The European clinical, molecular and pathological (Eurocmp→CMP) and WHO-CMP criteria of the myeloproliferative disorders 1940-2008 and myeloproliferative neoplasms 2008-2015

Jan Jacques Michiels* and Hendrik De Raeve2,3
1International Hematology and Bloodcoagulation Research Center, Goodheart Institute and Foundation in Nature Medicine, European Working Group on Myeloproliferative Neoplasms, 3069 AT Rotterdam, The Netherlands
2Department of Pathology, OLV Hospital Aalst OLV Ziekenhuis, B-9300 Aalst, Belgium
3Department of Pathology, University Hospital, B-1090 Brussels, Belgium

Abstract

The 1990 Hannover Bone Marrow Classification separated Ph1+ CML from the Ph1- myeloproliferative neoplasms (MPN) essential thrombocythemia (ET), polycythemia vera (PV) and chronic or primary megakaryocytic granulocytic myeloproliferation (CMGM/PMGM). The 2000-2008 European Clinical Molecular and Pathological (ECMP) criteria discovered 3 variants of thrombocythemia: ET with features of PV (prodromal PV) versus "true" normocellular ET and hypercellular ET associated with CMGM/PMGM without features of PV, MDS or CML. The 2008 World Health Organization (WHO)-ECMP and 2007-2015 WHO-ECMP MPN classifications defined three phenotypes of JAK2V617F mutated ET: normocellular ET (WHO-ET), hypercellular ET due to increased erythropoiesis (prodromal PV) and ET with hypercellular megakaryocytic-granulocytic myeloproliferation (ET.MGM) or masked PV. JAK2 wild type MPL515 mutated ET is the second distinct thrombocythemia featured by clustered giant megakaryocytes with hyperlobulated stag-horn-like nuclei, in a normocellular bone marrow consistent with the diagnosis of "true" ET. JAK2/MPL wild type hypercellular ET is the third distinct thrombocythemia characterized by clusteredlarged immature dysmorphic megakaryocytes and bulky (bulbous) hyperchromatic nuclei consistent with CMGM/PMGM.

Key message: The 2015 WHO-CMP criteria define three phenotypes of JAK2V617F mutated Myeloproliferative Neoplasms (MPN) essential thrombocythemia (ET), polycythemia vera (PV), hypercellular ET with megakaryocytic-granulocytic myeloproliferation (masked PV) and classical PV. JAK2 wild type MPL515 mutated normocellular ET is the second distinct thrombocythemia featured by clustered giant megakaryocytes with hyperlobulated stag-horn-like nuclei. JAK2/MPL wild type CALR mutated hypercellular ET is the third distinct thrombocythemia characterized by clustered large dysmorphic megakaryocytes and bulky (bulbous) hyperchromatic nuclei consistent with CMGM/PMGM. MPN disease burden is best reflected by the degree of anemia and splenomegaly on top of mutation allele burden, bone marrow cellularity and increase of reticulin fibrosis.

Introduction

In this historical appraisal of the myeloproliferative disorders (MPD) the 1980 Rotterdam, the 1990 Hannover and versus the 1975 PVSG and European clinical and bone marrow (EuroCMP) criteria myeloproliferative disorders (MPD, Tables 1-6) are compared against the 2007-2015 WHO clinical Molecular Pathological (WHO-CMP) criteria for the diagnosis Myeloproliferative Neoplasms (MPN) and the detection and staging of the masked and manifest MPNs ET, PV and MF (Tables 7-11).

Polycythemia vera, a trilinear MPD

A definite diagnosis of PV can be made: plethoric appearance, splenomegaly, definitely elevated erythrocyte count above 6 × 1012/L, elevated platelet count, and elevated hematocrit [1]. The bone marrow is pathognomonic diagnostic showing a pannmyelosis (increased trilinear hematopoiesis) and large megakaryocytes (Table 1) [1,2]. The majority of PV patients have a long life span and every attempt should be made to keep the treatment of PV as physiologic as possible by venesection aiming at haematocrit of 0.40 as a satisfactory method resulting in a state of iron deficiency [1-3]. During complete remission of PV by phlebotomy alone red cell count remains elevated above 6 × 1012/L due to microcytosis of red cells, haemoglobin and hematocrit levels remain low for periods of months to years and the PV patient is

Correspondence to: Jan Jacques Michiels, MD, PhD, Investigator, Senior Internist, International Hematology and Bloodcoagulation Research Center, Goodheart Institute and Foundation in Nature Medicine, European Working Group on Myeloproliferative Neoplasms, Erasmus Tower, Veenmoss 13, 3069 AT Rotterdam, The Netherlands, Tel: +31-62-6970534; E-mail: goodheartcenter@upcmail.nl

Key words: myeloproliferative neoplasms, essential thrombocythemia, polycythemia vera, primary megakaryocytic granulocytic myeloproliferation, myelofibrosis, JAK2V617F mutation, MPL515 mutation, bone marrow pathology

Received: June 19, 2016; Accepted: July 12, 2016; Published: July 16, 2016
Michiels JJ (2016) The European clinical, molecular and pathological (Eurocmp→CMP) and WHO-CMP criteria of the myeloproliferative disorders 1940-2008 and myeloproliferative neoplasms 2008-2015

Table 1. PVSG criteria for PV[10] and diagnostic differentiation of PV from all variants of primary and secondary erythrocytoses by bone marrow histology [17].

The diagnostic criteria for polycythemia vera proposed by the polycythemia vera study group (PVSG)
A1
Male>36 mL/kg
Female>32 mL/kg
A2
A3
B1
B2
B3

Diagnostic differentiation of benign erythrocytoses from myeloproliferative polycythemia vera by histopathology from bone marrow biopsy sections.

- Raised cell mass, RCM: Normal RCM = apparent erythrocytosis does not exclude MPD.
- RCM does not distinguish between PV and primary or secondary erythrocytosis.
- RCM does not distinguish between PV and inapparent PV with splenomegaly in splanchnic vein thrombosis (IPV, table 3). In IPV RCM is increased due to splenomegaly with absence of hypertrophic symptoms. Bone marrow histology distinguishes PV from all variants of erythrocytosis with a sensitivity and specificity of 100%.

Table 2. Grading of bone marrow biopsy content of reticulin fibrosis (RF) according to Ellis et al. [41], and Wilkins et al., [171] and grading of RF, reticulin/collagen fibrosis (RCF) and myelofibrosis (MF) according to Georgii et al., (Hannover Bone Marrow Classification) [35,36] and Thiele [98-101].

| Grading reticulin fibrosis (RF) [41]. | Grading RF, reticulin/collagen fibers (RCF) in myelofibrosis (MF) as a secondary event in myeloproliferative neoplasms (MPN). |
|--------------------------------------|
| Normal RF-0. | SF NC 0. |
| Slight increase RF 1. | + MF 0. |
| Moderate increase RF 2. | ++ MF 1. |
| Marked increase RF 3. | +++ RCF=MF 2. |
| OS Dry tap RF 4. | Sclerotic RCF&O=MF 3. |

Table 3. Comparison of clinical and laboratory features between PVSG defined PV (Group A) and Inapparent PV (IPV) (Group B) [44].

Clinical feature	Group A PV	Group B IPV	P-value
Number of cases	85	18	
Age (range)	61 (27-83)	52 (28-82)	ns
Sex male/female	56/44%	39/61%	
Splenomegaly	41 (52%)	15 (83%)	<0.005
Leukocytes >12 ×10^9/L	31 (36%)	5 (28%)	ns
Platelets >500 × 10^9/L	40 (47%)	10 (56%)	ns
Red Cell Counts x10^12/L male	6.2 (4.9-7.4)	5.2 (4.7-5.9)	<0.0002
Red Cell Mass males	48.2 (36-60)	43.3 (41-61)	ns
Red Cell Counts females	6 (4.2-7.3)	4.7 (3.7-5.5)	<0.003
Re Cell Mass females	40.1 (32-59)	37.3 (34-46)	ns
Plasma volume PV vs IPV:			
Increase/theoretical norm (%)	+10 (+11, +61)	+36 (+20, +98)	<0.00001

Conclusion: IPV is featured by normal values of haemoglobin, haematocrit and erythrocyte counts, in the absence of hypovolemic symptoms and in IPV red cell mass (RCM) is increased related to the degree of increased spleen size. reasonable asymptomatic indicating that the best index of phlebotomy therapy is the hematocrit value and haemoglobin concentration [2,3]. It is possible to control PV patients by phlebotomy alone for several up to ten to fifteen years and such PV are in as good health as comparable persons of the same age group [3-5].

PV as a total marrow disorder in which peripheral blood erythrocytosis, leucocytosis and thrombocytosis are all simultaneously present and the bone marrow is featured by a trilinear myeloproliferative disease (MPD) of erythrocithemic, thrombocythemic and granulocytic myeloproliferation (Figures 1-4) [2,3]. PV is complicated by primary myeloid metaplasia of the spleen with increasing degree of splenomegaly, myelofibrosis and the development of anemia in about one third of the cases after long-term follow-up of about 15 to 30 years. The one cause hypothesis cause of Dameshek for PV as a trilinear myeloproliferative disease (MPD) either the presence of excessive bone marrow stimulation by an unknown factor or the lack or diminution of an inhibitory factor has been confirmed by Vainchenker’s discovery of the acquired somatic JAK2V617F mutation as the cause of three phenotypes of MPD essential thrombocytemia (ET), PV, myeloid neoplasia of the spleen (MNS) and secondary myelofibrosis (MF) [2,3].

MPD a benign proliferation of hematopoiesis vs. CML a malignant neoplasia

In 1951 Dameshek speculated on an unifying theory that erythroleukemia, chronic granulocytic leukemia (CML), PV, idiopathic or agnogenic myeloid metaplasia (AMM) of the spleen, and
Table 4. The 1980 Rotterdam Clinical and Pathological (RCP) criteria for Essential Thrombocythemia (ET) and Polycythemia Vera (PV).

Clinical Criteria	Pathological Criteria
Persistent platelet count: grade I: 400-1500/L, grade II: >1500 × 10^9/L.	B1 Proliferation of mature large to giant megakaryocytes with hyperlobulated stargate-like nuclei and mature cytoplasm.
Normal spleen or only minor splenomegaly on echogram.	B2 No proliferation or immaturity of granulopoiesis or erythropoiesis.
Normal LAP score, normal ESR, and increased MPV.	B3 No or only borderline increase in reticulin.
Spontaneous megakaryocyte colony formation (CFU-Meg).	
No signs or cause of RT.	
No preceding or allied other subtype of MPD, CML, or MDS.	
Absence of the Philadelphia chromosome.	

Table 5A. The European Clinical and Pathological (ECP) criteria for True normocellular essential thrombocytemia ('True' ET). Source Michiels & Thiele in 2002 [91].

Clinical Criteria	Pathological Criteria
Persistent platelet count in excess of 400 × 10^9/L.	
Increase and clustering of enlarged megakaryocytes in bone marrow biopsy.	
No or slight increase of reticulin fibers (RF 0 or RF 1).	
Presence of large platelets in a peripheral blood smear.	
No splenomegaly (<12 cm) or slight splenomegaly on scan (<15 cm).	
Increase of LAP-score and no signs of fever or inflammation.	
Absence of Ph or chromosome or any other cytogenetic abnormality in nucleated blood or bone marrow cells.	

Table 5B. The European clinical and Pathological (ECP) criteria for prefibrotic ET.

Clinical Criteria	Pathological Criteria
Persistent increase of platelet count: grade I: 400-1500/L, grade II: >1500 × 10^9/L.	
Normal hemoglobin or anemia, grade I: hemoglobin ≥ 12 g/dL. Slight or moderate splenomegaly on palpation or > 11 cm on ultrasound scan or CT Thrombocythemia, platelets > 400 × 10^9/L.	
Anemia grade II: hemoglobin ≥ 10 g/dL. Normal leukocytes and ESR. Splenomegaly. No adverse sign.	
Anemia grade III: hemoglobin < 10 g/dL. One or more adverse sign.	

Table 6. The 2000-2005 European Clinical and Pathological (ECP) Essential Thrombocytemia (ET) [77].

Clinical Criteria	Pathological Criteria
Persistent increase of platelet count: in excess of 400 × 10^9/L.	B1 Predominant proliferation of dispersed or loosely clustered enlarged to giant
Normal spleen or only minor splenomegaly on echogram.	
Normal or increased LAP-score and normal ESR.	B2 No or only borderline increase in reticulin.
Spontaneous megakaryocyte colony formation (CFU-Meg) and or endogenous erythroid colony formation (EECF).	
No signs or cause of reactive thrombocytosis (RTb).	
No preceding or allied other subtype of MPD, CML or MDS.	
Absence of the Ph-Chromosome.	

A1 and B1 + B2 establish (true) ET. Any other additional A criterion confirms ET.

ET: GRADE I: platelet counts between 400 and 1,000 × 10^9/L; Grade II: platelet counts 1,000-1,500 × 10^9/L; and Grade III: platelet counts above 1,000 × 10^9/L.

megakaryocytic leukemia (ML) [6,7]. It is possible that these various 'myeloproliferative disorders' are all somewhat variable manifestations of proliferative activity of the bone marrow cells, or may represent one myeloproliferative activity of bone marrow cells due to a hitherto undiscovered hypothetical stimulus [6]. This concept of MPD is the basis of which the Polycythemia Vera Study Group (PVSG) defined in
Table 7. The 2000-2005 European Clinical and Pathological (ECP) criteria for polycythemia vera (PV) (77).

Clinical Criteria	Pathological Criteria		
A1	Erythrocyte $> 6 \times 10^{12}$/L, haemoglobin: male > 18.5 g/dL, female > 16.5 g/dL, and haematocrit: male > 0.515, female > 0.48. Raised red cell mass (optional) RCM: male > 36 ml/kg, female > 32 ml/kg.	Increased cellularity with trilineage myeloproliferation (i.e., pancytopenia). Proliferation and clustering of small to giant (pleomorphic) megakaryocytes. Absence of stainable iron. No pronounced inflammatory reaction (plasmacytosis, cellular debris).	
A2	Persistent increase of platelet count: grade I: 400-1,500, grade II: > 1500.		
A3	Splenomegaly on palpation or on ultrasound or CT (≥ 12 cm length diameter).	B2	Spontaneous erythroid colony formation.
A4	Granulocytes $> 10 \times 10^9$ and/or raised LAP-score in the absence of fever or infection.	MF 0	Prethrombotic stage PV.
A5	Absence of any cause of secondary erythrocytosis.	MF 1	Early Prethrombotic stage PV.
A6	Low plasma EPO level.	MF > 3	Osteosclerosis, decreased cellularity.

A1 + B1 + B2 establishes polycythemia vera (PV) – any other criterion confirms PV.

Table 8. 2007 EuroCMP and 2015 WHO-CMP criteria for diagnosis of JAK2V617F mutated Polycythemia Vera (95,96,1-3,104).

Clinical and molecular criteria	WHO bone marrow criteria	Pathological criteria (WHO)	
Major PV criteria	Early PV. Hematocrit in the upper limit of normal: Ht: 0.45 to 0.51 in male and 0.43 to 0.48 in female, erythrocytes $< 6 \times 10^{12}$/L.	P1	Bone marrow pathology: increased cellularity due to trilinear increase of erythropoiesis, megakaryopoiesis and granulopoiesis and clustering of small to giant (pleomorph) megakaryocytes with hyperlobulated nuclei.
A1	Classical WHO defined PV: Hematocrit > 0.51 or > 0.48 in male/female. Erythrocyte $> 6 \times 10^{12}$/L.	A2	Presence of JAK2V617F or exon 12 mutation (Sensitivity 98%).
A3	Low serum EPO level and/or spontaneous endogenous erythroid colony (EEC) formation.	A3	Absence of stainable iron. No pronounced inflammatory reaction (plasmacytosis, cellular debris).

Table 9. 2007 EuroCMP and 2015 WHO-CMP criteria for diagnosis of 3 phenotypes of JAK2V617F mutated Essential Thrombocythemia (ET) (95,96,103,104).

Clinical and molecular criteria	WHO bone marrow criteria	Pathological criteria (WHO)	
ET stage 1	Platelet count of $> 350 \times 10^9$/l and the presence of large platelets in a blood smear (also stage 2 and 3).	Predominant proliferation of enlarged pleiomorphic megakaryocytes with hyperlobulated nuclei and mature cytoplasm, lacking conspicuous morphological abnormalities. No increase, proliferation or immaturity of granulopoiesis or erythropoiesis. No or borderline increase in reticulin.	
2	Presence of JAK2V617F mutation.	3	Normal haematocrit: male $< 51%$, female < 48% erythrocytes $< 6 \times 10^{12}$/L.
Minor PMN criteria	Persistent increase of platelet count grade I: 400-1,500, grade II: > 1500.	B2	Granulocytes $> 10 \times 10^9$/L or raised LAP-score or increased PRV-1 expression in the absence of fever or infection.
B3	Splenomegaly on palpation or on ultrasound echogram (≥ 12 cm length diameter).	B3	Bone marrow pathology: increased cellularity due to trilinear increase of erythropoiesis, megakaryopoiesis and granulopoiesis and clustering of small to giant (pleomorph) megakaryocytes with hyperlobulated nuclei.
P2	Selective increase of erythropoiesis, normal granulopoiesis and megakaryocytosis of normal size, morphology and no clustering of megakaryocytes in primary or secondary erythrocytosis.		

Table 10. 2007 EuroCMP and 2015 WHO-CMP criteria for the diagnosis of JAK2 wild type normocellular ET carrying the MPL515 mutation (+) (95,96,103,104).

Clinical and molecular criteria	WHO bone marrow criteria	Pathological criteria (WHO)	
ET	Platelet count $> 350-400 \times 10^9$/l. Presence of large platelets in blood smear.	Predominant proliferation of small, large and giant megakaryocyte with hyperlobulated, staghorn- like nuclei lacking morphological abnormalities. No increase, proliferation or immaturity of granulopoiesis or erythropoiesis. No or slight increase in reticulin:	
2	JAK2 wild type \neq MPL515 mutation.	3	No anemia, Hb > 12.8 g/dL.
4	Normal serum EPO and ferritin.	5	No or slight splenomegaly on ultrasound.
6	No leukoerythroblastosis.	7	JAK2 wild type \neq MPL515 mutation.
8	No preceding or allied of CML, PV, RARS-T or MDS.	9	Increased cellularity due to chronic megakaryocytic and granulocytic myeloproliferation and reduced erythroid precursors.

Michiels JJ (2016) The European clinical, molecular and pathological (Eurocmp\rightarrowCMP) and WHO-CMP criteria of the myeloproliferative disorders 1940-2008 and myeloproliferative neoplasms 2008-2015

Hematol Med Oncol, 2016 doi: 10.15761/HMO.1000102

Volume 1(1): 6-18
Table 11. 2007 EuroCMP and 2015 WHO-CMP criteria for hyper cellular ET associated with JAK2 wild type CALR mutated primary megakaryocytic granulocytic myeloproliferation (PMGM) [77,78,94-96,103,104].

European clinical molecular and pathological (EuroCMP) criteria for the diagnosis and staging of PMF or PMGM.	J.Michiels	Clinical criteria 2005	J.Thiele	Pathological criteria 2005/2008
A1	No preceding allied other subtype of myeloproliferative neoplasms, CML or MDS. Main presenting feature is pronounced thrombocythemia and no dry tap on bone marrow aspiration. JAK2 and MPL wild type.		B1	Primary megakaryocytic and granulocytic myelo proliferation (PMGM) and no or relative reduction of erythroid precursors. Abnormal clustering and increase in atypical giant to medium sized megakaryocytes containing bulbous (cloud-like) hypolobulated nuclei and definitive maturation defects.
C	Clinical Stage of PMF or PMGM		MF	Staging of myelofibrosis (MF)
C1	Early clinical stages	Normal hemoglobin or slight anemia, grade I: hemoglobin > 12g/dl. Normal or increased LAF-score No leuka-erythroblastic	MF-0	Prefibrotic stage PMF or PMGM: no reticulin fibrosis.
C2	Intermediate clinical stage	Anemia grade II: Hemoglobin > 10g/dl Definitive leuko-erythroblastic blood picture and/or tear drop erythrocytes increased LDH Splenomegaly	MF-1	Early PMF or PMGM: no reticulin fibrosis.
C3	Advanced clinical stage	Anemia grade III: Hemoglobin < 10g/dl Definitive leuko-erythroblastic blood picture and/or tear drop erythrocytes. Splenomegaly, Thrombocytopenia, leukocytosis, leukopenia	MF-2	Fibrotic PMGM or PMF: marked increase in reticulin and slight moderate collagen fibrosis.

The combination of A1 + B1 establishes PMF or PMGM: any other criterion C or MF contributes to staging.

Figure 1. Dameshek 1900-1969. Description of trilinear PV in 1950. “Photo courtesy of the American Society of Hematology (ASH) 2012.” William Vainchenker discoverer of the JAK2V617F mutation in 2005 as the cause of the trilinear MPNs ET, PV and MF.

Figure 2. The Di Gugliemo Syndrome Dameshek with sequential stages of chronic erythromyelosis, erythroleukemia and acute myoid leukemia (AML) according to Dameshek appears to be a continuum of trilinear myelodysplastic syndrome (MDS) of sequential stages refractory anemia (RA), RA with excess of blasts (RAEB), RAEB in blastic transformation (RAEB-T) and AML [13,14] This concept has been used by the WHO fort he classification of MDS.
1975 the authoritative criteria for the diagnosis of PV (Table 1), AMM and primary hemorrhagic thrombocythemia (PHT) and primary myelofibrosis (PMF) [8-10]. PMF or AMM is a clinicopathological entity not preceded by any other PVSG defined MPD PHT or ET, PV, CML or preleukemia with myelodysplastic features. CML is leukemia or neoplasia that destroys normal hematopoiesis whereas ET, PV and AMM form a benign proliferation of trilinear hematopoietic proliferation in the bone marrow (myeloproliferation) and extramedullary hematopoiesis in the spleen [8].

PVSG clinical criteria for PV diagnosis: RCM vs. bone marrow histology

The PVSG defined laboratory findings of 325 PV patients in the PVSG 01 study all PV patients had increased red cell mass by definition and showed an increase in hematocrit > 0.52 in 92%, white cells > 12 x 10^9/L in 43%, platelets > 400 x 10^9/L in 63%, leukocyte alkaline phosphatase (LAP) score > 100 in 70% and increased spleen size on palpation (splenomegaly due to myeloid metaplasia) in 70% [10]. Absence of splenomegaly was noted in about 30% of cases and leucocytosis and platelet counts can remain normal in early stage PV with typical PV bone marrow histology [10-41]. Such masked cases of PV with normal platelets, leukocytes and spleen were labeled in 1979 as idiopathic erythrocytemia (IE) by Pearson and Wetherley-Mein [42]. The 1975 PVSG criteria for PV in Table 2 exclude per definition IE (stage 1 PV) [10-41]. IE is featured by increased red cell mass, normal spleen size, normal leukocyte and platelet counts and no clinical or laboratory evidence of primary or secondary erythrocytosis [42]. Leucocyte alkaline phosphatase (LAP) scoring [8,17], in vitro cultures of erythroid progenitors (EEC) [43] and radioimmunoassay of erythropoetin (EPO) do contribute to differentiate PV from all variants erythrocytosis. These assays are useful when there is only isolated elevation of the red cell mass and all the usual causes of secondary polycythemia have been excluded. The characteristic histology findings in bone marrow biopsies of 155 evaluable PV patients with a documented increased RCM in the PVSG 01 study revealed a broad spectrum of bone marrow cellularity from 50% to 60% in 10 cases, from 60% to 80% in 45 cases, and from 80% to 100% in 100 cases (Figure 5) [41]. Silver stained reticulin fiber content was normal (RF-0 and 1 = prefibrotic) in 94 cases, slightly increased (RF-2 = early fibrotic) in 40 cases, and moderately to marked increased (RF-3) in 21 cases. The bone marrow histology data of megakaryopoiesis in PVSG PV and PHT studies were identical in appearance, and the condition PV versus ET could not be distinguished on megakaryocyte histology [39-41]. Increased bone marrow cellularity due to increased erythropoiesis and/or myelopoiesis in PVSG defined PV and PHT or ET was identical. The PVSG
concluded that the condition PV versus ET could not be distinguished on the basis of bone marrow histopathology. Consequently, the PVSG only used increased red cell mass (RCM) and did not include bone marrow histology as the deterministic major inclusion criterion for the diagnosis of PV, and to separate ET from PV [10,39-41]. RCM is insensitive and not specific for the diagnostic differentiation of PV, ET, SE and inapparent PV (Table 1) [17]. In contrast, EEC and bone marrow histology are specific clues for the diagnosis of PV since the early 1970s [1-3,41-43].

From 1988 to 1994, Lamy et al., [44] measured RCM in 103 consecutive PV patients seen in a single center diagnosed as inapparent PV (IPV) in 18 patients (17%) and as PV with increased hemoglobin (Hb) and hematocrit (Ht) defined, respectively, by Hb > 18 g/dL, Ht > 0.52 in males and Hb > 16 g/dL, Ht > 0.47 in females (Table 3) [44]. IPV or masked PV was defined by a normal Hb and Ht value at diagnosis. In the IPV group, the reasons to perform RCM were as follows: splenomegaly or increased platelets or leucocytes counts (n = 8), portal vein thrombosis (n = 5), increased platelets or leucocytes counts without splenomegaly (n = 3), and isolated splenomegaly (n = 2) [22]. The two groups were balanced in terms of age, sex, leucocyte, serum iron, and platelet level. Hemoglobin, Ht levels, red cell counts, and plasma volumes were significantly different between the two groups (Table 3). Red cell mass was increased in the two groups due to hypervolemia in PV, but caused by splenomegaly in cases with IPV, whereas the erythrocyte counts were increased in the majority of 85 PV patients, but completely normal in 18 IPV patients except one (Table 3). Consequently IPV with normal or decreased hemoglobin, hematocrit and erythrocytes in Table 3 cannot become candidates for phlebotomy because of absence of hypervolumetric symptoms. Treatment will hydroxyurea carry the great danger of inducing relative anemia and acceleration of myelofibrosis. In the context of splanchic vein thrombosis (portal or splenic vein thrombosis), and hepatic vein thrombosis (Budd Chiari syndrome), RCM and plasma volume are increased due to splenomegaly as the cause of IPV or masked PV [45].

The 1975 PVSG defined clinical criteria for PV are relatively simple to implement but rather crude thereby overlooking prodromal and masked PV because bone marrow histology as a pathognomonic clue to PV and ET was not considered (Table 1). The PVSG 01 study randomized 431 PV patients for phlebotomy in 134, chlorambucil in 141 and P32 in 156, there was a significant loss of survival of PV patients due to major thrombotic complications during the first 3 years in the phlebotomy arm due to uncontrolled thrombocytopenia and aiming at a too high haematocrit just below 0.50 [9,10,49,50]. In retrospect this would not be the case with the recommendation of phlebotomy aiming at a haematocrit of 0.40 according to Dameshek and Pearson et al., [42] on top of aspirin in the United Kingdom and The Netherlands since 1985 [51]. There was a striking increased incidence of overall malignant complications in PV patients with P32 and chlorambucil as compared to the phlebotomy-treated PV patients during long-term treatment [49,50]. The overall incidence of leukemia/lymphoma and cancer after 10 to 11 years follow-up was 25% in the phlebotomy arm, 40% in the P32 arm and 67% in the chlorambucil arm. The increased incidence of malignancies of bone marrow, lymphoid tissue, skin, and gastrointestinal tract highlights mutagenic effects of chronic myelosuppressive agents in particular when treatment is already started in newly diagnosed early and overt stages of PV. The PVSG 01 trial confirmed the hypothesis of Dameshek [3,50,51] that P32 is leukaemogenic when used as the first line myelosuppressive treatment in early and overt stage PV indicating the need to postpone myelosuppressive therapy in PV as long as possible [52-55]. A large group of low risk PV patients included in the PVSG 01 study were exposed to the leukaemogenic agents P32 and chlorambucil. The PVSG 01 investigators recommended around 1990 to replace P32 by hydroxyurea as the first treatment option in PV patients [52-55]. The final analysis of the French PVSG study compared HU (n = 136) vs pipobroman (n = 149) as first-line therapy in 285 newly diagnosed PV patients younger than 65 years (27 patients were older than 65 years) [56]. During follow-up 42 patients (31%) switched from HU to pipobroman because of HU toxicity and 19% from pipobroman to HU [56]. According to the intention to treat (ITT), the median survival was 17 years for the whole cohort, 20.3 years for the HU arm, and 15.4 for the pipobroman arm (P = 0.008). At 10, 15 and 20 years, the cumulative incidence (probability) of AML/MDS was 6.6%, 16.5% and 24% in the HU arm versus 13%, 34% and 52% in the pipobroman arm. The cumulative incidence (probability) of myelofibrosis (MF) at 10, 15 and 20 years was 15%, 24% and 32% in the HU arm versus 5%, 10% and 21% in the pipobroman arm (P = 0.02) [56]. Results from PV patients who received only one treatment during the entire period (HU n = 94, Pipobroman n = 130) the cumulative incidence of AML/MDS at 10, 15 and 20 years was 7.3%, 10.7% and 16.6% for HU vs 14.6%, 34% and 49.4% for pipobroman [56].

The baseline risk of leukemic transformation in 459 PV and 605 ET patients treated in a single institution retrospective study without cytoreductive therapy or hydroxyurea alone was 3.3% and 7.4%, respectively [57,58]. A primary rigid venesection regimen according to the London PV study group in the late 1970 [59-61] aiming at a hematocrit around to below 0.40 irrespective of gender on top of low dose aspirin introduced by Michiels et al., [51] in 1985 [62-64] will reduce the cumulative incidence of minor circulatory ischemic events and major thrombosis from above 50% to less than 2% per patient/year during long-term follow-up [59-64]. Hydroxyurea should be postponed in early and intermediate stage PV as long as possible by phlebotomy on top of low dose aspirin [17,65]. Current risk stratification in PV and ET should not anymore be based on age above 60 years and history of throbosis [55], but on real life MPN disease burden using objective
parameters including the degree of leucocytosis, splenomegaly, JAK2 allele burden, itching and constitutional symptoms [65]. Hydroxyurea (HU) and JAK2 inhibitors are indicated according to not yet clearly defined recommendations in hyperproliferative PV with increased to high MPN disease burden although targeted recommendations on the use of JAK2 inhibitors will be further clarified and defined soon [66].

The 1975 PVSG criteria for ET

Primary hemorrhagic thrombocythemia (PHT) has already been defined in 1960 by Gunz as clinical syndrome of recurrent spontaneous hemorrhages often preceded by thromboses, extremely high platelet count in excess of 1000 × 10^9/L, frequently splenomegaly, and hypocromic anemia with a tendency towards polycythemia between hemorrhages [37]. Muco-cutaneous bleeds from nose gums and gastrointestinal tract were most frequent followed by bruises and bleedings after trauma or surgery [38]. Accordingly, the PVSG used from 1975 to 1986 a minimum platelet count of 1000 × 10^9/L for the diagnosis for PHT without features of PV or AMM [8, 38-40]. The PVSG inclusion and exclusion criteria in 1975 for the diagnosis of PHT or essential thrombocythemia (ET) were very crude [8]: (1) A platelet count in excess of 1000 × 10^9/L and a bone marrow smear which shows marked megakaryocytic hyperplasia and abundant platelet clumps; (2) Absence of polycythemia vera as defined by the PVSG (normal red cell mass (RCM) [10]; (3) Absence of the Philadelphia chromosome to exclude CML [16]; and (4) Absence of significant reticulin fibrosis (myelofibrosis) with dry tap on bone marrow aspiration, and no signs of preleukemia erythroleukemia or trilinear myelodysplastic syndrome [8, 39, 40].

PVSG defined PHT as labeled as ET [39, 40] is featured by platelet counts between 1000 and 3000 × 10^9/L, splenomegaly in about 80%, autoinfarction of the spleen in 20%, and iron deficient microcytic anemia in 60% [39, 40]. In 40% of PHT patients gastrointestinal roentgenograms suggest duodenal ulcer caused by small infarcts in the duodenal mucosa resulting from the high platelet count [40]. In the first prospective evaluation of PVSG defined PHT, 37 evaluable ET patients with platelet counts between 1000 to 2500 × 10^9/L suffered from thrombohemorrhagic events at presentation including mild bleedings in 5 epistaxis in 5, ecchymoses in 2, pelvic, buccal, fundal or urinary tract hemorrhage in 6, melena with a fall in hemoglobin of 7 gm/dL in 1 and massive postoperative bleeding in 1 case [39, 40]. Eleven ET patients experienced acroparesthesias (nummular), including burning sensations, usually in hand or feet (suggestive for erythromelalgia), 9 had dizziness, light-headedness or syncope, 7 had visual disturbances such as scotomas and transient dimming or blurred vision. Catastrophic complications (severe hemorrhages, myocardial infarction, stroke) in 6 (16%) were observed. In this study of 37 untreated PHT or ET patients, bone marrow cellularity was normal in 11%, increased between 50% to 90% in 78% and greater than 90% in 11% [39, 40]. Two-thirds of diagnostic bone marrow biopsies showed marked megakaryocyte hyperplasia with atypical large megakaryocytes. Reticulin content was essentially normal in 90% indicating prethrombotic MPD. MPD features in ET and PV were quite similar: leukocytosis was common in PHT (ET) and PV, LAP scores over 100 were seen in 42% of PHT, and in 70% of PV patients; pruritis was observed in 14% in PHT and 43% in PV patients; the spleen was palpable in 38% of PHT and 70% of PV patients, and when enlarged in PHT the spleen was palpable 2 to 4 cm below the costal margin [8]. Since 1975 we discovered a causal relation between erythroblastic microvascul disturbances and thrombocythemia in early early stage MPD disease at platelet counts above 400 × 10^9/L in symptomatic ET and PV patients with persistent increased platelet count in excess of 400 × 10^9/L and recognized that the increase of clustered large pleomorphic megakaryocytes in bone marrow biopsies was a pathognomonic clue to myeloproliferative thrombocythemia in ET and PV (Table 4).

The 1980 Rotterdam clinical and pathological (RCP) criteria for ET and PV

As the 1975 PVSG criteria for ET (PHT) are crude, we could recognize since 1975 the existence of erythromelalgic thrombotic thrombocythemia (ETT) in early stage MPD with a persistent increase of platelet count in excess of 400 × 10^9/L [17, 81, 82]. At that time we followed since 1975 the definition of PV according to Dameshek as a trilinear MPD (2,3) of which the bone marrow features were described as erythrotic megakaryocytic granulocytic myeloproliferation (EMGM) by Kurnick et al., [83] in 1972 and Ellis et al., [41] in 1975 (Figure 6). The trephine biopsy in our ET cases showed a proliferation of large mature megakaryocytes in a normoblastic cell bone marrow with normal erythropoiesis and granulopoiesis (Table 4, Figure 7). In PV increased erythropoiesis was most prominent [76] together with variable degrees of increased platelets (> 400 × 10^9/L) [10], erythrocytes (> 6 × 10^12/L) [2,3], and granulocytes in the peripheral blood in the absence of the Ph-chromosome (Table 4) and could document distinct bone marrow features as the pathognomonic clue to very early stage of ET (Figure 7). The 1980 RCP criteria of ET and PV were determined by careful prospective documentation of peripheral blood and bone marrow smears and bone marrow biopsy material (Table 4). Platelets in excess of 400 × 10^9/L, and an increase of clustered enlarged megakaryocytes in a bone marrow biopsy material was found to be pathognomonic diagnostic for ET and excluded reactive thrombocytemia. The combination of bone marrow histology and erythrocyte count above 6 × 10^12/L according to Dameshek [1-3] appeared to be specific clues to the diagnosis of PV (Table 3) clearly different from all variant of primary and secondary erythrocytosis as documented by Kurnick et al., [83] in 1972 and by Vykoupil, Thiele, Stangel, Krompotic and Georgii in 1980 [67]. The 1980 RCP modifications of the 1975 PVSG criteria for PV include 4 main changes (Table 4). First, the major criterion O2-saturation of > 92% is replaced by absence of primary or secondary erythrocytosis by clinical and laboratory tests. Second; splenomegaly is replaced by bone marrow histology as a major criterion (A3). Third, the 1980 RCP diagnostic set used splenomegaly as a minor criterion (Table 4). Fourth, we skipped raised B12 (> 900 ng/L) or raised B12 binding capacity (> 2200 ng/L) as completely irrelevant for the diagnosis of early and overt stage PV (Table 4).

Between 1975 and 1980, we prospectively evaluated the RCP criteria in 30 consecutive early prethrombotic stage patients, who presented with erythromelalgic thrombotic thrombocythemia (ETT), 14 ET and 16 PV patients [84]. The mean age of 30 ETT patients (ET and PV) was 56.7 (range 33-96) years. Eleven of 14 ET patients had platelet counts below 1000 × 10^9/L, in whom the diagnosis of ET would have been overlooked by the crude PVSG criteria at that time between 1975-1985. Spleen size on scan was slightly increased in 5 of 14 ET and in 13 of 16 PV patients. Leukocyte count counts was increased (> 10 × 10^9/L) in 5 out of 14 patients with ET and in 14 of 16 PV patients. LAP score was increased (> 100) in 12 out of 14 ET and in all PV patients (Figure 8). All PV patients with erythrocytes above 6 × 10^12/L had increased red cell mass (manuscript in preparation). Increased erythrocyte counts above 6 × 10^12/L and increase of large pleomorphic megakaryocytes in bone marrow smear (Dameshek) [2,3] and biopsy is diagnostic for PV [17]. Erythrocyte count at a cutoff level of 6 × 10^12/L differentiates ET from PV on top of a typical MPD bone marrow histology obviating
the need to measure RCM (Table 4). Increased erythrocytes above $6 \times 10^{12}/L$ persists in PV in a complete hematological remission by repeated venesection [2,3,77,78].

The presence of clustered large pleomorphic megakaryocytes in bone marrow smears and biopsies is diagnostic clue for ET and PV (Table 4, Figures 6 and 7). An ET bone marrow picture with increase of clustered pleomorphic megakaryocytes and no increase of cellularity (Figure 7) was seen in 7 of 14 ET and only in 1 of 16 PV patients [83,84]. A moderate increase of cellularity (60%-80%) in the bone marrow due to increased erythropoiesis (= decreased M/E ratio) consistent with early stage PV was seen in 3 ET and 4 PV patients. A typical PV hypercellular (80%-100%) bone marrow due to megakary/oerythro/granulocytosis (Figure 6) was seen in one ET patients and in the majority of PV [83,84]. These results indicate that bone marrow histopathology on its own is characteristic for MPN but not fully reliable to differentiate between ET and PV [77,78]. The peripheral blood findings in 30 ET (primary thrombocytopenia; PT) and 20 PV seen between 1975 and 1985 are shown in Figure 7 [84]. Hemoglobin levels are normal in ET and elevated in PV, leukocytes were normal or elevated in ET and PV [84]. Out of 30 ET patients 24 had an increased and 6 had a normal LAP scores (Figure 8). Platelet counts were were between $400 \times 10^9/L$ and $1000 \times 10^9/L$ in the majority of the 30 ET patients. Serum uric acid levels were normal in ET and frequently elevated in PV. Increased LAP score in the absence of infection and normal erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP) is indicative for MPN PV or ET. LAP score was much more elevated in all 20 PV than in ET [84]. As leucocytes alkaline phosphatase (LAP) scoring is becoming increasingly rare in common practice, it can easily be replaced by CD11b neutrophil expression [85]. In the setting of SVT patients PV patients showed higher CD11b values of 190 (CI: 151-238) in PV versus 111 (CI: 81-153) in non-PV patients with SVT [85]. In routine practice CD11b expression in the MPNs PV, ET of various molecular etiology vs all variants of erythrocytosis should be assessed against CD11b expression in controls who have normal ESR and CRP in order to kick out false positive due to underlying infectious or systemic diseases.

The 1990 Hannover Bone Marrow Classification of the MPDs

The PVSG distinguished four distinct categories of myeloproliferative disorders (CML, ET, PV, and AMM or PMF) and a fifth category of unclassifiable MPD. Since 1976 the German pathologists Burkhardt and Georgii had clearly defined the pathological features of ET, PV and CMGM [67-80] on the basis of which we could developed the European Clinical and Pathological (ECP, Table 5AB, 6 and 7) criteria for ET and PV [81,82]. The concept of this traditional classification by the PVSG and the WHO in 1979 has been revised by Georgii in his Hannover Bone Marrow classification of the MPDs as follows: primary diseases are CML, PV, thrombocytopenia, chronic megakaryocytic granulocytic myeloproliferation (CMGM)
and unclassifiable MPD [35-37]. Reticulin and collagen fibrosis is a reactive feature consecutive to myeloproliferation [37]. The reliable distinction within the three Ph-negative MPDs and its variations appears to be problematic caused by an overlapping cytomorphology of megakaryocyte and within the three MPDs thrombocythemia, PV and CMGM. According to Georgii & Michiels an MPD classification system should be focused cytomorphology of megakaryocytes from bone marrow smears and histopathology from bone marrow biopsies [30-32,35,36]. Megakaryocyte morphology and bone marrow histology had become a hallmark of distinction for the diagnostic differentiation of thrombocythemia (ET), PV versus CMGM in the Hannover Institute of Pathology since 1980 (Figure 5) [67,68]. For the understanding of MPD classification bone marrow histology should distinguish between primary prefibrotic and advanced diseases [35,36]. Primary prefibrotic MPDs according to the Hannover Bone Marrow Classification in 1990 include PV, normocellular thrombocythemia and hypercellular thrombocythemia associated with CMGM without any feature of PVSG defined PV [35,36]. Results from Adamson et al., [69], Fialkov et al., [70,71] and many others revealed the reactive nature of reticulin and collagen fibrosis within the MPDs [69-74]. Consequently, the term of chronic idiopathic myelofibrosis (CIMF) or primary myelofibrosis (PMF) cannot be considered as correct in the Hannover Bone Classification of the MPDs since it has to be considered as a consequence of an underlying myeloproliferative disease [35-37,73,74]. In the 1990 Hannover bone marrow classification, Georgii omitted the terms AMM, CIMF and PMF and introduced the entity of CMGM as the third distinct entity without features of PV and ET [57,58]. The diagnosis of prefibrotic CMGM is mainly based on the presence of large immature megakaryocytes with immature cytoplasm and cloud-like nuclei not seen in ET and PV (Figure 5) [35,36]. The term CMGM has illogically been changed into CIMF under the influence of Thiele and Vardiman in the 2001 WHO classification [75] and as primary myelofibrosis (PMF) in the 2008 WHO classification [76]. With the advent JAK2 and MPL mutations as driver causes of clonal ET and PV Michiels et al., [77,78] recognized CMGM as the third distinct MPD entity and replaced the term CMGM by JAK2/MPL wild type primary megakaryocytic granulocytic myeloproliferation (PMGM) in the 2002-2005 ECP (Table 5AB, 6 and 7), and the 2007 ECMP and 2015 WHO-CMP classifications (Tables 8-11).

The 2000-2005 ECP of thrombocythemia in various MPDs

In 2002 Michiels and Thiele defined "true" ET and differentiated "true" ET from hypercellular ET associated with prefibrotic CIMF/PMGM (Table 5AB, Figure 9) [82]. In "true" ET megakaryocytes display large to giant megakaryocytes showing hyperlobulated staghorn-like nuclei in a normocellular bone marrow, (Table 6, Figure 9) [78,80]. PV was typically featured by large pleomorphic megakaryocytes with hyperploid nuclei in a hypercellular bone marrow due to increased erythropoiesis or increased erythroid-megakaryocytic-granulocytic myeloproliferation. Interestingly the megakaryocytes in "true" ET were larger than in PV (Table 5A, Figure 9) [1]. Hypercellular ET associated with prefibrotic CIMF ("false" ET = CMGM = PMGM, (Table 5B, Figures 5 and 9) is dominated by an increase of clustered atypical dysmorphic megakaryocytes due to increases of cellular and nuclear size and bulky nuclei with clumsy lobuli and irregular roundish shaped form (so-called cloud-like nuclei, Figures 5 and 9), which are never described in ET and PV [1]. Normocellular "true" ET according to the 2002 ECP criteria is featured by normal LAP scores (normal CD11b neutrophil expression), higher platelet counts and large to giant megakaryocytes with multilobulated stag-horn like nuclei in a completely normocellular bone marrow (Table 5A) [90,91].

In "true" ET the values for hemoglobin, erythrocytes, and LAP scores (CD11b neutrophil expression) were completely normal (Table 5A). In contrast, normocellular ET and prodomal PV with increased LAP score (Figure 8) show the presence of pleomorphic megakaryocytes (Figure 6) low serum EPO levels, slight splenomegaly, and spontaneous EEC [17,84]. This point to the existence of at least two phenotypes of normocellular ET: ET with features of early PV (prodomal PV) versus "true" ET without features of PV. These differences in RCP defined ET (Table 1) criteria and ECP-defined "true" ET and false ET (Table 5A) are related to a selection bias of patients. In 1988, Thiele as a pathologist selected 25 cases with 1975 PVSG defined normocellular ET (minimum platelet count of 1000 × 109/L) who had pronounced thrombocythemia and normocellular bone marrow without PV features and this was associated with normal LAP score (CD11b neutrophil expression) [87]. Focussing on aspirin-sensitive erythromelalgic inflammatory and ischemic complications as pathognomonic presenting symptoms of early ET or PV patients, the Rotterdam MPD Working group studied a selected and biased group of early stage myeloproliferative ET and PV at platelet counts above 400 × 109/L [84]. Only symptomatic ET and PV patients were included in our 1975-1985 studies because of erythromelalgic ischemic digital circulation disturbances [44].

The 2006-2015 WHO-ECMP Criteria for MPD/MPN

Myelofibrosis is not specific for a disease and can be observed in patient with hairy cell leukemia, Ph-positive CML and in the Ph-negative MPDs, CMGM, PV, ET, and many other conditions as well [35-37,92,93]. An increase of reticulin in the silver impregnation stain of bone marrow biopsies can be graded as fine or coarse fibers and is a secondary event relevant for prognosis assessment (Table 2) [94]. The use of CIMF and PMF in the 2001 and 2008 WHO classifications [75,76,94-96] is misleading and scientifically not recommended [94]. At that time we had to use the term CIMF in our publications on the
The WHO bone marrow features and the variable phenotypes of thrombocytethiasia according to the 2000-2005 ECP and the 2006/2007 WHO-ECMP criteria for ET do in fact distinguish within the JAK2V617F mutated MPN normalcellular ET (WHO-ET, < 60%) and hypercellular ET (prodromal PV, 60%–90%) due to increased erythropoiesis (prodromal PV), from JAK2 wild type normocellular ET of clinical and pathological manifestations of ET, PV, CMGM, CML, and in many other conditions. An increase of reticulin fibrosis is rare in WHO normocellular ET will occur in about one third of PV and will occur in the majority of patients with PMGM during long-term follow-up [35,36,89].

The WHO bone marrow features and the variable phenotypes of thrombocytethiasia according to the 2000-2005 ECP and the 2006/2007 WHO-ECMP criteria for ET do in fact distinguish within the JAK2V617F mutated MPN normalcellular ET (WHO-ET, < 60%) and hypercellular ET (prodromal PV, 60%–90%) due to increased erythropoiesis (prodromal PV), from JAK2 wild type normocellular ET of clinical and pathological manifestations of ET, PV, CMGM, CML, and in many other conditions. An increase of reticulin fibrosis is rare in WHO normocellular ET will occur in about one third of PV and will occur in the majority of patients with PMGM during long-term follow-up [35,36,89].

The WHO bone marrow features and the variable phenotypes of thrombocytethiasia according to the 2000-2005 ECP and the 2006/2007 WHO-ECMP criteria for ET do in fact distinguish within the JAK2V617F mutated MPN normalcellular ET (WHO-ET, < 60%) and hypercellular ET (prodromal PV, 60%–90%) due to increased erythropoiesis (prodromal PV), from JAK2 wild type normocellular ET of clinical and pathological manifestations of ET, PV, CMGM, CML, and in many other conditions. An increase of reticulin fibrosis is rare in WHO normocellular ET will occur in about one third of PV and will occur in the majority of patients with PMGM during long-term follow-up [35,36,89].

The WHO bone marrow features and the variable phenotypes of thrombocytethiasia according to the 2000-2005 ECP and the 2006/2007 WHO-ECMP criteria for ET do in fact distinguish within the JAK2V617F mutated MPN normalcellular ET (WHO-ET, < 60%) and hypercellular ET (prodromal PV, 60%–90%) due to increased erythropoiesis (prodromal PV), from JAK2 wild type normocellular ET of clinical and pathological manifestations of ET, PV, CMGM, CML, and in many other conditions. An increase of reticulin fibrosis is rare in WHO normocellular ET will occur in about one third of PV and will occur in the majority of patients with PMGM during long-term follow-up [35,36,89].

The WHO bone marrow features and the variable phenotypes of thrombocytethiasia according to the 2000-2005 ECP and the 2006/2007 WHO-ECMP criteria for ET do in fact distinguish within the JAK2V617F mutated MPN normalcellular ET (WHO-ET, < 60%) and hypercellular ET (prodromal PV, 60%–90%) due to increased erythropoiesis (prodromal PV), from JAK2 wild type normocellular ET of clinical and pathological manifestations of ET, PV, CMGM, CML, and in many other conditions. An increase of reticulin fibrosis is rare in WHO normocellular ET will occur in about one third of PV and will occur in the majority of patients with PMGM during long-term follow-up [35,36,89].

The WHO bone marrow features and the variable phenotypes of thrombocytethiasia according to the 2000-2005 ECP and the 2006/2007 WHO-ECMP criteria for ET do in fact distinguish within the JAK2V617F mutated MPN normalcellular ET (WHO-ET, < 60%) and hypercellular ET (prodromal PV, 60%–90%) due to increased erythropoiesis (prodromal PV), from JAK2 wild type normocellular ET of clinical and pathological manifestations of ET, PV, CMGM, CML, and in many other conditions. An increase of reticulin fibrosis is rare in WHO normocellular ET will occur in about one third of PV and will occur in the majority of patients with PMGM during long-term follow-up [35,36,89].
The 2015 WHO-CMP criteria define three phenotypes of JAK2 V617F mutated Myeloproliferative Neoplasms (MPNs) essential thrombocythemia (ET), prodromal polycythemia vera (PV), and classical PV or erythrocytic, megakaryocytic granulocytic myeloproliferation (EMG) and hypercellular ET associated with EMG (masked PV) versus the JAK2 exon 12 mutated idiopathic eryhrocythemia (IE) and PV (Figure 12) [74,75]. MPL 515 mutated JAK2 wild type ET and MF is a distinct thrombocythemia without features of PV in blood and bone marrow (Figure 12). Calreticulin mutated Thrombocythemia and MF is the third thrombocythemia entity with characteristic features of primary megakaryocytic granulocytic myeloproliferation (PMGM) in the bone marrow, which are not seen in JAK2 and MPL mutated MPNs (Figure 12) [103,104]. MPN disease burden in JAK2, MPL and CALR mutated MPN is best reflected by the degree of anemia, splenomegaly, mutation allele burden, bone marrow cellularity and myelofibrosis (Figure 12) [103,104].

References
1. Greenberg DL, Davie EW (2006) The blood coagulation factors: their complementary DNA, genes and expression. In: Colman RW, Hirsh J, Marder VJ, Clower AW, George JN, et al (Eds) Hemostasis and thrombosis Lippincott Williams and Wilkins, Philadelphia p. 21.
2. Perry DJ (2002) Factor VII deficiency. Br J Haematol 118: 689-700.
3. Girolami A, Cosi E, Santarossa C, Ferrari S, Luigia Randi M (2015) The Story of Serum Prothrombin Conversion Accelerator, Proconvertin, Stable Factor, Cothromboplastin, Prothrombin Accelerator or Autoprothrombin I, and Their Subsequent Merging into Factor VII. Semin Thromb Hemost 41: 366-373. [Crossref]
4. Alexander B, Goldstein R, Landwehr G, Cook Cd (1951) Congenital SPCA deficiency: a hitherto unrecognized coagulation defect with hemorrhage rectified by serum and
7. Bernardi F, Liney DL, Patracchini P, Gemmati D, Legnani C, et al. (1994) Molecular
15.
13.
12. Shurafa MS, Kumar A, Fair DS, James HL (1993) The molecular defect in factor VII
Hematol Med Oncol
19. Girolami A, Scarparo P, Bonamigo E, Treleani M, Lombardi AM (2012) Homozygous
11.
10.
9.
8.
7.
6. Triplett DA, Brandt JT, Batard MA, Dixon JL, Fair DS (1985) Hereditary factor VII deficiency: heterogeneity defined by combined functional and immunochemical analysis. Blood 66: 1284-1287. [Crossref]
5. GIrotami A, Sartori MT, Steffan F, Fadini MA (1993) Recombinant thromboplastin is a slightly more sensitive to factor VII Pusua than standard thromboplastins of human origin. Blood Coagul. Fibrinolysis 4: 497-498.
4. Girolami A, Berti de Marinis G, Bonamigo E, Allemand E (2011) Worldwide diffusion of FVII Arg304Gln coagulation defect (FVII Pusa). Eur J Haematol. 86: 135-139.
3. Girolami A, Scarpato P, Bonamigo E, Tereleani M, Lombardi AM (2012) Homozygous FVII deficiencies with different reactivity towards tissue thromboplastins of different origin. Hematology 17: 350-354.
2. Girolami A, Berti de Marinis G, Bonamigo E, Sartori R, Vettore S (2010) Ox brain versus rabbit brain thromboplastin assays are the best tool for a preliminary diagnosis of the Arg304Gln factor VII defect (FVII Pusa). Acta Haematol 124: 229-234. [Crossref]
1. James HL, Kumar A, Girolami A, Hubbard J, Fair DS (1991) Variant coagulation factors X and VII with point mutations in highly conserved motif in the substrate binding pocket. Comparative molecular modelling. Thromb Haemost 65: 932