Drug Use Disorders and Violence: Associations With Individual Drug Categories

Shaoling Zhong, Rongqin Yu, and Seena Fazel

Correspondence to Dr. Seena Fazel, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, Oxford, United Kingdom (e-mail: seena.fazel@psych.ox.ac.uk; tel: +44 (0)1865 618341; fax: +44 (0)1865 793101)

Author affiliations: Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Shaoling Zhong) and Department of Psychiatry, University of Oxford, Oxford, United Kingdom (Rongqin Yu and Seena Fazel)

Funding: This work was funded by the China Scholarship Council (Grant no. 201806370093 to S.Z) and the Wellcome Trust Senior Research Fellowship (Grant no. 202836/Z/16/Z to S.F.).

Conflict of interest: none declared.

Running head: Drug Use Disorders and Violence

© The Author(s) 2020. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
ABSTRACT

Although drug use disorders are among the most important modifiable factors for violence perpetration, previous reviews have not investigated links with individual categories of drug use disorders or explored sources of variation in risk estimates between studies. We conducted a systematic review and meta-analysis of studies that examined the link between individual drug categories and violent outcomes. We searched for primary case-control and cohort investigations that reported risk of violence against others in individuals diagnosed with drug use disorders using validated clinical criteria, and followed PRISMA guidelines. We identified 18 studies published from 1990 to 2019 reporting data from 591,411 individuals with drug use disorders. We reported odds ratios (OR) of the violence risk in different categories of drug use disorders compared with those without. We found ORs ranged from 0.8 to 25.0 for most individual drug categories, with generally higher ORs in individuals with polydrug use disorders. In addition, we explored sources of between-study heterogeneity by subgroup and meta-regression analyses. Cohort investigations reported a lower risk of violence than case-control reports (OR = 2.7 [2.1-3.5] vs 6.6 [5.1-8.6]), and associations were stronger when the outcome was any violence rather than intimate partner violence (OR = 5.7 [3.8-8.6] vs 1.7 [1.4-2.1]), which was consistent with results from the meta-regression. Overall, these findings highlight the potential impact of preventing and treating drug use disorders on reducing violence risk and associated morbidities.

Keywords: substance use disorder; substance misuse; violence; crime; meta-analysis; opioid; stimulant; sedative
Abbreviations: CI, confidence interval; DSM, Diagnostic and Statistical Manual of Mental Disorders; ICD, International Classification of Diseases; MOOSE, Meta-analyses of Observational Studies in Epidemiology; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analysis; RCTs, randomized controlled trials; WHO-CIDI, World Health Organization’s Composite International Diagnostic Interview.
INTRODUCTION

Drug misuse is a global public health concern (1, 2). Worldwide, around 70 million individuals were diagnosed with drug use disorder (1). Drug use disorders have been associated with a wide range of adverse outcomes, including suicide, comorbid mental illness, and premature mortality (3-5). In addition, drug use disorders increase risk of violence against others (3, 6-9). Further, the prevalence of drug use disorder in prison ranges from 10% to 48% in men and 30% to 60% in women (10), which is substantially elevated compared to the prevalence, ranging from 0.6% to 4.0% in men and 0.3% to 2.9% in women, in the general population (11).

The prevalence differs between individual categories of drug use disorders. The rate per 100 000 people is 65 for stimulants such as amphetamines, 78 for cocaine use disorders, 290 for cannabis use disorders, 353 for opioid use disorders, and less than 52 for other drugs including hallucinogen and sedatives globally in 2016 (12). Although research has consistently found increased violence risk in drug use disorders, there are individual studies that have shown that the magnitude of this increased risk varies depending on the drug category. For example, when compared to general population, odds ratios of violence in cannabis use have ranged from 1 to 7 (13-17), and in cocaine, they have varied from 2 to 11 (18-21). This might be due to different methodologies adopted and specific outcomes used in different studies. Furthermore, it has been suggested that certain type of stimulants, such as crack cocaine that are associated with irritability and aggressiveness (7, 22), might have a higher risk of criminal behaviour than others, including less strong forms of cannabis that may reduce risks due to sedative and calming effects (23, 24). This is important to clarify further as more precise estimates would allow for risk stratification, better treatment allocation (especially if liaison with criminal justice agencies is required), and allow for more evidence-based estimates of the population impact of certain drug policies. Overall, the
relative risk of violence in different categories of drug use disorders is uncertain, which would inform the assessment and management of individuals at risk of violence, and possibly service development.

Previous reviews have explored associations between general drug misuse and violence against others but have mostly investigated selected samples, such as prisoners (25) or psychiatric patients (26-29). In addition, most existing reviews have not used standardized clinical criteria to identify drug use disorders (22, 30). This could introduce bias as self-report of the extent of drug use is often unreliable (31). Validated diagnostic tools based on validated criteria (such as International Classification of Diseases, Diagnostic and Statistical Manual of Mental Disorders or International Classification of Diseases) can identify individuals with a severe form of drug misuse, which may present to clinical and addiction services, and for which there is evidence-based treatment available. In addition, diagnostic categories enable consistent communication between clinicians and researchers as the criteria are widely known, validated cross-culturally, and with decent reliability measures (32, 33). Furthermore, the most recent review that did examine the link between general drug use disorders and violence was conducted more than two decades ago (34) and did not explore potential source of between-study heterogeneity or differences between individual categories of drug use.

However, the link between drug use and violent outcomes is complex as a wide range of factors such as experiences of violence including both as victim and perpetrator, the comorbidity of other mental disorders, and social determinants such as gender, ethnicity, and poverty may moderate and mediate this link. For instance, previous violence victimization might trigger development of drug use disorders which might in turn lead to later perpetration of violence (35-39). Moreover, structural causes of drug use problems are relevant as they have been linked to criminalization (23), and factors such as poverty (40), poor mental
health (4, 41), treatment availability (42) and homelessness (43). In addition, physical and psychological effects of drugs can lead to agitation, aggression, and cognitive impairment that may in turn heighten risk of violence. Individuals with drug use disorders might also turn to violence to finance their drug use and disputes within illegal drug markets might associated with violence (44). To address these gaps in the evidence, in this review, we aimed to synthesize the odds of violence in individual drug use disorders and explore sources of heterogeneity between studies.

METHODS

We conducted this review following the Meta-analyses of Observational Studies in Epidemiology (MOOSE) (45) and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (46). The study was registered with an international prospective register of systematic reviews (PROSPERO CRD42019119533).

Search strategy

We conducted searches in the following digital databases from the inception of the databases (dated to 1 January 1927) to 18 February, 2019: PubMed, Web of Science, Embase, Ovid MEDLINE, PsycINFO, Global Health, and US National Criminal Justice Reference Service Abstract Database. We used a combination of search terms related to drug misuse (i.e., illegal drug OR illegal substance OR marijuana OR cocaine OR cannabis OR opioid OR heroin OR methamphetamine OR stimulant*), AND violence (i.e., violen* OR crim* OR homicide OR aggress* OR offen*), AND study design (i.e., cohort OR longitudinal OR follow-up OR prospective OR case-control). We included studies on both illegally and legally obtained drugs. There were no language restrictions and non-English language articles were translated. We also scanned reference lists in attempt to identify additional articles. We searched for
unpublished literature including conference proceedings, theses and dissertations. The first
author (S.Z) conducted the initial screening of the titles and abstracts for inclusion and
exclusion. S.Z and R.Y screened full-text publications for eligibility. Any uncertainties were
discussed with S.F.

Study selection

Inclusion criteria were: Inclusion criteria were: 1) cohort and case-control studies that
examined link between individual categories of drug use disorders and violent outcomes and
provided data for calculation of odds ratio between individuals with and without the studied
drug use disorder. Eligible case-control studies were those that reported prevalence of drug
use disorders in cases with and without violence perpetration; 2) investigations that reported
drug use disorders (or, in older studies, equivalent diagnostic categories of drug misuse or
dependence) meeting diagnostic criteria for Diagnostic and Statistical Manual of Mental
Disorders and International Classification of Diseases; 3) studies that reported violent
outcomes, including any violence and not being limited to context (e.g. community, domestic,
intimate partner), type of crime (e.g. homicide, assault, threat or intimidation and all sexual
offenses) and measures (self-report, family report or official/criminal records).

We excluded: 1) animal investigations; 2) experimental, cross-sectional, qualitative
studies, or randomized controlled trials (RCTs); 3) investigations with within-individual
designs; 4) studies that used self-report (47) (e.g. Addiction Severity Index) or urine tests to
identify drug use, or did not separate drug misuse from alcohol and nicotine misuse; 5)
reports with recidivism or re-offending as outcomes (48); 6) studies in only selected samples
(e.g. offenders, cohorts with mental disorders) to increase the generalizability of risk
estimates to the general population; 7) investigations that used the non-specific outcome of
all criminal behavior, antisocial behavior or delinquency, which was not broken down for
vviolence specifically; 8) studies that reported selected participants under medication (e.g.,
antidepressant, antipsychotic drugs, or other prescription drugs) or individuals undergoing other interventions for drug use disorders; or 9) case-series studies or reviews.

In case of duplicate samples, we included the study which was the most recent, used the most common outcome, or with the largest sample. If a study reported outcomes at multiple time points, outcomes with the longest follow-up period were included.

Data extraction

We used a standardized form to extract data. The following information was recorded: study design, country, sample characteristics, diagnostic criteria, category of drug use disorders, type of drugs, comparison group, gender, age, years of follow-up, and study period. SZ conducted the initial data extraction. In case of uncertainties, RY and SF were consulted.

Statistical analysis

Quality of the individual study was assessed using the Newcastle-Ottawa Quality Assessment Scale (49). Heterogeneity was estimated using I^2. I^2 is reported as a percentage out of 100%, where 0-40% represents low heterogeneity, 30% to 60% may indicate moderate heterogeneity, 50%-90% may denote substantial heterogeneity and 75% to 100% may indicate considerable heterogeneity (50)-(51). All effect sizes were converted into odds ratios (OR), and converted from Pearson’s r and Cohen’s d using standard approaches (52). Sources of heterogeneity were explored using subgroup analyses and meta-regression analyses. Meta-regression was conducted to estimate the extent to which one or more measured covariates (the same variables as used in the subgroup analysis) explained the observed heterogeneity in risk estimates between primary studies (50). The same variables were used in the subgroup and meta-regression analyses and only non-overlapping samples were included in the analyses. When testing the association of sample size, we excluded two studies as they were disproportionately large (53, 54). We set the years of follow-up as a continuous variable and
also a dichotomous variable using the median period as the cut-off. Other analyses included estimating associations while excluding studies published before 2000 and subgroup analyses by different comparison groups. We tested publication bias using Egger’s test (55), with p<0.05 indicating publication bias. Analyses were conducted in STATA (version 13, StataCorp LLC, Texas).

RESULTS

We identified eighteen eligible studies (for details, see Figure 1 and Table 1) that included 591,411 individuals with drug use disorders. Studies were from 5 countries: 14 from the US (n=542,393, 91.7%) (53, 54, 56-67), one each from New Zealand (n=182, 0.03%) (68), Denmark (n=43,403, 7.3%) (69), the Netherlands (n=5303, 0.9%) (70), and Turkey (n=130, 0.02%) (71). Eight studies used case-control designs (53, 54, 56, 58, 63, 66, 67, 71) and others were longitudinal cohorts with a median follow-up of 9.5 years.

In 16 investigations, diagnosis was made using the Diagnostic and Statistical Manual of Mental Disorders (version 3 onwards). One study adopted the International Classification of Diseases -8 (69) and one provided both International Classification of Diseases -10 and Diagnostic and Statistical Manual of Mental Disorders -IV diagnoses (63).

For outcome measurement, two studies used violent conviction from official records (65, 69) and one reported intimate partner violence from the partner’s report (62). Most used self-report items in Diagnostic Interview Schedule (56), the PPC Delinquency and Criminal Behavior inventory (57), Aggression Questionnaire (58), Conflict Tactics Scale (63), physical aggression subscale in Buss-Perry Scale (71), and specially developed questionnaires (53, 54, 60, 61, 66, 67, 70). A combination of several measures (e.g., official records and self-report) was applied in three studies (59, 64, 68).
Any/poly drug use disorder

We identified seven cohort investigations (57, 60, 64, 65, 69, 70) and six case-control reports (53, 54, 56, 63, 66, 67) that examined the risk of violence in any or poly drug use disorder (Figure 2). ORs ranged from 0.1 and 55.1. The ORs ranged from 1.3 (95% 0.1-13.0) to 25.0 (16.1-39.0). When excluding the two studies that were published prior to 2000, the OR was 4.1 (3.0-5.7).

Cannabis/Marijuana use disorder

Six cohort studies (57, 59, 61, 62, 64, 68) and five case-control investigations (53, 54, 56, 67, 71) examined the link between cannabis/marijuana use disorder and violence. The ORs ranged from 1.3 (1.1-1.7) to 11.5 (7.8-17.2). When excluding studies prior to 2000, the OR ranged from 1.3 (1.1-1.7) to 9.1 (8.5, 9.7).

Hallucinogen use disorder

Two cohort investigations (59, 62) and one case-control report (54) tested the association between hallucinogen use disorder and violence. The ORs varied from 1.4 (1.3-1.4) to 18.3 (14.9-22.5).

Stimulant use disorder

We identified four studies that reported risk estimates for violence in stimulant use disorder, with three studies (59, 61, 62) using a cohort study design and two (54, 58) utilizing a case-control study design. All of these studies were conducted in the US. The ORs ranged from 1.9 (1.4-2.6) to 10.8 (9.3-12.5).
Opioid use disorder

Three cohort investigations \((59, 61, 62)\) and two case-control studies \((54, 67)\) reported the risk of violence in opioid use disorder, all of which were conducted in the US. The risk estimates ranged from an odds ratio of \(0.8 (0.5-1.1)\) to \(9.5 (8.7-10.4)\).

Sedative use disorder

Two cohort investigations \((59, 62)\) and one case-control study \((54)\) examined the association between sedative use disorder and violence. ORs varied from \(1.1 (1.1-1.2)\) to \(10.5 (9.1-12.2)\).

Heterogeneity

No significant differences were found in risk estimates by gender, country, measures of outcomes, study design, years of follow-up and sample size in subgroup analyses (Table 2). The risk estimates in cohort investigations \((\text{OR}=2.7, 95\% \text{CI}: 2.1-3.5)\) were lower than in the case-control reports \((\text{OR}=6.6, 95\% \text{CI}: 5.1-8.6)\). Studies from studies in which drug use occurred before violence reported an OR of \(3.2 (2.0-5.3)\). No differences were found between violence by official records \((\text{OR} = 4.5 [1.1, 18.6])\) and self-report \((4.3 [2.8-6.5])\).

The ORs of intimate partner violence \((\text{OR}=1.7, 95\% \text{CI}: 1.4-2.1)\) were lower than general violence \((\text{OR}=5.7, 95\% \text{CI}: 3.8-8.6)\). When further exploring the associations of the comparison groups in intimate partner violence studies, no significant differences were found.

In the meta-regression analysis, we also found that study design (cohort vs. case-control study) was associated with heterogeneity \((\beta = 0.8, t=2.3, p=.04)\), as was the violent outcome (intimate partner violence vs general violence; \(\beta=-1.2, t=-3.3, p<.05\)). No other variables examined explained the heterogeneity among studies. Egger’s test did not clearly suggest publication bias \((t = 1.32, p = 0.20)\).
DISCUSSION

Main findings

This systematic review and meta-analysis examined the association between drug use disorders and violence. We identified 18 eligible studies from five countries with 591,411 individuals meeting diagnostic criteria for drug use disorders. There were two main findings. First, we found that individuals with a diagnosed drug use disorder have a four- to ten-fold higher risk of perpetrating violence compared with general population or individuals without the studied drug use disorder. All of the examined categories of drug use disorders, including cannabis, hallucinogen, stimulant, opioid, and sedative, were associated with elevated violence risks. We found all studies increased risk with 34 out of the 37 studies with confidence intervals that did not cross one. The odds need to be seen in the context of absolute rates of these disorders – which vary from 52 cases (per 100 000) of hallucinogen use disorders to 353 cases of opioid use disorders (12). Second, there was a substantial heterogeneity between studies, which was partially explained by study design and the type of outcome. Violence risk in drug use disorders was lower in cohort than in case-control studies, and when intimate partner violence was the outcome rather than general violence.

Implications

Although the odds are not dissimilar to other neuropsychiatric conditions (72), their importance is greater from a public health perspective as drug use disorders are more prevalent than mental illnesses, such as schizophrenia or bipolar disorder. In addition, although drug use disorders are not more prevalent than disorders such as depression and anxiety, their risk of violence is usually higher (67, 73). Therefore, drug use disorders have greater population impact when taking into account both prevalence and relative risk. This underscores the importance of treating drug use disorders as part of any public health
approach to violence prevention. Notably, long-term methadone maintenance programs and behavioural treatments can reduce crime (74). In addition, there are studies that demonstrate reduced crimes after drug treatment (e.g. opioid maintenance treatment (OMT), methadone, buprenorphine and naltrexone) and non-medical treatment (e.g. Therapeutic Communities (TC), drug courts), in individuals using cocaine (75), opioid (76-79), and with general drug use disorders (80-83). Moreover, prison-based interventions, such as TC, opiate maintenance treatment and pharmacotherapies for drug use disorders, are effective in reducing recidivism in prisoners (84-86). Despite this, most individuals with drug use disorders do not receive treatment. In the US, only 13.5% and 24.6% received treatment among individuals with 12-month and lifetime drug use disorders, respectively (87). Thus, more efforts should be taken to improve accessibility of treatment for individuals with drug use disorders. Together, the treatability of drug use disorders, unmet needs and risk of adverse outcomes present an opportunity to improve public health and safety.

A second implication is that two aspects of study design explained some of the between-study heterogeneity. Cohort studies had lower risk estimates than case-control investigations. This difference is likely because cohort studies are more likely to account for the temporal sequence between drug use disorders and violent outcome. This allowed for a more accurate estimation of the associations than case-control studies. Future observational research should prioritize cohort designs to longitudinally follow up individuals with drug use disorders and examine their violent outcome. We also found that the associations with intimate partner violence was less strong than for general violence. This may be because individuals with drug use disorders are less likely to have partners (87, 88) and those who have partners might present with less severe symptoms of drug use disorders (89).
Strengths, Limitations, and Future Directions

This review has several strengths. First, we only included studies which used validated diagnostic criteria to identify drug use disorders and excluded studies using self- or other measures that may reflect short-term or recreational use. Second, we carefully explored heterogeneity using two methods (subgroup analyses and meta-regression). Third, we excluded studies examining drug use disorders and violent outcomes in selected samples such as offenders, cohorts with mental disorders, and individuals under treatment for drug use disorders, as not all individuals with drug use disorders were offenders or having other mental disorders and the majority will not be subject to treatment. This likely increases the generalizability of our findings.

However, a number of limitations should be noted. First, all included studies were conducted in high-income countries. We found one investigation in middle-income, namely Turkey but no others, and none in Central Latin America, Tropical Latin America, and Southern sub-Saharan Africa, where violence is among the top 10 leading causes of disability-adjusted life-years (DALYs) (90). Many countries in these regions account for the majority of global drug manufacture, trafficking, and consumption (91, 92). Therefore, more research on the link in these settings is needed. The second limitation was the amount of information on individual categories was not sufficient to draw definite conclusions about differences by drug class. We identified three studies (54, 59, 62) in sedative use disorder and five each for stimulant use disorder (54, 58, 59, 61, 62) and opioid use disorder (54, 59, 61, 62, 67). Furthermore, we found a limited literature on polydrug use, although it is common and linked to poorer treatment outcomes, social maladjustment and overdose lethality (93-95).

Future studies should investigate more carefully the different categories of drug use disorders, polydrug use and the links with novel psychoactive substances. Third, it is difficult to meta-analyse studies of selected populations as the effects of mediators cannot be modelled.
Therefore, our findings are not necessarily risk estimates in specific subpopulations such as prisoners or individuals who are participating in treatment programmes. For example, our estimates might be overestimates as we excluded studies individuals under drug treatment, which could decrease risk of violence (96, 97). Fourth, we found links between hallucinogen use and violence in the general population, but they appear to be heterogeneity in their associations by population. For example, in criminal justice populations, recent work has found decreased associations between hallucinogen use and repeated offending in substance-involved offenders under community corrections supervision (48), which is also reported in intimate partner violence perpetrators (47, 98). In individuals with schizophrenia, there is an increased risk (99). Finally, due to lack for data, we only identified a few factors that might explain heterogeneity between studies. For example, we were not able to examine whether some factors moderate the link between drug use disorders and violence, such as being subjected to violence, comorbidity of other substance use disorders (including alcohol) and mental health conditions, time between onset of drug use and violent outcome, and other social determinants (including poverty and access to services). In addition, the heterogeneity analyses were based on different drug categories and limited by variations in primary study settings. The results should therefore be interpreted with caution and read in the context of implications for future research rather than clinical practice.

However, these factors could be either associated, mediate or modify links between drug misuse and violence. For instance, an umbrella review of 22 meta-analyses based on over 120 000 individuals have shown that a range of neuropsychiatric disorders including schizophrenia, personality disorders, and bipolar disorders and perpetration, witness, or victim of violence during childhood are linked to increased risk of violence (72), suggesting that all of these comorbidities can be confounds. In addition, individuals who are victims of
violence may use drugs as a coping mechanism and victimization itself might in turn lead to later violence (35-39). Therefore, more research accounting for these factors is necessary.

Conclusions

This systematic review and meta-analysis have synthesized the evidence on associations between individual categories of drug use disorder and violent outcomes. The findings suggest that all categories of drug use disorders have an elevated risk of violence, and that study design and type of violent outcome partly explain variation in risk estimates between studies.

Acknowledgments

Author affiliations: Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Shaoling Zhong) and Department of Psychiatry, University of Oxford, Oxford, United Kingdom (Rongqin Yu and Seena Fazel)

Funding: This work was funded by the China Scholarship Council (Grant no. 201806370093 to S.Z) and the Wellcome Trust Senior Research Fellowship (Grant no. 202836/Z/16/Z to S.F.).

This work was funded by the China Scholarship Council (Grant no. 201806370093 to S.Z) and the Wellcome Trust Senior Research Fellowship (Grant no. 202836/Z/16/Z to S.F.).

Conflict of interest: none declared.
REFERENCES

1. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet (London, England)*. 2018;392(10159):1789-858.

2. Degenhardt L, Whiteford HA, Ferrari AJ, et al. Global burden of disease attributable to illicit drug use and dependence: findings from the Global Burden of Disease Study 2010. *The Lancet*. 2013;382(9904):1564-74.

3. McGinty EE, Choksy S, Wintemute GJ. The relationship between controlled substances and violence. *Epidemiologic reviews*. 2016;38(1):5-31.

4. Degenhardt L, Hall W. Extent of illicit drug use and dependence, and their contribution to the global burden of disease. *The Lancet*. 2012;379(9810):55-70.

5. Nutt DJ, King LA, Phillips LD. Drug harms in the UK: a multicriteria decision analysis. *The Lancet*. 2010;376(9752):1558-65.

6. Grann M, Fazel S. Substance misuse and violent crime: Swedish population study. *Brmj*. 2004;328(7450):1233-34.

7. Hoaken PN, Stewart SH. Drugs of abuse and the elicitation of human aggressive behavior. *Addictive behaviors*. 2003;28(9):1533-54.

8. Atkinson A, Anderson Z, Hughes K, et al. Interpersonal violence and illicit drugs. *Liverpool: Centre for Public Health, Liverpool John Moores University*. 2009.

9. Duke AA, Smith KM, Oberleitner L, et al. Alcohol, drugs, and violence: A meta-meta-analysis. *Psychology of violence*. 2018;8(2):238.

10. Fazel S, Bains P, Doll H. Substance abuse and dependence in prisoners: a systematic review. *Addiction*. 2006;101(2):181-91.

11. Ritchie H, Roser M. Substance Use. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2017 (GBD 2017) Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2018.; 2018. (http://ghdx.healthdata.org/gbd-results-tool). (Accessed Sep 8, 2019).

12. Degenhardt L, Charlson F, Ferrari A, et al. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. *The Lancet Psychiatry*. 2018;5(12):987-1012.

13. Pedersen W, Skardhamar T. Cannabis and crime: findings from a longitudinal study. *Addiction*. 2010;105(1):109-18.

14. Huas C, Hassler C, Choquet M. Has occasional cannabis use among adolescents also to be considered as a risk marker? *The European Journal of Public Health*. 2008;18(6):626-29.

15. Schoeler T, Theobald D, Pingault JB, et al. Continuity of cannabis use and violent offending over the life course. *Psychol Med*. 2016;46(8):1663-77.

16. Swartout KM, White JW. The relationship between drug use and sexual aggression in men across time. *Journal of Interpersonal Violence*. 2010;25(9):1716-35.

17. Green KM, Doherty EE, Stuart EA, et al. Does heavy adolescent marijuana use lead to criminal involvement in adulthood? Evidence from a multiwave longitudinal study of urban African Americans. *Drug and alcohol dependence*. 2010;112(1-2):117-25.

18. Farabée D, Joshi V, Anglin MD. Addiction careers and criminal specialization. *Crime & Delinquency*. 2001;47(2):196-220.
19. Narvaez JC, Jansen K, Pinheiro RT, et al. Violent and sexual behaviors and lifetime use of crack cocaine: a population-based study in Brazil. Social psychiatry and psychiatric epidemiology. 2014;49(8):1249-55.
20. El-Bassel N, Gilbert L, Wu E, et al. Perpetration of intimate partner violence among men in methadone treatment programs in New York City. American Journal of Public Health. 2007;97(7):1230-32.
21. Chermack ST, Grogan-Kaylor A, Perron BE, et al. Violence among men and women in substance use disorder treatment: A multi-level event-based analysis. Drug and alcohol dependence. 2010;112(3):194-200.
22. Moore TM, Stuart GL, Meehan JC, et al. Drug abuse and aggression between intimate partners: a meta-analytic review. Clinical psychology review. 2008;28(2):247-74.
23. Bennett T, Holloway K, Farrington D. The statistical association between drug misuse and crime: A meta-analysis. Aggression and violent behavior. 2008;13(2):107-18.
24. Boles SM, Miotto K. Substance abuse and violence: A review of the literature. Aggression and violent behavior. 2003;8(2):155-74.
25. Collins RE. The effect of gender on violent and nonviolent recidivism: A meta-analysis. Journal of Criminal Justice. 2010;38(4):675-84.
26. Fazel S, Långström N, Hjern A, et al. Schizophrenia, substance abuse, and violent crime. Jama. 2009;301(19):2016-23.
27. Fazel S, Lichtenstein P, Grann M, et al. Bipolar disorder and violent crime: new evidence from population-based longitudinal studies and systematic review. Archives of general psychiatry. 2010;67(9):931-38.
28. Yu R, Geddes JR, Fazel S. Personality disorders, violence, and antisocial behavior: a systematic review and meta-regression analysis. Journal of personality disorders. 2012;26(5):775-92.
29. Large MM, Niessens O. Violence in first-episode psychosis: a systematic review and meta-analysis. Schizophrenia research. 2011;125(2-3):209-20.
30. Stith SM, Smith DB, Penn CE, et al. Intimate partner physical abuse perpetration and victimization risk factors: A meta-analytic review. Aggression and violent behavior. 2004;10(1):65-98.
31. Clark CB, Zymbo CM, Li Y, et al. The impact of non-concordant self-report of substance use in clinical trials research. Addictive behaviors. 2016;58:74-79.
32. Denis CM, Gelernter J, Hart AB, et al. Inter-observer reliability of DSM-5 substance use disorders. 2015;153:229-35.
33. Hasin DS, O’Brien CP, Auriacombe M, et al. DSM-5 criteria for substance use disorders: recommendations and rationale. 2013;170(8):834-51.
34. Bushman BJ. Human aggression while under the influence of alcohol and other drugs: An integrative research review. Current Directions in Psychological Science. 1993;2(5):148-51.
35. Afifi TO, Henriksen CA, Asmundson GJ, et al. Childhood maltreatment and substance use disorders among men and women in a nationally representative sample. The Canadian Journal of Psychiatry. 2012;57(11):677-86.
36. Asberg K, Renk K. Substance use coping as a mediator of the relationship between trauma symptoms and substance use consequences among incarcerated females with childhood sexual abuse histories. Substance use & misuse. 2012;47(7):799-808.
37. Duke NN, Pettingell SL, McMorris BJ, et al. Adolescent violence perpetration: associations with multiple types of adverse childhood experiences. *Pediatrics*. 2010;125(4):e778-e86.

38. Dardis CM, Dixon KJ, Edwards KM, et al. An examination of the factors related to dating violence perpetration among young men and women and associated theoretical explanations: A review of the literature. 2015;16(2):136-52.

39. Park S, Kim S-HJT, Violence,, Abuse. Who are the victims and who are the perpetrators in dating violence? Sharing the role of victim and perpetrator. 2019;20(5):732-41.

40. Funk M, Drew N, Knapp M. Mental health, poverty and development. *Journal of public mental health*. 2012;11(4):166-85.

41. Hall W, Degenhardt L. Adverse health effects of non-medical cannabis use. *The Lancet*. 2009;374(9698):1383-91.

42. Degenhardt L, Glantz M, Evans-Lacko S, et al. Estimating treatment coverage for people with substance use disorders: an analysis of data from the World Mental Health Surveys. *World Psychiatry*. 2017;16(3):299-307.

43. Krupski A, Graves MC, Bumgardner K, et al. Comparison of homeless and non-homeless problem drug users recruited from primary care safety-net clinics. *Journal of substance abuse treatment*. 2015;58:84-89.

44. Goldstein PJ. The drugs/violence nexus: A tripartite conceptual framework. *Journal of drug issues*. 1985;15(4):493-506.

45. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. *Jama*. 2000;283(15):2008-12.

46. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS medicine*. 2009;6(7):e1000097.

47. Thiessen MS, Walsh Z, Bird BM, et al. Psychodelic use and intimate partner violence: The role of emotion regulation. *Journal of psychopharmacology*. 2018;32(7):749-55.

48. Hendricks PS, Clark CB, Johnson MW, et al. Hallucinogen use predicts reduced recidivism among substance-involved offenders under community corrections supervision. *Journal of Psychopharmacology*. 2014;28(1):62-66.

49. Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. *Ottawa: Ottawa Hospital Research Institute*. 2011.

50. Higgins J, Altman D, Sterne J. *Cochrane Handbook for Systematic Reviews of Interventions*. Version 5.0. Chichester, England: John Wiley & Sons: The Cochrane Collaboration; 2011.

51. Borenstein M, Hedges LV, Higgins JP, et al. A basic introduction to fixed - effect and random - effects models for meta - analysis. *Research synthesis methods*. 2010;1(2):97-111.

52. Borenstein M, Hedges LV, Higgins JP, et al. *Introduction to meta-analysis*. West Sussex, England: John Wiley & Sons; 2009.

53. Harford TC, Chen CM, Grant BF. Other-and self-directed forms of violence and their relationship with number of substance use disorder criteria among youth ages 12–17: results from the National Survey on Drug use and Health. *Journal of studies on alcohol and drugs*. 2016;77(2):277-86.
54. Harford TC, Yi H-y, Chen CM, et al. Substance use disorders and self-and other-directed violence among adults: Results from the National Survey on Drug Use And Health. *Journal of affective disorders.* 2018;225:365-73.
55. Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. 1997;315(7109):629-34.
56. Swanson JW, Holzer III CE, Ganju VK, et al. Violence and psychiatric disorder in the community: evidence from the Epidemiologic Catchment Area surveys. *Psychiatric Services.* 1990;41(7):761-70.
57. Friedman AS, Kramer S, Kreisher C, et al. The relationships of substance abuse to illegal and violent behavior, in a community sample of young adult African American men and women (gender differences). *Journal of Substance Abuse.* 1996;8(4):379-402.
58. Payer DE, Lieberman MD, London ED. Neural Correlates of Affect Processing and Aggression in Methamphetamine Dependence. *Archives of General Psychiatry.* 2008;68(3):271-82.
59. Feingold A, Kerr DC, Capaldi DM. Associations of substance use problems with intimate partner violence for at-risk men in long-term relationships. *Journal of Family Psychology.* 2008;22(3):429.
60. Van Dorn R, Volavka J, Johnson N. Mental disorder and violence: is there a relationship beyond substance use? *Social psychiatry and psychiatric epidemiology.* 2012;47(3):487-503.
61. Smith PH. Intimate partner violence among adults: The role of illicit drug use. *Dissertation Abstracts International: Section B: The Sciences and Engineering.* 2014;74(10-B E).
62. Feingold A, Capaldi DM. Associations of Women’s Substance Dependency Symptoms with Intimate Partner Violence. *Partner Abuse.* 2014;5(2):152-67.
63. McCauley HL, Breslau JA, Saito N, et al. Psychiatric disorders prior to dating initiation and physical dating violence before age 21: findings from the National Comorbidity Survey Replication (NCS-R). *Social Psychiatry and Psychiatric Epidemiology.* 2015;50(9):1357-65.
64. White HR, Buckman J, Pardini D, et al. The Association of Alcohol and Drug Use with Persistence of Violent Offending in Young Adulthood. *Journal of Developmental and Life-Course Criminology.* 2015;1(3):289-303.
65. Trauffer N, Widom CS. Child Abuse and Neglect, and Psychiatric Disorders in Nonviolent and Violent Female Offenders. *Violence and Gender.* 2017;4(4):137-43.
66. Corrigan PW, Watson AC. Findings from the National Comorbidity Survey on the frequency of violent behavior in individuals with psychiatric disorders. *Psychiatry Research.* 2005;136(2-3):153-62.
67. Harford TC, Chen CM, Kerridge BT, et al. Self-and other-directed forms of violence and their relationship with lifetime DSM-5 psychiatric disorders: Results from the National Epidemiologic Survey on Alcohol Related Conditions– III (NESARC– III). *Psychiatry research.* 2018;262:384-92.
68. Arseneault L, Moffitt TE, Caspi A, et al. Mental disorders and violence in a total birth cohort: results from the Dunedin Study. *Archives of general psychiatry.* 2000;57(10):979-86.
69. Christoffersen MN, Francis B, Soothill K. An upbringing to violence? Identifying the likelihood of violent crime among the 1966 birth cohort in Denmark. *Journal of Forensic Psychiatry & Psychology.* 2003;14(2):367-81.
70. ten Have M, de Graaf R, van Weeghel J, et al. The association between common mental disorders and violence: to what extent is it influenced by prior victimization,
negative life events and low levels of social support? *Psychological Medicine*. 2014;44(7):1485-98.
71. Altintas M, Inanc L, Hunca AN, et al. Theory of mind, aggression and impulsivity in patients with synthetic cannabinoid use disorders: a case-control study. *Anadolu Psikiyatrar De*. 2019;20(1):5-12.
72. Fazel S, Smith EN, Chang Z, et al. Risk factors for interpersonal violence: an umbrella review of meta-analyses. *The British Journal of Psychiatry*. 2018;213(4):609-14.
73. Pulay AJ, Dawson DA, Hasin DS, et al. Violent behavior and DSM-IV psychiatric disorders: results from the national epidemiologic survey on alcohol and related conditions. *The Journal of clinical psychiatry*. 2008;69(1):12.
74. McLellan AT, Lewis DC, O'Brien CP, et al. Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. *Jama*. 2000;284(13):1689-95.
75. Koehn JD, Bach P, Hayashi K, et al. Impact of incarceration on rates of methadone use in a community recruited cohort of injection drug users. *Addictive behaviors*. 2015;46:1-4.
76. Bukten A, Skurtveit S, Gossop M, et al. Engagement with opioid maintenance treatment and reductions in crime: a longitudinal national cohort study. *Addiction*. 2012;107(2):393-99.
77. Vorma H, Sokero P, Aaltonen M, et al. Participation in opioid substitution treatment reduces the rate of criminal convictions: Evidence from a community study. *Addictive behaviors*. 2013;38(7):2313-16.
78. Bahji A, Carlone D, Altmare J. Acceptability and efficacy of naltrexone for criminal justice - involved individuals with opioid use disorder: a systematic review and meta - analysis. *Addiction*. 2019;115(8):1413-25.
79. Maremmani I, Rolland B, Somaini L, et al. Buprenorphine dosing choices in specific populations: review of expert opinion. *Expert opinion on pharmacotherapy*. 2016;17(13):1727-31.
80. Mitchell O, Wilson DB, MacKenzie DL. The effectiveness of incarceration - based drug treatment on criminal behavior: A systematic review. *Campbell systematic reviews*. 2012;8(1):i-76.
81. Perry A, Woodhouse R, Neilson M, et al. Are non-pharmacological interventions effective in reducing drug use and criminality? A systematic and meta-analytical review with an economic appraisal of these interventions. *International journal of environmental research and public health*. 2016;13(10):966.
82. Shaffer DK. Looking inside the black box of drug courts: A meta - analytic review. *Justice Quarterly*. 2011;28(3):493-521.
83. Mitchell O, Wilson DB, Eggers A, et al. Drug courts’ effects on criminal offending for juveniles and adults. *Campbell Systematic Reviews*. 2012;8(1):i-87.
84. de Andrade D, Ritchie J, Rowlands M, et al. Substance use and recidivism outcomes for prison-based drug and alcohol interventions. *Epidemiologic reviews*. 2018;40(1):121-33.
85. Mitchell O, Wilson DB, MacKenzie DL. Does incarceration-based drug treatment reduce recidivism? A meta-analytic synthesis of the research. *Journal of Experimental Criminology*. 2007;3(4):353-75.
86. Chang Z, Lichtenstein P, Långström N, et al. Association between prescription of major psychotrophic medications and violent reoffending after prison release. *Jama*. 2016;316(17):1798-807.
87. Grant BF, Saha TD, Ruan WJ, et al. Epidemiology of DSM-5 drug use disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions–III. *JAMA psychiatry.* 2016;73(1):39-47.
88. Merline AC, Schulenberg JE, O'Malley PM, et al. Substance use in marital dyads: Premarital assortment and change over time. *Journal of Studies on Alcohol and Drugs.* 2008;69(3):352-61.
89. Schulenberg JE, Patrick ME, Kloska DD, et al. Substance use disorder in early midlife: A national prospective study on health and well-being correlates and long-term predictors. *Substance Abuse: Research and Treatment.* 2015;9(1):41-57.
90. Kassebaum NJ, Arora M, Barber RM, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. *The Lancet.* 2016;388(10053):1603-58.
91. UNODC. *World Drug Report 2018.* United Nations Publications; 2018.
92. Chalk P. *The Latin American drug trade: scope, dimensions, impact, and response.* Santa Monica, CA: Rand Corporation; 2011.
93. Leri F, Bruneau J, Stewart J. Understanding polydrug use: review of heroin and cocaine co-use. *Addiction.* 2003;98(1):7-22.
94. Jones JD, Mogali S, Comer SD. Polydrug abuse: a review of opioid and benzodiazepine combination use. *Drug and alcohol dependence.* 2012;125(1-2):8-18.
95. Connor JP, Gullo MJ, White A, et al. Polysubstance use: diagnostic challenges, patterns of use and health. *Current opinion in psychiatry.* 2014;27(4):269-75.
96. van der Pol TM, Henderson CE, Hendriks V, et al. Multidimensional Family Therapy Reduces Self-Reported Criminality Among Adolescents With a Cannabis Use Disorder. *International journal of offender therapy and comparative criminology.* 2018;62(6):1573-88.
97. Ward CL, Mertens JR, Bresick GF, et al. Screening and Brief Intervention for Substance Misuse: Does It Reduce Aggression and HIV-Related Risk Behaviours? *Alcohol and Alcoholism.* 2015;50(3):302-09.
98. Walsh Z, Hendricks PS, Smith S, et al. Hallucinogen use and intimate partner violence: Prospective evidence consistent with protective effects among men with histories of problematic substance use. *Journal of psychopharmacology.* 2016;30(7):601-07.
99. Lamsma J, Cahn W, Fazel S. Use of illicit substances and violent behaviour in psychotic disorders: two nationwide case-control studies and meta-analyses. *Psychological medicine.* 2019.1-6.
| First Author, Year (Reference no.) | Country | Source of Population | Diagnosis Criteria | Design | Type of drugs | Comparison Groups | Sample Size | Age | Gender | Year | Follow up (year) | Outcome | Source of Outcome | Assessed Alcohol Use |
|------------------------------------|---------|----------------------|-------------------|-------|--------------|------------------|-------------|-----|--------|------|-----------------|----------|-----------------|----------------------|
| Swanson, 1990 (56) | US | The Epidemiologic Catchment Area Surveys | DSM-III² | case-control | cannabis use dependence/other drugs | non-drug use disorder | 8061 | ≥18 | mixed | 1985 | | violence | self-report | yes |
| Friedman, 1996 (57) | US | A longitudinal study of the National Collaborative Perinatal Project | DSM-III | cohort | marijuana use/drug abuse | non-marijuana use/non-drug abuse | 380 | 25.5±6.1 | mixed | 1985 | 2.5 | violent offence | self-report | yes |
| Arseneault, 2000 (68) | New Zealand | The Dunedin Study | DSM-III-R | cohort | marijuana dependence disorder | non-marijuana dependence disorder | 182 | mean 21 | mixed | 1994 | 21 | violence | court convictions and/or self-report | yes |
| Corrigan, 2005 (66) | US | The National Comorbidity Survey (NCS) | DSM-III-R | case-control | any drug use disorder | non-drug use | 5865 | 18-54 | 18-54 | 1990-1992 | 9 | violent behaviour | self-report | yes |
| Payer, 2011 (58) | US | Participants diagnosed with methamphetamine dependence | DSM-IV | case-control | methamphetamine dependence | healthy controls without drug use disorder | 44 | 32.8±8.8 | female | not stated | | aggression | self-report | yes |
| Christoffersen, 2003 (69) | Denmark | The 1966 birth cohort in Denmark | ICD-8⁶ | cohort | drug addicts | non-drug addicts | 43403 | 15-47 | male | 1993 | 13 | violence crimes | official records | no |
| Feingold, 2008 (59) | US | The Couple Study associated with the Oregon Youth Study | DSM-IV | cohort | cannabis/hallucinogen/cocaine/opiates/amphetamines/sedatives | non-cannabis/hallucinogen/cocaine/opiates/amphetamines/sedatives | 150 | 19-28 | male | not stated | 9 | intimate partner violence | self-report, other's report, interview ratings | yes |
| Van Dorn, 2012 (60) | US | National Epidemiologic Survey on Alcohol and Related Conditions | DSM-IV | cohort | drug use disorder | non-drug use disorder | 36019 | ≥18 | mixed | 2005 | 3 | any violence | self-report | yes |
| Smith, 2014 (61) | US | National Epidemiologic Survey on Alcohol and Related Conditions | DSM-IV | cohort | cocaine/cannabis/opioid use disorder | non-cocaine use disorder/non-opioid use disorder | 25633 | mean 46.4 | mixed | 2005 | 3 | intimate violence | self-report | yes |
| Study | Country | Design/Method | DSM-IV/III-R | Drug Use Disorders | Sample Size | Age | Gender | Time Period | Violence Measure | Reporting Method | Notes |
|---|---------|---|---------------|---|-------------|------|--------|------------|---|-----------------|---------|
| Feingold, 2014 (62) | US | The Couple Study associated with the Oregon Youth Study | DSM-IV-TR | cannabis/hallucinogen/cocaine/opiates/amphetamines/sedatives | 146 | mean 35 | female | not stated | intimate partner violence | others' report | yes |
| Have, 2014 (70) | Netherlands | A cohort study of the Dutch general population | DSM-IV | drug dependence | 5303 | 18-64 | mixed | 2012 | physical violence | self-report | yes |
| McCauley, 2015 (63) | US | The National Comorbidity Survey Replication | WHO-CIDI | drug abuse | 5692 | 21-99 | mixed | 2003 | physical dating violence | self-report | yes |
| Harford, 2016 (53) | US | National Survey on Drug Use and Health | DSM-IV | drug use disorder | 108560 | 12-17 | mixed | 2008-2013 | other-directed violence | self-report | yes |
| White, 2015 (64) | US | A cohort of the Pittsburgh Youth Study | DSM-IV | cannabis/hard drug use disorder | 240 | 35.8±0.8 | male | 2010 | persistent violence | self-reports and official records | yes |
| Trauffer, 2017 (65) | US | A cohort study in which children were followed into adulthood | DSM-III-R | drug abuse and/or dependence | 413 | 29.6±3.9 | female | 2014 | violent offender | self-report | yes |
| Harford, 2018a (54) | US | National Survey on Drug Use and Health | DSM-IV | any drug use disorder | 314881 | ≥18 | mixed | 2008-2015 | other-directed violence | self-report | yes |
| Harford, 2018b (67) | US | The National Epidemiologic Survey on Alcohol Related Conditions- III | DSM-V | cannabis/opiod/other drug use disorder | 36309 | ≥18 | mixed | 2012-2013 | other-directed violence | self-report | yes |
| Altintas, 2019 (71) | Turkey | Outpatients synthetic cannabinoid use disorders | DSM-IV | synthetic cannabinoid use disorders | 130 | 28.2±7.6 | mixed | not stated | aggression | self-report | no |

Abbreviations: DSM, The Diagnostic and Statistical Manual of Mental Disorders; ICD: International Classification of Diseases; WHO-CIDI, World Health Organization’s Composite International Diagnostic Interview. – not applicable.
Table 2. Sources of heterogeneity in included studies of the odds ratio for violence in drug use disorder.

Source of heterogeneity	Number of studies	Number of population	Odds ratio	95% CI
Gender				
Males	4	43976	3.9	1.7, 8.9
Females	4	800	2.2	1.8, 2.7
Mixed	11	546635	5.4	4.1, 7.0
Study location				
US	14	542393	4.2	2.9, 6.1
Other high-income counties	3	48888	7.1	4.1, 12.2
Regions in US				
National based	8	533339	4.4	2.9, 6.1
Regional based	6	9054	3.9	2.0, 7.6
Measures of outcome				
Self-reported outcome	12	546877	4.6	3.0, 7.2
Others’ report/official records	3	43962	3.2	1.3, 7.8
Combined measures	3	572	4.4	1.3, 14.5
Temporality in cohort studies				
Drug prior to violence	4	85105	3.8	1.6, 9.1
Others	6	26764	2.6	1.6, 4.3
Study design				
Cohort study	10	111869	2.7	2.1, 3.5
Case-control study	8	473850	6.6	5.1, 8.6
Years of follow-up				
< 9.5 years	5	67485	1.9	1.5, 2.4
------------------	-----	---------	-----	-----
≥ 9.5 years	5	44384	4.5	2.2, 9.1
sample size				
< 500	8	1503	2.6	2.0, 3.4
≥ 500	8	166285	5.1	2.9, 9.2
Violent outcome				
Intimate partner violence	4	31621	1.7	1.4, 2.1
Intimate partner violence with general controls	2	31325	1.8	0.8, 4.2
General violence	14	559790	5.7	3.8, 8.6
Clinical criteria				
DSM-III(-R)	5	14901	5.7	2.5, 13.0
DSM-IV(-TR)	10	491106	3.4	2.0, 6.0

Abbreviation: DSM, The Diagnostic and Statistical Manual of Mental Disorders.
Figure legend/titles:

Figure 1.
Title: Figure 1. Flow-diagram of the systematic search to identify included studies

Figure 2.
Legend: Weights are from random effects analysis
Title: Figure 2. Odds ratio of violent outcomes in drug use disorder
Records Identified Through Database Searches
(n = 6,589)

Additional Records Identified Through Other Sources
(n = 11)

Records After Duplicates Removed
(n = 2,707)

Records Excluded in Title/Abstract Screening
(n = 2,416)

Full-text Articles Assessed for Eligibility
(n = 291)

Full-text Articles Excluded: [n = 273]
Self-report or urine test of drug use (n = 123)
Combined alcohol and drug use (n = 60)
No report of effect size (n = 45)
Selected sample (n = 26)
Combined violence with other offences (n = 16)
Duplicated samples (n = 3)

Studies Included in Meta-analysis
(n = 18)
