A Meta-Analysis of Parental Smoking and the Risk of Childhood Brain Tumors

Yi Huang*, Jianrong Huang, Huan Lan, GuanYan Zhao, ChunZhen Huang

Department of Neurosurgery, Guangxi Minzu Hospital, Nanning, Guangxi Province, China

Abstract

Objective: Previous studies regarding the association between parental smoking and the risk of childhood brain tumors (CBT) have reported inconsistent results. We performed a meta-analysis to summarize evidence on this association and to quantify the potential dose-response relationship.

Methods: A systematic literature search was conducted in the Medline and Embase databases. The summary relative risks (RRs) with 95% confidence intervals (CIs) were calculated. Dose–response meta-analysis was also performed for studies that reported categorical risk estimates for a series of smoking exposure levels.

Results: A total of 17 studies fulfilled the inclusion criteria. In the meta-analyses, the summary RRs (95% CIs) of CBT for maternal smoking during pregnancy, paternal smoking during pregnancy, maternal smoking before pregnancy, and paternal smoking before pregnancy were 0.96 (0.86–1.07), 1.09 (0.97–1.22), 0.93 (0.85–1.00), and 1.09 (1.00–1.20), respectively. Dose-response meta-analysis also showed no significant association between parental smoking and the risk of CBT.

Conclusions: Findings from our meta-analysis indicate that parental smoking may not be associated with a risk of CBT.

Introduction

Childhood brain tumors (CBT) are one of the most common types of cancers in infants and children (behind hematological malignancies) and they account for approximately 20 to 25% of total primary pediatric tumor diagnoses [1]. Their 5-year survival ranges from >90% to <10% for various histological subtypes [2]. A small percentage of these tumors are found in the setting of an identifiable cancer predisposition syndrome, such as neurofibromatosis and melanoma–astrocytoma syndrome [3]. However, for most sporadic cases, little is known about the genetic or environmental etiologies.

Cigarette smoking is a major cause of illness and death worldwide. The first phase of Global Adult Tobacco Survey (GATS) reported that a high percentage of men smoke, women begin smoking early, and few successfully quit smoking [4]. It has been hypothesized that some cancers may begin during the early stages of fetal development [5]. The exposure to environmental cigarette smoke during pregnancy could lead to DNA mutations and cytogenetic damage and has been shown to act as a transplacental carcinogen in animal studies [6–8]. Increased levels of carcinogenic tobacco-specific nitrosamines could be detected in the urine samples of newborns and the amniotic fluid in early pregnancy of parents who smoked cigarettes during pregnancy [9–11]. Therefore, parental smoking, which is relatively frequent, may play a role in tumorigenesis of CBT and require further exploration.

However, epidemiological studies on a possible association between parental smoking and the risk of CBT have provided no definitive answers. Overall, the published literature remains inconclusive and inconsistent. For example, a Sweden cohort study and an Italian case–control study suggested a positive association between maternal smoking during pregnancy and the risk of CBT [12,13], whereas a UK case–control study reported a negative association between them [14]. Because of the relatively small number of cases included in the individual studies, we performed a comprehensive meta-analysis to summarize the evidence on whether parental smoking is associated with the risk of CBT.

Methods

Search Strategy

We conducted a literature search (up to January 2014) of Medline and Embase for studies examining the association between parental smoking and the risk of CBT. The search terms were (case-control OR cohort OR epidemiolog*) AND (cancer OR carcinoma OR neoplasms OR tumor OR tumour) AND (parental smoking OR maternal smoking OR paternal smoking).
An estimation of potential publication bias was evaluated by estimates were computed after the omission of each study in turn. Influence analysis was performed, in which the summary location, histological subtype, number of cases and publication year. We also conducted analyses stratified by study design, study population (n = 8); no data on CBT (n = 3); lack of sufficient data to calculate RR and 95% CIs (n = 2); adult patients included (n = 1). A manual search of references cited by these papers yielded 2 new eligible articles. Therefore, we finally included 17 articles [12–14,24–37] in the meta-analysis.

Results

Study Characteristics

The 17 studies were published between 1986 and 2013, involving a total of 5,098 cases. Of these studies, 6 were conducted in North America [25,32–36], 6 in Europe [12–14,27,29,37], 2 in Australia [24,26], 2 in China [30,31] and 1 was multi-centered [28]. 2 studies were cohort studies [12,26], and 15 were case-control studies [13,14,24,25,27–37]. Of the 17 studies, 16 had information on maternal smoking during pregnancy [12–14,24–30,32–37], 7 had data on maternal smoking before pregnancy [13,14,24,28,30,33,34], 9 on paternal smoking during pregnancy [24,25,27,29,30,32–34,36], and 7 on paternal smoking before pregnancy [13,14,24,28,30,31,33]. 8 studies considered all brain cancers together only [24–26,30,31,34,36,37], 1 considered astrocytoma only [35], and 8 considered several subtypes of CBT and provided separate analyses for these cancer subtypes [12–14,27–29,32,33]. In 12 of the 15 incident case-control studies, controls were matched for age and sex [13,14,24,25,27–31,33,34,36]. The numbers of cases and controls or cohort, types of CBT, exposure assessment method, and outcome ascertainment were shown in Table 1.

Quantitative synthesis

The pooled RRs between parental smoking and the risk of CBT were not statistically significant and close to unity (RR = 0.96, 95% CI 0.86–1.07 for maternal smoking during pregnancy; RR = 1.09, 95% CI 0.97–1.22 for paternal smoking during pregnancy; RR = 0.93, 95% CI 0.85–1.00 for maternal smoking before pregnancy; RR = 1.09, 95% CI 1.00–1.20 for paternal smoking before pregnancy) (Figures 2 and S1).

In the stratified analysis by study region, histological subtype, number of cases, and publication year, no significant associations were observed in any of the categories (Tables 2–5).

Dose-response analysis

Using a restricted cubic splines model, we did not find a curvilinear association between parental smoking and the risk of CBT (P = 0.619, 0.638, 0.924, and 0.749 for non-linearity, respectively). The summary RRs of CBT for an increase of 10 cigarettes per day were 0.98 (95% CI 0.92–1.04; P = 0.506 for linear trend), 1.04 (95% CI 0.98–1.11; P = 0.196 for linear trend), 0.95 (95% CI 0.89–1.02; P = 0.179 for linear trend), and 1.02 (95% CI 0.96–1.07; P = 0.598 for linear trend) for maternal...
smoking during pregnancy, paternal smoking during pregnancy, maternal smoking before pregnancy, and paternal smoking before pregnancy, respectively (Figures 3 and S2).

Influence analysis

In the influence analysis, the influence of each study on the pooled RR was examined by repeating the meta-analysis while omitting each study, one at a time. The study-specific RRs ranged from the lowest values of 0.91 (95% CI 0.83-0.99), 1.06 (95% CI 0.94-1.21), 0.91 (95% CI 0.93-0.99), and 1.08 (95% CI 0.99-1.19) to the highest values of 0.99 (95% CI 0.89-1.10), 1.12 (95% CI 0.98-1.27), 0.96 (95% CI 0.85-1.08), and 1.11 (95% CI 1.00-1.24) for maternal smoking during pregnancy, paternal smoking during pregnancy, maternal smoking before pregnancy, and paternal smoking before pregnancy, respectively (Figure S3).

Evaluation of heterogeneity

For maternal smoking during pregnancy, low to moderate between-study heterogeneity was observed for the pooled RRs (I² = 28.2%, 95% CI 1.6%-60.7%) and several subgroup results, including cohort studies (I² = 59.0%), studies conducted in Europe (I² = 65.2%, 95% CI 16.3%-85.5%), Ependymomas (I² = 28.9%, 95% CI 0.0%-73.8%), studies of cases > 300 (I² = 42.2%, 95% CI 0.0%-75.7%), and studies published after 2000 (I² = 50.1%, 95% CI 0.0%-77.7%).

For paternal smoking during pregnancy, there was no obvious heterogeneity between studies, except for Astrocytomas (I² = 52.1%, 95% CI 0.0%-84.2%); for maternal smoking before pregnancy, moderate heterogeneity was observed for studies conducted in Europe (I² = 51.6%); for paternal smoking before pregnancy, no heterogeneity was found in any of the categories.

Publication bias

There was no evidence of significant publication bias according to the Begg and Egger tests (Figure 4; Begg, P = 0.528, Egger, P = 0.790 for maternal smoking during pregnancy; Begg, P = 0.348, Egger, P = 0.420 for paternal smoking during pregnancy; Begg, P = 0.764, Egger, P = 0.610 for maternal smoking before pregnancy; Begg, P = 0.368, Egger, P = 0.189 for paternal smoking before pregnancy).

Discussion

In this systematic review of epidemiological studies, no clear relationship was found between parental smoking and the risk of CBT. Similar results were obtained in dose-response analysis and stratified analysis. Although some of the summary RRs (maternal smoking before pregnancy and paternal smoking before pregnancy) were borderline significant, the magnitudes of these associations were quite modest and within the range in which various sources of bias could explain them. Our findings were based on a total of 17 studies (including over 5,000 cancer cases) without obvious heterogeneity and publication bias. However, limited data were available for certain subgroups (e.g., cohort studies, studies conducted in Asia). Therefore, these results should be interpreted with caution.

Low to moderate between-study heterogeneity was observed for several pooled RRs and subgroup results. For example, low between-study heterogeneity was observed (I² = 28.2%, 95% CI 1.6%-60.7%) for maternal smoking during pregnancy, which was not surprising given the differences in study design, characteristics of populations, histological subtypes, and adjustment for confounding factors. Influence analysis suggested that after omitting some specific studies, the pooled RRs of remaining studies became significant, which indicated that some combined RRs of this meta-analysis were not very steady. For example, the omission of the study conducted by Brooks et al [12] led to a significant inverse association between maternal smoking during pregnancy and CBT risk. This may be because Brooks et al’s study is a prospective cohort study, which included large samples (1,441,942 Swedish births) and reported a significant positive association between maternal smoking during pregnancy and CBT risk [12].

Currently, a variety of genetic syndromes, including NF1, NF2, TSC1, TSC2, and VHL, have been causally linked to CBT [38]. However, the environmental risk factors of brain tumors have not been fully established. The only recognized factor is exposure to ionizing radiation, which has been widely reported as significantly increasing the risk of CBT [39,40]. Other environmental factors, such as cured meats, certain viruses (e.g., JC virus, SV40, etc.), parental heat exposure before pregnancy and fertility treatment, have shown inconsistent associations with CBT [40-42]. Although the relationship between parental smoking and CBT risk is biologically plausible, the epidemiological data are complex. Meta-analysis is a useful tool for revealing trends that might not be apparent in individual studies. Using this method, our study doesn’t support that parental smoking is an environmental risk factor of CBT.

The largest number of available studies on a specific type of parental smoking was for maternal smoking during pregnancy (n = 16). Consistent with a previous meta-analysis published in...
First author	Year	Design	Region	Exposure assessment	Outcome ascertainment	Diagnosis criteria	Age	Matched factors	Types of CBT	Cases	Controls or cohort	
Barrington-Trimis et al	2013	PCC	USA	In-person interview	SEER registries	ICD-O-1	≤10	Age, sex, center	Astroglial	97	285	
Milne et al	2013	PCC	Australia	Mailed questionnaire	Pediatric oncology center	NR	≤15	Age, sex, state	Gliomas	170	941	
Stavrou et al	2009	Cohort	Australia	Midwives Data Collection	Central Cancer Registry	ICD-O-3	≤12	-	Total CBT	143	1,045,966	
Plichart et al	2008	PCC	France	Telephone interview	French National Registry	ICD-O-3	≤15	Age, sex	Embryonal tumors	100	1,681	
Brooks et al	2004	Cohort	Sweden	Swedish Birth Register	Swedish Cancer Register	ICD7	NR	-	Ependymoma	51	1,441,942	
Pang et al	2003	PCC	UK	Interview	Pediatric oncology units	ICD-O-2	≤15	Age, sex, residence area	Total CBT	635	6,987	
Filippini et al	2002	PCC	Multicenter	Interviewed in person	Cancer registries	ICD-O-2	≤19	Age, sex	Astroglial tumor	623	2,223	
Schuz et al	2001	PCC	Germany	Questionnaire, telephone interview	Childhood Cancer Registry	NR	≤15	Age, sex	Astrocytoma	119	2,458	
Filippini et al	2000	PCC	Italy	Telephone interview	Hospital records	ICD-9	≤15	Age, sex, residence area	Astroglial tumours	115	502	
Hu et al	2000	HCC	China	Interview	Six major hospitals	NR	≤18	Age, sex, residence area	Astrocytoma	21	246	
First author	Year	Design	Region	Exposure assessment	Outcome ascertainment	Diagnosis criteria	Age	Matched factors	Types of CBT	Cases	Controls or cohort	
-------------	------	--------	--------	---------------------	----------------------	-------------------	-----	----------------	-------------	-------	-------------------	
Ji et al	1997	PCC	China	Direct interview	Cancer Registry	ICD-9	≤ 15	Age, sex	Medullopithelioma	13		
									Craniopharyngioma	11		
									Others	38		
Bunin et al	1994	PCC	USA and Canada	Telephone interview	Children’s Cancer Group	NR	≤ 6	Age, race, residence area	Astrocytoma	155	321	
									PNET	166		
Gold et al	1993	PCC	USA	Structured interview	SEER program registries	NR	≤ 18	Age, sex, mother’s race	Astrocytoma	152	1,083	
									Medulloblastoma	60		
									Others	126		
John et al	1991	PCC	USA	Structured interviews	Cancer Registry	NR	≤ 14	Age, sex, residence area	Total CBT	48	196	
Kuitjen et al	1990	PCC	USA	Telephone interview	Tumor registries	NR	≤ 15	Age, race, residence area	Astrocytoma	163	163	
Howe et al	1989	PCC	Canada	In-person interview	Hospital records	NR	≤ 18	Age, sex	Astrocytoma	21	138	
									Medulloblastoma	24		
									Ependymoma	10		
									Others	19		

PCC: population based case-control, HCC: hospital based case-control, NR: not reported.

doi:10.1371/journal.pone.0102910.t001
2002 [43], our meta-analysis also found no association between maternal smoking during pregnancy and the risk of CBT. Previous studies have reported that maternal smoking during pregnancy is a possible risk factor for stillbirth [44], child overweight [45] and childhood NHL [46] but not for childhood HL [46], leukemia [47] or testicular cancer [48]. Therefore, maternal smoking may have different effects on offspring through multiple mechanisms, specific and non-specific.

Table 2. Results of subgroup analyses of the association between maternal smoking during pregnancy and the risk of childhood brain tumors.

Variables	Study	RR (95% CI)	p^2 (%)	Q	I^2 (95%CI) (%)
Total	16 (12–14,24–30,32–37)	0.96 (0.86–1.07)	20.88	28.2 (1.6–60.7)	
Study design					
Cohort	2 (12,26)	1.07 (0.72–1.58)	2.44	59.0 (-)	
Case–control	14 (13,14,24,25,27–30,32–37)	0.92 (0.84–1.00)	13.41	3.1 (0.0–56.4)	
Geographical region					
North America	6 (25,32–36)	0.92 (0.76–1.11)	4.41	0.0 (0.0–74.62)	
Europe	6 (12–14,27,29,37)	1.03 (0.84–1.27)	14.35	65.2 (16.3–85.5)	
Australia	2 (24,26)	0.86 (0.64–1.16)	0.07	0.0 (-)	
China	1 (30)	1.20 (0.45–3.23)	-	-	
Histological subtype					
PNET	8 (12–14,27–29,32,33)	0.89 (0.74–1.06)	6.58	0.0 (0.0–67.6)	
Astrocytomas	9 (12–14,27–29,32,33,35)	1.05 (0.93–1.18)	7.69	0.0 (0.0–64.8)	
Ependymomas	4 (12,14,27,29)	1.09 (0.72–1.66)	4.22	28.9 (0.0–73.8)	
No of cases					
$≤300$	9 (13,25–27,30,34–37)	1.02 (0.83–1.25)	9.53	16.1 (0.0–58.1)	
>300	7 (12,14,24,28,29,32,33)	0.94 (0.83–1.06)	10.38	42.2 (0.0–75.7)	
Publication year					
$≤2000$	8 (13,30,32–37)	1.05 (0.88–1.24)	5.41	0.0 (0.0–67.6)	
>2000	8 (12,14,24–29)	0.92 (0.80–1.06)	14.04	50.1 (0.0–77.7)	

* P for heterogeneity of the stratum-specific summary RRs.

Figure 2. Forest plot of maternal smoking during pregnancy and the risk of CBT.

doi:10.1371/journal.pone.0102910.g002
Our meta-analysis also explored the relationship between paternal smoking before and during pregnancy and the risk of CBT. A relationship between paternal smoking and CBT risk is biologically plausible. Linschooten et al reported that paternal smoking could affect the chance of heritable mutations in unstable repetitive DNA sequences [49]. The study of Laubenthal et al also supported that cigarette smoke was a human germ cell mutagen [50]. Additionally, paternal smoking may play a role through the mother’s passive exposure to secondhand smoke during pregnancy. Previous studies found that certain compounds in environ-

Variables	Number	RR (95% CI)	\(P^* \)	Q	\(I^2 \) (95%CI) (%)
Total	9 (24,25,27,29,30,32–34,36)	1.09 (0.97–1.22)	2.35	0.0 (0.0–64.8)	
Geographical region					
North America	5 (25,32–34,36)	1.03 (0.85–1.25)	1.45	0.0 (0.0–79.2)	
Europe	2 (27,29)	1.13 (0.96–1.34)	0.23	0.0 (-)	
Australia	1 (24)	1.04 (0.74–1.46)	-	-	
China	1 (30)	1.17 (0.67–2.04)	-	-	
Histological subtype					
PNET	4 (27,29,32,33)	1.10 (0.88–1.37)	0.50	0.0 (0.0–84.7)	
Astrocytomas	4 (27,29,32,33)	1.13 (0.79–1.61)	6.27	52.1 (0.0–84.2)	
Ependymomas	2 (27,29)	1.48 (0.99–2.20)	0.07	0.0 (-)	
No of cases					
\(\leq 300 \)	5 (25,27,30,34,36)	1.18 (0.96–1.45)	0.86	0.0 (0.0–79.2)	
\(>300 \)	4 (24,29,32,33)	1.04 (0.91–1.20)	0.56	0.0 (0.0–84.7)	
Publication year					
\(\leq 2000 \)	5 (30,32–34,36)	1.05 (0.86–1.28)	1.63	0.0 (0.0–79.2)	
\(>2000 \)	4 (24,25,27,29)	1.11 (0.96–1.28)	0.51	0.0 (0.0–84.7)	

* \(P \) for heterogeneity of the stratum-specific summary RRs.

doi:10.1371/journal.pone.0102910.t003

Table 4. Results of subgroup analyses of the association between maternal smoking before pregnancy and the risk of childhood brain tumors.

Variables	Study	RR (95% CI)	\(P^* \)	Q	\(I^2 \) (95%CI) (%)
Total	7 (13,14,24,28,30,33,34)	0.93 (0.85–1.00)	3.23	0.0 (0.0–70.8)	
Geographical region					
North America	2 (33,34)	0.89 (0.69–1.15)	0.00	0.0 (-)	
Europe	2 (13,14)	1.02 (0.79–1.31)	2.07	51.6 (-)	
Australia	1 (24)	0.99 (0.70–1.40)	-	-	
China	1 (30)	0.62 (0.10–3.80)	-	-	
Histological subtype					
PNET	3 (14,28,33)	0.87 (0.69–1.09)	0.59	0.0 (0.0–89.6)	
Astrocytomas	3 (14,28,33)	0.91 (0.80–1.03)	0.04	0.0 (0.0–89.6)	
Ependymomas	1 (14)	0.73 (0.40–1.35)	-	-	
No of cases					
\(\leq 300 \)	3 (13,30,34)	1.14 (0.85–1.53)	0.84	0.0 (0.0–89.6)	
\(>300 \)	4 (14,24,28,33)	0.91 (0.83–0.99)	0.31	0.0 (0.0–84.7)	
Publication year					
\(\leq 2000 \)	4 (13,30,33,34)	0.99 (0.82–1.21)	2.32	0.0 (0.0–84.7)	
\(>2000 \)	3 (14,24,28)	0.91 (0.83–1.00)	0.28	0.0 (0.0–89.6)	

* \(P \) for heterogeneity of the stratum-specific summary RRs.

doi:10.1371/journal.pone.0102910.t004
mental tobacco smoke may pass through the placental barrier and interact with fetal DNA, resulting in DNA damage and mutation [51,52]. However, the epidemiological evidence on this topic is very controversial. Our meta-analysis, including all the published studies, doesn’t support a link between paternal smoking before and during pregnancy and the risk of CBT.

Overall, our meta-analysis did not support the relationship between parental smoking and the risk of CBT, regardless of the source of parental exposure. These similar results between maternal and paternal smoking before and during pregnancy were consistent with the findings of Milne et al, Hu et al, and Gold et al [24,30,33], who also investigated all four types of parental smoking. Clearly identifying and classifying the source of smoke exposure may help conduct unbiased assessments of parental smoking, which will help strengthen the conclusion and provide a comprehensive evaluation.

Our study has several strengths. Our meta-analysis of 17 studies involving a large number of cases and participants enhanced the statistical power to detect potential associations and provided more reliable estimates. A dose-response relationship between parental smoking and the risk of CBT was investigated, which further strengthened the conclusion. Half of the included studies considered several subtypes of CBT, allowing us to conduct separate analyses for these cancer subtypes. The absence of important heterogeneity and publication bias supported the robustness of the study findings.

Table 5 Results of subgroup analyses of the association between paternal smoking before pregnancy and the risk of childhood brain tumors.

Variables	Number	RR (95% CI)	P*	Q	I² (95% CI) (%)
Total	7 (13,14,24,28,30,31,33)	1.09 (1.00–1.20)	3.29	0	(0.0–70.8)
Geographical region				0.605	
North America	1 (33)	1.08 (0.83–1.41)	-	-	
Europe	2 (13,14)	1.08 (0.93–1.25)	0.53	0	(0.0)
Australia	1 (24)	0.99 (0.71–1.38)	-	-	
China	2 (30,31)	1.42 (0.90–2.24)	1.07	6.3	(0.0–70.8)
Histological subtype					
PNET	3 (14,28,33)	0.94 (0.77–1.16)	1.50	0	(0.0–89.6)
Astrocytomas	3 (14,28,33)	1.11 (0.95–1.28)	1.37	0	(0.0–89.6)
Ependymomas	1 (14)	1.03 (0.59–1.78)	-	-	
No of cases			0.130		
≤ 300	3 (13,30,31)	1.27 (0.98–1.64)	1.42	0	(0.0–89.6)
>300	4 (14,24,28,33)	1.07 (0.97–1.18)	0.41	0	(0.0–84.7)
Publication year			0.151		
≤ 2000	4 (13,30,31,33)	1.17 (0.98–1.41)	2.15	0	(0.0–84.7)
>2000	3 (14,24,28)	1.07 (0.96–1.19)	0.40	0	(0.0–89.6)

* P for heterogeneity of the stratum-specific summary RRs.

![Figure 3. Dose-response analysis of maternal smoking during pregnancy and the risk of CBT.](image)

![Figure 4. Funnel plot of maternal smoking during pregnancy and the risk of CBT.](image)
However, several limitations of our meta-analysis should also be acknowledged. First, in this meta-analysis, the vast majority of the included studies were case-control studies. As mentioned previously, recall bias and selection bias might cause a decrease in quality of smoking exposure data. Mothers of children with CBT may be more harmful to report harmful events during pregnancy than mothers of healthy children [53]. Therefore, this misclassification may lead to biased or spurious results. In recent years, several studies reported that cotinine measured in the dried blood spots was a reliable and accurate marker of maternal smoking close to the time of delivery [54–56]. Therefore, this low-cost and objective method could be adapted in future relevant etiologic studies to overcome a moderate amount of exposure measurement error. Second, a meta-analysis is unable to solve problems with confounding factors that could be inherent in the included studies. Inadequate control of all known confounders can produce bias in either direction, toward exaggeration or underestimation of risk estimates [57]. Although we included the data from the most fully adjusted models, residual confounding cannot be completely excluded as a potential interpretation of the observed findings. Third, the results of this study were mainly based on information from western populations, while only two studies [30,31] from other populations. Different races may have different genetic backgrounds that may affect CBT risk. Thus to generalize the findings, further study in other populations is warranted.

In conclusion, the results from this meta-analysis suggest that, based on available information, parental smoking is not associated with the risk of CBT. Because our meta-analysis has several limitations and the influence analysis suggests that some of the combined results are not very steady, future large well-designed prospective cohort studies with better exposure assessment are warranted to confirm the findings from our study and provide a higher level of evidence.

References

1. Mueller S, Chang S (2009) Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics 6: 570–586.
2. Gajjar A, Packer RJ, Foreman NK, Cohen K, Haas-Kogan D, et al. (2013) Children’s Oncology Group’s 2013 blueprint for research: central nervous system tumors. Pediatr Blood Cancer 60: 1022–1026.
3. Kyriaris AP, Bondy ML, Rao JS, Soika C (2010) Inherited predisposition to glioma. Neuro Oncol 12: 104–113.
4. Giovino GA, Mirza NA, Sanet JM, Gupta PC, Jarvis MJ, et al. (2012) Tobacco use in 3 billion individuals from 16 countries: an analysis of nationally representative cross-sectional household surveys. Lancet 380: 668–679.
5. Klip H, Burger CW, de Kraker J, van Leeuwen FE (2001) Risk of cancer in the offspring of women who underwent oварian stimulation for IVF. Hum Reprod 16: 2451–2458.
6. Anderson LM, Hecht SS, Dixon DE, Dove LF, Kovatch RM, et al. (1989) Evaluation of the transplacental tumorigenicity of the tobacco-specific carcinogen 4-((methyltriazosino)-1-((3-pyridyl)-1-butaneone in mice. Cancer Res 49: 3770–3775.
7. Balansky R, Gazhev G, Bicheva M, Nikolov M, Steele VE, et al. (2012) Differential carcinogenicity of cigarette smoke in mice exposed either transplacentally, early in life or in adulthood. Int J Cancer 130: 1001–1010.
8. Izzotti A, Balansky RM, Cartiglia C, Camoirano A, Longobardi M, et al. (2003) Genomic and transcriptional alterations in mouse fetus liver after transplacental exposure to cigarette smoke. FASEB J 17: 1127–1129.
9. Lackmann GM, Sableberger U, Tollner U, Chen M, Carmella SG, et al. (1999) Metabolites of a tobacco-specific carcinogen in urine from newborns. J Natl Cancer Inst 91: 459–469.
10. Florer E, Piekoszewski W, Basior A, Merritt AT, Mazela J, et al. (2011) Effect of maternal tobacco smoking or exposure to second-hand smoke on the levels of 4-((methyltriazosino)-1-((3-pyridyl)-1-butanol (NNA) in urine of mother and the first urine of newborn. J Physiol Pharmacol 62: 377–383.
11. Milinsky A, Carmella SG, Ye M, Hecht SS (2000) A tobacco-specific carcinogen in the fetus. Prenat Diagn 20: 307–310.
12. Brooks DR, Mucci LA, Hatch EE, Cnattingius S (2004) Maternal smoking during pregnancy and risk of brain tumors in the offspring. A prospective study of 1.4 million Swedish births. Cancer Causes Control 15: 1007–1005.
13. Filippini G, Farinotti M, Ferrari M (2000) Active and passive smoking during pregnancy and risk of central nervous system tumours in children. Paediatr Perinat Epidemiol 14: 78–84.
14. Pang D, McNally R, Birch JM (2003) Parental smoking and childhood cancer: results from the United Kingdom Childhood Cancer Study. Br J Cancer 88: 373–381.
15. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, et al. (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283: 2008–2012.
16. Greenland S (1987) Quantitative methods in the review of epidemiologic literature. Epidemiol Rev 9: 1–30.
17. DerSimonian R, Laird N (1996) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.
18. Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135: 1301–1309.
19. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and non-linear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175: 66–73.
20. Harrell FE, Jr, Lee KL, Pollock BG (1988) Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst 80: 1196–1202.
21. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539–1558.
22. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50: 1088–1101.
23. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
24. Milne E, Greenop KR, Scott RJ, Ashton LJ, Cohn RJ, et al. (2013) Parental smoking and risk of childhood brain tumours. Int J Cancer 153: 253–259.
25. Barrington-Trunnis JL, Sears Nielsen S, Preston-Martin S, Gauderman WJ, Holly EA, et al. (2013) Parental smoking and risk of childhood brain tumors by functional polymorphisms in polycyclic aromatic hydrocarbon metabolism genes. PLos8 One 8: e79110.

Supporting Information

Checklist S1 PRISMA checklist.

Figure S1 Forest plot of paternal smoking during pregnancy (A), maternal smoking before pregnancy (B), paternal smoking before pregnancy (C), and the risk of CBT.

Figure S2 Dose-response analysis of paternal smoking during pregnancy (A), maternal smoking before pregnancy (B), paternal smoking before pregnancy (C), and the risk of CBT. The solid line represents point estimates of association between parental smoking and CBT risk; dashed lines are 95% CIs. Circles are the dose-specific RR estimates. The relative size of each circle is proportional to the inverse variance of the RR.

Figure S3 Influence analysis of maternal smoking during pregnancy (A), paternal smoking during pregnancy (B), maternal smoking before pregnancy (C), paternal smoking before pregnancy (D), and the risk of CBT.

Author Contributions

Conceived and designed the experiments: YH. Performed the experiments: YH JH CH. Analyzed the data: YH HL GZ. Contributed reagents/materials/analysis tools: YH HL GZ CH. Contributed to the writing of the manuscript: YH JH.
26. Stavrou EP, Baker DF, Bishop JF (2009) Maternal smoking during pregnancy and childhood cancer in New South Wales: a record linkage investigation. Cancer Causes Control 20: 1551–1558.
27. Pichard M, Menegaux F, Lacour B, Harmann O, Frappaz D, et al. (2008) Parental smoking, maternal alcohol, coffee and tea consumption during pregnancy and childhood malignant central nervous system tumours: the ESCALE study (SFCE). Eur J Cancer Prev 17: 376–383.
28. Filippini G, Maisonneuve P, McCreedie R, Peris-Bonet R, Modan B, et al. (2002) Relation of childhood brain tumors to exposure of parents and children to tobacco smoke: the SEARCH international case-control study. Surveillance of Environmental Aspects Related to Cancer in Humans. Int J Cancer 100: 206–213.
29. Schuz J, Kaleschke U, Kaatsch P, Meineke J (2001) Risk factors for pediatric tumors of the central nervous system: results from a German population-based case-control study. Med Pediatr Oncol 36: 274–282.
30. Hu J, Mao Y, Ugant AM (2000) Parental cigarette smoking, high liquor consumption and the risk of childhood brain tumors—a case-control study in northeast China. Acta Oncol 39: 979–984.
31. Ji BT, Shu XO, Linet MS, Zheng W, Wacholder S, et al. (1997) Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J Natl Cancer Inst 89: 238–244.
32. Bunin GR, Buckley JD, Boesel CP, Rorke LB, Meadows AT (1994) Risk factors for astrocytic glioma and primitive neuroectodermal tumor of the brain in young children: a report from the Children's Cancer Group. Cancer Epidemiol Biomarkers Prev 3: 197–204.
33. Gold EB, Leighton A, Lopez R, Gilles FH, Hedley-Whyte ET, et al. (1993) Parental smoking and risk of childhood brain tumors. Am J Epidemiol 137: 620–628.
34. John EM, Savitz DA, Sandler DP (1991) Prenatal exposure to parents' smoking and childhood cancer. Am J Epidemiol 133: 123–132.
35. Kujiwara RR, Bunin GR, Nao CC, Meadows AT (1990) Gestational and familial risk factors for childhood astrocytoma: results of a case-control study. Cancer Res 50: 2608–2612.
36. Howe GR, Burch JD, Chiarelli AM, Risch HA, Chot BC (1989) An exploratory case-control study of brain tumors in children. Cancer Res 49: 4549–4552.
37. Sjöström E, Ljungqvist J, Berglund K, Lindsten J (1986) Maternal smoking during pregnancy and the risk of childhood cancer. Lancet 2: 687–688.
38. Pollack IF, Jakacki RI (2011) Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol 7: 495–506.
39. Vinchon M, Leblond P, Garon S, Delestret I, Barounci M, et al. (2011) Radiation-induced tumors in children irradiated for brain tumor: a longitudinal study. Childs Nerv Syst 27: 445–453.
40. Baldwin RT, Preston-Martin S (2004) Epidemiology of brain tumors in childhood—a review. Toxicol Appl Pharmacol 199: 118–131.
41. Bunin GR, Robison LL, Biegel JA, Pollack IF, Rorke-Adams LB (2006) Parental heat exposure and risk of childhood brain tumor: a Children’s Oncology Group study. Am J Epidemiol 164: 222–231.
42. Hargreave M, Jensen A, Toender A, Andersen KK, Kjaer SK (2013) Fertility treatment and childhood cancer risk: a systematic meta-analysis. Fertil Steril 100: 150–152.
43. Huncharek M, Kupelian B, Klassen H (2002) Maternal smoking during pregnancy and the risk of childhood brain tumors: a meta-analysis of 6566 subjects from twelve epidemiological studies. J Neurooncol 57: 51–57.
44. Fleury V, Koopmans L, Middelton P, Frenon JF, Smith GC, et al. (2011) Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet 377: 1351–1360.
45. Oken E, Levitan EB, Gillman MW (2008) Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes (Lond) 32: 201–210.
46. Antonomou CS, Sergentanis TN, Papadopoulos C, Andr(e) E, Dasypirinis N, et al. (2011) Maternal smoking during pregnancy and childhood lymphoma: a meta-analysis. Int J Cancer 129: 2694–2703.
47. Klimentopoulou A, Antonomos GS, Papadopoulou C, Kanavidakis P, Tourvas AD, et al. (2012) Maternal smoking during pregnancy and risk for childhood leukaemia: a nationwide case-control study in Greece and meta-analysis. Pediatr Blood Cancer 58: 344–351.
48. Tuomisto J, Holl K, Ranta-aho P, Koskelo P, Hallmans G, et al. (2009) Maternal smoking during pregnancy and testicular cancer in the sons: a nested case-control study and a meta-analysis. Eur J Cancer 45: 1640–1648.
49. Linschosoten JO, Verhofstad N, Gutziokw K, Olsen AK, Yauk C, et al. (2013) Paternal lifestyle as a potential source of germline mutations transmitted to offspring. FASEB J 27: 2975–2979.
50. Laubenthal J, Zlobinskaya O, Poterlilowicz K, Baumgartner A, Gehula MR, et al. (2012) Cigarette smoke-induced transgenerational alterations in genome stability in cord blood of human F1 offspring. FASEB J 26: 3946–3956.
51. Ries JA (2004) Causation of nervous system tumors in children: insights from traditional and genetically engineered animal models. Toxicol Appl Pharmacol 190: 173–191.
52. Treedjany J, Boffetta P, Little J, Saracci R, Hirsch A (1994) Exposure to passive smoking during pregnancy and childhood, and cancer risk: the epidemiological evidence. Paediarr Perinat Epidemiol 8: 233–255.
53. Florescu A, Ferreces R, Emanon T, Selby P, Soldin O, et al. (2009) Methods for quantification of exposure to cigarette smoking and environmental tobacco smoke: focus on developmental toxicology. Ther Drug Monit 31: 14–30.
54. Searles Nielsen S, Dills RL, Glass M, Mueller BA (2014) Accuracy of prenatal smoking data from Washington State birth certificates in a population-based sample with cotinine measurements. Ann Epidemiol 24: 236–239.
55. Murphy SE, Wickham KM, Lindgren BR, Spector LG, Joseph A (2012) Cotinine and trans 3'-hydroxycotinine in dried blood spots as biomarkers of tobacco exposure and nicotine metabolism. Paediatr Perinatal Epidemiol 8: 233–255.
56. Searles Nielsen S, Dills RL, Glass M, Mueller BA (2014) Accuracy of prenatal smoking data from Washington State birth certificates in a population-based sample with cotinine measurements. Ann Epidemiol 24: 236–239.
57. Klimentopoulou A, Antonomos GS, Papadopoulou C, Kanavidakis P, Tourvas AD, et al. (2012) Maternal smoking during pregnancy and risk for childhood leukemia: a nationwide case-control study in Greece and meta-analysis. Pediatr Blood Cancer 58: 344–351.
58. Laubenthal J, Zlobinskaya O, Poterlilowicz K, Baumgartner A, Gehula MR, et al. (2012) Cigarette smoke-induced transgenerational alterations in genome stability in cord blood of human F1 offspring. FASEB J 26: 3946–3956.
59. Rice JM (2004) Causation of nervous system tumors in children: insights from traditional and genetically engineered animal models. Toxicol Appl Pharmacol 190: 173–191.
60. Treedjany J, Boffetta P, Little J, Saracci R, Hirsch A (1994) Exposure to passive smoking during pregnancy and childhood, and cancer risk: the epidemiological evidence. Paediarr Perinat Epidemiol 8: 233–255.