H1 CLOUDS IN THE M81 FILAMENT AS DARK MATTER MINIHALOS—A PHASE-SPACE MISMATCH

KATIE M. CHYNOWETH1, GLEN I. LANGSTON2, AND KELLY HOLLEY-BOCKELMANN3
1 Naval Research Laboratory, Washington, DC 20375, USA
2 National Radio Astronomy Observatory, Green Bank, WV 24944, USA
3 Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235, USA

Received 2010 August 17; accepted 2010 October 16; published 2010 December 7

Abstract

Cosmological galaxy formation models predict the existence of dark matter minihalos surrounding galaxies and in filaments connecting groups of galaxies. The more massive of these minihalos are predicted to host H1 gas that should be detectable by current radio telescopes such as the Robert C. Byrd Green Bank Telescope (GBT). We observed the region including the M81/M82 and NGC 2403 galaxy groups, searching for observational evidence of an H1 component associated with dark matter halos within the “M81 Filament,” using the GBT. The map covers an 8:7 × 21:3 (480 kpc × 1.2 Mpc) region centered between the M81/M82 and NGC 2403 galaxy groups. Our observations cover a wide velocity range, from −890 to 1320 km s$^{-1}$, which spans much of the range predicted by cosmological N-body simulations for dark matter minihalo velocities. Our search is not complete in the velocity range −210 to 85 km s$^{-1}$, containing Galactic emission and the HVC Complex A. For an H1 cloud at the distance of M81, with a size ≤ 10 kpc, our average 5σ mass detection limit is 3.2 × 106 M$_\odot$, for a linewidth of 20 km s$^{-1}$. We compare our observations to two large cosmological N-body simulations and find that the simulation predicts a significantly greater number of detectable minihalos than are found in our observations, and that the simulated minihalos do not match the phase space of observed H1 clouds. These results place strong constraints on the H1 gas that can be associated with dark matter halos. Our observations indicate that the majority of extragalactic H1 clouds with a mass greater than 106 M$_\odot$ are likely to be generated through tidal stripping caused by galaxy interactions.

Key words: dark matter – galaxies: evolution – galaxies: groups: individual (M81/M82, NGC 2403) – galaxies: interactions – ISM: clouds – radio lines: galaxies

Online-only material: color figures

1. INTRODUCTION

ACDM cosmological models (e.g., Dekel & Silk 1986; Klypin et al. 1999) for structure formation in the universe predict many compact dark matter structures, minihalos, in the regions near galaxies and galaxy groups. Ricotti (2009) predicts that minihalos may have a late phase of gas accretion, which will be detectable in H1 observations. It has been proposed that at least part of the population of neutral hydrogen high velocity clouds (HVCs) surrounding the Milky Way may represent these H1-embedded dark matter halos (Blitz et al. 1999; Braun & Burton 1999; Giovanelli et al. 2010). Other possible origins of the HVCs include galactic fountains (Bregman 1980), tidal stripping from major and satellite galaxy interactions (Putman et al. 2003; Chynoweth et al. 2008), and cold accretion of primordial gas (Kereš & Hernquist 2009). Observations of the north Galactic polar region by the ALFALFA survey may have revealed low H1 mass minihalos surrounding the Milky Way (Giovanelli et al. 2010); however, these clouds may also be part of the Magellanic Stream. Searches for H1 counterparts to these minihalos within galaxy groups have yielded non-detections or detections that do not match the predicted phase space (e.g., Pisano et al. 2007; Chynoweth et al. 2008, 2009).

In this paper, we conduct an H1 survey of an 8:7 × 21:3 region of a nearby complex of galaxies known as the “M81 Filament” (Karachentsev et al. 2002), in an extensive search for H1 clouds that may trace in H1 a population of 106–109 M$_\odot$ dark matter minihalos (Kravtsov et al. 2004). The M81 Filament includes the M81/M82 and NGC 2403 galaxy groups and the region between them. It is likely that the linearly shaped set of galaxies is contained within a dark matter filament of the type commonly seen to form in cosmological simulations. The extent of the dark matter and hot gaseous halos of these two groups is unknown—in fact, the M81/M82 group is sometimes considered to encompass the NGC 2403 group as part of one cluster (Begum et al. 2006; Karachentsev & Kaisin 2007). If this is true, then we may expect to detect pressure-confined clouds that trace cold accretion and H1-laced dark matter halos in between the two groups, as well as galaxy interaction-generated H1 clouds near the strongly interacting M81 group. With wide velocity coverage and high sensitivity over such a large area, this campaign was designed create a census of the more massive H1 clouds, which may be counterparts to minihalos or generated by galaxy interactions.

In Section 2, we summarize the observations. In Section 3, we describe the data reduction process. In Section 4, we discuss the interpretation of the data and sensitivity limits. Section 5 describes our detections. In Section 6, we compare our results with numerical simulations. Finally, Section 7 contains discussion, and we draw conclusions and discuss future work. In the Appendix, we present the H1 properties of the galaxies in the observed volume.

2. OBSERVATIONS

Observations were carried out with the 100 m Robert C. Byrd Green Bank Telescope (GBT) of the NRAO4 in 40 sessions between 2003 June and 2009 August. This includes data taken for previously published observations of the M81/M82 and NGC 2403 galaxy groups; see Chynoweth et al. (2008) and

4 The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Figure 1. H\textsc{i} column density map of the observed area. Background galaxies, group galaxies, and H\textsc{i} clouds are marked. The diagonal filament of H\textsc{i} through the middle of the map is Milky Way HVC Complex A.

Table 1

Clouda	Coordinate Designation	$\Delta D_{\text{H}\textsc{i}}$ (kpc)	T_{peak} (K)	V_{LSR} (km s-1)	σ_v (km s-1)	$M_{\text{H}\textsc{i}}$ ($10^6 M_\odot$)	Notes
C08-1	GBC 0095207.2+695556	65	0.11	168	50	14.7	
C08-2	GBC 0032050.7+681949	63	0.10	-102	55	22.5	
C08-3	GBC 0095244.9+681250	57	0.12	14	82	26.7	
C08-4	GBC 1100145.0+691631	38	0.30	74	28	83.7	
C08-5	GBC 0095506.3+692205	21	0.07	283	36	6.9	
C09-1	GBC 073236.0+654302	900	0.06	-147	20	1.8	
C09-2	GBC 072528.5+654922	937	0.15	-113	20	7.5	
C09-3	GBC 073612.1+673325	826	1.97	-202	30	62.6	
C10-1	GBC 092635.8+702850	186	0.13	-178	57	3.6	
C10-2	GBC 071926.3+675222	161	0.20	38	26	3.4	
C10-3	GBC 091952.7+680937	218	0.17	-108	42	5.1	
C10-4	GBC 071022.9+684057	159	0.30	69	68	12.0	
C10-5	GBC 071051.4+654428	1024	0.19	-301	47	2.8	

Notes.
a Includes clouds discovered in Chynoweth et al. (2008) and Chynoweth et al. (2009).
b C08 indicates clouds from Chynoweth et al. (2008), C09 indicates clouds from Chynoweth et al. (2009) and C10 indicates clouds that are new in this paper.

Chynoweth et al. (2009) for details. H\textsc{i} cloud detections from these papers are summarized in Table 1. We combined the 40 observing sessions into a single 8.7×21.3 map centered at 08h40m37s0, 69$^{\circ}$17$^{\prime}$16$^{\prime\prime}$. Figures 1 and 2 show layouts of the observations.

The filament was observed by moving the telescope in declination in 30\textdegree s per sample, depending on the observation session. Strips of constant declination were spaced by 30\textdegree. Corresponding maps were made by moving the telescope in right ascension to form a “basket weave” pattern over the region. Total integration time for the entire map was approximately 187 hr. In Figure 3, it is possible to infer the rms noise and corresponding mass sensitivity of the map as a function of position.

The GBT spectrometer was used with a bandwidth of either 12.5 or 50 MHz, depending on the observation session. The combined bandwidth for the final map is 10.5 MHz, corresponding to a velocity range from -890 to 1320 km s-1. The typical system temperature for each channel of the dual-polarization receiver was \sim20 K.

Our observations cover a large angular area in order to make a complete study of the H\textsc{i} properties across the entire extent of the filament. The beam size of the GBT in the 21 cm line is 9\textdegree, which maps to approximately 10 kpc at the distance of the M81 Filament. This is well matched to the angular size of known H\textsc{i} clouds above our mass detection threshold (Thilker et al. 2004; Chynoweth et al. 2008). Predictions for the sizes of dark matter minihalos range from 3 to 30 kpc in diameter (Putman & Moore 2002); we may be unable to detect minihalo clouds with a \leq 10 kpc diameter due to beam dilution.

3. DATA REDUCTION

The GBT data were reduced in the standard manner using the GBTIDL and AIPS5 data reduction packages.

5 Developed by the National Radio Astronomy Observatory; documentation at http://gbitidl.sourceforge.net, http://www.aoc.nrao.edu/aips.
Figure 2. HI clouds that are located within the M81 Filament are labeled with triangles. The region of the M81 Filament that was compared to a cosmological dark matter simulation is indicated with a red box.

(A color version of this figure is available in the online journal.)

Figure 3. Sensitivity of the mapped area. The grayscale ranges from 8 to 40 mJy beam\(^{-1}\), corresponding to mass sensitivity of 2.5 to \(1.29 \times 10^5\) \(M_\odot\). The color bar above the figure is in units of mJy beam\(^{-1}\).

In order to match our velocity resolution to the expected linewidths of HI clouds in the group, spectra were smoothed to a channel spacing of 24.4 kHz, corresponding to a velocity resolution of 5.2 km s\(^{-1}\). A reference spectrum for each of the observation sessions was made using an observation of an emission-free region, usually from the edges of the maps. The reference spectrum was then used to perform a (signal-reference)/reference calibration of each pixel. The calibrated spectra were scaled by the system temperature, corrected for atmospheric opacity and GBT efficiency. We adopted the GBT efficiency Equation (1) from Langston & Turner (2007) with a zenith atmospheric opacity \(\tau_0 = 0.009\). Velocities are in the kinematic local standard of rest (LSR) velocity frame.

The frequency range observed was relatively free of radio frequency interference (RFI), with less than 0.2% of all spectra adversely affected. The spectra exhibiting RFI were identified by tabulating the rms noise level in channels free of neutral hydrogen emission. Spectra that showed high values of rms noise across many channels were flagged and removed. Observations were gridded using the AIPS task SDIMG, which also averages polarizations. After amplitude calibration and gridding, a first-order polynomial was fitted to line-free regions of the spectra and subtracted from the gridded spectra using the AIPS task IMLIN. Only the channels in the velocity range \(-400\) to \(-800\) km s\(^{-1}\) were used for the fit. This simple baseline fit was extrapolated to the positive velocity range, where galaxies make a baseline fit unreliable. This baseline velocity range for the fit yielded a flat baseline for areas free of strong continuum radio sources, which is true of the majority of the region. The effective angular resolution, determined from maps of 3C286, is
9.15 ± 0.05. To convert to units of flux density, we observed the calibration source 3C286, whose flux density is 14.57 ± 0.94 Jy at 1.418 GHz (Ott et al. 1994). The calibration from K to Jy was derived by mapping 3C286 in the same way that the observations, the rms noise varies considerably across galaxy properties. The spectral line images are available online.6

4. DATA INTERPRETATION

In order to detect either H i clouds associated with dark matter minihalos, or cold accretion, a large-area map is required. H i clouds in dark matter minihalos are predicted to be found at distances of up to 1 Mpc from a major halo (Blitz et al. 1999). Cold accretion clouds and interaction-generated clouds are expected to be contained within a ∼60 kpc radius around large galaxies (Chynoweth et al. 2008; Kereš & Hernquist 2009). Our map has a projected size of 480 kpc × 1.2 Mpc, which is adequate to detect all three phenomena.

Spectral maps were made in the velocity range overlapped by all observations, from −890 to 1320 km s$^{-1}$. Spectral maps were visually inspected for possible new H i clouds. We required a cloud candidate to be visible in at least two channels; therefore the lowest velocity width that could be detected was 10 km s$^{-1}$. For each candidate, a plot of intensity versus velocity was also produced and checked. At the locations of strong continuum radio sources, the linear spectral baseline fit was occasionally poor. In these cases, the spectra would show a broad slope, >400 km s$^{-1}$ wide, either increasing or decreasing with frequency. Candidates in the regions with poor spectral baseline were also discarded. Only 26 of the more than 10,000 GBT beams covering the map showed spectra with poor spectral baselines.

6 http://www.gb.nrao.edu/~kchynowe/m81filament/.

Table 2

Telescope parameters of the Robert C. Byrd Green Bank Telescope System
Parameter
Diameter
Beamwidth (FWHM)
Linear resolution
Receiver
Typical system temperature
Spectrometer
Bandwidth
Resolution, Hanning smoothed

Table 3

Observations Summary
Center frequency (MHz)
Bandwidth (MHz)
Channel width (kHz)
Velocity resolution (km s$^{-1}$)
Integration time (hr):
Typical rms noise (mJy)
Sensitivity to H i (σv)

Table 4

Name, H iJASS J1021+68 10:20:30.1 68:39:25 3	a^b (2000)	b^b (2000)	D^b (Mpc)	V_{LSR}	M_Hi^{a}	M_Hi^{a} × 103
UGC 3580	06:55:30.8	69:33:47	15.90	1193	2.59	
NGC 2366	07:28:55.7	69:12:59	3.19	102	0.68	
KLG 0724+695	07:20:50.0	69:25:26	12.02	902	0.27	
NGC 2403	07:36:52.7	65:35:52	3.30	134	3.38	
KKH 44	08:16:38.5	69:20:49	14.08	1056	0.06	
UGC 4305	08:19:06.5	70:43:01	3.39	160	0.91	
KDG 52	08:23:56.2	71:01:36	3.55	116	0.02	
DDO 53	08:34:08.6	66:11:03	3.56	23	0.05	
UGC 4483	08:37:03.1	69:46:44	3.21	159	0.04	
NGC 2787	09:19:18.5	69:12:12	9.31	716	0.72	
Holmberg I	09:40:32.3	71:10:56	3.84	152	0.16	
BKN 1	09:45:15.3	69:23:22	7.86	504	0.06	
NGC 2976	09:47:15.6	67:54:49	3.56	6	0.52	
NGC 2985	09:50:22.2	72:16:43	16.45	1213	3.17	
NGC 3027	09:55:40.6	72:12:13	14.12	1061	4.74	
M81	09:55:33.5	69:03:60	3.63	−32	2.67	
M82	09:55:53.9	69:40:57	3.53	206	0.75	
NGC 3077	10:03:21.0	68:44:02	3.82	17	1.01	
UGC 5423	10:05:30.6	70:21:52	5.30	350	0.03	
HJJASS J1021+68	10:20:30.1	68:39:25	3.70	64	0.08	
UGC 5612	10:24:06.5	70:52:56	13.67	1025	0.98	
IC 2574	10:29:19.0	68:27:42	4.02	79	1.36	
UGC 5692	10:30:35.0	70:37:07	4.00	69	0.006	
NGC 3403	10:53:54.8	73:41:25	15.35	1216	1.84	

Notes.

a Values for M81 and NGC 2403 group galaxies are taken from Chynoweth et al. (2008) and Chynoweth et al. (2009).

b From NED.

c From Karachentsev & Kaisin (2007), or cz/HO for D ≥ 7 Mpc.

d From our observations.

The mass detection threshold was calculated assuming that clouds would be unresolved in the GBT beam, using the relation:

$$ \frac{\sigma_M}{M_\odot} = 2.36 \times 10^5 \left(\frac{D}{\text{Mpc}} \right)^2 \left(\frac{\sigma_v}{\text{Jy}} \right) \left(\frac{\Delta V}{\text{km s}^{-1}} \right) \sqrt{N}, $$

where D is the average distance to the filament, σ_v is the rms noise in one channel, ΔV is the channel width, and N is the number of channels required for a secure detection. For this calculation, we used an H i linewidth of 20 km s$^{-1}$, corresponding to $N = 4$. This assumed linewidth strikes a balance between narrower HVC lines (Wakker & van Woerden 1997) and the wider line widths of massive H i clouds (Chynoweth et al. 2008).

Adopting the M81 distance of 3.6 Mpc, the 1σ mass detection threshold ranges from 2.5 to 12.9 × 105 M_\odot, as shown in Figure 3. The average 5σ detection threshold for H i mass was 3.2 × 106 M_\odot. With this threshold, we would be able to detect analogs to the most massive clouds around M31 and M33, the M81/M82 clouds, the M101 cloud, and large Milky Way objects such as Complexes C and H and the Magellanic Stream. We would also be able to detect cold accretion clouds found in the simulations of Kereš & Hernquist (2009).

5. NEW IDENTIFICATIONS

We discovered five new H i clouds. We divide these clouds into two groups, those associated with the M81 Filament and those associated with the Milky Way. We determine the most likely association of each cloud based on its position and...
velocity. There is some overlap in velocity space between the M81 Filament and the Milky Way, and over the velocity range -85 to 25 km s^{-1} we cannot discriminate between local and distant emission. In addition, the Galactic HVC Complex A, which ranges in velocity from -120 km s^{-1} to -200 km s^{-1}, coincides with part of the mapped region (Wakker & van Woerden 1997). Therefore, we cannot distinguish H\textsc{i} clouds in this position and velocity range from Complex A.

All of the H\textsc{i} clouds we previously detected (Chynoweth et al. 2008, 2009) are visible in this extended image. Their locations are marked in Figure 1. In order to unify the clouds identified in this paper with those in Chynoweth et al. (2008) and Chynoweth et al. (2009), and any H\textsc{i} clouds identified with the GBT in our current and future observations, we have re-designated the clouds with the identifier GBC for “Green Bank Cloud,” and the coordinates of the cloud, i.e., GBC Jhhmmss.s+ddmmss. These designations are found in Table 1. To distinguish the newly discovered clouds from the clouds previously discovered, the new clouds are designated with C10-1 to C10-5. Table 1 lists their properties. Spectra are shown in Figure 4. Figure 2 shows the locations of all H\textsc{i} clouds that we have determined to be located within the M81 Filament.

Cloud masses were calculated using

$$
\left(\frac{M}{M_\odot} \right) = 2.36 \times 10^5 \left(\frac{D}{\text{Mpc}} \right)^2 \left(\frac{F}{\text{Jy}} \right) \left(\frac{\Delta V}{\text{km s}^{-1}} \right),
$$

where F is the total flux of the cloud. Error estimates on the masses are difficult to obtain, given the wide range in rms noise values over the map. The dominant error contribution is the approximately 7% uncertainty in the absolute calibration for these observations.
5.1. M81 Filament Clouds

Cloud C10-1 (GBC J092635.8+702850) is to the northwest of the M81 group. With a velocity of -178 km s^{-1}, Cloud C10-1 may be part of Complex A. However, Complex A does not overlap in position with Cloud C10-1, so we include this cloud in further analysis of H\textsc{i} clouds in the M81 Filament.

Cloud C10-2 (GBC J101926.3+675222) is south of IC 2574 and an adjacent HIJASS source, HIJASS J1021+6840 (Boyce et al. 2001), and has a velocity of 38 km s^{-1}. Cloud C10-3 (GBC J091952.7+680937) is to the southwest of the M81 group and has a velocity of -108 km s^{-1}. Cloud C10-4 (GBC J1022:39.1+684057) is located near the previously reported HIJASS source. This cloud is relatively bright and is a few arc minutes east of the HIJASS source. Boyce et al. (2001) find the HIJASS source is extended in the direction of IC 2574. Our observations have higher angular resolution, and in these observations Cloud C10-4 is clearly separated from HIJASS J1021+6840. Cloud C10-4 has a velocity of 69 km s^{-1}.

5.2. Milky Way Clouds

Cloud C10-5 (GBC J071051.4+654428) is west of the clouds reported in Chynoweth et al. (2009) and shows a high negative velocity. It is visible in five channels and is extended spatially. It is offset by about 100 km s^{-1} from Complex A, and may be a separate Milky Way HVC. Cloud C10-5 has a velocity of -301 km s^{-1}, which falls outside the velocity range of Complex A (Wakker & van Woerden 1997). There are Galactic HVCs detected with velocities as large as -450 km s^{-1} (Wakker & van Woerden 1991). These observations cannot confidently determine whether Cloud 10-5 is associated with the M81 Filament or with the Milky Way.

6. COMPARISON WITH NUMERICAL SIMULATIONS

In order to determine whether the H\textsc{i} clouds in the M81 Filament have the properties expected for gas-embedded dark matter halos, we have compared their properties statistically with the properties of dark matter halos generated by N-body simulations. Analysis includes the clouds detected in this paper, in addition to the clouds from Chynoweth et al. (2008) and Chynoweth et al. (2009). For this analysis we only include the H\textsc{i} clouds located in the $8^\circ \times 8^\circ$ region centered on M81, due to the greater rms noise and contamination by Complex A in other regions of the map. Therefore this analysis excludes clouds C10-5, C09-1, C09-2, and C09-3. Figure 2 shows the region of the M81 Filament that was compared to the simulation, with H\textsc{i} clouds marked.

We conducted two dark-matter-only cosmological N-body simulations for comparison. One simulation uses initial conditions from WMAP3 and one from WMAP5. We simulated a 50^3 Mpc^3 volume of the universe from $z = 149$ to $z = 0$ using 256^3 particles. At redshift zero, we selected a volume 10 Mpc on a side to resimulate with 512^3 particles with a “zoom” technique aimed to preserve the tidal field outside the higher resolution volume. This smaller volume was selected to host a $\sim 10^{12} M_\odot$, halo at $z = 0$—this halo is consistent with the M81 galaxy. Figure 5 shows a $z = 0$ snapshot of the simulation. We used a friends-of-friends (FOF) algorithm with a linking length of $b = 0.2$ to identify dark matter halos, and used a SUBFIND technique to determine the bound subhalos.

Given the high resolution nature of our volume, a simple FOF algorithm to identify halos would suffer from “bridging particles” that artificially stitch together two halos within a linking length—resulting in unphysical dumbbell-shaped structures. We used SUBFIND to smooth the candidate FOF halos and sift out the real subhalos, identified as overdensities within the candidate FOF structure. For our work, we used a linking length of 0.2, and we required the dark matter halos to have more than 20 particles. We conducted tests using larger linking lengths, but the SUBFIND algorithm was relatively insensitive to this parameter. We caution that SUBFIND may underestimate the mass of the halo compared to those recovered in six-dimensional phase space (Muldrew et al. 2010), and that no density-based halo finder can recover a subhalo at the center of the main halo, but this bias does not affect our results.

In order to connect the numerical simulations with the properties of H\textsc{i} observations, we require an estimate of the H\textsc{i} to dark matter mass fraction. The distribution of H\textsc{i} gas compared to the dark matter halo distribution is very uncertain. For the purpose of comparing our observations with the H\textsc{i} clouds, we assume that H\textsc{i} gas follows the dark matter distribution. We
include in our comparison the prescription of Gnedin (2000), which includes a mass cutoff such that a dark matter halo with mass less than \(2 \times 10^8 M_\odot\) has no associated H\(_i\) gas. We take as the scaling factor from dark matter to H\(_i\) gas mass the Zwaan et al. (2003) results, summarized in Fukugita & Peebles (2004). Their values yield a H\(_i\) to dark matter mass fraction of 0.0018 \(\pm\) 0.0003.

After scaling the simulated dark matter to H\(_i\), the WMAP3 simulation contains seven dark matter halos with a simulated H\(_i\) mass between \(10^9\) and \(10^{10} M_\odot\), and the WMAP5 simulation contains eight. This is approximately consistent with the M81 H\(_i\) mass of \(2.67 \times 10^9 M_\odot\). For each of these “major” halos, we extract a box corresponding to the \(8^\circ \times 8^\circ\) region centered on M81. We then apply the \(5\sigma\) H\(_i\) mass threshold and velocity limits of our survey.

For each major halo, we find the properties of subhalos that would be detectable as H\(_i\) clouds in our observations. We repeat this process rotating the cube three ways. The difference between the expected and observed number of clouds is striking. In the simulation, we find an average of 41 clouds for the WMAP3 simulation and 50 clouds for the WMAP5 simulation (ranging from 12 to 135 and 16 to 162 clouds, respectively) per major halo with sufficient mass to be detected in our observations. Recall that nine clouds were detected in the corresponding region of our observations.

We compare the positions and velocities of the detected clouds with the dark matter halos identified in the simulation, using a two-dimensional Kolmogorov–Smirnov (K–S) test. Figure 6 is a two-dimensional phase-space diagram showing the distribution of positions and velocities of all observed H\(_i\) clouds, along with all detectable subhalos around each major halo, including all rotations in the simulation. It is clear from the figure that the H\(_i\) clouds do not fall in the same region as the simulations; the H\(_i\) clouds are much more concentrated around the central galaxy in both position and velocity than the dark matter halos. The results of the two-dimensional K–S test bear this out, giving an average probability of 8.0% for WMAP3 and 7.0% for WMAP5 (across all rotations of all major halos) that the position–velocity distributions are consistent.

7. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

We observed a wide area of the nearby M81 Filament in an attempt to find H\(_i\) clouds tracing dark matter minihalos predicted by ΛCDM cosmological simulations. We detected 5 new H\(_i\) clouds, bringing the total to 13 H\(_i\) clouds in the M81 Filament including our previously published observations.

Of the 13 clouds detected in the observed region, 4 are likely to be part of the Milky Way HVC system. We compared the properties of the remaining 9 H\(_i\) clouds to two cosmological dark matter N-body simulations. We find that there are far fewer H\(_i\) clouds than simulations predict, and that the phase-space distribution of the detected H\(_i\) clouds does not match that of the simulated clouds. There are two possible explanations for this discrepancy, both of which may be true. First, the H\(_i\) dark matter mass fraction in minihalos may be less than 0.18%. Second, the phase-space distribution of dark matter minihalos predicted by ΛCDM cosmological simulations may be incorrect.

Because our simulations are dark matter only, none of the simulated clouds are tidal debris (which would contain no dark matter). With these simulations, we cannot predict the properties of H\(_i\) clouds representative of tidal debris, but we can confidently say that the clouds we have detected do NOT match the properties expected for dark matter minihalos. The detected H\(_i\) clouds are also not compatible with cold accretion, since we do not detect clouds near non-interacting galaxies—cold accretion clouds should be detectable regardless of interactions. In fact, recent research suggests that cold accretion clouds should be more prevalent in non-interacting groups, due to the lack of mitigating environmental effects (Oosterloo et al. 2010).

Therefore, we conclude that the H\(_i\) clouds we have detected are not likely to be tracers of the predicted dark matter minihalos in the M81 Filament. Instead, they are most likely generated through galaxy interactions. In order to understand the detailed role of galaxy interactions in generating H\(_i\) clouds, further simulations including gas physics and deeper observations of more filaments are needed.

This study allows us to constrain the number of detected H\(_i\) clouds that may be self-gravitating. In a study of gravitationally
Figure 7. H\textsc{i} line profiles of known galaxies within our observed field. Note that some galaxies do not fall completely within our bandwidth, so the derived mass will be low. Line profiles for the galaxies in the M81 and NGC 2403 groups can be found in Chynoweth et al. (2008) and Chynoweth et al. (2009).

bound molecular clouds, Larson (1979, 1981) found a strong correlation between velocity dispersion and cloud size given by

$$\sigma_v (\text{km s}^{-1}) = 1.1L(\text{pc})^{0.38},$$

(3)

where L is the diameter of the cloud. Our survey detection threshold of $\sigma_v = 10\text{ km s}^{-1}$ gives a cloud size of 330 pc, so the angular resolution of our observations (10 kpc) is the limiting factor in detecting self-gravitating H\textsc{i} clouds. All of our
clouds are unresolved in the GBT beam. Our angular resolution limit gives a velocity dispersion of 36 km s\(^{-1}\), so for any of the detected clouds to be self-gravitating they must have a velocity dispersion less than or equal to this value. Only two of the nine clouds that we have determined to reside in the M81 group satisfy this constraint. The implication of this constraint is that the number of H\(\text{I}\) clouds that we have determined to reside in the M81 group is small enough to exclude a high mass. Therefore, we conclude that the H\(\text{I}\) clouds in our detection space are not self-gravitating.

On a side note, dark matter filaments such as the M81 Filament are predicted to have diffuse H\(\text{I}\) emission (Popping et al. 2009). The emission is predicted to be approximately three times too high to detect the diffuse cosmic web in H\(\text{I}\) emission. More sensitive GBT and EVLA observations of smaller regions, or surveys by future radio telescopes, could reach the sensitivity required to detect this emission.

K.M.C. thanks the NRC Research Associateship program, the NRAO Pre-Doctoral Fellowship program, and Vanderbilt University for funding support.

Facilities: GBT

APPENDIX

PROPERTIES OF KNOWN GALAXIES

Our survey encompasses a large volume and we have detected a significant number of galaxies in H\(\text{I}\). We calculated H\(\text{I}\) masses of all known galaxies in the observed volume using

\[
\frac{M}{M_\odot} = 2.36 \times 10^5 \left(\frac{D}{\text{Mpc}} \right)^2 \left(\frac{F}{\text{Jy}} \right) \left(\frac{V}{\text{km s}^{-1}} \right),
\]

where \(F\) is the total flux of the galaxy.

Distances for galaxies in the M81 Filament were taken from Karachentsev & Kaisin (2007). Distances to background galaxies were taken from NED where available; otherwise, they were calculated from the radial velocity, assuming a Hubble constant of \(H_0 = 75\) km s\(^{-1}\) Mpc\(^{-1}\). Because of the high number of galaxies and continuum sources in the field, each galaxy spectrum was re-baselined using a first-order fit to the surrounding spectral region in order to calculate an accurate H\(\text{I}\) mass.

REFERENCES

Begum, A., Chengalur, J. N., Karachentsev, I. D., Kaisin, S. S., & Sharina, M. E. 2006,
MNRAS, 365, 1220

Blitz, L., Spergel, D. N., Teuben, P. J., Hartmann, D., & Burton, W. B. 1999,
ApJ, 514, 818

Boyle, P. J., et al. 2001,
ApJ, 560, L127

Braun, R., & Burton, W. B. 1999,
A&A, 341, 437

Bregman, J. N. 1980,
ApJ, 236, 577

Chynoweth, K. M., Langston, G. I., Holley-Bockelmann, K., & Lockman, F. J. 2009,
AJ, 138, 287

Chynoweth, K. M., Langston, G. I., Yun, M. S., Lockman, F. J., Rubin, K. H. R., & Scoltes, S. A. 2009,
AJ, 135, 1983

Dekel, A., & Silk, J. 1986,
ApJ, 303, 39

Fukugita, M., & Peebles, P. J. E. 2004,
ApJ, 616, 643

Giovanelli, R., Haynes, M. P., Kent, B. R., & Adams, E. A. K. 2010,
ApJ, 708, L22

Gnedin, N. Y. 2000,
ApJ, 542, 535

Karachentsev, I. D., & Kaisin, S. S. 2007,
AJ, 133, 1883

Karachentsev, I. D., et al. 2002,
A&A, 383, 125

Kereš, D., & Hernquist, L. 2009,
ApJ, 700, L1

Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999,
ApJ, 522, 82

Kravtsov, A. V., Gnedin, O. Y., & Klypin, A. A. 2004,
ApJ, 609, 482

Langston, G., & Turner, B. 2007,
ApJ, 658, 455

Larson, R. B. 1979,
MNRAS, 186, 479

Larson, R. B. 1981,
MNRAS, 194, 809

Muldrew, S. I., Pearce, F. R., & Power, C. 2010, arXiv:1008.2903

Oosterloo, T., et al. 2010,
MNRAS, 409, 500

Ott, M., Witzel, A., Quirrenbach, A., Krichbaum, T. P., Standke, K. J., Schalinski, C. J., & Hummel, C. A. 1994,
A&A, 284, 331

Pisano, D. J., Barnes, D. G., Gibson, B. K., Staveley-Smith, L., Freeman, K. C., & Kilborn, V. A. 2007,
ApJ, 662, 959

Popping, A., Davé, R., Braun, R., & Oppenheimer, B. D. 2009,
A&A, 504, 15

Putman, M. E., & Moore, B. 2002, in ASP Conf. Ser. 254, Extragalactic Gas at Low Redshift, ed. J. S. Mulchaey & I. T. Stocke (San Francisco, CA: ASP), 245

Putman, M. E., Staveley-Smith, L., Freeman, K. C., Gibson, B. K., & Barnes, D. G. 2003,
ApJ, 586, 170

Ricotti, M. 2009,
MNRAS, 392, L45

Thilker, D. A., Braun, R., Walterbos, R. A. M., Corbelli, E., Lockman, F. J., Murphy, E., & Maddalena, R. 2004,
ApJ, 601, L39

 Wakker, B. P., & van Woerden, H. 1991,
A&A, 250, 509

Wakker, B. P., & van Woerden, H. 1997,
ARA&A, 35, 217

Zwaan, M. A., et al. 2003,
AJ, 125, 2842