CHARACTERIZATION OF NUTRITION, ANTIOXIDANTPROPERTIES, AND TOXICITY OF PHYSALIS ANGULATA L. PLANT EXTRACT

ADE CHANDRA IWANSYAH*, WAHIDIYANTI PUTRI JULIANTII, ROHMAH LUTHFIYANTII

1Research Centre for Appropriate Technology, Indonesian Institute of Sciences, Jl. KS Tubun No. 5 Subang 41213, West Java – Indonesia.
2Department of Food Technology, Faculty of Engineering, Pasundan University, Jl. Dr. Setiabudi Street No. 193, Bandung, West Java, Indonesia. Email: chandra.iwansyah@gmail.com

Received: 28 August 2019, Revised and Accepted: 16 September 2019

ABSTRACT

Objective: This research was to characterize and compare the nutrition, total phenolics (TP) content, antioxidant activity, and toxicity of all part of Physalis angulata L. extract.

Methods: The proximate, minerals, TP content, antioxidant activity, and toxicity of all parts of physalis, namely, stem bark extract of P. angulata L. (ESC), leaf extract of P. angulata L. (ELC), rind extract of P. angulata L. (ERC), unripe fruit extract of P. angulata L. (EFU), and ripe fruit extract of P. angulata L. (EFR) were analyzed. The TP content, total flavonoids (TF), and free radical scavenging activity of ethanolic extract are studied using Folin–Ciocalteu assay, aluminum chloride assay, and 1,1-diphenyl 2-picrylhydrazyl scavenging assay. Brine shrimp lethality bioassay (LC100) was used to measure the toxicity of extract.

Results: The physalis leaves extract (ELC) contains the highest total of phenolics (144.4 mg gallic acid equivalent/g), a total of flavonoids (33.33 mg quercetin equivalent/g), and antioxidant activity (96.97 µg/ml) followed by ERC > EFC > EUP > ESC. Based on the level toxicity of LC100, the ripe fruit extract of P. angulata (EFR) (924.18 µg/ml) valued as cytotoxic.

Conclusion: The data of nutrition, antioxidant properties, and toxicity of all parts of P. angulata extract provide for functional food product uses.

Keywords: Antioxidant, Ciplukan, Physalis angulata, Phytochemical, Toxicity.

INTRODUCTION

In Indonesia, in the past three decades, there has been an increase in the use of herbal medicine products and supplements. To improve the quality of health, 80% of the world population uses plant products [1]. Alternative therapy was developed by taking into bioactive compounds derived from nature. The biodiversity found in Indonesia is the world’s second order. A total of 2500 of 30,000 plants are medicinal plants [2]. With biodiversity, it is potential to develop functional food products. In Indonesia, at 2009–2011, functional food products have increased [3].

Globally, a nutritional transition has occurred from infectious disease patterns toward chronic and degenerative lifestyle-related diseases [4]. In Indonesia, changes in nutritional transition are reinforced by increased non-communicable diseases, such as hypertension from 7.6% in 2007 to 9.5% in 2013; stroke from 8.3/1000 to 12.1/1000 (2013); and diabetes mellitus from 1.1% (2007) to 2.1% (2013) [5]. One of the utilizations of traditional medicine based on local wisdom is using a plant named Physalis angulata Lour.

P. angulata L (Indonesia: “Ciplukan” or Sundanese: “Cecender”), family Solanaceae, empirically already utilized in Sundanese traditional medicine preparation for recovery “kencing manis” (diabetes mellitus). Previous studies have reported that physalis leaves possess an anti-diabetic effect [6]. According to Pinto et al. [7], the ethanolic fruit extract of physalis has given anti-hyperglycemic and anti-hypertension potential. Moreover, the ethanolic crude extract of the fruit of physalis has a role in the immune system (immunomodulation), anti-inflammation effect, and antioxidant activity [8,9].

The utilization of local wisdom, increased demand, and many benefits obtained from physalis make it potentially functional food [9]. However, there are still challenges that must be faced, such as poor quality control of extract (non-standard), the lack of clinical and pharmacological data, and toxicity [10]. Nevertheless, based on our knowledge, the evaluation of characteristics antioxidant activity and toxicity of all parts of physalis remain scarce. The present study focused on evaluation and comparison of the characteristics of the nutrition, total phenolics (TP) content, antioxidant activity, and toxicity of all part of P. angulata Lour. Based on the results of the research, there was an effect of TP content against free radical scavenging activity at physalis extract.

MATERIALS AND METHODS

Reagents and materials
Folin–Ciocalteu’s phenol reagent, 1,1-diphenyl-2-picrylhydrazyl (DPPH), gallic acid, quercetin was obtained from Sigma-Aldrich (Singapore). Artemia salina L. (Artemia) was purchased from Dohse Aquaristik GmbH and CO, Gelsdorf, Germany. Aluminum chloride, ethanol, sodium hydroxide, and sodium carbonate are obtained from Merck, Tbk. All reagent used is an analytical grade. Fresh P. angulata L (physalis) was collected from Rawale Village – Subang, Indonesia, obtained from January to May 2018 (Fig. 1). Botanical authentication was done by a Botanist from "Herbarium Bogoriense," Research Center for Biology, Indonesian Institute of Sciences (No. 886/IPH.1.01/II/07/IV/2018), with the voucher specimen that has been stored.

Sample preparation
Fresh physalis washed, then dried at 45°C in 3 days and smashed into powder, the powder soaking in ethanol with ratio 1:10 for 24 h by maceration methods (3 times). The filtrates were consolidated and dried by a vacuum evaporator. For analysis, 10 ml of ethanol was added into a centrifugation tube containing 0.06 g of physalis ethanol extract. The samples centrifuged for 10 min after shaking. The resulting
supernatant was inserted into a 10 mL volumetric flask and added ethanol to the limit mark and shaken for 10 min [11].

Procedure analysis
Physical and nutritional composition
Physical composition, namely, yield, pH, total solid, and color was performed in triplicate. The nutrition composition, viz., moisture, ash, carbohydrates, protein, and lipid content, was measured by methods described [12]. Atwater factor used as a direct application in measuring the energy, which 1 g carbohydrate=4 kcal; 1 g lipid=9 kcal; and 1 g protein=4 kcal. Colorimeter 3 nh is needed to determine the total color difference of the three coordinates.

Preliminary phytochemical screening
Physalis powder was the identification of saponin, flavonoid, alkaloids, tannin, glycosides, and sterols or terpenoids [13-15].

Total carotenoids content
Total carotenoid content of the extract studied with methods of Scrob et al. [16]. The extract of physalis was re-extracted with petroleum ether. The total carotenoid content of the samples was analyzed at \(\lambda=450\) nm using a ultraviolet (UV)-VIS spectrophotometer (UV-1700 Shimadzu series) in units of \(\mu g/g\) (the absorbance should be between 0.2 and 0.8).

TP content
The TP content of physalis was analyzed with the Folin-Ciocalteu assay [17]. The 100 \(\mu l\) extract or standard solution of gallic acid or blank (0; 25; 50; 100; 150; and 200 \(\mu g/ml\)) has been added with distilled water (2.8 ml) and sodium carbonate (2 ml and 2%), and allowed to stand for 4 min. The 100 \(\mu l\) of Folin-Ciocalteu solution was added, then silence for 30 min. Measurement of blank solution was carried out at \(\lambda=760\) nm. The extract solution at concentrations is not the same (1 ml) or blank or standard solution has been added with 3 ml of 0.004% DPPH methanolic solution then stored in the dark for 30 min. Measurement of blank solution was carried out at \(\lambda = 517\) nm. Data obtained were calculated by expression (30) and delivered as the concentration of antioxidants needed for 50% DPPH radical scavenger in a defined time period (IC\(_{50}\)). The samples were analyzed in three replications.

\[
%\text{Inhibition} = \frac{(Ac - As)}{Ac} \times 100
\]

Where:
\(Ac = \text{absorbance control or blank, As = absorbance with sample or standard.}\)

Cytotoxicity assay
The cytotoxicity of the ethanolic extract of physalis was investigated by brine shrimp lethality bioassay [20]. Brine shrimp that are hatched is obtained from brine shrimp eggs (Hobby Artemix \(^\circ\) Germany), which is mixed with salt, in a conical shaped vessel, for 48 h they were left in sterile distilled water under constant aeration. Using a capillary glass of ten active nauplii is taken and put into a bottle containing 4.5 ml of brine solution. The 0.5 ml of the ethanolic extract has been added with brine solution (4.5 ml) and stored under light at room temperature for 24 h, and surviving larvae were counted. After incubation, the larvae are counted dead and live in each test. The research was controlled (vehicle-treated) at unequal concentrations (1–1000 \(\mu g/ml\)) with test substances per dose of a set of three tubes. The IC\(_{50}\) values are used to determine the mortality rate of larvae up to 50%, were calculated using probity analysis. Estimated linear correlations were observed when the logarithm of concentration.

Statistical analysis
Data were presented in mean±standard deviation and tested for normality. The differences between treatments were analyzed using ANOVA. Significant differences between mean values were calculated using the Duncan Multiple Range Test (\(\alpha=5\%\)). All statistical analysis was performed using Microsoft Excel 2013.

RESULTS
Nutrition and physicochemical characteristics
The nutrition and physicochemical characteristics of each part of \(P.\) angulata L. are displayed in Table 1 and 2.

Table 2 showed physicochemical characteristics of each part of physalis with the pH value ranging from 5.81 to 6.46, and the total solid ranging from 5.16 to 6.86° Brix. The color of each part of \(P.\) angulata used a colorimeter 3 nh to find out the spectrum of reflection of the sample, so we get the color coordinates of CIE \(L^*a^*b^*\) coordinates and hue (h°) (Table 2). Table also shows that the colors of each part of physalis were darker, greener, and less blue, except for fruit and stem bark powder. The plant cell walls breakdown is related to the extracts obtained. The yields of ethanolic extract of each part of physalis ranged from 2.0 to 3.6% (Fig. 2).

Phytochemical screening
Phenolic compounds in \(P.\) angulata L. ethanolic extracts are found in large quantities in the phytochemical screening process, which proven by the existence of alkaloids terpenoids, tannins, flavonoids, and glycosides. Phytochemical screening is shown in Table 3.

Absorbance = 0.0005 gallic acid \(\mu g/\) mL \(-0.0033\)

\[
\text{Abosrbanice} = 0.0081 \text{ quercitol } \frac{\mu g}{\text{mL}} + 1.594
\]
Table 1: Nutrition composition of *P. angulata* L. powder

Constituent	Part of the plant				
	ESC	EFC	ELC	EUF	ERC
Moisture (%)	6.04±0.41^a	14.31±0.51^a	9.30±0.81^b	8.60±0.28^d	9.38±0.40^e
Ash (%)	0.87±0.01	0.91±0.00	0.90±0.01	0.95±0.03	0.87±0.01
Protein (%)	10.7±0.00^d	14.06±0.00^e	2.98±0.00^c	17.10±0.00^b	13.72±0.00^c
Lipid (%)	4.10±0.13^a	7.39±0.35^c	11.28±0.35^c	3.65±0.11^{ab}	9.81±0.50^b
Carbohydrates (%)	70.24±0.14^a	63.34±0.22^c	75.54±0.23^d	69.80±0.10^b	66.22±0.23^b
Energy (kcal)	392.86±17.3	375.99±4.03	415.60±4.07	380.45±1.39	408.05±5.42

Data are expressed as mean±standard deviation (n=3). ESC: Stem bark extract of *Physalis angulata* L., ELC: Leaf extract of *Physalis angulata* L., ERC: Rind extract of *Physalis angulata* L., EUF: Unripe fruit extract of *Physalis angulata* L., EFC: Ripe fruit extract of *Physalis angulata* L. a>b>c>d>e, the existence of the same letter in the same line is expressed as the absence of difference. *P. angulata* L: *Physalis angulata* Lour.

Table 2: Phytochemical characteristics of *P. angulata* L.

Samples	pH	Total solid (Brix)	Color (a)	Preference			
ESC	6.59	6.86	59.817	–2.788	14.927	+0.003	Darker, greener, more yellow
ERC	6.46	5.56	53.498	3.492	15.903	+0.004	Darker, less red, more yellow
ELC	6.33	5.16	48.410	–2.168	9.593	+0.003	Darker, greener, less blue
EUF	5.81	5.36	55.811	7.142	19.770	+0.003	Brighter, less red, more yellow
EFC	6.01	6.56	55.811	7.142	19.770	+0.003	Brighter, less red, more yellow

Data are expressed as mean (n=3). ESC: Stem bark extract of *Physalis angulata* L., ELC: Leaf extract of *Physalis angulata* L., ERC: Rind extract of *Physalis angulata* L., EUF: Unripe fruit extract of *Physalis angulata* L., EFC: Ripe fruit extract of *Physalis angulata* L. a>b>c>d>e, the existence of the same letter in the same column is expressed as the absence of difference. *P. angulata* L: *Physalis angulata* Lour.

Table 3: Phytochemical screening of *P. angulata* L.

Constituent	ESC	ERC	ELC	EUF	EFC
Alkaloids	–	–	–	–	–
Mayer	–	–	–	–	–
Terpenoids	++	++	+++	++	+++
Saponin	+	–	+	–	–
Tannins	++	+++	+++	++	+++
Flavonoids	++	+++	+++	++	++
Glycosides	–	++	+++	++	+++

(+)* means positive; (−)* means negative. ESC: Stem bark extract of *Physalis angulata* L., ELC: Leaf extract of *Physalis angulata* L., ERC: Rind extract of *Physalis angulata* L., EUF: Unripe fruit extract of *Physalis angulata* L., EFC: Ripe fruit extract of *Physalis angulata* L., *P. angulata* L: *Physalis angulata* Lour. a>b>c, same alphabetic in the graphic no difference.

DISCUSSION

This study shows that the ethanolic rind extract of *P. angulata* L. (ERC) had the highest moisture and protein content than other parts (p<0.05) (Table 1). The protein of the fruit of *P. pubescens* L. was 31.8% [21]. Moreover, the fruit of *Physalis peruviana* has better protein contains [22]. The leaf extract of *P. angulata* L. (ELC) contained the highest lipid content (11.28%) followed by EFC>ERC>unripe fruit extract of *P. angulata* L. (EUF) and stem bark extract of *P. angulata* L. (ESC) (p<0.05). According to Ramadan and Mörsel [23], the fruit of *P. peruviana* L. contains 2% lipid content, which is 1.8% (seeds) and 0.2% (fruit skin). The high content of polyunsaturated fatty acids obtained from peruviana, which has been extracted into oil [23]. A phytochemical in extract plant maintained in pH value 3–11 and antioxidant activity influenced by pH [24,25]. ANOVA displayed that the ethanolic extract of the fruit of *P. angulata*, namely, EUF and EFC, with the highest average values in yields is ESC>ERC and ELC (p<0.05) (Table 2).

Table 3 is displayed that leaves and fruit extracts of *P. angulata* have various phenolic compounds. Alkaloids compounds were not in ethanolic extract of physalis. The results of this study are an agreement with methods of Andrianto et al. [26], the ethanolic extract of *P. peruviana* leaves contained phenol, flavonoids, tannins, saponins, steroids, and terpenoids. The stem barks of *P. angulata*, obtained by

Fig. 2: Yields of ethanolic extracts of *Physalis angulata* L. Data were expressed as mean±standard deviation (n=3). ESC: Stem bark extract of *P. angulata* L., ERC: Leaf extract of *P. angulata* L., EUF: Unripe fruit extract of *P. angulata* L., EFC: Ripe fruit extract of *P. angulata* L., *P. angulata* L: *Physalis angulata* Lour.
null
for financial assistance (No.20/P/PRJ_LIP/JINSAS-1/III/2018) and Indonesian Institute of Sciences (LIPI) for providing access and technical support.

AUTHORS’ CONTRIBUTIONS
Ade Chandra Iwansyah (ACI) and Rohmah Luthfiyanti designed and conducted field research; Wahidiyanti P Julianti performed laboratory analysis; ACI conducted statistical analyses; ACI wrote the manuscript with inputs from all coauthors; ACI had final responsibility for the content. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST
There are no conflicts of interest in this paper.

REFERENCES
1. Ekor M. The growing use of herbal medicines: Issues relating to its uses, adverse effects and challenges in monitoring safety. Front Pharmacol 2014;4:177.
2. [MOT-RJ] Ministry of Trade. Warta Ekspor Obat Herbal Tradisional. Jakarta: Ministry of Trade, Republic of Indonesia; 2014.
3. Hariyadi P. Industri pangan fungsional Indonesia: Peluang untuk membangun kesihatan bangsa. Food Rev Indon 2015;10:514-7.
4. Popkin BM. Global nutrition dynamics: The world is shifting rapidly toward a diet linked with noncommunicable diseases. Am J Clin Nutr 2006;84:289-98.
5. [MOH-RJ] Ministry of Health. Riset Kesehatan Dasar (Riskesdas). Jakarta: Ministry of Health, Republic of Indonesia; 2013.
6. Kasali F, Fokunang C, Ngoupayo E, Ngameni B, Legrand NB, et al. Evaluation of the antidiabetic properties of hydro-alcoholic extract and its fractions from Physalis peruviana L. leaves on streptozotocin-induced diabetic wistar rats. J Dis Med Plants 2016;2:667-73.
7. Pinto Mda S, Ranila LG, Genovese MI, Shetty K, et al. Evaluation of antihyperglycemia and antihypertension potential of native peruvian fruits using in vitro models. J Med Food 2009;12:278-91.
8. Adnyana IK, Yulina E, Macusti N, Setiawan F. Evaluation of ethanolic extracts of muliaca (Physalis angulata L.) herbs for treatment of lupus disease in mice induced pristane. Procedia Chem 2014;13:186-93.
9. Kusumaningtyas RW, Laily N, Limandha P. Potential of ciplukan (Physalis angulata L.) as source of functional ingredient. Procedia Chem 2015;14:367-72.
10. Ghosh D. Quality issues of herbal medicines: Internal and external factors. Int J Complement Alternat Med 2018;11:2003-50.
11. Yusoff MM, Iwansyah AC. Comparative Evaluation of Total Phenolics and Free Radical Scavenging Activity of Aqueous Extracts of Labisia pumila var. alata from Malaysia and Indonesia. In: International Conference on Biotechnology and Food Science, IEEE, April 1-3, 2011, p. 4-8.
12. AOAC: Official Methods of Analysis. Association of Official Analytical Chemist. Arlington, Virginia (US): AOAC; 1990.
13. Harborne JB. Phytochemical Methods. London: Chapman and Hall, Ltd.; 1973. p. 49-188.
14. Sofozawa A. Medicinal Plants and Traditional Medicine in Africa. Ibadan: Spectrum Books Ltd.; 1993. p. 1-289.
15. Trease GE, Evans WC. Pharmacognosy. 11th ed. London: Brailiar Tiridel Can Macmillian; 1989.
16. Scrob S, Muste S, Has I, Murean C, Socaci S, Farca A. Total content of carotenoids in corn landraces and their potential health applications.

Asian J Pharm Clin Res, Vol 12, Issue 11J, 2019, 95-99

17. Iwansyah AC, Yusoff MM. Physicochemical, minerals and antioxidant properties of Labisia pumila var. alata of selected geographic origins. AGRIVIT A J Agric Sci 2012;34:94-104.
18. Meda A, Lamién CE, Romito M, Mililojo J, Nacoulina O. Determination of the total phenolic, flavonoid, and proline content in burkina fasan money, as well as their radical scavenging activity. Food Chem 2005;91:571-7.
19. Kumaran RJ, Kurukarnan. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem 2007;97:109-14.
20. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL, et al. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med 1982;45:31-4.
21. El Sheikha AF, Zaki MS, Bakr EA, El Habasy MM, Montet D. Biochemical and sensory quality of Physalis (Physalis pubescens L.) juice. J Food Process Preserv 2010;34:3541-55.
22. Rodríguez S, Rodríguez E. Efecto de la ingesta de Physalis peruviana (aguaymanto) sobre la glicemia postprandial en adultos jóvenes. Rev Med Valdejana 2007;4:143-52.
23. Ramadan MF, Mörs J. Oil goldenberry (Physalis peruviana L.). J Agric Food Chem 2003;51:969-74.
24. Jamal JA. Malay traditional medicine, an overview of scientific and technological progress. Tech Monit 2006;23:37-49.
25. Maisuthisakul P. Phenolic constituents and antioxidant properties of some thai plants. In: Rao V, editor. Phytochemicals - A Global Perspective of their Role in Nutrition and Health. Rijeka, Croatia: InTech; 2012.
26. Andrianto D, Anuser G, Untoro M, Fatmawati R, Winida RA, Aisyah S. Pengaruh Ekstrak Daun Ciplukan (Physalis angulata L.) Terhadap Kelarutan Batu Ginjal in vitro. In: Prosiding Seminar Nasional Kisma Unesa; 2012.
27. Susanti RF, Garini S, Renaldo IJ, Ananda R, Laporan Penelitian Ekstraksi Batang Physalis angulata Dengan Air Subkritik. Food Technology Study Program; 2013.
28. Mier-Giraldo H, Díaz-Barrera LE, Delgado-Murcia LG, Valero-Valdivieso MF, Cáez-Ramírez G. Cytotoxic and immunomodulatory potential activity of Physalis peruviana fruit extracts on cervical cancer (HeLa) and fibroblast (L929) cells. J Evid Based Complementary Altern Med 2017;22:777-87.
29. Zhang D, Hamauzu Y. Phenolics compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.). J Food Agric Environ 2004;2:195-200.
30. Maisuthisakul P, Pasuk S. Ritthiruangdej P. Relationship between antioxidant properties and chemical composition of some Thai plants. J Food Compos Anal 2008;21:229-40.
31. Iwansyah AC, Damanik RM, Kusitiyah L, Hanafi M. Relationship between antioxidant properties and nutritional composition of some galactopoeitics herbs used in indonesia: A comparative study. Int J Pharm Pharm Sci 2016;8:1236-43.
32. Djajanegara I. Uji sitotoksisitas ekstrak ethanol 70% herba ciplukan (Physalis angulata Linn.) terhadap sel widr secara in vitro. Bull UASVM Food Sci Technol 2014;71:296-300.
33. Layyina H. Toksisitas Ekstrak Ciplukan (Physalis pubescens L.) terhadap Letalitas Larva Udang. Bull UASVM Food Sci Technol 2016;8:1236-43.
34. Kormin F, Khan M, Iwansyah AC. Microwave assisted extraction; phytochemical evaluation of Malaysian palm oil trunk epiphytes ferns. Int J Pharm Pharm Sci 2016;8:1-7.