Sediment control analysis due to erosion and sediment in Cipunagara watershed, Indonesia, using SWAT model

E N Fitriyana*, O Supratman and M Mardiani
Program Studi Teknik Sipil, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 207, Bandung, Indonesia

*ekanurfitiyana80@gmail.com

Abstract. Erosion and sediment are parameters that describe the critical level of a watershed. Cipunagara watershed is one of the most critical watershed in Indonesia. Therefore, we need a study of sediment control due to erosion and sediment. This study aims to determine the level of erosion in Cipunagara watershed, find out sediments in Cipunagara River, and determine the sediment control structure that can be applied in Cipunagara River. The method used in this research is quantitative descriptive method with modelling on SWAT. The analysis was performed using secondary data in 2005-2014. Modelling in SWAT divides Cipunagara watershed into 33 Sub Watersheds. The highest erosion value during years data occurred in Sub-watershed 18 of 654,402 tons/ha/ year with very severe erosion criteria and the lowest in Sub-watershed 5 of 1,075 tons/ha/ year with very mild erosion criteria. The highest sediment value is in River 25 which is 1754758.30 tons/year, and the lowest in River 7 which is 7174.40 tons/year. Sediment control in Cipunagara watershed can use check dams that place on River 18 and River 25.

1. Introduction
Area of critical land in the Cipunagara watershed was increasing. The southern Cipunagara watershed has been converted from forest land into agricultural and residential areas. The northern Cipunagara watershed is dominated by residential, industrial and shopping areas [1]. For an effective and efficient implementation of watershed management practices, identification of these critical areas is vital. The SWAT model could successfully be used for identifying the critical sub-basins in a watershed with imprecise and uncertain data for management purposes [2]. SWAT was developed to predict the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use and management conditions over long periods of time [3].

The identification of critical areas can be verified by analyzing the relationship between the variations of the land use and sediment discharge [4]. Transition of other land use categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. The spatial location of land use with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process [5].

Sediment yield is likely to increase due to the existing human activities in the watersheds. Sediment yield may also increase due to the necessity of bringing more area under cultivation by felling of tress to meet the demand of food for the growing population. Hence, those areas of the watershed need to be treated. Depending upon priority levels, the watershed area should be treated with suitable vegetative
and structural measures. For effective watershed planning, there must be a close coordination of vegetative and structural control measures and best combination should be decided to tackle the problems of watershed in an integrated manner [6].

Check dams are efficient sediment control measures [7]. Without dam intervention, the percentage of agricultural land flowing directly into the river system has increased [8].

2. Research methods

2.1. Study area
Most of the Cipunagara watershed is included in the Subang Regency and the rest is in the Sumedang and Indramayu Regencies. The Cipunagara River flows from the south (from the Situ Pabeasan spring in Cipunagara Village, Cisalak District, Subang Regency) to the north and ends in the Java Sea (in Patimban Village, Pusakagara District, Subang Regency). The Cipunagara River has several large tributaries, including S. Cikandung, S. Cilamatan, S. Cigadung. The watershed outlets in this study are AWLR Kiarapayung at 6.46 ° South and 107.89 ° East.

Figure 1. The Cipunagara Watershed.
2.2. Data
The data used in this research is secondary data. Input data for the SWAT model in the form of soil, land use, climate and DEM data are prepared in a database format.
- Rainfall data taken from the Cisalak rain station for 10 years (2005-2014) shows an annual average of 68.41 - 334.12 mm.
- Based on the 2018 land use map, the Cipunagara watershed consists of 13 land covers.
- Soil type map shows the Cipunagara watershed consists of 6 types of soil.
- The slope data based on the 30 m DEM SRTM is grouped into five classes, 0-8% (flat), 8-15% (sloping), 15-25% (bumpy), 25-45% (hilly), and > 45% (steep).

2.3. Delineation and formation of HRU
The delineation is processed in SWAT using the Watershed Delineator. The output of this process is the sub-basin and river network for the Cipunagara Watershed.

HRU focuses on adding information on land use and land characteristics. HRU was formed using Multiple HRU's criteria with a land cover threshold value of 10%, soil type 5%, and slope 5%. The number of HRUs formed was 482 in 33 Sub-Watersheds. Each HRU formed is a special combination of sub-watersheds, land use, soil type and slope range.

2.4. Model calibration and validation
Calibration was carried out using data from January 2006 to December 2009. While the validation process was performed with data from January 2010 to December 2013. Calibration was done manually, by matched parameter values by trial and error on several parameters that effect. The results of the validation showed a coefficient of determination (R²) of 0.80, indicating that there was a close relationship between the value of the simulation with the value of observation, and included in the criteria of high influence (0.7 < R² < 1.0). Nash-Sutcliffe (NSE) efficiency was 0.71, included in the fulfilment criteria (0.36 < NSE < 0.75), where the resulting simulation value was acceptable.

The parameters selected for calibration and the final results are presented in the following table.

Parameter	Definition	Selected value
CN2.mgt	SCS curve number	95
CH_K1.sub	Hydraulic conductivity is effective on the main channel	250
CH_N1.sub	Manning values on river branching channels	15
SLUSUBBSN.hru	Slope length of surface flow (m)	50
OV_N.hru	Manning roughness coefficient	0.4
ESCO.hru	Change factor in soil evaporation	0.95
EPCO.hru	Change factor of plant canal	1
SURLAG.hru	lag runoff surface	19
HRU_SLP.hru	Surface flow slope	0.1
CH_N2.rte	Manning roughness coefficient on the main channel	0.2
CH_K2.rte	Hydraulic conductivity is effective on the main channel	300
ALPHA_BNK.rte	Alpha factor for surface runoff at river banks (days)	1

3. Results and discussion

3.1. Erosion and sediment values in the Cipunagara watershed
SWAT analysis gives the amount of erosion that varies from 1,075 tons/ha/year to 654,402 tons/ha/year. Erosion values and class in each sub-watershed are presented in the following table.
Table 2. Erosion value and rating of each sub-watershed.

Watershed	Erosion (tons / ha / year)	Erosion Classa
18	654,402	Very Heavy Erosion
25	519,593	Very Heavy Erosion
32	458,403	Heavy Erosion
14	456,198	Heavy Erosion
33	352,325	Heavy Erosion
10	337,692	Heavy Erosion
22	234,135	Heavy Erosion
15	193,387	Heavy Erosion
24	189,992	Heavy Erosion
31	176,096	Medium Erosion
11	167,668	Medium Erosion
27	154,202	Medium Erosion
19	151,249	Medium Erosion
23	139,164	Medium Erosion
21	122,952	Medium Erosion
30	122.02	Medium Erosion
13	102,335	Medium Erosion
28	98,661	Medium Erosion
17	96,983	Medium Erosion
20	93,727	Medium Erosion
6	92,399	Medium Erosion
29	91.19	Medium Erosion
3	85.49	Medium Erosion
8	72,882	Medium Erosion
26	72,535	Medium Erosion
7	61,329	Medium Erosion
12	33,897	Light Erosion
2	21,968	Light Erosion
9	17,267	Light Erosion
16	14,342	Very Light Erosion
1	5,049	Very Light Erosion
4	2,749	Very Light Erosion
5	1,075	Very Light Erosion

a based on the Republic of Indonesia's Ministry of Forestry Regulation Number: P.39/Menhut-II/2009 concerning Guidelines for Preparation of Integrated Watershed Management Plan [9]

After obtaining erosion in each Cipunagara watershed, the sediment yield in the river was calculated for each sub-watershed. Sediment yield in Cipunagara Sub-watershed starts from 0.172 tons/h/year to 102,590 tons/ha/year. Sediment yield classes vary widely, and there are 16 sub-watersheds classified as very high sediment yield classes. Sediment yield was illustrating the amount of land that transported by water to rivers. Sediment yield also illustrates the amount of sediment at the outlets of each Cipunagara watershed. Values and classes of the sediment yield in each sub-watershed and river are presented in the following table.
Table 3. Sediment yield value.

Watershed	SDR	Sediment Yield (ton/ha/year)	Sediment Yield Classa
18	0.157	102,590	Very high
25	0.152	79,039	Very high
14	0.160	72,959	Very high
32	0.156	71,690	Very high
33	0.151	53,263	Very high
10	0.158	53,242	Very high
24	0.237	44,987	Very high
22	0.158	37,097	Very high
21	0.302	37,089	Very high
19	0.218	32901	Very high
20	0.332	31,160	Very high
15	0.153	29,547	Very high
23	0.197	27,415	Very high
11	0.158	26,457	Very high
27	0.155	23,928	Very high
31	0.134	23,527	Very high
13	0.191	19,576	High
17	0.185	17,979	High
30	0.141	17,242	High
28	0.149	14,714	Low
6	0.153	14,166	Low
3	0.163	13,937	Low
29	0.152	13,836	Low
26	0.157	11,414	Low
8	0.150	10,948	Low
7	0.148	9,074	Low
12	0.168	5,704	Low
2	0.196	4,308	Very low
9	0.150	2,598	Very low
16	0.138	1979	Very low
1	0.195	983	Very low
4	0.163	448	Very low
5	0.160	172	Very low

a based on the Republic of Indonesia's Ministry of Forestry Regulation No: P.61/Menhut -II/2014 concerning Monitoring and Evaluation of Watershed Management [10]

3.2. Analysis of sediment control structure

Determination of the location of the sediment control structure consider: placed in the location that has the highest soil and sediment erosion; placed on a degraded riverbed; if there is a waterfall on the river channel, the sediment control structure is placed before it falls; sediment control structures are not placed on a water gap.

The analysis shows that the location with the highest erosion and sediment is in the sub-watersheds and rivers number 18 and 25.
The position of the structure in the river channel is determined by analyzing the long-section of each river channel. After obtaining long-section for Rivers 18 and 25, an analysis of the river slope is carried out to obtain a degraded riverbed. Long-sections of river channels 18 and 25 are presented in the following figures.

Next is a cross-sectional analysis to get a cross-section view of the river bank at the location of the sediment control structure. The results of the river cross-section analysis are the structure placement point for river 18 at coordinates 6°41'46.78" S, 107°46'37.15" E, while for River 25 it is at 6°42'17.15" S, 107°50'08.85" E.

4. Conclusion
Based on the analysis results, there are several conclusions, including:

- The highest erosion value during the data year was in Sub-watershed 18 of 654,402 tons/ha/yr with very heavy erosion criteria, and the lowest in Sub-watershed 5 of 1,075 tons/ha/yr with very mild erosion criteria.
- The highest sediment value in River 25 is 1754758.30 tons/year, and the lowest in River 7 is 7174.40 tons/year.
- Sediment control in the Cipunagara watershed can use check dams placed on River 18 and River 25.
References

[1] Andika L D 2016 Analisis lahan kritis di Daerah Aliran Sungai (DAS) Cipunagara (Bogor: IPB University)

[2] Besalatpour A, Hajabbasi M, Ayoubi S and Jalalian A 2012 Identification and prioritization of critical sub-basins in a highly mountainous watershed using SWAT model Eurasian Journal of Soil Science 1 64

[3] Neitsch S L, Arnold J G, Kiniry J R and Williams J R 2011 Soil and Water Assessment Tool theoretical documentation Version 2009 Texas (Texas Water Resources Institute) 1

[4] Chen L, Qian X and Shi Y 2011 Critical area identification of potential soil loss in a typical watershed of the three gorges reservoir region Water Resour. Manage. 25 3445

[5] Sharma A, Tiwari K N and Bhadoria P B S 2011 Effect of land use land cover change on soil erosion potential in an agricultural watershed Environ. Monit. Assess. 173 789

[6] Pandey A, Chowdary V M and Mal B C 2007 Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing Water Resour. Manage. 21 729

[7] Zhao G, Kondolf G M, Mu X, Han M, He Z, Rubin Z, Wang F, Gao P and Sun W 2017 Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau China Catena 148 2 126

[8] Bellin N, Wesemael B V, Meerkerk A, Vanacker V and Barbera G G 2009 Abandonment of soil and water conservation structures in Mediterranean ecosystems a case study from south east Spain Catena 76 114

[9] Republic of Indonesia's Ministry of Forestry Regulation Number: P.39/Menhut-II/2009 concerning Guidelines for Preparation of Integrated Watershed Management Plan

[10] Republic of Indonesia's Ministry of Forestry Regulation No: P.61/Menhut -II/2014 concerning Monitoring and Evaluation of Watershed Management