Evaluation of curriculum quality in Architectural Academic Program, Case Study - Outcomes of Architectural Academic Program – (graduates Architects)

Nawfal Josef Rizco1, Sajjad Yaqoob Yousif 1*
1Architectural Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq
*E-mail: sagaduqup@gmail.com

Abstract. The objective of the study was to evaluate the course of the Academic Program Architect of the Faculty of Engineering at the University of Nahrain in light of international quality standards and your failure by revealing the availability of international quality standards in the architectural academic curriculum. The problem of the study was the extent to which the academic curriculum included international quality standards. In order to achieve the objectives, the researcher used the descriptive analytical method to evaluate the quality of the academic curricula and their vocabulary (knowledge - skill - ability) for developing the efficiency of the academic director. This is done by acquiring a characterization that meets the requirements of the reality of the architectural practice. In addition, the graduate architect through the learning outcomes targeted to the Department of Architecture at the University of Nahrain. A range Results and conclusions have been reached.

1. Introduction
In the present era, architecture is important, as it is an essential engine for the development of human civilization. It is also a support for all other life activities. It plays an important role in advancing civilizational progress. The provision of integrated, balanced, flexible and scalable curricula in addition to meeting the needs of students, because it is not known to one of the rapid development of rapid progress and development that requires revision of the curriculum to keep up with this progress. The curriculum developed has led to the purpose for which it was developed, and emerged generations of good, But these curricula need qualitative development commensurate with the scientific progress and social and economic changes and global changes, and you have been affected by the need for learners and the compatibility between the curriculum and the needs of the community, and focus on the development of knowledge, skills and abilities that constitute Stone foundation For the educational process. The curriculum will always need to be re-examined and the educational materials will not be able to meet their requirements year after year, and it is not dependent on the lack of internal, but the nature of development itself, which requires a continuous review of the curriculum to increase the quality of its outputs, is the architect.

2. Quality evaluation
Evaluating the performance of academic institutions and programs, measuring the level of quality of performance, identifying what may be missing and what is necessary to avoid it to achieve the required quality level. The academic evaluation tools require the use of two methods of evaluation [7]:

[7]:

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
1.1 Quantitative Evaluation
The members of the evaluation team focus on collecting quantitative information and indicators, and quantitative assessment allows careful consideration of each component of academic performance in terms of quantity (e.g. questionnaire), thus focusing on the quality of inputs, processes and outputs[11].

1.2 Specific Evaluation
Numerous tools and methods are used in the qualitative calendar, including: discussions, interviews, observations, examination of records and works, study of cases and measurements, etc [11].

3. Academic curriculum
A distinguished and organized set of courses that lead to the granting of the academic degree associated with this program (Bachelor, Diploma, Master, etc.) [3], as defined by Hamid as the most effective means of learning that allows the translation of philosophies and educational policies To the reality of my life, and through the curriculum supports development plans to increase people's choices in living a life free of ills, acquire and acquire the resources to lead a decent life, and through the curriculum [6] Content and learning technology with learning outcomes that make the A student capable of keeping up with the needs of the labor market when he graduated from the university, and the labor market has become a global content and competition is not limited to technical capabilities, but at the level of language, and the culture of public, critical analysis and the ability to learn continuously and development, this approach is consistent with the modern vision of the University and the human development As an active person in society[7], and defined by Rizko as a set of educational experiences and designed in the framework of planning ahead to achieve educational and educational goals in order to help learners to grow comprehensively in all aspects of personality by creating academic and academic institutions within the framework of goals and content, [9]. The architectural academic curriculum includes a set of vocabulary items aimed at learning outcomes, knowledge, skills and abilities of the Architect.

4. Architectural Academic Program
The academic program is the core of the educational process, as it is responsible for providing specialized knowledge and mental and professional skills related to the specialization to achieve the learning outcomes targeted according to accredited international academic standards. The external challenges imposed on the academic programs are imperative to strive hard and planned to improve the quality of their effectiveness, they are able to predict the local and regional human resource needs of the local labor market and plan for the provision of human resources with distinct and targeted skills in the local and global labor market. He is responsible for the provision of specialized knowledge, mental and professional skills related to the specialization to achieve the targeted learning outcomes according to accredited international academic standards. The external challenges imposed on the academic programs necessitate the serious and planned endeavor to improve the quality of their effectiveness, Their ability to predict the needs of the local, regional and international labor market - human resources[7]. Rizko defined it as a set of mechanisms to achieve the group's knowledge, skills and attitudes within and outside its walls to achieve the learning outcomes of an academic program within a limited period. [10] and defined by Kazem as an integrated program to teach architecture within the unit of academic education at the level of higher education in Iraqi universities. The components of this program are objectives, curriculum, outputs, calendar sources, assessment tools [5].

5. Academic Program Output (Architect)
Is the final product that meets the objectives of the system and is the organization provides the consumers or beneficiaries of goods or services or ideas, and note that there is interaction between the parts of the system and the interaction with the environment surrounding the system, which is a key factor in the identification of organizational behavior. Used by the organization [11], and defined by Hamid as the final products of the system after the necessary improvements and improvements, to be ready for marketing, and in the first instance and President Kharj, a student after mastery of the skills
and knowledge and values that qualify him to practice the profession and community service and influence and impact on the market [6]. Among the most important elements of the academic program outputs are graduate students (architects). Graduates are the most important types of outputs. The academic program that the educational institutions seek to improve their quality. This type of output focuses on the basic knowledge and information that constitute the infrastructure of the graduates' quality. This knowledge and information is based on two dimensions: Which are the final results of the inputs, namely, the number of students graduating qualitatively and quantitatively in terms of quality [8]. The graduates will be able to follow up and understand the principles and principles of the profession as well as the means of applying them in the fields of work. This coincides with the expansion of the comprehensive perspective and the diversity of roles, as well as the expansion of the graduates' thinking. The growing gap between graduates' qualifications and job requirements, according to employers' view, is due to the fact that university students prepare and qualify from the real work environment and institutions that recruiters see the relationship between education institutions and the labor market on a one-way path from institutions to the labor market. One of the main reasons for the poor correlation between the output of university education and the needs of the labor market [2].

The real partnership with the labor market should be in the development of academic academic programs, investment of facilities and equipment available in the labor market in the training of students, labor market institutions providing forecasts and expectations related to future labor market needs, And the skills and abilities sought by the employer, which represent the specifications of the graduate (the architect) and the product of the actual learning through which to evaluate the educational process and ensure the quality of the academic curriculum as the main entrance to the educational process.

6. Case Study

The study society consists of graduates from the departments of architecture in local universities and employers in the offices and engineering consulting companies. The current research raised several questions through the employers in the companies, engineering consultants offices, and the architectural practitioners (the graduate student) in the labor market, Based on data on maximizing the compatibility of the architect with the labor market by assessing the learning outcomes of the graduate (knowledge - skills - abilities) and taking advantage of the evaluation results in the formulation of the architectural academic output through the developed architectural academic curriculum.

6.1 Employer Questionnaire

The questionnaire questions the actual learning outcomes of the graduate student (knowledge, skills and abilities) required by the employer in the engineering companies and offices. The questions represent the criteria of the institution NAAB. The study was conducted on the employers' society and on a random sample of the different offices and engineering consultancy companies. The percentage of the answer was (50%) of the total number of employers who participated in the questionnaire and the number of (40) employer, and was neglected (4) the total number of questionnaires that have been analyzed by SPSS program by (16) questionnaire. The aim of the questionnaire was to identify the failure of the academic program, which may affect the qualification of the graduate from the perspective of the employer or the requirements of the labor market, according to the learning outcomes to be acquired in the departments of architecture. Table No. 1 illustrates the global accreditation standards for the departments of architecture by the American Hadassah Accreditation Council.

Table 1. American accreditation criteria for the NAAB Foundation
NAAB accreditation criteria
1. How efficient is your engineer in reading, writing, speaking, and listening effectively?
2. How efficient is your engineer in asking clear and specific questions and using abstract ideas to interpret information, taking into
account contradictory viewpoints, reaching conclusions supported by well-justified causes, and testing alternatives to the institution's outputs on relevant criteria and measurements?

3. The efficiency of your engineer in the possibility of using the means of representation or re-show appropriate, such as manual drawing and skills of digital techniques, as well as the possibility of moving the important formal elements at each stage of the program or design process?

4. The efficiency of your engineer in the possibility of making drawings with clear technology, writing the specifications in a general outline, preparing models to illustrate and know how to install materials, systems, and components suitable for the design of the building?

5. How efficient is your engineer in the ability to compile, evaluate record, apply, and compare information that is relevant to each other that appears in architectural classrooms or during design processes?

6. How efficient is your engineer in using and shaping influential architectural and environmental principles in design?

7. The efficiency of your engineer in the possibility of examining and understanding the basic principles shown in the examples above to make a choice about the possibility of including such principles in architectural projects and urban?

8. How efficient is your engineer in understanding the basics of organizing or arranging both natural and formal systems and the capacity of each of them to extend the information to the design, whether two or three-dimensional?

9. The extent to which your engineer is able to understand the harmonious or harmonious laws in addition to those contradictory or divergent and architectural traditions, external spaces and urban design, including examples of the natural or innate natural, innate, local, and regional environments of the East, the West, the North and the South and those of the Southern Hemisphere Taking into account their climate, ecosystem, technical, socio-economic, public health and cultural factors?

10. How efficient is your engineer in understanding the contradiction or
divergence of needs, values, typography, physical abilities, social and spatial patterns that characterize different cultures or civilizations and individuals and what this difference or contradiction calls for the societal role and responsibilities of architects?

11. The efficiency of the engineer you have to understand the role of applied research in determining the function, shape, regulations and behavior?

12. The degree of efficiency of your engineer in the possibility of preparing a comprehensive and comprehensive functional program for an architectural project, such as the preparation of a specific calendar for the needs of the customer or user, the identification of innovative requirements for the space and equipment it occupies, analysis of the conditions of the site (including the buildings on the site), review the laws and standards related to the construction of the building and calendar What are the project's determinants for the project?

13. The efficiency of your engineer in the possibility of design sites, uses or internal events, as well as design systems to provide the use of individuals independent and integrated at the same time while providing physical and sensory isolation?

14. The ability of your engineer to design projects that harmonize, maintain and reuse natural and built-up resources, and also provide healthy environments for occupants / users, reduce the environmental impact on the structure of the building and its operation in future years through such methods as carbon neutral design, ?

15. How efficient is your engineer in responding to or interacting with site characteristics such as soil, topography, vegetation, rain pools? All of the above is taken into consideration when developing design for the design project?

16. How efficient is your engineer in applying or adopting the basic principles of safety systems with emphasis on escape systems or escape exits?

17. The efficiency of your engineer in the possibility of producing an integrated architectural project, which shows the possibility of making design decisions on
different scales

18. How efficient is your engineer in understanding the basics of building costs, such as land acquisition costs, project financial allocations, financial feasibility studies, operating costs, and construction calculations, with emphasis on the periodic operating accounts of the building?

19. How efficient is your engineer in understanding environmental design principles such as total energy, industrial and natural heating and cooling, indoor air quality, solar guidance, daylight and industrial light, as well as appropriate means of assessing the performance of these systems?

20. The efficiency of your engineer in understanding the basic principles of structural structure behavior considering gravity and side forces as well as the development, ranges and applications appropriate for contemporary construction systems.

21. How efficient is your engineer in understanding the basic principles and appropriate applications and performance of perimeter building systems, which are related to each other with the method of installation of the building, which affect the overall performance of the building as well as aesthetics, and the transfer of moisture, and durability, as well as on energy sources and raw materials?

22. How efficient is your engineer in understanding the basic principles and appropriate applications and performance of service building systems such as water, sewage, electric, vertical motion, safety systems, and fire protection systems?

23. How efficient is your engineer in understanding the basic principles used in the proper selection of construction materials, products, vehicles, and building methods, which depend on their internal properties and performance potential, as well as their environmental impact and reuse potential?

24. How efficient is your engineer in working with others in multidisciplinary teams so that project design can be successfully completed?

25. How efficient is your engineer in understanding the relationship between human behavior, the natural environment and
26. How efficient is your engineer in understanding the responsibility of the architect in drawing, understanding and reconciling the needs of the beneficiary, owner and user groups of the building as well as with other public areas and society at large?

27. The efficiency of your engineer in understanding the methods or methods of competition between the committees or applicants, as well as the selection of consultants and teams to establish and install buildings and recommend methods of delivery of the project to the beneficiary?

28. How efficient is your engineer in understanding the basic principles of architectural practice such as financial management and business planning, time management, management risk, calmness, the possibility of finding solutions, separating the conflicting parties or parties, and recognizing or distinguishing the areas that affect the practice?

29. How efficient is your engineer in understanding the skills and techniques used by architects in the process of design and construction of buildings, as well as understanding the environmental, social and aesthetic issues of their communities?

30. The efficiency of your engineer in understanding the responsibility of architects from the general public and the client as defined by the law of the legislator in force, as well as the codes of buildings (codes of different competencies in buildings) and regulations in force, and the contracts of professional services, and understanding the conditions of the normalization of spaces and controls Division, as well as environmental legislation, historical preservation, traffic laws and traffic?

31. How efficient is your engineer in understanding the ethical issues involved in professional judgments concerning social, political and cultural issues in the process of architectural design and architectural practice?

32. How efficient is your engineer in understanding the responsibility of architects when working in the field of general society and respecting the historical sources and improving the quality of life within the local
adjacent boundaries as well as in the broader level?

6.2 Architect questionnaire

The five-year academic program, which represented the five-year curriculum with its intended learning outcomes, questions the first questionnaire about the learning outcomes of the student learner (knowledge-skill) - Capabilities) represented by the current curriculum adopted in the Department of Architecture Nahrain University, through which the characterization of the academic output (architect). The survey was conducted on the community of graduate students and on a random sample of the various offices and engineering consultancy companies. The answer rate was (58%) of the total number of respondents who participated in the questionnaire (60 graduates, and five (questionnaires were neglected) which were analyzed by the SPSS program (30). The aim of the questionnaire was to investigate the extent to which the learning outcomes gained from the five-course syllabuses were consistent with the requirements of the labor market in the course of the profession, in order to guide the educational system to the required vocabulary policy.

Table 2. The learning outcomes of the curriculum for the Department of Architecture at Al-Nahrain University as shown in the questionnaire of the academic engineer (academic output)

Targeted learning outcomes
1. Did the practitioner in the current labor market assessment of various engineering projects and materials used, and the time needed to complete cost, precise details of vocabulary building and specifications of it?
2. Did you have to understand the theoretical and historical background of philosophy in architecture role in practice in the current labor market?
3. Was the practitioner's knowledge of the duties and rights of the legal architect a role in the labor market?
4. Was the practitioner's knowledge of the theory of contemporary architecture, the historical background of the theory of architecture and the relationship between the theories of cognitive systems and the theory of architecture, and the discussion of the most important theories of postmodernism and its currents and schools influence in the labor market of architectural practice?
5. Has the practitioner solved a specific problem or design of an environmentally distinct or topographical project, or has a formal requirement of a high-level official character or project devoted to solving a problem or crisis on the architectural scene in the current labor market of architectural practice?
6. Was it for the practitioner to know the basic architectural styles and their features and to identify the most important architectural examples for that style role in the architectural work market?

7. Was the knowledge of the practitioner of urban theories and their different directions and dealing with the urban fabric and the application mechanisms of the strategies of theories and methods of preserving different role in the labor market?

8. Does the labor market require a broad information base for the basic concepts of the reciprocal relationship between the natural environment and architecture to practice the architectural profession?

9. Does the labor market require knowledge of the history of Arab Islamic architecture and the most important functional patterns and the basic elements for practicing the architectural profession?

10. Does the labor market require understanding of the cooling loads, heating and types of equipment used in addition to calculating the required load of certain models of space to practice the architectural profession?

11. Does the labor market require knowledge of the foundations and controls of the status of the housing program and the concept of housing policy for practicing the architectural profession?

12. Does the labor market, job program work for large urban projects, also require the possibility of dealing with urban content, with different uses to practice the architectural profession?

13. Does the labor market require the practitioner to design projects using the 3 DSmax program to practice the architectural profession?

14. Does the labor market require knowledge of the outlets and inventors of clean water pipes and sewers, methods of calculating the consumption of buildings and ways of designing their paths to practice the architectural profession?

15. Does the labor market require knowledge of the terms of interior design and identification of the main and secondary elements of this concept and how they are designed to practice the architectural profession?

16. Does the labor market require knowledge of
open space standards, levels, methods and elements of design, with the possibility of applying this to elected projects for the practice of architecture?

17. Does the labor market require knowledge of how the cities of Mesopotamia, Egypt, Romania, the cities of the Renaissance and the problems of housing in general to practice the architectural profession?

18. Does the labor market require knowledge of how to calculate the values of fixed and mobile loads and the various building elements of the concrete structures to practice the architectural profession?

19. Does the labor market require knowledge of how to deal with different structural structures, design and details of different types of buildings to practice the architectural profession?

20. Does the labor market require skill in designing public and service buildings with different uses in the preparation of their general, detailed and service plans for practicing the architectural profession?

21. Does the labor market require knowledge of the subject of engineering management and its objectives and rules as well as how to plan the project and its steps and the time necessary to complete it to practice the architectural profession?

22. Does the labor market require knowledge of the mechanisms adopted in calculating the land areas through modern equipment in this field to practice the architectural profession?

23. Does the labor market require knowledge of how to use different techniques, skills and building materials and tools, and prepare detailed drawings for multi-storey buildings to practice the architectural profession?

24. Does the labor market need to know how to use water colors and posters, taking into account the colors and reflections, drawing trees and green areas, and drawing perspective and furniture to practice the architectural profession?

25. Does the labor market require sufficient practical experience to produce architectural plans in all its details and according to the methods of scientific representation, as the display material is the language used by the architect to practice the architectural profession?

26. Does the labor market require experience that
enables the practitioner to understand the design and evaluation of the project he designed, and be able to provide detailed plans for the residential role to practice the architectural profession?

27 Does the labor market require the solution of mathematical equations using well-known engineering functions to practice the architectural profession?

28 Does the labor market require analysis and criticism of the idea of architectural space, mass and shape in many aspects of the scientific and technical aspects of the practice of architecture?

7. Results
The results included an investigation of the efficiency of achieving a number of learning outcomes targeted from the vocabulary contained in the five-stage curriculum in the architecture departments with the requirements of the employers in the market, which ensure compatibility between the academic program inputs and the labor market. It also included investigating the compatibility of the learning outcomes targeted from the vocabulary of the curriculum, which is part of the academic program's input in the departments of architecture in the five stages of the study with the reality of the practice of architecture in the labor market, and therefore the results of the research according to the axes as follows:

7.1 Results related to employer identification
The results of the employers' questionnaire (which were formulated based on the global standards of the American Cane Foundation mentioned in Table 1) were divided into three answers as a final result (efficient, neutral, inefficient). The fields were discussed for criteria that obtained neutral and non- The efficiency criteria were not considered because they achieved a consensus between the academic output and the labor market and the research sought to explore the criteria that weakened the level of compatibility between the academic output and The results of the questionnaire showed that there were some failures in the efficiency of the academic output (the graduate engineer), which weakened the level of compatibility between the academic program on the one hand and the labor market on the other. It was found in the criteria that obtained the rating (neutral) and (inefficient) Table (3) shows the results and resolutions of the questionnaire based on (32) agency question:

7.2 Results related to the identification of the architect
The results of the questionnaire of the engineer (academic output), in which he was asked about the learning outcomes of the five-phase curriculum for the Department of Architecture at Nahra University mentioned in Table (2), were shown as required in the labor market Their answers in the questionnaire prepared for this purpose identified an area of agreement between the academic program in the departments of architecture and the requirements of the labor market. This was demonstrated by three answers, of which only two were discussed (individually and perhaps separately) Level and the extent of compatibility between the academic output (Engineer graduate) and the requirements of the labor market and table (4) illustrates the results and resolutions of the questionnaire and based on (28) question agencies:

8. Conclusions
The conclusions were divided into two parts (conclusions on employers' identification and findings on the architect's identification). Agencies:
8.1 Conclusions on employer identification.
First: with respect to the questionnaires, the conclusions were divided into two parts: the first dealt with the criteria to be evaluated (neutral) and the second dealt with the criteria that were rated (ineffective) by agencies:

A. We deduce from paragraph (7-1) through the criteria of the naab that have obtained the following (impartial) estimate:

1. The results in paragraph (6) show the incompatibility of the academic director or the graduated engineer in part with the requirements of the labor market. This gap in compatibility can be bridged by re-defining the architecture and the environment for the relevant stages of study.

2. The results in paragraph (10) show the incompatibility of the academic director or the graduate engineer in part with the requirements of the labor market. This gap in compatibility can be bridged by re-defining the theory of architecture for the relevant stages of study.

3. The results in paragraph (12) show the incompatibility of the academic director or the graduate engineer in part with the requirements of the labor market. This gap in compatibility can be bridged by re-defining the architectural design of the fifth stage and building laws for the relevant stages of study.

4. The results in paragraph (13) show the incompatibility of the academic director or the graduated engineer in part with the requirements of the labor market. This gap in compatibility can be bridged by re-defining the architectural design material in all stages except the first stage.

5. The results in paragraph (14) show the incompatibility of the academic director or the graduate engineer in part with the requirements of the labor market. It is possible to close this gap in compatibility by re-defining the building material and environment for the relevant stages of study.

6. The results in paragraph (15) show that the academic director (graduate engineer) is not compatible in part with the requirements of the labor market. This gap in compatibility can be bridged through architectural redesign and construction services for the relevant stages of study.

7. The results in paragraph (19) show the incompatibility of the academic director or the graduate engineer in part with the requirements of the labor market, and this gap can be bridged in the compatibility by re-defining the building material and environment for the relevant stages of study.

8. The results in paragraph (21) show the incompatibility of the academic director or the graduate engineer in part with the requirements of the labor market. This gap can be bridged by the reconfiguration of building services - building buildings - architecture and energy for the relevant stages of study.

9. The results in paragraph (22) show the incompatibility of the academic director or the graduated engineer in part with the requirements of the labor market. This gap can be bridged in the compatibility by re-defining the material of construction services for the relevant stages of study.

10. The results in paragraph (23) show the incompatibility of the academic director or the graduate engineer in part with the requirements of the labor market. This gap in compatibility can be bridged by re-characterizing the services of construction and installation of the relevant buildings.

11. The results in paragraph (27) show that the graduated academic director or engineer is not compatible with the requirements of the labor market. This gap in compatibility can be bridged by re-describing the professional practice of the relevant stages of study.

12. The results in paragraph (29) show the incompatibility of the academic director or the graduate engineer in part with the requirements of the labor market. This gap in compatibility can be bridged by re-defining the architectural design and construction of the buildings for the relevant stages of study.
13. The results in paragraph (30) show the incompatibility of the academic director or the graduate engineer in part with the requirements of the labor market, and this gap can be bridged by reconfiguration of the profession and building codes for the relevant stages of study.

B. We conclude from paragraph (7-1) through the criteria of the canine that have received the following (inefficient) estimate:
 a. The results in paragraph (18) show the incompatibility of the academic director or the graduate engineer in part with the requirements of the labor market. This gap in compatibility can be bridged by re-characterizing the valuation and specifications - and the professional practice of the relevant stages of study.
 b. The results in paragraph (20) show that the academic director (graduate engineer) is not compatible in part with the requirements of the labor market. This gap in compatibility can be bridged by re-characterizing the advanced architecture material for the relevant stages of study.
 c. The results in paragraph (28) show that the academic director (graduate engineer) is not compatible in part with the requirements of the labor market. This gap in compatibility can be bridged by re-describing the professional practice of the relevant stages of study.

8.2 Conclusions of the Architectural Research.
A. We conclude from paragraph (7.2) through the vocabulary that has received the following (perhaps) estimate:
 1. We conclude from paragraph (2) clearly the relatively little importance of the philosophy of architecture in the practice of realism in the labor market, which calls for reducing the hours allocated to that individual within the curriculum in order to achieve greater compatibility between the requirements of the labor market and architect.
 2. We conclude from paragraph (3) regarding the practitioner's knowledge of the duties and rights of the legal architect, clearly the relative little importance of a professional practice in the practice of the labor market, which requires us to reduce the hours allotted to that individual within the curriculum to achieve greater compatibility between requirements The labor market and the academic output (the graduate architect).
 3. We conclude from paragraph (4) regarding the theory of contemporary architecture, and the historical background of the theory of architecture, clearly the relative little importance of the theory of architecture and its stages and the history of architecture in the field of realism in the labor market, which is called to reduce the hours devoted to that individual within the curriculum to achieve Greater compatibility between the requirements of the labor market and academic output (graduate architect).
 4. We conclude from paragraph (5) regarding the solution of a particular problem or the design of an environmentally distinct or topographical project, or with a formal requirement of a high-level official nature, clearly the relative insignificance of a fifth stage architectural design in the field of realism in the labor market. To reduce the number of hours allocated to that individual within the curriculum, in order to achieve greater compatibility between the requirements of the labor market and the academic output. We would like to point out that the learning outcomes targeted from the architectural design of the fifth stage are important as a criterion to be achieved by the graduate engineer (Perhaps) by the academic engineer, the academic output in view of the lack of these projects completed in the level of local architectural practice and also to rely on the international companies specialized in the design and implementation of projects in such specifications and thus the output of the academic output) With a grade of (maybe) considering that the implementation of projects at the level of the design thesis phase 5 did not materialize in practice.
 5. With regard to urban theories and their different directions, dealing with the urban fabric and the application mechanisms of different theories and conservation methods, we clearly point out the relatively little importance of urban design theory in the field of real-life
labor market, which is called upon to reduce the hours devoted to that individual. Within the curriculum to achieve greater compatibility between the requirements of the labor market and the academic output (the architect graduated), and we would like to point out that the learning outcomes developed for this item have been marked as important as a qualification for the academic output Engineer Amari Al-Kharj, where the criterion was adopted by the American Architects Association (NAAB). However, the architectural output pointed to the criterion of the importance of the learning outcomes of this individual in view of the lack of urban design opportunities and the lack of projects that are concerned with preservation or rehabilitation. Companies or offices that are internationally known and given priority on such occasions.

6. We conclude from paragraph (10) regarding the cooling and heating loads and the types of equipment used, clearly the relative importance of the material of heating and cooling services in the field of real market practice, which calls for a reduction of the hours allocated to that unit within the curriculum to achieve greater compatibility between the requirements of the labor market and the academic output (graduate architect), and we would like to point out that this requirement has been assessed perhaps by the engineer, the academic academic output of the process, because the process of determining the heating and cooling loads in practice is assigned to the heating and tobacco specialist. The hands of the Mechanical Engineering Departments.

7. We conclude from paragraph (13) regarding the design of the practitioner projects using the 3DSMAX program to practice the architectural profession, clearly the relative importance of few computers in the field of realism in the labor market, we would like to point out that the modern software released after the program (3DSMAX) Has been a priority on this program and thus has been made use of software easier to apply and more efficient in time and effort.

8. We conclude from paragraph (14) regarding the knowledge of the entrances and inventors of clean water pipes and sewers and the methods of calculating the consumption of buildings and the ways of designing their paths, clearly the relatively little importance of the material of sanitary buildings services in the field of realism in the labor market, which is called to reduce the hours devoted to that individual within the curriculum In order to achieve greater compatibility between the requirements of the labor market and the academic output (architect graduate), and we would like to point out that the word services buildings health establishment has been indicated by the criterion (perhaps) given to assign that individual to specialists in this area where the engineer Graduate (academic output) to design these health services and adoption of the buildings with a single floor or multiple floors.

9. We conclude from paragraph (15) regarding the knowledge of open space standards, levels, methods and elements of its design with the possibility of applying this to selected projects, clearly the relative importance of LandScape to external spaces in the practice of realism in the labor market, which is called to reduce the hours allocated to that individual within The curriculum to achieve greater compatibility between the requirements of the labor market and the academic output (architect graduate), and we would like to point out that this study is rated (perhaps) in the reality of the practice of architectural profession and the scarcity of designs for gardens and spaces outside Of the community and the culture of Ge that care and maintenance of green spaces of the labor market.

10. We conclude from paragraph (17) regarding the knowledge of how the cities of Mesopotamia, Egypt, Romania, Renaissance cities, and housing problems in general, clearly reflected the relatively little importance of urban planning in the field of realism in the labor market, which calls for a reduction in the number of hours devoted to this item within the curriculum In order to achieve greater compatibility between the requirements of the labor market and the academic output (architect graduate), and we would like to point out that the word urban planning and through the learning outcomes obtained from
them, have been given an estimate (perhaps) given the spacing of periods between the scheme and then the scarcity of Ast The birth of those outputs.

11. We conclude from paragraph (18) regarding the knowledge of how to calculate the values of fixed and mobile loads and the different building elements of the concrete structures, clearly the relatively little importance of material construction in the field of real-world labor market practice, which is called to reduce the hours devoted to that item within the curriculum In order to achieve greater compatibility between the requirements of the labor market and the academic output (architect graduate), and we would like to point out that the construction of the word through the intended learning outcomes, rarely attributed to the architect (academic output) is the competence of the academic program for civil engineering.

12. We conclude from paragraph (28) regarding the analysis and critique of the idea of architectural space, mass and form in many aspects of the scientific and technical aspects, clearly the relative little importance of art and architecture in the field of realism in the labor market, which calls for reducing the hours allocated to that individual within the curriculum In order to achieve greater compatibility between the requirements of the labor market and the academic output (the architect graduate), and we would like to indicate the occurrence of this item in the estimate (perhaps) in the labor market in view of the weakness of the architectural culture at the community level, the customer and his financial ability to control what should be and thus The learning outcomes of that article are weak and partially compatible with the labor market.

B- We deduce from paragraph (7.2), through the vocabulary that obtained the following (no) assessment:

1. We conclude from paragraph (24) regarding how to use water colors and posters, clearly the relatively little importance of the philosophy of architecture in the field of real-world labor market practice, which calls for a reduction in the number of hours allocated to the curriculum in order to achieve greater compatibility between the requirements of the labor market and the academic output (The graduate architect), and we would like to point out that the learning outcomes targeted in the free drawing have been given an estimate, which means that they are not compatible with the requirements of the labor market.

2. We conclude from paragraph (27) regarding the solution of mathematical equations using the functions of geometry, clearly the relative importance of mathematics in the field of real practice in the labor market, which calls to reduce the hours allocated to that individual within the curriculum to achieve greater compatibility between the requirements of the labor market And the academic output (the graduate architect), and we would like to point out that the learning outcomes targeted in the free drawing have been given an estimate, which means that they are not compatible with the requirements of the labor market.

9. Recommendations

1. Review the architectural academic program of the departments of architecture in local universities in terms of compatibility with the requirements of the local and global architectural labor market.

2. Emphasis on the relationship between the requirements of the labor market and the qualifications of the outputs of the academic academic program as a prescriptor for the benefit of this academic product. Graduates or engineers are effective in providing the society with the potential to improve the reality through their integration with the requirements of the labor market.

3. To fill the gaps in the compatibility between the requirements of the labor market and the qualifications of the outputs of the architectural academic program (engineers graduates) by reviewing the curriculum and the learning outcomes that are targeted for them in order to be more compatible with the practice.
4. Achieving the compatibility between the academic output and the requirements of the labor market through periodic review of changing labor market requirements with the four components of the academic program in order to improve the quality of the academic output (graduate engineer). Higher education is not a service process, but a productive process with clear economic returns at all levels. General Life.

5. Review some of the vocabulary of the premises and learning outcomes as representing the inputs of the academic program in line with the scientific development, especially in the technological aspect in all aspects of public life.

6. To promote an important set of skills that is the ability to analyze and activate the skills of critical thinking, which in turn may result in reducing the unnecessary content of the course.

7. Allow the practicing architect in some way to participate in the design of the academic programs and specifically their inputs, which include curriculum, vocabulary and learning products for the purpose of development in order to enhance the architecture profession and contribute appropriately to its sustainability.

8. Emphasize on the practical training of students departments of architecture and through the allocation of hours to follow the construction in the various project sites and see the mechanisms of management and achievement.

References

[1] Abul Alealaa, S. and muhmad, E. 2018 Building Capacities and Competencies for Graduates of Civil Engineering Departments to Meet Market Needs, Global Competitiveness and Means of Improving Assessment Methods in Light of the Spread of Private Engineering Institutes in the Arab Republic of Egypt’, 28th Arab Engineering Conference, Muscat, pp. 60-64.

[2] Adaab, O. 2018 Integration of Graduation Projects and the Labor Market in Engineering Specialties, 28th Arab Engineering Conference, Muscat, Sultanate of Oman Knowledge, pp. 88-92.

[3] Al-Chalabi, S. 2011 Quality Assurance and Academic Accreditation in Educational Institutions - Objectives and Results Procedures, Lebanese Universities League Conference in Cooperation with the National Office of Tempus European Program, pp. 1-19.

[4] Aldulu, A. 2017 Proposed Strategy for Adapting Higher Education Outputs to Labor Market Needs in Palestine, Master's Thesis, Academy of Leadership and Management, Al-Aqsa University, Palestine.

[5] Kazem, M. 2016 Basic Standards for the Development of Architectural Education Programs (Architectural Engineering Department - University of Technology) Model, Iraqi Journal of Architecture and Planning, Volume 12, Issue 1.

[6] Hamid, A. 2017 Quality of Architectural Education - Quality Requirements of Learning Outcomes in the Department of Architecture - University of Technology Model, PhD thesis, University of Technology, Baghdad, Iraq.

[7] Mulla, H. and Marzouk, S. 2017 The role of the academic program in developing the skills of students applied research for a sample of the faculties of management and economics in Iraqi universities, Journal of the Iraqi University, Volume III, No. (38), pp. 470-508.

[8] Salem, S. and Omran, N. 2018 Strategies for Dealing with Academic Academic Curricula to Keep Up with Labor Market Developments in the Arab Republic of Egypt’, 28th Arab Engineering Conference, Muscat, Sultanate of Oman Knowledge, pp. 65-72.

[9] Rizko, N. 2018 Explaining the Justifications for Curriculum Development for the Department of Architecture - Nahrain University, Journal of the Union of Arab Universities, No.2, Baghdad, Iraq.

[10] Rizko, N, Abdul Wahab, K. and Al-Jamili, S. 2019 Quality Standards for Students' Performance in the Academic Curriculum of the Department of Architecture, Nahrain University, Journal of the Union of Arab Universities, No.2, Baghdad, Iraq.
[11] Union of Arab Universities, General Secretariat, 2013) Quality Assurance Guide for Academic Programs in Colleges of Arab Universities, Quality Assurance Council Accreditation for Arab Universities, Jordan.

Acknowledgements
We would like to thank the owners, the companies, the offices participating in the questionnaire, and also the architects for the accuracy of their answers and giving us time to answer the questionnaire.