Abstract

Theoretical g-factor calculations for the first excited $^2P_{3/2}$ state of boronlike ions in the range $Z=10-20$ are presented and compared to the previously published values. The first-order interelectronic-interaction contribution is evaluated within the rigorous QED approach in the effective screening potential. The second-order contribution is considered within the Breit approximation. The QED and nuclear recoil corrections are also taken into account.
I. INTRODUCTION

Significant progress in the \(g \)-factor studies in highly charged ions has been achieved in the last two decades [1, 2]. Contemporary experiments have reached the precision of \(10^{-9} - 10^{-11} \) for hydrogenlike and lithiumlike ions [3–7]. One of the highlights in this field is the most accurate determination of the electron mass from the combined experimental and theoretical studies of the \(g \) factor of hydrogenlike ions [8]. Extension of these studies to lithiumlike ions has provided the stringent test of the many-electron QED effects [7, 9–11]. The high-precision \(g \)-factor measurement of the two isotopes of lithiumlike calcium [10] and the most elaborate evaluation of the nuclear recoil effect for this system [12] have demonstrated a possibility to study the bound-state QED effects beyond the Furry picture in the strong field regime [13]. It is expected that \(g \)-factor studies in few-electron ions will be able to provide an independent determination of the fine structure constant \(\alpha \) [14–16].

The ALPHATRAP experiment at the Max-Planck-Institut für Kernphysik (MPIK) is capable of the ground-state \(g \)-factor measurements for wide range of few-electron ions, including boronlike ones [1]. The ARTEMIS project at GSI implements the laser-microwave double-resonance spectroscopy of the Zeeman splitting in both ground \([(1s)^2(2s)^22p] \, ^2P_{1/2} \) and first excited \([(1s)^2(2s)^22p] \, ^2P_{3/2} \) states of middle-\(Z \) boronlike ions [17, 18]. In particular, boronlike argon is chosen as the first candidate for these measurements. Theoretical investigations of the \(g \) factor of boronlike ions were performed recently in Refs. [19–24]. Various methods have been used in these works for evaluation of the interelectronic-interaction contribution, including the large-scale configuration-interaction approach in the basis of the Dirac-Fock-Sturm orbitals (CI-DFS) [19, 21], the GRASP2K [20] and MCDFGME [22] packages based on relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method, the second-order perturbation theory (PT) in effective screening potential [21, 23], and the high order coupled cluster (CC) method [24]. For the ground-state \(g \) factor of boronlike argon the results of the CI-DFS, PT, and CC approaches are in agreement, while the both MCDHF results reveal a deviation on the level of \(10^{-4} \). In the present work, we extend the second-order perturbation-theory calculations to the \(^2P_{3/2} \) state. The QED and nuclear recoil corrections are also taken into account. The results for boronlike ions in the range \(Z=10–20 \) are presented and compared to the previously published values [19, 22, 24]. We use the relativistic units \((\hbar = c = 1) \) and the Heaviside charge unit \((\alpha = e^2/(4\pi), e < 0) \).
II. METHODS AND RESULTS

The total g-factor value of boronlike ion with zero nuclear spin can be written as

$$g = g_D + \Delta g_{\text{int}} + \Delta g_{\text{QED}} + \Delta g_{\text{rec}} + \Delta g_{\text{NS}} , \tag{1}$$

where Δg_{int}, Δg_{QED}, Δg_{rec}, and Δg_{NS} are the interelectronic-interaction, QED, nuclear recoil, and nuclear size corrections, respectively. The Dirac value g_D for the $2p_{3/2}$ state is

$$g_D = \frac{4}{15} \left[2\sqrt{4 - (\alpha Z)^2} + 1 \right] = \frac{4}{3} - \frac{2}{15} (\alpha Z)^2 - \ldots . \tag{2}$$

The interelectronic-interaction correction is considered within the perturbation theory. The first-order term $\Delta g_{\text{int}}^{(1)}$ (one-photon exchange) is calculated within the rigorous QED approach, i.e., to all orders in αZ. The second-order term $\Delta g_{\text{int}}^{(2)}$ (two-photon exchange) is considered within the Breit approximation. The general formulae for this contribution can be found from the complete quantum electrodynamical formulae for the two-photon-exchange diagrams presented in Ref. [25]. Care should be taken to account properly for the contribution of the negative-energy states, since it is comparable in magnitude to the positive-energy counter-part.

We incorporate the effective screening potential in the zeroth-order approximation. This improves the convergence of the perturbation theory and provides a reliable estimation of the higher-order remainder. The corresponding counter-terms should be considered in calculations of the first- and second-order contributions. The difference between the g-factor values in the screening and pure Coulomb potentials is termed as the zeroth-order contribution $\Delta g_{\text{int}}^{(0)}$. We use the following well-known screening potentials: core-Hartree (CH), Dirac-Hartree (DH), Kohn-Sham (KS), and Dirac-Slater (DS), see, e.g., Ref. [26] for more details.

In Table I we present the interelectronic-interaction contributions to the g-factor multiplied by 10^6. The total value of Δg_{int} is found as,

$$\Delta g_{\text{int}} = \Delta g_{\text{int}}^{(0)} + \Delta g_{\text{int}}^{(1)} + \Delta g_{\text{int}}^{(2)} , \tag{3}$$

where the first-order correction $\Delta g_{\text{int}}^{(1)}$ is divided into the following three parts:

$$\Delta g_{\text{int}}^{(1)} = \Delta g_{\text{int}}^{(1)[+]} + \Delta g_{\text{int}}^{(1)[-]} + \Delta g_{\text{int}}^{(1)\text{[QED]}} . \tag{4}$$
The positive-energy-states ($\Delta g_{\text{int}}^{(1)[+]}$) and negative-energy-states ($\Delta g_{\text{int}}^{(1)[−]}$) contributions are calculated in the Breit approximation. The QED contribution ($\Delta g_{\text{int}}^{(1)\text{[QED]}}$) is the difference between the rigorous QED and the Breit-approximation values.

As the final results for Δg_{int}, we take the values calculated in the Kohn-Sham potential. The uncertainty due to unknown higher-order contributions can be estimated as the spread of the obtained results for different potentials. As one can see from the Table I, the maximal difference of the values of Δg_{int} varies between 1.8×10^{-6} for $Z=10$ and 0.8×10^{-6} for $Z=20$. Interelectronic-interaction corrections of the third and higher orders have been evaluated for lithiumlike ions within the CI-DFS [9] and CI [11] methods. The results obtained in these papers suggest that this estimation of the uncertainty is quite reliable.

The one-loop QED correction $\Delta g_{\text{QED}}^{(1)}$ is given by the sum of the self-energy and vacuum-polarization contributions,

$$\Delta g^{(1)}_{\text{QED}} = \Delta g_{\text{SE}} + \Delta g_{\text{VP}}.$$ \hspace{1cm} (5)

The self-energy correction was calculated to all orders in αZ for both $2p_{1/2}$ and $2p_{3/2}$ states in the range $Z=1$–12 in Ref. [27]. This values can be extrapolated to a good accuracy by the following αZ-expansion [27, 28],

$$\Delta g_{\text{SE}} = \frac{\alpha}{\pi} \left[b_{00} + \frac{(\alpha Z)^2}{4} b_{20} + \frac{(\alpha Z)^4}{8} \{\ln[(\alpha Z)^{-2}]b_{41} + b_{40}\} \right].$$ \hspace{1cm} (6)

The values $b_{00}(2p_{1/2}) = −1/3$ and $b_{00}(2p_{3/2}) = 1/3$ have long been known [29, 30]. The values $b_{20}(2p_{1/2}) = 0.48429$ and $b_{20}(2p_{3/2}) = 0.59214$ have been found in Ref. [28]. Our fitting procedure based on the least squares method reproduces these coefficients if they are taken as unknown, which serves as a check of its consistency. In this way we extrapolate the results of Ref. [27] up to $Z=20$. In addition, we estimate the screening correction for the $2p_{3/2}$ state employing the effective nuclear charge Z_{eff} instead of Z in Eq. (6). The effective nuclear charge Z_{eff} is found from our rigorous calculations of the self-energy correction for the $2p_{1/2}$ state with an effective screening potential [23]: Eq. (6) with Z_{eff} should reproduce the result obtained with the Kohn-Sham potential. The screening shift $Z - Z_{\text{eff}}$ lies in the range 1.3–1.7 for the ions under consideration. We ascribe the 100% uncertainty to the screening correction obtained in this rather approximate way.

The dominant contribution of the vacuum polarization is given by the two-electron diagrams where the vacuum-polarization potential acts on the $1s$ and $2s$ electrons. This contribution was estimated as 5.5×10^{-9} for $Z=18$ in Ref. [19], which is much smaller than
the total theoretical uncertainty. The two-loop contribution $\Delta g_{\text{QED}}^{(2)}$ is represented by its zeroth-order term of the αZ-expansion \[30\].

The nuclear recoil effect in boronlike argon was calculated in Refs. \[19, 21\] within the Breit approximation to zeroth and first orders in $1/Z$. Systematic calculations of this effect for the $2p_{1/2}$ state in the range $Z=10–20$ were performed in Ref. \[31\]. Recently, these calculations have been extended to $Z=20–92$ including the leading-order QED contributions beyond the Breit approximation \[32\]. In the present paper, we evaluate this effect for the $2p_{3/2}$ state with the relativistic recoil operators to zeroth order in $1/Z$ with the Kohn-Sham effective screening potential. The leading-order term of the finite-nuclear-size correction can be written as \[33\]

$$\Delta g_{\text{NS}} = \frac{(\alpha Z)^6}{720} m^4 \langle r^4 \rangle. \quad (7)$$

For $Z=10–20$ it gives the values of the order $10^{-18}–10^{-16}$ which is negligible at the present level of accuracy.

The individual contributions and the total g-factor values for the $2p_{3/2}$ state of boronlike ions in the range $Z=10–20$ are presented in Table \[II\]. The values of Δg_{int} calculated in the Kohn-Sham potential are used. Our results for argon are in agreement with the PT results from Refs. \[19, 21\] and with the CC results from Ref. \[24\]. The difference between the data from Ref. \[20\] and those of the present work ranges from 0.000042 for $Z=10$ to 0.000094 for $Z=20$. The difference between the data from Ref. \[22\] and those of the present work ranges from 0.000067 for $Z=14$ to 0.000102 for $Z=20$. The origin of this disagreement is not clear at present. We suppose that the negative-energy-states contribution was not taken into account completely in Refs. \[20, 22\].

Zeeman splitting of the $2p_j$ states acquires significant nonlinear contributions. In particular, the second- and third-order terms in magnetic field can be observed in forthcoming measurements for boronlike argon \[17, 19\]. Recently, the systematic calculations of these terms for the wide range of boronlike ions have been presented by our group \[34\]. The most important contribution for the $2p_{3/2}$ state is the shift of the levels with $m_j = \pm 1/2$ proportional to B^2. It can be represented as the m_j-dependent g-factor contribution varying from $\pm 1.52 \times 10^{-4}$ for $Z=10$ to $\pm 5.68 \times 10^{-6}$ for $Z=20$ at the field of 1 T (it scales linearly with B). For more detailed description of the second- and third-order contributions see Ref. \[34\].
III. CONCLUSION

In conclusion, the g factor of the $^2P_{3/2}$ state of boronlike ions in the range $Z=10–20$ has been evaluated with an uncertainty on the level of 10^{-6}. The leading interelectronic-interaction correction has been calculated to all orders in αZ. The higher-order interelectronic-interaction and nuclear-recoil effects have been taken into account within the Breit approximation. The one-loop self-energy correction has been found from extrapolation of the previously published high-precision results for $Z=1–12$ with an approximate account for screening.

ACKNOWLEDGEMENTS

The work was supported in part by RFBR (Grant No. 16-02-00334), by DFG (Grant No. VO 1707/1-3), by SPbSU-DFG (Grant No. 11.65.41.2017 and No. STO 346/5-1), and by SPbSU (COLLAB 2018: 28220914). V.A.A. acknowledges the support by the German-Russian Interdisciplinary Science Center (G-RISC). The numerical computations were performed at the St. Petersburg State University Computing Center.

[1] S. Sturm, M. Vogel, F. Köhler-Langes, W. Quint, K. Blaum, and G. Werth, Atoms 5, 4 (2017).
[2] V. M. Shabaev, D. A. Glazov, G. Plunien, and A. V. Volotka, J. Phys. Chem. Ref. Data 44, 031205 (2015).
[3] H. Häffner, T. Beier, N. Hermanspahn, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, and G. Werth, Phys. Rev. Lett. 85, 5308 (2000).
[4] J. Verdú, S. Djekić, S. Stahl, T. Valenzuela, M. Vogel, G. Werth, T. Beier, H.-J. Kluge, and W. Quint, Phys. Rev. Lett. 92, 093002 (2004).
[5] S. Sturm, A. Wagner, B. Schabinger, J. Zatorski, Z. Harman, W. Quint, G. Werth, C. H. Keitel, and K. Blaum, Phys. Rev. Lett. 107, 023002 (2011).
[6] S. Sturm, A. Wagner, M. Kretzschmar, W. Quint, G. Werth, and K. Blaum, Phys. Rev. A 87, 030501 (2013).
[7] A. Wagner, S. Sturm, F. Köhler, D. A. Glazov, A. V. Volotka, G. Plunien, W. Quint, G. Werth, V. M. Shabaev, and K. Blaum, Phys. Rev. Lett. 110, 033003 (2013).
[8] S. Sturm, F. Köhler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C. H. Keitel, and K. Blaum, Nature 506, 467 (2014).

[9] A. V. Volotka, D. A. Glazov, V. M. Shabaev, I. I. Tupitsyn, and G. Plunien, Phys. Rev. Lett. 112, 253004 (2014).

[10] F. Köhler, K. Blaum, M. Block, S. Chenmire, S. Eliseev, D. A. Glazov, M. Goncharov, J. Hou, A. Kracke, D. A. Nesterenko, Yu. N. Novikov, W. Quint, E. Minaya Ramirez, V. M. Shabaev, S. Sturm, A. V. Volotka, and G. Werth, Nat. Commun. 7, 10246 (2016).

[11] V. A. Yerokhin, K. Pachucki, M. Puchalski, Z. Harman, and C. H. Keitel, Phys. Rev. A 95, 062511 (2017).

[12] V. M. Shabaev, D. A. Glazov, A. V. Malyshev, and I. I. Tupitsyn, Phys. Rev. Lett. 119, 263001 (2017).

[13] A. V. Malyshev, V. M. Shabaev, D. A. Glazov, and I. I. Tupitsyn, JETP Letters 106, 765 (2017).

[14] V. M. Shabaev, D. A. Glazov, N. S. Oreshkina, A. V. Volotka, G. Plunien, H.-J. Kluge, and W. Quint, Phys. Rev. Lett. 96, 253002 (2006).

[15] A. V. Volotka and G. Plunien, Phys. Rev. Lett. 113, 023002 (2014).

[16] V. A. Yerokhin, E. Berseneva, Z. Harman, I. I. Tupitsyn, and C. H. Keitel, Phys. Rev. Lett. 116, 100801 (2016).

[17] D. von Lindenfels, M. Wiesel, D. A. Glazov, A. V. Volotka, M. M. Sokolov, V. M. Shabaev, G. Plunien, W. Quint, G. Birkl, A. Martin, and M. Vogel, Phys. Rev. A 87, 023412 (2013).

[18] M. Vogel, M. S. Ebrahimi, Z. Guo, A. Khodaparast, G. Birkl, and W. Quint, Annalen der Physik, 1800211 (2018).

[19] D. A. Glazov, A. V. Volotka, A. A. Schepetnov, M. M. Sokolov, V. M. Shabaev, I. I. Tupitsyn, and G. Plunien, Phys. Scr. T156, 014014 (2013).

[20] S. Verdebout, C. Nazé, P. Jönsson, P. Rynkun, M. Godefroid, and G. Gaigalas, At. Data Nucl. Data Tables 100, 1111 (2014).

[21] A. A. Schepetnov, D. A. Glazov, A. V. Volotka, V. M. Shabaev, I. I. Tupitsyn, and G. Plunien, J. Phys. Conf. Ser. 583, 012001 (2015).

[22] J. P. Marques, P. Indelicato, F. Parente, J. M. Sampaio, and J. P. Santos, Phys. Rev. A 94, 042504 (2016).
[23] V. A. Agababaev, D. A. Glazov, A. V. Volotka, D. V. Zinenko, V. M. Shabaev, and G. Plunien, J. Phys. Conf. Ser., in press.

[24] D. E. Maison, L. V. Skripnikov, and D. A. Glazov, arXiv:1811.07986.

[25] A. V. Volotka, D. A. Glazov, O. V. Andreev, V. M. Shabaev, I. I. Tupitsyn, and G. Plunien, Phys. Rev. Lett. 108, 073001 (2012).

[26] J. Sapirstein and K. T. Cheng, Phys. Rev. A 66, 042501 (2002).

[27] V. A. Yerokhin and U. D. Jentschura, Phys. Rev. A 81, 012502 (2010).

[28] U. D. Jentschura, Phys. Rev. A 81, 012512 (2010).

[29] S. J. Brodsky and R. G. Parsons, Phys. Rev. 163, 134 (1967).

[30] H. Grotch and R. Kashuba, Phys. Rev. A 7, 78 (1973).

[31] D. A. Glazov, A. V. Malyshev, V. M. Shabaev, and I. I. Tupitsyn, Opt. Spectrosc. 124, 457 (2018).

[32] I. A. Aleksandrov, D. A. Glazov, A. V. Malyshev, V. M. Shabaev, and I. I. Tupitsyn, arXiv:1811.01872.

[33] D. A. Glazov and V. M. Shabaev, Phys. Lett. 297, 408 (2002).

[34] A. S. Varentsova, V. A. Agababaev, D. A. Glazov, A. M. Volchkova, A. V. Volotka, V. M. Shabaev, and G. Plunien, Phys. Rev. A 97, 043402 (2018).
Table I: Interelectronic-interaction correction to the g factor of boronlike ions in the $^{2}P_{3/2}$ state.

The terms of the zeroth ($\Delta g_{\text{int}}^{(0)}$), first ($\Delta g_{\text{int}}^{(1)}$), and second ($\Delta g_{\text{int}}^{(2)}$) orders of perturbation theory obtained with the core-Hartree (CH), Dirac-Hartree (DH), Kohn-Sham (KS), and Dirac-Slater (DS) screening potentials. First-order term is split into the contributions of the positive-energy ($\Delta g_{\text{int}}^{(1)+}$) and negative-energy ($\Delta g_{\text{int}}^{(1)-}$) spectra calculated within the Breit approximation and the QED part ($\Delta g_{\text{int}}^{(1)[\text{QED}]}$). All numbers are in units of 10^{-6}.

	CH	DH	KS	DS
	$Z = 10$			
$\Delta g_{\text{int}}^{(0)}$	302.983	376.227	312.152	276.157
$\Delta g_{\text{int}}^{(1)+}$	−22.611	−117.851	−34.824	17.678
$\Delta g_{\text{int}}^{(1)-}$	−22.371	−2.806	−19.623	−29.741
$\Delta g_{\text{int}}^{(1)[\text{QED}]}$	−0.141	−0.111	−0.141	−0.158
$\Delta g_{\text{int}}^{(2)}$	6.256	6.889	6.580	−0.758
Δg_{int}	264.116	262.348	264.143	263.178
	$Z = 12$			
$\Delta g_{\text{int}}^{(0)}$	368.346	462.044	379.402	334.176
$\Delta g_{\text{int}}^{(1)+}$	−27.393	−148.063	−41.786	22.005
$\Delta g_{\text{int}}^{(1)-}$	−29.402	−4.746	−26.187	−38.614
$\Delta g_{\text{int}}^{(1)[\text{QED}]}$	−0.281	−0.233	−0.282	−0.308
$\Delta g_{\text{int}}^{(2)}$	6.288	7.275	6.400	−0.441
Δg_{int}	317.559	316.277	317.547	316.819
	$Z = 14$			
$\Delta g_{\text{int}}^{(0)}$	433.852	547.842	446.756	392.322
$\Delta g_{\text{int}}^{(1)+}$	−32.164	−178.105	−48.754	26.389
$\Delta g_{\text{int}}^{(1)-}$	−36.370	−6.680	−32.691	−47.407
$\Delta g_{\text{int}}^{(1)[\text{QED}]}$	−0.489	−0.420	−0.492	−0.528
$\Delta g_{\text{int}}^{(2)}$	6.306	7.516	6.289	−0.265
Δg_{int}	371.135	370.154	371.108	370.511
	CH	DH	KS	DS
----------------	----------	----------	----------	----------
Z = 16				
$\Delta g^{(0)}_{\text{int}}$	499.514	633.710	514.250	450.613
$\Delta g^{(1)}_{\text{int}}[+]$	-36.888	-208.003	-55.691	30.839
$\Delta g^{(1)}_{\text{int}}[-]$	-43.298	-8.610	-39.151	-56.142
$\Delta g^{(1)}_{\text{int}}[\text{QED}]$	-0.780	-0.686	-0.783	-0.833
$\Delta g^{(2)}_{\text{int}}$	6.315	7.682	6.204	-0.166
Δg_{int}	424.863	424.092	424.828	424.311
Z = 18				
$\Delta g^{(0)}_{\text{int}}$	565.355	719.702	581.912	509.070
$\Delta g^{(1)}_{\text{int}}[+]$	-41.544	-237.766	-62.572	35.370
$\Delta g^{(1)}_{\text{int}}[-]$	-50.195	-10.541	-45.575	-64.829
$\Delta g^{(1)}_{\text{int}}[\text{QED}]$	-1.167	-1.043	-1.171	-1.235
$\Delta g^{(2)}_{\text{int}}$	6.316	7.804	6.132	-0.116
Δg_{int}	478.765	478.155	478.726	478.259
Z = 20				
$\Delta g^{(0)}_{\text{int}}$	631.397	805.864	532.824	567.713
$\Delta g^{(1)}_{\text{int}}[+]$	-46.116	-267.395	-69.382	39.996
$\Delta g^{(1)}_{\text{int}}[-]$	-57.065	-12.472	-51.964	-73.472
$\Delta g^{(1)}_{\text{int}}[\text{QED}]$	-1.661	-1.507	-1.668	-1.747
$\Delta g^{(2)}_{\text{int}}$	6.311	7.896	6.065	-0.101
Δg_{int}	532.866	532.386	532.824	532.134
Table II: Individual contributions to the g factor of the $^2P_{3/2}$ state of boronlike ions in the range $Z=10–20$. The values obtained with the Kohn-Sham potential are used for the interelectronic-interaction correction Δg_{int} (see Table I). The g-factor values from Refs. [20–22, 24] are given for comparison.

Ion	$2_{10}^\text{Ne}^{5+}$	$2_{12}^\text{Mg}^{7+}$
Dirac value g_D	1.332623 079	1.332310 417
Interelectronic interaction Δg_{int}	0.000264 1 (18)	0.000317 5 (13)
One-loop QED $\Delta g_{\text{QED}}^{(1)}$	0.000775 7 (5)	0.000776 3 (7)
Two-loop QED $\Delta g_{\text{QED}}^{(2)}$	−0.000001 2	−0.000001 2
Nuclear recoil Δg_{rec}	−0.000008 9 (15)	−0.000007 8 (11)
Total value g	1.333652 8 (23)	1.333394 1 (17)
g from Ref. [20]	1.333695	1.333448

Ion	$2_{14}^\text{Si}^{9+}$	$3_{16}^\text{S}^{11+}$
Dirac value g_D	1.331940 789	1.331544 136
Interelectronic interaction Δg_{int}	0.000371 1 (10)	0.000424 8 (8)
One-loop QED $\Delta g_{\text{QED}}^{(1)}$	0.000777 2 (9)	0.000778 2 (10)
Two-loop QED $\Delta g_{\text{QED}}^{(2)}$	−0.000001 2	−0.000001 2
Nuclear recoil Δg_{rec}	−0.000006 8 (8)	−0.000006 1 (6)
Total value g	1.333081 1 (16)	1.332709 8 (14)
g from Ref. [20]	1.333143	1.332783
g from Ref. [22]	1.333148 (7)	1.332788 (8)
	\(^{40}\text{Ar}^{13+}\)	\(^{40}\text{Ca}^{15+}\)
----------------------	---------------------------	---------------------------
Dirac value \(g_D\)	1.331 030 389	1.330 489 471
Interelectronic interaction \(\Delta g_{\text{int}}\)	0.000 478 7 (6)	0.000 532 8 (7)
One-loop QED \(\Delta g_{\text{QED}}^{(1)}\)	0.000 779 5 (12)	0.000 780 9 (13)
Two-loop QED \(\Delta g_{\text{QED}}^{(2)}\)	-0.000 001 2 (1)	-0.000 001 2 (1)
Nuclear recoil \(\Delta g_{\text{rec}}\)	-0.000 004 9 (4)	-0.000 004 9 (4)
Total value \(g\)	1.332 282 5 (14)	1.331 797 1 (15)
\(g\) from Ref. [20]	1.332 365	1.331 891
\(g\) from Ref. [22]	1.332 372 (1)	1.331 899 (7)
\(g\) from Ref. [21]	1.332 282 (3)	
\(g\) from Ref. [24]	1.332 286	