Negative Quantum Capacitance Induced by Midgap States in Single-layer Graphene

Lin Wang1*, Yang Wang1*, Xiaolong Chen1*, Wei Zhu2, Chao Zhu1, Zefei Wu1, Yu Han1, Mingwei Zhang1, Wei Li1, Yuheng He1, Wei Xiong1, Kam Tuen Law1, Dangsheng Su3 & Ning Wang1

1Department of Physics and the William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Hong Kong, China, 2Department of Physics and Astronomy, California State University, Northridge, California 91330, USA, 3Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.

We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.

Quantum capacitance and compressibility are critical quantities reflecting the fundamental physics of electron-electron (e-e) interactions1–3. The compressibility of two-dimensional electron gas systems can have a negative sign when the influence of e-e interactions on the density of states (DOS) is drastic, in particular in the samples having very low electron density n and being subjected to a high magnetic field B4,5. But single-layer graphene (SLG), a truly two-dimensional structure with a honeycomb lattice and a linear energy spectrum near the intersection of the electron and hole cones in its band structure6–9, exhibits very weak e-e interaction behavior. The single-electron model is usually sufficient to describe the electron behavior in SLG. The weak e-e interactions in SLG are mainly due to the exchange and correlation energies' cancelling each other out10,11, resulting in a positive exchange self-energy according to renormalization group theory12–14. Therefore, the inverse quantum capacitance (or inverse compressibility) is only modified by a small positive logarithmic correction in comparison with the one that ignores the e-e interactions12. Recently, G. L. Yu et al. reported that in high-quality pristine graphene samples, negative quantum capacitance phenomenon can be observed at half filling factors due to many-body effects under strong magnetic fields15. However, the negative quantum capacitance phenomenon in disordered graphene remains unexplored.

Unlike the experiment carried out by G.L. Yu et al. in which the kinetic energy is suppressed due to the formation of Landau levels, in this work, we show the first experimental evidence of reaching the strongly correlated electron regime induced by nearly dispersionless impurity bands in graphene, in the absence of a magnetic field. SLG decorated with a high density of Ag adatoms shows the unconventional phenomenon of negative quantum capacitance even in the absence of a magnetic field. This phenomenon is enhanced as the strength of the magnetic field increases. We believe that the midgap states induced by a high density of Ag adatoms deposited on SLG are responsible for this interesting experimental observation. The varied energy dispersion relationship as well as the emergence of nearly dispersionless impurity bands near the zero Fermi energy16–18 leads to the suppression of the kinetic energy of electrons and the significant changes of Coulomb interactions in Ag-adsorbed SLG, particularly in the presence of a magnetic field. The capacitance measurements at different temperatures and under different strength of a magnetic field clearly demonstrate that the Coulomb interaction and Landau level (LL) quantization have a strong influence over the negative quantum capacitance phenomenon.
Results

Figure 1(a) schematically shows the SiO$_2$/Ag-adsorbed graphene/Y$_2$O$_3$ sandwiched capacitor and an optical image of one of our devices is revealed in Figure 1(b). The total capacitance C_{tg} consisting of the oxide layer capacitance C_{ox} and graphene quantum capacitance C_{q} in a serial configuration is shown in Figure 1(c) (see details in Methods). Our tight-binding calculations for SLG decorated with a high density of Ag adatoms (the impurity concentration n_i = 1%) show several resonant impurity bands as well as a dispersionless band near the Fermi energy E_F = 0 (see Figure 1(d))19. Obviously, these changes in the quasi-particle band structure of Ag-adsorbed graphene lead to a different low-energy excitation spectrum, and thus produce midgap states (instead of the vanishing DOS in pristine SLG)$^{16,17,19-22}$. Quantum capacitance (directly proportional to graphene DOS) measurements provide an effective method to probe the midgap states in graphene. As shown in Figure 2(a), a robust peak was detected when measuring the total capacitance C_{tg} versus the applied top gate voltage V_{tg} of our Ag-adsorbed SLG samples at $T = 2$ K, confirming that Ag adatoms act as resonant impurities and create obvious midgap states near the CNP.$^{16,21,23-25}$.

The quantum capacitance C_q of graphene can be calculated from $C_q^{-1} = C_{tg}^{-1} - C_{ox}^{-1}$ $^{26-29}$. The oxide layer capacitance C_{ox} was obtained by measuring the internal reference parallel-plate capacitors (Au/Y$_2$O$_3$/Au), of which the Y$_2$O$_3$ layers were prepared under the same experimental conditions as those for the SLG quantum capacitors$^{27-29}$. Surprisingly, the values of C_q in the energy region near the CNP where the robust midgap state peak appears always exceed that of the oxide layer capacitance C_{ox} a very clear sign of negative quantum capacitance C_q^{-1}. In Figure 2 (a), the dashed line denotes the value of C_{ox} = 0.65 μF/cm2 measured at temperature $T = 2$ K and thus C_q is negative in the region above the dashed line. The midgap states induced by Ag adatoms obviously play a critical role in the formation of the negative quantum capacitance.

The variation in the chemical potential μ (equivalent to the Fermi energy E_F) as a function of top gate voltage V_{tg} can be calculated from the integral form of the charge conservation relation $\mu = e \int_{0}^{V_{tg}} \left(1 - \frac{C_{tg}}{C_{ox}} \right) dV_{tg}$ 27,30,31, where e is the elementary charge and the capacitance data are measured at $T = 2$ K. The result is shown in Figure 2 (b). Unlike in pristine SLG, an abnormal decline in the curve of μ versus V_{tg} occurs in the Ag-adsorbed SLG near $\mu = 0$. The fact

Figure 2 | (a) Curve of the total capacitance C_{tg} versus top gate voltage V_{tg} of the Ag-adsorbed single-layer graphene capacitor measured at $T = 2$ K where the gray dashed line denotes the value of C_{ox} = 0.65 μF/cm2. (b) The relationship between chemical potential μ versus top gate V_{tg} obtained from the data shown in Figure 2(a), where the red arrow denotes the abnormal decline of κ^{-1} versus V_{tg}. (c) Inverse compressibility κ^{-1} of Ag-adsorbed graphene measured at $T = 2$ K where the orange dashed line denotes the zero value of κ^{-1}.

www.nature.com/scientificreports
that the total energy decreases when more electrons are introduced to the sample by increasing the top gate voltage V_{tg}, implying that the energy of the incoming electrons in the region of midgap states is negative.

Discussion

The chemical potential μ of the electrons in SLG consists of the kinetic energy of E_k and the Coulomb interaction energy among electrons E_c, and can be denoted by $\mu = E_k + E_c$. As the tight-binding results shown in Figure 1 (d), in low carrier density regions, the Coulomb interaction energy E_c becomes dominant. The Coulomb interaction energy E_c can also vary dramatically as a consequence of the formation of midgap states. The inverse compressibility κ^{-1}, defined as the derivative of chemical potential μ with respect to carrier density n, $\kappa^{-1} = \frac{\partial \mu}{\partial n} = -\frac{\partial E_k}{\partial n} + \frac{\partial E_c}{\partial n}$, is also determined by the kinetic energy E_k and the Coulomb energy E_c. The experimental values of κ^{-1} can be obtained by $\kappa^{-1} = e^2 C_{tg}^{-1} = e^2 (C_{tg}^{-1} - C_{ox}^{-1})$, as shown in Figure 2 (c). In previous theoretical studies, it has been suggested that midgap states enhance the Coulomb interactions and the correction term induced by midgap states has a negative sign, leading to the reduction of κ^{-1}. The expression of κ^{-1} affected by midgap states is represented as

$$\kappa^{-1} = \frac{\sqrt{\pi}}{4n} \left(1 - \frac{\Delta \ln \Lambda^2}{|k|} \right)$$

where c is a positive numerical constant, Δ is a positive dimensionless number characterizing the strength of midgap states and Λ is a high momentum cutoff of the order of the inverse of the lattice constant. Note that the second term in the bracket arising from the midgap states correction is negative and becomes significant if wave vector k is very small. Thus the experimental observation of negative compressibility or negative quantum capacitance in Ag-adsorbed SLG can be naturally understood by the fact that the midgap states lead to a negative correction of κ^{-1}.

The magneto-capacitance measurements for the Ag-adsorbed SLG further support a correlation between the midgap states and graphene negative quantum capacitance, particularly in the presence of LL quantization. As shown in Figure 3, C_{tg} oscillates (against top gate voltage V_{tg}) due to LL quantization under a strong magnetic field of $B = 8$ T at $T = 2$ K. Because of the thermal-activated fluctuation of carrier density n, the LLs broaden when temperature
in an area of some distance away from the CNP (e.g., at the N

The magnetic field

(region) as shown in Figure 1, the total capacitance C_q as a function of temperature decreases dramatically, and the combination of magnetic fields and various resonant impurity bands give rise to the increase of negative quantum capacitance near the CNP with the magnetic fields.

Methods

Single-layer graphene (SLG) samples were prepared by the micromechanical exfoliation of high graphite and placed on silicon substrates with 300 nm-thick SiO$_2$. Raman spectroscopy has been used to identify these samples are single-layer graphene. Ag adatoms were introduced to SLG by DC plasma sputtering in high base vacuum conditions (10^{-7} torr) at room temperature. An ultrathin yttrium layer (5 nm in thickness) was deposited on the Ag-adSORbed SLG by e-beam evaporation and then the SLG was oxidized in air at 180°C for 30 minutes. The fabrication of drain/source and top gate electrodes (Ti/Au 5/50 nm) was performed by conventional electron-beam lithography techniques (Raith e-Line Nanoengineering Workstation and AST electron-beam evaporation system). As shown in Figure 1, the total capacitance C_q as a function of temperature decreases dramatically, and the combination of magnetic fields and various resonant impurity bands give rise to the increase of negative quantum capacitance near the CNP with the magnetic fields.

In summary, we find that the novel phenomenon of negative quantum capacitance observed in single-layer graphene decorated with a high density of Ag adatoms is attributed to the midgap states induced by the resonant impurities of the Ag adatoms. Owing to these Ag-induced midgap states, the kinetic energy of the electrons near the zero Fermi energy is effectively quenched and the Coulomb interaction energy is varied dramatically, and the combination of these two events leads to the abnormal negative quantum capacitance of the "central peak" in the absence of a magnetic field. In the presence of a magnetic field, the negative quantum capacitance is dramatically enhanced. The emergence of the negative quantum capacitance away from the CNP is intimately associated with the degree of Landau level quantization, while the magnetic-field-enhanced Coulomb interactions give rise to the increase of negative quantum capacitance near the CNP with the magnetic fields.
Acknowledgments
The authors are grateful for fruitful discussions with Professors Ping Sheng and Zhaoqing Zhang and the technical assistance of Professor Ho Bun Chan. Financial support from the Research Grants Council of Hong Kong (Project Nos. 604112_N_HKUST613/12 and HKUST9/CRF/08) and technical support of the Raith-HKUST Nanotechnology Laboratory for the electron-beam lithography facility at MCPF (Project No. SEG_HKUST08) are hereby acknowledged.

Author contributions
L. Wang and Y. Wang and N. Wang wrote the main manuscript and L. Wang prepared Figures 1–4. The experimental work was mainly done by L. Wang., C. Zhu., X.L. Chen., Y. Wang and the theoretical calculations were performed by W. Zhu. All authors reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wang, L. et al. Negative Quantum Capacitance Induced by Midgap States in Single-layer Graphene. Sci. Rep. 3, 2041; DOI:10.1038/srep02041 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/