A Multi-Way Correlation Coefficient

Benjamin M. Taylor (Lancaster University)

March 6, 2020

Abstract

Pearson’s correlation is an important summary measure of the amount of dependence between two variables. It is natural to want to generalise the concept of correlation as a single number that measures the inter-relatedness of three or more variables e.g. how ‘correlated’ are a collection of variables in which non are specifically to be treated as an ‘outcome’? In this short article, we introduce such a measure, and show that it reduces to the modulus of Pearson’s r in the two dimensional case.

1 Introduction and Literature Search

Pearson’s correlation coefficient, r, is applied in all areas of quantitative scientific endeavour, see [Stigler (1989)] for a review. For two samples $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, it is defined as:

$$r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(x_i - \bar{x})^2 \sqrt{(y_i - \bar{y})^2}}}.$$
In some instances, it is of interest to understand how related three or more variables are and there are a number of straightforward options in this case. Probably the most commonly applied of these would be:

1. to examine the entries of the sample correlation matrix which summarise pairwise dependence, or

2. to examine the coefficient of determination (a.k.a. the coefficient of multiple correlation), R^2, from a linear model assuming one variable as the outcome (Wright, 1921).

While both of these methods provide very useful summaries of the data, with the former method, the collection of plots can be difficult to interpret for even a moderate number of variables and the latter yields a different R^2 depending on the chosen outcome variable: which of these values should we choose to represent the correlation in our data? A secondary philosophical consideration with R^2 is that in some sense, one of the variables is being treated as an ‘outcome’, which may in practice not be the case: there may be no justification for treating one of the variables in this way.

Why would this be useful? The motivation for this research occurred during a conversation with a Psychologist in which I was asked whether there was a way to measure dependence between three different variables capturing the properties of a certain type of brain signal: none of which was to be considered as an outcome. As another example, in a recent analysis of Tuberculosis incidence in two distinct areas in Portugal (in progress), we had occasion to examine the correlation between the covariates in our model to decide on whether there there was collinearity:
As well as the specific 2-way correlations between variables in each of these areas, it is also of interest to ask the question: ‘are the measured covariates in one area more correlated than the other?’ Our proposed measure gives an answer to that question.

There are many correlation coefficients in the literature. We used Web of Science to search titles for the words ‘correlation’ and ‘coefficient’ and restricted to the categories statistics probability or chemistry physical or engineering electrical electronic or engineering chemical or mathematics interdisciplinary applications; we did not place any restriction on the type of articles to search. This process yielded 1585 articles. We then searched each of these titles for the phrase ‘correlation coefficient’, which left 700 articles. These were then manually
categorised, either using the name of the correlation coefficient considered if it was explicitly stated in the title of the article, or classifying as ‘unnamed’; the results are in Table 1.

None of these identified correlation coefficients is designed for the specific task we have in mind i.e. to describe, using a single number, the correlation between multiple realisations of a single d-dimensional random variable $d \geq 2$.

2 The Multi-Way Correlation Coefficient

In order to circumvent the issues detailed above, we here propose a simple one-dimensional summary of linear inter-dependence in a d-dimensional real-valued random variable. We call this the multi-way correlation coefficient and define it as:

$$
\text{mcor} [(v_1, \ldots, v_n)] = \frac{1}{\sqrt{d}} \text{s.d.} \left\{ \text{eigenvalues} \left(\text{cor} (v_1, \ldots, v_n)^T \right) \right\},
$$

where v_i are column vectors containing the d-dimensional variables of interest for individual i ($i = 1, \ldots, n$), s.d. is the standard deviation and cor is the empirical correlation matrix.

It is straightforward to see that when $d = 2$, the multi-way correlation coefficient reduces to the modulus of Pearson’s r. To see this, recall that r features on the off-diagonal element of the correlation matrix, hence

$$\begin{vmatrix}
1 - \lambda & r \\
r & 1 - \lambda \\
\end{vmatrix} = (1 - \lambda)^2 - r^2.
$$

Solving for zero yields eigenvalues $(1 - r)$ and $(1 + r)$; the empirical standard deviation of
which is easily shown to be $\sqrt{2}r$. When r is replaced by $-r$ in the correlation matrix, note
the characteristic polynomial is still $(1 - \lambda)^2 - r^2$, so the same argument follows for negative
 correlations, hence
\[\text{mcor}\{x, y\} = |\text{cor}(x, y)| \] as claimed.

The multi-way correlation coefficient takes values on $[0, 1]$. Let $\lambda_1, \ldots, \lambda_d$ be the eigenvalues of the correlation matrix. Then

\[0 \leq \text{mcor} \left[(v_1, \ldots, v_n)^T \right] = \frac{1}{\sqrt{d}} \sqrt{\frac{1}{d-1} \sum_{i=1}^{d} (\lambda_i - \bar{\lambda})^2} \]
\[= \frac{1}{\sqrt{d}} \sqrt{\frac{1}{d-1} \left[\sum_{i=1}^{d} \lambda_i^2 - 2 \sum_{i=1}^{d} \lambda_i + d \right]} \]
\[= \frac{1}{\sqrt{d}} \sqrt{\frac{1}{d-1} \left[\sum_{i=1}^{d} \lambda_i^2 - d \right]} \]
\[\leq \frac{1}{\sqrt{d}} \sqrt{\frac{1}{d-1} \left[\left(\sum_{i=1}^{d} \lambda_i \right)^2 - d \right]} = 1 \]

Where in the above, since the diagonal elements of a correlation matrix are all equal to 1,
we have used $\bar{\lambda} = \frac{1}{d} \sum_{i=1}^{d} \lambda_i = d/d = 1$. The upper bound is attained when one eigenvalue
is equal to d and the rest equal to zero and the lower bound is attained when all eigenvalues
are equal to 1 (corresponding to the identity matrix).

As is the case for for Pearson’s correlation coefficient, if all variables are mutually inde-
pendent, then the correlation matrix is the identity and the multi-way correlation coefficient
will be equal to zero. A similar argument to that above shows that for an n-dimensional
random variable, if k of the components are independent from the rest then,

$$0 \leq \text{mcor} \left[(v_1, \ldots, v_n)^T \right] \leq \left(\frac{(n-k)(n-k-1)}{n(n-1)} \right)^{1/2}.$$

The intuition behind the multi-way correlation stems from the eigendecomposition of the correlation matrix, R, say. Since R is symmetric and positive definite, the eigenvectors form an orthonormal basis, which in some sense describe the axes of an ellipsoid that represents the multi-dimensional direction of dependence in the data. The eigenvalues scale these axes: a large eigenvalue (compared to the others) means the data is more ‘stretched’ in the direction of the associated eigenvector, whereas if all eigenvalues are similar, then there is a similar amount of stretch in each direction. Hence a measure of spread of the eigenvalues gives a measure of how close to linear the data are. The particular choice of dispersion made in this article is due to the fact that in two dimensions it (nearly) reduces to Pearson’s r; the concept of a ‘negative’ correlation in \mathbb{R}^d, for $d \geq 3$, is not meaningful, in any case.

As kindly pointed out by an anonymous reviewer of an early version of the present article, there is similarity between our proposed measure of multi-way linearity and the measure of covariance sphericity of [John (1972)]. For eigenvalues of a covariance matrix, $\lambda_1, \ldots, \lambda_d$, the covariance sphericity is defined as $\sum \lambda_i^2 / (\sum \lambda_i)^2$. Note that the denominator is equal to d^2 when this measure is applied to a correlation matrix. This measure takes values in $[d, 1]$, so can be rescaled onto $[0, 1]$ and used in a similar way to the measure we propose in the present article. Compared to this alternative, our proposed measure has the advantage of being in some sense equivalent to Pearson’s r in the two dimensional case.
3 Examples

Below are some examples of the multi-way correlation coefficient applied to 1000 random points in \mathbb{R}^3. Further examples are available in the web supplement.

Two variables a linear function of the third.

\[
\begin{align*}
x & \sim \text{unif}(0, 1) \\
y & = 2x \\
z & = x
\end{align*}
\]

\[
\begin{pmatrix}
x \\ y \\ z
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}
\]

Eigenvalues: 3, 0, 0
\[\text{mcor}\{x, y, z\} = 1\]

One variable a linear combination of other two.

\[
\begin{align*}
x & \sim \text{unif}(0, 1) \\
y & \sim \text{unif}(0, 1) \\
z & = x + 2y
\end{align*}
\]

\[
\begin{pmatrix}
x \\ y \\ z
\end{pmatrix} = \begin{pmatrix}
1 & -0.036 & 0.428 \\
-0.036 & 1 & 0.888 \\
0.428 & 0.888 & 1
\end{pmatrix}
\]

Eigenvalues: 1.972, 1.028, 0
\[\text{mcor}\{x, y, z\} = 0.569\]
Three independent variables.

\[
\begin{align*}
 x & \sim \text{unif}(0, 1) \\
 y & \sim \text{unif}(0, 1) \\
 z & \sim \text{unif}(0, 1)
\end{align*}
\]

\[
\begin{array}{ccc}
 x & y & z \\
 x & 1 & -0.026 & 0.024 \\
 y & -0.026 & 1 & 0.012 \\
 z & 0.024 & 0.012 & 1
\end{array}
\]

Eigenvalues: 1.03, 1.012, 0.958
\[\text{mcor}\{x, y, z\} = 0.021\]

Correlated variables.

\[
\begin{align*}
 x & \sim \text{unif}(0, 1) \\
 y & \sim \text{unif}(0, 1) \\
 z & = x + 2y + \text{N}(0, 1)
\end{align*}
\]

\[
\begin{array}{ccc}
 x & y & z \\
 x & 1 & -0.030 & 0.24 \\
 y & -0.030 & 1 & 0.46 \\
 z & 0.24 & 0.46 & 1
\end{array}
\]

Eigenvalues: 1.507, 1.024, 0.469
\[\text{mcor}\{x, y, z\} = 0.3\]

Even more Correlated variables.

\[
\begin{align*}
 x & \sim \text{unif}(0, 1) \\
 y & = 5x + \text{N}(0, 1) \\
 z & = x + 2y + \text{N}(0, 1)
\end{align*}
\]

\[
\begin{array}{ccc}
 x & y & z \\
 x & 1 & 0.812 & 0.814 \\
 y & 0.812 & 1 & 0.966 \\
 z & 0.814 & 0.966 & 1
\end{array}
\]

Eigenvalues: 2.73, 0.236, 0.034
\[\text{mcor}\{x, y, z\} = 0.867\]
4 R Code

R code for the multi-way correlation coefficient is straightforward:

```r
cor_taylor <- function(X){
  if(!inherits(X,"matrix")){
    stop("Input must be inherit 'matrix' class.")
  }
  n <- ncol(X)
  return((1/sqrt(n))*sd(eigen(cor(X))$values))
}
```

5 Conclusion

We have introduced a new correlation coefficient for d-dimensional random variables ($d \geq 2$) that expresses in a similar sense to Pearson’s correlation coefficient the amount of linear dependence between a set of variables. Our new measure is straightforward to compute and yields a 1 dimensional, easily interpretable, summary of dependence.

References

John, S. (1972). The distribution of a statistic used for testing sphericity of normal distributions. *Biometrika* 59(1), 169–173.

Stigler, S. M. (1989). Francis Galton’s account of the invention of correlation. *Statistical Science* 4(2), 73–79.
Wright, S. (1921). Correlation and causation. *Journal of Agricultural Research* 20, 557–585.

A Table of Correlation Coefficients

Name	Range	N	Name	Range	N
unnamed	1946–2017	283	regularised canonical	2015–2015	1
intraclass	1946–1948	54	weighted rank	2015–2015	1
multiple	1952–2014	40	zero-lag	2015–2015	1
serial	1945–2013	38	polarization	2014–2014	1
Pearson’s	1945–2016	33	complex	2013–2013	1
cross-correlation	1962–2017	29	information	2013–2013	1
concordance	1996–2015	23	average	2012–2012	1
tetrachoric	1946–2010	15	fuzzy	2012–2012	1
spearman’s	1952–2012	12	scale-invariant	2012–2012	1
partial	1946–2015	12	sparse	2011–2011	1
rank	1947–2016	10	bivariate normal	2010–2010	1
canonical	1969–2014	8	multi-scale	2010–2010	1
intra-cluster	2001–2013	7	probabilistic	2010–2010	1
sample	1966–2006	6	rate-distortion	2010–2010	1
envelope	2007–2016	5	weights-based	2010–2010	1
generalised	1996–2011	5	covariate-adjusted	2009–2009	1
normal	2007–2016	4	local	2008–2008	1
antenna	2012–2016	3	non-parametric	2008–2008	1
copolar	2011–2017	3	normalised	2008–2008	1
order statistics	2006–2008	3	polarity coincidence	2008–2008	1
semipartial	2002–2010	3	weighted	2008–2008	1
auto-correlation	1984–2013	3	grade	2007–2007	1
biserial	1954–1954	3	slant	2007–2007	1
velocity	2010–2010	2	polychronic	2006–2006	1
spatial	2007–2013	2	subshell-pair	2006–2006	1
entropy	2007–2011	2	vector	2006–2006	1
two-dimensional	2006–2006	2	circular polarization	2004–2004	1
power	2005–2010	2	Gebelein’s	2004–2004	1
generalised concordance	2001–2010	2	robust	2004–2004	1
polarimetric	2001–2005	2	skipped	2004–2004	1
angular	2001–2002	2	regional	2003–2003	1
e-correlation	1978–1980	2	amplitude	2002–2002	1
uniform	1971–1974	2	frequency-correlation	2002–2002	1
kendall’s	1970–2008	2	sample serial	2002–2002	1
partial auto-correlation	1960–1983	2	transformation	2002–2002	1
circular serial	1956–1960	2	antiparallel electron	1999–1999	1
genetic	1955–1959	2	dipolar	1998–1998	1
zero-order	1948–1948	2	A-transformation	1998–1998	1
distance	2017–2017	1	phi	1995–1995	1
fuzzy interval	2016–2016	1	partial serial	1980–1980	1
higher order	2016–2016	1	noise	1970–1970	1
innovative	2016–2016	1	sample genetic	1969–1969	1
Pearson’s rank-variate	2016–2016	1	simple	1969–1969	1
regression	2016–2016	1	linear	1968–1968	1
wavelet	2016–2016	1	sine	1968–1968	1
angles	2015–2015	1	Daniels’	1961–1961	1
bivariate	2015–2015	1	non-circular serial	1960–1960	1
cepstral	2015–2015	1	gross	1956–1956	1
circular	2015–2015	1	polynomial	1952–1952	1
frequency	2015–2015	1	interfunction	1950–1950	1
head-weighted gap-sensitive	2015–2015	1	parabolic	1946–1946	1

Table 1: Table of Correlation Coefficients from Literature Search (see details in text).