The D-Lactate Dehydrogenase from *Sporolactobacillus inulinus* Also Possessing Reversible Deamination Activity

Lingfeng Zhu1,4, Xiaoling Xu3, Limin Wang1, Hui Dong2*, Bo Yu1*

1 CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China, 2 Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China, 3 Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, PR China, 4 University of Chinese Academy of Sciences, Beijing, 100049, PR China

* yub@im.ac.cn (BY) donghui@irm-cams.ac.cn (HD)

Abstract

Hydroxyacid dehydrogenases are responsible for the conversion of 2-keto acids to 2-hydroxyacids and have a wide range of biotechnological applications. In this study, a D-lactate dehydrogenase (D-LDH) from a *Sporolactobacillus inulinus* strain was experimentally verified to have both the D-LDH and glutamate dehydrogenase (GDH) activities (reversible deamination). The catalytic mechanism was demonstrated by identification of key residues from the crystal structure analysis and site-directed mutagenesis. The Arg234 and Gly79 residues of this enzyme play a significant role in both D-LDH and GDH activities. His295 and Phe298 in DLDH744 were identified to be key residues for lactate dehydrogenase (LDH) activity only whereas Tyr101 is a unique residue that is critical for GDH activity. Characterization of the biochemical properties contributes to understanding of the catalytic mechanism of this novel D-lactate dehydrogenase enzyme.

Introduction

Hydroxyacid dehydrogenases are responsible for stereospecific conversion of 2-keto acids to 2-hydroxyacids [1, 2]. Given the wide range of biotechnological applications in industry [3, 4, 5, 6], it is of significant biological interest to gain in-depth insights into the enzymes. Lactate dehydrogenase (LDH), one of the hydroxyacid dehydrogenases, is a terminal glycolytic enzyme. It catalyzes the (reversible) reduction of pyruvate to lactic acid, concomitant with the oxidation of NADH to NAD⁺ [2]. A hydride ion is transferred from NADH to pyruvate during this reaction; reversely, it is transferred to NAD⁺ from lactate. A unifying feature of all previously reported lactate dehydrogenases is their strict specificity for NAD⁺ as a cofactor [7].

Glutamate dehydrogenases (GDHs) are found in nearly every organism and play a fundamental role in nitrogen and carbon metabolism [8]. In the oxidative deamination reaction, GDH links amino acid metabolism to the tricarboxylic acid cycle by converting L-glutamate to
2-oxoglutarate (α-ketoglutarate), whereas the reductive amination reaction supplies nitrogen for several biosynthetic pathways [9]. GDH belongs to the amino acid dehydrogenase superfamily, members of which display differential substrate specificity as well as valine, leucine and phenylalanine dehydrogenases [8]. Bacterial glutamate dehydrogenases vary in their coenzyme preference: NAD⁺ specificity, NADP⁺ specificity, and a few which have dual cofactor specificity [10].

There are rare reports about the bifunctional activities of a lactate dehydrogenase. Vancocmycin resistance proteins H (VanH) in the D-isomer-specific 2-hydroxyacid dehydrogenase family is the only reported bifunctional enzyme that has additionally D-lactate dehydrogenase activity in nature [11]. We previously reported that a novel D-lactate dehydrogenase from *Sporolactobacillus inulinus* CASD (DLDH744) could use both NADH and NADPH and even with a preference for NADPH as the coenzyme, which is different from the coenzyme utilization of all previously reported LDHs [12]. Here, the DLDH744 was also experimentally proven to possess both D-lactate and glutamate dehydrogenase activities. The structure-guided mutagenesis study was applied to demonstrate the catalytic mechanism of this novel enzyme.

Materials and Methods

Bacterial strains and protein expression

S. inulinus CASD was used as the source for cloning DLDH744 gene [13]. *Escherichia coli* strains were grown in Luria-Bertani (LB) medium aerobically and set on a rotary shaker. *E. coli* DH5α (Tiangen, Beijing, China) was used for general cloning, while *E. coli* BL21 (DE3) (Tian- gen, Beijing, China) was used for protein expression. Plasmids pMD 19-T (TaKaRa, Dalian, China) and pET-28a(+) (Novagen) were used as vectors. The gene expression, protein purification, X-ray crystallography and structure determination were as previously described [12].

Enzymatic activity assay procedures

After purification, the activity of glutamate dehydrogenase was assayed photometrically (absorbance at 340 nm) following NAD(P)H production according to the formula, glutamate+ NAD(P)⁺ + H₂O → α-ketoglutarate + NAD(P)H + NH₄⁺. The assay mixture (400 μL) contained 100 mM PBS (pH 5.5), 10 mM glutamate, 0.2 mM NAD(P)⁺, and 20 μL of enzyme [14]. The reverse reaction assay mixture (400 μL) contained 100 mM PBS (pH 5.5), 10 mM α-ketoglutarate, 10 mM NH₄Cl, 0.2 mM NAD(P)H, and 20 μL of enzyme. The protein concentration of the enzyme stock solution was 3 mg/mL. One unit was defined as the amount of enzyme converting 1 μmol of NAD(P)H per min. Specific activity has been expressed as units per mg protein.

Kinetic studies of DLDH744

The kinetic constants of purified enzyme were calculated using 10 μg DLDH744 enzyme in 100 mM PBS (pH 5.5) at 30°C. NADH or NADPH was used as cofactor with the concentration of 0.2 mM. The concentrations of pyruvate, phenylpyruvate and glutamate used were measured from 0.5 mM to 20 mM, respectively. The ΔOD₃₄₀ between 1 min and 2 min were chosen as the initial rate for kinetic analysis. The resulting kinetic parameters were calculated from multiple measurements and extracted by using ChemSW™ software.

Site-directed mutagenesis

The mutant strains used in this study were constructed by site-directed PCR mutagenesis using *Pyrobest* DNA polymerase (TaKaRa, Dalian, China) [15]. The primers used for the introduction.
of the mutations are shown in Table 1. After the PCR reaction, the remaining template was
digested with the restriction enzyme DpnI (TaKaRa, Dalian, China) at 37°C for 2 h. The DpnI-
digested PCR product was then purified and transformed to E. coli BL21(DE3) for gene expres-
sion. The cells were spread on LB agar plates containing 30 μg/mL kanamycin. Single clones
were selected for identification using gene sequencing.

Phylogenetic analysis
The sequences of all the members belonging to the D-isomer-specific 2-hydroxyacid dehydro-
genase family and the structurally similar NAD+-dependent formate dehydrogenase, phos-
phate dehydrogenase and L-alanine dehydrogenase were selected for the phylogenetic analysis.
The resulting 40 sequences along with the sequence of DLDH744 were aligned using the multi-
ple sequence alignment program ClustalX2 [16]. The phylogenetic analysis was conducted by
using MEGA6 software with full-length amino acid sequences. The neighbor-joining method
was used to draw phylogenetic tree.

Analytical methods
Glutamic acid was measured by HPLC (Agilent 1260 series) equipped with an Agilent Eclipse
XDB-C18 column (250 × 4.6 mm, 5 μm) and a variable-wavelength detector at 205 nm. The
mobile phase consisted of 10 mM KH₂PO₄ (pH 2.5) and acetonitrile at a ratio of 95:5 (v/v) and
a flow rate of 0.8 mL/min at 30°C.

Results
Glutamate dehydrogenase (GDH) activity of DLDH744
DLDH744 is a homodimeric protein with a length of 335 amino acids. The enzyme was con-
firmed to be a typical D-lactate dehydrogenase based on the activity detected with substrate
pyruvate and coenzyme NAD(P)H [12]. The apparent K_m value for pyruvate was determined
to be 3.4 ± 0.02 mM with a k_{cat} value of 512.2 ± 7.6 /min in this study. Upon submission of the
draft genome sequence of S. inulinus strain CASD to NCBI database, the gene fragment of
DLDH744 was predicted to be a bifunctional enzyme with the possible amino acid dehydroge-
nase activities. Therefore, we tested DLDH744 activity for various amino acids, including gluta-
mate, aspartate, proline, valine, leucine, isoleucine, alanine, and phenylalanine. Only glutamate
oxidation activity was found while the other amino acid oxidation activities were not detected.
DLDH744 showed strong glutamate oxidation activity (Fig 1a). The apparent K_m value for glu-
tamate oxidation was 5.7 ± 0.09 mM, which is higher than that of pyruvate. The k_{cat} value for
glutamate oxidation was calculated to be 22.3 ± 0.1 /min. The reverse reaction product glu-
tamic acid was also confirmed by HPLC when using NADH as a coenzyme and á-ketoglutarate
with NH₄⁺ as substrates (Fig 1b). No product of hydroxyglutarate was detected in the absence of
ammonia (data not shown). Additionally, phenylpyruvate was also experimentally confirmed
to be a substrate for DLDH744 with an apparent K_m value of 3.32 ± 0.08 mM for phenylpyru-
vate, which is very close to that of pyruvate. Only D-phenyllactic acid was detected as the prod-
uct from phenylpyruvate, indicating DLDH744 is a strict D-2-hydroxyacid dehydrogenase.
Both NAD⁺ and NADP⁺ could serve as coenzymes for GDH activity (data not shown), which
is consistent with previously reported LDH activity [12]. The specific activity of DLDH744 was
7.5 ± 0.17 U/mg for the LDH activity and 0.89 ± 0.01 U/mg for the GDH activity.
The residues responsible for stabilizing the dimer interface

To further investigate this novel enzyme, the complete tertiary structure of DLDH744 in complex with NAD\(^+\) was determined (PDB accession code: 4XKJ). The structure of DLDH744 was determined by molecular replacement method and refined at 3.15 Å-resolution as previously described [12]. Two identical monomers of DLDH744 were (with C\(^\alpha\) atoms r.m.s. difference of 1.339 Å) associated at the cofactor binding domain to form the homo-dimer in one asymmetric unit. The dimer interface is stabilized mainly by hydrogen-bonding interactions between residues from α helices \(\alpha_5\) (Ser102-Arg119), \(\alpha_6\) (Leu121-Glu130), \(\alpha_{12}\) (Glu279-Arg285) and connecting loops (Fig 2). Overall, the \(\alpha_5\) helices from two subunits are interacting with each other, and \(\alpha_6\) and \(\alpha_{12}\) are associated by hydrogen bonds to bring the two subunits together to form the homo-dimer. In the dimer interface, the amino group of Arg116 at \(\alpha_5\) forms a hydrogen bond with the hydroxyl group of Asp125 at \(\alpha_5\) of another subunit (2.7 Å), the amino group of Arg119 form a hydrogen bond with Gly297 (2.8 Å) and Ser105 (2.9 Å), and the main chain oxygen of Gly128 forms interacts with the amino group of Arg285 in \(\alpha_{12}\) (2.5 Å), carboxyl group of Gln285 is hydrogen bonding with the main chain oxygen of Leu271 (2.9 Å). The main chain oxygen and nitrogen atoms of Phe133 form a hydrogen bond with Gln269 (2.9 Å), Asn268 (2.7 Å) in the loop region of another subunit. Side chain of Trp135 interacts with Asn268 (3.1 Å). Ala140 forms a hydrogen bond with main chain of Tyr299 (3.2 Å) and Asn301 (2.7 Å), while the side chain of Asn301 is further stabilized by a hydrogen bond with Ser145 (3.1 Å). The hydrogen bonds between the carboxyl group of Glu142 and hydroxyl group of Ser102 (2.8 Å), and the main chain nitrogen atom of Ile143 and hydroxyl group of Glu108 (3.0 Å) stabilize the conformation of the \(\alpha_5\).

Identification of DLDH744 active sites by structural analysis

As DLDH744 was demonstrated to be a novel bifunctional enzyme, it is interesting to explore the catalytic mechanism from the structure analysis. Although it has both LDH and GDH

Table 1. Primers used for site-directed mutagenesis of DLDH744.

Primer	Sequence (5′–3′)
G79A+	GTCGCGTACAGCGGCGTACGATATGATC
G79A-	GATCATATCGCCGCGGTACGAGGAGGAG
Y101A+	GAGTTTCGCGGACCCGGACACCTG
Y101A-	CATCAATGCTACGCGGGCGGTCATGAC
R234A+	GTATCGACGGCGCGCGGCGGATGATG
R234A-	GATACACTGACGGCGCCGCGCCACCTT
E263A+	TATCAATGCATCGGCGGGCCCGGTCGTCGATAC
E263A-	CTGATTACGCCGGCGATGTCGGGTCG
H295A+	GCTAGAATGCGGCGACGTCAGTATC
H295A-	GATACACTGACGGCGCCGCGCCACCTT
F298A+	GTGATACGCCCATTTGTCGATAC
F298A-	TCTTTGTGGTGTACGCCAATATGCGCGC
M307A+	CGTGCAAATGCGTGGAGACTCAGG
M307A-	CAGGCTGATCTCAACCGCGATTTTCG

+, sense sequence; –, anti-sense sequence.
The codons with underline indicated the mutation site.

doi:10.1371/journal.pone.0139066.t001

Deamination Activity of D-Lactate Dehydrogenase from *S. inulinus*
Fig 1. Analysis of the glutamate dehydrogenase activity of DLDH744. (a) Analysis of the enzymatic activity using a UV spectrophotometer. (Filled circle) Reaction with NAD+ as coenzyme. (Filled block) Reaction without DLDH744. (Filled triangles) Reaction without glutamate substrate. (b) Analysis of the reaction product using HPLC. (i) Control. (ii) Glutamic acid standard. (iii) Reaction solution with substrates and enzyme DLDH744.

doi:10.1371/journal.pone.0139066.g001
activities, the protein structure shows that only one active center was found in DLDH744. The cofactor NAD⁺ molecule binds in the pocket located on top of the cofactor binding domain. The NAD⁺ molecule adopts an extended conformation where the nicotinamide and ribose rings are approximately perpendicular to the adenine ring. The dihydronicotinamide group is extended into a pocket formed by His²⁹⁵, Arg²³⁴, Glu⁰²⁹⁷, Phe⁰²⁹⁸ and Tyr¹⁰¹ (Fig 3). NADH could be converted to NAD⁺ when the nicotinamide ring donates a proton. Meanwhile, pyruvate or α-ketoglutarate gets the proton and forms lactic acid or glutamic acid in the same place. The residues around the nicotinamide ring of NADH in the active center of the crystal structure should be essential for enzyme reaction.

By comparing with other NAD-dependent lactate dehydrogenases [17], His²⁹⁵ is supposed to function as the internal acid-base catalyst in dehydrogenase activity; Glu⁰²⁹⁷ stabilizes the protonated form of His²⁹⁵, and Arg²³⁴ forms a hydrogen bond with the nicotinamide ribose ring (3.2 Å). Additionally, the main chain nitrogen atom of Phe⁰²⁹⁸ forms a hydrogen bond with the carbonyl group of nicotinamide ring. Gly⁰⁷⁹ is located in the entrance of the substrate entry. But Tyr¹⁰¹ and Met¹⁰⁷ stay inside the substrate entry way, and may select the substrate at the cleft between the substrate binding domain and cofactor binding domain. Phe⁰²⁹⁸, Tyr²⁹⁹

Fig 2. The residues responsible for stabilizing the dimer interface. The subunits of the homo-dimer are shown in blue and orange respectively. The secondary structures located at the dimer interface are shown in ribbon and the key amino acid residues that mediate the dimer formation are shown as dashed lines.

doi:10.1371/journal.pone.0139066.g002
and Trp^{135} further form a hydrophobic triad near the active site, and possibly determine the substrate specificity, such as lactate or glutamate, by steric hindrance near the nicotinamide ring.

Site mutation study revealing the key active site residues

Based on the crystal structure, above amino acids around the nicotinamide ring were chosen to study their roles in the LDH and/or GDH activities. Site-directed mutagenesis was conducted and the resulting enzymatic activities were evaluated. The mutations that showed dramatic influences on the LDH and/or GDH activities are shown in Fig 4. The LDH activities of Arg^{234}, Gly^{79}, Glu^{263}, His^{295}, Phe^{298} and Met^{307} mutants were dramatically reduced, indicating the significant role of these residues in D-LDH activity, which are consistent with the structural analysis. Additionally, the two residues Arg^{234} and Gly^{79} play a significant role in both LDH and GDH activities. Tyr^{101} is the one that was only critical for GDH activity.

Phylogenetic relationship

There is no significant similarity between DLDH744 and any GDHs present in the UNIPROT database, making the referential study of DLDH744 from GDH unreliable. Then we just chose the enzymes from D-isomer-specific 2-hydroxyacid dehydrogenase family to investigate the evolutionary relationships. D-isomer-specific 2-hydroxyacid dehydrogenase family includes D-lactate dehydrogenase (DLDH), D-erythronate-4-phosphate dehydrogenase (DEPDH) [18], D-hydroxyisocaproate dehydrogenase (DHICDH) [19], D-phosphoglycerate dehydrogenase (DPGDH) [20], D-glycerate dehydrogenase (DGLDH) [21], D-mandelate dehydrogenase (DMDH) [22], vancomycin-resistant protein H (VANH) [23], phenylpyruvate reductase (PPR) [24], glyoxylate reductase (GR) [25], 2-ketopantoate reductase (KPR) [26] and
transcriptional co-repressor CtBP (CTBP) [27]. Enzymes from this family share a common characteristic: the chiral product of the reaction is the D-form, and they generally exhibit strict specificity toward NAD⁺ except that GR and KPR are NADP⁺-dependent while PPR and VANH preferentially use NADPH. However, the core fold of all the above enzymes is structurally conserved [28]. The NAD⁺-dependent formate dehydrogenase (FDH) [29], phosphate dehydrogenase (PPDH) [30] and L-alanine dehydrogenase (ADH) [31] also share the structural similarities with the D-isomer-specific 2-hydroxyacid dehydrogenase family. Fig 5 shows a phylogenetic tree of DLDH744 and all the above enzymes. Interestingly, DLDH744 is a little different from the other D-lactate dehydrogenases, while it is more phylogenetically close to D-hydroxyisocaproate dehydrogenase. These results indicated that there is a diversity of substrate patterns in the D-isomer-specific 2-hydroxyacid dehydrogenase family, although they share the similar structure.

Discussion

D-LDH and GDH belong to two distinct families: D-2-hydroxyacid dehydrogenases and Glu/Leu/Phe/Val dehydrogenases, respectively. As DLDH744 possesses both activities, the comparison of protein structures between DLDH744 and GDHs was first investigated. However, the similarities between DLDH744 and GDH were rather low on the amino acid sequence level. Consequently, the study was shifted to investigate the protein structure to reveal the key sites to explore the mechanism.
Fig 5. Phylogenetic analysis of DLDH744 with the other enzymes in D-isomer-specific 2-hydroxyacid dehydrogenase family and some non-D-specific 2-hydroxyacid dehydrogenases. The accession number of each enzyme in uniprot database (http://www.uniprot.org) is provided in brackets. Abbreviations: D-lactate dehydrogenase (DLDH), D-erythronate-4-phosphate dehydrogenase (DEPDH), D-hydroxyisocaproate dehydrogenase (DHICDH), D-phosphoglycerate dehydrogenase (DPGDH), D-glycerate dehydrogenase (DGLDH), D-mandelate dehydrogenase (DMDH), vancomycin-resistant protein H (VANH), phenylpyruvate reductase (PPR), glyoxylate reductase (GR), 2-ketopantoate reductase (KPR), transcriptional co-repressor CtBP (CTBP), formate dehydrogenase (FDH), phosphate dehydrogenase (PPDH) and L-alanine dehydrogenase (ADH).

doi:10.1371/journal.pone.0139066.g005
Gly79, Arg234, His295 and Phe298 in DLDH744 were identified to be key residues for lactate dehydrogenase (LDH) activity. Notably, Glu263 and Met307 are also important residues for LDH activity since the relative activities of the mutated DLDH744 were around 5% ~ 20% of that of wild enzyme, respectively. In previously reported L-lactate dehydrogenases, His195 plays a crucial role in enzyme catalysis [32, 33]. It forms a hydrogen bond with the carbonyl group of pyruvate or the hydroxyl group of lactate, thus polarizing the group and making it prone to receiving or donating a hydride ion. This residue also acts as an acid/base group by donating (or abstracting) a proton to the pyruvate carbonyl group or the lactate hydroxyl group [34]. Therefore, it is important that this histidine residue is able to switch between protonated and deprotonated forms for the reversibility of the reaction. In DLDH744, the corresponding histidine residue is His295. This residue is highly conserved in the sequence alignment of D-2-hydroxy acid dehydrogenases. Structural studies on D-LDH and members of the D-2-hydroxyacid dehydrogenase family have confirmed that the corresponding histidine residue forms a hydrogen bond with the carbonyl group of pyruvate [35, 36] and is a proton donor for D-LDH [37]. Additionally, by comparing with other NAD-dependent dehydrogenases, Glu263 stabilizes the protonated form of His295 and increases its pKa [38]. The main chain nitrogen atom of Phe298 forms hydrogen bond with the carbonyl group of nicotinamide ring, then mutation of Phe298 to Ala decreased the NAD+ binding affinity. Furthermore, Phe298 and Met307 may be structurally responsible for discrimination of the substrates. Thus, mutation of His295, Glu263, Met307 and Phe298 to alanine residue all decreased the LDH activity.

In contrast to the LDH activity, only mutation of Gly79, Tyr101 and Arg234 decreased the GDH activity. Gly79 and Arg234 were reported to be involved in substrate binding and mediating the orientation of the substrate [37]. Gly79 was observed to be located at the substrate entry way while Arg234 is structurally found to function in stabilizing the nicotinamide ribose ring by hydrogen bonding interaction (3.2 Å) in this study. The LDH and GDH activities of the Arg234 and Gly79 mutants were both markedly decreased confirming the role of these residues in substrate binding. The substrate molecule is oriented face-on and directly adjacent to the nicotinamide ring of the coenzyme, where it is ideally positioned for transfer of a hydride ion during catalysis. Orientation of the substrate is very important for the enzyme reaction, thus Arg234 and Gly79 are essential for both LDH and GDH activities.

Lys125 of GDH have been found to act as acid/base groups by donating (or abstracting) a proton, similar to the function of His295 in LDHs [39]. However, the lysine residues of DLDH744 are located far from the active center and are therefore less likely to be responsible for GDH activity. Gunka et al. [40] reported that the tyrosine residue was crucial for activity of the glutamate dehydrogenase RocG from *Bacillus subtilis* since the activity of the Y158H mutant was severely reduced. Structural analysis showed that Tyr101 is located structurally on top of the nicotinamide ring and at the substrate entry way in DLDH744. It is plausible that this residue is available to make contact with substrates and act as a key residue for GDH activity. Consistently, the subsequent experiments verified Tyr101 of DLDH744 as a unique important residue for GDH activity. Interestingly, DLDH744 is different from other D-lactate dehydrogenases and it is much phylogenetically closer to D-hydroxyisocaprate dehydrogenase family. DLDH744 exhibit high activity towards 2-ketoacids with bigger substrate (α-ketoglutarate) or much larger aromatic side chain phenylpyruvate, indicating DLDH744 might also have a larger space in the active center which gives an explanation why DLDH744 could accept the larger substrates.

Conclusions

The D-lactate dehydrogenase from a *Sporolactobacillus inulinus* strain was experimentally verified to have both lactate dehydrogenase and glutamate dehydrogenase activities. The
biochemical properties of the enzyme were illustrated by X-ray crystal structural characterization and site-mutation analyses. Characterization of the active residues of this enzyme contributes to the mechanistic understanding of the activities.

Acknowledgments
This work was partially supported by grants from the National Natural Science Foundation of China (31170116 & 31300601) and the PUMC Youth Fund (33320140186). BY is supported by the Youth Innovation Promotion Association, Chinese Academy of Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions
Conceived and designed the experiments: BY HD. Performed the experiments: LZ. Analyzed the data: LZ XX. Contributed reagents/materials/analysis tools: LW HD. Wrote the paper: LZ XX BY.

References
1. Wang LM, Cai YM, Zhu LF, Guo HL, Yu B (2014) Major role of NAD-dependent lactate dehydrogenases in high optically pure L-lactic acid production by thermophilic Bacillus coagulans. Appl Environ Microbiol 80: 7134–7141. doi:10.1128/AEM.01864-14 PMID: 25217009
2. Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44: 106–139. PMID: 6997721
3. Hummel W (1999) Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol 17: 487–492. PMID: 10557162
4. Peng LL, Wang LM, Che CC, Yang G, Yu B, Ma YH (2013) Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural. Bioreour Technol 149: 169–176. doi:10.1016/j.biortech.2013.09.047 PMID: 24096283
5. Jiang X, Xue YF, Wang AY, Wang LM, Zhang GM, Zeng QT, et al. (2013) Efficient production of polymer-grade L-lactate by an alkalophilic Exiguobacterium sp. strain under nonsterile open fermentation conditions. Bioreour Technol 143: 665–668. doi:10.1016/j.biortech.2013.06.049 PMID: 23838203
6. Li Y, Wang LM, Ju JS, Yu B, Ma YH (2013) Efficient production of polymer-grade D-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source. Bioreour Technol 142: 186–191. doi:10.1016/j.biortech.2013.04.124 PMID: 23735801
7. Richter N, Zientz A, Hummel W (2011) A single-point mutation enables lactate dehydrogenase from Bacillus subtilis to utilize NAD+ and NADP+ as cofactor. Eng Life Sci 11: 26–36.
8. Britton KL, Baker PJ, Engel PC, Rice DW, Stillman TJ (1993) Evolution of substrate diversity in the superfamily of amino acid dehydrogenases. J Mol Biol 234: 938–945. PMID: 8263939
9. Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley CA (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 307: 707–720. PMID: 11254391
10. Sharkey MA, Oliveira TF, Engel PC, Khan AR (2013) Structure of NADP(+)−dependent glutamate dehydrogenase from Escherichia coli—reflections on the basis of coenzyme specificity in the family of glutamine dehydrogenases. FEBS J 280: 4681–4692. doi:10.1111/febs.12439 PMID: 23879525
11. Bugg TD, Wright GD, Dutka-Malen S, Arthur M., Courvalin P, Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococcus faecium. Trends Microbiol 4: 88–94. PMID: 2032414
12. Zhu LF, Xu XL, Wang LM, Dong H, Yu B, Ma YH (2015) NADP+−preferring D-lactate dehydrogenase from Sporolactobacillus inulinus. Appl Environ Microbiol 81: 6294–6301. doi:10.1128/AEM.01871-15 PMID: 26150461
13. Yu B, Su F, Wang LM, Xu K, Zhao B, Xu P (2011) Draft genome sequence of Sporolactobacillus inulinus strain CASD, an efficient D-lactic acid-producing bacterium with high-concentration lactate tolerance capability. J Bacteriol 193: 5864–5865. doi:10.1128/JB.05934-11 PMID: 21952540
14. Olson JA, Anfinsen CB (1952) The crystallization and characterization of L-glutamic acid dehydrogenase. J Biol Chem 197: 67–79. PMID: 12981035
Razeto A, Kochhar S, Hottinger H, Dauter M, Wilson KS, Lamzin VS (2002) Domain closure, substrate specificity and catalysis of D-lactate dehydrogenase from *Lactobacillus bulgaricus*. J Mol Biol 318:109–119. PMID:12054772

Ha JY, Lee JH, Kim KH, Kim DJ, Lee HH, Kim HK, et al. (2007) Crystal structure of D-erythronate-4-phosphate dehydrogenase complexed with NAD. J Mol Biol 366:1294–1304. PMID:17217963

Singh RK, Raj I, Pujari R, Gourinath S (2014) Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine. FEBS J 281:5498–5512. doi: 10.1111/febs.13091 PMID:25294608

Goldberg JD, Yoshida T, Brick P (1994) Crystal structure of a NAD-dependent D-glycerate dehydrogenase at 2.4 Å resolution. J Mol Biol 236:1123–1140. PMID:8120891

Tamura Y, Ohkubo A, Iwai S, Wada Y, Shinoda T, Arai K, et al. (2002) Two forms of NAD-dependent D-mandelate dehydrogenase in *Enterococcus faecalis* IAM 10071. Appl Environ Microbiol 68:947–951. PMID:11823342

Arthur M, Molinas C, Dutka-Malen S, Courvalin P (1991) Structural relationship between the vancomycin resistance protein VanH and 2-hydroxycarboxylic acid dehydrogenases. Gene 103:133–134. PMID:1908809

Fuji T, Shimizu M, Doi Y, Fujita T, Ito T, Miura D, et al. (2011) Novel fungal phenylpyruvate reductase belongs to D-isomer-specific 2-hydroxyacid dehydrogenase family. Biochim Biophys Acta 1814:1669–1676. doi: 10.1016/j.bbabap.2011.05.024 PMID:21672638

Booth MP, Conners R, Rumsby G, Brady RL (2006) Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. J Mol Biol 360:178–189. PMID:16756993

Wada Y, Iwai S, Tamura Y, Ando T, Shinoda T, Arai K, et al. (2008) A new family of D-2-hydroxycarboxylate dehydrogenases that comprises D-mandelate dehydrogenases and 2-ketopantoate reductases. Biocatal Biotrans Biochem 72:1087–1094. PMID:18391442

Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci 92:10467–10471. PMID:7479821

Stoll VS, Kimber MS, Pai EF (1996) Insights into substrate binding by D-2-ketoacid dehydrogenases from the structure of *Lactobacillus pentosus* D-lactate dehydrogenase. Structure 4:437–447. PMID:8740366

Popov VO, Lamzin V (1994) NAD(+)-dependent formate dehydrogenase. Biochem J 301:625–643. PMID:8053888

Woodyer R, Wheatley JL, Releyea HA, Rimkus S, van der Donk WA (2005) Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Biochemistry 44:4765–4774. PMID:15779903

Baker PJ, Sawa Y, Shibata H, Sedelnikova SE, Rice DW (1998) Analysis of the structure and substrate binding of *Phormidium lapidum* alanine dehydrogenase. Nat Struct Mol Biol 5:561–567.

Auerbach G, Ostendorp R, Prade L, Korndörfer I, Dams T, Huber R, et al. (1998) Lactate dehydrogenase from the hyperthermophilic bacterium *Thermotoga maritima*: the crystal structure at 2.1 Å resolution reveals strategies for intrinsic protein stabilization. Structure 6:769–781. PMID:9655830

Wigley DB, Gamblin SJ, Turkenburg JP, Dodson EJ, Piontek K, Muirhead H, et al. (1992) Structure of a ternary complex of an allosteric lactate dehydrogenase from *Bacillus stearothermophilus* at 2.5 Å resolution. J Mol Biol 223:317–335. PMID:1731077

Holbrook JJ, Ingram V (1973) Ionic properties of an essential histidine residue in pig heart lactate dehydrogenase. Biochem J 131:729–738. PMID:4352913

Kochhar S, Lamzin VS, Razeto A, Delley M, Hottinger H, Germond JE (2000) Roles of His205, His296, His303 and Asp259 in catalysis by NAD*-specific D-lactate dehydrogenase. Eur J Biochem 267:1633–1639. PMID:10712593

Holton SJ, Anandhakrishnan M, Geerlof A, Wilmanns M (2013) Structural characterization of a D-isomer specific 2-hydroxyacid dehydrogenase from *Lactobacillus delbrueckii* ssp. *bulgaricus*. J Struct Biol 181:179–184. doi: 10.1016/j.jsb.2012.10.009 PMID:23110853
37. Antonyuk SV, Strange RW, Ellis MJ, Bessho Y, Kuramitsu S, Inoue Y, et al. (2009) Structure of D-lactate dehydrogenase from *Aquifex aeolicus* complexed with NAD$^+$ and lactic acid (or pyruvate). Acta Crystallogr Sect F: Struct Biol Cryst Commun 65: 1209–1213.

38. Razeto A, Kochhar S, Hottinger H, Dauter M, Wilson KS, Lamzin VS (2002) Domain closure, substrate specificity and catalysis of D-lactate dehydrogenase from *Lactobacillus bulgaricus*. J Mol Biol 318: 109–119. PMID: 12054772

39. Stillman T, Baker P, Britton K, Rice D (1993) Conformational flexibility in glutamate dehydrogenase: role of water in substrate recognition and catalysis. J Mol Biol 234: 1131–1139. PMID: 8263917

40. Gunka K, Newman JA, Cormichau FM, Herzberg C, Rodrigues C, Hewitt L, et al. (2010) Functional dissection of a trigger enzyme: mutations of the *Bacillus subtilis* glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties. J Mol Biol 400: 815–827. doi: 10.1016/j.jmb.2010.05.055 PMID: 20630473