Review, Analysis, and Classification of 3D Printing Literature: Types of Research and Technology Benefits

Guilherme Ruggeri Pereira¹, Fernando Gasi², Sérgio Ricardo Lourenço³

¹Universidade Federal do ABC, Brazil
²³Center for Engineering, Modelling and Applied Social Sciences, Universidade Federal do ABC, Brazil

Abstract— This paper presents a review, analysis and classification about 3D printing. Through the CAPES Sucupira platform, 124 articles with a high degree of relevance published between the years 2014 and 2018 were selected. Each of these articles was classified by means of 9 categories: study types, affiliation, approach, origin of the study, geographic scope, unit of analysis, scope, benefits and negative points. Through the results obtained, it was verified that the number of articles on 3D printing is increasing every year, which indicates its importance and popularity. Most of the time, scientific research is conducted and led by people connected to universities in Europe, Asia and the Americas. And finally, the number of citations related to the benefits of 3D printing are greater than the number of citations on the negative points of the process.

Keywords— 3D printing, additive manufacturing, literature review.

1. INTRODUCTION

The competition between companies of any industrial sector grows more and more each year. In this way, companies seek to reduce costs and deadlines and, at the same time, are pressured to develop and deliver products of high quality and performance. This competition generates the need to launch a new product in the market with a greater frequency and, consequently, the demand for new projects and development of new products grows. It is at this stage that 3D printing stands out (LOPES, 2016).

Popularly known as 3D printing, this process has many other names such as rapid prototyping (RP), additive manufacturing (AM) additive techniques, additive processes, among others (LOPES, 2016).

Within a few minutes or hours, this manufacturing process allows to produce complete products from a CAD Software, using the most diverse raw materials and without a great human intervention. 3D printing has as its characteristic to construct three-dimensional pieces by means of the addition of successive thin layers, one on top of the other, until the formation of the desired product (ABREU, 2015; LOPES, 2016).

As mentioned earlier, additive manufacturing is an important technology in the development phase of the product. Its benefits are (LOPES, 2016): less time in the product development phase, lower costs, possibility of performing several tests and prototypes, increase product complexity without increasing deadline, decrease in project delivery time.

1.1 Historic

The first known 3D printer was invented and patented by Charles W. Hull in 1986. In his patent he describes a method where it is possible to fabricate objects by solidifying layers of a photo polymer (resin). This process was called stereolithography (ABREU, 2015, AGUIAR, 2014).

Three years later, in 1989, Scott Crump patented another 3D printing equipment that uses a different method than the Charles Hull printer, called Fused Deposition Modelling (FDM). Through the ability to move along three axes, the nozzle of the printer deposits a molten material, and layer by layer the final object is produced (AGUIAR, 2014).

However, the rapid prototyping process became better known and accessible in the early 2000s. With the expiration of FDM patents, Adrian Bowyer created the RepRap (Replicating Rapid Prototyper), where the software of the equipment is free, its source code is open and 57% of the mechanical 3D printer components are manufactured through the additive manufacturing process (concept of self-replicating machine). In this way, in 2004 the first low-cost 3D printer appeared (ABREU, 2015).

By having an open system, many people were interested in developing and enhancing Adrian Bowyer's original design, and thus, the 3D printer has become cheaper, more accessible and more efficient (ABREU, 2015).
1.2 Different Types of 3D Printing

Over the years, the evolution of technology has had a major impact on the development of other 3D printing processes. The following are the most applied processes.

1.2.1 Stereolithography (SLA)

As previously mentioned, stereolithography was the first 3D printing process created and, according to Abreu (2015), is the most used type of additive manufacture. By means of the incidence of an ultraviolet laser, a layer of liquid resin is solidified. After this step, the platform where the solidified resin layer is located is moved slightly downward, causing a layer of liquid resin to be added. Again, the laser solidifies the resin creating a second layer. This process is repeated until the object is completely constructed (ABREU, 2015; LOPES, 2016; BIKAS et al., 2016).

1.2.2 Fused Deposition Modelling (FDM)

As explained earlier, the FDM process was the second type of additive manufacture created and is one of the most used processes because of its low cost. In this process, thermoplastic filaments are heated in the extruder and deposited on the construction platform by means of the extrusion nozzle. The construction platform has a lower temperature than the deposited thermoplastic, causing it to solidify rapidly. The platform moves down, and the nozzle of the extruder deposits the second layer of material. This process is repeated until the object is created. (ABREU, 2015; LOPES, 2016; BIKAS et al., 2016).

1.2.3 3DP

Unlike the processes mentioned above, the 3DP uses as a raw material a ceramic powder and a liquid binding agent. In the first step, a layer of ceramic powder is evenly distributed on the building surface. Subsequently, the liquid binding agent is applied over the desired area by means of a jet. In the third step, a piston recedes, causing the object's construction surface to move downwards. Thereafter, a new layer of ceramic powder is added, followed by the liquid binder. This procedure is repeated until the piece reaches its final shape. The piece is removed from the machine and a jet of compressed air is applied in order to remove uncoated powder from the model. The prototypes manufactured using the 3DP method are fragile, and to make them more rigid it is necessary to subject them to a process of infiltration of resins (ABREU, 2015; BIKAS et al., 2016).

1.2.4 Selective Laser Sintering (SLS)

Like the 3DP process, selective laser sintering also uses a powder (usually thermoplastic, nylon or metal) as the raw material. This material is arranged in a homogeneous layer and a laser is applied to melt its particles, and thus solidify the material. This procedure is performed many times until the part is ready (LOPES, 2016; BIKAS et al., 2016).

1.2.5 Laminated Object Manufacturing (LOM)

This process can use different types of raw material, such as paper, plastic or metal. The material is laminated by a heated roller and glued to the bottom layer. Thereafter, it is cut by means of a laser (LOPES, 2016; BIKAS et al., 2016).

1.3 Steps of 3D Printing

To develop a project via 3D printing, you need to perform the following steps (AZEVEDO, 2013; OLIVEIRA, 2016):

- Develop a project of the desired object in 3D CAD software, such as SolidWorks, Inventor, AutoCAD, among others;
- Convert the project to STL (Standard Tecelation Language) format. This format describes surfaces of an object through a set of triangles of different dimensions. The more triangles there are, the greater the project accuracy;
- The next step is to choose a reference plane from the STL file, and so the object will be divided into layers parallel to the chosen reference plane. The smaller the size of the layer, the more accurate the print will be;
- Each of these layers is described by a file called GCODE. This code has the numerical commands for the manufacture of each of the layers, possessing information of temperature, trajectory, speed, positioning, among others;
- Finally, printing is done using the GCODE code, which directs the printer to obtain the desired object.

1.4 Application

Today, rapid prototyping has a very broad reach. It can be used in the most different industries, institutions of education from the fundamental level up to the higher level and for private use (individuals).

1.4.1 Aerospace Industry

It was one of the first areas to use the benefits of 3DP to create prototypes quickly. The components of the aviation industry have a complex geometry and use advanced materials (advanced metal alloys such as:}
titanium, nickel superalloys and special steels), which makes additive manufacturing a viable option (LOPES, 2016; BAHNINI et al., 2018).

1.4.2 Car Industry
The automotive industry was also one of the first to use 3D printing for the rapid development of prototypes/products and then began using the technology to manufacture the parts used in cars. Braking systems, drive shafts and gearbox parts are some examples of parts that are manufactured through additive manufacture (LOPES, 2016; BAHNINI et al., 2018).

1.4.3 Medicine and Dentistry
Like the two sectors mentioned above, the health area was also one of the first to use the technology. 3D printing is a great way to manufacture prostheses and implants, as these products require a high degree of customization due to the different morphological characteristics of each patient (LOPES, 2016; BAHNINI et al., 2018).

The next step in 3D printing that will revolutionize the medical world is 3D bioprinting, where the goal is to create bones, tissues and living organs (LOPES, 2016; BAHNINI et al., 2018).

1.4.4 Art and Fashion
Artistic class and fashion also surrendered to the benefits of 3D printing. Plastic artists have found an easier and more direct way of bringing their ideas to life, while fashion designers use technology to create a variety of different accessories, such as: luggage, shoes, glasses and hats (LOPES, 2016).

1.5 Objective
The objective of this work is to review, analyse and classify the research carried out on 3D printing between the years 2014 and 2018. Thus, it is expected to understand in what way the researches are being carried out and what are the results achieved on the subject in recent years.

1.6 Justification
3D printing has great potential to positively impact manufacturing processes in the industrial sector. In this way, I believe that it is important that an analysis be done on the researches being carried out on the subject, showing their advances, benefits and points to be improved.

II. METHODOLOGY
This chapter presents the two methods used to perform this work: journal selection, which describes the criteria for choosing periodicals and articles used; and classification of articles, which explains the 9 categories created to classify the selected articles.

2.1 Journals Selection
Through the CAPES Sucupira platform, a first search was made about periodicals from Engineering III (which is composed of Mechanical, Production, Aerospace and Naval). The other criterion used in the search was the relevance index, where we searched for the best articles in this question (in this case, the best articles are classified with the indexes A1, A2, B1 or B2). In this way, 21 journals were selected that had articles on Production and Manufacturing Engineering.

Using the keywords "3d printing" and "Project", searches were carried out in the 21 selected journals from 2014 to 2018. Thus, articles were found in 8 newspapers.

After analysing the selected articles, it was verified that some of them contained only brief quotations on the subject of rapid prototyping and therefore were discarded. Thus, the final selection is shown in Table 1.

Table 1: Number of articles selected after review

REL.	N° JOURNAL	2014	2015	2016	2017	2018	TOTAL
A1	1 EUROPEAN JOURNAL OF OPERATIONAL RESEARCH	0	0	0	0	1	1
	2 INTERNATIONAL JOURNAL OF OPERATIONS & PRODUCTION MANAGEMENT	0	0	0	0	1	1
	3 INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS	1	1	0	2	7	11
	4 JOURNAL OF ENGINEERING DESIGN	0	0	1	1	2	4
	5 CONCURRENT ENGINEERING: RESEARCH AND APPLICATIONS	0	1	1	0	0	2
2.2 Articles Selection

The 124 selected articles were classified into 9 categories: study types, affiliation, approach, study origin, geographic coverage, unit of analysis, scope, benefits and negative points.

The category "types of study" refers to the way in which research is approached. Following the classification of Miguel (2007), the main types of research approach are:

- Conceptual theorist: new theories are developed through discussions of the existing literature;
- Case study: it is a more detailed analysis of one or more subjects or objects, aiming at their greater knowledge;
- Survey: Through a survey, you get information about a problem or object. Subsequently, an analysis of the collected data is made, in order to find a solution to the problem;
- Modelling and simulation: mathematical techniques or computer software are used to better understand a system;
- Action research: it is an empirical research where the researchers and interviewees seek to solve a given problem together;
- Literature review: study on a certain area of existing literature whose objective is to know and follow its development;
- Experimental research: it is the study about a system or object, where the researcher has control of one or more variables, manipulating them to observe what happens. The second category, "affiliation", aims to show what kind of institution is behind the research: university, research center or industry. The "approach" category analyses the data format used in the research: quantitative or qualitative. Next, the categories "origin of the study" and "geographic scope" are analysed, where they cover, respectively, in which continent the research was carried out and the scope of this study (regional, national or international).

The sixth category is the "unit of analysis", where the area in which the study was carried out is classified: Application in companies or academic projects in the areas of costs, design, production or product quality; study of theoretical model; social impact; equipment (hardware, software or process).

The seventh category, "scope", contemplates the subject studied by the article, while the last two categories classify the "benefits" and "negative points" found by the researchers.

In Annex I, you will find all the classifications mentioned above, as well as their captions. In Annex II, the classifications of the 124 analysed articles are detailed, according to the captions in the tables in Annex I.

III. RESULTS AND DISCUSSION

In this chapter the results obtained will be shown and analysed in the last section of the chapter. Firstly, the data of the publication numbers of the articles selected between the years 2014 and 2018 will be shown. After that, the data of each of the 9 categories mentioned in the methodology will be shown. In the final item, the results will be discussed.

3.1 Number of Article Publications about 3D Printing

Fig. 1 shows the percentage of articles published in the selected journals between the years 2014 and 2018. The small number of articles on rapid prototyping in the years 2014 and 2015 can be perceived, with the increase of these numbers in the following years, year of 2018, with 41.79% of articles released.

![Fig. 1: Percentage distribution of articles published per year.](chart-url)
3.2 Types of Study
Fig. 2 shows the distribution of the types of studies performed. It was verified that the research study of the case was the most accomplished, with 61.3%. It is followed by far by experimental research, with 22.6%. Literature review, action research, modeling and simulation, survey and conceptual theorist obtained less than 10%, and action research was not performed once.

![Fig. 2: Classification by type of study performed.](image)

3.3 Affiliation
In order to carry out this classification, only the main author of each article was considered. Thus, although there were contributions from individuals linked to private industries and research centers, it was considered that 100% of the articles were carried out through universities, due to the fact that all the leaders of the articles are linked to institutions of teaching.

3.4 Approach
Fig. 3 shows the type of approach performed in the selected works, being it quantitative or qualitative. According to the figure below, 79.8% of the cases adopted are quantitative.

![Fig. 3: Classification by approach.](image)

3.5 Origin of Study
Fig. 4 classifies the origin of the articles. Asia and Europe lead the number of publications with 32.3% each. While the countries of the Americas (the only countries cited were the United States and Canada) published 25.8%. Oceania and Africa reached 4.8% and 2.4%, respectively, while Brazil also published 2.4% of the articles.

![Fig. 4: Classification by origin](image)

Even if the comparison between Brazil versus whole continents is somewhat unfair, the ideal would be that the number of relevant Brazilian research in the international scenario will grow in the coming years.

3.6 Geographical Scope
Fig. 5 classifies the articles by means of the geographical scope of the articles, that is, what territory was taken into account in their research (regional, national or international level). Only 11 of the 124 selected articles were found, and in 63.6% of these 11 articles, they were classified as international coverage and the other 36.6% as a national coverage.

![Fig. 5: Classification by geographic scope.](image)

3.7 Unit of Analysis
Fig. 6 shows the unit of analysis data, that is, the area in which the search was performed. They were classified into 5 main groups, 4 of which have subgroups:

- Improvement in fast prototyping equipment (53.2%), being subdivided into process (33.1%), hardware (4.8%) and software (15.3%);
- Application in academic projects (37%), being subdivided into product quality (18.5%), production (11.3%), design (5.6%) and costs (1.6%);
- Application in companies (29.1%), being subdivided into product quality (3.2%), production (12.1%), design (6.5%) and costs (7.3%);
- Social Impact (1.6%), being subdivided into education (0%) and environmental (1.6%);
- Study of theoretical model (5.3%).
3.8 Scope

Fig. 7 shows the scoped classification of articles. 62.1% of the articles refer to product development (it was considered as product development: manufacture of parts via additive manufacture and improvements related to the "product" 3D printer), followed by a 21.8% impact of rapid prototyping and 12.1% to implementation strategies. The other items have less than 10%.

Fig. 6: Classification by unit of analysis.

Fig. 7: Scope classification.
3.9 Benefits
Fig. 8 shows the benefits that rapid prototyping can provide. Of the 124 articles selected, 73 of them have verified one or more contributions. The contributions were classified into 8 different types, and the item "higher quality" appears in 38.7% of the articles. Improved design, lead-time reduction and lower cost represent 16.9%, 14.5% and 12.1% respectively. The benefits of flexible manufacturing process, lower material waste, lower environmental impact and increased product life span appear with less than 5% each.

![Fig. 8: Classification by benefits.](image)

3.10 Pontos Negativos
Fig. 9 shows the negatives of rapid prototyping. Of the 124 articles selected, only 13 of them pointed out at least 1 item to improve. The highlights are the items higher cost and difficulty of large-scale production, with 30.8% each and the items limited raw material and low reliability/quality of the product with 23.1% each.

![Fig. 9: Classification by negative points.](image)

3.11 Data Analysis
Levando em consideração os dados apresentados nos itens anteriores pode-se dizer que:
1. The number of surveys with a high degree of relevance on 3D printing has been increasing year after year. This indicates that the theme's importance and popularity have been growing and are seeking new ways to improve technology;
2. Although some studies are conducted exclusively for the purpose of studying the market or solving problems of private initiative, it is universities that conduct research in this area;
3. Europe and Asia are the continents that have published articles with a high degree of relevance about additive manufacturing;
4. Case study and experimental research were the two types of studies most performed within the analysed article sampling;
5. About 50% of articles aim to contribute to the improvement in 3D printing equipment (software, hardware or process), however, there are few articles related to the theme related to social impact;
6. 60% of the articles selected have as scope the development of a product;
7. Of the 124 papers analysed, 73 of them observed some benefit that 3D printing provided, being that higher quality, better design, reduction of lead-time and lower cost, were the qualities most cited. Meanwhile, only 13 articles mentioned some negative point regarding the additive manufacture, being lack of preparation for large-scale production and higher cost the two most cited damages.

IV. CONCLUSION

Through the data analysed, it can be concluded that 3D printing is increasingly being studied, which indicates the importance and popularity of the theme. Of the 124 articles selected, 2.99% of them were published in 2014, 8.21% in 2015, 23.13% in 2016, 23.88% in 2017 and 41.79% in 2018. Taking into account the category affiliation, all articles were classified as university students, that is, the research was led by professionals linked to higher education institutions. Taking into account the origin of the articles produced, it was verified that the majority are from Asia and Europe (32.2% produced in each continent, totalling 64.4%). Regarding the unit of analysis, the highlight was the improvement of equipment with a focus on process (33.1%) and, in article scope, the product development item was the most cited (62.1%). Finally, in the categories of benefits and negatives of 3D printing, the highlights were the higher quality of the product (38.7%) and higher cost and lack of capacity for high-scale production, with 30.8% for each of the items.

REFERENCES

[1] ABREU, Sofia Alexandra Chaves. Impressão 3D Baixo Custo Versus Impressão em Equipamentos de Elevado Custo. 2015. 235 p. 2015. Dissertação (Mestrado Integrado em Engenharia Mecânica), Faculdade de Engenharia, Universidade do Porto, 2015.
[2] AGUAR, Leonardo de Conti Dias; YONEZAW, W. M. Construção de instrumentos didáticos com impressoras 3D. IV Simpósio Nacional de Ensino de Ciência e Tecnologia (SINECT), Ponta Grossa, PR, Brasil, 2014.
[3] ALABOODI, Abdulaziz S.; SIVASANKARAN, S. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications. Journal of Manufacturing Processes, v. 35, p. 479-491, 2018.
[4] ALBERTI, E. A.; BUENO, B. M. P.; D’OLIVEIRA, A. S. C. M. Additive manufacturing using plasma transferred arc. The International Journal of Advanced Manufacturing Technology, v. 83, n. 9-12, p. 1861-1871, 2016.
[5] ALI, M Hazrat; MIR-NASIRI, Nazim; KO, Wai Lun. Multi-nozzle extrusion system for 3D printer and its control mechanism. The International Journal of Advanced Manufacturing Technology, v. 86, n. 1-4, p. 999-1010, 2016.
[6] AREIR, Milad et al. A study of 3D printed active carbon electrode for the manufacture of electric double-layer capacitors, Journal of Manufacturing Processes, v. 25, p. 351-356, 2017.
[7] ASADOLLAHI-YAZDI, Elona; GARDAN, Julien; LAFORET, Pascal. Toward integrated design of additive manufacturing through a process development model and multi-objective optimization. The International Journal of Advanced Manufacturing Technology, v. 96, n. 9-12, p. 4145-4164, 2018.
[8] AZEVEDO, Fábio Mariotto de. Estudo e projeto de melhoria em máquina de impressão 3D. 2013. 48f. Trabalho de Conclusão de Curso – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2013.
[9] BAHNINI, Insal et al. Additive manufacturing technology: the status, applications, and prospects. The International Journal of Advanced Manufacturing Technology, p. 1-15, 2018.
[10] BATURIYNKA, Ivanna. Statistical analysis of dimensional accuracy in additive manufacturing considering STL model properties. The International Journal of Advanced Manufacturing Technology, p. 1-15, 2018.
[11] BAUMANN, Felix W.; KOPP, Oliver; ROLLER, Dieter. Abstract API for 3D printing hardware and software resources. The International Journal of Advanced Manufacturing Technology, v. 92, n. 1-4, p. 1519-1535, 2017.
[12] BIKAS, H.; STAVROPoulos, Panagiotis; CHRYSOLOURIS, George. Additive manufacturing methods and modelling approaches: a critical review. The International Journal of Advanced Manufacturing Technology, v. 83, n. 1-4, p. 389-405, 2016.
[13] BONNARD, Renan et al. STEP-NC digital thread for additive manufacturing: data model, implementation and validation. International Journal of Computer Integrated Manufacturing, v. 31, n. 11, p. 1141-1160, 2018.
[14] BOURNISAS-VAROTISI, Alkaios et al. Ultrasound Additive Manufacturing as a form-then-bond process for embedding electronic circuitry into a metal matrix. Journal of Manufacturing Processes, v. 32, p. 664-675, 2018.

[15] BRANT, Anne; SUNDARAM, Murali M. A novel system for cloud-based micro additive manufacturing of metal structures. Journal of Manufacturing Processes, v. 20, p. 478-484, 2015.

[16] BROOKS, Byron James et al. Robot-assisted 3D printing of biopolymer thin films. The International Journal of Advanced Manufacturing Technology, v. 89, n. 1-4, p. 957-968, 2017.

[17] BRUNA-ROSSO, Claire et al. Global sensitivity analyses of a selective laser melting finite element model: influential parameters identification. The International Journal of Advanced Manufacturing Technology, v. 99, n. 1-4, p. 833-843, 2018.

[18] CAVIGGIOLI, Federico; UGHETTO, Elisa. A bibliometric analysis of the research dealing with the impact of Additive Manufacturing on industry, business and society. International Journal of Production Economics, 2018.

[19] CHEKUROV, Sergei et al. The perceived value of additively manufactured digital spare parts in industry: An empirical investigation. International Journal of Production Economics, v. 205, p. 87-97, 2018.

[20] CHAI, Yuan et al. Laser polishing of thermoplastics fabricated using fused deposition modelling. The International Journal of Advanced Manufacturing Technology, p. 1-8, 2018.

[21] CHAN, Hing Kai et al. The impact of 3D Printing Technology on the supply chain: Manufacturing and legal perspectives. International Journal of Production Economics, v. 205, p. 156-162, 2018.

[22] CHARRO, Alberto; SCHAEFER, Dirk. Cloud Manufacturing as a new type of Product-Service System. International Journal of Computer Integrated Manufacturing, v. 31, n. 10, p. 1018-1033, 2018.

[23] CHEN, Lian et al. The research status and development trend of additive manufacturing technology. The International Journal of Advanced Manufacturing Technology, v. 89, n. 9-12, p. 3651-3660, 2017.

[24] CHONG, Li; RAMAKRISHNA, Seeram; SINGH, Sunpreet. A review of digital manufacturing-based hybrid additive manufacturing processes. The International Journal of Advanced Manufacturing Technology, v. 95, n. 5-8, p. 2281-2300, 2018.

[25] CORREA, Jorge E. et al. Laminated micro-machine: Design and fabrication of a flexure-based Delta robot. Journal of Manufacturing Processes, v. 24, p. 370-375, 2016.

[26] DAWOUD, Michael; TAHA, Iman; EBEID, Samy J. Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. Journal of Manufacturing Processes, v. 21, p. 39-45, 2016.

[27] DAWOUD, Michael; TAHA, Iman; EBEID, Samy J. Strain sensing behaviour of 3D printed carbon black filled ABS. Journal of Manufacturing Processes, v. 35, p. 337-342, 2018.

[28] DE BLAS ROMERO, Adrián et al. Lithography-based additive manufacture of ceramic biodevices with design-controlled surface topographies. The International Journal of Advanced Manufacturing Technology, v. 88, n. 5-8, p. 1547-1555, 2017.

[29] DU, Zhenglin et al. Investigation of porosity reduction, microstructure and mechanical properties for joining of selective laser melting fabricated aluminium composite via friction stir welding. Journal of Manufacturing Processes, v. 36, p. 33-43, 2018.

[30] DUTY, Chad et al. What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers. Journal of Manufacturing Processes, v. 35, p. 526-537, 2018.

[31] ESPALIN, David et al. 3D Printing multifunctionality: structures with electronics. The International Journal of Advanced Manufacturing Technology, v. 72, n. 5-8, p. 963-978, 2014.

[32] ESTELLE, Kevin et al. Manufacturing of smart composites with hyperelastic property gradients and shape memory using fused deposition. Journal of Manufacturing Processes, v. 28, p. 500-507, 2017.

[33] EYERS, Daniel R. et al. The flexibility of industrial additive manufacturing systems. International Journal of Operations & Production Management, v. 38, n. 12, p. 2313-2343, 2018.

[34] FANG, Xuewei et al. An investigation on effects of process parameters in fused-coating based metal additive manufacturing. Journal of Manufacturing Processes, v. 28, p. 383-389, 2017.

[35] FENG, Qixiang et al. Quasi-static analysis of mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting. The International Journal of Advanced Manufacturing Technology, v. 94, n. 5-8, p. 2301-2313, 2018.

[36] FERREIRA, Arno et al. Retrofitment, open-sourcing, and characterisation of a legacy fused deposition modelling system. The International Journal of Advanced Manufacturing Technology, v. 90, n. 9-12, p. 3357-3367, 2017.

[37] GARG, Akhil et al. A comprehensive study in quantification of response characteristics of incremental sheet forming process. The International Journal of Advanced Manufacturing Technology, v. 89, n. 5-8, p. 1353-1365, 2017.

[38] GHOBADIAN, Abby et al. Examining legitimisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. International Journal of Production Economics, 2018.

[39] GOH, Guo Liang et al. Additively manufactured multi-material free-form structure with printed electronics. The International Journal of Advanced Manufacturing Technology, v. 94, n. 1-4, p. 1309-
process parameters for biological 3D printing composite forming based on SNR and grey correlation degree. The International Journal of Advanced Manufacturing Technology, v. 80, n. 1-4, p. 549-554, 2015.

[53] JIN, Jie; CHEN, Yong. Highly removable water support for Stereolithography. Journal of Manufacturing Processes, v. 28, p. 541-549, 2017.

[54] JIN, Jie et al. A vibration-assisted method to reduce separation force for stereolithography. Journal of Manufacturing Processes, 2018.

[55] JIN, Yuan; HE, Yong; DU, Jianke. A novel path planning methodology for extrusion-based additive manufacturing of thin-walled parts. International Journal of Computer Integrated Manufacturing, v. 30, n. 12, p. 1301-1315, 2017.

[56] JIN, Yuan et al. An optimization approach for path planning of high-quality and uniform additive manufacturing. The International Journal of Advanced Manufacturing Technology, v. 86, n. 5-8, p. 1659-1677, 2016.

[57] KANTAROS, Andreas; CHATZIDAI, Nikoleta; KARALEKAS, Dimitris. 3D printing-assisted design of scaffold structures. The International Journal of Advanced Manufacturing Technology, v. 82, n. 1-4, p. 559-571, 2016.

[58] KIM, Dong Sung Danny; TAI, Bruce L. Hydrostatic support-free fabrication of three-dimensional soft structures. Journal of Manufacturing Processes, v. 24, p. 391-396, 2016.

[59] KITAYAMA, Satoshi et al. Numerical optimization of process parameters in plastic injection molding for minimizing weldlines and clamping force using conformal cooling channel. Journal of Manufacturing Processes, v. 32, p. 782-790, 2018.

[60] KHODABAKHSHI, F.; GERLICH, A. P. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review. Journal of Manufacturing Processes, v. 36, p. 77-92, 2018.

[61] KHORASANI, Amir Mahyar et al. A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical components. The International Journal of Advanced Manufacturing Technology, v. 94, n. 9-12, p. 3765-3784, 2018.

[62] KNOFIUS, Nils; VAN DER HEIJDEN, Matthijs C.; ZBM, Willem HM. Consolidating spare parts for asset maintenance with additive manufacturing. International journal of production economics, v. 208, p. 269-280, 2019.

[63] KUMAR, Narendra et al. The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA). Journal of Manufacturing Processes, v. 35, p. 317-326, 2018.

[64] KUMAR, Narendra et al. Investigation on the effects of
process parameters in CNC assisted pellet based fused layer modeling process. Journal of Manufacturing Processes, v. 35, p. 428-436, 2018.

[66] KUMAR, Sanjay. Process chain development for additive manufacturing of cemented carbide. Journal of Manufacturing Processes, v. 34, p. 121-130, 2018.

[67] LAPIERRE, André; ANZALONE, Gerald C.; PEARCE, Joshua M. Open-source, self-replicating 3-D printer factory for small-business manufacturing. The International Journal of Advanced Manufacturing Technology, v. 85, n. 1-4, p. 633-642, 2016.

[68] LEAL, R. et al. Additive manufacturing tooling for the automotive industry. The International Journal of Advanced Manufacturing Technology, v. 92, n. 5-8, p. 1671-1676, 2017.

[69] LEBEDEV, S. M. et al. Mechanical properties of PLA-based composites for fused deposition modeling technology. The International Journal of Advanced Manufacturing Technology, p. 1-8, 2018.

[70] LEE, Y. S.; NANDWANA, Pemush; ZHANG, Wei. Dynamic simulation of powder packing structure for powder bed additive manufacturing. The International Journal of Advanced Manufacturing Technology, v. 96, n. 1-4, p. 1507-1520, 2018.

[71] LEI, Ningrong et al. An additive manufacturing process model for product family design. Journal of Engineering Design, v. 27, n. 11, p. 751-767, 2016.

[72] LI, Dawei et al. Interior structural optimization based on the density-variable shape modeling of 3D printed objects. The International Journal of Advanced Manufacturing Technology, v. 83, n. 9-12, p. 1627-1635, 2016.

[73] LI, Dawei et al. Self-supporting interior structures modeling for buoyancy optimization of computational fabrication. The International Journal of Advanced Manufacturing Technology, v. 95, n. 1-4, p. 825-834, 2018.

[74] LI, Guiwei et al. Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing. The International Journal of Advanced Manufacturing Technology, p. 1-9, 2018.

[75] LI, Lin; HAGHHIGHI, Azadeh; YANG, Yiran. A novel 6-axis hybrid additive/subtractive manufacturing process: Design and case studies. Journal of Manufacturing Processes, v. 33, p. 150-160, 2018.

[76] LIU, Xinhua et al. Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. The International Journal of Advanced Manufacturing Technology, v. 89, n. 5-8, p. 2387-2397, 2017.

[77] LIU, Yang et al. Study on the influence of process parameters on the clearance feature in non-assembly mechanism manufactured by selective laser melting. Journal of Manufacturing Processes, v. 27, p. 98-107, 2017.

[78] LOCKETT, Helen et al. Design for Wire+ Arc Additive Manufacture: design rules and build orientation selection. Journal of Engineering Design, v. 28, n. 7-9, p. 568-598, 2017.

[79] LOPES, Gonçalo Teixeira Ferreira. Exploração das possibilidades da impressão 3D na construção. 2015-2016. 92 f. Dissertação (Mestrado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Porto, Porto, 2016.

[80] MACDONALD, Eric et al. Fabricating patch antennas within complex dielectric structures through multi-process 3D printing. Journal of Manufacturing Processes, v. 34, p. 197-203, 2018.

[81] MAI, Jingeng et al. Customized production based on distributed 3D printing services in cloud manufacturing. The International Journal of Advanced Manufacturing Technology, v. 84, n. 1-4, p. 71-83, 2016.

[82] MANÇANARES, Caue G. et al. Additive manufacturing process selection based on parts’ selection criteria. The International Journal of Advanced Manufacturing Technology, v. 80, n. 5-8, p. 1007-1014, 2015.

[83] MANDIL, Guillaume et al. Building new entities from existing titanium part by electron beam melting: microstructures and mechanical properties. The International Journal of Advanced Manufacturing Technology, v. 85, n. 5-8, p. 1835-1846, 2016.

[84] MAO, Huachao; ZHOU, Chi; CHEN, Yong. LISA: Linear immersed sweeping accumulation. Journal of Manufacturing Processes, v. 24, p. 406-415, 2016.

[85] MAWALE, Mahesh B.; KUTHE, Abhay kumar M.; DAHAKE, Sandeep W. Additive layer manufacturing: State-of-the-art applications in product innovation. Concurrent Engineering, v. 24, n. 1, p. 94-102, 2016.

[86] MELLOR, Stephen; HAO, Liang; ZHANG, David. Additive manufacturing: A framework for implementation. International Journal of Production Economics, v. 149, p. 194-201, 2014.

[87] MIGUEL, Paulo Augusto Cauchick et al. Estudo de caso na engenharia de produção: estruturação e recomendações para sua condução. Revista Produção, v. 17, n. 1, p. 216-229, 2007.

[88] MOHIUDDIN, Mohammad Viquar et al. Experimental investigation to produce thin-walled sand casting using combination of coating casting simulation and additive manufacturing techniques. The International Journal of Advanced Manufacturing Technology, v. 90, n. 9-12, p. 3147-3157, 2017.

[89] MONZÓN, M. D. et al. Standardization in additive manufacturing: activities carried out by international organizations and projects. The international journal of advanced manufacturing technology, v. 76, n. 5-8, p. 1111-1121, 2015.

[90] MUN, Jiwon et al. Indirect additive manufacturing based casting of a periodic 3D cellular metal–flow simulation of molten aluminum alloy. Journal of Manufacturing Processes, v. 17, p. 28-40, 2015.

[91] MONZÓN, M. D. et al. 4D printing: processability and
measurement of recovery force in shape memory polymers. The International Journal of Advanced Manufacturing Technology, v. 89, n. 5-8, p. 1827-1836, 2017.

[92] OLI VEREA, Leopoldo Gomes de. Produção de palmilhas ortopédicas em máquina de impressão 3D voltada para o mercado de corredores de rua. 2016. 93 f. Trabalho de Conclusão de Curso – Universidade Federal do ABC, Santo André, 2016.

[93] PANDA, Biranchi N. et al. Performance evaluation of warping characteristic of fused deposition modelling process. The International Journal of Advanced Manufacturing Technology, v. 88, n. 5-8, p. 1799-1811, 2017.

[94] PAPA ZETIS, G.; VOSNIAKOS, G.-C. Direct porous structure generation of tissue engineering scaffolds for layer-based additive manufacturing. The International Journal of Advanced Manufacturing Technology, v. 86, n. 1-4, p. 871-883, 2016.

[95] PEREIRA, S.; VAZ, A. I. F.; VICENTE, L. N. On the optimal object orientation in additive manufacturing. The International Journal of Advanced Manufacturing Technology, p. 1-10, 2018.

[96] PIRES, Liliana Sofia Oliveira; FERNANDES, Maria Helena Figueira Vaz; DE OLIVEIRA, José Martinho Marques. Biofabrication of glass scaffolds by 3D printing for tissue engineering. The International Journal of Advanced Manufacturing Technology, v. 98, n. 9-12, p. 2665-2676, 2018.

[97] PRADEL, Patrick et al. Investigation of design for additive manufacturing in professional design practice. Journal of Engineering Design, v. 29, n. 4-5, p. 165-200, 2018.

[98] PRADEL, Patrick et al. A framework for mapping design for additive manufacturing knowledge for industrial and product design. Journal of Engineering Design, v. 29, n. 6, p. 291-326, 2018.

[99] PRIMO, Teresa et al. Additive manufacturing integration with topology optimization methodology for innovative product design. The International Journal of Advanced Manufacturing Technology, v. 93, n. 1-4, p. 467-479, 2017.

[100] RAVI, Abinesh Kurapati; DESHPANDE, Anagha; HSU, Keng H. An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. Journal of Manufacturing Processes, v. 24, p. 179-185, 2016.

[101] RAVN, Poul Martin; GUDL AUGHSSON, Tómas Vignir; MORTENSEN, Niels Henrik. A multi-layered approach to product architecture modeling: Applied to technology prototypes. Concurrent Engineering, v. 24, n. 1, p. 3-16, 2016.

[102] SALONITIS, Konstantinos. Design for additive manufacturing based on the axiomatic design method. The International Journal of Advanced Manufacturing Technology, v. 87, n. 1-4, p. 989-996, 2016.

[103] SASAKI, Yuhi et al. Adaptive direct slicing of volumetric attribute data represented by trivariate B-spline functions. The International Journal of Advanced Manufacturing Technology, v. 91, n. 5-8, p. 1791-1807, 2017.

[104] SCHNIEDERJANS, Dana G. Adoption of 3D-printing technologies in manufacturing: A survey analysis. International Journal of Production Economics, v. 183, p. 287-298, 2017.

[105] SHANGGUA N, Haolong et al. 3D-printed rib-enforced shell sand mold for aluminum castings. The International Journal of Advanced Manufacturing Technology, p. 1-8, 2018.

[106] SHEYDAEJAN, EsmaT; TOYSE R KAN, Ehsan. A system for selectively encapsulating porogens inside the layers during additive manufacturing: From conceptual design to the first prototype. Journal of Manufacturing Processes, v. 26, p. 330-338, 2017.

[107] SINGH, Sunpreet; RAMAKRISHNA, Seeram; SINGH, Rupinder. Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, v. 25, p. 185-200, 2017.

[108] SNELLING, Dean A. et al. Binder jetting advanced ceramics for metal-ceramic composite structures. The International Journal of Advanced Manufacturing Technology, v. 92, n. 1-4, p. 531-545, 2017.

[109] SUNNY, SM Nahian Ali; LIU, Xiaoping F.; SHAHRIRI, Md Rakib. Communication method for manufacturing services in a cyber-physical manufacturing cloud. International Journal of Computer Integrated Manufacturing, v. 31, n. 7, p. 636-652, 2018.

[110] TANG, Shiyan et al. Layered extrusion forming—a simple and green method for additive manufacturing ceramic core. The International Journal of Advanced Manufacturing Technology, v. 96, n. 9-12, p. 3809-3819, 2018.

[111] TAVAKOLI, Mahmoud et al. Anthropomorphic finger for grasping applications: 3D printed endoskeleton in a soft skin. The International Journal of Advanced Manufacturing Technology, v. 91, n. 5-8, p. 2607-2620, 2017.

[112] THOMAS-SEALE, L. E. J. et al. The barriers to the progression of additive manufacture: Perspectives from UK industry. International Journal of Production Economics, v. 198, p. 104-118, 2018.

[113] TRONVOLL, Sigmund A.; WELO, Torger; ELVERUM, Christer W. The effects of voids on structural properties of fused deposition modelled parts: a probabilistic approach. The International Journal of Advanced Manufacturing Technology, p. 1-12, 2018.

[114] UPADHYAY, Meet; SIVARUPAN, Tharmalingam; EL MANSORI, Mohamed. 3D printing for rapid sand casting—A review. Journal of Manufacturing Processes, v. 29, p. 211-220, 2017.

[115] URBANIC, R. J.; HEDRICK, R. W.; BURFORD, C. G. A
process planning framework and virtual representation for bead-based additive manufacturing processes. The International Journal of Advanced Manufacturing Technology, v. 90, n. 1-4, p. 361-376, 2017.

[116] VIJAYARAGHAVAN, Venkatesh et al. Process characterisation of 3D-printed FDM components using improved evolutionary computational approach. The International Journal of Advanced Manufacturing Technology, v. 78, n. 5-8, p. 781-793, 2015.

[117] WANG, Di et al. Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM. The International Journal of Advanced Manufacturing Technology, v. 86, n. 1-4, p. 781-792, 2016.

[118] WANG, Jia-Chang; DOMMATI, Hitesh. Fabrication of zirconia ceramic parts by using solvent-based slurry stereolithography and sintering. The International Journal of Advanced Manufacturing Technology, v. 98, n. 5-8, p. 1537-1546, 2018.

[119] WEI, Chuang; DONG, Jingyan. Hybrid hierarchical fabrication of three-dimensional scaffolds. Journal of Manufacturing Processes, v. 16, n. 2, p. 257-263, 2014.

[120] WELLER, Christian; KLEER, Robin; PILLER, Frank T. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. International Journal of Production Economics, v. 164, p. 43-56, 2015.

[121] WESTERWEEL, Bram; BASTEN, Rob JI; VAN HOUTUM, Geert-Jan. Traditional or Additive Manufacturing? Assessing component design options through lifecycle cost analysis. European Journal of Operational Research, 2018.

[122] XIAO, Kaida et al. Developing a 3D colour image reproduction system for additive manufacturing of facial prostheses. The International Journal of Advanced Manufacturing Technology, v. 70, n. 9-12, p. 2043-2049, 2014.

[123] YAMAN, Ulas. Shrinkage compensation of holes via shrinkage of interior structure in FDM process. The International Journal of Advanced Manufacturing Technology, v. 94, n. 5-8, p. 2187-2197, 2018.

[124] YANG, Sheng; ZHAO, Yaoyao Fiona. Additive manufacturing-enabled design theory and methodology: a critical review. The International Journal of Advanced Manufacturing Technology, v. 80, n. 1-4, p. 327-342, 2015.

[125] YANG, Yang et al. 3D printing of shape memory polymer for functional part fabrication. The International Journal of Advanced Manufacturing Technology, v. 84, n. 9-12, p. 2079-2095, 2016.

[126] YANG, Yiran; LI, Lin. Cost modeling and analysis for Mask Image Projection Stereolithography additive manufacturing Simultaneous production with mixed geometries. International Journal of Production Economics, v. 206, p. 146-158, 2018.

[127] YAO, Xifan; LIN, Yingzi. Emerging manufacturing paradigm shifts for the incoming industrial revolution. The International Journal of Advanced Manufacturing Technology, v. 85, n. 5-8, p. 1665-1676, 2016.

[128] ZHANG, Hongyu et al. Development of a path planning algorithm for reduced dimension patch printing conductive pattern on surfaces. The International Journal of Advanced Manufacturing Technology, v. 95, n. 5-8, p. 1645-1654, 2018.

[129] ZHAO, Wentao; ANAND, Sam. Geometric approaches to input file modification for part quality improvement in additive manufacturing. Journal of Manufacturing Processes, v. 20, p. 465-477, 2015.

[130] ZHAO, Gang et al. Nonplanar slicing and path generation methods for robotic additive manufacturing. The International Journal of Advanced Manufacturing Technology, v. 96, n. 9-12, p. 3149-3159, 2018.
ANNEX I: Classification Tables for Articles

Table 1: Articles classification by types of study.

LABEL	T1: Types of Study
A	Theoretical Conceptual
B	Case Study
C	Survey
D	Modeling and Simulation
E	Search
F	Literature Review
G	Experimental Research

Table 2: Articles classification by affiliation.

LABEL	T2: Affiliation
U	University
CP	Research Center
EP	Company

Table 3: Articles classification by approach.

LABEL	T3: Approach
A	Quantitative
B	Qualitative

Table 4: Articles classification by study origin.

LABEL	T4: Origin
BR	Brazil
AM	Americas (excluding Brazil)
EU	Europe
AS	Asia
AF	Africa
OC	Oceania

Table 5: Articles classification by geographical scope of the study.

LABEL	T5: Geographical scope of study
RE	Regional
NA	National
IN	International

Table 6: Articles classification by unit of analysis.

LABEL	T6: Analysis Unit
EC	Application in Companies - Costs
ED	Application in Business - Design
EP	Application in Companies - Production
EQ	Application in Companies - Product Quality
MT	Theoretical Model Study
ISA	Social Impact - Environmental
TABLE 7: Articles classification by scope.	
-----------------	----------------------------------
LABEL	T7: Scope of the article
A1	Comparison Rapid Prototyping x Traditional Manufacturing
A2	Impact of Rapid Prototyping
A3	Strategy for Implementation of Rapid Prototyping
A4	Market analysis
A5	Barriers for use of Rapid Prototyping
A6	Product development
A7	Survey Survey on the Use and Importance of Rapid Prototyping
A8	Survey Survey on application of Rapid Prototyping
A9	Bibliographic research on areas of application of Rapid Prototyping
A10	Bibliographic research on different techniques of Rapid Prototyping

| TABLE 8: Articles classification by benefits. |
|-----------------|----------------------------------|
| LEGENDA | T8: Benefits |
| B1 | Design Improvement |
| B2 | Lead-time reduction |
| B3 | Flexible Manufacturing Process |
| B4 | Longer life of the product |
| B5 | Highest Quality |
| B6 | Lowest Cost |
| B7 | Lower environmental impact |
| B8 | Less waste of material |

| TABLE 9: Articles classification by negative points. |
|-----------------|----------------------------------|
| LEGENDA | T9: Negative points |
| C1 | Higher Cost |
| C2 | Final product with lower Reliability / Quality |
| C3 | Longer Component Development Time |
| C4 | High demand for customized products |
| C5 | Not ready for large-scale production |
| C6 | Uncertain benefit cost |
| C7 | Low skilled labor |
| C8 | Limitation of materials that may be used in the process |
| C9 | Difficult transition from traditional manufacture to rapid prototyping |
ANNEX II: Selected Articles Classification

Table 1: Classification of articles by type of study.

Journal	Authors	T1	T2	T3	T4	T5	T6	T7	T8	T9
1	Westerweel et al. (2018)	B	U	A	EU	IN	EC, ED, EQ	A1	B1, B2	C1, C2
2	Eyers et al. (2018)	B	U	B	EU	IN	EP	A2	B3	
3	Melor et al. (2014)	B	U	B	EU	IN	EP	A3	B2, B4	C3
3	Weller et al. (2015)	A, F	U	B	EU	MT	A2	B1, B2, B3	C4	
3	Schniederjans (2017)	C	U	A	AM	NA	EC, ED, EP	A7	B2, B5	
3	Hartl & Kort (2017)	B	U	A	EU	MT	A4			
3	Chan et al. (2018)	C	U	B	AS	IN	EC, ED, EP	A8	C5	
3	Thomas-Scale et al. (2018)	B, C	U	A	EU	NA	EC	A4, A5	C2, C5, C6, C7, C8	
3	Ghobadian et al. (2018)	B	U	B	EU	EC, ISA	A2	B6, B7, B8	C5	
3	Chekurov et al. (2018)	C	U	B	EU	NA	ED, EP, EQ	A3	B1, B2, B5, B6	
3	Knofius et al. (2018)	B	U	A	EU	ED, EP, EQ, EP	A3	B2, B5, B6	C9	
3	Caviggioli & Ughetto (2018)	F	U	A	EU	IN	EC, ISA	A9		
3	Yang & Lin (2018)	D	U	A	AM	MT	A2	B1, B6		
4	Lei et al. (2016)	B	U	A	AS	UQ	A1, A2	B1		
4	Lockett et al. (2017)	B	U	A	EU	UQ	A2	B1, B8		
4	Pradel et al. (Jun, 2018)	B	U	B	EU	ED	A9			
4	Pradel et al. (Mar, 2018)	C	U	B	EU	IN	ED	A2	B1	C1
5	Ravn et al. (2015)	D	U	B	EU	NA	MS	A2	B1	
5	Mawale et al. (2016)	B	U	B	AS	EC, ED, EQ	A2	B1, B5, B6		
6	Xiao et al. (2014)	B, D, G	U	A	EU	UQ, UD, UC	A2, A6	B1, B2, B5, B6		
6	Espalin et al. (2014)	B,G	U	A	AM	UQ,UP	A2,A6	B1		
---	---------------------	-----	---	---	----	-------	-------	----		
6	Monzón et al. (2015)	B	U	B	EU	EP	A3,A5	C7,C8		
6	Vijayaraghavan et al. (2015)	D	U	A	AS	MS	A2	B1,B5		
6	Jiang et al. (2015)	D,G	U	A	AS	MP	A2,A6	B5		
6	Mançaneres et al. (2015)	B	U	A	BR	UQ	A2,A6			
6	Yang & Zhao (2015)	A	U	B	AM	MT	A2,A6			
6	Kantaros et al. (2016)	G	U	A	EU	MH	A6	B5		
6	Bikas et al. (2016)	F	U	B	EU	MT	A10			
6	Mai et al. (2016)	B	U	B	AS	EP	A2	B2,B3,B6,B7		
6	Li et al. (2016)	A	U	A	AS	UQ	A6	B5		
6	Alberti et al. (2016)	G	U	A	BR	MP	A2	B5		
6	Yang & Lin (2016)	G	U	A	AS	MP,UQ	A2,A6	B5		
6	Yao & Lin (2016)	B	U	B	AS	EP	A3	B3		
6	Laplume et al. (2016)	B	U	A	AM	EC, EP	A4			
6	Mandil et al. (2016)	B	U	A	EU	MP	A2	B5		
6	Ali et al. (2016)	G	U	A	AS	MH,MP	A2	B6	C5	
6	Wang et al. (Set.,2016)	B	U	A	AS	UQ	A6	B5		
6	Papazetis & Vosniakos (2016)	B	U	A	EU	UQ	A6	B5		
6	Kamath (2016)	G	U	A	AM	MS	A2	B5		
6	Salonitis (2016)	B	U	B	EU	UD	A3			
6	Islam et al. (2017)	B	U	A	OC	UQ	A10			
6	Romero et al. (2017)	B	U	B	EU	MP	A2,A6			
6	Panda et al. (2017)	B	U	A	EU	UQ	A10			
6	Brooks et al.	G	U	A	OC	MP	A2,A6			
(2017)	Authors	Code	Method	Results						
--------	---------	------	--------	---------						
6	Monzón et al. (2017)	G U A	EU	MP	A2,A6	B1,B5				
6	Liu et al. (2017)	G U A	AS	MP	A2,A6	B5				
6	Garg et al. (2017)	G U A	AS	MP	A2,A6	B5				
6	Chen et al. (2017)	B U B	AS	EP	A3,A5	C1,C8				
6	Urbanic et al. (2017)	B U A	AM	EP	A3					
6	Ferreira et al. (2017)	G U A	OC	MS, MH	A6	B5				
6	Mohiuddin et al. (2017)	B,D U A	AS	UQ	A6	B5				
6	Tavakoli et al. (2017)	B U A	EU	UD	A6	B5				
6	Hsu et al. (2017)	B,D U A	AS	UP, UQ	A6	B5,B6				
6	Sasaki et al. (2017)	D U A	AS	MS	A6					
6	Baumann et al. (2017)	B U B	EU	UP	A3					
6	Snelling et al. (2017)	B U A	AM	MP	A6	B5				
6	Leal et al. (2017)	B U A	EU	EP,EC	A1,A3,A6	B2,B6				
6	Jin et al. (2017)	B U A	AS	MS	A6	B1				
6	Primo et al. (2017)	B U A	EU	UD, UP	A6	B5				
6	Goh et al. (2018)	B U A	AS	UQ	A10	B5				
6	Yaman (2018)	B U A	EU	MS, MP	A6	B5,B8				
6	Feng et al. (2018)	B U A	AS	UP	A6	B1,B6				
6	Khorasani et al. (2018)	B U A	OC	UD, UP	A6	B1				
6	Li et al. (Mar, 2018)	B U A	AS	MS, MP	A6	B1,B5				
6	Chong et al. (2018)	F U B	AS	UD, UP	A10					
6	Zhang et al. (Mar, 2018)	B U A	AS	MS	A6	B2				
6	Lee et al. (2018)	D U A	AM	MP	A6					
6	Jaiswal et al.	B U A	AM	MS	A6	B2				
6	Li et al. (May, 2018)	G	U	A	AS	MP	A6	B3		
6	Guo & Qiu (May, 2018)	F	U	B	AS	UP	A3			
6	Shangguan et al. (2018)	G	U	A	AS	MP	A6	B2,B5		
6	Zhao et al. (2018)	B,D	U	A	AS	MS	A6	B2		
6	Chai et al. (2018)	B	U	A	OC	UC,UP,UQ	A6	B2, B5, B6		
6	Asadollahi-Yazdi et al. (2018)	B	U	A	EU	UP	A3,A6			
6	Tang et al. (2018)	G	U	A	AS	MP	A6	B5,B7		
6	Hawaldar et al. (2018)	B	U	A	AM	UQ	A1	B2,B5,B8		
6	Bahnini et al. (2018)	F	U	B	AF	EP	A1,A2,A9,A10			
6	Lebedev et al. (2018)	B	U	A	EU	MS	A6	B5		
6	Baturynska (2018)	D	U	A	EU	UQ	A6	C1		
6	Tronvoll et al. (2018)	B	U	A	EU	MS, UQ	A6	B5		
6	Pereira et al. (2018)	B	U	A	EU	MS, UQ	A6	B5		
6	Wang & Dommati (Set, 2018)	G	U	A	AS	MP	A6	B5		
6	Pires et al. (2018)	G	U	A	EU	MP	A6	B5		
6	Bruna-Rosso et al. (2018)	G	U	A	EU	MP	A6	B5		
6	Imeri et al. (2018)	B	U	A	AM	UQ	A6			
7	Jin et al. (2017)	B	U	A	AS	MS	A6	B1,B2,B5		
7	Sunny et al. (2018)	B	U	B	AM	UP	A3			
7	Helou & Kara (2018)	F	U	B	OC	UD,UP	A9			
7	Charro & Schaefer (2018)	B	U	A	EU	MP	A3	B3, B6		
7	Bonnard et al. (2018)	A	U	A	BR	MS	A6			
	Authors	Technique	2014/2015	2016/2017	2018/2019					
---	--------------------------	-----------	-----------	-----------	-----------					
8	Wei & Dong (2014)	B	U	A	AM	MS	A6	B5		
8	Han et al. (2015)	B	U	A	AM	MS	A6			
8	Mun et al. (2015)	D	U	A	AS	MP	A6			
8	Brant & Sundaram (2015)	B	U	A	AM	MP	A3	B2		
8	Zha & Anand (2015)	B	U	A	AM	MS	A6	B1,B5		
8	Ravi et al. (2016)	B	U	A	AM	MP	A6	B5		
8	Dawoud et al. (2016)	B	U	A	AF	UQ	A1	C2		
8	Kim & Tai (2016)	B	U	A	AM	MP	A6			
8	Correa et al. (2016)	B	U	A	AM	MH	A6			
8	Mao et al. (2016)	B	U	A	AM	MP	A6	B1,B5		
8	Habib & Khoda (2017)	B	U	A	AM	MP	A6	B1,B2,B5		
8	Upadhyay et al. (2017)	F	U	A	EU	UP	A10			
8	Jin & Chen (2017)	B	U	A	AM	MH	A6			
8	Fang et al. (2017)	B	U	A	AS	MP	A6	B6		
8	Estelle et al. (2017)	B	U	A	AM	MP	A6	B5		
8	Liu et al. (2017)	B	U	A	AS	MH	A6	B5		
8	Sheydaeian & Toyserkani (2017)	B,G	U	A	AM	MP	A6			
8	Areir et al. (2017)	B	U	A	EU	MP	A6			
8	Singh et al. (2017)	F	U	B	AS	MT	A9,A10			
8	Khodabakhshi & Gerlich (2018)	F	U	A	AM	MT	A10			
8	Du et al. (2018)	B	U	A	AS	MP	A6			
8	Alaboodi & Sivasankaran (2018)	B	U	A	AS	MP	A6	B5		
8	Kumar et al. (2018)	B	U	A	AS	MH	A6	B5		
8	Kumar et al. (2018)	B	U	A	AS	UQ	A6			
8	Dawoud et al. (2018)	B	U	A	AF	UQ	A6			
8	Jabbari & Abrinia (2018)	B, G	U	A	AS	MP	A6			
---	--------------------------	------	---	---	----	----	----			
8	Duty et al. (2018)	B	U	A	AM	MP	A6			
8	Jin et al. (2018)	G	U	A	AM	MP	A6			
8	Kumar (2018)	G	U	A	AM	MP	A6			
8	MacDonald et al. (2018)	G	U	A	AM	UP	A6			
8	Li et al. (2018)	G	U	A	AM	MP	A6	B6, B7, B8		
8	Kitayama et al. (2018)	G	U	A	AS	MS	A6			
8	Bournias-Varotsis et al. (2018)	G	U	A	EU	MP	A6			
8	Holt et al. (2018)	G	U	A	AM	MP	A6			