Integrated Method for Assessing Occupational Risks at Oil and Gas Production Facilities

N V Gorlenko¹ and M A Murzin¹

¹Industrial Ecology and Life Safety Department, Irkutsk National Research Technical University, Lermontova str., 83, Irkutsk, 664074, Russia

E-mail: hope1907@istu.edu, misha0009@mail.ru

Abstract. Today, the problem of ensuring safe working conditions in the workplace is relevant for any employer. At the moment, despite the introduction of advanced technologies and equipment at oil and gas production facilities, personnel are exposed to a set of adverse production factors having an industry-specific nature and features. These features influence the reliability of the results of the occupational risk assessment. The methods existing today do not fully reflect the whole picture of risk in the workplace, but give only their fragmented values. The aim of this work is to develop an integrated methodology for assessing occupational risks for oil and gas production companies. In this work, from the variety of methods, we selected four methods that together take into account a significant number of risk-generating aspects, namely: the method of assessing the individual occupational risk level, the Fine-Kinney method, the method of scoring occupational risks, and the method of sociological survey of workers. The study on the assessment of occupational risks using an integrated method was carried out at the facilities for the development of three fields - the Yarakta, Iktek, and Markovo fields belonging to Irkutsk Oil Company LLC. According to the results of applying the integrated assessment of occupational risks, most positions had a “medium” risk level, but for occupations engaged in manual labor and having a lower degree of automation of labor a “high” risk level was established. For these workplaces, it is necessary first of all to implement measures to improve working conditions.

1. Introduction

Today, the problem of ensuring safe working conditions in the workplace is relevant for any employer, because with the introduction of the “occupational risk” concept in the Labor Code of the Russian Federation in 2011, the scope of employers’ responsibilities has expanded. Occupational risk implies the probability of negative changes in the worker’s state of health during the performance of his duties due to exposure to factors of the production environment [1].

The necessity of occupational risk assessment is established by Art. 209 and 212 of the Labor Code of the Russian Federation. The very procedure for managing occupational risks is spelled out in the Order of the Ministry of Labor and Social Protection of the Russian Federation “On Approval of the Model Regulation on the Occupational Safety and Health Management System” No. 438n of August 19, 2016, including identification of all sources of harmful and hazardous effects, assessment of occupational risks (probability and severity of consequences), and implementation of measures to reduce and control risks [2]. But the current situation in the field of occupational risk assessment is ambiguous. There is still no legislatively approved methodology for assessing risks, but already today inspections
by the State Labor Inspectorate recognize the absence of a risk assessment as a violation of the Labor Code. In 2019, the Federal Service for Labor and Employment created order No. 77 “On Approval of Methodological Recommendations for Verifying the Creation and Maintenance of the Occupational Safety and Health Management System”. According to this document, in the case of inspection of the supervised objects by the labor inspector, special attention is paid precisely to the assessment of occupational risks [3].

Responsible managers are fully aware of the benefits and the main goal of assessing occupational risks, i.e. identifying the highest-risk workplaces with the further development of measures to reduce risks [4]. As known, the result of exposure of personnel to harmful and hazardous production factors is expressed in reduced life expectancy, reduced labor productivity, increased general and occupational morbidity, and the occurrence of accidents. Establishing the level of occupational risk makes it possible to predict the occurrence of occupational disease with the goal of timely implementation of preventive and prophylactic measures [5]. The results of the occupational risk assessment will make it possible to rationally distribute funds for the occupational safety and health at the enterprise, which will reduce overall costs, especially those associated with occupational morbidity and accidents.

This problem is especially relevant for oil and gas production companies. At the moment, despite the introduction of advanced technologies and equipment at oil and gas production facilities, personnel are exposed to a set of adverse production factors having an industry-specific nature and features [6]. These features influence the reliability of the results of the occupational risk assessment. The methods existing today do not fully reflect the whole picture of risk in the workplace, but give only their fragmented values. The aim of this work is to develop an integrated methodology for assessing occupational risks for oil and gas production companies.

2. Study objects and methods
In addition to the existing problem of assessing occupational risks at oil and gas production facilities, the choice of the research object is also associated with the uniqueness of this type of economic activity. This is primarily due to the recoverable minerals themselves - oil and natural gas [7]. These hydrocarbons have a wide application domain and are used in many industries, such as chemical, fuel, and food industries, as well as pharmaceuticals. And it is quite obvious that any country in the world producing these raw materials will have superiority on the geopolitical stage. Significant oil and gas deposits are concentrated on the territory of the Russian Federation, the total reserves of which are: oil - 28.9 billion tons and natural gas - 47.8 trillion m3. The country is the third largest in the world in terms of their production, after the United States and Saudi Arabia.

But, despite its exclusivity and indispensability today, oil and gas production is associated with many negative consequences that affect the environment [8]. Significant negative changes in the natural environment - soil, atmospheric air, surface and underground waters, subsoil - occur on the territory of mining operations, which affects the flora and fauna of the region. But first of all, humans themselves are subject to negative influence.

The oil and natural gas production process consists of several stages - exploration, exploratory drilling, development, exploitation and liquidation. Each stage has its own specific complex of hazardous and harmful production factors [9]. The main occupations involved in the technological process that are exposed to negative impacts include drillers and assistant drillers in exploitation drilling, operators for preparing wells for workover and underground repairs, as well as operators for maintaining reservoir pressure, installers of pipelines, operators of process pumps, gas and oil production units, equipment maintenance drivers, electricians, maintenance fitters, electric welders, drivers of bulldozers, excavators and cars [10, 11].

When performing mining operations, the most significant factors are general and local vibration, chemical pollution of the air in the working environment, exposure to noise, and the intensity of labor [12]. When performing most technological operations, many automation and mechanization tools are used in the form of stationary equipment, for example, pumping units, drilling, diesel and electrical equipment, lifting devices, compressors [13]. In addition to these installations, a significant amount of
mobile equipment is used - construction equipment, hoists and loading vehicles, self-propelled earth-moving machinery, trucks for various purposes, and others [14].

The impact of the entire set of the considered production factors can lead to the manifestation of persistent deviations in the state of health of workers with the subsequent development of occupational diseases, or can cause an accident [15]. The presence of unfavorable production factors, negative dynamics of the indicators of injury and morbidity of workers employed in oil and gas production obliges the management of oil and gas production companies to conduct an occupational risk assessment procedure [16].

At the moment, there are a large number of methods for assessing occupational risks. The methods are diverse, each has its own advantages and disadvantages. But on the whole, each of the methods presents narrowly targeted or insufficiently informative results that are not applicable to some industries and types of work, for example, to the oil production industry [17]. In this case, it is necessary to develop an integrated method that would take into account the multifaceted nature of the factors underlying the definition of occupational risk [18]. In this work, from the variety of methods, we selected four methods that together take into account a significant number of risk-generating aspects, namely: the method of assessing the individual occupational risk level, the Fine-Kinney method, the method of scoring occupational risks, and the method of sociological survey of workers.

The scoring method for assessing occupational risks was developed by the Research Institute of Labor, and is based on the results of the special assessment of working conditions, as a result of which each production factor is assigned a corresponding class of working conditions [19]. Each class of working conditions is assigned a certain score and the risk level is determined depending on the degree of deviation between the total risk and the maximum allowable risk [20].

The method for assessing the level of individual occupational risk was developed by the Klin Institute of Occupational Safety, and involves the assessment of occupational risks based on the results of the assessment of working conditions, as well as the individual characteristics of each of the workers, namely the state of health, professional experience, age and duration of work in adverse conditions [21].

The Fine-Kinney method is based on a set of indicators characterizing an adverse event of labor activity, namely, the probability of the worker’s exposure to a certain impact, the probability of this event and the severity of the consequences [22]. These indicators are determined for each of the labor operations, and are presented in the form of a matrix card with assignment of scores reflecting the severity of an event in the general list [23].

The method of sociological survey of workers was developed by P. Makarov, and is based on a questionnaire survey of workers [24]. Questionnaires given to each worker contain a list of questions that allow assessing the state of working conditions and problem areas in the labor protection system from the position of the worker himself.

Each of the presented methods has its own characteristics, and considers occupational risks from a certain position, but the results of each of them have different quantitative values and indications [25]. To consider the indications in the form of a general complex, the results are summarized as a qualitative assessment result.

This method was used to assess occupational risks at oil and gas production companies in the Irkutsk Region. The main reason for choosing this region is the strategic importance for the country's foreign economic policy in terms of vast reserves of oil (2.03 billion tons) and gas (7.2 trillion m3) and borders with a large importer of raw materials. In particular, the study on the assessment of occupational risks using an integrated method was carried out at the facilities for the development of three fields - the Yarakta, Iktekh, and Markovo fields belonging to Irkutsk Oil Company LLC, one of the largest hydrocarbon mining companies in the Irkutsk Region [26].

3. Results and discussion
Assessment of occupational risks was carried out for the main occupations of each of the facilities, taking into account the procedure of each of the methods. The basis for calculating risks was the results
of the special assessment of working conditions, production control materials, actual measurements of production environment factors, as well as a survey of workers and management.

According to the results of the special assessment of working conditions, it was found that the number of workers with acceptable working conditions at the facilities under study was about 29.1%, the rest were classified as harmful conditions in different subcategories (subclasses 3.1–3.3). These workplaces require a phased normalization of working conditions [27]. But the implementation of widespread transformation and improvement can seriously affect the material well-being of the organization as a whole, therefore, it is necessary to conduct an occupational risk assessment procedure to identify the workers most exposed to negative effects [28].

In relation to our study, for the main workers ensuring the implementation of the technological process, the assessment of risks was performed using the previously discussed methods. The results were compared on the basis of the general risk profile of each of the methods, and are presented in the form of a complex (Fig. 1).

![Figure 1. Summary results of the integrated occupational risk assessment at the facilities of Irkutsk Oil Company LLC.](image)

- Very high level of risk;
- High level of risk;
- Medium level of risk;
- Low level of risk.

According to the results of applying the integrated assessment of occupational risks, most positions had a “medium” risk level, but for occupations engaged in manual labor and having a lower degree of automation of labor a “high” risk level was established. For these workplaces, it is necessary first of all to implement measures to improve working conditions, and also to carefully consider the following aspects:
- modernizing the system of the selection of workers to perform work in hazardous and harmful conditions;
- ensuring the effective functioning of medical services;
- monitoring the state of health of workers with the aim of the most objective assessment of occupational risks, reflecting the impact of working conditions on the health of workers.
The introduction of such an integrated method will allow for more accurate identification of the most high-risk occupations for which the development and implementation of measures to reduce occupational risks are primarily required. Such approach to managing occupational risks will solve the problem of rational use of labor, material and financial resources.

4. Conclusion
The task of managing occupational risks remains significant for oil and gas production companies and its solution is associated with the development of methods for assessing occupational risks. At present, the methodology for assessing occupational risks is being actively improved; new, simpler and more informative methods for risk assessment are being created, which is significant for any employer. The existing methods are aimed at quality risk assessment methods that do not reflect the full picture and do not take into account significant factors, the source of which is man himself.

The introduction of the integrated method allows us to compare the impact of various factors, to establish the integral degree of risk, taking into account the contribution of each individual factor. Using the integrated risk assessment method provides an opportunity to formulate the necessary mechanisms and strategies for achieving acceptable conditions for oil and gas production facilities.

5. References
[1] Yang X and Haugen S 2018 Implications from major accident causation theories to activity-related risk analysis Safety Science 101 121–134
[2] Staseva E V, Filatova S V 2018 Definition of occupational risk based on a special assessment of working conditions Young Don Researcher 2 (11) 81–85
[3] Murzin M A, Gorlenko N V and Timofeeva S S 2019 Comparative assessment of emergency risks of mining enterprises in the Baikal region IOP Conference Series: Earth and Environmental Science 229 012030
[4] Gorlenko N V, Murzin M A 2019 Comparative analysis of fire risks in coal and oil and gas industries IOP Conference Series: Materials Science and Engineering 687 066009
[5] Gorlenko N V, Timofeeva S S 2020 Assessment of environmental damage from oil sludge to land resources in the Irkutsk Region IOP Conference Series: Earth and Environmental Science 2020 408 012021
[6] Sanmiquel L, Bascompta M, Rossell J M, Anticof H F and Guash E 2018 Analysis of occupational accidents in underground and surface mining in Spain using data-mining techniques International Journal of Environmental Research and Public Health 15 (3) doi: 10.3390/ijerph15030462
[7] Leonova M S, Timofeeva S S and Murzin M A 2019 Dust load in silicon production and occupational risks IOP Conference Series: Materials Science and Engineering 687 066012
[8] Părăian M, Păun F-A, Jurca A-M, Păun E P and Popa M 2018 Risk management in industrial sectors with explosion hazard from the perspective of european standards International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management 767–774
[9] Cliff D, Harris J, Bofinger C and Lynas D 2017 Managing occupational health in the mining industry Proceedings of the 17th Coal Operators’ Conference «Mining Engineering» 296–305
[10] Sternberg T and Edwards M 2017 Desert dust and health: A central Asian review and steppe case study International Journal of Environmental Research and Public Health 14 (11) 1342
[11] Mirzaei Aliabadi M, Aghaei H, Kalatpour O, Soltanian A R and SeyedTabib M 2018 Effects of human and organizational deficiencies on workers’ safety behavior at a mining site in Iran Epidemiology and health 40 e2018019
[12] Steenland K and Ward E 2014 Silica: A lung carcinogen CA Cancer Journal for Clinicians 64 (1) 63–69
[13] Martínez-González C 2018 Changes in the Profile of Diseases Caused by the Inhalation of Silica Archivos de Bronconeumología 54 (1) 5–6
[14] Leonova M S, Timofeeva S S 2020 Impact of dust emissions from the silicon production on working conditions IOP Conference Series: Earth and Environmental Science 408 012026
[15] Goudie A S 2014 Desert dust and human health disorders Environment International 63 101–113
[16] Timofeeva S S 2016 Modern methods for assessing occupational risks and their importance in the labor protection management system XXI century. Technosphere Safety 1 (1) 14–24
[17] Chernyshenko O V and Zanina I A 2017 Special assessment of working conditions and assessment of occupational risk in the labor protection management system Concept 57 11–14
[18] Khlusova V P 2015 Occupational risks in the mining industry and methods for reducing them Collection of scientific papers “Education, Science, Production” (Belgorod: Publishing house BGTU named after Shukhov) 461–465
[19] Chebotarev A G 2016 Prediction of working conditions and occupational morbidity among workers of mining enterprises Mining industry 3 (127) 54
[20] Wong K and Chan A H S 2018 Emerging issues in occupational safety and health Emerging issues in occupational safety and health International Journal of Environmental Research and Public Health 15 (12) 2897
[21] Gul M and Ak M F 2018 A comparative outline for quantifying risk ratings in occupational health and safety risk assessment Journal of Cleaner Production 196 653–664
[22] Hermanus M A 2007 Occupational health and safety in mining - Status, new developments, and concerns Journal of the Southern African Institute of Mining and Metallurgy 107 (8) 531–538
[23] Gorlenko N V and Murzin M A 2020 Comparative assessment of occupational risks at enterprises of oil production and coal industries in the Irkutsk region IOP Conference Series: Earth and Environmental Science 408 012022
[24] Leonova M S and Timofeeva S S 2019 Environmental and economic damage from the dust waste formation in the silicon production IOP Conf. Ser.: Earth Environ. Sci. 229 012022
[25] Timofeeva S S, Leonova M S, Gorlenko N V, Jih-Hsing Chang and Shu-Fen Cheng 2020 Composite sorbents based on waste from the crystalline silicon production and biochar IOP Conf. Ser.: Earth Environ. Sci. 408 012039
[25] Gorlenko N V and Timofeeva S S 2019 Assessment of environmental damage to atmospheric air during development of oil and gas fields IOP Conference Series: Materials Science and Engineering 687 066011
[26] Timofeeva S S and Murzin M A 2019 Man-made risks of coal mining enterprises IOP Conf. Ser.: Earth Environ. Sci. 229 012028
[27] Timofeeva S S and Murzin M A 2020 Assessing the environmental risk of mining enterprises by the integral indicator of dust emission IOP Conf. Ser.: Earth Environ. Sci. 408 012067
[28] Gorlenko N V, Timofeeva S S 2019 Assessment of environmental damage from oil sludge to land resources in the Irkutsk region IOP Conference Series: Earth and Environmental Science 2019 229 012019