PRODUCTIVITY AND FRESH SEMEN CHARACTERISTICS OF SIMMENTAL BULLS OF DIFFERENT AGES

Faisal Amri Satrio¹, Ni Wayan Kurniani Karja², Mohamad Agus Setiadi², Ekayanti Mulyawati Kain², Asep Kurnia³, and Bambang Purwantara*

¹Study Program of Reproductive Biology, Graduate School, IPB University, Bogor, Indonesia
²Division of Reproduction and Obstetrics, Department of Veterinary Clinic, Reproduction, and Pathology, IPB University, Bogor, Indonesia
³Research Center for Biotechnology, National Research and Innovation Agency, Bogor, Indonesia
*Corresponding author: purwantara@apps.ipb.ac.id

INTRODUCTION

Artificial insemination (AI) is an assisted reproductive technology that has been widely used with the aim of increasing the reproductive efficiency and genetic quality of livestock. One of the exotic breeds of cattle in Indonesia that is widely used for AI activities is the Simmental cattle. These cattle are often used for cross-breeding with various local cattle breeds in Indonesia, such as Bali cattle, Madura cattle, and Ongole crossbreed cattle. Cattle have a large muscle mass, high body weight gain, and a greater body weight overall when compared to local cattle (Sutarno and Setyawana 2016).

Bulls have an important role in improving the quality of the offspring produced. The contribution of bulls to the quality of their offspring is genetically inherited through spermatozoa. Therefore, semen quality is an important factor in regards to increasing the success of AI (Suyadi et al. 2020). The quality of a bull’s semen is influenced by several factors, including age (Balic et al. 2012; Prihatin et al. 2017; Komariah et al. 2020), breed, environment, and nutrition (Prihatin et al. 2017; Komariah et al. 2020). Bulls typically produce the optimal quality of semen at the age of 3-4 years (Saeed et al. 1989). Hallap et al. (2004) stated that the reproductive capacity of bulls seems to decrease gradually after reaching the age of 3-4 years. However, the fact is that there are still many bulls over ten years old whose semen is still used for AI activities.

Changes in semen quality are in line with increasing age and are associated with physiological changes such as an increased body mass (Balic et al. 2012) which also simultaneously affects the development of the testes and accessory glands of bulls (Murphy et al. 2018). Changes in semen quality are also influenced by...

ABSTRACT

This study was aimed at determining the effects of age on the productivity and characteristics of fresh semen of Simmental bulls in Indonesia. A total of 1071 pieces of data from the collected samples of semen and production characteristics of the bulls from four age groups (two years old, yo, four yo, ≥ 10 yo with high semen rejection (≥ 10 HR), and ≥ 10 yo with low semen rejection (≥ 10 LR)) were used in this study to evaluate the productivity and characteristics of fresh semen (semen volume, sperm concentration, total sperm concentration, total sperm motility, individual motility, and mass movement). The results showed that the pre-freezing and post-freezing semen rejection rate of the ≥ 10 HR group was higher (P<0.05) than the other groups. The four year old group had twice the percentage of ejaculation frequency per collection (P<0.05) compared to the other groups (the highest). Semen volume, sperm concentration, and total sperm concentration significantly increased (P<0.05) until the age of four, and then decreased (P<0.05) in the ≥ 10 yo groups. The ≥ 10 HR group had a significantly lower volume and total sperm concentration (P<0.05) than the ≥ 10 LR group. All of the characteristics of the fresh semen, including total sperm motility, individual motility, and mass movement in the ≥ 10 HR group were lower (P<0.05) than those in the other groups. In conclusion, age differences of the bulls did affect the ejaculation frequency, semen volume, sperm concentration, and total sperm concentration of each collection. The semen rejection rate of older bulls directly affects all of the characteristics and productivity of the fresh semen of Simmental bulls.

Key words: age, bull, characteristic, fresh semen, productivity
changes in the activity of the hypothalamus-pituitary-testicular axis in regards to producing reproductive hormones (Johnson et al. 1990; Murphy et al. 2018). This can affect the process of spermatogenesis in the testes which has an impact on the productivity of bulls. Rashid et al. (2015) stated that the age of bulls can affect productivity due to changes in sperm production capacity, storage capacity in the cauda epididymis, and the number of sperm cells ejaculated. Schenk (2018) explained that at productive age the testes develop faster after puberty on to adulthood because the seminiferous tubules become longer with a wider diameter so that spermatogenesis is more optimal. In addition, the cauda epididymis has the capacity to store large amounts of sperm and is able to expand and contract maximally to accommodate the number of sperm cells to be ejaculated (Rashid et al. 2015; Schenk 2018). The productivity of bulls is not only measured by the volume of semen produced but also by the quality of other aspects of the semen itself.

Evaluation of the quality of fresh semen from bulls is usually carried out by macroscopic and microscopic examination (Komariah et al. 2020). This evaluation is important in order to describe early the process of spermatogenesis, accessory gland secretion patterns, and functional competence of spermatozoa (Srivastava and Pande 2017). Therefore, evaluation of the quality of fresh semen is used as the basis for decision-making in the cryopreservation process (Nagata et al. 2019; Peris-Frau et al. 2020). Research on Bali cattle (Nugraha et al. 2019), Ongol crossbreed cattle (Suyadi et al. 2020), Sahiwal cattle (Ahmad et al. 2011; Bhakat et al. 2011), and Frieswal cattle (Mandal et al. 2009) showed that the quality of fresh semen such as motility, sperm concentration, and semen volume was influenced by differences in age. Although Simmental cattle in Indonesia have been used for a long time for AI, there is still little information about the relationship between age and the quality of fresh semen and its production capacity. Therefore, this study was conducted to examine the effects of age on the productivity and characteristics of fresh semen from Simmental bulls. This information will assist policymakers and users in formulating new policies for the breeding and culling of bulls that will be used for semen production.

MATERIALS AND METHODS

Research Design

Production records and ejaculate data was divided into four groups, namely a) two-year-old bulls (n = 3), b) four years old bulls (n = 3), c) ≥ 10 years old bulls with a high semen rejection rate (≥ 10 HR; n = 3), and d) ≥ 10 years old bulls with low a semen rejection rate (≥ 10 LR; n = 3).

Data Collection

Production records and ejaculation data was obtained from 12 healthy Simmental bulls from the Lembang Artificial Insemination Center, Bandung, West Java during January-December 2020. The bulls were housed individually, maintained, and fed according to the applicable rearing system. Production record data shows the number of semen collections and the production processes from fresh semen to frozen semen. Fresh semen quality data analyzed included volume, mass movement, motility, individual movement, and concentration. Semen collection was performed twice a week using the artificial vaginal method and was carried out by experienced technicians. Semen volume was measured using a scale tube, sperm motility was evaluated under a light microscope with a magnification of 400x, and sperm concentration was evaluated using a spectrophotometer. All secondary data was then tabulated using Microsoft Excel 2010.

Data Analysis

This study used a completely randomized design (CRD) with four treatments, the age of the bulls. Quantitative data in this study was analyzed using one-way analysis of variance (ANOVA) and continued with Duncan's Multiple Range Test (DMRT). All data was displayed in the form of mean ± standard deviation (SD).

RESULTS AND DISCUSSION

Productivity of Simmental Bulls of Different Ages

The productivity of Simmental bulls of various ages in this study was evaluated based on the rate of semen rejection and the frequency of ejaculation for each semen collection. The total number of collections for all age groups was 1071 times with the highest number of semen collections being found in the four-year age group and the least in the ≥ 10 HR age group (Table 1). Based on Table 1, the rate of pre-freezing and post-freezing semen rejection in the ≥ 10 HR age group was the highest (P<0.05) compared to the other groups. Furthermore, the ≥ 10 HR age group had a significantly lower amount of processed semen (P<0.05) compared to the other groups. The high pre-freezing semen rejection was due to the fact that the fresh semen did not meet the minimum standards for frozen semen processing, meaning that the fresh semen motility was less than 70%, individual sperm movement was less than 2, and mass movement was less than ++. The minimum standard for processing frozen bull semen was in accordance with SNI 4869-1:2017 concerning frozen semen for cattle and Permentan number 10/Permentan/PK.210/3/2016 concerning the supply and distribution of frozen semen for ruminants. Thippeswamy et al. (2014) also found that the high pre-freezing semen rejection was due to the bull producing poor quality semen, which led to the semen being unfit for freezing. Meanwhile, post-freezing semen rejection was carried out because the quality of post-thawing semen did not meet the minimum standards according to SNI 4869-1:2017 regarding frozen bovine semen, namely having minimum post-thawing motility of 40%, minimum individual movement of 2, minimum number of spermatozoa cells 25 million per dose and a
minimum recovery rate of 50%. High post-freezing semen rejection is also associated with lower sperm viability after freezing (freezability) due to a high incidence of cryodamage (Rego et al. 2016; Nagata et al. 2019). Cryodamage is caused by high oxidative stress in the spermatozoa (Nagata et al. 2019; Peris-Frau et al. 2020) due to an imbalance between reactive oxygen species (ROS) production and antioxidants (Gunes et al. 2016; Peris-Frau et al. 2020). The high oxidative stress in this study was thought to be due to several factors, including the cryopreservation process, aging of the bulls, and differences in protein expression in the semen. The process from cryopreservation to thawing causes an imbalance in the production of ROS and antioxidants which can lead to cellular changes, such as membrane destabilization, loss of cholesterol, and decreased fluidity, which causes spermatozoa to become more susceptible to cryodamage (Castro et al. 2016; Amin et al. 2018; Nagata et al. 2019; Peris-Frau et al. 2020). Furthermore, aging of bulls is associated with an increased production of ROS that can initiate oxidative stress (Weir and Robaire 2007; Aitken 2020) as well as induce lipid peroxidation (Gunes et al. 2016; Ahmed et al. 2018). Meanwhile, the plasma membrane of spermatozoa contains large amounts of polyunsaturated fatty acids (PUFA) which are very susceptible to oxidation (Castro et al. 2016; Amin et al. 2018). Therefore, this situation can exacerbate the occurrence of cryodamage in spermatozoa. Research by Rego et al. (2016) adds that there is an expression of several semen proteins in abundance which is associated with sperm resistance to cryodamage in the group of bulls with high freezability.

The ejaculation frequency of each semen collection can also describe the semen production ability of bulls (Figure 1). Based on the figure, the 4-year-old group had the highest percentage of semen ejaculation frequency, twice per collection, which was significantly higher (P<0.05) compared to the other groups. Although the percentage of semen ejaculation frequency was once per collection in the four-year age group, it was the lowest (P<0.05) compared to the other groups. The frequency of ejaculation is related to the capacity of the testes and epididymis of the bulls (Prihatin et al. 2017). Schenk (2018) states that the age of the bulls greatly affects the capacity of the testes and sperm storage in the epididymis. The capacity of the testes can be evaluated through the testes measurement approach (Ahmad et al. 2011; Vijetha et al. 2014; Sankhi et al. 2019). Measurement of scrotal circumference is an accurate method for estimating testes size (Schenk 2018). Scrotum circumference is positively correlated with daily sperm production capacity, number of sperm ejaculated, and sperm storages in the epididymis (Rashid et al. 2015; Sankhi et al. 2019). Research by Vijetha et al. (2014) showed that Nallore cattle aged 3-5 years had the largest scrotal circumference and had the highest sperm production

![Table 1. Rejection rate of Simmental bull semen different age](image)

Bull’s age (Yo)	Total of semen collection	Semen rejection	Semen processed	
		Pre-freezing	Post-freezing	
2	249	6 (2.32±1.73)	15 (7.00±7.64)	228 (90.68±7.53)
4	274	19 (6.67±5.59)	18 (6.58±1.82)	237 (86.74±4.39)
≥ 10 HR	243	43 (17.13±3.83)	51 (18.65±11.18)	149 (64.21±14.42)
≥ 10 LR	251	13 (5.12±4.84)	25 (9.92±8.54)	213 (84.97±8.96)

*Different superscripts in the same column indicate a significantly different P<0.05. Yo= Years old; ≥ 10 HR= ≥ 10 years old with high semen rejection rate; ≥ 10 LR= ≥ 10 years old with low semen rejection rate

![Figure 1. Percentage of frequency of ejaculation each semen collection in Simmental bull different ages. The different superscripts (a dan b) in group of once ejaculation each collection and superscripts (A dan B) in group of twice ejaculation each collection indicate a significantly different P<0.05](image)
capacity compared to other ages. Rashid et al. 2015 also added that large scrotal circumference in adult bulls affects daily sperm production and semen volume. This is because the cauda epididymis has the ability to expand and contract to accommodate more or less sperm to be ejaculated. In adult bulls, the cauda epididymis has the capacity to store sperm in the epididymis in large numbers. The increased capacity of the cauda epididymis can encourage the testes to produce more sperm, affecting daily sperm production and ejaculation frequency (Schenk 2018).

Characteristics of Fresh Semen of Simmental Bulls with Different Ages

Table 2 shows that semen volume, sperm concentration, and total sperm concentration increased significantly (P<0.05) until the age of four years, then decreased significantly (P<0.05) in both groups of ≥ 10 years of age. The ≥ 10 HR years old groups had significantly lower total sperm volume and concentration (P<0.05) than the ≥ 10 LR age group, although both groups had the same concentration in each reservoir. This is closely related to changes in testicular morphology due to increasing age (Jiang et al. 2013; Bhanmeechao et al. 2018). These changes cause a decrease in spermatogonic cells, Leydig cells, and Sertoli cells (Jiang et al.; Bhanmeechao et al. 2018). Furthermore, changes at the cellular level of the testes can lead to changes in reproductive hormones in males. Johnson et al. (1990) showed that an increase in the age of bulls was associated with increased levels of follicle-stimulating hormone (FSH) and decreased serum testosterone (Johnson et al. 1990). These changes directly caused a disruption of the processes of spermiogenesis and spermato genesis due to aging (Jiang et al.; Bhanmeechao et al. 2018). This situation resulted in changes in the semen quality such as semen volume, sperm concentration, and total sperm count (Johnson et al. 1990; Tesi et al. 2020). The results of this study are in line with the research of Bhakat et al. (2011) which showed that the semen volume and spermatozoa concentration were highest (P<0.05) in Sahiwal cattle aged 3-4 years and then decreased after that age. Furthermore, research by Mandal et al. (2009) in Frieswal cattle also showed an increase in semen volume and spermatozoa concentration from young age (<30 months) to peak at adult age (31-70 months).

Another parameter of sperm quality that is very important to evaluate is motility. Sperm motility is a parameter that is often used as an indicator to predict fertility (Li et al. 2014; Magdanz et al. 2019). This is because motility tends to use the greatest amount of energy, which is around 70% of the total ATP consumption in spermatozoa (Bohnsack and Halangk 1986; Tourmente et al. 2015). In addition, motility also indicates the functional ability of sperm cells which

Table 2. Volume, sperm concentration and total sperm concentration of Simmental bull different ages

Bull’s age (Yo)	Vol (mL)	SpC (×10⁶/mL)	TspC (×10⁶)
2	4.88±1.75a	1084.47±236.06bc	5444.62±19.18bc
4	7.31±2.69b	1121.64±340.10ab	8554.66±335.33ab
≥ 10 HR	5.97±1.87c	1022.66±256.83cd	6230.22±209.44cd
≥ 10 LR	6.49±1.97d	1062.05±285.38cd	7104.84±263.09cd

P-Value 0.000 0.001 0.000

a, b, c, d Different superscripts in the same column indicate a significantly different P<0.05. Yo= Years old; ≥ 10 HR= ≥ 10 years old with high semen rejection rate; ≥ 10 LR= ≥ 10 years old with low semen rejection rate; Vol= Volume; SpC= Sperm concentrations; TspC= Total sperm concentration

Table 3. Sperm mass motility of Simmental bull different ages

Bull’s age (Yo)	Number of semen collection	Strong (+++)	Medium (+++)	Weak (+)	None
2	249	244 (98.04±1.12)	4 (1.60±0.53)	1 (0.36±0.62)	
4	274	262 (95.64±2.00)	12 (4.36±2.00)	0 (0.00±0.00)	
≥ 10 HR	243	205 (84.64±2.21)	35 (14.25±0.71)	3 (1.11±1.92)	
≥ 10 LR	251	239 (93.60±2.91)	12 (4.70±2.91)	0 (0.00±0.00)	

P-Value 0.000 0.000 0.526

a, b, c Different superscripts in the same column indicate a significantly different P<0.05. Yo= Years old; ≥ 10 HR= ≥ 10 years old with high semen rejection rate; ≥ 10 LR= ≥ 10 years old with low semen rejection rate

Table 4. Sperm total motility and individual motility of Simmental bull different ages

Bull’s age (Yo)	TM (%)	IM
2	70.12±5.59a	1.97±0.19a
4	69.33±6.70a	1.93±0.26a
≥ 10 HR	66.26±11.37b	1.82±0.39b
≥ 10 LR	69.42±5.79a	1.95±0.23a

P-Value 0.000 0.000

a, b, c Different superscripts in the same column indicate a significantly different P<0.05. Yo= Years old; ≥ 10 HR= ≥ 10 years old with high semen rejection rate; ≥ 10 LR= ≥ 10 years old with low semen rejection rate; TM= Total motility; IM= Individual motility
play an important role in successful fertilization (Li et al. 2014). In this study, motility parameters were evaluated based on three approaches, namely total motility, individual motility, and mass motility. Total motility describes the ratio of motile sperm compared to total sperm (Kathiravan et al. 2011). Individual motility are used to assess if the sperm can move forward, backward, coil in place or not move at all. Thus, the progressive motility of individual spermatzoa can be used as an important vitality index in the spermatzoa population (Susilawati 2011). Furthermore, the mass motility of spermatzoa describes the movement of spermatzoa simultaneously to form a mass wave, so that the thicker the mass wave formed, the better the sperm quality and the more highly correlated with fertility (David et al. 2015). The mass motility of spermatzoa is shown in Table 3, and the total motility and individual motility in more detail are shown in Table 4. The tables show that the >10 HR age groups have the lowest percentage of total motility, individual motility, medium mass motility, and weak mass motility (P<0.05) when compared with other age groups. This is presumably because this group has the highest level of oxidative stress compared to the other groups. Aitken (2020) stated that oxidative stress is caused by overproduction of ROS due to aging in bulls. ROS overproduction can be caused by several things, including aging of bulls, stress, leukocytosis, radation and toxins (Agarwal et al. 2014). Oxidative stress can cause lipid peroxidation (Gunes et al. 2016; Dutta et al. 2019) which can impair plasma membrane permeability and mitochondrial dysfunction (Amaral et al. 2013; Dutta et al. 2019; Aitken, 2020). Therefore, it causes a decrease in ATP production and impairs ATP efflux (Dutta et al. 2019), whereas ATP produced by the inner mitochondrial membrane will be transferred to the microtubules to regulate the motility of spermatzoa (Obero et al. 2014). Thus, the incidence of oxidative stress is closely related to decreased sperm motility (Agarwal et al. 2014; Dutta et al. 2019).

CONCLUSION

The age of bulls affects the frequency of ejaculation per collection, semen volume, sperm concentration, and total sperm concentration. The rate of semen rejection in older bulls directly affects the productivity and characteristics of the fresh semen of Simmental bull. It is necessary to conduct further research on the quality of frozen semen in order to obtain an overview of the freezability of each age group of bulls, and evaluate the level of fertility in vivo and in vitro.

ACKNOWLEDGEMENT

This research was funded and supported by the Ministry of Research and Technology/National Research and Innovation Agency through the PMDSUS program with contract number 1/E1/KP.PTNBH/2021.

REFERENCES

Agarwal A, Durairajanyagam D, Halabi J, Peng J, Vazquez-Levin M. 2014. Proteomics, oxidative stress and male infertility. Reproductive BioMedicine Online, 29(1):32-58.

Ahmad E, Ahmad N, Naseer Z, Aleem M, Khan MS, Ashiq M, Younis M. 2011. Relationship of age to body weight, scrotal circumference, testicular ultrasonogram, and semen quality in Sahiwal bulls. Tropical Animal Health and Production, 43:159-164.

Ahmed S, Khan MI, Ahmad M, Iqbal S. 2018. Effect of age on lipid peroxidation of fresh and frozen-thawed semen of Nili-Ravi buffalo bulls. Italian Journal of Animal Science, 17(3):730-735.

Aitken RJ. 2020. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction, 159:189-201.

Amaral S, Amaral A, Ramalho-Santos J. 2013. Aging and male reproductive function: A mitochondrial perspective. Frontiers in Bioscience Scholar, 5:181-197.

Amin BY, Prasad JK, Ghosh SK, Lone SA, Kumar A, Mustapha AR, Din O, Kumar A. 2018. Effect of various levels of dissolved oxygen on reactive oxygen species and cryocapacitation-like changes in bull sperm. Reproduction in Domestic Animal, Doi 10.1111/fda.13290.

Balic IM, Milinkovic-sur T, Samardzija M, Vince S. 2012. Effect age and environmental factors on semen quality, glutathione peroxidase activity and oxidative parameters in Simmental bulls. Theriogenology, 78:423-431.

Bhakat M, Mohanty TK, Rama VS, Gupta AK, Khan HM, Mahapatra RK, Sarkar M. 2011. Effect of age and season on semen quality parameters in Sahiwal bulls. Tropical Animal Health and Production, 43:1161-1168

Bhamneechoo C, Srisuwatanasagul S, Ponglowhapan S. 2018. Age-related changes in testicular fibrosis and germ cell degeneration of the canine testis. Reproduction in Domestic Animal, 53(3):37-43.

Bohnensack R, Halangk W. 1986. Control of respiration and motility in ejaculated bull spermatozoa. BBA-Bioenergetics, 850(1):72-79.

Castro LS, Hamilton TRS, Mendez CM, Nichi M, Barnabe VH, Vitiun JA, Assumpção MEOA. 2016. Sperm cryodamage occurs after rapid freezing phase: flow cytometry approach and antioxidant enzymes activity at different stages of cryopreservation. Journal of Animal Science and Biotechnology, Doi.10.1186/s40104-016-0076-x.

David I, Kohuhe P, Lagriftoul G, Praud O, Plouraboué F, Degond P, Drurat X. 2015. Mass sperm motility is associated with fertility in sheep. Reproduction Animal Science, 161:75-81.

Dutta S, Majzoub A, Agarwal A. 2019. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab Journal of Urology, 17(2):87-97.

Gunes S, Hekim GNT, Arslan MA, Aci R. 2016. Effects of aging on the male reproductive system. Journal of Assisted Reproduction and Genetics, Doi.10.1007/s10815-016-0663-y.

Hallap T, Haard M, Jaakma U, Larsson B, Rodriguez-Martinez H. 2004. Variations in quality of frozen-thawed semen from swedish red and white AI sires at 1 and 4 years of age. International Journal of Andrology, 27:166-171.

Jiang H, Zhu W-J, Li J, Chen Q-J, Liang W-B, Gu Y-Q. 2013. Quantitative histological analysis and ultrastructure of the aging human testis. International Urology and Nephrology, Doi:10.1007/s11255-013-0610-0.

Johnson L, Grumbles JS, Bagheri A, Petty CS. 1990. Increased germ cell degeneration during postphase of meiosis is related to increase serum follicle-stimulating hormone concentration and reduce daily sperm production in aged men. Biology of Reproduction, 42:281-287.

Kathiravan P, Kalatharan J, Karthikeyan G, Rengarajan K, Kadirvel G. 2011. Objective sperm motion analysis to assess dairy bull fertility using computer-aided system - a review. Reproduction in Domestic Animals, 46:165-172.

Komarah R, Artifantini I, Aun M, Suknawati E. 2020. Kualitas semen segar dan produkusi semen beku sapi pejantan madura pada musim yang berbeda. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan, 8(1):15-21.

Li Y, Kalo D, Zeron Y, Roth Z. 2014. Progressive motility – a potential predictive parameter for semen fertilization capacity in bovines. Zygote, Doi.10.1017/S0967199414000720.
Magdanz V, Boryshpolets S, Ridzewski C, Eckel B, Reinhardt K. 2019. The motility-based swim-up technique separates bull sperm based on differences in metabolic rates and tail length. PLoS ONE, 14(10): e0223576. Doi:10.1371/journal.pone.0223576.

Mandal DK, Kumar M, Tyagi S. 2009. Effect of age on spermogram of Holstein FriesianX Sahiwal crossed bulls. Animal, 4(4):595-603.

Murphy E.M, Kelly AK, O’Meara C, Eivers B, Lonergan P, Fair S. 2018. Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. Journal of Animal Science. Doi:10.1093/jas/sky130.

Nagata MPB, Egaishira J, Katafuchi N, Endo K, Ogata K, Yamanaka K, Yanamouchi T, Matsuda H, Hashiyada Y, Yamashita K. 2019. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. Journal of Animal Science and Biotechnology. Doi:10.1186/s40104-019-0395-9.

Nugraha, C. D., E. Herwijanti, I. Novianti, A. Furoq, W.A. Septian, W. Busono, and S. Suyadi. 2019. Correlations between age of Bali bull and semen production at National Artificial Insemination Center, Singosari-Indonesia. Journal of the Indonesian Tropical Animal Agriculture. 44(3):258-265.

Oberoi SLB, Kumar SVAS, Talwar CP. 2014. Study of human sperm motility post cryopreservation. Medical journal, Armed Forces India, 70:349-353.

Peris-Frau P, Soler AJ, Iniesta-Cuenda M, Martín-Maestro A, Sánchez-Ajofrín I, Medina-Chávez DA, Fernández-Santos MR, García-Álvarez O, Maroto-Morales A, Montero V, Garde JJ. 2020. Sperm cryodamage in ruminants: Understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. International Journal of Molecular Sciences. Doi:10.3390/ijms21082781.

Peters MAJ, de Rooij DG, Teersds KJ, van der Gaag I, van Sluijs FJ. 2000. Spermato genesis and testicular tumours in ageing dogs. Journal of Reproduction and Fertility. 120:443-452.

Prihatin KW, Hakim L, Mayinda S. 2017. Repeatability estimation of semen production and quality of locals Madura cattle breed (Bos indicus). Jurnal Kedokteran Hewan, 11(2):70-72.

Rashid MM, Hoque MA, Huque KS, Fazlu AK, Bhuiyan H. 2015. Effect of semen collection frequency and scrotal circumference on semen quality parameters in brahman x local crossbred bulls. Advances in Animal and Veterinary Sciences, 3(12):667-684.

Rego, JPA, Martins JM, Wolf CA, van Tilburg M, Moreno F, Monteiro-Moreira AC, Moreira RA, Santos DO, Moura AA. 2016. Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls. Journal of Animal Science, 94(15):5308-5320.

Saeed A, Chaudhry RA, Khan IH, Khan NU. 1989. Studies on morphology of buffalo bull semen of different age groups. Buffalo Journal, 1:99-102.

Sankhi S, Sapkota KR, Regmi B. 2019. Effect of age and frequency of collection on quality of Jersey Bulls semen at National Livestock Breeding Center (NLBC), Nepal. International Journal of Applied Sciences and Biotechnology, 7(1): 88-95.

Schenk JL. 2018. Review: Principles of maximizing bull semen production at genetic centers. Animal. Doi:10.1017/S1751731118000472.

Srivastava N, Pande M. 2017. Protocols in Sperm Biology (Comparing Assays). Springer Nature Singapore Pte Ltd, Singapore.

Susilawati T. 2011. Spermatologi. UB Press, Malang.

Sutarno, Setyawan AD. 2016. Review: The diversity of local cattle in Indonesia and the efforts to develop superior indigenous cattle breeds. Biodiversitas. 17(1):275-295.

Suyadi S, Purwantara B, Furoq A, Septian WA, Novianti I, Nursita IW, Nugraha CD, Putri RF, Pratiwi H, Heruiyati E. 2020. Influences of bull age and season on sperm motility, sperm concentration, and ejaculate volume of Onkole grade cattle in Singosari National Artificial Insemination Center. Journal of the Indonesian Tropical Animal Agriculture, 45(2):261-267.

Tesi M, Lazzarini G, Magliaro C, Abramo F, Fanelli D, Miragliotta V, Rota A. 2020. Age-related changes of senescent tubule morphology, interstitial fibrosis and spermatogenesis in dogs. Animal Reproduction Science, Doi. 10.1016/j.anireprosci.2020.106534.

Thimpeswamy V.B, Layek SS, Kumaresan A, Mohanty TK, Gupta AK, Chakravarty AK, Manimaran A, Prasad S. 2014. Effect of peligree and exotic genetic inheritance in semen production traits of dairy bulls. Asian Pacific Journal of Reproduction, 3(1):13-17.

Tourmente M, Villar-Moya P, Rial E, Roldán ERS. 2015. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. Journal of Biological Chemistry, 290(33):20613-20626.

Vijetha B.T, Rajak SK, Layek SS, Kumaresan A, Mohanty TK, Chakravarty AK, Gupta AK, Aslam MKM, Manimaran A, Prasad S. 2014. Breeding soundness evaluation in crossbred bulls: Can testicular measurements be used as a tool to predict ejaculate quality? Indian Journal of Animal Sciences, 84(2):79-82.

Weir CP, Robaire B. 2007. Spermatozoon have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. Journal of Andrology, 28(2):229-240.