The Mathematics and Physics of Diderot.
I. On Pendulums and Air Resistance

Sílvio R. Dahmen
Instituto de Física, Universidade Federal do Rio Grande do Sul
90540 – 090 Porto Alegre Brazil

September 29, 2014

Abstract

In this article Denis Diderot’s Fifth Memoir of 1748 on the problem of a pendulum damped by air resistance
is discussed.

Diderot wrote the Memoir in order to clarify an assumption Newton made without further justification in the
first pages of the Principia in connection with an experiment to verify the Third Law of Motion using colliding
pendulums. To explain the differences between experimental and theoretical values of momentum in the collision
experiments he conducted Newton assumed that the bob was retarded by an air resistance F_R proportional to the
velocity v. By giving Newton’s arguments a mathematical scaffolding and recasting his geometrical reasoning in
the language of differential calculus, Diderot provides a step-by-step solution guide to the problem and proposes
experiments to settle the question about the appropriate form of F_R, which for Diderot quadratic in v, that is
$F_R \sim v^2$.

The solution of Diderot is presented in full detail and his results are compared to those obtained from a
Lindstedt-Poincaré approximation for an oscillator with quadratic damping. It is shown that, up to a prefactor,
both coincide. Some results that one can derive from his approach are presented and discussed for the first time.
Experimental evidence to support Diderot’s or Newton’s claims is discussed together with the limitations of their
solutions. Some misprints in the original memoir are pointed out.

Keywords: History of Physics; Denis Diderot; Isaac Newton; Damped Oscillator; Lindstedt-Poincaré Method.
1 How to read this article

This article has two main objectives: first, to discuss the historical context and educational aspects of Diderot’s commentaries on Newton’s treatment of the damped oscillator briefly discussed in the opening sections of the *Principia* in connection with the third law of motion \[1\]. Second, to provide a detailed mathematical analysis of Diderot’s calculations and compare his results with those obtained using the modern approach to the problem of a damped oscillator. As such, the paper has a historical part with a detailed reproduction of Diderot’s results and a section where the modern approach to the damped oscillator is presented and experimental results discussed.

The historian Peter Gay, in his seminal book on the Enlightenment said that ‘... Diderot was, with almost equal competence, translator, editor, playwright, psychologist, art critic and theorist, novelist, classical scholar, and educational and ethical reformer’ \[2\]. To this one should add, if not mathematician in the strict sense of the word, at least the epithet mathematics enthusiast. He was no professional mathematician, as his fellow philosophe Jean De La Ronde D’Alembert was, but his involvement went beyond that of a simple amateur. Given the range of Diderot’s interests and his standing among the *philosophes* of the Enlightenment, his delvings into the fields of mathematics and physics call for a more detailed analysis. However, it is also true that these very achievements can only be fully appreciated if we compare his approach and results with all that we know today. The combination of these two facets of his work comes at a cost: the long calculations of Diderot’s article and the modern view on the subject cannot be presented in a condensed way. So I have tried to show the two sides of the coin in such a way as to allow them to be examined independently, if necessary. By doing this it was my purpose to spare those readers interested only in the history from reading the modern approach without, at the same time, compromising the comprehension of Diderot’s work as we understand it today.

For those interested in the historical aspects of Diderot’s Memoirs on Mathematics, one may concentrate on Sections 2, 3 and 4. His calculations are presented in detail in Section 5. This is the longest section and some results missing in the original are discussed for the first time. Section 6 is where the modern approach to the damped oscillator is discussed, both from a theoretical as well as from an experimental viewpoint. As mentioned in the preceeding paragraph, this section may be skipped at a first reading. Some of the results presented there which help us better understand the complexity of the problem Diderot dealt with and his solution are clearly indicated along the main text.

2 Introduction

One of the last things to come to mind when one thinks of Denis Diderot (1713–1784) is the field of mathematics and physics. Rightly regarded as one of the most prolific minds of the 18th century, his name evokes first and foremost the emblematic *Encyclopédie des Sciences, des Arts e des Métiers*, of which he was the main editor and to which he dedicated 25 years of his life\[1\]. Given the gargantuan range of his interests – encyclopedic in the broadest sense of the word – one can find under his pen works of philosophical enquiry, historiography, critique of art, novels and translations. Thus it should come as no surprise that the specialized and non-specialized literature on Diderot reflect, in variety and extent, the breadth of his intellectual production. However, given the wealth of mathematical and physical problems Diderot tried his hand at, the same cannot be said of his mathematical treatises. With a few praiseworthy exceptions \[3, 4, 5\] this facet of Diderot – that of the mathematician – remains largely untouched.

One possible reason for the lack of interest could be the fact that some of his mathematical writings are rather technical and deal with very specific problems of physics and applied mathematics: sundials, probability theory, theory of algebraic curves, calculus of annuities and deciphering machines, to name just a few. Moreover, his association with other fields of enquiry are so vast that his mathematical exploits are – to a great degree still – regarded by some as the work of a dilletante, a minor diversion from his more influential works. This couldn’t be less true. His involvement with mathematics, based on Diderot’s own account and his writings extend for a period of 28 years, from 1733 to 1761. His later works are full of comments on mathematics and the value he

1 Diderot’s association with the *Encyclopédie*’s started in 1747. The first 17 volumes of the colossal work were published between 1751 and 1765. The eleven extra volumes of plates were finished by 1772.
accorded to it can be judged by the fact that he placed it at the basis of the curriculum for a university in Russia.

As Ballstadt convincingly showed in his long treatise on Diderot and the Natural Sciences, if one wants to fathom Diderot as a natural philosopher in his entirety it is necessary to understand the role mathematics played in his thought. When compared to mathematicians like Jean de La Ronde D’Alembert (1717–1783), his coeditor at the Encyclopedia until 1759, one may rightfully call him an amateur – but if so, one should add that he was an extremely competent one. He did original research, was technically proficient and used techniques which, at that time, were at the very front of the research arena. Thus Diderot the pantophile should not overshadow Diderot the mathematician.

The first to consider mathematics in the context of Diderot’s works were Krakeur and Krueger, whom we owe much of what we know about the subject today. The first technical analysis of Diderot work in mathematics was undertaken by Coolidge. In spite of its shortcomings – only some of Diderot’s works are analysed and then only partially – it remains a starting point and a valuable source of information for any serious study. Ballstadt considers the role mathematics played in Diderot’s views on natural philosophy and, given his encyclopedic bent of mind, which encompassed basically every branch of knowledge at that time, mathematics can be rightfully said to have been one of his greatest and never fading passions. Diderot himself referred in his later years to his relation to mathematics in a rather amusing way. In his Réfutation d’Helvétius (1774) he tells the story of two parents who, upon noticing that their first-born son was rather predisposed to studies, decided to send him to the local provincial school and later to Paris, to the University, where:

They gave him texts on arithmetics, algebra and geometry, which he devoured. Later, admonished to [devote himself] to more agreeable studies, he found pleasure in the reading of Homer, Virgil, Tasso and Milton, but always returned to mathematics, just like an unfaithful husband who, tired of his mistress, returns from time to time to his wife.

Except for the part where the parents sent the son to Paris, this is his own story. According to Ballstadt, mathematics was the only branch of 18th century science in which Diderot can be said to have been a practitioner. So, if one considers Diderot’s standing for the Siècle des Lumières and his intellectual acumen, it is more than justifiable that his mathematical exploits deserve a more detailed technical analysis.

Thus, it is the purpose of this and the forthcoming articles to expand some of the previous works by analysing Diderot’s works both from a more technical perspective while simultaneously highlighting the historical context of their writing. In the present work his fifth memoir on the damped harmonic oscillator is discussed. Besides presenting his calculations in modern notation, his results are compared to what we know today about the damped pendulum. It is shown that if one considers the regime of high Reynolds numbers, Diderot’s assumption of a damping force of the type $F(v) \sim v^2$ is correct.

This work is organized as follows. Section contains a brief description of the known mathematical works of Diderot. This is followed by Section where the historical context of Diderot’s Fifth Memoir, the main subject of this article, is discussed. The memoir itself is treated in Section. It starts by introducing Newton’s discussion of the colliding pendulums and his assertions. Then, Diderot’s own solution is presented in all its mathematical detail. In order to make Diderot’s calculations more transparent to the modern reader, his notation is explained and some misprints in the original are pointed out. Any discussion of Diderot’s (or, for that matter, Newton’s) solution can only be appreciated if one realizes the complexity of the problem they were dealing with. So, Section gives a detailed treatment of the pendulum for arbitrary swing amplitudes as well as the small-amplitude approximation, since Diderot considers both cases. The effect of air resistance on the pendulum’s movement is also discussed and an approximate solution using a Lindstedt-Poincaré expansion is presented. Experimental support for a v^2-type drag is presented. This section can be read independently and may be skipped by those interested only in the Diderot’s solution. Some of the results presented in this section are important for a better evaluation of Diderot’s

\footnote{His Plan d’une université pour le gouvernement de Russie (1775) was a personal request of the Russian Empress Catherine II.}

\footnote{On lui met entre les mains des cahiers d’arithmétique, d’algèbre et de géométrie qu’il dévora. Entrainé par la suite à des études plus agréables, il se plia à la lecture d’Homère, de Virgile, du Tasse e de Milton, mais revenant toujours aux mathématiques, comme un époux infidèle, las de sa maîtresse, revient de temps en temps à sa femme.}

\footnote{Diderot actually tried to leave Langres, his hometown, without the consent of his father to join the Jesuits in Paris. His father got wind of it and took his son himself to Paris, enrolling him at the Collège d’Harcourt.}
Memoir, but they are clearly pointed out along the text. The paper closes with Section 7 where some conclusions are drawn.

3 Diderot and Mathematics

In 1748, Pissot and Durant of Paris published an octavo volume with the unassuming title *Mémoires sur différents sujets de Mathématiques*. With its deluxe format and exquisite engravings, it was “... one of the most coquettish [volumes] that was ever published on such arid subjects”, as Maurice Tourneaux remarked. The book contained five different treatises on different subjects of pure and applied mathematics:

I. The first memoir is a study entitled *Principes généraux d’acoustique*. As the title indicates, it deals with acoustics and how one can relate the vibration of chords with particular musical notes, among other things. Diderot starts out with general properties of soundwaves and moves to the mathematics of pitch, and the use of logarithms in the production of harmonious sounds. For Coolidge this is the most important of all five memoirs. It is also the longest.

II. The memoir *Examen de la développante du cercle* is a treatise on involutes. An involute is the curve obtained by the free end of a taut string attached to a curved body as it unwinds from that body, as in the case of the spiral described by the tip of a rope as one unwraps it from around a circle. This work is particularly interesting for various reasons. In spite of reading like a piece of pure mathematics, Diderot never loses sight of applications. He starts the memoir by posing a practical question: whether it would be possible to draw curves without recurring to a ruler and a compass. In other words, he was looking for some kind of device with which one could draw ‘mechanical curves’ (courbes mécaniques) or curves that can be drawn with the help of some mechanical device. More importantly, in this memoir he takes up on his hobbyhorse, the squaring of the circle, since involutes are intimately connected with the retification problem: given some region of space delimited by known curves, one expects to find its area by transforming these curves into straight ones with the help of involutes. Involuters were introduced by Christiaan Huygens (1629 – 1695) in his treatise on pendulums and their applications in clockmaking, the *Horologicum Oscillatorium* of 1673. They are also relevant in the design of mechanical gears, since dents which involute profiles have a better distribution of forces and are less prone to noise and wear, as first noted by Leonhard Euler (1707 – 1783). There is no indication whether Diderot knew of these works. He did however make use of the annotated edition of the *Principia* by Le Seur and Jacquier, where involutes are mentioned. See below and [13] for more details.

III. In the third Memoir *Examen d’un principe de mécanique sur tensions des cordes* one finds an experiment proposed by Diderot to decide a question posed by the italian mathematician Giovanni Borelli (1608 – 1679): imagine a rope whose one end is attached to a fixed point, while a weight A hangs at the other. Will the replacement of the fixed point by an equal weight change the resulting tension? The answer which today one may find in any elementary physics book was, at the time, an open question.

IV. The fourth Memoir, *Projet d’un novel orgue* is related to the first memoir. Here Diderot introduces a project for an organ that could be played even by those who have no musical training and was based on the use of a sort of punch card. This work had been published separately the year before in the *Mercure de France*.

V. The last memoir is entitled *Lettre sur la Résistance de l’air au mouvement des pendules*. This memoir is the subject of the present article and as such will be discussed in more detail in Section 4.

5 Torneaux and Jules Assézat were the first publishers of Diderot’s complete works.

6 In the specialized mathematical literature involutes are also called ‘evolvents’.

7 This term is no longer used and nowadays one speaks of algebraic curves (geometric curves in Diderot’s language) and transcendental curves. Algebraic curves can be defined as the set of points given by the equation $f(x, y) = 0$ where $f(x, y)$ is polynomial in x and y. Transcendental curves intercept some straight line in an infinite number of points and cannot be represented by a polynomial equation of finite degree.
In 1761 Diderot wrote three more essays under the title *Nouveaux Mémoires sur Différents Sujets de Mathématiques*, but which were kept private and published only posthumously [14]:

i. An article on the cohesion of bodies. From today’s viewpoint outdated, Diderot comes to the defense of Newton, arguing that an inverse-square law would suffice to explain cohesion.

ii. An article on the use of probability in calculating betting odds in the famous Saint Petersburg problem. In this article he corrected an error committed by D’Alembert while trying to solve that same problem.

iii. Another article related to probability, but this time on the question of inoculation. It was once again a response to D’Alembert’s criticism, who thought very sceptically about the use of probabilities in matters of life and death. Diderot’s involvement with ‘political arithmetics’ or probability theory was much in line with his engagement on public issues and was more philosophical than mathematical in nature.

Further works, most in fragmentary form, involve questions as varied as were Diderot’s interests. There is a long article on cyclometry (squaring of the circle), which precedes a project of a deciphering machine; discussions on the geometry of infinity and calculus of annuities (for insurance purposes); comments on celestial mechanics, the duration of human life and the outline of a lottery; there is also a manual of basic arithmetics for children, as Diderot earned a living in his first years in Paris by teaching mathematics to the children of well-off families. The most up-to-date edition of his extant mathematical works can be found in the extensively annotated *Oeuvres Complètes* of 1975 [14].

4 The Fifth Memoir on Newton and Colliding Pendulums

Judged by its title, the fifth and last memoir of 1748 seems to be one of those paradigmatical exercises to be found in most physics textbooks: to determine the retardation on the movement of a pendulum caused by air resistance. A more careful look at its content however, reveals that Diderot does not seem to have been only interested in the problem *per se*, but also in giving a didactic explanation of a commentary made by Newton in the first pages of the *Principia*, which Diderot goes as far as transcribing from in the original Latin [8].

The passage he quotes is concerned with is the experimental verification that Action = Reaction, or the Third Law of Motion. This problem, which at a first might look rather far removed from the problem of damped oscillators, is actually the key to Diderot’s assessment of Newton: to verify the validity of the Third Law, Newton conducted a series of collision experiment with two pendulums. ‘But’, as Newton observes, ‘to bring this experiment to an accurate agreement with the theory, we are to have due regard as well to the resistance of the air as to the elastic force of the concurring bodies’ [9]. Newton however did not bother to say how exactly the air resistance should be, except that the retardation was proportional to the arc of the trajectory. By translating Newton’s arguments into a more rigorous mathematical language, Diderot showed that this assumption was equivalent to Newton having implicitly assumed a \(v\)-type law when in fact – so thought Diderot – he should have favoured a \(v^2\)-law. The way Diderot treated the problem and organized his article around Newton’s ideas shows how competent he was in his assessment of the great master. Diderot knew the didactic value of mathematics and while filling in the gaps Newton left open, he recast the problem in the language of differential calculus, translating Newton’s geometric language into a differential one.

The motivation behind Diderot’s study might have been a personal one: if one takes his dedicatory introduction at face value [10], he was asked to clarify a passage in the *Principia*:

8Diderot was known to be an accomplished latinist. He said he learned English by translating works in this language into French with the help of a English-Latin dictionary [15].

9 Verum, ut hoc experimentum cum theoriis ad amuflim congruat, habenda est ratio, cum restitentiae aeris, tum etiam vis elasticae concurrentium corporum [16].

10The introduction is dedicated to M***, whose identity is unknown. The whole volume of Memoirs is dedicated most probably to Marie Anne Victoire Pigeon d’Osangis (1724 – 1767), a french mathematician known by the name of Madame de Prémontval, as she was the wife of Pierre Le Guay de Prémontval (1716 – 1764), also a mathematician. M*** could have been just a fictive addressee as this Memoir in written in the form of a letter [17].
If the place [in the Principia] where Newton calculates the resistance caused by air on the movement of the pendulum embarasses you, do not let your self-steem be afflicted by it. As the greatest geometers will tell you, one encounters, in the depth and laconicity of the Principia, [enough] motives to completely console a man of penetrating mind who had some difficulty in understand them; and you will see shortly that there is another reason that seems even better to me – that the hypothesis this author started with might not be exact. [1]

The error Diderot is talking about is Newton’s choice of a force linear in \(v\), which he believes should be quadratic. This is the reason why previous works on the subject have given emphasis to the \(v\) vs. \(v^2\) controversy [3, 4], when the truth is that Newton actually considered both types of force in the Principia. The first 31 propositions of Book II are dedicated to the problem of damped pendulums, as discussed extensively in a series of articles by Gault [18, 19]. Actually Newton went so far as to use the more general expression \(F_R(v) = av + bv^2 + cv^2\) in order to fit the results of experiments he conducted himself. At the end of Book II, Section I of the he affirms by way of conclusion [21]:

However, that the resistance of bodies is in the ratio of the velocity, is more a mathematical hypothesis than a physical one. In mediums void of all tenacity, the resistance made to bodies are as the square of the velocities. For by the action of a swifter body, a greater motion in proportion to a greater velocity is communicated to the same quantity of the medium in a less time; an in an equal time, by reason of a greater quantity of the disturbed medium, a motion is communicated as the square of the ratio greater; and the resistance (by Laws II and III) is as the motion communicated.

Not surprisingly this explains why, in the specialized literature on friction, a \(v^2\)-dependent \(F_R\) is known as Newton Friction, whereas a \(v\)-dependent \(F_R\) is called Stokes Friction.

Newton’s approach to the damping problem was criticized by Leonhard Euler and Daniel Bernoulli (1700–1782) for its lack of rigour, something which certainly did not baffle a practical mind like Diderot’s as much as it baffled those of the great hydrodynamicists. Diderot’s respect for Newton was too great: ‘I have for Newton all deference one accords to the unique men of his kind’ [12]. So Diderot might have been motivated by something other than someone’s request: he seems to have had the intention of publishing his own commentaries on the Principia, but he was superseded by the famous annotated edition of the Franciscan Fathers François Jacquier (1711–1788) and Thomas Le Sueur (1703–1770) which came out between 1739 and 1742. So we read from his introduction:

Something surprises me however: that you were advised to seek me in order to free you from your embarrassment. It is true that I studied Newton with the purpose of elucidating him. I should even tell you that this work was pushed on, if not successfully, at least with great vivacity. But I did not think of it any longer since the Reverend Fathers Le Sueur and Jacquier made their commentaries public, and I did not feel tempted to ever reconsider it. There was, in my work, a few things you would not find in the work of these great geometers and a great many things in theirs you most surely would not find in mine. What do you ask of me? Even though mathematical matters were once much familiar to me, to ask me now about Newton is to talk of a dream of a year past. However, to persevere in the habit of pleasing you I will leaf through my abandoned drafts, I will consult the library of my friends and tell you what I can learn from them, telling you also, with Horace: if you can make these better, please let me know. If not, follow them with me. [13]

[1] Si l’endroit où Newton calcule la résistance que l’air fait au mouvement d’un pendule vous embarasse, que votre amour-propre n’en soit point affligé. Il y a, vous diront les plus grands géomètres, dan s la profondeur et lat laconicité des Principes mathématiques, de quoi consoler partout un homme pénétrant qui aurait quelque peine à entendre; et vous verrez bientôt que vous avez ici pour vous une autre raison que me paraît encore meilleure; d’est que l’hypothèse d’où cet auteur est parti n’est peut-être pas exacte [1].

[2] J’ai pour Newton toute la déférence qu’on doit aux hommes unique dans leur genre [1].

[3] Mais une chose me surprend; c’est que vous vous soyez avisé de vous adresser à moi, pour vous tirer d’embarass. Is est vrai que j’ai étudié Newton, dans le bateau de l’éclaircir; je vous avouerai même que ce travail avait été poussé, sinon avec beaucoup de succès, du moins avec assez de vivacité; mais je n’y pensais plus dès le temps que les RR Pères Le Sueur et Jacquier donnèrent leur Commentaire; et
The fifth memoir might have also been part of a more general work: given that Diderot also wrote an article on involutes (Second Memoir) and these are intrinsically connected with the problem of constructing an isochronous pendulum, these two memoirs might bear some relation with Christiaan Huygens epochal *Horologium Oscillatorium* [11]. It would well fit the interests of Diderot in the ‘applied arts’ and the fact that earlier in his career he prepared the general formulas and mathematical tables for a treatise of Antoine Deparcieux (1703 – 1768) on sundials [4]. Timekeeping devices could have exerted a certain fascination on him [20]. Tempting as this supposition might be, there is to the author’s knowledge no mention of Huygens in Diderot’s works. This does not mean that he did not know it, as Diderot was very well acquainted with the mathematical literature of his times. The memoirs of 1748 themselves might also have been an attempt of the author to appear more serious to the eyes of his contemporaries: by that year he had acquired a rather scandalous reputation with the publication of a rather brazen novel entitled *Les Bijoux Indiscrets*. It was published anonymously, but the author’s name was no secret. The strongest evidence of Diderot’s attempt to look serious can be read off from the opening phrase of his Memoirs, drawn from Horace’s Satires: ‘*Sed tamen* amoto quaeramus seria ludo’, which roughly translates as ‘plays aside, let us turn to serious matters.’ Irrespective of his ultimate motivation, his Fifth Memoir is the embodiment of his competence in things mathematical.

5 The Mathematical Pendulum from Diderot’s Perspective

To understand Diderot’s approach, one has to first consider Newton’s experiment described in the initial pages of the *Principia*. This is the more so if one realizes that Diderot wrote his article as some sort of solution’s manual to the arguments Newton expounded. The path Diderot chose to arrive at answers to the questions he poses at the beginning of his memoir seems at first rather awkward. But once one realizes that he is following Newton’s logics closely, translating his arguments into mathematical form, one understands why he chose to solve the problem the way he did.

5.1 Newton’s Solution

Newton’s discussion is based on the experimental setup depicted in Fig. 1 below. It is reproduced in the section *Axioms, or Laws of Motion of the Principia*. It was inspired on earlier experiments done by Edme Mariotte (1620–1684) and Christopher Wren (1632–1723) on the collision of pendulums.

Newton wants to study the transfer of momentum between colliding pendulums. The collision happens at point A. Given that the bob will have a lower velocity at A as compared to what it would in vacuo, one has to correct for the lost momentum. To find this, Newton devises a simple trick: since this difference is proportional to the path traversed (see Fig. 1), ‘...For it is a proposition well known to geometers, that the velocity of a pendulous body in the lowest point is as the chord of the arc which it has described in its descent’ [3] after a full swing the pendulum will return to point V so that RV represents the full retardation. As one complete oscillation is made up of four quarter oscillations, and the four retardations are increasingly smaller, one has to determine how much the first retardation contributes to the full RV. The easiest solution is to say that all contribute the same amount (1/4)RV. However, if one wants to minimize his error, one can devise a trick: there must exist a point S below R so that the momentum the bob loses upon reaching A will be exactly RS = RA – SA = 1/4RV. If one is able to find this S, then one can be sure that a bob starting from that point will lose momentum which corresponds exactly to a retardation (1/4)RV. Newton knows that S should actually be placed a little further down, but not too much. So he chooses a point T in order to constrain how far down he can place S by making ST = 1/4RV. He then places ST halfway between the observed values of R and V (see Fig. 1). Newton’s original passage reads [16]:

nit'point été tenté de le repandre. Il y aurait eu, dans mon ouvrage, fort peu des choses qui ne soient dans celui des savants géomètres; et il y en a tant dans le leur, qu’assurément on n’eut pas rencontrées dans le mien! Qu’exigez-vous de moi? Quand les sujets mathématiques m’auraient été très-familiers, m’interroger aujourd’hui sur Newton, c’est me parler d’un rêve de l’an passé. Cependant, pour persévérer dans l’habitude des vous satisfaire, je vais, à tout hazard, feuilletter mes paperrasses abandonnées, consultes les lumières de mes amis, vous communiquer ce que j’en pourrai tirer, et vous dire, avec Horace: Si quid novisti rectius istis, candidus imperti. Si non, his utere mecum [1].

14It is thus not surprising that the entry *Cadran Solaire* (Sundial) in the *Encyclopédie* was signed by him and D’Alembert.

15Nam velocitatem penduli in puncta infimo esse ut chordam arcus, quem cadendo descriptis, propositio est geometris notissima [16].
Figure 1: The pendulum Newton considered in his experiment to prove that Action equals Reaction: As bob A is let loose from a given point R, it hits B. As a consequence of their collision, both move upwards, A reaching s and B reaching k. The different points of the trajectories marked r, t, v etc. and what they represented are discussed in the text. Diderot reproduced this picture in his memoir on the damped pendulum.

Let the spherical bodies A, B be suspended by equal and parallel strings AC, BD from centers C and D. About these centers and lengths they describe the semicircles EAF, GBH with at CA and DB. Bring the body A to any point R of the arc EAF, and (withdrawing the body B let it go from thence, and after one oscillation suppose it to return to the point V: then RV will be the retardation arising from the resistance of the air. Of this RV let ST be the fourth part, situated in the middle, namely so that

$$RS = TV$$ \hspace{1cm} (1)

and

$$RS : TV = 3 : 2$$ \hspace{1cm} (2)

then will ST represent very nearly the retardation during the descent from S to A. \[16\]

There does not seem to be any particular good reason for choosing this point other than the fact that he knows that the quarter retardations are not equal and the first one is largest. So instead of choosing

$$S = R - \frac{1}{4}RV$$ \hspace{1cm} (3)

he chooses

$$S = R - \left(\frac{1}{4}RV + \frac{1}{8}RV\right)$$ \hspace{1cm} (4)

He then proceeds, considering what happens at the other side, where the bobs ascend:

*Restore the body B to its place: and supposing the body A to be let fall from the point S, the velocity thereof in the place of reflection [i.e. collision] A, without sensible errors, will be the same as if it had descended in vacuo from the point T ... After reflection, suppose the body A comes to the place s and the body B to the place k. Withdraw the body B, and find the place v, from which, if the body A, being

\[16\]Pendent corpora sphaerica A, B filis parallelis et aequalibus AC, BD, a centris C, D. His centris et intervallis describantur semicirculi EAF, GBH radiis CA, DB bisecti. Trahatur corpus A ad arcus I E AF punctum quodvis R, et (subducto corpore B) demittatur inde, redeatque post unam oscillationem ad punctum V. Est RV retardatio ex resistentia aeris. Huius RV fiat ST pars quarta sita in medio, ita scilicet ut $R S$ et TV aequuntur, sitque $R S$ ad ST ut 3 ad 2. Et ista ST exhibebit retardationem in descensu ab S ad A quam proxime [16].
let go, should after one oscillation return to the place \(r \), st may be a fourth part part of \(rv \), so placed in the middle thereof as to leave \(rs \) equal to \(tv \), and let the chord of the arc \(tA \) represent the velocity which the body \(A \) had in the place \(A \) immediately after reflection. For \(t \) will be the true and correct place to which the body \(A \) should have ascended, if the resistance of air had been taken off. In the same way wer are to correct the place \(k \) to which the body \(B \) ascends, by finding the place \(l \) to which it would have ascended in vacuo. And thus everything may be subjected to experiment, in the same manner as if we were really placed in vacuo.\(^{17}\)

So, by using similar procedures for the ascent of the bobs, he is able to correct for their momentum. His conclusion\(^{16}\):

Thus trying the thing with pendulums of 10 feet, in unequal as well as equal bodies, and making bodies concur after a descent through large spaces, as of 8, 12 or 16 feet, I found always, without an error of 3 inches, that when bodies concurred together directly, equal changes towards the contrary parts were produced in their motions, and, of consequence, that the action and reaction were always equal\(^{18}\).

This are the last words of Newton that Diderot transcribes in his Memoir. The he goes on to determine, in a rigorous way, the location of \(S \) under the assumption of an air resistance force linear in \(v \).

5.2 Diderot’s Solution: Lettre sur la Résistance de l’Air

Since Diderot’s article aims at explaining how Newton got his \(S \) while at the same time changing the hypothesis as to what regards the kind of drag one uses, his Memoir is didactically organized in three mains parts: two Propositions and the Éclaircissements (Clarifications). The Propositions deal with ways of calculating the retardation in the case of a quadratic resistance force. The presentation, which might at first seem quite awkward to the reader, follows closely Newton’s logic except that Diderot uses a different hypothesis and makes extensive use of differential tools. The Éclaircissements are the place where Diderot actually solves for Newton’s \(S \). Rather surprising is the fact that the Éclaircissements can be read quite independently, since Diderot makes no direct use of his results from Proposition I and II. So one may rightfully ask the reason why he goes at pains to do all the calculations which he does not use at the end. In the author’s opinion this was part of his strategy: other than simply offering the solution to a problem posed, Diderot shows in the Éclaircissements that Newton’s answer is an approximation to the full solution which would follow as a direct consequence of the methodological approach that he, Diderot, developed. If his reasoning, mathematically formulated, allowed him to go beyond Newton, then his solutions of Propositions I and II must be correct. The emphasis is on the method, not on the solution.

Thus, he starts each proposition in the form of a homework, a Problème that he poses: to find the velocity \(v \) of a bob for an arbitrary point \(M \) along the trajectory given that besides the weight, the bob is also acted upon by a retarding force proportional to \(v^2 \). Proposition I deals with the bob’s way from \(B \) (to the left of the vertical \(OA \)) as it moves down to \(A \), the lowest point of the trajectory (see Fig. 2). Proposition II deals with the movement of the bob initially at \(A \) as it moves up towards the right after being given an initial velocity \(h \). The separation of the question into two separate ones is due to the fact that Newton discusses each quarter cycle independently. This is natural in the context of Newton’s commentaries: since Newton was interested in the collision of two bobs, the descending bob will execute a quarter of a cycle before colliding. After Diderot gives a Solution to a Problème, he writes down

\(^{17}\)Restitutatur corpus B in locum suum. Cadat corpus A de puncto S, et velocitas eius in loco reflexionis A sine errore sensibili tanta erit, ac si in vacuo cecidisset de loco T ... Post reflexionem perveniat corpus A ad locum S, et corpus B ad locum k. Tollatur corpus B et locus k, ad quem corpus B ascendet, et inventendus locus l, ad quern corpus B ascendere debuisset in vacuo.\(^{16}\).

\(^{18}\)Hoc modo in pendulis pedem decem rem tentando, iisque in corporibus tam inaequalibus quam aequalibus, et faciendo ut corpora de intervallis amplissimis, puta pedum octo vel duodecim vel sexdecim, concurrenter; repperi semper sine errore trium digitorum in mensuris, ubi corpora sibi mutuo directe occurrentibus, aequales esse mutationes motuum corporibus in partes contrarias illatae, atque ideo actionem et reactionem semper esse aequales.\(^{16}\).
a few extra corollaries, which are either straightforward consequences of his main solution or approximations that one gets when considering small angles of oscillation.

Proposition I: Let a pendulum A which describes an arc BA in air be attached to the string GM fixed at G. One asks for the velocity of this pendulum for any point M, assuming that it starts falling from point B[19].

Before we discuss Diderot’s solution, his choice of variable requires some explaining: instead of using θ, the displacement angle, as one would normally do nowadays, he prefers to think in terms of the height x of the bob relative to the lowest point A of the trajectory. There is a reason for this: in the absence of damping, by conservation of energy we know that the change in kinetic energy of the bob is equal to change in potential energy. This allows one to directly find the velocity at a given height x_1 by giving the difference in height $x_0 - x_1$ through which the bob of mass m fell, that is

$$\frac{1}{2}mv_1^2 - \frac{1}{2}mv_0^2 = mg(x_0 - x_1) \rightarrow v_1^2 = v_0^2 + 2g(x_0 - x_1).$$

(5)

This is Torricelli’s equation for a body with acceleration g. Even though this result does not hold in the presence of damping, one may still use it as a first approximation to the real velocity, as Diderot eventually did.

The height from which the bob starts is the orthogonal projection of point B on line OA, and this Diderot calls $b = x_0 = x(t = 0)$ (see Fig. 2). The length of his string is a (usually called l in modern texts). He assumes that

$$PA = x \text{ (height measured from A)}$$
$$NA = b \text{ (bob’s initial height)}$$
$$GA = GM = a \text{ (length of string)}$$

Figure 2: The pendulum in Diderot’s work: M represents an arbitrary point of the trajectory of a bob dropping from the initial position B. The position m is infinitesimally close to M. Diderot expresses the position of the bob in terms of the height x of point M, measured relative to the lowest point of the trajectory, that is, the segment AP (per definition height at A is $x = 0$). The initial height is $b = NA$. The length of the pendulum is $a = GA = GM$.

the force due to air resistance is given by

$${F(v)} = \gamma \ v^2 \quad (6)$$

which he writes as

$${F(v)} = \frac{f}{g^2} \ v^2 \quad (7)$$

[19] Soit un pendule M qui décrit dans l’air l’arc BA, étant attaché à la verge GM fixe en G. On demande la vitesse de ce pendule en un point quelconque M, en supposant qu’il commence à tomber du point B [1].
The modern reader might find this a bit confusing but this equation comes from the fact that Diderot assumes that for a given known velocity \(g \) (not to be confused with the acceleration of gravity) the force has a known value of \(f \). So, from (6) one has

\[
F(g) = f = g^2 \rightarrow \gamma = \frac{f}{g^2}
\]

The factor \(f/g^2 \) is carried along through the whole text. The determination of this term is no simple experimental task and Diderot lacked access to scientific apparatus. So, even if conceptually correct, the use of the factor \(f/g^2 \) might have served him the purpose of convincing his readers that the problem was real, not just a toy model.

For the sake of a more compact notation we will keep the parameter \(\gamma \) where Diderot uses \(f/g^2 \) and think of its determination as it is normally done in a laboratory experiment: by fitting the amplitude as it decays with time or by measuring the drag in a wind tunnel.

Diderot’s approach consists in finding a relation between \(dv \), the increment in velocity, and the difference in height \(dx \) associated to the fall. The equation of motion for a bob of weight \(p \) acted upon by a force of the type Eq. (6) is

\[
m \frac{dv}{dt} = p \sin \theta - \gamma v^2
\]

To write it in terms of \(dx \) Diderot needs to find a way to relate this to \(dt \). He begin by noticing that

\[
dt = \frac{ds}{v}
\]

where \(ds \) (Diderot’s arc \(Mm \)) is the length the bob traverses along the arc during the time interval \(dt \). So, replacing \(dt \) by this expression he gets

\[
m \frac{dv}{dt} = (p \sin \theta - \gamma v^2) \times \frac{ds}{v}
\]

or

\[
v \frac{dv}{dv} = (p \sin \theta - \gamma v^2) \times \frac{ds}{m}
\]

In Diderot’s original work the mass \(m \) of the pendulum does not appear. This could be a lapse, not a conceptual mistake, or the fact that Diderot took \(m = 1 \) without mentioning it. For the sake of completeness we will keep the mass \(m \) in the equations that follow. To go over now to Diderot’s \(x \) one has to first remember that an infinitesimal arc \(ds \) is related to the infinitesimal angular displacement \(d\theta \) via \(ds = a \, d\theta \). The relation between \(\theta \) and \(x \) can be easily inferred from Fig. 3 and some basic trigonometry:

\[
\sin \theta = \pm \frac{\sqrt{2ax - x^2}}{a}
\]

The \(\pm \) sign comes from the fact that the expression on the right-hand side is always positive but \(\sin \theta \) can be either positive or negative depending on the which side the bob is. In other words, for a bob moving from left to right one always has \(d\theta > 0 \) while on the journey down \(dx < 0 \) while on the way up \(dx > 0 \). This is what Diderot means when he says

In this equation I substitute the little arc \(Mm \) \([ds]\) by its value \(- \frac{a}{\sqrt{a^2 - b^2}} \, dx\), with a minus sign, because as the pendulum goes down the velocity increases while \(x \) becomes smaller.

Differentiating both sides of Eq. (13) one gets

\[
\cos \theta \, d\theta = \pm \frac{a - x}{a \sqrt{a^2 - b^2}} \, dx
\]

Dans cette équation, je mets, au lieu du petit arc \(Mm \) sa valeur \(- \frac{a}{\sqrt{a^2 - b^2}} \, dx\), avec le signe \(-\), parce que \(v \) croissant à mesure que le pendule descend, \(x \) diminue au contraire.
or remembering that $\cos \theta = \frac{a-x}{a}$ this can be recast as

$$d\theta = \pm \frac{dx}{\sqrt{a^2 - b^2}}$$

from which one gets

$$v \, dv = p \, (-dx) - \gamma \, v^2 \times \frac{a(-dx)}{\sqrt{2ax - x^2}}$$

which is how Diderot writes (12). Integrating both sides of this equation one ends up with

$$\frac{v^2}{2} = -\frac{p}{m} \int_b^x \, dx' + \frac{\gamma}{m} \frac{v^2}{\sqrt{2ax - x^2}}$$

or

$$\frac{v^2}{2} = \frac{p}{m}(b - x) + \frac{\gamma}{m} \frac{v^2}{\sqrt{2ax - x^2}}$$

Another point to note is that Diderot never writes explicitly the upper and lower limits of integration but does it by explicit comments in the text. This is typical of him, who sometimes explains (when he does!) his steps in writing and not in formulas [3].

Diderot thus ends up with an integral equation for v, which he cannot solve. He notes however that, in the absence of air, the speed of a pendulum falling from rest from B to M, that is, from a height b to a height x is simply

$$\frac{mv^2}{2} = p(b - x)$$

which follows from conservation of energy. In order to handle Eq. (18) Diderot uses the following argument: given that the drag is much smaller than the weight of the bob, one may assume that 'v^2 diffèrera très-peu de $2 \, p \, b - 2 \, p \, x$' [notice there is a mass m missing in Diderot's calculation]. One may, therefore, substitute v^2 inside the integral by its approximate value $(2 \, p \, b - 2 \, p \, x)/m$ to finally write

$$v^2 = 2 \, \frac{p}{m}(b - x) + 2 \, \frac{\gamma}{m^2} \frac{(2pb - 2px') \, a \, dx'}{\sqrt{2ax' - x'^2}}$$
What Diderot does, in modern parlance, is a first-order approximation, that is, to substitute for v^2 in the integral the value it would have in vacuum and thus obtain a correction. A zeroth-order approximation would be to assume v^2 in air to be the same as in vacuum.

In the solution of (20) one can nicely see how Diderot was, foremost, a geometrician, but one who was already moving into a more analytical approach, since he mixes geometrical ideas with analytical ones to solve the integral.

The first integral to be solved is

$$2 \int_{b}^{x} \frac{\gamma}{m^2} \frac{2pb \, a \, dx'}{\sqrt{2ax' - x'^2}} = \frac{4 \, pb \, \gamma}{m^2} \int_{b}^{x} \frac{a \, dx'}{\sqrt{2ax' - x'^2}}$$

But Diderot knows, without bothering to say, that the integrand is just the infinitesimal arc Mm, so the integral is nothing but the arc measure from point B to point M, that is, his BM. So he writes his answer as

$$\int \frac{b \, a \, dx'}{\sqrt{2ax' - x'^2}} = -b \times BM$$

where the $-$ sign comes from his convention for the sign of dx. The remaining part of (20) is a bit harder. Diderot writes down

$$\int \frac{-a \, x' \, dx'}{\sqrt{2ax' - x'^2}} = \int \frac{(a^2 - a \, x') \, dx'}{\sqrt{2ax' - x'^2}} - \int \frac{a^2 \, dx'}{\sqrt{2ax' - x'^2}}$$

This rewriting of the equation, by adding and subtracting the same term, is easily explained. Diderot knows that

$$a \frac{d}{dx} \left(\sqrt{2ax - x^2} \right) = \frac{a^2 - ax}{\sqrt{2ax - x^2}}$$

and he can thus write (23) as

$$\int \frac{-a \, x' \, dx'}{\sqrt{2ax' - x'^2}} + a \int \frac{d}{dx} \sqrt{2ax' - x'^2} \, dx' - a \int \frac{a \, dx'}{\sqrt{2ax' - x'^2}}$$

The solution of the first integral on the right hand side is trivial, because $\int_{a}^{b}(df/dx)dx = f(b) - f(a)$. Moreover, and here his geometrical intuition comes to his help, the integrand $\sqrt{2ax - x^2} = \sqrt{a^2 - (a-x)^2}$ is just the distance from point M to the vertical axis OA, that is, the straight line MP. With can then finally bring all these results into one equation and write

$$mv^2 = 2 \, p \, (b - x) - \frac{4 \, \gamma}{m} \, pb \times BM - \frac{4 \, \gamma}{m} \, pa \times (BO - BM)$$

which is the solution of his original question expressed in terms of the arc BM and the distance BO. In Diderot’s variable x this would read:

$$mv^2 = 2 \, p \, (b - x) + \frac{4 \, \gamma}{m} \, pa \, (a-b) \left[\cos^{-1} \left(1-b/a \right) - \cos^{-1} \left(1-x/a \right) \right] - \frac{4 \, \gamma}{m} \, pa \times (\sqrt{2ab - b^2} - \sqrt{2ax - x^2})$$

There is however a certain charm (and economy) in Diderot’s original notation, because his equation allows one to come up with a nice geometrical interpretation of velocity correction directly in terms of the distances traversed by the pendulum: BM represents the distance the bob travels along the circular arc and BO measures how far it moves to the right, from B to M. This allows one also to study some interesting limits, which Diderot does in corollaries I, II and III. Corollary I is just the expression above calculated for $x = 0$, that is, what the velocity looks like when the bob reaches A. Corollary II is a rather trivial observation (but important for Diderot’s subsequent discussions) and follows from a rewriting of the equation above: that the velocity obtained is the same velocity of pendulum that falls without air resistance from a starting point below point B. He puts the problem always in terms

\[21\] Diderot of course uses f/g^2 instead of our γ. In the original article there is also a misprint: there is a g^2 factor missing in the denominator of the $(BO - BM)$ term.
of comparisons between fall in vacuum as opposed to fall in viscous medium in order to prepare the reader for his discussion of Newton.

Corollary III follows when considering what would happen if one had a small initial amplitude. In this case $BM \approx BO$. With $x = 0$ Diderot’s expression becomes

$$mv^2 = 2pgb \left(1 - \frac{2\gamma}{m}BM\right)$$

(28)

which is Diderot’s correction to Torricelli. With these 3 corollaries Diderot moves over the the second part of his problem: how to determine the velocity of the bob on the way up, for an arbitrary point M, given an initial velocity at A equal to $v_A^{(0)}$ (Diderot calls this initial velocity h). The part devoted to the second proposition is longer, not because the problem is more difficult – what he has to do now is basically to revert the sign of dx in the equation he already had and add an initial velocity h – but because in this section he derives the result that retardation goes as $(\text{arc})^2$ and not linear in the arc, as Newton assumed.

Proposition II. ‘Suppose that a pendulum A, placed initially at the vertical GA, is given an impulse or velocity h along the horizontal AR. One wants to know its velocity for an arbitrary point M. [22]

![Figure 4: The figure used by Diderot in his study of the movement of the bob upwards. As always, Mm represents an infinitesimal displacement for Diderot.](image)

Diderot repeats the same steps as before but making sure that in the new equation the signs of dv and dx are opposite, as the velocity decreases as the bob moves upward (see Fig. [4]). Once again he uses Torricelli’s equation

$$v^2 = (v_A^{(0)})^2 + 2a(x_{\text{final}} - x_0) = h^2 - 2\frac{p}{m}x$$

(29)

for an initial velocity $v_A^{(0)} = h$ and acceleration $a = \frac{p}{m}$ to solve the integral in approximate form. As his calculations are basically the same, we will not repeat them. He arrives at the following answer

$$mv^2 = mh^2 - 2p x - \frac{2\gamma}{m} h^2 \times AM - \frac{4\gamma}{m} p a \times (AM - MP)$$

(30)

He now takes a different path. Instead of leaving the equation as it is, he substitutes h^2 by the maximum height AN the pendulum would reach in vacuum. This can be easily done since the highest point is where $v = 0$. So, if

[22] Supposons qu’un pendule, placé dans la situation vertical GA, reçoive une impulsion ou vitesse h suivant l’horizontale AR. On demande sa vitesse en un point quelconque M. [14]
one takes the expression above for \(v = 0 \) and \(\gamma = 0 \) he finds

\[
m h^2 = 2 p \times AN \tag{31}
\]

Substituting this value back into his answer and noticing that \((AN - x) = NP\), he writes

\[
mp^2 = 2 p \times NP - \frac{4 \gamma p}{m} \times AM \times AN + \frac{4 \gamma p}{m} \times a \times (AM - MP) \tag{32}
\]

This expression is the starting point for his corollary I of proposition II, namely, to find the highest point reached by the pendulum in the presence of drag. This can be easily obtained by setting \(v = 0 \) in the expression above and finding the respective \(x_{max} \). He calls this point \(c \) (see Fig. 5) but, in a rather confusing way, he gives his answer in terms of the difference between the highest point in vacuum \(AN \) and the highest point in the presence of air \(An \). So, following his line of thought, \(x_{max}^{(vac)} - x_{max}^{(air)} = AN - An = Nn \) and he finally writes that there will be a point \(c \) where the pendulum will revert its motion. From this follows

\[
Nn = 2 \frac{\gamma}{m} \times AN \times Ac + \frac{2 \gamma a}{m} \times (nc - Ac) \tag{33}
\]

In corollary II Diderot gives an approximation for the above expression in terms of the results one would get in vacuum. He notes that the arc \(Ac \) differs very little from the vacuum value \(AC \) and the same can be said about the height \(nc \), which differs little from \(NC \). So, he just rewrites the result above replacing \(nc \) by \(NC \) and \(Ac \) by \(AC \) to get

\[
Nn = 2 \frac{\gamma}{m} \times AN \times AC + \frac{2 \gamma a}{m} \times (NC - AC) \tag{34}
\]

Corollary III consists in recasting the expression above when the oscillation amplitude is small, in which case \(AC \approx NC \). This amounts to making the last term on the right-hand side of the previous expression equal to zero and keeping only the first term.23

From these considerations Diderot now calculates the maximum height \(An \) the bob reaches when being let go from B (see Fig. 5). Finding \(\nu \) is equivalent to finding point \(k \) along the trajectory to which it corresponds. With \(k \) one may then calculate \(Ck \), which is equivalent to Newton’s \(RV \). To find this point Diderot uses the following argument: \(C \) represents the point in the trajectory opposite to \(B \), the starting position of the bob. As the bob is acted upon by some drag, it will not reach \(C \) but a certain \(k \) below \(C \). So, \(Ck \) is the different in path between a bob with and without drag. However, a bob falling from \(B \) with air resistance is equivalent to a bob falling from an point below \(B \) without air resistance. This point is the one opposite to \(n \), between \(C \) and \(k \), in Fig. (4).

He now sums up his preceeding results: from Proposition I he found the velocity \(\nu \) the bob has when reaching the lowest point \(A \). It is the same velocity the bob would have if it fell from a point below \(B \) without air resistance. Calling now this velocity \(h \), he uses it as a starting velocity for the ascending bob.

So, from Cor. II of Prop. I one can say that a bob falling from height \(b = AN \) with air resistance is the same as falling from height \(An < AN \) without air resistance:

\[
An = b - 2 \frac{\gamma}{m} \times b \times BA - \frac{2 \gamma}{m} \times a \times (BN - BA) \tag{35}
\]

Consequently, from Cor. II of Prop. II it follows that the bob will not go up to the opposite of point because of air resistance, but to a point \(k \) (of height \(An \)) slightly before \(c \) (of height \(An \)).

\[
An = An - 2 \frac{\gamma}{m} \times An \times AC + \frac{2 \gamma a}{m} \times a \times (nc - Ac) \tag{36}
\]

Substituting in this expression the value of \(An \) just found, and using the small angle condition such that \(nc \approx BN \) and \(Ac \approx BA \) one ends up with

\[
An = b - 4 \frac{\gamma}{m} \times b \times BA + 4 \gamma a \times a \times (BN - BA) \tag{37}
\]

23In the original memoir there is a misprint, when Diderot says that \(AC \) should be ‘almost equal’ to \(An \). One should substitute \(An \) by \(NC \).
which is the content of Corollary III. Corollary IV is deduced from the fact that, when angles are small, $BN \approx BA$ and the expression above reduces to

$$A\nu = b - \frac{4\gamma}{m} \times b \times BA$$ \hspace{1cm} (38)\]

Figure 5: The figure in Diderot’s memoir depicting the highest point the bob reaches in the presence of air resistance. This is point ν on the vertical axis, which corresponds to point k of the trajectory.

The most important section of the Memoir, at least as to what regards Diderot’s disagreement with Newton, is Corollary V. He has to explicitly give an expression for Ck. From (37) one may get, for small angles ($BA \approx BN$) the simplified expression

$$A\nu = b \left(1 - \frac{4\gamma}{m} \times BA\right) = AN \left(1 - \frac{4\gamma}{m} \times BA\right)$$ \hspace{1cm} (39)\]

Now comes one section of Diderot’s memoir which does justice to his style: what seems trivial is not worth explaining in more detail. He says that for small angles, the arc AC is to Ak as the root of AN is to the root of $A\nu$. He adds: ... since in the circle, the chords are among them as the roots of the abscissa; or the arcs can be replaced here by the chords. Diderot writes this as

$$\frac{Ck}{AC} = \frac{\sqrt{AN} - \sqrt{A\nu}}{\sqrt{AN}}$$ \hspace{1cm} (40)\]

To see how one can get this, consider Fig. (6). The chord s of Fig. (6) can be written in terms of the radius a and the angle θ by means of the cosine law

$$s^2 = 2a^2 - 2a^2 \cos \theta$$ \hspace{1cm} (41)\]

Since $\cos \theta = (a - b)/a$ one may substitute this in the expression above to get

$$s^2 = 2a^2 - 2a^2 \times \frac{a - b}{a} \rightarrow s = \sqrt{2ab}$$ \hspace{1cm} (42)\]

Given that Diderot is considering small angles, one can approximate arcs by chords and thus write, in an approximate way

$$l \sim \sqrt{2ab}$$ \hspace{1cm} (43)\]
From this one gets
\[
\frac{Ck}{AC} = \frac{AC - Ak}{AC} = \frac{\sqrt{2a \times AN} - \sqrt{2a \times A\nu}}{\sqrt{2a \times AN}} \tag{44}
\]
which is the same as Eq. \((40)\). By using the value of \(A\nu\) found in Eq. \((38)\) and a series expansion for the square root
\[
\sqrt{1 + x} \sim 1 + \frac{1}{2}x \quad \text{for} \quad x \ll 1 \tag{45}
\]
Diderot arrives, after some straightforward algebra, at the result
\[
Ck = 2 \times \frac{\gamma}{m} \times (AB)^2 \tag{46}
\]
which he expresses in terms not of \(AC\), but of \(AB\), since these arcs have the same length. Thus difference in the arc due to air resistance is proportional to the square of the trajectory of the bob on its way down. This is Diderot’s main result and the point of the memoir where he confronts Newton.

If we compare his solution Eq. \((46)\) with Eq. \((112)\) obtained via a Lindstedt-Poincaré Method, we can write the latter in Diderot’s notation:
\[
Ck = \frac{4}{3} \times \frac{\gamma}{m} \times (AB)^2. \tag{47}
\]
where one can clearly see that prefactors of the two solutions differ. If we want to understand the reason why he did not get it right one may look back at Eqs. \((33)\), \((35)\), \((36)\) and Fig. \((4)\). The first of these is an equation for the point Diderot denotes by \(n\) along the vertical \(OA\). This is the highest point the bob would reach had it started with velocity \(h\) at the bottom. The expressions on both sides of this equation involve the unknown \(n\), as it is hidden in the definition of the arcs \(nc\) and \(Ac\). To make this point more clear, we can rewrite \((33)\) in terms of the variables \(\theta_0\) (the angle of point \(B\)) and \(\theta_1\), the maximum value of \(\theta\) on the bob’s way up (to which height \(n\) is associated). One obtains
\[
\cos \theta_1 - 2 \frac{\gamma}{m} a \sin \theta_1 + 2 \frac{\gamma}{m} a \theta_1 = \cos \theta_0 + 2 \frac{\gamma}{m} b \theta_0 \tag{48}
\]
This is a transcendental equation for the unknown \(\theta_1\). Instead of solving for \(\theta_1\) (or \(n\), which is the same), he approximates \(n\) by \(N\) and \(c\) by \(C\) on the right-hand side of \((33)\). This is the same as replacing \(\theta_1\) by \(\theta_0\) in those terms
\[
\cos \theta_1 - 2 \frac{\gamma}{m} a \sin \theta_0 + 2 \frac{\gamma}{m} a \theta_0 = \cos \theta_0 + 2 \frac{\gamma}{m} b \theta_0 \tag{49}
\]
to get
\[\cos \theta_1 = \cos \theta_0 + 2 \frac{\gamma}{m} (b - a) \theta_0 + 2 \frac{\gamma}{m} a \] (50)

He then subtracts \(33\) from \(AN\) to get \(35\). He then proceeds to \(36\), keeping \(n\) and \(c\), but then approximate them again to get \(38\). To conclude, Diderot’s approach is to avoid solving the transcendental equation, by approximating his unknowns \(c\) and \(n\) by their values \(C\) and \(N\) in vacuum. By doing this he loses on the way all important terms in the approximation which sum up to give him the correct prefactor, while still getting the right functional dependence on \(AB\).

There follows three colloraries (VI, VII and VIII) which refer to ways of determining position \(k\) (or \(\nu\)) in a back-of-the-envelope kind of calculation. They are straightforward consequences of the result he derived in Corollary V. We reproduce them here for the sake of completeness.

Corollary VI. If one knows the arc \(ABC\) that a pendulum traverses when let go from \(B\), one can easily find arc \(bAk\) which is the trajectory when let go from \(b\). One just needs to find \(Ak\), which one can get from
\[\frac{BA - AC}{bA - Ak} = \frac{BA^2}{bA^2} \] (51)

Corollary VII. Thus, if a pendulum falls through \(BA\) in air, one can find its velocity in at point \(A\) by dividing the \(N\nu\) into two equal segments marked by point \(n\). This is so since this velocity, according to Corollary III of Proposition I, is almost the same as that obtained by a pendulum in vaccuum from point \(b - (2\gamma/m) \times BA = b - N/2\).

Corollary VIII. One has
\[\frac{AC^2}{Ac^2} = \frac{AN}{An} \] (52)
that is
\[\frac{AC^2}{AC^2 - 2Cc \times AC} = \frac{AN}{AN - Nn} \] (53)
from which follows
\[Nn = \frac{2Cc \times AC \times AN}{AC^2} = \frac{2Cc \times AN}{AC} \] (54)
For the same reason one has
\[N\nu = \frac{2Ck \times AN}{AC} \] (55)
and thus
\[\frac{Cc}{Ck} = \frac{N\nu}{Nn} \] (56)
Thus \(c\) is the point in the middle of arc \(Ck\). This means that, instead of dividing \(N\nu\) into two equal parts, one may divide \(Ck\) into two equal parts in order to obtain the arc \(Ac\) that body \(A\) will have traversed in vacuum.

With these results he shows that if one consider a resistance force quadratic in the velocity, one indeed gets a retardation which is proportional to the square of the arc \(AB\). He further justifies his results with a bit dimensional analysis, before he moves on to his Eclaircissements. His idea is the following:

If pendulum \(A\) is a small sphere, the resistance \(f\), all other things being equal, is inversely proportional to the diameter of this sphere and its density; since the resistance caused by air on two spheres of different diameters goes as the surface or the square of the diameter; and this resistance has to be divided by the mass, that is like the density multiplied by the third power of the diameter. Thus the arc
Ck, all other things being equal, is like AB^2 divided by the product of the diameter of the sphere and its density.\footnote{Si le pendule A est un petit globe, la resistance f, toutes choses d’ailleurs egales, es en raison inverse du diametre de ce globe et de sa densite; car la resistance de l’air a deux globe de differents diametres est comme le surface ou le carré des diametres; et cette resistance doit etre divisee par la masse, laquelle est comme la densite multipliee par le cube du diametre. Donc l’arc Ck, toutes choses d’ailleurs egales, est come AB^2 divise par le produit du diamatere du globe et de sa densite.11.}

How is this to be understood? Diderot is correct when he affirms that the resistance goes as the surface, as we now in hindsight that it depends on the Reynolds number Eq. (24). But when he affirms that ‘this resistance has to be divided by the mass’ it would mean, according to his reasoning, that

$$F_R \sim \frac{\text{diameter}^2}{\text{mass}} = \frac{\text{diameter}^2}{\text{density} \times \text{diameter}^3} = \frac{1}{\text{density} \times \text{diameter}}$$ \tag{57}

Diderot is not too rigorous with his wording, since from the sentence above the ‘resistance’ f cannot be the same f he is using to mean ‘resistance of air’ throughout the text. He probably has as ‘acceleration’ in mind. This is so since the drag force depends only on the geometry of the bob. If they have the same diameters, the drag is the same. However, the equation of motion in the two cases, given that they have different masses m_1 and m_2 is

$$m_1 \ g \sin \theta - F_R = m_1 \ a_\theta \quad m_2 \ g \sin \theta - F_R = m_2 \ a_\theta$$ \tag{58}

From which it trivially follows that the accelerations a_θ along the tangential of the arc are different in the two different cases,

$$a_{1,\theta} = g \sin \theta - \frac{F_R}{m_1} \quad \text{and} \quad a_{2,\theta} = g \sin \theta - \frac{F_R}{m_2}$$ \tag{59}

Moreover, we know that the expansion of Lindstedt-Poincaré is an approximation valid for small values of $\epsilon = (\gamma \ l/m)$ which, for a fixed string length l, takes exactly into account the ratio of the damping parameter and the bob’s mass (see discussion in Section \text{5.6} below). His intuition got him on the right track.

5.3 Diderot’s Éclaircissements of Newton

As discussed in Section \text{5.1} Newton explained the difference between experimental data and theoretical values in his pendulum experiment as a consequence of air resistance. He gave an approximate value for S (see Eq. 4) which Diderot now calculates under the assumption of a linear drag. To better understand Diderot’s solution, we reproduce Fig. 7 that Diderot uses in his Memoir while explaining the solution.

Problem: find the location of point S such that a bob falling from it to point A will have a retardation which is exactly equal to $1/4$ of a full cycle retardation RV.

In his Memoir Diderot chooses the arcs such that $RA = 1$, $RV = 4b$, and $SA = x$. He sets out to find x. The choice of variables is an indication that he also studied the *Principia* from the annotated editions of Le Seur and Jacquier. They say, when referring to this passage of Newton that Diderot is addressing:

*Bring body A to any point R along the arc EAF and let it fall from there. If the resistance of the medium is absent, it will reach the same height M to which it was lifted and should return to R. But when, after the first oscillation composed of exit and return, it returns to point V (according to the hypothesis), the arc RV will represent the retardation of a double ascent and descent [caused by the] medium; thus one should take the retardation due to the medium in one whole descent as the fourth part of the total retardation, that is the fourth part of arc RV, provided it did not descend neither from the highest point R nor from the lowest V to begin with: for the retardation will be larger for the larger arc than the smaller one, since as the pendulum describes ever smaller oscillations, the retardation of each single arc will be unequal, and the retardation of the descent by RA will be bigger than the fourth
neque ex infimo oscil lante descripti, inaequales quoque erunt retardationes in singulis arcubus, et retardatio descensus per should be done. It does not spare him however the work of actually finding totius retardationis determinavit Newtonus punctum

b: arcus quaesitus, RA (1), ut retardatio arcus SA quae statuitur esse b, seu quarta pars totius RV, ad retardationem primi arcus RA quae erit b: X. Quaerantur successive retardationes secundi, quartae arcus eadem ratione; arcus autem secundus est equalis primo RA, dempta ejus retardatione, b: X. Tertius arcus aequalis secundo dempta ejus retardatione, et sic deinceps, omnes vero illae retardationes simul sumptae aequabunt toti retardationi RV seu b; unde fit aequatio ex qua valor arcus SA, seu x, obtinebitur, per approxi- mationem autem invenietur aequalis 1 3/2b sumatur itaque RS aequalis quartae parti cum ejus semisse totius retardationis RV, retardatio per arcum SA erit aequalis ST quartae parti totius RV, ideoque cadat corpus ex puncto S, ejus celeritas in A eadem est sine errore sensibili, ac si in vacuo decidisset ex T [23].

Trahatur corpus A, ad arcus EAF, punctum quodvis R, et demittatur inde, sublata medii resistentia ad eandem altitudinem M, ascendere et rursus ad punctum R, redire debet. Cum autem post unam oscillationem exitus et reeditum compositum perveniat (ex hyp.) ad punctum V arcus RV exponet medi retardationem in duplici ascensu et descensu; quare ut habeatur medii retardatio in uno tantum descensu, sumenda est quarta pars totius retardationis, id est quarta pars arcus RA, defined as b, the fourth part of the whole RV, is to the retardation of the first arc RA, that is b/x. The successive delays to be found, the second, the third and the fourth follow the same ratio. The arc of the second is equal to RA, allowing for a retardation of b/x. The third arc is equal to the second, allowing for the same retardation, and so on, but all these delays sum up to give the whole RV, or 4b. Hence [we obtain] the equation from which we get the value of the arc SA, or x, [which] by means of an approximation [turns out] to be equal to 1 3/2 b [that is RA 3/2 b]. So taking RS equal to the fourth part of the arc RV with its half, the retardation of the arc SA will be equal to ST, the fourth part of the total retardation RV, and therefore a body dropped from point S will have the same speed at A, without significant error, as it would have if it had fallen in vacuum from T. 25

This is the origin of Diderot’s naming of arcs and is more explicit than Newton in indicating how the calculation should be done. It does not spare him however the work of actually finding S. For the sake of completeness and

Figure 7: The figure Diderot uses to explain his determination of the point S in Newton’s commentaries. In the figure in the original Memoir there is a misprint: the letter y should be opposite to n and not N. The pendulum is let loose from R, reaches N on the opposite side and return to V. For the sake of clarity, these points are marked here by black dots. RV is the retardation of a full cycle.
further comparison of lengths, we will keep RA arbitrary while maintaining Diderot’s value for RV and SA, that is $4b$ and x. We closely follow Diderot’s ideas up to his solution.

If a body falls from A, it will return to V. Each quarter cycle contributes a retardation r_i such that

$$r_1 + r_2 + r_3 + r_4 = RV$$

We know that the retardations are not equal, that is $r_i \neq r_j$ for $i \neq j$. As an approximation, we can think of a point below R—call this point S—such that a bob falling from it until A will show a quarter-cycle retardation exactly equal to $(1/4)RV = b$. This must be so since we know that a body falling from R will have a retardation $r_1^{(R)} > b$, so to have a retardation smaller requires S to be further down the track. Newton’s hypothesis on the retardation is that is proportional to RA,

$$Rr = \alpha RA$$

where α is some constant. It is important to recall that Newton’s argument is based on the idea that a bob falling with resistance from R is the same as falling without resistance from a lower point r. So if one determines the velocity v_A at A in air, one can just use some reverse engineering and determine which r would give that same v_A in vacuum. This is trivial, since then one may just use conservation of mechanical energy to find r. Following this idea, Diderot assumes that a bob falling from S would be the same as a bob falling in vacuum from r' and, given Newton’s assumption, one would have in place of the equation above

$$Sr' = \alpha SA$$

where Sr' is the retardation when falling from S. But the problem is to find S for which this retardation is exactly b. So, by eliminating α in the equations above one gets

$$\frac{Rr}{RA} = \frac{Sr'}{SA} \rightarrow Rr = \frac{Sr'}{SA} RA$$

Since $Sr' = b$ and $SA = x$ this reduces to

$$Rr = RA - rA = \frac{b}{x} RA$$

Now, the arc described on the first ascent would be $\rho A = Ar = (1 - b/x) RA$ but due to air resistance the bob does not reach ρ but a lower point N such that

$$\rho N = \alpha \rho A = \alpha Ar = \alpha \left(1 - \frac{b}{x}\right) RA = \frac{b}{x} \left(1 - \frac{b}{x}\right) RA$$

So the actual arc the bob describes is

$$AN = A\rho - \rho N = \left(1 - \frac{b}{x}\right) RA - \frac{b}{x} \left(1 - \frac{b}{x}\right) RA = \left(1 - \frac{b}{x}\right)^2 RA$$

So, by following this kind of argument one can determine all four quarter cycle retardations. They are

$$Rr = \frac{b}{x} RA$$

$$\rho N = \frac{b}{x} \left(1 - \frac{b}{x}\right) RA$$

$$Nn = \frac{b}{x} \left(1 - \frac{b}{x}\right)^2 RA$$

$$Vy = \frac{b}{x} \left(1 - \frac{b}{x}\right)^3 RA$$

(67)
The sum of all these retardations should be $4b$, that is

$$RA \left[\frac{b}{x} + \frac{b}{x} \left(1 - \frac{b}{x} \right) + \frac{b}{x} \left(1 - \frac{b}{x} \right)^3 + \frac{b}{x} \left(1 - \frac{b}{x} \right)^3 \right] = 4b \quad (68)$$

This leads to a quartic equation in the unknown x

$$\frac{1}{RA} x^4 - x^3 + \frac{3b^2}{2} x^2 - b^2 x + \frac{b^3}{4} = 0 \quad (69)$$

Before solving this equation, Diderot considers the limiting case where $b \ll 1$, in which case one may neglect the last two terms on the right hand side and write

$$\frac{1}{RA} x^4 - x^3 + \frac{3b^2}{2} x^2 = 0 \rightarrow x^2 - RA x + \frac{3b}{2} RA = 0 \quad (70)$$

This equation has two solutions, namely

$$x_{+,-} = \frac{RA}{2} \pm \frac{RA}{2} \sqrt{1 - \frac{6b}{RA}} \quad (71)$$

If one further considers an approximation to the square root given by Eq. (45) these solutions reduce to

$$x_+ = RA - \frac{3}{2} b \quad x_- = \frac{3}{2} b \quad (72)$$

Solution x_- is not physically acceptable, since it would imply that S is close to A. Solution x_+ can be written as

$$x_+ = RA - \left(b + \frac{1}{2} b \right) \quad (73)$$

If one recall that b is what Newton called $(1/4)RV$, one can write

$$x_+ = RA - \left(\frac{1}{4} RV + \frac{1}{8} RV \right) \quad (74)$$

which is the same as Eq. (4). So, Diderot shows that Newton’s placement of S can be recovered in the limit where b is taken as being very small. But Diderot goes a bit further, by solving exactly the quartic. He does this by expanding the exponents in (68) and rewriting it as

$$\left(\frac{4b}{x} - \frac{6b^2}{x^2} + \frac{4b^3}{x^3} - \frac{6b^4}{x^4} \right) = \frac{4b}{RA} \quad (75)$$

He then notices that

$$1 - \left(\frac{4b}{x} - \frac{6b^2}{x^2} + \frac{4b^3}{x^3} - \frac{6b^4}{x^4} \right) = \left(1 - \frac{b}{x} \right)^4 \quad (76)$$

and therefore

$$\left(1 - \frac{b}{x} \right)^4 = 1 - \frac{4b}{RA} \quad (77)$$

This equation has four solutions. Two are pure imaginary and can be discarded. From the two real solutions the one which is physically relevant is

$$x = \frac{b}{1 - \left(1 - \frac{4b}{RA} \right)^{1/4}} \quad (78)$$

22
This is the exact position of point S.

It is important to note that Diderot does not use his previous results (Propositions I and II) in order to obtain the position of point S. The fact is that he does not need to: Newton’s result follows from the simple assumption that retardation is proportional to the arc. But since Diderot wrote also his article arguing for a retardation proportional to the square of the arc, that is

$$Rr = \alpha (RA)^2,$$ \hfill (79)

why didn’t he bother to write down the equation that would replace (69) and solved it? The new equation can be written in a straightforward manner, albeit after a very long algebraic manipulation. One obtains

$$4b x^{30} - 4a^2 b x^{28} + 12 a^3 b^2 x^{26} - 30 a^4 b^3 x^{24} + 64 a^5 b^4 x^{22} - 118 a^6 b^5 x^{20} + 188 a^7 b^6 x^{18} - 258 a^8 b^7 x^{16} + 302 a^9 b^8 x^{14} - 298 a^{10} b^9 x^{12} + 244 a^{11} b^{10} x^{10} - 162 a^{12} b^{11} x^8 + 84 a^{13} b^{12} x^6 - 32 a^{14} b^{13} x^4 + 8 a^{15} b^{15} x^2 - a^{16} b^{15} = 0 \hfill (80)$$

where, for the sake of clarity, we replaced RA by the letter a. We don’t know if Diderot ever wrote this equation but in any case it does not appear in the memoir. This is not surprising and it is quite pointless trying to find the roots to this equation. We can however try to find an approximate solution of the reduced polynomial: if we, with Diderot, consider b to be small, we can discard the higher powers of b and keep only the terms to lowest order, that is

$$4b x^{30} - 4a^2 b x^{28} + 12 a^3 b^2 x^{26} = 0 \rightarrow x^4 - a^2 x^2 + 3 a^3 b = 0 \hfill (81)$$

This equation can be trivially solved to give the roots

$$x = \pm a \sqrt{2} \sqrt{1 \pm \sqrt{1 - \frac{12b}{a}}} \hfill (82)$$

Again, approximating the square root as in Eq. (45) one gets a physically relevant solution in the form

$$x = a - \frac{3}{2} b \hfill (83)$$

Remembering that a is our short notation for AR this solution can be written as

$$x = RA - \left(b + \frac{1}{2} b \right) \hfill (84)$$

which is the same approximate solution Eq. (73) that Newton got in the case of a retardation proportional to the arc. To conclude, in the limit of small amplitude oscillations, where velocities are small, replacing a linear by a quadratic drag makes no significant difference. This is what one observes in the experiments discussed in the last section of this article: the changes in period due to linear and quadratic drag are of the same order of magnitude and it would have been impossible for Diderot or Newton to detect those.

Another interesting point worth noticing is the fact that Diderot did not apply the method he develops for the case of a linear drag. He must have been aware that this would imply replacing the integral in Eq. (20) by

$$\int_b^x \frac{\sqrt{2 ph - 2px' a} \ dx'}{\sqrt{2ax' - x'^2}} \hfill (85)$$

which can be solved only numerically.\footnote{It can be recast in terms of a very complicated expression involving an elliptic integral of the second kind, whose values can then be looked up in a table or solved numerically. Elliptic integrals go back to A.-M. Legendre’s (1853 – 1833) and N.H. Abel’s (1802 – 1829) works of 1825 and 1823, respectively.}
6 The Mathematical Pendulum from a Modern Perspective

6.1 The Problem and the Solution

The mathematical (ideal) pendulum is one of the most paradigmatical models of classical mechanics. It consists of a pointlike mass m attached to a frictionless point O through an ideal (massless and inextensible) string of length l. As it swings, the position of the bob can be described, for any given instant t, by the angle $\theta(t)$ measured relative to its rest position A (see Fig. 6.1). Even though one can write Newton’s equation of motion for the displacement $d\bar{s}$ along the arc, it is more convenient to write the same equation in terms of the angle θ ($ds = l\,d\theta$)

$$m\,l\,\frac{d^2\theta}{dt^2} + mg\sin\theta = 0$$

(86)

This nonlinear differential equation has an implicit solution for θ as a function of time t in terms of Legendre’s elliptic integral of the first kind $F(k, \psi)$

$$\sqrt{\frac{g}{l}}\,t = \int_0^\psi \frac{d\psi'}{\sqrt{1-k^2\sin^2\psi'}} = F(k, \psi)$$

(87)

The angular displacement θ is related to ψ through

$$\sin\frac{\theta}{2} = k \sin \psi,$$

(88)

where k is a quantity related to the amplitude θ_0 through

$$k = \sin \frac{\theta_0}{2}$$

(89)

As the bob is let loose from θ_0, it will swing and by solving the above integral numerically, one can determine the value of $\theta(t)$ at any given time t. One is normally interested in the period T of one complete oscillation. From the
result above one may easily obtain

\[T = 4 \sqrt{\frac{l}{g}} \int_{0}^{\pi/2} \frac{d\psi}{\sqrt{1 - k^2 \sin^2 \psi}} = 4 \sqrt{\frac{l}{g}} \, K(k) \]

(90)

where \(K(k) = F(k, \pi/2) \) is the complete elliptic integral of the first kind. This result follows by remembering that a period corresponds to the time it takes the bob to return to \(\theta_0 \) after its release. In this case \(\theta(T) = \theta_0 \) implies \(\psi = \pi/2 \) in Eq. (88) and hence \(F(k, \psi) \to F(k, \pi/2) = K(k) \).

This solution is rather involved and what one will usually find in physics textbooks is the small amplitude approximation: in the case of small \(\theta \), one may replace \(\sin \theta \approx \theta \) in Eq. (86) and obtain a linear differential equation

\[\frac{d^2 \theta}{dt^2} + \frac{g}{l} \theta = 0 \]

(91)

which can be easily solved to give (for the initial condition \(\theta(t = 0) = \theta_0 \))

\[\theta(t) = \theta_0 \cos \left(\sqrt{\frac{g}{l}} \, t \right) \]

(92)

The period \(T \) is then given by

\[T = 2\pi \sqrt{\frac{l}{g}} \]

(93)

The relevance of this exact solution in the small-\(\theta \) limit lies not only in its use as a didactic tool in the study of differential equations. It shows that for small angles, the period of the pendulum Eq. (93) depends only on the length \(l \) of the string and the acceleration of gravity \(g \) and not on the amplitude of the swing. This makes the small-amplitude pendulum an ideal time-keeping device.

By measuring the period and the length of the pendulum, one may also use eq. (93) to find the acceleration of gravity \(g \) with quite good precision, and this method was the preferred one before being substituted by direct measurements on free-falling bodies [25].

The small-amplitude approximation can be obtained from the general solution Eq. (90) by rewriting it as a power series in \(k = \sin(\theta/2) \)

\[T = 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{1}{4} \, k^2 + \frac{9}{64} \, k^4 + \ldots \right) \]

(94)

For an amplitude of \(\theta_0 = 20^\circ \) (\(k = 0.1736 \)) the correction that Eq. (94) introduces amounts to about 0.7% as compared to Eq. (93) while for \(\theta_0 = 40^\circ \) (\(k = 0.3420 \)) it amounts to about 3%. At the time Diderot wrote his memoirs the solution of the pendulum equation for arbitrary angles was not known.

6.2 The Effect of Air Resistance

The simplicity of the approximate solution is quite deceptive not because the small angle approximation is unphysical – for this one may always go back to the entire solution - but because in real applications the ideal conditions assumed from the onset are not valid: bobs are not pointlike masses, strings are not massless and inextensible and damping by air and friction at the pivoting point do play a role. The bob will eventually stop swinging if there is no external force to keep it moving. For the present work, the most relevant source of damping is the resistance caused by the surrounding air. Diderot, as did Newton before him, considered the effect of air resistance on a spherical bob, in spite of the fact that it also acts on the wire from which the bob hangs (see discussion below). The main question that puzzled physicists for a long time and can be only effectively dealt in a phenomenological manner is how the drag (as the force due to air resistance is usually called in technical parlance) depends on the relative speed between the moving body and the surrounding air. This is the main point of divergence between Diderot and Newton and the correct answer to this question is not or mere academic or historical interest: it has consequences
that go beyond the problem discussed here, as for instance in the design of aircraft wings or of any object that moves through air.

We know today a lot more about the effects of drag than Diderot (or for that matter Newton) knew at the time he wrote his memoir. Hydrodynamics was still on the making and ideas and techniques which allowed one to handle the effect of air resistance was developed mostly during the 18th and 19th centuries by people like G. G. Stokes (1819 – 1903), J. W. Struth (Lord Rayleigh, 1842 – 1919), O. Reynolds (1842 – 1912) and L. Prandtl (1875 – 1953). What determines the type of drag acting on any part of a system is determined by the Reynolds number characteristic of that part (for the pendulum, these would be the bob and the string). This dimensionless quantity was first introduced by Stokes in 1858 \[27\] to predict flow patterns in fluids but was named after Reynolds, who popularized its use in 1883 \[28\]. The Reynolds number is defined as

\[
Re := \frac{\rho v L}{\eta}
\]

(95)

where \(\rho\) and \(\eta\) represent the density and dynamic viscosity of the surrounding medium respectively and \(v\) is a characteristic velocity, usually the mean relative velocity between fluid and body. \(L\) is a characteristic length of the body, which in the case of the bob would be its diameter.

The Reynolds number is the key as to whether the drag be Stokes-like or Newton-like. Low Reynolds numbers, up to \(Re \sim 10\), imply that the flow past the body will be laminar (not turbulent) and will cause a drag of the Stokes type. This is the case for instance of a ball falling through honey (low velocity, high viscosity), where it quickly reaches a terminal velocity and then falls at constant speed. High values of \(Re\), of order \(\sim 10^3\) to \(10^5\) (high velocity, low viscosity) corresponds to a drag force which follows Newton’s \(v^2\)-law. As the pendulum consists of two parts, a string and a bob, in a real experimental setup one has to treat each component according to its own Reynolds number. As an example, in the experiments conducted by Nelson and Olsson, the string had a Reynolds numbers of 6 while the bob had an \(Re\) of 1100. This implies that the best fit to the problem of a swinging bob would be \[25\]

\[F(v) = a |v| + b v^2\]

(96)

where \(a, b\) are adjustable parameters and the first term on the right-hand side accounts for the drag on the string while the second for the drag on the bob. For the experiment conducted by Nelson and Olsson, \(a\) is usually one order of magnitude smaller than \(b\), so by choosing a string thin enough, one would not be too far off the mark if one just considered \(a = 0\) and took \(F(v) = b v^2\), as Diderot did.

Another point that makes matters significantly more difficult as was not explicitly discussed in the previous literature on Diderot is the fact that, as the bob swings, its velocity changes and so does its Reynolds number. The usual heuristic approach to deal with this problem is to consider a generalization of Eq. \(96\) in the form

\[F = \frac{1}{2} C_D A \rho v^2\]

(97)

where the dimensionless number \(C_D\), known as the drag coefficient, incorporates the effect of a changing Reynolds number. In the expression above \(A\) is an area associated with the moving body. \(C_D\) is a function of the Reynolds number and is determined by adjusting experimental data for \(F\) as a function of \(v\). For values of \(Re\) of the order of \(1\) or smaller, \(C_D\) is inversely proportional to \(Re\), that is \(C_D \sim Re^{-1}\) while for high values of \(Re\), \(C_D\) is a constant. This way one tries to capture the whole range of regimes under one single equation. For the case of a spherical bob, an expression for \(C_D\) accurate to within 10% for values or \(Re\) over the range \(0 \leq Re \leq 2 \times 10^5\) can be found in \[29\] and is given by

\[C_D \simeq \frac{24}{Re} + \frac{6}{1 + Re^{1/2}} + 0.4\]

(98)

where the first term on the right-hand side accounts for Stokes’s law, the last for Newton’s \(v^2\) law and the middle term for the transition between both regimes.

So the question about a \(v\) or \(v^2\)-dependence is not straighforward, as already pointed out by \[3\] and \[4\]. However, by assuming an drag of the type given by Eq. \(97\), Diderot sounds surprisingly modern. What about Newton? Even though Newton he does not refer to the size of the bob he used in trying to prove the Third Law, in
Book II he is explicit about the size of pendulums he experimented with: a wooden bob of approximate diameter of \(d = 17.46 \, \text{cm} \) and mass \(m = 1625 \, \text{g} \) and a leaden bob of \(d = 5.08 \, \text{cm} \) and \(m = 744.2 \, \text{g} \). This would imply that Newton’s bobs had a range of \(Re \) from approximately 1100 to 3700, which calls for a \(v^2 \)-law, assuming that he used the same bob sizes in his collision experiments. Coincidentally his second bob is about the same size and mass as the one used by Nelson and Olsson in their experiments, so we can use their results to see how far off Diderot or Newton might have been \[25\].

What the experimental results show is that the corrections are of the same order of magnitude, irrespective of whether one considers the first type of force (Newton) or the second (Diderot). In their experiments, Nelson and Olsson took an initial amplitude of \(3^\circ \pm 0.3^\circ \) which introduces a finite-amplitude correction of \(596 \, \mu s \) when compared to the ideal period. In the case of linear damping the correction to the period, discounting the finite-amplitude correction, was of the order of \(0.033 \, \mu s \). For the quadratic and one it amounted to \(0.027 \, \mu s \). The difference is negligible and it would have been impossible for Diderot (or Newton) to detect those \[27\]. This is reflected in the equality of Diderot’s solution for Newton’s \(S \), Eq. \(\{23\} \) in the linear case and our solution Eq. \(\{84\} \) in the quadratic case.

6.3 The Small-Angle Approximation and Quadratic Damping: the Method of Lindstedt-Poincaré

Unbeknown to Diderot, he was trying his hand at a problem whose exact solution still eludes us. If one looks up any textbook on the effect of air resistance on a pendulum – and in most textbooks the pendulum equation means the linearized version \(\{91\} \) and not Diderot’s nonlinear Eq. \(\{86\} \) – one will always find a linear drag force \(F_R (v) \) and not a quadratic one. To the author’s knowledge, none of the texts consulted give any justification, experimental or otherwise, as to why this should be so. The reason might be purely didactical: if one considers a drag force \(F_R (v) = - \gamma v \), Eq. \(\{91\} \) becomes

\[
\frac{d^2 \theta}{dt^2} + \frac{\gamma}{m} \frac{d\theta}{dt} + \frac{g}{l} \theta = 0
\]

for which one may easily find an exact analytical solution with an exponentially damped amplitude \[23\]. On the other hand, if one considers quadratic damping

\[
\frac{d^2 \theta}{dt^2} - \frac{\gamma l}{m} \left(\frac{d\theta}{dt} \right)^2 + \frac{g}{l} \theta = 0
\]

there is no exact solution anymore. What is worse, the equation is not even analytic because the sign of the force (and hence the equation) must be adjusted each half-period to guarantee that the damping force always acts as to retard the pendulum’s movement. It took a century after Diderot’s death for A. Lindstedt (1854 – 1939) and H. Poincaré (1854 – 1912) to independently develop a method that allows one to treat the problem in a perturbative way. As the result so obtained is important to understand Diderot’s solution. We closely follow the solution as presented in \[25 \, 24 \, 26\].

The difficulty with Eq. \(\{100\} \) is that standard perturbation methods will not work. This is because there are two time scales involved, the one associated with the period of the pendulum and the other with dissipation. A standard perturbation method leads to the appearance of so-called secular terms, which are terms which grow with time, whereas one knows that the solution has to be periodic. The Lindstedt-Poincaré method is a way of removing these secular terms when dealing with weakly nonlinear problems with periodic solutions.

We consider Eq. \(\{100\} \) for a half-period of oscillation, since the solution obtained can be reapplied to other half-periods. We rewrite this equation as

\[
\ddot{\theta} - \epsilon \dot{\theta}^2 + \omega_0^2 \theta = 0
\]

where \(\dot{\theta} = d\theta/dt \), \(\epsilon = (\gamma l/m) \) and \(\omega_0^2 = g/l \). We want to find a solution with a period \(T = 2\pi/\omega \). One introduces a new variable

\[
\phi = \omega t
\]

\[\text{In the experiment one does not measure the effect directly. One considers a drag of the type } F(v) = a \, |v| + b \, v^2 \text{ and finds the best values of } a \text{ and } b \text{ that fit the data. From that one can infer the retardation effect using the approximate solutions with the fitted values. There is an added complication, since as the pendulum swings and is damped, the amplitude changes and consequently the period. To measure the effect of air damping one has to average over many oscillations and discount the finite amplitude correction accumulated during swings.} \]
in terms of which Eq. (101) can be written as

$$\omega^2 \theta'' - \epsilon \omega^2 \theta' + \omega_0^2 \theta = 0$$ \hspace{1cm} (103)$$

where now θ' stands for $d\theta/d\phi$. The following step is to write θ and ω in terms of a series expansion in the small parameter ϵ

$$\theta = \psi_0 + \epsilon \psi_1 + \epsilon^2 \psi_2 + \cdots$$
$$\omega = \omega_0 + \epsilon \omega_1 + \epsilon^2 \omega_2 + \cdots$$ \hspace{1cm} (104)

and then substitute (104) into (103). Setting the factors of each power of ϵ equal to zero, we obtain, through order ϵ^2, the following set of equations

$$\psi''_0 + \psi_0 = 0$$
$$2 \left(\frac{\omega_1}{\omega_0} \right) \psi''_0 + \psi''_1 + \psi_1 - \psi'_0^2 = 0$$
$$\left[2 \left(\frac{\omega_2}{\omega_0} \right) + \left(\frac{\omega_1}{\omega_0} \right)^2 \right] \psi''_0 + 2 \left(\frac{\omega_1}{\omega_0} \right) \psi'_1 +$$
$$\psi''_2 + \psi_2 - 2 \left(\frac{\omega_1}{\omega_0} \right) \psi'_0^2 - 2 \psi_0 \psi'_1 = 0$$ \hspace{1cm} (105)

These can be solved recursively. The solution of the first equation with $\psi_0 = \theta_0$ and $\psi'_0 = 0$ at $\phi = \omega t = 0$ is

$$\psi_0 = \theta_0 \cos \phi$$ \hspace{1cm} (106)

Substituting this into the second equation in (105) leads to

$$\psi''_1 + \psi_1 = 2 \left(\frac{\omega_1}{\omega_0} \right) \theta_0 \cos \phi + \frac{1}{2} \theta_0^2 \sin^2 \phi$$ \hspace{1cm} (107)

The first term on the right hand side contributes to a term of the form

$$\left(\frac{\omega_1}{\omega_0} \right) \theta_0 \phi \sin \phi \sim t \sin t$$ \hspace{1cm} (108)

which is secular, i.e. increases without bound. As we are looking for periodic solutions we must then have

$$\omega_1 = 0$$ \hspace{1cm} (109)

So, the solution to (107) that satisfies the initial conditions $\psi_1 = 0$ and $\psi'_0 = 0$ at $\phi = \omega t = 0$ is

$$\psi_1 = \frac{1}{6} \theta_0^2 (3 - 4 \cos \phi + \cos 2\phi)$$ \hspace{1cm} (110)

where we have used the identity $\sin^2 \phi = (1/2)(1 - \cos 2\phi)$. From this result it follows that at the end of the first half-cycle ($\phi = \pi$) the amplitude will be

$$\theta_1 = -\theta_0 \left(1 - \frac{2}{3} \epsilon \theta_0 \right)$$ \hspace{1cm} (111)

This method can be applied successively to find the amplitudes of the next half-cycles. From this result it follows that the difference between the first two successive amplitudes will be

$$\theta_0 - |\theta_1| = \frac{4}{3} \epsilon (\theta_0)^2$$ \hspace{1cm} (112)

If we translate Eq. (112) into the language of arcs traversed by the bob, it is telling us that the difference in arc is proportional to the square of the arc traversed by the bob during its descent. Apart from the prefactor of 4/3, this is the conclusion Diderot arrived at in his memoir.
7 Conclusions

In 1748 Diderot published a series of memoirs on different subjects of Mathematics. In the fifth memoir, he studied the effect of air resistance on the movement of the pendulum when this resistance is proportional to the square of the bob’s velocity. Since Diderot quotes a passage of Newton’s *Principia* where this problem is discussed considering a resistance linear in the velocity, it has been argued in the past that the sole purpose of Diderot was to correct an assumption that Newton made and Diderot thought incorrect. In the present article it has been argued that Diderot’s memoir may have served a different purpose: a careful analysis of his methods shows that Diderot wrote his memoir as a detailed guide of how to get, in a mathematically rigorous way and using differential calculus, the results that Newton presented without further justification.

In order to do this he translated Newton’s arguments into mathematical form and put them into a coherent mathematical framework. He obtained an integral equation which he then solved by means of an approximation. By assuming the drag to be quadratic, he obtains a difference in amplitude between swings quadratic in the displacement, a result which is confirmed by a Lindstedt-Poincaré analysis of the same problem. By considering a drag linear in the velocity, he shows that Newton’s results can be obtained in the limit of weak drag while giving Newton’s problem an exact solution.

The question of whether the drag should be linear or quadratic has been discussed in detail. If one considers the problem from a modern perspective, the Reynolds number associated with a spherical bob of the size Newton used imply that drag should be quadratic, thus confirming Diderot’s assumption. However, from a practical point of view, since the velocity varies during swings and one is usually interested in small amplitude oscillations, the difference in results obtained in either case is beyond the precision that Newton had at his disposal and would not have been detected by Diderot in case he had conducted himself the experiments.

Diderot handled a full problem for which even the simplified version (small-amplitude approximation with quadratic drag) had to wait 100 years to be appropriately handled. We may agree with Coolidge when he says that

‘... Diderot had hold of a problem that was too much for him.’

However, as Eq. (112) shows, this should not diminish his merit: he obtained the same functional dependence on the retardation as one would get using the modern perturbative approach by means of a first-order approximation to solve an integral equation.

8 Acknowledgements

I would like to thank D. Hoffmann, J. Renn and C. Lehner from the Max Planck Institute for the History of Science, Berlin, for their hospitality. I would also like to thank H. Hinrichsen from the University of Würzburg, D. Wolf from the University of Duisburg-Essen, R. Kenna from Coventry University and P. Mac Carron from Oxford University for their interest and discussions. N. Maillard native expertise in French is gratefully acknowledged. Financial support from the Alexander-von-Humboldt Foundation, Germany and Project 295302 of the Marie-Curie-FP7-IRSES of the European Community is gratefully acknowledged.

References

[1] D Diderot, *Mémoires sur différens sujets de Mathématiques*, Paris, 1748.

[2] P Gay, *The Enlightenment: An Interpretation. The Rise of Modern Paganism*, Vintage Books, New York, 1966, p. 14.

[3] L G Krakeur, R L Krueger, *The Mathematical Writings of Diderot*, Isis 33/2 (1941), pp. 219 – 232.

[4] J L Coolidge, *The Mathematics of Great Amateurs*, 2nd edition, Clarendon Press, Oxford, 1990, pp. 178 – 185.
[5] K Ballstadt, *Diderot: Natural Philosopher*, SVEC 2008:09, Oxford, Voltaire Foundation, 2008.

[6] A M Wilson, *Diderot*, Oxford University Press, Oxford, 1972, pp. 18.

[7] D Diderot, *Refutation suivie de l’ouvrage d’Helvetius intitule l’homme*, Éditions Gallimard, Paris, 2010, p. 580.

[8] A M Wilson, op. cit., p. 22.

[9] K Ballstadt, *op. cit.* p. 9.

[10] A M Wilson, op. cit., p. 89.

[11] C Huygens, *Horologium Oscillatorium: sive de motu pendulorum ad horologia aptato demonstrationes geometricae*, Culture et Civilisation, Bruxelles, 1966.

[12] T Le Seur and F Jacquier, *Isaaci Newtoni Philosophiae Naturalis Principia Mathematica, Perpetuis Commentaris Illustrata*, Vol. I, Glasgow, 1822, pp. 37-39.

[13] S R Dahmen, *The Mathematics and Physics of Diderot II. On Involutes*, in preparation.

[14] D Diderot, *Oeuvres complètes : édition critique et annotée. V. 2: Philosophie et mathématique: Idées I. R. Niklaus et. al. (eds)*, Herrmann, Paris, 1975.

[15] A M Wilson, op. cit., p. 49.

[16] I Newton, *Mathematical Principles of Natural Philosophy*, transl. Andrew Motte and F. Cajori. University of California Press, Los Angeles, 1934. Reprinted as vol. 34 of Great Books of the Western World Series, Encyclopedia Britannica, Chicago, 1952, pp. 20-21.

[17] J Mayer in [14], p. 321.

[18] C F Gauld, *Newtons Use of the Pendulum to Investigate Fluid Resistance: A Case Study and some Implications for Teaching About the Nature of Science*, Science and Education 18 (2009), 383400.

[19] C F Gauld, *Newtons Investigation of the Resistance to Moving Bodies in Continuous Fluids and the Nature of ‘Frontier Science’*, Science and Education 19 (2010), 939961.

[20] A M Wilson, op. cit., p. 69.

[21] I Newton, *op. cit.* p. 165.

[22] R H Good, *Elliptic Integrals, the forgotten functions*, Eur. J. Phys 22 (2001), 119 - 126.

[23] S Flügge, *Lehrbuch der Theoretischen Physik Band II*, Springer Verlag, Heidelberg, 1967.

[24] Linz, S.J. 1995. *A simple nonlinear system: the pendulum with quadratic friction*, Eur. J. Phys. 16, pp. 67 – 72.

[25] R A Nelson, M G Olsson, *The pendulum – rich physics from a simple system*, Am. J. Phys. 54/2 (1986), pp. 112 – 121.

[26] Cvetičanin, L. 2009. *Oscillator with strong quadratic damping force*, Publications de l’Institute Mathématique, Nouvelle série, tome 85(99), 119 – 130.

[27] G G Stokes, *On the Effect of the Internal Friction of Fluids on the Motion of Pendulums*, Transactions of the Cambridge Philosophical Society 9 (1851), pp. 8–106.
[28] O Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philosophical Transactions of the Royal Society 174 (0) (1883), pp. 935-982.

[29] F M White, Viscous Fluid Flow, McGraw-Hill, New York, 1974, p. 209.

[30] A Lindstedt, Beitrag zur Integration der Differentialgleichungen der Störungstheorie, Abh. K. Akad. Wiss. St. Petersburg 4, 31 (1882).

[31] H Poincare, Les Méthodes Nouvelles de la Mécanique Céleste II, Gauthier-Villars Imprimieus Librarie, Paris, 1893 paragraph 123 - 128 (1893).

[32] J L Coolidge, op. cit. p. 184.

[33] F W Bessel, Untersuchungen über die Länge des einfachen Secundenpendels, Druckerei der Königlichen Akademie der Wissenschaften, Berlin, 1828. Reprint Verlag von Wilhelm Engelmann, Leipzig, 1889.