EXISTENCE OF NONTRIVIAL SOLUTIONS TO CHERN-SIMONS-SCHRÖDINGER SYSTEM WITH INDEFINITE POTENTIAL

JINCAI KANG AND CHUNLEI TANG*
School of Mathematics and Statistics
Southwest University
Chongqing 400715, China

Abstract. We consider a class of Chern-Simons-Schrödinger system

\[
\begin{align*}
-\Delta u + V(x)u + A_0 u + \sum_{j=1}^{2} A_j^2 u &= g(u), \\
\partial_1 A_0 &= A_2 |u|^2, \quad \partial_2 A_0 = -A_1 |u|^2, \\
\partial_1 A_2 - \partial_2 A_1 &= -\frac{1}{2} u^2, \quad \partial_1 A_1 + \partial_2 A_2 = 0,
\end{align*}
\]

where \(V \) is coercive sign-changing potential and \(g \) satisfies some suitable conditions. Due to lack of the mountain pass geometry and the link geometry for the corresponding variational functional, we obtain the existence of nontrivial solutions via the local link theorem.

1. Introduction and main result. In this paper, we are interested in the following Chern-Simons-Schrödinger system in \(H^1(\mathbb{R}^2) \)

\[
\begin{align*}
-\Delta u + V(x)u + A_0 u + \sum_{j=1}^{2} A_j^2 u &= g(u), \\
\partial_1 A_0 &= A_2 |u|^2, \quad \partial_2 A_0 = -A_1 |u|^2, \\
\partial_1 A_2 - \partial_2 A_1 &= -\frac{1}{2} u^2, \quad \partial_1 A_1 + \partial_2 A_2 = 0,
\end{align*}
\]

where \(V(x) \) is sign-changing and \(g \) is 5-superlinear at infinity. System (1) derives from studying the standing wave solutions of the following nonlinear Schrödinger system

\[
\begin{align*}
(iD_0 \phi + (D_1 D_1 + D_2 D_2) \phi + g(\phi) &= 0, \\
\partial_0 A_1 - \partial_1 A_0 &= -\text{Im} (\bar{\phi} D_2 \phi), \\
\partial_0 A_2 - \partial_2 A_0 &= -\text{Im} (\bar{\phi} D_1 \phi), \\
\partial_1 A_2 - \partial_2 A_1 &= -\frac{1}{2} |\phi|^2,
\end{align*}
\]

where \(i \) denotes the imaginary unit, \(\partial_0 = \frac{\partial}{\partial t} \), \(\partial_1 = \frac{\partial}{\partial x_1} \), \(\partial_2 = \frac{\partial}{\partial x_2} \) for \((t, x_1, x_2) \in \mathbb{R}^{1+2}, \phi : \mathbb{R}^{1+2} \to \mathbb{C}\) denotes the complex scalar field, \(A_\nu : \mathbb{R}^{1+2} \to \mathbb{R}\) denotes the gauge field and \(D_\nu = \partial_\nu + i A_\nu \) denotes the covariant derivative for \(\nu = 0, 1, 2 \).

2020 Mathematics Subject Classification. Primary: 35J20; Secondary: 35J91, 35D30.

Key words and phrases. Chern-Simons-Schrödinger system, indefinite potential, variational methods, local link theorem, nontrivial solutions.

This work is supported by National Natural Science Foundation of China (No. 11971393).

* Corresponding author: Chunlei Tang.
System (2) consists of Schrödinger equations augmented by the gauge field, which was firstly proposed in [12, 13], where system (2) is usually called Chern-Simons-Schrödinger system. The two-dimensional Chern-Simons-Schrödinger system describes an external uniform magnetic field which is of great phenomenological interest for applications of Chern-Simons theory to the quantum Hall effect. For more physical backgrounds of system (2), we refer readers to [11, 23, 24, 25].

Let $A_{\nu}(x, t) = A_{\nu}(x), \nu = 0, 1, 2$. Also, if we assume that the standing wave ansatz $\phi = u(x)e^{i\omega t}, g(u)e^{i\omega t} = g(u)e^{i\omega t}, \omega > 0$, system (2) can be simplified as

$$\begin{cases}
-\Delta u + \omega u + A_{0}u + \sum_{j=1}^{2} A_{j}^{2}u = g(u), \\
\partial_{1}A_{0} = A_{2}|u|^{2}, \quad \partial_{2}A_{0} = -A_{1}|u|^{2}, \\
\partial_{1}A_{2} - \partial_{2}A_{1} = -\frac{1}{2}u^{2}, \\
(\partial_{1}A_{1} + \partial_{2}A_{2})u + 2(A_{1}\partial_{1}u + A_{2}\partial_{2}u) = 0.
\end{cases} \tag{3}$$

If the Coulomb gauge condition $\partial_{0}A_{0} + \partial_{1}A_{1} + \partial_{2}A_{2} = 0$ hold. Then we deduce that $A_{1}\partial_{1}u + A_{2}\partial_{2}u = 0$ and system (3) can be rewritten as

$$\begin{cases}
-\Delta u + \omega u + A_{0}u + \sum_{j=1}^{2} A_{j}^{2}u = g(u), \\
\partial_{1}A_{0} = A_{2}|u|^{2}, \quad \partial_{2}A_{0} = -A_{1}|u|^{2}, \\
\partial_{1}A_{2} - \partial_{2}A_{1} = -\frac{1}{2}u^{2}, \quad \partial_{1}A_{1} + \partial_{2}A_{2} = 0.
\end{cases} \tag{4}$$

Here the components A_{1} and A_{2} in system (4) can be represented by solving the elliptic equation

$$\Delta A_{1} = \partial_{2}(\frac{|u|^{2}}{2}) \quad \text{and} \quad \Delta A_{2} = -\partial_{1}(\frac{|u|^{2}}{2}),$$

which provide

$$A_{1} = A_{1}[u](x) = \frac{x_{2}}{2\pi|x|^{2}} \ast \left(\frac{|u|^{2}}{2}\right) = \frac{1}{2\pi} \int_{\mathbb{R}^{2}} \frac{x_{2} - y_{2}}{|x - y|^{2}} \frac{|u(y)|^{2}}{2} dy,$$

$$A_{2} = A_{2}[u](x) = -\frac{x_{1}}{2\pi|x|^{2}} \ast \left(\frac{|u|^{2}}{2}\right) = -\frac{1}{2\pi} \int_{\mathbb{R}^{2}} \frac{x_{1} - y_{1}}{|x - y|^{2}} \frac{|u(y)|^{2}}{2} dy,$$

where \ast denotes the convolution. It follows system (4) that

$$\Delta A_{0} = \partial_{1}(A_{2}|u|^{2} - \partial_{2}(A_{1}|u|^{2}),$$

which gives the following representation of the component A_{0}:

$$A_{0} = A_{0}[u](x) = \frac{x_{1}}{2\pi|x|^{2}} \ast (A_{2}|u|^{2}) - \frac{x_{2}}{2\pi|x|^{2}} \ast (A_{1}|u|^{2}).$$

In recent years, many scholars pay attention to system (2) in radial functions space $H_{s}^{1}(\mathbb{R}^{2})$ ($H_{s}^{1}(\mathbb{R}^{2})$ consists of all radial functions in $H^{1}(\mathbb{R}^{2})$). Via the variational method, Byeon, Huh and Seok in [2] first studied the solutions to system (2) of the form

$$\phi(t, x) = u(|x|)e^{i\omega t}, \quad A_{0}(t, |x|) = k(|x|),$$

$$A_{1}(t, x) = \frac{x_{2}}{|x|^{2}}h(|x|), \quad A_{2}(t, x) = -\frac{x_{1}}{|x|^{2}}h(|x|),$$

where $\omega > 0$ and u, k, h are real value functions depending only $|x|$. The existence and nonexistence results on nontrivial radial solutions have been obtained when
\[g(u) = \lambda |u|^{q-2}u, \lambda > 0 \text{ and } q > 2. \]

Later, based on the work of [2], system (2) have been studied by many researchers in radial functions space \(H^1_r(\mathbb{R}^2) \), and they obtained lots of results, see [2, 3, 7, 15, 14, 18, 19, 17, 26, 27, 28, 32] and references therein. After these works, mathematicians also began to consider system (2) in \(H^1(\mathbb{R}^2) \). In this case, system (2) can be transformed into the form of system (4).

As far as we know, for the existence of solutions to system (1) or (4) in \(H^1 \), there are few works presented in [10, 21, 30]. More precisely, Wan and Tan [30] investigated the existence of nontrivial solution for system (4) as \(p > 4 \) by the concentration compactness principle. Moreover, they obtained the same result for system (1) when \(g(u) = |u|^{p-2}u \) with \(p > 4 \) by the concentration compactness principle. Moreover, they obtained the same result for system (1) when \(g(u) = |u|^{p-2}u \) with \(p > 4 \) and \(V(x) \) satisfies \((V_1)\) \(V \in C^1(\mathbb{R}^2), 0 < V_0 := \inf_{x \in \mathbb{R}^2} V(x) < V(x) < V_\infty := \lim \inf_{|x| \to \infty} V(x) \) and \((\nabla V(x), x) \geq 0\) for a.e. \(x \in \mathbb{R}^2 \).

Liang and Zhai [21] got the existence of bound state solution when \(g(u) = |u|^{p-2}u \) with \(p > 4 \) for system (4) under the \(L^2 \)-norm constraint

\[S(c) := \{u \in H^1(\mathbb{R}^2) : \int_{\mathbb{R}^2} u^2 dx = c \}. \]

Gou and Zhang [10] studied the existence and the orbital stability of normalized solutions for system (4) when \(g(u) = |u|^{p-2}u \) with \(p > 2 \). Some results of semiclassical solutions for system (4) can be found in [5, 6, 29]. They considered the following Chern-Simons-Schrödinger system

\[
\begin{cases}
-\varepsilon^2 \Delta u + V(x)u + A_0u + \sum_{j=1}^2 A_j^2 u = g(u), \\
\varepsilon \partial_1 A_0 = A_2|u|^2, \\
\varepsilon \partial_2 A_0 = -A_1|u|^2, \\
\varepsilon (\partial_1 A_2 - \partial_2 A_1) = -\frac{1}{2} u^2, \\
\partial_1 A_1 + \partial_2 A_2 = 0,
\end{cases}
\]

where \(\varepsilon > 0 \) is small. In this sense, system (5) can be viewed as a generalized form of system (4). The solutions of system (5) are called semiclassical states. When \(V \) satisfies

\[(V_2)\] \(V \in C(\mathbb{R}^2), 0 < V_0 := \inf_{x \in \mathbb{R}^2} V(x) < V(x) < V_\infty := \lim \inf_{|x| \to \infty} V(x) \); \n
\[(V_3)\] \(V \in C^1(\mathbb{R}^2), (4\alpha - 2) V(x) + \nabla V(x) \cdot x > 0 \) for all \(x \in \mathbb{R}^2 \), where and in the sequel \(\alpha := \frac{2}{p-2} > 1 \).

Chen et al. [5] obtained the existence and concentration of semiclassical ground state solutions for system (5). Deng et al. [6] studied the existence of multi-peak solutions when \(V \) satisfies

\[(V_4)\] \(V \in C(\mathbb{R}^2), \inf_{x \in \mathbb{R}^2} V(x) > 0 \), and there exist positive constants \(L \) and \(\theta \) such that \(|V(x) - V(y)| \leq L|x - y|^{\theta} \) for all \(x, y \in \mathbb{R}^2 \);

\[(V_5)\] There exist \(\delta > 0 \) and \(x^0 \in \mathbb{R}^2 \) such that \(V(x) < V(x^0) \) for \(x \in B_\delta(x^0) \}\{x^0\} \subset \mathbb{R}^2 \).

Wan and Tan [29] proved the existence and concentration of least energy solution when \(g(u) = |u|^{p-2}u \) with \(p > 6 \) for system (5) and \(V \) satisfies

\[(V_6)\] \(V \in C(\mathbb{R}^2), V_0 := \inf_{x \in \mathbb{R}^2} V(x) < V_\infty := \lim \inf_{|x| \to \infty} V(x) \).

We emphasize that in the above results, the Schrödinger operator \(-\Delta + V \) is positive definite, namely, \(\inf_{x \in \mathbb{R}^2} V > 0 \) holds. A natural question is whether the system (1) has a nontrivial solution when \(V \) is a sign-changing potential and the Schrödinger operator \(-\Delta + V \) is indefinite.

To state our result, we give the following assumptions in this work.
(V) $V \in C(\mathbb{R}^2, \mathbb{R})$ is bounded from below and $\inf \sigma(-\Delta + V) \leq 0$, where $\sigma(-\Delta + V)$ means the spectrum of $-\Delta + V$. Moreover, $|\{V \leq l\}| < \infty$ for all $l \in \mathbb{R}$,

(g_1) $g \in C(\mathbb{R}, \mathbb{R})$, $\lim_{t \to 0} \frac{g(t)}{t} = 0$ and

$$\lim_{|t| \to \infty} e^{\mu t^2} = 0$$

for any $\mu > 0$,

(g_2) There is $b > 0$ such that

$$tg(t) - 6G(t) \geq -bt^2$$

for every $t \in \mathbb{R}$,

where $G(t) := \int_0^t g(\tau)d\tau$,

(g_3) $\lim_{|t| \to \infty} \frac{g(t)}{|t|^2} = +\infty$,

(g_4) Either

(g_{41}) there exist $C_0 > 0$ and $\nu \in (0, 6)$ satisfying

$$G(t) \geq C_0 |t|^{\nu}$$

for all $t \in \mathbb{R}$

or

(g_{42}) for some $\delta > 0$,

$$G(t) \leq 0$$

for all $|t| \leq \delta$.

Our main result is as follows.

Theorem 1.1. Assume that (V) and $(g_1) - (g_3)$ are satisfied. If $0 \in \sigma(-\Delta + V)$, we also assume that (g_4) holds. Then system (1) has at least a nontrivial solution.

Remark 1. To the best of our knowledge, our result for system (1) seems to be the first work to concern indefinite Schrödinger operator $-\Delta + V$. Additionally, there are many functions satisfying $(g_1) - (g_3)$ and (g_{41}) or $(g_1) - (g_3)$ and (g_{42}), for example, $g(t) = 8t^7 + 12t^3$ for every $t \in \mathbb{R}$ or $g(t) = t^7 - t^3$ for all $t \in \mathbb{R}$.

Remark 2. (V) implies that $V(x)$ is coercive sign-changing potential so that the Schrödinger operator $-\Delta + V$ is indefinite. When $\inf_{x \in \mathbb{R}^2} V > 0$, the Schrödinger operator $-\Delta + V$ is positive definite. Clearly, $u = 0$ is a local minimizer for the energy functional Φ (see (8)) of system (1). Besides, Φ satisfied mountain pass geometry when g satisfies (g_3). Hence, it is easy to get the existence of nontrivial solutions by the Mountain Pass Theorem. However, when the Schrödinger operator $-\Delta + V$ is indefinite, the mountain pass geometry is destroyed. For stationary NLS equations $-\Delta u + Vu = g(u)$, the link theorem is usually used to obtain the solutions in this case, see [16, 22]. But, due to the presence of nonlocal term in system (1), the link geometry and the mountain pass geometry does not work, which makes the study of system (1) particularly interesting. In order to overcome this difficulty, we use the local link theorem (see [20]) to obtain nontrivial solutions of system (1). In addition, by (g_1), it is difficult to verify that the Palais-Smale condition and the local link geometry hold. A key inequality, i.e., Trudinger-Moser inequality (see [4, 8]) in this paper can help us to solve this problem.

The rest of this paper is organized as follows. In Section 2, we give some preliminary work. In Section 3, we show some important lemmas and prove Theorem 1.1.
2. Preliminaries. Since \(V(x) \) is bounded from below, there exists \(m > 0 \) satisfying
\[
\tilde{V}(x) := V(x) + m > 1 \quad \text{for all } x \in \mathbb{R}^2.
\]
We introduce the following subspace \(E \) of \(H^1(\mathbb{R}^2) \):
\[
E = \{ u \in H^1(\mathbb{R}^2) : \int_{\mathbb{R}^2} \tilde{V} u^2 dx < +\infty \}.
\]
It is easy to recognize that \(E \) is a Hilbert space with scalar product and norm given by
\[
\langle u, v \rangle = \int_{\mathbb{R}^2} \nabla u \cdot \nabla v + \tilde{V} u v dx \quad \text{and} \quad ||u|| = \sqrt{\langle u, u \rangle}.
\]
By [1], we obtain that the embedding \(E \hookrightarrow L^q(\mathbb{R}^2) \) with \(q \in [2, +\infty) \) is compact. Next, we will give an important inequality, that is, Trudinger-Moser inequality in \(\mathbb{R}^2 \) (see [4, 8]), which is stated as follows:
\[
\int_{\mathbb{R}^2} (e^{\mu |u|^2} - 1) dx < \infty \quad \text{for all } \mu > 0 \text{ and } u \in H^1(\mathbb{R}^2).
\]
Moreover, if \(\mu < 4\pi \) and \(|u|_{L^2(\mathbb{R}^2)} \leq M < \infty \), there exists a constant \(C = C(M, \mu) > 0 \) such that
\[
\sup_{|\nabla u|_{L^2(\mathbb{R}^2)} \leq 1} \int_{\mathbb{R}^2} (e^{\mu |u|^2} - 1) dx \leq C.
\]
Let \(G(t) := \int_0^t g(\tau) d\tau \) be the primitive function of \(g \). Then the energy functional of system (1) is defined as
\[
\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^2} \left(|\nabla u|^2 + V(x)u^2 + A_1^2(u)u^2 + A_2^2(u)u^2 \right) dx - \int_{\mathbb{R}^2} G(u) dx.
\]
Let \(f(t) := g(t) + mt \) and \(F(t) := \int_0^t f(\tau) d\tau \), then the energy functional \(\Phi(u) \) can be rewritten as
\[
\Phi(u) = \frac{1}{2} ||u||^2 + \frac{1}{2} \int_{\mathbb{R}^2} (A_1^2(u)u^2 + A_2^2(u)u^2) dx - \int_{\mathbb{R}^2} F(u) dx.
\]
According to (6), [30, Proposition 2.1] and [31], it is standard to verify that \(\Phi \) is well defined in \(E \) and \(\Phi \in C^1(E, \mathbb{R}) \). Moreover, for any \(u, \varphi \in E \),
\[
\langle \Phi'(u), \varphi \rangle = \langle u, \varphi \rangle + \int_{\mathbb{R}^2} (A_1^2 + A_2^2)u \varphi + A_0 u \varphi dx - \int_{\mathbb{R}^2} f(u) \varphi dx.
\]
Obviously, the critical points of \(\Phi \) are weak solutions of system (1). By simple calculation (also see [5, 30]), we obtain, for any \(u \in E \),
\[
\langle \Phi'(u), u \rangle = ||u||^2 + 3 \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u))u^2 dx - \int_{\mathbb{R}^2} f(u) u dx.
\]
Besides, we give some properties of \(f \). It follows from \((g_1) - (g_3)\) that
\[
\begin{align*}
(f_1) \quad & \lim_{|t| \to 0} \frac{f(t)}{t^2} = \lim_{|t| \to 0} (\frac{t^2}{\theta} \cdot \frac{g(t) + mt}{t^2}) = +\infty, \\
(f_2) \quad & F(t) := \int_0^t f(\tau) d\tau \leq \frac{1}{6} tf(t) + \frac{b}{6} t^2, \text{ where } b = b + 2m > 0, \\
(f_3) \quad & \lim_{|t| \to \infty} \frac{f(t)}{t^2} = +\infty.
\end{align*}
\]
We can see that \(\Phi \) does not satisfy the mountain pass geometry, because the last term of \(\Phi \) is not \(o(|u|^2) \) as \(||u|| \to 0 \). Since the compactness of \(E \hookrightarrow L^2(\mathbb{R}^2) \), we obtain that the bilinear form

\[
Q(u, v) = \frac{1}{2} \int_{\mathbb{R}^2} \nabla u \cdot \nabla v + Vuvdx
\]

for all \(u, v \in E \), is essentially selfadjoint (by Kato’s criterion), semibounded from below on \(E \subseteq L^2(\mathbb{R}^2) \) and the spectrum of the corresponding Schrödinger operator \(\sigma(\Delta + V) \) is discrete (with finite multiplicity) and bounded from below. We consider the case of \(0 \in \sigma(\Delta + V) \), because the case of \(0 \not\in \sigma(\Delta + V) \) is similar. If \((V) \) and \((g_{41}) \) hold, let \(E^+ \) be the space spanned by the eigenfunctions corresponding to positive eigenvalues of \(-\Delta + V \) and \(E^- = (E^+)^\perp \). Hence,

\[
E = E^- \oplus E^+ \quad \text{and} \quad \dim E^- < +\infty.
\]

Decompose \(E^- \) into \(Z + W \) where \(Z = \ker(-\Delta + V), W = (E^+ + Z)^\perp \). Then, there is a constant \(\kappa > 0 \) such that

\[
Q(u, u) \geq \kappa ||u||^2 \quad \text{for all} \quad u \in E^+,
\]

\[
Q(u, u) \leq -\kappa ||u||^2 \quad \text{for all} \quad u \in W. \tag{12}
\]

Besides, if \((V) \) and \((g_{42}) \) hold, let \(E^2 \) be the space spanned by the eigenfunctions corresponding to negative eigenvalues of \(-\Delta + V \) and \(E^1 = (E^2)^\perp \). Hence,

\[
E = E^1 \oplus E^2 \quad \text{and} \quad \dim E^2 < +\infty.
\]

Decompose \(E^1 \) into \(Z + \tilde{W} \) where \(Z = \ker(-\Delta + V), \tilde{W} = (E^2 + Z)^\perp \). Then, there is a constant \(\gamma > 0 \) such that

\[
Q(u, u) \geq \gamma ||u||^2 \quad \text{for all} \quad u \in \tilde{W},
\]

\[
Q(u, u) \leq -\gamma ||u||^2 \quad \text{for all} \quad u \in E^2. \tag{13}
\]

Due to the existence of nonlocal term in system (1), the link geometry structure of \(\Phi \) may not work. In fact, let \(0 < r < R \) and let \(z \in E^1 \) be such that \(||z|| = r \). Define

\[
N := \{ u \in E^1 : ||u|| = r \},
\]

\[
M := \{ u = y + \lambda z : ||u|| \leq R, \lambda \geq 0, y \in E^2 \},
\]

\[
M_0 := \{ u = y + \lambda z : y \in E^2, ||u|| = R \text{ and } \lambda \geq 0 \text{ or } ||u|| \leq R \text{ and } \lambda = 0 \}.
\]

\(\Phi \) satisfies the link geometry if \(b_1 := \inf_N \Phi > b_2 := \max_{M_0} \Phi \). We can see that, for \(u \in E^2 \),

\[
\Phi(u) = Q(u, u) + \frac{1}{2} \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u))u^2dx - \int_{\mathbb{R}^2} G(u)dx > b_1
\]

may hold for some \(R > r > 0 \) because \(A_1^2(u) + A_2^2(u) \geq 0 \). Therefore, in order to overcome this difficulty and get the critical point of \(\Phi \), we choose the local link theorem [20].

Given a Hilbert space \(X \) with a direct sum decomposition \(X = X^1 \oplus X^2, \Phi \in C^1(X, \mathbb{R}) \) has a local linking at 0 if there holds

\[
\begin{align*}
\Phi(u) &\geq 0, \quad u \in X^1 \text{ and } ||u|| \leq \rho, \\
\Phi(u) &\leq 0, \quad u \in X^2 \text{ and } ||u|| \leq \rho,
\end{align*}
\]

where \(\rho > 0 \) is such that

\[
\int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u))u^2dx > \frac{
ho^2}{2R}.
\]
where $\rho > 0$. Clearly, $u = 0$ is a critical point of Φ. Consider two sequences of subspaces:

$$X_0^2 \subset X_1^2 \subset X_2^2 \subset \cdots \subset X^2,$$

$$X_0^1 \subset X_1^1 \subset X_2^1 \subset \cdots \subset X^1$$

such that

$$X^2 = \bigcup_{n \in \mathbb{N}} X_n^2$$

and

$$X^1 = \bigcup_{n \in \mathbb{N}} X_n^1.$$

For every multi-index $\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$, we set $X_\alpha = X_{\alpha_1}^2 \oplus X_{\alpha_2}^1$ and denote by Φ_α the functional Φ restricted to X_α. We recall that $\alpha \leq \beta \leftrightarrow \alpha_1 \leq \beta_1, \alpha_2 \leq \beta_2$. A sequence $\{\alpha_n\} \subset \mathbb{N}^2$ is admissible if, for every $\alpha \in \mathbb{N}^2$ there is $k \in \mathbb{N}$ such that $n \geq k \Rightarrow \alpha_n \geq \alpha$. Obviously, if α_n is admissible, then any subsequence of α_n is also admissible. In present paper, we choose an Hilbertian basis $\{e_n\}_{n \geq 0}$ for E^+ or E^1 and defined

$$E_n^+ := \text{span}\{e_0, e_1, \ldots, e_n\}, \quad n \in \mathbb{N},$$

$$E_n^- := E^-, \quad n \in \mathbb{N}.$$

or

$$E_n^1 := \text{span}\{e_0, e_1, \ldots, e_n\}, \quad n \in \mathbb{N},$$

$$E_n^2 := E^2, \quad n \in \mathbb{N}.$$

Definition 2.1. ([20]) The functional $\Phi \in C^1(E, \mathbb{R})$ satisfies the $(PS)^*$ condition if every sequence $\{u_{\alpha_n}\}$ such that $\{\alpha_n\}$ is admissible and

$$u_{\alpha_n} \in E_{\alpha_n}, \quad \sup_n \Phi(\alpha_n) < \infty, \quad \Phi'(\alpha_n)(u_{\alpha_n}) \to 0,$$

contains a subsequence which converges to a critical point of Φ.

The following local link theorem can be found in [20, Theorem 2].

Theorem 2.2. Suppose that

(i) $\Phi \in C^1(E, \mathbb{R})$ has a local linking at 0,

(ii) Φ satisfies $(PS)^*$ condition,

(iii) Φ maps bounded sets into bounded sets,

(iv) for every $k \in \mathbb{N}$ and $u \in E^- \oplus E_k^+$ or $u \in E^2 \oplus E_k^1$,

$$\Phi(u) \to -\infty \quad \text{as } ||u|| \to \infty.$$

Then Φ has at least a nontrivial critical points.

3. **Proof of Theorem 1.1.** In present paper, we consider only the case when $0 \in \sigma(-\Delta + V)$. Because the other case ($0 \notin \sigma(-\Delta + V)$) can be studied in a similar way and is simpler. Let $|u|_s := \left(\int_{\mathbb{R}^2} |u|^s dx\right)^{\frac{1}{s}}$ be the norm of the usual Lebesgue space $L^s(\mathbb{R}^2)$ for all $s \in [1, +\infty)$. For all $u \in E$, we set, by the Sobolev embedding theorem,

$$|u|_q \leq S_q ||u|| \quad \text{with } q \in [2, +\infty).$$

From [30, Proposition 2.1], there is a constant $a_1 > 0$ such that

$$0 \leq \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u)) \leq a_1 ||u||^6 \quad \text{for all } u \in H^1(\mathbb{R}^2).$$

Here we state some important inequalities.
Lemma 3.1. (see [9, Lemma 2.2]) If \(\mu > 0 \) and \(s > 1 \), then for all \(\hat{s} > s \), there is \(C > 0 \) such that
\[
(e^{\mu t^2} - 1)^s \leq C(e^{\hat{s} t^2} - 1) \quad \text{for every } t \in \mathbb{R}.
\]

Lemma 3.2. (see [30, Proposition 2.1]) Let \(1 < r < 2 \) and \(\frac{1}{r} - \frac{1}{2} = \frac{1}{2} \). If \(u \in H^1(\mathbb{R}^2) \), then
\[
|A_0(u)|_t \leq C|u|_{2r'}^2 |u|_{1}^2,
\]
\[
|A_1(u)|_t \leq C|u|_{2r'}^2,
\]
where \(i = 1, 2 \).

Lemma 3.3. Suppose that \((V)\) and \((g_1) - (g_3)\) hold. Then \(\Phi \) satisfies the \((PS)^*\) condition.

Proof. Let \(\{u_{\alpha_n}\} \) be satisfying (14), where \(\{\alpha_n\} \) is admissible. We claim that \(\{u_{\alpha_n}\} \) is bounded in \(E \). Assume for contradiction that \(\|u_{\alpha_n}\| \to \infty \) in \(E \). Note that
\[
0 = \left\langle \Phi'_\alpha(u_{\alpha_n}), u_{\alpha_n} \right\rangle = \left\langle \Phi'(u_{\alpha_n}), u_{\alpha_n} \right\rangle.
\]
In view of (9), (11) and (f2), we obtain
\[
6 \cdot \sup_n \Phi(u_{\alpha_n}) + \|u_{\alpha_n}\| \geq 6\Phi(u_{\alpha_n}) - \left\langle \Phi'_\alpha(u_{\alpha_n}), u_{\alpha_n} \right\rangle
\]
\[
= 2\|u_{\alpha_n}\|^2 + \int_{\mathbb{R}^2} f(u_{\alpha_n})u_{\alpha_n} - 6F(u_{\alpha_n})dx
\]
\[
\geq 2\|u_{\alpha_n}\|^2 - \hat{b} \int_{\mathbb{R}^2} u_{\alpha_n}^2 dx.
\]
Set \(v_n = \|u_{\alpha_n}\|^{-1}u_{\alpha_n}, \) by the compactness of \(E \hookrightarrow L^2(\mathbb{R}^2) \), there is \(v \in E \) such that, up to a subsequence,
\[
v_n \to v \quad \text{in } E,
\]
\[
v_n \to v \quad \text{in } L^2(\mathbb{R}^2),
\]
\[
v_n(x) \to v(x) \quad \text{a.e. in } \mathbb{R}^2.
\]
Then, it follows from (16) that, as \(n \to \infty, \)
\[
\hat{b} \int_{\mathbb{R}^2} v^2 dx \geq 2.
\]
Hence, \(v \neq 0 \). Applying (f3), there exists \(T > 0 \) such that
\[
f(t)t > 0 \quad \text{for all } t > T.
\]
For some \(\epsilon > 0 \), let \(\Omega := \{x \in \mathbb{R}^2 : |v(x)| \geq \epsilon\} \). Clearly, \(|\Omega| > 0 \). We can take \(\Omega_0 \subset \Omega \) satisfying \(|\Omega_0| \in (0, +\infty) \). Since \(v_n(x) \to v(x) \) a.e. in \(\Omega_0 \) up to a subsequence, Egorov Theorem implies that there exists \(\Omega_1 \subset \Omega_0 \) such that \(|\Omega_1| > \frac{|\Omega_0|}{2} \) and
\[
v_n(x) \to v(x) \quad \text{as } n \to \infty \text{ uniformly for } x \in \Omega_1.
\]
Notice that \(|v(x)| \geq \epsilon \) for all \(x \in \Omega_1 \). Then, there is \(N_1 \in \mathbb{N}_+ \) such that
\[
|v_n(x)| \geq \frac{\epsilon}{2} \quad \text{for any } n \geq N_1 \text{ uniformly for } x \in \Omega_1.
\]
Further,
\[
u_{\alpha_n}(x) \to \infty \quad \text{as } n \to +\infty \text{ uniformly for } x \in \Omega_1.
\]
Hence, there exists \(N_2 \in \mathbb{N}_+ \) with \(N_2 \geq N_1 \) satisfying
\[
|u_{\alpha_n}(x)| \geq T \quad \text{for all } n \geq N_2 \text{ uniformly for } x \in \Omega_1.
\]
This implies that
\[
f(u_{\alpha_n}(x))u_{\alpha_n}(x) \geq 0 \quad \text{for all } n \geq N_2 \text{ uniformly for } x \in \Omega_1.
\]
Therefore, it follows from \((f_3)\) and the Fatou lemma that
\[
\lim_{n \to \infty} \int_{\Omega_1} \frac{f(u_{\alpha_n}(x))u_{\alpha_n}(x)}{\|u_{\alpha_n}\|_6^6} \, dx = \lim_{n \to \infty} \int_{\Omega_1} \frac{f(u_{\alpha_n}(x))u_{\alpha_n}(x)}{u_{\alpha_n}(x)^6} v_n^6(x) \, dx = +\infty. \tag{17}
\]
In virtue of \((f_1)\) and \((f_3)\), there exists \(\eta > 0 \) such that
\[
f(t) t \geq -\eta t^6 \quad \text{for all } t \in \mathbb{R}.
\]
Then,
\[
\int_{\Omega_1} \frac{f(u_{\alpha_n})u_{\alpha_n}}{\|u_{\alpha_n}\|_6^6} \, dx = \int_{\Omega_1} \frac{f(u_{\alpha_n})u_{\alpha_n}}{u_{\alpha_n}^6} v_n^6 \, dx
\geq -\eta \int_{\Omega_1} v_n^6 \, dx
\geq -\eta \int_{\mathbb{R}^2} v_n^6 \, dx
= -\eta |v_n|_6^6
\geq -\eta S^6_6. \tag{18}
\]
Using \((17)\) and \((18)\), one has
\[
\int_{\mathbb{R}^2} \frac{f(u_{\alpha_n})u_{\alpha_n}}{\|u_{\alpha_n}\|_6^6} \, dx \geq \int_{\Omega_1} \frac{f(u_{\alpha_n})u_{\alpha_n}}{\|u_{\alpha_n}\|_6^6} \, dx - \eta S^6_6 \to +\infty \quad \text{as } n \to \infty. \tag{19}
\]
Hence, by \((15)\) we deduce
\[
3a_1 + 1
\geq \frac{1}{\|u_{\alpha_n}\|_6^6} \left(\|u_{\alpha_n}\|^2 + 3 \int_{\mathbb{R}^2} (A_2^2(u_{\alpha_n}) + A_2^2(u_{\alpha_n})) u_{\alpha_n}^2 \, dx - \langle \Phi'(u_{\alpha_n}), u_{\alpha_n} \rangle \right)
\geq \int_{\mathbb{R}^2} \frac{f(u_{\alpha_n})u_{\alpha_n}}{\|u_{\alpha_n}\|_6^6} \, dx \to +\infty \quad \text{as } n \to \infty,
\]
which is absurd. Therefore, \(\{u_{\alpha_n}\} \) is bounded in \(E \). So we can assume that there exists \(u \in E \) such that
\[
u_{\alpha_n} \rightharpoonup u \quad \text{in } E,
\]
\[
u_{\alpha_n} \to u \quad \text{in } L^q(\mathbb{R}^2) \text{ with } q \in [2, +\infty),
\]
\[
u_{\alpha_n}(x) \to u(x) \quad \text{a.e. in } \mathbb{R}^2,
\]
up to a subsequence. From \((g_1)\), there exist \(\varepsilon > 0 \) and \(C_\varepsilon > 0 \) such that
\[
|g(u)| \leq \varepsilon |u| + C_\varepsilon (e^{\mu u^2} - 1) \quad \text{for any } \mu > 0.
\]
Hence,
\[
|f(u)| \leq (m + \varepsilon) |u| + C_\varepsilon (e^{\mu u^2} - 1) \quad \text{for any } \mu > 0.
\]
Then, by (7), Lemma 3.1 and the Hölder inequality we obtain, for any \(\tilde{\sigma} > 2 \) and \(\mu < \min \left\{ \frac{4\pi}{\|u\|} \right\} \),

\[
\int_{\mathbb{R}^2} (f(u_{\alpha_n}) - f(u))(u_{\alpha_n} - u)dx \\
\leq (m + \varepsilon) \int_{\mathbb{R}^2} |u_{\alpha_n}||u_{\alpha_n} - u|dx + C \int_{\mathbb{R}^2} \left(e^{\mu u_{\alpha_n}^2} - 1 \right) |u_{\alpha_n} - u|dx \\
\leq (m + \varepsilon) |u_{\alpha_n}| |u_{\alpha_n} - u| + C \left(\int_{\mathbb{R}^2} \left(e^{\mu u_{\alpha_n}^2} - 1 \right)^2 dx \right)^{\frac{1}{2}} |u_{\alpha_n} - u|_2 \\
\leq o(1) + C \left(\int_{\mathbb{R}^2} \left(e^{\tilde{\sigma} u_{\alpha_n}^2} - 1 \right) dx \right)^{\frac{1}{2}} |u_{\alpha_n} - u|_2 \\
\rightarrow 0 \quad \text{as} \quad n \rightarrow \infty,
\]

where the compactness of \(E \hookrightarrow L^2(\mathbb{R}^2) \) is applied. It follows from (10), Lemma 3.2 and the Hölder inequality that

\[
\|u_{\alpha_n} - u\|^2 \\
= \langle \Phi'(u_{\alpha_n}) - \Phi'(u), u_{\alpha_n} - u \rangle + \int_{\mathbb{R}^2} (A_0(u) u - A_0(u_{\alpha_n}) u_{\alpha_n}) (u_{\alpha_n} - u)dx \\
\leq \left(\int_{\mathbb{R}^2} \left(e^{\mu u_{\alpha_n}^2} - 1 \right)^2 dx \right)^{\frac{1}{2}} |u_{\alpha_n} - u|_2 \\
\rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.
\]

Hence, \(u_{\alpha_n} \rightarrow u \) in \(E \) and \(\Phi'(u) = 0 \). Therefore, we complete the proof. \(\square \)

Lemma 3.4. Suppose that (V), (g_1) and (g_{11}) hold. Then \(\Phi \) has a local linking at 0 with respect to the decomposition \(E = E^- \oplus E^+ \).

Proof. By (g_1), there exist \(\varepsilon > 0 \) and \(C_\varepsilon > 0 \) such that, for every \(\mu > 0 \),

\[
|G(u)| \leq \varepsilon |u|^2 + C_\varepsilon |u|^l (e^{\mu u^2} - 1) \quad \text{for all} \quad l > 2. \quad (20)
\]

Then, let \(\varepsilon \in (0, \frac{\mu}{2\tilde{\sigma}^2}) \) and \(u \in E^+ \) be such that \(\|u\| \leq k_1 \) for some \(k_1 > 0 \). Choosing \(\mu \in (0, \frac{4\pi}{\|u\|^2}) \) with \(\tilde{\sigma} > 2 \), from (7), (8), (12), Lemma 3.1 and the Hölder inequality we get

\[
\Phi(u) = Q(u) + \frac{1}{2} \int_{\mathbb{R}^2} \left(A_1^2(u) + A_2^2(u) \right) u^2 dx - \int_{\mathbb{R}^2} G(u) dx \\
\geq \frac{k_1}{2} \|u\|^2 - C_\varepsilon \int_{\mathbb{R}^2} |u|^l (e^{\mu u^2} - 1) dx
\]
Hence, taking $0 < \rho < \min\{\rho_1, \rho_2\}$, we have
\[
\Phi(u) \geq 0, \quad u \in E^+ \text{ and } \|u\| \leq \rho_1.
\]
Decompose E^- into $Z + W$ where $Z = \ker(-\Delta + V)$, $W = (E^+ + Z)\perp$. Let $u = z + w \in E^-$ with $z \in Z, w \in W$. Since all norms in E^- are equivalent, by (g_{41}), (12) and (15) we infer that, for $u \in E^-$,
\[
\begin{align*}
\Phi(u) &= \frac{1}{2} \int_{R^2} (|\nabla u|^2 + Vu^2)dx + \frac{1}{2} \int_{R^2} (\rho A_1(u) + \lambda A_2(u))u^2dx - \int_{R^2} G(u)dx \\
&= \frac{1}{2} \int_{R^2} (|\nabla w|^2 + Vw^2)dx + \frac{1}{2} \int_{R^2} (\rho A_1(u) + \lambda A_2(u))u^2dx - \int_{R^2} G(u)dx \\
&\leq \int_{R^2} (|\nabla w|^2 + Vw^2)dx + \frac{1}{2} \int_{R^2} (\rho A_1(u) + \lambda A_2(u))u^2dx - C_0 \int_{R^2} |w|^pdx \\
&\leq -\frac{\kappa}{2} \|w\|^2 + \frac{1}{2} \|a_1\|^6 - C\|u\|^p.
\end{align*}
\]
Due to $0 < \nu < 6$, for $\rho_2 > 0$ small enough, one has
\[
\Phi(u) \leq 0, \quad u \in E^- \text{ and } \|u\| \leq \rho_2.
\]
Hence, taking $0 < \rho < \min\{\rho_1, \rho_2\}$, we get
\[
\begin{align*}
\Phi(u) &\geq 0, \quad u \in E^+ \text{ and } \|u\| \leq \rho, \\
\Phi(u) &\leq 0, \quad u \in E^- \text{ and } \|u\| \leq \rho.
\end{align*}
\]
Thus, we complete the proof.

Lemma 3.5. Assume that (V), (g_4) and (g_{42}) are satisfied. Then Φ has a local linking at 0 with respect to the decomposition $E = E^1 \oplus E^2$.

Proof. Let $\varepsilon \in (0, \frac{\gamma}{2\tilde{\sigma}_2})$ and $u \in E^2$ with $\|u\| \leq k_2$ for some $k_2 > 0$. By (7), (13), (15), (20), Lemma 3.1 and the Hölder inequality one has, for $\mu \in (0, \frac{\gamma^2}{4\tilde{\sigma}})$ with $\tilde{\sigma} > 2$,
\[
\begin{align*}
\Phi(u) &= Q(u) + \frac{1}{2} \int_{R^2} (\rho A_1(u) + \lambda A_2(u))u^2dx - \int_{R^2} G(u)dx \\
&\leq -\frac{\gamma}{2} \|u\|^2 + \frac{1}{2} \|a_1\|^6 - C\|u\|^p + \frac{1}{2} \|a_1\|^6 - C\|u\|^p.
\end{align*}
\]
Hence, for all $u \in E^2$ with $\|u\| \leq \tilde{\rho}_1$, where $0 < \tilde{\rho}_1 < k_2$ small enough, we have
\[
\Phi(u) \leq 0.
\]
Decompose E^1 into $Z + \tilde{\tilde{W}}$ where $Z = \ker(-\Delta + V)$, $\tilde{\tilde{W}} = (E^2 + Z)\perp$. Since Z is a finite dimensional space, there exists $\rho > 0$ such that
\[
\|z\|_{\infty} \leq \rho\|z\| \quad \text{for all } z \in Z.
\]

\[
(21)
\]
Let $u = z + \tilde{w} \in E^1$ with $z \in Z, \tilde{w} \in \tilde{W}$ be such that $\|u\| \leq \delta_{2\sigma}$ and set
\[
\mathcal{A} := \left\{ x \in \mathbb{R}^2 : |\tilde{w}(x)| \leq \frac{\delta}{2} \right\},
\]
\[
\mathcal{B} := \mathbb{R}^2 \setminus \mathcal{A}.
\]
On \mathcal{A}, it follows from (21) that
\[
|u(x)| \leq |z(x)| + |\tilde{w}(x)| \leq \|z\|_\infty + |\tilde{w}(x)| \leq \delta.
\]
Thus, we complete the proof.

Therefore, it follows from (8), (13) and (15) that, for $u \in E^1$, as
\[
|u(x)| \leq |z(x)| + |\tilde{w}(x)| \leq \|z\|_\infty + |\tilde{w}(x)| \leq \frac{\delta}{2} |\tilde{w}(x)|.
\]
Using (20) one has
\[
G(u) \leq \varepsilon |u|^2 + C_\varepsilon |u|^4 (e^{\mu u^2} - 1) \\
\leq 4\varepsilon \bar{w}^2 + 2^2 C_\varepsilon |\bar{w}|^4 (e^{4\mu \bar{w}^2} - 1).
\]
Then, in view of (7), Lemma 3.1 and the Hölder inequality, as $\mu \in (0, \frac{4\pi^2}{\delta^2})$ with $\delta > 2$
\[
\int_{\mathcal{B}} G(u) \leq 4\varepsilon \int_{\mathcal{B}} \bar{w}^2 dx + 2^2 C_\varepsilon \int_{\mathcal{B}} |\bar{w}|^4 (e^{4\mu \bar{w}^2} - 1) dx \\
\leq 4\varepsilon \int_{\mathcal{B}} \bar{w}^2 dx + C \|\bar{w}\|^4.
\]
Therefore, it follows from (8), (13) and (15) that, for $u \in E^1$ and $\varepsilon \in (0, \frac{\gamma}{2\sigma})$, we have
\[
\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + V u^2) dx + \frac{1}{2} \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u)) u^2 dx - \int_{\mathbb{R}^2} G(u) dx \\
= \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla \bar{w}|^2 + V \bar{w}^2) dx + \frac{1}{2} \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u)) u^2 dx - \int_{\mathbb{R}^2} G(u) dx \\
\geq \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla \bar{w}|^2 dx + V \bar{w}^2) + \frac{1}{2} \int_{\mathbb{R}^2} (A_1^2(u) + A_2^2(u)) u^2 dx \\
- 4\varepsilon \int_{\mathcal{B}} \bar{w}^2 dx - C \|\bar{w}\|^4 - \int_{\mathcal{A}} G(u) dx \\
\geq \frac{\gamma}{2} \|\bar{w}\|^2 - C \|\bar{w}\|^4.
\]
Choosing $0 < \bar{\rho}_2 < \frac{\delta}{2\sigma}$ small enough, we obtain
\[
\Phi(u) \geq 0 \quad \text{for any } u \in E^1 \text{ with } \|u\| \leq \bar{\rho}_2.
\]
Therefore, let $0 < \bar{\rho} < \min\{\bar{\rho}_1, \bar{\rho}_2\}$, one has
\[
\begin{cases}
\Phi(u) \geq 0, & u \in E^1 \text{ and } \|u\| \leq \bar{\rho}, \\
\Phi(u) \leq 0, & u \in E^2 \text{ and } \|u\| \leq \bar{\rho}.
\end{cases}
\]
Thus, we complete the proof. \qed
Lemma 3.6. Suppose that Y is a subspace of E and $\dim Y < \infty$. Then Φ satisfies, for $u \in Y$,

$$\Phi(u) \to -\infty \quad \text{as } \|u\| \to \infty.$$

Proof. For any sequence $\{u_n\} \subset Y$ satisfies $\|u_n\| \to \infty$. Let $v_n = \|u_n\|^{-1}u_n$, there exists $v \in Y$ with $\|v\| = 1$ such that

$$\|v_n - v\| \to 0 \quad \text{in } E,$$

$$v_n(x) \to v(x) \quad \text{a.e. in } \mathbb{R}^2,$$

because all norms in finite dimension are equivalent. Since $v \neq 0$, similar to (19), we have

$$\int_{\mathbb{R}^2} \frac{F(u_n)}{\|u_n\|^6} dx \to +\infty \quad \text{as } n \to \infty.$$

Then we deduce that, as $n \to \infty$,

$$\Phi(u_n) = \|u_n\|^6 \left(\frac{1}{2\|u_n\|^4} + \frac{1}{\|u_n\|^6} \int_{\mathbb{R}^2} (A_1^2(u_n) + A_2^2(u_n))u_n^2 dx - \int_{\mathbb{R}^2} \frac{F(u_n)}{\|u_n\|^6} dx \right)$$

$$\to -\infty.$$

Thus, we complete the proof.

Proof of Theorem 1.1. In view of (7) and (15), Φ maps bounded sets into bounded sets. Since $\dim(E_1^+ \oplus E_2^+) < \infty$ or $\dim(E_2 \oplus E_1^+) < \infty$, Lemma 3.4 and Lemma 3.6 or Lemma 3.5 and Lemma 3.6 imply the existence of nontrivial solutions for system (1) according to Theorem 2.2. Consequently, we complete the proof of Theorem 1.1.

Acknowledgments. The authors would like to express sincere thanks to the reviewers and the handling editor for careful reading and the valuable suggestions which help to improve the manuscript and our future research.

REFERENCES

[1] T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^N, Comm. Partial Differential Equations, 20 (1995), 1725–1741.

[2] J. Byeon, H. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575–1608.

[3] J. Byeon, H. Huh and J. Seok, On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285–1316.

[4] D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^2, Comm. Partial Differential Equations, 17 (1992), 407–435.

[5] S. Chen, B. Zhang and X. Tang, Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrödinger system in $H^1(\mathbb{R}^2)$, Nonlinear Anal., 185 (2019), 68–96.

[6] J. Deng, W. Long and J. F. Yang, Multi-peak solutions to Chern-Simons-Schrödinger systems with non-radial potential, arXiv:2007.02499v1.

[7] Y. Deng, S. Peng and W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in \mathbb{R}^2, J. Differential Equations, 264 (2018), 4006–4035.

[8] J. M. do Ó, N-Laplacian equations in \mathbb{R}^N with critical growth, Abstr. Appl. Anal., 2 (1997), 301–315.

[9] J. M. do Ó, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286–304.

[10] T. Gou and Z. Zhang, Normalized solutions to the Chern-Simons-Schrödinger system, J. Funct. Anal., 280 (2021), 108894. arXiv:1903.07306.
[11] H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, *Nonlinearity*, 22 (2009), 967–974.

[12] R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, *Phys. Rev. D*, 42 (1990), 3500–3513.

[13] R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, *Phys. Rev. Lett.*, 64 (1990), 2969–2972.

[14] J.-C. Kang, Y.-Y. Li and C.-L. Tang, Sign-changing solutions for Chern-Simons-Schrödinger equations with asymptotically 5-linear nonlinearity, *Bull. Malays. Math. Sci. Soc.*, (2020).

[15] J. Kang and C. Tang, Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth, *Commun. Pure Appl. Anal.*, 19 (2020), 5239–5252.

[16] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, *Adv. Differential Equations*, 3 (1998), 441–472.

[17] G.-D. Li, Y.-Y. Li and C.-L. Tang, Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth, *Complex Var. Elliptic Equ.*, (2020).

[18] G. Li and X. Luo, Normalized solutions for the Chern-Simons-Schrödinger equation in \mathbb{R}^2, *Ann. Acad. Sci. Fenn. Math.*, 42 (2017), 405–428.

[19] G. Li, X. Luo and W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, *J. Math. Anal. Appl.*, 455 (2017), 1559–1578.

[20] S. J. Li and M. Willem, Applications of local linking to critical point theory, *J. Math. Anal. Appl.*, 189 (1995), 6–32.

[21] W. Liang and C. Zhai, Existence of bound state solutions for the generalized Chern-Simons-Schrödinger system in $H^1(\mathbb{R}^2)$, *Appl. Math. Lett.*, 100 (2020), 106028, 7 pp.

[22] S. Liu, On superlinear Schrödinger equations with periodic potential, *Calc. Var. Partial Differential Equations*, 45 (2012), 1–9.

[23] B. Liu and P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, *Rev. Mat. Iberoam.*, 32 (2016), 751–794.

[24] B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, *Int. Math. Res. Not. IMRN*, (2014), 6341–6398.

[25] X. Luo, Existence and stability of standing waves for a planar gauged nonlinear Schrödinger equation, *Comput. Math. Appl.*, 76 (2018), 2701–2709.

[26] A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, *Calc. Var. Partial Differential Equations*, 53 (2015), 289–316.

[27] A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, *J. Eur. Math. Soc.*, 17 (2015), 1463–1486.

[28] Y. Wan and J. Tan, Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition, *J. Math. Anal. Appl.*, 415 (2014), 422–434.

[29] Y. Wan and J. Tan, Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems, *Nonlinear Differential Equations Appl.*, 24 (2017), 28, 24 pp.

[30] Y. Wan and J. Tan, The existence of nontrivial solutions to Chern-Simons-Schrödinger systems, *Discrete Contin. Dyn. Syst.*, 37 (2017), 2765–2786.

[31] M. Willem, *Minimax Theorems*, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996.

[32] J. Zhang, W. Zhang and X. Xie, Infinitely many solutions for a gauged nonlinear Schrödinger equation, *Appl. Math. Lett.*, 88 (2019), 21–27.

Received October 2020; revised January 2021.

E-mail address: 1693607808@qq.com
E-mail address: tangcl@swu.edu.cn