Discovery of Isotopes of Elements with $Z \geq 100$

M. Thoennessen*

National Superconducting Cyclotron Laboratory and
Department of Physics and Astronomy, Michigan State University,
East Lansing, MI 48824, USA

Abstract

Currently, 163 isotopes of elements with $Z \geq 100$ have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

*Corresponding author.

Email address: theoennessen@nscl.msu.edu (M. Thoennessen)

Preprint submitted to Atomic Data and Nuclear Data Tables

May 5, 2014
1. Introduction

The discovery of isotopes of elements with $Z \geq 100$ is discussed as part of the series summarizing the discovery of isotopes, beginning with the cerium isotopes in 2009 [1]. Guidelines for assigning credit for discovery are (1) clear identification, either through decay-curves and relationships to other known isotopes, particle or γ-ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are
discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery includes a half-life measurement the measured value is compared to the currently adopted value taken from the NUBASE evaluation [2] which is based on the ENSDF database [3]. In cases where the reported half-life differed significantly from the adopted half-life (up to approximately a factor of two), the subsequent literature was searched for indications that the measurement was erroneous. If that was not the case the authors with the discovery in spite of the inaccurate half-life was credited.

The first criterium is not clear cut and in many instances debatable. Within the scope of the present project it is not possible to scrutinize each paper for the accuracy of the experimental data as is done for the discovery of elements [4]. In some cases an initial tentative assignment is not specifically confirmed in later papers and the first assignment is tacitly accepted by the community. The readers are encouraged to contact the authors if they disagree with an assignment because they are aware of an earlier paper or if they found evidence that the data of the chosen paper were incorrect. Measurements of half-lives of a given element without mass identification are not accepted.

In contrast to the criteria for the discovery of an element [4–6] the criteria for the discovery or even the existence of an isotope are not well defined (see for example the discussion in reference [7]). Therefore it is possible, for example in the case of fermium, that the discovery of an element does not necessarily coincide with the first discovery of a specific isotope.

The ENSDF [3] and NSR [8, 9] databases of the National Nuclear Data Center at Brookhaven National Laboratory were used as the initial starting point for the literature searches. Additional excellent resources were the book “The elements beyond uranium” by Seaborg and Loveland [6], the 1987 review article “A history and analysis of the discovery of elements 104 and 105” by Hyde, Hoffman, and Keller [10], and for the transfermium isotopes the technical reports of the International Union of Pure and Applied Chemistry (IUPAC) [11–15]. The original articles were researched and referenced for all nuclides. The cutoff date for publications included in the present overview was March 31st, 2011.

In controversial cases, the judgement and recommendations of the IUPAC reports were followed. In cases where the initial mass assignment was incorrect, credit was given to the first subsequent publication which made the correct assignment.

The following sections describe details of the discovery of each nuclide in short paragraphs. These paragraphs contain quotes from the original papers where the original notation is maintained including the original element names even if they are not in use anymore. A summary of the discovery of each isotope is presented in Table 1.

2. Discovery of $^{241-259}$Fm

The new element with $Z = 100$ was first identified by Ghiorso et al. in December 1952 from uranium which had been irradiated by neutrons in the “Mike” thermonuclear explosion on November 1, 1952 [16]. However, the work was classified and could not be published. The authors realized the possibility that others could produce this new element independently, publish the results first and take credit for the discovery: “At this juncture we began to worry that other laboratories might discover lighter isotopes of the elements 99 and 100 by the use of reactions with cyclotron-produced heavy ions. They would be able to publish that work without any problem and would feel that they should be able to name these elements. This might well happen before we could declassify the Mike work and it would make it difficult
for us to claim priority in discovery. (Traditionally, the right to name a new element goes to the first to find it, but it is not clear that the world would accept that premise if the work is done secretly.)” [17].

The first observation of the fermium isotope ^{254}Fm was submitted on January 15, 1954 by Harvey et al. [18]. They did not want this observation to be regarded as the discovery of einsteinium and added the note: “Because of the existence of unpublished information on element 100 the question of its first preparation should not be prejudged on the basis of this paper.” The first identifications of ^{255}Fm (March 19, 1954) and ^{256}Fm (April 18, 1955 [19]) were also submitted prior to the official announcement of the discovery of the new element. This announcement was finally made in the summer of 1955 with the publication of the article “New Elements Einsteinium and Fermium, Atomic Numbers 99 and 100” [16].

The early accounts of the events were not specific about the details: “Without going into the details, it may be pointed out that such experiments involving the groups at the three laboratories led to the positive identification of isotopes of elements 99 and 100” [6, 20, 21]. Only later were the difficult discussions regarding the publication strategy between the research groups involved described in detail [17]. It is interesting to note that the loss of life during the collection of samples from the thermonuclear explosion was only mentioned in the more recent accounts [6, 22] of the discovery of these transuranium elements: “These samples cost the life of First Lieutenant Jimmy Robinson, who waited too long before he went home, tried to land on Eniwetok, and ditched about a mile short of the runway” [22].

In the discovery paper the authors suggested to name the new element with $Z = 100$ Fermium with the symbol “Fm”. IUPAC adopted the name and the symbol at the 19th IUPAC Conference in Paris 1957 [23, 24].

^{241}Fm

J. Khuyagbaatar et al. discovered ^{241}Fm in “Spontaneous fission of neutron-deficient fermium isotopes and the new nucleus ^{241}Fm” in 2008 [25]. An enriched ^{204}Pb target was bombarded with 187–206 MeV ^{40}Ar beams from the GSI UNILAC accelerator forming ^{241}Fm in the (3n) fusion-evaporation reaction. Recoil products were separated with the velocity filter SHIP and implanted in a position-sensitive 16-strip Si detector. Subsequent emission of α-particles and spontaneous fission were detected in the implantation detector as well as in a box detector mounted in the backward hemisphere. “We observed a total number of 145 ER-SF events. The time distribution of these events is shown in [the figure]. The resulting lifetime of (1.05 ± 0.09) ms, $T_{1/2} = (0.7 \pm 0.06)$ ms, is definitely shorter than that of the other fermium isotopes shown in [the figure].”

^{242}Fm

In the 1975 paper “Synthesis of the new neutron-deficient isotopes ^{250}Pb, ^{242}Fm, and ^{254}Ku” Ter-Akopyan et al. reported the first observation of ^{242}Fm [26]. ^{40}Ar beams with energies up to 225 MeV from the Dubna U-300 cyclotron bombarded ^{204}Pb and ^{206}Pb targets and ^{242}Fm was populated in the (2n) and (4n) fusion-evaporation reactions, respectively. Spontaneous fission fragments were measured with mica detectors. “A comparison of the ^{204}Pb and ^{206}Pb target yields permits the assignment of the 0.8 msec activity to the isotope $^{242}\text{Fm}.$” This half-life has been recommended in an IUPAC technical report [27], however, more recently, the data could not be reproduced [25].
Münzenberg et al. reported the discovery of ^{243}Fm in 1981 in “The new isotopes ^{247}Md, ^{243}Fm, ^{239}Cf, and investigation of the evaporation residues from fusion of ^{206}Pb, ^{208}Pb, and ^{209}Bi with ^{40}Ar” [28]. A ^{206}Pb target was bombarded with a 4.8 MeV/u ^{40}Ar beam from the GSI UNILAC accelerator to form ^{243}Fm in the (3n) fusion-evaporation reaction. Recoil products were separated with the velocity filter SHIP and implanted in an array of position sensitive surface-barrier detector which also recorded subsequent α decay and spontaneous fission. “Correlated to this decay we observed a daughter decay of $(7,630\pm25)$keV and a half-life of (39^{+37}_{-12})s. We assign these two decays to ^{243}Fm and its daughter ^{239}Cf.”

Nurmia et al. reported the discovery of ^{244}Fm and ^{245}Fm in the 1967 article “Spontaneous fission of light fermium isotopes; New nuclides ^{244}Fm and ^{245}Fm” [29]. A ^{16}O beam from the Berkeley heavy-ion accelerator Hilac bombarded a ^{233}U target forming ^{244}Fm and ^{245}Fm in (5n) and (4n) fusion-evaporation reactions, respectively. Spontaneous fission events from ^{244}Fm were recorded using mica to scan a rotating drum, recoil-collection device and a half-life of 3.3(5) ms was measured: “The activity was not produced in bombardments of the same target with ^{14}N ions. This was taken as indicating that the activity is unlikely due to an isotope or isomeric state of an element other than fermium. The above evidence suggests the assignment of ^{244}Fm to this activity.” For ^{245}Fm recoil products were moved in front of semiconductor detectors with a conveyor-gas system to measure α-particles and spontaneous fission and an α-decay half-life of 4.2(13) s was measured: “The activity was assigned to ^{245}Fm on the basis of its production in the cross-bombardments with the expected excitation functions and from α decay systematics.”

The observation of ^{246}Fm was reported in “Synthesis of several isotopes of fermium and determination of their radioactive properties” by Akapev et al. in 1966 [30]. ^{16}O beams with energies of 80–105 MeV from the Dubna 310-cm cyclotron bombarded an enriched ^{235}U target and ^{246}Fm was produced in the (5n) fusion-evaporation reaction. Recoil products were transported in front of a semiconductor detector with a helium gas stream to measure subsequent α decay. “For ^{16}O ion energies corresponding to the estimated values of the maxima of the excitation function of the ^{235}O(16,5n) reaction, we obtained an activity with $T_{1/2}=1.4\pm0.6$ sec and an energy of $E_\alpha=8.23\pm0.02$ MeV... As the energy of the bombarding ions is increased, the yield of this activity decreases, in accordance with the behavior of the excitation function of a complete-fusion reaction with the evaporation of five neutrons. It must be assumed that this α activity belongs to Fm246.”

In 1967, Flerov et al. identified ^{247}Fm in the paper “Synthesis of isotopes of fermium with mass numbers 247 and 246” [31]. A ^{239}Pu target was bombarded with 72–74 MeV ^{12}C from the Dubna 310-cm heavy-ion cyclotron and ^{247}Fm was formed in (4n) fusion-evaporation reactions. Recoil products were collected with an oriented gas jet and subsequent α decay was measured with Si(Au) detectors. “Based on the coincidence of the half lives and excitation functions, it can be concluded that the activities with E_0 equal to 7.87±0.05 and 7.93±0.05 MeV are associated with the decay of Fm247.”
from a single state. For a more accurate determination of the half life of Fm247 in this state, measurements were carried out in the cycle with $\tau = 200$ sec. The results of the measurements are shown in [the figure] from which a value of $T_{1/2} = 35 \pm 4$ sec is obtained."

248Fm

Ghiorso et al. reported the observation of 248Fm in the 1958 paper “Element No. 102” [32]. A 240Pu target was bombarded with a 12C beam from the Berkeley heavy ion linear accelerator HILAC forming 248Fm in the (4n) fusion-evaporation reaction. Recoil products were transported with a helium gas stream and a conveyor belt onto catcher foils which were analysed in a multiplex assembly consisting of five Frisch grid chambers. “The method was first successfully used in bombardments of Pu240 with C12 ions to identify a new isotope of element 100, Fm248. It was shown to have a half-life of 0.6 minutes by analysis of the amounts of the 20-minute Cf244 caught on the catcher foils.”

249Fm

Perelygin et al. described the observation of 249Fm in 1960 in “Experiments in the production of a new fermium isotope” [33]. A 238U target was bombarded with 84–98 MeV 16O beams from the Moscow 1.5 m cyclotron and 249Fm was produced in the (5n) fusion-evaporation reaction. Recoil products were stopped in an aluminum foil which was quickly moved to NIKFIT-1 photoplates which served as α detectors. “Evidence has been obtained of the formation of a new fermium isotope Fm249, which has a half-life of about 150 sec and an α-particle energy of 7.9\pm0.3 Mev.”

250Fm

250Fm was observed by Atterling et al. as described in “Element 100 produced by means of cyclotron-accelerated oxygen ions” in 1954 [34]. The Stockholm 225-cm cyclotron was used to bombard uranium targets with a 16O beam of energies up to 180 MeV. Subsequent α decay was measured with an ionization chamber following chemical separation. “In the element-100 eluate fraction, up to 20 alpha disintegrations of energy 7.7 Mev were usually found, decaying with a half-life of about half an hour. According to alpha systematics a probable mass number corresponding to these data is 250.”

251Fm

In the 1957 paper “Production and properties of the nuclides fermium-250, 251, and 252” Amiel et al. described the observation of 251Fm [35]. A 249Cf target was bombarded with 20–40 MeV α particles from the Berkeley 60-in. cyclotron forming 251Fm in (α,2n) reactions. Subsequent α decay was measured following chemical separation. “The element identification was established by means of a cation exchange column separation using alaphahydroxy isobutyric acid as eluant. Mass assignments were based on the excitation functions. The properties of these nuclides are summarized in [the table]. The half-lives given are good to about $\pm 10\%$ and the alpha particle energies to ± 0.05 Mev.” The measured half-life for 251Fm was 7 h.
Friedman et al. identified ^{252}Fm in 1956 in “Properties of ^{252}Fm” [36]. A californium target was bombarded with 34 and 42 MeV α particles from the Argonne 60-in. cyclotron. Subsequent α decay was measured following chemical separation. “The 7.04-Mev alpha activity was observed to decay with a half-life of 22.7 ± 0.7 hours... The observed increase in the yield of the 7.04-Mev alpha emitter relative to ^{254}Fm with increased cyclotron energy further agrees with the assignment of the 7.04-Mev alpha energy to ^{252}Fm.” This half-life agrees with the presently adopted value of $25.39(4)$ h.

Amiel described the identification of ^{253}Fm in “Properties of fermium-253” in 1957 [37]. A 40 MeV α beam from the Berkeley 60-in. cyclotron bombarded a ^{252}Cf target forming ^{253}Fm in the reaction $(\alpha,3n)$. Alpha particle spectra were measured with an ionization-grid-chamber following chemical separation. “The decay of the 6.94±0.04 Mev peak of Fm253 was followed by a corresponding growth of a 6.64±0.03 Mev peak of E253. The alpha-particle energy emitted by the Fm253 was found in the range of 6.90−6.98 Mev... The growth of E253 was found to result from the decay of Fm253 with a 4.5±1.0 day half-life.” An earlier tentative assignment of a half-life of >10 d [36] was evidently incorrect.

“Further production of transcurium nuclides by neutron irradiation” was the first unclassified publication reporting the observation of ^{254}Fm in 1954 by Harvey et al. [18]. Targets of heavy californium isotopes were irradiated with neutrons in the Materials Testing Reactor. Alpha-particle spectra were measured following chemical separation. “The isotope of element 100 emitting the approximately 7.2-Mev alpha particles is tentatively assigned as 100254, and a possible reaction sequence leading to its production might be the following: $\text{Cf}^{252}(n,\gamma)\text{Cf}^{253}\beta^-\text{99}\text{Cf}^{254}(n,\gamma)\text{99}\text{Cf}^{254}\beta^-\text{100}\text{Fm}^{264}$. Because of the existence of unpublished information on element 100 the question of its first preparation should not be prejudged on the basis of this paper.”

In the 1954 paper “Nuclear properties of some isotopes of californium, elements 99 and 100” Choppin et al. identified ^{255}Fm [38]. Plutonium was irradiated with neutrons in the Materials Testing Reactor and α-decay spectra were measured following chemical separation. “Two alpha activities assigned to element 100 have been observed. The more abundant, probably due to 100254, decays with a half-life of 3.2 hours by emission of 7.22±0.03-Mev alpha-particles, as previously reported. The other, probably due to 100255, decays with a half-life of about 15 hours by emission of 7.1-Mev alpha particles.”

Choppin et al. described the identification of ^{256}Fm in the 1955 paper “Nuclear properties of 100256 [19]. ^{255}Es was irradiated with neutrons in the Materials Testing Reactor. Alpha-particles and spontaneous fission were measured following chemical separation. “However, a total of 33 spontaneous fission events occurred in the 100 fraction which was well outside the probability of the number of such events (10.8±3) expected from 100254 based on the measured alpha-to-spontaneous-fission ratio of 1550 for this nuclide. The additional events are attributed to the nuclide 100256. The spontaneous fission half-life was found to be approximately 3 to 4 hours.”
257 Fm

257 Fm was observed by Hulet et al. in “79-day fermium isotope of mass 257” in 1964 [39]. A target consisting of 242 Pu, 243 Am, and 244 Cm was irradiated for four years in the Idaho Materials Testing Reactor and 257 Fm was formed primarily by neutron capture on 256 Fm. Alpha-decay spectra and spontaneous fission were measured following chemical separation. “The decay of the complex 6.6-MeV alpha peak is shown in [the figure]. A best fit was made to the data obtained thus far by use of the least-squares method. The best value for the Fm257 T1/2 is 79 ± 8 days, provided the half-lives of Cf253 and Es253 are 17.6 days and 20.0 days, respectively.” Previously a 11 ± 6 d half-life had been assigned to either 257 Fm or 258 Fm [40].

258 Fm

In 1971, 258 Fm was identified by Hulet et al. in “Spontaneous-fission half-life of 258 Fm and nuclear instability” [41]. The Berkeley heavy-ion linear accelerator HILAC was used to bombard a 257 Fm target with 12.5 MeV deuterons to produce 258 Fm in the (d,p) reaction. Recoil products were collected on the rim of a fast rotating drum which was surrounded by stationary strips of muscovite mica which recorded the tracks from spontaneous fission events. “In summary, a 380±60-μsec (3σ) SF activity belonging to the ground-state decay of 258 Fm has been identified.”

259 Fm

Hulet et al. reported the observation of 259 Fm in the 1980 article “Spontaneous fission of 259 Fm” [42]. A 16 MeV triton beam from the Los Alamos Tandem Van de Graaf accelerator bombarded a 257 Fm target forming 259 Fm in the reaction (3H,p). Recoil products were caught on a rotating wheel which moved the activities in front of two Si(Au) surface barrier detectors which measured spontaneous fission events. “A 1.5-s spontaneous fission activity has been produced by irradiating 257 Fm with 16-MeV tritons. On the basis of formation cross sections, fission half-life systematics, and the identification of other possible products, this 1.5-s activity has been attributed to 259 Fm formed by the reaction 257 Fm(t,p)259 Fm.”

3. Discovery of 245−260 Md

The first observation of a mendelevium isotope was reported in 1955 by Ghiorso et al. describing the formation and decay of 256 Md [43]. They suggested the name mendelevium: “We would like to suggest the name mendelevium, symbol Mv, for the new element in recognition of the pioneering role of the great Russian chemist, Dmitri Mendeleev, who was the first to use the periodic system of the elements to predict the chemical properties of undiscovered elements, a principle which has been the key to the discovery of the last seven transuranium (actinide) elements” [43]. The discovery of mendelevium was officially accepted by the IUPAC-IUPAP Transferrmium Working Group in 1993: “Element 101 was discovered by the Berkeley group - with certainty in 1958 [44] following strong indications in 1955 [43]” [11, 45]. IUPAC adopted the name mendelevium but changed the symbol from “Mv” to “Md” at the 19th IUPAC Conference in Paris 1957 [23, 24]. Sixteen mendelevium isotopes have been reported so far.
In 1996, Ninov et al. discovered \(^{245}\)Md and \(^{246}\)Md as reported in the paper “Identification of new mendelevium and einsteinium isotopes in bombardments of \(^{209}\)Bi with \(^{40}\)Ar” \cite{Ninov96}. \(^{40}\)Ar beams were accelerated to 4.78, 4.93, and 5.12 A·MeV with the GSI UNILAC accelerator and bombarded \(^{209}\)Bi targets to form \(^{245}\)Md and \(^{246}\)Md in (4n) and (3n) fusion-evaporation reactions, respectively. Recoil products were separated with the velocity filter SHIP and implanted in a position sensitive PIPS detector which also recorded subsequent \(\alpha\) decay and spontaneous fission. “Since the chosen bombarding energy further coincided with the maximum of the 4n deexcitation channel, we assign this decay sequence to \(^{245}\)Md and its daughter \(^{241}\)Es. From these events in \(E_{\alpha m1}\) and \(E_{\alpha m2}\) we obtained a mean half-life of \(T_{1/2} = (0.35^{+0.23}_{-0.16})\) s for \(^{245}\)Md... From these data we obtained for \(^{246}\)Md an \(\alpha\) energy of \(E_{\alpha} = (8740^{\pm20})\) keV and a half-life of \(T_{1/2} = (1.0^{+0.4}_{-0.2})\) s, and for \(^{242}\)Es \(E_{\alpha} = (7920^{\pm20})\) keV and \(T_{1/2} = (16^{+6}_{-4})\) s.”

Münzenberg et al. reported the discovery of \(^{247}\)Md in 1981 in “The new isotopes \(^{247}\)Md, \(^{243}\)Fm, \(^{239}\)Cf, and investigation of the evaporation residues from fusion of \(^{206}\)Pb, \(^{208}\)Pb, and \(^{209}\)Bi with \(^{40}\)Ar” \cite{Muenzenberg81}. A \(^{209}\)Bi target was bombarded with a \(4.8\) MeV/u \(^{40}\)Ar beam from the GSI UNILAC accelerator to form \(^{247}\)Md in the (2n) fusion-evaporation reaction. Recoil products were separated with the velocity filter SHIP and implanted in an array of position sensitive surface-barrier detectors which also recorded subsequent \(\alpha\) decay and spontaneous fission. “Three new \(\alpha\)-emitting isotopes were found: \(^{247}\)Md, \(^{243}\)Fm, and \(^{239}\)Cf. \(^{247}\)Md was identified by correlation to its known daughter decay \(^{243}\)Es.” The measured half-life was \(2.9^{+1.7}_{-1.2}\) s.

Eskola discovered \(^{248}\)Md, \(^{249}\)Md, \(^{250}\)Md, \(^{251}\)Md, and \(^{252}\)Md in the 1973 paper “Studies of mendelevium isotopes with mass numbers 248 through 252” \cite{Eskola73}. \(^{12}\)C and \(^{13}\)C beams with a maximum energy of 10.4 MeV/u from the Berkeley heavy-ion linear accelerator bombarded \(^{241}\)Am and \(^{243}\)Am targets. Recoil products were transported with a rapid flowing helium gas onto a wheel which periodically rotated in front of a series of Si-Au surface barrier detectors. “In bombardments of the \(^{241}\)Am target with \(^{12}\)C ions two new \(\alpha\) activities were observed: a 8.32-MeV, 7-sec activity assigned to \(^{248}\)Md, and a 8.03-MeV, 24-sec activity which was also observed in bombardments of \(^{243}\)Am with \(^{12}\)C ions and which was assigned to \(^{249}\)Md... In bombardments of the \(^{243}\)Am target with \(^{13}\)C and \(^{12}\)C ions, two new \(\alpha\) activities were observed: a 7.75-MeV, 52-sec activity which was assigned to \(^{250}\)Md and a 7.55-MeV, 4.0-min activity assigned to \(^{251}\)Md... Because of the long half-life of \(^{252}\)Fm most of the counts in 7.04-MeV peak originate from \(^{252}\)Md produced in previous bombardments with \(^{13}\)C ions. The decay curve of the \(^{252}\)Fm in daughter spectra combined from four bombardments with \(72–88\) MeV \(^{13}\)C ions is plotted in [the figure]. A value of \(140^{\pm50}\) sec is derived for the half-life of \(^{252}\)Md by a least-squares analysis. This is considerably shorter than the 8-min value reported by Donets, Schegolev, and Ermakov.” This earlier reported half-life mentioned in the quote \cite{Eskola73} was not credited with the discovery because of the large discrepancy with the currently accepted value of \(2.3(8)\) min measured by Eskola.

Kadkhodayan et al. discovered \(^{253}\)Md in the 1992 article “Identification of \(^{253}\)Md” \cite{Kadkhodayan92}. \(^{243}\)Am targets were bombarded with \(66–74\) MeV \(^{13}\)C beams from the Berkeley 88-in. cyclotron and \(^{253}\)Md was produced in the (3n) fusion-evaporation reaction.
reaction. Alpha-particles and spontaneous fission were recorded with a Si(Au) surface barrier detector following chemical separation. “An increase in the length of irradiation will cause a corresponding increase in the amount of the new isotope ^{253}Md and hence, in the amount of ^{253}Es produced, provided the length of irradiations are not very long compared to the half-life of ^{253}Md. In this way, the Md half-life was estimated to be about 6 minutes with a production cross section of the order of 50 nb.”

^{254}Md

In “Nuclear properties of ^{254}Md, ^{255}Md, ^{256}Md, ^{257}Md and ^{258}Md”, Fields et al. reported the observation of ^{254}Md in 1970 [50]. An einsteinium target was bombarded with 46 MeV α-particles from the Argonne 152 cm cyclotron forming ^{254}Md in the reaction $^{253}\text{Es}(\alpha,3n)$. The half-life of ^{254}Md was determined from the growth of ^{254}Fm due to the EC decay of ^{254}Md following chemical separation. “The nuclide ^{254}Md was observed for the first time and was found to decay by EC with a half-life of 10\pm3 min. Successive chemical separations of Fm indicate the existence of another ^{254}Md isomer having a half-life of 28\pm8 min.”

^{255}Md

Phillips et al. discovered ^{255}Md as described in “Discovery of a new mendelevium isotope” in 1958 [44]. A ^{253}Es target was bombarded with 24–42 MeV α particles from the Berkeley 60-in. cyclotron forming ^{255}Md in the reaction $^{253}\text{Es}(\alpha,2n)$. Alpha-particle spectra were recorded with a 50-channel alpha pulse-height analyzer following chemical separation. “The 7.08-MeV alpha group was observed in both new fractions. It was concluded that in the time interval between cation columns, Fm255 grew in as a result of the electron-capture decay of Mv255. A half-life of the order of 1/2 hour was estimated for the electron capture decay of Mv255."

^{256}Md

^{256}Md was discovered by Ghiorso et al. in “New element mendelevium, atomic number 101” in 1955 [43]. A ^{253}Es target was bombarded with 48 MeV α particles from the Berkeley 60-in. cyclotron forming ^{256}Md in the reaction $^{253}\text{Es}(\alpha,n)$. Alpha-particles and spontaneous fission were measured following chemical separation. “By an (\alpha,n) reaction on 99253 we have produced the isotope 101256 which decays by electron capture with a half-life of the order of a half hour to 100256; this isotope then decays by spontaneous fission with a half-life of the order of 3 to 4 hours.” The half-life was later revised to 1.5 h [44].

^{257}Md

Sikkeland et al. reported the observation of ^{257}Md in 1965 in “Decay properties of the nuclides fermium-256 and -257 and mendelevium-255, -256, and -257” [51]. A californium target was bombarded with ^{11}B, ^{12}C, and ^{13}C beams with a maximum energy of 10.5 MeV/u from the Berkeley heavy-ion linear accelerator HILAC. Alpha-particles and spontaneous fission were measured with a 20-sample solid-state detection device and two Frisch-grid ionization chambers. “The 3-h component of the 7.07- and 7.24-MeV alpha groups was assigned to the previously unobserved isotope Md257."

10
In “Nuclear properties of ^{254}Md, ^{255}Md, ^{256}Md, ^{257}Md and ^{258}Md”, Fields et al. reported the observation of ^{258}Md in 1970 [50]. An einsteinium target was bombarded with 46 MeV α-particles from the Argonne 152 cm cyclotron forming ^{258}Md in the reaction $^{255}\text{Es}(\alpha,n)$. Alpha-particle spectra were measured with a Au-Si surface-barrier detector following chemical separation. “The α-spectrum of ^{258}Md as measured with a 25 mm2 detector for 8 d is shown in [the figure]. Two α groups with energies 6.716±0.005 and 6.79±0.01 MeV were observed. The half-life of ^{258}Md was determined from the decay of the 6.716 MeV α group and was found to be 56±7 d.” Fields et al. did not consider the observation of ^{258}Md a new discovery referring to a conference abstract [52].

Wild et al. identified ^{259}Md as described in the 1982 paper “Unusually low fragment energies in the symmetric fission of ^{259}Md” [53]. A ^{248}Cm target was bombarded with a 97 MeV ^{18}O beam from the Berkeley 88-in. cyclotron forming ^{259}No in an (α3n) fusion-evaporation reaction. ^{259}Md was then populated by electron capture. Spontaneous fission events were recorded with a surface barrier detector following chemical separation. “Thus, the ^{259}No remained essentially at the top of the column while the daughter atoms ^{255}Fm and ^{259}Md, produced by the α and EC decay of ^{259}No between elutions, were removed rapidly... We calculated a weighted-average half-life of 103±12 min for ^{259}Md, based on four measurements.”

In 1989, Hulet et al. described the identification of ^{260}Md in “Spontaneous fission properties of ^{258}Fm, ^{259}Md, ^{260}Md, ^{258}No, and ^{260}No” [54]. A ^{254}Es target was bombarded with ^{18}O and ^{22}Ne beams from the Berkeley 88-in. cyclotron. Spontaneous fission activity was measured following chemical separation and the isotopic identification was achieved by electromagnetic isotope separation. “32-d ^{260}Md: We recently discovered this long-lived isotope of Md in mass-separated samples during the course of investigating the products of transfer reactions originating from heavy-ion bombardments of ^{254}Es.” The observation of spontaneous fission of ^{260}Md from this experiment had been published three years earlier by Hulet et al., however, no details about the ^{260}Md were included [55]. Also, the same group reported a half-life of 31.8(5) d in a conference proceeding [56].

4. Discovery of 250–^{260}No

The first observation of a nobelium isotope assigned to either ^{251}No or ^{253}No by Fields et al. in 1957 [57] could not be confirmed later [32, 58]. Also the assignment of a 3 s half-life to ^{254}No [32] was incorrect. Eight years later Donets et al. [59] and Zager et al. [60] simultaneously reported the identification of ^{254}No. The discovery of nobelium was officially accepted by the IUPAC-IUPAP Transernium Working Group in 1993: “The two 1966 (simultaneously published) Dubna results [59] and, especially, [60], both submitted in 1965, give conclusive evidence that element 102 had been produced” [11, 45]. Fields et al. had suggest the name nobelium “We suggest the name nobelium, symbol No, for the new element in recognition of Alfred Nobel’s support of scientific research and after the institute where the work was done” [57]. Although this original report was not correct the name was continued to be used and officially accepted in 1997 [61–64]. Eleven nobelium isotopes have been reported so far.
The assignment of a $54 \mu s$ half-life to ^{249}No [65–67] was later reassigned to ^{250}No [68]. The observation of ^{262}No was only published in a conference proceeding [69] as quoted in [27] and in an internal report [70].

^{250}No

Oganessian et al. identified ^{250}No in the 2001 article “Measurements of cross sections for the fusion-evaporation reactions 204Pb+^{48}Ca and 207Pb+^{31}S: Decay properties of the even-even nuclides ^{238}Cf and ^{250}No” [71]. Enriched ^{206}Pb and ^{204}Pb targets were bombarded with 213.5–242.5 MeV ^{48}Ca beams from the Dubna U400 cyclotron forming ^{250}No in (4n) and (2n) fusion-evaporation reactions, respectively. Recoil products were separated with the Dubna Gas-filled Recoil Separator and implanted in a position sensitive detector array which also measured subsequent α and spontaneous fission decay. Escaping α-particles were also recorded with eight additional detectors arranged in a boxlike configuration. “The spontaneously fissioning even-even isotope ^{250}No, with a half-life $T_{1/2} = 36 \mu s$, was identified for the first time in this experiment.” This half-life of $36^{+11}_{-6} \mu s$ agrees with the currently adopted value of $46^{+22}_{-14} \mu s$ for an isomeric state. A spontaneous fission half-life of 250 µs reported earlier [26] was evidently incorrect.

^{251}No

^{251}No was discovered by Ghiorsa et al. in “Isotopes of element 102 with mass 251 to 258” in 1967 [72]. A ^{244}Cm target was bombarded with 78–90 MeV ^{12}C beams from the Berkeley heavy-ion linear accelerator (HILAC) to produce ^{251}No in the (5n) fusion-evaporation reaction. Recoil products were transported by a helium gas stream onto a wheel which rotates in regular intervals to move the activities in front of Au-Si surface-barrier α-particle detectors. The results were summarized in a table listing a half-life of 0.8(3) s for ^{251}No. A 10 min half-life assigned to either ^{251}No or ^{253}No [57] was evidently incorrect.

$^{252–253}\text{No}$

Mikheev et al. identified ^{252}No and ^{253}No in 1967 in “Synthesis of isotopes of element 102 with mass numbers 254, 253, and 252” [73]. A 96 MeV ^{18}O and a 102 MeV ^{16}O beam from the Dubna 310 cm heavy-ion cyclotron bombarded a ^{239}Pu and ^{242}Pu target forming ^{252}No and ^{253}No, respectively, in (5n) fusion evaporation reactions. Recoil products were transported by a helium gas jet onto a metallic catcher which swiveled in front of a silicon surface barrier detector. “The experimental data obtained confirm the synthesis of the isotope 102252 in the reaction Pu239($^{18}\text{O},5n$)102252, with $T_{1/2} = 4.5\pm1.5$ sec and $E_\alpha = 8.41\pm0.03$ MeV... Thus, all the experimental data obtained confirm that the half-life of the isotope 102253 is 95±10 sec and that the energy of the most intense group of the α-particles is 8.01±0.03 MeV.” A 10 min half-life assigned to either ^{251}No or ^{253}No [57] was evidently incorrect. In addition, a 3 s half-life had previously been incorrectly assigned to ^{254}No [32].

^{254}No

^{254}No was simultaneously discovered in 1966 by Donets et al. [59] and Zager et al. [60] in two papers with the same title “The properties of the isotope 102254”. Donets et al. used a ^{22}Ne beam from the Dubna 300-cm cyclotron to bombard ^{238}U producing ^{254}No in the (6n) fusion-evaporation reaction. Recoil products diffused in a gas onto a disk which was rotated in front of a collection region. The α-decay of the ^{250}Fm daughters was then measured with an α-spectrometer following chemical separation. The half-life was measured by varying the disk velocity. “According to
these data the half-life of ^{102}No is 50 ± 10 sec.” Zager et al. bombarded a ^{243}Am target with 82–84 MeV ^{15}N beams from the Dubna 150-cm cyclotron to form ^{254}No in the (4n) fusion-evaporation reaction. Recoils were transported by a helium gas stream onto a metal collector which was periodically transferred to a silicon surface-barrier detector to measure subsequent α decay. “According to our data, the half-life of ^{102}No is between 20 and 50 sec, and the alpha particle energy is 8.10 ± 0.05 MeV.” A 3 s half-life previously assigned to ^{254}No [32] was evidently incorrect.

^{255}No

In the 1967 paper “Nuclear properties of the isotopes of element 102 with mass numbers 255 and 256” Druin et al. reported the identification of ^{255}No [74]. Natural uranium targets were bombarded with ^{22}Ne beams of energies up to 177 MeV from the Dubna 310-cm cyclotron forming ^{255}No in the fusion evaporation reactions $^{238}\text{U}(^{22}\text{Ne},5n)$. Alpha-particles emitted from the recoils were measured. No further details about the experimental setup were given referring to a preprint [30]. “By comparing the illustrated excitation functions of reactions leading to the formation of α-emitters with 8.08, 8.23, and 8.35 MeV, we see that the reaction reminiscent of $^{238}\text{U}(^{22}\text{Ne},5n)102\text{No}$, (as regards the shape and position of the maximum) only gives an α-emitter with an energy of 8.08 MeV and a half-life of about 3 min, which may thus be the isotope ^{102}No.” This half-life agrees with the presently adopted value of 3.1(2) min. A 15 s half-life assigned to ^{255}No [75] was evidently incorrect.

^{256}No

Donets et al. described the observation of ^{256}No in 1963 in “Synthesis of a new isotope of element 102” [76] with details of the experiment published in a subsequent paper [77]. ^{22}Ne beams from the Dubna 3 m cyclotron bombarded a uranium target forming ^{256}No in the fusion-evaporation reaction $^{238}\text{U}(^{22}\text{Ne},4n)$. Recoil nuclei were analyzed with a separator following α-decay and ^{256}No was identified by measuring the α-decay of the ^{252}Fm daughter with a high-resolution α-spectrometer. “At the Nuclear Reactions Laboratory of the Joint Institute for Nuclear Research, a new isotope of the element 102, having mass number 256, has been successfully synthesized. It was found that ^{102}No is α-active and has a half-life of ~ 8 sec.” Although the half-life differs by more than a factor two from the presently adopted value of 2.91(5) s later measurements credited Donets et al. with the discovery [74].

^{257}No

^{257}No was discovered by Ghiorso et al. in “Isotopes of element 102 with mass 251 to 258” in 1967 [72]. A ^{248}Cm target was bombarded with 63–68 MeV ^{13}C beams from the Berkeley heavy-ion linear accelerator (HILAC) to produce ^{257}No in the (4n) fusion-evaporation reaction. Recoil products were transported by a helium gas stream onto a wheel which rotates in regular intervals to move the activities in front of Au-Si surface-barrier α-particle detectors. The results were summarized in a table listing a half-life of 23(2) s for ^{257}No. A 15 s half-life had previously been incorrectly assigned to ^{255}No [75].

^{258}No

In 1989, Hulet et al. described the identification of ^{258}No in “Spontaneous fission properties of ^{258}Fm, ^{259}Md, ^{260}Md, ^{258}No, and 260[104]: Bimodal fission” [54]. A ^{248}Cm metal target was bombarded with a 67.6 MeV ^{13}C beam from the Berkeley 88-in. cyclotron and ^{258}No was produced in the (3n) fusion-evaporation reaction. Spontaneous fission products
were measured with the Spinning-Wheel Analyzer for Millisecond Isotopes (SWAMI). “Assuming a 5% efficiency for SWAMI, we obtained a 1718 nb cross section for the formation of what we believe to be 258No.” A half-life of 1.2(2) ms was measured for 258No. This half-life had previously been reported in an unpublished report [78]. An even earlier search for 258No was unsuccessful [72].

259No

In the 1973 paper “The new nuclide nobelium-259” Silva et al. described the discovery of 259No [79]. A 248Cm target bombarded with $88-106$ MeV 18O beams from the Oak Ridge isochronous cyclotron forming 259No in the (α3n) fusion-evaporation reaction. A helium gas-jet system was used to implant the recoil products onto a platinum catcher foil which was pneumatically transferred in front of an α-particle detection system. “We believe the α-particle groups at 7.685, 7.605, 7.533, 7.500 and 7.455\pm0.010$ MeV to be associated with 259No decay.”

260No

Somerville et al. identified 260No in “Spontaneous fission of rutherfordium isotopes” in 1985 [80]. A 99 MeV 18O beam from the Berkeley 88-in. cyclotron bombarded a 254Es target forming 260No in a multi-nucleon transfer reaction. Helium transported the recoils onto a long tape collector which passed one meter of stationary mica track detectors. “We have found a 106\pm8-ms SF activity shown in [the figure] with a production cross section of 1.1\pm0.2 \mu b in the reaction 18O + 254Es... But 260No is a possible assignment because it is the only even-even nuclide whose production cross section of 1.1 \mu b would fit an extrapolation of the yield curve for transfer products from the reaction 18O + 254Es... However, a \sim100-ms half-life for 260No would be surprisingly long, based on an extrapolation of the known nobelium half-lives in [the figure] and a known half-life of only 1 ms for 258No. Thus, an assignment to 260No is supported by our cross bombardments but would be surprising in view of the nobelium half-life systematics.”

5. Discovery of $^{252-260}$Lr

In 1961, Ghiorso et al. reported the discovery of lawrencium with the observation of 257Lr and suggested the name lawrencium: “In honor of the late Ernest O. Lawrence, we respectfully suggest that the new element be named lawrencium with the symbol Lw” [75]. Four years later, Donets et al. identified 256Lr [81]. The mass assignment of the original observation could later not be confirmed [82]. Credit for the discovery was given to both groups in 1993 by the IUPAC-IUPAP Transfermium Working Group: “In the complicated situation presented by element 103, with several papers of varying degrees of completeness and conviction, none conclusive, and referring to several isotopes, it is impossible to say other than that full confidence was built up over a decade with credit attaching to work in both Berkeley and Dubna” [11, 45]. The original suggestion of the name lawrencium was adopted but the symbol was later changed to Lr; name and symbol were officially accepted by IUPAC in 1997 [61–64]. Nine lawrencium isotopes have been reported so far.

The observations of 261Lr and 262Lr were only published as internal reports [70, 83] and in a conference proceeding [84].
252Lr

Heßberger et al. reported the first observation of ^{252}Lr in “Decay properties of neutron-deficient isotopes $^{256,257}\text{Db, 255Rf, 252,253Lr}$” in 2001 [85]. A ^{209}Bi target was bombarded with a 5.08 MeV/u ^{50}Ti beam from the GSI UNILAC accelerator and ^{256}Db was formed in (3n) fusion-evaporation reactions. Recoil products were separated with the velocity filter SHIP and implanted in a position-sensitive 16-strip PIPS detector which also measured subsequent α-decay and spontaneous fission. In addition, escaping α-decay and spontaneous fission events were recorded in six silicon detectors located in the backward hemisphere. “The identification of the isotopes ^{256}Db and ^{252}Lr was based on a total of 16 α-decay chains, that were followed down to ^{244}Cf according to the sequences $^{256}\text{Db}\rightarrow^{252}\text{Lr}\rightarrow^{248}\text{Md}\rightarrow^{244}\text{Es}\rightarrow^{244}\text{Cf}\rightarrow^{240}\text{Cm}$ or $^{256}\text{Db}\rightarrow^{252}\text{Lr}\rightarrow^{248}\text{Md}\rightarrow^{248}\text{Fn}\rightarrow^{244}\text{Cf}\rightarrow^{240}\text{Cm}$. Earlier an upper limit for spontaneous fission of ^{252}Lr was reported [86].

253Lr

The discovery of ^{253}Lr was reported in 1985 in the paper “The new isotopes $^{258,105,257,105,254}\text{Lr and 253Lr}$” by Heßberger et al. [87]. ^{209}Bi targets were bombarded with 4.65, 4.75, 4.85, and 4.95 MeV/u ^{50}Ti beams from the GSI UNILAC accelerator forming ^{257}Db in the (2n) fusion-evaporation reaction. ^{253}Lr was then populated by α-decay. Recoil products were separated with the velocity filter SHIP and implanted in seven position-sensitive surface barrier detectors which also measured subsequent α-decays and spontaneous fission. “Isotope ^{253}Lr: This isotope was found in the α-decay chains of $^{257}\text{105}$. Two α lines with mean energies $E_{\alpha1,2} = 8,800, 8,722$ keV could be attributed to it. The measured half-life is $T_{1/2} = (1.3^{+0.6}_{-0.3})$ s.” Earlier an upper limit for spontaneous fission of ^{253}Lr was reported [86].

254Lr

In the 1981 paper “Identification of element 107 by α correlation chains” Münzenberg at al. described the discovery of ^{254}Lr [88]. A 4.85 MeV/u ^{54}Cr from the GSI UNILAC linear accelerator bombarded ^{209}Bi targets forming ^{262}Bh in the (1n) fusion-evaporation reaction. ^{254}Lr was then populated by α-decay. Recoil products were separated with the velocity filter SHIP and implanted in seven position sensitive surface barrier detectors which also measured the subsequent α-decays and spontaneous fission. Three events for the decay of ^{254}Lr were measured. In addition, ^{254}Lr was also observed in the fusion evaporation reaction $^{209}\text{Bi}(^{50}\text{Ti,n})$ at a beam energy of 4.75 MeV/u: $^{258}\text{105}$ can be produced in ^{50}Ti on ^{209}Bi irradiations by evaporation of one neutron. At 4.75 MeV/u we observed decays of (9.189±35) keV and (9.066±35) keV with (4.0^{+1.8}_{-0.5}) s half-life and (8.468±30) keV with (18^{+6}_{-6}) s half-life corresponding to $^{258}\text{105}$ and ^{254}Lr respectively in good agreement to the data from $^{262}\text{107}$ shown in the table.”

255Lr

Druin reported the first observation of ^{255}Lr in the 1971 paper “Radioactive properties of isotopes of element 103” [89]. A ^{243}Am target was bombarded with a ^{16}O beam and ^{255}Lr was formed in the (4n) fusion-evaporation reaction. Recoil products were swept from the target with a gas stream and collected on a filter where subsequent α decay was measured with two α-particle detectors. “It was shown that the α emitter with $E_{\alpha} = 8.38$ MeV and $T_{1/2} \sim 20$ sec behaves like a product of total fusion of ^{16}O and ^{243}Am with subsequent evaporation of four neutrons, i.e., like isotope 103255.”
In the 1965 article “Synthesis of the isotope of element 103 (lawrencium) with mass number 256” Donets et al. described the discovery of ^{256}Lr [81]. A ^{18}O beam with a maximum energy of 96 MeV from the Dubna three-meter, multiply-charged ion cyclotron bombarded a ^{243}Am target forming ^{256}Lr in the (5n) fusion-evaporation reaction. Recoil products were diffused by gas on a rotating disc and the half-life of ^{256}Lr was determined from the distribution of ^{252}Fm on the collector and the rotation speed of the disc. ^{252}Fm was identified by its α-decay measured in an α spectrometer with surface-barrier Au-Si detectors, following chemical separation. “The detection and identification of ^{103}Lw was made through the isotope ^{100}Fm, a product of electron capture in ^{101}Mv produced by α-decay of ^{103}Lw. The half-life of ^{100}Lw is 45 sec.”

$^{257-260}\text{Lr}$

Eskola et al. identified ^{257}Lr, ^{258}Lr, ^{259}Lr, and ^{260}Lr in “Studies of lawrencium isotopes with mass numbers 255 through 260” in 1971 [90]. Boron, nitrogen, and oxygen beams with a maximum energy of 10.4 MeV/u from the Berkeley heavy-ion linear accelerator bombarded ^{249}Cf, ^{248}Cm, and ^{249}Bk targets. Recoil products were swept by rapidly flowing helium gas onto a collection wheel which rotated periodically in front of a series of Si-Au surface-barrier detectors. “In our bombardments of the ^{249}Cf target with ^{15}N ions with the primary goal of making isotopes of element 105, a pronounced 8.87-MeV, 0.6-sec α particle group appeared in the spectra. By producing this activity using three different projectiles, ^{11}B, ^{14}N, and ^{15}N, on the ^{249}Cf target, we have concluded that the activity must be due to ^{257}Lr. The excitation functions for the 8.87-MeV, 0.6-sec and the 8.6-MeV, 4.2-sec α activities produced by ^{15}N ions on ^{249}Cf are displayed in [the figure]. Such a behavior is in accordance with the assignments of the activities to ^{257}Lr and ^{258}Lr,... The 8.45-MeV, 5.4-sec peak has been assigned to ^{259}Lr. In recent bombardments of a 300-μg/cm2 ^{249}Bk target with 95-MeV ^{18}O ions, we observed an 8.03 MeV, 3-min activity which we assign to ^{260}Lr. Earlier half-life measurements of 8(2) s [75] and \sim35 s [82] assigned to ^{257}Lr [75] were evidently incorrect. The results for ^{257}Lr and ^{258}Lr were mentioned by Ghiorso et al. about a year earlier [91] referring to the paper by Eskola et al. [90] as “to be published”.

6. Discovery of $^{253-267}\text{Rf}$

In 1969, Rutherfordium was essentially discovered simultaneously in Dubna by Zvara et al. [92] and in Berkeley by Ghiorso et al. [93] as recognized by the IUPAC-IUPAP Transfermium Working Group in 1993: “The chemical experiments in Dubna [92] with [94]) and the Berkeley experiments ([93]) were essentially contemporaneous and each show that element 104 had been produced” [11, 45]. Zvara et al. submitted their results on the chemical properties of element 104 on October 14, 1968 and Ghiorso et al. reported the observation of the isotopes ^{257}Rf, ^{258}Rf, and ^{259}Rf on May 5, 1969. Later, the Dubna group suggested the name kurchatovium (Ku) while the Berkeley group suggested rutherfordium (Rf). In 1994, the Commission on Nomenclature of Inorganic Chemistry of IUPAC did not accept either suggestion and recommended dubnium instead [95]. However, this decision was changed to rutherfordium in 1997 [61]. Thirteen rutherfordium isotopes have been reported so far.

^{266}Rf was at the end of the isotope chain originating at $^{282}\text{113}$, however, the observed spontaneous fission could have been due to either ^{266}Db or ^{266}Rf [96, 97].
In 1997, Heßberger described the identification of ^{253}Rf and ^{254}Rf in “Spontaneous fission and alpha-decay properties of neutron deficient isotopes $^{257-253}\text{Rf}$ and ^{258}Rf” [98]. ^{204}Pb and ^{206}Pb targets were bombarded with 4.68 MeV/u and 4.81 MeV/u ^{50}Ti beams from the GSI UNILAC accelerator forming ^{253}Rf and ^{254}Rf in (1n) and (2n) evaporation reactions, respectively. Recoil products were separated with the velocity filter SHIP and implanted in a position sensitive 16-strip silicon wafer which also measured subsequent α decay and spontaneous fission. “New spontaneous fission activities were identified and assigned to ^{253}Rf, ^{254}Rf, and ^{258}Pb. The half-lives were measured as $T_{1/2} = (48^{+15}_{-10}) \mu s$ for ^{253}Rf, $T_{1/2} = (23\pm3) \mu s$ for ^{254}Rf, and $T_{1/2} = (2.9^{+1.3}_{-0.7})$ ms for ^{258}Pb. No indication for α-decay of any of these isotopes was found.” Earlier a 1.8 s half-life was reported for ^{253}Rf in a conference proceeding [99] as quoted in [10, 100]. For ^{254}Rf an upper limit of < 3 ms [101] was previously reported and a 0.5(2) ms [26] measurement was considered to be ambiguous [98]. The results by Heßberger were recently confirmed with a new half-life measurement for ^{254}Rf of $29.6^{+0.7}_{-0.6}$ μs [102].

In the 1975 paper “Experiments on the synthesis of neutron-deficient isotopes of kurchatovium in reactions with accelerated ^{50}Ti ions” Oganessian et al. described the observation of ^{255}Rf and ^{256}Rf [103]. ^{50}Ti beams with energies up to 260 MeV from the Dubna 310 cm cyclotron bombarded ^{207}Pb and ^{208}Pb targets forming ^{255}Rf and ^{256}Rf, respectively, in (2n) fusion-evaporation reactions. Spontaneous fission fragments were measured with mica track detectors located around a rotating target. “The long-lived emitter with half-life about 4 sec, in all probability, is the isotope ^{255}Ku, which is formed with a maximum cross section in the reaction $^{207}\text{Pb}(^{50}\text{Ti},2n)$, and with lower probability in the reaction $^{208}\text{Pb}(^{50}\text{Ti},3n)$, and is absent in the reaction $^{206}\text{Pb}(^{50}\text{Ti},1n)$... Thus, analyzing the experimental cross sections of the reactions and the properties of the known isotopes of kurchatovium and lighter elements, it can be assumed that the observed effect is due to decay of the isotope ^{256}Ku, which is formed in the reaction $^{208}\text{Pb}(^{50}\text{Ti},2n)$ ^{256}Ku.” The same results were submitted to a different journal less than a month later [101].

Ghiorso et al. discovered ^{257}Rf, ^{258}Rf, and ^{259}Rf in 1969 in “Positive identification of two alpha-particle-emitting isotopes of element 104” [93]. ^{12}C and ^{13}C beams with energies of up to 10.4 MeV/u from the Berkeley heavy ion linear accelerator (Hiilac) bombarded ^{248}Cf targets. ^{257}Rf was formed in the ($^{12}\text{C},4n$), ^{258}Rf in both ($^{12}\text{C},3n$) and ($^{13}\text{C},4n$) and ^{259}Rf in the ($^{13}\text{C},3n$) fusion-evaporation reactions. Recoil products were swept by helium gas to a wheel, which rotated periodically. Alpha-decay and spontaneous fission was recorded with four Si-Au surface-barrier crystal detectors. ^{251}Rf is a 4.5-sec alpha-particle activity with a complex spectrum; ^{259}Rf is likewise an alpha emitter with a half-life of 3 sec. ^{258}Rf is tentatively identified as an 11-msec spontaneous-fission activity.”

Somerville et al. identified ^{260}Rf in “Spontaneous fission of rutherfordium isotopes” in 1985 [80]. Oxygen and nitrogen beams from the Berkeley 88-in. cyclotron were used to form ^{260}Rf in the reactions $^{249}\text{Bk}($$^{15}\text{N},4n$), $^{248}\text{Cm}($$^{16}\text{O},4n$), and $^{240}\text{Cf}($$^{18}\text{O},3n$) at beam energies of 80, 92, and 96 MeV, respectively. Helium transported the recoils onto a
long tape collector which passed one meter of stationary mica track detectors. “The following tentative assignments are based on several cross bombardments and comparisons between experimental and calculated production cross sections: $^{256}\text{Rf}(9 \pm 2 \text{ ms}),$ $^{257}\text{Rf}(3.8 \pm 0.8 \text{ s}, 14 \pm 9\% \text{ SF}),$ $^{258}\text{Rf}(13 \pm 3 \text{ ms}),$ $^{259}\text{Rf}(3.4 \pm 1.7 \text{ s}, 9 \pm 3\% \text{ SF}),$ $^{260}\text{Rf}(21 \pm 1 \text{ ms}),$ and $^{262}\text{Rf}(47 \pm 5 \text{ ms}).$” Earlier reports of half-lives of 0.3 s [104, 105], 0.1 s (assigned to either ^{259}Rf or ^{260}Rf) [106], and 80 ms [107, 108] could not be confirmed. A $\sim 20 \text{ ms}$ had been observed earlier, however, without a firm mass assignment [109].

^{261}Rf

The first observation of ^{261}Rf was described by Ghiorso et al. in the 1970 paper “$^{261}\text{Rf}; \text{new isotope of element 104}”$ [110]. A ^{248}Cm target was bombarded with 90–100 MeV ^{18}O beams from the Berkeley heavy-ion linear accelerator (Hilac) and ^{261}Rf was populated in the $(5n)$ fusion-evaporation reaction. Recoil products were swept by helium gas to a wheel, which rotated periodically. Alpha-decay and spontaneous fission were recorded with five Si-Au surface-barrier crystal detectors. “Altogether, as indicated above, the experimental data are consistent with the interpretation of the 8.3 MeV, 65 s α activity being the α precursor of ^{257}No and thus unambiguously identifying it as $^{261}\text{Rf}.”$

^{262}Rf

Somerville et al. identified ^{262}Rf in “Spontaneous fission of rutherfordium isotopes” in 1985 [80]. Oxygen and neon beams from the Berkeley 88-in. cyclotron were used to form ^{262}Rf in the reactions $^{248}\text{Cm}(^{18}\text{O}, 4n)$ and $^{244}\text{Pu}(^{22}\text{Ne}, 4n)$ at beam energies of 89 and 113 MeV, respectively. Helium transported the recoils onto a long tape collector which passed one meter of stationary mica track detectors. “The following tentative assignments are based on several cross bombardments and comparisons between experimental and calculated production cross sections: $^{256}\text{Rf}(9 \pm 2 \text{ ms}),$ $^{257}\text{Rf}(3.8 \pm 0.8 \text{ s}, 14 \pm 9\% \text{ SF}),$ $^{258}\text{Rf}(13 \pm 3 \text{ ms}),$ $^{259}\text{Rf}(3.4 \pm 1.7 \text{ s}, 9 \pm 3\% \text{ SF}),$ $^{260}\text{Rf}(21 \pm 1 \text{ ms}),$ and $^{262}\text{Rf}(47 \pm 5 \text{ ms}).$” Later papers did neither confirm nor reject this measurement reporting half-lives of 1.2 s [111] and 2.1(2) s [112]. Recently, it was suggested that these longer half-lives were due to an isomeric state of ^{261}Rf [113].

^{263}Rf

The first observation of ^{263}Rf was reported by Kratz et al. in the 2003 paper “An EC-branch in the decay of 27-s $^{263}\text{Db}: \text{Evidence for the isotope }^{263}\text{Rf}”$ [114]. A 123.1 MeV ^{18}O beam from the PSI Philips Cyclotron bombarded a ^{248}Bk target forming ^{263}Db in the $(4n)$ fusion-evaporation reaction. ^{263}Rf was then populated by electron capture. Recoil products were transported to a collection site with a helium gas containing KCl aerosols. Alpha-particles and spontaneous fission events were measured with sixteen passivated implanted planar silicon detectors. “Thus, there is growing evidence for a small EC-branch in the decay of ^{263}Db through which the new isotope ^{263}Rf is formed. ^{263}Rf has a relatively long half life of tens of minutes and decays predominantly by SF.” More recently a spontaneous fission half-life of 8^{+40}_{-4} s was measured for ^{263}Rf [115, 116] without referencing the Kratz et al. results. This apparent discrepancy has not been resolved.

^{265}Rf

Ellison et al. described the discovery of ^{265}Rf in 2010 in “New superheavy element isotopes: $^{242}\text{Pu}(^{48}\text{Ca}, 5n)\text{^{285}114}”$ [117]. $^{242}\text{PuO}_2$ targets were bombarded with a 247 MeV ^{48}Ca beams from the Berkeley 88-in. cyclotron and $^{285}\text{114}$ was produced in $(5n)$ fusion-evaporation reactions. ^{265}Rf was populated by subsequent α decay. Residues were separated
with the Berkeley Gas-Filled Separator BGS and detected in multiwire proportional counters and silicon strip detectors. Subsequent radioactive decay events were recorded in the strip detectors and additional silicon chips forming a five-sided box. “The decay chain terminated 152 seconds later with a 208.1 MeV SF-like event... interpreted as the SF of $^{265}_{104}$Rf.” A single decay chain was observed. A previously reported observation of 263Rf [118] was later retracted [119].

267Rf

In the 2004 paper “Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca”, Oganessian et al. identified 267Rf [120]. 238U and 242Pu targets were bombarded with 48Ca beams from the Dubna U400 cyclotron producing 283Cn and 287114, respectively. 267Rf was then populated by α decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “Data on the decay characteristics of the isotopes 286,287114, 282,283112, and 279110, as well as 277Hs, 271Sg, and 267Rf synthesized in the reactions 242Pu, 238U+48Ca, are summarized in [the table].” A single event for 267Rf was observed, decaying by spontaneous fission with a half-life of $2.3^{+98}_{−7}$ h.

7. Discovery of $^{256−270}$Db

Dubnium was essentially discovered simultaneously in Berkeley reporting the discovery of 260Db by Ghiorso et al. on April 17, 1970 [91] and in Dubna describing the observation of 261Db by Flerov et al. on June 30, 1970 [121]. Ghiorso et al. suggested the name hahnium: “In honor of the late Otto Hahn we respectfully suggest that this new element be given the name hahnium with the symbol Ha” [91] while the Dubna group recommended the name nielsbohrium. These names were in use until the controversy was resolved by IUPAC in 1997. In 1994, the Commission on Nomenclature of Inorganic Chemistry of IUPAC had not accepted either of the suggestions and recommended joliotium instead [95]. However, this decision was changed to dubnium in 1997 [61] and officially accepted later in the year [61–64]. The discovery of dubnium had officially been accepted by the IUPAC-IUPAP Transfermium Working Group in 1993: “Independent work reported in 1970 from Berkeley [91] and from Dubna [122] was essentially contemporaneous and equally convincing” [11, 45]. Eleven dubnium isotopes have been reported so far.

Half-lives of 1.5 s and 1.6 s had been reported for 255Db only in a conference proceeding [99] as quoted in references [10, 123] and an internal report [124] as quoted in reference [123], respectively. 266Db was at the end of the isotope chain originating at 282113, however, the observed spontaneous fission could have been due to either 266Db or 266Rf [96, 97].

256Db

Heßberger et al. reported the first observation of 256Db in “Decay properties of neutron-deficient isotopes 256,257Db, 255Rf, 252,253Lr” in 2001 [85]. A 209Bi target was bombarded with a 5.08 MeV/u 50Ti beam from the GSI UNILAC accelerator and 256Db was formed in (3n) fusion-evaporation reactions. Recoil products were separated with the velocity filter SHIP and implanted in a position-sensitive 16-strip PIPS detector which also measured subsequent α-decay and spontaneous fission. In addition, escaping α-decay and spontaneous fission events were recorded in six silicon detectors.
located in the backward hemisphere. “The identification of the isotopes ^{256}Db and ^{252}Lr was based on a total of 16 α-decay chains, that were followed down to ^{244}Cf according to the sequences $^{256}\text{Db} \rightarrow ^{252}\text{Lr} \rightarrow ^{248}\text{Md} \rightarrow ^{244}\text{Es} \rightarrow ^{244}\text{Cf} \rightarrow ^{240}\text{Cm}$ or $^{256}\text{Db} \rightarrow ^{252}\text{Lr} \rightarrow ^{248}\text{Md} \rightarrow ^{244}\text{Es} \rightarrow ^{244}\text{Cf} \rightarrow ^{240}\text{Cm}.”

^{257}Db

The discovery of ^{257}Db was reported in 1985 in the paper “The new isotopes $^{258}\text{105}$, $^{257}\text{105}$, ^{254}Lr and ^{253}Lr” by Heßberger et al. [87]. ^{209}Bi targets were bombarded with 4.65, 4.75, 4.85, and 4.95 MeV/u ^{50}Ti beams from the GSI UNILAC accelerator and ^{257}Db was formed in the $(2n)$ fusion-evaporation reaction. Recoil products were separated with the velocity filter SHIP and implanted in seven position-sensitive surface barrier detectors which also measured subsequent α-decay and spontaneous fission. “Isotope $^{257}\text{105}$: This isotope was produced in the reaction $^{209}\text{Bi}(^{50}\text{Ti},2n)^{257}\text{105}$ and also identified by α–α correlations to its decay products ^{253}Lr, ^{249}Md, ^{245}Es.” A previous assignment of a 5 s spontaneous fission half-life to ^{257}Db [86] was later reassigned to ^{258}Rf and ^{258}Db [125].

^{258}Db

In the 1981 paper “Identification of element 107 by α correlation chains” Münzenberg at al. described the discovery of ^{258}Db [88]. A 4.85 MeV/u ^{54}Cr from the GSI UNILAC linear accelerator bombarded ^{209}Bi targets forming ^{262}Bh in the $(1n)$ fusion-evaporation reaction. ^{258}Db was then populated by α-decay. Recoil products were separated with the velocity filter SHIP and implanted in seven position sensitive surface barrier detectors which also measured the subsequent α-decays and spontaneous fission. Four events for the decay of ^{258}Db were measured. In addition, ^{258}Db was also formed in the fusion evaporation reaction $^{209}\text{Bi}(^{50}\text{Ti},n)$ at a beam energy of 4.75 MeV/u: $^{258}\text{105}$ can be produced in ^{50}Ti on ^{209}Bi irradiations by evaporation of one neutron. At 4.75 MeV/u we observed decays of (9.189±35) keV and (9.066±35) keV with (4.0^{+1.8}_{-1.6}) s half-life and (8.468±30) keV with (18^{+19}_{-16}) s half-life corresponding to $^{258}\text{105}$ and ^{254}Lr respectively in good agreement to the data from $^{262}\text{107}$ shown in the table.” It is interesting to note that four years later the same group published a paper titled “The New Isotopes $^{258}\text{105}$, $^{267}\text{105}$, ^{254}Lr and ^{253}Lr” [87] describing the formation and decay of ^{258}Db without discussing the earlier work.

^{259}Db

The first observation of ^{259}Db was reported by Gan et al. in the 2001 article “A new alpha-particle-emitting isotope ^{259}Db” [126]. The Lanzhou Sector Focus Cyclotron (SFC) was used to bombard a ^{241}Am target with a 132 MeV ^{22}Ne beam to populate ^{259}Db in the $^{241}\text{Am}(^{22}\text{Ne},4n)$ fusion-evaporation reaction. Recoil products were transported with helium gas and collected on a rotating wheel which was located in front of four groups of three Si(Au) surface barrier detectors. “An obvious α-peak with the energy of 9.47 MeV appearing in [the figure] is assigned to ^{259}Db in the present work. Its half-life is measured to be 0.51±0.16 s.”

^{260}Db

Ghiorso et al. discovered ^{260}Db as described in “New element hahnium, atomic number 105” in 1970 [91]. A ^{249}Cf target was bombarded with a 85 MeV ^{15}N beam from the Berkeley heavy-ion linear accelerator (HILAC) forming ^{260}Db in the $(4n)$ fusion-evaporation reaction. Recoil products were removed from the target with a helium jet and implanted on a wheel which was periodically rotated in front of a series of solid-state Si-Au surface barrier detectors to measure
α-spectra. “In the inset above the sum spectrum in [the figure] there is shown an alpha spectrum of 30-sec 256Lr produced by the reaction 249Cf(11B,4n)256Lr. Because of the similarity of the sum spectrum with the spectrum in the inset, and the good agreement of the half-lives, the daughter activity is assigned to 256Lr and therefore the 9.1-MeV mother activity has to be 260105.” Ghiorso et al. could not confirm earlier results by Flerov et al. which were only published in a conference proceeding [127] and an internal report [128]. Bemis et al. confirmed the identification of 260Db by measuring L-series X-rays of lawrencium: “Our results for 260105 completely corroborate and extend the earlier experiments of Ghiorso et al. The unique identification provided for element 105 in our present experiments unequivocally supports the discovery claims for element 105 proffered by Ghiorso et al.” [129].

261Db

The first observation of 261Db was reported in 1970 by Flerov et al. in “The synthesis of element 105” [121]. A 114 MeV 22Ne beam bombarded a 243Am target forming 261Db in the (4n) fusion-evaporation reactions. Recoil products were implanted on a nickel ribbon moving at a constant speed passing by 105 phosphate glass fission fragment detectors. “Considering the data obtained altogether, we arrive at the conclusion that the product experiencing spontaneous fission with a half-life of \sim2 sec observed in the reaction of Am+243 + Ne22 is an isotope of element 105... The most probable mass number of the isotope of the new element is 261.” The same results were submitted to Nuclear Physics a month later [130]. A month earlier, α-decay with a half-life of 1.4 s was assigned to either 260Db or 261Db [122].

262Db

262Db was identified by Ghiorso et al. in the 1971 paper “Two new alpha-particle emitting isotopes of element 105, 261Ha and 262Ha” [131]. A 249Bk target was bombarded with 92–97 MeV MeV 18O beams from the Berkeley heavy-ion linear accelerator (HILAC) and 262Db was formed in the (5n) fusion-evaporation reaction. Recoil products were transported by a He jet onto a wheel which was periodically rotated in front of seven Au-Si surface-barrier detectors. “The new 40±10-sec activity which is assigned to 262Ha has a complex α-particle spectrum with the most prominent peaks at 8.45 and 8.66 MeV.”

263Db

In the 1992 paper “New nuclide 263Ha” Kratz et al. reported the discovery of 263Db [132]. A 93 MeV 18O beam from the Berkeley 88-in. cyclotron bombarded a 249Bk target and 263Db was populated in the (4n) fusion-evaporation reaction. Recoil products were removed from the target with a helium gas system containing KCl aerosols. At a collection station α-decay and spontaneous fission events were recorded with silicon detectors on-line, and subsequently analyzed with the automated rapid chemistry apparatus ARCA II. “After chemical separation, 263Ha was found to decay by spontaneous fission (57$_{+13}^{−15}$%) and by α emission (E$_{α} = 8.35$ MeV, 43%) with a half-life of 27$_{+10}^{−7}$ s.”

267,268Db

267Db and 268Db were first observed by Oganessian et al. in 2004 as reported in “Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)$^{291−x}$115” [133]. The Dubna U400 cyclotron was used to bombard an AmO$_2$ target enriched in 243Am with 253 MeV and 248 MeV 48Ca beams to form 287115 and 288115 in (4n) and (3n) fusion evaporation reactions, respectively. 267Db and 268Db were populated by subsequent α-decays. The residues were
separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The experimental decay scheme for 287115 is also supported by the agreement of the observed decay properties of the other nuclides in the decay chain with the expectations of theory. This means that the SF occurs directly in the decay of 267Db since the calculated α-decay energies and EC-decay energies for this isotope are rather low ($Q_\alpha = 7.41$ MeV, $Q_{EC} = 1$ MeV) and their expected partial half-lives significantly exceed the observed time interval of 106 min... In the decay chains shown in [the figure], we assigned SF events to the isotope 268Db following five consecutive α decays.” One decay chain involving 267Db and three chains involving 268Db were observed.

In the 2010 paper “Synthesis of a new element with atomic number $Z = 117$”, Oganessian et al. reported the first observation of 270Db [134]. A 249Bk target was bombarded with a 252 MeV 48Ca beam to form 294117 in the (3n) evaporation reaction. 270Db was populated by subsequent α-decay. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The data are consistent with the observation of two isotopes of element 117, with atomic masses 293 and 294. These isotopes undergo α decay with $E_\alpha = 11.03(8)$ MeV and 10.81(10) MeV and half-lives 14(+11,−4) and 78(+370,−36) ms, respectively, giving rise to sequential α-decay chains ending in spontaneous fission of 281Rg ($T_{SF} \sim 26$ s) and 270Db ($T_{SF} \sim 1$ d), respectively.” A single decay chain beginning at 294117 and ending with the spontaneous fission of 270Db was observed.

8. Discovery of $^{258−271}$Sg

Ghiorso et al. reported the discovery of 263Sg on September 9, 1974 [135] and only three days later, Oganessian et al. tentatively assigned spontaneous fission events to 259Sg [136]. The two groups from Berkeley and Dubna had communicated their results at conferences and in internal reports and Ghiorso et al. stated: “In view of the simultaneity of the experiments at the Dubna and Lawrence laboratories, and their very different nature, we shall postpone suggesting a name for element 106 until the situation has been clarified” [135]. In 1993, the IUPAC-IUPAP Transferrum Working Group gave the credit for the discovery of seaborgium to Ghiorso et al.: “Independent work reported in 1974 from Berkeley-Livermore [135] and from Dubna [136] was essentially contemporaneous. The Dubna work is highly important for later developments but does not demonstrate the formation of a new element with adequate conviction, whereas that from Berkeley-Livermore does” [11, 45]. The suggestion for the name seaborgium was not accepted by the 1994 Commission on Nomenclature of Inorganic Chemistry of IUPAC recommending the name rutherfordium instead [95]. This decision was changed in 1997 when the name seaborgium was officially accepted [61–64]. Twelve seaborgium isotopes have been reported so far.

258Sg

In 1997, Heßberger et al. described the identification of 258Sg in “Spontaneous fission and alpha-decay properties of neutron deficient isotopes $^{257−253}$104 and 258106” [98]. 209Bi targets were bombarded with 4.77, 4.91, and 4.99 MeV/u
51V beams from the GSI UNILAC accelerator and 258Sg was produced in (2n) evaporation reactions. Recoil products were separated with the velocity filter SHIP and implanted in a position sensitive 16-strip silicon wafer which also measured subsequent α decay and spontaneous fission. “The spontaneous fission activity was attributed to 258106, the 2n deexcitation channel, since its maximum production rate was found to be close to the E value where the measured excitation function for the similar reaction 50Ti + 208Pb \rightarrow 258104 showed the maximum of the 2n deexcitation channel.” A total of eleven spontaneous fission events of 258Sg were observed.

259Sg

259Sg was identified in “The isotopes 259106, 260106, and 261106” by Münzenberg et al. in 1985 [137]. 207Pb targets were bombarded with a 262 MeV 54Cr beam from the GSI UNILAC heavy-ion accelerator forming 259Sg in the (2n) fusion-evaporation reaction. Recoil products were separated with the velocity filter SHIP and implanted in an array of position sensitive surface barrier detectors which also measured subsequent α decay and spontaneous fission. “In an irradiation of 207Pb with 54Cr at 4.90 MeV/u, the optimum energy for the 2n channel, we produced the isotope 259106.” Seven α-decay events of 259Sg were observed. In 1974, Oganessian et al. had assumed that spontaneous fission events produced in reactions of 54Cr on 207Pb and 208Pb originated from 259Sg [136].

260Sg

Demin et al. described the identification of 260Sg in “On the properties of the element 106 isotopes produced in the reactions Pb + 54Cr” in 1984 [138]. Enriched 206,207,208Pb targets were bombarded with a 290 MeV 54Cr beam from the Dubna U400 cyclotron. No experimental details were given referring to earlier publications. “Thus from the relation given above it follows that the 6 ms activity yield corresponds to the total yield from the reaction 208Pb(54Cr,2n)260106.”

261Sg

Münzenberg et al. discovered 261Sg in the 1984 paper “The identification of element 108” [139]. A 5.02 MeV/u 58Fe beam from the GSI heavy ion accelerator UNILAC bombarded an enriched 208Pb target and 265Hs was formed in the (1n) fusion-evaporation reaction. 261Sg was then populated by α-decay. Recoil products were separated with the velocity filter SHIP and implanted in an array of seven position sensitive surface barrier detectors which also measured the subsequent α-decay and spontaneous fission. “In particular, the decay of the daughter was seen with full energy in the second chain. The observed energy of (9.57±0.03) MeV is in excellent agreement with that of the isotope 261106 - which has a prominent transition of (9.56±0.03) MeV - unambiguously identified in 8 events by correlation to the daughter 257104 in a companion experiment using the reaction 208Pb(54Cr,1n)261106. The half-life of the three daughter decays of (0.11±0.14−0.04) s overlaps with the 0.26±0.11−0.06) s half-life obtained for 261105.” The results of the companion experiment were published a year later [137].

262Sg

The first observation of 262Sg was reported in 2001 in “The new isotope 270110 and its decay products 266Hs and 262Sg” by Hofmann et al. [140]. A 317 MeV 64Ni beam accelerated by the GSI UNILAC bombarded an enriched 207Pb target producing 270Ds in the (1n) fusion evaporation reaction. 270Ds and the subsequent α-decay daughters 266Hs and 262Sg were identified with a detector system at the velocity filter SHIP. “The nucleus 262Sg decays by fission with a half-life of (6.9±0.8) ms and a total kinetic energy of the fission fragments of (222±10) MeV.”
Ghiorso et al. discovered 263Sg in 1974 as described in the paper “Element 106” [135]. A 95 MeV 18O beam from the Berkeley SuperHILAC bombarded a 249Cf target and 263Sg was formed in the (4n) fusion-evaporation reaction. Recoil products were swept to a series of detection stations with a helium flow containing NaCl aerosol. Alpha-particles and spontaneous fission fragments were measured with Si(Au) surface barrier detectors. “The new nuclide 263106, produced by the (18O,4n) reaction, is shown to decay by α emission with a half-life of 0.9±0.2 sec and a principal α energy of 9.06±0.04 MeV to the known nuclide 259Rf, which in turn is shown to decay to the known nuclide 255No.” The experimental results were confirmed for the first time twenty years later by Gregorich et al. [141].

264Sg

264Sg was first observed by Gregorich et al. in “New isotope 264Sg and decay properties of $^{262–264}$Sg” in 2006 [142]. The Berkeley 88-in. cyclotron was used to accelerate 30Si beams to 5.2–6.0 MeV/nucleon and bombard 238UF$_4$ targets. 264Sg was populated in the (4n) fusion-evaporation reaction and separated with the Berkeley Gas-filled Separator (BGS). A Si-strip detector array measured the implanted recoil products and the subsequent α-decay and spontaneous fission. “Five SF events assigned to new isotope 264Sg, produced by the 238U(30Si,4n)264Sg reaction, were observed at the lowest 30Si energy.” The measured half-life was 37$^{+27}_{-11}$ ms. Less than a month later Nishio et al. independently reported the observation of three spontaneous fission events for 264Sg [143].

265Sg

The identification of 265Sg was reported by Lazarev et al. in the 1994 paper “Discovery of enhanced nuclear stability near the deformed shells N = 162 and Z = 108” [111]. A 248Cm target was bombarded with a 121 MeV 22Ne beam from the Dubna U400 cyclotron and 265Sg was formed in the (5n) fusion-evaporation reaction. Recoil products were separated with a gas-filled recoil separator and implanted in a position sensitive surface barrier detector array which also measured subsequent α-decay and spontaneous fission. “We assigned the four $\alpha-\alpha-(\alpha)$ correlations at 121 MeV with $E_{\alpha_1} = 8.71$ to 8.91 MeV to the decay chain 265106 \rightarrow^{261}104 ($T_{1/2} = 65$ s, $E_{\alpha} \sim 8.29$ MeV) \rightarrow^{257}102 ($T_{1/2} = 26$ s, $E_{\alpha} \sim 8.22, 8.27, 8.32$ MeV) for which we measured a production cross section of 260 pb.”

266Sg

Dvorak et al. described the identification of 266Sg in the 2006 paper “Doubly magic nucleus 270Hs$_{162}$” [113]. A 248Cm target was bombarded with 185 and 193 MeV 26Mg beams from the GSI UNILAC accelerator forming 270Hs in the (4n) fusion-evaporation reaction. 266Sg was then populated by α-decay. Alpha-particles and spontaneous fission events were detected with 2 \times 32 PIPS detectors following rapid chemical separation of hassium. Four chains terminating with spontaneous fission of 266Sg were observed: “Three out of four chains were detected at the lower beam energy at the expected maximum of the 4n evaporation channel. Therefore, we assign these four chains to the decay of the new isotope 270Hs and its daughter 266Sg.” The earlier reported α-decay of 266Sg [111, 144] could not be confirmed.
267Sg

The observation of 267Sg was reported in 2008 by Dvorak et al. in “Observation of the 3n evaporation channel in the complete hot-fusion reaction 26Mg + 248Cm leading to the new superheavy nuclide 271Hs” [115]. 26Mg beams accelerated by the GSI linear accelerator UNILAC to 130 and 140 MeV bombarded a 248Cm target to form 271Hs in the (3n) fusion-evaporation reaction. 271Sg was populated by subsequent α decay. Alpha-decay chains were measured with the online chemical separation and detection system COMPACT. “A relatively long half-life was measured for 267Sg, which is consistent with the observed low α-particle energy, causing α/SF branching in this nucleus.” In a table a half-life of 80±60−20 s is quoted for 267Sg.

269Sg

Ellison et al. described the discovery of 269Sg in 2010 in “New superheavy element isotopes; 242Pu(48Ca, 5n)285114” [117]. 242PuO2 targets were bombarded with a 247 MeV 48Ca beams from the Berkeley 88-in. cyclotron and 285114 was produced in (5n) fusion-evaporation reactions. 269Sg was populated by subsequent α decay. Residues were separated with the Berkeley Gas-Filled Separator BGS and detected in multiwire proportional counters and silicon strip detectors. Subsequent radioactive decay events were recorded in the strip detectors and additional silicon chips forming a five-sided box. “The chain continued with four subsequent α-like events... after 140 ms, 8.21 ms, 346 ms, and 185 s with energies of 10.31, 10.57, 9.59, and 8.57 MeV, which are interpreted as the successive α decays of 281112Cn, 277110Ds, 273108Hs, and 269106Sg, respectively.” A single decay chain was observed. A previously reported observation of 269Sg [118] was later retracted [119].

271Sg

In the 2004 paper “Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca”, Oganessian et al. identified 271Sg [120]. 238U and 242Pu targets were bombarded with 48Ca beams from the Dubna U400 cyclotron producing 283112Cn and 287114, respectively. 271Sg was then populated by α decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “Data on the decay characteristics of the isotopes 266,287114, 282,283112, and 279110, as well as 275Hs, 271Sg, and 267Rf synthesized in the reactions 242Pu, 238U+48Ca, are summarized in [the table].” 2 events for 271Sg were observed, one decaying by α-emission the other one by spontaneous fission with a half-life of 2.4±4.3−1.0 min.

9. Discovery of 260–274Bh

Bohrium was discovered in 1981 by Münzenberg et al. with the observation of 262Bh [88]. An earlier observation of spontaneous fission of 261Bh [86] could later not be confirmed. The observation of 262Bh by Münzenberg et al. was officially accepted by the IUPAC-IUPAP Transformium Working Group in 1993: “The Darmstadt work [88] provides convincing evidence for the formation of element 107” [11, 45]. The name bohrium was officially accepted in 1997 [61–64]. Originally, the name nielsbohrium (Ns) had been suggested [95]. Ten bohrium isotopes have been reported so far.

Although 271Bh was part of the decay chain originating in 287115, the decay of 271Bh itself was not observed [133].
The first observation of ^{260}Bh was reported by Nelson et al. in “Lightest isotope of Bh produced via the ^{209}Bi(52, n)^{260}Bh reaction” in 2008 [145]. ^{209}Bi targets were bombarded with a 257.0 MeV 52, Cr beam from the Berkeley 88-inch cyclotron. Evaporation residues were separated with the Berkeley Gas-filled Separator BGS and implanted in a silicon strip detector array which also measured subsequent α decays. “[The figure] contains the eight observed decay chains attributed to the decay of ^{260}Bh... Using the eight alpha decay lifetimes, the half-life of ^{260}Bh was found to be 35_{-9}^{+19} ms.”

In 1989, Münzenberg et al. identified ^{261}Bh in the paper “Element 107” [146]. A ^{209}Bi target was bombarded with 54, Cr beams with energies between 4.87 and 5.07 MeV/u from the GSI UNILAC accelerator forming ^{261}Bh in (2n) fusion-evaporation reactions. Recoil products were separated with the velocity filter SHIP and implanted in seven position sensitive silicon surface-barrier detectors which also detected the subsequent α-decay and spontaneous fission. “We deduce from 10 events observed for decay of ^{261}Bh, and no fission event with $t < 100$ ms that the fission branching ratio is smaller than about 10%, corresponding to a half-life for spontaneous fission of larger than 0.12 s.” An earlier observation of spontaneous fission of ^{261}Bh [86] could not be confirmed.

In the 1981 paper “Identification of element 107 by α correlation chains” Münzenberg et al. described the discovery of ^{262}Bh [88]. A 4.85 MeV/u 54, Cr from the GSI UNILAC linear accelerator bombarded ^{209}Bi targets forming ^{262}Bh in the (1n) fusion-evaporation reaction. Recoil products were separated with the velocity filter SHIP and implanted in seven position sensitive surface barrier detectors which also measured the subsequent α-decays and spontaneous fission. “Our results show the discovery of the α decay of element 107. The α chains end in known transitions of ^{250}Fm and ^{250}Md, respectively, indicating the observation of the isotope ^{262}Bh formed by the 1n channel from the compound nucleus ^{263}Bh.” Five events for the decay of ^{262}Bh were measured.

Hofmann et al. discovered ^{264}Bh in 1995 as reported in “The new element 111” [147]. Bismuth targets were bombarded with 318 and 320 MeV 64, Ni beams from the GSI UNILAC. ^{272}Rg was formed in the (1n) fusion-evaporation reaction and ^{264}Bh was populated by subsequent α-decays. Reaction residues were separated with the velocity filter SHIP and α decays were recorded in a position sensitive silicon detector. “The transitions α2 and α3 are consequently assigned to the new isotopes ^{268}Bh and ^{264}Bh. A half-life of 440_{-160}^{+600} ms was reported.

The first observation of ^{265}Bh was reported in 2004 by Gan et al. in “New isotope ^{265}Bh” [148]. An americium-oxide target was bombarded with a 168 MeV 26, Mg beam from the Lanzhou Sector Focus Cyclotron (SFC) forming ^{265}Bh in the ^{243}Am(26, Mg, 4n) fusion-evaporation reaction. Recoil products were collected with a helium transport system and deposited on a rotating wheel in front of four pairs of PIPS detectors. “A total of 8 correlated decay events of ^{265}Bh and 4 decay events of ^{264}Bh were observed. ^{265}Bh decays with a $0.94_{-0.31}^{+0.70}$ s half-life by emission of α-particles with an average energy of 9.24±0.05 MeV.”
The discovery of \(^{266}\)Bh and \(^{267}\)Bh was reported by Wilk et al. in the 2000 paper “Evidence for new isotopes of element 107: \(^{266}\)Bh and \(^{267}\)Bh” [149]. A \(^{249}\)Bk target was bombarded with 117 MeV and 123 MeV \(^{22}\)Ne beams from the Berkeley 88-in. cyclotron and \(^{266}\)Bh and \(^{267}\)Bh were formed in (5n) and (4n) fusion-evaporation reactions, respectively. Recoil products were swept with helium gas containing KCl aerosols onto a merry-go-round rotating wheel system. Alpha-decays were then recorded with six pairs of passivated, ion-implanted planar silicon detectors. “Five atoms of \(^{267}\)Bh, \(E_\alpha\) ranging from 8.73 to 8.87 MeV and one atom of \(^{266}\)Bh with an \(E_\alpha\) of 9.29 MeV were identified during the experiment.” The single event of \(^{266}\)Bh was observed at 123 MeV beam energy, while for \(^{267}\)Bh two events were measured at 123 MeV and three events at 117 MeV.

\(^{270}\)Bh

Oganessian et al. reported the observation of \(^{270}\)Bh in 2007 in “Synthesis of the isotope \(^{282}\)113 in the \(^{237}\)Np+\(^{48}\)Ca fusion reaction” [96]. A 244 MeV \(^{48}\)Ca beam from the Dubna U400 cyclotron bombarded a \(^{237}\)Np target and \(^{282}\)113 was populated in the (3n) fusion evaporation reaction. \(^{270}\)Bh was populated by subsequent \(\alpha\) decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. Only one of the two decay chains included the decay of \(^{270}\)Bh: “For the last \(\alpha\) decay observed in the first decay chain of \(^{282}\)113, the \(\alpha\)-particle energy as well as half-life are in agreement with those expected for \(^{270}\)Bh \((E_\alpha = 8.93\pm0.08 \text{ MeV}, T_{1/2} = 61_{-28}^{+292} \text{ s}, T_{\text{calc}} = 5 \text{ s}).”

\(^{272}\)Bh

\(^{272}\)Bh was first observed by Oganessian et al. in 2004 as reported in “Experiments on the synthesis of element 115 in the reaction \(^{243}\)Am(\(^{48}\)Ca,xn)\(^{291-2x}\)115” [133]. The Dubna U400 cyclotron was used to bombard an AmO\(_2\) target enriched in \(^{243}\)Am with a 248 MeV \(^{48}\)Ca beam to form \(^{288}\)115 in (3n) fusion evaporation reactions. \(^{272}\)Bh was populated by subsequent \(\alpha\)-decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The \(\alpha\)-decay energies attributed to the isotopes of Mt and Bh coincide well with theoretical values” Three decay chains involving \(^{272}\)Bh were observed and a half-life of \(9.8^{+11.7}_{-3.5}\) s was reported.

\(^{274}\)Bh

In the 2010 paper “Synthesis of a new element with atomic number Z = 117”, Oganessian et al. reported the first observation of \(^{274}\)Bh [134]. A \(^{249}\)Bk target was bombarded with a 252 MeV \(^{48}\)Ca beam from the Dubna U400 cyclotron to form \(^{294}\)117 in the (3n) evaporation reaction. \(^{274}\)Bh was populated by subsequent \(\alpha\)-decay. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. \(^{274}\)Bh is not specifically mentioned in the text but an \(\alpha\)-energy of 9.55(19) MeV with a lifetime of 1.3 min is quoted in the figure displaying the single observed decay chain.
10. Discovery of $^{263−277}\text{Hs}$

On April 14, 1984, Münzenberg et al. submitted the identification of ^{265}Hs for publication followed by the submission by Oganessian et al. on June 14, 1984 reporting the observation of $^{263−265}\text{Hs}$ [150]. The Dubna group did not observe the α decay of the hassium isotopes directly and inferred their formation from known decays of the granddaughters ($^{263,264}\text{Hs}$) or the great-great-great-granddaughter (^{265}Hs). The discovery of hassium was officially accepted by the IUPAC-IUPAP Transfermium Working Group in 1993: “The formation of element 108 was established by simultaneous and independent work in Darmstadt [139] and Dubna [150]” [11, 45]. The name hassium was officially accepted in 1997 [61–64]. Previously, the name hahnium had been recommended [95]. Twelve hassium isotopes have been reported so far.

^{263}Hs

^{263}Hs was discovered by Dragojević et al. in 2009 as described in “New isotope ^{263}Hs [151]. A 280 MeV ^{56}Fe beam from the Berkeley 88-in. cyclotron bombarded an enriched ^{208}Pb target and ^{263}Hs was formed in the (1n) fusion-evaporation reaction. Recoil products were separated with the Berkeley gas-filled separator (BGS) and implanted into a Si-strip focal plane detector array which also recorded the subsequent α-decay and spontaneous fission. “^{263}Hs was identified by observing an ‘EVR-like event’ followed by a ^{1263}Hs-like event’ within 10 ms, and then by (i) at least two of the ^{259}Sg, ^{255}Rf, and ^{251}No daughters... within 15 s, or (ii) SF (E $>$ 90 MeV), within 10 s.” Six decay chains from ^{263}Hs were observed. In 1984 Oganessian et al. reported evidence for the formation of ^{263}Hs by identifying the decay of daughter nuclei, however, no direct evidence for the observation of ^{263}Hs was measured [150].

^{264}Hs

The first identification of ^{264}Hs was reported by Münzenberg et al. in the 1986 paper “Evidence for $^{264}\text{108}$, the heaviest known even-even isotope” [152]. An enriched ^{207}Pb target was bombarded with a 5.04 MeV/u beam from the GSI UNILAC accelerator and ^{264}Hs was populated in the (1n) fusion-evaporation reaction. Recoil products were separated with the velocity filter SHIP and implanted in position sensitive surface barrier detectors which also measured subsequent α-decays and spontaneous fission. “We have observed the decay of one atom of the doubly even isotope 108. we observed α-decay with a half-life of $(76^{+36}_{−36})$ µs.” In 1984 Oganessian et al. reported evidence for the formation of ^{264}Hs by identifying the decay of daughter nuclei, however, no direct evidence for the observation of ^{264}Hs was measured [150].

^{265}Hs

Münzenberg et al. discovered ^{265}Hs in the 1984 paper “The identification of element 108” [139]. A 5.02 MeV/u ^{58}Fe beam from the GSI heavy ion accelerator UNILAC bombarded an enriched ^{208}Pb target and ^{265}Hs was formed in the (1n) fusion-evaporation reaction. Recoil products were separated with the velocity filter SHIP and implanted in an array of seven position sensitive surface barrier detectors which also measured the subsequent α-decay and spontaneous fission. “Our interpretation that this first transition is due to the alpha decay of the isotope $^{265}\text{108}$, rests primarily on the fact that the remaining four full-energy alpha signals can all be assigned to known transitions in nuclei belonging to the alpha decay chain that starts with the isotope $^{265}\text{108}$.” Three decay chains were observed. In 1984 Oganessian et al. reported evidence for the formation of ^{265}Hs by identifying the decay of daughter nuclei, however, no direct evidence for the observation of ^{265}Hs was measured [150].
The first observation of 266Hs was reported in 2001 in “The new isotope 270110 and its decay products 266Hs and 262Sg” by Hofmann et al. [140]. A 317 MeV 64Ni beam accelerated by the GSI UNILAC bombarded an enriched 207Pb target producing 270Ds in the (1n) fusion evaporation reaction. 270Ds and the subsequent α-decay daughters 266Hs and 263Sg were identified with a detector system at the velocity filter SHIP. “The nucleus 266Hs decays by α emission with an energy of (10.18±0.02) MeV and a half-life of (2.3$^{+1.3}_{-0.6}$) ms.”

Lazarev et al. identified 267Hs in 1995 in “New nuclide 267108 produced by the 238U + 34S reaction” [153]. A 238U target was bombarded with a 186 MeV 34S beam from the Dubna U400 cyclotron to form 267Hs in the (5n) fusion-evaporation reaction. Recoil products as well as subsequent α-decay events and spontaneous fission events were measured with the detector setup of the velocity filter SHIP. “The above observations and arguments provide strong evidence for the identification of 267108. From measured time intervals between implantation and α decay events of the 267108 nuclides, we calculate a maximum likelihood half-life value of $^{19}_{-10}^{+29}$ ms.” Three chains originating at 267Hs were recorded.

268Hs was first observed by Nishio et al. as described in the 2010 paper “Nuclear orientation in the reaction 34S + 238U and synthesis of the new isotope 268Hs” [154]. A 5.16 MeV/u 34S beam from the GSI linear accelerator UNILAC bombarded a 238U target and 268Hs was formed in the (4n) fusion-evaporation reaction. Recoil products as well as subsequent α-particle emission and spontaneous fission events were measured with the detector setup of the velocity filter SHIP. “At 152.0 MeV one decay of the new isotope 268Hs was observed. It decays with a half-life of 0.38$^{+1.8}_{-0.17}$ s by 9479±16 keV α-particle emission.”

In the 1996 paper “The new element 112”, Hofmann et al. reported the identification of 269Hs [155]. A 344 MeV 70Zn beam from the GSI UNILAC bombarded enriched 208Pb targets and 277Cn was populated in the single neutron fusion-evaporation reaction. 269Hs was populated by subsequent α-decays. Reaction residues were separated with the velocity filter SHIP and the α decays were recorded in a position sensitive silicon detector. “Therefore, the observed chain must be assigned to the isotope with mass number A = 277 of element Z = 112, produced by fusion of 70Zn and 208Pb and emission of one neutron.” Two chains were observed, however, the first chain was later retracted [156]. Within the second chain 269Hs decayed with an α energy of 9.23 MeV within 19.7 s. Earlier, Lazarev et al. had reported the observation of several decay chains beginning at 273Ds, however, only one included values for the decay of 269Hs and in the text 269Hs is always referred to as an “unknown nucleus” [157].

Dvorak et al. described the first observation of 270Hs in the 2006 paper “Doubly magic nucleus 270112” [113]. A 248Cm target was bombarded with 185 and 193 MeV 26Mg beams from the GSI UNILAC accelerator forming 270Hs in the (4n) fusion-evaporation reaction. Alpha-particles and spontaneous fission events were detected with 2 × 32 PIPS...
detectors following rapid chemical separation of hassium. Four chains originating in 270Hs were observed: “Three out of four chains were detected at the lower beam energy at the expected maximum of the 4n evaporation channel. Therefore, we assign these four chains to the decay of the new isotope 270Hs and its daughter 266Sg.” Previously two events had tentatively been assigned to the decay of 270Hs [158, 159], however, this assignment was based on decay properties of 266Sg [111, 144] which were not confirmed.

271Hs

271Hs was discovered in 2008 by Dvorak et al. as reported in “Observation of the 3n evaporation channel in the complete hot-fusion reaction 26Mg + 248Cm leading to the new superheavy nuclide 271Hs” [115]. 26Mg beams accelerated by the GSI linear accelerator UNILAC to 130 and 140 MeV bombarded a 248Cm target to form 271Hs in the (3n) fusion-evaporation reaction. Alpha-decay chains were measured with the online chemical separation and detection system COMPACT. “Increased stability, as evidenced by long partial SF and α decay half-lives is expected when approaching the closed shell at N = 162 and is most pronounced in odd-A nuclei due to the well-known hindrance effect associated with the odd neutron. Considering the beam energy and the decay properties of the chain members, these chains are attributed to the decay of the new isotope 271Hs.” Six chains originating in 271Hs were measured. Previously, the same group reported one event tentatively assigned to 271Hs [113].

273Hs

Ellison et al. described the discovery of 273Hs in 2010 in “New superheavy element isotopes; 242Pu(48Ca, 5n)285114” [117]. 242PuO$_2$ targets were bombarded with a 247 MeV 48Ca beams from the Berkeley 88-in. cyclotron and 285114 was produced in (5n) fusion-evaporation reactions. 273Hs was populated by subsequent α decay. Residues were separated with the Berkeley Gas-Filled Separator BGS and detected in multiwire proportional counters and silicon strip detectors. Subsequent radioactive decay events were recorded in the strip detectors and additional silicon chips forming a five-sided box. “The chain continued with four subsequent α-like events... after 140 ms, 8.21 ms, 346 ms, and 185 s with energies of 10.31, 10.57, 9.59, and 8.57 MeV, which are interpreted as the successive α decays of 281112, 277110, 273Hs, and 269Sg, respectively.” A single decay chain was observed. A previously reported observation of 273Hs [118] was later retracted [119].

275Hs

In the 2004 paper “Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca”, Oganessian et al. identified 275Hs [120]. 238U and 242Pu targets were bombarded with 48Ca beams from the Dubna U400 cyclotron producing 283Cn and 287114, respectively. 275Hs was then populated by α decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “Data on the decay characteristics of the isotopes 266,287114, 282,283112, and 279110, as well as 275Hs, 271Sg, and 267Rf synthesized in the reactions 242Pu, 238U+48Ca, are summarized in [the table].” 2 decay chains were observed quoting a half-life of 0.15$^{+0.27}_{-0.06}$ s for 275Hs.
The discovery of 277Hs was reported in 2010 by Düllmann et al. in “Production and decay of element 114: High cross sections and the new nucleus 277Hs” [160]. The GSI Universal Linear Accelerator (UNILAC) was used to bombard a 244Pu target with 236.4−241.0 MeV 48Ca beams to form 289114 in the (3n) fusion-evaporation reaction. Reaction products as well as α-emission and spontaneous fission decays were measured with the detection system of the gas-filled recoil separator TASCA. 277Hs was then populated in subsequent α-emission. One decay event of 277Hs was observed: “The chain was then terminated 4.5 ms later by SF of the α-decay daughter of 281Ds, i.e., the new nucleus 277Hs with $Z = 108$ and $N = 169.” An earlier reported observation of the spontaneous fission of 277Hs [161] could not be reproduced.

11. Discovery of 266−278Mt

The discovery of meitnerium was reported in 1982 by Münzenberg et al. with the observation of 266Mt [162] and officially accepted by the IUPAC-IUPAP Transfermium Working Group in 1993: “The Darmstadt work [162] gives confidence that element 109 has been observed” [11, 45]. The name meitnerium was officially accepted in 1997 [61–64]. Seven meitnerium isotopes have been reported so far.

266Mt

The first identification of 266Mt was reported in “Observation of one correlated α-decay in the reaction 58Fe on 209Bi→267109” [162]. A 5.15 MeV/nucleon 58Fe beam from the GSI UNILAC heavy ion accelerator bombarded a bismuth target. 266Mt was produced in the (1n) fusion-evaporation reaction and separated with the velocity filter SHIP. The residues and subsequent α and spontaneous fission decays were recorded in seven position sensitive surface barrier detectors. “In an irradiation of 209Bi targets with accelerated 58Fe ions we found a decay chain consisting of two consecutive alpha disintegrations followed by fission. This decay chain most probably originates from the isotope 266109.” The time between the implantation and the decay of the daughter 262Bh was 5.0 ms.

268Mt

Hofmann et al. discovered 268Mt in 1995 as reported in “The new element 111” [147]. Bismuth targets were bombarded with 318 and 320 MeV 64Ni beams from the GSI UNILAC. 272Rg was formed in the (1n) fusion-evaporation reaction and 268Mt was populated by α-decays. Reaction residues were separated with the velocity filter SHIP and subsequent α decays were recorded in a position sensitive silicon detector. “The transitions α2 and α3 are consequently assigned to the new isotopes 268109 and 264107.” A half-life of 70$^{±100}$−30 ms was reported.

270Mt

The first identification of 270Mt was reported by Morita et al. in “Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn,n)278113” in 2004 [163]. Bismuth targets were bombarded with a 352.6 MeV 70Zn beam from the RIKEN linear accelerator facility RILAC and 270Mt was populated by α-decays from 278113. Recoil products were separated with the gas-filled recoil ion separator GARIS and detected with micro-channel plates and a silicon strip detector. Spontaneous fission and α-decay events were recorded with a silicon semiconductor detector box consisting of the central detector plus four additional silicon strip detectors forming a box. “In conclusion, the reaction product, followed by the
decay chain observed in our experiment, was considered to be most probably due to the \(^{209}\text{Bi}(^{70}\text{Zn,n})^{278}\text{Bi} \) reaction. As a result, the members of the decay chain were consequently assigned as \(^{278}\text{Bi}, ^{274}\text{Bi}, ^{270}\text{Mt}, ^{266}\text{Bh}, \) and \(^{262}\text{Db} \). A single decay chain was observed and the observed decay time measured between \(^{270}\text{Mt} \) and \(^{266}\text{Bh} \) was 7.16 ms.

\(^{274}\text{Mt} \)

Oganessian et al. reported the observation of \(^{274}\text{Mt} \) in 2007 in “Synthesis of the isotope \(^{282}\text{Bi} \) in the \(^{237}\text{Np}+^{48}\text{Ca} \) fusion reaction” [96]. A 244 MeV \(^{48}\text{Ca} \) beam from the Dubna U400 cyclotron bombarded a \(^{237}\text{Np} \) target and \(^{282}\text{Bi} \) was populated in the (3n) fusion evaporation reaction. \(^{274}\text{Mt} \) was populated by subsequent \(\alpha \)-decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. \(^{274}\text{Mt} \) is not specifically mentioned in the text but a figure of the two decay chains shows that \(^{274}\text{Mt} \) decayed within 87.98 s and 97.02 s with \(\alpha \) decay energies of 8.93(8) MeV and 8.52(10) MeV.

\(^{275},^{276}\text{Mt} \)

\(^{275}\text{Mt} \) and \(^{276}\text{Mt} \) were first observed by Oganessian et al. in 2004 as reported in “Experiments on the synthesis of element 115 in the reaction \(^{243}\text{Am}(^{48}\text{Ca,xn})^{291}\text{−x}115 \)” [133]. The Dubna U400 cyclotron was used to bombard an \(\text{AmO}_2 \) target enriched in \(^{243}\text{Am} \) with 253 MeV and 248 MeV \(^{48}\text{Ca} \) beams to form \(^{287}\text{Bi} \) and \(^{288}\text{Bi} \) in (4n) and (3n) fusion evaporation reactions, respectively. \(^{275}\text{Mt} \) and \(^{276}\text{Mt} \) were populated by subsequent \(\alpha \)-decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The \(\alpha \)-decay energies attributed to the isotopes of Mt and Bh coincide well with theoretical values.” One decay chain involving \(^{275}\text{Mt} \) and three chains involving \(^{276}\text{Mt} \) were observed.

\(^{278}\text{Mt} \)

In the 2010 paper “Synthesis of a new element with atomic number Z = 117”, Oganessian et al. reported the first observation of \(^{278}\text{Mt} \) [134]. A \(^{249}\text{Bk} \) target was bombarded with a 252 MeV \(^{48}\text{Ca} \) beam from the Dubna U400 cyclotron to form \(^{294}\text{Bi} \) in the (3n) evaporation reaction. \(^{278}\text{Mt} \) was populated by subsequent \(\alpha \)-decay. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. \(^{278}\text{Mt} \) is not specifically mentioned in the text but an \(\alpha \)-energy of 9.00(10) MeV with a lifetime of 11.0 s is quoted in the figure displaying the single observed decay chain.

12. Discovery of \(^{267}−^{281}\text{Ds} \)

Darmstadtium was discovered by Hofmann et al. in 1995 with the first observation of \(^{269}\text{Ds} \) reported in a paper submitted on November 14, 1994 [164]. Only eight days later, on November 22, 1994 Ghiorso et al. submitted their “possible synthesis of element 110” describing the observation of a single event of \(^{267}\text{Ds} \) [165]. The discovery of darmstadtium was officially accepted by the IUPAC/IUPAP Joint Working Party (JWP) in 2001: “In accordance with the criteria for the discovery of elements, previously established by the 1992 IUPAC/IUPAP Transfermium Working Group,
it was determined that the claim by the Hofmann et al. research collaboration for the discovery of element 110 at GSI has fulfilled those criteria” [12]. The name darmstadtium was officially accepted in 2003 [166]. Eight darmstadtium isotopes have been reported so far.

267Ds

267Ds was first reported by Ghiorso et al. in “Evidence for the possible synthesis of element 110 produced by the 59Co+209Bi reaction” in 1995 [165]. A 5.1 MeV/nucleon 59Co beam from the Berkeley SuperHILAC accelerator bombarded a bismuth target and 267Ds was formed in the (1n) fusion-evaporation reaction. Recoil products were separated with the gas-filled magnetic spectrometer SASSY2. The recoils and subsequent α decays were recorded in five position sensitive silicon wafers. “One event with many of the expected characteristics of a successful synthesis of 267110 was observed.” The same results were also published in a conference proceeding in the same year [167].

269Ds

Hofmann et al. discovered 269Ds in 1995 as reported in “Production and decay of 269110” [164]. An enriched 208Pb target was bombarded with a 311 MeV 62Ni beam from the GSI UNILAC. 269Ds was formed in the single neutron evaporation reaction and separated with the velocity filter SHIP. A detector system consisting of two time-of-flight detectors, seven 16-strip silicon wafers, and three germanium detectors measured the heavy-ion, α-, X- and γ-rays. “We therefore, assign the observed decay chain to the α-decay of 269110. The half-life is $(270^{+1300}_{−120}) \mu$s.” In a note added in proof it was mentioned that three additional chains had been observed. The observation of one of the decay chains was later retracted [156].

270Ds

The first observation of 270Ds was reported in 2001 in “The new isotope 270110 and its decay products 266Hs and 262Sg” by Hofmann et al. [140]. A 317 MeV 64Ni beam accelerated by the GSI UNILAC bombarded an enriched 207Pb target. 270Ds was produced in the (1n) fusion evaporation reaction and identified with a detector system at the velocity filter SHIP. “The ground state of 270110 decays by α emission with an energy of $(11.03^{+0.05})$ MeV and a half life of $(100^{+140}_{−40}) \mu$s.”

271Ds

The observation of 271Ds was first reported in a review article by Hofmann in 1998: “New elements approaching Z = 114” [168]. An enriched 208Pb target was bombarded with 311.7, 313, and 315.5 MeV 64Ni beams from the GSI UNILAC. 271Ds was produced in the (1n) fusion evaporation reaction and identified with a detector system at the velocity filter SHIP. “The measured α-decays of 271110 can be subdivided into three groups; five events decay with an average energy of 10.738 MeV, two with 10.682 MeV, plus one escape event decay with the same lifetime $\tau = (1.6^{+0.9}_{−0.4})$ ms or a half-life $T_{1/2} = (1.1^{+0.6}_{−0.3})$ ms.”
In the 1996 paper “α decay of 273110: Shell closure at N = 162”, Lazarev et al. reported the discovery of 273Ds [157]. A 190 MeV 34S beam from the Dubna U400 cyclotron bombarded enriched 244Pu targets. 273Ds was formed in the (5n) fusion-evaporation reaction. Reaction residues were separated with the Dubna Gas-filled Recoil Separator and subsequent α and spontaneous fission decays were recorded in a position sensitive silicon detector. “As a result of the above-described selection, 14 candidate chains of the 273110 type were observed in detector strips 16, and one four-member sequence, with E_α = 11.35 MeV, was detected in strip 7”. A half-life of 0.3^{+1.3}_{-0.2} ms was quoted. About a month later Hofmann et al. independently reported the observation of 273Ds in the α-decay of 277Cn [155].

Ellison et al. described the discovery of 277Ds in 2010 in “New superheavy element isotopes; 242Pu(48Ca, 5n)285114” [117]. 242PuO2 targets were bombarded with a 247 MeV 48Ca beams from the Berkeley 88-in. cyclotron and 285114 was produced in (5n) fusion-evaporation reactions. 277Ds was populated by subsequent α decay. Residues were separated with the Berkeley Gas-Filled Separator BGS and detected in multiwire proportional counters and silicon strip detectors. Subsequent radioactive decay events were recorded in the strip detectors and additional silicon chips forming a five-sided box. “The chain continued with four subsequent α-like events... after 140 ms, 8.21 ms, 346 ms, and 185 s with energies of 10.31, 10.57, 9.59, and 8.57 MeV, which are interpreted as the successive α decays of 281112Cn, 277110Ds, 273108Hs, and 269106Sg, respectively.” A single decay chain was observed. A previously reported observation of 277Ds [118] was later retracted [119].

279Ds was first identified by Oganessian et al. in “Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)292−x114 and 245Cm(48Ca,xn)293−x116” in 2004 [169]. 48Ca beams of 243 and 257 MeV from the Dubna U400 cyclotron bombarded a PuO2 target enriched 244Pu. 281Ds was populated by α decays from 289114 which was formed in the (3n) evaporation reaction. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. The observation of 279Ds was not specifically mentioned in the text but a table listed the spontaneous fission half-life to be 0.29^{+0.35}_{-0.10} s. Three decay chains ending in 279Ds were reported.

281Ds was first identified by Oganessian et al. in “Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)292−x114 and 245Cm(48Ca,xn)293−x116” in 2004 [169]. 48Ca beams of 243 and 250 MeV from the Dubna U400 cyclotron bombarded a PuO2 target enriched 244Pu. 281Ds was populated by α decays from 289114 which was formed in the (3n) evaporation reaction. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. The observation of 281Ds was
not specifically mentioned in the text but a table listed the spontaneous fission half-life to be $9.6^{+5.0}_{-2.5}$ s. Eight decay chains ending in 281Ds were reported.

13. Discovery of $^{272-282}$Rg

Hofmann et al. discovered the first isotope of roentgenium (272Rg) in 1995 [147]. This discovery was officially accepted by the IUPAC/IUPAP Joint Working Party (JWP) in 2003: “In concordance with the criteria established for validating claims, the JWP has agreed that the priority of the Hofmann et al. collaboration’s discovery of element 111 at GSI is acknowledged” [13]. The name roentgenium was officially accepted in 2003 [170]. Seven roentgenium isotopes have been reported.

272Rg

Hofmann et al. discovered 272Rg in 1995 as reported in “The new element 111” [147]. Bismuth targets were bombarded with 318 and 320 MeV 64Ni beams from the GSI UNILAC and 272Rg was formed in the (1n) fusion-evaporation reaction. Reaction residues were separated with the velocity filter SHIP and subsequent α decays were recorded in a position sensitive silicon detector. “We assign the three measured decay chains to the previously unknown isotope 272111. This nucleus is the first one observed of the new element $Z = 111$.” A half-life of $1.5^{+2.0}_{-0.5}$ ms was reported.

274Rg

The first identification of 274Rg was reported by Morita et al. in “Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn,n)278113” in 2004 [163]. Bismuth targets were bombarded with a 352.6 MeV 70Zn beam from the RIKEN linear accelerator facility RILAC and 274Rg was populated by α-decay from 278113. Recoil products were separated with the gas-filled recoil ion separator GARIS and detected with micro-channel plates and a silicon strip detector. Spontaneous fission and α-decay events were recorded with a silicon semiconductor detector box consisting of the central detector plus four additional silicon strip detectors forming a box. “In conclusion, the reaction product, followed by the decay chain observed in our experiment, was considered to be most probably due to the 209Bi(70Zn,n)278113 reaction. As a result, the members of the decay chain were consequently assigned as 278113, 274111, 270Mt, 266Bh, and 262Db.” A single decay chain was observed.

278Rg

Oganessian et al. reported the observation of 278Rg in 2007 in “Synthesis of the isotope 282113 in the 237Np+48Ca fusion reaction” [96]. A 244 MeV 48Ca beam from the Dubna U400 cyclotron bombarded a 237Np target and 282113 was populated in the (3n) fusion evaporation reaction. 278Rg was populated by subsequent α decay. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The α-decay energies attributed to the isotopes 282113 and 278Rg agree well with expected values resulting from the trend of the Q$_{\alpha}$(N) systematics measured for the neighboring isotopes 278,283,284113 and 274,279,280Rg.” Two decay chains were observed.
The Dubna U400 cyclotron was used to bombard an AmO$_2$ target enriched in 243Am with 253 MeV and 248 MeV 48Ca beams to form 287Rg and 288Rg in (4n) and (3n) fusion evaporation reactions, respectively. 279Rg and 280Rg were populated by subsequent α-decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The α-decay energies attributed to the isotopes of Mt and Bh coincide well with theoretical values. For the isotopes 279,280Rg and 283,284Rg the difference between theoretical and experimental Q_α values amounts to 0.6-0.9 MeV.” One decay chain involving 279Rg and three chains involving 280Rg were observed.

In the 2010 paper “Synthesis of a new element with atomic number $Z = 117$”, Oganessian et al. reported the first observation of 281Rg and 282Rg [134]. A 249Bk target was bombarded with 252 MeV and 247 MeV 48Ca beam from the Dubna U400 cyclotron to form 293Rg and 294Rg in (4n) and (3n) evaporation reactions, respectively. 281Rg and 282Rg were populated by subsequent α-decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “Despite the strong hindrance resulting in the relatively long half-life, SF is a principal decay mode of the odd-even nucleus 281Rg. On the other hand, the heavier isotope 282Rg undergoes α decay.” Five decay chains involving 281Rg and one chain involving 282Rg were observed.

Copernicium was discovered in 1996 with the identification of 277Cn by Hofmann et al. [155]. The IUPAC/IUPAP Joint Working Party (JWP) official accepted this discovery in 2009: “In concordance with the criteria established for validating claims, the JWP has agreed that the priority of the Hofmann et al. 1996 [155] and 2002 [156] collaborations discovery of the element with atomic number 112 at GSI is acknowledged” [14]. Claims for the observation of element 112 in tungsten targets bombarded with 24 GeV protons at CERN [171] were not credible [12]. The name copernicium was officially accepted in 2010 [172]. Six copernicium isotopes have been reported so far.

In the 1996 paper “The new element 112”, Hofmann et al. reported the discovery of 277Cn [155]. A 344 MeV 70Zn beam from the GSI UNILAC bombarded enriched 208Pb targets and 277Cn was populated in the single neutron fusion-evaporation reaction. Reaction residues were separated with the velocity filter SHIP and subsequent α decays were recorded in a position sensitive silicon detector. “Therefore, the observed chain must be assigned to the isotope with mass number $A = 277$ of element $Z = 112$, produced by fusion of 70Zn and 208Pb and emission of one neutron. This chain represents the first unambiguous identification of the new element $Z = 112.”$ Two chains were observed, however, the first chain was later retracted [156].
Ellison et al. described the discovery of 281Cn in 2010 in “New superheavy element isotopes: 242Pu(48Ca, 5n)285114” [117]. 242PuO$_2$ targets were bombarded with a 247 MeV 48Ca beams from the Berkeley 88-in. cyclotron and 285114 was produced in (5n) fusion-evaporation reactions. 281Cn was populated by subsequent α decay. Residues were separated with the Berkeley Gas-Filled Separator BGS and detected in multiwire proportional counters and silicon strip detectors. Subsequent radioactive decay events were recorded in the strip detectors and additional silicon chips forming a five-sided box. “The chain continued with four subsequent α-like events... after 140 ms, 8.21 ms, 346 ms, and 185 s with energies of 10.31, 10.57, 9.59, and 8.57 MeV, which are interpreted as the successive α decays of 281112, 277110, 273108, and 269106Sg, respectively.” A single decay chain was observed. A previously reported observation of 281Cn [118] was later retracted [119].

282−285Cn

282Cn, 283Cn, 284Cn, and 285Cn were first identified by Oganessian et al. in “Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)292−x114 and 245Cm(48Ca,xn)293−x116” in 2004 [169]. 48Ca beams of 243, 250, and 257 MeV from the Dubna U400 cyclotron bombarded a PuO$_2$ target enriched in 244Pu and a CmO$_2$ target enriched in 245Cm. 282Cn and 283Cn were populated by α decays from 290116 and 291116 which were formed of the 243 MeV beam on the CmO$_2$ target in (3n) and (2n) evaporation reaction, respectively. 283Cn was also populated by α decay following the (5n) reaction forming 287114 on the PuO$_2$ target at 257 MeV. 284Cn and 285Cn were populated by α decay following (4n) and (3n) reactions forming 289114 and 290114, respectively, on the PuO$_2$ target. 284Cn was observed at 243, 250, and 257 MeV, and 285Cn at 243 and 250 MeV. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. Only 284Cn is specifically mentioned in the text: “The isotope 284112 decays via SF with a half-life of \sim98 ms,... " The decay properties are listed in a table. One decay chain ended with 282Cn decaying by spontaneous fission with a half-life of 1.0$^{+8.5}_{-4.8}$ ms. Three α decays of 283Cn with a half-life of 6.1$^{+7.2}_{-2.2}$ s were observed. A spontaneous fission half-life of 98$^{+41}_{-23}$ s was extracted from eleven decay chains for 284Cn, and eight α decays were recorded for 285Cn with a half-life of 34$^{+17}_{-9}$ s. Based on these results the previous assignment for the observation of 284Cn [173, 174] had to be changed to 285Cn. Earlier reports of 283Cn [175–177] and 285Cn [161, 175] could not be confirmed. A specific search for 284Cn in 2002 by Loveland et al. did not result in any events [178]. Finally, the 2004 results for 283Cn could not be reproduced by Gregorich et al. [179] but were confirmed by Hofmann et al. [180]. A comprehensive review of the discovery of these isotopes is presented in reference [97].

15. Discovery of 278−286113

The discovery of element 113 has not yet been accepted by the IUPAC/IUPAP Joint Working Party: “The results are encouraging but do not meet the criteria for discovery because of the paucity of events, the lack of connections to known nuclides, and the absence of cross-bombardments.” [15]. Six isotopes of element 113 have been observed.
The first identification of $^{278}113$ was reported by Morita et al. in “Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn,n)$^{278}113$” in 2004 [163]. Bismuth targets were bombarded with a 352.6 MeV 70Zn beam from the RIKEN linear accelerator facility RILAC. Recoil products were separated with the gas-filled recoil ion separator GARIS and detected with micro-channel plates and a silicon strip detector. Spontaneous fission and α-decay events were recorded with a silicon semiconductor detector box consisting of the central detector plus four additional silicon strip detectors forming a box. “In conclusion, the reaction product, followed by the decay chain observed in our experiment, was considered to be most probably due to the 209Bi(70Zn,n)$^{278}113$ reaction. As a result, the members of the decay chain were consequently assigned as $^{278}113$, $^{274}111$, ^{270}Mt, ^{266}Bh, and $^{262}Db.” A single decay chain was observed.

$^{282}113$ Oganessian et al. reported the observation of $^{282}113$ in 2007 in “Synthesis of the isotope $^{282}113$ in the 237Np+48Ca fusion reaction” [96]. A 244 MeV 48Ca beam from the Dubna U400 cyclotron bombarded a 237Np target and $^{282}113$ was populated in the (3n) fusion evaporation reaction. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. Two decay chains were observed: “Based on the similar α-particle energies and decay times of the first three α transitions, we assign both decay chains to the same parent nucleus, namely $^{282}113$ produced in the 237Np(48Ca,3n) reaction.”

$^{283,284}113$ $^{283}113$ and $^{284}113$ were first observed by Oganessian et al. in 2004 as reported in “Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)$^{201−x}$115” [133]. The Dubna U400 cyclotron was used to bombard an AmO$_2$ target enriched in 243Am with 253 MeV and 248 MeV 48Ca beams to form $^{287}115$ and $^{288}115$ in (4n) and (3n) fusion evaporation reactions, respectively. $^{283}113$ and $^{284}113$ were populated by subsequent α-decay. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The α-decay energies attributed to the isotopes of Mt and Bh coincide well with theoretical values. For the isotopes $^{279,280}111$ and $^{283,284}113$ the difference between theoretical and experimental $Q_α$ values amounts to 0.6-0.9 MeV.” One decay chain involving $^{283}113$ and three chains involving $^{284}113$ were observed.

$^{285,286}113$ In the 2010 paper “Synthesis of a new element with atomic number Z = 117”, Oganessian et al. reported the first observation of $^{285}113$ and $^{286}113$ [134]. A 240Bk target was bombarded with 252 MeV and 247 MeV 48Ca beam from the Dubna U400 cyclotron to form $^{293}117$ and $^{294}117$ in (4n) and (3n) evaporation reactions, respectively. $^{285}113$ and $^{286}113$ were populated by subsequent α-decays. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The decay properties of the neighboring isotopes $^{293}117$ and $^{294}117$, their daughters $^{289}115$ and $^{290}115$, as well as granddaughters $^{285}113$ and $^{286}113$, do not display substantial differences.” Five decay chains involving $^{285}113$ and one chain involving $^{286}113$ were observed.
16. Discovery of $^{285-289}$114

Isotopes of element 114 with mass numbers $286-289$ were reported by Oganessian in 2004 [169]. Independent confirmation of the formation of element 114 were recently reported with the observation of 285114 in Berkeley [117] and 288,289116 at GSI [160, 181]. The discovery of element 114 was officially accepted by the IUPAC/IUPAP Joint Working Party in 2011: “For the elements $Z = 114$ and 116, the establishment of the identity of the isotope 283Cn by a large number of decaying chains, originating from a variety of production pathways essentially triangulating its A,Z character enables that nuclide’s use in unequivocally recognizing higher-Z isotopes that are observed to decay through it. The JWP notes that the internal redundancy and extended decay chain sequence for identification of $Z = 287$114 from 48Ca + 242Pu fusion by the 2004 Dubna-Livermore collaborations [120, 177] and recommends that the Dubna-Livermore collaboration be credited with discovery of this new element.” [15]. Five isotopes of element 114 have been reported.

285114

Ellison et al. described the discovery of 285114 in 2010 in “New superheavy element isotopes; 242Pu(48Ca, 5n)285114” [117]. 242PuO$_2$ targets were bombarded with a 247 MeV 48Ca beams from the Berkeley 88-in. cyclotron and 285114 was produced in (5n) fusion-evaporation reactions. Residues were separated with the Berkeley Gas-Filled Separator BGS and detected in multiwire proportional counters and silicon strip detectors. Subsequent radioactive decay events were recorded in the strip detectors and additional silicon chips forming a five-sided box. “Element-114 atoms were identified by detecting time- and position-correlated events corresponding to their implantation and subsequent radioactive decay chain, terminating with the detection of a SF event. [The table] contains the times, energies, and positions of the two correlated decay chains observed in the experiment. Based on a comparison with predicted decay properties, the first event was assigned to the decay of 285114 and its daughters.” A single decay chain was observed. A previously reported observation of 285114 [118] was later retracted [119].

$^{286-289}$114

286114, 287114, 288114, and 289114 were first identified by Oganessian et al. in “Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)$^{292-x}$114 and 245Cm(48Ca,xn)$^{293-x}$116” in 2004 [169]. 48Ca beams of 243, 250, and 257 MeV from the Dubna U400 cyclotron bombarded a PuO$_2$ target enriched in 244Pu and a CmO$_2$ target enriched in 245Cm. 286114 and 287114 were populated by α-decay from 290116 and 291116 which were formed in (3n) and (2n) evaporation reaction of the 243 MeV beam on the CmO$_2$ target, respectively. 287114 was also formed in the (5n) reaction on the PuO$_2$ target at 257 MeV. 288114 and 289114 were produced in (4n) and (3n) reactions, respectively, on the PuO$_2$ target. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “Then, the shorter chains should be assigned to the decay of even-even 290116, the product of 3n-evaporation... For the daughter nucleus 286114, in one decay chain we observed a decay and SF was registered in two other cases... The properties of the daughter nucleus of one of the element 116 isotopes produced in the 245Cm+48Ca reaction (two events) essentially reproduces the characteristics of the 10-s (ER−α−SF) chain arising in the 244Pu+48Ca reaction that we assign to the decay of isotope 287114... At $E^* = 41$ MeV, 47 and 53 MeV, we observed 12 events of the decay of a new nuclide that undergoes sequential ER−α−SF
decay over the span of about 1 second. The maximum yield of this nuclide, $^{288}\text{114}$, corresponds to $E^* < 43$ MeV and a peak production cross section of $5.3^{+3.6}_{-2.1}$ pb... At $E^*=41$ MeV and 47 MeV, three chains of sequential ER−α−α−SF decays were observed. These chains are identical to those detected in previous $^{244}\text{Pu}+^{48}\text{Ca}$ experiments at 236 MeV ($E^*=35$ MeV) and to those produced as decay products of the $Z=116$ nucleus observed in the $^{248}\text{Cm}+^{48}\text{Ca}$ reaction. The maximum yield of this nuclide, $^{289}\text{114}$, is observed at $E^*=41$ MeV with a peak production cross section of $1.7^{+2.5}_{-1.1}$ pb.”

Based on these results the previous assignment for the observation of $^{288}\text{114}$ [173, 174] was changed to $^{289}\text{114}$. Earlier reports of $^{287}\text{114}$ [175] and $^{289}\text{114}$ [161, 175] could not be confirmed. A comprehensive review of the discovery of these isotopes is presented in reference [97].

17. Discovery of $^{287}–^{290}\text{115}$

The discovery of element 115 has not yet been accepted by the IUPAC/IUPAP Joint Working Party. Although 23 events were assigned to $^{288}\text{115}$ as described below they are not connected to any known nuclei and the chemical analysis cannot “distinguish the properties of Groups 4 and 5 elements in this region with confidence” [15]. Four isotopes of element 115 have been observed.

$^{287,288}\text{115}$

$^{287}\text{115}$ and $^{288}\text{115}$ were first observed by Oganessian et al. in 2004 as reported in “Experiments on the synthesis of element 115 in the reaction $^{243}\text{Am}(^{48}\text{Ca},xn)^{291–x}115$” [133]. The Dubna U400 cyclotron was used to bombard an AmO$_2$ target enriched in ^{243}Am with 253 MeV and 248 MeV ^{48}Ca beams to form $^{287}\text{115}$ and $^{288}\text{115}$ in (4n) and (3n) fusion evaporation reactions, respectively. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The decay properties of these synthesized nuclei are consistent with consecutive α decays originating from the parent isotopes of the new element 115, $^{288}\text{115}$ and $^{287}\text{115}$, produced in the 3n- and 4n-evaporation channels with cross sections of about 3 pb and 1 pb, respectively.” One decay chain for $^{287}\text{115}$ and three chains for $^{288}\text{115}$ were observed.

$^{289,290}\text{115}$

In the 2010 paper “Synthesis of a new element with atomic number Z = 117”, Oganessian et al. reported the first observation of $^{289}\text{115}$ and $^{290}\text{115}$ [134]. A ^{249}Bk target was bombarded with 252 MeV and 247 MeV ^{48}Ca beam from the Dubna U400 cyclotron to form $^{293}\text{117}$ and $^{294}\text{117}$ in (4n) and (3n) evaporation reactions, respectively. $^{289}\text{115}$ and $^{290}\text{115}$ were populated by subsequent α-decay. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Alpha particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The decay properties of the neighboring isotopes $^{293}\text{117}$ and $^{294}\text{117}$, their daughters $^{289,290}\text{115}$ and $^{290}\text{115}$, as well as granddaughters $^{285}\text{113}$ and $^{286}\text{113}$, do not display substantial differences.” Five decay chains involving $^{289}\text{115}$ and one chain involving $^{290}\text{115}$ were observed.
18. Discovery of $^{290-293}116$

The discovery of element 116 was officially accepted by the IUPAC/IUPAP Joint Working Party in 2011: “For the elements Z = 114 and 116, the establishment of the identity of the isotope 283Cn by a large number of decaying chains, originating from a variety of production pathways essentially triangulating its A,Z character enables that nuclide’s use in unequivocally recognizing higher-Z isotopes that are observed to decay through it... The Dubna-Livermore collaboration [169] should be credited with the discovery of the new element with Z = 116.” [15]. So far, four isotopes of element 116 have been reported. The observation of $^{289}116$ [118] was later retracted [119].

$^{290,291}116$

$^{290}116$ and $^{291}116$ were first identified by Oganessian et al. in “Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)$^{292-x}114$ and 245Cm(48Ca,xn)$^{293-x}116$” in 2004 [169]. A 243 MeV 48Ca beam from the Dubna U400 cyclotron bombarded a CmO$_2$ target enriched in 245Cm. $^{290}116$ and $^{291}116$ populated in (3n) and (2n) fusion-evaporation reactions, respectively. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “As a result, the longer ER-$\alpha-\alpha-SF$ chains observed in the 245Cm+48Ca reaction must arise from the decay of $^{291}116$ produced via the 2n-evaporation channel. Then, the shorter chains should be assigned to the decay of even-even $^{290}116$, the product of 3n-evaporation.” Two decay chains for each of the isotopes were observed.

$^{292}116$

In the 2004 paper “Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca”, Oganessian et al. identified $^{292}116$ [120]. A 248Cm target was bombarded with a 247 MeV 48Ca beam from the Dubna U400 cyclotron and $^{292}116$ was produced in the (3n) fusion evaporation reaction. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “We observed the new nuclide $^{292}116$ (T$_{\alpha} = 18^{+6}_{-16}$ ms, E$_{\alpha} = 10.66\pm0.07$ MeV) in the irradiation of the 248Cm target at a higher energy than in previous experiments.” 6 decay chains were observed. Previous assignments of $^{292}116$ [182–184] were reassigned to $^{293}116$ [169].

$^{293}116$

$^{293}116$ was identified by Oganessian et al. in “Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)$^{292-x}114$ and 245Cm(48Ca,xn)$^{293-x}116$” in 2004 [169]. A 257 MeV 48Ca beam from the Dubna U400 cyclotron bombarded a PuO$_2$ target enriched in 244Pu. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. The earlier assignment of the isotope $^{292}116$ was changed to $^{293}116$ based on the reassignment of three Z = 114 decay chains from A = 288 to A = 289: “Note, in this interpretation of the data, the previously observed decay of the parent
nuclei discovered in the reactions $^{244}\text{Pu}+^{48}\text{Ca}$ and $^{248}\text{Cm}+^{48}\text{Ca}$ originated from the isotopes $^{289}\text{114}$ and $^{293}\text{116}$. This reassignment affected one decay chain published in [182, 183] and two additional decay chains in reference [184]. The latter two chains were also mentioned in a note added in proof in reference [183].

19. Discovery of $^{293-294}\text{117}$

The element 117 has not been considered to be accepted as a new element by the IUPAC/IUPAP Joint working party. So far only two isotopes of element 117 have been reported.

$^{293,294}\text{117}$

In the 2010 paper “Synthesis of a new element with atomic number $Z = 117$”, Oganessian et al. reported the first observation of $^{293}\text{117}$ and $^{294}\text{117}$ [134]. A ^{249}Bk target was bombarded with 252 MeV and 247 MeV ^{48}Ca beam from the Dubna U400 cyclotron to form $^{293}\text{117}$ and $^{294}\text{117}$ in (4n) and (3n) evaporation reactions, respectively. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “The data are consistent with the observation of two isotopes of element 117, with atomic masses 293 and 294. These isotopes undergo α decay with $E_\alpha = 11.03(8)$ MeV and 10.81(10) MeV and half-lives 14($+11,-4$) and 78(+370,-36) ms, respectively, giving rise to sequential α-decay chains ending in spontaneous fission of ^{281}Rg (T_{SF} \sim 26 s) and ^{270}Db (T_{SF} \sim 1 d), respectively.” Five decay chains for $^{293}\text{117}$ and one chain for $^{294}\text{117}$ were observed. Further experimental details were included in a subsequent publication [185].

20. Discovery of $^{294}\text{118}$

Only one isotope has been reported for element 118. The discovery of this element has not yet been accepted by the IUPAC/IUPAP Joint Working Party. The observation of the three decay chains attributed to $^{294}\text{118}$ as described below does not satisfy the criteria for discovery of element 118 because they are not connected to any known nuclide [15]. The observation of $^{293}\text{118}$ [118] was later retracted [119].

$^{294}\text{118}$

Oganessian et al. reported the first identification of $^{294}\text{118}$ in the 2006 paper “Synthesis of the isotopes of elements 118 and 116 in the ^{249}Cf and $^{245}\text{Cm}+^{48}\text{Ca}$ fusion reactions” [186]. A 251 MeV ^{48}Ca beam from the Dubna U400 cyclotron bombarded an enriched ^{249}Cf target and $^{294}\text{118}$ was formed in the (3n) evaporation reaction. The residues were separated with a gas-filled recoil separator and implanted in a semiconductor detector array. Subsequent α particle decay and spontaneous fission events were recorded in this array and in eight detectors arranged in a box configuration around the implantation detector. “From the comparison of the decay properties of the nuclei synthesized in the two experiments with targets of ^{249}Cf and ^{245}Cm, it follows that in the $^{249}\text{Cf}+^{48}\text{Ca}$ reaction an isotope of the new element with $Z = 118$ and $A = 294$ was observed.” One of the three measured decay chains had been mentioned in a previous publication by the same group [120] referring to internal reports [187]. In another publication it was speculated that two events could have resulted from either $^{294}\text{118}$ or $^{295}\text{118}$ [188].
21. Summary

A large fraction (>42%) of the 159 isotopes discovered so far for the elements with $Z \geq 100$ has been discovered during the last ten years as shown in Figure 1. In many cases the discovery is based on a single or a few events which still have to be independently confirmed. Thus, some of the present assignments might change in the future. As can also be seen in the figure there are still many intermediate isotopes that have not been observed yet. In a conservative estimate counting only the missing isotopes within the envelope of the discovered isotopes at least 100 additional isotopes are yet to be discovered.

The majority of the isotopes (>90%) have been observed in fusion-evaporation reaction which is at the present time the only mechanism available to produce isotopes with $Z > 102$. In the near future discoveries therefore have to rely on improvements of the production and detection techniques. In the longer term high intensity radioactive beams might open up new opportunities to populate heavy elements that are currently out of reach.

The assignment of elements of $Z = 114$ and above can still be considered as uncertain. The observed decay chains have not yet been linked to known isotopes and thus there is still the possibility that the Z and A assignment might be incorrect. Figure 2 indicates the isotopes that have been initially populated in the fusion-evaporation reactions (black squares) and the isotopes populated by subsequent α-decay (light squares). The figure clearly shows the separation of the linked isotopes with $Z = 109–113$ populated by “cold fusion”, reactions where only one neutron is evaporated and the isolated isotopes with $Z \leq 113$ which were populated by “hot fusion”, where mostly 3–5 neutrons are evaporated (2 in the case of $^{291}_{116}$). The reaction parameters (beams, targets, beam energy, excitation energy, reaction channel and cross sections) for the fusion-evaporation reactions leading to the formation of isotopes with $Z \leq 103$ are listed in Table 2. Only the values included in the original publication are listed.

Acknowledgments

I would like to thank Walter Loveland, Mark Stoyer, and the referee for their many productive comments and suggestions, and Cathleen Fry for carefully proofreading the manuscript. This work was supported by the National Science Foundation under grant No. PHY06-06007.

References

[1] G. Q. Ginepro, J. Snyder, M. Thoennessen, At. Data Nucl. Data Tables 95 (2009) 805.
[2] G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra, Nucl. Phys. A 729 (2003) 3.
[3] http://www.nndc.bnl.gov/ensdf/ ENSDF, Evaluated Nuclear Structure Data File, maintained by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science) .
[4] IUPAC Transernium Working Group, Pure Appl. Chem. 63 (1991) 879.
[5] B. G. Harvey, G. Herrmann, R. W. Hoff, D. C. Hoffman, E. K. Hyde, J. J. Katz, O. L. Keller, Jr, M. Lefort, G. T. Seaborg, Science 193 (1976) 1271.
[6] G. T. Seaborg and W. D. Loveland, “The elements beyond uranium”, Wiley, New York, New York (1990) .
Fig. 1: Discovery of the isotopes of elements with $Z \geq 100$. The shading of the boxes corresponds to the year of discovery as indicated in the figure.
Fig. 2: Discovery of the isotopes of elements with $Z \geq 100$. The shading of the boxes corresponds to the year of discovery as indicated in the figure.
[7] M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187.

[8] http://www.nndc.bnl.gov/nsr/ NSR, Nuclear Science References, maintained by the National Nuclear Data Center at Brookhaven National Laboratory.

[9] B. Pritychenko, E. Betak, M. A. Kellett, B. Singh, J. Totans, Nucl. Instrum. Meth. A 640 (2011) 213.

[10] E. K. Hyde, D. C. Hofman, O. L. Keller, Radiochim. Acta 42 (1987) 57.

[11] Transfermium Working Group, Pure Appl. Chem. 65 (1993) 1757.

[12] P. J. Karol, H. Nakahara, B. W. Petley, E. Vogt, Pure Appl. Chem. 73 (2001) 959.

[13] P. J. Karol, H. Nakahara, B. W. Petley, E. Vogt, Pure Appl. Chem. 75 (2003) 1601.

[14] R. C. Barber, H. W. Gaggieler, P. J. Karol, H. Nakahara, E. Vardaci, E. Vogt, Pure Appl. Chem. 81 (2009) 1331.

[15] R. C. Barber, P. J. Karol, H. Nakahara, E. Vardaci, E. Vogt, Pure Appl. Chem. 83 (2011) 1485.

[16] A. Ghiorso, S. G. Thompson, G. H. Higgins, G. T. Seaborg, M. H. Studier, P. R. Fields, S. M. Fried, H. Diamond, J. F. Mech, G. L. Pyle, J. R. Huizenga, A. Hirsch, W. M. Manning, C. I. Browne, H. L. Smith, R. W. Spence, Phys. Rev. 99 (1955) 1048.

[17] D. C. Hoffman, A. Ghiorso, G. T. Seaborg, “The transuranium people”, Imperial College Press, London (2000).

[18] B. G. Harvey, S. G. Thompson, A. Ghiorso, G. R. Choppin, Phys. Rev. 93 (1954) 1129.

[19] G. R. Choppin, B. G. Harvey, S. G. Thompson, A. Ghiorso, Phys. Rev. 98 (1955) 1519.

[20] G. T. Seaborg, “The transuranium elements’, New Haven Yale University Press, (1958).

[21] G. T. Seaborg, “Man-made transuranium elements”, Prentice-Hall, Englewood Cliffs, New Jersey (1963).

[22] Proc. Symposium Commemorating the 25th Anniversary of Elements 99 and 100, January 23, 1978, LBL-7701, UC-34C, G. T. Seaborg, Ed., April 1979.

[23] W. H. Koppenol, Helv. Phys. Acta 88 (2005) 95.

[24] IUPAC: Commission de Nomenclature de Chimie Inorganique, in “Comptes Rendus de la Dix-Neuvième Conférence, Paris”, 1957, p. 93.

[25] J. Khuyagbaatar, S. Hofmann, F. P. Heßberger, D. Ackermann, H. G. Burkhard, S. Heinz, B. Kindler, I. Koujouharov, B. Lommel, R. Mann, J. Maurer, K. Nishio, Y. N. Novikov, Eur. Phys. J. A 37 (2008) 177.

[26] G. M. Ter-Akopian, A. S. Iljinov, Y. T. Oganessian, O. A. Orlova, G. S. Popeko, S. P. Tretyakova, V. I. Chepigin, B. V. Shilov, G. N. Flerov, Nucl. Phys. A 255 (1975) 509.

[27] N. E. Holden, D. C. Huffman, Pure Appl. Chem. 72 (2000) 1525.

[28] G. Münzenberg, S. Hofmann, W. Faust, F. P. Heßberger, W. Reisdorf, K.-H. Schmidt, T. Kitahara, P. Armbruster, K. Guttner, B. Thuma, D. Vermeulen, Z. Phys. A 302 (1981) 7.

[29] M. J. Nurminia, T. Sikkeland, R. Silva, A. Ghiorso, Phys. Lett. B 26 (1967) 78.

[30] G. N. Akapev, A. G. Demin, V. A. Druin, E. G. Imaev, I. V. Kolesov, Y. V. Lobanov, L. P. Pashchenko, Sov. At. Energy 21 (1966) 908.
[31] G. N. Flerov, S. M. Polikanov, V. L. Mikheev, V. I. Ilyushchenko, M. B. Miller, V. A. Shchegolev, Sov. At. Energy 22 (1967) 434.

[32] A. Ghiorso, T. Sikkeland, J. R. Walton, G. T. Seaborg, Phys. Rev. Lett. 1 (1958) 18.

[33] V. P. Perelygin, E. D. Donets, G. N. Flerov, Sov. Phys. JETP 10 (1960) 1106.

[34] H. Atterling, W. Forsling, L. W. Holm, L. Melander, B. Aström, Phys. Rev. 95 (1955) 585.

[35] S. Amiel, A. Chetham-Strode Jr., G. R. Choppin, A. Ghiorso, B. G. Harvey, L. W. Holm, S. G. Thompson, Phys. Rev. 106 (1957) 553.

[36] A. M. Friedman, J. E. Gindler, R. F. Barnes, R. Sjoblom, P. R. Fields, Phys. Rev. 102 (1956) 585.

[37] S. Amiel, Phys. Rev. 105 (1957) 1412.

[38] G. R. Choppin, S. G. Thompson, A. Ghiorso, B. G. Harvey, Phys. Rev. 94 (1954) 1080.

[39] E. K. Hulet, R. W. Hoff, J. E. Evans, R. W. Lougheed, Phys. Rev. Lett. 13 (1964) 343.

[40] R. C. Gatti, R. Braundt, L. Phillips, S. G. Thompson, J. Inorg. Nucl. Chem. 25 (1963) 1089.

[41] E. K. Hulet, J. F. Wild, R. W. Lougheed, J. E. Evans, B. J. Qualheim, M. J. Nurmia, A. Ghiorso, Phys. Rev. Lett. 26 (1971) 523.

[42] E. K. Hulet, R. W. Lougheed, J. H. Landrum, J. F. Wild, D. C. Hoffman, J. Weber, J. B. Wilhelmy, Phys. Rev. C 21 (1980) 966.

[43] A. Ghiorso, B. G. Harvey, G. R. Choppin, S. G. Thompson, G. T. Seaborg, Phys. Rev. 98 (1955) 1518.

[44] L. Phillips, R. Gattiand, A. Chesne, L. Muga, S. Thompson, Phys. Rev. Lett. 1 (1958) 215.

[45] R. C. Barber, N. N. Greenwood, A. Z. Hrynkiwicz, Y. P. Jeannin, M. Lefort, M. Sakai, I. Ulehla, A. H. Wapstra, D. H. Wilkinson, Prog. Part. Nucl. Phys. 29 (1992) 453.

[46] V. Ninov, F. P. Heßberger, S. Hofmann, H. Folger, G. Münzenberg, P. Armbruster, A. V. Yeremin, A. G. Popeko, M. Leino, S. Saro, Z. Phys. A 356 (1996) 11.

[47] P. Eskola, Phys. Rev. C 7 (1973) 280.

[48] E. D. Donets, V. A. Schegolev, V. A. Ermakov, Sov. J. Nucl. Phys. 2 (1966) 723.

[49] B. Kadkhodayan, R. A. Henderson, H. L. Hall, J. D. Leyba, K. R. Czerwinski, S. A. Kreek, N. J. Hannink, K. E. Gregorich, D. M. Lee, M. J. Nurmia, D. C. Hoffman, Radiochim. Acta 56 (1992) 1.

[50] P. R. Fields, I. Ahmad, R. F. Barnes, R. K. Sjoblom, E. P. Horwitz, Nucl. Phys. A 154 (1970) 407.

[51] T. Sikkeland, A. Ghiorso, R. Latimer, A. E. Larsh, Phys. Rev. 140 (1965) B277.

[52] E. K. Hulet, A. Ghiorso, R. W. Lougheed, J. E. Evans, J. D. Brady, R. W. Hoff, R. E. Stone, B. J. Qualheim, Bull. Am. Phys. Soc. 13, No. 4 (1968) 604.

[53] J. F. Wild, E. K. Hulet, R. W. Lougheed, P. A. Baisden, J. H. Landrum, R. J. Dougan, M. G. Mustafa, Phys. Rev. C 26 (1982) 1531.

[54] E. K. Hulet, J. F. Wild, R. J. Dougan, R. W. Lougheed, J. H. Landrum, A. D. Dougan, P. A. Baisden, C. M.
Henderson, R. J. Dupzyk, R. L. Hahn, M. Schädel, K. Sümmerer, G. R. Bethune, Phys. Rev. C 40 (1989) 770.

[55] E. K. Hulet, J. F. Wild, R. J. Dougan, R. W. Lougheed, J. H. Landrum, A. D. Dougan, M. Schädel, R. L. Hahn, P. A. Baidsen, C. M. Henderson, R. J. Dupzyk, K. Sümmerer, G. R. Bethune, Phys. Rev. Lett. 56 (1986) 313.

[56] R. W. Lougheed, E. K. Hulet, R. J. Dougan, J. F. Wild, R. J. Dupzyk, C. M. Henderson, K. J. Moody, R. L. Hahn, K. Sümmerer, G. R. Bethune, J. Less-Comm Met. 122 (1986) 461.

[57] P. R. Fields, A. M. Friedman, J. Milsted, H. Atterling, W. Forsling, L. W. Holm, B. Aström, Phys. Rev. 107 (1957) 1460.

[58] G. N. Flerov, S. M. Polikanov, A. S. Karanyan, A. S. Pasyuk, D. M. Purfanovich, N. I. Taratin, V. A. Karnaúkhov, V. I. Druin, V. V. Volkov, A. M. Senchinova, Y. T. Oganessian, V. I. Khalīzev, G. I. Khlebnikov, Sov. Phys. Dokl. 3 (1958) 546.

[59] E. D. Donets, V. A. Shchegolev, V. A. Ermakov, Sov. At. Energy 20 (1966) 257.

[60] B. A. Zager, M. B. Miller, V. L. Mikheiev, S. M. Polikanov, A. M. Sukhov, G. N. Flerov, L. P. Chelnokov, Sov. At. Energy 20 (1966) 264.

[61] Commission on Nomenclature of Inorganic Chemistry, Pure Appl. Chem. 69 (1997) 2471.

[62] Summary of Actions at the 39th IUPAC Council Meeting, 29–30 August 1997 Geneva, Switzerland, http://old.iupac.org/news/archives/1997/councils.html.

[63] IUPAC Adopts Final Recommendations for Names of Transmerium Elements, http://old.iupac.org/news/archives/1997/august97.html.

[64] News Release: Element Names, Journal of Chemical Education 74 (1997) 1258.

[65] A. V. Belozérov, M. L. Chelnokov, V. I. Chepigin, T. P. Drobina, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, I. M. Merkin, Y. T. Oganessian, A. G. Popeko, R. N. Sagaidak, A. I. Svīrikhin, A. V. Yeremin, G. Berek, I. Brida, S. Saro, Eur. Phys. J. A 16 (2003) 447.

[66] A. V. Yeremin, A. V. Belozérov, M. L. Chelnokov, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, Y. T. Oganessian, A. G. Popeko, R. N. Sagaidak, A. I. Svīrikhin, S. Hofmann, G. Berek, I. Brida, S. Saro, Phys. Atomic Nuclei 66 (2003) 1042.

[67] A. G. Popeko, O. N. Malyshev, A. V. Yeremin, A. V. Belozérov, M. L. Chelnokov, V. I. Chepigin, V. A. Gorshkov, M. G. Itkis, A. P. Kabachenko, Y. T. Oganessian, R. N. Sagaidak, A. V. Shutov, A. I. Svīrikhin, Nucl. Instrum. Meth. A 510 (2003) 371.

[68] D. Peterson, B. B. Back, R. V. F. Janssens, T. L. Khoo, C. J. Lister, D. Seweryniak, I. Ahmad, M. P. Carpenter, C. N. Davids, A. A. Hecht, C. L. Jiang, T. Lauritsen, X. Wang, S. Zhu, F. G. Kondev, A. Heinz, J. Qian, R. Winkler, P. Chowdhury, S. K. Tandel, U. S. Tandel, Phys. Rev. C 74 (2006) 014316.

[69] J. F. W. K. J. M. R. J. D. C. M. G. R. A. H. D. C. H. R. W. Lougheed, E. K. Hulet, V. I. p. W. D. A. -. p. b. A. N. S. I. L. I. . s. a. r. U. -. . . D. M. Lee, “50 Years With Nuclear Fission” Conference.

[70] E. K. Hulet, UCRL-100763 (1989).
[71] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, O. V. Ivanov, A. N. Voinov, V. I. Zagrebaev, K. J. Moody, J. F. Wild, N. J. Stoyer, M. A. Stoyer, R. W. Lougheed, Phys. Rev. C 64 (2001) 054606.

[72] A. Ghiorso, T. Sikkeland, M. J. Nurmia, Phys. Rev. Lett. 18 (1967) 401.

[73] V. L. Mikheev, V. I. Ilyushchenko, M. B. Miller, S. M. Polikanov, G. N. Flerov, Y. P. Kharitonov, Sov. At. Energy 22 (1967) 135.

[74] V. A. Druin, G. N. Akapev, A. G. Demin, Y. V. Lobanov, B. V. Fefilov, G. N. Flerov, L. P. Chelnokov, Sov. At. Energy 22 (1967) 135.

[75] A. Ghiorso, T. Sikkeland, A. E. Larsh, R. M. Latimer, Phys. Rev. Lett. 6 (1961) 473.

[76] E. D. Donets, V. A. Shchegolev, V. A. Ermakov, Sov. At. Energy 14 (1963) 540.

[77] E. D. Donets, V. A. Shchegolev, V. A. Ermakov, Sov. At. Energy 16 (1964) 233.

[78] M. Nurmia, K. Eskola, P. Eskola, and A. Ghiorso, Lawrence Berkeley Laboratory Report UCRL-18667, 1969 (unpublished), p. 63.

[79] R. J. Silva, P. F. Dittner, M. L. Mallory, O. L. Keller, K. Eskola, P. Eskola, M. J. Nurmia, A. Ghiorso, Nucl. Phys. A 216 (1973) 97.

[80] L. P. Somerville, M. J. Nurmia, J. M. Nitschke, A. Ghiorso, E. K. Hulet, R. W. Lougheed, Phys. Rev. C 31 (1985) 1801.

[81] E. D. Donets, V. A. Shchegolev, V. A. Ermakov, Sov. At. Energy 19 (1965) 995.

[82] G. N. Flerov, Y. S. Korotkin, V. L. Mikheev, M. B. Miller, S. M. Polikanov, V. A. Shchegolev, Nucl. Phys. A 106 (1968) 476.

[83] R. A. Henderson, K. E. Gregorich, H. L. Hall, J. D. Leyba, K. R. Czerwinski, B. Kadkhodayan, S. A. Kreek, N. J. Hannink, M. J. Nurmia, D. M. Lee, D. C. Hoffman, LBL-30798, p. 65 (1991).

[84] E. K. Hulet, Proc. Conf on Chemical Research XXXIV Fifty Years with Transuranium Elements, Houston, Texas, October 22-23, 1990, p.279 (1990).

[85] F. P. Heßberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, G. Münzenberg, S. Saro, A. Lavrentev, A. G. Popeko, A. V. Yeremin, C. Stodel, Eur. Phys. J. A 12 (2001) 57.

[86] Y. T. Oganessian, A. G. Demin, N. A. Danilov, G. N. Flerov, M. P. Ivanov, A. S. Iljinov, N. N. Kolesnikov, B. N. Markov, V. M. Plotko, S. P. Tretyakova, Nucl. Phys. A 273 (1976) 505.

[87] F. P. Heßberger, G. Münzenberg, S. Hofmann, Y. K. Agarwal, K. Poppensieker, W. Reisdorf, K.-H. Schmidt, J. R. H. Schneider, W. F. W. Schneider, H. J. Schott, P. Armbruster, B. Thuma, C.-C. Sahm, D. Vermeulen, Z. Phys. A 322 (1985) 557.

[88] G. Münzenberg, S. Hofmann, F. P. Heßberger, W. Reisdorf, K.-H. Schmidt, J. R. H. Schneider, P. Armbruster, C.-C. Sahm, B. Thuma, Z. Phys. A 300 (1981) 107.

[89] V. A. Druin, Sov. J. Nucl. Phys. 12 (1971) 146.
[90] K. Eskola, P. Eskola, M. J. Nurmia, A. Ghiorso, Phys. Rev. C 4 (1971) 632.
[91] A. Ghiorso, M. J. Nurmia, K. Eskola, J. Harris, P. Eskola, Phys. Rev. Lett. 24 (1970) 1498.
[92] I. Zvara, Y. T. Chuburkov, R. Caletka, M. R. Shalaevsky, Radiokhimija 11 (1969) 163.
[93] A. Ghiorso, M. J. Nurmia, J. Harris, K. Eskola, P. Eskola, Phys. Rev. Lett. 22 (1969) 1317.
[94] I. Zvara, Y. T. Chuburkov, V. Z. Belov, G. V. Buklanov, B. B. Zakhvataev, T. S. Zvarova, O. D. Maslov, R. Caletka, M. R. Shalaevsky, J. Inorg. Nucl. Chem. 32 (1970) 1885.
[95] Commission on Nomenclature of Inorganic Chemistry, Pure Appl. Chem. 66 (1994) 2419.
[96] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirkovsky, Y. S. Tsyanov, A. A. Voïnov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, R. A. Henderson, J. M. Kennedy, J. H. Landrum, K. J. Moody, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, Phys. Rev. C 76 (2007) 011601.
[97] Y. T. Oganessian, J. Phys. G 34 (2007) R165.
[98] F. P. Heßberger, S. Hofmann, V. Ninov, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schott, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, Z. Phys. A 359 (1997) 415.
[99] G.N. Flerov, Proceedings of the Third International Conference on Nuclei Far from Stability, Cargese, Corsica, France 1976, CERN-76-13, p. 542 (1976).
[100] M. R. Schmorak, At. Data Nucl. Data Tables 34 (1981) 1.
[101] Y. T. Oganessian, A. G. Demin, A. S. Iljinov, S. P. Tretyakova, A. A. Pleve, Y. E. Penionzhkevich, M. P. Ivanov, Y. P. Tretyako, Nucl. Phys. A 239 (1975) 157.
[102] I. Dragojevic, K. E. Gregorich, C. E. Düllmann, M. A. Garcia, J. M. Gates, S. L. Nelson, L. Stavsetra, R. Sudowe, H. Nitsche, Phys. Rev. C 78 (2008) 024605.
[103] Y. T. Oganessian, A. G. Demin, A. S. Iljinov, S. P. Tretyakova, A. A. Pleve, Y. E. Penionzhkevich, M. P. Ivanov, Y. P. Tretyako, Sov. At. Energy 38 (1975) 492.
[104] G. N. Flerov, Y. T. Oganessian, Y. V. Lobanov, V. I. Kuznetsov, V. A. Druin, V. P. Perelygin, K. A. Gavrilov, S. P. Tretyakova, V. M. Plotko, Sov. At. Energy 17 (1964) 1046.
[105] G. N. Flerov, Y. T. Oganessian, Y. V. Lobanov, V. I. Kuznetsov, V. A. Druin, V. P. Perelygin, K. A. Gavrilov, S. P. Tretyakova, V. M. Plotko, Phys. Lett. 13 (1964) 73.
[106] Y. T. Oganessian, Y. V. Lobanov, S. P. Tretyakova, Y. A. Lazarev, I. V. Kolesov, K. A. Gavrilov, V. M. Plotko, Y. V. Poluboyarinov, Sov. At. Energy 28 (1978) 502.
[107] V. A. Druin, Y. S. Korotkin, Y. Y. Lobanov, Y. V. Poluboyarinov, R. N. Sagaidak, G. M. Soloveva, S. P. Tretyakova, Y. P. Kharitonov, Sov. J. Nucl. Phys. 24 (1976) 131.
[108] V. A. Druin, B. Bochev, Y. S. Korotkin, V. N. Kosyakov, Y. V. Lobanov, E. A. Minin, Y. V. Poluboyarinov, A. G. Rykov, R. N. Sagaidak, S. P. Tretyakova, Y. P. Kharitonov, Sov. At. Energy 43 (1977) 785.
[109] J. M. Nitschke, M. Fowler, A. Ghiorso, R. E. Leber, M. E. Leino, M. J. Nurnia, L. P. Somerville, K. E. Williams, E. K. Hulet, J. H. Landrum, R. W. Lougheed, J. F. Wild, C. E. Benis, Jr, R. J. Silva, P. Eskola, Nucl. Phys. A 352 (1981) 138.
[110] A. Ghiorso, M. J. Nurnia, K. Eskola, P. Eskola, Phys. Lett. B 32 (1970) 95.
[111] Y. A. Lazarev, Y. V. Lobanov, Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin, G. V. Buklanov, B. N. Gilal, S. Iliev, A. N. Mezentsev, A. N. Polyakov, I. M. Sedykh, I. V. Shirokovsky, V. G. Subbotin, A. M. Sukhov, Y. S. Tsyganov, V. E. Zhuchko, R. W. Lougheed, K. J. Moody, J. F. Wild, E. K. Hulet, J. H. McQuaid, Phys. Rev. Lett. 73 (1994) 624.
[112] M. R. Lane, K. E. Gregorich, D. M. Lee, M. F. Mohar, M. Hsu, C. D. Kacher, B. Kadkhodayan, M. P. Neu, N. J. Stoyer, E. R. Sylvester, J. C. Yang, D. C. Hoffman, Phys. Rev. C 53 (1996) 2893.
[113] J. Dvorak, W. Brüchle, M. Chelnokov, R. Dressler, C. E. Düllmann, K. Eberhardt, V. Gorshkov, E. Jager, R. Krücken, A. Kuznetsov, Y. Nagame, F. Nebel, Z. Novackova, Z. Qin, M. Schädel, B. Schauden, E. Schimpf, A. Semchenkov, P. Thorle, A. Türler, M. Wegrzeczi, B. Wierczinski, A. Yakushev, A. Yeremin, Phys. Rev. Lett. 97 (2006) 242501.
[114] J. V. Kratz, A. Nahler, U. Riteth, A. Kronenberg, B. Kuczewski, E. Strub, W. Brüchle, M. Schädel, B. Schauden, A. Türler, H. Gäggeler, D. T. Jost, K. E. Gregorich, H. Nitsche, C. Laue, R. Sudowe, P. A. Wilk, Radiochim. Acta 91 (2003) 59.
[115] J. Dvorak, W. Bruchle, M. Chelnokov, C. E. Düllmann, Z. Dvorakova, K. Eberhardt, E. Jager, R. Kruchen, A. Kuznetsov, Y. Nagame, F. Nebel, K. Nishio, R. Perego, Z. Qin, M. Schadel, B. Schauden, E. Schimpf, R. Schuber, A. Semchenkov, P. Thorle, A. Turler, M. Wegrzecki, B. Wierczinski, A. Yakushev, A. Yeremin, Phys. Rev. Lett. 100 (2008) 132503.
[116] R. Graeger, D. Ackermann, M. Chelnokov, V. Chepigin, C. E. Düllmann, J. Dvorak, J. Even, A. Gorshkov, F. P. Heßberger, D. Hild, A. Hubner, E. Jager, J. Khuyagbaatar, B. Kindler, J. V. Kratz, J. Krier, A. Kuznetsov, B. Lommel, K. Nishio, H. Nitsche, J. P. Omtvedt, O. Petrushkin, D. Rudolph, J. Runke, F. Samadani, M. Schädel, B. Schauden, A. Türler, A. Yakushev, Q. Zhi, Phys. Rev. C 81 (2010) 061601.
[117] P. A. Ellison, K. E. Gregorich, J. S. Berryman, D. L. Bleuel, R. M. Clark, I. Dragojevic, J. Dvorak, P. Fallon, C. Fineman-Sotomayor, J. M. Gates, O. R. Gothe, I. Y. Lee, W. D. Loveland, J. P. McLaughlin, S. Paschalis, M. Petri, J. Qian, L. Stavsetra, M. Wiedeking, H. Nitsche, Phys. Rev. Lett. 105 (2010) 182701.
[118] V. Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hoffman, D. M. Lee, H. Nitsche, W. J. Swiatecki, U. W. Kirbach, C. A. Laue, J. L. Adams, J. B. Patin, D. A. Shaughnessy, D. A. Strellis, P. A. Wilk, Phys. Rev. Lett. 83 (1999) 1104.
[119] V. Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hoffman, D. M. Lee, H. Nitsche, W. J. Swiatecki, U. W. Kirbach, C. A. Laue, J. L. Adams, J. B. Patin, D. A. Shaughnessy, D. A. Strellis, P. A. Wilk, Phys. Rev. Lett. 89 (2002) 039901.
[120] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S.
Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed, R. I. Ilkaev, S. P. Vesnovskii, Phys. Rev. C 69 (2004) 064609.
[121] G. N. Flerov, Y. T. Oganessian, Y. V. Lobanov, Y. A. Lazarev, S. P. Tretyakova, I. V. Kolesov, V. M. Plotko, Sov. At. Energy 29 (1970) 967.
[122] V. A. Druin, A. G. Demin, Y. P. Kharitonov, G. N. Akapiev, V. I. Rud, G. Y. Sung-Ching-Yang, L. P. Chelnokov, K. A. Gavrilov, Sov. J. Nucl. Phys. 13 (1971) 139.
[123] A. Artna-Cohen, Nucl. Data Sheets 88 (1999) 155.
[124] Yu. Ts. Oganessian, JINR-P7-83-644, p. 55 (1983).
[125] F. P. Heßberger, G. Münzenberg, S. Hofmann, P. Armbuster, Y. K. Agarwal, W. Reisdorf, K. Poppensieker, K.-H. Schmidt, J. R. H. Schneider, W. F. W. Schneider, H. J. Schott, C.-C. Sahm, D. Vermeulen, B. Thuma, J. Less-Common Met. 122 (1986) 445.
[126] Z. G. Gan, Z. Qin, H. M. Fan, X. G. Lei, B. X. Wu, J. J. He, H. Y. Liu, X. L. Wu, J. S. Guo, X. H. Zhou, S. G. Yuan, G. M. Jin, Eur. Phys. J. A 10 (2001) 21.
[127] G. N. Flerov, J. Phys. Soc. Japan Suppl. 24 (1968) 237.
[128] G. N. Flerov, V. A. Druin, A. G. Demin, Yu. V. Lobanov, N. K. Skobelev, G. N. Akapiev, B. V. Fefilov, I. V. Kolesov, K. A. Gavrilov, Yu. P. Kharitonov, and L. P. Chelnokov, Joint Institute for Nuclear Research Report No. JINR-P7-3808, 1968 (unpublished).
[129] C. E. Bemis, P. F. Dittner, R. J. Silva, R. L. Hahn, J. R. Tarrant, L. D. Hunt, P. C. Hensley, Phys. Rev. C 16 (1977) 1146.
[130] G. N. Flerov, Y. T. Oganessian, Y. V. Lobanov, Y. A. Lazarev, S. P. Tretyakova, I. V. Kolesov, V. M. Plotko, Nucl. Phys. A 160 (1971) 181.
[131] A. Ghiorso, M. J. Nurmia, K. Eskola, P. Eskola, Phys. Rev. C 4 (1971) 1850.
[132] J. V. Kratz, M. K. Gober, H. P. Zimmermann, M. Schädel, W. Brüchle, E. Schimpf, K. E. Gregorich, A. Türlar, N. J. Hannink, K. R. Czerwinski, B. Kadkhodayan, D. M. Lee, M. J. Nurmia, D. C. Hoffman, H. Gaggeler, D. Jost, J. Kovacz, U. W. Scherer, A. Weber, Phys. Rev. C 45 (1992) 1064.
[133] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, R. W. Lougheed, Phys. Rev. C 69 (2004) 021601.
[134] Y. T. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Y. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, A. V. Ramayya, F. D. Riley, J. B. Roberto, M. A. Ryabinin, K. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, R. Sudowe, A. M. Sukhov, Y. S.
Lane, D. M. Lee, J. B. Patin, D. A. Shaughnessy, D. A. Strellis, H. Nitsche, D. C. Hoffman, Phys. Rev. Lett. 85 (2000) 2697.

[150] Y. T. Oganessian, A. G. Demin, M. Hussinnois, S. P. Tretyakova, Y. P. Kharitonov, V. K. Utyonkov, I. V. Shirokovsky, O. Constantinescu, H. Bruchertseifer, Y. S. Korotkin, Z. Phys. A 319 (1984) 215.

[151] I. Dragojevic, K. E. Gregorich, C. E. Düllum, J. Dvorak, P. A. Ellison, J. M. Gates, S. L. Nelson, L. Stavsetra, H. Nitsche, Phys. Rev. C 79 (2009) 011602.

[152] G. Münzenberg, P. Armbruster, G. Berthes, H. Folger, F. P. Heßberger, S. Hofmann, K. Poppensieker, W. Reisdorf, B. Quint, K.-H. Schmidt, H.-J. Schott, K. Sümmerer, I. Zychor, M. E. Leino, U. Gollerthan, E. Hanelt, Z. Phys. A 324 (1986) 489.

[153] Y. A. Lazarev, Y. V. Lobanov, Y. T. Oganessian, Y. S. Tsyganov, V. K. Utyonkov, F. S. Abdullin, S. Iliev, A. N. Polyakov, J. Rigol, I. V. Shirokovsky, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, B. N. Gikal, V. B. Kutner, A. N. Mezentsev, I. M. Sedykh, D. V. Vakatov, R. W. Lougheed, J. F. Wild, K. J. Moody, E. K. Hulet, Phys. Rev. Lett. 75 (1995) 1903.

[154] K. Nishio, S. Hofmann, F. P. Hessberger, D. Ackermann, S. Antalic, Y. Aritomo, V. F. Comas, C. E. Dullmann, A. Gorshkov, R. Graeger, K. Hagino, S. Heinz, J. A. Heredia, K. Hirose, H. Ikezoe, J. Khuyagbaatar, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, S. Mitsuoka, Y. Nagame, I. Nishinaka, T. Ohtsuki, A. G. Popeko, S. Saro, M. Schadel, A. Türler, Y. Watanabe, A. Yakushev, A. V. Yeremin, Phys. Rev. C 82 (2010) 024611.

[155] S. Hofmann, V. Ninov, F. P. Heßberger, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schott, A. G. Popeko, A. V. Yeremin, S. Saro, R. Janik, M. Leino, Z. Phys. A 354 (1996) 229.

[156] S. Hofmann, F. P. Heßberger, D. Ackermann, G. Münzenberg, S. Antalic, P. Cagarda, B. Kindler, J. Kojouharova, M. Leino, B. Lommel, R. Mann, A. G. Popeko, S. Reshitko, S. Saro, J. Uusitalo, A. V. Yeremin, Eur. Phys. J. A 14 (2002) 147.

[157] Y. A. Lazarev, Y. V. Lobanov, Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin, A. N. Polyakov, J. Rigol, I. V. Shirokovsky, Y. S. Tsyganov, S. Iliev, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, B. N. Gikal, V. B. Kutner, A. N. Mezentsev, K. Subotic, Phys. Rev. C 54 (1996) 620.

[158] C. E. Düllum, W. Brüchle, R. Dressler, K. Eberhardt, B. Eichler, R. Eichler, H. Gäggeler, T. N. Ginter, F. Glaus, K. E. Gregorich, D. C. Hoffman, E. Jager, D. T. Jost, U. W. Kirbach, D. M. Lee, H. Nitsche, J. B. Patin, V. Pershina, D. Piquet, Z. Qin, M. Schädel, B. Schauten, E. Schimpf, H.-J. Schott, S. Soverna, R. Sudowe, P. Thorle, S. N. Timokhin, N. Trautmann, A. Türler, A. Vahle, G. Wirth, A. B. Yakushev, P. M. Zielinski, Nature 418 (2002) 859.

[159] A. Türler, C. E. Düllum, H. Gäggeler, U. W. Kirbach, A. B. Yakushev, M. Schädel, W. Brüchle, R. Dressler, K. Eberhardt, B. Eichler, R. Eichler, T. N. Ginter, F. Glaus, K. E. Gregorich, D. C. Hoffman, E. Jager, D. T. Jost, D. M. Lee, H. Nitsche, J. B. Patin, V. Pershina, D. Piquet, Z. Qin, B. Schauten, E. Schimpf, H.-J. Schott, S. Soverna, R. Sudowe, P. Thorle, S. N. Timokhin, N. Trautmann, A. Vahle, G. Wirth, P. M. Zielinski, Eur. Phys. J. A 17 (2003) 505.
[160] C. E. Düllmann, M. Schadel, A. Yakushev, A. Turler, K. Eberhardt, J. V. Kratz, D. Ackermann, L. L. Andersson, M. Block, W. Bruchle, J. Dvorak, H. G. Essel, P. A. Ellison, J. Even, J. M. Gates, A. Gorshkov, R. Graeger, K. E. Gregorich, W. Hartmann, R. D. Herzberg, F. P. Hessberger, D. Hild, A. Hubner, E. Jager, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, S. Lahiri, D. Liebe, B. Lommel, M. Maiti, H. Nitsche, J. P. Omtvedt, E. Parr, D. Rudolph, J. Runke, B. Schautzen, E. Schimpf, A. Semchenkov, J. Steiner, P. Thorle-Pospiech, J. Uusitalo, M. Wegrzech, N. Wiehl, Phys. Rev. Lett. 104 (2010) 252701.

[161] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, K. Subotic, M. G. Itkis, K. J. Moody, J. F. Wild, N. J. Stoyer, M. A. Stoyer, R. W. Lougheed, Phys. Rev. Lett. 83 (1999) 3154.

[162] G. Münzenberg, P. Armbruster, F. P. Heßberger, S. Hofmann, K. Poppensieker, W. Reisdorf, J. R. H. Schneider, W. F. W. Schneider, K.-H. Schmidt, C.-C. Sahm, D. Vermeulen, Z. Phys. A 309 (1982) 89.

[163] K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. Goto, H. Haba, E. Ideguchi, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, T. Suda, K. Sueki, H. Xu, T. Yamaguchi, A. Yoneda, A. Yoshida, Y. Zhao, J. Phy. Soc. Japan 73 (2004) 2593.

[164] S. Hofmann, V. Ninov, F. P. Heßberger, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schott, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, R. Janik, M. Leino, Z. Phys. A 350 (1995) 277.

[165] A. Ghiorso, D. Lee, L. P. Somerville, W. D. Loveland, J. M. Nitschke, W. Ghiorso, G. T. Seaborg, P. Wilmarth, R. Leres, A. Wydler, M. J. Nurmia, K. E. Gregorich, K. Czerwinski, R. Gaylord, T. Hamilton, N. J. Hannink, D. C. Hoffman, C. Jarzynski, C. Kacher, B. Kadkhodayan, S. Kreek, M. Lane, A. Lyon, M. A. McMahan, M. Neu, T. Sikkeland, W. J. Swiatecki, A. Türler, J. T. Walton, S. Yashita, Phys. Rev. C 51 (1995) R2293.

[166] J. Corish, G. M. Rosenblatt, Pure Appl. Chem. 75 (2003) 1613.

[167] A. Ghiorso, D. Lee, L. P. Somerville, W. D. Loveland, J. M. Nitschke, W. Ghiorso, G. T. Seaborg, P. Wilmarth, R. Leres, A. Wydler, M. J. Nurmia, K. E. Gregorich, R. Gaylord, T. Hamilton, N. J. Hannink, D. C. Hoffman, C. Jarzynski, C. Kacher, B. Kadkhodayan, S. Kreek, M. Lane, A. Lyon, M. A. McMahan, M. Neu, T. Sikkeland, W. J. Swiatecki, A. Türler, J. T. Walton, S. Yashita, Phys. Rev. C 51 (1995) R2293.

[168] J. Hofmann, Rep. Prog. Phys. 61 (1998) 639.

[169] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, R. W. Lougheed, Phys. Rev. C 69 (2004) 054607.

[170] J. Corish, G. M. Rosenblatt, Pure Appl. Chem. 76 (2004) 2101.

[171] A. Marinov, S. Eshhar, J. L. Weil, D. Kolb, Phys. Rev. Lett. 52 (1984) 2209.

[172] K. Tatsumi, J. Corish, Pure Appl. Chem. 82 (2010) 753.
[173] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, O. V. Ivanov, G. V. Buklanov, K. Subotic, M. G. Itkis, K. J. Moody, J. F. Wild, N. J. Stoyer, M. A. Stoyer, R. W. Lougheed, Phys. Rev. C 62 (2000) 041604.

[174] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, O. V. Ivanov, G. V. Buklanov, K. Subotic, M. G. Itkis, K. J. Moody, J. F. Wild, N. J. Stoyer, M. A. Stoyer, R. W. Lougheed, Phys. Atomic Nuclei 63 (2000) 1679.

[175] Y. T. Oganessian, A. V. Yeremin, A. G. Popeko, S. L. Bogomolov, G. V. Buklanov, M. L. Chelnokov, V. I. Chepigin, B. N. Gikal, V. A. Gorshkov, G. G. Gulbekian, M. G. Itkis, A. P. Kabachenko, A. Y. Lavrentev, O. N. Malyshev, J. Rohac, R. N. Sagaidak, S. Hofmann, S. Saro, G. Giardina, K. Morita, Nature 400 (1999) 242.

[176] Y. T. Oganessian, A. V. Yeremin, G. G. Gulbekian, S. L. Bogomolov, V. I. Chepigin, B. N. Gikal, V. A. Gorshkov, M. G. Itkis, A. P. Kabachenko, V. B. Kutner, A. Y. Lavrentev, O. N. Malyshev, A. G. Popeko, J. Rohac, R. N. Sagaidak, S. Hofmann, G. Münzenberg, M. Veselsky, S. Saro, N. Iwasa, K. Morita, Eur. Phys. J. A 5 (1999) 63.

[177] Y. T. Oganessian, A. V. Belozerov, A. V. Yeremin, A. G. Popeko, O. N. Malyshev, A. V. Belozerov, G. V. Buklanov, L. Chelnokov, V. I. Chepigin, V. A. Gorshkov, S. Hofmann, M. G. Itkis, A. P. Kabachenko, B. Kindler, G. Münzenberg, R. N. Sagaidak, S. Saro, H. J. Schött, B. Streicher, A. V. Slutov, A. I. Svirikhin, G. K. Vostokin, Eur. Phys. J. A 19 (2004) 3.

[178] W. Loveland, K. E. Gregorich, J. B. Patin, D. Peterson, C. Rouki, P. M. Zielinski, K. Aleklett, Phys. Rev. C 66 (2002) 044617.

[179] K. E. Gregorich, W. Loveland, D. Peterson, P. M. Zielinski, S. L. Nelson, Y. H. Chung, C. E. Dullmann, C. M. F. III, K. Aleklett, R. Eichler, D. C. Hoffman, J. P. Omtvedt, G. K. Pang, J. M. Schwantes, S. Soverna, P. Sprunger, R. Sudowe, R. E. Wilson, H. Nitsche, Phys. Rev. C 72 (2005) 014605.

[180] S. Hofmann, D. Ackermann, S. Antalic, H. G. Burkhard, V. F. Comas, R. Dressler, Z. Gan, S. Heinz, J. A. Heredia, F. P. Heßberger, J. Khuyagbaatar, B. Kindler, I. Kojouharov, P. Knusiniemi, M. Leino, B. Lommel, R. Mann, G. Münzenberg, K. Nishio, A. G. Popeko, S. Saro, H. J. Schott, B. Streicher, B. Sulignano, J. Uusitalo, M. Venhart, A. V. Yeremin, Eur. Phys. J. A 32 (2007) 251.

[181] J. M. Gates, C. E. Düllmann, M. Schädal, A. Yakushev, A. Türler, K. Eberhardt, J. V. Kratz, D. Ackermann, L. L. Andersson, M. Block, W. Brüchle, J. Dvorak, H. G. Essel, P. A. Ellison, J. Even, U. Forsberg, J. Gellniki, A. Gorshkov, R. Graeger, K. E. Gregorich, W. Hartmann, R. D. Herzberg, F. P. Heßberger, D. Hild, A. Hubner, E. Jager, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, S. Lahiri, D. Liebe, B. Lommel, M. Maiti, H. Nitsche, J. P. Omtvedt, E. Parr, D. Rudolph, J. Runke, H. Schaffner, B. Schauzen, E. Schimpf, A. Semchenkov, J. Steiner, P. Thorle-Pospiech, J. Uusitalo, M. Wegrzeczki, N. Wiehl, Phys. Rev. C 83 (2011) 054613.

[182] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, O. V. Ivanov, G. V. Buklanov, K. Subotic, M. G. Itkis, K. J. Moody, J. F. Wild, N. J. Stoyer, M. A.
Stoyer, R. W. Lougheed, C. A. Laue, Y. A. Karelin, A. N. Tatarinov, Phys. Rev. C 63 (2001) 011301.

[183] Y. T. Oganessian, V. K. Utyonkov, K. J. Moody, Phys. Atomic Nuclei 64 (2001) 1349.

[184] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, O. V. Ivanov, G. V. Buklanov, K. Subotic, A. A. Voinov, M. G. Itkis, K. J. Moody, J. F. Wild, N. J. Stoyer, M. A. Stoyer, R. W. Lougheed, C. A. Laue, Eur. Phys. J. A 15 (2002) 201.

[185] Y. T. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Y. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, A. V. Ramayya, F. D. Riley, J. B. Roberto, M. A. Ryabinin, K. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, R. Sudowe, A. M. Sukhov, R. Taylor, Y. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, P. A. Wilk, Phys. Rev. C 83 (2011) 054315.

[186] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Y. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, K. J. Moody, J. B. Patin, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, J. M. Kenneally, J. H. Landrum, J. F. Wild, R. W. Lougheed, Phys. Rev. C 74 (2006) 044602.

[187] Yu. Ts. Oganessian et al. JINR Communications D7-2002-287, 2002; Lawrence Livermore National Laboratory Report UCRL-ID-151619, 2003.

[188] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, R. W. Lougheed, Nucl. Phys. A 734 (2004) 109.

[189] A. V. Yeremin, D. D. Bogdanov, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, G. M. Ter-Akopian, A. Y. Lavrentjev, Nucl. Instrum. Methods B 126 (1997) 329.
Explanation of Tables

22. Table 1. Discovery of isotopes of elements with Z ≥ 100

Isotope	Isotopes of elements with Z ≥ 100
First author	First author of refereed publication
Journal	Journal of publication
Ref.	Reference
Method	Production method used in the discovery:
	FE: fusion evaporation
	NC: Neutron capture reactions
	LP: light-particle reactions (including neutrons)
	DI: deep inelastic reactions
Laboratory	Laboratory where the experiment was performed
Country	Country of laboratory
Year	Year of discovery

23. Table 2. Production cross sections of isotopes of elements with Z ≥ 103

Isotope	Isotopes of elements with Z ≥ 103
First author	First author of refereed publication
Journal	Journal of publication
Beam	Projectile isotope
Target	Target isotope
Energy	Beam Energy
E* (MeV)	Excitation Energy in MeV
Evaporation channel	Number of neutrons evaporated
Cross section	Evaporation residue population cross section

58
Isotope	First Author	Journal	Ref.	Method	Laboratory	Country	Year
241Fm	J. Khuyagbaatar	Eur. Phys. J. A	25	FE	Darmstadt	Germany	2008
241Fm	G.M. Ter-Akopyan	Nucl. Phys. A	26	FE	Dubna	USSR	1975
241Fm	G. Münzenberg	Z. Phys. A	28	FE	Darmstadt	W. Germany	1981
242Fm	M. Nurmia	Phys. Lett. B	29	FE	Berkeley	USA	1967
242Fm	M. Nurmia	Phys. Lett. B	29	FE	Berkeley	USA	1967
243Fm	G.N. Akapev	Sov. At. Energy	30	FE	Dubna	USSR	1966
243Fm	G.N. Flerov	Sov. At. Energy	31	FE	Dubna	USSR	1967
244Fm	A. Ghiorso	Phys. Rev. Lett.	32	FE	Berkeley	USA	1958
244Fm	V.P. Perel’ygin	Sov. Phys. JETP	33	FE	Moscow	USSR	1960
250Fm	H. Atterling	Phys. Rev.	34	FE	Stockholm	Sweden	1954
251Fm	S. Amiel	Phys. Rev.	35	LP	Berkeley	USA	1957
252Fm	A.M. Friedman	Phys. Rev.	36	LP	Argonne	USA	1956
253Fm	B.G. Harvey	Phys. Rev.	37	NC	Berkeley	USA	1954
254Fm	G.R. Choppin	Phys. Rev.	38	NC	Berkeley	USA	1954
254Fm	G.R. Choppin	Phys. Rev.	39	NC	Berkeley	USA	1955
255Fm	E.K. Hulet	Phys. Rev. Lett.	40	LP	Berkeley	USA	1971
255Fm	E.K. Hulet	Phys. Rev. Lett.	41	LP	Berkeley	USA	1971
255Fm	E.K. Hulet	Phys. Rev. C	42	LP	Los Alamos	USA	1980
247Md	V. Ninov	Z. Phys. A	46	FE	Darmstadt	Germany	1996
248Md	V. Ninov	Z. Phys. A	46	FE	Darmstadt	Germany	1996
249Md	G. Münzenberg	Z. Phys. A	28	FE	Darmstadt	W. Germany	1981
250Md	P. Eskola	Phys. Rev. C	47	FE	Berkeley	USA	1973
251Md	P. Eskola	Phys. Rev. C	47	FE	Berkeley	USA	1973
252Md	P. Eskola	Phys. Rev. C	47	FE	Berkeley	USA	1973
253Md	B. Kadkhodayan	Radiochim. Acta	49	FE	Berkeley	USA	1992
254Md	P.R. Fields	Nucl. Phys. A	50	LP	Argonne	USA	1970
255Md	L. Phillips	Phys. Rev. Lett.	44	LP	Berkeley	USA	1958
256Md	A. Ghiorso	Phys. Rev.	43	LP	Berkeley	USA	1955
256Md	T. Sikkeland	Phys. Rev.	51	FE	Berkeley	USA	1965
256Md	P.R. Fields	Nucl. Phys. A	50	LP	Argonne	USA	1970
259Md	J.F. Wild	Phys. Rev. C	53	FE	Berkeley	USA	1982
260Md	E.K. Hulet	Phys. Rev. C	54	DI	Berkeley	USA	1989
250No	Yu.T. Oganessian	Phys. Rev. C	71	FE	Dubna	Russia	2003
251No	A. Ghiorso	Phys. Rev. Lett.	72	FE	Berkeley	USA	1967
252No	V.L. Mikheev	Sov. At. Energy	73	FE	Dubna	USSR	1967
253No	V.L. Mikheev	Sov. At. Energy	73	FE	Dubna	USSR	1967
254No	E.D. Donets	Sov. At. Energy	59	FE	Dubna	USSR	1966
254No	B.A. Zager	Sov. At. Energy	60	FE	Dubna	USSR	1966
255No	V.A. Abru	Sov. At. Energy	74	FE	Dubna	USSR	1967
256No	E.D. Donets	Sov. At. Energy	76	FE	Dubna	USSR	1963
256No	A. Ghiorso	Phys. Rev. Lett.	72	FE	Berkeley	USA	1967
256No	E.K. Hulet	Phys. Rev. C	54	FE	Berkeley	USA	1989
259No	R.J. Silva	Nucl. Phys. A	79	FE	Oak Ridge	USA	1970
260No	L.P. Somerville	Phys. Rev. C	80	DI	Berkeley	USA	1985

Table 1

Discovery of isotopes of elements with \(Z \geq 100 \). See page 58 for Explanation of Tables
Isotope	First author	Journal	Ref.	Method	Laboratory	Country	Year
256Rf	Yu. T. Oganessian	Sov. At. Energy	[103]	FE	Dubna	USSR	1975
257Rf	A. Ghiorso	Phys. Rev. Lett.	[93]	FE	Berkeley	USA	1969
257Rf	A. Ghiorso	Phys. Rev. Lett.	[93]	FE	Berkeley	USA	1969
257Rf	A. Ghiorso	Phys. Rev. Lett.	[93]	FE	Berkeley	USA	1969
258Rf	L.P. Somerville	Phys. Rev. C	[80]	FE	Berkeley	USA	1985
258Rf	A. Ghiorso	Phys. Lett. B	[110]	FE	Berkeley	USA	1970
259Rf	L.P. Somerville	Phys. Rev. C	[80]	FE	Berkeley	USA	1985
260Rf	J.V. Kratz	Radiocim. Acta	[114]	FE	Villigen	Switzerland	2003
260Rf	P.A. Ellison	Phys. Rev. Lett.	[117]	FE	Berkeley	USA	2010
260Rf	Yu. T. Oganessian	Phys. Rev. C	[120]	FE	Dubna	Russia	2004
256Db	F.P. Heßberger	Eur. Phys. J. A	[85]	FE	Darmstadt	Germany	2001
256Db	F.P. Heßberger	Z. Phys. A	[87]	FE	Darmstadt	W. Germany	1985
256Db	G. Münzenberg	Z. Phys. A	[88]	FE	Darmstadt	W. Germany	1981
256Db	G. Münzenberg	Z. Phys. A	[139]	FE	Darmstadt	W. Germany	1984
257Db	Z.G. Gan	Eur. Phys. J. A	[126]	FE	Lanzhou	China	2001
257Db	A. Ghiorso	Phys. Rev. Lett.	[91]	FE	Berkeley	USA	1970
257Db	G.N. Flerov	Sov. At. Energy	[121]	FE	Dubna	USSR	1970
257Db	A. Ghiorso	Phys. Rev. C	[131]	FE	Berkeley	USA	1971
257Db	J.V. Kratz	Phys. Rev. C	[132]	FE	Berkeley	USA	1992
258Db	Yu. T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
258Db	Yu. T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
258Db	Yu. T. Oganessian	Phys. Rev. Lett.	[134]	FE	Dubna	Russia	2010
258Sg	F.P. Hessberger	Z. Phys. A	[98]	FE	Darmstadt	Germany	1997
258Sg	G. Münzenberg	Z. Phys. A	[137]	FE	Darmstadt	W. Germany	1985
258Sg	A.G. Demin	Z. Phys. A	[138]	FE	Dubna	Russia	1984
261Sg	G. Münzenberg	Z. Phys. A	[139]	FE	Darmstadt	W. Germany	1984
261Sg	S. Hofmann	Eur. Phys. J. A	[140]	FE	Darmstadt	Germany	2001
261Sg	A. Ghiorso	Phys. Rev. Lett.	[135]	FE	Berkeley	USA	1974
261Sg	K.E. Gregorich	Phys. Rev. C	[142]	FE	Berkeley	USA	2006
261Sg	Yu.A. Lazarev	Phys. Rev. Lett.	[111]	FE	Dubna	Russia	1994
261Sg	J. Dvorak	Phys. Rev. Lett.	[113]	FE	Darmstadt	Germany	2006
261Sg	J. Dvorak	Phys. Rev. Lett.	[115]	FE	Darmstadt	Germany	2008
261Sg	P.A. Ellison	Phys. Rev. Lett.	[117]	FE	Berkeley	USA	2010
261Sg	Yu. T. Oganessian	Phys. Rev. C	[120]	FE	Dubna	Russia	2004
262Bh	S. L. Nelson	Phys. Rev. Lett.	[145]	FE	Berkeley	USA	2008
262Bh	G. Münzenberg	Z. Phys. A	[146]	FE	Darmstadt	W. Germany	1989
262Bh	G. Münzenberg	Z. Phys. A	[88]	FE	Darmstadt	W. Germany	1981
262Bh	S. Hofmann	Z. Phys. A	[147]	FE	Darmstadt	Germany	1995
262Bh	Z. G. Gan	Eur. Phys. J. A	[148]	FE	Lanzhou	China	2004
262Bh	P.A. Wilk	Phys. Rev. Lett.	[149]	FE	Berkeley	USA	2000
262Bh	P.A. Wilk	Phys. Rev. Lett.	[149]	FE	Berkeley	USA	2000
262Bh	Yu. T. Oganessian	Phys. Rev. C	[96]	FE	Dubna	Russia	2007
262Bh	Yu. T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
262Bh	Yu. T. Oganessian	Phys. Rev. Lett.	[134]	FE	Dubna	Russia	2010
263Ha	I. Dragojevic	Phys. Rev. C	[151]	FE	Berkeley	USA	2009
264Ha	G. Münzenberg	Z. Phys. A	[152]	FE	Darmstadt	W. Germany	1986
265Ha	G. Münzenberg	Z. Phys. A	[139]	FE	Darmstadt	W. Germany	1984

60
Isotope	First author	Journal	Ref.	Method	Laboratory	Country	Year
Hs	S. Hofmann	Eur. Phys. J. A	140	FE	Darmstadt	Germany	2001
Hs	Yu.A. Lazarev	Phys. Rev. Lett.	153	FE	Dubna	Russia	1995
Hs	K. Nishio	Phys. Rev. C	154	FE	Darmstadt	Germany	2010
Hs	S. Hofmann	Z. Phys. A	155	FE	Darmstadt	Germany	1996
Hs	J. Dvorak	Phys. Rev. Lett.	113	FE	Darmstadt	Germany	2006
Hs	J. Dvorak	Phys. Rev. Lett.	115	FE	Darmstadt	Germany	2008
Hs	P.A. Ellison	Phys. Rev. Lett.	117	FE	Berkeley	USA	2010
Hs	Yu.T. Oganessian	Phys. Rev. C	120	FE	Dubna	Russia	2004
Hs	Ch.E. Düllmann	Phys. Rev. Lett.	160	FE	Darmstadt	Germany	2010
Mt	G. Münzenberg	Z. Phys. A	162	FE	Darmstadt	W. Germany	1982
Mt	S. Hofmann	Z. Phys. A	147	FE	Darmstadt	Germany	1995
Mt	K. Morita	J. Phys. Soc. Japan	163	FE	RIKEN	Japan	2004
Mt	Yu.T. Oganessian	Phys. Rev. C	96	FE	Dubna	Russia	2007
Mt	Yu.T. Oganessian	Phys. Rev. C	133	FE	Dubna	Russia	2004
Mt	Yu.T. Oganessian	Phys. Rev. C	133	FE	Dubna	Russia	2004
Ds	A. Ghiorso	Phys. Rev. C	165	FE	Berkeley	USA	1995
Ds	S. Hofmann	Z. Phys. A	164	FE	Darmstadt	Germany	1995
Ds	S. Hofmann	Eur. Phys. J. A	140	FE	Darmstadt	Germany	2001
Ds	S. Hofmann	Rep. Prog. Phys.	168	FE	Darmstadt	Germany	1998
Ds	Yu.A. Lazarev	Phys. Rev. C	157	FE	Dubna	Russia	1996
Ds	Yu.T. Oganessian	Phys. Rev. C	169	FE	Dubna	Russia	2004
Rg	S. Hofmann	Z. Phys. A	147	FE	Darmstadt	Germany	1995
Rg	K. Morita	J. Phys. Soc. Japan	163	FE	RIKEN	Japan	2004
Rg	Yu.T. Oganessian	Phys. Rev. C	96	FE	Dubna	Russia	2007
Rg	Yu.T. Oganessian	Phys. Rev. C	133	FE	Dubna	Russia	2004
Rg	Yu.T. Oganessian	Phys. Rev. C	133	FE	Dubna	Russia	2004
Rg	Yu.T. Oganessian	Phys. Rev. Lett.	134	FE	Dubna	Russia	2010
Rg	Yu.T. Oganessian	Phys. Rev. Lett.	134	FE	Dubna	Russia	2010
Cn	S. Hofmann	Z. Phys. A	155	FE	Darmstadt	Germany	1996
Cn	Yu.T. Oganessian	Phys. Rev. C	169	FE	Dubna	Russia	2004
Cn	Yu.T. Oganessian	Phys. Rev. C	169	FE	Dubna	Russia	2004
Cn	Yu.T. Oganessian	Phys. Rev. C	169	FE	Dubna	Russia	2004
Isotope	First author	Journal	Ref.	Method	Laboratory	Country	Year
---------	--------------	--------------------------	------	--------	------------	-------------	------
285\(^{\text{Cn}}\)	Yu.T. Oganessian	Phys. Rev. C	[169]	FE	Dubna	Russia	2004
278\(^{113}\)	K. Morita	J. Phys. Soc. Japan	[163]	FE	RIKEN	Japan	2004
281\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
280\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
282\(^{113}\)	Yu.T. Oganessian	Phys. Rev. Lett.	[134]	FE	Dubna	Russia	2010
283\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[169]	FE	Dubna	Russia	2004
284\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
285\(^{113}\)	Yu.T. Oganessian	Phys. Rev. Lett.	[134]	FE	Dubna	Russia	2010
287\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
288\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
287\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
288\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
289\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
290\(^{113}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
291\(^{114}\)	P.A. Ellison	Phys. Rev. Lett.	[117]	FE	Berkeley	USA	2010
285\(^{114}\)	Yu.T. Oganessian	Phys. Rev. C	[169]	FE	Dubna	Russia	2004
286\(^{114}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
286\(^{114}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
287\(^{114}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
288\(^{114}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
289\(^{114}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
290\(^{114}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
291\(^{115}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
292\(^{115}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
293\(^{115}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
294\(^{115}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
295\(^{115}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
296\(^{115}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
297\(^{115}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
298\(^{115}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004
299\(^{115}\)	Yu.T. Oganessian	Phys. Rev. C	[133]	FE	Dubna	Russia	2004

Table 2

Production cross sections of isotopes of elements with Z ≥ 103. Only the values included in the original publication are listed. See page 58 for Explanation of Tables

Isotope	Author	Journal	Beam	Target	Energy	E* (MeV)	Evaporation channel	Cross section
252\(^{\text{Lr}}\)	F.P. Hesseberger	[85]	Not directly populated		60	6n	1.3±0.5 nb	
253\(^{\text{Lr}}\)	A.V. Yeremin\(^{1}\)	[189]	27\(^{\text{Al}}\)	232\(^{\text{Th}}\)	53	5n	1.7±0.5 nb	
254\(^{\text{Lr}}\)	A.V. Yeremin\(^{1}\)	[189]	27\(^{\text{Al}}\)	232\(^{\text{Th}}\)	53	5n	1.7±0.5 nb	
255\(^{\text{Lr}}\)	V.A. Druin	[89]	18\(^{\text{O}}\)	243\(^{\text{Am}}\)	4n	4n	4n	
256\(^{\text{Lr}}\)	E.D. Donets	[81]	18\(^{\text{O}}\)	243\(^{\text{Am}}\)	4n	4n	4n	
257\(^{\text{Lr}}\)	K. Eskola	[90]	13\(^{\text{B}}\)	249\(^{\text{Cf}}\)	5n	5n	5n	
258\(^{\text{Lr}}\)	K. Eskola	[90]	13\(^{\text{B}}\)	249\(^{\text{Cf}}\)	5n	5n	5n	
259\(^{\text{Lr}}\)	K. Eskola	[90]	13\(^{\text{B}}\)	249\(^{\text{Cf}}\)	5n	5n	5n	
260\(^{\text{Lr}}\)	K. Eskola	[90]	13\(^{\text{B}}\)	249\(^{\text{Cf}}\)	5n	5n	5n	
253\(^{\text{Rf}}\)	F.P. Hesseberger	[98]	50\(^{\text{Ti}}\)	204\(^{\text{Pb}}\)	15.6	1n	0.11±0.04 nb	
254\(^{\text{Rf}}\)	F.P. Hesseberger	[98]	50\(^{\text{Ti}}\)	206\(^{\text{Pb}}\)	21.5	2n	2.4±0.2 nb	
255\(^{\text{Rf}}\)	Yu.T. Oganessian	[103]	50\(^{\text{Ti}}\)	207\(^{\text{Pb}}\)	260 MeV	2n	3 nb	
256\(^{\text{Rf}}\)	Yu.T. Oganessian	[103]	50\(^{\text{Ti}}\)	209\(^{\text{Pb}}\)	260 MeV	2n	6 nb	
257\(^{\text{Rf}}\)	A. Ghiorso	[93]	12\(^{\text{C}}\)	249\(^{\text{Cf}}\)	4n	4n	4n	
258\(^{\text{Rf}}\)	A. Ghiorso	[93]	12\(^{\text{C}}\)	249\(^{\text{Cf}}\)	3n	3n	3n	

\(^{1}\)Subsequent publication, not the original discovery paper
Isotope	Author	Journal	Beam	Target	Energy	E* (MeV)	Evaporation channel	Cross section
256Rf	A. Ghiorso	[93]	13C	249Cf	3n	4n	Not directly populated	
260Rf	L.P. Somerville	[80]	15N	249Bk	80 MeV	4n	10 nb	
261Rf	A. Ghiorso	[110]	18O	248Cm	90-100 MeV	5n	5 nb	
262Rf	L.P. Somerville	[80]	18O	248Cm	89 MeV	4n	5 nb	
263Rf	J.V. Kratz	[114]	Not directly populated					
264Rf	P.A. Ellison	[117]	Not directly populated					
265Rf	Yu.T. Oganessian	[120]	Not directly populated					
256Db	F.P. Heßberger	[85]	50Ti	209Bi	5.08 AMeV	$^{\sim}$31	3n	0.2 nb
257Db	F.P. Heßberger	[87]	50Ti	209Bi	4.75-4.95 MeV/u	2n	2.1±0.8 nb	
258Db	F.P. Heßberger	[87]	50Ti	209Bi	4.75-4.95 MeV/u	1n	2.9±0.3 nb	
259Db	Z.G. Gan	[126]	22Ne	241Am	118 MeV	4n	1.6±1.2 nb	
260Db	A. Ghiorso	[91]	15N	249Cf	85 MeV	4n	$^{\sim}$3 nb	
261Db	G.N. Flerov	[121]	22Ne	243Am	$^{\sim}$115 MeV	4n	$^{\sim}$7 nb	
262Db	A. Ghiorso	[131]	18O	249Bk	93 MeV	5n	10±6 nb	
263Db	J.V. Kratz	[132]	18O	249Bk	93 MeV	4n	10±6 nb	
264Db	Yu.T. Oganessian	[133]	Not directly populated					
265Db	Yu.T. Oganessian	[133]	Not directly populated					
266Db	Yu.T. Oganessian	[134]	Not directly populated					
258Sg	F.P. Heßberger	[98]	51V	209Bi	4.91 AMeV	21.5	2n	38±13 pb
259Sg	G. Münzenberg	[137]	54Cr	207Pb	262±3 MeV	2n	320±125 pb	
260Sg	A.G. Demin	[138]	54Cr	207Pb	290 MeV	1n	300 pb	
261Sg	G. Münzenberg	[137]	54Cr	208Pb	290 MeV	2n	400 pb	
262Sg	K. Nickho	[143]	30Si	238U	163.5 MeV	50.6	6n	$^{\sim}$25 pb
263Sg	K. Gregorich	[142]	30Si	238U	165.1±2.2 MeV	53.7±2.0	6n	$^{\sim}$25 pb
264Sg	A. Ghiorso	[135]	18O	249Cf	95 MeV	4n	$^{\sim}$0.3 nb	
265Sg	K. Gregorich	[142]	30Si	238U	148.7±2.2 MeV	39.3±2.0	4n	9±6 pb
266Sg	Yu.A. Lazarev	[111]	22Ne	241Cm	121 MeV	5n	260 pb	
267Sg	J. Dvork	[113]	26Mg	248Cm	134.6-136.6 MeV	4n	3 pb	
268Sg	J. Dvork	[115]	Not directly populated					
269Sg	P.A. Ellison	[117]	Not directly populated					
270Sg	Yu.T. Oganessian	[120]	Not directly populated					
269Bh	S.L. Nelson	[145]	52Cr	209Bi	257.0 MeV	15.0	1n	35±29 pb
270Bh	G. Münzenberg	[146]	54Cr	209Bi	4.92 MeV/u, 5.00 MeV/u	24±2	2n	36±14 pb
271Bh	G. Münzenberg	[147]	54Cr	209Bi	4.85 MeV/u, 4.95 MeV/u	$^{20}±2$	1n	163±34 pb2
269Bh	S. Hofmann	[147]	Not directly populated					
270Bh	Z.G. Gan	[148]	26Mg	241Am	168 MeV	4n		
268Bh	P.A. Wilk	[149]	22Ne	249Bk	123 MeV	5n	25-250 pb	
267Bh	P.A. Wilk	[149]	22Ne	249Bk	117 MeV	4n	96±25 pb	

2Value from [146]
Isotope	Author	Journal	Beam	Target	Energy	E^* (MeV)	Evaporation channel	Cross section
263Hs	I. Dragojevic [151]	56Fe 208Pb	276.4 MeV	15.2	1n	$21^{+13}_{-8.8}$ pb		
265Hs	G. Münzenberg [152]	56Fe 208Pb	5.04 MeV/u	19±2	1n	$3.2^{+0.2}_{-1.4}$ pb		
266Hs	G. Münzenberg [139]	56Fe 208Pb	5.02 MeV/u	18±2	1n	19^{+11}_{-18} pb		
267Hs	S. Hofmann [140]	Not directly populated	34S 238U	186 MeV	5n	2.5 pb		
268Hs	A. Türler 1 [159]	26Mg 248Cm	143.7-146.8 MeV	5n	$0.54^{+1.3}_{-0.45}$ pb			
268Hs	J. Dvorak [113]	26Mg 248Cm	136 MeV	4n	7 pb			
269Hs	J. Dvorak [115]	26Mg 248Cm	130 MeV	3n	$2-3$ pb			
267Hs	P.A. Ellison [117]	Not directly populated						
267Hs	Yu.T. Oganessian [120]	Not directly populated						
267Hs	Ch.E. Düllmann [160]	Not directly populated						
267Mt	G. Münzenberg [162]	56Fe 209Bi	5.15 MeV/u	20-26	1n	~10 pb		
267Mt	S. Hofmann [147]	Not directly populated						
267Mt	K. Morita [163]	Not directly populated						
267Mt	Yu.T. Oganessian [96]	Not directly populated						
267Mt	Yu.T. Oganessian [133]	Not directly populated						
267Mt	Yu.T. Oganessian [134]	Not directly populated						
267Ds	A. Ghiorso [165]	50Co 209Bi	290-310 MeV	11-27	1n			
267Ds	S. Hofmann [164]	62Ni 208Pb	311 MeV	12.3	1n	$3.3^{+6.2}_{-2.2}$ pb		
267Ds	S. Hofmann [140]	64Ni 207Pb	317 MeV	14.0	1n	13^{+5}_{-5} pb		
267Ds	S. Hofmann [168]	64Ni 208Pb	313.9 MeV	9.85	1n	15^{+9}_{-6} pb		
267Ds	Yu.A. Lazarev [157]	34S 244Pu	190 MeV	50	5n	0.4 pb		
267Ds	P.A. Ellison [117]	Not directly populated						
267Ds	Yu.T. Oganessian [169]	Not directly populated						
267Ds	Yu.T. Oganessian [169]	Not directly populated						
272Rg	S. Hofmann [147]	64Ni 209Bi	320 MeV	12.5	1n	$3.5^{+4.6}_{-2.3}$ pb		
272Rg	K. Morita [163]	Not directly populated						
272Rg	Yu.T. Oganessian [96]	Not directly populated						
272Rg	Yu.T. Oganessian [133]	Not directly populated						
272Rg	Yu.T. Oganessian [133]	Not directly populated						
272Rg	Yu.T. Oganessian [134]	Not directly populated						
272Cn	S. Hofmann [155]	70Zn 208Pb	344 MeV	10.1	1n	$1.1^{+1.2}_{-0.4}$ pb		
272Cn	S. Hofmann [155]							
272Cn	S. Hofmann [155]							

64
Isotope	Author	Journal	Beam	Target	Energy	E* (MeV)	Evaporation channel	Cross section
280Cn	P.A. Ellison	[117]	Not directly populated					
281Cn	Yu.T. Oganessian	[169]	Not directly populated					
282Cn	Yu.T. Oganessian	[169]	Not directly populated					
283Cn	Yu.T. Oganessian	[169]	Not directly populated					
284Cn	Yu.T. Oganessian	[169]	Not directly populated					
285Cn	Yu.T. Oganessian	[169]	Not directly populated					
278113	K. Morita	[163]	70Zn 209Bi	349.0 MeV	14.1±2.0	1n	55^{+150}_{-45} fb	
279113	Yu.T. Oganessian	[96]	48Ca 237Np	244 MeV	39.1±2.2	3n	$0.9^{+3.1}_{-0.6}$ pb	
280113	Yu.T. Oganessian	[133]	Not directly populated					
281113	Yu.T. Oganessian	[134]	Not directly populated					
282113	Yu.T. Oganessian	[134]	Not directly populated					
283113	Yu.T. Oganessian	[184]	48Ca 248Cm	240 MeV	28.9-37.2	3n	$1.3^{+1.2}_{-1.1}$ pb	
284113	Yu.T. Oganessian	[134]	Not directly populated					
285114	P.A. Ellison	[117]	48Ca 242Pu	256 MeV	50	5n	$0.6^{+0.9}_{-0.5}$ pb	
286114	Yu.T. Oganessian	[169]	Not directly populated					
287114	Yu.T. Oganessian	[169]	48Ca 244Pu	257 MeV	52.6	5n	$1.1^{+2.6}_{-0.9}$ pb	
288114	Yu.T. Oganessian	[169]	48Ca 244Pu	243 MeV	41	4n	$5.3^{+3.8}_{-2.2}$ pb	
289114	Yu.T. Oganessian	[169]	48Ca 244Pu	243 MeV	41	3n	$1.7^{+1.3}_{-1.1}$ pb	
287115	Yu.T. Oganessian	[133]	48Ca 243Am	253 MeV	42.4-46.5	4n	$0.9^{+3.2}_{-0.8}$ pb	
288115	Yu.T. Oganessian	[133]	48Ca 243Am	248 MeV	38.0-42.3	3n	$2.7^{+4.8}_{-1.6}$ pb	
289115	Yu.T. Oganessian	[134]	Not directly populated					
290115	Yu.T. Oganessian	[134]	Not directly populated					
290116	Yu.T. Oganessian	[169]	48Ca 245Cm	243 MeV	30.9-35.0	3n	1.3 pb	
291116	Yu.T. Oganessian	[169]	48Ca 245Cm	243 MeV	30.9-35.0	2n	0.9 pb	
292116	Yu.T. Oganessian	[120]	48Ca 248Cm	247 MeV	36.8-41.1	4n	$3.3^{+2.4}_{-1.4}$ pb	
293116	Yu.T. Oganessian	[184]	48Ca 248Cm	240 MeV	28.9-37.2	3n	$1.3^{+1.5}_{-0.9}$ pb	
294117	Yu.T. Oganessian	[134]	48Ca 249Bk	252 MeV	39	4n	$1.3^{+1.5}_{-0.9}$ pb	
295117	Yu.T. Oganessian	[134]	48Ca 249Bk	247 MeV	35	3n	$0.5^{+1.1}_{-0.4}$ pb	
296118	Yu.T. Oganessian	[186]	48Ca 249Cf	251 MeV	32.1-36.6	3n	$0.5^{+1.6}_{-0.3}$ pb	

Reassigned from 292116 to 293116 in [169]