Cardiovascular risk factors and memory decline in middle-aged and older adults: the English Longitudinal Study of Ageing

Beatriz Olaya 1,2*, Maria Victoria Moneta 1, Martin Bobak 3, Josep Maria Haro 1,2 and Panayotes Demakakos 3

Abstract

Background: We investigated the association between trajectories of verbal episodic memory and burden of cardiovascular risk factors in middle-aged and older community-dwellers.

Methods: We analysed data from 4372 participants aged 50–64 and 3005 persons aged 65–79 years old from the English Longitudinal Study of Ageing who were repeatedly evaluated every 2 years and had six interviews of a 10-year follow-up. We measured the following baseline risk factors: diabetes, hypertension, smoking, physical inactivity and obesity to derive a cardiovascular risk factor score (CVRFs). Adjusted linear mixed effect regression models were estimated to determine the association between number of CVRFs and six repeated measurements of verbal memory scores, separately for middle-aged and older adults.

Results: CVRFs was not significantly associated with memory at baseline. CVRFs was significantly associated with memory decline in middle-aged (50-64y), but not in older (65-79y) participants. This association followed a dose-response pattern with increasing number of CVRFs being associated with greater cognitive decline. Comparisons between none versus some CVRFs yielded significant differences (p < 0.05).

Conclusions: Our findings confirm that the effect of cumulative CVRFs on subsequent cognitive deterioration is age-dependent. CVRFs are associated with cognitive decline in people aged 50–64 years, but not in those aged ≥65 years. Although modest, the memory decline associated with accumulation of cardiovascular risk factors in midlife may increase the risk of late-life dementia.

Keywords: cardiovascular risk factors, population-based survey, age-dependent effect, Memory decline

Background

Cardiovascular risk factors (CVRFs) (tobacco smoking, hypertension, obesity, physical inactivity and diabetes) are highly prevalent among midlife and older adults [1], and constitute leading causes of mortality. Of the 2.5 million Americans who died in 2005, tobacco smoking killed 1 in 5, elevated blood pressure was responsible for 1 in 6 deaths, and obesity and physical inactivity took 1 in 10 lives [2]. Besides this augmented risk for death, population-based studies have also identified CVRFs as strongly related to higher risk for accelerated cognitive decline [3, 4] and dementia [5]. For example, current smokers are between 50 and 80% more likely to develop Alzheimer’s Disease (AD) in the future, compared with those who never smoked [6, 7], and older adults who engage in high leisure-time physical activity have approximately 45% less risk of AD than people with the lowest level [8]. The effect of CVRFs on cognitive deterioration is mostly, but not exclusively, driven by cardiovascular diseases (CVD) [9]. Other pathophysiological mechanisms through which CVRFs might impact on cognitive decline or risk for dementia include inflammation and oxidative stress, cerebral small vessel diseases, cerebral hypoxia and hypoperfusion, or neurodegeneration in the brain, which in turn might also increase the risk for heart disease [10]. Several epidemiological studies have
shown that the effect of several CVRFs on cognitive deterioration follows a dose-response pattern [10]. Thus, composite scores of CVRFs are often used as potential tools to detect at-risk older adults for cognitive decline and dementia.

Despite the association between CVRFs in older adults and risk for dementia being well-established [5, 9, 11], several authors postulate that this relationship might be age-dependent [12]. High blood pressure during midlife has been shown to be associated with an increased risk of AD in late life [13, 14], whereas research on the effect of high blood pressure in late life and dementia has yielded mixed results [9]. Similarly, the association of obesity and AD seems to be also age-dependent, with obesity in midlife reported as risk factor for AD [15], and underweight in late-life being more important in predicting AD [16]. Other studies have also demonstrated that aggregated CVRFs at midlife are associated with cognitive decline in the middle age [17, 18], suggesting that this effect can be observed at early stages. The associations between CVRFs during late life and dementia are less clear, with several studies finding very small or null effects on subsequent cognitive deterioration [13, 19].

Comparison across these studies focusing on middle-age versus late-life might be challenging because of distinct study designs, measures and sampling characteristics. To the authors’ knowledge, no studies have compared the impact of a summary score of CVRFs on subsequent cognitive deterioration in population-based middle aged versus older cohorts. The impact of a summary score of CVRFs at baseline on subsequent trajectories of cognition (verbal episodic memory) over a period of 10 years was investigated in a longitudinal, nationally-representative cohort of adults aged 50 to 64 and 65 to 79 years old. We aimed to study whether this association followed a dose-response pattern by exploring the interaction between time and CVRFs. Models were adjusted for several confounders to determine whether this association was above and beyond the effect of potential explanatory variables. The stratification of models by two age cohorts (middle-aged and older adults) allowed us explore age differences in the association between CVRFs and cognitive decline.

Methods

Study population

This study analysed data from the English Longitudinal Study of Ageing (ELSA), an ongoing project intended to collect data to study the dynamics of health, social, wellbeing and economic circumstances in the English population aged 50+, and more details about the study can be found elsewhere [20]. Briefly, it is a longitudinal, nationally representative survey of people aged 50 years and older living in private addresses in England. It was a randomized, stratified, multi-stage sample of participants [20] who earlier had taken part of the Health Survey England (1998, 1999 and 2001). The baseline sample (11,391 core members) was first assessed in 2002–03 and re-assessed every 2 years. Data are freely available from the UK Data Archive (https://beta.ukdataservice.ac.uk).

The present study used data from 6 successive waves of ELSA over 10 years of follow-up. We focused on core members who completed a non-proxy interview at baseline (n = 11,233) and excluded those who were aged 80+ at baseline (n = 10,026). Eighty-two participants who reported at baseline to have been diagnosed by a doctor with AD, Parkinson’s disease, dementia, organic brain syndrome, senility or any other serious memory impairment were excluded. Participants with information on verbal episodic memory score at baseline and at least in another wave and with complete information in all covariates (age, gender, educational and wealth level, marital status, number of CVD and non-CVD diseases) were included in the analysis, resulting in a final n of 7377.

Measures

Outcomes

The ELSA study includes a battery of cognitive tests to measure cognitive functioning in the elderly [21]. We focused on verbal episodic memory, which is related to every-day activities of older adults and has been shown to be sensitive to age-related decline [22]. The measure was assessed in the six waves using both immediate and delayed word recall tasks in which ten common words were presented aurally by computer to ensure standardised delivery. Participants were asked to recall them immediately and after a short delay, which was filled with other cognitive tests. There were four alternative lists, so that different lists could be given in distinct waves. The number of correct responses was recorded each time. This approach has been used elsewhere [21], and the word lists used here were those developed for the Health Retirement Study (HRS) [23]. The number of recalled words from both tests was added to obtain a total memory score (ranging from 0 to 20) with higher scores indicating better memory. The correlation coefficients between the immediate and delayed recall at baseline was 0.65. Immediate and delayed recalls have been known to have good construct validity and consistency [24].

Cardiovascular risk factor score

Following the literature [11], we generated a summary score, which included the following baseline CVRFs: self-reported hypertension and diabetes, history of smoking (current or ever vs. never), objectively measured obesity (Body Mass Index (BMI) > 30 kg/m²) and physical inactivity.
indicating more depressive symptoms. The CES-D summary score ranged from 0 to 8, with higher scores for Epidemiologic Studies Depression Scale (CES-D) [25]. We calculated a summary CES-D score using all eight binary (Yes/No) symptom items. The CES-D symptoms were assessed using the short 8-item Centre for Epidemiologic Studies Depression Scale (CES-D) [25]. We calculated a summary CES-D score using all eight binary (Yes/No) symptom items. The CES-D summary score ranged from 0 to 8, with higher scores indicating more depressive symptoms.

Covariates Covariates were measured at baseline and included sex, age, marital status (never married, legally separated or divorced, married/remarried, and widowed), education (A-level or above recorded as high; O-level/Secondary education recorded as medium level; and no qualifications recorded as low education), quintiles of total net non-pension household wealth (including the net worth of savings and investments, property and business assets, but not pension-related assets), number of self-reported CVDs (angina, heart attack, congestive heart, abnormal heart rhythm, and stroke) and non-CVDs (chronic lung diseases, asthma, arthritis, osteoporosis, and cancer). Summary scores of CVDs and non-CVDs were generated. Depressive symptoms were assessed using the short 8-item Centre for Epidemiologic Studies Depression Scale (CES-D) [25]. We calculated a summary CES-D score using all eight binary (Yes/No) symptom items. The CES-D summary score ranged from 0 to 8, with higher scores indicating more depressive symptoms.

Statistical analysis Unadjusted and adjusted linear mixed effect regression models were estimated separately for the middle-aged (50–64 years) and older cohorts (65–79 years). The adjusted models included the covariates aforementioned. Time as continuous variable (from 0 to 10 years) was included in the models. To account for non-response, including survivor bias [26], we adjusted our models for a variable distinguishing between completers (participants who had complete memory data in all visits) and drop-outs (participants who missed at least one wave of ELSA for any reason including intermittent attrition, death and drop-out). To explore whether the rate of memory decline was different across the number of CVRFs, the interaction CVRFs*time was included in the adjusted models. Intercepts and slopes were measured as random effects. Since CVRFs are highly correlated with the presence of CVDs, adjustment for CVDs may attenuate the association of CVRFs with cognition. Thus, we also calculated the adjusted models excluding this variable (see Additional file 1: Table S1).

Marginal effects were used to graph linear adjusted predictions of verbal episodic memory over the follow-up while holding covariates constant. Post-hoc corrections (Bonferroni) for multiple comparisons were performed.

Analyses were conducted with SAS 9.4 (SAS Institute, Cary NC) using the PROC MIXED procedure and Stata (SE version 13, College Station, TX). A two-side p value of less than 0.05 was considered as statistically significant.

Results Table 1 presents a descriptive analysis of the total sample ($N = 7377$) and by age cohorts. Compared with the younger cohort, older participants presented higher rates of low education level ($p < 0.001$), and higher proportions of two or more non-CVDs and CVDs ($p < 0.001$). The prevalence of number of CVRFs was also higher in the older cohort ($p < 0.0001$). Mean score of episodic memory at baseline was lower than middle-aged people ($p < 0.001$). Number of depressive symptoms was also higher ($p < 0.01$). Some 22.5% of older participants died by the end of the study, and 45.6% completed all the assessments.

Trajectories of verbal memory score Table 2 shows parameters from unadjusted and adjusted models in both samples. In the unadjusted models, there was a significant dose-response cross-sectional association between number of CVRFs and baseline memory function in both middle-aged and older adults, with higher number associated with lower memory scores ($p < 0.0001$). Longitudinally, there was a significant improvement in memory scores over time in middle-aged participants ($p < 0.05$), whereas a decline was observed in older participants ($p < 0.0001$).

After adjusting for covariates, in middle-aged participants, the cross-sectional association between CVRFs at baseline and memory score was no longer significant ($p = 0.079$). Participants who did not miss a study wave had better memory scores than those who missed at least one study wave ($p < 0.001$). Compared with the lowest quintile of wealth, higher levels of wealth were associated with better memory. Females, compared with males, and persons with higher levels of education had significantly better levels of memory ($p < 0.001$).

Regarding longitudinal changes in middle-aged persons, the interaction CVRFs*wave was significant ($p = 0.004$) indicating that different categories of CVRFs presented distinct patterns of decline over time.

For people aged 65–79 years, verbal episodic memory was still affected by time after adjustment, with a decline of 0.10 points every 2 years ($p < 0.001$), whereas the CVRFs were not associated with memory neither cross-sectionally nor longitudinally; the interaction term between CVRFs and time were not statistically significant (overall significance $p < 0.478$).
Table 1 Descriptive characteristics of the overall sample \((N = 7377)\) and by age groups

Age group	Overall sample	50–64	65–79	\(P\) value
	\(N = 7377\)	\(n = 4372\) (59.3%)	\(n = 3005\) (40.7%)	
Socio-demographics characteristics				
Female, \(n\) (%)	3996 (54.2%)	2349 (53.7%)	1647 (54.8%)	.360
Age, mean (SD)	62.6 (8.1)	56.8 (4.1)	71 (4.1)	<.001
Marital status, \(n\) (%)				
Never married	380 (5.2%)	244 (5.6%)	136 (4.5%)	<.001
Married/remarried	5190 (70.4%)	3257 (74.5%)	1933 (64.3%)	<.001
Separated/divorced	870 (11.8%)	632 (14.5%)	238 (7.9%)	<.001
Widowed	937 (12.7%)	239 (5.5%)	698 (23.2%)	<.001
Education level, \(n\) (%)				<.001
Low	2785 (37.8%)	1304 (29.8%)	1481 (49.3%)	<.001
Medium	2269 (30.8%)	1408 (32.2%)	861 (28.7%)	<.001
High	2323 (31.5%)	1660 (38.0%)	663 (22.1%)	<.001
Quintiles of wealth, \(n\) (%)				<.001
Lowest	1163 (15.8%)	596 (13.6%)	567 (18.9%)	<.001
2nd	1405 (19.1%)	808 (18.5%)	597 (19.9%)	<.001
3rd	1516 (20.6%)	904 (20.7%)	612 (20.4%)	<.001
4th	1625 (22%)	992 (22.7%)	633 (21.1%)	<.001
Highest	1668 (22.6%)	1072 (24.5%)	596 (19.8%)	<.001
Cardiovascular risk factors				
High blood pressure, \(n\) (%)				<.001
Diabetes, \(n\) (%)	476 (6.5%)	205 (4.7%)	271 (9.0%)	<.001
Obesity, \(n\) (%)	1914 (26%)	1128 (25.8%)	786 (26.2%)	.732
Currently or past smoking, \(n\) (%)				
Physical inactivity, \(n\) (%)	1427 (19.3%)	714 (16.3%)	713 (23.7%)	<.001
Number of cardiovascular risk factors, \(n\) (%)				<.001
None	1172 (15.9%)	785 (18.0%)	387 (12.9%)	<.001
One	2876 (39%)	1810 (41.4%)	1066 (35.5%)	
Two	2014 (27.3%)	1130 (25.8%)	884 (29.4%)	
Three or more	1315 (17.8%)	647 (14.8%)	668 (22.2%)	
Non-CVDs				
Chronic lung disease, \(n\) (%)	440 (6%)	214 (4.9%)	226 (7.5%)	<.001
Asthma, \(n\) (%)	852 (11.6%)	519 (11.9%)	333 (11.1%)	0.297
Arthritis, \(n\) (%)	2241 (30.4%)	1129 (25.8%)	1112 (37.0%)	<.001
Osteoporosis, \(n\) (%)	327 (4.4%)	132 (3.0%)	195 (6.5%)	<.001
Cancer, \(n\) (%)	413 (5.6%)	204 (4.7%)	209 (7.0%)	
Number of non-CVDs, \(n\) (%)				<.001
None	4081 (55.3%)	2655 (60.7%)	1426 (47.5%)	
One	2484 (33.7%)	1319 (30.2%)	1165 (38.8%)	
Two or more	812 (11%)	398 (9.1%)	414 (13.8%)	
CVDs				
Angina, \(n\) (%)	629 (8.5%)	232 (5.3%)	397 (13.2%)	<.001
Heart attack, \(n\) (%)	379 (5.1%)	138 (3.2%)	241 (8.0%)	<.001
The exclusion of CVDs from the adjusted models yielded similar results, as can be seen in Additional file 1: Table S1.

Figure 1 shows the trajectories of predicted means of verbal episodic memory over time for each number of CVRFs, stratified by age cohorts and adjusted for covariates. For middle-aged participants (Fig. 1a), those without CVRFs showed a significant improvement in memory scores over time, with a positive slope ($b = 0.040, SE = 0.012, p < 0.01$). By contrast, this improvement was not observed in those with one ($b = 0.005, SE = 0.008, p = 0.55$), two ($b = -0.005, SE = 0.01, p = 0.581$) or three or more CVRFs ($b = -0.021, SE = 0.014, p = 0.125$). Differences between the slopes of one, two and three or more, compared with none CVRFs, were all significant ($p < 0.05$ after Bonferroni correction). There were no significant differences when comparing slopes across one, two and three or more CVRFs.

Figure 1b shows adjusted trajectories of verbal episodic memory for older adults (i.e., aged 65 to 79). Again, slopes for each CVRF were estimated using marginal effects from the adjusted model in Table 2. Older adults with none CVRFs presented a significant decline over time ($b = -0.096, SE = 0.019, p < 0.001$). A significant decline was also observed in those with one ($b = -0.131, SE = 0.012, p < 0.001$), two ($b = -0.127, SE = 0.014, p < 0.001$) and three or more CVRFs ($b = -0.123, SE = 0.016, p < 0.001$). However, comparisons between these slopes yielded non-significant differences.

Table 1 Descriptive characteristics of the overall sample ($N = 7377$) and by age groups (Continued)

Age group	Congestive heart failure, n (%)	Abnormal heart rhythm, n (%)	Stroke, n (%)	Number of CVDs, n (%)
	48 (0.7%)	431 (5.8%)	217 (2.9%)	None 6103 (82.7%)
	13 (0.3%)	204 (4.7%)	74 (1.7%)	One 945 (12.8%)
	35 (1.2%)	227 (7.6%)	143 (4.8%)	Two or more 329 (4.5%)
Missing-data pattern	Completer, n (%)	Non-completer, n (%)		
	3924 (53.2%)	2553 (58.4%)	1371 (45.6%)	CES-D, mean (SD) 1.5 (1.9)
	2553 (58.4%)	1819 (41.6%)	1371 (45.6%)	Immediate recall, mean (SD) 5.70 (1.63)
	1371 (45.6%)	1634 (54.4%)	<.001	Delayed recall, mean (SD) 4.28 (1.99)
	<.001			Total score episodic memory, mean (SD) 10.0 (3.3)
Note: SD Standard Deviation, CES-D Center for Epidemiologic Studies Depression Scale, non CVDs non-cardiovascular diseases, CVDs Cardiovascular diseases. CES-D scores ranged from 0 to 8; immediate and delayed recall ranged from 0 to 10; total score for episodic memory ranged from 0 to 20; low education level included people with no qualifications				

Discussion

Overall, our findings suggest a greater cardiovascular risk burden on contemporaneous memory decline in midlife, but not in late-life, supporting the hypothesis that the deleterious effect of cumulative CVRFs is age-dependent [10]. They also suggest that the effect of CVRFs follows a dose-response association with verbal episodic memory decline which is independent of other potential confounders.

As has been previously suggested, the presence of CVRFs in midlife is related to increased risk for late-onset cognitive impairment and dementia [27, 28]. Anstey et al. [17] speculated that, if these risk factors for late-life dementia occur in midlife, some effects on cognitive functioning, despite small, might be detectable in middle age. These authors found that greater CVRF burden, measured with a composite score of several risk factors, was associated with faster decline in reaction time. Similarly, other previous longitudinal population-based studies found worse cognitive performance associated with CVRFs in midlife [4, 18, 29]. In our study, middle-aged participants with no CVRFs show an improvement in their memory performance over 10 years. This lack of cognitive deterioration over time, or even some improvement due to practice effect, has been documented in previous research based on general populations, especially among younger and middle-aged adults [17, 30]. However, our results show that participants aged 50 to 64 years who had one, two or three or more CVRFs did
Parameter Categories	Middle-aged	Older adults	Middle-aged	Older people								
	Unadjusted models	Adjusted models	Unadjusted models	Adjusted models								
	Estimation	SE	p									
Intercept	8.384	0.220	<.0001	6.60	0.311	<.0001						
Time (per year)	0.010	0.005	.039	−0.115	0.007	<.0001	0.040	0.011	.001	−0.096	0.019	<.0001
CVRFs None	Ref.	Ref.	Ref.	Ref.								
One	−0.470	0.105	<.0001	−0.376	0.161	.020	−0.056	0.106	0.599	0.139	0.157	0.378
Two	−1.101	0.115	<.0001	−0.792	0.166	<.0001	−0.245	0.118	0.038	0.111	0.164	0.498
Three or more	−1.463	0.131	<.0001	−1.414	0.174	<.0001	−0.241	0.137	0.080	−0.194	0.175	0.268
Age (centred)	−0.132	0.009	<.0001	−0.197	0.012	<.0001	−0.110	0.008	<.0001	−0.153	0.011	<.0001
CES-D	−0.248	0.019	<.0001	−0.246	0.027	<.0001	−0.149	0.018	<.0001	−0.119	0.025	<.0001
Missing-data pattern	Ref.	Ref.	Ref.	Ref.								
Non-completers	0.961	0.077	<.0001	1.602	0.097	<.0001	0.550	0.069	<.0001	1.090	0.091	<.0001
Completers	Ref.	Ref.	Ref.	Ref.								
Wealth 1-quintile (lowest)	0.641	0.076	<.0001	0.849	0.156	<.0001	0.221	0.121	0.68	0.515	0.143	<.0001
2-quintile	1.265	0.128	<.0001	1.340	0.155	<.0001	0.532	0.123	<.0001	0.780	0.146	<.0001
3-quintile	1.761	0.126	<.0001	1.728	0.153	<.0001	0.746	0.124	<.0001	0.875	0.150	<.0001
4-quintile	2.105	0.124	<.0001	2.476	0.155	<.0001	0.973	0.128	<.0001	1.371	0.159	<.0001
5-quintile (highest)	2.105	0.124	<.0001	2.476	0.155	<.0001	0.973	0.128	<.0001	1.371	0.159	<.0001
Gender Male	Ref.	Ref.	Ref.	Ref.								
Female	0.668	0.076	<.0001	0.612	0.101	<.0001	0.863	0.069	<.0001	0.855	0.094	<.0001
Education level Low	Ref.	Ref.	Ref.	Ref.								
Medium	1.470	0.090	<.0001	1.375	0.113	<.0001	1.034	0.087	<.0001	0.964	0.106	<.0001
High	2.267	0.087	<.0001	2.055	0.122	<.0001	1.711	0.090	<.0001	1.443	0.122	<.0001
Marital status Never married	Ref.	Ref.	Ref.	Ref.								
Married/remarried	0.555	0.167	.001	0.885	0.245	<.0001	0.255	0.146	0.82	0.353	0.214	.099
Legally separated or divorced	0.262	0.190	0.167	0.733	0.297	0.014	0.295	0.166	0.75	0.434	0.258	.092
Widowed	0.013	0.229	0.954	0.524	0.259	0.043	0.202	0.202	0.316	0.560	0.226	.013
Non-CVDs None	Ref.	Ref.	Ref.	Ref.								
One	−0.250	0.085	.003	0.017	0.109	0.875	0.050	0.075	0.506	0.156	0.096	.106
Two or more	−0.546	0.135	<.0001	−0.072	0.155	0.641	0.122	0.123	0.322	0.348	0.139	.013
CVDs	Ref.	Ref.	Ref.	Ref.								
One	−0.668	0.133	<.0001	−0.363	0.131	<.001	−0.157	0.118	0.181	−0.017	0.115	.883
Two or more	−1.289	0.241	<.0001	−0.753	0.198	<.0001	−0.154	0.216	0.478	−0.068	0.175	.695
CVRFs*time One*time	Ref.	Ref.	Ref.	Ref.								
One*time (per yr)	−0.035	0.014	.013	−0.035	0.022	.122						
Two*time (per yr)	−0.45	0.015	.003	−0.030	0.023	.197						
Three or more*time	−0.061	0.018	.001	−0.027	0.025	.286						

Random variance

	Unadjusted models	Adjusted models
Intercept	3.438	4.016
Linear slope	0.062	0.122
Residual	4.968	5.313

Note: In bold, significant effect

SE, Standard error; CVRFs, Cardiovascular risk factors score; CES-D, Centre for Epidemiologic Studies Depression Scale; CVDs, Cardiovascular diseases; non-CVDs, non-cardiovascular diseases.

CES-D scores ranged from 0 to 8; episodic memory scores ranged from 0 to 20; low education level included people with no qualifications.
not experience this improvement and did significantly worse compared with those free of CVRFs. Albeit subtle, the observed effect of CVRFs on verbal episodic memory is potentially important and meaningful, since one would expect memory not to deteriorate to an observable extent in middle-aged adults [31, 32].

Our findings also indicate that prospective association between cumulative CVRFs and memory in participants aged 50–64 years is dose-response with the memory score getting lower for every additional CVRF. The existing evidence concurs with that and suggests that composites of CVRFs have been shown to have a dose-dependent effect on the risk for dementia [33]. Since these risk factors frequently co-exist, intervention focusing on the combined effect of multiple CVRFs is preferable rather than focusing only on individual risk factors [3].

As for older adults (i.e., aged 65 to 79), we found that there were a significant decline of memory over time, but this was not associated with the number of baseline CVRFs. Previous literature has yielded mixed results when analysing the effect of summary risk scores of CVRFs in later life on risk of dementia, with some population-based studies reporting a positive effect [34, 35], and others failing to report significant effects of CVRFs in late-life on subsequent deterioration of

Fig. 1 Trajectories of predicted mean for verbal episodic memory in middle-aged and older participants. Note: Predicted means were calculated from adjusted linear mixed models (see Table 2) while covariates were held constant. CVRFs = cardiovascular risk factors. a Middle aged participants, 50–64 years old (n = 4372). b Older participants, 65–79 years old (n = 3005).
conditions might play an important role on subsequent memory decline. Third, we focused on verbal episodic memory. CVRFs might affect differently the trajectories of other cognitive domains (e.g., attention, verbal fluency). Moreover, one could not discard floor effect, especially in the older age group. Fourth, despite the fact that we excluded those individuals who self-reported being diagnosed with dementia or other brain disorders, it is possible that some others might have presented with milder forms of neurodegenerative disorders, such as mild cognitive impairment (MCI). This would be particularly important if the presence of MCI is contributing to lower baseline cognitive scores and muting the test-retest effect at follow-up, especially in the older group. Finally, non-response might have also introduced some bias. However, we controlled for the confounding effect of completion.

Conclusions
Our findings support the deleterious effect of aggregate CVRFs in midlife (50–64 years) on subsequent decline over a period of 10 years, whereas this association was not found when CVRFs were measured in older adults (over 65 years). Despite being subtle, the decline observer among middle-aged adults with a high cardiovascular burden was significantly different from that observed for people with no CVRFs, where an improvement was observed. These differences in cognitive decline might increase as people aged, leading to greater risk for future dementia, such as AD. Interventions over these modifiable conditions at midlife could help stop this cognitive deterioration.

Additional file
Additional file 1: Table S1. Parameter estimates, Standard Errors and p-values from adjusted linear mixed regression models for episodic memory scores (excluding cardiovascular diseases).

Abbreviations
AD: Alzheimer’s Disease; BMI: Body mass index; CES-D: Centre for Epidemiologic Studies Depression Scale; CVD: Cardiovascular disease; CVRFs: Cardiovascular risk factors; ELSA: English Longitudinal Study of Ageing; MCI: Mild Cognitive Impairment; SD: Standard deviation

Acknowledgements
Not applicable.

Authors’ contributions
BO contributed to the design of the study, statistical analyses, interpretation of data and wrote the main body of the manuscript; MVM conducted the statistical analyses and contributed to the interpretation of data; MB contributed to the design of the study, interpretation of data and provided feedback on the manuscript; JM provided feedback on the manuscript; PD contributed to the design of the study, interpretation of data and wrote the manuscript. All authors read and approved the final manuscript.
Funding
This work was supported by the National Institute on Aging (Grants 2RO1AG7644-01A1 and 2RO1AG017644), a consortium of United King-
dom government departments (i.e., the Department for Education and
Skills; Department for Environment, Food, and Rural Affairs; Department
of Health, Department of Trade and Industry; Department for Work and
Pensions; the HM Treasury Inland Revenue; the Office of the Deputy
Prime Minister; and the Office for National Statistics, coordinated by the
Office for National Statistics); and the European Union Horizon 2020
Research and Innovation Programme (ATHLOS-635316). BO’s work is sup-
ported by the PERIS program 2016–2020 “Ajusts per a la Incorporació de
Científics i Tecnòlegs” (grant number SLT006/17/00066), with the support
of the Health Department from the Generalitat de Catalunya.

The funding bodies did not have any role in the design of the study and
collection, analysis, interpretation of data and in writing the manuscript.

Availability of data and materials
The ELSA dataset is available in the UK Data service repository, https://
discover.ukdataservice.ac.uk/catalogue/?s=505&type=Data%20catalogue

Ethics approval and consent to participate
Ethical approval was obtained from the London Multicentre Research and
Ethics Committee (MREC/01/2/91). Written informed consent was obtained
from all individual participants included in the study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Author details
1Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu,
Fundació Sant Joan de Déu, Universitat de Barcelona, Sant Boi de Llobregat,
Spain. 2Instituto de Salud Carlos III, Centro de Investigación Biomédica en
Red de Salud Mental (CIBERSAM), Madrid, Spain. 3Department of
Epidemiology and Public Health, University College London, London, UK.

Received: 26 July 2018 Accepted: 6 November 2019

Published online: 02 December 2019

References
1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al.
Heart disease and stroke statistics–2015 update: a report from the American
Heart Association. Circulation. 2015;131(4):434 [Cited 2016 Aug 19]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25520374.
2. Danæe G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJL, et al. The
Preventable Causes of Death in the United States: Comparative Risk
Assessment of Dietary, Lifestyle, and Metabolic Risk Factors. Hales S, editor. PLoS Med. 2009;6:e1000058 [Cited 2017 Nov 17]. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/19399161.
3. Dreyan A, Stewart R, Gullford MC. Cardiovascular risk factors and
cognitive decline in adults aged 50 and over: a population-based
cohort study. Age Ageing. 2013;42:338-45. [Cited 2017 Nov 17]. Available from: https://academic.oup.com/ageing/article-lookup/doi/10.1093/ageing/aft166.
4. Joosten H, van Eersel MEA, Gansevoort RT, Bilo HJG, Slaets JPJ, Izaks GJ.
Cardiovascular Risk Profile and Cognitive Function in Young, Middle-Aged,
and Elderly Subjects. Stroke. 2013;44:1543–9 [Cited 2017 Nov 17]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23640826.
5. Barnes DE, Yaffe K. The projected effect of risk factor reduction on
Alzheimer’s disease prevalence. Lancet. Neurol. 2011;10:819–28 [Cited 2016
Aug 26]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21775213.
6. Anstey KJ, van Sanden C, Salim A, O Keeffe K. Smoking as a risk factor
for dementia and cognitive decline: a meta-analysis of prospective
studies. Am J Epidemiol. 2007;166:6367-78. [Cited 2017 Nov 17]. Available from: https://academic.oup.com/aje/article-lookup/doi/10.1093/aje/kw1116.
7. Peters R, Poulter R, Warner J, Beckett N, Burch L, Bulpitt C. Smoking,
dementia and cognitive decline in the elderly, a systematic review.
8. Hamer M, Chida Y. Physical activity and risk of neurodegenerative
disease: a systematic review of prospective evidence. Psychol Med.
2009;39:93 [Cited 2017 Nov 17]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18570697.
9. Qiu C. Epidemiological findings of vascular risk factors in Alzheimer’s
disease: implications for therapeutic and preventive intervention. Expert
Rev Neurother. 2011;11:593–607 [Cited 2017 Nov 17]. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/2204138.
10. Qiu C, Fratiglioni L. A major role for cardiovascular burden in age-related
cognitive decline. Nat Rev Cardiol. 2015;12:267–77 [Cited 2016 Aug 19]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25582619.
11. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of
the evidence on modifiable risk factors for cognitive decline and
dementia: A population-based perspective. Alzheimer Dement. 2015;11:
718–26 [Cited 2016 Aug 19]. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/26045020.
12. Qiu C. Preventing Alzheimer’s disease by targeting vascular risk factors:
hope and gap. J Alzheimers Dis. 2012;32:721–31 [Cited 2017 Nov 17]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16033691.
13. Alonso A, Mosley TH, Gottesman RF, Catelli L, Sharrett AR, Cores J. Risk of
dementia hospitalisation associated with cardiovascular risk
factors in middle and older age: the Atherosclerosis Risk in
Communities (ARC) study. J Neurol Neurosurg Psychiatry. 2009;80:1914–
21 [Cited 2017 Nov 17]. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/19692426.
14. Gustafson D. A life course of adiposity and dementia. Eur. J. Pharmacol.
[Internet]. 2008 [Cited 2017 Nov 17];152:163–75. Available from: http://www.
ncbi.nlm.nih.gov/pubmed/18423446.
15. Atti AR, Palmer K, Volpato S, Winblad B, De Ronchi D, Fratiglioni L. Late-life
body mass index and dementia incidence: nine-year follow-up data from
the Kungsholmen Project. J Am Geriatr Soci. 2008;56:111–6. [Cited 2017
Nov 17]. Available from: https://doi.org/10.1111/j.1532-5415.2007.01458.x.
16. Anstey KJ, Sargent-Cox K, Garde E, Cherbuin N, Buttersworth P. Cognitive
development over 8 years in middle age and its association with cardiovascular
risk factors. Neuropsychology. 2014;28:653–65 [Cited 2016 May 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24635711.
17. Agirroiaei S, Lachman ME. Cognitive functioning in middle age and old age:
combined effects of psychosocial and behavioral factors. J Gerontol B
Psychol Sci Soc. 2011;66(Suppl 1):i130-40 [Cited 2016 Aug 19]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21743046.
18. Tolppanen A-M, Solomon A, Soininen H, Kirkvold M. Midlife vascular risk
factors and Alzheimer’s disease: evidence from epidemiological studies. J
Alzheimers Dis. 2012;32:531–40 [Cited 2016 Aug 26]. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/22842867.
19. Steptoe A, Breeze E, Banks J, Nazroo J. Cohort profile: the English
longitudinal study of ageing. Int J Epidemiol. 2013;42:1640–8 [Cited
Jun 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23143611.
20. Huppert F, Gardner E, McWilliams B. Cognitive function. In: Banks E,
Breeze C, Lessof C, Nazroo J, editors. Retirement, Health and relationships older Pers. Engl. Longitud. Stud. Ageing (Wave 2). London: Institute for Fiscal
Studies; 2006. p. 217–30.
21. Peters R. Ageing and the brain. Postgrad Med J. 2006;82:284–8 [Cited
2016 Mar 3]. Available from: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2596988&tool=pmcentrez&rendertype=abstract.
22. Sonneoga A, Faul JD, Oftedal MB, Langa KM, Phillips JW, Weir DR. Cohort
Profile: the Health and Retirement Study (HRS). Int J Epidemiol. 2014;43:576–
85 [Cited 2018 Nov 21]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24670121.
23. Baars M, van Boeijen MP, Dijkstra JB, Visser PJ, van den Akker M, Verhey
FRJ, et al. Predictive Value of Mild Cognitive Impairment for Dementia.
Dement Dement Geriatr Cogn Disord. 2009;27:173–81 [Cited 2018 Nov 21]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19202336.
24. Wallace RB, Regula A, Mary H, Oftedal B, Steffick D, Fonda S, et al. HRS/
AHEAD documentation report documentation of affective functioning
measures in the Health and Retirement Study. 2000;
