Asymptomatic marginal zone lymphoma of mucosa-associated lymphoid tissue in the hypopharynx, detected with esophagogastroduodenoscopy

Takuya Okadaa, Kenro Kawadaa, Taro Sugimotoa, Takashi Ito, Kazuya Yamaguchia, Yudai Kawamuraa, Masafumi Okudaa, Yuichiro Kumea, Taiko Ryotokujia, Akihiro Hoshinoa, Yutaka Tokairina and Yasuaki Nakajimaa

aDepartment of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan; bDepartment of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan; cDepartment of Otorhinolaryngology-Head and Neck Tumor Surgery, Tokyo Toritsu Komagome Byoin, Tokyo, Japan; dDepartment of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan

ABSTRACT
Mucosa-associated lymphoid tissue (MALT) lymphoma is a type of lymphoma that commonly originates in the gastrointestinal (GI) tract, and in rare instances may also occur in the head and neck region. In this report, we present a case of early stage, primary asymptomatic MALT lymphoma of the hypopharynx as detected by esophagogastroduodenoscopy (EGD). A 73-year-old man underwent EGD for an examination of the upper GI tract. At the left pyriform sinus, a swollen irregular mucosa was detected. Biopsy specimens confirmed histologically prominent proliferation of lymphocytes in the epithelium. Immunohistochemical analysis showed that the neoplastic lymphocytes were positive for CD20 and negative for CD3. Based on the other imaging studies, we diagnosed the lesion as a localized MALT lymphoma of the hypopharynx at Stage IA. In total, 46 Gy of radiotherapy was administered to the lesion. In the subsequent 5 years after the treatment, there have been no signs of recurrence.

ARTICLE HISTORY
Received 19 December 2017
Revised 12 February 2018
Accepted 31 March 2018

KEYWORDS
Lymphoma; head and neck surgery; pharyngeal neoplasms; esophagogastroduodenoscopy; endoscopy

Introduction
Mucosa-associated lymphoid tissue (MALT) lymphoma is classified by the International Lymphoma Study Group and World Health Organization as a type of low-grade marginal zone B-cell lymphoma that arises at various extranodal sites [1–3]. MALT lymphomas most commonly originate in the gastrointestinal (GI) tract, including the stomach, small intestine and colon [4], and in rare instances, the head and neck region. The malignant potential of MALT lymphomas is generally lower than that of other extranodal lymphomas, resulting in a favorable prognosis. However, in the head and neck region, the detection of especially early stage lesions can be particularly challenging, and consequently outcomes tend to be poorer in comparison to lesions in other regions [5].

In this report, we describe a rare case of primary MALT lymphoma of the hypopharynx at early stage, detected by esophagogastroduodenoscopy (EGD). We also review the literature and discuss recent developments relating to the disease.

Case report
A 73-year-old man presented with mucosal irregularities of the esophagus, as detected by EGD at a different hospital. The patient did not display any symptoms associated with the head and neck region but had previously been diagnosed with tuberculosis of the lungs, left renal cancer, hepatocellular carcinoma and prostate cancer. All prior diseases had been controlled without complications or recurrence.

At the left pyriform sinus of the hypopharynx, endoscopy revealed a swollen irregular mucosa accompanied by white moss-like lesions at the surface with an abnormal vascular pattern (Figure 1(a,b)). Magnification and image-enhanced endoscopy showed tiny dots of vessels, which were clustered and consistent with a swollen mucosa but were present at a lower density than in squamous cell carcinomas (Figure 1(c,d)). We took some biopsies from the lesion during endoscopy and found no other findings in the esophagus, stomach or duodenum.

Histopathological specimens from the biopsies demonstrated prominent proliferation and dense

CONTACT Kenro Kawada kawada.srg1@tmd.ac.jp Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
infiltration of lymphocytes in the epithelium. The lymphocytes were differentiated into plasma cells, accompanied by Russell bodies (Figure 2(a,b)). Immunohistochemical analysis showed that the neoplastic lymphocytes were positive for CD20 but negative for CD3 (Figure 3(a,b)). Immunoglobulin lambda chain expression was higher than kappa chain expression in the plasmacytic cells (Figure 4(a,b)). The Ki-67 labeling index was approximately 20%.

Positron emission tomography (PET) demonstrated focal F-18 fluorodeoxyglucose (FDG) uptake in the left pyriform sinus, compatible with endoscopic findings, with no other uptake visualized (Figure 5). Blood test results indicated high levels of the serum soluble interleukin-2 receptor (634 U/mL), while the Helicobacter pylori IgG antibody test was negative. The results of the bone marrow aspiration were normal and negative for translocations t(11;18) and t(14;18).

We diagnosed the lesion according to the Ann Arbor Classification System as Stage IA localized MALT lymphoma of the hypopharynx. In collaboration with the Departments of Otolaryngology, Hematology, and Radiology, radiotherapy was administered to the lesion. Local irradiation to the left pyriform sinus was delivered with a total dose of 46 Gy/23 fractions, over the course of four-and-a-half weeks, treating 5 days a week. Four megavoltage (MV), photons were used with lateral opposed beams. The procedure of radiotherapy was completed without severe complications.

Three months after treatment, the first follow-up examination with PET revealed a disappearance in FDG uptake at the same site, and the absence of an irregular surface. Follow-up studies were continued for a period of 5 years using endoscopy and imaging examinations, including biopsy specimens taken from the same site, and there have been no signs of a recurrence of the disease (Figure 6).

Written informed consent was obtained from the patient for academic presentations, including this case report and accompanying images.

Discussion

MALT lymphomas originate at various extranodal sites, including the GI tract (50%), head and neck region (15%), lungs (14%), ocular adnexa (12%), skin (11%), thyroid (4%) and breasts (4%). Damage of the mucosa or epithelium by chronic inflammation, or an underlying autoimmune disorder, may be of significance in MALT lymphomas; for example, there is a
well-established association between *H. pylori* infection and MALT lymphomas of the stomach [6]. Several previously published reports have also suggested that MALT lymphomas of the larynx may be caused by chronic laryngitis, extraesophageal reflux disease, or *H. pylori* infection of the stomach [7,8]. Kania et al. described an incidence of laryngeal MALT lymphoma, which was successfully managed by a combination of surgical excision, reflux therapy and eradication of *H. pylori* [9–11]. The relationship between these conditions and MALT lymphomas of the head and neck region, however, remains unclear. In our case, the patient did not present with pharyngitis, gastroesophageal reflux disease, or a gastric *H. pylori* infection. The etiologic factors were unidentified, and we did not add treatments for reflux therapy or eradication of *H. pylori*.

MALT lymphomas occur in the head and neck region less frequently than in other sites [10]. Typically, they involve the ocular adnexa, major salivary glands, oral cavity, tonsils, nasopharynx, oropharynx, hypopharynx, larynx and thyroid gland [12]. Although Waldeyer’s ring is the most common site of primary non-Hodgkin’s lymphomas, the dense population of lymphocytes within results in a low incidence of MALT lymphomas around this region [13,14]. Only a few articles have reported cases with MALT lymphomas in the pharynx or larynx. Wenzel et al. reported the first incidence of MALT lymphoma involving the hypopharynx and conjunctiva [15]. Of the non-Hodgkin’s lymphomas in the head and neck region, only 11% are indolent, accounting for just 1% of all non-Hodgkin’s lymphomas [16], and more than 50% of patients with nongastric MALT lymphomas were found to have multiorgan involvement [17]. As most lesions are detected at advanced stages accompanied by lesions at multiple sites, and in challenging anatomical locations, radiotherapy and/or chemotherapy is a more preferable option than surgery for the management of head and neck MALT lymphomas.

In this case, when deciding radiotherapy as a treatment and its total dose of 46 Gy, we adopted previous articles, suggesting the dose more than 45 Gy for...
Figure 4. Immunohistochemical analysis results showed the tumor cells were strongly positive for (a) immunoglobulin lambda chain more than (b) immunoglobulin kappa chain (original magnification ×200).

preventing local relapse [18,19]. However, recent studies and guidelines have supported the theory that 30 Gy is adequate for indolent lymphoma in the pharynx [20]. As MALT lymphoma is not common in the pharynx, more reports with the series of dose-effect in radiotherapy are needed for the optimal dose to this area.

The difficulty in detecting head and neck MALT lymphomas at an early stage is the distinct lack of an established screening system for them, unlike neoplasms of the stomach. However, close monitoring by EGD in combination with GI screening can be considered an innovative breakthrough in the detection of head and neck neoplasms [21,22]. In our university as well, endoscopists have tried to improve the detection rate of head and neck neoplasms with new methods for diagnosis, such as the ‘U-turn method’ [23]. Through these applications, we have been able to detect a significant number of cases involving head and neck abnormalities, including early stage cancers and precancerous lesions. We believe that these efforts have also resulted in the early detection of the hypopharyngeal MALT lymphoma case described in this report.

In conclusion, hypopharyngeal MALT lymphomas represent rare clinical entities, especially at early stage diagnosis. As the opportunity arises for closer monitoring of the head and neck region by EGD, endoscopists will need to be able to detect abnormal findings in the mucosa of these regions as well.

Disclosure statement

No potential conflict of interest was reported by the authors.

Figure 5. Positron emission tomography (PET) image with F-18 fluorodeoxy glucose (FDG) accumulation localized in the left pyriform sinus of the hypopharynx, pointed with white arrow.

Figure 6. Endoscopy with the Valsalva maneuver showing no signs of recurrence following treatment.
References

[1] Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma. Cancer. 1983;52:1410–1416.

[2] Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84:1361–1392.

[3] Harris NL, Jaffe ES, Diebold J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November, 1997. Ann Oncol. 1999;10:1419–1432.

[4] Seo SW, Lee SH, Lee DJ, et al. Colonic mucosa-associated lymphoid tissue lymphoma identified by chromoendoscopy. WJG. 2014;20:18487–18494.

[5] Thieblemont C, Bastion Y, Berger F, et al. Mucosa-associated lymphoid tissue gastrointestinal and non-gastrointestinal lymphoma behavior: Analysis of 108 patients. J Clin Oncol. 1997;15:1624–1630.

[6] Guidoboni M, Ferreri AJ, Ponzoni M, et al. Infectious agents in mucosa-associated lymphoid tissue-type lymphomas: pathogenic role and therapeutic perspectives. Clin Lymphoma Myeloma. 2006;6:289–300.

[7] Fung EK, Neuhauser TS, Thompson LDR. Hodgkin-like transformation of a marginal zone B-cell lymphoma of the larynx. Ann Diagn Pathol. 2002;6:61–66.

[8] Arndt S, Veelken H, Schmitt-Gräff A, et al. Multifocal extranodal mucosa-associated lymphoid tissue lymphoma affecting the larynx. Ann Otol Rhinol Laryngol. 2007;116:257–261.

[9] Kania RE, Hartl DM, Badoual C, et al. Primary mucosa-associated lymphoid tissue lymphoma (MALT) lymphoma of the larynx. Head Neck. 2005;27:258–262.

[10] Firat Y, Kizilay A, Sogutlu G, et al. Primary mucosa-associated lymphoid tissue lymphoma of hypopharynx. J Craniofac Surg. 2007;18:1189–1193.

[11] Ashamalla M, Teng MS, Brody J, et al. Case report a case of a laryngeal MALT lymphoma in a patient with a history of gastric MALT. Case Rep Hematol. 2015;2015:109561.

[12] Zucca E, Roggero E, Bertoni F, et al. Primary extranodal non-Hodgkin’s lymphomas. Part 2: head and neck, central nervous system and other less common sites. Ann Oncol. 1999;10:1023–1033.

[13] Jacobs C, Weiss L, Hoppe RT. The management of extranodal head and neck lymphomas. Arch Otolaryngol Head Neck Surg. 1986;112:654–658.

[14] Menárguez J, Mollejo M, Carrión R, et al. Waldeyer ring lymphomas. A clinicopathological study of 79 cases. Histopathology. 1994;24:13–22.

[15] Wenzel C, Dieckmann K, Fiebiger W, et al. CD5 expression in a lymphoma of the mucosa-associated lymphoid tissue (MALT)-type as a marker for early dissemination and aggressive clinical behaviour. Leuk Lymphoma. 2001;42:823–829.

[16] Shima N, Kobashi Y, Tsutsui K, et al. Extranodal non-Hodgkin’s lymphoma of the head and neck. A clinicopathologic study in the Kyoto-Nara area of Japan. Cancer. 1990;66:1190–1197.

[17] Raderer M, Vorbeck F, Formanek M, et al. Importance of extensive staging in patients with mucosa-associated lymphoid tissue (MALT)-type lymphoma. Br J Cancer. 2000;83:454–457.

[18] Lamb DS, Hudson GV, Easterling MJ, et al. Localised grade 2 non-Hodgkin’s lymphoma: results of treatment with radiotherapy (BNLI Report No. 24)). Clin Radiol. 1984;35:253–260.

[19] Tubiana M, Carde P, Burgers J, et al. Prognostic factors in non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys. 1986;12:503–514.

[20] Yahalom J, Illidge T, Specht L, et al. Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2015;92:11–31.

[21] Muto M, Minashi K, Yano T, et al. Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial. JCO. 2010;28:1566–1572.

[22] Nakanishi H, Doyama H, Takemura K, et al. Detection of pharyngeal cancer in the overall population undergoing upper GI endoscopy by using narrow-band imaging: A single-center experience, 2009–2012. Gastrointest Endosc. 2014;79:558–564.

[23] Kawada K, Okada T, Sugimoto T, et al. Intraoropharyngeal U-turn method using transnasal esophagagastroduodenoscopy. Endoscopy. 2014;46(Suppl 1):137–138.