Clinical manifestations and diagnostic approach to metastatic cancer of the condyle

Seo-Young An¹ and Jae-Kwang Jung²*

¹Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
²Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea

(Received Sep 12, 2017; Revised version received Oct 11, 2017; Accepted Oct 11, 2017)

ABSTRACT

Metastatic malignancy on the mandibular condyle is a very rare, but life-threatening condition that is frequently misdiagnosed as temporomandibular joint disorder (TMD) and other dental diseases. The researchers report on a patient who was referred with an initial diagnosis of TMD, due to symptoms resembling TMD, such as limited mouth opening with pain on the temporomandibular joint (TMJ) and mandibular deviation during mouth opening. However, the final diagnosis was malignant condylar metastasis. The researchers reviewed available literature on malignant condylar metastatic cases focusing on initially misdiagnosed cases to find additional diagnostic information. The analysis revealed that some aspects of malignant condylar metastasis were overlooked, which frequently led to misdiagnosis and incorrect treatment. Further understanding of condylar metastasis might lead to early detection of occult primary cancer, possibly preventing further metastasis.

KEY WORDS: Mandibular condyle, Neoplasm metastasis, Neoplasms

Introduction

Metastatic bone cancer in the stomatognathic system is infrequent, comprising less than 1% of all bony metastasis [1, 2]. Reports of involvement of the mandibular condyle have been extremely rare [3] since the first case report in 1947 [4]. Though clinical symptoms of condylar metastasis vary, depending on the severity of metastatic involvement and properties of the primary cancer, the common symptoms in approximately half of these cases include click, crepitation, deviation during opening, limited opening and lateral movement, tenderness to palpation, and pain in function [5], which are similar to those seen in temporomandibular disorders (TMD) [6]. Considering that radiographic changes may be minimal or absent in early stages of the disease [5] and TMD-mimicking symptoms may be the first sign of a malignant tumor [1, 7], it is sometimes difficult to differentiate clinically between TMD and metastatic involvement of the condyle. Moreover, many patients with condylar metastasis are misdiagnosed and receive improper treatment, resulting in effective treatment delay. Therefore, the exact diagnosis of condylar metastasis is challenging for many dentists.

In this article, we report on a patient with metastasis to the mandibular condyle who presented with TMD-like symptoms and bony resorption on the mandibular condyle. We reviewed the related literature, analyzing the clinical manifestations of condylar metastases to assist clinicians in differentiating them from TMD and other orofacial diseases.

Case Report

In October 2011, a 75-year old female patient was referred to the department of Oral Medicine, Kyungpook National University Dental Hospital by a local dental clinic for pain in the right temporomandibular joint (TMJ)
region with restricted mouth opening. The symptoms had begun one month prior without any traumatic event. The pain was centered in the region of the right TMJ and was accentuated with jaw opening. On clinical examination, the patient exhibited restricted mouth opening with 35 mm maximum jaw opening capacity, accompanied by pain on the right TMJ. Mild tenderness over the region around the right TMJ was observed on palpation.

The patient’s past medical history included squamous cell carcinoma of the right neck, treated by radical neck dissection in October 2008. In 2009, metastasis to the lung had been observed on a periodic follow-up exam, and radiotherapy and chemotherapy had been administered. The patient reported that there were no remarkable findings

Fig. 1. Panoramic radiograph (A) and four panoramic transcranial views (B) show ill-defined, diffuse osteolytic radiolucency on the right condylar area.

Fig. 2. Contrast-enhanced CT images (A-D) show an ill-defined bony destruction together with round mass on the right condylar area.
supporting any metastasis on positron emission tomography/computed tomography (PET/CT) taken in April 2011.

A panoramic and four panoramic transcranial views, acquired using an Orthopantomograph HOP 100D (Instrumentarium Imaging, Tuusula, Finland), showed an ill-defined bony destruction on the right condyle, suggestive of possible metastasis of the malignant tumor (Fig. 1). The patient was subsequently transferred to the department of Oral and Maxillofacial Surgery for further treatment. Contrast-enhanced CT (Lightspeed Ultra, GE Healthcare, Milwaukee, WI, USA) revealed an ill-defined enhanced mass on the right condylar head area accompanied by bony destruction (Fig. 2) and thickening of the enhanced lateral pterygoid muscle. These findings strongly supported the possibility of a metastatic lesion. Scintigraphy with Technetium-99m tagged to hydroxymethylene diphosphonate (Tc 99m HDP) was performed using Infinia (GE Healthcare, Milwaukee, Wisconsin, USA) to rule out further metastasis. Apparent focal tracer uptake was observed on the right TMJ and the left seventh rib, and the upper portion of the sacrum (Fig. 3). An 18F-fluorodeoxyglucose (FDG) PET/CT scan combined PET/CT unit (Reveal RTHiRez CTIMI, Knoxville, TN; a six slice CT scanner) showed a hypermetabolic mass on the right condylar area (Fig. 4) and intense FDG uptake on the upper lobe of the left lung and lower lobe of the right lung. Based on the past medical history and imaging information, the patient was finally diagnosed with metastasis to the right condyle, although a biopsy was not performed. Given the patient’s poor health status and advanced metastatic disease, surgical removal of the metastatic tumor was not performed. Therefore, the patient was transferred to the department of hemato-oncology for palliative radiotherapy and chemotherapy.

The patient was alive without any sign or symptom of tumor recurrence or additional metastasis at the most recent visit 14 months after the original presentation. She is being followed-up by the oncological service for one year.

Fig. 3. The whole body bone scan with Tc 99m HDP reveals an increased radiotracer uptake in the right TMJ, the left seventh rib, and the upper portion of the sacrum.

Fig. 4. Positron emission tomography CT scans reveal hypermetabolic masses on the right condyle (A) and the left lung (B).
Discussion

Metastasis to the TMJ is a very rare but life-threatening condition. When searching the PubMed database (up to August 2017) and references for other literature, we found that only 62 cases, including the current case, have been published in English. In PubMed, the search was performed repeatedly using the keywords “condyle” (or “condylar”), “metastasis” (or “metastatic”), and “malignant”. Secondary searches were performed among references cited in the articles initially found. Sixty two cases including this one were identified through this process [2-4, 6, 8-58]. Analysis of various clinical data was performed in these cases. In addition, because two cases showed involvement in both TMJs with different radiographic appearances, radiographic analysis was based on each lesion.

In our review, patient age ranged from 15 to 85 years, with an average age of 56.5 years. All cases except two had unilateral involvement, with left condylar involvement in 33 cases and right condylar involvement in 27 cases (64 lesions). Gender distribution showed that the incidence of condylar metastasis is slightly higher in females than males, with 35 female and 26 male patients (Table 1). These findings differ in age and gender distribution from TMD, the most frequent TMJ disease, characterized with a definite predilection for the young female [59].

The most common primary tumor site was breast (16 cases), followed by prostate (six cases), lung (six cases), colorectum (five cases), bronchus (three cases), kidney (two cases), liver (three cases), and others (eleven cases). Primary tumor site obviously differs between male and female. In this review, breast cancer was the most common origin for metastatic oral cancer in females, while in males, prostate cancer followed by lung cancer was most frequent. Such a gender difference is attributed to difference in incidence of primary malignancy by gender. Histologically, the most common type of primary tumor was adenocarcinoma, and there were less common primary tumors such as chordoma, cystosarcoma, melanoma, neuroblastoma, osteosarcoma and testicular classic seminoma.

Regarding clinical manifestations, 71% of cases had pain around the TMJ, 59.7% presented with swelling, 40.3% had decreased opening range from 1 mm to 35 mm, 17.7% had tenderness on palpation on TMJ, 14.5% had paresthesia on the orofacial area, 11.3% had change in occlusion, 9.7% showed limitation of lateral movement, and 8.1% reported joint sound. Other symptoms included mass formation, discomfort, and dysphagia (Table 2). Many clinical manifestations are similar to those of TMD including pain [44], joint sound during mandibular movement [22], tenderness to palpation [49], occlusal change [40], and abnormal mandibular movements, including deviation at the opening, limited opening, and lateral movement [53]. However, many patients presented with atypical symptoms different from typical TMD, such as preauricular tender swelling (59.7%) [50], and facial paresthesia (14.5%) [60]. Additionally, some patients with typical symptoms of mouth opening limitation showed extremely restricted mouth opening range of ≤ 20 mm, rare in patients with TMD (Table 3). Therefore, metastatic condylar malignancy should be considered as a more likely diagnosis for patients with unusual clinical manifestations such as swelling, paresthesia, and severe limitation of mouth opening.

Radiographic appearance of metastatic lesions was char-

| Table 1. Age and gender distribution |
Age (years)	Male (%)	Female (%)	Total (%)
10 - 19	0 (0.0)	1 (1.6)	1 (1.6)
20 - 29	0 (0.0)	1 (1.6)	1 (1.6)
30 - 39	2 (3.2)	1 (1.6)	3 (4.8)
40 - 49	4 (6.4)	7 (11.3)	11 (17.7)
50 - 59	5 (8.1)	13 (21.0)	18 (29.0)
60 - 69	8 (12.9)	9 (14.5)	16 (27.4)
70 - 79	6 (9.7)	3 (4.8)	8 (14.5)
80 - 89	1 (1.6)	0 (0.0)	1 (1.6)
Total	26 (41.9)	35 (56.5)	61 (98.4)

The gender of a 42-year-old patient was not stated.

| Table 2. Clinical manifestations in patients with metastatic condylar lesion |
Clinical features	Cases (%)
Pain	44 (71.0)
Swelling	37 (59.7)
Limitation of mouth opening	25 (40.3)
Tenderness	11 (17.7)
Paresthesia	9 (14.5)
Change of occlusion	7 (11.3)
Limitation of jaw movement	6 (9.7)
Joint noise	5 (8.1)
Others*	14 (22.6)

*Others include mass (3), deviation (2), discomfort (2), asymmetrical prognathism, dislocation, dysfunction, dysphagia, facial asymmetry, fullness, stiffness, and TMD syndrome.
characterized by destruction of the mandibular condyle such as condylar erosion and osteolysis in 34 lesions (53.1%) including our case. However, some metastatic lesions may present with an osteosclerotic, or osteoblastic appearance (4.7%), or mixed-density appearance (9.4%) of osteolytic and osteoblastic areas. In addition, subtle bony changes or normal radiographic appearance were also found in 11 lesions (17.2%), most likely representing the initial stage of the disease (Table 4) [27]. Radiographic manifestation on the initial stage is due to the fact that 30~50% of mineral content must be lost before the radiograph can reveal a lytic lesion, implying that initial radiographs may appear normal even if some resorption had already occurred [61]. As described above, the radiographic findings may be nonspecific and varied despite the predominant osteolytic appearance.

Misdiagnoses were initially made in 16 (25.8%) of 62 patients as TMD and other diseases at a local dental clinic, as in the present case. Lack of specific radiographic and clinical findings lead to misdiagnosis and unnecessary treatment such as tooth extraction [14], pharmacotherapy [18], and oral appliance therapy [24, 31, 45]. Our review revealed that five of 11 lesions (45.5%) with normal radiographic appearance had been initially misdiagnosed (Table 4) and, subsequently, maltreated. Among various radiographic findings, misdiagnosis was most often made in lesions with normal radiographic appearance. This implied that dentists were likely to overlook the fact that condylar metastasis at an initial stage might appear normal on routine radiography. Consequently, various imaging procedures including CT, MRI, and bone scan should be considered for patients presenting with unusual clinical symptoms, even if their routine radiographs display normal appearance or subtle TMJ changes.

In our review of the applied treatment modalities, radiotherapy (58.1%) was most common, followed by surgery (40.3%), chemotherapy (37.1%), palliative or hormone therapy (9.7%) and no treatment (1.6%) (Table 5). The selection of the treatment modality depends on the patient’s general condition and type of tumor. For patients with a solitary metastatic lesion and the primary disease, surgical treatment is indicated to enable patients to speak and eat normally. While 25 patients could undergo more active surgical procedures, seven patients could take only palliative treatments and even no treatment, probably due to poor general condition and widespread metastasis. Therefore, early detection of cancer may affect choice of treatment modalities and furthermore, provide better quality of life.

Prognosis of condylar metastasis is usually poor [21, 27, 49, 62]. Most patients died within one year after diagnosis of metastasis of serious complications resulting from disease deterioration [62]. Medium life expectancy is approximately five months, with a survival time range from two weeks to four years [63]. Loss of critical time for treatment due to misdiagnosis and subsequent incorrect treatment results in delay of proper treatment and worsening of patients’ remaining quality and quantity of life. Therefore, the accuracy and promptness in diagnosis and treatment are of upmost importance for substantial improvement in the disease prognosis.

The medical history of malignancy preceded the onset of TMD-like symptoms in more than half of the cases. However, 27 cases (43.5%) presented with TMD-like symptoms within 12 months of the onset of malignancy, indicating a subtle bony change or normal radiographic appearance.}

Table 3. Mouth opening range in patients with opening limitation

Mouth opening range	Cases (%)
≤ 10 mm	4 (6.5)
10 mm<, ≤ 20 mm	6 (9.7)
20 mm<, ≤ 30 mm	4 (6.5)
> 30 mm	1 (1.6)

Mean range of mouth opening in 15 patients was 17.03 mm (1 - 35 mm).

Table 4. Rate of initial misdiagnosis according to radiographic manifestation

Radiographic manifestation	Misdiagnosis	Total	
	Yes (%)	No (%)	
Osteolytic (pathologic fracture; 7)	7 (10.9)	27 (42.2)	34 (53.1)
Normal	5 (7.8)	6 (9.4)	11 (17.2)
Mixed (pathologic fracture; 7)	1 (1.6)	5 (7.8)	6 (9.4)
Sclerotic	2 (3.1)	1 (1.6)	3 (4.7)
Non-stated	2 (3.1)	8 (12.5)	10 (15.6)
Total	17 (26.6)	47 (73.4)	64 (100)

Table 5. Treatment of metastatic lesion

Treatment	Cases (%)
Radiotherapy	36 (58.1)
Surgery	25 (40.3)
Chemotherapy	23 (37.1)
Palliative or hormone treatment	8 (12.9)
No treatment	1 (1.6)
Not-stated	3 (4.8)
symptoms as the first indication of primary and metastatic malignancy. This percentage is higher than in reports of one-third to one-fifth of patients in previous reviews [64-66]. Such a proportion indicates that thorough examination is necessary to detect the presence of undisclosed cancers even in patients without any cancer history and that the dentist is in a position to notice unusual symptoms implying the presence of primary malignant lesions. This places considerable responsibility upon dentists. Twenty-seven patients presented with clinical symptoms as the first indication of malignancy and 7 patients were unfortunately misdiagnosed as a problem of dental origin, TMD, or osteomyelitis and subsequently treated inadequately, including physiotherapy [9, 12], related pharmacotherapy [12, 23, 50], and oral appliance therapy [9, 24]. When compared to the misdiagnosis rate in cases where the clinician was aware of the history of cancer, it was interesting to note that this important information made only a slight difference. This indicates that previous cancer history was not considered in the diagnosis of malignant condylar metastasis by many clinicians. Therefore, clinicians should pay more attention to the previous cancer history and consider that TMD-like symptoms could be caused by malignant condylar metastasis instead of TMD. In conclusion, inaccurate diagnosis and treatment of metastatic condylar lesions may cause not only inadequate treatment results but also a malpractice suit against the clinician. Tremendous care should be taken to obtain detailed medical and dental histories and perform thorough physical and radiographic exams, especially in patients with atypical manifestations such as swelling, paresthesia, severe mouth opening limitation, and poor treatment response together with previous cancer history.

In summary, we present a case of metastatic condylar cancer with TMD-like symptoms, initially misdiagnosed as TMD at a local dental clinic. While our analysis of 60 malignant condylar metastatic cases suggested that condylar metastasis should be considered for patients presenting with swelling in the TMJ area, facial paresthesia, extremely limited mouth opening, osteolytic lesion, and previous cancer history, we found diverse clinical and radiographic manifestations, ranging from normal or subtle to distinctive. Consequently, condylar metastasis cannot be defined by a single disease profile. Therefore, to diagnose it accurately, it is essential to gain a deeper understanding of the diversity of its clinical and radiographic manifestations.

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2015R1D1A1A01060821). This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (NRF-2015R1C1A2A01055438).

Conflict of Interest

The authors declare that they have no competing interests.

ORCID

Seo-Young An 0000-0001-6711-5986
Jae-Kwang Jung 0000-0003-3099-8097

References

1. D'Silva NJ, Summerlin DJ, Cordell KG, Abdelsayed RA, Tomich CE, Hanks CT, Fear D, Meyrowitz S. Metastatic tumors in the jaws: a retrospective study of 114 cases. J Am Dent Assoc 2006;137:1667-1672. doi: 10.14219/jada.archive.2006.0112.
2. Miles BA, Schwartz-Dabney C, Sinn DP, Kessler HP. Bilateral metastatic breast adenocarcinoma within the temporomandibular joint: a case report. J Oral Maxillofac Surg 2006;4:712-718. doi: 10.1016/j.joms.2005.12.017.
3. Johal AS, Davies SJ, Franklin CD. Condylar metastasis: a review and case report. Br J Oral Maxillofac Surg 1994;32:180-182. doi: 10.1016/0266-4356(94)90106-6.
4. Thoma KH, Holland DJ Jr, Rounds CE. Tumors of the mandibular condyle; report of two cases. Am J Orthod 1947;33:344-350.
5. Glaser C, Lang S, Pruckmayer M, Millesi W, Rasse M, Marosi C, Leitha T. Clinical manifestations and diagnostic approach to metastatic cancer of the mandible. Int J Oral Maxillofac Surg 1997;26:365-368.
6. Scolozzi P, Becker M, Lombardi T. Mandibular condylar metastasis mimicking acute internal derangement of the temporomandibular joint. J Can Dent Assoc 2012;78:e77.
7. van der Waal RI, Buter J, van der Waal I. Oral metastases: report of 24 cases. Br J Oral Maxillofac Surg 2003;41:3-6. doi: 10.1016/S0266-4356(02)00301-7.
8. Salman I, Langel I. Metastatic tumors of the oral cavity.
Oral Surg Oral Med Oral Pathol 1954;7:1141-1149.
9. Thoma KH. Tumors of the condyle and temporomandibular joint. Oral Surg Oral Med Oral Pathol 1954;7:1091-1107.
10. Blackwood HJ. Metastatic carcinoma of the mandibular condyle. Oral Surg Oral Med Oral Pathol 1956;9:1318-1323.
11. Epker BN, Merrill RG, Henny FA. Breast adenocarcinoma metastatic to the mandible. Report of seven cases. Oral Surg Oral Med Oral Pathol 1956;9:28-47.
12. Thoma KH. Oral Surgery. 5th Ed. St. Louis: Mosby; 1969. p.698.
13. Hartman GL, Robertson GR, Sugg WE Jr, Hiatt WR. Metastatic carcinoma of the mandibular condyle: report of case. J Oral Surg 1973;31:716-717.
14. Agerberg B, Soderstrom U. Metastasis of mammary carcinoma to the mandibular condyle. Int J Oral Surg 1974;3:34-40.
15. Butler JH. Myofascial pain dysfunction syndrome involving tumor metastasis. Case report. J Periodontol 1975;46:309-311. doi: 10.1902/jop.1975.46.5.309.
16. Mace MC. Condylar metastasis from mammary adenocarcinoma. Br J Oral Surg 1978;15:227-230.
17. Mizukawa JH, Dolwick MF, Johnson RP, Miller RI. Metastatic breast adenocarcinoma of the mandibular condyle: report of case. J Oral Surg 1980;38:448-451.
18. Wolujewicz MA. Condylar metastasis from a carcinoma of the prostate gland. Br J Oral Surg 1980;18:175-182.
19. Gerlach KL, Horch HH, Feaux de Lacroix W. Condylar metastasis from bronchial carcinoma. Case report. J Maxillofac Surg 1982;10:250-252.
20. Giles DL, McDonald PJ. Pathologic fracture of mandibular condyle due to carcinoma of the rectum. Oral Surg Oral Med Oral Pathol 1982;53:247-249.
21. Peacock TR, Fleet JD. Condylar metastasis from a bronchogenic carcinoma. Br J Oral Surg 1982;20:39-44.
22. DeBoom GW, Jensen JL, Siegel W, Bloom C. Metastatic tumors of the mandibular condyle. Review of the literature and report of a case. Oral Surg Oral Med Oral Pathol 1985;60:512-516.
23. Hecker R, Noon W, Elliott M. Adenocarcinoma metastatic to the temporomandibular joint. J Oral Maxillofac Surg 1985;43:629-631.
24. Owen DG, Stelling CB. Condylar metastasis with initial presentation as TMJ syndrome. J Oral Med 1985;40:198-201.
25. Thatcher SL, Dye CG, Grau MJ, Neale HW. Carcinoma of the prostate metastatic to the mandibular condyle mimicking a parotid tumor. J Oral Maxillofac Surg 1986;44:394-397.
26. Webster K. Adenocarcinoma metastatic to the mandibular condyle. J Cranio maxillofac Surg 1988;16:230-232.
27. Rubin MM, Jui V, Cozzi GM. Metastatic carcinoma of the mandibular condyle presenting as temporomandibular joint syndrome. J Oral Maxillofac Surg 1989;47:507-510.
28. Catrambone RJ, Pfeffer RC. Significant postoperative hemorrhage following biopsy of a prostate tumor metastatic to the mandibular condyle: report of a case. J Oral Maxillofac Surg 1990;48:858-861.
29. Sanchez Aniceto G, Garcia Penin A, de la Mata Pages R, Montalvo Moreno JJ. Tumors metastatic to the mandible: analysis of nine cases and review of the literature. J Oral Maxillofac Surg 1990;48:246-251.
30. MacAfee KA, 2nd, Quinn PD, Abaza NA. Adenocarcinoma of the colon metastatic to the temporomandibular joint: a case report. J Oral Maxillofac Surg 1993;51:793-797.
31. Stavropoulos MF, Ord RA. Lobular adenocarcinoma of breast metastatic to the mandibular condyle. Report of a case and review of the literature. Oral Surg Oral Med Oral Pathol 1993;75:575-578.
32. Nortje CJ, van Rensburg LJ, Thompson IO. Case report. Magnetic resonance features of metastatic melanoma of the temporomandibular joint and mandible. Dentomaxillofac Radiol 1996;25:292-297. doi: 10.1259/dmfr.25.5.9161185.
33. Porter SR, Chaudhry Z, Griffiths MJ, Scully C, Kabala J, Whipp E: Bilateral metastatic spread of testicular teratoma to mandibular condyles. Eur J Cancer B Oral Oncol 1996;32B:359-361.
34. Balestri L, Canzonieri V, Innocente R, Cattelan A, Perin T. Temporomandibular joint metastasis from rectal carcinoma: CT findings before and after radiotherapy. A case report. Tumori 1997;83:718-720.
35. Yoshimura Y, Matsuda S, Naitoh S. Hepatocellular carcinoma metastatic to the mandibular ramus and condyle: report of a case and review of the literature. J Oral Maxillofac Surg 1997;55:297-306.
36. Nakamura T, Ishimaru J, Mizui T, Kobayashi A, Toida M, Makita H, Iwata H, Shimokawa K. Osteosarcoma metastatic to the mandible: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91:452-454. doi: 10.1067/moe.2001.113107.
37. Meneghini F, Castellani A, Camelin N, Zanetti U. Metastatic chordoma to the mandibular condyle: an anterior surgical approach. J Oral Maxillofac Surg 2002;60:1489-1493. doi: 10.1053/joms.2002.36133.
38. Deeming G, Divakaran R, Butterworth D, Foster M. Temporomandibular region metastasis from cystosarcoma phylloides: a case report and review of the literature. J Cranio maxillofac Surg 2003;31:325-328.
39. McGuft HS, Alderson GL, Jones AC. Oral and maxillofacial pathology case of the month. Metastatic prostate carcinoma (osteoblastic metastasis). Tex Dent J 2004;121:918-919.
Metastatic cancer of the condyle

40. Smolka W, Brekenfeld C, Buchel P, Iizuka T. Metastatic adenocarcinoma of the temporomandibular joint from the cardia of the stomach: a case report. Int J Oral Maxillofac Surg 2004;33:713-715. doi: 10.1016/j.ijom.2003.10.013.

41. Mason AC, Azari KK, Farkas LM, Duvvuri U, Myers EN. Metastatic adenocarcinoma of the colon presenting as a mass in the mandible. Head Neck 2005;27:729-732. doi: 10.1002/hed.20224.

42. Duker J. Metastasis of breast cancer into the right mandibular condyle. Quintessence Int 2006;37:75.

43. Baber MA, Abubaker O, Laskin DM. Metastatic neuroblasiaoma in the mandibular condyle: report of a case. J Oral Maxillofac Surg 2008;66:1941-1945. doi: 10.1016/j.joms.2007.06.689.

44. Boniello R, Gasparini G, D’Amato G, Di Petrollo A, Pelo S. TMJ metastasis: a unusual case report. Head Face Med 2008;4:8. doi: 10.1186/1746-160X-4-8.

45. Menezes AV, Lima MP, Mendonca JE, Haiter-Neto F, Kurita LM. Breast adenocarcinoma mimicking temporomandibular disorders: a case report. J Contemp Dent Pract 2008;9:100-106.

46. Kamatani T, Tatemoto Y, Tateishi Y, Yamamoto T. Isolated metastasis from hepatocellular carcinoma to the mandibular condyle with no evidence of any other metastasis: a case report. Br J Oral Maxillofac Surg 2008;46:499-501. doi: 10.1016/j.bjoms.2008.01.001.

47. Schulze D. Metastasis of a bronchial carcinoma in the left condylar process. Quintessence Int 2008;39:616.

48. Gomes AC, Neto PJ, de Oliveira e Silva ED, Savio E, Neto IC. Metastatic adenocarcinoma involving several bones of the body and the cranio-maxillofacial region: a case report. J Can Dent Assoc 2008;75:211-214.

49. Katnelson A, Tartakovsoky JV, Miloro M. Review of the literature for mandibular metastasis illustrated by a case of lung metastasis to the temporomandibular joint in an HIV-positive patient. J Oral Maxillofac Surg 2010;68:1960-1964. doi: 10.1016/j.bjoms.2009.07.075.

50. Tabib R, Elias S, Tal Y, Ben-Yehuda A, Abu-Tair J. Temporomandibular joint-related symptoms as initial presentation of lung carcinoma in a patient with Takayasu's arteritis. J Oral Maxillofac Surg 2011;69:226-229. doi: 10.1016/j.joms.2010.04.023.

51. Cristofaro MG, Giudice A, Colangeli W, Giudice M. Unique and rare bone metastases from occult primary cancer. Our experience. Ann Ital Chir 2011;82:289-296.

52. Patricia A, Kaba SP, Trierveiler MM, Shinhoara EH. Osteoblastic metastasis from breast affecting the condyle misinterpreted as temporomandibular joint disorder. Indian J Cancer 2011;48:252-253. doi: 10.4103/0019-509X.82877.

53. Freundlberger C, Kurth R, Werner MK, Hoffmann J, Reinert S. Condylar metastasis from prostatic carcinoma mimicking temporomandibular disorder: a case report. Oral Maxillofac Surg 2012;16:79-82. doi: 10.1007/s10006-010-0256-3.

54. Gonzalez-Perez LM, Infante-Cossio P, Crespo-Torres S, Sanchez-Gallego F. Mandibular metastases as first clinical sign of an occult male breast cancer. Int J Oral Maxillofac Surg 2012;41:1211-1214. doi: 10.1016/j.ijom.2012.02.018.

55. Kelles M, Akarcay M, Kizilay A, Samdanci E. Metastatic renal cell carcinoma to the condyle of the mandible. J Craniofac Surg 2012;23:e302-303. doi: 10.1097/SCS.0b013e318252f331.

56. Qiu YT, Yang C, Chen MJ, Qiu WL. Metastatic Spread to the Mandibular Condyle as Initial Clinical Presentation: Radiographic Diagnosis and Surgical Experience. J Oral Maxillofac Surg. 2013;71:809-820. doi: 10.1016/j.joms.2012.07.026.

57. Puranik AD, Purandare NC, Dua S, Deodhar K, Shah S, Agrawal A, Rangarajan V. Isolated mandibular condylar metastases: an uncommon manifestation of recurrent cervical cancer. J Cancer Res Ther 2013;9:108-110. doi: 10.4103/0973-1482.110397.

58. Klasser GD, Echandi L, Shannon M. Hepatocellular carcinoma metastasis to the condyle: a case report and review of the literature. J Am Dent Assoc 2014;145:1063-1067. doi: 10.14219/jada.2014.70.

59. LeResche L. Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Crit Rev Oral Biol Med 1997;8:291-305.

60. al-Ani S. Metastatic tumors to the mouth: report of two cases. J Oral Surg 1973;31:120-122.

61. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 2009;50:1225-1305. doi: 10.2967/jnumed.108.057307.

62. Batsakis JG, McBurney TA. Metastatic neoplasms to the head and neck. Surg Gynecol Obstet 1971;133:673-677.

63. Zachariades N. Neoplasms metastatic to the mouth, jaws and surrounding tissues. J Craniomaxillofac Surg 1989;17:283-290.

64. Hirshberg A, Leibovich P, Buchner A. Metastatic tumors to the jawbones: analysis of 390 cases. J Oral Pathol Med 1994;23:337-341.

65. Hirshberg A, Leibovich P, Buchner A. Metastases to the oral mucosa: analysis of 157 cases. J Oral Pathol Med 1993;22:385-390.

66. Kuttan NA, Rosin MP, Ambika K, Priddy RW, Bhakthan EN. Metastatic adenocarcinoma of the temporomandibular joint from betel and tobacco chewing. Eur J Cancer B Oral Oncol 1995;31B:169-173.