Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity

Songwei Yang1
Min Yu2

1Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China; 2Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People’s Republic of China

Abstract: Goblet cells and the mucus they secrete serve as an important barrier, preventing pathogens from invading the mucosa to cause intestinal inflammation. The perspective regarding goblet cells and mucus has changed, with current evidence suggesting that they are not passive but play a positive role in maintaining intestinal tract immunity and mucosal homeostasis. Goblet cells could obtain luminal antigens, presenting them to the underlying antigen-presenting cells (APCs) that induces adaptive immune responses. Various immunomodulatory factors can promote the differentiation and maturation of goblet cells, and the secretion of mucin. The abnormal proliferation and differentiation of goblet cells, as well as the deficiency synthesis and secretion of mucins, result in intestinal mucosal barrier dysfunction. This review provides an extensive outline of the signaling pathways that regulate goblet cell proliferation and differentiation and control mucins synthesis and secretion to elucidate how altering these pathways affects goblet functionality. Furthermore, the interaction between mucins and goblet cells in intestinal mucosal immunology is described. Therefore, the contribution of goblet cells and mucus in promoting gut defense and homeostasis is illustrated, while clarifying the regulatory mechanisms involved may allow the development of new therapeutic strategies for intestinal disorders.

Keywords: goblet cell, intestinal tract, intestinal barrier, mucosal immunity, cytokine, Mucin2

Introduction

The intestinal tract is essential in controlling nutrient digestion and absorption while functioning as a barrier to prevent foreign antigens and pathogens from entering the mucosal tissues and maintaining intestinal homeostasis. The intestinal barrier system depends on interactions among several barrier components, including mucus layer, epithelial layer and intercellular tight junctions and the lamina propria underneath.1,2 Among these components, the integrity of the mucus barrier formed by goblet cells and their secretions play a vital role in maintaining intestinal homeostasis. Goblet cells secrete mucins, which are high-molecular-weight glycoproteins, denoting the primary structural element of the mucus layer.3,4 The mucins are highly hydrophilic and can bind water to form a gel-like structure, preventing direct contact between enterocytes and the intraluminal content, especially pathogenic microorganisms.4 The absence of or any defect in the mucus layer allows a large number of bacteria to make contact with the epithelial cells, triggering an excessive immune response in the host,5 leading to colitis in mice.6 Various intestinal infections resulting from parasites,7,8 viruses,9 and bacteria10 modify the production of mucin and goblet cells, demonstrating the importance of the mucus...
layer in separating the luminal contents from the epithelium. However, the critical function of the mucus layer and goblet cells in host defense has not received adequate attention. Recent studies have started to focus on the ability of goblet cells to actively sense and respond to infections while secreting additional products, such as trefoil factor peptides (TFF), mucins, Fc-γ binding protein (Fcgbp), and resistin-like molecule β (RELMβ), which are crucial in promoting intestinal defense. These immature goblet cells are located at the base of the intestinal crypts. The progeny of these stem cells in the basement of the crypt. Enterocytes represent the majority (up to 80%) of cells in the intestinal epithelium, they are responsible for ion, water, sugar, peptide and lipid uptake. The basal part of endocrine cells contains a large number of dense neuroendocrine granules, which contain the secreted peptide hormones, secreted basally in an endocrine or paracrine manner. The goblet cell contains mucigen granules that are expelled to the surface as intestinal mucus, protecting and lubricating the mucosa. Paneth cells are primarily located in the small intestines of mice indicated a migration from the crypt base to the villi tip once after differentiation, where they enter the lumen.

The Differentiation of Goblet Cells

The self-renewal of intestinal epithelial cells is maintained by the proliferative activity of adult stem cells located at the base of the intestinal crypts. The progeny of these stem cells proliferates and then differentiates into functional epithelial subtypes that migrate to the villi and eventually into the lumen shed into the gut lumen. The four main types, namely Paneth cells, intestinal epithelial cells, enteroendocrine cells, and goblet cells, are derived from the stem cells in the basement of the crypt. Enterocytes represent the majority (up to 80%) of cells in the intestinal epithelium, they are responsible for ion, water, sugar, peptide and lipid uptake. The basal part of endocrine cells contains a large number of dense neuroendocrine granules, which contain the secreted peptide hormones, secreted basally in an endocrine or paracrine manner. The goblet cell contains mucigen granules that are expelled to the surface as intestinal mucus, protecting and lubricating the mucosa. Paneth cells are primarily located in the small intestines of mice indicated a migration from the crypt base to the villi tip once after differentiation, where they enter the lumen. The upper crypt cells of the colon show that during differentiation, the goblet cells develop the capacity to generate and store significant quantities of mucus. These immature goblet cells are located at the base of the crypt in a pyramidal shape. The goblet cell cannot be distinguished morphologically in Mucin2 (Muc2) deficient mice, despite the continued presence of other goblet cell products, such as TFF. Maintaining stem cells and the differentiation decision by lateral inhibition.

In addition to their role in defense, goblet cells also play a crucial role in the transportation of luminal contents. They contribute to the formation and maintenance of the mucus layer, which acts as a barrier against pathogens and provides a supportive environment for the intestinal epithelium. The goblet cell is highly dynamic and adapts to various environmental conditions, making it an essential component of the intestinal mucosal defense system. Further research is needed to fully understand the complex signaling pathways and molecular mechanisms that govern goblet cell differentiation and function in health and disease.
4 (Klf4), SAM pointed domain-containing ETS transcription factor (Spdef), and growth factor independence 1 (Gfi1). As a downstream target of Math1, Gfi1 controls intestinal secretory cell subtype allocation and differentiation. Furthermore, fewer supernumerary endocrine and goblet cells were evident in Gfi1 knockout mice, while they lacked Paneth cells. Gfi1-null crypts containing no Paneth cells and only a few goblet cells display a quantitative reduction in Spdef, which is absent from Atoh1-null crypts lacking intestinal secretory cells, suggesting Spdef functionality downstream of Gfi1 and Math1 in the goblet cell terminal differentiation pathway (Figure 1). In the intestine, Klf4 regulates goblet cell terminal differentiation by controlling Muc2 expression, which can be inhibited by the Notch signaling pathway. Recent studies indicate that prolyl hydroxylase 3 (PHD3) also controls the generation of intestine goblet cell by bounding the E3 ubiquitin ligase HUWE1 and inhibition of HUWE1-mediated ubiquitination and degradation of ATOH1. Various additional factors, such as immune cells, diet, and bacteria, also influence goblet cell differentiation. Significantly fewer intestinal goblet cells in germ-free mice only express modest levels of MUC2 while containing an exceedingly thin mucus layer compared with conventionally housed mice. However, exposing germ-free mice to a conventional environment enhances RELMβ and MUC2 expression, leading to a substantially thicker mucus layer. The microbiota, acting via secreted factors related to indole, promote goblet cell differentiation and regulate intestinal homeostasis via the xenobiotic aryl hydrocarbon receptor to increase expression of the cytokine interleukin-10 (IL-10), reversing an effect of aging in geriatric mice. Therefore, these results support the vital role of microbial colonization in goblet cell development and maturation.

The Classification and Structure of Mucins

Mucins consist of large glycoproteins containing tandem repeats with high levels of serine and threonine, with the hydroxyl residues displaying a significant number of O-linked oligosaccharides. To date, 21 different mucin genes have been detected, designated MUC1 to MUC21 according to the order of their discovery. Furthermore, based on their structural characteristics and biological functionality, mucins are segregated into two primary groups, namely membrane-associated mucins and secreted mucins. Intestinal membrane-associated mucins are denoted by MUC1, MUC3A/B, MUC4, MUC12, MUC13, MUC15, MUC17, MUC20, and MUC21. Secreted mucins can be divided into gel-forming mucins (MUC2, MUC5AC, MUC5B, MUC6, and MUC19), which are essential during the development of the mucus barrier on mucosal surfaces, and non-gel forming mucins (MUC7, MUC8, and MUC9). Gel-forming mucins play a functional protective, transportation, lubrication, and hydration role in the mucous membranes. Minimal information is available regarding the functionality of non-gel forming mucins. Membrane mucins provide a safe epithelial cell barrier while playing an important role in signal transduction. A summary of the mucin classification is listed in Table 1.
Regulation of Mucin Synthesis

The endoplasmic reticulum (ER) represents the organelle where mucins are synthesized, and N-linked glycosylation occurs. The assembled mucins are transported to the Golgi complex, where they are O-linked glycosylated to a size of 2.5 million Daltons. They are then packaged as secretory granules, accounting for about 75% of the cytoplasmic volume. The granules mature to produce highly concentrated mucins that eventually merge with the plasma membrane and are secreted into the extracellular domain. The mucin structure changes to form a gelatinous combination with water, covering the surface of the epithelium. MUC2 denotes the prominent intestinal mucin secreted by healthy mice, the deficiency of which leads to spontaneous inflammation and infection susceptibility.

Recent studies have revealed that epigenetic and transcriptional regulation primarily controls the expression of mucin. Signaling pathways control Muc2 transcriptional regulation, activating the transcription factors binding to specific Muc2 promoter sites. Negative or positive Muc2 transcription is reportedly regulated by several biologically active molecules, including growth factors, hormones, microbial products, and cytokines. Muc2 gene expression regulation is essentially governed by the promoter region. The promoter structures of Muc2 reveal that a typical TATA box exists at the 31/−25 bp upstream location of the transcriptional initiation site. The Muc2 gene 5′-flanking areas display a CACCC box that specifically binds to the specificity protein 1 (Sp1) transcription factor. In addition, transcription factor p53 can activate the transcription of Muc2 by binding to both the −1131 /−1100 and −676 /−650 sites. Moreover, NF-κB is also associated with the upregulation of Muc2 transcription, representing the final effector molecule that regulates Muc2 expression in multiple signaling pathways (Figure 2).

Many other factors impact the expression of Muc2 by directly binding on different sites of the promoter, including short-chain fatty acids (SCFAs), galectin-3, homebox domains (Cdx), the GATA family, and HATH1. SCFAs are metabolites formed by gut microbiota from dietary fiber, including acetate, propionate, and butyrate. As part of the β-galactoside-binding gene family, galectin-3 is implicated in tumor progression, cell migration, adhesion, and apoptosis. Both butyrate and galectin-3 stimulate Muc2 expression through the AP-1 transcription factor binding site in the Muc2 promoter. AP-1 is a dimeric protein complex that consists of c-Jun and c-Fos proto-oncogenes, the expression of which can be facilitated by butyrate. Two Cdx-2 binding sites are present in the Muc2 promoter at −177/-171 and −191/-187, suggesting that Cdx-2 is a transcriptional regulator for Muc2. GATA exists in the Muc2 gene 5′-flanking region and comprises six transcription factors in the highly conserved zinc finger DNA-binding domain, which is responsible for upregulating Muc2 gene expression. Both butyrate and AP-1 transcription factors essential in regulating the differentiation of goblet cells. HATH1 binding sites are present in the Muc2 promoter sequence, the mutation of which down-regulates the expression of Muc2.

Some bacterial products regulate the production of Muc2 indirectly by activating the NF-κB pathway, including lipopolysaccharides (LPS), Gram-negative bacterial flagellin A, and Gram-positive bacterial lipoteichoic acid (LTA). Muc2 transcription is upregulated by Gram-negative Pseudomonas aeruginosa LPS by activating NF-κB via the Ras-mitogen-activated protein kinase (MAPK) pathway in the intestinal epithelial cells. However, flagellin binds to the Asialo-GM1 glycolipid receptor on the surface, releasing ATP and subsequently binding to the cell surface G protein-coupled receptor (GPCR). This increases the intracellular calcium levels,
activating NF-κB via the downstream signaling pathways. Furthermore, LTA binds and activates the platelet-activating factor receptor, a cell surface GPCR, inactivating the epidermal growth factor receptor (EGFR), in turn leading to the activation of the Ras/Raf/MEK/ERK/pp90rsk/NF-κB pathway while upregulating the transcription of Muc2.

Furthermore, several cytokines and chemokines are involved in mucin synthesis. The Th1 type cytokine, tumor necrosis factor-α (TNF-α), upregulates the transcription of Muc2 via the PI3K/AKT/NF-κB signaling pathway. Moreover, TNF-α also inhibits the transcription of Muc2 through the JNK pathway, but overall effect of is a net increase in Muc2 transcription, because NF-κB transcriptional activation of this gene is able to counter-balance the suppressive effects of the JNK pathway. However, TNF-α inhibited Muc2 production when NF-κB was inactivated, which gives rise to the defective mucosal protection. Vasoactive intestinal peptide (VIP), a neuropeptide hormone, is responsible for the Muc2 transcription upregulation by activating the CREB/ATF1 transcription factors via the p38 and MAPK pathways. PGE2 also induced Muc2 transcription by activation of CREB/ATF1. The underlying molecular mechanisms of another Th1 type cytokine, IL-1β, induces the Muc2 activation of the p38 and ERK pathways, leading to cyclooxygenase 2 expression, an enzyme related to PGE2 synthesis. Moreover, IL-4 and IL-13 are Th2 cytokines that can upregulate the expression of Muc2 through the MAPK/NF-κB mediated pathway.

Epigenetic regulation includes microRNA silencing, histone modification, and DNA methylation. The methylation of specific CpG sites in the promoter region and first intron of Muc2 is associated with the repression of MUC2. Recent studies have revealed that the expression of Muc2 gene is controlled by the methylation of DNA and the modification of histone in the 5′ flanking area of the Muc2 promoter.

Regulation of Mucin Secretion

After mucin proteins are synthesized in the goblet cells, they are tightly packed into intracytoplasmic granules. They are then transported to the surface of the cell and ultimately secreted into the lumen. Mucin secretion can be divided into two types, namely constitutive and stimulated secretion. In typical physiological conditions, goblet cells are synthesized continuously, secreting mucins to form the hydrated gel coating on the intestinal mucosal luminal surface. This continual secretion of mucin is essential for maintaining the thickness of the mucus gel. It is constantly subjected to various microbial pathogens and stimuli and is often shed due to peristaltic intestinal movements. The release of mucin is accelerated when goblet cells are subjected to powerful secretagogues and is influenced by many different factors, including neuropeptides, cytokines, and lipids. Bioactive cytokine binds to specific receptor-affecting secondary messengers and signaling components, such as intracellular diacylglycerol, cAMP, and Ca2+, activating protein kinase C to promote the secretion of mucin. The prostaglandin E2 (PGE2) immune modulator binds the EP4 receptor, promoting cAMP-dependent exocytosis in the human colon. Carbachol, a Ca2+-mediated agonist, elevates the cytosol levels of Ca2+, which stimulates the secretion of mucin. Phorbol 12-myristate 13-acetate (PMA) significantly promotes the release of mucin via the protein-kinase C-dependent pathway.

Recent research has indicated that the mucus secretion of goblet cells is modulated by several cellular processes, including the assembly and activation of inflammasomes, the generation of reactive oxygen species (ROS), autophagy, and endocytosis. Previous research has revealed the inhibition of clathrin-mediated endocytosis, as well as defects in autophagy-related proteins, including Atg5, Atg14, and FIP200, resulting in the aggregation of goblet cell mucin granules. Mucin accumulation is not associated with mucin expression, suggesting that this effect might be caused by mucin secretion deficiency.

Recent studies have shown that the secretion of goblet cells relies on autophagy proteins. The MUC2 granule aggregation in the goblet cells is determined via a targeted villin-driven deficiency of the Atg5 autophagy protein in the intestines of mice. This process is mediated by ROS derived from NADPH oxidases.

The NLR protein, NLRP6, is associated with inflammasome signaling and is essential for maintaining intestinal homeostasis. In NLRP6 knock out mice, goblet cells were less efficient at secreting mucin and had poorer development of the inner mucus layer. No reduction was evident in the specific protein transcription of goblet cells in NLRP6-deficient mice, suggesting that the lack of mucus generation could not be attributed to a decline in transcript production. Conversely, the accumulation of intracellular mucin particles in the distal colon of mice deficient in NLRP6 increased, but these particles failed to merge with the apical surfaces of the goblet cells. NLRP6 deficiency resulted in defective goblet autophagy, reducing mucin secretion into the intestinal lumen.
Recent reports indicated that some goblet cells localized at the colonic crypt entrance underwent nonspecific endocytosis, known as sentinel goblet cells (senGC). Toll-like receptors (TLR)-ligands, LPS, and P3CSK4 were endocytosed by senGC, triggering TLR-MyD88 signaling and inducing downstream ROS synthesis, causing NLRP6 inflammasome-mediated caspase 1 and 11 activation. Furthermore, this led to the Ca2+-dependent exocytosis of MUC2 and intercellular signaling connections, prompting the secretion of MUC2 by the adjacent responsive GCs. The inhibition of endocytosis or NADPH/Dual oxidase ROS synthesis restricted TLR-ligand-induced Muc2 secretion12,84 (Figure 3).

The Interaction Between Goblet Cells and Immune Cells

Although the main functions of intestinal goblet cells have traditionally been believed to include producing and secreting mucus, recent studies have shown that this is not the case. The intestinal lamina propria (LP) has a large population of dendritic cells, such as CD103- CX3CR1+ antigen-presenting cells (APCs) with macrophage qualities and CD103+ CX3CR1- APCs with dendritic cell characteristics.85–87 In CD103+ APCs, retinaldehyde dehydrogenase (ALDH1) expression is essential for producing all-trans retinoic acid (ATRA), which plays various roles in the mucosal immune response to lumen antigens, such as promoting IgA responses, imprinting lymphocytes with gut homing, and prompting regulatory T cell formation.86,88,89 The CD103- CX3CR1+ APCs are crucial for the formation of Th17 T cells, colitis, and the production of TNF-α.90 Research has revealed that intestinal epithelial cells can also obtain luminal antigens, presenting them to the dendritic CD103+ cells underlying the LP in a way that induced adaptive immune responses, known as goblet-cell-associated antigen passages (GAP cells86,91).

![Figure 3](https://doi.org/10.2147/JIR.S318327)

Figure 3 Regulatory mechanism of mucus secretion in goblet cell and interaction with immune cells. Soluble antigens in the lumen of the intestine such as LPS and P3CSK4 are endocytosed by senGC, triggering TLR-MyD88 signaling, ROS synthesis and NLRP6 inflammasome, causing Ca2+-dependent secretion of MUC2. Goblet cells can also deliver luminal antigens to APCs, initiating adaptive responses.
When acetylcholine (ACh) acts on muscarinic acetylcholine receptor 4 (mAChR4) on the goblet cells, GAPs are formed. The formation of GAPs occurs in a steady state in the small intestine, but is inhibited by Myd88 dependent microbial sensing in the colon. According to Knoop KA, GAP cells could occur in the colon following treatment with antibiotics, that they were repressed by TLR ligands in a goblet cell intrinsic Myd88-dependent manner. The EGFR and MAPK are activated by Myd88, inhibiting the formation of colon GAPs. Therefore, both CD103+ and CD103+ dendritic cells, as well as subsequent mucosal inflammation, are activated as subsequent mucosal inflammation, are activated (Figure 3).

Goblet cell products and luminal antigens are transferred during the interaction with APCs, imprinting them with mucosal properties. The primary goblet cell product, MUC2, has been shown to imprint anti-inflammatory gene markers required for oral tolerance on APCs. Interfering with the APC and epithelial cell interaction reduces the transfer of goblet cell products to APCs, reducing the induction of mucosal reactions. RELM-β is another product secreted by goblet cells, acting as a chemotactrant recruit CD4 T cells to the colon LP when infected with C. rodentium. CD4+ T cell recruitment to the infected colons of RELM-β knockout mice was restricted, reducing IL-22 production, a pluripotent cytokine directly responsible for enhancing the proliferation of epithelial cells. Goblet cells also regulate the immune response by secreting various cytokines, such as IL-25, IL18, IL17, IL15, IL13, IL7, and IL6, and chemokine exotoxin, CCL6, CCL9, and CCL20. The latter attract APCs to the epithelium. Therefore, goblet cells establish intimate interactions with immune cells, playing a unique and integral role in maintaining gut immune homeostasis.

Immune Regulation of Goblet Cell Function

Although goblet cells control the LP via a specific mechanism, the immune system is also essential in regulating goblet cell functionality (Figure 4). Type 3 Innate Lymphoid Cells (ILC3s) promote goblet cell differentiation and the expression of MUC2 through the lymphotixin (LT)-LTβR pathway during intestinal listeria infection. DCs such as macrophages and dendritic cells provide processed, phagocytosed antigens for activating and instructing naïve CD4+ T cells to convert to type 2 helper (Th2) cells. These cells are essential for the immune response against extracellular parasites and intracellular pathogens, resulting in the increased secretion of cytokines like IL-13, IL-9, IL-5, and IL-4. Of these, IL-4 and IL-13 are considered the major effector cytokines that signal through the IL-4Rα and IL13Rα1 subunits on the intestinal epithelial cells to induce goblet cell hyperplasia via the downstream signal transducer and activator of transcription factor 6 (STAT6) signaling. STAT6 is crucial for goblet cell hyperplasia development during infection with T. spiralis. STAT6 deficient mice infected with T. spiralis failed to generate infection-induced goblet cell hyperplasia. Further studies have shown that IL-13 is crucial in regulating goblet cell hyperplasia in Gymnophalloides seoi infection. The overexpression of IL-13 in mice causes the development of goblet cell hyperplasia in their intestines. Furthermore, the overexpression of exogenous IL-9 and IL-25 promotes goblet cell proliferation and mucin expression via an IL-13-reliant pathway. The administration of IL-4 enhances the thickness and quality of the mucus while decreasing pathogenic contact with the epithelium in C. rodentium and colitis in infected mice. IL-13 and IL-4 upregulate the expression of specific goblet cell products, TFF3 and MUC2, via STAT6 signaling. In addition, IL-13 and IL-4 increase the transcription of MUC2 through the MAPK pathway (Figure 4).

Like Th2 cytokines, some Th1 cytokines regulate mucin biosynthesis, while TNF-α upregulates MUC2 in human intestinal epithelial cells via the NIK and PI3K/Akt signaling pathways converging at the common NF-κB pathway. MUC2 was increased in the 3D co-culture model of Caco-2 and HT29-MTX cells when treated with IL-1β, while MUC5AC remained unchanged. By activating PI3K and PKC-MEK/ERK, IL-1β also stimulates the secretion of mucin and the expression of MUC2 genes in the epithelial cells of the human airway. In contrast, the Th1 cytokines, TNF-α and IFN-γ, decrease the production of intestinal mucin, as well as the mucin transportation rate from the Golgi to secretory vesicles in the C. rodentium infection mode, implying that the Th1 cytokine impact on goblet cells is not only related to the type of cytokines but also pathological conditions. Studies have shown that the Th17-associated cytokine, IL-22, is essential in regulating the expression of mucin and the differentiation of GC. IL-22 knockout mice fail to increase the expression of MUC2 and reduced goblet cell hyperplasia in N. brasiliensis and T. muris infection. This is correlated with the reduced induction of TH2 immunity as IL-4, IL-5, and IL-13 declined. In a mouse colitis model, IL-22 was directly responsible for mucin gene expression in the mucosal epithelial cells via goblet cell restitution and STAT3-reliant signaling, alleviating local intestinal inflammation.

Figure 3

Goblet cell products and luminal antigens are transferred during the interaction with APCs, imprinting them with mucosal properties. The primary goblet cell product, MUC2, has been shown to imprint anti-inflammatory gene markers required for oral tolerance on APCs. Interfering with the APC and epithelial cell interaction reduces the transfer of goblet cell products to APCs, reducing the induction of mucosal reactions. RELM-β is another product secreted by goblet cells, acting as a chemotactrant recruit CD4 T cells to the colon LP when infected with C. rodentium. CD4+ T cell recruitment to the infected colons of RELM-β knockout mice was restricted, reducing IL-22 production, a pluripotent cytokine directly responsible for enhancing the proliferation of epithelial cells. Goblet cells also regulate the immune response by secreting various cytokines, such as IL-25, IL18, IL17, IL15, IL13, IL7, and IL6, and chemokine exotoxin, CCL6, CCL9, and CCL20. The latter attract APCs to the epithelium. Therefore, goblet cells establish intimate interactions with immune cells, playing a unique and integral role in maintaining gut immune homeostasis.

Figure 4

Like Th2 cytokines, some Th1 cytokines regulate mucin biosynthesis, while TNF-α upregulates MUC2 in human intestinal epithelial cells via the NIK and PI3K/Akt signaling pathways converging at the common NF-κB pathway. MUC2 was increased in the 3D co-culture model of Caco-2 and HT29-MTX cells when treated with IL-1β, while MUC5AC remained unchanged. By activating PI3K and PKC-MEK/ERK, IL-1β also stimulates the secretion of mucin and the expression of MUC2 genes in the epithelial cells of the human airway. In contrast, the Th1 cytokines, TNF-α and IFN-γ, decrease the production of intestinal mucin, as well as the mucin transportation rate from the Golgi to secretory vesicles in the C. rodentium infection mode, implying that the Th1 cytokine impact on goblet cells is not only related to the type of cytokines but also pathological conditions. Studies have shown that the Th17-associated cytokine, IL-22, is essential in regulating the expression of mucin and the differentiation of GC. IL-22 knockout mice fail to increase the expression of MUC2 and reduced goblet cell hyperplasia in N. brasiliensis and T. muris infection. This is correlated with the reduced induction of TH2 immunity as IL-4, IL-5, and IL-13 declined. In a mouse colitis model, IL-22 was directly responsible for mucin gene expression in the mucosal epithelial cells via goblet cell restitution and STAT3-reliant signaling, alleviating local intestinal inflammation.
As an anti-inflammatory cytokine, IL-10 inhibits macrophage activation and inflammatory response. The expression of IL-10 in normal subjects was higher than in inflammatory bowel disease (IBD) patients. IL-10 knockout mice were used for the animal inflammation model. The goblet cell count decreased in IL-10 deficient mice compared with wild-type mice. Recent studies have also shown that IL-10 has a direct impact on goblet cell mucus production and mucosal characteristics. Moreover, previous studies suggest that IL-10 restricts ER stress and protein misfolding in goblet cells, enhancing intestinal mucus production.

The IL-1 cytokine, IL-33, increases in response to infection and colitis while prompting the production of the IL-4, IL-5, and IL-13 Th2 cytokines from innate lymphoid cells (ILCs) and T cells. IL-33 prevented goblet cell depletion by inhibiting Notch1 signaling in a dextran sulfate sodium (DSS)-induced mouse colitis model. Research has shown that IL-33 prompts the production of IL-13 by stimulating ILCs, indirectly inducing epithelial goblet cell differentiation.

Conclusions

Mucin is the primary secretory product of goblet cells and is responsible for generating mucus layers, protecting against pathogen invasion in the intestinal mucosa. These mucus layers are essential in preventing pathogenic microbial invasion and colonization while establishing commensal intestinal microbiota. In recent years, several studies have examined the molecular mechanisms of mucin biology and the regulatory pathways responsible for the secretion and biosynthesis of mucin. This data can help develop new strategies to treat the abnormal mucin expression that is often present in inflammatory and malignant diseases. Furthermore, while the primary function of goblet cells is to maintain the integrity of the intestinal barrier, the complicated contribution of these cells to mucosal immunity far exceeds the mere secretion of mucus. Notably, goblet cells are now considered active participants in defending the host, reacting to their luminal environment in conjunction with the immune response. This review summarizes the crucial nature of the immune system in regulating the biological...
functions of goblet cells. In conclusion, further research is necessary on how goblet cells control the extracellular environment, interact with the microbiome and its products, and communicate with underlying immunity to clarify the specific mechanisms involved and develop novel therapeutic approaches for intestinal disorders.

Abbreviations

APCs, antigen-presenting cells; TFF, trefoil factor peptides; Fcγb, Fc-γ binding protein; RELMβ, resistin-like molecule β; BMP, bone morphogenetic protein; Hes1, hairy and enhancer of split 1; Muc2, Mucin2; Math1, mouse atonal homolog 1; Gfi1, growth factor independence 1; PHD3, prolyl hydroxylase 3; ER, endoplasmic reticulum; SCFAs, short-chain fatty acids; LPS, lipopolysaccharides; LTA, lipoteichoic acids; MAPK, Ras-mitogen-activated protein kinase; GPCR, G protein-coupled receptor; EGFR, epidermal growth factor receptor; TNF-α, tumor necrosis factor-α; PGE2, prostaglandin E2; ROS, reactive oxygen species; MUC5AC, mucus secretory glycoprotein; AGS, aggregates of gastric cells; PARP, poly(ADP-ribose) polymerase; TLR, Toll-like receptors; ACh, acetylcholine; STAT6, signal transducer and activator of transcription factor 6; IBD, inflammatory bowel disease; ILCs, innate lymphoid cells.

Acknowledgments

This work was supported by the Basic Science and Frontier Technology Project of Chongqing (cstc2018jcyjAX0777 to S.Y.), and the National Natural Science Foundation of China (NSFC 81970468 to M.Y.).

Disclosure

The authors report no conflicts of interest in this work.

References

1. Cardoso-Silva D, Delbeue D, Itzliger A, et al. Intestinal barrier function in gluten-related disorders. *Nutrients*. 2019;11(10):2325. doi:10.3390/nu11102325
2. Suzuki T. Regulation of the intestinal barrier by nutrients: the role of tight junctions. *Anim Sci J*. 2020;91(1):e13357. doi:10.1111/asj.13357
3. Nowarski R, Jackson R, Gagliani N, et al. Epithelial IL-18 equilibrium controls barrier function in colitis. *Cell*. 2015;163(6):1444–1456. doi:10.1016/j.cell.2015.10.072
4. Birchenough GM, Johansson ME, Gustafsson JK, Bergstrom JH, Hansson GC. New developments in goblet cell mucus secretion and function. *Mucosal Immunol*. 2015;8(4):712–719. doi:10.1038/mi.2015.32
5. Johansson ME, Hansson GC. Is the intestinal goblet cell a major immune cell? *Cell Host Microbe*. 2014;15(3):251–252. doi:10.1016/j.chom.2014.02.014
6. Van der Sluis M, De Koning BA, De Bruijn AC, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. *Gastroenterology*. 2006;131(1):117–129. doi:10.1053/j.gastro.2006.04.020
7. Khan WI. Physiological changes in the gastrointestinal tract and host protective immunity: learning from the mouse-Trichinella spiralis model. *Parasitology*. 2008;135(6):671–682. doi:10.1017/S0031182008004381
8. Hansson GC. Role of mucus layers in gut infection and inflammation. *Curr Opin Microbiol*. 2012;15(1):57–62. doi:10.1016/j.mib.2011.11.002
9. Cortez V, Boyd DF, Crawford JC, et al. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. *Nat Commun*. 2020;11(1):2907. doi:10.1038/s41467-020-15990-y
10. Pian Y, Chai Q, Ren B, et al. Type 3 innate lymphoid cells direct goblet cell differentiation via the LT-LTβR pathway during listeria infection. *J Immunol*. 2020;205(3):853–863. doi:10.4049/jimmunol.2000197
11. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. *Curr Gastroenterol Rep*. 2010;12(5):319–330. doi:10.1007/s11894-010-0131-2
12. Birchenough GM, Nyström EE, Johansson ME, Hansson GC. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. *Science*. 2016;352(6293):1535–1542. doi:10.1126/science.aaf7419
13. Birchenough GM, Nystrom EE, Johansson ME, Hansson GC. Mucosal Immunol. 2014. doi:10.1002/mmi.2546
14. Watson AJ, Hughes KR. TNF-alpha-induced intestinal epithelial cell shedding: implications for intestinal barrier function. *Ann NY Acad Sci*. 2012;1258(1):1–8. doi:10.1111/j.1749-6632.2012.06523.x
15. Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. *Nat Rev Gastroenterol Hepatol*. 2019;16(1):19–34. doi:10.1038/s41575-018-0081-y
16. Yen TH, Wright NA. The gastrointestinal tract stem cell niche. *Stem Cell Rev*. 2006;2(3):203–212. doi:10.1007/s12015-006-0048-1
17. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. *Nat Rev Microbiol*. 2011;9(5):356–368. doi:10.1038/nrmicro2246
18. Kim JJ, Khan WI. Goblet cells and mucins: role in innate defense in enteric infections. *Pathogens*. 2013;2(1):55–70. doi:10.3390/pathogens20100055
19. Merzel J, Leblond CP. Origin and renewal of goblet cells in the epithelium of the mouse small intestine. *Am J Anat*. 1969;124(3):281–305. doi:10.1002/aja.1001240303
20. Veleich A, Yang W, Heyer J, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. *Science*. 2002;295(5560):1726–1729. doi:10.1126/science.1069904
21. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. *Annu Rev Physiol*. 2009;71(1):241–260. doi:10.1146/annurev.physiol.010908.163145
22. Gajos-Michniewicz A, Czyz M. WNT signaling in melanoma. *Int J Mol Sci*. 2020;21(14):4852. doi:10.3390/ijms21144852
23. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. *Cell*. 2017;169(6):985–999. doi:10.1016/j.cell.2017.05.016
24. Pinto D, Gregoireff A, Begthel H, Clevers H. Canonical Wnt signaling induces arterial fate in vascular progenitors. *J Cell Biol*. 2020;199(2):325–338. doi:10.1083/jcb.200904114
25. Kay SK, Harrington HA, Shepherd S, et al. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt. *PLoS Comput Biol*. 2017;13(2):e1005400. doi:10.1371/journal.pcbi.1005400
Becker S, Oelschlaeger TA, Wullaert A, et al. Bacteria regulate intestine

Yang and Yu

28. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY.

43. Andrianifahanana M, Moniaux N, Batra SK. Regulation of mucin

42. Corfield AP. The interaction of the gut microbiota with the mucus

32. Noah TK, Kazanjian A, Whitsey J, Shroyer NF. SAM pointed

30. Pannequin J, Bonnans C, Delaunay N, et al. The wnt target

29. Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the

38. Wang Q, Zhou Y, Rychahou P, et al. Ketogenesis contributes to

30. Pannequin J, Bonnans C, Delaunay N, et al. The wnt target

36.\[\text{[36]}\]

35. Katz JP, Perreault N, Goldstein BG, et al. The zinc-finger tran

31. Shroyer NF, Wallis D, Venken KJ, Bellen HJ, Zoghbi HY. Gfi1

29. Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the

38. Wang Q, Zhou Y, Rychahou P, et al. Ketogenesis contributes to

30. Pannequin J, Bonnans C, Delaunay N, et al. The wnt target

36.\[\text{[36]}\]

35. Katz JP, Perreault N, Goldstein BG, et al. The zinc-finger tran

31. Shroyer NF, Wallis D, Venken KJ, Bellen HJ, Zoghbi HY. Gfi1

29. Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the

38. Wang Q, Zhou Y, Rychahou P, et al. Ketogenesis contributes to

30. Pannequin J, Bonnans C, Delaunay N, et al. The wnt target

36.\[\text{[36]}\]

35. Katz JP, Perreault N, Goldstein BG, et al. The zinc-finger tran

31. Shroyer NF, Wallis D, Venken KJ, Bellen HJ, Zoghbi HY. Gfi1

29. Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the

38. Wang Q, Zhou Y, Rychahou P, et al. Ketogenesis contributes to

30. Pannequin J, Bonnans C, Delaunay N, et al. The wnt target

36.\[\text{[36]}\]

35. Katz JP, Perreault N, Goldstein BG, et al. The zinc-finger tran

31. Shroyer NF, Wallis D, Venken KJ, Bellen HJ, Zoghbi HY. Gfi1

29. Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the

38. Wang Q, Zhou Y, Rychahou P, et al. Ketogenesis contributes to

30. Pannequin J, Bonnans C, Delaunay N, et al. The wnt target

36.\[\text{[36]}\]

35. Katz JP, Perreault N, Goldstein BG, et al. The zinc-finger tran

31. Shroyer NF, Wallis D, Venken KJ, Bellen HJ, Zoghbi HY. Gfi1

29. Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the

38. Wang Q, Zhou Y, Rychahou P, et al. Ketogenesis contributes to

30. Pannequin J, Bonnans C, Delaunay N, et al. The wnt target

36.\[\text{[36]}\]

35. Katz JP, Perreault N, Goldstein BG, et al. The zinc-finger tran

31. Shroyer NF, Wallis D, Venken KJ, Bellen HJ, Zoghbi HY. Gfi1

29. Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the

38. Wang Q, Zhou Y, Rychahou P, et al. Ketogenesis contributes to

30. Pannequin J, Bonnans C, Delaunay N, et al. The wnt target
Dovepress

Yang and Yu

61. Ren CY, Akiyama Y, Miyake S, Yuasa Y. Transcription factor GATA-5 selectively up-regulates mucin gene expression. J Cancer Res Clin Oncol. 2004;130(5):245–252. doi:10.1007/s00432-003-0537-4

62. Park ET, Oh HK, Gum JR Jr., et al. HATH1 expression in mucinous cancers of the colorectum and related lesions. Clin Cancer Res. 2006;12(18):5403–5410. doi:10.1158/1078-0432.CCR-06-0573

63. Filippone A, Lanza M, Campolo M, et al. The anti-inflammatory and antioxidant effects of sodium propionate. Int J Mol Sci. 2020;21(8). doi:10.3390/ijms21083026

64. Yoshii T, Fukumori T, Honjo Y, Inohara H, Kim HR, Raz A. Galexin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem. 2002;277(9):6852–6857. doi:10.1074/jbc.M107668200

65. Hatayama H, Iwashita J, Kuwajima A, Abe T. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun. 2007;356(3):599–603. doi:10.1016/j.bbrc.2007.03.025

66. van der Sluis M, Melis MH, Jonckheere N, et al. The murine Muc2 mucin gene is transcriptionally regulated by the zinc-finger GATA-4 transcription factor in intestinal cells. Biochem Biophys Res Commun. 2004;325(3):952–960. doi:10.1016/j.bbrc.2004.10.108

67. Dharmani P, Srivastava V, Kisson-Singh V, Chadee K. Role of intestinal mucus in innate host defense mechanisms against pathogens. J Innate Immun. 2009;12(1):123–135. doi:10.1159/000163037

68. Lernjabbah H, Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med. 2002;8(1):41–46. doi:10.1038/nm0102-41

69. Ahn DH, Crawley SC, Hokari R, et al. TNF-alpha activates MUC2 transcription via NF-kappaB but inhibits via JNK function. Lab Physiol Biochem. 2005;15(1–4):29–40. doi:10.1159/000083636

70. Hokari R, Lee H, Crawley SC, et al. Vasoactive intestinal peptide upregulates MUC2 intestinal mucin via CREB/ATF1. Am J Physiol Gastrointest Liver Physiol. 2005;289(5):G949–959. doi:10.1152/ajpgi.00142.2005

71. Kim YD, Kwon EJ, Park DW, Song SY, Yoon SK, Baek SH. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem. 2002;277(9):6852–6857. doi:10.1074/jbc.M107668200

72. Hatayama H, Iwashita J, Kuwajima A, Abe T. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun. 2007;356(3):599–603. doi:10.1016/j.bbrc.2007.03.025

73. Hanski C, Riede E, Gratchev A, et al. MUC2 gene suppression in human colorectal carcinomas and their metastases: in vitro evidence of the modulatory role of DNA methylation. Lab Invest. 1997;77(6):685–695.

74. Yamada N, Hamada T, Goto M, et al. MUC2 expression is regulated by histone H3 modification and DNA methylation in pancreatic cancer. Int J Cancer. 2006;119(8):1850–1857. doi:10.1002/ijc.22047

75. Akiha Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Dynamic regulation of mucin gel thickness in rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2000;279(2):G437–447. doi:10.1152/ajpgi.2000.279.2.G437

76. Johansson ME, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016;16(10):639–649. doi:10.1038/nri.2016.88

77. McCool DJ, Marcon MA, Forstner JF, Forstner GG. The T84 human colonic adenocarcinoma cell line produces mucin in culture and releases it in response to various secretagogues. Biochem J. 1990;267(2):491–500. doi:10.1042/bj2670491

78. Garcia MA, Yang N, Quinton PM. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest. 2009;119(9):2613–2622. doi:10.1172/JCI38662

79. Halm DR, Halm ST. Secretagoue response of goblet cells and columnar cells in human colonic crypts. Am J Physiol Cell Physiol. 2000;278(1):C212–233. doi:10.1152/ajpcell.2000.278.1.C212

80. Carlson TL, Lock JY, Carrier RL. Engineering the mucus barrier. Annu Rev Enoled Eng. 2018;20(1):197–220. doi:10.1146/annurev-bioeng-062117-121156

81. Patel KK, Miyoshi H, Beatty WL, et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J. 2013;32(24):3130–3144. doi:10.1038/emboj.2013.233

82. Grenier JM, Wang L, Manji GA, et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett. 2002;530(1–3):73–78. doi:10.1016/S0014-5793(02)03416-6

83. Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucin secrucer. Cell. 2014;156(5):1045–1059. doi:10.1016/j.cell.2014.01.026

84. Zheng D, Kern L, Elinav E. The NLRP6 inflammasome. Immunology. 2021;162(3):281–289. doi:10.1111/imm.13293

85. Varol C, Vallon-EBerhard A, Elinav E, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity. 2009;31(5):502–512. doi:10.1016/j.immuni.2009.06.025

86. McDoel JR, Wheeler LW, McDonald KG, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483(7389):345–349. doi:10.1038/nature10863

87. Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Kassel R, Newberry RD. Antibiotics promote the sampling of luminal antigens and bacteria via colonic goblet cell associated antigen passages. Gut Microbes. 2017;8(4):400–411. doi:10.1080/19490976.2017.1299846

88. Coombs JB, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–1764. doi:10.1084/jem.20070590

89. Mora JR, Iwata M, Ekestein B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 2006;314(5802):1157–1160. doi:10.1126/science.1132742

90. Niess JH, Adler G. Enteric flora expands gut lamina propria mucin gene expression. Annu Rev Bioeng. 2004;5(1):1551–1557. doi:10.1146/annurev-bioeng-062117-121156

91. Shan M, Gentile M, Yeiser JR, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science. 2013;342(6157):447–453. doi:10.1126/science.1237910

92. McDonald KG, Wheeler LW, McDoel JR, et al. CCR6 promotes steady-state mononuclear phagocyte association with the intestinal epithelium, imprinting and immune surveillance. Immunology. 2017;152(4):613–627. doi:10.1111/imm.12801
95. Konkel JE, Chen W. Balancing acts: the role of TGF-beta in the mucosal immune system. *Trends Mol Med*. 2011;17(11):668–676. doi:10.1016/j.molmed.2011.07.002

96. McCauley HA, Guasch G. Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia. *Trends Mol Med*. 2015;21(8):492–503. doi:10.1016/j.molmed.2015.06.003

97. Schulz-Kuhn A, Neurath MF, Wirtz S, Atreya I. Innate lymphoid cells as regulators of epithelial integrity: therapeutic implications for inflammatory bowel diseases. *Front Med (Lausanne)*. 2021;8:656745. doi:10.3389/fmed.2021.656745

98. Gurram RK, Zhu J. Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. *Cell Mol Immunol*. 2019;16(3):225–235. doi:10.1038/s41423-019-0210-8

99. Grencis RK, Liew FY, Vickerman K. Th2-mediated host protection against intestinal nematode infection. *J Parasitol*. 2015;101(5):893–898. doi:10.1016/j.jparasit.2015.06.005

100. Grencis RK, Liew FY, Vickerman K. Th2-mediated host protective immunity to intestinal nematode infections. *Philos Trans R Soc Lond B Biol Sci*. 1997;352(1359):1377–1384. doi:10.1098/rstb.1997.0123

101. Turqueti-Neves A, Otto M, Schwartz C, et al. The extracellular domains of IgG1 and T cell-derived IL-4/IL-13 are critical for the polyclonal memory IgE response in vivo. *PLoS Biol*. 2015;13(11):e1002299. doi:10.1371/journal.pbio.1002299

102. Else KJ, Finkelman FD. Intestinal nematode parasites, cytokines and effector mechanisms. *Int J Parasitol*. 1998;28(8):1145–1158. doi:10.1016/S0140-525X(97)0087-3

103. Takeda K, Tanaka T, Shi W, et al. Essential role of Stat6 and de novo protein synthesis. *Nature*. 1996;380(6575):627–630. doi:10.1038/380627a0

104. Finkelman FD, Shea-Donohue T, Morris SC, et al. Interleukin-4 and interleukin-13-mediated host protection against intestinal nematode parasites. *Immunol Rev*. 2004;201(1):139–155. doi:10.1111/j.0105-2896.2004.00192.x

105. Khan WI, Blennerhassett P, Ma C, Matthaei K, Collins SM. Stat6 dependent goblet cell hyperplasia during intestinal nematode infection. *Parasite Immunol*. 2001;23(1):39–42. doi:10.1046/j.1365-3024.2001.00353.x

106. Lee JJ, Kim D, Pyo KH, et al. STAT6 and de novo protein synthesis. *J Immunol*. 2004;172(6):3775–3783. doi:10.4049/jimmunol.172.6.3775

107. Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre CL. Long-term in vitro 3D hydrogel co-culture model of inflammatory bowel disease. *Sci Rep*. 2019;9(1):1812. doi:10.1038/s41598-019-38524-8

108. Blanchard C, Durual S, Estienne M, et al. IL-4 and IL-13 up-regulate intestinal trefoil factor expression: requirement for STAT6 and de novo protein synthesis. *J Immunol*. 2004;172(6):3775–3783. doi:10.4049/jimmunol.172.6.3775

109. Kim YD, Jeon JY, Woo HJ, et al. Interleukin-1beta induces MUC2 gene expression and mucin secretion via activation of PKC-MEK/ERK, and PI3K in human airway epithelial cells. *J Korean Med Sci*. 2002;17(6):765–771. doi:10.3346/jkms.2002.17.6.765

110. Turner JE, Stockinger B, Helmby H, Wynn TA. IL-22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection. *PLoS Pathog*. 2013;9(10):e1003698. doi:10.1371/journal.ppat.1003698

111. Reyes JL, Fernado MR, Lopes F, et al. IL-22 restrains taexpow-mediated protection against experimental colitis via regulation of IL-25 expression. *PLoS Pathog*. 2016;12(4):e1005481. doi:10.1371/journal.ppat.1005481

112. Imaeda H, Andoh A, Aomatsu T, et al. Interleukin-33 suppresses IL-10 and interleukin-13-mediated host protection against intestinal nematode infection. *J Parasitol*. 2019;105(3):589–594. doi:10.1624/jipar.2019.094706.0016870

113. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. *J Exp Med*. 2018;217(3):e1002290. doi:10.1084/jem.20182290

114. Keir M, Yi Y, Lu T, Ghilardi N. The role of IL-22 in intestinal inflammation. *Nature*. 2015;522(7554):627–630. doi:10.1038/nature14431

115. MacDonald TT. Gastrointestinal inflammation. *J Clin Invest*. 2008;118(2):534–544. doi:10.1172/JCI33194

116. Johansson ME, Gustafsson JK, Holmen-Larsson J, et al. Bacteria from murine oxazolone colitis by supporting intestinal epithelial function. *Int J Parasitol*. 2015;45(9):951–958. doi:10.1016/j.ijparasitol.2015.07.002

117. Tagore A, Gonsalkorale WM, Pravica V, et al. Interleukin-10 (IL-10) genotypes in inflammatory bowel disease. *Tissue Antigens*. 1999;54(4):386–390. doi:10.1034/j.1399-0039.1999.540408.x

118. Keubler LM, Buettner M, Hager C, Bleich A. A multitm hist: colitis lessons from the interleukin-10-deficient mouse. *Inflamm bowel Dis*. 2015;21(8):1967–1975. doi:10.1097/MIB.0000000000000468

119. Xue Y, Zhang H, Sun X, Zhu MJ. Metformin improves ileal epithelial barrier function in interleukin-10 deficient mice. *PLoS One*. 2016;11(12):e0168670. doi:10.1371/journal.pone.0168670

120. Johansson ME, Gustafsson JK, Holmen-Larsson J, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. *Gut*. 2014;63(2):281–291. doi:10.1136/gutjnl-2012-303207

121. Hasnain SZ, Tauro S, Das I, et al. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. *Gastroenterology*. 2013;144(2):357–368.e359. doi:10.1053/j.gastro.2012.10.043

122. Waddell A, Vallance JE, Moore PD, et al. IL-33 signaling protects from murine oxazolone colitis by supporting intestinal epithelial function. *Inflamm bowel Dis*. 2015;21(12):2737–2746. doi:10.1097/MIB.0000000000000532

123. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. *Immunity*. 2005;23(5):479–490. doi:10.1016/j.immuni.2005.09.015

124. Imaeda H, Andoh A, Aomatsu T, et al. Interleukin-33 suppresses Notch ligand expression and prevents goblet cell depletion in dextran sulfate sodium-induced colitis. *Int J Mol Med*. 2011;28(4):573–578. doi:10.3892/ijmm.2011.718
