Abstract. Snake modules are a family of modules of quantum affine algebras which were introduced by Mukhin and Young. The aim of this paper is to prove that the Hernandez–Leclerc conjecture is true for snake modules of types A_n and B_n. We prove that prime snake modules are real. We introduce S-systems consisting of equations satisfied by the q-characters of prime snake modules in types A_n and B_n. Moreover, we show that every equation in the S-system of type A_n (respectively, B_n) corresponds to a mutation in some cluster algebra A (respectively, A') and every prime snake module of type A_n (respectively, B_n) corresponds to some cluster variable in A (respectively, A'). In particular, this proves that the Hernandez–Leclerc conjecture is true for all snake modules of types A_n and B_n.

Key words: cluster algebras; quantum affine algebras; snake modules; S-systems; q-characters; Frenkel–Mukhin algorithm

2010 Mathematics Subject Classification: 13F60; 17B37

1. Introduction

Let \mathfrak{g} be a simple Lie algebra over the field of complex numbers and $U_q\widehat{\mathfrak{g}}$ the corresponding quantum affine algebra. Snake modules were introduced by Mukhin and Young in [MY12a] and [MY12b]. They are modules of quantum affine algebras. The family of snake modules contains all minimal affinizations which were introduced by Chari in [C95].

A simple $U_q\widehat{\mathfrak{g}}$-module M is called real if $M \otimes M$ is simple, see [Le03]. A simple $U_q\widehat{\mathfrak{g}}$-module M is called prime if either M is trivial or if there does not exist non-trivial $U_q\widehat{\mathfrak{g}}$-modules M_1, M_2 with $M = M_1 \otimes M_2$, see [CP97].

Chari and Pressley classified all prime $U_q\widehat{\mathfrak{sl}_2}$-modules in [CP91]. Some prime $U_q\widehat{\mathfrak{g}}$-modules including minimal affinizations were classified in [CMY13] by considering certain homological properties. In [MY12b], Mukhin and Young classified all prime snake modules of types A_n and B_n and proved that snake modules of types A_n and B_n can be uniquely (up to permutation) decomposed into a tensor of prime snake modules. We show that all prime snake modules of types A_n and B_n are real (Theorem 3.4).

The theory of cluster algebras were introduced by Fomin and Zelevinsky in [FZ02]. It has many applications to mathematics and physics.

Let \mathcal{C} be the category of all finite-dimensional $U_q\widehat{\mathfrak{g}}$-modules. In [HL10], Hernandez and Leclerc introduced a full subcategory \mathcal{C}_ℓ ($\ell \in \mathbb{Z}_{\geq 0}$) of \mathcal{C}. Let I be the set of vertices of the Dynkin diagram of \mathfrak{g} and let $I = I_0 \sqcup I_1$ be a partition of I such that every edge connects a vertex of I_0 with a vertex of I_1. For $i \in I$, let $\xi_i = 0$ if $i \in I_0$ and $\xi_i = 1$ if $i \in I_1$. Every object V in \mathcal{C}_ℓ satisfies: for every composition factor S of V and every $i \in I$, the roots of the Drinfeld polynomial $\pi_{i,S}(u)$ belong to $\{q^{-2k-\xi_i} | 0 \leq k \leq \ell\}$.

1
In \cite{HL10}, Hernandez and Leclerc introduced the concept of monoidal categorifications of cluster algebras. They proposed the following conjecture, see \cite{HL10, Le10, HL13}.

Conjecture 1.1 (\cite{HL10}, Conjecture 13.2; \cite{HL13}, Conjecture 5.2; \cite{Le10}, Conjecture 9.1). The Grothendieck ring of C_ℓ has a cluster algebra structure. The simple $U_q\widehat{g}$-modules, which are prime and real, are cluster variables in some cluster algebra.

In the case of types A_n and D_4, $\ell = 1$, Conjecture \cite{HL11} was proved in \cite{HL10}. In the case of types ADE, $\ell = 1$, Conjecture \cite{HL11} was proved in \cite{Nak11}. The work of \cite{Nak11} was generalized to all acyclic quivers by Kimura and Qin \cite{KQ14} and Lee \cite{Lee13}. In the case of type A_3, $\ell = 2$, Conjecture \cite{HL11} was proved in \cite{YMLZ15}. It was proved in \cite{HL13} that Conjecture \cite{HL11} is true for Kirillov–Reshetikhin modules in all types. Qin proved some cases of the Conjecture \cite{HL11} in \cite{QL14}. It is shown that Conjecture \cite{HL11} is true for all minimal affinizations of types G_2, A_n and B_n, \cite{OL14, ZDL15}.

In this paper, we prove that Hernandez–Leclerc conjecture is true for all snake modules of types A_n and B_n. More precisely, we prove that every prime snake module is a cluster variable in some cluster algebra introduced in \cite{HL13}. To this aim, we introduce two systems of equations consisting of equations satisfied by the q-characters of prime snake modules of types A_n and B_n. We call these systems the S-systems of types A_n and B_n respectively. The equations in the S-systems of types A_n and B_n are of the form

$$[S_1][S_2] = [S_3][S_4] + [S_5][S_6],$$

(1.1)

where S_i ($i \in \{1, 2, \ldots, 6\}$) is a prime snake module and $[S_i]$ is the equivalence class of S_i in the Grothendieck ring of C. Moreover, $S_3 \otimes S_4$ and $S_5 \otimes S_6$ are simple (Theorem 4.3). By Equation (1.1), $S_1 \otimes S_2$ is not simple. Therefore, some tensor products of prime snake modules are simple and some tensor products of prime snake modules are not simple.

Let \mathcal{A} (respectively, \mathcal{A}') be the cluster algebra for the quantum affine algebra of type A_n (respectively, B_n) introduced in \cite{HL13}. We show that the equations in the S-system of type A_n (respectively, B_n) correspond to mutations in \mathcal{A} (respectively, \mathcal{A}') and prime snake modules of type A_n (respectively, B_n) correspond to some cluster variables in \mathcal{A} (respectively, \mathcal{A}'). In particular, this proves that the Hernandez–Leclerc conjecture is true for all snake modules of types A_n and B_n.

The procedure of proving that prime snake modules of type A_n (respectively, B_n) correspond to some cluster variables in \mathcal{A} (respectively, \mathcal{A}') is as follows. For a prime snake module $L(S)$ with highest l-weight monomial S, we define a set (Section 5.2)

$$\mathcal{FS}(S) = \{M_1, M_2, \ldots, M_q\},$$

where every M_i is the highest weight monomial of a minimal affinization or a certain simple $U_q\widehat{g}$-module. We construct a mutation sequence $\text{Seq}_1, \text{Seq}_2, \ldots, \text{Seq}_q$ for $L(S)$ (Section 5.7), where Seq_q is the mutation sequence for the simple $U_q\widehat{g}$-module $L(M_i)$ with highest l-weight monomial M_i. Therefore, prime snake modules of type A_n (respectively, B_n) correspond to some cluster variables in \mathcal{A} (respectively, \mathcal{A}').

When M_i is the highest weight monomial of a minimal affinization, the mutation sequence Seq_i is similar to the mutation sequence for a minimal affinization in \cite{ZDL15}. We use the idea of the sequence for a minimal affinization in \cite{ZDL15}. The mutation sequences for minimal affinizations introduced in this paper is more convenient since the sequences produce all minimal
affinizations of type A_n (respectively, B_n) in the same cluster algebra (in \cite{ZDL15}, half of the minimal affinizations of type A_n (respectively, B_n) are in a cluster algebra \mathcal{A} and the other half of the minimal affinizations of type A_n (respectively, B_n) are in \mathcal{F} which is dual to \mathcal{A}).

The paper is organized as follows. In Section 2 we give some background information about cluster algebras and finite-dimensional representations of quantum affine algebras. In Section 3 we recall the definition of snake modules and path description of q-characters for snake modules of types A_n and B_n. Moreover, we show that all prime snake modules of types A_n and B_n are real (Theorem 3.4). In Section 4 we describe the S-systems of types A_n and B_n. In Section 5 we show that the Hernandez–Leclerc conjecture is true for all snake modules of types A_n and B_n. In Section 6 we give some examples of mutation sequences for some snake modules. In Sections 7, 8 and 9, we prove Theorem 3.4, Theorem 4.1 and Theorem 4.3 respectively.

2. Preliminaries

2.1. Cluster algebras. Cluster algebras were invented by Fomin and Zelevinsky in \cite{FZ02}. Let Q be the rational field and $\mathcal{F} = \mathbb{Q}(x_1, x_2, \ldots, x_n)$ the field of rational functions. A seed in \mathcal{F} is a pair $\Sigma = (y, Q)$, where $y = (y_1, y_2, \ldots, y_n)$ is a free generating set of \mathcal{F}, and Q is a quiver with vertices labeled by $1, 2, \ldots, n$. Assume that Q has neither loops nor 2-cycles. For $k = 1, 2, \ldots, n$, one defines a mutation μ_k by $\mu_k(y, Q) = (y', Q')$. Here $y' = (y'_1, \ldots, y'_n)$, $y'_i = y_i$, for $i \neq k$, and

$$y'_k = \frac{\prod_{i \to k} y_i + \prod_{k \to j} y_j}{y_k}, \tag{2.1}$$

where the first (respectively, second) product in the right-hand side is over all arrows of Q with target (respectively, source) k, and Q' is obtained from Q by

(i) adding a new arrow $i \to j$ for every existing pair of arrow $i \to k$ and $k \to j$;

(ii) reversing the orientation of every arrow with target or source equal to k;

(iii) erasing every pair of opposite arrows possible created by (i).

The mutation class $C(\Sigma)$ is the set of all seeds obtained from Σ by a finite sequence of mutation μ_k. If $\Sigma' = ((y'_1, y'_2, \ldots, y'_n), Q')$ is a seed in $C(\Sigma)$, then the subset $\{y'_1, y'_2, \ldots, y'_n\}$ is called a cluster, and its elements are called cluster variables. The cluster algebra A_{Σ} is the subring of \mathcal{F} generated by all cluster variables. Cluster monomials are monomials in the cluster variables supported on a single cluster.

In this paper, the initial seed in the cluster algebra we use is of the form $\Sigma = (y, Q)$, where y is an infinite set and Q is an infinite quiver.

Definition 2.1 (\cite{GG14, Definition 3.1}). Let Q be a quiver without loops or 2-cycles and with a countably infinite number of vertices labeled by all integers $i \in \mathbb{Z}$. Furthermore, for each vertex i of Q let the number of arrows incident with i be finite. Let $y = \{y_i \mid i \in \mathbb{Z}\}$. An infinite initial seed is the pair (y, Q). By finite sequences of mutation at vertices of Q and simultaneous mutation of the set y using the exchange relation (2.1), one obtains a family of infinite seeds. The sets of variables in these seeds are called the infinite clusters and their elements are called the cluster variables. The cluster algebra of infinite rank of type Q is the subalgebra of $\mathbb{Q}(y)$ generated by the cluster variables.

Two quivers Q_1 and Q_2 related by a sequence of mutations are called mutation equivalent, and we write $Q_1 \sim Q_2$.

2.2. Quantum affine algebras. Let \mathfrak{g} be a simple Lie algebra and $I = \{1, \ldots, n\}$ the indices of the Dynkin diagram of \mathfrak{g} (we use the same labeling of the vertices of the Dynkin diagram of \mathfrak{g} as the one used in [Car05]). Let $C = (C_{ij})_{i,j \in I}$ be the Cartan matrix of \mathfrak{g}, where $C_{ij} = \frac{2(a_i,a_j)}{(a_i,a_i)}$. There is a matrix $D = \text{diag}(d_i \mid i \in I)$ with entries in $\mathbb{Z}_{>0}$ such that $B = DC = (b_{ij})_{i,j \in I}$ is symmetric. We have $D = \text{diag}(d_i \mid i \in I)$, where $d_i = 1$, $i \in I$, for type A_n and $d_i = 2$, $i = 1, \ldots, n - 1$, $d_n = 1$, for type B_n. Let $t = \max\{d_i \mid i \in I\}$. Then $t = 1$ for type A_n and $t = 2$ for type B_n.

Let $q_i = q^{d_i}$, $i \in I$. Let Q (respectively, Q^+) and P (respectively, P^+) denote the \mathbb{Z}-span (respectively, $\mathbb{Z}_{>0}$-span) of the simple roots and fundamental weights respectively. Let \leq be the partial order on P in which $\lambda \leq \lambda'$ if and only if $\lambda' - \lambda \in Q^+$.

Quantum groups were introduced independently by Jimbo [Jim 85] and Drinfeld [Dri87]. Quantum affine algebras form a family of infinite-dimensional quantum groups. Let $\widehat{\mathfrak{g}}$ denote the untwisted affine algebra corresponding to \mathfrak{g} as the one used in [Car05]). Let \mathfrak{g} be the free abelian multiplicative group of monomials in infinitely many formal variables $x_{i,n}^\pm (i \in I, n \in \mathbb{Z})$, $h_{i,n} (i \in I, n \in \mathbb{Z} \setminus \{0\})$ and central elements $c^\pm 1/2$, subject to certain relations.

The algebra $U_q\mathfrak{g}$ is isomorphic to a subalgebra of $U_q\widehat{\mathfrak{g}}$. Therefore, $U_q\widehat{\mathfrak{g}}$-modules restrict to $U_q\mathfrak{g}$-modules.

2.3. Finite-dimensional $U_q\widehat{\mathfrak{g}}$-modules and their q-characters. We recall some known results on finite-dimensional $U_q\widehat{\mathfrak{g}}$-modules and their q-characters, [CP94], [CP95a], [FR98], [MY12].

Let P be the free abelian multiplicative group of monomials in infinitely many formal variables $(Y_{i,a})_{i \in I, a \in \mathbb{C}^\times}$. Then $\mathbb{Z}P = \mathbb{Z}[Y_{i,a}^\pm]_{i \in I, a \in \mathbb{C}^\times}$. For each $j \in I$, a monomial $m = \prod_{i \in I, a \in \mathbb{C}^\times} Y_{i,a}^{u_{i,a}}$, where $u_{i,a}$ are some integers, is said to be j-dominant (respectively, j-anti-dominant) if and only if $u_{j,a} \geq 0$ (respectively, $u_{j,a} \leq 0$) for all $a \in \mathbb{C}^\times$. A monomial is called dominant (respectively, anti-dominant) if and only if it is j-dominant (respectively, j-anti-dominant) for all $j \in I$.

Every finite-dimensional simple $U_q\widehat{\mathfrak{g}}$-module is parametrized by a dominant monomial in P^+, [CP94], [CP95a]. That is, for a dominant monomial $m = \prod_{i \in I, a \in \mathbb{C}^\times} Y_{i,a}^{u_{i,a}}$, there is a corresponding simple $U_q\widehat{\mathfrak{g}}$-module $L(m)$.

The q-character of a $U_q\widehat{\mathfrak{g}}$-module V is given by

$$\chi_q(V) = \sum_{m \in \mathbb{Z}P} \dim(V_m) m \in \mathbb{Z}P,$$

where V_m is the l-weight space with l-weight m, see [FR98]. We use $\mathcal{M}(V)$ to denote the set of all monomials in $\chi_q(V)$ for a finite-dimensional $U_q\widehat{\mathfrak{g}}$-module V. Let $P^+ \subset P$ denote the set of all dominant monomials. For $m_+ \in P^+$, we use $\chi_q(L(m_+))$ to denote $\chi_q(L(m_+))$. We also write $m \in \chi_q(m_+)$. Let $\mathcal{M}(m_+) \in \mathcal{M}(L(m_+))$. The following lemma is well-known.

Lemma 2.2. Let m_1, m_2 be two monomials. Then $L(m_1 m_2)$ is a sub-quotient of $L(m_1) \otimes L(m_2)$. In particular, $\mathcal{M}(L(m_1 m_2)) \subseteq \mathcal{M}(L(m_1)) \mathcal{M}(L(m_2))$. □

A finite-dimensional $U_q\widehat{\mathfrak{g}}$-module V is said to be special if and only if $\mathcal{M}(V)$ contains exactly one dominant monomial. It is anti-special if and only if $\mathcal{M}(V)$ contains exactly one anti-dominant monomial. It is thin if and only if no l-weight space of V has dimension greater than 1. Clearly, if a module is special or anti-special, then it is simple.
The elements $A_i,a \in \mathcal{P}, i \in I, a \in \mathbb{C}^\times$, are defined by
\[
A_i,a = Y_i,\hat{a} Y_i,\hat{aq}^{-1} \left(\prod_{j:C_{ji}=-1} Y_{j,a}^{-1} \right) \left(\prod_{j:C_{ji}=-2} Y_{j,aq} Y_{j,aq^{-1}}^{-1} \right) \left(\prod_{j:C_{ji}=-3} Y_{j,aq^2} Y_{j,aq^{-2}} Y_{j,aq}^{-1} \right),
\]
see [FR98]. Let Q be the subgroup of \mathcal{P} generated by $A_i,a, i \in I, a \in \mathbb{C}^\times$. Let Q^\pm be the monoids generated by $A_i^\pm, i \in I, a \in \mathbb{C}^\times$. There is a partial order \leq on \mathcal{P} in which
\[
m \leq m' \text{ if and only if } m'm^{-1} \in Q^+.
\]
For all $m_+ \in \mathcal{P}^+, \mathcal{M}(L(m_+)) \subset m_+ Q^-$, see [FM01].

The concept of right negative was introduced in Section 6 of [FM01].

Definition 2.3. A monomial m is called right negative if for all $a \in \mathbb{C}^\times$, for $L = \max\{ l \in \mathbb{Z} | u_{i,\hat{a}l}(m) \neq 0 \text{ for some } i \in I \}$ we have $u_{i,\hat{a}l}(m) \leq 0$ for $j \in I$.

For $i \in I, a \in \mathbb{C}^\times$, A_i^{-1} is right-negative. A product of right-negative monomials is right-negative. If m is right-negative and $m' \leq m$, then m' is right-negative, see [FM01], [Her06].

2.4. q-Characters of $U_q\hat{sl}_2$-modules and the Frenkel–Mukhin algorithm.

We recall the results of the q-characters of $U_q\hat{sl}_2$-modules which are well-understood, see [CP91], [FR98].

Let $W_k^{(a)}$ be the irreducible representation $U_q\hat{sl}_2$ with highest weight monomial
\[
X_k^{(a)} = \prod_{i=0}^{k-1} Y_{aq^{2i-1}},
\]
where $Y_a = Y_1,a$. Then the q-character of $W_k^{(a)}$ is given by
\[
\chi_q(W_k^{(a)}) = X_k^{(a)} \sum_{i=0}^{k-1} \prod_{j=0}^{i-1} A_{aq^{2j-2}},
\]
where $A_a = Y_{aq^{-1}} Y_{aq}$.

For $a \in \mathbb{C}^\times, k \in \mathbb{Z}_{\geq 1}$, the set $\Sigma_k^{(a)} = \{ aq^{2i-1} | i=0,\ldots,k-1 \}$ is called a string. Two strings $\Sigma_k^{(a)}$ and $\Sigma_k^{(a')}$ are said to be in general position if the union $\Sigma_k^{(a)} \cup \Sigma_k^{(a')}$ is not a string or $\Sigma_k^{(a)} \subset \Sigma_k^{(a')}$ or $\Sigma_k^{(a')} \subset \Sigma_k^{(a)}$.

Denote by $L(m_+)$ the irreducible $U_q\hat{sl}_2$-module with highest weight monomial m_+. Let $m_+ \neq 1$ and $m_+ \in \mathbb{Z}[Y_a,a \in \mathbb{C}^\times$ be a dominant monomial. Then m_+ can be uniquely (up to permutation) written in the form
\[
m_+ = \prod_{i=1}^{s} \left(\prod_{b \in \Sigma_{k_i}^{(a_i)}} Y_b \right),
\]
where s is an integer, $\Sigma_{k_i}^{(a_i)}, i = 1,\ldots,s$, are strings which are pairwise in general position and
\[
L(m_+) = \bigotimes_{i=1}^{s} W_{k_i}^{(a_i)}, \quad \chi_q(L(m_+)) = \prod_{i=1}^{s} \chi_q(W_{k_i}^{(a_i)}).
\]
For \(j \in I \), let
\[
\beta_j : \mathbb{Z}[Y_{i,a}^\pm]_{i \in I, a \in \mathbb{C}^\times} \to \mathbb{Z}[Y_{i,a}^\pm]_{a \in \mathbb{C}^\times}
\]
be the ring homomorphism such that for all \(a \in \mathbb{C}^\times \), \(\beta_j(Y_{k,a}) = 1 \) for \(k \neq j \) and \(\beta_j(Y_{j,a}) = Y_a \).

Let \(V \) be a \(U_q\hat{\mathfrak{g}} \)-module. Then \(\beta_i(\chi_q(V)) \), \(i \in I \), is the \(q \)-character of \(V \) considered as a \(U_q\hat{\mathfrak{g}} \)-module.

The Frenkel–Mukhin algorithm was introduced to compute the \(q \)-characters of \(U_q\hat{\mathfrak{g}} \)-modules in Section 5 of [FM01]. The algorithm is based on the \(q \)-characters of \(U_q\hat{s\mathfrak{l}_2} \)-modules. In Theorem 5.9 of [FM01], it is shown that the Frenkel–Mukhin algorithm works for modules which are special.

In some cases, the Frenkel–Mukhin algorithm does not return all terms in the \(q \)-character of a module. There are some counterexamples given in [NN11]. However, the Frenkel–Mukhin algorithm produces the correct \(q \)-characters of modules in many cases. In particular, if a module \(L(m_+) \) is special, then the Frenkel–Mukhin algorithm applied to \(m_+ \), see [FM01], produces the correct \(q \)-character \(\chi_q(L(m_+)) \).

We will need the following proposition from [HL10].

Proposition 2.4 ([Her05], Proposition 3.1; [HL10], Proposition 5.9). Let \(V \) be a \(U_q\hat{\mathfrak{g}} \)-module and fix \(i \in I \). Then there is a unique decomposition of \(\chi_q(V) \) as a finite sum
\[
\chi_q(V) = \sum_{m \in \mathcal{P}_{i,+}} \lambda_m \varphi_i(m),
\]
and the \(\lambda_m \) are non-negative integers.

Here \(\varphi_i(m) \) \((m \in \mathcal{P}_{i,+}) \) is a polynomial defined as follows, see Section 5.2.1 of [HL10]. Let \(m \in \mathcal{P}_{i,+} \) be an \(i \)-dominant monomial. Let \(\overline{m} \) be the monomial obtained from \(m \) by replacing \(Y_{j,a} \) with \(Y_a \) if \(j = i \) and by 1 if \(j \neq i \). Then the \(q \)-character \(\chi_q(L(\overline{m})) \) of the \(U_q\hat{s\mathfrak{l}_2} \)-module \(L(\overline{m}) \) is given by (2.4), (2.5). Write \(\chi_q(L(\overline{m})) = \overline{m}(1 + \sum_p \overline{M}_p) \), where the \(\overline{M}_p \) are monomials in the variables \(A_a^{-1} \) \((a \in \mathbb{C}^\times) \). Then one sets \(\varphi_i(m) := m(1 + \sum_p M_p) \) where each \(M_p \) is obtained from the corresponding \(\overline{M}_p \) by replacing each variable \(A_a^{-1} \) by \(A_a^{-1} \).

The following corollary follows from Proposition 2.4 see [HL10].

Corollary 2.5 ([HL10]). Let \(m \in \mathcal{P}_+ \) and \(mM \) a monomial of \(\chi_q(L(m)) \), where \(M \) is a monomial in the \(A_{i,a}^{-1} \) \((j \in I) \). If \(M \) contains no variable \(A_{i,a} \), then \(mM \in \mathcal{P}_{i,+} \) and \(\varphi_i(mM) \) is contained in \(\chi_q(L(m)) \). In particular, \(\varphi_i(m) \) is contained in \(\chi_q(L(m)) \).

3. Snake modules of types \(A_n \) and \(B_n \)

In this section, we recall the definition of snake modules which were introduced by Mukhin and Young in [MY12a], [MY12b]. In the following, we assume that \(\mathfrak{g} \) is of type \(A_n \) or \(B_n \).

3.1. Snake positions and minimal snake positions. We recall the definitions of snake positions and minimal snake positions introduced in Section 4 of [MY12a] and Section 3 of
A subset $X \subset I \times \mathbb{Z}$ and an injective map $\iota : X \to \mathbb{Z} \times \mathbb{Z}$ are defined as follows.

Type A_n: Let $X := \{(i, k) \in I \times \mathbb{Z} : i-k \equiv 0 \pmod{2}\}$ and $\iota(i, k) = (i, k)$.

Type B_n: Let $X := \{(n, 2k) : k \in \mathbb{Z}\} \sqcup \{(i, k) \in I \times \mathbb{Z} : i < n \text{ and } k \equiv 1 \pmod{2}\}$ and

$$
\iota(i, k) = \begin{cases}
(2i, k), & \text{if } i < n \text{ and } 2n + k - 2i \equiv 1 \pmod{4}, \\
(4n - 2 - 2i, k), & \text{if } i < n \text{ and } 2n + k - 2i \equiv 3 \pmod{4}, \\
(2n - 1, k), & \text{if } i = n.
\end{cases}
$$

Let A, B be two sets. We define a map $\text{pr}_1 : A \times B \to A$ given by $\text{pr}_1(a, b) = a$.

Let $(i, k) \in X$. A point $(i', k') \in X$ is said to be in *snake position* with respect to (i, k) if and only if

Type A_n: $k' - k \geq |i' - i| + 2$ and $k' - k \equiv |i' - i| \pmod{2}$.

Type B_n:

$$
\begin{align*}
&i = i' = n : k' - k \geq 2 \text{ and } k' - k \equiv 2 \pmod{4}, \\
&i \neq i' = n \text{ or } i' \neq i = n : k' - k \geq 2|i' - i| + 3 \text{ and } k' - k \equiv 2|i' - i| - 1 \pmod{4}, \\
&i < n \text{ and } i' < n : k' - k \geq 2|i' - i| + 4 \text{ and } k' - k \equiv 2|i' - i| \pmod{4}.
\end{align*}
$$

The point (i', k') is in *minimal* snake position to (i, k) if and only if $k' - k$ is equal to the given lower bound.

Remark 3.1. The above condition for type A_n is slightly different from the condition for type A_n in Section 4.2 of [MY12a] and Section 3.2 of [MY12b].

3.2. Prime snake positions

Let $(i, k) \in X$. A point $(i', k') \in X$ is said to be in *prime snake position* with respect to (i, k) if and only if

Type A_n: $\min\{2n + 2 - i - i', i + i'\} \geq k' - k \geq |i' - i| + 2$ and $k' - k \equiv |i' - i| \pmod{2}$.

Type B_n: $\begin{align*}
&i = i' = n : 4n - 2 \geq k' - k \geq 2 \text{ and } k' - k \equiv 2 \pmod{4}, \\
&i \neq i' = n \text{ or } i' \neq i = n : 2i' + 2i - 1 \geq k' - k \geq 2|i' - i| + 3 \text{ and } k' - k \equiv 2|i' - i| - 1 \pmod{4}, \\
&i < n \text{ and } i' < n : 2i' + 2i - 1 \geq k' - k \geq 2|i' - i| + 4 \text{ and } k' - k \equiv 2|i' - i| \pmod{4}.
\end{align*}$

Remark 3.2. The above condition for type A_n is slightly different from the condition for type A_n in Section 3.3 of [MY12a].

3.3. Snakes and snake modules

A finite sequence (i_t, k_t), $1 \leq t \leq T$, $T \in \mathbb{Z}_{\geq 0}$, of points in X is called a *snake* if and only if for all $2 \leq t \leq T$, (i_t, k_t) is in snake position with respect to (i_{t-1}, k_{t-1}), [MY12a, MY12b]. It is called a *minimal* (respectively, *prime*) snake if and only if successive points are in minimal (respectively, prime) snake position, [MY12a, MY12b].

The simple module $L(m)$ is called a *snake module* (respectively, a minimal snake module) if and only if $m = \prod_{t=1}^{T} Y_{i_t, k_t}$ for some snake $(i_t, k_t)_{1 \leq t \leq T}$ (respectively, for some minimal snake $(i_t, k_t)_{1 \leq t \leq T}$, [MY12a, MY12b].

Theorem 3.3 ([MY12b, Proposition 3.1]). A snake module is prime if and only if its snake is prime. Every snake module can be uniquely (up to permutation) decomposed into a tensor of prime snake modules.

We have the following theorem.
Theorem 3.4. Prime snake modules are real.

Theorem 3.4 will be proved in Section 7.

In this paper, when we write the highest l-weight monomial m of a snake module $L(m)$ explicitly, we write $m = Y_{i_1,k_1}Y_{i_2,k_2} \cdots Y_{i_T,k_T}$ such that $k_t, 1 \leq t \leq T$, are in increasing order.

3.4. Path description of q-characters for snake modules of types A_n and B_n. We will review the path description of q-characters for snake modules of types A_n and B_n, see Section 5 of [MY12a] and Section 6 of [MY12b] for further details.

A path is a finite sequence of points in the plane \mathbb{R}^2. We write $(j, \ell) \in p$ if (j, ℓ) is a point of the path p.

The following is the case of type A_n. For all $(i, k) \in \mathcal{X}$, let

$$\mathcal{P}_{i,k} = \{(0, y_0), (1, y_1), \ldots, (n, y_{n+1}) : y_0 = i + k, y_{n+1} = n + 1 - i + k, \text{ and } y_{i+1} - y_i \in \{1, -1\}, 0 \leq i \leq n\}.$$

The sets C^\pm_p of upper and lower corners of a path $p = ((r, y_r))_{0 \leq r \leq n+1} \in \mathcal{P}_{i,k}$ are defined as follows:

$$C^+_p = \{(r, y_r) \in p : r \in I, y_{r-1} = y_r + 1 = y_{r+1}\},$$

$$C^-_p = \{(r, y_r) \in p : r \in I, y_{r-1} = y_r - 1 = y_{r+1}\}.$$

The following is the case of type B_n. Fix an ε, $0 < \varepsilon < 1/2$, $\mathcal{P}_{n,\ell}$ for all $\ell \in 2\mathbb{Z}$ are defined as follows.

For all $\ell \equiv 3 \text{ mod } 4$,

$$\mathcal{P}_{n,\ell} = \{((0, y_0), (2, y_1), \ldots, (2n - 4, y_{n-2}), (2n - 2, y_{n-1}), (2n - 1, y_n)) : y_0 = \ell, y_{n+1} - y_i \in \{2, -2\}, 0 \leq i \leq n - 2, \text{ and } y_{n+1} - y_i \in \{1 + \varepsilon, -1 - \varepsilon\}\}.$$

For all $\ell \equiv 1 \text{ mod } 4$,

$$\mathcal{P}_{n,\ell} = \{((4n - 2, y_0), (4n - 4, y_1), \ldots, (2n + 2, y_{n-2}), (2n, y_{n-1}), (2n - 1, y_n)) : y_0 = \ell + 2n - 1, y_{n+1} - y_i \in \{2, -2\}, 0 \leq i \leq n - 2, \text{ and } y_{n+1} - y_i \in \{1 + \varepsilon, -1 - \varepsilon\}\}.$$

For all $(i, k) \in \mathcal{X}$, $i < n$, $\mathcal{P}_{i,k}$ are defined as follows:

$$\mathcal{P}_{i,k} = \{(a_0, a_1, \ldots, a_n, \overline{a}_0, \overline{a}_1, \ldots, \overline{a}_n) : (a_0, a_1, \ldots, a_n) \in \mathcal{P}_{n,k - (2n - 2i - 1)}, (\overline{a}_0, \overline{a}_1, \ldots, \overline{a}_n) \in \mathcal{P}_{n,k + (2n - 2i - 1)}, \text{ and } a_n - \overline{a}_n = (0, y) \text{ where } y > 0\}.$$

The sets of upper and lower corners C^\pm_p of a path $p = ((j, \ell_j))_{0 \leq r \leq |p|-1} \in \mathcal{P}_{i,k}$, where $|p|$ is the number of points in the path p, are defined as follows:

$$C^+_p = \ell^{-1}\{(j, \ell) \in p : j_e \notin \{0, 2n - 1, 4n - 2\}, \ell_{r-1} > \ell_r, \ell_{r+1} > \ell_r \} \cup \{(n, \ell) \in \mathcal{X} : (2n - 1, \ell - \varepsilon) \notin p \text{ and } (2n - 1, \ell + \varepsilon) \notin p\},$$

$$C^-_p = \ell^{-1}\{(j, \ell) \in p : j_e \notin \{0, 2n - 1, 4n - 2\}, \ell_{r-1} < \ell_r, \ell_{r+1} < \ell_r \} \cup \{(n, \ell) \in \mathcal{X} : (2n - 1, \ell - \varepsilon) \notin p \text{ and } (2n - 1, \ell + \varepsilon) \notin p\}.$$
A map m sending paths to monomials is defined by

$$m : \bigcup_{(i,k) \in \mathcal{X}} \mathcal{P}_{i,k} \rightarrow \mathbb{Z}[Y^\pm_{j,\ell} | (j,\ell) \in \mathcal{X}].$$

$$p \mapsto m(p) = \prod_{(j,\ell) \in C^+_p} Y_{j,\ell} \prod_{(j,\ell) \in C^-_p} Y_{j,\ell}^{-1}. \quad (3.1)$$

We identify a path p with the monomial $m(p)$. Let p, p' be paths. It is said that p is strictly above p' or p' is strictly below p if

$$(x, y) \in p \text{ and } (x, z) \in p' \implies y < z.$$

It is said that a T-tuple of paths (p_1, \ldots, p_T) is non-overlapping if p_s is strictly above p_t for all $s < t$. For any snake $(i_t, k_t) \in \mathcal{X}$, $1 \leq t \leq T$, $T \in \mathbb{Z}_{\geq 1}$, $\mathcal{P}(i_t, k_t)_{1 \leq t \leq T}$ is defined by

$$\mathcal{P}(i_t, k_t)_{1 \leq t \leq T} = \{ (p_1, \ldots, p_T) : p_t \in \mathcal{P}_{i_t,k_t}, 1 \leq t \leq T, (p_1, \ldots, p_T) \text{ is non-overlapping} \}.$$

Theorem 3.5 ([MY12a], Theorem 6.1; [MY12b], Theorem 6.5). Let $(i_t, k_t) \in \mathcal{X}$, $1 \leq \ell \leq T$, be a snake of length $T \in \mathbb{Z}_{\geq 1}$. Then

$$\chi_q(L(\prod_{\ell=1}^{T} Y_{i_t,k_t})) = \sum_{(p_1, \ldots, p_T) \in \mathcal{P}(i_t,k_t)_{1 \leq t \leq T}} \prod_{\ell=1}^{T} m(p_t). \quad (3.2)$$

The module $L(\prod_{\ell=1}^{T} Y_{i_t,k_t})$ is thin, special and anti-special.

By Theorem 3.5, the q-characters of snake modules of types A_n and B_n with length T are given by a set of T-tuples of non-overlapping paths. The paths in each T-tuple are non-overlapping. This property is called the non-overlapping property.

We also need the following notations in this paper. For all $(i, k) \in \mathcal{X}$, let $p^+_{i,k}$ be the highest path which is the unique path in $\mathcal{P}_{i,k}$ with no lower corners and $p^-_{i,k}$ the lowest path which is the unique path in $\mathcal{P}_{i,k}$ with no upper corners.

4. S-systems of types A_n and B_n

In this section, we introduce a closed system of equations which contains all prime snake modules of type A_n (respectively, B_n) and only contains prime snake modules of type A_n (respectively, B_n).

4.1. Another notation of snake modules

In order to introduce the S-systems, we need to use another notation of snake modules. We fix an $a \in \mathbb{C}^\times$ and denote $i_s = Y_{i_s,aq^s}$, where $i \in I$, $s \in \mathbb{Z}$.

Every snake module of type A_n is a module with highest l-weight monomial of the form

$$S^{(l)}_{i_1, \ldots, i_m}(\ell_1, j_1, \ell_2, j_2, \ldots, \ell_{m-1}, j_{m-1}, \ell_m, j_m) := \prod_{j=1}^{m} \left(\prod_{r=0}^{k_j-1} (i_j)^{\ell_1+2r+\sum_{i=1}^{r} n_i} \right), \quad (4.1)$$

where $t \in \mathbb{Z}$, $i_j \in I$, $k_j \geq 0$, $1 \leq j \leq m$, $j_t \in \mathbb{Z}_{\geq 0}$, $1 \leq \ell \leq m - 1$, and

$$n_\ell = 2k_\ell + |i_{\ell+1} - i_\ell| + 2j_\ell. \quad (4.2)$$
In type B_n, for $i,j \in I$, we define $\varepsilon_{i,j} = -\delta_{in} - \delta_{jn}$, where δ_{ij} is the Kronecker delta. Every snake module of type B_n is a module with highest l-weight monomial of the form

$$S^{(t)}_{k_1^{(i_1,j_1)}, \ldots, k_m^{(i_{m-1},j_{m-1}), k_m^{(i_m)}}} := \prod_{j=1}^{m} \left(\prod_{r=0}^{k_j-1} (i_j)^{t+2d_{ij}r+\sum_{s=1}^r j_s} \right),$$

(4.3)

where $t \in \mathbb{Z}$, $i,j \in I$, $k_j \geq 0$, $1 \leq j \leq m$, and

$$n_\ell = 2d_{ij}k_\ell + 2|i_\ell+1 - i_\ell| + 4 - 2d_{ij} + 4j_\ell + \varepsilon_{i_\ell,i_{\ell+1}}.$$

(4.4)

Let S be a dominant monomial. We also use S to denote $L(S)$. For example, we use $S_{k_1^{(i_1,j_1)}, \ldots, k_m^{(i_{m-1},j_{m-1}), k_m^{(i_m)}}}$ to denote the irreducible finite-dimensional $U_q\hat{g}$-module with highest l-weight monomial $S_{k_1^{(i_1,j_1)}, \ldots, k_m^{(i_{m-1},j_{m-1}), k_m^{(i_m)}}}$.

For simplicity, if $j_\ell = 0$ for some ℓ, $1 \leq \ell \leq m - 1$, then we use

$$S^{(t)}_{k_1^{(i_1,j_1)}, \ldots, k_\ell^{(i_\ell,j_\ell)}, \ldots, k_m^{(i_{m-1},j_{m-1}), k_m^{(i_m)}}}$$

to denote $S^{(t)}_{k_1^{(i_1,j_1)}, \ldots, k_\ell^{(i_\ell,j_\ell)}, \ldots, k_m^{(i_{m-1},j_{m-1}), k_m^{(i_m)}}}$. In this notation, $S^{(t)}_{k_1^{(i_1,j_1)}, \ldots, k_\ell^{(i_\ell,j_\ell)}, \ldots, k_m^{(i_{m-1},j_{m-1}), k_m^{(i_m)}}}$ is a minimal snake module.

Let \mathcal{S} be the set of all snake modules and \mathfrak{T} the set of all snakes. We define a map

$$\varphi : \mathcal{S} \rightarrow \mathfrak{T}$$
$$S \mapsto \text{the snake of } S.$$

(4.5)

It is easy to see that the map $\varphi : \mathcal{S} \rightarrow \mathfrak{T}$ is a bijection.

4.2. Neighboring points. The concept of neighboring points was introduced in Section 3 of [MY12b]. Let $(i,k) \in \mathcal{X}$ and $(i',k') \in \mathcal{X}$ such that (i',k') is in prime snake position with respect to (i,k). The neighboring points to the pair (i,k), (i',k') are two finite sequences $X_{i,k}^{i',k'}$ and $Y_{i,k}^{i',k'}$ of points in \mathcal{X} defined as follows.
In type A_n, let
\[
X_{i,k}^{i',k'} = \begin{cases}
\emptyset, & k+i > k' - i', \\
\left\{ \left(\frac{1}{2}(i+k+i' - k'), \frac{1}{2}(i+k - i' + k') \right) \right\}, & k+i = k' - i'.
\end{cases}
\]
\[
Y_{i,k}^{i',k'} = \begin{cases}
\emptyset, & k+i > k' - i', \\
\left\{ \left(\frac{1}{2}(i'+k' + i - k), \frac{1}{2}(i' + k' - i + k) \right) \right\}, & k+n+1 - i > k' - n - 1 + i', \\
\left\{ \left(\frac{1}{2}(i'+k' + i - k), \frac{1}{2}(i' + k' - i + k) \right) \right\}, & k+n+1 - i = k' - n - 1 + i'.
\end{cases}
\]

In type B_n, let
\[
\begin{align*}
(X_{i,k}^{i',k'}, Y_{i,k}^{i',k'}) &= \left\{ \begin{array}{ll}
\emptyset, & \text{if } i < n, 2n+k - 2i \equiv 1 \pmod{4}, \text{ or } i = n, k \equiv 0 \pmod{4}, \\
\left\{ \left(\frac{1}{2}(2i+k+2i'-k'), \frac{1}{2}(2i+k-2i'+k') \right) \right\}, & \text{if } i < n, i' < n, k'-k = 2i + 2i', \\
\left\{ \left(\frac{1}{2}(2i+k+2n-1-k'), \frac{1}{2}(2i+k-2n+1+k') \right) \right\}, & \text{if } i < n, i' < n, k'-k < 2i + 2i', \\
\left\{ \left(\frac{1}{2}(2i+k+2n-1-k'), \frac{1}{2}(2i+k-2n+1+k') \right) \right\}, & \text{if } i < n, i' = n, k'-k = 2i + 2n - 1, \\
\left\{ \left(\frac{1}{2}(2n-1+k+2i'-k'), \frac{1}{2}(2n-1+k-2i'+k') \right) \right\}, & \text{if } i < n, i' < n, k'-k < 2n + 2i' - 1, \\
\left\{ \left(\frac{1}{2}(4n-2+k+k') \right) \right\}, & \text{if } i = n, i' = n.
\end{array} \right.
\end{align*}
\]

4.3. S-systems of types A_n and B_n. In types A_n and B_n, every prime snake module can be written as
\[
S^{(t)}_{k_1^{(1,j_1)}, k_2^{(1,j_2)}, \ldots, k_{m-1}^{(1,j_{m-1})}, k_m^{(1,j_m)}},
\]
where $m \geq 1$, $j_\ell \geq 0$, $1 \leq \ell \leq m - 1$, if $j_{\ell} = 0$, then $i_\ell \neq i_{\ell+1}$, $k_1, k_2, \ldots, k_m \in \mathbb{Z}_{\geq 1}$, $t \in \mathbb{Z}$.

Let S_1 be the prime snake module (4.6) and sgn(x) the sign function. We define S_1 in Table 1 (respectively, Table 2) for type A_n (respectively, B_n).
Conditions	\mathcal{S}_1
$m = 1$	$\mathcal{S}_1^{(1)}$
$j_1 = 0$	$\mathcal{S}_1^{(2)}$ if $i_2 \equiv 1 \pmod{2}$
$j_1 = 0$	$\mathcal{S}_1^{(2)}$ if $i_2 \equiv 0 \pmod{2}$

for $j_2 = 0$, $m \geq 3$, $(t_2 - t_1) (t_3 - t_2) > 0$, $j_2 \geq 0$, $3 \leq \ell \leq m - 1$

and $j_2 = 1$, $m \geq 3$, $(t_2 - t_1) (t_3 - t_2) > 0$, $j_2 \geq 0$, $3 \leq \ell \leq m - 1$

for $j_2 = 0$, $m \geq 3$, $(t_2 - t_1) (t_3 - t_2) \leq 0$, $j_2 \geq 0$, $3 \leq \ell \leq m - 1$

and $j_2 = 1$, $m \geq 3$, $(t_2 - t_1) (t_3 - t_2) \leq 0$, $j_2 \geq 0$, $3 \leq \ell \leq m - 1$

Conditions	\mathcal{S}_1
$m = 1$	$\mathcal{S}_1^{(2)}$
$j_1 = 0$, $i_1 \neq n$, $i_2 = n$, $m = 2$, k_2 is odd	$\mathcal{S}_1^{(2)}$
$j_1 = 0$, $i_1 \neq n$, $i_2 = n$, $m = 2$, k_2 is even	$\mathcal{S}_1^{(2)}$

Conditions	\mathcal{S}_1
$m = 2$	$\mathcal{S}_1^{(2)}$
$j_1 = 0$, $i_1 = n$	$\mathcal{S}_1^{(2)}$

Conditions	\mathcal{S}_1
$m = 2$	$\mathcal{S}_1^{(2)}$
$j_1 = 0$, i_2 is odd, $m = 3$	$\mathcal{S}_1^{(2)}$
$j_1 = 0$, i_2 is even, $m = 3$	$\mathcal{S}_1^{(2)}$

Conditions	\mathcal{S}_1
$m = 2$	$\mathcal{S}_1^{(2)}$
$j_1 \geq 1$, $i_1 = n$	$\mathcal{S}_1^{(2)}$

Table 1. Definition of \mathcal{S}_1 in type A_n.

Table 2. Definition of \mathcal{S}_1 in type B_n.
Let $X_1 = \varphi(S_1)$ and $X_2 = \varphi(S_2)$, where φ is defined in (15). We define
\begin{equation}
S_3 = L(Y_{i,t}) \prod_{(i,k) \in X_1} Y_{i,k}, \quad S_4 = L(\prod_{(i,k) \in X_2 \setminus \{i,t\}} Y_{i,k}). \tag{4.7}
\end{equation}

Let
\begin{align*}
X'_{i_1} &= \{ (i_1, t + 2d_{i_1}, j) : 1 \leq j \leq k_1 \} \subset X_1, \\
X_i &= \{ (i_1, t + 2d_{i_1}, j - 2d_i) : 1 \leq j \leq k_1 \} \subset X_2,
\end{align*}

and
\begin{align*}
X &= \prod_{(i,k) \in X_1} X_{i,k}^{i+k+2d_i}, \\
Y &= \prod_{(i,k) \in X_1} X_{i,k}^{i+k+2d_i}.
\end{align*}

If $m = 1$, let
\begin{equation}
S_5 = L(\prod_{(i,k) \in X} Y_{i,k}), \quad S_6 = L(\prod_{(i,k) \in Y} Y_{i,k}). \tag{4.8}
\end{equation}

If $m \geq 2$, we define S_5, S_6 as follows. In the case of type A_n, let
\begin{align*}
S_5 &= \begin{cases}
L((\prod_{(i,k) \in X} Y_{i,k})(\prod_{(i,k) \in X_1 \setminus \{i_1\}} Y_{i,k})), & i_1 \leq i_2, \\
L((\prod_{(i,k) \in X} Y_{i,k})(\prod_{(i,k) \in X_1 \setminus \{i_1\}} Y_{i,k})), & i_1 > i_2,
\end{cases} \\
S_6 &= \begin{cases}
L((\prod_{(i,k) \in Y} Y_{i,k})(\prod_{(i,k) \in X_1 \setminus \{i_1\}} Y_{i,k})), & i_1 \leq i_2, \\
L((\prod_{(i,k) \in Y} Y_{i,k})(\prod_{(i,k) \in X_1 \setminus \{i_1\}} Y_{i,k})), & i_1 > i_2.
\end{cases} \tag{4.9}
\end{align*}

In the case of type B_n, let
\begin{align*}
S_5 &= \begin{cases}
L((\prod_{(i,k) \in X} Y_{i,k})(\prod_{(i,k) \in X_1 \setminus \{i_1\}} Y_{i,k})), & \text{pr}_1((i_1, t)) < \text{pr}_1((i_2, t + n_1)), \text{ or } i_1 = i_2 \neq n, \text{ or } i_1 = i_2 = n, \text{ or } t + n_1 \equiv 2 \pmod{4}, \\
L((\prod_{(i,k) \in X} Y_{i,k})(\prod_{(i,k) \in X_1 \setminus \{i_1\}} Y_{i,k})), & \text{pr}_1((i_1, t)) \geq \text{pr}_1((i_2, t + n_1)), \text{ or } i_1 = i_2 = n, \text{ or } t + n_1 \equiv 0 \pmod{4},
\end{cases} \\
S_6 &= \begin{cases}
L((\prod_{(i,k) \in Y} Y_{i,k})(\prod_{(i,k) \in X_1 \setminus \{i_1\}} Y_{i,k})), & \text{pr}_2((i_1, t)) = \text{pr}_2((i_2, t + n_1)), \text{ or } i_1 = i_2 \neq n, \text{ or } i_1 = i_2 = n, \text{ or } t + n_1 \equiv 2 \pmod{4}, \\
L((\prod_{(i,k) \in Y} Y_{i,k})(\prod_{(i,k) \in X_1 \setminus \{i_1\}} Y_{i,k})), & \text{pr}_2((i_1, t)) > \text{pr}_2((i_2, t + n_1)), \text{ or } i_1 = i_2 = n, \text{ or } t + n_1 \equiv 0 \pmod{4},
\end{cases} \tag{4.10}
\end{align*}

where n_1 is defined in (1.3) for type B_n, the map ι is defined in Section 3.1.

We have the following theorem.

Theorem 4.1. In type A_n (respectively, B_n), let S_2 be the prime snake module (4.6). We have the following system of equations
\begin{equation}
[S_1][S_2] = [S_3][S_4] + [S_5][S_6], \tag{4.11}
\end{equation}

where S_1 is defined in Table 1 (respectively, Table 2), S_3, S_4 are defined in (4.7), S_5, S_6 are defined in (4.8), (4.9) (respectively, (4.10)).

We call the system of equations in Theorem 4.1 the S-system for type A_n (respectively, B_n). In particular when $m = 1$, the system of equations in Theorem 4.1 is T-system for types A_n and B_n, [Hero06], [KNS94]. The equations in the S-systems are different from the equations in the extended T-systems, [MY12]. Theorem 4.1 will be proved in Section 8.
Example 4.2. The following are some equations in the S-system for type A_3.

\[
[3_{-3}3_{-1}1][3_{-3}3_{-3}3_{-3}] = [3_{-3}3_{-3}3_{-3}][3_{-3}3] + [2_{-2}2_{-2}],
\]

\[
[3_{-3}3_{-1}][3_{-3}3_{-3}3_{-1}] = [3_{-3}3_{-3}3_{-3}][1_{-1}][2_{-1}][3_{-1}2_{-2}],
\]

\[
[3_{-3}3_{-1}3_{-3}3_{-2}] = [3_{-3}3_{-3}3_{-3}][2_{-2}3_{-2}] + [2_{-2}2_{-2}][2_{-2}2_{-2}3_{-2}].
\]

Moreover, we have the following theorem.

- Theorem 4.3. The modules in the summands on the right-hand side of each equation in Theorem 4.1 are simple.

Theorem 4.3 will be proved in Section 9.

4.4. The s-systems of types A_n and B_n. Let S be a U_qG-module. We use $\text{Res}(S)$ to denote the restriction of S to U_qG. Let $\chi(M)$ be the character of a U_qG-module M. We have a system of equations

\[
\chi(\text{Res}(S_i))\chi(\text{Res}(S_2)) = \chi(\text{Res}(S_3))\chi(\text{Res}(S_4)) + \chi(\text{Res}(S_5))\chi(\text{Res}(S_6)),
\]

where $[S_1][S_2] = [S_3][S_4] + [S_5][S_6]$ are equations of the S-system for type A_n (respectively, B_n). We call this system of equations the s-system of type A_n (respectively, B_n).

5. Relation between S-systems and cluster algebras

In this section, we show that every equation in the S-system of type A_n (respectively, B_n) corresponds to a mutation in some cluster algebra \mathcal{A} (respectively, \mathcal{A}') and every prime snake module of type A_n (respectively, B_n) corresponds to some cluster variable in \mathcal{A} (respectively, \mathcal{A}'). In particular, this proves that the Hernandez–Leclerc conjecture (Conjecture 1.1) is true for snake modules of types A_n and B_n.
5.1. Definition of cluster algebras \mathcal{A} and \mathcal{A}'. We recall the definition of the cluster algebras introduced in [HL13]. Let $\tilde{V} = I \times \mathbb{Z}$ and let $\tilde{\Gamma}$ be a quiver with the vertex set \tilde{V} whose arrows are given by $(i, r) \to (j, s)$ if and only if $b_{ij} \neq 0$ and $s = r + b_{ij}$, where $B = (b_{ij})_{i,j \in I} = DC$ is defined in Section 2.2.

It is shown that $\tilde{\Gamma}$ has two isomorphic components in [HL13]. Let Γ be one of the components and V its vertex set. Let ψ be a function defined by $\psi(i, t) = (i, t + d_i)$ for $(i, t) \in V$. Let $W \subseteq I \times \mathbb{Z}$ be the image of V under the map ψ and let G be the same quiver as Γ but with vertices labeled by W. Let $W^{-} = W \cap (I \times \mathbb{Z}_{\leq 0})$ and let Q be the full sub-quiver of G with vertex set W^{-}.

Let $z^{-} = \{z_{i,t} : (i, t) \in W^{-}\}$ and let \mathcal{A} be the cluster algebra defined by the initial seed (z^{-}, Q). For convenience, we denote by Q' and \mathcal{A}' the quiver \tilde{Q} and the cluster algebra \mathcal{A} in the case of type B_n, respectively.

In the case of type A_n, let

$$s = \{s_{k(i)}^{(-2k+2)} | i \text{ is even, } k \in \mathbb{Z}_{\geq 1}\} \cup \{s_{k(i)}^{(-2k+1)} | i \text{ is odd, } k \in \mathbb{Z}_{\geq 1}\}.$$ \hspace{1cm} (5.1)

In the case of type B_n, let $s' = s_1 \cup s_2$, where

$$s_1 = \{s_{k(i)}^{(-2k-2)} | k \in \mathbb{Z}_{\geq 1}\},$$ \hspace{1cm} (5.2)

$$s_2 = \{s_{k(i)}^{(-4k+3)} , s_{k(i)}^{(-4k+1)} | i \in \{1, \ldots, n-1\}, k \in \mathbb{Z}_{\geq 1}\}. \hspace{1cm} (5.3)$$

Let \mathcal{A} (respectively, \mathcal{A}') be the cluster algebra defined by the initial seed (s, Q) (respectively, (s', Q')). Here we identify s (respectively, s') with z^{-} as follows. For $(i, t) \in W^{-}$, we identify $s_{k(i)}^{(l)}$ with $z_{i,t}$.

We say that $s_{k(i)}^{(l)}$ is at this vertex and we say that the label of this vertex is (i, t). Let Q (respectively, Q') be a quiver which is mutation equivalent to Q (respectively, Q') in type A_n (respectively, B_n). After we mutate at a vertex v of Q (respectively, Q'), the variable at v is changed and the label of v is changed.

In this paper, our mutation sequences satisfy this property: after we mutate a quiver using a mutation sequence, any two vertices in the current quiver we obtain have different labels. Suppose that the label of a vertex v in Q (respectively, Q') is (i, t). After we mutate at v, the label of v becomes $(i, t - 2d_i)$. We use (i, t) to denote the vertex with the label (i, t).

5.2. Fundamental segments and distinguished factors.

Definition 5.1. Let S be a prime snake module and S its highest l-weight monomial. Then S can be written as

$$S = S_{k_1(j_1, j_2)}^{(l_1, j_1, j_2, \ldots, j_{m-1}, j_m)} k_{m-1}^{(i_1, \ldots, i_{m-1}, i_m)}.$$ \hspace{1cm} (5.4)

where $m \geq 1$, $j_\ell \geq 0$, $1 \leq \ell \leq m - 1$, if $j_\ell = 0$, then $i_\ell \neq i_{\ell+1}$, $k_1, k_2, \ldots, k_m \in \mathbb{Z}_{\geq 1}$, $t \in \mathbb{Z}$.

Let

$$FS(S) = FS_1 \cup FS_2 \cup FS_3,$$ \hspace{1cm} (5.5)

where

$$FS_1 = \left\{ S_{k_m}^{(l_m)} : t_m = t + \sum_{j=1}^{m-1} n_j \right\},$$ \hspace{1cm} (5.6)
We call \(\mathcal{FS}(S) \) the set of fundamental segments of \(S \).

Example 5.2. In type \(A_5 \), we have

\[
\mathcal{FS}(2_{-124-85-55-340}) = \{4_0, 5_{-55-340}, 2_{-124-85-5} \}.
\]

In type \(A_4 \), we have

\[
\mathcal{FS}(2_{-163-133-112-82-43-1}) = \{3_{-1}, 2_{-43-1}, 2_{-82-4}, 3_{-133-112-8}, 2_{-163-13} \},
\]

\[
\mathcal{FS}(2_{-302-261-231-212-183-152-122-102-64-240}) = \{4_{-240}, 2_{-64-2}, 2_{-122-160-6, 3_{-152-12, 1_{-231-212-183-15, 2_{-261-23, 2_{-302-26} \}.}
\]

In type \(B_3 \), we have

\[
\mathcal{FS}(1_{-312-252-173-123-62-1}) = \{2_{-1}, 3_{-62-1}, 3_{-123-6, 2_{-173-12, 2_{-252-17}, 1_{-312-25} \},
\]

\[
\mathcal{FS}(2_{-432-352-312-253-183-83-3230}) = \{3_{-30}, 3_{-33-2}, 3_{-183-8}, 1_{-253-18, 2_{-352-312-25, 2_{-432-35} \}.}
\]

The following proposition is easy to prove.

Proposition 5.3. Let \(S \) be a prime snake module and \(S \) its highest \(l \)-weight monomial. Then \(S \) is uniquely determined by \(\mathcal{FS}(S) \).

Definition 5.4. Let \(S \) be a prime snake module and \(S \) its highest \(l \)-weight monomial. Let \(M \) be a monomial in \(\mathcal{FS}(S) \), the last factor of \(M \) is called the distinguished factor of \(M \).

Example 5.5. In type \(A_4 \), let \(S = 2_{-163-133-112-82-43-1} \). Then the set of distinguished factors of \(S \) is \(\{3_{-1}, 2_{-4}, 2_{-8, 3_{-13} \} \), see Figure 7.

In type \(B_3 \), let \(S = 1_{-312-252-173-123-62-1} \). Then the set of distinguished factors of \(S \) is \(\{2_{-1}, 3_{-6}, 3_{-12}, 2_{-17, 2_{-25} \} \), see Figure 8.
5.3. Distinguished sub-quivers. Let \(\tilde{Q} \) (respectively, \(\tilde{Q}' \)) be a quiver which is mutation equivalent to \(Q \) (respectively, \(Q' \)) and any two vertices in \(\tilde{Q} \) (respectively, \(\tilde{Q}' \)) have different labels. We define a subset \(\mathcal{Y} \) of the set of vertices in \(\tilde{Q} \) (respectively, \(\tilde{Q}' \)) as follows. In the case of type \(A_n \), let

\[
\mathcal{Y} = \{(i, k) \in \tilde{Q} : i - k \equiv 0 \pmod{2}\}.
\]

In the case of type \(B_n \), let

\[
\mathcal{Y} = \{(n, 2k) \in \tilde{Q}' : k \in \mathbb{Z}_{\leq 0}\} \cup \{(i, k) \in \tilde{Q}' : i < n \text{ and } k \equiv 1 \pmod{2}\}.
\]

For a quiver \(\mathcal{L} \), we use \(V(\mathcal{L}) \) to denote the set of its vertices. We define a distinguished sub-quiver \(\mathcal{L}_{i,t}^{\tilde{Q}} \) (respectively, \(\mathcal{L}_{i,t}^{\tilde{Q}'} \)) with respect to \((i, t) \in V(\tilde{Q}) \) (respectively, \(V(\tilde{Q}') \)) in type \(A_n \) (respectively, \(B_n \)).

The map \(\iota \) is defined in Section 3.1. In the case of type \(A_n \), let

\[
V(\mathcal{L}_{i,t}^{\tilde{Q}}) = \{(i(j, y_j)) \in \mathcal{Y} : j \in I, y_i = t - 2, y_j = y_{j+1} + 1, 1 \leq j \leq i - 1, \text{ and } y_{j+1} = y_j + 1, i \leq j \leq n - 1\}.
\]

Figures 3, 4 illustrate distinguished sub-quivers \(\mathcal{L}_{4,0}^{Q} \), \(\mathcal{L}_{5,-3}^{Q} \) in the original quiver of type \(A_8 \) respectively.
In the case of type B_n,

- for all $i = n$, let

$$V(\mathcal{L}_{n,\ell}) = \{\iota(j, y_j) \in \mathcal{Y} : j \in I, \, y_n \in \{\ell - 4, \ell - 6\}, \, y_{n-1} = y_n + 3, \, y_j = y_{j+1} + 2, \, 1 \leq j \leq n - 2\};$$

- for all $i < n$, let

$$V(\mathcal{L}_{i,\ell}) = \{\iota(j, y_j) \in \mathcal{Y} : j \in I, \, y_i = \ell - 4, \, y_j = y_{j+1} + 2, \, 1 \leq j \leq i - 1, \, y_{j+1} = y_j + 2, \, i \leq j \leq n - 2, \, y_n = y_{n-1} + 1\} \cup \{\iota(j, y_j) \in \mathcal{Y} : j \in I, \, y_n = \ell + 2n - 2i - 7, \, y_{n-1} = y_n + 3, \, y_j = y_{j+1} + 2, \, 1 \leq j \leq n - 2\}.$$
Similarly, we define mutation sequences with respect to a quiver.

5.4. Mutation sequences with respect to a quiver. Let \(\tilde{Q} \) (respectively, \(\tilde{Q}' \)) be a quiver which is mutation equivalent to \(Q \) (respectively, \(Q' \)) and any two vertices in \(\tilde{Q} \) (respectively, \(\tilde{Q}' \)) have different labels. By saying that we mutate \(\tilde{Q} \) (respectively, \(\tilde{Q}' \)), we mean that we mutate at the vertex of \(\tilde{Q} \) (respectively, \(\tilde{Q}' \)) which has the label \((i, t)\) in the \(i \)-th column and so on until the vertex at infinity in the \(i \)-th column.

For convenience, in the case of type \(B_n \), let

\[
V'(l(\tilde{Q}')) = \begin{cases}
V(l(\tilde{Q}')) , & i \neq n, 2n - 2i + \ell \equiv 1 \ (\text{mod} \ 4), \text{or} \ i = n, \\
V(\tilde{Q}')(2n - 1, \ell + 2n - 2i - 7) , & i \neq n, 2n - 2i + \ell \equiv 3 \ (\text{mod} \ 4), \\
\end{cases}
\]

\[
V'(r(\tilde{Q}')) = \begin{cases}
V(r(\tilde{Q}')) - \{(2n - 1, \ell + 2n - 2i - 7)\} , & i \neq n, 2n - 2i + \ell \equiv 1 \ (\text{mod} \ 4), \\
\end{cases}
\]

For type \(A_n \) (respectively, \(B_n \)), suppose that

\[
V(l(\tilde{Q}')) \ (\text{respectively}, \ V'(l(\tilde{Q}'))) = \{(j_1, t_1), (j_2, t_2), \ldots, (j_m, t_m)\},
\]

where \(j_1 < j_2 < \cdots < j_m < \text{pr}_1(\ell(i, \ell)) \),

and

\[
V(r(\tilde{Q}')) \ (\text{respectively}, \ V'(r(\tilde{Q}'))) = \{(j_1, t_1), (j_2, t_2), \ldots, (j_m, t_m)\},
\]

where \(j_1 > j_2 > \cdots > j_m > \text{pr}_1(\ell(i, \ell)) \).

In type \(A_n \) (respectively, \(B_n \)), we say that we mutate \(l(\tilde{Q}) \) (respectively, \(l(\tilde{Q}') \)), we mean that we mutate \(C_{j_1, t_1}, C_{j_2, t_2}, \ldots, C_{j_m, t_m} \). We say that we mutate \(r(\tilde{Q}) \) (respectively, \(r(\tilde{Q}') \)),
we mean that we mutate C_{j_1,t_1}, C_{j_2,t_2}, \ldots, C_{j_m,t_m}. We say that we mutate $\mathcal{Q}_{i,t}^\varrho$ (respectively, $\mathcal{Q}_{i,t'}^\varrho$), we mean that we mutate $l(\mathcal{Q}_{i,t}^\varrho)$ (respectively, $l(\mathcal{Q}_{i,t'}^\varrho)$), $r(\mathcal{Q}_{i,t}^\varrho)$ (respectively, $r(\mathcal{Q}_{i,t'}^\varrho)$), and then mutate $C_{i,t-2}$ (respectively, $C_{i,t-4}$).

5.5. Definitions of the maps τ_i, τ_r, τ. Let \tilde{Q}_1 (respectively, \tilde{Q}_1') be a quiver which is mutation equivalent to \tilde{Q} (respectively, \tilde{Q}').

Let $\mathcal{L} = \{\mathcal{Q}_{i,t}^\varrho : (i,t) \in \mathcal{Y}\}$ (respectively, $\{\mathcal{Q}_{i,t}^\varrho : (i,t) \in \mathcal{Y}\}$). We define three maps τ_i, τ_r, τ on \mathcal{L} as follows. In the case of type A_n, let

$$\tau_i(\mathcal{Q}_{i,t}^\varrho) = \mathcal{Q}_{i-1,t-1}^\varrho,$$

$$\tau_r(\mathcal{Q}_{i,t}^\varrho) = \mathcal{Q}_{i+1,t-1}^\varrho,$$

$$\tau(\mathcal{Q}_{i,t}^\varrho) = \mathcal{Q}_{i,t-2}^\varrho,$$

where the quivers \tilde{Q}_1's in (5.8), (5.9), (5.10) are obtained from \tilde{Q} by mutating $l(\mathcal{Q}_{i,t}^\varrho)$, $r(\mathcal{Q}_{i,t}^\varrho)$, $\mathcal{Q}_{i,t}^\varrho$ respectively.

In the case of type B_n, let

$$\tau_i(\mathcal{Q}_{i,t}^\varrho) = \begin{cases}
\mathcal{Q}_{i-1,t-2}^\varrho, & i \leq n-1, \ 2n + t - 2i \equiv 1 \pmod{4}, \\
\mathcal{Q}_{i-1,t-3}^\varrho, & i = n, \ t \equiv 2 \pmod{4}, \\
\mathcal{Q}_{i-1,t-1}^\varrho, & i = n, \ t \equiv 0 \pmod{4}, \\
\mathcal{Q}_{i-2,t-1}^\varrho, & i = n, \ 2n + t - 2i \equiv 3 \pmod{4}, \\
\mathcal{Q}_{i-2,t-2}^\varrho, & i < n-1, \ 2n + t - 2i \equiv 3 \pmod{4}, \\
\end{cases}$$

$$\tau_r(\mathcal{Q}_{i,t}^\varrho) = \begin{cases}
\mathcal{Q}_{i+1,t-2}^\varrho, & i < n-1, \ 2n + t - 2i \equiv 1 \pmod{4}, \\
\mathcal{Q}_{i+1,t-3}^\varrho, & i = n, \ 2n + t - 2i \equiv 1 \pmod{4}, \\
\mathcal{Q}_{i+1,t-1}^\varrho, & i = n, \ t \equiv 2 \pmod{4}, \\
\mathcal{Q}_{i+1,t-3}^\varrho, & i = n, \ t \equiv 0 \pmod{4}, \\
\mathcal{Q}_{i+1,t-2}^\varrho, & i \leq n-1 \text{ and } 2n + t - 2i \equiv 3 \pmod{4}, \\
\end{cases}$$

$$\tau(\mathcal{Q}_{i,t}^\varrho) = \mathcal{Q}_{i,t-4}^\varrho,$$

where the quivers \tilde{Q}_1's in (5.11), (5.12), (5.13) are obtained from \tilde{Q}' by mutating $l(\mathcal{Q}_{i,t}^\varrho)$, $r(\mathcal{Q}_{i,t}^\varrho)$, $\mathcal{Q}_{i,t}^\varrho$ respectively.

We define $\tau_i^m(\mathcal{Q}_{i,t}^\varrho) = \mathcal{Q}_{i,t}^\varrho$, $\tau_r^m(\mathcal{Q}_{i,t}^\varrho) = \tau_l(\tau_r^{m-1}(\mathcal{Q}_{i,t}^\varrho))$. We use the following convention: if $m < 0$, then $\tau_i^m(\mathcal{Q}_{i,t}^\varrho) = \emptyset$. The quivers $\tau_r^m(\mathcal{Q}_{i,t}^\varrho)$, $\tau_r^m(\mathcal{Q}_{i,t}^\varrho)$, $\tau_i^m(\mathcal{Q}_{i,t}^\varrho)$, $\tau_r^m(\mathcal{Q}_{i,t}^\varrho)$, $\tau_i^m(\mathcal{Q}_{i,t}^\varrho)$ are defined similarly.
By definition, $\tau_i^m(\mathcal{L}_{i,t}^{\tilde{Q}})$ (respectively, $\tau_i^m(\mathcal{L}_{i,t}^{\tilde{Q}'}))$ is a sub-quiver of some quiver \tilde{Q}_m (rep. \tilde{Q}_m') which is mutation equivalent to \tilde{Q} (respectively, \tilde{Q}'). For simplicity, we write $\mathcal{L}_{i,t'} = \tau_i^m(\mathcal{L}_{i,t})$ for $\mathcal{L}_{i,t'}^{\tilde{Q}_m} = \tau_i^m(\mathcal{L}_{i,t}^{\tilde{Q}})$ (respectively, $\mathcal{L}_{i,t'}^{\tilde{Q}'} = \tau_i^m(\mathcal{L}_{i,t}^{\tilde{Q}'}))$. Similarly, we write $\mathcal{L}_{i,t'} = \tau_r^m(\mathcal{L}_{i,t})$ for $\mathcal{L}_{i,t'}^{\tilde{Q}_m} = \tau_r^m(\mathcal{L}_{i,t}^{\tilde{Q}})$ (respectively, $\mathcal{L}_{i,t'}^{\tilde{Q}'} = \tau_r^m(\mathcal{L}_{i,t}^{\tilde{Q}'}))$, and write $\mathcal{L}_{i,t'} = \tau_0^m(\mathcal{L}_{i,t})$ for $\mathcal{L}_{i,t'}^{\tilde{Q}_m} = \tau_0^m(\mathcal{L}_{i,t}^{\tilde{Q}})$ (respectively, $\mathcal{L}_{i,t'}^{\tilde{Q}'} = \tau_0^m(\mathcal{L}_{i,t}^{\tilde{Q}'}))$.

Example 5.6. Figures (a) and (b) illustrate the maps τ_i, τ_r, τ_0 in the original quivers of types A_8, B_4 respectively.

Figure 9. In the original quiver of type A_8: (a) $\mathcal{L}_{4,-4} = \tau_i(\mathcal{L}_{5,-3})$; (b) $\mathcal{L}_{6,-4} = \tau_r(\mathcal{L}_{5,-3})$; (c) $\mathcal{L}_{5,-5} = \tau(\mathcal{L}_{5,-3})$.

Figure 10. In the original quiver of type B_4: (a) $\mathcal{L}_{3,-5} = \tau_i(\mathcal{L}_{4,-4})$; (b) $\mathcal{L}_{3,-7} = \tau_r(\mathcal{L}_{4,-4})$; (c) $\mathcal{L}_{4,-8} = \tau(\mathcal{L}_{4,-4})$.

5.6. **Mutation sequences of Kirillov–Reshetikhin modules.** In [HL13], Hernandez and Leclere defined a sequence of mutations for every Kirillov–Reshetikhin module whose highest weight monomial m satisfies the property: $(i, t) \in W^-$ for every factor $Y_{i,t}$ in m. We recall the mutation sequences for Kirillov–Reshetikhin modules introduced in [HL13].
Let \tilde{Q} (respectively, \tilde{Q}') be a quiver which is mutation equivalent to Q (respectively, Q') defined in Section 5.1 and any two vertices in \tilde{Q} (respectively, \tilde{Q}') have different labels. By saying that we mutate $C_{i,t}$ of \tilde{Q} (respectively, \tilde{Q}'), we mean that we mutate at the vertex of \tilde{Q} (respectively, \tilde{Q}') which has the label (i,t) in the i-th column and so on until the vertex at infinity in the i-th column.

Let Seq_j, $m_1 \leq j \leq m_2$ be mutation sequences, we use

$$\left(\prod_{j=m_1}^{m_2} \text{Seq}_j\right)$$

and

$$\left(\text{Seq}_{m_1} \leq j \leq m_2 \text{ or } \prod_{j=m_1}^{m_2} \text{Seq}_j\right)$$

to denote mutation sequences

$$\text{Seq}_{m_2}, \text{Seq}_{m_2-1}, \ldots, \text{Seq}_{m_1} \text{ and } \text{Seq}_{m_1}, \text{Seq}_{m_1+1}, \ldots, \text{Seq}_{m_2}$$

respectively.

Consider the Kirillov–Reshetikhin module $S^{(\ell)}_{k(i)}$, $t \leq 0$, $k \in \mathbb{Z}_{\geq 1}$, $i \in I$. In the case of type A_n ([HL13], Section 3), we mutate

$$j-1 \prod_{\ell=0}^{t-1} \left(\prod_{r=1}^{[\frac{j}{2}]} C_{2r-2\ell} \right) \left(\prod_{r=1}^{[\frac{j}{2}]} C_{2\ell-2\ell-1}\right)$$

starting from the quiver Q, where j is defined by the formula

$$t = \begin{cases}
-2k - 2j + 2, & i \in 2\mathbb{Z} \cap I, \\
-2k - 2j + 1, & i \in (2\mathbb{Z} + 1) \cap I.
\end{cases}$$

We use Q_0 to denote the current quiver. Then we obtain the Kirillov–Reshetikhin module $S^{(\ell)}_{k(i)}$, $t \leq 0$, $k \in \mathbb{Z}_{\geq 1}$, $i \in I$, at the vertex (i,t) of Q_0.

In the case of type B_n ([HL13], Section 3), let

$$KR(n, \ell) = C_{n,-4\ell} \left(\prod_{r=0}^{[\frac{j}{2}] - 1} C_{n-1-2r,-4\ell-1}\right) \left(\prod_{r=0}^{[\frac{j}{2}] - 2} C_{n-2-2r,-4\ell-2}\right) C_{n,-4\ell-2} \left(\prod_{r=0}^{[\frac{j}{2}] - 2} C_{n-2-2r,-4\ell-1}\right) \left(\prod_{r=0}^{[\frac{j}{2}] - 1} C_{n-1-2r,-4\ell-3}\right).$$

When $i \neq n$, $t = -4k - 2j + 3$, we mutate

$$\prod_{\ell=0}^{[\frac{j}{2}] - 1} KR(n, \ell)$$

starting from the quiver Q'. When $i = n$, $t = -2k - 2j + 4$, we mutate

$$\prod_{\ell=0}^{[\frac{j}{2}] - 2} KR(n, \ell)$$

if j is odd, and mutate

$$\left(\prod_{\ell=0}^{[\frac{j}{2}] - 2} KR(n, \ell)\right) \left(\prod_{r=0}^{[\frac{j}{2}] - 1} C_{n,-2j+4} \prod_{r=0}^{[\frac{j}{2}] - 1} C_{n-1-2r,-2j+3}\right) \left(\prod_{r=0}^{[\frac{j}{2}] - 2} C_{n-2-2r,-2j+1}\right)$$

if j is even, starting from the quiver Q'. We use Q'_0 to denote the current quiver. Then we obtain the Kirillov–Reshetikhin module $S^{(\ell)}_{k(i)}$, $t \leq 0$, $k \in \mathbb{Z}_{\geq 1}$, $i \in I$, at the vertex (i,t) of Q'_0.
5.7. Mutation sequences for snake modules of types A_n and B_n. Let S be a prime snake module and S its highest l-weight monomial. Then S can be written as

$$S = S_{k_1}^{(i_1,j_1)} \cdots k_m^{(i_{m-1},j_{m-1})},$$

where $m \geq 1$, $j_\ell \geq 0$, $1 \leq \ell \leq m - 1$, if $j_\ell = 0$, then $i_\ell \neq i_{\ell+1}$, $k_1, \ldots, k_m \in \mathbb{Z}_{\geq 1}$, $t \in \mathbb{Z}$.

By Definition 5.1, we have

$$FS(S) = FS_1(S) \cup FS_2(S) \cup FS_3(S),$$

where $FS_1 = \{M_1 = S_{k_m}^{(i_m)}\}$, $FS_2(S) \cup FS_3(S) = \{M_2, \ldots, M_q\}$. We reorder the elements in $FS_2(S) \cup FS_3(S)$ such that the distinguished factor $(l_p)_{s_p}$ of M_p and the distinguished factor $(l_{p+1})_{s_{p+1}}$ of M_{p+1} satisfy $s_p > s_{p+1}$, $2 \leq p \leq q - 1$.

Let Q_1, Q_2, ..., Q_h be quivers in a mutation sequence. Let $(i_\ell, s_\ell) \in V(Q_\ell)$, $1 \leq \ell \leq h$. For simplicity, we write L_{i_ℓ, s_ℓ} for L_{i_ℓ, s_ℓ} and write C_{i_ℓ, s_ℓ} for C_{i_ℓ, s_ℓ}.

Let $M_p \in FS(S)$, $1 \leq p \leq q$, and let $(l_p)_{s_p}$ be the distinguished factor of M_p. Using the mutation sequence defined in Section 5.6 starting from the initial quiver Q in type A_n (respectively, Q' in type B_n) defined in Section 5.1 we can obtain a quiver Q_0 (respectively, Q'_0) and obtain the module $L(M_1) = L(S_{k_m}^{(i_1, j_1)})$ at the vertex (i_1, t) of Q_0 (respectively, Q'_0).

In the following, we define mutation sequences Seq_1, Seq_2, Seq_3, ..., Seq_q starting from the quiver Q_0 (respectively, Q'_0) of type A_n (respectively, B_n) such that after we mutate Seq_1, Seq_2, ..., Seq_q, we obtain the snake module $S = L(S)$ at the vertex (i_1, t).

The following is the case of type A_n.

1. Suppose that $M_p \in FS(S_2)$. Then there are some ℓ, r such that

$$M_p = S_{k_\ell}^{(i_\ell, j_\ell)} \cdots k_\ell^{(i_{\ell+1}, j_{\ell+1})}.$$

If the sequence $(i_u)_{\ell \leq u \leq \ell + r}$ is in decreasing order (respectively, in increasing order), then we mutate $(r(\tau_r^{(l_p)}(L_{i_p, s_p})))_{0 \leq h \leq n-\ell+1}$ (respectively, $(r(\tau_r^{(l_p)}(L_{i_p, s_p})))_{0 \leq h \leq n-\ell+1}$). If $r \geq 2$, we continue mutating

$$\ell + 1 \prod_{u=\ell+r-1}^{\ell+1} \left\{ \sum_{i=\ell+r-1}^{\ell+1} \frac{
abla}{k_i} \left(C_{i_\ell+1, s_\ell+1-2j, C_{i_\ell+2, s_\ell+2-2j, \ldots, C_{n, s_n-2j}} \right) \right\},$$

(respectively,

$$\ell + 1 \prod_{u=\ell+r-1}^{\ell+1} \left\{ \sum_{i=\ell+r-1}^{\ell+1} \frac{
abla}{k_i} \left(C_{i_\ell-1, s_\ell-1-2j, C_{i_\ell-2, s_\ell-2-2j, \ldots, C_{1, s_1-2j}} \right) \right\}),$$

where i, s_i satisfy $L_{i, s_i} = \tau_r^{l_p-i}(L_{i_p, s_p})$, $i_\ell, i_{\ell+r} \leq i \leq n$ (respectively, $L_{i, s_i} = \tau_r^{l_p-i}(L_{i_p, s_p})$, $1 \leq i \leq i_\ell+1$).

2. Suppose that $M_p \in FS(S_3)$. Then there is some ℓ such that $M_p = S_{k_\ell}^{(i_\ell, j_\ell)} \cdots k_\ell^{(i_{\ell+1}, j_{\ell+1})}$.

- If $i_\ell \geq l_p$, then we mutate

$$(\tau_r^{(l_p)}(L_{i_p, s_p}))_{0 \leq h \leq i_\ell-l_p-1}, \quad (\tau_r^{(l_p)}(L_{i_p, s_p}))_{0 \leq h \leq j_\ell-1}.$$

- If $i_\ell < l_p$, then we mutate

$$(\tau_r^{(l_p)}(L_{i_p, s_p}))_{0 \leq h \leq \ell-p-1}, \quad (\tau_r^{(l_p)}(L_{i_p, s_p}))_{0 \leq h \leq \ell-1}.$$
• If \(i_\ell \leq l_p \), then we mutate
\[
(\tau_l^h(L_{l_p,s_p}))_{0 \leq h \leq l_p - i_\ell - 1}, \quad (\tau_r^h(L_{l_p,s_p}))_{0 \leq h \leq j_r - 1}.
\]

The following is the case of type \(B_n \).

(1) Suppose that \(M_p \in FS(S_2) \). Then there are some \(\ell, r \) such that
\[
M_p = S_{k_1^{(\ell)}}^{(l_p)} \cdots k_{\ell+1}^{(l_{\ell+1})} 1^{(\ell_{\ell+1})}.
\]
Suppose that the sequence \((i_u)_{\ell \leq u \leq \ell + r} \) is in increasing order. If \(l_p \neq n \), \(2n + s_p - 2l_p \equiv 1 \) (mod 4) or \(l_p = n, s_p = 0 \) (mod 4) (respectively, \(l_p \neq n \), \(2n + s_p - 2l_p \equiv 3 \) (mod 4) or \(l_p = n, s_p \equiv 2 \) (mod 4)), then we mutate
\[
(\tau_l^h(L_{l_p,s_p}))_{0 \leq h \leq l_p - 2} \quad \text{(respectively, } (\tau_r^h(L_{l_p,s_p}))_{0 \leq h \leq l_p - 2}).
\]
If \(r \geq 2 \), then we continue mutating
\[
\left\{ \sum_{i_u=\ell+1}^{\ell+\ell+1} k_i \prod_{j=1+\sum_{i_u=\ell+1}^{\ell+\ell+1} k_i} (C_{i_u-1,s_{i_u-1}-4j}, C_{i_u-2,s_{i_u-2}-4j}, \ldots, C_{1,s_1-4j}) \right\},
\]
where \(i, s_i \) satisfy \(L_{i_\ell,s_i} = \tau_l^{i-1}(L_{l_p,s_p}) \) for \(1 \leq i \leq \ell + r \).

(2) Suppose that \(M_p \in FS(S_2) \). Then there are some \(\ell, r \) such that
\[
M_p = S_{k_1^{(\ell)}}^{(l_p)} \cdots k_{\ell+1}^{(l_{\ell+1})} 1^{(\ell_{\ell+1})}.
\]
Suppose that the sequence \((i_u)_{\ell \leq u \leq \ell + r} \) is in decreasing order.

• If \(2n + s_p - 2l_p \equiv 1 \) (mod 4), then we mutate \((\tau_r^h(L_{l_p,s_p}))_{0 \leq h \leq n - l_p - 1} \). If \(r \geq 2 \), then we continue mutating
\[
\left\{ \sum_{i_u=\ell+1}^{\ell+\ell+1} k_i \prod_{j=1+\sum_{i_u=\ell+1}^{\ell+\ell+1} k_i} (\tau(L_{n,s_n-4j+4}), C_{i_u+1,s_{i_u+1}-4j}, C_{i_u+2,s_{i_u+2}-4j}, \ldots, C_{n,s_n-4j}) \right\},
\]
where \(i, s_i \) satisfy \(L_{i_\ell,s_i} = \tau_r^{i-1}(L_{l_p,s_p}) \) for \(i_{\ell+r} \leq i \leq n \).

• If \(2n + s_p - 2l_p \equiv 3 \) (mod 4), then we mutate \((\tau_l^h(L_{l_p,s_p}))_{0 \leq h \leq n - l_p - 1} \). If \(r \geq 2 \), then we continue mutating
\[
\left\{ \sum_{i_u=\ell+1}^{\ell+\ell+1} k_i \prod_{j=1+\sum_{i_u=\ell+1}^{\ell+\ell+1} k_i} (L_{n,s_n-4j+4}, C_{i_u+1,s_{i_u+1}-4j}, C_{i_u+2,s_{i_u+2}-4j}, \ldots, C_{n,s_n-4j}) \right\},
\]
where \((i, s_i) \) such that \(L_{i_\ell,s_i} = \tau_l^{i-1}(L_{l_p,s_p}) \), \(i_{\ell+r} \leq i \leq n \).

(3) Suppose that \(M_p \in FS(S_3) \). Then there is some \(\ell \) such that \(M_p = S_{k_1^{(\ell)}}^{(l_p)} 1^{(\ell_{\ell+1})} \).

• If \(l_p \neq n \), \(2n + s_p - 2l_p \equiv 1 \) (mod 4), \(i_\ell \geq l_p \) or \(l_p \neq n, 2n + s_p - 2l_p \equiv 3 \) (mod 4), \(i_\ell \leq l_p \) or \(l_p = n, s_p \equiv 2 \) (mod 4), then we mutate
\[
(\tau_l^h(L_{l_p,s_p}))_{0 \leq h \leq |i_\ell - l_p| - 1}, \quad (\tau_r^h(L_{l_p,s_p}))_{0 \leq h \leq j_r - 1}.
\]
In [ZDLL15], the mutation sequences for minimal affinizations which satisfy

\[\iota \leq t_p \leq n, \quad s_p \equiv 0 \pmod{4}, \quad \iota \geq \ell_p \quad \text{or} \quad \ell_p = n, \quad s_p \equiv 0 \pmod{4}, \]

then we mutate

\[(\tau^{\ell_p}(\mathcal{L}_{t_p,s_p}))_{0 \leq h \leq |t_p| - 1}, \quad (\tau^{h}(\mathcal{L}_{t_p,s_p}))_{0 \leq h \leq |t_p| - 1}. \]

Remark 5.7. Minimal affinizations are modules \(S^{(t)}_{k_1^{(i)}, k_2^{(i)}, \ldots, k_r^{(i)}} \) which satisfy \(i_1 < \cdots < i_r \) or \(i_1 > \cdots > i_r \). The mutation sequences above in the case (1) in type \(A_n \) (respectively, the cases (1), (2) in type \(B_n \)) are mutation sequences for minimal affinizations which satisfy \(i_1 < \cdots < i_r \) or \(i_1 > \cdots > i_r \). These mutation sequences are defined in the same cluster algebra. In [ZDLL13], the mutation sequences for minimal affinizations which satisfy \(i_1 < \cdots < i_r \) are defined in a cluster algebra \(\mathfrak{A} \) and the mutation sequences for minimal affinizations which satisfy \(i_1 > \cdots > i_r \) are defined in another cluster algebra \(\mathfrak{A}' \) which is dual to \(\mathfrak{A} \).

5.8. The equations in the \(S \)-system of type \(A_n \) (respectively, \(B_n \)) correspond to mutations in the cluster algebra \(\mathfrak{A} \) (respectively, \(\mathfrak{A}' \)).

In this section, we give the relation between prime snake modules and cluster variables.

Let \(S \) be the set of prime snake modules. Let

\[S = \{ S_{k_1^{(i)}, k_2^{(i)}, \ldots, k_m^{(i)}} \colon \ell \geq 0, \quad 1 \leq \ell \leq m - 1, \quad k_1, \ldots, k_m \in \mathbb{Z}_{\geq 1}, \quad t \in \mathbb{Z} \}. \]

We define a map

\[\psi : S \rightarrow S \]

\[S_{k_1^{(i)}, k_2^{(i)}, \ldots, k_m^{(i)}} \mapsto S_{k_1^{(i)}, k_2^{(i)}, \ldots, k_m^{(i)}}. \] (5.14)

We apply the map \(\psi \) defined by (5.14) to the equations \([S_1][S_2] = [S_3][S_4] + [S_5][S_6]\) in the \(S \)-system for type \(A_n \) (respectively, \(B_n \)). Then we have a new system of equations:

\[s_1 s_2 = s_3 s_4 + s_5 s_6, \] (5.15)

where \(s_i = \psi(S_i), \quad 1 \leq i \leq 6 \). For each equation in (5.15), we define \(s'_2 = s_2 \). Then we obtain a set of equations:

\[s'_1 = s_2 = \frac{s_3 s_4 + s_5 s_6}{s_1} \] (5.16)

We find that the above set of equations is the set of equations of the mutations in Section 5.7. Therefore, we have the following theorem.

Theorem 5.8. The Hernandez–Leclerc conjecture (Conjecture 1.1) is true for snake modules of types \(A_n \) and \(B_n \).

6. Examples of mutation sequences for some snake modules

In this section, we give some examples of mutation sequences for some snake modules.

Example 6.1. In type \(A_5 \), let \(S = 2_{-1}2_{-4}5_{-5}5_{-3}4_{0} \). By Definition 5.7

\[\mathcal{F}S(S) = \{ 4_{0}, \quad 5_{-5}4_{-3}4_{0}, \quad 2_{-1}2_{-4}5_{-5} \}. \]

The set of distinguished factors of \(S \) is \(\{ 4_{0}, \quad 5_{-5} \} \). The mutation sequence for \(S \) is

\[\tau(\mathcal{L}_{4_{0}}), \quad \tau(\mathcal{L}_{5_{-5}}), \quad \tau(\mathcal{L}_{4_{0}}), \quad \tau(\mathcal{L}_{5_{-5}}), \quad \tau(\mathcal{L}_{4_{0}}), \quad \mathcal{L}_{5_{-5}}), \quad \mathcal{L}_{4_{0}}, \quad \mathcal{L}_{5_{-5}}, \quad C_{3_{-9}}, \quad C_{2_{-10}}, \quad C_{1_{-11}}. \]
We obtain the snake module $S = L(S)$ at the vertex which has the label $(2, -12)$, see Figure 7.

The initial quivers in this section are the initial quivers in [HL13]. The mutation sequences in this section are similar to the mutation sequences given in [HL13]. In [HL13], the mutation sequences produce Kirillov–Reshetikhin modules. In the following, the mutation sequences produce prime snake modules.
Example 6.2. In type A_5, let $S = 2_{-18} 4_{-4} 5_{-9} 4_{-6}$. By Definition 5.7,
\[
\mathcal{FS}(S) = \{4_{-6}, 5_{-11} 5_{-9} 4_{-6}, 2_{-18} 4_{-14} 5_{-11}\}.
\]
The set of distinguished factors of S is $\{4_{-6}, 5_{-11}\}$. The mutation sequence for S is
\[
C_{2,0}, C_{4,0}, C_{1,-1}, C_{3,-1}, C_{5,-1}, C_{2,-2}, C_{4,-2}, C_{1,-3}, C_{3,-3}, C_{5,-3}, C_{2,-4}, C_{4,-4}, C_{1,-5}, C_{3,-5}, C_{5,-5}, \tau(L_{4,-6}), \tau(L_{5,-11}), \tau(L_{5,-9} L_{5,-11}), L(L_{5,-11}), C_{3,-15}, C_{2,-16}, C_{1,-17}.
\]
We obtain the snake module $S = L(S)$ at the vertex which has the label 2_{-18}.

Example 6.3. In type A_4, let $S = 3_{-25} 3_{-21} 2_{-16} 2_{-12} 3_{-9} 2_{-4} 1_{-1}$. \[
\mathcal{FS}(3_{-25} 3_{-21} 2_{-16} 2_{-12} 3_{-9} 2_{-4} 1_{-1}) = \{1_{-1}, 3_{-2} 6_{-4} 1_{-1}, 2_{-12} 3_{-9}, 2_{-16} 2_{-12}, 3_{-21} 2_{-16}, 3_{-25} 3_{-21}\}.$
The set of distinguished factors of S is $\{1_{-1}, 3_{-9}, 2_{-12}, 2_{-16}, 3_{-21}\}$. The mutation sequence for S is
\[v(L_{1,-1}), v(\tau_r(L_{1,-1})), v(\tau_r^2(L_{1,-1})), C_{3,-5}, C_{4,-6}, C_{3,-7}, C_{4,-8}, l(L_{3,-9}), l(\tau(L_{3,-9})), L_{2,-12}, v(L_{2,-16}), \tau_r(L_{2,-16}), L_{3,-21}. \]

We obtain the snake module $S = L(S)$ at the vertex which has the label $(3,-25)$.

Example 6.4. In type B_3, let $S = 1_{-35}2_{-29}2_{-21}3_{-16}3_{-10}2_{-5}$.

$FS(1_{-35}2_{-29}2_{-21}3_{-16}3_{-10}2_{-5}) = \{2_{-5}, 3_{-10}2_{-5}, 3_{-16}3_{-10}, 2_{-21}3_{-16}, 2_{-29}2_{-21}, 1_{-35}2_{-29}\}$.

The set of distinguished factors of S is $\{2_{-5}, 3_{-10}, 3_{-16}, 2_{-21}, 2_{-29}\}$. The mutation sequence for S is
\[C_{3,0}, C_{2,-1}, C_{1,-3}, C_{3,-2}, C_{1,-1}, C_{2,-3}, v(L_{2,-5}), L_{3,-10}, l(L_{3,-16}), l(\tau(L_{3,-16})), L_{2,-21}, l(L_{2,-29}). \]

We obtain the snake module $S = L(S)$ at the vertex which has the label $(1,-35)$.

Let $S = 2_{-43}2_{-35}2_{-31}1_{-25}3_{-18}3_{-3}8_{-23}0$. By Definition 7.1
\[FS(S) = \{3_{-29}, 3_{-8}, 3_{-18}, 1_{-25}, 3_{-18}, 2_{-35}, 2_{-31}, 1_{-25}, 2_{-43}, 2_{-35}\}. \]

The set of distinguished factors of S is $\{3_{0}, 3_{-2}, 3_{-8}, 3_{-18}, 1_{-25}, 2_{-35}\}$. The mutation sequence for S is
\[L_{3,-2}, L_{3,-8}, \tau(L_{3,-8}), v(L_{3,-18}), l(\tau_r(L_{3,-18})), l(L_{1,-25}), l(\tau(L_{1,-25})), L_{2,-35}. \]

We obtain the snake module $S = L(S)$ at the vertex which has the label $(2,-43)$.

7. Proofs of Theorem 3.4

In this section, we will prove Theorem 3.4.

7.1. Proof of Theorem 3.4. Let S be a prime snake module and S its highest l-weight monomial. Then S can be written as
\[S = S_{k_1}^{i_1} S_{k_2}^{i_2} \cdots S_{k_m}^{i_m}, \]
where $m \geq 1$, $j_0 \geq 0$, $1 \leq \ell \leq m - 1$, if $j_0 = 0$, then $i_\ell \neq i_{\ell+1}$, $k_1, k_2, \ldots, k_m \in \mathbb{Z}_{\geq 1}$, $t \in \mathbb{Z}$.

The theorem follows from the fact: $\chi_q(S)\chi_q(S)$ has only one dominant monomial S^2.

Let $L = \sum_{\ell=1}^{m} k_\ell$. Suppose that $m = \prod_{\ell=1}^{L} m(p_\ell)$ (respectively, $m' = \prod_{\ell=1}^{L} m(p'_\ell)$) is a tuple of non-overlapping paths and
\[\sum_{\ell=1}^{m} k_\ell = 0, \quad d_r + \sum_{\ell=1}^{m} k_\ell = t + 2d_j r - 2d_j + \sum_{\ell=1}^{j-1} n_\ell, \]
where $1 \leq r \leq j$, $1 \leq j \leq m$, by convention $\sum_{\ell=1}^{0} n_\ell = 0$.

Suppose that mm' is dominant. If $p_L \neq p_{L+} + d_L$, then mm' is right-negative and not dominant. Therefore $p_L = p'_{L+}$. Similarly, we have $p'_L = p_{L+}$. By the non-overlapping property, we have $p'_j = p'_{j+} d'_j$; $p_j = p_{j+} d_j$ for all $1 + \sum_{\ell=1}^{m-1} k_\ell \leq j \leq L$.
Suppose that \(p_{\sum_{\ell=1}^{m-1} k_\ell} \neq p_{\sum_{\ell=1}^{m-1} k_\ell}' \). Then \(m(p_{\sum_{\ell=1}^{m-1} k_\ell}) \) has some negative factor \(i_\ell \), where \((i, \ell) \in C_{\sum_{\ell=1}^{m-1} k_\ell} \). By Theorem 3.3, \(m \) has the negative factor \(i_\ell^{-1} \). Therefore, the negative factor \(i_\ell^{-1} \) is canceled by \(m' \). It follows that \(m' \neq S \) since \(i_\ell^{-1} \) is not in \(S \). But then \(mm' \) has one of the following factors:

- in type \(A_n \): \(1^{-1}_{\ell+i-1}, 2^{-1}_{\ell+i-2}, \ldots, (i-2)^{-1}_{\ell+2}, (i-1)^{-1}_{\ell+1}, (i+1)^{-1}_{\ell}, (i+2)^{-1}_{\ell+1}, \ldots, (2n-1)^{-1}_{\ell} \)
- in type \(B_n \): \(i \neq n, 1^{-1}_{\ell+2i-3}, 2^{-1}_{\ell+2i-4}, \ldots, (i-2)^{-1}_{\ell+4}, (i-1)^{-1}_{\ell+2}, i = n, 1^{-1}_{\ell+2i-3}, 2^{-1}_{\ell+2i-5}, \ldots, (i-2)^{-1}_{\ell+3}, (i-1)^{-1}_{\ell+1} \).

This contradicts the assumption that \(mm' \) is dominant. Therefore, \(p_{\sum_{\ell=1}^{m-1} k_\ell} = p_{\sum_{\ell=1}^{m-1} k_\ell}' \).

By Theorem 3.5 we have \(p_j = p_{c_j,d_j}^+ \) for all \(1 + \sum_{\ell=1}^{m-2} k_\ell \leq j \leq \sum_{\ell=1}^{m-1} k_\ell \). By the same argument, we have \(p_j = p_{c_j,d_j}^-, 1 \leq j \leq \sum_{\ell=1}^{m-1} k_\ell \). Therefore, \(m = S \).

By the same argument, we have \(m' = S \). Therefore, the only dominant monomial in \(\chi_q(S)\chi_q(S) \) is \(S^2 \).

8. Proof of Theorem 4.1

In this section, we will prove Theorem 4.1.

8.1. Classification of dominant monomials. First we classify all dominant monomials in each summand on the left- and right-hand sides of every equation in Theorem 4.1. We have the following lemma.

Lemma 8.1. Let \([S_1][S_2] = [S_3][S_4] + [S_5][S_6] \) be any equation in the \(S \)-system of type \(A_n \) (respectively, \(B_n \)) in Theorem 4.1. Let \(S_i \) be the highest \(l \)-weight monomial of \(S_i, i \in \{1, 2, \ldots, 6\} \). The dominant monomials in each summand on the left- and right-hand sides of \([S_1][S_2] = [S_3][S_4] + [S_5][S_6] \) are given in Table 3.

Summands in the equations	\(M \)	Dominant monomials
\(\chi_q(S_1)\chi_q(S_2) \)	\(M=S_1S_2 \)	\(M \prod_{0 \leq j \leq r} A_{1+2d_1}^{-1} k_1 - \ldots - d_1, -1 \leq r \leq k_1-1 \)
\(\chi_q(S_3)\chi_q(S_4) \)	\(M=S_3S_4 \)	\(M \prod_{0 \leq j \leq r} A_{1+2d_1}^{-1} k_1 - \ldots - d_1, -1 \leq r \leq k_1-2 \)
\(\chi_q(S_5)\chi_q(S_6) \)	\(M=S_5S_6 \)	\(M \)

Table 3. Dominant monomials in the \(S \)-systems of types \(A_n \) and \(B_n \).

8.2. Proof of Theorem 4.1. By Table 3, the dominant monomials of the \(q \)-characters of the left-hand side and of the right-hand side of every equation in Theorem 4.1 are the same. Therefore, Theorem 4.1 is true.

8.3. Proof of Lemma 8.1. We will prove the case of type \(A_n \) and the case of type \(B_n \) respectively.

Proof of the case of type \(A_n \). Let

\[
S_1 = \sum_{\ell}^{(t+2)} k_{1(b_1,b_2)} k_{2(b_2+1)} k_{3(b_3,b_4)} k_{4(b_4,b_5)} \ldots k_{m(b_m)}, \quad S_2 = \sum_{\ell}^{(t)} k_{1(b_1,b_2)} k_{2(b_2+1)} k_{3(b_3,b_4)} k_{4(b_4,b_5)} \ldots k_{m(b_m)},
\]
where \(m \geq 3, i_1 > i_2, i_3 > i_2, j \ell \geq 0, 3 \leq \ell \leq m - 1 \). The other cases are similar.

Let \(L = \sum_{\ell=1}^{m} k_\ell \). Suppose that \(m = \prod_{j=1}^{L} m(p_j) \) be a monomial in \(\chi_q(S_2) \), where \((p_1, \ldots, p_L) \in \overrightarrow{F}(c_j, d_j)_{1 \leq j \leq L} \) is a tuple of non-overlapping paths and

\[
\begin{align*}
 c_{r+\sum_{\ell=1}^{j-1} k_\ell} &= i_j, \\
 d_{r+\sum_{\ell=1}^{j-1} k_\ell} &= t + 2r - 2 + \sum_{\ell=1}^{j-1} n_\ell,
\end{align*}
\]

where \(1 \leq r \leq k_j, 1 \leq j \leq m \), by convention \(\sum_{\ell=1}^{0} k_\ell = 0 \).

Let \(m' = \prod_{j=1}^{L} m'(p'_j) \) be a monomial in \(\chi_q(S_1) \), where \((p'_1, \ldots, p'_L) \in \overrightarrow{F}(c'_j, d'_j)_{1 \leq j \leq L} \) is a tuple of non-overlapping paths and

\[
\begin{align*}
 c'_1 = c'_2 = \cdots = c'_{k_1} &= i_1, \\
 c'_{k_1+1} = c'_{k_1+2} = \cdots = c'_{k_1+k_2} &= i_2 + 1, \\
 d'_1 &= t + 2, d'_2 = t + 4, \ldots, d'_{k_1} = t + 2k_1, \\
 d'_{k_1+1} &= t + n_1 + 1, d'_{k_1+2} = t + n_1 + 3, \ldots, d'_{k_1+k_2} = t + n_1 + 2k_2 - 1,
\end{align*}
\]

where \(1 \leq r \leq k_j, 3 \leq j \leq m \).

We have \(c_j = c'_1, d_j = d'_j \), \(k_1 + k_2 + 1 \leq j \leq L \).

Suppose that \(mm' \) is dominant. By the same arguments as the arguments in the proof of Theorem 3.3, we have \(p_j = p^+_{c_j, d_j}, k_1 + 1 \leq j \leq L \) and \(p'_j = p^+_{c'_j, d'_j} \), \(1 \leq j \leq L \).

If \(p_k = p^+_{c_k, d_k}, \) then \(p_j = p^+_{c_j, d_j} \) for all \(1 \leq j \leq k_1 - 1 \). Therefore, \(mm' = S_1 S_2 \). If \(p_k = p^+_{c_k, d_k}, A_{i_1, t+2k_1-1} \), then \(p_j \in \{ p^+_{c_j, d_j}, p^+_{c_j, d_j} A^{-1}_{i_1, t+2j-1} \}, 1 \leq j \leq k_1 - 1 \). Therefore, \(mm' \) is one of the dominant monomials \(S_1 S_2 \prod_{j=0}^{k_1} A^{-1}_{i_1, t+2k_1-1} \), \(0 \leq r \leq k_1 - 1 \). If \(p_k \notin \{ p^+_{c_k, d_k}, p^+_{c_k, d_k} A^{-1}_{i_1, t+2k_1-1} \} \), then by the same arguments as the arguments in the proof of Theorem 3.3, it follows that \(mm' \) is not dominant which contradicts our assumption. \(\square \)

Proof of the case of type \(B_n \). Let

\[
S_1 = S_{(k_1, k_1, k_1, k_{j_2}, k_{j_3}, \ldots, k_{j_m})}^{(j_1+2)}, \quad S_2 = S_{(k_1, k_1, k_{j_2}, k_{j_3}, \ldots, k_{j_m})}^{(j_1+1)},
\]

where \(j_1 \geq 1 \). The other cases are similar.

Let \(L = \sum_{\ell=1}^{m} k_\ell \). Suppose that \(m = \prod_{j=1}^{L} m(p_j) \) be a monomial in \(\chi_q(S_2) \), where \((p_1, \ldots, p_L) \in \overrightarrow{F}(c_j, d_j)_{1 \leq j \leq L} \) is a tuple of non-overlapping paths and

\[
\begin{align*}
 c_{r+\sum_{\ell=1}^{j-1} k_\ell} &= i_j, \\
 d_{r+\sum_{\ell=1}^{j-1} k_\ell} &= t + 2d_{i_j} r - 2d_{i_j} + \sum_{\ell=1}^{j-1} n_\ell,
\end{align*}
\]

where \(1 \leq r \leq k_j, 1 \leq j \leq m \), by convention \(\sum_{\ell=1}^{0} k_\ell = 0 \).

Let \(m' = \prod_{j=1}^{L} m'(p'_j) \) be a monomial in \(\chi_q(S_1) \), where \((p'_1, \ldots, p'_L) \in \overrightarrow{F}(c'_j, d'_j)_{1 \leq j \leq L} \) is a tuple of non-overlapping paths and

\[
\begin{align*}
 c'_1 = c'_2 = \cdots = c'_{k_1} &= i_1, \\
 d'_1 &= t + 2, d'_2 = t + 4, \ldots, d'_{k_1} = t + 2k_1, d'_{k_1+1} = t + 2k_1 + 2,
\end{align*}
\]

where \(1 \leq r \leq k_j, 2 \leq j \leq m \).
We have $c_j = c_{j+1}'$, $d_j = d_{j+1}'$, $k_1 + 1 \leq j \leq L$.

Suppose that mm' is dominant. By the same arguments as the arguments in the proof of Theorem 3.4, we have $p_j = p_{c_j,d_j}^+$, $k_1 + 1 \leq j \leq L$ and $p_j' = p_{c_j',d_j}'$, $1 \leq j \leq L + 1$.

If $p_{k_1} = p_{c_{k_1},d_{k_1}}^+$, then $p_j = p_{c_j,d_j}^+$ for all $1 \leq j \leq k_1 - 1$. Therefore, $mm' = S_1S_2$. If $p_{k_1} = p_{c_{k_1},d_{k_1}}^+$, $A_{i_1,t+2k_1-1}^{-1}$, then $p_j \in \{p_{c_j,d_j}^+, p_{c_j,d_j}^+ A_{i_1,t+2j-1}^{-1}\}$, $1 \leq j \leq k_1 - 1$. Therefore, mm' is one of the dominant monomials $S_1S_2 \prod_{j=0}^{r} A_{i_1,t+2k_1-2j-1}^{-1}$, $0 \leq r \leq k_1 - 1$. If $p_{k_1} \notin \{p_{c_{k_1},d_{k_1}}^+, p_{c_{k_1},d_{k_1}}^+ A_{i_1,t+2k_1-1}^{-1}\}$, then by the same arguments as the arguments in the proof of Theorem 3.4 it follows that mm' is not dominant which contradicts our assumption. □

9. PROOF OF THEOREM 4.3

In this section, we will prove Theorem 4.3. By Lemma 8.1 we have the following corollary.

Corollary 9.1. The modules in the second summand on the right-hand side of every equation of the S-systems for types A_n and B_n are special. In particular, they are simple.

Therefore, in order to prove Theorem 4.3 we only need to prove that the modules in the first summand on every equation of the S-systems for types A_n and B_n are simple. We will prove that $\chi_q(S_3) \chi_q(S_4)$ is simple in the case of type A_n, where

$$S_3 = S_{(i_1),k_2(i_2+1),k_3(i_3+2),k_4(i_4+3),...,k_m(i_m)}^{(l)}, \quad S_4 = S_{(i_1),k_2(i_2),k_3(i_3+3),k_4(i_4+4),...,k_m(i_m)}^{(l+2)},$$

and $m \geq 3$, $i_1 > i_2$, $i_3 > i_4$, $j \leq 2$, $0 \leq l \leq m - 1$. The other cases are similar.

By Lemma 8.1, the dominant monomials of $\chi_q(S_3) \chi_q(S_4)$ are

$$M_r = S_3S_4 \prod_{j=0}^{r} A_{i_1,t+2k_1-2j-1}^{-1}, -1 \leq r \leq k_1 - 2,$$

where S_3 (respectively, S_4) is the highest l-weight monomial. We need to show that $\chi_q(M_r) \notin \chi_q(S_3) \chi_q(S_4)$ for $0 \leq r \leq k_1 - 2$. We will prove the case of $r = 0$, the other cases are similar.

Let $n_1 = S_3S_4 A_{i_1,t+2k_1-1}^{-2}$. By Corollary 2.25 the monomial $n_1 \in \chi_q(M_0)$. Suppose that $n_1 \in \chi_q(S_3) \chi_q(S_4)$. Then $n_1 = m_1 m_2$, where $n_1 \in \chi_q(S_3)$, $m_2 \in \chi_q(S_4)$. Since $n_1 = S_3S_4 A_{i_1,t+2k_1-1}^{-2}$, by the expressions S_3 and S_4 we must have

$$m_1 = S_3 A_{i_1,t+2k_1-1}^{-1}, \quad m_2 = S_4 A_{i_1,t+2k_1-1}^{-1}.$$

But by the Frenkel–Mukhin algorithm, $S_3 A_{i_1,t+2k_1-1}^{-1}$ is not in $\chi_q(S_3)$. This is a contradiction. Therefore, $n_1 \notin \chi_q(S_3) \chi_q(S_4)$ and hence $\chi_q(M_0) \notin \chi_q(S_3) \chi_q(S_4)$.

ACKNOWLEDGEMENT

J.-R. Li would like to express his gratitude to Professor Vyjayanthi Chari for helpful discussions about prime modules. This work was partially supported by the National Natural Science Foundation of China (no. 11371177, 11501267, 11401275), and the Fundamental Research Funds for the Central Universities of China (no. lzujbky-2015-78). J.-R. Li was also supported by ERC AdG Grant 247049 and the PBC Fellowship Program of Israel for Outstanding Post-Doctoral Researchers from China and India.
References

[Car05] R. W. Carter, Lie algebras of finite and affine type, Cambridge Studies in Advanced Mathematics, 96. Cambridge University Press, Cambridge, 2005. xviii+632 pp.

[C95] V. Chari, Minimal affinizations of representations of quantum groups: the rank 2 case, Publ. Res. Inst. Math. Sci. 31 (1995), no. 5, 873–911.

[CMY13] V. Chari, A. Moura, C. A. S. Young, Prime representations from a homological perspective, Math. Z. 274 (2013), no. 1–2, 613–645.

[CP91] V. Chari, A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283.

[CP94] V. Chari, A. Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994. xvi+651 pp.

[CP95a] V. Chari, A. Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994), 59–78, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995.

[CP97] V. Chari, A. Pressley, Factorization of representations of quantum affine algebras, Modular interfaces (Riverside, CA, 1995), 33–40, AMS/IP Stud. Adv. Math., 4, Amer. Math. Soc., Providence, RI 1997.

[Dri87] V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 798–820, Amer. Math. Soc., Providence, RI 1987.

[FM01] E. Frenkel, E. Mukhin, Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), no. 1, 23–57.

[FR98] E. Frenkel, N. Yu. Reshetikhin, The q-characters of representations of quantum affine algebras and deformations of W-algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), 163–205, Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999.

[FZ02] S. Fomin, A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497–529.

[GG14] J. Grabowski, S. Gratz, Cluster algebras of infinite rank, with an appendix by Michael Groechenig, J. Lond. Math. Soc. (2) 89 (2014), no. 2, 337–363.

[Her05] D. Hernandez, Monomials of q and q,t-characters for non simply-laced quantum affinizations, Math. Z. 250 (2005), no. 2, 443–473.

[Her06] D. Hernandez, The Kirillov–Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 596 (2006), 63–87.

[HL10] D. Hernandez, B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265–341.

[HL13] D. Hernandez, B. Leclerc, A cluster algebra approach to q-characters of Kirillov–Reshetikhin modules, arXiv:1303.0744, 1–45.

[Jim85] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69.

[KQ14] Y. Kimura, F. Qin, Graded quiver varieties, quantum cluster algebras and dual canonical basis, Adv. Math. 262 (2014), 261–312.
[KNS94] A. Kuniba, T. Nakaniishi, J. Suzuki, Functional relations in solvable lattice models: I. Functional relations and representation theory, Internat. J. Modern Phys. A9 (1994), no. 30, 5215–5266.

[Le03] B. Leclerc, Imaginary vectors in the dual canonical basis of $U_q(n)$, Transform Groups 8 (2003), no. 1, 95–104.

[Le10] B. Leclerc, Cluster algebras and representation theory, Proceedings of the International Congress of Mathematicians. Volume IV (2010), 2471–2488.

[Lee13] K. Lee, Every finite acyclic quiver is a full subquiver of a quiver mutation equivalent to a bipartite quiver, arXiv:1311.0711, 2013, 1–2.

[MY12a] E. Mukhin, C. A. S. Young, Path description of type B q-characters, Adv. Math. 231 (2012), no. 2, 1119–1150.

[MY12b] E. Mukhin, C. A. S. Young, Extended T-systems, Selecta Math. (N.S.), 18 (2012), no. 3, 591–631.

[Nak11] H. Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), no. 1, 71–126.

[NN11] W. Nakai, T. Nakanishi, On Frenkel–Mukhin algorithm for q-character of quantum affine algebras, Exploring new structures and natural constructions in mathematical physics, 327–347, Adv. Stud. Pure Math. 61, Math. Soc. Japan, Tokyo, 2011.

[Q15] F. Qin, Triangular bases in quantum cluster algebras and monoidal categorification conjectures, arXiv:1501.04085, 1–80.

[QL14] L. Qiao, J. R. Li, Cluster algebras and minimal affinizations of representations of the quantum group of type G_2, arXiv:1412.3884, 2014, 1–17.

[YMLZ15] Y. M. Yang, H. T. Ma, B. S. Lin, Z. J. Zheng, Cluster algebra structure on the finite dimensional representations of affine quantum group $U_q(\tilde{A}_3)$, Chinese Phys. B, 24 2015, no. 1, 010201.

[ZDLL15] Q. Q. Zhang, B. Duan, J. R. Li, Y. F. Luo, M-systems and cluster algebras, Int. Math. Res. Not. IMRN 2015, doi: 10.1093/imrn/rnv287.

Bing Duan: School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P. R. China.
E-mail address: duan890818@163.com

Jian-Rong Li, Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel, and School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P. R. China.
E-mail address: lijr07@gmail.com, lijr@lzu.edu.cn

Yan-Feng Luo: School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P. R. China.
E-mail address: luoyf@lzu.edu.cn