Spectroscopic observation of resonant electric dipole-dipole interactions between cold Rydberg atoms

K. Afrousheh, P. Bohlouli Z., D. Vagale, A. Mugford, M. Fedorov, and J. D. D. Martin

Department of Physics and Institute for Quantum Computing
University of Waterloo, Waterloo, ON, N2L 3G1, Canada
(Dated: November 8th, 2004)

Resonant electric dipole-dipole interactions between cold Rydberg atoms were observed using microwave spectroscopy. Laser-cooled 85Rb atoms in a magneto-optical trap were optically excited to $45d_{5/2}$ Rydberg states using a pulsed laser. A microwave pulse transferred a fraction of these Rydberg atoms to the $46p_{3/2}$ state. A second microwave pulse then drove atoms in the $45d_{5/2}$ state to the $46d_{5/2}$ state, and was used as a probe of interatomic interactions. The spectral width of this two-photon probe transition was found to depend on the presence of the $46p_{3/2}$ atoms, and is due to the resonant electric-dipole-dipole interaction between $45d_{5/2}$ and $46p_{3/2}$ Rydberg atoms.

PACS numbers: 32.80.Rm, 34.20.Cf, 32.80.Pj

The vast separation of the electron and ion-core in high-n Rydberg atoms is responsible for their large transition dipole moments μ. These dipole moments dictate the strength of the dipole-dipole interaction between pairs of atoms. Therefore, excitation to Rydberg states allows one to tune on strong interactions between atoms which would otherwise be negligible. This has recently received considerable attention in the context of quantum information processing with cold neutral atoms μ. For example, it has been proposed that a single excited Rydberg atom in a cloud may block further resonant excitation due to the dipole-dipole interaction — a process known as “dipole blockade” ν. This would allow clouds of cold atoms to store qubits without the addressing of individual atoms and may also be useful for constructing single-atom and single-photon sources ν.

Non-resonant dipole-dipole (van der Waals) interactions between Rydberg atoms were first observed by Raimond et al. ν using spectral line broadening. Recently it has been shown that Rydberg excitation densities in a magneto-optical trap (MOT) are limited by these interactions ν. Dipole-dipole interactions between Rydberg atoms have also been studied in the context of resonant energy transfer ν. Of particular relevance to this work is the observation of resonant energy transfer between cold Rydberg atoms ν where the Rydberg atoms behave more like an amorphous solid than a gas, and one cannot solely consider binary interactions to explain the transfer process ν. However, use of the resonant dipole-dipole interaction between cold Rydberg atoms to influence radiative transitions — as presented in this work — is an unexplored area.

We excite Rydberg states using a pulsed laser with no stringent demands on linewidth or stability. Dipole-dipole interactions are then introduced and probed using microwave transitions between Rydberg states. This is advantageous since commercial microwave synthesizers are readily tunable, highly stable, and have easily adjustable powers and pulse-widths, as compared to lasers. Using this approach we have made the first spectroscopic observation of the resonant dipole-dipole interaction between cold Rydberg atoms using radiative transitions.

To observe interactions between atoms that are effectively stationary, we excite Rydberg states of laser-cooled atoms. A standard MOT is used as a source of cold 85Rb atoms. The cooling and trapping light remains on during the experiment and thus a fraction of atoms are in the excited $5p_{3/2}$ state. A Littman-Metcalf, Nd:YAG pumped, nanosecond pulse laser is used to excite these translationally cold $5p_{3/2}$ atoms to the $45d_{5/2}$ state. The total number of Rydberg atoms excited is sensitive to the frequency spectrum of the multimode dye laser — which varies from shot to shot. Since we are interested in density dependent effects, data is recorded for every laser shot and processed to select laser shots corresponding to specified Rydberg atom densities ν. The fluctuations may even be considered advantageous, as they allow a range of Rydberg densities to be sampled automatically.

The MOT is formed between two metal plates 3.6 cm apart. These plates contain small holes to let the cooling and trapping lasers through. During laser excitation, an electric field of 5.1 V/cm is applied using these plates, which removes ions formed during laser excitation. This field is switched off with a 0.2 μs fall time approximately 0.1 μs after photoexcitation, and remains less than 0.1 V/cm during application of the microwave pulses (this is verified by observing the Stark shifts of the microwave transitions ν).

After optical excitation to the $45d_{5/2}$ state, a fraction of the atoms may be transferred to either the $46p_{3/2}$ state or the $45p_{3/2}$ state using a microwave pulse to drive a one-photon transition (the “transfer pulse”) (see Fig. ν). The microwave radiation is introduced into the experimental region by horns placed outside the vacuum chamber, directed towards the trapped atom cloud through a large fused silica viewport. To obtain 50 % (\pm 10 %) transfer of Rydberg atoms from the $45d_{5/2}$ to the $46p_{3/2}$ state in 0.6 μs long pulses requires less than 1 mW.

To observe dipole-dipole interactions from the line broadening of spectroscopic transitions, it is desirable to minimize other sources of broadening. In particular, the inhomogeneous magnetic fields necessary for operation
of the MOT may broaden spectroscopic transitions due to the Zeeman effect. However, as Li et al. [17] have demonstrated, two-photon transitions between Rydberg states with the same g_f factors (eg. $ud_{5/2} - (n + 1)d_{5/2}$) show negligible broadening in a MOT. Thus, we use the $45d_{5/2} - 46d_{5/2}$ two-photon transition as a high resolution, sensitive “probe” of interatomic interactions. This 6 μs probe pulse requires a total power of less than 100 μW and is introduced to the atoms in the same manner as the transfer pulses. The probe frequency is typically scanned between laser shots and the Rydberg state populations are measured after each shot using the selective field ionization (SFI) technique [1]. Absolute, spatially averaged Rydberg densities are obtained from knife-edge measurements of the dye laser beam waist, 5$p_{3/2}$ fluorescence imaging, and calibration of the microchannel plate detector. These estimated densities are systematically uncertain by a factor of 2.

Figure 2 (a) shows a microwave spectrum of the two-photon probe transition without the application of a transfer pulse. This is well-matched by a superimposed sinc$^2(\pi fT)$ lineshape suitable for a square excitation pulse of duration $T = 6 \mu$s. As expected, inhomogeneous Zeeman broadening makes a negligible contribution to the linewidth [17].

We enhance the interactions between Rydberg atoms by introducing a microwave pulse shortly after photoexcitation, transferring 50% of atoms to the 46$p_{3/2}$ state, before application of the two-photon $45d_{5/2} - 46d_{5/2}$ probe pulse. Unlike the two-photon probe pulse, the one-photon transition is broadened by several MHz due to the inhomogeneous magnetic field [17]. We do not observe any Rabi flopping for this “transfer” transition and consequently do not investigate the possibility of preparing coherent superpositions of these two states. With a total Rydberg density of 10^7 cm$^{-3}$, converting half of the initially excited $45d_{5/2}$ atoms to the $46p_{3/2}$ state consistently broadens the linewidth of the two-photon $45d_{5/2} - 46d_{5/2}$ probe transition from 160 \pm 5 kHz to 192 \pm 5 kHz – see Fig. 2 (all widths in this paper are full-width half-maxima).

As mentioned previously, fluctuations in Rydberg state excitation efficiency may be exploited to accumulate data over a broad range of density conditions. To analyze linewidths quantitatively a sinc$^2(\pi fT)$ lineshape ($T = 6 \mu$s) is convolved with a Lorentzian with a variable width $\delta \nu$ adjusted for the best least-squares fit to individual spectra. The Lorentzian form is supported by a theoretical model (vide infra). Figure 2 shows $\delta \nu$ both with and without introduction of the $46p_{3/2}$ atoms, as a function of average Rydberg density. With decreasing density $\delta \nu$ approaches zero, suggesting the influence of interatomic interactions – which inevitably weaken at the large average separations corresponding to low densities.

The difference in linewidths with and without the $46p_{3/2}$ atoms can be attributed to resonant electric dipole-dipole interactions. To obtain estimates of the line broadening we consider interactions between pairs of atoms (A and B) due to the electric dipole-dipole inter-
The transfer pulses (see text for definition of $\vec{\mu}$) as a function of average Rydberg density with and without the transfer pulses (see Fig. 1 for definition of $\delta\nu$).

FIG. 3: Broadening of the $45d_{5/2} - 46d_{5/2}$ probe transition as a function of average Rydberg density with and without the transfer pulses (see text for definition of $\delta\nu$).

Action operator:

$$\hat{V}_{dd} = \frac{\vec{\mu}_A \cdot \vec{\mu}_B - 3(\vec{\mu}_A \cdot \vec{n})(\vec{\mu}_B \cdot \vec{n})}{R_{AB}^3}$$

(1)

where $\vec{\mu}_A$ and $\vec{\mu}_B$ are the electric dipole matrix element operators evaluated on each atom, \vec{n} is the unit vector pointing between the atoms, and R_{AB} is the separation of the two atoms. This perturbation may split the otherwise energy degenerate states $|1> = |45d_{5/2}m_{j,A1}>A|46p_{3/2}m_{j,B1}>B$ and $|2> = |46p_{3/2}m_{j,A2}>A|45d_{5/2}m_{j,B2}>B$; and with a 50% mixture of $45d_{5/2}$ and $46p_{3/2}$ atoms we can obtain a very rough idea of the magnitude of the energy splittings from $\Delta\nu_{dd} \approx \mu^2/R^3$, where $\mu = |<45d_{5/2,1/2}|\mu_z|46p_{3/2,1/2}|> = 0.49|<45d_{5/2}|\mu|46p_{3/2}>|, R = (4\pi n_{46p}/3)^{-1/3}$, and n_{46p} is the $46p_{3/2}$ number density. The radial matrix element is evaluated by numerical integration of the Rydberg electron wave functions (see Fig. 1). The $45d_{5/2}$ and $46p_{3/2}$ states are strongly dipole coupled, whereas the $46d_{5/2}$ and $46p_{3/2}$ states are not. Therefore, only the initial state of the two-photon probe transition is split by the resonant dipole-dipole interaction with $46p_{3/2}$ atoms. A density of $n_{46p} = 5 \times 10^6$ cm$^{-3}$ gives $\Delta\nu_{dd} = 33$ KHz – the same order of magnitude as the observed broadening (see Fig. 3).

The dipole-coupling between the $45d_{5/2}$ and $45p_{3/2}$ states is much smaller than that between the $45d_{5/2}$ and $46p_{3/2}$ states (see Fig. 1(b)). This suggests the following test. Instead of transferring 50% of the atoms to the $46p_{3/2}$ state, we transfer 50% of atoms to the $45p_{3/2}$ state, and study the broadening of the probe transition with increasing Rydberg atom density. Based on the much smaller dipole matrix element, it is expected that introducing the $45p_{3/2}$ atoms will have little influence on the linewidth of the probe transition. Figure 4 shows that the introduction of the $45p_{3/2}$ atoms gives linewidths which are experimentally indistinguishable from the 100% $45d_{5/2}$ case.

Now we consider a calculation of the linewidths which accounts for the orientations of the dipole and \vec{n} operators and the distribution in interacting atom separations – which were neglected in the simple estimate presented above. With no magnetic field, there is a large energy degeneracy corresponding to the different possible magnetic sub-levels for the two atoms (A and B) (without V_{dd}). However, in the MOT the average Zeeman shifts are relatively large (≈1 MHz) compared to the influence of V_{dd} (≈100 kHz). Therefore only those states that are exactly degenerate are strongly coupled ($m_{j,A1} = m_{j,B2}$ and $m_{j,B1} = m_{j,A2}$). In the absence of detailed information about the magnetic sub-level populations, two extremes are considered: a) atoms are randomly distributed over all possible magnetic sub-levels, and b) all atoms are in $m_{j} = 1/2$. In the first case the effective interaction is diminished, since there will be pairs of atoms which will not interact at all (eg. $m_{j,A1} = 5/2$, $m_{j,B1} = -3/2$).

To simulate the lineshape – in particular the randomness associated with R_{AB} and \vec{n} – we consider a $45d_{5/2}$ atom at the center of a sphere containing a number of randomly placed $46p_{3/2}$ atoms. The matrix elements $<1|\hat{V}_{dd}|2>$ are computed using the $45d_{5/2}$ atom and each $46p_{3/2}$ within the sphere, using the magnetic sub-level distribution scenarios discussed above. The matrix element with the largest magnitude is selected V_{max} (a binary ‘strongest interacting’ neighbor approximation). This splits the $45d_{5/2} - 46d_{5/2}$ transition into a doublet $\pm V_{max}$ (the energy eigenvalues of our simplified two-state system). This process was repeated numerous times, and the resulting splittings histogramed to obtain lineshapes, which converged as the size of the sphere and number of particles increased (we maintained a constant average density). These have sharp dips in their centers, but Lorentzian wings (the dips are much sharper than the transform-limited linewidth at the densities studied here).

The simulated lineshapes were convolved with a sinc$^2(\pi fT)$ lineshape ($T = 6 \mu$s) and fitted in the same manner as the experimental data (using the sinc$^2(\pi fT)$ lineshape convolved with a Lorentzian of adjustable width $\Delta\nu_{dd}$). With $n_{46p} = 5 \times 10^6$ cm$^{-3}$ (corresponding to 10^7 cm$^{-3}$ total density) we get $\Delta\nu_{dd} = 18$ KHz and $\delta\nu_{dd} = 63$ KHz for cases a) and b) discussed above. As Fig. 4 shows, the experimentally observed increase in $\delta\nu$ at this density is 55 ± 5 KHz – in reasonable agreement with the calculations. In making this comparison, it is assumed that the mechanism producing the density-dependent $\delta\nu$ observed with no $46p_{3/2}$ atoms, is also present with the introduction of $46p_{3/2}$ atoms, and its contribution is additive – which should be reconsidered in a more precise study. Our Rydberg density estimate is uncertain by a factor of two, and thus an improvement in this would be desirable for testing the limitations of this theoretical estimate (eg. binary approximation, magnetic sub-level distributions, constant linestrengths).

These estimates of line broadening have not accounted for motion of the Rydberg atoms. Consider two atoms...
Trapped electron collisions \[22\] could broaden the transition lines. Again, we do not expect these to give a linear density dependence. The arguments of the previous paragraph rule out collisions between cold Rydberg atoms, but collisions with hot Rydberg atoms from the background vapor may be important \[12\]. At a density of \[10^7 \text{ cm}^{-3}\] we observe significant (\(\approx 10\%\)) redistribution of the initially excited Rydberg state population into higher angular momentum states \((l > 2)\), and this redistribution scales linearly with Rydberg density – like the observed broadening. The observed redistribution rate diminishes in time following photoexcitation, as expected for collisions with hot atoms (which diffuse from the excitation region). Thus we believe that either collisions with the hot Rydberg atoms, or the products of these collisions, are responsible for the broadening, and are currently investigating the specific mechanism.

In summary, we have observed line-broadening in the microwave spectra of Rydberg atoms due to resonant electric dipole-dipole interactions, using a combination of laser and microwave excitation sources. This is a general approach to the study of cold Rydberg atom interactions. For example, a combination of crossed optical excitation beams (to achieve a small excitation volume) together with microwave transitions could allow observation of the dipole blockade phenomena \[3\].

This work was supported by NSERC, CFI, and OIT. We thank J. Keller, J. Carter, P. Haghnegahdar and A. Colclough for assistance.

[1] T. F. Gallagher, *Rydberg Atoms*. Cambridge University Press, 1994.
[2] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côte, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett., vol. 85, p. 2208, 2000, quant-ph/0004038.
[3] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett., vol. 87, p. 037901, 2001, quant-ph/0004038.
[4] I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms,” Phys. Rev. A, vol. 65, p. 052301, 2002.
[5] M. Saffman and T. G. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A, vol. 66, p. 065403, 2002, quant-ph/0203080.
[6] M. S. Safronova, C. J. Williams, and C. W. Clark, “Optimizing the fast Rydberg gate,” Phys. Rev. A, vol. 67, p. 040303, 2003.
[7] I. I. Ryabtsev, D. B. Tretyakov, and I. I. Beterov, “Applicability of Rydberg atoms to quantum computers,” quant-ph/0402006. Accepted for publication, J. Phys. B: At. Mol. Opt. Phys.
[8] J. M. Raimond, G. Vitrant, and S. Haroche, “Spectral line broadening due to the interaction between very excited Rydberg atoms: The dense Rydberg gas,” J. Phys. B: At. Mol. Opt. Phys., vol. 14, p. L655, 1981.
[9] D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côte, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett., vol. 93, p. 063001, 2004, physics/0402113.
[10] K. Singer, M. Reetz-Lamour, T. Antlho, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett., vol. 93, p. 163001, 2004, physics/0404075.
[11] W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole-dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett., vol. 80, p. 249, 1998.
[12] I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett., vol. 80, p. 253, 1998.
[13] W. R. Anderson, M. P. Robinson, J. D. D. Martin, and T. F. Gallagher, “Dephasing of resonant energy transfer in a cold Rydberg gas,” Phys. Rev. A, vol. 65, p. 063404, 2002.
[14] I. Mourachko, W. Li, and T. F. Gallagher, “Controlled many-body interactions in a frozen Rydberg gas,” Phys. Rev. A, vol. 70, p. 031401, 2004.
[15] M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett.,
[16] A. Osterwalder and F. Merkt, “Using high Rydberg states as electric field sensors,” Phys. Rev. Lett., vol. 82, p. 1831, 1999.
[17] W. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, “Millimeter-wave spectroscopy of cold Rb atoms in a magneto-optical trap: Quantum defects of the ns, np and nd series,” Phys. Rev. A, vol. 67, p. 052502, 2003.
[18] M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure of the Rydberg states of alkali metal atoms,” Phys. Rev. A, vol. 20, p. 2251, 1979.
[19] A. Fioretti, D. Comparat, C. Drag, T. F. Gallagher, and P. Pillet, “Long-range forces between cold atoms,” Phys. Rev. Lett., vol. 82, p. 1839, 1999.
[20] R. M. Macfarlane and R. M. Shelby, “Sub-kilohertz optical linewidths of the $^7F_0 \leftrightarrow ^5D_0$ transition in Y$_2$O$_3$: Eu$^{3+}$,” Opt. Commun., vol. 39, p. 169, 1981.
[21] T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett., vol. 83, p. 4776, 1999, physics/9908051.
[22] S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High-angular-momentum states in cold Rydberg gases,” Phys. Rev. Lett., vol. 86, p. 3993, 2001.