Identification of bearing failure using signal vibrations

Irsyadi Yani¹, Yulia Resti², Firmansyah Burlan¹
¹Department of Mechanical Engineering, Universitas Sriwijaya
²Department of Mathematics, Universitas Sriwijaya

E-mail: yulia_resti@mipa.unsri.ac.id

Abstract. Vibration analysis can be used to identify damage to mechanical systems such as journal bearings. Identification of failure can be done by observing the resulting vibration spectrum by measuring the vibration signal occurring in a mechanical system. Bearing is one of the engine elements commonly used in mechanical systems. The main purpose of this research is to monitor the bearing condition and to identify bearing failure on a mechanical system by observing the resulting vibration. Data collection techniques based on recordings of sound caused by the vibration of the mechanical system were used in this study, then created a database system based bearing failure due to vibration signal recording sounds on a mechanical system. The next step is to group the bearing damage by type based on the databases obtained. The results show the percentage of success in identifying bearing damage is 98%.

1. Introduction

Bearing conditions in a mechanical system are crucial to the performance of a machine. There are a number of mechanisms that can cause damage to engine element bearings such as mechanical damage, crack damage, wear damage, lubricant deficiency, corrosion and plastic deformation, which in turn leads to damage to the engine system as a whole, other machine components. By knowing the type of damage occurring in a bearing appropriately, it will be able to reduce the use of new spare parts that require the manufacture of natural resources as raw materials and fuel is not small, reduce maintenance costs and or repair costs significantly, also can avoid the risk of accidents due to engine system damage.

The degree of bearing damage can be identified in several ways, such as observation of vibration signals, vibration signal recording, and sound signal recording. Over the past two decades, the identification of bearing damage has been the subject of extensive research. S. Simani, C. Fantuzzi [1] identified bearing damage based on vibration signal observation, while Trendafilova [2] identified bearing damage based on vibration signal recording. According to Kardille [3] that identify the type of damage to the fan-based recording sound signals from the induction motor, the advantages of a device identification system detection or engine-based recording vibration signal and voice signal recording is more easily measured, has a high level of accuracy and reliability.

Data retrieval techniques based on vibration signal recording can be seen in Trendafilova [1]. Trendafilova [1] identifies the type of damage to roller bearings, which is based on pattern recognition and analysis of key components of the measured vibration signal. The recorded signal has been processed before by applying the wavelet transform to extract high frequency areas. Four categories of signals considered, i.e. no signal indicating damage, deep race damage signals, outbreak damage signals, and roller element damage signals.
2. Methodology
This research will develop a bearing damage identification system based on noise, noise level removal by measuring the magnitude produced by sound signal from bearing rotation in real time. The stages in this study as a whole are given in Figure 1. The design of the software for the identification module is useful for matching sound (magnitude quantities) identified by reference to which the software has been designed in the database module. The results of the integration of both software modules are useful for the degree of damage to the bearing of an engine element. In the final stages of the study there are two targets: first, the intelligent computing system technology package that records the complete database, identifies the damage and matches it to the database and detects the level of damage in real-time.

Figure 1. Identification system.

The data collection process has two stages, the first process of soaking bearing in \(\text{H}_2 \text{SO}_4 \) 3% with 4 variations period that is 5, 10, 15 and 20 days. The second process is the sound recording of the bearing vibration with the testing tool as the initial data for database creation, in this process will get the sound data bearing with wma format. Furthermore, the sound data is analyzed vibration to get the magnitude to be used as database module. The next step is to test for identification of bearing damage by recording bearing sounds randomly.

3. Results and Discussion
The result of sound magnitude analysis of the resulting vibration can be seen from the following figure.
The new bearing is as the initial size parameter with corrosion bearing \(\text{H}_2 \text{SO}_4 \) 3% as the test material is seen a significant comparison with other words a metal that has been exposed element \(\text{H}_2 \text{SO}_4 \) then corrosion propagation can occur significantly. From the analysis of the existing spectrum wave magnitude shapes, it can be seen that bearing variations have different magnetic spectrum images. This shows that the corrosion rate of the bearings has an influence on the wave magnitude. Values of Sound Magnitude (dB) Bearings can be seen in the following table.

Table 1. Table Values of Sound Magnitude (dB) Test Bearings.

Nomor	Baru	5 hari	10 hari	15 hari	20 hari
1	0.006000	0.036000	0.092000	0.188000	0.319100
2	0.008600	0.034300	0.095800	0.117100	0.220400
3	0.010400	0.038200	0.115200	0.149000	0.224700
4	0.027200	0.042400	0.105100	0.126000	0.255500
5	0.005300	0.054200	0.097200	0.144000	0.244800
6	0.010600	0.043700	0.114900	0.156900	0.308500
7	0.008600	0.057300	0.101000	0.142300	0.238600
8	0.025000	0.042800	0.101200	0.124900	0.216600
9	0.019100	0.037300	0.078800	0.178800	0.232500
10	0.007700	0.053800	0.093400	0.203500	0.229200
::	::	::	::	::	::
96	0.019300	0.046400	0.077700	0.189800	0.282800
97	0.022700	0.046200	0.087700	0.136000	0.274700
98	0.028900	0.042100	0.072900	0.150200	0.295600
99	0.027800	0.042500	0.063100	0.203200	0.269300
100	0.017500	0.044100	0.065100	0.165700	0.263200
MIN	0.005300	0.031400	0.060000	0.115800	0.210600
MAX	0.028900	0.059500	0.115200	0.206600	0.363400

Figure 2. Magnitude of Sound Vibration.
Table 2. Results of Bearing Identification Testing.

Number	Magnitudo (dB)	Status
1	0.0298000	Detected
2	0.0382000	Detected
3	0.0328000	Detected
4	0.0543000	Detected
5	0.0400000	Detected
...
80	0.0564000	Detected
81	0.0672000	Not detected
...
86	0.0550000	Detected
87	0.0597000	Not detected
88	0.0455000	Detected
...
100	0.0441000	Detected

From the experimental table, the results obtained from 100 times the test there are 98 data that was successfully detected in accordance with the database that was built while the undetectable voice data only reached 2 votes only. So the percentage of detection matches between voice data and train data is 98%.

4. Conclusion
From the previous description, it can be concluded that among others is.
1. Bearing failure occurring in this case is confirmed by several mutually supportive factors, namely the increase in the value of significant vibrations, the emergence of the natural frequency of bearing failure on the spectrum, and the characteristics of the spectrum, i.e. the appearance of subsync frequencies in the spectrum.
2. One of the natural frequencies detected is the natural frequency of the cage.

References
[1] S Simani, C Fantuzzi, RJ Patton, (2003) ‘Model-Based Fault Diagnosis Techniques’, Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques, p 19-60
[2] Irina Trendafilova, (2010), ‘An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition’, Mechanical Systems and Signal Processing, p 1858-1869
[3] Kardile, B.A. (2012) ‘Bearing Life Improvement of Centrifugal Blowers by Vibration Analysis’, International Journal of Modern Engineering Research, Nov-Dec, p1
[4] Sayer, R. (1999) ‘Vibration Analysis of Centrifugal Fans’, Computational Systems, Inc
[5] Bleier, F. (1997) Fan Handbook, New York : McGraw-Hill
[6] Singleton, K. (2002) ‘Overhung Fans Reliability Improvement Opportunities’, KSC Consulting LCC
[7] Scheffer, C. and Girdhar, P. (2004) Practical Machinery Vibration Analysis and Predictive Maintenance, Oxford:Newnes
[8] Thomson, W. and Dahleh, M. (1993) Theory of Vibration with Applications, 5th ed, Cheltenham: Prentice Hall
[9] Vibration Diagnostic Guide (2000) SKF Reliability Systems
[10] Peters, J., Beginning Vibration Analysis with Basic Fundamentals, Connection Technology Center, Inc.

[11] Robichaud, J.M. ‘Reference Standards for Vibration Monitoring and Analysis’ Bretech Engineering Ltd

[12] Cease, B.T.(2011), ‘Machine Vibration Standards : Ok, Good, Better and Best’ Cease Industrial Consulting

[13] Rukhanje, S., Pathan, S., & co. (2012) ‘Condition Monitoring for Fault Diagnosis of Bearings’, Third Biennial National Conference on Nascent Technologies, February, pp1-2

[14] Bennett, R. (2006) ‘Spherical Roller Bearings and Overhung Fan. A case history in condition monitoring, root cause analysis, and design.’, National CM Forum, August

[15] Upadhay, R.K., & co. (2013) ‘Rolling Element Bearing Failure Analysis : A Case Study’, Case Studies in Engineering Failure Analysis, January, pp 15-17.

[16] Courtney, S. (2005) A Guide to Low Frequency Vibration Measurement, Mechanalysis (India) Limited

[17] Berry, J. (2000), Proven Method For Specifying Both Spectral Alarm Bands As Well As Narrowband Alarm Envelopes Using Today’s Condition Monitoring Software Systems, 4th ed, Technical Associates of Charlotte, P.C