Peduncle breaking resistance: a potential selection criterion to improve lodging tolerance in Oat

Journal:	*Canadian Journal of Plant Science*
Manuscript ID:	CJPS-2019-0286.R1
Manuscript Type:	Article
Date Submitted by the Author:	14-Feb-2020
Complete List of Authors:	Nakhforoosh, Alireza; Global Institute for Food Security, University of Saskatchewan
Kumar, Santosh; Brandon Research Centre, Plant Breeding and Genomics	
Fetch, Thomas; Agriculture and Agri-food Canada, Brandon Research & Development Centre	
Mitchell Fetch, J.; Agriculture and Agri-Food Canada, Brandon Research & Development Centre;	
Keywords:	Avena sativa L, Lodging tolerance, Stem strength, Oat breeding
Is the invited manuscript for consideration in a Special Issue?:	Not applicable (regular submission)

https://mc.manuscriptcentral.com/cjps-pubs
Peduncle breaking resistance: a potential selection criterion to improve lodging tolerance in oat

A. Nakhforoosh1, S. Kumar1, T. Fetch2, J. Mitchell Fetch1

1Brandon Research & Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada.

2Morden Research & Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada

ABSTRACT

Breeding for tolerance to lodging is an objective, but also a challenge in oat (\textit{Avena sativa} L.) breeding programs. A widely adopted method to assess breeding lines for tolerance to lodging is based on visual scoring of plant standability (1=standing upright; 9=completely lodged). The lack of sufficient lodging pressure due to weather or growing conditions often renders the visual scoring method ineffective. We present an alternative approach that allows selection for tolerance to stem lodging by screening for peduncle strength in the absence of lodging pressure. This approach also provides objective selection of lodging tolerance using a quantitatively measurable plant trait rather than subjective scoring of the lodged plants. Stem structural and mechanical properties of six oat cultivars with varying levels of lodging tolerance were tested at three site-year field experiments under three nitrogen rates. Results suggested peduncle breaking resistance (PBR), measured below the panicle, as a potential selection criterion for stem strength, and therefore lodging tolerance. Significant genetic variation among oat cultivars ($p < 0.01$) was observed for PBR which was significantly correlated with the strength of all lower internodes in all environments ($R^2 > 0.73^\ast$). This suggests that PBR provides a good estimation of the whole culm strength. Phenotyping of PBR can be easily integrated into breeding programs because of the ease of sampling and rapid measurement.

Keywords: \textit{Avena sativa} L.; Lodging tolerance; Stem strength; Oat breeding.
INTRODUCTION

Oat (Avena sativa, L.) is an important food and feed crop worldwide. Canada is the world’s largest exporter of oats with up to 60% of total oat production being exported (FAO 2017). Despite a decline in total acreage over the past two decades (1998-2017), Canadian production has remained stable due to a 40% yield increase (Statistics Canada 2019). The genetic yield improvement of oat cultivars has been attributed to increased disease resistance (Rines et al. 2006) and improved agronomic traits, such as lodging tolerance.

Lodging, which is defined as permanent displacement of the plant shoots from their vertical stance (Pinthus 1974), is an important factor limiting yield potential and reducing grower profits (Berry 2019). Breeding for lodging tolerance is a major objective in oat breeding programs. Several methods have been proposed to evaluate lodging tolerance in the field (Murphy et al. 1958; Fouéré et al. 1995; Berry et al. 2003a; Kelbert et al. 2004a; Singh et al. 2019). The “snap test” is one method practiced by some breeders for quick and non-destructive assessment of lodging tolerance in the field (Murphy et al. 1958; Hess and Shands 1966). This test involves rating straw strength based on the force required to pull a handful of culms to a reclining position, and the rapidity of snap back response of culms, upon release. This is a subjective method and creates user bias during field rating and selection. Another widely adopted method to assess breeding lines for tolerance to lodging is based on visual scoring of plant standability (1=standing upright/resistant; 9=completely lodged/susceptible). However, the efficiency of selection based on this approach can be limited by the erratic occurrence of weather conditions (rain, wind) that cause lodging (Berry et al. 2003b; Berry et al. 2004; Kelbert et al. 2004a). Recently, utilization of unmanned aerial vehicles (UAVs) for field-based high-throughput phenotyping (HTP) has been successful in evaluation of breeding lines for lodging tolerance in large nurseries with thousands of plots (Singh et al. 2019). Although UAVs provide quicker assessment compared to visual scoring, without conditions to induce lodging, image-based assessment for tolerance to lodging will have the same limitation.
Selection for traits associated with lodging tolerance provides a more efficient alternative to the popular visual scoring approach (Berry et al. 2000; Kelbert et al. 2004b). Trait-based breeding allows selection of tolerant lines regardless of weather or growing conditions and the absence of lodging, and provides objective selection of lines using quantitatively measurable traits. However, tolerance to lodging is a complex trait (Keller et al. 1999; Berry et al. 2008; Singh et al. 2019) controlled by multiple plant characters such as plant height (Brown et al. 1980; Valentine et al. 1997; Kelbert et al. 2004a, 2004b; Piñera-Chavez et al. 2016b), basal internode strength, length and diameter (Berry et al. 2000; Tripathi et al. 2003; Kelbert et al. 2004b; Berry et al. 2006), stem wall width (Tripathi et al. 2003; Piñera-Chavez et al. 2016b; Mirabella et al. 2019), culm anatomy and chemical composition (Kong et al. 2013; Okuno et al. 2014), as well as mechanical properties and morphology of coronal roots (Mulder 1954; Crook and Ennos 1993; Easson et al. 1993; Easson et al. 1995; Berry et al. 2000). Reduced plant height has long been selected for in breeding programs which has, through development of semi-dwarf varieties, led to significant progress in reducing the risk of crop lodging (Cox et al. 1988; Berry et al. 2015; Hucl et al. 2015). Plant height can be assessed rapidly and effectively by direct measurement, molecular markers (Ellis et al. 2002), or HTP approaches (Hassan et al. 2019; Rebetzke et al. 2019). However, there is evidence demonstrating that yield potential in cereals is reduced by excessive shortening of plant height below an optimum, particularly under high temperature and drought stresses (Brown et al. 1980; Allan 1986; Richards 1992; Miralles and Slafer 1995; Flintham 1997; Valentine et al. 1997). This limits the potential of using dwarfing genes to further increase tolerance to lodging (Berry 2019). Moreover, reduced plant height may not be a suitable character for dual purpose (forage and grain) cereals such as oat. Similarly, in organically managed systems, a relatively taller cultivar with increased competitive ability over weeds may be more desirable (Navabi et al. 2006). These all imply the necessity for consideration of other lodging-related traits as selection criteria. Unlike plant height, integration of other lodging-related traits into breeding programs has been hindered by difficulties in ease of sampling and lack of tools capable of assessing thousands of plants or plots in limited time (Kelbert et al. 2004b; Berry 2019).
Lodging in oat can either result from buckling of the lower internodes (stem lodging) or failure of the anchorage system (root lodging) (Mulder 1954). Susceptibility to stem lodging is determined by the morphological and mechanical characteristics of the basal internodes (Pinthus 1974). While new instrumentation has made rapid measurement of basal internode strength possible (Wu and Ma 2019), effective exploitation of this trait can be limited due to difficulties in sampling of basal internodes within the context of a breeding program. Unlike basal internodes, sampling of peduncles is very convenient and was postulated as a means to select for stem strength (strong basal internodes).

Strength of the peduncle below the oat panicle and its relation to basal internode strength has previously received no attention, while previous studies (e.g. Berry and Berry 2015) provided evidence on the strong correlation between strength characteristics of the first two basal internodes. Therefore, the present study tested the hypothesis that cultivars with a strong stem base, a key trait underlying tolerance to stem lodging, would have strong culms all along the stem length from base to peduncle. Due to the ease of sampling and measurement of peduncle breaking resistance (PBR) compared to that of the basal internode, this knowledge will allow breeders to enhance selection gain for tolerance to stem lodging in oat through screening for PBR, particularly in the absence of lodging pressure.

In the present study, six oat cultivars exhibiting varying lodging susceptibility were tested in different field conditions and nitrogen rates in order to (1) investigate the relationship between breaking resistance of oat peduncles with strength of all culm internodes, (2) evaluate genetic variation for peduncle breaking resistance (PBR), and (3) characterize the morphological and mechanical shoot and root traits related to lodging tolerance.
MATERIALS AND METHODS

Plant Materials

Six oat cultivars were chosen for their contrast in lodging tolerance. According to historical lodging data obtained from trials, known as Western Cooperative Oat Registration Trials (WCORT) or from provincial variety testing (e.g. Saskatchewan Seed Growers Association-Varieties of Grain Crops 2011, 2018), the selected cultivars were grouped as resistant (CS Camden, CDC Morrison, AC Morgan), intermediate (Leggett, HiFi) or moderately susceptible (CDC Sol-Fi).

Experimental Design and Field Management

Field experiments were conducted at the Brandon Research and Development Centre (BRDC) in Brandon, MB (49°52′N, 99°58′W) in 2017 and 2018, and at the Canada-Manitoba Crop Diversification Centre (CMCDC) in Portage la Prairie, MB (49°57′N, 98°16′W) in 2018. The soil types were clay (sand:silt:clay ratio as 13:42:45; organic matter 5.2%, pH=7.3) at Brandon and silty clay (sand:silt:clay ratio as 7:53:40; organic matter 5.9%, pH=8.3) at Portage. The annual and long-term weather data for the tests in Brandon were sourced from a weather station at BRDC located approximately 4.3 km from the experimental farm. The weather data for the test in Portage were obtained from an Environment Canada weather station, located within 6.5 km of the experimental farm. The monthly accumulated precipitation and average temperature in relation to long-term averages for sites in Brandon (2017 and 2018) and Portage (2018) are shown in Fig. 1.

At the Brandon site, each experiment was a randomized complete block design in a split-plot arrangement with three replications. In 2017, the main plots consisted of three combinations of rate and timing of nitrogen (as urea) application: 40 kg N ha⁻¹ (N₀) applied as base fertilizer at preplant; and 40 kg N ha⁻¹ at preplant plus 25 (N₀+25) or 50 (N₀+50) kg N ha⁻¹ topdressed at the mid-tillering stage. For the experiment in 2018, nitrogen treatments were: 110 kg N ha⁻¹ (N₀) applied in fall 2017; and 110 kg N ha⁻¹ as base.
fertilizer plus 25 (N_b+25) or 50 (N_b+50) kg N ha⁻¹ topdressed at the mid-tillering stage. In both years, six oat cultivars, CDC Morrison, CS Camden, AC Morgan, Leggett, HiFi and CDC Sol-Fi were the subplots.

The field experiment at Portage (2018) was carried out in a randomized complete block with the six above-mentioned oat cultivars and four replications. No excess nitrogen other than the base nitrogen fertilizer (60 kg N ha⁻¹) was used for this experiment because it was expected, due to historical experience, that lodging would naturally occur at this site.

Field experiments were sown on May 30, 2017 and May 17, 2018 in Brandon and on May 23, 2018 in Portage. Seedbed preparation included disk plowing in the fall followed by 2-3 times of disk cultivating in the spring using a compact disc harrow. The base nitrogen, phosphorus and potassium fertilizers were applied prior to seeding at levels recommended by soil tests. Plots were planted at a rate of 300 seeds m⁻² with plot size of 4.4 m² (5 rows, 18 cm apart). Weeds and diseases were controlled with pesticides in accordance with the provincially recommended management practices. Following root and shoot sampling, experimental plots were irrigated with a linear irrigation system (2-3 events at 15-40 mm rates) between early grain filling and crop maturity (BBCH 71-89, Lancashire et al. 1991) attempting to induce lodging stress.

Measurements

Stem structural and mechanical properties were measured on the largest shoot of eight randomly selected plants from each plot (Islam et al. 2007). Shoots were cut at the ground surface at late flowering to early grain filling (BBCH 69-71), when the crop is most susceptible to lodging (Fischer and Stapper 1987). Shoot fresh weight (FW), including leaves, stem and panicle, was determined shortly after sampling. Plant height was measured as the distance from the plant base to the panicle tip. The height at the centre of gravity (HCG) of each main shoot was determined by balancing the shoot (leaves and panicle still attached) on a thin metal rod and recording the distance from the point of balance to the base of the shoot (van Delden et al. 2010). Shoot fresh weight and height at the center of gravity were not recorded for the
test in 2017. Bending moment (BM) or self-weight moment was calculated as BM=FW × HCG (Islam et al. 2007).

After removing the leaves and leaf sheaths from the air-dried shoots, the shoots were cut into separate internodes, and the length and weight of all individual internodes of each shoot, from the basal internodes up to the peduncle, and panicle were separately measured. The internode length was measured as the distance between the mid-point of its adjacent nodes. The internode diameter was measured using a digital caliper for all internodes in 2017, but only for the second basal internode in 2018. The internode diameter was the average of six measurements consisting of two measurements at right angles at three points along each internode. Peduncle diameter was measured at 0.5 cm below the panicle neck node. Dry weight per unit area of internodes (mg cm\(^{-2}\)) was calculated as: [weight / (length × diameter)]. As peduncle diameter noticeably tapers from the flag leaf node to the panicle node, peduncle dry weight per unit area was not measured.

The breaking resistance (Newton, N) of internodes was determined using a three–point bending tester, with the distance between the two fulcra of the tester set at 3 cm (van Delden et al. 2010). A pushing pressure was applied at an even rate at the mid-point of each internode using a digital force meter (AFG 100N, Mecmesin Ltd, Horsham, UK). The breaking resistance was considered as the maximum force leading to the internode buckling, which was identified by cracking noises. Peduncle breaking resistance (PBR) was measured at 5 cm below the panicle neck node. Breaking resistance of all internodes of each culm was measured individually for two experiments in 2018, but only PBR was measured in 2017.

Assessment of lodging susceptibility for each plot was carried out by recording the lodging scores (S) visually detectable in each plot and the respective area of each plot affected for each score (A). The lodging score used the scale of 1=no lodging (100% upright) to 9=completely lodged (100% flat). Readings were expressed as scores between 1 and 9 based on the angle of lodging from the vertical axis. The lodging susceptibility (LS) for each plot was calculated following Caldicott and Nutall (1979) with a
minor modification as: \(LS = \Sigma (S \times A) \). Lodging was observed and recorded shortly after initial lodging occurrences, but final ratings taken at maturity were analyzed.

Tolerance to root lodging was determined only in 2017 through characterizing morphological properties of coronal roots of cultivars at the topsoil level. At full flowering (BBCH 65), two root samples were taken from the middle rows of each plot using a garden spade to a depth of 15 cm, with a soil surface area of about 144 cm\(^2\) (12×12 cm). Root samples were placed in plastic bags to prevent desiccation and stored in a cold chamber at 4°C before washing roots. The removal of soil from roots was facilitated by first immersing the root samples in tap water for about 1 hour followed by careful washing through two stacked sieves (1.6 mm on top and 0.6 mm at bottom). After cleaning, roots were stored in 30% ethanol at 4°C for subsequent root morphological analysis (total root length and diameter) by WinRhizo, an image-based root analyzer (Regent Instruments Inc., Québec City, Canada).

Statistical Analysis

Analysis of variance (ANOVA) for individual experiments was performed on each trait to test the main (nitrogen, cultivar) and interaction effects using the PROC MIXED procedure in SAS 9.2 (SAS institute, Inc., Cary, NC). Nitrogen level, cultivar, and their interaction were considered as fixed effects, whereas block effect was considered as random. The statistical significance of differences between means was determined using the least significant difference (LSD) at critical level of significance of \(P = 0.05 \). The PROC REG and PROC CORR were respectively used to assess the linear regressions, Pearson correlations, and Spearman rank correlations among the traits or among the environments for the same trait. All figures were prepared using the SigmaPlot ver. 13.0 (Systat Software, Inc., San Jose, CA)
RESULTS

Weather Conditions

Figure 1 illustrates the monthly accumulated precipitation and average temperature in relation to long-term averages for sites in Brandon (2017 and 2018) and Portage (2018). Although the mean air temperature during the two growing seasons was similar to the long-term normal temperature, the annual precipitation and its in-season distribution revealed that the 2017 and 2018 seasons were relatively dry at both sites. The annual precipitation was 20% (Brandon 2017), 31% (Brandon 2018) and 37% (Portage 2018) less than normal annual precipitation in Brandon (461.7mm) and Portage (532.5mm). Comparison of total rainfall during June and July (the time span from stem elongation to full heading) with long-term normal rainfall showed less reduction in June; however, there were notable declines in July precipitation (44% Brandon 2017; 18% Brandon 2018 and 49% Portage 2018).

<Figure 1>

Basal Internode Characteristics

The analysis of variance results for the basal internode characteristics at three site-years are presented in Tables 1, 2 and 3. The first basal internodes had variable lengths, sometimes not long enough to enable breaking resistance to be measured (Berry et al. 2000); therefore, the results from the second basal internode are discussed, and referred to as basal internode hereafter. Averaged across cultivars, the basal internodes were longer, heavier and wider, but had lower dry weight per unit area at the Portage location (Tables 1, 2 and 3). Significant varietal differences were observed for all characteristics of the basal internode in each trial. Averaged over three site-years, CDC Sol-Fi and Leggett had the longest (10.3 cm) basal internode lengths, while CS Camden (7.7 cm) and CDC Morrison (8.0 cm) had the shortest basal internodes. AC Morgan had the thickest basal internode, contrasted with Leggett, which had the thinnest basal
internode in all three trials (Tables 1, 2 and 3). Averaged across the three tests, AC Morgan and
CDC Sol-Fi contrasted with CS Camden and CDC Morrison in accumulating more biomass in
the basal internode. AC Morgan had the highest dry weight per unit area of basal internode in
each of the three experiments (Tables 1, 2, and 3). The basal internode characteristics i.e. length,
weight, diameter and dry weight per unit area were not significantly inter-correlated.

Breaking Resistance: Peduncle vs. Culm Internodes

There was a significant genotypic variation for the breaking resistance of all internodes measured at all
locations (Tables 1, 2 and 3). Averaged across genotypes, all culm internodes appeared to be stiffer in
Brandon compared to Portage. AC Morgan clearly had the strongest internodes all along the culm from
basal internodes up to peduncle. CDC Morrison, with the second strongest internodes and peduncle,
significantly contrasted with the rest of the cultivars with relatively weaker culms (Tables 2 and 3).

In 2018, breaking resistance decreased from basal to upper internodes such that PBR was respectively
61% and 53% less than that of the basal internodes at Brandon and Portage (Tables 2 and 3). Breaking
resistance of the basal internode was significantly correlated with its dry weight per unit area (Fig. 2),
which is composed of length, weight and diameter, but not with any of these internode characteristics
individually. For the experiment at Brandon in 2017, PBR was significantly correlated to dry weight per
unit area of all lower internodes (Fig. 3A). In 2018, PBR was highly correlated with breaking resistance
of all lower internodes at Brandon (Fig. 3B) and Portage (Fig. 3C) in 2018. Individual internodes from
stem base up to the peduncle were significantly and positively inter-correlated in terms of breaking
resistance (2018) and/or internode dry weight per unit area (2017) (R² > 0.72, p < 0.05). Breaking
resistances of peduncles were highly correlated among three site-year tests suggesting a nonsignificant
genotype by environment interaction (R² > 0.66, p < 0.05). However, analysis of Spearman rank
correlation revealed crossover interactions or changes in the ranking of cultivars for PBR in different tests.
(0.83 < \(r \) < 0.49, 0.36 < \(p \) < 0.06). The most variability in ranking of PBR within the three tests was found for CS Camden and CDC Sol-Fi.

<Figure 2>

<Figure 3>

Shoot and Root Lodging-Related Characters

The analysis of variance showed significant differences among the cultivars for all structural and morphological characteristics of shoot and root in each trial. All cultivars grew taller at Portage compared to Brandon (Tables 1, 2 and 3). Across three site-years, CDC Sol-Fi (110 cm) and CDC Morrison (95 cm) were the tallest and shortest varieties, respectively. In 2018, the results for HCG were similar to that observed for plant height (Tables 2 and 3), and significant correlations were found between plant height and HCG at both sites (Brandon 2018: \(R^2 = 0.86 \ p < 0.01 \); Portage: \(R^2 = 0.70 \ p < 0.05 \)). In 2018, the total shoot fresh weight (leaves, stem and panicle) and bending moment of all cultivars at Portage were higher than those at Brandon (Tables 2 and 3). In each experiment, AC Morgan significantly had the heaviest shoots and largest bending moment.

There was significant variation in topsoil root properties of the cultivars as assessed in the field experiment in Brandon in 2017 (Table 1). The largest root system in terms of root length was observed for CDC Sol-Fi and AC Morgan, whereas CS Camden and HiFi showed the smallest root systems. AC Morgan and Leggett, with the thickest root systems, differed significantly from other cultivars.

Visual Lodging Score and Nitrogen Effect

The severity of lodging was either very low (Brandon 2017 and Portage 2018, Tables 1 and 3), or did not occur (Brandon 2018). CDC Sol-Fi was the only cultivar that lodged at varying degrees in different field plots in Brandon (2017) and Portage (2018). There were no significant differences among the other cultivars (Tables 1 and 3).
For experiments at Brandon, super-optimal supply of nitrogen (Nb+25 or Nb+50) at mid-tillering had no significant effect on most of the traits (\(P > 0.05\)). Topdressing nitrogen slightly, though significantly, reduced the visual lodging score in 2017, and plant height and HCG in 2018. With exception of root diameter, the genotype × nitrogen interactions were not significant for all other traits.

DISCUSSION

Lack of Lodging Stress Limits Differential Selection by Visual Rating

In this study, due to the relatively dry growing seasons (Fig. 1) and its resultant effect on shortening plant stature, the differential lodging susceptibility among cultivars was not seen (Tables 1 and 3, no detectable lodging in Brandon 2018); even under super-optimal supply of nitrogen (Nb+25 or Nb+50). CDC Sol-Fi, the lodging-prone tall cultivar, was the only cultivar that slightly lodged, though significantly, among others. However, according to the multi-environment long-term lodging data obtained from registration trials (WCORT dataset; Supplementary Figure S1) or provincial variety testing (e.g. Saskatchewan Seed Growers Association-Varieties of Grain Crops 2011, 2018), CDC Morrison, CS Camden and AC Morgan are tolerant to lodging while Leggett and HiFi are intermediate and CDC Sol-Fi is somewhat prone to lodging.

In the past, progress in breeding for increased lodging tolerance in cereals including oat has been largely achieved through selection for short-statured breeding lines standing strong in the field (Berry 2019). While phenotypic and genotypic selection for reduced plant height is straightforward (Kelbert et al. 2004b), the effective selection for improved plant standability using the common method based on visual rating of lodged plants can be hindered due to lack of weather (rain, wind) or growing conditions that induce lodging pressure (Berry et al. 2003b; Kelbert et al. 2004a). According to our historical WCORT lodging data (Supplementary Figure S1), over the course of 13 years, the average severity of lodging scores was \(<3\) at about 60% of the test sites (61 site-year trials). Similar to the results of this study, the
WCORT historical lodging data has shown that effective visual assessment is contingent on a reasonable degree of lodging pressure, which is not reliable.

Tolerance to Lodging: A Complex Trait

Dry seasons prevented the differential susceptibility to lodging for the tested cultivars in this study to be realized as previously observed in the multi-environment registration trials or provincial variety testing. Nevertheless, results from this study revealed the complex nature of lodging. For instance, CDC Sol-Fi had the largest coronal root system suggesting increased anchorage strength; however, due to its tall stature and long, relatively weak basal internodes, CDC Sol-Fi was the most lodging-prone cultivar in this study (Tables 1, 2 and 3). Also, according to the registration and provincial trials, CS Camden and Leggett with similar plant height, differ from each other in terms of tolerance to lodging (WCORT dataset; Saskatchewan Seed Growers Association-Varieties of Grain Crops 2018). Even though no lodging occurred in this study, our results showed that CS Camden, historically known as a lodging-tolerant cultivar, had shorter and thicker basal internodes compared with Leggett, an intermediate lodging-tolerant cultivar, which might explain the differential lodging tolerance of these cultivars despite their similarity in plant height.

Trait-based breeding using traits related to lodging has been suggested as an alternative to a visual scoring approach, particularly in the absence of lodging stress (Berry et al. 2000). However, tolerance to lodging is a complex trait influenced by multiple plant characteristics; this makes differential selection based on the individual lodging-related traits ineffective. It has been previously shown that tolerance to lodging can be better estimated using a combination of plant characteristics determining the three major lodging components: stem strength, anchorage strength and self-weight moment or bending moment (Berry et al. 2000). The “safety factor”, a lodging index, was used to estimate tolerance to stem and root lodging based on the ratio of strength of stem and anchorage system to the self-weight moment of the shoot (Crook et al. 1994; Wu and Ma 2019). These lodging models were further developed to predict the risk of lodging by incorporating multiple plant characteristics along with soil and meteorological data (Berry et al. 2000).
order to facilitate the use of these models for screening purposes, Mirabella et al. (2019) attempted to overcome the challenges related to measuring model traits by replacing them with several agronomic traits (e.g. plant height, spike dry weight, basal stem diameter), which can be measured at crop maturity. Although these models and lodging indices are useful to evaluate the tolerance of commercial cultivars in the absence of natural lodging, they involve time-consuming measurements of stem base and root parameters that limits their applicability for screening large groups of breeding materials.

PBR A Proxy of Whole Stem Strength, And A Potential Selection Criterion to Improve Straw Strength

In this study, the correlations between the morphological and mechanical characteristics of culm internodes with lodging scores in the field were nonsignificant because of no, or low, lodging pressure (data not shown). Among lodging-associated traits, plant height and length of the basal internode were most correlated with visual lodging scores (Kelbert et al. 2004a, 2004b; Berry et al. 2004 and 2015; Piñera-Chavez et al. 2016b; Mirabella et al. 2019). Despite the lack of significant lodging stress, our results revealed a strong association between PBR and whole culm strength in two field experiments in 2018. This suggests the possibility to enhance selection gain for stem lodging tolerance by selecting for straw strength through screening for PBR (Fig. 3b and 3c). A significant genetic variation was found for PBR at three site-year field experiments, which is a fundamental requirement if PBR is to be chosen as a criterion of selection (Jackson 1996). Moreover, unlike basal internodes, the ease of peduncle sampling would facilitate the integration of stem strength into breeding programs.

Among traits related to lodging tolerance, plant height, as the most selectable trait, has long been selected for in breeding programs to improve lodging tolerance (Kelbert et al. 2004b). However, there is evidence indicating variation in tolerance to lodging among genotypes with same plant heights (Navabi et al. 2006). This suggests that due to the complex nature of lodging tolerance, the further enhancement in
selection gain for this trait requires other lodging-related traits to select for, while breeding for optimized plant height.

Morphological and mechanical characteristics of the basal internodes, particularly stem base strength, are the key determinants of tolerance to stem lodging (Berry et al. 2003b; Tripathi et al. 2003, Islam et al. 2007). Phenotyping of basal internode strength has been facilitated by the application of new instrumentation capable of measuring breaking resistance of internodes within seconds. However, difficulty in sampling of basal internodes within the context of a breeding program is still a challenge. Our results provided a proof-of-concept for application of peduncle breaking resistance (PBR) as a potential selection criterion to improve tolerance to stem lodging.

It should be noted that strengthening the stem base involves significant investment of biomass in structural stem tissues which can compromise yield potential (Berry et al. 2007; Piñera-Chavez et al. 2016a). In our study, no significant correlations were found between breaking resistance with dry biomass accumulated in basal internodes. This implies the possibility for selection of stiff-stemmed genotypes with low accumulation of biomass in stems, i.e. strong but light stem. For example, CDC Morrison was the second stiffest stemmed oat variety following AC Morgan and had the lightest basal internode compared to the other cultivars (Tables 1, 2 and 3). We speculate that integration of PBR assessment into multi-environment preliminary yield trials might have two advantages: (1) Selection of breeding lines can be performed using data collected for both yield and PBR and this will prevent advancing stiff-stemmed but low-yielding lines; and (2) The challenge related to the effect of genotype by environment interaction on PBR will be overcome by evaluation of breeding lines for PBR through multi-environment trials (Yan 2016).

CONCLUSIONS

This study, as has many others, found that effective visual selection is contingent on a reasonable degree of lodging pressure, which is not reliable. Thus, use of traits related to lodging tolerance in lieu of visual
scoring is desirable. Our study provided a proof-of-concept for application of peduncle breaking resistance (PBR) as a potential selection criterion to improve tolerance to stem lodging. This study revealed a strong association between PBR and whole culm strength, suggesting that stem stiffness can be selected for through screening for PBR. The results verified the availability of genetic variation for PBR which can be exploited by breeders in breeding for increased straw strength. Moreover, the ease of peduncle sampling and rapid measurements of PBR makes this suitable for integration into breeding programs. Overall, we speculate that screening for straw strength (based on PBR), particularly at advanced generations (e.g. preliminary yield trials) where yield data are also available, would enhance the selection gain for lodging tolerance while retaining high yield potential.

ACKNOWLEDGMENTS

We gratefully acknowledge research grants provided by Prairie Oat Growers Association (POGA), Prairie Oat Breeding Consortium (POBC) and Agriculture and Agri-Food Canada. Thanks to the staff at BRDC and CMCDC, especially to Denis Green for his technical support related to field operations.
REFERENCES

Allan, R. E. 1986. Agronomic comparisons among wheat lines nearly isogenic for three reduced-height genes. Crop Sci. 26(4):707-710.

Berry, P. M. 2019. Lodging resistance in cereals. Pages 209-227 in R. Savin, G. A. Slafer, eds. Crop Science. Springer New York, New York, NY.

Berry, P. M. and Berry, S. T. 2015. Understanding the genetic control of lodging-associated plant characters in winter wheat (Triticum aestivum L.). Euphytica 205(3):671-689.

Berry, P. M., Griffin, J. M., Sylvester-Bradley, R., Scott, R. K., Spink, J. H., Baker, C. J. and Clare, R. W. 2000. Controlling plant form through husbandry to minimise lodging in wheat. Field Crop Res. 67(1):59-81.

Berry, P. M., Kendall, S., Rutterford, Z., Orford, S. and Griffiths, S. 2015. Historical analysis of the effects of breeding on the height of winter wheat (Triticum aestivum) and consequences for lodging. Euphytica 203(2):375-383.

Berry, P. M., Spink, J. H., Gay, A. P. and Craigon, J. 2003b. A comparison of root and stem lodging risks among winter wheat cultivars. The Journal of Agricultural Science 141(2):191-202.

Berry, P. M., Spink, J., Sterling, M. and Pickett, A. A. 2003a. Methods for rapidly measuring the lodging resistance of wheat cultivars. J. Agron. Crop. Sci. 189(6):390-401.

Berry, P. M., Sterling, M. and Mooney, S. J. 2006. Development of a model of lodging for barley. J. Agron. Crop. Sci. 192(2):151-158.

Berry, P. M., Sterling, M., Spink, J. H., Baker, C. J., Sylvester-Bradley, R., Mooney, S. J., Tams, A. R. and Ennos, A. R. 2004. Understanding and reducing lodging in cereals. Pages 217-271 Adv. Agron. Academic Press.

Berry, P. M., Sylvester-Bradley, R. and Berry, S. 2007. Ideotype design for lodging-resistant wheat. Euphytica 154(1):165-179.

Berry, P.M. and Berry, S.T., and Spink, J.H. 2008. Identification of genetic markers for lodging resistance in wheat. Home-Grown Cereals Authority Project Report No 441. HGCA, London, p 16

Brown, P. D., McKenzie, R. I. H. and Mikaelson, K. 1980. Agronomic, genetic, and cytologic evaluation of a vigorous new semidwarf oat. Crop Sci. 20(3):303-306.
Caldicott, J.J.B. and Nuttall, A.M. 1979. A method for the assessment of lodging in cereal crops. Journal of the National Institute of Agricultural Botany 15(1): 88-91

Cox, T. S., Shroyer, J. P., Ben-Hui, L., Sears, R. G. and Martin, T. J. 1988. Genetic improvement in agronomic traits of hard red winter wheat cultivars 1919 to 1987. Crop Sci. 28(5):756-760.

Crook, M. J. and Ennos, A. R. 1993. The mechanics of root lodging in winter wheat, Triticum aestivum L. J. Exp. Bot. 44(7):1219-1224.

Crook, M. J., Ennos, A. R. and Sellers, E. K. 1994. Structural development of the shoot and root systems of two winter wheat cultivars, Triticum aestivum L. J. Exp. Bot. 45(6):857-863.

Easson, D. L., Pickles, S. J. and White, E. M. 1995. A study of the tensile force required to pull wheat roots from soil. Ann. Appl. Biol. 127(2):363-373.

Easson, D. L., White, E. M. and Pickles, S. J. 1993. The effects of weather, seed rate and cultivar on lodging and yield in winter wheat. J. Agric. Sci. 121:145–156

Ellis, M., Spielmeyer, W., Gale, K., Rebetzke, G. and Richards, R. 2002. "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor. Appl. Genet. 105(6):1038-1042.

FAO. 2017. FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org/faostat/en/#data/TP

Fischer, R. A. and Stapper, M. 1987. Lodging effects on high-yielding crops of irrigated semidwarf wheat. Field Crop. Res. 17(3):245-258.

Flintham, J.E., Borner, A., Worland, A.J. and Gale, M.D. 1997. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J. Agric. Sci. 128(1): 11-25.

Fouéré, A., Pellerin, S. and Duparque, A. 1995. A portable electronic device for evaluating root lodging resistance in maize. Agron. J. 87(5):1020-1024.

Hassan, M. A., Yang, M., Fu, L., Rasheed, A., Zheng, B., Xia, X., Xiao, Y. and He, Z. 2019. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods 15(1):37.

Hess, D. C. and Shands, H. L. 1966. Lodging response of certain selections of oats, Avena sativa L., and their hybrid progenies. Crop Sci. 6(6):574-577.

Hucl, P., Briggs, C., Graf, R. J. and Chibbar, R. N. 2015. Genetic gains in agronomic and selected end-use quality traits over a century of plant breeding of Canada western red spring wheat. Cereal Chem. 92(6):537-543.
Islam, M. S., Peng, S., Visperas, R. M., Ereful, N., Bhuiya, M. S. U. and Julfiquar, A. W. 2007. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crop Res. 101(2):240-248.

Jackson, P., Robertson, M., Cooper, M. and Hammer, G. 1996. The role of physiological understanding in plant breeding; from a breeding perspective. Field Crop Res. 49(1):11-37.

Kelbert, A. J., Spaner, D., Briggs, K. G. and King, J. R. 2004a. The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica 136(2):211-221.

Kelbert, A. J., Spaner, D., Briggs, K. G. and King, J. R. 2004b. Screening for lodging resistance in spring wheat breeding programmes. Plant Breeding 123(4):349-354.

Keller, M., Karutz, C., Schmid, J. E., Stamp, P., Winzeler, M., Keller, B. and Messmer, M. M. 1999. Quantitative trait loci for lodging resistance in a segregating wheat×spelt population. Theor. Appl. Genet. 98(6):1171-1182.

Kong, E., Liu, D., Guo, X., Yang, W., Sun, J., Li, X., Zhan, K., Cui, D., Lin, J. and Zhang, A. 2013. Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal 1(1):43-49.

Lancashire, P. D., Bleiholder, H., Boom, T. V. D., Langelüddeke, P., Stauss, R., Weber, E. and Witzenberger, A. 1991. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Bio. 119(3):561-601.

Mirabella, N. E., Abbate, P. E., Alonso, M. P., Panelo, J. S. and Pontaroli, A. C. 2019. Identifying traits at crop maturity and models for estimation of lodging susceptibility in bread wheat. Crop and Pasture Science 70(2):95-106.

Miralles, D. J. and Slafer, G. A. 1995. Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crop Res. 43(2):55-66.

Mulder, E. G. 1954. Effect of mineral nutrition on lodging of cereals. Plant and Soil 5(3):246-306.

Murphy, H.C., Petr, F. and Frey, K.J. 1958. Lodging resistance studies in oats. I. Comparing methods of testing and scores for straw strength. Agron. J. 50: 609-611.

Navabi, A., Iqbal, M., Strenzke, K. and Spaner, D. 2006. The relationship between lodging and plant height in a diverse wheat population. Can. J. Plant Sci. 86(3):723-726.
Okuno, A., Hirano, K., Asano, K., Takase, W., Masuda, R., Morinaka, Y., Ueguchi-Tanaka, M., Kitano, H. and Matsuoka, M. 2014. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLOS ONE 9(2):e86870.

Piñera-Chavez, F. J., Berry, P. M., Foulkes, M. J., Jesson, M. A. and Reynolds, M. P. 2016a. Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements. Field Crop Res. 196:325-336.

Piñera-Chavez, F. J., Berry, P. M., Foulkes, M. J., Molero, G. and Reynolds, M. P. 2016b. Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties. Field Crop Res. 196:64-74.

Pinthus, M. J. 1974. Lodging in wheat, barley, and oats: The phenomenon, its causes, and preventive measures. Pages 209-263 in N. C. Brady, ed. Adv. Agron. Academic Press.

Rebetzke, G. J., Jimenez-Berni, J., Fischer, R. A., Deery, D. M. and Smith, D. J. 2019. Review: High-throughput phenotyping to enhance the use of crop genetic resources. Plant Sci. 282:40-48.

Richards, R. 1992. The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Australian Journal of Agricultural Research 43(3):517-527.

Rines, H. W., Molnar, S. J., Tinker, N. A. and Phillips, R. L. 2006. Oat. Pages 211-242 in C. Kole, ed. Cereals and Millets. Springer Berlin Heidelberg, Berlin, Heidelberg.

Saskatchewan Seed Growers Association 2011. Varieties of Grain Crops. [Online] Available: http://saskseed.ca/seed-guides/ [2019 Oct 10]

Saskatchewan Seed Growers Association 2018. Varieties of Grain Crops. [Online] Available: http://saskseed.ca/seed-guides/ [2019 Oct 10]

Singh, D., Wang, X., Kumar, U., Gao, L., Noor, M., Imtiaz, M., Singh, R. P. and Poland, J. 2019. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front. Plant Sci. 10(394).

Statistics Canada. Table 32-10-0359-01. Estimated areas, yield, production, average farm price and total farm value of principal field crops, in metric and imperial units. doi: https://doi.org/10.25318/3210035901-eng.

Tripathi, S. C., Sayre, K. D., Kaul, J. N. and Narang, R. S. 2003. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crop Res. 84(3):271-290.
Valentine, J., Jones, D.M., Jones, J.E., Griffiths, T.E.R. and Middleton, B. 1997. Genetic improvement in oats with specific reference to winter-hardiness and lodging resistance of winter oats and improvement of naked oats. HGCA Research Project No 145. Home-Grown Cereals Authority, London

van Delden, S. H., Vos, J., Ennos, A. R. and Stomph, T. J. 2010. Analysing lodging of the panicle bearing cereal teff (Eragrostis tef). New Phytol. 186(3):696-707.

Wu, W. and Ma, B.L. 2019. Erect-leaf posture promotes lodging resistance in oat plants under high plant population. Eur. J. Agron. 103:175–187

Yan, W. 2016. Analysis and handling of G × E in a practical breeding program. Crop Sci. 56(5): 2106–2118
Table 1. Analysis of variance and mean values of fixed effects for stem and root characters associated to lodging tolerance of six oat cultivars at Brandon, MB site 2017

	Shoot Height (cm)	2nd internode	Dry weight per unit area \(b \)	Root Length (cm)	Root Diameter (mm)	Lodging score (1-9)						
	Shoot Length (cm)	Length (mm)	Dry weight (g)	IN4 (mg cm\(^{-2}\))	IN3	IN2	IN1	Length	Diameter	score		
Nitrogen												
\(N_b \)	101.5	7.0	4.2	0.15	4.8	40.2	43.6	52.7	54.8	2041.9	0.333	1.8
\(N_b+25 \)	99.0	6.9	4.2	0.15	5.2	40.1	43.7	51.4	54.6	2779.5	0.331	1.3
\(N_b+50 \)	98.5	6.9	4.1	0.14	5.0	39.6	42.9	51.5	51.8	2653.1	0.324	1.3
LSD (0.05)	ns	ns	ns	ns	Ns	ns	ns	Ns	ns	ns	ns	0.24
Genotype												
CS Camden	98.3	6.3	4.3	0.13	4.3	35.9	39.7	47.4	52.5	2207.5	0.323	1.2
HiFi	107.3	7.8	4.3	0.16	5.1	38.8	41.4	48.9	47.6	2027.4	0.313	1.5
Leggett	93.3	7.0	3.8	0.14	4.6	41.0	42.2	51.5	50.8	2421.1	0.344	1.5
AC Morgan	98.8	6.1	4.5	0.17	6.5	46.3	50.6	61.7	71.8	2853.5	0.348	1.3
CDC Morrison	94.5	6.2	4.0	0.13	5.3	41.8	45.7	52.6	45.8	2578.6	0.326	1.2
CDC Sol-Fi	105.9	8.2	4.0	0.16	4.2	36.0	40.9	49.2	57.2	2860.7	0.322	2.1
Mean	99.7	6.9	4.1	0.15	5.0	40.0	43.4	51.8	53.8	2491.5	0.329	1.5
LSD (0.05)	3.30	0.99	0.22	0.024	0.46	2.7	3.27	4.64	ns	625.45	0.023	0.34
P value												
Genotype (G)	\(<.001\)	\(<.001\)	\(<.001\)	\(.001\)	\(<.001\)	\(<.001\)	\(<.001\)	0.523	0.056	0.033	\(<.001\)	
Nitrogen (N)	0.201	0.940	0.312	0.850	0.068	0.800	0.792	0.801	0.136	0.110	0.656	\(<.001\)
G × N	0.277	0.169	0.798	0.807	0.805	0.699	0.434	0.199	0.431	0.849	0.029	0.059

\(a \) PBR, Peduncle breaking resistance; \(b \) IN1,2,3,4 refer to the position of the internodes from stem base to top.
Table 2. Analysis of variance and mean values of fixed effects for structural and mechanical plant characters associated to lodging tolerance of six oat cultivars at Brandon, MB site 2018

Shoot Height (cm)	Fresh weight (g)	Center of gravity (cm)	Moment (gr.cm)	Bending Length (cm)	Bending Diameter (mm)	Dry weight (g)	Dry weight per unit area mg cm\(^{-2}\)	PBR	IN5	IN4	IN3	IN2	IN1	
Nitrogen														
N\(_b\)	101.4	12.4	67.7	844.8	7.5	3.7	0.14	50.1	4.0	6.9	7.3	8.3	10.7	12.6
N\(_b\)+25	100.2	12.1	66.1	800.6	7.7	3.6	0.13	48.8	3.9	6.5	7.0	8.0	9.8	12.1
N\(_b\)+50	98.3	12.5	65.2	823.0	7.4	3.7	0.13	48.0	4.0	6.8	7.3	8.2	10.1	12
LSD (0.05)	1.98	ns	1.53	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Genotype														
CS Camden	96.4	12.5	66.2	828.0	7.0	3.8	0.12	46.5	3.8	6.0	6.6	7.4	8.7	10.1
HiFi	103.9	11.2	69.0	767.2	7.2	3.7	0.13	49.2	3.8	5.7	6.0	7.1	9.6	10.5
Leggett	94.9	10.9	63.2	688.2	8.0	3.4	0.13	47.7	3.4	6.2	6.4	7.2	9.3	11.8
AC Morgan	101.7	16.7	68.1	1141.6	7.3	4.1	0.17	57.6	5.2	10.1	10.8	11.9	13.9	17.7
CDC Morrison	93.4	11.4	61.4	701.7	6.2	3.5	0.11	48.2	4.3	7.3	7.8	9.2	11.8	13.9
CDC Sol-Fi	109.5	11.5	70.1	810.2	9.4	3.5	0.15	44.7	3.3	5.1	5.5	6.3	7.9	9.49
Mean	100.0	12.4	66.3	822.8	7.5	3.7	0.13	49.0	4.0	6.7	7.2	8.2	10.2	12.25
LSD (0.05)	2.79	1.13	2.16	97.49	0.57	0.14	0.016	2.18	0.31	0.66	0.63	0.75	0.89	2.62

\(\text{P value}\)

Genotype (G)	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001
Nitrogen (N)	0.010	0.495	0.009	0.441	0.567	0.350	0.532	0.438	0.199	0.349	0.266	0.448	0.209	0.754	0.754
G \times N	0.178	0.929	0.178	0.818	0.322	0.855	0.561	0.068	0.332	0.304	0.302	0.703	0.518	0.734	0.734

\(\text{a PBR}, \text{Peduncle breaking resistance; IN1,2,3,4,5 refer to the position of the internodes from stem base to top}\)
Table 3. Analysis of variance and mean values of fixed effects for structural and mechanical shoot characters associated to stem lodging tolerance of six oat cultivars at Portage la Prairie, MB site 2018

Genotype	Shoot Height (cm)	Fresh weight (g)	Center of gravity (cm)	Bending Moment (gr.cm)	2nd internode Length (cm)	Diameter (mm)	Dry weight (g)	Dry weight per unit area (mg cm⁻²)	Breaking resistance a	Lodging score (1-9)				
CS Camden	103.6	14.3	71.1	1020.2	9.7	4.3	0.15	36	2.7	3.6	4.1	6.1	8.3	1.0
HiFi	109.1	12.0	70.0	844.3	12.4	4.1	0.20	39	3.2	4.5	4.5	6.5	11.7	1.4
Leggett	110.0	11.9	70.8	845.3	15.9	3.7	0.20	33	3.2	4.5	4.2	5.2	8.1	1.5
AC Morgan	107.1	18.3	71.3	1306.7	11.4	4.8	0.23	42	4.3	7.0	8.2	9.9	14.2	1.0
CDC Morrison	98.3	11.8	63.3	746.8	11.5	3.9	0.18	40	3.7	5.7	6.3	8.2	10.3	1.2
CDC Sol-Fi	114.2	14.0	73.1	1024.1	13.2	4.2	0.23	40	3.3	4.8	5.1	7.6	11.2	3.2
Mean	107.0	13.7	69.9	964.5	12.4	4.2	0.20	38	3.4	5.0	5.4	7.3	10.6	1.5
LSD (0.05)	3.95	1.05	2.34	92.06	1.47	0.20	0.027	4.1	0.44	0.81	0.92	1.45	2.29	1.26

P value <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.018

PBR, Peduncle breaking resistance; IN1,2,3,4,5 refer to the position of the internodes from stem base to top.
FIGURES

Fig. 1 The monthly mean temperature (a, c) and accumulated precipitation (b, d) in relation to long-term averages for Brandon (2017 and 2018) and Portage (2018) Manitoba.
Fig. 2 Relationship between breaking resistance and dry weight per unit area of the second internode of six oat cultivars at sites in Brandon and Portage (2018), Manitoba. Dry weight per unit area of internode (mg cm$^{-2}$) was calculated as: [weight / (length × diameter)].
Fig. 3 Relationships between breaking resistance of peduncle with that of individual culm internodes from second internodes up to peduncle for six oat cultivars [Brandon 2017 (a), Brandon 2018 (b), Portage 2018 (c)]. For the experiment in Brandon (2017), the strength of all internodes other than peduncle was calculated based on the dry weight per unit area of internodes (mg cm\(^{-2}\)) as: [weight / (length \(\times\) diameter)]. IN1,2,3,4,5 refer to the position of the internodes from stem base to top.