A rare cause of rhabdomyolysis: Gitelman syndrome

Yaşar Yıldırım, Ali Veysel Kara, Zulfikar Yılmaz, Erdal Bodakci, Vehbi Demircan, Ali Kemal Kadiroğlu, Mehmet Emin Yılmaz

ABSTRACT

Introduction: Gitelman syndrome is a rare and autosomal recessive disorder characterized by hypokalemia, metabolic alkalosis, hypomagnesemia, hypocalciuria and hypertension. A careful history, physical examination and determination of urine chloride concentration are important for diagnosis. In this case report, we discuss a patient with hypokalemia and rhabdomyolysis which is diagnosed as Gitelman syndrome.

Case Report: A patient with sudden loss of sensation in the arms and legs and difficulty in the moving admitted to the emergency service. She had intermittent weakness in the extremities and chronic fatigue complaints over the last ten years. In her laboratory examination, serum potassium level, serum creatinine level and creatine kinase level were found 1.4 mEq/L, 1.58 mg/dl and >4260, respectively. The patient was transferred to our clinic due to hypokalemia etiology. She was diagnosed as Gitelman syndrome after a detailed medical history, physical examination and laboratory evaluation. Central venous catheter was opened and vigorous potassium chloride replacement was made. Patient’s symptoms and muscle enzymes were improved with potassium replacement. Oral potassium citrate, spironolactone, magnesium citrate was started in addition to intravenous potassium chloride after the patient was diagnosed as Gitelman syndrome. After that, clinical and laboratory findings of the patient were improved progressively and patient was discharged with normal laboratory findings.

Conclusion: As a result; Gitelman syndrome should be thought in the differential diagnosis of hypokalemic rhabdomyolysis although it is a rare disease.
A rare cause of rhabdomyolysis: Gitelman syndrome
Yaşar Yildirim, Ali Veysel Kara, Zulfikar Yilmaz, Erdal Bodakci, Vehbi Demircan, Ali Kemal Kadiroglu, Mehmet Emin Yilmaz

ABSTRACT
Introduction: Gitelman syndrome is a rare and autosomal recessive disorder characterized by hypokalemia, metabolic alkalosis, hypomagnesemia, hypocalciuria and hypertension. A careful history, physical examination and determination of urine chloride concentration are important for diagnosis. In this case report, we discuss a patient with hypokalemia and rhabdomyolysis which is diagnosed as Gitelman syndrome. Case Report: A patient with sudden loss of sensation in the arms and legs and difficulty in the moving admitted to the emergency service. She had intermittent weakness in the extremities and chronic fatigue complaints over the last ten years. In her laboratory examination, serum potassium level, serum creatinine level and creatine kinase level were found 1.4 mEq/L, 1.58 mg/dl and >4260, respectively. The patient was transferred to our clinic due to hypokalemia etiology. She was diagnosed as Gitelman syndrome after a detailed medical history, physical examination and laboratory evaluation. Central venous catheter was opened and vigorous potassium chloride replacement was made. Patient's symptoms and muscle enzymes were improved with potassium replacement. Oral potassium citrate, spironolactone, magnesium citrate was started in addition to intravenous potassium chloride after the patient was diagnosed as Gitelman syndrome. After that, clinical and laboratory findings of the patient were improved progressively and patient was discharged with normal laboratory findings. Conclusion: As a result; Gitelman syndrome should be thought in the differential diagnosis of hypokalemic rhabdomyolysis although it is a rare disease.

Keywords: Gitelman syndrome, Hypokalemia, Rhabdomyolysis, Sensation loss, Weakness

INtroDUCtION
Gitelman syndrome is a rare and autosomal recessive disorder characterized by hypokalemia, metabolic alkalosis, hypomagnesemia, hypocalciuria and hypertension [1, 2]. The prevalence of Gitelman syndrome was 1 in 40,000. It is one of the most frequent inherited renal tubular disorders [3]. Genetic mutations that responsible for disease affect the NaCl co-transporter in the distal tubule [4, 5]. Clinical manifestations such
as cramps of the arms and legs which are observed in nearly all patients and may be due to hypokalemia and hypomagnesemia, polyuria due to salt and water loss, fatigue due to renal salt wasting can be develop in the most of patients [1, 2]. Growth retardation may be seen rarely [6]. Other causes of hypokalemia and metabolic alkalosis especially vomiting and diuretic usage must be excluded before the diagnosis of Gitelman syndrome. A careful history, physical examination and determination of urine chloride concentration are important for diagnosis. Genetic testing is important for diagnosis but not widely used. In this case report, we discuss a patient with hypokalemia and rhabdomyolysis which is diagnosed as Gitelman syndrome.

CASE REPORT

A patient with sudden loss of sensation in the arms and legs and difficulty in the moving admitted to the emergency service. He had intermittent weakness in the extremities and chronic fatigue complaints over the last ten years. In her laboratory examination, serum potassium level, serum creatinine level and creatine kinase level were found 1.4 mmol/L (3.5–5.5 mmol/L), 1.58 mg/dl (80.5–1.4 mg/dl) and >4260 U/l (40–165 U/l), respectively. She was hospitalized and intravenous and oral potassium replacement was made during 2 days. However, there was no increase in potassium levels. She was transferred to our clinic due to hypokalemia etiology. At the time of admission; she had no nausea, vomiting and diarrhea. There was no diuretic and laxative usage in the patient medical history. Physical examination, electrocardiography (normal QT interval), echocardiography and X-ray lung graphy of the patient revealed no abnormal finding. On abdominal ultrasonography; bilateral kidney size were at the upper limit and renal parenchymal echo were grade 1. Laboratory findings of the patient are given in Table 1. Central venous catheter was opened and vigorous potassium chloride replacement was made (50 mEq in 1000 ml normal saline, 3000 ml/day). There was no usage of drugs which can cause transcellular shift such as insulin, and b2 adrenergic agonists, and thyroid functions were normal. We detected urine potassium level to differentiate renal and extrarenal loses. Urine potassium were detected 30 mmol/l and 35 mmol/l (normally <15 mmol/l) in repeated tests. Transtubuler potassium gradient (TTPG) was 8 (>4 are significant). So, we thought increased distal potassium secretion. Causes which complicated with hypertension such as Cushing syndrome, Liddle syndrome, licorice ingestion, renal artery stenosis were ruled out due to patient was normotensive and she had central venous pressure of 4 cm H2O. Renal tubular acidosis was also ruled out due to metabolic alkalosis. Urine chloride level was 88 mmol/l. So, there were four main causes to explain hypokalemic metabolic alkalosis and elevated urine chloride level. These were thiazide and loop diuretic usage, Barter syndrome and Gitelman syndrome. We ruled out Barter syndrome because there were hypomagnesemia, hypocalciuria and urine calcium creatinine ratio <0.1. Hypomagnesemia, hypocalciuria, hypokalemia, metabolic alkalosis and high plasma renin activity (195.6 ng/ml/hour) was detected and patient was diagnosed as Gitelman syndrome. Patient’s symptoms and muscle enzymes were improved with potassium replacement (120 mEq/day intravenous infusion in 3000 ml/day saline). Oral potassium citrate, spironolactone, magnesium citrate was started in addition to intravenous potassium chloride after the patient was diagnosed as Gitelman syndrome. After that, clinical and laboratory findings of the patient were improved progressively and patient was discharged with normal laboratory findings.

DISCUSSION

Firstly described by Gitelman et al. in three adult patient who had intermittent episodes of muscle weakness and tetany with hypokalemia, hypomagnesemia and hypocalciuria. Gitelman syndrome is now a well-known inherited disorder of renal tubules. The primary pathology in this syndrome is in the renal tubular transport mechanism which caused by mutations in the gene coding for the thiazide-sensitive Na-Cl transporter in the distal tubule [7, 8]. Therefore, physical examination and laboratory findings in this syndrome such as

Parameters	Patient (normal value)
Creatinine (mg/dl)	1.58 (0.5–1.4)
Urea (mg/dl)	64 (10–45)
Sodium (mEq/l)	139 (136–145)
Potassium (mmol/l)	1.8 (3.5–5.1)
Magnesium (mg/dl)	1.1 (1.5–2.6)
Calcium (mg/dl)	8.4 (8.4–10.2)
Daily urine calcium (mg)	34 (100–300)
Creatine kinase (U/l)	>4267 (40–165)
Lactate dehydrogenase (U/l)	896 (125–243)
Supine plasma renin (ng/mL/h)	195.6 (0.2–1.6)
Supine plasma aldosterone (pg/ml)	132.55 (30–160)
TSH (uUI/ml)	4.1 (0.27–4.2)
ACTH (pg/ml)	38 (10–48)
PTH (pg/ml)	83 (15–65)
25-OH-Vit D (ug/l)	20.69 (10–60)
volume contraction, reduced blood pressure, increased renin activity, hypokalemia, hypomagnesemia and hypocalciuria are consistent with the persistent thiazide diuretic action and exclusion of diuretic usage and other conditions which cause hypokalemia and metabolic alkalosis with a normal or low blood pressure are very important for differential diagnosis. Bartter syndrome is the most important genetic disorder to consider in the differential diagnosis of Gitelman syndrome. Twenty-four hour urine calcium to creatinine ratio is useful diagnostic marker to differentiate these two syndromes. Bettinelli et al. showed Bartter and Gitelman syndrome are easily distinguished on the basis of urinary calcium [9]. In Gitelman syndrome there is hypocalciuria, a low ratio of calcium to creatinine in 24 hour urine collection. Primary aldosteronism, which is another cause of hypokalemia and metabolic alkalosis, is usually not in the differential diagnosis since affected patients tend to be hypertensive and have a low plasma renin activity in contrast to elevated values in Bartter and Gitelman syndromes and with vomiting or diuretic use.

In contrast to Bartter syndrome, which is usually diagnosed in infancy or early childhood, Gitelman usually does not affect growth and typically presents in late childhood to adulthood although presentation in infancy has been described [10]. It commonly presents with cramps of the arms and legs, fatigue, ranging from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents with cramps of the arms and legs, fatigue, ranging from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents with cramps of the arms and legs, fatigue, ranging from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents in 24 hour urine collection. Primary aldosteronism, which is another cause of hypokalemia and metabolic alkalosis, is usually not in the differential diagnosis since affected patients tend to be hypertensive and have a low plasma renin activity in contrast to elevated values in Bartter and Gitelman syndromes and with vomiting or diuretic use.

In contrast to Bartter syndrome, which is usually diagnosed in infancy or early childhood, Gitelman usually does not affect growth and typically presents in late childhood to adulthood although presentation in infancy has been described [10]. It commonly presents with cramps of the arms and legs, fatigue, ranging from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents from mild to severe, seizures, polyuria and nocturia, chondrocalcinosis, growth retardation if presents in 24 hour urine collection. Primary aldosteronism, which is another cause of hypokalemia and metabolic alkalosis, is usually not in the differential diagnosis since affected patients tend to be hypertensive and have a low plasma renin activity in contrast to elevated values in Bartter and Gitelman syndromes and with vomiting or diuretic use.

CONCLUSION

Gitelman syndrome should be thought in the differential diagnosis of hypokalemic rhabdomyolysis although it is a rare disease.

Author Contributions

Yasar Yildirim – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Ali Veyssel Kara – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Zulfikar Yilmaz – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Erdal Bodakci – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Vehbi Demircan – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Yasar Yildirim – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2015 Yasar Yildirim et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original...
Functional expression of mutations in the human NaCl cotransporter: evidence for impaired routing mechanisms in Gitelman’s syndrome. J Am Soc Nephrol 2002 Jun;13(6):1442–8.
8. Vargas-Poussou R, Dahan K, Kahila D, et al. Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol 2011 Apr;22(4):693–703.
9. Bettinelli A, Bianchetti MG, Girardin E, et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. J Pediatr 1992 Jan;120(1):38–43.
10. Tammaro F, Bettinelli A, Cattarelli D, et al. Early appearance of hypokalemia in Gitelman syndrome. Pediatr Nephrol 2010 Oct;25(10):2179–82.
11. Berry MR, Robinson C, Karet Frankl FE. Unexpected clinical sequelae of Gitelman syndrome: hypertension in adulthood is common and females have higher potassium requirements. Nephrol Dial Transplant 2013 Jun;28(6):1533–42.
12. Foglia PE, Bettinelli A, Tosetto C, et al. Cardiac work up in primary renal hypokalaemia-hypomagnesaemia (Gitelman syndrome). Nephrol Dial Transplant 2004 Jun;19(6):1398–402.
13. Shaer AJ. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am J Med Sci 2001 Dec;322(6):316–32.
14. Colussi G, Rombolà G, De Ferrari ME, Macaluso M, Minetti L. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol 1994;14(2):127–35.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US

Edorium Journals: On Web
Browse Journals

This page is not a part of the published article. This page is an introduction to Edorium Journals and the publication services.