TORSION POINTS OF ABELIAN VARIETIES IN ABELIAN EXTENSIONS

WOLFGANG M. RUPPERT

Abstract. We show that if A is an abelian variety defined over a number field K then $A_{\text{tors}}(K^{\text{ab}})$ is finite iff A has no abelian subvariety with complex multiplication over K. We apply this to give another proof for Ribet’s result that $A_{\text{tors}}(K^{\text{cycl}})$ is finite.

1. Introduction

For a field K let \overline{K} denote the algebraic closure of K, K^{ab} the maximal abelian extension of K and K^{cycl} the field obtained by adjoining all roots of unity to K. Then $K \subseteq K^{\text{cycl}} \subseteq K^{\text{ab}} \subseteq \overline{K}$.

Let A be an abelian variety defined over a number field K and let A_{tors} denote the torsion subgroup of A. The Mordell-Weil theorem shows that $A_{\text{tors}}(K)$ is finite. Ribet [R] has shown that $A_{\text{tors}}(K^{\text{cycl}})$ is finite. Our aim is to prove the following theorem:

Theorem. Let A be an abelian variety defined over a number field K such that A is K-simple. Then $A_{\text{tors}}(K^{\text{ab}})$ is infinite if and only if A has complex multiplication over K. In this case $A_{\text{tors}}(K) = A_{\text{tors}}(K^{\text{ab}})$.

We say that an abelian variety A has complex multiplication over K if $\text{End}_K(A) \otimes \mathbb{Q}$ is a number field of degree $2 \dim A$ over \mathbb{Q}. An easy consequence of the theorem is the following corollary:

Corollary 1. Let A be an abelian variety defined over a number field K. Then $A_{\text{tors}}(K^{\text{ab}})$ is finite if and only if A has no abelian subvariety with complex multiplication over K.

From the theorem we will also deduce another proof of Ribet’s result:

Corollary 2. Let A be an abelian variety defined over a number field K. Then $A_{\text{tors}}(K^{\text{cycl}})$ is finite.

The proof of the theorem makes essential use Faltings’ finiteness theorems for abelian varieties over number fields.

2. Preparations

Our first lemma is purely algebraic.

Lemma 1. Let V be a finite dimensional vector space over a field k. Let $R, S \subseteq \text{End}_k(V)$ be k-subalgebras. Let $U \subseteq V$ be a k-subspace such that $U \neq 0$. We make the following assumptions:
We first prove the lemma in the case that V is a semisimple k-algebra.

As V is a semisimple S-module there is a k-subspace $W \subseteq V$ such that $SW \subseteq W$ and $V = U \oplus W$. Define $\alpha \in \text{End}_k(V)$ by $\alpha|_U = 0_U$ and $\alpha|_W = 1_W$. Then α commutes with all elements of S and therefore $\alpha \in R$. As U is R-invariant we get by restriction a ring homomorphism $R \to \text{End}_k(U)$. As R is simple and $\varphi(\alpha) = 0$ we get $\alpha = 0$ and therefore $W = 0$ such that $U = V$. This shows that S itself is commutative. As $R = \text{End}_S(V)$ we get $S \subseteq R$. As R is simple, S is the commutant of R in $\text{End}_k(V)$ (by the density theorem [B, p.39]) and the formula in [B, Théorème 2, p.112] gives then

$$\dim_k R \cdot \dim_k S = (\dim_k V)^2.$$

The fact that V is a free R-module gives $\dim_k R \leq \dim_k V$ and $S \subseteq R$ gives $\dim_k S = \dim_k R$. Therefore

$$\dim_k R \cdot \dim_k S \leq (\dim_k R)^2 \leq (\dim_k V)^2 = \dim_k R \cdot \dim_k S.$$

This shows $\dim_k R = \dim_k S = \dim_k V$ and $S = R$. Then R is commutative and therefore a field. As $R \subseteq \text{End}_k(V)$ clearly R is algebraic over k such that we have an embedding $R \to \overline{k}$. This proves the lemma in case R is a simple k-algebra.

Now we consider the general case.

As R is a semisimple k-algebra there are idempotents $e_1, \ldots, e_r \in R$ such that $e_i^2 = e_i$, $e_i e_j = 0$ for $i \neq j$, $1 = e_1 + \cdots + e_r$ and $R_i = e_i R = R e_i$ is a simple k-algebra. We have $R = R_1 \oplus \cdots \oplus R_r$, e_i is the unit element in R_i. If we write $V_i = e_i V$ we get the decomposition $V = V_1 \oplus \cdots \oplus V_r$. V_i is a R_i-module. We also have $e_i |_{V_i} = 1_{V_i}$. If $v = v_1 + \cdots + v_r \in V$ with $v_i \in V_i$ then $v_i = e_i v$. This implies

$$V_i = \{ v \in V : e_i v = \cdots = e_{i-1} v = e_{i+1} v = \cdots = e_r v = 0 \}.$$

By assumption V is a free R-module: $V \simeq R \oplus \cdots \oplus R = R^\ell$. Then

$$V \simeq (R_1 \oplus \cdots \oplus R_r) \oplus \cdots \oplus (R_1 \oplus \cdots \oplus R_r)$$

and therefore $V_i \simeq R_i^\ell$ such that V_i is also a free R_i-module and

$$\frac{\dim_k V_i}{\dim_k R_i} = \ell = \frac{\dim_k V}{\dim_k R}.$$

As S commutes with R we see by the above expression for V_i that $SV_i \subseteq V_i$. Let S_i be the image of $S \to \text{End}_k(V_i)$. Then $S = S_1 \oplus \cdots \oplus S_r$ and $S_i = e_i S$. We have $R_i, S_i \subseteq \text{End}_k(V_i)$. It is easy to see that

$$R_i = \text{End}_{S_i}(V_i).$$

As V is a semisimple S-module, V_i is a semisimple S-module and therefore a semisimple S_i-module. Define $U_i = e_i U$. Then $U_i \subseteq V_i$ satisfies $R_i U_i \subseteq U_i$ and $S_i U_i \subseteq U_i$. It is clear that the image of the induced ring homomorphism
$S_i \to \text{End}_k(U_i)$ is also commutative. As $U = U_1 \oplus \cdots \oplus U_r$ and $U \neq 0$ there is an index i such that $U_i \neq 0$. Now we can apply the first part of the proof and get $\dim_k R_i = \dim_k V_i$ and a ring homomorphism $R_i \to \mathbb{k}$ which gives by the above formulas $\dim_k R = \dim_k V$ and a ring homomorphism $R \to R_i \to \mathbb{k}$. $lacksquare$

We prove the following lemma for lack of a reference.

Lemma 2. Let A be an abelian variety of dimension n defined over C. Let $\mathcal{O} \subseteq \text{End}(A)$ be a ring of endomorphisms of rank d over \mathbb{Z} such that $D = \mathcal{O} \otimes \mathbb{Z}Q$ is a division algebra over \mathbb{Q}. Then we have:

1. $A[p]$ is a free $\mathcal{O} \otimes \mathbb{Z}Q/(p)$-module of rank $2n^2$ if p is sufficiently large.
2. $V_p(A)$ is a free $D \otimes Q$ \mathbb{Q}_p-module of rank $2n^2$ for all p.

Proof. There is a lattice $\Lambda \subseteq C^n$ such that analytically $A \simeq C^n/\Lambda$. The p^r-torsion points are then $A[p^r] = \frac{1}{p^r}\Lambda/\Lambda$ and $T_p(A) = \lim_{\rightarrow} \frac{1}{p^r}\Lambda/\Lambda$ with the transition maps

$\frac{1}{p^r}\Lambda/\Lambda \to \frac{1}{p^{r+1}}\Lambda/\Lambda$. Each $\alpha \in \mathcal{O}$ is given by a matrix $M(\alpha) \in M_n(C)$ such that $M(\alpha)\Lambda \subseteq \Lambda$. This gives Λ the structure of an \mathcal{O}-module. Therefore $\Lambda \otimes ZQ$ is a D-vector space. By comparing dimensions over \mathbb{Q} we see that $\Lambda \otimes \mathbb{Q}$ has dimension $2n^2$ over D. In particular $d|2n$. Let $e_1, \ldots, e_r \in \Lambda$ (with $r = \frac{2n^2}{d}$) be a D-basis of $\Lambda \otimes \mathbb{Z}Q$. Let $\alpha_1, \ldots, \alpha_d$ be a basis of \mathcal{O} over \mathbb{Z}. Then $\alpha_i e_j$, $1 \leq i \leq d, 1 \leq j \leq r$ form a \mathbb{Q}-basis of $\Lambda \otimes \mathbb{Q}$.

This implies that the \mathbb{Z}-module generated by $\alpha_i e_j$, $1 \leq i \leq d, 1 \leq j \leq r$, has finite index N in Λ. The vectors $\alpha_i e_j \in \Lambda \otimes \mathbb{Q}$ are linearly independent over \mathbb{Q}.

1. We look at $A[p] = \frac{1}{p}\Lambda/\Lambda$. This is a $\mathcal{O} \otimes Z/(p)$-module. Let f_j the the image of

$\frac{1}{p}e_j$ in $A[p] = \frac{1}{p}\Lambda/\Lambda$.

Claim: f_1, \ldots, f_r are a basis of $A[p]$ over $\mathcal{O} \otimes \mathbb{Z}Q/(p)$ if p is prime to N.

Suppose that we have $\beta_j \in \mathcal{O}$ such that $\sum_{j=1}^r \beta_j f_j = 0$ in $A[p]$. We write $\beta_j = \sum_i m_{ij} \alpha_i$. Then we get

$$\sum_{i,j} m_{ij} \frac{1}{p} \alpha_i e_j \in \Lambda.$$

Every element of NA is a linear combination of $\alpha_i e_j$ so that we find $n_{ij} \in \mathbb{Z}$ with

$$N \sum_{i,j} m_{ij} \alpha_i \frac{1}{p} e_j = \sum_{i,j} n_{ij} \alpha_i e_j,$$

which implies $Nm_{ij} = pn_{ij}$. As p is by assumption prime to N we can write $m_{ij} = pm_{ij}$ with $m_{ij} \in \mathbb{Z}$ and therefore

$$\beta_j = \sum_i m_{ij} \alpha_i \frac{1}{p} \alpha_i e_j = \sum_i m_{ij} \alpha_i \in \mathbb{p} \mathcal{O}$$

so that the image of β_j in $\mathcal{O} \otimes \mathbb{Z}/(p)$ is 0. This proves

$$(\mathcal{O} \otimes \mathbb{Z}/(p))f_1 \oplus \cdots \oplus (\mathcal{O} \otimes \mathbb{Z}/(p))f_r \subseteq A[p].$$

Comparing dimensions over $\mathbb{Z}/(p)$ shows that we have equality which proves the claim and the first part of the lemma.

2. Now we investigate $T_p(A)$. Define

$$\tilde{e}_j = (\frac{1}{p} e_j, \frac{1}{p^2} e_j, \frac{1}{p^3} e_j, \ldots) \in T_p(A) \subseteq V_p(A).$$
Claim: \(\tilde{e}_1, \ldots, \tilde{e}_r \) are a basis of \(V_p(A) \) over \(D \otimes_{\mathbb{Q}} \mathbb{Q}_p \).

Suppose that we have \(\tilde{\beta}_j \in D \otimes_{\mathbb{Q}} \mathbb{Q}_p \) such that
\[
\tilde{\beta}_1 \tilde{e}_1 + \cdots + \tilde{\beta}_r \tilde{e}_r = 0
\]
in \(V_p(A) \). Then there are \(\tilde{m}_{ij} \in \mathbb{Q}_p \) such that
\[
\tilde{\beta}_j = \sum_i \tilde{m}_{ij} \alpha_i.
\]
By multiplication with a \(p \)-power we can achieve that all \(\tilde{m}_{ij} \in \mathbb{Z}_p \) and that not all \(\tilde{m}_{ij} \) are divisible by \(p \). We have now
\[
\sum_{i,j} \tilde{m}_{ij} \alpha_i \tilde{e}_j = 0.
\]
Take \(\ell \in \mathbb{N} \) with \(p^\ell > N \) and choose \(m_{ij} \in \mathbb{Z} \) with \(m_{ij} \equiv \tilde{m}_{ij} \mod p^\ell \). Then
\[
\sum_{i,j} m_{ij} \alpha_i \frac{1}{p^\ell} e_j \in \Lambda.
\]
Therefore we find \(n_{ij} \in \mathbb{Z} \) with
\[
N \sum_{i,j} m_{ij} \alpha_i \frac{1}{p^\ell} e_j = \sum_{i,j} n_{ij} \alpha_i e_j.
\]
This implies \(N m_{ij} = p^\ell n_{ij} \) and with \(p^\ell > N \) we get \(m_{ij} \equiv 0 \mod p \), contradicting our assumption. Therefore
\[
(D \otimes_{\mathbb{Q}_p} \mathbb{Q}) \tilde{e}_1 \oplus \cdots \oplus (D \otimes_{\mathbb{Q}_p} \mathbb{Q}) \tilde{e}_r \subseteq V_p(A).
\]
Comparing dimensions over \(\mathbb{Q}_p \) gives equality and the claim follows. This proves the second part of the lemma.

Lemma 3. Let \(D \) be a noncommutative division algebra of finite dimension over \(\mathbb{Q} \) and \(\mathcal{O} \) an order in \(D \). Then:

1. There is no ring homomorphism \(D \otimes_{\mathbb{Q}} \mathbb{Q}_p \to k \) where \(k \) is a field \((p \) is arbitrary).
2. If \(p \) is sufficiently large there is no ring homomorphism \(\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}/(p) \to k \) where \(k \) is a field.

Proof.

1. A ring homomorphism \(D \otimes_{\mathbb{Q}} \mathbb{Q}_p \to k \) would give a homomorphism \(D \to D \otimes_{\mathbb{Q}} \mathbb{Q}_p \to k \) and as \(D \) is a division algebra an embedding \(D \hookrightarrow k \), which contracts the assumption that \(D \) is noncommutative.

2. Let \(\mathfrak{a} \subseteq \mathcal{O} \) be the ideal generated by all elements of the form \(xy - yx, x, y \in \mathcal{O} \). As \(\mathcal{O} \) is noncommutative we have \(\mathfrak{a} \neq 0 \) and \(\mathfrak{a} \) has finite index in \(\mathcal{O} \), i.e. there is a \(N \in \mathbb{Z}, N \geq 1 \) such that \(N \mathcal{O} \subseteq \mathfrak{a} \). Suppose that we have a ring homomorphism \(\mathcal{O} \otimes \mathbb{Z}/(p) \to k \) where \(k \) is a field. Then \(k \) has characteristic \(p \). Let \(\varphi: \mathcal{O} \to \mathcal{O} \otimes \mathbb{Z}/(p) \to k \). Then \(\varphi(\mathfrak{a}) = 0 \) and as \(N \cdot 1_{\mathcal{O}} \in \mathfrak{a} \) we get
\[
0 = \varphi(N \cdot 1_{\mathcal{O}}) = N \cdot 1_k
\]
so that \(p \mid N \). This shows that for all \(p \) with \(p > N \) the claim is true.
3. Proof of the Theorem

Let A be an abelian variety defined over a number field K which is K-simple, i.e. $\text{End}_K(A) \otimes \mathbb{Z} \mathbb{Q}$ is a finite dimensional division algebra over \mathbb{Q}. Assume first that $A_{\text{tors}}(K^{ab})$ is infinite. There are two possible cases:

- There are infinitely many p such that $A[p](K^{ab}) \neq 0$.
- There is a p such that $\bigcup_{\ell \geq 1} A[p^\ell](K^{ab})$ is infinite.

We consider the cases separately and deduce in each case that A has complex multiplication over K.

Case I: We assume that there are infinitely many p with $A[p](K^{ab}) \neq 0$. Write $V = A[p]$ and $k = \mathbb{Z}/(p)$. Then V is a k-vector space of dimension $2n$. Let $R = \text{End}_K(A) \otimes \mathbb{Z} \mathbb{Z}/(p)$. Then $\dim_k R = d$. We take p large enough such that R can be considered as a k-subalgebra of $\text{End}_k(V)$, that V is a free R-module of rank $\frac{2n}{d}$ by Lemma 2 and furthermore that R is a semisimple k-algebra. Let G be the image of $G_K \to \text{Aut}(A[p])$ and write $S = k[G] \subseteq \text{End}_k(V)$. Taking again p large enough we know by [F, Remarks at the beginning of the proof, p.211] that V is a semisimple S-module and $R = \text{End}_S(V)$. Define $U = A[p](K^{ab})$. Then U is R- and S-invariant and the image of $S \to \text{End}_k(U)$ is commutative. By our assumption there are infinitely many (large enough in the above sense) p with $U \neq 0$. By Lemma 1 we get $\dim_k R = \dim_k V$, i.e. $d = 2n$ and a ring homomorphism $\text{End}_k(A) \otimes \mathbb{F}_p \to \overline{\mathbb{F}_p}$ for infinitely many p. By Lemma 3 this implies that $\text{End}_k(A)$ is commutative and therefore a field. This means that A has complex multiplication over K.

Case II: We assume that $\bigcup_{\ell \geq 1} A[p^\ell](K^{ab})$ is infinite. Write $k = \mathbb{Q}_p$ and $V = V_p(A) = T_p(A) \otimes \mathbb{Z}_p \mathbb{Q}_p$. Define $R = \text{End}_K(A) \otimes \mathbb{Z} \mathbb{Q}_p$ and consider it as a k-subalgebra of $\text{End}_k(V)$. By Lemma 2 V is a free R-module of rank $\frac{2n}{d}$. Let G be the image of $G_K \to \text{Aut}(A[p])$ and write $S = k[G] \subseteq \text{End}_k(V)$. By [F, Theorem 1, p.211] we know that V is a semisimple S-module and R is the commutant of S in $\text{End}_k(V)$. $T_p(A)$ consists of sequences (P_ℓ) such that $P_\ell \in A[p^\ell]$ and $p : P_{\ell+1} = P_\ell$. Define

$$U' = \{(P_\ell)_{\ell \geq 1} \in T_p(A) : K(P_\ell) \subseteq K^{ab} \text{ for all } \ell \geq 1\}$$

and $U = \mathbb{Q}_p U'$. Then U is a \mathbb{Q}_p-vector space and $RU \subseteq U$, $SU \subseteq U$ and the image of $S \to \text{End}_{\mathbb{Q}_p}(U)$ is abelian. It is easy to see that our assumption implies that $U \neq 0$. Lemma 1 gives now $\dim_k R = \dim_k V$, i.e. $d = 2n$, and a ring homomorphism $\text{End}_k(A) \otimes \mathbb{Q}_p \to \overline{\mathbb{Q}_p}$. By Lemma 3 $\text{End}_k(A) \otimes \mathbb{Q}$ is a field. This means that A has complex multiplication over K.

Suppose now that A has complex multiplication over K, i.e. $F = \text{End}_K(A) \otimes \mathbb{Z} \mathbb{Q}$ is a number field of degree $2\dim A$ over \mathbb{Q}. Let p be any prime. By Lemma 2 $V_p(A)$ is isomorphic to $F \otimes \mathbb{Q} \mathbb{Q}_p$, i.e. there is a $v \in V_p(A)$ such that $V_p(A) = (\text{End}_K(A) \otimes \mathbb{Q}_p)v \simeq \text{End}_k(A) \otimes \mathbb{Q}_p$. Let G be the image of $G_K \to \text{Aut}(V_p(A))$. As G is compatible with endomorphisms G is determined by its operation on v so that we get an injection

$$G \hookrightarrow (\text{End}_K(A) \otimes \mathbb{Q}_p)^* \simeq (F \otimes \mathbb{Q}_p)^*$$

which implies that G is abelian. Therefore $K(\bigcup_{\ell \geq 1} A[p^\ell]) \subseteq K^{ab}$. As this holds for all primes we get $A_{\text{tors}}(K) = A_{\text{tors}}(K^{ab})$ as claimed in the theorem.
4. Proof of Corollary 1

Let \(A \) be an abelian variety defined over a number field \(K \).

If \(A \) has an abelian subvariety \(B \) with complex multiplication over \(K \) then
\(A_{\text{tors}}(K^{ab}) \supseteq B_{\text{tors}}(K^{ab}) \) which is infinite by the theorem.

Suppose now that \(A_{\text{tors}}(K^{ab}) \) is infinite. \(A \) is \(K \)-isogenous to a product \(A_1 \times \cdots \times A_r \) of abelian varieties which are defined over \(K \) and \(K \)-simple. Then there is index \(i \) such that \((A_i)_{\text{tors}}(K^{ab}) \) is infinite. Therefore \(A_i \) has complex multiplication over \(K \) by the theorem. The image of the map \(A_i \to A_1 \times \cdots \times A_r \to A \) is then an abelian subvariety of \(A \) which has complex multiplication over \(K \). This proves Corollary 1.

5. Proof of Corollary 2

Let \(A \) be an abelian variety defined over a number field \(K \). We want to show that
\(A_{\text{tors}}(K^{\text{cycl}}) \) is finite. As \(A \) is isogenous to a product of \(K \)-simple abelian varieties we can restrict us to the case that \(A \) is \(K \)-simple, i.e. \(\text{End}_K(A) \otimes_{\mathbb{Z}} \mathbb{Q} \) is a finite dimensional division algebra over \(\mathbb{Q} \). If \(A \) has no complex multiplication over \(K \) then \(A_{\text{tors}}(K^{ab}) \) is finite (by our theorem) and so is \(A_{\text{tors}}(K^{\text{cycl}}) \subseteq A_{\text{tors}}(K^{\text{cycl}}) \).

Therefore it remains to consider the case that \(A \) has complex multiplication over \(K \). If necessary we can enlarge the field \(K \) or change to a \(K \)-isogenous abelian variety.

As the argument is very explicit for elliptic curves we start with them. For abelian varieties we can argue in a similar way by using a theorem of Shimura.

5.1. Elliptic curves. Let \(E \) be an elliptic curve defined over a number field \(K \) such that \(\text{End}_K(E) \supseteq \mathbb{Z}[\sqrt{d}] \) for some \(d < 0 \). We can enlarge \(K \) such that \(K \) is Galois over \(\mathbb{Q} \) and \(E \) is isogenous to \(\mathbb{C}/\mathbb{Z}[\sqrt{d}] \) over \(K \). Therefore we can assume that \(E \cong \mathbb{C}/\mathbb{Z}[\sqrt{d}] \). Then \(j = j(E) \) can be calculated with \(q = e^{2\pi i \sqrt{d}} = e^{-2\pi \sqrt{|d|}} \) and \(\sigma_k(n) = \sum_{d|n} d^k \) as

\[
 j = \frac{1728 \left(\frac{g_2^3}{g_2^2 - 27g_3^2} \right)}
\]

where

\[
 g_2 = 4 \pi^4 + 320\pi^4 \sum_{n=1}^{\infty} \sigma_3(n)q^n, \quad g_3 = \frac{8}{27}\pi^6 - \frac{448}{3}\pi^6 \sum_{n=1}^{\infty} \sigma_5(n)q^n.
\]

This implies \(j \in \mathbb{R} \). We have \(\mathbb{Q}(j, \sqrt{d}) \subseteq K \). Let \(K_+ \) be the real subfield of \(K \). Then \(j \in K_+ \) and \(E \) is defined over \(K_+ \). But as \(\sqrt{d} \notin K_+ \) we get \(\text{End}_{K_+}(E) = \mathbb{Z} \) and therefore \(E_{\text{tors}}(K_+^{ab}) \) is finite by our theorem. As \(K = K_+(\sqrt{d}) \) we have \(K^{\text{cycl}} = K_+(\sqrt{d}, \zeta_\ell, \ell \in \mathbb{N}) \subseteq K_+^{ab} \) (where \(\zeta_\ell = e^{2\pi i / \ell} \)) which shows that \(E_{\text{tors}}(K^{\text{cycl}}) \) is finite.

5.2. Abelian varieties. Let \(A \) be a \(K \)-simple abelian variety with complex multiplication defined over a number field \(K \), in particular \(\dim_{\mathbb{Z}} \text{End}_K(A) = 2 \dim A \).

By enlarging \(K \) and using an isogenous abelian variety we can achieve the following situation according to a theorem of Shimura [L, p.142, Theorem 6.1]: \(A \) is defined over a number field \(K \) which is Galois over \(\mathbb{Q} \); \(K_+ = K \cap \mathbb{R} \) has index 2 in \(K \); the abelian variety \(A \) is already defined over \(K_+ \) and \(\dim_{\mathbb{Z}} \text{End}_{K_+}(A) < 2 \dim A \). This
implies by our theorem that \(A_{\text{tors}}(K_{ab}^+) \) is finite. But as before we have \(K_{\text{cycl}} \subseteq K_{ab}^+ \) and the finiteness of \(A_{\text{tors}}(K_{\text{cycl}}) \) follows.

REFERENCES

[B] N. Bourbaki, Algèbre, Chapitre 8, Modules et anneaux semi-simples, Hermann, Paris 1958.

[F] G. Faltings, Complements to Mordell, in: G. Faltings, G. Wüstholz et al., Rational Points, Vieweg, Braunschweig 1984.

[KL] N. Katz, S. Lang, Finiteness theorems in geometric class field theory, L'enseignement Mathématique 27 (1981), 285–314.

[L] S. Lang, Complex Multiplication, Springer-Verlag 1983.

[R] K. Ribet, Torsion points of abelian varieties in cyclotomic extensions, L'enseignement Mathématique 27 (1981), 315–319. (Appendix to [KL])

[S] G. Shimura, On the zeta function of an abelian variety with complex multiplication, Ann. Math. 94 (1971), 504–533.

Institut f"ur Experimentelle Mathematik, Universit"at GH Essen, Ellernstrasse 29, D-45326 Essen, Germany

E-mail address: ruppert@exp-math.uni-essen.de