Research Article

On Fractional Newton-Type Method for Nonlinear Problems

Mine Aylin Bayrak ¹, Ali Demir ¹, and Ebru Ozbilge ²

¹Department of Mathematics, Kocaeli University, Izmit, Kocaeli, Turkey
²Department of Mathematics and Statistics, American University of the Middle East, Egaila, Kuwait

Correspondence should be addressed to Mine Aylin Bayrak; aylin@kocaeli.edu.tr

Received 30 June 2022; Revised 7 September 2022; Accepted 11 October 2022; Published 21 November 2022

1. Introduction

Newton–Raphson method is one of the most powerful techniques to locate the solutions of linear or nonlinear equations in numerous areas of science. Compare to the other methods, the convergence rate of this method is much better. In this method, the neighbourhood of the solution of the equations is determined by utilizing the tangent lines of the curves. However, this method has some drawbacks such as having no solution for some forms of equations in a situation that the initial guess or an iteration coincides with a loop which leads to divergence or oscillation of the method.

The theory and applications of the Newton–Raphson method were presented in [1]. Modified versions of Newton’s method were given in [2–4]. Newton’s method has been implemented for solving constrained or unconstrained minimization problems in [5–7]. A novel block Newton method was developed for the computation invariant pairs to represent eigenvalues and eigenvectors in [8]. A criterion was established for selecting the appropriate model and its applications in [9]. Various optimization methods such as the Newton–Raphson, bisection, gradient, and secant methods were reviewed and discussed in [10]. The optimization solution of the estimating function in the regression models was determined in [11, 12].

In the current study, we focus on developing a novel modification of the Newton–Raphson method by utilizing fractional derivatives and fractional Taylor series expansion which allows us to eliminate the shortcomings of this method. One advantage of this method is that this method can be applied to various fractional derivatives such as Riemann–Liouville and Caputo derivatives [13–22]. Convergence analysis of first- and second-order fractional Newton–Raphson (FNR) methods is provided, and some conditions on initial guess are obtained. Moreover, these conditions are generalized for higher-order FNR. The main advantages of first- and second-order FNR are that they are more effective and accurate compared to other existing methods. Moreover, the convergency of the obtained solutions is faster than the convergency of the solutions, obtained by other methods.

2. Preliminaries

This section is devoted to fundamental notions in fractional calculus [16–18].

Definition 1. \(\beta^{th} (\beta \geq 0) \) order of Riemann–Liouville integral is given by [16]
\[j^\beta f(x) = \frac{1}{\Gamma(\beta)} \int_0^x (x-t)^{\beta-1} f(t)dt, \quad \beta > 0, x > 0, \]
\[j^\beta f(x) = f(x). \]

Definition 2. \(\beta \)th order fractional derivative in Caputo sense is given by [16]
\[C^\beta D^m f(x) = f^{(m-\beta)}D^m f(x) = \int_0^x (x-t)^{m-\beta-1} \frac{d^m}{dt^m} f(t)dt, \]
\[m-1 < \beta < m, x > 0, \]
where \(D^m \) is the ordinary differential operator of order \(m \).

Theorem 1. [23, 24] Let us suppose that \(C^\beta D^\beta f(x) \in C([a, b]) \) for \(j = 1, 2, \ldots, n+1 \) where \(\beta \in (0, 1], \)
and then, we have
\[f(x) = \sum_{i=0}^{n} C^\beta D^\beta f(a) \frac{(x-a)^i}{\Gamma(i+1)} + C^\beta D^\beta f(\xi) \frac{(x-a)^{n+1}}{\Gamma((n+1)\beta+1)} \]
with \(a \leq \xi \leq x \), for all \(x \in (a, b] \) where \(C^\beta D^\beta = C D^\beta, C D^\beta, \ldots, C D^\beta (n \text{ times}) \). Notice that the property of Riemann–Liouville derivative of constant is different than zero unlike the Caputo derivative.

3. Fractional Newton–Raphson (FNR) Method

In this section, we give the formulation of the first- and second-order FNR [25–28].

3.1. First-Order FNR. By taking the first two terms of fractional Taylor series expansion, we have
\[y - f(x_0) = \frac{f^{(\beta)}(x_0)}{\Gamma(\beta + 1)} (x - x_0)^\beta. \]
To solve for the \(x \) intercept, we set \(y = 0 \) and rearrange the terms
\[0 = f(x_0) + \frac{f^{(\beta)}(x_0)}{\Gamma(\beta + 1)} (x_1 - x_0)^\beta. \]
Thus, we have
\[x_1 = x_0 + \left(-\frac{f(x_0)}{f^{(\beta)}(x_0)} \right)^{(1/\beta)} \Gamma(\beta + 1) \]
which leads to the following
\[x_{n+1} = x_n + \left(-\frac{f(x_n)}{f^{(\beta)}(x_n)} \right)^{(1/\beta)} \Gamma(\beta + 1), \quad f^{(\beta)}(x_n) \neq 0. \]

3.2. Second-Order FNR. By taking the first three terms of the fractional Taylor series expansion, we get
\[y - f(x_0) = \frac{f^{(\beta)}(x_0)}{\Gamma(\beta + 1)} (x - x_0)^\beta + \frac{f^{(2\beta)}(x_0)}{\Gamma(2\beta + 1)} (x - x_0)^{2\beta}. \]
To solve for the \(x \) intercept, we set \(y = 0 \) and rearrange terms
\[0 = f(x_0) + \frac{f^{(\beta)}(x_0)}{\Gamma(\beta + 1)} (x_1 - x_0)^\beta + \frac{f^{(2\beta)}(x_0)}{\Gamma(2\beta + 1)} (x_1 - x_0)^{2\beta}, \]
which leads to the following
\[x_{n+1} = x_n + \left(-\frac{f(x_n)}{f^{(\beta)}(x_n)} \right)^{(1/\beta)} \Gamma(\beta + 1) \]

4. Convergence

In this section, the convergence analysis of first- and second-order FNR is given by the following theorems, respectively.

Theorem 2. Assume that \(f \) is twice continuously differentiable on an open interval \((a, b)\) and that there exists a point \(x^* \in (a, b) \) with \(f^{(\beta)}(x^*) \neq 0 \). Implementing the first-order FNR method, we have the following recurrence relation:
\[x_{n+1} = x_n + \left(\frac{f(x_n)}{f^{(\beta)}(x_n)} \Gamma (\beta + 1) \right)^{1/\beta}, \quad n = 1, 2, \ldots \]
\[(\text{12}) \]

Under the assumption that \(x_n \) converges to \(x^* \) as \(n \to \infty \), we have

\[|x_{n+1} - x^*| \leq M|x_n - x^*|^2, \]

\[M > \left(\frac{f^{(\beta)}(x^*)}{f^{(\beta)}(x_n)} \Gamma (\beta + 1) \right)^{1/\beta}, \quad n = 1, 2, \ldots \]
\[(\text{13}) \]

for \(n \) sufficiently large. Thus, \(x_n \) converges to \(x^* \) quadratically.

Proof. Let \(e_n = x_n - x^* \), so that \(x_n - e_n = x^* \). Setting \(x = x_n \) and \(h = -e_n \) in fractional Taylor’s Theorem, we get

\[f(x_n - e_n) = f(x_n) - \frac{e_n^\beta}{\Gamma (\beta + 1)} f^{(\beta)}(x_n) + \frac{e_n^{2\beta}}{\Gamma (2\beta + 1)} f^{(2\beta)}(\xi_n), \]

\[(\text{14}) \]

for some \(\xi_n \in (x_n, x^*) \). Since \(f(x_n - e_n) = f(x^*) = 0 \), we have

\[0 = f(x_n) - \frac{e_n^\beta}{\Gamma (\beta + 1)} f^{(\beta)}(x_n) + \frac{e_n^{2\beta}}{\Gamma (2\beta + 1)} f^{(2\beta)}(\xi_n). \]

\[(\text{15}) \]

Having the condition that \(\beta \)th derivative of \(f \) is continuous with \(f^{(\beta)}(x_n) \neq 0 \) as long as \(x_n \) is close enough to \(x^* \) allows us to divide by \(f^{(\beta)}(x_n) / \Gamma (\beta + 1) \) which leads to the following:

\[0 = \frac{f(x_n)}{f^{(\beta)}(x_n)} -(x_n - x^*)^\beta + \frac{e_n^{2\beta}}{f^{(2\beta)}(\xi_n)} \Gamma (2\beta + 1), \]

\[(\text{16}) \]

As a result, the formulation of first-order FNR gives the following:

\[(x_{n+1} - x^*)^\beta = e_n^\beta f^{(\beta)}(x_n) \Gamma (\beta + 1) \]

\[(\text{17}) \]

After rearrangement, we have

\[|x_{n+1} - x^*| = \left| \frac{f^{(\beta)}(\xi_n)}{f^{(\beta)}(x_n)} \Gamma (\beta + 1) \right|^{1/\beta} |x_n - x^*|^2. \]

\[(\text{18}) \]

Finally,

\[|x_{n+1} - x^*| = \left(\frac{f^{(\beta)}(\xi_n)}{f^{(\beta)}(x_n)} \Gamma (\beta + 1) \right)^{1/\beta} |x_n - x^*|^2. \]

\[(\text{19}) \]

By continuity, \(f^{(\beta)}(x_n) \) converges to \(f^\beta(x^*) \). Convergence of \(\xi_n \in (x_n,x^*) \) to \(x^* \) leads to convergence of \(f^{(\beta)}(\xi_n) \) to \(f^{(\beta)}(x^*) \). As a result, we have

\[|x_{n+1} - x^*| \leq M|x_n - x^*|^2, \]

\[(\text{20}) \]

if

\[M > \left(\frac{f^{(\beta)}(x^*)}{f^{(\beta)}(x_n)} \Gamma (\beta + 1) \right)^{1/\beta} \]

\[(\text{21}) \]

or \(M \Gamma (\beta + 1) > \left| \frac{f^{(\beta)}(x^*)}{f^{(\beta)}(x_n)} \right|. \)

\[(\text{22}) \]

for sufficiently large \(n \).

\[\square \]

Theorem 3. Assume that \(f \) is three times continuously differentiable on an open interval \((a, b)\) and that there exists \(x^* \in (a, b) \) with \(f^{(\beta)}(x^*) \neq 0 \). Implementing the first-order FNR method, we have the following recurrence relation:

\[x_{n+1} = x_n + \left(\frac{2 f^{(\beta)}(x_n)}{f^{(\beta)}(x_n) \Gamma (\beta + 1) + \sqrt{(f^{(\beta)}(x_n) / \Gamma (\beta + 1))^2 - 4 (f^{(2\beta)}(x_n) / \Gamma (2\beta + 1) f(x_n))}} \right)^{1/\beta}, \quad n = 1, 2, \ldots \]

\[(\text{22}) \]

for sufficiently large \(n \). Thus, \(x_n \) converges to \(x^* \) quadratically.

Proof. Let \(e_n = x_n - x^* \), so that \(x_n - e_n = x^* \). Setting \(x = x_n \) and \(h = -e_n \) in fractional Taylor’s Theorem, we get

\[f(x_n - e_n) = f(x_n) - \frac{e_n^\beta}{\Gamma (\beta + 1)} f^{(\beta)}(x_n) + \frac{e_n^{2\beta}}{\Gamma (2\beta + 1)} f^{(2\beta)}(\xi_n), \]

\[(\text{24}) \]
for some $\xi_n \in (x_n, x^*)$. Since $f(x_n - \epsilon_n) = f(x^*) = 0$, we have

\[
0 = f(x_n) - \left(\frac{x_n - x^*}{\Gamma(\beta + 1)}\right)^{\beta} f^{(\beta)}(x_n) + \left(\frac{x_n - x^*}{\Gamma(2 \beta + 1)}\right)^{2\beta} f^{(2\beta)}(x_n) - \left(\frac{x_n - x^*}{\Gamma(3 \beta + 1)}\right)^{3\beta} f^{(3\beta)}(\xi_n).
\]

(25)

Having the condition that β^{th} derivative of f is continuous with as long as x_n is close enough to x^* allows us to divide by $f^{2\beta}(x_n)\Gamma(2\beta + 1)$ which leads to the following:

\[
0 = \frac{\Gamma(2 \beta + 1) f(x_n)}{f^{(2\beta)}(x_n)} - \frac{\Gamma(2 \beta + 1)}{\Gamma(\beta + 1)} \left(\frac{x_n - x^*}{\Gamma(\beta + 1)}\right)^{\beta} f^{(\beta)}(x_n)
\]

\[
+ \left(\frac{x_n - x^*}{\Gamma(2 \beta + 1)}\right)^{2\beta} - \frac{\Gamma(2 \beta + 1)}{f^{(2\beta)}(x_n)} \left(\frac{x_n - x^*}{\Gamma(3 \beta + 1)}\right)^{3\beta} f^{(3\beta)}(\xi_n).
\]

(26)

As a result, the formulation of first-order FNR gives the following:

\[
(x_n + 1 - x^*)^{2\beta} = c_n \left(\frac{f^{(3\beta)}(\xi_n)}{f^{(3\beta)}(x_n)}\right) \left(\frac{\Gamma(2 \beta + 1)}{\Gamma(3 \beta + 1)}\right)
\]

(27)

After rearrangement, we have

\[
|x_n + 1 - x^*| = \left|\left(\frac{f^{(3\beta)}(\xi_n)}{f^{(3\beta)}(x_n)}\right) \left(\frac{\Gamma(2 \beta + 1)}{\Gamma(3 \beta + 1)}\right)\right|^{1/2\beta}.
\]

(28)

Finally,

\[
|x_n + 1 - x^*| = \left(\left|\frac{f^{(3\beta)}(\xi_n)}{f^{(3\beta)}(x_n)}\right| \left(\frac{\Gamma(2 \beta + 1)}{\Gamma(3 \beta + 1)}\right)^{1/2\beta}\right)|x_n - x^*|^{1/2\beta}.
\]

(29)

By continuity, $f^{(3\beta)}(x_n)$ converges to $f^{(3\beta)}(x^*)$. Convergence of $\xi_n \in (x_n, x^*)$ to x^* leads to convergence of $f^{(3\beta)}(\xi_n)$ to $f^{(3\beta)}(x^*)$. As a result, we have

\[
|x_n + 1 - x^*| \leq M |x_n - x^*|^{1/2\beta},
\]

(30)

if

\[
M > \left(\left|\frac{f^{(3\beta)}(x^*)}{f^{(3\beta)}(x_n)}\right| \left(\frac{\Gamma(2 \beta + 1)}{\Gamma(3 \beta + 1)}\right)^{1/2\beta}\right).
\]

(31)

for sufficiently large n.

In general, for the convergence of higher-order FNR, we obtain the following condition:

| Table 1: First-order FNR and second-order FNR results for $f_1(x)$ with Caputo derivative and initial guess $x_0 = 1$. |
|---|---|---|---|---|
| β | x_{n+1} | $|x_{n+1} - x_n|$ | $\|f(x_{n+1})\|$ | n |
| 1st N-R | 1 | 4.000000000 | 1.46549e-14 | 2.84217e-14 | 10 |
| 2nd N-R | 0.98 | 4.000000000 | 8.38330e-18 | 0.00000e+00 | 8 |
| 1st N-R | 0.96 | 3.999999999 | 9.65937e-09 | 1.23761e-08 | 17 |
| 2nd N-R | 0.96 | 4.000000000 | 8.93729e-09 | 1.14804e-08 | 17 |
| 1st N-R | 0.94 | 3.999999999 | 6.31251e-09 | 2.16859e-08 | 28 |
| 2nd N-R | 0.94 | 3.999999999 | 8.36562e-09 | 2.82381e-08 | 27 |
| 1st N-R | 0.92 | 3.999999994 | 7.76010e-09 | 5.26373e-08 | 41 |
| 2nd N-R | 0.92 | 3.999999995 | 8.97743e-09 | 1.08442e-07 | 57 |
| 1st N-R | 0.9 | 3.999999990 | 9.68422e-09 | 1.98513e-07 | 82 |
| 2nd N-R | 0.9 | 3.999999990 | 9.48429e-09 | 1.94823e-07 | 80 |
| 1st N-R | 0.88 | 3.999999984 | 9.37726e-09 | 3.20376e-07 | 116 |
| 2nd N-R | 0.88 | 3.999999983 | 9.85311e-09 | 3.34523e-07 | 112 |
| 1st N-R | 0.86 | 3.999999973 | 9.78559e-09 | 5.41971e-07 | 162 |
| 2nd N-R | 0.86 | 3.999999973 | 9.66965e-09 | 5.36477e-07 | 158 |
| 1st N-R | 0.84 | 3.999999956 | 9.88726e-09 | 8.80428e-07 | 227 |
| 2nd N-R | 0.84 | 3.999999956 | 9.82503e-09 | 8.75790e-07 | 222 |
| 1st N-R | 0.82 | 3.999999930 | 9.84707e-09 | 1.40112e-06 | 319 |
| 2nd N-R | 0.82 | 3.999999930 | 9.85142e-09 | 1.40163e-06 | 313 |
| 1st N-R | 0.8 | 3.999999888 | 9.90469e-09 | 2.23380e-06 | 448 |
| 2nd N-R | 0.8 | 3.999999888 | 9.93906e-09 | 2.23999e-06 | 444 |
| 1st N-R | 0.78 | 3.999999690 | 2.83959e-08 | 8.00875e-06 | 500 |
| 2nd N-R | 0.78 | 3.999999620 | 2.65292e-08 | 7.59583e-06 | 500 |
| 1st N-R | 0.76 | 3.999998275 | 1.10103e-07 | 3.44952e-05 | 500 |
| 2nd N-R | 0.76 | 3.999998367 | 1.02423e-07 | 3.26542e-05 | 500 |
| 1st N-R | 0.74 | 3.999993896 | 3.53606e-07 | 1.22080e-04 | 500 |
| 2nd N-R | 0.74 | 3.999994240 | 3.26873e-07 | 1.15193e-04 | 500 |
| 1st N-R | 0.72 | 3.999981521 | 9.78747e-07 | 3.69503e-04 | 500 |
| 2nd N-R | 0.72 | 3.99982645 | 8.96987e-07 | 3.47038e-04 | 500 |
| 1st N-R | 0.7 | 3.99950761 | 2.40749e-06 | 9.86099e-04 | 500 |
| 2nd N-R | 0.7 | 3.99953965 | 2.18121e-06 | 9.20282e-04 | 500 |
Table 2: First-order FNR and second-order FNR results for $f_1(x)$ with Riemann–Liouville derivative and initial estimation $x_0 = 1$.

| β | x_{n+1} | $|x_{n+1} - x_n|$ | $\|f(x_{n+1})\|$ | n |
|----------|-----------|------------------|-----------------|------|
| 1^st N-R | 1 | 4.00000000 | 1.46549e-14 | 2.84217e-14 | 10 |
| 2^nd N-R | 1 | 4.00000000 | 8.38330e-18 | 0.00000e+00 | 8 |
| 1^st N-R | 0.98 | 4.00000000 | 4.68492e-09 | 4.77773e-09 | 16 |
| 2^nd N-R | 0.98 | 4.00000000 | 6.74956e-09 | 6.72255e-09 | 15 |
| 1^st N-R | 0.96 | 3.99999999 | 9.31417e-09 | 2.26436e-08 | 20 |
| 2^nd N-R | 0.96 | 3.99999999 | 6.15820e-09 | 1.54268e-08 | 21 |
| 1^st N-R | 0.94 | 3.99999999 | 8.41656e-09 | 3.90606e-08 | 28 |
| 2^nd N-R | 0.94 | 3.99999999 | 9.57294e-09 | 4.39009e-08 | 28 |
| 1^st N-R | 0.92 | 3.99999999 | 9.83530e-09 | 7.65395e-08 | 35 |
| 2^nd N-R | 0.92 | 3.99999999 | 8.10233e-09 | 6.42359e-08 | 38 |
| 1^st N-R | 0.9 | 3.99999999 | 9.40993e-09 | 1.18506e-07 | 49 |
| 2^nd N-R | 0.9 | 3.99999999 | 9.37709e-09 | 1.18142e-07 | 47 |
| 1^st N-R | 0.88 | 3.99999999 | 9.61954e-09 | 1.88983e-07 | 65 |
| 2^nd N-R | 0.88 | 3.99999999 | 9.84849e-09 | 1.92880e-07 | 68 |
| 1^st N-R | 0.86 | 3.99999999 | 9.60193e-09 | 2.89676e-07 | 86 |
| 2^nd N-R | 0.86 | 3.99999999 | 9.96806e-09 | 2.99047e-07 | 85 |
| 1^st N-R | 0.84 | 3.99999999 | 9.53412e-09 | 3.49870e-07 | 114 |
| 2^nd N-R | 0.84 | 3.99999999 | 9.64049e-09 | 4.40927e-07 | 113 |
| 1^st N-R | 0.82 | 3.99999999 | 9.94288e-09 | 6.80455e-07 | 150 |
| 2^nd N-R | 0.82 | 3.99999999 | 9.91663e-09 | 6.78992e-07 | 149 |
| 1^st N-R | 0.8 | 3.99999999 | 9.98970e-09 | 1.02156e-06 | 199 |
| 2^nd N-R | 0.8 | 3.99999999 | 9.78692e-09 | 1.00502e-06 | 199 |
| 1^st N-R | 0.78 | 3.99999999 | 9.96299e-09 | 1.51847e-06 | 265 |
| 2^nd N-R | 0.78 | 3.99999999 | 9.98659e-09 | 1.52126e-06 | 264 |
| 1^st N-R | 0.76 | 3.99999999 | 9.90426e-09 | 2.24483e-06 | 354 |
| 2^nd N-R | 0.76 | 3.99999999 | 9.98421e-09 | 2.25855e-06 | 353 |
| 1^st N-R | 0.74 | 3.99999999 | 9.92379e-09 | 3.30496e-06 | 473 |
| 2^nd N-R | 0.74 | 3.99999999 | 9.94614e-09 | 3.33630e-06 | 473 |
| 1^st N-R | 0.72 | 3.99999999 | 2.92966e-08 | 8.98833e-06 | 500 |
| 2^nd N-R | 0.72 | 3.99999999 | 2.30961e-08 | 9.05319e-06 | 500 |
| 1^st N-R | 0.7 | 3.99999999 | 5.73722e-08 | 4.74620e-05 | 500 |
| 2^nd N-R | 0.7 | 3.99999999 | 5.81547e-05 | 4.9976e-05 | 500 |

Figure 1: Convergence planes of first-order FNR on $f_1(x)$ for Caputo derivative.

$$|x_{n+1} - x^*| \leq M|x_n - x^*|^{(k+1)/k},$$

$$M > \left(\frac{\|f(k+1)|^{\Gamma(k+1)}(x^*)\|}{\|f(k)|^{\Gamma(k+1)}(x^*)\|} \frac{\Gamma(k+1)}{\Gamma((k+1)(k+1))} \right)^{1/k}, \quad k = 1, 2, 3, \ldots,$$

(32)

for sufficiently large n.

5. Numerical Examples

In this section, some illustrative examples are presented to show the implementation of first- and second-order FNR which allows us to confirm the obtained results given in the previous section. Matlab R2016b with stopping criterion $|x_{n+1} - x_n| < 10^{-8}$ and a maximum of 500 iterations are
utilized. In the tables of corresponding examples, the reached root $|x_{n+1} - x_n|$, $\|f(x_{n+1})\|$, and the number of iterations are shown.

Example 1. Let us consider the function $f_1(x) = x^3 - 10x^2 + 34x - 40$ with roots $x_0 = 4, x_1 = 3 - i$ and $x_2 = 3 + i$.

Figure 2: Convergence planes of second-order FNR on $f_1(x)$ for Caputo derivative.

Figure 3: Convergence planes of first-order FNR on $f_1(x)$ for Riemann–Liouville derivative.

Figure 4: Convergence planes of second-order FNR on $f_1(x)$ for Riemann–Liouville derivative.
Table 3: First-order NR and second-order NR results for $f_2(x)$ with Caputo derivative and initial estimation $x_0 = 0.2$.

| β | x_{new} | $|x_{\text{new}} - x_n|$ | $f(x_{\text{new}})$ | n |
|----------|------------------|-----------------------------|---------------------|-----|
| 1st N-R | 1 | -0.0000000000 | 0.00000000 + 00 | 5 |
| 2nd N-R | 1 | -0.0000000000 | 6.66798e-10 | 3 |
| 1st N-R | 0.98 | -0.0000000000 | 2.42649e-09 | 8 |
| 2nd N-R | 0.98 | -0.0000000000 | 1.07859e-09 | 8 |
| 1st N-R | 0.96 | -0.0000000000 | 3.91885e-09 | 10 |
| 2nd N-R | 0.96 | -0.0000000000 | 2.58893e-09 | 10 |
| 1st N-R | 0.94 | -0.0000000000 | 5.70944e-09 | 12 |
| 2nd N-R | 0.94 | -0.0000000000 | 4.32641e-09 | 12 |
| 1st N-R | 0.92 | -0.0000000000 | 2.76674e-09 | 15 |
| 2nd N-R | 0.92 | -0.0000000000 | 8.17968e-09 | 14 |
| 1st N-R | 0.9 | -0.0000000000 | 7.94065e-09 | 17 |
| 2nd N-R | 0.9 | -0.0000000000 | 6.59632e-09 | 17 |
| 1st N-R | 0.88 | -0.0000000000 | 4.85622e-09 | 21 |
| 2nd N-R | 0.88 | -0.0000000000 | 9.82148e-09 | 20 |
| 1st N-R | 0.86 | -0.0000000000 | 7.02051e-09 | 25 |
| 2nd N-R | 0.86 | -0.0000000000 | 5.90703e-09 | 25 |
| 1st N-R | 0.84 | -0.0000000000 | 6.69774e-09 | 31 |
| 2nd N-R | 0.84 | -0.0000000000 | 9.87756e-09 | 30 |
| 1st N-R | 0.82 | -0.0000000000 | 8.16846e-09 | 39 |
| 2nd N-R | 0.82 | -0.0000000000 | 6.60392e-09 | 39 |
| 1st N-R | 0.8 | -0.0000000000 | 7.97894e-09 | 52 |
| 2nd N-R | 0.8 | -0.0000000000 | 8.52364e-09 | 51 |
| 1st N-R | 0.78 | -0.0000000000 | 9.79061e-09 | 74 |
| 2nd N-R | 0.78 | -0.0000000000 | 8.49008e-09 | 73 |
| 1st N-R | 0.76 | -0.0000000000 | 9.85552e-09 | 125 |
| 2nd N-R | 0.76 | -0.0000000000 | 9.15524e-09 | 121 |
| 1st N-R | 0.74 | -0.0000000000 | 9.63986e-09 | 360 |
| 2nd N-R | 0.74 | -0.0000000000 | 9.78282e-09 | 317 |
| 1st N-R | 0.72 | -4.31365378 | 5.71734e-07 | 500 |
| 2nd N-R | 0.72 | -0.14393292 | 1.11043e-01 | 500 |
| 1st N-R | 0.7 | -4.78460364 | 2.45965e-01 | 500 |
| 2nd N-R | 0.7 | -1.29422312 | 7.32260e-01 | 500 |

Table 4: First-order NR and second-order NR results for $f_2(x)$ with Riemann–Liouville derivative and initial estimation $x_0 = 0.2$.

| β | x_{new} | $|x_{\text{new}} - x_n|$ | $f(x_{\text{new}})$ | n |
|----------|------------------|-----------------------------|---------------------|-----|
| 1st N-R | 1 | 0.0000000000 | 0.00000000 + 00 | 5 |
| 2nd N-R | 1 | 0.0000000000 | 6.66798e-10 | 3 |
| 1st N-R | 0.98 | -0.0000000000 | 2.42649e-09 | 8 |
| 2nd N-R | 0.98 | -0.0000000000 | 9.29969e-10 | 8 |
| 1st N-R | 0.96 | -0.0000000000 | 3.91885e-09 | 10 |
| 2nd N-R | 0.96 | -0.0000000000 | 2.40538e-09 | 10 |
| 1st N-R | 0.94 | -0.0000000000 | 5.70944e-09 | 12 |
| 2nd N-R | 0.94 | -0.0000000000 | 4.82173e-09 | 12 |
| 1st N-R | 0.92 | -0.0000000000 | 2.76674e-09 | 15 |
| 2nd N-R | 0.92 | -0.0000000000 | 3.43115e-09 | 15 |
| 1st N-R | 0.9 | -0.0000000000 | 7.94065e-09 | 17 |
| 2nd N-R | 0.9 | -0.0000000000 | 5.89937e-09 | 18 |
| 1st N-R | 0.88 | -0.0000000000 | 4.85622e-09 | 21 |
| 2nd N-R | 0.88 | -0.0000000000 | 4.71244e-09 | 23 |
| 1st N-R | 0.86 | -0.0000000000 | 7.02051e-09 | 25 |
| 2nd N-R | 0.86 | -0.0000000000 | 5.93748e-09 | 30 |
| 1st N-R | 0.84 | -0.0000000000 | 6.69774e-09 | 31 |
| 2nd N-R | 0.84 | -0.0000000000 | 7.64084e-09 | 43 |
| 1st N-R | 0.82 | -0.0000000000 | 8.16846e-09 | 39 |
| 2nd N-R | 0.82 | -0.0000000000 | 8.48988e-09 | 79 |
| 1st N-R | 0.8 | -0.0000000000 | 7.97894e-09 | 52 |
| 2nd N-R | 0.8 | -0.00506018 | 1.02936e-02 | 500 |
| 1st N-R | 0.78 | -0.0000000000 | 9.79061e-09 | 74 |
Figure 5: Convergence planes of first-order NR on $f_2(x)$ for Caputo derivative.

Figure 6: Convergence planes of second-order NR on $f_2(x)$ for Caputo derivative.

Table 4: Continued.

| β | x_{n+1} | $|x_{n+1} - x_n|$ | $\|f(x_{n+1})\|$ | n |
|--------|-----------|------------------|----------------|-----|
| 2nd N-R | 0.78 | -0.07024016 | 1.47568e - 01 | 9.83535e - 02 | 500 |
| 1st N-R | 0.76 | -0.00000001 | 9.85552e - 09 | 1.08611e - 08 | 125 |
| 2nd N-R | 0.76 | -0.14147226 | 2.83238e - 01 | 1.86505e - 01 | 500 |
| 1st N-R | 0.74 | -0.00000001 | 9.63986e - 09 | 1.18037e - 08 | 360 |
| 2nd N-R | 0.74 | -1.57171790 | 2.40309e + 00 | 1.13046e + 00 | 500 |
| 1st N-R | 0.72 | -4.31365378 | 5.71734e - 07 | 5.23966e - 05 | 500 |
| 2nd N-R | 0.72 | -0.00000000 | 9.36668e - 09 | 5.10297e - 09 | 157 |
| 1st N-R | 0.7 | -4.78460364 | 2.45965e - 01 | 1.47957e + 00 | 500 |
| 2nd N-R | 0.7 | 0.00000000 | 9.82670e - 09 | 5.30280e - 09 | 101 |
| 1st N-R | 0.68 | -5.71070798 | 5.01626e - 01 | 1.03562e + 01 | 500 |
| 2nd N-R | 0.68 | 0.00000000 | 8.29674e - 09 | 4.54705e - 09 | 85 |
| 1st N-R | 0.66 | -754.27825254 | 7.80349e + 01 | 2.58569e + 18 | 500 |
| 2nd N-R | 0.66 | -0.00000000 | 8.34916e - 09 | 4.76503e - 09 | 82 |
| 1st N-R | 0.64 | -1411860.53657482 | 1.42625e + 05 | 3.96270e + 44 | 500 |
| 2nd N-R | 0.64 | 0.00000000 | 9.54192e - 09 | 5.80404e - 09 | 89 |
| 1st N-R | 0.62 | -1063648380.57639720 | 1.04707e + 08 | 4.10943e + 67 | 500 |
| 2nd N-R | 0.62 | -0.00000000 | 8.55254e - 09 | 5.65282e - 09 | 113 |
| 1st N-R | 0.6 | -875382037053.40283000 | 8.39601e + 10 | 8.59364e + 90 | 500 |
| 2nd N-R | 0.6 | -3.22839026 | 2.60655e - 07 | 1.73936e - 04 | 500 |
It can be observed from Tables 1 and 2 that the estimation of second-order FNR is better than the one of the first-order FNR when the order of the derivative is close to one in both Caputo and Riemann–Liouville derivatives. In Figures 1–4, the convergence plane of the polynomial function \(f_1(x) \) is given when \(x_0 \in [-3, 3] \) for various values of \(\beta \).

Example 2. Let us consider the function \(f_2(x) = \exp(x) - 1 \), whose only root is \(x_1 = 0 \).

It can be observed from Tables 3 and 4 that the estimation of second-order FNR is better than the one of the first-order FNR when the order of the derivative is close to one in both Caputo and Riemann–Liouville derivatives. In Figures 5–8, the convergence plane of the polynomial function \(f_2(x) \) is given when \(x_0 \in [-10, 10] \) for various values of \(\beta \).

6. Conclusion

First- and second-order FNR are developed, and analyzed and applied in this study. Moreover, the convergence of both methods is established. It is shown that second-order FNR gives better results compare to first-order FNR when the order of fractional derivative is close to one in both Caputo and Riemann–Liouville derivatives. It is also shown that the order of convergence for first-order FNR is quadratic while one of the second-order FNR is 3/2. It is clear from tables that as the fractional parameter increases to one, the number of iterations decreases for both developed methods. Moreover, figures depict that the convergence of approximate solutions is better for \(\beta \in (0.7, 1] \) which can be seen also from the tables. Generally, it is obvious from the obtained formulation that the order of convergence for \(k \)th order FNR is \((k + 1/k) \). The obtained results are verified by presented examples, too.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
References

[1] B. C. Truong, N. V. Thuan, N. H. Hau, and M. McAleer, "Applications of the Newton–Raphson method in decision sciences and education," Advances Decision Science, vol. 23, no. 4, pp. 52–80, 2019b.

[2] H. S. Wall, "A modification of Newton’s method," The American Mathematical Monthly, vol. 55, no. 2, pp. 90–94, 1948.

[3] H. J. Hamilton, "A type of variation on Newton’s method," The American Mathematical Monthly, vol. 57, no. 8, pp. 517–522, 1950.

[4] J. J. More and D. C. Sorensen, "On the use of directions of negative curvature in a modified Newton method," Mathematical Programming, vol. 16, no. 1, pp. 1–20, 1979.

[5] A. Fischer, "A special Newton-type optimization method," Optimization, vol. 24, no. 3–4, pp. 269–284, 1992.

[6] Y. Nesterov and B. T. Polyak, "Cubic regularization of Newton method and its global performance," Mathematical Programming, vol. 108, no. 1, pp. 177–205, 2006.

[7] C. J. Lin, R. C. Weng, and S. S. Keerthi, "Trust region Newton method and its global performance," Mathematical Programming, vol. 114, no. 1, pp. 517–522, 2008.

[8] D. Kressner, "A block Newton method for nonlinear eigenvalue problems," Numerical Mathematical, vol. 114, no. 2, pp. 355–372, 2009.

[9] K. H. Pho, S. Ly, S. Ly, and T. M. Lukusa, "Comparison among akaike information criterion, Bayesian information criterion and Vuong’s test in model selection: a case study of violated speed regulation in Taiwan," Journal of Advance Engineering Computation, vol. 3, no. 1, pp. 286–293, 2007.

[10] K. H. Pho, T. K. Tran, T. D. C. Ho, and W. K. Wong, "Optimal solution techniques in decision sciences: a review," Advance Decision Science, vol. 23, no. 1, pp. 1–47, 2019b.

[11] B. C. Truong, V. B. Nguyen, H. V. Truong, and T. D. C. Ho, "Comparison of optim, nleqslv and MaxLik to estimate parameters in some of regression models," Journal of Advance Engineering Computation, vol. 3, no. 4, pp. 532–550, 2019a.

[12] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 5th edition, 1994.

[13] A. M. Mathai and H. J. Haubold, "Fractional and multivariable calculus, model building and optimization problems," in Springer Optimization and its Applications, Vol. 122, Springer, Berlin, Germany, 2017.

[14] B. Ross, "A brief history and exposition of the fundamental theory of fractional calculus," in Fractional Calculus and its Applications, B. Ross, Ed., vol. 457, pp. 1–36, Springer, Berlin, Germany, 1975.

[15] T. M. Atanackovic, S. Pilipovic, B. Stankovic, and D. Zorica, Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles, Wiley, London, UK, 2014.

[16] I. Podlubny, "Fractional differential equations," Mathematics in Science and Engineering, Academic Press, 1999.

[17] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, 2006.

[18] J. T. Machado, V. Kiryakova, and F. Mainardi, "Recent history of fractional calculus," Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1140–1153, 2011.

[19] J. Singh, "Analysis of fractional blood alcohol model with composite fractional derivative," Chaos, Solitons & Fractals, vol. 140, Article ID 110127, 2020.

[20] N. D. Phuong, N. A. Tuan, D. Kumar, and N. H. Tuan, "Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations," Mathematical Modelling of Natural Phenomena, vol. 16, p. 27, 2021.

[21] A. Majeed, M. Kamran, M. Abbas, and J. Singh, "An efficient numerical technique for solving time fractional generalized Fisher’s equation," Frontiers in Physics, vol. 8, p. 293, 2020.

[22] H. Singh, R. K. Pandey, and D. Kumar, "A reliable numerical approach for nonlinear fractional optimal control problems," vol. 22, no. 5, pp. 495–507, 2021.

[23] Z. M. Odibat and N. T. Shawagfeh, "Generalized taylor’s formula," Journal of Mathematical Analysis and Applications, vol. 231, no. 1, pp. 255–265, 1999.

[24] G. Candelario, A. Cordero, and J. R. Torregrosa, "Multipoint fractional iterative methods with (2α + 1)th-order of convergence for solving nonlinear problems," Mathematics, vol. 8, p. 452, 2020.

[25] G. Candelario, A. Cordero, J. R. Torregrosa, M. P. Vassileva, and Vassileva, "An optimal and low computational cost fractional Newton-type method for solving nonlinear equations," Applied Mathematics Letters, vol. 124, Article ID 107650, 2022.

[26] A. Akgül, A. Cordero, and J. R. Torregrosa, "1A fractional Newton method with 2th-order of convergence and its stability," Applied Mathematics Letters, vol. 98, pp. 344–351, 2019.

[27] A. Cordero, A. Cordero, and J. R. Torregrosa, "Variants of Newton's method using fifth order quadrature formulas," Applied Mathematics and Computation, vol. 190, no. 1, pp. 686–698, 2007.