BINDING CONDITION FOR A GENERAL CLASS OF QUANTUM FIELD HAMILTONIANS

C. GÉRARD AND I. SASAKI

Abstract. We consider a system of a quantum particle interacting with a quantum field and an external potential \(V(x) \). The Hamiltonian is defined by a quadratic form \(H^V = H^0 + V(x) \), where \(H^0 \) is a quadratic form which preserves the total momentum. \(H^0 \) and \(H^V \) are assumed to be bounded from below. We give a criterion for the positivity of the binding energy \(E_{\text{bin}} = E^0 - E^V \), where \(E^0 \) and \(E^V \) are the ground state energies of \(H^0 \) and \(H^V \). As examples of the result, the positivity of the binding energy of the semi-relativistic Pauli-Fierz model and Nelson type Hamiltonian is proved.

1. Introduction

We consider a Hamiltonian of the form

\[
H^V = H^0 + V \otimes I,
\]

acting on the Hilbert space \(\mathcal{H} = L^2(\mathbb{R}^d; dx) \otimes \mathcal{K} \), where \(\mathcal{K} \) is a Hilbert space, \(H^0 \) is a semi-bounded quadratic form on \(\mathcal{H} \) and \(V \) is the operator of multiplication by a real function \(V(x) \) in \(L^2(\mathbb{R}^d; dx) \). We are interested in the ground state energy \(E^V \) of \(H^V \). The binding energy of the system is defined by

\[
E_{\text{bin}} = E^0 - E^V.
\]

In this paper, we give a criterion for \(E_{\text{bin}} \) to be strictly positive.

Hamiltonians of the form (1) appear in models of a quantum particle interacting with a quantum field. One of the important examples is the Pauli-Fierz Hamiltonian, for which \(d = 3 \), \(\mathcal{K} \) is the bosonic Fock space over \(L^2(\mathbb{R}^3 \times \{1, 2\}) \) and

\[
H^0 = H_{\text{PF}}^0 := \frac{1}{2m}(p \otimes I + \sqrt{\alpha}A(x))^2 + I \otimes H_f
\]

where \(H_f \) is the free photon energy, \(\alpha \) is the fine structure constant, \(A(x) \) is the quantized vector potential and \(V(x) \) is the nuclear potential (see [3]). The positivity of the binding energy is established under certain conditions on the potential \(V(x) \).
energy is used as a hypothesis to establish the existence of a ground state of the Pauli-Fierz model in [3]. In [3] the positivity of the binding energy is obtained by assuming that

\[
\frac{p^2}{2m} + V(x)
\]

has a negative energy ground state. In this paper, we generalize the method developed in [3] and apply it to several types of quantum field Hamiltonians such that the semi-relativistic Pauli-Fierz Hamiltonian, the Pauli-Fierz Hamiltonian with dipole approximation and Nelson type Hamiltonians.

2. Definitions and Main Results

If \(\mathcal{H} \) is a Hilbert space we denote by \((\cdot | \cdot)_\mathcal{H} \) the scalar product on \(\mathcal{H} \). If \(A \) is a quadratic form on \(\mathcal{H} \), we denote by \(Q(A) \) its form domain and the value of \(A \) will be denoted by \((\Psi | A\Phi)_\mathcal{H} \) for \(\Psi, \Phi \in Q(A) \). We use the same notation for the quadratic form associated to a self-adjoint operator \(A \), with domain \(Q(A) = \text{Dom}(|A|^\frac{1}{2}) \).

We now formulate the hypotheses of Thm. 2.1 below.

Let \(L^2(\mathbb{R}^d; dx) \) be the space of square integrable functions on \(\mathbb{R}^d \) with variable \(x = (x_1, \ldots, x_d) \), and \(\mathcal{K} \) be a separable complex Hilbert space. We denote by \(p = (p_1, \ldots, p_d) = -i\nabla_x \) the momentum operator on \(L^2(\mathbb{R}^d; dx) \) The Hilbert space of the total system is:

\[
\mathcal{H} := L^2(\mathbb{R}^d; dx) \otimes \mathcal{K}
\]

We fix a quadratic form \(H^0 \) on \(\mathcal{H} \) and an external potential \(V : \mathbb{R}^d \to \mathbb{R} \) which is a real Borel measurable function. The multiplication by \(V(x) \) is denoted by the same symbol.

The Hamiltonian of the system is obtained from the quadratic form on \(\mathcal{H} \) defined by

\[
H^V := H^0 + V.
\]

We assume the following conditions:

(H.1) There exists a dense domain \(D_0 \) such that

\[
D_0 \subseteq Q(H^0) \cap Q(V)
\]

and \(H^V \) and \(H^0 \) are closable and bounded from below on \(D_0 \).

(H.2) There exist a vector of commuting self-adjoint operators \(P_f = (P_{f,1}, \ldots, P_{f,d}) \) on \(\mathcal{K} \) such that \(H^0 \) commutes with

\[
P := (P_1, \ldots, P_d),
\]

\[
P_j = p_j \otimes I + I \otimes P_{f,j},
\]

namely, for all \(k \in \mathbb{R}^d, e^{ik \cdot P}D_0 = D_0 \) and it holds that

\[
(e^{ik \cdot P}\Psi | H^0 e^{ik \cdot P}\Phi) = (\Psi | H^0 \Phi)
\]

for all \(\Psi, \Phi \in D_0 \) and \(k \in \mathbb{R}^d \).
From (H.1), H^V and H^0 are closable on \mathcal{D}_0, and we denote by \bar{H}^V, \bar{H}^0 the self-adjoint operators associated to the closure of H^V, H^0. Let

$$E^V := \inf \sigma(\bar{H}^V) = \inf_{\Psi \in \mathcal{D}_0, \|\Psi\| = 1} (\Psi|H^V\Psi)_\mathcal{H},$$

$$E^0 := \inf \sigma(\bar{H}^0) = \inf_{\Psi \in \mathcal{D}_0, \|\Psi\| = 1} (\Psi|H^0\Psi)_\mathcal{H},$$

be the ground state energies. The key assumption of the main theorem is the following:

(H.3) There exist a measurable real function $K(k)$ such that

$$\frac{1}{2}\{\Omega(k) + \Omega(-k) - 2\Omega(0)\} \leq K(k) \text{ on } \mathcal{D}_0, \forall k \in \mathbb{R}^d,$$

where $\Omega(k) := e^{-ik \cdot x} H^0 e^{ik \cdot x}$.

We set

$$h := K(p) + V$$

which is a quadratic form on $L^2(\mathbb{R}^d; dx)$. We assume that

(H.4) There exists a non-trivial subspace \mathcal{D}_1 of $L^2(\mathbb{R}^d; dx)$ with $\mathcal{D}_1 \subset Q(K(p)) \cap Q(V)$ such that for all $f \in \mathcal{D}_1$ and $\Psi \in \mathcal{D}_0$, $f(x)\Psi \in \mathcal{D}_0$. Moreover \mathcal{D}_1 is invariant under the complex conjugation, i.e. $\bar{f} \in \mathcal{D}_1$ for all $f \in \mathcal{D}_1$.

We define

$$e_0 := \inf_{f \in \mathcal{D}_1, \|f\| = 1} (f|hf)_{L^2}.$$

The main theorem in this paper is the following.

Theorem 2.1. Assume the hypotheses (H.1)–(H.4). Then the inequality

$$E^V \leq E^0 + e_0$$

holds. In particular, if $e_0 < 0$, then $E_{\text{bin}} \geq -e_0 > 0$.

3. **Proof of Theorem 2.1**

For arbitrary small ϵ, we choose normalized vectors $F \in \mathcal{D}_0$, $f \in \mathcal{D}_1$ such that

$$(F|H^0 F)_\mathcal{H} \leq E^0 + \epsilon,$$

$$(f|hf)_{L^2} \leq e_0 + \epsilon.$$

Since by (H.4) h commutes with the complex conjugation, the function f can be chosen to be real. We consider the following extended Hilbert space

$$\mathcal{H}_\text{ex} := L^2(\mathbb{R}^d; dy) \otimes \mathcal{H},$$

which naturally identified with the sets of \mathcal{H}-valued square integrable functions $L^2((\mathbb{R}^d; dy); \mathcal{H})$. For $y \in \mathbb{R}^d$, we set $F_y := e^{iy \cdot P} F$ and consider the \mathcal{H}-valued function:

$$\Phi : \mathbb{R}^d \ni y \mapsto \Phi_y := f(x)F_y \in \mathcal{H}.$$
The theorem will follow easily from the following three claims:

(5) \(\Phi \in \mathcal{H}_{\text{ex}}, \|\Phi\| = 1, \)

(6) \(\Phi \in Q(I \otimes H^0), \quad (\Phi | f \otimes H^0 \Phi)_{\mathcal{H}_{\text{ex}}} \leq (f | H^0 F)_\mathcal{H} + (f | K(p)f)_{L^2}, \)

(7) \(\Phi \in Q(I \otimes V), \quad (\Phi | I \otimes V \Phi)_{\mathcal{H}_{\text{ex}}} = (f | Vf)_{L^2}. \)

Let us first prove (5), (6) and (7). We have:

\[
\int_{\mathbb{R}^d} \|\Phi_y\|^2_{\mathcal{H}} dy = \int_{\mathbb{R}^d} \|f(x)e^{iy \cdot P} F\|^2_{\mathcal{H}} dy = \int_{\mathbb{R}^d} \|e^{-iy \cdot P} f(x)e^{iy \cdot P} F\|^2_{\mathcal{H}} dy
\]

\[
= \int_{\mathbb{R}^d} |f(x - y)|^2 dy = \|f\|^2_{L^2(\mathbb{R}^d)} = \|f\|_{\mathcal{H}}^2 = 1,
\]

which proves (5). Since \(H^0 \) is bounded below, (6) will follow from

(8) \((\Phi | I \otimes H^0 \Phi)_{\mathcal{H}_{\text{ex}}} = \int_{\mathbb{R}^d} (\Phi_y | H^0 \Phi_y)_{\mathcal{H}} dy \leq (f | H^0 F)_\mathcal{H} + (f | K(p)f)_{L^2}, \)

using that \(F \in Q(H^0) \) and \(f \in Q(K(p)) \).

Denoting by \(\mathcal{F} : L^2(\mathbb{R}^d; dy) \ni f \mapsto \hat{f} \in L^2(\mathbb{R}^d; dk) \) the unitary Fourier transform, we have:

\[
\int_{\mathbb{R}^d} (\Phi_y | H^0 \Phi_y)_{\mathcal{H}} dy = \int_{\mathbb{R}^d} (f(x)F_y | H^0 f(x)F_y)_{\mathcal{H}} dy
\]

\[
= \int_{\mathbb{R}^d} (e^{-iy \cdot P} f(x)e^{iy \cdot P} F | e^{-iy \cdot P} H^0 e^{iy \cdot P} f(x)e^{iy \cdot P} F)_{\mathcal{H}} dy
\]

\[
= \int_{\mathbb{R}^d} (f(x - y) | H^0 f(x - y)F)_{\mathcal{H}} dy
\]

\[
= \int_{\mathbb{R}^d} (e^{ik \cdot x} \hat{f}(k) | H^0 e^{ik \cdot x} \hat{f}(k)F)_{\mathcal{H}} dk
\]

\[
= \int_{\mathbb{R}^d} |\hat{f}(k)|^2 (F | \Omega(k)F)_{\mathcal{H}} dk.
\]

Since \(f \) is real valued, we have:

\[
\int_{\mathbb{R}^d} |\hat{f}(k)|^2 (F | \Omega(k)F)_{\mathcal{H}} dk = \frac{1}{2} \int_{\mathbb{R}^d} |\hat{f}(k)|^2 (F | (\Omega(k) + \Omega(-k) - 2\Omega(0))F)_{\mathcal{H}} dk + \|f\|^2_{L^2} (F | H^0 F)_\mathcal{H}
\]

\[
\leq \|f\|^2 \int_{\mathbb{R}^d} |\hat{f}(k)|^2 K(k) dk + \|f\|^2_{L^2} (F | H^0 F)_\mathcal{H}
\]

\[
= (F | H^0 F)_\mathcal{H} + (f | K(p)f)_{L^2},
\]

which proves (6).

Similarly we have

\[
(\Phi | I \otimes V \Phi)_{\mathcal{H}_{\text{ex}}} = \int_{\mathbb{R}^d} (f(x)F_y | V(x) f(x)F_y)_{\mathcal{H}} dy
\]

\[
= \int_{\mathbb{R}^d} (e^{-iy \cdot P} f(x)F_y | e^{-iy \cdot P} V(x) f(x)F_y)_{\mathcal{H}} dy
\]

\[
= \int_{\mathbb{R}^d} (f(x - y) | V(x - y) f(x - y)F)_{\mathcal{H}} dy
\]

\[
= (f | Vf)_{L^2} \|f\|^2 = (f | Vf)_{L^2},
\]

which proves (7). From (5), (6) and (7) we obtain

\[
E^V \leq (\Phi | I \otimes V \Phi)_{\mathcal{H}_{\text{ex}}} \leq (f | H^0 F)_\mathcal{H} + (f | (K(p) + V)f)_{L^2} \leq E^0 + E_0 + 2\varepsilon.
\]
Since \(\epsilon \) is arbitrary we obtain the theorem.

4. Examples

In this section we give some examples to which Thm. 2.1 can be applied. If \(\mathfrak{h} \) is a Hilbert space, we denote by

\[
\Gamma_s(\mathfrak{h}) = \bigoplus_{n=0}^{\infty} \otimes_n^s \mathfrak{h}
\]

the bosonic Fock space over \(\mathfrak{h} \). The vacuum vector in \(\Gamma_s(\mathfrak{h}) \) will be denoted by \(\Omega, a^*(t), a(t) \) for \(t \in \mathfrak{h} \) denote the creation/annihilation operators.

4.1. Semi-relativistic Pauli-Fierz Hamiltonians. The semi-relativistic Pauli-Fierz Hamiltonian is defined as follows: we take \(d = 3 \) and

\[
\mathcal{K} = \Gamma_s\left(L^2(\mathbb{R}^3 \times \{1, 2\}) \right),
\]

\[
H^V = H_{\text{SRPF}}^V := \sqrt{(p \otimes I + \sqrt{\alpha} A(x))^2 + m^2} - m + I \otimes H_f + V \otimes I,
\]

where \(\alpha \in \mathbb{R} \) is a coupling constant and \(m > 0 \) is the mass of the electron (see \cite{1}). The quantized vector potential \(A(x) \) is defined by

\[
A(x) = \frac{1}{\sqrt{2}} \sum_{\lambda=1,2} \int_{\mathbb{R}^3} dk \sqrt{k} \frac{\Lambda(k)}{|k|^{1/2}} e^{(\lambda)}(k) (e^{i \mathbf{k} \cdot \mathbf{x}} a_\lambda(k) + e^{-i \mathbf{k} \cdot \mathbf{x}} a^*_\lambda(k)),
\]

where \(a^*_\lambda(k), a_\lambda(k) \) are creation and annihilation operators on \(\mathcal{K}, \Lambda \) is a real-function such that \(\Lambda, |k|^{-1/2} \Lambda \in L^2(\mathbb{R}^3) \) and the polarization vectors \(e^{(\lambda)} : \mathbb{R}^3 \to \mathbb{R}^3 \) satisfy

\[
e^{(\lambda)}(k) \cdot e^{(\lambda')} (k) = \delta_{\lambda,\lambda'}, \quad e^{(\lambda)}(k) \cdot k = 0.
\]

The free photon energy \(H_f \) is defined by

\[
H_f = \sum_{\lambda=1,2} \int_{\mathbb{R}^3} |k| a^*_\lambda(k) a_\lambda(k) dk
\]

Let

\[
\mathcal{F}_{\text{fin}} := \mathcal{L}[\{a^*(f_1) \cdots a^*(f_n) \Omega_{\text{photon}}, \Omega_{\text{photon}} | f_j \in C^\infty_0 (\mathbb{R}^3 \times \{1, 2\}), j = 1, 2, \ldots, n, n \in \mathbb{N}\}]
\]

be a finite photon subspace where \(\Omega_{\text{photon}} = (1, 0, 0, \ldots) \in \mathcal{K} \). We set

\[
\mathcal{D}_0 = C^\infty_0(\mathbb{R}^3) \otimes \mathcal{F}_{\text{fin}},
\]

\[
\mathcal{P}_f = \sum_{\lambda=1,2} \int_{\mathbb{R}^3} k a^*_\lambda(k) a_\lambda(k) dk
\]

where \(\otimes \) indicates the algebraic tensor product. Then the above operator satisfy the condition (H.1) and (H.2). Moreover, it is proved that (H.3) holds with \(K(k) = \sqrt{k^2 + m^2} - m \) (see
C. GÉRARD AND I. SASAKI

We assume that $V \in L^1_{\text{loc}}(\mathbb{R}^3; dx)$ and set $\mathcal{D}_1 = C_0^\infty(\mathbb{R}^3)$. Then (H.4) holds. Therefore $E^{V}_{\text{SRPF}} \leq E^0_{\text{SRPF}} + e_0$ holds with

$$E^V_{\text{SRPF}} := \inf_{\Psi \in \mathcal{D}_0 : \|\Psi\| = 1} (\Psi | H^V_{\text{SRPF}} \Psi)_H, \quad \Psi = V, 0$$

$$e_0 = \inf_{f \in C_0^\infty : \|f\| = 1} (f | (\sqrt{p^2 + m^2} - m + V)f)_{L^2}.$$

4.2. Pauli-Fierz Hamiltonian with dipole approximation. The Pauli-Fierz Hamiltonian with dipole approximation is defined by

$$H^V_{\text{DP}} = \frac{1}{2m} (p \otimes I + \sqrt{\alpha} A(0))^2 + I \otimes H_f + V \otimes I,$$

where $A(0)$ is defined in [9] with $x = 0$. H^V_{DP} is defined on $\mathcal{D}_0 = C_0^\infty \hat{\otimes} \mathcal{F}_{\text{fin}}$. Clearly (H.1) holds. The operator H^0_{DP} is not translation invariant, but it preserves the particle momentum p. Hence we set

$$P_f = 0, \quad P = p.$$

Then (H.2) holds. For this Hamiltonian, we have

$$\frac{1}{2} (\Omega(k) + \Omega(-k) - 2\Omega(0)) = \frac{k^2}{2m},$$

which implies that (H.3) holds with $K(k) = k^2/2m$. We assume that $V \in L^1_{\text{loc}}(\mathbb{R}^3)$ and set $\mathcal{D}_1 = C_0^\infty(\mathbb{R}^3)$. Then (H.4) holds. Therefore the inequality $E^V_{\text{DP}} \leq E^0_{\text{DP}} + e_0$ holds with

$$E^V_{\text{DP}} := \inf_{\Psi \in \mathcal{D}_0 : \|\Psi\| = 1} (\Psi | H^V_{\text{DP}} \Psi)_H, \quad \Psi = V, 0$$

$$e_0 = \inf_{f \in C_0^\infty : \|f\| = 1} (f | (\frac{p^2}{2m} + V)f)_{L^2}.$$

4.3. Nelson type Hamiltonians. We define the Nelson type Hamiltonian by

$$\mathcal{K} = \Gamma_s(L^2(\mathbb{R}^d)),$$

$$H^V = H^V_{\text{Nel}} := B(p^2) \otimes I + I \otimes H_f + P(\phi(x)),$$

where $B : \mathbb{R}_+ \to \mathbb{R}_+$ is a Bernstein function, i.e.,

$$B(u) \geq 0, \quad B(0) = 0, \quad (-1)^n \frac{d^n B(u)}{du^n} \geq 0, \quad n = 1, 2, \ldots.$$

The field operator $\phi(x)$ is defined by

$$\phi(x) = \frac{1}{\sqrt{2}} \int_{\mathbb{R}^d} (g(k)e^{-ik \cdot x} a^*(k) + \overline{g(k)} e^{ik \cdot x} a(k)) dk$$

with $g \in L^2(\mathbb{R}^d), a^*, a$ are creation and annihilation operators on \mathcal{K} and P is a real, bounded below polynomial.

The free boson Hamiltonian H_f is defined by

$$H_f = \int_{\mathbb{R}^d} \omega(k) a^*(k)a(k) dk,$$
where ω is a non-negative function. We refer the reader to [2] for a recent study of the Nelson-type Hamiltonians with Bernstein function type kinetic energy. We set

$$\mathcal{F}_{\text{fin}} := \mathcal{L}\{a^*(f_1) \cdots a^*(f_n)\Omega_b, \Omega_b| f_j \in C_0^\infty(\mathbb{R}^d), j = 1, 2, \ldots, n, n \in \mathbb{N}\},$$

$$\mathcal{D}_0 = C_0^\infty(\mathbb{R}^d) \otimes \mathcal{F}_{\text{fin}},$$

where $\Omega_b = (1, 0, 0, \ldots) \in \mathcal{K}$. Assume that $V \in L^1_{\text{loc}}(\mathbb{R}^d)$. By (13), we have

$$B(u) \leq \frac{u^3}{6} + B''(0) \frac{u^2}{2} + B'(0)u.$$

Hence, $C_0^\infty(\mathbb{R}^d) \subset \text{Dom}(B(p^2))$. Then H_{Nel}^V and H_{Nel}^0 are well-defined on \mathcal{D}_0 and (H.1) holds. We set

$$P_f = \int_{\mathbb{R}^d} ka^*(k)a(k)dk.$$

Then, H_{Nel}^0 commutes with $P_j = p_j \otimes I + I \otimes P_{f,j}, j = 1, \ldots, d$ and (H.2) holds. Next we check (H.3). We note that

$$\Omega(k) + \Omega(-k) - 2\Omega(0) = B((p + k)^2) + B((p - k)^2) - 2B(p^2).$$

We have the following lemma:

Lemma 4.1. For all $p, k \in \mathbb{R}^d$, the inequality

$$\frac{1}{2} \left(B((p + k)^2) + B((p - k)^2) - 2B(p^2)\right) \leq B(k^2).$$

holds.

Proof. It is known that any Bernstein function can be written in the form

$$B(u) = a + bu + \int_{\mathbb{R}^+} (1 - e^{-tu}) \mu(dt), \quad (u \geq 0)$$

where a, b are non-negative constants and μ is a non-negative measure on \mathbb{R}^+ such that $\int_{\mathbb{R}^+} \min\{t, 1\} \mu(dt) < \infty$ (see [2]). Hence it is sufficient to prove the inequality

$$e^{-(p+k)^2t} - e^{-(p-k)^2t} + 2e^{-p^2t} \leq 2(1 - e^{-k^2t}),$$

for all $t \geq 0$ and $p, k \in \mathbb{R}^d$. If $t = 0$, (15) is trivial. Without loss of generality, one can set $t = 1$. Moreover we can assume that $k = (\kappa, 0, 0), \kappa \geq 0$ by the spherical symmetry of (15). Then (15) will follow from

$$b_\kappa(p) := e^{-(p_1 + \kappa)^2} - e^{-(p_1 - \kappa)^2} + 2e^{-p_1^2} \leq 2(1 - e^{-\kappa^2}),$$

where p_1 is the first component of p. This completes the proof.
where \(p = (p_1, p_2, p_3) \). It is enough to show that \(b_\kappa(p_1) \leq 2(1 - e^{-\kappa^2}) \) for \(\kappa > 0 \) and \(p_1 > 0 \).

We set \(p_1 = a\kappa \) with \(a > 0 \). Then

\[
b_\kappa(p_1) = e^{-a^2\kappa^2} \left[-e^{-\kappa^2}(e^{-2a\kappa^2} + e^{2a\kappa^2}) + 2\right] \\
\leq e^{-a^2\kappa^2} \left[-2e^{-\kappa^2} + 2\right] \\
\leq 2(1 - e^{-\kappa^2}),
\]

where we used the inequality \(e^{-2a\kappa^2} + e^{2a\kappa^2} \geq 2 \) and \(e^{-a^2\kappa^2} \leq 1 \).

Lemma 4.1 implies that (H.3) holds with \(K(k) = B(k^2) \). By setting \(\mathcal{D}_1 = C_0^\infty(\mathbb{R}^d) \), (H.4) holds. Therefore, by Theorem 2.1, \(E_{\text{Nel}}^V \leq E_{\text{Nel}}^0 + \epsilon_0 \) holds with

\[
E_{\text{Nel}}^2 := \inf_{\Psi \in \mathcal{D}_0, \|\Psi\|=1} (\Psi^\dagger H_{\text{Nel}}^V \Psi)_{\mathcal{H}}, \quad \sharp = V, 0 \\
\epsilon_0 := \inf_{f \in \mathcal{D}_1, \|f\|=1} (f^\dagger (B(p^2) + V) f)_{L^2}.
\]

References

[1] F. Hiroshima and I. Sasaki, *On the ionization energy of semi-relativistic Pauli-Fierz model for a single particle*, Kokyuroku Bessatsu B21 (2010), 25–34.

[2] J. Lőrinczi, F. Hiroshima, and V. Betz, *Feynman-Kac-type theorems and Gibbs measures on path space*, vol. 34, Walter De Gruyter, 2011, Seminar on Probability, Studies in Mathematics.

[3] E. H. Lieb M. Griesemer and M. Loss, *Ground states in non-relativistic quantum electrodynamics*, Invent Math 145 (2001), no. 1, 557–595.