Article

Coefficient Estimates and Fekete–Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions

Mohamed Illafe 1,2,*, Ala Amourah 3 and Maisarah Haji Mohd 1

1 School of Mathematical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia; maisarah_hjmohd@usm.my
2 School of Engineering, Math & Technology, Navajo Technical University, Crownpoint, NM 87313, USA
3 Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid 21110, Jordan; ala.amourah@siswa.ukm.edu.my
* Correspondence: millafe@navajotech.edu

Abstract: The present paper introduces a new class of bi-univalent functions defined on a symmetric domain using Gegenbauer polynomials. For functions in this class, we have derived the estimates of the Taylor–Maclaurin coefficients, \(|a_2| \) and \(|a_3| \), and the Fekete-Szegö functional. Several new results follow upon specializing the parameters involved in our main results.

Keywords: Gegenbauer polynomials; bi-univalent functions; analytic functions; Fekete–Szegö problem

MSC: 30C45

1. Definitions and Preliminaries

Let \(A \) denote the class of all analytic functions \(f \) defined in the open unit disk \(U = \{ \xi \in \mathbb{C} : |\xi| < 1 \} \) and normalized by the conditions \(f(0) = 0 \) and \(f'(0) = 1 \). Thus, each \(f \in A \) has a Taylor–Maclaurin series expansion of the form

\[
f(\xi) = \xi + \sum_{n=2}^{\infty} a_n \xi^n, \quad (\xi \in U).
\] (1)

Further, let \(S \) denote the class of all functions \(f \in A \) which are univalent in \(U \). Let the functions \(f \) and \(g \) be analytic in \(U \). We say that the function \(f \) is subordinate to \(g \), written as \(f \prec g \), if there exists a Schwarz function \(w \), which is analytic in \(U \) with \(w(0) = 0 \) and \(|w(\xi)| < 1 \) (\(\xi \in U \)) such that

\[
f(\xi) = g(w(\xi)).
\]

In addition, if the function \(g \) is univalent in \(U \), then the following equivalence holds

\[
f(\xi) \prec g(\xi) \quad \text{if and only if} \quad f(0) = g(0)
\]

and

\[
f(U) \subset g(U).
\]

It is well known that every function \(f \in S \) has an inverse \(f^{-1} \), defined by

\[
f^{-1}(f(\xi)) = \xi \quad (\xi \in U)
\]

and

\[
f^{-1}(f(w)) = w \quad (|w| < r_0(f); \ r_0(f) \geq \frac{1}{4})
\]
where
\[
 f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots.
\]
(2)

A function is said to be bi-univalent in \(\mathbb{U} \) if both \(f(\xi) \) and \(f^{-1}(\xi) \) are univalent in \(\mathbb{U} \).

Let \(\Sigma \) denote the class of bi-univalent functions in \(\mathbb{U} \) given by (1). Example of functions in the class \(\Sigma \) are
\[
\frac{\xi}{1-\xi}, \quad \log \frac{1}{1-\xi}, \quad \log \sqrt{\frac{1+\xi}{1-\xi}}.
\]

However, the familiar Koebe function is not a member of \(\Sigma \). Other common examples of functions in \(\mathbb{U} \) such as
\[
\frac{2\xi - \xi^2}{2} \quad \text{and} \quad \frac{\xi}{1-\xi^2}
\]
are also not members of \(\Sigma \).

Lewin [1] investigated the bi-univalent function class \(\Sigma \) and showed that \(|a_2| < 1.51 \). Subsequently, Brannan and Clunie [2] conjectured that \(|a_2| < \sqrt{2} \). Netanyahu [3], on the other hand, showed that \(\max_{f \in \Sigma} |a_2| = 4/3 \).

The coefficient estimate problem for each of the Taylor–Maclaurin coefficients \(|a_n| \) \((n \geq 3; n \in \mathbb{N}) \) is presumably still an open problem.

Similar to the familiar subclasses \(S^*(\xi) \) and \(K(\xi) \) of starlike and convex functions of order \(\xi(0 \leq \xi < 1) \), respectively, Taha [4] introduced certain subclasses of the bi-univalent function class \(\Sigma \), \(S^*_\Sigma(\xi) \) and \(K_\Sigma(\xi) \) of bi-starlike functions and of bi-convex functions of order \(\xi(0 < \xi \leq 1) \), respectively. For each of the function classes \(S^*_\Sigma(\xi) \) and \(K_\Sigma(\xi) \), they found non-sharp estimates on the first two Taylor–Maclaurin coefficients. For some intriguing examples of functions and characterization of the class \(\Sigma \), see [5–17].

In 1933, Fekete and Szegö [18] obtained a sharp bound of the functional \(\eta a_2^2 - a_3 \), with real \(\eta \) \((0 \leq \eta \leq 1) \) for a univalent function \(f \). Since then, the problem of finding the sharp bounds for this functional of any compact family of functions \(f \in A \) with any complex \(\eta \) is known as the classical Fekete–Szegö problem or inequality.

Orthogonal polynomials have been studied extensively as early as they were discovered by Legendre in 1784 [19]. In the mathematical treatment of model problems, orthogonal polynomials often arise to find solutions of ordinary differential equations under certain conditions imposed by the model.

The importance of orthogonal polynomials for contemporary mathematics and a wide range of their applications in physics and engineering is beyond any doubt. It is well-known that these polynomials play an essential role in problems of the approximation theory. They occur in the theory of differential and integral equations and mathematical statistics. Their applications in quantum mechanics, scattering theory, automatic control, signal analysis, and axially symmetric potential theory are also known [20,21].

Very recently, Amourah et al. [22] considered the Gegenbauer polynomials, whose generating function \(H_\alpha(x, \xi) \) is given by
\[
H_\alpha(x, \xi) = \frac{1}{(1 - 2x\xi + \xi^2)^\alpha},
\]
(3)
where \(x \in [-1, 1] \) and \(\xi \in \mathbb{U} \). For a fixed \(x \), the function \(H_\alpha \) is analytic in \(\mathbb{U} \), so it can be expanded in a Taylor series as
\[
H_\alpha(x, \xi) = \sum_{n=0}^{\infty} C^\alpha_n(x)\xi^n,
\]
(4)
where \(C^\alpha_n(x) \) is a Gegenbauer polynomial of degree \(n \).
Obviously, H_α generates nothing when $\alpha = 0$. Therefore, the generating function of the Gegenbauer polynomial is set to be

\[H_0(x, \xi) = 1 - \log(1 - 2x\xi + \xi^2) = \sum_{n=0}^{\infty} C_n^\alpha(x)\xi^n \] (5)

for $\alpha = 0$. Moreover, it is worth to mention that a normalization of α to be greater than $-1/2$ is desirable $[21,23]$. The following recurrence relations can also define Gegenbauer polynomials:

\[C_n^\alpha(x) = \frac{1}{n[2x(n+\alpha-1)C_{n-1}^\alpha(x) - (n+2\alpha-2)C_n^\alpha(x)]}, \] (6)

with the initial values

\[C_0^\alpha(x) = 1, \quad C_1^\alpha(x) = 2ax \quad \text{and} \quad C_2^\alpha(x) = 2a(1+\alpha)x^2 - a. \] (7)

Many researchers have recently explored bi-univalent functions associated with orthogonal polynomials, refs. $[24-28]$ to mention a few. For a Gegenbauer polynomial, as far as we know, there is little work associated with bi-univalent functions in the literature.

Motivated essentially by the work of Amourah et al. $[22,29,30]$, we introduce here a new subclass of bi-univalent functions subordinate to Gegenbauer polynomials and obtain bounds for the Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$ and Fekete–Szegö functional problems for functions in this new class.

2. Coefficient Bounds of the Class $\mathcal{S}_C(x, \lambda, \mu, \delta)$

Definition 1. Let α be a nonzero real constant $\lambda \geq 1$, $\mu \geq 0$, $\delta \geq 0$, $\zeta = \frac{2\lambda+\mu}{2\lambda+1}$. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{S}_C(x, \lambda, \mu, \delta)$ if the following subordinations are satisfied:

\[(1 - \lambda) \left(\frac{f(\xi)}{\xi} \right)^\mu + \lambda f''(\xi) \left(\frac{f'(\xi)}{\xi} \right)^{\mu-1} + \zeta \delta z f'''(\xi) \prec H_\alpha(x, \xi) \] (8)

and

\[(1 - \lambda) \left(\frac{g(w)}{w} \right)^\mu + \lambda g'(w) \left(\frac{g(w)}{w} \right)^{\mu-1} + \zeta \delta w g''(w) \prec H_\alpha(x, w), \] (9)

where $x \in (\frac{1}{2}, 1]$, $\zeta = \frac{2\lambda+\mu}{2\lambda+1}$, the function $g(w) = f^{-1}(w)$ is defined by (2) and H_α is the generating function of the Gegenbauer polynomial given by (3).

First, we give the coefficient estimates for the class $\mathcal{S}_C(x, \lambda, \mu, \delta)$ given in Definition 1.

Theorem 1. Let $f \in \Sigma$ given by (1) belong to the class $\mathcal{S}_C(x, \lambda, \mu, \delta)$. Then,

\[|a_2| \leq \frac{2|a|\sqrt{2|a| \x}}{\sqrt{|\lambda(\lambda + \mu + 2\zeta\delta)^2 - 2|a(1 + \alpha)(\lambda + \mu + 2\zeta\delta)^2 - ((2\lambda + \mu)(1 + \mu) - 12\zeta\delta)a^2\lambda^2| \lambda^2 x^2|}}, \]

and

\[|a_3| \leq \frac{4a^2\lambda^2}{(\lambda + \mu + 2\zeta\delta)^2} + \frac{2|a|\sqrt{2|a| \x}}{2\lambda + \mu + 6\zeta\delta}. \]

Proof. Let $f \in \mathcal{S}_C(x, \lambda, \mu, \delta)$. From Definition 1, for some analytic functions w, v such that $w(0) = v(0) = 0$ and $|w(\xi)| < 1, |v(w)| < 1$ for all $\xi, w \in \mathbb{U}$, then we can write

\[(1 - \lambda) \left(\frac{f(\xi)}{\xi} \right)^\mu + \lambda f''(\xi) \left(\frac{f'(\xi)}{\xi} \right)^{\mu-1} + \zeta \delta \xi f'''(\xi) = H_\alpha(x, w(\xi)) \] (10)
and
\[(1 - \lambda) \left(\frac{g(w)}{w} \right)^\mu + \lambda g'(w) \left(\frac{g(w)}{w} \right)^{\mu - 1} + \zeta \delta wg''(w) = H_a(x, v(w)), \quad (11)\]

From Equalities (10) and (11), we obtain that
\[f'(\xi) = 1 + C_1^e(x)c_1\xi + \left[C_1^e(x)c_2 + C_2^e(x)c_1^2\right]\xi^2 + \cdots \quad (12)\]
and
\[g'(w) = 1 + C_1^e(x)d_1w + \left[C_1^e(x)d_2 + C_2^e(x)d_1^2\right]w^2 + \cdots . \quad (13)\]

It is fairly well known that if
\[|w(\xi)| = |c_1\xi + c_2\xi^2 + c_3\xi^3 + \cdots | < 1, \quad (\xi \in \mathbb{U})\]
and
\[|v(w)| = |d_1w + d_2w^2 + d_3w^3 + \cdots | < 1, \quad (w \in \mathbb{U}),\]
then
\[|c_j| \leq 1 \quad \text{and} \quad |d_j| \leq 1 \quad \text{for all} \quad j \in \mathbb{N}, \quad (14)\]
see [31].

Thus, upon comparing the corresponding coefficients in (12) and (13), we have
\[\lambda + \mu + 2\zeta\delta)a_2 = C_1^e(x)c_1, \quad (15)\]
\[(2\lambda + \mu) \left[\left(\frac{\mu - 1}{2}\right)a_2^2 + \left(1 + \frac{6\delta}{2\lambda + 1}\right)a_3\right] = C_1^e(x)c_2 + C_2^e(x)c_1^2, \quad (16)\]
\[\lambda + \mu + 2\zeta\delta)a_2 = C_1^e(x)d_1, \quad (17)\]
and
\[(2\lambda + \mu) \left[\left(\frac{\mu + 3}{2} + \frac{12\delta}{2\lambda + 1}\right)a_2^2 - \left(1 + \frac{6\delta}{2\lambda + 1}\right)a_3\right] = C_1^e(x)d_2 + C_2^e(x)d_1^2. \quad (18)\]

It follows from (15) and (17) that
\[c_1 = -d_1 \quad (19)\]
and
\[2(\lambda + \mu + 2\zeta\delta)^2a_2^2 = |C_1^e(x)|^2 \left(c_1^2 + d_1^2\right). \quad (20)\]

If we add (16) and (18), we get
\[(2\lambda + \mu) \left(1 + \mu + \frac{12\delta}{2\lambda + 1}\right)a_2^2 = C_1^e(x)(c_2 + d_2) + C_2^e(x)(c_1^2 + d_1^2). \quad (21)\]

Substituting the value of \((c_1^2 + d_1^2)\) from (20) in the right hand side of (21), we deduce that
\[\left[(2\lambda + \mu)(1 + \mu) + 12\zeta\delta - \frac{2C_2^e(x)(\lambda + \mu + 2\zeta\delta)^2}{|C_1^e(x)|^2}\right]a_2^2 = C_1^e(x)(c_2 + d_2). \quad (22)\]

Moreover, computations using (13), (14) and (22) yield
\[|a_2| \leq \frac{2|a|x \sqrt{2|a|x}}{\sqrt{\mu(\lambda + \mu + 2\zeta\delta)^2 - 2|a(1 + a)(\lambda + \mu + 2\zeta\delta)^2 - ((2\lambda + \mu)(1 + \mu) - 12\zeta\delta)a^2|x^2}}.\]
Moreover, if we subtract (18) from (16), we obtain

\[
2(2\lambda + \mu) \left(1 + \frac{6\delta}{2\lambda + 1} \right) a_3 - 2(2\lambda + \mu) \left(1 + \frac{6\delta}{2\lambda + 1} \right) a_2^2 = C_1^a(x) (c_2 - d_2) + C_2^a(x) \left(c_1^2 - d_1^2 \right).
\]

(23)

Then, in view of (7) and (20), (23) becomes

\[
a_3 - a_2^2 = \frac{C_1^a(x)}{2(2\lambda + \mu + 2\delta)} (c_2 - d_2).
\]

Thus, applying (7), we conclude that

\[
|a_3| \leq \frac{4a^2\lambda^2}{(\lambda + \mu + 2\delta)^2} + \frac{2|ax|}{2\lambda + \mu + 6\delta}.
\]

This completes the proof of Theorem 1. □

Making use of the values of a_2^2 and a_3, we prove the following Fekete–Szegö inequality for functions in the class $\mathcal{S}_\mathbb{K}(x, \lambda, \mu, \delta)$.

Theorem 2. Let $f \in \Sigma$ given by (1) belong to the class $\mathcal{S}_\mathbb{K}(x, \lambda, \mu, \delta)$. Then,

\[
|a_3 - \eta a_2^2| \leq \begin{cases}
\frac{2|ax|}{2\lambda + \mu + 6\delta}, & |\eta - 1| \leq M \\
\frac{8|ax|^2}{|1 - \eta|}, & |\eta - 1| \geq M,
\end{cases}
\]

where

\[
M = \frac{a(\lambda + \mu + 2\delta) - 2([a(1 + \alpha)(\lambda + \mu + 2\delta) - (2\lambda + \mu)(1 + \mu) - 12\delta)a^2] x^2)}{4(2\lambda + \mu + 6\delta)a^2 x^2}
\]

Proof. From (22) and (23)

\[
a_3 - \eta a_2^2 = a_2^2 + \frac{C_1^a(x)}{2(2\lambda + \mu + 6\delta)} (c_2 - d_2) - \eta a_2^2
\]

\[
= (1 - \eta) a_2^2 + \frac{C_1^a(x)}{2(2\lambda + \mu + 6\delta)} (c_2 - d_2)
\]

\[
= (1 - \eta) \left[\left(\frac{C_1^a(x)}{2(2\lambda + \mu + 6\delta)} \right)^2 (c_2 + d_2) \right]
\]

\[
+ \frac{C_1^a(x)}{2(2\lambda + \mu + 6\delta)} (c_2 - d_2)
\]

\[
= C_1^a(x) \left[\left(h(\eta) + \frac{1}{2(2\lambda + \mu + 6\delta)} \right) c_2 + \left(h(\eta) - \frac{1}{2(2\lambda + \mu + 6\delta)} \right) d_2 \right],
\]

where

\[
h(\eta) = \frac{[C_1^a(x)]^2 (1 - \eta)}{[(2\lambda + \mu)(1 + \mu) - 12\delta] [C_1^a(x)]^2 - 2(\lambda + \mu + 2\delta)^2 C_2^a(x)}
\]

Then, in view of (7), we conclude that

\[
|a_3 - \eta a_2^2| \leq \begin{cases}
\frac{2|ax|}{2\lambda + \mu + 6\delta}, & 0 \leq |h(\eta)| \leq \frac{1}{2(2\lambda + \mu + 6\delta)} \\
\frac{8|ax|^2}{|1 - \eta|}, & |h(\eta)| \geq \frac{1}{2(2\lambda + \mu + 6\delta)}.
\end{cases}
\]

This completes the proof of Theorem 2. □
3. Corollaries and Consequences

In this section, we apply our main results to deduce each of the following new corollaries and consequences.

Corollary 1. Let $f \in \Sigma$ given by (1) belong to the class $\mathcal{G}_{\Sigma}^\alpha(x, \lambda, \mu) = \mathcal{C}_{\lambda}^\alpha(x, \lambda, 0)$. Then,

$$|a_2| \leq \frac{2|a|x}{\sqrt{|a(\lambda+\mu)|} - 2|a(1+a)(\lambda+\mu)|^2 - (2\lambda+\mu)(1+a^2)|x^2|},$$

$$|a_3| \leq \frac{4a^2x^2}{(\lambda+\mu)^2} + \frac{2|a|x}{2\lambda+\mu},$$

and

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{2|a|x}{2\lambda+\mu}, & |\eta-1| \leq N, \\ \frac{8|a|^3|1-\eta|}{|a(\lambda+\mu)|^2 - 2|a(1+a)(\lambda+\mu)|^2 - 2(2\lambda+1)a^2|x^2|}, & |\eta-1| \geq N, \end{cases}$$

where

$$N = \frac{|a(\lambda+\mu)|^2 - 2|a(1+a)(\lambda+\mu)|^2 - 2(2\lambda+1)a^2|x^2|}{4(2\lambda+1)a^2|x^2|}.$$

Corollary 2. Let $f \in \Sigma$ given by (1) belong to the class $\mathcal{G}_{\Sigma}^\alpha(x, \lambda) = \mathcal{C}_{\lambda}^\alpha(x, \lambda, 1, 0)$. Then,

$$|a_2| \leq \frac{2|a|x}{\sqrt{|a(\lambda+1)|} - 2|a(1+a)(\lambda+1)|^2 - 2(2\lambda+1)a^2|x^2|},$$

$$|a_3| \leq \frac{4a^2x^2}{(\lambda+1)^2} + \frac{2|a|x}{2\lambda+1},$$

and

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{2|a|x}{2\lambda+1}, & |\eta-1| \leq N, \\ \frac{8|a|^3|1-\eta|}{|a(\lambda+1)|^2 - 2|a(1+a)(\lambda+1)|^2 - 2(2\lambda+1)a^2|x^2|}, & |\eta-1| \geq N, \end{cases}$$

where

$$N = \frac{|a(\lambda+1)|^2 - 2|a(1+a)(\lambda+1)|^2 - 2(2\lambda+1)a^2|x^2|}{4(2\lambda+1)a^2|x^2|}.$$

Corollary 3. Let $f \in \Sigma$ given by (1) belong to the class $\mathcal{G}_{\Sigma}^\alpha(x) = \mathcal{C}_{\lambda}^\alpha(x, 1, 1, 0)$. Then,

$$|a_2| \leq \frac{2|a|x}{\sqrt{4a - 2[4a(1+a) - 6a^2]|x^2|}},$$

$$|a_3| \leq \frac{4a^2x^2}{4} + \frac{2|a|x}{3},$$

and

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{2|a|x}{3}, & |\eta-1| \leq \frac{|a-2a(1+a)-3a^2|x^2|}{3a^2|x^2|}, \\ \frac{2|a|^3|1-\eta|}{|a-2a(1+a)-3a^2|x^2|}, & |\eta-1| \geq \frac{|a-2a(1+a)-3a^2|x^2|}{3a^2|x^2|}. \end{cases}$$

Remark 1. Special cases of Gegenbauer polynomials $C_n^\alpha(x)$ are the Chebyshev polynomials $U_n(x) = C_n^1(x)$, when $\alpha = 1$, and if $\alpha = \frac{1}{2}$, we get the Legendre polynomials $P_n(x) = C_n^{\frac{1}{2}}(x)$.

Remark 2. By taking $\alpha = 1$, one can deduce the above results for the various subclasses studied by Yousef et al. [26].
4. Concluding Remark

In this present investigation, we introduced and studied the coefficient problems associated with each of the new subclasses $\mathcal{S}_f^x(x)$, $\mathcal{S}_f^x(x, \lambda)$, $\mathcal{S}_f^x(x, \lambda, \mu)$ and $\mathcal{S}_f^x(x, \lambda, \mu, \delta)$ of the class of bi-univalent functions in the open unit disk U. We derived estimates of the Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$ and Fekete–Szegö functional problems for functions belonging to these new subclasses.

Author Contributions: Conceptualization, M.I. and A.A.; methodology, M.I.; validation, M.I., A.A. and M.H.M.; formal analysis, M.I.; investigation, M.I., A.A. and M.H.M.; writing—original draft preparation, A.A.; writing—review and editing, M.I.; supervision, M.H.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lewin, M. On a Coefficient Problem for Bi-Univalent Functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [CrossRef]
2. Brannan, D.A.; Clunie, J.G. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980.
3. Netanyahu, E. The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in $|z| < 1$. Arch. Ration. Mech. Anal. 1969, 32, 100–112.
4. Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981.
5. Frasin, B.A.; Yousef, F.; Al-Hawary, T.; Aldawish, I. Application of Generalized Bessel Functions to Classes of Analytic Functions. Abstr. Appl. Anal. 2013, 2013, 573017. [CrossRef]
6. Frasin, B.A.; Yousef, F.; Al-Hawary, T.; Aldawish, I. Application of Generalized Bessel Functions to Classes of Analytic Functions. Afr. Mat. 2021, 32, 431–439. [CrossRef]
7. Altinkaya, S.; Yalcin, S. Estimates on Coefficients of a General Subclass of Bi-univalent Functions Defined by Frasin Differential Operator. Mathematics 2020, 8, 783. [CrossRef]
8. Frasin, B.A.; Yousef, F.; Al-Hawary, T.; Aldawish, I. Application of Generalized Bessel Functions to Classes of Analytic Functions. Afr. Mat. 2021, 32, 431–439. [CrossRef]
9. Altinkaya, S.; Yalcin, S. Estimates on Coefficients of a General Subclass of Bi-univalent Functions Associated with Symmetric q-Derivative Operator by Means of the Chebyshev Polynomials. Asia Pac. J. Math. 2017, 8, 90–99.
10. Frasin, B.A.; Aouf, M.K. New Subclasses of Bi-Univalent Functions. Appl. Math. Lett. 2011, 24, 1569–1573. [CrossRef]
11. Frasin, B.A.; Al-Hawary, T.; Yousef, F. Some Properties of a Linear Operator Involving Generalized Mittag-Leffler Function. Stud. Univ. Babeş-Bolyai Math. 2020, 65, 67–75. [CrossRef]
12. Al-Hawary, T.; Frasin, B.A.; Yousef, F. Coefficient Estimates for Certain Subclasses of Bi-univalent Function. Abstr. Appl. Anal. 2013, 2013, 573017. [CrossRef]
13. Frasin, B.A.; Yousef, F. Coefficient Estimates for Certain Classes of Analytic Functions of Complex Order. Afr. Mat. 2018, 29, 1265–1271. [CrossRef]
14. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain Subclasses of Analytic and Bi-Univalent Functions. Appl. Math. Lett. 2021, 23, 1188–1192. [CrossRef]
15. Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö Functional Problems for some Subclasses of Bi-univalent Functions Defined by Frasin Differential Operator. Afr. Mat. 2019, 30, 495–503. [CrossRef]
16. Yousef, F.; Alroud, S.; Illafe, M. New Subclasses of Analytic and Bi-univalent Functions Endowed with Coefficient Estimate Problems. Anal. Math. Phys. 2021, 11, 58. [CrossRef]
17. Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer Polynomials and Bi-Univalent Functions. Pales. J. Math. 2021, 10, 625–632.
18. Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions. Symmetry 2022, 14, 147. [CrossRef]
19. Yousef, F.; Alroud, S.; Illafe, M. New Subclasses of Analytic and Bi-univalent Functions Endowed with Coefficient Estimate Problems. Anal. Math. Phys. 2021, 11, 58. [CrossRef]
20. Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953.
21. Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015.
22. Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Gegenbauer Polynomials. J. Funct. Spaces 2021, 2021, 5574673.
23. Reimer, M. Multivariate Polynomial Approximation; Birkhauser: Basel, Switzerland, 2012.

24. Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič Functions of Order $\vartheta + i\delta$ Associated with (p, q)-Lucas Polynomials. *AIMS Math.* **2021**, *6*, 4296–4306. [CrossRef]

25. Amourah, A.; Al-Hawary, T.; Frasin, B.A. Application of Chebyshev Polynomials to Certain Class of Bi-Bazilevič Functions of Order $\alpha + i\beta$. *Afr. Mat.* **2021**, *32*, 1059–1066. [CrossRef]

26. Yousef, F.; Alroud, S.; Illefe, M. A Comprehensive Subclass of Bi-univalent Functions Associated with Chebyshev Polynomials of the Second Kind. *Bol. Soc. Mat. Mex.* **2020**, *26*, 329–339. [CrossRef]

27. Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials. *Filomat* **2018**, *32*, 3229–3236. [CrossRef]

28. Magesh, N.; Bulut, S. Chebyshev polynomial Coefficient Estimates for a Class of Analytic Bi-Univalent Functions Related to Pseudo-Starlike Functions. *Afr. Mat.* **2018**, *29*, 203–209. [CrossRef]

29. Amourah, A.A.; Yousef, F. Some Properties of a Class of Analytic Functions Involving a New Generalized Differential Operator. *Bol. Soc. Paran. Mat.* **2020**, *38*, 33–42. [CrossRef]

30. Amourah, A.A.; Yousef, F.; Al-Hawary, T.; Darus, M. On $H_3(p)$ Hankel Determinant for Certain Subclass of p-Valent Functions. *Ital. J. Pure Appl. Math.* **2017**, *37*, 611–618.

31. Pommerenke, C. *Univalent Functions*; Vandenhoeck and Ruprecht: Göttingen, Germany, 1975.