Reducing Linear Programs into Min-max Problems

Carmi Grushko

November 22, 2013

Abstract

We show how to reduce a general, strictly-feasible LP problem, into a min-max problem, which can be solved by the algorithm from the third section of [1].

1 Reduction

Problem 1. Let us consider a linear program in the following form,

\[
\text{maximize}_{x \in \mathbb{R}^d} \quad (0,0,\ldots,1)^T x
\]

subject to \(Ax \leq b\)

and let us assume that the problem is strictly feasible; that is, there exists a point \(x\) for which \(Ax < b\). Further assume that the origin \((0,0,\ldots,0)\) is a strictly feasible point.

Any strictly feasible linear program can be rotated such that the objective function is \((0,0,\ldots,1) \cdot x\), and translated such that the origin is a strictly feasible point. The translation is discussed in Strict Feasibility of the Origin, below, while the rotation is explained further below, in Rotation.

We now show how to solve Problem 1 using the algorithm described in the third section of [1].

Definition 2 (z-axis). Let \(z\) denote the last coordinate of the space of our problem. \(z\)-intersect of a hyperplane refers to its intersection with the \(z\)-axis, while the last coordinate of a point is its \(z\) value. For example, in a 5-dimensional space, the \(z\)-coordinate denotes the fifth coordinate.

Definition 3 (Planes). For terseness, we denote the plane \(z \cdot p = \sigma\) as \((\pi,\sigma)\).

Definition 4 (Projective Duality). Let \(p \in \mathbb{R}^d\) be a point. Then its dual, \(p^*\), is the plane \((p, -1)\). Conversely, let \((\pi,\sigma)\) be a plane with \(\sigma \neq 0\). Then its dual, \((\pi,\sigma)^*\), is the point \(-\frac{\pi}{\sigma}\).

It is straightforward to confirm that the projective duality is self-dual and incidence preserving. For future use, we note that the \(z\)-intersect of a dual \(p^*\) to a point \(p\) is \(-\frac{1}{\sigma}\).

Definition 5 (Constraints and their Duals). The set of constrains in Problem 1, \(Ax \leq b\), can be described by a set of planes. Let us denote these planes as the set \(\Pi = (A_i, b_i)\), and their duals as \(\Pi^* = -A_i/b_i\).

Note that we exclude the definition of duality for planes which intersect the origin; however, since the origin is strictly feasible in Problem 1, no constraint plane intersects it.

Claim 6. Let \(p\) be a point and \((\pi,\sigma)\) a plane. Then \(p\) and the origin are on the same side of \((\pi,\sigma)\), if and only if the point \((\pi,\sigma)^*\) and the origin are on the same side of the plane \(p^*\).

Proof. \(p\) and the origin are on the same side of \((\pi,\sigma)\) iff,

\[
\text{sign} \left((p \cdot (\pi - \sigma) \cdot (\pi \cdot 0 - \sigma)) \right) = \text{sign} \left(\sigma^2 \cdot \left(-\frac{1}{\sigma} \cdot \pi \cdot p + 1 \right) \right)
\]

\[
= \text{sign} \left(-\frac{1}{\sigma} \cdot \pi \cdot p + 1 \right)
\]

\[
= 1
\]

Similarly, \((\pi,\sigma)^*\) (which equals \(-\pi/\sigma\)) and the origin are on the same side of the plane \(p^*\) (which equals \((p, -1)\)) iff,

\[
\text{sign} \left((p \cdot \left(-\frac{\pi}{\sigma} \right) + 1) \cdot (p \cdot 0 + 1) \right) = \text{sign} \left(-\frac{\pi}{\sigma} \cdot p + 1 \right) = 1.
\]

Claim 7. Assume the origin is a feasible point. Then, a point \(p\) is feasible iff the set of points \(\Pi^*\) representing the problem constraints, and the origin, are on the same side of the point’s dual plane, \(p^*\).
Proof. Since the origin is feasible, any other feasible point must share with it the same side of all the constraint planes Π. By Claim 6, this implies all duals to these planes, Π^*, and the origin, must be on the same side of p^*.

Claim 7 is illustrated in Figure 1. The point F is a feasible point and is on the same side as the origin relative to all of the constraint planes (left figure). Its dual, F^* has all the constraint points Π^* and the origin on its same side (right figure).

Definition 8 (Feasible Dual Plane). A plane (π, σ) is feasible if its dual point, π/σ is a feasible solution to Problem 1. Applying Claim 7, this implies that all dual constraint point Π^*, and the origin, are on the same side of (π, σ).

Since the origin is a strictly feasible point, an optimal solution p to Problem 1 must have a positive z value. As a result, its dual must have a negative z–intersect. Moreover, since p has a largest z value amongst all feasible points, its dual must have the largest (negative) z–intersect amongst all feasible dual planes. In the case that the dual plane can be made to have an arbitrarily small negative z–intersect, the problem is unbounded.

It follows, then, that a plane which supports the set of points Π^* from below and has a maximal (negative) z–intersect, is a solution to Problem 1, and this is exactly the problem which the algorithm from the third section of [1] solves.

1.1 Strict Feasiblity of the Origin

Given a strictly feasible solution p_0 to Problem 1, set $v \triangleq Ap_0$, and replace b by $b' = b - v$. Because $Ap \leq b$ if and only if $A(p - p_0) \leq b'$, the feasible set of the new problem equals the feasible set of the original problem, translated by p_0. In addition, because $v < b$, it holds that $b' > 0$, which means that $A \cdot 0 < b$. That is, the origin is a strictly feasible point.

Finding a strictly feasible solution to Problem 1 can be performed by solving the following LP problem,

$$\begin{align*}
\min_{s \in \mathbb{R}, p \in \mathbb{R}^d} & \quad s \\
\text{s.t.} & \quad A \cdot p - b \leq s
\end{align*}$$

for which $p = 0$ and $s = -\min(b) + 1$ are a feasible solution. If the optimal solution s^* is negative, p^* is a strictly feasible point.

Alternatively, the equivalent min-max problem can be solved in the way described in the third section of [1],

$$\min_{p \in \mathbb{R}^d} \max (Ap - b);$$

if the solution is negative, p^* is a strictly feasible point.

1.2 Rotation

Let $c \in \mathbb{R}^d$ be a general vector, and $u = c - (0, 0, \ldots, 1)^T$. Define the following matrix:

$$R' = I - \frac{uu^T}{\|u\|^2},$$

and set R to be R' with its first row negated. It is straightforward to verify that R is a rotation matrix, and that $Rc = (0, 0, \ldots, 1)^T$.

Applying R to a general LP program,

$$\begin{align*}
\max_{x \in \mathbb{R}^d} & \quad (Rc)^T x \\
\text{subject to} & \quad (AR^T) x \leq b,
\end{align*}$$

results in the form of Problem 1. The solutions of the two problems are related by rotation with R.

The computational cost of this rotation is bounded by $O(dn)$.

References

[1] Carmi Grushko. *Continuous Symmetries of Non-rigid Shapes*. MSc thesis, Technion - Israel Institute of Technology, 2012.