The discovery of a puzzling new population of compact ($R_e \lesssim 1 \text{kpc}$) massive elliptical galaxies existing at the epoch when the universe was not more than one-third of its current age has posed profound challenges for both monolithic and hierarchical model of galaxy formation and evolution. A handful of these objects were first reported by Cimatti et al. (2004), and later work by several groups has grown the number of these objects. The size of passively evolving galaxies over this redshift range is gradual and continuous, with no evidence for an end or change to the process around $z \sim 1$, as has been hinted at by some surveys which analyze subsets of the data in isolation. The size growth appears to be independent of stellar mass, with the mass-normalized half-light radius scaling with redshift as $R_e \propto (1 + z)^{-0.34 \pm 0.06}$. Surprisingly, this power law seems to be in good agreement with the recently reported continuous size evolution of UV-bright galaxies in the redshift range $z \sim 0.5$–3.5. It is also in accordance with the predictions from recent theoretical models.

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: fundamental parameters

Online-only material: color figures, machine-readable table

1. INTRODUCTION

In the present Letter, we synthesize the results from these published surveys, which together span a redshift range from the nearby universe ($z \sim 0.2$) all the way out to redshifts $z \sim 2.7$. This redshift range spans ~10 Gyr of cosmic time. By combining published data with new measurements for galaxies in the Gemini Deep Deep Survey (GDDS), we are able to compile a sample of 465 galaxies with spectroscopic redshifts over the full redshift range. Our main aim is to use these galaxies to determine whether galactic size growth is a continuous process that occurs over this full redshift range, or a process that is mainly associated with a particular epoch. Our result will place additional constraints on two mechanisms that have been proposed to explain the observed size growth: (1) minor dry mergers or late accretion (e.g., Oser et al. 2011) and (2) adiabatic expansion due to extreme mass loss (caused by stellar winds or quasar activity; Damjanov et al. 2009). Fan et al. 2010).

2. SAMPLE AND DATA REDUCTION

Table 1 presents a summary of the structural parameters based on high resolution HST and adaptive optics ground-based imaging for 434 galaxies obtained from the literature for 16 spectroscopic surveys, augmented with additional analysis of imaging data for 31 objects from our own survey (GDDS; Abraham et al. 2004). The available data include redshifts, stellar masses, and the Sérsic surface brightness profile parameters—circularized half-light radii R_e and Sérsic profile
Table 1

Summary of the Compilation of Samples Used to Construct the Size Evolution Diagram

Sample\(^a\)	\(z_{\text{spec}}\)	\(\lambda_{\text{rest}}(R_e)\)	\(M_5\)	\(N\)	\(n \geq 2.5\)	Quiescent \(n \geq 2.5\)	Quiescent \(\geq 2.5\)	Compact \(n \geq 2.5\)	Compact \(\geq 2.5\)	Ref.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
EDisCS	0.24–0.96	415–656	0.12–6.58	154	87.66	100.00	87.66	23.37	≥72.22	1
CFRS	0.29–0.99	409–631	0.04–3.09	36	100.00	72.50	100.00	5.55	100.00	2
GN/DEIMOS	0.18–1.14	283–514	0.03–7.04	76	100.00	75.00	100.00	26.32	100.00	3,4
MS1054/CFDS	0.84–1.14	353–464	0.42–11.33\(^c\)	32	100.00	100.00	100.00	9.37	100.00	5
CL1252/CFDS	1.09–1.35	362–407	0.29–3.64	44	N/A	100.00	N/A	25.00	N/A	6
EGS/SSA22/GN	1.05–1.59	328–397	0.33–1.55	17	100.00	100.00	100.00	35.29	100.00	7
Radio-loud QSOs	1.29–1.59	618–699	1.54–2.87	5	60.00	100.00	60.00	0.00	0.00	8,9
MUNICS	1.23–1.71	590–717	2.06–5.95	9	66.66	100.00	66.66	11.12	100.00	10
GS/CFDS	1.33–1.62	611–687	0.37–1.45	6	66.66	100.00	66.66	75.66	100.00	11
GDDS/ACS	0.62–1.74	297–502	0.04–2.25	31	54.84	100.00	54.84	41.94	53.85	12
EGS	1.24–1.36	932–982	3.09–3.98	3	66.66	N/A	N/A	0.00	0.00	13
GDDS/NICMOS	1.39–1.85	561–669	0.55–3.17	10	60.00	90.00	55.55	30.00	66.66	14
GS/ACS	0.95–1.92	291–436	0.05–2.08	15	100.00	100.00	100.00	13.34	100.00	15,16
HUDF/WFC3	1.32–1.98	537–690	0.23–0.67	4	50.00	100.00	50.00	75.00	33.34	17
GMASS	1.42–1.98	285–351	0.32–0.99	8	37.51	100.00	37.51	75.00	33.34	18
HUDF	1.39–2.67	232–356	0.76–6.74	6	83.34	100.00	83.34	50.00	66.66	19
MUSYC	2.03–2.55	451–528	0.52–2.71	9	44.45	100.00	44.45	77.77	42.85	20
TOTAL	0.2–2.67	232–982	0.03–11.33	465	≥78.07	≥92.90	≥76.09	25.80	≥59.17	

Notes. Column 1: survey from which the sample is drawn; Column 2: redshift range; Columns 3: the range of rest-frame central wavelengths of the \(R_e\) measurements; Column 4: mass range; Column 5: number of objects in the sample; Column 6: fraction of passively evolving objects; Column 7: fraction of spheroids; Column 8: fraction of passively evolving galaxies with spheroid-like profiles; Column 9: fraction of (compact) objects with \(R_e \leq 1\) kpc; Column 10: fraction of compact objects with spheroid-like profiles; Column 11: references: (1) Saglia et al. 2010; (2) Schade et al. 1999; (3) Treu et al. 2005; (4) Bundy et al. 2007; (5) van der Wel et al. 2008; (6) Rettura et al. 2010; (7) Newman et al. 2010; (8) McGrath et al. 2007; (9) McGrath et al. 2008; (10) Longhetti et al. 2009; (11) Cassata et al. 2010; (12) Data presented here; (13) Carrasco et al. 2010; (14) Damjanov et al. 2009; (15) Gargiulo et al. 2011; (16) Saracco et al. 2011; (17) Cassata et al. 2010; (18) Cimatti et al. 2008; (19) Daddi et al. 2005; (20) van Dokkum et al. 2008.

\(a\) Selection criteria for each sample are denoted by the font style: roman denotes spectroscopically selected objects with old stellar population, boldface is used for morphologically selected objects with compact morphologies, and italics font corresponds to the quiescent galaxies selected by color.

\(b\) Stellar mass estimates have been converted to the Baldry & Glazebrook (2003) IMF.

\(c\) Based on dynamical masses \(M_{\text{dyn}}\) and the \(M_{\text{dyn}} \sim 1.4 \times M_\odot\) relation (van der Wel et al. 2008).

In compiling the data summarized in Table 1, we constructed a B-ACS (Baldry & Glazebrook 2003) IMF. The complete list of objects in our compilation with all their properties we used to construct relations presented in this Letter is given in Table 2. We note that there are overlaps.
Figure 1. Effective radius R_e as a function of stellar mass for a sample of 465 passively evolving galaxies in the redshift range $0.2 < z < 2.7$. Different symbols correspond to different surveys (listed in the legend of Figure 3) and are color coded based on the rest-frame central wavelength of the size measurements with the key shown as a color bar on the right. Data points are compared to the local sample drawn from the SDSS (gray points) in separate redshift panels. Contours represent linearly spaced regions of constant density of local SDSS galaxies in size–mass parameter space. The solid black line and gray area represent the best-fit relation to the data points in each redshift bin and its $\pm1\sigma$ errors, respectively. In each upper sub-panel the slope α of the magenta line is the best fit to the data in a given redshift range with the slope fixed to the slope of the $0.8 < z < 1.4$ relation. (Note that the linear fits exclude objects with masses $<10^{10} M_\odot$ to avoid being skewed by very low mass outliers.) Average error bars for objects in different redshift bins are given in the top left corner of each panel. Note that we do not have information on the size measurement errors for $>95\%$ of objects at $z<1$ (Table 2). Lower sub-panels show the ratio between the measured size and the size at $0.8 < z < 1.4$ based on the size–mass relation plotted in the upper panels, as a function of mass. The solid line corresponds to the same sizes in a given redshift bin and at $0.8 < z < 1.4$ ($R_e(z)/R_e(z \sim 1.1) = 1$), and the dotted lines encompass the $\pm1\sigma$ spread of the $z \sim 1.1$ data.

(A color version of this figure is available in the online journal.)

Table 2

Object ID	R.A. (J2000)	Decl. (J2000)	z_{spec}	Selection	M_* ($10^{11} M_\odot$)	ΔM_* ($10^{11} M_\odot$)	Observing Filter	R_e (kpc)	ΔR_e (kpc)	n	Δn
EDCSNJ1040403-1156042	160.167917	−11.934500	0.7020	Spectroscopy	2.663	0.368	F814W	6.153	3.700	1	
EDCSNJ1040407-1156015	160.169583	−11.933750	0.7030	Spectroscopy	1.463	0.168	F814W	1.698	3.700	1	
EDCSNJ1040346-1157566	160.144167	−11.965722	0.7024	Spectroscopy	1.366	0.252	F814W	3.348	3.700	1	
EDCSNJ1040396-1155183	160.165000	−11.921750	0.7046	Spectroscopy	0.945	0.196	F814W	2.244	3.700	1	
EDCSNJ1040356-1156026	160.148333	−11.934056	0.7081	Spectroscopy	1.719	0.475	F814W	2.345	3.700	1	

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

between a few $z > 1$ samples drawn from the south field of the Great Observatories Origin Deep Survey (GOODS): MS1054/CFDS, CL1252/CFDS, GS/WFC3, GS/ACS, HUDF/WFC3, GMASS, and HUDF. In order to exclude all duplicate entries for the objects with unpublished positions we flagged all galaxies in Table 2 having the same redshifts and similar mass and size estimates and kept the results based on deeper imaging (e.g., WFC3) whenever possible. Our approach ensures that all 465 entries in Table 2 are unique.

3. THE SIZE–MASS RELATION

Figure 1 presents the size–mass relation obtained from nearly 500 massive galaxies with known structural parameters spanning the (spectroscopically confirmed) redshift range from $z_{spec} \sim 0.2$ to $z_{spec} \sim 2.7$. The figure shows the data in six different redshift bins and in each panel the high-redshift sample is shown relative to the local distribution of galaxies on the size–mass plane. These local data are from the Sloan Digital Sky Survey (SDSS), with sizes taken from Bernardi et al. (2008) and matched with masses calculated following Baldry et al. (2003) and matched with masses calculated following Baldry et al. (2008). The linear relation shown in each panel is the best-fit line obtained by fitting to the data in the $0.8 < z < 1.4$ panel (corresponding to roughly the half-way point in our redshift range). At the bottom of each panel the residual obtained by removing this $0.8 < z < 1.4$ linear relation is shown. The residuals are flat in all panels except possibly in the lowest redshift bin, where we do not have complete mass coverage. This suggests that for galaxies with masses greater than $10^{10} M_\odot$ the slope of the size–mass relationship remains constant at all
Effective radius R_e as a function of stellar mass for a sample of 465 passively evolving galaxies in the redshift range $0.2 < z < 2.7$. The notation is the same as in Figure 1 except that the color coding is now based on the sample selection criteria given in Table 1.

(A color version of this figure is available in the online journal.)

redshifts, although its normalization does not. This is in good agreement with the findings of Damjanov et al. (2009), who reported that the slope of the relation between size R_e and stellar mass M_* of massive quiescent galaxies stays constant, while its zero point smoothly evolves toward lower half-light radii with increasing redshift (see also Shankar et al. 2011).

It is important to consider whether different survey strategies used to obtain the data in Figure 1 play an important role in our interpretation of the observations. The galaxy sizes presented in Figures 1 and 2 and listed in Table 2 are measured over a wide range of rest-frame wavelengths ($\lambda_{\text{rest}} = 232$–982 nm). However, available data suggest that this is not an important source of error. For example, all but three objects from the EGS subsample (Carrasco et al. 2010) have reported sizes based on the imaging that spans the range of $\lambda_{\text{rest}} = 300$–700 nm, where half-light radii show weak dependence on wavelength (Cassata et al. 2010). Furthermore, the GDDS objects with available NICMOS F160W and ACS F814W images have very similar sizes in both bands, as noted in Section 2. To further investigate possible biases, different selection criteria used to construct the compiled samples are shown in Table 1 coded by font style. Figure 2 presents the same data shown in Figure 1, but with symbols colors keyed to the selection criteria used to define the various surveys. In most of the listed surveys quiescent galaxies have been selected based either on their ultraviolet (UV) absorption spectral features (red points in Figure 2) or on their passive colors (blue points in Figure 2). Four out of 17 subsamples (containing 32% of all objects) are based on the morphological selection of spheroid-like systems (green points in Figure 2). No trends with selection strategy are seen.

Perhaps the strongest bias in our sample originates in the spectroscopic selection of passive galaxies at $z > 1.5$, since these objects need to be bright enough to be detected in the rest frame UV. Our sample contains 38 objects (less than 10%) in that redshift range and for the high-z surveys in the sample with known spectroscopic completeness level it varies from $\sim 50\%$ (GMASS) to 80%–90% (GDDS, GS/ACS). Although this may affect the slopes of the size–mass relation in the last two panels of Figures 1 and 2, our main conclusion presented in Section 4 will not be altered since it is heavily based on the lower redshift bins where our selection of galaxies with known z_{spec} is far less biased.

4. THE SIZE GROWTH OF QUIESCENT GALAXIES

4.1. The Size–Redshift Relation

An even clearer picture of the size evolution of massive quiescent galaxies can be obtained by normalizing out the trends with stellar mass. Figure 3 shows a plot of size versus redshift in which we have used the slope $\alpha = 0.51$ of the $R_e \propto M_*$ relation to normalize the sizes in order to remove the trend with stellar mass. The full distribution of data is shown in the left-hand panel, while the right-hand panel shows the corresponding “box and whisker” plot. The top and bottom of the box show the 25th and 75th percentile of the distribution. The horizontal line bisecting the box is the 50th percentile (the median). The top and bottom of the error bars correspond to the 9th and 91st percentile. Circles are outliers.

13 The top and bottom of the box show the 25th and 75th percentile of the distribution. The horizontal line bisecting the box is the 50th percentile (the median). The top and bottom of the error bars correspond to the 9th and 91st percentile. Circles are outliers.
Figure 3. Size evolution of massive quiescent galaxies as a function of redshift. The y-axis represents the effective radius divided by $M_*^{1.51}$, where M_* is the stellar mass of a galaxy and $\alpha = 0.51$ is the slope of the size–mass relation shown in Figure 1. Left: each symbol type corresponds to a different survey, while blue (red) contours denote the regions of constant density of $z \sim 0$ ($0.2 < z \lesssim 0.9$) galaxies in size–redshift parameter space. Right: the box-and-whisker diagram for $R_e/M_*^{1.51}$ divided into six redshift bins. The red line and the gray shaded area in both panels show the best fit to the median redshift points and the $\pm 1 \sigma$ errors of the best relation, respectively. Bottom: the list of spectroscopic surveys included in the presented sample. See the text for details.

Furthermore, the size measurements of the brightest and most massive galaxies in the SDSS sample are affected by the uncertainties in the estimated background sky level producing a steeper slope of the size–mass relation observed locally (Guo et al. 2009). Therefore, as a first (fairly robust) step toward understanding the trends with redshift, we have instead chosen to calculate the best fit obtained by fitting the median values in the six redshift bins, i.e., giving each redshift range equal weight. This results in $R_e/M_*^{1.51} \propto (1 + z)^{-1.62 \pm 0.34}$ (with the range of 1σ errors obtained by using the bootstrap resampling method). This fit is shown in red in Figure 3, with the corresponding uncertainty shown as a gray band. We emphasize that none of the main conclusions of this Letter depend on the specific parametric form represented by this fit.

4.2. Continuous Size Evolution with Redshift

The overall conclusion from our analysis is that the median size of massive early-type galaxies is continuously growing from $z \sim 2.5$ to $z \sim 0$. This seems to be in disagreement with some previously reported results showing that (1) the size evolution occurs rapidly at $z \gtrsim 1$ and becomes negligible at $z < 1$ (Fan et al. 2010; Valentinuzzi et al. 2010; Maier et al. 2009) or (2) there is no strong evidence for size growth from $z = 2$ to $z = 0$ (Saracco et al. 2010). This apparent discrepancy might be the result of earlier studies being based on samples spanning a limited redshift range, or which combine spectroscopic and photometric redshift samples, or which group passively evolving and star-forming objects together, or which contain small number of objects (four things we have tried to avoid doing in the present Letter). On the other hand, perhaps it will eventually prove interesting to group some star-forming objects with quiescent galaxies at a range of redshifts, since the form of continuous size evolution we obtain for our spectroscopic sample of massive quiescent galaxies is in good agreement with the somewhat shallower size–redshift relation found for UV-bright and submillimeter galaxies in GOODS-North field with secure spectroscopic redshifts over the $z = 0.6–3.5$ range ($R_e \sim (1 + z)^{1.11 \pm 0.13}$; Mosleh et al. 2011). This unexpected concordance hints at a possible evolutionary connection between extreme star-forming and passively evolving galaxies.

Figure 3 highlights the main point of our analysis: size growth is both continuous and gradual, at least for the large sample of quiescent objects with spectroscopic redshifts as a whole. It is interesting to compare our results with the ones based on large photometric surveys. Recently, Williams et al. (2010) have performed structural analysis of $\sim 3 \times 10^4$ star-forming and passively evolving galaxies in the redshift range $z = 0.5–2$ from the UKIDSS Ultra-Deep Survey. In addition to the uncertainties introduced by photometric redshifts, the individual size measurements are largely affected by the use of ground-based imaging in this survey. Nevertheless, their simulations and empirical tests show that the data provide robust estimates of the average sizes of a large galaxy sample down to ~ 1 kpc radii. These authors also find a smooth evolution of half-light radii with time for both quiescent and star-forming galaxies described by power laws $(1+z)^{\alpha}$ with similar exponents that depend on the stellar mass of galaxies and range from.
\[\alpha = -0.75 \pm 0.10 \text{ for stellar masses } M_\star = 10^6 - 10^9 M_\odot \]

\[\alpha = -1.30 \pm 0.10 \text{ for } M_\star > 10^{11} M_\odot. \]

A similar trend with mass, i.e., the more prominent size evolution of the most massive quiescent galaxies, has also been found using a small spectroscopic sample of 17 objects in the redshift range \(z = 1.1 - 1.6 \) (Newman et al. 2010) and at \(1 \leq z \leq 2.5 \) based on a predominantly photometric samples (Ryan et al. 2010). On the other hand, in a spectroscopic sample of 62 quiescent galaxies at \(z = 1 - 2 \) with \(M_\star = 10^{11} - 10^{12} M_\odot \) the fraction of compact objects does not depend on their mass (Saracco et al. 2010). All above listed spectroscopic samples are included in our analysis.

5. SUMMARY AND CONCLUSIONS

We have analyzed the size growth of 465 early-type galaxies taken from 17 spectroscopic surveys spanning the redshift range \(0.2 < z < 2.7 \). The size evolution of passively evolving galaxies is continuous and gradual over this redshift range. Size growth appears to be independent of stellar mass. Galactic half-light radius scales with redshift as \(R_e/M_\star^{0.51} \propto (1 + z)^{1.62 \pm 0.34} \). Although surveys at higher \(z \) are less sensitive to lower surface brightness galaxies and thus tend to reduce the slopes of the size–redshift relation, based on the lower \(z \) distribution this is not expected to be a large effect. Our resulting power law quantifying smooth size evolution is comparable to the \(R_e \sim (1 + z)^\alpha \) relation for massive \((M_\star > 6.3 \times 10^{10} M_\odot) \) quiescent galaxies with the exponent \(\alpha = -1.44 \) determined by frequent minor mergers at \(z = 0-2 \) in recent cosmological simulations (Oser et al. 2011). However, these simplified simulations neither include strong supernova-driven winds nor active galactic nucleus feedback. Any mechanism proposed to explain size evolution will have to take into account the fact that size growth is a continuous process that has been occurring more-or-less smoothly and gradually over the last 10 Gyr.

We thank the referee for a positive feedback. I.D. and R.G.A. acknowledge the financial support provided by NSERC.

REFERENCES

Abraham, R. G., Glazebrook, K., McCarthy, P. J., et al. 2004, AJ, 127, 2455
Abraham, R. G., Nair, P., McCarthy, P. J., et al. 2007, ApJ, 669, 184
Baldry, I. K., & Glazebrook, K. 2003, ApJ, 593, 258
Baldry, I. K., Glazebrook, K., & Driver, S. P. 2008, MNRAS, 388, 945
Bernardi, M., Sheth, R. K., Annis, J., et al. 2003, AJ, 125, 1817
Buitrago, F., Trujillo, I., Conselice, C. J., & Trujillo, I. 2010, MNRAS, 405, 2253
Cassata, P., Giavalisco, M., Guo, Y., et al. 2010, ApJ, 714, L79
Cimatti, A., Cassata, P., Pozzetti, L., et al. 2008, A&A, 482, 21
Cimatti, A., Daddi, E., Renzini, A., et al. 2004, Nature, 430, 184
Daddi, E., Renzini, A., Pirzkal, N., et al. 2005, ApJ, 626, 680
Damjanov, I., McCarthy, P. J., Abraham, R. G., et al. 2009, ApJ, 695, 101
Fan, L., Lapi, A., Bressan, A., et al. 2010, ApJ, 718, 1460
Gargiulo, A., Saracco, P., & Longhetti, M. 2011, MNRAS, 412, 1084
Guo, Y., McIntosh, D. H., Mo, H. J., et al. 2009, MNRAS, 398, 1129
Longhetti, M., Saracco, P., Severgnini, P., et al. 2007, MNRAS, 374, 614
Maier, C., Lilly, S. J., Zamorani, G., et al. 2009, ApJ, 694, 1099
Mancini, C., Daddi, E., Renzini, A., et al. 2010, MNRAS, 401, 933
McGrath, E. J., Stockton, A., & Canalizo, G. 2007, ApJ, 669, 241
McGrath, E., Stockton, A., Canalizo, G., Iye, M., & Mahtara, T. 2008, ApJ, 682, 303
Mosleh, M., Williams, R. J., Franz, M., & Kriek, M. 2011, ApJ, 727, 5
Newman, A. B., Ellis, R. S., Treu, T., & Bundy, K. 2010, ApJ, 717, L103
Oser, L., Naab, T., Ostriker, J., & Johansson, P. 2011, arXiv:1106.5490
Rettura, A., Rosati, P., Nonino, M., et al. 2010, ApJ, 709, 512
Ryan, R. E., Jr., McCarthy, P. J., Cohen, S. H., et al. 2010, arXiv:1007.1460
Saglia, R. P., Sánchez-Blázquez, P., Bender, R., et al. 2010, A&A, 524, A6
Saracco, P., Longhetti, M., & Gargiulo, A. 2010, MNRAS, 408, L21
Saracco, P., Longhetti, M., & Gargiulo, A. 2011, MNRAS, 412, 2707
Schade, D., Lilly, S. J., Crampton, D., et al. 1999, ApJ, 525, 31
Shankar, F., Marulli, F., Bernardi, M., et al. 2011, arXiv:1105.0634
Szomoru, D., Franx, M., van Dokkum, P. G., et al. 2010, ApJ, 714, L244
Toft, S., van Dokkum, P., Franx, M., et al. 2007, ApJ, 671, 285
Treu, T., Ellis, R. S., Liao, T. X., et al. 2005, ApJ, 633, 174
Trujillo, I., Conselice, C. J., Bundy, K., et al. 2007, MNRAS, 382, 109
Trujillo, I., Feneul, G., Garonova, Y., et al. 2006, MNRAS, 373, L36
Valentinuzzi, T., Poggianti, B. M., Saglia, R. P., et al. 2010, ApJ, 721, L19
van de Sande, J., Kriek, M., Franx, M., et al. 2011, ApJ, 730, 38
van der Wel, A., Holden, B. P., Zirm, A. W., et al. 2008, ApJ, 688, 48
van der Wel, A., Rix, H.-W., Wuyts, S., et al. 2011, ApJ, 730, 38
van Dokkum, P. G., Franx, M., Kriek, M., et al. 2008, ApJ, 677, L5
van Dokkum, P. G., Kriek, M., & Franx, M. 2009, Nature, 460, 717
Williams, R. J., Quadri, R. F., Franx, M., et al. 2010, ApJ, 713, 738
Zirm, A. W., van der Wel, A., Franx, M., et al. 2007, ApJ, 656, 66