OPTICAL SOLITONS TO THE FRACTIONAL PERTURBED NLSE IN NANO-FIBERS

TUKUR ABDULKADIR SULAIMAN
Firat University, Faculty of Science, 23119 Elazig, Turkey
and
Federal University Dutse, Faculty of Science, 7156 Jigawa, Nigeria

HASAN BULUT
Firat University, Faculty of Science, 23119 Elazig, Turkey
and
Final International University, Faculty of Education, Kyrenia, Cyprus

HACI MEHMET BASKONUS
Harran University, Faculty of Education, 63290 Sanliurfa, Turkey

ABSTRACT. In this paper, we study the space-time fractional perturbed nonlinear Schrödinger equation under the Kerr law nonlinearity by using the extended sinh-Gordon equation expansion method. The perturbed nonlinear Schrödinger equation is a nonlinear model which arises in nano-fibers. Some family of optical solitons and singular periodic wave solutions are successfully revealed. The parametric conditions for the existence of valid solitons are stated. Under the choice of suitable values of the parameters, the 3-dimensional and 2-dimensional graphs to some of the reported solutions are plotted.

1. Introduction. The nonlinear Schrödinger’s equations (NLSEs) with their wide range of applications are the most commonly use nonlinear models in the field nonlinear science [32, 24]. Because of their remarkable stability properties, optical solitons are now the most fascinating research field of nonlinear wave propagation in optical fibres [59, 20, 43, 9, 14, 15, 49]. The theory of optical solitons is one of the interesting topics for the investigation of soliton propagation through nonlinear optical fibers [56]. These optical solitons are present in the nonlinear models that arise in the various fields of nonlinear science such as nano-fibers, optical fibers, quantum electronics, optoelectronics and photonics [33, 5, 34, 47].

In some past decades, various integration schemes have been used to investigate different kind of NLSEs, such as the semi-inverse variational principle [17, 16], the trial solution approach [35], the ansatz approach [46], the extended G'/G-expansion scheme [29], the improved tan($F(\Phi(\xi))/2$) expansion method [40] and several others [28, 50, 10, 38, 21, 45, 6, 22, 55, 11, 41, 27, 4, 57, 48, 23, 12, 25, 31, 26, 13, 58, 18].

For the past two decades, the field of fractional calculus is becoming one of the interesting area of research due to its wider range of applications in the several fields of nonlinear science [2]. There are several definitions of the fractional

2010 Mathematics Subject Classification. Primary: 35Q60, 35C07, 35R11; Secondary: 35C08.

Key words and phrases. Sinh-Gordon equation, perturbed NLSE, nano-fibers, fractional order, optical solitons.

* Corresponding author: Haci Mehmet Baskonus.
derivative that have been submitted to the literature [44, 1]. Recently, a new simple

definition of the fractional derivative known as conformable fractional derivative

has been developed by Khalil et al. [39]. There are several studies that have been

conducted in this context [54, 7, 36, 37, 52, 3, 8, 53, 30].

In this study, family of optical solitons to the conformable space-time fractional

derived nonlinear Schrödinger equation in nano-fibers [42] will be obtained by

using the extended sinh-Gordon equation expansion method (ShGEEM) [51].

The conformable space-time fractional perturbed nonlinear Schrödinger equation

[42] is given by

\[iD_0^\alpha \psi + aD_0^\beta \psi + bF(|\psi|^2)\psi - i\sigma D_x^\beta (|\psi|^2\psi) - i\lambda D_x^\beta (|\psi|^2n)\psi = 0, \] \tag{1}

where \(x, t > 0, \ 0 < \alpha, \beta \leq 1, \psi(x, t) \) is a complex valued wave function of \(x \); the non-dimen-

dional distance along the fiber and \(t \); the temporal variable in dimensionless form. The

nonzero real numbers \(a \) and \(b \) are the coefficients of group velocity dispersion and nonlinear term, respectively. The perturbation terms \(\sigma, \lambda \) and \(\gamma \) are the coefficients of the inter-modal dispersion, self-steepening term and nonlinear dispersion, respectively. The parameter \(n \) represents the full nonlinearity [42], \(F \) is a real-valued algebraic function which must have the smoothness of the function \(F(|\Psi|^2)\Psi : \mathbb{C} \to \mathbb{C} \). When the complex plane \(\mathbb{C} \) is considered as two-dimensional linear space \(\mathbb{R}^2 \), the function \(F(|\Psi|^2)\Psi \) is \(k \) times continuously differentiable [42].

2. The conformable fractional derivative. Here, some basic facts about the conformable fractional derivative [39].

Definition 2.1. Let \(g : (0, \infty) \to \mathbb{R} \), then the conformable fraction derivative of \(g \)
of order \(\alpha \) is defined as

\[T_\alpha (g)(t) = \lim_{\epsilon \to 0} \frac{g(t + \epsilon t^{1-\alpha}) - g(t)}{\epsilon}, \quad t > 0, \ 0 < \alpha \leq 1. \] \tag{2}

We give some basic properties of the conformable fractional derivative [39] below

1. \(T_\alpha (bg + ch) = bT_\alpha (g) + cT_\alpha (h), \ b, c \in \mathbb{R}, \)

2. \(T_\alpha (t^\lambda) = \lambda t^{\lambda-\alpha}, \ \lambda \in \mathbb{R}, \)

3. \(T_\alpha (gh) = gT_\alpha (h) + hT_\alpha (g), \)

4. \(T_\alpha (\frac{g}{h}) = \frac{hT_\alpha (g) - gT_\alpha (h)}{h^2}, \)

5. if \(g \) is differentiable, then \(T_\alpha (g)(t) = t^{1-\alpha} \frac{dg}{dt}. \)

Theorem 2.2. Let \(g, h : (0, \infty) \to \mathbb{R} \) be differentiable and also \(\alpha \) differentiable

functions, then the following rule holds:

\[T_\alpha (g \circ h)(t) = t^{1-\alpha} h'(t)g'(h(t)). \] \tag{3}

3. Applications. In this section, we present the application of the extended ShGEEM to the fractional perturbed nonlinear Schrödinger equation [42].

It is known that Eq. (1) is integrable when \(n = 1 \) and in Kerr law media \(F(\psi) = \psi \)

[42].

Considering \(n = 1 \) under the Kerr law nonlinearity, Eq. (1) becomes

\[iD_0^\alpha \psi + aD_x^\beta \psi + b|\psi|^2 \psi - i\sigma D_x^\beta (|\psi|^2 \psi) - i\lambda D_x^\beta (|\psi|^2n)\psi = 0. \] \tag{4}

Thus, the Kerr law nonlinearity arises when a light wave in an optical fiber faces nonlinear responses from non-harmonic motion of electrons bound in molecules, caused by an external electric field [19, 60, 61].
Consider the wave transformation
\[\psi = \Psi(\xi)e^{i\phi}, \quad \phi = -k^\beta x + p t^\alpha + \Omega, \quad \xi = \frac{x^\beta}{\beta} - \nu t^\alpha. \] (5)
Substituting Eq. (5) into Eq. (4), gives the following NODE:
\[a\Psi'' - (p + ak^2 + k\sigma)\Psi + (b - \lambda k)\Psi^3 = 0 \] (6)
from the real part, and the relations
\[\nu = -(2ak + \sigma) \quad \text{and} \quad \lambda = -\frac{2}{3}\gamma \] from the imaginary part.
By the extended ShGEEM, the solutions of any given nonlinear partial differential equation are assumed to be of the forms [51]
\[\Psi(\theta) = \sum_{j=1}^{m} [b_j \sinh(\theta) + a_j \cosh(\theta)]^j + a_0, \] (7)
\[\Psi(\xi) = \sum_{j=1}^{m} [\pm ib_j \sech(\xi) \pm a_j \tanh(\xi)]^j + a_0, \] (8)
\[\Psi(\xi) = \sum_{j=1}^{m} [\pm bj \csch(\xi) \pm a_j \coth(\xi)]^j + a_0, \] (9)
\[\Psi(\xi) = \sum_{j=1}^{m} [\pm b_j \sec(\xi) + a_j \tan(\xi)]^j + a_0, \] (10)
\[\Psi(\xi) = \sum_{j=1}^{m} [\pm b_j \csc(\xi) - a_j \cot(\xi)]^j + a_0, \] (11)
where \(\theta' = \sinh(\theta) \) or \(\theta' = \cosh(\theta) \) and \(i = \sqrt{-1} \) [51].
Taking the balance between \(\Psi'' \) and \(\Psi^3 \) in Eq. (6), gives \(m = 1 \).
When \(m = 1 \), Eqs. (7), (8), (9), (10) and (11) take the forms
\[\Psi(\theta) = b_1 \sinh(\theta) + a_1 \cosh(\theta) + a_0, \] (12)
\[\Psi(\xi) = \pm ib_1 \sech(\xi) \pm a_1 \tanh(\xi) + a_0, \] (13)
\[\Psi(\xi) = \pm b_1 \csch(\xi) \pm a_1 \coth(\xi) + a_0, \] (14)
\[\Psi(\xi) = \pm b_1 \sec(\xi) + a_1 \tan(\xi) + a_0 \] (15)
and
\[\Psi(\xi) = \pm b_1 \csc(\xi) - a_1 \cot(\xi) + a_0, \] (16)
respectively.
Inserting Eq. (12)) and its second derivative along with \(\theta' = \sinh(\theta) \) or \(\theta' = \cosh(\theta) \) into Eq. (6), gives a polynomial in degrees of hyperbolic functions. We sum the coefficients of the hyperbolic functions of the same degree and equate each summation to zero, this gives a class of algebraic equations. The set of algebraic equations is then simplified to get the values of the parameters involved. For each case, putting the obtained values of the parameters into Eqs. (13)-(15), gives the solutions to Eq. (4).
Case-1. When
\[a_0 = 0, \quad a_1 = -\sqrt{\frac{a}{2k\lambda - 2\nu}}, \quad b_1 = a_1, \quad p = -\frac{1}{2}a(1 + 2k^2 - \sigma k), \]
we get
\[\psi_1(x,t) = \pm \sqrt{\frac{a}{2k\lambda - 2b}} \left(i \sech \left[\frac{x}{\beta} + (2ak + \sigma) \frac{t}{\alpha} \right] \right) e^{\left(-k \frac{x}{\beta} - \left(\frac{1}{2} a(1+2k^2) + \sigma k \right) \frac{t}{\alpha} + \Omega \right)} \]
\[+ \tanh \left[\frac{x}{\beta} + (2ak + \sigma) \frac{t}{\alpha} \right] e^{\left(-k \frac{x}{\beta} - \left(\frac{1}{2} a(1+2k^2) + \sigma k \right) \frac{t}{\alpha} + \Omega \right)} \]
(17)

and
\[\psi_2(x,t) = \pm \sqrt{\frac{a}{2k\lambda - 2b}} \left(\coth \left[\frac{x}{\beta} + (2ak + \sigma) \frac{t}{\alpha} \right] \right) e^{\left(-k \frac{x}{\beta} - \left(\frac{1}{2} a(1+2k^2) + \sigma k \right) \frac{t}{\alpha} + \Omega \right)} \]
\[+ \csch \left[\frac{x}{\beta} + (2ak + \sigma) \frac{t}{\alpha} \right] e^{\left(-k \frac{x}{\beta} - \left(\frac{1}{2} a(1+2k^2) + \sigma k \right) \frac{t}{\alpha} + \Omega \right)} \]
(18)

where \(a(k\lambda - b) > 0 \) for valid solitons.

Case-2. When \(a_0 = 0, a_1 = -\sqrt{\frac{2a}{k\lambda - b}} \), \(b_1 = 0 \), \(p = -(2+k^2) - \sigma k \), we get
\[\psi_3(x,t) = \pm \sqrt{\frac{2a}{k\lambda - b}} \tanh \left[\frac{x}{\beta} + (2ak + \sigma) \frac{t}{\alpha} \right] e^{\left(-k \frac{x}{\beta} - (a(2+k^2) + \sigma k) \frac{t}{\alpha} + \Omega \right)} \]
(19)

and
\[\psi_4(x,t) = \pm \sqrt{\frac{2a}{k\lambda - b}} \coth \left[\frac{x}{\beta} + (2ak + \sigma) \frac{t}{\alpha} \right] e^{\left(-k \frac{x}{\beta} - (a(2+k^2) + \sigma k) \frac{t}{\alpha} + \Omega \right)} \]
(20)

where \(a(k\lambda - b) > 0 \) for valid solitons.

Case-3. When \(a_0 = 0, a_1 = 0, b_1 = -\sqrt{\frac{2a}{k\lambda - b}} \), \(p = a(1-k^2) - \sigma k \), we get
\[\psi_5(x,t) = \pm \sqrt{-\frac{2a}{(k\lambda - b)}} \sech \left[\frac{x}{\beta} + (2ak + \sigma) \frac{t}{\alpha} \right] e^{\left(-k \frac{x}{\beta} + (a(1-k^2) - \sigma k) \frac{t}{\alpha} + \Omega \right)} \]
(21)

and
\[\psi_6(x,t) = \pm \sqrt{-\frac{2a}{(k\lambda - b)}} \csch \left[\frac{x}{\beta} + (2ak + \sigma) \frac{t}{\alpha} \right] e^{\left(-k \frac{x}{\beta} + (a(1-k^2) - \sigma k) \frac{t}{\alpha} + \Omega \right)} \]
(22)

the valid solitons exist for both \(a(k\lambda - b) < 0 \) and \(a(k\lambda - b) > 0 \).

Case-4. When
\[a_0 = 0, a_1 = \sqrt{\frac{a(-2ab + \lambda \left(-\sigma + \sqrt{\sigma^2 - 2a(a + 2p)} \right)}{2a(2b^2 + \lambda^2) + 4\lambda(p\lambda + b\sigma)}}} \]
\[b_1 = a_1, \]
where a and σ are the same as in Case-5.

When $a(2a(2b^2 + \lambda^2) + 4\lambda(p\lambda + b\sigma) > 0$ for valid solitons.

Case-5. When

$$a_0 = 0, a_1 = -2 \sqrt{\frac{a^3}{2a^2 b + a\lambda \sigma - \sqrt{a^2 \lambda^2(\sigma^2 - 4a(2a + p))}}, b_1 = 0,$$

$$k = \frac{1}{2a^2 \lambda} \left(-a \lambda \sigma + \sqrt{a^2 \lambda^2(\sigma^2 - 4a(2a + p))} \right),$$

we get

$$\psi_9(x, t) = \pm 2 \sqrt{\frac{a^3}{2a^2 b + a\lambda \sigma - \sqrt{a^2 \lambda^2(\sigma^2 - 4a(2a + p))}}}
\times \tanh \left[\frac{x^\beta}{\beta} + (2ak + \sigma) \frac{t^\alpha}{\alpha} \right] e^{i\left(-k x^\beta + \sigma x^\alpha + \Omega\right)}$$

(25)

and

$$\psi_{10}(x, t) = \pm 2 \sqrt{\frac{a^3}{2a^2 b + a\lambda \sigma - \sqrt{a^2 \lambda^2(\sigma^2 - 4a(2a + p))}}}
\times \coth \left[\frac{x^\beta}{\beta} + (2ak + \sigma) \frac{t^\alpha}{\alpha} \right] e^{i\left(-k x^\beta + \sigma x^\alpha + \Omega\right)},$$

(26)

where $a^3(2a^2 b + a\lambda \sigma - \sqrt{a^2 \lambda^2(\sigma^2 - 4a(2a + p))}) < 0$ and $\sigma^2 - 4a(2a + p) > 0$ for valid solitons.

Case-6. When

$$a_0 = 0, a_1 = 0, b_1 = -2 \sqrt{\frac{a^3}{\sqrt{a^2 \lambda^2(4a(a - p) + \sigma^2)} - a(2ab + \sigma)}}.$$
where the valid wave solutions exist for both

\[
\psi_{930} = \left(-a\lambda\sigma + \sqrt{a^2\lambda^2(4a(a-p) + \sigma^2)} \right),
\]

we get

\[
\psi_{11}(x, t) = \pm 2 \sqrt{\frac{a^3}{\sqrt{a^2\lambda^2(4a(a-p) + \sigma^2)} - a(2ab + \sigma)}}
\times \text{sech} \left[\frac{x\beta}{\alpha} + (2ak + \sigma)\frac{t^\alpha}{\alpha} \right] e^{-i\left(-k\frac{x\beta}{\alpha} + \frac{t^\alpha}{\alpha} + \Omega \right)}
\] (27)

and

\[
\psi_{12}(x, t) = \pm 2 \sqrt{\frac{a^3}{\sqrt{a^2\lambda^2(4a(a-p) + \sigma^2)} - a(2ab + \sigma)}}
\times \text{csch} \left[\frac{x\beta}{\alpha} + (2ak + \sigma)\frac{t^\alpha}{\alpha} \right] e^{-i\left(-k\frac{x\beta}{\alpha} + \frac{t^\alpha}{\alpha} + \Omega \right)},
\] (28)

where the valid solitons exist for both \(a^3\left(\sqrt{a^2\lambda^2(4a(a-p) + \sigma^2)} - a(2ab + \sigma) \right) > 0\)
and \(a^3\left(\sqrt{a^2\lambda^2(4a(a-p) + \sigma^2)} - a(2ab + \sigma) \right) < 0\), and for \(4a(a-p) + \sigma^2 > 0\).

Case-7. When

\[a_0 = 0, \ a_1 = -\sqrt{\frac{a}{2(k\lambda - b)}}, \ b_1 = a_1, \ p = \frac{1}{2}(a - 2ak^2 - 2k\sigma) \]

we get

\[
\psi_{13}(x, t) = \pm \sqrt{\frac{a}{2(k\lambda - b)}} \left(\text{sec} \left[\frac{x\beta}{\alpha} + (2ak + \sigma)\frac{t^\alpha}{\alpha} \right] \right.
\]
\[+ \tan \left[\frac{x\beta}{\alpha} + (2ak + \sigma)\frac{t^\alpha}{\alpha} \right] e^{i\left(-k\frac{x\beta}{\alpha} + \frac{t^\alpha}{\alpha} + \Omega \right)} \] (29)

and

\[
\psi_{14}(x, t) = \pm \sqrt{\frac{a}{2(k\lambda - b)}} \left(\text{cot} \left[\frac{x\beta}{\alpha} + (2ak + \sigma)\frac{t^\alpha}{\alpha} \right] \right.
\]
\[+ \csc \left[\frac{x\beta}{\alpha} + (2ak + \sigma)\frac{t^\alpha}{\alpha} \right] e^{i\left(-k\frac{x\beta}{\alpha} + \frac{t^\alpha}{\alpha} + \Omega \right)}, \] (30)

where the valid wave solutions exist for both \(a(k\lambda - b) > 0\) and \(a(k\lambda - b) < 0\).

Case-8. When

\[a_0 = 0, \ a_1 = \sqrt{\frac{a(-2ab + \lambda(-\sigma + \sqrt{2a(a-2p) + \sigma^2})}{a(4b^2 - 2\lambda^2) + 4\lambda(p\lambda + b\sigma)}}, \ b_1 = -a_1, \]

\[
k = -\frac{1}{2\alpha} \left(\sigma + \sqrt{2a(a-2p) + \sigma^2} \right), \]

we get

\[
\psi_{15}(x, t) = \pm \sqrt{\frac{a(-2ab + \lambda(-\sigma + \sqrt{2a(a-2p) + \sigma^2})}{a(4b^2 - 2\lambda^2) + 4\lambda(p\lambda + b\sigma)}} \left(\text{sec} \left[\frac{x\beta}{\alpha} + (2ak + \sigma)\frac{t^\alpha}{\alpha} \right] \right.
\]
\[+ \tan \left[\frac{x\beta}{\alpha} + (2ak + \sigma)\frac{t^\alpha}{\alpha} \right] e^{i\left(-k\frac{x\beta}{\alpha} + \frac{t^\alpha}{\alpha} + \Omega \right)} \] (31)
and

$$\psi_{16}(x,t) = \pm \sqrt{\frac{a(-2ab + \lambda(-\sigma + \sqrt{2a(a-2p)+\sigma^2})}{a(4b^2 - 2\lambda^2) + 4\lambda(p\lambda + b\sigma)}} \left(\cot\left(\frac{x^\beta}{\beta} + (2ak + \sigma)^\frac{t^\alpha}{\alpha}\right) \right)$$

$$+ \csc\left(\frac{x^\beta}{\beta} + (2ak + \sigma)^\frac{t^\alpha}{\alpha}\right) e^{i\left(-k\frac{x^\beta}{\beta} + p\frac{t^\alpha}{\alpha} + \Omega\right)},$$

(32)

where the valid wave solutions exist for $2a(a-2p)+\sigma^2 > 0$.

Remarks. Solutions (17) and (23) are combined dark-bright optical solitons. Solutions (19) and (25) are dark optical solitons. Solutions (21) and (27) are bright optical solitons. Solutions (18) and (24) are combined singular solitons. Solutions (20), (22), (26) and (28) are singular solitons, and finally, solutions (29), (30), (31) and (32) are singular periodic wave solutions.

Figure 1. The 3D and 2D surfaces of Eq. (19) at $\alpha = \beta = 0.7$.

Figure 2. The 3D and 2D surfaces of Eq. (19) at $\alpha = \beta = 0.8$.
4. Conclusions. This paper revealed the dark, bright, singular, compound dark-bright, compound singular optical solitons and singular periodic wave solutions to the fractional perturbed nonlinear Schrödinger equation in nano-fibers by using the extended sinh-Gordon equation expansion approach. The Kerr law nonlinearity is considered. We presented the 2-dimensional and 3-dimensional graphics to some of the obtained solutions with the suitable values of $\alpha, \beta \in (0, 1)$. The reported results
Figure 6. The 3D and 2D surfaces of Eq. (22) at $\alpha = \beta = 0.8$.

Figure 7. The 3D and 2D surfaces of Eq. (29) at $\alpha = \beta = 0.7$.

Figure 8. The 3D and 2D surfaces of Eq. (29) at $\alpha = \beta = 0.8$.

provide a lot of encouragements for future studies. The extended sinh-Gordon equation expansion approach gives family of optical solitons that may be useful in explaining the physical meaning of several complex nonlinear models that arise in the various fields of nonlinear science.
Acknowledgments. We would like to thank the editors and reviewers for taking their time to review our paper. Of course, your positive comments make the paper looks good and easy to understand. We appreciate.

REFERENCES

[1] A. Abdon and B. Dumitru, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, *Thermal Science*, 20 (2016), 763–769.
[2] M. A. Akinlar and M. Kurulay, A novel method for analytical solutions of fractional partial differential equations, *Mathematical Problems in Engineering*, 2013 (2013), Art. ID 195708, 4 pp.
[3] K. K. Ali, R. I. Nuruddeen and K. R. Rasian, New structures for the space-time fractional simplified MCH and SRLW equations, *Chaos, Solitons and Fractals*, 106 (2018), 304–309.
[4] S. Arbabi and M. Najafi, Exact solitary wave solutions of the complex nonlinear Schrödinger equations, *Optik*, 127 (2016), 4682–4688.
[5] A. H. Arnous, M. Z. Ullah, M. Asma, S. P. Moshokoa, Q. Zhou, M. Mirzazadeh, A. Biswas and M. Belic, Dark and singular dispersive optical solitons of Schrödinger-Hirota equation by modified simple equation method, *Optik*, 136 (2017), 445–450.
[6] M. Arshad, A. R. Seadawy and D. Lu, Elliptic function and solitary wave solutions of the higher-order nonlinear Schrödinger dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity and its stability, *The European Physical Journal Plus*, 132 (2017), 371.
[7] A. Atangana and D. Baleanu, Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivatives, *Filomat*, 31 (2017), 2243–2248.
[8] E. Bas, R. Yilmaza and E. Panakhov, Fractional solutions of bessel equation with N-method, *The Scientific World Journal*, 2013 (2013), Article ID 685695, 8 pages.
[9] H. M. Baskonus, T. A. Sulaiman, H. Bulut and T. Akturk, Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with δ-potential, *Superlattices and Microstructures*, 115 (2016), 19–29.
[10] H. M. Baskonus, H. Bulut and T. A. Sulaiman, Investigation of various travelling wave solutions to the extended (2+1)-dimensional quantum ZK equation, *The European Physical Journal Plus*, 132 (2017), 482.
[11] H. M. Baskonus, T. A. Sulaiman and H. Bulut, Dark, bright and other optical solitons to the decoupled nonlinear Schrödinger equation arising in dual-core optical fibers, *Opt Quant Electron*, 50 (2018), 165.
[12] H. M. Baskonus, T. A. Sulaiman and H. Bulut, Bright, dark optical and other solitons to the generalized higher-order NLSE in optical fibers, *Opt Quant Electron*, 50 (2018), 253.
[13] I. Bendahmane, H. Triki, A. Biswas, A. S. Alshomrani, Q. Zhou, S. P. Moshokoa and M. Belic, Bright, dark and W-shaped solitons with extended nonlinear Schrödinger’s equation for odd and even higher-order terms, *Superlattices Microstruct.*, 114 (2018), 53–61.
[14] A. H. Bhrawy, A. A. Alshaery, E. M. Hilal, Z. Jovanoski and A. Biswas, Bright and dark solitons in a cascaded system, *Optik*, 125 (2014), 6162–6165.
[15] A. Biswas, M. Ekici, A. Sonmezoglu, Q. Zhou, S. P. Moshokoa and M. Belic, Optical soliton perturbation with full nonlinearity for Kundu-Eckhaus equation by extended trial function scheme, *Optik*, 160 (2018), 17–23.
[16] A. Biswas, Q. Zhou, S. P. Moshokoa, H. Triki, M. Belic and R. T. Alqahtani, Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations, *Optik*, 145 (2017), 14–17.
[17] A. Biswas, Q. Zhou, M. Z. Ullah, H. Triki, S. P. Moshokoa and M. Belic, Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle, *Optik*, 143 (2017), 131–134.
[18] A. Biswas, A. H. Kara, M. Z. Ullah, Q. Zhou, H. Triki and M. Belic, Conservation laws for cubic-quartic optical solitons in Kerr and power law media, *Optik*, 145 (2017), 650–654.
[19] A. Biswas, H. Triki, Q. Zhou, S. P. Moshokoa, M. Z. Ullah and M. Belic, Cubic-quartic optical solitons in Kerr and power law media, *Commun. Theor. Phys.*, 144 (2017), 357–362.
[20] H. Bulut, T. A. Sulaiman and B. Demirdag, Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations, *Nonlinear Dynamics*, 91 (2018), 1985–1991.
[21] H. Bulut, T. A. Sulaiman, H. M. Baskonus and T. Akturk, Complex acoustic gravity wave behaviors to some mathematical models arising in fluid dynamics and nonlinear dispersive media, *Opt Quant Electron*, 50 (2018), 19.

[22] H. Bulut, T. A. Sulaiman, H. M. Baskonus, H. Rezazadeh, M. Eslami and M. Mirzazadeh, Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, *Optik*, 127 (2018), 20–27.

[23] H. Bulut, T. A. Sulaiman and H. M. Baskonus, On the new soliton and optical wave structures to some nonlinear evolution equation, *The European Physical Journal Plus*, 132 (2017), 459.

[24] C. Cattani, Harmonic wavelet solutions of the Schrödinger equation, *International Journal of Fluid Mechanics Research*, 30 (2003), 463–472.

[25] C. Cattani, T. A. Sulaiman, H. M. Baskonus and H. Bulut, Solitons in an inhomogeneous Murnaghan’s rod, *Eur. Phys. J. Plus*, 133 (2018), 228.

[26] C. Cattani, T. A. Sulaiman, H. M. Baskonus and H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems, *Opt Quant Electron*, 50 (2018), 138.

[27] M. T. Darvishi, S. Ahmadian, S. B. Arbabi and M. Najafi, Optical solitons for a family of nonlinear (1+1)-dimensional time-space fractional Schrödinger models, *Optical and Quantum Electronics*, 50 (2018), 32.

[28] M. Ekici, A. Sonmezoglu, Q. Zhou, S. P. Moshokoa, M. Z. Ullah, A. H. Arnous, A. Biswas and M. Belic, Analysis of optical solitons in nonlinear negative-indexed materials with anti-cubic nonlinearity, *Opt. Quant. Electron.*, 50 (2018), 75.

[29] M. Ekici, M. Mirzazadeh, A. Sonmezoglu, Q. Zhou, S. P. Moshokoa, A. Biswas and M. Belic, Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended \(G'/G \)-expansion scheme, *Optik*, 127 (2016), 10490–10497.

[30] M. Ekici, M. Mirzazadeh, M. Eslami, Q. Zhou, S. P. Moshokoa, A. Biswas and M. Belic, Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives, *Optik*, 127 (2016), 10659–10669.

[31] A. Esen, T. A. Sulaiman, H. Bulut and H. M. Baskonus, Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation, *Optik*, 167 (2018), 150–156.

[32] M. Eslami, M. Mirzazadeh, B. F. Vajargah and A. Biswas, Optical solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients by the first integral method, *Optik*, 125 (2014), 3107–3116.

[33] M. Eslami and M. Mirzazadeh, Optical solitons with Biswas-Milovic equation for power law and dual-power law nonlinearities, *Nonlinear Dyn.*, 83 (2016), 731–738.

[34] M. Eslami, Soliton-like solutions for the coupled Schrodinger-Boussinesq equation, *Optik*, 126 (2016), 3987–3991.

[35] M. Eslami, Trial solution technique to chiral nonlinear Schrödinger equation in (1+2)-dimensions, *Nonlinear Dyn.*, 85 (2016), 813–816.

[36] M. Eslami, H. Rezazadeh, M. Rezazadeh and S. S. Mosavi, Exact solutions to the space-time fractional Schrödinger-Hirota equation and the space-time modified KDV-Zakharov-Kuznetsov equation, *Optical and Quantum Electronics*, 49 (2017), 279.

[37] M. Eslami and H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, *Calcolo*, 53 (2016), 475–485.

[38] O. A. Ilhan, H. Bulut, T. A. Sulaiman and H. M. Baskonus, Dynamic of solitary wave solutions in some nonlinear pseudoparabolic models and Dodd-Bullough-Mikhailov equation, *Indian Journal of Physics*, 92 (2018), 999–1007.

[39] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, *Journal of Computational and Applied Mathematics*, 264 (2014), 65–70.

[40] J. Manafian, Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(\tan(q/2) \)-expansion method, *Optik*, 127 (2016), 4222–4245.

[41] J. Manafian and M. F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, *The European Physical Journal Plus*, 131 (2016), 97.

[42] M. Mirzazadeh, M. Ekici, A. Sonmezoglu, M. Eslami, Q. Zhou, E. Zerrad, A. Biswas and M. Belic, Optical Solitons in Nano-Fibers with Fractional Temporal Evolution, *Journal of Computational and Theoretical Nanoscience*, 13 (2016), 5361–5374.
[43] K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, The European Physical Journal Plus, 131 (2016), 335.

[44] I. Podlubny, Fractional Differential Equations, 1st edition, Academic Press, San Diego, 1999.

[45] A. Sardar, K. Ali, S. T. Rizvi, M. Younis, Q. Zhou, E. Zerrad, A. Biswas and A. Bhrawy, Dispersive optical solitons in nanofibers with Schrödinger-Hirota equation, Journal of Nanoelectronics and Optoelectronics, 11 (2016), 382–387.

[46] M. Savescu, A. H. Bhrawy, E. M. Hilal, A. A. Alshaery, A. Biswas, Optical solitons in birefringent fibers with four-wave mixing for Kerr law nonlinearity, Rom. J. Phys., 59 (2014), 582–589.

[47] A. R. Seadawy, Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions, Journal of Electromagnetic Waves and Applications, 31 (2017), 1353–1362.

[48] A. R. Seadawy and D. Lu, Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability, Results Phys., 7 (2017), 43–48.

[49] T. A. Sulaiman, T. Akturk, H. Bulut and H. M. Baskonus, Investigation of various soliton solutions to the Heisenberg ferromagnetic spin chain equation, Journal of Electromagnetic Waves and Applications, 32 (2018), 1093–1105.

[50] H. Triki and A. M. Wazwaz, New solitons and periodic wave solutions for the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation, Journal of Electromagnetic Waves and Applications, 30 (2016), 788–794.

[51] X. Xian-Lin and T. Jia-Shi, Travelling wave solutions for Konopelchenko-Dubrovsky equation using an extended sinh-Gordon equation expansion method, Commun. Theor. Phys., 50 (2008), 1047–1051.

[52] X. J. Yang, F. Gao and H. M. Srivastava, Exact Travelling Wave solutions for the Local Fractional Two-Dimensional Burgers-Type Equations, Computers and Mathematics with Applications, 73 (2017), 203–210.

[53] H. C. Yaslan, New analytic solutions of the conformable space-time fractional Kawahara equation, Optik, 140 (2017), 123–126.

[54] R. Yilmaz and E. Bas, Explicit Solutions of Fractional Schrödinger Equation via Fractional Calculus Operators, Int. J. Open Problems Compt. Math., 5 (2012), 133–141.

[55] A. Yokus, H. M. Baskonus, T. A. Sulaiman and H. Bulut, Numerical simulation and solutions of the two-component second order KdV evolutionary system, Numer Methods Partial Differential Eq., 34 (2018), 211–227.

[56] M. Younis, N. Cheema, S. A. Mahmood and S. T. R. Rizvi, On optical solitons: The chiral nonlinear Schrödinger equation with perturbation and Bohnm potential, Opt Quant Electron, 48 (2016), 542.

[57] Q. Zhou, Optical solitons for Biswas-Milovic model with Kerr law and parabolic law nonlinearities, Nonlinear Dynamics, 84 (2016), 677–681.

Received June 2018; revised August 2018.

E-mail address: sulaiman.tukur@fud.edu.ng
E-mail address: hbulut@firat.edu.tr
E-mail address: hmbaskonus@gmail.com