Investigation of resonance structure in the system of two K_S-mesons in the mass region around 1450 MeV

E A Fadeeva, I A Erofeev, O N Erofeeva, V K Grigor’ev, Yu V Katinov, V I Lisin, V N Luzin, V N Nozdrachev, Yu P Shkurenko, V V Sokolovsky and V V Vladimirsky

Institute for Theoretical and Experimental Physics, 25, B. Cheremushkinskaya str, Moscow, Russia
E-mail: fadeeva@itep.ru

Abstract. Results are presented that were obtained by studying the narrow resonance of mass about 1450 MeV. This state was discovered in the system of two K_S-mesons. The experimental data subjected to the analysis here come from the 6-m spectrometer (MIS ITEP) created at the Institute of Experimental and Theoretical Physics (ITEP, Moscow) and irradiated with a 40-GeV beam of negatively charged pions from the U-70 accelerator at the Institute for High Energy Physics (IHEP, Serpukhov) with the aim of studying $\pi^- p$ and $\pi^- C$ interactions. The statistical significance is better than six standard deviations. The mass and width of the observed meson are $M = 1449.5 \pm 2.0 \pm 3.0$ MeV and $\sigma = 7.5 \pm 1.5$ MeV, respectively, the product of the cross section for its formation and the relevant branching ratio $25^{+25}_{-5}(\text{stat.}) \pm 4(\text{syst.})$ nb. The spin-parity J^{PC} is 0^{++} or 2^{++}. Seeing its very narrow width this resonance is likely to be cryptoexotics (see [1],[2] for details).

1. Introduction
The experimental data employed in the present analysis were obtained by using the ITEP 6-m spectrometer. A detailed description of the spectrometer was given elsewhere [3]. The spectrometer records, with a high efficiency, K_S-mesons travelling in the forward direction and decaying to two charged pions. A large volume covered by a magnetic field and filled with detectors makes it possible to identify K_S-mesons reliably and to measure the effective mass of the K_SK_S-system in the region around 1450 MeV to a high precision. The data analyzed in the present study come from exposures where we employed liquid-hydrogen target. The K_SK_S-system recorded under experimental conditions of the 6-m spectrometer is produced in the following two reactions on a hydrogen target:

$$\pi^- p \rightarrow K_SK_S n,$$

$$\pi^- p \rightarrow K_SK_S + (n + m\pi^0, p + \pi^-, ...).$$

Reaction (1) is separated with a trigger facility based on veto counters surrounding the liquid-hydrogen target. Due to imperfect trigger operation, some fraction of events of the reaction (2) is recorded by the setup.

© 2008 IOP Publishing Ltd
The precision of the measurement of the effective mass of the $K_S K_S$-system is better than 3 MeV in mass region around 1450 MeV. The recording efficiency is about 45% for the system of the two K_S-mesons in the mass region around 1450 MeV. It depends on the K_S-meson momenta.

The effective mass M_{KK} of a pair of two K_S-mesons, the missing mass squared $M M^2$, the 4-momentum transfer $-t$ from the beam to the system being studied, the cosine $\cos \theta_{GJ}$ of the Gottfried-Jackson angle, and the Treiman-Yang angle ϕ_{TY} are kinematical variables used in analyzing the $K_S K_S$ system. The angles are calculated in the rest frame of the K_S-meson pair, and the beam-axis direction in this reference frame is taken for the polar axis. The plane from which the Treiman-Yang angle is reckoned is spanned by the momenta of a beam particle and a target proton.

2. Resonance $X(1450)$

The Figure (1) shows the mass spectrum of the $K_S K_S$-system from 1380 to 1520 MeV with the bin width being 5 MeV. The resonance feature manifests itself as a maximum in the vicinity of 1450 MeV.

In comparison with our previous paper [4] now we observe resonance phenomena $X(1450)$ using the following experimental cut on transferred momentum ($0.0 < -t < 0.6$ GeV2). In addition $X(1450)$ is produced in both reactions (1) and (2).

![Figure 1. Effective-mass spectrum of two K_S-mesons. The curve is the result of a fit by the maximum-likelihood method.](image)

In order to determine the parameters of the observed resonance feature and its statistical significance, the experimental data in the $K_S K_S$-mass range 1300-1600 MeV (about 500 events) were fitted by the Maximum-likelihood method. Describing the experimental data, we used the probability-density function $F(P; \Omega)$, where P is the set of the parameters (the amplitude, the mass M, the width σ appearing in the Gauss function and the coefficients of the squared amplitudes of the angular distributions). Elements of the phase space Ω are effective mass of two K_S-mesons, the cosine of the Gottfried-Jackson angle $\cos \theta_{GJ}$, the Treiman-Yang angle ϕ_{TY}.

In order to obtain the most probable values of the parameters we minimized the functional:

$$L = \int_{\Omega} \epsilon(\Omega) F(P; \Omega) d\Omega - \sum_{i=1}^{N} \ln F(P; \Omega_i). \quad (3)$$

where $\epsilon(\Omega)$ is the event-detection recording, N being the number of events and $L = \prod_{i=1}^{N} F(P; \Omega_i)$ N being the number of events. To compare the probabilities of experimental-data description with different parameter set, we calculated χ^2 by the formula:

$$\chi^2 = -2 \ln L + \text{const}. \quad (4)$$
A mass dependence in the form of a polynomial of second degree and the Gauss function were used here to describe the background and the resonance, respectively. The squares of the amplitudes of the S-, D_0- and D_+-waves proved to be sufficient for describing the angular distribution of the background. As the result of fitting of resonance, it was found that the S- and the D_0- waves both yielded a considerably lower χ^2 value than each of the remaining waves. We have described the resonance by only S-wave or only D_0-wave. Since the χ^2 values of these results of fitting are close, we cannot give preference to either the S- or the D_0-wave.

3. Comparison with other results

Comparison with other results is presented in Table 1. In the last line is given the result of present study.

TECN	Comment	Mass, MeV	Width, MeV
DM2	$J/\psi \to \gamma \pi^+ \pi^-$	1421 ±5	30 ±9
SPEC	$pp \to pp\pi^+ \pi^-$	1480 ±50	150 ±50
CNTR	$17-18 \pi^- p \to K^+K^-n$	1436 ±26	81 ±56
CNTR	$63 \pi^- p \to K^0_SK^0_sn, K^+K^-n$	1412 ±3	14 ±6
OSPK	$5, 7, 12 \pi^- p \to K^0_SK^0_sn$	1439 ±5	43 ±17
SPEC	$40 \pi^- p \to K_SK_Sn$	1453.0 ±4 ±3	13.0 ±5.0
SPEC	$40 \pi^- p \to K_SK_Sn$	1449.5 ±2 ±3	7.5 ±1.5

4. Conclusion

Let us summarize results. Strong evidence of the existence of a narrow resonance in the K_SK_S-system has been obtained. The statistical significance is better than six standard deviations. The distinguishing feature of this resonance is the following— it has a very narrow width.

The parameters of the X (1450) resonance are: mass $M = 1449.5 \pm 2.0 \pm 3.0$ MeV and width $\sigma = 7.5 \pm 1.5$ MeV. Number of events in the resonance region is 67 ± 10. The spin-parity of this resonance is $J^{PC} = 0^{++}$ or 2^{++}. The product of the cross section for X(1450) formation and the relevant branching ratio $\sigma Br(K_SK_S)$ is estimated at about 25^{+25}_{-5}(stat.) ± 4(syst.) nb.

References

[1] Landsberg L G 1994 Yad. Phys. 57 47; Phys. Atom. Nucl. 57 42
[2] Landsberg L G 1994 Usp. Phys. Nauk 164 1129; Phys. Uspekhi 37 1043
[3] Nozdrachev V N et al. 2001 Hadron Spectroscopy: Ninth International Conference edited by D Amelin and A M Zaitsev (Melville, New York: AIP Conf. Proceedings) CP619, pp. 155-164
[4] Vladimirsky V V et al. 2001 Yad. Phys. 64 1979; Phys. Atom. Nucl. 64 1895
[5] Augustin J -E et al. 1987 Z. Phys. C - Particles and Fields 36 369
[6] Aksenov T et al. 1986 Nuclear Physics B 264 154
[7] Daum C et al. 1984 Z. Phys. C - Particles and Fields 23 339
[8] Beusch W et al. 1967 Phys. Lett. 25B 357