Characteristics and Origins of the Natural Gas and Implications for Gas-Source Correlation in Deep Formations of the Songliao Basin, NE China

Zhengjian Xu 1,2,3,4,* , Biao Peng 5 , Yanjun Feng 4,6 , Luofu Liu 2,3 , Chao Fang 7 , Mingli Shao 8 , Kexin Jia 8 , Kangjun Wu 1 and Yingying Chen 9

1 School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; wukangjun520@163.com
2 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China; liulf@cup.edu.cn
3 College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
4 Energy & Geoscience Institute, University of Utah, Salt Lake City, UT 84108, USA; fengyanjun@tdkcsj.com
5 Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an 710000, China; pengbiao1988@hotmail.com
6 Coal Mining Research branch, China Coal Research Institute, Beijing 100013, China
7 CNPC Engineering Technology R&D Co., Ltd., Beijing 102206, China; fangchaodr@cnpc.com.cn
8 Research Institute of Petroleum Exploration and Development, Jilin Oilfield Branch, CNPC, Songyuan 138000, China; shaoml@petrochina.com.cn (M.S.); jiaxik@petrochina.com.cn (K.J.)
9 Henan Provincial Information Center of Geology and Minerals, Zhengzhou 450003, China; shageniaoshaniu@163.com

* Correspondence: xumou08@sina.com; Tel.: +86-188-1011-4530

Received: 30 October 2019; Accepted: 2 December 2019; Published: 6 December 2019

Abstract: The Songliao Basin is the most productive petroliferous lacustrine basin in NE China, and numerous large gas fields with large proven reserves occur in its deep formations. However, considerable challenges remain: (1) the origins and genetic types of the natural gases are controversial; (2) the gas-source correlations are poorly studied; and (3) the migration distance is vague. In this study, these problems are addressed by the study of the gas compositions, light hydrocarbons, and stable hydrogen and carbon isotopes. The gases are predominantly of organic and thermogenic origins. The Huoshiling (J 3 h) and Shahezi (K 1 sh) gases are mainly mixtures of coal-derived and oil-associated gases and the mixed-sources of primary kerogen degradation and secondary oil cracking, while the Yingcheng (K 1 yc) gases are mainly coal-derived gases and predominantly derived from primary kerogen degradation. The gases in different sags are derived from the source rocks developed in the same sags where the gases accumulated, characterized by the proximal-source accumulation. Vertically, the gases in the J 3 h and K 1 sh are predominantly sourced by the proximal J 3 h and K 1 sh mudstones, while the gases in the K 1 yc are mainly derived from either the J 3 h or the K 1 sh source rocks, suggesting the gas migration with short distances.

Keywords: gas origin; gas-source correlation; stable carbon isotope; light hydrocarbon; deep formation; Songliao Basin

1. Introduction

Natural gases in sedimentary basins contain hydrocarbons (e.g., methane and its higher homologues), non-hydrocarbons (e.g., CO 2 , N 2 , H 2 , H 2 S, and Hg), and noble gases (e.g., He and Ar). Generally, hydrocarbon gases are proved to be the result of organic matter conversion by thermal
degradation, crude oil and wet gas cracking, and even bacterial action [1–10]. However, the hydrocarbon gas physical properties, compositions, and stable carbon isotopic distributions in gas reservoirs may change, as a result of the effects of microbial generation, thermal maturation, migration, mixing, leaking, biodegradation, and thermochemical sulfate reduction (TSR) [7,8,11–21]. Combined with stable hydrogen and carbon isotopes, the hydrocarbon gas compositions can be useful parameters to ascertain the gas origins and analyze gas-source correlations. Besides, the non-hydrocarbon gases can be significant markers to analyze the gas origins, genetic types, generation, and migration [4,22–35]. Accordingly, the geochemical characters of gas (hydrocarbon, non-hydrocarbon, and noble gas) compositions and their stable hydrogen and carbon isotopes are the basic parameters to analyze gas origins, mixtures of gases generated at different thermal-evolution stages or from different origins, and gas-source correlations [1,3,16,26,36–49].

In NE China rift basins which developed during the Late Jurassic to Early Cretaceous are widely distributed and have been studied extensively [50,51]. The Songliao Basin (SLB), the largest one, proves to be the most productive petroliferous lacustrine basin in China [52–57]. It is commonly accepted that the Upper Cretaceous petroleum systems are very important petroleum-bearing plays in the SLB [58–61], and numerous studies on these petroleum plays have been carried out [58–63]. Based on previous studies [64–66], large gas fields occur in the deep formations (the formations underlying the 3rd Member of the Lower Cretaceous Quantou Formation; [67]) with proven reserves of over 200×10⁹ m³ (706.3bcf). The deep gas reservoirs in the Dehui Depression (a sub-tectonic unit located in the uplift area of southeast SLB) possess proven reserves of over 20 × 10⁹ m³ (70.6bcf). The deep formations (mainly including the Jurassic Huoshiling Formation (J₃h) (156.0–145.0Ma), the Cretaceous Shahezi (K₁sh) (145.0–133.9Ma) and Yingcheng (K₁yc) (133.9–125.0Ma) Formations) are predicted to be the next main targets for hydrocarbon gases exploration in the Dehui Depression. However, considerable challenges remain. In the deep formations, (1) the gas origins and genetic types are confusing and debatable, (2) the gas-source correlations are poorly studied, and (3) the migration distance for hydrocarbon gas is controversial. During the last decades, some researchers have suggested that the gas origins in the deep formations of SLB are of inorganic and mantle-derived source [68–71]. However, some previous studies pointed out that the hydrocarbon gases in the deep formations of SLB are of organic origins, mainly derived from the K₁sh source rocks [72–75]. Nevertheless, some scholars held the view that the gases are mainly sourced by the J₃h source rocks [76,77]. These debates may constrain the exploration and exploitation of hydrocarbons in the deep formations of SLB, which can be addressed by using the geochemical characters of gas (hydrocarbon and non-hydrocarbon) compositions and their stable hydrogen and carbon isotopes [42,78–82].

In this study, the gases in the deep formations of the Dehui Depression are used for the systematic analyses of the gas density, chemical compositions, stable hydrogen and carbon isotopes, and light hydrocarbons characteristics. The gas origins, genetic types and gas-source correlations have been investigated, which can provide the needed theoretical support for natural gas exploration and target selection in the deep formations of the SLB, and the guidance for the gas exploration in the deep formations of similar geological settings around the world.

2. Geological Settings

2.1. Tectonics and Structure

The SLB, with an area of 260×10³ km², is an independent half-graben continental basin that was formed during the Late Jurassic-Neogene [56], and featured by a dual-structure of an earlier rift depression and a later thermal depression [56]. It is the most prolific petroliferous lacustrine basin in NE China [83]. The tectonic evolution of the basin was controlled by two active continental margins in the late Mesozoic: (1) the Sikhote-Alin Orogenic Belt to the east, and (2) the Mongol-Okhotsk Belt to the north and northwest [84], which can be divided into four stages: (1) mantle upwelling during the Middle–Late Jurassic, (2) synrift subsidence during the Late Jurassic-Early Cretaceous, (3)
As a result of synrift extension, the SLB in the synrift stage was characterized by “basin-and-range” fault blocks [56]. The Dehui Depression, located in the uplift zone of southeastern SLB, is NE trending and fault-controlled, with an area of 4053 km². The tectonic evolution stages of the Dehui Depression are approximately consistent with those of the SLB. Tectonic movements of multi-episodes have resulted in complex internal structures, and the Dehui Depression contains seven sags: the Nong’an sag, the Huajia sag, the Baojia sag, the Nong’annan sag, the Helong sag, the Longwang sag, and the Lanjia sag (Figure 1).

2.2. Stratigraphy and Lithology

As a consequence of mantel upwelling and doming, the Dehui Depression evolved into the Mesozoic rifting and subsidence, including the synrift subsidence and post-rift thermal subsidence. Highlands located in the west and south were the main sediment source areas [86].
The succession deposited during the synrift subsidence includes the Huoshiling (156–145 Ma), Shahezi (145–133.9 Ma), Yingcheng (133.9–125 Ma), and Denglouku (125–116 Ma) Formations [56,86] (Figure 2). The Huoshiling-Yingcheng Formations (H-YFs) include clastic floodplain, fluvial, delta, and lacustrine rocks intercalated with pyroclastic and volcanic rocks [56,86], consisting of volcanic, conglomerates, fine sandstones, mudstones, coals and tuff interlayers (Figure 2). The thickness of the H-YFs is generally <1000 m to max 3500 m, mainly 1500–2500 m. Large amounts of tight sandstone and volcanic gases have been discovered in the H-YFs, which are the main targets of unconventional hydrocarbon resources in the Dehui Depression [56,86].

![Figure 2. Integrated stratigraphic column in the Dehui Depression, SLB (modified after [56]).](image)

3. Samples and Methods

Firstly, the gases were flushed for 15–20 minutes to remove air contamination, then gas samples were collected directly from the wellheads. Stainless steel cylinders (Φ = 10.0 cm) equipped with two shut-off valves (P_{max} = 22.5 MPa) were utilized to contain the gas samples. The inside pressure of
the container should be maintained over 5.0 MPa. After the collection, the cylinders were subjected to leakage checks in water. Thirty-six samples from 11 wells in H-YFs were collected for molecular composition analysis. Twenty-seven samples from 11 wells in H-YFs were collected for stable carbon isotope analysis. Two samples from Well DS12 in the J3h and K1sh Formations were analyzed for stable hydrogen isotopes. Eleven mudstone samples from four wells and 23 gas samples from eight wells are collected out for light hydrocarbon analysis.

3.1. Analysis of Molecular Composition

A Trace GC Ultra gas chromatograph (GC) (Thermo Fisher, USA) equipped with flame ionization and thermal conductivity detectors was utilized to ascertain the gas chemical components. The C1−C4 components were isolated utilizing a porous-layer open-tabular capillary column (PLOT, Al2O3 50 m×0.53 mm). The carrier gas was helium (He, flowrate=1 mL/min). At the beginning, the GC oven temperature was 30 °C and kept there for 10 minutes, then raised to 180 °C (rate of 10 °C/min) and held for 20–30 minutes [87–93].

3.2. Analysis of Stable Carbon and Hydrogen Isotope

A Finnigan Mat Delta S mass spectrometer (Thermo Fisher, USA) interfaced with a HP 5890II chromatograph (HP, USA) can be used to ascertain the stable carbon isotopes. A gas chromatograph (a fused silica capillary column (PLOT Q 30 m×0.32 mm)), with helium as the carrier gas (1 mL/min) was utilized to separate the gas components (C1−C4 and CO2). The gases were converted into CO2 in a combustion interface, then transferred into the mass spectrometer. The GC oven temperature was initially heated from 35 °C to 80 °C (8 °C/min), then heated up to 260 °C (5 °C/min) and held 10 minutes. Gas samples were analyzed in duplicate. The stable carbon isotope values are recorded in the customary “δ” notation in per mil (‰) relative to the Vienna Pee Dee Belemnite (VPDB) standard. The value of ± 0.5‰ should be the reproducibility and analytical precision with respect to the VPDB standard [87–93]. A Finnigan MAT 253 mass spectrometer with the GC–TC–IRMS method was used to ascertain the stable hydrogen isotope. A chromatographic column (HP-PLOTQ column, 30 m × 0.32 mm × 20 mm) was used to separate the gas components. The accuracy should be ±3‰, and stable hydrogen isotope results are recorded relative to Vienna Standard Mean Ocean Water (VSMOW) [87–93].

3.3. Analysis of Light Hydrocarbons

A HP5890A gas chromatograph and a PONA capillary column (50 m × 0.25 mm × 0.5 µm) were utilized to analyze the light hydrocarbons. Helium was used as the carrier gas. A container with liquid nitrogen was used to trap the low content of light hydrocarbons. The liquid nitrogen container can be removed after a large volume of gas (15–20 mL) was injected after 20 minutes. Utilizing a FID at 320 °C, the eluted light hydrocarbons were analyzed. At the beginning, the temperature was held at 30 °C for 10 minutes, then heated up to 70 °C (1 °C/min), and then raised to 160 °C (3 °C/min), and finally heated up to 270 °C (5 °C/min) and maintained 20 minutes. An Agilent PONA gas chromatograph was utilized to analyze the light hydrocarbons qualitatively. 53 individual compounds (from isobutane to n-octane) were tested in the experiment. The peak areas of individual compounds on the gas chromatograph were utilized to quantify the light hydrocarbon compounds [87–93].

4. Results

4.1. Gas Chemical Composition

The gas chemical components in the H-YFs are shown in Table 1 and Figure 3. C1−C5 hydrocarbons are the main gases in the natural gas of the Dehui Depression, accounting for 93.23%–99.16% (Avg. = 96.60 %) in volume, while those average values in the J3h, K1sh and K1yc (H-YFs) are 96.49%, 96.84%, and 96.55%, respectively. The non-hydrocarbons (including N2, CO2, H2, and H2S) account for 0–6.75%, with a mean of 3.27%, and the noble gases (He and Ar) account for 0–4.45%, with a mean of 0.13%.
Table 1. Chemical components and density of the natural gas in the H-YFs of the Dehui Depression, SLB.

Well Layer	Depth (m)	Density (kg/m³)	Dryness Coefficient	CH₄	C₂H₆	C₃H₈	iC₄H₁₀	nC₄H₁₀	iC₅H₁₂	nC₅H₁₂	N₂	CO₂	H₂	H₂S	He	Ar
DS11 Huoshiling	2551.50	0.88	83.9 0.93 1.22 0.49 1.36 0.95 6.69	/	/	/	4.45									
DS11 Huoshiling	2553.00	0.64	88.7 4.17 1.25 0.21 0.23 0.53 0.52	3.12 1.26												
DS11 Huoshiling	2556.00	0.62	90.5 4.78 1.15 0.20 0.19	0.09 0.06	1.69 1.31											
DS11 Huoshiling	2560.00	0.62	90.7 4.52 1.03 0.18	0.18 0.09	0.07 1.99 1.29											
DS11 Huoshiling	2562.00	0.63	89.7 4.19 1.11 0.23	0.25 0.17	0.26	2.86 1.28										
DS12 Huoshiling	3067.00	/	91.7 4.06 1.06 0.19	0.22 0.11	0.41 0.81 1.39 0.01	0.02										
DS12 Huoshiling	3328.50	/	92.1 3.76 0.98 0.18	0.20	0.11	0.35 0.85	1.41 0.01	0.02								
DS12 Huoshiling	3328.90	/	95.9 0.70 0.05	/	/	/	0.02	1.30	2.04	/	0.02					
DS2 Huoshiling	3030.55	0.67	92.8 1.75 0.27	0.02	0.02	/	/	0.37	4.77	/	/					
N101 Huoshiling	2520.10	0.59	93.5 3.44 0.74	/	/	/	1.84 0.46	/	/							
N101 Huoshiling	3044.00	0.61	90.2 4.40 1.45	0.15	0.20	/	/	2.80	0.77	/	/					
N103 Huoshiling	2335.00	0.72	76.1 14.41	5.45	2.02	/	/	/	/	1.29	0.77	/				
N103 Huoshiling	3011.00	0.69	86.7 8.29	/	/	/	/	3.20	1.86	/	/					
DS19 Huoshiling	2295.50	/	85.6 6.64	2.28 0.33	0.47	0.15	0.51	2.34 1.66	0.01	/	0.04					
DS11 Shahezi	2368.50	/	85.7 6.65	2.27	0.33	0.47	0.15	0.51	2.25 1.58	0.01	/	0.04				
DS11 Shahezi	2368.50	/	92.5 3.45	0.69 0.20	0.13	0.08	0.21	2.49	0.14	0.08	/	0.03				
DS11 Shahezi	2369.50	/	94.0 3.90	0.72 0.21	0.13	0.08	0.12	0.71	/	0.10	/	0.02				
DS11 Shahezi	2370.50	/	85.6 6.64	2.28 0.33	0.47	0.15	0.51	2.34	1.66	0.01	/	0.04				
DS15 Shahezi	2578.00	/	91.2 6.04	1.33 0.15	0.06	/	/	1.14	0.05	0.01	/	0.02				
DS15 Shahezi	2578.00	/	91.2 6.04	1.32 0.14	0.06	/	/	1.13	0.05	0.01	/	0.02				
N101 Shahezi	2354.40	/	87.2 3.39	0.68 0.20	0.13	0.09	1.54	6.47	0.20	0.08	/	0.03				
N101 Shahezi	2354.50	0.62	90.7 3.33	1.30 0.32	0.28	/	/	1.61	2.44	/	/					
N101 Shahezi	2354.90	0.60	91.9 3.26	1.08	/	0.16	/	/	2.37	1.20	/	/				
DS12 Yingcheng	2662.38	0.71	79.0 9.58	4.49	0.82	0.92	0.27	0.32	3.77	0.81	/	/				
DS12 Yingcheng	2664.75	0.70	80.1 9.75	4.28	0.75	0.89	0.24	0.27	3.23	0.52	/	/				
DS17 Yingcheng	2249.00	/	87.2 3.39	0.68	0.20	0.13	0.09	1.54	6.47	0.20	0.08	/	0.03			
DS17 Yingcheng	2249.00	/	92.5 3.45	0.69	0.20	0.13	0.08	0.21	2.49	0.14	0.08	/	0.03			
DS17 Yingcheng	2273.50	/	94.2 3.69	0.72	0.21	0.13	0.08	0.12	0.71	/	0.10	/	0.02			
DS2 Yingcheng	2368.50	0.71	85.3 6.07	1.98	0.44	0.55	0.19	0.30	0.67	4.46	/	/				
H12 Yingcheng	2163.50	0.73	74.0 12.15	4.77	1.24	1.05	0.26	0.32	6.03	0.16	/	/				
H3 Yingcheng	1971.50	0.71	80.7 5.55	4.39	1.23	1.04	0.41	0.52	2.19	2.01	/	/				
H3 Yingcheng	1971.70	0.70	82.3 7.46	4.10	1.18	0.99	0.39	0.49	1.88	1.02	/	/				
H3 Yingcheng	1971.70	0.69	83.6 7.67	4.15	1.19	1.00	0.39	0.48	0.92	0.62	/	/				
H5 Yingcheng	1665.20	0.69	82.6 8.06	3.71	0.95	0.90	0.35	0.48	2.68	0.31	/	/				
H5 Yingcheng	1665.20	0.67	84.4 8.09	3.39	0.82	0.86	0.32	0.44	1.57	0.09	/	/				
H5 Yingcheng	1897.00	0.72	80.7 8.69	5.05	1.47	1.26	0.54	0.78	1.20	0.30	/	/				
Figure 3. Relationships between the burial depth, the contents of chemical components and density of the natural gas in the deep formations of the Dehui Depression, SLB. (a) for CH$_4$; (b) for C$_2$; (c) for dryness coefficient; (d) for CO$_2$; (e) for N$_2$; (f) for density.

Methane is the main gas among the hydrocarbons, accounting for 74.0%–95.9% (Avg. = 87.4%), and the average methane contents in the J$_3$h, K$_1$sh, and K$_1$yc are 89.2%, 90.0%, and 83.6%, respectively. The contents of C$_2$ in the J$_3$h, K$_1$sh, and K$_1$yc are 0.8%–21.9% (Avg. = 7.3%), 4.5%–10.4% (Avg. = 6.8%), and 4.8%–19.8% (Avg. = 13.0%), respectively. The dryness coefficients (C$_1$/C$_1$-5) of gaseous hydrocarbons in the J$_3$h, K$_1$sh, and K$_1$yc are 0.78–0.99 (Avg. = 0.93), 0.89–0.95 (Avg. = 0.93), and 0.79–0.95 (Avg. = 0.87), respectively.

The contents of CO$_2$ in the J$_3$h, K$_1$sh, and K$_1$yc are 0–4.77% (Avg. = 1.56%), 0–2.44% (Avg. = 0.90%), and 0.09%–4.46% (Avg. = 0.89%), respectively, and the contents of N$_2$ in the J$_3$h, K$_1$sh, and K$_1$yc are 0–3.20% (Avg. = 1.88%), 0.71%–6.47% (Avg. = 2.28%), and 0.67%–6.47% (Avg. = 2.60%), respectively.

Helium is the predominant noble gas, accounting for 0–4.45% (Avg. = 0.91%), 0.02%–0.04% (Avg. = 0.03%), and 0.02%–0.04% (Avg. = 0.03%), respectively, in the J$_3$h, K$_1$sh, and K$_1$yc of the Dehui Depression.
4.2. Stable Hydrogen and Carbon Isotopes

The stable carbon isotope values for gases in the H-YFs of the Dehui Depression are shown in Figure 4 and Table 2. The δ^{13}C_1 values in the J_{3h}, K_{1sh}, and K_{1yc} are −42.5‰−34.3‰ (Avg. = −38.7‰), −37.0‰−30.2‰ (Avg. = −34.2‰), and −40.3‰−30.8‰ (Avg. = −33.7‰), respectively, and the δ^{13}C_2 values in the J_{3h}, K_{1sh}, and K_{1yc} are −33.9‰−27.3‰ (Avg. = −30.9‰), −33.7‰−25.0‰ (Avg. = −28.0‰), and −26.6‰−24.7‰ (Avg. = −25.2‰), respectively. The δ^{13}C_3 values in the J_{3h}, K_{1sh}, and K_{1yc} are −32.9‰−27.4‰ (Avg. = −29.1‰), −32.8‰−22.9‰ (Avg. = −26.4‰), and −24.6‰−22.8‰ (Avg. = −23.9‰), respectively. The values of stable carbon isotope for CO_2 range from −20.4‰ to −13.0‰, with a mean of −16.1‰.

Figure 4. Relationships between the burial depth and the stable carbon isotopes of the natural gas in the deep formations of the Dehui Depression, SLB. (a) for δ^{13}C_1; (b) for δ^{13}C_2; (c) for δ^{13}C_3.

The stable hydrogen isotope values of CH_4 in the J_{3h} and K_{1sh} are −211‰ and −216‰, respectively, and those of ethane in the two formations are −213‰ and −215‰, respectively (Table 3).

4.3. Light Hydrocarbons of Natural Gas

The chemical components of the light hydrocarbon fraction are shown in Table 4. C_5–C_7 compounds are the main components, including heptane (n-C_7), methylcyclohexane (MCH), and dimethylcyclopentane (DMCP)). For the C_7 compounds in the J_{3h}, the relative contents of ΣDMCP is the highest (16.6% to 59.1%, average of 39.3%), and that of n-C_7 and MCH is 20.9%–34.0% (Avg. = 28.3%) and 20.0%–55.1% (Avg. = 32.4%), respectively. For the C_7 compounds in the K_{1sh}, the relative contents of ΣDMCP is the highest (17.1% to 47.1%, average of 33.6%), and that of n-C_7 and MCH is 24.8%–38.6% (Avg. = 29.9%) and 24.9%–57.5% (Avg. = 36.5%), respectively. For the C_7 compounds in the K_{1yc}, the relative abundance of MCH is the highest (39.2% to 68.9%, average of 57.2%), and that of n-C_7 and ΣDMCP is 18.0%–44.0% (Avg. = 27.5%) and 13.1%–16.8% (Avg. = 15.4%), respectively.

The fingerprints of light hydrocarbons (C_5–C_7) of the mudstone and natural gas samples, including 11 mudstone samples and six gas samples, have been listed in Table 5, and 15 fingerprint parameters are selected in this study.
Table 2. Stable carbon isotopes of the natural gas in the H-YFs of the Dehui Depression, SLB.

Sample no.	Well	Layer	Depth (m)	δ\(^{13}\)CO\(_2\) (‰)	δ\(^{13}\)CH\(_4\) (‰)	δ\(^{13}\)C\(_2\)H\(_6\) (‰)	δ\(^{13}\)C\(_3\)H\(_8\) (‰)	δ\(^{13}\)iC\(_4\)H\(_10\) (‰)	δ\(^{13}\)nC\(_4\)H\(_10\) (‰)
1	DS11	Huoshiling	2553.00	/	/	-34.3	-27.3	-28.3	/
2	DS12	Huoshiling	3328.90	/	/	-37.3	-34.8	-33.0	/
3	DS12	Huoshiling	3328.50	/	/	-35.3	-34.9	-32.9	/
4	N103	Huoshiling	2336.00	/	/	-38.0	-29.9	-28.4	/
5	N103	Huoshiling	2337.20	/	/	-42.4	-30.1	-28.2	-26.9
6	N103	Huoshiling	2335.50	/	/	-42.5	-30.2	-28.1	/
7	N103	Huoshiling	2335.00	/	/	-40.4	-30.5	-27.9	/
8	N103	Huoshiling	2335.20	/	/	-40.3	-30.3	-27.9	-26.8
9	N103	Huoshiling	2336.20	/	/	-37.8	-29.8	-27.4	-26.3
10	DS15	Shahezi	2578.50	/	/	-32.5	-25.4	-23.5	/
11	DS15	Shahezi	2578.00	/	/	-32.5	-25.3	-23.5	/
12	DS39-3	Shahezi	2232.40	/	/	-35.9	-25.0	-22.9	/
13	DS39-3	Shahezi	2232.00	/	/	-35.9	-25.2	-22.9	/
14	N101	Shahezi	2354.90	/	/	-37.0	/	/	/
15	N101	Shahezi	2354.50	/	/	-35.9	-33.7	-32.8	/
16	N101	Shahezi	2354.40	/	/	-36.9	-33.7	-32.8	-31.7
17	N101	Shahezi	2022.46	/	/	-33.7	/	/	/
18	N101	Shahezi	2021.46	/	/	-30.2	/	/	/
19	N104	Shahezi	1935.50	/	/	-31.4	/	/	/
20	DS21	Yingcheng	1756.50	/	/	-30.8	-24.7	-24.6	/
21	DS21	Yingcheng	1756.00	/	/	-30.9	-24.8	-24.6	/
22	DS35	Yingcheng	1400.00	-13.0	-36.4	-26.6	-23.9	/	
23	H3	Yingcheng	1971.50	/	/	-34.5	-25.3	-22.8	/
24	H3	Yingcheng	1971.70	-20.4	-34.6	-25.3	-22.8	-23.1	/
25	H4	Yingcheng	1508.70	-14.9	-31.1	-24.8	-24.2	/	/
26	H4	Yingcheng	1508.50	/	-31.0	-24.9	-24.1	/	/
27	N102	Yingcheng	1785.00	/	-40.3	/	/	/	/
Table 3. Stable hydrogen isotopes of the natural gas in the H-YFs of the Dehui Depression, SLB.

Well	Layer	Depth (m)	δ^D % (VSMOW)				
			C_1	C_2	C_3	iC_4	nC_4
DS12	Shahezi	3067.00	−211	−213	−219	/	/
DS12	Huoshiling	3328.90	−216	−215	−192	/	/

Table 4. Relative contents of light hydrocarbons (C_{5-7}) in the natural gases of the deep formations in the Dehui Depression, SLB.

Well	Layer	Depth (m)	Relative Contents of Light Hydrocarbons (C_{5-7}) (%)		
			$n-C_7$	$\Sigma DMCP$	MCH
DS16	Huoshiling	2290.00	20.9	59.1	20.0
DS16	Huoshiling	2291.00	24.1	55.0	20.8
DS16	Huoshiling	3060.00	32.0	47.1	20.8
DS16	Huoshiling	3080.00	28.3	48.0	23.7
DS16	Huoshiling	3065.00	27.0	49.3	23.7
DS12	Huoshiling	3335.00	30.2	44.9	24.9
DS12	Huoshiling	3340.00	30.2	43.1	26.7
DS12	Huoshiling	3328.90	34.0	34.1	25.0
DS19	Huoshiling	2295.50	25.5	29.1	45.4
DS11	Huoshiling	2556.00	31.7	16.6	51.7
DS11	Huoshiling	2553.00	29.7	18.6	51.7
DS11	Huoshiling	2562.00	27.6	17.3	35.1
DS2	Shahezi	2844.50	28.0	47.1	24.9
DS2	Shahezi	2845.50	29.0	44.1	27.0
DS12	Shahezi	2393.00	29.8	42.6	27.6
DS12	Shahezi	2396.00	33.7	36.7	29.6
DS12	Shahezi	2400.00	38.6	28.8	32.6
DS15	Shahezi	2578.00	24.8	19.1	56.1
DS15	Shahezi	2578.00	25.5	17.1	57.4
DS17	Yingcheng	2273.50	44.0	16.8	39.2
DS13	Yingcheng	1656.50	20.4	16.1	63.5
DS13	Yingcheng	1658.50	18.0	13.1	68.9
Table 5. Fingerprint parameters of light hydrocarbons (C$_5$-C$_7$) in the natural gases of the deep formations in the Dehui Depression, SLB.

Sample number	1	2	3	4	5	6	7	8	9	10	11	a	b	c	d	e	f
Sample type	Rock	Gas	Gas	Gas	Gas	Gas	Gas										
Well	DS12	DS2	DS2	DS2	DS12	DS12	DS12	DS12	DS12	DS12	DS16	DS11	DS12	DS12	DS16	DS11	DS12
Location	Huajia	Huajia															
Layer	K$_1$yc	K$_1$yc	K$_1$sh	K$_1$sh	K$_1$sh	J$_3$h	J$_3$h										
Depth (m)	1972.00	2453.70	2459.05	2329.38	2337.00	2640.50	2867.50	3264.50	3381.00	2593.00	2664.00	2553.00	3328.90	3067.00	2578.00	2273.50	2295.50
iC$_5$/nC$_5$	2.11	1.10	1.22	0.68	0.70	1.28	1.14	1.06	1.24	1.57	1.18	1.54	1.12	1.12	1.12	1.12	1.12
MCH/nC$_7$	2.62	1.24	1.90	1.53	1.60	1.94	1.93	1.05	2.05	2.27	1.83	1.61	1.96	0.87	3.10	2.22	1.76
2,2-DMB/2-MP	0.13	0.14	0.20	0.06	0.06	0.09	0.11	0.14	0.12	1.30	0.13	0.14	0.25	0.40	0.54	1.67	0.25
2,2-DMB/3-MP	0.23	0.25	0.32	0.11	0.10	0.14	0.19	0.22	0.20	0.53	0.20	0.18	0.39	0.64	0.85	2.49	0.43
2-MP/3-MP	1.76	1.72	1.65	1.71	1.68	1.62	1.71	1.59	1.65	0.41	1.60	1.34	1.58	1.61	1.59	1.49	1.75
2-MP/nC$_6$	0.77	0.66	0.77	0.41	0.41	0.49	0.58	0.32	0.64	0.24	0.54	0.49	0.68	1.03	1.50	1.92	0.89
2-MP/3-MH	2.00	1.38	1.66	1.94	1.76	1.82	1.87	1.04	1.50	0.27	1.08	1.67	1.94	2.74	2.83	3.20	3.18
nC$_6$/CH	0.62	1.89	1.32	2.19	1.96	1.05	1.45	2.02	1.20	0.99	1.35	1.40	1.06	3.79	1.14	2.22	2.28
MCP/MCH	0.20	0.28	0.30	0.29	0.26	0.29	0.30	0.23	0.23	0.14	0.19	0.54	0.52	0.66	0.32	0.11	0.51
1,3-DMCP/1,2-DMCP	0.55	0.67	0.67	0.67	0.74	0.67	0.68	0.62	0.64	0.42	0.47	0.66	0.75	0.62	0.42	0.33	3.30
MCH Index	0.63	0.49	0.57	0.53	0.54	0.58	0.57	0.46	0.58	0.59	0.56	0.52	0.55	0.39	0.64	0.57	0.45
nC$_6$/((MCP+2,2-DMC)	1.14	2.11	1.67	2.83	2.68	1.45	2.79	1.62	1.23	1.73	1.62	1.39	2.62	1.13	1.82	1.91	3.68
3-MH/(L,1-DMCP+1,3-DMCP)	1.30	3.95	3.06	2.09	1.86	1.49	1.90	2.64	1.89	2.12	2.26	2.23	2.17	4.87	4.27	4.95	0.72
2,3-DMM/2-MHn	0.33	0.15	0.00	0.12	0.14	0.17	0.22	0.09	0.20	0.38	0.30	0.31	0.27	0.32	0.40	0.76	0.34
(4-MHp+3,4-DMM)/3-MHp	0.66	0.43	0.38	0.21	0.20	0.31	0.40	0.44	0.39	0.62	0.65	0.39	0.70	0.32	0.40	1.00	0.49
5. Discussion

5.1. Gas Origins

The gas origins and the deposition environments of its parent material can be favorably identified utilizing gas chemical compositions and stable hydrogen and carbon isotopes [1,42,78–82,94]. Generally, a gas can be identified as organic or inorganic type. Dai et al. [41] proposed that: a) for the organic origin, the CO₂ content is less than 15% and δ¹³C₀₂ value is < −10‰; b) for the inorganic origin, the CO₂ content is over 60% and δ¹³C₀₂ value is > −8‰. Moreover, the thermogenic gas is predominantly characterized by δ¹³C₁<δ¹³C₂<δ¹³C₃<δ¹³C₄ (called normal carbon isotopic distribution pattern), while the negative carbon isotopic distribution pattern (δ¹³C₁>δ¹³C₂>δ¹³C₃>δ¹³C₄) generally indicates the inorganic type of natural gas [3,46,95,96]. In the Dehui Depression, the CO₂ contents and δ¹³C₀₂ values of the deep natural gas are mainly less than 5% and lower than −10‰, respectively, and the carbon isotopic distribution patterns of the gas hydrocarbons predominantly show the normal patterns, indicating that the origins of the deep natural gas are predominantly organic sources. However, as shown in Table 1 and Figure 5, parts with reversed δ¹³C series, including δ¹³C₁<δ¹³C₂<δ¹³C₃<δ¹³C₄, δ¹³C₁<δ¹³C₃<δ¹³C₂ and δ¹³C₂<δ¹³C₁<δ¹³C₃, exist in the study area, suggesting that secondary processes may have happened to the gas.

![Figure 5](image-url)
According to the gas parent materials, the oil-associated gas and coal-derived gas should be the two types. The $\delta^{13}C_2$ and $\delta^{13}C_3$ mainly reflect the inheritance of parent material, which can be utilized to differentiate between coal-derived gas and oil-associated gas [1,97–99]. It is favorably effective to use this method for gas derived from a single source, however, it is more complicated to identify the mixed sources of gas [42,94,100,101]. According to a number of analyses in China, Dai et al. [42] pointed out that gases derived from humic and sapropelic kerogens are characterized by the $\delta^{13}C_2 > -27.5\%$ and $\delta^{13}C_2 < -29.0\%$, respectively, while the gases of mixed origins are featured by $\delta^{13}C_2$ values between -27.5% and -29.0%. The cross-plots of $\delta^{13}C_1$-$\delta^{13}C_2$ show that the J_3h gases are mainly oil-associated gas derived from sapropelic kerogens, with a bit of coal-derived gas, and the K_3sh gases are mixed-sources of coal-derived and oil-associated gases, while the K_1yc gases are predominantly coal-derived gas derived from the humic kerogens (Figure 6). Moreover, according to the $\delta^{13}C_1$-$\delta^{13}C_2$-$\delta^{13}C_3$ cross-plots for the discrimination of coal-derived and oil-associated gases proposed by Dai [3], the results are similar that the gases in the J_3h and K_3sh are mainly the mixed-sources of coal-derived and oil-associated gases, while the K_1yc gases are predominant coal-derived gases (Figure 7).

Figure 6. $\delta^{13}C_1$-$\delta^{13}C_2$ cross-plots for the determination of gas origins in the deep formations of the Dehui Depression, SLB.

Figure 7. Cross-plots of $\delta^{13}C_1$-$\delta^{13}C_2$-$\delta^{13}C_3$ indicating the gases origins in the deep formations of the Dehui Depression, SLB.
Besides, the $\delta^2\text{D}_{\text{CH}_4}$ value can be an indicator to determine the deposition environment ($\delta^2\text{D}_{\text{CH}_4} < -190\%$ for marine and lacustrine brackish environments and $\delta^2\text{D}_{\text{CH}_4} > -170\%$ for terrigenous fresh water environments [82,102]), while the $\delta^2\text{D}_{\text{C}_2\text{H}_6}$ value can be used to ascertain the parent material types [81,103,104]. The hydrogen isotope distribution of the J$_3$sh gas shows a normal pattern, while that of the K$_1$sh gas shows a negative pattern, indicating that the gases in the K$_1$sh may be affected by bacterial action or be mixed-sources of coal-derived and oil-associated gases. Moreover, the gases in the deep formations of Dehui Depression are produced by both terrigenous and lacustrine organic matters.

Generally, the relative contents of heptane (n-C_7), MCH, and \sumDMCP are useful parameters to analyze the gas origins [88,105–107]. Heptane (n-C_7) from algae and bacteria is sensitive to thermal maturation. As a result of a high thermodynamic stability, methylcyclohexane (MCH), mainly derived from components of terrestrial higher plants, is a good gas origin indicator, suggesting that a gas with a high MCH content should be the typical humic-type [106]. On the contrary, a gas with a high abundance of dimethylcyclopentane (DMCP), mainly sourced by aquatic microorganisms, is mainly considered to be of sapropelic-type [108]. In China, the ternary chart of n-C_7, MCH and \sumDMCP has been broadly utilized to differentiate the coal-derived and oil-associated gases [106,108]. The J$_3$sh and K$_1$sh gases are mainly mixed sources of coal-derived and oil-associated gases, while the K$_1$yc gases are predominantly coal-derived, as shown in Figure 8.

![Figure 8. Ternary diagram showing C$_7$ light hydrocarbons in natural gas in the deep formations of the Dehui Depression, SLB (modified after [108]).](image)

Consequently, natural gases in the deep formations of Dehui Depression are predominantly of organic origin. The J$_3$sh and K$_1$sh gases are predominantly mixed-sources of coal-derived and oil-associated gases and the proportion of oil-associated gas in the J$_3$sh is larger, while the K$_1$yc gases are predominantly coal-derived.

5.2. Genetic Types of Gas Hydrocarbons

Hydrocarbon gases are predominantly viewed to be from organic matter conversion by kerogen thermal-degradation, oil and gas cracking, and even bacterial action [1–10]. Generally, the $\delta^{13}\text{C}_1$ values and dryness coefficients, mainly affected by thermal maturity, can be as the effective indexes of gas thermal maturity [42,94,109]. Bernard et al. [110] proposed using the cross-plots of $C_1/(C_2 + C_3)$-$\delta^{13}\text{C}_1$ to distinguish the gas origins of both kerogen type and thermal maturity. As shown in Figure 9a,b,
the majority of the gases in the H-YFs belong to the thermogenic gas, and the parent materials of the J$_3$h and K$_1$sh gases are the mixed-sources of kerogen type II (sapropelic-humic) and type III (humic), while those of the K$_1$yc gas are mainly kerogen III (humic).

As the extensively studied before, the stable carbon isotopes of hydrocarbon gases have favorable correlations with the thermal maturity of their source rocks [1,40,78,112]. According to the geological observations and numerous statistics in the lacustrine basins of China, Dai [81] has proposed a semi-logarithmic equation between $\delta^{13}C_1$ value and vitrinite reflectance ($%Ro$):

$$\delta^{13}C_1 = 15.80 \log Ro - 42.20$$ (1)

$$\delta^{13}C_1 = 14.12 \log Ro - 34.39$$ (2)

Equation (1) is for oil-associated gas and Equation (2) is for coal-derived gas. According to these two equations, the source rock maturity can be estimated (Table 6). The thermal maturities of the J$_3$h gas range from 0.96 %Ro to 2.73 %Ro with a mean of 1.57 %Ro, and those of the K$_1$sh gas are 0.78–2.49 %Ro with a mean of 1.49 %Ro, while those of the K$_1$yc gas are 0.73–1.77 %Ro with an average of 1.37 %Ro. These indicate that these gases were mainly the products of the mature to over-mature source rocks, predominantly generated by thermal degradation and cracking.

James [113] and Jenden et al. [114] proposed that the values of $\delta^{13}C_3$-$\delta^{13}C_2$ and $\delta^{13}C_2$-$\delta^{13}C_1$ reduce with the increasing thermal maturity of gas. As shown in Figure 10a, the gases in the H-YFs predominantly belong to the mature gas class (Figure 10a). As shown in Figure 10b, the J$_3$h gas is mainly located on the trend line of kerogen type II with 0.6–1.2 %Ro, and the K$_1$sh gas is mainly located on the trend lines of kerogen type II and type III with 0.7 %Ro and 0.8 %Ro, respectively, while the K$_1$yc gas is mainly located in the trend line of kerogen type III with 0.7–0.9 %Ro, indicating that all the deep gas hydrocarbons are thermogenic and mature gases.
Energies 2019, 12, x FOR PEER REVIEW 5 of 28

Table 6. Thermal-maturity of the natural gas calculated by the formula $\delta^{13}C_1$-Ro in the Dehui Depression, SLB.

Sample no.	Well	Layer	Depth (m)	$\delta^{13}CH_4$ (%)	$\delta^{13}C_2H_6$ (%)	$\delta^{13}C_3H_8$ (%)	Gas Type	Ro (%)
1	DS11	Huoshiling	2553.00	−34.3	−27.3	−28.3	Coal-derived	1.01
2	DS12	Huoshiling	2328.90	−37.3	−34.8	−33.0	Oil-associated	2.04
3	DS12	Huoshiling	3328.50	−35.3	−34.9	−32.9	Oil-associated	2.73
4	N103	Huoshiling	2336.00	−38.0	−29.9	−28.4	Oil-associated	1.85
5	N103	Huoshiling	2337.20	−42.4	−30.1	−28.2	Oil-associated	0.97
6	N103	Huoshiling	2335.50	−42.5	−30.2	−28.1	Oil-associated	0.96
7	N103	Huoshiling	2335.00	−40.4	−30.5	−27.9	Oil-associated	1.30
8	N103	Huoshiling	2335.20	−40.3	−30.3	−27.9	Oil-associated	1.32
9	N103	Huoshiling	2336.20	−37.8	−29.8	−27.4	Oil-associated	1.90
10	DS15	Shahezi	2578.00	−32.5	−25.4	−23.5	Coal-derived	1.35
11	DS15	Shahezi	2578.00	−32.5	−25.3	−23.5	Coal-derived	1.35
12	DS39-3	Shahezi	2232.40	−35.9	−25.0	−22.9	Coal-derived	0.78
13	DS39-3	Shahezi	2232.00	−35.9	−25.2	−22.9	Coal-derived	0.78
14	N101	Shahezi	2354.50	−35.9	−33.7	−32.8	Oil-associated	2.49
15	N101	Shahezi	2354.40	−36.9	−33.7	−32.8	Oil-associated	2.17
20	DS21	Yingcheng	1756.00	−30.8	−24.7	−24.6	Coal-derived	1.77
21	DS21	Yingcheng	1756.00	−30.9	−24.8	−24.6	Coal-derived	1.74
22	DS35	Yingcheng	1450.00	−36.4	−26.6	−23.9	Coal-derived	0.73
23	H3	Yingcheng	1971.50	−34.5	−25.3	−22.8	Coal-derived	0.98
24	H3	Yingcheng	1971.70	−34.6	−25.3	−22.8	Coal-derived	0.97
25	H4	Yingcheng	1508.70	−31.1	−24.8	−24.2	Coal-derived	1.20
26	H4	Yingcheng	1508.50	−31.0	−24.9	−24.1	Coal-derived	1.71

Prinzhofe and Huc [43] established the cross-plots of $\ln(C_2/C_3)$ vs. $\ln(C_1/C_2)$ to distinguish gases generated from both primary degradation (also called primary cracking) and secondary cracking. The C_1/C_2 ratios rise gradually in the primary degradation and mainly keep constant in the secondary cracking, while the C_2/C_3 ratios mainly keep constant in the primary degradation and rise dramatically in the secondary cracking. The gases in the J_{sh} are mainly sourced from kerogen type II and type III and generated by the primary kerogen degradation and secondary oil cracking, and the gases in the K_{sh} are mainly sourced by kerogen type III and generated by primary kerogen degradation, while the K_{yc} gases are mainly sourced by kerogen type II and type III and generated by primary kerogen degradation (Figure 11).
Lorant et al. [111] established the cross-plots of C_2/C_3 vs. $\delta^{13}C_2-\delta^{13}C_3$ to distinguish gases generated by primary degradation and secondary cracking. The gases in the J$_{3sh}$ and K$_{1sh}$ mainly plot in the secondary oil cracking area, with a bit in the primary degradation area, while the gases in the K$_{1yc}$ are located in the primary degradation area. Consequently, the gases in the deep formations of Dehui Depression are predominantly thermogenic types. The gases in the J$_{3sh}$ and K$_{1sh}$ are mainly generated by primary kerogen degradation and secondary oil cracking, while the gases in the K$_{1yc}$ are mainly produced by primary kerogen degradation.

5.3. Gas-Source Correlation

Although many features of the Cretaceous petroleum system of the SLB are known, the gas-source correlation in the deep formations are not fully understood. Huang et al. [9], Zhang et al. [72], Chen [77] and Shen and Liang [83] have proposed that the mudstones in J$_{3sh}$, K$_{1sh}$, and K$_{1yc}$, with high organic abundance (TOC = ~2.5 wt.%), high thermal maturity (Ro = ~1.5–2.0%) and type II-III kerogens, are the main source rocks for gas in the deep formations of the SLB. The main deficiency in the understanding of the multi-source, multi-reservoir gas system in the deep formations is gas-source correlation. Considering the huge lateral extension of the basin and sets of vertically-developed source rocks and reservoir rocks, the gas-source correlation is challenging. A recent attempt, which tried to determine possible source rocks for the J$_{3sh}$ gases using their chemical components and stable carbon isotopes [77], showed that the J$_{3sh}$ gas was mainly sourced by the J$_{3sh}$ mudstones. However, the sources of the gases in the K$_{1sh}$ and K$_{1yc}$ are still unknown.

Generally, the gas chemical components and stable carbon isotopes are influenced by the parent materials, thermogenic actions, migration, and bacterial actions. As shown in Figures 3 and 4, the C_1 contents and dryness coefficients rise with the increasing burial depth, while the C_2 contents reduce with the increasing burial depth, indicating that the gases in the deep formations were predominantly generated by thermogenic actions and accumulated in/approaching the source rocks. Besides, corresponding to the results, the density of gases in the deep formations decrease with the increasing burial depth. The results suggest that the gases in the deep formations should be mainly sourced by the J$_{3sh}$ and K$_{1sh}$ mudstones, or just the J$_{3sh}$ mudstones.

The relative contents of light hydrocarbon components with similar boiling points can be the fingerprints to ascertain the gas genetic type and access gas-source correlation. The fingerprint trends of the light hydrocarbons in the mudstones of the J$_{3sh}$ and K$_{1sh}$ do not display any obvious differences, while those in the K$_{1yc}$ show some differences (Figure 12). In Figure 12a,b, the fingerprint trends of the gases in the middle J$_{3sh}$ of Well DS11 and the lower J$_{3sh}$ of Well DS12 show high coherence with
those of the mudstone samples in the J3h of the Huajia Sag, indicating that the gases accumulated in
the low-middle J3h are predominantly sourced by the J3h source rocks, corresponding to the results
proposed by Shen and Liang (2015) [77]. In Figure 12c–d, about 70% of the total fingerprint parameters
of the gases in the upper J3h of Well DS12 and the K1sh of Well DS15 show similar trends with those
of the mudstones in the J3h and K1sh, suggesting that the gases in the K1sh and the upper J3h are
mainly produced by the mudstones both in the J3h and K1sh. In Figure 12e,f, less than 50% of the
total fingerprint parameters of the gases in the J3h of Well DS19 and the K1yc of Well DS17 show
similar trends with those of the mudstones in the deep formations of the Huajia Sag, indicating that
the gases in the Baojia and Nong’annan sags are not sourced by the mudstones of the deep formations
in the Huajia Sag. Combined with the geological conditions in Dehui Depression and the gas chemical
components and density, the gases in the K1yc may be derived from the three sets of source rocks (J3h,
K1sh, and K1yc), or one or two of them through the vertical faults shown in Figure 1.

Figure 12. The fingerprints trends of the gas and source rocks in the deep formations of the Dehui
Depression, SLB, indicating the gas-source correlation. (a) for Well DS11, 2553.00m, gas sample; (b) for
Well DS12, 3328.90m, gas sample; (c) for Well DS12, 3067.00m, gas sample; (d) for Well DS15, 2578.00m,
gas sample; (e) for Well DS17, 2273.50m, gas sample; (f) for Well DS19, 2295.50m, gas sample.
Rooney et al. [44] proposed that if the alkane gas comes from a single source, a linear correlation of carbon number (1/n) vs. $\delta^{13}C_n$ exists. The slope changes of regression line can ascertain the gas-mixing between different types at different thermal-maturity stages, and also indicate the bio-genetic gas and methane seepage [44]. In Figure 5d, the trends of 1/n vs. $\delta^{13}C_n$ of the J_3h alkane gases in the Huajia sag mainly show linear relationships with bits of nonlinear relationships and can be divided into three groups (Groups A, B, and C), indicating the J_3h gases may have two types (coal-derived and oil-associated gases) with two sources (maybe both the J_3h and the K_1sh mudstones). According to the Figure 5e, the trends of 1/n vs. $\delta^{13}C_n$ of the alkane gases in the K_1sh of the Huajia (Well DS15 and Well N101) and Lanjia (Well DS39-3) sags mainly indicate predominant linear relationships and can be divided into three groups (Groups D, E, and F), and the slopes of the samples in each sag are similar. The Group D is similar with the Group B, and the Group E is similar with the Group A, and the Group F is similar with the Group C. Combined with the gas origins and genic types studied above (Sections 5.1 and 5.2), these three groups (Group D, E, and F) suggest that the two types gases (coal-derived and oil-associated gases) derived from two sources (two sags) may be mixed. Additionally, in Figure 5f, the trends of 1/n vs. $\delta^{13}C_n$ of the alkane gases in the K_1yc of the Huajia (Well DS21) and Lanjia (Well DS35, Well H3, and Well H4) sags mainly indicate predominant linear relationships and can be divided into two groups (Group G and H). The Group G is similar with the Group A, and the Group H is similar with the Group C, suggesting that: 1) the two types (oil-associated and coal-derived) of gases may be mixed in the K_1yc; 2) the gases were derived from two sources (two sags) with one-type gas; and 3) the gases of two stages (mature or charging) were mixed. According to the study above (Section 5.1), the gases in the K_1yc are mainly the coal-derived gases and came from the Baojia sag, so the two-group samples (Group F and G) suggest that the gas samples are mainly controlled by the mixed-sources of two mature or charging stages.

According to the geological and geochemical analyses, as shown in Figures 13 and 14, the gas reservoirs in Well DS17 are mainly distributed in the upper K_1yc, and the lithology of the K_1yc is predominantly igneous rocks (dacite) in the location of Well DS17. The gas reservoirs in Well DS11 are mainly distributed in the middle of J_3h and K_1sh, and the reservoir beds are mainly igneous rocks in the K_1sh and sandstones in the J_3h. The source rocks of both Wells DS17 and DS11 are mainly located in the J_3h–K_1sh, and the geochemical characters mainly suggest the good to excellent source rock potentials (Figure 13). The gas reservoirs in the J_3h of Well DS11 are mainly sourced by the underlying J_3h source rocks through the faults, and the gas reservoirs in the K_1sh of Well DS11 may be sourced by both underlying J_3h and overlying K_1sh source rocks through faults and carrier beds, and the gas reservoirs are mainly sourced by the source rocks in the Huajia sag (Figure 14a). The gas reservoirs in the K_1yc of Well DS17 are mainly sourced by the underlying J_3h and K_1sh source rocks through faults and carrier beds, and the gas reservoirs are mainly sourced by the source rocks in the Baojia sags (Figure 14b).

Consequently, the gases in the lower-middle J_3h are predominantly derived from the J_3h mudstones, and the gases in the K_1sh and the upper J_3h are mainly the mixed-sources of both the J_3h and the K_1sh mudstones, while the gases in the K_1yc are mainly derived from either the J_3h mudstones or the K_1sh mudstones, or both the two sets of mudstones. Moreover, the gas accumulations in different sags are mainly controlled by the J_3h and K_1sh mudstones developed in the sags where the gases accumulated, indicating that the gas migration with a short distance was the main migration type in the deep formations of SLB.
the Group F is similar with the Group C. Combined with the gas origins and genetic types studied above (Section 5.1 and 5.2), these three groups (Group D, E, and F) suggest that the two types gases (coal-derived and oil-associated gases) derived from two sources (two sags) may be mixed. Additionally, in Figure 5f, the trends of 1/n vs. δ^{13}C of the alkane gases in the K_{1yc} of the Huajia (Well DS21) and Lanjia (Well DS35, Well H3, and Well H4) sags mainly indicate predominant linear relationships and can be divided into two groups (Group G and H). The Group G is similar with the Group A, and the Group H is similar with the Group C, suggesting that: 1) the two types (oil-associated and coal-derived) of gases may be mixed in the K_{1yc}; 2) the gases were derived from two sources (two sags) with one type gas; and 3) the gases of two stages (mature or charging) were mixed.

According to the study above (Section 5.1), the gases in the K_{1yc} are mainly the coal-derived gases and came from the Baojia sag, so the two-group samples (Group F and G) suggest that the gas samples are mainly controlled by the mixed sources of two mature or charging stages.

According to the geological and geochemical analyses, as shown in Figure 13 and Figure 14, the gas reservoirs in Well DS17 are mainly distributed in the upper K_{1yc}, and the lithology of the K_{1yc} is predominantly igneous rocks (dacite) in the location of Well DS17. The gas reservoirs in Well DS11 are mainly distributed in the middle of J_{3h} and K_{1sh}, and the reservoir beds are mainly igneous rocks in the K_{1sh} and sandstones in the J_{3h}. The source rocks of both Wells DS17 and DS11 are mainly located in the J_{3h}–K_{1sh}, and the geochemical characters mainly suggest the good to excellent source rock potentials (Figure 13). The gas reservoirs in the J_{3h} of Well DS11 are mainly sourced by the underlying J_{3h} source rocks through the faults, and the gas reservoirs in the K_{1sh} of Well DS11 may be sourced by both underlying J_{3h} and overlying K_{1sh} source rocks through faults and carrier beds, and the gas reservoirs are mainly sourced by the source rocks in the Huajia sag (Figure 14a). The gas reservoirs in the K_{1yc} of Well DS17 are mainly sourced by the underlying J_{3h} and K_{1sh} source rocks through faults and carrier beds, and the gas reservoirs are mainly sourced by the source rocks in the Baojia sags (Figure 14b).

Figure 13. Comprehensive geochemical columns of the deep formations in the Dehui Depression, SLB. ((a) is for Well DS 17 and (b) is for Well DS 11.) (The data in the columns are provided by the Research Institute of Petroleum Exploration and Development, Jilin Oilfield Branch, CNPC, which are unpublished.).
Figure 13. Comprehensive geochemical columns of the deep formations in the Dehui Depression, SLB. ((a) is for Well DS 17 and (b) is for Well DS 11.) (The data in the columns are provided by the Research Institute of Petroleum Exploration and Development, Jilin Oilfield Branch, CNPC, which are unpublished.).

Figure 14. Sketch profiles for the gas source and migration in the deep formations of the Dehui Depression, SLB. ((a) is for the profile crossing Well DS 11 and (b) is for the profile crossing Well DS 17.) (The seismic profiles are provided by the Research Institute of Petroleum Exploration and Development, Jilin Oilfield Branch, CNPC, which are unpublished.).

6. Conclusions

Integrated geochemical study suggests the methane contents and stable carbon isotopes and gas dryness coefficients increase with the increasing burial depth in the Dehui Depression, lacustrine SLB. The δ^{13}C series mainly show normal carbon isotopic distribution pattern, with parts of reversal. The gases in the deep formations (generally the H-YFs (156–125 Ma)) of the Dehui Depression are predominantly organic and thermogenic. According to the determination charts utilizing gas components and stable carbon isotopes and the gas thermal maturity calculated by equation of δ^{13}C$_{1}$-Ro%, the gases in the J$_{3}$h (156–145 Ma) and K$_{1}$sh (145–133.9 Ma) are mixed-sources of kerogen thermal degradation and oil secondary cracking, while the gases in the K$_{1}$yc (133.9–125 Ma) are predominantly derived from kerogen thermal degradation.
According to the stable carbon isotopes and fingerprints of light hydrocarbons (C$_{5-7}$), the gases in the lower-middle J$_3$h are sourced by the J$_3$h mudstones, and the gases in the K$_1$sh and the upper J$_3$h are mainly sourced by the J$_3$h and K$_1$sh mudstones, while those in the K$_1$yc are mainly sourced by either the J$_3$h or the K$_1$sh mudstones. In addition, the gas reservoirs in different sags are mainly sourced by the J$_3$h and K$_1$sh source rocks developed in the sags where the gas reservoirs were found, indicating the proximal-source accumulation. These indicate that the gas migration with a short distance was the main migration type in the deep formations of SLB.

Author Contributions: Z.X. and B.P. contributed equally to this work. Y.F. and L.L. provided the funding. C.F. made the formal analysis. M.S. and K.J. provided the data and samples resources. K.W. and Y.C. made the validation.

Funding: This study was jointly supported by the National Natural Science Foundation of China [grant number 41372143], the Research Fund for the Doctoral Program of Higher Education of China [grant number 2013007110002], the National Construction of High-quality University Projects of Graduates from China Scholarship Council (CSC) [NO. 201806440137], the Scientific and Technology Innovation Fund Supported by Coal Mining Research Branch [grant number KJ-2019-TDKCMS-03], and the project of Shaanxi Provincial Land Engineering Construction Group (grand number DJNY2019-23).

Acknowledgments: The authors thank the Research Institute of Petroleum Exploration and Development, Jilin Oilfield Branch, CNPC for providing basic data and the permission to publish the results.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The compounds and abbreviations of the light hydrocarbons are as follows:

Compound	Abbreviation
Isopentane	iC$_5$
n-Pentane	nC$_5$
n-Hexane	nC$_6$
n-Heptane	nC$_7$
Methylcyclohexane	MCH
2,2-Dimethylbutane	2,2-DMB
2-Methylpentane	2-MP
3-Methylpentane	3-MP
2,2-Dimethylpentane	2,2-DMP
3-Methylhexane	3-MH
Cyclohexane	CH
Methylcyclopentane	MCP
1,1-Dimethylcyclopentane	1,1-DMCP
1,trans3-Dimethylcyclopentane	1,t3-DMCP
1,trans2-Dimethylcyclopentane	1,t2-DMCP
1,cis3-Dimethylcyclopentane	1,c3-DMCP
MCH/(n-Heptane+MCH+ΣDMCP)	MCH Index
2,3-Dimethylhexane	2,3-DMH
3,4-Dimethylhexane	3,4-DMH
2-Methylheptane	2-MHp
3-Methylheptane	3-MHp
4-Methylheptane	4-MHp

References

1. Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. *Geochim. Cosmochim. Acta* **1980**, *44*, 649–661. [CrossRef]
2. Schoell, M. Natural gases and their use in exploration and production. *Am. Assoc. Pet. Geol. Bull.* **1996**, *80*, 1829–1830.
3. Dai, J.X. Identification and distinction of various alkane gases. *Sci. China Ser. B Chem.* **1992**, *35*, 1246–1257.
4. Dai, J.X.; Pei, X.G.; Qi, H.F. *Natural Gas Geology in China*; Petroleum Industry Press: Beijing, China, 1992.
5. Laurent, M.; Mango, F.D.; Hightower, J. The catalytic decomposition of petroleum into natural gas. *Geochim. Cosmochim. Acta* 1997, 61, 5347–5350.

6. Prinzhofer, A.A.; Pernaton, E. Isotopically light methane in natural gas: Bacterial imprint of diffusive fractionation. *Chem. Geol.* 1997, 142, 193–200. [CrossRef]

7. Zhu, G.Y.; Jin, Q.; Zhang, S.C.; Dai, J.X.; Zhang, L.Y.; Li, J. Character and genetic types of shallow gas pools in Jiyang depression. *Org. Geochem.* 2005, 36, 1650–1663. [CrossRef]

8. Zhang, S.C.; Zhu, G.Y. Natural gas origins of large and medium-scale gas fields in China sedimentary basins. *Sci. China Ser. D Earth Sci.* 2008, 51, 1–13. [CrossRef]

9. Zhang, S.C.; Zhang, B.; Zhu, G.Y.; Wang, H.T.; Li, Z.X. Geochemical evidence for coal-derived hydrocarbons and their charge history in the Dabei Gas Field, Kuqa Thrust Belt, Tarim Basin, NW China. *Mar. Petrol. Geol.* 2011, 28, 1364–1375. [CrossRef]

10. Dai, J.X. Discussion on gas pools of mixed origins and the controlling factors. *Exp. Petrol. Geol.* 1986, 8, 325–334.

11. Dai, J.X.; Zou, C.N.; Qin, S.F.; Tao, S.Z.; Ding, W.W.; Liu, Q.Y.; Hu, A.P. Geology of giant gas fields in China. *Exp. Petrol. Geol.* 2008, 25, 320–334. [CrossRef]

12. Krouse, H.R.; Viau, C.A.; Eliuk, L.S.; Ueda, A.; Halas, S. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. *Nature* 1988, 333, 415–419. [CrossRef]

13. Wilhelms, A.; Larter, S.R.; Leythaeger, D.; Dyvik, H. Recognition and quantification of the effects of primary migration in a Jurassic clastic source rock from the Norwegian continental shelf. *Org. Geochem.* 1990, 16, 103–113. [CrossRef]

14. Worden, R.H.; Smalley, P.C.; Oxtoby, N.H. The effects of thermochemical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate reservoirs. *Geochim. Cosmochim. Acta* 1996, 60, 3925–3931. [CrossRef]

15. Tang, Y.; Perry, J.K.; Jenden, P.D.; Schoell, M. Mathematical modeling of stable isotope ratio in natural gases. *Geochim. Cosmochim. Acta* 2000, 64, 2673–2687. [CrossRef]

16. Larter, S.; Wilhelms, A.; Head, I.; Koopmans, M.; Aplin, A.; di Primio, R.; Zwach, C.; Erdmann, M.; Telnaes, N. The controls on the composition of biodegraded oils in the deep subsurface-part 1: Biodegradation rates in petroleum reservoirs. *Org. Geochem.* 2003, 34, 601–613. [CrossRef]

17. Zhang, S.C.; Huang, H.P. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: Part 1. *Oil Fam. Classif. Org. Geochem.* 2005, 36, 1204–1214. [CrossRef]

18. Zhang, S.C.; Zhu, G.Y.; Dai, J.X.; Liang, Y.B. TSR and sour gas accumulation: A case study in the Sichuan Basin, SW China. *Geochem. Cosmochim. Acta* 2005, 69, 562.

19. Zhang, S.C.; Zhu, G.Y.; Dai, J.X.; Liang, Y.B. Geochemical characteristics of secondary microbial gas occurrence in the Songliao Basin, NE China. *Org. Geochem.* 2011, 42, 782–790. [CrossRef]

20. Zhang, T.W.; Ellis, G.S.; Wang, K.S.; Walters, C.C.; Kelemen, S.R.; Gillaizeau, B.; Tang, Y. Effect of hydrocarbon type on thermochemical sulfate reduction. *Org. Geochem.* 2007, 38, 897–910. [CrossRef]

21. Dai, J.X.; Ni, Y.Y.; Zou, C.N. Stable carbon and hydrogen isotopes of natural gases sourced from the Xujiahe formation in the Sichuan basin, China. *Org. Geochem.* 2012, 43, 103–111. [CrossRef]
27. Dai, J.X.; Xia, X.Y.; Li, Z.S.; Coleman, D.D.; Dias, R.F.; Gao, L.; Li, J.; Deeve, A.; Li, J.; Dessort, D.; et al. Inter-laboratory calibration of natural gas round robins for δ²H and δ¹³C using off-line and on-line techniques. *Chem. Geol.* 2012, 310, 49–55. [CrossRef]

28. Sun, P.A.; Wang, Y.C.; Leng, K.; Li, H.; Ma, W.Y.; Cao, J. Geochemistry and origin of natural gas in the eastern Junggar basin, NW China. *Mar. Petrol. Geol.* 2016, 75, 240–251. [CrossRef]

29. Wang, X.B.; Wei, G.Q.; Li, J.; Chen, J.F.; Gong, S.; Li, Z.S.; Wang, D.L.; Xie, Z.Y.; Yang, C.X.; Wang, Y.F.; et al. Geochemical characteristics and origins of noble gases of the Kela 2 gas field in the Tarim basin, China. *Mar. Petrol. Geol.* 2017, 89, 155–163. [CrossRef]

30. Ozima, M.; Podosek, F.A. Noble Gas Geochemistry, 2nd ed.; Cambridge University: Cambridge, UK, 2002.

31. Burnard, P.; Zimmermann, L.; Sano, Y. The noble gases as geochemical tracers: history and background. In *The Noble Gases as Geochemical Tracers, Advances in Isotope Geochemistry*; Burnard, P., Ed.; Springer: Heidelberg/Berlin, Germany, 2013; pp. 1–16.

32. Kotarba, M.J.; Nagao, K. Composition and origin of natural gases accumulated in the Polish and ukrainian parts of the carpathian region: Gaseous hydrocarbons, noble gases, carbon dioxide and nitrogen. *Chem. Geol.* 2008, 255, 426–438. [CrossRef]

33. Prinzhofer, A.A.; Neto, E.V.D.S.; Battani, A. Coupled use of carbon isotopes and noble gas isotopes in the potiguar basin (Brazil): Fluids migration and mantle influence. *Mar. Petro. Geol.* 2010, 27, 1273–1284. [CrossRef]

34. Prinzhofer, A.A. *Noble Gases in Oil and Gas Accumulations. The Noble Gases as Geochemical Tracers*; Springer: Heidelberg/Berlin, Germany, 2013; pp. 225–227.

35. Ni, Y.Y.; Dai, J.X.; Tao, S.X.; Wu, X.Q.; Liao, F.R.; Wu, W.; Zhang, D.J. Helium signatures of gases from the Sichuan basin, China. *Org. Geochem.* 2014, 74, 33–43. [CrossRef]

36. Stahl, W.J. Carbon and nitrogen isotopes in hydrocarbon research and exploration. *Chem. Geol.* 1977, 20, 121–149. [CrossRef]

37. Schoell, M. Genetic characterization of natural gases. *Am. Assoc. Pet. Geol. Bull.* 1983, 67, 2225–2238.

38. Chung, H.M.; Gormly, J.R.; Squires, R.M. Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution. *Chem. Geol.* 1988, 71, 97–103. [CrossRef]

39. Jenden, P.D.; Kaplan, I.R.; Poreda, R.; Craig, H. Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. *Geochim. Cosmochim. Acta* 1988, 52, 851–861. [CrossRef]

40. Dai, J.X.; Qi, H. Relationship of δ¹³C₁-Ro of coal-derived gas in China. *Chin. Sci. Bull.* 1989, 34, 690–692.

41. Dai, J.X.; Song, Y.; Dai, C.S.; Wang, D.R. Geochemistry and accumulation of carbon dioxide gases in China. *Am. Assoc. Pet. Geol. Bull.* 1996, 80, 1615–1626.

42. Dai, J.X.; Li, J.; Luo, X.; Zhang, W.Z.; Hu, G.Y.; Ma, C.H.; Guo, J.M.; Ge, S.G. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China. *Org. Geochem.* 2005, 36, 1617–1635. [CrossRef]

43. Prinzhofer, A.A.; Huc, A.Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases. *Chem. Geol.* 1995, 126, 281–290. [CrossRef]

44. Rooney, M.A.; Claypool, G.E.; Chung, H.M.; Moses, H. Modeling thermogenic gas generation using carbon isotopic ratios of natural gas hydrocarbons. *Chem. Geol.* 1995, 126, 219–232. [CrossRef]

45. Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. *Chem. Geol.* 1999, 161, 291–314. [CrossRef]

46. Galimov, E.M. Isotope organic geochemistry. *Org. Geochem.* 2006, 37, 1200–1262. [CrossRef]

47. Ni, Y.Y.; Ma, Q.S.; Ellis, G.S.; Dai, J.X.; Katz, B.; Zhang, S.C.; Tang, Y.C. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems. *Geochim. Cosmochim. Acta* 2011, 75, 2696–2707. [CrossRef]

48. Liu, Q.Y.; Jin, Z.J.; Chen, J.F.; Krooss, B.M.; Qin, S.F. Origin of nitrogen molecules in natural gas and implications for the high risk of N₂ exploration in Tarim Basin, NW China. *J. Petrol. Sci. Eng.* 2012, 81, 112–121. [CrossRef]

49. Liu, Q.Y.; Worden, R.H.; Jin, Z.J.; Liu, W.H.; Li, J.; Gao, B.; Zhang, D.W.; Hu, A.P.; Yang, C. TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the Eastern Sichuan Basin, China. *Geochim. Cosmochim. Acta* 2013, 100, 96–115. [CrossRef]
Energies 2019, 12, 4641

50. Liu, Z.J.; Wang, D.P.; Liu, L.; Liu, W.Z.; Wang, P.J.; Du, X.D.; Yang, G. Sedimentary characteristics of the Cretaceous in the Songliao Basin. *Acta Geol. Sin. Eng. Ed.* 1993, 6, 167–180.

51. Wang, X. Tectonic Evolution of Mesozoic–Cenozoic Basins in the Northeastern China and Its Relations with Oil–Gas Occurrence; Geological Publishing House: Beijing, China, 2007; p. 393. (In Chinese)

52. Yang, W.L. Daqing oil field, People’s Republic of China: A giant field with of non-marine origin. *Am. Assoc. Pet. Geol. Bull.* 1985, 69, 1101–1111.

53. Yang, W.L.; Gao, R.Q.; Guo, Q.F.; Liu, Y.G. Forming, Migration and Accumulation of Non-Marine Petroleum Reservoir in the Songliao Basin; Heilongjiang Scientific and Technology Press: Harbin, China, 1985; pp. 41–42.

54. Gao, R.; Cai, X. Hydrocarbon Formation Conditions and Distribution Rules in the Songliao Basin; Petroleum Industry Press: Beijing, China, 1997.

55. Klett, T.R.; Ahlbrandt, T.S.; Schmoker, J.W.; Dolton, G.L. *Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China.* Basin Res. 2010, 22, 79–95.

56. Liu, Z.J.; Sun, P.C.; Jia, J.L.; Liu, R.; Meng, Q.T. Distinguishing features and their genetic interpretation of stratigraphic sequences in continental deep water setting: A case from Qingshankou Formation in Songliao Basin. *Earth Sci. Front.* 2011, 18, 171–180.

57. Xue, L.Q.; Galloway, W.E. Genetic Sequence Stratigraphic Framework, Depositional Style, and Hydrocarbon Occurrence of the Upper Cretaceous QYN Formations in the Songliao Lacustrine Basin, Northeastern China. *Am. Assoc. Pet. Geol. Bull.* 1993, 77, 1792–1808.

58. Jia, J.L.; Bechtel, A.; Liu, Z.J.; Strobl, S.A.I.; Sun, P.C.; Sachsenhofer, R.F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses. *Int. J. Coal Geol.* 2013, 113, 11–26. [CrossRef]

59. Jia, J.L.; Liu, Z.J.; Bechtel, A.; Strobl, S.A.I.; Sun, P.C. Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). *Int. J. Earth Sci.* 2013, 102, 1717–1734. [CrossRef]

60. Xu, J.J.; Bechtel, A.; Sachsenhofer, R.F.; Liu, Z.J.; Gratzer, R.; Meng, Q.T.; Song, Y. High resolution geochemical analysis of organic matter accumulation in the Qingshankou Formation, Upper Cretaceous, Songliao Basin (NE China). *Int. J. Coal Geol.* 2015, 141, 23–32. [CrossRef]

61. Liu, B.; Jin, L.; Hu, C. Fractal characterization of silty beds/laminae and its implications for the prediction of shale oil reservoir in Qingshankou Formation of northern Songliao Basin, Northeast China. *Fractals* 2019, 27, 1940009. [CrossRef]

62. Liu, B.; Wang, H.; Fu, X.; Bai, Y.; Bai, L.; Jia, M.; He, B. Lithostratigraphic and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, Northeast China. *Am. Assoc. Pet. Geol. Bull.* 2019, 103, 405–432. [CrossRef]

63. Feng, Z.Q. Exploration potential of Qingsheng gas Field in the Songliao Basin. *Nat. Gas Ind.* 2006, 6, 1–5.

64. Feng, Z.Q. Volcanic rocks as prolific gas reservoir: A case study from the Qingshen gas field in the Songliao Basin, NE China. *Mar. Petrol. Geol.* 2008, 25, 416–432. [CrossRef]

65. Feng, Z.Q.; Wang, Y.H.; Lei, M.S.; Feng, Z.H. Exploration techniques and their advancement of deep volcanic gas reservoirs in the Songliao Basin. *Nat. Gas Ind.* 2007, 8, 9–12.

66. Qiao, H.S.; Fang, C.L.; Niu, J.Y.; Guan, D.S. *The Petroleum Geology of the Deep Formations in the Eastern China; Petroleum Industry Press: Beijing, China, 2002.*

67. Guo, Z.Q.; Wang, X.B.; Yang, B.Z.; Li, X.J.; Wei, P. Abiogenic gas reservoir modes found in Songliao Basin. *Nat. Gas Ind.* 2000, 20, 30–33.

68. Yang, Y.F.; Zhang, Q.; Huang, H.P.; Chen, F.J. Abiogenic natural gases and their accumulation model in Xujiawei area, Songliao Basin, Northeast China. *Earth Sci. Front.* 2000, 7, 523–533.

69. Cui, Y.Q.; Li, L.; Chen, W.J. The mantle-derived contribution of inorganic hydrogen gas in Songliao Basin. *Petrol. Geol. Oilfield Dev. Daqing* 2001, 20, 6–8.

70. Fu, X.F.; Yun, J.B.; Lu, S.F.; Fu, G. A study on enrichment of the inorganic natural gases in Songliao Basin. *Nat. Gas Ind.* 2005, 25, 14–17.

71. Huang, H.P.; Yang, J.; Yang, Y.F.; Du, X.J. Geochemistry of natural gases in deep strata of the Songliao Basin, NE China. *Int. J. Coal Geol.* 2004, 58, 231–244. [CrossRef]
73. Zhao, L.B.; Huang, Z.L.; Ma, Y.J.; Gao, G.; Li, J.; Yang, X.Z. A study on geochemical character and origin of deep natural gas in Dehui Fault Depression of the southern Songliao Basin. *Nat. Gas Geosci.* **2006**, *17*, 177–182.

74. Mi, J.K.; Zhang, S.C.; Hu, G.Y.; He, K. Geochemistry of coal-measure source rocks and natural gases in deep formations in Songliao Basin, NE China. *Int. J. Coal Geol.* **2010**, *84*, 276–285. [CrossRef]

75. Zhao, Z.H.; Xu, S.J.; Jiang, X.H.; Lin, C.S.; Cheng, H.G.; Cui, J.F.; Jia, L. Deep strata geologic structure and tight conglomerate gas exploration in Songliao Basin, East China. *Petrol. Explor. Dev.* **2016**, *43*, 12–23. [CrossRef]

76. Liang, S. Research on Gas Genesis of Dehui Depression. Master’s Thesis, Northeast Petroleum University, Daqing, China, 2015.

77. Shen, J.N.; Liang, S. Natural gas source correlation of Huoshiling Formation in Dehui Fault Depression. *J. Changqing Univ. Sci. Technol. Nat. Sci. Ed.* **2015**, *17*, 1–4.

78. Stahl, W.J.; Carey, B.D., Jr. Source-rock identification by isotope analysis of natural gases from fields in the Val Verde and Delaware Basins, West Texas. *Chem. Geol.* **1975**, *16*, 257–267. [CrossRef]

79. Shen, P., Xu, Y.C. Isotope composition of gas hydrocarbon characteristics and identification of coal-associated gases. *Sci. China Ser. D Earth Sci.* **1987**, *17*, 647–656. (In Chinese)

80. Galimov, E.M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. *Chem. Geol.* **1988**, *71*, 77–95. [CrossRef]

81. Dai, J.X. Carbon and hydrogen isotopic compositions and origin identification of different types natural gas. *Nat. Gas Geosci.* **1993**, *4*, 1–40.

82. Liu, Q.Y.; Dai, J.X.; Li, J.; Zhou, Q.H. Hydrogen isotope composition of natural gases from the Tarim Basin and its indication of depositional environments of the source rocks. *Sci. China Ser. D Earth Sci.* **2008**, *51*, 300–311. [CrossRef]

83. Ge, R.F.; Zhang, Q.L.; Wang, L.S.; Xie, G.A.; Xu, S.Y.; Chen, J.; Wang, X.Y. Tectonic evolution of Songliao Basin and the permanent tectonic regime transition in Eastern China. *Geol. Rev.* **2010**, *56*, 180–195.

84. Wang, P.J.; Mattern, F.; Didenko, A.; Zhu, D.F.; Singer, B.; Sun, X.M. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. *Earth Sci. Rev.* **2016**, *159*, 82–102. [CrossRef]

85. Jia, H.B.; Ji, H.C.; Wang, L.W.; Yang, D.J.; Meng, P.P.; Shi, C. Tectono-sedimentary and hydrocarbon potential analysis of rift-related successions in the Dehui Depression, Songliao Basin, Northeastern China. *Mar. Petrol. Geol.* **2016**, *76*, 262–276. [CrossRef]

86. Dai, J.X.; Ni, Y.Y.; Zhou, C.N.; Tao, S.Z.; Hu, G.Y.; Hu, A.P.; Yang, C.; Tao, X.W. Stable carbon isotopes of alkane gases from the Xujiahe coal measures and implication for gas-source correlation in the Sichuan Basin, SW China. *Org. Geochem.* **2009**, *40*, 638–646. [CrossRef]

87. Cao, J.; Wang, X.L.; Sun, P.A.; Zhang, Y.Q.; Tang, Y.; Xiang, B.L.; Lan, W.F.; Wu, M. Geochemistry and origins of natural gases in the central Junggar Basin, northwest China. *Org. Geochem.* **2012**, *53*, 166–176. [CrossRef]

88. Chen, X.F.; Li, S.M.; Dong, Y.X.; Pang, X.Q.; Wang, Z.J.; Ren, M.S.; Zhang, H.C. Characteristics and genetic mechanisms of offshore natural gas in the Nanpu Sag, Bohai Bay Basin, eastern China. *Org. Geochem.* **2016**, *94*, 68–82. [CrossRef]

89. Feng, Z.Q.; Liu, D.; Huang, S.P.; Gong, D.Y.; Peng, W.L. Geochemical characteristics and genesis of natural gas in the Yan’an gas field, Ordos Basin, China. *Org. Geochem.* **2016**, *102*, 67–76. [CrossRef]

90. Tao, K.Y.; Cao, J.; Wang, Y.C.; Ma, W.Y.; Xiang, B.L.; Ren, J.L.; Zhou, N. Geochemistry and origin of natural gas in the petroliferous Mahu sag, northwestern Junggar Basin, NW China: Carboniferous marine and Permian lacustrine gas systems. *Org. Geochem.* **2016**, *100*, 62–79. [CrossRef]

91. Liu, Y.C.; Chen, D.X.; Qiu, N.S.; Fu, J.; Jia, J.K. Geochemistry and origin of continental natural gas in the western Sichuan Basin, China. *J. Nat. Gas Sci. Eng.* **2016**, *49*, 128–131. [CrossRef]
93. Zhang, S.C.; He, K.; Hu, G.Y.; Mi, J.K.; Ma, Q.S.; Liu, K.Y.; Tang, Y.C. Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: Isotope fractionation of deep and high mature carbonate reservoir gases. *Mar. Petrol. Geol.* 2018, 89, 68–82. [CrossRef]

94. Dai, J.X.; Qin, S.F.; Tao, S.Z.; Zhu, G.Y.; Mi, J.K. Developing trends of Nat. Gas Ind. and the significant progress on natural gas geological theories in china. *Nat. Gas Geosci.* 2005, 16, 127–142. (In Chinese)

95. Erdman, J.; Morris, D. Geochemical correlation of petroleum. *Am. Assoc. Pet. Geol. Bull.* 1974, 58, 2326–2377.

96. James, A.T. Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. *Org. Geochem.* 1990, 14, 1441–1458.

97. Stahl, W.J.; Koch, J. 13C–12C relation of North-German natural-gas–maturity characteristic of their parent substances. *Erdol Kohle Erdgas Petrochem.* 1974, 27, 623.

98. Berner, U.; Faber, E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. *Org. Geochem.* 1996, 24, 947–955. [CrossRef]

99. Patience, R.L. Where did all the coal gas go? *Org. Geochem.* 2003, 34, 375–387. [CrossRef]

100. Zou, Y.R.; Cai, Y.L.; Zhang, C.C.; Zhu, G.Y.; Mi, J.K. Variations of natural gas carbon isotope-type curves and their interpretation—A case study. *Org. Geochem.* 2007, 38, 1398–1415. [CrossRef]

101. Hu, A.P.; Li, J.; Zhang, W.Z.; Li, Z.S.; Hou, L.; Liu, Q.Y. Geochemical characteristics and origin of gases from the Upper, Lower Paleozoic and the Mesozoic reservoirs in the Ordos Basin, China. *Sci. China Ser. D Earth Sci.* 2008, 51, 183–194. [CrossRef]

102. Li, J.; Li, J.; Li, Z.S.; Wang, D.L.; Gong, S.; Zhang, Y.; Cui, H.Y.; Hao, A.S.; Ma, C.H.; Sun, Q.W. The hydrogen isotopic characteristics of the Upper Paleozoic and the Mesozoic reservoirs in the Ordos Basin. *Petrol. Geol. Exp.* 1997, 19, 164–167.

103. Song, Y.; Xu, Y.C. Origin and identification of natural gases. *Petrol. Explor. Dev.* 2005, 32, 24–29.

104. Thompson, K.F.M. Light hydrocarbon in subsurface sediments. *Geochim. Cosmochim. Acta* 1979, 43, 657–672. [CrossRef]

105. Hu, G.Y.; Li, J.; Shan, X.Q.; Han, Z.X. The origin of natural gas and the hydrocarbon charging history of the Yulin gas field in the Ordos Basin, China. *Int. J. Coal Geol.* 2010, 81, 381–391.

106. Chen, Z.H.; Cao, Y.C.; Ma, Z.J.; Zhen, Y.S. Geochemistry and origins of natural gases in the Zhongguai area of Junggar Basin, China. *J. Petrol. Sci. Eng.* 2014, 119, 17–27. [CrossRef]

107. Hu, G.Y.; Li, J.; Li, J.; Li, Z.S.; Luo, X.; Sun, Q.W.; Ma, C.H. The discussion of light hydrocarbon for gas genetic type identification. *Sci. China Ser. D Earth Sci.* 2007, 37, 111–117.

108. Claydon, C. Carbon isotope fractionation during natural gas generation from kerogen. *Mar. Petrol. Geol.* 1991, 8, 232–240. [CrossRef]

109. Jenden, P.D.; Drazan, D.J.; Kaplan, I.R. Mixing of thermogenic natural gas in northern Appalachian Basin. *Am. Assoc. Pet. Geol. Bull.* 1993, 77, 980–998.