The use of extracorporeal membrane oxygenation in children with acute fulminant myocarditis

Silver Heinsa1, Sainath Raman1,2,3, Jacky Y. Suen1, Hwa Jin Cho, MD, PhD1,4, John F. Fraser, MD, PhD1

1Critical Care Research Group, Faculty of Medicine, University of Queensland and The Prince Charles Hospital, Brisbane, Australia; 2Paediatric Critical Care Research Group, Child Health Research Centre, The University of Queensland, Queensland, Australia; 3Paediatric Intensive Care Unit, Queensland Children’s Hospital, South Brisbane, Australia; 4Department of Pediatrics, Chonnam National University Children’s Hospital, Chonnam National University Medical School, Gwangju, Korea

Acute fulminant myocarditis (AFM) occurs as an inflammatory response to an initial myocardial insult. Its rapid and deadly progression calls for prompt diagnosis with aggressive treatment measures. The demonstration of its excellent recovery potential has led to increasing use of mechanical circulatory support, especially extracorporeal membrane oxygenation (ECMO). Arrhythmias, organ failure, elevated cardiac biomarkers, and decreased ventricular function at presentation predict requirement for ECMO. In these patients, ECMO should be considered earlier as the clinical course of AFM can be unpredictable and can lead to rapid haemodynamic collapse. Key uncertainties that clinicians face when managing children with AFM such as timing of initiation of ECMO and left ventricular decompression need further investigation.

Key words: Myocarditis, Extracorporeal membrane oxygenation, Critical care, Child

Introduction

Myocarditis is an inflammatory disease caused by an initial insult to the heart which is followed by lymphocytic inflammation of the myocardium.1-3 The clinical course of myocarditis ranges from a mild to severe form of heart failure. The severe form of myocarditis that necessitates aggressive and timely treatment to prevent rapid haemodynamic collapse is termed acute fulminant myocarditis (AFM). In certain circumstances, the only way to prevent imminent death is to support the patient on mechanical circulatory support (MCS). Extracorporeal membrane oxygenation (ECMO) is one form of MCS.

ECMO, in the veno-arterial (VA) configuration, is increasingly being used in both pediatric and adult populations for refractory cardiogenic shock.2 VA-ECMO (simplified as ECMO in this manuscript from here on) represents a modality where blood is drained from a large vein, oxygenated and returned to the circulation through a large artery (Fig. 1).

Given ECMO is only life-sustaining in these rapidly deteriorating patients, a thorough understanding of when and how it can be employed is prudent. This comprehensive review has a detailed account of the characteristics of AFM, the clinical scenarios where ECMO might be employed, basic management strategies of a patient on ECMO, further management options and outcomes.

Prevalence of AFM in children

AFM accounts for 10% to 38% of all cases of acute myocarditis.4-5 Importantly, AFM may account for approximately 10-20% of sudden and unexplained deaths in children.6-13 In a United States study, there was a bimodal age distribution with peaks in infancy and mid-teenage years, with a mean age of 9 years.14 Interestingly, about 60% of patients with AFM are male, a phenomenon observed perhaps due to pubertal hormonal changes in boys.15 However, females seem to have worse ventricular function at admission, higher mortality, higher need for cardiac transplants and readmissions to hospital within the first year.16 In a Japanese survey, only 12% had remarkable comorbidities or past medical history, of which most prevalent was congenital heart disease.17

1. Aetiology, pathophysiology, and disease progression

The aetiology of myocarditis is diverse, as it can be caused by infectious, autoimmune, or toxic agents. In developed countries, the predominant cause of pediatric acute myocarditis is viral infections.17

The pathophysiological sequence of myocyte injury in acute myocarditis occurs in 2 distinct phases.18 During the initial stage, a pathogen causes cell injury, lysis and myocardial necrosis, leading to ventricular dysfunction, heart failure, and arrhyth-
Extracorporeal membrane oxygenation

1. Applications

When a patient is not adequately perfused on maximal medical therapy, ECMO offers a sensible escalation strategy. In these patients, ECMO might be employed as a bridge to decision. Lymphocytic infiltration triggers an inflammatory reaction resulting in lymphocyte infiltration.

Intravenous immunoglobulin (IVIG) has been used to limit this immune response, though there are no convincing data as yet demonstrating a clear survival benefit.\(^{19,20}\) Even if IVIG were beneficial, the immune-modulatory effects are not immediate. Despite limited and inconclusive evidence, IVIG is still considered a potential therapeutic strategy. Proponents observe that the associated risks are relatively small when compared to the morbidity and mortality from AFM.\(^{16,17}\) Similarly, steroids have been employed with not much reported benefit.\(^{21}\)

Children with AFM are some of the sickest patients. In these patients, hemodynamic compromise can be sudden. Consequently, early diagnosis and prompt management with aggressive therapies can be lifesaving.

2. Medical treatments for hemodynamic stabilization

The aims of therapeutic interventions in a patient with AFM is to augment cardiac output, to stabilize hemodynamic variables, and to optimise oxygen delivery-demand mismatch. Positive-pressure ventilation assists by reducing the work of breathing and left ventricular afterload. Although intubation and sedation decrease metabolic demands, it must be done with caution, since these patients are at high risk of severe hemodynamic deterioration and cardiac arrest during intubation.\(^{22}\) Cautious fluid resuscitation and intravenous inotropic agents are the mainstay of treatment.\(^{17}\) Some of the predictors of a fulminant myocarditis course is outlined in Table 1.

Table 1. Predictors of a fulminant course

Baseline demographics	Clinical signs/intervention
Younger age (0–2 years)	Higher proportion present with gastrointestinal symptoms
	Persistent hypotension despite maximal therapy
	High inotropic requirements
	Arrhythmias especially ventricular tachyarrhythmia and bradyarrhythmia
	Signs of other end-organ failure
	Higher functional New York Heart Association class

Biochemical markers

- Significantly raised pro BNP
- Significantly raised Troponin T
- Higher admission Lactate
- Higher admission Creatinine
- Higher admission AST

ECG changes

- Prolonged QRS and QTc interval

Cardiac Imaging

- Echocardiography: LV EF<30%
- Cardiac MRI – T2WI and LGE: might help in risk stratification

BNP, brain natriuretic peptide; AST, aspartate transaminase; ECG, electrocardiogram; LV EF, left ventricular ejection fraction; MRI, magnetic resonance imaging; T2WI, T2-weighted imaging; LGE, late gadolinium enhancement.\(^{23-27}\)

Extracorporeal membrane oxygenation

1. Applications

When a patient is not adequately perfused on maximal medical therapy, ECMO offers a sensible escalation strategy. In these patients, ECMO might be employed as a bridge to decision,
bridge to recovery (BTR), or bridge to transplant (BTT). A summary of the main indications for ECMO is presented in Table 2. Retrospective studies that have investigated the use of ECMO in pediatric AFM in the last decade are also reviewed in Table 3.

ECMO is not a definitive treatment for myocarditis as it does not reverse native cardiac dysfunction. But, ECMO can support whole-body perfusion while cardiac function recovers. Although, the time-point when a patient is placed on ECMO varies between centres, there is general consensus that ECMO must be instituted before end-organ dysfunction ensues. Given the decision to place on ECMO and the timing are vitally important for the survival and long-term outcome of the patients, proactive multidisciplinary discussions about goals and strategies should take place in the early phases of illness.

2. Cannulation

Peripheral cannulation is the preferred approach for children with AFM. The variables to consider in the choice of location are the size of the ECMO cannulae relative to the vessel size and the condition of vessels (i.e., previously accessed/thrombosed). Femoral vessels are not well developed before children start walking. Hence if chosen as a site, there is an increased risk of limb ischemia and gangrene while access itself may be harder. Crucially, the desired blood flows may not be achieved.\(^\text{2,23,33}\)

Consequently, contrary to adult ECMO, the cannulation for neonates, infants, and small children is primarily in the neck (drained from right internal jugular vein and perfused to right common carotid artery) or central cannulation (drained from right atrium and perfused to ascending aorta) via median sternotomy. There are disadvantages with both these approaches. While neck cannulation has a greater risk of neurologic injury, central cannulation has greater risks of mediastinitis and bleeding.\(^\text{34}\)

The cannulation strategy, therefore, is made as a balance of the risks/benefits of the chosen vessel and the desired blood flow. As a rule of thumb, the desired blood flow is that which perfuses all end organs adequately. Although most units might start at about 120–150 mL/kg/min in a neonate (cardiac index 2.2–2.4 L/m²/min in an older child), this will then be titrated up or down according to the requirements of the child. Ideally, markers of end-organ perfusion such as arterial lactate, mixed venous saturations, preoxygenator arterial oxygen saturations, urine output, biochemical variables of liver and renal function, and mean arterial blood pressure (5th centile for the age) are monitored closely to optimise ECMO support.\(^\text{34}\)

3. Left heart decompression

Left heart decompression (LHD) facilitates myocardial recovery in ECMO patients. ECMO increases the afterload of the left heart and this can lead to left atrial and left ventricular (LV) dilatation resulting in pulmonary oedema and thrombus formation within the cardiac chambers.\(^\text{35}\) Additionally, the volume overload increases myocardial wall stress and induces inflammatory reactions. Consequently, in inflammatory diseases such as AFM, the combination of LV overloading and inflammation may lead to unfavourable cardiac remodelling. By unloading the LV, wall stress and inflammatory responses are reduced.\(^\text{36}\)

As LHD is needed in 13% to 46% of pediatric VA-ECMO cases,\(^\text{37–39}\) certain warning signs might enable decision making. In a normally septic heart with no native ejection (a continuously flat arterial line waveform), ECG trace of ventricular tachycardia, ventricular fibrillation, pulseless electric activity, agonal heart rhythm, or asystole could be critical signals. A persistently closed aortic valve, LV dilatation, sludge, or thrombus formation in LV revealed by echocardiography are additional pointers.\(^\text{39}\)

LHD can be achieved by percutaneous techniques or surgery. It can be performed by atrial septostomy or by placing a venting catheter in the left atrium or left ventricle. Although LHD demonstrated no survival benefits in some studies,\(^\text{38,40}\) a recent meta-analysis of adult cardiogenic shock reported an association with decreased mortality. LHD was also associated with a higher rate of LV recovery, relief of pulmonary oedema, weaning off, and duration of ECMO.\(^\text{38,41,42}\) Studies that investigated LHD are summarised in Table 3.

4. Anticoagulation, bleeding, and thrombosis

ECMO creates interactions between blood and the biomaterial interface, which results in activation of inflammatory and coagulation cascades.\(^\text{43,44}\) Thus, anticoagulation becomes mandatory. Optimal anticoagulation is required to limit thrombotic and bleeding complications. Achieving this ‘optimal’ goal has been challenging.

The optimal management of the coagulation system in children is unclear.\(^\text{45–47}\) Developmental haemostasis precludes extrapolation of adult anticoagulation strategies. Unfractionated Heparin (UFH) remains the standard of care in pediatric ECMO. However, reports of age-dependent variation in UFH activity with paucity of pediatric research in this area yield varying practices between institutions.\(^\text{48–50}\) Research to find a better alternative is underway. Direct thrombin inhibitors (e.g., bivalirudin) have shown promise in early studies.\(^\text{51,52}\)

Although there are no standard methods for monitoring the effects of anticoagulants in neonatal and pediatric patients on ECMO, the 3 common assays are commonly used which are

Table 2. Indications for ECMO\(^\text{28–31}\)

Cardiogenic shock with high inotropic requirement
Dysrhythmia
Multiple ventricular premature complexes
Ventricular tachycardia
Ventricular bradyarrhythm
Sinus tachycardia
Atrioventricular block
Cardiac arrest (Post-CPR, E-CPR)
End organ failure or multorgan failure

ECMO, extracorporeal membrane oxygenation; CPR, cardio-pulmonary resuscitation; E-CPR, extracorporeal CPR.
Table 3. Overview of studies in ECMO use for children with acute fulminant myocarditis (2010–2020)

Study	Year	Study design	Age (yr)	ECMO / total (%)	ECMO duration (hr)	Anticoagulation (monitoring)	LV decompression	LV survival (%)	ECMO survival (%)	BTT, n (%)	Overall survival (%)
Nahum et al.	2010	Retrospective single centre	0–8	12/40 (30%)	209.9±82.4 (range, 100–408)	N/A	N/A	10/12 (83.3)	0 (0)	10/12 (83)	
Hsu et al.	2011	Retrospective single centre	29.6±18.6	75/100 (75%)	171.5±121	Heparin, CI (ACT, 180-200 sec)	LA drainage	48/75 (64)	4 (17)	48/75 (64)	
Teel et al.	2011	Retrospective single centre	12.7	10/20 (50)	151 (115–187)	N/A	LA drainage	7/10 (70)	1 (10)	17/20 (85)	
Wilmot et al.	2011	Retrospective single centre	6–16	6/100 (6%)	120 (48-6,096)	N/A	N/A	4/6 (66.7)	1 (17)	12/16 (75)	
Ghelani et al.	2012	Retrospective database³	9±6.8	97/514 (19%)	N/A	N/A	N/A	72/97 (74.2)	21/514 (41)	477/514 (93)	
Lee et al.	2014	Retrospective single centre	4.3±3.6	13/21 (62%)	168 (96-264)	Heparin, CI (ACT, 180-200 sec)	LA drainage	7/13 (53.8)	0 (0)	11/21 (54)	
Nosaka et al.	2015	Retrospective single centre	5	16/29 (62%)	N/A	Heparin, CI (ACT, 180-200 sec)	N/A	11/16 (68.8)	N/A	24/29 (83)	
Lin et al.	2016	Retrospective single centre	11.0±5.3	7/13 (54%)	98 (70-141)	N/A	N/A	7/7 (100)	0 (0)	14/18 (79)	
Jung et al.	2016	Retrospective single centre	2±2.9 (11.5)	13/100 (13%)	140 (51-425)	Heparin, CI (ACT, 180-200 sec)	ASD creation	12/13 (92.3)	2 (15.4)	12/13 (92.3)	
Wu et al.	2017	Retrospective single centre	8.8±6.32	10/160 (5%)	N/A	N/A	N/A	6/10 (60)	N/A	2/100 (50)	
Şik et al.	2018	Retrospective single centre	4±1.1 (11.7)	6/100 (6%)	164 (79-402)	Heparin, CI (ACT, 170-220 sec)	N/A	5/6 (83)	0 (0)	5/6 (83)	

ACT, activated clotting time; ASD, atrial septal defect; AV, atrioventricular; BAS, balloon-atrial septostomy; BTT, Bridge to transplant; CI, continuous infusion; ECMO, extracorporeal membrane oxygenation; ECPR, extracorporeal cardiopulmonary resuscitation; LA, left atrium; LV, left ventricle; N/A, not applicable.

*Expressed as median (range) or mean±standard deviation (SD) years, if not mentioned in months. *Expressed as fraction of ECMO patients to all patients included in the study. *Expressed as fraction of survivors to all ECMO patients included in the study. *Expressed as the fraction of survivors to all ECMO patients included in the study. *Data derived from the United States Paediatric Health Information System database.

Table 4. Bleeding, thrombosis, and neurologic complications in children treated with ECMO

Study	Design	Total population	Frequency (%)	Types	Risk factors
Bleeding					
Werho et al.	Registry review	21,845	39%	N/A	Age
Dalton et al.	Observational	514	70%	Surgical site (36%)	Chest cannulation Longer ECMO run
				Chest tube (35%)	
				Cannula site (34%)	
Thrombosis					
Dalton et al.	Observational	514	38%	Circuit thrombosis (31%)	ICI (14%)
				Limb ischemia (3%)	
				Intracardiac clot (2%)	
					VA-configuration Haemolysis
Neurologic complications					
Said et al.	Narrative review	N/A	N/A	Stroke (33%)	ECMPR
				Seizures (18%-23%)	Carotid cannulation Younger age
				ICH (11%-16%)	Renal/hepatic failure
				Brain death (10%)	Sepsis and acidosis
					Inotropic support

ECMO, extracorporeal membrane oxygenation; N/A, not applicable; ECPR, extracorporeal cardiopulmonary resuscitation; ICH, intracranial haemorrhage; ICI, intracranial infarction; PLT, platelets; VA, venoarterial.

www.e-cep.org
activated clotting time, activated partial thromboplastin time, and Anti-Xa.53,55 Table \ref{tab:ecmo} summarises studies that investigate anticoagulation practices in paediatric ECMO.

Thromboembolic and hemorrhagic ECMO complications are a frequent cause of death in children supported on ECMO. According to the ELSO registry, the most common mechanical complications are clots in circuits, complicating 22\% of neonatal and 17\% of pediatric cardiac ECMO runs.2 Unfortunately, neurologic complications (secondary to bleeding or emboli) are more frequently observed in children than adults.56 Of note, intracranial haemorrhage, cerebral infection, and seizures are all seen twice as often in children compared to adults.57 In addition, regardless of age, neck cannulation increases the risk of neurologic injury in children. The derangement of cerebral autoregulation, the decrease in cerebral venous drainage, and an increased risk of thromboembolic events are possible hazards of this approach.58 Due to these potentially significant complications, patients on ECMO are closely monitored with regular anticoagulation assays. In the near future, routine neuro-monitoring strategy inclusive of techniques such as near infrared spectroscopy and electro-encephalograms might become standard of care.59 Table \ref{tab:criteria} summarises studies that explored bleeding, thrombosis, and neurologic complications during pediatric ECMO.

5. Weaning from ECMO

When cardiac function has recovered adequately, the patient is assessed for separation from ECMO support. The main variables that dictate successful weaning are echocardiographic evidence of myocardial recovery, with a good lung function (adequate gas exchange on less than moderate ventilatory support), resolution of end-organ dysfunction, and optimal pulse pressure/end tidal CO\textsubscript{2}.34,62 Echocardiographic evaluation should ideally be made under low-flow conditions. The specific parameters shown to predict are aortic velocity time integral > 10 cm LV EF > 20\%–25\%, and lateral mitral annulus peak systolic velocity ≥ 6 cm/sec.63

6. Escalation of therapy from ECMO

In a small proportion of AFM patients on ECMO, cardiac function might not adequately recover within 2 weeks. In these instances, ventricular assist devices (VADs) or listing for a heart transplantation maybe considered.14,16,28,37,64,65 While discussion with parents and preparation should start early, the diagnosis and decision need careful thought. Following prerequisites lend themselves a guide for the decision making around transition to VAD or heart transplantation66,67:

\begin{itemize}
 \item Potential recovery of heart function has been quantified
 \item End-organ dysfunction has been shown to be reversible
 \item Lung function is adequate
 \item Right ventricle is expected to cope with no support (in case of left VAD placement)
 \item Neurological function has been quantified to best of ability
 \item Recovery of cardiac function is expected to take more a few weeks (in BTR strategy)
\end{itemize}

\textbullet{} Patient has been listed for heart transplant (BTT strategy) and age/weight/blood group considerations might delay potential for organ availability

Although survival rate in transplant patients is also favourable,14,28,37,60 the role of heart transplantation has been questioned, as it has become more apparent that native ventricular function is ultimately expected to return, and prolonged duration of extracorporeal support can salvage these patients to recovery.54,68

7. Outcomes

Even though AFM often presents as cardiogenic shock or cardiac arrest, the long-term survival is favourable.69 Similarly, patients with AFM on ECMO have relatively good survival rates ranging from 58\% in neonates to 63\%–81\% in pediatric patients.2,30,58,70 The parameters associated with mortality are female gender, arrhythmia during ECMO support, renal failure requiring dialysis, and higher stage of end-organ damage.30,64,71

Similar to neuro-monitoring, the long-term neurological outcome in pediatric AFM patients supported on ECMO has not been reported. But some of this can be extrapolated from reports on children with other conditions who survived with ECMO. Alarmingly, lower intelligence quotient scores, behaviour problems, and severe neurodevelopmental delays have been reported in post ECMO pediatric survivors.69,72 These findings warrant long-term follow-up not only to monitor recovery of cardiac function but also to delineate neurological functional deficits.

1) Timing of ECMO initiation and outcome

The decision to place a patient on ECMO is not easy. The clinician has to balance the risk and the benefit of such invasive intervention. Clear guidelines cannot be stipulated for this scenario as each patient, each clinical setting, and each team bring in a myriad of nuances. With a haemodynamic profile similar to the AFM patient, data from patients in septic shock requiring ECMO could provide some insights. Schlapbach et al.73 have created a predicted mortality risk for septic controls. This was then compared to the observed mortality for those who were placed on ECMO. They derived a treatment benefit threshold of 47.1\% predicted risk of mortality. Above this cutoff, patients were better off on ECMO, while below this value patients did well without ECMO. These results, if extrapolated to other groups, suggest that too early application of ECMO leads to higher mortality due to complications of the therapy, while too late application leads to higher mortality due progression of the underlying disease with inherent complications.73,74

Conclusions

The early recognition of the clinical signs of a failing heart is
paramount. Outcomes in children with AFM are favourable when ECMO is instituted before end-organ dysfunction ensues. Hence, early discussion and implementation of ECMO are mandatory to avoid potentially lifelong sequelae through distant organ injury. The clinician must be cognisant of the complications related to ECMO. This should guide decision making and parental counselling. Finally, a multidisciplinary team approach along with parents is needed to achieve better survival and quality of life. Key uncertainties that clinicians face when managing this patient cohort are the timing of initiation of ECMO and LV decompression. These need to be urgently investigated with strong research methodologies.

Conflicts of interest
No potential conflict of interest relevant to this article was reported.

Acknowledgments
Hwa Jin Cho acknowledges the support of a grant NRF-2018R1D1A1A02085975 from National Research Foundation of Korea and a grant BR118028 from the Chonnam National University Hospital Biomedical Research Institute. Silver Heinsar received a PhD Scholarship from The Prince Charles Hospital Foundation.

Authors acknowledge Sarfaraz Rahman and In Seok Jeong for reviewing the paper before the submission and Dr. Samia Farah, MD for the illustration, which was created with BioRender.com.

References
1. Magnani JW, Dec GW. Myocarditis. Circulation 2006;113:876-90.
2. Extracorporeal Life Support Organization. ECLS Registry Report. International Summary 2020 January.
3. Mounts AW, Amr S, Jamshidi R, Groves C, Dwyer D, Guarner J, et al. A Molecular identification of viruses in sudden infant death associated syndrome. Apmis 2002;110:469-80.
4. deSa DJ. Isolated myocarditis as a cause of sudden death in the first year of life. Forensic Sci Int 1986;30:113-7.
5. Rasten-Almqvist P, Eksborg M, Job LP, Huber SA. Coxsackievirus B-3-induced myocarditis. Effect of sex steroids on viremia and infectivity of cardiocytes. Am J Pathol 1987;126:432-8.
6. Lyden DC, Olzewska F, Feran M, Job LP, Huber SA. Coxsackievirus B3-induced myocarditis. Effect of sex steroids on viremia and infectivity of cardiocytes. Am J Pathol 1987;126:432-8.
7. Weber MA, Ashworth MT, Risdon RA, Malone M, Burch M, Sebire NJ. Clinicopathological features of paediatric deaths due to myocarditis: an autopsy series. Arch Dis Child 2008;93:594-8.
8. Doolan A, Langlois N, Sensanian C. Causes of sudden cardiac death in young Australians. Med J Aust 2004;180:110-2.
9. Khalil S, Jeeva Sankar M, Kumar D, Dubey N. Short-term outcomes of acute fulminant myocarditis in children. Pediatr Cardiol 2011;32:885-90.
10. Forcada P, Beigelman R, Milej M. Inapparent myocarditis and sudden death in pediatrics. Diagnosis by immunohistochemical staining. Int J Cardiol 1996;56:93-7.
11. Weber MA, Ashworth MT, Risdon RA, Malone M, Burch M, Sebire NJ. Clinicopathological features of paediatric deaths due to myocarditis: an autopsy series. Arch Dis Child 2008;93:594-8.
12. Doolan A, Langlois N, Sensanian C. Causes of sudden cardiac death in young Australians. Med J Aust 2004;180:110-2.
13. deSa DJ. Isolated myocarditis as a cause of sudden death in the first year of life. Forensic Sci Int 1986;30:113-7.
14. Rasten-Almqvist P, Eksborg M, Job LP, Huber SA. Coxsackievirus B-3-induced myocarditis. Effect of sex steroids on viremia and infectivity of cardiocytes. Am J Pathol 1987;126:432-8.
15. Lyden DC, Olzewska F, Feran M, Job LP, Huber SA. Coxsackievirus B3-induced myocarditis. Effect of sex steroids on viremia and infectivity of cardiocytes. Am J Pathol 1987;126:432-8.
194 Hensar S, et al. The use of ECMO in children with acute fulminant myocarditis www.e-cep.org

Zurakowski D, et al. Choice of peripheral venoarterial extra-corporeal membrane oxygenation cannulation site in patients above 15 kilograms. J Card Surg 2015;30:461-5.

33. Gander JW, Fisher JC, Reichstein AR, Gross ER, Aspehunt G, Middlesworth W, et al. Limb ischemia after common femoral artery cannulation for venoarterial extra-corporeal membrane oxygenation: an unresolved problem. J Pediatr Surg 2010;45:2366-70.

34. Butt W, Heard M, Peak C. Clinical management of the extra-corporeal membrane oxygenation circuit. Pediatr Crit Care Med 2013;14(Suppl 1):S13-9.

35. Ostadal P, Mickle M, Kruger A, Hala P, Lacko S, Mates M, et al. Increasing venoarterial extra-corporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock. J Traum Med 2015;13:266.

36. Van Linhout S, Tschöpe C. Inflammation - cause or consequence of heart failure or both? Curr Heart Fail Rep 2017;14:251-65.

37. Jung SY, Shin HJ, Jung JW, Park HK, Shin YR, Park YH, et al. Extra-corporeal life support can be a first-line treatment in children with acute fulminant myocarditis. Interact Cardiovasc Thorac Surg 2016;23:247-52.

38. Kotani Y, Chetan D, Rodrigues W, Sivarajan VB, Gruenwald C, Guergerian AM, et al. Left atrial décompression during venoarterial extra-corporeal membrane oxygenation for left ventricular failure in children: current strategy and clinical outcomes. Artif Organs 2013;37:29-36.

39. Lin YJ, Liu HY, Kao HC, Huang CF, Hsu MH, Cheng MC, et al. Left ventricle decompression strategies in pediatric peripheral extra-corporeal membrane oxygenation. Acta Cardiol Sin 2019;35:333-41.

40. Rajagopal SK, Almond CS, Laussen PC, Rycus PT, Wypij D, Thiagarajan RR. Extra-corporeal membrane oxygenation for the support of infants, children, and young adults with acute myocarditis: a review of the Extra-corporeal Life Support Organization registry. Crit Care Med 2010;38:382-7.

41. Eastaugh LJ, Thiagajaran RR, Darst JR, McElhinney DB, Lock JE, Marshall AC. Percutaneous left atrial décompression in patients supported with extra-corporeal membrane oxygenation for cardiac disease. Pediatr Crit Care Med 2015;16:59-65.

42. Russo JJ, Aleksova N, Pitcher I, Couture E, Parlow S, Faraz M, et al. Left ventricular unloading during extra-corporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol 2019;73:654-62.

43. Dalton HJ, Reeder R, Garcia-Filion P, Holubkov R, Berg RA, Zuppa A, et al. Factors associated with bleeding and thrombosis in children receiving extra-corporeal membrane oxygenation. Am J Respir Crit Care Med 2017;196:762-71.

44. Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extra-corporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care 2016;20:387.

45. Monagle P, Chan A, Massicotte P, Chalmers E, Michelson AD. Antithrombotic and Thrombolytic Therapy. Chest 2004;126(3 Suppl):645S-687S.

46. Russo JJ, Aleksova N, Pitcher I, Couture E, Parlow S, Faraz M, et al. Anti-xa directed protocol for anticoagulation management in children supported with extra-corporeal membrane oxygenation: a review of the pathophysiology. Crit Care 2016;20:387.

47. Monagle P, Newall F, Campbell J. Anticoagulation in neonates and young infants. Crit Care 2016;20:387.

48. O’Meara LC, Alten JA, Goldberg KG, Timpa JG, Phillips J, Laney D, et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost 2006;95:362-72.

49. Cho HJ, Kim DW, Kim GS, Jeong IS. Anticoagulation therapy during extra-corporeal membrane oxygenator support in pediatric patients. Pediatr Int 2015;57:115-9.

50. Pieri M, Agracheva N, Bonavergio E, Greco T, De Bonis M, Covello RD, et al. Bivalirudin versus heparin as an anticoagulant during extra-corporeal membrane oxygenation: a case-control study. J Cardiothorac Vasc Anesth 2013;27:30-4.

51. Benmbsa MM, Annich G, Rycus P, Oldenburg G, Berkowitz I, Pronovost P. Variability in anticoagulation management of patients on extra-corporeal membrane oxygenation: an international survey. Pediatr Crit Care Med 2013;14:277-84.

52. Liveris A, Bello RA, Friedmann P, Duffy MA, Manwani D, Killinger JS, et al. Anti-factor Xa assay is a superior correlate of heparin dose than activated partial thromboplastin time or activated clotting time in pediatric extra-corporeal membrane oxygenation*. Pediatr Crit Care Med 2014;15:e72-9.

53. Northrop MS, Sidonio RF, Phillips SE, Smith AH, Daphne HC, Pietsch JB, et al. The use of an extra-corporeal membrane oxygenation anticoagulation laboratory protocol is associated with decreased blood product use, decreased hemorrhagic complications, and increased circuit life. Pediatr Crit Care Med 2015;16:66-74.

54. Hervey-Jumper SL, Annich GM, Yancon AR, Garten HJ, Muraszkio KM, Mahler CO. Neurological complications of extra-corporeal membrane oxygenation in children. J Neurosurg Pediatr 2011;7:338-44.

55. Hardart GE, Fackler JC. Predictors of intracranial hemorrhage during neonatal extra-corporeal membrane oxygenation. J Pediatr 1999;134:156-9.

56. Teele SA, Allan CK, Laussen PC, Newburger JW, Gauvreau K, Thiagajaran RR. Management and outcomes in pediatric patients presenting with acute fulminant myocarditis. J Pediatr 2011;158:638-43.e1.

57. Cho SM, Farrokh S, Whitman G, Bleck TJ, Geocadin RG. Neurocritical care for extra-corporeal membrane oxygenation patients. Crit Care Med 2019;47:1773-81.

58. Werko DK, Pasquali SK, Yu S, Donohue J, Annich GM, Thiagajaran RR, et al. Hemorrhagic complications in pediatric cardiac patients on extra-corporeal membrane oxygenation: an analysis of the Extra-corporeal Life Support Organization Registry. Pediatr Crit Care Med 2015;16:276-88.

59. Said AS, Guilliams RP, Benmbsa MM. Neurological monitoring and complications of pediatric extra-corporeal membrane oxygenation support. Pediatr Neurol 2020;108:31-9.

60. Extracorporeal Life Support Organization. Guidelines for Pediatric Cardiac Failure [Internet]. Ann Arbor (MI): Extracorporeal Life Support Organization; [cited 2020 15 Jan]. Available from: http://www.elso.org/resources/guidelines.aspx.

61. Assaoui N, Luyet CE, Leprince P, Trouillet JL, Leger P, Pavie A, et al. Predictors of successful extra-corporeal membrane oxygenation (ECMO) weaning after assistance for refractory cardiac shock. Intensive Care Med 2011;37:1738-45.

62. Duncan BW, Bohn DJ, Arz AM, French JW, Laussen PC, Wessel DL. Mechanical circulatory support for the treatment of children with acute fulminant myocarditis. J Thorac Cardiovasc Surg 2001;122:440-8.

63. Foerster SR, Canter CE, Cinar A, Sleeper LA, Webber SA, Pahl E, et al. Ventricular remodeling and survival are more favorable for myocarditis than for idiopathic dilated cardiomyopathy in childhood: an outcomes study from the Pediatric Cardiomyopathy Registry. Circ Heart Fail 2010;3:689-97.

64. Morales DLS, Rossano JW, VanderPluym C, Lorts A, Cantor R, St Louis DL. Mechanical circulatory support for the treatment of children with acute fulminant myocarditis. J Thorac Cardiovasc Surg 2010;140:156-9.

65. McCarthy RE 3rd, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Hare JM, et al. Long-term outcome of fulminant myocarditis as compared
with acute (nonfulminant) myocarditis. N Engl J Med 2000;342:690-5.
69. Boyle K, Felling R, Yiu A, Battarjee W, Schwartz JM, Salorio C, et al. Neurologic outcomes after extracorporeal membrane oxygenation: a systematic review. Pediatr Crit Care Med 2018;19:760-6.
70. Xiong H, Xia B, Zhu J, Li B, Huang W. Clinical outcomes in pediatric patients hospitalized with fulminant myocarditis requiring extracorporeal membrane oxygenation: a meta-analysis. Pediatr Cardiol 2017;38:209-14.
71. Wilmot I, Morales DL, Price JE, Rossano JW, Kim JJ, Decker JA, et al. Effectiveness of mechanical circulatory support in children with acute fulminant and persistent myocarditis. J Card Fail 2011;17:487-94.
72. Sadhwani A, Cheng H, Stopp C, Rollins CK, Jolley MA, Dunbar-Masterson C, et al. Early neurodevelopmental outcomes in children supported with ECMO for cardiac indications. Pediatr Cardiol 2019;40:1072-83.
73. Schlapbach LJ, Chiarelli R, Straney L, Festa M, Alexander D, Butt W, et al. Defining benefit threshold for extracorporeal membrane oxygenation in children with sepsis—a binational multicenter cohort study. Critical Care (London, England) 2019;23:429.
74. Kociol RD, Cooper LT, Fang JC, Moslehi JJ, Pang PS, Sabe MA, et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the American Heart Association. Circulation 2020;141:e69-92.
75. Lee EY, Lee HL, Kim HT, Lee HD, Park JA. Clinical features and short-term outcomes of pediatric acute fulminant myocarditis in a single center. Korean J Pediatr 2014;57:489-95.
76. Nosaka N, Muguruma T, Fujiiwa T, Enomoto Y, Toida C, Morishima T. Effects of the elective introduction of extracorporeal membrane oxygenation on outcomes in pediatric myocarditis cases. Acute Med Surg 2014;2:92-7.
77. Sik G, Annayev A, Demirbuga A, Deliceo E, Aydin S, Erek E, et al. Extracorporeal membrane oxygenation for the support of pediatric patients with acute fulminant myocarditis. Turk J Pediatr 2019;61:867-72.

How to cite this article: Heinsar S, Raman S, Suen JY, Cho HJ, Fraser JF. The use of extracorporeal membrane oxygenation in children with acute fulminant myocarditis. Clin Exp Pediatr 2021;64:188-95. https://doi.org/10.3345/cep.2020.00836