Protein Disulfide Isomerase: A New Class of Drug Target

Noureddine Ben Khalaf and M Dahmani Fathallah*
Department of Life Sciences, Arabian Gulf University, Manama, Bahrain

Submission: February 11, 2018; Published: February 16, 2018

*Corresponding author: M Dahmani Fathallah, Department of Life Sciences, Medical Biotechnology Program, Arabian Gulf University, PO Box 22971 Manama, Bahrain, Email: d.fathallah@agu.edu.bh

Introduction

Protein Disulfide Isomerase (PDI) was originally discovered fifty years ago as the first protein folding catalyst and isolated from rat liver [1]. It was demonstrated early on that PDI acts as a dithiol–disulfide oxidoreductase capable of reducing, oxidizing and isomerizing disulfide bonds. Independently of its redox activity, PDI can also act as a vital cellular defense against the intracellular accumulation of misfolded proteins via its chaperone activity [2]. As of today, the PDI family comprises twenty members that vary in length and in the spatial arrangement of PDI-specific structural domains [3]. Indeed, most PDI family members share in common catalytic and non-catalytic thioredoxin-like domains. PDI is organized in four thioredoxin-like domains, a, a’, b and b’, in addition to a linker domain: x (Figure1). The a and a’ domains contain catalytic CXXC motifs reacting with thiol groups in substrate proteins. Non catalytic domains b and b’ were shown to be involved in substrate recognition and recruitment [3]. Although PDIs are considered to be primarily ER resident proteins, several other cellular locations have been reported for these proteins including the cell surface, cytosol, mitochondria, and extracellular matrix [4]. Interestingly, several recent studies show the association of the extracellular PDIs with specific physiologic and physiopathologic processes [5]. The key roles played by these proteins in cell adhesion and thus inflammation, cardiovascular diseases, cancer and host-pathogen interaction suggest the potential use of PDI as novel therapeutic targets, which will be discussed in this review.

PDI in Inflammation

Inflammation is an important and complex biological process that is characterized by a dual beneficial or detrimental outcome. It is generally triggered by pathologic stimuli such as pathogens or tissue injury. It involves immune cells, vessels and molecular mediators in a protective response to eliminate the threat. Cell adhesion molecules (CAMs) including integrins and selectins control the process of leukocyte trafficking to sites of infection or injury by facilitating cell rolling and transmigration through endothelial cells. Hence, these molecules constitute a valuable class of targets for controlling the inflammation process namely in immune deregulation such as chronic inflammatory and autoimmune diseases. The expression of protein disulfide isomerase (PDI) on the surface of several cell types including leukocytes have been demonstrated, suggesting an enzymatic mediator function for disulfide exchange in the cell-surface receptors which might play a role in the integrin’s ligand-induced conformational change which is instrumental for the integrin αMβ2 (CD11b/CD18) to efficiently adhere to the vascular endothelium during the recruitment of leukocyte to an inflammatory site [6]. A recent study shows that neutrophil PDI is required for neutrophil adhesion and crawling during tumor necrosis factor α–induced vascular inflammation in vivo, and that extracellular PDI regulates αMβ2 integrin-mediated adhesion and crawling of neutrophils during vascular inflammation [7]. Furthermore, during the course of a study we conducted in our laboratory, we observed using the yeast two hybrid systems’ with a human HUVEC cell library and an integrin/selectin chimera protein as bait that the endothelial PDIA4 might be involved in leukocyte integrin/selectin mediated adhesion (unpublished data). In addition, PDI was reported to be involved in regulating L-selectin shedding from activated leukocytes [8] and one of the PDI inhibitors, bacitracin, selectively interfered with the β1 integrin-mediated adherence of lymphoid cells to collagen, fibronectin, laminin, and VCAM-1, and with α4β7-dependent adherence to fibronectin and to VCAM-1 [9]. Thereby, PDI may constitute a new class of targets for inflammatory diseases and will help design novel drugs that can inhibit the interaction of cell-adhesion molecules (CAMs) with their ligands during the adhesion process, suppress the inflammatory cell influx and contribute to the successful resolution of inflammatory disease processes or “catabasis.

PDI in Cardio-Vascular Diseases

Despite the protective role played by Protein Disulfide Isomerase in preventing protein misfolding during ischemic
myocardial injury [10] and cardiomyocyte apoptosis in murine models [11], it was shown that PDI is required for thrombosis, hemostasis and vascular inflammation [12]. David et al. [13] demonstrated that PDI enzymatically catalyzed disulfide exchange is required for platelet adhesion to collagen via integrin α2β1. In fact, it has been reported that upon vascular injury, endothelial cells and platelets are activated and that they secrete PDI and other thiol isomerases. Indeed, PDI, ERp5 and ERp57 have recently been shown to contribute to the initiation of thrombus formation in vitro [14]. Indeed, PDI was shown to bind to β3 integrins on activated cells causing thrombus initiation [15]. Blocking of PDI by a specific antibody significantly reduced both platelet thrombus formation and fibrin generation in a mouse thrombosis model [16]. A screening for anti-thrombotic agents identified quercetin-3-Rutinoside; Rutin, as PDI reductase activity inhibitor and a potent anti-thrombotic agent in vitro and in vivo [17]. In a recent study published by Lin et al. [18], Rutin was reported to directly bind to the b' domain of PDI restricting conformational flexibility of the protein and allowing a more compact conformation. In addition, PDI b' fragment was shown to contain the major binding site of Rutin and the infusion of the b'x fragment in mouse thrombus model reversed Rutin inhibition of platelet thrombus formation [18]. All these data point towards PDI as valuable and as an emerging drug target for thrombosis.

![Figure 1: General domain structure of PDIs: Thioredoxin-like domains representing the catalytically active domains a and a' are shown in orange. The catalytically inactive b domain and b' domains are displayed in light and dark blue respectively. The linker region x responsible for the U shape structure of PDIs is represented in green. The c terminus is illustrated in grey followed by an ER retrieval signal, KDEL. The number and order of the domains vary between members of the PDI superfamily (P4HB, PDA2, PDA3, PDA4, PDA5, PDA6 and PDILT). Some members (AGR2, AGR3, TXNDC12, TMX1 to 4, TXNDC5 and Erp29) are exclusively composed of a and a’ domains, others (CASQ1, CASQ2 and Erp27) are composed of exclusively b and b'.](image)

PDI in cancer

Although PDI role was extensively explored in several diseases, its implication in cancer establishment and progression is not yet clear. Nonetheless, several studies report the association of certain PDI family members with cancer progression. By exploring microarray and proteomic data, Shili et al. [19] reported that PDI expression was significantly upregulated in brain and CNS cancers, lymphoma, kidney, ovarian, prostate, lung and male germ cell tumors, and that this upregulation correlates with cancer metastasis and invasion. Furthermore, PDIs were shown to be involved in cancer clinical outcomes. PDIA4 and PDIA6 were reported to mediate resistance to cisplatin-induced cell death in lung adenocarcinoma [20] and inhibition of PDI by bacitracin sensitized aplidin-Resistant HeLa cells to chemotherapy [21]. In addition, PDI protects cancer cells from apoptosis. In melanoma, bacitracin inhibition of PDI activity enhanced apoptosis triggered by fenretinide or velcade [22]. It was also shown that overexpression of cytosolic PDI (ER retention sequence deleted) suppressed etoposide-induced apoptosis in AML HL-60 cells [23]. PDI blockage by Bacitracin or an anti-PDI mAb inhibited in vitro migration and invasion of human glioma cells [24], suggesting that cell-surface PDI is also involved in cancer progression. Recently, Shili et al. [25] showed that PACMA 31, an irreversible small-molecule inhibitor of PDI forming a covalent bond with the active site cysteines of PDI, showed tumor targeting ability and suppressed ovarian tumor growth significantly without causing toxicity to normal tissues [25]. Although PDI function is important for normal cellular homeostasis, the differential PDI activity between normal and cancer cells can be targeted for novel cancer therapy discovery.

PDI in host-pathogen interactions

PDI has been involved in several virulence functions in both prokaryotic and eukaryotic pathogens. For example, DsbA (a bacterial homologue of PDI) is involved in the biogenesis of the enterotoxin and toxin-coregulated pil of Vibrio cholera [26]. Moreover, it was shown that PDI plays a major role in assisting the folding of various secretory proteins implicated in virulence mechanisms of intracellular pathogens such as Neospora caninum [27]. In leishmaniasis, Ben Achour and coworkers [28] identified a 52-kDa PDI in *Leishmania major* (LmPDI). The protein was shown to be overexpressed in high-virulence isolates and secreted by the parasite [28]. LmPDI inhibitors affected parasite growth in vitro and amastigote proliferation in infected macrophages [29,30]. In the HIV model, cell-surface protein disulfide isomerase has been proposed to promote disulfide bond rearrangements in HIV-1 envelope protein (Env) that accompany Env-mediated fusion [31]. Research in infectious diseases is currently focusing on this class of protein as a novel drug target in host-pathogen interactions.

Conclusion

PDI family members constitute an emerging new class of drug target. Protein localization, expression profile and its suitability for plate based high-throughput screening are in favor of the high druggability of this class of target. However, further investigations of the exact role they play in pathological states
are required for PDI inhibitors to get to clinical trials. In addition, there has been a lack of potent and selective PDI inhibitors for clinical development. As an example, bacitracin, the first PDI inhibitor, failed to enter clinical trials because of its off-target toxicity and weak cell permeability. Several enzymatic assays are currently being developed to identify novel compounds displaying a high selectivity for PDI and may soon lead to more understanding of protein mode of action.

References

1. Goldberger RF (1963) Anfinsen, Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem 238: 628-635.
2. McLaughlin SH, Bulleid NJ (1988) Thiol-independent interaction of protein disulphide isomerase with type X collagen during intra-cellular folding and assembly. Biochem J 231 (Pt 3): 793-800.
3. Kozlov G (2010) A structural overview of the PDI family of proteins. FEBS J 277(19): 3924-3936.
4. Turano C, Coppapi S, Altieri F, Ferrano A (2002) Proteins of the PDI family: unexpected non-ER locations and functions. J Cell Physiol 193(2): 154-63.
5. Parakh S, Atkin JD (2015) Novel roles for protein disulphide isomerase in disease states: a double edged sword? Front Cell Dev Biol 3: 30.
6. Arnaout MA (2005) Biology and structure of leukocyte beta 2 integrins and their role in inflammation. F1000Res, 4: 5.
7. Hahn E, Li J, Kim K, Huh S, Rogelj S, Cho J (2013) Extracellular protein disulfide isomerase regulates ligand-binding activity of alphaMbeta2 integrin and neutrophil recruitment during vascular inflammation. Blood 121(19): 3789-3800.
8. Bennett TA, Edwards BS, Sklar LA, Rogelj S (2000) Sulfhydryl regulation of L-selectin shedding: phenylarsine oxide promotes activation-independent L-selectin shedding from leukocytes. J Immunol 164(8): 4120-4129.
9. Mou Y, Ni H, Wilkins JA (1998) The selective inhibition of beta 1 and beta 7 integrin-mediated lymphocyte adhesion by bacitracin. J Immunol 161(11): 6323-6329.
10. Toklo S, Severino A, Abbate A, Baldi A (2011) The role of PDI as a survival factor in cardiomyocyte ischemia. Methods Enzymol 489: 47-65.
11. Severino A, Campioni M, Straino S, Salloum FN, Schmidt N, et al. (2007) Identification of protein disulphide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. J Am Coll Cardiol 50(11): 1029-1037.
12. Cho J (2013) Protein disulphide isomerase in thrombosis and vascular inflammation. J Thromb Haemost 11(12): 2084-2091.
13. Lahaw J (2003) Enzymatically catalyzed disulphide exchange is required for platelet adhesion to collagen via integrin alpha2 beta1. Blood 102(s): 2085-2092.
14. Furie B, Flamenhaft R (2014) Thiol isomerases in thrombus formation. Cire Res 114(7): 1162-1173.
15. Cho J, Furie BC, Coughlin SR, Furie B (2008) A critical role for extracellular protein disulphide isomerase during thrombus formation in mice. J Clin Invest 118(3): 1123-1131.
16. Flamenhaft R, Furie B, Zwicker JI (2015) Therapeutic implications of protein disulfide isomerase inhibition in thrombotic disease. Arterioscler Thromb Vasc Biol 35(1): 16-23.
17. Jasuja R, Passam FH, Kennedy DR, Kim SH, van Hessem L, et al. (2012) Protein disulphide isomerase inhibitors constitute a new class of antithrombotic agents. J Clin Invest 122(6): 2104-2113.
18. Wang C, Li W, Ren J, Fang J, Ke H, Gong W, et al. (2013) Structural insights into the redox-regulated dynamic conformations of human protein disulphide isomerase. Antioxid Redox Signal 19(1): 36-45.
19. Xu S, Sankar S, Neamati N (2014) Protein disulfide isomerase: a promising target for cancer therapy. Drug Discov Today 19(3): 222-240.
20. Tufo G, Jones AW, Wang Z, Hamelin J, Tajeddine N, et al. (2014) The protein disulphide isomerases PDIa4 and PDIa6 mediate resistance to cisplatin-induced cell death in lung adenocarcinoma. Cell Death Differ 21(5): 685-695.
21. González-Santiago L, Alfonso P, Suárez Y, Niñez A, García-Fernández LF, et al. (2007) Proteomic analysis of the resistance to apledin in human cancer cells. J Proteome Res 6(4): 1286-1294.
22. Louzet PE, Giannarini M, Armstrong JL, Martin S, Pagliarini V, et al. (2008) Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res 68(13): 5363-5369.
23. Ping S, Liu S, Zhou Y, Li Z, Li Y, Liu K, et al. (2007) Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis. Mol Cells 24(2): 261-267.
24. Goplen D, Wang J, Enger PØ, Tysnes BB, Terzis AJ, et al. (2006) Protein disulphide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res 66(20): 9895-9902.
25. Xu S, Butkevich AN, Yamada R, Zhou Y, Debnath B, et al. (2012) Discovery of an orally active small-molecule irreversible inhibitor of protein disulfide isomerase for ovarian cancer treatment. Proc Natl Acad Sci U S A 109(40): 16348-16353.
26. Heras B, Shouldice SR, Totsika M, Scanlon MJ, Scheinberg MA, et al. (2006) DSB proteins and bacterial pathogenicity. Nat Rev Microbiol 7(3): 215-225.
27. Liao M, Ma L, Bannai H, Lee EG, Xie Z, et al. (2006) Identification of a protein disulfide isomerase of Neospora caninum in excretory-secretory products and its IgA binding and enzymatic activities. Vet Parasitol 139(1-3): 47-56.
28. Ben Achour Y, Chenik M, Louzir H, DeBajai K (2002) Identification of a disulphide isomerase protein of Leishmania major as a putative virulence factor: Infect Immun 70(7): 3576-3585.
29. Ben Khalaf N, De Muylder G, Louzir H, McKeever J, Chenik M (2012) Leishmania major protein disulfide isomerase as a drug target: enzymatic and functional characterization. Parasitol Res 110(5): 1911-1917.
30. Ben Khalaf N, De Muylder G, Ratnam J, Kean-Hooi Ang K, Arkin M, et al. (2011) A high-throughput turbidimetric assay for screening inhibitors of Leishmania major protein disulfide isomerase. J Biomol Screen 16(5): 545-551.
31. Ou W, Silver J (2006) Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion. Virology, 2006. 350(2): 406-417.
