DATA MINING FOR PREDICTING THE AMOUNT OF COFFEE PRODUCTION USING CRISP-DM METHOD

Ali Khumaidi
Informatics Engineering
Universitas Krisnadwipayana, Jakarta, Indonesia
www.unkris.ac.id
alikhumaidi@unkris.ac.id

Abstract—The production of coffee plantations has become the leading plantation commodity with the export value of the fourth rank after oil palm, rubber and coconut. The number of coffee needs for export every year always increases, therefore it is necessary to predict the yield of coffee plants to estimate planting and anticipation that will be done so as to achieve the target. Coffee plant productivity is influenced by internal and external factors, namely the quality of the plant itself, soil, altitude and climate. The method used in this study is the CRISP-DM method and multiple linear regression algorithm to predict the amount of coffee production and determine the relationship between the variables. The steps taken are business understanding, data understanding, data preparation, modeling and evaluation. The data set that is used as many as 170 data after going through the data preparation stage produced 150 data with 5 attributes in the table. With calculations using tools, the coefficient of determination is 91.96%. That the variation in the value of the production of coffee plants is influenced by independent variables, namely the area of plantations, rainfall, air pressure and solar radiation by 91.96% and 8.04% influenced by other variables not measured in this study. The results of the evaluation and validation of predictions produce good accuracy with an RMSE value of 0.3477.

Keyword: data mining, coffee plants, crisp-dm, multiple linear progression.

INTRODUCTION

The production of Indonesian coffee plantations ranks fourth in the world after Brazil, Vietnam and Colombia. As for the largest export commodity in Indonesia, coffee is ranked fourth with a total trade reached 1.19 billion US $ in 2017 so that coffee becomes one of the leading plantation commodities after the commodities of oil palm, rubber, and coconut. Coffee commodity by the Directorate General of Plantations is placed in the strategic plan as the main target and priority agenda for improving the agro-industry sector, namely increasing the amount of production and exports and developing agro-industry in the village (Direktorat Jenderal Perkebunan, 2014). To support this, control and monitoring need to be done so that coffee productivity tends to increase.

Indonesia ranks second only to Brazil in the area of coffee plantations. The area of coffee plantations tends to increase 1.6% per year during the period 1980 to 2018. However, the data for the last 10 years the area of coffee plantations has decreased 0.05% per year with an area of 1.27
Climate change can cause negative impacts on plants, so that it can affect its productivity, including coffee (Iscaro, 2014). In Indonesia, climate factors are part of natural phenomena whose changes are influenced by nature and human intervention. The development of coffee plants is influenced by temperature which is able to control root growth, respiration, absorption of nutrients and water, photosynthesis and reaction speed (Lenisastri, 2000). Enzyme systems can function well and are stable at optimum temperatures and at cold temperatures the system is stable but reduces the function so that the enzyme can be damaged (Setiawan, 2009). In addition to temperature, rainfall and humidity factors influence the growth of coffee plants. High levels of rainfall, flowering process can be disrupted and the level of humidity affects generative and vegetative growth (Ashari, 2004). Climate affects coffee productivity, temperature is directly related but humidity and rainfall are not directly related. Good coffee cultivation management techniques can be used to anticipate climate change (Prasetyo et al., 2017). The presence of diseases and pest attacks can be caused by climate change, which previously was only affected by low altitude (Widayat, Anhar, & Baihaqi, 2015).

The condition of the declining area of coffee plantations, increasing export needs and volatile climate conditions as well as targets and priorities for increasing coffee production, it is necessary to predict coffee productivity so that the predicted results can be input for making the best policy. Prediction is a pattern that can be identified by data mining (Maulida, 2018). Data mining is a very large data extraction or extraction process and can be used to assist in making important decisions (Soni & Ganatra, 2012). In previous studies, data mining has been widely used for predictions, research for book sales predictions using data mining in PT. Niaga Swadaya (Kamal, Hendro, & Ilyas, 2017), research for predicting the number of student registrations per semester using linear regression at Icsaro, 2014). Although there was a reduction in the area of coffee plantations, in terms of productivity there was an increasing tendency with growth of 1.14% per year. During the period 1980 to 2017 the number of coffee exports was quite volatile with a tendency to increase 3.93% per year. The period of 2012 to 2016 export volume experienced slowing growth, even in 2014 there was a decline in the value of coffee exports up to 11.47% due to the decline in coffee plantation production (Badan Pusat Statistik, 2018).

Climate change can cause negative impacts on plants, so that it can affect its productivity, including coffee (Iscaro, 2014). In Indonesia, climate factors are part of natural phenomena whose changes are influenced by nature and human intervention. The development of coffee plants is influenced by temperature which is able to control root growth, respiration, absorption of nutrients and water, photosynthesis and reaction speed (Lenisastri, 2000). Enzyme systems can function well and are stable at optimum temperatures and at cold temperatures the system is stable but reduces the function so that the enzyme can be damaged (Setiawan, 2009). In addition to temperature, rainfall and humidity factors influence the growth of coffee plants. High levels of rainfall, flowering process can be disrupted and the level of humidity affects generative and vegetative growth (Ashari, 2004). Climate affects coffee productivity, temperature is directly related but humidity and rainfall are not directly related. Good coffee cultivation management techniques can be used to anticipate climate change (Prasetyo et al., 2017). The presence of diseases and pest attacks can be caused by climate change, which previously was only affected by low altitude (Widayat, Anhar, & Baihaqi, 2015).

The condition of the declining area of coffee plantations, increasing export needs and volatile climate conditions as well as targets and priorities for increasing coffee production, it is necessary to predict coffee productivity so that the predicted results can be input for making the best policy. Prediction is a pattern that can be identified by data mining (Maulida, 2018). Data mining is a very large data extraction or extraction process and can be used to assist in making important decisions (Soni & Ganatra, 2012). In previous studies, data mining has been widely used for predictions, research for book sales predictions using data mining in PT. Niaga Swadaya (Kamal, Hendro, & Ilyas, 2017), research for predicting the number of student registrations per semester using linear regression at Icsaro, 2014). Although there was a reduction in the area of coffee plantations, in terms of productivity there was an increasing tendency with growth of 1.14% per year. During the period 1980 to 2017 the number of coffee exports was quite volatile with a tendency to increase 3.93% per year. The period of 2012 to 2016 export volume experienced slowing growth, even in 2014 there was a decline in the value of coffee exports up to 11.47% due to the decline in coffee plantation production (Badan Pusat Statistik, 2018).

In using data mining, it is necessary to use the right method and the appropriate algorithm. In the prediction of coffee plant productivity there are several factors involved, namely the area of plantation crops, the amount of production, rainfall, solar radiation and air pressure. Multiple linear regression algorithm is a regression analysis that explains the relationship between dependent variables with factors that affect more than one. This multiple linear regression algorithm has been used in several studies with a fairly high accuracy rate of up to 95% (Kamal et al., 2017). Therefore, the multiple linear regression algorithm is expected to obtain the results of the productivity of coffee plants as a consideration in making further policies.

Analysis of coffee plant productivity needs to be done in depth in order to obtain hidden patterns and the discovery of knowledge related to production predictions. The appropriate method for conducting this research is the Cross-Industry Standard Process for Data Mining (CRISP-DM). CRISP-DM is a method that provides standard processes in data mining for solving problems in business. CRISP-DM is easier to apply because each stage or phase is clearly defined and structured and has a complete and well-documented data mining methodology.

MATERIALS AND METHODS

The stages in this study are adjusted to the phase of the CRISP-DM method. CRISP-DM is a data mining standard that contains a framework for data mining tasks. In the data mining process based on CRISP-DM there are 6 phases (Colin Shearer, 2000) according to Figure 1.

Business Understanding is the phase of understanding the substance of data mining activities that will be carried out. Its activities include: determining business goals or objectives, understanding business situations, and determining data mining goals.

Data Understanding is the initial data collection phase. Its activities include: studying and describing data, exploiting data and identifying problems related to data quality, and detecting an interesting subset of data as an initial hypothesis.

Data Preparation is an activity carried out to prepare data. Its activities include data selection, data building, data integration and data cleaning.
Modeling is the phase of determining data mining techniques. Data mining techniques use multiple linear regression algorithm. Regression is a model development technique that can be used for prediction, by looking for the relationship between the dependent variable and the independent variable. Multiple linear regression is a regression analysis that links the dependent variable with more than one independent variable that affects it (Ngumar, 2008). Multiple linear regression will work optimally if the input used is numeric. The formula used for multiple linear regression is expressed in equation (1).

\[Y = a + b_1X_1 + b_2X_2 + \cdots + b_nX_n \]

Information:

- \(Y \) = dependent variable
- \(X_1, X_2 \ldots X_n \) = independent variable
- \(a \) = constant
- \(b_1, b_2 \ldots b_n \) = regression coefficient

According to equation (1), to calculate the amount of coffee crop production using multiple linear regression algorithm, equation (2) is used.

\[Y = a + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 \]

Information:

- \(Y \) = Number of Production
- \(X_1 \) = Area of plantation area
- \(b_1 \) = Variable coefficient of plantation area
- \(X_2 \) = Rainfall
- \(b_2 \) = coefficient of rainfall variable
- \(X_3 \) = Barometric pressure
- \(b_3 \) = coefficient of variable air pressure
- \(X_4 \) = Solar Light
- \(b_4 \) = coefficient of solar irradiation variables

The first stage is the formation of a model, by finding the values of \(a, b_1, b_2, b_3, \) and \(b_4 \) using the least square with the general equation referring to equation (3).

\[
\begin{align*}
\Sigma Y &= a + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 \\
\Sigma X_1Y &= a_1 + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 \\
\Sigma X_2Y &= a_2 + b_2X_1 + b_1X_2 + b_3X_3 + b_4X_4 \\
\Sigma X_3Y &= a_3 + b_3X_1 + b_2X_2 + b_1X_3 + b_4X_4 \\
\Sigma X_4Y &= a_4 + b_4X_1 + b_3X_2 + b_2X_3 + b_1X_4 \\
\end{align*}
\]

Equation (2)

\[
\begin{align*}
\Sigma X_1 &= \Sigma X_1X_1 + b_1X_2X_1 + b_2X_3X_1 + b_3X_4X_1 \\
\Sigma X_2 &= \Sigma X_2X_1 + \Sigma X_2X_2 + b_1X_1X_2 + b_2X_3X_2 + b_3X_4X_2 \\
\Sigma X_3 &= \Sigma X_3X_1 + \Sigma X_3X_2 + \Sigma X_3X_3 + b_1X_1X_3 + b_2X_2X_3 + b_3X_4X_3 \\
\Sigma X_4 &= \Sigma X_4X_1 + \Sigma X_4X_2 + \Sigma X_4X_3 + \Sigma X_4X_4 + b_1X_1X_4 + b_2X_2X_4 + b_3X_3X_4 + b_4X_4X_4 \\
\end{align*}
\]

Next the acquisition of inversion results is obtained, then the determinant matrix multiplication is carried out with \(\Sigma Y, \Sigma X_1Y, \Sigma X_2Y, \Sigma X_3Y, \Sigma X_4Y \). Then the determinants of matrices \(A_0, A_1, A_2, A_3, \) and \(A_4 \) are calculated. The following equation in calculation (4):

\[
\begin{pmatrix}
\Sigma Y \\
\Sigma X_1Y \\
\Sigma X_2Y \\
\Sigma X_3Y \\
\Sigma X_4Y
\end{pmatrix}
= \begin{pmatrix}
N & \Sigma X_1 & \Sigma X_2 & \Sigma X_3 & \Sigma X_4 \\
\Sigma X_1 & \Sigma X_1X_1 & \Sigma X_1X_2 & \Sigma X_1X_3 & \Sigma X_1X_4 \\
\Sigma X_2 & \Sigma X_2X_1 & \Sigma X_2X_2 & \Sigma X_2X_3 & \Sigma X_2X_4 \\
\Sigma X_3 & \Sigma X_3X_1 & \Sigma X_3X_2 & \Sigma X_3X_3 & \Sigma X_3X_4 \\
\Sigma X_4 & \Sigma X_4X_1 & \Sigma X_4X_2 & \Sigma X_4X_3 & \Sigma X_4X_4 \\
\end{pmatrix}
\begin{pmatrix}
a \\
b_1 \\
b_2 \\
b_3 \\
b_4
\end{pmatrix}
\]

Information:

- \(N \) = amount of data
- \(\Sigma Y \) = the sum of the variable production quantities
- \(\Sigma X_1 \) = number of variable area
- \(\Sigma X_2 \) = number of rainfall variables
- \(\Sigma X_3 \) = amount of variable air pressure
- \(\Sigma X_4 \) = number of solar irradiation variables

Next, the results of the calculation of the determinant matrix are used to find the values of \(a, b_1, b_2, b_3, \) and \(b_4 \) by referring to equation (5).

\[
a = (\text{Det}(A_0)) / (\text{Det} A)
\]

\[
b_1 = (\text{Det}(A_1)) / (\text{Det} A)
\]

\[
b_2 = (\text{Det}(A_2)) / (\text{Det} A)
\]

\[
b_3 = (\text{Det}(A_3)) / (\text{Det} A)
\]

\[
b_4 = (\text{Det}(A_4)) / (\text{Det} A)
\]

Next, a partial correlation test will be calculated to see the degree of interrelation of the independent variable with the dependent variable. The related values are \(rX_1Y, rX_2Y, rX_3Y, rX_4Y, rX_1X_2, rX_1X_3, rX_1X_4, rX_2X_3, rX_2X_4, \) and \(rX_3X_4 \). Calculation of correlation values uses equation (6).

\[
\begin{align*}
\Sigma X_1Y &= \Sigma X_1Y - ((\Sigma X_1)(\Sigma Y))/n \\
\Sigma X_2Y &= \Sigma X_2Y - ((\Sigma X_2)(\Sigma Y))/n \\
\Sigma X_3Y &= \Sigma X_3Y - ((\Sigma X_3)(\Sigma Y))/n \\
\Sigma X_4Y &= \Sigma X_4Y - ((\Sigma X_4)(\Sigma Y))/n \\
\Sigma X_1X_2 &= \Sigma X_1X_2 - ((\Sigma X_1)(\Sigma X_2))/n \\
\Sigma X_1X_3 &= \Sigma X_1X_3 - ((\Sigma X_1)(\Sigma X_3))/n \\
\Sigma X_1X_4 &= \Sigma X_1X_4 - ((\Sigma X_1)(\Sigma X_4))/n \\
\Sigma X_2X_3 &= \Sigma X_2X_3 - ((\Sigma X_2)(\Sigma X_3))/n \\
\Sigma X_2X_4 &= \Sigma X_2X_4 - ((\Sigma X_2)(\Sigma X_4))/n \\
\end{align*}
\]
Calculations for finding R² refer to (7).
\[
R^2 = 1 - \frac{SS_{Error}}{SS_{Total}} = 1 - \frac{\sum(y_i - \bar{y})^2}{\sum(y_i - \bar{y})^2} \tag{7}
\]

Information:
y = forecast i-response
y = average
yi = observation of the i-response

For the coefficient of determination the calculation is according to equation (8).
\[
Kd = R^2 \times 100\% \tag{8}
\]

Information:
R² = correlation coefficient value.
Kd = large coefficient of determination

The accuracy of a prediction is an important aspect and objective of a prediction, so that the error rate is sought as small as possible. There are 3 models for measuring errors in concluding historical errors, namely mean squared error, mean absolute deviation, and mean absolute percent error (William J. Stevenson, 2014). Testing the accuracy of predictions in this study by measuring the value of root mean squared error (RMSE) according to equation (9). RMSE is a method for evaluating prediction results by measuring the accuracy of the model (Chai & Draxler, 2014). The lower RMSE value concludes that the predicted results approach the true value (Choirunisa, 2019). The greater the RMSE value indicates the worse the accuracy level.
\[
RMSE = \frac{\sum(y_i - \bar{y})^2}{n} \tag{9}
\]

Evaluation is the phase of interpreting the results of data mining produced. Evaluation is carried out in depth aiming to obtain a model that is in accordance with the objectives.

Deployment is the phase of compiling a report of the knowledge gained at the evaluation stage.

In CRISP-DM there are three stages that are worked on, the first is the data collection stage, the second is the data understanding and business stage and the third is the modeling and evaluation stage.

1. Data Collection Stage
At this stage, conducting a literature study and collecting coffee plant data includes: plantation area, total production, rainfall, air pressure and solar radiation. The data is collected from BPS.

2. Business Understanding and Data Understanding
At this stage consists of 3 stages, namely business understanding, data understanding, and data preparation.

3. Modeling and Evaluation stage
At this stage consists of 2 stages, namely modeling and evaluation.

RESULTS AND DISCUSSIONS

Coffee plant production prediction models include five phases which are the stages of business understanding and data as well as the modeling and valuation stages, as follows:

Business Understanding
This stage refers to the prediction of coffee plant production. At this stage an understanding of the background and objectives of the business processes related to coffee plants is needed, including:

1. Determine Business Goals
The business objective of doing research is to recognize coffee plant production to determine the prediction of coffee plant production so that policies and actions can be taken if the production predictions are not appropriate and to know the relationship of other factors that affect the amount of production

2. Assess the situation
The process of developing coffee plants is influenced by internal and external factors. Internal factors, namely the quality of coffee plants and external factors, namely climate, temperature, air pressure, humidity, rainfall, altitude, plantation area, solar radiation and others.

3. Determine the Purpose of Data Mining
The purpose of data mining or the purpose of this study is to explore knowledge about the patterns of influence of external factors on the production of coffee plants for prediction of the amount of coffee production.

Data Understanding
The understanding of the data stage begins with the collection of preliminary data and the results of activities in order to identify data problems, to determine the first insight into the data or detect interesting subsets to form hypotheses for hidden information.
1. Initial Data Collection
 Data collection is done by taking data from BPS 34 provinces, including:
 - Data on coffee plantation area by province in 2011-2018
 - Data on coffee plantation production by province in 2008-2018
 - Rainfall data for 2000-2015
 - Air pressure data for 2003-2015
 - Data on solar radiation from 2003-2015

2. Describe Data
 This stage is for analysis to understand the data obtained from the initial data collection results.
 - Data on the area of coffee plantations in units of thousands of hectares and consists of data from 34 provinces plus total totals (Indonesia).
 - Production data of coffee plantations in thousand tons and consists of data from 34 provinces plus total totals (Indonesia).
 - Rainfall data in millimeters (mm) taken from 34 provincial BMKG stations including data on the number of rainy days in a year.
 - Air pressure data in units of millibars (mb) taken from BMKG stations in each province are 34.
 - Solar irradiance data in annual percentages based on 34 provincial BMKG station data.

3. Exploring Data
 The data exploration process is carried out on four tables, namely:
 - Data on coffee plantation area consisting of attributes of the province, year and amount.
 - Coffee plantation production data consisting of attributes of the province, year and amount.
 - Rainfall data consisting of provincial attributes, BMKG stations, year, amount of rainfall and number of rainy days.
 - Data on air pressure and solar radiation consisting of attributes of the province, BMKG station, year, air pressure and solar radiation.

4. Verifying Data
 The process of verifying data quality by looking at the structure of the table, the data contained in the table then integrates between tables. Since the data collected with different number of years is then sliced between the four data tables, the 2011-2015 period is used. The total data used is 170 data.

Data Preparation
The data preparation stage is the preparation of the dataset, the data used for modeling. This stage includes the following activities:
1. Select and build data
 At this stage related tables are chosen to simplify the process of selecting data. There are 4 tables involved, a table of production quantities, a table of crop area, a table of rainfall, a table of air pressure and solar radiation. Each table contains 170 data with variations in the attributes in the tables below.

Year	Province	Total of Production (Thousands of Tons)
2011	Aceh	52.3
2011	Sumatera Utara	56.8
2011	Sumatera Barat	30.8
2011	Riau	1.9
2015	Papua	2

Source: (Badan Pusat Statistik, 2018)

Year	Province	Plantation Area (Thousand Hectares)
2011	Aceh	120.7
2011	Sumatera Utara	80.6
2011	Sumatera Barat	40.3
2011	Riau	4.7
2015	Papua	10

Source: (Badan Pusat Statistik, 2018)

Year	Province	Total Rainfall (millimeters)
2011	Aceh	Sultan Iskandar Muda
2011	Sumatera Utara	Kualanamu
2011	Sumatera Barat	Sicincin
2011	Riau	Sultan Syarif Kasim II
2015	Papua	Angkasapura

Source: (Badan Pusat Statistik, 2018)

Year	Province	BMKG Station	Air pressure	Solar radiation
2011	Aceh	Sultan Iskandar Muda	1009.40	52.20
2011	Sumatera Utara	Kualanamu	44.40	
2011	Sumatera Barat	Sicincin	990.80	32.80
2011	Riau	Sultan Syarif Kasim II	1008.70	42.30
2015	Papua	Angkasapura	1011.10	64.47

Source: (Badan Pusat Statistik, 2018)
2. Integrating Data

This stage combines four tables into one table into a new data set. The results of the transformation in the previous table are integrated into table 5.

Year	Province	BMKG Station	Production	Plantation	Rainfall	Air pressure	Solar radiation
2011	Aceh	Sultan Iskandar Muda	52.3	120.7	1268.00	1009.40	52.20
2011	Sumatera Utara	Kualanamu	56.8	80.6	2042.00	1009.40	44.40
2011	Sumatera Barat	Sicincin	30.8	40.3	2405.00	1008.70	42.30
2011	Riau	Sultan Syarif Kasim II	1.9	4.7	2405.00	1008.70	42.30
2015	Papua	Angkasapura	2	10	1265.90	1011.10	64.47

Sumber: (Badan Pusat Statistik, 2018)

3. Clearing Data

This process removes some attributes or variables so that the final results for the variables will be processed in table 6. There are only 5 variables used for the modeling stage.

Year	Province	BMKG Station	Production	Plantation	Rainfall	Air pressure	Solar radiation
2011	Aceh	Sultan Iskandar Muda	52.3	120.7	1268.00	1009.40	52.20
2011	Sumatera Utara	Kualanamu	56.8	80.6	2042.00	1009.40	44.40
2011	Sumatera Barat	Sicincin	30.8	40.3	2405.00	1008.70	42.30
2011	Riau	Sultan Syarif Kasim II	1.9	4.7	2405.00	1008.70	42.30
2015	Papua	Angkasapura	2	10	1265.90	1011.10	64.47

Source: (Khumaidi, 2019)

Next, test the coefficient of determination to measure the effect of the dependent variable on the independent variable, to determine the degree of compatibility of the multiple linear regression model. The coefficient of determination has a value between 0 to 1, for the value of $R^2 = 0$ meaning that the influence between the dependent variable and the independent variable does not exist, when the value of R^2 is close to 1, the stronger the effect of the independent variable on the dependent variable. The results of testing the coefficient of determination in table 8 is 0.919622326, it means that the multiple linear regression model has a match of 91.96%. The dependent variable, the amount of coffee plant production is influenced by the independent variable of 91.96%, namely the area, rainfall, air pressure, and solar radiation. The remaining 8.04% is influenced by other variables not measured in this study.

Year	Province	BMKG Station	Production	Plantation	Rainfall	Air pressure	Solar radiation
2011	Aceh	Sultan Iskandar Muda	52.3	120.7	1268.00	1009.40	52.20
2011	Sumatera Utara	Kualanamu	56.8	80.6	2042.00	1009.40	44.40
2011	Sumatera Barat	Sicincin	30.8	40.3	2405.00	1008.70	42.30
2011	Riau	Sultan Syarif Kasim II	1.9	4.7	2405.00	1008.70	42.30
2015	Papua	Angkasapura	2	10	1265.90	1011.10	64.47

Source: (Khumaidi, 2019)

Evaluation

Based on the results of the validation carried out using the RapidMiner software the calculation of the average value of the accuracy of the RMSE is equal to 0, 3477. This shows that the variation in values generated by the model has predictive results with a good degree of accuracy.

CONCLUSION

Based on the results of the analysis and discussion of data processing and modeling it can be concluded that the CRISP-DM method and
multiple linear regression algorithm can be applied to predict the amount of coffee crop production. After the data preparation stage with 150 data obtained from BPS, using the multiple linear regression model produces a coefficient of determination of 91.96%. That the variation in the value of the number of coffee plantations is influenced by the independent variables namely the area of plantations, rainfall, air pressure and solar radiation by 91.96% and 8.04% influenced by other variables not measured in this study. The results of the prediction evaluation produce good accuracy values with an RMSE value of 0.3477.

REFERENCES

Ashari, S. (2004). Biologi reproduksi tanaman buah-buahan komersial. Malang: Bayu Media Pub.

Badan Pusat Statistik. (2018). Data Online Badan Statistik: Tabel Dinamis Subjek Perkebunan. Retrieved from https://www.bps.go.id/subject/54/perkebunan.html#subjekViewTab6

Bengnga, A., & Ishak, R. (2018). Prediksi Jumlah Mahasiswa Registrasi Per Semester Menggunakan Linier Regresi Pada Universitas Icsan Gorontalo. ILKOM Jurnal Ilmiah, 10(2), 136–143. Retrieved from http://journal.fkim.unila.ac.id/index.php/ILKOM/article/view/274

Colin Shearer. (2000). The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, 5(4), 13–22.

Direktorat Jenderal Perkebunan. (2014). Statistik Perkebunan Indonesia Komoditas Kopi 2013-2015. Jakarta. Retrieved from https://bulanengkab.go.id/assets/instansikab/126/bankdata/data-statistik-perkebunan-indonesia-2013-2015-kopi-93.pdf

Iscaro, J. (2014). The Impact of Climate Change on Coffee Production in Colombia and Ethiopia. Global Majority E-Journal, 5(1), 33–43. Retrieved from http://www.bangladeshstudies.org/files/Global_Majority_e_Journal_5_1.pdf?page=3

Kamal, I. M., Hendro, T., & Ilyas, R. (2017). Prediksi Penjualan Buku Menggunakan Data Mining Di Pt. Niaga SwadayaPrediksi Penjualan Buku Menggunakan Data Mining Di Pt. Niaga Swadaya. In STMIK AMIKOM (Ed.), Seminar Nasional Teknologi Informasi dan Multimedia (pp. 49–54). Yogyakarta: STMIK AMIKOM.

Khumaidi, A. (2019). Final Research Report. Jakarta.

Lenisastri, L. (2000). Penggunaan Metode Akumulasi Satuan Panas (Heat Unit) sebagai Dasar Penentuan Umur Panen Benih Sembilan Varietas Kacang Tanah (Arachis hypogaea L.). Institut Pertanian Bogor. Retrieved from https://repository.ipb.ac.id/handle/123456789/20324

Maulida, L. (2018). Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. Dki Jakarta Dengan K-Means. JISKA, 2(3), 167–174. Retrieved from http://ejournaluin.suka.ac.id/saintek/JISKA/article/view/1200

Ngumar, Y. H. (2008). Aplikasi Metode Numerik Dalam Matrik Dalam Perhitungan Koefisien-Koefisien Regresi Linier Multiple Untuk Peramalan. In Konferensi Nasional Sistem dan Informatika (pp. 157–162). Bali: STIKOM Bali. Retrieved from https://yudiagusta.files.wordpress.com/2009/11/157-162-knsi08-029-aplikasi-metode-numerik-dan-matrik-dalam-perhitungan-koefisien-koeisien-regresi-linier-multiple-untuk-peramalan.pdf

Prasetyo, S. B., Aini, N., Dawam, M., Jurusan, M., Pertanian, B., & Pertanian, E. (2017). Dampak Perubahan Iklim Terhadap Produktivitas Kopi Robusta (Coffea Robusta) Di Kabupaten Malang. Jurnal Produksi Tanaman, 5(5), 805–811.

Setiawan, E. (2009). Kajian Hubungan Unsur Iklim Terhadap Produktivitas Cabe Jamu (Piper Retrofractum Vahl) Di Kabupaten Sumenep. AGROVIGOR, 2(1), 1–7.

Soni, N., & Ganatra, A. (2012). Categorization of Several Clustering Algorithms from Different Perspective: A Review. International Journal of Advanced Research in Computer Science and Software Engineering, 2(8), 63–68. Retrieved from https://www.researchgate.net/profile/Neha_Soni18/publication/267368768_Categorization_of_Several_Clustering_Algorithms_from_Different_Perspective_A_Review/links/575af67208ae414b8e460a6/Categorization-of-Several-Clustering-Algorithms-from-Different-Perspective-A-Review.pdf

Warhi, E. I. A., & Rahayu, Y. (2015). Penerapan Data Mining Untuk Menentukan Estimasi...
Produktivitas Tanaman Tebu Dengan Menggunakan Algoritma Linier Regresi Berganda Di Kabupaten Rembang, Semarang. Retrieved from http://eprints.dinus.ac.id/16925/1/jurnal_16115.pdf

Widayat, H. P., Anhar, A., & Baihaqi, A. (2015). Dampak Perubahan Iklim Terhadap Produksi, Kualitas Hasil Dan Pendapatan Petani Kopi Arabika Di Aceh Tengah. *Agrisep, 16*(2), 8-16. Retrieved from http://www.jurnal.unsyiah.ac.id/agrisep/article/view/3041