Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Comparison of diagnostic accuracies of rapid serological tests and ELISA to molecular diagnostics in patients with suspected coronavirus disease 2019 presenting to the hospital

D.S.Y. Ong1, 2, *, S.J. de Man1, F.A. Lindeboom3, J.G.M. Koeleman1

1) Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
2) Department of Epidemiology, Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
3) Department of Clinical Chemistry and Haematology, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands

A R T I C L E I N F O

Article history:
Received 14 April 2020
Received in revised form
21 May 2020
Accepted 22 May 2020
Available online 2 June 2020
Editor: Franz Allerberger

Keywords:
Coronavirus disease 2019
ELISA
Lateral flow immunoassay
Rapid test
Serology
Severe acute respiratory syndrome coronavirus 2

A B S T R A C T

Objectives: To assess the diagnostic performance of rapid lateral flow immunochromatographic assays (LFAs) compared with an ELISA and nucleic acid amplification tests (NATs) in individuals with suspected coronavirus disease 2019 (COVID-19).

Methods: Patients presenting to a Dutch teaching hospital were eligible between 17 March and 10 April 2020, when they had respiratory symptoms that were suspected for COVID-19. The performances of six different LFAs were evaluated in plasma samples obtained on corresponding respiratory sample dates of NATs testing. Subsequently, the best performing LFA was evaluated in 228 patients and in 50 sera of a historical patient control group.

Results: In the pilot analysis, sensitivity characteristics of LFA were heterogeneous, ranging from 2/20 (10%; 95% CI 0%–23%) to 11/20 (55%; 95% CI 33%–77%). In the total cohort, Orient Gene Biotech COVID-19 IgG/IgM Rapid Test LFA had a sensitivity of 43/99 (43%; 95% CI 34%–53%) and specificity of 126/129 (98%; 95% CI 95%–100%). Sensitivity increased to 31/52 (60%; 95% CI 46%–73%) in patients with at least 7 days of symptoms, and to 21/33 (64%; 95% CI 47%–80%) in patients with C-reactive protein (CRP) ≥100 mg/L. Sensitivity and specificity of Wantai SARS-CoV-2 Ab ELISA was 59/95 (62%; 95% CI 52%–72%) and 125/128 (98%; 95% CI 95%–100%) in all patients, respectively, but sensitivity increased to 38/48 (79%; 95% CI 68%–91%) in patients with at least 7 days of symptoms.

Conclusions: There is large variability in diagnostic test performance between rapid LFAs, but overall limited sensitivity and high specificity in acutely admitted patients. Sensitivity improved in patients with longer existing symptoms or high CRP. LFAs should only be considered as additional triage tools when these may lead to the improvement of hospital logistics. D.S.Y. Ong, Clin Microbiol Infect 2020;26:1094.e7–1094.e10 © 2020 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Introduction

In December 2019 the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started in Wuhan in China [1], but coronavirus disease 2019 (COVID-19) spread rapidly to other countries [2]. The first infected patient in the Netherlands was detected on 27 February 2020 [3]. Accurate diagnostics are fundamental in the fight against this increasing pandemic. Moreover, hospitals would benefit from rapid detection of this virus infection in individuals who present acutely to hospitals with respiratory symptoms suspected for COVID-19. Time delay in the establishment of diagnosis increases logistic challenges and causes stagnation of patient flow in emergency departments because these individuals cannot be transferred to appropriate hospital wards or intensive care units (ICUs) when the results of the diagnostic tests are still pending [4].

Nucleic acid amplification tests (NATs) are the reference standard because of the high specificity, although sensitivity may depend on the timing of disease presentation, sampling location
and severity of illness [5]. Nevertheless, it usually takes about 4–24 hours before laboratory-based results become available, depending on specific NAT platforms and laboratory organization. Therefore, numerous lateral flow immunochromatographic assays (LFAs) have been introduced onto the market, and some countries have stocked up on such rapid tests. These LFAs detect the presence of IgM and IgG against SARS-CoV-2.

This study aimed to assess the diagnostic performance of LFAs, and compare these to an ELISA and NATs in individuals with suspected COVID-19.

Methods

Patients presenting to a teaching hospital in the Netherlands were eligible between 17 March 2020 and 10 April 2020 when they had respiratory symptoms that were suspected for respiratory tract infection. Samples were taken from the oral cavity and subsequently from the nasal cavity using the same nasopharyngeal swab; this was tested by NATs. In some cases, sputum samples were tested, because of persisting clinical suspicion of COVID-19 despite a negative NAT on nasopharyngeal swabs. NATs were performed according to the national reference method that was established after international collaboration [6], or by the CE-IVD kit GeneFinder™ COVID-19 Plus RealAmp Kit using the Sample to Result Platform ELITe InGenius®. The Institutional Review Board waived the need for informed consent because tests were performed on samples that had been acquired for routine clinical care (IRB protocol number 2020-034), and according to hospital procedure all patients were informed about the possibility of an opt-out if they had objections against the use of left-over material for research to improve or validate diagnostic testing procedures. The study was conducted in accordance with Helsinki Declaration as revised in 2013.

First, in a pilot phase, 20 NAT-positive and 5 NAT-negative patients were retrospectively selected for which six LFAs were performed on heparin plasma samples obtained upon hospital presentation (see Supplementary material, Table S1), which corresponded to the dates of molecular testing. LFAs were included from Boson Biotech, Cellex, Dynamiker Biotechnologie, Orient Gene Biotech, Prometheus Bio and Wantai Rapid Test. Any visible band for IgG, IgM or unspecified immunoglobulin was indicative for a positive result. Second, based on the sensitivity and specificity results in the pilot study, the best performing LFA was further evaluated in an extended cohort of randomly selected patients. Third, in the randomly selected historical control sera, the LFA and the ELISA had the highest sensitivity.

A total of 111 patients (including the 25 from the pilot study) were retrospectively selected between 16 March and 29 March. Subsequently, 117 consecutive patients were prospectively included between 6 April and 10 April. In total, 228 individuals were included with a median age of 61 years (interquartile range (IQR) 46–74 years), 117 (52%) were male, 21 (9%) were admitted to the ICU within 24 hours and median C-reactive protein (CRP) upon hospital presentation was 31 mg/L (IQR 7–95 mg/L) (see Supplementary material, Table S1). Median time from symptom onset to sample collection was 7 days (IQR 4–14 days).

OGfBRT had an overall sensitivity of 43/99 (43%; 95% CI 34–53%) and specificity of 126/129 (98%; 95% CI 95–100%) (Table 2). Sensitivity increased to 31/52 (60%; 95% CI 46–73%) in patients with at least 7 days of symptoms, and to 21/33 (64%; 95% CI 47–80%) in patients with CRP ≥100 mg/L upon presentation. However, there was no significant difference between patients requiring ICU care within 24 hours after presentation and the remaining patients. Of the 43 individuals positive for both OGBfBRT and NAT, 14 were both IgG and IgM positive, 10 were only IgG positive and 19 were only IgM positive.

The ELISA showed sensitivity and specificity of 59/95 (62%; 95% CI 52–72%) and 125/128 (98%; 95% CI 95–100%), respectively. Sensitivity increased to 38/48 (79%; 95% CI 68–91%) in patients with at least 7 days of symptoms, and to 23/30 (77%; 95% CI 62–92%) in patients with CRP ≥100 mg/L. Overall agreement between the LFA and the ELISA was 195/223 (87%; 95% CI 83–92%). In 21 NAT-positive patients the ELISA was positive and the LFA was negative, whereas in three NAT-negative patients the ELISA was negative and the LFA was positive (see Supplementary material, Fig. S2).

In the randomly selected historical control sera, the LFA and the ELISA specificities were 49/50 (98%; 95% CI 94–100%) and 50/50 (100%; 95% CI 100–100%), respectively; LFA showed a very weak IgG line in one sample.

Discussion

This study shows that the sensitivity of LFA was low in patients suspected for COVID-19 presenting to the hospital, but it improved in patients with at least 7 days of symptoms and in those with CRP levels >100 mg/L upon presentation. Specificities of LFAs and the

Lateral flow immunochromatographic assay	Sensitivity	Specificity
Boson Biotech Rapid 2019-nCoV IgG/IgM Combo Test Card	10/20 (50%; 95% CI 28%–72%)	5/5 (100%; 95 CI 48%–100%)
Cellex qSARS-CoV-2 IgG/IgM Cassette Rapid Test	4/20 (20%; 95 CI 3%–38%)	5/5 (100%; 95 CI 48%–100%)
Dynamiker Biotechnologie 2019-nCoV IgG/IgM Rapid Test	2/20 (10%; 95 CI 0%–23%)	5/5 (100%; 95 CI 48%–100%)
Orient Gene Biotech COVID-19 IgG/IgM Rapid Test Cassette	11/20 (55%; 95% CI 33%–77%)	5/5 (100%; 95 CI 48%–100%)
Prometheus Bio 2019-nCoV IgG/IgM Rapid Test	4/20 (20%; 95 CI 3%–38%)	5/5 (100%; 95 CI 48%–100%)
Wantai SARS-CoV-2 Ab	10/20 (50%; 95 CI 28%–72%)	5/5 (100%; 95 CI 48%–100%)
Table 2
Performance characteristics of Orient Gene Biotech LFA and Wantai ELISA in patients with suspected COVID-19 compared with nucleic acid amplification tests as reference standard

Time from symptom onset to sample collection	p Non-ICU	ICU	CRP <100 mg/L	CRP ≥100 mg/L
<7 days				
Orient Gene Biotech LFA				
Sensitivity	0.96			
Specificity				
Wantai ELISA				
Sensitivity	1.00			
Specificity				

Abbreviations: CRP, C-reactive protein; ICU, intensive care unit; LFA, lateral flow immunochromatographic assays.

Data are presented in absolute numbers (percentages). Of note, sensitivity was 17/24 (71%) in patients with time from symptom onset to sample collection >14 days, sensitivity and specificity of the LFA were 9/14 (64%; 95% CI 39%–89%) and 30/32 (94%; 95% CI 85%–100%), respectively, whereas sensitivity and specificity of the ELISA were 6/12 (50%; 95% CI 22%–78%) and 39/32 (94%; 95% CI 85%–100%), respectively.

a In some patients time from symptom onset was undetermined or unavailable. In the subgroup of patients with time from symptom onset to sample collection >14 days, sensitivity and specificity of the LFA were 9/14 (64%; 95% CI 39%–89%) and 30/32 (94%; 95% CI 85%–100%), respectively. b 5/228 (2%) samples were unavailable for ELISA.

Authors' contributions
The authors declare no conflicts of interest.

Funding
No funding.

Transparency declaration
The authors declare no conflicts of interest.
Acknowledgements

We would like to thank our laboratory technicians and team managers for their assistance in performing the serological tests.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cmi.2020.05.028.

References

[1] Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020. https://doi.org/10.1056/NEJMoa2002032. NEJMoa2002032.

[2] Kinross P, Suetens C, Gomes Dias J, Alexakis L, Wijermans A, Colzani E, et al. Rapidly increasing cumulative incidence of coronavirus disease (COVID-19) in the European union/European economic area and the United Kingdom, 1 January to 15 March 2020. Euro Surveill 2020;25:1647.

[3] National Institute for Public Health and the Environment (RIVM). Current information about the novel coronavirus (COVID-19) Bilthoven: RIVM. Accessed 15 April 2020. Available from: https://www.rivm.nl/en/current-information-about-novel-coronavirus-covid-19.

[4] Caliendo AM, Gilbert DN, Ginocchio CC, Hanson KE, May L, Quinn TC, et al. Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis 2013;57:5139–70.

[5] Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020;382:1177–9.

[6] Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020;25:2431.

[7] Cassaniti I, Novazzi F, Giardina F, Salinaro F, Sachs M, Perlini S, et al. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol 2020;382:727.

[8] Hoffman T, Nissen K, Krambrich J, Rönnberg B, Akaberi D, Esmaeilzadeh M, et al. Evaluation of a COVID-19 IgM and IgG rapid test; an efficient tool for assessment of past exposure to SARS-CoV-2. Infect Ecol Epidemiol 2020;10:1754538.

[9] Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 2020. https://doi.org/10.1002/jmv.25727.

[10] Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020. https://doi.org/10.1093/cid/ciaa461. pii: ciaa461.