AN OBSTRUCTION TO ASYMPTOTIC SEMISTABILITY
AND APPROXIMATE CRITICAL METRICS

TOSHIKI MABUCHI

1. Introduction

For a polarized algebraic manifold (M, L) with a Kähler metric of constant scalar curvature in the class $c_1(L)_\mathbb{R}$, we consider the Kodaira embedding

$$\Phi_{|L_m|} : M \hookrightarrow \mathbb{P}(V_m), \quad m \gg 1,$$

where $V_m := H^0(M, \mathcal{O}(L^m))^*$. Even when a linear algebraic group of positive dimension acts nontrivially and holomorphically on M, we shall show that the vanishing of an obstruction to asymptotic Chow-semistability allows us to generalize Donaldson’s construction \cite{Donaldson} of approximate solutions for equations of critical metrics\footnote{In (2.6) below, $\omega = c_1(L; h)$ is called a critical metric if $K(q, h)$ is a constant function on M. The same concept was later re-discovered by Luo \cite{Luo} (see \cite{Mabuchi}).} of Zhang \cite{Zhang}. This generalization plays a crucial role in our forthcoming paper \cite{Mabuchi}, in which the asymptotic Chow-stability for (M, L) above will be shown under the vanishing of the obstruction, even when M admits a group action as above.

2. Statement of results

Throughout this paper, we assume that L is an ample holomorphic line bundle over a connected projective algebraic manifold M. Let n and d be respectively the dimension of M and the degree of the image $M_m := \Phi_{|L^m|}(M)$ in the projective space $\mathbb{P}(V_m)$ with $m \gg 1$. Then to this image M_m, we can associate a nonzero element \hat{M}_m of $W_m := \{\text{Sym}^d(V_m)\}^{\otimes n+1}$ such that its natural image $[\hat{M}_m]$ in $\mathbb{P}(W_m)$ is the Chow point associated to the irreducible reduced algebraic cycle M_m on $\mathbb{P}(V_m)$. For the natural action of $H_m := \text{SL}(V_m)$ on W_m and also on $\mathbb{P}(W_m)$, the subvariety M_m of $\mathbb{P}(V_m)$ is said to be Chow-stable or Chow-semistable, according as the orbit $H_m \cdot \hat{M}$ is closed in W_m or the origin of W_m is not in the closure of $H_m \cdot \hat{M}$ in W_m. Fix an increasing sequence

$$(2.1) \quad m(1) < m(2) < m(3) < \cdots < m(k) < \cdots$$

of positive integers $m(k)$. For this sequence, we say that (M, L) is asymptotically Chow-stable or asymptotically Chow-semistable, according as for some $k_0 \gg 1$, the subvariety $M_{m(k)}$ of $\mathbb{P}(V_{m(k)})$ is Chow-stable or Chow-semistable for all $k \geq k_0$.

To appear in Osaka Journal of Mathematics \textbf{41}(2004).
Let Aut⁰(M) denote the identity component of the group of all holomorphic automorphisms of M. Then the maximal connected linear algebraic subgroup G of Aut⁰(M) is the identity component of the kernel of the Jacobi homomorphism
\[\alpha_M : \text{Aut}^0(M) \rightarrow \text{Aut}^0(\text{Alb}(M)), \] (cf. [3]).

For the maximal compact subgroup (Z) of H⁰(M, O(T¹⁰M)) associated to the Lie subgroup Z of Aut⁰(M). For the isotropy subgroup, denoted by ˜Sₘ, of Hₘ at the point [Mₘ] ∈ P(Wₘ), we have a natural isogeny
\[tₘ : ˜Sₘ \rightarrow Sₘ, \]
where Sₘ is an algebraic subgroup of G. For Zₘ := t⁻¹ₘ(Z), we have a Zₘ-action on M naturally induced by the Z-action on M. Since the Z-action on M is liftable to a holomorphic bundle action on L (see for instance [7], the restriction of tₘ to Zₘ defines an isogeny of Zₘ onto Z. The vector space Vₘ is viewed as the line bundle Oₘ(−1) with the zero section blow-down to a point, while the line bundle Oₘ(−1) coincides with L⁻ᵐ when restricted to M. Hence, the natural ˜Sₘ-action on Vₘ induces a bundle action of Zₘ on Vₘ which covers the Zₘ-action on M. Infinitesimally, each X ∈ 3 induces a holomorphic vector field X' ∈ H⁰(Lᵐ, O(T¹⁰Lᵐ)) on Lᵐ. Since the C*bundle L \ {0} associated to L is an m-fold unramified covering of the C*bundle Lᵐ \ {0}, the restriction of X' to Lᵐ \ {0} naturally induces a holomorphic vector field X'' on L \ {0}. Since X'' extends to a holomorphic vector field on L, the mapping X → X'' defines inclusions
\[\rho_m : 3 \rightarrow H^0(L, O(T^{1,0}L)), \quad m = 1, 2, \ldots, \]
inducing lifts, from M to L, of vector fields in 3. For a sequence as in (2.1), we say that the isotropy actions for (M, L) are stable if there exists an integer k₀ ≥ 1 such that
\[\rho_m(k) = \rho_m(k₀), \quad \text{for all } k ≥ k₀. \]

For the maximal compact subgroup (Zₘ)c of Zₘ, take a (Zₘ)c-invariant Hermitian metric λ for Lᵐ. By the theory of equivariant cohomology ([11, 13]), we define (see [15, 13]):
\[\mathcal{C}\{c^{n+1}_1; L^m\}(X) := \frac{\sqrt{-1}}{2\pi} (n+1) \int_M \lambda^{-1}(Xλ) c_1(L^m; \lambda)^n, \quad X ∈ 3, \]
where Xλ is as in [13], (1.4.1). Then the C-linear map \(\mathcal{C}\{c^{n+1}_1; L^m\} : 3 \rightarrow \mathbb{C} \) which sends each X ∈ 3 to \(\mathcal{C}\{c^{n+1}_1; L^m\}(X) \in \mathbb{C} \) is independent of the choice of h. The following gives an obstruction to asymptotic Chow-semistability (see [5, 15, 16] for related results):

Theorem A. For a sequence as in (2.1), assume that (M, L) is asymptotically Chow-semistable. Then for some k₀ ≥ 1, the equality \(\mathcal{C}\{c^{n+1}_1; L^{m(k)}\} = 0 \) holds for all k ≥ k₀. In particular, for this sequence, the isotropy actions for (M, L) are stable.

The following modification of a result in [7] shows that, as an obstruction, the stability condition (2.3) is essential, since the vanishing of (2.4) is straightforward from (2.3).
Theorem B. For sufficiently large \((n+2)\) distinct integers \(m_k, k = 0, 1, \ldots, n+1\), suppose that \(\rho_{m_0} = \rho_{m_1} = \cdots = \rho_{m_{n+1}}\). Then \(C\{x_1^{n+1}; L^{m_k}\} = 0\) for all \(k\).

If \(\dim Z = 0\), by setting \(m(k) = k\) in (2.1) for all \(k \geq 0\), we see that \(\rho_m\) are trivial for all \(m \gg 1\), and consequently (2.3) holds. Note also that Donaldson’s result \([3]\) treating the case \(\dim G = 0\) depends on his construction of approximate solutions for equations of critical metrics of Zhang \([20]\). In Theorem C down below, assuming (2.3), we generalize Donaldson’s construction to the case \(\dim G > 0\).

Put \(N_m := \dim C V_m - 1\). Let \(h\) be a Hermitian metric for \(L\) such that \(\omega = c_1(L; h)\) is a Kähler metric on \(M\). By the inner product
\[
(\sigma, \sigma')_h := \int_M <\sigma, \sigma'>_h \omega^n, \quad \sigma, \sigma' \in V_m^*,
\]
on \(V_m^* = H^0(M, O(L^m))\), we choose a unitary basis \(\{\sigma_{0}^{(m)}, \sigma_{1}^{(m)}, \ldots, \sigma_{N_m}^{(m)}\}\) for \(V_m^*\). Here, \(<\sigma, \sigma'>_h\) denotes the function on \(M\) obtained as the the pointwise inner product of the sections \(\sigma, \sigma'\) by the Hermitian metric \(h^m\) on \(L^m\). Put
\[
K(q, h) := \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\sigma_i^{(m)}\|_h^2,
\]
where \(\|\sigma\|_h^2 := <\sigma, \sigma>_h\) for all \(\sigma \in V_m^*\) and we set \(q := 1/m\). We then have the asymptotic expansion of Tian-Zelditch (cf. \([18], [19]\)) for \(m \gg 1\):
\[
K(q, h) = 1 + a_1(\omega)q + a_2(\omega)q^2 + a_3(\omega)q^3 + \ldots,
\]
where \(a_i(\omega), i = 1, 2, \ldots,\) are smooth functions on \(M\). Then \(a_1(\omega) = \sigma_\omega/2\) (cf. \([11]\)) for the scalar curvature \(\sigma_\omega\) of \(\omega\). Put \(C_q := \{m^n c_1(L)^n |M|/n!\}^{-1}(N_m + 1)\). Then

Theorem C. For a Kähler metric \(\omega_0\) in the class \(c_1(L)_{\mathbb{R}}\) of constant scalar curvature, choose a Hermitian metric \(h_0\) for \(L\) such that \(\omega_0 = c_1(L, h_0)\). For a sequence as in (2.1), assume that the isotropy actions for \((M, L)\) are stable, i.e., (2.3) holds. Put \(q = 1/m(k)\). Then there exists a sequence of real-valued smooth functions \(\varphi_k, k = 1, 2, \ldots,\) on \(M\) such that \(h(\ell) := h_0 \exp(-\sum_{k=1}^{\ell} q^k \varphi_k)\) satisfies \(K(q, h(\ell)) - C_q = O(q^{\ell+2})\) for each nonnegative integer \(\ell\).

The last equality \(K(q, h(\ell)) - C_q = O(q^{\ell+2})\) means that there exist a positive real constant \(A = A_\ell\) independent of \(q\) such that \(\|K(q, h(\ell)) - C_q\|_{C^0(M)} \leq A_\ell q^{\ell+2}\) for all \(0 \leq q \leq 1\) on \(M\). By \([19]\), for every nonnegative integer \(j\), a choice of a larger constant \(A = A_{j, \ell} > 0\) keeps Theorem C still valid even if \(C^0(M)\)-norm is replaced by \(C^j(M)\)-norm.

3. An obstruction to asymptotic semistability

The purpose of this section is to prove Theorems A and B. Fix a sequence as in (2.1), and in this section, any kind of stability is considered with respect to this sequence.
Proof of Theorem A: Assume that (M,L) is asymptotically Chow-semistable, i.e., for some $k_0 \gg 1$, the subvariety $M_m(k)$ of $\mathbb{P}(V_m(k))$ is Chow-semistable for all $k \geq k_0$. Then the isotropy representation of $Z_m(k)$ on the line $\mathbb{C} \cdot M_m(k)$ is trivial (cf. [15], (3.5) (cf. [16]; [20], (1.5)), we obtain the required equality

\[(3.1)\quad \mathcal{C}\{c_1^{n+1}; L^m(k)\}(X) = 0, \quad X \in \mathfrak{z},\]

for all $k \geq k_0$. For λ in (2.4), by setting $h := \lambda^{1/m}$, we have a Hermitian metric h for L. Put $\chi_m := \mathcal{C}\{c_1^{n+1}, L^m\}/m^{n+1}$ for positive integers m. Then by the Leibniz rule,

\[(3.2)\quad \chi_m(X) = \frac{\sqrt{-1}}{2\pi} (n+1) \int_M h^{-1}(Xh)_{\rho_m} c_1(L;h)^n, \quad X \in \mathfrak{z},\]

where the complexified action $(Xh)_{\rho_m}$ of X on h as in [13], (1.4.1), is taken via the lifting ρ_m in (2.2). Then by (3.1),

$$\chi_m(k_0) = \chi_m(k_{0+1}) = \cdots = \chi_m(k) = \cdots;$$

and since lifts in (2.2), from M to L, of holomorphic vector fields in \mathfrak{z} are completely characterized by χ_m (cf. [7]), we obtain (2.3), as required. \hfill \Box

Proof of Theorem B: For $q := \text{l.c.m}\{m_k; k = 0, 1, \ldots, n+1\}$, we take a q-fold unramified cover $\nu: \tilde{Z} \to Z$ between algebraic tori. Then the Z-action on M naturally induces a \tilde{Z}-action on M via this covering. Since ν factors through Z_{m_k}, the lift, from M to L^{m_k}, of the Z_{m_k}-action naturally induces a lift, from M to L^{m_k}, of the \tilde{Z}-action. The assumption

\[(3.3)\quad \rho_{m_0} = \rho_{m_1} = \cdots = \rho_{m_{n+1}}\]

shows that the lifts, from M to L^{m_k}, $k = 0,1,\ldots, n+1$, of the \tilde{Z}-action come from the same infinitesimal action of \mathfrak{z} as vector fields on L. For brevity, the common ρ_{m_k} in (3.3) will be denoted just by ρ. Then the proof of [6], Theorem 5.1, is valid also in our case, and the formula in the theorem holds. By $Z_{m_k} \subset \text{SL}(V_{m_k})$ and by its contragredient representation, the \tilde{Z}-action on $V_{m_k}^* = H^0(M, \mathcal{O}(L^{m_k}))$ comes from an algebraic group homomorphism: $\tilde{Z} \to \text{SL}(V_{m_k}^*)$. Hence, by the notation in (3.2) above,

$$\int_M h^{-1}(Xh)_{\rho} c_1(L;h)^n = 0 \quad \text{for all } X \in \mathfrak{z}, \quad \text{i.e., } \mathcal{C}\{c_1^{n+1}; L^{m_k}\} = 0 \quad \text{for all } k,$$

as required. \hfill \Box

4. PROOF OF THEOREM C

Throughout this section, we assume that the first Chern class $c_1(L)_{\mathbb{R}}$ admits a Kähler metric of constant scalar curvature. Then a result of Lichnérowicz [11] (see also [9]) shows that G is a reductive algebraic group, and consequently the identity component of the center of G coincides with Z in the introduction. Let K be a maximal compact subgroup of G. Then the maximal compact subgroup Z_c of Z satisfies

\[(4.1)\quad Z_c \subset K.\]
For an arbitrary K-invariant Kähler metric ω on M in the class $c_1(L)_R$, we write ω as the Chern form $c_1(L; h)$ for some Hermitian metric h for L. Let $\Psi(\varphi, \omega)$ denote the power series in φ given by the right-hand side of (2.7). Then

\[
(4.2) \quad \int_M \{ \Psi(\varphi, \omega) - C_q \} \omega^n = \int_M \left\{ -C_q + \frac{n!}{m^n} \sum_{i=0}^{N_m} \| \sigma_i^{(m)} \|_h^2 \right\} \omega^n = 0.
\]

Let h_0 be a Hermitian metric for L such that $\omega_0 := c_1(L; h_0)$ is a Kähler metric of constant scalar curvature on M. We write

\[
\omega_0 = \frac{\sqrt{-1}}{2\pi} \sum_{\alpha, \beta} g_{\alpha\beta} dz^\alpha \wedge dz^\beta,
\]

for a system (z^1, z^2, \ldots, z^n) of holomorphic local coordinates on M. In view of [10] (see also [9]), replacing ω_0 by $g^*\omega_0$ for some $g \in G$ if necessary, we may assume that ω_0 is K-invariant. Let D_0 be the Lichnérówicz operator, as defined in [2], (2.1), for the Kähler manifold (M, ω_0). Since ω_0 has a constant scalar curvature, D_0 is a real operator. Let \mathcal{F} denote the space of all real-valued smooth K-invariant functions φ such that $\int_M \varphi \omega_0^n = 0$.

Since the operator D_0 preserves the space \mathcal{F}, we write D_0 as an operator $D_0 : \mathcal{F} \to \mathcal{F}$, and the kernel in \mathcal{F} of this operator will be denoted by $\text{Ker} D_0$. Let \mathfrak{g}_c denote the Lie subalgebra of \mathfrak{g} corresponding to the maximal compact subgroup Z_c of Z. Then

\[
(3.3) \quad \gamma : \text{Ker} D_0 \cong \mathfrak{g}_c, \quad \eta \leftrightarrow \gamma(\eta) := \text{grad}^C_{\omega_0} \eta,
\]

where $\text{grad}^C_{\omega_0} \eta := (1/\sqrt{-1}) \sum g^{\beta\alpha} \eta_\beta \partial/\partial z^\alpha$ denotes the complex gradient of η with respect to ω_0. We then consider the orthogonal projection

\[
P : \mathcal{F} (= \text{Ker} D_0 \oplus \text{Ker} D_0^\perp) \to \text{Ker} D_0.
\]

Starting from $h(0) = h_0$ and $\omega(0) := \omega_0$, we inductively define a Hermitian metric $h(k)$ for L, and a Kähler metric $\omega(k) := c_1(L; h(k))$, called the k-approximate solution, by

\[
h(k) = h(k-1) \exp(-q^k \varphi_k), \quad k = 1, 2, \ldots,
\]

\[
\omega(k) = \omega(k-1) + \frac{\sqrt{-1}}{2\pi} q^k \bar{\partial} \partial \varphi_k, \quad k = 1, 2, \ldots,
\]

for a suitable function $\varphi_k \in \text{Ker} D_0^\perp$, where we require $h(k)$ to satisfy $K(q, h(k)) - C_q = O(q^{k+2})$. In other words, by (4.2), each $\omega(k)$ is required to satisfy the following conditions:

\[
(4.4) \quad (1 - P) \{ \Psi(q, \omega(k)) - C_q \} \equiv 0, \quad \text{modulo } q^{k+2},
\]

\[
(4.5) \quad P \{ \Psi(q, \omega(k)) - C_q \} \equiv 0, \quad \text{modulo } q^{k+2}.
\]

If $k = 0$, then $\omega(0) = \omega_0$, and by [11], both (4.4) and (4.5) hold for $k = 0$. Hence, let $\ell \geq 1$ and assume (4.4) and (4.5) for $k = \ell - 1$. It then suffices to find $\varphi_\ell \in \text{Ker} D_0^\perp$ satisfying both (4.4) and (4.5) for $k = \ell$. Put

\[
\Phi(q, \varphi) := (1 - P) \left\{ \Psi(q, \omega(\ell - 1) + (\sqrt{-1}/2\pi) q^\ell \bar{\partial} \partial \varphi) - C_q \right\}, \quad \varphi \in \text{Ker} D_0^\perp.
\]
Then by (4.4) applied to $k = \ell - 1$, we have $\Phi(q, 0) \equiv u_\ell q^{\ell + 1}$ modulo $q^{\ell + 2}$, where u_ℓ is a function in $\text{Ker} \, D_0^\perp$. Since $2\pi \omega(\ell - 1) = 2\pi \omega_0 + \sqrt{-1} \sum_{k=1}^{\ell - 1} q^k \partial \bar{\partial} \varphi_k$, we have $\omega(\ell - 1) = \omega_0$ at $q = 0$. Since the scalar curvature of ω_0 is constant, the variation formula for the scalar curvature (see for instance [4], (2.5); [3]) shows that

$$\Phi(q, \varphi_\ell) \equiv \Phi(q, 0) - q^{\ell + 1}(D_0 \varphi_\ell/2) \equiv (2u_\ell - D_0 \varphi_\ell) (q^{\ell + 1}/2),$$

modulo $q^{\ell + 2}$. Since u_ℓ is in $\text{Ker} \, D_0^\perp$, there exists a unique $\varphi_\ell \in \text{Ker} \, D_0^\perp$ such that $2u_\ell = D_0 \varphi_\ell$ on M. Fixing such φ_ℓ, we obtain $h(\ell)$ and $\omega(\ell)$. Thus (4.4) is true for $k = \ell$.

Now, we have only to show that (4.5) is true for $k = \ell$. Before checking this, we give some preliminary remarks. Note that $C_q = 1 + O(q)$. Moreover, by (2.7), $\Psi(q, \omega) = 1 + q\{a_1(\omega) + a_2(\omega)q + \ldots\}$, and hence

$$\Psi(q, \omega(\ell)) - C_q = \Psi\left(q, \omega(\ell - 1) + (\sqrt{-1}/2\pi) q^\ell \partial \bar{\partial} \varphi_\ell\right) - C_q
\equiv \Psi(q, \omega(\ell - 1)) - C_q \equiv 0,$$

modulo $q^{\ell + 1}$.

By [17], p. 35, the G-action on M is liftable to a bundle action of G on the real line bundle $(L \cdot \bar{L})^{1/2} = (L^m \cdot \bar{L}^m)^{1/2m}$. Then the induced K-action on $(L \cdot \bar{L})^{1/2}$ is unique, because liftings, from M to L^m, of the G-action differ only by scalar multiplications of L^m by characters of Z. In this sense, $h(\ell)$ is K-invariant. Put $r := \dim_{\mathbb{C}} Z$. Then we can write $Z_m = G_m^r = \{ t = (t_1, t_2, \ldots, t_r) \in (\mathbb{C}^*)^r \}$. By the natural inclusion

$$\psi_m : Z_m \hookrightarrow H_m = \text{SL}(V_m),$$

we can choose a unitary basis $\{\tau_0, \tau_1, \ldots, \tau_{Nm}\}$ for $(V_m^*, (,)_h(\ell))$ (cf. (2.5)) such that, for some integers α_{i_0} with $\sum_i \alpha_{i_0} = 0$, the contragredient representation ψ_m^* of ψ_m is given by

$$\psi_m^*(t) \tau_i = \left(\prod_{j=1}^r t_j^{\alpha_{i_j}} \right) \tau_i, \quad i = 0, 1, \ldots, N_m,$$

for all $t \in (\mathbb{C}^*)^r = Z_m$. Now by (2.3), for some $\rho : \mathfrak{g} \hookrightarrow H^0(L, \mathcal{O}(T^{1,0}L))$, we can write $\rho_{m(k)} = \rho$ for all $k \geq k_0$. Consider the Kähler metric $\omega_m := c_1(L; h_m)$ on M in the clasas $c_1(L)^{\mathbb{R}}$, where $h_m := (|\tau_0|^2 + |\tau_1|^2 + \ldots + |\tau_{Nm}|^2)^{-1/m}$. From now on, let $m = m(k)$, where k is running through all integers $\geq k_0$. Put $X_j := t_j \partial/\partial t_j$. Then $\{X_1, X_2, \ldots, X_r\}$ forms a \mathbb{C}-basis for the Lie algebra \mathfrak{g} such that, using the notation as in (3.2), we have

$$h^{-1}_m(X_j h_m)_\rho = -\frac{\sum_i \alpha_{i_0} |\tau_i|^2}{m \sum_i |\tau_i|^2}, \quad 1 \leq j \leq r, \quad \text{for } m = m(k) \text{ with } k \geq k_0,$$

where in the numerator and the denominator, the sum is taken over all integers i such that $0 \leq i \leq N_m$. From (2.3) and Theorem B, using the notation as in (3.2), we obtain

$$\int_M h(\ell)^{-1}(X_j h(\ell))_\rho \omega(\ell)^n = 0, \quad 1 \leq j \leq r.$$
By \(\int_M h_0^{-1}(X_jh_0) \rho/\int_M \omega_0^m = 0 \), we have \(\eta_j := h_0^{-1}(X_jh_0) \in \text{Ker} D_0 \). Then \(\gamma(\eta_j) = \sqrt{-1} X_j \). Hence \(\{\eta_1, \eta_2, \ldots, \eta_r\} \) is an \(\mathbb{R} \)-basis for \(\text{Ker} D_0 \). Since \(\Psi(q, \omega(\ell)) \equiv C_q \mod q^{\ell+1} \), it follows that

\[
(4.8) \quad -C_q + \frac{n!}{m^n} \sum_{i=0}^{N_m} ||\tau_i||^2_{h(\ell)} \equiv v_\ell q^{\ell+1} \mod q^{\ell+2}
\]

where the equivalence just above follows from (4.7). The last integrand is rewritten as

\[
q^{\ell+1} \int_M \eta_j v_\ell \omega_0^m \equiv C_q \int_M \frac{\sum_i \alpha_{ij} ||\tau_i||^2_{h(\ell)}}{m \sum_i ||\tau_i||^2_{h(\ell)}} \{\omega(\ell)\}^n \equiv C_q \int_M h_m^{-1}(X_jh_m)_\rho \{\omega(\ell)\}^n
\]

\[
\equiv C_q \int_M \{h_m^{-1}(X_jh_m)_\rho - h(\ell)^{-1}(X_jh(\ell))_\rho\} \{\omega(\ell)\}^n,
\]

where the equivalence just above follows from (4.7). The last integrand is rewritten as

\[
h_m^{-1}(X_jh_m)_\rho - h(\ell)^{-1}(X_jh(\ell))_\rho = X_j \log \{h_m/h(\ell)\} = -\frac{1}{m} X_j \log \left(\frac{n!}{m^n} \sum_{i=0}^{N_m} ||\tau_i||^2_{h(\ell)} \right)
\]

\[
\equiv -q X_j \log(C_q + v_\ell q^{\ell+1}) \equiv -C_q^{-1}(X_jv_\ell)q^{\ell+2} \equiv 0, \mod q^{\ell+2}.
\]

Therefore, \(\int_M \eta_j v_\ell \omega_0^m = 0 \) for all \(j \). From \(v_\ell \in \text{Ker} D_0 \), it now follows that \(v_\ell = 0 \). This shows that (4.5) is true for \(k = \ell \), as required.

\[\square\]

5. Concluding remarks

As in Donaldson’s work \[3\], the construction of approximate solutions in Theorem C is a crucial step to the approach of the stability problem for a polarized algebraic manifold with a Kähler metric of constant scalar curvature. Actually, in a forthcoming paper \[14\], this construction allows us to prove the following:
Theorem. For a sequence as in (2.1), assume that the isotropy actions for \((M, L)\) are stable. Assume further that \(c_1(L)_R\) admits a Kähler metric of constant scalar curvature. Then for this sequence, \((M, L)\) is asymptotically Chow-stable.

Moreover, if a sequence (2.1) exists in such a way that (2.3) holds, then the same argument as in the case \(\dim G = 0\) (cf. [3]) is applied, and we can also show the uniqueness, modulo the action of \(G\), of the Kähler metrics of constant scalar curvature in the polarization class \(c_1(L)_R\). We finally remark that, if \(\dim G = 0\), the asymptotic Chow-stability implies the asymptotic stability in the sense of Hilbert schemes (cf. [17], p.215). Hence the result of Donaldson [3] follows from the theorem just above.

References

[1] N. Berline et M. Vergne : Zeros d’un champ de vecteurs et classes caractéristiques equivariantes, Duke Math. J. 50 (1983), 539–549.
[2] E. Calabi : Extremal Kähler metrics II, in “Differential Geometry and Complex Analysis” (ed. I. Chavel, H. M. Farkas), Springer-Verlag, Heidelberg, 1985, 95–114.
[3] S. K. Donaldson: Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479–522.
[4] A. Fujiki : On automorphism groups of compact Kähler manifolds, Invent. Math., 44 (1978), 225–258.
[5] A. Fujiki : Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku 42 (1990), 231–243; English translation: Sugaku Expositions 5 (1992), 173–191.
[6] A. Futaki and T. Mabuchi: An obstruction class and a representation of holomorphic automorphisms, in “Geometry and Analysis on Manifolds” (ed. T. Sunada), Lect. Notes in Math. 1339, Springer-Verlag, Heidelberg, 1988, 127–141.
[7] A. Futaki and T. Mabuchi : Moment maps and symmetric multilinear forms associated with symplectic classes, Asian J. Math. 6 (2002), 349–372.
[8] A. Futaki and S. Morita : Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geom. 21 (1985), 135–142.
[9] S. Kobayashi : Transformation groups in differential geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[10] A. Lichnérowicz: Isométrie et transformations analytique d’une variété kählérienne compacte, Bull. Soc. Math. France 87 (1959), 427–437.
[11] Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235–273.
[12] H. Luo : Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Differential Geom. 49 (1998), 577–599.
[13] T. Mabuchi : An algebraic character associated with Poisson brackets, in “Recent Topics in Differential and Analytic Geometry,” Adv. Stud. Pure Math. 18-I (1990), 339–358.
[14] T. Mabuchi : An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, in preparation.
[15] T. Mabuchi and Y. Nakagawa: The Bando-Calabi-Futaki character as an obstruction to semistability, to appear in Math. Annalen.
[16] T. Mabuchi and L. Weng : Kähler-Einstein metrics and Chow-Mumford stability, 1998, preprint.
[17] D. Mumford, J. Fogarty and F. Kirwan: Geometric invariant theory, 3rd edition, Ergebnisse der Math. und ihrer Grenzgebiete 34, Springer-Verlag, 1994, 1–292.

[18] G. Tian: On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99–130.

[19] S. Zelditch: Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317–331.

[20] S. Zhang: Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), 77–105.

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan