Research Article

Age, Sex and Strain Respond Differently to Acute Ritalin (Methylphenidate) Exposure -

Asif A Kabani, Pamela B Yang, Nachum Dafny*

Department of Neurobiology and Neuroanatomy, University of Texas McGovern Medical School at Houston, USA

*Address for Correspondence: Nachum Dafny, Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School 6431 Fannin, MSB 7.208 Houston TX 77030-2501, United States, E-mail: nachum.dafny@uth.tmc.edu

Submitted: 10 October 2020; Approved: 23 October 2020; Published: 28 October 2020

Citation this article: Kabani AA, Yang PB, Dafny N. Age, Sex and Strain Respond Differently to Acute Ritalin (Methylphenidate) Exposure. American J Clin Anat Physiol. 2020;2(1): 037-047.

Copyright: © 2020 Kabani AA, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
SUMMARY

The dose-dependent response to variable methylphenidate (MPD) doses on the behavior of male and female adolescent (post-natal day 30) and adult (post-natal day 60) rats of three different genetic strains was studied to examine whether there are sex, age, and strain dependent differences in response to MPD. Twenty-four male and twenty-four female groups were used. The 48 groups each had an N=8. The results show that female adolescents and adult rats of Sprague-Dawley (SD) and Spontaneous Hyperactive Rat (SHR) strains were more sensitive to the acute exposure of MPD. Furthermore, female adult rats of the SD, SHR and Wistar-Kyoto (WKY) strains generally responded with greater increase in locomotor activity than the adolescent females of these strains. In the WKY strain, adolescent males tended to experience a greater increase in activity than adult males. Lastly, significant differences in response to MPD also were observed among the three genetic strains. These variable responses to the acute dose of MPD reinforce the need to study the effects of this psychostimulant across the various sexes, ages and strains.

Keywords: Methylphenidate; Ritalin; Behavior; Sex; Strain; Age

INTRODUCTION

The vast majority of studies investigating the effect of Methylphenidate (MPD) use adult males (only one sex) of a single strain. Since MPD is used in children and adults, in both males and females, it is important to obtain information whether this psychostimulant exerts similar or different effects based on age, sex and strain. In recent years there has been a rapid increase in MPD usage all over the world [1]. Furthermore, there has been an increase in the number of preschoolers, adolescents and adults with and without a diagnosis of ADHD using MPD [2,3]. However, there have been few studies done on the possible adverse effects produced by psychostimulants on developing female and male brains [4-7]. Furthermore, there is a paucity of research when it comes to the effect of MPD on different strains. For this reason, the present study reports the acute dose response of MPD on female and male, young and adult animals of three different strains, two of which serve as a non-ADHD model.

The neuronal systems mediating behavioral activity in general and in response to psychostimulants are sexually dimorphic and are under the control of genes, pituitary and gonadal hormones [8-10]. Several reports indicated that there are sex dependent differences in response to psychostimulants [8,11-14]. For example, the use of psychostimulants such as cocaine and methamphetamine in both adult female rodent and human subjects has been associated with a more rapid and robust behavioral sensitization following chronic use when compared to their male counterparts [8,15,16]. Further, sex differences in endogenous Catecholamine (CA) levels and function have been reported [17,18]. Given that the mechanism of action of psychostimulants, such as MPD, is binding to CA transporters and modulating synaptic CA levels, this presents a potential mechanism of the sex-related differences [19-25]. Therefore, it is essential to investigate whether there is a sexual difference in response to MPD in young and adult female and male subjects.

According to a report by the US Department of Health and Human Services, the lifetime prevalence of Attention-Deficit/Hyperactivity Disorder (ADHD) in children ages 5-17 was 14.2% for boys and 6.4% for girls from 2013-2015 [26]. In the last decade, the use of MPD has increased dramatically [3,27]. The consumption of MPD has been seen in children as young as two years old [28]. There is growing concern about the potential effects of MPD use in children, given that brain development goes on until young adulthood [6]. Lastly, several articles in the literature report the link between psychostimulant use and an increased risk of substance abuse disorder [6,29,20]. As a result, it is essential to study the role of MPD use on different ages, especially in those that do not have ADHD.

Studies using various strains of rat, either inbred, such as the Spontaneously Hypertensive or Hyperactive Rat (SHR), or outbred, reveal that the genetic differences between strains are important factors on the effect of drugs [29-34]. Animal models have been developed to study ADHD and the ability of medications such as MPD to modulate their behavior, including the SHR. The SHR was inbred from the Wistar-Kyoto (WKY) strain, with an initial intent to study hypertension. However, when it was found that these rats exhibited hyperactivity, motor impulsiveness, and impaired attention, the SHR strain was proposed as an ADHD model, with WKY serving as a control [35]. Lastly, the Sprague-Dawley (SD) rat strain has been well studied in experiments with psychostimulants, having been characterized to have sensitization to cocaine and methylphenidate, making it an ideal strain to compare to WKY and SHR rats. Furthermore, a study has specifically shown that there are differences in dopamine receptor levels between WKY and SD rats that may affect their responses to psychostimulants [36]. Therefore, it is essential to study the effect of MPD on multiple animal strains, such as the three strains used in this investigation. The hypothesis of this study is that the response to MPD is significantly different across age, sex and strain.

METHODS

Animals

Three hundred and eighty-four adult and adolescent, male and female rats of three strains were studied in this experiment. The three strains utilized were Sprague Dawley (SD), Wistar-Kyoto (WKY) and Spontaneous Hyperactive (Hypertensive) Rats (SHR). The animals were split into groups of 48 animals as depicted in Figure 1. Each being given a different drug exposure: saline, 0.6 mg/kg MPD, 2.5 mg/kg MPD and 10.0 mg/kg MPD. All animals were purchased from Harlan Laboratories (Indianapolis, IN, USA). After an acclimation period, each animal was placed in an individual home cage (see Figure 2). The experimental protocol was started on PND 39 for all adolescents and PND 60 for all adults. The home cage served as the test cage, in order to minimize the effect of environment on drug response. The animals were kept in their cages for 5 to 7 days for adaptation prior to the recording sessions. Lights were turned on daily at 6:00 A.M. as part of this acclimation process and turned off at 6:00 P.M. All experimental procedures were approved by University of Texas Health Science Center Animal Welfare Committee (AWC) in accordance with the National Institute of Health Guide for Care and Use of Laboratory Animals.
Protocol

On recording day 1 (RD1) all animals received an intraperitoneal injection of saline. On recording day 2 (RD2) either saline, 0.6 mg/kg, 2.5 mg/kg, or 10.0 mg/kg MPD was administered intraperitoneally. The MPD was measured as free base and equalized to 0.8 mL injection volume. All injections were done in the morning at 8:00 A.M. Each recording started immediately post injection and lasted for 120 minutes.

Behavioral Data Acquisition

The Computerized Animal Activity Monitoring (CAAM) system was used as an open field assay to record the locomotor behavioral activity of the free moving animals (see Figure 2). Open field locomotion behaviors represent the interaction of the whole animal within the experimental situation. The details of the procedure are well established and previously published [4,5,37-40]. Each interruption from each sensor was counted and cumulative counts were compiled by the Accuscan Analyzer (Columbus, OH, USA). The counts were downloaded every 10 minutes to a PC using Outcome and Assessment Information Set (OASIS) data collection software. The OASIS program then organized the beam breaks into several locomotor indices [40,41].

Behavioral Data Analysis

For this study six different locomotor behaviors were analyzed: Horizontal Activity (HA), Total Distance (TD) traveled, Number of Discrete Movements (NM), Number of Stereotypic Movements (NOS), vertical activity (VA) and Rest Time (RT). Horizontal activity was calculated as the number of beam interruptions in the lowest level of sensors. Total distance measured the total forward movement in centimeters. The number of discrete movements indicates the sum of separate horizontal movements, whereas the number of stereotypic movements is the number of repetitive movements with at least a 1 second interval between them. Vertical activity was measured as the number of beam breaks in the highest level of sensors. Lastly, rest time was the time the animal spent between beam breaks. Each locomotor activity is regulated by different neuronal circuits. The effect of MPD was evaluated by comparing the counts of each locomotor behavioral index post MPD exposure on RD2 with recording following saline injection on RD1. The student paired t-test was used to compare counts before and after MPD exposure within each group, for each locomotor index. Multifactor Analysis of Variance (ANOVA) with post-hoc analysis using Fisher’s LSD test as well as general linear model ANOVA (fixed factor) as appropriate followed by the Bonferroni correction were performed to determine if there were any statistically significant (p < 0.05) differences between different locomotor indices, MPD doses, strains, sexes and ages. The power of ANOVA for this study is estimated to be from 0.83 to 0.94 with a sample size of N=8 for each group and locomotor index.

RESULTS

Saline Control

The control groups of animals of each sex, age and genetic strain were recorded for 120 minutes on recording day 1 (RD1) and RD2 following injection of saline. Statistical comparison of all six locomotor indices on RD2 and RD1 was performed, showing no significant difference between the two days. This indicates that animal handling, injection procedures, including the volume of injection (saline) did not have a significant effect on any of six locomotor indices.
indices measured. The observation that saline on RD1 was similar to RD2, indicates that recording following saline injection on RD1 in all other treatment groups can be used as a control. During the preliminary portion of this study, animal activity was recorded for 42 consecutive days in two groups: one that received no injections and one that received daily injections of saline [42]. It was observed that time, animal handling and daily saline injections did not modulate the animals’ locomotor activity significantly (see Figure 3).

MPD effect

Figure 4 compares the locomotor behavioral activity following MPD injection on recording day 2 (RD2) to the activity on RD1 after saline injection. The figure summarizes the effect of MPD on all six locomotor behavior indices of male adult Wistar-Kyoto (WKY) rats, stratified by the three MPD doses (0.6, 2.5, and 10.0 mg/kg). Each pair of columns represents the activity during the recording session post-saline injection on RD1 and post-MPD exposure on RD2. The figure shows that MPD elicits a dose dependent increase in locomotion, i.e. with increasing doses of MPD there was a further significant increase in all locomotion indices aside from rest time ($F(2,25) = 4.28, p < 0.05$) in which an expected opposite trend was demonstrated. In general, a similar observation was seen in all the other rat groups, with minor non-significant fluctuation. However, at the lowest dose (0.6 mg/kg MPD), a few groups, mainly those of the WKY strain, exhibited a significant decrease in locomotion after the acute MPD exposure ($F(2,25) = 4.28, p < 0.05$).

The change in the total distance traveled on recording day 1 (RD1) after saline administration and on recording day 2 (RD2) after MPD administration for male (left column of each of the paired histograms) and female (right column of each of the paired histograms) are presented in Figure 5. The change is given as the total distance on RD2 minus the total distance on RD1. The figure summarizes this difference for males and females of both ages, for all three strains and at all three different dosages of MPD. In each of the 9 parts of the figure (A-I), there are four columns presented: adolescent males and females and adult males and females. A total of four comparisons are made in each of these parts: adolescent male versus adolescent female, adult male versus adult female, adolescent male versus adult male and adolescent female versus adult female. In the WKY strain, there was no consistent sex difference or age difference in total distance traveled. In general, adolescent males exhibited significantly greater hyperactivity than adult males across the doses ($F(2,23) = 4.01, p < 0.05$), with the opposite being seen in females (adults exhibiting more hyperactivity than adolescents), aside from the 2.5 mg/kg MPD dose. However, for the SHR strain, at the 2.5 and 10.0 mg/kg MPD doses, the adult and adolescent females exhibited a significantly greater increase when compared to their respective males ($F(3,46) = 4.02, p < 0.05$), a finding that was seen in all three doses for the SD strain. Furthermore, for the SHR strain, at the 2.5 mg/kg dose, female adults exhibited greater increases than female adolescents, a trend that was seen significantly at the 0.6 and 2.5 mg/kg MPD dose for SD rats, and at the 10.0 mg/kg dose in WKY rats ($F(2,50) = 3.67, p < 0.05$). Additionally, at the 10.0 mg/kg dose, female adults trended towards a non-statistically significant greater increase than female adolescents in both SD and SHR rats.

Figure 3: Effect of Saline Injections for Forty-Two Consecutive Days on Locomotor Activity.

The baseline locomotor activity of adult female SD rats (N=8) was recorded after daily injection with saline for a total of 42 consecutive days. The figure demonstrates the average total horizontal activity count, split into the 12 hours of nighttime (Figure 3A), 12 hours of daytime (Figure 3B) and finally as the full 24-hour cycle (Figure 3C).

Figure 4: Effect of Varying MPD Dose on Six Locomotor Indices in Adult Male WKY Rats.

The pair of columns depict the value in the two hours post-injection of saline on recording day 1 (RD1) compared to the value post-injection of MPD on recording day 2 (RD2). Values are present as standard error of the mean, with an asterisk (*) depicting a statistically significant ($p<0.05$) difference from saline, as determined by the student’s t-test.
The number of discrete movements following MPD doses of 0.6, 2.5 and 10.0 mg/kg in young (Figure 6A) and adult (Figure 6B) Sprague-Dawley (SD) females are shown. The three MPD doses all resulted in a significant increase in the number of discrete horizontal movements when compared to saline exposure on recording day 1 (F(10,83) = 14.04, p < 0.05). A characteristic dose dependent response was again seen. Moreover, the figure shows that adult female rats responded to the acute exposure of 2.5 mg/kg MPD with a greater increase in number of movements than the young female rats. This reflects the adult female rats exhibiting a greater sensitivity to the drug than the young female rats.

The MPD dose response curves of the three rat strains (WKY, SHR and SD) used in this study are summarized in Figure 7. Figures 7A-7D represents the adolescent males, adult males, adolescent females, and adult females respectively. Dose dependent differences in MPD response were seen across the three strains. Low dose exposure of MPD in adolescent male rats resulted in minor, non-significant differences between the three rat strains. However, following the injection of 2.5 mg/kg MPD, the WKY adolescent males responded with significantly increased activity than the corresponding SHR group. This response did not differ significantly from the SD group. Following 10.0 mg/kg MPD exposure, there was a significant difference between the WKY and SD groups but not between the WKY and SHR groups (Figure

Figure 5: Sex, Age and Strain Differences in Total Distance Traveled after the Acute Administration of Varying Doses of MPD.

Figure 5 compares the acute dose-response in terms of total distance traveled of male (left column) and female (right column) adult and adolescent WKY, SHR, and SD rats to an administration of 0.6, 2.5 and 10.0 mg/kg MPD, i.p. The total distance that is represented is the difference in between the baseline distance traveled on recording day 1 (RD1) after saline administration and the distance traveled on recording day 2 (RD2) after MPD administration. The figure is divided into a total of 9 sections, each representing a different strain and dose of MPD. A hexagon (●) represents a significant difference between adult and adolescents of the same sex, as determined by ANOVA testing with post-hoc Fischer’s LSD. A star (*) represents a significant difference between male and female animals of the same age group, i.e. male adolescents and female adolescents as determined by ANOVA testing with post-hoc Fischer’s LSD. The star is placed on or above the column that is the significantly larger in the comparison (F(10,83) = 14.12, p < 0.05).

Figure 6: Effect of Acute MPD Exposure on the Number of Discrete Horizontal Movements in Young (Adolescent) and Adult Female SD Rats.

This figure represents the number of discrete horizontal movements (NM) recorded in the two hours following exposure to varying dosages of MPD: 0.6 mg/kg, 2.5 mg/kg, and 10.0 mg/kg in young (Figure 6A) and adult (Figure 6B) SD female rats. The pair of columns compare the number of discrete horizontal movements recorded after saline exposure on recording day 1 (RD1) to the number recorded after MPD exposure on recording day 2 (RD2). A star (*) above the second bar represents a statistically significant (F(10,85) = 13.97, p<0.05) difference between the NM measured after saline and MPD exposure, as determined by the student’s paired t test. Each subgroup consisted of n=8.
7A). The adult male rats exhibited a different response pattern than the adolescents. Following both the lowest and the highest MPD doses (0.6 and 10.0 mg/kg) each adult rat group exhibited significantly different responses to the drug. For the low MPD dose, the SD rat group exhibited a greater sensitivity to the drug. In contrast, after the high MPD dose, the WKY rat group was the most sensitive to the drug, with the largest total distance traveled. Following 2.5 mg/kg MPD, there was no significant difference between the three strains of adults (Figure 7B). For the adolescent females, the only significant differences were seen at the 10.0 mg/kg dose, where the SHR group responded with a much greater increase than the SD and WKY rats (F(2,23) = 4.51, p < 0.05). There was no significant difference between the SD and WKY rats at this dose. Different results were seen for the adult females, where significant differences between the strains were seen at all doses. At the 0.6 mg/kg dose, the SD rats responded with the greatest increase, with the other two strains exhibiting a decrease in total distance traveled. When exposed to 2.5 mg/kg MPD, both the SHR and SD groups responded with hyperactivity, whereas the WKY strain exhibited a very minimal increase. Lastly, at the 10.0 mg/kg dose, the SHR rats exhibited a significantly greater increase (F(2,22) = 3.91, p < 0.05) than both WKY and SD rats, which did not differ significantly. Overall, the WKY rat strain tended to be the most

Figure 7: Change in Total Distance after MPD Exposure in Adolescent and Adult Male and Female WKY, SD and SHR Rats.

This figure summarizes the measurements of total distance traveled in two hours after exposure to varying doses of MPD (0.6 mg/kg, 2.5 mg/kg and 10 mg/kg) in young and adult males and females of the three rat strains (WKY, SHR and SD) used in this study. The measurements depicted are the absolute change from baseline, i.e. the difference between total distance traveled after saline injection on recording day 1 (RD1) and after exposure to MPD on recording day 2 (RD2). Figure 7A represents the adolescent male rats and Figure 7B represents the adult male rats, while Figure 7C represents the adolescent female rats and Figure 7D represents the adolescent female rats. A star (*) depicts a statistically significant difference (F(10,83) = 2.90, p < 0.05) between the strains, as determined by multifactor ANOVA with post-hoc analysis with Fischer’s LSD test. Each subgroup consisted of n=8.
The main findings of this study are as follows. Saline injection and animal handling did not change the six locomotor indices recorded. Consistent activity was observed in adult females over 42 days indicating that the reproductive cycle did not modulate locomotor activity \[56\]. Acute MPD exposure elicits dose dependent increases in the following five locomotor indices: horizontal activity (HA), Total Distance (TD) traveled, Vertical Activity (VA), Stereotypic Movements (SM), Number of Stereotypic Movements (NOS), and a decrease in Rest Time (RT). Both young and adult female rats responded to most doses of MPD exposure with more locomotor hyperactivity than young and adult male rats in the SD and SHR rat strains. This trend was not seen in the WKY strain. Additionally, adult female SD and SHR rats responded to most doses of MPD with a greater increase in locomotor activity than young female rats, although the baseline activity in the young rats was higher than adults. This trend was seen to a less significant degree in the WKY strain. Additionally, in the WKY strain the adolescent males tended to be hyperactive when compared to the adult males, although this was not consistent across all three doses. Low dose of MPD (0.6 mg/kg) in adolescent males and the middle dose of MPD (2.5 mg/kg) in adult males exerted similar effects on all three rat strains. Similarly, at the low and middle dose of MPD there were similar effects seen in adolescent females. However, strain differences were observed in the adolescent male groups following 2.5 and 10.0 mg/kg MPD, in the adult male group following 0.6 and 10.0 mg/kg MPD, in the adolescent female group following 10.0 mg/kg MPD and in the adult female groups following all doses of MPD.

The observations of this study indicate that MPD elicits different acute responses in females when compared to males, adolescents when compared to adults, and among different rat strains, which is relevant considering the vast increase in MPD use among people in all of these groups. The largest increase in MPD consumption has been seen in young subjects in particular, who are still undergoing normal neuronal plasticity, which may be affected by MPD exposure \[47-48,57\]. This development includes crucial neuroplasticity pertaining to the production and elimination of neuropil. Drug exposure in the adolescent period while the neuropil is dynamically changing may lead to a different response than the same drug exposure in the adult. Furthermore, it is important to consider whether psychostimulant (such as MPD) exposure during development can modulate the neuropil, which includes the synapses that are the target of MPD’s action. It has been previously recognized that adolescent rats express an attenuated response to cocaine and Amp, possibly due to a differential neuropil between adults and adolescents \[58,59\]. The findings of this study corroborate previously reported observations of other psychostimulants. There is a further need however, to compare adults that were exposed to MPD in adolescence with those exposed to MPD only in adulthood.

The observations of this study indicate that sex, age, and genetic composition have an influence on the response of animals to MPD, similar to studies that have shown that different pharmacologic agents such as cocaine and Amp exert different effects on specimens of different age, sex and genetic compositions \[60-66\]. This difference may be due to differential dopamine receptor expressions in between rat strains, a finding that has been previously reported for WKY, SD and Wistar rats \[67-68\]. Furthermore, there may be differences in the metabolism of dopamine or other endogenous catecholamines in different ages, sexes and strains \[69\]. Previous, pharmacogenetic research using genetically modified rodents of different strains has reported that genetic factors are important in how the subject will respond to a drug \[32,70\]. The strain differences in response to MPD use observed suggest that the dose needed for an adequate response is variable among the strains. Therefore, it is essential to study the responses to different drugs in different strains and to consider, in a
clinical setting, that all humans do not respond identically to MPD pharmacotherapy.

The finding of variable responses by strain also raises the question of which animal strain is the optimal model to study the effect of MPD. In our opinion it depends on the objective. If the goal is to study the effect of MPD on ADHD subjects, the animal model needs to be an animal expressing behaviors similar to ADHD, such as the spontaneous hyperactive rat [71,72]. However, the widespread use of MPD for cognitive enhancement and recreation among healthy children and young adults without ADHD makes it important to study the properties of MPD on ordinary animal models such as Sprague Dawley or Wistar-Kyoto rats.

Several studies report sex dependent differences in response to drugs and psychostimulants [72-77]. The neuronal systems mediating the behavioral responses to both drugs in general and psychostimulants are reported to be sexually dimorphic. These systems are suggested to be under the control of a subject’s genetics and the endocrine system. Gonadal hormones, in particular, enhance the neurochemical responses to psychostimulant administration [3]. Studies have also reported that sex differences in response to drug exposure are due to sex differences in metabolism [78,79]. Other studies have shown that adult females express more severe symptoms of drug dependence as well as a more robust and rapid behavioral response to acute Amp and cocaine exposure when compared to males [3,80]. For example, female adult SHR strain rats have an impaired vesicular storage of cocaine exposure when compared to males [12,72]. However, the widespread use of MPD for cognitive enhancement and recreation among healthy children and young adults without ADHD makes it important to study the properties of MPD on ordinary animal models such as Sprague Dawley or Wistar-Kyoto rats.

Further strain differences were seen in various doses groups when separated by age and sex. These differences are consistent with previous reports of similar differences with other psychostimulants and MPD and include comparisons that have not been reported thus far in the literature. Overall, we confirmed our hypothesis that there are differences in response to MPD based on age, sex and strain.

ACKNOWLEDGEMENTS:

This work was supported by the National Institutes of Health ROIDA0272220 grant. Dr. J Sack comments on the manuscript are appreciated. The help of N. Kharas is appreciated.

REFERENCES

1. Sharpe K. Medication: the smart-pill oversell. Nature. 2014 Feb 13;506(7487):146-8. doi: 10.1038/506146a. PMID: 2452583.
2. Bruchmüller K, Margraf J, Schneider S. Is ADHD diagnosed in accord with diagnostic criteria? Overdiagnosis and influence of client gender on diagnosis. J Consult Clin Psychol. 2012 Feb;80(1):128-38. doi: 10.1037/a0026582. Epub 2011 Dec 26. PMID: 22201328.
3. McHugh RK, Nielsen S, Weiss RD. Prescription drug abuse: from epidemiology to public policy. J Subst Abuse Treat. 2015 Jan;48(1):1-7. doi: 10.1016/j.jsat.2014.08.004. Epub 2014 Aug 28. PMID: 25239857; PMCID: PMC4250400.
4. Frolow A, Reyes-Vasquez C, Dafny N. Behavioral and neuronal recording of the nucleus accumbens in adolescent rats following acute and repetitive exposure to methylphenidate. J Neurophysiol. 2015 Jan;113(1):369-79. doi: 10.1152/jn.00633.2013. Epub 2014 Oct 15. PMID: 25318764; PMCID: PMC4294568.
5. Karim TJ, Reyes-Vazquez C, Dafny N. Comparison of the VTA and LC response to methylphenidate: a concomitant behavioral and neuronal study of adolescent male rats. J Neurophysiol. 2017 Sep 1;118(3):1501-1514. doi: 10.1152/jn.00145.2017. Epub 2017 Jun 14. PMID: 28615331; PMCID: PMC5596147.
6. Levin FR, Kleber HD. Attention-deficit hyperactivity disorder and substance abuse: relationships and implications for treatment. Harv Rev Psychiatry. 1995 Jan-Feb;2(5):246-58. doi: 10.3109/1067322950917144. PMID: 9384909.
7. Rowson SA, Foster SL, Weinschenker D, Neigh GN. Locomotor sensitization to cocaine in adolescent and adult female Wistar rats. Behav Brain Res. 2018 Sep 3;349:158-162. doi: 10.1016/j.bbr.2018.04.035. Epub 2018 Apr 25. PMID: 29704956; PMCID: PMC5993637.
8. Berger DF, Sagvolden T. Sex differences in operant discrimination behaviour in an animal model of attention-deficit hyperactivity disorder. Behav Brain Res. 1998 Jul;94(1):73-82. doi: 10.1016/s0166-4328(97)00171-x. PMID: 9708841.
9. Booze RM, Wood ML, Welch MA, Berry S, Maclutus CF. Estrous cyclicity and behavioral sensitization in female rats following repeated intravenous cocaine administration. Pharmacol Biochem Behav. 1999 Nov;64(3):605-10. doi: 10.1016/s0091-3057(99)00154-9. PMID: 10548278.
10. Kelly SJ, Ostrowski NL, Wilson MA. Gender differences in brain and behavior: hormonal and neural bases. Pharmacol Biochem Behav. 1999 Dec;64(4):655-64. doi: 10.1016/s0091-3057(99)00167-7. PMID: 10593187.
11. Chelaru MI, Yang PB, Dafny N. Sex differences in the behavioral response to methylphenidate in three adolescent rat strains (WKY, SHR, SD). Behav Brain Res. 2012 Jan 1;226(1):8-17. doi: 10.1016/j.bbr.2011.08.027. Epub 2011 Aug 25. PMID: 21889544; PMCID: PMC3271799.
12. Cornforth C, Sonuga-Barke E, Coghil D. Stimulant drug effects on attention deficit/hyperactivity disorder: a review of the effects of age and sex of patients. Curr Pharm Des. 2010;16(22):2424-33. doi: 10.2174/138161210791958827. PMID: 20513225.
13. Dafny N, Yang PB. The role of age, genotype, sex, and route of acute and chronic administration of methylphenidate: a review of its locomotor effects. Brain Res Bull. 2006 Feb 15;68(6):393-405. doi: 10.1016/j.brainresbull.2005.10.005. Epub 2005 Oct 27. PMID: 16459193.

14. Glick SD, Hinds PA. Sex differences in sensitization to cocaine-induced rotation. Eur J Pharmacol. 1984 Mar 16;99(1):119-21. doi: 10.1016/0014-2999(84)90442-4. PMID: 6723788.

15. Griffin ML, Weiss RD, Mirin SM, Lange U. A comparison of male and female cocaine abusers. Arch Gen Psychiatry. 1989 Feb;46(2):122-6. doi: 10.1001/archpsyc.1989.01810020024005. PMID: 2913971.

16. Kosten TA, Gawin FH, Kosten TR, Rounsaville BJ. Gender differences in cocaine use and treatment response. J Subst Abuse Treat. 1993 Jan-Feb;10(1):63-6. doi: 10.1016/0740-5472(93)90100-g. PMID: 8450576.

17. Andersen SL, Teicher MH. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev. 2000 Jan;24(1):137-41. doi: 10.1016/s0149-7634(99)00044-5. PMID: 10654670.

18. Becker JB. Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav. 1999 Dec;64(4):803-12. doi: 10.1016/s0091-3057(99)01068-9. PMID: 10593204.

19. Gatley SJ, Volkow ND, Gifford AN, Fowler JS, Dewey SL, Ding YS, Logan J. Dopamine-transporter occupancy after intravenous doses of cocaine and methylphenidate in mice and humans. Psychopharmacology (Berl). 1999 Sep 1;146(1):93-100. doi: 10.1007/s002130100055-8. PMID: 10654656.

20. Kuczenski R, Segal DS. Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther. 2001 Mar;296(3):876-83. PMID: 11342695.

21. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001 Feb;2(2):119-28. doi: 10.1038/35053570. Erratum in: Nat Rev Neurosci 2001 Mar;2(3):215. PMID: 11252991.

22. Rezvani AH, Levin ED. Adolescent and adult rats respond differently to nicotine and alcohol: motor activity and body temperature. Int J Dev Neurosci. 2004 Aug-Oct;22(5-6):349-54. doi: 10.1016/j.ijdevneu.2004.03.007. PMID: 15380834.

23. Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res. 1998 Jul;94(1):127-52. doi: 10.1016/s0166-4328(97)00175-1. PMID: 9708845.

24. Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley JS, Dewey S, Ashby C, Liebermann J, Hitzemann R, et al. Is methylphenidate a selective antidepressant in different strains of mice. Brain Res Bull. 2005 Apr 30;65(4):339-47. doi: 10.1016/j.brainresbull.2005.01.009. PMID: 15811600.

25. Claußen CM, Chong SL, Dafny N. Nucleus accumbens neuronal activity correlates to the animal’s behavioral response to acute and chronic methylphenidate. Physiol Behav. 2004 Apr 22;80(2-4):159-64. doi: 10.1016/j.physbeh.2004.02.024. Epub 2004 Feb 15. PMID: 14534179; PMCID: PMC4116108.

26. Dafny N. Does Methylphenidate (MPD) Have the Potential to Become Drug of Abuse ? Biochem Pharmacol. 2014;4:1–4. https://www.longdom.org/open-access/does-methylphenidate-mpd-have-the-potential-to-become-drug-of-abuse-2167-0501.1000156.pdf

27. Venkataraman SS, Claußen C, Joseph M, Dafny N. Concomitant behavioral and PFC neuronal activity recorded following dose-response protocol of MPD in adult male rats. Brain Res Bull. 2017 Apr;130:125-137. doi: 10.1016/j.brainresbull.2017.01.008. Epub 2017 Jan 19. PMID: 28111275.

28. Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley JS, Dewey S, Ashby C, Liebermann J, Hitzemann R, et al. Is methylphenidate a selective antidepressant in different strains of mice. Brain Res Bull. 2005 Apr 30;65(4):339-47. doi: 10.1016/j.brainresbull.2005.01.009. PMID: 15811600.

29. Venkataraman SS, Claußen C, Joseph M, Dafny N. Concomitant behavioral and PFC neuronal activity recorded following dose-response protocol of MPD in adult male rats. Brain Res Bull. 2017 Apr;130:125-137. doi: 10.1016/j.brainresbull.2017.01.008. Epub 2017 Jan 19. PMID: 28111275.

30. Yang PB, Atkins KD, Dafny N. Behavioral sensitization and cross-sensitization between methylphenidate amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) in female SD rats. Eur J Pharmacol. 2011 Jul 1;681(1-3):72-85. doi: 10.1016/j.ejphar.2011.04.035. Epub 2011 Apr 28. PMID: 21549116; PMCID: PMC4038816.

31. Amini B, Yang PB, Swann AC, Dafny N. Differential locomotor responses in male rats from three strains to acute methylphenidate. Int J Dev Neurosci. 2004 Sep;11(9):1063-84. doi: 10.1016/j.ijdevneu.2004.02.024. Epub 2004 Feb 15. PMID: 14534179; PMCID: PMC4116108.

32. Accardo P, Blondis TA. What’s all the fuss about Ritalin? J Pediatr. 2001 Jan;138(1):6-9. doi: 10.1067/mpp.2001.111505. PMID: 11148505.

33. McCabe SE, West BT. Medical and nonmedical use of prescription stimulants: results from a national multistudy cohort study. J Am Acad Child Adolesc Psychiatry. 2013 Dec;52(12):1272-80. doi: 10.1016/j.jaac.2013.09.005. Epub 2013 Sep 23. PMID: 24290460; PMCID: PMC3930155.

34. Upadhyaya HP, Rose K, Wang W, O’Rourke K, Sullivan B, Deas D, Brady KT.
Attention-deficit/hyperactivity disorder, medication treatment, and substance use patterns among adolescents and young adults. J Child Adolesc Psychopharmacol. 2005 Oct;15(5):799-809. doi: 10.1080/cap.2005.15.799. PMID: 16262596.

Cantrell FL, Ogera P, Mallett P, McIntyre IM. Fatal oral methylphenidate intoxication with postmortem concentrations. J Forensic Sci. 2014 May;59(3):847-9. doi: 10.1111/jfes.12389. Epub 2014 Feb 6. PMID: 24502813.

Biederman J, Faraone SV. Age-related differences in a sample of adults with attention deficit hyperactivity disorder. J Clin Psychiatry. 2001 Jan;62(1):10-9. doi: 10.1593/jop.62.1.10.15937. PMCID: PMC2783904.

Camp DM, Robinson TE. Susceptibility to sensitization. I. Sex differences in a sample of adults with attention deficit/hyperactivity disorder. Adv Pharmacol. 2011 Oct;22(7):617-23. doi: 10.1097/FBP.0b013e32834afea4. PMID: 21921837.

Davison K, Ollendick TH. Attention-deficit/hyperactivity disorder, medication treatment, and substance use patterns among adolescents and young adults. J Child Adolesc Psychopharmacol. 2005 Oct;15(5):799-809. doi: 10.1080/cap.2005.15.799. PMID: 16262596.

Biederman J, Faraone SV. Age-related differences in a sample of adults with attention deficit hyperactivity disorder. J Clin Psychiatry. 2001 Jan;62(1):10-9. doi: 10.1593/jop.62.1.10.15937. PMCID: PMC2783904.

Camp DM, Robinson TE. Susceptibility to sensitization. I. Sex differences in a sample of adults with attention deficit/hyperactivity disorder. Adv Pharmacol. 2011 Oct;22(7):617-23. doi: 10.1097/FBP.0b013e32834afea4. PMID: 21921837.

Davison K, Ollendick TH. Attention-deficit/hyperactivity disorder, medication treatment, and substance use patterns among adolescents and young adults. J Child Adolesc Psychopharmacol. 2005 Oct;15(5):799-809. doi: 10.1080/cap.2005.15.799. PMID: 16262596.
in the enduring effects of chronic D-amphetamine treatment on locomotion, stereotyped behavior and brain monoamines. Behav Brain Res. 1988 Sep 1;30(1):55-68. doi: 10.1016/0166-4328(88)90008-3. PMID: 2458741.

75. Lynch WJ, Carroll ME. Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology (Berl). 1999 May;144(1):77-82. doi: 10.1007/s002130050579. PMID: 10379627.

76. Ohia-Nwoko O, Haile CN, Kosten TA. Sex differences in the acute locomotor response to methamphetamine in BALB/c mice. Behav Brain Res. 1988 Sep 1;30(1):55-68. doi: 10.1016/0166-4328(88)90008-3. PMID: 2458741.

77. Robison LS, Michaelos M, Gandhi J, Fricke D, Miao E, Lam CY, Mauceri A, Vitale M, Lee J, Paeng S, Komatsu DE, Hadjigarayou M, Thanos PK. Sex Differences in the Physiological and Behavioral Effects of Chronic Oral Methylphenidate Treatment in Rats. Front Behav Neurosci. 2017 Mar 28;11:53. doi: 10.3389/fnbeh.2017.00093. PMID: 28400722; PMCID: PMC5368228.

78. Craft RM. Sex differences in drug- and non-drug-induced analgesia. Life Sci. 2003 May 2;72(24):2675-88. doi: 10.1016/s0024-3205(03)00178-4. PMID: 12679185.

79. Kato R. Sex-related differences in drug metabolism. Drug Metab Rev. 1974;3(1):1-32. doi: 10.3109/03602537408993737. PMID: 4154185.

80. van Haaren F, Meyer ME. Sex differences in locomotor activity after acute and chronic cocaine administration. Pharmacol Biochem Behav. 1991 Aug;39(3):923-7. doi: 10.1016/0091-3057(91)90054-6. PMID: 1763112.

81. Venkataraman S, Claussen C, Dafny N. D1 and D2 specific dopamine antagonist modulate the caudate nucleus neuronal responses to chronic methylphenidate exposure. J Neural Transm (Vienna). 2017 Feb;124(2):159-170. doi: 10.1007/s00702-016-1647-x. Epub 2016 Nov 16. PMID: 27853928.

82. Kharas N, Yang PB, Robles T, Sanchez A, Dafny N. Sex differences in the intensity of cross-sensitization between methylphenidate and amphetamine in adolescent rats. Physiol Behav. 2019 Apr 1;202:77-86. doi: 10.1016/j.physbeh.2018.12.021. Epub 2019 Jan 14. PMID: 30853974.

83. Kharas N, Yang P, Castro-Alvarado D, Rose K, Dafny N. Exposure to methylphenidate in adolescence and adulthood modulates cross-sensitization to amphetamine in adulthood in three genetically variant female rat strains. Behav Brain Res. 2019 Apr 19;362:36-45. doi: 10.1016/j.bbr.2018.12.018. Epub 2018 Dec 14. PMID: 30557579.

84. Karkhanis AN, Locke JL, McCool BA, Weiner JL, Jones SR. Social isolation rearing increases nucleus accumbens dopamine and norepinephrine responses to acute ethanol in adulthood. Alcohol Clin Exp Res. 2014 Nov;38(11):2770-9. doi: 10.1111/acer.12555. PMID: 25421514; PMCID: PMC4519347.

85. Yorgason JT, Espailla RA, Konstantopoulos JK, Weiner JL, Jones SR. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats. Eur J Neurosci. 2013 Mar;37(6):1022-31. doi: 10.1111/ejn.2011.13. Epub 2013 Jan 8. PMID: 23294165; PMCID: PMC3746484.

86. Butler TR, Carter E, Weiner JL. Adolescent social isolation does not lead to persistent increases in anxiety-like behavior or ethanol intake in female long-evans rats. Alcohol Clin Exp Res. 2014 Aug;38(8):2199-207. doi: 10.1111/acer.12476. Epub 2014 Aug 4. PMID: 25092210; PMCID: PMC4146661.

87. Exploring the biological contributions to human health: does sex matter? J Womens Health Gend Based Med. 2001 Jun;10(5):433-9. doi: 10.1089/152460901300233902. PMID: 11445042.

88. Exploring the biological contributions to human health: does sex matter? J Womens Health Gend Based Med. 2001 Jun;10(5):433-9. doi: 10.1089/152460901300233902. PMID: 11445042.

89. Hernandez-Avila CA, Rounsaville BJ, Krantzler HR. Opioid-, cannabis- and alcohol-dependent women show more rapid progression to substance abuse treatment. Drug Alcohol Depend. 2004 Jun 11;74(3):265-72. doi: 10.1016/j.drugalcdep.2004.02.001. PMID: 15194204.

90. Keyes KM, Martins SS, Blanco C, Hasin DS. Telescoping and gender differences in alcohol dependence: new evidence from two national surveys. Am J Psychiatry. 2010 Aug;167(8):969-76. doi: 10.1176/appi.appl.2009.09081161. Epub 2010 May 3. PMID: 20439391; PMCID: PMC3767417.

91. King SA, Casavant MJ, Spiller HA, Hodges NL, Chournthirath T, Smith GA. Pediatric ADHD Medication Exposures Reported to US Poison Control Centers. Pediatrics. 2018 Jun;141(6):e20173872. doi: 10.1542/peds.2017-3872. Epub 2018 May 21. PMID: 29784754.

92. Lewis B, Nixon SJ. Characterizing gender differences in treatment seekers. Alcohol Clin Exp Res. 2014 Jan;38(1):275-84. doi: 10.1111/acer.12228. Epub 2013 Aug 9. PMID: 23930695; PMCID: PMC3855552.

93. Shavers VL, Bakos A, Sheppard VB. Race, ethnicity, and pain among the U.S. adult population. J Health Care Poor Underserved. 2010 Feb;21(1):177-220. doi: 10.1353/hpu.0.0255. PMID: 20173263.