Using Electronegativity and Hardness to Test Density Functional Universality

Klaus A. Moltved and Kasper P. Kepp*

Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, DK – Denmark.

* Corresponding author: Phone: +045 45 25 24 09. E-mail: kpi@kemi.dtu.dk
Abstract

Density functional theory (DFT) is used in thousands of papers each year, yet lack of universality reduces DFT’s predictive capacity, and functionals may produce energy-density imbalances. The absolute electronegativity (χ) and hardness (η) directly reflect the energy-density relationship via the chemical potential $\partial E/\partial N$ and we thus hypothesized that they probe universality. We studied χ and η for atoms $Z = 1$–36 using 50 diverse functionals covering all major classes. Very few functionals describe both χ and η well. η benefits from error cancelation whereas χ is marred by error propagation from IP and EA; thus almost all standard GGA and hybrid functionals display a plateau in the MAE at \sim0.2-0.3 eV for η. In contrast, variable performance for χ indicates problems in describing the chemical potential by DFT. The accuracy and precision of a functional is far from linearly related, yet for a universal functional we expect linearity. Popular functionals such as B3LYP, PBE, and revPBE, perform poorly for both properties. Density sensitivity calculations indicate large density-derived errors as occupation of degenerate p- and d-orbitals causes “non-universality” and large dependency on exact exchange. Thus, we argue that performance for χ for the same systems is a hallmark of universality by probing $\partial E/\partial N$. With this metric, B98, B97-1, PW6B95D3, APFD are the most “universal” tested functionals. B98 and B97-1 are accurate for very diverse metal-ligand bonds, supporting that a balanced description of $\partial E/\partial N$ and $\partial^2 E/\partial N^2$, via χ and η, is probably a first simple probe of universality.

Keywords: DFT; electronegativity; hardness; density errors; electronic energy
Introduction

Due to its combined computational speed and general accuracy, Density Functional Theory (DFT) is the main methodology used to study electronic structure of larger molecular systems, which tens of thousands of papers using the methods every year.1,2 Often it is the only reasonable option due to the scaling of cpu requirements with system size for more accurate methods.2–4 However, the acronym "DFT" covers an enormous range of functionals of distinct philosophies and designs, with different physical conditions fulfilled, parameterization ranges, and mathematical forms.2,3,5 This fragmentation prevents comparison between studies and obscures the significance of conclusions based on a few functionals, since tests of sensitivity to method choice are rare despite the necessity of performing them.4 Separating error contributions beyond the functional itself from e.g. entropy, zero-point energies, relativistic effects, dispersion effects, or basis set deficiencies is a necessary step in this process.4,6–8

After error analysis we can search for a “universal functional”.9–11 One can define universality either mathematically as a pure functional that satisfies all possible fundamental restraints, or practically, as a functional that performs accurately across the broadest ranges of properties of molecular systems by mimicking both the ground state energy and density of all relevant external potentials. Straying12 can be defined as imbalances in a thermochemical cycle of trial densities, either along the density or energy path (Figure 1A).13 Some prefer less parameterized functionals that satisfy physical bounds,5,12,14 whereas others prefer careful and extensive parameterization towards high-quality thermochemical data.15,16 Regardless of philosophy, the functional form is central, and different “rungs” represent increasing mathematical complexity.4,17,18 Universality requires the energy and density to be described in a balanced way.9 One may assume that less empirical functionals are more energy-density balanced (i.e. closer to the central diagonal line of Figure 1A) relatively to empirical functionals that have not considered this balance explicitly, as so far the case.
Medvedev et al.12 recently used atomic ions to identify energy-density imbalances. Although they did not actually compare the energies and densities for the same systems,21 their work and that of Burke22,23 show that the balance between density-derived (ΔE_D^\prime in Figure 1A) and functional-derived errors (ΔE_F^\prime) is important (please note that as written in Figure 1A, $\Delta E_D^\prime < 0$ and $\Delta E_F^\prime > 0$). There are very many ways to estimate density errors: At the nucleus, at some radial distance, at some point in space, at the tail, for a sum of points, or the density-weighted root-mean-squared deviation from the “exact” density over a grid; this makes error estimates12 very conditional.21

Instead, Burke suggested to measure density errors via their impact on the energy relative to the exact density, giving a single, unambiguous value for each density, ΔE_D^\prime.22 Unfortunately, despite its theoretical adequacy, this is impractical since exact densities are mostly obscure: Experimental electron densities from diffraction do not have the accuracy required, with “atomic” resolution (~ 1 Å) being completely useless, although this could change in the future for small systems. Furthermore, any “exact” estimate from quantum chemistry is beyond reach for almost all systems. Even for the closed-shell $1s^2$ and $1s^22s^2$ systems studied by Medvedev et al.,12 a high-

\textbf{Figure 1. Energy-density relationships, exactness, and electronegativity.} (A) Energy-density relationships via trial functionals towards the exact functional, based on Ref.13. The sign of each process follows from the Hohenberg-Kohn variational principle.9 (B) Definitions of electronegativity χ and hardness η.19,20
level quantum chemical density may not be “exact”, since errors mainly evaluated at the nucleus will be affected by violations of the nuclear cusp condition of all quantum-chemical methods that use Gaussian basis functions.

To solve this issue, we suggested using density sensitivity analysis by replacing the exact density with one or more densities of distinct known functionals. This simple protocol measures the global effect of variations in densities by computing $E''[\rho''] - E''[\rho']$ where ρ'' is the studied functional’s self-consistent converged density, E'' is an energy evaluation with the functional, and ρ' is a converged Hohenberg-Kohn trial density (bottom-left cycle in Figure 1A) rather than the elusive $E[\rho'] - E[\rho_{\text{exact}}]$ (top-right cycle of Figure 1A). If necessary, the average result for a range of diverse “trial” densities can be computed. This protocol, which is easily applied in programs such as Turbomole, is closely related to the Hohenberg-Kohn variational principle, which determines the signs of the processes in the thermochemical cycles in Figure 1A. We recommend using two distinct theories to produce the densities such as a hybrid GGA (e.g. PBE0) and a local density approximation (LDA). $\Delta E_D'$ is often small (“normal systems”) since the functional’s treatment of the density commonly matters more than the finer details of the density itself. This is the case both the systems studied by Medvedev et al. once the energy impact of the reported density errors is evaluated, but also for chemically relevant systems. Thus, the interesting question is not whether there are density errors but whether they are chemically significant.

To move forward on how to obtain energy-density balanced DFT, we note that in any chemical process, electrons are moved from one place to another such the chemical potential is equal everywhere in a molecular system at equilibrium. The electronegativity χ is defined as the negative of the chemical potential at constant external potential $\nu(r)$, as seen in Figure 1B:

$$\chi = -(\partial E/\partial N)\nu(r) \sim (\text{IP} + \text{EA})/2$$

The last expression with the ionization potential (IP) and electron affinity (EA) is the finite-difference approximation for discrete electron numbers, which is identical to the Mulliken electronegativity. The hardness can be defined similarly as:
\[\eta = \left(\frac{\partial E^2}{\partial N^2} \right)_{V(t)} - (IP - EA) \]

Since both the uptake and removal of electrons must be well-described at the equilibrium chemical potential, and since these changes relate to the energy-density balance, we hypothesized that DFT may feature imbalanced chemical potentials. In the finite-difference approximation, this amounts to imbalances in \(\chi = (IP + EA)/2 \) and \(\eta = IP - EA \). This translates to the requirement that DFT should work well for the EA and IP for the same systems simultaneously, rather than for different systems often tested during DFT development. \(\chi \) may then capture the energy-density relationship that has been so debated recently.\(^{12,13,21,24}\) Since \(\chi \) excellently describes many types of reactivity and diverse chemical bond strengths,\(^{29,30}\) and since the Pauling and Mulliken electronegativities correlate strongly,\(^{31}\) we propose that performance for \(\chi \) is a “descriptor of universality”, which we think may be of interest to further development of DFT.

To explore this idea, we computed the hardness and electronegativity for all elements from \(Z = 1−36 \) for 50 diverse density functionals. Because of their importance, the atomic IPs and EAs have been studied massively with DFT.\(^{8,16,32−39}\) The absolute \(\chi \) and \(\eta \) for a range of molecules and four atoms were studied by Dixon and co-workers using several functionals.\(^{35}\) Hybrid DFT is somewhat less accurate for IPs and EAs than the G2 method, but generally performs well for both on average. There has been confusion regarding DFT’s ability to describe anions and thereby EAs.\(^{40,41}\) With large basis sets including diffuse functions DFT is fully capable to do so in broad benchmarks.\(^{33,41}\) However, the required balance of IP and EA for the same systems is typically not obtained despite average good performance: For example, the IP of oxygen, of major importance to catalysis, displays errors up to 0.4−1 eV,\(^{33}\) which can only be remedied by special corrections.\(^{16}\)

The novelty in the present work lies mainly in linking \(\chi \) and \(\eta \) to the energy-density balance, suggesting their use as probes of universality, and offering a systematic study of 50 functionals, including both modern empirical and non-empirical density functionals, to test these ideas. We particularly emphasize the relationship between the accuracy and precision of DFT, which turns out to vary greatly when describing \(\chi \) and \(\eta \).
Methods

Energy computations and functionals studied

We used the Gaussian 1642 software for all computations. IPs and EAs were computed for the 36 elements \(Z = 1–36 \) (H-Kr). This choice was made because relativistic spin-orbit coupling affects the EA and IP of heavier atoms, and these are hard to evaluate accurately, both for energies43–45 but in particular their effect on densities. Our data set covers both the s- and p-elements as well as the 3d series, where major deviations from universality are expected to occur.46,47 Spin states for the atoms and atomic ions were taken from NIST48 and are summarized in Table S1. For a complete discussion of electron affinities, see the review by Schaefer and co-workers.32 Experimental values for the IPs and EAs were taken from the CRC Handbook of Chemistry and Physics49 and are summarized in Table S2.

Energies were computed using the 50 functionals of Table 1, with literature references, type, and amount of HF exchange (for the hybrid functionals) noted. These 50 functionals were chosen to 1) include many popular DFT functionals50, 2) span many design types, and 3) include both older and newer functionals, as time has been claimed to work against universality because the energy is increasingly over-emphasized.12 We note that we use basis sets that provide chemical accuracy for CCSD(T).13 The electron affinities depend on loosely bound anion states which may be difficult to describe,38,51,52 probably because of basis set limitations rather than failure of DFT itself.40,41 We used aug-cc-pV5Z53 except for K and Ca, which used def2-QZVPPD.54 All electronic energies are summarized in Tables S3-S11. The IPs were calculated as:

\[
\text{IP} = E(X^+) - E(X)
\]

(E(X) and \(E(X^+) \) are the single-point energies of neutral X and its mono-cation \(X^+ \). Correspondingly, the EAs were calculated as:

\[
\text{EA} = -\left(E(X^-) - E(X) \right)
\]

Here, \(E(X^-) \) is the single-point energy of the monoanion of element X.
Table 1. Overview of the 50 exchange-correlation functionals studied in this work.

Functional	Type	% HF exchange	References
APFD	Hybrid GGA	23	55
B1B95	Hybrid GGA	28	56
B2PLYP	Double Hybrid	53	57
B3LYP	Hybrid GGA	20	58-60
B3P86	Hybrid GGA	20	61,62
B97-1	Hybrid GGA	21	63
B97-2	Hybrid GGA	21	64
B97-D	GGA	0	65
B98	Hybrid GGA	22	66
BHandH	Hybrid GGA	50	67
BHandHLYP	Hybrid GGA	50	67
BLYP	GGA	0	61,62
BMK	Hybrid meta GGA	42	68
BP86	GGA	0	61,62
CAM-B3LYP	Range-separated	19-65	69
G96PBE	GGA	0	14,70,71
HCTH407	GGA	0	63,72,73
HSE06	Range-separated	0-25	74-80
LC-wHPBE	Range-separated	0-100	76,81-83
M06	Hybrid meta GGA	27	84
M06-L	Meta GGA	0	85
M11	Range-separated	43-100	86
M11-L	Meta GGA	0	86
MN15	Hybrid meta NGA	44	87
MN15-L	Meta NGA	0	88
mPW1PW91	Hybrid GGA	25	89-91
mPW3PBE	Hybrid GGA	25	14,89
N12-SX	Screened exchange		92
O3LYP	Hybrid GGA	12	93
OLYP	GGA	0	59,94
OP86	GGA	0	62,94
OPBE	GGA	0	14,94
OVWN	GGA	0	94,95
PBE	GGA	0	14
PBE0	Hybrid GGA	25	14,90
PW6B95	Hybrid meta GGA	28	97
PW6B95D3	Hybrid meta GGA	28	97
RevPBE0	Hybrid GGA	25	96,98
RevTPSS	Meta GGA	0	99
RPBE	GGA	0	100
SLYP	GGA	0	61,101
SVWN	LSDA	0	95,101
SVWN5	LSDA	0	95,101
tHCTH	meta GGA	0	102
tHCTHhyb	Hybrid meta GGA	15	102
TPSS	Meta GGA	0	103
TPSh	Hybrid meta GGA	10	103
VSXC	Meta GGA	0	98
wB97XD	Range-separated	22-100	104
wPBEhPBE	GGA	0	14,75,76,105
X3LYP	Hybrid GGA	22	92
Computing density-derived errors

Burke’s group has defined systems with large density-derived errors ΔE_D' as “abnormal”.22-24 A practical threshold for abnormality was suggested to be chemical accuracy, i.e. 4 kJ/mol.13 Burke has advocated23,38 using a DFT non-consistent single-point energy calculation on the self-consistent HF density (HF-DFT) for abnormal electronic systems, and found it to work well for EAs.38 Since pathological HF densities are common to systems with static correlation, as is in particular the case for the 3d-series, using HF densities may overestimate DFT abnormality.46 Instead we follow the protocol of using density sensitivity analysis by testing how reasonable variations in density affect the total energy.13 As reasonable variations, we only consider DFT-derived densities, spanning from LDA to hybrid DFT, and favor non-empirical functionals.

We followed the protocol described previously.13 Specifically, we used PBE as a widely used non-empirical functional, and evaluated the non-consistent PBE energy on the converged HF densities (referred to as HF-PBE), SVWN densities (SVWN-PBE), and PBE0 densities (PBE0-PBE) by setting the number of iterations for the SCF procedure to 1 and changing the density convergence threshold to 10^7 au in Turbomole. The obtained energies can be seen in Table S12. Sim et al.24 suggested a simple specific metric, $S(E_{xc})$, for quantifying abnormality that involves only the non-consistent energies computed by PBE on the densities from HF and SVWN95,101:

$$S(E_{xc}) = E_{PBE(SVWN)} - E_{PBE(HF)}$$

The first acronym in subscript represents the energy calculations, and acronyms in parenthesis represent the methods used to compute the self-consistent densities. As example, for EAs,

$$S^{EA}_{PBE(SVWN, HF)} = E_{PBE(SVWN), X^-} - E_{PBE(HF), X^-} - E_{PBE(SVWN), X} + E_{PBE(HF), X}$$

which can also be written as:

$$S^{EA}_{PBE(SVWN, HF)} = EA_{PBE(SVWN)} - EA_{PBE(HF)}$$

Since HF densities may overestimate density sensitivities, we use our preferred metric:

$$S^{EA}_{PBE(SVWN, PBE0)} = EA_{PBE(SVWN)} - EA_{PBE(PBE0)}$$

These values applied to both IPs and EAs are summarized in Tables S13-S14.
Results and Discussion

Hypothesis: Using $\chi = -\partial E/\partial N$ to probe universality

The main hypothesis of the present work is that the chemical potential, $\partial E/\partial N$ may not be balanced in most density functionals due to an over-emphasis on energies of neutral and cationic systems (enthalpies of formation and ionization energies), rather than densities and electron-rich systems. If so, the gain of electrons will be less well described than the loss of electrons. The general performance for anions has been claimed to be challenged, and diffuse densities of anions may in some cases be abnormal (i.e. contribute large density-derived errors to the result). However, DFT performance for anions in broader benchmarks is generally quite good, as measured by EAs. Cancellation of errors in the density and the functional (i.e. ΔE_D and ΔE_F of Figure 1A) caused by parameterization could possibly obscure the problem. Since we cannot generally measure the errors in the densities, using density sensitivity analysis is a possible alternative, as applied below, revealing large density errors in the p- and d-blocks.

However, even with cancellation of errors in energy and density, systems may experience energy-density imbalance in terms of adding or removing electrons near the chemical potential $\partial E/\partial N$ (Figure 1B) and its variation with N, $\partial E^2/\partial N^2$, simply because the X, X$^+$, and X$^-$ systems were not considered together when developing and parameterizing DFT. Since the finite difference approximations to $\partial E/\partial N$ and $\partial E^2/\partial N^2$ are $-\chi$ and η, these properties may probe DFT universality. To test this, we studied the atoms of a significant part of the periodic table ($Z = 1–36$) to avoid artefacts of relativistic energy but still probe the s-, p-, and d-block, and assess errors in χ and η directly against high-quality experimental data. An inspiration for our hypothesis is that DFT errors tend to scale monotonically with effective nuclear charge, i.e. functionals are usually more accurate for either the left or right side of both the p- and d-blocks. Considering that χ relates to effective nuclear charge, this implies an imbalance in the chemical potential, $\partial E/\partial N$. Even beyond this linear error effect, different functionals are accurate for different types of bonds.
and electronic configurations,17,46,47,108 and errors from d-orbital occupation and spin scatter massively.109–114 These fundamental issues prevent DFT from reaching universality for the periodic table and even for different electronic processes involving only a few types of atoms.114

Distinct performance of 50 functionals for electronegativity and hardness

Figure 2 summarizes the mean absolute errors (MAE) and mean signed errors (MSE) in the computed χ (**Figure 2A**) and η (**Figure 2B**) of the 36 atoms, for the 50 studied density functionals, ranked according to MAE. We note that all values are without division of IP + EA by 2, to compare χ and η more fairly. LDA performs much worse for χ than for η (MAEs of 1.41 and 1.52 eV for SVWN and OVWN not shown due to scale in **Figure 2A**), which we interpret as a major cancellation of errors in η, as EA is subtracted from the IP. Although uninteresting in terms of performance, the LDA functionals illustrate this most clearly. The corresponding performance for the IPs and EAs is summarized in **Figure S1**. The MSEs of both IPs and EAs are approximately normal-distributed around zero, although slightly skewed towards too large EAs (**Figure S2**), which indicates that we have sampled the DFT world well for the problem at hand.

Similarly, even functionals that perform decently for both IP and EA for the same systems may show larger errors in χ due to error propagation, since the IP and EA are added when calculating χ. For example, BMK is the best functional for η but average for χ, because the decent MAEs for IPs and EAs (0.13 eV) carry systematic errors that add in χ. Specifically, since $\eta = E(X^+) + E(X^-) - 2 E(X)$ and $\chi = E(X^+) - E(X^-)$, η reflects a disproportionation reaction, i.e. two single-electron transfers, whereas χ reflects two-electron transfer (the sum of the first and second ionization energy of the anion state). The error cancellation is therefore expected to be larger in η. Indeed, we see that many standard functionals plateau at a MAE of ~0.2-0.3 eV (**Figure 2B**). In contrast, DFT performance for χ varies considerably: Typical GGAs show errors from 0.25 to 0.50 eV for χ, whereas some hybrids and meta functionals display lower MAEs all the way down to
~0.1 eV. Similarly, the standard deviation of the errors (gray thin bars in Figure 2) oscillates wildly for \(\chi \) (Figure 2A) but is approximately symmetric around zero for \(\eta \) (Figure 2B).

Figure 2. Errors vs. experiment (in eV) of 50 density functionals applied to atoms \(Z = 1–36 \).

The histograms show the MAEs (red bars), the MSEs (blue bars), and the standard deviations of the errors (thin gray bars). (A) Mulliken electronegativity (\(\chi \)). (B) absolute hardness (\(\eta \)). In (A), the maxima of SVWN and OVWN (MAEs = 1.41 and 1.52 eV) have been left out for better viewing and for putting the errors in \(\chi \) and \(\eta \) on the same scale.
Thus, apparent good performance for IPs and EAs, as commonly tested, hides major error cancellations from treating most of the electronic structure in the same way, yet χ reveals these cancellations. Since $\chi \approx -\partial E/\partial N$ we relate this to a commonly poor description of the chemical potential, which again implies a weakness in the incremental energy-density relationship, i.e. change in energy with small changes in electron count at fixed external potential, or similarly, the electron density within a confined part of the system assuming a fixed volume. As the derivative of the E/N relationship in Figure 1B, it implies that DFT is unbalanced in terms of adding or subtracting electrons from the same systems. A simple way to solve this problem is to ensure that the systematic errors (not MAEs) are close to zero for both IPs and EAs of the same systems (not different systems, as commonly applied in benchmark and parameterization data sets), by minimizing errors in χ which is much more sensitive than EA and IP separately. Still, this only ensures that functional-derived errors are minimized, i.e. that $\Delta E_F' \rightarrow 0$; it does not ensure that the density-derived errors $\Delta E_D'$ are not propagated at the same time.

We note from Figure 2 that a handful of functional that perform particularly well for both χ and η. Functionals that feature in top-10 for both properties are B98, B97-1, and PW6B95D3. Since the latter functional is corrected by empirical dispersion, it may be a matter of taste if it should be listed. In the top-15 of both, we only find one more functional, APFD. In the top-20 of both, we find O3LYP, TPSS, B97-2, wB97XD, X3LYP, revPBE0, with HSE06 (#5 for χ for #21 for η) and PBE0 (#10 for χ for #22 for η) not far behind.

The chemical potential is poorly described in the d-block

The analysis above considered the total performance across the s-, p-, and d-elements of the first four periods of the periodic table. In order to know which part of the periodic table produces most of the errors in $\partial E/\partial N$ and $\partial^2 E/\partial N^2$ as probed by χ and η, the performance vs. experiment was separated into elements for all the studied atoms (Supplementary excel data sheet). The main errors for IPs and EAs are summarized in the Supporting information pdf file, Table S15 and
Table S16, respectively. Generally, trend prediction is extremely good for IPs for all functionals (R² > 0.99), but this is largely due to the spread of energies across 25 eV, which obscures chemically significant errors. For EAs, which are numerically much smaller, trend prediction falls to typically R² ~ 0.95 and down to 0.7 for some LDA methods. Importantly, the full MAEs for IPs and EAs are largely comparable (Table S15/S16). Thus, DFT does not have a general problem with EAs over IPs when averaged over all 36 atoms, but this tendency hides certain very pathological cases.

To identify the main pathological systems, we use B98, one of the very best performing functionals, as example in Figure 3. Other well-performing functionals such as B97-1 gave similar results (Figure S3). Despite the excellent trend predictions, errors in the computed hardness for some 3d metals (Figure 3A) arise from corresponding errors in the EAs (Figure 3B). The pathology of the 3d series is also seen from the comparison of computed and experimental χ (Figure 3C), in particular when zooming in on a smaller energy range (Figure 3D). From Table S15, where the maximum errors are listed for method, we see that the IPs of oxygen and boron are particularly pathological, confirming the old benchmark study by Pople and co-workers. The error for boron even for B98 is also evident from Figure 3D. For the typically very similarly performing GGA functionals BP86 and PBE and their derived methods, Cr is interestingly particularly pathological.

For the EAs, titanium is a major cause of error, followed by some other 3d-metals (Table S16). Since DFT across the board overestimates the EA of Ti, and predicts it to trend with the EAs of Sc and V (Figure 3B) as we might expect from the continued occupation of similar d-orbitals, one could question the experimental value in this single case. However, considering the error’s magnitude (~0.5 eV error for the best functionals), the possible uncertainty in this experimental value out of 36 does not change the performance reported above. Even excluding Ti, the maximal EA errors of other functionals were exclusively seen for 3d metals, except one case, MN11, which had largest errors for Br.
Figure 3. Example of performance for one of the 50 studied functionals, B98. (A) Computed vs. experimental η. (B) Computed vs. experimental EAs. (C) Computed vs. experimental χ. (D) Computed vs. experimental χ as in (C) but zoomed on values < 10 eV, with notable outliers marked. All values are in eV.

Accuracy and precision of the chemical potential probed by χ

We have seen large differences in the description of η and χ by DFT as evaluated by 50 distinct exchange-correlation functionals, and found that functionals that are good for one property are rarely good for the other, because η cancels errors much better in the electronic structures of X, X^+, and X^-. Most importantly, χ, due to error propagation from the two-electron transfer process $E^+ - E^-$, when applied to the same system X, is a sensitive probe of the description of the chemical potential both with respect to loss and gain of electrons. Even the best performing functional have problems with the gradual occupation of degenerate p- and d-orbitals. We also noted that the standard deviations of the errors are much more random for χ than for η, which could also imply that the precision differs from the accuracy of DFT applied to these simple processes.
Figure 4. Accuracy, precision, and systematic errors of density functionals (in eV). The LDA functionals OVWN and SVWN have been removed for better viewing. (A) Accuracy vs. systematic errors (computed – experiment) for IPs. (B) Accuracy vs. systematic errors for EAs. (C) Accuracy vs. systematic errors for χ. (D) Accuracy vs. precision (standard deviations of the errors) for IPs. (E) Accuracy vs. precision for EAs. (F) Accuracy vs. precision for χ.

To understand whether this is the case, Figure 4 compares the accuracy, as measured by the MAE, to the systematic errors, measured by the MSE. Figure 4A show the relationship for IPs, whereas Figure 4B shows it for EAs, and Figure 4C shows it for $\chi = IP + EA$. The MSE reflects the tendency to over-stabilize one of the states, either X, X$^+$, or X$^-$ (typically one of the two latter). We have suggested the use of these curves previously as a tool to pinpoint error relationships and room for improvement. The well-shapes or “inverse volcanos” represent the expectation that one would have if the MSEs were monotonously related to the MAEs. The reason for using curves rather than lines is that we expect a “hard” limit of accuracy to smooth out the
bottom of the well, simply due to statistical noise. As seen from Figure 4A-4C, the hard limit of accuracy of 0.1 eV is indeed seen in the bottom of the wells.

The IPs (Figure 4A) show the largest deviation from the expected well shape, because systematic errors are on average small and favor both X and X^+, and thus their relationship with overall accuracy (MAE) is weaker, producing more scatter in Figure 4A. This tendency can also be seen from direct comparison of the methods in the histograms for IPs and EAs in Figure S1. In contrast, the well shape is substantially more pronounced for the EAs (Figure 4B, please note the slight change of scale). A majority of the 50 studied functionals have positive MSEs, i.e. they overestimate EA by favoring X^- relative to X, which is particularly true for the local functionals (not shown; 0.63 and 0.76 eV MSE for SVWN and OVWN, Figure S1) and GGA functionals such as PBE and BP86 (~0.17 and 0.25 eV MSE). This is also seen in the skewed distribution of errors (Figure S2). Thus, anion states are in fact too stabilized when using sufficiently large basis sets with GGA DFT. For hybrid functionals, the balance is better, as reflected in the many functionals with small MSEs near the center of Figure 4B. Figure 4C shows the corresponding error plot for χ; it is symmetric and follows the well shape, with the best functionals from the ranking in Figure 2A also tending to have small systematic errors. For η, we found no well-shape but only a weak linear relationship (Figure S4), again illustrating that systematic errors largely cancel for η.

Figure 4D-4F show the relationship between the accuracy, measured by the MAE, and the precision, measured by the standard deviation of the errors (gray bars in Figure 2). The precision and accuracy of density functionals are not generally as strongly related as one could expect, as shown previously for spin-crossover systems.115 For the more generic IPs and EAs (Figure 4D and 4E) and also for the computed χ, we confirm this finding. The plots show a triangular shape with the highest accuracy (lowest MAE) being consistently associated also with higher precision. Functionals that stray from this relationship can be said to exhibit less predictable behavior, as the expected error becomes more uncertain. Thus, there are functionals that are quite accurate but not very precise (on the lower side of the line in Figures 4D-4F), while there are also functionals that
are not so precise but of decent accuracy. We think these types of curves can be important as they may indicate potential overfitting of functionals in energy space, and for balanced nearly universal functionals, we expect a linear relationship to be fulfilled. The individual cases can be deduced from Tables S15-S16, but for example, BHandH is more precise (0.19 eV) than accurate (0.26 eV) for EAs, whereas MN15-L is more imprecise (0.43 eV) than it is accurate (0.30 eV).

\(\chi \) is the primary interest of this work, both via its excellent predictive power in broad chemistry,\(^{29}\) its close relationship to the theory via the chemical potential,\(^{20}\) and as a sensitive probe of imbalances in the energy-density relationship. Accordingly, the accuracy-precision relationship for this property (Figure 4F) was clarified in more detail, with notable outliers shown in Figure 5A, and a zoom-in on the best-performing functionals in Figure 5B. Even for these, the triangular shape is maintained. We note that MN15\(^{87}\) performs excellently for \(\chi \). This functional is the most broadly accurate of the Minnesota class and was parameterized to a very diverse range of data that included both IPs and EAs, explaining its success here. It demonstrates how far one can go with careful parameterization, yet all other functionals in the lower green quadrant of Figure 5B represent nearly “non-empirical” functionals with very few parameters. We also note that MN15 performs markedly worse for \(\eta \) by error propagation, i.e. it has a negative MSE for IPs (Table S15) but a positive MSE for EA (Table S16), and these systematic errors add in \(\eta \) to make \(\partial E^2/\partial N^2 \) poorly described, if this property is probed by \(\eta \) as proposed by Parr and Pearson\(^{25}\) (Figure 2B).

Thus, we emphasize that “universality” requires both \(\chi \) and \(\eta \) to be well-described for the same systems broadly. If doing so, as not done yet, since the chemical potential describes changing electron densities universally as reflected in the Pauling electronegativity, we hope that DFT can become more universal. In support of this assumption, we observe that the best performing functionals across both properties, B98, PW6B95D3, and B97-1, have been recently shown to be particularly accurate in detailed benchmarks of very diverse metal-ligand bonds.\(^{46,47,116}\) Accordingly, a balanced description of \(\partial E/\partial N \) and \(\partial E^2/\partial N^2 \), via \(\chi \) and \(\eta \), is an important test descriptor of DFT, and probably a first simple probe of DFT universality.
Figure 5. Clustering of density functionals in accuracy-precision space. The plot is quantified by MAE (horizontal axis) and standard deviation of errors (vertical axis): A) Cutoff: 0.5 eV (i.e. the two local DFT methods SVWN and OVWN were excluded). B) Cutoff: 0.3 eV.

Contribution of densities to errors in the chemical potential probed by χ

As the last question of interest, we wanted to understand whether the errors observed are largely reflected by the energy-functional space, or whether the densities contribute to some of the pathology, as claimed in some cases for e.g. anion states, which can be described better in some cases by HF densities. Since the exact densities corresponding to the experimental IPs and EAs are unknown, and since quantum chemistry cannot produce them accurately enough (except perhaps by full-CI using Slater orbitals to mimic the nuclear cusp), any comparison of densities is conditional, and we therefore proposed using density sensitivity analysis, as explained in the introduction. Here, we consider the two simplest metrics of abnormality (systems with large $\Delta E_D'$ in Figure 1A) that we consider most useful, the specific version suggested by Burke and co-workers that compares PBE on SVWN and HF densities, and our version that compares PBE on SVWN and PBE0 densities. The advantage of these methods is their simplicity; in comparison to more elaborate metrics that average over more rungs of the DFT ladder, they tend to maximize estimates of abnormality since the applied theories to compute the densities are quite diverse.
Figure 6. Density sensitivities calculated using PBE on SVWN, HF, and PBE0 densities. (A) Ionization potentials for all atoms $Z = 1-36$. (B) Electron affinities for $Z = 1-36$. (C) Electronegativities for $Z = 1-36$. All values are in eV and describe how much a change in density from HF to SVWN or from PBE0 to SVWN affect the PBE-computed property.

Figure 6 compares the values of these two metrics for the IPs (Figure 6A), EAs (Figure 6B), and χ (Figure 6C). For the IPs, we see that the HF-based metric $S_{\text{IP}}^{\text{PBE(HF)}}$ suggested by Burke,24 Equation (7), is always larger than our PBE0-based metric,13 equation (8), as expected because it represents a large difference in applied theory, with HF heavily favoring loose densities and weaker binding, whereas LDA strongly overbinds.
For the IPs (Figure 6A) the two metrics are in qualitative agreement, and both confirm that the 3d-series is extremely density-sensitive, with effects as large as 1 eV (100 kJ/mol) most notably for Co and Fe, the first clear data showing this for the 3d series. The p-block is also sensitive but only at a level that maximally contributes 0.1 eV (10 kJ/mol) to total errors, and when using our DFT-based metric, these effects are negligible. The d-block harbors large density sensitivity partly due to distinct electronic configurations of the HF and DFT treatment, with the 4s-3d energetics being a main difficulty for these systems. We tried to optimize PBE and HF in alternative configurations to test the electronic configuration dependence but failed in both cases, indicating that the “excited” configurations are too unstable in both theories. For the DFT-based metric, the sensitivity at the early d-block mostly disappears, because the theories converge to the same configurations. Since DFT is a ground state theory, we must accept the change in lowest energy configuration, which arises from the near-degeneracy and static correlation, which makes DFT and HF very different in the 3d series.

For the EAs (Figure 6B), which may be more abnormal (i.e. displaying larger density-derived errors) and sometimes improved by using HF densities,38,51 we indeed see more density sensitivity. Surprisingly, the HF metric predicts extreme density sensitivity for the 2p-series (up to 0.8 eV), probably due to the static correlation effects of nearly degenerate p-orbitals. Confirming this interpretation, s-block elements, where degenerate occupation issues are absent, are unproblematic in all cases for both metrics. The effect only emerges in the anion state, not the neutral and cation state, thus confirming earlier work.38,51 Importantly, although both metrics indicate that the d-block produces large density-derived errors, they disagree on whether the same is the case for the p-block and the affected 3d metals differ, i.e. the metrics give different results, even qualitatively, for EAs. As discussed previously,13,46 we do not believe that HF theory estimates density errors well due to its pathologies relative to DFT, as largely confirmed by Figure 6. Thus, we still favor the metric of Equation (8),46 shown in orange color, for estimating density sensitivity of DFT. For the same reason, HF-DFT (where HF densities are used with DFT energies)
should be treated with care and may work mainly in cases of error cancellation. The PBE0 and SVWN theories are almost maximally different within DFT and favor loose and tight binding, respectively, yet do not suffer the pathology that causes large effects in HF densities.

Finally, the density sensitivity for the most important property studied in this work, the finite-difference approximation to the chemical potential $-\partial E/\partial N$ (i.e. χ) is shown in Figure 6C. Remarkably, while the HF metric suggests that density plays a major role in the errors across the p- and d-blocks (blue), with errors again reaching 1 eV. However, correlated DFT experiences much more efficient cancellation of errors of having mostly similar orbitals occupied in the X^+ and X^- states, and thus the density sensitivity is much smaller for $\partial E/\partial N$ for the DFT-based than for the HF-based metric, consistent with the expectation that errors in the energy-density relationship cancel in the finite difference $E(X^+) - E(X^-)$ when correlation effects of the “double electron transfer” are well accounted for. The only exception is seen for Mn in the middle of the d-block, which has a heptet $4s^13d^5$ cation state, a neutral $4s^23d^5$ state, and is the only state not showing having error cancellation in the DFT metric. In summary, although the configuration dependence complicates the picture. Figure 6 clearly shows the density sensitivity of the 2p series and 3d series being outstanding in relation to other parts of the periodic table, and these parts coincide with the largest errors in the computed energies, as discussed above.

Conclusions

The quest towards universal functionals dates back to the original formulations by Hohenberg and Kohn. Transferability across the periodic table is lacking, as is commonly a balanced description of the electronic energy and density. There are two main approaches to this challenge: the use of extensively parameterized functionals and the use of fundamental bounds, which may aid universal behavior with few parameters. There are no simple metrics of universality to aid this quest, yet we expect that such metrics could help rationalizing and improving DFT results.
We hypothesized that the chemical potential, $\partial E/\partial N$, is not balanced in current DFT. $\partial E/\partial N$ is of major importance to chemical reactions: In any chemical process, electrons are moved from one place to another such that $\partial E/\partial N$ is equal in all parts of the molecular system at equilibrium. We hypothesized that DFT is unbalanced because both the uptake and removal of electrons need to be probed well around the chemical potential of the same systems, which has typically not been a requirement in functional development. In the finite difference approximation, this amounts to performing well both for absolute electronegativities $\chi = IP + EA$ and hardness $\eta = IP – EA$ for the same systems specifically, rather than for IPs and EAs of different systems more broadly.

We have studied how 50 different density functionals describe χ and η. We find that: 1) Pathological cases are not due to anions *per se*, but to adding electrons to degenerate p- and d-orbitals. 2) Popular functionals such as B3LYP, PBE, and revPBE, perform poorly for both properties. 3) Functionals that are good for χ are commonly not good for η and *vice versa*. For example, B3LYP, MN15, and MN15-L are quite good for IPs, but not for EAs, and therefore, produce poor χ and η. 4) The accuracy and precision of a functional is not generally linearly related, yet for a universal functional we expect linearity, and the best-performing functionals support this notion. Deviations from the accuracy-precision relationship are often seen for highly parameterized functionals. 5) The pathology of $\partial E/\partial N$ in the d-block as probed by χ is accompanied by large density-derived errors, as revealed by density sensitivity analysis.13

Based on these results, we argue that balanced good performance for χ is a hallmark of universality by probing both sides of $\partial E/\partial N$. With this metric, B98, B97-1, PW6B95D3, APFD are the most “universal” among the tested functionals. In previous work, B98 and B97-1, and to some extent PW6B95D3, excellently described very diverse metal-ligand bonds across 3d-, 4d-, and 5d-metals and ligands such as oxide, halides, and hydride.46,47,116 This seems to support that a balanced description of $\partial E/\partial N$ and $\partial E^2/\partial N^2$, via χ and η, is important to chemistry broadly and thus be a very simple probe of universality, as it requires only the calculation of IP+EA for the same system, compared to experiment.
Acknowledgments

We kindly acknowledge the use of the High-Performance Computing Cluster at DTU for the computations carried out in this work.

Supporting Information available

The Supporting information file contains all the computed electronic energies and details of the analysis, including the density sensitivity metrics.

Data availability statement

The data required to reproduce the findings of this study are available from the corresponding author upon reasonable request.

Funding

There is no funding to be acknowledged in this study.
References

1 W. Kohn, A.D. Becke, and R.G. Parr, J. Phys. Chem. **100**, 12974 (1996).

2 A.D. Becke, J. Chem. Phys. **140**, 18A301 (2014).

3 R.G. Parr, in *Horizons Quantum Chem.* (Springer, 1980), pp. 5–15.

4 K.P. Kepp, Coord. Chem. Rev. **257**, 196 (2013).

5 J. Tao, J.P. Perdew, V.N. Staroverov, and G.E. Scuseria, Phys. Rev. Lett. **91**, 146401 (2003).

6 T. Schwabe, Phys. Chem. Chem. Phys. **16**, 14559 (2014).

7 A.J. Cohen, P. Mori-Sánchez, and W. Yang, Chem. Rev. **112**, 289 (2011).

8 X.-M. Tong and S.-I. Chu, Phys. Rev. A **57**, 855 (1998).

9 P. Hohenberg and W. Kohn, Phys. Rev. **136**, B864 (1964).

10 M. Levy, Proc. Natl. Acad. Sci. **76**, 6062 (1979).

11 R. Peverati and D.G. Truhlar, Philos. Trans. R. Soc. London A **372**, 20120476 (2014).

12 M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, and K.A. Lyssenko, Science (80-.). **355**, 49 (2017).

13 K.P. Kepp, Phys. Chem. Chem. Phys. **20**, 7538 (2018).

14 J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).

15 Y. Zhao and D.G. Truhlar, Chem. Phys. Lett. **502**, 1 (2011).

16 E.H. Knoll and R.A. Friesner, J. Phys. Chem. B **110**, 18787 (2006).

17 K. Jensen and U. Ryde, J. Phys. Chem. A **155**, 7539 (2003).

18 J.P. Perdew, AIP Conf. Proc. **577**, 1 (2001).

19 W. Yang and R.G. Parr, Proc. Natl. Acad. Sci. **82**, 6723 (1985).
20 R.G. Parr, R.A. Donnelly, M. Levy, and W.E. Palke, J. Chem. Phys. **68**, 3801 (1978).

21 K.P. Kepp, Science (80-). **356**, 496 (2017).

22 M.-C. Kim, E. Sim, and K. Burke, Phys. Rev. Lett. **111**, 73003 (2013).

23 A. Wasserman, J. Nafziger, K. Jiang, M.-C. Kim, E. Sim, and K. Burke, Annu. Rev. Phys. Chem. **68**, 555 (2017).

24 E. Sim, S. Song, and K. Burke, J. Phys. Chem. Lett. **9**, 6385 (2018).

25 R.G. Parr and R.G. Pearson, J. Am. Chem. Soc. **105**, 7512 (1983).

26 R.S. Mulliken, J. Chem. Phys. **2**, (1934).

27 R.G. Pearson, J. Am. Chem. Soc. **107**, 6801 (1985).

28 R.G. Parr and J.L. Gazquez, J. Phys. Chem. **97**, 3939 (1993).

29 D. Bergmann and J. Hinze, Angew. Chemie Int. Ed. English **35**, 150 (1996).

30 L. Pauling, J. Am. Chem. Soc. **54**, 988 (1932).

31 H.A. Skinner and H.O. Pritchard, Trans. Faraday Soc. **49**, 1254 (1953).

32 J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer, S. Nandi, and G.B. Ellison, Chem. Rev. **102**, 231 (2002).

33 L.A. Curtiss, P.C. Redfern, K. Raghavachari, and J.A. Pople, J. Chem. Phys. **109**, 42 (1998).

34 D.J. Tozer and F. De Proft, J. Phys. Chem. A **109**, 8923 (2005).

35 C.-G. Zhan, J.A. Nichols, and D.A. Dixon, J. Phys. Chem. A **107**, 4184 (2003).

36 S. McKechnie, G.H. Booth, A.J. Cohen, and J.M. Cole, J. Chem. Phys. **142**, 194114 (2015).

37 Z.J. Wu and Y. Kawazoe, Chem. Phys. Lett. **423**, 81 (2006).

38 D. Lee, F. Furche, and K. Burke, J. Phys. Chem. Lett. **1**, 2124 (2010).
39 E. Kraisler, G. Makov, and I. Kelson, Phys. Rev. A 82, 42516 (2010).

40 J.M. Galbraith and H.F. Schaefer III, J. Chem. Phys. 105, 862 (1996).

41 N. Rösch and S.B. Trickey, J. Chem. Phys. 106, 8940 (1997).

42 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. V Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavanchari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, (2016).

43 P. Pyykkö, Annu. Rev. Phys. Chem. 63, 45 (2012).

44 M.K. Armbruster, F. Weigend, C. van Wülffen, and W. Klopper, Phys. Chem. Chem. Phys. 10, 1748 (2008).

45 F. Neese, J. Chem. Phys. 118, 3939 (2003).

46 K.A. Moltved and K.P. Kepp, J. Phys. Chem. A 123, 2888 (2019).

47 K.A. Moltved and K.P. Kepp, J. Chem. Theory Comput. 14, 3479 (2018).

48 A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team (2018), Natl. Inst. Stand. Technol. Gaithersburg, MD (2018).

49 John Rumble, *CRC Handbook of Chemistry and Physics, 98th Edition* (CRC Press LLC, 2017).
50 M. Swart, F.M. Bickelhaupt, and M. Duran, (2016).

51 M.-C. Kim, E. Sim, and K. Burke, J. Chem. Phys. 134, 171103 (2011).

52 D. Lee and K. Burke, Mol. Phys. 108, 2687 (2010).

53 T.H. Dunning, J. Chem. Phys. 90, 1007 (1989).

54 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

55 A. Austin, G.A. Petersson, M.J. Frisch, F.J. Dobek, G. Scalmani, and K. Throssell, in J. Chem. Theory Comput. (American Chemical Society, 2012), pp. 4989–5007.

56 A.D. Becke, J. Chem. Phys. 104, 1040 (1996).

57 S. Grimme, J. Chem. Phys. 124, 34108 (2006).

58 P.J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. Frisch, J. Phys. Chem. 98, 11623 (1994).

59 C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

60 A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

61 A.D. Becke, Phys. Rev. A 38, 3098 (1988).

62 J.P. Perdew, Phys. Rev. B 33, 8822 (1986).

63 F.A. Hamprecht, A.J. Cohen, D.J. Tozer, and N.C. Handy, J. Chem. Phys. 109, 6264 (1998).

64 P.J. Wilson, T.J. Bradley, and D.J. Tozer, J. Chem. Phys. 115, 9233 (2001).

65 S. Grimme, J. Comput. Chem. 27, 1787 (2006).

66 H.L. Schmider and A.D. Becke, J. Chem. Phys. 108, 9624 (1998).

67 A.D. Becke, J. Chem. Phys. 98, 1372 (1993).

68 A.D. Boese and J.M.L. Martin, J. Chem. Phys. 121, 3405 (2004).

69 T. Yanai, D.P. Tew, and N.C. Handy, Chem. Phys. Lett. 393, 51 (2004).
70 C. Adamo and V. Barone, J. Comput. Chem. 19, 418 (1998).

71 P.M.W. Gill, Mol. Phys. 89, 433 (1996).

72 A.D. Boese and N.C. Handy, J. Chem. Phys. 114, 5497 (2001).

73 A.D. Boese, N.L. Doltsinis, N.C. Handy, and M. Sprik, J. Chem. Phys. 112, 1670 (2000).

74 A. V Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006).

75 A.F. Izmaylov, G.E. Scuseria, and M.J. Frisch, J. Chem. Phys. 125, 104103 (2006).

76 T.M. Henderson, A.F. Izmaylov, G. Scalmani, and G.E. Scuseria, J. Chem. Phys. 131, 44108 (2009).

77 J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).

78 J. Heyd, J.E. Peralta, G.E. Scuseria, and R.L. Martin, J. Chem. Phys. 123, 174101 (2005).

79 J. Heyd and G.E. Scuseria, J. Chem. Phys. 120, 7274 (2004).

80 J. Heyd and G.E. Scuseria, J. Chem. Phys. 121, 1187 (2004).

81 O.A. Vydrov, J. Heyd, A. V. Krukau, and G.E. Scuseria, J. Chem. Phys. 125, 074106 (2006).

82 O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 125, 234109 (2006).

83 O.A. Vydrov, G.E. Scuseria, and J.P. Perdew, J. Chem. Phys. 126, 154109 (2007).

84 Y. Zhao and D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

85 Y. Zhao and D.G. Truhlar, J. Chem. Phys. 125, 194101 (2006).

86 R. Peverati and D.G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011).

87 H.S. Yu, X. He, S.L. Li, and D.G. Truhlar, Chem. Sci. 7, 5032 (2016).

88 H.S. Yu, X. He, and D.G. Truhlar, J. Chem. Theory Comput. 12, 1280 (2016).
89 C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).

90 J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

91 J.P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

92 X. Xu and W.A. Goddard, Proc. Natl. Acad. Sci. U. S. A. 101, 2673 (2004).

93 A.J. Cohen and N.C. Handy, Mol. Phys. 99, 607 (2001).

94 N.C. Handy and A.J. Cohen, Mol. Phys. 99, 403 (2001).

95 S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

96 C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

97 Y. Zhao and D.G. Truhlar, J. Phys. Chem. A 109, 5656 (2005).

98 M. Ernzerhof and J.P. Perdew, J. Chem. Phys. 109, 3313 (1998).

99 J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, and J. Sun, Phys. Rev. Lett. 103, 026403 (2009).

100 B. Hammer, L.B. Hansen, and J.K. Nørskov, Phys. Rev. B 59, 7413 (1999).

101 J.C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974).

102 A.D. Boese and N.C. Handy, J. Chem. Phys. 116, 9559 (2002).

103 V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, J. Chem. Phys. 119, 12129 (2003).

104 J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

105 J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

106 R.G. Parr and Z. Zhou, Acc. Chem. Res. 26, 256 (1993).
107 K.P. Kepp, J. Phys. Chem. A 121, 9092 (2017).

108 K.A. Moltved and K.P. Kepp, J. Phys. Chem. C 123, 18432 (2019).

109 T.F. Hughes and R.A. Friesner, J. Chem. Theory Comput. 7, 19 (2011).

110 M. Reiher, Inorg. Chem. 41, 6928 (2002).

111 H. Paulsen, L. Duelund, H. Winkler, H. Toftlund, and A.X. Trautwein, Inorg. Chem. 40, 2201 (2001).

112 K.P. Kepp, in Transit. Met. Coord. Environ. Comput. Chem. Catal. Viewpoints, edited by E. Broclawik, T. Borowski, and M. Radoń (Springer International Publishing, 2019), pp. 1–33.

113 M. Swart, J. Chem. Theory Comput. 4, 2057 (2008).

114 K.P. Kepp, Commun. Chem. 1, 63 (2018).

115 O.S. Siig and K.P. Kepp, J. Phys. Chem. A 122, 4208 (2018).

116 K.A. Moltved and K.P. Kepp, ChemPhysChem 20, 3210 (2019).
SUPPORTING INFORMATION

Using Electronegativity and Hardness to Test Density Functional Universality

Klaus A. Moltved and Kasper P. Kepp*

Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, DK – Denmark

*Phone: +045 45 25 24 09. E-mail: kpj@kemi.dtu.dk
Table 1. Experimental spin multiplicity and electron configuration from NIST4 used for atoms and atomic ions in all computations.

Atom	Spin multiplicity of neutral atom	Spin multiplicity of monocation	Spin multiplicity of monoanion	
H	2	1	1	
He	1	2	2	
Li	2	1	1	
Be	1	2	2	
B	2	1	3	
C	3	2	4	
N	4	3	3	
O	3	4	2	
F	2	3	1	
Ne	1	2	2	
Na	2	1	1	
Mg	1	2	2	
Al	2	1	3	
Si	3	2	4	
P	4	3	3	
S	3	4	2	
Cl	2	3	1	
Ar	1	2	2	
K	2	1	1	
Ca	1	2	2	
Sc	2	3	3	
Ti	3	4	4	
V	4	5	5	
Cr	7	6	6	
	Mn	6	7	5
---	----	----	----	----
Fe	5	6	4	
Co	4	3	3	
Ni	3	2	2	
Cu	2	1	1	
Zn	1	2	2	
Ga	2	1	3	
Ge	3	2	4	
As	4	3	3	
Se	3	4	2	
Br	2	3	1	
Kr	1	2	2	
Table 2. Experimental IPs and EAs (eV) used in this work. The data are from the CRC Handbook of Chemistry and Physics58.

Atom	IP (eV)	EA (eV)
H	13.60	0.75
He	24.59	NA
Li	5.39	0.62
Be	9.32	NA
B	8.30	0.28
C	11.26	1.26
N	14.53	NA
O	13.62	1.46
F	17.42	3.40
Ne	21.56	NA
Na	5.14	0.55
Mg	7.65	NA
Al	5.99	0.43
Si	8.15	1.39
P	10.49	0.75
S	10.36	2.08
Cl	12.97	3.61
Ar	15.76	NA
K	4.34	0.50
Ca	6.11	0.02
Sc	6.56	0.19
Ti	6.83	0.08
V	6.75	0.53
Cr	6.77	0.68
Mn	7.43	NA
Fe	7.90	0.15
Co	7.88	0.66
Ni	7.64	1.16
Cu	7.73	1.24
Zn	9.39	NA
Ga	6.00	0.43
Ge	7.90	1.23
As	9.79	0.81
Se	9.75	2.02
Br	11.81	3.36
Kr	14.00	NA
Table 3. Computed electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u.

Atom	APFD	B1B95	B2PLYP	B3LYP	B3P86	B97D
H	-0.502516	-0.498348	-0.498841	-0.502438	-0.500920	-0.502991
He	-2.900899	-2.904196	-2.893843	-2.915165	-2.908129	-2.916553
Li	-7.474503	-7.483686	-7.469522	-7.492892	-7.482413	-7.487120
Be	-14.645507	-14.660557	-14.638507	-14.673238	-14.658685	-14.664869
B	-24.630649	-24.647677	-24.621079	-24.665450	-24.648680	-24.644708
C	-37.820570	-37.841923	-37.806439	-37.861540	-37.843927	-37.830159
N	-54.562293	-54.590902	-54.541178	-54.606772	-54.591245	-54.574575
O	-75.041928	-75.077690	-75.010780	-75.100613	-75.077845	-75.057383
F	-99.704758	-99.752530	-99.661874	-99.775967	-99.747943	-99.724925
Ne	-128.898756	-128.963183	-128.843251	-128.980438	-128.949573	-128.934220
Na	-162.212068	-162.289777	-162.164543	-162.299615	-162.266588	-162.243365
Mg	-200.000079	-200.091453	-199.954491	-200.099915	-200.063330	-200.056402
Al	-242.289820	-242.391427	-242.249192	-242.394516	-242.359642	-242.355241
Si	-289.295108	-289.408108	-289.242469	-289.401919	-289.371024	-289.372181
P	-341.184731	-341.310925	-341.125622	-341.291825	-341.266935	-341.278634
S	-398.028706	-398.170254	-397.963236	-398.145348	-398.119339	-398.142731
Cl	-460.057684	-460.217261	-459.983545	-460.181635	-460.156155	-460.192985
Ar	-527.437329	-527.617113	-527.353330	-527.566335	-527.543355	-527.598011
K	-599.804366	-600.001432	-599.721476	-599.938679	-599.917166	-599.981145
Ca	-677.444860	-677.659527	-677.357150	-677.590164	-677.568333	-677.670422
Sc	-760.495665	-760.724609	-760.391095	-760.648870	-760.630582	-760.767247
Ti	-849.220619	-849.465151	-849.101115	-849.380524	-849.365913	-849.552185
V	-943.769588	-944.030656	-943.636356	-943.935159	-943.927383	-944.166319
Cr	-1044.326774	-1044.598834	-1044.147078	-1044.477094	-1044.489275	-1044.756027
Mn	-1150.865963	-1151.164437	-1150.697954	-1151.034586	-1151.041831	-1151.405032
Fe	-1263.550593	-1263.868025	-1263.357020	-1263.728624	-1263.738473	-1264.169767
Co	-1382.617535	-1382.951467	-1382.371674	-1382.802245	-1382.798958	-1383.313699
Ni	-1508.176140	-1508.535176	-1507.903520	-1508.367685	-1508.386704	-1508.982430
Element	Charge	Mass (amu)				
---------	--------	------------				
Cu	-1640.394541	-1640.778009	-1640.997887	-1640.590917	-1640.616719	-1641.312080
Zn	-1779.297534	-1779.70166	-1779.006160	-1779.500607	-1779.529511	-1780.313179
Ga	-1924.706843	-1925.136974	-1924.425044	-1924.906050	-1924.945161	-1925.801131
Ge	-2076.815286	-2077.265470	-2076.534851	-2077.011923	-2077.061576	-2078.002375
As	-2235.705409	-2236.176012	-2235.423231	-2235.897988	-2235.959773	-2236.991902
Se	-2401.378328	-2401.874170	-2401.093737	-2401.577009	-2401.642885	-2402.769759
Br	-2573.992047	-2574.513778	-2573.702122	-2574.194482	-2574.266099	-2575.488800
Kr	-2753.639410	-2754.187722	-2753.342713	-2753.843436	-2753.922555	-2755.244210
H⁺	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
He⁺	-1.998348	-1.996312	-1.997500	-1.998599	-1.992829	-2.000301
Li⁺	-7.269864	-7.282658	-7.268548	-7.286098	-7.277398	-7.290735
Be⁺	-14.315397	-14.333775	-14.318234	-14.338445	-14.323360	-14.326593
B⁺	-24.311826	-24.337490	-24.311110	-24.344181	-24.325957	-24.330907
C⁺	-37.396414	-37.425112	-37.394602	-37.437359	-37.416099	-37.409466
N⁺	-54.020953	-54.054960	-54.015630	-54.046496	-54.032354	-54.032354
O⁺	-74.531352	-74.573675	-74.520097	-74.580940	-74.562426	-74.551781
F⁺	-99.061706	-99.112217	-99.039665	-99.124541	-99.099917	-99.082636
Ne⁺	-128.108415	-128.172521	-128.074952	-128.182714	-128.154190	-128.135696
Na⁺	-162.017711	-162.100077	-161.973458	-162.100111	-162.070885	-162.065067
Mg⁺	-199.722943	-199.818060	-199.685941	-199.816053	-199.780681	-199.761921
Al⁺	-242.065240	-242.175399	-242.028432	-242.173087	-242.132006	-242.135163
Si⁺	-288.992641	-289.112752	-288.952979	-289.103710	-289.065799	-289.074037
P⁺	-340.797461	-340.929577	-340.752641	-340.910179	-340.877144	-340.894596
S⁺	-397.645112	-397.791059	-397.593662	-397.757479	-397.731068	-397.763705
Cl⁺	-459.580500	-459.742488	-459.521330	-459.701479	-459.674893	-459.719778
Ar⁺	-526.858881	-527.039744	-526.790103	-526.986158	-526.961253	-527.021698
K⁺	-599.643721	-599.845152	-599.564904	-599.773297	-599.753307	-599.835225
Ca⁺	-677.224612	-677.443007	-677.145986	-677.364503	-677.342274	-677.430207
Sc⁺	-760.262218	-760.494262	-760.167196	-760.408056	-760.395049	-760.529173
Ti⁺	-848.980854	-849.226906	-848.868043	-849.130577	-849.118407	-849.312553
V⁺	-943.546777	-943.807862	-943.404854	-943.695327	-943.693943	-943.921378
Cr⁺	-1044.070414	-1044.348377	-1043.910254	-1044.219294	-1044.226762	-1044.513240
Mn⁺	-1150.607241	-1150.903396	-1150.442764	-1150.759087	-1150.772614	-1151.099786
Fe⁺	-1263.272510	-1263.589289	-1263.087133	-1263.437141	-1263.450280	-1263.847425
Element	Mass to Mass Ratio					
---------	-------------------					
Co^+	-1382.340963					
Ni^+	-1507.893330					
Cu^+	-1640.107881					
Zn^+	-1778.962686					
Ga^+	-1924.484817					
Ge^+	-2076.522471					
As^+	-2235.338577					
Se^+	-2401.021871					
Br^+	-2573.556314					
Kr^+	-2753.120646					
H	-0.527343					
He	-2.821859					
Li	-7.492894					
Be	-14.644094					
B	-24.649003					
C	-37.873470					
N	-54.562081					
O	-75.094840					
F	-99.825806					
Ne	-128.741433					
Na	-162.230807					
Mg	-199.987126					
Al	-242.309732					
Si	-289.348908					
P	-341.214656					
S	-398.105548					
Cl	-460.189643					
Ar	-527.356859					
Kr	-599.820182					
Ca	-677.445585					
Sc	-760.494185					
Ti	-849.222408					
V	-943.807265					
Cr	-1044.338260					
Co	-1382.340963					
Ni	-1507.893330					
Cu	-1640.107881					
Zn	-1778.962686					
Ga	-1924.484817					
Ge	-2076.522471					
As	-2235.338577					
Se	-2401.021871					
Br	-2573.556314					
Kr	-2753.120646					
H	-0.527343					
He	-2.821859					
Li	-7.492894					
Be	-14.644094					
B	-24.649003					
C	-37.873470					
N	-54.562081					
O	-75.094840					
F	-99.825806					
Ne	-128.741433					
Na	-162.230807					
Mg	-199.987126					
Al	-242.309732					
Si	-289.348908					
P	-341.214656					
S	-398.105548					
Cl	-460.189643					
Ar	-527.356859					
Kr	-599.820182					
Ca	-677.445585					
Sc	-760.494185					
Ti	-849.222408					
V	-943.807265					
Cr	-1044.338260					
Element	Masses (amu)					
---------	-------------					
Mn^-	-1150.854781	-1151.150873	-1150.677661	-1151.026688	-1151.043055	-1151.396001
Fe^-	-1263.570104	-1263.881245	-1263.339527	-1263.754908	-1263.756012	-1264.195804
Co^-	-1382.648162	-1382.980369	-1382.391359	-1382.841052	-1382.855496	-1383.368889
Ni^-	-1508.210382	-1508.567580	-1507.926028	-1508.409928	-1508.429409	-1509.033725
Cu^-	-1640.432563	-1640.813566	-1640.123026	-1640.636613	-1640.662005	-1641.365985
Zn^-	-1779.286814	-1779.691334	-1778.988390	-1779.489673	-1779.528276	-1780.299768
Ga^-	-1924.723724	-1925.147848	-1924.431540	-1924.921954	-1924.967074	-1925.812040
Ge^-	-2076.867462	-2077.310690	-2076.574568	-2077.060852	-2077.117894	-2078.048259
As^-	-2235.735789	-2236.203417	-2235.442251	-2235.934938	-2235.996889	-2237.024056
Se^-	-2401.454796	-2401.947438	-2401.157150	-2401.657834	-2401.724728	-2402.846101
Br^-	-2574.119553	-2574.638094	-2573.815996	-2574.324650	-2574.398369	-2575.615214
Kr^-	-2753.581052	-2754.126341	-2753.276725	-2753.787064	-2753.875710	-2755.174369
Table 4. Computed electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u.

Atom	B98	B97-1	B97-2	BHandH	BHandHLYP	BLYP																																																																																																																																																																		
H	-0.503001	-0.502920	-0.504396	-0.478142	-0.498778	-0.497908																																																																																																																																																																		
He	-2.909939	-2.906999	-2.910036	-2.835288	-2.905703	-2.907013																																																																																																																																																																		
Li	-7.486741	-7.485690	-7.487855	-7.365632	-7.483946	-7.482557																																																																																																																																																																		
Be	-14.665124	-14.665153	-14.665936	-14.491707	-14.663996	-14.661364																																																																																																																																																																		
B	-24.651614	-24.653347	-24.650725	-24.423693	-24.654865	-24.653463																																																																																																																																																																		
C	-37.843043	-37.846140	-37.841129	-37.559681	-37.849271	-37.849139																																																																																																																																																																		
N	-54.586565	-54.589865	-54.586674	-54.246079	-54.592997	-54.592810																																																																																																																																																																		
O	-75.071333	-75.076134	-75.071828	-74.662450	-75.080664	-75.090285																																																																																																																																																																		
F	-99.740714	-99.746224	-99.744022	-99.263359	-99.749507	-99.767678																																																																																																																																																																		
Ne	-128.942714	-128.947178	-128.953479	-128.396910	-128.948012	-128.972342																																																																																																																																																																		
Na	-162.255486	-162.259880	-162.272241	-161.653799	-162.275611	-162.287406																																																																																																																																																																		
Mg	-200.053519	-200.057460	-200.077379	-199.385944	-200.079174	-200.087066																																																																																																																																																																		
Al	-242.343121	-242.346226	-242.374105	-241.608183	-242.375716	-242.382117																																																																																																																																																																		
Si	-289.348065	-289.350084	-289.387883	-288.544978	-289.385739	-289.388396																																																																																																																																																																		
P	-341.237238	-341.237788	-341.288794	-340.364965	-341.278479	-341.276356																																																																																																																																																																		
S	-398.086071	-398.084668	-398.149499	-397.141104	-398.132818	-398.130273																																																																																																																																																																		
Cl	-460.119898	-460.116372	-460.196942	-459.101370	-460.169672	-460.166032																																																																																																																																																																		
Ar	-527.503918	-527.497814	-527.597715	-526.411764	-527.555579	-527.548839																																																																																																																																																																		
K	-599.868292	-599.860149	-599.976774	-598.710529	-599.931600	-599.921791																																																																																																																																																																		
Ca	-677.518371	-677.507589	-677.643020	-676.282315	-677.581344	-677.577541																																																																																																																																																																		
Sc	-760.571297	-760.555910	-760.713505	-759.248793	-760.629959	-760.646226																																																																																																																																																																		
Ti	-849.300082	-849.279217	-849.463538	-847.891681	-849.354641	-849.386940																																																																																																																																																																		
V	-943.853795	-943.826256	-944.041918	-942.360549	-943.904314	-943.947113																																																																																																																																																																		
Cr	-1044.388998	-1044.350598	-1044.609986	-1042.811307	-1044.423773	-1044.493803																																																																																																																																																																		
Mn	-1150.959738	-1150.914855	-1151.214116	-1149.298524	-1150.993851	-1151.046358																																																																																																																																																																		
Fe	-1263.653044	-1263.600526	-1263.935725	-1261.891178	-1263.673694	-1263.761521																																																																																																																																																																		
Co	-1382.720179	-1382.657090	-1383.035171	-1380.843178	-1382.711925	-1382.845526																																																																																																																																																																		
Ni	-1508.293514	-1508.220120	-1508.649449	-1506.317763	-1508.263806	-1508.417594																																																																																																																																																																		
Cu	-1640.525638	-1640.440234	-1640.926339	-1638.453039	-1640.477162	-1640.643836																																																																																																																																																																		
Zn	-1779.444995	-1779.347979	-1779.886685	-1777.291933	-1779.400406	-1779.544363																																																																																																																																																																		
Element	Ga	Ge	As	Se	Br	Kr	H'	He+	Li+	Be+	B+	C+	N+	O+	F+	Ne+	Na+	Mg+	Al+	Si+	P+	S+	Cl+	Ar+	K+	Ca+	Sc+	Ti+	V+	Cr+	Mn+	Fe+	Co+	Ni+																																																																																																																																						
---------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------																																																																																																																																								
	-1924.857644	-1927.6972624	-2235.870418	-2041.556379	-2574.182331	-2753.841771	0.000000	-2.000568	-7.285230	-14.331548	-24.336686	-37.422451	-54.048662	-74.561413	-99.095876	-128.149046	-162.066823	-199.768799	-242.123292	-289.050233	-340.854762	-397.701801	-459.641539	-526.924554	-599.713279	-677.290118	-760.334702	-849.046915	-943.617425	-1044.142648	-1150.677949	-1263.355533	-1382.452737	-1508.018557	1044.105732	1261.613209	1380.581650	1508.120942																																																																																																																																		
	-1924.748465	-2076.849788	-2235.733436	-2401.405905	-2574.017861	-2753.662648	1044.130947	-2.001923	-7.284582	-14.333487	-24.340353	-37.427814	-54.054842	-74.566841	-99.102812	-128.156067	-162.071868	-199.773708	-242.128028	-289.053844	-340.856912	-397.702904	-459.720642	-526.920047	-599.705959	-677.280124	-760.319512	-849.026243	-943.588996	-1044.105732	-1150.633090	-1263.302472	-1382.391268	-1507.946579	1044.120863	1261.613209	1380.581650	1508.120942																																																																																																																																		
Ion	Na+	K+	He+	Li+	Be+	B+	C+	N+	O+	F-	Ne-	Mg2+	Al3+	Si4+	P5+	S6+	Cl-	Ar-	K+	Ca2+	Sc3+	Ti4+	V5+	Cr6+	Mn7+	Fe8+																																																																																																																																														
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----																																																																																																																																																
	0.463066	0.926132	1.852264	3.704528	7.409056	14.818112	29.636224	59.272448	98.808672	164.008988	273.067144	414.090976	621.136464	891.209480	1336.314920	2004.472384	3006.708576	4509.912864	6764.169296	10150.254576	15225.382112	23037.573168	34556.864776	52335.247152	78502.920768																																																																																																																																															
	-1640.245317	-1640.161109	-1640.653101	-1638.180084	-1640.201953	-1640.342257	-1779.102676	-1779.005905	-1779.547208	-1776.965263	-1779.070975	-1779.195489	-1924.640431	-1924.533457	-1925.127292	-1922.419445	-1924.611292	-1924.718008	-2076.684687	-2076.564274	-2077.212840	-2074.384494	-2076.662591	-2076.746839	-2235.508062	-2235.373657	-2236.078299	-2233.125444	-2235.488505	-2235.553643	-2401.199710	-2401.050812	-2401.813403	-2398.731751	-2401.179052	-2401.225464	-2573.746536	-2573.583881	-2574.405894	-2571.191274	-2573.726371	-2573.761854	-2753.322951	-2753.145931	-2754.029003	-2750.679339	-2753.300563	-2753.325020	-54.588131	-54.589740	-54.582267	-54.582217	-54.583560	-54.607414	-75.126353	-75.130683	-75.122610	-74.700136	-75.121480	-75.157867	-99.568421	-99.869155	-99.865496	-99.370794	-99.856080	-99.902963	-128.777925	-128.781182	-128.782492	-128.231235	-128.786258	-128.839662	-162.279070	-162.282198	-162.295772	-161.667365	-162.292302	-162.305875	-200.035448	-200.038041	-200.057458	-199.360903	-200.057434	-200.065296	-242.358287	-242.360352	-242.386479	-241.616763	-242.385732	-242.396439	-289.396786	-289.397657	-289.433776	-288.586614	-289.427972	-289.433635	-341.268686	-341.267846	-341.317052	-340.386587	-341.304793	-341.309831	-398.164773	-398.162210	-398.225244	-397.210308	-398.204341	-398.208499	-460.253366	-460.248679	-460.328337	-459.226500	-460.295417	-460.297248	-527.416845	-527.409501	-527.504974	-526.324420	-527.470450	-527.468704	-599.888977	-599.879817	-599.997514	-598.720224	-599.943741	-599.934918	-677.513928	-677.501991	-677.636868	-676.271384	-677.573195	-677.568768	-760.568115	-760.551370	-760.710859	-759.224117	-760.608090	-760.658081	-849.298227	-849.301524	-849.489029	-847.897363	-849.361721	-849.415618	-943.885843	-943.855604	-944.077236	-942.374614	-943.914696	-943.982268	-1044.419929	-1044.381229	-1044.642533	-1042.825025	-1044.441186	-1044.517104	-1150.947528	-1150.902697	-1151.201445	-1149.276080	-1150.974064	-1151.055371	-1263.673263	-1263.619955	-1263.953456	-1261.878462	-1263.667041	-1263.784009
Element	1382.761853	1382.699259	1383.076402	1380.867877	1382.738944	1382.885806																																																																																																																																																																		
---------	-------------	-------------	-------------	-------------	-------------	-------------																																																																																																																																																																		
Co	-1508.336009	-1508.262752	-1508.690488	-1506.345179	-1508.293465	-1508.461646																																																																																																																																																																		
Ni	-1640.570013	-1640.484476	-1640.968888	-1638.482629	-1640.509272	-1640.692672																																																																																																																																																																		
Cu	-1779.431239	-1779.333560	-1779.871745	-1777.272517	-1779.383852	-1779.530904																																																																																																																																																																		
Zn	-1924.869351	-1924.758844	-1925.350611	-1922.640323	-1924.837202	-1924.947740																																																																																																																																																																		
Ga	-2077.019186	-2076.894532	-2077.541089	-2074.710003	-2076.990714	-2077.075347																																																																																																																																																																		
Ge	-2235.902021	-2235.763960	-2236.468483	-2233.507492	-2235.875235	-2235.942929																																																																																																																																																																		
As	-2401.633545	-2401.481837	-2402.244764	-2399.153714	-2401.606954	-2401.659635																																																																																																																																																																		
Se	-2574.310141	-2574.144144	-2574.966898	-2571.744335	-2574.282121	-2574.319913																																																																																																																																																																		
Br	-2753.777299	-2753.597110	-2754.477415	-2751.128401	-2753.752426	-2753.778566																																																																																																																																																																		
Table 5. Computed electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u.

Atom	BMK	BP86	CAM-B3LYP	G96PBE	HCTH407	HSE06
H	-0.498914	-0.500322	-0.499089	-0.504886	-0.510414	-0.501496
He	-2.907327	-2.906302	-2.901381	-2.907361	-2.922149	-2.896417
Li	-7.481907	-7.480881	-7.471422	-7.482681	-7.494309	-7.468829
Be	-14.655032	-14.659363	-14.650305	-14.651354	-14.673896	-14.638822
B	-24.641514	-24.652041	-24.642249	-24.638870	-24.655932	-24.622976
C	-37.834171	-37.848867	-37.839095	-37.832581	-37.846519	-37.811733
N	-54.577165	-54.596047	-54.585437	-54.579803	-54.598787	-54.552016
O	-75.064612	-75.090901	-75.077629	-75.065504	-75.075359	-75.030336
F	-99.736501	-99.767830	-99.752741	-99.736341	-99.742730	-99.691264
Ne	-128.937055	-128.974433	-128.957668	-128.940413	-128.956214	-128.882590
Na	-162.242193	-162.291128	-162.275301	-162.255354	-162.271578	-162.195288
Mg	-200.028835	-200.09946	-200.076879	-200.040405	-200.085150	-199.982391
Al	-242.310444	-242.391504	-242.374979	-242.337722	-242.384957	-242.270337
Si	-289.304005	-289.406346	-289.386899	-289.350965	-289.405018	-289.273767
P	-341.180730	-341.304527	-341.281850	-341.249276	-341.316934	-341.161332
S	-398.016519	-398.163423	-398.139902	-398.103074	-398.178057	-398.002751
Cl	-460.037077	-460.205892	-460.181019	-460.142770	-460.228568	-460.028909
Ar	-527.407248	-527.597288	-527.570543	-527.533631	-527.637456	-527.405428
K	-599.748257	-599.975687	-599.944319	-599.908302	-600.026966	-599.770908
Ca	-677.370583	-677.635581	-677.598346	-677.556717	-677.715165	-677.409483
Sc	-760.383287	-760.712654	-760.659018	-760.634845	-760.818492	-760.456466
Ti	-849.062184	-849.458162	-849.394559	-849.385612	-849.604426	-849.176552
V	-943.559472	-944.031637	-943.953946	-943.957989	-944.222928	-943.719799
Cr	-1044.020975	-1044.603006	-1044.498296	-1044.551642	-1044.836147	-1044.268429
Mn	-1150.528660	-1151.153069	-1151.064901	-1151.088554	-1151.474691	-1150.802325
Fe	-1263.157882	-1263.881597	-1263.763388	-1263.823381	-1264.239414	-1263.479543
Co	-1382.135451	-1382.975958	-1382.839602	-1382.921724	-1383.375504	-1382.536013
Ni	-1507.624654	-1508.559422	-1508.411699	-1508.509232	-1509.062064	-1508.085230
Cu	-1639.762667	-1640.799631	-1640.641094	-1640.755947	-1641.397017	-1640.293544
Zn	-1778.608774	-1779.709929	-1779.556116	-1779.667211	-1780.392392	-1779.189579
Element	Mass Difference (Da)					
---------	---------------------					
Ga	-1923.931588					
Ge	-2075.952125					
As	-2234.750409					
Se	-2400.338325					
Br	-2572.863484					
Kr	-2752.418980					
H⁺	0.000000					
He⁺	-1.997591					
Li⁺	-7.287445					
Be⁺	-14.330984					
B⁺	-24.330003					
C⁺	-37.417563					
N⁺	-54.042949					
O⁺	-74.550548					
F⁺	-99.090401					
Ne⁺	-128.145177					
Na⁺	-162.056455					
Mg⁺	-199.753875					
Al⁺	-242.096353					
Si⁺	-289.010432					
P⁺	-340.800237					
S⁺	-397.631052					
Cl⁺	-459.557142					
Ar⁺	-526.825073					
K⁺	-599.594331					
Ca⁺	-677.150341					
Sc⁺	-760.148002					
Ti⁺	-848.816296					
V⁺	-943.312836					
Cr⁺	-1043.773176					
Mn⁺	-1150.258606					
Fe⁺	-1262.868236					
Co⁺	-1381.863631					
Ni⁺	-1507.345196					

Mass Difference (Da):

-1923.931588
-2075.952125
-2234.750409
-2400.338325
-2572.863484
-2752.418980
0.000000
-1.997591
-7.287445
-14.330984
-24.330003
-37.417563
-54.042949
-74.550548
-99.090401
-128.145177
-162.056455
-199.753875
-242.096353
-289.010432
-340.800237
-397.631052
-459.557142
-526.825073
-599.594331
-677.150341
-760.148002
-848.816296
-943.312836
-1043.773176
-1150.258606
-1262.868236
-1381.863631
-1507.345196
Element	Delta 1263.163935	Delta 1044.038733	Delta 2572.429775	Delta 1639.477700	Delta 760.358284	
Mn	-0.522134	-0.537908	-0.530895	-0.530054	-0.547969	
Zn	-2.811305	-2.829368	-2.817566	-2.829294	-2.845792	
Ga	1263.862814	1151.046304	2573.998231	1924.860151	1779.213472	
Br	-7.494723	-7.504186	-7.490058	-7.496535	-7.525892	
As	-14.646304	-14.663503	-14.643491	-14.651735	-14.676287	
Se	-24.651231	-24.677820	-24.655909	-24.659054	-24.679876	
Br	-37.880123	-37.909373	-37.888104	-37.909271	-37.863747	
K	-54.574644	-54.613615	-54.591088	-54.583698	-54.50641	
O	-75.116901	-75.161370	-75.138480	-75.123513	-75.140227	
F	-99.857225	-99.905969	-99.882561	-99.864398	-99.884651	
Ne	-128.774318	-128.846960	-128.801473	-128.783774	-128.828875	
Na	-162.253820	-162.314824	-162.294429	-162.266327	-162.311741	
Mg	-200.005754	-200.080480	-200.057672	-200.027546	-200.073113	
Al	-242.321625	-242.415663	-242.388128	-242.357248	-242.406812	
Si	-289.351524	-289.463396	-289.433755	-289.403874	-289.462713	
P	-341.210294	-341.344068	-341.314558	-341.278214	-341.348994	
S	-398.094596	-398.248321	-398.219164	-398.178518	-398.259022	
Cl	-460.172073	-460.344260	-460.314972	-460.273141	-460.367517	
Ar	-527.321024	-527.523213	-527.488946	-527.452227	-527.556086	
K	-599.758893	-599.958511	-599.958907	-599.919319	-600.061664	
Ca	-677.361855	-677.638053	-677.592647	-677.557222	-677.717074	
Sc	-760.358284	-760.727399	-760.647322	-760.644292	-760.816836	
Ti	-849.065173	-849.499193	-849.413309	-849.416600	-849.586264	
V	-943.570424	-944.078218	-943.980943	-944.000283	-944.224136	
Cr	-1044.038733	-1044.620667	-1044.519716	-1044.554641	-1044.891371	
Mn	-1150.490185	-1151.162684	-1151.046304	-1151.099127	-1151.483591	
Fe	-1263.163935	-1263.862814	-1263.781421	-1263.835582	-1264.269845	
Element	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6
--------	--------	--------	--------	--------	--------	--------
Co⁺	-1382.175032	-1383.019876	-1382.873228	-1382.950212	-1383.441927	-1382.566942
Ni⁺	-1507.669320	-1508.607766	-1508.448593	-1508.543297	-1509.110866	-1508.119707
Cu⁺	-1639.809988	-1640.852565	-1640.681389	-1640.795264	-1641.448575	-1640.331738
Zn⁺	-1778.592128	-1779.703576	-1779.541004	-1779.657134	-1780.384041	-1779.179256
Ga³⁺	-1923.938819	-1925.138864	-1924.981822	-1925.096805	-1925.902377	-1924.609715
Ge⁺	-2075.993499	-2077.285829	-2077.131332	-2077.253462	-2078.139738	-2076.744424
As⁺	-2234.779666	-2236.165447	-2236.014173	-2236.136928	-2237.110480	-2235.604823
Se⁺	-2400.412877	-2401.895224	-2401.746079	-2401.872973	-2402.929194	-2401.315540
Br⁻	-2572.988393	-2574.570108	-2574.421605	-2574.556668	-2575.696810	-2573.971073
Kr⁻	-2752.355250	-2754.043105	-2753.889228	-2754.039663	-2755.261087	-2753.423558
Table 6. Computed electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u.

Atom	LC-wHPBE	M06	M06-L	M11	M11-L	MN15
H	-0.506261	-0.500184	-0.503763	-0.498385	-0.506452	-0.499490
He	-2.904765	-2.910218	-2.914187	-2.905546	-2.919199	-2.921282
Li	-7.471607	-7.486143	-7.488542	-7.480624	-7.523391	-7.491648
Be	-14.640721	-14.661362	-14.663293	-14.661904	-14.706731	-14.664292
B	-24.629214	-24.643127	-24.654206	-24.650806	-24.684022	-24.633855
C	-37.824382	-37.830603	-37.850272	-37.841023	-37.861263	-37.816966
N	-54.570044	-54.579600	-54.603503	-54.586238	-54.594679	-54.551629
O	-75.053785	-75.065317	-75.090058	-75.081058	-75.079143	-75.031881
F	-99.720657	-99.739746	-99.759266	-99.758729	-99.746875	-99.700620
Ne	-128.916447	-128.951392	-128.959019	-128.972927	-128.944287	-128.904931
Na	-162.215082	-162.263040	-162.261506	-162.276553	-162.274744	-162.202374
Mg	-199.986995	-200.062610	-200.060860	-200.069281	-200.093877	-200.008186
Al	-242.275062	-242.356792	-242.355347	-242.363047	-242.378660	-242.273173
Si	-289.278458	-289.363669	-289.366327	-289.372563	-289.380478	-289.276681
P	-341.167228	-341.257027	-341.268704	-341.266484	-341.272571	-341.172980
S	-398.010664	-398.108089	-398.117120	-398.117136	-398.112298	-398.030710
Cl	-460.039201	-460.143335	-460.152986	-460.153834	-460.152697	-460.085878
Ar	-527.417298	-527.532127	-527.544442	-527.540556	-527.551600	-527.496988
K	-599.773177	-599.893654	-599.897356	-599.895578	-599.927743	-599.871027
Ca	-677.400485	-677.549554	-677.544986	-677.534704	-677.600162	-677.556250
Sc	-760.444611	-760.592667	-760.586305	-760.579306	-760.664894	-760.620340
Ti	-849.165039	-849.309740	-849.317241	-849.286661	-849.404390	-849.369822
V	-943.708393	-943.853611	-943.866194	-943.814763	-943.973105	-943.940074
Cr	-1044.263659	-1044.396059	-1044.396031	-1044.362999	-1044.488790	-1044.525025
Mn	-1150.791633	-1150.965408	-1150.959437	-1150.878450	-1151.032515	-1151.109115
Fe	-1263.472397	-1263.642227	-1263.640335	-1263.556534	-1263.779956	-1263.839421
Co	-1382.550405	-1382.687103	-1382.696188	-1382.604552	-1382.891868	-1382.948522
Ni	-1508.106266	-1508.260804	-1508.258127	-1508.154101	-1508.431598	-1508.576847
Cu	-1640.317729	-1640.490248	-1640.468870	-1640.356494	-1640.629842	-1640.850361
Zn	-1779.193920	-1779.407931	-1779.382057	-1779.222228	-1779.521420	-1779.793538
Element	Value	Value	Value	Value	Value	Value
---------	-----------	-----------	-----------	-----------	-----------	-----------
Ga	-1924.585579	-1924.812563	-1924.792942	-1924.616553	-1924.887696	-1925.160133
Ge	-2076.678710	-2076.911775	-2076.898233	-2076.712619	-2076.977162	-2077.286529
As	-2235.552998	-2235.791553	-2235.784171	-2235.590475	-2235.850723	-2236.195100
Se	-2401.210904	-2401.462333	-2401.456891	-2401.263554	-2401.528911	-2401.882318
Br	-2573.809489	-2574.070902	-2574.067138	-2573.873689	-2574.145952	-2574.513245
Kr	-2753.440528	-2753.710531	-2753.707926	-2753.513355	-2753.800032	-2754.179875
H⁺	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
He⁺	-1.999333	-1.999577	-2.006974	-1.989646	-2.013089	-2.006017
Li⁺	-7.266594	-7.290816	-7.304422	-7.276768	-7.311364	-7.299736
Be⁺	-14.309120	-14.332752	-14.335458	-14.327061	-14.381427	-14.335268
B⁺	-24.306999	-24.333044	-24.337456	-24.336439	-24.374899	-24.330561
C⁺	-37.395269	-37.413945	-37.431051	-37.425782	-37.449929	-37.400798
N⁺	-54.023373	-54.037313	-54.062805	-54.047868	-54.065066	-54.016894
O⁺	-74.534638	-74.559124	-74.586637	-74.557872	-74.568265	-74.520359
F⁺	-99.068035	-99.095067	-99.124568	-99.109493	-99.112085	-99.054156
Ne⁺	-128.116672	-128.154828	-128.177789	-128.171774	-128.171388	-128.109118
Na⁺	-162.023644	-162.086288	-162.096282	-162.093474	-162.079085	-162.017260
Mg⁺	-199.715254	-199.784889	-199.784059	-199.791765	-199.802444	-199.728814
Al⁺	-242.047352	-242.142523	-242.138894	-242.140719	-242.155995	-242.060860
Si⁺	-288.973214	-289.071496	-289.070044	-289.071906	-289.077447	-288.978635
P⁺	-340.777511	-340.876808	-340.880304	-340.881276	-340.884841	-340.788996
S⁺	-397.624226	-397.728347	-397.741067	-397.732137	-397.740369	-397.649892
Cl⁺	-459.559374	-459.668681	-459.679134	-459.674709	-459.674384	-459.606779
Ar⁺	-526.836876	-526.952262	-526.963690	-526.960456	-526.966763	-526.917195
K⁺	-599.618114	-599.746829	-599.762478	-599.746258	-599.758853	-599.717096
Ca⁺	-677.186054	-677.321268	-677.320636	-677.317254	-677.354615	-677.326368
Sc⁺	-760.218030	-760.348025	-760.363687	-760.353215	-760.423417	-760.373681
Ti⁺	-848.936060	-849.062093	-849.093484	-849.060799	-849.183914	-849.121483
V⁺	-943.502240	-943.625293	-943.633902	-943.618814	-943.729638	-943.724933
Cr⁺	-1044.019939	-1044.148887	-1044.148255	-1044.129388	-1044.247867	-1044.283518
Mn⁺	-1150.537643	-1150.680812	-1150.682156	-1150.640916	-1150.774172	-1150.840194
Fe⁺	-1263.201579	-1263.332231	-1263.339038	-1263.298440	-1263.467266	-1263.549946
Co⁺	-1382.283092	-1382.413900	-1382.427980	-1382.356585	-1382.626732	-1382.679258
Ni⁺	-1507.831624	-1507.977126	-1507.973206	-1507.901219	-1508.158509	-1508.301173

49
Element	Mass					
Cu⁺	-1640.038330					
Zn⁺	-1778.865927					
Ga⁺	-1924.360285					
Ge⁺	-2076.383590					
As⁺	-2235.184675					
Se⁺	-2400.851735					
Br⁺	-2573.372134					
Kr⁺	-2752.921514					
IF⁻	-0.529817					
He⁺	-2.822275					
Li⁺	-7.489248					
Be⁺	-14.632914					
B⁺	-24.644037					
C⁺	-37.877111					
N⁺	-54.570592					
O⁺	-75.111963					
F⁻	-99.849965					
Ne⁺	-128.754578					
Na⁺	-162.231912					
Mg⁺	-199.977623					
Al⁺	-242.292191					
Si⁺	-289.330843					
P⁺	-341.194965					
S⁺	-398.086223					
Cl⁻	-460.170477					
Ar⁺	-527.330006					
K⁺	-599.787139					
Ca⁺	-677.403817					
Sc⁺	-760.433803					
Ti⁺	-849.187322					
V⁺	-943.744631					
Cr⁺	-1044.271170					
Mn⁺	-1150.774341					
Fe⁺	-1263.495224					
Element	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6
---------	---------	---------	---------	---------	---------	---------
Co⁺	-1382.570996	-1382.739676	-1382.739744	-1382.611383	-1382.940925	-1382.994159
Ni⁺	-1508.130252	-1508.309294	-1508.290710	-1508.161915	-1508.481339	-1508.624138
Cu⁺	-1640.345898	-1640.540853	-1640.515580	-1640.365731	-1640.681094	-1640.901846
Zn⁺	-1779.178372	-1779.393371	-1779.366210	-1779.204274	-1779.521768	-1779.779683
Ga⁺	-1924.598067	-1924.822759	-1924.800677	-1924.626965	-1924.918784	-1925.178671
Ge⁺	-2076.728699	-2076.951577	-2076.937321	-2076.761577	-2077.040900	-2077.338878
As⁺	-2235.581028	-2235.819154	-2235.809618	-2235.630490	-2235.910584	-2236.238855
Se⁺	-2401.285489	-2401.533344	-2401.526226	-2401.348338	-2401.627522	-2401.956915
Br⁺	-2573.935079	-2574.189083	-2574.183627	-2574.008139	-2574.292568	-2574.637452
Kr⁺	-2753.375724	-2753.644309	-2753.632397	-2753.446047	-2753.750426	-2754.118820
Table 7. Computed electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u.

Atom	MN15-L	mPW1PW91	mPW3PBE	N12SX	O3LYP	OLYP																													
H	-0.496357	-0.503934	-0.503003	-0.500676	-0.500019	-0.498652																													
He	-2.914701	-2.905466	-2.903856	-2.906737	-2.910428	-2.907560																													
Li	-7.494750	-7.483605	-7.477367	-7.497884	-7.488180	-7.486211																													
Be	-14.678310	-14.659158	-14.648944	-14.677155	-14.668012	-14.667334																													
B	-24.655719	-24.649902	-24.634431	-24.656148	-24.654925	-24.655331																													
C	-37.833361	-37.846141	-37.825166	-37.841222	-37.847129	-37.848459																													
N	-54.562984	-54.594886	-54.588069	-54.583004	-54.593421	-54.595754																													
O	-75.035462	-75.081825	-75.049663	-75.063195	-75.075981	-75.080300																													
F	-99.692902	-99.752571	-99.715216	-99.744545	-99.743808	-99.749608																													
Ne	-128.893458	-128.955082	-128.912470	-128.965258	-128.948513	-128.956099																													
Na	-162.215240	-162.277575	-162.225920	-162.275699	-162.269032	-162.277437																													
Mg	-200.030409	-200.074168	-200.015161	-200.072082	-200.066973	-200.076973																													
Al	-242.316120	-242.373892	-242.306025	-242.362657	-242.360517	-242.372623																													
Si	-289.326863	-289.389447	-289.312457	-289.362548	-289.370558	-289.384845																													
P	-341.225564	-341.289616	-341.203292	-341.245293	-341.267081	-341.283812																													
S	-398.076962	-398.144252	-398.049624	-398.078977	-398.121610	-398.141308																													
Cl	-460.118713	-460.184150	-460.081122	-460.098333	-460.162026	-460.184703																													
Ar	-527.520445	-527.574978	-527.463260	-527.465824	-527.555935	-527.581821																													
K	-599.899258	-599.952668	-599.831454	-599.785628	-599.937769	-599.968770																													
Ca	-677.559977	-677.603455	-677.474298	-677.402295	-677.594417	-677.631168																													
Sc	-760.591032	-760.665899	-760.529326	-760.423436	-760.667366	-760.715817																													
Ti	-849.307069	-849.402808	-849.258039	-849.11561	-849.416025	-849.473558																													
V	-943.848430	-943.964127	-943.810805	-943.612385	-943.991995	-944.071775																													
Cr	-1044.399953	-1044.533878	-1044.373507	-1044.057974	-1044.581185	-1044.660345																													
Mn	-1150.970785	-1151.085039	-1150.915100	-1150.542417	-1151.161916	-1151.246121																													
Fe	-1263.638114	-1263.782167	-1263.607153	-1263.167944	-1263.883666	-1263.988011																													
Co	-1382.687750	-1382.862226	-1382.681187	-1382.166224	-1382.991375	-1383.084279																													
Ni	-1508.246309	-1508.433151	-1508.245754	-1507.620561	-1508.598741	-1508.728731																													
Cu	-1640.496427	-1640.664420	-1640.469814	-1639.704881	-1640.870201	-1641.041779																													
Zn	-1779.434125	-1779.581625	-1779.375596	-1778.463199	-1779.812333	-1779.960592																													
Element	Ga	Ge	As	Se	Br	Kr	H'	He'	Li'	Be'	B'	C'	N'	O'	F'	Ne'	Na'	Mg'	Al'	Si'	P'	S'	Cl'	Ar'	K'	Ca'	Sc'	Ti'	V'	Cr'	Mn'	Fe'	Co'	Ni'	
---------	----	----	----	----	----	----	----	-----	-----	-----	----	----	----	----	----	----	-----	------	------	-------	-------	------	-----	-------	-------	------	------	-------	-------	------	------	-------	-------		
Value	-1924.862033	-1925.006513	-1924.785641	-1923.685877	-1925.257931	-1925.409319	-1926.994191	-1977.130383	-2076.896477	-2075.611101	-2077.405901	-2077.563570	-2235.913320	-2236.035946	-2235.789202	-2234.311505	-2236.337989	-2236.503018	-2401.604884	-2401.723891	-2401.466048	-2399.785815	-2402.055881	-2402.229051	-2574.237682	-2574.352790	-2574.088370	-2572.194299	-2574.715523	-2574.897314	-2753.912092	-2754.015491	-2753.735296	-2751.629843	-2754.411589
Element	Mn	Kr	Ge	Zn	Br	As																													
---------	----	----	----	----	----	----																													
Ca	-1640.216079	-1640.378754	-1640.180163	-1639.429827	-1640.587050	-1640.729412																													
Zn	-1779.096927	-1779.248148	-1779.037983	-1778.120011	-1779.480482	-1779.629346																													
Ga	-1924.642153	-1924.783951	-1924.562541	-1923.472381	-1925.041677	-1925.196159																													
Ge	-2076.703995	-2076.836978	-2076.602542	-2075.325061	-2077.119492	-2077.280594																													
As	-2235.546307	-2235.668484	-2235.421341	-2233.948881	-2235.977424	-2236.146230																													
Se	-2401.262360	-2401.367229	-2401.107377	-2399.433353	-2401.705057	-2401.882296																													
Br	-2573.812676	-2573.916784	-2573.646023	-2571.761036	-2574.284511	-2574.470332																													
Kr	-2753.396236	-2753.496374	-2753.214637	-2751.112578	-2753.895813	-2754.090804																													
H	-0.537412	-0.527907	-0.530116	-0.515579	-0.531362	-0.528879																													
He	-2.837690	-2.826491	-2.825266	-2.824763	-2.829958	-2.826611																													
Li	-7.528206	-7.501888	-7.497046	-7.506383	-7.507849	-7.504604																													
Be	-14.678416	-14.657456	-14.648397	-14.669836	-14.664344	-14.663578																													
B	-24.674913	-24.667075	-24.654182	-24.664610	-24.670062	-24.670380																													
C	-37.881062	-37.898424	-37.879843	-37.886381	-37.896813	-37.897869																													
N	-54.566160	-54.593337	-54.570470	-54.571803	-54.593620	-54.597938																													
O	-75.086580	-75.133210	-75.105915	-75.113811	-75.131279	-75.137898																													
F	-99.811036	-99.871961	-99.840106	-99.867245	-99.871096	-99.879919																													
Ne	-128.759389	-128.797241	-128.756088	-128.793783	-128.789431	-128.824710																													
Na	-162.251492	-162.295893	-162.245708	-162.290081	-162.289987	-162.297429																													
Mg	-200.014773	-200.061392	-200.002626	-200.049543	-200.048011	-200.055948																													
Al	-242.337840	-242.393657	-242.326764	-242.374649	-242.375434	-242.386205																													
Si	-289.379946	-289.443149	-289.367141	-289.410285	-289.418591	-289.430880																													
P	-341.256614	-341.319139	-341.235131	-341.268674	-341.295614	-341.310947																													
S	-398.156635	-398.220677	-398.128477	-398.152772	-398.196918	-398.214998																													
Cl	-460.256808	-460.315705	-460.215068	-460.229186	-460.293543	-460.314478																													
Ar	-527.439737	-527.493999	-527.383678	-527.373357	-527.472077	-527.496561																													
K	-599.928720	-599.967992	-599.847985	-599.797862	-599.952528	-599.982028																													
Ca	-677.559870	-677.604384	-677.475298	-677.392972	-677.588929	-677.623665																													
Sc	-760.537408	-760.663455	-760.530560	-760.414103	-760.669967	-760.722508																													
Ti	-849.297261	-849.429787	-849.288397	-849.124933	-849.447870	-849.507490																													
V	-943.899316	-944.000875	-943.851774	-943.626788	-944.036599	-944.104999																													
Cr	-1044.438111	-1044.544196	-1044.386811	-1044.081895	-1044.602050	-1044.681072																													
Mn	-1150.968284	-1151.072733	-1150.906808	-1150.535563	-1151.154755	-1151.239778																													
Fe	-1263.657238	-1263.800482	-1263.629561	-1263.208012	-1263.903668	-1264.004217																													
---	---	---	---	---	---																														
Co⁺	-1382.735173	-1382.891225	-1382.713568	-1382.206261	-1383.022093	-1383.139037																													
Ni⁺	-1508.300858	-1508.465859	-1508.281932	-1507.661219	-1508.631915	-1508.763459																													
Cu⁺	-1640.554919	-1640.700969	-1640.509931	-1639.746798	-1640.906756	-1641.051062																													
Zn⁺	-1779.426409	-1779.570716	-1779.365475	-1778.447221	-1779.798528	-1779.946012																													
Ga⁺	-1924.885713	-1925.023235	-1924.803520	-1923.690555	-1925.269283	-1925.419164																													
Ge⁺	-2077.049919	-2077.182625	-2076.949677	-2075.653148	-2077.451190	-2077.606396																													
As⁺	-2235.943400	-2236.065912	-2235.821637	-2234.334097	-2236.364818	-2236.527664																													
Se⁺	-2401.678702	-2401.800095	-2401.544567	-2399.856628	-2402.128195	-2402.298843																													
Br⁺	-2574.365393	-2574.480160	-2574.213307	-2572.318022	-2574.839676	-2575.018704																													
Kr⁺	-2753.857609	-2753.956628	-2753.677762	-2751.561464	-2754.349519	-2754.539071																													
Table 8. Computed electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u.

Atom	OP86	OPBE	OVWN	PBE0	RevPBE0	RevPBE																																																						
H	-0.501098	-0.504458	-0.538551	-0.501317	-0.501671	-0.500469																																																						
He	-2.906843	-2.905010	-3.013652	-2.895125	-2.896601	-2.894872																																																						
Li	-7.484841	-7.483660	-7.638595	-7.467103	-7.469299	-7.464921																																																						
Be	-14.666011	-14.658312	-14.871107	-14.636519	-14.639484	-14.633709																																																						
B	-24.654672	-24.643013	-24.912278	-24.619673	-24.623642	-24.617301																																																						
C	-37.848896	-37.834025	-38.159927	-37.807261	-37.812448	-37.805431																																																						
N	-54.599669	-54.582773	-54.963952	-54.546362	-54.552796	-54.544052																																																						
O	-75.081589	-75.056864	-75.510712	-75.022625	-75.031079	-75.025962																																																						
F	-99.750522	-99.718752	-100.245258	-99.681557	-99.692021	-99.689678																																																						
Ne	-128.959038	-128.921017	-129.518990	-128.871228	-128.883386	-128.882129																																																						
Na	-162.281779	-162.238917	-162.892867	-162.182811	-162.196196	-162.186843																																																						
Mg	-200.081774	-200.028032	-200.747821	-199.968693	-199.983325	-199.970911																																																						
Al	-242.383437	-242.323572	-243.101824	-242.255674	-242.271469	-242.259086																																																						
Si	-289.404112	-289.338625	-290.174023	-289.258295	-289.275095	-289.255248																																																						
P	-341.313156	-341.242708	-342.134261	-341.145219	-341.162888	-341.137927																																																						
S	-398.175672	-398.095795	-399.055202	-397.985553	-398.004401	-397.976488																																																						
Cl	-460.225829	-460.137744	-461.163874	-460.010852	-460.030705	-459.999411																																																						
Ar	-527.631580	-527.536261	-528.627750	-527.386826	-527.407344	-527.371343																																																						
K	-600.023488	-599.921361	-601.068398	-599.751535	-599.772641	-599.732910																																																						
Ca	-677.689995	-677.575292	-678.786678	-677.389187	-677.411071	-677.372374																																																						
Sc	-760.783965	-760.662160	-761.938033	-760.435129	-760.457910	-760.427846																																																						
Ti	-849.550796	-849.421536	-850.760988	-849.155561	-849.178033	-849.150842																																																						
V	-944.153881	-944.017902	-945.422211	-943.699985	-943.712177	-943.700420																																																						
Cr	-1044.769983	-1044.636588	-1046.088430	-1044.250742	-1044.269943	-1044.251993																																																						
Mn	-1151.353892	-1151.204802	-1152.731845	-1150.787222	-1150.804098	-1150.774083																																																						
Fe	-1264.107724	-1263.950239	-1265.554455	-1263.465402	-1263.481245	-1263.473451																																																						
Co	-1383.240149	-1383.073582	-1384.752561	-1382.524275	-1382.537811	-1382.538209																																																						
Ni	-1508.872573	-1508.697474	-1510.447371	-1508.077054	-1508.087113	-1508.092484																																																						
Cu	-1641.170883	-1640.987578	-1642.807725	-1640.289700	-1640.295496	-1640.302174																																																						
Zn	-1780.126767	-1779.932379	-1781.824071	-1779.188940	-1779.191443	-1779.182112																																																						
Element	-1925.592379	-1925.391152	-1927.342530	-1924.595684	-1924.594650	-1924.560210																																																						
---------	---------------	---------------	---------------	---------------	---------------	---------------																																																						
Ge	-2077.763599	-2077.555572	-2079.567075	-2076.700527	-2076.695015	-2076.642480																																																						
As	-2236.721463	-2236.507279	-2238.577600	-2235.586928	-2235.576307	-2235.506611																																																						
Se	-2402.459305	-2402.234803	-2404.375009	-2401.255194	-2401.241691	-2401.159508																																																						
Br	-2575.141149	-2574.907603	-2577.115962	-2573.864215	-2573.847046	-2573.752490																																																						
Kr	-2754.861679	-2754.620090	-2756.894926	-2753.506903	-2753.485088	-2753.377168																																																						
H⁺	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000																																																						
He⁺	-1.994319	-2.002786	-2.045736	-1.996681	-1.997368	-1.994653																																																						
Li⁺	-7.278575	-7.278014	-7.408195	-7.262448	-7.264584	-7.259554																																																						
Be⁺	-14.329616	-14.328803	-14.505752	-14.306837	-14.309667	-14.302922																																																						
B⁺	-24.337885	-24.328867	-24.566096	-24.301855	-24.305400	-24.297925																																																						
C⁺	-37.423565	-37.410444	-37.706389	-37.384127	-37.389137	-37.381042																																																						
N⁺	-54.053151	-54.037222	-54.389884	-54.060101	-54.012505	-54.002660																																																						
O⁺	-74.575863	-74.558195	-74.965435	-74.513758	-74.521250	-74.507857																																																						
F⁺	-99.106624	-99.080575	-99.562675	-99.040562	-99.054033	-99.040081																																																						
Ne⁺	-128.160814	-128.127222	-128.683072	-128.083164	-128.095125	-128.086040																																																						
Na⁺	-162.089130	-162.048872	-162.676131	-161.988267	-162.001568	-161.997907																																																						
Mg⁺	-199.801471	-199.755830	-200.411565	-199.691548	-199.706145	-199.691112																																																						
Al⁺	-242.155155	-242.097414	-242.851927	-242.031543	-242.047407	-242.032588																																																						
Si⁺	-289.097604	-289.033998	-289.845677	-288.956227	-288.973184	-288.954158																																																						
P⁺	-340.920741	-340.851799	-341.719645	-340.758294	-340.776176	-340.752743																																																						
S⁺	-397.791047	-397.717522	-398.640382	-397.603231	-397.621788	-397.592790																																																						
Cl⁺	-459.746258	-459.663464	-460.654460	-459.534825	-459.554593	-459.522650																																																						
Ar⁺	-527.048397	-526.957426	-528.015059	-526.809419	-526.830012	-526.794396																																																						
K⁺	-599.863948	-599.765720	-600.887630	-599.590810	-599.611755	-599.569298																																																						
Ca⁺	-677.467230	-677.360703	-678.541682	-677.168951	-677.190830	-677.149310																																																						
Sc⁺	-760.556719	-760.454054	-761.689519	-760.202016	-760.224570	-760.195900																																																						
Ti⁺	-849.331985	-849.214798	-850.521626	-848.915743	-848.938031	-848.924746																																																						
V⁺	-943.932346	-943.809369	-945.175052	-943.476846	-943.496448	-943.467770																																																						
Cr⁺	-1044.511176	-1044.383237	-1045.808152	-1043.996196	-1044.013514	-1043.982591																																																						
Mn⁺	-1151.089505	-1150.954518	-1152.439502	-1150.529075	-1150.545710	-1150.510458																																																						
Fe⁺	-1263.811912	-1263.664925	-1265.227556	-1263.188480	-1263.203580	-1263.174330																																																						
Co⁺	-1382.961100	-1382.802207	-1384.451678	-1382.249535	-1382.260801	-1382.246441																																																						
Ni⁺	-1508.588801	-1508.421238	-1510.140895	-1507.796173	-1507.803891	-1507.794637																																																						
Element	Mass 1 (amu)	Mass 2 (amu)	Mass 3 (amu)	Mass 4 (amu)	Mass 5 (amu)																																																							
---------	-------------	-------------	-------------	-------------	-------------																																																							
Cu+	-1640.882926	-1640.707204	-1642.496375	-1640.004948	-1640.008297																																																							
Zn	-1779.794012	-1779.609405	-1781.463585	-1778.855607	-1778.856354																																																							
Ga	-1925.369823	-1925.172777	-1927.098827	-1924.374309	-1924.372850																																																							
Ge	-2077.464912	-2077.264842	-2079.251971	-2076.408281	-2076.402831																																																							
As	-2236.351753	-2236.140224	-2238.186950	-2235.220554	-2235.210529																																																							
Se	-2402.106178	-2401.888486	-2403.993314	-2400.900026	-2400.884687																																																							
Br	-2574.706671	-2574.478721	-2576.653637	-2573.429594	-2573.411576																																																							
Kr	-2754.341464	-2754.104502	-2756.347457	-2752.989083	-2752.967300																																																							
F	-0.537296	-0.529499	-0.603781	-0.524103	-0.524835																																																							
He	-2.832309	-2.829575	-2.959291	-2.815703	-2.817188																																																							
Li	-7.509983	-7.507279	-7.681842	-7.485276	-7.487587																																																							
Be	-14.669019	-14.658544	-14.890539	-14.634579	-14.637662																																																							
B	-24.678494	-24.663078	-24.954887	-24.637448	-24.641422																																																							
C	-37.908773	-37.890573	-38.240211	-37.859392	-37.864584																																																							
N	-54.604995	-54.579429	-54.998289	-54.546459	-54.555146																																																							
O	-75.142246	-75.109599	-75.601720	-75.073761	-75.082554																																																							
F	-99.883793	-99.845362	-100.409326	-99.800508	-99.811241																																																							
Ne	-128.832984	-128.793903	-129.415483	-128.713188	-128.725487																																																							
Na	-162.307594	-162.258861	-162.936244	-162.201688	-162.215255																																																							
Mg	-200.072416	-200.016401	-200.754834	-199.955462	-199.970086																																																							
Al	-242.407425	-242.344553	-243.142523	-242.275356	-242.291104																																																							
Si	-289.462316	-289.394100	-290.250407	-289.311863	-289.328546																																																							
P	-341.346587	-341.268393	-342.192432	-341.174123	-341.192038																																																							
S	-398.256174	-398.169571	-399.160889	-398.061459	-398.080450																																																							
Cl	-460.362839	-460.268989	-461.326402	-460.141910	-460.161792																																																							
Ar	-527.552507	-527.452323	-528.567509	-527.305862	-527.326596																																																							
K	-600.044553	-599.937712	-601.106322	-599.767485	-599.786800																																																							
Ca	-677.694372	-677.578154	-678.806438	-677.389787	-677.411601																																																							
Sc	-760.798714	-760.671286	-761.972594	-760.431982	-760.454926																																																							
Ti	-849.592473	-849.458560	-850.822777	-849.181340	-849.203963																																																							
V	-944.203450	-944.063280	-945.488244	-943.735642	-943.756697																																																							
Cr	-1044.791490	-1044.645645	-1046.131186	-1044.261977	-1044.281424																																																							
Mn	-1151.355225	-1151.210587	-1152.756174	-1150.774437	-1150.791636																																																							
Fe	-1264.126471	-1263.963263	-1265.444182	-1263.482439	-1263.498817																																																							
Element	Co⁺	Ni⁺	Cu⁺	Zn⁺	Ga⁺	Ge⁺	As⁺	Se⁺	Br⁻	Kr⁻																																																		
---------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----																																																		
	-1383.273770	-1383.098424	-1384.807686	-1382.554439	-1382.568401	-1382.578609	-1508.910577	-1508.726573	-1510.506869	-1508.110549	-1508.121263	-1508.137905	-1641.211573	-1641.019309	-1642.870181	-1640.326782	-1640.333381	-1640.351176	-1780.119224	-1779.921881	-1781.832041	-1779.177799	-1779.180495	-1779.172768	-1925.611429	-1925.405945	-1927.378166	-1924.612185	-1924.611465	-1924.579712	-2077.818178	-2077.606555	-2079.639444	-2076.752345	-2076.746745	-2076.695421	-2236.751359	-2236.529061	-2238.631669	-2235.616265	-2235.607403	-2235.541883	-2402.535608	-2402.304244	-2404.475543	-2401.330751	-2401.318337	-2401.239376	-2575.270095	-2575.030697	-2577.269121	-2573.990893	-2573.974070	-2573.881223	-2754.805024	-2754.558983	-2756.856102	-2753.448128	-2753.426498	-2753.321454
Table 9. Computed electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u.

Atom	PBE	PW6B95D3	SLYP	RevTPSS	SVWN	SVWN5
H	-0.499984	-0.501601	-0.457073	-0.500145	-0.496403	-0.478665
He	-2.892880	-2.917379	-2.767007	-2.911984	-2.872119	-2.834786
Li	-7.461983	-7.506601	-7.246970	-7.489879	-7.398311	-7.343890
Be	-14.629749	-14.697397	-14.318002	-14.672240	-14.520408	-14.447132
B	-24.611979	-24.699102	-24.193069	-24.667194	-24.448672	-24.355919
C	-37.798444	-37.908820	-37.272118	-37.857044	-37.582320	-37.470128
N	-54.535387	-54.673591	-53.900892	-54.597473	-54.267879	-54.136530
O	-75.014557	-75.181085	-74.256429	-75.082545	-74.685555	-74.530976
F	-99.675555	-99.876559	-98.798157	-99.737668	-99.292517	-99.114432
Ne	-128.865734	-129.107449	-127.872681	-128.923550	-128.434222	-128.232889
Na	-162.168931	-162.453929	-161.045132	-162.224789	-161.659484	-161.440070
Mg	-199.951313	-200.279032	-198.703274	-200.005471	-199.372729	-199.133794
Al	-242.234683	-242.600501	-240.849312	-242.287634	-241.576806	-241.318326
Si	-289.232673	-289.638714	-287.709406	-289.282536	-288.496820	-288.218426
P	-341.114208	-341.563103	-339.451596	-341.160714	-340.300356	-340.002045
S	-397.951180	-398.446043	-396.149826	-397.996542	-397.061812	-396.741159
Cl	-459.972760	-460.516631	-458.032702	-460.012294	-459.009904	-458.666532
Ar	-527.343820	-527.939974	-525.264205	-527.377005	-526.308103	-525.942023
K	-599.704680	-600.347633	-597.482722	-599.725869	-598.580835	-598.196645
Ca	-677.343100	-678.032331	-674.982639	-677.351336	-676.136748	-675.733080
Sc	-760.397187	-761.123385	-757.885691	-760.391179	-759.105299	-758.680523
Ti	-849.120572	-849.889978	-846.467625	-849.097367	-847.749978	-847.303934
V	-943.672332	-944.481525	-940.868323	-943.629410	-942.219650	-941.752671
Cr	-1044.226232	-1045.069430	-1041.272782	-1044.157841	-1042.699197	-1042.210818
Mn	-1150.751374	-1151.665018	-1147.659799	-1150.666416	-1149.143840	-1148.636401
Fe	-1263.451789	-1264.397650	-1260.198736	-1263.345865	-1261.762358	-1261.228731
Co	-1382.520448	-1383.508674	-1379.112617	-1382.385552	-1380.754980	-1380.197057
Ni	-1508.078932	-1509.119577	-1504.529970	-1507.912053	-1506.245777	-1505.663277
Cu	-1640.294282	-1641.389343	-1636.600268	-1640.098266	-1638.391557	-1637.786203
Zn	-1779.178354	-1780.347526	-1775.332632	-1778.958146	-1777.194206	-1776.566984
Element	Value	Value	Value	Value	Value	Value
---------	-------------	-------------	-------------	-------------	-------------	-------------
H	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
He	-1.993724	-2.002723	-1.912537	-2.000092	-1.961317	-1.941651
Li	-7.256691	-7.302422	-7.056183	-7.288639	-7.182153	-7.142743
Be	-14.299138	-14.365153	-14.003942	-14.338267	-14.172748	-14.115412
B	-24.293195	-24.384631	-23.892648	-24.345327	-24.114467	-24.038122
C	-37.374323	-37.488330	-36.860673	-37.439950	-37.136096	-37.040412
N	-53.994064	-54.134480	-53.369461	-54.061251	-53.699749	-53.584963
O	-74.497812	-74.669495	-73.762342	-74.567526	-74.149914	-74.016349
F	-99.026812	-99.230205	-98.158516	-99.102740	-98.611884	-98.454506
Ne	-128.069960	-128.311935	-127.077452	-128.137806	-127.598740	-127.417590
Na	-161.971925	-162.260026	-160.856319	-162.035822	-161.447155	-161.242655
Mg	-199.671558	-199.999543	-198.432754	-199.727572	-199.073212	-198.850127
Al	-242.011261	-242.382029	-240.643484	-242.060490	-241.339257	-241.096485
Si	-288.931374	-289.340938	-287.423804	-288.981882	-288.178118	-287.915807
P	-340.728742	-341.179484	-339.081281	-340.775990	-339.895300	-339.613328
S	-397.567916	-398.062673	-395.779294	-397.611456	-396.654397	-396.352819
Cl	-459.496141	-460.038027	-457.565483	-459.538054	-458.505618	-458.181382
Ar	-526.766790	-527.359045	-524.694720	-526.802124	-525.701480	-525.354422
K	-599.541312	-600.187462	-597.324843	-599.570876	-598.400090	-598.030311
Ca	-677.120058	-677.810501	-674.766234	-677.130929	-675.893213	-675.504900
Sc	-760.166279	-760.887305	-757.657205	-760.167592	-758.852306	-758.442030
Ti	-848.896306	-849.645273	-846.238363	-848.876744	-847.499704	-847.068647
V	-943.441331	-944.250692	-940.640592	-943.402896	-941.967653	-941.516034
Cr	-1043.959374	-1044.815936	-1041.013651	-1043.898112	-1042.408497	-1041.936578
Mn	-1150.488182	-1151.396729	-1147.394061	-1150.407575	-1148.852721	-1148.361217
Fe	-1263.154066	-1264.111977	-1259.905297	-1263.054846	-1261.435771	-1260.921278
Co	-1382.231404	-1383.235027	-1378.827604	-1382.104750	-1380.442309	-1379.899489
Ni	-1507.784355	-1508.839403	-1504.237942	-1507.625203	-1505.926849	-1505.360557
Symbol	Charge	Mass (amu)				
-------	--------	-----------				
Mn	2+	125.4106				
Zn	2+	65.3808				
Ga	3+	69.6751				
Ge	4+	73.1922				
Zn	3+	70.6267				
Br	3+	79.9048				
As	5+	74.9216				
Ca	2+	40.0784				
Na	1+	22.9898				
He	2+	4.0026				
Cr	3+	52.0000				
Ar	18+	39.9480				
Ne	1+	10.0129				
Na	1+	22.9898				
Mg	2+	24.3050				
Al	3+	26.9815				
Si	4+	28.0855				
P	5+	30.9738				
S	6+	32.0650				
Cl	7+	35.4530				
Ar	18+	39.9480				
K	1+	39.1024				
Ca	2+	40.0784				
Sc	5+	45.9380				
Ti	4+	47.8804				
V	5+	50.9420				
Cr	6+	52.0000				
Mn	7+	54.9380				
Fe	8+	55.8470				

62
Element	Transition 1	Transition 2	Transition 3	Transition 4	Transition 5
Co	-1382.559434	-1383.542451	-1379.149872	-1382.419284	-1380.816735
Ni	-1508.122118	-1509.156532	-1504.570807	-1507.950150	-1506.312360
Cu	-1640.341650	-1641.429326	-1636.644365	-1640.140344	-1638.461789
Zn	-1779.168762	-1780.332859	-1775.313297	-1778.946125	-1777.197880
Ga	-1924.579983	-1925.817306	-1920.557264	-1924.340907	-1922.513474
Ge	-2076.702354	-2078.007643	-2072.517202	-2076.445950	-2074.547492
As	-2235.553274	-2236.929216	-2231.211050	-2235.279674	-2233.312538
Se	-2401.255589	-2402.702004	-2396.756963	-2400.963210	-2398.931059
Br	-2573.903449	-2575.420987	-2569.247958	-2573.592041	-2571.495670
Kr	-2753.350169	-2754.936332	-2748.534244	-2753.014547	-2750.848488
Table 10. Computed electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u.

Atom	tHCTH	tHCTHhyb	TPSSh	TPSS	VSXC	wB97XD															
H	-0.509508	-0.507497	-0.500179	-0.500226	-0.502882	-0.502930															
He	-2.923121	-2.917151	-2.909038	-2.909600	-2.916911	-2.909539															
Li	-7.495467	-7.494214	-7.488056	-7.488781	-7.506131	-7.490814															
Be	-14.674335	-14.671925	-14.670155	-14.671329	-14.692551	-14.666811															
B	-24.654660	-24.656925	-24.666772	-24.669028	-24.678514	-24.652302															
C	-37.841880	-37.847562	-37.863750	-37.866529	-37.875550	-37.844338															
N	-54.591924	-54.593021	-54.612652	-54.615669	-54.631539	-54.589479															
O	-75.072782	-75.076686	-75.103565	-75.109366	-75.119231	-75.074829															
F	-99.740445	-99.744944	-99.771737	-99.779312	-99.797629	-99.747777															
Ne	-128.954956	-128.948477	-128.971467	-128.980319	-129.019437	-128.954520															
Na	-162.266252	-162.255707	-162.288444	-162.295274	-162.348645	-162.270536															
Mg	-200.082159	-200.053541	-200.083107	-200.089356	-200.159268	-200.065983															
Al	-242.383408	-242.342216	-242.380599	-242.386826	-242.466651	-242.360355															
Si	-289.405522	-289.347983	-289.393045	-289.398770	-289.494894	-289.370152															
P	-341.319636	-341.240303	-341.289847	-341.294794	-341.410215	-341.264572															
S	-398.188713	-398.089499	-398.142035	-398.147302	-398.276450	-398.119908															
Cl	-460.245214	-460.124079	-460.177483	-460.182674	-460.333339	-460.160419															
Ar	-527.659329	-527.510355	-527.563146	-527.567781	-527.743047	-527.551477															
K	-600.047882	-599.872008	-599.932575	-599.936634	-600.132630	-599.919301															
Ca	-677.742392	-677.525919	-677.577349	-677.582127	-677.802418	-677.570193															
Sc	-760.852711	-760.586009	-760.637158	-760.647069	-760.883223	-760.624815															
Ti	-849.646391	-849.322680	-849.366317	-849.377881	-849.648459	-849.35481															
V	-944.287694	-943.885429	-943.917631	-943.935798	-944.237660	-943.908247															
Cr	-1044.894933	-1044.434075	-1044.472066	-1044.488766	-1044.834715	-1044.446692															
Mn	-1151.563517	-1151.017320	-1151.007070	-1151.019201	-1151.440610	-1151.011270															
Fe	-1264.346695	-1263.719777	-1263.704971	-1263.729059	-1264.178112	-1263.688900															
Co	-1383.514458	-1382.801189	-1382.772890	-1382.799227	-1383.295602	-1382.776425															
Ni	-1509.210610	-1508.391096	-1508.324746	-1508.353043	-1508.926398	-1508.348325															
Cu	-1641.570298	-1640.639700	-1640.536118	-1640.565218	-1641.224469	-1640.577525															
Zn	-1780.587329	-1779.567475	-1779.425871	-1779.448633	-1780.208124	-1779.496973															
Element	Mn	Co	Na	He	Cr	Ar	Fe	Ni	Sc	Al	Ti	Si	V	N	C	Br	As	P	F	S	
---------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----
	-1926.101767	-1924.984621	-1924.824828	-1924.838667	-1925.677968	-1924.908941															
Ge	-2078.330356	-2077.107691	-2076.924154	-2076.931804	-2077.855484	-2077.019499															
As	-2237.348413	-2236.014901	-2235.805811	-2235.807739	-2236.820677	-2235.911327															
Se	-2403.152802	-2401.711751	-2401.470662	-2401.468340	-2402.571278	-2401.599245															
Br	-2575.899039	-2574.347838	-2574.076421	-2574.069994	-2575.265344	-2574.224165															
Kr	-2755.683434	-2754.016920	-2753.715568	-2753.704793	-2754.994912	-2753.880363															
H⁺	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000															
He⁺	-2.007293	-2.005891	-2.000123	-2.000164	-2.005015	-2.001239															
Li⁺	-7.294608	-7.291803	-7.286059	-7.286554	-7.302442	-7.293231															
Be⁺	-14.331131	-14.336402	-14.337371	-14.338294	-14.356466	-14.342080															
B⁺	-24.335899	-24.340108	-24.345102	-24.346708	-24.365736	-24.337900															
C⁺	-37.414867	-37.424031	-37.442720	-37.445527	-37.450060	-37.424073															
N⁺	-54.040552	-54.050012	-54.073743	-54.076662	-54.084463	-54.052436															
O⁺	-74.567538	-74.565908	-74.590782	-74.593309	-74.617430	-74.567930															
F⁺	-99.095890	-99.098319	-99.133531	-99.138770	-99.154257	-99.105629															
Ne⁺	-128.149796	-128.150137	-128.184485	-128.190896	-128.219081	-128.164430															
Na⁺	-162.086419	-162.069390	-162.098575	-162.104933	-162.163586	-162.088282															
Mg⁺	-199.782541	-199.764298	-199.806113	-199.811895	-199.878944	-199.791592															
Al⁺	-242.156552	-242.119144	-242.154200	-242.160375	-242.143992	-242.139757															
Si⁺	-289.100292	-289.046280	-289.090857	-289.096844	-289.190110	-289.071808															
P⁺	-340.927200	-340.852790	-340.903272	-340.908785	-341.020260	-340.881605															
S⁺	-397.805383	-397.704239	-397.758293	-397.762934	-397.897434	-397.734299															
Cl⁺	-459.767021	-459.644163	-459.701725	-459.706712	-459.855096	-459.681290															
Ar⁺	-527.076011	-526.928051	-526.986288	-526.991113	-527.162734	-526.971645															
K⁺	-599.900502	-599.719143	-599.776802	-599.780374	-599.980248	-599.768065															
Ca⁺	-677.496963	-677.291957	-677.358050	-677.362339	-677.577622	-677.347567															
Sc⁺	-760.614838	-760.348699	-760.431848	-760.423465	-760.654733	-760.387169															
Ti⁺	-849.414998	-849.065643	-849.127245	-849.141009	-849.421955	-849.109183															
V⁺	-944.041937	-943.649968	-943.696375	-943.709093	-944.013312	-943.678686															
Cr⁺	-1044.655862	-1044.186214	-1044.216460	-1044.228356	-1044.587660	-1044.203337															
Mn⁺	-1151.251447	-1150.724893	-1150.749937	-1150.760845	-1151.170186	-1150.740432															
Fe⁺	-1264.018009	-1263.412421	-1263.420915	-1263.435237	-1263.882178	-1263.417401															
Co⁺	-1383.249735	-1382.531440	-1382.497104	-1382.518209	-1383.019764	-1382.510419															
Ni⁺	-1508.934221	-1508.112798	-1508.042900	-1508.065887	-1508.641942	-1508.073732															
Element	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7														
---------	---------	---------	---------	---------	---------	---------	---------														
Cu⁺	-1641.290131	-1640.355531	-1640.250334	-1640.273972	-1640.938438	-1640.297721															
Zn⁺	-1780.239774	-1779.217271	-1779.093192	-1779.112303	-1779.860040	-1779.154484															
Ga³⁺	-1925.877008	-1924.763409	-1924.603647	-1924.617734	-1925.464447	-1924.691595															
Ge⁴⁺	-2078.034436	-2076.815781	-2076.632168	-2076.640241	-2077.568182	-2076.733505															
As⁷⁺	-2236.977145	-2235.648567	-2235.439823	-2235.442554	-2236.457063	-2235.552225															
Se⁶⁺	-2402.794498	-2401.350600	-2401.114982	-2401.112430	-2402.219492	-2401.238070															
Br⁻	-2575.461333	-2573.908305	-2573.641217	-2573.634852	-2574.831994	-2573.787347															
Kr⁺	-2755.161064	-2753.494937	-2753.197508	-2753.187296	-2754.478134	-2753.362891															
F⁻	-0.544277	-0.535454	-0.528771	-0.529725	-0.529067	-0.532894															
He²⁺	-2.843807	-2.836272	-2.828344	-2.829431	-2.845841	-2.824657															
Li⁺	-7.524755	-7.515681	-7.509282	-7.510181	-7.531552	-7.509730															
Be²⁺	-14.674747	-14.669657	-14.668047	-14.670531	-14.690777	-14.658563															
B³⁺	-24.671659	-24.672588	-24.682423	-24.686302	-24.699175	-24.665438															
C⁻	-37.896943	-37.898866	-37.915094	-37.919935	-37.930016	-37.892718															
N⁻	-54.595308	-54.595355	-54.613928	-54.629528	-54.587392																
O⁻	-75.131231	-75.134400	-75.154298	-75.164982	-75.176132	-75.128755															
F⁻	-99.875755	-99.874122	-99.892127	-99.905057	-99.927850	-99.870560															
Ne³⁺	-128.824675	-128.782418	-128.810352	-128.848122	-128.889128	-128.786322															
Na⁺	-162.305735	-162.283432	-162.309436	-162.316569	-162.371046	-162.289626															
Mg²⁺	-200.069009	-200.037480	-200.070296	-200.076677	-200.143177	-200.048170															
Al³⁺	-242.409954	-242.359052	-242.398903	-242.405706	-242.488171	-242.374167															
Si⁴⁺	-289.458250	-289.399455	-289.445390	-289.451460	-289.548821	-289.418593															
P³⁺	-341.351938	-341.272689	-341.319810	-341.326212	-341.437388	-341.296848															
S⁵⁺	-398.267930	-398.169661	-398.217869	-398.224357	-398.355002	-398.199421															
Cl⁻	-460.381507	-460.260114	-460.308328	-460.314485	-460.466669	-460.294704															
Ar⁵⁺	-527.566666	-527.422095	-527.478434	-527.483825	-527.670204	-527.461148															
K⁺	-599.897368	-599.950319	-599.954643	-599.955463	-600.155380	-599.936467															
Ca²⁺	-677.742487	-677.523261	-677.578663	-677.583486	-677.801812	-677.566063															
Sc⁶⁺	-760.872328	-760.591192	-760.639626	-760.655204	-760.882334	-760.613778															
Ti⁷⁺	-849.692555	-849.355576	-849.397269	-849.413286	-849.678365	-849.373489															
V⁸⁺	-944.333504	-943.928081	-943.955396	-943.997307	-944.276403	-943.935633															
Cr⁹⁺	-1044.958415	-1044.474402	-1044.484432	-1044.502538	-1044.858861	-1044.469379															
Mn¹⁺	-1151.571994	-1151.012520	-1151.004638	-1150.975116	-1151.430137	-1150.985487															
Fe¹⁺	-1264.375506	-1263.749566	-1263.727289	-1263.739719	-1264.168999	-1263.726878															
Element	E1	E2	E3	E4	E5	E6															
---------	----	----	----	----	----	----															
Co⁺	-1383.569004	-1382.850689	-1382.802407	-1382.831735	-1383.343747	-1382.816948															
Ni⁺	-1509.258293	-1508.440155	-1508.358072	-1508.389670	-1508.976976	-1508.391552															
Cu⁺	-1641.619034	-1640.690018	-1640.573356	-1640.605991	-1641.278966	-1640.623508															
Zn⁺	-1780.576947	-1779.555585	-1779.413163	-1779.436505	-1780.194852	-1779.480264															
Ga⁺	-1926.116155	-1924.980640	-1924.840040	-1924.854655	-1925.691675	-1924.917988															
Ge⁺	-2078.381832	-2077.156597	-2076.974935	-2076.982892	-2077.903314	-2077.063012															
As⁺	-2237.383729	-2236.050810	-2235.835682	-2235.838804	-2236.849180	-2235.947299															
Se⁺	-2403.232832	-2401.792782	-2401.546950	-2401.545580	-2402.647177	-2401.678229															
Br⁻	-2576.030361	-2574.479018	-2574.203558	-2574.197645	-2575.391530	-2574.351580															
Kr⁻	-2755.614145	-2753.951644	-2753.653259	-2753.643184	-2754.935624	-2753.812840															
Table 11. Computed electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u.

Atom	wPBEhPBE	X3LYP		
H	-0.500469	-0.499879		
He	-2.894872	-2.908251		
Li	-7.464921	-7.483394		
Be	-14.633709	-14.661311		
B	-24.617301	-24.650623		
C	-37.805431	-37.843813		
N	-54.544052	-54.586071		
O	-75.025962	-75.076541		
F	-99.689678	-99.748420		
Ne	-128.882129	-128.949339		
Na	-162.186843	-162.266639		
Mg	-199.970911	-200.065045		
Al	-242.255908	-242.356901		
Si	-289.255248	-289.361542		
P	-341.137927	-341.248634		
S	-397.976488	-398.099152		
Cl	-459.999411	-460.132374		
Ar	-527.371343	-527.513970		
K	-599.732910	-599.884204		
Ca	-677.372374	-677.533523		
Sc	-760.427846	-760.588571		
Ti	-849.150842	-849.316791		
V	-943.700420	-943.868063		
Cr	-1044.251993	-1044.404145		
Mn	-1150.774083	-1150.960633		
Fe	-1263.473451	-1263.651079		
Co	-1382.538209	-1382.717591		
Ni	-1508.092484	-1508.279006		
Cu	-1640.302174	-1640.498249		
Zn	-1779.182112	-1779.405771		
Element	First Ionization Energy	Second Ionization Energy		
---------	-------------------------	--------------------------		
Ga	-1924.560210	-1924.809327		
Ge	-2076.642480	-2076.912739		
As	-2235.506611	-2235.796180		
Se	-2401.159508	-2401.472403		
Br	-2573.752490	-2574.086968		
Kr	-2753.377168	-2753.732946		
H⁺	0.000000	0.000000		
He⁺	-1.994653	-1.995343		
Li⁺	-7.259554	-7.277675		
Be⁺	-14.302922	-14.327812		
B⁺	-24.297925	-24.331166		
C⁺	-37.381042	-37.421461		
N⁺	-54.002660	-54.049242		
O⁺	-74.507857	-74.559278		
F⁺	-99.040081	-99.099357		
Ne⁺	-128.086040	-128.153976		
Na⁺	-161.989707	-162.067941		
Mg⁺	-199.691112	-199.782050		
Al⁺	-242.032588	-242.137215		
Si⁺	-288.954158	-289.065070		
P⁺	-340.752743	-340.868756		
S⁺	-397.592790	-397.713257		
Cl⁺	-459.522650	-459.654105		
Ar⁺	-526.794396	-526.935616		
K⁺	-599.569298	-599.719642		
Ca⁺	-677.149310	-677.308762		
Sc⁺	-760.195900	-760.348714		
Ti⁺	-848.924746	-849.067439		
V⁺	-943.467770	-943.628270		
Cr⁺	-1043.982591	-1044.148776		
Mn⁺	-1150.510458	-1150.685719		
Fe⁺	-1263.174330	-1263.359822		
Co⁺	-1382.246441	-1382.436845		
Ni⁺	-1507.794637	-1507.991074		
Element	Ion	\(Z^+ \)	\(-1639.999421\)	\(-1640.205201\)
--------	-----	----------	----------------	----------------
Cu	Cu\(^+\)	-1778.834804	-1779.061726	
Zn	Zn\(^+\)	-1924.338979	-1924.589254	
Ga	Ga\(^+\)	-2076.351503	-2076.624036	
Ge	Ge\(^+\)	-2235.143260	-2235.435606	
As	As\(^+\)	-2400.801369	-2401.112315	
Se	Se\(^+\)	-2573.317005	-2573.649728	
Br	Br\(^+\)	-2752.861048	-2753.214417	
Kr	Kr\(^+\)	-0.527258	-0.531375	
H	H\(^-\)	-2.816682	-2.826480	
He	He\(^-\)	-7.483954	-7.502931	
Li	Li\(^-\)	-14.635099	-14.658347	
Be	Be\(^-\)	-24.640703	-24.666386	
B	B\(^-\)	-37.864173	-37.892594	
C	C\(^-\)	-54.555925	-54.593095	
N	N\(^-\)	-75.092218	-75.136275	
O	O\(^-\)	-99.824613	-99.875646	
F	F\(^-\)	-128.752701	-128.794287	
Ne	Ne\(^-\)	-162.207385	-162.287423	
Na	Na\(^-\)	-199.957414	-200.046316	
Mg	Mg\(^-\)	-242.277573	-242.372534	
Al	Al\(^-\)	-289.310115	-289.409321	
Si	Si\(^-\)	-341.170960	-341.282337	
P	P\(^-\)	-398.056350	-398.178414	
S	S\(^-\)	-460.133624	-460.265608	
Cl	Cl\(^-\)	-527.293660	-527.434789	
Ar	Ar\(^-\)	-599.749983	-599.900159	
Ca	Ca\(^-\)	-677.372363	-677.527946	
Sc	Sc\(^-\)	-760.439764	-760.585457	
Ti	Ti\(^-\)	-849.188409	-849.340782	
V	V\(^-\)	-943.744293	-943.898893	
Cr	Cr\(^-\)	-1044.268133	-1044.427528	
Mn	Mn\(^-\)	-1150.786348	-1150.949875	
Fe	Fe\(^-\)	-1263.495807	-1263.673291	
Element	Value1	Value2		
---------	--------	--------		
Co⁺	-1382.578609	-1382.755184		
Ni⁺	-1508.137905	-1508.319838		
Cu⁺	-1640.351176	-1640.542380		
Zn⁺	-1779.172768	-1779.393422		
Ga⁺	-1924.579712	-1924.823791		
Ge⁺	-2076.695421	-2076.960101		
As⁺	-2235.541883	-2235.831554		
Se⁺	-2401.239376	-2401.551668		
Br⁺	-2573.881223	-2574.215571		
Kr⁺	-2753.321454	-2753.675209		
Table 12. Computed PBE electronic energies for the 36 atoms, 36 cations and 36 anions, in a.u, using different densities (the second acronym signifies the method used to compute the density).

Atom	PBE(SVWN)	PBE(HF)	PBE(PBE0)	
H	-0.499553	-0.499426	-0.499920	
He	-2.892167	-2.891479	-2.892714	
Li	-7.460938	-7.460233	-7.461835	
Be	-14.628540	-14.627513	-14.629577	
B	-24.610280	-24.607962	-24.611717	
C	-37.796474	-37.793183	-37.798036	
N	-54.533395	-54.529813	-54.534910	
O	-75.012253	-75.007205	-75.013890	
F	-99.673232	-99.666853	-99.674731	
Ne	-128.863508	-128.856435	-128.864786	
Na	-162.166104	-162.163366	-162.167738	
Mg	-199.949144	-199.945963	-199.950906	
Al	-242.233718	-242.226114	-242.234183	
Si	-289.231263	-289.223418	-289.231955	
P	-341.112754	-341.105982	-341.113553	
S	-397.949408	-397.940908	-397.950451	
Cl	-459.970834	-459.962249	-459.971925	
Ar	-527.341869	-527.335100	-527.343014	
K	-599.702138	-599.698698	-599.704353	
Ca	-677.340387	-677.336399	-677.342758	
Sc	-760.395061	-760.381968	-760.395250	
Ti	-849.118460	-849.102004	-849.118183	
V	-943.668956	-943.643748	-943.667843	
Cr	-1044.224737	-1044.203231	-1044.224316	
Mn	-1150.749802	-1150.728807	-1150.749741	
Fe	-1263.449887	-1263.410982	-1263.438227	
Co	-1382.518505	-1382.458306	-1382.487196	
Ni	-1508.076456	-1508.039824	-1508.075291	
Cu	-1640.292637	-1640.253854	-1640.291106	
Element	Ion	Z1	Z2	Z3
---------	-----	----	----	----
Zn	-1779.176631	-1779.140607	-1779.175548	
Ga	-1924.560226	-1924.537229	-1924.559280	
Ge	-2076.648379	-2076.628598	-2076.647844	
As	-2235.519356	-2235.503080	-2235.519174	
Se	-2401.175928	-2401.159149	-2401.175999	
Br	-2573.773821	-2573.757939	-2573.774019	
Kr	-2753.404843	-2753.391285	-2753.405133	
H⁺	0.000000	0.000000	0.000000	
He⁺	-1.993182	-1.993080	-1.993671	
Li⁺	-7.255792	-7.255360	-7.256570	
Be⁺	-14.297949	-14.297292	-14.298999	
B⁺	-24.291840	-24.290977	-24.293045	
C⁺	-37.372510	-37.370369	-37.374062	
N⁺	-53.992248	-53.989341	-53.993909	
O⁺	-74.495775	-74.493078	-74.497443	
F⁺	-99.024483	-99.020630	-99.026318	
Ne⁺	-128.067600	-128.062655	-128.069336	
Na⁺	-161.969312	-161.967594	-161.970963	
Mg⁺	-199.669464	-199.666860	-199.671210	
Al⁺	-242.010539	-242.004319	-242.010710	
Si⁺	-288.930184	-288.922444	-288.930753	
P⁺	-340.727384	-340.719403	-340.728163	
S⁺	-397.566393	-397.559971	-397.567346	
Cl⁺	-459.494240	-459.486055	-459.495439	
Ar⁺	-526.764705	-526.756617	-526.766012	
K⁺	-599.538859	-599.536418	-599.541035	
Ca⁺	-677.117484	-677.114058	-677.119768	
Sc⁺	-760.164725	-760.147632	-760.165445	
Ti⁺	-848.877624	-848.860378	-848.877876	
V⁺	-943.438335	-943.424710	-943.438647	
Cr⁺	-1043.957884	-1043.943061	-1043.957931	
Mn⁺	-1150.486723	-1150.470254	-1150.486801	
Fe⁺	-1263.151424	-1263.131467	-1263.151516	
Element	E^+	E^-	E^ave	
---------	-------	-------	----------------	
Co$^+$	-1382.229847	-1382.205092	-1382.229541	
Ni$^+$	-1507.781972	-1507.756159	-1507.781331	
Cu$^+$	-1639.993335	-1639.966129	-1639.992440	
Zn$^+$	-1778.832096	-1778.802790	-1778.831383	
Ga$^+$	-1924.339795	-1924.318896	-1924.338831	
Ge$^+$	-2076.357464	-2076.338078	-2076.356936	
As$^+$	-2235.155278	-2235.137746	-2235.155058	
Se$^+$	-2400.820510	-2400.806064	-2400.820564	
Br$^+$	-2573.339566	-2573.323996	-2573.339814	
Kr$^+$	-2752.888641	-2752.873601	-2752.888986	
H$^+$	-0.527711	-0.526137	-0.527537	
He$^+$	-2.852729	-2.851706	-2.853498	
Li$^+$	-7.480306	-7.478857	-7.481008	
Be$^+$	-14.634630	-14.630615	-14.636049	
B$^+$	-24.635494	-24.628833	-24.636204	
C$^+$	-37.855908	-37.848478	-37.856744	
N$^+$	-54.547386	-54.513941	-54.548334	
O$^+$	-75.078617	-75.066755	-75.079299	
F$^+$	-99.808251	-99.795227	-99.808662	
Ne$^+$	-128.715650	-128.706785	-128.716994	
Na$^+$	-162.185998	-162.182532	-162.187635	
Mg$^+$	-199.937942	-199.933725	-199.939794	
Al$^+$	-242.257631	-242.248783	-242.257735	
Si$^+$	-289.286880	-289.278679	-289.287300	
P$^+$	-341.146492	-341.136762	-341.147075	
S$^+$	-398.029485	-398.019323	-398.030102	
Cl$^+$	-460.105380	-460.096453	-460.105992	
Ar$^+$	-527.271836	-527.264585	-527.273199	
K$^+$	-599.718893	-599.715351	-599.721303	
Ca$^+$	-677.341371	-677.336237	-677.343948	
Sc$^+$	-760.406151	-760.371326	-760.405252	
Ti$^+$	-849.156566	-849.122011	-849.155865	
V$^+$	-943.713743	-943.679668	-943.712950	
Cr$^+$	-1044.241299	-1044.209742	-1044.240189	
Element	Energy 1	Energy 2	Energy 3	
---------	------------	------------	------------	
Mn	-1150.768351	-1150.736710	-1150.752466	
Fe	-1263.469111	-1263.428400	-1263.467813	
Co	-1382.558195	-1382.503162	-1382.556363	
Ni	-1508.121119	-1508.061741	-1508.118868	
Cu	-1640.339993	-1640.289002	-1640.337514	
Zn	-1779.173810	-1779.137583	-1779.173005	
Ga	-1924.580624	-1924.556108	-1924.579261	
Ge	-2076.701911	-2076.681506	-2076.701091	
As	-2235.552845	-2235.533328	-2235.552348	
Se	-2401.254587	-2401.236272	-2401.254295	
Br	-2573.902377	-2573.886548	-2573.902225	
Kr	-2753.355758	-2753.342025	-2753.356355	
Table 13. IPs computed with PBE using alternative densities, and density sensitivity of IPs in eV.

Atom	IP PBE(SVWN)	IP PBE(HF)	IP PBE(PBE0)	ΔIP$_{PBE(SVWN,HF)}$	ΔIP$_{PBE(SVWN,PBE0)}$
H	13.59	13.59	13.60	0.0035	0.0100
He	24.46	24.45	24.46	0.0159	0.0016
Li	5.58	5.57	5.59	0.0074	0.0032
Be	9.00	8.99	9.00	0.0101	0.0003
B	8.67	8.63	8.67	0.0396	0.0063
C	11.54	11.51	11.54	0.0313	0.0003
N	14.73	14.71	14.72	0.0184	0.0040
O	14.05	13.99	14.05	0.0640	0.0009
F	17.65	17.58	17.64	0.0688	0.0092
Ne	21.66	21.60	21.65	0.0579	0.0124
Na	5.35	5.33	5.35	0.0278	0.0005
Mg	7.61	7.59	7.61	0.0157	0.0004
Al	6.07	6.04	6.08	0.0376	0.0080
Si	8.19	8.19	8.20	0.0029	0.0034
P	10.49	10.52	10.49	0.0329	0.0005
S	10.42	10.37	10.42	0.0566	0.0024
Cl	12.97	12.96	12.97	0.0109	0.0029
Ar	15.71	15.74	15.70	0.0359	0.0044
K	4.44	4.42	4.44	0.0272	0.0011
Ca	6.07	6.05	6.07	0.0153	0.0023
Sc	6.27	6.38	6.25	0.1089	0.0144
Ti	6.55	6.57	6.54	0.0215	0.0144
V	6.28	5.96	6.24	0.3152	0.0388
Cr	7.26	7.08	7.25	0.1819	0.0128
Mn	7.16	7.04	7.15	0.1232	0.0038
Fe	8.12	7.61	7.80	0.5156	0.3198
Co	7.85	6.89	7.01	0.9644	0.8436
Ni	8.01	7.72	8.00	0.2944	0.0143
Cu	8.14	7.83	8.13	0.3150	0.0173
Zn	9.38	9.19	9.37	0.1828	0.0101
Element	Column 1	Column 2	Column 3	Column 4	Column 5
---------	----------	----------	----------	----------	----------
Ga	6.00	5.94	6.00	0.0571	0.0005
Ge	7.92	7.91	7.92	0.0108	0.0002
As	9.91	9.94	9.91	0.0342	0.0010
Se	9.67	9.61	9.67	0.0635	0.0005
Br	11.82	11.81	11.82	0.0085	0.0014
Kr	14.05	14.09	14.05	0.0403	0.0015
Table 14. EAs computed with PBE using alternative densities, and density sensitivity of EAs in eV.

Atom	EA PBE(SVWN)	EA PBE(HF)	EA PBE(PBE0)	$S^2_{EA,PBE(SVWN, HF)}$	$S^2_{EA,PBE(SVWN, PBE0)}$
H	0.77	0.73	0.75	0.0394	0.0147
He	-1.07	-1.08	-1.07	0.0091	0.0060
Li	0.53	0.51	0.52	0.0202	0.0053
Be	0.17	0.08	0.18	0.0813	0.0104
B	0.69	0.57	0.67	0.1182	0.0198
C	1.62	1.50	1.60	0.1126	0.0198
N	0.38	-0.43	0.37	0.8126	0.0154
O	1.81	1.62	1.78	0.1854	0.0260
F	3.67	3.49	3.64	0.1808	0.0296
Ne	-4.02	-4.07	-4.02	0.0488	0.0018
Na	0.54	0.52	0.54	0.0198	0.0001
Mg	-0.30	-0.33	-0.30	0.0282	0.0025
Al	0.65	0.62	0.64	0.0339	0.0098
Si	1.51	1.50	1.51	0.0097	0.0074
P	0.92	0.84	0.91	0.0805	0.0059
S	2.18	2.13	2.17	0.0452	0.0116
Cl	3.66	3.65	3.65	0.0093	0.0130
Ar	-1.91	-1.92	-1.90	0.0131	0.0059
K	0.46	0.45	0.46	0.0028	0.0053
Ca	0.03	0.00	0.03	0.0312	0.0056
Sc	0.30	-0.29	0.27	0.5913	0.0296
Ti	1.04	0.54	1.03	0.4925	0.0115
V	1.22	0.98	1.23	0.2413	0.0087
Cr	0.45	0.18	0.43	0.2735	0.0187
Mn	0.50	0.22	0.07	0.2897	0.4306
Fe	0.52	0.47	0.81	0.0491	0.2820
Co	1.08	1.22	1.88	0.1405	0.8021
Ni	1.22	0.60	1.19	0.6189	0.0295
Cu	1.29	0.96	1.26	0.3322	0.0258
Element	Value 1	Value 2	Value 3	Value 4	Value 5
---------	--------	--------	--------	--------	--------
Zn	-0.08	-0.08	-0.07	0.0055	0.0076
Ga	0.56	0.51	0.54	0.0413	0.0113
Ge	1.46	1.44	1.45	0.0170	0.0077
As	0.91	0.82	0.90	0.0882	0.0086
Se	2.14	2.10	2.13	0.0418	0.0099
Br	3.50	3.50	3.49	0.0014	0.0095
Kr	-1.34	-1.34	-1.33	0.0048	0.0084
Table 15. Mean signed error (MSE), mean absolute error (MAE) standard deviation (STD) of signed error (SE), maximum error (Max), minimum error (Min), slope, intercept and R^2 between the computed IPs of the listed methods and the experimental IPs of Table S1.

Method	MSE	MAE	STD of SE	Max	Min	slope	intercept	R^2			
B97-1	-0.03	0.12	0.17	0.24 (O)	-0.65 (Co)	0.990	0.127	0.999			
B98	0.01	0.13	0.17	0.27 (B)	-0.60 (Co)	0.987	0.124	0.999			
BMK	-0.05	0.13	0.17	0.37 (O)	-0.50 (Be)	0.981	0.244	0.999			
X3LYP	0.07	0.13	0.16	0.46 (O)	-0.25 (Be)	0.991	0.022	0.999			
PW6B95D3	0.00	0.13	0.17	0.30 (O)	-0.46 (V)	0.981	0.185	0.999			
CAM-B3LYP	0.07	0.15	0.18	0.48 (O)	-0.35 (V)	0.986	0.072	0.999			
MN15-L	-0.09	0.15	0.19	0.48 (He)	-0.57 (V)	0.985	0.233	0.999			
wB97XD	-0.07	0.15	0.20	0.26 (B)	-0.64 (Co)	0.980	0.268	0.998			
MN15	-0.06	0.15	0.22	0.32 (He)	-0.89 (V)	0.976	0.292	0.998			
B97-2	-0.07	0.15	0.21	0.26 (Mn)	-0.81 (Co)	0.982	0.251	0.998			
O3LYP	-0.06	0.15	0.22	0.27 (He)	-0.86 (V)	0.979	0.268	0.998			
B3LYP	0.11	0.16	0.17	0.52 (O)	-0.22 (V)	0.988	0.009	0.999			
B1B95	-0.12	0.16	0.19	0.14 (B)	-0.68 (V)	0.982	0.297	0.999			
VSXC	-0.01	0.16	0.23	0.35 (N)	-0.66 (Ti)	0.976	0.253	0.998			
HSE06	-0.03	0.16	0.21	0.36 (B)	-0.62 (V)	0.995	0.080	0.998			
RevPBE0	-0.02	0.16	0.22	0.36 (B)	-0.63 (V)	0.994	0.083	0.998			
PBE0	-0.04	0.16	0.22	0.35 (B)	-0.67 (V)	0.994	0.103	0.998			
APFD	-0.01	0.17	0.22	0.38 (B)	-0.68 (V)	0.990	0.115	0.998			
TPSS	0.00	0.17	0.23	0.47 (B)	-0.58 (V)	0.988	0.125	0.998			
N12-SX	-0.07	0.17	0.24	0.32 (F)	-0.86 (Co)	0.976	0.302	0.998			
BHandHLYP	-0.12	0.17	0.19	0.28 (B)	-0.71 (Co)	0.992	0.197	0.998			
TPSSh	-0.04	0.17	0.24	0.46 (B)	-0.73 (V)	0.986	0.176	0.997			
BLYP	0.04	0.18	0.22	0.53 (O)	-0.35 (Be)	0.992	0.043	0.998			
mPW1PW91	-0.02	0.18	0.24	0.39 (B)	-0.71 (V)	0.988	0.140	0.997			
tHCTHhyb	0.09	0.18	0.20	0.52 (Mn)	-0.54 (Co)	0.985	0.053	0.998			
PBE	0.05	0.18	0.25	0.50 (Cr)	-0.73 (Ti)	0.994	0.014	0.997			
Function	E (eV)										
----------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
M06	-0.04	0.18	0.22	0.53 (Fe)	-0.53 (V)	0.981	0.223	0.998			
RevTPSS	-0.03	0.18	0.26	0.46 (B)	-0.82 (Ti)	0.988	0.156	0.997			
mPW3PBE	0.03	0.19	0.23	0.42 (B)	-0.66 (V)	0.987	0.103	0.998			
RevPBE	0.07	0.19	0.26	0.56 (Cr)	-0.68 (Ti)	0.995	-0.015	0.997			
wPBEhPBE	0.07	0.19	0.26	0.56 (Cr)	-0.68 (Ti)	0.995	-0.015	0.997			
B97D	0.05	0.19	0.28	0.87 (Mn)	-0.54 (Co)	0.984	0.111	0.996			
B3PS6	0.13	0.19	0.19	0.48 (B)	-0.45 (V)	0.989	-0.017	0.998			
OP86	0.02	0.20	0.27	0.34 (N)	-0.87 (Ti)	0.979	0.185	0.997			
OLYP	-0.14	0.20	0.28	0.20 (He)	-1.09 (Co)	0.978	0.358	0.997			
G96PBE	-0.06	0.22	0.33	0.45 (Cr)	-0.96 (Ti)	0.978	0.281	0.995			
M06-L	-0.14	0.23	0.27	0.32 (B)	-0.74 (Ti)	0.979	0.350	0.997			
BP86	0.16	0.23	0.24	0.64 (Cr)	-0.55 (Ti)	0.989	-0.054	0.997			
OPBE	-0.13	0.25	0.35	0.31 (N)	-1.20 (Ti)	0.975	0.377	0.995			
BHandH	-0.26	0.26	0.19	0.04 (B)	-0.76 (Co)	1.007	0.194	0.998			
HCTH407	0.20	0.27	0.26	0.73 (Fe)	-0.65 (Co)	0.984	-0.036	0.997			
tHCTH	0.14	0.27	0.35	1.06 (B)	-0.68 (Co)	0.978	0.087	0.995			
LC-wHPBE	-0.04	0.27	0.35	0.51 (O)	-1.14 (V)	0.966	0.377	0.995			
SVWN5	0.19	0.29	0.30	0.70 (Cr)	-0.57 (H)	0.990	-0.085	0.996			
M11-L	0.05	0.30	0.37	0.69 (Kr)	-0.83 (H)	0.998	-0.032	0.993			
SLYP	-0.24	0.30	0.34	0.36 (Cu)	-1.34 (He)	1.018	0.062	0.995			
B2PLYP	-0.32	0.34	0.22	0.14 (B)	-0.86 (Co)	1.004	0.287	0.998			
M11	-0.16	0.37	0.49	0.62 (O)	-1.41 (V)	0.945	0.704	0.992			
SVWN	0.65	0.65	0.32	1.17 (Ne)	-0.09 (H)	0.982	-0.457	0.995			
OVWN	0.77	0.79	0.37	1.75 (He)	-0.31 (Ti)	0.945	-0.181	0.997			
Table 16. Mean signed error (MSE), mean absolute error (MAE) standard deviation (STD) of signed error (SE), maximum error (Max), minimum error (Min), slope, intercept and R^2 between the computed EAs of the listed methods and the experimental EAs of Table S1.

Method	MSE	MAE	STD of SE	Max	Min	slope	intercept	R^2																	
B98	0.05	0.12	0.16	0.47 (Co)	-0.27 (Sc)	0.975	-0.018	0.975																	
B97-1	0.04	0.13	0.19	0.53 (Ti)	-0.31 (Sc)	0.991	-0.029	0.964																	
PW6B95D3	0.02	0.13	0.19	0.52 (Ti)	-0.36 (Sc)	0.972	0.013	0.967																	
APFD	0.02	0.13	0.18	0.50 (V)	-0.36 (Cr)	0.984	-0.005	0.967																	
TPSS	0.09	0.13	0.21	0.88 (Ti)	-0.30 (Cr)	1.002	-0.088	0.955																	
X3LYP	0.08	0.14	0.19	0.57 (Ti)	-0.27 (Sc)	0.979	-0.055	0.967																	
BMK	-0.09	0.14	0.21	0.41 (Co)	-0.87 (Sc)	0.906	0.183	0.965																	
RevTPSS	0.10	0.15	0.23	0.87 (Ti)	-0.26 (Cr)	1.027	-0.132	0.950																	
B97-2	0.03	0.15	0.21	0.61 (Ti)	-0.26 (Sc)	0.997	-0.026	0.956																	
TPSSh	0.05	0.15	0.23	0.76 (Ti)	-0.34 (Cr)	1.014	-0.068	0.949																	
O3LYP	0.04	0.15	0.24	0.79 (Ti)	-0.25 (Ni)	0.991	-0.028	0.943																	
CAM-B3LYP	0.03	0.15	0.19	0.43 (Ti)	-0.51 (Sc)	0.943	0.031	0.968																	
wB97XD	0.06	0.15	0.24	0.88 (Fe)	-0.49 (Sc)	0.963	-0.017	0.943																	
PBE0	0.02	0.16	0.22	0.62 (Ti)	-0.37 (Cr)	1.001	-0.025	0.954																	
RevPBE0	0.03	0.16	0.21	0.63 (Ti)	-0.36 (Cr)	1.001	-0.033	0.955																	
HSE06	0.03	0.16	0.22	0.63 (Ti)	-0.36 (Cr)	1.003	-0.037	0.954																	
B1B95	-0.07	0.16	0.19	0.47 (Ti)	-0.41 (Sc)	0.978	0.091	0.963																	
mPW1PW91	0.03	0.16	0.22	0.66 (Ti)	-0.40 (Cr)	0.995	-0.025	0.950																	
M06-L	-0.02	0.17	0.22	0.59 (Ti)	-0.34 (F)	1.044	-0.025	0.953																	
B3LYP	0.13	0.17	0.20	0.64 (Ti)	-0.20 (Sc)	0.976	-0.098	0.963																	
mPW3PBE	0.10	0.17	0.23	0.75 (Ti)	-0.31 (Cr)	0.986	-0.084	0.949																	
M06	0.00	0.17	0.25	0.77 (Co)	-0.45 (Fe)	0.965	0.039	0.939																	
VSXO	0.11	0.17	0.24	0.73 (Ti)	-0.40 (Fe)	0.960	-0.065	0.947																	
G06PBE	0.04	0.17	0.26	0.76 (Ti)	-0.59 (Cr)	0.968	-0.002	0.934																	
BLYP	0.10	0.18	0.22	0.70 (Ti)	-0.26 (Ca)	0.969	-0.067	0.952																	
MN15	0.13	0.18	0.24	0.79 (V)	-0.30 (Sc)	1.016	-0.150	0.945																	
OLYP	0.03	0.18	0.27	0.84 (Ti)	-0.23 (Cu)	0.980	-0.011	0.926																	
Method	OpBE	LC-wHPBE	N12-SX	SLYP	PBE	BHAndHLYP	B3P86	tHCTHhyb	wPBEhPBE	RevPBE	M11	OP86	B97D	BHAndH	MN15-L	BP86	tHCTH	HCTH407	SVWN5	B2PLYP	M11-L	SVWN	OVWN		
-----------	------	----------	--------	------	-----	-----------	-------	----------	----------	--------	-----	------	------	-------	--------	------	-------	--------	-------	-------	-------	-------	-------		
	0.04	-0.01	-0.07	0.00	0.17	-0.19	0.20	0.19	0.19	0.19	-0.09	0.20	0.21	-0.25	0.13	0.25	0.30	0.23	0.35	-0.37	0.25	0.76	0.63		
	0.18	0.19	0.19	0.20	0.20	0.21	0.21	0.21	0.22	0.22	0.23	0.23	0.25	0.25	0.30	0.30	0.31	0.33	0.36	0.27	0.53	0.76	0.87		
	0.29	0.26	0.27	0.25	0.24	0.18	0.18	0.24	0.24	0.24	0.37	0.25	0.29	0.29	0.43	0.29	0.32	0.35	0.27	0.31	0.61	0.30	0.81		
	0.93 (Ti)	0.53 (Ti)	0.94 (Fe)	0.59 (Ti)	0.94 (Ti)	0.82 (Ti)	1.06 (Ti)	0.29 (Br)	0.29 (Br)	1.18 (Ti)	1.15 (Co)	1.03 (Ti)	0.86 (Cr)	0.08 (Ti)	1.41 (Ti)	1.60 (Ti)	-0.66 (Fe)	-0.04 (Ga)	-0.05 (Ti)	0.00 (Ti)	1.42 (Ti)	1.60 (Ti)	-3.22 (Fe)	0.588	0.080
	-0.43 (Cr)	-0.50 (Ni)	-0.44 (Sc)	-0.40 (Ca)	-0.25 (Cr)	-0.78 (Sc)	-0.13 (Cu)	-0.98 (Cu)	-0.98 (Cu)	-0.04 (Ga)	-0.57 (Ti)	-0.05 (Ca)	-0.15 (Ca)	-0.86 (Sc)	-1.65 (Sc)	1.04 (Ti)	1.18 (Ti)	-0.04 (Ga)	-1.36 (K)	-1.42 (Ti)	1.60 (Ti)	-3.22 (Fe)	0.588	0.080	
	0.987	0.941	0.940	0.928	0.978	0.975	0.996	0.830	0.849	0.915	0.872	0.904	1.006	0.955	0.849	0.915	0.996	0.872	0.904	1.012	0.753	0.76			
	-0.022	0.077	0.127	0.082	-0.143	0.214	0.101	0.977	0.977	-0.157	-0.063	-0.211	-0.222	0.955	0.849	0.915	0.996	0.872	0.904	0.360	0.083	0.30			
	0.919	0.935	0.933	0.941	0.942	0.968	0.967	0.943	0.942	0.925	0.899	0.936	0.915	0.967	0.843	0.925	0.899	0.898	0.936	0.957	0.709	0.683			
Figure S1. Errors in computed ionization potentials (A) and electron affinities (B) for the 50 studied density functionals. Red bars indicate MAEs, black bars indicate MSEs, and thin bars indicate the standard deviations of the errors.
Figure S2. Distribution of mean signed errors for all functionals except SVWN and OVWN (in eV). Left: Ionization potentials. Right: Electron affinities.
Figure S3. Performance of B97-1 as example of one of the best functionals. (A) Computed vs. experimental IPs. (B) Computed vs. experimental EAs. (C) Computed vs. experimental χ. (D) Computed vs. experimental η. All values are in eV.
Figure S4. MAEs plotted against MSEs for hardness. Left: All functionals. Right: leaving out M11-L and OVWN.
Figure S5. Trend accuracy vs. absolute accuracy. A) Relation between trend accuracy (R^2 of linear regression) and numerical accuracy (MAE, in eV) for the 50 studied functionals. A) electronegativity; B) absolute hardness.
References

(1) Rumble, J. R. *CRC Handbook of Chemistry and Physics, 99th Edition*; CRC Handbook of Chemistry and Physics; CRC Press LLC, 2018.

(2) Bauschlicher, C. W.; Maitre, P. Theoretical Study of the First Transition Row Oxides and Sulfides. *Theor. Chim. Acta* **1995**, *90* (2), 189–203. https://doi.org/10.1007/BF01113847.

(3) Gong, Y.; Zhou, M.; Andrews, L. Spectroscopic and Theoretical Studies of Transition Metal Oxides and Dioxygen Complexes. *Chem. Rev.* **2009**, *109* (12), 6765–6808. https://doi.org/10.1021/cr900185x.

(4) Kramida, A.;Ralchenko, Y.; Reader, J.; NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.5.6), [Online]. https://doi.org/https://doi.org/10.18434/T4W30F.