Quality Evaluation of Raw Moutan Cortex Using the AHP and Gray Correlation-TOPSIS Method

Sujuan Zhou1,2,†, Bo Liu1,†, Jiang Meng3

1Department of Automation, Guangdong University of Technology, 2College of Medical Information Engineering, Guangdong Pharmaceutical University, 3College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China

1These two authors have contributed equally to this work.

Submitted: 05-06-2016 Revised: 11-07-2016 Published: 19-07-2017

ABSTRACT

Background: Raw Moutan cortex (RMC) is an important Chinese herbal medicine. Comprehensive and objective quality evaluation of Chinese herbal medicine has been one of the most important issues in the modern herbs development. Objective: To evaluate and compare the quality of RMC using the weighted gray correlation-Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method. Materials and Methods: The percentage composition of gallic acid, catechin, oxypaeoniflorin, paeoniflorin, quercetin, benzoylpaeoniflorin, paeonol in different batches of RMC was determined, and then adopting MATLAB programming to construct the gray correlation-TOPSIS assessment model for quality evaluation of RMC. Results: The quality evaluation results of model evaluation and objective evaluation were consistent, reliable, and stable. Conclusion: The model of gray correlation-TOPSIS can be well applied to the quality evaluation of traditional Chinese medicine with multiple components and has broad prospect in application.

Key words: AHP, gray correlation, Moutan cortex, quality evaluation, TOPSIS

SUMMARY

• The experiment tries to construct a model to evaluate the quality of RMC using the weighted gray correlation-Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method. Results show the model is reliable and provide a feasible way in evaluating quality of traditional Chinese medicine with multiple components.

INTRODUCTION

Moutan Cortex, the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), is used as a common traditional Chinese medicine (TCM) drug.1 The RMC is prepared by collecting the root bark of P. suffruticosa, washed, cleaned, and sun-dried. According to the TCM theory, the raw moutan bark serves to clear excessive heat, cool the blood, promote blood circulation, and remove blood stasis; it is indicated for diseases associated with the "heat syndromes" (typically manifesting in inflammation and related symptoms), stagnated blood conditions, and traumatic injuries.1,2 For the differences of growing environments and planting ways, RMC from different producing areas are uneven in quality. In order to evaluate the quality of RMC overall, multiple components should be considered. Pharmacology researches showed that paeoniflorin, benzoylpaeoniflorin, paeonol, catechin, and oxypaeoniflorin have been reported to be able to inhibit platelet aggregation, promote blood circulation, and remove blood stasis.1,3 In this study, gallic acid, catechin, oxypaeoniflorin, paeoniflorin, quercetin, benzoylpaeoniflorin, and paeonol were included for efficient quality control of RMC.

The main objective of this study is to propose a systematic quality assessment model based on multiple components of RMC. Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), known as one of the most classical Multiple Attribute Decision Making (MADM) methods, is based on the idea that the chosen alternative should have the shortest distance from the positive ideal solution and on the other side the farthest distance from the negative ideal solution. But this method is mostly used in linear relationship. For nonlinear problems, this method works not so well. Gray relational

Access this article online Website: www.phcog.com

For reprints contact: reprints@medknow.com

Cite this article as: Zhou S, Liu B, Meng J. Quality evaluation of raw moutan cortex using the ahp and gray correlation-TOPSIS Method. Phcog Mag 2017;13:528-33.
The uses of gray correlation-TOPSIS method have been reported in the article of "Liquid chromatography-diode array detector-electrospray mass spectrometry and principal components analyses of raw and processed Moutan cortex." Different components of samples have different important weights of evaluation; this study first utilizes analytic hierarchy process (AHP) to establish the assessment structure then determines the important weights of evaluation criteria according to a group of decision-makers, and last applies gray correlation-TOPSIS to obtain the final ranking order of quality.

The proposed model for assessment of the quality of RMC by the weighted gray correlation-TOPSIS method consists of three basic phases: (1) AHP is utilized to determine the important weights of evaluation criteria of RMC, (2) gray correlation analysis method is used to get gray correlation coefficient, and (3) TOPSIS is employed to achieve the final ranking order of quality.

MATERIALS AND METHODS

Chemicals and materials

Samples of RMC were collected from different regions of People’s Republic of China shown in Table 1 and authenticated by Dr. Shumei-Wang from the School of Chinese Medicine, Guangdong Pharmaceutical University. Seven compounds were simultaneously determinate with high-performance liquid chromatography coupled (HPLC-DAD-MS), shown in Figure 1. The methods and results of content determination had been reported in the article of “Liquid chromatography-diode array detector-electrospray mass spectrometry and principal components analyses of raw and processed Moutan cortex.”

Reference standards (purity >98%) of gallic acid, catechin, oxypaeoniflorin, paeoniflorin, quercetin, paeonol, and benzoylpaeoniflorin were obtained from the National Institute for Food and Drug Control, Beijing, People’s Republic of China. HPLC-grade acetonitrile (Yu-Wang Chemical Factory, Shandong, People’s Republic of China), formic acid (Beijing Reagent Co., Beijing, People’s Republic of China), and analytical grade methanol (East giant Experimental Instrument Co., Guangzhou, People’s Republic of China) were used. Water was purified by the Milli-Q water system (Millipore, Bedford, MA, USA).

Methods

Figure 1: (A) HPLC chromatogram of standard solution and (B) a typical HPLC chromatogram of RMC. 1, gallic acid; 2, catechin; 3, oxypaeoniflorin; 4, paeoniflorin; 5, quercetin; 6, benzoylpaeoniflorin; 7, paeonol

Table 1: Sources and components of RMC samples (mg g⁻¹) (n = 3)

Sample	Sample source	Glic acid	Catechin	Oxypaeoniflorin	Paeoniflorin	Quercetin	Benzoylpaeoniflorin	Paeonol
1	Baoding, Hebei province	10.01 ± 0.08	0.41 ± 0.01	1.55 ± 0.01	3.56 ± 0.05	0.13 ± 0.03	8.58 ± 0.02	12.02 ± 0.13
2	Dezhou, Shandong province	10.01 ± 0.08	0.41 ± 0.01	1.55 ± 0.01	3.56 ± 0.05	0.13 ± 0.03	8.58 ± 0.02	12.02 ± 0.13
3	Bozhou, Anhui province	3.63 ± 0.02	0.11 ± 0.13	0.64 ± 0.02	2.85 ± 0.02	0.12 ± 0.24	7.28 ± 0.02	3.92 ± 0.4
4	Haikou, Hainan province	3.54 ± 0.01	0.15 ± 0.03	0.55 ± 0.001	3.54 ± 0.03	0.11 ± 0.01	7.15 ± 0.03	11.08 ± 0.61
5	Luoyang, Henan province	6.49 ± 0.02	0.27 ± 0.004	0.64 ± 0.002	2.77 ± 0.09	0.07 ± 0.02	8.59 ± 0.02	4.81 ± 0.13
6	Heza, Shandong province	12.31 ± 0.01	0.11 ± 0.01	1.08 ± 0.003	3.95 ± 0.03	0.14 ± 0.01	7.51 ± 0.01	11.07 ± 0.21
7	Yaan, Sichuan province	10.82 ± 0.07	0.11 ± 0.01	0.90 ± 0.01	3.87 ± 0.04	0.12 ± 0.03	7.19 ± 0.10	11.05 ± 0.20
8	Tongling, Anhui province	2.54 ± 0.02	0.19 ± 0.001	0.98 ± 0.001	6.10 ± 0.03	0.12 ± 0.01	8.62 ± 0.06	11.81 ± 0.72
9	Shantou, Guangdong province	3.56 ± 0.04	0.14 ± 0.02	1.03 ± 0.03	4.23 ± 0.13	0.12 ± 0.32	7.32 ± 0.05	11.32 ± 0.14
10	Chenzhou, Hunan province	3.25 ± 0.02	0.24 ± 0.01	0.73 ± 0.23	3.21 ± 0.02	0.12 ± 0.05	8.02 ± 0.06	10.24 ± 0.2
Average		7.07 ± 4.46	0.19 ± 0.09	0.94 ± 0.31	3.91 ± 1.02	0.12 ± 0.02	7.97 ± 0.81	9.92 ± 2.98
results based on the above phases. Schematic diagram of the proposed model is explained in Figure 2.

AHP weights

Comprehensive evaluation means overall evaluation of multicriteria. In most conditions, the important weights of attributes differ from each other. This should be taken into account when using the gray correlation-TOPSIS analysis method. And then the evaluation results would be more reliable and stable. There are many methods of determining the importance weights of evaluation criteria, including Delphi method,[14] AHP, entropy method,[15] and so on. By far, AHP is one of the frequently used methods for its simplicity and ease of use. AHP is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. It was developed by Saaty and Peniwati.[16] It has particular application in group decision making. The procedure for using the AHP can be summarized as follows:[14]:

1. **Perform pair-wise comparisons**

 For the quality evaluation of RMC, different components of samples have different important weights of evaluation. The nine scale method[7] shown in Table 2 is utilized to get the relative importance of each indicator.

2. **Assess the consistency of pairwise judgments**

 To avoid the subjective judgment that will make the result inaccurate. Consistency check to verify the rationality of the matrix[15] is necessary. Eigenvector is calculated as the following:
 \[
 AW = \lambda_{\text{max}} W
 \]
 Where, A represents judgment matrix, \(\lambda_{\text{max}}\) represents the max eigenvalue and W represents the weight matrix.
 \[
 C_i = \frac{\lambda_{\text{max}} - n}{n - 1}
 \]
 \(C_i\) should satisfy the condition as \(C_i = C_i/R_i\). Where, \(C_i\) means values of consistency check indicators and \(R_i\) means values of average stochastic coincidence indicators. A consistency index (\(C_i\)) of 0.1 or less was considered acceptable.[14]

3. **Standardize the weight matrix**

 \[
 W_i = \frac{C_i}{\text{Sum}(C_i)}
 \]
 Gray correlation coefficient matrix
 The gray correlation is one method that uses the correlation degree between the referring series and the comparing series to evaluate the proposed schemes[17] The steps of calculating the correlation degree summarized as follows:[8]

 Determination of positive and negative ideal scheme
 Suppose there are \(n\) kinds of samples of Chinese herb and each sample with \(m\) evaluation index. The evaluation unit sequence is \(\{X_{ij}\} (i = 1, 2, 3 \ldots ; j = 1, 2, 3 \ldots m)\); in this topic, \(n = 10, m = 7\). \(\{X_{ij}\}\) represents the positive ideal scheme, while \(\{X_{ij}\}\) means the negative ideal scheme: \(\{X_{ij}\} = \max (1 \leq i \leq n) \{X_{i}\}\), \(\{X_{ij}\} = \min (1 \leq i \leq n) \{X_{i}\}\)

 Normalization of original index value
 First, the original index value should be normalized to be the value belonging to \([0, 1]\) for making sure of the evaluation accuracy. Here adopts equalization method in dimensionless treatment to reduce the loss of information in data. So, the index after being normalized by equalization method is as follows:
 \[
 Y_{ij} = X_{ij} / X_{sj}
 \]
 where, \(X\) represents the mean value of \(j\) index of the sample.

 Calculation of the weighted normalized decision matrix
 The weighted normalized decision matrix is constructed by multiplying the normalized decision matrix by its associated weights. The weighted normalized value is calculated as follows:
 \[
 Y_{ij} = W_i X_{ij} / X_{sj}
 \]
 where, \(W\) means the weight matrix got from AHP method.

 Calculation of the gray correlation coefficient
 The gray correlation coefficient on the \(j\)th index between the scheme \(Y_{ij}\) and the \(Y_{ii}\) and \(Y_{ij}\) respectively is \(\rho_{ij}\).
 \[
 \rho_{ij} = \frac{\Delta_{\text{max}} + \rho \Delta_{\text{max}}}{\Delta_{\text{max}} + \rho \Delta_{\text{max}}}
 \]
 where, \(\Delta_{\text{max}} = \min|Y_{ij} - Y_{ij}|, \Delta_{\text{max}} = \max|Y_{ij} - Y_{ij}| (i = 1, 2 \ldots ; j = 1, 2 \ldots m)\)

 TOPSIS based on gray correlation degree
 Considering that when using gray correlation method on comparing different schemes, one scheme with a great correlation degree to the positive ideal scheme does not mean a relatively little correlation degree to the negative ideal scheme. So, for making sure of the accuracy of the comparison, the TOPSIS method, a preference decision method using relative closeness to consider synthetically the Euclidean distance between the evaluated scheme and both the positive and negative ideal

Table 2: Nine scale method

Rate	Definition	Explanation
1	Equal importance	Two elements contribute equally to the objective
2	Weak	Between equal and moderate
3	Moderate importance	Experience and judgments lightly favor one element over another
4	Moderate plus	Between moderate and strong
5	Strong importance	Experience and judgment strongly favor one element over another
6	Strong plus	Between strongly and very strong
7	Very stronger demonstrated importance	An element is favored very strongly over another; its dominance demonstrated in practice
8	Very, very strong	Between very strong and extreme
9	Extreme importance	The evidence favoring one element over another is one of the highest possible order or affirmation
scheme, was introduced into calculating the gray correlation degree between the evaluated scheme and both the positive and negative ideal scheme respectively.[18,19]

(1) Determine the positive ideal and negative ideal solution.
\[
ξ^+ = \left\{ \max_{i=1}^{n} \xi(i), j = 1, 2, \ldots, n \right\}, \quad ξ^- = \left\{ \min_{i=1}^{n} \xi(i), j = 1, 2, \ldots, n \right\}
\]

(2) Calculate the weighted Euclidean distance.

The weighted Euclidean distance of each alternative from the ideal solution is given as follows:

\[
D_i^+ = \sqrt{\sum_{j=1}^{n} \left(\frac{\xi(j) - \xi^+(j)}{\xi^+(j) - \xi^-(j)} \right)^2}
\]

(3) Calculate the relative closeness to the ideal solution. The relative closeness of the alternative \(C_i \) with respect to \(D_i^+ \) is defined as follows:

\[
C_i = \frac{D_i^+}{D_i^+ + D_i^-}
\]

(4) Rank the alternatives \(C_i (i = 1, 2, \ldots, m) \) according to the relative closeness.

The best alternatives are those that have higher value \(C_i \) because they are closer to the positive ideal value. The alternatives are ranked in descending order of the \(C_i \) index.[20]

RESULTS AND DISCUSSION

Results of AHP weights
According to the experts of Chinese medicine, the importance of different components may be group like this:

Group 1: Paeoniflorin, benzoylpaeoniflorin, paeonol

Group 2: Catechin, oxypaeoniflorin

Group 3: Quercetin, gallic acid

And then based on nine scale method, the pair-wise comparisons of different components of RMC can be represented as matrix A.

Table 3: Weight value of components of RMC

Components	Gallic acid	Catechin	Oxypaeoniflorin	Paeoniflorin	Quercetin	Benzoylpaeoniflorin	Paeonol
Weight value	0.0433	0.1304	0.1304	0.2175	0.0433	0.2175	0.2175

Table 4: Correlation coefficient of RMC compared with the best reference sequence

Grey correlation coefficient	Gallic acid	Catechin	Oxypaeoniflorin	Paeoniflorin	Quercetin	Benzoylpaeoniflorin	Paeonol
Sample number	Sample source						
1	Baoding, Hebei province	0.869	1.000	1.000	0.396	0.946	0.564
2	Dezhou, Shandong province	1.000	0.481	0.735	0.604	0.898	1.000
3	Bozhou, Anhui province	0.734	0.455	0.478	0.339	0.898	0.346
4	Haikou, Hainan province	0.732	0.490	0.455	0.394	0.854	0.333
5	Luoyang, Henan province	0.789	0.641	0.478	0.333	0.715	0.567
6	Heza, Shandong province	0.930	0.455	0.640	0.436	1.000	0.372
7	Yaan, Sichuan province	0.889	0.455	0.562	0.427	0.898	0.337
8	Tongling, Anhui province	0.715	0.532	0.594	1.000	0.898	0.575
9	Shantou, Guangdong province	0.733	0.481	0.616	0.471	0.898	0.350
10	Chenzhou, Hunan province	0.727	0.595	0.504	0.366	0.898	0.444

After calculating, the weight value of the seven components of RMC is shown in Table 3.

Result of gray correlation coefficient
Samples of RMC from different regions of People’s Republic of China were analyzed by gray analysis method mentioned above. Programed using Matlab (Matrix Laboratory) R2010a, the running result was shown in Table 4.

Quality evaluation result of weighted gray correlation-TOPSIS method
On the basis of gray correlation coefficient result of Table 4 and constructed by method of TOPSIS, the quality evaluation and rank result of RMC from different batches was shown in Table 5. Results showed that RMC from Dezhou, Baoding, Tongling, and Heza were of good quality.

For contrast, a single method of GRA or TOPSIS was also adopted to evaluate quality of RMC [Table 6]. Difference degree was also counted to show the significance level of difference. From the contrast result, we could see the biggest difference degree of the weighted gray correlation-TOPSIS method (80.444%) was larger than GRA (36.357%) and TOPSIS (78.494). And the weighted gray correlation-TOPSIS method could evaluate the quality of RMC comprehensively and objectively.
Table 5: Quality evaluation and rank result of RMC by weighted gray correlation-TOPSIS method

Sample number	Sample source	Di+	Di-	Ci	Rank Result	Difference degree(%)
1	Baoding, Hebei province	0.758	1.083	0.588	2	1.800
2	Dezhou, Shandong province	0.712	1.063	0.599	1	0.000
3	Bozhou, Anhui province	1.400	0.186	0.117	10	80.444
4	Haikou, Hainan province	1.224	0.503	0.291	7	51.340
5	Luoyang, Henan province	1.253	0.310	0.198	9	66.893
6	Hezha, Shandong province	1.087	0.633	0.368	4	38.535
7	Yaan, Sichuan province	1.147	0.555	0.326	6	45.557
8	Tongling, Anhui province	0.811	0.971	0.545	3	9.051
9	Shantou, Guangdong province	1.106	0.591	0.348	5	41.847
10	Chenzhou, Hunan province	1.140	0.447	0.282	8	52.995

Table 6: Quality evaluation and rank result of RMC by single GRA or TOPSIS method

Sample number	Sample number	Ri(GRA)	Rank Result	Difference degree(%)	Ci(TOPSIS)	Rank Result	Difference degree(%)
1	Baoding, Hebei province	0.847	1	0.000	0.722	10	0.000
2	Dezhou, Shandong province	0.811	2	4.277	0.588	9	18.488
3	Bozhou, Anhui province	0.539	10	36.357	0.155	1	78.494
4	Haikou, Hainan province	0.593	8	29.922	0.271	2	62.486
5	Luoyang, Henan province	0.562	9	33.598	0.323	3	55.223
6	Hezha, Shandong province	0.712	4	15.931	0.494	8	31.532
7	Yaan, Sichuan province	0.656	5	22.581	0.435	7	39.751
8	Tongling, Anhui province	0.719	3	15.107	0.415	6	42.572
9	Shantou, Guangdong province	0.641	6	24.350	0.342	5	52.634
10	Chenzhou, Hunan province	0.620	7	26.781	0.338	4	53.151

Conclusions

The uses of weighted gray correlation-TOPSIS method have been successfully applied in many areas as effective MADM methods. However, there is no report regarding the application of these methods for quality evaluation of RMC. This research sought to develop a comprehensive, objective method for quality evaluation of RMC and proposes a decision-making method on the basis of gray correlation degree and ideal solution, offering a new idea for quality evaluation of Chinese herb. Simulation results indicate that the decision-making method by combination of gray correlation degree and TOPSIS can get rid of errors caused by subjective factors using one single method, improve reliability of selection solution evaluation, and have a great value of application in quality evaluation of Chinese herb.

Financial support and sponsorship

This work was financially supported by the Project of the National Natural Science Foundation of People’s Republic of China (No. 81102809) and the Project of Guangdong Provincial Administration of Traditional Chinese Medicine (No. 20151266). This work was also supported in part by the Natural Science Foundation of China under Grant 61472090 and Grant 61672169, in part by the Guangdong Natural Science Funds for Distinguished Young Scholar under Grant 2013050014133, in part by the Natural Science Foundation of Guangdong under Grant 2015A030313486, in part by the Science and Technology Planning Project of Guangzhou under Grant 201605131121583.

Conflicts of interest

There are no conflicts of interest.

References

1. Chinese Pharmacopoeia Commission: Pharmacopoeia of the People’s Republic of China 2010 English Edition. Beijing: China Medical Science and Technology Press 2011.
2. Ye DJ, Yuan ST. Dictionary of Chinese herbal processing science. Shanghai: Shanghai Science and Technology Press 2005.
3. Deng XM, Yu JY, Ding MJ, Zhao M, Xue XY, Che CT, et al. Liquid chromatography-diode array detector-electrospray mass spectrometry and principal components analyses of raw and processed moutan cortex. Pharmacogn Mag 2016;12:166-74.
4. Ishida H, Takamatsu M, Tsuji K, Kosuge T. Studies on active substances in herbs used for oketsu (“stagnant blood”) in Chinese medicine. V. On the anticoagulative principle in moutan cortex. Chem Pharm Bull 1987;35:849-52.
5. Koo YK, Kim JM, Koo JY, Kang SS, Bae K, Kim YS, et al. Platelet anti-aggregatory and blood anti-coagulant effects of compounds isolated from paeciona lactiflora and paeciona suffruticos. Pharmazie 2010;65:624-8.
6. Wang XL. Supplier selection and evaluation based on Grey Correlation degree and topsis. J Inform Comp Sci 2014;11:3097-106.
7. Sanya TL. The analytic network process. Iran J Oper Res 2008;9:1-26.
8. Zhang QL, Cheng J, Wang XM, Zeng JL, Song GC. Mining method optimization based on GRA and weighted topsis method. Sci Technol Rev 2013;31:38-42.
9. Chen TT, Shi CJ, Lei Q. Comparison and evaluation of channel width design guidelines with GRA and weighted TOPSIS method. Sci Technol Rev 2013;31:38-42.
10. Cheng X, Gong B, Zhang H. Customer value assessment using the fuzzy ahp and topsis.
methods: Application in bank. J Inform Comp Sci 2012;9:3431-38.

11. Dalkey N, Olaf H. An experimental application of the Delphi method to the use of experts. Manage Sci 1963;9:458-67.

12. Boer PTD, Kroese DP, Mannor S, Rubinstein RY. A tutorial on the cross-entropy method. Ann Oper Res 2005;134:19-67.

13. Saaty TL, Peniwati. Group decision making: Drawing out reconciling differences. Pittsburgh Pennsylvania: RWS Publications 2008.

14. Saaty TL. Decision making for leaders: The analytic hierarchy process for decisions in a complex world. Pittsburgh Pennsylvania: RWS Publications 2008.

15. Dalalah D, Al-Oqla F, Hayajneh M. Application of the analytic hierarchy process (ahp) in multi-criteria analysis of the selection of cranes. Jordan J Mech Indus Eng 2010;4:563-78.

16. Che ZH, Wang HS, Chuang CL. A fuzzy ahp and dea approach for making bank loan decisions for small and medium enterprises in Taiwan. Expert Syst Appl 2010;37:7189-99.

17. Du D, Pang QH, Wu Y. Modern comprehensive evaluation method and case study. Beijing: Tsinghua University Press 2008.

18. Yang BC, Chen X. Grey relational decision-making model based on variable weight and topsis method. Sys Eng 2011;29:106-12.

19. Qian WY, Dang YG, Xiong PP. Topsis based on Grey Correlation method and its application. Sys Eng 2008;27:124-6.

20. Gumus AT. Evaluation of hazardous waste transportation firms by using a two step fuzzy-ahp and topsis methodology. Expert Syst Appl 2009;36:4067-74.