Crystallite-size Dependent Harmonic Magneto-electricity in SmFeO$_3$

Pooja Sahlot and Anand Mohan Awasthi*

*UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore- 452 001, India

*amawasthi@csr.res.in

Abstract

First- and second-harmonic dielectric susceptibilities are maidenly studied on Samarium Orthoferrite of mesoscopic/500 nm and nanoscopic/55 nm grainsizes. Magneto-electrically coupled to the antiferromagnetic and spin-reorientation transitions, fundamental and harmonic dielectricity consistently reflect the global/local polarization effects of crystallite-size dependent electrical orderings. Bulk and incipient ferroelectricity respectively in nanoscopic and mesoscopic crystallites concur the higher-temperature antiferromagnetic ordering ($T_N \sim 670$ K). Upon the spin-reorientation transition at lower-temperature ($T_{SR} \sim 470$ K), re-entrant relaxor state in the nano-crystallites and bulk-like/temperature-windowed ferroelectricity in the meso-crystallites emerge. In the nano-crystallites, magneto-electric signature of interfacial spins’ de-pinning ($T_{SP} \sim 540$ K) is exclusively revealed by the scaled-harmonics.

Keywords: Samarium Orthoferrite, Multiferroicity, Harmonic dielectricity, Crystallite size

Introduction

RFeO$_3$ oxides are the perovskites with rich properties and functional applicability in spintronics, magneto-electric memory, solid oxide fuel cells, and many others [1,2,3]. Perovskites and related systems with multiple magnetic phases and respective transitions have shown interesting magneto-electric properties in the literature [4,5]. In RFeO$_3$ family, samarium orthoferrite (SmFeO$_3$; SFO) with single-phase ambient multiferroicity is of great interest [6,7]. Here, G-type antiferromagnetic ordering of Fe$^{3+}$ ions with weak ferromagnetism along the c-axis occurs below $T_N = 670$ K [8,9]. Upon further cooling, the SFO system shows reorientation of Fe$^{3+}$ spins from the c- axis to a- axis below $T_{SR} = 470$ K [10]. Fe-Sm interactions are reported to play a crucial role in this magneto-strictive transition [11]. Significant displacement of Sm-ion in the octahedra introduces (improper) polarization in SFO [12], presenting good candidate multiferroic for study.
Chaturvedi et. al. [9,13] have carried out detailed particle-size dependent study on SFO. The group witnessed magneto-dielectric coupling about T_N in SFO nanoparticles (~55 nm) [13], which has been attributed to exchange striction and significant intrinsic surface stress of the nanoparticle-shell. Raman measurements in the studied system evidenced spin-phonon coupling across T_N and T_{SR}. In SFO with meso-sized grains (~500 nm), qualitative change in the ac-conductivity mechanism across T_{SR} was reported via its Jonscher power-law analysis [9]. Interestingly, the strength and type of magneto-electric (ME) couplings about T_{SR} and T_N were observed to depend on the grain size. In this regard, we expect the nature and magnitude of ME-induced polarizations to be crystallite-size dependent, providing important functional implications. To precisely characterize the global/local polarizations and thus identify the exact electrical orderings across the temperatures of interest, we present the first upgraded dielectric study in SFO; involving the harmonic susceptibility investigations. These were demonstrated in our previous report [14], to manifest profound signatures of unusual polarizations, which decipher several variant electrically-ordered states in different perovskite-related systems.

Here, we have performed dielectric fundamental, first-, and second-harmonics study on two SFO specimens- with grains of mesoscale (m-SFO ~500 nm) and nanoscale size (n-SFO ~55 nm). Samarium Orthoferrite (SmFeO$_3$) has orthorhombic symmetry (Pnma), with distorted FeO$_6$ octahedra [9]. Magnetic study on the specimens found their antiferromagnetic transition (Fe$^{3+}$ spins) at T_N =670 K and spin-reorientation at 470 K (disorder-broadened; ±10 K)--where weak-ferromagnetic moment associated with the Fe-spins reorients from the c-axis to the a-axis [9]. Chaturvedi et. al. reported dielectric properties for n-SFO (avg. particle size ≈55±5 nm) with non-dispersive ε'-peaks at T_N, wherein no sharp anomaly could be observed for m-SFO specimen [9]. From first- and second-harmonic dielectric measurements, here we present clear and profound ME-coupling driven polarization-characters across both T_N and T_{SR}, with well-distinguished magneto-harmonic effects in n-SFO and m-SFO specimens— as crystallite-size dependent non-linear dipolar-response. Further, novel magneto-electric feature across the interfacial-spins’ depinning temperature ($T_{SR}<T_{SP}<T_N$) is exclusively revealed from scaled-harmonic susceptibility.
Dielectric- Fundamental and Harmonics Study on \textit{m}-SFO (500 nm grain-size)

Fundamental dielectric measurements were performed on the \textit{m}-SFO specimen, where fig. 1 presents temperature dependence (300-750 K) of dielectric constant $\varepsilon'(T)$ in the frequency range of 100 Hz to 100 kHz. $\varepsilon'(T)$ isochrones depict no sharp feature at T_N (670 K); upon cooling there is steep drop in loss-tangent (fig.1 (b)) and a local-plateau in $\varepsilon'(T)$ (fig.1 (a)) around ~600 K. Across the spin reorientation transition (T_{SR} ~470K) however, clear non-dispersive peak-anomaly shows in both dielectric-constant and loss-tangent (fig.1 (a, b)). Here, low-valued ε' and losses ($\tan\delta < 1$) reflect intrinsic nature of magneto-dielectric anomaly, indicating a bulk-like polarization.

![Figure 1](image.png)

Figure 1. Temperature dependence of (a) dielectric constant (ε') and (b) loss-tangent for \textit{m}-SFO.

For further rigorous investigation, non-linear dielectric measurements of first- and second-order harmonics were performed across 300-750 K over (instrument-limited) frequency range of 100 Hz to 750 Hz. First and second harmonics directly probe the polarization (P) in the system [15];

$$\varepsilon_2' = -3\varepsilon_0^2BP\chi'^3$$ \hspace{1cm} (1)

$$\varepsilon_3' = -(1 - 18\varepsilon_0BP^2\chi')\varepsilon_0^3B\chi'^4$$ \hspace{1cm} (2)

Here, B is the positive coefficient of bipolar polarization-term (P^2) in the free energy. Second-harmonic reflects the combined effect of bilinear-term in polarization and fundamental susceptibility (χ'), and competition between the two determines the nature of the second-harmonic signal. Sets of the first and second harmonics have been analyzed in [14], depicting the polarization phenomenon with temperature dependence in several perovskite-related systems.
First- and second-harmonic susceptibilities measured for \(m \)-SFO system show no clear anomaly exactly at \(T_N \). Figure 2 presents the harmonic signals- \(\varepsilon'_2(T) \) and \(\varepsilon'_3(T) \) across \(T_{SR} \). The negative-peaks in \(\varepsilon'_2 \) indicate a net polarization \(P \) (eq.1) in the system, consistent with the non-dispersive peaks in the fundamental signals (fig.1). Concurrent positive peaks in \(\varepsilon'_3 \) further affirm bulk-like ferroelectricity in the mesoscopic grains, establishing a ‘Type-II’ multiferroicity, Mesoscopic-grains with ‘canted-AFM Néel-domains’ accommodate extended Néel-domain-wall, having \(c \)-to \(a \)-axis modulating spins. Advocated rather early by Kimura [16] and Mostovoy [17], symmetry-analyzed by Zvezdin [18], and lately reported e.g., in \(\text{Li}_{0.05}\text{Ti}_{0.02}\text{Ni}_{0.93}\text{O} \) [19] and \(\text{Ca}_2\text{FeCoO}_5 \) [20] among others, such (short-ranged spiral/cycloidal) spin-modulations induce---via inverse Dzyaloshinskii-Moriya (ID-M) spin-orbit interaction---ME-polarization throughout the Néel-domain-wall interstitial-matrix. Effectively, this mimics ‘bulk-ferroelectricity’--- albeit existent only over the disorder-broadened \(T_{SR} \)-window, wherein the activated-process of \(c \)-to \(a \)-axis spin-reorientation occurs. The scaled first-harmonic (\(a_2(T) = -\varepsilon'_2/\chi' \propto P \)) amply evidences this in fig.2 (a)-inset, undergoing an order of magnitude rise & fall over \(\Delta T_{SR} \approx 80 \) K.

Scaled \(a_2(T) \) at higher temperatures (fig. 3) depicts non-dispersive peak anomaly at \(\sim 600 \) K. Upon cooling below \(T_N \), losses drop sharply across this temperature (fig.1 (b)), with concurrent local-plateau in the dielectric constant (fig.1 (a)). These consistent features signify the incipient ferroelectric nature of the \(m \)-SFO system below \(T_N \); having only dynamic dipole-correlations, with their most prominent demarcating signature in the scaled first-harmonic signal.
Dielectric- Fundamental and Harmonics Study on n-SFO (55 nm grain-size)

Figure 4 presents $\varepsilon(T)$ isochrones for the n-SFO specimen. In consistency with literature [9], $\varepsilon(T)$ shows frequency-independent peak-anomaly in the dielectric constant across T_N (fig.4 (b)). Concurrently, sharp decrease in the losses is observed, with tanδ dropping below 1 (fig.5), indicating intrinsic dielectric contribution below T_N. This affirms that for nano-metric grains, equivalence of crystallite-size & electrical correlation length well conserves the system’s magneto-electricity across T_N. At the meso-scale, disorder comes into effect and degrades the ME-coupling at high-temperatures. Upon further cooling below T_{SR}, the bulk-like FE-correlations (well-emergent in the m-SFO specimen) get less-pronounced/smeared-out in the case of the n-SFO specimen (fig.4(a)). In consistency with the literature [13], dispersive peaks below T_{SR} in fig. 4(a) and fig. 5 correspond to the relaxor-FE state, re-entrant upon spin-reorientation, from the parent bulk ferroelectric state (realized upon the antiferromagnetic transition at T_N).
Across T_N and T_{SR}, first- and second-harmonic measurements are performed on n-SFO specimen. Figure 6(a) presents negative-peaks in ε_2' harmonic-signal across the AFM transition in n-SFO. Here, the negative anomaly in ε_2' with the positive ε_3'-signal across T_N (fig.6 (b)) affirm an ME-coupling induced robust polarization state. Moreover, scaled $\alpha_2(T)$ as a metric of the polarization P, rises by five orders of magnitude upon cooling below the T_N/T_C (fig. 6(a) inset). These consistent behaviors establish clear Type-II multiferroicity here. In the n-SFO specimen, although frequency-dispersive peaks in dielectric constant are observed across spin reorientation region, no anomaly-signature is present in the harmonic-signals there; both ε_2'- and ε_3'-signals tend to zero. Reentrant relaxor-ferroelectric state here below T_{SR} signifies Type-I multiferroicity, upon spin-reorientation.
Manifestation of hyper-polarizations \((\varepsilon'_2, \varepsilon'_3 \neq 0) \) requires broken electrical-isotropy (non-vanishing internal global/local fields). In the \(n \)-SFO specimen, the individual nanoparticles as Néel-ferrimagnetic mono-domains feature unidirectional WFM-spins throughout their entirety. The absence of Néel-wall matter to host modulating spins deprives the system of an ID-M-like mechanism for realizing domain-wall polarization, which could elicit non-linear/harmonic magneto-dielectric response over the \(T_{SR} \)-regime. Of course, the magnetic frustration---borne of spin-orientations distributed amongst the nanoparticulate Néel-domains, with its allied magneto-electric disorder---retreats the range of dipole-correlations to sub-particle-size length-scale, thereby suppressing the parent bulk ferroelectricity into a re-entrant relaxor-FE state.

Further, scaled susceptibilities evaluated as \(a_2 = -\varepsilon'_2/\chi'^3 \) and \(a_3 = \varepsilon'_3/\chi'^4 \) shown in fig. 7 present the temperature dependence of these scaled-harmonic signals. A pronounced anomaly is present in both the scaled susceptibilities across \(\sim 545 \) K, which is not resolvable in the bare/measured harmonic-signals, and is rather extinct in the fundamental signals. In the \(n \)-SFO specimen, a magnetic anomaly at 550 K [9] is attributed to the thermal activation of the pinned interfacial spins in the nano-grains. Clear signature of the concurrent anomaly in scaled harmonic-susceptibilities here exclusively manifests a novel magneto-electric effect, of the subtle magnetic phenomenon in the SFO-nanoparticles, for the first time.

![Figure 7](image_url)

Figure 7. Temperature dependent signals of scaled parameters; (a) \(a_2(T) \) and (b) \(a_3(T) \) in \(n \)-SFO.
Conclusions
Maiden first- and second-harmonic non-linear dielectric study on Samarium Orthoferrite presents novel crystallite-size dependent magneto-electric effects, obtained on mesoscopic and nanoscopic grain-sized specimen. In mesoscopic specimen, magnetostriction driven bulk-like polarization (Type-II multiferroicity) across spin-reorientation transition-window (ΔT_{SR}) is established, whereas around 600 K (below T_N), clear signature of incipient ferroelectricity is affirmed by the scaled harmonic susceptibility. In nanoscopic specimen, exchange-striction and intrinsic-surface-stress driven robust ferroelectricity at T_N ($\equiv T_C$; Type-II MF) is established from all-non-dispersive peak-anomalies in fundamental, first-harmonic (negative) and second-harmonic (positive) signals. Here, upon magneto-strictive spin-reorientation, the emergence of re-entrant relaxor-FE state (Type-I MF) and the absence of harmonic signals, are both traceable to the nanometric particles as Néel-ferrimagnet mono-domains---precluding the Néel-domain-wall matter and ensuing magneto-electric disorder. From scaled harmonic-signals in the nanoscopic specimen, novel magneto-electric effect marking thermal activation of interfacial-pinned spins is witnessed for the first time. Our findings reiterate the importance of harmonic dielectric investigations as exclusive upgradation tools in probing intricate/disordered polarizations and identifying complex electrical phases, which are incompletely characterized by the conventional transport parameters.

Acknowledgments
Authors are grateful to Sulabha Kulkarni, Smita Chaturvedi, and their group-members at IISER-Pune, India, for consenting their Samarium Orthoferrite samples (n-SFO and m-SFO) for the study.
References

[1] Tokunaga, Y., Furukawa, N., Sakai, H., Taguchi, Y., Arima, T. H., & Tokura, Y. Composite domain walls in a multiferroic perovskite ferrite. Nature Materials, 8(7), 558-562 (2009).

[2] Steele, B. C., & Heinzel. A. Materials for fuel-cell technologies. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (pp. 224-231) (2011).

[3] Jeong, Y. K., Lee, J. H., Ahn, S. J., & Jang, H. M. Temperature-induced magnetization reversal and ultra-fast magnetic switch at low field in SmFeO3. Solid state communications, 152(13), 1112-1115 (2012).

[4] Sahlot, P., & Awasthi, A. M. Uncompensated-spins induced weak ferromagnetism in Ca3Mn2O7: Magneto-conductive and dual magneto-capacitive effects. Journal of Magnetism and Magnetic Materials, 493, 165732 (2020).

[5] Sahlot, P., Sharma, G., Sathe, V., Sinha, A. K., & Awasthi, A. M. Interplay of spin, lattice, vibration, and charge degrees of freedom: Magneto-dielectricity in Ca3Mn2O7. Journal of the American Ceramic Society, 103(5), 3238-3248 (2020).

[6] Maslen, E. N., Streltsov, V. A., & Ishizawa, N. A synchrotron X-ray study of the electron density in C-type rare earth oxides. Acta Crystallographica Section B: Structural Science, 52(3), 414-422 (1996).

[7] Kimel, A. V., Kirilyuk, A., Usachev, P. A., Pisarev, R. V., Balbashov, A. M., & Rasing, T. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature, 435(7042), 655-657 (2005).

[8] Lee, J. H., Jeong, Y. K., Park, J. H., Oak, M. A., Jang, H. M., Son, J. Y., & Scott, J. F. Spin-Canting-Induced Improper Ferroelectricity and Spontaneous Magnetization Reversal in SmFeO3. Physical Review Letters, 107(11), 117201 (2011).

[9] Chaturvedi, S., Shyam, P., Bag, R., Shirolkar, M.M., Kumar, J., Kaur, H., Singh, S., Awasthi, A.M. and Kulkarni, S. Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in SmFeO3. Physical Review B, 96(2), p.024434 (2017).

[10] Belov, K. P., Kadomtseva, A. M., Krynetskii, I. B., Ocvhinnikova, T. L., Timofeeva, V. A., Pomirch, L. M., & Chervonenkis, A. Y. Transitions Due to Spin Reorientation in a Ho0.5Dy0.5FeO3 Single Crystal. JETP, 36, 1136 (1973).
[11] Yamaguchi, T. Theory of spin reorientation in rare-earth orthochromites and orthoferrites. *Journal of Physics and Chemistry of Solids, 35*(4), 479-500 (1974).
[12] Johnson, R. D., Terada, N., & Radaelli, P. G. Comment on “spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO₃”. *Physical Review Letters, 108*(21), 219701 (2012).
[13] Chaturvedi, S., Shyam, P., Apte, A., Kumar, J., Bhattacharyya, A., Awasthi, A. M., & Kulkarni, S. Dynamics of electron density, spin-phonon coupling, and dielectric properties of SmFeO₃ nanoparticles at the spin-reorientation temperature: Role of exchange striction. *Physical Review B, 93*(17), 174117 (2016).
[14] Sahlot, P., Pandey, S., Pandey, A., & Awasthi, A. M. Harmonic magneto-dielectric study in doped-, double-, and layered-perovskites. *Journal of Applied Physics, 127*(15), 154103 (2020).
[15] S. Miga, J. Dec, and W. Kleemann, In Ferroelectrics-Characterization and Modeling, Intech Open (2011).
[16] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura. Magnetic control of ferroelectric polarization. *Nature 426*, 55 (2003).
[17] M. Mostovoy. Ferroelectricity in Spiral Magnets. *Phys. Rev. Lett. 96*, 067601 (2006).
[18] A. K. Zvezdin and A. A. Mukhin. Magnetoelectric Interactions and Phase Transitions in a New Class of Multiferroics with Improper Electric Polarization. *JETP Letters 88*(8), 505 (2008).
[19] Jitender Kumar, Pankaj Pandey, and A. M. Awasthi. Magneto-dielectricity in Li₀.₀₅Ti₀.₀₂Ni₀.₉₃O at room temperature. *Mater. Res. Express 2*(9), 096101 (2015).
[20] Gaurav Sharma, Shekhar Tyagi, V. R. Reddy, A. M. Awasthi, R. J. Choudhary, A. K. Sinha, and Vasant Sathe. Spin-lattice coupling mediated giant magneto-dielectricity across the spin reorientation in Ca₂FeCoO₅. *Phys. Rev. B 99*, 024436 (2019).