Bearing Capacities of Backfilled Soil from Maswtest: A Quick and Convenient Methodology

Arkaprabha Chattopadhyay, Debdeep Sarkar and Sekhar Chandra Dutta*
Department of Civil Engineering, IIT(ISM) Dhanbad, India

Submission: February 21, 2018; Published: April 24, 2018

*Corresponding author: Sekhar Chandra Dutta, Department of Civil Engineering, IIT(ISM) Dhanbad, Jharkhand, Dhanbad-826001, India, Email: sccd2000@gmail.com

Introduction

Soil characteristics through multichannel analysis of surface waves (MASW)

First introduced in GEOPHYSICS, the multichannel analysis of surface waves (MASW) method is one of the popular seismic survey methods evaluating the elastic condition (stiffness) of the ground for geotechnical engineering purposes particularly for highly heterogeneous soil like mine backfill. The demonstration of such a convenience is presented in this short article for the sake of information to the community. MASW first measures seismic surface waves generated from various types of seismic sources, such as sledge hammer or automatic drop hammer. It further analyses the propagation velocities of those surface waves. Then finally variations of shear-wave velocity (V_s) below the surveyed area are obtained. Shear-wave velocity (V_s) is one of the elastic constants and closely related to Young’s modulus. Under most circumstances, V_s is a direct indicator of the ground stiffness which is used to derive load-bearing capacity. After a relatively simple procedure, final information is provided in 1-D, 2-D, and 3-D formats.

MASW Test

The test was conducted at Jagannath colliery (Talcher, Orissa, India, Latitude- 20°57’50.021”, Longitude- 85°07’57.021”) near a bore hole already the bearing capacity through which have been tested. 24 Geophones were set across bore hole at a distance of 1m apart from each other, 12 on either side of the borehole. The last geophone was connected to a trigger and the signal is induced to it by hammering. The other geophones were connected to the receivers which pass on the acquired signals due to hammering, to the geophones. The geophones then pass on the signals to the controller (installed in laptop). This controller records the signals, analyses and generates outputs accordingly. The acquisition was carried out in a compact-sized 24 channel seismograph with a 24 bit data acquisition board and USB interface for external PC.

Analysis of the acquired data

![Figure 1: Source- winMASW analysis software.](source)
The analysis after performing the test and acquisition of the relevant data was carried out in the software winMASW Version 7.2 which produced the following results (Figure 1 & 2).

After obtaining the shear wave velocity, the elasticity modulus of the soil was obtained from appropriate formulae. Further, the allowable bearing capacity of soil was obtained by an indirect relationship utilizing the modulus of subgrade reaction of soil. The adopted procedure is explained and enumerated as follows.

The density of the soil at Jagannathpur site previously obtained was 2610 kg/m3 (obtained from specific gravity test). Hence density, $\rho = 2610$ kg/m3, $\nu = 0.25$. Further, from MASW dispersion curve, shear velocity v_s obtained at 3m depth is 155 m/s. It is known that shear wave velocity $v_s = \sqrt{G/\rho}$ where G is the shear modulus. Hence, substituting the corresponding values the shear modulus is obtained as $G = 62.7 \times 10^3$ N/m2.

Further, modulus of elasticity is obtained as $E = 62 (1 - \nu^2)$ $v_s^2 = 156.75 \times 10^3$ N/m2.

From the following equation [1], modulus of subgrade (E_{OS}) of 3 the allowable bearing capacity can be obtained as $k_c = 40 \times E_{OS} \times \rho$.

From the above equation, considering a Factor of Safety (F.O.S) of 3 the allowable bearing capacity is obtained as $Q_a = 13.93t/m^2$. On the other hand, the SPT test conducted in this region produced an SPT value of N_{cor} = 14. As the width of footing > 4ft, allowable bearing capacity can be given by the equation as follows [2].

$$Q_a = N/4[(B/1)/B]^k \text{, where } K = 1 + 0.33(D/B) \leq 1.33; \text{ where } D \text{ is the depth from ground level to bottom of the footing in feet}; B \text{ is the width of footing in feet}. \text{ Hence, substituting the corresponding numerical values, } K = 1 + 0.33(9.84/32.81) \text{ which gives the value as 1.10 and the allowable bearing capacity is obtained as } Q_a = 14 \times (32.81 + 1)/32.81 \times 16.18 = 213.93t/m^2.$$

Conclusion

Comparing the bearing capacities obtained from SPT test and MASW analysis of Jagannath colliery it can be inferred that they are more or less close to each other (16.18t/m2 and 13.93t/m2) which ascertains the accuracy of the tests. Further, conducting test by MASW is less hazardous as no digging or previous preparation is needed and the test can be carried out more quickly at more than one places within a day. Thus, it may be extremely helpful for deciding the characteristics of heterogeneous soil.

Acknowledgement

The present article is a small part of the activity of Coal S&T project bearing a number EE46 sanctioned by Ministry of Coal, Government of India. Financial support rendered by them for MASW is greatly acknowledged.

References

1. Bowles JE (1968) Foundation Analysis and Design (1st edn). McGraw-Hill.
2. Bowles JE (1988) Foundation Analysis and Design (4th edn). McGraw Hill.
