Ethnobotanical Survey of Natural Galactagogues Prescribed in Traditional Chinese Medicine Pharmacies in Taiwan

Jung Chao1, Chien-Yu Ko2, Chin-Yu Lin3,4, Maeda Tomoji5,4, Chia-Hung Huang6, Hung-Che Chiang7, Jeng-Jer Yang8, Shyh-Shyun Huang2,9* and Shan-Yu Su10,11*

1Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan, 2School of Pharmacy, China Medical University, Taichung, Taiwan, 3Institute of New Drug Development, China Medical University, Taichung, Taiwan, 4Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan, 5Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan, 6Department of Pharmacy, Kinmen Hospital, Kinmen, Taiwan, 7College of Medicine, China Medical University, Taichung, Taiwan, 8Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, 9Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, 10Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan, 11School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan

Natural medicinal materials have been used to promote breast milk secretion. Here, we investigated the natural medicinal materials prescribed in traditional Chinese medicine (TCM) pharmacies across Taiwan to induce lactation. We collected medicinal materials from 87 TCM pharmacies, identified them in the prescriptions, and analyzed their drug contents. We examined their botanical origins, biological classifications, traditional usage, and modern pharmacological properties. We used the TCM Inheritance Support System to identify core medicinal materials in galactogenous prescriptions. We collected 81 medicinal materials from 90 galactogenous prescriptions. **Leguminosae** accounted for 12%, whereas **Apiaceae** accounted for 7% of all materials examined. The primary medicinal plant parts used were roots and seeds. Nineteen frequently used medicinal materials had a relative frequency of citation of greater than or equal to 0.2. According to their efficacy, 58% were warm, 54% were sweet, and 63% were tonifying; 74% of the frequently used medicinal materials have been showed efficacy against breast cancer. The primary core medicinal material was **Angelica sinensis** (Oliv.) Diels, whereas the secondary core medicinal materials were **Tetrapanax papyrifer** (Hook.) K. Koch and **Hedysarum polybotrys** Hand.-Mazz. Most galactogenous prescriptions consisted of multiple materials from **Leguminosae** and **Apiaceae**. The mechanisms underlying galactogenous efficacy warrant further investigations.

Keywords: breastfeeding, ethnobotanical, galactagogues, Taiwan, traditional Chinese medicine pharmacy

INTRODUCTION

Breast milk is rich in proteins, lipids, carbohydrates, vitamins, and minerals, making it the optimum nutrient source for infant growth and development (Suzuki et al., 1972). Breastfeeding prevents the death of approximately 823,000 children aged less than 5 years annually. Moreover, the incidence of breast and ovarian cancers in women who breastfed their children is 7% and 35% lower than those
who never breastfed, respectively (Victora et al., 2016). Therefore, the World Health Organization (WHO) and the American Academy of Pediatrics recommend that infants under 6 months of age should be exclusively breastfed (Eidelman, 2012; World Health Organization, 2017). However, the subsequent investigations have revealed that only 40% of all infants worldwide are exclusively breastfed (World Health Organization, 2020). Hence, the WHO set a target to increase the exclusive breastfeeding rate within the first 6 months by more than 50% by 2025 (World Health Organization, 2013).

Insufficient post-delivery milk secretion is due to the fact that many women cannot exclusively breastfeed their newborns. A US survey showed that 76% of all mothers do not produce sufficient breast milk to meet the nutritional requirements of their babies (Bazzano et al., 2017). Galactagogues are used to increase breast milk secretion in mothers who intend to breastfeed their newborns exclusively. The two primary categories of galactagogues are pharmaceutical agents and herbs. In Western medicine, galactogenous pharmaceutical agents with a high efficacy, such as metoclopramide, domperidone, and chlorpromazine, are widely used as galactagogues (Foong et al., 2020). Furthermore, herbs have been used to promote lactation in various parts of the world (Mortel and Mehta, 2013; Ozalkaya et al., 2018). These medicinal materials significantly vary among regions, customs, and religious traditions. Medicinal plant materials that are most frequently used as natural galactagogues include Trigonella foenum-graecum L. (fenugreek) and Foeniculum vulgare Mill. (fennel), which are used in the United States, Australia, and China to promote milk production (Supplementary Table S1).

The “doing-the-month (one-month puerperal care)” custom is practiced in several countries that have a Chinese population (Liu Y. Q. et al., 2015), including Taiwan. In this custom, medicinal materials are routinely used to enhance physical recovery and increase milk secretion in puerperal mothers (Chen and Wang, 2000; Chuang et al., 2009; Tsai and Wang, 2019). This custom may account for the higher proportion of exclusively breastfed infants (46.3%) than the average for other parts of the world (Ministry of Health and Welfare, 2020). Moreover, the proportion of Taiwanese women with self-perceived milk insufficiency (nearly 50%) is lower than that reported for mothers in other parts of the world (Su, 2012). According to a previous survey, approximately 80% of all Chinese herbal medicines used by Taiwanese women during their puerperal period were purchased from traditional Chinese medicine (TCM) pharmacies (Ho et al., 2011). TCM pharmacies provide TCM formulae in various dosage forms including pills, powders, paste, pellets, and decoction pieces, and preserve the original forms of a TCM (Pharmaceutical Affairs Act, 2018). Most TCMs consumed by Taiwanese women following delivery are in the form of decoction pieces (Ho et al., 2011). Hence, in the present study, we selected TCM pharmacies as the primary investigation sites to clarify the current use of Chinese herbal galactogenous prescriptions by Taiwanese women.

In Taiwan, although “galactogenous prescriptions” may be procured from most TCM pharmacies, the prescriptions differ among TCM pharmacies in medicinal materials. To date, no study has investigated the types and combinations of medicinal materials in galactogenous prescriptions. Thus, the aims of this study were as follows: 1) explore the compositions of galactogenous prescriptions sold in TCM pharmacies, 2) systematically analyze them, 3) identify their core components, and 4) elucidate the principles and preparation methods of TCM that are used to promote lactation in post-delivery Taiwanese women.

MATERIALS AND METHODS

Ethical Review
This research was conducted from July 2019 to May 2020 and was reviewed and approved by the China Medical University & Hospital Research Ethics Center (No. CRREC-108-026) (Supplementary Figure S1).

Research Process
The research methods are summarized in the research flow chart (Figure 1). This study involved field investigation, medicinal material identification, and medicinal material analysis.

Field Investigation
Taiwan is an island in East Asia located at 21°45′–25°56′N and 119°18′–124°34′E, covering an area of 35,886.823 km². The Tropic of Cancer passes through it, and its climate is Humid Subtropical according to the Köppen Classification. This study lasted 12 months, from May 2019 to April 2020. Eighty-seven TCM pharmacies providing galactogenous prescriptions were visited (Figure 2). The relative numbers of pharmacies visited were proportional to the population ratio of each city and county. The outlets were located via online searches and various organizations associated with medicinal plants. Ninety galactogenous prescriptions were obtained. The TCM pharmacies investigated were distributed across northern, central, southern, and eastern Taiwan. As the Taiwanese population density is uneven, comparatively more samples were collected in the western part of the island. Each area where a TCM pharmacy was located had its own characteristic demographics, planting patterns, Chinese herbal medicine distribution, economic development level, and geography (Supplementary Table S2).

Analysis of Medicinal Materials
All investigated medicinal materials were analyzed in terms of taxonomy, relative frequency of citation (RFC), inclusion status in each pharmacopoeia, modern pharmacological research related to application in women, and efficacy in traditional medicine.

Taxonomy comprised the scientific, kingdom, and family names and utilized parts. The information was derived from The Plant List (The Royal Botanic Gardens, 2013). Medicinal materials with an RFC of greater than or equal to 0.2 were defined as frequently used medicinal materials. RFC was calculated as follows (Ahmad et al., 2017):
For the inclusion status of the medicinal materials in the pharmacopoeia, the Third Edition of the Taiwan Herbal Pharmacopeia (Chen, 2018), the Pharmacopoeia of the People’s Republic of China (Chinese Pharmacopoeia Commission, 2020), and the Chinese Materia Medica (State Administration of TCM, 1999) were verified. Modern pharmacological studies related to women were searched and identified using PubMed by entering the scientific names of the medicinal materials as keywords and setting the sex as female and the inquiry period as 1992–2020. The traditional efficacy, property, and flavor of the medicinal materials were cited according to the records in the Taiwan Herbal Pharmacopeia, the Pharmacopoeia of the People’s Republic of China, and the Chinese Materia Medica.

The TCM Inheritance Support System (TCMISS) v. 2.5 conducted the network, composition, and correlation analyses. This system was designed to mine core Chinese material medica (CCMM) and visualize correlations based on nodes and links. The same materials may have different names; hence, the nomenclature was standardized for data input (Wu et al., 2020). With respect to composition setting for the network analysis, the frequency of occurrence of a medicinal material increased with a decrease in distance from the center of the network diagram. Thus, medicinal materials nearest to the center served as references to determine the core components of galactogenous prescriptions. When two medicinal materials co-occurred more than 41 times in the composition setting for the network analysis, they were considered as a high-frequency drug pair. Application frequency and confidence score were set, and the former was calculated as follows:

\[
\text{Application frequency} = \frac{\text{Number of prescriptions containing both materials}}{\text{Total number of prescriptions}}
\]

In the correlation analysis, when two different medicinal materials co-appeared more than 18 times, they were considered to be correlated and were connected by a line in the network diagram. The correlation analysis diagram was associated with the confidence level, which indicates the probability that a medicinal material co-occurs with another one. When the TCMISS was used to analyze the correlation among the medicinal materials used, the confidence was set to unity; in this way, medicinal materials that co-occurred with others were identified (Tang et al., 2019; Wu et al., 2019).

RESULTS

Types and Taxonomic Characteristics of Galactogenous Prescriptions

Eighty-seven TCM pharmacies were visited in various cities and counties in Taiwan and 90 galactogenous prescriptions were purchased (Supplementary Figure S2); 81 medicinal materials were identified (Supplementary Table S3). Seventy-eight medicinal materials were plant based (95%), two were animal derived (4%), and one was a fungus (1%). Angelica sinensis (Oliv.) Diels was the most frequently used medicinal material (93%), followed by Tetrapanax papyrifer (Hook.) K. Koch (86%). Leguminosae members (12%) were the most frequently used, followed by Apiaceae members (7%). The roots (radix) were the most frequently utilized plant parts (33%), followed by the seeds (15%; Figure 3).
The RFC of 0.2 was set as the cutoff for frequently used medicinal materials, and accordingly, 19 medicinal materials were identified among the 81 medicinal materials (Table 1). To understand the efficacy of medicinal materials in traditional medicine and the modern pharmacology of Chinese herbal medicine in promoting lactation, we analyzed the property, flavor, efficacy, and modern pharmacological research of these frequently used medicinal materials in women (Figure 4A).

The medicinal materials frequently used in galactogenous prescriptions are warm (58%) and plain (26%) in terms of property (Figure 4B). Regarding flavor, most of the medicinal materials used were sweet (54%) (Figure 4C). With respect to traditional medicine efficacy, most of these medicinal materials were tonics (63%) (Figure 4D). With respect to modern pharmacological effects related to women, the related studies have most frequently investigated anticancer efficacy. Fourteen medicinal materials (74%) among those with an RFC greater than or equal to 0.2 have been reported to be effective against breast cancer, whereas nine (47%) were effective against gynecological (cervical, ovarian, and uterine) cancers (Figure 4E).

Analysis of High-Frequency Drug Pairs and Core Medicinal Materials

A TCMISS analysis disclosed 18 high-frequency drug pairs (Supplementary Table S4) and 2 medicinal materials that co-occurred more than 41 times including *A. sinensis*, *T. papyrifer*, *Hedysarum polybotrys* Hand.-Mazz., *Lycium chineise* Mill., *Glycyrrhiza uralensis* Fisch., *Ligusticum striatum* DC., *Ziziphus jujuba* Mill., *Vaccaria hispanica* (Mill.) Rauschert, *Codonopsis pilosula* (Franch.) Nannf., and *Rehmannia glutinosa* (Gaertn.) DC. The most frequently used drug pairs were *A. sinensis* plus *T. papyrifer* (frequency equals 71) and *A. sinensis* plus *H. polybotrys* (frequency = 69).

A network analysis of the core components of the galactogenous prescriptions was conducted on medicinal materials with an RFC of greater than or equal to 0.2 (Figure 5). The top core medicinal materials were *A. sinensis*, followed by *T. papyrifer* and *H. polybotrys*. They were often co-prescribed with *L. chinense*, *G. uralensis*, *L. striatum*, *Z. jujuba*, *V. hispanica*, *C. pilosula*, *R. glutinosa*, *Paonia lactiflora* Pall., and *Melastoma malabathricum* L. In certain prescriptions, *Atractylodes macrocephala* Koidz., *Chaenomeles speciosa* (Sweet) Nakai, *Cinnamomum cassia* (L.) J. Presl, *Eucommia ulmoides* Oliv., *Poria cocos* (Schwein.) F.A. Wolf, *Z. jujuba*, and *Dimocarpus longan* Lour. were added. These combinations may serve as a reference for a galactogenous prescription composition.

A causality analysis of the occurrence of various medicinal materials in the galactogenous prescriptions was conducted based on association rules (Supplementary Table S5). The confidence score was set to unity. *Angelica sinensis*, *T. papyrifer*, *H. polybotrys*, and *L. chinense* were often combined with *L. striatum*, *P. lactiflora*, *C. pilosula*, *C. cassia*, *V. hispanica*, *G. uralensis*, *Z. jujuba*, *A. macrocephala*, *E. ulmoides*, and *R. glutinosa*.

DISCUSSION

Field Investigation Sites

In the present study, a field investigation was conducted to explore the galactogenous prescriptions sold in TCM pharmacies across Taiwan to reflect the views and behaviors of some individuals over a certain period. Field investigations are
especially practical for sociological, geographical, and cultural studies (Hirsch and Stewart, 2005), and are used to examine medications administered for certain diseases in certain realms of ethnopharmacological research. Field investigations related to herbal medicines have been performed to explore the composition of herbal teas (Huang et al., 2020), herbal medicines used to treat malaria (Odoh et al., 2018), and regional herbal medicines prescribed to expel parasites (Bajin Ba Ndob et al., 2016).

The “TCM pharmacies” in Taiwan are important for preserving TCM culture. In early agricultural societies, Western medicine was underdeveloped and medical resources were inadequate; TCM pharmacies provided medical care. During the period when the Japanese occupied Taiwan (1895), purveyors of TCMs were called “TCM merchants” or “medicinal material merchants” (Chang, 1995), whereas today, they are generally called “TCM merchants” or “TCM pharmacists” (Legislative Yuan, 2000). Under the Japanese medical care administrative measures in Taiwan, “an attitude of abandoning traditional Chinese medical care but retaining traditional Chinese medications” was adopted and medicine merchants were not strictly regulated (Ministry of Science and Technology, 2017). Therefore, TCM pharmacies in Taiwanese society are continued as the “traditional Chinese pharmaceutical industry” and provide both medical care and health maintenance. The TCM pharmacies provide Chinese medicinal materials based on customer requirements. They also furnish traditional dosage forms including pills, powder, paste, and decoction pieces prepared according to the fixed formulae (Pharmaceutical Affairs Act, 2018). The medical insurance of the Taiwanese Government covers only extracted granules of Chinese medicinal medica. Consequently, many consumers and TCM practitioners are unfamiliar with Chinese medicinal materials. The TCM pharmacies visited in the present study focused primarily on decoction pieces. Thus, it was ascertained that the techniques used to prepare TCM decoction pieces have been preserved by the TCM pharmacies in Taiwan. The results of the current investigation reflect the current prescription status of Chinese herbal decoction pieces for promoting lactation in Taiwanese women.

Types and Taxonomic Traits of Medicinal Materials in Galactogenous Prescriptions Sold in TCM Pharmacies Across Taiwan

Members of *Leguminosae* were the most frequently used medicinal materials in the galactogenous prescriptions across Taiwan, including *Z. jujuba* and *G. uralensis*, followed by *Apiaceae* members such as *A. sinensis* and *L. striatum*. Flavones are abundant in both *Leguminosae* and *Apiaceae* members. Some of these natural plant products are phytoestrogens, indicating that their effects are similar to those of estrogen (Badgujar et al., 2014; Mercer et al., 2020), which can induce mammary epithelial cell (MECS) proliferation in lactating women and promote milk secretion (Setchell, 2001; Tsugami et al., 2017; Tsugami et al., 2020).
No	Scientific name/local name	Family	Part used	RFC	Flavor and property	Traditional usage	Literature on gynecological medicinal properties and effects (PubMed)
1	Angelica sinensis (oliv.) diels/Tang kuei	Apiaceae	Radix	0.93	Sweet and pungent; warm	Enriching blood and promoting blood circulation, regulating and alleviating menstruation pain, lubricating intestines, and relieving constipation	1. Anemia Chang et al. (2018), Chen et al. (2018), Li et al. (2012), Liu J. et al. (2019), and Zhang W.L. et al. (2012)
2. Blood stasis syndrome Jin et al. (2017), and Yuan et al. (2019)
3. Breast cancer He et al. (1986), Rock and DeMichele (2003), Zhou et al. (2015), Lin et al. (2017), Ma et al. (2017), Qi et al. (2017), and Su et al. (2018)
4. Female reproductive problems Du et al. (2014), Hook (2014), Gong et al. (2016)
5. Female sexual dysfunction Mazaro-Costa et al. (2010)
6. Gynecological cancerb Cao et al. (2010), and Lang et al. (2018)
7. Hair loss Kim et al. (2014)
8. Mastitis Wang et al. (2012), and Mullen et al. (2014)
9. Obesity Zhong et al. (2017)
10. Osteoporotic Rock and DeMichele (2003), Xie et al. (2012), Lim and Kim (2014), and Li et al. (2016)
11. Puerperal metritis Huang et al. (2018) |
| 2 | Tetrapanax papyrifer (Hook.) K. Koch/T’ung ts’ao | Araliaceae | Medulla | 0.86 | Sweet and plain; cold | Clearing heat, promoting urination, dredging qi, and promoting lactation | None |
| 3 | Hedysarum polybotrys Hand.-Mazz./Hung ch’i | Leguminosae | Radix | 0.83 | Sweet; warm | Tonifying qi, lifting yang, consolidating exterior, reducing sweat, promoting urination, alleviating edema, regenerating body fluids, nourishing blood, activating stagnation, alleviating arthralgia, eliminating toxins, expelling pus, healing sores, and promoting granulation | None |
| 4 | Lycium chinense Mill./ Kou ch’i | Solanaceae | Fructus | 0.64 | Sweet; plain | Nourishing liver and kidneys, enriching essence, and improving eyesight | 1. Breast cancer Li et al. (2009), Zhang et al. (2011), Wawruszaik et al. (2016), Georgiev et al. (2019)
2. Endometrial damage Lee et al. (2016), Shan et al. (2017)
3. Gynecological cancer Zhang et al. (2011)
4. Obesity Amagase and Nance (2011), de Souza Zanchet et al. (2017), Kim et al. (2017a)
5. Osteoporotic Yin et al. (2004), Kim et al. (2017b)
6. Ovarian injury Wei et al. (2011), Yang D.M. et al. (2017)
7. Polycysticovarian syndrome Jang et al. (2014)
8. Premature ovarian failure Chao et al. (2003)
(Continued on following page)
| No. | Scientific name/local name | Family | Part used | RFC^a | Flavor and property | Traditional usage | Literature on gynecological medicinal properties and effects (PubMed) |
|-----|----------------------------|----------------|-----------|-----------------|---------------------|---|--|
| 5 | Glycyrrhiza uralensis Fisch./Kan ts'ao | Leguminosae | Radix | 0.56 | Sweet; plain | Invigorating spleen, enriching qi; clearing heat; removing toxicity; resolving phlegm; relieving cough, spasm, and pain; and coordinating mechanisms of several medicinal materials simultaneously | 1. Breast cancer Hu et al. (2009), Seon et al. (2012), Park et al. (2016), Huang et al. (2019)
2. Female reproductive problems Hajirahimkhan et al. (2013), Jia et al. (2013), Arentz et al. (2014), Hajirahimkhan et al. (2015)
3. Gynecological cancer Liu et al. (2017)
4. Obesity Lee H. E. et al. (2018)
5. Polycystic ovarian syndrome Arentz et al. (2014)
6. Puerperal metritis Huang et al. (2018)
7. Uterine contraction Yang L. et al. (2017) |
| 6 | Ligusticum striatum DC/Chuan ch'ung | Apiaceae | Rhzoma | 0.54 | Pungent; warm | Activating blood and qi circulation, expelling wind, and relieving pain | 1. Anemia Li et al. (2012)
2. Puerperal metritis Huang et al. (2018)
1. Breast cancer Plastina et al. (2012)
2. Gynecological cancer Tahergorabi et al. (2015)
3. Hair loss Yoon et al. (2010)
4. Obesity Tahergorabi et al. (2015), Kawabata et al. (2017) |
| 7 | Ziziphus jujuba Mill./Hung tsao | Rhamnaceae | Fructus | 0.51 | Sweet; warm | Strengthening middle warmer and enriching qi, nourishing blood, and calming nerves | 1. Breast cancer Plastina et al. (2012)
2. Gynecological cancer Tahergorabi et al. (2015)
3. Hair loss Yoon et al. (2010)
4. Obesity Tahergorabi et al. (2015), Kawabata et al. (2017) |
| 8 | Vaccaria hispanica (Mill.) Rauschert/Wang pu liu hsing | Caryophyllaceae | Semen | 0.49 | Bitter; plain | Activating blood circulation, unblocking menstrual flow, promoting lactation, reducing swelling, promoting urination, and treating stranguria | 1. Breast cancer Shoemaker et al. (2005)
2. Milk synthesis Yu et al. (2020)
3. Osteoporotic Shih et al. (2009) |
| 9 | Codonopsis pilosula (Franch.) Nannf./Tang san | Campanulaceae | Radix | 0.49 | Sweet; plain | Invigorating spleen, ameliorating lungs, nourishing blood, and regenerating body fluids | 1. Breast cancer Wang et al. (2014), Fu et al. (2016)
1. Anemia Liang et al. (2004)
2. Blood stasis syndrome Kubo et al. (1994)
3. Endometrial abnormality Lee et al. (2016)
4. Breast cancer Li et al. (2014), Liu C. et al. (2015)
5. Hair loss Lee C.Y. et al. (2018)
6. Obesity Han et al. (2015)
7. Osteoporotic Gong et al. (2019), Lai et al. (2015), Lim and Kim (2013), Liu C. et al. (2019), Oh et al. (2003), Ok et al. (2015), Yin et al. (2004)
8. Ovarian failure Chao et al. (2003), Wei et al. (2014)
9. Polycystic ovarian syndrome Liang et al. (2008), Jang et al. (2014) |
| 10 | Rehmannia glutinosa (Gaerth.) DC./Shu ti huang | Plantaginaceae | Radix | 0.47 | Sweet; warm | Enriching blood, nourishing yin, enriching essence, and replenishing marrow | 1. Breast cancer Wang et al. (2014), Fu et al. (2016)
1. Anemia Liang et al. (2004)
2. Blood stasis syndrome Kubo et al. (1994)
3. Endometrial abnormality Lee et al. (2016)
4. Breast cancer Li et al. (2014), Liu C. et al. (2015)
5. Hair loss Lee C.Y. et al. (2018)
6. Obesity Han et al. (2015)
7. Osteoporotic Gong et al. (2019), Lai et al. (2015), Lim and Kim (2013), Liu C. et al. (2019), Oh et al. (2003), Ok et al. (2015), Yin et al. (2004)
8. Ovarian failure Chao et al. (2003), Wei et al. (2014)
9. Polycystic ovarian syndrome Liang et al. (2008), Jang et al. (2014) |

^a RFC: Relative Frequency of Use.
TABLE 1 | (Continued) Medicinal properties of materials frequently used in galactogenous prescriptions (RFC \(\geq 0.2 \)) and modern pharmacological research on their applications for women.

No	Scientific name/local name	Family	Part used	RFC*	Flavor and property	Traditional usage	Literature on gynecological medicinal properties and effects (PubMed)
11	Paeonia lactiflora Pall./Pai shao	Paeoniaceae	Radix	0.39	Bitter and sour; cold	Nourishing blood, regulating menstruation, making yin astringent, reducing sweat, softening liver, relieving pain, and suppressing hyperactive liver yang	1. Anemia Lee et al. (2014)
2. Blood stasis syndrome Sun et al. (2016), Cheng et al. (2018)
3. Breast cancer Liu Y.T. et al. (2019)
4. Female reproductive problems Arentz et al. (2014), Moini Jazani et al. (2018)
5. Menopausal hot flushes Li et al. (2019)
6. Osteoporotic Tsai et al. (2008)
7. Polycystic ovarian syndrome Arentz et al. (2014), Arentz et al. (2017)
8. Uterine myomas Sakamoto et al. (1992) |
| 12 | Melastoma malabathricum L./Yeh mu tan | Melastomataceae | Caulis & radix | 0.38 | Sour and astringent; cool | Removing retained food, promoting urination and blood circulation, stopping bleeding, clearing heat, and removing toxicity | 1. Breast cancer Hamid et al. (2018) |
| 13 | Atractylodes macrocephala Koidz./Pai chu | Compositae | Rhizoma | 0.26 | Bitter and sweet; warm | Invigorating spleen, enriching qi, eliminating dampness, promoting urination, reducing sweat, and preventing miscarriage | 1. Breast cancer Wang et al. (2014), Fu et al. (2016)
2. Gynecological cancer Long et al. (2017)
3. Obesity Song et al. (2018), Zhu et al. (2018)
4. Uterine contraction Zhang et al. (2000) |
| 14 | Chaeomeles speciose (sweet) Nakai/Mu kua | Rosaceae | Fructus | 0.23 | Sour; warm | Relaxing tendons, activating collaterals, harmonizing stomach, and eliminating dampness | None |
| 15 | Cinnamomum cassia (L.) J. Presl/Kuei chih | Lauraceae | Ramulus | 0.23 | Pungent and sweet; warm | Inducing perspiration, dispelling pathogenic factors from muscles, warming and dredging meridians, supporting yang, transforming into qi, suppressing upward surge of qi, and descending qi | 1. Breast cancer Rad et al. (2015), Yu et al. (2010)
2. Gynecological cancer Koppikar et al. (2010)
3. Infertility Iwaoka et al. (2010)
4. Obesity Zhang et al. (2019)
5. Osteoporotic Huh et al. (2015)
6. Polycystic ovarian syndrome Arentz et al. (2014)
7. Uterine contraction Sun et al. (2016), Sun et al. (2017)
8. Uterine myomas Sakamoto et al. (1992) |
| 16 | Eucommia ulmoides Oliv./Tu chung | Eucommiaceae | Cortex | 0.22 | Sweet; warm | Tonifying liver and kidneys, strengthening bones and tendons, and preventing miscarriage | 1. Breast cancer Yi et al. (2005)
2. Breast cancer Zhang et al. (2006), Ling et al. (2011)
3. Gynecological cancer Tao et al. (2016)
4. Osteoporotic Xia et al. (2014)
5. Polycystic ovarian syndrome Jang et al. (2014)
6. Uterine contraction Sun et al. (2016)
7. Uterine dysfunction Lee et al. (2016)
8. Uterine myomas Sakamoto et al. (1992) |
| 17 | Poria cocos (Schwein.) F.A. Wolf/Fu ling | Polyporaceae | Sclerotia | 0.21 | Sweet and plain; plain | Promoting urination, eliminating dampness, invigorating spleen, and calming heart | (Continued on following page) |
Milk generation is closely associated with serum estrogen, progesterone, and prolactin levels. Estrogen and progesterone stimulate mammary gland development and function during pregnancy. Following delivery, the serum prolactin level increases, and this in turn substantially increases milk production. Thyroid hormone, insulin, low estrogen level, and progesterone promote pituitary prolactin secretion. In contrast, dopamine, high estrogen level, and progesterone promote pituitary prolactin secretion. Peña and Rosenfeld, 2001; Silva et al., 2020).

In various regions of the world, several herbs are used to promote lactation, with *T. foenum-graecum* L. and *F. vulgare* Mill being the most common. The origin of the two herbs resembles those indicated in the present study. *Trigonella foenum-graecum*, similar to *H. polybotrys* and *G. uralensis*, is a member of *Leguminosae*. Pharmacological studies have reported that phytoestrogens that are abundant in *T. foenum-graecum*, promote mammary gland development, increase prolactin secretion, and stimulate milk production via antagonizing dopamine receptors (Foong et al., 2020). *Foeniculum vulgare*, similar to *A. sinensis* and *L. striatum*, i.e., is a member of *Apiaceae*. *Trans*-anethole in *F. vulgare* competes with dopamine for its receptors, blocks the inhibitory effect of dopamine on prolactin, and indirectly stimulates prolactin biosynthesis (Javan et al., 2017; Foong et al., 2020).

Efficacy Analysis

TCM classifies medicinal materials according to their property and flavor. Their property include hot, warm, plain, cool, and cold. Hot and warm are opposites of cool and cold. Moreover, the degree of medicinal effects differs between warm and hot and between cool and cold materials (Zhang et al., 2020). Previous studies have reported that hot and warm traditional Chinese medicinal materials regulate the human endocrine system (Liang et al., 2013). Among the 19 medicinal materials identified in the galactogenous prescriptions collected here, 58% were warm. In general, warm medicinal materials have been widely used to increase milk secretion and their modes of action maybe associated with the endocrine system. The flavors of material medicines include sour, bitter, sweet, pungent, salty, plain, and astringent. Most sweet medicinal materials are tonics. TCM theory states that sweet medicinal materials are supplemeting, moderating, and harmonizing (He et al., 2012). Here, sweet medicinal materials accounted for 54% of the 19 medicinal materials in the galactogenous prescriptions. These findings of the present study are consistent with the TCM theory.

Analysis of the Core Medicinal Materials in the Prescriptions

Angelica sinensis, *H. polybotrys*, and *T. papyrifer* were the core components in the galactogenous prescriptions. *Angelica sinensis* has been prescribed to enrich the blood, whereas *H. polybotrys* has been administered to nourish the *qi* (Chang et al., 2020). Previous pharmacological studies on Chinese herbal medicines have reported that *A. sinensis*, *L. striatum*, *R. glutinosa*, and *Astragalus propinquus* Schischkin are used to treat anemia and enrich hemoglobin (Liang et al., 2004; Li et al., 2012; Jia et al., 2015; Bazzano et al., 2016; Javan et al., 2017; Zheng et al., 2020). The origin of the two herbs resembles those indicated in the present study. *Trigonella foenum-graecum*, similar to *H. polybotrys* and *G. uralensis*, is a member of *Leguminosae*. Pharmacological studies have reported that phytoestrogens that are abundant in *T. foenum-graecum*, promote mammary gland development, increase prolactin secretion, and stimulate milk production via antagonizing dopamine receptors (Foong et al., 2020).

TABLE 1 (Continued) Medicinal properties of materials frequently used in galactogenous prescriptions (RFC ≥ 0.2) and modern pharmacological research on their applications for women.

No	Scientific name/local name	Family	Part used	RFC*	Flavor and property	Traditional usage	Literature on gynecological medicinal properties and effects (PubMed)
18	Ziziphus jujuba Mill./Hei tsao	Rhamnaceae	Fructus	0.20	Sweet; warm	Tonifying spleen and stomach, enriching qi and blood, calming heart and nerves, regulating yin and yang, and harmonizing medicinal properties of various ingredients simultaneously	1. Breast cancer
2. Gynecological cancer
3. Hair loss
4. Obesity
5. Anemia |
| 19 | Dimocarpus longan Lour./Kuei yüan | Sapindaceae | Arillus | 0.20 | Sweet; warm | Tonifying heart and spleen, nourishing blood, and calming nerves | 1. Breast cancer
2. Gynecological cancer |

RFC, relative frequency of citation.
Gynecological cancer includes cervical, ovarian, and uterine cancers.
Limitations and Future Works

This study had certain limitations that should be addressed in future research. The network diagram created with the TCMISS did not discriminate the frequency of application among medicinal materials. The demarcating line between pairs of medicinal materials only showed that they appeared more than 18 times. However, the frequency of application could not be further compared. Hence, a second chart must be plotted to better display the relationships among the medicinal materials examined here. Moreover, although numerous medicinal materials promoting lactation were collected in the present study, limited studies have explored or reported their modes of action. Furthermore, it remains unknown whether these materials induce adverse reactions in lactating women or their babies. Hence, the mechanisms underlying milk secretion/stimulation and the associated adverse effects of these medicinal materials merit further investigation. Furthermore, clinical trials are also needed to verify their efficacies in future work.

Figure 4 | Characteristics of 19 medicinal materials with an RFC of greater than or equal to 0.2 in galactogenous prescriptions. (A) Selection of frequently used medicinal materials. (B) Radar chart of properties. (C) Radar chart of flavors. (D) Histogram of traditional efficacy classifications. (E) Modern pharmacological research related to women. RFC, relative frequency of citation; AB, Achyranthes bidentata Blume; ADa, Angelica dahurica (Hoffm.) Benth. and Hook. f. ex Franch. and Sav.; ADi, Arawostegia divaricata (Blume) M. Kato; AM, Atractylodes macrocephala Koidz.; AP, Astragalus propinquus Schischkin; AS, Angelica sinensis (Oliv.) Diels; BC, Bupleurum chinense DC.; CAu, Cuscuta australis R. Br.; CB, Cibotium barometz (L.) J. Sm.; CCC, Cinnamomum cassia (L.) J. Presl (cortex); CCR, Cinnamomum cassia (L.) J. Presl (ramulus); CM, Clematis montana Buch.-Ham. ex DC.; CNC, Cervus nippon Temminck (cornupantotrichum); CRi, Citrus reticulata Blanco; CS, Chaenomeles speciosa (Sweet) Nakai; Di, Dipsacus inermis Will.; DL, Dimocarpus longan Lour.; DO, Dioscorea oppositifolia L.; EU, Eucommia ulmoides Oliv.; FV, Foeniculum vulgare Mill.; GMb, Glycyrrhiza max (L.) Merr. (black); GI, Glycyrrhiza uralensis Fisch.; HP, Hedysarum polybotrys Hand.-Mazz.; LCh, Lycium chinense Mill.; LF, Liquidambar formosana Hance; LS, Ligusticum striatum DC.; MM, Melastoma malabathricum L.; MO, Morinda officinalis F.C.How; NNSe, Nelumbo nucifera Gaertn. (Semen); Ol, Oroxylum indicum (L.) Kurz; OJ, Ophiopogon japonicus (Thunb.) Ker Gawl.; PCo, Poria cocos (Schwein.) F.A. Wolf; PCy, Polygonatum cyrtonema Hua; PGr, Platycodon grandiflorus (Jacq.) A. DC.; PLW, Paeonia lactiflora Pall. (white); PM, Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep; PO, Polygonatum odoratum (Mill.) Druce; PQ, Paraxuquin quetfolius L.; RGC, Rehmannia glutinosa (Gaertn.) DC. (cooked); RM, Reynoutria multiflora (Thunb.) Moldenke; SF, Strobilanthes forresti Diels; SM, Salvia miltiorrhiza Bunge; TK, Trichosanthes kirilowii Maxim.; TP, Tetrapanax papyrifer (Hook.) K. Koch; VH, Vaccaria hispanica (Mill.) Rauschert; ZJB, Ziziphus jujuba Mill. (black); ZJR, Ziziphus jujuba Mill. (red).
CONCLUSION

To the best of our knowledge, this study is the first ethnobotanical investigation of galactogenous prescriptions in Taiwan with the aim to assess the current status of TCM material prescribed and used to promote lactation. We generated valuable and comprehensive data on the galactogenous medicinal materials currently administered in Taiwan. The information compiled here will help preserve local knowledge regarding galactogenous medicinal materials in Taiwan and promote their prescription. Although galactogenous prescriptions have been used generally by Taiwanese lactating women, their function, efficacy, and safety warrant further investigation.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

AUTHOR CONTRIBUTIONS

JC and C-YK performed the field investigation and organized and analyzed the database. S-SH identified the botanical materials. JC drafted the manuscript. C-YL, TM, C-HH, and H-CC revised the manuscript and contributed to discussions on it. S-SH and S-YS provided guidance for the project and supervised the experiment and manuscript review.

FUNDING

This research was funded by the Tsuzuki Institute for Traditional Medicine, grant number 108727B8; China Medical University, grant numbers CMU106-N-24, CMU107-N-33, CMU108-N-22, and CMU-108-MF-116; the Ministry of Science and Technology, grant number MOST 107-2320-B-039-030-MY3; The China Medical University under the Higher Education Sprout Project and Teaching Practice Research Program, grant number 1077170A, of the Ministry of Education of Taiwan; and the Ministry of Health and Welfare, grant numbers M07G1358 and M08G1211.

ACKNOWLEDGMENTS

The authors are grateful to the herbarium of China Medical University for providing us a space for storing the medicinal materials of this study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2020.625869/full#supplementary-material.
REFERENCES

Ahmad, K. S., Hamid, A., Nawaz, F., Hameed, M., Ahmad, F., Deng, J., et al. (2017). Ethnopharmacological studies of indigenous plants in Kel village. Neddum valley, Azad Kashmir, Pakistan. J. Ethnobiol. Ethnomed. 13, 68. doi:10.1186/s13002-017-0196-1

Aramagase, H., and Nance, D. M. (2011). *Lycium barbarum* increases caloric expenditure and decreases waist circumference in healthy overweight men and women: pilot study. *J. Am. Coll. Nutr.* 30, 304–309. doi:10.1080/07315724.2011.10719973

Arentz, S., Abbott, J. A., and Bensoussan, A. (2014). Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings. *BMC Compl. Alternative Med.* 14, 511. doi:10.1186/1472-6882-14-511

Arentz, S., Smith, C. A., Abbott, J., Fahey, P., Cheema, B. S., and Bensoussan, A. (2017). Combined lifestyle and herbal medicine in overweight women with polycystic ovary syndrome (PCOS): a randomized controlled trial. *Phytother Res.* 31, 1330–1340. doi:10.1002/ptr.5858

Badgujar, S. B., Patel, V. V., and Bandivdekar, A. H. (2014). *Foeniculum vulgare* Mill: a review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. *BioMed Res. Int.* 2014, 842674. doi:10.1155/2014/842674

Bajin Ba Ndob, I., Mengome, L. E., Bouroubo Bouroubo, H. P., Lossangoy Banfora, Y., and Bivigou, F. (2016). Ethnobotanical survey of medicinal plants used as anthelmintic remedies in Gabon. *J. Ethnopharmacol.* 191, 360–371. doi:10.1016/j.ijep.2016.06.026

Bazzano, A. N., Cenac, L., Brandt, A. J., Barnett, J., Thibeau, S., and Theall, K. P. (2014). Health provider experiences with galactagogues to support breastfeeding: a cross-sectional survey. *J. Hum. Lactation* 30, 304–309. doi:10.1080/07315724.2016.842674

Bazzano, A. N., Cenac, L., Brandt, A. J., Barnett, J., Thibeau, S., Thriemer, K., and Theall, K. P. (2016). Protective effects of the roots of *Glycyrrhiza* species used for women’s health: differential effects of the Michael acceptors isoliquiritigenin and licochalcone. *Folia Med.* 58, 345–552. doi:10.1177/089034417799432

Cho, W., Li, X. Q., Wang, X., Fan, H. T., Zhang, X. N., Hou, Y., et al. (2010). A novel protein polysaccharide, isolated from *Lycium barbarum* (Oliv.) Diels induces the IGF-1/PI3K/mTOR pathway in streptozotocin-induced diabetic rats. *BioMed Res. Int.* 2013, 842674. doi:10.1155/2013/842674

Cheng, Y., Chu, Y., Su, X., Zhang, K., Zhang, Y., Wang, Z., et al. (2018). Pharmacokinetic-pharmacodynamic modeling to study the antidysmenorrhoea effect of Guizhi Fuling capsule on primary dysmenorrhoea rats. *Pharmacogn Phytother.* 48, 141–151. doi:10.1016/j.phyto.2018.04.041

Chinese Pharmacopoeia Commission (2020). *Pharmacopoeia of the People’s Republic of China*. 11th Edn. Beijing, China: China Medical Science Press.

Chuang Gung Med. J., Chang, P. J., Hsieh, W. S., Tsai, Y. J., Lin, S. J., and Chen, P. C. (2009). Herbal Chinese medicine use in Taiwan during pregnancy and the postpartum period: a population-based cohort study. *Int. J. Nurs. Stud.* 46, 787–795. doi:10.1016/j.ijnurstu.2008.12.015

de Souza Zanchet, M. Z., Nardi, G. M., de Oliveira Souza Bratti, L., Filipponi-Monteiro, F. B., and Locatelli, C. (2017). *Lycium barbarum* reduces abdominal fat and improves lipid profile and antioxidant status in patients with metabolic syndrome. *Oxid. Med. Cell. Longev.* 2017, 9763210. doi:10.1155/2017/9763210

Du, H., Feng, Q., Yang, X., Xu, R., Li, H., Dong, X., et al. (2014). ‘Whole Chinese angelica’ microemulsion: its preparation and in vivo and in vitro evaluations. *Drug Dev. Ind. Pharm.* 40, 1330–1339. doi:10.3109/03639045.2013.819881

Eidelman, A. I. (2012). Breastfeeding and the use of human milk: an analysis of the American Academy of Pediatrics 2012 breastfeeding policy statement. *Breastfeed. Med.* 7, 323–324. doi:10.1089/bfm.2012.0067

Forinash, A. B., Yancey, A. M., Barnes, K. N., and Myles, T. D. (2012). The use of galactagogues in the breastfeeding mother. *Ann. Pharmacother.* 46, 1392–1404. doi:10.1345/aph.1r167

François, E. L., Silva, V. A., Volpato, R. M., Silva, P. A., Brune, M. F., and Honorio-Pranç, A. C. (2013). Maternal anemia induces changes in immunological and nutritional components of breast milk. *J. Matern. Fetal Neonatal Med.* 26, 1223–1227. doi:10.3109/07315724.2013.776529

Fu, J., Ke, X., Tan, S., Liu, T., Wang, S., Ma, J., et al. (2016). The natural compound codonolactone attenuates TGF-β1-mediated epithelial-to-mesenchymal transition and motility of breast cancer cells. *Oncol. Rep.* 35, 117–126. doi:10.3892(or).2015.4394

Georgiev, K. D., Slavov, I. J., and Iliev, I. A. (2019). Antioxidant activity and antiinflammatory effects of *Lycium barbarum* (goji berry) fractions on breast cancer cell lines. *Folia Med.* 61, 104–112. doi:10.4278/folmed-2018-0053

Gong, A. G., Lau, K. M., Xu, M. L., Lin, H. Q., Dong, T. T., Zheng, K. Y., et al. (2016). The estrogenic properties of *DangguiBuxue* Tang, a Chinese herbal decoction, are triggered predominantly by calycosin in MCF-7 cells. *J. Ethnopharmacol.* 189, 81–89. doi:10.1016/j.jep.2016.05.035

Gong, W., Zhang, N., Cheng, G., Zhang, Q., Ye, H., Shen, Y., et al. (2019). *Rehmannia glutinosa* licbosch extracts prevent bone loss and architectural deterioration and enhance osteoblastic bone formation by regulating the IGF-1/P13K/mTOR pathway in streptozotocin-induced diabetic rats. *Int. J. Mol. Sci.* 20, 3964. doi:10.3390/ijms20163964

Hajirahimkhan, A., Simmler, C., Dong, H., Lantvit, D. D., Li, G., Chen, N. S., et al. (2015). Induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) by Glycyrrhiza species used for women’s health: differential effects of the Michael acceptors isoliquiritigenin and licochalcone. *A. Chem. Res. Toxicol.* 28, 2130–2141. doi:10.1021/acr.7b00310

Hajirahimkhan, A., Simmler, C., Yuan, Y., Anderson, J. R., Chen, S. N., Nikolich, D., et al. (2013). Evaluation of estrogenic activity of licorice species in comparison with hops used in botanicals for menopausal symptoms. *Plos One* 8, e67947. doi:10.1371/journal.pone.0067947

Hamid, H. A., Ramli, A. N. M., Zamri, N., and Yusoff, M. M. (2018). UPLC-QTOF/MS-based phenolic profiling of Melastomaceae, their antioxidant activity and cytotoxic effects against human breast cancer cell MDA-MB-231. *Food Chem.* 265, 253–259. doi:10.1016/j.foodchem.2018.05.033

Han, K., Bose, S., Kim, Y. M., Chin, Y. W., Kim, B. S., Wang, J. H., et al. (2015). Rehmannia glutinosa reduced waist circumferences of Korean obese women possibly through modulation of gut microbiota. *Food Funct* 6, 2684–2692. doi:10.1039/c5fo00232j

He, Y., Zheng, X., Sit, C., Loo, W. T., Wang, Z., Xie, T., et al. (2012). Using association rules mining to explore pattern of Chinese medicinal formulae for effects with corroborative clinical findings. *BMC Compl. Alternative Med.* 14, 511. doi:10.1186/1472-6882-14-511
Iwaoka, Y., Hashimoto, R., Koizumi, H., Yu, J., and Okabe, T. (2010). Selective.

Jia, J., Li, Y., Lei, Z., Hao, Y., Wu, Y., Zhao, Q., et al. (2013). Relaxative effect of core.

Huh, J. E., Kim, S. J., Kang, J. W., Nam, D. W., Choi, D. Y., Park, D. S., et al. (2015).

Huang, W. C., Su, H. H., Fang, L. W., Wu, S. J., and Liou, C. J. (2019).

Huang, S. S., Chen, T. Y., Deng, J. S., Pao, L. H., Cheng, Y. C., and Chao, J. (2020).

Hu, C., Liu, H., Du, J., Mo, B., Qi, H., Wang, X., et al. (2009). Estrogenic activities of.

Kawabata, K., Kitamura, K., Irie, K., Naruse, S., Matsuura, T., Uemae, T., et al.

Ho, M., Li, T. C., and Su, S. Y. (2011). The association between Traditional Chinese.

Khan, A. U., Yuan, Q., Khan, Z. U. H., Ahmad, A., Khan, F. U., Tahir, K., et al. (2018). An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J. Photochem. Photobiol, B 183, 367–373. doi:10.1016/j.jphotobiol.2018.05.007

Kim, M. H., Kim, E. J., Choi, Y. Y., Hong, J., and Yang, W. M. (2017a). Lycium chinense improves post-menopausal obesity via regulation of PPAR-γ and estrogen receptor-αβ expressions. Am. J. Chin. Med. 45, 269–282. doi:10.1142/S0129034X1750173

Kim, M. H., Lee, J. E., Lee, J. S., and Yang, W. M. (2017b). Improvement of osteoporosis by Lycium chinense administration in ovariectomized mice. J. Chin. Med. Assoc. 80, 222–226. doi:10.1016/j.jcma.2016.11.006

Koppikar, S. J., Choudhari, A. S., Suryavanshi, S. A., Kumari, S., Chattopadhyay, S., and Kaul-Ghanekar, R. (2010). Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Canc. 10, 210. doi:10.1186/1471-2407-10-210

Kubo, M., Asano, T., Shiomoto, H., and Matsuwa, H. (1994). Studies on rheummanniae radix. I. Effect of 50% ethanolic extract from steamed and dried rheummanniae radix on hemorrhage in arthritic and thrombosis rats. Biol. Pharm. Bull. 17, 1282–1286. doi:10.1248/bpb.17.1282

Lai, N., Zhang, J., Ma, X., Wang, B., Miao, X., Wang, Z., et al. (2015). Regulatory effect of catapool on Th1/Th2 cells in mice with bone loss induced by estrogen deficiency. Am. J. Reprod. Immunol. 74, 487–498. doi:10.1111/ajri.12423

Lang, F., Qi, J., Yin, H., Li, Z., Zhi, Y., Liu, Y., et al. (2018). Aporotic cell death induced by Z-Ligustilide human ovarian cancer cells and role of NRF2. Food Chem. Toxicol. 121, 631–638. doi:10.1016/j.ijbiomac.2019.03.196

Lee, H. W., Kim, H., Ryuk, J. A., Kil, K. J., and Ko, B. S. (2014). Hemopoietic effect of catalpol on Th1/Th2 cells in human adenral cells. Life Sci. 86, 894–898. doi:10.1016/j.lfs.2010.04.009

Jang, M., Lee, M. J., Lee, J. M., Bae, C. S., Kim, S. H., Ryu, J. H., et al. (2014). Oriental medicine Kyung-ok-Ko prevents and alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats. PLoS One 9, e87623. doi:10.1371/journal.pone.0087623

Iwaoa, Y., Hashimoto, R., Koizumi, H., Yu, J. and Okabe, T. (2010). Selective stimulation by cinnamaldehyde of progesterone secretion in human adrenal cortex cells. Theriogenology 121, 67–71. doi:10.1016/j.theriogenology.2008.08.008

Huh, J. E., Kim, S. J., Kang, J. W., Nam, D. W., Choi, D. Y., Park, D. S., et al. (2015). The standardized BHH10 extract, a combination of Atragrasas membranaceus, Cinnamomum cassia, and Phellodendron amurense, reverses bone mass and metabolism in a rat model of postmenopausal osteoporosis. Phytother Res. 29, 30–39. doi:10.1002/ptr.5218

Lee, C. Y., Yang, C. Y., Lin, C. C., Yu, M. C., Shen, S. J., and Kuan, Y. H. (2018). Hair growth is promoted by BeauTop via expression of EGF and FGF 7. Mol. Med. Rep. 17, 8047–8052. doi:10.3892/mmr.2018.8917

Lee, H. E., Yang, G., Han, S. H., Lee, J. H., An, T. J., Jang, J. K., et al. (2018). Anti-obesity potential of Glycyrrhiza uralensis and Lycocahle A through induction of adipocyte browning. Biochem. Biophys. Res. Commun. 503, 2117–2123. doi:10.1016/j.bbrc.2018.07.168

Lee, H. W., Kim, H., Ryu, J. A., Kil, K. J., and Ko, B. S. (2014). Hemopoietic effect of extracts from constituent herbal medicines of Samul-tang on phenylhydrazine-induced hemolysis in anemia in rats. Int. J. Clin. Exp. Pathol. 7, 6179–6185. doi:10.3746/jkfn.2009.38.12.1718

Lee, M. J., Jang, M., Bae, C. S., Park, K. S., Kim, H. J., Lee, S., et al. (2016). Effects of oriental medicine Kyung-ok-Ko on uterine abnormality in hyperandrogenerats. Rejuvenation Res. 19, 456–466. doi:10.1089/rej.2015.1787

Legislative Yuan(2000). Bull. Legislative Yuan.Available at https://lcg.gov.tw/lyLCEW/leicvCommMore.action (Accessed August 7, 2020)

Li, G., Sepkovic, D. W., Bradlow, H. L., Telang, N. T., and Wong, G. Y. (2009). Lycium barbarum inhibits growth of estrogen receptor positive human breast cancer cells by favorably altering estradiol metabolism. Nutr. Canc. 61, 408–414. doi:10.1002/ijm.2140. doi:10.1089/ijm.2015.1787

Li, W. Liu, X. F., Chen, H. Z., Chen, H. H., Shi, G. X., and Wang, S. J. (2014). [Effect of ynehuyuehuan decoction on precancerous of breast cancer, protein and mrna expression of Ki67: an experimental research]. J. Integr. Med. 34, 970–975

Li, M., Hung, A., Lenon, G. B., and Yang, A. W. H. (2019). Chinese herbal formulae for the treatment of menopausal hot flushes: a systematic review and meta-analysis. PLoS One 14, e0222383. doi:10.1371/journal.pone.0222383

Li, M., Zhang, N. D., Wang, Y., Han, T., Jiang, Y. P., Rahman, K., et al. (2016). Coordinate regulatory osteogenesis effects of icarin, timosaponin B II and feric acid from TCM formulas on UMR-106 osteoblastic cells and osteoblasts in neonatal rat calvaria cultures. J. Ethnopharmacol. 185, 120–131. doi:10.1016/j.jep.2016.03.023

Li, N., Lin, Z., Chen, W., Zheng, Y., Ming, Y., Zheng, Z., et al. (2018). Corilagin from longan seed: identification, quantification, and synergistic cytotoxicity on SKOV3ip and key cells with ginsenoside Rb2 and 5-fluorouracil. Food Chem. Toxicol. 119, 133–140. doi:10.1016/j.fct.2018.05.018

Li, W., Guo, J., Tang, Y., Wang, H., Huang, M., Qian, D., et al. (2012). Pharmacokinetic comparison of feric acid in normal and blood deficiency rats after oral administration of Angelica sinensis, Ligusticum chuanxiong and their combination. Int. J. Mol. Sci. 13, 3583–3597. doi:10.3390/ijms13035383

Liang, F., Li, L., Wang, M., Niu, X., Zhan, J., He, X., et al. (2013). Molecular network and chemical fragment-based characteristics of medicinal herbs with cold and hot properties from Chinese medicine. J. Ethnopharmacol. 148, 770–779. doi:10.1016/j.jep.2013.04.055
Ma, H., Li, L., Dou, G., Wang, C., Li, J., He, H., et al. (2017). Z-ligustilide restores menstrual function in estrogen deficient rats. J. Integr. Med. 28, 314–317.

Lim, D. W., and Kim, Y. T. (2013). Dried root of Achyranthes bidentatae radix and Angelicae sinensis radix for menstrual syndrome by bushenhuoxue method combined with ultrasound-guided follicle aspiration. J. Integr. Med. 28, 314–317.

Liang, Q. D., Lu, X. Q., Ma, Z. C., Tan, H. L., Ma, B. P., Gao, Y., et al. (2004). A randomized controlled trial of TCM formula T33 in human breast cancer cells. TCM Formulae. 9, 334–339.

Liu, C., Wang, L., Zhu, R., Liu, H., Ma, R., Chen, B., et al. (2019). Effects of TCM formula T33 in human breast cancer cells. J. Ethnopharmacol. 232, 169–177. doi: 10.1016/j.jep.2019.07.018

Liu, C., Wu, F., Liu, Y., and Meng, C. (2015). Catalpol suppresses proliferation and differentiation of MCF-7 breast cancer cells through downregulating miR-218. Mol. Med. Rep. 1, 579. doi:10.12659/MSM.902886

Liu, Y. Q., Petrini, M., and Maloni, J. A. (2015). ‘Doing the month’: post-partum practices in Chinese women. Nurs. Health Sci. 17, 5–14. doi:10.1111/nhs.12146

Liu, Y. T., Tsiao, C. H., Tzang, B. S., and Hsu, T. C. (1999). In vitro and in vivo effects of TCM formula T33 in human breast cancer cells. BMC Complement. Altern. Med. 9, 211. doi:10.1186/1472-6882-9-211

Long, F., Wang, T., Jia, P., Wang, H., Qing, X., Xiong, T., et al. (2017). Anti-tumor effects of Atractylenolide-I on human ovarian cancer cells. Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 23, 571–579. doi:10.21659/MSM.902886

Lu, K. T., Cheng, H. Y., Lo, C. F., Chang, H., Deng, P., et al. (2019). The combination of Radix Astragali and Radix Angelicae sinensis attenuates the IFN-γ-induced immune destruction of hematopoeisis in bone marrow cells. BMC Compl. Alternative Med. 19, 356. doi:10.1186/s12906-019-2781-4

Moini Jazani, A., Hamdi, M., Tansiz, M., Nazemiyeh, H., Sadeghi Bazargani, H., Fazijou, S. M. B., et al. (2018). Herbal medicine for oligomenorrhea and amenorrhea: a systematic review of ancient and conventional medicine. J. Nutr. Res. Int. 2018, 3052768. doi:10.1155/2018/3052768

Mortel, M., and Mehta, S. D. (2013). Systematic review of the efficacy of herbal galactagogues. J. Hum. Lactation 29, 154–162. doi:10.1177/0890344413477243

Mullen, K. A., Lee, A. R., Lyman, R. L., Mason, S. E., Washburn, S. P., and Anderson, K. L. (2014). Short communication: an in vitro assessment of the antibacterial activity of plant-derived oils. J. Dairy Sci. 97, 5587–5591. doi:10.3168/jds.2013-7866

Odoh, U. E., Uzor, P. F., Eze, C. L., Akunne, T. C., Onyegbulam, C. M., and Adesope, O. P. (2018). Medicinal plants used by the people of Nsukka Local Government Area, south-eastern Nigeria for the treatment of malaria: an ethnobotanical survey. J. Ethnopharmacol. 218, 1–15. doi:10.1016/j.jep.2018.02.034

Oh, K. O., Kim, S. W., Kim, J. Y., Ko, S. Y., Kim, H. M., Baek, J. H., et al. (2003). Effect of Rehmannia glutinosa Lischoc on breast milk. Cell. Mol. Med. Acta. 334, 185–195. doi:10.1515/cmm.2016.0073

Ok, H. M., Gebreamanuel, M. R., Oh, S. A., Jeon, H., Lee, W. I., and Kwon, O. (2015). A root-based combination supplement containing Pueraria lobata and Rehmannia glutinosa and exercise preserve bone mass in ovariectomized rats fed a high-fat diet. Calcif. Tissue Int. 97, 624–633. doi:10.1007/s00223-015-0581-7

Özalbay, E., Aslanodğu, Z., Özkoral, A., Topçuoğlu, S., and Karatekin, G. (2018). Effect of a galactagogue herbal tea on breast milk production and prolactin secretion by mothers of preterm babies. Niger. J. Clin. Pract. 21, 38–42. doi:10.4103/1119-3077.224788

Paritkul, P., Ruangrongmorakot, K., Laosoosakthith, W., Suksummawong, M., and Puapornpong, P. (2016). The effect of ginger on breast milk volume in the early postpartum period: a randomized, double-blind controlled trial. Breastfeed. Med. 11, 361–365. doi:10.1089/bfm.2016.0073

Park, S. Y., Kwon, S. J., Lim, S. S., Kim, J. K., Lee, K. W., and Park, J. H. (2016). Licorisdin, an active compound in the hexane/ethanol extract of Glycyrrhiza uralensis, inhibits lung metastasis of 4T1 murine mammary carcinoma cells. Int. J. Mol. Sci. 17, 339. doi:10.3390/ijms17060934

Peña, K. S., and Rosenfeld, J. A. (2001). Evaluation and treatment of galactorrhoea. Am. Fam. Physician 63, 1763–1770.

Pharmaceutical Affairs Act (2018). Ministry of health and welfare. Available at: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?c=0030001 (Accessed July 1, 2020).

Plastina, P., Bonolfiglio, D., Vizza, D., Fazio, A., Rovito, D., Giordano, C., et al. (2012). Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells. J. Ethnopharmacol. 140, 325–332. doi:10.1016/j.jep.2012.01.022

Qi, H., Jiang, Z., Wang, C., Yang, Y., Li, L., He, H., et al. (2017). Sensitization of tamoxifen-resistant breast cancer cells by Z-ligustilide through inhibiting autophagy and accumulating DNA damages. Oncotarget 8, 29300–29317. doi:10.18632/oncotarget.16832

Rad, S. K., Kanthimathi, M. S., Abd Malek, S. N., Lee, G. S., Looi, C. Y., and Wong, W. F. (2015). Cinnamonum cassia suppresses caspase-9 through stimulation of Akt1 in MCF-7 cells but not in MDA-MB-231 Cells. PloS One 10, e0145216. doi:10.1371/journal.pone.0145216

Rock, E., and DeMichele, A. (2003). Nutritional approaches to late toxicities of adjuvant chemotherapy in breast cancer survivors. J. Nutr. 133, 317–319. doi:10.1093/jn/133.11.3785

Rock, E., and DeMichele, A. (2003). Nutritional approaches to late toxicities of adjuvant chemotherapy in breast cancer survivors. J. Nutr. 133, 317–319. doi:10.1093/jn/133.11.3785

Sacamoto, S., Yoshino, H., Shirahata, Y., Shimodaira, K., and Okamoto, R. (1992). Pharmacotherapeutic effects of kuei-chii-fu-ling-yan (keishi-bukuryo-gan) on human uterine myomas. Am. J. Chin. Med. 20, 313–317. doi:10.1122/10.1016/S0192-434X(92)80003-3

Salatino, S., Giacomelli, L., Carnevali, L. and Giacomelli, E. (2017). The role of natural galactagogues during breast feeding: focus on a Galgea officinalis based food supplement. Minerva Pediatr. 69, 531–537. doi:10.23736/S0026-4946.16-04797-7

Seon, M. R., Park, S. Y., Kwon, S. J., Lim, S. S., Choi, H. J., Park, H., et al. (2012). Hexane/ethanol extract of Glycyrrhiza uralensis and its active compound isoangustone A induce G1 cycle arrest in DU145 human prostate and 4T1 murine mammary cancer cells. J. Nutr. Biochem. 23, 85–92. doi:10.1016/j.jnutbio.2010.11.010
Setchell, K. D. R. (2001). *Soy isoflavones—benefits and risks from nature’s selective estrogen receptor modulators (SERMs)*. *J. Am. Coll. Nutr.* 20 (Suppl. 1), 354S–362S. doi:10.1080/07315752.2001.10719168

Shan, T., Shan, T., Liu, F., Zheng, H., and Li, G. (2017). Effects of *Lycium barbarum* polysaccharides on the damage to human endometrial stromal cells induced by hydrogen peroxide. *Mol. Med. Rep.* 15, 879–884. doi:10.3892/mmr.2016.6080

Shen, A. Y., Wang, T. S., Huang, M. H., Liao, C. H., Chen, S. J., and Lin, C. C. (2005). Antioxidant and antipateleto effects of dang gui-shui-yao-san on human blood cells. *Am. J. Chin. Med.* 33, 747–758. doi:10.1142/S0120838205003351

Shih, C. C., Lin, C. H., and Lin, W. L. (2009). Ameliorative effects of *Vaccaria segetalis* extract on osteoporosis in ovariectomized rats. *J. Nat. Med.* 63, 386–392. doi:10.1007/s11418-009-0341-9

Shoemaker, M., Hamilton, B., Dairkee, S. H., Cohen, I., and Campbell, M. J. (2005). *Fuling* granule, a TCM compound, suppresses cell proliferation and TGF-β-induced EMT in ovarian cancer. *PloS One* 11, e0168892. doi:10.1371/journal.pone.0168892

The Royal Botanic Gardens (2013). Plant list. Available at: http://www.theplantlist.org/ (Accessed June 29, 2020)

Tsai, H.-Y., Lin, Y.-F., Fong, Y.-C., Wu, J.-B., Chen, Y.-F., Tsuzuki, M., et al. (2008). Paenol inhibits RANKL-induced osteoclastogenesis by inhibiting ERK, p38 and NF-kappaB pathway. *Eur. J. Pharmacol.* 588, 124–133. doi:10.1016/j.ejphar.2008.04.024

Tsai, S. S., and Wang, H. H. (2019). Role changes in primiparous women during “doing the month” period. *Midwifery* 74, 6–13. doi:10.1016/j.midw.2019.03.007

Tsugami, Y., Matsunaga, K., Suzuki, T., Nishimura, T., and Kobayashi, K. (2017). Isoflavones and their metabolites influence the milk component synthesis ability of mammary epithelial cells through prolactin/STAT5 signaling. *Mol. Nutr. Food Res.* 61, 156. doi:10.1002/mnrf.201700156

Tu, W., Suzuki, N., Suzuki, T., Nishimura, T., and Kobayashi, K. (2020). Regulatory effects of soy isoflavones and their metabolites in milk production via different ways in mice. *J. Agric. Food Chem.* 68, 5847–5853. doi:10.1021/acsijf0c01288

Victora, C. G., Bahl, R., Barros, A. J., França, G. V., Horton, S., Krarve, J., et al. (2016). Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. *Lancet* 387, 475–490. doi:10.1016/S0140-6736(15)00247-4

Wang, L.-U., He, C. L., He, B. K., Guo, Q., Xiao, Y., and Yi, Q. (2012). Effects of *Jin-Ying-Tang* on *Staphylococcus aureus*-induced mastitis in rabbit. *Immunopharmacol. Immunotoxicol.* 34, 786–793. doi:10.3109/01630503.2012.655423

Wang, W., Chen, B., Zou, R., Tu, X., Tan, S., Lu, H., et al. (2014). Codonolactone, a sesquiperpene lactone isolated from *Chloranthus henryi* Hemsl, inhibits breast cancer cell invasion, migration and metastasis by downregulating the transcriptional activity of *Rcn2*. *Int. J. Oncol.* 45, 1891–1900. doi:10.3892/ijio.2014.2643

Wawruszak, A., Czerwonka, A., Okla, K., and Rzeski, W. (2016). Anticancer effect of ethanol *Lycium barbarum* (goji berry) extract on human breast cancer T47D cell line. *Nat. Prod. Res.* 30, 1993–1996. doi:10.1080/14786419.2015.1101691

Wei, M., Lu, Y., Liu, D., and Ru, W. (2014). Ovarian failure-resistant effects of catalpol in aged female rats. *Biomed. Pharmacol. Bull.* 37, 1444–1449. doi:10.1248/bpb.b14-00064

Wei, M., Zheng, S. Z., Ma, H., and Lv, Y. (2011). [Discussion of protective mechanism of *Ziziphus jujuba* polysaccharide on ovarian tissue in female senile rats]. *J. Chin. Med. Mater.* 34, 1915–1918

World Health Organization (2013). Essential Nutrition actions: improving maternal, newborn, infant and young child health and nutrition. Available at: http://apps.who.int/iris/bitstream/10665/44091/1/9789241505550_eng.pdf?ua=1 (Accessed June 29, 2020).

World Health Organization (2020). Infant and young child feeding. Available at: http://www.who.int/nutrition/topics/infant-and-young-child-feeding? (Accessed June 29, 2020).

World Health Organization (2017). The international code of marketing of breast-milk substitutes: frequently asked questions 2017 update. Available at: http://apps.who.int/iris/bitstream/handle/10665/254911/WHO-NMH-NHD-17.1-eng.pdf?ua=1 (Accessed June 29, 2020).

Wu, D., Zhang, X., Liu, L., and Guo, Y. (2019). Key CMM combinations in prescriptions for treating mastitis and working mechanism analysis based on network pharmacology. *Evid. Based Complement. Alternat. Med.* 2019, 8245071. doi:10.1155/2019/8245071

Wu, Z., Yang, L., He, L., Wang, L., and Peng, L. (2020). Systematic elucidation of the potential mechanisms of core Chinese materiamedicas in treating liver cancer based on network pharmacology. *Evid. Based Complement. Alternat. Med.* 2020, 4763675. doi:10.1155/2020/4763675

Xia, B., Xu, B., Sun, Y., Xiao, L., Pan, J., Jin, H., et al. (2014). The effects of *LiuweiDihuang* on canonical Wnt/β-catenin signaling pathway in osteoporosis. *J. Ethnopharmacol.* 153, 133–141. doi:10.1016/j.jep.2014.01.040

Xie, Q. F., Xie, J. H., Dong, T. T., Su, J. Y., Cai, D. K., Chen, J. P., et al. (2012). Effect of a derived herbal recipe from an ancient Chinese formula. *DArgosuiBucueux* Tang. *J. Ethnopharmacol.* 144, 567–575. doi:10.1016/j.jep.2012.09.041

Xu, J.-L., Gu, L.-H., Wang, Z.-T., Bligh, A., Han, Z.-Z., and Liu, S.-J. (2016). Seventeen zhe Zhu from the pith of *Tetrapanax papyriferus*. *J. Asian Nat. Prod. Res.* 18, 1131–1137. doi:10.1080/10288602.2016.1196194

Yang, D. M., Zhang, J. Q., and Fei, Y. F. (2017). *Lycium barbarum* polysaccharide attenuates chemotherapy-induced ovarian injury by...
reducing oxidative stress. *J. Obstet. Gynaecol. Res.* 43, 1621–1628. doi:10.1111/jog.13416

Yang, L., Chai, C. Z., Yan, Y., Duan, Y. D., Henz, A., Zhang, B. L., et al. (2017). Spasmolytic mechanism of aqueous licorice extract on oxytocin-induced uterine contraction through inhibiting the phosphorylation of heat shock protein 27. *Molecules* 22, 1392. doi:10.3390/molecules2201392

Yin, J., Tezuka, Y., Kouda, K., Tran, Q. L., Miyahara, T., Chen, Y., et al. (2004). *Am. J. Chin. Med.* 32, 17–31. doi:10.1142/S0192415X04000118

Yu, C. H., Chu, S. C., Yang, S. F., Hsieh, Y. S., Lee, C. Y., and Chen, P. N. (2019). *J. Ethnopharmacol.* 234, 5289–5303. doi:10.1016/j.jep.2019.02.036

Yu, Y., Yuan, X., Li, P., Wang, Y., Yu, M., and Gao, X. (2020). *Vaccarin* promotes proliferation of and milk synthesis in bovine mammary epithelial cells through the Prl receptor-PI3K signaling pathway. *Eur. J. Pharmacol.* 880, 173190. doi:10.1016/j.ejphar.2020.173190

Yuan, Z., Zhang, L., Hua, Y. J., Ji, P., Yao, W., Ma, Q., et al. (2019). Metabolomics study on promoting blood circulation and ameliorating blood stasis: investigating the mechanism of *Angelica sinensis* and its processed products. *Biomed. Chromatogr.* 33, e4457. doi:10.1002/bmc.4457

Zhang, C., Fan, L., Fan, S., Wang, J., Luo, T., Tang, Y., et al. (2019). *Cinnamomum cassia* Presl: a review of its traditional uses, phytochemistry, pharmacology and toxicology. *Molecules* 24, 3473. doi:10.3390/molecules24193473

Zhang, J., Guo, W., Li, Q., Sun, F., Xu, X., and Xu, H. (2020). Discriminant analysis of traditional Chinese medicinal properties based on holistic chemical profiling by (1). *Evid. Based Complement. Alternat. Med.* 2020, 3141340. doi:10.1155/2020/3141340

Zhang, M., Chiu, L. C., Cheung, P. C., and Ooi, V. E. (2006). Growth-inhibitory effects of a beta-glucan from the mycelium of *Poria cocos* in human breast carcinoma MCF-7 cells: cell-cycle arrest and apoptosis induction. *Oncol. Rep.* 15, 637–643

Zhang, R., Liu, Z. G., Li, C., Hu, S. J., Liu, L., Wang, J. P., et al. (2009). Du-Zhong (Eucommia ulmoides Oliv.) cortex extract prevent OVX-induced osteoporosis in rats. *Bone* 45, 553–559. doi:10.1016/j.bone.2008.08.127

Zhang, R., Pan, Y. L., Hu, S. J., Kong, X. H., Juan, W., and Mei, Q. B. (2014). Effects of total lignans from *Eucommia ulmoides* barks prevent bone loss in vivo and in vitro. *J. Ethnopharmacol.* 155, 104–112. doi:10.1016/j.jep.2014.04.031

Zhang, W., Fujikawa, T., Mizuno, K., Ishida, T., Ooi, K., Hirata, T., et al. (2012). *Eucommia* leaf extract (ELE) prevents OVX-induced osteoporosis and obesity in rats. *Am. J. Chin. Med.* 40, 735–752. doi:10.1142/S0192415X12500553

Zhang, W. L., Zheng, K. Y., Zha, K. Y., Zhan, J. Y., Bi, C. W., Chen, J. P., et al. (2012). Chemical and biological assessment of Angelica herbal decoction: comparison of different preparations during historical applications. *Phytotherapy Research* 19, 1042–1048. doi:10.1016/j.phymed.2012.07.009

Zhang, Y. Q., Xu, S. B., Lin, Y. C., Li, Q., Zhang, X., and Lai, Y. R. (2000). Antagonistic effects of 3 sesquiterpene lactones from *Atractylodes macrocephala* Koidz on rat uterine contraction in vitro. *Acta Pharmacol. Sin.* 21, 91–96.

Zhang, Z., Liu, X., Wu, T., Liu, J., Zhang, X., Yang, X., et al. (2011). Selective suppression of cervical cancer Hela cells by 2-O-β-D-glucopyranosyl-L- ascorbic acid isolated from the fruit of *Lycium barbarum* L. *Cell Biol. Toxicol.* 27, 107–121. doi:10.1007/s10565-010-9174-2

Zheng, T., Chen, W., Hu, H., Wang, Y., Harnett, J. E., and Ung, C. O. I. (2020). The prevalence, perceptions and behaviors associated with traditional/complementary medicine use by breastfeeding women living in Macau: a cross-sectional survey study. *Med. Thérapeutique* 20, 122. doi:10.1186/s12906-020-02921-8

Zhong, T., Zhang, H., Duan, X., Hu, J., Wang, L., Li, L., et al. (2017). Anti-obesity effect of radix *Angelica sinensis* and candidate causative genes in transcriptome analyses of adipose tissues in high-fat diet-induced mice. *Gene* 599, 92–98. doi:10.1016/j.gene.2016.11.017

Zhou, W. J., Wang, S., Hu, Z., Zhou, Z. Y., and Song, C. J. (2015). *Angelica sinensis* polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation. *Biochem. Biophys. Res. Commun.* 467, 562–569. doi:10.1016/j.bbrc.2015.09.145

Zhu, B., Zhang, Q. L., Hua, J. W., Cheng, W. L., and Qin, L. P. (2018). The traditional uses, phytochemistry, and pharmacology of *Atractylodes macrocephala* Koidz.: a review. *J. Ethnopharmacol.* 226, 143–167. doi:10.1016/j.jep.2018.08.023

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Chao, Ko, Lin, Tomoji, Huang, Chiang, Yang, Huang and Su. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.