neurology 1988; 38: 1806-1809.

78. Goldstein LB, Davis JN. Clonidine impairs recovery of beam-walking in rats. Brain Res 1990; 508: 305-309.

79. Goldstein LB, Davis JN. Beam-walking in rats: studies towards developing an animal model of functional
recovery after brain injury. J Neurosci Methods 1990; 31: 101-107.

87. Goldstein LB, Davis JN. Post-lesion practice and amphetamine-facilitated recovery of beam-walking in the rat. Restorative Neurol Neurosci 1990; 1: 311-314.

88. Goldstein LB, Matchar DB, Morgenlander JC, Davis JN. The influence of drugs on the recovery of sensorimotor function after stroke. J Neuro Rehab 1990; 4: 137-144.

89. Goldstein LB, Poe HV, Davis JN. An animal model of recovery of function after stroke: Facilitation of recovery by an alpha2-adrenergic receptor antagonist. Ann Neurol 1989; 26: 157. (Abstract)

90. Handelmann GE, Contreras PC, O'Donohue TL. Selective memory impairment by phencyclidine in rats. Eur J Pharmacol 1987; 140: 69-73.

91. Haring JH, Davis JN. Retrograde labeling of locus coeruleus neurons after lesion induced sprouting of coeruleohippocampal projection. Brain Res 1986; 368: 233-238.

92. Haring JH, Miller GD, Davis JN. Changes in noradrenergic innervation of the area dentata after axotomy of coeruleohippocampal projections or unilateral lesion of the locus coeruleus. Brain Res 1986; 368: 233-238.

93. Harrell LE, Barlow TS, Davis JN. Sympathetic sprouting and recovery of spatial behavior. Exp Neurol 1983; 82: 379-390.

94. Harrell LE, Parson DS. The role of sympathetic ingrowth in the behavioral effects of nucleus basalis magnocellularis lesions. Brain Res 1988; 474: 353-358.

95. Hayes RL, Lyeth BG, Dixon CE, Stonnington HH, Bechker DP. Cholinergic antagonist reduces neurologic deficits following cerebral concussion in the rat. J Ceb Blood Flow Metab 1983; 5 (Suppl 1); S395-S396.

96. Held JM, Gordon J, Gentile AM. Environmental influence on locomotor recovery following cortical lesions in rats. Behav Neurosci 1985; 99: 678-690.

97. Hernandez TD, Jones GH, Schallert T. Co-administration of Ro 15-1788 prevents diazepam-induced retardation of recovery of function. Brain Res 1989; 487: 89-95.

98. Hernandez TD, Kiefel J, Barth TM, Grant ML, Schallert T. Disruption and facilitation of recovery of behavioral function: implication of the gamma-aminobutyric acid/benzodiazepine receptor complex. In: Ginsberg MD, Dietrich WD, eds. Cerebrovascular Diseases. The Sixteenth Research (Princeton) Conference. New York: Raven Press 1989; 327-334.

99. Hernandez TD, Schallert T. Seizures and recovery from experimental brain damage. Exp Neurol 1988; 102: 318-324.

100. Hernandez TD, Schallert T. Long-term impairment of behavioral recovery from cortical damage can be produced by short-term GABA-agonist infusion into adjacent cortex. Restorative Neurol Neurosci 1990; 1: 323-330.

101. Hoffbrand BI, Bingley PJ, Oppenheimer SM, Sheldon CD. Trial of GM1 in acute stroke. J Neurol Neurosurg Psychiatry 1988; 51: 1213-1214.

102. Homan R, Panksepp J, Badia P, Borroughs E, Chapman L, Conner R. d-Amphetamine effects on language and motor behaviors in a chronic stroke patient. Soc Neurosci Abstr 1990; 16: 439. (Abstract)

103. Hopkins WF, Johnston D. Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science 1984; 226: 350-352.

104. Hovda DA, Feeney DM. Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat. Brain Res 1984; 298: 358-361.

105. Hovda DA, Feeney DM. Haloperidol blocks amphetamine induced recovery of binocular depth perception after bilateral visual cortex ablation in the cat. Proc West Pharmacol Soc 1985; 28: 209-211.

106. Hovda DA, Sutton RL, Feeney DM. Amphetamine-induced recovery of visual cliff performance after bilateral visual cortical ablation in cats: Measurements of depth perception thresholds. Behav Neurosci 1989; 103: 574-584.

107. Hurwitz BE, Dietrich WD, McCabe PM, Watson BD, Ginsberg MD, Schneiderman N. Amphetamine enhances behavioral recovery from sensory-motor deficit resulting from infarction of primary somatosensory cortex. Soc Neurosci Abstr 1988; 14: 1132 (Abstract).

108. Hurwitz BE, Dietrich WD, McCabe PM, Watson BD, Ginsberg MD, Schneiderman N. Amphetamine-accelerated recovery from cortical barrel-field infarction: Pharmacological treatment of stroke. In: Ginsberg MD, Dietrich WD, eds. Cerebrovascular Diseases. The Sixteenth Research (Princeton) Conference. New York: Raven Press 1989; 309-318.

109. Jaspers RMA, Van Der Sprenkel JWB, Tulleken CAF, Cools AR. Local as well as remote functional and metabolic changes after focal ischemia in cats. Brain Res Bull 1990; 24: 23-32.

110. Jones TA, Schallert T. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res 1992; 581: 156-160.

111. Kasamatsu T, Pettigrew JD, Ary M. Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J Comp Neurol 1979; 185: 163-182.

112. Katzman R, Clasen R, Klatoz I, Meyer JS, Pappins HM, Waltz AG. Report of Joint Committee for Stroke Resources. IV. Brain edema in stroke. Stroke 1977; 8: 512-540.

113. Keller A, Iriki A, Asasuma H. Identification of neurons producing long-term potentiation in the cat motor cortex: Intracellular recordings and labeling. J Comp Neurol 1990; 300: 47-60.
114. Kinsella G, Ford B. Acute recovery patterns in stroke patients. Med J Aust 1980; 2: 662-666.
115. Kochhar A, Zivin JA, Lyden PD. Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia. Arch Neurol 1988; 45: 148-153.
116. Kromer LF. Nerve growth factor treatment after brain injury prevents neuronal death. Science 1987; 235: 214-216.
117. Lashley KS. Brain Mechanisms and Intelligence. Chicago: University of Chicago Press 1929.
118. Lenzi GL, Frackowiak RSJ, Jones T. Cerebral oxygen metabolism and blood flow in human cerebral infarction. J Cereb Blood Flow Metab 1982; 2: 321.
119. Lincoln NB, Blackburn M, Ellis S, Jackson J, Edmans JA, Nouri FM, Walter MF, Haworth H. An investigation of factors affecting progress of patients on a stroke unit. J Neurol Neurosurg Psychiatry 1989; 52: 493-496.
120. Kipper S, Tuchman MM. Treatment of chronic post-traumatic organic brain syndrome with dextroamphetamine: first reported case. J Nervous Mental Dis 1976; 162: 366-371.
121. Kipton SA. Growth factors for neuronal survival and process regeneration. Implications for the mammalian central nervous system. Arch Neurol 1989; 46: 1241-1248.
122. Lipton SA, Kater SB. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. TINS 1989; 12: 265-270.
123. Lister R. The amnesic action of benzodiazepines in man. Neurosci Biobehav Rev 1985; 9: 87-93.
124. Loewen SC, Anderson BA. Predictors of stroke outcome using objective measurement scales. Stroke 1990; 21: 702-710.
125. Marshall LF, Marshall SB. Epidemiological and descriptive studies. Part II: Current clinical head injury research in the United States. In: Becker DP, Povlishock JT, eds. Central Nervous System Trauma Status Report. Bethesda: National Institutes of Health, 1985; 45-51.
126. Martin WRW, Raichle ME. Cerebellar blood flow and metabolism in cerebral hemisphere infarction. Ann Neurol 1983; 14: 168-176.
127. Mathew RJ, Wilson WH. Dextroamphetamine-induced changes in regional cerebral blood flow. Psychoarmacology 1985; 87: 298-302.
128. McCulloch J, Harper AM. Cerebral circulatory and metabolism changes following amphetamine administration. Brain Res 1977; 121: 196-199.
129. Meyer PM, Horel JA, Meyer DR. Effects of d-amphetamine upon placing responses in neodecorticate cats. J Comp Physiol Psych 1963; 56: 402-404.
130. Morris RGM, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 1986; 319: 774-776.
131. Moskowitz MA, Weiss BF, Lytle LD, Munro HN, Wurtman RJ. D-Amphetamine disaggregates brain polysomes via a dopaminergic mechanism. Proc Natl Acad Sci USA 1975; 72: 834-836.
132. Newman M. The process of recovery after stroke. Stroke 1972; 3: 702-710.
133. Ortiz A, MacDonall JS, Wakade CG, Karpiai SE. GM1 ganglioside reduces cognitive dysfunction after focal cortical ischemia. Pharmacol Biochem Behav 1990; 37: 679-684.
134. Ozurt E, Graham DI, Woodruff GN, McCulloch J. Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 1988; 8: 138-143.
135. Pappata S, Mazoyer B, Dinh T, Cambon H, Levasseur M, Baron JC. Effects of capsular or thalamic stroke on metabolism in the cortex and cerebellum: a positron tomography study. Stroke 1990; 21: 519-524.
136. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J. Focal cerebral ischemia in the cat: Treatment with the glutamate antagonist MK-801 after induction of ischemia. J Cereb Blood Flow Metab 1988; 8: 757-762.
137. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J. The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 1988; 24: 543-551.
138. Perelman LB. The pharmacological treatment of motor and sensory disorders after trauma to the central nervous system. Sov Med 1947; No. 8-9.
139. Peroutka SJ, U'Pritchard DC, Greenberg DA, Snyder SH. Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacology 1977; 16: 549-556.
140. Pickel VM, Krebs H, Bloom FE. Proliferation of norepinephrine-containing axons in rat cerebellar cortex after peduncle lesions. Brain Res 1973; 59: 169-179.
148. Porch B. The Porch Index of Communicative Ability. Administration, Scoring, and Interpretation. 3rd ed, Palo Alto: Consulting Psychologists Press 1981.

149. Porch B, Wyckes J, Feeney DM. Haloperidol, thiazides, and some antihypertensives slow recovery from aphasia. Soc Neurosci Abstr 1985; 11: 52. (Abstract)

150. Porch BE, Feeney DM. Effects of antihypertensive drugs on recovery from aphasia. Clin Aphasiology 1986; 16: 309-314.

151. Prado de Carvalho L, Zornetzer SF. The involvement of the locus ceruleus in memory. Behav Neural Biol 1981; 31: 173-186.

152. Raisman G. Neuronal plasticity in the septal nuclei of the adult rat. Brain Res 1969; 14: 25-48.

153. Raisman G, Field PM. A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res 1973; 50: 241-264.

154. Riches IP, Brown MW. The effect of lorazepam upon hippocampal long-term potentiation. Neurosci Lett 1986; 842-S50.

155. Rimel RW, Giordani MA, Barth TJ, Jane JA. Moderate head injury: completing the clinical spectrum of brain trauma. Neurosurgery 1982; 11: 344-351.

156. Roth T, Roehrs T, Wittig R, Zorick F. Benzodiazepine and memory. Br J Clin Pharmacol 1984; 18 (Suppl): 45S-49S.

157. Sabe L, Leiguarda R, Starkstein SE. An open-label trial of bromocriptine in nonfluent aphasia. Neurology 1992; 42: 1637-1638.

158. Sabel BA, Dunbar GL, Stein DG. Gangliosides minimize behavioral deficits and enhance structural repair after brain injury. J Neurosci Res 1984; 12: 429-443.

159. Sabel BA, Slavin MD, Stein DG. GM1 ganglioside treatment facilitates behavioral recovery from bilateral brain damage. Science 1994; 225: 340-342.

160. Salo AA, Feeney DM. Reduction of morbidity, mortality, and lesion size in a rat model of cerebral infarction with amphetamine. Soc Neurosci Abstr 1987; 13: 1268 (Abstract).

161. SASS Study Group. The Sygen (GM1) acute stroke study (SASS). J Stroke Cerebrovasc Dis 1992; 2 (Suppl. 1): S12 (Abstract).

162. Satoh M, Ishihara K, Iwama T, Takagi H. Aniracetam augments, and midazolam inhibits, the long-term potentiation in guinea-pig hippocampal slices. Neurosci Lett 1986; 68: 216-220.

163. Schallert T, Hernandez TD, Barth TM. Recovery of function after brain damage: Severe and chronic disruption by diazepam. Brain Res 1986; 379: 104-111.

164. Schallert T, Jones TA, Lindner MD. Multi-level transneuronal degeneration after brain damage: behavioral events and effects of GABAergic drugs. Stroke 1990; 21 (Suppl III): III-143-III-157.

165. Schallert T, Jones TA, Weaver MS, Shapiro LE, Crippens D, Fulton R. Pharmacologic and anatomic considerations in recovery of function. Phys Med Rehab 1992; 6: 375-393.

166. Schneider GE, Jhaveri SR. Neuroanatomical correlates of spared or altered function after brain lesion in newborn hamster. In: Plasticity and Recovery of Function in the Central Nervous System. New York: Academic Press 1974; 65-109.

167. Sims JS, Jones TA, Fulton RL, Shapiro LE, Lindner MD, Schallert T. Benzodiazepine effects on recovery of function linked to trans-neuronal morphological events. Soc Neurosci Abstr 1990; 16: 342. (Abstract)

168. Slater R, Reivich M, Goldberg H, Banka R, Greenberg J. Diaschisis with cerebral infarction. Stroke 1977; 8: 684-690.

169. Stein L, Beluzzi JD, Wise CD. Memory enhancement by central administration of norepinephrine. Brain Res 1975: 84: 329-335.

170. Steinberg GK, George CP, De La Paz R, Shibata DK, Gross T. Dextromethorphan protects against cerebral injury following transient focal ischemia in rabbits. Stroke 1989; 19: 1112-1118.

171. Steinberg GK, Saleh J, Kunis D. Delayed treatment with dextromethorphan and dextropropoxyphene reduces cerebral damage after transient focal ischemia. Neurosci Lett 1988; 89: 193-197.

172. Steinberg GK, Saleh J, Kunis D, De La Paz R, Zarnegar SR. Protective effect of N-methyl-D-aspartate antagonists after focal cerebral ischemia in rabbits. Stroke 1989; 20: 1247-1252.

173. Stephens J. Rat model for studying recovery from brain injury: Training and assistance facilitate recovery. Phys Ther 1986; 66: 781-780.

174. Stephens J. Effects of assistance, practice, and learning rate on recovery from sensorimotor cortex lesions in rats. Soc Neurosci Abstr 1986; 12: 1285 (Abstract).

175. Stephens J, Goldberg G, Demopoulos JT. Clonidine reinstates deficits following recovery from sensorimotor cortex lesion in rats. Archives of Physical Medicine and Rehabilitation 1986; 67: 666-667.

176. Stewart O, Cotman CW, Lynch GS. Re-establishment of electrophysiologically functional entorhinal cortical input to the dentate gyrus deafferented by ipsilateral entorhinal lesions: innervation by the contralateral entorhinal cortex. Exp Brain Res 1973; 18: 396-414.

177. Sutton RL, Feeney DM. Yohimbine accelerates recovery and clonidine and prazosin reinnstate deficits after recovery in rats with sensorimotor cortex ablation. Soc Neurosci Abstr 1987; 13: 913 (Abstract).

178. Sutton RL, Feeney DM. a-Noradrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after sensorimotor cortex ablation in the rat. Restorative Neurol Neurosci 1992; 4: 1-11.
179. Sutton RL, Hovda DA, Feeney DM. Amphetamine accelerates recovery of locomotor function following bilateral frontal cortex ablation in cats. Behav Neurosci 1989; 103: 837-841.

180. Sutton RL, Hovda DA, Feeney DM. Intracerebral chromafin cell autografts accelerate functional recovery in adult cats unilateral frontal cortex ablation. Brain Dysfunct 1989; 2: 201-210.

181. Swanson LW, Teyley TJ, Thompson RF. Hippocampal long-term potentiation: Mechanisms and implications for memory. Neurosci Res Prog Bull 1982; 20: 601-769.

182. Tanaka M, Kondo S, Hirai S, Ishiguro K, Ishihara T, Morimatsu M. Crossed cerebellar diaschisis accompanied by hemiataxia: a PET study. J Neurol Neurosurg Psych 1992; 55: 121-125.

183. Theodore DR, Meier-Ruge W, Abraham J. Microvascular morphometry in primate diaschisis. Microvas Res 1992; 43: 147-155.

184. Tonder N, Sorensen T, Zimmer J, Jorgensen MB, Johansen FF, Diemer NH. Neuronal grafting to ischemic lesions of the adult rat hippocampus. Exp Brain Res 1989; 74: 512-526.

185. Tsukahara N, Hultborn H, Murakami F, Fujito Y. Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. J Neurophysiol 1975; 38: 1359-1372.

186. van Woerkom TCAM, Minderhoud JM, Gottschal T, Nicolai G. Neurotransmitters in the treatment of patients with severe head injuries. Eur Neurol 1982; 21: 227-234.

187. von Monakov C. Die lokalisation im grosshirn und der abbau der funktion durch kortikale herde. Wiesbaden: J.F. Bergmann 1914.

188. Wade DT, Langton HR, Wood VA, Skilbeck CE, Ilsmail HM. The hemiplegic arm after stroke: Measurement and recovery. J Neurol Neurosurg Psych 1983; 46: 521-524.

189. Wade DT, Wood VA, Hewer RL. Recovery after stroke - The first three months. J Neurol Neurosurg Psych 1985; 48: 7-13.

190. Walker-Batson D, Smith P, Unwin H, Curtis S, Allen E, Wood M, Hembree J, Reynolds S, Greenlee RG. Amphetamine paired with physical therapy accelerates motor recovery following stroke: further evidence. 1992. (unpublished)

191. Walker-Batson D, Unwin H, Curtis S, Allen E, Wood M, Smith P, Devous MD, Reynolds S, Greenlee RG. Use of amphetamine in the treatment of aphasia. Restorative Neurol Neurosci 1992; 4: 47-50.

192. Wall PD. Mechanisms of plasticity of connection following damage in adult mammalian nervous systems. In: Bach-y-Rita P, ed, Recovery of function: theoretical considerations for brain injury rehabilitation. Baltimore: University Park Press 1978; 91-105.

193. Ward AA Jr., Kennard MA. Effect of cholinergic drugs on recovery of function following lesions of the central nervous system in monkeys. Yale J Biol & Med 1942; 15: 189-228.

194. Watson CW, Kennard MA. The effect of anticonvulsant drugs on recovery of function following cerebral lesions. J Neurophysiol 1945; 8: 221-231.

195. Weaver MS, Farmer LF, Feeney DM. Norepinephrine receptor agonists and antagonists influence rate and maintenance of recovery of function after sensorimotor cortex contusion in the rat. Soc Neurosci Abstr 1987; 13: 477 (Abstract).

196. Weiller C, Chollet F, Friston KJ, Wise RJS, Frackowiak RSJ. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992; 31: 463-472.

197. Weiner N. Norepinephrine, epinephrine, and the sympathomemetic amines. In: Gilman AG, Goodman LS, Rall TW, Murad F, eds, The Pharmacological Basis of Therapeutics. New York: Macmillian Publishing Co., Inc. 1985.

198. Wenk GL, Grey CM, Ingram DK, Spangler EL, Olton DS. Retention of maze performance inversely correlates with N-methyl-D-aspartate receptor number in hippocampus and frontal neocortex in the rat. Behav Neurosci 1989; 103: 688-690.

199. Zieher RS. Short-term synaptic plasticity. Ann Rev Neurosci 1989; 12: 13-31.