Structured error recovery for code-word-stabilized quantum codes

Yunfan Li* and Ilya Dumer†

Department of Electrical Engineering, University of California, Riverside, California 92521, USA

Markus Grassl‡

Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore

Leonid P. Pryadko§

Department of Physics & Astronomy, University of California, Riverside, California 92521, USA

(Received 22 December 2009; published 26 May 2010)

Code-word-stabilized (CWS) codes are, in general, nonadditive quantum codes that can correct errors by an exhaustive search of different error patterns, similar to the way that we decode classical nonlinear codes. For an \(n \)-qubit quantum code correcting errors on up to \(t \) qubits, this brute-force approach consecutively tests different errors of weight \(t \) or less and employs a separate \(n \)-qubit measurement in each test. In this article, we suggest an error grouping technique that allows one to simultaneously test large groups of errors in a single measurement. This structured error recovery technique exponentially reduces the number of measurements by about \(3^t \) times. While it still leaves exponentially many measurements for a generic CWS code, the technique is equivalent to syndrome-based recovery for the special case of additive CWS codes.

I. INTRODUCTION

Quantum computation makes it possible to achieve polynomial complexity for many classical problems that are believed to be hard [1,2]. To preserve coherence, quantum operations need to be protected by quantum error correcting codes (QECCs) [3–5]. With error probabilities in elementary gates below a certain threshold, one can use multiple layers of encoding (concatenation) to reduce errors at each level and ultimately make arbitrarily long quantum computation possible [6–14].

The actual value of the threshold error probability strongly depends on the assumptions of the error model and on the chosen architecture and presently varies from 10\(^{-7}\)% for a chain of qubits with nearest-neighbor couplings [15] and 0.7% for qubits with nearest-neighbor couplings in two dimensions [14] to 3% with postselection [12], or even above 10% if additional constraints on errors are imposed [13].

The quoted estimates have been made using stabilizer codes, an important class of codes which originate from additive quaternary codes and have a particularly simple structure based on Abelian groups [16,17]. Recently, a more general class of code-word-stabilized (CWS) quantum codes was introduced in Refs. [18–21]. This class includes stabilizer codes, but is more directly related to nonlinear classical codes.

This direct relation to classical codes is, arguably, the most important advantage of the CWS framework. Specifically, the classical code associated with a given CWS quantum code has to correct certain error patterns induced by a graph associated with the code. The graph also determines the graph state [22] serving as a starting point for an encoding algorithm exploiting the structure of the classical code [20]. With the help of powerful techniques from the theory of classical codes, already several new families of nonadditive codes have been discovered, including codes with parameters proven to be superior to any stabilizer code [18–20,23–26].

Both classical additive codes and additive quantum codes can be corrected by first finding the syndrome of a corrupted vector or quantum state, respectively, and then looking up the corresponding error (coset leader) in a precomputed table [27]. This is not the case for nonlinear codes. In fact, even the notions of a syndrome and a coset become invalid for general nonlinear codes. Furthermore, since quantum error correction must preserve the original quantum state in all intermediate measurements, it is more restrictive than many classical algorithms. Therefore, the design of a useful CWS code must be complemented by an efficient quantum error correction algorithm.

The goal of this work is to address this important unresolved problem for binary CWS codes. First, we design a procedure to detect an error in a narrower class, the union stabilizer (UST) codes, which possess some partial group structure [23,24,28]. Then, for a general CWS code and a set of graph-induced images of correctable errors forming a group, we construct an auxiliary UST code which is the union of the images of the original CWS code shifted by all the elements of the group. Finally, we construct Abelian groups associated with correctable errors located on certain index sets of qubits. The actual error is found by first applying error detection to locate the index set with the relevant auxiliary UST code and then using a collection of smaller UST codes to pinpoint the error in the group. Since we process large groups of errors simultaneously, we make a significant reduction of the number of measurements compared with the brute-force error correction for nonlinear (quantum or classical) codes.

More precisely, we consider an arbitrary distance-\(d \) CWS code \((n,K,d)\) that uses \(n \) qubits to encode a Hilbert space

DOI: 10.1103/PhysRevA.81.052337 PACS number(s): 03.67.Pp, 03.67.Lx, 03.67.Ac
of dimension K and can correct all t-qubit errors, where $t = [(d - 1)/2]$. In Sec. II we give a brief overview of the notations and relevant facts from the theory of quantum error correction. Then, in Sec. III, we construct a reference recovery algorithm that deals with errors individually. This algorithm requires up to $B(n,t)$ measurements, where

$$B(n,t) = \sum_{i=0}^{t} \binom{n}{i} 3^i$$

is the total number of errors of size up to t (this bound is tight for nondegenerate codes). Each of these measurements requires up to $n^2 + K O(n)$ two-qubit gates. In order to eventually reduce the overall complexity, we consider the special case of USt codes in Sec. IV. Here we design an error-detecting measurement for a USt code with a translation set of size K that requires $O(Kn^2)$ two-qubit gates to identify a single error. Our error grouping technique presented in Sec. V utilizes such a measurement to check for several errors at once. For additive CWS codes the technique reduces to stabilizer-based recovery (Sec. VC). In the case of generic CWS codes (Sec. VD), we can simultaneously check for all errors located on size-t qubit clusters; graph-induced images of these errors form groups of size up to 2^{2t}. Searching for errors in blocks of this size requires up to $\binom{2t}{2} - 1$ measurements to locate the cluster, plus up to $2t$ additional measurements to locate the error inside the group. In Sec. VI we discuss the obtained results and outline the directions of further study. Finally, in the Appendix we consider some details of the structure of corrupted spaces for the codes discussed in this work.

Note that some of the reported results have been previously announced in Ref. [29].

II. BACKGROUND

A. Notations

Throughout the article, $\mathcal{H}_2 = \mathbb{C}^2$ denotes the complex Hilbert space that consists of all possible states $\alpha|0\rangle + \beta|1\rangle$ of a single qubit, where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$. Correspondingly, we use the space $\mathcal{H}_2^{\otimes n} = (\mathbb{C}^2)^{\otimes n} = \mathbb{C}^{2^n}$ to represent any n-qubit state. Also,

$$\mathcal{P}_n \equiv i^n[1, X, Y, Z]^{\otimes n}, \quad m = 0, \ldots , 3,$$

(2)

denotes the Pauli group of size 2^{2n+2}, where X, Y, and Z are the usual (Hermitian) Pauli matrices and I is the identity matrix. The members of this group are called Pauli operators; the operators in (2) with $m = 0$ form a basis of the vector space that consists of all operators acting on n-qubit states. The weight $\text{wgt}(E)$ of a Pauli operator E is the number of terms in the tensor product (2) which are not a scalar multiple of identity. Up to an overall phase, a Pauli operator can be specified in terms of two binary strings, v and u,

$$U = Z^v X^u \equiv Z_1^{v_1} Z_2^{v_2} \cdots Z_n^{v_n} X_1^{u_1} X_2^{u_2} \cdots X_n^{u_n}.$$

Hermitian operators in \mathcal{P}_n have eigenvalues equal to 1 or -1. Generally, unitary operators (which can be outside of the Pauli group) which are also Hermitian, that is, all eigenvalues are ± 1, will be particularly important in the discussion of measurements. We will call these operators measurement operators. Indeed, for such an operator M, a measurement gives a Boolean outcome and can be constructed with the help of a single ancilla, two Hadamard gates, and a controlled-M gate [16] (see Fig. 1). The algebra of measurement operators is related to the algebra of projection operators discussed in Refs. [30,31], but the former operators, being unitary, are more convenient in circuits.

A measurement of an observable defined by a Pauli operator M will be also called Pauli measurement [32]. For lack of a better term, other measurements will be called non-Pauli; typically the corresponding circuits are much more complicated than those for Pauli measurements.

We say that a state $|\psi\rangle \in \mathcal{H}_2^{\otimes n}$ is stabilized (antistabilized) by a measurement operator M if $M|\psi\rangle = |\psi\rangle$ ($M|\psi\rangle = -|\psi\rangle$). The corresponding projectors onto the positive and negative eigenspaces are denoted by P_M and Q_M, respectively; they satisfy the identities

$$M = P_M - Q_M = 2P_M - 1 = 1 - 2Q_M. \quad (3)$$

We say that a space Q is stabilized by a set of operators M if each vector in Q is stabilized by each operator in M. We use $\mathcal{P}(M)$ to denote the maximum space stabilized by M, and $\mathcal{P}^{-1}(M)$ to denote the corresponding orthogonal complement. For a set M of measurement operators, each state in $\mathcal{P}^{-1}(M)$ is antistabilized by some operator in M.

When discussing complexity, we will quote the two-qubit complexity which just counts the total number of two-qubit gates. Thus, we ignore any communication overhead, as well as any overhead associated with single-qubit gates. For example, the complexity of the measurement in Fig. 1 is just that of the controlled-M gate operating on $n + 1$ qubits [33]. For all circuits we discuss, the total number of gates (single- and two-qubit) is of the same order in n as the two-qubit complexity.

B. General QECCs

A general n-qubit quantum code Q encoding K quantum states is a K-dimensional subspace of the Hilbert space $\mathcal{H}_2^{\otimes n}$. Let $\{|i\rangle\}_{i=1}^{E}$ be an orthonormal basis of the K-dimensional code Q and let $\mathcal{E} \subset \mathcal{P}_n$ be some set of Pauli errors. The
overall phase of an error $[i^m \text{ in Eq. (2)}]$ is irrelevant and will
be largely ignored. The code detects all errors $E \in \mathcal{E}$ if and
only if [2,16]

\begin{equation}
 \langle j | E | i \rangle = C_E \delta_{ij},
\end{equation}

where C_E only depends on the error E, but is independent of
the basis vectors [34]. The code has distance d if it can detect
all Pauli errors of weight $(d - 1)$, but not all errors of weight d.
Such a code is denoted by (n, K, d).

The necessary and sufficient condition for correcting errors in
\mathcal{E} is that all nontrivial combinations of errors from \mathcal{E} are
detectable. This gives [4,5]

\begin{equation}
 \langle j | E_1^i E_2^i | i \rangle = C_{E_1, E_2} \delta_{ij},
\end{equation}

where $E_1, E_2 \in \mathcal{E}$, and, again, C_{E_1, E_2} is the same for all basis
states i, j. A distance-d code corrects all errors of weight s
such that $2s \leq d - 1$, that is, $s \leq t \equiv \lfloor (d - 1)/2 \rfloor$.

The code is nondegenerate if linearly independent errors from \mathcal{E}
produce corrupted spaces $E_1(\mathcal{Q}) \equiv \{E|\psi\rangle : |\psi\rangle \in \mathcal{Q}\}$
whose intersection is trivial (equals to $\{0\}$); otherwise the code is
degenerate [17]. A stricter condition that the code is pure
(with respect to \mathcal{E}) requires that the corrupted spaces $E_1(\mathcal{Q})$
and $E_2(\mathcal{Q})$ be mutually orthogonal for all linearly independent
correctable errors $E_1, E_2 \in \mathcal{E}$.

For a degenerate code, we call a pair of correctable errors $E_1, E_2 \in \mathcal{E}$ mutually degenerate if the corrupted spaces
$E_1(\mathcal{Q})$ and $E_2(\mathcal{Q})$ coincide. Such errors belong to the same
degeneracy class. For recovery, one only needs to identify the
degeneracy class of the error that happened. The operators
like $E_1^i E_2^i$, connecting mutually degenerate correctable errors E_1 and E_2, have no effect on the code and can be
ignored.

As shown in the Appendix, for all codes discussed in
this work, any two correctable errors E_1, E_2 yield corrupted
spaces $E_1(\mathcal{Q}), E_2(\mathcal{Q})$ that are either identical or orthogonal.
Then, errors from different degeneracy classes take the code
to corrupted spaces that are mutually orthogonal. Also, for
these codes, a nondegenerate code is always pure. In terms of
the error correction condition (5), we have $C_{E_1, E_2} = 0$
for errors E_1, E_2 in different degeneracy classes and $C_{E_1, E_2} \neq 0$
for errors in the same degeneracy class.

C. Stabilizer codes

Stabilizer codes [16] are a well-known family of quantum
error correcting codes that are analogous to classical linear
codes. An $[[n, k, d]]$ stabilizer code maps a 2^k-dimensional k-qubit state space into a 2^d-dimensional subspace of an n-
qubit state space.

The code is defined as the space stabilized by an Abelian
subgroup of the n-qubit Pauli group, $\mathcal{S} \subset \mathcal{P}_n$, with $n - k$ Hermitian generators, $\mathcal{S} = \{g_1, \ldots, g_{n-k}\}$. For such a space
to exist, it is necessary that $-I \notin \mathcal{S}$. The Abelian group \mathcal{S} is
called the stabilizer of \mathcal{Q}. Explicitly,

\begin{equation}
 \mathcal{Q} \equiv \{|\psi\rangle : S|\psi\rangle = |\psi\rangle, \forall S \in \mathcal{S}\}.
\end{equation}

The code \mathcal{Q} is stabilized by \mathcal{S} iff it is stabilized by all $n - k$
generators G_i. In other words, it is an intersection of subspaces
stabilized by G_i,

\begin{equation}
 \mathcal{Q} = \bigcap_{i=1}^{n-k} \mathcal{P}(G_i).
\end{equation}

The normalizer of \mathcal{S} in \mathcal{P}_n, denoted as \mathcal{N}, is the group
of all Pauli operators U which fix \mathcal{S} under conjugation
($U^T SU = S$ for all $S \in \mathcal{S}$). The term normalizer reflects the
fact that these operators commute with \mathcal{S} [16]. It is possible to
construct $2k$ logical operators $\overline{X}_j, \overline{Z}_j, j = 1, \ldots, k$, with
the usual commutation relations, that together with the generators
of \mathcal{S} generate the normalizer (modulo an overall phase
factor) [16,35]. The $(n-k)$ generators G_i of the stabilizer,
along with the k operators \overline{Z}_j, generate a subgroup $\mathcal{G} =
\{g_1, \ldots, g_{n-k}, \overline{Z}_1, \ldots, \overline{Z}_k\}$ of \mathcal{P}_n which becomes a maximal
Abelian subgroup when including the generator $i \overline{1}$. The group
\mathcal{G} stabilizes a unique state

\begin{equation}
 |s\rangle \equiv |0^s \cdots 0\rangle.
\end{equation}

The operators \overline{X}_j acting on $|s\rangle$ generate the basis of the code,

\begin{equation}
 |\overline{x}_1 \cdots \overline{x}_k\rangle \equiv \overline{X}_1^{x_1} \cdots \overline{X}_k^{x_k} |s\rangle.
\end{equation}

Generally, each detectable Pauli error $E_j \in \mathcal{P}_n$ that acts
nontrivially on the code anticommutes with at least one
generator G_i, and errors from different degeneracy classes
anticommute with different subsets of \mathcal{S}. We can thus
identify the degeneracy class by the set of generators G_i which
anticommute with it. The corrupted code space $E_j(\mathcal{Q}) =
\{E_j|\psi\rangle : |\psi\rangle \in \mathcal{Q}\}$ is antistabilized by those generators G_i
that anticommute with E_j. Indeed,

\begin{equation}
 G_i(E_j|\psi\rangle) = (-E_j G_i)|\psi\rangle = -E_j|\psi\rangle,
\end{equation}

which means that the measurement of G_i gives -1. By
measuring all G_i, we get the syndrome that consists of $n - k$
numbers 0 or -1. There are in total 2^{n-k} possible syndromes
identifying different error degeneracy classes, including the
trivial error which corresponds to the all-one syndrome vector.

Any two corrupted spaces $E_i(\mathcal{Q})$ and $E_j(\mathcal{Q})$ are mutually
orthogonal or identical. The whole 2^n-dimensional n-qubit state
space $\mathcal{H}_n^{2^n}$ is thus divided into $L = 2^{n-k}$ orthogonal 2^k-
dimensional subspaces $\mathcal{Q}_j \equiv E_j(\mathcal{Q})$,}

\begin{equation}
 \mathcal{H}_n^{2^n} = \bigoplus_{j=0}^{L-1} \mathcal{Q}_j, \quad \mathcal{Q}_i \perp \mathcal{Q}_j \quad \text{for} \quad i \neq j.
\end{equation}

The representatives of different error classes can be chosen to
commute with each other and with the logical operations \overline{X}_j. These
typical representatives form an Abelian group [36]
$\mathcal{S} \equiv \{g_1, \ldots, g_{n-k}\}$ whose generators g_i
can be chosen to anticommute with only one of the generators of the stabilizer
each, $g_i G_j = (-1)^{0_i} G_j g_i$ (this follows from Proposition 10.4
in Ref. [2]). Altogether, the generators $\{g_1, \ldots, g_{n-k}\}$ can be regarded as a set of Pauli operators forming the basis of the
cosets of the normalizer \mathcal{N} of the code \mathcal{Q} in \mathcal{P}_n.

052337-3
Example 1. The [[5,1,3]] stabilizer code [5,37] is defined by the generators
\[G_1 = XZZXI, \quad G_2 = IXZZX, \]
\[G_3 = XIXZZ, \quad G_4 = ZXIXZ. \]
For this code, the logical operators can be taken as
\[\bar{X} = ZZZZZ, \quad \bar{Z} = XXXXX. \]
A basis of the code space is (up to normalization)
\[|0\rangle = \prod_{i=1}^{4} (1 + G_i)(00000), \quad |1\rangle = \bar{X}|0\rangle. \]

By construction, both basis states are stabilized by the generators \(G_i \). The corresponding stabilizer group is \(\mathcal{S} = \langle G_1, \ldots, G_4 \rangle \). The group of equivalence classes of correctable errors is generated by the representatives (note the mixed notation, e.g., \(Z_1Z_2 \equiv ZZZZ \))
\[g_1 = Z_1Z_3, \quad g_2 = ZZZZ, \quad g_3 = ZZZZ, \quad g_4 = Z_2Z_5. \]

The \(g_j \) are chosen to commute with the logical operators and also to satisfy \(G_ig_j = (-1)^{\delta_{ij}} g_j G_i \). Note that the operators of weight one forming the correctable error set do not by themselves form a group. The generators \(g_i \) can be used to map correctable errors to the corresponding group elements with the same syndrome. This gives, for example, \(Z_2 \rightarrow g_2g_4 = Z_2X \), \(X_2 \rightarrow g_1 = Z_1Z_5 \), and \(Y_2 \rightarrow g_1g_2g_4 = Z_1Z_3X = Z_4Z_5 \).

D. Union stabilizer codes

The decomposition (10) can be viewed as a constructive definition of the Abelian group \(\mathcal{S} \equiv \langle g_1, \ldots, g_{n-1} \rangle \) of all translations of the original stabilizer code \(Q \) in \(\mathcal{P}_n \). In the following, this stabilizer code is denoted \(Q_0 \). Any two nonequivalent translations \(t_i, t_j \in \mathcal{S} \) belong to different cosets of the normalizer \(N_0 \) of the code \(Q_0 \) in \(\mathcal{P}_n \) and, therefore, yield mutually orthogonal shifts
\[t_i(Q_0) \perp t_j(Q_0), \quad i \neq j. \]
A UST code [23,24,28] is a direct sum,
\[Q \equiv \bigoplus_{i=1}^{K} t_i(Q_0), \]
of \(K \) shifts of the code \(Q_0 \) by nonequivalent translations \(t_i \in \mathcal{S}, i = 1, \ldots, K \).

The basis of the code defined by (15) is the union of the sets of basis vectors of all \(t_i(Q_0) \). As a result, the dimension of \(Q \) is \(K2^k \). This code is then denoted \(\langle (n, K2^k, d) \rangle \), where \(d \) is the distance of the new code. Generally, this distance does not exceed the distance of the original code with respect to the same error set, \(d(Q) \leq d(Q_0) \). However, if the code \(Q \) is degenerate and the original code \(Q_0 \) is one-dimensional, this need not be true.

E. Graph states

The unique state \(|s\rangle \) defined by Eq. (8) itself forms a single-state stabilizer code \(\langle [n,0,d^2] \rangle \). Its stabilizer \(\mathcal{S} \equiv (G_1, \ldots, G_{n-4}, \bar{Z}_1, \ldots, \bar{Z}_k) \) has exactly \(n \) mutually commuting generators. Note that for stabilizer states we follow the convention that the distance \(d^2 \) is given by the minimum weight of the nontrivial elements of the stabilizer \(\mathcal{S} \). Generally, such a state stabilized by an Abelian subgroup in \(\mathcal{P}_n \) of order \(2^n \) (which does not include \(-1\)) is called a stabilizer state [16].

A graph state [22] is a stabilizer state of a group whose \(n \) mutually commuting generators \(S_i \) are defined by a (simple) \(n \)-vertex graph \(\mathcal{G} \) with an adjacency matrix \(R \in \{0,1\}^{n \times n} \). Specifically, the generators are
\[S_i \equiv \begin{cases} X_i & \text{if } R_{ij}=1; \\ \bar{Z}_i & \text{otherwise} \end{cases} \]
where \(R_{ij} \), \(i = 1, \ldots, n \) denotes the \(i \)th row of the adjacency matrix \(R \). A graph state can be efficiently generated [20,38] by first initializing every qubit in the state \(|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2} \) (e.g., applying the Hadamard gate on \(|0\rangle \)), and then using a controlled-Z gate \(C_Z^{i,j} \) on every pair \((i,j) \) of qubits corresponding to an edge of the graph \(\mathcal{G} = (V,E) \).
\[|s\rangle = \prod_{(i,j) \in E} C_Z^{i,j} |0\rangle, \]

where \(|0\rangle_n \) is a state with all \(n \) qubits in state \(|0\rangle \).

Any stabilizer state is locally Clifford equivalent (LC equivalent) to a graph state [39–41]. That is, any stabilizer state can be transformed into a graph state by individual discrete rotations of the qubits. This defines the canonical form of a stabilizer state.

Example 2. Consider the ring graph for \(n = 3 \) [Fig. 2(a)] which defines the stabilizer generators \(S_1 = XZZ, S_2 = ZXZ, \) and \(S_3 = ZZX \). The corresponding stabilizer state \(|s\rangle \) is an equal superposition of all \(2^3 \) states [result of the Hadamard gates in Eq. (17)], taken with positive or negative signs depending on the number of pairs of ones at positions connected by the edges of the graph [result of the gates \(C_Z^{i,j} = (-1)^{\delta_{ij}} \)]. In the following expressions we omitted normalization for clarity:
\[|s\rangle = |000\rangle + |001\rangle + |010\rangle - |011\rangle + |100\rangle + |101\rangle - |110\rangle - |111\rangle \]
\[= S_2|s\rangle = |010\rangle - |011\rangle + |000\rangle + |001\rangle - |110\rangle - |111\rangle + |100\rangle - |101\rangle. \]

F. CWS codes and their standard form

CWS codes [19,20] represent a general class of nonadditive quantum codes that also includes stabilizer codes. They can be viewed as UST codes originating from a stabilizer state. Any example 2. Ring graphs with (a) three vertices and (b) five vertices.
CWS code is locally Clifford equivalent to a CWS code which originates from a graph state [20].

Specifically, a CWS code \((n, K, d)\) in standard form [20] is defined by a graph \(G\) with \(n\) vertices and a classical code \(C\) containing \(K\) binary code words \(c_i\). The originating stabilizer state is the graph state \(|s\rangle\) defined by \(G\), and the code word operators [translations in Eq. (15)] have the form \(W_i \equiv Z_i^c\), \(i = 1, \ldots, K\). For a CWS code in standard form we use the notation \(Q = (G, C)\).

An important observation made in Ref. [20] is that a single-qubit error \(X, Z, Y\) acting on a code state,

\[
|w_i\rangle \equiv W_i|s\rangle,
\]

(20)
is equivalent (up to a phase) to an error composed only of \(Z\) operators. This establishes the following mapping between multiquubit errors and classical binary errors. First, let \(E_i = Z_j^{[01]}X_i\) be an error acting on the \(i\)th qubit of \(W_i|s\rangle\). Then we see that

\[
E_i W_j |s\rangle = E_i W_j S_i |s\rangle = \pm (E_i S_i) W_j |s\rangle,
\]

where the term \(E_i S_i = Z_j^{[01]}Z_i^c\) consists only of operators \(Z\). The general mapping of an error \(E = \sum Z^x Y^y Z^z\) from the error set \(E \subseteq \mathcal{P}_n\) to a classical error vector in \([0,1]^n\) is defined as

\[
\text{Cl}_G(E) \equiv \sum_{i=1}^{n} u_i r_i,
\]

(21)

where \(u_i\) is the \(i\)th component of the vector \(u\). We will refer to both the binary vector \(\text{Cl}_G(E)\) and the operator \(Z_{\text{Cl}_G(E)}\) as the graph image of the Pauli operator \(E\).

Theorem 3 from Ref. [20] establishes the correspondence between the error correcting properties of a quantum code \(Q\) and those of the corresponding classical code \(C\). It states that a CWS code (in standard form) given by a graph \(G\) and word operators \(|W_i = Z^c|\) detects errors in the set \(E\) if and only if the classical code \(C\) detects errors from the set \(\text{Cl}_G(E)\), and for each \(E \in E\),

\[
either \text{Cl}_G(E) \neq 0,\quad \text{or for each } i, \quad Z^c E = E Z^c.
\]

(22)

(23)
The code \(Q\) is nondegenerate (and also pure, see the Appendix) iff condition (22) is satisfied for all errors in \(E\) [20,21]. For a degenerate code, condition (23) needs to be ensured for errors that do not satisfy Eq. (22).

The beauty of the CWS construction is that, for a given code in standard form, we no longer need to worry about possible degeneracies. The classical error patterns induced by the function \(\text{Cl}_G(\cdot)\) also separate the errors into corresponding degeneracy classes [20,21].

The CWS framework is general enough to also include all stabilizer codes [20]. Specifically, a stabilizer code \([n, k, d]\) with the stabilizer \(\mathcal{S}_0 = \{G_1, \ldots, G_{n-k}\}\) and logical operators \(\mathcal{L}_l\) and \(\mathcal{X}_l\), corresponds to a CWS code with the stabilizer

\[
\mathcal{S} = \{G_1, \ldots, G_{n-k}, Z_1, \ldots, Z_k\}
\]

(24)

and the code word operator set \(\mathcal{W} = \{\mathcal{X}_1, \ldots, \mathcal{X}_k\}\) forming a group of size \(K = 2^k\). Generally, an LC transformation is required to obtain the standard form of this code.

Conversely, an additive CWS code \(Q = ([n, K, d])\) where the code word operators form an Abelian group (in which case \(K = 2^k\) with integer \(k\)) is a stabilizer code \([n, k, d]\) [20]. In Sec. V B we show that the graph state generators \(S_i\) [Eq. (16)] by a symplectic Gram-Schmidt orthogonalization procedure [35] which has no effect on the code word operators.

Example 3. Consider a nonadditive CWS code \((5,6,2)\). The corresponding ring graph is illustrated in Fig. 2(b) (Ref. [20]). The \(n = 5\) generators of the stabilizer \(\mathcal{S}\) are \(S_1 = XZIIZ\) and its four cyclic permutations. The corresponding stabilizer state has a structure similar to Eq. (18), but with more terms. Word operators have the form \(Z^c\), with the classical code words

\[
c_0 = 00000, \quad c_1 = 01101, \quad c_2 = 10110, \quad c_3 = 01101, \quad c_4 = 10110, \quad c_5 = 11010.\]

Example 4. To express the \(([5,1,3])\) stabilizer code [see Example 1] as a \((5,2,3)\) CWS code in standard form, we explicitly construct alternative generators \(S_i\) of the stabilizer \(\mathcal{S} = \{G_1 G_2 G_3 G_4 Z\}\) [Eq. (24)] to contain only one \(X\) operator each. We obtain \(S_5 = G_1 G_2 Z = IZXZI\) and its four cyclic permutations. This does not require any qubit rotations due to a slightly unconventional choice of the logical operators in Eq. (12). The corresponding graph is the ring [20], see Fig. 2(b). The code word operators are \(W = \{I, X\}\), which by Eq. (12) correspond to classical binary code words \(00000, 11111\). Note that the error map induced by the graph is different from the mapping to group elements in Example 1; in particular, \(Z_{\text{Cl}_G(Z)} = Z_2\), \(Z_{\text{Cl}_G(X)} = Z_1 Z_3\), and \(Z_{\text{Cl}_G(Y)} = Z_1 Z_2 Z_3\).

III. GENERIC RECOVERY FOR CWS CODES

In this section we construct a generic recovery algorithm which can be adapted to any nonadditive code.

The basic idea is to construct a non-Pauli measurement operator \(M_Q = 2P_Q - I\), where \(P_Q \equiv \sum_{i=1}^{K} |w_i\rangle\langle w_i|\) is the projector onto the code \(Q\) spanned by the orthonormal basis \(|w_i\rangle\}. The measurement operator is further decomposed using the identity

\[
-M_Q = 1 - 2 \sum_{i=1}^{K} |w_i\rangle\langle w_i| = \prod_{i=1}^{K} (1 - 2 |w_i\rangle\langle w_i|).
\]

(26)

We use the graph state encoding unitary \(U_G\) from Eq. (17) and the following decomposition [20] of the standard-form basis of the CWS code in terms of the graph state \(|s\rangle\) and the classical states \(|c_i|\):

\[
|w_i\rangle = Z^c|s\rangle = Z^c U_G |0\rangle_n = U_G X^c |0\rangle_n = U_G |c_i|.
\]

The measurement operator \(M_Q\) is rewritten as a product

\[
M_Q = -U_G M_c U_G^\dagger, \quad M_c = \prod_{i=1}^{K} M_{c_i},
\]

(27)

where the measurement operator,

\[
M_{c_i} = 1 - 2 |c_i\rangle\langle c_i| = X^c (1 - 2 |1\rangle_\langle 1|) X^c,
\]

(28)
stabilizes the orthogonal complement of the classical state $|c_i\rangle$. The components of the binary vector C_i are the respective complements of c_i, $\tau_{i,j} = 1 \mp c_{i,j}$. The operator in the parentheses in Eq. (28) is the $(n-1)$-controlled Z gate (the Z operator is applied to the nth qubit only if all the remaining qubits are in state $|1\rangle$). It can also be represented as an n-qubit controlled-phase gate $C^P_{n} = \exp(i\theta P_{10})$, with $\theta = \pi$, where the operator P_{10} projects onto the state $|1\rangle_n$. This can be further decomposed as a product of two Hadamard gates and an $(n-1)$-controlled NOT gate (Fig. 3) which for $n \geq 6$ can be implemented in terms of one ancilla and $8(n-4)$ three-qubit Toffoli gates [33] and therefore has linear complexity in n. With no ancillas, the complexity of the $(n-1)$-controlled NOT gate is $O(n^2)$ [33].

The corresponding ancilla-based measurement for M_c can be constructed with the help of two Hadamard gates (Fig. 1) by adding an extra control to each C^P_{n} gate. Indeed, this correlates the state $|1\rangle$ of the ancilla with M_c acting on the n qubits, and the state $|0\rangle$ of the ancilla with 1. When constructing the measurement for the product of the operators M_c, it is sufficient to use only one ancilla, since for each basis state $|u_i\rangle$ only one of these operators acts nontrivially. The classical part of the overall measurement circuit without the graph state encoding U_G is shown in Fig. 4.

The complexity of measuring M_Q [Eq. (27)] then becomes K times the complexity of $(n+1)$-qubit Toffoli gate for measuring each M_c, plus the complexity of the encoding circuit U_G and its inverse U_G^{-1}, which is at most n^2. Overall, for large n, the measurement complexity is no larger than $n^2 + K O(n)$, or $(1+K)O(n^2)$ for a circuit without additional ancillas.

We would like to emphasize that so far we have only constructed the measurement for error detection. Actual error correction for a nonadditive code in this scheme involves constructing measurements $M_E \equiv EM_EQE$ for all corrupted subspaces corresponding to different degeneracy classes given by different $C_{\ell}(E)$. This relies on the orthogonality of the corrupted subspaces, see the Appendix. For a general ℓ-error correcting code, the number of these measurements can reach the same exponential order $B(n,\ell)$ as the number of correctable errors in Eq. (1). For nondegenerate codes, we cannot do better using this method.

Note that the measurement circuit derived in this section first decodes the quantum information, then performs the measurement for the classical code, and finally re-encodes the quantum state.

IV. MEASUREMENTS FOR USI CODES

In this section we construct a quantum circuit for the measurement operator M_Q of a USI code $(n,K,2^k,d)$. To this end, we define the logical combinations of non-Pauli measurements in agreement with analogies of Ref. [31] for the projection operators, and we construct the circuits for logical combinations AND (Figs. 5 and 6) and XOR (Figs. 7 and 8). We use these circuits to construct the measurement for M_Q with complexity not exceeding $2K(n+1)(n-k)$.

A. Algebra of measurements

Logical AND. Given two commuting measurement operators M_1 and M_0, let $M_1 \land M_0$ denote the measurement operator that stabilizes all states in the subspace

$$P(M_1 \land M_0) \equiv P(M_1) \cap P(M_0).$$

The output of the measurement $M_1 \land M_0$ is identical to the logical AND operation performed on the output of measurements M_1 and M_0. This measurement can be implemented by the circuit in Fig. 5. Here the first two ancillas are entangled with the two measurement outcomes; the third ancilla is flipped only if both ancillas are in the $|0\rangle$ state, which gives the combination $|1\rangle P_{M_1 \land M_0}\rangle \psi \rangle$.

The projector onto the positive eigenspace of $M_1 \land M_0$ satisfies the identity

$$P_{M_1 \land M_0} = P_{M_1} P_{M_0}.\tag{30}$$

This identity can be used to obtain a simplified circuit which only uses two ancillas (see Fig. 6) with the price of two additional controlled-Hadamard gates (Fig. 9).

The circuits in Figs. 5 and 6 can be generalized to perform the measurement corresponding to the logical AND of $\ell > 1$ commuting measurement operators with the help of associativity, for example, $M_2 \land M_1 \land M_0 = M_2 \land (M_1 \land M_0)$. The generalization of the simplified circuit in Fig. 6 requires only two ancillas for any $\ell > 1$. The corresponding complexity is $2\ell - 1$ times the complexity of a controlled-M gate, plus $2\ell - 1$ times the complexity of a controlled single-qubit gate.

FIG. 4. Generic measurement of the classical part M_c of the CWS code stabilizer M_Q [Eq. (27)] uses $K(n+1)$-qubit controlled-Z gates. Here X^{c_i} indicates that a single-qubit gate X^{c_i} is applied at the jth qubit, $j = 1, \ldots, n$, and C_{M_c} is the controlled-M_c gate [see Eq. (28)]. This can be further simplified by combining the neighboring X^{c_i} gates and replacing the controlled-Z gates by $(n+1)$-qubit Toffoli gates as in Fig. 3.
FIG. 5. Measurement $M_1 \& M_0$ by performing a logical AND operation on two ancillas. We use the notations $P_i \equiv P_{M_i}$ and $Q_i \equiv 1 - P_i$, $i = 0, 1$, and assume $P_1 P_0 = P_0 P_1$. The circuit returns $|f\rangle = |1\rangle P_1 P_0 |\psi\rangle + |0\rangle (1 - P_1 P_0) |\psi\rangle$. Intermediate results are $|a\rangle = |000\rangle P_1 |\psi\rangle + |100\rangle Q_1 |\psi\rangle$, $|b\rangle = |000\rangle P_0 P_1 |\psi\rangle + |010\rangle P_1 Q_0 |\psi\rangle + |100\rangle Q_1 P_1 |\psi\rangle + |110\rangle Q_1 Q_0 |\psi\rangle$, and $|c\rangle = |001\rangle P_1 P_0 |\psi\rangle + |010\rangle P_1 Q_0 |\psi\rangle + |100\rangle Q_1 P_0 |\psi\rangle + |110\rangle Q_1 Q_0 |\psi\rangle$; the last two groups of gates return the first two ancillas to the state $|00\rangle$.

When all M_i are n-qubit Pauli operators, the overall complexity with two ancillas is $(2 \ell - 1)(n + 1)$.

Logical XOR. In analogy with the logical “exclusive OR,” we define the symmetric difference $A \oplus B \oplus C \ldots$ of vector spaces A, B, C, \ldots as the vector space formed by the basis vectors that belong to an odd number of the original vector spaces. For two vector spaces

$$A \oplus B \equiv (A \cap B^\perp) \oplus (B \cap A^\perp).$$

(31)

This operation is obviously associative, $A \oplus (B \oplus C) = (A \oplus B) \oplus C$. For two commuting measurement operators M_0 and M_1, let $M_1 \oplus M_0$ be the measurement operator that stabilizes the subspace $P(M_1) \Delta P(M_0)$. Explicitly,

$$P(M_1 \oplus M_0) \equiv P(M_1) \Delta P(M_0) = [P(M_1) \cap P(M_0)] \oplus [P(M_0) \cap P(M_1)].$$

(32)

The output of measuring $M_1 \oplus M_0$ is identical to the logical XOR operation performed on the outputs of measurements M_1 and M_0. The corresponding measurement can be implemented by combining the two ancillas with a controlled-NOT (CNOT) gate [Fig. 7].

To simplify this measurement, we show that $M_1 \oplus M_0 = -M_1 M_0$. Indeed, Eq. (32) implies that for the projection operators $P_i \equiv P_{M_i}$, $i = 0, 1$,

$$P_{M_1 \oplus M_0} = P_1 (\mathbb{1} - P_0) + P_0 (\mathbb{1} - P_1).$$

The corresponding measurement operator is factorized with the help of the projector identities (3),

$$M_1 \oplus M_0 = 2[P_1 (\mathbb{1} - P_0) + P_0 (\mathbb{1} - P_1)] - \mathbb{1} = -(2P_1 - \mathbb{1})(2P_0 - \mathbb{1}) = -M_1 M_0,$$

This implies that $P(M_1 \oplus M_0) = P(M_1 M_0)$. In other words, the measurement of $M_1 \oplus M_0$ can be implemented simply as an (inverted) concatenation of two measurements (see Fig. 8). The same circuit can also be obtained from that in Fig. 7 by a sequence of circuit simplifications (not shown).

The circuit in Fig. 8 is immediately generalized to a combination of more than two measurements, $M_1 \oplus \ldots \oplus M_\ell = (-1)^{\ell-1} M_1 \cdots M_\ell$. The corresponding complexity for computing the XOR of ℓ measurements is simply the sum of the individual complexities, implying that this concatenation has no overhead.

B. Error detection for union stabilizer codes

A UST code $Q = (n, K^2, d)$ is a direct sum (15) of K mutually orthogonal subspaces obtained by translating the originating stabilizer code $Q_0 = [[n, K, d_0]]$. For mutually orthogonal subspaces $A \perp B$, we have $A \subset B^\perp$ and $B \subset A^\perp$, and the direct sum is the same as the symmetric difference (31), $A \oplus B = A \Delta B$.

In turn, the stabilizer code Q_0 is an intersection of the subspaces stabilized by the generators G_i of the stabilizer [see Eq. (7)]. The translated subspaces $t_j Q_0$ are stabilized by the Pauli operators $M_{i,j} = t_j G_i t_j^\dagger$. We can therefore decompose the UST code Q as

$$Q = \bigoplus_{j=1}^{K} \bigcap_{i=1}^{n-k} P(M_{i,j}) = \bigcap_{j=1}^{K} \bigcup_{i=1}^{n-k} P(M_{i,j}).$$

(33)

This gives the decomposition of the measurement operator M_Q whose positive eigenspace is the code Q as

$$M_Q = \bigcap_{j=1}^{K} \bigcup_{i=1}^{n-k} M_{i,j}.$$

(34)

FIG. 6. Simplified measurement for $M_1 \& M_0$; notations are as in Fig. 5. Intermediate results (cf. Fig. 1) are $|a\rangle = |00\rangle P_1 |\psi\rangle + |10\rangle Q_1 |\psi\rangle$ and $|b\rangle = |00\rangle P_1 P_0 |\psi\rangle + |10\rangle Q_1 Q_0 |\psi\rangle$. The effect of the last block is to select the component with the first ancilla in the state $|0\rangle$; this requires that the projectors P_1 and P_0 commute. The result is equivalent to $|1\rangle P_1 P_0 |\psi\rangle + |0\rangle (1 - P_1 P_0) |\psi\rangle$.
FIG. 7. Measurement \(M_1 \oplus M_0 \) by performing a logical XOR gate on the two ancillas and subsequent recovery of the first ancilla. Notations are as in Fig. 5. The final result is \(|f⟩= |1⟩(P_0 Q_1 + P_1 Q_0)|ψ⟩ + |0⟩(P_0 P_1 + Q_0 Q_1)|ψ⟩\).

Recall that the complexity of each of the \(K \) logical AND operations is \(2(n - k) - 1 \) \((n + 1)\). No additional overhead is required to form the logical XOR of the results. Thus, we obtain the following.

Theorem 1. Error detection for a USt code of length \(n \) and dimension \(K^2 \), formed by a translation set of size \(K > 0 \), has complexity of at most \(2K(n - k)(n + 1) \).

Note that in the special case of a CWS code \((k = 0)\), the prefactor of \(K \) is quadratic in \(n \) whereas the corresponding prefactor obtained in Sec. III is linear in \(n \). The reason is that in Eq. (27) the graph encoding circuit \(Q_G \) with complexity \(O(n^2) \) is used only twice, and the projections onto the classical states have linear complexity. In Eq. (34) we are using \(K \) projections onto basis states of the quantum code. The advantage of the more complex measurement constructed in this section is that it does not involve having unprotected decoded qubits for the entire duration of the measurement.

V. STRUCTURED MEASUREMENT FOR CWS CODES

A. Grouping correctable errors

Recall from Sec. II C that for stabilizer codes the representatives of the error degeneracy classes form an Abelian group whose generators are in one-to-one correspondence with the generators of the stabilizer. Measuring the \(n - k \) generators of the stabilizer of a stabilizer code \([n, k, d]\) uniquely identifies the degeneracy class of the error.

In this section we establish a similar structure for CWS codes. First, for any subset \(D \subset E \) of correctable errors of a quantum code \(Q \), we define the set \(E_\pi \) of unrelated errors which do not fall in the same degeneracy class with any error from \(D \). The formal definition,

\[
E_\pi = \{ E : E \in E \land C_{E,E_i} = 0, \forall E_1 \in D \},
\]

is based on the general error correction condition (5) and the orthogonality of corrupted spaces (see the Appendix). When

\[
\begin{array}{c}
|0⟩ \quad H \quad H \quad H \quad |0⟩ \\
|ψ⟩ \quad H \quad H \quad H \quad \{ f⟩ \\
\end{array}
\]

\[
\begin{array}{c}
|0⟩ \quad H \quad H \quad H \quad |0⟩ \\
|ψ⟩ \quad H \quad H \quad H \quad \{ f⟩ \\
\end{array}
\]

errors in \(E \) are nondegenerate, the definition (35) is equivalent to the set difference, \(E \setminus D \). In the general case, since we do not distinguish between mutually degenerate errors, \(E_\pi \) can be thought of as the difference between the sets of degeneracy classes in \(E \) and in \(D \).

Definition (35) implies that the subspaces

\[
D(Q) = \bigoplus_{E \in D} E(Q)
\]

and \(E_\pi(Q) \), defined analogously, are mutually orthogonal. Moreover, if the elements of the set \(D \) form a group \(D \equiv D \), the subspace \(E_\pi(Q) \) is also orthogonal to \(E_\pi(Q) \) [see Eq. (40)]. In other words, \(Q_{\pi} \equiv D(Q) \) can be viewed as a quantum code which detects errors from \(E_\pi \).

This observation, together with the error-detection measurement for USt codes constructed in the previous section, forms the basis of our error grouping technique. We prove the following.

Theorem 2. For a CWS code \(Q = (G,C) \) in standard form and a group \(\mathbb{D} \) formed by graph images of some correctable errors in \(E \), the code \(Q_{\mathbb{D}} \equiv \mathbb{D}(Q) \) is a USt code which detects all errors in \(E_\pi \).

Proof. First, we show that the subspace \(\mathbb{D}(Q) \) is a USt code. The corresponding set of basis vectors is

\[
\mathcal{D}((|w_1⟩,...,|w_K⟩)) = \bigcup_{E \in \mathbb{D}} \bigoplus_{e_{\alpha} \in E} |e_{\alpha}|w_i⟩\]

These vectors are mutually orthogonal,

\[
\langle w_i|e_{\beta}|e_{\alpha}|w_j⟩ = 0, \quad \forall i,j \leq K, \quad e_{\alpha}, e_{\beta} \in \mathbb{D}, \quad e_{\alpha} \neq e_{\beta},
\]

since every element \(e_{\alpha} \equiv Z^\alpha E_k \) of the group \(\mathbb{D} \) is a representative of a separate error degeneracy class. Further, the group \(\mathbb{D} \) is Abelian, and its elements commute with the code word generators \(W_i = Z^{e_{\alpha}}c_i \in \mathcal{E} \). Therefore, using Eq. (20), we can rearrange the set (36) as

\[
\mathbb{D}((|w_1⟩,...,|w_K⟩)) = \bigcup_{i=1}^K W_i(|e_{\alpha}|s⟩)_{e_{\alpha} \in \mathbb{D}}.
\]

The set in the parentheses on the right-hand side is a basis of the additive CWS code \(Q_{\mathbb{D}} \) formed by the group \(\mathbb{D} \) acting on the graph state \(|s⟩ \). Then, we can write the subspace \(\mathbb{D}(Q) \) explicitly as a USt code [cf. Eq. (15)],

\[
\mathbb{D}(Q) = \bigoplus_{i=1}^K W_i(Q_{\mathbb{D}}),
\]

where the translations are given by the set of code word operators \(W = \{ W_i \}_{i=1}^K \) of the original code \(Q \). Orthogonality condition (14) is ensured by Eq. (37).
Second, we check the error-detection condition (4) for the code (39). Explicitly, for an error \(E \in \mathcal{E}_{\mathcal{D}} \), and for the orthogonal basis states \(e_\alpha W_i |s\rangle \),

\[
(s|W_i^\dagger e_\alpha e_\beta W_j |s\rangle = \pm (w_i E e_\alpha e_\beta) w_j = 0 \quad (40)
\]

for all \(\alpha, \beta, i \) and \(j \), according to Eqs. (5) and (35) and the group property of \(\mathcal{D} \).

Now, to correct errors in groups, we just have to find a suitable decomposition of the graph images of the original error set into a collection of groups, \(C_{\mathcal{D}}(\mathcal{E}) = \bigcup_{j} \mathcal{D}_j \), and perform individual error-detection measurements for the auxiliary codes \(\mathcal{Q}_{\mathcal{D}_j} \) until the group containing the error is identified.

To find an error within a group \(\mathcal{D} \equiv \{g_1, \ldots, g_m\} \) with \(m \) generators, we can try all \(m \) subgroups of \(\mathcal{D} \) with one generator missing. More specifically, for a generator \(g_i \) we consider the subgroup \(\mathcal{D}^{(i)} = \{g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_m\} \) and perform error detection for the code \(\mathcal{Q}^{(i)} = \mathcal{Q}^{(i)}(\mathcal{Q}) \). After completing \(m \) measurements, we obtain a representative of the actual error class. This is the product of all generators \(g_i \) for which the corresponding code \(\mathcal{Q}^{(i)} \) detected an error.

B. Complexity of a combined measurement

To actually carry out the discussed program, we need to construct the \(n - m \) generators \(G_i \) of the stabilizer of the code \(\mathcal{Q}_{\mathcal{D}} \). The generators have to commute with the \(m \) generators \(g_i \) in the group \(\mathcal{D} \).

This can be done with the Gram-Schmidt (GS) orthogonalization [35] of the graph-state generators \(S_i \) [Eq. (16)] with respect to the generators \(g_a \). As a result, we obtain the orthogonalized set of independent generators \(S'_i \) such that \(g_a S'_i = (−1)^{b_{a i}} S'_i g_a \). We can take the last \(n - m \) of the obtained generators as the generators of the stabilizer, \(G_i = S'_{i+m}, i = 1, \ldots, n - m \). The orthogonalization procedure is guaranteed to produce exactly \(m \) generators \(S'_i \) anticommuting with the corresponding errors \(g_a, a = 1, \ldots, m \). Indeed, the GS orthogonalization procedure can be viewed as a sequence of row operations applied to the original \(n \times m \) binary matrix \(B \) with the elements \(b_{a i} \) which define the original commutation relation,

\[
S_i g_a = (−1)^{b_{a i}} g_a S_i \quad (41)
\]

The generator \(g_a \) anticommutates with at least one operator in \(\mathcal{D} \) if and only if the \(a \)th column of \(B \) is not an all-zero column. Then all \(m \) generators are independent (no generator can be expressed as a product of some others) if and only if \(B \) has full column rank.

By this explicit construction, the generators \(G_i \) of the stabilizer of the auxiliary code \(\mathcal{Q}_{\mathcal{D}} \) [Eq. (39)] are Pauli operators in the original graph-state basis. The complexity of each error-detection measurement \(M(\mathcal{Q}_{\mathcal{D}}) \) is therefore given by Theorem 1.

C. Additive CWS codes

The procedure described previously appears to be extremely tedious, much more complicated than the syndrome measurement for a stabilizer code. However, it turns out that for stabilizer codes this is no more difficult than the regular syndrome-based error correction.

Indeed, for a stabilizer code \(\mathcal{Q} = \{[n,k,d]\} \), the degeneracy classes for all correctable errors form a group of all translations of the code, \(\mathcal{D} \equiv \mathcal{Q} = \{g_1, \ldots, g_{n-k}\} \), with \(n - k \) generators. To locate the error, we just have to go over all \(n - k \) USt codes \(\mathcal{D}^{(i)}(\mathcal{Q}) \) generated by the subgroups of \(\mathcal{D} \) with the generator \(g_i \) missing. Since the originating code \(\mathcal{Q} \) is a stabilizer code, the USt codes \(\mathcal{D}^{(i)}(\mathcal{Q}) \) are actually stabilizer codes, encoding \(k = k + (n - k - 1) = n - 1 \) qubits each. Hence there is only one nontrivial error, and up to error degeneracies, \(\mathcal{E}_{\mathcal{D}^{(i)}} = \{g_i\} \). The corresponding stabilizers \(\mathcal{D}^{(i)} \) have only one generator each. The necessary measurements are just independent measurements of \(n - k \) Pauli operators, the same as needed to measure the syndrome. Moreover, if the error representatives \(g_i, i = 1, \ldots, n - k \), are chosen to satisfy the orthogonality condition \(G_i g_j = (−1)^{b_{i j}} g_i G_j \); as in Example 1, the operators to be measured are the original generators \(G_i \) of the stabilizer, and the corresponding measurement is just the syndrome measurement.

Example 5. Consider the additive code \((5,2,3)\) equivalent to the stabilizer code \([5,1,3]\) (see Examples 1 and 4). The graph-induced images of single-qubit errors form a group of translations of the code, \(\mathcal{D} = \{Z_1, Z_2, Z_3, Z_4\} \). This group contains all error degeneracy classes, \(\mathcal{D} = \mathcal{T} \). With the addition of the logical operator \(X \equiv \{X, \bar{X}\} \) of code word operators, we get the auxiliary USt code \(\mathcal{W}(\mathcal{Q}_{\mathcal{D}}) \) as the union of the positive eigenspaces of the operators [see Eq. (33)],

\[
M_{1,0} = S_5, \quad M_{1,1} = \bar{X}S_5 \bar{X} = −S_5,
\]

which is the entire Hilbert space, \(\mathcal{W}(\mathcal{Q}_{\mathcal{D}}) = \mathcal{D}(\mathcal{Q}) = H_2^{\otimes 5} \), as expected.

To locate the error within the group \(\mathcal{D} \) with \(m = 4 \) generators, we form a set of smaller codes \(\mathcal{D}^{(i)}(\mathcal{Q}) \), \(l = 1, \ldots, 4 \), where the group \(\mathcal{D}^{(i)} \) is obtained from \(\mathcal{D} \) by removing the \(l \)th generator. The corresponding stabilizers are \(\mathcal{D}^{(1)} = \{S_1, S_2\}, \mathcal{D}^{(2)} = \{S_2, S_5\}, \mathcal{D}^{(3)} = \{S_2, S_5\}, \mathcal{D}^{(4)} = \{S_2, S_5\} \), etc. The matrices \(M_{i,j}^{(1)} \) of conjugated generators have the form, for example,

\[
M_{i,j}^{(1)} = \begin{pmatrix}
S_1, & −S_1 \\
S_5, & −S_5
\end{pmatrix}, \quad M_{i,j}^{(2)} = \begin{pmatrix}
S_2, & −S_2 \\
S_5, & −S_5
\end{pmatrix}, \quad \ldots
\]

The code \(\mathcal{D}^{(i)} \) is formed as the union of the common positive eigenspaces of the operators in the columns of the matrix \(M_{i,j}^{(i)} \). Clearly, these codes can be more compactly introduced as positive eigenspaces of the operators \(G_i = S_j S_5 \), \(l = 1, \ldots, 4 \). Such a simplification only happens when the original code \(\mathcal{Q} \) is additive. While the operators \(G_i \) are different from the stabilizer generators in Eq. (11), they generate the same stabilizer \(\mathcal{Q} = \{G_1, \ldots, G_4\} \) of the original code \(\mathcal{Q} \). It is also easy to check that the same procedure gives the original generators \(G_i \) [Eq. (11)] if we start with the error representatives (13).
D. Generic CWS codes

Now consider the case of a generic CWS code \(\mathcal{Q} = ((n, K, d)) \). Without analyzing the graph structure, it is impossible to tell whether there is any set of classical images of correctable errors that forms a large group. However, since we know its minimum distance, we know that the code can correct errors located on \(t = \lfloor (d - 1)/2 \rfloor \) qubits. All errors located on a given set of qubits form a group. Therefore, by taking an index set \(A \subset \{1, \ldots, n\} \) of \(s \leq t \) different qubit positions, we can ensure that the corresponding correctable errors \(\{E_i\}_{j=1}^{ℓ(1)} \) form a group with \(2s \) independent generators. The corresponding graph images \(\text{Cl}_G(E_i) \in \mathcal{D}_A \) obey the same multiplication table, but they are not necessarily independent. As a result, the Abelian group \(\mathcal{D}_A \) generally has \(m \leq 2s \) generators. Since all group elements correspond to correctable errors, the conditions of Theorem 2 are satisfied.

Overall, to locate an error of weight \(t \) or less, we need to iterate over each (but the last one) of the \(ℓ(1) \) index sets of size \(t \) and perform the error-detecting measurements in the corresponding USt code \(\mathcal{E}_A(\mathcal{Q}) \) until the error is found. This requires up to \(ℓ(1) - 1 \) measurements to locate the index set, and the error can be identified after additional \(m \leq 2t \) measurements. This can be summarized as the following.

Theorem 3. A CWS code of distance \(d \) can correct errors of weight up to \(t = \lfloor (d - 1)/2 \rfloor \) by performing at most

\[
N(n,t) = \binom{n}{t} + 2t - 1
\]

measurements.

For any length \(n \geq 3 \), this scheme reduces the total number \((1) \) of error patterns by a factor

\[
\frac{B(n,t)}{N(n,t)} = \begin{cases}
\frac{3n+1}{n+1}, & \text{if } t = 1, \\
3, & \text{if } t > 1.
\end{cases}
\]

Example 6. Consider the \((5,6,2)\) code previously discussed in Example 3. While the distance \(d = 2 \) is too small to correct arbitrary errors, we can correct an error located at a given qubit. Assume that an error may have happened on the second qubit. Then we only need to check the index set \(A = \{2\} \). The errors \(\{\mathbb{I}, X_2, Y_2, Z_2\} \) located in \(A \) form a group with generators \(\{X_2, Z_2\} \); the corresponding group of classical error patterns induced by the ring graph in Fig. 2(b) is \(\mathcal{D}_A = \{Z_1, Z_3, Z_2\} \). The three generators \(G_i \) of the stabilizer of the originating USt code \(\mathcal{Q}_{0|\mathcal{D}_A} \) can be chosen as, for example, \(G_1 = S_1S_3 = XIXZZ \), \(G_2 = S_2 = IZZZX \), and \(G_3 = S_3 = ZIIZX \). Using the classical code words (25) for the translation operators \(t_j = Z^{t_j} \), we obtain the conjugated generators \(M_{i,j} = t_jG_i/t_j \),

\[
M_{i,j} = \begin{pmatrix} G_1, & -G_1, & G_1, & G_1, & G_1, & -G_1 \\
G_2, & G_2, & -G_2, & -G_2, & G_2, & -G_2 \\
G_3, & -G_3, & G_3, & -G_3, & -G_3, & G_3 \end{pmatrix}.
\]

To locate the actual error in this 24-dimensional space, we consider the two subgroups \(\mathcal{Q}^{(1)} = \{ZIZI\} \) and \(\mathcal{Q}^{(2)} = \{IZIII\} \) of \(\mathcal{D}_A \). The stabilizers of the corresponding auxiliary codes \(\mathcal{Q}_{\mathcal{D}_A}^{(1)} \) and \(\mathcal{Q}_{\mathcal{D}_A}^{(2)} \) can be obtained by adding \(G_1^{(1)} = S_2 = ZXZII \) and \(G_2^{(2)} = S_3 = IZXZI \), respectively; this adds one of the following rows,

\[
M_{i,j}^{(1)} = (S_2, -S_2, S_2, -S_2, S_2, -S_2),
\]

\[
M_{i,j}^{(2)} = (S_3, -S_3, -S_3, S_3, -S_3, S_3).
\]

E. General USt codes

A similar procedure can be carried over for a general USt code \(((n, K, d)) \), with the only difference being that the definitions of the groups \(\mathcal{D} \) and the auxiliary codes \(\mathcal{Q}_{0|\mathcal{D}} \) [Eq. (39)] should also include the \(k \) generators of the originating stabilizer code \(\mathcal{Q}_0 \) [Sec. II D]. Overall, the complexity of error recovery for a generic USt code can be summarized by the following.

Theorem 4. Consider any \(t \)-error correcting USt code of length \(n \) and dimension \(K^2 \), with the translation set of size \(K \). Then this code can correct errors using \(ℓ(1) + 2t - 1 \) or fewer measurements, each of which has complexity \(2K(n + 1)(n - k - 1) \) or less.

F. Error correction beyond \(t \)

For additive quantum codes, the syndrome measurement locates all error equivalence classes, not only those with “coset leaders” of weight \(s < d/2 \). The same could be achieved with a series of clustered measurements, by first going over all clusters of weight \(s = t \), then \(s = t+1 \), etc. This ensures that the first located error has the smallest weight. In contrast, such a procedure will likely fail for a nonadditive code where the corrupted spaces \(E_1(\mathcal{Q}) \) and \(E_2(\mathcal{Q}) \) can partially overlap if either \(E_1 \) or \(E_2 \) is noncorrectable. For instance, the measurement in Example 6 may destroy the coherent superposition if the actual error (e.g., \(Z_1, i \neq 2 \)) was not on the second qubit.

Therefore, if no error was detected after \(ℓ(1) - 1 \) measurements, we can continue searching for the higher weight errors only after testing the remaining size-\(t \) index set. With a nonadditive CWS code, generally we have to do a separate measurement for each additional correctable error of weight \(s > t \).

VI. CONCLUSIONS

For generic CWS and USt codes, we constructed a structured recovery algorithm which uses a single non-Pauli measurement to check for groups of errors located on clusters of \(t \) qubits. Unfortunately, for a generic CWS code with large \(K \) and large distance, both the number of measurements and the corresponding complexity are exponentially large, despite...
the exponential acceleration already achieved by the combined measurement.

To be deployed, error correction must be complemented with some fault-tolerant scheme for elementary gates. It is an important open question whether a fault-tolerant version of our measurement circuits can be constructed for nonadditive CWS codes. It is clear, however, that such a procedure would not help for any CWS code that needs an exponential number of gates for recovery. Therefore, the most important question is whether this design can be simplified further.

We first note that the group-based recovery [see Theorem 2] is likely as efficient as it can possibly be, illustrated by the example of additive codes in Sec. V C where this procedure is shown to be equivalent to syndrome-based recovery. Also, while it is possible that for fixed \(K \) the complexity estimate of Theorem 1 can be reduced in terms of \(n \) (e.g., by reusing ancillas with measured stabilizer values), we think that for a generic code the complexity is linear in \(K \).

However, specific families of CWS codes might be represented as unions of just a few stabilizer codes which might be mutually equivalent as in Eq. (15), or nonequivalent [28]. The corresponding measurement complexity for error detection would then be dramatically reduced. Examples are given by the quantum codes derived from the classical nonlinear Goethals and Preparata codes [23, 24].

Another possibility is that, for particular codes, larger sets of correctable errors may form groups. Indeed, we saw that for CWS or USt codes, the corresponding measurement complexity for error detection would then be dramatically reduced. Examples are given by the quantum codes derived from the classical nonlinear Goethals and Preparata codes [23, 24].

This research was supported in part by NSF Grant No. 0622242. The Centre for Quantum Technologies is a Research Centre of Excellence funded by the Ministry of Education and National Research Foundation of Singapore. The authors are grateful to Bei Zeng for the detailed explanation of the CWS graph construction and to an anonymous referee for many suggestions that improved the readability of the article.

ACKNOWLEDGMENTS

APPENDIX: ORTHOGONALITY OF CORRUPTED SPACES

As discussed in Sec. II B, for a general nonadditive quantum code \(Q \) and two linearly independent correctable errors, the corrupted spaces \(E_1(Q) \) and \(E_2(Q) \) may be neither identical nor orthogonal [17]. However, for CWS and USt codes it is almost self-evident that when \(E_1(Q) \) and \(E_2(Q) \) do not coincide they are mutually orthogonal. This orthogonality is inherited from the originating stabilizer code \(Q_0 \). In particular, in some previous publications (e.g., Ref. [20]) orthogonality is implied in the discussion of degenerate errors for CWS codes. However, to our knowledge, it was never explicitly discussed for CWS or USt codes. Since our recovery algorithms for CWS and USt codes rely heavily on this orthogonality, we give here an explicit proof.

First, consider a stabilizer code \(Q_0 \). For any Pauli operator \(E = E_1^\dagger E_2 \), there are three possibilities: (i) \(E \) is proportional to a member of the stabilizer group, \(E = \gamma S \), where \(S \in \mathcal{S}_0 \) and \(\gamma = i^m \), \(m = 0, \ldots, 3 \); (ii) \(E \) is in the code normalizer \(\mathcal{N}_0 \) but is linearly independent of any member of the stabilizer group; and (iii) \(E \) is outside of the normalizer, \(E \notin \mathcal{N}_0 \).

Case (i) implies that the space \(E(Q_0) \) is identical to the code \(Q_0 \); the errors \(E_1 \) and \(E_2 \) are mutually degenerate. Indeed, for any basis vector \(|i \rangle \), the action of the error \(E|i \rangle = \gamma S|i \rangle \) just introduces a common phase \(\gamma \); any vector \(|\psi\rangle \in Q_0 \) is mapped to \(\gamma |\psi\rangle \) and hence no recovery is needed.

In case (ii) the operator \(E \) also maps \(Q_0 \) to itself, but no longer identically. Therefore, at least one of the two errors, \(E_1 \) or \(E_2 \), is not correctable. Indeed, in this case we can decompose \(E \) (see Sec. II C) as the product of an element \(S \in \mathcal{S}_0 \) in the stabilizer and logical operators; that is, \(E = i^m S X^a Z^b \), where \(m = 0, \ldots, 3 \) determines the overall phase. While \(S \in \mathcal{S}_0 \) acts trivially on the code, the logical operator specified by the binary vectors \(a \) and \(b \) is nontrivial, \(\text{wgt}(a) + \text{wgt}(b) \neq 0 \). Using the explicit basis (9), it is easy to check that the error-correction condition (5) is not satisfied for the operators \(E_1, E_2 \).

Finally, in case (iii) the spaces \(E(Q_0) \) and \(Q_0 \) are mutually orthogonal. Indeed, since \(E \) is outside of the code normalizer \(\mathcal{N}_0 \), there is an element of the stabilizer group \(S \in \mathcal{S}_0 \) that does not commute with \(E \). Therefore, for any two states in the code, \(|\phi\rangle, |\psi\rangle \in Q_0 \), we can write

\[
\langle \phi | E | \psi \rangle = \langle \phi | SE | \psi \rangle = -\langle \phi | SE | \psi \rangle = -\langle \phi | E | \psi \rangle,
\]

which gives \(\langle \phi | E | \psi \rangle = 0 \), and the spaces \(Q_0 \) and \(E(Q_0) \) [also, \(E_1(Q_0) \) and \(E_2(Q_0) \)] are mutually orthogonal.

Now, consider the same three cases for a USt code (15) derived from \(Q_0 \). In case (i) the code is mapped to itself, \(E(Q) = Q \). The operator \(E \) acts trivially on the code (and the errors \(E_1 \) and \(E_2 \) are mutually degenerate) if \(E \) either commutes (A2) or anticommutes (A3) with the entire set of translations generating the code:

\[
(Et_j = t_j E, \quad j = 1, \ldots, K)
\]

as an example of closed sets in the rank 2.

If neither of these conditions is satisfied, the error-correction condition (5) is violated. This is easily checked using the basis \(|j, i\rangle \equiv t_j |i\rangle \).

Similarly, in case (ii), the code is mapped to itself, \(E(Q) = Q \), but the error-correction condition (5) cannot be satisfied.

Finally, in case (iii), either the space \(E(Q) \) is orthogonal to \(Q \) or the error correction condition is not satisfied. The latter is true if \(E \) is proportional to an element in one of the cosets \(t_j^* t_j \mathcal{S}_0 \), where \(j \neq j', 1 \leq j, j' \leq K \). Then the inner product \(\langle j, i | E | j', i \rangle \neq 0 \), \(i = 1, \ldots, K \), which contradicts the error-correction condition (5). In the other case, namely, when \(E \) is linearly independent of any operator of the form \(t_j^* t_j S \), \(j, j' = 1, \ldots, K, S \in \mathcal{S}_0 \), \(E \) must be a member of a different

052337-11
coset $t_\alpha \mathcal{S}_0$ of the stabilizer \mathcal{S}_0 of the code Q_0 in \mathcal{P}_n. This implies orthogonality:

$$\langle j, i | E | j', i' \rangle = \langle i | t_j^\dagger E t_j | i' \rangle = i^m \langle i | t_j^\dagger t_\alpha | i' \rangle = 0,$$

where $m = 0, \ldots, 3$ accounts for a possible phase factor.

Overall, as long as the error correction condition (5) is valid for a UST code Q and the Pauli operators E_1 and E_2, either the spaces $E_1(Q)$ and $E_2(Q)$ coincide or they are orthogonal. Since CWS codes can be regarded as UST codes originating from a one-dimensional stabilizer code Q_0, (Sec. II F), the same is also true for any CWS code.

[1] P. W. Shor, in Proc. 35th IEEE Found. Comp. Sci., pp. 124–134, 1994.
[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, MA, 2000).
[3] P. W. Shor, Phys. Rev. A 52, R2493 (1995).
[4] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).
[5] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
[6] E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342 (1998).
[7] B. Rahn, A. C. Doherty, and H. Mabuchi, Phys. Rev. A 66, 032304 (2002).
[8] A. M. Steane, Phys. Rev. A 68, 042322 (2003).
[9] A. G. Fowler, C. D. Hill, and L. C. L. Hollenberg, Phys. Rev. A 69, 042314 (2004).
[10] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, Quantum Inf. Comput. 4, 237 (2004).
[11] A. G. Fowler, e-print arXiv:quant-ph/0506126.
[12] E. Knill, Nature (London) 434, 349 (2005).
[13] E. Knill, Phys. Rev. A 71, 042322 (2005).
[14] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007).
[15] A. M. Stephens and Z. W. E. Evans, Phys. Rev. A 80, 022313 (2009).
[16] D. Gottesman, Ph.D. thesis, Caltech, 1997.
[17] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, IEEE Trans. Inf. Theory 44, 1369 (1998).
[18] J. A. Smolin, G. Smith, and S. Wehner, Phys. Rev. Lett. 99, 130505 (2007).
[19] X. Chen, B. Zeng, and I. L. Chuang, Phys. Rev. A 78, 062315 (2008).
[20] A. Cross, G. Smith, J. Smolin, and B. Zeng, IEEE Trans. Inf. Theory 55, 433 (2009).
[21] I. Chuang, A. Cross, G. Smith, J. Smolin, and B. Zeng, J. Math. Phys. 50, 042109 (2009).
[22] M. Hein et al., in Proceeding of the International School of Physics “Enrico Fermi” (IOS Press, Amsterdam, 2005), Vol. 162, pp. 115–218.