Gabapentin and pregabalin in dermatology

Asit Mittal, Chesta Agarwal, Manisha Balai, Ayush Taneja

Introduction
The anticonvulsants gabapentin and pregabalin are of interest to dermatologists. The drugs have found uses in conditions that are frequently of interest to dermatologists and often primarily present to a dermatologist. These drugs are likely to find greater use in dermatology practice in future. This review is intended to familiarize dermatologists with these drugs.

History
Pregabalin was synthesized in 1990 as an anticonvulsant. It was invented by Richard Bruce Silverman at Northwestern University in Chicago, Illinois. The drug was approved in the European Union in 2004. The US received Food and Drug Administration approval for use in treating epilepsy, diabetic neuropathic pain and postherpetic neuralgia in December 2004. Gabapentin was originally approved by the U.S. Food and Drug Administration in December 1993 for use as an adjuvant medication to control partial seizures in adults; that indication was extended to children in 2000. In 2004, its use for treating postherpetic neuralgia (neuropathic pain following shingles) was approved.

Mechanism of Action
Gabapentin consists of a gamma amino butyric acid molecule covalently bound to a lipophilic cyclohexane ring (C$_9$H$_{17}$NO$_2$) [Figure 1]. It is a centrally active gamma amino butyric acid agonist, with its high lipid solubility aimed at facilitating its transfer across the blood–brain barrier. Despite their design as gamma amino butyric acid agonists, neither gabapentin nor pregabalin mimics gamma amino butyric acid when iontophoretically applied to neurons in primary culture. These compounds bind with a high affinity to a protein in cortical membrane with aminooicid sequence identical to that of calcium channel subunit α2δ-1. It has been speculated that the anticonvulsant effect of gabapentin is mediated by α2δ-1 protein, but whether and how binding of gabapentin to this protein regulate neuronal activity remains unclear. Pregabalin binding is reduced but not eliminated in mice carrying a mutation in α2δ-1 protein. It is unclear whether the anticonvulsant and analgesic effect of gabapentin and pregabalin are mediated by affecting calcium currents, and if so how.

Pharmacokinetics
Gabapentin is not metabolized. It is eliminated via renal mechanism and is excreted unchanged. It does not induce hepatic enzymes. Absorption is nonlinear and dose-dependent at very high doses, but the elimination kinetics is linear. The drug is not bound to plasma protein. Drug–drug interactions are negligible. The half-life is relatively short ranging from 5.0 to 8.0 hours, hence, it is administered two or three times per day. It requires gradual adjustment of the dose. In contrast to gabapentin, pregabalin has linear and dose proportion absorption in therapeutic dose range (150 to 600 mg/d). It also has rapid onset of action and more limited dose range. Similar to gabapentin, it is also not metabolized and is almost entirely excreted unchanged in the urine. It is not bound to plasma proteins and has virtually no drug–drug interaction, again resembling the characteristics of gabapentin. Similarly, other drugs do not affect the pharmacokinetics of pregabalin. The half-life of pregabalin ranges from approximately 4.5 hour to 7.0 hours, thus, requiring more than once daily dosing in most patients.

Dosing
The initial dosage of gabapentin is 300 mg/d and can be increased up to 1200 mg three times a day. It can be started

Quick Response Code:

Website: www.jdvl.com

DOI: 10.4103/ijdvl.IJDVL_480_17

How to cite this article: Mittal A, Agarwal C, Balai M, Taneja A. Gabapentin and pregabalin in dermatology. Indian J Dermatol Venereol Leprol 2018;84:634-40.

Received: June, 2017. Accepted: December, 2017.
at its effective dose rather than gradually titrated upwards in dosage.7 It should not be discontinued abruptly, but rather tapered gradually, because it can lead to withdrawal-related side-effects.8 It has a high toxicity ratio, minimizing the chance of adverse effects with even very high overdoses,9 hence, routine monitoring of clinical laboratory parameters is not required.5 Pregabalin is started at an initial dose of 150 mg/d and can be increased up to 600 mg/d.10

Clinical Uses

Postherpetic neuralgia and other similar neuropathies

Approximately 10–15\% of herpes zoster patients will develop postherpetic neuralgia, which can persist for many years. Dermatologists are often the primary care providers for postherpetic neuralgia patients. Several trials conducted previously reported statistically significant reduction in average daily pain after gabapentin and pregabalin.11‑17 Gabapentin is the first oral medication approved in the USA for this condition.5 Reviews of controlled studies showed that patients suffering from postherpetic neuralgia experienced a statistically significant reduction in average daily pain after treatment with gabapentin. The study also showed that those receiving gabapentin experienced improvement in sleep and overall quality of life.18 Gabapentin is useful in the treatment of neuralgia in all areas of the body [Table 1]. Its positive effect on neuralgia includes trigeminal neuralgia,18 glossopharyngeal neuralgia refractory to the usual medical treatments19 and facial neuritis.20 It is also useful in treating inflammatory pain.21 Gabapentin is also effective in the treatment of human immunodeficiency virus (HIV) neuropathy,22 painful diabetic neuropathy23 and diabetic neuropathic pain.24 Of particular interest to dermatologist is the probable usefulness of this drug in decreasing the trophic ulcerations that results from neuropathy in diseases such as HIV, leprosy and diabetes that are prone to such ulcers.3 Pregabalin is found to be efficacious in treating Red scrotum syndrome (poorly understood, chronic dysesthetic erythema primarily involving the anterior scrotum).25

Pruritus

Generalized pruritus is a distressing symptom that can occur in several dermatologic and systemic disorders. Strong similarities exist between neural induction, transmission and processing of pruritus and pain. While itch is transmitted by a functionally distinct subset of neurons, overlap exists between the mediators and receptors involved in the pathogenesis of these sensations.26 In addition, it is now clear that chronic itch is influenced by a phenomenon of neural hypersensitization in a process that parallels what has been observed in chronic pain.27 In the wake of these discoveries, agents that target the neural system have emerged as effective antipruritic therapies.28 Gabapentin has been reported to be an effective antipruritic agent in uremic pruritus,29‑36 brachioradial pruritus,37‑40 pruritus associated with wound healing in burns41 and notalgia paresthetica42 and pruritus of unknown origin.6,43 Its effect in pruritus can be central and peripheral. It inhibits voltage-dependent calcium ion channels located in the spinal cord (with particular high density in the superficial laminae of the dorsal horn), inhibiting the release of excitatory

Table 1: Various uses of gabapentin in dermatology

Neuropathic pain
Postherpetic neuralgia
HIV neuropathy
Diabetic neuropathic pain
Neuralgia
Glossopharyngeal neuralgia
Trigeminal neuralgia
Facial neuritis
Skin hypersensitivity
Allodynia
Buccofacial allodynia
Mechanical allodynia
Reflex sympathetic dystrophy
Dynia
Glossodynia
Carotidina
Vulvodynia
Orchidynia
Prostatodynia
Coccycodynia
Protodynia
Scalp dysesthesia
Hot flashes
Temperature-sensitive dermatosis
Dysesthetic pain after reconstruction surgery
Pruritus
Brachoradial pruritus
Uremic pruritus
Pruritus of unknown origin
Seizure due to AIP
Self-injurious behavior in Lesh-Nyhan syndrome
Steroid induced mania
Piloleiomyoma-related pain
Pain of vasolabile conditions

Erythromelalgia

\(HIV: \) Human immunodeficiency virus, \(AIP: \) Acute intermittent porphyria
neurotransmitters. Other mechanisms involved are increase in the synthesis of γ-aminobutyric acid from glutamate by altering the activity of glutamic acid decarboxylase in neurological tissue, inhibition of the release of calcitonin gene-related peptide, a neuropeptide, described as an itch mediator. Gabapentin also increases the threshold to experience nociception. Related drug Pregabalin, a gamma amino butyric acid analogue of gabapentin, has been used in the treatment of uremic pruritus, brachioradial pruritus, pruritus in prurigo nodularis and polycythemia vera-associated aquagenic pruritus. It was hypothesized that the beneficial effect of Pregabalin in chronic pruritus may result from counteracting the effects on the central sensitizing processes involved in the generation of chronic itch. It has also been reported to improve interleukin 2 and cetuximab-related pruritus in cancer patients. However, at present there are insufficient data to conclude that these anticonvulsants can be an effective therapeutic alternative in the management of pruritus.

Gabapentin in various dyinas

The “dyinas” are a group of chronic, focal pain syndromes with a predilection for the orocervical and urogenital regions. They include glossodynia, carotidynia, scalp dysesthesia, vulvodynia, orchidynia, prostatodynia, coccygodynia and proctodynia [Table 1]. In some cases, the dynia occur secondarily, but more often, despite an exhaustive evaluation, no etiology is found, and in these cases the cause of pain remains enigmatic. Sometimes, these patients initially present to dermatologist. These dyrias are found responsive to gabapentin. Allodynia is a sensation of pain to slight touch. It is another complication of postherpetic neuralgia. It can be effectively treated by gabapentin which can block both the static and dynamic components of mechanical allodynia. It also relieves cutaneous hyperalgesia after skin has been sensitized to pain. Reflex sympathetic dystrophy is a condition involving persistent pain that results from nerve injury. It has a variety of cutaneous manifestations, including atrophy, edema, erythema, bullae, and ulcers. Gabapentin has a role in the control of reflex sympathetic dystrophy-related pain in children and adults.

Other uses

Gabapentin has shown benefit in pain related to leiomyomas in patients with painful sclerodermatous changes that have affected nerve conduction, pain of the vasculable condition and erythromelalgia. Gabapentin has also shown benefits in various conditions associated with neurologic problems and skin. It is useful in the treatment of dysesthetic pain after reconstructive surgery, seizures due to acute intermittent porphyria, self-injurious behavior in Lesch-Nyhan syndrome and as a prophylaxis against steroid-induced mania. Finally, gabapentin improves pain control during wound dressing of cancer patients, suggesting that it might have a role in toxic epidermal necrolysis patients who complain of “painful skin.”

In a recent article, gabapentin was also found to be effective for...
Table 2: Contd...

Use	Studies	Year	Study design	Level of evidence
Neuralgias	Pandey et al. Gabapentin for refractory idiopathic trigeminal neuralgia. J Indian Med Assoc	2008	Case report	Level III
	Maretti et al. Gabapentin treatment of glossopharyngeal neuralgia: A follow up of 4 year of a single case. Eur J Pain	2002	Case report	Level III
	Carlsten et al. Gabapentin treatment of glossopharyngeal neuralgia with cardiac syncope. Ugeskr Laeger	2002	Case report	Level III
	Garcia Callejo et al. Use of gabapentin in glossopharyngeal neuralgia. Acta Otorrinolaringol Exp	1999	Case report	Level III
	Sist et al. Gabapentin for idiopathic trigeminal neuralgia: Report of two cases. Neurology	1997	Case report	Level III
	Lucier and Franm L. Use of gabapentin in a case of facial neuritis. Anesth Analg	1997	Case report	Level III
	Garcia Callejo et al. Clinical response of gabapentin for glossopharyngeal neuralgia. Rev Neurol	1994	Case report	Level III
Uremic pruritus	Foroutan et al. Comparison of pregabalin with doxepin in the management of uremic pruritus: A randomized, single-blind clinical trial. Hemodial Int	2017	RCT	Level I
	Nofal et al. Gabapentin: A promising therapy for uremic pruritus in hemodialysis patients: A randomized-controlled trial and review of literature. J Dermatolog Treat	2016	RCT	Level I
	Hassan et al. Efficacy and safety of gabapentin for uremic pruritus and restless leg syndrome in conservatively managed patients with chronic kidney disease. J Pain Symptom Manage	2015	Cohort study	Level II
	Yong et al. Uremic pruritus is improved by gabapentin. Int J Dermatol	2014	Case report	Level III
	Shavit et al. Use of pregabalin in the management of chronic pruritus. J Pain Symptom Manage	2013	Clinical trial	Level II
	Solak et al. Pregabalin versus gabapentin in the treatment of neuropathic pruritus in maintenance haemodialysis patients: A prospective, crossover study. Nephrology	2012	RCT	Level I
	Rayner et al. Uraemic pruritus: Relief of itching by gabapentin and pregabalin. Nephron clin prac	2012	Clinical trial	Level II
	Marquez et al. Uremic pruritus in hemodialysis patients: Treatment with desloratidine versus gabapentin. J Bras Nefrol	2012	Clinical trial	Level II
	Razeghi et al. Gabapentin and uremic pruritus in hemodialysis patients. Ren Fail	2009	Clinical trial	Level II
	Naini et al. Gabapentin: A promising drug for the treatment of uremic pruritus. Saudi J Kidney Dis Transpl	2007	RCT	Level I
	Manenti L. et al. Gabapentin in the treatment of uraemic itch: An index case and a pilot evaluation. J Nephrol	2005	Clinical trial	Level II
	Gunal et al. Gabapentin therapy for pruritus in haemodialysis patients: A randomized, placebo-controlled, double-blind trial. Nephrol Dial Transplant	2004	RCT	Level I
Brachioradial pruritus	Atas and Bilir Kayan B. Pregabalin treatment of three cases with brachioradial pruritus. Dermatol Ther	2017	Case report	Level III
	Vestita et al. Brachioradial pruritus in a 47-year-old woman treated with pregabalin. G Ital Dermatol Venereol	2016	Case report	Level III
	Carvalho et al. Brachioradial pruritus in a patient with cervical disc herniation and Parsonage - Turner syndrome. An Bras Dermatol	2015	Case report	Level III
	Uldall pallesen et al. Brachioradial pruritus effectively treated with gabapentin. Ugeskr Laeger	2012	Case report	Level III
	Yilmaz et al. Brachioradial pruritus successfully treated with gabapentin. J Dermatol	2010	Case report	Level III
	Kanitakis. Brachioradial pruritus: Report of a new case responding to gabapentin. Eur J Dermatol	2006	Case report	Level III
	Winhoven et al. Brachioradial pruritus: Response to treatment with gabapentin. Br J Dermatol	2004	Case report	Level III
Dynias	Dubey et al. Gabapentin therapy for glossodynia due to an unusual case. Anesth Analg	2008	Case report	Level III
	Meiss et al. Gabapentin - a promising treatment in glossodynia. Clin Exp Dermatol	2002	Case report	Level III
	Ben David et al. Gabapentin therapy for vulvodynia. Anesth Anal	1994	Case report	Level III
Sclerodermatous changes	Fischoff and Sirois D. Painful trigeminal neuropathy caused by severe mandibular resorption and nerve compression in a patient with systemic sclerosis: Case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod	2000	Case report	Level III

Contd...
Table 2: Contd...

Use	Studies	Year	Study design	Level of evidence
Erythromelalgia	McGraw and Kosek P. Erythromelalgia pain managed with gabapentin.	1997	Case report	Level III
	Anesthesiology			
	Ceyhan et al. A case of erythromelalgia: Good response to treatment with gabapentin.	2010	Case report	Level III
	J Drugs Dermatol 2010			
Dysesthetic pain after reconstructive surgery	Otley. Gabapentin for the treatment of dysesthetic pain after reconstructive surgery.	1999	Case report	Level III
	Dermatol Surg			
Acute intermittent porphyria	Arora and Mahajan V. Gabapentin in seizures due to AIP. *Neurol India*	2000	Case report	Level III
Lesch-Nyhan syndrome	McManaman and Tam DA. Gabapentin for self-injurious behavior in Lesch-Nyhan syndrome. *Pediatr Neurol*	1999	Case report	Level III
Steroid-induced mania	Ginsberg and Sussman N. Gabapentin as prophylaxis against steroid-induced mania. *Can J Psychiatr*	2001	Case report	Level III
Wound dressing care	Devulder et al. Gabapentin for pain control in cancer patients’ wound dressing care. *J Pain Symptom Manage*	2001	Case report	Level III
Toxic epidermal necrolysis	Moshfeghi and Mandler HD. Ciprofloxacin-induced toxic epidermal necrolysis. *Ann Pharmacother*	1993	Case report	Level III
Notalgia paresthetica	Maciel et al. Efficacy of gabapentin in the improvement of pruritus and quality of life of patients with natalgia paresthetica. *An Bras Dermatol*	2014	Clinical trial	Level II
	Loosmore et al. Gabapentin treatment for natalgia paresthetica, a common isolated peripheral sensory neuropathy. *J Eur Acad Dermatol Venereol*	2007	Case report	Level III

RCT: Randomized controlled trial. Level I: RCT, Level II: Case series, Level III: Case Report

Table 3: Side effects

Most common	Drowsiness/sedation
	Malaise/lassitude
Cutaneous	Ucers in mouth due to pancytopenia
	Easy bruising
	Fluid retention (leg)
Weight gain	Allergic eruptions
Stevens-Johnsons syndrome	
Other side effects	Cholestasis
	Hepatotoxicity
	Anorgasemia
	Dyskinesia
	Reversible acute renal allograft dysfunction

Vismodegib-induced muscle cramps. Pregabalin was also used for the treatment of painful hand-foot skin reaction associated with darafenib. Studies showing effect of gabapentin and pregabalin in various dermatological conditions have been described briefly in Table 2.

Adverse Effects

These drugs are relatively safe with very few serious adverse effects [Table 3]. The most frequently reported adverse event is drowsiness/sedation. This is seen during the first month of treatment. This is also one of the most common cause for discontinuation of the drug. Others causes include dizziness, malaise/lassitude and ataxia.

Rarely, they can cause pancytopenia, causing fever, sore throat and ulcers in the mouth, or unusual bleeding and easy bruising, fluid retention in the legs and weight gain. A few cases of allergic eruptions and Stevens–Johnson’s syndrome have also been reported.

Very rarely gabapentin has induced cholestasis and hepatotoxicity. Studies conducted for its efficacy in pregnancy showed no congenital anomalies among the infants. However, the crude mortality rate was up to five times higher than in the general population. There are a few isolated reports about anorgasmia in women taking gabapentin.

Conclusion

Gabapentin and pregabalin are very promising medications in the treatment of painful conditions that often are domain of dermatologists such as postherpetic neuralgia, painful tumors, neuropathic ulcers or pain during dressing changes in conditions such as toxic epidermal necrolysis. Of great interest to a dermatologist is its use in chronic itch unresponsive to other medication. However, at present, there is insufficient data to suggest that these anticonvulsants can be an effective alternative to treat various types of skin sensitivities and pruritus. Future large randomized controlled studies are required that use behavioral methodology rather than subjective methodology. The chances of placebo effects are quite high with subjective methodologies.

Financial support and sponsorship

Nil.
Conflicts of interest
There are no conflicts of interest.

References
1. MacNamara JO. Pharmacotherapy of the epilepsies. In: Brunton LL, editor. Goodman & Gilman’s the Pharmacological Basis of Therapeutics. 12th ed. China: McGraw-Hill Companies; 2011. p. 583-607.
2. Gee NS, Brown JP, Dissanayake VU, Offord JJ, Thurlow R, Woodruff GN, et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 1996;271:5768-76.
3. Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su TZ, et al. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci U S A 2006;103:17537-42.
4. Porter RJ, Meldrum BS. Antiepileptic drug gabapentin and pregabalin. In: Katzung BG, Masters SB, Trevar AJ, editors. Basic and Clinical Pharmacology, 12th ed. New Delhi: Tata McGraw-Hill; 2012. p. 403-27.
5. Scheinfeld N. The role of gabapentin in treating diseases with cutaneous manifestations and pain. Int J Dermatol 2003;42:491-5.
6. Yusudian PD, Wilson NJ. Efficacy of gabapentin in the management of pruritus of unknown origin. Arch Dermatol 2005;141:1507-9.
7. Ferrendelli JA. Concerns with antiepileptic drug initiation: Safety, tolerability, and efficacy. Epilepsia 2001;42 Suppl 4:28-30.
8. Norton JW. Gabapentin withdrawal syndrome. Clin Neuropharmacol 2001;24:245-6.
9. Winholen SM, Coulson H, Bottomley WW. Brachioradial pruritus: Response to treatment with gabapentin. Br J Dermatol 2004;150:786-7.
10. US Food and Drug Administration. Lypica (Pregabalin) full Prescribing Information.
11. Rowbotham M, Harden N, Stacey B, Bernstein P, Magnus-Miller L. Gabapentin and pregabalin in the treatment of neuropathic pain associated with post-herpetic neuralgia and diabetic neuropathy: A randomized controlled trial. JAMA 1998;280:1837-42.
12. Rice AS, Matson S. Postherpetic Neuralgia Study Group. Gabapentin in postherpetic neuralgia: A randomised, double blind, placebo controlled study. Pain 2001;94:215-24.
13. Dworkin RH, Corbin AE, Young JP Jr., Sharma U, LaMoreaux L, et al. Gabapentin therapy for pruritus in haemodialysis patients: A randomized, placebo-controlled, double-blind trial. Nephrol Dial Transplant 2004;19:3137-9.
14. Zin CS, Nissen LM, O’Callaghan JP, Duffull SB, Smith MT, Moore BJ, et al. Efficacy and safety of pregabalin for peripheral neuropathic pain: Results of an 8-week, flexible-dose, double-blind, placebo-controlled study conducted in China. Clin Ther 2011;33:159-66.
15. Kanitakis J. Brachioradial pruritus: A promising drug for the treatment of urticaria. Saudi J Kidney Dis Transpl 2007;18:378-81.
16. Perry HE, Sánchez GF. Gabapentin therapy for diabetic neuropathic pain. Am J Med 2000;108:689.
17. Miller J, Leicht S. Pregabalin in the treatment of red scrotum syndrome: A report of two cases. Dermatol Ther 2016;29:244-8.
18. Roberson DP, Gudes S, Sprague JM, Patoski HA, Robson VK, Blasl F, et al. Activity-dependent silencing reveals functionally distinct intrinsic-generating sensory neurons. Nat Neurosci 2013;16:910-8.
19. Ikoma A, Steindoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci 2006;7:535-47.
20. Vinik AJ. Clinical practice. Diabetic sensory and motor neuropathy. N Engl J Med 2016;374:1455-64.
21. Gunal AJ, Ozalp G, Yoldas TK, Guan SY, Kiricman E, Celiker H, et al. Gabapentin therapy for pruritus in haemodialysis patients: A randomized, placebo-controlled, double-blind trial. Nephrol Dial Transplant 2004;19:3137-9.
22. Newsam G. HIV neuropathy treated with gabapentin. AIDS 1998;12:219-21.
23. Porta-Etessam J, Garcia-Morales I, Martinez-Salio A, Berbel A, Benito-León J. Gabapentin in acute painful diabetic neuropathy. Eur J Neurol 2000;7:365.
24. Perez HE, Sánchez GF. Gabapentin therapy for diabetic neuropathic pain. JAMA 2000;108:689.
25. Miller J, Leicht S. Pregabalin in the treatment of red scrotum syndrome: A report of two cases. Dermatol Ther 2016;29:244-8.
26. Roberson DP, Gudes S, Sprague JM, Patoski HA, Robson VK, Blasl F, et al. Activity-dependent silencing reveals functionally distinct intrinsic-generating sensory neurons. Nat Neurosci 2013;16:910-8.
27. Ikoma A, Steindoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci 2006;7:535-47.
28. Vinik AJ. Clinical practice. Diabetic sensory and motor neuropathy. N Engl J Med 2016;374:1455-64.
29. Gunal AJ, Ozalp G, Yoldas TK, Guan SY, Kiricman E, Celiker H, et al. Gabapentin therapy for pruritus in haemodialysis patients: A randomized, placebo-controlled, double-blind trial. Nephrol Dial Transplant 2004;19:3137-9.
30. Manenti L, Vagliò A, Costantino E, Danisi D, Oliva B, Pini S, et al. Gabapentin in the treatment of urticaria: An index case and a pilot evaluation. J Nephrol 2005;18:86-91.
31. Naini AE, Harandi AA, Khanbabapour S, Shahidi S, Seirafiyan S, Mohseni M, et al. Gabapentin: A promising drug for the treatment of urticaria. Saudi J Kidney Dis Transpl 2007;18:378-81.
32. Razeghi E, Eskandari D, Ganji MR, Maysamie AP, Togha M, Khashayar P, et al. Gabapentin and urticaria pruritus in hemodialysis patients. Ren Fail 2009;31:85-90.
33. Marquez D, Rambona C, Laumann JE, Romero CA, Vukelic VL, Martínatto C, et al. Uremic pruritus in hemodialysis patients: Treatment with desloratidine versus gabapentin. J Bras Nefrol 2012;34:148-52.
34. Yong AS, Lee KY. Uremic pruritus is improved by gabapentin. Int J Dermatol 2014;53:e404-5.
35. Cheikh Hassan HI, Brennan F, Collett G, Josland EA, Brown MA. Efficacy and safety of gabapentin for urticaria pruritus and restless legs syndrome in conservatively managed patients with chronic kidney disease. J Pain Symptom Manage 2015;49:782-9.
36. Nofal E, Farag F, Nofal A, Eldesouky F, Alkot R, Abdelkhalik Z, et al. Gabapentin: A promising therapy for urticaria pruritus in hemodialysis patients: A randomized-controlled trial and review of literature. J Dermatolog Treat 2016;27:515-9.
37. Gabapentin in the treatment of itching produced by burns and wound healing in children: A pilot study. Burns 2004;30:851-3.
38. Maciel AA, Cunha PR, Laraia IO, Trevisan F. Efficacy of gabapentin in the improvement of pruritus and quality of life of patients with notalgia paresthetica. An Bras Dermatol 2015;90:401-2.
39. Mendham JE. Gabapentin for the treatment of itching produced by burns and wound healing in children: A pilot study. Burns 2004;30:851-3.
40. Bennett MI, Simpson KH. Gabapentin in the treatment of neuropathic pain. Palliat Med 2003;18:219-21.
41. Garcia Callejo EJ, Marco Algarra J, Talamantes Escribà F, Martínez Beneyto MP, Esparcia Navarro M, Morant Ventura A, et al. A prospective, randomized, double-blind, placebo-controlled study of gabapentin in the treatment of pruritus associated with post-herpetic neuralgia and diabetic neuropathy: A cost effectiveness analysis for the Greek healthcare system. BMC Neurolog 2013;13:56.
42. Liu Q, Chen H, Xi L, Hong Z, He L, Fu Y, et al. A randomized, double-blind, placebo-controlled trial to evaluate the efficacy and safety of pregabalin for postherpetic neuralgia in a population of Chinese patients. Pain Pract 2017;17:62-9.
43. Sist T, Filadura V, Miner M, Lema M. Gabapentin for idiopathic trigeminal neuralgia: Report of two cases. Neurology 1997;48:1467.
44. Sist T, Filadura V, Miner M, Lema M. Gabapentin for idiopathic trigeminal neuralgia: Report of two cases. Neurology 1997;48:1467.
45. Garcia Callejo EJ, Marco Algarra J, Talamantes Escribà F, Martínez Beneyto MP, Esparcia Navarro M, Morant Ventura A, et al. Use of gabapentin in glossopharyngeal neuralgia. Acta Otorrinolaringol Esp 1999;50:175-7.
46. Lucier E, Fram L. Use of gabapentin in a case of facial neuritis. Anesth Analg 1997;85:1410.
47. Wener MU, Perkins FM, Holte K, Pedersen JL, Kehlet H. Effects of gabapentin in acute inflammatory pain in humans. Reg Anesth Pain Med 2001;26:322-8.
Pregabalin versus gabapentin in the treatment of neuropathic pruritus in maintenance haemodialysis patients: A prospective, crossover study. Nephrology (Carlton) 2012;17:710-7.

48. Shavit L, Grenader T, Lifschez M, Slotki I. Use of pregabalin in the management of chronic uremic pruritus. J Pain Symptom Manage 2013;45:776-81.

49. Foroutan N, Emínam N, Nikzar N, Shoja Shahrokh Abadi M. Comparison of pregabalin with doxepin in the management of uremic pruritus: A randomized single blind clinical trial. Hemodial Int 2017;21:63-71.

50. Vestita M, Cerbone L, Calista D. Brachioradial pruritus in a 47-year-old woman treated with pregabalin. G Ital Dermatol Venereol 2016;151:727-8.

51. Atış G, Bilir Kaya B. Pregabalin treatment of three cases with brachioradial pruritus. Dermatol Ther 2017;30:e12459.

52. Yue J, Jiao S, Xiao Y, Zhao T, Meng J, et al. Comparison of pregabalin with ondansetron in treatment of uraemic pruritus in dialysis patients: A prospective, randomized, double-blind study. Int Urol Nephrol 2015;47:161-7.

53. Mazza M, Guerriero G, Marano G, Janiri L, Bria P, Mazza S, et al. Treatment of prurigo nodularis with pregabalin. J Clin Pharm Ther 2013;38:16-8.

54. Ehrchen J, Standar S. Pregabalin in the treatment of chronic pruritus. J Am Acad Dermatol 2008;58:S36-7.

55. Ehrchen J, Standar S. Pregabalin: A new neuropathic disorder. Clin Neurol Neurosurg 2006;108:803-5.

56. Lee SH, Baig M, Rusciano V, Dutcher JP. Novel management of pruritus in patients treated with IL-2 for metastatic renal cell carcinoma and malignant melanoma. J Immunother 2010;33:1010-3.

57. Mośfeghi M, Mandler HD. Ciprofloxacin-induced toxic epidermal necrolysis. Ann Pharmacother 1993;27:1467-9.

58. Richardson CE, Williams DW, Kingham JG. Gabapentin induced cholestasis. BMJ 2002;325:635.

59. Lasso-de-la-Vega MC, Zapater P, Such J, Pérez-Mateo M, Horga JF. Gabapentin-associated hepatotoxicity. Am J Gastroenterol 2001;96:3460-2.

60. Wilton LV, Shukir S. A postmarketing surveillance study of gabapentin as add-on therapy for 3,100 patients in England. Epilepsia 2002;43:983-92.

61. Grant AC, Oh H. Gabapentin-induced anorgasmia in women. Am J Psychiatry 2002;159:1247.