Long Term Average Cost Control Problems Without Ergodicity

Stefan Ankirchner · Stefan Engelhardt

Accepted: 21 June 2022 / Published online: 14 September 2022 © The Author(s) 2022

Abstract

We consider a stochastic control problem with time-inhomogeneous linear dynamics and a long-term average quadratic cost functional. We provide sufficient conditions for the problem to be well-posed. We describe an explicit optimal control in terms of a bounded and non-negative solution of a Riccati equation on \([0, \infty)\), without an initial and terminal condition. We show that, in contrast to the time-homogeneous case, in the inhomogeneous case the optimally controlled state dynamics are not necessarily ergodic.

Keywords

Linear-quadratic stochastic control · Long-term average cost · Riccati equation · Ergodicity · Dissipativity

Mathematics Subject Classification 93E20 (Primary) · 34H05 (Secondary)

Introduction

Suppose that the dynamics of some controlled state satisfy

\[dX_t = (b_t + B_t X_t - \alpha_t) dt + (c_t + C_t X_t) dW_t, \]

where \(W \) is a one-dimensional Brownian motion, \(\alpha \) is some square-integrable control process and \(b, B, c, C \) are real-valued deterministic bounded functions. We consider
the problem of minimizing, over all controls α,

$$\limsup_{T \to \infty} \frac{1}{T} E \int_0^T f(s, X_s, \alpha_s)ds,$$ \hspace{1cm} (0.1)

where f is a quadratic cost function of the form

$$f(t, x, a) = \beta_{xx}(t)x^2 + \beta_x(t)x + \beta_{xa}(t)ax + \beta_{aa}(t)a^2 + \beta_a(t)a + \beta_0(t)$$

with $\beta_{xx}, \beta_x, \beta_{xa}, \beta_{aa}, \beta_a, \beta_0$ being real-valued, deterministic, left-continuous and bounded functions.

The problem of minimizing (0.1) arises in stylized form, e.g. in applications where an agent aims at keeping a state close to a possibly time-dependent target level, and any adjustment of the state position entails costs depending on the adjustment rate α. We refer to the end of Sect. 1 for a description of some more detailed examples.

The homogeneous problem version, in which $b, B, c, C, \beta_{xx}, \beta_x, \beta_{xa}, \beta_{aa}, \beta_a, \beta_0$ are all constant functions, is already well-studied in the literature, even for a multidimensional generalization (see, e.g., [3]). The focus of the present article lies on the inhomogeneity of the setting. Our aim is to provide sufficient conditions for the inhomogeneous problem to be well-posed and to derive an explicit formula for an optimal control.

As is well-known, the solvability of finite-time inhomogeneous linear-quadratic control problems is strongly linked to the solvability of a related Riccati equation (see e.g. [20] and [22]), which in dimension one has the form

$$U_t' = \frac{(U_t)^2}{2\beta_{aa}(t)} - U_t \left(2B_t + \frac{\beta_{xa}(t)}{\beta_{aa}(t)} + C_t^2 \right) - 2\beta_{xx}(t) + \frac{\beta_{xa}^2(t)}{2\beta_{aa}(t)}$$ \hspace{1cm} (0.2)

(note that U corresponds to $2P$ in Sect. 2 of [20]). Given a finite time horizon $T \in (0, \infty)$, a solution of the problem of minimizing $E \int_0^T f(t, X_t, \alpha_t)dt$ can be expressed in terms of the solution of (0.2) with the terminal condition $U_T = 0$.

We show that also the problem of minimizing the long-term cost average functional (0.1) can be reduced to the Riccati equation (0.2). The difficulty in the infinite horizon case, however, is that no terminal condition can be imposed. In order to isolate the solution of (0.2) that determines the minimizer of (0.1), we impose the conditions that the solution is non-negative and bounded from above.

probably the most challenging part of the article is to prove that there exists a unique solution of the Riccati equation (0.2) satisfying these boundedness conditions.

Using the unique bounded non-negative solution of (0.2) on $[0, \infty)$ we define a specific control and show, via a classical verification argument, that it is indeed optimal. In contrast to the homogeneous case, the HJB equation characterizing the control problem does depend on time. This goes in line with the fact that the optimally controlled state dynamics are, again in contrast to the homogeneous case, not necessarily ergodic.
There are many articles that solve long-term average cost control problems with time-homogeneous state dynamics. We refer to [19] for an early survey. In homogeneous models the optimally controlled state dynamics usually are ergodic. Therefore, the literature frequently refers to such problems as ergodic control problems. One message of the current paper is that long-term average cost control problems can be well-posed, even without ergodicity of the optimally controlled state.

A fundamental topic in the field of control theory with long-term average cost functionals is the convergence of the HJB equations of the finite time problem version to an ergodic PDE. More precisely, assume that the HJB equation of a finite time control problem is given by

\[-\partial_t v - \inf_{a \in A} \left\{ \mathcal{L}^a v + f(t, x, a) \right\} = 0, \tag{0.3} \]

where \(A \) is the value set of the controls and \(\mathcal{L}^a \) denotes the generator of the controlled state dynamics. There are many contributions providing conditions under which (0.3) transforms into an ergodic PDE of the type

\[\eta - \inf_{a \in A} \left\{ \mathcal{L}^a v + \tilde{f}(x, a) \right\} = 0 \tag{0.4} \]

as the time horizon converges to infinity. Notice that a solution of (0.4) consists of a pair \((\eta, v) \in \mathbb{R} \times C[0, \infty)\). Usually it is assumed that \(f \) does not depend on time. Exceptions are [2], [4] assuming a periodicity in time, and [5] assuming that \(f \) depends recursively on the value function divided by time-to-maturity.

[1], [14] consider a homogeneous setting and prove convergence, in some sense, of (0.3) to (0.4) under some state periodicity assumptions. [8], [18], [5] use probabilistic representations in terms of backward stochastic differential equations to establish convergence under dissipativity assumptions guaranteeing that the optimally controlled state is ergodic. [9] consider a system of ergodic BSDEs with dissipative forward part and apply them to a long-term utility maximization problem with regime switching.

We stress that in the present article we do not impose any kind of time periodicity assumption. The only assumption on the state coefficients and the cost coefficients is that they are bounded and left-continuous. As the time horizon converges to infinity, the time dependence in the HJB (0.3) does, in general not disappear, and hence we do not have convergence to (0.4). A time-dependent, but periodic, PDE limit is also described in [4].

Finally, we remark that we do not impose any regularity with respect to time, and hence we can not transform the setting into a 2-dimensional homogeneous setting with time as a new state variable.

1 Main Results

In this section we rigorously describe the model and summarize our main results.
Let W be a one-dimensional Brownian motion on a probability space (Ω, \mathcal{F}, P). We denote by $(\mathcal{F}_t)_{t \in [0, \infty)}$ the filtration generated by W, completed by the P-null sets in \mathcal{F}.

Assumption 1.1 Let $f: [0, \infty) \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be of the form

$$f(t, x, a) = \beta_{xx}(t)x^2 + \beta_x(t)x + \beta_{xa}(t)ax + \beta_{aa}(t)a^2 + \beta_a(t)a + \beta_0(t)$$

and $b, B, c, C, \beta_{xx}, \beta_x, \beta_{xa}, \beta_{aa}, \beta_a, \beta_0 : [0, \infty) \to \mathbb{R}$ be deterministic, left-continuous and bounded functions. Moreover, assume that

- $\det(\mathcal{H}(f))(t, \cdot, \cdot) = 4\beta_{aa}(t)\beta_{xx}(t) - \beta_{ax}^2(t) \geq \epsilon_1 > 0$ for $t \in [0, \infty)$ and some constant $\epsilon_1 > 0$,
- $\beta_{aa}(t) \geq \epsilon_2 > 0$ for $t \in [0, \infty)$ and some constant $\epsilon_2 > 0$.

By a control process α we mean a (\mathcal{F}_t)-progressively measurable process α such that for all $T \in [0, \infty)$ we have $\int_0^T \alpha_s^2 ds < \infty$. Given a control α, we assume that state process satisfies the SDE

$$dX_t = (b_t + B_t X_t - \alpha_t)dt + (c_t + C_t X_t)dW_t. \quad (1.1)$$

Notice that our assumptions imply that for every $x \in \mathbb{R}$ the SDE (1.1) has a unique solution $X^{x,\alpha}$ satisfying $X^{x,\alpha}_0 = x$. Moreover, one can show that for all $p \in [1, \infty)$ and $T \in [0, \infty)$ we have $\sup_{t \in [0, T]} E|X^{x,\alpha}_t|^p < \infty$ (see Sect. 2.5 in [13]).

Given an initial state $x \in \mathbb{R}$, we say that a control α is admissible if $\sup_{t \in [0, \infty)} E[(X^{x,\alpha}_t)^2] < \infty$; and we denote the set of all admissible controls by $\mathcal{A}(x)$.

For the admissible controls $\alpha \in \mathcal{A}(x)$ we define the limsup long term average cost functional

$$\bar{J}(x, \alpha) = \limsup_{T \to \infty} E \frac{1}{T} \int_0^T f(s, X^{x,\alpha}_s, \alpha_s)ds.$$

We now consider the problem of minimizing $\bar{J}(x, \alpha)$ among all admissible controls. To this end we introduce the value function

$$\bar{V}(x) := \inf_{\alpha \in \mathcal{A}(x)} \bar{J}(x, \alpha), \quad (1.2)$$

for all $x \in \mathbb{R}$. We show below that \bar{V} does not depend on x; but since this is a priorily not known, in the definition of \bar{V} we add the argument x.

We say that $\alpha \in \mathcal{A}(x)$ is an optimal control for (1.2), if we have $\bar{J}(x, \alpha) = \bar{V}(x)$. Moreover, we say that $\alpha \in \mathcal{A}(x)$ is a closed-loop control if there exists a function $a: [0, \infty) \times \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ the SDE

$$dX_t = (b_t + B_t X_t - a(t, X_t))dt + (c_t + C_t X_t)dW_t \quad (1.3)$$

for all $x \in \mathbb{R}$. We show below that \bar{V} does not depend on x; but since this is a priorily not known, in the definition of \bar{V} we add the argument x.

We say that $\alpha \in \mathcal{A}(x)$ is an optimal control for (1.2), if we have $\bar{J}(x, \alpha) = \bar{V}(x)$. Moreover, we say that $\alpha \in \mathcal{A}(x)$ is a closed-loop control if there exists a function $a: [0, \infty) \times \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ the SDE

$$dX_t = (b_t + B_t X_t - a(t, X_t))dt + (c_t + C_t X_t)dW_t \quad (1.3)$$
has a unique solution \(X^{x,a} \) and \(\alpha_t = a(t, X^{x,a}_t), t \in [0, \infty) \).

We now summarize our main results. First, we describe an optimal control and the
value function in terms of a solution of the Riccati equation (0.2). We show that there
exists a unique initial condition such that equation (0.2) has on \([0, \infty)\) a solution that
is bounded from above and bounded from below by 0.

Proposition 1.2 There exists exactly one non-negative and bounded solution of (0.2)
on \([0, \infty)\).

The result of Proposition 1.2 is proved in Sect. 2 as a part of Theorem 2.1. In the
following we denote by \(U^\infty \) the unique non-negative bounded solution of (0.2)
described in Proposition 1.2.

In Sect. 3 we show that there exist constants \(\delta_1, \delta_2 > 0 \) such that
\[
\int_s^t \left(B_r + \beta x a(r) - \frac{U^\infty r}{2\beta a(r)} \right) dr \leq -\delta_1(t-s) + \delta_2
\]
for all \(0 \leq s \leq t < \infty \). We can thus define a further bounded process
\[
\phi_t^\infty := \int_t^\infty \left[U^\infty_s \left(b_s + c_s C_s + \frac{\beta a(s)}{2\beta a(s)} \right) - \frac{\beta a(s)\beta x a(s)}{2\beta a(s)} + \beta_a(s) \right] \cdot \exp \left(\int_s^t B_r + \frac{\beta x a(r) - U^\infty_r}{2\beta a(r)} dr \right) ds.
\]

We next describe a solution of the long term cost minimization problem in terms of
\(U^\infty \) and \(\phi^\infty \).

Theorem 1.3 The closed-loop control with feedback function
\[
a^\infty(t, x) = \frac{\phi_t^\infty - \beta a(t) + (U^\infty_t - \beta x a(t))x}{2\beta a(t)} \quad (1.4)
\]
is an optimal control. Moreover,
\[
\bar{V}(x) = \limsup_{t \to \infty} \frac{1}{t} \int_0^t \left(\phi_s^\infty b_s + U^\infty_s c_s^2 + \beta_0(s) - \frac{(\phi_s^\infty - \beta a(s))^2}{4\beta a(s)} \right) ds. \quad (1.5)
\]
Note that (1.5) implies that \(\bar{V} \) does not depend on \(x \). In the following we therefore
omit the argument \(x \) and interpret \(\bar{V} \) as a constant.

Furthermore, the optimal control is not unique. An alteration of the strategy in (1.4)
on a compact interval of time would move the process as if having started in another
value and generate limited costs. Changing the starting value and modifying costs on
a compact interval does not affect the long term average costs \(\bar{V} \). Thus the alteration
is also optimal.

We prove Theorem 1.3 in Sect. 3 as a part of Theorem 3.6. We next proceed by
comparing the problem of minimizing \(\bar{J}(x, \alpha) \) with the problem of minimizing the
liminf long term average cost functional

\[J(x, \alpha) = \liminf_{T \to \infty} E \left\{ \frac{1}{T} \int_0^T f(s, X_s^x, \alpha_s) ds \right\}. \]

(1.6)

We define also the liminf value \(V := \inf_{\alpha \in A(x)} J(x, \alpha) \).

(1.7)

One can show that the feedback function (1.4) is also optimal for (1.7) and that \(V \) does not depend on \(x \). Moreover, we have

\[V = \liminf_{t \to \infty} \frac{1}{t} \int_0^t \left(\phi_s^\infty b_s + U_s^\infty \frac{c_s^2}{2} + \beta_0(s) - \frac{\left(\phi_s^\infty - \beta_a(s) \right)^2}{4\beta_{aa}(s)} \right) ds. \]

(1.8)

In general, \(V \) is not equal to \(\bar{V} \). If \(V < \bar{V} \), then \(X_{t,x}^\infty \), the state process controlled with the optimal control \(\alpha_{t,x}^\infty = a^\infty(t, X_t^\infty) \), is not ergodic, i.e. it does not hold true that the cost time average converges almost surely. More precisely, we have the following.

Proposition 1.4 If \(V < \bar{V} \), then for all \(x \in \mathbb{R} \) the time average

\[\frac{1}{T} \int_0^T f(s, X_s^\infty, \alpha_s^\infty) ds \]

does not converge a.s., as \(T \to \infty \).

Proof We first show that the family \(\frac{1}{T} \int_0^T f(s, X_s^\infty, \alpha_s^\infty) ds, T \in [0, \infty) \), is uniformly integrable. To this end let \(p \in (1, \infty) \). By Jensen’s inequality we have, for some constant \(K \) independent of \(T \),

\[E \left[\left(\frac{1}{T} \int_0^T f(s, X_s^\infty, \alpha_s^\infty) ds \right)^p \right] \leq E \left[\frac{1}{T} \int_0^T |f(s, X_s^\infty, \alpha_s^\infty)|^p ds \right] \]

\[\leq \left[\frac{1}{T} \int_0^T K(1 + E|X_s^\infty|^2)^{2p} ds \right] \]

\[\leq K(1 + \sup_{s \in [0,\infty)} E|X_s^\infty|^2)^{2p}. \]

By Lemma 3.3 below there exists a \(p > 1 \) such that \(\sup_{s \in [0,\infty)} E|X_s^\infty|^2 < \infty \). Hence, by the de la Vallee-Poussin theorem, the family \(\frac{1}{T} \int_0^T f(s, X_s^\infty, \alpha_s^\infty) ds \) is uniformly integrable.

Now suppose that \(\frac{1}{T} \int_0^T f(s, X_s^\infty, \alpha_s^\infty) ds \) converges a.s. Then, due to uniform integrability, we also have convergence in \(L^1 \). This contradicts however that \(V < \bar{V} \).

\(\square \)

Proposition 1.4 entails, in particular, that if \(V < \bar{V} \), then the distribution of \(X_{t,x}^\infty \) does not converge to a stationary distribution, as \(t \to \infty \).

In the homogeneous case where the drift, diffusion and cost functionals do not depend on \(t \), the optimally controlled state \(X_{t,x}^{\infty} \) is ergodic. The homogeneous case is
already well studied in the literature (see e.g. [3]). For the convenience of the reader we briefly explain how our results simplify in the homogeneous case and how they can be extended.

The Homogeneous Case

Suppose that all modelling functions \(b, B, c, C, \beta_{xx}, \beta_{x}, \beta_{xa}, \beta_{aa}, \beta_{a}, \beta_{0} \) are constant. In this case also \(U^{\infty} \) and \(\phi^{\infty} \) are constant; in particular we have

\[
U^{\infty} = p + \sqrt{p^2 + q},
\]

where

\[
p = 2B\beta_{aa} + \beta_{xa} + C^2\beta_{aa} \quad \text{and} \quad q = 4\beta_{xx}\beta_{aa} - \beta_{xa}^2.
\]

Let \(\kappa = B - \frac{U^{\infty} - \beta_{xa}}{2\beta_{aa}} \), and notice that the optimally controlled state \(X^{\infty} \) satisfies the homogeneous SDE

\[
dX_t = \left(b - \frac{\phi^{\infty} - \beta_{a}}{2\beta_{aa}} + \kappa X_t \right) dt + (c + CX_t)dW_t. \tag{1.10}
\]

Assumption 1.1 implies that \(q > 0 \). Thus, with (1.9) we get \(U^{\infty} > p \), and hence

\[
\kappa < -\frac{C^2}{2}. \tag{1.11}
\]

Property (1.11), sometimes referred to as dissipativity, guarantees that (1.10) possesses a unique stationary distribution \(\pi \) (see, e.g., Theorem 8.3 in [17]; use for example the Lyapunov function \(W(x) = x^2/2 \)). Moreover, if \(X^{\infty,x} \) denotes the solution of (1.10) with initial condition \(x \in \mathbb{R} \), then the distribution of \(X^{\infty,x}_t \) converges to the stationary distribution, as \(t \to \infty \) (see Remark 8.6 in [17]). This further entails that

\[
\frac{1}{T} \int_0^T f(X^{\infty,x}_s, a^{\infty}(s, X^{\infty,x}_s))ds \text{ converges a.s. to } \int f(x, a^{\infty}(x))\pi(dx), \text{ as } T \to \infty.
\]

Dissipativity in the Inhomogeneous Case

Observe that the optimally controlled state \(X^{\infty} \) satisfies the SDE

\[
dX_t = \left(b_t - \frac{\phi^{\infty}_t - \beta_{a}(t)}{2\beta_{aa}(t)} + \kappa_t X_t \right) dt + (c_t + C_t X_t)dW_t,
\]

where \(\kappa_t = B_t - \frac{U^{\infty}_t - \beta_{xa}(t)}{2\beta_{aa}(t)} \). By Theorem 2.1 below we obtain that there are constants \(\delta_1, \delta_2 > 0 \) such that for all \(0 \leq t_1 \leq t_2 < \infty \)

\[
\int_{t_1}^{t_2} \left(\kappa_t + \frac{C^2_t}{2} \right) dt \leq -\delta_1(t_2 - t_1) + \delta_2.
\]
This implies, that for large enough time intervals \([t_1, t_2]\) we have
\[
\int_{t_1}^{t_2} \kappa_t \, dt < \int_{t_1}^{t_2} -\frac{C_t^2}{2} \, dt,
\]
which seems to be a time-average version of the dissipativity condition (1.11).

However, consider \(B_t = 2 \cdot \mathbb{1}_{\{t \in [0, 1]\}}\) and all other parameters to be constant with \(C = 1, \beta_{aa} = 1/3, \beta_{xx} = 1/4\) and \(b = \beta_{xa} = \beta_x = \beta_a = \beta_0 = 0\). For \(t \geq 1\) we have that 1 is a solution of (0.2), and hence \(U_t^\infty = 1\) for all \(t \geq 1\). Furthermore, \(\kappa_1 = -\frac{3}{2}\). Since \(U^\infty\) is continuous, there is an \(\epsilon > 0\) such that for all \(t \in [1 - \epsilon, 1)\) we have
\[
-\frac{1}{2} = -\frac{C_t^2}{2} < 0 < \kappa_t,
\]
which means that for at least a short time the condition (1.11) is not satisfied.

A Non-ergodic Example

Example 1.5 Consider the control problem with \(C = 1, \beta_{aa} = 1/3, \beta_{xx} = 1/4\) and \(b = B = \beta_{xa} = \beta_x = \beta_a = \beta_0 = 0\). Below we define recursively a sequence of increasing times \(0 = t_0 < t_1 < t_2 < \cdots\). Given this sequence we set
\[
c_t = \begin{cases}
1, & \text{if } t \in [t_{2k}, t_{2k+1}) \text{ for a } k \in \mathbb{N}_0, \\
2, & \text{if } t \in [t_{2k+1}, t_{2k+2}) \text{ for a } k \in \mathbb{N}_0.
\end{cases}
\]

First, observe that the function constant equal to 1 is a solution of (0.2), and hence \(U^\infty = 1\). Suppose that \(t_{2k}\) is defined. Observe that
\[
\lim_{T \to \infty} \int_{t_{2k}}^{T} e^{-\frac{3}{2}(s-t_{2k})} \, ds = \frac{2}{3}.
\]
Thus, the larger we choose \(t_{2k+1}\), the closer \(\phi^\infty_s, s \in [t_{2k}, (t_{2k} + t_{2k+1})/2]\), gets to \(\frac{2}{3}\). Now we choose \(t_{2k+1}\) such that
\[
\frac{1}{(t_{2k} + t_{2k+1})/2} \int_{0}^{(t_{2k} + t_{2k+1})/2} \left(\frac{1}{2} - \frac{3}{4} \phi^\infty_s\right) ds \leq \frac{1}{k}.
\]
We next describe how to choose \(t_{2k+2}\). Observe that
\[
\lim_{T \to \infty} \int_{t_{2k+1}}^{T} 2e^{-\frac{3}{2}(s-t_{2k+1})} \, ds = \frac{4}{3}.
\]
Therefore, the larger we choose t_{2k+2}, the closer ϕ_s^∞, $s \in [t_{2k+1}, (t_{2k+1} + t_{2k+2})/2]$, gets to $\frac{4}{3}$. Now choose t_{2k+2} such that

$$
\frac{1}{(t_{2k+1} + t_{2k+2})/2} \int_0^{(t_{2k+1} + t_{2k+2})/2} (2 - \frac{3}{4} \phi_s^\infty) ds \geq 1 - \frac{1}{k}.
$$

We have thus recursively defined the sequence $(t_k)_{k \in \mathbb{N}_0}$.

From (1.5) and (1.8) we now obtain $\bar{V} \geq 1$ and $V \leq 0$.

Comparison with the Finite Time Control Problem

The optimal control in (1.4) has a similar form as the corresponding optimal control with a finite time horizon $T \in (0, \infty)$. Indeed, let $(U_t^T)_{t \in [0, T]}$ be the solution of the Riccati equation (0.2) on $[0, T]$ with terminal condition $U_T = 0$, and let for all $t \in [0, T]$

$$
\phi_t^T = \int_t^T \left[U_s^T (b_s + c_s C_s) + \beta_a(s) \frac{U_s^T - \beta_{xa}(s)}{2\beta_{aa}(s)} + \beta_x(s) \right] \exp \left(\int_t^s B_r + \frac{\beta_{xa}(r) - U_r^T}{2\beta_{aa}(r)} \, dr \right) \, ds.
$$

If we replace U^∞ with U^T and ϕ^∞ with ϕ^T in (1.4), then we obtain an optimal closed loop control for the problem of minimizing $E \int_0^T f(t, X_t^x, \alpha_t) dt$ (see, e.g., Theorem 2.4.3 in [20]). Moreover, one can show that U^T and ϕ^T converge to U^∞ and ϕ^∞, respectively and hence the optimal feedback function of the finite horizon problem converges to a^∞ as $T \to \infty$ (see Chapter 4 in [6]).

We remark that in the finite time linear quadratic control problem with stochastic (more precisely: progressively measurable) coefficients the equation (0.2) becomes a backward stochastic differential equation (BSDE). If the BSDE is solvable, the control problem is well-posed and its solution can be characterized in terms of the BSDE (see, e.g., [15], [12], [11] and [21]).

Applications

We close this section by describing some possible applications of the solution of the long-term average cost minimization problem (1.2).

Inventory management. One can think of the state X as the inventory level of some good. Usually a low inventory level entails shortage costs and a high level increases holding costs. Both costs can be taken into account for by the quadratic dependence of f on x. With the control α the inventory manager can continuously adjust the inventory level, in both directions. Quadratic dependence of f on α reflects that level corrections imply costs. The demand of the good and adjustment costs may be subject to seasonal variations and to some long-term trends, allowed for by the time-inhomogeneity of the
cost function f. In this context (1.4) is the policy that minimizes the long term average inventory costs.

Cash balance management. Companies aim for an optimal cash balance (see, e.g., [7]). On the one hand, they want to avoid being short of cash for meeting obligations. On the other hand they want to avoid holding costs entailed by large cash positions. Any adjustment of the cash position involves transaction costs. The problem of minimizing the long term average overall costs can be formulated as a problem of type (1.2).

Inflation rate regulation. One of the main tasks of central banks is to keep the inflation rate at a healthy level. Both a high inflation rate and deflation can have severe economic implications. To this end there are several tools at the disposal of central banks in order to affect the inflation rate into either direction, which however also come with side effects of political or economical nature. For example bubbles in stock markets or recessions can be unfavorable outcomes. The parameters of cost of inflation or deflation and the measures against them can change over time with the circumstances. Furthermore, a central bank should aim at preserving a near optimum state for a long time without any visible time horizon, which makes taking the average over time a good target functional.

2 Existence and Uniqueness of U^∞

In this section we show the existence and uniqueness of U^∞, which is defined as the non-negative bounded solution of (0.2). In fact, we show a little more than that, as can be seen in the following theorem, which contains the main result of this section.

Theorem 2.1 Let Assumption 1.1 be fulfilled.

Then there exists exactly one $u \in \mathbb{R}$ such that (0.2) with the initial condition $U_0 = u$ has a solution that is on $[0, \infty)$ bounded from below by 0 and bounded from above by $\hat{U} := \hat{\rho} + \sqrt{\hat{p}^2 + \hat{q}}$, where

$$\hat{\rho} := \sup_{s \in [0, \infty)} \left(2B_s \beta_{aa}(s) + \beta_{xa}(s) + C_s^2 \beta_{aa}(s) \right)$$

and

$$\hat{q} := \sup_{s \in [0, \infty)} \left(4\beta_{xx}(s) \beta_{aa}(s) - \beta_{xa}(s)^2 \right).$$

Furthermore, there are constants $\delta_1, \delta_2 > 0$ such that for any initial value U_0 yielding $U_r \in [0, \hat{U}]$ for all $0 \leq r \leq T < \infty$ we have

$$\int_s^t \left(B_r + \frac{\beta_{xa}(r) - U_r}{2\beta_{aa}(r)} \right) \, dr \leq \int_s^t \left(B_r + \frac{\beta_{xa}(r) - U_r}{2\beta_{aa}(r)} + \frac{C_r^2}{2} \right) \, dr \leq -\delta_1 (t-s) + \delta_2$$

for all $0 \leq s \leq t \leq T$.

We approach this problem by considering a simplified quadratic integral equation, at first for constant and then for piecewise constant parameter functions. Finally we generalize to right-continuous functions and prove Theorem 2.1 via a time-reversal.
Assumption 2.2 Let $p, q, a : \mathbb{R} \to \mathbb{R}$ be deterministic right-continuous functions such that for all $s \in \mathbb{R}$

\[-\infty < \tilde{p} \leq p_s \leq \hat{p} < \infty, \quad 0 < \tilde{q} \leq q_s \leq \hat{q} < \infty, \quad 0 \leq \tilde{a} \leq a_s \leq \hat{a} < \infty \]

for constants $\tilde{p}, \hat{p}, \tilde{q}, \hat{q}, \tilde{a}, \hat{a} \in \mathbb{R}$.

For the following we define the constants $\tilde{Y} := \tilde{p} + \sqrt{\tilde{p}^2 + \tilde{q}}, \hat{Y} := \hat{p} + \sqrt{\hat{p}^2 + \hat{q}}$. Moreover, for all $t \in \mathbb{R}$ and $x \in [0, \hat{Y}]$ we define $Y_{t,x}$ as the solution of the ODE

$$y' = -a_t \left(y^2 - 2p_t y - q_t \right) \tag{2.1}$$

on $[t, \infty)$ with initial condition $Y_{t,x}^t = x$. To shorten notation, we often omit the superscript t and x.

Remark 2.3 Actually it is not necessary for p, q, a to be defined on the complete real axes. Being defined on an interval of the form $(-\infty, K]$ for $K \in \mathbb{R}$ would suffice. Being right-continuous is also not necessary. What we actually use is firstly in the proof of Proposition 2.10 that p, q, a can be approximated by piecewise constant functions with respect to the ess sup-norm and secondly in the proof of Theorem 2.11 that $Y_{t,x}$ is weakly differentiable with respect to its initial value x. However, for simplicity of argument and notation we assume right-continuity.

Lemma 2.4 Let Assumption 2.2 be fulfilled and $t \in \mathbb{R}$. Then for every starting value $x \in [0, \hat{Y}]$ Equation (2.1) has a unique solution $Y_{t,x}$, which is furthermore bounded by

$$\min \left\{ x, \tilde{Y} \right\} \leq Y_{s}^{t,x} \leq \hat{Y}, \quad \text{for all } s \geq t. \quad \text{Proof}$$

We define the auxiliary process \tilde{Y} as the unique solution of the Lipschitz ODE

$$\partial_t \tilde{Y}_s = -a_s \left(\left(T_0^\alpha (\tilde{Y}_s) \right)^2 - 2p_s \tilde{Y}_s - q_s \right), \quad \tilde{Y}_t = Y_t \tag{2.2}$$

where T is the truncation operator defined by $T_\alpha^\beta (x) := \max (\alpha, \min (x, \beta))$ for $\alpha \leq \beta$. Observe that for $\tilde{Y}_s \in [0, \hat{Y}]$ we have $-a_s \left(\left(T_0^\alpha (\tilde{Y}_s) \right)^2 - 2p_s \tilde{Y}_s - q_s \right) > 0$ and for $\tilde{Y}_s \in [\tilde{Y}, \infty)$ that $-a_s \left(\left(T_0^\alpha (\tilde{Y}_s) \right)^2 - 2p_s \tilde{Y}_s - q_s \right) \leq 0$. Hence, for $\tilde{Y}_t < \tilde{Y}$ we have that $\tilde{Y}_s \geq \tilde{Y}_t$ for all $s \in [t, \infty)$, since Y is continuous. By the same argument we also obtain for $\tilde{Y}_t \geq \tilde{Y}$ that \tilde{Y}_s cannot reach any value below \tilde{Y} and likewise because $\tilde{Y}_t \leq \tilde{Y}$ that $\tilde{Y}_s \leq \hat{Y}$. Thus, the truncation of the quadratic term has no consequence and can be omitted without changing the solution. Hence, \tilde{Y} is also a solution of the untruncated ODE (2.1).

Let Z be an arbitrary solution of (2.1). If Z_t attains \hat{Y}, then it has a non-positive derivative in that point and hence cannot exceed \hat{Y}. Similarly, if Z attains zero, then it has a non-negative derivative and hence cannot plunge below zero. Consequently,
also \(Z \) is a solution of the Lipschitz ODE (2.2). However, uniqueness of (2.2) implies \(Z = \bar{Y} \).

In the following we denote by \(Y \) the solution of Equation (2.1).

\(\square \)

Remark 2.5 In the proofs of this section we make use of the following hyperbolic identities without explicitly mentioning it:

- \(\tanh^{-1}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \) for \(x \in (-1, 1) \),
- \(\coth^{-1}(x) = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right) \) for \(|x| > 1 \),
- \(\cosh(\tanh^{-1}(x)) = (1 - x^2)^{-1/2} \) for \(x \in (-1, 1) \),
- \(\sinh(\coth^{-1}(x)) = (1 - x^2)^{-1/2} \) for \(x > 1 \).

Lemma 2.6 Let Assumption 2.2 be fulfilled, \(t \in \mathbb{R} \) and \(x \in [0, \bar{Y}] \). Furthermore, assume that for some \(s > t \) the functions \(p, q, a \) are constant on the interval \([t, s)\), i.e. there are \(\bar{p}, \bar{q}, \bar{a} \in \mathbb{R} \) such that \(p_r = \bar{p} \), \(q_r = \bar{q} \) and \(a_r = \bar{a} \) for all \(r \in [t, s) \). Then

\[
Y_{t,r}^{t,x} = \begin{cases} \bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \tanh \left(\bar{a} \sqrt{\bar{p}^2 + \bar{q}} (r - t) + \tanh^{-1} \left(\frac{x - \bar{p}}{\sqrt{\bar{p}^2 + \bar{q}}} \right) \right), & x \in [0, \bar{p} + \sqrt{\bar{p}^2 + \bar{q}}) \\ \bar{p} + \sqrt{\bar{p}^2 + \bar{q}}, & x = \bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \\ \bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \coth \left(\bar{a} \sqrt{\bar{p}^2 + \bar{q}} (r - t) + \coth^{-1} \left(\frac{x - \bar{p}}{\sqrt{\bar{p}^2 + \bar{q}}} \right) \right), & x \in (\bar{p} + \sqrt{\bar{p}^2 + \bar{q}}, \infty) \end{cases} \tag{2.3}
\]

for all \(r \in [t, s) \). In particular, \(Y_{t,r}^{t,x} \) is monotone on the interval \([t, s)\).

Proof Observe that the dynamics of \(Y_{t,r}^{t,x} \) can be reformulated for \(r \in [t, s) \) as the separable ODE

\[
Y_r' = -\bar{a} \left((Y_r - \bar{p})^2 - \bar{p}^2 - \bar{q} \right).
\]

By using the method of separation of variables, the three cases follow. Also, Lemma 2.4 provides uniqueness. The remaining monotonicity follows from the monotonicity of \(\tanh \) and \(\coth \). \(\square \)

The proofs of the following three lemmas are technical and can be found in the appendix.

Lemma 2.7 Let Assumption 2.2 be fulfilled and \([t_1, t_2] \subset \mathbb{R} \) with \(t_1 < t_2 \). Furthermore, assume that \(x \in [0, \bar{Y}] \) and that the functions \(p, q, a \) are constant on the interval \([t_1, t_2)\), i.e. there are \(\bar{p}, \bar{q}, \bar{a} \in \mathbb{R} \) such that \(p_r = \bar{p} \), \(q_r = \bar{q} \) and \(a_r = \bar{a} \) for all \(r \in [t_1, t_2) \). Then, for \(Y := Y_{t,r}^{t,x} \) and \(t_1 \leq t \leq s \leq t_2 \),

\[
\int_t^s -a_r (Y_r - p_r) \, dr = \begin{cases} -\bar{a} \sqrt{\bar{p}^2 + \bar{q}} (s - t), & Y_t = \bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \\ \frac{1}{2} \ln \left(\frac{Y_t^2 - 2\bar{p}Y_t - \bar{q}}{Y_t^2 - 2\bar{p}Y_t - \bar{q}} \right), & Y_t \neq \bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \end{cases} \tag{2.4}
\]

and for \(Y_t \neq \bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \) we moreover have

\(\square \) Springer
\[s - t = \frac{1}{2\bar{a}\sqrt{\bar{p}^2 + \bar{q}}} \ln \left(\frac{\bar{p}^2 + \bar{q} - (Y_t - \bar{p})^2}{\bar{p}^2 + \bar{q} - (Y_s - \bar{p})^2} \right) + \frac{1}{\bar{a}\sqrt{\bar{p}^2 + \bar{q}}} \ln \left(\frac{\sqrt{\bar{p}^2 + \bar{q}} + (Y_s - \bar{p})}{\sqrt{\bar{p}^2 + \bar{q}} + (Y_t - \bar{p})} \right). \]

Proof See appendix. \(\square\)

Lemma 2.7 gives us the value of the integral in (2.4) when the parameters are constant all the way. Next, we want to find the value of that integral when the process \(Y\) goes up and down ending at the value where it started, which we later call an excursion.

Lemma 2.8 Let Assumption 2.2 be fulfilled. Furthermore, let \([t_1, t_2], [t_3, t_4] \subset \mathbb{R}, Y_{t_1} = Y_{t_4} \in [0, \hat{Y}], Y_{t_2} = Y_{t_3} \in [0, \hat{Y}]\) and \(p, q, a\) be constant on \([t_1, t_2]\) and also on \([t_3, t_4]\). Then

\[
\int_{t_1}^{t_2} -a_s(Y_s - p_s) \, ds + \int_{t_3}^{t_4} -a_s(Y_s - p_s) \, ds \leq -\min \left\{ \frac{\hat{a} \sqrt{\hat{q}}}{\sqrt{2}}, \frac{\hat{a}(\hat{Y}^2 + \hat{q})}{2\hat{Y}} \right\} ((t_2 - t_1) + (t_4 - t_3)).
\]

Proof See appendix. \(\square\)

Lemma 2.9 Let Assumption 2.2 be fulfilled and assume that on the interval \([t_0, t_1]\) with \(-\infty < t_0 < t_1 < \infty\) the functions \(p, q, a\) are constant and \(Y_{t_0} \in [0, \hat{Y}]\). Then

\[
\int_{t_0}^{t_1} -a_s(Y_s - p_s) \, ds \leq -\hat{a} \frac{\sqrt{\hat{q}}}{\sqrt{2}} (t_1 - t_0) + \frac{\hat{Y}}{\hat{q}} (Y_{t_1} - Y_{t_0}) \mathbb{1}_{[Y_{t_1} - Y_{t_0} > 0]}.
\] (2.5)

Proof See appendix. \(\square\)

Proposition 2.10 Let Assumption 2.2 be fulfilled, \(-\infty < t_0 \leq t_1 < \infty\) and \(Y_{t_0} \in [0, \hat{Y}]\). Then there exist constants \(\delta_1, \delta_2 > 0\) independent of \(t_0\) and \(t_1\) such that

\[
\int_{t_0}^{t_1} -a_s(Y_s - p_s) \, ds \leq -\delta_1 (t_1 - t_0) + \delta_2.
\]

Proof First, we have a look at the case, where \(p, q, a\) are piecewise constant. We split the path of \(Y\) into many excursions (as described in Lemma 2.8) and left over time intervals which can not be put together to excursions. Those left over time intervals have to be such that either \(Y\) is monotone decreasing or \(Y\) is monotone increasing on all of them. Since \(0 \leq Y \leq \hat{Y}\) (see Lemma 2.4) we get from Lemma 2.9 that the contributions of the left over monotone intervals in the estimate are bounded by \(2\frac{\hat{Y}}{\hat{q}}\hat{Y} =: \delta_2\). Now we set

\[
\delta_1 := \min \left(\frac{\hat{a}}{\hat{Y}^2 + \hat{q}}, \frac{\hat{a} \sqrt{\hat{q}}}{\sqrt{2}} \right),
\]

\(\square\) Springer
which is the minimum of the factors that get multiplied with the time increments, given in Lemma 2.8 and Lemma 2.9. Hence, the result holds for all piecewise constant functions \(p, q, a \) uniformly.

Since \(Y \) depends continuously on \(a, p \) and \(q \), for every \(\epsilon_1 > 0 \) we can choose piecewise constant approximations \(\tilde{a}, \tilde{p}, \tilde{q} \) fulfilling Assumption 2.2 for the same bounds as \(a, p, q \) and generating a \(Y \) such that max \((\|a - \tilde{a}\|_{\infty, \{t_0, t_1\}}, \|p - \tilde{p}\|_{\infty, \{t_0, t_1\}}, \|q - \tilde{q}\|_{\infty, \{t_0, t_1\}}) \|Y - \tilde{Y}\|_{\infty, \{t_0, t_1\}} \) < \(\epsilon_1 \). Now observe that

\[
\left| \int_{t_0}^{t_1} -a_s(Y_s - p_s) \, ds - \int_{t_0}^{t_1} -\tilde{a}_s(\tilde{Y}_s - \tilde{p}_s) \, ds \right|
= \left| \int_{t_0}^{t_1} -(a_s - \tilde{a}_s)(\tilde{Y}_s - \tilde{p}_s) - a_s(Y_s - \tilde{Y}_s - (p_s - \tilde{p}_s)) \, ds \right|
\leq \|a - \tilde{a}\|_{\infty} \left| \int_{t_0}^{t_1} \tilde{Y}_s - \tilde{p}_s \, ds \right| + (\|Y - \tilde{Y}\|_{\infty} + \|p - \tilde{p}\|_{\infty}) \int_{t_0}^{t_1} a_s \, ds
\leq \|a - \tilde{a}\|_{\infty} T(Y + \max\{|\hat{p}|, |\tilde{p}|\}) + (\|Y - \tilde{Y}\|_{\infty} + \|p - \tilde{p}\|_{\infty}) T\hat{a}.
\]

Hence, we can choose for every \(\epsilon_2 > 0 \) our \(\epsilon_1 \) as \(\epsilon_1 = \frac{\epsilon_2}{\max\{\|\hat{p}|, |\tilde{p}|\} + \hat{a}} \) and obtain

\[
\left| \int_{t_0}^{t_1} -a_s(Y_s - p_s) \, ds - \int_{t_0}^{t_1} -\tilde{a}_s(\tilde{Y}_s - \tilde{p}_s) \, ds \right| \leq \epsilon_1 T(Y + \max\{|\hat{p}|, |\tilde{p}|\}) + 2\epsilon_1 T\hat{a} < \epsilon_2.
\]

Thus, the result for piecewise constant functions holds also true for all allowed functions \(a, p \) and \(q \).

Theorem 2.11 Let Assumption 2.2 be fulfilled. Then there are constants \(K_1, K_2 > 0 \) such that for all \(x_1, x_2 \in [0, \hat{Y}] \) and all \(-\infty < t \leq s < \infty \) we have that

\[
\int_t^s -a_r(Y^{r, x_1}_r - p_r) \, dr \leq -K_1(s - t) + K_2 \text{ and }
\left| Y^{r, x_1}_s - Y^{r, x_2}_s \right| \leq |x_1 - x_2| K_1 e^{-K_2(s-t)}.
\]

Furthermore, there exists a bounded function \(V : \mathbb{R} \rightarrow [0, \hat{Y}] \) such that for all \(x \in [0, \hat{Y}] \) and \(s \in \mathbb{R} \)

\[
\lim_{t \rightarrow -\infty} Y^{r, x}_s = V_s. \tag{2.6}
\]

Moreover, \(V \) is the unique process bounded between 0 and \(\hat{Y} \) and solving Equation (2.1).

Remark 2.12 Equation (2.6) means that \(V \) can be interpreted as a pullback attractor. More precisely, in the terminology of nonautonomous dynamical systems, the family of singleton sets \(\{V_t\} \), indexed by \(\mathbb{R} \), is pullback attracting for the dynamical system associated to (2.1) (see e.g. Definition 3.3 in [10]).
Proof of Theorem 2.11 The first of the two inequalities is given by Proposition 2.10. For the other one, by introducing the function \(h(r, x) := -a_r (x^2 - 2p_r x - q_r) \) for \((r, x) \in [0, \infty) \times \mathbb{R}\) and using differentiation in its weak sense, we can write the dynamics of \(Y_t^{f_t, x_0} \) as

\[
\partial_s Y_t^{f_t, x_0} = h(s, Y_t^{f_t, x_0}), \quad Y_t^{f_t, x_0} = x_0.
\]

By standard theory (see e.g. Theorem 1 in Chapter 2.5 of [16]) it is known that \(Y_t^{f_t, x_0} \) is also differentiable with respect to its initial value \(x_0 \) and that \(\partial_{x_0} Y_t^{f_t, x_0} \) solves the differential equation

\[
y'(s) = \partial_x h(s, Y_t^{f_t, x_0}) y(s), \quad y_1 = 1,
\]

which has the solution

\[
\partial_{x_0} Y_t^{f_t, x_0} = y(s) = \exp \left(\int_t^s \partial_x h(r, Y_t^{f_t, x_0}) \, dr \right) = \exp \left(\int_t^s -2a_r (Y_r^{f_t, x_0} - p_r) \, dr \right).
\]

Therefore,

\[
\partial_{x_0} Y_t^{f_t, x_0} \leq \exp(-2\delta_1 (s - t) + 2\delta_2)
\]

for some constants \(\delta_1, \delta_2 > 0 \) by Proposition 2.10. Hence,

\[
\left| Y_t^{f_t, x_1} - Y_t^{f_t, x_2} \right| = \left| \int_{x_2}^{x_1} \partial_x Y_t^{f_t, x} \, dx \right| \leq \int_{x_2}^{x_1} \exp(-2\delta_1 (s - t) + 2\delta_2) \, dx = \left| x_1 - x_2 \right| \exp(-2\delta_1 (s - t) + 2\delta_2).
\]

Thus, defining \(K_1 := e^{2\delta_2} \) and \(K_2 := 2\delta_1 \) we obtain the claimed inequalities.

Observe that since \(\left| Y_t^{f_t, x_1} - Y_t^{f_t, x_2} \right| \leq \left| x_1 - x_2 \right| K_1 e^{-K_2(s-t)} \) we have that \(Y_t^{f_t, x} \) is a Cauchy-sequence for decreasing \(t \) and hence converges. Note that the limit does not depend on the initial value \(x \). We denote this limit by \(V_s \):

\[
V_s = \lim_{t \to -\infty} Y_t^{f_t, x}.
\]

Furthermore, due to dominated convergence,

\[
V_s = \lim_{t \to -\infty} Y_t^{f_t, x} = \lim_{t \to -\infty} Y_t^{f_t, x} + \lim_{t \to -\infty} \int_u^s -a_r \left((Y_r^{f_t, x})^2 - 2p_r Y_r^{f_t, x} - q_r \right) \, dr
\]
\begin{align*}
\ &= V_u + \int_u^s - \lim_{t \to -\infty} a_r \left((Y_r^{t,x})^2 - 2 p_r Y_r^{t,x} - q_r \right) \, \mathrm{d}r \\
\ &= V_u + \int_u^s - a_r \left((V_r)^2 - 2 p_r V_r - q_r \right) \, \mathrm{d}r,
\end{align*}
which means that V solves Equation (2.1).

Assuming that there is another process U bounded between 0 and \hat{Y} and solving Equation (2.1), we can find for every $\epsilon > 0$ and $s \in \mathbb{R}$ a real $t < s$ such that

$$\left| V_s - U_s \right| \leq \left| Y_s^{t, V_t} - Y_s^{t, U_t} \right| \leq |V_t - U_t| K_1 e^{-K_2 (s-t)} < \epsilon,$$
which means that V and U are identical. \hfill \Box

Now we have all necessary tools in order to prove Theorem 2.1.

Proof of Theorem 2.1. We set

\[
\tilde{p}_s := 2 B_s \beta_{aa}(s) + \beta_{xa}(s) + C_s^2 \beta_{aa}(s), \quad \tilde{q}_s := 4 \beta_{xx}(s) \beta_{aa}(s) - \beta_{xa}^2(s),
\]

\[
\tilde{a}_s := \frac{1}{2 \beta_{aa}(s)}
\]

and define

$$p_s := \begin{cases} \tilde{p}_s, & s \leq 0 \\ \tilde{p}_0, & s > 0 \end{cases}, \quad q_s := \begin{cases} \tilde{q}_s, & s \leq 0 \\ \tilde{q}_0, & s > 0 \end{cases}, \quad a_s := \begin{cases} \tilde{a}_s, & s \leq 0 \\ \tilde{a}_0, & s > 0 \end{cases}$$

such that p, q, a fulfill Assumption 2.2. By Theorem 2.11 there exists a unique process V that solves Equation (2.1) and is bounded by 0 and \hat{Y}. For $s \in [0, \infty)$ we see that by Theorem 2.11 $U_s^\infty := V_{-s}$ fulfills all the claimed properties. \hfill \Box

3 Verification of the Linear-Quadratic Non-ergodic Control

In this section we first prove a verification result, and then apply it in order to prove Theorem 1.3.

Recall the control problem of Sect. 1 with value function (1.2). To shorten notation we abbreviate the drift and the diffusion coefficient in the state dynamics (1.1) by

$$\mu(t, x, a) := b_t + B_t x - a,$$

$$\sigma(t, x) := c_t + C_t x.$$
We show that one can characterize the solution of the control problem in terms of the following PDE
\[
\partial_t \psi(t, x) + \inf_{a \in \mathbb{R}} \left\{ \mu(t, x, a) \partial_x \psi(t, x) + \frac{1}{2} \sigma^2(t, x) \partial_{xx} \psi(t, x) + f(t, x, a) \right\} = 0.
\]
(3.1)

As a terminal condition we impose that there exists \(\eta \in \mathbb{R} \) such that for all \(x \in \mathbb{R} \) we have
\[
\limsup_{t \to \infty} -\frac{\psi(t, x)}{t} = \eta.
\]
(3.2)

Proposition 3.1

a) Let \(\psi \in C^{1,2}([0, \infty)) \) be a function satisfying (3.1). Suppose that there exists \(\eta \in \mathbb{R} \) such that (3.2) holds true for all \(x \in \mathbb{R} \). Moreover, suppose that there exists \(K \in [0, \infty) \) such that for all \(t \in [0, \infty) \) and \(x \in \mathbb{R} \) we have
\[
|\psi(t, x) - \psi(0, 0)| \leq K(1 + |x|^2),
\]
(3.3)

and that also the space derivative \(\partial_x \psi \) grows at most polynomially in \(x \), uniformly in \(t \). Then \(\inf_{a \in \mathcal{A}(x)} \bar{J}(x, a) \geq \eta \).

b) Let \(a^*(t, x) = (\partial_x \psi(t, x) - \beta_x(t) x - \beta_a(t))/(2\beta_{aa}(t)) \). Suppose that for every \(x \in \mathbb{R} \) the SDE
\[
dX_t = \mu(t, X_t, a^*(t, X_t))dt + \sigma(t, X_t)dW_t, \quad X_0 = x,
\]
(3.4)
possesses a unique solution \(X^*, x \) and \(\sup_{t \in [0, \infty)} E[(X^*_t)^2] < \infty \). Then \(a_t^* = a^*(t, X^*_t, x) \) satisfies
\[
\bar{J}(x, a^*) = \inf_{a \in \mathcal{A}(x)} \bar{J}(x, a) = \eta;
\]
(3.5)
in particular \(a^* \) is an optimal control.

Proof Let \(x \in \mathbb{R} \) and \(\alpha \in \mathcal{A}(x) \). We shortly write \(X = X^{x, \alpha} \) in the following. The Ito formula and (3.1) imply
\[
\psi(T, X_T) - \psi(0, x) = \int_0^T \left(\partial_t \psi(t, X_t) + \mu(t, X_t, \alpha_t) \partial_x \psi(t, X_t) + \frac{1}{2} \sigma^2(t, X_t) \partial_{xx} \psi(t, X_t) \right) dt + MT
\]
\[\geq -\int_0^T f(t, X_t, \alpha_t) dt + MT,
\]
(3.6)
where \(MT = \int_0^T \partial_x \psi(t, X_t) \sigma(t, X_t) dW_t \). The assumptions on \(\psi \) and on \(\alpha \) entail that \(\int_0^T (\partial_x \psi(t, X_t) \sigma(t, X_t))^2 dt < \infty \), and hence \(E(M_T) = 0 \). Therefore, taking
expectations on both sides of (3.6) and multiplying with $-\frac{1}{T}$ yields

$$\frac{1}{T} E (\psi(0, x) - \psi(T, X_T)) \leq E \frac{1}{T} \int_0^T f(t, X_t, \alpha_t) dt. \quad (3.7)$$

Notice that

$$\frac{1}{T} E (\psi(0, x) - \psi(T, X_T)) = \frac{\psi(0, x) - \psi(T, x)}{T} + E \frac{\psi(T, x) - \psi(T, X_T)}{T}. \quad (3.8)$$

By assumption (3.2), for the first fraction on the RHS of (3.8) we have

$$\limsup_{T \to \infty} \frac{\psi(0, x) - \psi(T, x)}{T} = \eta,$$

and, since $\sup_t E (X_T^2) < \infty$, for the second we have

$$\limsup_T \frac{|E(\psi(T, x) - \psi(T, X_T))|}{T} \leq \limsup_T \frac{K (2 + |x| + \sup_t E (X_T^2))}{T} = 0.$$

Thus, from (3.7) we get

$$\eta \leq \limsup_{T \to \infty} E \frac{1}{T} \int_0^T f(t, X_t, \alpha_t) dt = \bar{J}(x, \alpha).$$

Since α is chosen arbitrarily, we also have $\inf_{\alpha \in \mathcal{A}(x)} \bar{J}(x, \alpha) \geq \eta$.

Now suppose that (3.4) has a unique solution $X^* = X^{*,x}$ and that $\sup_{t \in [0, \infty)} E[(X_t^*)^2] < \infty$. Then the control $\alpha^*_t = a^*(t, X_t^*)$, $t \geq 0$, belongs to $\mathcal{A}(x)$. Notice that the inequalities (3.6) and (3.7) become equalities if we replace X with X^*. We thus obtain $\eta = \bar{J}(x, a^*)$. This yields, together with the first part of the proof, the statement (3.5).

A verification result for the liminf cost functional

$$\underline{J}(x, \alpha) = \liminf_{T \to \infty} E \frac{1}{T} \int_0^T f(s, X_s^{x,\alpha}, \alpha_s) ds, \quad (3.9)$$

can be shown similarly. One simply needs to replace the limsup in (3.2) by a liminf.

Remember that U^∞ is the unique non-negative, bounded solution of (0.2) as described in Theorem 2.1.

Lemma 3.2 Let Assumption 1.1 be fulfilled. Then the process

$$\phi^\infty_t := \int_t^\infty \left[U^\infty_s \left(b_s + c_s C_s + \frac{\beta_a(s)}{2\beta_{aa}(s)} \right) - \beta_a(s) \frac{\beta_{xa}(s)}{2\beta_{aa}(s)} + \beta_x(s) \right] \cdot \exp \left(\int_t^s B_r + \frac{\beta_{xa}(r) - U^\infty_r}{2\beta_{aa}(r)} dr \right) ds$$

\(\square\) Springer
for \(t \in [0, \infty) \) is well defined and bounded uniformly in time.

Proof By Theorem 2.1 we obtain

\[
\int_t^\infty \left[U_s^\infty \left(b_s + c_s C_s + \frac{\beta_a(s)}{2\beta_{aa}(s)} \right) - \frac{\beta_a(s)\beta_{xa}(s)}{2\beta_{aa}(s)} + \beta_x(s) \right] \exp \left(\int_t^s B_r + \frac{\beta_{xa}(r) - U_r^\infty}{2\beta_{aa}(r)} \, dr \right) \, ds \\
\leq \sup_{s \in [0, \infty)} \left[\hat{U}_s \left| b_s + c_s C_s + \frac{\beta_a(s)}{2\beta_{aa}(s)} \right| + \left| \frac{\beta_a(s)\beta_{xa}(s)}{2\beta_{aa}(s)} + \beta_x(s) \right| \right] \int_t^\infty e^{-\delta_1(s-t)} \, ds \\
= \sup_{s \in [0, \infty)} \left[\hat{U}_s \left| b_t + c_s C_s + \frac{\beta_a(s)}{2\beta_{aa}(s)} \right| + \left| \frac{\beta_a(s)\beta_{xa}(s)}{2\beta_{aa}(s)} + \beta_x(s) \right| \frac{e^{\delta_2}}{\delta_1} \right] < \infty,
\]

which means that \(\phi^\infty \) is well defined and bounded. \(\square \)

In the following we use for \(t \in [0, \infty), x \in \mathbb{R} \) the definitions

\[
\psi(t, x) := \frac{1}{2} U_t^\infty \cdot x^2 + \phi_t^\infty \cdot x \\
+ \int_0^t -\left(\phi_s^\infty b_s + U_s^\infty c_s^2 + \beta_0(s) - \frac{(\phi_s^\infty - \beta_a(s))^2}{4\beta_{aa}(s)} \right) \, ds \\
a(t, x) := \frac{\phi_t^\infty - \beta_a(t) + (U_t^\infty - \beta_{xa}(t))x}{2\beta_{aa}(t)}
\]

and

\[
\eta := \limsup_{T \to \infty} \frac{1}{T} \int_0^T \phi_s^\infty b_s + U_s^\infty c_s^2 + \beta_0(s) - \frac{(\phi_s^\infty - \beta_a(s))^2}{4\beta_{aa}(s)} \, ds.
\]

Lemma 3.3 Let Assumption 1.1 be fulfilled. Then there exists an \(\epsilon > 0 \) such that \(\sup_{t \in [0, \infty)} \mathbb{E} \left(\left| X_t^{\infty} \right|^p \right) < \infty \) for every \(p \in (0, 2 + \epsilon) \) and every initial value \(x_0 \in \mathbb{R} \).

For the proof of Lemma 3.3 we need the following.

Lemma 3.4 Let \(p, q : [0, \infty) \to \mathbb{R} \) be measurable and bounded. The integral equation

\[
h(t) = h(0) + \int_0^t [p(s) \cdot h(s) + q(s)] \, ds,
\]
for \(h(0) \in \mathbb{R} \) and \(t \geq 0 \), has the unique, explicit solution

\[
h(t) = e^{\int_0^t p(s) \, ds} \left(h(0) + \int_0^t q(s) e^{-\int_0^s p(r) \, dr} \, ds \right) = h(0) e^{\int_0^t p(s) \, ds} + \int_0^t q(s) e^{\int_s^t p(r) \, dr} \, ds.
\]

Proof That \(h \) solves the integral equation is straightforward by weak differentiation. The uniqueness follows since the integral equation is linear in \(h \) with bounded coefficients, which makes it a Lipschitz ODE.

Proof of Lemma 3.3 Observe that

\[
E \left[X_t^{\alpha_T} \right] = x_0 + E \left[\int_0^t \left(b_s + B_s X_s^{\alpha_T} - \frac{\phi_s^T - \beta_a(s) + (U_s^T - \beta_{sa}(s)) \alpha_T}{2 \beta_{aa}(s)} \right) \, ds \right]
\]

By Lemma 3.4 we get

\[
E \left[X_t^{\alpha_T} \right] = x_0 e^{\int_0^t B_s \, ds} + \int_0^t \left(b_s + \frac{-\phi_s^T + \beta_a(s)}{2 \beta_{aa}(s)} \right) \, ds + \int_0^t \left(B_s + \frac{\beta_{sa}(s) - U_s^T}{2 \beta_{aa}(s)} \right) E \left[X_s^{\alpha_T} \right] \, ds.
\]

and hence, using that

\[
\left| b_s + \frac{-\phi_s^T + \beta_a(s)}{2 \beta_{aa}(s)} \right| \leq \sup_{r \in [0, \infty)} |b_r| + \frac{\hat{\phi} + \sup_{r \in [0, \infty)} |\beta_a(r)|}{2 \beta_{aa}} < \infty,
\]

and Theorem 2.1 we obtain

\[
\left| E \left[X_t^{\alpha_T} \right] \right| \leq |x_0| e^{-\delta_1 (t-0) + \delta_2} + \sup_{r \in [0, \infty)} \left| b_r \right| + \frac{\hat{\phi} + \sup_{r \in [0, \infty)} |\beta_a(r)|}{2 \beta_{aa}} \left| \int_0^t e^{-\delta_1 (t-r) + \delta_2} \, ds \right|
\]

\[
= |x_0| e^{\delta_2} e^{-\delta_1 t} + \left(1 - e^{-\delta_1 t} \right) \frac{\delta_2}{\delta_1} \sup_{r \in [0, \infty)} \left| b_r \right| + \frac{\hat{\phi} + \sup_{r \in [0, \infty)} |\beta_a(r)|}{2 \beta_{aa}}
\]

\[
\leq \max \left(|x_0| e^{\delta_2} \sqrt{\delta_2}, \frac{\delta_2}{\delta_1} \left(\sup_{r \in [0, \infty)} |b_r| + \frac{\hat{\phi} + \sup_{r \in [0, \infty)} |\beta_a(r)|}{2 \beta_{aa}} \right) \right).
\]
Furthermore, using Itô’s formula

\[
\mathbb{E}\left[\left(X_t^\alpha \right)^2 \right] = x_0^2 + \mathbb{E}\left[\int_0^t 2X_s^\alpha \left(b_s + B_s X_s^\alpha - \frac{\phi_s^\infty - \beta_a(s)}{2\beta_{aa}(s)} \right) \right] \\
+ \left(c_s + C_s X_s^\alpha \right)^2 ds
\]

\[
= x_0^2 + \int_0^t c_s^2 + \mathbb{E}\left[X_s^\alpha \right] 2 \left(c_s C_s + b_s - \frac{\phi_s^\infty - \beta_a(s)}{2\beta_{aa}(s)} \right) ds
\]

\[
= x_0^2 \exp \left(2 \int_0^t \left(B_s + \frac{\beta_{xa}(s) - U_s^\infty}{2\beta_{aa}(s)} \right) ds \right)
+ \int_0^t \left\{ c_s^2 + 2\mathbb{E}\left[X_s^\alpha \right] \left(c_s C_s + b_s - \frac{\phi_s^\infty - \beta_a(s)}{2\beta_{aa}(s)} \right) \right\}
\cdot \exp \left(2 \int_s^t \left(B_r + \frac{\beta_{xa}(r) - U_r^\infty}{2\beta_{aa}(r)} \right) ds \right) ds
\]

due to Lemma 3.4. By Theorem 2.1 we can estimate

\[
\mathbb{E}\left[\left(X_t^\alpha \right)^2 \right] \leq x_0^2 \exp \left(-2\delta_1 t + 2\delta_2 \right)
+ \int_0^t \left\{ c_s^2 + 2\mathbb{E}\left[X_s^\alpha \right] \left(c_s C_s + b_s - \frac{\phi_s^\infty - \beta_a(s)}{2\beta_{aa}(s)} \right) \right\}
\exp \left(-2\delta_1 (t-s) + 2\delta_2 \right) ds
\leq x_0^2 \exp \left(-2\delta_1 t + 2\delta_2 \right)
+ \left\{ \sup_{s \in [0,\infty)} c_s^2 + 2 \sup_{s \in [0,\infty)} \mathbb{E}\left[X_s^\alpha \right] \left(\sup_{s \in [0,\infty)} |c_s C_s| \right) \right\}
+ \sup_{s \in [0,\infty)} \left| b_s - \frac{\phi_s^\infty - \beta_a(s)}{2\beta_{aa}(s)} \right| \right\}
\cdot \exp \left(2\delta_2 \right) \frac{1}{2\delta_1} \left(1 - \exp \left(-2\delta_1 t \right) \right)
\leq \infty.
\]

With Jensen’s inequality this implies for all \(q \in (0,2] \) that

\[
\mathbb{E}\left[\left| X_s^\alpha \right|^q \right] \leq \mathbb{E}\left[\left| X_s^\alpha \right|^{q/2} \right]^{q/2} \leq \mathbb{E}\left[\left| X_s^\alpha \right|^2 \right]^{q/2}
\]
and hence also \(\sup_{s \in (0, \infty)} E \left[\left| X_s^{a^\infty} \right|^p \right] < \infty \).

Furthermore, for \(2 \leq p \in \mathbb{R} \) we analogously obtain

\[
E \left[\left| X_t^{a^\infty} \right|^p \right]
\leq |x_0|^p \exp \left(-p \left(\delta_1 - \frac{p - 2}{2} \sup_{s \in (0, \infty)} C_s^2 \right) t + p\delta_2 \right)
\]

\[
+ \left\{ \frac{p^2 - p}{2} \sup_{s \in (0, \infty)} E \left[\left| X_s^{a^\infty} \right|^{p - 2} \right] \sup_{s \in (0, \infty)} C_s^2
\right.
\]

\[
+ p \sup_{s \in (0, \infty)} E \left[\left| X_s^{a^\infty} \right|^{p - 1} \right] \left(p - 1 \sup_{s \in (0, \infty)} |c_s C_s| + \sup_{s \in (0, \infty)} \left| b_s - \frac{\phi_i^\infty - \beta_a(s)}{2\beta_{aa}(s)} \right| \right)
\]

\[
\cdot \frac{\exp(p\delta_2)}{p \left(\delta_1 - \frac{p - 2}{2} \sup_{s \in (0, \infty)} C_s^2 \right) \left(1 - \exp \left(-p \left(\delta_1 - \frac{p - 2}{2} \sup_{s \in (0, \infty)} C_s^2 \right) t \right) \right)}.
\]

Since \(\delta_1 > 0 \) and \(\sup_{s \in (0, \infty)} C_s^2 < \infty \), we get that for every \(p \) with \(2 \leq p < 2 + \frac{2\delta_1}{\sup_{s \in (0, \infty)} C_s^2} \) that \(\sup_{t \in (0, \infty)} E \left[\left| X_t^{a^\infty} \right|^p \right] < \infty \). Thus, setting \(\epsilon := \frac{2\delta_1}{\sup_{s \in (0, \infty)} C_s^2} \) we proved the result.

\[\Box\]

Lemma 3.5 Let Assumption 1.1 be fulfilled. Then \(\psi \) fulfills Equation (3.1) and \(a^\infty \) is a minimizer for this equation.

Proof A straightforward calculation yields that

\[
\partial_t \psi(t, x) + (\mu(t, x) - a^\infty(t, x)) \partial_x \psi(t, x) + \frac{1}{2} \sigma^2(t, x) \partial_{xx} \psi(t, x)
\]

\[
= x^2 \left[- \frac{(U_t^\infty)^2}{4\beta_{aa}(t)} - \beta_{xx}(t) + \frac{\beta_{xx}^2(t)}{4\beta_{aa}(t)} \right]
\]

\[
+ x \left[- \left(U_t^\infty \frac{\beta_a(t)}{2\beta_{aa}(t)} - \frac{\beta_a(t) \beta_{xx}(t)}{2\beta_{aa}(t)} + \beta_x(t) \right) + U_t^\infty \left(\frac{\phi_i^\infty - \beta_a(t)}{2\beta_{aa}(t)} \right) \right]
\]

\[
+ \left[-\beta_0(t) - \beta_a(t) \left(\frac{\phi_i^\infty - \beta_a(t)}{2\beta_{aa}(t)} \right) - \beta_{aa}(t) \left(\frac{\phi_i^\infty - \beta_a(t)}{2\beta_{aa}(t)} \right)^2 \right]
\]

\[
= - f(t, x, a^\infty(t, x)). \tag{3.10}
\]

Next, observe that since \(f \) is strictly convex in \(a \) and the remainder of Equation (3.1) is affine linear in \(a \), we get that if the derivative with respect to \(a \) becomes zero, we are in the unique minimum. Using this, we obtain by
\[\partial_a \left[\partial_t \psi(t, x) + (\mu(t, x) - a) \partial_x \psi(t, x) + \frac{1}{2} \sigma^2(t, x) \partial_{xx} \psi(t, x) + f(t, x, a) \right] \bigg|_{a = a^\infty(t, x)} = \left[-\partial_x \psi(t, x) + \partial_a f(t, x, a)\right] \bigg|_{a = a^\infty(t, x)} = -U^\infty_t x - \phi^\infty_t x + \beta_a(t) + 2\beta_a(t) a^\infty(t, x) = 0 \]

that \(a^\infty \) minimizes Equation (3.1). Therefore, plugging the minimizer \(a^\infty \) into Equation (3.1) and using the result of Equation (3.10) we get

\[\partial_t \psi(t, x) + \inf_{a \in \mathbb{R}} \left\{ (\mu(t, x) - a) \partial_x \psi(t, x) + \frac{1}{2} \sigma^2(t, x) \partial_{xx} \psi(t, x) + f(t, x, a) \right\} = \partial_t \psi(t, x) + (\mu(t, x) - a^\infty(t, x)) \partial_x \psi(t, x) + \frac{1}{2} \sigma^2(t, x) \partial_{xx} \psi(t, x) + f(t, x, a^\infty(t, x)) = 0. \]

\[\square \]

Theorem 3.6 Let Assumption 1.1 be fulfilled. Then \(a^\infty \) is an optimal control, \(\psi \) fulfills (3.1) and

\[\bar{J}(x, a^\infty) = \inf_{\alpha \in \mathcal{A}(x)} \bar{J}(x, \alpha) = \eta. \]

Proof We want to apply Proposition 3.1.

Lemma 3.5 already yields that \(\psi \) fulfills (3.1) and that \(a^\infty \) is the corresponding minimizer. Next, observe that

\[\limsup_{t \to \infty} -\frac{\psi(t, x)}{t} = \limsup_{t \to \infty} -\frac{1}{2} (U^\infty_t)^2 x^2 + \phi^\infty_t x + \int_0^t -\left(\phi^\infty_s b_s + U^\infty_s c_s^2 \right) ds + \beta_0(s) - \frac{(\phi^\infty_s - \beta_a(s))^2}{4\beta_{aa}(s)} ds \]

\[= \limsup_{t \to \infty} -\frac{1}{t} \int_0^t \phi^\infty_s b_s + U^\infty_s c_s^2 + \beta_0(s) - \frac{(\phi^\infty_s - \beta_a(s))^2}{4\beta_{aa}(s)} ds \]

\[= \eta \]

since \(U^\infty \) and \(\phi^\infty \) are bounded. Furthermore, for the same reason,

\[|\psi(t, x) - \psi(t, 0)| = \left| \frac{1}{2} (U^\infty_t)^2 x^2 + \phi^\infty_t x \right| \leq K (1 + |x|^2) \]

and \(\partial_x \psi(t, x) = U^\infty_t x + \phi^\infty_t \) is linear in \(x \) with an in time uniformly bounded factor.
Finally, Lemma 3.3 gives the bounded second moment of the controlled process, which means that all conditions of Proposition 3.1 are fulfilled, yielding the statement.

4 Conclusion

We have shown that under Assumption (1.1) the problem of minimizing the limsup long-term average cost functional (0.1) is well-posed, and we have described an optimal closed loop control in terms of the unique bounded and non-negative function U^∞. Some further questions arise naturally.

First, is it possible to extend the results to a multi-dimensional setting? Following the same approach, a multi-dimensional Riccati equation on $[0, \infty)$ has to be studied. Notice that some of the comparison arguments of Sect. 2 can not be simply transferred to a multidimensional setting.

If the drift and diffusion coefficients in the linear state dynamics and the coefficient of the quadratic cost function f are themselves stochastic, then it is natural to assume that the solution of the control problem can be described in terms of a stochastic Riccati equation on $[0, \infty)$. Is it possible to prove existence and uniqueness of a solution and to obtain an optimal control with it?

Finally, we believe that one can generalize the results of Theorem 2.11 to the more general setting, where the derivative of Y is a strictly concave function having a strictly negative and a strictly positive zero. Also the starting value of Y can be generalized to be greater than any negative zero of the derivative of Y^t,x. A proof for this claim, using abstract arguments instead of the tedious calculations as presented in Sect. 2, is left for future research.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

Proof of Lemma 2.7 Rearranging the formula in (2.3) we obtain for $Y_t < \bar{p} + \sqrt{\bar{p}^2 + \bar{q}}$

$$s - t = \frac{1}{\bar{a} \sqrt{\bar{p}^2 + \bar{q}}} \left(\tanh^{-1} \left(\frac{Y_s - \bar{p}}{\sqrt{\bar{p}^2 + \bar{q}}} \right) - \tanh^{-1} \left(\frac{Y_t - \bar{p}}{\sqrt{\bar{p}^2 + \bar{q}}} \right) \right)$$

$$= \frac{1}{2 \bar{a} \sqrt{\bar{p}^2 + \bar{q}}} \ln \left(\frac{\sqrt{\bar{p}^2 + \bar{q}} + (Y_s - \bar{p}) \sqrt{\bar{p}^2 + \bar{q}} - (Y_t - \bar{p})}{\sqrt{\bar{p}^2 + \bar{q}} - (Y_s - \bar{p}) \sqrt{\bar{p}^2 + \bar{q}} + (Y_t - \bar{p})} \right)$$
\[\frac{1}{2\tilde{a}\sqrt{\tilde{p}^2 + \tilde{q}}} \ln \left(\frac{\tilde{p}^2 + \tilde{q} - (Y_t - \tilde{p})^2}{\tilde{p}^2 + \tilde{q} - (Y_s - \tilde{p})^2} \frac{\sqrt{\tilde{p}^2 + \tilde{q} + (Y_t - \tilde{p})^2}}{\sqrt{\tilde{p}^2 + \tilde{q} + (Y_s - \tilde{p})^2}} \right) \]

\[= \frac{1}{2\tilde{a}\sqrt{\tilde{p}^2 + \tilde{q}}} \ln \left(\frac{\tilde{p}^2 + \tilde{q} - (Y_t - \tilde{p})^2}{\tilde{p}^2 + \tilde{q} - (Y_s - \tilde{p})^2} \right) + \frac{1}{\tilde{a}\sqrt{\tilde{p}^2 + \tilde{q}}} \cdot \ln \frac{\sqrt{\tilde{p}^2 + \tilde{q} + (Y_s - \tilde{p})}}{\sqrt{\tilde{p}^2 + \tilde{q} + (Y_t - \tilde{p})}} \quad (A.1) \]

and for \(Y_t > \tilde{p} + \sqrt{\tilde{p}^2 + \tilde{q}} \)

\[s - t = \frac{1}{\tilde{a}\sqrt{\tilde{p}^2 + \tilde{q}}} \left(\coth^{-1} \left(\frac{Y_s - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) - \coth^{-1} \left(\frac{Y_t - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) \right) \]

\[= \frac{1}{2\tilde{a}\sqrt{\tilde{p}^2 + \tilde{q}}} \ln \left(\frac{-\sqrt{\tilde{p}^2 + \tilde{q} + (Y_s - \tilde{p})}}{\tilde{p}^2 + \tilde{q} - (Y_s - \tilde{p})^2} \right) - \frac{1}{\tilde{a}\sqrt{\tilde{p}^2 + \tilde{q}}} \ln \left(\frac{\sqrt{\tilde{p}^2 + \tilde{q} + (Y_s - \tilde{p})}}{\tilde{p}^2 + \tilde{q} - (Y_s - \tilde{p})^2} \right) \]

Now we have a look at the integral in (2.4). For \(Y_t < \tilde{p} + \sqrt{\tilde{p}^2 + \tilde{q}} \) we get

\[\int_t^s -\tilde{a} (Y_r - \tilde{p}) \, dr \]

\[= \int_t^s -\tilde{a} \sqrt{\tilde{p}^2 + \tilde{q}} \tanh \left(\tilde{a} \sqrt{\tilde{p}^2 + \tilde{q}} (r - t) + \tanh^{-1} \left(\frac{Y_t - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) \right) \, dr \]

\[= - \ln \left(\frac{\cosh \left(\tanh^{-1} \left(\frac{Y_t - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) \right)}{\cosh \left(\tilde{a} \sqrt{\tilde{p}^2 + \tilde{q}} (s - t) + \tanh^{-1} \left(\frac{Y_s - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) \right)} \right) \]

\[= - \ln \left(\frac{\cosh \left(\tanh^{-1} \left(\frac{Y_t - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) \right)}{\cosh \left(\tanh^{-1} \left(\frac{Y_s - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) \right)} \right) \]

\[= \frac{1}{2} \ln \left(\frac{\tilde{p}^2 + \tilde{q} - (Y_t - \tilde{p})^2}{\tilde{p}^2 + \tilde{q} - (Y_s - \tilde{p})^2} \right) \]

where we use Equation (A.1) in the second to last step. In the case of \(Y_t > \tilde{p} + \sqrt{\tilde{p}^2 + \tilde{q}} \) we obtain similarly

\[\int_t^s -\tilde{a} (Y_r - \tilde{p}) \, dr \]
\[
= \int_t^s -\tilde{a}\sqrt{\tilde{p}^2 + \tilde{q}} \coth \left(\tilde{a}\sqrt{\tilde{p}^2 + \tilde{q}} (r - t) + \coth^{-1} \left(\frac{Y_t - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) \right) \, dr
= -\ln \left(\frac{\sinh \left(\coth^{-1} \left(\frac{Y_t - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) \right)}{\sinh \left(\tilde{a}\sqrt{\tilde{p}^2 + \tilde{q}} (s - t) + \coth^{-1} \left(\frac{Y_t - \tilde{p}}{\sqrt{\tilde{p}^2 + \tilde{q}}} \right) \right)} \right)
= \frac{1}{2} \ln \left(\frac{\tilde{p}^2 + \tilde{q} - (Y_t - \tilde{p})^2}{\tilde{p}^2 + \tilde{q} - (Y_s - \tilde{p})^2} \right).
\]

\[\square\]

Proof of Lemma 2.8 First we define \(p_1 := p_{t_1}, q_1 := q_{t_1}, a_1 := a_{t_1} \) and \(p_2 := p_{t_2}, q_2 := q_{t_3}, a_2 := a_{t_3} \) since \(\tilde{p}, \tilde{q} \) and \(\tilde{a} \) are constant on the intervals \([t_1, t_2], [t_3, t_4]\). Now note that, due to the monotonicity of \(Y \) stated in Lemma 2.6, we have one of the three cases

(i) \(Y_{t_1} = Y_{t_2} = Y_{t_3} = Y_{t_4} = p_1 + \sqrt{p_1^2 + q_1} = p_2 + \sqrt{p_2^2 + q_2}, \)
(ii) \(p_1 + \sqrt{p_1^2 + q_1} < Y_{t_1} = Y_{t_4} < Y_{t_2} = Y_{t_3} < p_2 + \sqrt{p_2^2 + q_2} \) or
(iii) \(p_2 + \sqrt{p_2^2 + q_2} < Y_{t_2} = Y_{t_3} < Y_{t_1} = Y_{t_4} < p_1 + \sqrt{p_1^2 + q_1} \).

In Case (i) it is straightforward that

\[
\int_{t_1}^{t_2} -a_s (Y_s - p_s) \, ds + \int_{t_3}^{t_4} -a_s (Y_s - p_s) \, ds
= - a_1 \sqrt{p_1^2 + q_1 (t_2 - t_1)} - a_2 \sqrt{p_2^2 + q_2 (t_4 - t_3)}
\leq -\tilde{a}\sqrt{\tilde{q} (t_2 - t_1 + t_4 - t_3)}.
\]

Now observe for Cases (ii) and (iii) that by Lemma 2.7 and since \(Y_{t_1} = Y_{t_4}, Y_{t_2} = Y_{t_3} \) we get

\[
\int_{t_1}^{t_2} -a_s (Y_s - p_s) \, ds + \int_{t_3}^{t_4} -a_s (Y_s - p_s) \, ds
= \frac{1}{2} \ln \left(\frac{Y_{t_1}^2 - 2p_1 Y_{t_1} - q_1}{Y_{t_2}^2 - 2p_1 Y_{t_2} - q_1} \right) + \frac{1}{2} \ln \left(\frac{Y_{t_3}^2 - 2p_2 Y_{t_3} - q_2}{Y_{t_4}^2 - 2p_2 Y_{t_4} - q_2} \right)
= \int_{Y_{t_1}}^{Y_{t_2}} \frac{x - p_1}{x^2 - 2p_1 x - q_1 + x^2 - 2p_2 x - q_2} \, dx
= \int_{Y_{t_1}}^{Y_{t_2}} \frac{1}{2x} \left(\frac{x^2 - 2p_1 x - q_1}{x^2 - 2p_1 x - q_1} + \frac{x^2 - 2p_2 x - q_2}{x^2 - 2p_2 x - q_2} \right) \, dx
= \frac{x^2 - 2p_1 x - q_1}{x^2 - 2p_2 x - q_2} - \frac{x^2 + q_1}{x^2 - 2p_1 x - q_1} + \frac{x^2 + q_2}{x^2 - 2p_2 x - q_2}.
\]
\[= \int_{Y_1}^{Y_2} \frac{1}{2x} \left(-\frac{x^2 + q_1}{x^2 - 2p_1x - q_1} + \frac{x^2 + q_2}{x^2 - 2p_2x - q_2} \right) \, dx. \]

Furthermore, note that Case (ii) implies that \(0 < x^2 - 2p_1x - q_1 \) and \(x^2 - 2p_2x - q_2 < 0 \), while Case (iii) implies \(0 > x^2 - 2p_1x - q_1 \) and \(x^2 - 2p_2x - q_2 > 0 \) for \(x \) between \(Y_1 \) and \(Y_2 \). Hence we obtain

\[
\int_{t_1}^{t_2} -a_s(Y_s - p_s) \, ds + \int_{t_3}^{t_4} -a_s(Y_s - p_s) \, ds
\]

\[
= \int_{Y_1}^{Y_2} \frac{1}{2x} \left(-\frac{x^2 + q_1}{x^2 - 2p_1x - q_1} + \frac{x^2 + q_2}{x^2 - 2p_2x - q_2} \right) \, dx
\]

\[
\leq - |Y_{t_2} - Y_{t_1}| \frac{1}{2\hat{Y}} \left(\frac{\hat{Y}^2 + \hat{q}}{\hat{Y}^2 - 2\hat{p}\hat{Y} - \hat{q}} + \frac{\hat{Y}^2 + \hat{q}}{\hat{q} + 2\hat{p}\hat{Y} - \hat{Y}^2} \right)
\]

\[\leq - |Y_{t_2} - Y_{t_1}| \frac{1}{\hat{Y}} \frac{\hat{Y}^2 + \hat{q}}{\hat{Y}^2 - 2\hat{p}\hat{Y} - \hat{q}} \quad \text{(A.2)} \]

in Case (ii) and (iii).

It remains to estimate the term \(|Y_{t_2} - Y_{t_1}| \) with an expression of time difference. To this end, remember the second result from Lemma 2.7 which gives

\[
t_2 - t_1 = \frac{1}{2a_1} \sqrt{\frac{p_1^2 + q_1}{p_1^2 + q_1 - (x-p_1)^2}} \left(\ln \left(\frac{p_1^2 + q_1 - (Y_{t_1} - p_1)^2}{p_1^2 + q_1 - (Y_{t_1} - p_1)^2} \right) + 2 \ln \left(\frac{\sqrt{p_1^2 + q_1} + (Y_{t_2} - p_1)}{\sqrt{p_1^2 + q_1} + (Y_{t_1} - p_1)} \right) \right)
\]

\[
= \frac{1}{a_1} \sqrt{\frac{p_1^2 + q_1}{p_1^2 + q_1 - (x-p_1)^2}} \int_{Y_{t_1}}^{Y_{t_2}} -\frac{x - p_1}{p_1^2 + q_1 - (x-p_1)^2} \, dx - \frac{1}{\sqrt{p_1^2 + q_1} + (x-p_1)} \int_{Y_{t_1}}^{Y_{t_2}} \frac{1}{\sqrt{p_1^2 + q_1} + (x-p_1)} \, dx
\]

\[
= \frac{1}{a_1} \int_{Y_{t_1}}^{Y_{t_2}} \frac{1}{(x-p_1)^2 - p_1^2 - q_1} \, dx
\]

and analogously

\[
t_4 - t_3 = \frac{1}{2a_2} \int_{Y_{t_3}}^{Y_{t_4}} \frac{1}{(x-p_2)^2 - p_2^2 - q_2} \, dx = -\frac{1}{a_2} \int_{Y_{t_1}}^{Y_{t_2}} \frac{1}{(x-p_2)^2 - p_2^2 - q_2} \, dx.
\]

Hence, by similar arguments as above, we get

\[
t_2 - t_1 + t_4 - t_3 = \int_{Y_{t_1}}^{Y_{t_2}} \frac{1}{a_1((x-p_1)^2 - p_1^2 - q_1)} - \frac{1}{a_2((x-p_2)^2 - p_2^2 - q_2)} \, dx
\]

\[
\geq |Y_{t_2} - Y_{t_1}| \frac{2}{\hat{a}(\hat{Y}^2 - 2\hat{p}\hat{Y} - \hat{q})}
\]
and therefore

\[|Y_{t_2} - Y_{t_1}| \leq (t_4 - t_3 + t_2 - t_1) \frac{\hat{a}(\hat{Y}^2 - 2\bar{p}\hat{Y} - \bar{q})}{2}. \]

Plugging this into Estimate (A.2) we finally obtain in Case (ii) and (iii)

\[
\int_{t_1}^{t_2} -a_s(Y_s - p_s) \, ds + \int_{t_3}^{t_4} -a_s(Y_s - p_s) \, ds \\
\leq -\frac{1}{Y} \frac{\hat{Y}^2 + \frac{\hat{q}}{2}}{\hat{Y}^2 - 2\bar{p}\hat{Y} - \frac{\bar{q}}{2}} (t_4 - t_3 + t_2 - t_1) \frac{\hat{a}(\hat{Y}^2 - 2\bar{p}\hat{Y} - \bar{q})}{2} \\
= -\hat{a} \frac{\hat{Y}^2 + \frac{\hat{q}}{2}}{2Y} (t_4 - t_3 + t_2 - t_1).
\]

\[\square \]

Proof of Lemma 2.9 To shorten notation we write \(\bar{p}, \bar{q}, \bar{a} \) for the constants \(p_s, q_s, a_s \) with \(s \in [t_0, t_1) \). Also, we set \(\delta := \sqrt{\frac{\bar{q}}{2}} \). We derive estimates for the integrand of the integral in (2.5) and for the duration of the ”bad” time, where those estimates do not hold true.

First, note that, since \(Y \) is monotone and getting nearer to \(\bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \) (see Lemma 2.6), we get for any \(s \in [t_0, t_1) \) with \(-(Y_s - \bar{p}) \leq -\delta \) that for all \(r \in [s, t_1] \) we have

i) for \(Y_s - \left(\bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \right) < 0 \)

\[-(Y_r - \bar{p}) = -(Y_r - \bar{p} - \sqrt{\bar{p}^2 + \bar{q}}) - \sqrt{\bar{p}^2 + \bar{q}} \leq 0 - \sqrt{\bar{p}^2 + \bar{q}} \leq -\sqrt{\frac{\bar{q}}{2}}, \]

ii) for \(Y_s - \left(\bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \right) = 0 \)

\[-(Y_r - \bar{p}) = -(Y_r - \bar{p} - \sqrt{\bar{p}^2 + \bar{q}}) - \sqrt{\bar{p}^2 + \bar{q}} = 0 - \sqrt{\bar{p}^2 + \bar{q}} \leq -\sqrt{\frac{\bar{q}}{2}}, \]

iii) for \(Y_s - \left(\bar{p} + \sqrt{\bar{p}^2 + \bar{q}} \right) > 0 \)

\[-(Y_r - \bar{p}) \leq -(Y_s - \bar{p}) \leq -\sqrt{\frac{\bar{q}}{2}}, \]

and hence in every case \(-(Y_r - \bar{p}) \leq -\delta \). Thus, we then obtain

\[
\int_s^{t_1} -\hat{a}(Y_r - \bar{p}) \, dr \leq \int_s^{t_1} -\hat{a}\delta \, dr \leq -\hat{a}\delta(t_1 - s).
\]

Now we have a closer look at the case where \(-(Y_{t_0} - \bar{p}) > -\delta \). For this, remember the dynamics of \(Y \) which are

\[Y_s = Y_t + \int_t^s -\hat{a} \left((Y_r - \bar{p})^2 - \bar{p}^2 - \bar{q} \right) \, dr \]
for $s, t \in [t_0, t_1]$. There are two cases we have to consider. Firstly, $-\delta < -(Y_s - \bar{p}) < \delta$, which implies

$$-\bar{a} \left((Y_s - \bar{p})^2 - \bar{p}^2 - \bar{q} \right) > -\bar{a} \left(\left(\sqrt{\frac{\bar{q}}{2}} \right)^2 - \bar{p}^2 - \bar{q} \right) = \bar{a} \left(\bar{p}^2 + \frac{1}{2} \bar{q} \right) \geq \frac{\bar{a} \bar{q}}{2}. $$

And secondly the case of $-(Y_s - \bar{p}) > \delta$. Note that then $|Y_s - \bar{p}| = -Y_s + \bar{p} \leq \bar{p}$ since $Y \geq 0$ by Lemma 2.4. This gives us

$$-\bar{a} \left((Y_s - \bar{p})^2 - \bar{p}^2 - \bar{q} \right) \geq -\bar{a} \left((\bar{p})^2 - \bar{p}^2 - \bar{q} \right) = \bar{a} \bar{q}. $$

Hence, for all $s \in [t_0, t_1]$ with $-(Y_s - p) > \delta$ we have $Y'_s \geq \frac{\bar{a} \bar{q}}{2} > 0$. Let

$$\tau := \inf\{t \in [t_0, t_1]| (Y_t - \bar{p}) \leq -\delta \} \cap t_1 $$

be the first time in $[t_0, t_1]$, where $-(Y - p) \leq -\delta$ or t_1 if there is no such time. Then we obtain

$$Y_\tau - Y_{t_0} = \int_{t_0}^{\tau} Y'_t \, dt \geq \int_{t_0}^{\tau} \frac{\bar{a} \bar{q}}{2} \, dt = \frac{\bar{a} \bar{q}}{2} (\tau - t_0) $$

and thus

$$\tau - t_0 \leq \frac{2}{\bar{a} \bar{q}} (Y_\tau - Y_{t_0}) = \frac{2}{\bar{a} \bar{q}} (Y_\tau - Y_{t_0}) \mathbb{1}_{\{Y_{t_1} - Y_{t_0} > 0\}} \leq \frac{2}{\bar{a} \bar{q}} (Y_{t_1} - Y_{t_0}) \mathbb{1}_{\{Y_{t_1} - Y_{t_0} > 0\}}. $$

(A.3)

where we use that if $Y_{t_1} - Y_{t_0} \leq 0$ we know that $Y_{t_0} \geq \bar{p} + \sqrt{\bar{p}^2 + \bar{q}} > \bar{p} + \delta$ and therefore $\tau = t_0$.

Hence, we have the following estimates.

- For the times where $-\bar{a}(Y - \bar{p}) \leq -\bar{a} \delta$ we directly estimate the integrand of the left hand side of (2.5) by $-\bar{a} \delta$.
- For the times where $-\bar{a}(Y - \bar{p}) > -\bar{a} \delta$ we can estimate the integrand of the left hand side of (2.5) by $-\bar{a}(Y_{t_0} - \bar{p})$ and the length of this time interval by Estimate (A.3).

To sum up, using that $0 \leq \hat{p} + \sqrt{\hat{p}^2 + \hat{q}} \geq \bar{p} + \sqrt{\frac{\bar{q}}{2}} - Y_{t_0}$, we derive

$$\int_{t_0}^{t_1} -\bar{a} (Y_r - \bar{p}) \, dr \leq -\bar{a} \delta (t_1 - \tau) - \bar{a} (Y_{t_0} - \bar{p}) (\tau - t_0) $$

$$= -\bar{a} \delta (t_1 - t_0) + \left(\bar{a} \delta - \bar{a} (Y_{t_0} - \bar{p}) \right) (\tau - t_0) $$

$$\leq -\bar{a} \sqrt{\frac{\bar{q}}{2}} (t_1 - t_0) + \frac{2}{\hat{q}} \left(\hat{p} + \sqrt{\hat{p}^2 + \hat{q}} \right) (Y_{t_1} - Y_{t_0}) \mathbb{1}_{\{Y_{t_1} - Y_{t_0} > 0\}}. $$
References

1. Arisawa, M., Lions, P.-L.: On ergodic stochastic control. Commun. Partial Differ. Equ. 23(11–12), 2187–2217 (1998)
2. Barles, G., Souganidis, P.E.: Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations. SIAM J. Math. Anal. 32(6), 1311–1323 (2001). (MR1856250)
3. Bensoussan, A., Frehse, J.: On Bellman equations of ergodic control in Rn. J. Reine Angew. Math. 429, 125–160 (1992). (MR1173120)
4. Cohen, S.N., Fedyashov, V.: Ergodic BSDEs with Jumps and Time Dependence. University of Oxford, Oxford (2015)
5. Cosso, A., Fuhrman, M., Pham, H.: Long time asymptotics for fully nonlinear Bellman equations: a backward SDE approach. Stochastic Process. Appl. 126(7), 1932–1973 (2016). (MR3483743)
6. Engelhardt, S.: Solutions to the SEP and position control problems using FBSDEs and simulation of super-linear MV-SDEs. Ph.D. Thesis, Jena, 2020 (en). Dissertation, Friedrich-Schiller-Universität Jena (2020)
7. Eppen, G.D., Fama, E.F.: Cash balance and simple dynamic portfolio problems with proportional costs. Int. Econ. Rev. 10(2), 119–133 (1969)
8. Fuhrman, M., Hu, Y., Tessitore, G.: Ergodic BSDES and optimal ergodic control in Banach spaces. SIAM J. Control Optim. 48(3), 1542–1566 (2009). (MR2516178 MR2516178 MR2516178 MR2516178)
9. Hu, Y., Liang, G., Tang, S.: Systems of ergodic BSDEs arising in regime switching forward performance processes. SIAM J. Control Optim. 58(4), 2503–2534 (2020)
10. Kloeden, P.E., Rasmussen, M.: Nonautonomous dynamical systems. In: Mathematical Surveys and Monographs, vol. 176, American Mathematical Society, Providence, RI (2011) MR2808288
11. Kohlmann, M., Tang, S.: Minimization of risk and linear quadratic optimal control theory. SIAM J. Control Optim. 42(3), 1118–1142 (2003)
12. Kohlmann, M., Tang, S.: Multidimensional backward stochastic Riccati equations and applications. SIAM J. Control Optim. 41(6), 1696–1721 (2003)
13. Krylov, N.V.: Controlled diffusion processes, Applications of Mathematics, Vol. 14, Springer, New York (1980). Translated from the Russian by A. B. Aries. MR601776
14. Ley, O., Nguyen, V.D.: Large time behavior for some nonlinear degenerate parabolic equations. J. Math. Pures Appl. (9) 102(2), 293–314 (2014). (MR3227323)
15. Peng, S.: Stochastic Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 30(2), 284–304 (1992)
16. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991)
17. Rey-Bellet, L.: Ergodic properties of Markov processes. Open Quantum Systems, Vol. II, pp. 1–39 (2006). MR2248986
18. Richou, A.: Ergodic BSDEs and related PDEs with Neumann boundary conditions. Stoch. Process. Appl. 119(9), 2945–2969 (2009). (MR2554034)
19. Robin, M.: Long-term average cost control problems for continuous time Markov processes: a survey. Acta Appl. Math. 1(3), 281–299 (1983). (MR727156)
20. Sun, J., Yong, J.: Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions. Springer, New York (2020)
21. Tang, S.: General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42(1), 53–75 (2003)
22. Yong, J., Zhou, X.Y.: Stochastic Controls, Applications of Mathematics, vol. 43. Springer, New York (1999). (Hamiltonian systems and HJB equations. MR1696772)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.