A wheat-Aegilops umbellulata addition line improves wheat agronomic traits and processing quality

Xuye Du1), Zhenzhen Jia1,2), Yang Yu1), Shuang Wang1), Bingjie Che1), Fei Ni3) and Yinguang Bao*3)

1) School of Life Sciences, Guizhou Normal University, No. 116, Baoshan North Street, Guiyang, 550001, Guizhou Province, China P.R.
2) Management Office of Scientific Research, Guizhou Normal University, No. 116, Baoshan North Street, Guiyang, 550001, Guizhou Province, China P.R.
3) Agronomy College, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271000, Shandong Province, China P.R.

Wheat processing quality is mainly correlated with high-molecular-weight glutenin subunits (HMW-GS) of grain endosperm. In bread wheat, the number of HMW-GS alleles are limited. However, wheat relative species possess numerous HMW-GS genes. In our previous study, a pair of novel HMW-GS 1Ux3.5+1Uy1.9 was characterized in Aegilops umbellulata. In this work, a novel wheat-Ae. umbellulata addition line, GN05, carrying a pair of 1U chromosome was developed and identified via cytogenetic analysis. Protein composition analysis indicated that GN05 carried HMW-GS of Ae. umbellulata. Accumulation of glutenin macropolymer (GMP) showed that GN05 had a much higher GMP content than the recurrent parent Chinese Spring. Rheological characteristics were analyzed by mixing test and the dough quality of GN05 was significantly improved compared to Chinese Spring. The results presented here may provide a valuable resource for the improvement of bread wheat quality.

Key Words: Aegilops umbellulata, wheat, addition line, agronomy traits, processing quality.

Communicated by Hisashi Tsujimoto
Received December 21, 2018. Accepted May 4, 2019.
First Published Online in J-STAGE on June 27, 2019.
*Corresponding author (e-mail: baoyinguang@163.com)
Extraction and analysis of glutenin macropolymer (GMP)
To analyze the dynamic accumulation trend of GMP, seeds in the middle spikelets were collected at 3, 5, 10, 15, 20, 25, and 28 days after anthesis. GMP concentration was measured according to Zhang et al. (2013).

Results and Discussion

Chromosome constitution and HMW-GS composition
SDS-PAGE analysis indicated that HMW-GS 1Ux3.5+1Uy1.9 and LMW-GS of Y361 are present in GN05 (Fig. 1), and a pair of exogenous chromosomes was detected in GN05 (Fig. 2A, 2B). In Aegilops umbellulata, HMW-GS and LMW-GS genes are located on the long arm and short arm of chromosome 1U, respectively (Rawat et al. 2011, Wang et al. 2018). In this work, HMW-GS pair 1Ux3.5+1Uy1.9 used as a molecular marker, finally, the additional chromosome was identified as 1U and GN05 is a wheat-Ae. umbellulata 1U disomic addition line.

Hybridization between wheat and wheat relative species for the development of introgression lines is an important strategy frequently used in wheat improvement programs.
A wheat-Aegilops umbellulata addition line improves wheat quality

Several aneuploidy and translocation lines derived from wheat and its closely related species have been developed (Garg et al. 2009, Wang et al. 2016, Wen et al. 2017, Zhao et al. 2010). Molecular markers and fluorescent tags were traditionally used for the identification of exogenous chromosome fragments (Zhao et al. 2010). In this work, the HMW-GS pair 1Ux3.5+1Uy1.9 was used as a key marker to identify the additional chromosome because this pair was only expressed in chromosome 1U (Hou et al. 2017).

Agronomic traits of GN05

Phenotype and agronomic comparisons between Chinese Spring and GN05 have been shown in **Fig. 3** and **Table 1**. GN05 showed shorter plant height and more spikes per plant than Chinese Spring, contributing to lodging resistance and yields increasing. However, the average duration of anthesis of GN05 is 198.7 days, much longer than Chinese Spring (172.2 days), limiting the rotation of wheat and other crops. The analysis of protein content revealed that total protein concentration of GN05 is 13.2%, significantly higher compared with Chinese Spring (10.7%). There were no significant differences among the number of seeds per spike and thousand seed weight (**Table 1**).

Spikes per acre, numbers of seeds per spike, and thousand seed weight are three factors affecting wheat yield (Yang et al. 2016). Possession of multiple tillers is an important trait that could increase wheat yield. *Ae. umbellulata* possesses the trait of multiple tillers and this characteristic has been transferred to the addition line (**Fig. 3**, **Table 1**). The reduced plant height of modern wheat cultivars is an important breeding objective because shorter plants have an improved rate of floret survival, increased grain number per spike, and reduction of lodging when plants are grown under high fertilizer regimes (Mo et al. 2018). The height of GN05 was 50.6 cm, shorter than Chinese Spring, suggesting that GN05 possesses a high yield potential. Previous studies indicated that a high protein content of wheat is required for bread making, in addition, flour protein content had a significant impact on Chinese steamed bread quality (Würschum et al. 2016, Zhu et al. 2001). As indicated in **Table 1**, protein content of GN05 significantly higher than Chinese Spring that suggesting GN05 possessed a better dough strength.

Dough quality analysis

As indicated in **Fig. 4**, the rate of GMP accumulation in GN05 is much higher than that of Chinese Spring, and GN05 showed a higher amount of GMP. Rheological properties showed that the parameters of middle peak time, middle peak height, right of peak slope, width at peak, and width at 8 min of GN05 were all considerably higher than those of Chinese Spring (**Fig. 5**). These results revealed that GN05 possessed much higher dough strength than its recurrent parent Chinese Spring.

Although there is a complex mixture of wheat storage proteins, HMW-GS was identified to have a key role in wheat processing quality (Payne 1987). The composition of HMW-GS affected GMP content and further significantly correlated with the quality parameters (Don et al. 2003). Our present work has revealed that HMW-GS 1Ux3.5 of

Table 1. Agronomic traits of GN05 and Chinese Spring

Agronomic traits	Chinese Spring	GN05
Flowering time (day)	172.2 ± 2.12a	198.7 ± 1.03b
Plant height (cm)	152.3 ± 0.22b	101.7 ± 1.37a
Number of spike per plant	9.2 ± 3.44a	16.5 ± 2.23b
Number of seeds per spike	31.5 ± 0.12a	36.7 ± 0.53a
Thousand seed weight (g)	31.1 ± 1.17a	32.5 ± 2.52a
Grain protein content (%)	10.7 ± 0.32a	13.2 ± 1.17b

Each trait was investigated five individual plants. Means followed by different letters within the same column were significantly different from each other ($p < 0.05$).
Ae. umbellulata possesses a unique structure that contributed to excellent dough quality (Hou et al. 2017). The rheological properties of dough indicated that the addition line showed better quality than the recurrent parent Chinese Spring (Fig. 5).

Overall, GN05 is a wheat-Ae. umbellulata 1U addition line that possesses much better agronomic traits and dough quality than Chinses Spring. However, its long period of anthesis limited the rotation of wheat and other crops. The flowering time of wheat should be restricted between 170–180 days that is suitable for cultivation mode in Guizhou Province of China. In a future study, an introgression line containing HMW-GS of Ae. umbellulata and possessing a short period of anthesis will be developed and applied as a germplasm resource for the further improvement of wheat.

Acknowledgments

This work was supported by National Science Foundation (31860375) and A Project of Shandong Province Higher Educational Science and Technology Program (J16LF06).

Literature Cited

AACC (2000) Approved methods of AACC 10 ed. American association of cereal chemists, St. Paul, Minnesota.

Don, C., W. Lichtendonk, J.J. Plijter and R.J. Hamer (2003) Glutenin macropolymer: a gel formed by glutenin particles. J. Cereal Sci. 37: 1–7.

Du, X.Y., X. Ma, J.Z. Min, X.C. Zhang and Z.Z. Jia (2018) Development of a wheat-Aegilops searsii substitution line with positively affecting Chinese steamed bread quality. Breed. Sci. 68: 289–293.

Friese, B., V. Schubert, W.D. Blüthner and K. Hammer (1992) C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiplod T. aestivum-Ae. caudata and six derived chromosome addition lines. Theor. Appl. Genet. 83: 589–596.

Garg, M., H. Tanaka, N. Ishikawa, K. Takata, M. Yanaka and H. Tsujimoto (2009) Agropyron elongatum HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression. J. Cereal Sci. 50: 358–363.

Hou, W.Q., W. Feng, G.H. Yu, X.Y. Du and M.J. Ren (2017) Cloning and functional analysis of a novel x-type high-molecular-weight glutenin subunit with altered cysteine residues from Aegilops umbellulata. Crop Pasture Sci. 68: 409–414.

Jackson, E.A., L.M. Holt and P.I. Payne (1983) Characterisation of high molecular weight gliadin and low-molecular-weight glutenin sub-units of wheat endosperm by two-dimensional electrophoresis and the chromosomal localisation of their controlling genes. Theor. Appl. Genet. 66: 29–37.

Lawrence, G.J. and K.W. Shepherd (1980) Variation in glutenin protein subunits of wheat. Aust. J. Biol. Sci. 33: 221–233.

Li, G.R., C. Liu, C.H. Li, J.M. Zhao, L. Zhou, G. Dai, E.N. Yang and Z.J. Yang (2013) Introgression of a novel Thinopyrum intermedium St-chromosome-specific HMW-GS gene into wheat. Mol. Breed. 31: 843–853.

Liu, S.W., S.Y. Zhao, F.G. Chen and G.M. Xia (2007) Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum. BMC Evol. Biol. 7: 1–76.

Liu, Y.X., Y. Lin, S. Gao, Z.Y. Li, J. Ma, M. Deng, G.Y. Chen, Y.M. Wei and Y.L. Zheng (2017) A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J. 91: 861–873.

Ma, C.Y., Y. Yang, X.H. Li, P. Ge, G.F. Guo, S. Subburaj, F.J. Zeller, S.L.K. Hsam and Y.M. Yan (2013) Molecular cloning and characterization of six novel HMW-GS genes from Aegilops speltoides and Aegilops kotschyi. Plant Breed. 132: 284–289.

Mo, Y.J., L.S. Vanzetti, I. Hale, E.J. Spagnolo, F. Guidobaldi, J.A. Oboudi, N. Odle, S. Pearce, M. Helguera and J. Dubcovsky (2018) Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor. Appl. Genet. 131: 2021–2035.

Payne, P.I. (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Biol. 38: 141–153.

Payne, P.I., M.A. Nightingale, A.F. Krattiger and L.M. Holt (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 40: 51–65.

Rawat, N., K. Neelam, V.K. Tiwari, G.S. Randhawa, B. Friese, B.S. Gill
A wheat-Aegilops umbellulata addition line improves wheat quality

and H.S. Dhaliwal (2011) Development and molecular characterization of wheat-Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome 54: 943–953.

Shewry, P.R., N.G. Halford and A.S. Tatham (1992) High molecular weight subunits of wheat glutenin. J. Cereal Sci. 15: 105–120.

Wang, J., C. Wang, S.M. Zhen, X.H. Li and Y.M. Yan (2018) Low-molecular-weight glutenin subunits from the 1U genome of Aegilops umbellulata confer superior dough rheological properties and improve breadmaking quality of bread wheat. J. Sci. Food Agric. 98: 2156–2167.

Wang, Y.J., W. Quan, N.N. Peng, C.Y. Wang, X.F. Yang, X.L. Liu, H. Zhang, C.H. Chen and W.Q. Ji (2016) Molecular cytogenetic identification of a wheat-Aegilops geniculata Roth 7Mg disomic addition line with powdery mildew resistance. Mol. Breed. 36: 40.

Wen, M.X., Y.G. Feng, J. Chen, T.D. Bie, Y.H. Fang, D.S. Li, X.L. Wen, A.D. Chen, J.H. Cai and R.Q. Zhang (2017) Characterization of a Triticum aestivum-Dasypyrum villosum T1VS·6BL translocation line and its effect on wheat quality. Rev. Bras. Bot. 40: 371–377.

Würschum, T., W.L. Leiser, E. Kazman and C.F.H. Longin (2016) Genetic control of protein content and sedimentation volume in European winter wheat cultivars. Theor. Appl. Genet. 129: 1685–1696.

Yang, W.J., C.Y. Wang, C.H. Chen, Y.J. Wang, H. Zhang, X.L. Liu and W.Q. Ji (2016) Molecular cytogenetic identification of a wheat-rye 1R addition line with multiple spikelets and resistance to powdery mildew. Genome 59: 277–288.

Zhang, X.X., J. Cai, B. Wollenwebber, F.L. Liu, T.B. Dai, W.X. Cao and D. Jiang (2013) Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. J. Cereal Sci. 57: 134–140.

Zhao, J.X., W.Q. Ji, J. Wu, X.H. Chen, X.N. Cheng, J.W. Wang, Y.H. Pang, S.H. Liu and Q.H. Yang (2010) Development and identification of a wheat-Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. Genet. Resour. Crop Evol. 57: 387–394.

Zhen S.M., C.X. Han, C.Y. Ma, A.Q. Gu, M. Zhang, X.X. Shen, X.H. Li and Y.M. Yan (2014) Deletion of the low-molecular-weight glutenin subunit allele Glu-A3a of wheat (Triticum aestivum L.) significantly reduces dough strength and breadmaking quality. BMC Plant Biol. 14: 367.

Zhu, J., S. Huang, K. Khan and L.O. Brien (2001) Relationship of protein quantity, quality and dough properties with Chinese steamed bread quality. J. Cereal Sci. 33: 205–212.

Zou, J., K. Semagn, M. Iqbal, A. N’Diaye, H. Chen, M. Asif, A. Navabi, E. Perez-Lara, C. Pozniak, R.C. Yang et al. (2017) Mapping QTLs controlling agronomic traits in the ‘Attila’ × ‘CDC Go’ spring wheat population under organic management using 90K SNP array. Crop Sci. 57: 365–377.