Soft Rough q-Rung Orthopair m-Polar Fuzzy Sets and q-Rung Orthopair m-Polar Fuzzy Soft Rough Sets and Their Applications

JINGSHUI PING, MOHAMMED ATEF, AHMED MOSTAFA KHALIL, MUHAMMAD RIAZ, AND NASRUDDIN HASSAN

1Department of Applied Mathematics, Huainan Normal University, Huainan 232038, China
2Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
3Department of Mathematics, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
4Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan
5Faculty of Science and Technology, School of Mathematical Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

Corresponding author: Ahmed Mostafa Khalil (a.khalil@azhar.edu.eg)

This work was supported by the Key Projects of Natural Science Research in Colleges and Universities of Anhui Province under Grant KJ2020A0642.

ABSTRACT The notion of a q-rung orthopair fuzzy soft rough set (\(q\)-ROFSRS) appeared as an extension of q-rung orthopair fuzzy set (\(q\)-ROFS) and q-rung orthopair fuzzy soft set (\(q\)-ROFSS) with the aid of rough set (RS) definition. Thus, \(q\)-ROFSRS and m-polar fuzzy set (\(m\)-PFS) are convenient to deal with uncertain knowledge which helps us to solve many problems in decision making. In this paper, we define the soft rough q-rung orthopair m-polar fuzzy sets (\(q\)-RO\(_m\)PFS) and q-rung orthopair m-polar fuzzy soft rough sets (\(q\)-RO\(_m\)PFSRS) through crisp soft and q-rung orthopair (q-RO) m-polar fuzzy soft approximation space. The related characteristics of these models are also studied. Then, we construct two new algorithms for these models to solve MADM issues. The successful application and corresponding comparative analyses proves that our proposed models are rational and effective.

INDEX TERMS q-rung orthopair fuzzy soft rough set, m-polar fuzzy set, soft rough q-rung orthopair m-polar fuzzy sets, q-rung orthopair m-polar fuzzy soft rough sets, multi-attribute decision making.

I. INTRODUCTION

The rapid of research articles become very huge, especially in mathematics. Numerous suggestions were made to solve real-world problems using mathematical techniques by way of appropriate equations or formulas in helping decision makers to make their best decisions. To solve problems involving uncertainty, fuzzy sets (FS) was introduced by Zadeh [1] in 1965.

Later in 1982, Pawlak introduced the notion called Rough Sets (RS) [2], [3]. The beauty of RS is it is able to divide the area into three parts (Lower, Upper, and Boundary region). This idea comes from the meaning of the topology concept. Eight years later, Dubois and Prade [4] combine the notion of RS and FS, to form rough fuzzy sets and fuzzy rough sets. Since then, many researchers studied further on RS and FS as in the following published articles [5]–[15].

The associate editor coordinating the review of this manuscript and approving it for publication was Geng-Ming Jiang.

To reduce the uncertainty and vagueness of knowledge, Molodtsov [16] developed soft sets (SS). Feng et al. [17] established the soft rough sets (SRS) by merging SS and RS in 2011. Also, in 2017, Yager [18] defined a new concept called q-rung orthopair fuzzy sets (\(q\)-ROFS) as a refinement to the notion of Pythagorean fuzzy sets (PFS) [19], [20] and intuitionistic fuzzy sets (IFS) [21]. IFS and PFS are considered as special cases of \(q\)-ROFS, when \(q = 1\) and \(q = 2\), respectively. There are numerous research on IFS [22]–[27], PFS [28]–[36] and \(q\)-ROFS [37]–[45].

In 1994, as an extension of FS whose membership grade range is \([-1, 1]\), bipolar fuzzy sets (BFS) was proposed by Zhang [46]. In a BFS, the membership grade 0 of a variable means that the variable is irrelevant to the corresponding property, the membership grade (0, 1] of a variable points out that the variable somewhat fulfills the property, while the membership grade \([-1, 0)\) of a variable point out that the variable somewhat satisfies the implicit counter-property. The idea which lies behind such description is connected with...
the existence of “bipolar information” (e.g., plus information and minus information) about the given set. Plus information represents what is granted to be possible, while minus information represents what is considered to be impossible. Then to generalize the BFS to help experts to deal with uncertainty, the meaning of m-polar fuzzy sets (mPS) was mooted by Chen et al. [47]. They proved that bipolar fuzzy sets and 2-polar fuzzy sets are cryptomorphic mathematical tools. In many real-life complicated problems, data sometimes comes from an employee ($n \geq 2$), that is, multipolar information (not just bipolar information, which corresponds to two-valued logic) exists. There are many applications of m-polar fuzzy sets to decision-making problems when it is compulsory to make assessments with a group of agreements. Akram et al. [48], [49] proposed the soft rough m-polar fuzzy and m-polar fuzzy soft rough sets. By merging the concepts of SRS, PFS, and mPS, Riaz and Hashmi [50] investigated the Pythagorean m-polar fuzzy sets (P_mPFS), soft rough Pythagorean m-polar fuzzy sets (SR_{m}PFS) and Pythagorean m-polar fuzzy soft rough sets (P_{m}PFSRS). The concept of q-rung orthopair m-polar fuzzy sets (q^mROFmPFS) was then defined by Riaz et al. [51].

Using the notions of SS, SRS, and qROFS, Hussain et al. [52] proposed the q-rung orthopair fuzzy soft sets and their application. Wang et al. [53] explained the qROF soft rough sets(qROFSRS) with a few applications. Riaz et al. [54] introduced the notion of soft rough q-rung orthopair fuzzy sets and some of their properties were discussed. Thereafter, many researchers studied SRS, SS, and their applications such as [55]–[60], [64].

From these interesting studies, we intend to develop a hybrid of SRS and qROFmPFS and put forward a new model called q-rung orthopair m-polar fuzzy soft rough sets (q^mROFmPFSRS) and soft rough q-rung orthopair fuzzy sets (SR^qmROFmPFS). These combinations provide us with the property of q^mROFmPFS and soft rough sets together which maximize the handling of uncertain data. Thus our proposed methods are generalized extensions of Akram et al. [48], Riaz and Hashmi [50] and Riaz et al. [54]. When $q = 1$, the presented formula reduces to those methods in [48] and [49] and if $q = 2$, it reduces to those methods in [50]. Our proposed method will cater for m sets which make our studies are reliable, compared to [54] which catered for only a single set. Their relevant properties will be investigated, a few definitions and theorems will be promulgated along with illustrative examples. We will then proceed to construct two algorithms along with their applications. Finally, we will run comparative analyses on the outcomes of those two algorithms.

The structure of this paper is as follows. The preliminary of basic notions will be introduced in Section 2. Section 3 will discuss the novel concept of SR^qmROFmPFS and the related characteristics. The hybrid concept of SR^qmROFmPFSRS will be proposed and its associated properties are discussed in Section 4. In Section 5, we will give an illustrative example to show the applicability of the proposed constructed algorithms along with the comparative analyses, followed by the conclusion in Section 6.

II. PRELIMINARIES

Now, we give some basic notions on IFS, PFS and qROF before defining soft rough q-rung orthopair m-polar fuzzy sets SR^qmROFmPFS in the next section.

Definition 1 ([21], [22]): If \mathcal{E} is the origin set. For every $\mathcal{H} \in \mathbb{E}$, we have a membership grade $\theta_{\mathcal{E}} : \mathbb{E} \rightarrow [0, 1]$ and a non-membership grade $\nu_{\mathcal{E}} : \mathbb{E} \rightarrow [0, 1]$. Define the IFS \mathcal{E} as indicated below.

$$\mathcal{E} = ((\mathcal{H}, \theta_{\mathcal{E}}(\mathcal{H}), \nu_{\mathcal{E}}(\mathcal{H})))$$

where $0 \leq \theta_{\mathcal{E}}(\mathcal{H}) + \nu_{\mathcal{E}}(\mathcal{H}) \leq 1$.

Also, $\mathcal{H} = (\theta_{\mathcal{H}}, \nu_{\mathcal{H}})$ is said to be an intuitionistic fuzzy number (IFN), if

$$0 \leq \theta_{\mathcal{H}}, \nu_{\mathcal{H}} \leq 1, \theta_{\mathcal{H}} + \nu_{\mathcal{H}} = 1 - \theta_{\mathcal{H}} - \nu_{\mathcal{H}}.$$

To treat some problem in IFS which appeared in real issues, Yager in 2014 defined Pythagorean fuzzy sets (PFS) as indicated below.

$$\mathcal{E} = ((\mathcal{H}, \theta_{\mathcal{E}}(\mathcal{H}), \nu_{\mathcal{E}}(\mathcal{H})))$$

where $0 \leq \theta_{\mathcal{E}}(\mathcal{H}) + \sqrt{\nu_{\mathcal{E}}(\mathcal{H})} \leq 1$.

Also, $\mathcal{H} = (\theta_{\mathcal{H}}, \nu_{\mathcal{H}})$ is said to be a Pythagorean fuzzy number (PFN), if

$$0 \leq \theta_{\mathcal{H}} + \sqrt{\nu_{\mathcal{H}}} \leq 1,$$

Generalizing further, Yager presented the notion of q-rung orthopair fuzzy sets in 2017 (q-ROFN), if $q \geq 2$, the following relation.

$$\mathcal{E} = ((\mathcal{H}, \theta_{\mathcal{E}}(\mathcal{H}), \nu_{\mathcal{E}}(\mathcal{H})))$$

where $0 \leq \theta_{\mathcal{E}}(\mathcal{H}) + \sqrt{\nu_{\mathcal{E}}(\mathcal{H})} \leq 1$, where $\nabla \geq 1$.

Also, $\mathcal{H} = (\theta_{\mathcal{H}}, \nu_{\mathcal{H}})$ is said to be a q-ROF number (q-ROFN), if

$$\theta_{\mathcal{H}} + \sqrt{\nu_{\mathcal{H}}} \leq \nu_{\mathcal{H}} \leq 1.$$

Definition 2 ([19], [20]): If \mathcal{E} is the origin set. For every $\mathcal{H} \in \mathbb{E}$, if we have a membership grade $\theta_{\mathcal{E}} : \mathbb{E} \rightarrow [0, 1]$ and a non-membership grade $\nu_{\mathcal{E}} : \mathbb{E} \rightarrow [0, 1]$. Define the PFS \mathcal{E} as indicated below.

$$\mathcal{E} = ((\mathcal{H}, \theta_{\mathcal{E}}(\mathcal{H}), \nu_{\mathcal{E}}(\mathcal{H})))$$

where $0 \leq \theta_{\mathcal{E}}(\mathcal{H}) + \nu_{\mathcal{E}}(\mathcal{H}) \leq 1$, where $\nabla \geq 1$.

Also, $\mathcal{H} = (\theta_{\mathcal{H}}, \nu_{\mathcal{H}})$ is said to be a q-ROFN number (q-ROFN), if

$$\theta_{\mathcal{H}} + \sqrt{\nu_{\mathcal{H}}} \leq \nu_{\mathcal{H}} \leq 1.$$

Definition 3 [18]: If \mathcal{E} is the origin set. For every $\mathcal{H} \in \mathbb{E}$, if we have a membership grade $\theta_{\mathcal{E}} : \mathbb{E} \rightarrow [0, 1]$ and a non-membership grade $\nu_{\mathcal{E}} : \mathbb{E} \rightarrow [0, 1]$. Define the q-ROFs \mathcal{E} as indicated below.

$$\mathcal{E} = ((\mathcal{H}, \theta_{\mathcal{E}}(\mathcal{H}), \nu_{\mathcal{E}}(\mathcal{H})))$$

where $0 \leq \theta_{\mathcal{E}}(\mathcal{H}) + \sqrt{\nu_{\mathcal{E}}(\mathcal{H})} \leq 1$, where $\nabla \geq 1$.

Also, $\mathcal{H} = (\theta_{\mathcal{H}}, \nu_{\mathcal{H}})$ is said to be a q-ROFN (q-ROFN), if

$$\theta_{\mathcal{H}} + \sqrt{\nu_{\mathcal{H}}} \leq \nu_{\mathcal{H}} \leq 1.$$
Next, Chen et al. [47] defined m-polynomial fuzzy sets as follows.

Definition 6 [47]: If Ξ is the origin set, where $\phi: \Xi \to [0, 1]^m$ is the set of all m-polynomial fuzzy sets on Ξ.

Riaz and Hashmi [50] extended it to a Pythagorean form below.

Definition 7 [50]: If $\hat{E} = (\hat{\theta}, \hat{x})$ is a q-ROFNC, then we have the following.

$$\nabla \hat{E} = (\hat{\theta}, (1 - (\hat{x})^2)^{\frac{1}{2}})$$

$$\hat{E} = (\hat{x}, (1 - (\hat{x})^2)^{\frac{1}{2}})$$

where $0 \leq (\hat{x})^2 + (\hat{x})^2 \leq 1$, where $r = 1, 2, ..., m$.

Riaz et al. [51] further extended m-polynomial fuzzy sets of Chen et al. [47] to q-rung orthopair fuzzy form below.

Definition 8 [51]: If Ξ is the origin set. For every $\hat{H} \in \Xi$, if we have a membership grade $\hat{\theta}_c : \Xi \to [0, 1]$ and a non-membership grade $\hat{x_c} : \Xi \to [0, 1]$. Define the Pythagorean m-polynomial fuzzy sets (P$_m$PFS) E as indicated below.

$$E = \{(\hat{H}, \hat{\theta}_c(\hat{H}), \hat{x_c}(\hat{H}))\}$$

where $0 \leq (\hat{\theta}_c(\hat{H}))^2 + (\hat{x_c}(\hat{H}))^2 \leq 1$, where $r = 1, 2, ..., m$ and $\nabla \geq 1$.

Definition 9 [51]: If $\hat{E}_1 = (\hat{\theta}_1, \hat{x}_1)$ and $\hat{E}_2 = (\hat{\theta}_2, \hat{x}_2)$, for \hat{E}_1, \hat{E}_2 is qROFNC. Then $\forall \hat{H} \in \Xi$, we have the following relation.

(1) $\hat{E}_1 = \hat{E}_2$ \iff $(\hat{\theta}_1, \hat{x}_1) = (\hat{\theta}_2, \hat{x}_2)$. Where $\hat{\theta}_1$ and $\hat{\theta}_2$ are $\forall \hat{H} \in \Xi$.

(2) $\hat{E}_1 = \hat{E}_2$ \iff $\hat{\theta}_1 = \hat{\theta}_2$ and $\hat{x}_1 = \hat{x}_2$.

(3) $\hat{E}_1 \leq \hat{E}_2$ \iff $\hat{\theta}_1 \leq \hat{\theta}_2$ and $\hat{x}_1 \leq \hat{x}_2$.

(4) $\hat{E}_1 \cap \hat{E}_2 = (\hat{\theta}_1, \hat{x}_1)$, $\hat{\theta}_1 \wedge \hat{x}_1$.

(5) $\hat{E}_1 \cup (\hat{\theta}_1, \hat{x}_1)$, $\hat{\theta}_1 \vee \hat{x}_1$.

(6) $\hat{E}_1 - \hat{E}_2 = \hat{E}_1 \cap \hat{E}_2$.

(7) $\hat{E}_1 \oplus \hat{E}_2 = (\hat{\theta}_1 \oplus \hat{\theta}_2, \hat{x}_1 \oplus \hat{x}_2)$.

(8) $\hat{E}_1 \otimes \hat{E}_2 = (\hat{\theta}_1 \otimes \hat{\theta}_2(\hat{H}), \sqrt{(\hat{\theta}_1(\hat{H}))^2 + (\hat{\theta}_2(\hat{H}))^2 - (\hat{\theta}_1(\hat{H})\hat{\theta}_2(\hat{H}))^2}, \hat{x}_1, \hat{x}_2)$. Where $\hat{\theta}_1, \hat{\theta}_2, \hat{x}_1, \hat{x}_2$ is a q-ROFNC, then we have the following.

where $0 \leq \hat{\theta}_1(\hat{H})^2 + \hat{\theta}_2(\hat{H})^2 \leq 1$, where $\hat{\theta} \geq 1$.

Also, $\hat{E} = (\hat{\theta}, \hat{x})$ is said to be a q-ROFNC number (q-ROFNSN), if

$$\hat{E} = (\check{\theta}, (1 - (\hat{x})^2)^{\frac{1}{2}})$$

where $0 \leq (\hat{x})^2 + (\hat{x})^2 \leq 1$, where $r = 1, 2, ..., m$.

Wang et al. [53] defined qROF from blow.

Definition 12 [53]: If Ξ is the origin set. For every $\hat{H} \in \Xi$, let $(\check{\theta}, \check{x})$ be a qROFNC. Then for $\forall \hat{E} \subseteq \Xi \times J$, is qROFNN relation is defined as follows.

$$\hat{E} = (\check{\theta}, (\hat{x})^2)$$

where $0 \leq \hat{\theta}_1(\hat{H})^2 + \hat{\theta}_2(\hat{H})^2 \leq 1$, where $\hat{\theta} \geq 1$.

Also, \hat{E} is said to be a q-ROFSR number (q-ROFSRNN), if

$$\hat{E} = (\check{\theta}, (\hat{x})^2)$$

where $0 \leq (\hat{x})^2 + (\hat{x})^2 \leq 1$, where $\hat{\theta} \geq 1$.

In this section, we will define and illustrate the notion of soft rough q-rung orthopair m-polynomial fuzzy sets $S_{RO}RO_{m}F_{PS}$ and also discuss their relevant properties.

Definition 13: If Ξ is the origin set, \check{f} is the provisory features, and σ is the crisp soft relation, then (Ξ, \check{f}, σ) is a CSAS. For any $\hat{E} \in \check{3}RO_{m}F_{PS}(\check{f})$, the soft rough $\check{3}RO_{m}F_{PS}$-lower and soft rough $\check{3}RO_{m}F_{PS}$-upper approximations (SR$\check{3}RO_{m}F_{PSL}$A, SR$\check{3}RO_{m}F_{PSU}$), which are denoted by \check{H} and \check{H}, respectively, are as follows.

$$\check{H}(\hat{E}) = \{(\hat{\theta}, \check{\theta}(\hat{E})) \subseteq \check{f}, \exists \theta \in (\check{\theta}(\hat{E}))\}$$

$$\check{H}(\hat{E}) = \{(\hat{\theta}, \check{\theta}(\hat{E})) \subseteq \check{f}, \exists \theta \in (\check{\theta}(\hat{E}))\}$$

where $\hat{H} \in \Xi$ and $\nabla = 1, 2, ..., n$. If $\check{H}(\hat{E}) \neq \check{H}(\hat{E})$, then \hat{E} is a soft rough q-rung orthopair m-polynomial fuzzy sets, otherwise, it is definable.

Example 1: If $\Xi = \{\hat{H}_1, \hat{H}_2, \hat{H}_3, \hat{H}_4, \hat{H}_5\}$ is the origin set and $\check{f} = \{f_1, f_2, f_3, f_4\}$ is the features set. Suppose that

$$\check{H}(\hat{E}) = \{(\hat{\theta}, \check{\theta}(\hat{E})) \subseteq \check{f}, \exists \theta \in (\check{\theta}(\hat{E}))\}$$

where $\hat{H} \in \Xi$ and $\nabla = 1, 2, ..., n$. If $\check{H}(\hat{E}) \neq \check{H}(\hat{E})$, then \hat{E} is a soft rough q-rung orthopair m-polynomial fuzzy sets, otherwise, it is definable.
Thus the relation is as follows

\[S(f_1) = \{ H_1, H_2, H_3 \}, S(f_2) = \{ H_2, H_4, H_3 \}, S(f_3) = \{ H_1, H_2, H_4 \}, S(f_4) = \{ H_1, H_4, H_3 \}. \]

(2) Since \(\hat{H} \subseteq \mathcal{H}_1 \), so from Definition 13, we have

\[H(\hat{H}) = \{ (\hat{X}, \bigwedge_{\theta \in \sigma(\hat{X})} (\theta^p_{\hat{H}}(\hat{X})), \bigvee_{\theta \in \sigma(\hat{X})} (\theta^s_{\hat{H}}(\hat{X})) \} \]

(3) \(H(\mathcal{H} \cap \hat{H}) = \{ (\hat{X}, \bigwedge_{\theta \in \sigma(\hat{X})} (\theta^p_{\mathcal{H}}(\hat{X}) \cap \theta^p_{\hat{H}}(\hat{X})), \bigvee_{\theta \in \sigma(\hat{X})} (\theta^s_{\mathcal{H}}(\hat{X}) \cap \theta^s_{\hat{H}}(\hat{X})) \} \]

(4) \(H(\mathcal{H} \cup \hat{H}) = \{ (\hat{X}, \bigwedge_{\theta \in \sigma(\hat{X})} (\theta^p_{\mathcal{H}}(\hat{X}) \cup \theta^p_{\hat{H}}(\hat{X})), \bigvee_{\theta \in \sigma(\hat{X})} (\theta^s_{\mathcal{H}}(\hat{X}) \cup \theta^s_{\hat{H}}(\hat{X})) \} \]

The proofs of (1’) - (4’) can be similarly proven as those proofs of (1) - (4).

IV. q-RUNG ORTHOPAIR m-POLAR FUZZY SOFT ROUGH SETS

Below, we construct the concept of q-rung orthopair m-polar fuzzy soft rough sets \(qRO_mPFSRS \), and will discuss their properties. Henceforth, the notions of \(I, J \) and \((I, J) \)-cut sets will be proposed and their characteristics will be put forward.

\[\text{Definition 14: Suppose } \Xi \text{ is the origin set and } \mathcal{F} \text{ is the provisory features for some } \hat{\mathcal{E}} \subseteq \Xi. \text{ If we have a mapping } \mu : \hat{\mathcal{E}} \rightarrow qRO_mPFSRS, \text{ then } (\mu, \hat{\mathcal{E}}) \text{ is called q-rung orthopair m-polar fuzzy sets } (qRO_mPFS), \text{ where } qRO_mPFS(\Xi) \text{ is the set of all q-rung orthopair m-polar fuzzy subsets of the origin set } \Xi. \]

\[\text{Definition 15: If } (\mu, \hat{\mathcal{E}}) \text{ is a } qRO_mPFFS, \text{ then a q-rung orthopair m-polar fuzzy subset } v \text{ of } \Xi \times \mathcal{F} \text{ is called a q-rung orthopair m-polar fuzzy soft relation as below.} \]

\[v = \{ ((\rho, \tau), \theta^q_v(\rho, \tau), \chi^q_v(\rho, \tau)) : (\rho, \tau) \in \Xi \times \mathcal{F}, \forall V = 1, 2, \ldots, n \}, \]

where \(\theta^q_v(\rho, \tau), \chi^q_v(\rho, \tau) \in [0, 1] \) are the membership and non-membership scale, respectively, under the term of

\[0 \leq \theta^q_v(\rho, \tau) + \chi^q_v(\rho, \tau) \leq 1. \]

This relation can be viewed as the following, \(v \), as shown at the bottom of the next page.
Definition 16: If Ξ is the origin set, \hat{f} is the provisory features, and v is the $9RO_mPSFRS$ relation, then (Ξ, \hat{f}, v) is a $9RO_mPSFS$-approximation space. For any $\hat{\mathcal{E}} \in 9RO_mPSFS(\hat{f})$, the $9RO_mPFS$ soft rough-lower and $9RO_mPFS$ soft rough-upper approximations, which are denoted by $\mathcal{L}(\hat{\mathcal{E}})$ and $\mathcal{T}(\hat{\mathcal{E}})$, respectively, are as follows.

$$\mathcal{L}(\hat{\mathcal{E}}) = \{ (\hat{\mathcal{X}}, \bigcap_{\sigma \in \mathcal{H}(\hat{\mathcal{X}})} (1 - \theta^l_{\nu}(\rho, \tau) \lor \theta^l_{\nu}(\tau, \rho)), \bigcup_{\sigma \in \mathcal{H}(\hat{\mathcal{X}})} (\theta^l_{\nu}(\rho, \tau) \land \chi^l_{\mathcal{E}}(\tau)) \},$$

$$\mathcal{T}(\hat{\mathcal{E}}) = \{ (\hat{\mathcal{X}}, \bigcup_{\sigma \in \mathcal{H}(\hat{\mathcal{X}})} (\theta^l_{\nu}(\rho, \tau) \land \theta^l_{\nu}(\tau, \rho)), \bigcap_{\sigma \in \mathcal{H}(\hat{\mathcal{X}})} (1 - \theta^l_{\nu}(\rho, \tau) \lor \chi^l_{\mathcal{E}}(\tau)) \},$$

where $\hat{\mathcal{X}} \in \Xi$ and $\mathcal{V} = 1, 2, \ldots, n$. If $\mathcal{L}(\hat{\mathcal{E}}) \neq \mathcal{T}(\hat{\mathcal{E}})$, then $\hat{\mathcal{E}}$ is a $9RO_mPFS$-approximation space. Otherwise, it is definable.

Example 2: If $\Xi = \{ \hat{\mathcal{F}}_1, \hat{\mathcal{F}}_2 \}$ is the origin set and $\hat{f} = \{ f_1, f_2, f_3 \}$ is the features set. Suppose that the q-rung orthopair m-polar fuzzy soft relation $v : \Xi \rightarrow \hat{f}$ as set on the bottom of the page.

Suppose we have $\hat{\mathcal{E}} \in 9RO_mPFS(\hat{f})$ such that

$$\hat{\mathcal{E}} = \{ (f_1, (0.718, 0.318), (0.618, 0.118), (0.513, 0.213)), (f_2, (0.813, 0.518), (0.313, 0.513), (0.418, 0.713)), (f_3, (0.413, 0.318), (0.618, 0.412), (0.713, 0.312)) \},$$

Hence, we count the lower and upper approximations as below.

$$\mathcal{L}(\hat{\mathcal{E}}) = \{ (\hat{\mathcal{X}}_1, (0.413, 0.518), (0.381, 0.513), (0.513, 0.451)), (\hat{\mathcal{X}}_2, (0.482, 0.518), (0.487, 0.513), (0.418, 0.618)) \},$$

and

$$\mathcal{T}(\hat{\mathcal{E}}) = \{ (\hat{\mathcal{X}}_1, (0.718, 0.382), (0.519, 0.481), (0.513, 0.282)), (\hat{\mathcal{X}}_2, (0.718, 0.318), (0.618, 0.181), (0.617, 0.282)) \}.$$

Theorem 2: Let (Ξ, \hat{f}, v) is a $9RO_mPFS$-approximation space. For every $\hat{\mathcal{E}}, \hat{\mathcal{E}}_1 \in \Xi$, then the next conditions hold.

1. $\mathcal{L}(\hat{\mathcal{E}}) = (\mathcal{L}(\hat{\mathcal{E}}))^c$.
2. If $\hat{\mathcal{E}} \subseteq \hat{\mathcal{E}}_1$, then $\mathcal{L}(\hat{\mathcal{E}}) \subseteq \mathcal{L}(\hat{\mathcal{E}}_1)$.
3. $\mathcal{L}(\hat{\mathcal{E}} \cap \hat{\mathcal{E}}_1) = \mathcal{L}(\hat{\mathcal{E}}) \cap \mathcal{L}(\hat{\mathcal{E}}_1)$.
4. $\mathcal{L}(\hat{\mathcal{E}} \cup \hat{\mathcal{E}}_1) \supseteq \mathcal{L}(\hat{\mathcal{E}}) \cup \mathcal{L}(\hat{\mathcal{E}}_1)$.
5. $\mathcal{L}(\hat{\mathcal{E}}) \subseteq \mathcal{E} \subseteq \mathcal{T}(\hat{\mathcal{E}})$.
6. $\mathcal{T}(\hat{\mathcal{E}}) = (\mathcal{T}(\hat{\mathcal{E}}))^c$.
7. If $\hat{\mathcal{E}} \subseteq \hat{\mathcal{E}}_1$, then $\mathcal{T}(\hat{\mathcal{E}}) \subseteq \mathcal{T}(\hat{\mathcal{E}}_1)$.
8. $\mathcal{L}(\hat{\mathcal{E}} \cap \hat{\mathcal{E}}_1) = \mathcal{L}(\hat{\mathcal{E}}) \cap \mathcal{L}(\hat{\mathcal{E}}_1)$.
9. $\mathcal{T}(\hat{\mathcal{E}} \cup \hat{\mathcal{E}}_1) = \mathcal{T}(\hat{\mathcal{E}}) \cup \mathcal{T}(\hat{\mathcal{E}}_1)$.

Proof: (1) From Definition 16, we have the following formulas.

$$\mathcal{L}(\hat{\mathcal{E}})^c = \{ (\hat{\mathcal{X}}, \bigcap_{\sigma \in \mathcal{H}(\hat{\mathcal{X}})} (1 - \theta^l_{\nu}(\rho, \tau) \lor \theta^l_{\nu}(\tau, \rho)), \bigcup_{\sigma \in \mathcal{H}(\hat{\mathcal{X}})} (\theta^l_{\nu}(\rho, \tau) \land \chi^l_{\mathcal{E}}(\tau)) \}.$$

(2) Since $\hat{\mathcal{E}} \subseteq \hat{\mathcal{E}}_1$, we have $\mathcal{L}(\hat{\mathcal{E}}) = \mathcal{L}(\hat{\mathcal{E}}_1)$.

(3) $\mathcal{L}(\hat{\mathcal{E}} \cap \hat{\mathcal{E}}_1) = \mathcal{L}(\hat{\mathcal{E}}) \cap \mathcal{L}(\hat{\mathcal{E}}_1)$.

(4) $\mathcal{L}(\hat{\mathcal{E}} \cup \hat{\mathcal{E}}_1) = \mathcal{L}(\hat{\mathcal{E}}) \cup \mathcal{L}(\hat{\mathcal{E}}_1)$.
Proof: The proofs are trivial.

Proposition 2: If we have \(\hat{\mathcal{E}}_1, \hat{\mathcal{E}}_2 \) and \(\hat{\mathcal{E}}_3 \) is \(\mathcal{QRO}_m\mathcal{PFSRS} \), then the following characteristics hold.

(1) \(\hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 = \hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 \).

(2) \(\hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 = \hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 \).

(3) \(\hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 = \hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 \).

(4) \(\hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 = \hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 \).

Example 4: If we have \(\hat{\mathcal{E}} = \{(\mathcal{H}_1, (0.531, 0.222), (0.412, 0.204), (0.555, 0.301), (0.156, 0.870)), (\mathcal{H}_2, (0.831, 0.231), (0.732, 0.444), (0.830, 0.010), (0.812, 0.110), (\mathcal{H}_3, (0.766, 0.244), (0.456, 0.140), (0.571, 0.473), (0.611, 0.142)), (\mathcal{H}_4, (0.514, 0.345), (0.819, 0.009), (0.700, 0.227), (0.153, 0.625), (\mathcal{H}_5, (0.712, 0.106), (0.513, 0.300), (0.729, 0.115), (0.822, 0.200), (\mathcal{H}_6, (0.632, 0.301), (1, 0), (0.768, 0.072), (0, 1))\} \) of \(\mathcal{QRO}_4\mathcal{PFSRS} \) through \(\mathcal{Z} \), then the following outcomes hold.

(1) \(\hat{\mathcal{E}} \oplus \hat{\mathcal{D}} = \{(\mathcal{H}_1, (0.687, 0.076), (0.852, 0.002), (0.804, 0.068), (0.217, 0.544)), (\mathcal{H}_2, (0.921, 0.025), (0.816, 0.133), (0.924, 0.001), (0.943, 0.022)), (\mathcal{H}_3, (0.867, 0.073), (1, 0), (0.850, 0.034), (0.611, 0.142)), (\mathcal{H}_4, (0.592, 0.238), (0.376, 0.482), (0.605, 0.115), (0.667, 0.210)), (\mathcal{H}_5, (0.484, 0.346), (0.456, 0.140), (0.439, 0.474), (0, 1))\} \).
Proof:

(1) \(\hat{E}_1 \oplus \hat{E}_2 \equiv (\hat{E}_1 \oplus \hat{E}_2) \cap (\hat{E}_1 \oplus \hat{E}_3) \).

(2) \(\hat{E}_1 \oplus (\hat{E}_2 \vee \hat{E}_3) = (\hat{E}_1 \oplus \hat{E}_2) \vee (\hat{E}_1 \oplus \hat{E}_3). \)

(3) \(\hat{E}_1 \oplus (\hat{E}_2 \vee \hat{E}_3) = (\hat{E}_1 \oplus \hat{E}_2) \vee (\hat{E}_1 \oplus \hat{E}_3). \)

(4) \(\hat{E}_1 \oplus (\hat{E}_2 \vee \hat{E}_3) = (\hat{E}_1 \oplus \hat{E}_2) \oplus (\hat{E}_1 \oplus \hat{E}_3). \)

(2) The proof is similar to the proof of (1).

Definition 18: If we have \(\hat{E} = \{ (\theta_1, x_1), (\theta_2, x_2), \ldots, (\theta_m, x_m) \} \) is \(R_m \text{PFN} \), then we define the assort (\(A \)) and accuracy (\(R \)) functions of \(\hat{E} \) as follows.

\[
A(\hat{E}) = \frac{1}{2m} \sum_{i=1}^{m} (\theta \vee x)
\]

\[
R(\hat{E}) = \frac{1}{m} \sum_{i=1}^{m} (\theta \vee x)
\]

Definition 19: If we have two \(R_m \text{PFN} \) \(\hat{E}_1 = \{ (\theta_1, x_1), (\theta_2, x_2), \ldots, (\theta_m, x_m) \} \), \(\hat{E}_2 = \{ (\theta_1', x_1'), (\theta_2', x_2'), \ldots, (\theta_m', x_m') \} \), then the following hold.

(1) If \(R(\hat{E}_1) > R(\hat{E}_2) \), then \(\hat{E}_1 > \hat{E}_2 \).

(2) If \(R(\hat{E}_1) = R(\hat{E}_2) \) and \(R(\hat{E}_1) > R(\hat{E}_2) \), then \(\hat{E}_1 > \hat{E}_2 \).

Definition 20: If \(\hat{E} = (\theta, x') \) is a \(R_m \text{PFNSRS} \), then we have the following.

\[
\square \hat{E} = (\theta \vee 1 - (\theta \vee x'))
\]

\[
\Diamond \hat{E} = (x' \vee 1 - (x' \vee \theta))
\]

Proposition 5: If we have \(\hat{E} \) is \(R_m \text{PFNSRS through} \) \(\Sigma \) and \(\hat{H} \in \Sigma \), then the following characteristics hold.

(1) \(\square \hat{E} = \square \hat{E} \).

(2) \(\diamond \hat{E} = \diamond \hat{E} \).

(3) \(\square \hat{E} = \square \hat{E} \).

(4) \(\square \hat{E} = \square \hat{E} \).

(5) \(\square \hat{E} = \square \hat{E} \).

(6) \(\diamond \hat{E} = \square \hat{E} \).

Proof:

(1) \(\hat{E}_1 \oplus \hat{E}_2 \equiv (\hat{E}_1 \oplus \hat{E}_2) \cap (\hat{E}_1 \oplus \hat{E}_3) \).

(2) \(\hat{E}_1 \oplus \hat{E}_2 \equiv (\hat{E}_1 \oplus \hat{E}_2) \vee (\hat{E}_1 \oplus \hat{E}_3). \)

(3) \(\hat{E}_1 \oplus (\hat{E}_2 \vee \hat{E}_3) = (\hat{E}_1 \oplus \hat{E}_2) \vee (\hat{E}_1 \oplus \hat{E}_3). \)

(4) \(\hat{E}_1 \oplus (\hat{E}_2 \vee \hat{E}_3) = (\hat{E}_1 \oplus \hat{E}_2) \oplus (\hat{E}_1 \oplus \hat{E}_3). \)
Proposition 7: If we have

\[\Box (e_1 \lor e_2) = \Box (e_1 \lor e_2) \]

Proof: The proofs follow from Propositions 5 and 6.

Proposition 8: If we have \(\dot{e}_1 \) and \(\dot{e}_2 \) are \(\text{RO}_m \)PFSRS through \(\mathbb{E} \) and \(\mathcal{H} \in \mathbb{E} \), then the following characteristics hold.

\[\Box (\dot{e}_1 \lor \dot{e}_2) = \Box (\dot{e}_1 \lor \dot{e}_2) \]

Proof: The proofs follow from Proposition 5.

Proposition 9: If we have \(\dot{e}_1 \) and \(\dot{e}_2 \) are \(\text{RO}_m \)PFSRS through \(\mathbb{E} \) and \(\mathcal{H} \in \mathbb{E} \), then the following characteristics hold.

\[\Box (\dot{e}_1 \lor \dot{e}_2) = \Box (\dot{e}_1 \lor \dot{e}_2) \]

Proof: The proofs follow from Proposition 5, 7 and 8.

B. \((I, J) \)-CUT SETS

Definition 21: If \(\dot{e} \in \text{RO}_m \)PFSRS and \(I \in [0, 1] \), then the \(I \)-cut for \(\dot{e} \) is defined as,

\[\dot{e}_I = \{ \mathcal{H} \in \dot{e} : \mathcal{H} \geq I \} \]

and is called a strong (robust) \(I \)-cut if

\[\dot{e}_I^c = \{ \mathcal{H} \in \dot{e} : \mathcal{H} > I \} \]

Example 5: From Example 4, if \(I = 0.456 \), we get the next values. \(\dot{e}_{0.456} = \{ \dot{e}_2, \dot{e}_3 \} \) and \(\dot{e}_{0.456}^c = \{ \dot{e}_2 \} \)

Proposition 10: If we have \(\dot{e}, \dot{d} \) are \(\text{RO}_m \)PFSRS through \(\mathbb{E} \) and \(I \in [0, 1] \), then the following characteristics hold.

\[\Box (\dot{e} \lor \dot{d}) = \Box (\dot{e} \lor \dot{d}) \]

Proof: The proofs follow from Definition 21.

(3) Since \(\dot{e} \lor \dot{d} = \{ \mathcal{H} : \mathcal{H} \geq \mathcal{H}, \mathcal{H} \geq \mathcal{H}, \mathcal{H} \lor \mathcal{H} \} \), and \(\dot{e}^c = \{ \mathcal{H} : \mathcal{H} \lor \mathcal{H} \} \). Hence, \(\dot{e}_I = \{ \mathcal{H} : \mathcal{H} \geq I \} \) and \(\dot{e}_I^c = \{ \mathcal{H} : \mathcal{H} > I \} \). Thus \(\dot{e}_I^c = \{ \mathcal{H} : \mathcal{H} > I \} \).

So, (\(\dot{e} \lor \dot{d} \)) \(= \{ \mathcal{H} : \mathcal{H} \geq \mathcal{H}, \mathcal{H} \geq \mathcal{H}, \mathcal{H} \lor \mathcal{H} \} \) and \(\dot{e}_I = \{ \mathcal{H} : \mathcal{H} \geq I \} \).

(4) Since \(\dot{e} \lor \dot{d} = \{ \mathcal{H} : \mathcal{H} \geq \mathcal{H}, \mathcal{H} \lor \mathcal{H} \} \), and \(\dot{e}_I = \{ \mathcal{H} : \mathcal{H} \geq I \} \).

(6) Since \(\dot{e} \lor \dot{d} = \{ \mathcal{H} : \mathcal{H} \geq \mathcal{H}, \mathcal{H} \lor \mathcal{H} \} \), and \(\dot{e}_I = \{ \mathcal{H} : \mathcal{H} \geq I \} \).

(7) \(\Box (\dot{e}_1 \lor \dot{e}_2) = \Box (\dot{e}_1 \lor \dot{e}_2) \).

(8) \(\Box (\dot{e}_1 \land \dot{e}_2) = \Box (\dot{e}_1 \land \dot{e}_2) \).
So, \((\hat{E} \lor D)_I = \{\hat{H}, \vartheta_E^I(\hat{H}) \lor \vartheta_D^I(\hat{H}) \geq I\} = \{\hat{H}, \vartheta_E^I(\hat{H}) \geq I\} \lor \{\hat{H}, \vartheta_D^I(\hat{H}) \geq I\}\}

(5) Since \(\hat{E} \land D = \{(\hat{H}, \vartheta_E^I(\hat{H}) \lor \vartheta_D^I(\hat{H}), x_E^I(\hat{H}) \lor x_D^I(\hat{H})\}\).

So, \((\hat{E} \land D)_I^V = \{\hat{H}, \vartheta_E^I(\hat{H}) \lor \vartheta_D^I(\hat{H}) > I\} = \{\hat{H}, \vartheta_E^I(\hat{H}) > I\} \land \{\hat{H}, \vartheta_D^I(\hat{H}) > I\}\}

(6) Since \(\hat{E} \lor D = \{(\hat{H}, \vartheta_E^I(\hat{H}) \lor \vartheta_D^I(\hat{H}), x_E^I(\hat{H}) \lor x_D^I(\hat{H})\}\).

So, \((\hat{E} \lor D)_I = \{\hat{H}, \vartheta_E^I(\hat{H}) \lor \vartheta_D^I(\hat{H}) \geq I\} = \{\hat{H}, \vartheta_E^I(\hat{H}) \geq I\} \lor \{\hat{H}, \vartheta_D^I(\hat{H}) \geq I\}\}

Definition 22: If \(\hat{E} \in \mathcal{RO}_mPFSRS\) and \(J \in [0, 1]\), then the \(J\)-cut for \(\hat{E}\) is defined as,

\(\hat{E}_J = \{\hat{H} \in \xi : x_E^I(\hat{H}) \leq J\}\)

and is called a strong (robust) \(J\)-cut if \(\hat{E}_J = \{\hat{H} \in \xi : x_E^I(\hat{H}) < J\}\).

Example 6: From Example 4, if \(J = 0.140\), we get the next values. \(\hat{E}_{0.145} = \{\hat{H}_1, \hat{H}_3\}\) and \(\hat{E}_{0.145}^J = \{\hat{H}_1\}\). We consider \(\hat{E}_J \leq \hat{E}_J^P\). Then \(\hat{E}_J = \{\hat{H} \in \xi, \vartheta_E^I(\hat{H}) \leq J\} \lor \{\hat{H} \in \xi, \vartheta_E^I(\hat{H}) < J\}\). Thus \(\hat{E}_J^P = \{\hat{H} : \vartheta_E^I(\hat{H}) \leq J\}\).

(2) Follows from Definition 22.

(3) As \(\hat{E} \land D = \{(\hat{H}, \vartheta_E^I(\hat{H}) \land \vartheta_D^I(\hat{H}), x_E^I(\hat{H}) \land x_D^I(\hat{H})\}\).

So, \((\hat{E} \land D)_J = \{\hat{H}, x_E^I(\hat{H}) \land x_D^I(\hat{H}) \leq J\} = \{\hat{H}, \vartheta_E^I(\hat{H}) \leq J\} \land \{\hat{H}, \vartheta_D^I(\hat{H}) \leq J\}\)

(4) As \(\hat{E} \lor D = \{(\hat{H}, \vartheta_E^I(\hat{H}) \lor \vartheta_D^I(\hat{H}), x_E^I(\hat{H}) \lor x_D^I(\hat{H})\}\).

So, \((\hat{E} \lor D)_J = \{\hat{H}, x_E^I(\hat{H}) \lor x_D^I(\hat{H}) \leq J\} = \{\hat{H}, \vartheta_E^I(\hat{H}) \leq J\} \lor \{\hat{H}, \vartheta_D^I(\hat{H}) \leq J\}\)

(5) As \(\hat{E} \land D = \{(\hat{H}, \vartheta_E^I(\hat{H}) \land \vartheta_D^I(\hat{H}), x_E^I(\hat{H}) \lor x_D^I(\hat{H})\}\).

So, \((\hat{E} \land D)_J = \{\hat{H}, x_E^I(\hat{H}) \land x_D^I(\hat{H}) < J\} = \{\hat{H}, \vartheta_E^I(\hat{H}) < J\} \lor \{\hat{H}, \vartheta_D^I(\hat{H}) < J\}\)

(6) As \(\hat{E} \lor D = \{(\hat{H}, \vartheta_E^I(\hat{H}) \lor \vartheta_D^I(\hat{H}), x_E^I(\hat{H}) \lor x_D^I(\hat{H})\}\).

So, \((\hat{E} \lor D)_J = \{\hat{H}, x_E^I(\hat{H}) \lor x_D^I(\hat{H}) < J\} = \{\hat{H}, \vartheta_E^I(\hat{H}) < J\} \lor \{\hat{H}, \vartheta_D^I(\hat{H}) < J\}\)

Proposition 12: If we have \(\hat{E}, \hat{D} \in \mathcal{RO}_mPFSRS\) through \(\Xi\) and \(J \in [0, 1]\), then the following characteristics hold.

(1) \(\hat{E}_J = \hat{E}_I \land \hat{E}_J^P = \hat{E}_I \land \hat{E}_J^P\)

(2) \(\hat{E} \leq \hat{D} \iff \hat{E}_J \leq \hat{D}_J\)

(3) \(\hat{E} \lor \hat{D})_I(\hat{E}_J \lor \hat{D}_J\)

(4) \(\hat{E} \lor \hat{D}\) \lor \hat{D}_J(\hat{E}_J \lor \hat{D}_J\)

(5) If \(I_1 \geq I_2\) and \(J_1 \leq J_2\), then \(\hat{E}_{I_1} \leq \hat{E}_{I_2}, \hat{E}_{J_1} \leq \hat{E}_{J_2}\) and \(\hat{E}_{(I_1, J_1)} \leq \hat{E}_{(I_2, J_2)}\)

Proposition 21: If \(\hat{E} = \hat{E}_I \land \hat{E}_J\), then \(\hat{E} \lor \hat{D} \leq \hat{E}_I \lor \hat{D}\), \(\hat{E}_J \lor \hat{D}_J\)

(4) As \(\hat{E} \leq \hat{E} \lor \hat{D}\) and \(\hat{D} \leq \hat{E}_I \lor \hat{D}\), then from (2), we have \(\hat{E}_{I_1} \leq \hat{E}_I \lor \hat{D}\) and \(\hat{E}_{(I_1, J_1)} \leq \hat{E}_{I_1} \lor \hat{D}_{(I_1, J_1)}\), \(\hat{E}_J \lor \hat{D}_J\)

(5) Follows from Definitions 21, 22, and 23, and the property (1) of Proposition 4.28.

V. APPLICATIONS

Here, we construct two algorithms to solve MCDM issues via soft rough q-rungh orthopair m-polar fuzzy sets (SRmROqPFSRS) and q-RO m-polar fuzzy soft rough sets (SRmROqPFSR).
These algorithms will aid managers to make decisions using our proposed models via the lower and upper approximations.

A. DESCRIPTION
Let $\Xi = \{\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_t\}$ be t number of computer programmers and $f = \{f_1, f_2, \ldots, f_r\}$ be r features required of these programmers by the institution which placed the advertisement. The institution establishes several criteria to best choose desirable candidates with the following features: Communication Skill f_1, Personality f_2, Experience f_3, Self-Dependability f_4. We will build a crisp soft relation for the first method σ over $\Xi \times f$ and q-RO m-polar fuzzy soft relation for the second method $\nu : \Xi \rightarrow f$. Therefore, through the proposed methods SR^4RO_mFPS and qRO_mPFSRS, we introduce the following two subsections to aid with the managerial decision.

B. SR^4RO_mFPS APPROACH
The following steps in Algorithm 1 establishes our new approach using the q-ROF m-polar fuzzy sets and crisp soft approximation space.

Algorithm 1 Algorithm for SR^4RO_mFPS

Input: Ξ is the origin set and f is the provisory features.

Output: Decision Making.

1. Investigate the crisp soft relation σ based on the data provided.
2. Establish $\hat{\mathcal{E}} \in 4RO_mFPS(f)$.
3. Compute $\mathcal{K}(\hat{\mathcal{E}})$ (SR^4RO_mFPSLA) and $\mathcal{K}(\hat{\mathcal{E}})$ (SR^4RO_mFPSLA).
4. Compute $\mathcal{K}(\hat{\mathcal{E}}) \oplus \mathcal{K}(\hat{\mathcal{E}})$ from Definition 17.
5. Compute the consequence of all features in $\mathcal{K}(\hat{\mathcal{E}}) \oplus \mathcal{K}(\hat{\mathcal{E}})$ from Definition 18.
6. Assort the features by Definition 19.
7. Obtain the decision.

Now, we give the following illustrated example of the proposed approach.

Suppose $\Xi = \{\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4, \mathcal{H}_5\}$ is the origin set of candidates and $f = \{f_1, f_2, f_3, f_4\}$ is the features set. Thus the relation is as follows

$\sigma = (\mathcal{H}_1, f_2), (\mathcal{H}_2, f_3), (\mathcal{H}_3, f_1), (\mathcal{H}_4, f_2), (\mathcal{H}_5, f_4)$.

Hence, we have the following results.

$S(\mathcal{H}_1) = \{f_2, f_3\}$, $S(\mathcal{H}_2) = \{f_1, f_4\}$, $S(\mathcal{H}_3) = \{f_1, f_4\}$, $S(\mathcal{H}_4) = \{f_1, f_4\}$, $S(\mathcal{H}_5) = \{f_2, f_4\}$.

Then we set the q-RO 3-polar fuzzy subsets of Ξ as follows.

$\hat{\mathcal{E}} = \{\{ f_1, (0.67, 0.21), (0.71, 0.28), (0.78, 0.31)\},$
$\{ f_2, (0.81, 0.21), (0.73, 0.31), (0.69, 0.18)\},$
$\{ f_3, (0.89, 0.12), (0.78, 0.31), (0.74, 0.44)\},$
$\{ f_4, (0.81, 0.38), (0.67, 0.17), (0.65, 0.44)\}\}.$

Through these data, we can now compute the lower and upper approximations of $\hat{\mathcal{E}}$ as follows.

$\mathcal{K}(\hat{\mathcal{E}}) = \{\mathcal{H}_1, (0.81, 0.21), (0.73, 0.31), (0.69, 0.44),$
$\mathcal{H}_2, (0.67, 0.38), (0.67, 0.31), (0.65, 0.31),$
$\mathcal{H}_3, (0.67, 0.38), (0.67, 0.28), (0.65, 0.31)\},$
$\mathcal{K}(\hat{\mathcal{E}}) = \{\mathcal{H}_1, (0.81, 0.38), (0.67, 0.17), (0.65, 0.16),$
$\mathcal{H}_2, (0.81, 0.38), (0.67, 0.31), (0.65, 0.18)\}.$
Finally, we rank the alternatives as follows.

If $\nabla = 1$.

$$\hat{\mathcal{H}}_1 > \hat{\mathcal{H}}_3 > \hat{\mathcal{H}}_2 > \hat{\mathcal{H}}_3 > \hat{\mathcal{H}}_4.$$

If $\nabla = 2$.

$$\hat{\mathcal{H}}_1 > \hat{\mathcal{H}}_3 > \hat{\mathcal{H}}_2 > \hat{\mathcal{H}}_3 > \hat{\mathcal{H}}_4.$$

If $\nabla = 3$.

$$\hat{\mathcal{H}}_1 > \hat{\mathcal{H}}_3 > \hat{\mathcal{H}}_2 > \hat{\mathcal{H}}_3 > \hat{\mathcal{H}}_4.$$

If $\nabla = 5$.

$$\hat{\mathcal{H}}_1 > \hat{\mathcal{H}}_3 > \hat{\mathcal{H}}_2 > \hat{\mathcal{H}}_3 > \hat{\mathcal{H}}_4.$$

C. $9RO_m$PFSRS APPROACH

The following steps in Algorithm 2 establishes our new approach using the q-ROF m-polar fuzzy soft rough sets and crisp soft approximation space.

Now, we give the following illustrated example using the proposed approach.

Presume that $\mathcal{Z} = \{\hat{\mathcal{H}}_1, \hat{\mathcal{H}}_2, \hat{\mathcal{H}}_3, \hat{\mathcal{H}}_4, \hat{\mathcal{H}}_5\}$ is the origin set and $f = \{f_1, f_2, f_3, f_4\}$ is the features set.

Hence, we have the q-RO 3-polar fuzzy soft relation as in the following matrix.

$$\nu = \left(\begin{array}{cccc}
\hat{\mathcal{H}}_1 & \hat{\mathcal{H}}_2 & \hat{\mathcal{H}}_3 & \hat{\mathcal{H}}_4 \\
 f_1 & f_2 & f_3 & f_4 \\
\end{array} \right)$$

Then we set the q-RO 3-polar fuzzy subsets of \mathcal{Z} as follows.

$$\hat{\mathcal{E}} = \{(f_1, (0.67, 0.38)), (0.73, 0.31), (0.81, 0.31))\}, (f_2, (0.86, 0.18), (0.75, 0.41), (0.73, 0.21))\),

$$\hat{\mathcal{H}}_2 = \{(f_1, (0.91, 0.15), (0.83, 0.41), (0.81, 0.51))\),

$$\hat{\mathcal{H}}_3 = \{(f_1, (0.85, 0.41), (0.73, 0.35), (0.69, 0.23))\),

$$\hat{\mathcal{H}}_4 = \{(f_1, (0.73, 0.41), (0.71, 0.37), (0.83, 0.41))\),

$$\hat{\mathcal{H}}_5 = \{(f_1, (0.82, 0.43), (0.78, 0.31), (0.68, 0.23))\),

$$\hat{\mathcal{H}}_6 = \{(f_1, (0.81, 0.31), (0.78, 0.41), (0.72, 0.18))\),

$$\hat{\mathcal{H}}_7 = \{(f_1, (0.79, 0.53), (0.68, 0.46), (0.67, 0.51))\),

$$\hat{\mathcal{H}}_8 = \{(f_1, (0.71, 0.51), (0.69, 0.41), (0.76, 0.51))\),

$$\hat{\mathcal{H}}_9 = \{(f_1, (0.82, 0.52), (0.69, 0.41), (0.63, 0.28))\),

$$\hat{\mathcal{H}}_{10} = \{(f_1, (0.85, 0.41), (0.71, 0.51), (0.73, 0.11))\),

$$\hat{\mathcal{H}}_{11} = \{(f_1, (0.75, 0.18), (0.67, 0.41), (0.63, 0.43))\),

$$\hat{\mathcal{H}}_{12} = \{(f_1, (0.73, 0.31), (0.75, 0.13), (0.78, 0.32))\),

$$\hat{\mathcal{H}}_{13} = \{(f_1, (0.85, 0.13), (0.71, 0.11), (0.68, 0.28))\),

$$\hat{\mathcal{H}}_{14} = \{(f_1, (0.86, 0.23), (0.68, 0.51), (0.69, 0.19))\),

$$\hat{\mathcal{H}}_{15} = \{(f_1, (0.78, 0.17), (0.63, 0.31), (0.61, 0.38))\),

$$\hat{\mathcal{H}}_{16} = \{(f_1, (0.73, 0.13), (0.81, 0.21), (0.85, 0.16))\),

$$\hat{\mathcal{H}}_{17} = \{(f_1, (0.89, 0.11), (0.81, 0.31), (0.78, 0.21))\),

$$\hat{\mathcal{H}}_{18} = \{(f_1, (0.96, 0.12), (0.86, 0.21), (0.83, 0.31))\),

$$\hat{\mathcal{H}}_{19} = \{(f_1, (0.87, 0.36), (0.76, 0.26), (0.74, 0.14))\),

Using these information, we can now compute the lower and upper approximations of $\hat{\mathcal{E}}$ as follows.

$$\mathcal{L}(\hat{\mathcal{E}}) = \{(\hat{\mathcal{H}}_1, (0.81, 0.38)), (0.73, 0.31), (0.69, 0.44))\),$$

$$\mathcal{U}(\hat{\mathcal{E}}) = \{(\hat{\mathcal{H}}_2, (0.67, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_3, (0.67, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_4, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_5, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_6, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_7, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_8, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_9, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{10}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{11}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{12}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{13}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{14}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{15}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{16}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{17}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{18}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\), (\hat{\mathcal{H}}_{19}, (0.81, 0.38)), (0.67, 0.31), (0.65, 0.44))\),
TABLE 1. Table for scores using different ∇ for SR^4RO_mPFS.

Different approaches	Obtain a decision
\mathcal{H}_1	\mathcal{H}_2
\mathcal{H}_3	\mathcal{H}_4
\mathcal{H}_5	\mathcal{H}_6
\mathcal{H}_7	\mathcal{H}_8
\mathcal{H}_9	\mathcal{H}_10

$V = 1$, 0.9317, 0.933,
$V = 2$, 0.923, 0.932,
$V = 3$, 0.933, 0.932,
$V = 4$, 0.932, 0.931,
$V = 5$, 0.931, 0.932,

Then, we compute the order of each variable as next.
If $V = 1$,
$\mathcal{R}(\mathcal{H}_1) = 0.9317$, $\mathcal{R}(\mathcal{H}_2) = 0.9122$, $\mathcal{R}(\mathcal{H}_3) = 0.9125$, $\mathcal{R}(\mathcal{H}_4) = 0.9095$, $\mathcal{R}(\mathcal{H}_5) = 0.925$.

If $V = 2$,
$\mathcal{R}(\mathcal{H}_1) = 0.9155$, $\mathcal{R}(\mathcal{H}_2) = 0.891$, $\mathcal{R}(\mathcal{H}_3) = 0.892$, $\mathcal{R}(\mathcal{H}_4) = 0.8855$, $\mathcal{R}(\mathcal{H}_5) = 0.9032$.

If $V = 3$,
$\mathcal{R}(\mathcal{H}_1) = 0.9043$, $\mathcal{R}(\mathcal{H}_2) = 0.8769$, $\mathcal{R}(\mathcal{H}_3) = 0.8778$, $\mathcal{R}(\mathcal{H}_4) = 0.8742$, $\mathcal{R}(\mathcal{H}_5) = 0.8893$.

If $V = 5$,
$\mathcal{R}(\mathcal{H}_1) = 0.89$, $\mathcal{R}(\mathcal{H}_2) = 0.8604$, $\mathcal{R}(\mathcal{H}_3) = 0.8599$, $\mathcal{R}(\mathcal{H}_4) = 0.8528$, $\mathcal{R}(\mathcal{H}_5) = 0.872$.

Finally, we rank the alternatives as follows.
If $V = 1$,
$\mathcal{H}_1 > \mathcal{H}_3 > \mathcal{H}_5 > \mathcal{H}_2 > \mathcal{H}_4$.

If $V = 2$,
$\mathcal{H}_1 > \mathcal{H}_3 > \mathcal{H}_5 > \mathcal{H}_2 > \mathcal{H}_4$.

If $V = 3$,
$\mathcal{H}_1 > \mathcal{H}_3 > \mathcal{H}_5 > \mathcal{H}_2 > \mathcal{H}_4$.

If $V = 5$,
$\mathcal{H}_1 > \mathcal{H}_3 > \mathcal{H}_5 > \mathcal{H}_2 > \mathcal{H}_4$.

D. COMPARATIVE ANALYSES

In this section, we will explain the merits of the proposed methods by comparisons between ours, that is, SR^4RO_mPFS and σRO_mPFSRS, and the previous methods, that is, soft rough m-polar fuzzy sets and m-polar fuzzy soft rough sets by Akram et al. [48], soft rough Pythagorean fuzzy set and Pythagorean fuzzy soft rough set by Riaz and Hashmi [50] and soft rough q-rung orthopair fuzzy sets and q-rung orthopair fuzzy soft rough sets by Riaz et al. [54]. The novel approaches to solve MADM issues can be seen as illustrated in Tables 1 and 2.

Table 1 shows the ordering outcomes for different ∇ (i.e., Akram et al. [48], Riaz and Hashmi [50] and our proposed methods) for SR^4RO_mPFS. The best selection of the proposed different approaches is by hiring programmer \mathcal{H}_1. This means that our model is reliable and rational.

Table 2 shows the ordering outcomes for different ∇ (i.e., Akram et al. [48], Riaz and Hashmi [50] and our proposed methods) for σRO_mPFSRS. The best selection of the proposed different approaches is by hiring programmer \mathcal{H}_1. This means that our model is reasonable and effective.

We can also show the differences between different ∇ (i.e., Akram et al. [48], Riaz and Hashmi [50] and our proposed methods) using the following two figures, Figure 1 and Figure 2.

Figure 1 illustrates the comparisons on the outcomes for $\nabla = 1, 2, 3, 5$ for SR^4RO_mPFS, which means that the \mathcal{H}_1 alternative is the best choice for this institution under the given requirements.

Figure 2 illustrates the comparisons on the outcomes for $\nabla = 1, 2, 3, 5$ for σRO_mPFSRS, which means that the \mathcal{H}_1
alternative is the best choice for this institution under the given requirements.

Figure 2 illustrates the comparisons on the outcomes for $V = 1, 2, 3, 5$ (i.e., Akram et al. [48], Riaz and Hashmi [50] and our proposed methods) for $\mathcal{RO}_m\text{PFSRS}$, which means that the \mathcal{RO}_m alternative is the best choice for this institution under the given requirements. Note that the data used here cannot be processed by the methods of Riaz et al. [54] which can only handle a single set. Hence, our proposed methods have overcome the hurdle of set limitations of the previous existing methods of Akram et al. [48], Riaz and Hashmi [50] and Riaz et al. [54].

VI. CONCLUSION

We have constructed new algorithms using soft rough q-RO m-polar fuzzy sets ($\mathcal{RO}_m\text{PFSRS}$) and q-RO m-polar fuzzy soft rough sets ($\mathcal{RO}_m\text{PFSRS}$) to provide us with novel approaches to help make a decision on managerial problems. These new models proved their effectiveness and reliability, as can be seen in Tables 1 and 2, and displayed on Figures 1 and 2. The characteristics related to these models have also been discussed. We have established two different groups of steps for these new models according to the crisp soft and q-RO m-polar fuzzy soft approximation space to solve MADM problems. The comparative analyses indicated that the proposed approaches yield consistent results. In future, we shall extend the proposed methods to a variety of other environments such as the T-spherical power Muirhead operators [62], multi-objective programming [64], neurogenetics [65] and polynomial zeros [66]–[68].

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, Jun. 1965.
[2] Z. Pawlak, “Rough sets,” Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp. 341–356, Oct. 1982.
[3] R. E. Kent, “Rough concept analysis,” in Rough Sets, Fuzzy Sets and Knowledge Discovery (Workshops in Computing), W. P. Ziarko, Ed. London, U.K.: Springer, 1994, pp. 248–255, doi: 10.1007/978-1-4471-3238-7_30.
[4] D. Dubois and H. Prade, “Rough fuzzy sets and fuzzy rough sets,” Int. J. General Systems, vol. 17, nos. 2–3, pp. 191–209, 1990.
[5] M. Afet, A. M. Khalil, S.-G. Li, A. A. Azzam, and A. E. F. El Atik, “Comparison of six types of rough approximations based on j-neighborhood space and j-adjecencehood neighborhood space,” J. Intell. Fuzzy Syst., vol. 39, no. 3, pp. 4515–4531, Oct. 2020.
[6] A. E. E. El Atik, A. Nawar, and M. Afet, “Rough approximation models via graphs based on neighborhood systems,” Granular Comput., vol. 6, no. 4, pp. 1025–1035, Oct. 2021.
[7] R. S. Kanwal and M. Shabir, “Rough approximation of a fuzzy set in semigroups based on soft relations,” Comput. Appl. Math., vol. 38, no. 2, p. 89, Jun. 2019, doi: 10.1007/s40314-019-0851-3.
[8] J. A. Pomykala, “Approximation operations in approximation space,” Bull. Polish Acad. Sci., vol. 35, nos. 9–10, pp. 653–662, 1987.
[9] Y. Yao, “Three-way decisions with probabilistic rough sets,” Inf. Sci., vol. 180, no. 3, pp. 341–353, Feb. 2010.
[10] Y. Y. Yao and B. Yao, “Covering based rough set approximations,” Inf. Sci., vol. 200, pp. 91–107, Oct. 2012.
[11] J. Zhan and B. Davvaz, “A kind of new rough set: Rough soft sets and rough soft rings,” J. Intell. Fuzzy Syst., vol. 30, no. 1, pp. 475–483, Oct. 2015.
Y. Wang, A. Hussain, T. Mahmood, and N. Hassan, “Group decision-making using complex q-rung orthopair fuzzy Bonferroni mean,” Int. J. Comput. Intell. Syst., vol. 32, no. 1, pp. 822–851, 2020.

H. Garg, Z. Ali, and T. Mahmood, “Generalized dice similarity measures for complex q-rung orthopair fuzzy sets and their application,” Comput. Intell. Syst., vol. 7, no. 2, pp. 667–686, Apr. 2021.

D. Liang and W. Cao, “q-rung orthopair fuzzy sets-based decision-theoretic rough sets for three-way decisions under group decision making,” Int. J. Intell. Syst., vol. 34, no. 12, pp. 3139–3167, 2019.

G. Tang, F. Chiclana, and P. Liu, “A decision-theoretic rough set model with q-rung orthopair fuzzy information and its application in stock investment evaluation,” Appl. Soft Comput., vol. 91, Jun. 2020, Art. no. 106212.

R. R. Yagoub and N. Alajlan, “Approximate reasoning with generalized orthopair fuzzy sets,” Inf. Fusion, vol. 38, pp. 65–73, Nov. 2017.

M. I. Ali, “Another view on q-rung orthopair fuzzy sets,” Int. J. Intell. Syst., vol. 33, no. 11, pp. 2139–2153, Nov. 2018.

P. Liu and P. Wang, “Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making,” Int. J. Intell. Syst., vol. 33, no. 2, pp. 259–280, Feb. 2017.

W. Fu and A. M. Khalil, “Graded rough sets based on neighborhood operator over two different universes and their applications in decision-making problems,” J. Intell. Fuzzy Syst., vol. 41, no. 2, pp. 2639–2664, Sep. 2021, doi: 10.3233/JIFS-202081.

W. R. Zhang, “Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis,” in Proc. 1st Int. Joint Conf. North Amer. Fuzzy Inf. Process. Soc. Biamual Conf. Intell. Control, Intell., Dec. 1994, pp. 305–309, doi: 10.1109/IFICF.1994.375115.

J. Chen, S. Li, S. Ma, and X. Wang, “m-polar fuzzy sets: An extension of bipolar fuzzy sets,” Sci. World J., 2014, Jun. 2014, Art. no. 416530, doi: 10.1105/2014/416530.

M. Akram, G. Ali, and N. Alshehri, “A new multi-attribute decision-making method based on m-polar fuzzy soft rough sets,” Symmetry, vol. 9, no. 11, p. 271, Nov. 2017, doi: 10.3390/sym9110271.

M. Akram, N. Waseem, and P. Liu, “Novel approach in decision making with m-polar fuzzy ELECTRE-I,” Int. J. Fuzzy Syst., vol. 21, no. 4, pp. 1117–1129, 2019, doi: 10.1007/s40815-019-00608-y.

M. Riaz and M. R. Hashmi, “Soft rough Pythagorean m-polar fuzzy sets and Pythagorean m-polar fuzzy soft rough sets with application to decision making,” Comput. Appl. Math., vol. 39, no. 1, Mar. 2020, doi: 10.1007/s40314-019-00989-x.

M. Riaz, M. T. Hamid, D. Afzal, D. Pamucar, and Y.-M. Chu, “Multi-criteria decision making in robotic agri-farming with q-rung orthopair m-polar fuzzy sets,” PLoS ONE, vol. 16, no. 2, Feb. 2021, Art. no. e0246485.

A. Hussain, M. I. Ali, T. Mahmood, and M. Munir, “q-rung orthopair fuzzy soft average aggregation operators and their application in multi-criteria decision-making,” Int. J. Intell. Syst., vol. 35, no. 4, pp. 571–599, 2020.

Y. Wang, A. Hussain, T. Mahmood, M. I. Ali, H. Wu, and Y. Jin, “Decision-making based on q-rung orthopair fuzzy soft rough sets,” Math. Problems Eng., vol. 2020, Dec. 2020, Art. no. 6671001, doi: 10.1155/2020/6671001.

M. Riaz, N. Ali, B. Davvaz, and M. Aslam, “Novel multi-criteria decision-making methods with soft rough q-rung orthopair fuzzy sets and q-rung orthopair fuzzy soft rough sets,” J. Intell. Fuzzy Syst., vol. 41, no. 1, pp. 955–973, Aug. 2021.

M. Atef, S. Nada, A. Gumaei, and A. S. Nawar, “On three types of soft rough covering-based fuzzy sets,” J. Math., vol. 2021, Jan. 2021, Art. no. 6677298, doi: 10.1155/2021/6677298.

M. Atef and S. I. Nada, “On three types of soft fuzzy coverings based rough sets,” Math. Comput. Simul., vol. 185, pp. 452–467, Jul. 2021.
AHMED MOSTAFA KHALIL received the M.Sc. degree in pure mathematics from Al-Azhar University, Egypt, and the Ph.D. degree in fundamental mathematics from Shaanxi Normal University, China. He is currently a Lecturer with the Department of Mathematics, Faculty of Science, Al-Azhar University. He has published several technical papers in refereed international journals, including Applied Mathematical Modelling, IEEE Access, Soft Computing, the International Journal of Fuzzy Systems, the Hacettepe Journal of Mathematics and Statistics, the Journal of Intelligent and Fuzzy Systems, Mathematical Problems in Engineering, and Applied Soft Computing journal among others. His research interests include fuzzy sets, type-2 fuzzy sets, rough sets, soft sets, and decision-making.

MUHAMMAD RIAZ received the M.Sc., M.Phil., and Ph.D. degrees in mathematics from the University of Punjab, Lahore. He has published more than 85 research articles in international peer-reviewed SCIE and ESCI journals with more than 1300 citations. His research interests include pure mathematics, fuzzy mathematics, topology, algebra, fuzzy systems, soft set theory, rough set theory with applications in decision-making, medical diagnosis, artificial intelligence, computational intelligence, information measures, information aggregation, and pattern recognition.

NASRUDDIN HASSAN received the B.Sc. degree in mathematics from Western Illinois University, USA, the M.Sc. degree in applied mathematics from Western Michigan University, USA, and the Ph.D. degree in applied mathematics from Universiti Putra Malaysia, Malaysia. He is currently an Associate Professor with the School of Mathematical Sciences, Universiti Kebangsaan Malaysia, Malaysia. He has published more than a 100 articles of which 153 are currently listed in the SCOPUS database with H-index of 31. His research interests include decision-making, operations research, fuzzy sets, and numerical convergence.