Planar of special idealization rings

MANAL AL-LABADI
Eman Mohammad Almuhur
Department of Mathematics
University Of Petra
Amman, JORDAN

Department of Mathematics,
Faculty of Basic Sciences and Humanities,
Applied Science Private University,
Amman, JORDAN

Abstract: Let \(R(+)N \) be the idealization of the ring \(R \) by the \(R \)-module \(N \). In this paper, we investigate when \(\Gamma(R(+)N) \) is a Planar graph where \(R \) is an integral domain and we investigate when \(\Gamma(Z_n(+)Z_m) \) is a Planar graph.

Key-Words: The idealization rings \(R \), Planar graph, Zero-divisor graph.

Received: July 27, 2020. Revised: November 23, 2020. Accepted: December 10, 2020. Published: December 23, 2020.

1 Introduction

I. Beck in [6] introduce the concept of zero-divisor graph also, D. D. Anderson and M. Naseer in [3] studied the context of coloring which is an interest concept of graph theory. Anderson and Livingston in [4, Theorem 2.3] give the definition of the zero-divisor graph. For more information in zero-divisor graph see, [5].

Let \(R \) be a commutative ring, the zero-divisor graph is the graph \(\Gamma(R) \) which vertices are the non-zero zero divisors of \(R \), with \(a \) and \(b \) adjacent if \(ab = 0 \). For each ring \(R \), the set of all zero-divisors of the ring \(R \) is \(Z(R) \).

The idealization ring \(R(+)N \) is defined as \(N \) be an \(R \)-module and let \(R(+)N = \{ (a_1, h_1) : a_1 \in R, h_1 \in N \} \) we have two operations \((a_1, h_1) + (a_2, h_2) = (a_1 + a_2, h_1 + h_2) \) and \((a_1, h_1)(a_2, h_2) = (a_1a_2, a_1h_2 + a_2h_1) \).

Another concept of interest in the graph theory. The Planar graph is a graph isomorphic to a Plane graph. A Plane graph is graph that can be drawn on the plane without cross edging. If the graph has induced subgraph isomorphic to \(K_5 \) that is not a Planar graph, by Kuratoskies Theorem.

2 When \(\Gamma(R(+)N) \) is a Planar graph?

In this section, we investigate when \(\Gamma(R(+)N) \) is Planar graph where \(R \) is an integral domain and \(N \) be an \(R \)-module.

We begin with the following lemma when \(R \) is an integral domain for the idealization ring \(R(+)N \).

Lemma 1:

[2] Suppose that \(R \) is an integral domain and \(N \) is an \(R \)--module. Then we have the following cases:

- **Case 1.** If \(R \) is an integral domain with \(N \cong Z_2 \) is an \(R \)--module and annihilator of \(Z_2 \) is equal to zero, then the integral domain \(R \cong Z_2 \).

- **Case 2.** If \(R \) be an integral domain with \(N \cong Z_3 \) is an \(R \)--module and annihilator of \(Z_3 \) is equal to zero, then the integral domain \(R \cong Z_3 \).

Theorem 1:

Suppose that \(R \) is an integral domain and \(N \cong Z_2 \) is an \(R \)--module. Then the graph \(\Gamma(R(+)Z_2) \) is a Planar.

Proof:

To proof we have the following two cases to thoughtfulness:

- **Case 1:** If the annihilator of \(Z_2 \) is equal to zero, then \(\Gamma(Z_2(+)Z_2) \) is equal to \(\{(0, 1)\} \) which is a Planar graph.

- **Case 2:** If the annihilator of \(Z_2 \) is not equal to zero, then the graph \(\Gamma(R(+)Z_2) = \{ (0, 1), (k_i, 0), (k_j, 1) : k_i, k_j \in ann(Z_2) \} \). So, the graph \(\Gamma(R(+)Z_2) \) is a star which is a Planar graph.

Theorem 2:

Suppose that \(R \) is an integral domain and \(N \cong Z_3 \) is an \(R \)--module. Then the graph \(\Gamma(R(+)Z_3) \) is a
Planar.

Proof:
To proof we must note the following two cases to thoughtfulness:

- **Case 1.** If annihilator of \(\mathbb{Z}_3 \) is equal zero, then \(\Gamma(\mathbb{R}(+)\mathbb{Z}_3) \) is equal to \(\{(0,1),(0,2)\} \) that is a Planar graph.

- **Case 2.** If annihilator of \(\mathbb{Z}_3 \) is not equal zero, then graph \(\Gamma(\mathbb{R}(+)\mathbb{Z}_3) \) is equal to
 \[\{(0,1),(0,2),(r_1,0),(r_1,1),(r_1,2) : r_1 \in \text{ann}(\mathbb{Z}_3)\} \]. So, that is a Planar graph.

![Figure 1: A graph which is a Planar graph.](image1.png)

The next theorem will discuss when the order of \(\mathbb{N} \) is greater than or equal 5.

Theorem 4:
Suppose that \(\mathbb{R} \) is an integral domain and \(|\mathbb{N}| \geq 5 \) is an \(\mathbb{R} \)−module. Then we have the following cases:

- **Case 1.** If the order of \(\mathbb{N} \) is equal 5 and annihilator of \(\mathbb{N} \) is equal to zero, then the graph \(\Gamma(\mathbb{R}(+)\mathbb{N}) \) is a Planar graph.

- **Case 2.** If the order of \(\mathbb{N} \) is equal 5 and annihilator of \(\mathbb{N} \) is not equal to zero, then the graph \(\Gamma(\mathbb{R}(+)\mathbb{N}) \) is not a Planar graph.

- **Case 3.** If the order of \(\mathbb{N} \) is greater than 5 , then the graph \(\Gamma(\mathbb{R}(+)\mathbb{N}) \) is not a Planar graph.

Proof:
To proof must note two cases to thoughtfulness:

- **Case 1.** If the order of \(\mathbb{N} \) is equal 4 and annihilator of \(\mathbb{N} \) is equal to zero, then the graph \(\Gamma(\mathbb{R}(+)\mathbb{N}) \) is equal to \(\{(0,l_1),(0,l_2),(0,l_3) : l_i \in \mathbb{N}\} \). That is a Planar graph.

- **Case 2.** If the order of \(\mathbb{N} \) is equal 4 and annihilator of \(\mathbb{N} \) is not equal to zero, then the graph \(\Gamma(\mathbb{R}(+)\mathbb{N}) = \{(r_i,l_1),(0,l_2),(0,l_3),(0,l_4) : l_i \in \mathbb{N}, r_i \in \text{ann}(\mathbb{N})\} \), by previous lemma then the graph is not a Planar graph.

![Figure 2: A graph which is not a Planar graph.](image2.png)

In this section, we consider the planar for the zero-divisor graph of the idealization ring \mathbb{Z}.

• Case 3. If the order of N is greater than 5, then graph $\Gamma(\mathbb{R}(+)N)$ is equal to $\{(0, l_1), (0, l_2), (0, l_3), (0, l_4), (0, l_5), \ldots, (0, l_7) : l_i \in N\}$. That has an induced subgraph isomorphic to K_5. So, the graph is not a Planar.

3 When $\Gamma(\mathbb{Z}_n(+)\mathbb{Z}_m)$ is Planar graph?

In this section, we consider the Planar for the zero-divisor graph of the idealization ring $\mathbb{Z}_n(+)\mathbb{Z}_m$, $\Gamma(\mathbb{Z}_n(+)\mathbb{Z}_m)$ where \mathbb{Z}_m be \mathbb{Z}_n-module.

Al-Labdi [1], she classified the zero-divisor graph of the idealization ring $\mathbb{Z}_n(+)\mathbb{Z}_m$.

We begin with the following lemma, when n is a prime number such that $n = p^\alpha$ and $m = p$.

Lemma 3:

Let $n = p^\alpha$ and $m = p$ where p is a prime number. Then the graph $\Gamma(\mathbb{Z}_n(+)\mathbb{Z}_m)$ have the following cases:

Case 1: If n is equal 4 and m is equal 2, then the graph $\Gamma(\mathbb{Z}_4(+)\mathbb{Z}_2)$ is a Planar.

Case 2: If n is equal p^α and m is equal p where p is a prime number, $\alpha \geq 3$, then the graph $\Gamma(\mathbb{Z}_{p^\alpha}(+)\mathbb{Z}_p)$ is not a Planar.

Proof:

We consider two cases to proof:

Case 1: If n is equal 4 and m is equal 2, then graph $\Gamma(\mathbb{Z}_4(+)\mathbb{Z}_2)$ is equal to $\{(0, 1), (2, 0), (2, 1)\}$. So, that the graph is a Planar.

Case 2: If n is equal p^α and m is equal p where p is a prime number greater than 2, $\alpha \geq 3$, then the graph $\Gamma(\mathbb{Z}_{p^\alpha}(+)\mathbb{Z}_p)$ is equal to $\{(0, 1), (0, 2), \ldots, (0, p - 1), (kp, 0), \ldots, (kp, p - 1) : k \in \mathbb{N}\}$. So, it has an induced subgraph K_5 that is not a Planar graph.

Figure 3: A graph which is not a Planar graph.

Figure 4: A graph which is not a Planar graph.

Figure 5: A graph which is not a Planar graph.

Theorem 5:

Let m is a product of powers of prime numbers $m = p_1^{k_1} \times p_2^{k_2} \times \ldots \times p_r^{k_r}$ and n is product power of primes $n = p_1^{s_1} \times p_2^{s_2} \times \ldots \times p_r^{s_r}$ where p_i is a prime number and $l \leq r$. Then the graph $\Gamma(\mathbb{Z}_n(+)\mathbb{Z}_m)$ is not a Planar graph.

Proof:

We consider two cases to proof:

If m is product power of primes $m = p_1^{k_1} \times p_2^{k_2} \times \ldots \times p_r^{k_r}$ and n is product power of primes $n = p_1^{s_1} \times p_2^{s_2} \times \ldots \times p_r^{s_r}$ where p_i is a prime number and $l \leq r$. Then the graph $\Gamma(\mathbb{Z}_{p_1^{s_1} \times p_2^{s_2} \times \ldots \times p_r^{s_r}}(+)\mathbb{Z}_{p_1^{k_1} \times p_2^{k_2} \times \ldots \times p_r^{k_r}})$ is equal to $\{(0, h_1), (b_i, h_i) : b_i \in n, h_i \in m\}$ such that $gcd(b_i, n) \neq 1$ or $gcd(b_i, m) \neq 1$. So, it has an induced subgraph K_5 that is not a Planar graph.
4 Outcome and questions

In this article, we classify the planarity for the graph of idealization \(\Gamma(R(+)N) \), we conclude in the following theorem.

Theorem 6:
Let \(R(+)N \) be an idealization ring. Then the graph \(\Gamma(R(+)N) \) is a Planar graph if the ring \(R \) is an integral domain and the order of \(N \) is less than or equal 4 with \(\text{ann}(N) = 0 \), or the order of \(N \) is equal to 5 with \(\text{ann}(N) = 0 \) and the graph \(\Gamma(Z_n(+)Z_m) \) is a Planar when \(n = 4, m = 2 \).

One can ask the following questions:

1. **When the graph \(\Gamma(R(+)N) \) are Eulerian graph?**
2. **When the complement graph of idealization ring \(\Gamma(R(+)N) \) are Planar graph?**
3. **What is the matching number of the graph \(\Gamma(R(+)N) \)?**

Possible engineering applications of this study can be found in problems of [8] and [9].

References:

[1] M. Allabadi M, Futher results on the diameter of zero-divisor graphs of some special idealizations, *International Journal of Algebra*, Vol. 12 (2010), pp. 609-614.

[2] M. Allabadi, On the Diameter of Zero-Divisor Graphs of Idealizations with Respect to Integral Domain, *Jordan Journal of Mathematics and Statistics*, Vol. 3 (2010), pp. 127-131.

[3] D.D. Anderson, M. Naseer, Beck’s coloring of a commutative ring, *J. Algebra* Vol.159 (1993), pp. 500-514.

[4] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative, *J. Algebra*, Vol.217 (1999), pp. 434-447.

[5] M. Axtell, J. Stickel, The zero-divisor graph of a commutative rings, *Journal of Pure and Applied Algebra*, Vol.204 (2006), pp. 235-243.

[6] I. Beck, Coloring of a commutative ring, *J. Algebra*, Vol. 116 (1988), pp. 208-226.

[7] B. Jackson, Longest cycles in 3-connected cubic, *J. Combin. Theory Ser B*, Vol. 41 (1986), pp. 17-26.

[8] N. Boonsim, Racing Bib Number Localization on Complex Backgrounds, *WSEAS Transactions on Systems and Control*, Vol.13 (2018), pp. 226-231.

[9] T. Ashkan Tashk, H. Jurgen, Esmaeil Nadimi, Automatic Segmentation of Colorectal Polyps based on a Novel and Innovative Convolutional Neural Network Approach, *WSEAS Transactions on Systems and Control*, Vol.14 (2019), pp. 384-391.