Dielectric-branes in Non-supersymmetric SO(3)-invariant Perturbation of Three-dimensional $\mathcal{N} = 8$ Yang-Mills Theory

Changhyun Ahn ¹ and Taichi Itoh ²

Department of Physics, Kyungpook National University, Taegu 702-701, Korea

Abstract

We study non-supersymmetric $SO(3)$-invariant deformations of $d = 3$, $\mathcal{N} = 8$ super Yang-Mills theory and their type IIA string theory dual. By adding both gaugino mass and scalar mass, dielectric D4-brane potential coincides with D5-brane potential in type IIB theory. We find the region of parameter space where the non-supersymmetric vacuum is described by stable dielectric NS5-branes. By considering the generalized action for NS5-branes in the presence of D4-flux, we also analyze the properties of dielectric NS5-branes.

¹Email address: ahn@knu.ac.kr
²Email address: taichi@knu.ac.kr
1. Introduction

The Anti de Sitter(AdS)/Conformal Field Theory(CFT) correspondence (for a review, see [1]) enables us to study not confining theories but conformal $\mathcal{N} = 4$ gauge theories that are dual to type IIB string theory on $\text{AdS}_5 \times S^5$. In order to understand the former, one can perturb by adding mass terms preserving some or none of supersymmetry and gets a confining gauge theory. It is known that in [2], they made a proposal for the dual supergravity description of a four-dimensional confining gauge theory by adding finite mass terms to $\mathcal{N} = 4$ Yang-Mills theory and computed the linearized perturbed background by the presence of non-vanishing boundary conditions on the magnetic three-form. In each of the many vacua, D3-branes were replaced by several five-branes through Myers’ dielectric effect [3]. It turned out that as long as the ratio of five- and three-brane charge densities is very small, the solutions are good near five-brane action minima.

Motivated by the work of [2], the dual M-theory description of a three-dimensional theory living on M2-branes by adding fermion mass terms was found [4]. Similarly, the nonsingular string theory duals corresponding to a perturbed three-dimensional gauge theory on D2-branes was obtained by the polarization of D2-branes into D4-branes and NS5-branes [5]. Moreover, the dual string theory of oblique vacua in the perturbed three-dimensional gauge theory corresponded to the polarization of D2-branes into NS5-branes with D4-brane charge [6]. In [7], $SO(3)$-invariant deformations of four-dimensional $\mathcal{N} = 4$ gauge theory within the context of [2] was studied and the non-supersymmetric vacuum is described by stable dielectric five-branes.

In this paper, we consider perturbed three-dimensional gauge theory living on D2-branes by adding both gaugino mass term and the scalar terms and construct dual string theory corresponding to this $SO(3)$-invariant non-supersymmetric deformation of $d = 3$, $\mathcal{N} = 8$ theory. In section 2, we review three-dimensional Yang-Mills theory and how its $SO(3)$-invariant perturbations appear. In section 3, for given $\mathcal{N} = 2$ supersymmetric gauge theory perturbed by three fermion masses, we go one step further by inserting gaugino mass and scalar mass which are 35 and 27 of $SO(7)_R$ symmetry, respectively. It turns out it is exactly same form of the one of type IIB theory described by D3/D5 potential. Similarly, in section 4, we consider the scalar mass 27 of $SO(7)_R$ symmetry, modify $\mathcal{N} = 2$ dielectric NS5-brane action and study its phase diagram. In section 5, we do the same analysis for generalized NS5-brane action. In section 6, we make our conclusions and future directions.
2. The SO(3)-invariant perturbations in type IIA theory

We start from preliminaries about the type IIA D2-brane solution and its SO(3)-
invariant perturbation both in the bulk and in the boundary. The unperturbed space-time
generated by N coincident D2-branes is obtained as \cite{8, 9}

$$ds^2 = Z^{-1/2} \eta_{\mu\nu} dx^\mu dx^\nu + Z^{1/2} \delta_{mn} dx^m dx^n,$$

with the R-R three-form potential

$$C_3^0 = -\frac{1}{g_s Z} dx^0 \wedge dx^1 \wedge dx^2,$$

where $\mu, \nu = 0, 1, 2, m, n = 3, \ldots, 9$, and g_s is the string coupling which is related to the
dilaton field Φ through $e^{\Phi} = g_s Z^{1/4}$. The warp factor Z is given by a harmonic function

$$Z = \frac{R^5}{r^5}, \quad R^5 = 6\pi^2 N g_s \alpha'^{5/2}.$$

The dielectric D4- and NS5-brane configurations are obtained by perturbing the type IIA
D2-brane solution with linearized $H_3 = dB_2$, $F^1_4 = dC_3^1$ field strengths which transform as
35 of $SO(7)_R$ rotation group in transverse seven-dimensions.

The gauge theory living on N coincident D2-branes is an $\mathcal{N} = 8$ super Yang-Mills \cite{10}. An $\mathcal{N} = 8$ gauge multiplet consists of a gauge field A_μ, eight real fermions $\{\lambda_1, \ldots, \lambda_8\}$ which are in 8 spinor representation of $SO(7)_R$ R-symmetry, and seven real scalars $\{\chi_1, \ldots, \chi_7\}$ which are in 7 vector representation of the $SO(7)_R$. The eight fermions are cast into four complex fermions

$$\Lambda_1 = \lambda_1 + i\lambda_2, \quad \Lambda_2 = \lambda_3 + i\lambda_4, \quad \Lambda_3 = \lambda_5 + i\lambda_6, \quad \Lambda_4 = \lambda_7 + i\lambda_8,$$

which transform as 4 of $SU(4) \subset SO(7)_R$, whereas the seven scalars are divided into six scalars of 6 of $SU(4)$ and an $SU(4)$-singlet real scalar. The six scalars are cast into three complex scalars

$$\phi_1 = \chi_1 + i\chi_2, \quad \phi_2 = \chi_3 + i\chi_4, \quad \phi_3 = \chi_5 + i\chi_6,$$

which are combined together with $\Lambda_1, \Lambda_2, \Lambda_3$ into three $\mathcal{N} = 2$ hypermultiplets $\{\phi_i, \Lambda_i\}$, $i = 1, 2, 3$, transforming as 3 of $SU(3) \subset SU(4)$. The $SO(3)$ group considered in this paper is a real subgroup of the $SU(3)$. The gauge boson A_μ and the singlet scalar χ_7 are made
up into an $\mathcal{N} = 2$ gauge multiplet $\{ A_\mu, \chi_7, \Lambda_4 \}$ together with Λ_4 including a gaugino field λ_8.

Both $d = 3, \mathcal{N} = 8$ and $d = 4, \mathcal{N} = 4$ super Yang-Mills theories share sixteen supercharges [10]. The $\mathcal{N} = 2$ gauge (hyper) multiplet in three-dimensions correspond to the $\mathcal{N} = 1$ gauge (chiral) multiplet through the dimensional reduction. The $SU(4)$ subgroup considered above is nothing but the R-symmetry of $d = 4, \mathcal{N} = 4$ super Yang-Mills. This implies that the $d = 3, \mathcal{N} = 2$ gauge theory obtained by giving masses m_1, m_2, m_3 to the three hypermultiplets corresponds to the $d = 4, \mathcal{N} = 1$ gauge theory [11, 12] considered in [2]. The $\mathcal{N} = 2$ fermion mass terms appear in the Lagrangian

$$\Delta L = \text{Re} \left(m_1 \Lambda_1^2 + m_2 \Lambda_2^2 + m_3 \Lambda_3^2 + m_4 \Lambda_4^2 \right),$$

where the gaugino mass m_4 must be zero to obtain the $\mathcal{N} = 2$ gauge theory otherwise the gauge theory becomes non-supersymmetric. If we set $m_1 = m_2 = m_3 \equiv m$, the mass perturbation becomes $SO(3)$-invariant. Both real and imaginary parts of $\{ \Lambda_1, \Lambda_2, \Lambda_3 \}$ are 3 of $SO(3)$, while Λ_4 is an $SO(3)$-singlet.

In order to make contrast of the type IIA $SO(3)$-invariant perturbation with the one in type IIB case, it may be useful to show the branching rules of $SO(7)_R \rightarrow SU(4)_R$:

$$\begin{align*}
8 & \rightarrow 4 + \overline{4}, \\
7 & \rightarrow 6 + 1, \\
35 & \rightarrow 10 + \overline{10} + 15, \\
27 & \rightarrow 20' + 6 + 1.
\end{align*}$$

Each of the H_3 and F_4^1 perturbations corresponds to 35 of $SO(7)_R$, that is, a traceless 8×8 fermion mass matrix $m_{\alpha\beta} \lambda_\alpha \lambda_\beta$. The $\mathcal{N} = 2$ $SO(3)$-invariant mass term is a specific choice of $m_{\alpha\beta}$ and is given by setting $m_1 = m_2 = m_3 \equiv m, m_4 = 0$ in Eq. (2). The branching rules imply that the 35 is a counter part of $d = 4$, fermion masses in TO of $SU(4)_R$. The $\mathcal{N} = 0$ $SO(3)$-invariant perturbation in four dimensions considered in [4] consists of a gaugino mass included in the TO and the 6×6 symmetric traceless scalar mass matrix in $20'$ of $SU(4)_R$. The branching rules therefore tell us that the corresponding IIA scalar mass term is a 7×7 symmetric traceless mass matrix $\mu_{ij}^2 \chi_i \chi_j$ in 27 of $SO(7)_R$. The $\mathcal{N} = 0$ $SO(3)$ invariant scalar mass term considered in this paper is a specific choice of μ_{ij}^2 and is given by $\text{Re} (\mu^2 \phi_i \phi_i)$.

4
3. Dielectric D4-branes wrapping on S^2

The action for the dielectric D4-branes consists of the Born-Infeld action and the Wess-Zumino action and is given by

$$S_{D4} = -\mu_4 \int d^5\xi \ g_s^{-1}Z^{-1/4} \sqrt{-\det G_\parallel \det (G_\perp + 2\pi\alpha' F_2)}$$

$$-\mu_4 \int (C_5 + 2\pi\alpha' F_2 \wedge C_3),$$

where G_\parallel stands for the metric along D2-brane world volume $\{x^0, x^1, x^2\}$ and G_\perp is a metric on 2-sphere S^2 in seven transverse dimensions. The 2-form field living on the D4-brane is $2\pi\alpha' F_2 \equiv 2\pi\alpha' F_2 - B_2$. The D$p$-brane tension is given by $\mu_p = \alpha'^{(p-1)/2}/(2\pi\alpha')^p$ which reproduces the string tension $1/2\pi\alpha'$ when $p = 1$.

Let us introduce the complex coordinates $z^i = \frac{1}{\sqrt{2}}(x^i + 2i + i x^6)$ ($i = 1, 2, 3$) with x^6 as a moduli direction. Suppose that the D2-branes polarize into a noncommutative S^2 under the perturbation, then the S^2 is specified by a single complex coordinate z through $z^i = ze^i$ with a real unit vector e^i and its radius is given by $|z|$. The metric of the S^2 couples with the two-form field strength F_2 which measures the D2-brane charge n:

$$\int_{S^2} F_2 = 2\pi n.$$

The same F_2 also arises in the Wess-Zumino action through the term $F_2 \wedge C_3$. If we suppose the large D2-brane charge density $n \gg N^{1/2}$, the F_2-dependent terms in both Born-Infeld and Wess-Zumino action cancel each other and yield a term quartic in $|z|$. By taking the Poincaré dual of the IIA field equation

$$d(*F_4 + B_2 \wedge F_4) = 0,$$

the linear perturbation of H_3 and F_4 arises in the C_5 term of the Wess-Zumino action and provides a term cubic in $|z|$. Thus, after dividing by the D2-brane world volume V, we obtain the D2/D4-brane action

$$\frac{-S_{D4}}{V} = \frac{2\mu_4}{g_s n\alpha'} \left[|z|^4 - 2\pi n\alpha' \text{Im} (mzz\bar{z}) + (\pi n\alpha')^2 m^2 |z|^2 \right],$$

which describes the dielectric D4-brane action where n D2-branes polarize into the noncommutative S^2 so that the D4-brane world volume has a geometry $R^3 \times S^2$. Due to the $\mathcal{N} = 2$ supersymmetry, the third term in the action was added so as to complete the square and to obtain a supersymmetric minimum at $z = i\pi n\alpha'm$.

5
Now we move on our main goal of this paper, that is the $\mathcal{N} = 0$ $SO(3)$-invariant deformation of 3-dimensional super Yang-Mills, by adding $SO(3)$-invariant perturbations which fully breaks $\mathcal{N} = 2$ supersymmetry in 3-dimensions. They correspond to the gaugino mass m_4 in 35 and the scalar mass which is given by a traceless 7×7 matrix and transforms as 27 of $SO(7)_R$ R-symmetry. In the D4-brane action (6), this procedure is achieved by shifting

$$\text{Im}(mzz\bar{z}) \rightarrow \text{Im}\left(mzz\bar{z} + \frac{m_4}{3}zzz\right),$$

$$m^2|z|^2 \rightarrow \left(m^2 + \frac{|m_4|^2}{3}\right)|z|^2 + \text{Re}(\mu^2 zz).$$

For simplicity, we rescale the complex coordinate z and introduce the dimensionless parameters \tilde{b} and c such that

$$z = i\pi n\alpha' m x e^{i\varphi}, \quad \tilde{b} \equiv -\frac{m_4}{m}, \quad c \equiv \frac{\mu^2}{m^2}. \quad (7)$$

Then we obtain the D4-brane potential with the $SO(3)$-invariant non-supersymmetric perturbation

$$V_{D4}(x, \tilde{b}, c) = 2\pi \sqrt{\alpha'} \left(\frac{m^4 n^2}{16\pi}\right) \frac{n}{g_s} x^2 \left[x^2 - 2x \text{Re}\left(e^{-i\varphi} + e^{3i\varphi}\frac{\tilde{b}}{3}\right) + 1 + \frac{|	ilde{b}|^2}{3} - \text{Re}\left(e^{2i\varphi}c\right)\right], \quad (8)$$

which coincides with the D3/D5 potential in 7 except for the ratio of D-brane tensions $\mu_4/\mu_5 = 2\pi \sqrt{\alpha'}$. Note that 7, 2 introduced fermions which transform as 4 of $SU(4)_R$ R-symmetry in $d = 4, \mathcal{N} = 4$ super Yang-Mills, whereas we have used fermions in 5 which transform as $3 + 1$ of $SU(3) \subset SU(4)_R$.

4. Dielectric NS5-branes wrapping on E^3

The NS5-brane action with n D2-branes polarized into a 3-ellipsoid E^3 has been studied in 5 based on the type IIA NS5-brane action formulated in 13. The action is quite similar to the M5-brane action which couples with the self-dual 4-form field strength in M-theory 14, 15. It consists of the Born-Infeld term, the Wess-Zumino term and the mixed term which is necessary to build in the self-dual field strength in manifestly 6-dimensional covariant way by invoking a certain auxiliary fields. After eliminating the auxiliary field by choosing for example x^2 as a special direction, the action becomes similar to the M5-brane
action which shows only 5-dimensional covariance \[15\] and is given by \[5 \]

\[S_{NS5} = S_{BI} + S_{mix} + S_{WZ},\]
\[S_{BI} = -\mu_5 \int d^6\xi \, g_s^{-2} Z^{-1/2} \sqrt{-\det (G_{mn} + ig_s Z^{1/4} D_{mn})},\]
\[S_{mix} = -\mu_5 \int d^6\xi \, \frac{1}{4} \sqrt{-G} \, D_{mn} D_{mn2},\]
\[S_{WZ} = -\mu_5 \int \left(B_6 - \frac{1}{2} F_3 \wedge C_3 \right),\]

(9)

where \(G\) is a determinant of a 6-dimensional metric \(G_{\mu\nu}\), \(\mu, \nu = 0, 1, 2, 3, 4, 5\) and its 5-dimensional restriction is \(G_{mn}\), \(m, n = 0, 1, 3, 4, 5\). The 2-form field \(D_{mn}\) is given by

\[D_{mn} = \frac{\sqrt{G_{22}}}{3! \sqrt{-G}} \epsilon^{2mpqr} D_{pqr},\]

where \(D_{pqr}\) is a 5-dimensional component of a 3-form \(D_3 \equiv F_3 - C_3\). The 6-dimensional self-dual constraints is obtained as the equation which determines \(D_{mn2}\) in terms of \(D_{mn}\) by solving the 6-dimensional Euler-Lagrange equations of motion.

When the 3-ellipsoid is situated in the 3456-plane, the nonzero components of \(D_3\) are \(D_{345} = F_{345} - C_{345}\) and its permutations. The 3-form field \(F_3\) is determined by the quantization of the D2-brane charge along the 3-ellipsoid

\[\mu_2 \int_{E^3} F_3 = 2\pi n.\]

The 3-form potential \(C_3\) is given by solving the IIA field equations (3) and

\[2d(e^{-2\Phi} \ast H_3) = F_4 \wedge F_4,\]

(10)

and depends on the fermion mass perturbation (4) with setting \(m_1 = m_2 = m_3 \equiv m\) on the D2-branes. The 6-form potential \(B_6\) in the Wess-Zumino action can be shown to be zero by taking the Poincaré dual of Eq. (10).

In the limit when D2-brane charge is much bigger than NS5-brane charge, say \(n \gg N^{1/2}\), the action can be expanded with respect to \(D_{345}\). In this approximation, the Wess-Zumino action is fully given by the interaction of the dissolved D2-branes and canceled by those in the Born-Infeld and the mixed actions to yield the simplified action \[5\]

\[-\frac{S_{NS5}}{2\pi^2 \mu_5 V} = \frac{3}{16 g_s^3 A} \left(3|z|^4|w|^2 + |z|^6 \right) - \frac{1}{4g_s^2} \text{Re} \left(3m wzzz \bar{z} + m_4 zzz \bar{w} \right) + \frac{A}{12g_s} \left(3m_2 |z|^2 + m_4^2 |w|^2 \right),\]

(11)
where $A \equiv 4\pi n(n')^{3/2}$ and $w = x^6$ corresponds to the fourth complex coordinate $z^4 = x^6 + ix^{10}$ in M-theory. The first term of the action is the gravitational energy of the NS5-brane and is attractive. The second term is proportional to the linear perturbation of C_{345} and is repelling. The balance between the two terms determines a finite size 3-ellipsoid. The last term is introduced to complete the square in the action in the following sense. Since we are interested in the gauge theory on n D2-branes, we give a mass m_4 only to a gaugino field in the $\mathcal{N} = 1$ gauge multiplet and supersymmetry is fully broken. On the other hand, the D2/NS5 bound state in the theory is a descendant of an M2/M5 bound state in parent M-theory. The field theory on n M2-branes is a super conformal fixed point of $d = 3, \mathcal{N} = 8$ super Yang-Mills and the $\mathcal{N} = 2$ gauge multiplet turns to an $\mathcal{N} = 2$ hypermultiplet at the fixed point. The $SO(3)$-invariant configuration corresponds to the $\mathcal{N} = 2$ supersymmetric configuration in M-theory where three of hypermultiplets have the same mass m and the fourth hypermultiplet has a mass m_4. Although supersymmetry is fully broken by the gaugino mass m_4 in IIA theory, we can complete the square in the NS5-brane action due to the hidden $\mathcal{N} = 2$ supersymmetry of parent M-theory and can find supersymmetric minimum at $[3]$

$$z^2 = \frac{2Ag_s}{3}mx^2, \quad x_6^2 = \frac{2Ag_s}{3}m\sqrt{\frac{m}{m_4}}. \quad (12)$$

Let us proceed to the analysis of $\mathcal{N} = 0$ $SO(3)$-invariant deformation, which is our main goal in this paper. We introduce the same $SO(3)$-invariant scalar mass term, which is in 27 of $SO(7)_R$ symmetry, as in the D4-brane action. We only have to shift the quadratic term as

$$m^2|z|^2 \longrightarrow m^2|z|^2 + \text{Re} \left(\mu^2 zz \right).$$

In contrast with D2/D4 potential, the mass ratio m_4/m arises at the supersymmetric minimum as the aspect ratio of 3-ellipsoid so that it must be always positive. We will therefore use the parameters $b \equiv m_4/m$ instead of \tilde{b} itself and the same parameter c as before. Rescaling the coordinates such that

$$z^2 = \frac{2Ag_s}{3}m\sqrt{b}x^2, \quad x_6^2 = \frac{2Ag_s}{3}m\frac{1}{\sqrt{b}}y^2, \quad (13)$$

the D2/NS5-brane action becomes

$$U(x, y, b, c) = \frac{A^2m^3}{18}\sqrt{b}\left[bx^6 + 3gy^2x^4 - 2(3 + b)yx^3 + 3(1 + c)x^2 + by^2 \right], \quad (14)$$
which is a two-dimensional potential depending on two coordinates x and y. In order to find out the local minima of the potential, we first solve the equation $\partial U/\partial y = 0$. Then we obtain a trajectory

$$y = \left(\frac{3 + b}{3x^4 + b}\right)x^3,$$

along which the potential remains flat. Substitution of this equation back into the potential (14) gives us one-dimensional potential

$$V_{NS5}(x, b, c) = \frac{A^2m^3}{18}b^{3/2}\left[\frac{3x^2}{3x^4 + b}\right]\left[(x^4 - 1)^2 + c + \frac{3c}{b}x^4\right],$$

of which local minima can be identified with those of the original potential (14). Note that when $c = 1$ the potential has a zero at $x = 1$ corresponding to the supersymmetric minimum of Eq. (12).

Let us find out the regions in (b, c)-plane where we have a finite size 3-ellipsoid. Differentiating the potential (16) with respect to x, one finds that the equation which determines local minima of the potential is given by the cubic equation

$$f(X) \equiv X^3 + c_1X^2 + c_2X + c_3 = 0,$$

Figure 1: The phase diagram of D2/NS5-branes. The thick line is the critical line $c = h(b)$ for a D2/NS5-minimum without D4-brane charge. The allowed region in the left hand side of the critical line is separated into phase I and phase II. The local maximum disappears in phase II. The dashed line is the critical line for a D2/NS5-branes in the presence of D4-flux which will be discussed in Section 5.
where $X \equiv x^4$ and c_1, c_2, and c_3 are determined as
\[
c_1 = \frac{5b^2 - 6b + 9c}{9b}, \quad c_2 = -\frac{2b - 2c + 1}{3}, \quad c_3 = \frac{b(1 + c)}{9}.
\]
The extrema of the cubic function $f(X)$ are located at
\[
X_\pm = \frac{1}{3} \left(-c_1 \pm \sqrt{c_1^2 - 3c_2} \right).
\] (18)

Since $c_1^2 - 3c_2$ takes positive values, we always have two extrema. Furthermore, we can easily see that X_- is always negative in the whole of (b, c)-plane. The allowed region of (b, c)-plane, where the cubic equation (17) has at least one solution, is therefore given by the inequality
\[
f(X_+) \leq 0 \leftrightarrow \left(2c_1^3 - 9c_1c_2 + 27c_3 \right)^2 \leq 4 \left(c_1^2 - 3c_2 \right)^3,
\] (19)
which can be solved with respect to c such that
\[
c \leq h(b) \equiv \frac{1}{216} \left[9 + 150b + 97b^2 + H(b)^{1/3} + \frac{(3 + b)^2 (9 + 6b - 2591b^2)}{H(b)^{1/3}} \right],
\] (20)
where the function $H(b)$ is given by
\[
H(b) \equiv (3 + b)^2 \left[81 + 108b + 58374b^2 + 38892b^3 - 833327b^4 + 144b \left(9 + 6b + 325b^2 \right)^{3/2} \right].
\]

The corresponding phase diagram is shown in Fig. 11. Since the parameter b turns to the aspect ratio of 3-ellipsoid in the supersymmetric limit $c \to 0$ and therefore should be positive, the negative half of b axis is forbidden. The critical line $c = h(b)$ approaches to $4/5$ when $b \to \infty$ which is in perfect agreement with the upper-bound of c for the D3/NS5 bound state in [7]. The critical line intersects the c axis at $c = 1/8$ which is also the same as in the D3/NS5 bound state. The cubic function in Eq. (17) has two extrema corresponding to a local maximum and a local minimum of the potential (16) when $c_3 > 0$ ($c > -1$), whereas it has only one minimum when $c_3 < 0$ ($c < -1$). Hence the allowed region in (b, c)-plane was separated into phase I with $c > -1$ and phase II with $c < -1$. Again, the critical line $c = -1$ coincides with the upper-bound of the region where two D3/NS5 minima coexist in [7].

Now let us look at some aspects of the potential (16) with varying c for a fixed value of b. We set $b = 2$ for simplicity so that the critical value of c is given by $c^* = h(b = 2) \approx 0.556281$. In Fig. 2, five aspects of the potential are depicted. Each line corresponds to
Figure 2: The $D2/NS5$ potential \(^{(16)}\) when $b = 2$ with varying c. The horizontal axis x denotes the rescaled S^2 radius \(^{(13)}\) of a 3-ellipsoidal shell for a $D2/NS5$-brane. Each line corresponds to $c = 0.6, 0.25, 0, -0.4, \text{ and } -1.1$ in order from above.

$c = 0.6, 0.25, 0, -0.4, \text{ and } -1.1$ in order from above. When $c > c^*$ the potential has no local minima except for the origin and therefore any finite size ellipsoid does not exist (the first line with $c = 0.6 > c^*$ in Fig. 2). We find a local minimum other than the origin when $c = 0.25$ though the potential has positive energy at the point. In the supersymmetric limit $c = 0$, we find a local minimum at $x = 1$ and the potential energy becomes zero as required by supersymmetry. When the parameter c becomes negative (the fourth line with $c = -0.4$ in Fig. 2), the potential energy at the finite size local minimum turns to negative so that we can identify the minimum point as a stable finite size solution. Finally, if the parameter c becomes smaller than -1 and enters into phase II (the fifth line with $c = -1.1$ in Fig. 2), the local maximum point disappears. The trivial solution at the origin becomes unstable and the vacuum necessarily goes to formation of the finite size 3-ellipsoid.

5. Dielectric NS5-branes wrapping on E^3 with D4-brane charge

The general action for NS5-branes in the type IIA theory was found recently in \(^{[13]}\). The Wess-Zumino term of the action contains, other than the NS-NS six-form potential B_6, the coupling between the bulk R-R five-form potential C_5 and the one-form field strength \mathcal{F} living on the NS5-brane. Since a nonzero \mathcal{F} corresponds to a nonzero D4-brane charge,
we have to take it into account when we analyze D2/D4/NS5 bound states and its action is obtained by shifting $B_6 \rightarrow B_6 + C_5 \wedge F$ in the Wess-Zumino term of the D2/NS5-brane action (9) to yield
\[\delta S_{\text{WZ}} = -\mu_5 \int C_5 \wedge F. \] (21)

Let us derive the D2/D4/NS5-brane action explicitly from the D2/NS5-brane action [6]. First, the nonzero D4-brane charge may possibly cause a rotation of the 3-ellipsoid with an aspect ratio α in 3-7, 4-8, 5-9 planes at an angle γ. This rotation is achieved by setting $z = re^{i\gamma}$, and $w = \alpha r$ in the D2/NS5-brane action (11) to obtain
\[-S_{\text{NS5}} = \frac{3r^6}{16g_s^2 A} (3\alpha^2 + 1) - \frac{\alpha r^4}{4g_s^2} (3m \cos \gamma + m_4 \cos 3\gamma) \]
\[+ \frac{Ar^2}{12g_s} (3m^2 + \alpha^2 m_4^2 + 3\mu^2 \cos 2\gamma), \] (22)
where the $SO(3)$-invariant scalar mass μ^2 is accompanied by a factor of $\cos 2\gamma$ induced by the rotation. Then, we evaluate the D4-brane charge contribution (21) on the 3-ellipsoid and minimize it to obtain [6]
\[-\frac{\delta S_{\text{WZ}}}{2\pi^2 \mu_5 V} = -\frac{Ar^2}{4g_s} \left(m \sin \gamma + \frac{m_4}{3} \sin 3\gamma \right)^2. \]

Finally, the generalized NS5-brane action is given by
\[S_{\text{GNS5}} \equiv S_{\text{NS5}} + \delta S_{\text{WZ}}, \]
which still has a supersymmetric minimum of (12) at $\gamma = 0$ when $c = 0$. Again, rescaling the coordinates such that
\[r^2 = \frac{2Ag_s}{3} m \sqrt{b} x^2, \quad \alpha r^2 = \frac{2Ag_s}{3} m \frac{1}{\sqrt{b}} y^2, \] (23)
the action S_{GNS5} turns into the D2/D4/NS5-brane potential
\[U(x, y, \gamma, b, c) = \frac{A^2 m^3}{18} \sqrt{b} \left[bx^6 + 3y^2 x^4 - 2(3 \cos \gamma + b \cos 3\gamma)y x^3 \right. \]
\[+ 3 \left[1 + c \cos 2\gamma - \left(\sin \gamma + \frac{b}{3} \sin 3\gamma \right)^2 \right] x^2 + by^2 \]. (24)

which reproduces the D2/NS5-brane potential (14) when $\gamma = 0$ as expected.
Figure 3: The critical line (a dashed line in Fig. [1]) for a stable D2/NS5 minimum \((u = 1)\) in the presence of D4-flux. The maximum point is at \((b, c) \approx (0.468, 0.0922)\) which is below the critical line (a thick line in Fig. [1]) for a D2/NS5 minimum without D4-brane charge. The line intersects the \(b\)-axis at \((b, c) = (0, 0)\) and \((1, 0)\), and goes down to \(c \approx -0.601\) at \(b = 2\).

We proceed to the analysis of local minima of the potential in three-dimensional coordinate space \((x, y, \gamma)\). The trajectory along which the \(y\)-derivative of the potential is always zero is given by

\[
y = \left(\frac{3 \cos \gamma + b \cos 3\gamma}{3x^4 + b} \right) x^3,
\]

which reproduces Eq. (15) when we turn off the D4-brane charge \((\gamma = 0)\). Substitution of this equation back into the potential (24) provides two-dimensional potential

\[
V_{\text{GNS5}}(x, u, b, c) = \frac{A^2 m^3}{18} b^{3/2} \left[\frac{3x^2}{3x^4 + b} \right] \left[(x^4 - u)^2 + cu + \frac{3cu}{b} x^4 \right.
\]

\[
+ \frac{(2u + 1)(u - 1)}{18} \left[(2u + 1)b^2 + 6b - 9 \right],
\]

where \(u \equiv \cos 2\gamma\) was introduced as a new coordinate. We notice that the potential (26) coincides with the D2/NS5-brane potential (16) when we turn off the D4-brane charge. In contrast with the D2/NS5 case, we have to solve both \(x\)- and \(u\)-flatness conditions in order to determine the allowed region for the stable D2/D4/NS5 minima in the \((b, c)\)-plane.

The \(x\)-flatness condition is given by the same cubic equation (17) as before except that its coefficients are modified to be

\[
c_1 = \frac{5b^2 - 6bu + 9cu}{9b},
\]
Figure 4: The trajectory of a D2/D4/NS5 minimum when $b = 2$. The D2/NS5 minimum continues to exist even under non-zero D4-flux when $c < c_\approx -0.601$. At $c = c_\approx$, the trajectory starts to move along u-direction to yield a D2/D4/NS5 minimum. Finally, the minimum disappears at $(u, c) \approx (-0.50, 1.455)$.

\begin{align*}
 c_2 &= -\frac{1}{54} \left[(2u + 1)^2(u - 1)b^2 + 6(2u^2 + 5u - 1)b + 9(1 + u) - 36cu \right], \\
 c_3 &= \frac{b}{162} \left[(2u + 1)(u - 1) \left[(2u + 1)b^2 + 6b\right] + 9(1 + u + 2cu) \right].
\end{align*}

We again see that $c_2^2 - 3c_2$ takes positive values and $X_\approx < 0 < X_+$ so that the condition which restricts the allowed region for finite size minima is given by the same inequality (19) as before. The inequality is solved with respect to cu to yield $cu \leq h(b, u)$ which coincides with the inequality (20) when D4-brane charge is turned off at $u = 1$ ($\gamma = 0$). However, the function $h(b, u)$ is no longer bounded from above for generic values of $u \neq 1$. This simply means that the x-flatness is not enough to determine the local minima of the potential once we turn on the D4-brane charge. The correct procedure is first we solve the cubic equation (17) and find its largest solution X_{max} corresponding to the potential minimum along x-axis, then substitute it into the u-flatness condition $(\partial/\partial u)V_{GNS5} = 0$ to yield

\begin{equation}
 X_{\text{max}} = -\frac{b \left[b^2(1 - 4u^2) + 2b(1 - 4u) - 3b(1 + 2c) \right]}{6(2b - 3c)},
\end{equation}

which determines the critical surface $g(u, b, c) = 0$ giving a foliation of trajectories of a stable D2/D4/NS5 minimum in (u, c)-plane along b.

Let us analyze the D2/D4/NS5 constraint (27) precisely. The cross section of the surface
at $u = 1$, say $g(1, b, c) = 0$, provides a new critical line for a stable D2/NS5 minimum in the presence of D4-flux. The new critical line denoted as a dashed line is located in the left hand side of the critical line denoted as a thick line for a D2/NS5-minimum without D4-brane charge as shown in Fig. 1. The numerical plot of that line is again shown in Fig. 3. The maximum point is at $(b, c) \approx (0, 0.468, 0.0922)$ which is below the critical line for a D2/NS5 minimum without D4-brane charge. The line intersects the b-axis at $(b, c) = (0, 0)$ and $(1, 0)$, and goes down to $c = c_- \approx -0.601$ at $b = 2$. To look at the upper and lower bounds of c for a specific value of b, let us choose for example $b = 2$ as before. The constraint is now $g(u, 2, c) = 0$ and provides the trajectory of a D2/D4/NS5 minimum in (u, c)-plane as shown in Fig. 4. As we go up along the D2/NS5 line $u = 1$ from infinitely below, the D2/NS5 minimum continues to stay on $u = 1$ even under non-zero D4-flux. When c reaches the lower critical value of $c_- \approx -0.601$, the trajectory starts to move along u-direction so that we necessarily have a D2/D4/NS5 minimum. Finally, at the maximum point $(u, c) \approx (-0.50, 1.455)$, the minimum disappears to yield the upper critical value of $c_+ \approx 1.455$. We can also demonstrate the behavior of D2/D4/NS5 minimum by using the contour plots of the potential (26) with $b = 2$. In Fig. 5, we can see that the stable D2/NS5 ground state with the minimum radius $x \approx 1.077$ ceases to stay on $u = 1$ and begins to move along u-direction.

Figure 5: The D2/D4/NS5 minimum when $(b, c) = (2, -0.601)$. It ceases to be a D2/NS5 minimum and starts to move along u-direction.

Figure 6: The D2/D4/NS5 minimum when $(b, c) = (2, 0)$. A stable minimum appears away from $u = 1$ and becomes a D2/D4/NS5-minimum.
shift in the D4-brane charge direction. Then, the D2/D4/NS5 minimum continues moving to the ending point at \((u, x) \approx (-0.50, 0.71)\) (see Fig. 6 and Fig. 7) and finally merges into the \(u = -1\) edge and disappears as shown in Fig. 8.

Though the above analysis is just for \(b = 2\), it seems to reflect the generic feature of D2/D4/NS5 minimum. As we increase the value of \(b\), the ending point of D2/D4/NS5 minimum approaches to \(u = 0\) and the upper- and lower-bounds in \(c\) blow up as \(b\) goes to infinity.

6. Conclusions

We have studied the type IIA dielectric D4- and NS5-branes in the bulk corresponding to the \(SO(3)\)-invariant \(\mathcal{N} = 2, 0\) deformations of three-dimensional \(\mathcal{N} = 8\) super Yang-Mills. Specifically, we added the \(SO(3)\)-invariant fermion masses in 35 of \(SO(7)_R\) in \(\mathcal{N} = 2\) case, and the gaugino mass in 35 as well as the scalar masses in 27 of \(SO(7)_R\) in the \(\mathcal{N} = 0\) case. We find that the D2/D4 bound states show exactly same phase structure as in the D3/D5 bound states in type IIB theory as expected from T-duality. Moreover, the D2/NS5
bound states show the same critical values $c = 4/5, 1/8$ and -1 as those for D3/NS5 bound states although the critical lines are deformed. This seems to be consistent with T-duality between IIA and IIB confining vacua. We have also examined the D2/D4/NS5 bound states and find the phase for a stable D2/NS5 minimum in the presence of D4-flux. The corresponding critical line is obtained as a $u = 1$ cross section of the critical surface $g(u, b, c) = 0$. If we fix the parameter $b = 2$ as a specific value, the surface provides the trajectory of a D2/D4/NS5 minimum in (u, c)-plane. The minimum continues staying on the D2/NS5 axis $u = 1$ until the parameter c reaches to the critical value given by $g(1, b, c_-(b)) = 0$, then it starts to shift along u-direction to become a D2/D4/NS5 minimum. Finally, the minimum disappears at the maximum point of the trajectory when c gets to the upper critical value determined by $g(u_{\text{min}}, b, c_+(b)) = 0$ and $(\partial g/\partial u)(u_{\text{min}}, b, c_+(b)) = 0$. This suggests that in gauge theory side oblique confining vacua may exist in some particular regions of the scalar mass $\text{Re} (\mu^2 \phi_i \phi_i)$ bounded from above and below for a given gaugino mass m_4. There exist many supersymmetric or non-supersymmetric vacua preserving a particular symmetry in the four-dimensional gauged supergravity [16]. It would be interesting to study corresponding dual gauge theory side by looking at the perturbations in the supergravity side.

C.A. was supported by Korea Research Foundation Grant (KRF-2000-003-D00056). T.I. was supported by the grant of Post-Doc. Program, Kyungpook National University (2000).
References

[1] O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Phys. Rep. 323 (2000) 183 (hep-th/9905111).

[2] J. Polchinski and M. Strassler, hep-th/0003136.

[3] R.C. Myers, J. High Energy Phys. 9912 (1999) 022 (hep-th/9910053).

[4] I. Bena, Phys. Rev. D 62 (2000) 126006 (hep-th/0004142).

[5] I. Bena and A. Nudelman, Phys. Rev. D 62 (2000) 086008 (hep-th/0005163).

[6] I. Bena and A. Nudelman, Phys. Rev. D 62 (2000) 126007 (hep-th/0006102).

[7] F. Zamora, J. High Energy Phys. 0012 (2000) 021 (hep-th/0007082).

[8] G. Horowitz and A. Strominger, Nucl. Phys. B360 (1991) 197.

[9] N. Itzhaki, J. Maldacena, J. Sonnenschein, and S. Yankielowicz, Phys. Rev. D 58 (1998) 046004 (hep-th/9802042).

[10] N. Seiberg, Nucl. Phys. Proc. Suppl. 67 (1998) 158 (hep-th/9705117).

[11] C. Vafa and E. Witten, Nucl. Phys. B431, (1994) 3 (hep-th/9408074).

[12] R. Donagi and E. Witten, Nucl. Phys. B460 (1996) 299 (hep-th/9510101).

[13] I. Bandos, A. Nurmagambetov, and D. Sorokin, Nucl. Phys. B586 (2000) 315 (hep-th/0003169).

[14] P. Pasti, D. Sorokin, and M. Tonin, Phys. Lett. B398 (1997) 41 (hep-th/9701037).

[15] M. Perry and J. H. Schwarz, Nucl. Phys. B489 (1997) 47 (hep-th/9611065); J. H. Schwarz, Phys. Lett. B395 (1997) 191 (hep-th/9701008).

[16] C. Ahn and S.-J. Rey, Nucl. Phys. B572 (2000) 188 (hep-th/9911199); C. Ahn and J. Paeng, Nucl. Phys. B595 (2001) 119 (hep-th/0008065); C. Ahn and K. Woo, Nucl. Phys. B599 (2001) 83 (hep-th/0011121).