A case report of purulent pericarditis caused by *Candida albicans*

Delayed complication forty-years after esophageal surgery

Joowhan Sung, MD, Irving Enrique Perez, MD, Addi Feinstein, MD, David Kidd Stein, MD*

Abstract

Rationale: Candida pericarditis is a rare condition with high mortality. Risk factors include thoracic surgery and immunosuppression. We report a case of candida pericarditis which developed forty-years after esophageal reconstruction surgery.

Patient concerns: A 42-year-old female presented with nausea, abdominal discomfort, and chest pain, and was found to have a cardiac tamponade secondary to candida pericarditis. Her notable risk factor was colonic interposition done during her infancy for esophageal atresia.

Diagnoses: The patient underwent emergent pericardial window where 500cc of purulent fluid was drained. The pericardial fluid grew Candida albicans.

Interventions: Esophagram did not show any visible leak and the patient improved with surgical drainage and antifungal treatment with Caspofungin. Caspofungin was continued intravenously for a total of four weeks and was switched to fluconazole.

Outcomes: An Echocardiogram performed one month after pericardial window revealed trivial pericardial effusion. Serum beta-D-glucan at the time was negative.

Lessons: This report highlights that candida pericarditis infection could occur as a late complication of colonic interposition. We also demonstrate the utility of using an echinocandin in treating this entity.

Abbreviations: CT = computed tomography, HIV = human immunodeficiency virus, PPD = purified protein derivative, RBC = red blood cells, WBC = white blood cells.

Keywords: candida pericarditis, caspofungin, colonic interposition, echinocandin, esophageal atresia

1. Introduction

Candida pericarditis is a rare entity with few cases reported in the literature. It is almost uniformly fatal without timely treatment. [1] The most important risk factors identified in prior cases have been recent thoracic surgery and immunocompromised state. [2] Successful treatment in prior cases usually included Amphotericin B and surgical drainage. [2]

Colonic interposition is a surgical technique used to treat esophageal atresia in pediatric patients. [3] However, there is scarce data about complications in adulthood. We report the first case of candida pericarditis resulting from colon interposition 40 years after the corrective surgery. We also report the successful use of an echinocandin in treating this entity.

2. Case report

A 42-year-old American female with a history of esophageal atresia that was repaired with colonic interposition as an infant presented to the emergency room with nausea and epigastric abdominal discomfort for two days. On further questioning, she admitted having chest pain 6 days prior to the presentation, with radiation to her right arm. The pain improved by leaning forward and worsened by lying flat. It was as associated with intermittent dyspnea. She was febrile (102.4°F), tachycardic (133 beats per minute), and hypotensive with a systolic blood pressure of 70 mm Hg, which improved after fluid resuscitation. Labs were remarkable for leukocytosis (36,700/µL) with 87% of segmented neutrophils, and lactic acidosis (lactate 4.4 mmol/L). An EKG revealed diffuse ST segment elevation. A computed tomography (CT) of the chest showed a large pericardial effusion, a retrosternal conduit, and left lower lobe infiltrate. The patient was started on broad-spectrum antibiotics and admitted to the intensive care unit.

The patient tested negative for human immunodeficiency virus (HIV) and latent tuberculosis with negative purified protein derivative (PPD) and quantiFERON. An echocardiogram revealed tamponade physiology and an emergent pericardial window was performed with 500cc of purulent fluid drained, which showed 5400 red blood cells (RBC) and 1145 white blood cells (WBC) (84% granulocytes, 10% lymphocytes). Five days postoperatively, pericardial fluid grew yeast, which was later confirmed to be *Candida albicans*. After identification of yeast from pericardial...
pericarditis caused by Candida species, whereas the majority of cases attributed to a gastrointestinal source. On our literature review, we identified four previously reported cases of candida pericarditis caused by bacteria. In this case, the patient’s esophageal atresia repair, we were concerned that the patient’s retrosternal esophagus might be communicating with the pericardium; however, an esophagram did not reveal any fistula or leak. Transmural translocation of microbes or previously healed perforation was thought to be a possible source of the infection.

Our case suggests that translocation of micro-organism from the gastrointestinal tract to the pericardium could lead to the development of candida pericarditis. On our literature review, we identified four previously reported cases of candida pericarditis caused by Candida species, whereas the majority of cases attributed to a gastrointestinal source. Two patients were immunocompromised and underwent gastric surgery, and two patients had a history of gastric cancer. Candida albicans was isolated in two cases, while C kruzei and C glabrata were found in others. However, contrary to our case, all previously reported case of candida pericarditis from gastrointestinal sources were preceded by recent surgery or a procedure complicated by the development of a fistula.

The notable risk factor in our patient was colonic interposition performed in her infancy. Colonic interposition is a surgical procedure performed for esophageal replacement. It is used for esophageal atresia or corrosive ingestion in the pediatric population and esophageal cancer in the elderly. While early complications of colonic interposition are well described and include anastomotic leak or conduit ischemia, literature regarding late complications of colonic interposition is scarce. A small series from France described long-term complications in 32 pediatric patients who had colonic interposition. Among them, 15 patients had more than 10 years of follow-up. Long-term complications, defined as occurring 1 year or later after surgery, were observed in 27 of 32 patients (84%). Of them, 9 had a stricture, 4 had bezoars, and 3 had anemia. Additionally, one had a gastric perforation, another had a graft ulceration. Fifty percent of patients had chronic pulmonary manifestations which may be due to recurrent aspiration. Almost one-third of patients were thought to suffer from undernutrition.

Surgical drainage and antifungal treatment have been the mainstay of therapy for candida pericarditis. Surgical drainage is a crucial part of treatment. Amphotericin B was the most consistently used antifungal therapy, although fluconazole was also often used for reported cases. Our case demonstrates successful use of caspofungin in treating pericarditis caused by C albicans. Caspofungin is an echinocandin, a class of antifungals that work by inhibiting glucan synthesis in the fungal cell wall. Echinocandins are also shown in vitro to have activity against Candida biofilms. There was one report of successful use of echinocandin and fluconazole in a patient with C albicans pericarditis in heart transplant patient, making this case the second use of echinocandin in treating candida pericarditis. However, it should be noted that candida species resistant to caspofungin have also been reported. In our patient, the organism was susceptible to caspofungin in vitro. Given the rarity of the disease, there is insufficient data to guide the duration of therapy.

4. Conclusion

In summary, this is the first case in the literature of an immunocompetent patient who developed candida pericarditis.
40 years after esophageal surgery. This case demonstrates that candida pericarditis could occur as a long-term complication of colonic interposition despite the absence of visible leak on esophagram. It also emphasizes that fungal origin should be considered in a patient with purulent pericarditis and risk factors that includes esophageal or gastric surgery. We also demonstrate a successful use of echinocandins for treating candida pericarditis. For susceptible organisms, echinocandins should be considered as a treatment.

Author contributions

Conceptualization: Joowhan Sung.
Investigation: Irving Enrique Perez, Addi Feinstein.
Validation: Joowhan Sung.
Writing – original draft: Joowhan Sung.
Writing – review & editing: Irving Enrique Perez, Addi Feinstein, David Kidd Stein.

References

[1] Rabinovici R, Szewczyk D, Oradia P, et al. Candida pericarditis: clinical profile and treatment. Ann Thorac Surg 1997;63:1200–4.
[2] Neughebauer B, Alvarez V, Harb T, et al. Constrictive pericarditis caused by candida glabrata in an immunocompetent patient: case report and review of literature. Scand J Infect Dis 2002;34:615–9.
[3] German JC, Waterston DJ. Colon interposition for the replacement of the esophagus in children. J Pediatr Surg 1976;11:227–34.
[4] Parikh S, Memon N, Echols M, et al. Purulent pericarditis: report of 2 cases and review of the literature. Medicine 2009;88:52–65.
[5] Puius YA, Scully B. Treatment of Candida albicans pericarditis in a heart transplant patient. Transpl Infect Dis 2007;9:229–32.
[6] Farjah F, Komanapalli CB, Shen I, et al. Gastropericardial fistula and Candida krusei pericarditis following laparoscopic Nissen fundoplication (gastropericardial fistula). Thorac Cardiovasc Surg 2005;53:365–7.
[7] Tang CP, Wang YW, Shau YT, et al. Gastropericardial fistula and Candida albicans pericarditis: a rare complication of gastric adenocarcinoma treated with radiation and chemotherapy. J Chin Med Assoc 2009;72:374–8.
[8] Brynjolfsson G, Kania R, Bekeris L. Gastroesophageal cardiac fistula due to perforation of an esophagogastric anastomotic ulcer into the left atrium. Hum Pathol 1980;11:677–9.
[9] Coopman S, Michaud L, Halna-Tamine M, et al. Long-term outcome of colon interposition after esophagectomy in children. J Pediatr Gastroenterol Nutr 2008;47:458–62.
[10] Kuhn DM, George T, Chandra J, et al. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 2002;46:1773–80.
[11] Wiederhold NP. Echinocandin resistance in candida species: a review of recent developments. Curr Infect Dis Rep 2016;18:42.