Анализ качества внутренней среды застройки г. Владивосток.
Часть 2: Исследование санитарно-микробиологического состояния воздуха квартир

В.А. Дрозд1,2, А.Л. Пономарева3, В.В. Чернышев2, К.С. Голохваст3
1 Центр гигиены и эпидемиологии в Приморском крае; г. Владивосток, Россия;
2 Дальневосточный федеральный университет (ДВФУ); г. Владивосток, Россия;
3 Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН); г. Владивосток, Россия

АННОТАЦИЯ
Введение. Изучен микробиологический состав воздуха 110 жилых помещений г. Владивосток, произведена оценка влияния различных факторов на санитарно-микробиологическое состояние жилых помещений. Исследование направлено на получение информации о реальных санитарно-гигиенических условиях эксплуатируемой жилой площади и выявление закономерностей изменения показателей среды от проектных решений, параметров застройки и условий ее эксплуатации. Статистика исследования — результат натурных изысканий с лабораторной обработкой полученных проб. Актуальность научной работы заключается также в возможности дальнейшего факторного анализа и верификации санитарных норм и правил с практикой реального проектирования и эксплуатации жилой застройки.

Материалы и методы. Проведены обследования на основе отбора проб воздуха с последующей оценкой содержания бактерий в воздухе многоквартирных домов разного типа, построенных в разное время из различных материалов.

Результаты. Представлены аналитические данные о содержании трех основных групп бактерий в воздухе жилых помещений, расположенных на территории г. Владивосток. На основании накопленных данных проведен сравнительный анализ с целью установления корреляции между количеством микроорганизмов в воздухе и районом города, типом строительного материала дома, плотностью заселения квартир, наличием домашних животных.

Выводы. Получены данные о влиянии плотности заселения квартир на санитарно-микробиологическую обстановку. Проведена оценка влияния на плотность микробиологической обсемененности таких факторов, как: наличие домашних животных, тип строительных материалов, из которых возводятся здания, а также территориальное расположение обследованных квартир.

КЛЮЧЕВЫЕ СЛОВА: экология внутренней среды, бактерии, микробиология, санитария, жилая застройка, жилые помещения, аэропланктон

ДЛЯ ЦИТИРОВАНИЯ: Дрозд В.А., Пономарева А.Л., Чернышев В.В., Голохваст К.С. Анализ качества внутренней среды застройки г. Владивосток. Часть 2: Исследование санитарно-микробиологического состояния воздуха квартир // Строительство: наука и образование. 2020. Т. 10. Вып. 4. Ст. 4. URL: http://nso-journal.ru. DOI: 10.22227/2305-5502.2020.4.4

An insight into the quality of internal built environment in Vladivostok.
Part 2: Studying the sanitary and microbiological condition of indoor air

Vladimir A. Drozd1,2, Anna L. Ponomareva3, Valery V. Chernyshev2, Kirill S. Golokhvast3
1 Center for Hygiene and Epidemiology in the Primorsky Territory; Vladivostok, Russian Federation;
2 Far Eastern Federal University (FEFU); Vladivostok, Russian Federation;
3 V.I. Il’ichev Pacific Oceanological Institute of the Far Eastern Branch Russian Academy of Sciences; Vladivostok, Russian Federation

ABSTRACT
Introduction. This work is devoted to study the microbiological composition of the air 110 dwellings in the city of Vladivostok and the assessment of the impact of various factors on the microbiological condition of premises. The study is aimed at obtaining information about the real sanitary and hygienic conditions of the exploited residential area and identifying patterns of changes in environmental indicators from design decisions, building parameters and conditions of its operation. Research statistics are the result of field research with laboratory processing of the samples obtained. The relevance of scientific work also lies in the possibility of further factor analysis and verification of sanitary norms and rules with the practice of real design and operation of residential buildings.

Materials and methods. Surveys were conducted on the basis of air sampling with subsequent assessment of the content of bacteria in the air of apartment buildings of different types, built at different times from different materials.
ВВЕДЕНИЕ

Микроорганизмы окружают нас повсюду, вне зависимости от того, находимся мы на открытом пространстве или внутри помещений.

Внутренняя среда домов и квартир — это пространство с особым микроклиматом, химическим и микробиологическим составом. На микробиологический состав замкнутых помещений влияет множество факторов: температура и влажность воздуха, частота проветривания, уровень инсоляции и количество проживающих в них людей [1].

Совокупность всех взвешенных в воздухе живых организмов называется аэропланктоном. Этот биом включает в себя различные виды бактерий, грибов, мхов, водорослей, споры, пыльцы, мелкие се- мены, мелких членистоногих [2, 3].

Главное место скопления бактерий — твердые частицы, собирающиеся на поверхности микроорганизмы. Основными видами, населяющими пыль, можно считать пlesenевые и дрожжевые бактерии, а также бактерии, населяющие кожные покровы человека. Ключевые виды пlesenевых грибов, содержащихся в пыли, относятся к родам Aspergillus, Penicillium Candida, Cryptococcus, Debaryomyces, Rhodotorula, Sporobolomyces, Trichosporon [4, 5]. Проводимые ранее исследования выявили, что на содержание пыли могут влиять такие факторы, как приготовление пищи, пичное отопление, вентиляция, наличие ковров, объем жилого пространства и даже прыжки на матрацах [6–8]. Зачастую высокие концентрации мелкодисперсных частиц в зданиях связаны с близостью к оживленным дорогам [9, 10].

Из-за повсеместного распространения пылевых частиц наблюдается обсеменение твердых поверхностей и мягкой мебели [11]. Кроме мягкой мебели, благоприятной средой для аккумулирования пылевых частиц, микроорганизмов, аллергенов и химических веществ служат ковры и ковровые покрытия [12, 13].

В пыли содержится большое количество веществ, вызывающих аллергические реакции и астму. Источниками поступления аллергенов могут быть домашние животные, насекомые и микроорганизмы [14–18]. Особого внимания заслуживают широко распространенные в воздухе пlesenевые грибы, в связи с тем, что, кроме аллергических реакций, эти микроорганизмы способны вызывать пlesenевые мицые, влиять на здоровье людей и животных [19].

Исходя из всего вышесказанного, можно сделать вывод, что на санитарно-микробиологическую обстановку в жилых помещениях влияют разнообразные факторы. Ситуация осложняется тем, что существующие нормативы приняты давно и не учитывают особенностей климата в разных регионах страны. В этой работе пойдет речь о микробиологической обсемененности 100 жилых помещений, расположенных в пяти административных районах г. Владивосток. Цель исследования — оценка санитарно-микробиологической обстановки в жилых помещениях и выявление влияющих на нее факторов.

МАТЕРИАЛЫ И МЕТОДЫ

В качестве объекта исследования в 2018–2019 гг. были взяты 100 жилых помещений, расположенных в пяти административных районах города Владивосток: Фрунзенском, в том числе кампус Дальневосточного федерального университета (ДВФУ); Ленинском; Первомайском; Первовеченском и Советском. Расположение обследованных квартир на территории г. Владивосток представлено на карте (рис. 1). Выбранные для изучения районы имеют различные факторы неблагоприятных воздействий на их воздушную среду со стороны транспортной системы, схем удаления отходов из жилой застройки для утилизации в г. Владивосток или за его пределами [20].

Для оценки микробиологической обсеменности квартир выделены факторы, потенциально способные оказывать влияние на санитарно-микробиологическую обстановку в квартирах. Накопленные материалы в сокращенном виде представлены в табл. 1.

Results. The section presents analytical data on the content of three main groups of bacteria in the air of residential premises located on the territory of Vladivostok. Based on the accumulated data, a comparative analysis was carried out to establish a correlation between the number of microorganisms in the air and the city area, the type of building material of the house, the density of apartment occupancy, and the presence of pets.

Conclusions. Data on the influence of apartment occupancy density on the sanitary and microbiological situation were obtained. The assessment of the influence on the density of microbiological contamination of such factors as: the presence of pets, the type of building materials from which buildings are built, as well as the territorial location of the surveyed apartments.

KEYWORDS: ecology of the internal environment, bacteria, microbiology, sanitation, residential buildings, living quarters, airplankton

FOR CITATION: Drozd V.A., Ponomareva A.L., Chernyshev V.V., Golokhvast K.S. An insight into the quality of internal environment in Vladivostok. Part 2: Studying the sanitary and microbiological condition of indoor air. Stroitel'stvо: nauka i obrazovanie [Construction: Science and Education], 2020; 10(4). URL: http://nso-journal.ru. DOI: 10.22227/2305-5502.2020.4.4 (rus.).
С целью определения влияния плотности населения на обсемененность воздушной среды помещений произведены расчеты количества КОЕ/м3 бактерий в воздушном пространстве на одного человека (рис. 3). Для этого были получены данные об объеме обследованных квартир и полученные значения разделены на количество проживающих людей. Далее результаты измерения концентрации общего микробного числа (ОМЧ) разделены на свободный объем воздуха:

\[C_{\text{возд}} / (V_{\text{кв}} / N_{\text{жил}}) \text{, КОЕ/м}^3, \]
(1)

где \(C_{\text{возд}} \) — результаты измерения ОМЧ, м3; \(V_{\text{кв}} \) — объем жилого помещения, м3; \(N_{\text{жил}} \) — количество жильцов.

Пробы воздуха отбирали при помощи специализированного пробоотборника ПУ-1Б (ЗАО «Химко», Москва) с последующим высевом на плотные питательные селективные среды (Сабуро, Эндо, МПА). Инкубирование посевов проводили при температуре 37 °C в течение 24 часов в термостате TCO-1/80.

Определили ОМЧ, включающие количество мезофильных аэробных и факультативно-анаэробных микроорганизмов (КМАФАнМ) на среде МПА, численность бактерий группы кишечной палочки (БГКП) на среде Эндо, использующихся в качестве маркера фекальной контаминации [21], дрожжеподобные и плесневые грибки на среде Сабуро как фактор возможного развития микозов у жильцов.

Порядок проведения исследования: приготовленные микробиологические среды разливались по чашкам Петри в стерильном боксе, с последующим хранением в холодильнике. По мере необходимости готовые чашки герметично упаковывались и доставлялись к объекту исследования. На каждую квартиру использовалось 12 чашек, из расчета 3 чашки одной среды на квартиру. Перед прокачкой воздуха на питательные среды проводилась стерилизация решетки импактора аспириатора ПУ-1Б при помощи обработки 96 %-ным этиловым спиртом с последующим прожиганием. После проведения стерилизации проводилась прокачка воздуха в трех
разных точках в квартире. Обсемененные чашки снова герметично упаковывались и передавались в лабораторию, где помещались в терmostat для инкубирования. Через 24 часа осуществлялся подсчет выросших на средах колоний и их определение.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

В настоящее время не существует официально установленных нормативов содержания бактерий в воздухе жилых помещений. В исследовании в качестве норматива использовались значения, предложенные в работах И.В. Лериной и А.И. Педенко, представленные в табл. 2.

Время года	КОЕ/м³	Чистый	Грязный
Лето	До 1500	До 2500	
Зима	До 4500	До 7000	

Полученные результаты были объединены в единый массив данных и для удобства дальнейшей работы представлены в виде графика (рис. 2). Если сравнить сведения с указанными ранее нормативами, то можно сделать вывод, что все обследованные помещения соответствуют санитарно-экологическим нормам. Оценка содержания бактерий в административных районах города не выявила каких-либо серьезных различий в санитарно-микробиологической обстановке жилых помещений. Наибольшая концентрация ОМЧ и плесневых грибов была зафиксирована в Первомайском районе, БГКП — в Ленинском. Более развернутая оценка причин сложившейся санитарно-микробиологической обстановки будет представлена далее.

При сравнении данных, отображенных на графике (рис. 3), выявлена корреляция, рассчитанная по формуле (1), согласно которой установлена зависимость между свободным объемом помещения и количеством микроорганизмов в воздухе. Чем меньше свободного пространства в жилище, тем большее количество микроорганизмов присутствует в воздухе. На графике видно, что гистограмма концентрации ОМЧ в воздухе во многом совпадает с графиком зависимости концентрации бактерий от объема свободного пространства, имеющеся у проживающего в квартирах населения. Чем меньше пространства, тем больше бактериальная обсемененность помещения. Таким образом, можно сделать вывод, что одной из причин относительно большого количества бактерий в воздухе является высокая плотность поквартирного заселения. Основная причина сложившейся ситуации — жилищный фонд города, преимущественно состоящий из панельных домов с квартирами, имеющими небольшую площадь. Кроме того, зачастую люди вынуждены покупать арендовать квартиры с небольшой площадью в целях экономии.

Другим важным индикатором санитарно-экологоческого состояния жилья служат микроорганизмы, относящиеся к бактериальной группе кишечной палочки. В условиях городской застройки можно предположить два основных источника их появления в воздухе квартир: наличие домашних животных и несовершенство конструкции канализационных систем.

Табл. 2. Нормативы содержания бактерий в воздухе жилых помещений

1 Лерина И.В., Педенко А.И. Лабораторные работы по микробиологии: учебное пособие для вузов по спец. 1011 «Технология и орг. обществ. питания» и 1733 «Товароведение и орг. торговли прод. товарами». 2-е изд., перераб. М.: Экономика, 1986. 127 с.

Рис. 2. График содержания бактерий в воздухе обследованных квартир в административных районах города:
Сравнение количества БГКП в квартирах с животными и без привело к однозначным выводам (рис. 4). В трех квартирах с животными обнаруженное повышенное содержание бактерий, но средние значения совпадают. Исходя из этого возникает вывод, что наличие домашних животных не оказывает существенного влияния на количество БГКП в воздухе помещений. Третий немаловажный фактор, оказывающий влияние на содержание БГКП в воздухе, — низкая эффективность систем вентиляции. Отсутствие качественной вытяжной вентиляции способствует распространению бактерий по территории квартиры.

Завершающим индикатором санитарно-микробиологического благополучия среды является содержание плесневых грибов в воздухе. Накопленные данные были поделены для сравнительной оценки на три группы по типам строительных материалов, из которых построены дома. Результаты представлены на рис. 5. По результатам сравнительного анализа можно сделать вывод, что наиболее благоприятные условия в монолитных домах. Со-
дение плесневых грибов в воздухе панельных и кирпичных домов находится примерно в одном диапазоне. Объяснить полученные результаты можно возрастом зданий. Монолитные дома строятся во Владивостоке относительно недавно и возраст обследованных строений составил не более 10 лет, в то время как самое старое кирпичное здание построено в 1920 г. Увеличению количества плесневых бактерий с возрастом зданий способствуют два фактора: ухудшение гидроизоляции и процесс карбонизации, который понижает pH строительных материалов, делая их более благоприятной средой для плесневых грибов [22].

ЗАКЛЮЧЕНИЕ И ОБСУЖДЕНИЕ

В результате проведенных исследований выявлено, что внутренняя среда исследованных жилых помещений в административных районах Владивостока соответствует имеющимся рекомендуемым значениям. Стоит отметить, что установленные нормативы больше никак не корректировались и ни разу не были внесены в перечень официально установленных гигиенических нормативов. Необходима разработка обособленных нормативов для разных территорий с учетом климатических и географических особенностей регионов России. Учет в нормировании биоклиматической комфортности, включающей вопросы контроля загрязнений воздушной среды, в том числе биологическими микроорганизмами, позволит проектировать жилую застройку с новым уровнем качества [23]. Развитие систем учета и мониторинга биоклиматической комфортности позволит не только на качество прогнозов концентрации веществ и бактерий, а даёт возможность интегрировать эти данные в массивы информационных баз и использовать для различного проектирования и реконструкции жилой застройки [24].

Основными факторами, влияющими на концентрацию бактерий в воздухе жилых помещений, являются плотность заселения кварти и возраст зданий, что следует из работ других авторов [25]. Влияние иных факторов, таких как наличие домашних животных в квартирах, подтверждено не было.

Подтверждение гипотезы о взаимосвязи между качеством вентиляционных систем и содержанием БГКП в воздухе жилых помещений требует дополнительных исследований.

ЛИТЕРАТУРА

1. Лаушикин М.А., Пученко О.Е. Корреляция между микробным числом, освещенностью помещений и влажностью воздуха // Профилактическая медицина-2019: сборник научных трудов Всероссийской научно-практической конференции с международным участием. 2019. С. 12–16.
2. Wiśniewska K., Lewandowska A.U., Śliwińska-Wilczewska S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment — Review study // Environment International. 2019. Vol. 131. Р. 104964. DOI: 10.1016/j.envint.2019.104964.
3. Фомина Г.Т., Сергеева В.В. Цианобактериально-водорослевые ценозы архитектурных сооружений г. Краснодара и его окрестностей // Стендовый сборник материалов Всероссийской научно-практической конференции с международным участием "Медицина-2019": сборник научных трудов. 2019. Т. 98. №. 4. С. 380–387. DOI: 10.3390/atmos9040133
4. Antrhopova A.B., Ahtapina I.G., Glushakova A.M., Kachalina A.V., Bilanenko E.N. Mikrobiota xostelov g. Moskvy // Uspeshi meditsinskoi mikologii. 2018. T. 19. C. 4–6.
5. Kwan S.E., Shaughnessy R., Haverinen-Shaughnessy U., Kwan T.A., Peccia J. The impact of ventilation rate on the fungal and bacterial ecology of home indoor air // Building and Environment. 2020. Vol. 177. P. 109203. DOI: 10.1016/j.buildenv.2020.109203.
6. Martins V., Faria T., Diapouli E., Manoussak M.J., Eleftheriadis K., Viana M. et al. Relationship between indoor and outdoor size-fractionated particulate matter in urban microenvironments: levels, chemical composition and sources // Environmental Research. 2020. Vol. 183. P. 109203. DOI: 10.1016/j.envres.2020.109203.
7. Cho E.-M., Hong H.J., Park S.H., Yoon D.K., Goung S.J.N., Lee C.M. Distribution and influencing factors of airborne bacteria in public facilities used by pollution-sensitive population: A meta-analysis // International Journal of Environmental Research and Public Health. 2019. Vol. 16. Issue 9. P. 1483. DOI: 10.3390/ijerph16091483.
8. Choi M.A., Ahn G.R., Kim S.H. Identification and characterization of fungi contaminated in the built-in furniture of an apartment home // My-
Fungal and bacterial growth in floor dust at elevated relative humidity levels // Indoor Air. 2017. Vol. 27. Issue 2. Pp. 354–363. DOI: 10.1111/ina.12133

14. Kim S.-Y., Hjeong W., Hwang E.-S., Kim J.-H., Jung J.-S., Lee J.-w. et al. Airborne bacteria concentration and species identification in residential living spaces // Korean Journal of Environmental Health Sciences. 2016. Vol. 42. Issue 6. Pp. 438–449. DOI: 10.5668/JEHS.2016.42.6.438

15. Хаздетева Е.В., Глухо Н.И., Лисовская С.А., Паришков В.Р., Хайдарова Г.Г. Микогенная контаминация жилых помещений как фактор биологического риска // Казанский медицинский журнал. 2020. Т. 101. № 4. С. 513–518. DOI: 10.17816/KMJ2020-513

16. Schöld K.J.M., Seppänen R.T.K., Hielm-Björkman A.K., Sajjonmaa-Koulumies L.E., Belova S. Prevalence of house dust mites in the homes of atopic dogs in Finland // Veterinary Dermatology. 2017. Vol. 28. Issue 2. Pp. 225–254. DOI: 10.1111/ved.12421

17. Bope A., Weir M.H., Pruden A., Morowitz M., Mitchell J., Dannemiller K.C. Translating research to policy at the NCSE 2017 symposium “Microbiology of the Built Environment: Implications for Health and Design” // Microbiome. 2018. Vol. 6. Issue 1. DOI: 10.1186/s40168-018-0552-y

18. Tran V.V., Park D., Lee Y.-C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality // International Journal of Environmental Research and Public Health. 2020. Vol. 17. Issue 8. P. 2927. DOI: 10.3390/ijerph17082927

19. Enyiukwu D.N., Ononuju C.C., Maranzu J.O. Mycotoxins in foods and indoor air: their attendant diseases and modes of injury on biological and human systems // Greener Journal of Epidemiology and Public Health. 2018. Vol. 6. Issue 1. Pp. 034–051. DOI: 10.15580/GJEPH.2018.1.1018818004

20. Dunichkin I.V., De Souza C.B. An integrated solution to urban and sea waste management systems: Using axiomatic design to discuss urban development risks // IOP Conference Series: Earth and Environmental Science. 2020. Vol. 459. P. 062084. DOI: 10.1088/1755-1315/459/6/062084

21. Христофорова Н.Н., Бойченко Т.В., Емельянов А.А., Попова А.В. Микробиологический контроль состояния вод бухты Новик (залив Петра Великого, Японское море) // Известия ТИНРО (Тихоокеанского научно-исследовательского рыбоводно-рыболовного центра). 2017. Т. 189. С. 121–130.

22. Урюшева Н.Н. Взаимодействие микроорганизмов с каменными строительными материалами // Вестник Южно-Уральского государственного университета. Серия: строительство и архитектура. 2017. Т. 17. № 3. С. 65–71. DOI: 10.14529/build170310

23. Dunichkin I.V., Poddaeva O.I., Golokhvast K.S. Studies and evaluation of bioclimatic comfort of residential areas for improving the quality of environment // Building Simulation. 2019. Vol. 12. Issue 2. Pp. 177–182. DOI: 10.1007/s12273-018-0495-z

24. Dunichkin I.V., Ilina I.N. Climate adaptation of “Smart City” by assessing bioclimatic comfort for UBEM // Sustainability in energy and buildings. 2020. Pp. 519–529. DOI: 10.1007/978-981-32-9868-2_44

25. Азаров В.Н., Блинцова Л.А., Гасайниева М.Г., Магомедкамилов Т.Ш., Лихоносов А.В. и др. Микробное исследование мелкодисперсной пыли в кондиционерах офисных помещений // Инженерный вестник Дона. 2019. № 1 (52). С. 151.
INTRODUCTION

Microorganisms are everywhere around us, whether we are indoors or outdoors.

The indoor environment of houses and apartments has a special microclimate, featuring varying chemical and microbial compositions. The microbial composition of indoor environments is influenced by a variety of factors, including temperature, air humidity, airing frequency, insolation, and the number of residents [1].

The totality of airborne living organisms is called air plankton. This biome encompasses various types of bacteria, fungi, mosses, algae, spores, pollen, small grains, and tiny arthropods [2, 3].

Bacteria concentrate on solid particles that accumulate microorganisms on their surface. The main species, that concentrate in the dust, include molds, yeast bacteria, as well as bacteria that concentrate on human skin. Key species of dust molds include *Aspergillus*, *Penicillium Candida*, *Cryptococcus*, *Debaryomyces*, *Rhodotorula*, *Sporobolomyces*, *Trichosporon* [4, 5].

Earlier studies have identified that the composition of dust is influenced by cooking, stove heating, ventilation, carpeting, dimensions of living accommodations, and even mattress jumping [6–8]. Frequently, high indoor concentrations of fine particles are caused by the proximity of busy highways [9, 10].

The omnipresence of dust particles causes bacterial contamination of solid surfaces and upholstered furniture [11]. Apart from upholstered furniture, carpets and carpeting serve as the best medium for dust particles, microorganisms, allergens, and chemicals [12, 13].

Dust contains numerous substances that trigger allergic reactions and asthma. Pets, insects and microorganisms can be among sources of allergens [14–18]. Molds, widely spread in the air, deserve particular attention, due to their ability to trigger mycosis besides allergic reactions, and they also influence the health of humans and pets [19].

This suggests that indoor sanitary and microbial conditions are influenced by versatile factors. The problem is accentuated by the fact the effective standards were adopted a while ago, and they have no regard for the climatic conditions of different Russian regions. In this work, we will study the bacterial contamination of one hundred living accommodations in five administrative districts of Vladivostok. The purpose of this study is to assess the sanitary and microbial environment in the living accommodations and to identify factors of influence.

MATERIALS AND METHODS

This research, undertaken in 2018 and 2019, encompassed one hundred living accommodations, located in five administrative districts of Vladivostok, including the campus of the Far-Eastern Federal University (FEFU), Leninsky, Pervomaisky, Pervorechensky, and Sovietsky districts. The apartments are marked on the map (see Fig. 1). These districts are exposed to various factors of adverse impact produced on the ambient air by transportation networks, routes of waste removal from residential areas and further waste recovery in or outside of Vladivostok [20].

The co-authors have identified the factors that can produce impact on indoor sanitary and microbial conditions in order to assess the microbial contamination of apartments. The material, thus consolidated, is concisely presented in Table 1.

![Fig. 1. Locations of apartments in the administrative districts of Vladivostok](image-url)
The number of airborne bacteria per resident was analyzed in colony-forming units (CFU) per cubic meter (CFU/m³) to identify the influence of population density on bacterial contamination (Fig. 3). Towards this end, we obtained data on the volume of apartments involved in our research and the values that we obtained were divided by the number of residents. Further, the concentration of the total bacterial count (TBC) was divided by the air volume:

$$\frac{C_{\text{TBC}}}{(V_{\text{apartment}}/N_{\text{residents}})} \text{, in CFU/m}^3$$ (1)

where C_{TBC} is the concentration of the total bacterial count in m³; $V_{\text{apartment}}$ is the volume of the living accommodation in m³; $N_{\text{residents}}$ is the number of residents.

Air sampling was performed by PU-1B air sampler made by ZAO HIMKO, Moscow; samples were further plated into growth media (Saburo, Ando, MPA). The plating was incubated at the temperature of 37 degrees Celsius for 24 hours in TSO-1/80 germination chamber. We identified the total bacterial count, including the mesophilic aerophilous count and the optionally anaerobic count in the MPA medium, the number of coliforms in the Ando medium. Coliforms were used as markers of fecal contamination [21]; yeast-like fungi and molds in the Saburo medium were treated as triggers of mycosis in residents.

The research project had the following implementation procedure: prepared microbial media were plated in germfree boxes and stored in a refrigerator. Later the plates, thus prepared, were hermetically packed and delivered to the place of research. Each apartment needed 12 plates, 3 plates containing the same medium per apartment. Before air pumping onto the nutrient medium, air sampling grids were treated with 96 % ethyl alcohol and sterilized with heat. Following the sterilization procedure, air pumping was performed in three different areas inside the apartments. Contaminated Petri dishes were hermetically sealed and delivered to the lab, where they were placed into thermostats for incubation purposes. 24 hours later bacterial colonies were identified and analyzed.

RESEARCH RESULTS

No official standards regulating the indoor airborne bacteria count are available for living accommodations. The researchers referred to the values proposed in the works written by I.V. Lerina and A.I. Pedenko and used them as benchmarks. These values are provided in Table 2.

Table 2. The benchmark airborne bacteria count for living accommodations²

The season	Clean	Dirty
Summer	Below 1,500	Below 2,500
Winter	Below 4,500	Below 7,000

The findings were consolidated into a single data set and presented as a graph (Fig. 2). If we compare the findings with the benchmark values, we can make a conclusion that each of the living accommodations, examined in the course of our research, complies with effective sanitary and ecological standards. The assessment of the bacteria count in the administrative districts of the city has not identified any substantial differences between indoor sanitary and microbial conditions of different living accommodations. The total microbial count was maximal in Pervorechensky district, the count of coliforms was highest in Leninsky district.

A more detailed assessment of the sanitary and microbial background and its drivers will be provided further in the article.

² Lerina I.V., Pedenko A.I. Laboratory sessions in microbiology: a study guide for university students majoring in Technology and Public Catering, Speciality 1011, Commodity Science and Food Retail, Speciality 1733. Moscow, Ekonomika Publ., 1986; 127.
The smaller the space, the higher the bacterial contamination of living accommodations. Therefore, it follows that high accommodation density is one of the reasons for a relatively high indoor airborne bacterial count. The core of the problem is the local housing stock that is predominantly composed of prefab panel apartment houses, that have small apartments. Besides, residents often have to buy/lease small apartments to save money.

The coliform count is another indicator of the sanitary and ecological condition of a living accommodation. Coliforms are identified in the air of urban apartments due to: (1) the presence of pets, and (2) faulty sewerage systems.

A comparison of the total microbial count in apartments with and without pets has generated a firm conclusion (Fig. 4). Three apartments with pets demonstrate a higher bacterial count, although average values coincide. Hence, we can make a conclusion that the presence of pets does not produce any substantial influence on the indoor airborne coliform count. The third significant factor that influences the indoor airborne microbial count is low ventilation efficiency. The unavailability of a high-quality extraction ventilation system boosts dissemination of bacteria in apartments.

Indoor mold count is the final indicator of sanitary and microbial safety of an indoor environment. The data, collected by the researchers, were broken down into three groups to perform a comparative assessment of buildings made of different construction materials. The results are provided in Fig. 5. The comparative analysis
has proven the best sanitary conditions in cast-in-place concrete buildings. The indoor mold count inside prefab panel and brick buildings is approximately the same. The findings can be explained by the age of buildings. Cast-in-place houses have been built in Vladivostok for a short period of time, and the age of buildings examined in the course of the research does not exceed ten years, whereas the oldest brick building was constructed in 1920. The rise in the mold count is explained by the two factors: deterioration of waterproofing and the process of carbonization, that reduces the pH value of construction materials, thus, converting them into a mold-friendly medium [22].

CONCLUSION AND DISCUSSION

The research has discovered that the indoor environment of the Vladivostok apartments, examined by the co-authors, complies with the recommended values. It is noteworthy that effective standards have never been revised, neither have they been entered into the list of official hygienic norms. There arises a need to develop individual standards for each Russian region with regard for its climatic and geographical features. The introduction of the notion of bioclimatic comfort into effective regulations with regard for the control over air contamination with pathogenic microorganisms will improve indoor environment quality in residences [23]. Development of a monitoring system focused on bioclimatic comfort will influence not only the quality of forecasts in terms of concentrations of substances and bacteria, but also their integrability into databases and usability in design and reconstruction of built-up residential areas [24].

Other researchers have proven that the main factors boosting the indoor airborne bacteria count in living accommodations include accommodation density and the age of buildings [25]. There is no evidence of influence produced by other factors, such as the presence of pets in apartments. The confirmation of the hypothesis about the correlation between the quality of ventilation systems and the indoor airborne coliform count needs supplementary research.

REFERENCES

1. Laushkin M.A., Punchenko O.E. Correlation between microbial number, room illumination and air humidity. Preventive medicine-2019: collection of scientific papers of the all-Russian scientific and practical conference with international participation. 2019; 12-16. (rus.).

2. Wiśniewska K., Lewandowska A.U., Śliwińska-Wileczewska S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment — Review study. Environment International. 2019; 131:104964. DOI: 10.1016/j.envint.2019.104964
An insight into the quality of internal built environment in Vladivostok. Part 2: Studying the sanitary and microbiological condition of indoor air

C. 48–60

3. Fominykh T.V., Sergeeva V.V. Cyanobacterial-algae cenosis of architectural facilities in Krasnodar and its environments. Student. 2019; 15(1-59):24-29. (rus.).

4. Antropova A.B., Akhapkina I.G., Glushakova A.M., Kachalkin A.V., Bilanenko E.N. Mycobiota hostels of Moscow. Advances in Medical Mycology. 2018; 19:4-6. (rus.).

5. Akhapkina I.G., Glushakova A.M., Antropova A.B., Kachalkin A.V., Bilanenko E.N., Zheltikova T.M. House dust microbiota: prospect of the assessment of allergenic and pyrogenic loads. Hygiene and Sanitation. 2019; 98(4):380-387. DOI: 10.18821/0016-9900-2019-98-4-380-387 (rus.).

6. Clements N., Keady P., Emerson J., Fierer N., Miller S. Seasonal variability of airborne particulate matter and bacterial concentrations in Colorado homes. Atmosphere. 2018; 9(4):133. DOI: 10.3390/atmos9040133

7. Yen Y.-C., Yang C.-Y., Mena K.D., Cheng Y.-T., Yuan C.-S., Chen P.-S. Jumping on the bed and associating increases of PM10, PM2.5, PM1, airborne endotoxin, bacteria, and fungi concentrations. Environmental Pollution. 2019; 245:799-809. DOI: 10.1016/j.envpol.2018.11.053

8. Kwan S.E., Shaughnessy R., Haverinen-Shaughnessy U., Kwan T.A., Peccia J. The impact of ventilation rate on the fungal and bacterial ecology of residential areas for improving the quality of environments. Building and Environment. 2020; 177:106800. DOI: 10.1016/j.buildenv.2020.106800

9. Martins V., Faria T., Diapouli E., Manoussakas M.I., Eleftheriadis K., Viana M. et al. Relationship between indoor and outdoor size-fractionated particulate matter in urban microenvironments: levels, chemical composition and sources. Environmental Research. 2020; 183:109203. DOI: 10.1016/j.envres.2020.109203

10. Cho E.-M., Hong H.J., Park S.H., Yoon D.K., Goung S.J.N., Lee C.M. Distribution and Influencing Factors of Airborne Bacteria in Public Facilities Used by Pollution-Sensitive Population: A Meta-Analysis. International Journal of Environmental Research and Public Health. 2019; 16(9):1483. DOI: 10.3390/ijerph16091483

11. Choi M.A., Ahn G.R., Kim S.H. Identification and characterization of fungi contaminated in the built-in furniture of an apartment home. Mycobiology. 2019; 47(4):430-440. DOI: 10.1080/12298093.2019.1703529

12. Haines S.R., Adams R.I., Boor B.E., Bruton T.A., Downey J., Ferro A.R. Ten questions concerning the implications of carpet on indoor chemistry and microbiology. Building and Environment. 2020; 170:106589. DOI: 10.1016/j.buildenv.2019.106589

13. Dannemiller K.C., Weschler C.J., Peccia J. Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air. 2017; 27(2):354-363. DOI: 10.1111/ina.12313

14. Kim S.-Y., Jeong W., Hwang E.-S., Kim J.-H., Jung J.-S., Lee J.-w. et al. Airborne bacteria concentration and species identification in residential living spaces. Korean Journal of Environmental Health Sciences. 2016; 42(6):438-449. DOI: 10.5668/JEH.2016.42.6.438

15. Khaldeeva E.V., Glushko N.I., Lisovskyaya S.A., Parshakov V.R., Khaidarova G.G. Indoor fungal contamination as a biological risk factor. Kazan Medical Journal. 2020; 101(4):513-518. DOI: 10.17816/KMIZ2020-513 (rus.).

16. Schildt K.J.M., Seppänen R.T.K., Hielman-Björkman A.K., Saijonnmaa-Koulumies L.E., Belova S. Prevalence of house dust mites in the homes of atopic dogs in Finland. Veterinary Dermatology. 2017; 28(2):225-e54. DOI: 10.1111/vde.12421

17. Bope A., Weir M.H., Pruden A., Morowitz M., Mitchell J., Dannemiller K.C. Translating research to policy at the NCSE 2017 symposium “Microbiology of the Built Environment: Implications for Health and Design”. Microbiome. 2018; 6(1). DOI: 10.1186/s40168-018-0552-y

18. Tran V.V., Park D., Lee Y.-C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. International Journal of Environmental Research and Public Health. 2020; 17(8):2927. DOI: 10.3390/ijerph7082927

19. Enyiukwu D.N., Ononuju C.C., Maranzu J.O. Mycotoxins in foods and indoor air: their attendant diseases and modes of injury on biological and human systems. Greener Journal of Epidemiology and Public Health. 2018; 6(1):034-051. DOI: 10.15580/GJEPH.2018.1.010818004

20. Dunichkin I.V., De Souza C.B. An integrated solution to urban and sea waste management systems: using axiomatic design to discuss urban development risks. IOP Conference Series: Earth and Environmental Science. 2020; 459(6):062084. DOI: 10.1088/1755-1315/459/6/062084

21. Khristoforova N.K., Boychenko T.V., Emelyanov A.A., Popova A.V. Microbiological control of the water condition in the Novik bay (Peter the Great bay, Japan sea). News of TINRO (Pacific Research Fisheries Center). 2017; 189:121-130. (rus.).

22. Uryasheva N.N. Interaction between microorganisms and stone building materials. Bulletin of South Ural State University. Series: Construction Engineering and Architecture. 2017; 17(3):65-69. DOI: 10.14529/build170310 (rus.).

23. Dunichkin I.V., Poddaeva O.I., Golokhavast K.S. Studies and evaluation of bioclimatic comfort of residential areas for improving the quality of environment. Building Simulation. 2019; 12(2):177-182. DOI: 10.1007/s12273-018-0495-z
24. Dunichkin I.V., Ilina I.N. Climate Adaptation of “Smart City” by Assessing Bioclimatic Comfort for UBEM. *Sustainability in Energy and Buildings*. 2020; 519-529. DOI: 10.1007/978-981-32-9868-2_44

25. Azarov V.N., Blintsova L.A., Gasaynieva A.G., Gasaynieva M.G., Magomedkamilov T.Sh., Likhonosov A.V. et al. Microbiological research of fine dust in air conditioners of office buildings. *Engineering Bulletin of Don*. 2019; 1(52):151. (rus.).

Received December 3, 2020.
Adopted in revised form on December 18, 2020.
Approved for publication on December 20, 2020.

Bionotes:

Vladimir A. Drozd — engineer; Center of Hygiene and Epidemiology in Primorsky Krai; 36 Utkinskaya st., Vladivostok, 690091, Russian Federation; postgraduate; Far Eastern Federal University (FEFU); campus 10, Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation; ID RISC: 7269-9482, Scopus: 56611585600, ORCID: 0000-0002-7355-0607; v_drozd@mail.ru;

Anna L. Ponomareva — Candidate of Biological Sciences, Senior Researcher; V.I. Il’ichev Pacific Oceanological Institute of the Far Eastern Branch Russian Academy of Sciences; 43 Baltiyskaya st., Vladivostok, 690041, Russian Federation; ponomareva.al@poi.dvo.ru;

Valery V. Chernyshev — PhD, Senior Lecturer; Far Eastern Federal University (FEFU); campus 10, Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation; chernyshev.vv@dvfu.ru;

Kirill S. Golokhvast — Doctor of Biological Sciences, Professor; Far Eastern Federal University (FEFU); campus 10, Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation; ID RISC: 571679, Scopus: 36163048100, ResearcherID: E-5051-2014, ORCID: 0000-0002-4873-2281; droopy@mail.ru.