かしめ部の寸法がブレーキホースのシール性に及ぼす影響について

野田 尚昭*1, 金 倫基*2, 大田 健人*2
川原 啓史*2, 篠崎 貴宏*2

Effect of Dimensions of Crimped Portion upon Sealing Performance of Hydraulic Brake Hose by Applying Three-Dimensional FEM Analysis

Nao-Aki NODA*1, Bongkee KIM, Kento OTA
Hiroyumi KAWAHARA and Takahiro SHINOZAKI

*1Dept. of Mechanical Engineering, Kyushu Institute of Technology,
1-1 Sensui-cho, Tobata-ku, Kitakyushu-si, 804-8550 Japan

1. 緒 言

自動車用ブレーキホースはマスターシリンダで発生した油圧をブレーキに確実に伝達するためのホースであり、ボディとシャシー間に配属されている。両端のホースかしめ部はニップルとスリーブが一体となった金具にゴムホースを組み付け、外側から力を与えてスリーブに永久変形を加え、内面ゴムとニップルをなじませることで行う（図1）。このとき、ゴム材料は柔軟性が高い反面、非圧縮性の特性をもっているため、かしめ部の内部では圧力が急激に増大しニップルへの高い面圧によりシール性能を維持できるという特徴がある。このように、かしめホースの開発では、ホース構造・材料、ニップル形状・材料、かしめ形状などの仕様を設定するために非常に多くの時間を費やしている。ブレーキホースの問題点とし、ブレーキホースの長年の使用によると、図2に示すように、ブレーキ液がニップルと内面ゴム間に侵入し補強層内部にブレーキ液が蓄積されブレーキホースの故障の原因となることがある。また近年、自家用乗用車及び自家用軽自動車はブレーキホースの定期交換規定が廃止されたため、ブレーキホースの高い耐久性能が求められている。このような点を考慮して、最近解析も行われるようになり、著者らも先に、図2に示すように、従来主に実験データに基づいて設計されていった高圧ホースのかしめ構造を、軸対称モデルを用いて定量的に解析する手法を検討した。具体的には、複雑な編み込み状である補強層を異方性弾性体と仮定して実験結果より弾性定数を求める方法を用いて、内部ゴム
かしめ部の寸法がブレーキホースのシール性に及ぼす影響について

かしめ後のブレーキホースに引張圧縮, 曲げ, ねじりのいずれかの外力が作用した場合, 垂直応力は最大で
5.5%の減少しか見られないため, シール効果への影響はほとんど無視できるものと考えられる
(1)

かしめ部の数を一つにし, かしめ部の長さを変化させた場合, かしめ量が一定でも, かしめ部の長さが長くなると高垂直応力が生じる範囲が広くなるだけでなく, 最大垂直応力も増加することが明らかとなった
(2)
また, かしめ部の長さを一定としてかしめ部の数を変化させた場合, かしめ量が一定でもかしめ部の数が多くなるにつれて, 高い垂直応力が生じる範囲が広くなるだけでなく, 最大垂直応力自体も増加することが明らかとなった
(3)

内面ゴムとニップル間の接触面に生じる垂直応力は, ゴムの経年劣化により, 壓縮永久歪率80%(復元率20%)に達する
(4)
と, 初期に生じた垂直応力の25%まで低下する. このことにより, シール性能への悪影響が示唆された
(5)

ブレーキホースを製造する際に, かしめ金具のニップルとスリーブの接合には溶接が用いられているが, その際わずかにニップルに偏心や傾きが生じてしまうことがある. このニップルの偏心・傾きのシール性能への影響を実験的に評価することは難しい. そこで本研究では, 前報の解析手法を発展させ非軸対称条件の解析が可能な三次元モデルを利用し, そして図1に示すように, このニップルに偏心・傾きが生じた場合の, そのシール性への影響を検討する.

2. 解析モデル及び解析方法

図1に示すようにブレーキホースは内面ゴム, 補強層, 外面ゴムからなる三層である. これらの材料物性値としては軸対称モデルに使用した前報の結果を2次元モデルにも利用して解析を行う. 図3に外面ゴムと内面ゴムの応力ひずみ関係の実測値を示す. 本研究の解析には, 非線形モデルのArruda-Boyce材料モデルを使用する. また, ブレーキホースにはホースの内部に補強用として糸が使用されているが, 解析用ソフトウェア上で図4のように糸一本一本を定義するのが現状では不可能であるため, 本解析では補強層を異方性弾性材料として定義する. そして, 補強層の材料定数である$E_r, E_θ, ν_rθ, ν_θz, ν_zr$を変化させ, 解析形状がかしめ後断面形状と最も一致する材料定数を求め, 補強層のモデルとして使用する. ホースとニップル外面およびスリーブ内面は接触し,

![Fig.1 Hydraulic brake hose with crimping](image1)

(a) Hydraulic brake hose

(b) Exclude sleeve

![Fig2 Hydraulic brake hose cutting](image2)
かしめ部の寸法がブレーキホースのシール性に及ぼす影響について

においており、その摩擦係数を\(\mu\)とする。表1は第1かしめ部と第2かしめ部の内面ゴム、補強層、外面ゴムの厚さを補強層の弾性定数を変えて実験結果と比べたものである。表1より補強層の材料定数は\(E_r, E_\theta, E_z\)のときに誤差が最大でも\(-10\%以下となり最小となることが分かる。なお、補強層のポアソン比を変化させても、形状・応力共に、影響は小さいことが分かったので、\(\nu_r = \nu_\theta = \nu_z = 0.2\)とした。以上の結果を用いて解析に用いた材料のデータを表2に示す。

図5に軸対称モデルの例を示す。かしめ工具・ニップルは変形が微小なため剛体とする。そして、かしめ工具によってかしめスリーブに半径方向の強制変位（第一かしめ部は\(d_1\) [㎜]、第二かしめ部は\(d_2\) [㎜]）が与えられるものとした。評価方法は、シール性能に影響する大きな要因として、ニップル外面と内面ゴム間に生じる垂直応力に注目する。すなわち、この垂直応力が十分に大きければニップルと内面ゴム間にブレーキ液が侵入しにくく、ブレーキホースの高耐久・信頼性の向上につながると考える。

![Stress strain relation of rubbers](image1)

![Fiber Reinforced](image2)

\(E_r\) [MPa]	\(E_\theta=E_z\) [MPa]	Inner rubber	Reinforcement	Outer rubber
40	100	0.436	1.044	0.461
40	80	0.43	1.03	0.483
60	100	0.404	1.103	0.437
40	120	0.444	1.055	0.445
60	120	0.415	-2.12	0.421
Experiment		0.458	1.087	0.432

Table 1 Thickness of three layers

![Stress strain relation of rubbers](image1)

\(E_r\) [MPa]	\(E_\theta=E_z\) [MPa]	Inner rubber	Reinforcement	Outer rubber
40	100	0.565	1.147	0.506
40	80	0.66	1.133	0.531
60	100	0.635	1.201	0.483
40	120	0.66	1.16	0.506
60	120	0.646	1.207	0.468
Experiment		0.731	1.044	0.507
かしめ部の寸法がブレーキホースのシール性に及ぼす影響について

Table 2 Material data used in FEM analysis

Material	Young’s modulus [MPa]	Poisson’s ratio
Outer Rubber EPDM	Use of experimental data	Use of experimental data
Inner Rubber EPDM	Use of experimental data	Use of experimental data
Fiber reinforcement in the r-direction	PVA 40	0.2
Fiber reinforcement in the θ- and z-directions	PVA 100	0.2
Sleeve S10C	207000	0.29
Nipple and Tool	Rigid body	

図 6に解析に用いた 3次元モデルを示す。内面ゴム、補強層、外面ゴムはメッシュで示しており、ニップル、スリーブは剛体と仮定したときの表面を示している。これらモデルは円周方向に分割されている。図 7(a)に前報で使用したスリーブありの軸対称モデル、図 7(b)にかしめ後のスリーブ形状を剛体として押し付ける軸対称モデルを示す。図 6の3次元FEMのθ一定の断面に注目すると、図 7(b)と図 6のメッシュは一致する。図 8に図 7(a)(b)のモデルの解析結果を示す。すなわち、青線はスリーブの変形を考慮した場合のニップル-内面ゴム間の垂直応力、赤線はかしめ後のスリーブ形状を剛体として押し付ける場合の垂直応力を示している。これらを比較すると、最大垂直応力は14.4[MPa]と15.1[MPa]となり相対誤差は最大で約4.8%の誤差で一致する。3次元解析において、要素数及び計算時間を節約する必要があるため、3次元解析では図9のようにホースの外側からスリーブの最終形状（剛体）で周方向から締め付ける解析方法を用いる。なお、ニップルに偏心、傾きがあっても、スリーブの剛性が高いため、かしめ後の最終形状に違いはないと確認されている。なお、3次元モデルの要素数は図9の場合約260である。3次元解析における評価方法も、シール性能に影響を及ぼす要因として、ニップル表面と内面ゴム間に生じる垂直応力で評価を行う。
かしめ部の寸法がブレーキホースのシール性に及ぼす影響について

Fig.6 FEM model for 3D Analysis

Fig.7 (a) Real sleeve model

Fig.7 (b) Rigid sleeve model

Fig.8 Effect of sleeve

Fig.9 Example for real tool shape
3. かしめ部の加工誤差がシール効果へ及ぼす影響

図10に示すように溶接されたニップルに偏心および傾きが生じた時のシール性への影響について検討を行う。まず表1に示す偏心・傾きの組合せにおいて、モデルを作成し解析を行う。すなわち、公差のニップルに偏心と傾きが無い場合を基準として、ニップル内の垂直応力の減少を比較する。ここで、θ1、θ2は、公差値を超えた値である。図11にまず、θ1=θ2の場合のニップル・内面ゴム間の垂直応力を示す。第一かしめ部において、θ1=θ2の最大垂直応力が生じている。その結果は軸対称モデルの結果と0.1%以内で一致しており、次元解析の精度が十分高いことが確認できた。また、このとき使用した次元モデルのメッシュを図10に示す。

3.1 偏心による影響

図10に示すように溶接されたニップルに偏心がある場合の、偏心量をさまざまな変化させたニップル・内面ゴム間の垂直応力σrを示す。偏心の影響で垂直応力は軸対称ではないため、ニップル上面の垂直応力σrを青い線で、ニップル下面の垂直応力σrを赤い線で示す。比較のためθ1=θ2の場合の垂直応力σrを黒い破線で示す。シール性の評価のため、ブレーキオイルが侵入すると考えられるσrが最も低い位置の垂直応力に注目する。公差値を超えた値であるだけ偏心したときの結果を示した図10を見るとθ1=θ2の場合と比べ第1かしめ部では垂直応力がθ1減少して

Eccentricity e [mm]	0	e1
Inclination angle θ [°]	0	θ1

Table 3 Condition of manufacturing error

(The dimensional e1 and angle θ1 are larger than upper limit of tolerance)
かしめ部の寸法がブレーキホースのシール性に及ぼす影響について

図12(a)～(d)を見ると偏心量が大きくなるにつれて、偏心の影響による垂直応力の減少率も増加していることがわかる。そのニップルの偏心量と第1かしめ部のニップル下面の最大垂直応力の関係を図13に示す。偏心量が増加しているのに比例して、最大垂直応力が減少しているのがわかる。偏心量の時に最大垂直応力が約30%低下しており、ここまで製造誤差が大きくなるとシール性能に悪影響を及ぼす可能性が考えられる。

Fig.12 Effect of various dimension e on σr(cont.)
3・2 傾きによる影響

図にカップルに傾きがある場合の、傾き量をさまざまな変化させたカップルと内面ゴム間の垂直応力σを示す。傾きの影響で垂直応力は軸対称ではないため、カップル上面の垂直応力σを青い線で、カップル下面の垂直応力σを赤い実線で示す。比較のため図の場合は垂直応力σを黒い破線で示す。シール性の評価のため、ブレーキオイルが侵入すると考えられるσが最も低い部分の垂直応力に注目する。公差上限を超えた値であるθだけ傾けたときの結果を示した図を見ると傾きの場合は垂直応力が減少していることがわかる。また、図を見ると傾き量が大きくなるにつれて傾きの影響による垂直応力の減少率も増加していることがわかる。そのニップルの傾き量と第1かしめ部のカップル下面の最大垂直応力の関係を図に示す。傾き量が増加しているのに比例して、最大垂直応力が増加していることがわかる。傾き量θの時は最大垂直応力が約30%低下しており、ここまで製造誤差が大きくなるとシール性能に悪影響を及ぼす可能性がある。
かしめ部の寸法がブレーキホースのシール性に及ぼす影響について

3.3 偏心と傾きによる影響

図16にノップルに傾きと偏心がある場合のノップル内面ゴム間の垂直応力σを示す。偏心と傾きの影響で垂直応力は軸対称ではないため、ノップル上面の垂直応力σを赤い線で、ノップル下面の垂直応力σを青い線で示す。比較のためθ=0の場合の垂直応力σを黒い破線で示す。シール性の評価のため、危険と考えられる最も低い部分の垂直応力を注目する。図16を見るとθ=0の場合と比べ第2かしめ部では垂直応力が22%減少していることがわかる。

Fig.14 Effect of various inclination on σ

Fig.15 Effect of angle θ on σ
かしめ部の寸法がブレーキホースのシール性に及ぼす影響について

[図16] 偏心と傾きの影響（表3のCase 4）

結 言

本研究では、製造する際に生じるかしめ金具の加工誤差がブレーキホースのシール性能への影響を3次元FEM解析により考察した。結論をまとめると以下のようになる。

(1) ニップルとスリーブを溶接した際、ニップルに偏心が生じたときのシール性への影響を解析した結果、公差上限を超えた値でニップルと内面ゴム間の垂直応力が約30%減少することが明らかとなり、ニップルの偏心によりシール効果が低下する可能性が示唆された。

(2) ニップルとスリーブを溶接した際、ニップルに傾きが生じたときのシール性への影響を解析した結果、公差上限を超えた値でニップルと内面ゴム間の垂直応力が約30%減少することが明らかとなり、ニップルの傾きによりシール効果が低下する可能性が示唆された。

(3) 3次元モデルの解析結果と2次元軸対称モデルの解析結果を比較すると第1かしめ部において0.1%以内で一致していることが確認でき、計算時間節約のためにスリーブの変形を考慮した場合と、かしめ後のスリーブ形状を剛体として押し付ける場合の解析結果を比較すると、両者は最大で約1%の誤差で一致した。

謝 辞

ブレーキホースに関するデータの提供とご指導を賜った三菱自動車工業株式会社ならびに、株式会社メイジフローシステム関係各位に深くお礼申し上げます。文献

(1) Ishikawa, T., Hagiwara, H., Uno, A., Brake Hose with High Durability and Low-cost, Hitachi Cable, No.20 (2001), pp.137-142.
かしめ部の寸法がブレーキホースのシール性に及ぼす影響について

(2) Ishii, K., FEM Analysis for Crimp of Hydraulic Brake Hose, *Technical Report of Meiji Rubber & Chemical*, Vol.44 (2003), pp.3-6.

(3) 野田尚昭, 吉村慎平, 川原啓史, 露成正一, 自動車用ブレーキホースかしめ部のシール性に関する FEM 解析とその寿命予測, 日本機械学会論文集 A 編, Vol. 74, No. 748 (2008), pp. 54-59.

(4) 野田尚昭, 大田健人, 金嵜基, 自動車用ブレーキホースかしめ部の形状がシール性に及ぼす影響について, 社団法人自動車技術会学術講演会前刷集 No. 124-10, pp.7-10.