Quantum deformations of the restriction of $GL_{mn}(\mathbb{C})$-modules to $GL_m(\mathbb{C}) \times GL_n(\mathbb{C})$

Dedicated to Sri Ramakrishna

Bharat Adsul, Milind Sohoni *
Department of Computer Science and Engg., I.I.T. Bombay

K. V. Subrahmanyam †
Chennai Mathematical Institute

May 1, 2009

Abstract

In this paper, we consider the restriction of finite dimensional $GL_{mn}(\mathbb{C})$-modules to the subgroup $GL_m(\mathbb{C}) \times GL_n(\mathbb{C})$. In particular, for a Weyl module $V_\lambda^{(X)}$ of $U_q(gl_{mn})$ we construct a representation W_λ of $U_q(gl_m) \otimes U_q(gl_n)$ such that at $q = 1$, the restriction of $V_\lambda(\mathbb{C}^{mn})$ to $U_1(gl_m) \otimes U_1(gl_n)$ matches its action on W_λ at $q = 1$. Thus W_λ is a q-deformation of the module V_λ. This is achieved by first constructing a $U_q(gl_m) \otimes U_q(gl_n)$-module \wedge^k, a q-deformation of the simple $GL_{mn}(\mathbb{C})$-module $\wedge^k(\mathbb{C}^{mn})$. We also construct the bi-crystal basis for \wedge^k and show that it consists of signed subsets. Next, we develop $U_q(gl_m) \otimes U_q(gl_n)$-equivariant maps $\psi_{a,b} : \wedge^{a+1} \otimes \wedge^{b-1} \to \wedge^{a} \otimes \wedge^{b}$. This is used as the building block to construct the general W_λ.

1 Introduction

$GL_N(\mathbb{C})$ will denote the general linear group of invertible $N \times N$ complex matrices, and $gl_N(\mathbb{C})$ its Lie algebra. Consider the group $GL_m(\mathbb{C}) \times GL_n(\mathbb{C})$ acting on X, the space of $m \times n$-matrices with complex entries, as follows:

$$(a,b) \cdot x \to a \cdot x \cdot b^T$$

where $a \in GL_m(\mathbb{C})$, $b \in GL_n(\mathbb{C})$ and $x \in X$. Via this action, we have a homomorphism

$$\phi : GL_m(\mathbb{C}) \times GL_n(\mathbb{C}) \to GL_{mn}(\mathbb{C})$$

For a Weyl module $V_\lambda(X)$, via ϕ, we have:

$$V_\lambda(X) = \oplus_{a,\beta} n^\lambda_{a,\beta} V_a(\mathbb{C}^m) \otimes V_\beta(\mathbb{C}^n)$$

The numbers $n^\lambda_{a,\beta}$ and its properties are of abiding interest. Even the simplest question of when is $n^\lambda_{a,\beta} > 0$ remains unanswered.

Our own motivation comes from the outstanding problem of P vs. NP, and other computational complexity questions in theoretical computer science (see [16]). More specifically, we look at the geometric-invariant-theoretic approach to the problem, as proposed in [13, 14]. In this approach, the

*adsul, sohoni@cse.iitb.ac.in
†kv@cmi.ac.in
general subgroup restriction problem, i.e., analysing an irreducible representation of a group G when restricted to a subgroup $H \subseteq G$, is an important step. An approach to the problem was presented in [15], via the dual notion of FRT-algebras (see, e.g., [11]); more on this later.

A useful tool in the analysis of representations of the linear groups $GL_N(\mathbb{C})$ (henceforth, just GL_N), has been the quantizations $U_q(gl_N)$ of the enveloping algebra of the Lie algebra $gl_N(\mathbb{C})$, see [11] [12] [13] [14] [10] [12]. The representation theory of $U_q(gl_N)$ mimics that of GL_N and has contributed significantly to the understanding of the diagonal embedding $GL_N \rightarrow GL_N \times GL_N$, i.e., in the tensor product of Weyl modules. This is achieved by the Hopf $\Delta : U_q(gl_N) \rightarrow U_q(gl_N) \otimes U_q(gl_N)$, a q-deformation of the diagonal embedding. However, there seems to be no quantization of $\phi : GL_m \times GL_n \rightarrow GL_{mn}$, i.e., an algebra map (also ϕ) $U_q(gl_m) \otimes U_q(gl_n) \rightarrow U_q(gl_{mn})$; perhaps none exists [4].

On the other hand, we may separately construct embeddings $U_q(gl_m) \rightarrow U_q(gl_{mn})$ and $U_q(gl_n) \rightarrow U_q(gl_{mn})$ which correspond to ϕ at $q = 1$. However, the images $(U_q(gl_m))$ and $(U_q(gl_n))$ do not commute within $U_q(gl_{mn})$. This prevents the standard $U_q(gl_{mn})$-module $V_\lambda(\mathbb{C}^{mn})$ from becoming a $U_q(gl_m) \otimes U_q(gl_n)$-module.

This paper constructs a $U_q(gl_m) \otimes U_q(gl_n)$-module W_λ with the following properties.

- W_λ has a weight structure which matches that of $V_\lambda(\mathbb{C}^{mn})$. Further, there is a weight-preserving bijection $W_\lambda \rightarrow V_\lambda(\mathbb{C}^{mn})$.

- The action of $U_q(gl_m) \otimes U_q(gl_n)$ on W_λ at $q = 1$ matches the action of $U_1(gl_m) \otimes U_1(gl_n)$ via the embedding $\phi : U_1(gl_m) \times U_1(gl_n) \rightarrow U_1(gl_{mn})$ on $V_\lambda(\mathbb{C}^{mn})$.

This construction is done in three steps. We first construct $U_q(gl_m) \otimes U_q(gl_n)$-modules W_λ when $V_\lambda = \wedge^k(\mathbb{C}^{mn})$, i.e., λ is a single column shape. Next, we construct $U_q(gl_m) \otimes U_q(gl_n)$-equivariant maps

$$\psi_{a,b} : \wedge^{a+1}(\mathbb{C}^{mn}) \otimes \wedge^{b-1}(\mathbb{C}^{mn}) \rightarrow \wedge^a(\mathbb{C}^{mn}) \otimes \wedge^b(\mathbb{C}^{mn})$$

whose co-kernel is W_λ when λ has two columns. Finally, the above map gives us straightening relations which yield the construction of general W_λ. Both, the construction of $\wedge^k(\mathbb{C}^{mn})$ and the map $\psi_{a,b}$ are deformations of the usual $U_1(gl_{mn})$-structures, at $q = 1$.

We use the standard model for $U_q(gl_n)$ and its modules consisting of semi-standard young tableau, see, e.g., [8]. Thus a basis for $V_\lambda(\mathbb{C}^{mn})$ is identified with $SS(\lambda, mn)$, i.e., semi-standard tableau of shape λ with entries in $[mn]$.

In Section 2 we set up notation and then construct the $U_q(gl_m) \otimes U_q(gl_n)$-modules \wedge^k. In the next section, we construct the abstract module W_λ for general λ. Section 4 proves some elementary properties of $U_q(gl_m) \otimes U_q(gl_n)$-modules in the chosen basis parametrized by column tableaus. This is used for an explicit construction of $\psi_{a,b}$. In Section 5 we revert back to $\wedge^k(\mathbb{C}^{mn})$ and prove that signed column-tableaus do indeed form a bi-crystal basis for the $U_q(gl_m) \otimes U_q(gl_n)$-action thus validating the construction in 2.

The construction in this paper has many similarities with that in [15]. Indeed, our construction of the basic subspaces $\wedge^2(\mathbb{C}^{mn})$ and $Sym^2(\mathbb{C}^{mn})$ of $\mathbb{C}^{mn} \otimes \mathbb{C}^{mn}$ is identical to that in [15]. There, these subspaces are used to construct the R-matrix and the dual algebra $GL_q(\mathbb{C}^{mn})$ and maps $GL_q(\mathbb{C}^{mn}) \rightarrow GL_q(\mathbb{C}^{mn}) \otimes GL_q(\mathbb{C}^{mn})$. The representation theory of $GL_q(\mathbb{C}^{mn})$ does not quite match that of the standard $GL_q(\mathbb{C}^{mn})$, and hence the construction of $V_\lambda(\mathbb{C}^{mn})$ must follow a different route. Our construction starts with the same R-matrix but bypasses the construction of $GL_q(\mathbb{C}^{mn})$ to arrive directly at a $GL_q(\mathbb{C}^{mn}) \otimes GL_q(\mathbb{C}^{mn})$-structure for $\wedge^k(\mathbb{C}^m)$. As in [15], we have the “compactness” observation, see Proposition 33. However, many other structures of [15] are as yet missing.

2 The $U_q(gl_m) \otimes U_q(gl_n)$ structure for $\wedge^k(\mathbb{C}^{mn})$

To begin, we lift almost verbatim, the initial parts of Section 2 of [8]. $U_q(gl_N)$ is the associative algebra over $\mathbb{C}(q)$ generated by the $4N - 2$ symbols $e_i, f_i, i = 1, \ldots, N - 1$ and $q^e, q^{-e}, i = 1, \ldots, N$ subject
to the relations:

\[q^{e_i}q^{-e_i} = q^{-e_i}q^{e_i} = 1, \quad [q^{e_i}, q^{e_j}] = 0 \]

\[q^{e_i}e_jq^{-e_i} = \begin{cases} qe_j & \text{for } i = j \\ q^{-1}e_j & \text{for } i = j + 1 \\ e_j & \text{otherwise} \end{cases} \]

\[q^{e_i}f_jq^{-e_i} = \begin{cases} -q^{-1}f_j & \text{for } i = j \\ qf_j & \text{for } i = j + 1 \\ f_j & \text{otherwise} \end{cases} \]

\[[e_i, f_j] = \delta_{ij} \frac{q^{e_i}q^{-e_i+1} - q^{-e_i}q^{e_i+1}}{q - q^{-1}} \]

\[e_i^2 - (q + q^{-1})e_i + q^{-1} = 0 \]

The subalgebra generated by \(e_i, f_i \) and

\[q^{h_i} = q^{e_i}q^{e_i+1}, \quad q^{-h_i} = q^{-e_i}q^{e_i+1} \quad \text{for } i = 1, \ldots, N - 1 \]

is denoted by \(U_q(sl_N) \).

The \(U_q(gl_N) \) module \(V_{1^k} \) (henceforth \(\wedge^k(\mathbb{C}^N) \)) is an \(\binom{N}{k} \)-dimensional \(C(q) \)-vector space with basis \(\{v_c\} \) indexed by the subsets \(c \) of \([N]\) with \(k \) elements, i.e., by Young Tableau of shape \(1^k \) with entries in \([N]\). The action of \(U_q(gl_N) \) on this basis is given by

\[q^{e_i}v_c = \begin{cases} v_c & \text{if } i \notin c \\ qv_c & \text{otherwise} \end{cases} \]

\[e_iv_c = \begin{cases} 0 & \text{if } i + 1 \notin c \text{ or } i \in c \\ v_d & \text{otherwise, where } d = c - \{i + 1\} + \{i\} \end{cases} \]

\[f_iv_c = \begin{cases} 0 & \text{if } i + 1 \in c \text{ or } i \notin c \\ v_d & \text{otherwise, where } d = c - \{i\} + \{i + 1\} \end{cases} \]

In order to construct more interesting modules, we use the tensor product operation. Given two \(U_q(gl_N) \)-modules \(M, L \), we can define a \(U_q(gl_N) \)-structure on \(M \otimes L \) by putting

\[q^{e_i}(u \otimes v) = q^{e_i}u \otimes q^{e_i}v \]

\[e_i(u \otimes v) = e_iu \otimes v + q^{-h_i}u \otimes e_i v \]

\[f_i(u \otimes v) = f_iu \otimes q^{h_i}v + u \otimes f_i v \]

Indeed, the Hopf map \(\Delta : U_q(gl_N) \to U_q(gl_N) \otimes U_q(gl_N) \):

\[\Delta q^{e_i} = q^{e_i} \otimes q^{e_i}, \quad \Delta e_i = e_i \otimes 1 + q^{-h_i} \otimes e_i, \quad \Delta f_i = f_i \otimes q^{h_i} + 1 \otimes f_i \]

is an algebra homomorphism and makes \(U_q(gl_N) \) into a bialgebra.

2.1 Some basic lemmas

We consider the \(U_q(gl_{mn}) \)-module \(\wedge^p(\mathbb{C}^{mn}) \), i.e., the homomorphism \(U_q(gl_{mn}) \to End_{\mathbb{C}(q)}(\wedge^p(\mathbb{C}^{mn})) \).

We gather together some lemmas on this particular action.

Lemma 1 On the module \(\wedge^p(\mathbb{C}^{mn}) \), we have:

- \(e_i^2 = 0 \) for all \(i \).
Lemma 2 Let $\sigma = [\sigma_1, \ldots, \sigma_n]$ integers such that the set $\{\sigma_1, \ldots, \sigma_n\} = \{1, \ldots, n\}$. Then, on the module $\wedge^p(\mathbb{C}^n)$, for the monomial $e_\sigma = e_{\sigma_1} \cdots e_{\sigma_n}$ there exists positive integers k_1, \ldots, k_n such that

$$e_\sigma = e_{n-k_n+1} e_{n-k_n+2} \cdots e_{n-k_n-1+1} e_{n-k_n-1+2} \cdots e_{n-k_n} \cdots e_1 e_2 \cdots e_k$$

An important property of the re-ordering is that either (i) the position of e_i is to the left of position of e_{i-1} or (ii) is immediately to the right.

Example 3 We may verify that:

$$e_2 e_6 e_7 e_3 e_5 e_1 e_4 = e_6 e_7 e_5 e_2 e_3 e_4 e_1$$

with $k_1 = 1, k_2 = 3, k_3 = 1, k_4 = 2$.

Corollary 4 Let σ be a permutation on the set $\{i, \ldots, j\}$ then for the action on $\wedge^p(\mathbb{C}^n)$ we have:

- if $k < i - 1$ or $k > j + 1$ then $e_k e_\sigma = e_\sigma e_k$.
- if $i \leq k \leq j$ then $e_k e_\sigma = e_\sigma e_k = 0$.
- if $k < i$ or $k > j$ then $f_k e_\sigma = e_\sigma f_k$.

For $i < j$, let $E_{i,j}$ denote the term $[e_i, [e_{i+1}, \ldots [e_{j-1}, e_j]]]$ and $F_{i,j}$ denote $[[[f_j, f_{j-1}], \ldots, f_i]]$.

Lemma 5

$$E_{i,j}(v_c) = \begin{cases} (-1)^{|c\cap[i+1,j]|} v_d & \text{if } j+1 \notin c \text{ and } i \notin c, \text{ where } d = c - \{j+1\} + \{i\} \\ 0 & \text{otherwise} \end{cases}$$

$$F_{i,j}(v_c) = \begin{cases} (-1)^{|c\cap[i+1,j]|} v_d & \text{if } j+1 \notin c \text{ and } i \in c, \text{ where } d = c - \{i\} + \{j+1\} \\ 0 & \text{otherwise} \end{cases}$$

Proof: We provide a detailed proof for $E_{i,j}$. The proof for $F_{i,j}$ is similar.

We prove this by induction on $j - i$. The base case is when $j - i = 0$. Here, with the convention that $E_{i,i} = e_i$, the lemma follows from the definition of the operator e_i.

For the inductive case (i.e. $i < j$), consider $E_{i,j} = [e_i, E_{i+1,j}] = e_i E_{i+1,j} - E_{i+1,j} e_i$. Thus,

$$E_{i,j}(v_c) = e_i E_{i+1,j}(v_c) - E_{i+1,j} e_i(v_c)$$

Suppose that $E_{i+1,j}(v_c) = 0$, so the first-term in the above expression is zero. Then, by the induction hypothesis, either $j + 1 \notin c$ or $i + 1 \in c$.

If $i + 1 \notin c$, then $j + 1 \notin c$. Note that in this case, $e_i(v_c) = 0$. Thus, $E_{i,j}(v_c) = 0$ and $j + 1 \notin c$.

If $j + 1 \in c$, then $i + 1 \in c$. In this case, if $i \in c$, then $e_i(v_c) = 0$ and thus, $E_{i,j}(v_c) = 0$ and $i \in c$. Therefore, we assume that $i \notin c$ along with $j + 1 \in c$ and $i + 1 \in c$. So, we have

$$e_i(v_c) = v_d \text{ where } d = c - \{i+1\} + \{i\}$$

As, $j + 1 \in d$ and $i + 1 \notin d$, by induction hypothesis,

$$E_{i+1,j}(v_d) = (-1)^{|d\cap[i+2,j]|} v_e \text{ where } e = d - \{j+1\} + \{i+1\}$$
The last equation follows from the fact that $i + 1 \in c$ and $d = c - \{i + 1\} + \{i\}$. Also, observe that $e = c - \{j + 1\} + \{i\}$.

Now, we consider the case when $E_{i+1,j}(v_c) \neq 0$. Then, by induction, we have that $j + 1 \in c$ and $i + 1 \not\in c$. Further,

$$E_{i+1,j}(v_c) = (-1)^{|e[i+2,j]|}v_d$$

where $d = c - \{j + 1\} + \{i + 1\}$

Note that, as $i + 1 \not\in c$, $e_i(v_c) = 0$. Thus, in this case,

$$E_{i,j}(v_c) = e_iE_{i+1,j}(v_c) - E_{i+1,j}e_i(v_c)$$

$$= e_i((-1)^{|e[i+2,j]|}v_d)$$

$$= (-1)^{|e[i+2,j]|}e_i(v_d)$$

$$= (-1)^{|e[i+1,j]|}e_i(v_d)$$

The last equality follows from the observation that $i + 1 \not\in c$.

If $i \in c$, then $i \in d$ as well and $e_i(v_d) = 0$, consequently $E_{i,j}(v_c) = 0$ as expected.

If $i \not\in c$, then $i \not\in d$ as well. As $i + 1 \in d$, we have

$$E_{i,j}(v_c) = (-1)^{|e[i+1,j]|}e_i(v_d) = (-1)^{|e[i+1,j]|}v_c$$

where $e = d - \{i + 1\} + \{i\} = c - \{j + 1\} + \{i\}$.

Q.E.D.

Lemma 6 For i, j, i', j', on $\wedge^k(\mathbb{C}^{mn})$ we have:

(i) $[E_{i,j}, E_{i',j'}] = 0$ unless either $j' + 1 = i$ or $j + 1 = i'$.

(ii) $[F_{i,j}, E_{i',j'}] = 0$ unless either $j' = j$ or $i' = i$.

(iii) $E_{i,j}E_{i',j'} = E_{i',j'}E_{i,j} = 0$ if $i = i'$ or $j = j'$.

(iv) $F_{i,j}E_{i',j'} = E_{i',j'}F_{i,j} = 0$ if $j + 1 = i'$ or $i = j' + 1$.

2.2 Commuting actions on $\wedge^k(\mathbb{C}^{mn})$

We are now ready to define two actions, that of $U_q(gl_m)$ and $U_q(gl_n)$ on $\wedge^p(\mathbb{C}^{mn})$. This will consist of some special elements (E^L_i, F^L_i, q^L_i) and (E^R_i, F^R_i, q^R_i) which will implement the action of $U_q(sl_m)$ and $U_q(sl_n)$, respectively.

We consider the free \mathbb{Z}-module $E = \oplus_{i=1}^{mn} \mathbb{Z} \epsilon_i$ and define an inner product by extending $<\epsilon_i, \epsilon_j> = \delta_{i,j}$. Define $\kappa_{i,j} \in E$ as $\epsilon_i - \epsilon_j$.

We note that:

Lemma 7 For $\alpha \in E$, we have:

- $e_j q^\alpha = q^{<\alpha, \kappa_{j+1,j}>} q^\alpha e_j$.
- $f_j q^\alpha = q^{<\alpha, \kappa_{j,j+1}>} q^\alpha f_j$.
- $E_{i,j} q^\alpha = q^{<\alpha, \kappa_{j+1,i}>} q^\alpha E_{i,j}$.
Next, we define the left operators using:

\[B^k_i = \sum_{j=0}^{k-2} -h_{jm+i} \]
\[A^k_i = \sum_{j=k}^{n-1} h_{jm+i} \]

We define the map \(\phi_L : U_q(gl_m) \to U_q(gl_{mn}) \) as:

\[q^k_i = \phi_L(q^i) = \prod_{j=0}^{n-1} q^{h_{jm+i}} \]
\[E^L_i = \phi_L(e_i) = e_i + q^{-h_i} e_{m+i} + \ldots + (q^{-h_{i}}) e_{(n-1)m+i} \]
\[F^L_i = \phi_L(f_i) = (\prod_{j=0}^{n-1} q^{h_{jm+i}}) f_i + \ldots + q^{h(n-1)m+i} f_{(n-2)m+i} + f_{(n-1)m+i} \]

Proposition 8 The map \(\phi_L : U_q(gl_m) \to U_q(gl_{mn}) \) is an algebra homomorphism.

Proof: The embedding of \(\phi_L : U_q(gl_m) \to U_q(gl_{mn}) \) actually comes from:

\[U_q(gl_m) \xrightarrow{\Delta} U_q(gl_m) \otimes \ldots U_q(gl_m) \to U_q(gl_{mn}) \]

where (i) there are \(n \) copies in the tensor-product, and (ii) \(\Delta \) is the \(n \)-way Hopf. This verifies that \(\phi_L \) is an algebra map.

We define the right operators:

Definition 9

\[b^k_i = \sum_{j=i+1}^{m} \epsilon_{km+j} - \sum_{j=i+1}^{m} \epsilon_{(k-1)m+j} \]
\[a^k_i = \sum_{j=1}^{m} \epsilon_{i-k-1+m} - \sum_{j=1}^{m} \epsilon_{km+j} \]

We define the “map” \(\phi_R : U_q(gl_m) \to U_q(gl_{mn}) \) as:

\[\phi_R(q^k_i) = \prod_{i=1}^{m} q^{\epsilon_{(k-1)m+i}} \]
\[\phi_R(E^R_k) = \sum_{j=1}^{m} q^{h_j} E_{(k-1)m+i, km+i-1} \]
\[\phi_R(F^R_k) = \sum_{j=1}^{m} q^{h_j} F_{(k-1)m+i, km+i-1} \]
\[\phi_R(h^k_i) = \sum_{j=1}^{m} \epsilon_{(k-1)m+i} - \epsilon_{km+i} \]

Remark: \(\phi_R \) serves merely to identify a set of elements in \(U_q(gl_{mn}) \) corresponding to the generators of \(U_q(gl_m) \). Thus, while \(\phi_L : U_q(gl_m) \to U_q(gl_{mn}) \) is an algebra homomorphism, the corresponding statement for \(U_q(gl_n) \) is not. However, as we will show that the composites:

\[U_q(gl_m) \xrightarrow{\phi_L} U_q(gl_{mn}) \xrightarrow{\text{End}_{\mathbb{C}(q)}(\wedge^p(\mathbb{C}^m))} \]
\[U_q(gl_n) \xrightarrow{\phi_R} U_q(gl_{mn}) \xrightarrow{\text{End}_{\mathbb{C}(q)}(\wedge^p(\mathbb{C}^m))} \]

are commuting algebra homomorphisms making \(\wedge^p(\mathbb{C}^m) \) into a \(U_q(gl_m) \otimes U_q(gl_n) \)-module.

We will identify \(\mathbb{C}^mn \) as \(\mathbb{C}^m \otimes \mathbb{C}^n \) arranging the typical element in an \(m \times n \) array, reading column-wise from left to right, and within each column from top to bottom (see below). In this notation, see Fig. 1 for individual terms of the left operators and Fig. 2 for the right operators.

\[
\begin{array}{cccc}
1 & 6 & 11 & 16 \\
2 & 7 & 12 & 17 \\
3 & 8 & 13 & 18 \\
4 & 9 & 14 & 19 \\
5 & 10 & 15 & 20 \\
\end{array}
\]
2.3 Proofs

For an operator $O = q^\mu E_{i,j}$ (where $\mu \in \mathbb{E}$ is arbitrary) let us define $\kappa(O) = \epsilon_{j+1} - \epsilon_i$ and for the operator $O = q^\mu F_{i,j}$, we define $\kappa(O)$ as $\epsilon_i - \epsilon_{j+1}$. We extend this notation so that $E_{i,i} = e_i$ (with $\kappa(E_{i,i}) = \epsilon_{i+1} - \epsilon_i$) and $F_{j,j} = f_j$ (with $\kappa(F_{j,j}) = \epsilon_j - \epsilon_{j+1}$).

We define \mathcal{L} and \mathcal{R} as two sets of operators:

$$\mathcal{L} = \{q^{B_i} e_{(k-1)m+i}, q^{A_i} f_{(k-1)m+i} | 1 \leq i \leq m-1, 1 \leq k \leq n\}$$

$$\mathcal{R} = \{q^{B_i} E_{(k-1)m+i,km+i-1}, q^{A_i} F_{(k-1)m+i,km+i-1} | 1 \leq i \leq m, 1 \leq k \leq n-1\}$$

Notice that we may write $E^L_i = \sum_p l_{ip}$ and $E^R_i = \sum_j r_{kj}$ where $l_{ip} \in \mathcal{L}$ and $r_{kj} \in \mathcal{R}$. Whence $[E^L_i, E^R_k]$ is expressible as lie-brackets of elements of \mathcal{L} and \mathcal{R}. Of course, we wish to show that $[E^L_i, E^R_k]$ and its three cousins are actually zero.

Lemma 10 For any $L \in \mathcal{L}$ and any $R \in \mathcal{R}$ if $\langle \kappa(L), \kappa(R) \rangle \geq 0$ then $[L, R] = 0$.

Proof: We first take the case when $\langle \kappa(L), \kappa(R) \rangle = 0$. We take for example $L = q^{B_i} e_{(k'-1)m+i'}$ and $R = q^{A_i} F_{(k-1)m+i,km+i-1}$. The condition $\langle \kappa(L), \kappa(R) \rangle = 0$ implies (see Figs. 1, 2) that

$$F_{(k-1)m+i,km+i-1} q^{B_i} = q^{B_i} F_{(k-1)m+i,km+i-1}$$

Whence

$$[L, R] = q^{B_i} + q^{A_i} [e_{(k'-1)m+i'}, e_{(k-1)m+i,km+i-1}] = 0$$

where the last equality follows from Lemma 3(ii).

For the case with $\langle \kappa(L), \kappa(R) \rangle = 1$, Lemma 6 parts (iii),(iv), immediately implies an even stronger claim. Q.E.D.

Thus the only non-commuting (L, R) pairs are shown in Fig. 3.
By lemma 10, for the purpose of showing commutation we may as well assume that \(n = m = 2 \).

The following argument assumes \(n = 2 \) but retains \(m \) for notational convenience. In other words, we have:

\[
\begin{align*}
E_i & = e_i + q^{-h_i} e_{m+i} \\
F_i & = q^{h_i} f_1 + f_{m+i}
\end{align*}
\]

For \(i = 1, \ldots, m \) define \(\beta_i, \alpha_i \in \mathbb{E} \) as

\[
\begin{align*}
\beta_i &= \sum_{j=i+1}^{m} \epsilon_{m+j} - \sum_{j=i+1}^{m} \epsilon_{j} \\
\alpha_i &= \sum_{j=1}^{i} \epsilon_{j} - \sum_{j=1}^{m} \epsilon_{m+j}
\end{align*}
\]

Next, define

\[
\begin{align*}
E^R &= \sum_{i=1}^{m} q^{\beta_i} E_{i,m+i-1} \\
F^R &= \sum_{i=1}^{m} q^{\alpha_i} F_{i,m+i-1} \\
h^R &= \sum_{i=1}^{m} \epsilon_{i} - \epsilon_{m+i}
\end{align*}
\]

Note that \(E_1^R = E^R, F_1^R = F^R \) and \(h_1^R = h^R \).

Lemma 11 For \(1 \leq i \leq m-1 \),

- \([e_i, q^{\beta_{i+1}} E_{i+1,m+i}] = q^{\beta_{i+1}} E_{i,m+i}\).
- \([q^{-h_i} e_{m+i}, q^{\beta_i} E_{i,m+i-1}] = q^{\beta_i} e_{i+1} E_{i+1,m+i-1} - q^{\beta_i} e_{i+1} E_{i+1,m+i} + q^{\beta_i} e_{i+1} E_{i+1,m+i} - q^{\beta_i} e_{i+1} E_{i+1,m+i} e_{i}\).

Proof: We prove the first assertion below. We start with analyzing

\[
\begin{align*}
[e_i, q^{\beta_{i+1}} E_{i+1,m+i}] &= e_i q^{\beta_{i+1}} E_{i+1,m+i} - q^{\beta_{i+1}} E_{i+1,m+i} \epsilon_{i} \\
&= q^{\beta_{i+1} - h_i} e_i E_{i+1,m+i} - q^{\beta_{i+1} + 1} E_{i+1,m+i} \epsilon_{i}
\end{align*}
\]

A small calculation shows that \(< \beta_{i+1}, -h_i > = 0 \). Therefore,

\[
\begin{align*}
[e_i, q^{\beta_{i+1}} E_{i+1,m+i}] &= q^{\beta_{i+1}} (e_i E_{i+1,m+i} - E_{i+1,m+i} \epsilon_{i}) \\
&= q^{\beta_{i+1}} E_{i,m+i}
\end{align*}
\]

Figure 3: The Eight Non-Commuting Terms
Now, we turn to the second claim. Towards this, we expand \([q^{-h_i}, e_{m+i}, q^\beta_i E_{i,m+i-1}]\) as

\[
\begin{align*}
q^{-h_i} e_{m+i} q^\beta_i E_{i,m+i} - q^\beta_i E_{i,m+i-1} &- q^{-h_i} e_{m+i} \\
q^{-h_i} q^{\beta_i} E_{i,m+i-1} &- q^\beta_i q^{-h_i} e_{m+i} E_{i,m+i-1} - q^\beta_i q^{\beta_i} E_{i,m+i-1}
\end{align*}
\]

We observe that \(\beta_i, -h_{m+i} > 1\) and \(<\beta_i, \kappa_{m+i,i} >= 1\). Therefore,

\[
\begin{align*}
q^{-h_i} e_{m+i}, q^\beta_i E_{i,m+i-1} &= q^{\beta_i-h_i}(q e_{m+i} E_{i,m+i-1} - q E_{i,m+i-1} e_{m+i}) \\
q^\beta_i - q^{-h_i} &\{e_{m+i}, E_{i,m+i-1}\}
\end{align*}
\]

Q.E.D.

Lemma 12 \([E^L_i, E^R] = 0\)

Proof:

\[
\begin{align*}
[E^L_i, E^R] &= [e_i + q^{-h_i} e_{m+i}, \sum_{j=1}^{m} q^\beta_j E_{j,m+j-1}] \\
&= [e_i, q^\beta_i E_{i+1,m+i}] + [q^{-h_i} e_{m+i}, q^\beta_i E_{i,m+i-1}] \\
&= q^\beta_i E_{i,m+i} + q h_i (e_{m+i} E_{i,m+i-1} - E_{i,m+i-1} e_{m+i})
\end{align*}
\]

As \(\beta_i = \beta_{i+1} + \epsilon_{m+i-1} - \epsilon_i\), \(\beta_i - h_i = \beta_{i+1} + \epsilon_{m+i-1} - \epsilon_i = \beta_{i+1} + \kappa_{m+i+1,i}\).

\[
[E^L_i, E^R] = q^{\beta_i+1} (E_{i,m+i} + q q^{\kappa_{m+i+1,i}} (e_{m+i} E_{i,m+i-1} - E_{i,m+i-1} e_{m+i}))
\]

Now we evaluate the outer bracket at \(v_c\). So, we are looking at \((*)\)

\[
E_{i,m+i}(v_c) + q q^{\kappa_{m+i+1,i}} (e_{m+i} E_{i,m+i-1}(v_c) - E_{i,m+i-1} e_{m+i}(v_c))
\]

If \(m+i+1 \notin c\), then all the three terms in the above expression evaluate to 0. The middle term certainly evaluates to 0 after the application of \(e_{m+i}\) even if \(E_{i,m+i-1}(v_c) \neq 0\).

Similarly, if \(i \in c\), then all the three terms evaluate to 0.

So, henceforth, we work with the assumption that \(m+i+1 \in c\) and \(i \notin c\).

Now, we consider the case where \(m+i \in c\). In this case, with \(c_1 = c - \{m+i+1\} + \{i\}\) and \(c_2 = c - \{m+i\} + \{i\}\), \((*)\) evaluates to

\[
\begin{align*}
&= (-1)^{|c||i+1,m+i||} v_{c_1} + q q^{\kappa_{m+i+1,i}} e_{m+i} \left((-1)^{|c||i+1,m+i-1||} v_{c_2}\right) \\
&= (-1)^{|c||i+1,m+i-1||} \left(-v_{c_1} + q q^{\kappa_{m+i+1,i}} v_{c_1}\right) \\
&= (-1)^{|c||i+1,m+i-1||} \left(-v_{c_1} + q q^{\kappa_{m+i+1,i}} v_{c_1}\right) \\
&= 0
\end{align*}
\]

Now, we consider the remaining case where \(m+i \notin c\). In this case, with the notation \(c_1 = c - \{m+i+1\} + \{i\}\) and \(c_2 = c - \{m+i\} + \{i\}\), \((*)\) evaluates to

\[
\begin{align*}
&= (-1)^{|c||i+1,m+i||} v_{c_1} - q q^{\kappa_{m+i+1,i}} E_{i,m+i-1}(v_{c_2}) \\
&= (-1)^{|c||i+1,m+i||} v_{c_1} - q q^{\kappa_{m+i+1,i}} \left((-1)^{|c||i+1,m+i-1||} v_{c_1}\right) \\
&= (-1)^{|c||i+1,m+i-1||} \left(v_{c_1} - q q^{\kappa_{m+i+1,i}} v_{c_1}\right) \\
&= (-1)^{|c||i+1,m+i-1||} \left(v_{c_1} - q q^{\kappa_{m+i+1,i}} v_{c_1}\right) \\
&= 0
\end{align*}
\]

Q.E.D.

Lemma 13 For \(1 \leq i \leq m-1\),

- \([f_i q^{h_{m+i}}, q^\beta_i E_{i,m+i-1}] = q^{h_{m+i}+\beta_i}[f_i, E_{i,m+i-1}]\).
- \([f_{m+i}, q^{\beta_{i+1}} E_{i+1,m+i}] = q^{\beta_{i+1}}[f_{m+i}, E_{i+1,m+i}]\).
Proof: We start by proving the first claim.

\[
\begin{align*}
[f_i q^{h_{m+i}}, q^\beta E_{i, m+i-1}] & = f_i q^{h_{m+i}} q^\beta E_{i, m+i-1} - q^\beta E_{i, m+i-1} f_i q^{h_{m+i}} \\
q_i q^{h_{m+i}} q^\beta E_{i, m+i-1} & = q^{h_{m+i}} q^\beta E_{i, m+i-1} f_i q^{h_{m+i}} \\
q^\beta E_{i, m+i-1} q_i q^{h_{m+i}} & = q^\beta E_{i, m+i-1} q_i q^{h_{m+i}} f_i \\
q_i q^\beta E_{i, m+i-1} & = q^\beta E_{i, m+i-1} q_i q^{h_{m+i}} f_i
\end{align*}
\]

Thus,

\[
\begin{align*}
[f_i q^{h_{m+i}}, q^\beta E_{i, m+i-1}] & = q^\beta (f_i E_{i, m+i-1} - E_{i, m+i-1} f_i) \\
& = q^\beta (f_i E_{i, m+i-1} - E_{i, m+i-1} f_i)
\end{align*}
\]

Now, we turn to the second claim.

\[
\begin{align*}
[f_{m+i}, q^\beta E_{i+1, m+i}] & = f_{m+i} q^\beta E_{i+1, m+i} - q^\beta E_{i+1, m+i} f_{m+i} \\
f_{m+i} q^\beta E_{i+1, m+i} & = q^\beta f_{m+i} E_{i+1, m+i} \\
\end{align*}
\]

Thus,

\[
\begin{align*}
[f_{m+i}, q^\beta E_{i+1, m+i}] & = q^\beta f_{m+i} E_{i+1, m+i} - q^\beta E_{i+1, m+i} f_{m+i} \\
& = q^\beta [f_{m+i}, E_{i+1, m+i}]
\end{align*}
\]

Lemma 14 \([F_i^L, E^R] = 0\)

Proof:

\[
\begin{align*}
[F_i^L, E^R] & = [f_i q^{h_{m+i}}, f_{m+i}, \sum_{j=1}^{m} q^\beta E_{j, m+j-1}] \\
& = [f_i q^{h_{m+i}}, q^\beta E_{i, m+i-1} + f_{m+i}, q^\beta E_{i+1, m+i}] \\
& = q^\beta [f_i, E_{i, m+i-1}] + q^\beta [f_{m+i}, E_{i+1, m+i}]
\end{align*}
\]

As \(\beta_i = \beta_{i+1} + \epsilon_{m+i+1} - \epsilon_{i+1}, \beta_i + h_{m+i} = \beta_{i+1} + \epsilon_{m+i} - \epsilon_{i+1} = \beta_{i+1} + \kappa_{m+i, i+1}\).

\[
\begin{align*}
[E_i^L, E^R] & = q^\beta (q q^{k_{m+i, i+1}} [f_i, E_{i, m+i-1}] + [f_{m+i}, E_{i+1, m+i}])
\end{align*}
\]

Now we evaluate the outer bracket at \(v_c\). So, we are looking at (*)&

\[
q q^{k_{m+i, i+1}} (f_i E_{i, m+i-1}(v_c) - E_{i, m+i-1} f_i(v_c)) + f_{m+i} E_{i+1, m+i}(v_c) - E_{i+1, m+i} f_{m+i}(v_c)
\]

If \(m + i \not\in c\), then all the four terms in the above expression evaluate to 0. Similarly, if \(i + 1 \in c\), then all the four terms evaluate to 0.

So, henceforth, we work with the assumption that \(m + i \in c\) and \(i + 1 \not\in c\).

Now, we consider the case where \(i \in c\). In this case, the first term evaluates to 0. If we further assume that \(m + i + 1 \not\in c\), then the third term also evaluates to 0. Overall, with \(c_1 = c - \{i\} + \{i + 1\}\) and \(c_2 = c - \{m + i\} + \{m + i + 1\}\), (*)& evaluates to

\[
* = -qq^{k_{m+i, i+1}} E_{i, m+i-1}(v_{c_1}) - E_{i+1, m+i}(v_{c_2})
\]

With the notation \(d = c - \{m + i\} + \{i + 1\}\),

\[
* = -qq^{k_{m+i, i+1}}(-1)^{c_1 \cap \{i+1\} + 1} v_d - (-1)^{c_2 \cap \{i+1\} + 1} v_d
\]

\[
= (-1)^{c_1 \cap \{i+1\} + 1} (q q^{k_{m+i, i+1}} v_d - v_d)
\]

\[
= (-1)^{c_1 \cap \{i+1\} + 1} \left(q \frac{v_d - v_d}{q}\right)
\]

\[
= 0
\]
Now we work with the assumptions \(i \in c \) and \(m + i + 1 \in c \) and evaluate \((*)\). With these assumptions, the first and the last term of \((*)\) evaluate to 0. Here, with \(c_1 = c - \{i\} + \{i + 1\} \), \(c_2 = c - \{m + i + 1\} + \{i + 1\} \) and \(d = c - \{m + i\} + \{i + 1\} \), \((*)\) evaluates to

\[
\begin{align*}
* &= -qq^{v_{c_1}(i)}E_{i,m+i+1}(\alpha_{c_1}) + f_{m+i}((-1)|v_{c_2}|v_{c_2}) \\
 &= -qq^{c_{m+i+1}}i_{c_1}(-(1)|v_{c_1}|v_{c_1}) + (-1)|v_{c_1}|v_{c_1} \\
 &= (-1)|v_{c_1}|v_{c_1} - (qq^{c_{m+i+1}}i_{c_1} - v_{c_2}) \\
 &= (-1)|v_{c_1}|v_{c_1} - (\frac{1}{q}v_{c_1} - v_{c_2}) \\
 &= 0
\end{align*}
\]

Now we consider the case with \(i \notin c \). In this case, the second term in \((*)\) evaluates to 0. As before, if we further assume that \(m + i + 1 \notin c \), then the third term also evaluates to 0. Overall, with \(c_1 = c - \{m + i\} + \{i\} \), \(c_2 = c - \{m + i\} + \{i + 1\} \) and \(d = c - \{m + i\} + \{i + 1\} \), \((*)\) evaluates to

\[
\begin{align*}
* &= qq^{c_{m+i+1}}f_{i}((-1)|v_{c_1}|v_{c_1}) + f_{m+i}((-1)|v_{c_2}|v_{c_2}) \\
 &= qq^{c_{m+i+1}}i_{c_1}(-(1)|v_{c_1}|v_{c_1}) + (-1)|v_{c_1}|v_{c_1} \\
 &= (-1)|v_{c_1}|v_{c_1} - (qq^{c_{m+i+1}}i_{c_1} - v_{c_2}) \\
 &= (-1)|v_{c_1}|v_{c_1} - (\frac{1}{q}v_{c_1} - v_{c_2}) \\
 &= 0
\end{align*}
\]

Q.E.D.

We have shown that \([E_L^i, E^R_R] = 0\) and \([F_L^i, E^R_R] = 0\). One can similarly show that \([E_L^i, F^R_R] = 0\). We now prepare towards proving \([F_R, E_R] = (q^{-h_R} - q^{h_R})/(q - q^{-1})\).

Lemma 15 For \(i \neq j \), we have:

\[
[q^{\alpha_{i}}E_{i,m+i+1}, q^{\beta_{j}}E_{j,m+j-1}] = 0
\]

Proof:

\[
[q^{\alpha_{i}}E_{i,m+i+1}, q^{\beta_{j}}E_{j,m+j-1}] = q^{\alpha_{i}}E_{i,m+i+1}q^{\beta_{j}}E_{j,m+j-1} - q^{\beta_{j}}E_{j,m+j-1}q^{\alpha_{i}}E_{i,m+i+1}
\]

\[
= q^{\alpha_{i}+\beta_{j}}(q^{\beta_{j}(i)}-\beta_{j}(m+i))E_{i,m+i}E_{j,m+j-1} - q^{\alpha_{i}(m+j)-\alpha_{j}(j)}E_{j,m+j-1}E_{i,m+i+1}
\]

\[
= q^{\alpha_{i}+\beta_{j}}[F_{i,m+i+1}, E_{j,m+j-1}]
\]

for an appropriate integer \(a \) depending on the whether \(i \leq j \) or not. Now, the only material case for \(v_c \) is when \(i, m + j \in c \) and \(j, m + i \notin c \). We may then verify that \([F_{i,m+i+1}, E_{j,m+j-1}]v_c = 0\). Q.E.D.

Lemma 16 For \(1 \leq i \leq m \),

\[
[q^{\alpha_{i}}E_{i,m+i-1}, q^{\beta_{j}}E_{i,m+i-1}] = q^{\alpha_{i}+\beta_{j}}[F_{i,m+i-1}, E_{i,m+i-1}]
\]

\[
[q^{\alpha_{i}}E_{i,m+i-1}, q^{\beta_{j}}E_{i,m+i-1}] = q^{\alpha_{i}}E_{i,m+i-1}q^{\beta_{j}}E_{i,m+i-1} - q^{\beta_{j}}E_{i,m+i-1}q^{\alpha_{i}}E_{i,m+i-1}
\]

\[
= q^{\alpha_{i}+\beta_{j}}(q^{\beta_{j}(i)}-\beta_{j}(m+i))E_{i,m+i}E_{i,m+i-1} - q^{\alpha_{i}(m+i)-\alpha_{j}(i)}E_{i,m+i}E_{i,m+i-1}
\]

\[
= q^{\alpha_{i}+\beta_{j}}[F_{i,m+i-1}, E_{i,m+i-1}]
\]

This proves the lemma. Q.E.D.

Define \(\delta_j = \epsilon_j - \epsilon_{m+j} \) and let \(v_c \in \Lambda^p(C^{mn}) \).
Lemma 17

\[(q - q^{-1})[F_{i,m+i-1}, E_{i,m+i-1}]v_c = (q^{-\delta_i} - q^{\delta_i})v_c\]

Proof: If both \(i, m + i \in c\) or both \(i, m + i \notin c\) then the equality clearly holds. Now if \(i \in c, m + i \notin c\) then \(q^{\delta_i}v_c = qv_c\) and we have:

\[(q - q^{-1})[F_{i,m+i-1}, E_{i,m+i-1}]v_c = (q - q^{-1})(-v_c) = (q^{-\delta_i} - q^{\delta_i})v_c\]

On the other hand, if \(i \notin c, m + i \in c\), then \(q^{\delta_i}v_c = q^{-1}v_c\) and we have:

\[(q - q^{-1})[F_{i,m+i-1}, E_{i,m+i-1}]v_c = (q - q^{-1})(v_c) = (q^{-\delta_i} - q^{\delta_i})v_c\]

This proves the lemma.

We now prove:

Proposition 18 Let \(h_R = \sum_{i=1}^{m} \epsilon_i - \epsilon_{m+i}\) then

\[[F^R, E^R] = \frac{q^{-h_R} - q^{h_R}}{q - q^{-1}}\]

Proof: By the above lemmas, we have:

\[[F^R, E^R] = \sum_{i=1}^{m} q^{\alpha_i + \beta_i}[F_{i,m+i-1}, E_{i,m+i-1}]\]

Whence

\[(q - q^{-1})[F^R, E^R]v_c = \sum_{i=1}^{m} (q^{-\delta_i} - q^{\delta_i})q^{\alpha_i + \beta_i}v_c = \sum_{i=1}^{m} q^{\alpha_i + \beta_i - \delta_i}v_c - q^{\alpha_i + \beta_i + \delta_i}v_c\]

Now

\[\alpha_i + \beta_i = \left(\sum_{j=1}^{i-1} \delta_j\right) - \left(\sum_{j=i+1}^{m} \delta_j\right)\]

and thus

\[\alpha_i + \beta_i - \delta_i = \alpha_{i-1} + \beta_{i-1} + \delta_{i-1} = \left(\sum_{j=1}^{i-1} \delta_j\right) - \left(\sum_{j=i+1}^{m} \delta_j\right)\]

Consequently

\[(q - q^{-1})[F^R, E^R]v_c = \sum_{i=1}^{m} (q^{-\delta_i} - q^{\delta_i})q^{\alpha_i + \beta_i}v_c = \sum_{i=1}^{m} q^{\alpha_i + \beta_i - \delta_i}v_c - q^{\alpha_m + \beta_m + \delta_m}v_c = (q^{-h_R} - q^{h_R})v_c\]

This proves the proposition. Q.E.D.

We next prove the braid identity.

Definition 19 For \(i = 1, \ldots, m\) define \(\beta_i, \alpha_i \in \mathbb{E}\) as

\[\beta_i = \sum_{j=i+1}^{m} \epsilon_{m+j} - \sum_{j=i+1}^{m} \epsilon_j\]
\[\beta_i^* = \sum_{j=i+1}^{m} \epsilon_{2m+j} - \sum_{j=i+1}^{m} \epsilon_{m+j}\]

Next, define

\[E^{R} = \sum_{i=1}^{m} q^{\beta_i} E_{i,m+i-1}\]
\[E^{*R} = \sum_{i=1}^{m} q^{\beta_i^*} E_{m+i,2m+i-1}\]
Note that $E^* = E^{R}$. We will show that:

$$(E^R)^2E^* - (q + q^{-1})E^RE^*E^R + E^*(E^R)^2 = 0$$

We define $g_i = q^{β_i}E_{i,m+i-1}$ and $g_j^* = q^{β_j}E_{m+j,2m+j-1}$.

Lemma 20 For distinct $i,j,k \in [m]$ and on $\land^p(\mathbb{C}^m)$, we have that

$$(g_ig_j + g_jg_i)g_k^* - (q + q^{-1})(g_ig_k^*g_j + g_jg_k^*g_i) + g_k^*(g_ig_j + g_jg_i) = 0$$

Proof: Let us prove this in several cases. In all cases, we will use:

$$E_{i,m+i-1}q^β_j = \begin{cases} q^2q^{β_j}E_{i,m+i-1} & \text{if } i > j \\ q^{β_j}E_{i,m+i-1} & \text{if } i \leq j \end{cases}$$

$$E_{i,m+i-1}q^β_j = \begin{cases} q^{-1}q^{β_j}E_{i,m+i-1} & \text{if } i > j \\ q^{β_j}E_{i,m+i-1} & \text{if } i \leq j \end{cases}$$

$$E_{m+i,2m+i-1}q^β_j = \begin{cases} q^{-1}q^{β_j}E_{m+i,2m+i-1} & \text{if } i > j \\ q^{β_j}E_{m+i,2m+i-1} & \text{if } i \leq j \end{cases}$$

We first consider the case $i < j < k$ and v_c such that $v = E_{i,m+i-1}E_{j,j+m-1}E_{m+k,2m+k-1}v_c$, where, by Lemma 20, the sequence of the operators does not matter. Note further that $g_ig_jg_k^*(v_c) = v^* = q^β.v$. We suppress the factor $q^β$ uniformly in this proof and in the next lemma as well. We see that:

$$(g_ig_j + g_jg_i)g_k^*v_c = (1 + q^2)E_{i,m+i-1}E_{j,j+m-1}E_{m+k,2m+k-1}v_c$$

$$g_k^*(g_ig_j + g_jg_i)v_c = (q^{-2} + q^2)E_{i,m+i-1}E_{j,j+m-1}E_{m+k,2m+k-1}v_c$$

$$g_k^*(g_ig_j + g_jg_i)v_c = (q^{-1} + q^{-1})E_{i,m+i-1}E_{j,j+m-1}E_{m+k,2m+k-1}v_c$$

This proves the assertion for $i < j < k$.

Next, let us consider $i < k < j$:

$$(g_ig_j + g_jg_i)g_k^*v_c = (q^{-1} + q)v$$

$$g_k^*(g_ig_j + g_jg_i)v_c = (q^{-1} + q)v$$

$$(g_ig_j + g_jg_i)g_k^*v_c = 2v$$

This proves the assertion for $i < k < j$.

Next, let us consider $k < i < j$:

$$(g_ig_j + g_jg_i)g_k^*v_c = (1 + q^{-2})v$$

$$g_k^*(g_ig_j + g_jg_i)v_c = (1 + q^2)v$$

$$(g_ig_j + g_jg_i)g_k^*v_c = (q + q^{-1})v$$

This proves the assertion for $k < i < j$ and completes the proof of the lemma. Q.E.D.

Lemma 21 For distinct $i,j \in [m]$ and on $\land^p(\mathbb{C}^m)$, we have that

$$(g_ig_j + g_jg_i)g_i^* - (q + q^{-1})(g_ig_i^*g_j + g_jg_i^*g_i) + g_i^*(g_ig_j + g_jg_i) = 0$$

Proof: There are two cases to consider, viz., $g_ig_i^*v_c = 0$ and $g_i^*g_iv_c = 0$. Let us consider the first case, i.e., $g_ig_i^*v_c = 0$, in which case we need to show:

$$-(q + q^{-1})g_jg_i^*g_i + g_i^*(g_ig_j + g_jg_i) = 0$$
Let \(v \) be such that \(E_{m+i,2m+i-1} E_{i,m+i-1} E_{j,m+j-1} v_c = v \) (see comment in proof of Lemma 20). We see that for \(j > i \):

\[
\begin{align*}
g_i^*(g_i g_j + g_j g_i) v_c &= (1 + q^2)v \\
g_j g_i^* g_i v_c &= qv
\end{align*}
\]

This proves the lemma for \(j > i \). Next, for \(j < i \), with \(v = E_{j,m+j-1} E_{m+i,2m+i-1} E_{i,m+i-1} v_c \) and we have:

\[
\begin{align*}
g_i^*(g_i g_j + g_j g_i) v_c &= (q + q^{-1})v \\
g_j g_i^* g_i v_c &= v
\end{align*}
\]

This proves the case when \(g_i g_j^* v_c = 0 \). The other case is similarly proved. Q.E.D.

Proposition 22 For \(E^R = E_1^R \) and \(E^*R = E_2^R \), we have:

\[
(E^R)^2 E^*R - (q + q^{-1}) E^R E^*R E^R + E^*R (E^R)^2 = 0
\]

Proof: Let

\[
B = (E^R)^2 E^*R - (q + q^{-1}) E^R E^*R E^R + E^*R (E^R)^2
\]

For a given \(v_c \), we look at \(B \cdot v_c \) and classify the result by the \(U_q(gl_{mn}) \) weight. We see that the allowed weights are \(wt(v_c) - \kappa_{m+i,i} - \kappa_{m+j,j} - \kappa_{m+k,k} \) for various \(i, j, k \). Further, we see that:

\[
\begin{align*}
E^R &= \sum_{i=1}^m g_i \\
E^*R &= \sum_{i=1}^m g_i^*
\end{align*}
\]

is a separation of \(E^R \) and \(E^*R \) by \(U_q(gl_{mn}) \)-weights. Therefore showing \(B \cdot v_c = 0 \) amounts to various cases on \(i, j, k \). The main cases are settled by Lemmas 20 21. Other cases are easier. Q.E.D.

Proposition 23 The map \(\phi_R : U_q(gl_m) \to \text{End}_{\mathbb{C}(q)}(\wedge^p \mathbb{C}^{mn}) \) is an algebra homomorphism. At \(q = 1 \), \(\phi_R \) factorizes through \(U_q(gl_{mn}) \), i.e.,

\[
\phi_R(1) : U_1(gl_m) \to U_1(gl_{mn}) \to \text{End}_{\mathbb{C}}(\wedge^p \mathbb{C}^{mn})
\]

The proof is obvious. The family \(\{ E^R_k, F^R_k, q^k \} \) satisfy all the properties for \(U_q(gl_m) \). Also note that at \(q = 1 \), \(\phi_R(1) \) reduces to the standard injection which commutes with \(\phi_L(1) \).

3 The module \(V_\lambda \)

We have thus seen the algebra maps \(\phi_L : U_q(gl_m) \to U_q(gl_{mn}) \to \text{End}_{\mathbb{C}(q)}(\wedge^k \mathbb{C}^{mn}) \) and \(\phi_R : U_q(gl_m) \to \text{End}_{\mathbb{C}(q)}(\wedge^k \mathbb{C}^{mn}) \). Since the two actions commute, this converts \(\wedge^k \mathbb{C}^{mn} \) into a \(U_q(gl_m) \otimes U_q(gl_n) \)-module. Also note that at \(q = 1 \), we have the factorization:

\[
\begin{align*}
\phi_L(1) : U_1(gl_m) &\to U_1(gl_{mn}) \to \text{End}_{\mathbb{C}}(\wedge^k \mathbb{C}^{mn}) \\
\phi_R(1) : U_1(gl_m) &\to U_1(gl_{mn}) \to \text{End}_{\mathbb{C}}(\wedge^k \mathbb{C}^{mn})
\end{align*}
\]

Proposition 24 The actions \(\phi_L, \phi_R \) convert \(\wedge^k \mathbb{C}^{mn} \) into a \(U_q(gl_m) \otimes U_q(gl_n) \) module. Furthermore, at \(q = 1 \) this matches the restriction of the \(U_1(gl_{mn}) \) action on \(\wedge^k \mathbb{C}^{mn} \) to \(U_1(gl_m) \otimes U_1(gl_n) \).

Since, both \(U_q(gl_m) \) and \(U_q(gl_n) \) are Hopf-algebras, we see that if \(M, N \) are \(U_q(gl_m) \otimes U_q(gl_n) \)-modules then so is \(M \otimes N \). The action of \(U_q(gl_m) \) on \(M \otimes N \) defined by

\[
\Phi_L : U_q(gl_m) \to U_q(gl_m) \otimes U_q(gl_m) \to U_q(gl_{mn}) \to U_q(gl_{mn}) \to \text{End}_{\mathbb{C}(q)}(M \otimes N)
\]

In the case \(M, N \) are \(U_q(gl_{mn}) \)-modules, we also have:

\[
\Phi'_L : U_q(gl_m) \to U_q(gl_{mn}) \to U_q(gl_{mn}) \to \text{End}_{\mathbb{C}(q)}(M \otimes N)
\]
We may similarly define Φ_R

$$\Phi_R : U_q(gl_n) \xrightarrow{\Delta} U_q(gl_n) \otimes U_q(gl_n) \xrightarrow{\phi_R \otimes \phi_R} \text{End}_C(\mathbb{M} \otimes \mathbb{N})$$

Again, if M, N are $U_q(gl_{mn})$-modules, we have at $q = 1$:

$$\Phi'_R(1) : U_1(gl_n) \xrightarrow{\phi_1(1)} U_1(gl_m) \xrightarrow{\Delta} U_1(gl_m) \otimes U_1(gl_m) \xrightarrow{} \text{End}_C(M \otimes \mathbb{N})$$

Proposition 25

- If M, N are $U_q(gl_m) \otimes U_q(gl_n)$-modules then so is $M \otimes N$, interpreted as $U_q(gl_m) \otimes U_q(gl_n)$ module through Φ_L and Φ_R.

- The maps $\Phi_L = \Phi'_L$ and $\Phi_R = \Phi'_R$ when $q = 1$. Thus Φ_L and Φ_R are deformations of the action of $U_q(gl_m)$ restricted to $U_q(gl_m) \otimes U_q(gl_m)$.

The proof of the first part is obvious. For the second part notice that for $q = 1$ both ϕ_L and ϕ_R match the classical injections (algebra homomorphisms) of $U_q(gl_m)$ (or $U_q(gl_n)$) into $U_q(gl_{mn})$.

Unless otherwise stated, for $U_q(gl_{mn})$-modules M, N, the $U_q(gl_m)$ and $U_q(gl_n)$ structure on $M \otimes N$ will be that arising from Φ_L and Φ_R.

Lemma 26 For the module $\Lambda^k(C^{mn})$ as a $U_q(gl_m) \otimes U_q(gl_n)$-module, we have:

$$\Lambda^k(C^{mn}) = \sum_\lambda V_\lambda(C^m) \otimes V_\lambda(C^n)$$

where $|\lambda| = k$.

The proof is clear by setting $q = 1$. Q.E.D.

Next, for a $U_1(gl_m)$-module V_1 and the standard embedding $U_1(gl_m) \otimes U_1(gl_n)$, let

$$V_\lambda(C^{mn}) = \oplus_{a, \beta} n_{a, \beta}^\lambda V_a(C^m) \otimes V_\beta(C^n)$$

Lemma 27 For $a, b \in \mathbb{Z}$, consider $\Lambda^{a+1}(C^{mn}) \otimes \Lambda^{b-1}(C^{mn})$ and $\Lambda^a(C^{mn}) \otimes \Lambda^b(C^{mn})$ as $U_q(gl_m) \otimes U_q(gl_n)$-modules. Then there exists an $U_q(gl_m) \otimes U_q(gl_n)$-equivariant injection $\psi_{a,b}$:

$$\psi_{a,b} : \Lambda^{a+1}(C^{mn}) \otimes \Lambda^{b-1}(C^{mn}) \rightarrow \Lambda^a(C^{mn}) \otimes \Lambda^b(C^{mn})$$

If λ is the shape of two columns sized a and b then the co-kernel $\text{cok}(\psi_{a,b})$ may be written as:

$$\text{cok}(\psi_{a,b}) = \oplus_{a, \beta} n_{a, \beta}^\lambda V_a(C^m) \otimes V_\beta(C^n)$$

Proof: For $q = 1$ the above map is a classical construction (see, e.g., [5]). This implies that for general q, the multiplicity of the $U_q(gl_m) \otimes U_q(gl_n)$-module $V_{\alpha}(C^m) \otimes V_{\beta}(C^n)$ in $\Lambda^{a+1}(C^{mn}) \otimes \Lambda^{b-1}(C^{mn})$ does not exceed that in $\Lambda^a(C^{mn}) \otimes \Lambda^b(C^{mn})$. Whence a suitable $\psi_{a,b}$ may be constructed respecting the isotypical components of both modules. The second assertion now follows. Q.E.D.

We now proceed to construct the $U_q(gl_m) \otimes U_q(gl_n)$ module W_λ. Let $\lambda' = [\mu_1, \ldots, \mu_k]$, i.e., λ has k-columns of length μ_1, \ldots, μ_k. Let C^k the the collection of all columns of size k with strictly increasing entries from the set $[mn]$. For $a \geq b$ and $c \in C^a$ and $c' \in C^b$, we say that $c \leq c'$ if for all $1 \leq i \leq a$, we have $c(i) \leq c'(i)$. A basis for W_λ will be the set $SS(\lambda, mn)$, i.e., semi-standard tableau of shape λ with entries in $[mn]$. We interpret this basis as $X^\lambda \subseteq Z^\lambda = \prod_c C^{\mu_i}$. In other words,

$$X^\lambda = \{[c_1, \ldots, c_k] | c_i \in C^{\mu_i}, c_i \leq c_{i+1} \}$$

We call X^λ as **standard** and $Y^\lambda = Z^\lambda - X^\lambda$ as non-standard. We represent $\Lambda^p(C^{mn})$ as in [8], with the basis C^p and construct $M = \otimes_i \Lambda^\mu_i(C^{mn})$ with the basis Z^λ. Note that M is a $U_q(gl_m) \otimes U_q(gl_n)$-module.
The structure of \(\psi \) follows from the straightening relations imposed by the maps \(\psi_q \). The construction of Lemma 27. In this section we will construct a family of maps:

Let us fix the basis \(B \).

4.1 Normal bases

For the action of \(E^L \) and \(E^R \) as short-form for \(E^L \) and \(E^R \). We have the EF-Lemma:

Lemma 28 There is a \(U_q(gl_m) \otimes U_q(gl_n) \)-submodule \(N \subseteq M \) such that

- \(\dim(N) = |Y^\lambda| = d \) and
- if \(b_i = \sum_{t \in \mathbb{Z}^\lambda} \gamma_i^t \cdot t \) (for \(i = 1, \ldots, d \)) is a basis for \(N \) then the \(d \times d \)-matrix \(D = (\gamma_i^t)_{i=1,\ldots,d} \) is invertible.

Proof: This again reduces to a choice of \(\psi_{a,b} \) for various \(a, b \). We know that for \(q = 1 \), the above lemma follows from the straightening relations imposed by the maps \(\psi_{a,b} \). Whence, for general \(q \), there must exist an open set of such maps \(\psi_{a,b} \).

Proposition 29 There is a \(U_q(gl_m) \otimes U_q(gl_n) \)-module \(W_\lambda \) and a basis \(w_t \) for \(t \in X^\lambda \) such that:

- For \(q = 1 \), the module is isomorphic to \(V_\lambda(\mathbb{C}^m) \) treated as a \(U_1(gl_m) \otimes U_1(gl_n) \)-module with the vectors \(w_t \) as \(U_1(gl_{mn}) \) weight vectors.
- For general \(q \), \(w_t \) continue to be \(U_q(gl_m) \otimes U_q(gl_n) \) weight vectors.

Proof: The desired module is \(M/N \).

4 The construction of \(\psi_{a,b} \)

The structure of \(W_\lambda \) depends intrinsically on the “straightening relations” \(\psi_{a,b} \) (for various \(a, b \)) of Lemma 27. In this section we will construct a family of maps:

\[
\psi_{a,b} : \wedge^{a+1} \otimes \wedge^{b-1} \rightarrow \wedge^a \otimes \wedge^b
\]

These maps will have the following important properties:

- \(\psi_{a,b} \) will be \(U_q(gl_m) \otimes U_q(gl_n) \)-equivariant, and
- at \(q = 1 \), they will also be \(U_1(gl_{mn}) \)-equivariant and will match the standard resolution.

This is done in three steps:

- First, the construction of equivariant maps \(\psi_a : \wedge^{a+1} \rightarrow \wedge^a \otimes \wedge^1 \) and \(\psi'_a : \wedge^a+1 \rightarrow \wedge^1 \otimes \wedge^a \).
- Next, for a module map \(\mu : A \rightarrow B \), the construction of the “adjoint” \(\mu^* : B \rightarrow A \).
- Finally constructing \(\psi_{a,b} \) using \(\psi_a \) and \(\psi_b^* \).

We first begin with the adjoint.

4.1 Normal bases

Let us fix the basis \(B = \{ v_c | c \subseteq [mn], |c| = k \} \) as the basis of \(\wedge^k(\mathbb{C}^m) \). We define an inner product on \(\wedge^k(\mathbb{C}^m) \) as follows. For elements \(v_c, v_{c'} \in \wedge^k(\mathbb{C}^m) \), let \(\langle v_c, v_{c'} \rangle = \delta_{c,c'}. \) In other words, the inner product is chosen so that \(B \) are ortho-normal.

Abusing notation slightly, we denote, for example by \(\langle E^L_{i,c}, c' \rangle \) as short-form for \(\langle E^L_{i,c}, v_{c'} \rangle \). We have the EF-Lemma:

Lemma 30 For the action of \(U_q(gl_m) \) and \(U_q(gl_n) \) as above, on \(\wedge^k(\mathbb{C}^m) \) as above, we have:

\[
q^{-1} q^{h^L} (v_{c}) (E^L_{i,c}, c') = q q^{h^L} (v_{c}) (E^L_{i,c}, c') = \langle F^L_{i,c'}, c \rangle
\]

\[
q^{-1} q^{h^R} (v_{c}) (E^R_{i,c}, c') = q q^{h^R} (v_{c}) (E^R_{i,c}, c') = \langle F^R_{i,c'}, c \rangle
\]
Proof: We have:

\[E^L_i(v_c) = (e_i + q^{-h}e_{m+i} + \ldots + (\prod_{j=0}^{n-2} q^{-h_jm+i})e_{(n-1)m+i})v_c \]

Now, by examining the \(gl_m \)-weights of \(c, c' \), exactly one of these terms will lead to \(v_{c'} \), and so

\[\langle E^L_i, c' \rangle v_{c'} = (\prod_{j=0}^{k-1} q^{-h_jm+i})e_{(k+1)m+i})v_c = (\prod_{j=0}^{k} q^{-h_jm+i}(v_c)) \cdot v_{c'} \]

Now, we see that:

\[F^L_i(v_{c'}) = (\prod_{j=0}^{n-1} q^{-h_jm+i})f_i + \ldots + q^{h(n-1)m+i}f_{(n-2)m+i} + q^{h(n-1)m+i}v_{c'} \]

It must be the \(f_{(k+1)m+i} \) term that led to \(v_{c'} \). Whence, we have:

\[\langle F^L_i c', c \rangle = (\prod_{j=0}^{n-1} q^{-h_{j+1}m+i}) \cdot v_{c'} = (\prod_{j=0}^{n-1} q^{-h_jm+i})v_{c} \]

But since \(c, c' \) differ only in the entry \((k+1)m+i \), we have

- \(q^{h(k+1)m+i}(v_c) = q^{-1} \) and \(q^{h(k+1)m+i}(v_{c'}) = q \).
- \((\prod_{j=0}^{k} q^{-h_jm+i}(v_c)) = (\prod_{j=0}^{k} q^{-h_jm+i}(v_{c})) \)
- \(q^{h^L_i}(v_c) = \prod_{j=0}^{n-1} q^{h_jm+i}v_c \)

Finally,

\[q q^{h^L_i}(v_c)\langle E^L_i, c, c' \rangle = q \prod_{j=0}^{n-1} q^{-h^L_jm+i}(v_c) \prod_{j=0}^{n-1} q^{-h_jm+i}(v_c) = \langle F^L_i c', c \rangle \]

Other assertions are similarly proved. Q.E.D.

Definition 31 Let \(A \) be a \(U_q(gl_m) \otimes U_q(gl_n) \) module, and let \(A = \{a_1, \ldots, a_r\} \) be a basis of \(A \) of weight vectors. Define an inner product \(\langle \cdot, \cdot \rangle \) on \(A \) making \(A \) orthogonal. We say that \(A \) is normal if the EF-lemma Lemma 30 holds (with \(a, a' \in A \) replacing \(c, c' \)).

Lemma 32 Let \(A, B \) be \(U_q(gl_m) \otimes U_q(gl_n) \)-modules such that \(A = \{a_1, \ldots, a_r\} \) and \(B = \{b_1, \ldots, b_s\} \) are normal bases for \(A \) and \(B \) respectively. Then \(A \otimes B \) is a normal basis for \(A \otimes B \) with the inner product \(\langle a \otimes b, a' \otimes b' \rangle = \delta_{a \otimes b, a' \otimes b'} \).

Proof: Let consider the element \(a \otimes b \), and the elements \(a' \otimes b \) and \(a \otimes b' \) such that \(a' \) appears in \(E^L_i a \) and \(b' \) appears in \(E^L_i b \).

We see that:

\[q \cdot q^{h^L_i}(a \otimes b)\langle E^L_i(a \otimes b), a' \otimes b \rangle = q \cdot q^{h^L_i}(a \otimes b)\langle (E^L_i \otimes 1 + q^{-h^L_i} \otimes E^L_i)(a \otimes b), a' \otimes b \rangle = q \cdot q^{h^L_i}(a \otimes b)\langle E^L_i a, a' \rangle = q^{h^L_i}(b)[q \cdot q^{h^L_i}(a)\langle E^L_i a, a' \rangle] = q^{h^L_i}(b)\langle F^L_i a, a' \rangle \]
On the other hand, we have:

\[\langle F_i^L (a' \otimes b), a \otimes b \rangle = \langle (F_i^L \otimes q^{h_i^L}) (a' \otimes b), a \otimes b \rangle = \langle (F_i^L \otimes q^{h_i^L}) (a' \otimes b), a \otimes b \rangle = q^{h_i^L} (b) \langle F_i^L a', a \rangle \]

Other cases are similar. Q.E.D.

Let \(\Xi \) be the \(\mathbb{Z} \)-submodule generated by \(e_i^L \) and \(e_j^R \). Let \(\chi \) be a \(\Xi \)-weight and let \(\chi' = \chi + h_i^L \). For a module \(A \) with a normal base \(A \), let \(A_\chi \) be the weight-space of weight \(\chi \). We see that \(E_i^L : A_\chi \rightarrow A_{\chi'} \), while \(F_i^L : A_{\chi'} \rightarrow A_\chi \). Let \(a_\chi \) be the column-vector of elements of \(A \) of weight \(\chi \). Let us define matrices \(E_A^A, F_A^A \) as:

\[E_A^A a_{\chi'} = E_i^L a_{\chi} \quad F_A^A a_{\chi} = F_i^L a_{\chi'} \]

By the EF-lemma (i.e., Lemma[30]),

\[q \cdot q^{\langle \chi, h_i^L \rangle} E_A^A = (F_A^A)^T \]

Now, let \(A \) and \(B \) be \(U_q(\mathfrak{gl}_m) \otimes U_q(\mathfrak{gl}_n) \) with normal bases \(A \) and \(B \) respectively. Let \(\mu : A \rightarrow B \) be an equivariant map and let \(\mu_\chi \) be a matrix such that:

\[\mu a_\chi = \mu_\chi b_\chi \]

Equivariance implies:

\[\mu \cdot E_i^L a_\chi = \mu \cdot E_A^A a_{\chi'} = E_A^A \mu_\chi b_{\chi'} \quad E_i^L \cdot \mu a_\chi = E_i^L \mu_\chi b_\chi = \mu_\chi E_B^B b_{\chi'} \]

Or in other words,

\[E_A^A \mu_\chi = \mu_\chi E_B^B \quad F_A^A \mu_\chi = \mu_\chi F_B^B \]

Transposing the second equivariance condition, we get:

\[(F_A^A \mu_\chi)^T = (\mu_\chi F_B^B)^T \]

We may simplify this as:

\[\mu_\chi^T (F_A)^T = (F_B)^T \mu_\chi^T \]

and further:

\[q \cdot q^{\langle \chi, h_i^L \rangle} \mu_\chi^T E_A = q \cdot q^{\langle \chi, h_i^L \rangle} E_B \mu_\chi^T \]

i.e., finally:

\[\mu_\chi^T E_A = E_B \mu_\chi^T \]

We may similarly prove that

\[\mu_\chi^T F_A = F_B \mu_\chi^T \]

Both these observations immediately imply:

Proposition 33 Let \(\mu : A \rightarrow B \) be an equivariant map, and let \(\mu_\chi \) be defined as above. We construct the map \(\mu^* : B \rightarrow A \) as follows. Define \(\mu^* \) such that:

\[\mu^* b_\chi = \mu_\chi^T a_\chi \]

Then \(\mu^* : B \rightarrow A \) is equivariant.
4.2 The Construction of ψ_a

In this section we construct the $U_q(gl_m) \otimes U_q(gl_n)$-equivariant maps

$$\psi_a : \Lambda^{a+1} \rightarrow \Lambda^a \otimes \Lambda^1$$

$$\psi'_a : \Lambda^{a+1} \rightarrow \Lambda^1 \otimes \Lambda^a$$

Note that $\Lambda^1 = \mathbb{C}^{mn} = \mathbb{C}^m \otimes \mathbb{C}^n$. For convenience, we identify $[mn]$ with $[m] \times [n]$. Under this identification, an element $(i, j) \in [m] \times [n]$ maps to the element $m \ast (j - 1) + i$.

In this notation, the natural basis for the representation $\Lambda^k = \Lambda^k(\mathbb{C}^{mn})$ is parametrized by subsets of $[m] \times [n]$ with k elements.

Recall that, as a $U_q(gl_m) \otimes U_q(gl_n)$-module, we have

$$\Lambda^k(\mathbb{C}^{mn}) = \sum_{\lambda} V_\lambda(\mathbb{C}^m) \otimes V_{\lambda'}(\mathbb{C}^n)$$

where $|\lambda| = k$. Further, λ has at most m parts and λ' has at most n parts, that is, the shape λ fits inside the $m \times n$ rectangle.

For a shape $\lambda = (\lambda_1, \ldots, \lambda_m)$ with $\lambda' = (\lambda_1', \ldots, \lambda_n')$, consider the subset $c_\lambda \subset [mn]$ defined as:

$$c_\lambda = \{ 1, m+1, \ldots, m \ast (\lambda_1 - 1) + 1, 2m+1, \ldots, m \ast (\lambda_2 - 1) + 2, \ldots, m, 2m, \ldots, m \ast (\lambda_m - 1) \}$$

Equivalently,

$$c_\lambda = \{ 1, 2, \ldots, \lambda_1', m+1, m+2, \ldots, m+\lambda_2', \ldots, m \ast (n-1) + 1, m \ast (n-1) + 2, \ldots, m \ast (n-1) + \lambda_n' \}$$

Under the identification of $[mn]$ with $[m] \times [n]$, we have

$$c_\lambda = \{(i, j) \mid 1 \leq i \leq \lambda_1', 1 \leq j \leq \lambda_1 \}$$

We slightly abuse the notation and write $(i, j) \in \lambda$ as a short-form for $(i, j) \in c_\lambda$.

With this notation, we have the following important lemma:

Lemma 34 Consider the $U_q(gl_m) \otimes U_q(gl_n)$-module $\Lambda^k(\mathbb{C}^{mn})$. For a shape λ which fits in the $m \times n$ rectangle with $|\lambda| = k$, the weight vector $v_{c_\lambda} \in \Lambda^k$ is the highest $U_q(gl_m) \otimes U_q(gl_n)$-weight vector of weight (λ, λ').

Proof: The lemma follows from the observation that $E_i^k(v_{c_\lambda}) = E_j^k(v_{c_\lambda}) = 0$ for all i, j. Q.E.D.

Now we turn our attention to the construction of the $U_q(gl_m) \otimes U_q(gl_n)$-equivariant map

$$\psi_a : \Lambda^{a+1} \rightarrow \Lambda^a \otimes \Lambda^1$$

As a $U_q(gl_m) \otimes U_q(gl_n)$-module, we have the following decomposition

$$\Lambda^{a+1} = \sum_{\lambda, |\lambda| = a+1} V_\lambda(\mathbb{C}^m) \otimes V_{\lambda'}(\mathbb{C}^n)$$

Moreover, v_{c_λ} is the highest-weight vector for the $U_q(gl_m) \otimes U_q(gl_n)$-submodule $V_\lambda(\mathbb{C}^m) \otimes V_{\lambda'}(\mathbb{C}^n)$ of Λ^{a+1}.

19
Thus, in order to construct the $U_q(\mathfrak{gl}_m) \otimes U_q(\mathfrak{gl}_n)$-equivariant map ψ_a, we need to simply define the images $\psi_a(v_{c_\lambda})$ inside $\Lambda^a \otimes \Lambda^1$. Moreover the vector $\psi_a(v_{c_\lambda})$ should be a highest-weight vector of weight (λ, λ'). Note that, unlike Λ^{a+1}, $\Lambda^a \otimes \Lambda^1$ is not multiplicity-free. Below, we outline the construction of a highest-weight vector (upto scalar multiple) v_λ of weight (λ, λ') inside $\Lambda^a \otimes \Lambda^1$.

We begin with some notation. As before, fix a shape λ which fits in the $m \times n$ rectangle with $|\lambda| = a + 1$. Write $\lambda = (\lambda_1, \ldots, \lambda_m)$ with $\lambda' = (\lambda_1', \ldots, \lambda_n')$ and

$$c_\lambda = \{(i, j) \mid 1 \leq i \leq \lambda'_j, 1 \leq j \leq \lambda_i\}$$

For $(i, j) \in \lambda$, we set

$$t_{i,j} = v_{c_\lambda - (i,j)} \in \Lambda^a$$

$$\chi_{i,j} = v_{(i,j)} \in \Lambda^1$$

In other words, $t_{i,j}$ is the vector in Λ^a corresponding to the subset obtained from the subset c_λ by removing the element $(i, j) \in \lambda$. Further, $\chi_{i,j}$ is the vector in Λ^1 corresponding to the singleton set containing the element (i, j). Below, we abuse notations and denote by $t_{i,j}$ and $\chi_{i,j}$ also the subsets that correspond to these vectors.

Lemma 35 For $(i, j) \in \lambda$, $1 \leq k < m$, $1 \leq l < n$,

- $E^L_k(t_{i,j}) = 0$ if $i \neq k$.
- $E^L_k(t_{i,j}) = t_{i+1,j}$ if $(i+1, j) \in \lambda$ and 0 otherwise.
- $\chi_{i,j} = v_{(i,j)} \in \Lambda^1$
- $E^R(t_{i,j}) = 0$ if $j \neq l$.
- $E^R(t_{i,j}) = (-1)^{\lambda'_j - 1}q^{\lambda'_j - 1}t_{i,j+1}$ if $(i, j+1) \in \lambda$ and 0 otherwise.
- $E^R(t_{i,j}) = (-1)^{\lambda'_j - 1}q^{\lambda'_j - 1}t_{i,j+1}$ if $(i, j+1) \in \lambda$ and 0 otherwise.

Proof: Let $k \neq i$ and consider $E^L_k(t_{i,j})$. Note that, for all j', if $(k+1, j') \in t_{i,j}$, then $(k, j') \in t_{i,j}$. Thus, by definition of E^L_k, we have $E^L_k(t_{i,j}) = 0$.

Now consider $E^L_k(t_{i,j})$. Note that $(i, j) \notin t_{i,j}$. If $(i+1, j) \in \lambda$, then $(i+1, j) \in t_{i,j}$. Further, for all $j' < j$, if $(i+1, j') \in t_{i,j}$ then $(i, j') \in t_{i,j}$. Thus, by definition $E^L_k(t_{i,j})$ operates only at the position $(i+1, j)$ if $(i+1, j) \in \lambda$ and produces the subset $t_{i+1,j}$.

Now we assume that $(i+1, j) \in \lambda$, and evaluate $q^{-h^L_i}(t_{i+1,j})$. Note that, except for $(i+1, j)$, $(i+1, j') \in t_{i+1,j}$ for $1 \leq j' \leq \lambda_{i+1}$. Also, for $j' > \lambda_{i+1}$, $(i+1, j') \notin t_{i+1,j}$. Thus $q^{c_{i+1}}(t_{i+1,j}) = q^{\lambda_{i+1}-1}$. Similarly, $q^{h^L_i}(t_{i+1,j}) = q^{\lambda_{i+1}}$. Therefore,

$$q^{-h^L_i}(t_{i+1,j}) = q^{\lambda_{i+1}-\lambda_i}t_{i+1,j}$$

It is easy to that $E^R(t_{i,j}) = 0$ if $j \neq l$. So, we turn our attention to $E^R(t_{i,j})$. Note that, for i' such that $\lambda'_{i+1} < i' \leq \lambda'_j$, $(i', j) \in t_{i,j}$ and $(i', j+1) \notin t_{i,j}$. For other values of i' except i, either both or none of (i', j) and $(i', j+1)$ belong to $t_{i,j}$. Therefore, as expected, $E^R(t_{i,j})$ operates only at the position $(i, j+1)$ if $(i, j+1) \in \lambda$. Further, by definition of E^R, if $(i, j+1) \in \lambda$, we have

$$E^R(t_{i,j}) = (-1)^{\lambda'_j}q^{\lambda'_j-1}t_{i,j+1}$$

The sign $(-1)^{\lambda'_j-1}$ results from the fact that exactly $\lambda'_j - 1$ elements of $[mn]$ strictly in the range from (i, j) to $(i, j+1)$ belong to $t_{i,j}$.

We skip the proof for the last assertion as it follows from a similar reasoning applied earlier for the left E-operator. Q.E.D.
Lemma 36 For \((i, j) \in \lambda\),

- \[
E_i^L(t_{i,j} \otimes \chi_{i,j}) = \begin{cases}
 t_{i+1,j} \otimes \chi_{i,j} & \text{if } (i+1, j) \in \lambda \\
 0 & \text{otherwise}
\end{cases}
\]

- If \((i+1, j) \in \lambda\), then
 \[
 E_i^L(t_{i+1,j} \otimes \chi_{i+1,j}) = q^{\lambda_i+1-\lambda_i-1}t_{i+1,j} \otimes \chi_{i,j}
 \]

- \[
E_j^R(t_{i,j} \otimes \chi_{i,j}) = \begin{cases}
 (-1)^{j_i-1}q^{\chi_j+1-\chi_j}t_{i,j+1} \otimes \chi_{i,j} & \text{if } (i, j+1) \in \lambda \\
 0 & \text{otherwise}
\end{cases}
\]

- If \((i, j+1) \in \lambda\), then
 \[
 E_j^R(t_{i,j+1} \otimes \chi_{i,j+1}) = q^{\lambda_j+1-\lambda_j-1}t_{i,j+1} \otimes \chi_{i,j}
 \]

- For remaining \(1 \leq k < m\) and \(1 \leq l < n\), \(E_k^L(t_{i,j} \otimes \chi_{i,j}) = E_k^R(t_{i,j} \otimes \chi_{i,j}) = 0\).

Proof: For the first assertion, consider
\[
E_i^L(t_{i,j} \otimes \chi_{i,j}) = E_i^L(t_{i,j}) \otimes \chi_{i,j} + q^{-h_i^L}(t_{i,j}) \otimes E_i^L(\chi_{i,j})
\]
As \((i+1, j) \not\in \chi_{i,j}\), \(E_i^L(\chi_{i,j}) = 0\). Therefore, the claim follows from the previous lemma.

For the second assertion, let us assume that \((i+1, j) \in \lambda\). Then
\[
E_i^L(t_{i+1,j} \otimes \chi_{i+1,j}) = E_i^L(t_{i+1,j}) \otimes \chi_{i+1,j} + q^{-h_i^L}(t_{i+1,j}) \otimes E_i^L(\chi_{i+1,j})
\]
Note that, from the previous lemma \(E_i^L(t_{i+1,j}) = 0\). Also, \(E_i^L(\chi_{i+1,j}) = \chi_{i,j}\). Again, using the previous lemma, we have
\[
E_i^L(t_{i+1,j} \otimes \chi_{i+1,j}) = q^{\lambda_i+1-\lambda_i-1}t_{i+1,j} \otimes \chi_{i,j}
\]
The third and fourth assertions are proved in a similar fashion. Q.E.D.

Lemma 37 Let \(v_\lambda \in \wedge^a \otimes \wedge^1\) be defined as follows:
\[
v_\lambda = \sum_{(k,l) \in \lambda} \alpha_{k,l}t_{k,l} \otimes \chi_{k,l}
\]
where
\[
\alpha_{k,l} = (-1)^{\chi_k+\chi_l-1+k}q^{k+l-\lambda_k}
\]
Then \(v_\lambda\) is a highest-weight vector of weight \((\lambda, \lambda')\).

Proof: It is clear that \(v_\lambda\) is a weight vector of weight \((\lambda, \lambda')\). Below, we show that it is a highest-weight vector by checking that \(E_i^L(v_\lambda) = E_j^R(v_\lambda) = 0\) for all \(i, j\).

Towards this, by previous lemma, we have
\[
E_i^L(v_\lambda) = \sum_{(k,l) \in \lambda} \alpha_{k,l}E_i^L(t_{k,l} \otimes \chi_{k,l})
= \sum_{(i,j) \in \lambda} \alpha_{i,j}E_i^L(t_{i,j} \otimes \chi_{i,j}) + \sum_{(i+1,j) \in \lambda} \alpha_{i+1,j}E_i^L(t_{i+1,j} \otimes \chi_{i+1,j})
= \sum_{(i,j) \in \lambda} \left(\alpha_{i,j}E_i^L(t_{i,j} \otimes \chi_{i,j}) + \alpha_{i+1,j}E_i^L(t_{i+1,j} \otimes \chi_{i+1,j})\right)
\]
For \(l\) such that both \((i, l)\) and \((i+1, l)\) are in \(\lambda\), from previous lemma, we have
\[
E_i^L(t_{i,l} \otimes \chi_{i,l}) = t_{i+1,l} \otimes \chi_{i+l}
E_i^L(t_{i+1,l} \otimes \chi_{i+1,l}) = q^{\lambda_{i+1}-\lambda_i-1}t_{i+1,l} \otimes \chi_{i+l}
\]
Therefore, the coefficient of \(t_{i+1,l} \otimes \chi_{i,l} \) in \(E^L_i(\nu_\lambda) \) is
\[
\begin{align*}
E^L_i(\chi_{i,j} \otimes t_{i,j}) &= \begin{cases}
q^{-1} \chi_{i,j} \otimes t_{i+1,j} & \text{if } (i+1,j) \in \lambda \\
0 & \text{otherwise}
\end{cases} \\
\text{If } (i+1,j) \in \lambda, \text{ then } E^L_i(\chi_{i+1,j} \otimes t_{i+1,j}) &= \chi_{i,j} \otimes t_{i+1,j} \\
E^R_j(\chi_{i,j} \otimes t_{i,j}) &= \begin{cases}
(-1)^{i_j+1} q^{\lambda_{j+1}+\lambda_{j}} q^{\lambda_{j+1}+\lambda_{j}} & \text{if } (i,j+1) \in \lambda \\
0 & \text{otherwise}
\end{cases} \\
\text{If } (i,j+1) \in \lambda, \text{ then } E^R_j(\chi_{i+1,j} \otimes t_{i+1,j}) &= \chi_{i,j} \otimes t_{i+1,j+1} \\
\text{For remaining } 1 \leq k < m \text{ and } 1 \leq l < n, \text{ } E^L_k(\chi_{i,j} \otimes t_{i,j}) = E^R_l(\chi_{i,j} \otimes t_{i,j}) = 0.
\end{align*}
\]

\textbf{Lemma 38} For \((i, j) \in \lambda,\)

\begin{itemize}
\item \[E^L_i(\chi_{i,j} \otimes t_{i,j}) = \begin{cases}
q^{-1} \chi_{i,j} \otimes t_{i+1,j} & \text{if } (i+1,j) \in \lambda \\
0 & \text{otherwise}
\end{cases} \]
\item \[E^R_j(\chi_{i,j} \otimes t_{i,j}) = \begin{cases}
(-1)^{i_j+1} q^{\lambda_{j+1}+\lambda_{j}} q^{\lambda_{j+1}+\lambda_{j}} & \text{if } (i,j+1) \in \lambda \\
0 & \text{otherwise}
\end{cases} \]
\item \[E^R_j(\chi_{i,j} \otimes t_{i,j}) = \chi_{i,j} \otimes t_{i+1,j+1} \]
\item \[E^R_j(\chi_{i,j} \otimes t_{i,j}) = E^R_j(\chi_{i,j} \otimes t_{i,j}) = 0. \]
\end{itemize}

\textbf{Proof:} For the first assertion, consider
\[
E^L_i(\chi_{i,j} \otimes t_{i,j}) = E^L_i(\chi_{i,j}) \otimes t_{i,j} + q^{-h_i^L(\chi_{i,j})} \otimes E^L_i(t_{i,j})
\]
As \((i+1,j) \not\in \chi_{i,j}, \text{ } E^L_i(\chi_{i,j}) = 0. \text{ Further, } q^{-h_i^L(\chi_{i,j})} = q^{-1} \chi_{i,j}. \text{ Therefore, the claim follows.}
\]

For the second assertion, let us assume that \((i+1,j) \not\in \lambda. \text{ Then}
\[
E^L_i(\chi_{i+1,j} \otimes t_{i+1,j}) = E^L_i(\chi_{i+1,j}) \otimes t_{i+1,j} + q^{-h_i^L(\chi_{i+1,j})} \otimes E^L_i(t_{i+1,j})
\]
Note that, \(E^L_i(t_{i+1,j}) = 0. \text{ Also, } E^L_i(\chi_{i+1,j}) = \chi_{i,j}. \text{ Therefore, we have}
\[
E^L_i(\chi_{i+1,j} \otimes t_{i+1,j}) = \chi_{i,j} \otimes t_{i+1,j}
\]

\textbf{Proof:} For the first assertion, consider
\[
E^L_i(\chi_{i,j} \otimes t_{i,j}) = E^L_i(\chi_{i,j}) \otimes t_{i,j} + q^{-h_i^L(\chi_{i,j})} \otimes E^L_i(t_{i,j})
\]
As \((i+1,j) \not\in \chi_{i,j}, \text{ } E^L_i(\chi_{i,j}) = 0. \text{ Further, } q^{-h_i^L(\chi_{i,j})} = q^{-1} \chi_{i,j}. \text{ Therefore, the claim follows.}
\]

For the second assertion, let us assume that \((i+1,j) \not\in \lambda. \text{ Then}
\[
E^L_i(\chi_{i+1,j} \otimes t_{i+1,j}) = E^L_i(\chi_{i+1,j}) \otimes t_{i+1,j} + q^{-h_i^L(\chi_{i+1,j})} \otimes E^L_i(t_{i+1,j})
\]
Note that, \(E^L_i(t_{i+1,j}) = 0. \text{ Also, } E^L_i(\chi_{i+1,j}) = \chi_{i,j}. \text{ Therefore, we have}
\[
E^L_i(\chi_{i+1,j} \otimes t_{i+1,j}) = \chi_{i,j} \otimes t_{i+1,j}
\]
For the third assertion, consider
\[E^R_j(\chi_{i,j} \otimes t_{i,j}) = E^R_j(\chi_{i,j}) \otimes t_{i,j} + q^{-h^R_j}(\chi_{i,j}) \otimes E^R_j(t_{i,j}) \]
Recall that, we have
\[E^R_j(t_{i,j}) = (-1)^{\lambda'_i+1-\lambda'_j} t_{i,j+1} \text{ if } (i,j) \in \lambda \text{ and } 0 \text{ otherwise} \]
Therefore, the claim follows.

For the fourth claim, we assume \((i,j) \in \lambda\). Then
\[E^R_j(\chi_{i,j+1} \otimes t_{i,j+1}) = E^R_j(\chi_{i,j+1}) \otimes t_{i,j+1} + q^{-h^R_j}(\chi_{i,j+1}) \otimes E^R_j(t_{i,j+1}) = \chi_{i,j} \otimes t_{i,j+1} \]
The last claim can be easily proved. Q.E.D.

Lemma 39 Let \(v_\lambda \in \wedge^1 \otimes \wedge^a\) be defined as follows:
\[v_\lambda = \sum_{(k,l) \in \lambda} \beta_{k,l} \chi_{k,l} \otimes t_{k,l} \]
where
\[\beta_{k,l} = (-1)^{\lambda'_i+...+\lambda'_{i-1}+k} q^{\lambda'_i-k-l} \]
Then \(v_\lambda\) is a highest-weight vector of weight \((\lambda, \lambda')\).

Proof: Clearly, \(v_\lambda\) is a weight-vector of weight \((\lambda, \lambda')\). We now check that \(E^L_i(v_\lambda) = 0\) for all \(i\). As expected, this finally reduces to checking if the following expression, coefficient of \(\chi_{i,l} \otimes t_{i+1,l}\) in \(E^L_i(v_\lambda)\), is zero. Towards this, consider
\[
= q^{-1} \beta_{i,l} + \beta_{i+1,l} \\
= q^{-1} (-1)^{\lambda'_i+...+\lambda'_{i-1}+i} q^{\lambda'_i-i-l} + (-1)^{\lambda'_i+...+\lambda'_{i-1}+i+1} q^{\lambda'_i-i-1-l} \\
= 0
\]
Similarly, to check if \(E^R_j(v_\lambda) = 0\), we need to check if the following expression, coefficient of \(\chi_{k,j} \otimes t_{k,j+1}\) in \(E^R_j(v_\lambda)\), is zero. Towards this, consider
\[
= \beta_{k,j} (-1)^{\lambda'_j-1} q^{\lambda'_{j+1}-\lambda'_j-1} + \beta_{k,j+1} \\
= (-1)^{\lambda'_j+...+\lambda'_{j-1}+k} q^{\lambda'_j-k-j} (-1)^{\lambda'_j-k-j} q^{\lambda'_{j+1}-\lambda'_j-1} + (-1)^{\lambda'_j+...+\lambda'_{j+k}} q^{\lambda'_{j+1}-k-j-1} \\
= 0
\]
Thus, we have verified that \(E^L_i(v_\lambda) = E^R_j(v_\lambda) = 0\) for all \(i, j\). This shows that \(v_\lambda\) is a highest-weight vector. Q.E.D.

Now we are ready to define the \(U_q(gl_m) \otimes U_q(gl_n)\)-equivariant map
\[\psi'_a : \wedge^{a+1} \rightarrow \wedge^1 \otimes \wedge^a \]
As expected, this is done by simply setting \(\psi'_a(v_{\lambda'}) = v_{\lambda'}\) and taking the unique \(U_q(gl_m) \otimes U_q(gl_n)\)-equivariant extension. Also, as before, this extension matches the classical \(U_q(gl_{mn})\)-equivariant construction at \(q = 1\).

Note that \(\wedge^{a+1}\) and \(\wedge^1 \otimes \wedge^a\) have normal bases. Whence, by Prop. 33 there is the \(U_q(gl_m) \otimes U_q(gl_n)\)-equivariant map:
\[\psi'^*_a : \wedge^1 \otimes \wedge^a \rightarrow \wedge^{a+1} \]
Finally, we construct \(\psi_{a,b}\) as follows:
\[\psi_{a,b} : \wedge^{a+1} \otimes \wedge^{b-1} \rightarrow \wedge^a \otimes \wedge^1 \otimes \wedge^{b-1} \rightarrow \wedge^a \otimes \wedge^{b-1} \rightarrow \wedge^a \otimes \wedge^b \]
5 The crystal basis for \wedge^K

In this section we examine the crystal structure (see [9][10]) of the $U_q(\mathfrak{gl}_m) \otimes U_q(\mathfrak{gl}_n)$-module $\wedge^K(\mathbb{C}^{m \times n})$. We show that there is a sign function sign^* on K-subsets of $\lfloor mn \rfloor$ such that the collection $\mathcal{B}^* = \{\text{sign}^* \cdot v_c \}_c$ is a crystal basis for \wedge^K.

We identify $\lfloor mn \rfloor$ with $[m] \times [n]$ and also order the elements as follows:

$$(1,1) \prec (2,1) \prec \ldots (m,1) \prec (1,2) \prec \ldots (m-1,n) \prec (m,n)$$

In other words $(i,j) \prec (i',j')$ iff either $j < j'$ or $j = j'$ with $i < i'$. For $(i,j) \prec (i',j')$, we denote by $[(i,j),(i',j')]$ as the indices between (i,j) and (i',j') including both (i,j) and (i',j').

Recall that (cf. Section 2), as a $\mathbb{C}(q)$-vector space, $\wedge^K(\mathbb{C}^{mn})$ is generated by the basis vectors $\mathcal{B} = \{v_c | c \subseteq \lfloor mn \rfloor, |c| = K\}$. Let us fix an index i and look at the sub-algebra U^L_i of $U_q(\mathfrak{gl}_m)$ generated by E^L_i, F^L_i and h^L_i. We define the standard $U_q(\mathfrak{sl}_2)$ generated by symbols e, f, h satisfying the following equations:

$$q^h q^{-h} = 1, \quad q^h eq^{-h} = q^2 e, \quad q^h f q^{-h} = q^{-2} f, \quad e f - f e = \frac{q^h - q^{-h}}{q - q^{-1}}$$

We use the Hopf Δ:

$$\Delta q^h = q^h \otimes q^h, \Delta e = e \otimes 1 + q^{-h} \otimes e, \Delta f = f \otimes q^h + 1 \otimes f$$

In other words, they satisfy exactly the same relations that e^L_i, f^L_i, h^L_i satisfy, including the Hopf. Clearly, U^L_i is isomorphic to $U_q(\mathfrak{sl}_2)$ as algebras and we denote this isomorphism by $L : U^L_i \rightarrow U_q(\mathfrak{sl}_2)$.

We construct the $U_q(\mathfrak{sl}_2)$-module \mathbb{C}^2 with basis x_1, x_2 with the action:

$$ex_2 = x_1, ex_1 = 0, fx_2 = 0, fx_1 = x_2, q^h x_1 = qx_1, q^h x_2 = q^{-1} x_2$$

With the Hopf Δ above, $M = \otimes_{i=1}^N \mathbb{C}^2$ is a $U_q(\mathfrak{sl}_2)$-module with the basis $\mathcal{S} = \{y_1 \otimes \ldots \otimes y_N | y_i \in \{x_1, x_2\}\}$, and with the action:

$$e(y_1 \otimes \ldots y_N) = \sum_{j} (\prod_{k=1}^{j-1} q^{-h}(y_k)) \cdot y_1 \otimes \ldots y_{j-1} \otimes e(y_j) \otimes y_{j+1} \otimes \ldots \otimes y_N$$

A similar expression may be written for the action of f.

Let us identify $\lfloor mn \rfloor$ with $[m] \times [n]$ and define the signature $\sigma^L_i(c)$, for $c \subseteq \lfloor mn \rfloor$. Towards this, we define

$$I(c) = \{1 \leq j \leq n | \text{ both } (i,j), (i+1,j) \in c\}$$

$$J(c) = \{1 \leq j \leq n | \text{ both } (i,j), (i+1,j) \not\in c\}$$

$$S(c) = \{(i',j') \in c | i' \neq i \text{ and } i' \neq i + 1\}$$

The signature $\sigma^L_i(c)$ is the tuple $(I(c), J(c), S(c))$.

Next, for a $\sigma = (I,J,S)$, we define the vector space $V^L_{\sigma,i}$ as the $\mathbb{C}(q)$-span of all elements

$$\mathcal{B}^L_{\sigma,i} = \{v_c | \sigma^L_i(c) = \sigma\}$$

Let $N = n - |I| - |J|$ and let $M = \otimes^N \mathbb{C}^2$ be the $U_q(\mathfrak{sl}_2)$-module as above.

We prove the following:

Proposition 40 Given $\sigma = (I_\tau, J_\tau, S_\tau)$ as above,

(i) $V^L_{\sigma,i}$ is a U^L_i-invariant subspace.
(ii) The $U_q(sl_2)$ module M is isomorphic to the U_{λ}^L-module $V_{\sigma,i}^L$ via the isomorphism ι_L above.

Proof: For any $v_c \in \mathcal{B}_{\sigma,i}^L$, if $E_i^L(v_c) = \sum \alpha(c') \cdot v_{c'}$, then it is clear that $v_{c'} \in \mathcal{B}_{\sigma,i}^L$ as well. The same holds for F_i^L and h_i^L. This proves (i) above. For (ii), first note that

$$E_i^L = \sum_{j} \prod_{k=1}^{j-1} q^{-h(k-1)m+i} e(j-1)m+i$$

which matches the Hopf Δ of $U_q(sl_2)$. Next, if $j \in I(c) \cup J(c)$ then the index j is irrelevant to the action of E_i^L on v_c, whence in the restriction to $V_{\sigma,i}^L$, the indices in $I_\sigma \cup J_\sigma$ do not play a role.

Next, note that $|\mathcal{B}_{\sigma,i}^L| = 2^N$. Assume for simplicity that $I_\sigma \cup J_\sigma = \{N+1, \ldots, n\}$. Indeed, we may set up a $U_q(sl_2)$-module isomorphism ι_L by setting

$$\iota_L(v_c) = y_1 \otimes \ldots \otimes y_N$$

such that $y_k = \begin{cases} x_1 & \text{iff } (i,k) \in c \\ x_2 & \text{otherwise} \end{cases}$

One may verify that $\iota_L : V_{\sigma,i}^L \rightarrow M$ is indeed equivariant via L. Q.E.D.

Proposition 41 The elements \mathcal{B} is a crystal basis for $\wedge^K(\mathbb{C}^m_n)$ for the action of $U_q(gl_m)$.

Proof: This is obtained by first noting that \mathcal{S} is indeed a crystal basis for M, see [9], for example. Next, the equivariance of ι_L shows that for $v_c \in \mathcal{B}_{\sigma,i}^L$,

$$\widetilde{E}_i^L(v_c) = \iota_L^{-1}(\widetilde{e}(\iota_L(v_c)))$$

This proves that $\mathcal{B}_{\sigma,i}^L$ is indeed a crystal basis for $V_{\sigma,i}^L$. Next, by applying Proposition 40 for all i and all σ, we see that $\{\mathcal{B}_{\sigma,i}^L \}_{i,\sigma}$ together cover \mathcal{B}. Q.E.D.

We now move to the trickier $U_q(gl_n)$-action. Let us denote by $\epsilon_{i,j}$ the weight $\epsilon_{(j-1)m+i}$ and $h_{i,j} = \epsilon_{i,j} - \epsilon_{i,j+1}$. There are two sources of complications.

- The operator E^R_k may be re-written as:

$$E^R_k = \sum_{i} \prod_{a=i+1}^{m} (q^{-h_{a,k}}) E_{(k-1)m+i,km+i-1} = \sum_{i} E_{(k-1)m+i,km+i-1} \prod_{a=i+1}^{m} q^{-h_{a,k}}$$

Thus, the Hopf works from the “right”.

- For a general v_c, if $E_{(k-1)m+i,km+i-1}v_c$ is non-zero then it is $\pm v_d$, where $v_d = v_c - (i,k+1) + (i,k)$ where the sign is $(-1)^M$ where M is the number of elements in $c \cap [(i+1,k), \ldots, (i-1,k+1)]$.

To fix the sign, we first define an “intermediate global” sign as follows. For a set $c \subset [m] \times [n]$, we define $c^* \subset [m] \times [n]$ as that obtained by moving the elements of c to the right, as far as they can go (see Example 40). Note that $F^R_k(c^*) = 0$ for all k and thus c^* is one of the lowest weight vectors in $\wedge^K(\mathbb{C}^m_n)$. For an $(i,j) \in c$, let (i,j^*) be its final position in c^*. We may define j^* explicitly as $n - \{(j'|(i,j') \in c, j' > j)\}$. Next, we define for $(i,j) \in c$,

$$S_{i,j}(c) = \{(i',j') \in c \mid (i,j) \prec (i',j') \prec (i',j^*) \prec (i,j^*)\}$$

$$n_{ij} = |S_{i,j}(c)|$$

Setting $N_c = \sum_{(i,j) \in c} n_{ij}$ we finally define:

$$\text{sign}(c) = (-1)^{N_c}$$

$$\text{sign}(d/c) = \text{sign}(d)/\text{sign}(c)$$
Lemma 42 Let \(v_c \in \mathcal{B}^R_{\sigma,k} \) be such that \(E_{(k-1)m+i,km+i-1}v_c \neq 0 \) then
\[
E_{(k-1)m+i,km+i-1}v_c = \text{sign}(d/c)v_d
\]
where \(v_d = v_c - (i, k + 1) + (i, k) \).

Proof: It is clear that \(e^* = d^* \) and thus for \((i, k + 1) \in e \) and \((i, k) \in d \), let \((i, k^*) \) be the final position of both \((i, k + 1) \in e \) and \((i, k) \in d \). For \((i, k + 1) \prec (i', j') \) or \((i', j') \prec (i, k) \) we have (i) \(S_{i',j'}(c) = S_{i',j'}(d) \) and (ii) \((i', j') \in S_{i,k+1}(c) \) iff \((i', j') \in S_{i,k}(d) \).

Next, it is clear that (i) \(S_{i,k}(d) \supseteq S_{i,k+1}(c) \), and (ii) for \((i, k) \prec (i', j') \prec (i, k + 1) \), \(S_{i',j'}(d) \subseteq S_{i',j'}(c) \) and in fact, \(S_{i',j'}(c) - S_{i',j'}(d) \) can atmost be the element \((i, k + 1) \).

Now let us look at \(S_{i,k}(d) - S_{i,k+1}(c) \). These contain all \((i', j') \in e \) such that
\[
(i, k) \prec (i', j') \prec (i, k + 1) \prec (i', j^*) \prec (i, k^*)
\]
On the other hand, for \((i', j') \in e \) such that \((i, k) \prec (i', j') \prec (i, k + 1) \), which are not counted above, it must be that \((i, k^*) \prec (i', j^*) \) in which case, \(S_{i',j'}(c) = S_{i',j'}(d) \cup \{(i, k + 1)\} \).

In short, for every \((i', j') \in e \) such that \((i, k) \prec (i', j') \prec (i, k + 1) \) either it contributes to an increment in \(S_{i,k}(d) \) or \(S_{i,k+1}(c) \) or a decrement in \(S_{i',j'}(d) \) over \(S_{i',j'}(c) \). Of course, the two cases are exclusive.

Thus we have \(\text{sign}(d)/\text{sign}(c) = (-1)^M \) where \(M \) is exactly the number of elements in \(e \cap [(i + 1, k), \ldots, (i - 1, k + 1)] \). Q.E.D.

Next, we define a new Hopf \(\Delta' \) on \(U_q(sl_2) \) as
\[
\Delta' q^h = q^h \otimes q^h, \Delta' e = 1 \otimes e + e \otimes q^{-h}, \Delta' f = q^h \otimes f + f \otimes 1
\]
We denote by \(M' \), the \(U_q(sl_2) \)-module \(\otimes \mathbb{C}^2 \) via the Hopf \(\Delta' \) and with the basis \(S = \{y_1 \otimes \cdots \otimes y_N | y_i \in \{x_1, x_2\} \} \). Under \(\Delta' \) we have:
\[
e(y_1 \otimes \cdots y_N) = \sum_j (\prod_{k=j+1}^{N} q^{-h}(y_k)) \cdot y_1 \otimes \cdots \otimes y_{j-1} \otimes e(y_j) \otimes y_{j+1} \otimes \cdots \otimes y_N
\]

We denote by \(U^R_k \) the algebra generated by \(E^R_k, F^R_k, H^R_k \) and let \(R : U^R_k \rightarrow U_q(sl_2) \) be the natural isomorphism.

As before, we define \(\sigma^R_k(c) \) analogously as
\[
I(c) = \{1 \leq i \leq m \mid \text{both } (i, k), (i, k + 1) \in c \}
J(c) = \{1 \leq i \leq m \mid \text{both } (i, k), (i, k + 1) \not\in c \}
S(c) = \{(i', k') \in e \mid k' \neq k \text{ and } k' \neq k + 1 \}
\]
Next, for a \(\sigma = (I, J, S) \), we define the vector space \(\mathcal{B}^R_{\sigma,k} \) as the \(\mathbb{C}(q) \)-span of all elements
\[
\mathcal{B}^R_{\sigma,k} = \{v_c \mid \sigma^R_k(c) = \sigma \}
\]
Again, as before, let \(N = n - |I| - |J| \). Let us also assume, for simplicity that \(I \cup J = \{N+1, \ldots, m\} \).

Proposition 43 Given \(\sigma \) as above,

(i) \(\mathcal{V}^R_{\sigma,k} \) is a \(U^R_k \)-invariant subspace.

(ii) The \(U_q(sl_2) \) module \(M' \) is isomorphic to the \(U^R_k \)-module \(\mathcal{V}^R_{\sigma,k} \) via the isomorphism \(R \) above.
Proof: Part (i) above is obvious. For (ii), note that
\[E^R_k = \sum_i E_{(k-1)m+i,km+i-1}^{(m)} \left(\prod_{a=i+1}^m q^{h_{a,k}} \right) \]
which matches the Hopf \(\Delta' \) of \(U_q(sl_2) \). Again, if \(j \in I(c) \cup J(c) \) then the index \(j \) is irrelevant to the action of \(E^R_k \) on \(v_c \), whence in the restriction to \(V^R_{\sigma,k} \), the indices in \(I \cup J \) do not play a role.

Next, note that \(|B^R_{\sigma,k}| = 2^N \). Recall that, we have assumed that \(I \cup J = \{N+1, \ldots, m\} \). Indeed, we may set up a \(U_q(sl_2) \)-module isomorphism \(\iota_R \) by setting
\[\iota_R(v_c) = \text{sign}(c) \cdot y_1 \otimes \ldots \otimes y_N \text{ such that } y_i = \begin{cases} x_1 \text{ iff } (i, k) \in c \\ x_2 \text{ otherwise} \end{cases} \]
One may verify (using Lemma 42) that \(\iota_R : V^R_{\sigma,k} \rightarrow M' \) is indeed equivariant via \(R \). Q.E.D.

Proposition 44 Let \(B' = \{ \text{sign}(b) \cdot v_b | b \in B \} \) be “signed” elements. Then the elements \(B' \) is a crystal basis for \(\wedge^K (\mathbb{C}^{mn}) \) for the action of \(U_q(gl_n) \). In other words \(E^R_k (v_c) = \pm v_d \cup 0 \).

Proof: Let \(B^R_{\sigma,k} \) be the “signed” elements of \(B^R_{\sigma,k} \). We first note that \(S \) continues to be a crystal basis for \(M' \). Next, the equivariance of \(\iota_R \) shows that for \(v_c \in B^R_{\sigma,k} \),
\[E^R_k (v_c) = \iota_R^{-1}(\iota_R(v_c)) \]
This proves that \(B^R_{\sigma,k} \) is indeed a crystal basis for \(V^R_{\sigma,k} \).

Thus, keeping in mind that the signs are allotted by our global \text{sign}-function and, by considering all \(\sigma \) and all \(k \), we obtain the assertion. Q.E.D.

We now define our final global sign \(\text{sign}^*(b) \) as follows. Firstly, let \(S = \{ b \mid F^L_i v_b = F^R_k v_b = 0 \} \). These are the lowest weight vectors for both the left and the right action. We see that:
- For any \(b \in S \), we have \(b^* = b \).
- If \(wt_i(b) \) denotes the cardinality of the set \(\{(i, k) | (i, k) \in b\} \), then \(wt_1(b) \leq \ldots \leq wt_m(b) \).

We define \(\text{sign}^*(b) = \text{sign}(b) \) for all \(b \) such that \(b^* \in S \). Next, for a \(c \) such that \(c^* \not\in S \), we inductively (by \(wt_i \) above) define \(\text{sign}^*(c) = \text{sign}(F^L_i v_c) \) where \(F^L_i (v_c) \neq 0 \). By the commutativity of \(F^L_i \) with \(F^R_k \), we see that \(\text{sign}^*(c) \) is well defined over all \(K \)-subsets of \([m] \times [n] \).

Let \(v^*_c = \text{sign}^*(b) \cdot v_b \) and let \(B^* = \{ v^*_c | v_b \in B \} \).

Proposition 45 The elements \(B^* \) is a crystal basis for \(\wedge^K (\mathbb{C}^{mn}) \) for the action of both \(U_q(gl_n) \) and \(U_q(gl_m) \). In other words \(E^R_k (v^*_c) \in B^* \cup 0 \) and \(E^L_i (v^*_c) \in B^* \cup 0 \).

Proof: The proof follows from the commutativity condition and the well-defined-ness of \(\text{sign}^* \). Q.E.D.

Example 46 Let us consider \(\wedge^2 (\mathbb{C}^{2 \times 2}) \) whose six elements, their matrix notation, and signs are given below:
For a $b \subseteq [m] \times [n]$ define the **left word** $LW(b)$ as the i-indices of all elements $(i, k) \in b$, read bottom to top within a column, reading the columns left to right. Similarly, define the **right word** $RW(b)$ as the k-indices of all elements $(i, k) \in b$, read right to left within a row, reading the rows from bottom to top. For a word w, let $rs(w)$ be the Robinson-Schenstead tableau associated with w, when read from left to right. Define the **left tableau** $LT(b) = rs(LW(b))$ and the **right tableau** as $RT(b) = rs(RW(b))$.

Example 47 Let $m = 3$ and $n = 4$ and let $b = \{1, 3, 5, 6, 9, 10\}$.

For semi-standard tableau, recall the crystal operators $\sim e^T_i, \sim f^T_i$, see for example, [9]. These crystal operators may be connected to our crystal operators via the following proposition. This obtains the result in [2].

Proposition 48 For any $v^*_b \in B^*$ the crystal basis for $\wedge^K(\mathbb{C}^{mn})$ as above, we have:

- If $E^L_i (v^*_b) = v^*_c$ then $\sim e^T_i (LT(b)) = LT(c)$.
- If $E^R_k (v^*_b) = v^*_c$ then $\sim e^T_k (RT(b)) = RT(c)$.

A similar assertion holds for the $\sim F$-operators.

References

[1] M. Artin, W. Schelter, J. Tate: Quantum deformations of GL_n, Commun. Pure. Appl. Math. 44 (1991), 879-895.
[2] V. I. Danilov, G. A. Koshevoi: Bi-crystals and crystal \((GL(V), GL(W))\) duality, Preprint RIMS-1485, Kyoto Univ., Kyoto (2004).

[3] E. Date, M. Jimbo, T. Miwa. Representations of \(U_q(gl(n, C))\) at \(q = 0\) and the Robinson-Schensted correspondence, in Physics and Mathematics of strings, World Scientific, Singapore (1990).

[4] V. Drinfeld: Quantum groups, in proceedings of the International Congress of Mathematicians (A. M. Gleason, ed), Amer. Math. Soc., Providence, RI (1986), 254-258.

[5] W. Fulton, J. Harris: Representation theory, Springer Verlag (1991).

[6] M. Jimbo: a \(q\)-analogue of \(U(\mathfrak{g})\) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.

[7] T. Hayashi: Nonexistence of homomorphisms between quantum groups, Tokyo J. Math. 15 (1992), 431-435.

[8] B. Leclerc and J. Thibon: The Robinson-Schensted correspondence as the quantum straightening at \(q=0\), Electronic Journal of Combinatorics, Vol. 3, no. 2, (1996).

[9] M. Kashiwara: Crystallizing the \(q\)-analogue of universal enveloping algebra, Commun. Math. Phys. 133 (1990) 249-260.

[10] M. Kashiwara: On crystal bases of the \(q\)-analogue of the universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.

[11] A. Klimyk, K. Schmüdgen, Quantum groups and their representations, Springer (1997).

[12] G. Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. USA, vo. 89 (1992), 8177-8179.

[13] K. Mulmuley, M. Sohoni: Geometric complexity theory: An approach to the P vs. NP and related problems, SIAM J. comput. vol. 31, no. 2, (2001), 496-526.

[14] K. Mulmuley, M. Sohoni: Geometric complexity theory II: towards explicit obstructions for embeddings among class varieties, arXiv cs.CC/0612134 December, 2006, also in SIAM J. Comput. 38(3): 1175-1206 (2008)

[15] K. Mulmuley, M. Sohoni: Geometric Complexity Theory IV: quantum group for the Kronecker problem, arXiv:cs/0703110 (2007).

[16] L. G. Valiant: Completeness classes in algebra, Proc. 11th ACM STOC (1979), 249-261.