EFFECTIVE EQUIDISTRIBUTION OF PRIMITIVE RATIONAL POINTS ON EXPANDING HOROSPHERES

DANIEL EL-BAZ, BINGRONG HUANG, AND MIN LEE

Abstract. We prove an effective version of a result due to Einsiedler, Mozes, Shah and Shapira who established the equidistribution of primitive rational points on expanding horospheres in the space of unimodular lattices in at least 3 dimensions. Their proof uses techniques from homogeneous dynamics and relies in particular on measure-classification theorems — an approach which does not lend itself to effective bounds. We implement a strategy based on spectral theory, Fourier analysis and Weil’s bound for Kloosterman sums in order to quantify the rate of equidistribution for a specific horospherical subgroup in any dimension. We apply our result to provide a rate of convergence to the limiting distribution for the appropriately rescaled diameters of random circulant graphs.

Contents

1. Introduction 1
2. Primitive rational points on horospheres 4
3. Fourier analysis on the space of lattice translates 6
4. Proof of the main theorem 11
 4.1. The main term: effective equidistribution of Hecke points 12
 4.2. The first error term 13
 4.3. The second error term 14
 4.4. The third error term 16
5. An application: diameters of random circulant graphs 17
References 19

1. Introduction

In recent years, there has been an increased focus on obtaining effective versions of equidistribution theorems in homogeneous dynamics. For the method it introduced, we single out Strömbergsson’s breakthrough paper [Str15] and mention the related work by Browning and Vinogradov [BV16]. Particularly interesting targets, of which these two papers are instances, consist of results whose proof relies on rigidity theorems such as Ratner’s, which are by nature not effective. The primary purpose of this paper is to accomplish this to get an effective version of a result due to Einsiedler, Mozes, Shah and Shapira [EMSS16]. Their theorem was a conjecture due to Marklof, who had been able to prove an averaged version thereof and made great use of it [Mar10a]. His proof relied on the mixing property of a certain diagonal flow on the space of unimodular lattices and was made effective, using estimates on the decay of matrix coefficients, by Li [Li15] who applied it to obtain a quantitative version.

Date: November 12, 2018.
of Marklof’s result concerning the distribution of Frobenius numbers. An article by Marklof and the third author [LM18] provided a rate of convergence for the Einsiedler–Mozes–Shah–Shapira result for a certain horospherical subgroup in the two-dimensional setting according to the set-up below. We now state our main result, which yields such a rate in any dimension for certain horospherical subgroups.

Define, for $d \geq 1$ and $q \geq 1$,

$$R_q = \{ r \in (\mathbb{Z} \cap [1, q])^d : \gcd(r, q) = 1 \}$$

and

$$D(q) = \text{diag}(q^{\frac{1}{2}}, \ldots, q^{\frac{1}{2}}, q^{-1}) \in SL_{d+1}(\mathbb{R}).$$

Let $\Gamma = SL_{d+1}(\mathbb{Z})$ and define

$$H = \left\{ \begin{pmatrix} A & \mathbf{v} \\ \mathbf{0} & 1 \end{pmatrix} : A \in SL_d(\mathbb{R}), \mathbf{v} \in \mathbb{R}^d \right\} \subset SL_{d+1}(\mathbb{R}).$$

Denote by μ_H the H-invariant Haar probability measure on $\Gamma \backslash H$. Finally, for $x \in \mathbb{R}^d$, define

$$n_+(x) = \begin{pmatrix} I_d & \mathbf{0} \\ x & 1 \end{pmatrix} \in SL_{d+1}(\mathbb{R}).$$

We note that the group of all matrices of this form is the expanding horospherical subgroup corresponding to the semigroup of matrices of the form $\text{diag}(e^t, \ldots, e^t, e^{-dt}) \in SL_{d+1}(\mathbb{R})$ with $t > 0$.

Let $C_b^k(\Gamma \backslash H \times \mathbb{T}^d)$ be the space of k times continuously differentiable functions with all derivatives bounded and denote by $\| \cdot \|_{C_b^k}$ the Sobolev norm (see (1.1)). Our main result is the following theorem.

Theorem 1.1. For every $d \geq 3$, every $\varepsilon > 0$ and every integer $k \geq 2d^2 - d + 1$, there exists a constant $c > 0$ such that for every function $f \in C_b^k(\Gamma \backslash H \times \mathbb{T}^d)$ and every $q \in \mathbb{Z}_{\geq 1}$,

$$\left| \frac{1}{\# R_q} \sum_{r \in R_q} f \left(\Gamma n_+ \left(\frac{1}{q} r \right) D(q), \frac{1}{q} r \right) - \int_{\Gamma \backslash H \times \mathbb{T}^d} f d\mu_H \right| \leq c\| f \|_{C_b^k} q^{-\frac{3}{2} + \varepsilon} + \frac{d^2(2k^2 - d + 1)}{2k^2} + \varepsilon.$$}

Remark 1.1. For $d = 1$, this result was already known to Marklof in an effective form, with rate $O(f(q^{-\frac{3}{2} + \varepsilon}))$ [Mar10b]. See also [EMSS16, Section 2.1] for a more detailed presentation of the argument. We merely mention that it relies on Weil’s bound for Kloosterman sums as well, but is otherwise much simpler.

Remark 1.2. We note that our proof also works when $d = 2$ and hence recovers the previous result by Marklof and the third author [LM18]. In this case, the error term becomes $O \left(\| f \|_{C_b^k} q^{-\frac{3}{2} + \varepsilon} (q^\theta + q^{\frac{(2k-1)}{2}}) \right)$, where $\theta \geq 0$ is a Ramanujan bound for GL_2 over \mathbb{Q}. The Ramanujan conjecture is the assertion that $\theta = 0$ and the current record towards it is a result due to Kim and Sarnak which states that $\theta \leq \frac{7}{64}$, proved in [Kim03, Appendix 2]. The reason for this discrepancy is that for $d \geq 3$, the use of bounds towards the Ramanujan conjecture for GL_d over \mathbb{Q} can be bypassed. Instead, Clozel, Oh and Ullmo [COU01] exploit the uniform version of Kazhdan’s property (T) for $SL_d(\mathbb{Q}_p)$ for all primes p, when $d \geq 3$, as was obtained by Oh [Oh02].
As already hinted at, this result has several applications, for instance to the distribution of Frobenius numbers as in [Mar10a, Li15] or to results about the shape of lattices as in [EMSS16]. We highlight one in particular, which concerns the limiting distribution of the diameters of random Cayley graphs of \(\mathbb{Z}/q\mathbb{Z} \) as \(q \to +\infty \), following Marklof and Strömbärgsson [MS13] (see also [SZ18] for the case of random Cayley graphs of arbitrary finite abelian groups). In [AGG10], Amir and Gurel-Gurevich conjectured the existence of a limiting distribution, as \(q \to +\infty \), for \(\frac{\text{diam}(q,d)}{q^{1/d}} \) where \(\text{diam}(q,d) \) denotes the diameter of a Cayley graph of \(\mathbb{Z}/q\mathbb{Z} \) with respect to a random \(d \)-element subset of the group. Following the method expounded in [MS13], the existence of this limiting distribution is a consequence of the main theorem in [EMSS16]. By the same token, our Theorem 1.1 implies the following result:

Corollary 1.1. For every \(d \geq 3 \), there exists a continuous non-increasing function \(\Psi_d: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) with \(\Psi_d(0) = 1 \) and a constant \(\eta_d > 0 \) such that for every \(\varepsilon > 0 \) and every \(R \geq 0 \), we have

\[
\text{Prob} \left(\frac{\text{diam}(q,d)}{q^{1/d}} \geq R \right) = \Psi_d(R) + O \left(q^{-\eta_d + \varepsilon} \right),
\]

where the implicit constant depends on \(R \) and \(\varepsilon \).

We state a more precise version of the above corollary as [Corollary 5.1] which also contains an explicit description of the limiting distribution in terms of the space of \(d \)-dimensional unimodular lattices. At this point, we do however note that the decay of \(\Psi_d \) as \(R \to +\infty \) is known: it is proved in [MS13, Section 3.3] that for \(d \geq 2 \),

\[
\Psi_d(R) = \frac{1}{2\zeta(d)R^d} + O_d \left(\frac{R^d}{d+1} \right).
\]

In order to deduce this corollary, which we do in section 5, the explicit dependence on \(f \) in the error term of Theorem 1.1 is required.

Our strategy to prove Theorem 1.1 is based on harmonic analysis and Weil’s bound for Kloosterman sums, more precisely:

- in section 2, which contains the main novelty of our approach, we avoid the need to obtain an explicit solution to a (non-linear) system of equations modulo \(q \) — as was done for \(d = 2 \) in [LM18] — by introducing a helpful parametrisation of \(\mathcal{R}_q \);
- we then use Fourier analysis on the space of affine lattices in order to estimate the sum we are interested in — this follows a strategy introduced by Strömbergsson in [Str15] for the space of shifted lattices in 2 dimensions and we extend the required Fourier tools to any dimension in section 3;
- these estimates are carried out in section 4 to get to the main term, the key ingredient is a deep result of Clozel, Oh and Ullmo [COU01] to bound the error terms, we use estimates for Ramanujan and Kloosterman sums, combined with various counting arguments.

Acknowledgements: We are very grateful to Jens Marklof, Hee Oh and Zeev Rudnick for several insightful conversations and judicious comments on a previous version of this paper. The research of Daniel El-Baz and Bingrong Huang was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) /
2. PRIMITIVE RATIONAL POINTS ON HORIZONES

Let \(d \geq 1 \), \(G = \text{SL}_{d+1}(\mathbb{R}) \) and \(\Gamma = \text{SL}_{d+1}(\mathbb{Z}) \). For any \(g \in G \), we write \(g = \begin{pmatrix} A & b \\ c & D \end{pmatrix} \) where \(A \in M_d(\mathbb{R}) \), \(b, c \in \mathbb{R}^d \) and \(D \in \mathbb{R} \). Let \(I_k \) be the \(k \times k \) identity matrix.

Define the following subgroup of \(G \):

\[
(2.1) \quad H = \left\{ \begin{pmatrix} A & v \\ \mathbf{0} & 1 \end{pmatrix} : A \in \text{SL}_d(\mathbb{R}), v \in \mathbb{R}^d \right\}.
\]

For a positive integer \(q \), recall that

\[
(2.2) \quad D(q) = \begin{pmatrix} q^2 & 0 \\ 0 & q^{-1} \end{pmatrix}.
\]

For a positive integer \(q \), we also define the following congruence subgroup:

\[
(2.3) \quad \Gamma_{0,d}(q) = \left\{ \gamma \in \text{SL}_d(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} * & * \\ \mathbf{0} & u \end{pmatrix} \pmod{q}, \gcd(u, q) = 1 \right\}.
\]

We record the formula for the index of \(\Gamma_{0,d}(q) \) inside \(\text{SL}_d(\mathbb{Z}) \).

Proposition 2.1. For every \(d \geq 2 \) and \(q \geq 1 \), we have

\[
(2.4) \quad [\text{SL}_d(\mathbb{Z}) : \Gamma_{0,d}(q)] = q^{d-1} \prod_{p | q} \frac{1 - p^{-d}}{1 - p^{-1}}.
\]

Proof (sketch). It is a standard fact (for an explicit reference see, for instance, [Han06, Corollary 2.9]) that

\[
(2.5) \quad \# \text{GL}_d(\mathbb{Z}/q\mathbb{Z}) = q^{d^2} \prod_{p | q} \left(1 - \frac{1}{p^d} \right) \left(1 - \frac{1}{p^{d-1}} \right) \cdots \left(1 - \frac{1}{p} \right),
\]

from which it follows that

\[
(2.6) \quad \# \text{SL}_d(\mathbb{Z}/q\mathbb{Z}) = q^{d^2-1} \prod_{p | q} \left(1 - \frac{1}{p^d} \right) \left(1 - \frac{1}{p^{d-1}} \right) \cdots \left(1 - \frac{1}{p^2} \right).
\]

This last cardinality is precisely the index of the principal congruence subgroup

\[
(2.7) \quad \Gamma(q) = \{ M \in \text{SL}_d(\mathbb{Z}) : M \equiv I_d \pmod{q} \}
\]

inside \(\text{SL}_d(\mathbb{Z}) \). We note the inclusions \(\Gamma(q) \subset \Gamma_{0,d}(q) \subset \text{SL}_d(\mathbb{Z}) \) and therefore use the identity

\[
(2.8) \quad [\text{SL}_d(\mathbb{Z}) : \Gamma(q)] = [\text{SL}_d(\mathbb{Z}) : \Gamma_{0,d}(q)][\Gamma_{0,d}(q) : \Gamma(q)]
\]

to conclude. All that remains is to compute \([\Gamma_{0,d}(q) : \Gamma(q)] \) and it is easy to see that it is equal to \(q^{d-1} \# \text{GL}_{d-1}(\mathbb{Z}/q\mathbb{Z}) \). The desired formula follows.

By restating [EMSS16, Lemma 2.1] (see also [Mar10a, Remark 3.3, (3.5 3)] and [Li15, Lemma 4.1]), we have the following lemma.

Lemma 2.1 ([EMSS16]). For a positive integer \(q \) and for \(r \in \mathbb{Z}^d \) satisfying \(\gcd(r, q) = 1 \), we have

\[
(2.9) \quad \Gamma n_+(q^{-1}r) D(q) \in \Gamma \backslash \Gamma H.
\]
For a positive integer \(q\), recall that
\[
R_q = \left\{ r \in (\mathbb{Z} \cap (0, q))^d : \gcd(r, q) = 1 \right\}.
\]
We now give a simple formula and a lower bound for the size of this set.

Lemma 2.2. For \(d \geq 1\) and \(q \geq 1\), we have
\[
\#R_q = (\mu \ast \text{Id}^d)(q).
\]

Remark 2.1. Note that when \(d = 1\), that is \(\phi(q)\), as it should be.

Proof. By partitioning all \(d\)-tuples \(r \in (\mathbb{Z} \cap [1, q])^d\) according to the value of \(\gcd(r, q)\), we see that
\[
q^d = \sum_{\delta \mid q} \#R_{q/\delta}.
\]
The claim follows by Möbius inversion. \(\square\)

We note the following trivial corollary.

Corollary 2.1. For \(d \geq 1\) and \(q \geq 1\),
\[
\#R_q = q^d \prod_{p \mid q} \left(1 - \frac{1}{p^d} \right).
\]
In particular, for \(d \geq 2\) and \(q \geq 1\),
\[
\#R_q > \frac{1}{\zeta(d)} q^d.
\]

Remark 2.2. The above inequality generalises [LM18 (2.2)], whose proof has an unfortunate mistake (see the first inequality in [LM18 (2.6)]).

Lemma 2.1 implies that for \(r \in R_q\), there exist \(A \in \text{SL}_d(\mathbb{R})\) and \(x \in \mathbb{R}^d\) such that
\[
\Gamma n_+(q^{-1}r)D(q) = \Gamma \begin{pmatrix} A & x \\ 0 & 1 \end{pmatrix}.
\]
This is equivalent to the existence of \(A \in \text{SL}_d(\mathbb{R})\) and \(x \in \mathbb{R}^d\), uniquely determined modulo \(\Gamma\), satisfying
\[
\begin{pmatrix} A & x \\ 0 & 1 \end{pmatrix} (n_+(q^{-1}r)D(q))^{-1} = \begin{pmatrix} A & x \\ 0 & 1 \end{pmatrix} \left(q^{-\frac{1}{2}}I_d & 0 \\ 0 & q \right) \left(I_d & 0 \\ -q^{-1}r & 1 \right) = \begin{pmatrix} \frac{1}{q^{d-1}} A q^{-x} r \\ q x \end{pmatrix} \in \Gamma.
\]
Let \(s = qx\) and \(B = q^{d-1}A\). By the above relation,
\[
s \in \mathbb{Z}^d, \quad \frac{1}{q} (B - s^t r) \in M_d(\mathbb{Z}) \quad \text{and} \quad \det(B) = q^{d-1} \det(A) = q^{d-1}.
\]
So
\[
B \in M_d(\mathbb{Z}) \quad \text{and} \quad B \equiv s^t r \pmod{q}.
\]
Since
\begin{equation}
(2.19) \quad \left(\frac{B-s \cdot r}{q}, \frac{s}{q} \right) \in \Gamma,
\end{equation}
we get that \(\gcd(s, q) = 1\) (see also [EMSS16, Lemma 2.4]).

We now come to the goal of this section, which is to parametrise \(R_q\) in terms of \(\Gamma_{0,d}(q) \setminus \SL_d(\Z)\) and \((\Z/q\Z)^\times\).

Let \(B_q\) be a set of representatives for \(\Gamma_{0,d}(q) \setminus \SL_d(\Z)\).

Lemma 2.3. We have
\begin{equation}
(2.20) \quad R_q = \left\{ \mathbf{t}_\gamma \left(\begin{array}{c} 0 \\ u \end{array} \right) \pmod{q} : \gamma \in B_q, u \in (\Z/q\Z)^\times \right\}.
\end{equation}

Proof. For any \(\gamma \in B_q\) and \(u \in (\Z/q\Z)^\times\), there exists \(r \in (\Z \cap (0, q))^d\) such that
\begin{equation}
(2.21) \quad u \mathbf{t}_\gamma \mathbf{e}_d = \mathbf{t}_\gamma \left(\begin{array}{c} 0 \\ u \end{array} \right) \equiv r \pmod{q},
\end{equation}
where \(\mathbf{e}_d\) is the last vector of the canonical basis of \(\R^d\). We claim that \(\gcd(r, q) = 1\). Let \(\mathbf{a}\) be the last row of \(\gamma\), that is, \(\mathbf{a} = \mathbf{t}_\gamma \mathbf{e}_d\). If \(\gcd(r, q) \neq 1\), since \(u \mathbf{a} - r \equiv 0 \pmod{q}\), this implies that \(\gcd(u \mathbf{a}, q) \neq 1\), so \(\gcd(\mathbf{a}) \neq 1\). This contradicts the fact that \(\gamma \in \SL_d(\Z)\).

Note that, using (2.13) and Proposition 2.1, it follows that \(\#R_q = \#B_q \cdot \varphi(q)\). Therefore, we only need to prove that \(\mathbf{t}_\gamma \mathbf{u} \mathbf{e}_d \not\equiv \mathbf{t}_\gamma ^{\mathbf{u}} \mathbf{e}_d \pmod{q}\) if \((\gamma, u \pmod{q}) \neq (\gamma', u' \pmod{q})\) for \(\gamma, \gamma' \in B_q\). Indeed, suppose \(\gamma \mathbf{u} \mathbf{e}_d \equiv \gamma' \mathbf{u} \mathbf{e}_d \pmod{q}\). Then
\begin{equation}
(\gamma(\gamma')^{-1}) \mathbf{u} \mathbf{e}_d \equiv (\gamma')^{-1} \gamma \mathbf{u} \mathbf{e}_d \equiv \gamma' \mathbf{u} \mathbf{e}_d \pmod{q},
\end{equation}
that is, \(\gamma(\gamma')^{-1} \in \Gamma_{0,d}(q)\). Since \(\gamma, \gamma' \in B_q\), we get \(\gamma = \gamma'\). Using \(\gamma \mathbf{u} \mathbf{e}_d \equiv \gamma' \mathbf{u} \mathbf{e}_d \pmod{q}\) again, we obtain \(u \equiv u' \pmod{q}\). This proves the lemma. \(\square\)

Thus, letting \(B_0 = \left(\begin{array}{c} q^{d-1} \\ -1 \end{array} \right)\), for any \(\gamma \in \Gamma_{0,d}(q) \setminus \SL_d(\Z)\) and \(u \in (\Z/q\Z)^\times\), if we set
\begin{align}
(2.22) & \quad r \equiv u \mathbf{t}_\gamma \mathbf{e}_d \pmod{q}, \\
(2.23) & \quad s = \mathbf{u} \mathbf{e}_d, \quad u\overline{u} \equiv 1 \pmod{q}, \\
(2.24) & \quad B = B_0 \gamma,
\end{align}
then \(r \in R_q\), \(\det(B) = q^{d-1}\) and \(B \equiv s \cdot r \pmod{q}\).

3. Fourier analysis on the space of lattice translates

In this section, we generalise the results given in [Str15, Section 4] and [LMIN, Section 3] to an arbitrary dimension. When comparing with [Str15], one should keep in mind that he uses a different representation for \(\ASL_2(\R)\).

For \(d \geq 2\), we define
\begin{equation}
(3.1) \quad \ASL_d(\R) := \SL_d(\R) \ltimes \R^d.
\end{equation}
For \((M_1, M_2) \in \SL_d(\R)^2\) and \((\mathbf{v}_1, \mathbf{v}_2) \in (\R^d)^2\), the multiplication law on \(\ASL_d(\R)\) is given by
\begin{equation}
(3.2) \quad (M_1, \mathbf{v}_1) \cdot (M_2, \mathbf{v}_2) = (M_1 M_2, M_1 \mathbf{v}_2 + \mathbf{v}_1).
\end{equation}
The discrete subgroup \(\ASL_d(\Z)\) is defined similarly.
Let g be the Lie algebra of $\text{ASL}_d(\mathbb{R})$, which we identify with $\mathfrak{sl}_d(\mathbb{R}) \oplus \mathbb{R}^d$. We pick the following basis of g:

\begin{align*}
Y_{i,j} &= (E_{i,j}, 0), \quad 1 \leq i \neq j \leq d, \\
Y_i &= (E_{i,i} - E_{1,1}, 0), \quad i \geq 2, \\
X_i &= (0, e_i), \quad 1 \leq i \leq d,
\end{align*}

where $E_{i,j} \in \text{M}_{d}(\mathbb{R})$ has a 1 at the (i, j)th entry and zeros elsewhere and the e_i are the canonical basis of \mathbb{R}^d.

Each $(E, y) \in g$ yields a left-invariant differential operator on a function on $\text{ASL}_d(\mathbb{R})$ in the following way:

\begin{equation}
((E, y)F)(g, x) = \frac{\partial}{\partial t} F((g, x)((I_d, 0) + t(E, y))) \bigg|_{t=0}
\end{equation}

In particular, for $X = X_{i_0} = (0, e_{i_0})$, $1 \leq i_0 \leq d$,

\begin{equation}
(g, x)((I_d, 0) + t(0, e_{i_0})) = (g, x)(I_d, te_{i_0}) = (g, tge_{i_0} + x),
\end{equation}

and by the chain rule, we get

\begin{equation}
(X_{i_0}F)(g, x) = \sum_{i=1}^d g_{i, i_0} \left(\frac{\partial}{\partial x_i} F \right)(g, x),
\end{equation}

where $g = (g_{i, j})_{1 \leq i, j \leq d}$.

Let $C^k_b(\text{ASL}_d(\mathbb{Z}) \setminus \text{ASL}_d(\mathbb{R}))$ denote the space of k times continuously differentiable functions with all derivatives bounded. For $F \in C^k_b(\text{ASL}_d(\mathbb{Z}) \setminus \text{ASL}_d(\mathbb{R}))$ we set

\begin{equation}
\|F\|_{C^k_b} = \sum_{X \in \{Y_{i,j}, X_{i_0} : 1 \leq i, j, i_0 \leq d\}} \sum_{0 \leq \ell \leq k} \|X^\ell F\|_{L^\infty}.
\end{equation}

Let F be a function on $\text{ASL}_d(\mathbb{Z}) \setminus \text{ASL}_d(\mathbb{R})$. For any $m \in \mathbb{Z}^d$,

\begin{equation}
F(A, x + m) = F((I_d, m)(A, x)) = F(A, x)
\end{equation}

for $(A, x) \in \text{ASL}_d(\mathbb{R})$. So we have the following Fourier expansion of F:

\begin{equation}
F(A, x) = \sum_{m \in \mathbb{Z}^d} \hat{F}(A, m)e^{-2\pi i (\cdot mx)},
\end{equation}

where

\begin{equation}
\hat{F}(A, m) = \int_{(\mathbb{R}/\mathbb{Z})^d} F(A, t)e^{-2\pi i (\cdot mt)} \, dt
\end{equation}

Here dt denotes the Lebesgue measure on \mathbb{R}^d.

Lemma 3.1. For any $\gamma \in \text{SL}_d(\mathbb{Z})$ we have

\begin{equation}
\hat{F}(\gamma A, m) = \hat{F}(A, \gamma^* m).
\end{equation}

In particular, when $m = 0$, $\hat{F}(A, 0)$ is an automorphic function on $\text{SL}_d(\mathbb{Z}) \setminus \text{SL}_d(\mathbb{R})$.

7
Proof. For any \(\gamma \in \text{SL}_d(\mathbb{Z}) \), we get

\[
\hat{F}(\gamma A, m) = \int_{(\mathbb{R}/\mathbb{Z})^d} F(\gamma A, t)e^{-2\pi i (\gamma t^\top m)} \, dt = \int_{(\mathbb{R}/\mathbb{Z})^d} F((\gamma, 0)(A, \gamma^{-1}t))e^{-2\pi i (\gamma t^\top m)} \, dt \\
= \int_{(\mathbb{R}/\mathbb{Z})^d} F(A, t)e^{-2\pi i (\gamma t^\top m)} \, dt = \hat{F}(A, \gamma^\top m).
\]

Here in the third identity we use the fact that \(F \) is right ASL\(_d(\mathbb{Z})\)-invariant and \(t \mapsto \gamma t \) is a diffeomorphism of \((\mathbb{R}/\mathbb{Z})^d\) preserving the volume measure \(dt \).

For each \(1 \leq i_0 \leq d \), by applying integration by parts, we get

\[
(X_{i_0} F)(A, m) = \int_{(\mathbb{R}/\mathbb{Z})^d} (X_{i_0} F)(A, t)e^{-2\pi i (\gamma t^\top m)} \, dt = \sum_{i=1}^d a_{i,i_0} \int_{(\mathbb{R}/\mathbb{Z})^d} \frac{\partial}{\partial t_i} F(A, t)e^{-2\pi i (\gamma t^\top m)} \, dt \\
= \left(\sum_{i=1}^d a_{i,i_0} 2\pi i m_i \right) \int_{(\mathbb{R}/\mathbb{Z})^d} F(A, t)e^{-2\pi i (\gamma t^\top m)} \, dt = 2\pi i \left(\sum_{i=1}^d m_i a_{i,i_0} \right) \hat{F}(A, m).
\]

So for \(k \in \mathbb{Z}_{\geq 1} \),

\[
\int_{(\mathbb{R}/\mathbb{Z})^d} (X_{i_0}^k F)(A, t)e^{-2\pi i (\gamma t^\top m)} \, dt = \left(2\pi i \sum_{i=1}^d m_i a_{i,i_0} \right)^k \hat{F}(A, m),
\]

and we get

\[
(2\pi)^k \left| \sum_{i=1}^d m_i a_{i,i_0} \right|^k \leq \int_{(\mathbb{R}/\mathbb{Z})^d} |(X_{i_0}^k F)(A, t)| \, dt \leq \|X_{i_0}^k F\|_{\infty}.
\]

For \(b \in \mathbb{R}^d \), let \(\|b\|_{\infty} := \max_{1 \leq i \leq d} \{|b_i|\}. \) Then

\[
\max_{1 \leq i_0 \leq d} \left\{ \left| \sum_{i=1}^d m_i a_{i,i_0} \right|^k \right\} = \|A\|^k_{\infty},
\]

and we have

\[
(2\pi \|A\|^k_{\infty})^k \|\hat{F}(A, m)\| \leq (2\pi)^k \left| \sum_{i=1}^d a_{i,i_0} m_i \right|^k \|\hat{F}(A, m)\| \leq \|X_{i_0}^k F\|_{\infty} \leq \|F\|_{C^k_b}.
\]

So for \(m \neq 0 \), we have

\[
\|\hat{F}(A, m)\| \leq \frac{\|F\|_{C^k_b}}{(2\pi \|A\|^k_{\infty})^k}.
\]
4. Proof of the main theorem

In this section, we prove Theorem 1.1.

For \(f \in C^b_k(\Gamma \setminus \Gamma H \times (\mathbb{R}/\mathbb{Z})^d) \), since \(\Gamma \setminus \Gamma H \) is diffeomorphic to \(\text{ASL}_d(\mathbb{Z}) \setminus \text{ASL}_d(\mathbb{R}) \), we set, similarly to (3.9),

\[
\left\| f \right\|_{C^b_k} = \sum_{n \in \mathbb{Z}^d} \sum_{\ell_1, \ldots, \ell_d, \ell \geq 0} \left\| X^\ell \frac{\partial^{\ell_1} f}{\partial x_1^{\ell_1}} \cdots \frac{\partial^\ell f}{\partial x_d^\ell} \right\|_{L^\infty}.
\]

We have the Fourier expansion

\[
f(g, x) = \sum_{n \in \mathbb{Z}^d} \widehat{f}_n(g) e^{2\pi i n x}
\]

where

\[
\widehat{f}_n(g) = \int_{(\mathbb{R}/\mathbb{Z})^d} f(g, t) e^{-2\pi i n t} \, dt.
\]

By using integration by parts repeatedly, for \(\mathbf{n} \neq \mathbf{0} \), we have

\[
\sup_{g \in \Gamma \setminus \Gamma H} \left| \widehat{f}_n(g) \right| \ll_k \left\| f \right\|_{C^b_k} \left\| \mathbf{n} \right\|^{-k}.
\]

By Lemma 2.23 (2.23) and (2.24), we have

\[
\frac{1}{\# R_q} \sum_{r \in R_q} f \left(\Gamma n_+ \left(\frac{1}{q} r \right), \frac{1}{q} r \right) D(g) = \frac{1}{\# R_q} \sum_{\gamma \in B_q} \sum_{u \in (\mathbb{Z}/q\mathbb{Z})^d} f \left(\left(q^{-1_+} B_0 \gamma \begin{bmatrix} q^{-1_+} u & e_d \\ 0 & 1 \end{bmatrix} \right), q^{-1} u e_d \right) = \frac{1}{\# R_q} \sum_{\gamma \in B_q} \sum_{u \in (\mathbb{Z}/q\mathbb{Z})^d} \sum_{n \in \mathbb{Z}^d} \widehat{f}_n \left(\left(q^{-1_+} B_0 \gamma \begin{bmatrix} q^{-1_+} u & e_d \\ 0 & 1 \end{bmatrix} \right) \right) e^{2\pi i \frac{n_u e_d}{q}}.
\]

We first note that we can truncate \(n \)-sum at \(\left\| n \right\| \leq q^{\vartheta_1} \) for some small \(\vartheta_1 > 0 \). Indeed, by (4.4), we know that the contribution from the terms with \(\left\| n \right\| > q^{\vartheta_1} \) is

\[
\ll_k \frac{1}{\# R_q} \sum_{\gamma \in B_q} \sum_{u \in (\mathbb{Z}/q\mathbb{Z})^d} \sum_{\left\| n \right\| > q^{\vartheta_1}} \frac{1}{\left\| n \right\|_k} \ll_k \left\| f \right\|_{C^b_k} \sum_{\left\| n \right\| > q^{\vartheta_1}} \frac{1}{\left\| n \right\|_k}.
\]

Note that \(\left\| n \right\|_\infty \leq \left\| n \right\|_2 \leq \sqrt{d} \left\| n \right\|_\infty \), so we have

\[
\sum_{n \in \mathbb{Z}^d \atop \left\| n \right\|_\infty > q^{\vartheta_1}} \frac{1}{\left\| n \right\|_k} \leq \sum_{n \in \mathbb{Z}^d \atop \left\| n \right\|_2 > q^{\vartheta_1}} \frac{d^{\frac{d}{2}}}{\left\| n \right\|_2^k} \leq \int_{q^{\vartheta_1}}^{\infty} R^{-k} \, d \sum_{n \in \mathbb{Z}^d \atop q^{\vartheta_1} < \left\| n \right\|_2 \leq R} 1.
\]

By the elementary asymptotic for the number of lattice points in a ball,

\[
\sum_{n \in \mathbb{Z}^d \atop \left\| n \right\|_2 \leq R} 1 \sim c_d R^d,
\]
where \(c_d \) is the volume of the unit ball in \(d \) dimensions, it follows that
\[
\sum_{n \in \mathbb{Z}^d} \frac{1}{\|n\|_\infty^k} \ll_d, k (q^{\vartheta_1})^{d-k} = q^{-\vartheta_1 (k-d)}.
\]

So we have
\[
\frac{1}{\# R_q} \sum_{r \in R_q} f \left(\Gamma n_+ \left(\frac{1}{q} \right) D(q), \frac{1}{q} r \right) = \frac{1}{\# R_q} \sum_{\gamma \in B_q} \sum_{u \in (\mathbb{Z}/q\mathbb{Z})^\times} \sum_{n \in \mathbb{Z}^d} \frac{\hat{F}_n \left(\left(q^{-1+\frac{d}{2}} B_0 \gamma \right, \gamma B_0 \gamma \right)}{\|n\|_\infty^q} e^{2\pi i \frac{\gamma u}{q} n} + O_{d,k} (\|f\|_{C^k} q^{-\vartheta_1 (k-d)}).
\]

For \(A \in \text{SL}_d(\mathbb{R}) \) and \(y \in \mathbb{R}^d \), let
\[
F_n(A, y) = \hat{f}_n \left(\left(A \ y \right) \right).
\]

Then \(F_n \) is a function on \(\text{ASL}_d(\mathbb{Z}) \setminus \text{ASL}_d(\mathbb{R}) \) and as such has the following Fourier expansion
\[
F_n(A, y) = \sum_{m \in \mathbb{Z}^d} \hat{F}_n(A, m) e^{2\pi i \gamma m y}.
\]

Here
\[
\hat{F}_n(A, m) = \int_{(\mathbb{R}/2\mathbb{Z})^d} F_n(A, t) e^{-2\pi i \gamma m t} \, dt.
\]

Recall that \(B_0 = \left(\begin{smallmatrix} q^{d-1} & 0 \\ 0 & 1 \end{smallmatrix} \right) \). By (4.10) and (4.12), we get
\[
\frac{1}{\# R_q} \sum_{r \in R_q} f \left(\Gamma n_+ \left(\frac{1}{q} \right) D(q), \frac{1}{q} r \right) = \frac{1}{\# R_q} \sum_{\gamma \in B_q} \sum_{u \in (\mathbb{Z}/q\mathbb{Z})^\times} \sum_{n \in \mathbb{Z}^d} \hat{F}_n \left(\left(q^{-1+\frac{d}{2}} B_0 \gamma \right, \gamma B_0 \gamma \right) S(m, n; q) + O_{d,k} (\|f\|_{C^k} q^{-\vartheta_1 (k-d)}),
\]

where \(S(a, b; q) = \sum_{u \in (\mathbb{Z}/q\mathbb{Z})^\times} e^{2\pi i \frac{a u + ab}{q}} \) is the classical Kloosterman sum.

Note that by (3.20), we have
\[
\hat{F}_n \left(\left(q^{-1+\frac{d}{2}} B_0 \gamma \right, \gamma B_0 \gamma \right) \leq \frac{\|F\|_{C^k} q^{-\vartheta_1 (k-d)}}{(2\pi q^{1+\frac{d}{2}} \gamma B_0 \gamma)}.
\]

Theorem 1.1 now follows from the following four propositions, which we prove in the subsections below.
Proposition 4.1. We have
\begin{equation}
\frac{1}{\# R_q} \sum_{\gamma \in B_q} \hat{F}_0(q^{-1+\frac{1}{d}} B_0 \gamma, 0) S(0, 0; q) = \int_{SL_d(\mathbb{Z}) \setminus SL_d(\mathbb{R})} \hat{F}_0(g, 0) \, d\mu(g) + O_{\varepsilon}(\|F_0\| c_b q^{-\frac{3}{2}+\varepsilon}),
\end{equation}
for any \(\varepsilon > 0 \).

Proposition 4.2. For each \(0 \neq n \in \mathbb{Z}^d \) with \(\|n\|_\infty \leq q^{\vartheta_1} \), we have
\begin{equation}
E_1 = \frac{1}{\# R_q} \sum_{\gamma \in B_q} \sum_{m \in \mathbb{Z}^d \setminus \{0\}, \|\gamma q^{-1+\frac{1}{d}} B_0 m\|_\infty \leq q^{\vartheta_2}} \hat{F}_n(q^{-1+\frac{1}{d}} B_0 \gamma, m) S(m_d, \gamma n) \ll \|F\| c_b q^{-\vartheta_1 + \varepsilon}.
\end{equation}

Proposition 4.3. For each \(n \in \mathbb{Z}^d \) with \(\|n\|_\infty \leq q^{\vartheta_1} \) and \(0 < \vartheta_2 < \frac{1}{2d} \), we have
\begin{equation}
E_2 = \frac{1}{\# R_q} \sum_{\gamma \in B_q} \sum_{m \in \mathbb{Z}^d \setminus \{0\}, \|\gamma q^{-1+\frac{1}{d}} B_0 m\|_\infty > q^{\vartheta_2}} \hat{F}_n(q^{-1+\frac{1}{d}} B_0 \gamma, m) S(m_d, \gamma n) \ll_{d,k,\vartheta_2} \|F\| c_b q^{-\frac{1}{2} + d \vartheta_2},
\end{equation}
provided \(k \) is an integer such that \(k \geq \frac{2d - 1}{2 \vartheta_2} \).

Proof of Theorem 1.1. By (4.14) and Propositions 4.1–4.3, we have
\begin{equation}
\frac{1}{\# R_q} \sum_{r \in R_q} f\left(\left(\frac{1}{q^r} \right) D(q), \left(\frac{1}{q^r} \right) \right) = \int_{SL_d(\mathbb{Z}) \setminus SL_d(\mathbb{R})} \hat{F}_0(g, 0) \, d\mu(g) + O(\|F\| c_b q^{-\vartheta_1 + \varepsilon} + \|F\| c_b q^{-\frac{1}{2} + (\vartheta_1 + \vartheta_2) + \varepsilon}),
\end{equation}
for any \(\varepsilon > 0 \), \(0 < \vartheta_2 < \frac{1}{2d} \) and \(k \geq \frac{2d - 1}{2 \vartheta_2} \). Note that by (4.13), (4.11), and (4.3), we have
\begin{equation}
\int_{SL_d(\mathbb{Z}) \setminus SL_d(\mathbb{R})} \hat{F}_0(g, 0) \, d\mu(g) = \int_{SL_d(\mathbb{Z}) \setminus SL_d(\mathbb{R})} \int_{(\mathbb{R}/\mathbb{Z})^d} \hat{f}_0 \left(\begin{pmatrix} g & t \\ 0 & 1 \end{pmatrix} \right) \, dt \, d\mu(g)
\end{equation}
\begin{equation}
= \int_{\Gamma \setminus \Gamma H \times T^d} f \, d\mu_H \, dx.
\end{equation}
Taking \(\vartheta_2 = \frac{2d - 1}{2k} \) and \(\vartheta_1 = \frac{1}{2} - d \vartheta_2 \), we get \(k \geq 2d^2 - d + 1 \). This proves Theorem 1.1. \(\Box \)
4.1. The main term: effective equidistribution of Hecke points.

Lemma 4.1. Let \(B_0 = (q^{d-1}) \). We have

\[
\text{SL}_d(\mathbb{Z})B_0 \text{SL}_d(\mathbb{Z}) = \bigcup_{\delta \in \Gamma_0, d(q) \setminus \text{SL}_d(\mathbb{Z})} \text{SL}_d(\mathbb{Z})(B_0 \delta).
\]

Proof. We first check that the decomposition on the right hand side is disjoint. For \(\delta_1, \delta_2 \in \Gamma_0, d(q) \setminus \text{SL}_d(\mathbb{Z}) \), if \(\gamma B_0 \delta_1 = B_0 \delta_2 \) for some \(\gamma \in \text{SL}_d(\mathbb{Z}) \), then \(B_0^{-1} \gamma B_0 = \delta_2 \delta_1^{-1} \in \text{SL}_d(\mathbb{Z}) \). Note that in this case

\[
\delta_2 \delta_1^{-1} = B_0^{-1} \gamma B_0 = \left(q^{-1} I_{d-1} \right) \gamma \left(q I_{d-1} \right) \in \Gamma_0, d(q).
\]

So we get \(\delta_2 \in \Gamma_0, d(q) \delta_1 \).

From the construction, it is clear that

\[
\text{SL}_d(\mathbb{Z})B_0 \text{SL}_d(\mathbb{Z}) \supset \bigcup_{\delta \in \Gamma_0, d(q) \setminus \text{SL}_d(\mathbb{Z})} \text{SL}_d(\mathbb{Z})(B_0 \delta).
\]

Note that for any \(\tau \in \Gamma_0, d(q) \), we write \(\tau = \left(\frac{T \tau}{s \tau} \right) \), where \(s \equiv 0 \pmod{q} \). Then

\[
B_0 \tau B_0^{-1} = \left(q I_{d-1} \right) \left(\frac{T \tau}{s \tau} \right) \left(q^{-1} I_{d-1} \right) = \left(\frac{T \tau}{q^{-1} s \tau} \right) \in \text{SL}_d(\mathbb{Z}),
\]

so \(B_0 \Gamma_0, d(q) B_0^{-1} \subset \text{SL}_d(\mathbb{Z}) \). Take \(\gamma_1, \gamma_2 \in \text{SL}_d(\mathbb{Z}) \). There exists \(\delta_2 \in \Gamma_0, d(q) \setminus \text{SL}_d(\mathbb{Z}) \) such that \(\gamma_2 \in \Gamma_0, d(q) \delta_2 \). We have

\[
\gamma_1 B_0 \gamma_2 \in \gamma_1 B_0 \Gamma_0, d(q) \delta_2 = \gamma_1 (B_0 \Gamma_0, d(q) B_0^{-1}) B_0 \delta_2 \subset \text{SL}_d(\mathbb{Z}) B_0 \delta_2
\]

and this implies that

\[
\text{SL}_d(\mathbb{Z}) B_0 \text{SL}_d(\mathbb{Z}) \subset \bigcup_{\delta \in \Gamma_0, d(q) \setminus \text{SL}_d(\mathbb{Z})} \text{SL}_d(\mathbb{Z})(B_0 \delta),
\]

as claimed. \(\square \)

For a function \(F : \text{SL}_d(\mathbb{Z}) \setminus \text{SL}_d(\mathbb{R}) \to \mathbb{C} \), the Hecke operator for \(B_0 \) is defined as

\[
(T_{B_0} F)(g) = \frac{1}{\#(\Gamma_0, d(q) \setminus \text{SL}_d(\mathbb{Z}))} F \left(q^{-\frac{d-1}{2}} B_0 \delta g \right).
\]

Assume that \(F \in L^2(\text{SL}_d(\mathbb{Z}) \setminus \text{SL}_d(\mathbb{R})) \). Following the argument in [COU01, Section 1] with [COU01, Theorem 1.1] and the formula from [COU01, p. 346], we get

\[
\left\| T_{B_0} F - \int_{\text{SL}_d(\mathbb{Z}) \setminus \text{SL}_d(\mathbb{R})} F(g) \, d\mu(g) \right\|_2 \ll_{\varepsilon} q^{-\frac{d+1}{2} + \varepsilon} \| F \|_2,
\]

for any \(\varepsilon > 0 \). Note that the implied constant only depends on \(\varepsilon \). By [COU04, Proposition 8.2], we find that this \(L^2 \)-convergence implies the same rate for the point-wise convergence: for an integer \(k \geq \frac{d+1}{2} \), if \(F \in C^k_b(\text{ASL}_d(\mathbb{Z}) \setminus \text{ASL}_d(\mathbb{R})) \), then we get

\[
\left\| T_{B_0} F(I_d) - \int_{\text{SL}_d(\mathbb{Z}) \setminus \text{SL}_d(\mathbb{R})} F(g) \, d\mu(g) \right\|_2 \ll_{\varepsilon} q^{-\frac{d+1}{2} + \varepsilon} \| F \|_{C^k_b}.
\]
Proof of Proposition 4.1. Since f is bounded, $\hat{F}_0(*, 0) \in L^2(\text{SL}_d(\mathbb{Z}) \setminus \text{SL}_d(\mathbb{R}))$, where the invariance under $\text{SL}_d(\mathbb{Z})$ follows from Lemma 3.1.

For $S(0; 0; q) = \varphi(q)$, we get

$$ (4.29) \quad \frac{1}{\# R_q} \sum_{\gamma \in \Gamma_0, d(q) \setminus \text{SL}_d(\mathbb{Z})} \hat{F}_0(q^{-1/2} B_0 \gamma, 0) S(0, 0; q) $$

$$ = \frac{1}{\# (\Gamma_0, d(q) \setminus \text{SL}_d(\mathbb{Z}))} \sum_{\gamma \in \Gamma_0, d(q) \setminus \text{SL}_d(\mathbb{Z})} \hat{F}_0(q^{-1/2} B_0 \gamma, 0) = T_{B_0} \hat{F}_0(I_d, 0). $$

By (4.28), we get

$$ (4.30) \quad \left| T_{B_0} \hat{F}_0(I_d, 0) - \int_{\text{SL}_d(\mathbb{Z}) \setminus \text{SL}_d(\mathbb{R})} \hat{F}_0(g, 0) \text{d}\mu(g) \right| \ll q^{-1/2 + \varepsilon} \| F_0 \|_{C_b^0}. $$

This completes the proof of Proposition 4.1. □

4.2. The first error term.

Proof of Proposition 4.2. Note that $\hat{F}_n \left(q^{-1/2} B_0 \gamma, 0 \right) \ll \| F \|_{C_b^0}$ and

$$ (4.31) \quad S(0, \mathbf{n}(\gamma \mathbf{e}_d); q) = \mu \left(\frac{q}{\gcd(q, \mathbf{n}(\gamma \mathbf{e}_d))} \right) \frac{\varphi(q)}{\varphi \left(\frac{q}{\gcd(q, \mathbf{n}(\gamma \mathbf{e}_d))} \right)} \leq \gcd(q, \mathbf{n}(\gamma \mathbf{e}_d)). $$

The first equality holds since $S(0, \mathbf{n}(\gamma \mathbf{e}_d); q)$ is a Ramanujan sum. Hence

$$ (4.32) \quad \mathcal{E}_1 \ll \| F \|_{C_b^0} \frac{1}{\# R_q} \sum_{\gamma \in B_q} \gcd(q, \mathbf{n}(\gamma \mathbf{e}_d)) \ll \| F \|_{C_b^0} \frac{1}{\# R_q} \sum_{\ell | q} \sum_{\gamma \in B_q} \sum_{\ell | \mathbf{n}(\gamma \mathbf{e}_d)} 1. $$

For each $\ell | q$, let

$$ (4.33) \quad \mathcal{S}_\ell = \left\{ \gamma \in B_q : \gcd(\mathbf{n}(\gamma \mathbf{e}_d), q) = \ell \right\}. $$

Then

$$ (4.34) \quad \mathcal{E}_1 \ll \| F \|_{C_b^0} \frac{1}{\# R_q} \sum_{\ell | q} \ell \# \mathcal{S}_\ell. $$

Since $\mathbf{n} \neq 0$, there exists $1 \leq j_0 \leq d$ such that $n_{j_0} \neq 0$. For $\gamma \in \mathcal{S}_\ell$, let $a = \gamma \mathbf{e}_d$ be the last row of γ. Then

$$ (4.35) \quad \mathbf{n}(\gamma \mathbf{e}_d) = \mathbf{n}a = n_1 a_1 + \cdots + n_d a_d \equiv 0 \pmod{\ell} $$

and this implies that

$$ (4.36) \quad n_{j_0} a_{j_0} \equiv - \sum_{1 \leq j \leq d, j \neq j_0} n_j a_j \pmod{\ell}. $$

Consequently $\gcd(n_{j_0}, \ell) \mid \sum_{1 \leq j \leq d, j \neq j_0} n_j a_j$ and we get

$$ (4.37) \quad a_{j_0} \equiv -n_{j_0} \frac{\sum_{1 \leq j \leq d, j \neq j_0} n_j a_j}{\gcd(n_{j_0}, \ell)} \pmod{\ell / \gcd(n_{j_0}, \ell)}, $$
where \(\tilde{n}_{j_0 \ell / \text{gcd}(n_{j_0}, \ell)} \equiv 1 \pmod{\text{gcd}(n_{j_0}, \ell)} \). So for each \(b \pmod{\ell / \text{gcd}(n_{j_0}, \ell)} \),

\[
(4.38) \quad a_{j_0} \equiv -\tilde{n}_{j_0} \sum_{1 \leq j \leq d, j \neq j_0} n_{j_0} a_j + b \frac{\ell}{\text{gcd}(n_{j_0}, \ell)} \quad (\text{mod } q).
\]

For \(\ell \mid q \), let \(\ell_0 = \text{gcd}(n_{j_0}, \ell) \) and

\[
(4.39) \quad \mathcal{A}_{\ell_0} = \left\{ a \in ([0, q) \cap \mathbb{Z})^d : a_{j_0} \equiv \frac{1}{\ell_0} \left(\sum_{1 \leq j \leq d, j \neq j_0} n_{j_0} a_j + h \ell \right) \pmod{q}, 0 \leq b \leq \frac{q}{\ell_0} \right\}.
\]

Then by the arguments above, for each \(\gamma \in \mathcal{S}_\ell \), there exists \(a \in ([0, q) \cap \mathbb{Z})^d \) such that \(a \equiv \gamma e_d \) and \(a \in \mathcal{A}_{\ell_0} \). Note that for each \(u \in \mathbb{Z}/q\mathbb{Z} \) and \(a \in \mathcal{A}_\ell \), \(ua \in \mathcal{A}_\ell \). So we have

\[
(4.40) \quad \# \mathcal{S}_\ell \leq \frac{1}{\varphi(q)} \# \mathcal{A}_\ell \leq \frac{1}{\varphi(q)} q^{d-1} \frac{q}{\ell_0}.
\]

For \(n_{j_0} \neq 0 \) and \(|n_{j_0}| \leq \| n \|_\infty \leq q^{\theta_1} \), we have \(\text{gcd}(n_{j_0}, \ell) \leq q^{\theta_1} \) and

\[
(4.41) \quad \mathcal{E}_1 \ll \| F \|_{c^0_\mathbb{Z}} \frac{1}{\# \mathcal{R}_q} \sum_{\ell} \frac{1}{\varphi(q)} q^{d-1} \frac{q}{\ell / \text{gcd}(n_{j_0}, \ell)} \leq \| F \|_{c^0_\mathbb{Z}} \frac{1}{\# \mathcal{R}_q} \prod_{p \mid q} (1 - p^{-1})^{-\sigma_0(q)}
\]

\[
= \| F \|_{c^0_\mathbb{Z}} \varphi(q) q^{d-1} \prod_{p \mid q} \left(\frac{1}{1 - p^{-1}} \prod_{p \mid q} (1 - p^{-1}) \right)^{-\sigma_0(q)} = \| F \|_{c^0_\mathbb{Z}} \frac{\sigma_0(q)}{\prod_{p \mid q} (1 - p^{-1})^{1 - \frac{1}{2} + \sigma_0(q)}}.
\]

This completes the proof of Proposition 4.2. \(\square \)

4.3. **The second error term.**

Proof of Proposition 4.3. By (4.18),

\[
(4.42) \quad \mathcal{E}_2 \leq \| F \|_{c^0_\mathbb{Z}} \frac{1}{\# \mathcal{R}_q} \sum_{\gamma \in \mathcal{B}_q} \sum_{m \in \mathbb{Z}^d \setminus \{0\}, \| \gamma B_0 m \|_\infty \leq q^{1 - \frac{1}{2} + \theta_2}} | S(m_d, \gamma n(\gamma e_d); q) |.
\]

By Weil’s bound for Kloosterman sums,

\[
(4.43) \quad | S(m_d, \gamma n(\gamma e_d); q) | \leq \sqrt{q} \text{gcd}(m_d, \gamma n(\gamma e_d), q)^{\frac{1}{2}} \sigma_0(q) \leq \sqrt{q} \text{gcd}(m_d, q)^{\frac{1}{2}} \sigma_0(q).
\]

We thus have

\[
(4.44) \quad \mathcal{E}_2 \leq \| F \|_{c^0_\mathbb{Z}} \frac{1}{\# \mathcal{R}_q} \sum_{\gamma \in \mathcal{B}_q} \sum_{m \in \mathbb{Z}^d \setminus \{0\}, \| \gamma B_0 m \|_\infty \leq q^{1 - \frac{1}{2} + \theta_2}} \sqrt{q} \text{gcd}(m_d, q)^{\frac{1}{2}} \sigma_0(q).
\]

For \(\gamma \in \mathcal{B}_q \) and \(m \in \mathbb{Z}^d \setminus \{0\} \) with \(\text{gcd}(q, m_d) = \ell \), we have

\[
(4.45) \quad \gamma B_0 m = \gamma \left(\begin{array}{c} qm_1 \\ \vdots \\ qm_{d-1} \\ m_d \end{array} \right) = \ell^\gamma \left(\begin{array}{c} \frac{q}{\ell} m_1 \\ \vdots \\ \frac{q}{\ell} m_{d-1} \\ m_d \ell \end{array} \right).
\]
Note that \(\gcd(\frac{d}{\ell}, \frac{n}{\ell}) = 1 \). Set

\[
(4.46) \quad \gamma B_0 m = x \in \mathbb{Z}^d.
\]

Since \(\gamma \in \text{SL}_d(\mathbb{Z}) \), \(x = 0 \) if and only if \(m = 0 \). Assume that \(\| \gamma B_0 m \|_\infty \leq q^{1 - \frac{1}{d} + \theta_2} \). Then \(x \in \mathbb{Z}^d \setminus \{0\} \) and \(\| x \|_\infty \leq \frac{1 - \frac{1}{d} + \theta_2}{\ell} \). Moreover since \(\| x \|_\infty < 1 \) if and only if \(x = 0 \), we only consider \(\ell \mid q \) such that \(\frac{1 - \frac{1}{d} + \theta_2}{\ell} \geq 1 \).

Summarising, for each given \(x \in \mathbb{Z}^d \setminus \{0\} \) with \(\| x \|_\infty \leq \frac{1 - \frac{1}{d} + \theta_2}{\ell} \), we count the number of \(\gamma \in B_q \) such that \(\gamma m = x \) has an integral solution \(m \in \mathbb{Z}^d \) satisfying \(\frac{d}{\ell} \mid m_j \) for \(1 \leq j \leq d - 1 \) and \(\gcd(\frac{d}{\ell}, m_d) = 1 \). Moreover the solution \(m \) is uniquely determined since \(m = \gamma^{-1} x \). So we can write

\[
(4.47) \quad \frac{1}{\# B_q} \sum_{\gamma \in B_q} \sum_{m \in \mathbb{Z}^d \setminus \{0\}, \| \gamma B_0 m \|_\infty \leq q^{1 - \frac{1}{d} + \theta_2}} \sqrt{q} \gcd(m_d, q)^{\frac{1}{2}} \sigma_0(q) = \frac{1}{\# B_q} \sqrt{q} \sigma_0(q) \sum_{\ell \mid q, \ell \leq q^{1 - \frac{1}{d} + \theta_2}} \ell^{\frac{1}{2}} \sum_{x \in \mathbb{Z}^d \setminus \{0\}, \| x \|_\infty \leq q^{1 - \frac{1}{d} + \theta_2}} \sum_{\gamma \in B_q, m \in \mathbb{Z}^d \setminus \{0\}, \frac{d}{\ell} \mid m_j, 1 \leq j \leq d - 1, \gcd(m_d, \frac{d}{\ell}) = 1} \sum_{\gamma m = x} 1.
\]

For \(\ell \mid q \) satisfying \(\ell \leq q^{1 - \frac{1}{d} + \theta_2} \), and for each \(x \in ([0, q^{1 - \frac{1}{d} + \theta_2} / \ell] \cap \mathbb{Z})^d \setminus \{0\} \), let

\[
(4.48) \quad S_\ell(x) = \left\{ \gamma \in B_q : \frac{x}{\ell} \mid m_j, 1 \leq j \leq d - 1, \gcd(m_d, q/\ell) = 1 \right\}.
\]

Then we have

\[
(4.49) \quad \frac{1}{\# B_q} \sqrt{q} \sigma_0(q) \sum_{\ell \mid q, \ell \leq q^{1 - \frac{1}{d} + \theta_2}} \ell^{\frac{1}{2}} \sum_{x \in \mathbb{Z}^d \setminus \{0\}, \| x \|_\infty \leq q^{1 - \frac{1}{d} + \theta_2}} \sum_{\gamma \in B_q} \sum_{m \in \mathbb{Z}^d \setminus \{0\}, \frac{d}{\ell} \mid m_j, 1 \leq j \leq d - 1, \gcd(m_d, \frac{d}{\ell}) = 1} \sum_{\gamma m = x} 1 = \frac{1}{\# B_q} \sqrt{q} \sigma_0(q) \sum_{\ell \mid q, \ell \leq q^{1 - \frac{1}{d} + \theta_2}} \ell^{\frac{1}{2}} \sum_{x \in \mathbb{Z}^d \setminus \{0\}, \| x \|_\infty \leq q^{1 - \frac{1}{d} + \theta_2}} \# S_\ell(x).
\]

We claim that

\[
(4.50) \quad \# S_\ell(x) \leq \frac{[\text{SL}_d(\mathbb{Z}) : \Gamma_{0,d}(q)]}{[\text{SL}_d(\mathbb{Z}) : \Gamma_{0,d}(q/\ell)]} = \ell^{d-1} \prod_{p | \ell, p | q/\ell} \frac{1 - p^{-d}}{1 - p^{-1}}.
\]

Indeed, for \(x \in \mathbb{Z}^d \setminus \{0\} \), consider \(\gamma \) and \(\tilde{\gamma} \) in \(\text{SL}_d(\mathbb{Z}) \) such that there exist \(m \) and \(n \) satisfying: \(\gamma x = m \), \(\tilde{\gamma} x = n \) with \(\frac{d}{\ell} \mid m_i \) and \(\frac{d}{\ell} \mid n_i \) for \(1 \leq i \leq d - 1 \), while \(\gcd(\frac{d}{\ell}, m_d) = \gcd(\frac{d}{\ell}, n_d) = 1 \). It follows that

\[
(4.51) \quad \gamma (\tilde{\gamma}^{-1}) n = \tilde{\gamma} \gamma^{-1} n = \gamma x = m.
\]
Upon reducing modulo \(\frac{q}{\ell} \), we get

\[
\ell^{-1} \gamma_0 (0) \equiv \begin{pmatrix} 0 \\ m_d \end{pmatrix} \pmod{\frac{q}{\ell}}
\]

with \(n_d \) and \(m_d \) both invertible modulo \(\frac{q}{\ell} \). This means \(\bar{\gamma}^{-1} \gamma \in \Gamma_{0,d}(q/\ell) \). Therefore

\[
\# S_\ell(x) \leq \# (\Gamma_{0,d}(q) \backslash \Gamma_{0,d}(q/\ell)) = [\Gamma_{0,d}(q/\ell) : \Gamma_{0,d}(q)],
\]

which is precisely the inequality in (4.50). The equality follows from Proposition 2.1.

Then we have

\[
\frac{1}{\# R_q} \sqrt{q} \sigma_0(q) \sum_{\ell_q} \ell^{-\frac{1}{2}} \sum_{x \in \mathbb{Z}^d \setminus \{0\}, \|x\|_\infty \leq \frac{1}{\ell q^{1/2 + \vartheta_2}}} \# S_\ell(x)
\]

\[
\leq \frac{1}{\# R_q} \sqrt{q} \sigma_0(q) \prod_{p | q} \frac{1 - p^{-d}}{1 - p^{-1}} \sum_{\ell | q, \ell \leq q^{1/2 + \vartheta_2}} \ell^{d-1} \left(\frac{q^{1/2 + \vartheta_2}}{\ell} \right)^d \ell^{-\frac{1}{2}}
\]

\[
= \frac{1}{\# R_q} q^{d-\frac{1}{2} + \vartheta_2} \sigma_0(q) \prod_{p | q} \frac{1 - p^{-d}}{1 - p^{-1}} \sum_{\ell | q, \ell \leq q^{1/2 + \vartheta_2}} \ell^{-\frac{1}{2}} \leq \frac{1}{\# R_q} q^{d-\frac{1}{2} + \vartheta_2} \sigma_0(q)^2 \prod_{p | q} \frac{1 - p^{-d}}{1 - p^{-1}}.
\]

Note that

\[
\# R_q = \varphi(q) q^{d-1} \prod_{p | q} \sigma^{-1}(p^{d-1}) = q^d \prod_{p | q} (1 - p^{-d}).
\]

So we get

\[
\frac{1}{\# R_q} \sqrt{q} \sigma_0(q) \sum_{\ell | q} \ell^{\frac{1}{2}} \sum_{x \in \mathbb{Z}^d \setminus \{0\}, \|x\|_\infty \leq \frac{1}{\ell q^{1/2 + \vartheta_2}}} \# S_\ell(x) \leq q^{-\frac{1}{2} + \vartheta_2} \sigma_0(q)^2 \prod_{p | q} \frac{1 - p^{-d}}{1 - p^{-1}}.
\]

This proves Proposition 4.3.

4.4. The third error term.

Proof of Proposition 4.4. By (4.15), for any integer \(k \geq 0 \), we have

\[
E_3 \leq \frac{1}{\# R_q} \sum_{\gamma \in B_q} \sum_{m \in \mathbb{Z}^d \setminus \{0\}, \|\gamma B_0 m\|_\infty > q^{1/2 + \vartheta_2}} \frac{\|F\|_{L^2} \|S(m_d, \gamma, m; q)\|}{(2\pi q^{1/2 + \vartheta} \gamma B_0 m\|_\infty)^k}.
\]
By the trivial bound for the Kloosterman sum $|S(m_d, n(e_d); q)| \leq \varphi(q)$, we have

\begin{equation}
\mathcal{E}_3 \leq \|F\|_{C^k_b} \frac{\varphi(q)}{(2\pi)^k} \sum_{\gamma \in \mathcal{B}_q} \sum_{m \in \mathbb{Z}^d \setminus \{0\}, \|\gamma B_0 m\|_{\infty} > q^{1 - \frac{1}{d} + \frac{\varphi_2}{2}}} \frac{q^{k(1 - \frac{1}{d})}}{\# \mathcal{R}_q} \|\gamma B_0 m\|_{\infty}^{\frac{k}{2}}.
\end{equation}

For each $\gamma \in \mathcal{B}_q$ and $m \in \mathbb{Z}^d \setminus \{0\}$, let $\gamma B_0 m = x$, then we have

\begin{equation}
\mathcal{E}_3 \leq \|F\|_{C^k_b} \frac{1}{(2\pi)^k} \varphi(q) \#(\mathcal{B}_q \cap \mathbb{Z}^d \setminus \{0\}, \|x\|_{\infty} > q^{1 - \frac{1}{d} + \frac{\varphi_2}{2}}) \sum_{x \in \mathbb{Z}^d \setminus \{0\}, \|x\|_{\infty} > q^{1 - \frac{1}{d} + \frac{\varphi_2}{2}}} \frac{q^{k(1 - \frac{1}{d})}}{\|x\|_{\infty}^{d - \varphi_2}} \sum_{x \in \mathbb{Z}^d \setminus \{0\}, \|x\|_{\infty} > q^{1 - \frac{1}{d} + \frac{\varphi_2}{2}}} \frac{1}{\|x\|_{\infty}^{d + \varphi_2}}.
\end{equation}

By the same argument used to obtain (4.9), we have

\begin{equation}
\sum_{x \in \mathbb{Z}^d \setminus \{0\}, \|x\|_{\infty} > q^{1 - \frac{1}{d} + \frac{\varphi_2}{2}}} \frac{1}{\|x\|_{\infty}^{d + \varphi_2}} \ll_d \varphi(q)^{-\frac{1}{d} + \frac{\varphi_2}{2}} - \varphi(q)^{-\frac{1}{d} + \frac{\varphi_2}{2}}.
\end{equation}

Thus, by (4.59), we have

\begin{equation}
\mathcal{E}_3 \ll_d \varphi(q)^{-\frac{1}{d} + \frac{\varphi_2}{2}} \|F\|_{C^k_b} \sum_{\gamma \in \mathcal{B}_q} \frac{q^{k(1 - \frac{1}{d})}}{\|x\|_{\infty}^{d - \varphi_2} \|x\|_{\infty}^{d + \varphi_2}} \ll_d \|F\|_{C^k_b} \frac{1}{2^{(d - 1) - \varphi_2}} \sum_{\gamma \in \mathcal{B}_q} \frac{q^{k(1 - \frac{1}{d})}}{\|x\|_{\infty}^{d - \varphi_2} \|x\|_{\infty}^{d + \varphi_2}} \ll_d \|F\|_{C^k_b} \frac{1}{2^{(d - 1) - \varphi_2}}.
\end{equation}

provided that $k \geq \frac{2d - 1}{2\varphi_2}$. This proves Proposition 4.4.

5. An application: diameters of random circulant graphs

In this section, we denote by X the space of unimodular lattices in \mathbb{R}^d.

We abuse notations and still denote by $C^k_b(X)$ the space of k-times continuously differentiable functions f from X to \mathbb{R} such that for every left-invariant differential operator D on $\text{SL}_d(\mathbb{R})$ of order at most k, $\|Df\|_{\infty}$ is finite. Likewise, for a function $f \in C^k_b(X)$, we still denote by $\|f\|_{C^k_b}$ the obvious analogue of (3.10).

Define, for $q \geq 2$ and $d \geq 2$, the $(d + 1)$-dimensional lattice $\Lambda_q = \mathbb{Z}^d \times q\mathbb{Z}$. For $a \in (\mathbb{Z} \cap [1, q])^d$ with $\gcd(a, q) = 1$ (meaning $a \in \mathcal{R}_q$), define

\begin{equation}
n(a) = \begin{pmatrix} I_d & a \\ 0 & 1 \end{pmatrix} \in \text{SL}_{d+1}(\mathbb{Z}).
\end{equation}

Consider $\Lambda_q(a)_0 = \Lambda_q n(a) \cap (\mathbb{R}^d \times \{0\})$. Finally define $D_q = q^{-1/d} I_d \in \text{GL}_d(\mathbb{R})$, so that $\det(D_q) = q^{-1}$. Consider the d-dimensional lattice $L_q a = \Lambda_q(a) D_q$. Following the steps used to prove [MS13, Theorem 3], with Theorem 1.1 replacing the use of [MS13, Theorem 4], we see that Theorem 1.1 implies:

Theorem 5.1. For every $d \geq 3$, every $\varepsilon > 0$ and every function $f \in C^k_b(X)$, with an integer $k \geq 2d^2 - d + 1$, we have

\begin{equation}
\frac{1}{\# \mathcal{R}_q} \sum_{a \in \mathcal{R}_q} f(L_q a) = \int_X f d\mu + O(\|f\|_{C^k_b} q^{-\frac{1}{2} + \frac{d^2(2d^2 - d + 1)}{2d^2} + \varepsilon}).
\end{equation}
Remark 5.1. When $d = 2$, a version of this theorem follows from [LM18, Theorem 1.3] (see also [Remark 1.2]).

As explained in the introduction, we can use this theorem to deduce the following rate of convergence for the limiting distribution of the appropriately rescaled diameters of random circulant graphs.

To help understand what follows, we briefly summarise the key steps in the relevant parts of Marklof and Strömbergsson’s paper [MS13]. The first step (see [MS13, Section 2.2] for more details) is to identify the circulant graph $C_q(a)$ — that is, the Cayley graph of $\mathbb{Z}/q\mathbb{Z}$ with respect to the a_i — with a lattice graph on a torus:

(1) consider the graph LG_d whose vertices are the points of the lattice \mathbb{Z}^d and whose edges are of the form $(k, k + e_i)$ for some $k \in \mathbb{Z}^d$, where (e_1, \ldots, e_d) is the canonical basis of \mathbb{R}^d;

(2) introduce a metric m on LG_d by defining the distance between two vertices k and l in \mathbb{Z}^d to be $m(k, l) = \sum_{i=1}^{d} |k_i - l_i|$;

(3) extend this metric in the obvious way to a metric on \mathbb{Z}^d/Λ where Λ is a sublattice of \mathbb{Z}^d;

(4) [MS13, Lemma 2] is the assertion that $LG_d/\Lambda q(a)$ and $C_q(a)$ are isomorphic as metric graphs.

The next step is to relate the diameter of $LG_d/\Lambda q(a)$ — which, by the first step, is exactly the diameter $\text{diam}(q, d)$ we are interested in — to the diameter of $\mathbb{R}^d/L q, a$ (where the distance on the torus is the ℓ^1 distance): [MS13, Proposition 1] asserts that

\begin{equation}
q^{1/d} \text{diam}(\mathbb{R}^d/L q, a) - \frac{d}{2} \leq \text{diam}(LG_d/\Lambda q(a)) \leq q^{1/d} \text{diam}(\mathbb{R}^d/L q, a).
\end{equation}

The final step ([MS13, Lemma 4]) connects the diameter of a torus \mathbb{R}^d/L to the covering radius of the d-orthoplex with respect to the lattice $L \subset \mathbb{R}^d$:

\begin{equation}
\text{diam}(\mathbb{R}^d/L) = \rho(\mathfrak{P}, L).
\end{equation}

We recall that the latter quantity is defined to be

\begin{equation}
\rho(\mathfrak{P}, L) = \inf \{ r > 0 : r\mathfrak{P} + L = \mathbb{R}^d \}
\end{equation}

and that for $d \geq 2$, the d-orthoplex is the polytope

\begin{equation}
\mathfrak{P} = \{ x \in \mathbb{R}^d : \|x\|_1 \leq 1 \}.
\end{equation}

We can now state the consequence of Theorem 5.1 pertaining to the diameters of random circulant graphs.

Corollary 5.1. For every $d \geq 3$, there exists a continuous non-increasing function $\Psi_d : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ with $\Psi_d(0) = 1$ such that for every $\varepsilon > 0$ and every $R \geq 0$, we have

\begin{equation}
\text{Prob}\left(\frac{\text{diam}(q, d)}{q^{1/d}} \geq R \right) = \Psi_d(R) + O_{R, \varepsilon}(q^{-\eta_d + \varepsilon}),
\end{equation}

where $\eta_d = \frac{2d^2 - 2d + 1}{2(2d^2 - d + 1)^2(2d^2 - d + 2)}$. Moreover, for $R \geq 0$, Ψ_d is explicitly given by

\begin{equation}
\Psi_d(R) = \mu(\{ L \in X : \rho(\mathfrak{P}, L) \geq R \})
\end{equation}

where μ is the Haar probability measure on X. 18
It should be clear from the discussion preceding the above corollary that its proof requires an approximation argument to pass from the smooth functions in Theorem 5.1 to characteristic functions. We borrow the following definition from Li’s paper ([Li15 Definition 1.3]):

Definition 5.1. A subset of X is said to have thin boundary if its boundary is contained in the union of finitely many connected smooth submanifolds of X, all of which have codimension at least 1.

We also borrow (in a slightly modified form) the following technical lemma from a paper by Strömbergsson and Venkatesh ([SV05 Lemma 1]). For a set $S \subset X$, we denote by $\chi_S : X \to \{0, 1\}$ its characteristic function.

Lemma 5.1. If $S \subset X$ has thin boundary, then for each $\delta \in (0, 1)$, there exist functions f_- and f_+ in $C^\infty(X)$ such that for every $k \geq 1$,

1. $0 \leq f_- \leq \chi_S \leq f_+ \leq 1$;
2. $\|f_-\|_{C^k_b} \ll_S \delta^{-k}$ and $\|f_+\|_{C^k_b} \ll_S \delta^{-k}$;
3. $\|f_- - \chi_S\|_{L^1} \ll_S \delta$ and $\|f_+ - \chi_S\|_{L^1} \ll_S \delta$.

We can finally proceed with the proof of Corollary 5.1.

Proof of Corollary 5.1. Define, for $R \geq 0$, the following subset of d-dimensional unimodular lattices

$$S_R = \{ L \in X : \rho(\mathfrak{P}, L) \geq R \}$$

where ρ is the covering radius and \mathfrak{P} is the d-orthoplex.

In order to deduce Corollary 5.1, we wish to apply Theorem 5.1 to χ_{S_R} for each $R \geq 0$. To do so, we make use of Lemma 5.1 to approximate this characteristic function by smooth functions. For this, we first need to show that, for each $R \geq 0$, the set S_R has thin boundary according to Definition 5.1. However, this follows from the proof of [MST13 Lemma 7]. We therefore find smooth functions f_- and f_+ as in Lemma 5.1. Applying Corollary 5.1 to each of those and using their properties, we conclude that for every $\delta \in (0, 1)$, every $\varepsilon > 0$ and every $k \geq 2d^2 - d + 1$,

$$\frac{1}{\# R_q} \sum_{a \in R_q} \chi_{S_R}(L_{q,a}) = \int_X \chi_{S_R} d\mu + O_R(\delta + \delta^{-k} q^{-\frac{1}{2} + \varepsilon})$$

with $\vartheta = \frac{d^2(2k - 2d + 1)}{2k^2}$. If we now choose $\delta = q^{-\frac{1/2 + \vartheta}{k + 1}}$, we get that for every $\varepsilon > 0$,

$$\frac{1}{\# R_q} \sum_{a \in R_q} \chi_{S_R}(L_{q,a}) = \int_X \chi_{S_R} d\mu + O_R(q^{\kappa_{d,k} + \varepsilon})$$

with $\kappa_{d,k} = \frac{-k^2 + d^2(2k - 2d + 1)}{2k^2(k + 1)}$. Finally, picking $k = 2d^2 - d + 1$ we get the desired error term with $\eta_d \sim \frac{1}{8d^4}$ as claimed.

References

[AGG10] Gideon Amir and Ori Gurel-Gurevich, *The diameter of a random Cayley graph of \mathbb{Z}_q*, Groups. Complexity. Cryptology 2 (2010), no. 1, 59–65.

[BV16] Tim Browning and Ilya Vinogradov, *Effective Ratner theorem for $SL(2, \mathbb{R}) \times \mathbb{R}^2$ and gaps in \sqrt{n} modulo 1*, Journal of the London Mathematical Society. Second Series 94 (2016), no. 1, 61–84.
[COU01] Laurent Clozel, Hee Oh, and Emmanuel Ullmo, *Hecke operators and equidistribution of Hecke points*, Inventiones mathematicae 144 (2001), no. 2, 327–351.

[CU04] Laurent Clozel and Emmanuel Ullmo, *équidistribution des points de Hecke*, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 193–254.

[EMSS16] Manfred Einsiedler, Shahar Mozes, Nimish Shah, and Uri Shapira, *Equidistribution of primitive rational points on expanding horospheres*, Compositio Mathematica 152 (2016), no. 4, 667–692.

[Han06] Juncheol Han, *The general linear group over a ring*, Bulletin of the Korean Mathematical Society 43 (2006), no. 3, 619–626.

[Kim03] Henry H. Kim, *Functoriality for the exterior square of GL4 and the symmetric fourth of GL2*, Journal of the American Mathematical Society 16 (2003), no. 1, 139–183, With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.

[Li15] Han Li, *Effective limit distribution of the Frobenius numbers*, Compositio Mathematica 151 (2015), no. 5, 898–916.

[LM18] Min Lee and Jens Marklof, *Effective equidistribution of rational points on expanding horospheres*, International Mathematics Research Notices 2018 (2018), no. 21, 6581–6610.

[Mar10a] Jens Marklof, *The asymptotic distribution of Frobenius numbers*, Inventiones mathematicae 181 (2010), no. 1, 179–207.

[Mar10b] ______, *Horospheres, Farey fractions and Frobenius numbers*, Oberwolfach Reports 29 (2010), 28–32.

[MS13] Jens Marklof and Andreas Strömbergsson, *Diameters of random circulant graphs*, Combinatorica 33 (2013), no. 4, 429–466.

[Oh02] Hee Oh, *Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants*, Duke Mathematical Journal 113 (2002), no. 1, 133–192.

[Str15] Andreas Strömbergsson, *An effective Ratner equidistribution result for SL(2, R)×R2*, Duke Mathematical Journal 164 (2015), no. 5, 843–902.

[SV05] Andreas Strömbergsson and Akshay Venkatesh, *Small solutions to linear congruences and Hecke equidistribution*, Acta Arithmetica 118 (2005), no. 1, 41–78 (eng).

[SZ18] Uri Shapira and Reut Zuck, *Asymptotic metric behavior of random cayley graphs of finite abelian groups*, Combinatorica (2018).

School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

E-mail address: daniellelbaz88@gmail.com

School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

E-mail address: bingronghuangssdu@gmail.com

School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K.

E-mail address: min.lee@bristol.ac.uk