Phylogeny and taxonomy of two new Plectosphaerella (Plectosphaerellaceae, Glomerellales) species from China

Zhi-Yuan Zhang¹, Wan-Hao Chen², Xiao Zou¹, Yan-Feng Han¹, Jian-Zhong Huang³, Zong-Qi Liang¹, Sunil K. Deshmukh⁴

¹ Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China ² Department of Microbiology, Guiyang College of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China ³ Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350108, Fujian, China ⁴ TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road 110003, New Delhi, India

Corresponding author: Yan-Feng Han (swallow1128@126.com)

Academic editor: Danny Haelewaters | Received 30 May 2019 | Accepted 28 July 2019 | Published 7 August 2019

Citation: Zhang Z-Y, Chen W-H, Zou X, Han Y-H, Huang J-Z, Liang Z-Q, Deshmukh SK (2019) Phylogeny and taxonomy of two new Plectosphaerella (Plectosphaerellaceae, Glomerellales) species from China. MycoKeys 57: 47–60. https://doi.org/10.3897/mycokeys.57.36628

Abstract
The genus Plectosphaerella is the largest genus in the family Plectosphaerellaceae. Some species are plant pathogens, whereas others are soil-borne. Seven Plectosphaerella isolates were collected from various locations in the southwest of China. Using multi-locus phylogenetic (LSU, ITS, EF1α, RPB2) analyses combined with morphological characteristics, two new species, Plectosphaerella guizhouensis sp. nov. and Plectosphaerella nauculaspora sp. nov. are described, illustrated and compared with related species.

Keywords
Filamentous fungi, Plectosphaerellaceae, Multi-locus, Morphology, Taxonomy

Introduction

The genus Plectosphaerella Kleb., established in 1929, is the largest genus in the family Plectosphaerellaceae (Sordariomycetes, Glomerellales) (Giraldo and Crous 2019), consisting of some plant pathogen and soil-borne species. Previously, Plectosphaerella was
proposed as a member of Hypocreaceae (Sordariomycetes, Hypocreales) (Gams and Gerlagh 1968, Barr 1990) or Sordariaceae (Sordariomycetes, Sordariales) (Uecker 1993). Zare et al. (2007) established the family Plectosphaerellaceae to accommodate Acrostalagmus Corda, Gibellulopsis Bat. & G. Maia, Plectosphaerella and Verticilium Nees. At that time, there were only five species in the genus Plectosphaerella, i.e. P. cucumerina (Lindf.) W. Gams, P. cucumeris Kleb., P. himantia (Pers.) Kirschst., P. me-laena (Fr.) Kirschst. and P. silenes (Niessl) Kirschst. Carlucci et al. (2012) transferred all species of the anamorphic genus Plectosporium M.E. Palm, W. Gams & Nirenberg to Plectosphaerella. Subsequently, several new species and new combinations were introduced and transferred to the genus. To date, the genus Plectosphaerella contains 14 accepted species (Carlucci et al. 2012, Liu et al. 2013, Crous et al. 2015, Su et al. 2017, Wijayawardene et al. 2017, Giraldo and Crous 2019, Phookamsak et al. 2019).

Members of the genus Plectosphaerella are isolated from different habitats throughout the world, including plants, animals and soil. For example, P. tabacinum (J.F.H. Beyma) M.E. Palm, W. Gams & Nirenberg (the anamorph of P. cucumerina) has a cosmopolitan distribution with reports in Canada and the USA (North America), Belgium, England, Italy, The Netherlands and Switzerland (Europe), Egypt (Africa) etc. (Raimondo and Carlucci 2018, Giraldo and Crous 2019). It has been isolated from 11 species in 9 different plant genera: Arabidopsis thaliana, Arabidopsis sp., Cucumis melo, Galium spuriun, Hydrilla verticillate, Nicotiana tabacum, Pyrus malus, Solanum lycopersicon, Viola odorata, Viola tricolor, Austropotamobius pallipes etc. (Alderman and Polglase 1985, Palm et al. 1995, Smith-Kopperl et al. 1999, Domsch et al. 2007, Giraldo and Crous 2019). Another common species, P. plurivora A.J.F. Phillips, Carlucci & M.L. Raimondo, has been reported from Australia, Belgium, Germany, Italy, The Netherlands, New Zealand, UK, the USA etc. and is isolated from soil, Lolium perenne, Nicotiana tabacum, Solanum lycopersicum, Solanum tuberosum etc. (Giraldo and Crous 2019). Raimondo and Carlucci (2018) reported that Plectosphaerella spp. could result in root and collar rot, plus vascular and leaf symptoms. Only two species, P. oligotrophica T.T. Liu, D.M. Hu & L. Cai and P. humicola.Giraldo López & Crous, have been isolated from soils (Liu et al. 2013, Giraldo and Crous 2019).

During the investigation of keratinolytic fungi from different soils in China, seven isolates in the genus Plectosphaerella were obtained in Guizhou Province, China. The aim of our project was to identify these isolates, based on combined molecular phylogeny and morphological characteristics.

Materials and methods

Isolates and Morphology

Soil samples were collected from Qianlingshan Park (26°60’N, 106°69’E), Guiyang city and the affiliated hospital of Zunyi Medical University (27°70’N, 106°94’E), Zunyi city, Guizhou Province, China by Zhi-Yuan Zhang on 10 Sept. 2016. Samples were collected 3–10 cm below the soil surface and placed in Ziploc plastic bags. Isola-
tion and purification of strains were undertaken according to methods described by Zhang et al. (2019). Sterile chicken feathers and human hairs were combined with the soil samples. Samples were placed in sterile Petri dishes, which were moistened with ddH$_2$O. The baited soil sample Petri dishes were incubated at 25 °C for 1 month and remoistened as necessary. Two grams of sample were added to test tubes containing 9 ml of ddH$_2$O. The mixture was then diluted to 1:104 and 1 ml of suspension was evenly spread on plates containing Sabouraud’s dextrose agar (SDA, 10 g of peptone, 40 g of dextrose, 20 g of Agar, 1 litre of ddH$_2$O) with anti-bacterial chloramphenicol and cycloheximide medium. Plates were incubated at 25 °C for 5 d. The axenic strains were then transferred to potato dextrose agar (PDA, Bio-way, China) plates for purification and to test-tube slants for storage at 4 °C.

Type collections of the novel species are deposited in the Mycological Herbarium of the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (HMAS). The ex-type living cultures and other strains of our study are deposited in the China General Microbiological Culture Collection Center (CGMCC) and the Institute of Fungus Resources, Guizhou University (GZAC). The axenic strains were incubated on PDA and Czapek agar (CA, Bio-way, China) at 25 °C in darkness. Macroscopic characterisation was undertaken after 14 d of incubation and the colony colours (surface and reverse) were observed. Preparations were mounted in ddH$_2$O to study the mycelial morphology, conidiogenous cells, conidial structures and other microstructures from PDA cultures. Photomicrographs of diagnostic structures were made using an OLYMPUS BX53 microscope equipped with differential interference contrast (DIC) optics, an OLYMPUS DP73 high-definition colour camera and cellS-ens software v.1.18.

DNA extraction, PCR amplification and Sequencing

Total genomic DNA was extracted from fresh fungal mycelia using the BioTeke Fungus Genomic DNA Extraction Kit (DP2032, BioTeke, China), following the manufacturer’s instructions. The internal transcribed spacer (ITS) regions and the 5’ end of the 28S rRNA locus (LSU) were amplified and sequenced with the primer pairs ITS1/ITS4 (White et al. 1990) and LR0R/LR7 (Vilgalys and Hester 1990, Vilgalys and Sun 1994), respectively. Fragments of the translation elongation factor 1-alpha (EF1α) and the RNA polymerase II (RPB2) genes were amplified with primer sets EF1-983F/EF-2218R (Rehner and Buckley 2005) and RPB2-5F/RPB2-7cR (Liu et al. 1999), respectively. Polymerase chain reaction (PCR) was performed in 25 μl reactions containing 1.0 μl DNA template, 1.0 μl of each forward and reverse primers (10 μmol/l), 12.5 μl 2× MasterMix (Aidlab Biotechnologies Co. Ltd., Beijing, China) and 8.5 μl ddH$_2$O. Cycling conditions were as follows: initial denaturation at 94 °C for 5 min; followed by 35 cycles at 94 °C for 45 s, annealing depending on the locus (54 °C for ITS, LSU and EF1α, 56 °C for RPB2) for 45 s and extension at 72 °C for 60 s; and a final extension at 72 °C for 10 min. Sequencing was performed by TSINGKE Biological Technology (Kunming, China), using the corresponding primers.
Phylogenetic Analyses

The DNA sequences, generated in this study, were assembled using Lasergene software (version 6.0, DNASTAR). Sequence data, mostly from Giraldo and Crous (2019), were downloaded from NCBI GenBank for molecular phylogenetic analyses (Table 1). Two sequences of *Brunneochlamydosporium nepalense* (isolates CBS 277.89 and CBS 971.72) were chosen as outgroup taxa. Sequences of each locus were aligned through MAFFT v.7.407 (Katoh and Standley 2013), using the default parameters and manually corrected in MEGA 6.06 (Tamura et al. 2013). The aligned sequences of multiple loci were concatenated by SequenceMatrix v.1.7.8 (Vaidya et al. 2011).

Maximum likelihood (ML) analyses were constructed with IQ-TREE v. 1.6.11 (Nguyen et al. 2015). The best-fit model of substitution for each locus was estimated using IQ-TREE’s ModelFinder function (Kalyaanamoorthy et al. 2017) under the Bayesian Information Criterion (BIC). The selected models were TIMe+R2 for LSU, TNe+R2 for ITS, TIM2+F+R3 for EF1α and TN+I+G4 for RPB2. Bootstrap analyses was performed using the ultrafast bootstrap approximation (Minh et al. 2013) with 1,000 replicates and a bootstrap support (BS) ≥ 95% was considered as statistically significant.

For Bayesian Inference (BI), a Markov Chain Monte Carlo (MCMC) algorithm was used to generate phylogenetic trees with Bayesian probabilities using MrBayes v.3.2 (Ronquist et al. 2012) for the combined sequence datasets. The selection of the best-fit nucleotide substitution model for each locus was calculated by the Akaike Information Criterion (AIC) with Modeltest v.3.7 (Posada and Crandall 1988). The GTR+I+G model was selected for all datasets (LSU, ITS, EF1α, RPB2). Two runs were executed simultaneously for 5,000,000 generations and sampled every 500 generations. After the BI analyses, both runs were examined with Tracer v.1.5 (Drummond and Rambaut 2007) to determine burn-in and check for convergence. The final tree was submitted to TreeBASE, submission ID: 24412 (http://www.treebase.org).

Results

Phylogenetic analyses

Fifty-five strains (including the seven with new sequence data) were included in our multi-locus dataset (Table 1), which comprised 2536 positions, of which 322 were phylogenetically informative (35 of LSU, 54 ITS, 76 EF1α, and 157 RPB2). Tree topology of the Bayesian analyses was similar to that of the Maximum likelihood analyses.

The analyses of concatenated dataset (Figure 1) showed that our isolates CGMCC 3.19658, CGMCC 3.19659 and CGMCC 3.19660 clustered in a single clade with maximum support (BI pp = posterior probability 1, ML BS 100). Similarly, the isolates CGMCC 3.19656 and CGMCC 3.19657 clustered in another single clade with high support (BI pp 1, ML BS 100). Furthermore, our isolates CGMCC 3.19654 and CGMCC 3.19655 clustered with other *Plectosphaerella plurivora* isolates from CBS in a single subclade supported by BI pp = 0.92.
Table 1. Strains included in the phylogenetic analyses.

Species	Strain No.	GenBank Accession Number			
		LSU	ITS	EF1α	RPB2
Brunneochlamydosporium	CBS 277.89	L025812	L026683	L026385	L026111
nepalense	CBS 971.72 T	L025813	L026684	L026386	L026112
Plectosphaerella alisma	CBS 113362 T	L025932	L026794	L026489	L026196
P. citrullae	CBS 131740	L025933	L026795	L026490	–
P. cucumerina	CBS 137.33	L025934	L026796	L026491	L026197
P. deltoroi	CBS 116708 T	L025947	L026809	L026504	–
P. guizhouensis	CGMCC 3.19658 = GZUIFR-QL9.9.1 T	MK880431	MK880441	MK930453	MK930460
	CGMCC 3.19659 = GZUIFR-QL9.9.2	MK880432	MK880442	MK930454	MK930461
	CGMCC 3.19660 = GZUIFR-QL9.9.3	MK880433	MK880443	MK930455	MK930462
P. humicola	CBS 423.66 T	L025949	L026811	L026506	L026210
P. melonis	CBS 489.96 T	L025950	L026812	L026507	–
P. oligotrophica	NJM 0662 T	L025951	L026813	L026508	–
P. oratosquillae	NJM 0665 T	–	AB425974	–	–
P. pauciseptata	CBS 131744	L025953	L026815	L026510	–
P. plurivora	CBS 131745 T	L025954	L026816	L026511	L026212
P. ramiseptata	CBS 139623 T	L025964	L026826	L026521	L026216
P. sinensis	ACCC 39144	KX527892	KX527889	–	–
P. nauculaspora	CGMCC 3.19656 = GZUIFR-QL8.12.1 T	MK880424	MK880439	MK930451	MK930458
	CGMCC 3.19657 = GZUIFR-QL8.12.2	MK880425	MK880430	MK930452	MK930459

T= type strain, strains and sequences generated in this study are shown in bold. ACCC: Agricultural Culture Collection of China, Beijing, China; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection Center; GZAC: Guizhou University, Institute of Fungus Resources; “–” represents the absence of GenBank accession.
Figure 1. Phylogenetic tree of Plectosphaerella species derived from Bayesian analyses and Maximum Likelihood analyses, based on the combined sequences dataset of LSU+ITS+EF1α+RPB2. Bayesian posterior probabilities (BI pp) greater than 0.7 and Maximum Likelihood bootstrap support values (ML BS) greater than 95% are shown above branches. New isolates are in bold and blue. The tree used Brunneochlamydosporium nepalense (CBS 277.89 and CBS 971.72) as outgroup.
Taxonomy

Plectosphaerella guizhouensis Zhi.Y. Zhang, Y.F. Han & Z.Q. Liang, sp. nov.
Mycobank: MB 830971
Figure 2

Etymology. Referring to Guizhou, the province where the isolate was collected.

Description. *Sexual morph* not observed. *Asexual morph* on CA. *Mycelium* hyaline, smooth, septate, branched and thin-walled, 1–2 μm (\(\bar{x}=1.5\) μm) wide. *Conidiophores* solitary, unbranched or rarely branched, hyaline, smooth, thin-walled, sometimes radiating out from hyphal coils. *Conidiogenous cells* growing from a short branch or directly from mycelia, phialides, discrete, polymorphic, cylindrical, sub-cylindrical or ampuliform; terminal or lateral, hyaline, smooth, solitary, straight at the apex, sometimes bent or helicoid, gradually tapering to the apex, 3.5–17 × 0.5–2 μm (\(\bar{x}=9.5\times 1.5\) μm, n = 20), collarette cylindrical, 0.5–1 μm deep. *Conidia* aggregating in slimy heads, non-septate or 1-septate, fusiform or cylindrical, sometimes rounded at both ends, hyaline, smooth, thin-walled; 2–6.5 × 1.5–5 μm (\(\bar{x}=5.5\times 2\) μm, n = 10) (1-septate), 3–5 × 1–1.5 μm (\(\bar{x}=4\times 1.5\) μm, n = 10) (non-septate). *Chlamydospores* absent.

Culture characteristics. Colonies on PDA reaching 74–75 mm diam. in 14 d at 25 °C, milk white, flat, aerial hyphae sparse, floccose at periphery, sub-rounded, margin regular, reverse milk white. Colonies on CA reaching 65–67 mm diam. in 14 d at 25 °C, white to milk white, flat, floccose, margin weakly undulate to faintly fimbriate, reverse milk white.

Typification. CHINA, Guizhou, Guiyang, Qianlingshan Park, 26°60’N, 106°69’E, 1210 m a.s.l., on soil, 10 Sep. 2016, collected and isolated by Zhi-Yuan Zhang, HMAS 255618 (holotype), ex-type CGMCC 3.19658 (= GZUIFR-QL9.9.1); ex-isotype CGMCC 3.19659 (= GZUIFR-QL9.9.2) and CGMCC 3.19660 (= GZUIFR-QL9.9.3).

Notes. Based on multi-locus phylogenetic analyses (Figure 1, see Results) and similar morphological characteristics, the three strains are regarded as the same species, which cluster together very well and form a single clade separated from other species of *Plectosphaerella* (Figure 1). Morphologically, *Plectosphaerella guizhouensis* differs from other species by the fusiform or cylindrical conidia, non-septate conidia (average 4 × 1.5 μm) and separate conidia (5.5 × 2 μm) (see Key). Therefore, based on combined phylogenetic and morphological evidence, *P. guizhouensis* is identified as a new species of *Plectosphaerella*.

Plectosphaerella nauculaspora Zhi.Y. Zhang, Y.F. Han & Z.Q. Liang, sp. nov.
Mycobank: MB 830972
Figure 3

Etymology. From “naucula”, referring to the navicular conidia.

Description. *Sexual morph* not observed. *Asexual morph* on CA. *Mycelium* hyaline, smooth, septate, branched and thin-walled, 1–1.2 μm (\(\bar{x}=1.5\) μm) wide. *Conidiophores*
solitary, unbranched or rarely branched, hyaline, smooth, thin-walled, hyphal coils not observed. **Conidiogenous cells** growing from short branch or directly from mycelia, phialides, discrete, polymorphic, cylindrical, sub-cylindrical or ampulliform; terminal or lateral, hyaline, smooth, gradually tapering to the apex, straight at the apex, sometimes bent or helicoid, 3–37 × 0.5–2 μm (\(\bar{x} = 11 \times 1 \mu m, n = 10 \)), collarette minute, cylindrical, 0.5–1 μm deep. **Conidia** aggregating in slimy heads, 1- or 2-celled, mostly navicular, rarely fusiform or cylindrical, sometimes swollen at both ends, hyaline, smooth, thin-walled, 4–7 × 1–2 μm (\(\bar{x} = 5 \times 1.5 \mu m, n = 10 \)) (1-septate), 3–5 × 1–1.5 μm (\(\bar{x} = 4 \times 1.5 \mu m, n = 6 \)) (non-septate). **Chlamydospores** not observed.

Culture characteristics. Colonies on PDA reaching 75–76 mm diam. in 14 d at 25 °C, milk white, flat, sub-rounded, margin regular, reverse milk white. Colonies on CA reaching 63–65 mm diam. in 14 d at 25 °C, milk white, aerial hyphae sparse, flat, margin weakly undulate to faintly fimbriate, reverse milk white.

Typification. CHINA, Guizhou, Guiyang, Qianlingshan Park, 26°60’N, 106°69’E, 1220 m a.s.l., on soil, 10 Sep. 2016, collected and isolated by Zhi-Yuan Zhang, HMAS
Phylogeny and taxonomy of two new Plectosphaerella...

248154 (holotype), ex-type CGMCC 3.19656 (= GZUIFR-QL8.12.1); ex-isotypes CGMCC 3.19657 (= GZUIFR-QL8.12.2).

Notes. Phylogenetically, our two isolates CGMCC 3.19656 and CGMCC 3.19657 cluster together very well and form a single clade separated from the other species of *Plectosphaerella* (Figure 1). Morphologically, *Plectosphaerella nauculaspora* is the only species that produces navicular conidia in this genus. Therefore, based on both morphological and phylogenetic evidence, *P. nauculaspora* is proposed as a novel species.

Discussion

In the present study, seven strains of *Plectosphaerella* fungi were isolated from soil in the Guizhou Province, China. Multi-locus phylogenetic analyses in combination with morphological data were used for identification. Our study resulted in the description of two new species, *P. guizhouensis* (3 isolates) and *P. nauculaspora* (2 isolates). In addition, our two isolates CGMCC 3.19654 and CGMCC 3.19655 closely clustered with...
P. plurivora and their morphological characters are similar to the original description *P. plurivora* (Carlucci et al. 2012).

Plectosphaerella spp. have diverse life styles and habitat sources – including pathogens of several plants, endophytes of plants, pathogens of animals (mainly involving *Austropotamobius pallipes* and *Oratosquilla oratoria*) and saprophytes on soil (Alderman and Polglase 1985, Palm et al. 1995, Domsch et al. 2007, Duc et al. 2009, Carlucci et al. 2012, Liu et al. 2013, Su et al. 2017, Liang et al. 2017, Raimondo and Carlucci 2018, Giraldo and Crous 2019). Although *Plectosphaerella* spp. were initially isolated from plants (from healthy or symptomatic tissue), subsequent studies found that they also widely distributed on soils and do not necessarily exhibit host specificity (Carlucci et al. 2012, Raimondo and Carlucci 2018, Giraldo and Crous 2019). However, *P. oratosquillae* can only be isolated from animals and it exhibits host specificity (Duc et al. 2009). Likewise, some species (mainly *P. oligotrophica* and *P. humicola*) have so far only been isolated from soils. In comparison with these previous studies, our two new species and one known species of *Plectosphaerella* were obtained from the soil beside a park road by the baiting technique (a method specifically designed for isolating keratinophilic fungi, Zhang et al. 2019). More studies are needed to assess whether our new species could be isolated from other habitats.

At present, more and more studies use combined data from morphological characteristics and molecular phylogeny for identifying new species (e.g. Carlucci et al. 2012, Liu et al. 2013, Su et al. 2017, Giraldo and Crous 2019, Phookamsak et al. 2019). Throughout the years, several loci have been used in the phylogenetic analyses of *Plectosphaerella* and its allies, containing ITS, LSU, EF1α, β-tubulin, CaM and RPB2 (Zare et al. 2007, Duc et al. 2009, Carlucci et al. 2012, Liu et al. 2013, Su et al. 2017). Giraldo and Crous (2019) revised the Plectosphaerellaceae and their results suggested that the phylogeny based on LSU+ITS+EF1α+RPB2 can be used for resolving intergeneric and interspecific relationships within the family Plectosphaerellaceae. As a result, we also used the LSU+ITS+EF1α+RPB2 dataset for phylogenetic analyses of *Plectosphaerella*.

Key to the species of *Plectosphaerella*

1 Growing on crustaceans ... *P. oratosquillae*
 – On other substrates ... 2
2 Teleomorph known ... 3
 – Teleomorph unknown .. 5
3 Ascomata globose or subglobose to pyriform .. 4
 – Ascomata subglobose to ovoid, or obpyriform .. *P. kunmingensis*
4 Asci 50–80 × 6–9 μm ... *P. cucumerina*
 – Asci 31.4–43 × 6.2–8.2 μm ... *P. plurivora*
5 Chlamydospores present ... 6
 – Chlamydospores absent .. 8
Step	Condition	Outcome
6	Conidia mostly septate	
	– Conidia mostly aseptate	*P. melonis*
7	Conidia 13–19.5 × 2.5–3 μm	*P. alismatis*
	– Conidia 6–10 × 1.5–4 μm	*P. sinensis*
8	Phialides branched at tip	
	– Phialides not branched at tip	
9	Phialides 0–3-septate	*P. ramiseptata*
	– Phialides 0–1-septate	
10	Oligotrophic, polyphialides infrequently seen, collarette 1–2.5 μm	*P. oligotrophica*
	– Non-oligotrophic, polyphialides frequently seen, collarette minute	*P. pauciseptata*
11	Conidia ellipsoidal	
	– Conidia cylindrical, ellipsoidal, fusiform, navicular	
12	Conidia mostly septate	*P. delsorboi*
	– Conidia aseptate	
13	Conidia av. 4 × 2 μm	*P. populi*
	– Conidia av. 7.9 × 3.5 μm	*P. citrullae*
14	Conidia mostly navicular	*P. nauculaspora*
	– Conidia mostly cylindrical or fusiform	
15	Septate conidia 2–6.5 × 1.5–5 μm, aseptate conidia 3–5 × 1–1.5 μm	*P. guizhouensis*
	– Septate conidia 7.5–11 × 2.5–3.5 μm, aseptate conidia 5–8 × 2.1–3.3 μm	*P. humicola*

Acknowledgements

We are grateful to the editor Danny Haelewaters (Purdue University, Indiana, USA) and the reviewers – Martina Réblová (Czech Academy of Sciences, Průhonice, Czech Republic) and Yong-Chun Niu (Chinese Academy of Agricultural Sciences, Beijing, China) for comments on the manuscript. This work was financially supported by the Ministry of Science and Technology of China (2013FY110400), Guangdong Technological Innovation Strategy of Special Funds (key areas of research and development programme) (2018B020205003), the National Natural Science Foundation of China (31460010, 31860002) and Construction Program of Biology First-class Discipline in Guizhou (GNYL[2017]009).

References

Alderman DJ, Polglase JL (1985) *Fusarium tabacinum* (Beyma) Gams as a gill parasite in the crayfish, *Austropotamobius pallipes* Lereboullet. Journal of fish disease 8: 249–252 https://doi.org/10.1111/j.1365-2761.1985.tb01222.x

Barr ME (1990) Prodromus to nonlichenized, pyrenomycetous members of class Hymenoascomycetes. Mycotaxon 39: 43–184.
Carlucci A, Raimondo ML, Santos J, Phillips AJL (2012) *Plectosphaerella* species associated with root and collar rots of horticultural crops in southern Italy. Persoonia 28: 34–48. http://dx.doi.org/10.3767/003158512X638251

Crous PW, Wingfield MJ, Guarro J, Hernández-Restrepo M, Sutton DA, Acharya K, Barber PA, Boekhout T, Dimitrov RA, Mueñas M, Dutta AK, Gené J, Gouliamo-va DE, Groenewald M, Lombard L, Morozova OV, Sarkar J, Smith MTH, Stchigel AM, Wiederhold NP, Alexandrova AV, Antelmi I, Armengol J, Barnes I, Cano-Lira JF, Castañeda Ruiz RF, Contu M, Courtecuisse PrR, da Silveira AL, Decock CA, de Goes A, Edathodu J, Ercole E, Firmino AC, Fourie A, Fournier J, Furtado EO, Geering ADW, Gershenzon J, Giraldo A, Gramaje D, Hammerbacher A, He XL, Haryadi D, Khemmuk W, Kovalenko AE, Krawczynski R, Laich F, Lechat C, Lopes UP, Madrid H, Malysheva EF, Marín-Felix Y, Martín MP, Mostert L, Nigro F, Pereira OL, Picillo B, Pinho DB, Popov ES, Rodas Peláez CA, Rooney-Latham S, Sandova-Denis M, Shivas RG, Silva V, Stoilova-Disheva MM, Telleria MT, Ullah C, Unsicker SB, van der Merwe NA, Vizzini A, Wagner HG, Wong PTW, Wood AR, Groenewald JZ (2015) Fungal planet description sheets: 320–370. Persoonia 34: 167–266 http://dx.doi.org/10.3767/003158515X688433

Domsch KH, Gams W, Anderson TH (2007) Compendium of Soil Fungi (2nd edn). IHW Verlag, Eching.

Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC evolutionary biology 7: 214–221. https://doi.org/10.1186/1471-2148-7-214

Duc PM, Hatai K, Kurata O, Tensha K, Yoshitaka U, Yaguchi T, Udagawa SI (2009) Fungal infection of mantis shrimp (*Oratosquilla oratoria*) caused by two anamorphic fungi found in Japan. Mycopathologia 167: 229–247. https://doi.org/10.1007/s11046-008-9174-4

Gams W, Gerlach M (1968) Beiträge zur Systematik und Biologie von *Plectosphaerella cucumeris* und der zugehörigen Konidienform. Persoonia 5: 177–188.

Giraldo A, Crous PW (2019) Inside Plectosphaerellaceae. Studies in mycology 92: 227–286. https://doi.org/10.1016/j.simyco.2018.10.005

Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285

Katoh K, Standley DM (2013) MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Li PL, Chai AL, Shi YX, Xie XW, Li Bj (2017) First report of root rot caused by *Plectosphaerella cucumerina* on cabbage in China. Mycobiology 45: 110–113. https://doi.org/10.5941/myco.2017.45.2.110

Liu TT, Hu DM, Liu F, Cai L (2013) Polyphasic characterization of *Plectosphaerella oligotrophica*, a new oligotrophic species from China. Mycoscience 54: 387–393. http://dx.doi.org/10.1016/j.myc.2013.01.003

Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology Evolutionary 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
Minh Q, Nguyen M, von Haeseler AA (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188–1195. https://doi.org/10.1093/molbev/mst024

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300

Palm ME, Gams W, Nirenberg HI (1995) Plectosporium, a new genus for Fusarium tabacinum, the anamorph of Plectosphaerella cucumerina. Mycologia 87: 397–406. https://doi.org/10.2307/3760837

Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Rasper O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei DP, Pem D, Ackah FW, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Anil Raj KN, Lattha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayaratne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadhvanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalcèc Z, Zhang YF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chommunit P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortomer PE, Xu JC (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal diversity 95: 1–273 https://doi.org/10.1007/s13225-019-00421-w

Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818. https://doi.org/10.1093/bioinformatics/14.9.817

Raimondo ML, Carlucci A (2018) Characterization and pathogenicity assessment of Plectosphaerella species associated with stunting disease on tomato and pepper crops in Italy. Plant pathology 67: 626–641. https://doi.org/10.1111/ppa.12766

Rehner SA, Buckley E (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1–alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98. https://doi.org/10.3852/mycologia.97.1.84

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Smith-Kopperl ML, Charudattan R, Berher RD (1999) Plectosporium tabacinum, a pathogen of the invasive aquatic weed Hydrilla verticillate in Florida. Plant disease 83: 24–28 https://doi.org/10.1094/pdis.1999.83.1.24

Su L, Deng H, Niu YC (2017) Phylogenetic analysis of Plectosphaerella species based on multi-locus DNA sequences and description of P. sinensis sp. nov. Mycological progress 16: 823–829. https://doi.org/10.1007/s11557-017-1319-8
