Relation of Plasma Tissue Kallikrein Levels to Presence and Severity of Coronary Artery Disease in a Chinese Population

Qin Zhang1*, Xiao Ran2*, Daow Wen Wang3*

1 Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 2 Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 3 The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract

Objectives: Tissue kallikrein (TK) has been shown to provide cardiovascular and cerebrovascular protective effects in animal models. The aim of this study was to investigate the relationship of plasma TK levels with the presence and severity of coronary artery disease (CAD) in the Chinese.

Methods: The study involved 898 consecutive CAD patients and 905 ethnically and geographically matched controls. CAD was angiographically confirmed in all the patients, and the severity of CAD was expressed by the number of affected vessel and coronary artery stenosis scores. Plasma TK levels were measured using an enzyme-linked immunosorbent assay.

Results: Plasma TK levels were significantly higher in CAD patients than controls (0.347 ± 0.082 vs. 0.256 ± 0.087 mg/L, P < 0.001), and elevated plasma TK levels were directly associated with a higher risk of CAD (OR = 3.49, 95% CI 2.90–4.19). One-way ANOVA and multivariable stepwise linear regression analysis demonstrated that TK levels were negatively associated with the severity of CAD according to vessel scores (P < 0.001) and stenosis scores (r = −0.211, p < 0.001).

Conclusions: Our findings suggest that higher levels of TK in plasma are associated with the presence of CAD and are a predictor of mild coronary arteriosclerosis.

Introduction

Coronary artery disease (CAD) is the leading cause of death in the western world [1], and absolute numbers of CAD events will increase dramatically in China from 2010–2029 [2]. Almost 300 variables are statistically associated with CAD [3]. Blood pressure is directly related to the risk of CAD, as well as male gender, diabetes, age, history of hyperlipidemia, family history of CAD, smoking, alcohol drinking, systolic blood pressure (SBP), diastolic blood pressure (DBP), triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL), low density lipoproteins cholesterol (LDL), apolipoprotein A1 (apo A) and B (apo B), body weight and body-mass index (BMI) [4–7]. To implement effective treatment and prevention strategies, the major risk factors of CAD need to be identified. In addition, these risk factors can explain only a subgroup of CAD patients [3,8], which suggests that more risk factors need to be identified to explain the remaining patients. However, there are many endogenous protective factors against vascular injury and left ventricular remodeling, such as endothelial nitric oxide synthase, atrial natriuretic peptide and tissue kallikrein-kinin/bradykinin system [9,10]. Their association with CAD patients remains to be elucidated.

The kallikrein-kinin system is an endogenous metabolic cascade, triggering of which results in the release of vasoactive kinins. This complex system includes the precursors of kinins known as kininogens and mainly tissue and plasma kallikreins, which liberate kinins from low- and high molecular weight kininogen. The tissue kallikreins are serine proteases encoded by highly conserved multigene families. Tissue kallikrein (TK), encoded by gene KLK1, cleaves kininogen to produce the potent bioactive compounds kinin and bradykinin, which have been shown to reduce elevated blood pressure and protect the heart in human and animal models [11,12,13]. Using transgenic and somatic gene transfer approaches to achieve a continuous supply of kallikrein-kinin in vivo, the tissue kallikrein-kinin system (KKS) exhibits protective effects in hypertension, associated insulin resistance in type 2 diabetes, cardiovascular, renal and central nervous systems via suppression of oxidative stress [13,14]. Our previous study demonstrated that overexpression of TK attenuated type 2 diabetes-induced hyper-
tension and renal damage [15,16]. More recently, it was found that the pleiotropic effects of TK include inhibition of apoptosis, inflammation, proliferation, hypertrophy and fibrosis, and promotion of angiogenesis and neurogenesis in different experimental animal models [17].

Spontaneously hypertensive rats treated with TK demonstrated significant increases in the survival time after prolonged coronary artery ligation [19]. TK plays a major cardio-protective role by reducing infarct size, improving cardiac function and attenuating myocardial remodeling [19,20]. Experiments using mice deficient in TK showed the cardio-protective effects of ischemic and pharmacological preconditioning in the myocardium. Similarly, bradykinin administration attenuated infarct size in an isolated perfused heart model of ischemia-reperfusion injury [21]. Moreover, TK gene transfer improved cardiac function, and reduced myocardial infarct size, incidence of ventricular fibrillation and apoptosis after acute ischemia-reperfusion [22]. Furthermore, TK enhances neovascularization in ischemic hearts [23]. Taken together, these data indicate a potential function of TK in protection against ischemic heart disease.

Epidemiological studies have found an inverse relationship between urinary kallikrein levels and blood pressure in patients with essential hypertension [24]. We also demonstrated that plasma TK level was negatively associated with first-ever stroke and the recurrence of stroke in a multicenter case-control study in the Chinese Han population. It is well known that conditions such as diabetes, hypertension, smoking and alcohol consumption are risk factors for stroke [25]. We also showed that the plasma TK levels were negatively associated with the severity of coronary artery disease [26]. We also demonstrated that the plasma TK level was negatively associated with first-ever stroke and the recurrence of stroke in a multicenter case-control study in the Chinese Han population.

Methods

Study Population and Data Collection

The study protocol was approved by the institutional review board of Tongji hospital and informed written consent was obtained from all participants. The primary study population has been described previously [26]. We recruited 898 consecutive patients with angiographically documented CAD from November 2006 to November 2009 from Tongji hospital in Wuhan, China. CAD was defined as one or more of the following diagnostic criteria: (1) patients who were documented by coronary angiography to have at least a 50% stenosis in a major epicardial artery; (2) patients who survived an acute myocardial infarction and were scheduled for coronary angiography (>1 month ≤1 year from onset); and (3) patients with a history of coronary artery bypass graft or percutaneous coronary intervention. The angiograms were assessed by 2 cardiologists who were unaware that the patients were being reviewed for the study. The severity of CAD in patients was assessed and scored according to vessel scores and general characteristic of CAD patients. Multivariable stepwise linear regression analysis was performed to determine the relationships of plasma TK levels with traditional cardiovascular risk factors and stenosis scores with general characteristic of CAD patients.

Characteristics of Study Population

A total of 898 CAD patients and 905 controls were enrolled and all subjects were available for analysis. The demographic and clinical characteristics of the CAD and control groups are shown in Table 1. As expected, CAD patients were more likely to be male (P<0.001). They had a higher prevalence of hypertension (P<0.001), diabetes (P<0.001), dyslipidemia (P<0.001), smoking (P<0.001) and alcohol consumption (P<0.001), as well as increased body weight (P<0.001), BMI (P=0.012), older age (P<0.001), higher level of TG (P<0.001) and apo B (P<0.001) and lower levels of HDL cholesterol (P<0.001). There were no significant differences.
differences between the two groups regarding SBP, TG, LDL, apo A and family history of CAD. Notably, plasma TK levels was significantly higher in CAD patients than in controls (0.347 ± 0.082 versus 0.256 ± 0.087 mg/L, \(P < 0.001 \); Table 1).

Association of TK Levels with CAD

Univariable correlations between TK and atherogenic risk factors such as age, sex, body weight, BMI, SBP, DBP, TG, TC, HDL, LDL, apo A, apo B, family history of CAD, history of hyperlipidemia, diabetes and hypertension in controls were shown in Table 2. There was no statistical correlation among them in univariable correlations and multivariable stepwise linear regression analysis, except for hypertension (Bata = 0.126; \(P = 0.007 \)). These data suggested that plasma TK levels were negatively associated with the severity of CAD as presented in Table 3. It is interesting that plasma TK levels were apparently decreased with increasing vessel scores (\(P < 0.001 \); Table 4).

On bivariate correlation analyses, stenosis scores were inversely correlated to plasma TK levels (\(r = -0.211; P < 0.001 \)) and directly correlated with age (\(r = 0.111; P = 0.001 \)), TC (\(r = 0.078; P = 0.021 \)) and TG (\(r = 0.100; P = 0.003 \)). In multivariable stepwise linear regression analysis the following, listed in descending order, were found to be associated with stenosis scores: plasma TK level (Bata = −3.71; \(P < 0.001 \)), TC (Bata = 3.78; \(P < 0.001 \)), HDL (Bata = 2.29; \(P = 0.022 \)) and Apo A (Bata = 2.29; \(P = 0.023 \)).

We grouped all the subjects by quarters and found that the group with higher plasma levels of TK had more CAD patients. Logistic regression analysis considering traditional risk factors showed a positive correlation between plasma TK levels and the presence of CAD when plasma TK levels were used as a continuous variable (OR = 3.49; 95% CI, 2.90 to 4.19). As compared with the first quarter, the odds ratios for CAD were as follows: second quarter, 7.17 (95% CI, 4.34 to 11.83); third quarter, 41.27 (95% CI, 24.22 to 70.33); fourth quarter, 48.08 (95% CI, 28.15 to 82.13). These outcomes indicate that plasma TK level was independently, in a dose–response manner, associated with increased risk of CAD (Table 3).

Differences in Plasma TK Levels among CAD Patients with and without Traditional Cardiovascular Risk Factors were not significant, except for apo B (\(r = 0.077, P = 0.034 \), current smoking history (\(r = -0.081, P = 0.015 \)) and male sex (\(r = -0.091, P = 0.007 \)). A stepwise multiple linear regression analysis showed that TG (Bata = 2.51; \(P = 0.012 \)) and smoking habits (Bata = −2.59; \(P = 0.010 \)) enter the regression equation in CAD.

TK Levels and CAD Severity

Patients with CAD were further subclassified into 4 subgroups (Group 0, Group 1, Group 2, and Group 3) according to the number of significantly affected vessels. Plasma TK levels and traditional cardiovascular risk factors in different groups were presented in Table 4. It is interesting that plasma TK levels were apparently decreased with increasing vessel scores (\(P < 0.001 \); Table 4).

We examine the relationship between plasma TK levels and the presence of CAD in the Chinese Han population. The results of our study showed that CAD patients had higher plasma TK levels compared to control subjects. Logistic regression analysis indicated that this association was dose-dependent and independent of other factors related to risk for arterial disease. These data suggest that an elevated plasma TK level might be a strong and independent endogenous risk factor of CAD in the Chinese population.
animal models [18–22,29]. Confirmed the independent cardioprotective effect of TK in was independently and positively associated with the presence of infarction and cardiac remodeling and improving cardiac function reducing cardiac and vascular injuries, attenuating cardiac neointima formation in blood vessels, promoting angiogenesis, exhibits a wide spectrum of beneficial effects by inhibiting of substrates to releases vasoactive kinin peptides. Then, intact kinins is uncertain. TK processes low-molecular weight kininogen the association of elevated plasma TK levels and increased binding to bradykinin B2 receptors activating signaling pathways such as NO-cyclic ³,5³-guanosine monophosphate and prostacyclin–cyclic adenosine monophosphate, which trigger a broad spectrum of biological effects including vasodilatation, smooth muscle contraction and relaxation, inhibition of apoptosis, atherosclerosis, inflammation, hypertrophy and fibrosis, protection against ischemia/reperfusion damage and promotion of angiogenesis and neurogenesis [13].

The association of elevated plasma TK levels and increased presence of CAD might be explained by the following reasons. Firstly, CAD patients with a history of diabetes might have higher plasma levels of TK. Coronary artery disease is a frequent accompaniment of type 2 diabetes [30], as seen in our study as

Table 2. The relationship between TK levels and cardiovascular disease risk factors in controls subjects.

Variable	Quarter 1	Quarter 2	Quarter 3	Quarter 4	P value
TK levels, mg/L	<0.236	0.236–0.293	0.293–0.357	>0.357	
No. of participants	396	280	128	101	
Male sex, no. (%)	129(33)	95(34)	31(24)	29(29)	0.172
Age, y	50±9	48±9	51±10	52±8	0.213
Hypertension, no. (%)	57(14)	15(5)	5(4)	7(7)	<0.001
Diabetes, no. (%)	20(5)	10(4)	4(3)	7(7)	0.876
Hyperlipidemia, no. (%)	23(6)	7(3)	3(2)	1(1)	0.016
Alcohol consumption, no. (%)	65(16)	49(18)	19(15)	12(12)	0.298
Current smoker, no. (%)	101(26)	62(22)	23(18)	22(22)	0.153
Family history of CAD, no. (%)	39(10)	21(8)	10(8)	6(6)	0.175
Weight, kg	61±9	61±10	59±10	60±8	0.733
BMI, kg/m²	23±3	23±3	23±3	23±3	0.707
SBP, mm Hg	124±19	122±18	124±17	129±18	0.857
DBP, mm Hg	77±12	76±11	78±10	79±10	0.612
Total cholesterol, mmol/L	4.59±0.89	4.59±0.79	4.56±0.99	4.53±0.89	0.271
Triglyceride, mmol/L	1.13±0.65	1.09±0.62	1.14±0.97	1.16±1.13	0.134
HDL, mmol/L	1.47±0.32	1.49±0.36	1.53±0.34	1.51±0.36	0.375
LDL, mmol/L	2.62±0.79	2.66±0.63	2.54±0.77	2.61±0.67	0.547
Apo A, g/L	1.13±0.34	1.09±0.33	1.13±0.34	1.19±0.31	0.296
Apo B, g/L	0.76±0.28	0.79±0.27	0.77±0.46	0.86±0.35	0.259

| Abbreviations: TK, tissue kallikrein; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; Apo A, apolipoprotein A; Apo B, apolipoprotein B. All the subjects (898 CAD patients and 905 controls) were grouped by quarters according to plasma TK levels: Quarter 1 (396 controls and 54 cases), Quarter 2 (280 controls and 171 cases), Quarter 3 (128 controls and 323 cases), and Quarter 4 (101 controls and 350 cases). Data are means ± SD. P-values for the difference among the 4 groups, tested with One-way ANOVA and Chi square test.

Table 3. Unconditional logistic regression analysis for CAD and TK levels.

Groups measure	Quarter 1	Quarter 2	Quarter 3	Quarter 4	P value
TK levels, mg/L	<0.236	0.236–0.293	0.293–0.357	>0.357	
Total CAD, NO.	54	171	323	350	
Unadjusted (ORs)†	1	4.48 (3.18–6.31)	18.51 (13.04–26.27)	25.41 (17.72–36.44)	
P	<0.001	<0.001	<0.001	<0.001	
Adjusted (ORs)†	1	7.17 (4.34–11.83)	41.27 (24.22–70.33)	48.08 (28.15–82.13)	

| Abbreviations: TK, tissue kallikrein; ORs, odds ratios.
|†ORs (95% confidence interval). Adjusted ORs have been adjusted for age, sex, presence or absence of hypertension, diabetes, hyperlipidemia, alcohol consumption and smoking, family history of CAD, weight, BMI, SBP, DBP, total cholesterol, triglyceride, HDL, LDL, Apo A and Apo B.·

doi:10.1371/journal.pone.0091780.t002

doi:10.1371/journal.pone.0091780.t003

doi:10.1371/journal.pone.0091780.t004
were not apparent. The only exception was a slight increase in agents, insulin, and hypoglycemic drugs with plasma TK levels demonstrated that the associations between of antihypertensive antagonists, beta blockers, or long-acting nitrate therapies did not change any variables of the circulating KKS. Aspirin, calcium kallikrein or kallistatin although plasma TK levels were higher in peptides, and low molecular weight kininogens, or in plasma may affect the levels of plasma TK. However, a previous study sin-converting enzyme inhibitor or angiotensin II receptor blocker between TK and KKS had been well elucidated [28]. Angioten-
might exist. Various physiological mechanisms of the relationship between TK and KKS had been well elucidated [28]. Angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker may affect the levels of plasma TK. However, a previous study found no differences in circulating levels of bradykinin and kallidin peptides, and low molecular weight kininogens, or in plasma kallikrein or kallistatin although plasma TK levels were higher in subjects with type 2 diabetes. Similarly, statin therapy did not change any variables of the circulating KKS. Aspirin, calcium antagonists, beta blockers, or long-acting nitrate therapies did not influence any KKS variables [31]. Our previous finding also demonstrated that the associations between of antihypertensive agents, insulin, and hypoglycemic drugs with plasma TK levels were not apparent. The only exception was a slight increase in stroke patients taking aspirin, which was still lower than normal controls [25]. Based on the literature and previous research, the influence of medication on plasma TK level is not apparent. Fourthly, increases in TK to compensate for a dysfunctional state in CAD patients might be the reason. It is known that patients with heart failure have elevated plasma atrial natriuretic peptide (ANP) concentrations. At the initial stage of heart failure, ANP might serve to restrain sympathetic nervous system outflow to the kidney or skeletal muscle and slow disease progression [32,33]. It is similar with another study that TK levels were higher in subjects with type 2 diabetes [31]. TK exerts protective effects in the presence of diabetes by activating phosphatidylinositol 3-kinase/protein kinase B and adenosine 5'-monophosphate-activated protein kinase signaling pathways [15]. We hypothesize that plasma TK levels increased to provide protection against atherosclerosis. Therefore, elevated plasma TK might be a biomarker for a dysfunctional state rather than a risk factor of CAD and the mechanism remains to be elucidated in the future.

We reported the relationship between plasma TK levels and severity of CAD in the present study. The severity of CAD was evaluated using vessel scores and stenosis scores. It is interesting to note that plasma TK levels were negatively associated with the severity of CAD according to vessel and stenosis scores. These results suggest that decreased plasma TK levels might predict the severity of CAD. Numerous studies have demonstrated that TK inhibits the proliferation of cultured vascular smooth muscle cells and neointimal formation in blood vessels after balloon angioplasty stimulate endothelial cell proliferation, attenuate vascular injury by promoting vascular regeneration and accelerating spontaneous angiogenesis [13,23,28,34]. Taken together, these indicate that TK may have significant implications for protecting against...
atherosclerosis and ischemic vascular disease and may be a prognostic tool for evaluating the extent of obstructive CAD.

Overexpression of the human TK gene in spontaneously hypertensive rats induced hypotension [35], and epidemiological studies [24], which are consistent with our findings regarding the negative association between plasma TK levels and a history of hypertension in controls. Our finding showed that plasma TK levels had an inverse correlation with a history of hyperlipidemia as well. These data suggest that plasma TK may influence blood pressure and lipid metabolism. Further prospective and basic studies are still needed to elucidate the role of TK on lipid metabolism.

In addition, our previous study demonstrated that plasma TK level was negatively associated with the risk of first-ever stroke and stroke recurrence [25]. As plasma TK levels were increased in diabetes [31] and CAD, decreased plasma TK levels might be specific biomarker in stroke.

Our study has several limitations. First, the case-control design limited our ability to establish a causal link between elevated plasma TK levels and CAD. As a result, the relationship between plasma TK level and the risk of CAD should be verified in future prospective studies. Second, even though the multivariate analysis adjusted for the traditional risk factors, it is still possible that the confounding elements cannot be “adjusted out”. Third, it was impossible to avoid the influence of medications on plasma TK levels completely, although the associations of drugs with plasma TK levels were not apparent in previous studies. Fourth, the relationship between plasma TK level and timing for the progression of cardiovascular disease might be an important evidence to indicate that TK plays an important role associated with CAD. These questions can only be addressed through additional prospective studies of the association of TK with first-ever CAD and the extent of obstructive CAD.

In conclusion, our research, combined with previous basic studies, suggest that elevated TK is positively associated with the presence of CAD and negatively associated with the severity of CAD and that they might be a strong and independent biomarker of CAD in the Chinese population. Moreover, levels of plasma TK could be a useful prognostic tool for the evaluation of the severity of CAD. Large prospective human studies, as well as cellular and animal research, are needed to elucidate why CAD patients have higher plasma TK levels.

Acknowledgments

We are very grateful and thank all the participants in this study.

Author Contributions

Conceived and designed the experiments: DW. Performed the experiments: QZ XR. Analyzed the data: QZ XR. Contributed reagents/materials/analysis tools: QZ XR. Wrote the paper: QZ. Contribute equally to this research: QZ XR.

References

1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, et al. (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121: e46–e215.
2. Moran A, Zhao D, Gu D, Coxson P, Chen CS, et al. (2008) The future impact of population growth and aging on coronary heart disease in China: projections from the Coronary Heart Disease Policy Model-China. BMC Public Health 8: 49.
3. Poulter N (1999) Coronary heart disease is a multifactorial disease. Am J Hypertens 12: 928–958.
4. Holmes DR Jr, Elshebaie B, Frey RL, Kostke BA, Ellenson RD (1981) Association of risk factor variables and coronary artery disease documented with angiography. Circulation 63: 293–299.
5. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, et al. (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837–1847.
6. Srivivasan SR, Bennon GS (1995) Serum apolipoproteins A-I and B as markers of coronary artery disease risk in early life: the Bogalusa Heart Study. Clin Chem 41: 159–164.
7. Gotto AM Jr (1986) Interactions of the major risk factors for coronary heart disease. Am J Med 80: 48–55.
8. Smith SC Jr, Amsterdam E, Balady GJ, Bonow RO, Fletcher GF, et al. (2000) Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: tests for silent and inducible ischemia: Writing Group II. Circulation 101: E12–16.
9. Federico C (2010) Natriuretic Peptide system and cardiovascular disease. Heart Views 11: 10–15.
10. Yin H, Chao L, Chao J (2006) Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci 82: 156–165.
11. Moreau ME, Garbarci N, Molinaro G, Brown NJ, Marceau F, et al. (2005) The kallikrein-kinin system: current and future pharmaceutical targets. J Pharmacol Sci 99: 6–38.
12. Diamandidou EP, Yousef GM, Clemen J, Ashworth LK, Yoshida S, et al. (2000) New nomenclature for the human tissue kallikrein gene family. Clin Chem 46: 1855–1863.
13. Chao J, Chao L (2005) Tissue kallikrein-kinin in stroke, cardiovascular and renal disease. Exp Physiol 90: 291–298.
14. Kayashima Y, Smithies O, Kakoki M (2012) The kallikrein-kinin system and oxidative stress. Curr Opin Nephrol Hypertens 21: 92–96.
15. Yuan G, Deng J, Wang F, Zhao C, Xu X, et al. (2007) Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5’-monophosphate-activated protein kinase signaling pathways. Endocrinology 148: 2016–2026.
30. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339: 229–234.

31. Campbell DJ, Kladis A, Zhang Y, Jenkins AJ, Prior DL, et al. (2010) Increased tissue kallikrein levels in type 2 diabetes. Diabetologia 53: 779–785.

32. Pettersson A, Hedner J, Hedner T, Held P, Swedberg K, et al. (1986) Increased plasma levels of atrial natriuretic peptide in patients with congestive heart failure. Eur Heart J 7: 693–696.

33. Abramson BL, Ando S, Notarius CF, Rongen GA, Floras JS (1999) Effect of atrial natriuretic peptide on muscle sympathetic activity and its reflex control in human heart failure. Circulation 99: 1810–1815.

34. Murakami H, Yayama K, Mao RQ, Wang C, Chao L, et al. (1999) Kallikrein gene delivery inhibits vascular smooth muscle cell growth and neointima formation in the rat artery after balloon angioplasty. Hypertension 34: 164–170.

35. Xiong W, Chao J, Chao L (1995) Muscle delivery of human kallikrein gene reduces blood pressure in hypertensive rats. Hypertension 25: 715–719.