The q-Binomial Coefficient for Negative Arguments
and Some q-Binomial Summation Identities

M.J. Kronenburg

Abstract

Using a property of the q-shifted factorial, an identity for q-binomial coefficients is proved, which is used to derive the formulas for the q-binomial coefficient for negative arguments. The result is in agreement with an earlier paper about the normal binomial coefficient for negative arguments. Some new q-binomial summation identities are derived, and the formulas for negative arguments transform some of these summation identities into each other. One q-binomial summation identity is transformed into a new q-binomial summation identity.

Keywords: q-binomial coefficient.
MSC 2010: 11B65

1 Definitions and Basic Identities

Let the following definition of the q-binomial coefficient, also called the Gaussian polynomial, be given.

\[
\binom{m + p}{m}_q = \prod_{j=1}^{m} \frac{1 - q^{p+j}}{1 - q^j}
\]

(1.1)

Let the q-shifted factorial, also called the q-Pochhammer symbol, be given by [7]:

\[
(a; q)_k = \prod_{j=0}^{k-1} (1 - aq^j)
\]

(1.2)

Then the q-binomial coefficient for integer \(k \geq 0 \) is:

\[
\binom{n}{k}_q = \prod_{j=1}^{k-1} \frac{1 - q^{n-k+j}}{1 - q^j} = \frac{(q^{n-k+1}; q)_k}{(q; q)_k}
\]

(1.3)

Let \(\Gamma_q(x) \) be the q-gamma function [2].

For complex \(x, y \):

\[
\binom{x}{y}_q = \frac{\Gamma_q(x+1)}{\Gamma_q(y+1)\Gamma_q(x-y+1)}
\]

(1.4)
From this follows the symmetry identity:
For complex x, y:
\[
\binom{x}{y}_q = \binom{x}{x-y}_q \tag{1.5}
\]

The functional equation of the $\Gamma_q(x)$ function is \cite{2}:
\[
\Gamma_q(x + 1) = \frac{1 - q^x}{1 - q} \Gamma_q(x) \tag{1.6}
\]

Combination of (1.4) and (1.6) gives the absorption identity:
For complex x, y:
\[
\binom{x}{y}_q = 1 - q^x \binom{x-1}{y-1}_q \tag{1.7}
\]

From definition (1.3) follows:
For integer $n \geq 0$ and integer k:
\[
\binom{n}{k}_q = 0 \text{ if } k > n \tag{1.8}
\]

From this and (1.5) follows:
For integer $n \geq 0$ and integer k:
\[
\binom{n}{k}_q = 0 \text{ if } k < 0 \tag{1.9}
\]

2 The q-Binomial Coefficient for Negative Arguments

For deriving the q-binomial coefficient for negative arguments, the following theorem \cite{4, 7} is needed.

Theorem 2.1. For integer $k \geq 0$:
\[
(a; q)_k = (-a)^k q^{k(k-1)/2} \binom{q^{1-k}}{a; q}_k \tag{2.1}
\]

Proof. From:
\[
k(k-1)/2 = \sum_{j=0}^{k-1} j = \sum_{j=0}^{k-1} (k - j - 1) \tag{2.2}
\]

follows:
\[
q^{k(k-1)/2} = \prod_{j=0}^{k-1} q^j = \prod_{j=0}^{k-1} q^{k-j-1} \tag{2.3}
\]

This is used in:
\[
(-a)^k q^{k(k-1)/2} \prod_{j=0}^{k-1} \left(1 - \frac{q^{1-k}}{a} q^j\right) = q^{k(k-1)/2} \prod_{j=0}^{k-1} (q^{1-k+j} - a) = \prod_{j=0}^{k-1} (1 - a q^{k-j-1}) = \prod_{j=0}^{k-1} (1 - a q^j) \tag{2.4}
\]
Theorem 2.2. For integer \(k \geq 0 \):

\[
{n \choose k}_q = (-1)^k q^{nk-k(k-1)/2} \binom{-n+k-1}{k}_q
\]

(2.5)

Proof. Using (1.3) and the previous theorem and \(-n = (-n + k - 1) - k + 1\):

\[
{n \choose k}_q = \frac{(q^{n-k+1}; q)_k}{(q; q)_k} = (-1)^k q^{k(n-k+1)+k(k-1)/2} \frac{(q^{-n}; q)_k}{(q; q)_k}
\]

\[
= (-1)^k q^{nk-k(k-1)/2} \binom{-n + k - 1}{k}_q
\]

(2.6)

\[
\square
\]

Theorem 2.3. For integer \(k \leq n \):

\[
{n \choose k}_q = (-1)^{n-k} q^{(n-k)(n+k+1)/2} \binom{-k-1}{n-k}_q
\]

(2.7)

Proof. In the previous theorem replacing \(k \) with \(n - k \), which makes it valid when \(n - k \geq 0 \) which is when \(k \leq n \), and then applying (1.5) to the left side:

\[
{n \choose n-k}_q = {n \choose k}_q
\]

(2.8)

and using \(n(n-k) - (n-k)(n-k-1)/2 = (n-k)(n+k+1)/2 \) gives this theorem.

\[
\square
\]

These two transformations can be used to transform one q-binomial summation identity into another, and can be used to express the q-binomial coefficient for negative integer \(n \) and integer \(k \) into the q-binomial coefficient for nonnegative integer \(n \) and \(k \).

Theorem 2.4. For negative integer \(n \) and integer \(k \):

\[
{n \choose k}_q = \begin{cases}
(-1)^k q^{nk-k(k-1)/2} \binom{-n+k-1}{k}_q & \text{if } k \geq 0 \\
(-1)^{n-k} q^{(n-k)(n+k+1)/2} \binom{-k-1}{n-k}_q & \text{if } k \leq n \\
0 & \text{otherwise}
\end{cases}
\]

(2.9)

Proof. The first two cases are identical to theorems 2.2 and 2.3.

For the third case, from (1.7) follows for integer \(n, k \):

\[
{n-1 \choose k-1}_q = \frac{1 - q^k}{1 - q^n} {n \choose k}_q
\]

(2.10)

When \(k = 0 \) the right side is zero, so when \(n < 0 \) and \(k = 0 \) this identity produces zeros for \(n < k < 0 \), which is the third case. This identity does not produce zeros for all \(k < 0 \) because when \(n > 0 \) a point will be reached where \(n = 0 \) and this expression becomes \((1 - q^k)0/0 \) which is undefined.

\[
\square
\]
The normal binomial coefficients are the q-binomial coefficients with \(q = 1 \), in which case this theorem reduces to theorem 2.1 in \[5\].

For \(n = -1 \) this theorem results in:

\[
\binom{-1}{k}_q = \begin{cases}
(-1)^{k}q^{-k(k+1)/2} & \text{if } k \geq 0 \\
(-1)^{k+1}q^{-k(k+1)/2} & \text{if } k \leq -1
\end{cases} \tag{2.11}
\]

which is in agreement with example 1.4 in \[3\].

As an example of the second case of this theorem:

\[
\binom{-3}{-5}_q = q^{-7} \binom{4}{2} = q^{-7}(1 + q^2)(1 + q + q^2) \tag{2.12}
\]

which is in agreement with example 1.2 in \[3\].

The q-binomial coefficient polynomial is palindromic, which means that

\[
a_j = a_{k(n-k)-j}, \text{ from which follows that it is self-reciprocal, where } j \text{ is replaced by } k(n-k) - j:
\]

\[
\binom{n}{k}_q = \sum_{j=0}^{k(n-k)} a_j q^j = \sum_{j=0}^{k(n-k)} a_k(n(n-k)-j)q^j = \sum_{j=0}^{k(n-k)} a_j q^{k(n-k)-j}
\]

\[
= q^{k(n-k)} \sum_{j=0}^{k(n-k)} a_j q^{-j} = q^{k(n-k)} \binom{n}{k} q^{-1} \tag{2.13}
\]

The theorems above leave all q-binomial coefficients self-reciprocal.

For theorem 2.2

\[
q^{k(n-k)} \binom{n}{k} q^{-1} = (-1)^k q^{nk-k(k-1)/2} q^{-k(n+1)} \binom{-n+k-1}{k} q^{-1} \tag{2.14}
\]

and because \(-k(n-k) + nk - k(k-1)/2 - k(n+1) = -(nk - k(k-1)/2)\):

\[
\binom{n}{k} q^{-1} = (-1)^k q^{-(nk-k(k-1)/2)} \binom{-n+k-1}{k} q^{-1} \tag{2.15}
\]

For theorem 2.3

\[
q^{k(n-k)} \binom{n}{k} q^{-1} = (-1)^{n-k} q^{(n-k)(n+k+1)/2} q^{-(n-k)(n+1)} \binom{-k-1}{n-k} q^{-1} \tag{2.16}
\]

and because \(-k(n-k) + (n-k)(n+k+1)/2 - (n-k)(n+1) = -(n-k)(n+k+1)/2\):

\[
\binom{n}{k} q^{-1} = (-1)^{n-k} q^{-(n-k)(n+k+1)/2} \binom{-k-1}{n-k} q^{-1} \tag{2.17}
\]
3 Some q-Binomial Summation Identities

Some q-binomial summation identities are derived and it is shown how q-binomial coefficients with negative arguments transform one summation identity into another. The following identities are the q-binomial theorem and the q-binomial theorem for negative powers [10]:

\[
\prod_{k=0}^{n-1} (1 + xq^k) = \sum_{k=0}^{n} q^k(n)_k \frac{x^k}{q} \tag{3.1}
\]

\[
\frac{1}{\prod_{k=0}^{n-1} (1 - xq^k)} = \sum_{k=0}^{\infty} (n + k - 1) \frac{x^k}{n - 1} \tag{3.2}
\]

The following is an obvious product rule:

\[
\prod_{k=0}^{a-1} (1 + xq^k) \prod_{k=0}^{b-1} (1 + xq^{a+k}) = \prod_{k=0}^{a+b-1} (1 + xq^k) \tag{3.3}
\]

With these three identities some q-binomial summation identities are derived, using that the coefficients of a product of two polynomials are the convolutions of the coefficients of the two polynomials.

Theorem 3.1. The q-analog of the Chu-Vandermonde identity [7]:

\[
\sum_{k=0}^{n} q^{(a-k)(n-k)} \left(\begin{array}{c}
a \\
k
\end{array} \right)_q \left(\begin{array}{c}
b \\
k
\end{array} \right)_q = \left(\begin{array}{c}
a + b \\
n
\end{array} \right)_q \tag{3.4}
\]

Proof. Using (3.1) with (3.3):

\[
\left(\sum_{k=0}^{a} q^k \left(\begin{array}{c}
a \\
k
\end{array} \right)_q x^k \right) \left(\sum_{k=0}^{b} q^k \left(\begin{array}{c}
b \\
k
\end{array} \right)_q q^{ak} x^k \right) = \sum_{k=0}^{a+b-1} q^k \left(\begin{array}{c}
a + b \\
k
\end{array} \right)_q x^k \tag{3.5}
\]

The coefficients of both sides must be equal:

\[
\sum_{k=0}^{n} q^k \left(\begin{array}{c}
a \\
k
\end{array} \right)_q q \left(\begin{array}{c}
(n-k) \\
k
\end{array} \right)_q \left(\begin{array}{c}
b \\
k
\end{array} \right)_q q^{ak} = q^k \left(\begin{array}{c}
a + b \\
n
\end{array} \right)_q \tag{3.6}
\]

Because:

\[
\left(\begin{array}{c}
k \\
2
\end{array} \right) + \left(\begin{array}{c}
(n-k) \\
2
\end{array} \right) + a(n-k) - \left(\begin{array}{c}
n \\
2
\end{array} \right) = (a-k)(n-k) \tag{3.7}
\]

the theorem is proved. By replacing \(k \) with \(n - k \) and interchanging \(a \) and \(b \), the power of \(q \) in the summand can be replaced by \(q^{(b-n+k)k} \).

Theorem 3.2.

\[
\sum_{k=0}^{n} q^{(b+1)k} \left(\begin{array}{c}
a + k \\
aka
\end{array} \right)_q \left(\begin{array}{c}
b + n - k \\
bb
\end{array} \right)_q = \left(\begin{array}{c}
n + a + b + 1 \\
n
\end{array} \right)_q \tag{3.8}
\]
Proof. Using the reciprocal of (3.3) with $-x$:

$$\frac{1}{\prod_{k=0}^{a-1}(1-xq^k)} \cdot \frac{1}{\prod_{k=0}^{b-1}(1-xq^{a+k})} = \frac{1}{\prod_{k=0}^{a+b-1}(1-xq^k)} \tag{3.9}$$

which with (3.2) becomes:

$$\left(\sum_{k=0}^{\infty} \binom{a+k-1}{a-1} x^k\right) \cdot \left(\sum_{k=0}^{\infty} \binom{b+k-1}{b-1} q^{ak} x^k\right) = \sum_{k=0}^{\infty} \binom{a+b+k-1}{a+b-1} q^k x^k \tag{3.10}$$

The coefficients of both sides must be equal:

$$\sum_{k=0}^{n} \binom{a+k-1}{a-1} q^k \binom{b+n-k-1}{b-1} q^{a(n-k)} = \binom{a+b+n-1}{a+b-1} q^n = \binom{n+a+b-1}{n} q \tag{3.11}$$

Replacing a by $a+1$ and b by $b+1$, and then replacing k by $n-k$ and interchanging a and b gives the theorem. By replacing k with $n-k$ and interchanging a and b, the power of q in the summand can be replaced by $q^{(a+1)(n-k)}$. \qed

Theorem 3.3.

$$\sum_{k=0}^{n} (-1)^k q^{\binom{k}{2}} \binom{a}{k} \binom{b+n-k}{b} q^a = \begin{cases} q^{an}(n-a+b) & \text{if } a \leq b \\ (-1)^n q^{bn+n(n+1)/2}(a-b-1) & \text{if } a > b \end{cases} \tag{3.12}$$

Proof. From (3.3) replacing a with b and b with $a-b$ gives:

$$\frac{1}{\prod_{k=0}^{b-1}(1-xq^k)} = \frac{a-b-1}{a-1} \prod_{k=0}^{a+b-1}(1 + xq^{b+k})$$

Therefore:

$$\left(\sum_{k=0}^{n} q^{\binom{k}{2}} \binom{a}{k} \binom{b+n-k}{b} q^b \right) \cdot \sum_{k=0}^{\infty} \binom{b+k-1}{b-1} (-1)^k x^k = \sum_{k=0}^{a-b} q^{\binom{k}{2}} \binom{a-b}{k} q^b x^k \tag{3.14}$$

The coefficients of both sides must be equal:

$$\sum_{k=0}^{n} q^{\binom{k}{2}} \binom{a}{k} \binom{b+n-k-1}{b-1} q^{bn+(n-k)} = q^{bn+n(n+1)/2} \binom{a-b}{n} \tag{3.15}$$

Replacing b by $b+1$ gives the second case of the theorem. When $a \leq b$ application of theorem 2.2 to the right side of the second case gives the first case of the theorem. \qed

The special cases $b = a - 1$ and $a = n$, $b = 0$ of this theorem appear in exercise 3.9 in [7].
4 Transforming q-Binomial Summation Identities

From theorem 3.2 and theorem 2.3 the following theorem follows.

Theorem 4.1.

\[
\sum_{k=0}^{n} (-1)^k q^{(a-b)(n-k)+k(k+1)/2} \binom{a}{k} q^{b+n-k} = \begin{cases}
q^{(a-b)n} \binom{n-a+b}{n} q^{n} & \text{if } a \leq b \\
(-1)^n q^{n(n+1)/2} \binom{a-b-1}{n} q & \text{if } a > b
\end{cases}
\]

(4.1)

Proof. In theorem 3.2 replacing \(a \) by \(-a \) and using theorem 2.3:

\[
\binom{-a+k}{-a} q = (-1)^k q^{ak+k(k+1)/2} \binom{a-1}{k} q
\]

(4.2)

and replacing \(a \) by \(a+1 \) gives the first case of this theorem. For the second case of the theorem, using theorem 2.2 when \(a > b \):

\[
\binom{n-a+b}{n} q = (-1)^n q^{n-a+b-n(n-1)/2} \binom{a-b-1}{n} q
\]

(4.3)

gives the second case of the theorem. This theorem is identical to theorem 3.3 except for the power of \(q \) in the summand.

Some summation identities from the previous section can be transformed into each other. Theorem 3.3 can be transformed into theorem 3.2 using theorem 2.2 by replacing \(b \) with \(-b \):

\[
\binom{-b+n-k}{-b} q = (-1)^{n-k} q^{(n-k)(-2b+n-k+1)/2} \binom{b-1}{n-k} q
\]

(4.6)

which with the second case of theorem 3.3 by replacing \(b \) by \(b+1 \) and using \(k(k-1)/2 + (n-k)(-2(b+1)+n-k+1)/2 + bn - n(n-1)/2 = k(b-n+k) \) gives:

\[
\sum_{k=0}^{n} q^{k(b-n+k)} \binom{a}{k} q^{b+n-k} = \binom{a+b}{n} q
\]

(4.7)

Replacing \(k \) by \(n-k \) and interchanging \(a \) and \(b \) gives theorem 3.1.
References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press, 1984.

[2] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999.

[3] S. Formichella, A. Straub, Gaussian Binomial Coefficients with Negative Arguments, Ann. Comb. 23 (2019) 725-748.

[4] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, arXiv:math/9602214 [math.CA]

[5] M.J. Kronenburg, The Binomial Coefficient for Negative Arguments, arXiv:1105.3689 [math.CO]

[6] M.J. Kronenburg, Computation of q-Binomial Coefficients with the P(n,m) Integer Partition Function, arXiv:2205.15013 [math.CO]

[7] J. McLaughlin, Monographs in Number Theory, Volume 8, Topics and Methods in q-Series, World Scientific, 2018.

[8] R. Sprugnoli, Negation of binomial coefficients, Discrete Math. 308 (2008) 5070-5077.

[9] E.W. Weisstein, q-Binomial Coefficient. From Mathworld - A Wolfram Web Resource. https://mathworld.wolfram.com/q-BinomialCoefficient.html

[10] Wikipedia, Gaussian binomial coefficient, https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient