Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance

Citation for published version:
Garbutt, J & Little, T 2017, 'Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance' Ecology and Evolution. DOI: 10.1002/ece3.2709

Digital Object Identifier (DOI):
10.1002/ece3.2709

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Ecology and Evolution
Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance

Jennie S. Garbutt and Tom J. Little

1. Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL

jennie.garbutt@gmail.com

tom.little@.ed.ac.uk (correspondence)
Abstract

Maternal effects triggered by changes in the environment (e.g. nutrition or crowding) can influence the outcome of offspring-parasite interactions, with fitness consequences for the host and parasite. Outside of the classic example of antibody transfer in vertebrates, proximate mechanisms have been little studied, and thus the adaptive significance of maternal effects on infection are not well resolved. We sought to determine why food-stressed mothers give birth to offspring that show a low rate of infection when the crustacean *Daphnia magna* is exposed to an orally-infective bacterial pathogen. These more-resistant offspring are also larger at birth and feed at a lower rate. Thus, reduced disease resistance could result from slow-feeding offspring ingesting fewer bacterial spores, or because their larger size allows for greater immune investment. To distinguish between these theories we performed an experiment in which we measured body size, feeding rate and susceptibility, and were able to show that body size is the primary mechanism causing altered susceptibility: larger *Daphnia* were less likely to become infected. Contrary to our predictions there was also a trend that fast-feeding *Daphnia* were less likely to become infected. Thus, our results explain how a maternal environmental effect can alter offspring disease resistance (though body size), and highlight the potential complexity of relationship between feeding rate and susceptibility in a host that encounters a parasite whilst feeding.

Keywords: Maternal effects, trans-generational effects, mechanism, host-parasite, life-history
Introduction

Maternal effects occur when the phenotype of an individual is determined, in part, by the conditions experienced by its mother, and her phenotype, irrespective of the genes transmitted from mother to offspring (Kirkpatrick and Lande 1989, Cheverud and Moore 1994, Wolf et al. 1998, Mousseau and Fox 1998a, 1998b, Wolf and Wade 2009). Maternal effects are increasingly recognised to profoundly affect the expression of infectious disease in vertebrates (Klasing 1998, Brinkhof et al. 1999, Tella et al. 2000, Gasparini et al. 2007), invertebrates (Huang and Song 1999, Little et al. 2003, Rahman et al. 2004, Ma et al. 2005, Mitchell and Read 2005, Miller et al. 2009, Roth et al. 2010, Gibbs et al. 2010, Tidbury et al. 2011, Stjernman and Little 2011, Lorenz and Koella 2011, Boots and Roberts 2012) and plants (Grünzweig 2011, Holeski et al. 2012). Because of their distinct evolutionary features (Kirkpatrick and Lande 1989, Wade 1998, Mousseau and Fox 1998b), maternal effects are likely to affect the evolution of hosts and their parasites in complex and difficult-to-predict ways that have not yet been fully explored.

The paradigmatic example of a maternal effect on disease resistance is the transfer of immunity via antibodies from mother to offspring in vertebrates (Hasselquist and Nilsson 2009). However, many organisms, and especially invertebrates, are well-known to show maternal effects on resistance when mothers experience environmental variation, for example temperature or food variation (Mitchell and Read 2005, Triggs and Knell 2012, Garbutt et al. 2014). Both the mechanisms and adaptive significance of such maternal environmental effects on resistance in invertebrates are unclear. Mothers might use environmental conditions as cues for disease risk and change offspring resistance accordingly. This might be achieved through the transfer of immune molecules, or by altering offspring life history in a manner that specifically improves resistance. However, changed resistance could also come
about as a side-effect of life history changes that are specific adaptations to the environment
the mother has experienced. For example, mothers kept under harsh conditions may produce
offspring with certain behavioral or life history phenotypes that are well suited to harsh
environments, but that also lead to a changed encounter, and ultimately infection, rate with
pathogens. Maternal effects on disease mediated through changes in life history are unlikely
to be taxonomically restricted, and thus such maternal effects might represent a neglected
source of variation.

Here, we investigate the mechanism underlying a maternal effect of food on disease
resistance in *Daphnia magna*. In this system, mothers held in poor nutritional conditions
produce fewer offspring that are more resistant (their probability of becoming infected is
lower) to *Pasteuria ramosa*, a bacterial parasite (Mitchell and Read 2005, Ben-Ami et al.
2010, Stjernman and Little 2011). The offspring of poorly-fed mothers are also larger at birth
(Guinnee et al. 2004, 2007, Stjernman and Little 2011, Garbutt et al. 2014) and feed at a
lower rate than the offspring of well-fed mothers (Garbutt and Little 2014). Here, we generate
plausible hypotheses linking these correlated life history traits to changes in susceptibility,
and test which is causal by conducting a large experiment in which we measure susceptibility
and life history traits in individual *Daphnia*.

Our first hypothesis concerns feeding rate: because the offspring of low food mothers have a
reduced feeding rate, and because *P. ramosa* infects via the gut (Ebert et al. 1996, Duneau et
al. 2011), we propose that the lower rate of infection suffered by these *Daphnia* arises
because they ingest fewer spores. Food quantity and quality has been linked with the ability
of *Daphnia dentifera* hosts to resist the fungal pathogen, *Metschnikowia bicuspidata* (Hall et
al. 2009). Our second hypothesis is that offspring quality plays an important role, and in
particular that protection is conferred by the improved general provisioning of the offspring of low food mothers. Because *Daphnia* generally obey a trade-off between offspring size and number (Smith and Fretwell 1974, Guinnee et al. 2004, 2007), it is expected that large individuals are better provisioned, and thus perhaps better at defending themselves against parasites. These two hypothesis highlight the delicate balance for hosts that encounter their parasites whilst feeding: such hosts need to obtain sufficient nutrients for defense (as well as growth and maintenance), but risk infection whilst feeding through the uptake of environmental spores. This trade-off is certainly not restricted to *Daphnia* species, as a diverse range of hosts also encounter their parasites whilst feeding or foraging (Williams and Barker 2001, Fenton et al. 2002, Wobeser 2005).

To test these competing hypotheses we manipulated maternal food availability and then measured body size, feeding rate and susceptibility in each individual offspring to disentangle which factor is most tightly linked with susceptibility. To achieve the power necessary to disentangle these effects, we performed the experiment using a single clone of *Daphnia*, thus minimizing any variation in susceptibility arising from genetic differences.
Methods

Organisms

The pathogen *Pasteuria ramosa* is a spore-forming bacterium whose main fitness effect is to cause sterilisation in hosts (Ebert et al. 1996). The host *Daphnia magna* (Crustacea: Cladocera) is a planktonic crustacean commonly found in small freshwater ponds. In this study we used clone Kc49a, a genotype from the Kaimes pond near Leitholm in the Scottish Borders. A previous study of 24 genotypes from this population (Stjernman and Little 2011) demonstrated, despite substantial genetic variation, that the average effect is for lower infection levels after maternal food restriction. We specifically focused the current experiments on clone Kc49a because this clone exhibits the phenotype we know to be typical of this population, i.e. that low maternal food raises the resistance of offspring (Stjernman and Little 2011). By removing genetic effects from the equation, a single-clone experiment offers a simplified, powerful test of what is possible in this system (see Little and Colegrave 2106 for discussion), and because we have chosen a clone that shows the typical response of all genotypes in this population, our experiment reveals what is probable for this population.

The *P. ramosa* isolate we used (called Kaimes 1) was isolated from sediment samples in the same location. Horizontal transmission of *P. ramosa* is achieved when spores are released from dead hosts and picked up by filter feeding *Daphnia* (Ebert et al. 1996). Vertical transmission has never been observed. Infections are easy to diagnose with the naked eye: *Daphnia* have a clear carapace and reddish-brown bacterial growth is visible in the hemolymph.
Acclimation

In this experiment, mothers (the F₀ generation) were raised under either high or low food and body size, feeding rate and parasite susceptibility were measured in their offspring (the F₁ generation). Initially, 180 replicates, each an individual *Daphnia* in a 60 ml media-filled glass jar, were acclimatised for three generations under standardised conditions at a light:dark cycle of 12:12 L:D in controlled climate chambers at 20°C. *Daphnia* were kept in synthetic pond medium (Klüttgen et al. 1994), and were fed on *Chlorella* spp, a green algae cultured in chemostats with Chu B medium. Food quantity during this period was 1 density unit/jar/day (one density unit is the optical density of 650 nm white light by the *Chlorella* culture, which represents about 5×10⁶ algal cells). Media was changed when offspring were observed in the jar, or, if none were present, every third day. Acclimating all replicates for three generations is a process designed to equilibrate uncontrolled maternal effects and ensure that each replicate is independent [see Ebert et al. (1998)].

Maternal (F₀) generation

From the second clutch of the third acclimatizing generation, we took two offspring from each replicate and assigned them to two maternal (F₀) food treatments (high food – 1.0 density units per jar day⁻¹ and low food – 0.3 density units per jar day⁻¹). Thus, at this stage of the experiment there were 360 jars. Media was changed twice a week and when offspring were present. From the second clutch of the maternal (F₀) generation, we took one offspring from each replicate jar to set up the (F₁) offspring.

Offspring (F₁) generation

We measured the body size, feeding rate and susceptibility of each F₁ *Daphnia*. For body size measurements, *Daphnia* were photographed on their day of birth with an Olympus D20.
digital camera attached to a stereoscope. These pictures were later used for measurement of
body length, which was taken from the centre of the eye to the base of the tail spine in ImageJ
v1.46r (http://rsbweb.nih.gov/ij/) in pixels and subsequently translated into millimetres.

Immediately following photography, we measured the feeding rate of each *Daphnia* by
determining how quickly they filter algae from the water column based on changes in optical
density as described in Garbutt and Little (2014). For this, the *Daphnia* were placed
individually in the well of a 24 well plate (Costar Corning, NY). Excess media was removed
and 2 ml media containing 1.0 density units *Chlorella* algae added to each well. Six control
wells per plate did not contain any *Daphnia*. The plates were incubated for 24 hours (so from
day 0 – day 1) at a light/dark cycle of 12 : 12 L : D in controlled climate chambers at 20 °C.
Following this incubation period the contents of each well were mixed by pipetting and three
aliquots of 200 µl removed to the wells of a 96 well plate (Costar Corning, NY). The optical
density of 650 nm white light by each well was determined using a plate-reading
spectrophotometer (BioTek) and the mean calculated for the three replicate wells. Clearance
rate (feeding rate) for each *Daphnia* was calculated by subtracting this mean value from the
mean optical density of the six plate controls.

Pathogen exposure occurred immediately after the measurement of feeding rate (and
therefore exposures started on day 1). *Daphnia* were removed from the feeding rate assay and
placed individually in jars with sand and inoculated with 50,000 *P. ramosa* transmission
spores per jar. *Daphnia* were exposed for 7 days: during this period media was not changed
and individuals were fed daily 1.0 density units/jar. At the end of the seven day exposure
period *Daphnia* were transferred into new jars with fresh media; for the remainder of the
experiment media was changed every third day and when offspring were present. The feeding
regime remained the same (i.e. 1.0 density units/jar daily). We observed the F1 Daphnia until
day 37, at which point infections could be confirmed visually by observing the symptoms of
P. ramosa infection (lack of eggs in the brood chamber and reddish colour). At the end of the
37 day observation period we recorded whether each host was infected or not.

Analysis

We first constructed simple models with maternal food as the sole explanatory variable to test
the effect of food treatment on feeding rate, body size and the likelihood of becoming
infected. Feeding rate and body size are continuous variables and were analysed in a linear
model. Infection status is a binary response variable and was analysed in a generalised linear
model (link = logit, dist = binary). These analyses were performed in JMP® Version 10.00
(SAS Institute Inc).

Next we used path analysis to examine the relationship(s) between maternal food, feeding
rate, body size and the probability of becoming infected. Initially, a full model was fitted
including all possible relationships between all four variables, and this was simplified by
removing the least significant term until only significant paths remained. Initially, we did not
include a path from feeding rate to body size because we measured body size at birth and
feeding rate the day after, and so feeding rate could not influence body size. Because
infection status and maternal food were binary variables (infected or not; high or low food)
we recoded them as ordinal variables (0/1) and specified infection status (which, unlike
maternal food, is a response or “endogenous” variable) as an ordered variable using the
“ordered” function.
All path analyses were conducted using the ‘lavaan’ package (SEM function) in R (Rosseel 2012). Model fit was indicated by a Comparative Fit Index (CFI), and the strength of each path was assessed by comparing standardised path coefficients. Higher absolute values of path coefficients indicate a more parsimonious path, and indirect paths were calculated by multiplying the coefficients. When there was more than one significant path between two variables the net effect was calculated by summing the path coefficients of all paths. Because the models contain categorical variables, care must be taken in interpreting the direction of relationships from the path coefficients. Our coding of these variables means that a positive coefficient results if low maternal food positively affects a continuous variable and if a continuous variable increases the probability of becoming infected.

To plot infection risk against body size and feeding rate, we used generalised linear models (link = logit, dist = binary) with body size and feeding rate as explanatory variables, and plotted the values predicted by the model. We also analysed feeding rate in a linear model with body size as the sole explanatory variable to obtain an estimate of the strength of the relationship between these two continuous variables (R^2).
Results

Maternal food influenced body size at birth, feeding rate and the probability of becoming infected when each was analysed separately (Table 1, Figure 1): the offspring of food-restricted mothers were less likely to become infected, were larger at birth and had a lower feeding rate than the offspring of well-fed mothers.

The only insignificant path removed from the path model was that from maternal food to infection status (p=0.55, path coefficient=-0.060, standard error=0.210, final CFI: 1.00). Path analysis revealed a slightly complex relationship between maternal food and feeding rate: maternal food affected feeding rate both directly, with the offspring of low food mothers feeding more slowly (Figure 2; Table 2; path coefficient -0.289), and indirectly via body size, with the offspring of low food mothers being larger and larger individuals feeding more rapidly (Figure 2; Figure 3a; Table 2; path coefficient 0.668 x 0.272 = 0.182). These opposing effects drive the observed overall effect that the offspring of low food mothers feed slowly (see Fig. 1c), because the direct effect is stronger than the indirect effect (sum of path coefficients -0.289 + 0.182= -0.107). In other words the reduction in feeding rate from being born to a low food mother is not entirely compensated for by the increase in feeding rate from being born larger. Importantly, the relationship between body size and feeding rate is not tight (Figure 3; linear model of feeding rate, with body size and maternal food as explanatory variables; R² = 0.047), which means we are able to distinguish between the effects of each variable on infection status.

Indeed, our primary interest was in identifying the likeliest path from maternal food to infection status. Infection status was affected by body size, with larger individuals being less likely to become infected (Figure 2, Figure 3b). There was also a trend (p = 0.053) that
infection status was affected by feeding rate, with fast-feeding individuals less likely to become infected (Figure 2, Figure 3c). Only the path via body size can explain the link between maternal food and feeding rate, as the larger-at-birth individuals from low food mothers are less likely to become infected (path coefficient $0.668 \times -0.350 = -0.234$). Whilst feeding rate does perhaps affect susceptibility (and we recognise that we may have had less power to detect relationships with feeding rate because estimates of feeding rate were more variable than the estimates of body size), it cannot be responsible for the link between maternal food and feeding rate, because the trend is that the slow-feeding offspring of low food mothers are more likely to become infected.

Discussion

Daphnia magna mothers held in poor nutritional conditions produce offspring that are less likely to become infected with the bacterial parasite, *P. ramosa* (Figure 1a and Mitchell and Read 2005, Stjernman and Little 2011, Garbutt et al. 2014). Maternal food also affects offspring size at birth (Figure 1b and Guinnee et al. 2004, 2007, Stjernman and Little 2011, Garbutt et al. 2014), and feeding rate (Figure 1c and Garbutt and Little 2014). Our goal here was to disentangle which of these maternally-determined traits is most tightly linked to changes in susceptibility. Maternal food most strongly affects offspring susceptibility to infection via changes in offspring body size (Figure 2; Figure 3b). Although there was a trend that feeding rate also affected susceptibility, this cannot explain the link between maternal food and susceptibility because it acts in the opposite direction (the trend is that the slow-feeding offspring of low food mothers are more likely to become infected; Figure 2; Figure 3c).

These findings support the life-history theory prediction (Smith and Fretwell 1974, Parker and Begon 1986, Godfray 1987, Lloyd 1987, Wilson and Lessells 1994) that larger,
better-provisioned offspring generally perform better. Because immune defenses are costly (Moret and Schmid-Hempel 2000), larger individuals that have greater access to resources because of their size may be able to launch and sustain stronger defenses. Future experiments can explore whether enhanced immune competence is related to particular maternal provisions [for instance polyunsaturated fatty acids (Wacker and Martin-Creuzburg 2007, Schlotz et al. 2012)]. Body size at birth has previously been shown to account for variation in many life history traits in *D. magna* (Ebert 1991); our results now expand this to show that it is also an important determinant of susceptibility. Variation in body size at birth might also explain other environmental maternal effects. In particular, body size might link maternal temperature with offspring disease resistance in *Daphnia*, since the more resistant offspring of mothers held at higher temperatures are also larger at birth (Garbutt et al. 2014).

That low maternal food causes altered disease resistance through an increase in offspring body size suggests that this maternal effect is not a specific adaptation to parasite resistance, but instead a general stress response. A key expectation of this theory is that the offspring of low food mothers will perform better in a number of stressful environments. There is some evidence that offspring of low food mothers (Gliwicz and Guisande 1992, Gorbi et al. 2011), and larger offspring (Tessier et al. 1983), are more starvation resistant, but further experiments are needed to characterize the stress-resistance of the offspring of food-restricted mothers.

Our results shed light on the relationship between feeding rate and susceptibility. Contrary to our expectation that fast-feeding *Daphnia* should consume more spores and so be more susceptible to infection, *Daphnia* that feed faster were, if anything, less likely to become infected in our study. Perhaps fast feeding is beneficial in some circumstances, despite the likely higher spore intake, because fast-feeding *Daphnia* are able to use the extra resources collected by feeding quickly to fight infection? This result complements our finding
that larger *Daphnia* are less likely to become infected: both results seem to show that

Daphnia who have access to more resources (either because they are larger at birth or feed faster) are better able to resist infection. The opposite expectation, that larger individuals feed faster, take up more spores, and are thus more susceptible to infection, has been used to explain why larger *D. dentifera* hosts are more likely to become infected with the fungus *Metschnikowia bicuspidata* (Hall et al. 2007). This discrepancy might arise because the two studies looked at different life stages (adult *D. dentifera* and juvenile *D. magna*), though presently we do not have the data to test this.

Our aim in this study was to identify the mechanism by which low food triggers mothers to produce offspring that are more resistant to a bacterial pathogen (Mitchell and Read 2005, Ben-Ami et al. 2010, Stjernman and Little 2011). Resistant offspring from low food mothers was the typical response across a large number of genotypes from a single *Daphnia* population, though not all genotypes respond identically (Stjernman and Little 2011). In our study we focused on a clone that displayed this average response of its population to understand the mechanism behind the maternal effect for the majority of clones in the population. The choice of a single clone is a compromise between measuring genetic diversity and gaining power to elucidate mechanism. It is of course of interest to speculate how body size will relate to infection risk for clones that do not show the average pattern and future experiments will expand upon the groundwork laid presently.

By showing that body size is an important determinant of susceptibility, our study also highlights a broad mechanism by which ecological and genetic factors can affect susceptibility and disease spread in populations. In addition to maternal food, *Daphnia* body size is determined by a number of factors (e.g. genetics, predator cues, clutch position), and these factors also have the potential to affect susceptibility through their effect on size. Body size effects might explain the variation in infection levels observed amongst *Daphnia*
genotypes (Stjernman and Little 2011) as well as providing a mechanistic link for phenomena such as the interplay between predator and parasite defence (Bertram et al. 2013). Anything that changes the size-structure of populations, like size-selective predation (Galbraith 1967, Gibson 1980, Riessen and Young 2005), also has the potential to influence disease resistance.

Acknowledgments

This work was supported by the Natural Environment Research Council (NE/I026405/1).

Appendices

The data supporting this article has been uploaded in the Ecological Archives.

References

Ben-Ami, F., D. Ebert, and R. R. Regoes. 2010. Pathogen dose infectivity curves as a method to analyze the distribution of host susceptibility: a quantitative assessment of maternal effects after food stress and pathogen exposure. The American naturalist 175:106–115.

Auld, S. K. J. R., S. R. Hall, and M. A. Duffy. 2012. Epidemiology of a Daphnia-Multiparasite System and Its Implications for the Red Queen. PLoS ONE 7:e39564.

Auld, S. K. J. R., S. R. Hall, J. H. Ochs, Mathew Sebastian, and M. A. Duffy. 2014. Predators and Patterns of Within-Host Growth Can Mediate Both Among-Host Competition and Evolution of Transmission Potential of Parasites. The American Naturalist 184:S77–S90.

Bertram, C. R., M. Pinkowski, S. R. Hall, M. A. Duffy, and C. E. Cáceres. 2013. Trait-mediated indirect effects, predators, and disease: test of a size-based model.

Oecologia 173:1023–1032.
Boots, M., and K. E. Roberts. 2012. Maternal effects in disease resistance: poor maternal environment increases offspring resistance to an insect virus. Proceedings of the Royal Society B: Biological Sciences 279:4009–4014.

Brinkhof, M. W. G., P. Heeb, M. Kölliker, and H. Richner. 1999. Immunocompetence of nestling great tits in relation to rearing environment and parentage. Proceedings of the Royal Society of London. Series B: Biological Sciences 266:2315–2322.

Cheverud, J. M., and A. J. Moore. 1994. Quantitative genetics and the role of the environment provided by relatives in behavioral evolution. (C. R. B. Boake, Ed.).

Duneau, D., P. Luijckx, F. Ben-Ami, C. Laforsch, and D. Ebert. 2011. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions. BMC Biology 9:11.

Ebert, D. 1991. The Effect of Size at Birth, Maturation Threshold and Genetic Differences on the Life-History of Daphnia magna. Oecologia 86:243–250.

Ebert, D., P. Rainey, T. M. Embley, D. Scholz, D. Ebert, P. Rainey, T. M. Embley, and D. Scholz. 1996. Development, Life Cycle, Ultrastructure and Phylogenetic Position of Pasteuria Ramosa Metchnikoff 1888: Rediscovery of an Obligate Endoparasite of Daphnia Magna Straus. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351:1689–1701.

Ebert, D., C. D. Zschokke-Rohringer, and H. J. Carius. 1998. Within–and Between–Population Variation for Resistance of Daphnia Magna to the Bacterial Endoparasite Pasteuria Ramosa. Proceedings of the Royal Society of London. Series B: Biological Sciences 265:2127–2134.

Fenton, A., J. P. Fairbairn, R. Norman, and P. J. Hudson. 2002. Parasite transmission: reconciling theory and reality. Journal of Animal Ecology 71:893–905.
17

Galbraith, M. G. 1967. Size-selective Predation on Daphnia by Rainbow Trout and Yellow Perch. Transactions of the American Fisheries Society 96:1–10.

Garbutt, J. S., and T. J. Little. 2014. Maternal food quantity affects offspring feeding rate in Daphnia magna. Biology Letters 10:20140356.

Garbutt, J. S., J. A. Scholefield, P. F. Vale, and T. J. Little. 2014. Elevated maternal temperature enhances offspring disease resistance in Daphnia magna. Functional Ecology 28:424–431.

Gasparini, J., T. Boulinier, V. A. Gill, D. Gil, S. A. Hatch, and A. Roulin. 2007. Food availability affects the maternal transfer of androgens and antibodies into eggs of a colonial seabird. Journal of Evolutionary Biology 20:874–880.

Gibbs, M., C. J. Breuker, H. Hesketh, R. S. Hails, and H. Van Dyck. 2010. Maternal effects, flight versus fecundity trade-offs, and offspring immune defence in the Speckled Wood butterfly, Pararge aegeria. BMC Evolutionary Biology 10.

Gibson, R. M. 1980. Optimal Prey-size Selection by Three-spined Sticklebacks (Gasterosteus aculeatus): A Test of the Apparent-size Hypothesis. Zeitschrift für Tierpsychologie 52:291–307.

Gliwicz, Z. M., and C. Guisande. 1992. Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oecologia 91:463–467.

Godfray, H. C. J. 1987. The Evolution of Clutch Size in Parasitic Wasps. The American Naturalist 129:221–233.

Gorbi, G., F. Moroni, S. Sei, and V. Rossi. 2011. Anticipatory maternal effects in two different clones of Daphnia magna in response to food shortage. Journal of Limnology 70:222–230.
Grünzweig, J. M. 2011. Potential maternal effects of elevated atmospheric CO2 on development and disease severity in a Mediterranean legume. Frontiers in Functional Plant Ecology 2:30.

Guinnee, M. A., A. Gardner, A. E. Howard, S. A. West, and T. J. Little. 2007. The causes and consequences of variation in offspring size: a case study using Daphnia. Journal of Evolutionary Biology 20:577–587.

Guinnee, M. A., S. A. West, and T. J. Little. 2004. Testing small clutch size models with Daphnia. The American Naturalist 163:880–887.

Hall, S. R., C. J. Knight, C. R. Becker, M. A. Duffy, A. J. Tessier, and C. E. Cáceres. 2009. Quality matters: resource quality for hosts and the timing of epidemics. Ecology Letters 12:118–128.

Hall, S. R., L. Sivars-Becker, C. Becker, M. A. Duffy, A. J. Tessier, and C. E. Cáceres. 2007. Eating yourself sick: transmission of disease as a function of foraging ecology. Ecology Letters 10:207–218.

Hasselquist, D., and J.-A. Nilsson. 2009. Maternal transfer of antibodies in vertebrates: transgenerational effects on offspring immunity. Philosophical Transactions of the Royal Society B-Biological Sciences 364:51–60.

Holeski, L. M., G. Jander, and A. A. Agrawal. 2012. Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology & Evolution 27:618–626.

Huang, C. C., and Y. L. Song. 1999. Maternal transmission of immunity to white spot syndrome associated virus (WSSV) in shrimp (Penaeus monodon). Developmental and Comparative Immunology 23:545–552.

Kirkpatrick, M., and R. Lande. 1989. The Evolution of Maternal Characters. Evolution 43:485–503.
Klasing, K. C. 1998. Nutritional modulation of resistance to infectious diseases. Poultry Science 77:1119–1125.

Klüttgen, B., U. Dülmer, M. Engels, and H. Ratte. 1994. ADaM, an artificial freshwater for the culture of zooplankton. Water Research 28:743–746.

Little, T. J., B. O’Connor, N. Colegrave, K. Watt, and A. F. Read. 2003. Maternal Transfer of Strain-Specific Immunity in an Invertebrate. Current Biology 13:489–492.

Little, T.J., and Colegrave, N. (2016). Caging and Uncaging Genetics. Plos Biology 14(7): e1002525. doi:10.1371/journal.pbio.1002525

Lloyd, D. G. 1987. Selection of Offspring Size at Independence and Other Size-Versus-Number Strategies. The American Naturalist 129:800–817.

Lorenz, L. M., and J. C. Koella. 2011. Maternal environment shapes the life history and susceptibility to malaria of Anopheles gambiae mosquitoes. Malaria Journal 10.

Ma, G., H. Roberts, M. Sarjan, N. Featherstone, J. Lahnstein, R. Akhurst, and O. Schmidt. 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochemistry and Molecular Biology 35:729–739.

Miller, G. A., J. K. Pell, and S. J. Simpson. 2009. Crowded locusts produce hatchlings vulnerable to fungal attack. Biology Letters 5:845–848.

Mitchell, S. E., and A. F. Read. 2005. Poor maternal environment enhances offspring disease resistance in an invertebrate. Proceedings of the Royal Society B: Biological Sciences 272:2601–2607.

Moret, Y., and P. Schmid-Hempel. 2000. Survival for Immunity: The Price of Immune System Activation for Bumblebee Workers. Science 290:1166–1168.

Mousseau, T. A., and C. W. Fox. 1998a. Maternal Effects As Adaptations. Oxford University Press.
Mousseau, T. A., and C. W. Fox. 1998b. The adaptive significance of maternal effects. Trends in Ecology & Evolution 13:403–407.

Parker, G. A., and M. Begon. 1986. Optimal Egg Size and Clutch Size: Effects of Environment and Maternal Phenotype. The American Naturalist 128:573–592.

Rahman, M. M., H. L. S. Roberts, M. Sarjan, S. Asgari, and O. Schmidt. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proceedings of the National Academy of Sciences of the United States of America 101:2696–2699.

Riessen, H. P., and J. D. Young. 2005. Daphnia defense strategies in fishless lakes and ponds: one size does not fit all. Journal of Plankton Research 27:531–544.

Rosseel, Y. 2012. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software 48:1–36.

Roth, O., G. Joop, H. Eggert, J. Hilbert, J. Daniel, P. Schmid-Hempel, and J. Kurtz. 2010. Paternally derived immune priming for offspring in the red flour beetle, Tribolium castaneum. Journal of Animal Ecology 79:403–413.

Schlotz, N., J. G. Sørensen, and D. Martin-Creuzburg. 2012. The potential of dietary polyunsaturated fatty acids to modulate eicosanoid synthesis and reproduction in Daphnia magna: A gene expression approach. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 162:449–454.

Smith, C. C., and S. D. Fretwell. 1974. The Optimal Balance between Size and Number of Offspring. The American Naturalist 108:499–506.

Stjernman, M., and T. J. Little. 2011. Genetic variation for maternal effects on parasite susceptibility. Journal of Evolutionary Biology 24:2357–2363.

Tella, J. L., G. R. Bortolotti, R. D. Dawson, and M. G. Forero. 2000. The T–cell–mediated immune response and return rate of fledgling American kestrels are positively
correlated with parental clutch size. Proceedings of the Royal Society of London. Series B: Biological Sciences 267:891–895.

Tessier, A. J., L. L. Henry, C. E. Goulden, and M. W. Durand. 1983. Starvation in Daphnia: energy reserves and reproductive allocations. Limnology and Oceanography 28:667–676.

Tidbury, H. J., A. B. Pedersen, and M. Boots. 2011. Within and transgenerational immune priming in an insect to a DNA virus. Proceedings. Biological Sciences / The Royal Society 278:871–876.

Triggs, A. M., and R. J. Knell. 2012. Parental diet has strong transgenerational effects on offspring immunity. Functional Ecology 26:1409–1417.

Wacker, A., and D. Martin-Creuzburg. 2007. Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Functional Ecology 21:738–747.

Wade, M. J. 1998. The evolutionary genetics of maternal effects. Pages 5–21 in T. A. Mousseau and C. W. Fox, editors. Maternal Effects As Adaptations. Oxford University Press.

Williams, E. S., and I. K. Barker, editors. 2001. Frontmatter. Pages i–x Infectious Diseases of Wild Mammals. Iowa State University Press.

Wilson, K., and C. M. Lessells. 1994. Evolution of clutch size in insects. I. A review of static optimality models. Journal of Evolutionary Biology 7:339–363.

Wober, G. A. 2005. Essentials of Disease in Wild Animals. 1 edition. John Wiley & Sons, Ames, Iowa.

Wolf, J. B., E. D. Brodie III, J. M. Cheverud, A. J. Moore, and M. J. Wade. 1998. Evolutionary consequences of indirect genetic effects. Trends in Ecology & Evolution 13:64–69.
Wolf, J. B., and M. J. Wade. 2009. What are maternal effects (and what are they not)?

Philosophical Transactions of the Royal Society B: Biological Sciences 364:1107–1115.
Table 1 Output of simple models with maternal food as the sole explanatory variable. Results from general linear models (body size and feeding rate; F test statistic) and generalized linear model (probability of infection; χ^2 test statistic).

response	effect	d.f.	F/χ^2	p
probability of becoming infected	maternal food	1	10.45	0.0012
body size	maternal food	1, 332	260.54	<0.0001
feeding rate	maternal food	1, 332	4.09	0.044
Table 2: Path analysis of potential routes from maternal food to infection status. The standardized path coefficients, the standard error of the coefficient and the p value for each path in the analysis.

Path	Coefficient	Standard error	p
Maternal food -> feeding rate	-0.289	0.137	<0.0001
Maternal food -> body size	0.668	0.086	<0.0001
Body size -> feeding rate	0.272	0.064	<0.0001
Body size -> infection status	-0.350	0.077	<0.0001
Feeding rate -> infection status	-0.144	0.076	0.053

Excluded paths

Path	Coefficient	Standard error	p
Maternal food -> infection status	-0.060	0.210	0.412
Figure 1: Maternal food and offspring phenotype. Maternal food (high food – H; low food – L) affects offspring (a) disease resistance (proportion of Daphnia that became infected with *P. ramosa*), (b) body size at birth (mean ± SE) and (c) feeding rate (mean ± SE).

Figure 2: Path analysis of routes linking maternal food with the probability of becoming infected following exposure to *P. ramosa*. Minimal path model with path coefficients, standard error (in brackets) and p-values shown next to each significant path.

Figure 3: Relationship between body size, feeding rate and the probability of becoming infected. (a) Feeding rate and body size in the offspring of high food (black circles, black line) and low food (grey triangles, dashed line) mothers. (b) and (c) Probability of becoming infected as predicted by a general linear model with body size and feeding rate as explanatory variables.
Figure 2

![Diagram showing the relationship between feeding rate, maternal food, body size, and infection status with statistical values.]

-0.289 (0.137) p<0.0001
0.668 (0.086) p<0.0001
0.272 (0.064) p<0.0001
-0.144 (0.076) p=0.053
-0.350 (0.077) p<0.0001

Figure 3

![Graphs showing the relationship between feeding rate, body size at birth, and probability of becoming infected.](a) (b) (c)