Detailed study of B037 based on HST images

Jun Ma ⋆1,2,

1National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, P. R. China
2Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China

Abstract B037 is of interest because it is both the most luminous and the most highly reddened cluster known in M31. Images of deep observations and of highly spatial resolutions with the Advanced Camera for Surveys on the Hubble Space Telescope (HST) firstly show that this cluster is crossed by a dust lane. Photometric data in the F606W and F814W filters obtained in this paper provide that, colors of \((F606W - F814W)\) in the dust lane are redder \(\sim 0.4\) mags than ones in the other regions of B037. The HST images show that, this dust lane seems to be contained in B037, not from the M31 disk or the Milky Way. As we know, the formation of dust requires gas with a rather high metallicity. However, B037 has a low metallicity to be \([\text{Fe}/\text{H}] = -1.07 \pm 0.20\). So, it seems improbable that the observed dust lane is physically associated with B037. It is clear that the origin of this dust lane is worthy of future study. In addition, based on these images, we present the precise variation of ellipticity and position angle, and of surface brightness profile, and determine the structural parameters of B037 by fitting a single-mass isotropic King model. In the F606W filter, we derive the best-fitting scale radius, \(r_0 = 0.56 \pm 0.02''\) (\(= 2.16 \pm 0.08\) pc), a tidal radius, \(r_t = 8.6 \pm 0.4''\) (\(= 33.1 \pm 1.5\) pc), and a concentration index \(c = \log(r_t/r_0) = 1.19 \pm 0.02\). In the F814W filter, we derive \(r_0 = 0.56 \pm 0.01''\) (\(= 2.16 \pm 0.04\) pc), \(r_t = 8.9 \pm 0.3''\) (\(= 34.3 \pm 1.2\) pc), and \(c = \log(r_t/r_0) = 1.20 \pm 0.01\). The extinction-corrected central surface brightness is \(\mu_0 = 13.53 \pm 0.03\) mag arcsec\(^{-2}\) in the F606W filter, and 12.85 \pm 0.03 mag arcsec\(^{-2}\) in the F814W filter, respectively. We also calculate the half-light radius, at \(r_h = 1.05 \pm 0.03''\) (\(= 4.04 \pm 0.12\) pc) in the F606W filter and \(r_h = 1.07 \pm 0.01''\) (\(= 4.12 \pm 0.04\) pc) in the F814W filter, respectively. In addition, we derived the whole magnitudes of B037 in \(V\) and \(I\) bands by transforming the magnitudes from the ACS system to the standard system, which are in very agreement with the previous ground-based broad-band photometry.

Key words: galaxies: evolution – galaxies: individual (M31) – globular cluster: individual (B037)

1 INTRODUCTION

Globular clusters (GCs) are effective laboratories for studying stellar evolution and stellar dynamics, and they are ancient building blocks of galaxies which can help us to understand the formation and evolution of their parent galaxies. In addition, GCs exhibit surprisingly uniform properties, suggesting a common formation mechanism.

The closest other populous GC system beyond the halo of our Galaxy is that of M31. The study of M31 has been and continues to be a keystone of extragalactic astronomy [Barmby et al. (2000)], and the study of GCs in M31 can be traced back to Hubble [1932]. M31 GC B327 (B for ‘Baade’) or Bo37 (Bo for ‘Bologna’, see Battistini 1987), which, in the nomenclature introduced by Huchra et al. [1991], is referred to as "stone of extragalactic astronomy."
to as B037, a designation from the Revised Bologna Catalogue (RBC) of M31 GCs and candidates (Galleti et al. 2004, 2006, 2007), which is the main catalog used in studies of M31 GCs. The extremely red color of B037 was firstly noted by Kron & Mayall (1960), who suggested that this cluster must be highly reddened. Two years later, Vetešnik (1962a) determined magnitudes of 257 M31 GC candidates including B037 in the UBV photometric system, and then Vetešnik (1962b) studied the intrinsic colors of M31 GCs, and found that B037 was the most highly reddened with \(E(B - V) = 1.28 \) in his sample of M31 GC candidates based on the photometric catalog of Vetešnik (1962a). With low-resolution spectroscopy, Crampton et al. (1985) also found that B037 is the most highly reddened GC candidate in M31 to have \(E(B - V) = 1.48 \). Based on a large database of multicolor photometry, Barmby et al. (2000) determined the reddening value for each individual M31 GC including B037 using the correlations between optical and infrared colors and metallicity by defining various “reddening-free” parameters, and the reddening value of B037 is \(E(B - V) = 1.38 \pm 0.02 \) (which is kindly given us by P. Barmby). Again, Barmby et al. (2002b) derived the reddening value for this cluster to be \(E(B - V) = 1.30 \pm 0.04 \), using the spectroscopic metallicity to predict the intrinsic colors. Ma et al. (2006a) also determine the reddening of B037 by comparing independently obtained multicolor photometry with theoretical stellar population synthesis models to be \(E(B - V) = 1.360 \pm 0.013 \), which is in good agreement with the other results. Following the methods of Barmby et al. (2000), Fan et al. (2008) (re-)determined reddening values for 443 clusters and cluster candidates including B037, and the reddening value of B037 obtained by Fan et al. (2008) is \(E(B - V) = 1.21 \pm 0.03 \), which is a little smaller than the previous determinations.

The brightest GCs in M31 are more luminous than the most brightest Galactic cluster, ω Centauri. Among these are B037 (van den Bergh, 1968) and G1 (see details from Barmby et al. 2002b). These two clusters are both considered as the possible remnant core of a former dwarf galaxy which lost most of its envelope through tidal interactions with M31 (Meylan & Heggie, 1997; Meylan et al., 2001; Mackey & van den Bergh, 2005; Ma et al., 2006b, 2007).

In this paper, we will present the photometric data of B037 using its deep images obtained with the Advanced Camera for Survey (ACS) on the HST. The deep images of highly spatial resolutions showed that this cluster is crossed by a dust lane. Our results provide that colors of F814W−F606W in the dust lane are redder ∼ 0.4 mags than ones of the other regions. In addition, we studied structures of B037 in detail based on these images.

2 OBSERVATIONS AND DATA REDUCTION

2.1 HST images of B037

We searched the HST archive and found B037 to have been observed with the ACS-Wide Field Channel (WFC) in the F606W and the F814W filters, which were observed on 2004 August 2 and on 2004 July 4, respectively. The exposure time is 2370.0 seconds for both bands. The HST ACS-WFC resolution is 0.05′′ per pixel. The images in F606W and F814W both show that B037 is crossed by a dust lane. Fig. 1 clearly shows the dust lane, which crosses B037. If the dust lane is true, its color should be different from ones of the other regions.

If not otherwise stated, the magnitudes are always on the VEGAMAG scale as defined by Sirianni et al. (2005). The relevant zero-point for this system is 26.398 and 25.501 for WFC F606W and WFC F814W, respectively. A distance to M31 of 780 kpc (1′′ subtends 3.85 pc) is adopted in this paper.

2.2 Color difference between the dust lane and the other regions

In order to study whether the color difference between the dust lane and the other regions in B037 exists, we select nine points, three of which (No. 7, 8 and 9) are located in the dust lane, the other six are randomly located in the other regions (see Figure 2). For each sample point, the PHOT routine in DAOPHOT (Stetson, 1987) is used to obtain magnitude. We adopt an aperture of a diameter of 4 pixels. The photometric data for these nine sample points are given in Table 1, in conjunction with the 1σ magnitude uncertainties from daophot. Column 4 gives the color of (F606W − F814W). From Table 1, we can see that colors of (F606W − F814W) in the dust lane are redder ∼ 0.4 mags than ones of the other regions.
Fig. 1 The images of GC B037 observed in the F606W and F814W filters of ACS/HST. The images clearly show that the cluster is crossed by a dust lane. The image size is $17.5'' \times 17.5''$ for each panel.
Fig. 2 The sample positions of photometry (black circles) are showed in the image of GC B037 observed in the F606W filter of ACS/HST. An aperture of radii of 2 pixels is adopted for photometry. The image size is 17.5′′ × 17.5′′.

Table 1 Photometric data for B037

Source No.	F606W (mag)	F814W (mag)	F606W–F814W (mag)
1	23.29 ± 0.26	21.35 ± 0.16	1.94
2	23.03 ± 0.23	21.14 ± 0.15	1.89
3	22.95 ± 0.22	21.00 ± 0.14	1.95
4	23.22 ± 0.25	21.25 ± 0.15	1.97
5	23.17 ± 0.25	21.36 ± 0.16	1.81
6	21.15 ± 0.10	19.10 ± 0.06	2.05
7	22.93 ± 0.22	20.53 ± 0.11	2.40
8	23.41 ± 0.28	20.94 ± 0.13	2.47
9	24.66 ± 0.49	22.31 ± 0.25	2.35
2.3 Surface brightness profiles

We used the IRAF task ELLIPSE to obtain F606W and F814W surface brightness profiles for B037. B037 center position was fixed at a value derived by object locator of ELLIPSE task, however an initial center position was determined by centroiding. Elliptical isophotes were fitted to the data, with no sigma clipping. We ran two passes of ELLIPSE task, the first pass was run in the usual way, with ellipticity and position angle allowed to vary with the isophote semimajor axis. In the second pass, surface brightness profiles on fixed, zero-ellipticity isophotes were measured, since we choose to fit circular models for the intrinsic cluster structure and the point spread function (PSF) as Barmby et al. (2007) did (see §2.4 for details). The background value was derived as the mean of a region of 100 × 100 pixels in “empty” areas far away from the cluster.

2.3.1 Ellipticity and position angle

Tables 2 and 3 give the ellipticity, $\epsilon = 1 - b/a$, and the position angle (P.A.) as a function of the semi-major axis length, a, from the center of annulus in the F606W and F814W filter bands, respectively. These observables have also been plotted in Figures 3 and 4, respectively; the errors were generated by the IRAF task ELLIPSE, in which the ellipticity errors are obtained from the internal errors in the harmonic fit, after removal of the first and second fitted harmonics. From Table 3, and Figs. 3 and 4, we can see that, the values of ellipticity and position angle cannot be obtained within 0.1448″ in the F814W filter because of very high ellipticity (> 1.0). Ma et al. (2006b) analyzed the same F606W image of B037 used here, fitting a King (1962) model to a surface brightness profile made from a PSF-deconvolved image. They also plotted the distributions of ellipticity and the position angle as a function of the semi-major axis length. Comparison of Fig. 2 of Ma et al. (2006b) and Figs. 3 and 4 shows that, the general trend in ellipticity observed between these two studies. The main reason is that, Ma et al. (2006b) used the PSF-deconvolved image. Other reasons include those related to the positions of the centering of isophotes and the different geometrical parameters set when fitting. In addition, Fig. 3 shows that the ellipticity varies significantly with position along the semimajor axis radius, especially smaller than 0.5″. In the F814W filter band, the ellipticity is larger than 1.0 along the semimajor axis radius smaller than 0.1448″.

2.4 Point spread function

At a distance of 780 kpc, the ACS/WFC has a scale of 0.05 arcsec = 0.19 pc pixel$^{-1}$, and thus M31 clusters are clearly resolved with it. Their observed core structures, however, are still affected by the PSF. We chose not to deconvolve the data, instead fitting structural models after convolving them with a simple analytic description of the PSF as Barmby et al. (2007) did. To estimate the PSF for the WFC, Barmby et al. (2007) used the IRAF task ELLIPSE with circular symmetry enforced to produce intensity profiles out to radii of about 2″ (40 pixels) for a number of isolated stars on a number of images, and combined them to produce a single, average PSF. This was done separately for the F606W and F814W filters. They originally tried to fit these with simple Moffat profiles (with backgrounds added), but found that a better description was given by a function of the form below. For the combination of the WFC and F606W filter,

$$I_{\text{PSF}} = I_0 \left[1 + (R/0.0686)^3 \right]^{-1.23},$$

which has a full width at half-maximum of FWHM = 0.125, or about 2.5 px; for the combination of the WFC and F814W filter,

$$I_{\text{PSF}} = I_0 \left[1 + (R/0.0783)^3 \right]^{-1.19},$$

which has a full width at half-maximum of FWHM = 0.145, or about 2.9 px. In addition, since this PSF formula is radially symmetric and the models of King (1966) we fit are intrinsically spherical, the convolved models to be fitted to the data are also circularly symmetric.
Table 2 B037: Ellipticity, ϵ, and position angle (P.A.) as a function of the semimajor axis, a, in the F606W filter of HST ACS-WFC

a (arcsec)	ϵ	P.A. (deg)	a (arcsec)	ϵ	P.A. (deg)
0.0260	0.638 ± 0.228	92.9 ± 15.5	0.3757	0.177 ± 0.031	69.8 ± 3.6
0.0287	0.638 ± 0.229	93.2 ± 15.6	0.4132	0.151 ± 0.029	64.7 ± 5.9
0.0315	0.639 ± 0.230	93.4 ± 15.7	0.4545	0.090 ± 0.027	60.3 ± 9.1
0.0347	0.640 ± 0.232	93.7 ± 15.8	0.5000	0.005 ± 0.023	172.6 ± 30.0
0.0381	0.642 ± 0.233	94.0 ± 15.9	0.5500	0.060 ± 0.020	155.5 ± 9.8
0.0420	0.643 ± 0.235	94.4 ± 16.0	0.6050	0.117 ± 0.015	156.3 ± 3.9
0.0461	0.645 ± 0.236	94.7 ± 16.0	0.6655	0.174 ± 0.012	157.2 ± 2.2
0.0508	0.647 ± 0.182	95.2 ± 12.3	0.7321	0.233 ± 0.011	157.2 ± 1.5
0.0558	0.599 ± 0.159	96.8 ± 11.2	0.8053	0.278 ± 0.011	159.1 ± 1.3
0.0614	0.546 ± 0.142	98.5 ± 10.6	0.8858	0.322 ± 0.011	160.8 ± 1.1
0.0676	0.503 ± 0.127	100.2 ± 10.0	0.9744	0.358 ± 0.012	162.1 ± 1.2
0.0743	0.458 ± 0.099	102.2 ± 8.3	1.0718	0.380 ± 0.021	164.5 ± 2.1
0.0818	0.400 ± 0.059	104.3 ± 5.5	1.1790	0.367 ± 0.022	168.0 ± 2.2
0.0899	0.410 ± 0.050	101.0 ± 4.6	1.2969	0.343 ± 0.025	169.2 ± 2.7
0.0989	0.428 ± 0.044	98.7 ± 3.9	1.4266	0.319 ± 0.025	166.8 ± 2.8
0.1088	0.437 ± 0.046	97.6 ± 3.9	1.5692	0.252 ± 0.022	165.1 ± 3.0
0.1197	0.428 ± 0.028	96.6 ± 2.5	1.7261	0.239 ± 0.021	165.7 ± 2.9
0.1317	0.410 ± 0.027	96.5 ± 2.5	1.8987	0.211 ± 0.026	163.6 ± 4.0
0.1448	0.400 ± 0.031	96.3 ± 3.0	2.0886	0.201 ± 0.029	152.8 ± 4.6
0.1593	0.364 ± 0.023	95.1 ± 2.3	2.2975	0.188 ± 0.037	150.1 ± 6.3
0.1752	0.352 ± 0.027	94.8 ± 2.8	2.5272	0.182 ± 0.033	149.9 ± 5.8
0.1928	0.337 ± 0.027	93.2 ± 2.9	2.7800	0.180 ± 0.034	145.6 ± 6.0
0.2120	0.311 ± 0.027	92.5 ± 3.0	3.0580	0.191 ± 0.031	137.5 ± 5.2
0.2233	0.287 ± 0.026	90.6 ± 3.1	3.3638	0.143 ± 0.034	125.4 ± 4.8
0.2566	0.258 ± 0.026	88.6 ± 3.3	3.7001	0.180 ± 0.041	121.1 ± 7.1
0.2822	0.233 ± 0.027	85.4 ± 3.8	4.0701	0.257 ± 0.033	121.6 ± 4.1
0.3105	0.207 ± 0.029	81.2 ± 4.5	4.4772	0.233 ± 0.048	121.6 ± 6.5
0.3415	0.189 ± 0.030	75.3 ± 5.0	4.9249	0.237 ± 0.063	116.1 ± 8.5

2.5 Extinction

When we fit models to the brightness profiles of B037, we will correct the inferred magnitude parameters for extinction. The reddening law from Cardelli et al. (1989) is employed in this paper. The effective wavelengths of the ACS F606W and F814W filters are $\lambda_{\text{eff}} = 5918$ and 8060 Å (Sirianni et al. 2005), so that from Cardelli et al. (1989), $A_{\text{F606W}} \approx 2.8 	imes (B - V)$ and $A_{\text{F814W}} \approx 1.8 	imes (B - V)$ (see Barmby et al. 2007; McLaughlin et al. 2008 for details). The reddening value of $E(B-V) = 1.360 \pm 0.013$ from Ma et al. (2006a) is adopted in this paper.

2.6 Magnitudes of B037 in F606W and F814W filters

We derived the total flux of B037 in F606W and F814W filter bands using the IRAF task phot in DAPPHOT as below: measuring aperture magnitudes in concentric apertures with an interval of 0.1”, drawing magnitude growth curves, and paying attention to where the flux does not increase. At last, we obtained the magnitudes of B037 in F606W and F814W to be 16.21 ± 0.010 and 14.16 ± 0.006, respectively. In the photometry, we derived the background value as the mean of a region far away from the cluster (see §2.3 for details).

We use VEGAMAG photometric system. In order to allow a meaningful comparison with the previous ground-based broad-band photometry of Barmby et al. (2000), we transformed the magnitudes from the ACS system to the standard broad-band photometric system by following the transformation equations and coefficients of Table 22 of Sirianni et al. (2005). The results are $m_V(\text{ACS}) = 16.83$ (this paper) versus $m_V = 16.82$ (Barmby et al. 2000), and $m_V(\text{ACS}) = 14.15$ (this paper) versus $m_V = 14.16$ (Barmby et al. 2000). Our results are in good agreement with Barmby et al. (2000).
Table 3 B037: Ellipticity, ϵ, and position angle (P.A.) as a function of the semimajor axis, a, in the F814W filter of HST ACS-WFC

a (arcsec)	ϵ	P.A. (deg)	a (arcsec)	ϵ	P.A. (deg)
0.0260	0.4132	0.031 ± 0.030	0.287	0.4545	0.031 ± 0.029
0.0315	0.5000	0.044 ± 0.027	0.0347	0.5500	0.084 ± 0.023
0.0381	0.6050	0.127 ± 0.021	0.0420	0.6655	0.175 ± 0.019
0.0461	0.7321	0.220 ± 0.016	0.0508	0.8053	0.247 ± 0.013
0.0558	0.8858	0.251 ± 0.014	0.0614	0.9744	0.263 ± 0.017
0.0676	1.0718	0.293 ± 0.034	0.0743	1.1790	0.297 ± 0.035
0.0818	1.2969	0.230 ± 0.028	0.0899	1.4266	0.216 ± 0.025
0.0989	1.5692	0.198 ± 0.031	0.1088	1.7261	0.198 ± 0.025
0.1197	1.8987	0.188 ± 0.029	0.1317	2.0886	0.139 ± 0.031
0.1448	2.2975	0.117 ± 0.031	0.1593	2.5272	0.100 ± 0.034
0.1752	0.878 ± 0.026	90.9 ± 1.5	0.1928	0.827 ± 0.151	90.8 ± 9.6
0.2120	0.749 ± 0.034	90.3 ± 2.3	0.233	0.731 ± 0.037	89.4 ± 2.6
0.2566	0.695 ± 0.041	87.1 ± 2.9	0.2822	0.624 ± 0.031	84.4 ± 2.3
0.3105	0.546 ± 0.035	80.4 ± 2.6	0.3415	0.401 ± 0.035	72.4 ± 3.2
0.3757	0.258 ± 0.029	63.4 ± 3.8	0.3991	0.188 ± 0.044	161.8 ± 7.4

3 MODELS AND FITS

3.1 Structural models

After elliptical galaxies, GCs are the best understood and most thoroughly modelled class of stellar systems. For example, a large majority of the ∼150 Galactic GCs have been fitted by the simple models of single-mass, isotropic, lowered isothermal spheres developed by Michie (1963) and King (1966) (hereafter “King models”), yielding comprehensive catalogs of cluster structural parameters and physical properties (see McLaughlin & van der Marel, 2005, and references therein). For extragalactic GCs, HST imaging data have been used to fit King models to a large number of GCs in M31 (e.g., Barmby et al., 2002a; Barmby et al., 2007; and references therein), in M33 (Larsen et al., 2002), and in NGC 5128 (e.g., Harris et al., 2002; McLaughlin et al., 2008, and references therein). In this paper, we fit the usual King models to the density profile of B037 observed with ACS/WFC.

3.2 Observed data

Tables 4 and 5 list the surface brightness, μ, of B037, and its integrated magnitude, m, as a function of radius in the F606W and F814W filters, respectively. The errors in the surface brightness were also generated by the IRAF task ELIPE, in which they are obtained directly from the root mean square scatter of the intensity data along the zero-ellipticity isophotes. In addition, the surface photometries at radii where the ellipticity and position angle cannot be measured, are obtained based on the last ellipticity and position angle as the IRAF task ELIPE is designed.
Fig. 3 Ellipticity as a function of the semimajor axis in the F606W and F814W filters of ACS/HST.

3.3 Fits

Our fitting procedure involves computing in full large numbers of King structural models, spanning a wide range of fixed values of the appropriate shape parameter W_0 (see McLaughlin & van der Marel, 2005, in detail). And then the models are convolved with the ACS/WFC PSF for the F606W and F814W filters of equations of (1) and (2):

$$\tilde{I}_{\text{mod}}(R|\theta_0) = \int \int \tilde{I}_{\text{mod}}(R'/\theta_0) \times \tilde{I}_{\text{PSF}}[(x-x'), (y-y')] \, dx' \, dy',$$

where $\tilde{I}_{\text{mod}} \equiv I_{\text{mod}}/I_0$; and \tilde{I}_{PSF} is the PSF profile normalized to unit total luminosity (see McLaughlin et al., 2008, in detail). We changed the luminosity density to surface brightness $\tilde{\mu}_{\text{mod}} = -2.5 \log [\tilde{I}_{\text{mod}}]$ before fitting them to the observed surface-brightness profile of B037, $\mu = \mu_0 - 2.5 \log [I(R/\theta_0)/I_0]$, finding the radial scale θ_0 and central surface brightness μ_0 which minimize χ^2 for every given value of W_0. The (W_0, θ_0, μ_0) combination that yields the global minimum χ^2_{min} over the grid used defines the best-fit model of that type:

$$\chi^2 = \sum_i \frac{[\mu_{\text{obs}}(R_i) - \tilde{\mu}_{\text{mod}}(R_i|\theta_0)]^2}{\sigma_i^2},$$

where σ_i is the observed uncertainty.
in which σ_i is the error in the surface brightness. Estimates of the one-sigma uncertainties on these basic fit parameters follow from their extreme values over the subgrid of fits with $\chi^2/\nu \leq \chi^2_{\text{min}}/\nu + 1$, here ν is the number of free parameters. Figure 5 shows our best King fits to B037. In Fig. 5, open squares are ellipse data points included in the least-squares model fitting, and the asterisks are points not used to constrain the fit. These observed data points shown by asterisks are included in the radius of $R < 2$ pixels = 0.1, and the isophotal intensity is dependent on its neighbors. As Barmby et al. (2007) pointed out that, the ellipse output contains brightnesses for 15 radii inside 2 pixel, but they are all measured from the same 13 central pixels and are not statistically independent. So, to avoid excessive weighting of the central regions of B037 in the fits, we only used intensities at radii $R_{\text{min}}, R_{\text{min}} + (0.5, 1.0, 2.0$ pixels), or $R > 2.5$ pixels as Barmby et al. (2007) used. Table 6 summarizes the results obtained in this paper.

3.4 Comparison to previous results

Ma et al. (2006b) analyzed the same F606W image of B037 used here, fitting a King (1962) model to a surface brightness profile derived from a PSF-deconvolved image. They derived the scale radius $r_0 = 0.72$ (it is called the core radius in Ma et al. (2006b)), half-light radius $r_h = 1.11$, concentration index $c = 0.91$, and central surface brightness $\mu(0) = 17.21$ mag arcsec$^{-2}$ (using the value for extinction adopted in this paper, this becomes $\mu_0 = 13.40$ mag arcsec$^{-2}$). Comparing the results of Ma et al. (2006b) with Table 6 of this paper, we find that our model fits produce a somewhat higher concentration and smaller scale radius. These differences come from: (i) using different models (King (1962) vs King (1966)), (ii) the observed

![Fig. 4](image-url) P.A. as a function of the semimajor axis in the F606W and F814W filters of ACS/HST.
Fig. 5 Surface brightness profile of B037 measured in the F606W and F814 filters. Dashed curve (blue) trace the PSF intensity profiles and solid (red) curves are the PSF-convolved best-fit models. Open squares are ELPAP data points included in the χ^2 model fitting, and the asterisks are points not used to constrain the fits (see the text in detail).
Detailed study of B327 based on HST images

Table 4 B037: Surface brightness, μ, and integrated magnitude, m, as a function of the radius in the F606W filter of HST ACS-WFC:

R (arcsec)	μ (mag)	m (mag)	R (arcsec)	μ (mag)	m (mag)
0.0260	17.327 ± 0.007	23.827	0.3757	17.792 ± 0.040	18.456
0.0287	17.328 ± 0.008	23.827	0.4132	17.863 ± 0.046	18.264
0.0315	17.328 ± 0.008	23.827	0.4545	17.944 ± 0.049	18.123
0.0347	17.329 ± 0.009	23.827	0.5000	18.040 ± 0.049	17.962
0.0381	17.330 ± 0.010	23.827	0.5500	18.148 ± 0.048	17.827
0.0420	17.331 ± 0.011	23.827	0.6050	18.267 ± 0.048	17.672
0.0461	17.331 ± 0.012	23.827	0.6655	18.389 ± 0.053	17.549
0.0508	17.332 ± 0.014	22.086	0.7321	18.495 ± 0.061	17.414
0.0558	17.334 ± 0.015	22.086	0.8053	18.598 ± 0.070	17.295
0.0614	17.336 ± 0.016	22.086	0.8858	18.716 ± 0.077	17.165
0.0676	17.341 ± 0.018	22.086	0.9744	18.854 ± 0.079	17.039
0.0743	17.346 ± 0.020	21.452	1.0718	19.006 ± 0.077	16.927
0.0818	17.351 ± 0.022	21.452	1.1790	19.193 ± 0.107	16.822
0.0899	17.356 ± 0.024	21.452	1.2969	19.440 ± 0.105	16.731
0.0989	17.363 ± 0.027	21.452	1.4266	19.721 ± 0.116	16.642
0.1088	17.372 ± 0.027	21.062	1.5692	20.001 ± 0.113	16.570
0.1197	17.382 ± 0.029	20.552	1.7261	20.293 ± 0.116	16.505
0.1317	17.395 ± 0.028	20.552	1.8987	20.597 ± 0.122	16.451
0.1448	17.411 ± 0.028	20.570	2.0886	20.872 ± 0.128	16.401
0.1593	17.429 ± 0.029	19.694	2.2975	21.224 ± 0.105	16.358
0.1752	17.450 ± 0.028	19.694	2.5272	21.457 ± 0.112	16.320
0.1928	17.475 ± 0.026	19.764	2.7800	21.719 ± 0.138	16.283
0.2120	17.504 ± 0.026	19.528	3.0580	22.082 ± 0.154	16.251
0.2333	17.538 ± 0.025	19.337	3.3638	22.603 ± 0.164	16.225
0.2566	17.578 ± 0.026	19.091	3.7001	23.043 ± 0.225	16.206
0.2822	17.624 ± 0.026	19.009	4.0701	23.694 ± 0.467	16.191
0.3105	17.675 ± 0.030	18.802	4.4772	24.509 ± 0.571	16.182
0.3415	17.732 ± 0.034	18.634	4.9249	25.173 ± 1.342	16.172

data are obtained with different ways. In (ii), Ma et al. (2006b) derived the surface brightness profile from a PSF-deconvolved image; in addition, Ma et al. (2006b) derived the surface brightness profile with ellipticity and position angle allowed to vary with the isophote semimajor axis, however, in this paper, we derived the surface brightness profile on fixed, zero-ellipticity isophotes, since we choose to fit circular models for the intrinsic cluster structure and the PSF as Barmby et al. (2007) did (see §2.4 for details). In fact, from Fig. 5 of this paper and Fig. 3 of Ma et al. (2006b), we can see that, the observed data are somewhat different between Ma et al. (2006b) and this paper.

Barmby et al. (2007) analyzed the same F606W and F814W images of B037 used here with nearly the same observed data and method. The results of comparison are listed in Table 7 (Table 5 of Barmby et al. 2007 in the electronic edition did not list the results of B037 in the F814W filter,). from which we can see that the results obtained in this paper are in good agreement with ones of Barmby et al. (2007) (about the central surface brightnesses, we have corrected them using the value for extinction adopted in this paper).

4 DISCUSSION AND SUMMARY

As discussed in §3.1, it is impossible that the dust lane comes from the Milky Way. Another possibility is that the dust lane is contained in B037 itself. As we know, the formation of dust requires gas with a rather high metallicity. Perrett et al. (2002) presented metallicities for more than 200 GCs in M31 including B037, using the Wide Field Fibre Optic Spectrograph at the 4.2 m William Herschel Telescope in La Palma, Canary Islands, which provides a total spectral coverage of ~ 3700-5600 Å with two gratings. One grating (H2400B 2400 line) yielded a dispersion of 0.8 Å pixel$^{-1}$ and a spectral resolution of 2.5 Å over the range 3700-4500 Å covering the CN feature at 3883 Å, the H and K lines of calcium, Hα, the CH G band and the 4000 Å continuum break, and the other grating (R1200R 1200 line) presented a dispersion of 1.5 Å pixel$^{-1}$ and a spectral resolution of 5.1 Å over the range 4400-5600 Å to add absorption features such as Hβ, ...
indices based on the prescription of Brodie & Huchra (1990). By the comparison of the line indices with the values from an unweighted mean of the \[Fe/\] values from the previous literature (B` onoli et al., 1987; Brodie & Huchra, 1990; 0.2822 \(\pm \) 501 466 \(\pm \) 396 \(\pm \) 337 331 \(\pm \) 313 \(\pm \) 303 \(\pm \) 302 \(\pm \) 6 09 1 031 16.573 037 16.745 043 16.960 048 18.350 043 18.531 026 20.061 012 21.800 011 21.800 0.050 15.308 \(\pm \) 0.019 20.061 0.8053 16.543 \(\pm \) 0.053 15.218 0.0558 15.310 \(\pm \) 0.021 20.061 0.8858 16.706 \(\pm \) 0.054 15.094 0.0614 15.313 \(\pm \) 0.024 20.061 0.9744 16.847 \(\pm \) 0.054 14.974 0.0676 15.317 \(\pm \) 0.026 20.061 1.0718 16.995 \(\pm \) 0.061 14.868 0.0743 15.321 \(\pm \) 0.030 19.430 1.1790 17.185 \(\pm \) 0.105 14.767 0.0818 15.326 \(\pm \) 0.033 19.430 1.2969 17.459 \(\pm \) 0.086 14.681 0.0899 15.331 \(\pm \) 0.037 19.430 1.4266 17.717 \(\pm \) 0.107 14.596 0.0989 15.337 \(\pm \) 0.041 19.430 1.5692 18.006 \(\pm \) 0.101 14.527 0.1088 15.347 \(\pm \) 0.043 19.039 1.7261 18.279 \(\pm \) 0.102 14.464 0.1197 15.360 \(\pm \) 0.043 18.531 1.8987 18.567 \(\pm \) 0.086 14.411 0.1317 15.367 \(\pm \) 0.045 18.531 2.0886 18.833 \(\pm \) 0.092 14.359 0.1488 15.375 \(\pm \) 0.048 18.350 2.2975 19.167 \(\pm \) 0.095 14.316 0.1593 15.396 \(\pm \) 0.046 17.940 2.5272 19.460 \(\pm \) 0.094 14.277 0.1752 15.411 \(\pm \) 0.046 17.940 2.7800 19.649 \(\pm \) 0.156 14.240 0.1928 15.428 \(\pm \) 0.045 17.738 3.0580 20.075 \(\pm \) 0.137 14.207 0.2120 15.447 \(\pm \) 0.046 17.496 3.3638 20.538 \(\pm \) 0.103 14.181 0.2333 15.466 \(\pm \) 0.048 17.301 3.7001 21.002 \(\pm \) 0.138 14.160 0.2566 15.501 \(\pm \) 0.046 17.046 4.0701 21.399 \(\pm \) 0.203 14.142 0.2822 15.531 \(\pm \) 0.043 16.960 4.4772 21.964 \(\pm \) 0.228 14.129 0.3105 15.580 \(\pm \) 0.037 16.745 4.9249 22.519 \(\pm \) 0.240 14.117 0.3415 15.632 \(\pm \) 0.031 16.573 5.4174 23.311 \(\pm \) 0.588 14.106 0.3757 15.695 \(\pm \) 0.029 16.388 5.9591 23.508 \(\pm \) 0.782 14.096

Table 6 Structural parameters of B037

Parameters	F606W	F814W
\(r_0 \)	0.56 \(\pm \) 0.02'' (= 2.16 \(\pm \) 0.08 pc)	0.56 \(\pm \) 0.01'' (= 2.16 \(\pm \) 0.04 pc)
\(r_t \)	8.6 \(\pm \) 0.4'' (= 33.1 \(\pm \) 1.5 pc)	8.9 \(\pm \) 0.3'' (= 34.3 \(\pm \) 1.2 pc)
\(c \) = log\((r_t/r_0) \)	1.19 \(\pm \) 0.02	1.20 \(\pm \) 0.01
\(r_0 \)	1.05 \(\pm \) 0.03'' (= 4.04 \(\pm \) 0.12 pc)	1.07 \(\pm \) 0.01'' (= 4.12 \(\pm \) 0.04 pc)
\(\mu_0 \) (mag arcsec\(^{-2}\))	13.53 \(\pm \) 0.03	12.85 \(\pm \) 0.03

Table 7 Results of comparison

Parameters	Barnby et al. (2007)	This paper	Barnby et al. (2007)	This paper
\(r_0 \)	0.56	0.56	0.59	0.56
\(c \) = log\((r_t/r_0) \)	1.23	1.19	1.18	1.20
\(r_0 \)	1''09	1''05	1''07	
\(\mu_0 \) (mag arcsec\(^{-2}\))	13.45	13.53	12.75	12.85

the Mg b triplet, and two iron lines near 5300 Å. Then Perrett et al. (2002) calculated 12 absorption-line indices based on the prescription of Brodie & Huchra (1990). By the comparison of the line indices with the published M31 GC [Fe/H] values from the previous literature (B` onoli et al., 1987; Brodie & Huchra, 1990; Barnby et al., 2000), the results of linear fits were obtained. Final cluster metallicities were determined from an unweighted mean of the [Fe/H] values calculated from the CH (G), Mg b, and Fe53 line strengths.
Detailed study of B327 based on HST images

For B037, Perrett et al. (2002) obtained its metallicity to be $[\text{Fe}/\text{H}] = -1.07 \pm 0.20$. It is clear that B037 has a low metallicity. So, it is intricate that where is the dust lane from?

In this paper, using the images of deep observations and of highly spatial resolutions with the ACS/HST, we firstly present that the GC B037 in M31 is crossed by a dust lane. Photometric data in the F606W and F814W bands provide that, colors of $(F606W - F814W)$ in the dust lane are redder ~ 0.4 mags than ones in the other regions of B037. From the HST images, this dust lane seems to be contained in B037, not from the Milky Way. However, the formation of dust requires gas with a rather high metallicity. So, it seems impossible that the observed dust lane is physically associated with B037 itself, which has a low metallicity to be $[\text{Fe}/\text{H}] = -1.07 \pm 0.20$ from Perrett et al. (2002). So, that the observed dust lane in the view of B037 is from B037 itself or from the Milky Way needs to be confirmed in the future. In addition, based on these images, we present the precise variation of ellipticity and position angle, and of surface brightness profile, and determine the structural parameters of B037 by fitting a single-mass isotropic King model.

Acknowledgements I am indebted to Daming Chen, Zhou Fan, Tianmeng Zhang and Song Wang for their helps in finishing this paper. I am also grateful to the referee for the important comments. This work was supported by the Chinese National Natural Science Foundation grands No. 10873016, and 10633020, and by National Basic Research Program of China (973 Program), No. 2007CB815403.

References

Barmby, P., Holland, S., & Huchra, J. 2002a, AJ, 123, 1937
Barmby, P., Huchra, J., Brodie, J., Forbes, D., Schroder, L., & Grillmair, C. 2000, AJ, 119, 727
Barmby P., McLaughlin D. E., Harris W. E., Harris G. L. H., & Forbes D. A. 2007, AJ, 133, 2764
Barmby, P., Perrett, K. M., & Bridges, T. J. 2002b, MNRAS, 329, 461
Battistini, P., Bono, F., Braccesi, A., Federici, L., Fusi Pecci, F., Marano, B., & Börngen, F. 1987, A&AS, 67, 447
Bono, F., Delpino, F., Federici, L., & Fusi Pecci, F. 1987, A&A, 185, 25
Brodie, J. P., & Huchra, J. P. 1990, ApJ, 362, 503
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Crampton, D., Cowley, A. P., Schade, D., & Chayer, P. 1985, ApJ, 288, 494
Fan, Z., Ma, J., de Grijs, R., & Zhou, X. 2008, MNRAS, 385, 1973
Galleti, S., Federici, L., Bellazzini, M., Fusi Pecci, F., & Macrina, S. 2004, A&A, 416, 917
Galleti, S., Federici, L., Bellazzini, M., Buzzoni, A., & Fusi Pecci, F. 2006, A&A, 456, 985
Galleti, S., Bellazzini, M., Federici, L., Buzzoni, A., & Fusi Pecci, F. 2007, A&A, 471, 127
Harris W. E., Harris G. L. H., Holland S. T., & McLaughlin D. E. 2002, AJ, 124, 1435
Hubble, E. P. 1932, ApJ, 76, 44
Huchra, J. P., Brodie, J. P., & Kent, S. M. 1991, ApJ, 370, 495
King, I. R. 1962, AJ, 67, 471
King, I. R. 1966, AJ, 71, 64
Kron, G. E., & Mayall, N. U. 1960, AJ, 65, 581
Larsen, S. S., Brodie, J. P., Sarajedini, A., & Huchra, J. P. 2002, AJ, 124, 2615
Ma, J., et al. 2007, MNRAS, 376, 1621
Ma, J., de Grijs, R., Yang, Y., Zhou, X., Chen, J., Jiang, Z., Wu, Z., & Wu, J. 2006a, MNRAS, 368, 1143
Ma, J., van den Bergh, S., & Wu, H., et al. 2006b, ApJ, 636, L93
Mackey, A., & van den Bergh, S. 2005, MNRAS, 360, 631
McLaughlin, D. E., Barmby, P., Harris, W. E., Forbes, D. A., & Harris, G. L. H. 2008, MNRAS, 384, 563
McLaughlin, D. E., & van der Marel, R. P. 2005, ApJS, 161, 304
Meylan, G., & Heggie, D. 1997, A&A Rev., 8, 1
Meylan, G., Sarajedini, A., Jablonka, P., Djorgovski, S., Bridges, T., & Rich, R. 2001, AJ, 122, 830
Michie, R. W. 1963, MNRAS, 125, 127
Perrett, K. M., et al. 2002, AJ, 123, 2490
Siriani, M., et al. 2005, PASP, 117, 1049
Stetson, P. B. 1987, PASP, 99, 191
van den Bergh, S. 1968, The Observatory, 88, 168
Vetešnik, M. 1962a, BAC, 13, no. 5, p. 180
Vetešnik, M. 1962b, BAC, 13, no. 6, p. 218