Supplementary material

ProAll-D: Protein Allergen Detection using Long Short Term Memory- A Deep Learning Approach

Pallavi M S*, Rakshitha K K

Department of Computer Science, Amrita School of Arts and Sciences, Mysuru Campus, Amrita Vishwa Vidyapeetham, India

*Corresponding Author: E-mail: palls.ms@gmail.com

SUPPLEMENTARY MATERIAL

https://doi.org/10.5599/admet.1335
Dataset Collection

The protein data have been collected from various sources including the: Central Science Laboratory and the National Center for Biotechnology Information (NCBI) The redundancies were eliminated.

The sources from which the data has been gathered are mentioned below:

National Center for Biotechnology Information (nih.gov)
http://www.ddg-pharmfac.net/AllergenFP/data.html

Fig 1. Raw data in fasta file format

The above figure represents the protein sequence in fasta file format. The symbol “>” indicates the data is in fasta format and it also specifies the beginning of the new sequences. The numerical present after the ‘>’ is the protein accession number and scientific name of the protein.

Since each sequence is present in multiple lines so it has to be converted to a single line. For this conversion, the Linux command has been used.

Fig 2. Linux command to convert multiple line sequence to a single line
Methods

The E-descriptor values derived by Venkatarajan et al[23] has been considered to describe the features of proteins.

Amino acid	E1	E2	E3	E4	E5
Alanine	0.008	0.134	-0.475	-0.039	0.181
Arginine	0.171	-0.361	0.107	-0.258	-0.364
Asparagine	0.255	0.038	0.117	0.118	-0.055
Aspartic acid(D)	0.303	-0.057	-0.014	0.225	0.156
Cysteine	-0.132	0.174	0.07	0.565	-0.374
Glutamate	0.149	-0.184	0.03	0.035	-0.112
Glutamic acid(E)	0.221	-0.280	-0.315	0.157	0.303
Glycine	0.218	0.562	-0.024	0.018	0.106
Histidine	0.023	-0.177	0.041	0.28	-0.021
Isoleucine	-0.353	0.071	-0.088	-0.195	-0.107
Leucine	-0.267	0.018	-0.265	-0.274	0.206
Lysine	0.243	-0.339	-0.044	-0.325	-0.027
Methionine	-0.239	-0.141	-0.155	0.321	0.077
Phenylalanine	-0.329	-0.023	0.072	-0.002	0.208
Proline	0.173	0.286	0.407	-0.215	0.384
Serine	0.199	-0.155	0.007	0.068	0.196
Threonine	0.068	0.147	-0.015	-0.132	0.274
Tryptophan	-0.296	-0.186	0.389	0.083	0.297
Tyrosine	-0.141	-0.057	0.425	-0.096	-0.091
Valine	-0.274	0.136	-0.187	-0.196	-0.299

ACC transformation

Auto Cross Covariance includes both Auto Covariance and Cross Covariance. Here the 5 EDescriptors has been considered and ACC transformation for converting amino acid sequence to a sequence of numbers so that we can apply classification algorithms to them.

Let's take an example, we have a sequence as follows: ARN length = 3s
The respective E Descriptors for each amino acid are as follows:
Alanine (A) 0.008 0.134 -0.475 -0.039 0.181
Arginine (R) 0.171 -0.361 0.107 -0.258 -0.364
Asparagine (N) 0.255 0.038 0.117 0.118 -0.055

Fig 3. Data converted from multiple lines to a single line
So, when this sequence is converted to an E Descriptor sequence we get: 0.008 0.134 −0.475 −0.039 0.181 0.171 −0.361 0.107 −0.258 0.364 0.255 0.038 0.117 0.118 −0.055 length = 3*5=15

The ACC transformation on the E Descriptor sequence is done by using the respective formulas for autocovariance and cross-covariance. The autocovariance is calculated between the same E Descriptor, for eg auto covariance between E1 and E1 is represented as AC11, then we also incorporate the lag value, which in our case ranges from 1 to the length of minimum sequence i.e. from 1 to 5. so now finally:

The autocovariance between E1 and E1 and lag=1 will be represented as AC111
The autocovariance between E1 and E1 and lag=2 will be represented as AC112
The autocovariance between E2 and E2 and lag=1 will be represented as AC221, etc

Out[74]:

AC111	AC112	AC113	AC114	AC115	AC116	AC221	AC222	AC223	AC224	AC225
0	-0.004041	0.003214	-0.019499	-0.002797	0.007052	0.004554	-0.012834	0.007313	0.003767	0.001969
1	0.002835	-0.001879	-0.003374	-0.005849	-0.002727	0.007333	0.003134	0.007477	0.002913	0.003250
2	-0.001600	-0.004975	-0.002552	-0.001582	0.000641	0.003093	0.004962	0.001689	0.002621	0.002371
3	-0.006489	-0.003626	0.003811	-0.007623	-0.000628	0.001967	0.000680	0.003767	0.001542	-0.000963
4	0.000688	-0.003490	0.001213	0.003140	0.003327	0.007052	0.002433	0.006808	0.000874	0.000139
...

| Fig 4 . Output of Autocovariance transformation |

\[
\begin{array}{cccccccc}
\text{AC224} & \ldots & \text{AC532} & \text{AC533} & \text{AC534} & \text{AC535} & \text{AC541} & \text{AC542} & \text{AC543} & \text{AC544} & \text{AC545} \\
0.003767 & \ldots & -0.003887 & -0.002417 & 0.002399 & -0.004025 & -0.001182 & -0.001535 & -0.001253 & 0.000279 & -0.011362 \\
0.002913 & \ldots & 0.001522 & -0.001193 & -0.002175 & -0.002731 & -0.000966 & 0.002548 & 0.000311 & -0.000414 & -0.002027 \\
0.002621 & \ldots & 0.001081 & -0.004058 & 0.000384 & -0.003839 & -0.002833 & -0.001185 & -0.000779 & -0.000666 & -0.000732 \\
0.001542 & \ldots & -0.004964 & -0.002966 & -0.003467 & 0.001623 & -0.000886 & -0.000436 & -0.003409 & 0.001407 & -0.001669 \\
0.000674 & \ldots & 0.003858 & 0.001022 & 0.000081 & -0.003077 & -0.003084 & -0.001505 & 0.004391 & 0.003225 & -0.001804 \\
\end{array}
\]
The same goes for cross-covariance, the only difference is that cross-covariance is calculated between different E Descriptor values, this means that the cross-covariance values will be represented as AC121, AC131, AC145, AC431, etc.

The autocovariance and cross-covariance values for each amino acid sequence are combined, then the sequence is said to be ACC transformed these ACC values are the attributes on the basis of which classification algorithms can be applied.

![Fig 5. Output of autocovariance and cross covariance](image)

The above snapshot indicates the header which contains the combined output of autocovariance and cross-covariance, there are 125 attributes based on which further the algorithms are applied.

Code for ACC Transformation

```python
def represent_as_E_descriptors(allergens):
    allergens_E_descriptors = {}  
    for key in allergens:
        allergens_E_descriptors[key] = []
    for key in allergens_E_descriptors:
        for base in allergens[key]:
            allergens_E_descriptors[key].extend(E_descriptors[base])
    return allergens_E_descriptors

def convert_to_2D(descriptors):
    E1 = []
    E2 = []
```

5
E3 = []
E4 = []
E5 = []
for i in range(0,len(descriptors),5):
 E1.append(descriptors[i])
 E2.append(descriptors[i+1])
 E3.append(descriptors[i+2])
 E4.append(descriptors[i+3])
 E5.append(descriptors[i+4])

E = [E1,E2,E3,E4,E5]
E = np.array(E)
return E

def calculate_auto_covariance(j_list, lag, n, E):
 auto_covariance = {}
 for j in j_list:
 for l in lag:
 sum = 0
 for i in range(0,n-l):
 sum += (E[j,i] * E[j,i+l])/(n-l)
 key = 'AC'+str(j+1)+str(j+1)+str(l)
 auto_covariance[key] = sum
 return auto_covariance

def calculate_cross_covariance(j_list, k_list, lag, n, E):
 cross_covariance = {}
 for j in j_list:
 for k in k_list:
 if j == k:
 continue
 else:
 for l in lag:
 sum = 0
 for i in range(0,n-l):
 sum += (E[j,i] * E[k,i+l])/(n-l)
 key = 'AC'+str(j+1)+str(k+1)+str(l)
 cross_covariance[key] = sum
 return cross_covariance

def main(input_file, output_file, Label, j_list, k_list, lag):
allergens = {}
allergen_df = pd.read_csv(input_file)

headers = allergen_df[allergen_df.index % 2 == 0].apply(lambda x: x.str.strip('t')).iloc[:,0]
sequences = allergen_df[allergen_df.index % 2 != 0].apply(lambda x: x.str.strip('t')).iloc[:,0]

for header, sequence in zip(headers, sequences):
 allergens[header] = sequence

allergens_E_descriptors = represent_as_E_descriptors(allergens)

auto_covariance_df = pd.DataFrame()
cross_covariance_df = pd.DataFrame()

for key in allergens_E_descriptors:
 descriptors = allergens_E_descriptors[key]
 E = convert_to_2D(descriptors)
 n = len(descriptors)//5
 auto_covariance = calculate_auto_covariance(j_list, lag, n, E) # calling calculate_auto_covariance function
 tmp_1 = pd.DataFrame(auto_covariance, index = [0])
 auto_covariance_df = pd.concat([auto_covariance_df,tmp_1], axis = 'rows')

 cross_covariance = calculate_cross_covariance(j_list, k_list, lag, n, E) # calling calculate_auto_covariance function
 cross_covariance['Header'] = key
 tmp_2 = pd.DataFrame(cross_covariance, index = [0])
 cross_covariance_df = pd.concat([cross_covariance_df,tmp_2], axis = 'rows')

final_df = pd.concat([auto_covariance_df,cross_covariance_df], axis = 'columns')
final_df =final_df.reset_index(drop=True)

first_column = final_df.pop('Header')
final_df.insert(0, 'Header', first_column)
final_df['Class'] = Label
final_df.head()
final_df.to_csv(output_file, index = False)

import pandas as pd
import numpy as np
allergen_file = 'allergens.csv'
non_allergen_file = 'NonAllergens.csv'
allergen_output_file = 'Allergen_ACC_transformed.csv'
non_allergen_output_file = 'Non_Allergen_ACC_transformed.csv'
allergen_label = 1
non_allergen_label = 0

j_list is 0 to 4 because we have 5 E Descriptors
j_list = [0,1,2,3,4]

lag is set to 5, as the in our data the length of shortest sequence is 5
lag = [1,2,3,4,5]

we need this, exclusively for calculating cross covariance
k_list = [0,1,2,3,4]
E_descriptors = {'A': [0.008,0.134,-0.475,-0.039,0.181],
 'R': [0.171,-0.361,0.107,-0.258,-0.364],
 'N': [0.255,0.038,0.117,0.118,-0.055],
 'D': [0.303,-0.057,-0.014,0.225,0.156],
 'C': [-0.132,0.174,0.07,0.565,-0.374],
 'Q': [0.149,-0.184,0.03,0.035,-0.112],
 'E': [0.221,-0.280,-0.315,0.157,0.303],
 'G': [0.218,0.562,-0.024,0.018,0.106],
 'H': [0.023,-0.177,0.041,0.28,-0.021],
 'I': [-0.353,0.071,-0.088,-0.195,-0.107],
 'L': [-0.267,0.018,-0.265,-0.274,0.206],
 'K': [0.243,-0.339,-0.044,-0.325,-0.027],
 'M': [-0.239,-0.141,-0.155,0.321,0.077],
 'F': [-0.329,-0.023,0.072,-0.002,0.208],
 'P': [0.173,0.286,0.407,-0.215,0.384],
 'S': [0.199,0.238,-0.015,-0.068,-0.196],
 'T': [0.068,0.147,-0.015,-0.132,-0.274],
 'W': [-0.296,-0.186,0.389,0.083,0.297],
 'Y': [-0.141,-0.057,0.425,-0.096,-0.091],
 'V': [-0.274,0.136,-0.187,-0.196,-0.299]}

calling main function for allergens.csv
main(allergen_file, allergen_output_file, allergen_label, j_list, k_list, lag)
print(f'File {allergen_output_file} has been successfully created')

calling main function for NonAllergens.csv
main(non_allergen_file, non_allergen_output_file, non_allergen_label, j_list, k_list, lag)
print(f'File {non_allergen_output_file} has been successfully created')

Algorithms used for classification

Gaussian Naïve Bayes

from sklearn.naive_bayes import GaussianNB
nb = GaussianNB()
nb.fit(x_train, y_train)
print("Naive Bayes score: ", nb.score(x_test, y_test))
y_pred = nb.predict(x_test)
print(classification_report(y_test, y_pred))

Output:
```
| Class | Precision | Recall | F1-score | Support |
|-------|-----------|--------|----------|---------|
| 0     | 0.60      | 0.83   | 0.70     | 435     |
| 1     | 0.74      | 0.46   | 0.56     | 449     |
```

Radius Neighbours Classifier

from sklearn.neighbors import RadiusNeighborsClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
model = RadiusNeighborsClassifier()
model.fit(x_train, y_train)

testing our model on the testing data
print('Accuracy: ', model.score(x_test, y_test))
y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))

Output:
Extra Tree Classifier

```python
from sklearn.ensemble import ExtraTreesClassifier
extra_tree_forest = ExtraTreesClassifier(n_estimators = 100, criterion = 'entropy', max_features = 'sqrt')
extra_tree_forest.fit(x_train, y_train)
# testing our model on the testing data
print('Accuracy: ',extra_tree_forest.score(x_test, y_test))
y_pred = extra_tree_forest.predict(x_test)
print(classification_report(y_test, y_pred))
```

Output:

```
Accuracy:  0.4920814479638009

            precision  recall  f1-score  support

          0     0.49       1.00      0.66      435
          1     0.00       0.00      0.00      449

    accuracy   0.49      0.49      0.49      884
macro avg  0.25      0.50      0.33      884
weighted avg 0.24      0.49      0.32      884
```

Bagging Classifier

```python
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import DecisionTreeClassifier
from sklearn.model_selection import KFold
kfold = KFold(n_splits = 3, random_state = None)
base_cls = DecisionTreeClassifier()
um_trees = 100
model = BaggingClassifier(base_estimator = base_cls, n_estimators = num_trees, random_state = None)
results = model_selection.cross_val_score(model, x, y, cv = kfold)
print("accuracy: ",results.mean())
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
```

```
Accuracy:  0.9015837104072398

            precision  recall  f1-score  support

          0     0.86       0.95      0.91      435
          1     0.95       0.85      0.90      449

    accuracy   0.90      0.90      0.90      884
macro avg  0.91      0.90      0.90      884
weighted avg 0.91      0.90      0.90      884
```
print(classification_report(y_test, y_pred))

Output:

	precision	recall	f1-score	support
0	0.86	0.89	0.88	435
1	0.89	0.86	0.88	449

Accuracy: 0.8583670857586411

weighted avg 0.88 0.88 0.88 884

ADA Boost

from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier(n_estimators=100, base_estimator=None, learning_rate=1, random_state=96)
clf.fit(x_train, y_train)
print('Accuracy: ',clf.score(x_test, y_test))
y_pred = clf.predict(x_test)
print(classification_report(y_test, y_pred))

Output:

	precision	recall	f1-score	support
0	0.75	0.79	0.77	435
1	0.79	0.75	0.77	449

Accuracy: 0.7692307692307693

weighted avg 0.77 0.77 0.77 884

Linear Discriminant Analysis

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
model = LinearDiscriminantAnalysis()
model.fit(x_train, y_train)
print('Accuracy: ',model.score(x_test, y_test))
y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))

Output:
Quadratic Discriminant Analysis

```python
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
model = QuadraticDiscriminantAnalysis()
model.fit(x_train, y_train)
print('Accuracy: ',model.score(x_test, y_test))
y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))
```

Output:

```
Accuracy: 0.8427601809954751
precision  recall  f1-score  support
          0   0.78   0.94   0.86   435
          1   0.93   0.74   0.83   449
accuracy                      0.84   884
macro avg  0.86   0.84   0.84   884
weighted avg  0.86   0.84   0.84   884
```

LSTM (Long short-term memory)

```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from keras import models
from keras import layers
from tensorflow.keras.utils import to_categorical

df = pd.read_csv("allergen_non_allergen_merged.csv")
df = df.drop(columns=['Header'])
dfx = df.iloc[:, :-1]
```
x = dfx.to_numpy()
dfy = df.iloc[:, -1]
y = dfy.to_numpy()

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

One hot encode output labels
train_labels = to_categorical(y_train)
test_labels = to_categorical(y_test)

Create the network
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(125,)))
model.add(Dropout(0.20))
model.add(Dense(1024, activation='relu', input_shape=(125,)))
model.add(Dropout(0.40))
model.add(Dense(1024, activation='relu', input_shape=(125,)))
model.add(Dense(2, activation='softmax'))

Compile the network
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

Train the network
model.fit(x_train, train_labels, epochs=100, batch_size=40)

Make prediction
predictions = np.argmax(model.predict(x_test), axis=1)

_, test_acc = model.evaluate(x_test, test_labels)

print('Test Accuracy: ', test_acc * 100)
print(classification_report(y_test, predictions))

Output:

```
Epoch 1/100
3536/3536 [================================================================================================================================] - 5s 1ms/step - loss: 0.6129 - accuracy: 0.6403
Epoch 2/100
3536/3536 [================================================================================================================================] - 5s 1ms/step - loss: 0.4985 - accuracy: 0.7624
Epoch 3/100
3536/3536 [================================================================================================================================] - 5s 1ms/step - loss: 0.4457 - accuracy: 0.7893
Epoch 4/100
3536/3536 [================================================================================================================================] - 5s 1ms/step - loss: 0.4049 - accuracy: 0.8213
Epoch 5/100
3536/3536 [================================================================================================================================] - 5s 1ms/step - loss: 0.3687 - accuracy: 0.8326
Epoch 6/100
3536/3536 [================================================================================================================================] - 5s 1ms/step - loss: 0.3231 - accuracy: 0.8563
Epoch 7/100
3536/3536 [================================================================================================================================] - 5s 1ms/step - loss: 0.3000 - accuracy: 0.8660
Epoch 8/100
3536/3536 [================================================================================================================================] - 5s 1ms/step - loss: 0.2604 - accuracy: 0.8872
Epoch 9/100
3536/3536 [================================================================================================================================] - 5s 1ms/step - loss: 0.2493 - accuracy: 0.8914
Epoch 10/100
```
When compared to the above classification methods, LSTM performed well. The model has been developed with the creation of a network with two different activation functions namely – SoftMax and relu. Rmsprop has been used as an optimizer for the model. The network has been trained with 100 epochs each with a batch size of 40.

WEB SERVER (ProAll-D)

A web server namely, ProAll-D has been developed to predict the potential allergens using the LSTM algorithm. It is developed using the Python Django framework which is fast and user-friendly. The detailed functioning of the webserver has been described in this section as mentioned in methods.

Firstly the path of the web app folder should be copied and pasted in cmd. Then within the Allergen_GUI folder, there is a python file namely “manage.py” to execute this the second command has to be followed.

Once the above commands are executed, we get the link of the local host (“http://127.0.0.1:8000/”)
There are three different sections namely Home, Datasets, and Method Description. In the home section, the user enters the protein sequence in a one-letter code, where the models predict whether the entered sequence is allergenic or non-allergenic. The data-set part consists of the data considered in this research in the fasta file format. The Method description provides the user with a brief description of the methodologies that we have considered.

The Dataset section consists of two links that navigate to allergen and non-allergen data, which is considered in the current research. Method Description provides a brief description of the entire process.
The user has to enter the protein sequence in a one-letter code in the home section. The model predicts whether the entered sequence is allergenic or non-allergenic. Suppose if the user enters a character apart from 20 naturally occurring amino acids, then we get a message as an undefined character for the entered sequence.
Here the entered character is “Z” which is not a part of the aminoacid character, then we get the result as:

Fig 11. Checking for exceptional characters