Review article: post-TIPSS hepatic encephalopathy—current knowledge and future perspectives

Simon Johannes Gairing1,2 | Lukas Müller3 | Roman Kloeckner3 | Peter R. Galle1,2 | Christian Labenz1,2

Summary

Background: In light of the global rise in the burden of chronic liver diseases and liver cirrhosis, the number of patients suffering from decompensation events is expected to increase. Transjugular intrahepatic portosystemic shunts (TIPSS) provide effective long-term symptom control and may prolong transplant-free survival in portal hypertension-driven recurrent ascites and variceal bleeding. New-onset or recurrent hepatic encephalopathy (HE) after TIPSS insertion (post-TIPSS HE) represents the most severe post-interventional complication.

Aims: To provide insight into the epidemiology and risk factors for post-TIPSS HE and scrutinize the current state of the art in treatment and drug therapy options.

Methods: We conducted a literature search on post-TIPSS HE in patients with liver cirrhosis.

Results: Post-TIPSS HE occurs in up to 54.5% of cases and particularly early recurrent HE is associated with a dismal prognosis. In recent years, several risk factors for the development of post-TIPSS HE have been identified. These include not only parameters reflecting liver function (model for end-stage liver disease score/Child-Pugh score) as well as cognitive dysfunction caused by minimal HE but also extrahepatic factors such as sarcopenia and common medications such as proton pump inhibitors. In addition, new data on the benefit of rifaximin and of smaller stent grafts emerged and may improve the prevention of post-TIPSS HE.

Conclusions: Careful selection of TIPSS candidates is of utmost importance to reduce the risk of post-TIPSS HE. In this narrative review, we provide a concise overview of the current epidemiology and risk factors of the treatment options for post-TIPSS HE.
1 | INTRODUCTION

Transjugular intrahepatic portosystemic shunts (TIPSS) provide effective and durable control of portal hypertension-driven symptoms. Additionally, TIPSS insertion may extend transplant-free survival (TFS) in patients with liver cirrhosis and recurrent ascites, although further studies are needed to warrant this finding.\(^5\)\(^6\) In addition to treatment-refractory ascites, indications include refractory acute variceal haemorrhage (if first-line therapy has failed), secondary prophylaxis after variceal haemorrhage, if first-line therapy (endoscopic band ligation plus non-selective beta-blockers) has failed, Budd-Chiari Syndrome and portal vein thrombosis.\(^3\) In 2010, a randomised controlled trial established the use of an “early TIPSS” (placement within 72 hours after admission) in high-risk patients after acute variceal haemorrhage.\(^3\) Other indications, such as heporenal syndrome, require further research for a general recommendation.

The occurrence of new-onset, progressive or recurrent hepatic encephalopathy (HE) after TIPSS insertion (post-TIPSS HE) represents the most important complication of this therapeutic approach. HE is defined as a potentially reversible brain dysfunction that manifests with a wide spectrum of neuropsychiatric abnormalities caused by liver insufficiency and portosystemic shunting.\(^5\)\(^6\) Clinically, it includes neurological and psychiatric abnormalities ranging from subclinical alterations to life-threatening coma. HE can roughly be divided into two groups: overt HE (OHE) and covert HE (CHE). While OHE comprises grades 2–4 according to the West Haven criteria, CHE combines the two lowest grades of HE—minimal HE (MHE) and HE grade 1 (HE1).\(^5\) Patients with OHE present episodically or continuously with obvious, clinically detectable symptoms. In contrast, MHE is below the obvious clinical detection level and can only be diagnosed with the help of specialised neuropsychometric and neurophysiological tests.

HE is a very frequent complication in patients with liver cirrhosis, and MHE can be detected in about 30%-50% of all cirrhotic patients.\(^7\)\(^8\) Although the consequences are serious, MHE, in particular, is often overlooked or diagnostics are even neglected in routine clinical practice.\(^9\) This is concerning because MHE also impairs health-related quality of life (HRQoL), can lead to falls with subsequent bone fractures, and motor vehicle crashes and is associated with a higher risk for OHE.\(^7\)\(^10\)\(^12\)

In this narrative review, we provide insight into the epidemiology and risk factors for post-TIPSS HE and scrutinise the current state of the art in treatment and drug therapy options.

2 | POST-TIPSS HE

2.1 | Epidemiology

HE is the most frequent TIPSS-associated complication in patients with liver cirrhosis. The overall incidence of post-TIPSS HE ranges from 23% to 54.5% during the first year after insertion (Table 1).\(^13\)\(^18\) The severity of HE after TIPSS insertion also varies widely across different studies: In an Italian cohort of 78 cirrhotic patients treated with polytetrafluoroethylene-covered (PTFE-covered) stents, 44.8% of the patients experienced at least one episode of post-TIPSS HE, with 55% having an HE ≥ grade 3.\(^15\) In contrast, in an American cohort including 376 patients, 52% developed a post-TIPSS HE, among whom only 9% had HE ≥ grade 3.\(^13\) In patients with rescue or early TIPSS for variceal bleeding, the incidence rates of post-TIPSS HE do not seem to be increased compared to patients treated with drugs plus endoscopy.\(^19\) A detailed overview of the post-TIPSS HE rate in several studies is given in Table 1.

2.2 | Pathophysiology

The underlying pathophysiology of HE is complex and consists of a complex interplay of hyperammonemia and systemic inflammation. Simply put, HE is driven by hyperammonemia-related neurotoxicity. However, the exact pathophysiology that triggers HE is still not sufficiently understood and not within the scope of this review.\(^20\)

In the context of post-TIPSS HE, two TIPSS-related factors must be considered: First and foremost, TIPSS insertion leads to a “steal” phenomenon: ammonia-enriched blood from the intestine bypasses the liver parenchyma, thus is not included in the urea cycle.\(^21\) This results in further impaired ammonia degradation. Second, rat models demonstrated that portocaval shunting (e.g. caused by TIPSS) leads to increased activity of phosphate-activated glutaminase in the intestine, which results in an increase in gut-derived ammonia.\(^21\)\(^22\) A comprehensive review of HE pathophysiology can be found elsewhere.\(^20\)

2.3 | Risk factors for the development of post-TIPSS HE and patient selection

The occurrence of HE represents one of the major post-TIPSS complications and is associated with a dismal prognosis.\(^23\) In particular, early recurrent OHE is linked with poor outcomes.\(^24\) In general, careful pre-interventional patient selection is crucial to reduce the risk of post-TIPSS HE. Therefore, it is essential to know predictors for the development of HE after TIPSS insertion. A pre-TIPSS diagnostic workup proposed by the authors to evaluate the individual risk for post-TIPSS HE is displayed in Figure 1.

Overall, the best-studied risk factors include a history of OHE and impaired liver function. This is validated by a systematic review including 30 studies, which found that advanced age, history of HE and higher Child-Pugh scores showed the strongest association in predicting post-TIPSS HE.\(^25\) Other important risk factors are higher Model of End-Stage Liver Disease (MELD) scores, arterial hypertension, hyponatremia, elevated serum creatinine, low levels of serum albumin and a portosystemic pressure gradient (PSG) lower than 5 mm Hg.\(^15\)\(^26\) Another retrospective study of 376 patients found that in addition to advanced age, VITARR stents without controlled expansion were significantly associated with the occurrence of HE.
Study	No. of patients	Trial design	Main TIPSS indication	Overall HE incidence	HE incidence depending on TIPSS indication	HE grade ≥3	Necessity of a TIPSS diameter reduction	Factors influencing the occurrence of post-TIPSS HE in multivariate analysis
Riggio et al[a]	75	Single centre RCT, not blinded	Ascites: 25 (33.3%)	25 (33%) within 1 month after TIPSS insertion	No significant differences (ascites vs haemorrhage)	13 (52%)	1 (4%)	Previous HE episodes (RH 3.79, 95% CI: 1.27-11.31) TMT-A-Z-score > 1.5 (RH: 3.55; 95% CI: 1.24-10.2)
Nardelli et al[b]	46	Prospective, single centre	Ascites: 23 (50%)	21 (46%) within 7 ± 9 months after TIPSS insertion	No significant differences (haemorrhage vs ascites)	n/a	n/a	MELD score (SHR: 1.16, 95% CI: 1.01-1.34) Sarcopenia (SHR: 31.3, 95% CI: 4.5-218.07)
Nardelli et al[c]	82		Ascites: 45 (54.9%)	35 (43%); follow-up period n/a	No significant differences (haemorrhage vs ascites)	n/a	3 (8.6%)	Age (SHR 1.05, 95% CI:1.02-1.08) Child-Pugh score (SHR 1.29, 95% CI:1.06-1.56) covert HE (SHR 3.16, 95% CI: 1.43-6.99)
Berlioux et al[d]	54		Ascites: 33 (61%)	19 (35%) during a median follow-up of 365 days (2-392)	OHE significantly more frequent in patients w/ refractory ascites	n/a	n/a	TIPSS due to refractory ascites (OR n/a) Low haemoglobin level (OR n/a) MHE diagnosed by CFF (OR n/a) Renal failure (OR n/a) History of OHE (OR n/a)
Riggio et al[e]	78		Ascites: 29 (37.2%)	35 (44.8%); during a mean follow-up of 19.9 (±20.6) months	n/a	6 (17.1%)	n/a	Age (HR: 1.086, 95% CI: 1.05-1.13) serum creatinine (HR: 1.516, 95% CI:1.02-2.26) serum sodium (HR: 0.926, 95% CI: 0.87-0.98) serum albumin (HR: 0.352, 95% CI: 0.19-0.67)
Salfert et al[f]	233	Retrospective, single centre	Ascites: 115 (49.4%)	127 (54.5%) within 12 months after TIPSS insertion	No significant differences	25 (17.7%)	9 (7.1%)	Age (HR: 1.039, 95% CI: 1.013-1.066) Pre-TIPSS HE (HR: 3.695, 95% CI: 1.531-8.917)
Coronado et al[g]	376 (patients w/ history of HE were excluded)		Ascites: 138 (37%)	194 (52%); follow-up period n/a	No significant differences	17 (9%)	n/a	Age (OR: 1.04) VCX endoprothesis (OR: 0.55)
Yin et al[h]	373 (training cohort: 264, validation cohort: 109)	n/a	117 (31.4%) during a median follow-up of 37 (1-60) months 103 (27.6%) within 12 months	n/a	n/a	n/a	Age (HR: 1.027, 95% CI: 1.002-1.052) Diabetes mellitus (HR: 1.844, 95% CI: 1.059-3.211) Child-Pugh stage C (HR: 6.678, 95% CI: 1.679-8.889) Serum creatinine (HR: 1.013, 95% CI: 1.002-1.025) Serum sodium (HR: 0.935, 95% CI: 0.883-0.989)	

(Continues)
TABLE 1 Continued

Study	No. of patients	Trial design	Main TIPSS indication	Overall HE incidence	HE incidence depending on TIPSS indication	HE grade ≥3	Necessity of a TIPSS diameter reduction	Factors influencing the occurrence of post-TIPSS HE in multivariate analysis
Lewis et al³⁹	284		Ascites: 170 (60%) VH: 66 (23%) Ascites + VH: 23 (8%)	176 (62%) during a median follow-up of 479 days	No significant differences (ascites vs haemorrhage)	n/a	n/a	Age (IRR 1.05; 95% CI 1.03–1.07) Male sex (IRR 1.58; 95% CI 1.072–3.36) MELD score (IRR 1.06; 95% CI 1.01–1.11) History of HE or HE-preventive drug intake (IRR 1.51; 95% CI 1.04–2.20) PPI use (IRR 3.19; 95% CI 2.19–4.66)
Routhu et al¹⁴	678		Ascites: 198 (29.2%) VH: 367 (54.1%) Ascites + VH: 44 (6.5%)	257 (37.9%) during a mean follow-up of 35 months	No significant differences	n/a	14 (5.4%)^a	Age (OR 1.047; 95% CI: 1.026–1.068) Pre-TIPSS portal venous pressure (OR: 1.048; 95% CI: 1.015–1.081) serum creatinine (OR: 1.005; 95% CI: 1.002–1.009) diabetes mellitus with insulin treatment (OR: 1.863; 95% CI: 1.070–3.244) aetiology of portal hypertension (OR: 0.074; 95% CI: 0.013–0.437)
Fonio et al⁶⁷ (patients w/ pre-TIPSS HE were excluded)	75		Ascites: 31 (41%) VH^f: 26 (34.7%) Ascites + VH: n/a	27 (36%) within 6 months after TIPSS insertion	n/a	4 (14.8)^a	n/a	Age (OR n/a)
Bettinger et al²³	389		Ascites: 196 (50.4%) VH: 86 (22.1%) Ascites + VH: 58 (14.9%)	113 (29%) within 12 months after TIPSS insertion	No significant differences between ascites vs VH	11 (2.8%)^b	10 (2.6%)^b	Age (OR 1.03; 95% CI: 1.00–1.05) Pre-TIPSS HE (OR 32.3; 95% CI: 13.6–79.7)
Casadaban et al⁶⁸	191		Ascites^c: 92 (48%) VH: 94 (49%) Ascites + VH: n/a	81 (42%) within 30 days after TIPSS insertion	No significant differences (haemorrhage vs other)	27 (33.3%)^a	3 (4%)^a	Age > 65 years (OR n/a) MELD score > 18 (OR n/a)
Yao et al⁶⁹	279 (all patients had primary HCC and portal hypertension)		Ascites^e: 36 (12.9%) VH: 226 (81.0%) Ascites + VH: 17 (6.1%)	114 (41%) within 3 months after TIPSS insertion	No significant differences	n/a	n/a	>3 TACEs/TAEs (OR: 4.078; 95% CI: 1.748–9.515) Hepatopetal main portal vein flow pre-TIPSS (OR: 2.362; 95% CI: 1.032–5.404). Reduction in post-TIPSS PSG (per 1 mm Hg: OR: 1.198, 95% CI: 1.073–1.336), MELD score (OR: 1.693, 95% CI: 1.390–2.062)

Abbreviations: CFF, critical flicker frequency; CTP, Child–Turcotte–Pugh; HCC, hepatocellular carcinoma; IRR, incidence rate ratio; MELD, Model for End-Stage Liver Disease; PSG, portosystemic pressure gradient; RH, relative hazard; RR, relative risk; shR, sub-distribution hazard ratio; TMT, trail-making test; VCX, Viatorr TIPSS endoprosthesis with controlled expansion; VH, variceal haemorrhage.

^aPercentage refers to patients with HE.

^bPercentage refers to all patients of the cohort.

^cData from single-predictor regression models.

^dMissing percentages to 100% include rarer indications.

^ePatients with hepatic hydrothorax are included.

^fAcute and recurrent variceal haemorrhage.

^gNo independent predictors in multiple Cox regression analysis.
after TIPSS placement. However, it has to be mentioned that especially a history of OHE may not be a contraindication for TIPSS in well-selected patients when a clear and remediable trigger can be identified. This is supported by studies reporting on early and rescue TIPSS placement in patients with variceal bleeding—a well-known trigger for HE.
2.4 | CHE as a risk factor for post-TIPSS HE

CHE comprises the two lowest grades of HE—MHE and HE1. Several studies in patients with liver cirrhosis have demonstrated that patients with CHE have a remarkably higher risk for the development of OHE. Consequently, neuropsychometric and neurophysiological tests used for the detection of CHE are highly valuable tools to predict post-TIPSS OHE. In this context, Nardelli et al were able to demonstrate in a cohort of 82 patients that pathological results in the portosystemic hepatic encephalopathy score (PHES) were associated with a higher OHE risk after TIPSS insertion (sHR 3.16, 95% CI 1.43-6.99). Especially in patients referred for TIPSS implantation because of refractory ascites, PHES had an excellent negative predictive value of 88% to exclude future OHE episodes.

A study by Berlioux et al including 54 patients found that ruling out MHE by evaluation of the Critical Flicker Frequency prior to TIPSS implantation yielded a negative predictive value of 91% for the occurrence of recurrent OHE (defined as the occurrence of three or more episodes) or one episode longer than 15 days. Thus, comprehensive pre-TIPSS evaluation of HE including diagnostic tools for detecting MHE seems to be useful and mandatory. Table 2 provides an overview of established tests for detecting MHE and their ability to predict post-TIPSS HE as well as potential disadvantages. In general, the lack of standardisation complicates the comparability of these tests.

Ammonia plays a central role in the development of CHE as well as post-TIPSS HE. Recently, the determination of ammonia and its time course after an amino acid challenge has been studied as a predictive factor for post-TIPSS HE. Here, a higher increase in blood ammonia and increased responses in sleepiness and psychometric tests after amino acid challenge were associated with the development of post-TIPSS HE. However, these findings have to be confirmed in future studies before clinical implementation.

Future studies in this field should also aim at evaluating additional CHE testing strategies such as the simplified Animal Naming Test or the EncephalApp Stroop, which have also been shown to be reliable predictors for the development of OHE in patients without TIPSS.

2.5 | Common medications as risk factors for post-TIPSS HE

In recent years, proton pump inhibitors (PPIs) have been identified as potential risk factors for a wide variety of complications of liver cirrhosis such as spontaneous bacterial peritonitis (SBP) or HE. Results of studies with a focus on HE risk under PPI treatment are partly conflicting. There is only one prospective study available, which found an association between PPI use and the development of MHE and OHE. In contrast, a recently published large study neither found an association between PPI use and the presence of CHE nor OHE-related readmission. In patients with TIPSS, there seems to be an association between PPI use and post-TIPSS HE. A recently published study by Sturm et al identified PPI use as an additional, dose-dependent risk factor for the development of post-TIPSS HE. However, it has to be mentioned that the overall quality of evidence is low. Nevertheless, given the fact that up to 60% of the patients receive PPIs without a valid indication,
PPI treatment should be discontinued if no longer needed prior to TIPSS placement. 39
Other medications that are known risk factors for the development of HE include opioids, benzodiazepines, or even diuretics potentially leading to volume depletion. 40,41 Although these have not been well studied in the context of post-TIPSS HE, a critical re-evaluation of the indication before TIPSS insertion seems inevitable.

2.6 | Sarcopenia as a risk factor for post-TIPSS HE

Muscle alterations like sarcopenia are frequent in patients with decompensated liver cirrhosis and, due to the importance of muscle in ammonia metabolism, sarcopenia may be linked to HE.

Although several studies have found sarcopenia to be a relevant risk factor for the development of post-TIPSS HE, there are also studies reporting negative results. Nardelli et al were able to demonstrate that not only sarcopenia but also muscle quality as defined by myosteatosis were significantly associated with the presence of MHE and the development of OHE in patients with liver cirrhosis. 42 The same findings were validated in patients undergoing TIPSS insertion. Here, impaired liver function as reflected by higher MELD scores and sarcopenia were independently associated with the occurrence of post-TIPSS HE. 43 Remarkably, in this study, only patients with sarcopenia developed post-TIPSS HE within the first months after insertion. However, a recent retrospective study of 107 patients undergoing TIPSS insertion for refractory ascites showed that sarcopenia was neither associated with the occurrence of de novo HE nor with higher mortality. 44 In addition, TIPSS itself has positive effects on body composition in the long term: TIPSS implantation leads to both weight and muscle gain as well as overall better body composition in malnourished patients with liver cirrhosis, which in turn may improve cognitive deficits. 45,46 In addition, several further risk factors of HE can be improved by TIPSS placement including lower rates of gastrointestinal haemorrhage, hypovolaemia or infections such as SBP. 47 Taken together, sarcopenia should be no exclusion criterion for TIPSS insertion. However, sarcopenic patients should be monitored closely for post-TIPSS HE and may be in the highest need of preventive measures.

2.7 | Prophylaxis of post-TIPSS HE

2.7.1 | Non-drug-based prophylaxis

Given that sarcopenia is independently associated with the development of post-TIPSS HE in cirrhotic patients, improving the nutritional status of TIPSS candidates may help to prevent post-TIPSS HE (Figure 2). 43 Currently, there are no specific guideline recommendations for nutritional advice in patients with TIPSS. However, recommendations should be given in accordance with guidelines for secondary prevention after a bout of OHE. 5 Patients should be advised to maintain a sufficient calorie intake of about 35–40 kcal/kg body weight/day. Additionally, protein intake should be about 1.2–1.5 g/kg body weight/day with a focus on plant-based proteins. Moreover, long catabolic periods should be avoided and the ingestion of a late-night snack is recommended.

2.7.2 | Drug-based prophylaxis

In patients with liver cirrhosis without TIPSS, the drug-based prophylaxis of the development of HE mainly focuses on disaccharides (e.g. lactulose), antibiotics like rifaximin and amino acids like L-Ornithine-L-Aspartate (LOLA). Guidelines currently do not recommend any primary HE prophylaxis after TIPSS placement. 5 Though studies are evolving and recent data may lead to changes in future guidelines recommendations. This is mostly explained by a study illustrating that neither rifaximin nor lactulose prevented post-TIPSS HE any better than placebo. 48 However, Bureau et al recently published a large randomised and placebo-controlled trial on the use of rifaximin in the prevention of OHE after TIPSS insertion. In total, 197 patients undergoing TIPSS for intractable ascites or prevention of variceal bleeding were included in the study. Patients in the verum arm were treated with 600 mg rifaximin twice daily beginning 14 days before TIPSS. During the follow-up of 168 days, rifaximin reduced the occurrence of OHE compared to placebo with an odds ratio (OR) of 0.48 (95% CI 0.27–0.87). However, rifaximin had no influence on TFS, which may be attributed to a lack of power for this endpoint. Additionally, it has to be mentioned that the effect of rifaximin on the prevention of post-TIPSS HE did not reach significance in the subgroup of patients without a history of OHE. 49 In addition, it is noteworthy that the prophylaxis of HE with lactulose was not allowed in this trial. Nevertheless, these findings will likely result in a guideline recommendation for rifaximin to prevent post-TIPSS HE (Figure 2). Though the use of rifaximin for this indication is currently off-label, another ongoing multicentre randomised, controlled, double-blind trial (PEARL trial, NCT04073290) is comparing rifaximin plus lactulose to placebo plus lactulose administered 3 days prior to TIPSS insertion to 3 months post-TIPSS. 50

A recent single centre, retrospective study including 233 patients reported that rifaximin plus lactulose is effective in preventing recurrent HE in patients with pre-TIPSS HE at 1, 3 and 12 months post-TIPSS. 51 However, in this study, patients without pre-TIPSS HE did not benefit from this combination. Remarkably, LOLA had no additional benefit when added to lactulose and rifaximin. 17 Routine administration of albumin after TIPSS insertion did not reduce the incidence of post-TIPSS HE. 51

Trials investigating the drug- or stent-based prophylaxis of post-TIPSS HE are summarised in Table 3.

2.7.3 | Stent-based prophylaxis

To reduce the risk of neointimal hyperplasia after TIPSS placement and thus minimise the probability of TIPSS occlusion, the use of
Trial	No. of patients	Trial design	Intervention	Primary endpoint	Results
Bureau et al	197	Drug-based prophylaxis	Rifaximin (600 mg twice daily) vs placebo 14 days pre-TIPSS to 168 days post-TIPSS	OHE within 168 days post-TIPSS	Incidence of OHE was 34% (rifaximin) vs 53% (placebo), OR: 0.48 (95% CI: 0.27-0.87). No differences in AEs or TFS
Riggio et al	75	Single centre RCT, not blinded	Lacticol (60 g/day) vs rifaximin (1200 mg/day) vs placebo immediately post-TIPSS	OHE within 1 month post-TIPSS	No differences in each group regarding 1-month incidence and rate of severe HE episodes
Wit et al	Recruting	Multicentre randomised, double-blind, placebo-controlled (PEARL trial, NCT04073290)	Rifaximin (550 mg twice daily) plus lactulose (25 ml twice daily) vs placebo plus lactulose (25 ml twice daily) 3 days pre-TIPSS to 3 months post-TIPSS	OHE within 3 mo post-TIPSS	Ongoing
Seifert et al	233	Retrospective, single centre	Lactulose mono (LM) vs rifaximin mono (RM) vs lactulose + rifaximin (LR) (α-ornithin-1-aspartate (LOLA)) vs no prophylaxis	OHE within 1, 3 and 12 mo post-TIPSS	LM: no differences. LR is effective in preventing recurrence of HE in pts with pre-TIPSS HE at 1, 3 and 12 mo post-TIPSS, but no differences were found in pts without pre-TIPSS HE. No additional benefit of LOLA to LR
Riggio et al	23	A prospective, non-randomised clinical trial with controls from 58	Albumin 1 g/kg body weight for the first 2 d after TIPSS insertion. Then 0.5 g/kg body weight at fourth and seventh days followed by albumin once a week for a total of 3 wk	OHE within 1 mo post-TIPSS	No differences in the OHE incidence
Wang et al	127	Stent-based prophylaxis	8 mm vs 10 mm PTFE-covered stents	Shunt dysfunction	No differences regarding shunt dysfunction, recurrent bleeding, TFS and overall OHE within a median follow-up of 27 mo. Significant lower rate of spontaneous OHE in the 8 mm stent group (27% vs 43%, RR: 47%)
Schepis et al	Training cohort: 42; Control cohort: 53, validation cohort: 47	Multicentre, prospective, non-randomised	Underdilated (6–7 mm) vs ≥8 mm PTFE-SGs (training vs control cohort). 6 mm in the validation cohort	OHE within 6 months post-TIPSS, shunt dysfunction, recurrent ascites or variceal bleeding, portocaval pressure gradient reduction	Significant decrease in HE incidence in the underdilated stent group (27% vs 54%), with no differences regarding recurrence of variceal bleeding or ascites. Results were confirmed in the validation cohort
Riggio et al	45	Single centre RCT	8 mm vs 10 mm covered stents	OHE	8 mm stents reduced the efficacy of TIPSS-related symptom control. No differences regarding HE occurrence between both groups
Praktinkjo et al	114	Single center, prospective case-control study	VIATORR Controlled Expansion stent graft (VCX) vs underdilated VIATORR TIPSS stent graft (both underdilated 8 mm)	Survival	Significant decrease of pos-TIPSS HE, uncontrolled ascites, heart failure and improved 1-y survival in the VCX group

Abbreviations: AEs, adverse events; OHE, overt hepatic encephalopathy; OR, odds ratio; PTFE, polytetrafluoroethylene; PTFE-SGs, polytetrafluoroethylene-covered stent grafts.; RCT, randomised controlled trial; RR, risk reduction; TFS, transplant-free survival; TIPSS, transjugular intrahepatic portosystemic shunt.
PTFE-covered stent grafts has become standard in the recent decade and is highly recommended. While initially a higher risk of post-TIPSS HE for covered stent grafts in comparison to bare metal stents has been reported, these results could not be confirmed in external validation as the HE rate did not differ significantly. Furthermore, a recent meta-analysis of the latest randomised controlled trials (RCTs) identified an even lower rate of HE in patients treated with covered stents. From a pathophysiological point of view, this may be explained by the fact that TIPSS dysfunction/occlusion may expose patients to new decompensation events like variceal bleeding or ascites complicated by SBP, consequently triggering HE. Thus, covered stents should be favoured, in particular, to reduce the risk of TIPSS dysfunction/occlusion. Nevertheless, investigations regarding the optimal diameter and the grade of dilation of PTFE-covered stent grafts are still ongoing.

In 2017, a RCT including 127 patients undergoing TIPSS placement for secondary prophylaxis of variceal bleeding showed that 8 mm covered stents were equally effective in preventing rebleeding within 2 years but were associated with a 47% reduction of the risk of spontaneous OHE compared to 10 mm stents. Though, there was only a trend for a lower rate of overall HE in this trial (P = 0.075). In contrast, another smaller RCT including 45 patients reported a significant reduction in the efficacy of TIPSS-related symptom control (particularly ascites) in patients receiving 8 mm instead of 10 mm diameter endograft, while the risk of developing HE did not differ between both groups. An additional option is the use of underdilation of nominal larger stent grafts. In particular, the underdilation of nominal 10 mm stent grafts to 8 mm. While the underdilation might be beneficial regarding the risk of post-TIPSS HE, it still offers the potential of full dilation in case of hemodynamic TIPSS failure or ineffective symptom control. A recently published study investigated the effects of a novel VIATORR Controlled Expansion stent graft (VCX), which can be specifically used underdilated on 8 mm. This novel VIATORR was compared in its underdilated form to a conventional VIATORR TIPSS stent graft in underdilated (8 mm) and nominal (10 mm) diameter regarding prognosis as well as post-TIPSS HE. Here, the authors found that patients treated with VCX had significantly lower rates of post-TIPSS HE, uncontrolled ascites and heart failure during the follow-up as well as lower 1-year mortality. This effect could be attributed to the fact that conventional VIATORR stent grafts, in contrast to VCX, are passively expanded by haemodynamics already after 6 weeks. Following these results, further underdilation has to be investigated in the future.

A prospective, multicentre (but non-randomised) trial including 95 cirrhotic patients reported a significant decrease in the occurrence of post-TIPSS HE after implantation of underdilated self-expandable PTFE-covered stent grafts with a diameter of 6–7 mm without loss of efficacy regarding recurrent variceal bleeding or ascites. These results were confirmed in an additional validation cohort of 47 patients cohort receiving PTFE stent grafts with a diameter of 6 mm.

Taken together, additional prospective and randomised trials are needed to delineate the effect of e.g. underdilated stents in more detail.

2.8 Management of post-TIPSS HE

In most cases, the treatment of acute HE after TIPSS does not differ from the treatment of OHE in patients without TIPSS. Patients with higher grades of HE (HE grade 3–4 and Glasgow coma score less than 7) should be admitted to the intensive care unit as they are usually unable to protect their airways. Importantly, infections (e.g., SBP) as a common and reversible HE trigger, should be rapidly excluded or treated in both patients with and without TIPSS.

The treatment of choice for first-line therapy of HE remains lactulose, administered orally or by enemas. There are also data indicating the usefulness of a combination therapy containing lactulose and rifaximin for the treatment of OHE. However, it has to be mentioned that the administration of rifaximin for the treatment of OHE is off-label. In patients with a hard-to-treat bout of OHE, the initiation of intravenous LOLA should be considered. Two recent studies from India indicated that the addition of LOLA could decrease the time to reverse HE. Besides drug-based therapy, catabolic states should be avoided and protein restriction should be omitted. In patients with recurrent or therapy-refractory post-TIPSS HE, stent diameter reduction or complete TIPSS occlusion are potential interventional therapies. However, TIPSS occlusion is associated with a high risk of severe (iatrogenic) complications. Especially, in patients undergoing TIPSS insertion due to variceal bleeding, the management of rebleeding is challenging. Thus, liver transplantation should always be considered in the first instance for recurrent and refractory post-TIPSS HE.

3 | CONCLUSIONS AND FUTURE DIRECTIONS

Post-TIPSS HE remains a frequent and severe post-interventional complication for patients with liver cirrhosis. However, optimised patient selection based on cognitive performance, nutritional status and liver-related factors may reduce the incidence of post-TIPSS HE. Additionally, the widespread use of stent grafts with controlled expansion with the opportunity to precisely adjust the stent diameter may be an appealing approach to improve prognosis. Regarding drug prophylaxis, it is likely that the recently published high-quality data on rifaximin to reduce post-TIPSS HE could change guideline recommendations. However, further high-quality studies, especially on the combination of lactulose and rifaximin, are urgently needed and eagerly awaited.

ACKNOWLEDGEMENT

Declaration of personal interests: Christian Labenz: travel expenses and consulting: Norgine, Merz Pharmaceuticals. Lecture fees: Norgine. Research grants: Norgine, Merz Pharmaceuticals. Peter R. Galle: Lecture fees and consulting: Merz Pharmaceuticals. The other authors disclose no potential financial or non-financial conflict of interests regarding this manuscript.

Declaration of funding interests: Funding: This work was not supported by any grant or funding source.
REFERENCES

1. Bureau C, Thabut D, Oberti F, et al. Transjugular intrahepatic portosystemic shunts with covered stents increase transplant-free survival of patients with cirrhosis and recurrent ascites. *Gastroenterology*. 2017;152:157-163.

2. Bai M, Qi X-S, Yang Z-P, Yang M, Fan D-M, Han G-H. TIPS improves liver transplantation-free survival in cirrhotic patients with refractory ascites: an updated meta-analysis. *World J Gastroenterol.* 2014;20:2704-2714.

3. Strunk H, Marinova M. Transjugulärer intrahepatischer portosystemischer Stentshunt (TIPS): pathophysiologische Grundlagen, gegenwärtige Indikationen und Ergebnisse mit Review der Literatur. *Fortschr Röntgenstr.* 2018;190:701-711.

4. García-Pagán JC, Caca K, Bureau C, et al. Early use of TIPS in patients with cirrhosis and variceal bleeding. *N Engl J Med*. 2010;362:2370-2379.

5. Vlistrict H, Amiodo P, Bajaj J, et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. *Hepatology*. 2014;60:715-735.

6. Ferenci P. Therapie der akuten und chronischen hepatisehen Enzephalopathie bei Patienten mit Leberzirrhose. *Z Gastroenterol.* 1998;36:909-916.

7. Labenz C, Toenges G, Schattenberg JM, et al. Outcome prediction of covert hepatic encephalopathy in liver cirrhosis: comparison of four testing strategies. *Clin Transl Gastroenterol*. 2020;11:e00172.

8. Acharya C, Nadhem O, Shaw J, Hassounah R, Fagan A, McGeorge S, Sterling RK, Puri F, Fuchs M, Luketic V, Sanyal AJ, Wade JB, Gilles HCS, Heuman DM, Tinsley F, Matherly S, Lee H, Siddiqui MS, Thacker LR, Bajaj JS. Liver-unrelated comorbid conditions do not affect cognitive performance or hepatic encephalopathy progression in cirrhosis. *Am J Gastroenterol* 2021;116:2385-2389. doi:10.14309/ajg.0000000000013346

9. Labenz C, Adarkwah CC, Wörns M-A, et al. Management der hepatischen Enzephalopathie in Deutschland: eine Umfrage unter Gastroenterologen und Allgemeinmedizinern. *Z Gastroenterol.* 2020;58:49-56.

10. Labenz C, Baron JS, Toenges G, et al. Prospective evaluation of the impact of covert hepatic encephalopathy on quality of life and sleep in cirrhotic patients. *Aliment Pharmacol Ther*. 2018;48:313-321.

11. Bajaj JS, Saeian K, Schubert CM, et al. Minimal hepatic encephalopathy is associated with motor vehicle crashes: the reality beyond the driving test. *Hepatology*. 2009;50:1175-1183.

12. Román E, Córdoba J, Torrens M, et al. Minimal hepatic encephalopathy is associated with falls. *Am J Gastroenterol.* 2011;106:476-482.

13. Coronado WM, Ju C, Bullen J, Kapoor B. Predictors of occurrence and risk of hepatic encephalopathy after TIPS creation: a 15-year experience. *Cardiovasc Intervent Radiol.* 2020;43:1156-1164.

14. Routhu M, Safka V, Routhu SK, et al. Observational cohort study of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt (TIPS). *Ann Hepatol*. 2017;16:140-148.

15. Riggo O, Angeloni S, Salvatori FM, et al. Incidence, natural history, and risk factors of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt with polytetrafluoroethylene-covered stent grafts. *Am J Gastroenterol*. 2008;103:2738-2746.

16. Yin X, Zhang F, Guo H, et al. A nomogram to predict the risk of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt in Cirrhotic Patients. *Sci Rep.* 2020;10:9381.

17. Seifert LL, Schindler P, Schoster M, et al. Recurrence of hepatic encephalopathy after TIPS: effective prophylaxis with combination of lactulose and rifaximin. *JCMM*. 2021;10:4763. doi:10.3390/jcm10204763

18. Somberg KA, Riegler JL, LaBerge JM, et al. Hepatic encephalopathy after transjugular intrahepatic portosystemic shunts: incidence and risk factors. *Am J Gastroenterol*. 1995;90:549-555.

19. Nicoară-Farcău O, Han G, Rudler M, et al. Effects of early placement of transjugular portosystemic shunts in patients with high-risk acute variceal bleeding: a meta-analysis of individual data. *Gastroenterology*. 2021;160:193-205.e10.

20. Rose CF, Amiodio P, Bajaj JS, et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. *J Hepatol*. 2020;73:1526-1547.

21. Pereira K, Carrion AF, Martin P, et al. Current diagnosis and management of post-transjugular intrahepatic portosystemic shunt re- febractory hepatic encephalopathy. *Liver Int*. 2015;35:2487-2494.

22. Romero-Gomez M, Jover M, Diaz-Gomez D, et al. Phosphate-activated glutaminase activity is enhanced in brain, intestine and kidneys of rats following portacaval anastomosis. *World J Gastroenterol.* 2006;12:2406-2411.

23. Bettinger D, Schultheiss M, Boettler T, Muljono M, Thimme R, Rösse M. Procedural and shunt-related complications and mortality of the transjugular intrahepatic portosystemic shunt (TIPS). *Aliment Pharmacol Ther.* 2016;44:1051-1061.

24. Zuo L, Lv Y, Wang Q, et al. Early-recurrent overt hepatic encephalopathy is associated with reduced survival in cirrhotic patients after transjugular intrahepatic portosystemic shunt creation. *J Vasc Interv Radiol*. 2019;30:148-153.e2.

25. Bai M, Qi X, Yang Z, et al. Predictors of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt in cirrhotic patients: a systematic review. *J Gastroenterol Hepatol*. 2011;26:943-951.

26. Fagioli S, Bruno R, Debernardi Venon W, et al. Consensus conference on TIPS management: techniques, indications, contraindications. *Dig Liver Dis*. 2017;49:121-137.

27. Trebicka J, Gu W, Ibáñez-Samaniego L, et al. Rebleeding and mortality risk are increased by ACLF but reduced by pre-emptive TIPS. *J Hepatol*. 2020;73:1082-1091.

28. Patidar KR, Thacker LR, Wade JB, et al. Covert hepatic encephalopathy is independently associated with poor survival and increased risk of hospitalization. *Am J Gastroenterol*. 2014;109:1757-1763.

29. Nardelli S, Gioia S, Pasquale C, et al. Cognitive impairment predicts the occurrence of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt. *Am J Gastroenterol*. 2016;111:523-528.

30. Berlioux P, Robic MA, Poisson H, et al. Pre-transjugular intrahepatic portosystemic shunts (TIPS) prediction of post-TIPS overt hepatic encephalopathy: the critical flicker frequency is more accurate than psychometric tests. *Hepatology*. 2014;59:622-629.

31. Vizzutti F, Schepis F, Arena U, et al. Transjugular intrahepatic portosystemic shunt (TIPS): current indications and strategies to improve the outcomes. *Intern Emerg Med*. 2020;15:37-48.

32. Senzolo M, Zarantonello L, Formentin C, et al. Predictive value of induced hyperammonaemia and neuropsychiatric profiling in
relation to the occurrence of post-TIPS hepatic encephalopathy. *Metab Brain Dis*. 2019;34:1803-1812.

33. Campagna F, Montagnese S, Ridola L, et al. The animal naming test: an easy tool for the assessment of hepatic encephalopathy. *Hepatology*. 2017;66:198-208.

34. Duarte-Rojo A, Allampati S, Thacker LR, et al. Diagnosis of covert hepatic encephalopathy: a multi-center study testing the utility of single versus combined testing. *MetaB Brain Dis*. 2019;34:289-295.

35. Bajaj JS, Thacker LR, Heuman DM, et al. The Stroop smartphone application is a short and valid method to screen for minimal hepatic encephalopathy. *Hepatology*. 2013;58:1112-1132.

36. Alhumaid S, Al Mutair A, Al Alawi Z, et al. Proton pump inhibitors use and risk of developing spontaneous bacterial peritonitis in cirrhotic patients: a systematic review and meta-analysis. *Gut Pathog*. 2021;13:17.

37. Nardelli S, Gioia S, Ridola L, Farcomeni A, Merli M, Riggio O. Proton pump inhibitors are associated with minimal and overt hepatic encephalopathy and increased mortality in patients with cirrhosis. *Hepatology*. 2019;70:640-649.

38. Sturm L, Bettinger D, Giesler M, et al. Treatment with proton pump inhibitors increases the risk for development of hepatic encephalopathy after implantation of transjugular intrahepatic portosystemic shunt (TIPS). *United European Gastroenterol J*. 2018;6:1380-1390.

39. Lewis DS, Lee T-H, Konanur M, et al. Proton pump inhibitor use is associated with an increased frequency of new or worsening hepatic encephalopathy after transjugular intrahepatic portosystemic shunt creation. *J Vasc Interv Radiol*. 2019;30:163-169.

40. Bajaj JS, O’Leary JG, Tandon P, et al. Targets to improve quality of care for patients with hepatic encephalopathy: data from a multicentre cohort. *Aliment Pharmacol Ther*. 2019;49:1518-1527.

41. Williams S, Louissaint J, Nirkir S, Bajaj JS, Tapper EB. Deprescribing medications that may increase the risk of hepatic encephalopathy: a qualitative study of patients with cirrhosis and their doctors. *United European Gastroenterol J*. 2021;9:193-202.

42. Nardelli S, Lattanzi B, Merli M, et al. Muscle alterations are associated with minimal and overt hepatic encephalopathy in patients with liver cirrhosis. *Hepatology*. 2019;70:1704-1713.

43. Nardelli S, Lattanzi B, Torrisi S, et al. Sarcopenia is risk factor for development of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt placement. *Clin Gastroenterol Hepatol*. 2017;15:934-936.

44. Benmassaoud A, Roccadina D, Arico F, et al. Sarcopenia does not worsen survival in patients with cirrhosis undergoing transjugular intrahepatic portosystemic shunt for refractory ascites. *Am J Gastroenterol*. 2020;115:1911-1914.

45. Plauth M, Schütz T, Buckendahl DP, et al. Weight gain after transjugular intrahepatic portosystemic shunt is associated with improvement in body composition in malnourished patients with improvement and hypermetabolism. *J Hepatol*. 2004;40:228-233.

46. Artru F, Miquet X, Azaahaf M, et al. Consequences of TIPS placement on the body composition of patients with cirrhosis and severe portal hypertension: a large retrospective CT-based surveillance. *Aliment Pharmacol Ther*. 2020;52:1516-1526.

47. Schultheiß M, Bettinger D, Thimme R, Rössle M. 30 Jahre transjugulärer intrahepatischer portosystemischer Shunt (TIPS) – Rückblick und Perspektive. *Z Gastroenterol*. 2020;58:877-889.

48. Riggio O, Masini A, Efrati C, et al. Pharmacological prophylaxis of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt: a randomized controlled study. *J Hepatol*. 2005;42:674-679.

49. Burea C, Thabut D, Jezequel C, et al. The use of rifaximin in the prevention of overt hepatic encephalopathy after transjugular intrahepatic portosystemic shunt: a randomized controlled trial. *Ann Intern Med*. 2021;174:633-640.

50. Wit K de, Schaapman JJ, Nevens F, et al. Prevention of hepatic encephalopathy by administration of rifaximin and lactulose in patients with liver cirrhosis undergoing placement of a transjugular intrahepatic portosystemic shunt (TIPS): a multicentre randomised, double blind, placebo controlled trial (PEARL trial). *BMJ Open Gastroenterol*. 2020;7:e000531.

51. Riggio O, Nardelli S, Pasquale C, et al. No effect of albumin infusion on the prevention of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt. *Metab Brain Dis*. 2016;31:1275-1281.

52. Patel RK, Chandel K, Tripathy TP, Mukund A. Complications of transjugular intrahepatic portosystemic shunt (TIPS) in the era of the stent graft – what the interventionists need to know? *Eur J Radiol*. 2021;144:109986.

53. Tripathi D, Stanley AJ, Hayes PC, et al. Transjugular intrahepatic portosystemic stent-shunt in the management of portal hypertension. *Gut*. 2020;69:1173-1192.

54. Tripathi D, Helmy A, Macbeth K, et al. Ten years’ follow-up of 472 patients following transjugular intrahepatic portosystemic stent-shunt insertion at a single centre. *Eur J Gastroenterol Hepatol*. 2004;16:9-18.

55. Sommer CM, Gockner TL, Stampfl U, et al. Technical and clinical outcome of transjugular intrahepatic portosystemic stent shunt: bare metal stents (BMS) versus viatorr stent-grafts (VSG). *Eur J Radiol*. 2012;81:2273-2280.

56. Qi X, Tian Y, Zhang W, Yang Z, Guo X. Covered versus bare stents for transjugular intrahepatic portosystemic shunt: an updated meta-analysis of randomized controlled trials. *Ther Adv Gastroentrol*. 2017;10:32-41.

57. Wang Q, Lv Y, Bai M, et al. Eight millimetre covered TIPS does not compromise shunt function but reduces hepatic encephalopathy in preventing variceal rebleeding. *J Hepatol*. 2017;67:508-516.

58. Riggio O, Ridola L, Angeleni S, et al. Clinical efficacy of transjugular intrahepatic portosystemic shunt created with covered stents with different diameters: results of a randomized controlled trial. *J Hepatol*. 2010;53:267-272.

59. Praktiknjo M, Abu-Omar J, Chang J, et al. Controlled underdilation using novel VIATORR® controlled expansion stents improves survival after transjugular intrahepatic portosystemic shunt implanta tion. *JHEP Rep*. 2021;3:100264.

60. Pieper CC, Jansen C, Meyer C, et al. Prospective evaluation of passive expansion of partially dilated transjugular intrahepatic portosystemic shunt grafts-a three-dimensional sonography study. *J Vasc Interv Radiol*. 2017;28:117-125.

61. Schepis F, Vizzutti F, Garcia-Tsao G, et al. Under-dilated TIPS associate with efficacy and reduced encephalopathy in a prospective, non-randomized study of patients with cirrhosis. *Clin Gastroenterol Hepatol*. 2018;16:1153-1162.e7.

62. Sharma BC, Sharma P, Lunia MK, Srivastava S, Goyal R, Sarin SK. A randomized, double-blind, controlled trial comparing rifaximin plus lactulose with lactulose alone in treatment of overt hepatic encephalopathy. *Am J Gastroenterol*. 2013;108:1458-1463.

63. Sidhu SS, Sharma BC, Goyal O, Kishore H, Kaur N. L-ornithine L-aspartate in bouts of overt hepatic encephalopathy. *Hepatology*. 2018;67:700-710.

64. Jain A, Sharma BC, Mahajan B, et al. L-ornithine L-aspartate in acute treatment of severe hepatic encephalopathy: a double-blind randomised controlled trial. *Hepatology*. 2021. Online ahead of print. doi:10.1002/hep.32255.

65. Fanelli F, Salvatori FM, Rabuffi P, et al. Management of refractory hepatic encephalopathy after insertion of TIPS: long-term results of shunt reduction with hourglass-shaped balloon-expandable stent graft. *Am J Roentgenol*. 2009;193:1696-1702.

66. Kochar N, Tripathi D, Ireland H, Redhead DN, Hayes PC. Transjugular intrahepatic portosystemic stent shunt (TIPS) modification in the management of post-TIPS refractory hepatic encephalopathy. *Gut*. 2006;55:1617-1623.
67. Fonio P, Discalzi A, Calandri M, et al. Incidence of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt (TIPS) according to its severity and temporal grading classification. *Radiol Med*. 2017;122:713-721.

68. Casadaban LC, Parvinian A, Minocha J, et al. Clearing the confusion over hepatic encephalopathy after TIPS creation: incidence, prognostic factors, and clinical outcomes. *Dig Dis Sci*. 2015;60:1059-1066.

69. Yao J, Zuo L, An G, et al. Risk factors for hepatic encephalopathy after transjugular intrahepatic portosystemic shunt in patients with hepatocellular carcinoma and portal hypertension. *JGLD*. 2015;24:301-307.

70. Marchetti P, D'Avanzo C, Orsato R, et al. Electroencephalography in patients with cirrhosis. *Gastroenterology*. 2011;141:1680-1689.e2.

71. Lauridsen MM, Mikkelsen S, Svensson T, et al. The continuous reaction time test for minimal hepatic encephalopathy validated by a randomized controlled multi-modal intervention-A pilot study. *PLoS ONE*. 2017;12:e0185412.

72. Bajaj JS, Hafeezullah M, Franco J, et al. Inhibitory control test for the diagnosis of minimal hepatic encephalopathy. *Gastroenterology*. 2008;135:1591-1600.e1. doi:10.1053/j.gastro.2008.07.021

73. Montagnese S, Schiff S, Turco M, et al. Simple tools for complex syndromes: a three-level difficulty test for hepatic encephalopathy. *Dig Liver Dis*. 2012;44:957-960.

74. Acharya C, Shaw J, Duong N, et al. QuickStroop, a shortened version of EncephalApp, detects covert hepatic encephalopathy with similar accuracy within one minute. *Clin Gastroenterol Hepatol*. 2022. Online ahead of print. doi:10.1016/j.cgh.2021.12.047

How to cite this article: Gairing SJ, Müller L, Kloeckner R, Galle PR & Labenz C. Review article: post-TIPS hepatic encephalopathy—current knowledge and future perspectives. *Aliment Pharmacol Ther*. 2022;55:1265-1276. doi:10.1111//apt.16825