Aside from abasic sites and ribonucleotides, the DNA adduct N7-methyl deoxyguanosine (N7-CH3 dG) is one of the most abundant lesions in mammalian DNA. Because N7-CH3 dG is unstable, leading to deglycosylation and ring-opening, its miscoding potential is not well-understood. Here, we employed a 2'-fluoro isostere approach to synthesize an oligonucleotide containing an analog of this lesion (N7-CH3 2'-F dG) and examined its miscoding potential with four Y-family translesion synthesis DNA polymerases (pols): human pol (hpol) η, hpol κ, and hpol ε and Dpo4 from the archaeal thermophile Sulfolobus solfataricus. We found that hpol η and Dpo4 can bypass the N7-CH3 2'-F dG adduct, albeit with some stalling, but hpol κ is strongly blocked at this lesion site, whereas hpol ε showed no distinction with the lesion and the control templates. hpol η yielded the highest level of misincorporation opposite the adduct by inserting dATP or dTTP. Moreover, hpol η did not extend well past an N7-CH3 2'-F dGdT mispair. MS-based sequence analysis confirmed that hpol η catalyzes mainly error-free incorporation of dC, with misincorporation of dA and dG in 5–10% of products. We conclude that N7-CH3 2'-F dG and, by inference, N7-CH3 dG have miscoding and mutagenic potential. The level of miscoding arising from this abundant adduct can be considered as potentially mutagenic as a highly miscoding but rare lesion.

DNA is constantly damaged by both endogenous (e.g. reactive oxygen species and SAM) and exogenous (e.g. polycyclic hydrocarbons and heterocyclic amines) sources (1). Examples of DNA damage include DNA adducts (e.g. alkylated and oxidized bases), single strand breaks, double strand breaks, DNA mismatches, abasic sites, and pyrimidine dimers (2). Such damage, if not repaired, can cause deleterious outcomes (e.g. stalled replication and miscoding events leading to cancer, teratogenesis, and cardiovascular disease) (3–6). Alkylation agents used in treatment of malignancies (such as cyclophosphamide, temozolomide, and melphalan) have been associated with causing cancers (e.g. lymphomas, malignant gliomas, and lung and ovarian cancers) (7–11).

The nitrogen and oxygen atoms of DNA bases are reactive toward several known alkylating agents, producing different types of DNA adducts (12, 13). Exposure of DNA to methylating agents forms several modified bases, including N3-methyl deoxyadenosine, N7-methyl deoxyguanosine (N7-CH3 dG),2 O6-methyl deoxyguanosine (O6-CH3 dG), and O4-methyl (deoxy)thymidine (13). O6-CH3 dG and O4-methyl (deoxy)thymidine are minor adducts but are highly cytotoxic and mutagenic; the mutagenicity of the abundant N7-CH3 dG and N3-methyl deoxyadenosine adducts is not known (14, 15).

The N7 atom of deoxyguanosine is the most nucleophilic site in DNA and is susceptible to alkylation, forming various N7-alkyl deoxyguanosine adducts (13, 16, 17). These adducts include N7-CH3 dG, N7-ethyl deoxyguanosine, and N7-benzyl deoxyguanosine (13, 18, 19). The deoxyguanosine adduct formed with the 8,9-exo-epoxide of the hepatocellular carcinoma aflatoxin B1 is highly mutagenic, causing GC to TA transversion mutations (6, 19).

N7-CH3 dG has been detected as the major DNA adduct formed by methylating agents and is the most abundant lesion in DNA aside from abasic sites (1, 20, 21) and ribonucleotides (22, 23), present in lymphocytes at levels of 14 adducts/107 normal nucleotides for nonsmokers and 25 adducts/107 nucleotides in smokers (24). Endogenous methylation of DNA, apparently from SAM, has been identified as the primary source of N7-CH3 dG adducts observed in the livers of untreated rats (25, 26).

The miscoding and mutagenic potentials of the resulting depurination (i.e. abasic sites) and ring-opened (i.e. N7-CH3 formamidopyrimidine (FAPY) dG) products of N7-CH3 dG have been extensively studied (27–31). The miscoding potential of N7-CH3 dG itself is not understood. Despite its abundance, N7-CH3 dG has been largely ignored in favor of other alkylated bases due to its instability to depurination and base-catalyzed ring-opening. It has been assumed that N7-CH3 dG is not mis-

2 The abbreviations used are: N7-CH3 dG, N7-methyl deoxyguanosine; N7-CH3 2'-F dG, N7-methyl 2'-fluoro deoxyguanosine; 2'-F dG, 2'-fluoro deoxyguanosine; FAM, 6-carboxyfluorescein; FAPY, formamidopyrimidine; FPG, formamidopyrimidine DNA glycosylase; pol, DNA polymerase; hpol, human pol; O6-CH3 dG, O6-methyl deoxyguanosine; UDG, uracil-DNA glycosylase; CID, collision-induced dissociation; ESI, electrospray ionization.
Miscoding of \(N^\prime\)-methyl deoxyguanosine

A fluorine analog of the lesion (\(N^\prime\)-CH\(_3_2\)-F dG) was prepared by modifying the approach of Lee et al. (32) (Scheme S1 and Figs. S1–S4). The 23-mer oligonucleotides were characterized by LC-ESI-MS (Figs. S5B and S6A). The \(N^\prime\)-CH\(_3_2\)-F dG–containing oligonucleotide was resistant to cleavage by FPG glycosylase, further confirming its identity as the intact lesion rather than the ring-opened \(N^\prime\)-CH\(_3_2\) FAPY 2-F dG oligonucleotide, which is a substrate for this glycosylase (Fig. S6B). Following alkaline treatment to form the FAPY lesion, FPG glycosylase cleaved the lesion (Fig. S6B). We conclude that the desired \(N^\prime\)-CH\(_3_2\)-F dG lesion was present and that the two potential problems, depurination and ring-opening, had been avoided.

Results

Synthesis of 2-F dG- and \(N^\prime\)-CH\(_3_2\) 2-F dG–containing oligonucleotides

A fluorine analog of the lesion (\(N^\prime\)-CH\(_3_2\) 2-F dG) was prepared by modifying the approach of Lee et al. (32) (Scheme S1 and Figs. S1–S4). The 23-mer oligonucleotides were characterized by LC-ESI-MS (Figs. S5B and S6A). The \(N^\prime\)-CH\(_3_2\) 2-F dG–containing oligonucleotide was resistant to cleavage by FPG glycosylase, further confirming its identity as the intact lesion rather than the ring-opened \(N^\prime\)-CH\(_3_2\) FAPY 2-F dG oligonucleotide.
Steady-state kinetics of individual dNTP insertion opposite dG, 2'-FdG, and N7-Ch2, 2'-FdG by hpol η and Dpo4

Steady-state kinetic analysis was performed for hpol η and Dpo4 (Tables 1 and 2). The catalytic efficiencies and misincorporation frequencies for dG and 2'-FdG were comparable, as noted previously (38), suggesting that fluorine had little or no impact on polymerase recognition. With all three templates, hpol η preferred to insert dCTP relative to other dNTPs (Table 1 and Fig. 3). However, there was a 2-fold lower efficiency for incorporation of dCTP at the N7-Ch2, 2'-FdG lesion compared with dG and 2'-FdG. The efficiency for misinsertion of dATP was similar for all three templates, but the misinsertion frequency was 2-fold higher with N7-Ch2, 2'-FdG (Table 1 and Figs. 3 and S7). The catalytic efficiency for dGTP misincorporation was 3-fold lower for the lesion than the 2'-FdG control and 6-fold higher efficiency for the lesion than the 2'-FdG control (Table 1 and Fig. 4). The efficiency for dTTP misincorporation was 3.5-fold greater for the N7-Ch2, 2'-FdG lesion compared with the control templates, and the misincorporation frequency was 5- and 11-fold higher relative to dG and 2'-FdG (Table 1 and Fig. 4). Thus, the misincorporation frequency for N7-Ch2, 2'-FdG was in the order of dTTP > dATP > dGTP, ranging from 1 to 4% (Figs. S8 and S9).

Dpo4 preferentially inserted dCTP opposite N7-Ch2, 2'-FdG (Table 2). There was a 4-fold lower efficiency for insertion across the lesion compared with 2'-FdG (Figs. S8 and S9). The efficiencies for incorporating other dNTPs were in the order dATP > dTTP > dGTP (Table 2).

Steady-state kinetics of post-lesion incorporation of individual dNTPs opposite 2'-FdG or N7-Ch2, 2'-FdG by hpol η

Steady-state insertion kinetics provides information on dNTP insertion across a lesion but does not provide information about extension past the lesion. Steady-state kinetics were done for further extension after the correct bp (N7-Ch2, 2'-FdG:dG:dC) and a mispair (N7-Ch2, 2'-FdG:dG:dT). dT was used as the misincorporated base opposite the lesion because it showed the greatest misincorporation frequency in the steady-state insertion kinetics with hpol η (Table 1). With the mispairs (2'-FdG:dT and N7-Ch2, 2'-FdG:dG:dT), only dATP was incorporated opposite the next residue (dT) (Fig. S10). The efficiency of hpol η for incorporating dATP past the mispair was ~4-fold lower for the lesion than that for 2'-FdG dG, and dGTP had a similar efficiency of misincorporation across the lesion. Dpo4 had a 2-fold higher efficiency for the lesion than the 2'-FdG control (Table 3 and Fig. 5).

LC-MS/MS sequence analysis of extension products formed by hpol η and Dpo4

We introduced a dT:dU mismatch upstream of the site of dNTP addition to utilize uracil-DNA glycosylase (UDG) to cut the extension products for analysis by LC-MS/MS. Replication of the unmodified oligonucleotide gave only error-free products, as reported elsewhere (38). Replication across the lesion by Dpo4 also gave only error-free products, in support of the results of steady-state insertion kinetics (Table 4). hpol η replicated past the lesion in both an error-free and an error-prone manner, resulting in three main products (Table 5). The first product corresponded to error-free products (i.e. m/z 934.3: 5'-pTCATGA, m/z 1086.3: 5'-pTCATGAT, and m/z 613.2: 5'-pTCAT) Figs. S11 and S12. The second corresponded to misincorporation of da (m/z 934.3: 5'-pTACGTA and m/z 1086.3: 5'-pTAGTCAT, and the third corresponded to misincorporation of dG (m/z 1086.3: 5'-pTATCATTA) (Figs. S9 and S10). The CID spectra of the products matched the predicted CID spectra of the sequences (Tables S1–S6).

Miscooding of N2-methyl deoxyguanosine

Table 1

Steady-state kinetics of single nucleotide insertion opposite dG, 2’-F dG, and N2-CH\textsubscript{3} 2’-F dG by hp\textalpha\textsc{eta}

Template base	dNTP	\(k_{cat}\)	\(k_{m}\)	\(k_{cat}/k_{m}\)	\(f\)
dG	dCTP	2.65 ± 0.11	0.45 ± 0.13	5.9 ± 1.7	1
2’-F dG	dCTP	1.77 ± 0.05	0.23 ± 0.06	7.7 ± 2.0	1
N2-CH\textsubscript{3} 2’-F dG	dCTP	1.65 ± 0.04	0.43 ± 0.07	3.8 ± 0.6	1
dG	dATP	0.76 ± 0.06	12 ± 5	0.06 ± 0.03	0.01
2’-F dG	dATP	1.1 ± 0.1	19 ± 6	0.06 ± 0.03	0.01
N2-CH\textsubscript{3} 2’-F dG	dATP	0.97 ± 0.04	14 ± 2	0.07 ± 0.01	0.018
dG	dGTP	0.65 ± 0.05	4.0 ± 1.7	0.16 ± 0.07	0.027
2’-F dG	dGTP	0.84 ± 0.06	2.7 ± 12	0.31 ± 0.14	0.040
N2-CH\textsubscript{3} 2’-F dG	dGTP	0.40 ± 0.06	7.5 ± 6.3	0.05 ± 0.04	0.0013
dG	dTTP	1.42 ± 0.14	32 ± 11	0.04 ± 0.01	0.00068
2’-F dG	dTTP	0.96 ± 0.10	38 ± 15	0.03 ± 0.01	0.0033
N2-CH\textsubscript{3} 2’-F dG	dTTP	0.62 ± 0.05	4.6 ± 2.2	0.14 ± 0.07	0.037

* Misincorporation frequency \(f = (k_{cat}/k_{m})_{\text{packed}}/(k_{cat}/k_{m})_{\text{correct}}\).

Table 2

Steady-state kinetics of single nucleotide insertion opposite dG, 2’-F dG, and N2-CH\textsubscript{3} 2’-F dG by S. solfrataricus Dpo4

Template base	dNTP	\(k_{cat}\)	\(k_{m}\)	\(k_{cat}/k_{m}\)	\(f\)
dG	dCTP	158 ± 8	1.99 ± 0.41	79 ± 17	1
2’-F dG	dCTP	115 ± 2	0.30 ± 0.03	383 ± 39	1
N2-CH\textsubscript{3} 2’-F dG	dCTP	2.88 ± 0.10	0.03 ± 0.01	96 ± 20	1
dG	dATP	0.36 ± 0.03	14 ± 6	0.03 ± 0.01	0.0004
2’-F dG	dATP	ND	ND	ND	ND
N2-CH\textsubscript{3} 2’-F dG	dATP	0.24 ± 0.02	9.8 ± 5.1	0.03 ± 0.02	0.0003
dG	dGTP	0.41 ± 0.04	29 ± 10	0.014 ± 0.005	0.0002
2’-F dG	dGTP	0.40 ± 0.03	21 ± 7	0.019 ± 0.007	0.0002
N2-CH\textsubscript{3} 2’-F dG	dGTP	0.11 ± 0.01	24 ± 21	0.01 ± 0.01	0.0001
dG	dTTP	1.38 ± 0.36	76 ± 36	0.018 ± 0.010	0.0002
2’-F dG	dTTP	0.93 ± 0.16	44 ± 16	0.021 ± 0.009	0.0001
N2-CH\textsubscript{3} 2’-F dG	dTTP	0.42 ± 0.04	16 ± 5	0.026 ± 0.009	0.0003

* Misincorporation frequency \(f = (k_{cat}/k_{m})_{\text{packaged}}/(k_{cat}/k_{m})_{\text{correct}}\).

* ND, not detected. DNA incorporation was below limits of quantitation (\(v < 0.002 \text{ min}^{-1}\)).

To confirm these assignments, mass spectra of commercial oligonucleotide standards with these sequences were compared with those of the observed products and were nearly identical. No products were observed containing the misincorporated dT seen in the insertion kinetics experiments (Table 1). Relative areas were calculated for each product on the basis of the intensity of distinguishing CID ions (e.g. a3-B3 ions distinguishing the error-free product from the product with misincorporation of dA). The yields of the observed products were estimated to be 85% for error-free bypass, 10% for misincorporation of dA, and 5% for misincorporation of dG (Table 4).

Discussion

Alkylation of DNA was first described in 1960 (20, 39), and the N7 atom of dG has long been known to be a major site of damage (34). The change in the \(pK_a\) of the N1 atom (from 9 to 7) upon N2-methylation (34) was considered to be a potential reason for mising. evoking the original postulate of rare tautomer involvement in mising proposed by Watson and Crick (41). Due to this issue, one cannot consider an approach with 7-deaza dG for studying N2-alkyl dG mising, which would not reflect the electronic properties of the adduct. For discussion of the early studies on different alkylated bases and the development of a major role for O6-alkyl dG adducts in mutagenesis and carcinogenesis, see Lawley (39). Although O6-alkyl dG lesions are recognized to be important, the role of dG N2-alkylation has remained unclear. Some early studies concluded that N7-CH\textsubscript{3} dG was not miscoding (39, 42), but the results of these studies are compromised by several issues, including the sensitivity of the assays in detecting mising, the lack of mammalian and microbial translesion DNA poly-merases, and the lability of N7-CH\textsubscript{3} dG. In 2009, Boysen et al. (21) concluded that there was no evidence for mising by N7-CH\textsubscript{3} dG, although the authors suggested the 2’-F isostere approach we used here to address the issue. Lee and associates (37) used N7-CH\textsubscript{3} 2’-F dG with polB and concluded that it was not miscoding but did not present limits of detection or utilize sensitive methods.

N7-Alkyl dG adducts are of particular interest because of their high endogenous levels and also high levels following exposure to alkylating agents (21, 39, 43, 44). N7-Alkyl dG...
adducts are found at the highest levels not only after exposure to methylating agents but with other alkylating agents as well (17, 39, 44, 45). Several examples of \(N^7 \)-alkyl dG adducts are found in laboratory animals and humans not knowingly exposed to exogenous agents, including \(N^7 \)-methyl dG, \(N^7 \)-(2-hydroxy)ethyl dG, \(N^7 \)-(2-oxoethyl) dG, and \(N^7 \)-ethyl dG (44), but the origins of these adducts are not known. Although the levels of ribonucleotides and abasic sites have been reported to be higher than those of \(N^7 \)-methyl dG, they are rapidly repaired by multiple pathways (22, 23), and the steady-state levels in cells are less than those of \(N^7 \)-methyl dG (43).

The base-catalyzed imidazole ring opening of guanyl \(N^7 \)-alkyl adducts has been recognized for many years. As pointed out by Gates et al. (17), \(N^7 \)-methyl dG is not unusually unstable, and at neutral pH, ring-opening is very slow; even at pH 8.9, the half-life is 9.8 h (46–49). Although there was original uncertainty about the multiple forms of \(N^7 \)-methyl dG, recent 15N NMR studies demonstrated that the site of the formyl group did not change (46) and that the adduct exists in slowly equilibrating rotomeric forms. Studies with rat liver and bladder DNA reported that levels of \(N^7 \)-methyl dG decreased faster than those of the FAPY product, and levels of the two adducts were similar after 3–9 days (50, 51). However, Den Engelse et al. (49) reported only very low levels of the FAPY formed in rat liver following treatment with methylating agents. Some of the discrepancy may be due to the broadness of the \(N^7 \)-methyl FAPY dG peaks, affecting both the resolution and the sensitivity (46, 49, 50, 52). In the report of Den Engelse et al. (49), no \(N^7 \)-methyl FAPY dG adducts were detected in rat liver (<0.5% of \(N^7 \)-methyl dG) up to 3 days after treatment with \([^{14}C]\)dimethylnitrosamine. Even in the report of Kadlubar et al. (51), the level of \(N^7 \)-methyl FAPY dG did not reach the level of \(N^7 \)-methyl dG (in the rat bladder epithelium) until 9 days after treatment with \([^{14}C]\)-methyl-nitrosourea. In considering all of this information, we conclude that the level of \(N^7 \)-methyl dG is considerable and that

Figure 3. Steady-state kinetic analysis of individual dATP and dCTP insertions by hpol. Reactions contained templates dG (A and D), 2′-F dG (B and E), and \(N^7 \)-CH\(_3\) 2′-F dG (C and F) at position X in the sequences 5′-CGGGCTGAAGGGTCA-3′ and 3′-GCCCGAGGATTGCGATXACT-5′. Reactions were done at 37 °C for 5–10 min by incubating 120 nM primer-template oligonucleotide complex. For different panels, different hpol concentrations were used as indicated. For A, B, C, and F, 5 nmol of enzyme was used, and the reaction was done for 5 min, with varying concentrations of dATP and dCTP. In the D and E, 2.5 nmol of enzyme was used, and the reaction was conducted for 5 min, with varying concentrations of dATP and dCTP. Fitting was to a hyperbolic equation in GraphPad Prism version 8.0, and \(k_{cat} \) and \(K_m \) values are presented in Table 1.
Steady-state kinetics of single nucleotide extension past 2′-/H11541-F dG:dC, 2′-/H11541-F dG:dT and N7-CH3 2′-/H11541-F dG:dC, and N7-CH3 2′-/H11541-F dG:dT base pairs by hpol /H9257.

The oligonucleotides used were as follows,

5′-FAM-CGGGCTCGTAAGCGTCATC- 3′
3′-GCCCGAGCATTCGCAGTACT-5′

5′-FAM-CGGGCTCGTAAGCGTCATT- 3′
3′-GCCCGAGCATTCGCAGTACT-5′

where X represents 2′-F dG and N7-CH3 2′-F dG.

Table 3
Steady-state kinetics of single nucleotide extension past 2′-F dG:dC, 2′-F dG:dT and N7-CH3 2′-F dG:dC, and N7-CH3 2′-F dG:dT base pairs by hpol /H9257.

Template base	Pairing	dNTP	kcat	Km	kcat/Km
		[μM]	[min⁻¹]	[μM]	[μM⁻¹·min⁻¹]
2′-F dG	Mispair	dATP	1.1 ± 0.1	4.2 ± 1.2	0.26 ± 0.08
N7-CH3 2′-F dG	Correct	dATP	0.49 ± 0.04	7.1 ± 2.4	0.07 ± 0.02
2′-F dG	Correct	dATP	1.1 ± 0.1	15 ± 3	0.07 ± 0.02
N7-CH3 2′-F dG	Correct	dATP	2.1 ± 0.1	1.4 ± 0.3	1.5 ± 0.3
2′-F dG	Correct	dCCTP	0.99 ± 0.06	5.5 ± 2.2	0.17 ± 0.07
N7-CH3 2′-F dG	Correct	dCCTP	0.75 ± 0.03	4.6 ± 1.1	0.16 ± 0.04
2′-F dG	Correct	dCCTP	2.1 ± 0.06	6.9 ± 1.0	0.3 ± 0.1
N7-CH3 2′-F dG	Correct	dGTP	0.97 ± 0.03	3.8 ± 0.7	0.26 ± 0.1
2′-F dG	Correct	dGTP	1.0 ± 0.1	3.4 ± 0.7	0.3 ± 0.10
N7-CH3 2′-F dG	Correct	dGTP	1.6 ± 0.1	0.96 ± 0.47	1.7 ± 0.8

Figure 4. Steady-state kinetic analysis of individual dGTP and dTTP insertions by hpol /H9257. Reactions contained templates dG (A and D), 2′-F dG (B and E), and N7-CH3 2′-F dG (C and F) at position X in the sequences 5′-CGGGCTCGTAAGCGTCATC-3′ and 3′-GCCCGAGCATTCGCAGTACT-5′. Reactions were done at 37 °C for 5–10 min by incubating 120 nm primer–template DNA complex with varying concentrations of hpol /H9257. For A, B, and C, 8 nmol of hpol /H9257 was used, and the reaction was done for 10 min. In the case of D, we used 8 nmol of hpol /H9257 was used, and the reaction was done for 5 min; for E, 10 nmol of hpol /H9257 was used, and the reaction was conducted for 5 min; and for F, 5 nmol of hpol /H9257 was used, and the reaction was conducted for 5 min, varying concentrations of dGTP and dTTP. Fitting was to a hyperbolic equation in GraphPad Prism version 8.0, and kcat and Km values are presented in Table 1.
any biological effects cannot be simply ascribed to abasic sites and \(N^7 \)-CH\(_3\) FAPY dG.

\(N^7 \)-CH\(_3\) dG is a substrate for several glycosylases, in addition to removal due to nonenzymatic depurination (53, 54), including 3-alkyladenine DNA glycosylase (AAG) in humans and the bacterial homologs 3-methyladenine glycosylase (AlkA), Bacillus cereus DNA glycosylase AlkD, and Streptomyces sahachiroi AlkZ (55–57). The chemical and biological half-lives of \(N^7 \)-CH\(_3\) dG have been estimated to be in the range of 69–192 h at 37 °C and neutral pH (chemical) (17) and 29–58 h (biphasic) in rat liver (presumably converting to an abasic site in the study cited, in that \(N^7 \)-CH\(_3\) dG was not detected (49). \(N^7 \)-CH\(_3\) FAPY dG is also a substrate for Escherichia coli FPG and other glycosylases (e.g. human OGG1, NTH1, and NEIL1) (58–61). The point made here is that \(N^7 \)-CH\(_3\) dG is persistent enough to be copied and miscoded, at least in tissues undergoing DNA replication.

In *E. coli*, \(N^7 \)-CH\(_3\) FAPY dG was not highly mutagenic when bypassed (G to T transversion mutation frequency of \(\approx 2\)%) (62). When \(N^7 \)-CH\(_3\) FAPY dG was bypassed in a shuttle vector in simian kidney COS-7 cells, it readily produced G to T transversion mutations with 30% frequency (63). \(N^7 \)-CH\(_3\) FAPY dG

Table 4

Product sequence	m/z observed (charge)	m/z theoretical (charge)	Relative peak area/\(t_R \) (min)	%
5'-pTCATGA	934.27 (2)	1,870.22 (1), 934.60 (2)	5,585.4/1.68	85
5'-pTCATGAT	1,086.26 (2), 724.07 (3)	1,086.70 (2), 724.13 (3)	1,838.2/1.91	10
5'-pTCAT	613.22 (2)	1,227.80 (1), 613.39 (2)	13,511/1.73	7
5'-pTAGTCAT	934.27 (2)	1,870.22 (1), 934.60 (2)	620.6/1.68	5
5'-pTAGTCAT	1,086.26 (2), 724.07 (2)	1,086.70 (1), 724.13 (2)	2,095.5/1.91	10
5'-pTAGTCAT	1,086.26 (2), 724.07 (2)	1,086.70 (1), 724.13 (2)	1,397/1.91	5

\[
\begin{align*}
\text{5'}-\text{FAM} & /\text{CGGGCTC GTAAGCGT CAC} \\
\text{3'} & /\text{GCCGAGCA TTTGCAGT AACT} \\
\text{5'}-\text{FAPY dG} & /\text{CGGGCTC GTAAGCGT CAC} \\
\text{3'} & /\text{GCCGAGCA TTTGCAGT AACT} \\
\end{align*}
\]

Figure 5. Steady-state kinetic analysis of dATP extension by hpol. A, 2'-F dG:dC; B, \(N^7 \)-CH\(_3\) 2'-F dG:dC; C, 2'-F dG:dT; D, \(N^7 \)-CH\(_3\) 2'-F dG:dT bp. The sequences of the template and primer are shown at the top. Reactions were done at 37 °C for 5–10 min by incubating 120 nM primer–template oligonucleotide complex, 5–10 nM hpol, and varying concentrations of dNTPs.

Table 4

LC-ESI-MS/MS analysis of full-length extension products across \(N^7 \)-CH\(_3\) 2'-F dG by hpol

The oligonucleotides used were as follows,

\[
\begin{align*}
\text{5'}-\text{FAM}-\text{CGGGCTC GTAAGCGT CAC} & /\text{3'}-\text{GCCGAGCA TTTGCAGT AACT} \\
\text{5'}-\text{pTCATGA} & /\text{3'}-\text{pTCATGAT} \\
\text{5'}-\text{pTCAT} & /\text{3'}-\text{pTAGTCAT} \\
\end{align*}
\]

where \(X \) represents 2'-F dG and \(N^7 \)-CH\(_3\) 2'-F dG. Products were cut at U, and the expected sequences began at the 3' T of the primer.
Miscoding of N2-methyl deoxyguanosine

Table 5

Product sequence	m/z, observed (charge)	m/z, theoretical (charge)	Relative peak area/\(t_{1/2}\) (min)	%
5\-'pTCATGA	934.22 (2)	1,870.22 (−1), 934.60 (−2)	6417/1.67	100
5\-'pTCATG	777.56 (2)	1,557.01 (−1), 777.99 (−2)	10,707/1.57	
5\-'pTCAT	613.09 (2)	1,227.80 (−1), 613.39 (−2)	12,253/1.73	

was a strong block to replicative polymerases (e.g. pol \(\alpha\) and pol \(\beta\)/proliferating cell nuclear antigen), but hpol \(\eta\), hpol \(\kappa\), and the sequential action of hRev1/hpol \(\zeta\) and Dpo4 were able to bypass \(N^2\)-CH\(_3\) FAPY dG (29, 30). With hpol \(\kappa\), \(N^2\)-CH\(_3\) FAPY dG reduced the efficiency of dCTP insertion by an order of magnitude (29). Our previous work on the miscoding properties of \(N^2\)-CH\(_3\) FAPY dG (29, 30) can be summarized in comparison with the present work on \(N^2\)-CH\(_3\) dG. Steady-state kinetic experiments on misinsertion showed only a low frequency of miscoding with \(N^2\)-CH\(_3\) FAPY dG in E. coli DNA polymerase I Klenow fragment. LC-MS analysis showed only misincorporation of dA for both polymerases examined with levels of misincorporation (0.28 and 0.29 for dT and dG insertion, respectively) and dTTP across \(N^2\)-CH\(_3\) dG. Products were cut at U, and expected sequences began at 3’ T. Applying the difference in levels of miscoding to these levels of the adducts can therefore result in an even larger potential contribution of \(N^2\)-CH\(_3\) dG to miscoding and mutagenesis.

In summary, we have shown that hpol \(\eta\) produces error-free bypass products in copying past \(N^2\)-CH\(_3\) \(2^\prime\)-F dG and also misinserts dA and dG, differing from the products seen for \(N^2\)-CH\(_3\) FAPY dG, which inserted dT and produced a frameshift mutation (29). Our findings indicate that our results are not due to any contamination by the FAPY degradation product and also suggest \(N^2\)-CH\(_3\) dG contribution to mutagenicity in cells. Cavets need to be considered about comparing miscoding frequencies in different sequence contexts, the potential roles of DNA polymerases that were not included here, rates of enzymatic repair in different cells, and possibly other issues. Inserting plasmid vectors containing \(N^2\)-CH\(_3\) dG into cells to estimate mutation frequencies would be very problematic in terms of being sure that the lesion, even with the \(2^\prime\)-F group, was not modified before mutation occurred. In conclusion, the abundance of the adduct \(N^2\)-CH\(_3\) dG, coupled with the evidence for miscoding, argues that this lesion should no longer be considered innocuous.

Experimental procedures

Materials

All chemicals and solvents were commercially available, of highest purity grade, and were used without additional purification. 9-(2-Deoxy-2-fluoro-beta-D-arabinofuranosyl) guanine was purchased from Metkinen (Kuopio, Finland). Pyridine, \(N,N\)-dimethylformamide, dichloromethane, \(N,N\)-diisopropylethylamine, isobutylryl chloride, chlorotrimethylsilane, and 4,4’-dimethoxytrityl chloride were purchased from Sigma-Aldrich. Synthesis was monitored by TLC on Merck silica gel 60 F254 plates, with visualization at 254 nm and by spraying a solution of 5% concentrated \(H_2SO_4\) in ethanol (v/v) and heat-
ing. Restriction endonucleases, UDG, FPG glycosylase, dNTPs, and T4 polynucleotide kinase were purchased from New England Biolabs (Ipswich, MA). Unmodified oligonucleotides and primers used for extension and steady-state kinetics were obtained from Integrated DNA Technologies (Coralville, IA) and were HPLC-purified. Primers used for LC-MS sequence analysis were also obtained from DNA Technologies (Coralville, IA) and were twice HPLC-purified. Human DNA polymerases hpol 1 (catalytic core residues 1–432), hpol 1 (catalytic core residues 1–420), and hpol k (catalytic core residues 19–526) and bacterial Dpo4 were expressed in hpol alville, IA and were twice HPLC-purified. Human DNA polymerases hpol and puriﬁed as described previously (70–73).

NMR spectroscopy and MS

1H and 13C NMR spectra were recorded on a 600-MHz Bruker NMR spectrometer; 31P NMR spectra were recorded on a 500-MHz Bruker NMR spectrometer. Mass spectrometry was performed at the Vanderbilt Mass Spectrometry Research Core Facility using both Thermo low-resolution (LTQ) and high-resolution (Orbitrap) spectrometers. Spectra of synthetic products (negative and positive ion modes) and modiﬁed oligonucleotides (negative ion mode) were obtained using a Waters Acquity UPLC instrument (Waters, Milford, MA) interfaced to a Thermo-Finnigan LTQ mass spectrometer (Thermo Scientiﬁc, San Jose, CA), also equipped with an electrospray source.

Synthesis of 9-(2-deoxy-2-fluoro-beta-arabinofuranosyl)-1,9-dihydro-N2-methyl-N2-isobutylracetamido-6H-purin-6-one (74)

Commercially available 9-(2-deoxy-2-fluoro-beta-arabinofuranosyl) guanine (1) (10 mg, 0.10 mmol) was co-evaporated to dryness with anhydrous pyridine (3 × 10 ml) in vacuo. The residue was redissolved in anhydrous pyridine (10 ml) solution under an argon atmosphere, and chlorotrimethylsilane (334 µl, 7.88 mmol) was added. The mixture was stirred at room temperature for 2 h and then cooled to 0 °C. Isobutyryl chloride (110 µl, 1.35 mmol) was added in a dropwise manner over 20 min (74). The reaction mixture was allowed to warm to room temperature and further stirred for 3 h. The reaction mixture was then cooled to 0 °C, and water (10 ml) was added to quench the reaction. The reaction was stirred consecutively for 5 min at 0 °C and 5 min at room temperature, and then concentrated aqueous NaHCO3 (25 ml) was added, with more stirring for 30 min. H2O (170 ml) was added to dilute the reaction mixture, and the mixture was extracted with CH2Cl2 (50 ml). The aqueous phase was evaporated in vacuo to obtain a white solid, 9-(2-deoxy-2-fluoro-beta-arabinofuranosyl)-N2-isobutylracetamidoguanosine (100 mg, 80%). 1H NMR (DMSO-d6): δ 8.10 (d, 1H, J = 2.0 Hz, H-8), 6.24 (dd, 1H, J = 4.2, 14.9 Hz, H-1’), 5.18 (dt, 1H, J = 4.2 Hz, 52 Hz, H-2’), 4.38 (dt, 1H, J = 4.2, 17.2 Hz, H-3’), 3.89 (dd, 1H, J = 4.9, 10.4 Hz, H-4’), 3.63 (m, 2H, J = 40.26 Hz, H-5’), 2.75 (m, 1H, J = 6.9 Hz, H-11), 1.08 (d, 6H, J = 6.62 Hz, H-12). 13C NMR (DMSO-d6): 180.8, 155.5, 148.8, 138.8, 120.1, 96.0, 94.8, 84.4, 82.3, 73.0, 60.9, 35.4, 19.5. MS: calculated for C14H18FN5O5 (M-H) 354.1; found 354.3.

Synthesis of 9-(2-deoxy-2-fluoro-beta-arabinofuranosyl)-1,9-dihydro-N2-methyl-N2-isobutylracetamido-6H-purin-6-one (32)

To an anhydrous solution of N,N-dimethylformamide (5 ml) was added 9-(2-deoxy-2-fluoro-beta-arabinofuranosyl)-1,9-dihydro-N2-isobutylracetamido-6H-purin-6-one (120 mg, 0.34 mmol) and methyl iodide (351 µl, 5.63 mmol) under an argon atmosphere. The reaction mixture was stirred at room temperature for 2 h and then poured into cold diethyl ether to precipitate the product, which was ﬁltered and concentrated in vacuo to afford a white solid, 9-(2-deoxy-2-fluoro-beta-arabinofuranosyl)-1,9-dihydro-N2-isobutylracetamido-6H-purin-6-one (114 mg, 80%). 1H NMR (DMSO-d6): δ 9.69 (s, 1H, H-8), 6.28 (dd, 1H, J = 2.9, 13.8 Hz, H-1’), 5.88 (s, OH), 5.24 (d, 1H, J = 52 Hz, H-2’), 4.96 (s, OH), 4.40 (d, 1H, J = 17.2 Hz, H-3’), 4.08 (s, 3H, N7-CH3), 3.98 (s, H-4’), 3.61 (s, 2H, H-5’), 2.69 (t, 1H, J = 7.2 Hz, 13.6 Hz, H-11), 1.04 (d, 6H, J = 6.62 Hz, H-12). 13C NMR (DMSO-d6): 180.8, 155.5, 148.8, 138.8, 120.1, 96.0, 94.8, 84.4, 82.3, 73.0, 60.9, 35.4, 19.5. MS: calculated for C15H21FN5O5 (MH+)+ 370.2; found 370.2.

Synthesis of 9-(2-deoxy-5-O-(4,4’-dimethoxytrityl)-2-fluoro-beta-arabinofuranosyl)-1,9-dihydro-N2-methyl-N2-isobutylracetamido-6H-purin-6-one

9-(2-Deoxy-2-fluoro-beta-arabinofuranosyl)-1,9-dihydro-N2-methyl-N2-isobutylracetamido-6H-purin-6-one (263 mg, 0.71 mmol), in anhydrous pyridine, and 4,4’-dimethoxytrityl chloride (721 mg, 2.1 mmol) were stirred at room temperature for 2 h under an argon atmosphere. The reaction mixture was diluted with CH2Cl2 (50 ml) and washed with saturated aqueous NaHCO3 and then brine (3 × 50 ml). The organic layer was dried over anhydrous Na2SO4 and ﬁltered, and the solvent was evaporated. The crude residue was puriﬁed by silica gel column chromatography (3% CH3OH in CH2Cl2 plus 1% triethylamine, v/v) to afford 9-[2-deoxy-5-O-(4,4’-dimethoxytrityl)-2-fluoro-beta-arabinofuranosyl]-1,9-dihydro-N2-methyl-N2-isobutylracetamido-6H-purin-6-one (290 mg, 60% yield). 1H NMR (600 MHz, CDCl3): δ 8.44 (1H, s, H-8), 6.93–7.52 (13H, m, aromatic H), 6.86 (1H, d, J = 7.7 Hz, H-1’), 5.34 (1H, t, 2.8, H-2’), 4.72 (1H, d, J = 17.22 Hz, H-3’), 4.45 (1H, m, H-4’), 3.97 (3H, s, N7-CH3), 3.79 (6H, s, OCH3, OCH3), 3.49–3.56 (2H, m, 7.27, 5.25 Hz, H-5 and H-5’), 2.72 (1H, m, H11), 1.109 (dd, 6H, J = 1.82, 11.62 Hz, H-12). MS: calculated for C36H39FN5O7 (MH+)+ 672.3; found 672.2.

Synthesis of 9-(2-deoxy-5-O-(4,4’-dimethoxytrityl)-2-fluoro-beta-arabinofuranosyl)-1,9-dihydro-N2-methyl-N2-diisopropylphosphoramidite

The dimethoxytrityl-protected nucleoside from the previous step (90 mg, 134 µmol) was dissolved in CH2Cl2 (2 ml), and N,N-diisopropylethylamine (55 µl, 0.33 mmol) was added. N,N-Diisopropylphosphoronochlorophosphate (45 µl, 0.2 mmol) was added, and then the reaction mixture was stirred at room temperature for 2 h under an argon atmosphere. The mixture was diluted with CH2Cl2 (50 ml) and washed with saturated aqueous NaHCO3 and then brine (3 × 50 ml), and the organic phase was dried over Na2SO4 and ﬁltered. The solvent was evaporated
Miscoding of N7-methyl deoxyguanosine

in vacuo. The crude reaction mixture was purified by silica gel chromatography with 1% CH\textsubscript{3}OH in CH\textsubscript{2}Cl\textsubscript{2} containing 1% trimethylammonium (v/v) to afford 80 mg of 9-[2-deoxy-5-O-(4',7'-dimethoxytrityl)-2-fluoro-β-D-arabinofuranosyl]-1,9-dihydro-N7-methyl-N2-isobutyrylacetamido-6H-purin-6-one-3-O-(2-cyanoethyl)-N,N-dimisopropylphosphoramidite, 68%. 31P NMR (500 MHz, CD\textsubscript{3}OD) δ 152.48, 152.30; MS: calculated for C\textsubscript{36}H\textsubscript{39}FN\textsubscript{5}O\textsubscript{7} (MH+) 872.4; found 872.4.

Synthesis, purification, and characterization of 2'-F dG and N2-CH\textsubscript{3} 2'-F dG–containing DNA oligonucleotides

Modified oligonucleotides bearing 2'-fluorines were synthesized with Expedite reagents (Glen Research, Sterling, VA) on a 1-μmol scale utilizing a Perspective Biosystems model 8909 DNA synthesizer and a standard synthetic protocol (75). We chose the β-anomer for the 2'-fluoro analogs because this configuration has been shown not to alter sugar puckering in DNA; this is the typical configuration for the 2'-deoxyoligonucleotides (76–78). The coupling of N2-CH\textsubscript{3} 2'-F dG phosphoramidite was performed off-line for 2 h. The remainder of the synthesis was done online using standard procedures. Modified oligonucleotides were cleaved from the solid support, and exocyclic groups were deprotected in a single step using anhydrous methanolic K\textsubscript{2}CO\textsubscript{3} (50 mm), stirring at room temperature for 8 h. CH\textsubscript{3}OH was removed by sweeping with a stream of N\textsubscript{2} gas. Oligonucleotides were purified by reversed-phase HPLC with a Phenomenex Alumina RP octadecylsilane (C\textsubscript{18}) column (250 mm × 4.6 mm, 5 μm). The solvents used were aqueous 100 mM triethylammonium acetate (mobile phase A) and 100 mM triethylammonium acetate in H\textsubscript{2}O/CH\textsubscript{3}CN (1:1, v/v) (mobile phase B). The flow rate was 1.5 ml/min with the following gradient: initial 20% B, increased to 25% B over 5 min, held at 25% for 15 min, increased to 40% at 20 min, held for 5 min, then 100% at 25 min, and held until 30 min and 5% B at 31 min and re-equilibrated to 0% B for 5 min (all v/v). The UV detector was set at 240 nm. The collected fractions were lyophilized to dryness, desiccated in water, and desalted using ZipTip U-C\textsubscript{18} columns prior to characterization.

Oligonucleotide 5'-TCAT(2'-F) dG ATGACGCTTACGAGC- CCG-3' was purified by HPLC, LC-ESI m/z calculated for [M-H]-, 7039.193; found 7043.040 (Fig. S5B).

Oligonucleotide 5'-TCAT(N2-CH\textsubscript{3} 2'-F) dG ATGACGCTT- ACGAGCCCG-3' was purified by HPLC, LC-ESI m/z calculated for [M-H]-, 7054.216; found 7075.000 (Fig. S6A) (presumably sodium adduct).

The identity of the N2-CH\textsubscript{3} 2'-F dG–containing oligonucleotide was further confirmed by subjecting it to FPG glycosylase. The N2-CH\textsubscript{3} 2'-F dG–containing oligonucleotide was 32P-labeled at the 5'-end using T4 polynucleotide kinase (New England Biolabs) and annealed to its complementary strand by heating at 95 °C for 5 min and then allowing it to cool to room temperature overnight. A second portion of the N2-CH\textsubscript{3} 2'-F dG–oligonucleotide was treated with NaOH and stirred for 12 h at room temperature to create a hydrolyzed N2-CH\textsubscript{3} FAPY-2'-F dG oligonucleotide. It was also 5'-end–labeled (32P-label and T4 polynucleotide kinase) and then annealed with its complementary strand. Both oligonucleotides were subjected to treatment with FPG glycosylase for 1 h at 37 °C. Reactions were quenched with 9 μl of quenching dye (20 mM EDTA, (pH 9.0) in 95% formamide, v/v) and the products were separated on a 20% acrylamide (w/v) electrophoresis gel. Results were visualized using a phosphorimaging system (Bio-Rad, Molecular Imager® FX) and analyzed by Quantity One software as described previously (38).

Primer annealing and extension assays

5'-FAM-labeled 16-mer, 18-mer, and 19-mer primers (5'-FAM/CGGGGCTCGTAAAGCGTC-3', 5'-FAM/CGGGCTC GTAAGCGTCAT-3', 5'-FAM/CGGGCTCGTAAGCGTCTAC-3', and 5'-FAM/CGGGGCTCGTAAGCGTCATT-3', respectively) were annealed to a 23-mer template (3'-GCCGGACGCTTCG- CAGTACTACT-5', where X was dG, 2'-F dG, or N2-CH\textsubscript{3} 2'-F dG, in a 1:1 molar ratio at 95 °C for 5 min and slowly cooling to room temperature. For the full-length extension assays, WT hpol η (20 nM), hpol ι (40 nM), hpol κ (20 nM), and Dpo4 (20 nM) were incubated with the 16-mer primer–template DNA complex (200 nM) in 40 mM Tris-HCl buffer (pH 7.5) containing 5 mM Mg\textsubscript{2+}, 50 mM Na\textsubscript{2}SO\textsubscript{4}, 5% glycerol (v/v), 5 mM DTT, 50 μg/ml BSA, and 250 μM dNTPs. The reactions were done at 37 °C for 2, 5, 10, 20, and 60 min. For single-nucleotide incorporation experiments, an 18-mer primer–template DNA complex (120 nM) was used. Enzyme concentrations were as follows: hpol η (5 nM), hpol ι (10 nM), hpol κ (5 nM), and Dpo4 (5 nM). Reactions were done for 10 min. In the case of the single-nucleotide extension experiments, two primer–template DNA complexes (120 nM) were used with hpol η (5 nM) alone for 5 min. All other reaction conditions were the same as in the full-length extension experiments. Reactions were quenched as above, and products were separated on 18% denaturing acrylamide gels (w/v) and visualized with a Typhoon system (GE Healthcare).

Steady-state insertion and extension kinetics

Insertion reactions were done by incubating FAM-labeled 18-mer primer/23-mer template complexes (120 nM) with hpol η (2.5–10 nM) or Dpo4 (0.15–10 nM), and extension reactions were conducted by incubating two FAM-labeled 19-mer primer/23-mer template complexes (120 nM) with hpol η (5–10 nM). Both reactions were incubated at 37 °C for 5–10 min in 50 mM Tris-HCl buffer (pH 7.5) containing 5 mM MgCl\textsubscript{2}, 50 mM NaCl, 5% glycerol (v/v), 5 mM DTT, 50 μg/ml BSA, and varying concentrations of dNTPs. Reactions were quenched as described above, and products were separated on 18% denaturing acrylamide gels (w/v), visualized with a Typhoon system, and quantified utilizing ImageJ software (National Institutes of Health). Data obtained were fit to the hyperbolic Michaelis–Menten equation in GraphPad Prism software (version 8.0, La Jolla, CA).

LC-MS analysis of full-length extension products by hpol η and Dpo4

An 18-mer primer bearing a 2'-deoxyuridine (5'-FAM/ CGGGGCTCGTAAGCGTC(dU)T-3') was annealed to the 23-mer oligomer used above, in a molar ratio of 1:1. Full-length extension reactions were done using similar conditions as in the steady-state experiments, with the exception of primer-
template complex (2.5 μM), hpol (50 μM), Dpo4 (300 nM), and dNTPs (500 μM). Reactions were incubated at 37 °C for 1 h. Reactions were quenched by spin column separation to remove Mg²⁺ and dNTPs, and the extension product was treated with 25 units of UDG at 37 °C for 4 h and then with 0.25 m piperidine, heating at 95 °C for 1 h. H₂O was added to the reaction mixture, which was lyophilized and then redissolved in H₂O (70). Products were analyzed by LC-MS/MS, performed using a Waters Acquity UPLC system linked to a Thermo-Finnigan LTQ organic synthesis, characterization of the oligonucleotides, steady-state kinetics, and LC-MS sequence analysis.

Acknowledgments—We thank Drs. Carmelo J. Rizzo and Chanchal Malik for DNA synthesis and helpful discussions, Dr. Carl A. Sedge- man for helpful suggestions, and Dr. Plamen P. Christov for help with LC-MS sequencing analysis. Mass spectrometry was performed at the Vanderbilt Mass Spectrometry Research Core Facility. We also thank K. Trisler for assistance with preparation of the manuscript.

References
1. Swenberg, J. A., Lu, K., Moeller, B. C., Gao, L., Upton, P. B., Nakamura, J., and Starr, T. B. (2011) Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 120, S130–S145 CrossRef Medline
2. Helladay, T., Estadt, S., and Nik-Zainal, S. (2014) Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 15, 585–598 CrossRef Medline
3. Weismann, C. G., and Gelb, B. D. (2007) The genetics of congenital heart disease: a review of recent developments. Curr. Opin. Cardiol. 22, 200–206 CrossRef Medline
4. Shigenaga, M. K., Hagen, T. M., and Ames, B. N. (1994) Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. U.S.A. 91, 10771–10778 CrossRef Medline
5. Sedgwick, B. (2004) Repairing DNA-methylation damage. Nat. Rev. Mol. Cell Biol. 5, 148–157 CrossRef Medline
6. Erickson, R. P. (2003) Somatic gene mutation and human disease other than cancer. Mut. Res. 543, 125–136 CrossRef Medline
7. Newell, D., Gescher, A., Harland, S., Ross, D., and Rutty, C. (1987) N-Methyl nitroaniline agents: a distinct class of anticancer drugs? Cancer Chemother. Pharmacol. 19, 91–102 Medline
8. Friedman, H. S., Kerby, T., and Calvert, H. (2000) Temozolomide and treatment of malignant glioma. Clin. Cancer Res. 6, 2585–2597 Medline
9. Lidor, Y. J., Shapil, E. J., Peters, W. P., and Bast, R. C., Jr. (1991) Synergistic cytotoxicity of different alkylating agents for epithelial ovarian cancer. Int. J. Cancer 49, 704–710 CrossRef Medline
10. McGuire, W. P., 3rd, and Markman, M. (2003) Primary ovarian cancer chemotherapy: current standards of care. Br. J. Cancer 89, S3–S8 CrossRef Medline
11. Dolan, M. E., McCae, B. L., Ferries-Rowe, E., Belanich, M., van Seventer, G. A., Guitart, J., Pezen, D., Kuzel, T. M., and Yarosh, D. B. (1999) O'-Alkyguanine-DNA alkyltransferase in cutaneous T-cell lymphoma: implications for treatment with alkylating agents. Clin. Cancer Res. 5, 2059–2064 Medline
12. Lindahl, T. (1993) Instability and decay of the primary structure of DNA. Nature 362, 709–715 CrossRef Medline
13. Benek, D. T. (1990) Distribution of methyl and ethyl adducts following alkylation with nonfunctional alkylating agents. Mutat. Res. 231, 11–30 CrossRef Medline
14. Newbold, R. F., Warren, W., McCall, A. S., and Amos, J. (1980) Mutagenicity of carcinogenic methylating agents is associated with a specific DNA modification. Nature 283, 596–599 CrossRef Medline
15. Mitra, G., Pauly, G. T., Kumar, R., Pei, G. K., Hughes, S. H., Moschel, R. C., and Barbacid, M. (1989) Molecular analysis of O²- substituted guanine-induced mutagenesis of ras oncogenes. Proc. Natl. Acad. Sci. U.S.A. 86, 8650–8654 CrossRef Medline
16. Pullman, A., and Pullman, B. (1981) Molecular electrostatic potential of the nucleic acids. Q. Rev. Biophys. 14, 289–380 CrossRef Medline
17. Gates, K. S., Nooner, T., and Dutta, S. (2004) Biologically relevant reactions of N²-alkylguanines in residues in DNA. Chem. Res. Toxicol. 17, 839–856 CrossRef Medline
18. Kout, Y., Kag, M. C., and Lee, S. (2018) Structural and kinetic studies of the effect of guanine N7 alkylation and metal cofactors on DNA replication. Biochemistry 57, 5105–5116 CrossRef Medline
19. Bailey, E. A., Iyer, R. S., Stone, M. P., Harris, T. M., and Essigmann, J. M. (1996) Mutational properties of the primary aflatoxin B1-DNA adduct. Proc. Natl. Acad. Sci. U.S.A. 93, 1535–1539 CrossRef Medline
20. Brookes, P., and Lawley, P. D. (1960) The reaction of mustard gas with nucleic acids in vitro and in vivo. Biochem. J. 77, 478–484 CrossRef Medline
21. Boysen, G., Pachkowski, B. F., Nakamura, J., and Swenberg, J. A. (2009) The formation and biological significance of N²-guanine adducts. Mutat. Res. 678, 76–94 CrossRef Medline
22. Williams, J. S., and Kunkel, T. A. (2011) Endogenous DNA adducts: their biological relevance to cancer. Chem. Res. Toxicol. 24, 27–37 CrossRef Medline
23. Caldecott, K. W. (2014) Molecular biology. Ribose—an internal threat to DNA. Science 343, 260–261 CrossRef Medline
24. Mustonen, R., and Hemminki, K. (1992) 7-Methylguanine levels in DNA of smokers’ and non-smokers’ total white blood cells, granulocytes and lymphocytes. Carcinogenesis 13, 1951–1955 CrossRef Medline
25. Park, J. W., and Ames, B. N. (1988) 7-Methylguanine adducts in DNA are normally present at high levels and increase on aging: analysis by HPLC with electrochemical detection. Proc. Natl. Acad. Sci. U.S.A. 85, 7467–7470 CrossRef Medline
26. Barrows, L. R., and Magee, P. N. (1982) Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro. Carcinogenesis 3, 349–351 CrossRef Medline
27. Yu, S. L., Lee, S. K., Johnson, R. E., Prakash, L., and Prakash, S. (2003) The stalling of transcription at abasic sites is highly mutagenic. Mol. Cell. Biol. 23, 382–388 CrossRef Medline
28. Gissas, P., and Lawrence, C. W. (1995) Novel mutagenic properties of abasic sites in Saccharomyces cerevisiae. J. Mol. Biol. 251, 229–236 CrossRef Medline
29. Christov, P. P., Yamanaka, K., Choi, J.-Y., Takata, K., Wood, R. D., Guengerich, F. P., Lloyd, R. S., and Rizzo, C. I. (2012) Replication of the 2,6-diamino-4-hydroxy-N²-methyl-formamidopyrimidine (MeFapy dGuo) adduct by eukaryotic DNA polymerases. Chem. Res. Toxicol. 25, 1652–1661 CrossRef Medline
30. Christov, P. P., Angel, K. C., Guengerich, F. P., and Rizzo, C. I. (2009) Replication past the N²-methylformamidopyrimidine lesion of deoxy- guanosine by DNA polymerases and an improved procedure for sequence analysis of in vitro bypass products by mass spectrometry. Chem. Res. Toxicol. 22, 1086–1095 CrossRef Medline
31. Dizdaroglu, M., Kirkali, G., and Jaruga, P. (2008) Formamidopyrimidines in DNA. Mutat. Res. 666, S130–S145 CrossRef Medline
32. Lee, S., Bowman, B. R., Ueno, Y., Wang, S., and Verdine, G. L. (2008) Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N²-methylguanine. J. Am. Chem. Soc. 130, 11570–11571 CrossRef Medline
33. Barbin, A., Laib, R. J., and Bartsch, H. (1985) Lack of miscoding properties of 7-(2-oxoethyl)guanine, the major vinyl chloride-DNA adduct. Cancer Res. 45, 2440–2444 CrossRef Medline

34. Lawley, P. D., and Brookes, P. (1961) Acidic dissociation of 7,9-dialkylguanines and its possible relation to mutagenic properties of alkylating agents. Nature 192, 1081–1082 CrossRef Medline

35. Sowers, I. C., Shaw, B. R., Vegil, M. L., and Sedwick, W. D. (1987) DNA base modification: ionized base pairs and mutagenesis. Mutat. Res. 177, 201–218 CrossRef Medline

36. Lawley, P. D., and Brookes, P. (1962) Ionization of DNA bases or base analogues as a possible explanation of mutagenesis, with special reference to 5-bromodeoxyuridine. J. Mol. Biol. 4, 216–219 CrossRef Medline

37. Koag, M. C., Kou, Y., Ouzon-Shubeita, H., and Lee, S. (2014) Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine. Nucleic Acids Res. 42, 8755–8766 CrossRef Medline

38. Zhao, L., Christov, P. P., Kozekov, I. D., Pence, M. G., Pallan, P. S., Rizzo, C. J., Egli, M., and Guengerich, F. P. (2012) Replication of N7,3-ethenoguanine by DNA polymerases. Angew. Chem. Int. Ed. Engl. 51, 5466–5469 CrossRef Medline

39. Lawley, P. D. (1984) Carcinogenesis by alkylating agents. In Chemical Carcinogens, 2nd Ed. (Searle, C. E., ed) pp. 324–484, American Chemical Society, Washington, D. C.

40. Edgell, C. J., Egli, M., and Guengerich, F. P. (2012) Formation of 5′-deoxyadenosinyl)ethyl[glutathione in DNA and replication past the adduct by translesion DNA polymerases. Chem. Res. Toxicol. 30, 1188–1196 CrossRef Medline

41. Watson, J. D., and Crick, F. H. C. (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967 CrossRef Medline

42. Lawley, P. D., and Orr, D. J. (1970) Specific excision of methylation products from DNA of Escherichia coli treated with N-methyl-N′-nitro-N-nitrosoguanidine. Chem. Biol. Interact. 2, 154–157 CrossRef Medline

43. Kunkel, T. A. (1999) The high cost of living. American Association for Cancer Research Special Conference: Endogenous sources of mutations. Cancer Res. 59, 93–94 CrossRef Medline

44. De Brij, R. J., and Tates, A. D. (1986) Lack of miscoding properties of N7-methyl deoxyguanosine and its persistence in rat bladder epithelial DNA after treatment with the carcinogen N-methylnitrosourea. Carcinogenesis 5, 587–592 CrossRef Medline

45. Oda, T., Humphreys, W. G., and Guengerich, F. P. (1991) Preparation and characterization of oligonucleotides containing S-[2-((N7-methyl)ethyl)]glutathione. Biochemistry 30, 10513–10522 CrossRef Medline

46. Xiao, W., and Samson, L. (1993) In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc. Natl. Acad. Sci. U.S.A. 90, 2117–2121 CrossRef Medline

47. Barbado, C., Córdoba-Canero, D., Ariza, R. R., and Roldán-Arjona, T. (2018) Nonenzymatic release of N7-methylguanine channels repair of abasic sites into an AP endonuclease-independent pathway in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115, E916–E924 CrossRef Medline

48. Parsons, Z. D., Bland, J. M., Mullins, E. A., and Eichman, B. F. (2016) A catalytic role for C-H/π interactions in base excision repair by Bacillus cereus DNA glycosylase AlkD. J. Am. Chem. Soc. 138, 11485–11488 CrossRef Medline

49. Mullins, E. A., Warren, G. M., Bradley, N. P., and Eichman, B. F. (2017) Structure of a DNA glycosylase that unblocks interstrand cross-links. Proc. Natl. Acad. Sci. U.S.A. 114, 4400–4405 CrossRef Medline

50. Hollis, T., Lass, A., and Ellenberger, T. (2000) Structural studies of human alkyladenine glycosylase and E. coli 3-methyldenguanine glycosylase. Mutat. Res. 460, 201–210 CrossRef Medline

51. Katafuchi, A., Nakano, T., Masako, A., Terato, H., Iwai, S., Hanaoka, F., and Ide, H. (2004) Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine. J. Biol. Chem. 275, 4956–4964 CrossRef Medline

52. Dherin, C., Radicella, J. P., Dizdareoglu, M., and Boiteux, S. (1999) Excision of oxidatively damaged DNA bases by the human α-hOgg1 protein and the polymorphic α-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res. 27, 4001–4007 CrossRef Medline

53. Kusafuchi, A., Nakano, T., Terato, H., Ohyama, Y., Monden, Y., Arai, T., Nishimura, S., Aburatan, H., Lindahl, T., and Ide, H. (2000) Differential specificity of human and Escherichia coli endonuclease III and VIII homologues for oxidative base lesions. J. Biol. Chem. 275, 14464–14471 CrossRef Medline

54. Asagoshi, K., Yamada, T., Terato, H., Ohyama, Y., Monden, Y., Araki, M., and Guengerich, F. P. (2015) An intercalated and thermally stable form of 2,3-deaza-2,3-dimethoxy-2,3-dihydro-7-alkylguanine. J. Med. Chem. 58, 7625–7631 CrossRef Medline

55. lin, J. R., Zeman, M. K., Chen, J. Y., Yee, M. C., and Cimprich, K. A. (2011) Nonenzymatic release of 7-methylguanine channels repair of alkyldene glycosylases: distinctive paired base effects and biological and mechanistic implications. J. Biol. Chem. 275, 24781–24786 CrossRef Medline

56. Patro, J. N., Wiederholt, C. J., Jiang, Y. L., Delaney, J. C., Essigmann, J. M., and Greenberg, M. M. (2007) Studies on the replication of the ring opened formamidopyrimidine, Fapy-dG in Escherichia coli Biochemistry 46, 10202–10212 CrossRef Medline

57. Kalam, M. A., Haraguchi, K., Chandani, S., Loechler, E. L., Moriya, M., Greenberg, M. M., and Basu, A. K. (2006) Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells. Nucleic Acids Res. 34, 2305–2315 CrossRef Medline

58. Wolfe, W. T., Washington, M. T., Prakash, L., and Prakash, S. (2003) Human DNA polymerase α uses template-primer misalignment as a novel means for extending mispaired termini and for generating single-base deletions. Genes Dev. 17, 2191–2199 CrossRef Medline

59. Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 CrossRef Medline

60. Lin, J. R., Zeman, M. K., Chen, J. Y., Yee, M. C., and Cimprich, K. A. (2011) SHPRH and HLTF actin prone and lesion-bypass replication. J. Biol. Chem. 286, 11446–11457 CrossRef Medline

61. Yoon, J. H., Roy Choudhury, J., Park, J., Prakash, S., and Prakash, L. (2017) Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine. J. Biol. Chem. 292, 18682–18688 CrossRef Medline

62. Choi, J.-Y., Chowdhury, G., Zang, H., Angel, K. C., Vu, C. C., Peterson, L. A., and Guengerich, F. P. (2006) Translesion synthesis across O6-alkyl-
guanine DNA adducts by recombinant human DNA polymerases. J. Biol. Chem. 281, 38244–38256 CrossRef Medline
69. Sharma, V., Collins, L. B., Clement, J. M., Zhang, Z., Nakamura, J., and Swenberg, J. A. (2014) Molecular dosimetry of endogenous and exogenous O6-methyl-dG and N7-methyl-G adducts following low dose D3-methyl-nitrosourea exposures in cultured human cells. Chem. Res. Toxicol. 27, 480–482 CrossRef Medline
70. Zang, H., Goodenough, A. K., Choi, J.-Y., Irimia, A., Loukachevitch, L. V., Kozekov, I. D., Angel, K. C., Rizzo, C. J., Egli, M., and Guengerich, F. P. (2005) DNA adduct bypass polymerization by Sulfolobus solfataricus DNA polymerase Dpo4: analysis and crystal structures of multiple base pair substitution and frameshift products with the adduct 1,N2-ethenoguanine. J. Biol. Chem. 280, 29750–29764 CrossRef Medline
71. Pence, M. G., Choi, J.-Y., Egli, M., and Guengerich, F. P. (2010) Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase η. J. Biol. Chem. 285, 40666–40672 CrossRef Medline
72. Patra, A., Nagy, L. D., Zhang, Q., Su, Y., Müller, L., Guengerich, F. P., and Egli, M. (2014) Kinetics, structure, and mechanism of 8-oxo-7,8-dihydro-2’-deoxyguanosine bypass by human DNA polymerase η. J. Biol. Chem. 289, 16867–16882 CrossRef Medline
73. Irimia, A., Eoff, R. L., Guengerich, F. P., and Egli, M. (2009) Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase η opposite the 7,8-dihydro-8-oxo-2’-deoxyguanosine adduct. J. Biol. Chem. 284, 22467–22480 CrossRef Medline
74. Wilson, T. J., Li, N. S., Lu, J., Frederiksen, J. K., Piccirilli, J. A., and Lilley, D. M. (2010) Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme. Proc. Natl. Acad. Sci. U.S.A. 107, 11751–11756 CrossRef Medline
75. Elmquist, C. E., Stover, J. S., Wang, Z., and Rizzo, C. J. (2004) Site-specific synthesis and properties of oligonucleotides containing C8-deoxyguanosine adducts of the dietary mutagen IQ. J. Am. Chem. Soc. 126, 11189–11201 CrossRef Medline
76. Marquez, V. E., Tseng, C. K.-H., Mitsuya, H., Aoki, S., Kelley, J. A., Ford, H., Jr., Roth, J. S., Broder, S., Johns, D. G., and Driscoll, J. S. (1990) Acid-stable 2’-fluoro purine dideoxynucleosides as active agents against HIV. J. Med. Chem. 33, 978–985 CrossRef Medline
77. Schärer, O. D., and Verdine, G. L. (1995) A designed inhibitor of base-excision DNA repair. J. Am. Chem. Soc. 117, 10781–10782 CrossRef
78. Ikeda, H., Fernandez, R., Wilk, A., Barchi, J. Jr., Huang, X., and Marquez, V. E. (1998) The effect of two antipodal fluorine-induced sugar puckers on the conformation and stability of the Dickerson-Drew dodecamer duplex [dCGCGAATTCCGC]2. Nucleic Acids Res. 26, 2237–2244 CrossRef Medline

Miscoding of N7-methyl deoxyguanosine