CASE REPORT

Robot-assisted laparoscopic retrieval of a migrated IUCD in the pelvis

Kelvin Adasonla*, Mohammed K. Quraishi, Abdoulai Samateh, Rebecca Tregunna, Edward Calleja and Peter D. Rimington

Department of Urology, Eastbourne District General Hospital, Eastbourne, UK

*Correspondence address. Department of Urology, East Sussex Healthcare NHS Trust, Eastbourne District General Hospital, Eastbourne, UK.
E-mail: k.o.adasonla@doctors.org.uk

Abstract

Intrauterine contraceptive devices (IUCDs) are a popular treatment choice for contraception. We report a case of a woman in her forties who presented to a urology clinic with visible haematuria. Flexible cystoscopy revealed a bladder lesion, suspicious for a tumour. However, subsequent imaging determined that this was in fact the arm of an IUCD, sited 7 years previously, which had migrated into the bladder. The patient underwent an uneventful robotic-assisted laparoscopic removal of the device. IUCD-related complications are infrequent and can present atypically, warranting a broad diagnostic approach. Robotic-assisted laparoscopic removal of devices migrating into pelvic structures offers all the advantages of minimally invasive surgery, with the added benefits of three-dimensional views and endowrist movement facilitating tasks such as intracorporeal suturing. We report the first documented case of utilizing the da Vinci robotic system in safely assisting the removal of a migrated IUCD.

INTRODUCTION

Intrauterine contraceptive devices (IUCDs) are an effective contraception option, popular worldwide [1]. Associated complications include uterine perforation, documented in 0.2% of cases [2]. Although migration of IUCD into surrounding tissues is rare, devices have been located in adjacent abdomino-pelvic structures [3]. Presentation of IUCD migration is variable, depending on anatomical location. Here, we report our experience of robotic-assisted device retrieval.

CASE REPORT

Case presentation

A 42-year-old woman presented to our urological clinic through our ‘Two Week Wait’ suspected malignancy pathway. She reported several episodes of painful visible haematuria over several weeks.

Her past surgical history included two caesarean sections, and her medical history was otherwise unremarkable. She had a Copper TT380 slimline IUCD (Durbin PLC, Hayes, UK) inserted 7 years previously, several months after the birth of her youngest child.

Investigations

Mid-stream urine culture was negative. Flexible cystoscopy identified a 1 cm raised abnormal lesion on the right postero-lateral wall, suspicious for malignancy (Fig. 1).

Computed tomography (CT) scan including a urographic phase revealed an IUCD in the vesico-uterine space, with one horn embedded into the bladder (Figs 2–4).
The patient was offered a transperitoneal surgical removal of the foreign body by a robotic-assisted laparoscopic approach.

Procedure

The robotic system used was the da Vinci Surgical System (Intuitive Surgical Inc., Sunnyvale, CA, USA).

Prophylactic intravenous gentamicin was administered at the beginning of the procedure. Bimanual pelvic examination under anaesthetic was unremarkable. A urinary catheter was introduced into the bladder.

Port placement was achieved in the supine position, with initial intraperitoneal access and pneumoperitoneum via the Veress method. The 12 mm camera port was sited 2 cm superior to the umbilicus and five further ports were placed under direct vision, in a similar orientation to the departmental standard approach for robotic-assisted laparoscopic prostatectomy.

Following this, the patient was put into the Trendelenburg position, and the robotic system was docked.

The IUCD was located in the vesico-uterine pouch, adherent to both the bladder and uterus (Fig. 5). Following careful manipulation and dissection, the IUCD was grasped and removed without complication (Fig. 6). The small bladder defect left by the device was closed with two layers of 3-0 Vicryl™. There was no uterine perforation.

Following a low pneumoperitoneum pressure check for haemostasis, the robotic cart was undocked. Fascial closure of port sites over 10 mm was secured with 3-0 Vicryl™.
was an important factor in preoperative planning. A postoperative robotic-assisted approach over conventional laparoscopy for such tasks and uterus. The increased dexterity afforded by a robotic-erable amount of intracorporeal suturing in repair of the blad-

demonstrated the potential of a robotic-assisted approach [7].

The urologist can be confronted with a migrated IUCD in sev-
eral ways, with the bladder most commonly involved. Patients

present with haematuria, dysuria, suprapubic discomfort or
recurrent urinary tract infections. These symptoms result may
from direct tissue injury or due to secondary bladder calculus
formation [5]. Diagnosis is confirmed with CT scanning or

equivalent cross-sectional imaging.

Management is dictated by the anatomical position of the
device. Cystoscopic management is an option when the device
has been determined to be entirely within the bladder lumen
[6]. Laparoscopic approaches have been used to address devices
embedded in the bladder wall or within the peritoneal cavity; in
one review of 129 procedures for intraperitoneal migrated IUCDs,
90% underwent attempted laparoscopic removal [5]. A robotic-
assisted laparoscopic approach can now be added to the list of

minimally invasive options.

Although more high-quality research is needed to justify
widespread uptake of robotic-assisted surgery in cases such as
this, current evidence looks promising. A case report on a
successful robotic-assisted laparoscopic extraction of a vaginal
pessary, which had migrated into the bladder, has similarly
demonstrated the potential of a robotic-assisted approach [7].

Furthermore, this case had the potential to involve a consid-
erable amount of intracorporeal suturing in repair of the blad-
der and uterus. The increased dexterity afforded by a robotic-
assisted approach over conventional laparoscopy for such tasks
[8] was an important factor in preoperative planning. A postop-
erative cystogram was not felt to be necessary, given the small

size of the bladder defect, but the team acknowledges that this
is an important consideration in the context of bladder repair.

At the time of writing, there are no comparative studies avail-
able for IUCD removal between conventional laparoscopy and
robot-assisted procedures. It is the opinion of the authors that
there is no difference between the two approaches in managing
these cases. Our approach would be familiar to any urologist
specializing in robotic surgery, as patient positioning and port
placement was based on that used in a prostatectomy [9]. In
cases such as these, offering the most appropriate procedure
to the patient is paramount and in a unit such as ours, where
surgical and theatre staff perform robotic-assisted procedures
more frequently than conventional laparoscopy, it is reasonable
to proceed with the former. Of course, cost remains an important
argument against choosing a robotic approach. However, with
the upcoming expiry of market leader Intuitive’s earliest patents
and emergence of competitors such as CMR Surgical (Cambridge,
UK), costs for health providers are likely to decrease [10].

CONCLUSION

In summary, to our knowledge, this is the first case to demon-
strate that robotic-assisted laparoscopic retrieval of a migrated
IUCD involving the bladder is a safe and effective management
strategy.

ACKNOWLEDGEMENT

The authors thank Rebecca Rushton, Specialist Urology Diagnos-
tic Nurse, for her thorough work that provided the basis for this
case report.

CONFLICT OF INTEREST STATEMENT

None declared.

PATIENT CONSENT

Written informed consent for publication of their details was
obtained from the patient.

REFERENCES

1. United Nations. New York City: United Nations, Department
of Economic and Social Affairs, Population Division; c1995-
2000. World Contraceptive Use 2020, 2020. https://www.un.o
rg/en/development/desa/population/publications/dataset/
contraception/wcu2020.asp (23 September 2020, date last
accessed).

2. Faculty of Sexual & Reproductive Healthcare of the Royal
College of Obstetricians and Gynaecologists (FSRH) [Inter-
net]. London: FSRH; c1995-2000. FSRH Clinical Guideline:
Intrauterine Contraception (April 2015, amended Septem-
ber 2019), 2019. https://www.fsrh.org/standards-and-guida-
ce/documents/ceuguidanceintrauterinecontraception/ (24
September 2020, date last accessed).

3. Kassab B, Audra P. Le stérilet migrateur. A propos d’un cas
et revue de la littérature [The migrating intrauterine device.
Case report and review of the literature]. Contracept Fertil Sex
1999;27:696–700. French.
4. Heinemann K, Reed S, Moehner S, Do Minh T. Risk of uterine perforation with levonorgestrel-releasing and copper intrauterine devices in the European Active Surveillance Study on Intrauterine Devices. *Contraception* 2015;91:274–9.

5. Mosley FR, Shahi N, Kurer MA. Elective surgical removal of migrated intrauterine contraceptive devices from within the peritoneal cavity: a comparison between open and laparoscopic removal. *JSLS* 2012;16:236–41.

6. Sano M, Nemoto K, Miura T, Suzuki Y. Endoscopic treatment of intrauterine device migration into the bladder with stone formation. *J Endourol Case Rep* 2017;3:105–7.

7. Goldsberry W, Metzinger DS. Robotic cystotomy for pessary extraction with vesicovaginal fistula repair. *J Minim Invasive Gynecol* 2017;24:722–3.

8. McGuinness LA, Prasad Rai B. Robotics in urology. *Ann R Coll Surg Engl* 2018;100:38–44.

9. Huynh LM, Ahlering TE. Robot-assisted radical prostatectomy: a step-by-step guide. *J Endourol* 2018;32:S28–32.

10. Brodie A, Vasdev N. The future of robotic surgery. *Ann R Coll Surg Engl* 2018;100:4–13.