STUDY ON THE OPTIC NERVE VARIATIONS IN RELATION TO POSTERIOR PARANASAL SINUSES USING CT IN TERTIARY CARE CENTRE

Dr. Bavin I B¹, Dr. M R Balachandran Nair², Dr. Aneesh M K³, Dr. Divya Acma George⁴
¹Post Graduate Resident, ²Professor, ³Assistant Professor, ⁴Post Graduate Resident, Department of Radiodiagnosis, JMMC & RI, Thrissur, Kerala, India

Conflicts of Interest: Nil

Corresponding author: Dr. Bavin I B
DOI: https://doi.org/10.32553/ijmsdr.v5i2.756

Abstract:

Background and objectives: Optic nerve has a close relationship with the posterior paranasal sinuses. Depending on the degrees of pneumatization of these sinuses, the optic nerve may indent the sinus wall or protrude into them, predisposing the nerve to injury during sinus surgeries. Aim was to analyse the optic nerve variations in relation to the posterior paranasal sinuses and to categorize the subjects as per DeLano's classification.

Methods: Cross-sectional study was conducted on 336 patients above 16 years of age who underwent computed tomographic evaluation of head and brain. From volume data, multiplanar reconstructions were made in axial, coronal and sagittal planes and analysed in both bone and soft-tissue windows. Relationship of optic nerve with posterior paranasal sinuses were categorised into 4 types according to DeLano's classification. Bony dehiscence of optic canal and pneumatization of anterior clinoid process were also assessed.

Results: 672 optic nerves were assessed, the most common optic nerve type identified was type 1 (62.6%), followed by type 2 (18.6%). Types 3 and 4 were seen equally in number (9.6% each). Dehiscence of optic nerve canal and pneumatization of anterior clinoid process (ACP) was seen respectively on 66 (9.8%) and 75 (11.2%) sides. Compared to type 1 and 4 optic nerves, dehiscence of bony optic canal was statistically more significant in type 2 and 3 nerves. 45.5% individuals with anterior clinoid process pneumatization had associated optic canal dehiscence, which was found to be statistically significant.

Conclusion: Optic nerve variations were identified and classified according to DeLano’s classification. The range was within international limits and type 1 was the most common occurrence. When compared to other similar studies among Indian population, disparity observed in the frequency of optic nerve types and bony optic canal dehiscence in our study, were probably due to differences in ethnicity and size of study group. Association of bony optic canal dehiscence with type 2 & 3 optic nerves and ACP pneumatization with type 3 optic nerve was found to be statistically significant, making them more vulnerable to injury during surgery. Knowledge of optic nerve relation with posterior paranasal sinuses, and its identification in preoperative computed tomography (CT) scan are important to avoid injury to optic nerve.

Keywords: Optic nerve, sphenoid sinus, posterior ethmoid cell, Onodi cell, anterior clinoid process pneumatization, optic canal dehiscence.

Introduction:

Optic nerve is the second cranial nerve, carrying sensory nerve impulses from the retina towards the visual centres in the brain. Emerging from the posterior aspect of orbit, optic nerve courses posteromedially towards the optic chiasma. While coursing towards chiasma, the nerve has a close relationship with the posterior paranasal sinuses, where it seen superolateral to these sinuses. The position of optic nerve may be changed due to various degrees of pneumatization of the sinuses and it may protrude into them which is hardly visible or clear. Occasionally optic nerve is covered by a thin layer of bone or mucosa in the sphenoid sinus.¹ ⁵

DeLano et al. classified the relations of optic nerve with sphenoid and posterior ethmoid sinuses into four types. In Type 1, course of the nerve was adjacent to sphenoid sinus without indenting its wall. In Type 2, the nerve courses adjacent to sphenoidal sinus, indenting its wall. In Type 3, course of the nerve was through the sphenoid sinus. And in Type 4, the nerve passes immediately adjacent to the sphenoid sinus and the posterior ethmoidal air cell.⁶

Damage to one or both optic nerves during sinus surgery has been reported in various literatures.⁷–⁹ Most of the complications resulting from endoscopic sinus surgery (ESS) are temporary and reversible. But, major and serious complications may result in permanent vision loss.¹⁰–¹³ Detailed knowledge of
paranasal sinuses, adjacent anatomical structures and their variations are essential for clinicians performing sinus surgery, transseptal and transsphenoidal pituitary surgeries. Preoperative CT scan of paranasal sinus will provide an excellent anatomical view as well as extent of the disease which can minimise the injury to vital structures. Classification of optic nerve course and its relations are mentioned in various literatures but not many literatures are available pertaining to Kerala population.

Aim & Objectives
- Analyse the optic nerve variations in relation to the posterior paranasal sinuses.
- To categorize the subjects as per DeLano's classification.

Methodology

Study Design: Cross Sectional study.

Study Period: 18 months. (January 2019 to June 2020)

Study Setting: Department of Radiodiagnosis, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala.

Sample Size: Based on the proportion of optic nerve variation in an earlier publication, with 95% confidence level and 10% relative allowable error minimum sample size comes to 310.

\[
\frac{z_{(1-\alpha/2)}^2 \cdot p \cdot q}{d^2}
\]

Sampling Procedure: Consecutive CT Head and Brain of 310 subjects, of those who met the criteria were analysed. These included both males and females above 16 years the age.

Plan of Analysis
Statistical tests, percentage analysis, chi-square test.

Statistical Methods: Numerical variables were expressed as mean and standard deviation. Categorical variables were expressed as frequency and percentages. Chi square test / Continuity correction test was used to find the association between categorical variables. Data was entered in excel sheet and analyzed by using IBM Statistical Package for Social Sciences (SPSS) version 25. The p value <0.05 was considered as statistically significant.

Results & Analysis
A total of 336 cases (672 sides) were analysed of which 191 (56.85%) were males and 145 (43.2%)
were females. Age of individuals ranges between 16 to 95. Average age was 52.38 ± 18.78.

Optic Nerve - Types

Optic nerves were categorized according to DeLano classification. The most common optic nerve type was type 1, followed by type 2. Types 1 to 4 were respectively seen on 421 (62.6%), 125 (18.6%), 63 (9.6%) and 63 (9.6%) sides. Type 1 optic nerve was the most frequently seen type on both sides, followed by type 2. On right side, the least common type was type 3. While on the left, it was type 4. Type 1 optic nerve morphology was observed in 209 (62.2%) right and 212 (63.1%) left optic nerves. Type 2 morphology was present in 63 (18.8%) right and 62 (18.5%) left optic nerves. Type 3 morphology noted in 29 (8.6%) right and 34 (10.1%) left optic nerves. Type 4 morphology noted in 35 (10.4%) right and 28 (8.3%) left optic nerves. In 310 (92.3%) cases, sphenoid sinus contacts the ipsilateral optic nerve and in 26 (7.7%) cases it contacts both optic nerves, 6 (1.8%) on right and 20 (5.9%) on left side. (Figure 1-4)

Figure 1: Coronal CT scan showing type 1 optic nerve on right side, type 3 on left and pneumatization of left ACP.

Figure 2: Coronal CT scan showing Onodi cell and type 4 optic nerve on both sides. Left optic canal is showing dehiscence and protrusion into Onodi cell.

Figure 3: Oblique coronal CT scan showing Onodi cell and type 4 optic nerve on right side. Right ACP is showing pneumatization from Onodi cell. Type 2 optic nerve is seen on left side.

Figure 4: Coronal CT scan showing left sphenoid sinus in contact with both optic nerves.

Optic nerve canal dehiscence was noted on 66 (9.8%) sides. Accessory septa were observed in 116 (17.3%) sphenoid sinuses, of which it’s attachment to optic nerve was observed on 9 (1.3%) sides. Anterior clinoid process pneumatization was noted on 75 (11.2%) sides. Onodi cells were noted on 61 (9.1%) sides.

Dehiscence of Bony Optic Nerve Canal

Dehiscence of optic nerve canal was present in 52 (15.5%) individuals. Out of this, 18 (34.6%) cases were noted on right side, 20 (38.5%) on left side and 14 (26.9%) bilaterally. 17.8% (34 cases) of males and 12.4% (18 cases) of females had dehiscence of bony optic nerve canal, which was not statistically significant. Out of 66 sides of bony optic canal dehiscence, 45.5% were noted in type 2 optic nerve. 1.2% (5 sides) of type 1, 24.0% (30 sides) of type 2, 33.3% (21 sides) of type 3 and 9.8% (10 sides) of type 4 optic nerve canals had dehiscence. Compared to type 1 and 4 optic nerves, dehiscence of bony optic canal was statistically more significant in type 2 and 3 nerves. (Table No.1) (Figure 2).
Table 1: Frequency distribution of bony optic canal dehiscence and optic nerve type.

Dehiscence of bony optic canal	Optic nerve type	Total	p Value			
	Type 1 n (%)	Type 2 n (%)	Type 3 n (%)	Type 4 n (%)		
Absent	416 (98.8%)	95 (76.0%)	42 (66.7%)	53 (84.1%)	606 (90.2%)	<0.001
Present	5 (1.2%)	30 (24.0%)	21 (33.3%)	10 (15.9%)	66 (9.8%)	
Total	421	125	63	63	672	

ANTERIOR CLINOID PROCESS PNEUMATIZATION

ACP pneumatization was present in 55 (16.4%) individuals. Out of this, 22 (40.0%) were noted on right side, 13 (23.6%) on left side and 20 (36.4%) bilaterally. 18.3% (35 cases) of males and 13.8% (20 cases) of females had ACP pneumatization, which was not statistically significant. Out of 75 sides of ACP pneumatization, 61.3% were not associated with type 3 optic nerve. None of them were seen with type 1 optic nerve. 8.0% (10 sides) of type 2, 73.0% (46 sides) of type 3 and 30.2% (19 sides) of type 4 optic nerves were associated with ACP pneumatization. Statistically significant association was noted between type 3 optic nerve and ACP pneumatization.

Table 2: Frequency distribution of Anterior clinoid process pneumatization and Optic nerve type

ACP Pneumatization	Optic nerve type	Total	p Value			
	Type 1 n (%)	Type 2 n (%)	Type 3 n (%)	Type 4 n (%)		
Absent	421 (100%)	115 (92.0%)	17 (27.0%)	44 (69.8%)	597 (88.8%)	<0.001
Present	0 (0.0%)	10 (8.0%)	46 (73.0%)	19 (30.2%)	75 (11.2%)	
Total	421	125	63	63	672	

Graph 1: Distribution of Anterior clinoid process pneumatization and Optic nerve type

45.5% individuals with ACP pneumatization had associated bony optic canal dehiscence, which was found to be statistically significant. (Table No.3).

Table 3: Frequency distribution of ACP pneumatization and Dehiscence of optic canal

ACP pneumatization	Dehiscence of bony optic canal	Total	p Value	
	Absent n (%)	Present n (%)		
Present	25 (45.5)	30 (54.5)	55	<0.001
Absent	27 (9.6)	254 (90.4)	281	
Total	52 (15.5)	284 (84.5)	336	
Inter sphenoid sinus septa and its termination to optic nerve canal

Inter sphenoid sinus septa was observed in all cases, out of which 77 (22.9%) were attached to optic nerve canal - 40 to right and 37 to left optic nerve canal. (Figure 5)

![Figure 5](image)

Figure 5: Coronal CT scan showing the accessory septa in left sphenoid sinus attaching to ipsilateral optic canal.

Accessory sphenoid septa attaching to optic nerve canal

Accessory sphenoid septa was present in 87 (25.9%) individuals. Out of this, 27 (31.0%) were noted on right side, 31 (35.6%) on left side and 29 (33.3%) bilaterally. 116 (34.6%) sinuses had accessory septa, 56 were on right and 60 on left side. 9 (7.8%) accessory sphenoid sinus septae were seen attaching to optic nerve canal, of which 03 were in right sinus and 06 in left sinus. (Figure 6)

![Figure 6](image)

Figure 6: Coronal CT scan showing type 3 optic nerve on both sides with intersphenoid septa attaching to right optic canal.

Out of 336 individuals, 87 were having septa attaching to optic nerve canal either from inter sphenoid sinus, inter Onodi, accessory sphenoid sinus septa or that with in the Onodi cell.

ONODI CELL

Onodi cells were present in 51 (15.2%) individuals. Out of this, 24 (47.1%) were noted on right side, 17 (33.3%) on left side and 10 (19.6%) bilaterally. In two patients, single Onodi cell was seen crossing midline. Optic nerves on both sides had close contact with this Onodi cell. (Figure 7) Onodi cell septa was noted in one patient, which was seen attaching to optic canal also. (Figure 8) In one patient with bilateral Onodi cell, inter Onodi septa was seen attaching to right optic nerve canal. (Figure 9) ACP pneumatization from Onodi cells was seen on 10 sides. (Figure 9)

![Figure 7](image)

Figure 7: Coronal CT scan showing Onodi cell crossing the midline, and showing contact with both optic nerves.

![Figure 8](image)

Figure 8: Coronal CT scan showing Onodi cell on both sides. Septa in left Onodi cell is attaching to optic canal.

![Figure 9](image)

Figure 9: Coronal CT scan showing Onodi cell and type 4 optic nerve on both sides. Inter onodi septa is attaching to right optic canal. ACP is showing pneumatization from Onodi cells on both sides.

Discussion

Damage of the optic nerve during intranasal sinus surgery can result in serious complications and
blindness. Knowledge of optic nerve course and its relation with posterior paranasal sinus is important to avoid iatrogenic injury. CT of paranasal sinus is the best technique to assess the morphological relationship of optic nerve canal with posterior ethmoid and sphenoid sinuses. In various researches, overall, the most commonly reported morphology of optic nerve was type 1 followed by type 2.2,3,5,8,15–20 But in the study conducted by Batra et al,3 type 2 (39.8%) optic nerve was the most common and type 1 (25.8%) was second most common. They used a modified DeLano classification for analysis. Type 3 (23.5 %) optic nerve morphology was reported as the second common type in the study by Heskova et al.16 In most of the studies, type 4 was the least commonly reported optic nerve. Santhana Lakshmi et al16 and Braggs20 et al reported type 3 (1.8% and 7.6% respectively) as the least common optic nerve in their studies. Sapçı et al3 observed equal number of optic nerves in type 3 and 4 (7% each), in a pattern similar to our study. Lakhani et al15 and Braggs et al20 compared the frequency of different optic nerve types on right and left side and reported that there was not much difference in number of the various optic nerve types on right and left side. In our study, frequency of type 1 optic nerve was close to the Indian range (60%-65.8%). Frequency of type 2 optic nerve was also seen close to the range of Braggs et al20 (17.8%) and Rishikesh et al19 (15%), but was much less than that of Santhana Lakshmi et al16 (29.8%). Type 3 optic nerve was seen less frequently than that of Rishikesh et al19 (14%). Both type 3 and 4 optic nerves were seen in higher frequencies than that of Santhana Lakshmi et al16 (1.8% ad 2.6%). In our study, approximately 92.3% of sphenoid sinuses were in contact with ipsilateral optic nerve, and in 7.7% they contact both optic nerves. Similar findings were reported previously by Bansberg et al14 in Rochester. To the best of our knowledge, no Indian studies have reported it so far. Disparity in frequency of optic nerve types in various studies can be explained as a result of ethnicity. Apart from ethnicity, selection of study group and age groups also influences the frequency.

Dehiscence of optic canal was within the international range (0.6% to 30.6%).2,6,16–19,21–23 Compared to other Indian studies, optic canal dehiscence found in our study was in higher frequencies than that of Santhana Lakshmi et al16 (2.1%) and lower frequencies than that of Rishikesh et al19 (17.5%). Anusha et al22 observed 60.9% of optic canal dehiscence in males, while in a study by Davoodi et al24, it was more frequently seen in females (46% of females). In our study, optic canal dehiscence was more frequently seen in males, but it was not statistically significant. Dehiscence of optic canal was seen significantly with type 2 and 3 optic nerves in various studies. DeLano et al16 observed optic canal dehiscence in all type 3 optic nerves. Rishikesh et al19 noted optic canal dehiscence in 64.3% of type 3 optic nerves. In our study, optic canal dehiscence with type 2 and 3 optic nerves were seen within the international range, but was less frequent when compared to that of other Indian studies. Total absence of bony wall is taken as dehiscence in our study. While in some other studies, thinning of bone less than 0.5mm is also included.1 Ethnicity, type of scan and study group also attribute to a wide range in dehiscence.

ACP pneumatization was seen within the international range (4% to 54%).2,4,6,16–19,21,23,25 Significant association between ACP pneumatization and type 3 optic nerve was reported in most of the studies; it was 93% in the study by Rishikesh et al in Karnataka population.19 While in the study by Santhana Lakshmi et al16 in South Indian ethnicity, optic nerve types and its association with anterior clinoid process pneumatization were found to be insignificant. Significant association between ACP pneumatization and optic canal dehiscence was reported in studies by DeLano et al16 (77%) and Sapçı et al3 (23%). 45.5% individuals with ACP pneumatization had associated optic canal dehiscence in our study, which was found to be statistically significant. Pneumatization of ACP from onodi cell was previously reported by Yuefeng Li et al.25

Inter- sinus septa termination on optic canal was observed by Manisha et al26 in 10% and Batra et al3 in 30.5%. Multiple sphenoid sinus septations were reported in various (5 - 80%) studies.1,22,27 Manisha et al26 in their study on North Karnataka population, observed accessory septa / crests in 43% cadavers and termination into optic nerve canal in 6%. Onodi cell was reported upto 50.8 % in various studies.14,28,29 Central Onodi cell has been previously reported by Deepa et al.30 In our study, two patients had similar Onodi cell. Optic nerves on both sides had close contact with this Onodi cell. Onodi cell septa, ACP pneumatization from onodi and central onodi cell are uncommon, knowledge of these rare findings and optic nerve relation to them are important.

Limitations

Sample included only a small population of central Kerala which does not represent the whole population.
Movement of the patient produced CT artifacts which hindered our evaluation.

Conclusion

In our study, optic nerve variations were identified and classified according to DeLano’s classification. The range was within international limits and type 1 was the most common occurrence. When compared to other similar studies among Indian population, disparity observed in the frequency of optic nerve types and bony optic canal dehiscence in our study, were probably due to differences in ethnicity and size of study group. Association of optic canal dehiscence with type 2 & 3 optic nerves and ACP pneumatization with type 3 optic nerve was found to be statistically significant, making them more vulnerable to injury during surgery. Knowledge of optic nerve relation with posterior paranasal sinuses, and its identification in preoperative CT scan are important to avoid injury to optic nerve.

References

1. Fujii K, Chambers SM, Rhoton AL. Neurovascular relationships of the sphenoid sinus: A microsurgical study. J Neurosurg. 1979;50(1):31–9.
2. Heskova G, Mellova Y, Holomanova A, Vybohova D, Kunertova L, Mareckova M, et al. Assessment of the relation of the optic nerve to the posterior ethmoid and sphenoid sinuses by computed tomography. Biomed Pap Med Fac Univ Palacky Olomouc Czechoslov. 2009;153(2):149–52.
3. Sapçi T, Derin E, Almaç S, Cumrali R, Saydam B, Karavuş M. The relationship between the sphenoid and the posterior ethmoid sinuses and the optic nerves in Turkish patients. Rhinology. 2004;42(1):30–4.
4. Sirikci A, Bayazit YA, Bayram M, Mumbuç S, Güngör K, Kanlikama M. Variations of sphenoid and related structures. Eur Radiol. 2000;10(5):844–8.
5. Batra P, Citardi M, Gallivan R, Roh H-J, Lanza D. Software-enabled CT analysis of optic nerve position and paranasal sinus pneumatization patterns. Otolaryngol–Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg. 2005;131(6):940–5.
6. DeLano MC, Fun FY, Zinreich SJ. Relationship of the optic nerve to the posterior paranasal sinuses: a CT anatomic study. AJNR Am J Neuroradiol. 1996;17(4):669–75.
7. Maniglia AJ. Fatal and major complications secondary to nasal and sinus surgery. Laryngoscope. 1989;99(3):276–283.
8. Maniglia AJ. Fatal and other major complications of endoscopic sinus surgery. Laryngoscope. 1991;101(4):349–354.
9. Buus DR, Farris BK. Ophthalmic complications of sinus surgery. Ophthalmology. 1990;97(5):612–9.
10. Rene C, Rose G E, Lenthal R, Moseley I. Major orbital complications of endoscopic sinus surgery. Br J Ophthalmol. 2001;85(5):598–603.
11. Seredyka-Burduk M, Burdruk PK, Wierzchowska M, Kaluzny B, Malukiewicz G. Ophthalmic complications of endoscopic sinus surgery. Braz J Otorhinolaryngol. 2017;83(3):318–23.
12. Maniglia AJ, Chandler JR, Goodwin WJ, Flynn J. Rare complications following ethmoidectomies: report of eleven cases. Laryngoscope 1981;91(8):1234–44.
13. Kim J, Kim H, Kim C-H, Lee J-G, Yoon J-H. Optic Nerve Injury Secondary to Endoscopic Sinus Surgery: an Analysis of Three Cases. Yonsei Med J. 2005;46:300–4.
14. Bansberg SF, Harner SG, Forbes G. Relationship of the optic nerve to the paranasal sinuses as shown by computed tomography. Otolaryngol Head Neck Surg. 1987;96(4):331–5.
15. Lakhani M, Ali M, Sadiq M, Hassan N. Analysis of Optic Nerve Types in Relation to Posterior Paranasal Sinuses: A Computed Tomographic(CT) Study. Annals ASH KM&DC 2017;22:249-54.
16. Santhana Lakshmi R, Gugapriya T S, Vinay Kumar N, Guru T A. Positional variation of optic nerve in relation to sphenoid sinuses and its association with pneumatisation of anterior clinoid process : a radiological study. Journal of Evidence based Medicine and Healthcare. 2015;2(32):4719–28.
17. Fasunla AJ, Ameye S, Ogbole G, Adeleye A, Adekanmi A, Oluwatosin A. Anatomical variations of the Sphenoid sinus and nearby neurovascular structures seen on the computed tomography of Black Africans. East Cent Afr J Surg. 2012;17:57–64.
18. Efendić A, Muharemović E, Skomorac R, Beculić H, Šestić S, Halilović B, et al. Anatomic variations of posterior paranasal sinuses and optic nerve. Med Glas. 2017 Feb;14(1):49-54.
19. Itagi RM, Adiga CP, Kalenahalli K, Goolahally L, Gyanchandani M. Optic Nerve Canal Relation
to Posterior Paranasal Sinuses in Indian Ethnics: Review and Objective Classification. J Clin Diagn Res JCDR. 2017;11(4):TC01–3.

20. Anston Braggs, Krishna Kiran S. CT study of relationship of optic nerve to posterior paranasal sinuses. International Journal of Contemporary Medicine Surgery and Radiology. 2018;3(4):D71-D73.

21. Hewaidi G, Omami G. Anatomic Variation of Sphenoid Sinus and Related Structures in Libyan Population: CT Scan Study. Libyan J Med. 2008;3(3):128–33.

22. Anusha B, Baharudin A, Philip R, Harvinder S, Shaffie BM, Ramiza RR. Anatomical variants of surgically important landmarks in the sphenoid sinus: a radiologic study in Southeast Asian patients. Surg Radiol Anat SRA. 2015;37(10):1183–90.

23. Kazkayasi M, Karadeniz Y, Arikan O K. Anatomic variations of the sphenoid sinus on computed tomography. Rhinology. 2005;43(02):109–114.

24. M. Davoodi, N. Saki, G. Saki and F. Rahim. Anatomical Variations of Neurovascular Structures Adjacent Sphenoid Sinus by using CT Scan. Pakistan Journal of Biological Sciences. 2009;12(6):522-5.

25. Li Y, Sun J, Zhu X, Zhao C, Xu J, Jiang P, et al. Study of the relationship between sphenoid sinus volume and protrusions in the sphenoid sinus. Forensic Med Anat Res. 2014;2(1):2–7.

26. Chougule MS, Dixit D. A Cross-Sectional Study of Sphenoid Sinus through Gross and Endoscopic Dissection in North Karnataka, India. J Clin Diagn Res JCDR. 2014;8(4):AC01–5.

27. Sareen D, Agarwal AK, Kaul JM, Sethi A. Study of Sphenoid Sinus Anatomy in Relation to Endoscopic Surgery. Int J Morphol. 2005;23 (3):261–6.

28. Yeoh K, Tan K. The optic nerve in the posterior ethmoid in Asians. Acta Otolaryngol 1994;114(3):329-336.

29. Shin J-H, Kim SW, Hong YK, Jeun S-S, Kang S-G, Kim SW, et al. The Onodi Cell: An Obstacle to Sellar Lesions with a Transsphenoidal Approach. Otolaryngol Neck Surg. 2011;145(6):1040–2.

30. Cherla DV, Tomovic S, Liu JK, Eloy JA. The central Onodi cell: A previously unreported anatomic variation. Allergy Rhinol. 2013;4(1):49–51