RESEARCH ARTICLE

Characterization and performance of castor bean lineages and parents at the UFRB germplasm bank

Adielle Rodrigues da Silva*, Simone Alves Silva¹, Laurenice Araujo dos Santos¹, Deoclides Ricardo de Souza¹, Gilmar de Melo Araujo¹, Jorge Luiz Loyola Dantas², Elton da Silva Leite¹, Ana Cristina Vello Loyola Dantas¹

¹ Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia (UFRB), Cruz das Almas, BA, Brasil, ² Embrapa Mandioca e Fruticultura, Cruz das Almas, BA, Brasil

* adi.elle@hotmail.com

Abstract

The objective of this work was to characterize 203 lineages and five parents of Ricinus communis L. from the germplasm bank at the Federal University of Recôncavo da Bahia (UFRB), which was established by the Genetic Improvement and Biotechnology Program (NBIO) at the Center for Agrarian, Environmental and Biological Sciences. The study used 35 morpho-agronomic descriptors, proposed by the Ministry of Agriculture, Livestock and Supply, and 12 quantitative descriptors suggested by NBIO. The experiment was conducted in a randomized block design, composed of four blocks, in the experimental field at UFRB in 2014. The frequency and entropy level of the qualitative descriptors were estimated with the Renyi procedure, and an analysis of variance was used for the quantitative descriptors. The analyses were made with the statistical program R. Of the qualitative morpho-agronomic descriptors evaluated, 22.86% had a high level of entropy (above 1.0), and all 12 quantitative descriptors showed significant differences. This indicates genetic variability in the germplasm bank and a satisfactory performance for most of the descriptors evaluated, as well as the possibility of direct and indirect use of the lineages and parents in genetic improvement programs of the species.

Introduction

Castor bean (Ricinus communis L.) is a socially and economically important plant because the oil extracted from its seeds has unique chemical properties that make it widely useful, for example, to the biomedical and chemical industries, and to produce biodiesel [1]. Morphological descriptors of this species are highly variable, such as the color of the leaves, stems, stigma and fruits, and presence or absence of wax on the stem and fruits [2, 3]. Based on this, it is important to characterize the castor bean germplasm in banks because understanding the different genetic constituents of the germplasm will aid the immediate development of new cultivars and future genetic improvement programs.

One form of characterization is morpho-agronomic, which consist of describing morphological characters of a species, has the advantage of being inexpensive compared to other
characterization types, is based on the phenotype, and results in a greater amount of information. Various works have used this technique to characterize many species, for example, in studies of castor bean by [4, 5, 6]. In these works, variability was verified for most of the descriptors evaluated, proving that the species presents highly variable morpho-agronomic descriptors. Thus, qualitative and quantitative descriptors contribute to morpho-agronomic characterization, mainly when evaluating performance among lineages.

In this sense, due to the great variability of the germplasm, both morphological and demographic characterizations are crucial for the effective management of the collections of germplasm to facilitate the use of accessions in future breeding programs [7].

The morpho-agronomic characterization can be evaluated by several methods, including the entropy level by the Renyi coefficient, which is a measure of the frequency of distribution of the lineages in each of the phenotypic classes of the qualitative descriptor evaluated, indicating the presence or absence of variability. This methodology applied by [7] to morphological descriptors and found in the Embrapa Cerrados cassava germplasm Bank a high level of entropy for the descriptors external stem color, petiole color, central lobe shape and color of the apical leaf. Some studies have applied the methodology of frequency analysis of the phenotype classes in castor bean, such as that of [6], showing variability in the characters coloring, racemic shape and type of branching, fruit density, dehiscence and the presence of spines. Accessions evaluated are sources of germplasm for breeding programs. Already [8] characterized 40 Kashmiri apricot genotypes for 28 morphological characteristics and found a high level of variability. Characteristics of the fruit, such as size, shape, fruit volume, skin color and meat, which determine the quality and commercialization of apricots.

This work evaluated and morpho-agronomically characterized 203 lineages and five parents from the castor bean germplasm bank (BAG) of the Genetic Improvement and Biotecnology Program (NBIO), which is part of the Center for Agrarian, Environmental and Biological Sciences (CCAB) at the Federal University of Recôncavo da Bahia (UFRB). The study used morpho-agronomic descriptors proposed by the Ministry of Agriculture, Livestock and Supply (Mapa) and NBIO.

Material and methods

Characterization of the area

The study was conducted from 2014 to 2015 in the experimental area of CCAB at UFRB, on the campus of Cruz das Almas—BA. The municipality (12°40'39" S, 39°40'23" W) is at 220 m elevation and has an average temperature of 24.5°C, relative humidity of 82%, and annual rainfall of 1,197 mm. According to the Köppen classification system, the climate in the region is a transition zone between Am (monsoon climate) and Aw (clima tropical com estação seca de Inverno) (type C1), and is dry and subhumid. The soil in the experimental field is classified as a dystrophic yellow latosol A—moderate sandy clay texture [9].

Plant material

Castor bean lineages maintained in the BAG of UFRB/CCAB/NBIO were evaluated using phenotypic characters (morphological and agronomic descriptors). The study population was an advanced generation with a high level of homogeneity developed by the castor bean Genetic Improvement Program of NBIO at UFRB. It was obtained by self-fertilization using single seed descent (SSD), where the segregating F₂ population was acquired by self-fertilization of the F₁ population that resulted from the hybridization of diverse parental accessions (BRS 149 Nordestina, BRS 188 Paraguacu, EBDA MPA-17, Mirante 10, and Sipeal 28) [10].

Funding: This work was supported by Petrobras Biocombustível and the National Petroleum, Natural Gas and Biofuels Agency (ANP), the Federal University of Recôncavo da Bahia (UFRB) and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Competing interests: The authors have declared that no competing interests exist.
There were 208 treatments, comprising 203 lineages and five parents. The experiment was in a randomized block design, with four repetitions, 3 m of space between rows, 1 m between plants, and 2 meters between blocks.

The planting area was fertilized with 20 kg ha\(^{-1}\) of N, 80 kg ha\(^{-1}\) of P, and 40 kg ha\(^{-1}\) of K. In May 2014, three seeds of each lineage and each parent were planted in pits. Twenty-five days after germination the seedlings were thinned to 1 plant per pit.

During the experiment, spontaneous plants were controlled with manual weeding and two cover fertilizers were applied, urea and potassium chloride in the proportion of 2:1 (20 g and 10 g per plant), respectively. Gray mold (Amphobotrys ricini) during flowering was controlled with fungicides.

Characterization morpho-agronomic at the germplasm bank

Each lineage was morphologically characterized while it developed in the field, which was based on phenotypic classes of descriptors presented in the “Formulaário de Instruções para Execução dos Ensaios de Distinguidibilidade, Homogeneidade e Estabilidade de Cultivares de Mamona (Ricinus communis L.)” published by Mapa [11], images in “Documento 192” published by Embrapa [12], and descriptors suggested by NBIO (Table 1).

For the descriptors with distinct classes that were easily visualized, illustrative records were made by taking photographs. To take the best images, photographs were taken at the end of

| Table 1. Descriptors of castor bean proposed by Mapa [11] and NBIO. |
|-----------------------------|------------------------|------------------------|
| **Descriptors** | **Evaluation** | **Phenotypic classes** |
| Up to 10 days after emergence. | | |
| 1. Anthocyanin Pigmentation (AP). | Observe visually for the presence or absence of anthocyanin pigmentation in the hypocotyl. Fig 1(A), 1(B) and 1(C). | 1. Absent. 2. Present. |
| Full flowering of the primary raceme. | | |
| 2. Insertion of the Primary Raceme (IPR). | Measurement from the soil to the first point of the primary raceme. | 1. Low (< 50 cm). 2. Middle (51 to 100 cm). 3. High (> 100 cm). |
| 3. Stem Diameter (SD). | The middle third of the stem, using a digital caliper. | 1. Thin (< 3 cm). 2. Medium (3 to 6 cm). 3. Thick (> 5 cm). |
| 4. Average Internode Length (AIL). | Obtained from NIC/IRP. | 1. Short (< 2 cm). 2. Medium (3 to 5 cm). 3. Long (> 5 cm). |
| 5. Number of Stem Internodes (NSI). | Count the number of scars on the stem. | 1. Low (up to 15). 2. Medium (16 to 18). 3. High (> 19). |
| 6. Stem Wax (SW). | Record the presence or absence of wax on the stem. | 1. Absent. 2. Present. |
| 7. Stem Coloration (SC). | Based on images in Document 192 by Embrapa [9] and the phenotypic classes of Mapa [11]. Fig 1(D), 1(E), 1(F), 1(G), 1(H) and 1(I). | 1. Light green. 2. Medium green. 3. Dark green. 4. Pinkish green. 5. Pinkish. 6. Red. 7. Reddish brown. 8. Purple. |

(Continued)
Table 1. (Continued)
8. Adaxial Leaf Surface (ALS). The curvature of the adaxial surface of the leaf blade.
9. Pigmentation of Primary Veins (PPV). Coloration of the veins on the abaxial surface of mature leaves. Fig 2(A) & 2(B).
10. Wax on Adaxial Blade Surface (WABS). Observe the presence or absence of wax on the adaxial surface of mature leaves.
11. Coloration of the Adaxial Blade Surface (CABS). Color of the adaxial blade surface of mature leaves below primary raceme. Fig 2(C), 2(D) and 2(E).
12. Staminate Flowers on the Raceme (SFR). Verify the presence or absence of staminate flowers.
13. Location of Staminate Flowers (LSF). Observe if the staminate flowers are above, below or interspersed with the pistillate flowers on the primary raceme.
14. Stigma Coloration (SC). Observe the color of the stigmas, before pollination, on the primary raceme. Fig 2(F), 2(G), 2(H), 2(I), 2(J) and 2(K).

From the time of emergence to the initial pistillate flowering on the primary raceme.

| 15. Flowering (FLO). Subtraction of the date of germination from the date of flowering. | 1. Precocious (up to 30 days). 2. Medium (31 to 60 days). 3. Late (Over 60 days). |

Full flowering of the last commercial inflorescence.

16. Plant Stature (PS). Measurement from the soil to the highest branch of the plant.	1. Very short (< 100 cm). 2. Short (101 to 150 cm). 3. Medium (151 to 200 cm). 4. Tall (201 to 250 cm). 5. Very tall (> 250 cm).
17. Plant Architecture (PA). Photograph the plant for analysis. Fig 3(A), 3(B) and 3(C).	1. Erect. 2. Semierect. 3. Open.
18. Number of Racemes Harvested (NRH). Count number of racemes emitted by each plant.	1. Low (≤ 3). 2. Medium (4 to 7). 3. High (≥ 7).
19. Length of Primary Raceme (LPR). Measure with a ruler from the apex of the 1st raceme to the scar of the first node.	1. Short (< 31 cm). 2. Medium (31 to 50 cm). 3. Long (> 51 cm).

Immature fruits on the primary raceme.

(Continued)
Table 1. (Continued)

Characterization of germplasm bank
20. Density of the Raceme (DR).
21. Raceme Shape (RS).
22. Fruit Wax (FW).
23. Fruit Coloration (FC).
24. Presence of Prickles on the Fruits (PPF).
25. Density of the Prickles on the Fruits (DPF).
26. Coloration of the Fruit Prickles (CFP).
Mature fruits or racemes.
27. Fruit Dehiscence (FD).
Seeds harvested from mature fruits
28. Presence of Secondary Coloration (PSC).
29. Main Seed Coloration (MSC).
30. Secondary Coloration of Seeds (SCS).
31. Type of Secondary Coloration (TSC).
32. Seed Shape (SS).
33. Caruncle Protuberance (PDC).

(Continued)
day when it was cloudy, so there was no interference from sunlight, and semiprofessional equipment was used (digital camera with 18–105 mm lens).

For the qualitative descriptors, the percentage frequencies of each category and the level of entropy of the characters (H) were calculated using the Renyi coefficient

$$H = - \sum_{i=1}^{s} p_i \ln p_i$$

The entropy is a measurement of the frequency of the distribution of (n) lineages $P = (p_1, p_2 \ldots p_s)$, where $p_1 = f_1/n$ and $(p_1 + p_2 + \ldots + p_s = 1)$, as long as $(n = f_1 + f_2 + \ldots + f_s)$, and $f_1, f_2, \ldots f_n$ are the counts of each of the classes (s) of the descriptor considered [8]. For the quantitative descriptors, an analysis of variance was conducted to verify the level of variability. The analysis was made with the statistical program R [13].

Results and discussion

According to [8], the entropy level (H) is related to the number of phenotypic classes and the ratio of these classes. The more classes there are and the more balanced the ratio between the frequencies, the higher the H. Thus, for a descriptor with two classes the highest H will occur when each class includes 50% of the accessions.

Table 2 lists the entropy level and frequency of the 35 qualitative descriptors evaluated. Of these, only anthocyanin pigmentation, wax on adaxial blade surface, presence of prickles on the fruits, presence of secondary coloration on the seed, and location of the staminate flowers on the raceme had one phenotypic class. Anthocyanin pigmentation was present in 100% of the population; however, visually some plants were more intense than others. [14] in a work.

Table 1. (Continued)

Descriptors Suggested by NBIO (2014)	Evaluation
34. Weight of 100 seeds at 9% moisture content (W100).	Moisture content of seeds based on RAS [31] using a dryer at 105°C and the rule of three to determine the weight of 100 seeds at 9% moisture content.
35. Seed Yield per Fruit (SYF).	Percentage of weight of the seeds divided by the weight of the fruits.
36. Number of Fruits per Raceme (NFR).	Average count of the number of fruits on the first four racemes.
37. Number of Seeds on the Primary Raceme (NSPR).	Count of the number of seeds on the primary raceme.
38. Number of Seeds per Raceme (NSR).	Average count of the number of seeds from the first four racemes.
39. Seed Weight per Raceme (SWR).	Average weight of the seeds of the first four racemes, using an analytical balance.
40. Seed Weight per Plant (SWP).	Sum of the weight of the seeds from the first four racemes, using an analytical balance.
41. Number of Fruits per Plant (NFP).	Count of the number of fruits on the first four racemes.
42. Number of Seeds per Plant (NSP).	Count of the number of seeds from the first four racemes.
43. Weight of the Racemes per Plant (WRP).	Weight of the first four racemes, using an analytical balance.
44. Weight of the Fruits per Raceme (WFR).	Average weight of the fruits from the first four racemes, using an analytical balance.
45. Productivity (PROD).	Calculated estimate of kg ha⁻¹ for each plant.
46. Raceme Length (RL).	Average length of the first four racemes.
47. Effective Length of the Raceme (ELR).	Measurement from the apex of the raceme to the last peduncle.

https://doi.org/10.1371/journal.pone.0209335.t001
about anthocyanin concentration in *Pseudobombax marginatum* using spectrophotometry, noted that low concentrations of anthocyanins could result in the absence of strong coloration. In turn, [15] explains that regardless of anthocyanin intensity, the stem staining inheritance is of a monogenic nature in that green staining is controlled by recessive alleles over dominant red staining. [16] The presence of this character has been related to resistance to *Fusarium* and some pests.

According to [8], in a work that morpho-agronomically characterized the germplasm of cassava, the elevated entropy of some descriptors used was due to the absence of agronomic interest in them. These descriptors where never used as selection criteria, either consciously in genetic breeding programs or unconsciously at the beginning of domestication of the species, and, for this reason, they maintain a high variability of classes.

Based on this, among the 35 qualitative descriptors evaluated, 22.86% exhibited diverse phenotypic classes that contributed to an elevated H: stigma coloration (1.11), with four phenotypic classes; coloration of the fruit prickles (1.69), with seven classes; main seed color (1.67), with nine classes; secondary seed coloration (1.22), with seven classes; and stem coloration (1.70), with eight classes, where the highest frequency was the light green class (30.77%) and the lowest was the red class (0.96%).

According to [15], red is controlled separately by a single dominant gene. [6] also found variability in stem color of castor bean, where 66.66% of the accessions evaluated had pink stems. Probably, the variability of classes for this descriptor is due to a lack of preference for a specific color by the people who domesticated the plant. However, in the present work the elevated H for adaxial leaf surface (1.01), plant architecture (1.07), and number of stem internodes (NSI = 1.07) is due to the balanced frequencies among the classes of these descriptors. In relation to NSI, [17] commented that castor bean plants under conditions of excess water have more internodes.

It is important to characterize the germplasm in field conditions to verify its performance in normal conditions, [18] evaluating 100 accessions of sorghum sorghum verified a significant contribution of morphological and agroindustrial characteristics related to the production of sugar and biomass, being 53.1% for the analysis of phenotypic diversity.

These results indicate that the lineages of castor bean and the parents maintained in the BAG of UFRB/CCAAB/NBIO are genetically variable for the descriptors related to color, adaxial leaf surface, and number of stem internodes, and that this population has a broad genetic base for these descriptors. Thus, the variability detected is a desired result since it is important to maintain the variability of the species for its use in genetic improvement programs.

Among the qualitative descriptors evaluated, some exhibited a low H; stem diameter (0.16) is explained because it has only two phenotypic classes and an unequal distribution between them, where 96.15% of the population had thin stems. [19] in a study of populations of 25, 40, 55 and 70 thousand plants per hectare, verified that an increase in a population of castor bean plants of small size in an area reduces stem diameter, indicating that this character changes based on the environment, is adaptive, and should be evaluated in each specific environment. For mechanized harvesting, short plants with thin stems are recommended because thick stems make the process difficult. Thus, the evaluated lineages and the parents in BAG satisfy this characteristic of interest. Average H was calculated for the descriptor insertion of the
Fig 2. Morphoagronomal descriptors evaluated in 203 lineages and five parental castor bean from the germplasm bank of the UFRB / CCAAB / NBIO. Cruz das Almas—BA, 2014. (a) and (b) Pigmentation of the main vein; (c), (d) and (e) Coloring of the upper limbus phase; and (f), (g), (h), (i), (j) and (k) staining of the stigma. Source: Archive NBIO/ ARAUJO & SILVA, 2014–2015.
primary raceme (IRP = 0.60), and the middle class had the highest frequency (75.00% of BAG). This contributed to most lineages (93.27%) having long average internode lengths (0.29), because this descriptor is calculated by IPR/NSI. [20] explains that the insertion of the primary raceme corresponds to the initial reproductive phase, in that the primary stem grows until the primary raceme is emitted, and this phase is heavily influenced by environmental factors, such as photoperiod and daily temperature. This finding was verified by [17], where the insertion of the inflorescence was low and there was a low number of internodes on the stems for some castor bean plants under dry conditions. Other descriptors also had low entropy due to the low number of phenotypic classes and/or the unbalanced frequency among the classes, such as stem wax (0.37) where 87.98% of the castor bean plants had wax. According to [15], this character helps the plant tolerate cold and drought.

It is important to emphasize that descriptors of agronomic interest, for example, flowering (0,18), fruit dehiscence (0,73) and plant stature (0,75), also exhibited low to medium H, which is due to the use of these descriptors in the selection of superior lineages. Although they present medium and low entropy levels, these descriptors are important because they are correlated with other descriptors that help discriminate the accessions. [21] noted that the presence of the gene that determines the dwarf size of castor bean affects various distinct characteristics, such as curvature of the leaf blade, shorter internodes, undulating nodes, and little branching.

Table 2 shows that 93.27% of the castor bean plants from BAG flower late. For this character, it is ideal if plants can adjust flowering time based on environmental cultivation conditions so that lineages and parents can adapt to periods of drought. This reduces production costs, which is especially important to farmers with limited financial and technological resources. For the descriptor fruit dehiscence, 74.52% of the BAG accessions are semidehiscent. In relation to plant stature, most lineages are short (73.08%). [20] notes that a short plant is one of the goals of improvement programs because it exhibits less growth and is denser, making mechanized harvesting easier. [22] verified that an increase in the number plants in an area increases the stature of the plants due to the competition for light. The population of plants can also influence other descriptors, as observed by [19], where an increase in the number of short caster bean plants reduced the number of commercial racemes.

All 12 quantitative descriptors evaluated had significant differences based on the F test (Table 3), which is evidence of variability. According to [23], quantitative descriptors are polygenic and the number of phenotypic classes increases proportionally to the number of genes, reducing the differences between classes so there is a continuous distribution.

The experimental quality evaluated using the coefficient of variation (CV%) had limits of 24.70% and 53.07%. These values correspond to the length of the raceme and number of seeds of the primary raceme, respectively. The productivity descriptor had a value of 51.04%. These values agree with the quantitative and polygenic nature of these descriptors, which are strongly influenced by the environment [24]. CV% values for raceme length and productivity have been recorded by several authors: 13.42% and 32.84% [25]; 9.32% and 31.36% [4]; and 19.37% and 31.64% [5], respectively. [26] obtained a higher CV% value for productivity (54.88%).

The interval of variation obtained for the agronomic descriptors number of seeds per raceme (8 to 182 units) and seed weight per raceme (3.30 to 107.67 g) was very close to what has been observed in other works involving a segregated F2 generation from germplasm from BAG, such as [27] that found 35 to 163 units for seed number and 22.6 to 256 g for seed weight.

Fig 3. Morphoagronomal descriptors evaluated in 203 strains and five parental castor bean samples from the germplasm bank of the UFRB / CCAAB / NBIO. Cruz das Almas—BA, 2014. (a), (b) and (c) Architecture of the plant; (d), (e) and (f) Form of the racemic; (g), (h) and (i) Fruit color; and (j), (k), (l), (m), (n) and (o) seed coloration. Source: Archive NBIO/ ARAUJO & SILVA, 2014–2015.

https://doi.org/10.1371/journal.pone.0209335.g003
Table 2. Descriptors, phenotypic classes, frequencies, and entropy level evaluated for 203 lineages and five parents of castor bean from the germplasm bank at UFRB/NBIO, Cruz das Almas-BA, 2014–2015.

Descriptor	Classes	Frequency (%)	Entropy Level (H)
1. Anthocyanin Pigmentation.	1. Absent.	0,00	0,00
	2. Present.	100,00	
2. Insertion of the Primary Raceme.	1. Low.	24,04	0,60
	2. Middle.	75,00	
	3. High.	0,96	
3. Stem Diameter.	1. Thin.	96,15	0,16
	2. Medium.	3,85	
	3. Thick.	0,00	
4. Average Internode Length.	1. Short.	3,37	0,29
	2. Medium.	93,27	
	3. Long.	3,37	
5. Number of Stem Internodes.	1. Low.	29,81	1,07
	2. Medium.	44,23	
	3. High.	25,96	
6. Stem Wax.	1. Absent.	12,02	0,37
	2. Present.	87,98	
7. Stem Coloration.	1. Light green.	30,77	1,70
	2. Medium green.	13,46	
	3. Dark green.	1,92	
	4. Pinkish green.	10,10	
	5. Pinkish.	2,40	
	6. Red.	0,96	
	7. Reddish brown.	13,94	
	8. Purple.	26,44	
8. Adaxial Leaf Surface.	1. Flat.	14,90	1,01
	2. Slightly concaved.	38,46	
	3. Concaved.	46,63	
9. Pigmentation of Primary Veins.	1. Greenish.	54,33	0,69
	2. Reddish.	45,67	
10. Wax on Adaxial Blade Surface.	1. Absent.	100,00	0,00
	2. Present.	0,00	
11. Coloration of the Adaxial Blade Surface.	1. Light green.	0,48	0,64
	2. Medium green.	30,29	
	3. Dark green.	69,23	
12. Staminate Flowers on the Raceme.	1. Absent.	1,44	0,08
	2. Present.	98,56	
13. Location of Staminate Flowers.	1. Predominantly on the lower part of the raceme.	0,00	0,00
	2. Interspersed with the pistillate flowers.	100,00	
14. Stigma Coloration.	1. Yellowish.	5,77	1,11
	2. Greenish.	0,00	
	3. Orangish.	39,90	
	4. Reddish.	45,19	
	5. Purplish.	9,13	
15. Flowering.	1. Precocious.	0,00	0,18
	2. Medium.	6,73	
	3. Late.	93,27	

(Continued)
in an advanced population (F₃:F₄), obtained 73 to 157 units for seed number and 48.92 to 117.01 g for seed weight.

To date, 1,436.00 kg ha⁻¹ is the highest productivity obtained for BAG germplasm. This is higher than the national average reported by the Instituto Brasileiro de Geografia e Estatística [29], which was 737 kg ha⁻¹ in August 2015. [4] and [25] evaluated cultivars of castor bean in Recôncavo Baiano and observed that Sipeal 28 was the most productive (1,347 kg ha⁻¹). [30] evaluated cultivars of castor bean in the region of Londrina (PR) and verified that the most productive cultivar was the variety IAC Guarani (911 kg ha⁻¹).

Conclusions

Variation in the descriptors was expected because in using a population obtained from SSD (Single Seed Descent) no selection occurred until a high level of homozygosity was reached. The variability encountered for the descriptors is important as a guide to help direct improvement programs of the species.

The descriptors related to color of the stigma, stem, prickles, and seeds exhibited elevated genetic variability, which is probably because these characteristics were not important during the domestication process.

The satisfactory results for the descriptors of agronomic interest suggest that selection within the evaluated population would be efficient because the advanced generation presented a high degree homozygosity and higher proportion of favorable alleles, which makes selection based on the phenotype more reliable.

Table 2. (Continued)

Descriptor	Classes	Frequency (%)	Entropy Level (H)
16. Density of the Raceme.	1. Sparse.	22.12	0.78
	2. Intermediary.	70.19	
	3. Compact.	7.69	

https://doi.org/10.1371/journal.pone.0209335.t002

Table 3. Summary of the analysis of variance of 12 quantitative descriptors evaluated for 203 lineages and five parents of castor bean from the germplasm bank at UFRB/NBIO. Cruz das Almas-BA, 2014–2015.

Descriptors	Mean Square	F	Average	Minimum	Maximum	CV (%)
RL	31.46	1.51**	18.46	4.83	35.75	24.70
ELR	24.61	1.80**	11.20	1.83	28.07	32.95
WRP	1084.39	1.37**	69.87	5.66	180.63	40.31
NFR	116.36	1.46**	23.65	2.00	98.00	37.70
NFP	2013.80	1.43**	82.06	3.00	295.00	45.67
WFR	905.60	1.33**	64.98	5.18	168.21	40.12
SWR	369.59	1.39**	39.83	3.30	107.67	40.88
SWP	6399.44	1.30	137.30	3.30	430.66	51.04
NSPR	2583.08	1.98**	67.97	0.00	233.00	53.07
NSR	962.70	1.49**	71.54	8.00	182.00	35.53
NSP	17284.96	1.43**	244.77	8.00	689.00	44.88
PROD	71104.67	1.30	457.70	11.00	1436.00	51.04

* , ** probability of significance (p>0.05) and (p<0.01), respectively.

RL–Raceme length; ELR—Effective Length of the Raceme; WRP—Weight of the Racemes per Plant; NFR—Number of Fruits per Raceme; NFP—Number of Fruits per Plant; WFR—Weight of the Fruits per Raceme; SWR—Seed Weight per Raceme; SWP—Seed Weight per Plant; NSPR—Number of Seeds on the Primary Raceme; NSR—Number of Seeds per Raceme; NSP—Number of Seeds per Plant; and PROD—Productivity.

https://doi.org/10.1371/journal.pone.0209335.t003
Supporting information

S1 Table. Classificação de lineages and parents of castor bean from the germplasm bank at UFRB/NBIO for eight characteristics of agronomic interest. Cruz das Almas-BA, 2014–2015. Lines of castor bean from the germplasm bank of UFRB / CCAAB / NBIO, numbered from 1 to 265; and parental PAR (BRS 188 Paraguacu), NOR (BRS 149 Northeast), MIR (Miran te 10), MPA (EBDA MPA-17) and SIP (Sipeal 28).

Acknowledgments

This work was supported by Petrobras Biocombustivel e a Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), the Universidade Federal do Recôncavo da Bahia (UFRB) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author Contributions

Investigation: Adielle Rodrigues da Silva, Gilmara de Melo Araujo.

Supervision: Simone Alves Silva, Laurenice Araujo dos Santos, Deoclides Ricardo de Souza, Elton da Silva Leite, Ana Cristina Vello Loyola Dantas.

Validation: Jorge Luiz Loyola Dantas.

References

1. Singh AS, Kumari S, Modi AR, Gajera BB, Narayanan S, Kumar N. Role of conventional and biotechnological approaches in genetic improvement of castor (Ricinus communis L.). Industrial Crops and Products. 2015; 74: 55–62.

2. Azevedo DMP, Beltrão NEM. O Agronegócio da Mamona no Brasil. Brasília: Embrapa Informações Tecnológicas.; 2010.

3. Moshkin VA. Castor. New Delhi: Amerind Publishing.; 1986; 315p.

4. Bahia HF, Silva SA, Fernandez LG, Ledo CAS, Moreira RFC. Divergência genética entre cinco cultivares de mamona. Pesquisa Agropecuária Brasileira. 2008; 43: 357–362.

5. Bezerra Neto FV, Leal NR, Gonçalves LSA, Rêgo Filho LM, Amaral Júnior AT. Descritores quantitativos na estimativa da divergência genética entre genótipos de mamona utilizando análises multivariadas. Revista Ciência Agronômica. 2010; 41: 294–299.

6. Rodrigues HCA, Carvalho SP, Carvalho AA. Determinação da divergência genética entre acessos de mamona por meio de caracteres binários e multicategoricos. Revista de Ciências Agroveterinárias. 2014; 13: 247–254.

7. Varga F, Carović-Stanko K, Ristić M G, Liber Z, Šatović Z. Morphological and biochemical intraspecific characterization of Ocimum basilicum L. Industrial Crops and Products. 2017; 109: 611–618. https://doi.org/10.1016/j.indcrop.2017.09.018

8. Vieira EA, Fialho JF, Silva MS, Fukuda WMG, Faleiro FG. Variabilidade genética do banco de germoplasma de mandioca da Embrapa Cerrados acessada por meio de descritores morfológicos. Ciência. 2008; 36: 56–67.

9. EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. Levantamento detalhado dos solos do Centro Nacional de Pesquisa de Mandioca e Fruticultura Tropical, Cruz das Almas: Embrapa.; 1993.

10. Silva SA, Bahia HF, Cerqueira LS, Sampaio Filho OM, Passos AR, Machado EL, Frazeres AG et al. Banco de germoplasma de mamona da Universidade Federal do Recôncavo da Bahia. In: Simpósio da Rede de Recursos Genéticos Vegetais do Nordeste (I RGVNE), 2013, Cruz das Almas, BA. Magistra, Cruz das Almas, BA., 2013: 25: 62–111.

11. Brasil. Instruções para execução dos ensaios de distinguibilidade, homogeneidade e estabilidade de cultivares de mamona (Ricinus communis L.). DOU nº 147, de 01/08/2008, seção 1, 2008. p.; 147: 14–15. Disponível em: <http://www.agricultura.gov.br/arc_editor/file/vegetal/RegistroAutorizacoes/Formularios%20Prote%C3%A7%C3%A3o%20Cultivares/MAMONA%20FORMULARIO%2001%202008%202008%20P.doc>. Acesso em: 04. Mar. 2015.
12. Milani M. Descritores de Mamonha utilizados pela Embrapa Algodão. Campina Grande: Embrapa Algodão Documentos 192. 2008; Documentos 192. Disponível em: <http://www.agencia.cnptia.embrapa.br/Repositorio/Descritores+de+mamonha+utilizados+pela+embrapa+algodao_000h4tvry6m02wx7h0awymfy2vut27z.pdf> Acesso em: 05 Set. 2015.

13. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2017. Available from: https://www.R-project.org/. Access in: 03 Sep. 2015.

14. Menezes MAG, Oliveira Neto FB, Bertini LM, Alves LA, Silva FFM. Quantificação de antocianinas dos extratos de Embiratanha (Pseudobombax marginatum). HOLOS. 2015; 1: 30–35.

15. Shankar VG, Rao PVR, Reddy AV. Inheritance of certain morphological characters and fusarium wilt resistance in castor, Ricinus communis L. SABRAO Journal of Breeding and Genetics. 2010; 42: 57–64. Available from: <http://www.researchgate.net/publication/265350363_Inheritance_of_certain_morphological_characters_and_Fusarium_wilt_resistance_in_castor_Ricinus_communis_L.> Access in: 13 Ouc. 2015.

16. Anjani K, Pallavi M, Babu SNS. Biochemical basis of resistance to leafminer in castor (Ricinus communis L.). Industrial Crops and Products. 2010; 31: 192–196.

17. Souza AS, Távora FJAF, Pitombeira JB, Bezerra FML. Épocas de plantio e manejo da irrigação para a mamoneira. II–crescimento e produtividade. Revista Ciência Agronômica. 2007; 38: 422–429.

18. Silva MJ, Pastina MM, de Souza VF, Schaffert RE, Cameiro PCS, Noda RW, et al. Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production. PLoS ONE. 2017; 12(8): 1–19. https://doi.org/10.1371/journal.pone.0183504

19. Soratto RP, Souza-Schlick GD, Giacomo BMS, Zanotto MD, Fernandes AM. Espaçamento e população de plantas de mamoneira de porte baixo para colheita mecanizada. Pesquisa Agropecuária Brasileira. 2011; 46: 245–253.

20. Pivetta LG, Zanotto MD, Tomaz CA, Pivetta LA, Fioreze ACL, Freire MAO. Densidade populacional e seu efeito na produtividade da mamoneira BRS Energia sob cultivo irrigado. Revista Ciência Agronômica. 2015; 46: 546–554.

21. Ramalho MAP, Santos JB, Pinto CABP, Souza EA, Gonçalves FMA, Souza JC. Genética na Agropecuária. 5ªed. Lavras, MG: UFLA,; 2012. 566 p.

22. Silva MGM, Viana AP, Amaral Júnior AT, Gonçalves LSA, Reis RV. Biometria aplicada ao melhoramento intrapopulacional do maracujazeiro amarelo. Revista Ciência Agronômica. 2012; 43: 493–499.

23. Passos AR, Silva SA, Souza CS, Souza CMM, Fernandes LS. Parâmetros genéticos de caracteres agronômicos em genótipos de mamoneira. Pesquisa Agropecuária Brasileira. 2010; 45: 709–714.

24. Oliveira RS, Silva S A, Brasileiro BP, Medeiros EP, Anjos EVA. Genetic divergence on castor bean using the ward-mlm strategy. Revista Ciência Agronômica. 2013; 44: 564–570.

25. IBGE–Instituto Brasileiro de Geografia e Estatística. Levantamento Sistêmático da Produção Agrícola. 2015. Disponível em: <ftp://ftp.ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_daProducao_Agricola_[mensal]/Fasciculo/lspa_201508.pdf> Acesso em: 10 Set. 2015.

26. Zorzenoni TO, Okumura RS, Mariano DC, Zaccheo PVC, Prete CEC. Avaliação das características agronômicas de cultivares de mamona semeadas em Londrina. Nucleus. 2011; 8: 143–154.

27. Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, DF.; 2009. 399 p.