HARMONIC FACTORIZATION AND RECONSTRUCTION OF THE ELASTICITY TENSOR
Marc Olive, Boris Kolev, Rodrigue Desmorat, Boris Desmorat

To cite this version:
Marc Olive, Boris Kolev, Rodrigue Desmorat, Boris Desmorat. HARMONIC FACTORIZATION AND RECONSTRUCTION OF THE ELASTICITY TENSOR. CFM 2017 - 23ème Congrès Français de Mécanique, Aug 2017, Lille, France. hal-03465304

HAL Id: hal-03465304
https://hal.science/hal-03465304
Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Factorisation harmonique et reconstruction
du tenseur d’élasticité

M. Olivea, B. Kolevb, B. Desmoratc, R. Desmoratd

a LMT-Cachan (ENS Cachan, CNRS, Université Paris Saclay), F-94235 Cachan Cedex, France - marc.olive@math.cnrs.fr
b Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France - boris.kolev@math.cnrs.fr
c Sorbonne Université, UMPC Univ Paris 06, CNRS, UMR 7190, Institut d’Alembert, F-75252 Paris Cedex 05, France - boris.desmorat@upmc.fr
d LMT-Cachan (ENS Cachan, CNRS, Université Paris Saclay), F-94235 Cachan Cedex, France - desmorat@lmt.ens-cachan.fr

Résumé :

Nous donnons des formules de reconstructions équivariantes de la partie harmonique d’ordre 4 du tenseur d’élasticité, orthotrope ou isotrope transverse, à l’aide de tenseurs d’ordre 2. Cette reconstruction s’obtient par l’intermédiaire de tenseurs covariants et d’un produit associatif et commutatif défini sur les tenseurs harmoniques, appelé produit harmonique. Une telle reconstruction équivariante est encore possible dans le cas d’un tenseur harmonique d’ordre 4 trigonal ou tétragonal, mais elle fait intervenir un tenseur covariant cubique d’ordre 4.

Abstract :

We propose equivariant reconstruction formulae of fourth order harmonic part of elasticity tensor, orthotropic or transversely isotropic, using only second order tensors. We make use of covariant tensors and of an associative and commutative product defined over harmonic tensors, named the harmonic product. In the trigonal and tetragonal case, such an equivariant reconstruction still exists, making use of a fourth order cubic covariant remainder.

Mots clefs : Anisotropie ; Factorisation harmonique ; produit harmonique ; Reconstruction tensorielle ; Tenseurs covariants.

Introduction

Que ce soit pour établir des fonctionnelles d’énergie en élasticité linéaire anisotrope [5], ou bien dans les modélisations de situations d’endommagement [3], il peut être important d’obtenir des expressions indépendantes des coordonnées du tenseur d’élasticité. Dès les années 1990, Boehler, Kirilov et Onat [2] ont mis en évidence l’intérêt des polynômes invariants d’un tenseur d’élasticité. Ces travaux faisaient suites à des travaux initiés par Rivlin, Spencer et al. [6] au
sujet de bases d’intégrités (familles génératrices de polynômes invariants), dans le cas d’espaces de tenseurs d’ordre inférieur ou égal à deux. Pour le tenseur d’élasticité (en 3D), une telle base est composée de 297 invariants [4]. Un tel résultat - qui n’est pas du tout immédiat - s’obtient essentiellement en deux étapes (dont les multiples détails se trouvent dans [4]). La première consiste à effectuer une décomposition harmonique du tenseur d’élasticité, et la deuxième consiste à exploiter des résultats issus de la théorie classique des invariants.

La décomposition harmonique d’un tenseur d’élasticité \(E \) permet d’identifier \(E \) avec un quintuplet

\[
(\alpha, \beta, a', b', H)
\]

où \(\alpha, \beta \) sont des constantes, \(a' \) et \(b' \) sont des covariants d’ordre 2 harmoniques (totalement symétriques et de trace nulle) et \(H \) est un tenseur harmonique d’ordre 4.

Nous proposons alors de factoriser la partie harmonique \(H \) du tenseur \(E \) dans certaines classes de symétrie de \(H \) : le cas orthotrope, isotrope transverse, trigonal et tétragonal. Pour cela, nous définissons le produit harmonique

\[
H_1 \ast H_2
\]

de tenseurs harmoniques \(H_1 \) et \(H_2 \). Par ce produit harmonique, nous pouvons réinterpréter un théorème de Sylvester permettant de décomposer un tenseur harmonique à l’aide des multipoles de Maxwell : pour tout tenseur harmonique \(H \) d’ordre 4, il existe 4 vecteurs \(v_1, v_2, v_3 \) et \(v_4 \) tels que

\[
H = v_1 \ast v_2 \ast v_3 \ast v_4.
\]

Cette factorisation n’est pas unique et peu constructive. Pour contourner cette difficulté, nous exploitons des covariants d’ordre 2 et les différentes classes de symétrie du tenseur \(H \), ce qui nous permet de reconstruire de façon équivariante un tel tenseur dans les classes déjà citées.

Décomposition harmonique

Un tenseur \(E \) du type de l’élasticité, ayant les symétries mineures et majeures, admet la décomposition harmonique suivante [1] :

\[
E = \alpha \mathbf{1} \otimes_{(4)} \mathbf{1} + \beta \mathbf{1} \otimes_{(2,2)} \mathbf{1} + \mathbf{1} \otimes_{(4)} a' + \mathbf{1} \otimes_{(2,2)} b' + H. \tag{1}
\]

où \(\mathbf{1} \) est le tenseur identité d’ordre 2 et où \((c)' \) dénote la partie déviatorique d’un tenseur \(c \) symétrique d’ordre 2 : \((c)' := c - \frac{1}{3} \text{tr}(c) \mathbf{1} \).

Les produits tensoriels symétrisé de Young \(\otimes_{(4)} \) et \(\otimes_{(2,2)} \) entre deux tenseurs symétriques du second ordre \(a, b \) sont définis par

\[
(a \otimes_{(4)} b)_{ijkl} = \frac{1}{6} (a_{ij} b_{kl} + b_{ij} a_{kl} + a_{ik} b_{jl} + b_{ik} a_{jl} + a_{il} b_{jk} + b_{il} a_{jk}),
\]

\[
(a \otimes_{(2,2)} b)_{ijkl} = \frac{1}{6} ((2a_{ij} b_{kl} + 2b_{ij} a_{kl} - a_{ik} b_{jl} - a_{jl} b_{ik} - b_{ik} a_{jl} - b_{jl} a_{ik}).
\]

Le produit tensoriel \(\otimes_{(4)} \) est le produit tensoriel symétrique, noté aussi \(\circ \).

Dans la décomposition harmonique (1), \(\alpha, \beta \) sont des scalaires et \(a', b' \) sont des tenseurs har-
moniques d’ordre 2 (i.e symétriques déviatoriques) définis par
\[\alpha = \frac{1}{15} (\text{tr} d + 2\text{tr} v) \quad \quad \quad a' = \frac{2}{7} (d' + 2v') \]
\[\beta = \frac{1}{6} (\text{tr} d - \text{tr} v) \quad \quad \quad b' = 2 (d' - v') \]
avec \(d := \text{tr}_{12} E \) (tenseur de dilatance) et \(v := \text{tr}_{13} E \) (tenseur de Voigt), et où \(\text{tr} \) est l’opération de trace.
La partie harmonique \((E)_0 := H \) est la projection orthogonale de \(E \) sur l’espace des tenseurs harmoniques d’ordre 4. Plus précisément
\[(E)_0 = E - \alpha 1 \otimes (4) 1 - \beta 1 \otimes (2, 2) 1 - 1 \otimes (4) a' - 1 \otimes (2, 2) b'. \] (2)

Produit harmonique

Soient deux vecteurs \(\mathbf{v}_1 \) et \(\mathbf{v}_2 \) de \(\mathbb{R}^3 \). On en déduit le tenseur \(\mathbf{v}_1 \otimes \mathbf{v}_2 \) d’ordre 2 et le produit symétrique
\[\mathbf{v}_1 \odot \mathbf{v}_2 := \frac{1}{2} (\mathbf{v}_1 \otimes \mathbf{v}_2 + \mathbf{v}_2 \otimes \mathbf{v}_1) \]
qui est donc un tenseur d’ordre 2 symétrique \(c \) dont on peut considérer sa partie harmonique (i.e sa partie déviatorique)
\[c' := c - \frac{1}{3} \text{tr}(c) 1 \]
On peut ainsi définir le produit harmonique \(\mathbf{v}_1 * \mathbf{v}_2 \) par
\[\mathbf{v}_1 * \mathbf{v}_2 := (\mathbf{v}_1 \odot \mathbf{v}_2)' . \]
Dans le cas de deux tenseurs harmoniques \(\mathbf{h}_1 \) et \(\mathbf{h}_2 \) d’ordre 2, on peut suivre un processus similaire : on commence par construire le tenseur totalement symétrique \(\mathbf{h}_1 \odot \mathbf{h}_2 \), puis on ne conserve que sa partie harmonique, ce qui donne ainsi
\[\mathbf{h}_1 * \mathbf{h}_2 := \mathbf{h}_1 \odot \mathbf{h}_2 - \frac{2}{7} 1 \odot (\mathbf{h}_1 \mathbf{h}_2 + \mathbf{h}_2 \mathbf{h}_1) + \frac{2}{35} \text{tr}(\mathbf{h}_1 \mathbf{h}_2) 1 \odot 1 . \]
Notons qu’il est possible de définir le produit harmonique de deux tenseurs harmoniques \(\mathbf{H}_1 \) et \(\mathbf{H}_2 \) d’ordre quelconque.

Factorisation harmonique

Théorème 4.1 (Sylvester) Pour tout tenseur harmonique \(H \) d’ordre \(n \), il existe \(n \) vecteurs \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) de l’espace tels que
\[H = \mathbf{v}_1 * \ldots * \mathbf{v}_n . \]
Ces vecteurs ne sont pas uniques : toute famille \(\lambda_i \mathbf{v}_i \) avec le produit des \(\lambda_i \) qui vaut 1 est encore solution.
Pour obtenir une telle famille de vecteur, on considère le polynôme homogène
\[h(x_1, x_2, x_3) := H_{1121314} x_1 x_2 x_3, \quad (x_1, x_2, x_3) \in \mathbb{R}^3 \]
puis la forme binaire (polynôme homogène à deux variables complexes)

\[f(u, v) := h \left(\frac{u^2 - v^2}{2}, \frac{u^2 + v^2}{2i}, uv \right), \quad (u, v) \in \mathbb{C}^2 \]

et à toute racine \(\alpha \in \mathbb{C} \) on associe un vecteur \(v = (v_1, v_2, v_3) \) (de norme 1) défini par

\[v_1 = \frac{2}{|\alpha|^2 + 1} \Re(\alpha), \quad v_2 = \frac{2}{|\alpha|^2 + 1} \Im(\alpha), \quad v_3 = \frac{|\alpha|^2 - 1}{|\alpha|^2 + 1} \]

Si l’on pose \(h_1 = v_1 \ast v_2, h_2 = v_3 \ast v_3 \) on a alors la factorisation harmonique

\[H = h_1 \ast h_2 \]

du tenseur harmonique d’ordre 4 à l’aide de tenseurs harmoniques d’ordre deux \(h_1, h_2 \) (symétriques déviatoriques). A nouveau la factorisation n’est pas unique.

Formules de reconstruction par des covariants

Pour tout tenseur harmonique \(H \) d’ordre 4, on définit des covariants d’ordre 2 :

\[d_2(H) := \text{tr}_{13}H^2, \quad d_3(H) := \text{tr}_{13}H^3, \quad d_4(H) := d_2^2(H), \quad d_5(H) := d_2(H)(Hd_2(H)). \]

où pour \(A, B \) d’ordre 4 et \(b \) d’ordre 2 :

\[(AB)_{ijkl} := A_{ijpq}B_{pqkl}, \quad (Ab)_{ij} := A_{ijpq}b_{pq}. \]

Rappelons ici que pour toute nouvelle orientation du matériau correspondant à une rotation \(g \) du groupe des rotations \(SO(3, \mathbb{R}) \), on obtient un nouveau tenseur \(\mathbf{H} \) défini par :

\[\mathbf{H}_{ijkl} := g_{ip}g_{jq}g_{kr}g_{ls}H_{pqrs} \]

où on a adopté la convention d’Einstein sur les indices répétés. Cela définit en fait une action du groupe \(SO(3, \mathbb{R}) \), noté \(g \ast \mathbf{H} = \mathbf{H} \). On définit de même une action de \(SO(3, \mathbb{R}) \) sur tout espace de tenseurs.

Les tenseurs \(d_k \) sont des covariants car ils définissent des applications équivariantes de l’espace des tenseurs harmoniques d’ordre 4 vers l’espace des tenseurs symétriques d’ordre 2 :

\[d_k(g \ast H) = g \ast d_2 \]

On définit enfin les invariants : \(J_k := \text{tr}(d_k(H)) \).

Remarque : De même, les tenseurs de dilatation \(d(E) = \text{tr}_{12}E \) et de Voigt \(v(E) = \text{tr}_{13}E \) sont des covariants du tenseur d’élasticité.
Cas isotope transverse

Théorème 5.1 Pour tout tenseur harmonique H d’ordre 4 isotope transverse, on a

$$H = \frac{63}{25} J_{\delta}(H) \, d'(H) \ast d'_2(H).$$

Cas orthotrope

Pour tout tenseur harmonique H d’ordre 4 orthotrope, on note

$$H = \begin{pmatrix}
\lambda_2 + \lambda_3 & -\lambda_3 & -\lambda_2 & 0 & 0 & 0 \\
-\lambda_3 & \lambda_3 + \lambda_1 & -\lambda_1 & 0 & 0 & 0 \\
-\lambda_2 & -\lambda_1 & \lambda_2 + \lambda_1 & 0 & 0 & 0 \\
0 & 0 & 0 & -2\lambda_1 & 0 & 0 \\
0 & 0 & 0 & 0 & -2\lambda_2 & 0 \\
0 & 0 & 0 & 0 & 0 & -2\lambda_3 \\
\end{pmatrix}$$

sa représentation de Kelvin, qui est sa représentation matricielle dans la base des tenseurs d’ordre 2

$$e_i \otimes e_i, \quad \frac{\sqrt{2}}{2} (e_i \otimes e_j + e_j \otimes e_i)$$

où e_i est une base orthonormée qui correspond aux axes d’orthotropie du tenseur. On note

$$\lambda(H) := \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

et on définit les invariants rationnels suivants :

$$\sigma_1 = \frac{9(3J_7 - 3J_2J_5 + 3J_3J_4 - J_2J_3)}{2(6J_6 - 9J_2J_4 - 20J_3^2 + 3J_2^2)},$$

$$\sigma_2 = \frac{4}{7} \sigma_1^2 - \frac{1}{14} J_2,$$

$$\sigma_3 = -\frac{1}{24} J_3 + \frac{1}{7} \sigma_1^3 - \frac{1}{56} \sigma_1 J_2.$$

qui, évalués sur la forme normale, sont

$$\sigma_1 := \lambda_1 + \lambda_2 + \lambda_3,$$

$$\Delta_3 := (\lambda_2 - \lambda_1)(\lambda_2 - \lambda_3)(\lambda_3 - \lambda_1)^2,$$

$$\sigma_2 := \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3,$$

$$\sigma_3 := \lambda_1\lambda_2\lambda_3,$$

$$\sigma_{eq} := \sqrt{\sigma_1^2 - 3\sigma_2},$$

$$\mathcal{L} := \frac{1}{\sigma_{eq}^3} \left(\sigma_3^3 - \frac{9}{2} \sigma_1 \sigma_2 + \frac{27}{2} \sigma_3 \right),$$

la dernière quantité \mathcal{L} étant l’invariant de Lode.

Lemme 5.1 Soit H un tenseur harmonique d’ordre 4 orthotrope. Alors la partie déviatorique
\(\lambda'(H) \) du tenseur covariant \(\lambda(H) \) d'ordre 2 s'écrit

\[
\lambda'(H) = \frac{1}{8\Delta^3} \left(\alpha_2 d'_2(H) + \alpha_3 d'_3(H) - 54\sigma_3 d'_4(H) + 11\sigma_2 d'_5(H) \right)
\]

où

\[
\alpha_2 := 2(112\sigma_1^2\sigma_3 + 21\sigma_1\sigma_2^2 - 270\sigma_2\sigma_3), \quad \alpha_3 := 8(14\sigma_1\sigma_3 - 11\sigma_1^2\sigma_2 + 15\sigma_2^2).
\]

Théorème 5.2 Pour tout tenseur harmonique orthotrope \(H \) d'ordre 4 on a

\[
H = h_1 \lambda'(H) \ast \lambda'(H) + 2h_2 \lambda'(H) \ast (\lambda'(H)^2)' + h_3 (\lambda'(H)^2)' \ast (\lambda'(H)^2)',
\]

où \(\lambda'(H) \) est défini par (3) et les trois invariants \(h_k \) sont donnés par

\[
h_1 := \frac{5\sigma_1 + 7\mathcal{L}_{eq}}{2(1 - \mathcal{L}^2)\sigma_{eq}^2}, \quad h_2 := \frac{3(5\mathcal{L}_{eq} + 7\sigma_{eq})}{2(1 - \mathcal{L}^2)\sigma_{eq}^4}, \quad h_3 := \frac{9(5\sigma_1 + 7\mathcal{L}_{eq})}{2(1 - \mathcal{L}^2)\sigma_{eq}^4}.
\]

Cas tétragonal

Théorème 5.3 Pour tout tenseur tétragonal harmonique \(H \) d'ordre 4 on a

\[
H = \frac{28K_4^3(5J_5 + \sqrt{K_10})}{L_4^2} d'_2(H) \ast d'_2(H) + \mathcal{C}(H)
\]

où

\[
\mathcal{C}(H) = \left(1 + \frac{14J_5(5J_5 + \sqrt{K_10})}{L_4} \right) H - \frac{14K_4(5J_5 + \sqrt{K_10})}{L_4^2} (H^2)_0
\]

est un covariant cubique, \((H^2)_0 \) étant la partie harmonique de \(H^2 \) (voir Eq. (2)) et

\[
K_4 = 3J_4 - J_2^2 > 0, \quad K_10 = 2J_5K_4^2 - 35J_5^2 > 0, \quad L_4 = K_10 - 25J_5^2 \neq 0.
\]

Cas trigonal

Théorème 5.4 Pour tout tenseur trigonal harmonique \(H \) d'ordre 4 on a

\[
H = \frac{224K_4^3(10J_5 + \sqrt{K_10})}{M_4^2} d'_2(H) \ast d'_2(H) + \tilde{\mathcal{C}}(H)
\]

où

\[
\tilde{\mathcal{C}}(H) = \left(1 + \frac{7J_5(10J_5 + \sqrt{K_10})}{M_4} \right) H + \frac{14K_4(10J_5 + \sqrt{K_10})}{3M_4} (H^2)_0
\]

est un covariant cubique, \((H^2)_0 \) étant la partie harmonique de \(H^2 \) (voir Eq. (2)) et

\[
K_4 = 3J_4 - J_2^2 > 0, \quad K_10 = 2J_5K_4^2 - 35J_5^2 > 0, \quad M_4 = K_10 - 100J_5^2 \neq 0.
\]
Références

[1] Backus, G. A geometrical picture of anisotropic elastic tensors. Rev. Geophys., 8 (1970) 633–671

[2] Boehler, J.-P. and Kirillov, Jr., A. A. and Onat, E. T. On the polynomial invariants of the elasticity tensor. J. Elasticity, 2 (1994) 97–110

[3] F. A. Leckie and E. T. Onat, Physical Non-Linearities in Structural Analysis, J. Hult and J. Lemaitre eds, Springer Berlin, 1980, 140–155.

[4] Olive, M., Kolev, B. and Auffray, N., A minimal integrity basis for the elasticity tensor, Available at https://hal.archives-ouvertes.fr/hal-01323543, Preprint in Arch. Rational Mech. Anal., 2016.

[5] Spencer, A., Constitutive theory for strongly anisotropic solids, A. J. M. Spencer Ed., CISM Courses and Lectures No. 282, Springer Wien., 1 (1984) 1–32.

[6] Spencer, A. J. M. and Rivlin, R. S., Isotropic integrity bases for vectors and second-order tensors. I, Arch. Rational Mech. Anal., 9 (1962), pp. 45–63.