Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

The epidemiology of infectious diseases in Europe in 2020 versus 2017–2019 and the rise of tick-borne encephalitis (1995–2020)

Victoria A. Jenkins a,*, Guenter Silbernagl b, Lorraine R. Baer c, Bernard Hoet a

a Bavarian Nordic AG, Zug, Switzerland
b Bavarian Nordic GmbH, Munich, Germany
c Baer PharMed Consulting, Ltd. Skokie, IL United States of America

ARTICLE INFO

Keywords:
Tick
TBE
Climate change
COVID-19
Vaccine
Epidemiology

ABSTRACT

Health control measures instituted in 2020 to mitigate the COVID-19 pandemic decreased the case numbers of many infectious diseases across Europe. One notable exception was tick-borne encephalitis (TBE). In Austria, Germany, Switzerland, Lithuania, and the Czech Republic, the upturn was significantly higher compared to the average of the three years previously ($P < 0.05$), with increases of 88%, 48%, 51%, 28%, and 18%, respectively. Six countries reported TBE incidences of ≥ 5 cases/100,000, defined as highly endemic by the World Health Organization (WHO). Possible factors contributing to this surge may include increased participation in outdoor activities in endemic regions and increased tick counts/tick activity. In highly endemic regions, the WHO recommends that vaccination be offered to all age groups, including children.

1. Introduction

The emergence in December 2019 of the new coronavirus SARS-CoV-2, the causative agent of COVID-19, quickly swept around the globe, and on 11th March 2020 the World Health Organization (WHO) declared the COVID-19 pandemic (WHO, 2020). Consequently, parts of Europe put in place public health policies to contain the spread of the virus. Recent reports from Switzerland (Steffen et al., 2020) and Germany (Ulrich et al., 2021) documented substantial reductions in almost all recorded infectious diseases in 2020 as compared to earlier years. In these countries, one of the only infectious diseases to see an increase during this period was tick-borne encephalitis (TBE) (Steffen et al., 2020; Ulrich et al., 2021). In this report, we used data from the health departments of various European countries to investigate the prevalence of select infectious diseases under surveillance during 2020, and further explored the trend in TBE cases from 1995 through 2020.

2. Materials and methods

Data were sourced from the websites of health departments of the countries listed in Table 1. For the calculation of disease incidences per country, population denominator data were obtained from the Statistical Office of the EU (Eurostat) https://appsso.eurostat.ec.europa.eu (data extracted on 10 December 2021). The reported incidences for the year 2020 and the mean for the combined years 2017, 2018, and 2019 were compared using a chi-square test, with no adjustment made for multiple comparisons.

3. Results

3.1. Cases of TBE in select European countries (January 2020-December 2020)

The number of cases of TBE were found to have increased in 2020 compared to the average of the three years previously in thirteen select European countries: Austria, Germany, Switzerland, Finland, Norway, Lithuania, and the Czech Republic (Table 2) as well as in Slovakia, Slovenia, Belgium, Denmark, the United Kingdom and the Netherlands (Table 3). In five countries, the increases were significantly ($P < 0.05$) higher — Austria (88%), Germany (48%), Switzerland (51%), Lithuania (28%) and the Czech Republic (18%). Significant ($P < 0.05$) decreases in TBE were found in Poland (−36%) and Sweden (−27%).

3.2. Case numbers and incidence of TBE (1995–2020)

The year 2020 saw the highest ever number of TBE cases since 1995
2

decreased in 2020 compared to the average of the three years previously
diseases, including airborne diseases such as

3.3. Trends in other infectious diseases in twelve European countries

for eight countries (Austria, Switzerland, Germany, Slovakia, Finland, NORWAY, BELGIUM, and the NETHERLANDS) (Table 3). The highest notification rates of TBE in 2020 occurred in LITHUANIA, LATVIA, SLOVEnIA, and the CZECH REPUBLIC, with incidences of 23.94, 11.01, 8.92, and 7.99 cases/100,000 population, respectively (Table 3 and Fig. 1). These four countries as well as ESTONIA (incidence of 5.12) and SWITZERLAND (incidence of 5.31) reported incidences of ≥5 per 100,000/year. Incidences of TBE per country per 100,000 inhabitants in 2020 is shown in Fig. 1.

3.3. Trends in other infectious diseases in twelve European countries (2017 – 2020)

with few exceptions, the number of cases of a range of infectious diseases, including airborne diseases such as Haemophilus influenzae, Meningococcal disease, and Streptococcus pneumoniae, were significantly decreased in 2020 compared to the average of the three years previously (Table 2). The largest and most consistent decrease was seen in rotavirus, where seven (GERMANY, FINLAND, ESTONIA, LATVIA, LITHUANIA, HUNGARY, and POLAND) of eight countries reporting on rotavirus recorded reductions of 53–93%. Other than TBE, pertussis, influenza, gonorrhea, and chlamydia were the only other infectious diseases to have seen significant (P<0.05) increases in 2020 vs. the mean of the three previous years, and only in select countries. Influenza increased by 4% in GERMANY, gonorrhea by 11% in SWITZERLAND, chlamydia by 7% in FINLAND, and pertussis by 176% in LITHUANIA.

4. Discussion

Over a 25-year period from 1995 to 2020, the number of cases of TBE across many European countries has trended upwards. Specifically comparing 2020 to the mean number of cases of 2017–2019, countries in the alpine regions demonstrated significant increases of 48–88% in TBE, with record number of cases reported in SWITZERLAND and GERMANY. Other countries that saw a significant increase in TBE cases during this period were the CZECH REPUBLIC (18%) and LITHUANIA (28%). In contrast, the changes in total TBE cases in other Northern and Eastern European countries were non-significant when compared to data from 2017-2019, with the exception of SWEDEN and POLAND where a significant decrease in cases was reported.

Other notifiable diseases, including airborne diseases such as Haemophilus influenzae, Meningococcal disease, and Streptococcus pneumoniae, were decreased in 2020 in Europe and other countries (Steffen

Table 1
Source Data.

Country	Data source	Web Addresses
England	Robert Koch Institute: Infection epidemiological yearbook	https://www.rki.de/DE/Content/Infekt/Jahrbuch/jahrbuch_node.html
Germany	State Public Health and Medical Officer Service: annual reports, data on infectious diseases	https://www.amts.hv.de/foels mentioning/Jarvany/Fertozo_betegsegk/Fertozo_eves_jelentesek & https://www.oek.hv/oeo.web/to=2561&nid=1308&pid=1&lang=hu
Austria	National Institute for Health and Welfare: Communicable Diseases Notification System (MSIS), NIPH	https://www.epidemiologijagjas-biletjeni.html
Slovakia	National Institute for Public Health: Department of epidemiology and surveillance of infectious diseases	http://wwwold.pbc.gov.pl/oldpage/epimindex/index_a.html
Slovenia	National Institute of Public Health: Health Statistical Yearbook of Slovenia	https://www.njiz.si/sl/njiz/revije/zzdravstveni-statistici-letovislovenje
Sweden	The Public Health Authority (Fohm): Statistics on infectious diseases	https://www.folkhalsomyndigheten.se/folkhalsorapportering-statistik/statistik-a-o/sjukdomstatistik/?letter=ABC#listing
United Kingdom	Gov.uk Tick-borne encephalitis: epidemiology, diagnosis and prevention	https://www.gov.uk/guidance/tick-borne-encephalitis-epidemiology-diagnosis-and-prevention
Switzerland	Federal Office of Public Health FOPH: BAG-Bulletin	https://www.bag.admin.ch/bag/de/home/das-bag/publikationen/periodika/bag-bulletin.html

Web links last accessed July 2021.
Table 2
Number of cases of notifiable infectious diseases in European countries (2017 – 2020).

Infectious disease	AUSTRIA	GERMANY	SWITZERLAND	P value
Pertussis	1411	2202	2233	0.0001
Haemophilus	39	49	64	0.0001
influenae				
Meningococcal	20	30	24	0.0001
disease				
Streptococcus	545	611	615	0.0001
pneumoniae				
Tuberculosis	570	480	474	0.0001
Norovirus	1173	1572	1900	0.0001
Rotavirus	203	181	184	0.0001
Hepatitis A	242	80	76	0.0001
HIV	3144	2818	3093	0.0001
Gonorrhoea	123	171	106	0.0001
Chlamydia				
TBE (tick-borne	822	761	748	0.0001
encephalitis)				

Infectious disease	FINLAND	NORWAY	SWEDEN	P value
Pertussis	10	15	12	0.0001
Haemophilus	269	359	206	0.0001
influenae				
Meningococcal	16	16	16	0.0001
disease				
Streptococcus	822	761	748	0.0001
pneumoniae				
Tuberculosis	10	15	12	0.0001
Norovirus	3874	2336	3392	0.0001
Rotavirus	269	359	206	0.0001
Hepatitis A	29	28	18	0.0001
HIV	159	151	149	0.0001
Gonorrhoea	604	501	607	0.0001
Chlamydia	14,535	14,911	16,179	0.0001
TBE (tick-borne	85	79	69	0.0001
encephalitis)				

(continued on next page)
Table 2 (continued)

infectious disease	ESTONIA 2017	ESTONIA 2018	ESTONIA 2019	ESTONIA 2020	Mean 2017–19	% change 2017 vs Mean	P value 2017–19	LATVIA 2017	LATVIA 2018	LATVIA 2019	LATVIA 2020	Mean 2017–19	% change 2020 vs Mean	P value 2017–19	LITHUANIA 2017	LITHUANIA 2018	LITHUANIA 2019	LITHUANIA 2020	Mean 2017–19	% change 2020 vs Mean	P value 2017–19		
Influenza	7408	14,300	14,668	11,498	11,125	−62	<0.0001	0.0002	95	159	720	342	325	5	0.3995	21	27	26	68	25	176	<0.0001	
Pertussis	56	69	135	44	87	−49	−0.0001	−0.0002	1450	1342	1432	256	1459	−82	<0.0001	3061	1548	1629	743	7	818	−99	<0.0001
Haemophilus influenzae	53	75	69	36	66	−45	0.0027	210	128	178	259	257	319	−19	0.0158	108	115	9	70	36	115	<0.0001	
Meningococcal disease	4	9	4	4	6	−29	0.5213	32	37	31	112	81	3951	−31	0.4551	81	40	37	12	53	−77	<0.0001	
Streptococcus pneumoniae	160	195	220	82	192	−57	<0.0001	0.2151	214	169	250	210	211	0	0.9223	474	384	711	669	523	28	<0.0001	

Notes

- P-value derived from the comparison of reported incidences for 2020 vs the mean of years 2017, 2018 and 2019 using a chi-square test, with no adjustment made for multiple comparisons.

Additional Information

- TBE (tick-borne encephalitis)
| Country | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Mean | 2020incidence |
|---------------|
| Austria | 109 | 128 | 99 | 62 | 41 | 60 | 54 | 60 | 82 | 54 | 100 | 84 | 45 | 86 | 79 | 63 | 103 | 49 | 100 | 81 | 79 | 95 | 123 | 171 | 250 | 133 | 2.81 |
| Belgium* | 2 | 0 | 3 | 1 | 0.03 |
| Czech | 744 | 571 | 415 | 422 | 490 | 719 | 633 | 647 | 606 | 507 | 643 | 1029 | 546 | 631 | 816 | 589 | 861 | 573 | 625 | 410 | 355 | 565 | 687 | 715 | 774 | 854 | 725 | 7.99 |
| Denmark* | 175 | 177 | 404 | 387 | 185 | 272 | 215 | 90 | 237 | 182 | 164 | 171 | 140 | 90 | 179 | 201 | 250 | 178 | 114 | 83 | 116 | 81 | 87 | 85 | 83 | 68 | 85 | 5.12 |
| Finland | 5 | 8 | 19 | 16 | 12 | 42 | 33 | 38 | 16 | 29 | 16 | 18 | 20 | 23 | 25 | 38 | 43 | 39 | 38 | 47 | 68 | 61 | 85 | 79 | 69 | 92 | 78 | 1.67 |
| Germany | 226 | 114 | 211 | 148 | 115 | 133 | 225 | 239 | 278 | 274 | 431 | 547 | 238 | 285 | 313 | 260 | 422 | 195 | 420 | 265 | 223 | 348 | 485 | 583 | 445 | 748 | 504 | 0.90 |
| Estonia | 234 | 224 | 99 | 84 | 51 | 45 | 76 | 80 | 114 | 89 | 52 | 56 | 62 | 70 | 64 | 50 | 43 | 44 | 53 | 31 | 24 | 19 | 16 | 32 | 18 | 18 | 22 | 0.18 |
| Latvia | 6 | 8 | 8 | 11 | 5 | 15 | 19 | 6 | 14 | 23 | 22 | 14 | 4 | 34 | 32 | 21 | 26 | 34 | 42 | 22 | 14 | 53 | 24 | 39 | 24 | 21 | 29 | 0.04 |
| Lithuania | 426 | 309 | 645 | 548 | 171 | 419 | 298 | 168 | 763 | 425 | 423 | 462 | 234 | 220 | 617 | 612 | 365 | 495 | 501 | 353 | 336 | 633 | 474 | 384 | 711 | 669 | 523 | 23.94 |
| Luxembourg | 0.00 |
| Netherlands* | 1 | 1 | 1 | 0 | 2 | 1 | 2 | 3 | 3 | 13 | 9 | 10 | 11 | 14 | 7 | 6 | 13 | 9 | 12 | 16 | 26 | 35 | 41 | 26 | 11.01 |
| Norway | 1 | 1 | 1 | 0 | 2 | 1 | 2 | 3 | 3 | 13 | 9 | 10 | 11 | 14 | 7 | 6 | 13 | 9 | 12 | 16 | 26 | 35 | 41 | 26 | 0.76 |
| Portugal | 267 | 257 | 201 | 208 | 101 | 170 | 210 | 126 | 339 | 262 | 177 | 317 | 233 | 202 | 351 | 294 | 221 | 189 | 227 | 195 | 149 | 283 | 283 | 197 | 265 | 158 | 248 | 0.42 |
| Slovakia | 89 | 82 | 76 | 54 | 63 | 92 | 75 | 62 | 74 | 70 | 50 | 91 | 57 | 79 | 76 | 90 | 108 | 107 | 162 | 117 | 88 | 174 | 75 | 156 | 161 | 176 | 131 | 3.22 |
| Slovene | 260 | 406 | 274 | 136 | 150 | 190 | 260 | 262 | 282 | 204 | 297 | 373 | 199 | 246 | 307 | 166 | 247 | 164 | 309 | 100 | 62 | 83 | 102 | 153 | 87 | 187 | 114 | 8.92 |
| Sweden | 68 | 44 | 76 | 64 | 53 | 133 | 128 | 105 | 105 | 174 | 138 | 163 | 185 | 224 | 210 | 174 | 284 | 287 | 209 | 178 | 268 | 238 | 391 | 385 | 358 | 275 | 378 | 2.66 |
| United Kingdom*| 1 | 1 | 0.00 |
| Switzerland | 60 | 62 | 123 | 68 | 112 | 91 | 107 | 53 | 116 | 138 | 206 | 259 | 113 | 127 | 118 | 90 | 175 | 95 | 205 | 113 | 121 | 206 | 269 | 375 | 375 | 457 | 302 | 5.31 |

* suspected autochthonous cases only
The reduction in these infections may be linked to mitigation efforts (including social distancing, school closures, travel restrictions, and mask wearing, and an emphasis on hand washing) put in place to prevent the spread of COVID-19 (Steffen et al., 2020; Sullivan et al., 2020; Ulrich et al., 2021). Furthermore, day-care closures were likely responsible for the consistently large decline in rotavirus, as interactions between infants and young children were reduced. A potential explanation for the rise in pertussis in Lithuania could be increased health seeking behaviours and subsequent pertussis diagnosis.

TBE, an infectious disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV), is endemic in Eastern, Central, and Northern Europe as well as in northern China, Japan, Mongolia, and the Russian Federation (World Health Organization, 2011). Transmission usually occurs via the bite of an infected tick. Infrequently, though, humans also can be infected by consuming unpasteurised dairy products (Brockmann et al., 2018; Kohlmaier et al., 2021).

Factors driving TBE incidence can be classified into three areas: (i) tick abundance, (ii) population at risk, and (iii) surveillance characteristics (Martin et al., 2020; Ociás et al., 2019; Ulrich et al., 2021; World Health Organization, 2011). Tick abundance is related to environmental conditions, including land use, weather, host reservoirs, and climate change, and can be very focal (Süss et al., 2008). An earlier occurrence of spring can accelerate tick development (Jaenson et al., 2012). Additionally, milder winters permit winter activity of ticks and may increase population of hosts to sustain greater tick populations (Süss et al., 2008). The weather conditions in Switzerland during winter months of late 2019/early 2020 were suitable to meet these conditions and may explain the high number of TBE cases in 2020. Indeed, the national average winter temperature rose to 0.7°C (MeteoSchweiz, 2020). Unusually high winter temperatures, with a national average over 0°C, have occurred only four times in Switzerland since 1864, when temperature record-keeping began (MeteoSchweiz, 2020). Complementing this was the arrival of a very early spring 2020, as classified by the spring index (Federal Office of Meteorology and Climatology MeteoSwiss, 2021).

Changes in human behaviour (e.g., increase of at-risk outdoor recreational activities) can put people at greater risk of exposure to ticks and thus TBE. This is one factor that may have contributed to the increase of TBE during the COVID-19 lockdown, as shown by the actual versus predicted numbers in Austria and Germany. The predicted number of TBE cases for 2020 based on negative binomial regression models ranged from 142 to 156 for Austria (vs 250 actual), 663–670 for Germany (actual 748), and 465–472 for Switzerland (actual 457) (Rubel and Brugger, 2020, 2021). Interestingly, a 225% increase in visitor frequency to public green spaces, including national parks and public gardens, was reported in the Google Mobility Report of May 2020 for Germany (Schweizer et al., 2021).

Underreporting to surveillance systems in 2020 may have been a factor in some countries where there was a decrease in TBE. One analysis from Poland suggested that access to specialised diagnostic testing for TBE may have been limited during the pandemic due to overburdened healthcare resources (Sulik et al., 2021).

A limitation of this study is that mandatory reporting of infectious diseases varied across countries; as such, the data found on the websites of health departments were not uniformly available for all countries. In addition, changes in health care seeking behaviours and the number of laboratory tests conducted during the pandemic may have altered compared to the previous years, and these factors may have led to reporting bias for 2020 (Simões et al., 2020).

5. Conclusions

The overall trend in number of TBE cases across Europe is on an upward trajectory, although with regional and temporal variations. Several factors may be involved, including global warming and social behaviours. Long-lasting morbidity from TBE, limiting function and quality of life, are seen in up to 30% of those hospitalised with TBE (Bogovic et al., 2018; Kohlmaier et al., 2021). With no curative treatment available, vaccination remains the most effective method to prevent infection, with reported effectiveness rates of 95–99% (Heinz et al., 2013; Erber et al., 2022). The WHO recommends TBE vaccination for adults and children in highly endemic (≥5 cases/100,000 population/year) areas and targeted vaccination in specific geographical locations or when participating in at-risk outdoor activities (World Health Organization, 2011). Compliance with TBE vaccination is low in many
European countries (Erber and Schmitt, 2018). Thus, increasing awareness and education regarding vaccination against TBE for those travelling to or residing in endemic areas are critical interventions for addressing this growing public health issue.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author statement

Victoria A Jenkins: Conceptualisation, Data extraction, Data analysis, Roles/Writing – original draft, Writing – review & editing.

Guenther Silbernagl: Data analysis, Writing – review & editing.

Lorraine R Baer: Roles/Writing – original draft, Writing – review and editing.

Bernard Hoet: Conceptualisation, Data analysis, Writing – review & editing.

Declaration of Competing Interest

Victoria A Jenkins, Guenter Silbernagl, and Bernard Hoet are employees of Bavarian Nordic. Lorraine R Baer is an employee of Baer PharMed Consulting, Ltd, which received funding from Bavarian Nordic for medical writing support.

Acknowledgements

Gerhard Dobler for discussions regarding epidemiological factors influencing variations in tick density.

References

Bogović, P., Stupica, D., Rojko, T., Lotrič-Furlan, S., Avičič-Županc, T., Kastrin, A., Luna, L., Strle, F., 2018. The long-term outcome of tick-borne encephalitis in Central Europe.Ticks Tick. Borne. Dis. 9, 269–378. https://doi.org/10.1016/j.ttbdis.2017.12.001.

Brockmann, S.O., Oehme, R., Buckenmaier, T., Beer, M., Jeffery-Smith, A., Spanenkrebs, M., Haag-Mila, S., Wagner-Wiening, C., Schlegel, C., Fritz, J., Zange, S., Bestehorn, M., Lindau, A., Hoffmann, D., Tiberi, S., Mackenstedt, U., Dohler, G., 2018. A cluster of two human cases of tick-borne encephalitis (TBE) transmitted by unpasteurised goat milk and cheese in Germany, May 2016. Euro. Surveill. 23 https://doi.org/10.2807/1560-7917.es.2018.23.15.1700336.

Erber, W., Khan, F., Zavadska, D., Dobler, G., Böhmer, M.M., Jodar, L., Schmitt, H.J., 2022. Effectiveness of TBE vaccination in Southern Germany and Latvia. Vaccin 31 (5), 819–825. https://doi.org/10.1016/j.vaccine.2021.12.028, 40.

Erber, W., Schmitt, H.J., 2018. Self-reported tick-borne encephalitis (TBE) vaccination coverage in Europe: results from a cross-sectional study. Ticks Tick. Borne. Dis. 9, 768–777. https://doi.org/10.1016/j.ttbdis.2018.02.007.

Federal Office of Meteorology and Climatology MeteoSwiss, June 2021. Spring Index. Retrieved August 24 from https://www.meteoswiss.admin.ch/home/climate/climate-change-in-switzerland/vegetation-development/spring-index.html (accessed 24 August 2021).

Heinz, F.X., Stiassny, K., Holzmann, H., Grbic-Vitek, M., Križ, B., Esol, A., Kundi, M., 2013. Vaccination and tick-borne encephalitis, central. Europe. Emerg. Infect. Dis. 19, 69–76. https://doi.org/10.3201/eid1901.120458.

Jaenson, T.G., Hjertqvist, M., Bergstrom, T., Lundkvist, A., 2012. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasit. Vectors. 5, 184. https://doi.org/10.1186/1756-3305-5-184.

Kohlmairer, B., Schweintzger, N.A., Sagneinter, M.G., Svendova, V., Kohlfürst, D.S., Sonnleitner, A., Leitner, M., Berghold, A., Schmiedberger, E., Faezkas, F., Pichler, A., Rejc-Marko, J., Rüzek, D., Dufková, I., Cejková, D., Hina, P., Pýchová, M., Króbková, L., Chmelik, V., Struncová, V., Zavadskas, D., Karelis, G., Mickiene, A., Zajkowska, J., Bogović, P., Strle, F., Zenz, W., The Eu-Tick-Bo Study Group, 2021. Clinical characteristics of patients with tick-borne encephalitis (TBE): a European multicentre study from 2010 to 2017. Microorganisms 9, https://doi.org/10.3390/microorganisms90701420.

Martin, I.J., Hjertqvist, M., Straten, E.V., Bjelkmar, P., 2020. Investigating novel approaches to tick-borne encephalitis surveillance in Sweden, 2010-2017. Ticks Tick. Borne. Dis. 11, 101486 https://doi.org/10.1016/j.ttbdis.2020.10.1486.

MeteoSchweiz. 2020. Klimabulletin Winter 2019/2020. https://www.meteoswiss.admin.ch/content/dam/meteoswiss/de/Ungebundene-Seiten/Publikationen/Klimabulletin/doc/klimabulletin_winter_2019-2020.pdf (accessed 24 August 2021).

Ocià, L.F., Waldeck, M., Hallen, I., Nargaard, M., Krofrog, K.A., 2019. Transnational exchange of surveillance data reveals previously unrecognized TBEV microfocus. Eur. J. Public Health. 29, 631–633. https://doi.org/10.1093/eurpub/cdz095.

Rube, F., Brugger, K., 2020. Tick-borne encephalitis incidence forecasts for Austria, Germany, and Switzerland. Ticks Tick. Borne. Dis. 11, 101437 https://doi.org/10.1016/j.ttbdis.2020.10.1437.

Rube, F., Brugger, K., 2021. Operational TBE incidence forecasts for Austria, Germany, and Switzerland 2019-2021. Ticks Tick. Borne. Dis. 12, 101579 https://doi.org/10.1016/j.ttbdis.2021.10.1579.

Schweizer, A.M., Leiderer, A., Mitterwalner, V., Walentowitsch, A., Mathes, G.H., Steinbauer, M.J., 2021. Outdoor cycling activity affected by COVID-19 related epidemic-control decisions. PLoS ONE 16, e0249268. https://doi.org/10.1371/journal.pone.0249268.

Simões, D., Stengard, A.R., Combs, L., Raben, D., 2020. Impact of the COVID-19 pandemic on testing services for HIV, viral hepatitis and sexually transmitted infections in the WHO European Region, March to August 2020. Eurosurveillance 25 (26). https://doi.org/10.2807/1560-7917.es.2020.25.26.2001943.

Steffen, R., Lautenschläger, S., Fehr, J., 2020. Travel restrictions and lockdown during the COVID-19 pandemic-impact on notified infectious diseases in Switzerland. J. Travel Med. 27 https://doi.org/10.1093/jtm/taaa186.

Sulk, M., Toczyłowski, K., Gryczczuk, S., 2021. Epidemiology of tick-borne encephalitis in Poland (2010-2019) and the impact of the COVID-19 pandemic on the notified incidence of the disease. Przegl. Epidemiol. 75, 76–85. https://doi.org/10.32394/poe.75.08.

Sullivan, S.G., Carlsson, S., Cheng, A.C., Chilver, M.B., Dwyer, D.E., Irwin, M., Kok, J., Macartney, K., MacLachlan, J., Minney-Smith, C., Smith, D., Stocks, N., Taylor, J., Barr, I.G., 2020. Where has all the influenza gone? The impact of COVID-19 on the circulation of influenza and other respiratory viruses, Australia, March to September 2020. Euro Surveil. 25 https://doi.org/10.2807/1560-7917.es.2020.25.47.2001847.

Süss, J., 2011. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia-an overview. Ticks Tick. Borne. Dis. 2, 2–15. https://doi.org/10.1016/j.jtbdis.2010.10.007.

Süss, J., Klaus, C., Gerstengarbe, F.W., Werner, P.C., 2008. What makes ticks tick? Climate change, ticks, and tick-borne diseases. J. Travel Med. 15, 39–45. https://doi.org/10.1111/j.1708-8305.2007.00176.x.

Ulrich, A., Schranz, M., Rexroth, U., Hamouda, O., Schaade, L., Diercke, M., Boender, T., Group, Robert Koch's Infectious Disease Surveillance Group, 2021. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: an analysis of national surveillance data during week 1 - 2016 - week 32 - 2020. Lancet Reg. Health. Europe. 6, 100103.

World Health Organization. 2011. Vaccines against tick-borne encephalitis: WHO position paper. Wkly. Epidemiol. Rec. 86, 241–256.

World Health Organization. (2020, March 11). WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020 (Accessed 02 February 2022).