ASYMPTOTIC ANALYSIS AND ENERGY QUANTIZATION FOR THE LANE-EMDEN PROBLEM IN DIMENSION TWO

F. DE MARCHIS, M. GROSSI, I. IANNI, F. PACELLA

Abstract. We complete the study of the asymptotic behavior, as $p \to +\infty$, of the positive solutions to

$$
\begin{align*}
-\Delta u &= u^p \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega \\
u &> 0 \quad \text{in } \Omega
\end{align*}
$$

when Ω is any smooth bounded domain in \mathbb{R}^2, started in [4]. In particular we show quantization of the energy to multiples of $8\pi e$ and prove convergence to \sqrt{e} of the L^∞-norm, thus confirming the conjecture made in [4].

1. Introduction

This paper focuses on the asymptotic analysis, as $p \to +\infty$, of families of solutions to the Lane-Emden problem

$$
\begin{align*}
-\Delta u &= u^p \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega \\
u &> 0 \quad \text{in } \Omega
\end{align*}
$$

where Ω is any smooth bounded planar domain.

This line of investigation started in [10, 11] for families u_p of least energy solutions, for which a one-point concentration behavior in the interior of Ω is proved, as well as the L^∞-bounds

$$\sqrt{e} \leq \lim_{p \to +\infty} \|u_p\|_{L^\infty} \leq C \quad \text{(1.1)}$$

and the following estimate

$$\lim_{p \to +\infty} p\|\nabla u_p\|_2^2 = 8\pi e. \quad \text{(1.2)}$$

The bound in (1.1) was later improved in [1], where it was shown that for families of least energy solutions the following limit holds true:

$$\lim_{p \to +\infty} \|u_p\|_{L^\infty} = \sqrt{e}. \quad \text{(1.2)}$$

Moreover in [1] and [7] the Liouville equation in the whole plane

$$
\begin{align*}
-\Delta U &= e^U \quad \text{in } \mathbb{R}^2 \\
\int_{\mathbb{R}^2} e^U \, dx &= 8\pi
\end{align*}
$$

was identified to be a limit problem for the Lane-Emden equation. Indeed in [1] it was proved that suitable rescalings around the maximum point of any least energy solution to

2010 Mathematics Subject classification:

Keywords: positive solutions, Lane-Emden problem, asymptotic analysis, quantization.

Research partially supported by: PRIN 201274FYK7405 grant and INDAM - GNAMPA.
The solutions converge, in $C^2_{\text{loc}}(\mathbb{R}^2)$, to the regular solution
\[U(x) = \log \left(\frac{1}{1 + \frac{1}{8}|x|^2} \right)^2 \]
(1.4)
of (1.3). Hence least energy solutions exhibit only one concentration point and the local limit profile is given by (1.4). More general solutions having only one peak have been recently studied in [6], where their Morse index is computed and connections with the question of the uniqueness of positive solutions in convex domains are shown.

Observe that when Ω is a ball any solution to (P_p) is radial by Gidas, Ni and Nirenberg result ([9]) and so the least energy is the unique solution for any $p > 1$.

In general in non-convex domains there may be families of solutions to (P_p) other than the least energy ones. This is the case, for instance, of those found in [8] when the domain Ω is not simply connected, which have higher energy, precisely
\[\lim_{p \to +\infty} p\|\nabla u_p\|_2^2 = 8\pi e \cdot k, \]
for any fixed integer $k \geq 1$. These solutions exhibit a concentration phenomenon at k distinct points in Ω as $p \to +\infty$ and their L^∞-norm satisfies the same limit as in (1.2).

The question of characterizing the behavior of any family u_p of solutions to (P_p) naturally arises. An almost complete answer has been recently given in [4] in any general smooth bounded domain Ω, under the uniform energy bound assumption
\[p\|\nabla u_p\|_2^2 \leq C \]
(1.5)
(see also [2], where this general asymptotic analysis was started and the related papers [3, 5]). The results in [4] show that under the assumption (1.5) the solutions to (P_p) are necessarily spike-like and that the energy is quantized. More precisely in [4, Theorem 1.1] it is proved that, up to a subsequence, there exists an integer $k \geq 1$ and k distinct points $x_i \in \Omega$, $i = 1, \ldots, k$, such that, setting
\[S = \{x_1, \ldots, x_k\}, \]
one has
\[\lim_{p \to +\infty} \sqrt{p} u_p = 0 \quad \text{in} \quad C^2_{\text{loc}}(\overline{\Omega} \setminus S) \]
(1.6)
and the energy satisfies
\[\lim_{p \to +\infty} p\|\nabla u_p\|_2^2 = 8\pi \sum_{i=1}^k m^2_i, \]
(1.7)
where m_i’s are positive constants given by
\[m_i = \lim_{\delta \to 0} \lim_{p \to +\infty} \max_{B_\delta(x_i)} u_p \]
(1.8)
which satisfy
\[m_i \geq \sqrt{e}. \]
(1.9)
Furthermore the location of the concentration points is shown to depend on the Dirichlet Green function G of $-\Delta$ in Ω and on its regular part H
\[H(x, y) = G(x, y) + \frac{\log(|x - y|)}{2\pi} \]
(1.10)
according to the following system
\[m_i \nabla_x H(x_i, x_i) + \sum_{\ell \neq i} m_\ell \nabla_x G(x_i, x_\ell) = 0, \]
and moreover
\[\lim_{p \to +\infty} p u_p = 8\pi \sum_{i=1}^k m_i G(\cdot, x_i) \text{ in } C^2_{\text{loc}}(\bar{\Omega} \setminus S). \]

In [4, Lemma 4.1] it is also proved that a suitable rescaling of \(u_p \) around each concentration point, in the spirit of the one done in [1] for the least energy solutions, converges to the regular solution \(U \) in (1.4).

Observe that (1.6) and (1.9) immediately imply the following bound on the \(L^\infty \)-norm:
\[\sqrt{e} \leq \lim_{p \to +\infty} \| u_p \|_\infty \leq C. \] (1.11)

In [4] it was conjectured that for all solutions to \((P_p) \), under the assumption (1.5), one should have the equality in (1.9).

Here we complete the analysis in [4] proving this conjecture, namely we show the following:

Theorem 1.1.
\[m_i = \sqrt{e}, \quad \forall i = 1, \ldots, k. \]

This result implies, by (1.6) and (1.9), a sharp improvement of (1.11):

Theorem 1.2 (\(L^\infty \)-norm limit). Let \(u_p \) be a family of solutions to \((P_p) \) and assume that (1.5) holds. Then
\[\lim_{p \to +\infty} \| u_p \|_\infty = \sqrt{e}. \]

On the other side, by (1.7), Theorem 1.1 implies a quantization of the energy to integer multiples of \(8\pi e \) as \(p \) goes to infinity. Our final asymptotic results can be summarized as follows:

Theorem 1.3 (Complete asymptotic behavior & quantization). Let \(u_p \) be a family of solutions to \((P_p) \) and assume that (1.5) holds. Then there exist a finite number \(k \) of distinct points \(x_i \in \Omega, \ i = 1, \ldots, k \) and a sequence \(p_n \to +\infty \) as \(n \to +\infty \) such that setting
\[S := \{ x_1, \ldots, x_k \} \]
once has
\[\lim_{n \to \infty} \sqrt{p_n} u_{p_n} = 0 \text{ in } C^2_{\text{loc}}(\bar{\Omega} \setminus S). \] (1.12)
The concentration points \(x_i, \ i = 1, \ldots, k \) satisfy the system
\[\nabla_x H(x_i, x_i) + \sum_{i \neq \ell} \nabla_x G(x_i, x_\ell) = 0. \] (1.13)
Moreover
\[\lim_{n \to \infty} p_n u_{p_n}(x) = 8\pi \sqrt{e} \sum_{i=1}^k G(x, x_i) \text{ in } C^2_{\text{loc}}(\bar{\Omega} \setminus S) \] (1.14)
and the energy satisfies
\[\lim_{n \to \infty} p_n \int_{\Omega} |\nabla u_{p_n}(x)|^2 \, dx = 8\pi e \cdot k. \] (1.15)
2. Proof of Theorem 1.1

Let \(k \geq 1 \) and \(x_i \in \Omega, i = 1, \ldots, k \) be as in the introduction and let us keep the notation \(u_p \) to denote the corresponding subsequence of the family \(u_p \) for which the results in [4] hold true.

In particular (see [4, Theorem 1.1 & Lemma 4.1]) for \(r > 0 \) such that \(B_{3r}(x_j) \subset \Omega, \forall j = 1, \ldots, k \) and \(B_{3r}(x_j) \cap B_{3r}(x_i) = \emptyset, \forall j = 1, \ldots, k, j \neq i \), letting \(y_{i,p} \in \Omega \) be the sequence defined as

\[
u_p(y_{i,p}) := \max_{B_{2r}(x_i)} u_p
\] (2.16)

it follows that

\[
\lim_{p \to +\infty} y_{i,p} = x_i,
\] (2.17)

\[
\lim_{p \to +\infty} u_p(y_{i,p}) = m_i,
\] (2.18)

\[
\lim_{p \to +\infty} \varepsilon_{i,p} \left(:= \left[p u_p(y_{i,p})^{p-1} \right]^{-1/2} \right) = 0
\] (2.19)

and setting

\[
w_{i,p}(y) := \frac{p}{u_p(y_{i,p})} (u_p(y_{i,p} + \varepsilon_{i,p} y) - u_p(y_{i,p})), \quad y \in \Omega_{i,p} := \frac{\Omega - y_{i,p}}{\varepsilon_{i,p}},
\] (2.20)

then

\[
\lim_{p \to +\infty} w_{i,p} = U \text{ in } C^2_{\text{loc}}(\mathbb{R}^2),
\] (2.21)

where \(U \) is as in (1.4).

Furthermore by the result in [4, Proposition 4.3 & Lemma 4.4] we have that for any \(\gamma \in (0, 4) \) there exists \(R_{\gamma} > 1 \) such that

\[
w_{i,p}(z) \leq (4 - \gamma) \log \frac{1}{|z|} + \tilde{C}_{\gamma}, \quad \forall i = 1, \ldots, k
\] (2.22)

for some \(\tilde{C}_{\gamma} > 0 \), provided \(R_{\gamma} \leq |z| \leq \frac{R}{\varepsilon_{i,p}} \) and \(p \) is sufficiently large.

The pointwise estimate (2.22) implies the following uniform bound, which will be the key to use the dominated convergence theorem in the proof of Theorem 1.1:

Lemma 2.1.

\[
0 \leq \left(1 + \frac{w_{i,p}(z)}{p} \right)^p \leq \begin{cases} 1 & \text{for } |z| \leq R_{\gamma} \\ \frac{1}{C_{\gamma} |z|^{4-\gamma}} & \text{for } R_{\gamma} \leq |z| \leq \frac{R_{\gamma}^2}{\varepsilon_{i,p}} \end{cases}
\] (2.23)

Proof. Observe that by (2.17)

\[
B_r(y_{i,p}) \subset B_{2r}(x_i), \text{ for } p \text{ sufficiently large,}
\]
as a consequence

\[
w_{i,p} \leq 0, \text{ in } B_{\frac{r}{\varepsilon_{i,p}}}(0) (\subset \Omega_{i,p}), \text{ for } p \text{ large,}
\] (2.24)
which implies the first bound in (2.23).
For p sufficiently large, by (2.24) and (2.22), we also get the second bound in (2.23):

$$0 \leq \left(1 + \frac{w_{j,p}(z)}{p}\right)^p = e^{p\log\left(1 + \frac{w_{j,p}(z)}{p}\right)} \leq e^{w_{j,p}(z)} \leq C\gamma \frac{1}{|z|^{1-\gamma}}$$

for $R_\gamma \leq |z| \leq \frac{r}{\varepsilon_{j,p}}$.

\square

Proof of Theorem 1.1. Observe that by the assumption (1.5) and Hölder inequality

$$(0 \leq) \int_\Omega u_p^p(x)dx \leq p^{1+1/p} \Omega_{1/p+1/p} \left[p \int_\Omega |\nabla u_p|^2 dx\right]^{p/2}$$

$$= p \int_\Omega |\nabla u_p|^2 dx + o_p(1) \leq C + o_p(1),$$

so that, by the properties of the Green function G,

$$\int_{\Omega \setminus B_2(x_j)} G(y_{j,p}, x) u_p^p(x)dx \leq C \int_{\Omega \setminus B_2(x_j)} u_p^p(x)dx$$

$$\leq C \int_{\Omega} u_p^p(x)dx = O\left(\frac{1}{p}\right) \quad (2.25)$$

and similarly, observing that for p large enough the points $y_{j,p} \in B_r(x_j)$ by (2.17) and $B_r(x_j) \subset B_{r_j}(y_{j,p}) \subset B_{2r}(x_j)$, also

$$\int_{B_{2r}(x_j) \setminus B_r(y_{j,p})} G(y_{j,p}, x) u_p^p(x)dx \leq \int_{\{z < |x - x_j| < 2r\}} G(y_{j,p}, x) u_p^p(x)dx$$

$$\leq C \int_{\Omega} u_p^p(x)dx = O\left(\frac{1}{p}\right). \quad (2.26)$$

By the Green representation formula, using the previous estimates, we then get

$$u_p(y_{j,p}) = \int_\Omega G(y_{j,p}, x) u_p^p(x)dx$$

$$= \int_{B_{2r}(x_j)} G(y_{j,p}, x) u_p^p(x)dx + \int_{\Omega \setminus B_{2r}(x_j)} G(y_{j,p}, x) u_p^p(x)dx \quad (2.25)$$

$$= \int_{B_r(y_{j,p})} G(y_{j,p}, x) u_p^p(x)dx + o_p(1) \quad (2.26)$$

$$= \int_{B_{r_j}(y_{j,p})} G(y_{j,p}, x) u_p^p(x)dx + o_p(1) \quad (2.20)$$

$$= \int_{B_{r_j}(0)} G(y_{j,p} + \varepsilon_{j,p}z) \left(1 + \frac{w_{j,p}(z)}{p}\right)^p dz + o_p(1) \quad (1.10)$$

$$= \frac{u_p(y_{j,p})}{p} \int_{B_{r_j}(0)} H(y_{j,p} + \varepsilon_{j,p}z) \left(1 + \frac{w_{j,p}(z)}{p}\right)^p dz$$

$$- \frac{u_p(y_{j,p})}{2\pi p} \int_{B_{r_j}(0)} \log |z| \left(1 + \frac{w_{j,p}(z)}{p}\right)^p dz$$

$$- \frac{u_p(y_{j,p})}{2\pi p} \int_{B_{r_j}(0)} \log |z| \left(1 + \frac{w_{j,p}(z)}{p}\right)^p dz$$
where \(z \in B_{\frac{r}{2}}(0) \) and this implies that again by the dominated convergence theorem, using (2.21) and the uniform bounds in (2.23) we can apply the dominated convergence theorem, and since the function \(z \mapsto \frac{1}{|z|^{1+\gamma}} \) is integrable in \(\{|z| > R_\gamma\} \) choosing \(\gamma \in (0, 2) \) we deduce

\[
\lim_{p \to +\infty} u_p(y_{j,p}) \int_{B_{\frac{r}{2}}(0)} H(y_{j,p}, y_{j,p} + \varepsilon_{j,p} z) \left(1 + \frac{w_{j,p}(z)}{p} \right)^p \, dz = m_j \int_{\mathbb{R}^2} e^{U(z)} = 8\pi m_j H(x_j, x_j),
\]

From which

\[
A_p := \frac{u_p(y_{j,p})}{p} \int_{B_{\frac{r}{2}}(0)} H(y_{j,p}, y_{j,p} + \varepsilon_{j,p} z) \left(1 + \frac{w_{j,p}(z)}{p} \right)^p \, dz = o_p(1). \tag{2.28}
\]

For the second term in (2.27) we apply again the dominated convergence theorem, using (2.23) and observing now that the function \(z \mapsto \frac{\log |z|}{|z|^{\gamma}} \) is integrable in \(\{|z| > R_\gamma\} \) and that \(z \mapsto \log |z| \) is integrable in \(\{|z| \leq R_\gamma\} \). Hence we get

\[
\lim_{p \to +\infty} u_p(y_{j,p}) \int_{B_{\frac{r}{2}}(0)} \log |z| \left(1 + \frac{w_{j,p}(z)}{p} \right)^p \, dz = m_j \int_{\mathbb{R}^2} \log |z| e^{U(z)} \, dz < +\infty
\]

and this implies that

\[
B_p := -\frac{u_p(y_{j,p})}{2\pi p} \int_{B_{\frac{r}{2}}(0)} \log |z| \left(1 + \frac{w_{j,p}(z)}{p} \right)^p \, dz = o_p(1). \tag{2.29}
\]

Finally for the last term in (2.27) let us observe that by the definition of \(\varepsilon_{j,p} \) in (2.19)

\[
\log \varepsilon_{j,p} = -\frac{(p - 1)}{2} \log u_p(y_{j,p}) - \frac{1}{2} \log p, \tag{2.30}
\]

again by the dominated convergence theorem

\[
\lim_{p \to +\infty} \int_{B_{\frac{r}{2}}(0)} \left(1 + \frac{w_{j,p}(z)}{p} \right)^p \, dz = \int_{\mathbb{R}^2} e^{U(z)} = 8\pi \tag{1.3},
\]

and it follows

\[
C_p := -\frac{u_p(y_{j,p})}{2\pi p} \int_{B_{\frac{r}{2}}(0)} \left(1 + \frac{w_{j,p}(z)}{p} \right)^p \, dz \tag{2.31}
\]

\[
= -\frac{u_p(y_{j,p})}{2\pi p} \varepsilon_{j,p} (8\pi + o_p(1)) \tag{2.32}
\]

\[
= u_p(y_{j,p}) \left[\frac{(p - 1)}{p} \log u_p(y_{j,p}) + \frac{\log p}{p} \right] (2 + o_p(1)).
\]
Substituting (2.28), (2.29) and (2.32) into (2.27) we get
\[u_p(y_{j,p}) = u(y_{j,p}) \left[\frac{(p-1)}{p} \log u_p(y_{j,p}) + \log \frac{p}{p} \right] (2 + o_p(1)) + o_p(1), \]
passing to the limit as \(p \to +\infty \) and using (2.18) conclude that
\[\log m_j = \frac{1}{2}. \]
\[\square \]

References

[1] Adimurthi, M. Grossi, *Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity*, Proc. Amer. Math. Soc. 132 (4) (2003) 1013-1019.

[2] F. De Marchis, I. Ianni, F. Pacella, *Asymptotic analysis and sign-changing bubble towers for Lane-Emden problems*, J. Eur. Math. Soc. 17 (8) (2015) 2037-2068.

[3] F. De Marchis, I. Ianni, F. Pacella, *Morse index and sign changing bubble towers for Lane-Emden problems*, Annali di Matematica Pura ed Applicata 195 (2) (2016) 357-369.

[4] F. De Marchis, I. Ianni, F. Pacella, *Asymptotic profile of positive solutions of Lane-Emden problems in dimension two*, Journal of Fixed Point Theory and Applications 19 (1) (2017) 889-916.

[5] F. De Marchis, I. Ianni, F. Pacella, *Asymptotic analysis for the Lane-Emden problem in dimension two*, PDEs Arising from Physics and Geometry, Cambridge University Press, to appear.

[6] F. De Marchis, I. Ianni, M. Grossi, F. Pacella, *Morse index and uniqueness of positive solutions of the Lane-Emden problem in planar domains*, preprint.

[7] K. El Mehdi, M. Grossi, *Asymptotic estimates and qualitative properties of an elliptic problem in dimension two*, Adv. Nonlinear Studies 4 (2004) 15-36.

[8] P. Esposito, M. Musso, A. Pistoia, *Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent*, J. Differential Equations 227 (2006) 29-68.

[9] B. Gidas, W.-M. Ni, L. Nirenberg, *Symmetry and related properties via the maximum principle*, Commun. Math. Phys. 68 (1979) 209-243.

[10] X. Ren, Xiaofeng, J. Wei, *On a two-dimensional elliptic problem with large exponent in nonlinearity*, Trans. Amer. Math. Soc. 343 (2) (1994) 749-763.

[11] X. Ren, Xiaofeng, J. Wei, *Single-point condensation and least-energy solutions*, Proc. Amer. Math. Soc. 124 (1) (1996) 111-120.

F. De Marchis, M. Grossi, F. Pacella, Dipartimento di Matematica, Università degli Studi Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy

Isabella Ianni, Dipartimento di Matematica e Fisica, Università degli Studi della Campagna Luigi Vanvitelli, V.le Lincoln 5, 81100 Caserta, Italy