Theory of Initialization-Free Decoherence-Free Subspaces and Subsystems

Alireza Shabani\(^{(1)}\) and Daniel A. Lidar\(^{(2)}\)

\(^{(1)}\)Physics Department, and Center for Quantum Information and Quantum Control, University of Toronto, 60 St. George St., Toronto, Ontario M5S 1A7, Canada

\(^{(2)}\)Chemical Physics Theory Group, Chemistry Department, and Center for Quantum Information and Quantum Control, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada

We introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization. We derive a new set of conditions for the existence of DFSs within this generalized framework. By relaxing the initialization requirement we show that a DFS can tolerate arbitrarily large preparation errors. This has potentially significant implications for experiments involving DFSs, in particular for the experimental implementation, over DFSs, of the large class of quantum algorithms which can function with arbitrary input states.

PACS numbers: 03.67.Lx, 03.65.Yz, 03.65.Fd

I. INTRODUCTION

In recent years much effort has been expended to develop methods for tackling the deleterious interaction of controlled quantum systems with their environment. This effort has been motivated in large part by the need to overcome decoherence in quantum information processing tasks, a goal which was thought to be unattainable at first \cite{1, 2, 3}. Decoherence-free (or noiseless) subspaces \cite{4, 5, 6, 7} and subsystems \cite{8, 9, 10, 11} (DFSs) are among the methods which have been proposed to this end, and also experimentally realized in a variety of systems \cite{12, 13, 14, 15}. In this manner of passive quantum error correction, one uses symmetries in the form of the interaction between system and environment to find a “quiet corner” in the system Hilbert space not experiencing this interaction. Of the various methods of quantum error correction, so far only DFSs have been combined with quantum algorithms in the presence of decoherence \cite{16, 17}. For a review of DFSs and a comprehensive list of references see Ref. \cite{18}.

We have re-examined the theoretical foundation of DFSs and have found that the conditions for their existence can be generalized. It is our purpose in this paper to present these generalized conditions. Our most significant result is a drastic relaxation of the initialization condition for DFSs: whereas it was previously believed that one must be able to perfectly initialize a state inside a DFS, here we show that this does in fact need not be so. Instead one can tolerate an arbitrarily large preparation error, which in turn means significantly relaxed experimental preparation conditions. In contrast, only a small preparation error can be tolerated when quantum error correcting codes (QECC) are used to overcome decoherence \cite{19}. Whether a similar generalization is possible in the case of QECC is an interesting open question, the answer to which may be within the realm of very recent results strengthening the DFS/QECC connection \cite{20}.

The relaxation of the initialization requirement is perhaps most significant in light of a series of results showing that a class of important quantum algorithms (Shor \cite{21}, Grover \cite{22}, and Deutsch-Josza \cite{23} included) can be successfully executed under imperfect initialization conditions \cite{24, 25, 26, 27, 28, 29, 30, 31, 32}. This means that imperfectly initialized DFSs can be used as a “substrate” for running these algorithms.

To present our results we first review and re-examine the previous results on DFSs, in Section II. We do so for both general completely positive (CP) maps and for Markovian dynamics. The definitions we give for DFSs in these two cases are slightly different, reflecting the fact that Markovian dynamics is always continuous in time, whereas CP maps can also describe discrete-time evolution. In Section III we present our generalized DFS conditions for CP maps and for Markovian dynamics. We illustrate the new conditions for Markovian dynamics with an example which reveals some of the new features. In Section IV we discuss the implications of our relaxed initialization condition in the context of quantum algorithms. Section V is devoted to a case-study of non-Markovian dynamics, intermediate between (formally exact) CP maps and (approximate) Markovian dynamics. A unique formulation does not exist in this case, and we consider the master equation introduced in Ref. \cite{33}. The analytical solvability of this equation permits a rigorous derivation of the conditions for a DFS. For clarity of presentation we defer most supporting calculations to the appendices.

II. REVIEW OF PREVIOUS CONDITIONS FOR DECOHERENCE-FREE SUBSPACES AND SUBSYSTEMS

We refer the reader to Ref. \cite{18} for a detailed review, including many references and historical context. Here we focus on aspects of direct relevance to our new results.
A. Decoherence-Free Subspaces

Consider a system with Hilbert space \mathcal{H}_S. In Refs. [3, 4, 5, 34, 35] a subspace $\mathcal{H}_{DFS} \subset \mathcal{H}_S$ was called decoherence-free if any state $\rho_S(0)$ of the system initially prepared in this subspace is unitarily related to the final state $\rho_S(t)$ of the system, i.e.,

$$\rho_S(0) = \mathcal{P}_d \rho_S(0) \mathcal{P}_d \Rightarrow \rho_S(t) = \mathbf{U} \rho_S(0) \mathbf{U}^\dagger .$$

Here \mathbf{U} is unitary and \mathcal{P}_d is the projection operator onto \mathcal{H}_{DFS}. Important and motivating early examples of DFSs were given in [4, 36, 37, 38]. An alternative definition of DFSs was given in [4, 36, 37, 38]. An alternative definition of DFSs is unitary and

$$\mathbf{U} = \mathbf{I}_S.$$

We denote the subspace of states \mathcal{H}_S maps of this type. We denote the subspace of states \mathcal{H}_S by $\mathcal{H}_S = \mathcal{H}_{DFS}$ \oplus \mathcal{H}_{DFS}. According to Eq. (4) in [35] the Kraus operators take the block-diagonal form

$$\mathbf{E}_\alpha = \begin{pmatrix} c_\alpha \mathbf{U}_{DFS} & 0 \\ 0 & \mathbf{B}_\alpha \end{pmatrix} ,$$

where the upper (lower) non-zero block acts entirely inside \mathcal{H}_{DFS} (\mathcal{H}_{DFS}); \mathbf{U}_{DFS} is a unitary matrix that is independent of the Kraus operator label α; c_α is a scalar ($\sum_{\alpha} |c_\alpha|^2 = 1$); and \mathbf{B}_α is arbitrary, except that $\sum_{\alpha} \mathbf{B}_\alpha^\dagger \mathbf{B}_\alpha = \mathbf{I}_{DFS}$. It is simple to verify that the DFS definition is satisfied in this case, with $\mathbf{U} = \mathbf{U}_{DFS}$.

Theorem 1 in [35] reads: “A subspace \mathcal{H}_{DFS} is a DFS iff all Kraus operators have an identical unitary representation upon restriction to it, up to a multiplicative constant.” This theorem is actually compatible with a more general form for the Kraus operators than Eq. (6), since “upon restriction to it” concerns only the upper-left block of \mathbf{E}_α. We derive the most general form of \mathbf{E}_α in Section III below, and find that, indeed, a more general form than Eq. (6) is possible: one of the off-diagonal blocks need not vanish. In other words, leakage from \mathcal{H}_{DFS} into \mathcal{H}_{DFS} is permitted. As we further show in Section III, the form in fact appears in the context of unital channels.

1. Completely Positive Maps

The modeling of environmental effects on an open quantum system has been a challenging problem since at least the 1950’s [41, 42, 43]. but under certain simplifying assumptions one can obtain a simple form for the dynamical equations of open systems [42]. For example, the assumption of an initially decoupled state of system and bath, $\rho_{SB}(0) = \rho_S(0) \otimes \rho_B$, results in a CP map known as the Kraus operator sum representation [44]:

$$\rho_S(t) = \mathcal{T} \exp(-i \int_0^t \mathbf{H}(s) ds) \mathcal{T}^\dagger = \sum_\alpha \mathbf{E}_\alpha(t) \rho_S(0) \mathbf{E}_\alpha^\dagger(t) .$$

Here

$$\mathbf{E}_\alpha = \sqrt{\lambda_\alpha} \mathbf{E}_\alpha \mathbf{E}_\alpha^\dagger; \quad \alpha = (\mu, \nu),$$

where $|\mu\rangle, |\nu\rangle$ are bath states in the spectral decomposition $\rho_B = \sum_\nu \lambda_\nu |\nu\rangle \langle \nu|$. Trace preservation of $\rho_S(t)$ implies the sum rule

$$\sum_\alpha \mathbf{E}_\alpha^\dagger \mathbf{E}_\alpha = \mathbf{I}_S,$$

where \mathbf{I}_S is the identity operator on the system.

In [35] a DFS-condition was derived for general CP maps of this type. We denote the subspace of states orthogonal to \mathcal{H}_{DFS} by \mathcal{H}_{DFS}^\perp, so that $\mathcal{H}_S = \mathcal{H}_{DFS} \oplus \mathcal{H}_{DFS}^\perp$. According to Eq. (6) in [35] the Kraus operators take the block-diagonal form

$$\mathbf{E}_\alpha = \begin{pmatrix} c_\alpha \mathbf{U}_{DFS} & 0 \\ 0 & \mathbf{B}_\alpha \end{pmatrix} ,$$

where the upper (lower) non-zero block acts entirely inside \mathcal{H}_{DFS} (\mathcal{H}_{DFS}); \mathbf{U}_{DFS} is a unitary matrix that is independent of the Kraus operator label α; c_α is a scalar ($\sum_{\alpha} |c_\alpha|^2 = 1$); and \mathbf{B}_α is arbitrary, except that $\sum_{\alpha} \mathbf{B}_\alpha^\dagger \mathbf{B}_\alpha = \mathbf{I}_{DFS}$. It is simple to verify that the DFS definition is satisfied in this case, with $\mathbf{U} = \mathbf{U}_{DFS}$.

Theorem 1 in [35] reads: “A subspace \mathcal{H}_{DFS} is a DFS iff all Kraus operators have an identical unitary representation upon restriction to it, up to a multiplicative constant.” This theorem is actually compatible with a more general form for the Kraus operators than Eq. (6), since “upon restriction to it” concerns only the upper-left block of \mathbf{E}_α. We derive the most general form of \mathbf{E}_α in Section III below, and find that, indeed, a more general form than Eq. (6) is possible: one of the off-diagonal blocks need not vanish. In other words, leakage from \mathcal{H}_{DFS} into \mathcal{H}_{DFS} is permitted. As we further show in Section III, the form in fact appears in the context of unital channels.

2. Markovian Dynamics

The most general form of CP Markovian dynamics is given by the Lindblad equation [45, 46, 47]:

$$\frac{\partial \rho_S}{\partial t} = -i [\mathcal{H}_S, \rho_S] + \mathcal{L}[\rho_S] ,$$

$$\mathcal{L} = \sum_{\alpha} \mathbf{F}_\alpha \cdot \mathbf{F}_\alpha^\dagger + \frac{1}{2} \mathbf{F}_\alpha^\dagger \mathbf{F}_\alpha - \frac{1}{2} \mathbf{F}_\alpha^\dagger \mathbf{F}_\alpha ,$$

where \mathbf{F}_α are bounded (or unbounded, if subject to appropriate domain restrictions [48, 49]) operators acting on \mathcal{H}_S, and where \mathbf{H}_S may include a Lamb shift [50]. Given such dynamics, one restores unitarity [i.e., the DFS definition with \mathbf{U} generated by the Hamiltonian \mathbf{H}_S if the Lindblad term $\mathcal{L}[\rho_S]$ can be eliminated. According to Refs. [4, 51], a necessary and sufficient condition for this to be the case is

$$\mathbf{F}_\alpha |i\rangle = c_\alpha |i\rangle ,$$

where $\mathcal{H}_{DFS} = \text{Span}\{|i\rangle\}$ and $\{c_\alpha\}$ are arbitrary complex scalars. Thus the Lindblad operators can be written in block-form as follows:

$$\mathbf{F}_\alpha = \begin{pmatrix} c_\alpha & \mathbf{A}_\alpha \\ 0 & \mathbf{B}_\alpha \end{pmatrix} ,$$

with the blocks on the diagonal corresponding once again to operators restricted to \mathcal{H}_{DFS} and \mathcal{H}_{DFS}^\perp. Note the appearance of the off-diagonal block \mathbf{A}_α mixing \mathcal{H}_{DFS} and
Hamiltonian \mathcal{H}_{DFS}: its presence is permitted since the DFS condition (8) gives no information about matrix elements of the form $\langle i | \mathbf{P}_\alpha | j \rangle^\perp$, with $| i \rangle \in \mathcal{H}_{\text{DFS}}$ and $| j \rangle^\perp \in \mathcal{H}_{\text{DFS}}$.

As observed in Refs. [8, 32], one should in addition require that \mathbf{H}_S does not mix DF states with non-DF ones, i.e., mixed matrix elements of the type $\langle j | \mathbf{H}_S | i \rangle$, with $| i \rangle \in \mathcal{H}_{\text{DFS}}$ and $| j \rangle \in \mathcal{H}_{\text{DFS}}^\perp$, should vanish. We show below that this condition must be made more stringent.

B. Noiseless Subsystems

An important observation made in Ref. [8] is that there is no need to restrict the decoherence-free dynamics to a subspace. A more general situation is when the DF dynamics is a "subsystem", or a factor in a tensor product decomposition of subspace. Following Ref. [8], this comes about as follows. Consider the dynamics of a system S coupled to a bath B via the Hamiltonian

$$\mathbf{H} = \mathbf{H}_S \otimes \mathbf{I}_B + \mathbf{I}_S \otimes \mathbf{H}_B + \mathbf{H}_I, \quad (10)$$

where \mathbf{H}_S (\mathbf{H}_B), the system (bath) Hamiltonian, acts on the system (bath) Hilbert space \mathcal{H}_S (\mathcal{H}_B); \mathbf{I}_S (\mathbf{I}_B) is the identity operator on the system (bath) Hilbert space; \mathbf{H}_I is the interaction term of Hamiltonian which can be written in general as $\sum_{\alpha} \mathbf{S}_\alpha \otimes \mathbf{B}_\alpha$. If the system Hamiltonian \mathbf{H}_S and the system components of the interaction Hamiltonian, the \mathbf{S}_α's, form an algebra \mathbf{S}, it must be \dagger-closed to preserve the unitarity of system-bath dynamics. Now, if \mathbf{A} is a \dagger-closed operator algebra which includes the identity operator, then a fundamental theorem of C*-algebras states that \mathbf{A} is a reducible subalgebra of the full algebra of operators \mathcal{A}. This theorem implies that the algebra is isomorphic to a direct sum of d_j \times d_j complex matrix algebras, each with multiplicity n_j:

$$\mathcal{S} \cong \bigoplus_{j \in \mathcal{J}} \mathbf{I}_{n_j} \otimes \mathcal{M}(d_j, \mathbb{C}) \quad (11)$$

Here \mathcal{J} is a finite set labeling the irreducible components of \mathcal{S}, and $\mathcal{M}(d_j, \mathbb{C})$ denotes a d_j \times d_j complex matrix algebra. Associated with this decomposition of the algebra \mathcal{S} is a decomposition of the system Hilbert space:

$$\mathcal{H}_S = \bigoplus_{j \in \mathcal{J}} \mathbb{C}^{n_j} \otimes \mathbb{C}^{d_j}. \quad (12)$$

If we encode quantum information into a subsystem (factor) \mathbb{C}^{n_j} it is preserved, since the noise algebra \mathcal{S} acts trivially (as \mathbf{I}_{n_j}). In such a case \mathbb{C}^{n_j} is called a decoherence-free, or noiseless subsystem (NS). Examples of this construction were given independently in Refs. [8, 32].

1. **Completely Positive Maps**

As the Kraus operators are given by Eq. (4), they take the form of the decomposition (11):

$$\mathbf{E}_\alpha = \bigoplus_{j \in \mathcal{J}} \mathbf{I}_{n_j} \otimes \mathbf{M}_\alpha(d_j), \quad (13)$$

where $\mathbf{M}_\alpha(d_j)$ is an arbitrary d_j-dimensional complex matrix. Therefore a factor \mathbb{C}^{n_j} is a NS if the Kraus operators have the representation (13).

2. **Markovian Dynamics**

The aforementioned reducibility theorem [52] does not apply directly in the Markovian case, since the set of Lindblad operators $\{\mathbf{F}_\alpha\}$ need not be closed under conjugation. Nevertheless, as shown in [10], the concept of a subsystem applies in the Markovian case as well: the condition for a NS was found to be

$$\mathbf{F}_\alpha \mathbf{P}_d = \mathbf{I}_{n_j} \otimes \mathbf{M}_\alpha(d_j) \mathbf{P}_d, \quad (14)$$

with the \mathbf{M}_α again being arbitrary complex matrices and \mathbf{P}_d being the projection operator onto a given subspace $\mathbb{C}^{n_j} \otimes \mathbb{C}^{d_j}$. The NS is then a factor \mathbb{C}^{n_j} as in Eq. (12), with the same tensor product structure as in Eq. (13).

III. GENERALIZED CONDITIONS FOR DECOHERENCE-FREE SUBSPACES AND SUBSYSTEMS

We now proceed to re-examine the conditions for the existence of decoherence-free subspaces and subsystems. We will show that the conditions presented in the papers laying the general theoretical foundation [4, 6, 8, 11, 31, 32, 51], can be generalized and sharpened, both for CP maps and for Markovian dynamics. Our main new finding is that the preparation step can tolerate arbitrarily large errors. Relatedly, we consider the possibility of leakage from outside of the protected subspace/subsystem into it. Previous studies did not allow for this possibility, but we will show that it can be permitted under appropriate restrictions. In doing so we generalize the definition of a NS with respect to the original definition that relied on the algebraic isomorphism (11) (see Ref. [20] for a related recent result). In the case of Markovian dynamics, our main new finding is that if one demands perfect initialization into a DFS then the condition on the Hamiltonian component of the evolution is modified compared to previous studies.

The derivation of these results is somewhat tedious. Hence, for clarity of presentation we focus on presenting our generalized conditions in this section. Mathematical proofs are deferred to the appendices. We begin with...
A. Decoherence-Free Subspaces

The system density matrix \(\rho_S \) is an operator on the entire system Hilbert space \(\mathcal{H}_S \), which we assume to be decomposable into a direct sum as \(\mathcal{H} = \mathcal{H}_{\text{DFS}} \oplus \mathcal{H}_{\text{DFS}^\perp} \). It is convenient for our purposes to represent the system state (and later on the Kraus and Lindblad operators) in a matrix form whose block structure corresponds to this decomposition of the Hilbert space. Thus the system density matrix takes the form

\[
\rho_S = \begin{pmatrix} \rho_{\text{DFS}} & \rho_2 \\ \rho_2^\dagger & \rho_3 \end{pmatrix}, \tag{15}
\]

We also define a projector

\[
P_{\text{DFS}} = \begin{pmatrix} I_{\text{DFS}} & 0 \\ 0 & 0 \end{pmatrix}, \tag{16}
\]

so that \(\rho_{\text{DFS}} = P_{\text{DFS}} \rho_S P_{\text{DFS}}^\dagger \). Finally,

\[
P_d = \begin{pmatrix} I_{\text{DFS}} & 0 \\ 0 & 0 \end{pmatrix}, \quad P_{d^\perp} = \begin{pmatrix} 0 & 0 \\ 0 & I_{\text{DFS}} \end{pmatrix} \tag{17}
\]

are projection operators onto \(\mathcal{H}_{\text{DFS}} \) and \(\mathcal{H}_{\text{DFS}^\perp} \), respectively.

1. Completely Positive Maps

The original concept of a DFS, Eq. 11, poses a practical problem: the perfect initialization of a quantum system inside a DFS might be challenging in many cases. Therefore we introduce a generalized definition to relax this constraint:

Definition 1 Let the system Hilbert space \(\mathcal{H}_S \) decompose into a direct sum as \(\mathcal{H} = \mathcal{H}_{\text{DFS}} \oplus \mathcal{H}_{\text{DFS}^\perp} \), and partition the system state \(\rho_S \) accordingly into blocks, as in Eq. 15. Assume \(\rho_{\text{DFS}}(0) = P_{\text{DFS}} \rho_S(0) P_{\text{DFS}}^\dagger \neq 0 \). Then \(\mathcal{H}_{\text{DFS}} \) is called decoherence-free if the initial and final DFS-blocks of \(\rho_S \) are unitarily related:

\[
\rho_{\text{DFS}}(t) = U_{\text{DFS}} \rho_{\text{DFS}}(0) U_{\text{DFS}}^\dagger, \quad \tag{18}
\]

where \(U_{\text{DFS}} \) is a unitary matrix acting on \(\mathcal{H}_{\text{DFS}} \).

Definition 2 Perfect initialization (DF subspaces): \(\rho_2 = 0 \) and \(\rho_3 = 0 \) in Eq. 15.

Definition 3 Imperfect initialization (DF subspaces): \(\rho_2 \) and/or \(\rho_3 \) in Eq. 15 are non-vanishing.

We prove in Appendix A.1

Theorem 1 Assume imperfect initialization. Let \(U \) be unitary, \(c_\alpha \) scalars satisfying \(\sum c_\alpha^2 = 1 \), and \(B_\alpha \) arbitrary operators on \(\mathcal{H}_{\text{DFS}^\perp} \) satisfying \(\sum B_\alpha^\dagger B_\alpha = I_{\text{DFS}^\perp} \). A necessary and sufficient condition for the existence of a DFS with respect to CP maps is that the Kraus operators have a matrix representation of the form

\[
B_\alpha = \begin{pmatrix} c_\alpha U & 0 \\ 0 & B_\alpha \end{pmatrix}. \tag{19}
\]

This form is identical to the previous result [6], with the important distinction that due to the new definition of a DFS, Eq. 18, the theorem holds not just for states initialized perfectly into \(\mathcal{H}_{\text{DFS}} \), but for arbitrary initial states. Note that unlike fault-tolerant QECC, where the initial state must be sufficiently close to a valid code state \([9]\), here the initial state can be arbitrarily far from a DFS-code state, as long as the initial projection into the DFS is non-vanishing.

These observations lead us to reconsider the original definition, wherein the system is initialized inside the DFS. This situation admits more general Kraus operators. Specifically, we prove Appendix A.1 that:

Corollary 1 Assume perfect initialization. Then the DFS condition is:

\[
E_\alpha = \begin{pmatrix} c_\alpha U & A_\alpha \\ 0 & B_\alpha \end{pmatrix}, \tag{20}
\]

where \(U \) is unitary.

Note that due to the sum rule \(\sum c_\alpha^2 = 1 \) the otherwise arbitrary operators \(A_\alpha \) and \(B_\alpha \) satisfy the constraints (i) \(\sum A_\alpha^\dagger A_\alpha + B_\alpha^\dagger B_\alpha = I_{\text{DFS}^\perp} \) and (ii) \(\sum c_\alpha A_\alpha = 0 \), and where additionally the scalars \(c_\alpha \) satisfy (iii) \(\sum c_\alpha^2 = 1 \).

In contrast to the diagonal form in the previous conditions \([6]\) and \([10]\), Eq. 20 allows for the existence of the off-diagonal term \(A_\alpha \), which permits leakage from \(\mathcal{H}_{\text{DFS}} \) into \(\mathcal{H}_{\text{DFS}^\perp} \). This more general form of the Kraus operators imply that a larger class of noise processes allow for the existence of DFSs, as compared to the previous conditions \([6]\).

2. Unital Maps

A unital (sometimes called bi-stochastic) channel is a CP map \(\Phi(\rho) = \sum E_\alpha \rho E_\alpha^\dagger \) that preserves the identity operator: \(\Phi(I) = \sum E_\alpha^\dagger E_\alpha = I \). Consider the fixed points of \(\Phi \), i.e., \(\text{Fix}(\Phi) \equiv \{ \rho : \Phi(\rho) = \rho \} \). Such states,

\footnote{We re-emphasize that Theorem 1 in \([35]\) is compatible with Eq. 20: the latter generalizes the explicit matrix representation Eq. (4) given in that paper [condition \(c_\alpha \) in the present paper], but does not invalidate Theorem 1 in \([35]\).}
which are invariant under Φ, are clearly examples of DF-states of the corresponding channel.

Recently it has been shown that the fixed point set of unital CP maps is the commutant of the algebra generated by Kraus operators \(\rho_{\Phi} = 0 \). In other words, if \mathcal{E} is the set of all polynomials in $\{E_\alpha\}$, or $\mathcal{E} = \text{Alg}\{E_\alpha\}$, then

$$\text{Fix}(\Phi) = \{ T \in \mathcal{B}(\mathcal{H}) : [T, \mathcal{E}] = 0 \},$$

(21)

where $\mathcal{B}(\mathcal{H})$ is the (Banach) space of all bounded operators on the Hilbert space \mathcal{H}. In other words, the fixed points of a unital CP map, which are DF states, can alter-vi.

Consider the generalized DFS-condition \(\rho_{\Phi} = 0 \) applied to unital maps. We have

$$\Phi(\rho) = \sum_\alpha \left(c_\alpha I_{\text{DFS}} A_\alpha \right) \rho \left(c_\alpha I_{\text{DFS}} B_\alpha^\dagger \right).$$

(22)

Unitarity, $\Phi(I) = I$, together with $\sum_\alpha |c_\alpha|^2 = 1$ implies:

$$\left(I_{\text{DFS}} + \sum_\alpha A_\alpha A_\alpha^\dagger \sum_\alpha A_\alpha B_\alpha \right) = I.$$

(23)

This implies the vanishing of the matrices A_α, so that we are left with the Kraus operators in the simple block-diagonal form:

$$E_\alpha = \begin{pmatrix} c_\alpha I & 0 \\ 0 & B_\alpha \end{pmatrix},$$

(24)

together with the additional constraint $\sum_\alpha B_\alpha B_\alpha^\dagger = I_{\text{DFS}}$, which, in the present unital case, naturally supplements the previously derived normalization constraint $\sum_\alpha B_\alpha^\dagger B_\alpha = I_{\text{DFS}}$. Thus, unitarity restricts the class of Kraus operators, so that in fact we must assume the DFS-condition \(10 \) rather than \(20 \). This then means that we may consider the generalized DFS definition Eq. \(13 \).

Next, let us find the commutant of this class of Kraus operators. First,

$$\text{Alg}\{E_\alpha\} = \{ \text{poly}(c_\alpha) I \}$$

(25)

where $\text{poly}(x)$ denotes all possible polynomials in x. Representing an arbitrary operator $T \in \mathcal{B}(\mathcal{H})$ in the form

$$T = \begin{pmatrix} L & M \\ N & P \end{pmatrix},$$

(26)

it is simple to derive that the commutant of $\text{Alg}\{E_\alpha\}$ is the space of matrices T of the form

$$T = \begin{pmatrix} L & 0 \\ 0 & cI \end{pmatrix},$$

(27)

where L and c are arbitrary. The aforementioned theorem states that the fixed-point set of the channel, i.e., the DF states, coincides with this commutant. Of course, for T to be a proper quantum state it must be Hermitian and have unit trace, whence $c \geq 0$ and L is Hermitian. Subject to these constraints we see that the aforementioned theorem \(53 \) gives a sufficient, but not necessary characterization of the allowed DF states. Indeed, the form \(27 \) gives us a special case of our considerations, where we allow T to be a state with support in \mathcal{H}_{DFS}^\perp, but not of the most general form allowed by Eq. \(18 \), which includes off-diagonal blocks.

3. Markovian Dynamics

In the case of CP maps we are only interested in the output state and the intermediate-time states are ignored. Since, as is well known, Markovian dynamics is a special case of CP maps (e.g., \(47, 50 \)), one may of course apply the results we have obtained above for general CP maps in the Markovian case as well, provided one is only interested in the state at the end of the Markovian channel. However, one may instead be interested in a different notion of decoherence-freeness, wherein the system remains DF throughout the entire evolution. Such a notion is more suited to experiments in which the final time is not a priori known. This is the notion we will pursue here in our treatment of continuous-time dynamics, in both the Markovian and non-Markovian cases. Thus, while we allow that the system not be fully initialized into the DFS, we require that the component that is, undergoes unitary dynamics at all times. Correspondingly, we define a DFS in the Markovian case as follows:

Definition 4 Let the system Hilbert space \mathcal{H} decompose into a direct sum as $\mathcal{H} = \mathcal{H}_{DFS} \oplus \mathcal{H}_{DFS}^\perp$, and partition the system state ρ_S accordingly into blocks. Let ρ_{DFS} be a projector onto \mathcal{H}_{DFS} and assume $\rho_{DFS}(0) = P_{DFS} \rho(S(0)) P_{DFS}^\dagger \neq 0$. Then \mathcal{H}_{DFS} is called decoherence-free iff ρ_{DFS} undergoes Schrödinger-like dynamics,

$$\frac{\partial \rho_{DFS}}{\partial t} = -i[H_{DFS}, \rho_{DFS}],$$

(28)

where H_{DFS} is a Hermitian operator.

Before presenting the DFS conditions, let us recall the quantum trajectories interpretation of Markovian dynamics \(52, 55, 56 \). Expanding Eq. \(7 \) to first order in the short time-interval τ yields the CP map

$$\rho_S(t + \tau) = \sum_{\beta=0} W_\beta \rho(t) W_\beta^\dagger,$$

(29)

where

$$W_0 = I - i\tau H_S - \frac{\tau}{2} \sum_\alpha F_\alpha F_\alpha^\dagger,$$

(30)

$$W_{\beta > 0} = \sqrt{\tau} F_\beta,$$

(31)
and to the same order we also have the normalization condition

$$\sum_{\beta=0}^{\infty} W_\beta^\dagger W_\beta = I.$$ \hspace{1cm} (32)

Thus the Lindblad equation has been recast as a Kraus operator sum \(2\), but only to first order in \(\tau\), the coarse-graining time scale for which the Markovian approximation is valid \(50\). This implies a measurement interpretation, wherein the system state is \(\rho_S(t + \tau) = W_\beta \rho(t) W_\beta^\dagger / \rho_\beta\) (to first-order in \(\tau\)) with probability \(\rho_\beta = \text{Tr}[W_\beta^\dagger(t)W_\beta]\). This happens because the bath functions as a probe coupled to the system while being subjected to a quasi-continuous series of measurements at each infinitesimal time interval \(\tau\) \(53, 54, 55\), wherein the measurement operators are \(W_0 \approx \exp(-i\tau H_c)\), the “conditional” evolution, generated by the non-Hermitian “Hamiltonian”

$$H_c = H_S - \frac{i}{2} \sum_\alpha F_\alpha^\dagger F_\alpha,$$ \hspace{1cm} (33)

and \(\sqrt{\tau} F_\beta\) (the “jump”). Note that \(H_S\) is here meant to include all renormalization effects due to the system-bath interaction, e.g., a possible Lamb shift (see, e.g., Ref. \(50\)). By a simple algebraic rearrangement one can rewrite the Lindblad equation in the following form:

$$\dot{\rho}_S = -i[H_c, \rho_S] + \sum_\alpha F_\alpha^\dagger \rho_S F_\alpha,$$ \hspace{1cm} (34)

where according to the above interpretation the first term generates non-unitary dynamics, while the second is responsible for the quantum jumps.

Now recall the Markovian DFS condition derived in Refs. \(4 \) \(8\): the Lindblad operators should have trivial action on DFS-states, as in Eq. \(8\), i.e., \(F_\alpha|i\rangle = c_\alpha |i\rangle\). Viewed from the perspective of the quantum-jump picture of Markovian dynamics, this implies that the jump operators do not alter a DFS-state, i.e., the term \(\sum_\alpha F_\alpha \rho_S F_\alpha^\dagger\) in Eq. \(34\) transforms \(\rho_S\) to \(\sum_\alpha |c_\alpha|^2 \rho_S\) and thus has trivial action.

Given Eq. \(3\), the Lindblad operators can be written in block-form as follows [Eq. \(9\)]:

$$F_\alpha = \begin{pmatrix} c_\alpha I & A_\alpha \\ 0 & B_\alpha \end{pmatrix},$$ \hspace{1cm} (35)

with the blocks on the diagonal corresponding once again to operators restricted to \(\mathcal{H}_{DFS}\) and \(\mathcal{H}_{DFS^\perp}\). Note the appearance of the off-diagonal block \(A_\alpha\) mixing \(\mathcal{H}_{DFS}\) and \(\mathcal{H}_{DFS^\perp}\); its presence is permitted since the DFS condition \(3\) gives no information about matrix elements of the form \(\langle i |F_\alpha^\dagger j\rangle\), with \(|i\rangle \in \mathcal{H}_{DFS}\) and \(|j\rangle \in \mathcal{H}_{DFS^\perp}\).

As observed in \(3\), one should in addition require that \(H_S\) does not mix DF states with non-DF ones. It turns out that this condition is compatible with the case that the DF state is imperfectly initialized (Definition \(3\)). In this case, as shown in Appendix \(\text{A.2}\), the following theorem holds:

Theorem 2 Assume imperfect initialization. Then a subspace \(\mathcal{H}_{DFS}\) of the total Hilbert space \(\mathcal{H}\) is decoherence-free with respect to Markovian dynamics iff the Lindblad operators \(F_\alpha\) and the system Hamiltonian \(H_S\) assume the block-diagonal form

$$H_S = \begin{pmatrix} H_{DFS} & 0 \\ 0 & H_{DFS^\perp} \end{pmatrix}, \quad F_\alpha = \begin{pmatrix} c_\alpha I & 0 \\ 0 & B_\alpha \end{pmatrix},$$ \hspace{1cm} (36)

where \(H_{DFS}\) and \(H_{DFS^\perp}\) are Hermitian, \(c_\alpha\) are scalars, and \(B_\alpha\) are arbitrary operators on \(\mathcal{H}_{DFS^\perp}\).

But, as is clear from the quantum jumps picture, in particular Eqs. \(35, 36\), there also exists a non-Hermitian term, which appears not to be addressed properly by merely restricting \(H_S\). Indeed, this is the case if one demands that the system state is perfectly initialized into the DFS (Definition \(2\)). As shown in Appendix \(\text{A.2}\), the full condition on the Hamiltonian term then is:

$$\langle i |(-i H_S + \frac{1}{2} \sum_\alpha F_\alpha^\dagger F_\alpha) k\rangle = 0, \quad \forall i, k\perp,$$ \hspace{1cm} (37)

where \(|i\rangle \in \mathcal{H}_{DFS}\), \(|k\perp\rangle \in \mathcal{H}_{DFS^\perp}\). Applying the DFS conditions \(4, 37\), the Lindblad equation \(4\) reduces to the Schrödinger-like equation \(28\). Combining these results, we have:

Theorem 3 Assume perfect initialization. Then a subspace \(\mathcal{H}_{DFS}\) of the total Hilbert space \(\mathcal{H}\) is decoherence-free with respect to Markovian dynamics iff the Lindblad operators \(F_\alpha\) and Hamiltonian \(H_S\) satisfy

$$F_\alpha = \begin{pmatrix} c_\alpha I & A_\alpha \\ 0 & B_\alpha \end{pmatrix},$$ \hspace{1cm} (38)

$$\mathcal{P}_{DFS} H_S \mathcal{P}_{DFS}^\dagger = -\frac{i}{2} \sum_\alpha c_\alpha^2 A_\alpha.$$ \hspace{1cm} (39)

Note that \(H_S\) (which, again, includes the Lamb shift) must satisfy a more stringent constraint than previously noted due to the extra condition on its off-diagonal block. This has implications in examples of practical interest, as we next illustrate.

4. Example (significance of the new condition on the off-diagonal blocks of \(H_S\))

We present an example meant to demonstrate how the new constraint, Eq. \(39\) [or, equivalently, Eq. \(35\)], may lead to a different prediction than the old constraint, that matrix elements of the type \(\langle j\perp | H_S |i\rangle\), with \(|i\rangle \in \mathcal{H}_{DFS}\) and \(|j\perp\rangle \in \mathcal{H}_{DFS^\perp}\), should vanish.

Consider a system of three qubits interacting with a common bath. The system is under influence of the bath
via: 1) Spontaneous emission from the highest level \(|111\rangle \) to the lower levels, 2) Dephasing of the first and the second qubits. For simplicity we set the system and bath Hamiltonians, \(H_S \) and \(H_B \), to zero. The total Hamiltonian then contains only the system-bath interaction:

\[
H_I = \lambda_1 (\sigma_1^+ \sigma_2^- + \sigma_2^+ \sigma_3^-) \otimes B + \lambda_2 [(\sigma_1^- + \sigma_2^- + \sigma_3^-) \otimes b^\dagger + (\sigma_1^+ + \sigma_2^+ + \sigma_3^+) \otimes b],
\]

where

\[
\sigma_1^- = |001\rangle\langle 111|, \quad \sigma_2^- = |010\rangle\langle 111|, \quad \sigma_3^- = |100\rangle\langle 111|,
\]

and \(b \) is a bosonic annihilation operator.

The corresponding Lindblad equation may be derived, e.g., using the method developed in Ref. \[51\]. It may then be shown that

\[
\mathcal{L}[\rho_S] = \frac{1}{2} \sum_{i=1}^{2} [F_i, \rho_S F_i^\dagger] + [F_i \rho_S, F_i^\dagger],
\]

where the Lindblad operators are

\[
F_1 = \sqrt{d_1} (u_{11} K_1 + u_{12} K_2), \quad F_2 = \sqrt{d_2} (u_{21} K_1 + u_{22} K_2).
\]

Here \(K_1 = \sigma_1^+ + \sigma_2^+ \), \(K_2 = \sigma_1^- + \sigma_2^- + \sigma_3^- \), and \(\{d_1, d_2\} \) are the eigenvalues of the Hermitian matrix \(A = [a_{ij}] \) of coefficients in the pre-diagonalized Lindblad equation, with the diagonalizing matrix denoted \(U = [u_{ij}] \).

Now let us find the DFS conditions under the assumption of perfect initialization. The previously-derived Eq. \[8\] yields that \(\{\langle 000|, |001\rangle\} \) is a DFS, since \(K_2 \) annihilates these states, and they are both eigenstates of \(K_1 \) with an eigenvalue of +2:

\[
F_1|000\rangle = 2 \sqrt{d_1} u_{11} |000\rangle, \quad F_2|000\rangle = 2 \sqrt{d_2} u_{21} |000\rangle
\]

\[
F_1|001\rangle = 2 \sqrt{d_1} u_{11} |001\rangle, \quad F_2|001\rangle = 2 \sqrt{d_2} u_{21} |001\rangle.
\]

However, the new condition \[37\] tightens the situation. Choosing as representatives the states \(|001\rangle \in \mathcal{H}_{DFS} \) and \(|111\rangle \in \mathcal{H}_{DFS^2} \), we find from Eq. \[37\]:

\[
\langle 001| \sum_{a=1}^{2} F_a^\dagger F_a |111\rangle = 2d_1 u_{11}^* u_{12} + 2d_2 u_{21}^* u_{22} = 0.
\]

Since \(u_{11}^* u_{12} + u_{21}^* u_{22} = 0 \) (from unitarity of \(U \)), we see that the new condition imposes the extra symmetry constraint \(d_1 = d_2 \). This example illustrate the importance of the new condition, Eq. \[37\].

B. Noiseless Subsystems

We now consider again the more general setting of subsystems, rather than subspaces.

1. Completely Positive Maps

Suppose the system Hilbert space can be decomposed as \(\mathcal{H}_S = \mathcal{H}_{NS} \otimes \mathcal{H}_{in} \otimes \mathcal{H}_{out} \), where \(\mathcal{H}_{NS} \) is the factor in which quantum information will be stored. The subspace \(\mathcal{H}_{out} \) may itself have a tensor product structure, i.e., additional factors similar to \(\mathcal{H}_{NS} \) may be contained in it [as in Eq. \[12\], but we shall not be interested in these other factors since the direct sum structure implies that different noiseless factors cannot be used simultaneously in a coherent manner. As in the DF subspace case considered above, we allow for the most general situation of a system that is not necessarily initially DF. To make this notion precise, let us generalize the definitions of the projector \(P_{DFS} \) and projection operators \(P_d, P_{d^\perp} \) given in the DFS case, as follows:

\[
P_{NS-in} = \begin{pmatrix} I_{NS} \otimes I_{in} & 0 \end{pmatrix},
\]

\[
P_d = \begin{pmatrix} I_{NS} \otimes I_{in} & 0 \\ 0 & 0 \end{pmatrix}, \quad P_{d^\perp} = \begin{pmatrix} 0 & 0 \\ 0 & I_{NS} \otimes I_{in} \end{pmatrix}.
\]

There is no risk of confusion in using the DFS notation, \(P_d \), for the NS case, as the DFS case is obtained when \(I_{in} \) is a scalar.

The system density matrix takes the corresponding block form

\[
\rho_S = \begin{pmatrix} \rho_{NS-in} & \rho_{in} \\ \rho_{in}^\dagger & \rho_{out} \end{pmatrix}.
\]

Definition 5 Let the system Hilbert space \(\mathcal{H}_S \) decompose as \(\mathcal{H}_S = \mathcal{H}_{NS} \otimes \mathcal{H}_{in} \otimes \mathcal{H}_{out} \), and partition the system state \(\rho_S \) accordingly into blocks, as in Eq. \[47\]. Assume \(\rho_{NS-in}(0) = P_{NS-in} \rho_S(0) P_{NS-in}^\dagger \neq 0 \). Then the factor \(\mathcal{H}_{NS} \) is called a decoherence-free (or noiseless) subsystem if the following condition holds:

\[
\text{Tr}_{in} \{\rho_{NS-in}(t)\} = U_{NS} \text{Tr}_{in} \{\rho_{NS-in}(0)\} U_{NS}^\dagger,
\]

where \(U_{NS} \) is a unitary matrix acting on \(\mathcal{H}_{NS} \).

Definition 6 Perfect initialization (DF subsystems): \(\rho' = 0 \) and \(\rho_{out} = 0 \) in Eq. \[49\].

Definition 7 Imperfect initialization (DF subsystems): \(\rho' \) and/or \(\rho_{out} \) in Eq. \[49\] are non-vanishing.

According to Definition \[5\] a quantum state encoded into the \(\mathcal{H}_{NS} \) factor at some time \(t \) is unitarily related to the \(t = 0 \) state. The factor \(\mathcal{H}_{in} \) is unimportant, and hence is traced over. Clearly, a NS reduces to a DF subspace when \(\mathcal{H}_{in} \) is one-dimensional, i.e., when \(\mathcal{H}_{in} = \mathbb{C} \).

We now present the necessary and sufficient conditions for a NS and later we show that the algebra-dependent definition, Eq. \[10\], is a special case of this generalized form. In stating constraints on the form of the Kraus operators, below, it is understood that in addition they must satisfy the sum rule \(\sum_a E_a^\dagger E_a = I \), which we do not specify explicitly.
Assume imperfect initialization. Then a subsystem \(\mathcal{H}_{\text{NS}} \) in the decomposition \(\mathcal{H}_S = \mathcal{H}_{\text{NS}} \otimes \mathcal{H}_{\text{in}} \oplus \mathcal{H}_{\text{out}} \) is decoherence-free (or noiseless) with respect to CP maps iff the Kraus operators have the matrix representation

\[
E_\alpha = \begin{pmatrix} U \otimes C_\alpha & 0 \\ 0 & B_\alpha \end{pmatrix}
\]

(50)

Corollary 2 Assume perfect initialization. Then the Kraus operators have the relaxed form

\[
E_\alpha = \begin{pmatrix} U \otimes C_\alpha & A_\alpha \\ 0 & B_\alpha \end{pmatrix}
\]

(51)

We note that this result has been recently derived from an operator quantum error correction perspective in Ref. [20]. Note again that there is a trade-off between the quality of preparation and the amount of leakage that can be tolerated, a fact that was not noted previously for subsystems, and has important experimental implications.

As discussed above, the original definition of a NS was based on representation theory of the error algebra. Here we have argued in favor of a more comprehensive definition, based on the quantum channel picture. Let us now state explicitly why our result is more general. Indeed, in the algebraic approach one arrives at a state subject to Eq. (52), undergoes continuous unitary evolution:

\[
\dot{\rho}_{\text{NS}} = i[M, \rho_{\text{NS}}],
\]

(53)

where \(M \) is Hermitian.

Clearly, again, a NS reduces to a DF subspace when \(\mathcal{H}_{\text{in}} \) is one-dimensional, i.e., when \(\mathcal{H}_{\text{in}} = \mathbb{C} \).

Our goal is to find necessary and sufficient conditions such that Eq. (52) leads to Eq. (53). In the case of perfect initialization, since it does not involve \(\mathcal{H}_{\text{out}} \), Eq. (52) is meaningful only if the system remains in the subspace \(\mathcal{H}_{\text{NS}} \otimes \mathcal{H}_{\text{in}} \). An analysis of Eq. (52) reveals that this leakage-prevention goal is achieved by imposing the constraints stated in the following theorem, proven in Appendix A.2.

Theorem 5 Assume perfect initialization. Then a subsystem \(\mathcal{H}_{\text{NS}} \) in the decomposition \(\mathcal{H}_S = \mathcal{H}_{\text{NS}} \otimes \mathcal{H}_{\text{in}} \oplus \mathcal{H}_{\text{out}} \) is decoherence-free (or noiseless) with respect to Markovian dynamics iff the Lindblad operators have the matrix representation

\[
F_\alpha = \begin{pmatrix} I_{\text{NS}} \otimes C_\alpha & A_\alpha \\ 0 & B_\alpha \end{pmatrix}
\]

(54)

and the system Hamiltonian (including a possible Lamb shift) has the matrix representation

\[
H_S = \begin{pmatrix} H_{\text{NS}} \otimes I_{\text{in}} + I_{\text{NS}} \otimes H_{\text{in}} & H_2 \\ H_2 & H_3 \end{pmatrix}
\]

(55)

where \(H_{\text{in}} \) is constant along its diagonal, and where

\[
H_2 = -\frac{i}{2} \sum_\alpha (I_{\text{NS}} \otimes C_\alpha^d) A_\alpha.
\]

Eqs. (54), (55) are new additional constraints on the Lindblad operators (compared to Ref. [10]) which must be satisfied in order to find a NS.

If, on the other hand, we allow for imperfect initialization, we find a different set of conditions:

Theorem 6 Assume imperfect initialization. Then a subsystem \(\mathcal{H}_{\text{NS}} \) in the decomposition \(\mathcal{H}_S = \mathcal{H}_{\text{NS}} \otimes \mathcal{H}_{\text{in}} \oplus \mathcal{H}_{\text{out}} \) is decoherence-free (or noiseless) with respect to Markovian dynamics iff the Lindblad operators have the matrix representation

\[
F_\alpha = \begin{pmatrix} I_{\text{NS}} \otimes C_\alpha & 0 \\ 0 & B_\alpha \end{pmatrix}
\]

(57)

and the system Hamiltonian (including a possible Lamb shift) has the matrix representation

\[
H = \begin{pmatrix} H_{\text{NS}} \otimes I_{\text{in}} + I_{\text{NS}} \otimes H_{\text{in}} & 0 \\ 0 & H_{\text{out}} \end{pmatrix}
\]

(58)

IV. PERFORMANCE OF QUANTUM ALGORITHMS OVER IMPERFECTLY INITIALIZED DFSs

In this section we discuss applications of our generalized formulation of DFSs to quantum algorithms.
As mentioned above, a major obstacle to exploiting decoherence-free methods is the unrealistic assumption of perfect initialization inside a DFS. Removing this constraint enables us to perform algorithms without perfect initialization, while not suffering from information loss. We separate the role of an initialization error in the algorithm (i.e., starting from an imperfect input state), from the effect of noise in the output due to environment-induced decoherence. Thus we first quantify an error entirely due to incorrect initialization (Δ_{leak} below), then compare the DFS situations prior and post this work, by relating them to Δ_{leak}.

1) Initialization error in the absence of decoherence: Assume no decoherence at all, that the initial state is

$$\rho_{\text{actual}}(0) = \begin{pmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{pmatrix},$$

(59)

while the ideal input state is fully in the DFS:

$$\rho_{\text{ideal}}(0) = \begin{pmatrix} \rho_0 & 0 \\ 0 & 0 \end{pmatrix}.$$

(60)

Further assume that the algorithm is implemented via unitary transformations $U = U_{DFS} \oplus I_{DFS^2}$, applied to \mathcal{H}_{DFS}. In general this will lead to an output error in the algorithm, which can be quantified as

$$\Delta_{\text{leak}} = ||U \rho_{\text{actual}}(0) U^\dagger - U \rho_{\text{ideal}}(0) U^\dagger||.$$

(61)

where $||\cdot||$ denotes an appropriate operator norm. This error appears not because of decoherence but because of an erroneous initial state. This is a generic situation in quantum algorithms, which is not special to the DFS case: Eq. (59) is generic in the sense that one can view the DFS block as the computational subspace, with the other blocks representing additional levels (e.g., a qubit which is embedded in a larger Hilbert space). Methods for correcting such deviations from the ideal result exist (leakage elimination), but are beyond the scope of this paper.

2) Initialization error in the presence of decoherence: Assume that the input state is imperfectly initialized, as in Eq. (59), and in addition there is decoherence, i.e.,

$$\rho_{\text{actual}}(t) = \sum_\alpha E_\alpha(t) \rho_{\text{actual}}(0) E_\alpha^\dagger(t),$$

(62)

with the Kraus operators given by Eq. (19) [the form compatible with decoherence-free evolution starting from $\rho_{\text{actual}}(0)$]. Prior to our work it was believed that for an imperfect initial state of the form $\rho_{\text{actual}}(0)$, leakage due to the components ρ_2 and ρ_3 would cause non-unitary evolution of the DFS component. Thus instead of an error $U_{DFS}(\rho_1 - \rho) U_{DFS}^\dagger$ in the DFS block of Eq. (11), it was believed that one had $\mathcal{E}(\rho_1) - U_{DFS} \rho U_{DFS}^\dagger$ where \mathcal{E} is an appropriate superoperator component. This would have led to a reduced algorithmic fidelity, $\Delta_{\text{leak}} < \Delta_{\text{leak}}$. However, we now know that even for an initial state of the form $\rho_{\text{actual}}(0)$, when the Kraus operators are given by Eq. (19) the actual algorithmic fidelity is still given by Δ_{leak}, since in fact the evolution of the DFS block is still unitary.

The above arguments apply when imperfect initializations are unavoidable but one knows the component ρ_1. A worse (though perhaps more typical) scenario is one where not only is imperfect initialization unavoidable, but one does not even know the component ρ_1. In this case the above arguments apply in the context of algorithms that allow arbitrary input states. Almost all the important examples of quantum algorithms are now known to have a flexibility of this type: Grover’s algorithm was the first to be generalized to allow for arbitrary input states, first pure [24, 25, 26], then mixed [27]; Shor’s algorithm [21] can run efficiently with a single pure qubit and all other qubits in an arbitrary mixed state [28]; a similar result applies to a class of interesting physics problems, such as finding the spectrum of a Hamiltonian [29]; the Deutsch-Josza [23] algorithm was generalized to allow for arbitrary input states [30], and a similar result holds for an algorithm that performs the functional phase rotation (a generalized form of the conventional conditional phase transform) [31]. Most recently it was shown that Simon’s problem and the period-finding problem can be solved quantumly without initializing the auxiliary qubits [32].

For algorithms that do not allow arbitrary input states, one could still make use of the flexibility we have introduced into DFS state initialization, provided it is possible to apply post-selection: one modifies the output error of the algorithm by observing whether the measurement outcome came from the DFS block or not (this could be done, e.g., via frequency-selective measurements, similar to the cycling transition method used in trapped-ion quantum computing [23]).

V. DECOHERENCE FREE SUBSPACES AND SUBSYSTEMS IN NON-MARKOVIAN DYNAMICS

A. Decoherence Free Subspaces

In Ref. [33] a new class of non-Markovian master equations was introduced. The following equation was derived as an analytically solvable example of this class:

$$\frac{\partial \rho_S}{\partial t} = -i[H_S, \rho_S] + \mathcal{L} \int_0^t dt' k(t') \exp(\mathcal{L} t') \rho_S(t' - t')$$

(63)

where \mathcal{L} is Lindblad super-operator and $k(t)$ represents the memory effects of the bath. The Markovian limit is
clearly recovered when \(k(t) \propto \delta(t) \).

Some examples of physical systems which can be described by this master equation are (i) a two-level atom coupled to a single cavity mode, wherein the memory function is exponentially decaying, \(k(t) = e^{-t} \), and (ii) a single qubit subject to telegraph noise in the particular case that \(||L|| \ll 1/t \); whence Eq. (63) reduces to

\[
\dot{\rho}_S = \mathcal{L} \int_0^t dt' k(t') \rho(t')
\]

It is interesting to investigate the conditions for a DFS in the case of dynamics governed by Eq. (63), and to compare the results with the Markovian limit, \(k(t) \propto \delta(t) \). We defer proofs to Appendix A and here present only the DFS-condition, stated in the following theorem (note that, similarly to the Markovian case, we consider here a continuous-time DFS).

Theorem 7 Assume imperfect initialization. Then a subspace \(\mathcal{H}_{DFS} \) is decoherence free iff the system Hamiltonian \(H_S \) and Lindblad operators \(F_\alpha \) have the matrix representation

\[
H_S = \begin{pmatrix} H_{DFS} & 0 \\ 0 & H_{DFS^+} \end{pmatrix}, \quad F_\alpha = \begin{pmatrix} c_\alpha I & 0 \\ 0 & B_\alpha \end{pmatrix}
\]

(64)

These conditions are identical to those we found in the case of Markovian dynamics with imperfect initialization – cf. Theorem 2. This fact provides evidence for the robustness of decoherence-free states against variations in the nature of the decoherence process.

Interestingly, the conditions under the assumption of perfect initialization differ somewhat when comparing the Markovian and non-Markovian cases:

Corollary 3 Assume perfect initialization. Then a subspace \(\mathcal{H}_{DFS} \) is decoherence free iff the system Hamiltonian \(H_S \) and Lindblad operators \(F_\alpha \) have the matrix representation

\[
H_S = \begin{pmatrix} H_{DFS} & 0 \\ 0 & H_{DFS^+} \end{pmatrix}, \quad F_\alpha = \begin{pmatrix} c_\alpha I & A_\alpha \\ 0 & B_\alpha \end{pmatrix}
\]

(65)

and \(\sum_{\alpha} c_\alpha^* A_\alpha = 0 \) (66)

Compared to the Markovian case (Theorem 2), the difference is that now the off-diagonal blocks of the Hamiltonian must vanish, whereas in the Markovian case we had the constraint [Eq. (39)] \(P_{DFS} H_S P_{DFS}^\dagger = -\frac{1}{2} \sum_{\alpha} c_\alpha^* A_\alpha \).

2 We note that Ref. 33 contains a small error: the Markovian limit is recovered for \(k(t) = \delta(t) \) only if the lower limit in Eq. (63) is \(-t\) instead of \(t\). This change can easily be applied to the derivation of Ref. 33.

B. Decoherence Free Subsystems

We now consider the NS case. The dynamics governing a NS is derived by tracing out \(\mathcal{H}_{in} \):

\[
\frac{\partial \rho_{NS}}{\partial t} = \frac{\partial \text{Tr}_{in} (\rho_S)}{\partial t} = \text{Tr}_{in} \{ \frac{\partial \rho_S}{\partial t} \}
\]

\[
= \text{Tr}_{in} \{ -i [H_S, \rho_S] \}
\]

\[
+ \mathcal{L} \int_0^t dt' k(t') \exp(\mathcal{L} t') \rho_S(t-t') \}
\]

(67)

Theorem 8 Assume imperfect initialization. Then a subsystem \(\mathcal{H}_{NS} \) in the decomposition \(\mathcal{H}_S = \mathcal{H}_{NS} \otimes \mathcal{H}_{in} \otimes \mathcal{H}_{out} \) is decoherence-free (or noiseless) with respect to non-Markovian dynamics [Eq. (63)] iff the Lindblad operators and the system Hamiltonian have the matrix representation

\[
F_\alpha = \begin{pmatrix} I_{NS} \otimes C_\alpha & 0 \\ 0 & B_\alpha \end{pmatrix}
\]

(68)

\[
H_S = \begin{pmatrix} H_{NS} \otimes I_{in} + I_{NS} \otimes H_{in} & 0 \\ 0 & H_{out} \end{pmatrix}
\]

(69)

Note that this form is, once again, identical to the Markovian case with imperfect initialization (cf. Theorem 3).

However, as in the DFS case, the conditions are slightly different between Markovian and non-Markovian dynamics if we demand perfect initialization:

Corollary 4 Assume perfect initialization. Then a subsystem \(\mathcal{H}_{NS} \) in the decomposition \(\mathcal{H}_S = \mathcal{H}_{NS} \otimes \mathcal{H}_{in} \otimes \mathcal{H}_{out} \) is decoherence-free (or noiseless) with respect to non-Markovian dynamics [Eq. (63)] iff the Lindblad operators and the system Hamiltonian have the matrix representation

\[
F_\alpha = \begin{pmatrix} I_{NS} \otimes C_\alpha & A_\alpha \\ 0 & B_\alpha \end{pmatrix}
\]

(70)

\[
\sum_{\alpha} (I_{NS} \otimes C_\alpha^* A_\alpha) = 0,
\]

(71)

\[
H = \begin{pmatrix} H_{NS} \otimes I_{in} + I_{NS} \otimes H_{in} & 0 \\ 0 & H_{out} \end{pmatrix}
\]

(72)

VI. SUMMARY AND CONCLUSIONS

We have revisited the concepts of decoherence-free subspaces and (noiseless) subsystems (DFSs), and introduced definitions of DFSs that generalize previous work. We have analyzed the conditions for the existence of DFSs in the case of CP maps, Markovian dynamics, and (for the first time) non-Markovian continuous-time dynamics. Our main finding implies significantly relaxed demands on the preparation of decoherence-free states: the initial state can be arbitrarily noisy. If, on the other hand, the initial state is perfectly prepared, then almost
arbitrary leakage from outside the DFS into the DFS can be tolerated.

In the case of Markovian dynamics, if one demands perfect initialization, our findings are of an opposite nature: we have shown that then an additional constraint must be imposed on the system Hamiltonian, which implies more stringent conditions for the possibility of manipulating a DFS than previously believed. We have presented an example to illustrate this fact.

We have also shown that the notion of noiseless subsystems, as originally developed using an algebraic approach, admits a generalization when it is instead developed from a quantum channel approach.

Our results have implications for experimental work on DFSs, and in particular on quantum algorithms over DFSs [14, 17]. It is now known that a large class of quantum algorithms can tolerate almost arbitrary preparation errors and still provide an advantage over their classical counterparts [24, 25, 26, 27, 28, 29, 30, 31, 32]. The relaxed preparation conditions for DFSs presented here are naturally compatible with this approach to quantum computation in noisy systems. This should provide further impetus for the experimental exploration of quantum computation over DFSs.

Acknowledgments

D.A.L. gratefully acknowledges financial support from Sloan Foundation. This material is partially based on research sponsored by the Defense Advanced Research Projects Agency under the QuIST program and managed by the Air Force Research Laboratory (AFOSR), under agreement F49620-01-1-0468.

APPENDIX A: PROOFS OF THEOREMS AND COROLLARIES

Here we present proofs of all our results above. We shorten the calculations by starting from the NS case and obtain the DFS conditions as a special case.

1. CP Maps

a. Arbitrary Initial State

Assume the system evolution due to its interaction with a bath is described by a CP map with Kraus operators \{E_\alpha\}:

\[
\rho_S(t) = \sum_\alpha E_\alpha \rho_S(0) E_\alpha^\dagger.
\]

(A1)

Note that here \(\rho_S\) is an operator on the entire system Hilbert space \(\mathcal{H}_S\), which we assume to be decomposable as \(\mathcal{H}_{NS} \otimes \mathcal{H}_{in} \otimes \mathcal{H}_{out}\). From the NS definition, Eq. (19), we have

\[
\begin{align*}
\text{Tr}_{in}\{U \otimes I (\mathcal{P}_{NS-in} \rho_S(0) \mathcal{P}_{NS-in}^\dagger) U^\dagger \otimes I}\} = \\
\text{Tr}_{in}\{\sum_\alpha (\mathcal{P}_{NS-in} E_\alpha) \rho_S(0)(E_\alpha^\dagger \mathcal{P}_{NS-in}^\dagger)\}.
\end{align*}
\]

(A2)

Let us represent the Kraus operators in the same block-structure matrix-form as that of the system state, i.e., corresponding to the decomposition \(\mathcal{H}_S = \mathcal{H}_{NS} \otimes \mathcal{H}_{in} \otimes \mathcal{H}_{out}\), where the blocks correspond to the subspaces \(\mathcal{H}_{NS} \otimes \mathcal{H}_{in}\) (upper-left block) and \(\mathcal{H}_{out}\) (lower-right block). Then

\[
\begin{align*}
\rho_S &= \begin{pmatrix} \rho_1 & \rho_2 \\ \rho_2^\dagger & \rho_3 \end{pmatrix}, \\
E_\alpha &= \begin{pmatrix} P_\alpha & A_\alpha \\ D_\alpha & B_\alpha \end{pmatrix},
\end{align*}
\]

(A3)

(A4)

with appropriate normalization constraints, considered below. Equation (A2) simplifies in this matrix form as

\[
\begin{align*}
\text{Tr}_{in}\{U \otimes I P_\rho U^\dagger \otimes I\} &= \text{Tr}_{in}\{\sum_\alpha P_\alpha P_\rho P_\alpha^\dagger + P_\alpha P_\rho_2 A_\alpha^\dagger + A_\alpha P_\rho_2^\dagger + A_\alpha P_\rho_3 A_\alpha^\dagger\}, \\
&= \text{Tr}_{in}\{\sum_\alpha P_\alpha P_\rho P_\alpha^\dagger \}.
\end{align*}
\]

(A5)

which must hold for arbitrary \(\rho_S(0)\). To derive constraints on the various terms we therefore consider special cases, which yield necessary conditions. First, consider an initial state \(\rho_S(0)\) such that \(\rho_2 = 0\). Then, as the LHS of Eq. (A5) is independent from \(\rho_3\), the last term must vanish:

\[
\sum_\alpha A_\alpha P_\rho_3 A_\alpha^\dagger = 0 \implies A_\alpha = 0.
\]

Further assume \(\rho_1 = |i\rangle \langle i| \otimes |i'\rangle \langle i'|\). Note that the partial matrix element \(\langle i'|P_\alpha|i'\rangle\) is an operator on the \(\mathcal{H}_{NS}\) factor, \(|i\rangle \langle i'|\). Then Eq. (A5) reduces to

\[
|i\rangle \langle i| = \sum_{\alpha,j'} [U^\dagger \langle j'|P_\alpha|i'\rangle] |i\rangle \langle i| [\langle i'|P_\alpha^\dagger |j'\rangle U].
\]

(A7)

Taking matrix elements with respect to \(|i^\perp\rangle\), a state orthogonal to \(|i\rangle\), yields:

\[
0 = \sum_{\alpha,j'} \langle i^\perp | [U^\dagger \langle j'|P_\alpha|i'\rangle] |i\rangle \langle i| [\langle i'|P_\alpha^\dagger |j'\rangle U] = \langle i^\perp \rangle [U^\dagger \langle j'|P_\alpha|i'\rangle] |i\rangle = 0,
\]

(A8)

which, in turn implies that \(U^\dagger \langle j'|P_\alpha|i'\rangle\) is proportional to \(|i\rangle\), i.e.,

\[
\langle j'|P_\alpha|i'\rangle |i\rangle \propto U |i\rangle.
\]

(A9)

Since \(|i'\rangle, |j'\rangle\) are arbitrary this condition implies that the submatrix \(P_\alpha\) must be of the form \(P_\alpha = U \otimes C_\alpha\). Substituting \(P_\alpha = U \otimes C_\alpha\) into Eq. (A3) we have
prove that
\[\rho \]
we have proved Theorems 1 and 4.

These considerations establish the necessity of the rep-

\[D \]
Tr

It follows that
\[\sum \lambda_{ij'j'} |j\rangle \langle j'| \rangle = \sum_{ij'j'k'} \lambda_{ij'j'} |i\rangle \langle k'| C_{ij} |v'\rangle \langle j'| C_{ij} |k'| . \]

Using \(\sum k' |k'\rangle \langle k'| = I_m \), Eq. (A11) becomes
\[\sum_{ij'j'} \lambda_{ij'j'} |j\rangle \langle j'| \rangle = \sum_{ij'j'} \lambda_{ij'j'} |i\rangle \langle j'| \rangle \sum_{\alpha} C_{ij} |C_{ij} |j'\rangle . \]

It follows that
\[\sum_{\alpha} C_{ij} |C_{ij} = I_m . \]

Next consider the normalization constraint
\[\sum_{\alpha} E_{ij} |E_{ij} = I \]
for the Kraus operators, together with the additional constraints we have derived (\(A_\alpha = 0 \), \(P_\alpha = U \otimes C_{\alpha} \)):
\[\sum_{\alpha} P_{\alpha} D_{\alpha} = I_N S \otimes I_m \]
\[\implies I_N S \otimes \sum_{\alpha} C_{ij} C_{\alpha} + \sum_{\alpha} D_{\alpha} D_{\alpha} = I_N S \otimes I_m . \]

But, from Eq. (A13) we have \(\sum_{\alpha} P_{\alpha} P_{\alpha} = I_N S \otimes I_m \). Therefore \(D_{\alpha} = 0 \).

Taking all these conditions together finalizes the ma-
trix representation of the Kraus operators as
\[E_{ij} = \begin{pmatrix} U \otimes C_{ij} & 0 \\ 0 & B_{ij} \end{pmatrix} . \]

For a scalar \(C_{ij} \) we recover the DFS condition [19].
These considerations establish the necessity of the rep-
resentation [A16]; it is simple to show that this representa-
tion is also sufficient, by substitution and checking that the NS and DFS conditions are satisfied. Therefore we have proved Theorems 1 and 2.

b. Perfect Initialization

We now prove Corollaries 1 and 2 for DF-initialized states of the form \(\rho_S(0) = P_d \rho_S(0) P_d \). Thus, we have to prove that \(D_{\alpha} = 0 \) in Eq. (A3).

When \(\rho_S(0) = P_d \rho_S(0) P_d \) we have that \(\rho_2 = 0 \) and \(\rho_3 = 0 \) and Eq. (A5) reduces to
\[\text{Tr}_\in \{ U \otimes I \rho_1 U^\dagger \otimes I \} = \text{Tr}_\in \{ \sum_\alpha U \otimes C_{\alpha} \rho_1 U^\dagger \otimes C_{\alpha}^\dagger \} , \quad (A10) \]
The argument leading to the vanishing of the \(A_{\alpha} \)
[Eq. (A6)] then does not apply, and indeed the \(A_{\alpha} \)
need not vanish. However, the arguments leading to \(P_\alpha = U \otimes C_{\alpha} \) and \(\sum_\alpha P_{\alpha} P_{\alpha} = I_N S \otimes I_m \) do apply. Hence \(D_{\alpha} = 0 \).

2. Markovian Dynamics

a. Arbitrary Initial State

Consider Markovian dynamics
\[\frac{\partial \rho_S}{\partial t} = -i[H_S, \rho_S] + \sum_{\alpha} F_{\alpha} \rho_S F_{\alpha}^\dagger - \frac{1}{2} F_{\alpha}^\dagger F_{\alpha} \rho_S - \frac{1}{2} \rho_S F_{\alpha}^\dagger F_{\alpha} \]
with the following matrix representation of the various operators:
\[\rho_S = \begin{pmatrix} \rho_1 & \rho_2 \\ \rho_2^\dagger & \rho_3 \end{pmatrix} , \quad H_S = \begin{pmatrix} H_1 & H_2 \\ H_2^\dagger & H_3 \end{pmatrix} , \quad F_{\alpha} = \begin{pmatrix} P_{\alpha} & A_{\alpha} \\ D_{\alpha} & B_{\alpha} \end{pmatrix} . \]

Then we find the dynamics of the NS block to be
\[\frac{\partial \rho_{SS}}{\partial t} = \frac{\partial \text{Tr}_\in \{ \rho_1 \} }{\partial t} = -i \text{Tr}_\in \{ [H_1, \rho_1] \} - i \text{Tr}_\in \{ (H_2 \rho_1^\dagger - \rho_2 H_1^\dagger) \} + \text{Tr}_\in \{ \sum_{\alpha} P_{\alpha} \rho_1 P_{\alpha}^\dagger + A_{\alpha} \rho_2^\dagger P_{\alpha}^\dagger + P_{\alpha} \rho_2 A_{\alpha}^\dagger + A_{\alpha} \rho_3 A_{\alpha}^\dagger - \frac{1}{2} \sum_{\alpha} (P_{\alpha}^\dagger P_{\alpha} + D_{\alpha}^\dagger D_{\alpha}) \rho_1 + (P_{\alpha}^\dagger A_{\alpha} + D_{\alpha}^\dagger B_{\alpha}) \rho_2^\dagger - \frac{1}{2} \sum_{\alpha} \rho_1 (P_{\alpha}^\dagger P_{\alpha} + D_{\alpha}^\dagger D_{\alpha}) + \rho_2 (A_{\alpha}^\dagger P_{\alpha} + B_{\alpha}^\dagger D_{\alpha}) \}
\]

The right-hand side of this equation must be independent of \(\rho_2 \) and \(\rho_3 \), for any matrices \(\rho_2 \) and \(\rho_3 \). Therefore the term \(A_{\alpha} \rho_2 A_{\alpha}^\dagger \) implies \(A_{\alpha} = 0 \). Collecting the remaining terms acting on \(\rho_2^\dagger \) from the left yields \(\text{Tr}_\in \{ (-iH_2 - D_{\alpha}^\dagger B_{\alpha}) \rho_2^\dagger \} = 0 \). Together we have
\[A_{\alpha} = 0 , \quad iH_2 + \sum_{\alpha} D_{\alpha}^\dagger B_{\alpha} = 0 . \]
This reduces Eq. (A19) to

$$\frac{\partial \rho_{NS}}{\partial t} = -i[H_1, \rho_1] + \text{Tr}_{in} \sum_{\alpha} P_{\alpha} \rho_1 P_{\alpha}^\dagger - \frac{1}{2} \text{Tr}_{in} \sum_{\alpha} \{P_{\alpha}^\dagger P_{\alpha} + D_\alpha^\dagger D_\alpha\}, \rho_1 \}$$

(A21)

Consider the initial state $\rho_1 = \rho_{NS} \otimes |i'\rangle\langle i'|$, with $|i'\rangle \in \mathcal{H}_{in}$:

$$\frac{\partial \rho_{NS}}{\partial t} = -i[|i'\rangle\langle i'|H_1|i'\rangle, \rho_{NS}] + \sum_{\alpha} \langle j'|P_{\alpha} \rangle \rho_{NS} \langle j'|P_{\alpha}^\dagger \rangle j'$$

$$= -\frac{1}{2} \sum_{\alpha} \{\rho_{NS}, \langle j'|P_{\alpha}^\dagger \rangle \langle j'|P_{\alpha} \rangle j' \}$$

$$+ (i'|D_\alpha^\dagger j'|j') \langle j'|D_\alpha |i'\rangle) \}$$

(A22)

Let $\rho_{NS} = |\psi\rangle\langle \psi|$ with ψ arbitrary and apply $\langle \psi^+ | ... | \psi^+ \rangle$, such that $\langle \psi^+ | \psi \rangle = 0$, to Eq. (A22), denoting $P_{\alpha, i', j'} = \langle j'|P_{\alpha} |i'\rangle$:

$$\sum_{\alpha} \langle \psi^+ | P_{\alpha, i', j'} | \psi \rangle^2 = 0.$$

(A23)

Since this identity must hold for all ψ and ψ^+, we find that $P_{\alpha, i', j'} = c_{\alpha, i', j'}|I_{NS}$, which implies that $P_{\alpha} = I_{NS} \otimes C_{in}^\alpha$. Moreover, by definition of a NS, there exists a Hermitian matrix H_{NS} such that ρ_{NS} obeys a Schrödinger equation, $\frac{\partial \rho_{NS}}{\partial t} = -i[H_{NS}, \rho_{NS}]$. Therefore the non-Hermitian term $\sum_{\alpha} D_{\alpha}^\dagger D_{\alpha}$ in Eq. (A21) must vanish, implying that $D_{\alpha} = 0$.

Combining these results with Eq. (A20) yields

$$\frac{\partial \text{Tr}_{in} \{\rho_1\}}{\partial t} = -i[|H_1, \rho_1]\}$$

$$= -i[H_{NS}, \rho_{NS}]$$

(A24)

This identity can be realized iff $H_1 = H_{NS} \otimes I_{in} + I_{NS} \otimes H_{in}$. Therefore the NS conditions are obtained as

$$H = \begin{pmatrix} H_{NS} \otimes I_{in} + I_{NS} \otimes H_{in} & 0 \\ 0 & H_3 \end{pmatrix},$$

$$F_\alpha = \begin{pmatrix} I_{NS} \otimes C_{in}^\alpha & 0 \\ 0 & B_\alpha \end{pmatrix}.$$

(A25)

The DFS condition is a special case of (A22), with $\dim(\mathcal{H}_{in}) = 1$. This concludes the proof of Theorems 2 and 3.

b. Perfect Initialization

Now consider perfect initialization:

$$\rho_S = \begin{pmatrix} \rho_1 & 0 \\ 0 & 0 \end{pmatrix} = 0.$$

(A26)

This is just the case of an arbitrary initial state considered above, with $\rho_2 = 0$ and $\rho_3 = 0$ in Eq. (A19). This then yields the dynamics of ρ_{NS} as being given by Eq. (A21). Repeating the derivation following Eq. (A21) we conclude again that $D_{\alpha} = 0$, $P_{\alpha} = I_{NS} \otimes C_{in}^\alpha$ and $H_1 = H_{NS} \otimes I_{in} + I_{NS} \otimes H_{in}$.

Note that Eq. (A20) now does not apply (it was obtained assuming nonzero ρ_2, ρ_3), i.e., we cannot conclude that A_{α} and H_2 vanish. This implies that that $\partial \rho_S / \partial t$ has a non-zero off-diagonal elements, which, using the master equation (A17), we calculate to be:

upper right block:

$$i \rho_1 H_2 + \frac{i}{2} \rho_1 \sum_{\alpha} (I_{NS} \otimes C_{in}^\alpha) A_{\alpha}$$

bottom right block: $\sum_{\alpha} D_{\alpha} \rho_1 D_{\alpha}^\dagger = 0$.

To prevent the appearance of corresponding off-diagonal blocks in ρ_S, we must therefore demand

$$H_2 + \frac{i}{2} \sum_{\alpha} (I_{NS} \otimes C_{in}^\alpha) A_{\alpha} = 0.$$

(A27)

which is Eq. (50). The DFS case is obtained with $\dim(\mathcal{H}_{in}) = 1$. This concludes the proof of Theorems 2 and 3.

3. Non-Markovian Dynamics

The derivation of the conditions for decoherence-free in the case of non-Markovian dynamics is somewhat different from the other two cases we have considered, because of the appearance of the nonlocal-in-time integral in the master equation:

$$\frac{\partial \rho_S}{\partial t} = -i[H_S, \rho_S] + L \int_0^t dt' f(t') \exp(L t') \rho_S(t - t')$$

(A28)

In order to find necessary conditions on the structure of H_S and L consider the case of small t, expand

$$\rho_S(t) = \sum_{n=0} t^n \rho_S^{(n)}(0), \quad k(t) = \sum_{m=0} t^m k^{(m)}(0),$$

(A29)

and substitute into Eq. (A28). The constant (t^0) term yields

$$\rho_S^{(1)}(0) = -i[H_S, \rho_S(0)].$$

(A30)

The terms involving t^1 yield, after Taylor-expanding $\exp(L t')$:

$$2 \rho_S^{(2)}(0) = -i[H_S, \rho_S^{(1)}(0)] + k(0) L \rho_S(0).$$

(A31)
Thus the solution of Eq. (A28) up to first and second order in time is:

\[
\rho_S(t) = \rho_S(0) - it[H_S, \rho_S(0)] + O(t^2), \quad (A32)
\]

\[
\rho_S(t) = \rho_S(0) - it[H_S, \rho_S(0)] - \frac{t^2}{2} \{[H_S, [H_S, \rho_S(0)]] + k(0) \mathcal{L} \rho_S(0)\} + O(t^3).
\]

(A33)

\[a. \text{ Arbitrary Initial State}\]

Consider once again the matrix representations as in Eq. (A18). Substituting these expressions into the first order equation (A32), the \(\rho_1(t)\) block yields

\[
\rho_{NS}(t) = \rho_{NS}(0) - it \text{Tr}_\text{in} \{[H_1, \rho_1(0)]\}
\]

\[-it \text{Tr}_\text{in} \{H_2 \rho_1(0) - \rho_2(0) H_2\} \implies H_2 = 0, \quad H_1 = H_{NS} \otimes I_\text{in} + I_{NS} \otimes H_{in}.\]

(A34)

Continuing to second order, Eq. (A32), the NS block is found to be

\[
\rho_{NS}(t) = \rho_{NS}(0) - it[H_{NS}, \rho_{NS}(0)]
\]

\[-\frac{t^2}{2} [H_{NS}, [H_{NS}, \rho_{NS}(0)]] + \text{Tr}_\text{in} \{2k(0) \sum \alpha P_\alpha \rho_1 P_\alpha^\dagger + A_\alpha \rho_2 P_\alpha^\dagger + P_\alpha \rho_2 A_\alpha^\dagger + A_\alpha \rho_3 A_\alpha^\dagger - k(0) \sum \alpha (P_\alpha^\dagger P_\alpha + D_\alpha^\dagger D_\alpha) \rho_1 + (P_\alpha^\dagger A_\alpha + D_\alpha^\dagger B_\alpha) \rho_2^\dagger - k(0) \sum \alpha \rho_1 (P_\alpha^\dagger P_\alpha + D_\alpha^\dagger D_\alpha) + \rho_2 (A_\alpha^\dagger P_\alpha + B_\alpha^\dagger D_\alpha)\}.\]

(A35)

The first three terms correspond to unitary evolution, but the remaining terms are essentially identical to the case of Markovian dynamics and must be made to vanish, just as in Eq. (A19). The same arguments used there apply and consequently

\[
F_\alpha = \begin{pmatrix} I_{NS} \otimes C_{\alpha} & A_{\alpha} \\ 0 & B_{\alpha} \end{pmatrix}.
\]

(A36)

The conditions (A37), (A38) are necessary and sufficient for unitary evolution of the NS block under our non-Markovian master equation. The DFS case is obtained with \(\dim(\mathcal{H}_{in}) = 1\). This concludes the proof of Theorems 7 and 8.

\[b. \text{ Perfect Initialization}\]

Assume

\[
\rho_S(0) = \begin{pmatrix} \rho(0) & 0 \\ 0 & 0 \end{pmatrix};
\]

(A37)

then from the first order equation (A32), the NS block is found to satisfy

\[
\rho_{NS}(t) = \rho_{NS}(0) - it \text{Tr}_\text{in} \{[H_1, \rho(0)]\} \implies H_1 = H_{NS} \otimes I_\text{in} + I_{NS} \otimes H_{in}.
\]

(A38)

To second order in time [Eq. (A39)]:

\[
\rho_{NS}(t) = \rho_{NS}(0) - it[H_{NS}, \rho_{NS}(0)]
\]

\[-\frac{t^2}{2} [H_{NS}, [H_{NS}, \rho_{NS}(0)]] + \frac{t^2}{2} \text{Tr}_\text{in} \{-H_2 H_2^\dagger \rho(0) - \rho(0) H_2 H_2^\dagger + 2k(0) \sum \alpha P_\alpha \rho_1 P_\alpha^\dagger - (P_\alpha^\dagger P_\alpha + D_\alpha^\dagger D_\alpha) \rho(0) - \rho(0) (P_\alpha^\dagger A_\alpha + D_\alpha^\dagger B_\alpha)\},
\]

(A39)

which is again similar to the Markovian case. Similar logic therefore yields \(H_2 = D_\alpha = 0\), and hence

\[
F_\alpha = \begin{pmatrix} I_{NS} \otimes C_{\alpha} & A_{\alpha} \\ 0 & B_{\alpha} \end{pmatrix}.
\]

(A40)

Here we should notice that the density matrix \(\rho_S(0)\) has an off-diagonal element \(\rho(0) \sum \alpha (P_\alpha^\dagger A_\alpha + D_\alpha^\dagger B_\alpha) = \rho(0) \sum \alpha P_\alpha^\dagger A_\alpha\). This term must vanish, for otherwise \(\rho_S(t)\) has non-zero off-diagonal elements. Summarizing, we have

\[
F_\alpha = \begin{pmatrix} I_{NS} \otimes C_{\alpha} & A_{\alpha} \\ 0 & B_{\alpha} \end{pmatrix}, \quad \sum \alpha (I_{NS} \otimes C_{\alpha}^\dagger A_{\alpha} = 0,
\]

\[
H = \begin{pmatrix} H_{NS} \otimes I_\text{in} + I_{NS} \otimes H_{in} & 0 \\ 0 & H_{out} \end{pmatrix}.
\]

(A41)

The DFS case is obtained with \(\dim(\mathcal{H}_{in}) = 1\). This concludes the proof of Corollaries 8 and 9.

[1] R. Landauer, Proc. Roy. Soc. London Ser. A 353, 367 (1995).
[2] W.G. Unruh, Phys. Rev. A 51, 992 (1995).
[3] S. Haroche and J.M. Raimond, Physics Today 49, 51 (1996).
[4] L.-M Duan and G.-C. Guo, Phys. Rev. A 57, 737 (1998).
[5] P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).
[6] D.A. Lidar, I.L. Chuang and K.B. Whaley, Phys. Rev. Lett. 81, 2594 (1998).
[7] D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley, Phys. Rev. A 63, 022306 (2001).
