Software Defined Networking: A review on Architecture, Security and Applications

Kuntal Gaur1, Pranjal Choudhary1, Priya Yadav1, Ayush Jain1, and Pradeep Kumar1
1Department of Computer Applications, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan-303007
E-mail: kuntal.gaur@jaipur.manipal.edu

Abstract. Throughout the development of the network, the Software Defined Networking (SDN) paradigm introduced the transition of conventional networks by decoupling the forwarding hardware from the network's control logic. The SDN architecture enables networks to track traffic actively and detect threats to promote network forensics, alteration of security policy, and insertion of security services. We discuss SDN-related technologies in this paper. In particular, we are attempting to cover the key components of SDN: architecture, security, and its implementations hoping that our efforts will help researchers set relevant and practical directions for future SDN research. In a nutshell, this paper highlights the current and future directions for secured SDN.

This paper examines the architecture of SDN where we discuss the network-building methods that arise in the case of the network control being removed from the continuity with the purpose of planning. We further explore the need of guarding access, veracity, and confidentiality of the resources and data, coupled with the myriad security options available for SDN. Lastly, we discuss the diversity bestowed by SDN in different sectors.

1. Introduction

As networks continue to grow in size and demand, the rotation of hardware changes comes across as a barrier. So much so, that even physically installing separate software upgrades turns out to be a daunting and erroneous job for organizations and corporations managing well-designed sites and large networks. Amidst all such difficulties, it was in the early 2010 that the Software Defined Network, shortened for SDN, emerged as a promising rescue.

"Software-defined" does not imply that it uses only real switches in place of dedicated hardware. SDN employs the switches which can be configured. Their behavior is explained by the configuration of the software. Therefore, it becomes apparent how one of the most crucial elements of the SDN resides in its button control plane can be removed from the data plane.
Software-Defined Networking has taken over the network design market to reduce network management and provide new capabilities to networks. The concept of basic configuration is the basis for a more straightforward definition of what SDN is. It is a technology that separates the control of network control devices from sub-plane data transmission that transmits network traffic \[1\]. With SDN the network can be intelligently and internally managed or ‘organized’, using software applications.

The road to SDN involves three steps. Each landmark has its significance: (1) Functional networks (from the mid-1990s to the early 2000s), which bring well-planned operations to the network to accelerate innovation; (2) Distribution of Control and Data Aircraft (from 2001 to 2007), which has created an open space for aviation and data aircraft communications; and (3) OpenFlow API and network applications (from 2007 to about 2010), symbolizing the first open-source interface and advanced ways to make the air force control and work.

OpenFlow is the most widely used SDN application. In OpenFlow, network and management methods are implemented as OpenFlow applications that are compatible with the control plane with an API attached to the north of the control plane \[2\]. Controlled flight operations are performed on an OpenFlow controller that interacts with the information aircraft through an OpenFlow session.

The software-defined by the software is also portable, allowing flexibility to select and move to cloud storage, public or private. Summarizing your network in the cloud can also bring many benefits: minimal site management hardware, auxiliary power bills, and outstanding downtime. SDN’s most well-known preferences are traffic planning, sharpness, and the ability to perform network-driven monitoring and use of network variables. It is a very significant benefit to allowing the creation of a framework to support applications that use a lot of data such as big data and do well \[3\].

OpenFlow switch Architecture is explained in Figure 1. Comparison of SDN with traditional network is outlined in table 1.

Official control based on the SDN global view simplifies the collection of network data and changes to dynamic communication strategies. Thereafter, SDN methods can be misused to achieve specific objectives in a variety of domains. Network management is used in OpenFlow to measure network status and directly control transmission methods. Reduces packet loss and delays. Creates a performance issue for the SDN controller for traffic engineering with the partial distribution. SDN technology can be used to deliver better in-box services. Add labels to active parcels used in exchanges and in-box boxes that enforce policy implementation. Nevertheless, owing to SDN, network control is optimized and management flexibility is enhanced. The optical network, along with SDN, increases system performance and network usage for large data applications. OpenFlow and Generalized Multi-Protocol Label Switching (GMPLS) flight controls take advantage of the package defined by software on optical networks. SDN can provide a channel based on streaming and continuous capabilities to wireless networks to exclude all channels in the vicinity. It can also achieve excellent visibility and programming on radio access networks \[3\].
This paper examines the architecture of SDN where we discuss the network-building methods that arise in the case of the network control being removed from the continuity with the purpose of planning. We further explore the need of guarding access, veracity, and confidentiality of the resources and data, coupled with the myriad security options available for SDN. Lastly, we discuss the diversity bestowed by SDN in different sectors.

2. SDN Architecture

Software-Defined Networking (SDN) refers to a network-building method, arising where network control is removed from continuity and is planned. It helps the operator to manage the entire network consistently, except for basic network technology. In [5] SDN enables flexible network management, which is likely to be made up of complex technical components layer. SDN is a three-layer model that contains the following: one, an application layer; two, a control layer; and three, a body layer. The main layer, which is the control layer, acts as the network system brain for it is responsible to control and regulate the traffic flow from the switches using the flow table [6].

For an in-depth understanding of the networks used by SDNs and operating networks, check out the features of SDN Architecture: (1) Direct planning: Network
Table 1: Comparison between Traditional and Software Defined Networks

Traditional Networks	Software Defined Networks
They are static and inflexible networks. It is not beneficial for new businesses.	During and at the latter level, they are programmable networks based on changing requirements. They enable new companies to be scalable, agile and virtual.
They are versatile and have no agility.	
It is difficult to fix issues and report in the traditional network since it is	In SDN, troubleshooting and reporting are easy because they are centrally controlled.
distributed control.	
Protocols are used for their work.	Various APIs are used for their service such as APIs Northbound, Southbound APIs, etc.
The cost of sustaining the traditional network is higher than SDN.	The cost of maintenance is far lower than the traditional network.
Packet forwarding and high-level routing are done on the same device.	In this, OpenFlow switch is responsible for distinguishing between the control path and the data path.
The configuration of switches employed in traditional networks is done through the	SDN controller uses OpenFlow, providing with the interface to program the switches.
command line.	
In these networks, data plane and control plane get stacked on the same plane.	In a Software-Defined Network, software decouples the data plane and control plane.

management is directly planned because it is separated from transfer functions. (2) Agile: Transmission output control allows managers to drastically alter the wide flow of traffic to meet changing needs. (3) Mid-term management: Network intelligence is reasonably limited to SDN controllers designed for software that maintains a global overview of the network, which is seen as an application. (4) System configuration: SDN lets network administrators arrange, achieve, defend, and deploy network resources very rapidly with powerful, automatic SDN programs, which they can subscribe to because the systems are not dependent on related software. (5) Open Standards-Based and Vendor-Neutral: SDN allows administrators of the network to configure, check, protect,
and deploy network capitals swiftly with powerful, automated SDN programs. These network regulators can also write to themselves as the systems are independent of related software [3].

All three layers are interdependent and interact in some way with each other. The great benefits obtained by the SDN design is that it bestows an overview of the complete network applications that it provides – making the network truly "Smart" [3].

SDN has the following three layers:

SDN is a developing technology, which provides network design that eliminates control aircraft from the data plane. SDN is a state-of-the-art network configuration, which enables the ability to monitor, modify, and manage network performance using open-source interface software, as opposed to relying on closed boxes and a defined contact area related to [7]. Thanks to centralized control, the network becomes more dynamic, and network resources are managed efficiently and inexpensively due to its design.

(1) **Application Layer:** An application layer is made up of applications that communicate with the controller in a control layer using connectors called Northbound APIs. The application layer acts as an open area to grow numerous applications, as many as possible, using the complete network info about network metropolitan, its status, its data, etc. [8]. There may be some types of applications that can be developed such as network-related changes, network configuration, and management, network monitoring, network troubleshooting, network policies, and security. Such SDN applications can deliver a variety of end-to-end resolutions for real-world networks as well as data center networks. Network sellers come with their SDN applications.

A) **Route** Packet shifting and routing are key network functions. Traditionally, the modification and arrangement of routes are based on distributed dynamics. However, those distributed designs have many drawbacks, including compound applications, measured integration, and limited aptitude to achieve flexible control [9].

B) **Unlimited navigation** Mobile devices contact the Internet wirelessly. To guarantee uninterrupted connection while the connected devices are moving consistently from one site to another, the connection can be transferred from either one channel to another or one wireless network to another. In SDN, a standard integrated control flight may have webbed networks of diverse carriers with myriad technologies. The provision of wireless connectivity between various technologies and network companies allows for seamless mobility [9].

C) **Network Configuration** Configuration errors are deemed to be among the most common causes leading to network failure. As the estimates suggest, more than 60 per cent of network downtime occurs because of errors committed through human configuration. The main advantage of SDN-based predictive methods is that, in the short-term integration route, centralized controlling of SDN execution can straightaway address network failures [9].

D) **Network Security** Network security is an integral portion of cyber safety as it attracts interest. To protect the virtual network, common network security methods
use firewalls and proxy servers. The SDN provides a simple forum for integrating, integrating, and reviewing policies and adjustments to ensure that implementation meets the required protections, while effectively avoiding security breaks. SDN delivers better attack methods for faster detection and protection [9].

E) Network Usage Network Virtualization is a communal way for integrating multiple network metrics unique to collective infrastructure. It plays a key part in the IaaS model. The most shared way to detect a network is to cut the visible network into multiple visible scenarios and transfer them to various users, administrators, or SDN applications.

F) Green link Green communication has developed increasingly significant in network building and the delivery of financial and environmental aids. Various methods have been identified as achieving green performance, including, but not inadequate to, data connection optimization, energy-efficient roadmap, energy-efficient infrastructure, and energy efficiency app, as suggested in the [10].

G) Cloud Computing SDN Cloud computing is metamorphosing the way individuals do computers and organisations. Provides computer as well as end-to-end computer services when required and charged for server and network usage. SDN offers opportunities to outspread the IaaS service model outside the computer and end-to-end resources to incorporate a rich set of integrated and efficient cloud computing network services, as suggested at [11].

H) Network Performance

Network Function Virtualization (NFV) denotes the efficient operation of in-network (eg Firewalls, WAN optimizers, load balancing systems, and VPN gateways) that can be linked for delivering value-added services. The virtual network feature can be used depending on either one or more network devices using myriad software. Alike active networks, NFV emphasizes heavily data systems planning. In this respect, the NFV may be able to magnify SDN about data flight planning, as the existing SDN is more concerned with air traffic control. Also, the NFV solution can be applied to SDN [12].

(2) Control layer: The control layer falls across the system layer and the infrastructure layer, in its two combinations. A world-class flight control platform where intelligent minds in SDN controls can remain to control network substructure. The Control layer is the land of the control plane where the intelligent logic of the SDN controllers can be used to control the network infrastructure [13] [14]. This is a place where every network seller works to arise with their control products and SDN framework. Here in this layer, there are many commercial ideas written in the organizer to download and store various types of network info, country information, location information, statistical information, and more. In the logical design of the SDN control panel, we emphasize three perilous matters in the regulatory framework, explicitly regulatory structure, policy and regulatory validation, and operational challenges and likely solutions for the regulatory framework.

A) Control Structure
The controller is the most significant fragment in the construction of SDN structures, where difficulties remain. The controller interprets the application rule into package transfer guidelines, depending on the network position [15]. The main apprehension of this process is to ensure the legitimacy and compliance of the transfer rules. In high flow, the controller synchronizes the network status collected in the network decision-making structure. The logical proposal of SDN administrators can be divided into four structural components, namely, advanced language, law renewal process, network configuration process, and network synchronization process. A visual description of control structure is explained in Figure 2.

![Controller Logical Design](image)

Figure 2: Controller Logical Design [16]

B) Verification of Terms and Conditions

The flexibility of policies and regulations presents an important design issue to sustain route choices in SDN networks. Exactly, rules and laws must be affirmed to classify possible conflicts [17]. Regulations can be verified statistically or by force. On the other hand, rules can be viewed according to the specific statistics of certain network attackers, such as accessibility, emptiness, and compliance, depending on the network’s topology. On the other pointer, it is also helpful to look at the instructions in real-time, as the network situation changes.

C) Manage Layout Performance

The performance of SDN networks is highly dependent on the control layer, which is also hampered by the failure of centralized controllers. To address the issue of downsizing
and SDN controls, researchers have previously proposed multiple controllers by location, which will require network configuration.

As the SDN controller is for network management, so we should have the concept of controlling the actual network usage cases such as switching, routing, L2 VPN, L3 VPN, firewall security rules, DNS, DHCP, and integration. Once usage-cases have been implemented, these services expose their APIs (usually REST-based) at a higher level (Application Layer), making it easier for network administrators who use applications beyond SDN administrators to configure, manage and monitor sub-network. The control layer lies in the middle and produces two types of converters - Northbound and Southbound.

(a) Northern Interface: Designed to connect to higher, application layers and will normally be available via REST APIs for SDN controllers.

(b) Southbound Interface: Designed to connect to the base layer, Network infrastructure, and will be available in most of the sub-subscriptions - Openflow, Netconf, Ovsdb, etc.

(3) Infrastructure layer: The infrastructure layer is made up of numerous communication devices that create a hidden network to speed up network traffic. It can be a combination of network switching and routers in the data center. In this layer, the layer could be placed in a control layer where the SDN controllers would sit and manage the virtual underlying network. Provides pack transfer and packet exchange [18].

Switches only perform actions depending on the controller. The interface that they use to communicate with the controller in the control system is called the Southbound API. This layer contains switching devices and the functions of these switching devices are mainly duplicates that provide packet transfer and packet transfer [9].

A) Switching Devices When the design of the SDN switch system is indicated, it contains two sensible data planes and aircraft control elements [19]. The switching unit, specific, through its processor, transmits packet transfer to the data plane, control plane, switch system communicates with the controller controllers to access the rules, including high-level packet transfer rules and data, link-level link tuning rules, and keeps the rules in its memory [9].

B) Transmission Media All likely transmission media, counting wireless, wireless, and visual areas, must be approved by SDN to achieve coverage everywhere. Different transmission media has its distinct features at the same time, often leading to specific configuration and management technologies. Mixing these technologies allows SDN organizers to have extensive control over all network operations, counting packet transfer, wireless or channel mode, and optical wavelengths. It tracks that SDN will increase more sensible control over network structure and attain better use of infrastructure resources [9].
3. SDN Security

SDN network security needs to be ubiquitous. To guard the access, veracity, and confidentiality of all resources and data, the SDN shield requires integration with design and service delivery.

1. Protect Controller: access to the SDN Administrator requires careful control as a single decision-making area [20].

2. Defend the controller: when the SDN manager goes down (for instance, due to a DDoS attack), the network goes down, which means it is important to uphold the accessibility of the SDN controller [20].

3. Establish Belief: it is important to secure communication across the network. This means making sure that all trusted organizations that work as they should are SDN Controller, downloaded applications, and control devices [20].

4. Establish a comprehensive policy framework: a regulatory framework and standards are what is required to ensure that SDN administrators do exactly what you want them to do [20].

5. Perform Forensics and Remediation: in case of an event, you need to be able to identify what it was, rediscover it, report it academically, and defend it in the future [20].

How SDN protection can be distributed, managed, and monitored in the SDN environment is still largely a matter of capture, apart from the properties themselves. Some believe that security is too attached to the network, others believe it is better fixed in servers, storage, and other computer devices. There are contradictory approaches. However, solutions need to be built to make a more flexible, well-organized, and harmless environment. They should be:

1. Simple: in the most powerful environment of SDN, use, management, and storage.

2. Cost: may not be distributed anywhere to ensure safety.

3. Protect: to protect your organization’s high-level, targeted threats.

In the following generations, a new class emerges for security called software-defined security, which delivers network security acquiescence by unraveling security controls for security applications and transfers, such as how SDN affects flight transfer from air traffic control. The outcome is a flexible dispersed system that uses size, scales such as intermediate machines, and treats the network acquiescence factor as a solitary, logical system [21].

SDS is an example of Network Function Virtualization (NFV), which provides a modern way for SDN network protection to be enhanced, deployed, and deployed by combining network features from related hardware, such as firewalls and detection, to enable the software [21]. It is intended to integrate and deliver network infrastructure to fully support the virtual system, including real servers, storage, and other networks.
3.1. Attack on SDN

When businesses want to use SDN, security issues are a top question. Businesses want to know how SDN products can ensure that they are not a threat to their systems, data, and infrastructure. With the use of SDN, new strategies are needed to protect control flight traffic [22]. This section will analyze the vectors of SDN device attacks and share ways to protect network infrastructure that has been made available by SDN approved.

SDN Attack Vectors

(a) Attack on Plane Layer From within the network itself, attackers can identify network objects. An attacker can potentially obtain unwanted physical or simulated access to the network or intimidate a manager who is already linked to the SDN and is attempting to attack the network. This might be a kind of Denial of Service (DoS) outbreak or it could be a sort of bizarre attack to attempt to destroy network objects [23]. These guidelines can also be used by the attacker to try to strengthen the new flow in the system flow table. To allow for different sorts of traffic that should not be allowed cross ways the network, the attacker may want to try to disrupt the new flow. The attacker may have a given opportunity if the attacker can emit a flow that exceeds the traffic direction that directs traffic through the firewall. They can try to exploit the ability to smell traffic and carry out a Man in the Middle (MITM) attack if the attacker can point the traffic at them.

To see what flow is used and what traffic is enabled by the network, the attacker would like to listen to the flow. The attacker would like to try to feel between the network element and the controller in the south communication. With double attacks or for retrieval purposes, this data may be useful.

(b) Attack on the Control Framework

The SDN controller is the most important factor in an attack. For many reasons, the criminal will try to identify the SDN controller. By tracing API messages in the north or by sending south messages to network devices, the attacker will want to install new streams [24]. If the attacker can flow freely from the legitimate controller, the attacker will be able to allow traffic to flow at their discretion via SDN and possibly avoid reliable security policies.

An intruder may try to use the DoS manager or use another method to initiate control failure. An attacker may try to hold it down to the controller to try some kind of attack on resource usage and cause it to retort very deliberately to Packet-In actions and make you delay sending Packet Out messages.

Typically, for a Linux program, SDN administrators are involved in any way. The limitation of that OS becomes a deficiency of the controller if the SDN controller is running on the operating system for usual purposes. Controls are typically programmed with default passwords to build and set without safety settings. SDN technologists have discovered that it operates "barely" and do not want to contact you for the dread of damaging it, so the computer ends up developing in a fragile system.

In the end, if the hijacker produced his or her controller and found network
objects that he or she thought flowed from the "powerful" controller, it could be worse. The incoming one can then produce entries in the flow components of the network components, and from the production control view, SDN engineers would not have an understanding of this movement. The attacker will have full network control in this situation [23].

(c) Attack on SDN Layer

A possible vector also would be to attack the protocol protection north. There are many northern APIs used by SDN administrators. Java, Python, REST, C, JSON, XML, among others, can be used with Northbound APIs. The attacker will be able to control the SDN network with the controller if the attacker can use the insecure northbound API. If the controller was not a specific form of API security in the north, the intruder would be able to set up his own SDN rules and therefore take control of the SDN environment.

There's a default password used by the REST API most of the time, which means nothing to define. If this default password is not changed by the SDN implementation, and the attacker can build packages for the administrator's control boundary, the attacker can order the SDN configuration and install the configuration [23].

3.2. Countermeasure

Software-defined networking (SDN) has attracted significant attention from both academics and the industry through its ability to redesign network devices with intelligent applications. However, in addition to the benefits, some serious security issues have been put in place to prevent SDN transmission [25]. The limited resources and capabilities of the devices involved in the construction of SDN structures, especially hardware replacement in the data plane, are one of the causes of these problems. SDN restrictions and two types of SDN-targeted attacks are 1) aircraft fill attack that terminates the resources of all SDN objects, including a control plane, a data plane, and a downlink channel in between, and 2) aircraft display attack it only attacks the data plane and is done in a very effective and confidential way. Finally, to reduce such attacks, we suggest appropriate safety measures [26].

Measures to combat this attack have also been taught. First, the Avant Guard created a TCP proxy for the data plane to reduce DoS attacks as an extension to monitor TCP handshake performance. Also, Flood Guard, an independent security framework, introduces constructive flow rules to minimize table missing packets and transfer table missing packets to another data plane storage. To reduce the cost of hardware repairs, Flood Defender removes table-miss packages with two-stage filters on the neighbor switch and removes traffic congestion. Second, Topo Guard describes the type of system linked to topology toxicity attacks and evaluates updates with vigor. When detected from a host-connected port, the LLDP packets collapse. Finally, by making the flight delay an automatic response time, a separate channel attack can be avoided [26].
4. SDN Applications

SDNs can rearrange network setup by permitting directors to coordinate physical assets, guide them toward an unknown administration structure (SDN), and manufacture learned, methodical controls over the organization. This implies that, with network assets, you can present applications and different administrations [27]. A portion of the present generally changed and broken organization conditions are effortlessly streamlined by the SDN yield rule. That is the reason in the server farm space, we see endless disclosures. To address vagueness, improve strategy for the executives, improve conveyance, and wipe out merchant reliance, associations use SDN. Most importantly, SDN prompts groundbreaking thoughts, for example, the Internet of Things, cloud joining and cloud administrations, Big Data, and changes in IT convenience and network [28] [29].

1) Services for Defense: Some visual services running within the network layer support the current ecosystem. This means integrating NFV-like functions into SDN podiums. This style of net protection provides an efficient atmosphere that can reduce the risk and respond very quickly to incidents. In the event of a breach of the rule, every second is vital in stopping attacks. Being able to detect attacks and ensure that all parts of the network are secure is also important. If the network layer gets more responsive, we will see more attacks and more sophisticated threats — And as today’s market grows more digital. It helps to create a more flexible and flexible environment to adapt by installing powerful security services in the SDN layer [30].

2) Intelligence and monitoring of networks: Inside a data center, new SDN technology aims to unravel one of the most significant layers: the network. The design of networks is more complicated and requires extra data management than earlier. This suggests that it is important to consider what is happening in your universe [31]. Do you have port delays problems? What if a special network architecture is used by you? Or are you doing very well and pushing a lot of circulation across the network layer? Both of these issues can be reduced when you have a good network and monitoring list. You get a real understanding, though, and benefit from implementing this technology into your SDN constructors. Network technology and technology control can be used to build on traffic flow, port configuration, hypervisor integration, warnings, and updates. Best of all, with these kinds of supple frameworks, One can help navigate network traffic between the data center and the cloud system [29] [30].

3) Compliance with National-Performance Management: Major cloud suppliers additionally give stockpiling limits and related remaining tasks at hand. Associations presently have the alternative to extend offices that were at first compelled because of framework and cloud circulation guidelines [28]. In any case, how would you separate traffic? How would you guarantee that law authorization and law implementation are for all time secured and observed? This is SDN ’s area to assist you. Organization versatility between switches, network focuses, and hypervisors would all be able to be overseen in the development of SDN properties. Note, this layer contains
### Applications	Before SDN	After SDN
Services for Defense | Traditional networking was planned in mind of programmer but, comes to in effect by radio communication, wire communication, vocal command communication or light signal communication. | SDN delivers directly programmable network control. Proactive environment capable of reducing risk and responding to incidents much more quickly.

Intelligence and monitoring of networks. | Collection of data and information in hard copy. Abstraction and planning in hard copy by reviewing all data and information. | Network intelligence is logically centralized through SDN controllers. Handles more data than ever before.

Compliance with National-Performance Management. | Receipt of delayed information results negative national performance, compliance of plans and schemes. | Immediate receipt of information results positive national performance, compliance of plans and schemes through SDN. Brings flexibility and scale to data center.

High-Performance Applications | These workloads needed bare-metal architectures with their own connection. | SDN help support high-performance, rich applications which are being delivered via virtualization.

Application Storage and Cloud Integration. | Huge filing system, bulkier storage devices, Typical to extract and transfer of data. | SDN allows for critical network traffic to pass between various locations, regardless of the type of underlying network architecture.

| Table 2: Comparative study of SDN Applications |

visual capacities and equipment controls. This amazing layer can catch numerous spots, spots of movement, and even places of the cloud [29] [30].

4) **High-Performance Applications:** We are seeing an expansion in new sorts of utilization innovations. Virtualization has made it conceivable to convey rich applications, for example, CAD, GIS, designing, and visual communication apparatuses.
Generally, these outstanding tasks at hand required the development of hardened steel by its connection. In any case, with great practice, applications are smoothed out and VDI can help make an incredible work area experience [31]. Nonetheless, we likewise observe the establishment of SDN in application controls in the organization layer. Build up viable QoS approaches secure classified data, an enormous part of hefty traffic, and even set up bottle limit admonitions. These capacities inside SDN help uphold elite, rich applications outwardly conveyed [30]. Comparative study of SDN applications are highlighted in table 2.

5) Application Storage and Cloud Integration: One of the extraordinary advantages of SDN is the capacity to spread over a server farm. This work of art covers dispersed regions, mists, and the whole business. SDN permits basic organization traffic to go between various areas, paying little mind to the sort of organization foundation it depends on. By eliminating significant organization controls, you make it simpler to move information between server farms and cloud areas. Since SDN is a kind of organization, you can utilize ground-breaking APIs and not simply speak with a cloud supplier; and you can deal with certain organization administrations. This encourages you to deal with your crushing weight while staying with your quick [29] [30].

Because of the powerful shut applications introduced in present-day customary techniques, it is extremely hard to put in new usefulness in the home organization. SDN makes it simple to add new highlights to these settings [32]. Today that we have a reasonable depiction, realize that any association can utilize cases in other SDN exercises. The key, nonetheless, is to see how SDN can positively affect your server farm and business. SDN rearranges the whole organization layer and permits you to control the granularity over the product, offices, and climate of your appropriated server farm. Most importantly, SDN encourages you to manufacture an organization that can adjust to economic situations and changes in the business. This encourages the organization to run quicker and all the more productively [28].

5. Conclusion

As SDN is a modern approach to networking, a range of solutions to conventional network congestion have been redesigned using this architecture, and several issues remain. Due to dynamic network traffic management supported by SDN technology, additional bandwidth is accessible to clients. SDN provides creativity to unlock in the way we build and coordinate networks. There is no more relying on committed hardware, which is also a cost-efficient way. SDN is considered to be an excellent option for fulfilling the current requirements of networking. As SDN is an evolving technology, so study is still underway to make networking more effective. Research needs to concentrate more on the control plane to come up with new ideas for the controllers that are the brains of the SDN architecture. It is hoped that the implementation of the SDN architecture and the Controllers examined here will provide evidence to be of assistance to researchers working in this field.
References

[1] 2019 Purpose of SDN Michael Cooney https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html
[2] Li C, Wu Y, Yuan X, Sun Z, Wang W, Li X and Gong L 2018 International Journal of Communication Systems 31 e3497
[3] 2015 Software Defined Networking Definition ONF https://www.opennetworking.org/sdn-definition/
[4] Ahmad I, Namal S, Ylianttila M and Gurtov A 2015 IEEE Communications Surveys & Tutorials 17 2317–2346
[5] Schaller S and Hood D 2017 Computer standards & interfaces 54 197–202
[6] Badotra S and Singh J 2017 International Journal of Advanced Research in Computer Science 8
[7] Hakiri A, Gokhale A, Berthou P, Schmidt D C and Gayraud T 2014 ComputerNetworks 75
[8] Yin H, Zou T and Xie H 2017 Defining data flow paths in software-defined networks with application-layer traffic optimization uS Patent 9,729,424
[9] Xia W, Wen Y, Foh C H, Niyato D and Xie H 2014 IEEE Communications Surveys & Tutorials 17 27–51
[10] Bianzino A P, Chaudet C, Rossi D and Rougier J L 2010 IEEE Communications Surveys & Tutorials 14 3–20
[11] Benson T, Akella A, Shaikh A and Sahu S 2011 Proceedings of the 2nd ACM Symposium on Cloud Computing
[12] Farhady H, Lee H and Nakao A 2015 ComputerNetworks 81 79–95
[13] 2014 Control Layer Howtoforge https://bit.ly/3kxrNGg
[14] Shin M K, Nam K H and Kim H J 2012 2012 International Conference on ICT Convergence (ICTC) (IEEE) pp 360–361
[15] Karakus M and Durresi A 2017 Computer Networks 112 279–293
[16] Singh S and Jha R K 2017 Journal of Network and Systems Management 25 321–374
[17] Wang X, Chen X, Wang Y and Ge L 2020 Concurrency and Computation: Practice and Experience 32 e5440
[18] Brief O S 2014 Open Netw. Found 17 1–12
[19] Shalimov A, Zuikov D, Zimarina D, Pashkov V and Smeliansky R 2013 Proceedings of the 9th central & eastern european software engineering conference in russia pp 1–6
[20] 2014 Security of SDN Scott Hogg https://www.networkworld.com/article/2840273/sdn-security-attack-vectors-and-sdn-hardening.html
[21] Scott-Hayward S, O’Callaghan G and Sezer S 2013 2013 IEEE SDN For Future Networks and Services (SDN4FNS) (IEEE) pp 1–7
[22] Kalkan K, Gur G and Alagoz F 2017 IEEE Communications Magazine 55 175–179
[23] Hogg S 2014 Artikkeli Network
[24] Bawany N Z, Shamsi J A and Salah K 2017 Arabian Journal for Science and Engineering 42 425–441
[25] Mubarakali A and Alqahtani A S 2019 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT) (IEEE) pp 180–185
[26] Marin E, Bucciol N and Conti M 2019 Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security pp 1101–1114
[27] Pham M and Hoang D B 2016 2016 IEEE NetSoft Conference and Workshops (NetSoft) (IEEE) pp 372–377
[28] Qazi Z A, Lee J, Jin T, Bellala G, Arndt M and Noubir G 2013 Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM pp 487–488
[29] 2020 Applications of SDN Allied Telesis https://www.alliedtelesis.com/en/white-paper/practical-application-software-defined-networking-sdn-enterprise-networks
[30] Kleyman B 2016 Benefits of SDN Bill Kleyman https://www.datacenterknowledge.com/archives/2016/03/31/top-
five-apps-and-services-that-can-benefit-from-sdn

[31] Valdivieso Caraguay Á L, Benito Peral A, Barona Lopez L I and Garcia Villalba L J 2014
International Journal of Distributed Sensor Networks 10 735142

[32] Kim H and Fecamster N 2013 IEEE Communications Magazine 51 114–119