Phytochemical Screening and in Vitro Antimicrobial and Anticancer Activities of Different Extracts of *Rosmarinus officinalis* (Rosemary): A Comparative Study

Nada M. Ali

Department of Chemistry, College of Science, Albaha University, Albaha-1988, Saudi Arabia

Received March 29, 2021; Revised May 24, 2021; Accepted June 15, 2021

Abstract

Various medicinal plants are found in the dense forest of Albaha region, southwest of Saudi Arabia. These plant species are natively utilized for the prevention and treatment of various diseases. This study was designed to analyze the chemical composition of ethanolic, petroleum ether, chloroform, and methanolic extracts of *Rosmarinus officinalis* (rosemary) collected from Albaha region and evaluate the antimicrobial and cytotoxic activities of these extracts. Fresh aerial parts of *R. officinalis* (stem and leaves) were used for extraction. Then the crude extracts were investigated by using gas chromatography-mass spectrometry (GC-MS) technique to determine their chemical constituents. Antimicrobial assays were performed using *Bacillus subtilis* and *Staphylococcus aureus* (Gram-positive bacteria), *Escherichia coli* (Gram-negative bacteria), and *Candida albicans* (fungus) to determine the antimicrobial activities. MTT assay was applied to MCF-7 (human breast cancer cell line) as well as on HCT-116 (human colon cancer cell line) to calculate the IC50 of different plant extracts. The GC-MS analysis showed that only petroleum ether extract has an abundance of cyclohexane compounds including 46.5% methyl-cyclohexane. Significant antibacterial and antifungal actions against the tested strains were shown by the petroleum ether and chloroform extracts in antimicrobial assay. Antibacterial activity against *S. aureus* (SA) and *E. coli* (EC) was exhibited by methanolic extract, whereas no effect was observed on *B. subtilis* (BS) and *C. albicans* (CA). In MTT assay, the petroleum ether extract showed the greatest cytotoxic activity against MCF-7 (3.77 µg/mL) and HCT-116 (3.09 µg/mL) cells. The extract of chloroform also displayed significant cytotoxic effect but only against MCF-7 with IC50 values of 12.7 µg/mL. The present study showed that the *R. officinalis* petroleum ether extract contains significant antimicrobial and cytotoxic activities which can be accredited to the plentiful manifestation of methyl-cyclohexane, methylbenzene and other cyclohexane derivatives, and it may be used to develop new antimicrobial and anticancer drugs.

Keywords *Rosmarinus officinalis*, Antimicrobial Activity, Cytotoxicity, Medicinal Plant

1. Introduction

Due to a sudden rise in the number of contagious diseases and the development of antimicrobial resistance against current drugs, drug development studies are vital to discovering novel medicinal compounds [1]. Nowadays,
therapeutic research focuses on medicinal plants due to their perceived effectiveness, lower side effects, and lower cost compared to that of synthetic drugs [2]. Several medicines are produced from plants, for instance quinine from the cinchona tree, aspirin is secreted from a willow tree, whereas, opium poppy provides vital medicine known as morphine [3]. Medicinal plants have shown to be beneficial in the function of various systems in the human body. For example, several plant extracts have strong antioxidant, anti-inflammatory, antimicrobial, antitumor, and immunostimulatory properties [4]. Hence, the search for new and effective medicinal plants from around the world has gained importance.

The Al Bahia region of Saudi Arabia, located in the southwest between Makkah and Aseer, is surrounded by forests and agricultural land; therefore, it is an ideal habitat to diverse flora, including several medicinal plants [5]. *Rosmarinus officinalis* (rosemary), which belongs to the *Lamiaceae* family, is a woody medicinal plant that originated from the Mediterranean region [6]. The medicinal uses of *R. officinalis* including treatment for gastrointestinal diseases, memory enhancement, antidepressant, and as an anti-inflammatory agent have been known for centuries [7–10]. In addition, *R. officinalis* extracts show a high antioxidant activity and can be used to increase the shelf life of perishable food items [11,12].

The antimicrobial activity of *R. officinalis* extracts is also widely reported [11,13–15]. It has been found that the leaf extract of rosemary inhibits the growth of two of the main species, *Shigella sonnei* and *E. coli* [14]. The presence of different types of phenolic compounds in rosemary extracts makes it an effective antioxidant and imparts antimicrobial action against various microbes [11].

The cytotoxic and antitumor effects of rosemary extracts have been demonstrated in several studies [13,16–20]. It has been reported that rosemary has a high content of phenolic compounds which contribute to its antitumor activity [21]. Polyphenols are phytochemicals that primarily modulate cell growth and inhibit tumor development [22]. The most common polyphenols present in *R. officinalis* are phenolic acids (rosmarinic acid and caffeic acid), diosmin, and apigenin [16,23].

A literature survey indicated that no study had previously evaluated the antimicrobial and anticancer activities of *R. officinalis* growing in the Al Bahia region. In the present study, we aimed to identify the chemical constituents that are present in different extracts of *R. officinalis* using GC-MS analysis and evaluate the antimicrobial and anticancer activities of these extracts and compare their efficiencies.

2. Materials and Methods

2.1. Chemicals

Streptomycin, Muller-Hinton agar, penicillin, Dulbecco’s modified Eagle’s medium (DMEM), dimethyl sulfoxide (DMSO), glutamine, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), high-glucose medium fetal bovine serum (FBS), methanol, ethanol, petroleum ether and chloroform were purchased from Sigma chemicals Co., USA.

2.2. Plant Materials

Rosemary plants were gained from a local farmer located in Al Bahia, Saudi Arabia in March 2019. The botanical identification of the plant was authenticated by Dr. Haider, Department of Biology, Al Bahia University. The obtained specimen was deposited in the Botany Laboratory of the Biology department in Al Bahia University, Al Bahia, Saudi Arabia.

2.2.1. Extraction of Crude Extract

The fresh aerial parts of the rosemary plant (stem and leaves) were air dried at room temperature for approximately 15 days. Around 250g of the dried material was powdered using grinder machine (Pulverizer HR-30B, USA) and soaked in 500 mL ethanol with shaking for three days. Then they were filtrated using filter paper (Whatman no1). The residues were air dried and extracted into various fractions by using solvents with increasing polarity: petroleum ether, chloroform, and methanol. All filtrates were concentrated using a rotary evaporator (IKA RV-10, Germany) and air dried to dryness [24].

2.3. GC-MS Analysis

A Perkin Elmer model Clarus 600 T, together with single quadrupole mass spectrometer, was applied for GC-MS analysis [25], with certain modifications. The chromatographic column used was an Elite 5-MS column (30 m × 0.25 mm × 0.25 µm film thickness). High-purity helium was used as the gas carrier, at a flow rate of 1 mL/min. The injector temperature was 280°C and the split ratio was 20:1. At the beginning of the procedure a 40°C temperature was applied for 1 min, and subsequently raised to 150°C at 10°C min−1 for 1 min, afterwards a further increase to 300°C at 10°C min for 1 min was applied. The injector volume for each sample extract was 1 µL. The temperature of ion source was 220°C whereas the inlet line temperature was at 240°C. The sample was analyzed by applying a scan range between 40 to 600 m/z at electron energy of 70 eV, and the solvent delay of 4 min. Finally, NIST 2005 (National Institute of Standard and Technology library) and Wiley 2006 library were utilized to identify unknown compounds as previously described by Mosbah *et. al.* [26].
2.4. Antimicrobial Activity Screening

Four different extracts (ethanol, petroleum ether, chloroform, and methanol) of rosemary were tested against specific strains of American type culture collection (ATCC) included gram-positive bacteria: Staphylococcus aureus 29213 and Bacillus subtilis 6633, gram-negative bacteria: Escherichia coli 35218, and the fungus: Candida albicans 76615; the strains were obtained from the Microbiology Laboratory of King Abdulaziz University Hospital, Jeddah, Saudi Arabia.

Agar diffusion technique was conducted for the fundamental screening of the antimicrobial activity [27]. Briefly, petri dishes with 90 mm diameter were filled with 25mL of Muller-Hinton agar containing 1 mL culture (1 × 106 CFU/mL) of each strain. A sterile borer was used to create wells with diameter of 4 mm in seeded agar plates. Afterwards, the wells were permeated with 50µL of each of the rosemary extract (10 mg/mL) while DMSO of 10% was used as a negative control. Then the plates were nurtured at 37°C for 24h. The inhibitory effect was determined as the non-appearance of microbial growth in the field around the wells.

Independent experiments were performed against each of the tested microorganisms in triplicate. After incubation, a caliper was used to measure the broadness of the appearing growth inhibition zones. Subsequently, with the obtained measurements the average diameter was calculated and the mean values were accordingly tabulated.

2.5. Cell Lines and Culture Medium

Human breast cancer cell line (MCF-7) and colorectal cancer cell line (HCT-116) were provided by Dr. Thikryat, Pharmacology and Toxicology Laboratory, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia. The cells were cultured in 75 cm² flasks of DMEM/high-glucose medium supplemented with 10% (v/v) FBS, 10,000 units/mL penicillin/streptomycin, and 1% (v/v) glucose and kept under a temperature of 37°C in a humidified incubator of 5% CO₂ as described by Cheung et. al. [20].

2.5.1. Cytotoxicity Assay

To indicate the cytotoxic activity of the rosemary extracts, the MTT colorimetric assay was observed [28]. MCF-7 and HCT-116 cells (1 × 10⁵ cells/mL) were implanted in 96-well plates in triplicate while they were incubated whole night at 37°C in a humidified incubator where CO₂ percentage was 5% as previously described [29] with certain modifications. Rosemary extracts (ethanol, petroleum ether, chloroform, and methanol) at seven concentrations (10, 25, 50, 100, 250, 500, and 1000 µg/mL) were added to the cells in triplicate and were further incubated at 37°C in a CO₂ concentration of 5% for 72 h. The extracts were dissolved in 0.1% DMSO as a vehicle. Appropriate control wells using untreated and DMSO-treated cells were prepared at the same time. As a reference drug (positive control), Paclitaxel was used. Subsequently, the medium of each well of all plates was detached and replaced with 100 µL of complete medium (FBS and antibiotic) with 10% of MTT (10 mg/mL). These plates were incubated at 37°C in 5% CO₂ for 4 h. The supernatants were removed after incubation and 100 µL of DMSO was combined to dissolve the purple formazan crystals obtained by the applicable cells. These cells were incubated for another 5 min at 37°C in 5% CO₂. The dissolved solutions at 570 nm were measured by using the SpectraMax M3 plate reader (Molecular Devices, San Jose, CA, USA). The cell viability was calculated using the following formula:

Cell viability (%) = (A of treated cells/A of control cells) x100, where A = absorbance at 570 nm.

2.6. Statistical Analysis

Data is expressed as a mean of three replicates ± standard deviation. The half-maximal inhibitory concentration (IC₅₀) was estimated using the ED50 GraphPad Prism software 5.0 (GraphPad Software, Inc., CA, USA).

3. Results

3.1. GC-MS Analysis

Tables 1–4 list the chemical compositions of the four R. officinalis extracts. GC-MS analysis showed that the ethanolic extract contained 3,7-dimethyl-2,6-octadien-1-ol (22.59%), bicyclo [3.1.1] hept-3-en-2-one (18.94%), 1,8-cineole (14.64%), carnosol (10.95%), and 2-(5-tert-butyl-4-hydroxy-2-methylphenyl) benzoic acid (7.39 %); the petroleum ether extract contained methyl-cyclohexane (46.51%), methyl-benzene (12.58%), berbenone (7.03%), 1,8-cineole (6.11%), and trans-geraniol (4.32%); the chloroform extract contained bicyclo [3.1.1] hept-3-en-2-one (19.84%), trans-geraniol (13.43%), endo-borneol (7.96%), 1,8-cineole (9.4%), and vitamin E (5.24%); the methanolic extract contained bicyclo [3.1.1] hept-3-en-2-one (14.82%) caryophyllene diepoxide (10.5%), 1,2,3-propanetriol (6.3%), 5-(hydroxy)-2-furan carboxaldehyde (6.27%), and borneol (5.1%) is the most abundant components with a concentration higher than 5%.
Table 1. Chemical composition of *Rosmarinus officinalis* ethanolic extract

Name of Compound	RTa	Area %	Area
CIS-OCIMENE	6.4	0.53	29825
1,8-CINEOLE	8.01	14.64	820450
ALPHA.-TERPINOLENE	9	1.12	62921
CAMPHOR	9.82	0.89	49615
1,7 BICYCLO[2.2.1]HEPTAN-2-OL	10.2	2.53	141634
2-BICYCLO[3.1.1]HEPTAN-3-ONE	10.26	0.32	18157
4-TERPINEOL	10.3	0.3	16880
3-CYCLOHEXENE-1-METHANOL	10.52	1.25	70094
6,6-DIMETHYL-BICYCLO[3.1.1] HEPT-2-ENE-2-ETHANOL	10.62	0.37	20545
BICYCLO[3.1.1] HEPT-3-EN-2-ONE	10.73	18.94	1061125
2-HYDROXY-2-METHYL-BUT-3-ENYL 2-METHYL-2(Z)-BUTENOATE	10.81	1.16	65070
BETA.-CITRONELLOL	10.88	0.53	29453
3,7-DIMETHYL-2,6-OCTADIEN-1-OL	11.23	22.59	1265704
(R-1,C-4)-P-MENTH-8-EN-1-OL	11.3	0.31	17360
BORNYL ACETATE	11.77	1.7	95437
TRANS-CARYOPHYLLENE	13.96	0.52	29405
FORMIC ACID	14.06	0.37	20907
PHENYL METHYL ESTER OF (-)-CARYOPHYLLENE OXIDE	16.31	0.27	15353
HEXADECANOIC ACID	20.43	0.29	16240
3,7,11,15-TETRAMETHYL 2-HEXADECEN-1-OL	21.9	0.48	26712
6(E),9(Z),13(E)-PENDECTRIENE	22.14	0.53	29433
11,14,17-EICOSATRIENIOACID	22.4	0.23	12755
(5.BETA)-CHOL-7-ENE-12,24-DIOL	23.07	0.3	17013
(+)-BETA.-COSTOL	23.84	0.3	16788
FERRUGINOL	23.94	0.5	28110
3,8-DIHYDROXY-1,4,6-TRIMETHYL DIBENZO[B, E]1,4]DIOXEPIN-11-ONE	24.87	3.2	179414
ISOCARNOSOL	25.11	0.5	27850
CARNOSOL	25.27	10.95	613529
ISOCARNOSOL	25.46	0.25	14249
FERRUGINOL	25.54	0.69	38464
2-(5-TERT-BUTYL-4-HYDROXY-2-METHYLPHENYL) BENZOIC ACID	26.02	7.39	414265
2-ALLYL-1,4-DIMETHOXY-6-METHYL BENZENE	26.11	2.8	156808
CARNOSOL	26.4	0.6	33474
(-)-ALPHA.-COSTOL	27.05	0.99	55377
3,7,11-TRIDECATRIENITRILE	27.52	0.83	46385
DOCOSANE	28.1	0.59	32789
SPINASTERONE	28.52	0.25	13831

Retention time (as minutes).
Table 2. Chemical composition of Rosmarinus officinalis petroleum ether extract

Name of Compound	RT*	Area %	Area
1. 2,2,4-TRIMETHYL-PENTANE	3.23	0.26	67760
2. METHYL-CYCLOHEXANE	3.33	46.51	12081537
3. ETHYL-CYCLOPENTANE	3.43	0.78	202159
4. CYCLOPENTANE	3.51	0.39	100798
5. 1,2,4-TRIMETHYL-TETRAHYDRO GERANIOL	3.6	0.2	52528
6. 2,3-DIMETHYL-HEXANE	3.72	0.2	52658
7. METHYL-BENZENE	3.83	12.58	3267939
8. 3-METHYL-HEPTANE	3.9	0.51	132387
9. 1,4-DIMETHYL-CYCLOHEXANE	4.03	1.75	454445
10. METHYL-CYCLOHEPTANE	4.15	0.16	42265
11. 2,4-DIMETHYL-HEPTANE	4.27	1.87	485756
12. 1,2-DIMETHYL-CYCLOHEXANE	4.32	0.21	55099
13. 1,3-DIMETHYL-CYCLOHEXANE	4.41	0.11	29116
14. 2,6-DIMETHYL-HEPTANE	4.7	0.15	39763
15. ETHYL-CYCLOHEXANE	4.84	0.2	53235
16. 1,2-DIMETHYL-BENZENE	5.37	0.56	146510
17. ALPHA-PINENE	6.43	0.28	71872
18. VERBENENE	6.76	0.27	70230
19. 1,8-CINEOLE	8.05	6.11	1587119
20. LINALOOL	9.04	0.59	153253
21. 2,6-DIMETHYL-3,5-HEPTADIEN-2-OL	9.43	0.11	29111
22. (+)-CAMPHTOR	9.86	0.44	115010
23. PINOCARVONE	10.07	0.11	27581
24. DELTA-TERPINEOL	10.18	0.14	35744
25. BORNEOL	10.24	1.95	505392
26. BICYCLO[3.1.1]HEPTAN-3-ONE	10.29	0.15	37908
27. 4-METHYL-1-3-CYCLOHEXEN-1-OL	10.34	0.3	78997
28. 3-CYCLOHEXENE-1-METHANOL	10.56	0.9	234079
29. BICYCLO[3.1.1]HEPT-2-ENE-2-ETHANOL	10.66	0.22	57693
30. BERBENONE	10.77	7.03	1827293
31. 4-METHYL-3-PENTEN-2-ONE	10.85	0.4	105119
32. 3,7-DIMETHYL-6-OCTEN-1-OL	10.91	0.12	30172
33. TRANS-GERANIOL	11.27	4.32	1123131
34. 1-VINYL-1-(4-METHYL)PENTAN-3-ENE	11.33	0.08	19854
35. ACETA-Z-CRYSTANTHENYL	11.73	0.19	48091
36. 1,7,7-TRIMETHYL-BICYCLO[2.2.1]HEPT-2-YL ESTER ACETIC ACID	11.81	1.58	411378
37. TRANS-FARNESOL	11.92	0.43	112082
38. NERYL ACETATE	13.1	0.22	57353
39. 1,2-DIMETHOXY-4-(2-PRBENZENE)	13.48	0.07	17646
40. TRANS-CARYOPHYLLENE	14	0.26	67407
41. CARYOPHYLLENE OXIDE	16.33	0.05	13733
42. N-HEXADECANOIC ACID	20.46	0.08	21366
43. 9-OCTADECANOIC ACID	20.88	0.1	26928
44. 3,7,11,15-TETRAMETHYL 2-HEXADECEN-1-OL	21.91	0.3	79085
45. OXIRANEMETHANOL	22.16	0.17	44454
46. (+)-OBUTSANE	23.6	0.04	10951
47. (+)-CARYOPHYLLENE OXIDE	23.84	0.04	11129
48. FERRUGINOL	23.95	0.28	73522
49. VITAMIN E	24.35	0.62	161554
50. 1-(1,2-DICYANOETHENYL)6[1,4]NAPHTHALENOPHAN-1,2-CYCLOPROPANE	24.6	0.87	226226
51. 4,4-DIMETHYL-2-[(Z)-2-(N-P-TOLYLAMINO)-4-METHYL]PENT-1-ENYL]-2-OXAZOLINE	24.88	0.39	101217
52. 2-HYDROXY-1 OCTADECANOIC ACID	25.28	1.19	310016
53. 13-ISOPROPYLPDOCARPEN-12-OL-20 AL	25.54	0.12	30868
54. 2-ALLYL-1,4-DIMETHOXY-6-METHYL BENZENE	26.11	0.48	123703
55. TRITETRACONTANE	26.69	0.4	104941
56. TETRATETRACONTANE	28.08	1.88	487837

aRetention time (as minutes).
Table 3. Chemical composition of *Rosmarinus officinalis* chloroform extract

Name of Compound	RT\(^a\)	Area %	Area
1 VERBENENE	6.76	0.78	34849
2 METHYL(1-METHYLETHYL)-BENZENE	7.9	0.67	29954
3 1,8-CINEOLE	8.04	9.4	418656
4 LINALOOL	9.04	2.14	95457
5 CHRYSANTHENONE	9.43	0.34	15123
6 CAMPHOR	9.86	1.17	52075
7 BICYCLO[2.2.1]HEPTAN-3-ONE	10.07	0.34	15052
8 3-CYCLOHEXENE-1-METHANOL	10.17	0.68	30251
9 ENDO-BORNEOL	10.23	7.96	354651
10 PINOCAMPHONE	10.29	0.6	26773
11 4-TERPINEOL	10.34	1.24	55258
12 LINALYL PROPIONATE	10.55	3.25	144733
13 B6,6-DIMETHYLICYCLO[3.1.1]HEPT-2-ENE-2-ETHANOL	10.65	1.14	50601
14 BICYCLO[3.1.1]HEPT-3-EN-2-ONE	10.76	19.84	883454
15 2-HYDROXY-2-METHYL-BUT-3-ENYL	10.84	1.21	53862
16 3,7-DIMETHYL-6-OCTEN-1-OL	10.91	0.48	21453
17 TRANS-GERANIOL	11.26	13.43	598086
18 (+)-TRANS-CARAN-TRANS-2-OL	11.33	0.27	11908
19 1,7,7-TRIMETHYL-BICYCLO[2.2.1]HEPT-2-YL ESTER ACETIC ACID	11.81	2.16	96168
20 NEROLIC ACID	12.61	0.81	36187
21 NERYL ACETATE	13.09	0.67	29892
22 (+)-CARYOPHYLLENE OXIDE	16.33	0.49	21870
23 TETRADECANAL	16.55	0.19	8578
24 (+)-BETA.-COSTOL	17.24	0.37	16650
25 GLOBULOL	17.41	0.12	5507
26 NEOPHYTADIENE	19.65	0.24	10760
27 XYCAINE	19.81	1.16	51518
28 HEXADECANOIC ACID	20.45	0.73	32616
29 1-TETRADECENE	20.87	0.34	14987
30 3,7,11,15-TETRAMETHYL-2-HEXADECEN-1-OL	21.9	0.89	39725
31 3.BETA ERGOSTA-7,22-DIEN-3-OL	23.1	0.19	8541
32 TETRACOSANE	23.37	3.15	140177
33 12-CHLOROMERCURIOTOTARA-8,11,13-TRIEN-13-OL	23.95	0.78	34715
34 9-OCTADECENAMIDE	24.1	1.18	52608
35 ISOCARNOSOL	24.27	0.51	22532
36 VITAMIN E	24.35	5.24	233497
37 CARNSOL	25.26	4.13	184040
38 5.ALPHA.STIGMAST-24(28)-ENE	26.1	2.72	120907
39 PENTATRIACONTANE	27.82	2.92	130105
40 TRITETRACONTANE	28.07	4.95	220319
41 (+)-ALLOAROMADENDRONE	28.51	0.46	20356

\(^a\)Retention time (as minutes).
Table 4. Chemical composition of *Rosmarinus officinalis* methanolic extract

Name of Compound	RT*	Area %	Area
1 2-FURANMETHANOL	5.11	0.34	6066
2 DL-GLYCERALDEHYDE DIMER	5.73	3.79	68546
3 2-HYDROXY-3-CYCLOPENTEN-1-ONE	6.22	0.42	7615
4 2,4-DIHYDROXY-2,5-DIMETHYL-3(2H)-FURAN-3-ONE	7.15	1.02	18436
5 1-BUTOXY-2-PROPANOL ACETATE	7.29	1.85	33377
6 1,8-CINEOLE	8.04	2.47	44618
7 HYDROXY DIMETHYL FURANONE	8.34	0.61	11051
8 3-HYDROXY-2-METHYL-4H-PYRAN-4-ONE	8.64	1.12	20207
9 2-ACETYL-5-METHYLFURAN	8.86	0.47	8425
10 3-AMINO-2-OXAZOLIDINONE	9.53	0.82	14881
11 CARYOPHYLLENE DIEPOXIDE	9.73	10.52	190193
12 BORNEOL	10.23	5.1	92248
13 Z-3-HEXENYL 2-METHYLPROPANOATE	10.38	0.67	12076
14 1,2-BENZENEDIOL	10.47	3.62	65373
15 3-CYCLOHEXENE-1-METHANOL	10.54	1.3	23449
16 (-)-CARYOPHYLLENE OXIDE	10.64	0.57	10257
17 BICYCLO[3.1.1]HEPT-3-EN-2-ONE	10.76	14.82	267852
18 5-(HYDOXY)-2-FURANCARBOXALDEHYDE	10.88	6.27	113269
19 1,2,3-PROPANETRIOL	11.13	6.3	113800
20 2,7-OCTADIENE-1,6-DIOL	11.57	1.45	26172
21 2,3-DIHYDRO-3-HYDROXY-4H-PYRAN-4-ONE	11.69	2.61	47161
22 EXOBORNYL ACETATE	11.81	0.96	17275
23 4-ACETOXY-3-METHOXYYSTYRENE	12.16	1.55	28005
24 2,6-DIMETHOXY-PHENOL	12.66	0.84	15229
25 4-ETHYL-1,3-BENZENEDIOL	13.18	0.73	13144
26 2-HYDROXY-6-METHYL BENZALDEHYDE	14.1	10.64	192328
27 (Z)-NON-2-EN-6,8-DIYNOIC ACID	14.58	0.24	4263
28 D-ALLOSE	14.91	3.38	61092
29 4-HYDROXY-3-METHYL-BENZOIC ACID	15.79	0.58	10482
30 3-DEOXY-D-MANNOIC LACTONE	16.34	4.32	78104
31 DECANAL	16.59	1.57	28325
32 GINGEROL	16.96	0.55	9932
33 4-((1E)-3-HYDROXY-1-PROPENYL)-2-METHOXYPHENOL	18.1	0.79	14315
34 DL-3,4-DIMETHYL-3,4-HEXANEDIOL	18.36	0.77	13843
35 4-HYDROXYL-PROLINE	19.83	1.39	25078
36 HEXADECANOIC ACID	20.44	0.66	11964

*Retention time (as minutes).

3.2. Antimicrobial Activity

The *in vitro* antibacterial and antifungal assays were performed using the ethanol, petroleum ether, chloroform, and methanol extracts obtained from *R. officinalis*. Results showed that chloroform, methanol, and petroleum ether extracts exhibited significant antimicrobial activity towards most of the selected strains (Table 5). The highest activities were observed for petroleum ether extract with zones of inhibition of 22 mm, 14 mm, 21 mm, and 22 mm, followed by the chloroform extract with zones of inhibition of 18 mm, 12 mm, 15 mm, and 12 mm against SA, BS, EC, and CA strains, respectively. The methanol extract showed significant activity against SA with a zone of inhibition of 20 mm and a moderate activity against EC with a zone of inhibition of 7 mm. Notably, the ethanol extract did not exhibit any activity against the tested strains.
Table 5. Antibacterial and antifungal activities of Rosmarinus officinalis extracts

Extracts	Zone diameter* (mm)	Gram-positive bacteria	Gram-negative bacteria	Fungus	
		Staphylococcus aureus	Bacillus subtilis	Escherichia coli	Candida albicans
Chloroform					
		18 ± 0.05	12 ± 0.07	15 ± 0.04	12 ± 0.04
Methanol					
		20 ± 0.04	-	7 ± 0.12	-
Petroleum ether					
		22 ± 0.04	14 ± 0.14	21 ± 0.09	22 ± 0.05

3.3. Cytotoxic Activity

To discover new agents capable of hindering the propagation of human breast cancer as well as human colorectal cancer cell lines, different extracts (ethanol, petroleum ether, chloroform, and methanol) of rosemary were tested at seven concentrations against MCF-7 and HCT-116 cells. The IC50 values of the extracts were determined to evaluate their effectiveness. As shown in Table 6, the IC50 for MCF-7 ranged from 3.77 to 76.2 μg/mL, whereas the IC50 for HCT-116 ranged from 3.09 to 324 μg/mL. Petroleum ether extracts showed the greatest cytotoxic effect against MCF-7 and HCT-116 cells with IC50 values of 3.77 and 3.09 μg/mL, respectively. Chloroform as well as methanol extracts also displayed significant cytotoxic effects against MCF-7 cells with IC50 values of 12.7 and 23.59 μg/mL, respectively. In contrast, ethanol extract displayed a moderate cytotoxic effect with an IC50 of 76.2 μg/mL against MCF-7. The chloroform extract showed a moderate cytotoxic effect against HCT-116 cells with an IC50 of 59.1 μg/mL, whereas methanol as well as ethanol extracts exhibited weak cytotoxic effects against HCT-116 cells with IC50 values of 259 and 324 μg/mL, respectively.

Table 6. The IC50 of Rosmarinus officinalis extracts against tested human cancer cell lines

Compound	IC50 (μg/mL) MCF-7	IC50 (μg/mL) HCT-116
Chloroform extract	12.7 ± 5.4 × 10^6	59.1 ± 1.8 × 10^6
Methanol extract	23.59 ± 0.27 × 10^6	259 ± 4.7 × 10^4
Ethanol extract	76.2 ± 2.2 × 10^5	324 ± 3.37 × 10^3
Petroleum ether extract	3.77 ± 1.3 × 10^6	3.09 ± 2.28 × 10^6
Standard drug	0.23 ± 2.2 × 10^5	0.32 ± 5.7 × 10^5

4. Discussion

GC-MS was performed to investigate the phytochemical composition of each rosemary extract. The petroleum ether extract contained the most constituents (56 compounds). Approximately 39 of these constituents are unique, including the bioactive compounds methyl-cyclohexane (46.5%), methylbenzene (12.58%), and alpha-pinene (0.28%), which are not found in other R. officinalis extracts of this study.

The common bioactive compound that was determined in all extracts was 1,8-cineole. Terpinol and camphor were found in ethanol, petroleum ether, and chloroform extracts, excluding the methanolic extract. The (-)-caryophyllene oxide and borneol were found in methanol, petroleum ether, and chloroform extracts, but not in the ethanolic extract. Geraniol and vitamin E were found in the petroleum ether and chloroform extracts. Few differences were observed in the ingredients and combinations of the extracts in comparison to those which were mentioned before in R. officinalis collected from various geographical areas, which may be credited to certain elements as follows: climate, time of collection, and mode of extraction [30,31].

The microorganisms tested are morphologically and physiologically different. Petroleum ether extracts exhibited a great antimicrobial activity against all tested strains, followed by chloroform extracts. The strong antimicrobial effect of petroleum ether and chloroform extracts can be attributed to the presence of the phytoconstituents geraniol and borneol that show antimicrobial action against various species [32,33]. Our findings are consistent with various studies that highlight the antibacterial and antifungal actions of extracts obtained from Rosmarinus species. For instance, oil extracts from R. officinalis have displayed how to prohibit the development of bacteria such as EC, Listeria monocytogenes, and SA [34]. In addition, it has been reported that R. officinalis oil extract inhibits the activity of CA by preventing the adhesion of this fungus via denaturation of the cellular structures and alteration of membrane permeability [35].

The cytotoxicity of R. officinalis’ extracts impacts on MCF-7 and HCT-116 cell lines were investigated by performing the MTT assay. The petroleum ether extract demonstrated the greatest cytotoxic effect against MCF-7 and HCT-116 cells with IC50 values of 3.77 and 3.09 μg/mL, respectively. Chloroform and methanol extracts exhibited significant cytotoxic effects against MCF-7 cells with IC50 values of 12.7 and 23.59 μg/mL, respectively, but not against HCT-116 cells. The National Cancer
Institute (USA) plant screening program states an IC\textsubscript{50} of < 20 µg/mL as a threshold for an extract to be considered as anticancer, following an incubation period of 48 and 72 h [36,37]. The findings of the current study are consistent with previous anticancer studies that report the potent cytotoxic effects of \textit{R. officinalis} extracts on colon cancer cell lines [38]. Similarly, previous studies have demonstrated a significant cytotoxic effect of \textit{R. officinalis} extract on breast cancer cell lines [39].

Remarkably, the petroleum ether extract showed the highest antimicrobial and anticancer activities compared to those of other \textit{R. officinalis} extracts. This may be associated with the existence of a high number of methyl-cyclohexane, methylbenzene, and other cyclohexane derivatives. Cyclohexane and its practically alternative derivatives are vital compounds showing distinct biological actions involving antioxidant, anticancer, cytotoxic, analgesic, anti-inflammatory, and antithrombin activities [40–46].

5. Conclusions

Various cancers and infectious diseases contribute to morbidity and mortality worldwide. This situation requires the development of new cost-effective therapies that are more effective than the present therapies. In this aspect, medicinal plants are a useful source of novel therapeutic substances, and several drugs are composed of plant-derived chemicals. The current study was carried out to analyze the phytochemical contents of different extracts of \textit{R. officinalis} obtained from the Albaha region and evaluate the antimicrobial and anticancer properties of each extract. The petroleum ether extract demonstrated significant antimicrobial and anticancer activities. This may be linked to the presence of a high amount of methyl-cyclohexane, methylbenzene, and other cyclohexane derivatives that are already in consideration to display antimicrobial and anticancer activities. Advanced research is important to evaluate which components are mainly responsible for these antimicrobial and anticancer activities and their mechanism of action.

Acknowledgements

The principal investigator of this study acknowledges the Deanship of Scientific Research, Albahia University, Albahia, KSA for financial support (grant #17–1439).

REFERENCES

[1] Vnutskikh ZA, Shklyaev Y V, Odegova TF, Chekryshkin YS, Tolstikov AG, El’chisheva N V, et al. Synthesis and antimicrobial activity of mono-and biquaternized derivatives of dipiryldylethanes and dipiryldylethlenes. \textit{Pharm Chem} J 2006;40(4):194–198.

[2] Firenzuoili F, Gori L. Herbal medicine today: clinical and research issues. \textit{Evidence-Based Complement Altern Med} 2007;4.

[3] Karumamoorthi K, Jegajeevanram K, Vijayalakshmi J, Mengistie E. Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. \textit{J Evid Based Complement Altern Med} 2013;18(1):67–74.

[4] Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. \textit{Front Pharmacol} 2014;4:177.

[5] Ali NAA, Al Sokari SS, Gushash A, Anwar S, Al-Karani K, Al-Khulaidi A. Ethnopharmacological survey of medicinal plants in Albaha Region, Saudi Arabia. \textit{Pharmacognosy Res} 2017;9(4):401.

[6] Rotblatt M. Herbal medicine: expanded commission E monographs. \textit{Ann Intern Med} 2000;133(6):487.

[7] Hamidpour R, Hamidpour S, Elias G. Rosmarinus officinalis (Rosemary): a novel therapeutic agent for antioxidant, antimicrobial, anticancer, anti-diabetic, antidepressant, neuroprotective, anti-inflammatory, and anti-obesity treatment. \textit{Biomed J Sci Tech Res} 2017;1(4):1–6.

[8] Habtemariam S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. \textit{Evidence-Based Complement Altern Med} 2016;2016.

[9] Naimi M, Vlachveski F, Shamsouh H, Tsiani E. Rosemary extract as a potential anti-hyperglycemic agent: current evidence and future perspectives. \textit{Nutrients} 2017;9(9):968.

[10] De Oliveira JR, Camargo SEA, De Oliveira LD. Rosmarinus officinalis L.(rosemary) as therapeutic and prophylactic agent. \textit{J Biomed Sci} 2019;26(1):5.

[11] Nieto G, Ros G, Castillo J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A Review. \textit{Medicines} 2018;5(3):98.

[12] Rašković A, Milanović I, Pavlović N, Čebović T, Vukmirović S, Mikov M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. \textit{BMC Complement Altern Med} 2014;14(1):225.

[13] Wang W, Li N, Luo M, Zu Y, Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. \textit{Molecules} 2012;17(3):2704–2713.

[14] Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. \textit{J Agric Food Chem} 2007;55(19):7879–7885.

[15] Tavassoli SK, Mousavi SM, Emam-Djomeh Z, Razavi SH. Chemical composition and evaluation of antimicrobial properties of Rosmarinus officinalis L. essential oil. \textit{African J Biotechnol} 2011;10(63):13895–13899.

[16] Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F.
Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. *Plant Foods Hum Nutr* 2010;65(2):158–163.

[17] Moore J, Yousef M, Tsiani E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. *Nutrients* 2016;8(11):731.

[18] González-Vallinas M, Reglero G, Ramírez de Molina A. Rosemary (Rosmarinus officinalis L.) extract as a potential complementary agent in anticancer therapy. *Nutr Cancer* 2015;67(8):1223–1231.

[19] H. R. Rosmarinus officinalis (Rosemary): A Novel Therapeutic Agent for Antioxidant, Antimicrobial, Anticancer, Anti-diabetic, Antidepressant, Neuroprotective, Anti-Inflammatory and Anti-Obesity Treatment. *Herb Med Open Access* 2017;03(02):1–6.

[20] Cheung S, Tai J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. *Onco1 Rep* 2007;17(6):1525–1531.

[21] Moore J, Yousef M, Tsiani E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. 2016 doi:10.3390/ma8110731.

[22] Kar S, Palit S, Ball WB, Das PK. Carnosic acid modulates Akt/IKK/NF-kB signaling by PPAR and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. *Aptosis* 2012;17(7):735–747.

[23] Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. *Futur Sci OA* 2018;4(4):FOS0283.

[24] Jeyaseelan EC, Jenothiny S, Pathmanathan MK, Jeyadevan JP. Antibacterial activity of sequentially extracted organic solvent extracts of fruits, flowers and leaves of Lawsonia inermis L. from Jaffna. *Asian Pac J Trop Biomed* 2012;2(10):798–801.

[25] Al Hashmi LS, Hossain MA, Weli AM, Al-Riyami Q, AlSabahi JN. Gas chromatography–mass spectrometry analysis of different organic crude extracts from the local medicinal plant of Thymbus vulgaris L. *Asian Pac J Trop Biomed* 2013;3(1):69–73.

[26] Mosbah H, Louati H, Boujibha MA, Chahdoura H, Snoussi M, Flamini G, et al. Phytochemical characterization, antioxidant, antimicrobial and pharmacological activities of Feijoa sellowiana leaves growing in Tunisia. *Ind Crops Prod* 2018;112:521–531.

[27] Institute C and LS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. *Approv Stand* 2006;26:14–16.

[28] González ML, Joray MB, Laiolo J, Crespo MI, Palacios SM, Ruiz GM, et al. Cytotoxic activity of extracts from plants of central Argentina on sensitive and multidrug-resistant leukemia cells: isolation of an active principle from Gaillardia megapotamica. *Evidence-Based Complement Altern Med* 2018;2018.

[29] Mansour R Ben, Jilani IBH, Bouaziz M, Gargouri B, Elloumi N, Attia H, et al. Phenolic contents and antioxidant activity of ethanolic extract of Capparis spinosa. *Cytotechnology* 2016;68(1):135–142.

[30] Satyal P, Jones TH, Lopez EM, McFeeters RL, Ali NAA, Mansi I, et al. Chemotypic characterization and biological activity of Rosmarinus officinalis. *Foods* 2017;6(3):20.

[31] Diab Y, Auezova L, Chebib H, Chalchat J-C, Figueredo G. Chemical composition of Lebanese rosemary (Rosmarinus officinalis L.) essential oil as a function of the geographical region and the harvest time. *J Essent Oil Res* 2002;14(6):449–452.

[32] Tabanca N, Kürrem N, Demirci B, Demirci F, Baser KHC. Composition and antimicrobial activity of the essential oils of Micromeria crista subsp. phrygia and the enantiomeric distribution of borneol. *J Agric Food Chem* 2001;49(9):4300–4303.

[33] Lira MHP de, Andrade Júnior FP de, Moraes GFQ, Macena G da S, Pereira F de O, Lima IO. Antimicrobial activity of geraniol: An integrative review. *J Essent Oil Res* 2020;32(3):187–197.

[34] Rafie H, Soheila H, Grant E. Rosmarinus officinalis (Rosemary): A Novel Therapeutic Agent for Antioxidant, Antimicrobial, Anticancer, Anti-diabetic, Antidepressant, Neuroprotective, Anti-Inflammatory and Anti-Obesity Treatment. *J Herb Med* 2017;3(2):8.

[35] Cavalcanti YW, Almeida L de FD de, Padilha WWN. Anti-adherent activity of Rosmarinus officinalis essential oil on Candida albicans: an SEM analysis. *Rev Odonto Ciência* 2011;26(2):139–144.

[36] Sufian AS, Ramasamy K, Ahmat N, Zakaria ZA, Yusof MIM. Isolation and identification of antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L. *J Ethnopharmacol* 2013;146(1):198–204.

[37] Srisawat T, Chunkaew P, Heed-Chim W, Sukpondma Y, Kanokwirom K. Phytochemical screening and cytotoxicity of crude extracts of Vatica diospyroides Symington Type LS. *Trop J Pharm Res* 2013;12(1):71–76.

[38] Yan M, Li G, Petiwala SM, Householter E, Johnson JJ. Standardized rosemary (Rosmarinus officinalis) extract induces Nrf2/sestrin-2 pathway in colon cancer cells. *J Funct Foods* 2015;13:137–147.

[39] Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. *Plant foods Nutr* 2010;65(2):158–163.

[40] Sharma M, Joshi P, Kumar N, Joshi S, Rohilla RK, Roy N, et al. Synthesis, antimicrobial activity and structure–activity relationship study of N, N-dibenzyl-cyclohexane-1, 2-diamine derivatives. *Eur J Med Chem* 2011;46(2):480–487.

[41] Song L, Kang H, Liu D, Dai Z, He J, Wang B, et al. Dimedone derivative 2-[4-(4-hydroxy-phenylamino)-methylene]-5, 5-dimethyl-cyclohexane-1, 3-dione plays an important role in breast cancer treatment. *Trop J Pharm Res* 2015;14(9):1719–1722.

[42] Modak B, Torres R, De Saint Pierre M, Katherine S, Armijo A, Caviedes R, et al. In vitro antiproliferative activity of 3 H-spiro [1-benzofuran-2, 1’-cyclohexane] derivatives. *Boletín Latinoam y del Caribe Plantas Med y Aromáticas* 2011;10(3):281–288.
[43] Lallo S, Lee S, Dibwe DF, Tezuka Y, Morita H. A new polyoxygenated cyclohexane and other constituents from Kaempferia rotunda and their cytotoxic activity. Nat Prod Res 2014;28(20):1754–1759.

[44] Kumar D, Kumbukgolla W, Jayaweera S, Bailey M, Alling T, Ollinger J, et al. Antibacterial activity of adamantyl substituted cyclohexane diamine derivatives against methicillin resistant Staphylococcus aureus and Mycobacterium tuberculosis. RSC Adv 2014;4(23):11962–11966.

[45] Amin KM, Kamel MM, Anwar MM, Khedr M, Syam YM. Synthesis, biological evaluation and molecular docking of novel series of spiro [(2H, 3H) quinazoline-2, 1’-cyclohexan]-4 (1H)-one derivatives as anti-inflammatory and analgesic agents. Eur J Med Chem 2010;45(6):2117–2131.

[46] Shoaib M, Aygun AI, Ganbarov K. Cyclohexane and its functionally substituted derivatives: Important class of organic compounds with potential antimicrobial activities. J Microbiol Biotechnol Food Sci 2019;9(1):84.