APOE ε4 is associated with younger age at ischemic stroke onset but not with stroke outcome

Cecilia Lagging, MD, Erik Lorentzen, MSc, Tara M. Stanne, PhD, Annie Pedersen, MD, PhD, Martin Söderholm, MD, PhD, John W. Cole, MD, MSc, Katarina Jood, MD, PhD, Robin Lemmens, MD, PhD, Chia-Ling Phuah, MD, MSc, Natalia S. Rost, MD, MPH, Vincent Thijss, MD, PhD, Daniel Woo, MD, MSc, Jane M. Maguire, RN, PhD, Arne Lindgren, MD, PhD, and Christina Jern, MD, PhD, on behalf of the Genetics of Ischaemic Stroke Functional Outcome (GISCOME) network and the International Stroke Genetics Consortium

Neurology® 2019;93:849-853. doi:10.1212/WNL.0000000000008459

Stroke outcome is determined by a complex interplay, where age and stroke severity are predominant predictors. Studies on hemorrhagic stroke indicate that APOE genotype is a predictor of poststroke outcomes, but results from studies on ischemic stroke are more conflicting. There is 1 study suggesting an influence of APOE genotype on age at ischemic stroke onset, and sex-specific effects on outcome have been reported. Taken together, there is a need for larger studies on APOE and ischemic stroke outcomes with integrated information on age, severity, and sex.

The 3 common APOE alleles ε2, ε3, and ε4 can be separated by a combination of 2 single nucleotide polymorphisms (SNPs), rs429358 and rs7412. Thus, associations with APOE alleles are not directly captured in a regular genome-wide association study (GWAS), where each SNP is investigated separately. We derived the 3 common APOE alleles and investigated the interplay between APOE, age at ischemic stroke onset, severity, sex, and outcome within a large international collaboration, the Genetics of Ischaemic Stroke Functional Outcome (GISCOME) network.

Methods

The design and results of the first GWAS on ischemic stroke outcome within GISCOME have been reported, and the present study comprises the 6,165 cases included in this GWAS. Each center individually obtained ethical approval and participant consent. Baseline stroke severity was assessed by the NIH Stroke Scale and 3-month functional outcome by the modified Rankin Scale (mRS). Genotyping was performed with SNP arrays with subsequent imputation to the 1000 Genomes Phase 3 reference panel as described. In the present study, we investigated effects of APOE minor alleles ε4 and ε2 separately in comparison to the most common allele ε3. To this end, ε4 allele count was defined as the continuous imputed minor allele dosage of rs429358 (C), excluding samples with minor allele dosage >0.4 for rs7412 (T), and vice versa for ε2, as depicted in figure, A. Each cohort was analyzed separately, and for each analysis, cohorts with an effective number of minor alleles ≤5 or an extreme effect size (β > 100) were excluded. Results from the remaining cohorts were meta-analyzed using inverse variance-weighted fixed effects models.

From the Department of Laboratory Medicine (C.L., T.M.S., A.P., C.J.), Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Genetics and Genomics (C.L., A.P.), Sahlgrenska University Hospital, Gothenburg, Sweden; Bioinformatics Core Facility (C.L.), University of Gothenburg, Sweden; Department of Clinical Sciences Lund (M.S., A.L.), Neurology, Lund University, Sweden; Department of Neurology and Rehabilitation Medicine (M.S.), Neurology, Skåne University Hospital, Malmö, Sweden; Department of Neurology (J.W.C.), Baltimore VA Medical Center and University of Maryland School of Medicine, Baltimore, MD; Department of Neurology (K.L.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience (K.L.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy University of Gothenburg, Sweden; Neurosciences (R.L.), Experimental Neurology, KU Leuven—University of Leuven; VIB—Center for Brain & Disease Research (R.L.); Department of Neurology (R.L.), University Hospitals Leuven, Belgium; Department of Neurology (C.-L.P.), Washington University School of Medicine in St. Louis; J. Philip Kistler Stroke Research Center (N.S.K.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Stroke Division (V.T.), Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Victoria, Australia; Department of Neurology (W.T.), Austin Health, Heidelberg, Victoria, Australia; Department of Neuroscience and Rehabilitation (D.W.), University of Cincinnati College of Medicine, OH; Faculty of Health (J.M.M.), University of Technology Sydney, Sydney, Australia; Hunter Medical Research Centre (J.M.M.), Newcastle, Australia; and Department of Neurology and Rehabilitation Medicine (A.L.), Neurology, Skåne University Hospital, Lund, Sweden.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

Genetics of Ischaemic Stroke Functional Outcome (GISCOME) network coinvestigators are listed in appendix 2 at the end of the article.

The Article Processing Charge was funded by the Swedish Research Council.

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
effects, unless there were signs of heterogeneity ($\text{heterogeneity} \leq 0.05$) in which case random effects were used.

We used directed acyclic graphs (DAGs) to investigate associations between APOE, age at stroke onset, stroke severity, and outcome. A DAG illustrates associations between variables according to a definite direction of causality as depicted by the arrows connecting the variables. For instance, APOE can influence age at stroke onset and/or stroke severity, but reverse causality is unlikely as APOE genotype is determined at conception. As age and stroke severity are well-established predictors of stroke outcome, we aimed to account for both possible direct effects of APOE on outcome and/or indirect effects via associations with age and/or stroke severity as depicted by the 3 different arrows originating from APOE in figures, B and D. All genetic analyses were adjusted for ancestry (the 5 first principal components), and adjustments for age and stroke severity were made as indicated (figure, B and D). Prespecified sex-stratified analyses were performed. Associations between allele count, age, and stroke severity were analyzed by linear regression. Associations with outcome were analyzed with logistic (dichotomized mRS score 0–2 vs 3–6) and ordinal logistic regression.

Results

Increasing allele count of $\epsilon 4$ was associated with younger age at stroke onset ($\beta = -1.8, p < 0.001$, figure, B). This association was consistent across a majority of cohorts (figure, C), significant in
both sexes and in cases with first-ever stroke only (data not shown). There was an association between ε4 allele count and favorable outcome (mRS score ≤2) when adjusting only for ancestry, but this association was no longer retained after additional adjustment for age and stroke severity (figure, B).

For ε2 allele count, we found a direct association with poor outcome (mRS score >2) in men after adjustment for ancestry, age, and stroke severity (figure, D). No such association was detected in the whole sample or in women. Neither ε4 nor ε2 allele count showed association with stroke severity.

Discussion

This is the largest meta-analysis with combined information on common APOE alleles, age at ischemic stroke onset, severity, and outcome to our knowledge. We found that increasing ε4 allele count was associated with younger age at stroke onset, which is in line with a previous meta-analysis of candidate gene studies. However, we found no evidence of a direct effect of ε4 on outcome, similar to 1 recent candidate gene study (N = 786) and 1 meta-analysis (N = 1,453).

Future studies should elucidate the biological mechanisms behind the association between APOE ε4 allele count and younger age at ischemic stroke onset. However, possible mechanisms include effects of altered lipid metabolism. In a pooled analysis, where associations between APOE genotype and several biomarkers were investigated, there was an apparent dose-response segregation of low-density lipoprotein cholesterol concentrations by APOE genotype, with the highest values in subjects homozygote for the APOE ε4 allele. Furthermore, the same ordering was observed for increasing carotid intima-media thickness and risk of ischemic stroke.

In the sex-stratified analysis, we found an association between increasing ε2 allele count and poor outcome in men. Sex-specific effects of APOE on ischemic stroke outcome have been reported and are not unreasonable to assume from a cardiovascular viewpoint. The ε2 allele has been associated with increasing white matter disease (WMD) in patients with ischemic stroke, and WMD is in turn associated with poor stroke outcome. Our results might thus be related to a higher prevalence of WMD in male ε2 carriers. However, as we lacked data on WMD for all participants, this hypothesis remains speculative.

The GISCOME study has the advantage of being the largest sample of genetic and ischemic stroke outcome data available. Study limitations have been previously discussed. In addition, the sample size for the sex-stratified analyses in our present study was small, and we used imputed values from SNP arrays to establish common APOE alleles. However, imputation based on the 1000 Genomes reference panel has been reported reliable in inferring these APOE alleles.

In conclusion, this study shows that APOE ε4 carriers have a younger age at ischemic stroke onset. We also detected worse functional outcome in male ε2 carriers, a result needing replication. Given these findings, even larger studies would be of interest to investigate associations between APOE alleles and ischemic stroke outcomes in different age and sex strata.

Study funding

This study was funded by the Swedish Heart and Lung Foundation (C. Jern and A. Lindgren); the Swedish Research Council (C. Jern); the Swedish Stroke Association (C. Jern and A. Lindgren); the Swedish state under the agreement between the Swedish government and the county councils, the ALF agreement (C. Jern and A. Lindgren); the Gothenburg Foundation for Neurological Research (C. Lagging); the Freemasons Lodge of Instruction EOS in Lund (A. Lindgren); the Foundation of Färs & Frosta—one of Sparbanken Skåne’s ownership foundations (A. Lindgren); Lund University (A. Lindgren); Region Skåne, Skåne University Hospital (A. Lindgren); the National Health and Medical Research Council, Australia (J.M. Maguire); the National Institutes of Health (J. Cole); the US Department of Veterans Affairs (J. Cole); the American Heart Association (AHA) Cardiovascular Genome-Phenome Study (J. Cole); and the NIH-NINDS (N.S. Rost). Funding for the entire GISCOME study is listed in Söderholm et al. Genome-wide association meta-analysis of functional outcome after ischemic stroke.

Disclosure

C. Lagging, E. Lorentzen, T. Stanne, A. Pedersen, and M. Söderholm report no disclosures. J. Cole reports receiving the AHA-Bayer Discovery Grant (Grant-171BDG33700328), K. Jood, R. Lemmens, C. Phuah, N. Rost, V. Thijs, D. Woo, and J.M. Maguire report no disclosures relevant to the manuscript. A. Lindgren reports personal fees for advisory board, speech, and seminar participation from Bayer, AstraZeneca, Boehringer Ingelheim, BMS Pfizer, and Reneuron. C. Jern reports no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Publication history

Received by Neurology April 3, 2019. Accepted in final form August 15, 2019.

Appendix 1 Authors

Name	Location	Role	Contribution
Cecilia Lagging, MD	University of Gothenburg, Gothenburg, Sweden	Author	Interpretation of the data and drafting the manuscript for intellectual content
	Sahlgrenska University Hospital, Gothenburg, Sweden		
Erik Lorentzen, MSc	University of Gothenburg, Gothenburg, Sweden	Author	Analysis and interpretation of the data and drafting parts of the manuscript for intellectual content
Appendix 1 (continued)

Name	Location	Role	Contribution
Tara M. Stanne, PhD	University of Gothenburg, Gothenburg, Sweden	Author	Interpretation of the data and revising the manuscript for intellectual content
Annie Pedersen, MD, PhD	University of Gothenburg, Gothenburg, Sweden Sahlgrenska University Hospital, Gothenburg, Sweden	Author	Interpretation of the data and revising the manuscript for intellectual content
Martin Söderholm, MD, PhD	Lund University, Lund, Sweden Skåne University Hospital, Malmö, Sweden	Author	Interpretation of the data and revising the manuscript for intellectual content
John W. Cole, MD, MSc	University of Maryland School of Medicine and Baltimore VAMC, USA	Author	Revising the manuscript for intellectual content
Katarina Jood, MD, PhD	University of Gothenburg, Gothenburg, Sweden Sahlgrenska University Hospital, Gothenburg, Sweden	Author	Major role in the acquisition of data and revising the manuscript for intellectual content
Robin Lemmens, MD, PhD	University of Leuven; VIB, Leuven; University Hospitals Leuven, Belgium	Author	Major role in the acquisition of data and revising the manuscript for intellectual content
Chia-Ling Phuah, MD, MMSc	Washington University School of Medicine in St. Louis, USA	Author	Revising the manuscript for intellectual content
Natalia S. Rost, MD, MPH	Harvard Medical School, Boston MA, USA	Author	Major role in the acquisition of data and revising the manuscript for intellectual content
Vincent Thijss, MD, PhD	University of Melbourne, Heidelberg; Austin Health, Heidelberg, Australia	Author	Major role in the acquisition of data and revising the manuscript for intellectual content
Daniel Woo, MD, MSc	University of Cincinnati College of Medicine, OH, USA	Author	Major role in the acquisition of data and revising the manuscript for intellectual content
Jane M. Maguire, RN, PhD	University of Technology Sydney, Sydney, Australia Hunter Medical Research Centre, Newcastle, Australia	Author	Design and conceptualization of the GISCOME study, major role in the acquisition of data, and revising the manuscript for intellectual content

Appendix 1 (continued)

Name	Location	Role	Contribution
Arne Lindgren, MD, PhD	Lund University, Lund, Sweden Skåne University Hospital, Lund, Sweden	Author	Design and conceptualization of the GISCOME study, major role in the acquisition of data, and revising the manuscript for intellectual content
Christina Jern, MD, PhD	University of Gothenburg, Gothenburg, Sweden Sahlgrenska University Hospital, Gothenburg, Sweden	Author	Design and conceptualization of the GISCOME and the present study, major role in the acquisition of data, analysis and interpretation of the data, and revising the manuscript for intellectual content

Appendix 2 Coinvestigators

Name	Location	Role	Contribution
Steve Bevan, PhD	University of Lincoln, UK	Co-investigator	Major role in the acquisition of data
Israel Fernandez-Cadenas, MSc, PhD	Hospital de Sant Pau, Spain; Vall d'Hebrón Hospital, Barcelona, Spain	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data
Graeme J. Hankey, MD	The University of Western Australia, Perth, Australia	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data
Jordi Jimenez-Conde, MD	Institut Hospital del Mar d'Investigació Médica (IMIM), Barcelona; Universitat Autònoma de Barcelona, Spain	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data
Jin-Moo Lee, MD, PhD	Washington University School of Medicine in St. Louis, USA	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data
Christopher Levi, MD	University of Technology Sydney; University of Newcastle, Australia	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data
Braxton D. Mitchell, PhD, MPH	University of Maryland, Baltimore; Veterans Affairs Medical Center, Baltimore, MD, USA	Co-investigator	Major role in the acquisition of data
Appendix 2 (continued)

Name	Location	Role	Contribution
Bo Norrving, MD, PhD	Lund University, Lund; Skane University Hospital, Lund and Malmö, Sweden	Co-investigator	Major role in the acquisition of data
Kristiina Rannikmae, MD, PhD	University of Edinburgh, UK	Co-investigator	Major role in the acquisition of data
Jonathan Rosand, MD, MSC	Harvard Medical School, Boston; Broad Institute of MIT and Harvard, Cambridge; Massachusetts General Hospital, Boston	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data
Peter M. Rothwell, MD, PhD	University of Oxford, UK	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data
Rodney Scott, DSc, PhD	University of Technology Sydney; University of Newcastle, Australia	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data
Daniel Strbian, MD, PhD	Helsinki University Hospital, Finland	Co-investigator	Major role in the acquisition of data
Jonathan W. Sturm, MBChB, PhD	University of Newcastle, Australia	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data
Cathie Sudlow, MD, PhD	University of Edinburgh, UK	Co-investigator	Primary investigator of one of the cohorts in GISCOME and major role in the acquisition of data

References

1. Martinez-Gonzalez NA, Sudlow CL. Effects of apolipoprotein E genotype on outcome after ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2006;77:1329–1335.
2. Biffi A, Anderson CD, Jagella JM, et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol 2011;10:702–709.
3. Lindgren A, Maguire J. Stroke recovery genetics. Stroke 2016;47:2427–2434.
4. Kumar A, Kumar P, Frasad M, Miera S, Kishor Pandit A, Chakravarty K. Association between apolipoprotein epsilon4 gene polymorphism and risk of ischemic stroke: a meta-analysis. Ann Neurosciences 2016;23:113–121.
5. Gromadzka G, Baranska-Gieruszczak M, Sarynska-Dlugosz I, Ciesielka A, Colon-Luwowska A. The APOE polymorphism and 1-year outcome in ischemic stroke: genotypetype–gender interaction. Acta Neurol Scand 2007;116:392–398.
6. Soderholm M, Pedersen A, Lorenzen E, et al. Genome-wide association meta-analysis of functional outcome after ischemic stroke. Neurology 2019;92:e1271–e1283.
7. Zhang Y, Liu S, Yue W, et al. Association of apolipoprotein E genotype with outcome in hospitalized ischemic stroke patients. Medicine (Baltimore) 2017;96:e9964.
8. Khan TA, Shah T, Prieto D, et al. Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: systematic review and meta-analysis of 14,015 stroke cases and pooled analysis of primary biomarker data from up to 60,883 individuals. Int J Epidemiol 2013;42:475–492.
9. Lemmens R, Gomar A, Schroten M, Thijs V. Association of apolipoprotein E F0652 with white matter disease but not with microbleeds. Stroke 2007;38:1185–1188.
10. Radmanesh F, Devan WJ, Anderson CD, Rosand J, Falcone GJ. Accuracy of imputation to infer unobserved APOE epsilon alleles in genome-wide genotyping data. Eur J Hum Genet 2014;22:1239–1242.

Neurology® Online CME Program

Earn CME while reading *Neurology*. This program is available only to online *Neurology* subscribers. Read the articles marked CME, go to *Neurology.org*, and click on CME. This will provide all of the information necessary to get started. The American Academy of Neurology (AAN) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing medical education for physicians. *Neurology* is planned and produced in accordance with the ACCME Essentials. For more information, contact AAN Member Services at 800-879-1960.
Author/s:
Lagging, C; Lorentzen, E; Stanne, TM; Pedersen, A; Söderholm, M; Cole, JW; Jood, K;
Lemmens, R; Phuah, C-L; Rost, NS; Thijs, V; Woo, D; Maguire, JM; Lindgren, A; Jern, C;
Genetics of Ischaemic Stroke Functional Outcome (GISCOME) network and the International
Stroke Genetics Consortium

Title:
APOE 4 is associated with younger age at ischemic stroke onset but not with stroke outcome.

Date:
2019-11-05

Citation:
Lagging, C., Lorentzen, E., Stanne, T. M., Pedersen, A., Söderholm, M., Cole, J. W., Jood, K.,
Lemmens, R., Phuah, C. -L., Rost, N. S., Thijs, V., Woo, D., Maguire, J. M., Lindgren, A.,
Jern, C. & Genetics of Ischaemic Stroke Functional Outcome (GISCOME) network and the
International Stroke Genetics Consortium (2019). APOE 4 is associated with younger age at
ischemic stroke onset but not with stroke outcome.. Neurology, 93 (19), pp.849-853.
https://doi.org/10.1212/WNL.0000000000008459.

Persistent Link:
http://hdl.handle.net/11343/246855

File Description:
published version

License:
CC BY