Mouse Melanoma Cell Migration is Dependent on Production of Reactive Oxygen Species under Normoxia Condition

Yun-Sun Im, Yun-Kyoung Ryu, and Eun-Yi Moon*

Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea

Abstract

Cell migration plays a role in many physiological and pathological processes. Reactive oxygen species (ROS) produced in mammalian cells influence intracellular signaling processes which in turn regulate various biological activities. Here, we investigated whether melanoma cell migration could be controlled by ROS production under normoxia condition. Cell migration was measured by wound healing assay after scratching confluent monolayer of B16F10 mouse melanoma cells. Cell migration was enhanced over 12 h after scratching cells. In addition, we found that ROS production was increased by scratching cells. ERK phosphorylation was also increased by scratching cells but it was decreased by the treatment with ROS scavengers, N-acetylcycteine (NAC). Tumor cell migration was inhibited by the treatment with PD98059, ERK inhibitor, NAC or DPI, well-known ROS scavengers. Tumor cell growth as judged by succinate dehydrogenase activity was inhibited by NAC treatment. When mice were intraperitoneally administered with NAC, the intracellular ROS production was reduced in peripheral blood mononuclear cells. In addition, B16F10 tumor growth was significantly inhibited by in vivo treatment with NAC. Collectively, these findings suggest that tumor cell migration and growth could be controlled by ROS production and its downstream signaling pathways, in vitro and in vivo.

Key Words: Reactive oxygen species, N-acetylcycteine, ERK, Cell migration, Tumor growth
tion could be controlled by ROS production under normoxia condition. Cell migration was measured by wound healing assay with scratching confluent monolayer of B16F10 mouse melanoma cells. We found that ROS production was increased by scratching monolayer of cells. B16F10 cell migration in vitro and tumor growth in vivo were inhibited by the treatment with ROS scavengers, N-acetylcysteine (NAC). Data suggest that tumor cell migration and growth could be controlled by ROS production and its downstream signaling pathways.

MATERIALS AND METHODS

Mice and reagents
C57BL/6 mice were obtained from Daehan Biolink (Chungju, Korea). Animals were maintained in authorized facility where the temperature at 20-22°C, the humidity at 50-60%, the dark/light cycles with 12 hour. All animal procedures were conducted in accordance with the guidelines of the institutional Animal Care and Use Committee, Sejong University. Antibodies which are reactive with ERK and phospho-ERK were from Cell Signalling (Beverly, MA, USA). PD98059 was obtained from Calbiochem (La Jolla, CA, USA). DCF-DA was purchased from Molecular Probe (Eugene, OR, USA). Except where indicated, all other materials are obtained from the Sigma chemical company (St. Louis, MO, USA).

Cell purification and culture
B16F10 mouse melanoma cells were obtained from the Korea Research Institute of Bioscience and Biotechnology (KRIBB) cell bank (Taejeon, Korea). Cells were maintained and cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (Hyclone, Kansas City, MO, USA), 2 mM L-glutamine, 100 units/ml penicillin, and 100 units/ml streptomycin. Blood was drawn by eye puncture in EDTA tubes from control and NAC-treated mice. Peripheral blood mononuclear cells (PBMCs) were obtained by density gradient centrifugation over Histopaque 1077 (Sigma Chemical Co., St. Louis, MO, USA). Then, mouse PBMCs were washed and re-suspended in DMEM supplemented with 10% fetal bovine serum.

Measurement of cell migration
When B16F10 cell density was confluent in 35 mm culture dish (Corning, NY, USA), three wound lines in the form of a cross were made by scratching cellular monolayer with a plastic pipette tip. Then, floating cells were washed out and fresh medium was added (Moon et al., 2010; Ryu et al., 2010). As the incubation time passed under normoxia condition, the width of scratch was narrowed and it was recorded by taking photographs under phase contrast microscope from 6 h after the scratch.

Flow cytometric analyses
To analyze intracellular amount of ROS, B16F10 cells (1×10^6) and mouse PBMCs were stained with fluorescence dye, DCF-DA (Molecular Probe, Eugene, OR) for 30 minute (Oh and Moon, 2010). Then, 10,000 cells were acquired to analyze intracellular amount of ROS by CELLQuest™ software in FACScan/caliber™ (Becton Dickinson, Franklin Lakes, NJ, USA).

Western blot analysis
Cells were lysed in ice-cold lysis buffer, containing 0.5% Nonidet P-40 (vol/vol.) in 20 mM Tris-HCl, at a pH of 8.3; 150 mM NaCl; protease inhibitors (2 μg/ml aprotinin, pepstatin, and chymostatin; 1 μg/ml leupeptin and pepstatin; 1 mM phenylmethyl sulfonfyl fluoride (PMSF); and 1 mM Na4VO3. Lysates were incubated for 30 minutes on ice prior to centrifugation at 14,000 rpm for 5 minute at 4°C. Proteins in the supernatant were denatured by boiling for 5 minute in sodium dodecyl sulfate (SDS) sample buffer. Proteins were separated by 12% SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and then transferred to nitrocellulose membranes. Following this, proteins were visualized with enhanced chemiluminescence (ECL) kit (Amersham, Buckinghamshire, UK). Western blot analysis could be controlled by ROS production under normoxia condition. Cell migration was measured by wound healing assay with scratching confluent monolayer of B16F10 mouse melanoma cells. We found that ROS production was increased by scratching monolayer of cells. B16F10 cell migration in vitro and tumor growth in vivo were inhibited by the treatment with ROS scavengers, N-acetylcysteine (NAC). Data suggest that tumor cell migration and growth could be controlled by ROS production and its downstream signaling pathways.

Fig. 1. Cell migration was induced by scratching monolayer of cells. (A) When B16F10 cell density was confluent in 35 mm culture dish, wound lines were made by scratching cellular monolayer with a plastic pipette tip. Cells were incubated for an appropriate time under normoxia condition. The width of scratch was recorded by taking photographs under phase contrast microscope. Data were representative of three experiments (top). Empty area in each time point was quantified with NIH image analysis software (version 1.62) and compared with that in the initiation of cell migration. Percentage of cell migration was represented with bar graph. Data in bar graph represent mean ± SED. **p<0.01, Significantly different from the initiation of cell migration (bottom). (B) B16F10 cells were incubated under normoxia condition for 1 h after scratching cellular monolayer. Cells were stained with fluorescence dye, 5 μM DCF-DA for 30 minute. Then, 10,000 cells were analyzed by flow cytometer.
transfer, equal loading of protein was verified by Ponceau staining. The membranes were blocked with 5% skim milk in Tris-buffered saline with Tween 20 (TBST) (10 mM Tris-HCl, pH 7.6; 150 mM NaCl; 0.5% Tween 20), then incubated with the indicated antibodies. Bound antibodies were visualized with HRP-conjugated secondary antibodies with the use of enhanced chemiluminescence (ECL) (Pierce, Rockford, IL, USA).

MTT assay

B16F10 cells were incubated in 96 well plates and treated with PD98059 or NAC for 48 h. Then, we quantified cell survival using colorimetric assay described for measuring intracellular succinate dehydrogenase content with MTT [3(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (Denizot and Lang, 1986). Cells were then incubated with 50 μg/ml of MTT at 37°C for 2 h. Formazan crystals were dissolved in dimethylsulfoxide (DMSO). Optical density (OD) was read at 540 nm.

In vivo tumor growth

C57BL/6 mice were subcutaneously implanted with 2×10⁶ B16F10 mouse melanoma cells. N-acetylcysteine (NAC) was intraperitoneally administered at dose of 32 mg/kg into mice everyday (Tonomura et al., 2003). Tumor growth was monitored by the measurement of short axis and long axis of tumor mass with vernier calipers (Mizuyo, Japan). Tumor volume was calculated by the multiplication of (long axis)/2 and (short axis)².

Statistical analyses

Experimental differences were tested for statistical significance using ANOVA and Student’s t-test. p value of <0.05 was considered to be significant.

RESULTS

Reactive oxygen species (ROS) production was increased during tumor cell migration

We investigated whether reactive oxygen species (ROS) are involved in tumor cell migration. We used wound migration assay by scratching a monolayer of mouse B16F10 melanoma cells. When a monolayer of B16F10 cells was scratched, wound migration was enhanced as compared to the initiation of assay (Fig. 1A). ROS production was also increased by scratching a monolayer of B16F10 cells (Fig. 1B). To confirm the effect of ROS on wound migration, B16F10 cells were incubated in the presence or absence of N-acetylcysteine (NAC) or diphenylene iodonium (DPI), well-known ROS scavengers after scratching tumor cells. As shown in Fig. 2A and B, wound migration was reduced by the incubation with NAC or DPI. Data suggest that tumor cell migration could be induced by ROS produced by scratching a monolayer of B16F10 cells.

ERK phosphorylation was dependent on ROS production

Previous report showed that extracellular signal-regulated kinase (ERK) was stimulated by ROS which was constitutively increased by the deletion of antioxidant enzyme, peroxiredoxin II (Prx II) (Han et al., 2006). Therefore, we examined whether ERK phosphorylation could be changed by wounding a monolayer of tumor cells and during migration. As shown in Fig. 3A, ERK phosphorylation was increased by wounding B16F10 cells. In addition, ERK phosphorylation was inhibited by the incubation with NAC or DPI. Data suggest that tumor cell migration could be induced by ROS produced by scratching a monolayer of B16F10 cells.
Tumor cell migration could be induced by ERK phosphorylation through ROS production. To confirm the involvement of ERK phosphorylation in tumor cell migration, we treated B16F10 cells with PD98059, ERK inhibitor. Wound migration of B16F10 cells was decreased by the treatment with PD98059 (Fig. 4). It suggests that tumor cell migration could be induced by ERK phosphorylation through ROS production.

Tumor growth was inhibited by the administration of NAC into mice

As wound migration of B16F10 cells was decreased by the treatment with NAC Fig. 2A or PD98059 (Fig. 4), we also tested their effect on tumor cell growth. While B16F10 cell growth was retarded by the incubation with NAC, no significant changes were found in the group incubated with 20 μM PD98059 (Fig. 5). It suggests that NAC might be effective anti-tumor agent. Then, we examined whether NAC administration led to the inhibition of tumor growth. When mice were administered with NAC, B16F10 melanoma growth was significantly reduced by the administration with NAC to the mice (Fig. 6A). In addition, ROS production in mouse PBMCs was reduced by NAC administration (Fig. 6B). Data suggest that tumor cell growth could be effectively interfered by scavenging ROS or by blocking their production in vivo.

DISCUSSION

Cell migration is an important multistep cycle in many physiological and pathological processes, including tumor metastasis (Singer and Kupfer, 1986; Lee et al., 1993; Lauffenburger and Horwitz, 1996). Many cellular factors including Arp2/3 complex, profilin, and FAK, are required in cell migration (Welch et al., 1997; Borisy and Svitkina, 2000; Luedde, 2010). Tumor cell migration is enhanced by angiogenesis, which is induced by soluble factors such as VEGF under hypoxia (Folkman, 1990). VEGF expression is stimulated by transcri}-
Tumor growth was decreased by the administration of NAC. (A, B) Mice were subcutaneously implanted with B16F10 mouse melanoma cells. Then, mice were intraperitoneally injected with 32 mg NAC/kg once a day for 14 d. Tumor size was measured daily with Vernier calipers. Tumor volume was calculated with the equation of the [(long axis)/2] ×(short axis). Tumor size was monitored daily with Vernier calipers. Tumor volume was calculated with the equation of the [(long axis)/2] ×(short axis).

Fig. 6. Tumor growth was decreased by the administration of NAC. (A, B) Mice were subcutaneously implanted with B16F10 mouse melanoma cells. Then, mice were intraperitoneally injected with 32 mg NAC/kg once a day for 14 d. Tumor size was measured daily with Vernier calipers. Tumor volume was calculated with the equation of the [(long axis)/2] ×(short axis).

cell migration, data demonstrate that tumor cell migration and growth could be increased through ROS production and downstream signaling pathways under normoxia condition. It suggests that ROS could be a modulator to control tumor cell migration and growth through the regulation of tumor cell microenvironment and these findings might be useful to develop anti-metastatic therapeutics.

ACKNOWLEDGMENTS

This work was supported by grants (#0920270) from National Cancer Control Program, Ministry of Health and Welfare and National Cancer Control Program (#2010-0018545) through National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST), Korea.

REFERENCES

Aghajanian, A., Wittchen, E. S., Campbell, S. L. and Burridge, K. (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 4, e68045.

Bonnay, G. G. and Svitkina, T. M. (2000) Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12, 104-112.

Cheng, G. C., Schulze, P. C., Lee, R. T., Sylvan, J., Zetter, B. R. and Huang, H. (2004) Oxidative stress and thioredoxin-interacting protein promote invasation of melanoma cells. Exp. Cell Res. 300, 297-307.

Chen, A. M., Don-Salu-Hewage, A. S. and Hinton, C. V. (2011) ROS enhances CXCR4-mediated functions through inactivation of PTEN in prostate cancer cells. Biochem. Biophys. Res. Commun. 410, 195-200.

Dempsey, F. and Lang, R. (1986) Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods. 89, 271-277.

Finkel, T. (2003) Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247-254.

Folkman, J. (1990) What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4-6.

Han, Y. H., Kwon, J. H., Yu, D. Y. and Moon, E. Y. (2006) Inhibitory effect of peroxiredoxin II (Prx II) on Ras-ERK-NFkappaB pathway in mouse embryonic fibroblast (MEF) senescence. Free Radic. Res. 40, 1182-1189.

Jiang, B. H., Liu, L. Z., Schafner, R., Flynn, D. C. and Barnett, J. B. (2006) A novel role for 3, 4-dichloropropananilide (DCPA) in the inhibition of prostate cancer cell migration, proliferation, and hypoxia-inducible factor 1alpha expression. BMC. Cancer 6, 204.

Kim, H. S. and Moon, E. Y. (2009) Reactive oxygen species-induced expression of B cell activating factor (BAFF) is independent of toll-like receptor 4 and myeloid differentiation primary response gene 88. Biomol. Ther. 17, 144-150.

Kim, J. S., Huang, T. Y. and Bokoch, G. M. (2009) Reactive oxygen species regulate a slingshot-cofilin activation pathway. Mol. Biol. Cell. 20, 2650-2660.

Laufenburger, D. A. and Horwitz, A. F. (1996) Cell migration: a physically integrated molecular process. Cell 84, 359-369.

Lee, J., Ishihara, A., Theriot, J. A. and Jacobson, K. (1993) Principles of locomotion for simple-shaped cells. Nature 362, 167-171.

Lei, Y., Huang, K., Gao, C., Lau, Q. C., Pan, H., Xie, K., Li, J., Liu, R., Zhang, T., Xie, N., Nai, H. S., Wu, H., Dong, Q., Zhao, X., Nice, E. C., Huang, C. and Wei, Y. (2011) Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells. Mol. Cell Proteomics. 10, M110.005397.

Lin, S., Sun, L., Hu, J., Wan, S., Zhao, R., Yuan, S. and Zhang, L. (2009) Chemokine C-X-C motif receptor 6 contributes to cell migration during hypoxia. Cancer Lett. 279, 108-117.

Luanpitspong, S., Talbott, S. J., Rojansakul, Y., Nimmanit, U., Pongrakhanan, V., Wang, L. and Chanyorachote, P. (2010) Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J. Biol. Chem. 285, 38832-38840.

Luedde, T. (2010) MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma. Hepatology 52, 1164-1166.

Maulik, N. and Das, D. K. (2002) Redox signaling in vascular angiogenesis. Free Radic. Biol. Med. 33, 1047-1058.

Moon, E. Y. (2008) Serum deprivation enhances apoptotic cell death by increasing mitochondrial enzyme activity. J. Biol. Chem. 283, 2119-2128.

Moon, E. Y., Han, Y. H., Lee, D. S., Han, Y. M. and Yu, D. Y. (2004) Reactive oxygen species induced by the deletion of peroxiredoxin II (PrxII) increases the number of thymocytes resulting in the enlargement of PrxII-null thymus. Eur. J. Immunol. 34, 2129-2138.

Moon, E. Y., Im, Y. S., Ryu, Y. K. and Kang, J. H. (2010) Actin-sequestering protein, thymosin beta-4, is a novel hypoxia responsive regulator. Clin. Exp. Metastasis. 27, 601-609.

Moon, E. Y., Lee, J. H., Lee, J. W., Song, J. H. and Pyo, S. Y. (2011) ROS/Epac1-mediated Rap1/NF-kappaB activation is required for the expression of BAFF in Raw264.7 murine macrophages. Cell Signal 23, 1479-1488.

Oh, J. M., Ryu, Y. K., Lim, J. S. and Moon, E. Y. (2010) Hypoxia induces paclitaxel-resistance through ROS production. Biomolecules & Therapeutics. 18, 145-151.

Oh, J. M. and Moon, E. Y. (2010) Actin-sequestering protein, thymosin beta-4, induces paclitaxel resistance through ROS/HIF-1alpha stabilization in HeLa human cervical tumor cells. Life Sci. 87, 286-293.

Park, S. Y., Jeong, K. J., Lee, J., Yoon, D. S., Choi, W. S., Kim, Y. K., Im, et al. ROS-dependent Scratch-induced Mouse Melanoma Cell Migration

169

www.biomolther.org
Han, J. W., Kim, Y. M., Kim, B. K. and Lee, H. Y. (2007) Hypoxia enhances LPA-induced HIF-1alpha and VEGF expression: their inhibition by resveratrol. Cancer Lett. 258, 63-69.

Rhee, S. G., Bae, Y. S., Lee, S. R. and Kwon, J. (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE. 2000, pe1.

Ryu, Y. K., Im, Y. S. and Moon, E. Y. (2010) Cooperation of actin-sequestering protein, thymosin β-4 and hypoxia inducible factor-1α in tumor cell migration. Oncol. Rep. 24, 1389-1394.

Shim, H., Shim, E., Lee, H., Hahn, J., Kang, D., Lee, Y. S. and Jeoung, D. (2006) CAGE, a novel cancer/testis antigen gene, promotes cell motility by activation ERK and p38 MAPK and downregulating ROS. Mol. Cells 21, 367-375.

Singer, S. J. and Kupfer, A. (1986) The directed migration of eukaryotic cells. Annu. Rev. Cell Biol. 2, 337-365.

Tobar, N., Guerrero, J., Smith, P. C. and Martinez, J. (2010) NOX4-dependent ROS production by stromal mammary cells modulates epithelial MCF-7 cell migration. Br. J. Cancer 103, 1040-1047.

Ryu, Y. K., Im, Y. S. and Moon, E. Y. (2010) Cooperation of actin-sequestering protein, thymosin β-4 and hypoxia inducible factor-1α in tumor cell migration. Oncol. Rep. 24, 1389-1394.

Shim, H., Shim, E., Lee, H., Hahn, J., Kang, D., Lee, Y. S. and Jeoung, D. (2006) CAGE, a novel cancer/testis antigen gene, promotes cell motility by activation ERK and p38 MAPK and downregulating ROS. Mol. Cells 21, 367-375.

Singer, S. J. and Kupfer, A. (1986) The directed migration of eukaryotic cells. Annu. Rev. Cell Biol. 2, 337-365.