Thin and crush: The new mantra in left main stenting?

Gianluca Rigatelli, Marco Zuin, Debabrata Dash

Gianluca Rigatelli, Section of Cardiovascular Diagnosis and Endoluminal Interventions, Rovigo General Hospital, Rovigo 45100, Italy

Marco Zuin, Section of Internal and Cardiopulmonary Medicine, Department of Medical Science, University of Ferrara, Ferrara 44124, Italy

Debradata Dash, Interventional Cardiology, Thumbay Hospital, Ajman 415555, United Arab Emirates

ORCID number: Gianluca Rigatelli (0000-0002-7318-3640); Marco Zuin (0000-0002-4559-1292); Debradata Dash (0000-0003-1354-3808).

Author contributions: Rigatelli G, Zuin M and Dash D conceived the study and drafted the manuscript; all authors approved the final version of the article.

Conflict-of-interest statement: The authors have no conflict of interest to declare.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Published online: November 26, 2018

Abstract

Complex bifurcations have been suggested to be better approached by a planned double stent technique; however, recent randomized trials have shown better outcomes of provisional compared to planned two-stent strategy, in terms of both short-term efficacy and safety. In left main (LM) bifurcations, double kissing (DK)-Crush has demonstrated its superiority over Culotte and provisional-T in terms of restenosis and stent thrombosis, gaining respect as one of the most performant techniques for bifurcations stenting. On the other hand, the Nano-Crush technique has recently become part of the repertoire of double stenting techniques, providing evidence that the use of ultrathin strut stents and very minimal crush would be beneficial for both the physiological and rheological properties of the complex bifurcations, even in LM scenario, leading to a lower rate of thrombosis and restenosis at both side branch and true carina. Finally, the newest generation of ultrathin strut stents are gaining a reputation for its safe and effective use in LM treatment thanks to improved design with increased expansion rate capable of LM treatment up to 5-6 mm diameter. The modern crush techniques, such as DK-Crush and Nano-Crush, are providing excellent results on mid and long-term follow up, suggesting that minimal crushing obtained using ultra-thin stents is a good way to obtain surgical-like outcomes in the treatment of complex LM bifurcation disease.

Key words: Stent; Crush; Interventional cardiology; Percutaneous coronary intervention; Percutaneous coronary intervention; Coronary bifurcation

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Modern crush techniques such as DK-Crush and Nano-Crush are providing excellent results on mid and long-term follow up.
long-term follow-up, suggesting that minimal crushing obtained using ultra-thin stents is a good way to obtain surgical-like outcomes in the treatment of complex left main bifurcation disease.

Rigatelli G, Zuin M, Dash D. Thin and crush: The new mantra in left main stenting? World J Cardiol 2018; 10(11): 191-195 Available from: URL: http://www.wjgnet.com/1949-8462/full/v10/i11/191.htm DOI: http://dx.doi.org/10.4330/wjc.v10.i11.191

INTRODUCTION

Complex bifurcations have been suggested to be better approached by a planned double stent technique[1-2], although recent randomized trials have shown better outcomes of provisional compared to planned two-stent strategy in terms of both short-term efficacy and safety[3-4]. The total amount of metal layers at both the carina and bifurcation angle after double stenting techniques[5-6] appeared to be important issues to achieve favorable short- and long-term outcomes.

Left main (LM) bifurcation disease is probably the only real important bifurcation in the human vascular tree. The DEFINITION trial[7] has given a practical definition of what is complex and what it is not in the treatment of coronary artery bifurcation disease. Indeed, a length of the left circumflex coronary artery (LCx) > 10 mm has already been identified as a predictor of complex LM bifurcation probably requiring a double stenting strategy.

To achieve similar or better post-procedural results guaranteed by surgical treatment from a rheolytic point of view, the use of intravenous ultrasound is mandatory[8] to properly assess the size and length of the disease in both branches and in the LM body, allowing an accurate selection of the most appropriate stenting technique and stents.

Culotte, mini-Culotte, DK-Crush, T-stent and Protrusion (TAP) are currently the most used double stenting techniques (Table 1)[9]. Recently, DK-Crush has demonstrated its superiority over Culotte[10] and provisional-T[11] techniques in terms of restenosis and stent thrombosis, gaining respect as one of the most performant techniques for bifurcation stenting.

Even more recently, the Nano-Crush technique[12-13] has become part of the repertoire of double stenting techniques, providing evidence that the use of ultra-thin strut stents and very minimal crush is beneficial for both the physiological and rheological properties of the complex bifurcations, leading to a lower rate of thrombosis and restenosis at both side branch (SB) and true carina[14].

Table 1 Available techniques for left main interventions
Single stent
Cross over-provisional
T and protrusion
Culotte and Mini-culotte
Nano-Crush

AMOUNT OF METAL INTO THE CARINA:

Does it really matter?

The lack or excess amount of metal layers at the carina has been suggested to be a potential cause of
stent restenosis and thrombosis, respectively\(^7\). As recently suggested by our group, using computed fluid dynamics, the Culotte and other techniques that leave large amounts of metal at the carina unfavorably impacted the bifurcation rheology, causing an increase in lower wall shear stress (WSS) and in the SB. Indeed, low WSS is a potential substrate for restenosis and thrombosis (Figure 2).

To achieve a more physiological flow profile, there should ideally be less metal coverage in the carina side and full metal coverage in the area opposite of the carina and the ostium of the SB. DK-Crush and Nano-Crush are likely to work differently in terms of lowering WSS areas depending on the LM bifurcation. The distribution of metal and the coverage of the carina by the struts strictly depends on the angles: Sharp angles tend to increase the amount of metal at the carina, especially when a generous portion of the SB stent is protruding and should be crushed, whereas if the portion of the stent to be crushed is shorter and the angle is wider, the amount of the metal would be less and coverage might be even incomplete. Obviously, the use of ultra-thin stent struts in DK-Crush or other techniques would potentially improve both safety and long-term outcomes.

STENT ENGINEERING CONSIDERATIONS

The Orsira (Biotronic AG, Bülach, Switzerland) stent is considered to have the thinnest struts commercially available. In the most recent European randomized trials, this stent demonstrated a very good safety and efficacy profile. Indeed, its low rate of stent thrombosis reached the non-inferiority statistical significance compared to Xience Prime stent (Abbott Inc., United States\(^{18,19}\)) with a faster strut endothelium coverage evaluated by optical coherence tomography in respect to the competitors\(^{20}\). These results could be achieved even after overcoming the major intrinsic structural limitation to the stent’s design, such as longitudinal shortening\(^{21}\). Nowadays, other stents have been designed with similar ultra-thin struts, such as the Resolute Onyx stent by Medtronic Inc. or the Ultimaster by Terumo Inc., which are currently being evaluated in real-world scenarios but promise to maintain the line of their predecessor or do even better in terms of strut neointima coverage.

Nowadays, stent working size in most LMs should not be less than 4.5 mm, and all modern techniques imply the use of POT at high pressure. All of these issues
Table 2 Thinnest struts stents and their maximum expansion for left main interventions

Stent type	Strut thickness (μ)	Max size achievable (mm)
Orsiro Biotronik, Sui	60-80	5.3 (3.5 stent)
Onyx Medtronic, United States	70	6 (4.0 stent)
Ultimaster Terumo, Japan	80	5.8 (3.5 stent)
Biomime Meril	65	5.3 (4.5 stent)
Synergy Boston Scientific; United States	74	5.7 (4.0 stent)

Data of maximum expansion retrieved from Sawaya FJ et al. 1 Not verified in bench test.

References

1 Behan MW, Holm NR, de Belder AJ, Cockburn J, Erglis A, Curzen NP, Nienmeier M, Oldroyd KG, Kervinen K, Kumsars I, Gunnes P, Stables RH, Maeng M, Ravkilde J, Jensen JS, Christiansen EH, Cooter N, Steigen TK, Vikman S, Thuesen L, Lassen JF, Hildick-Smith D. Coronary bifurcation lesions treated with simple or complex stenting: 5-year survival from patient-level pooled analysis of the Nordic Bifurcation Study and the British Bifurcation Coronary Study. Eur Heart J 2016; 37: 1923-1928 [PMID: 27161619 DOI: 10.1093/eurheartj/ehw170]

2 Hildick-Smith D, Behan MW, Lassen JF, Chieffo A, Lefèvre T, Stankovic G, Burzotta F, Pan M, Ferenc M, Bennett L, Hovasse T, Spence MJ, Oldroyd K, Brunel P, Carrie D, Baumbach A, Maeng M, Skipper N, Louvard Y. The EBC TWO Study (European Bifurcation Coronary Two): A Randomized Comparison of Provisional T-Stenting Versus a Systematic 2 Stent Culotte Strategy in Large Caliber True Bifurcations. Circ Cardiovasc Interv 2016; 9. [PMID: 27578839 DOI: 10.1161/CIRCINTERVENTIONS.115.003643]

3 Zhang JJ, Guo XF, Han YL, Kan J, Tao L, Ge Z, Tresskosol D, Lu S, Ma LK, Li F, Yang S, Zhang J, Munawar M, Li L, Zhang YW, Zeng HS, Santosoro T, Xie P, Jin ZN, Han L, Yin WH, Qian XS, Li QH, Hong L, Paiboon C, Wang Y, Liu LJ, Zhou L, Wu XM, Wen SY, Lu QH, Yuan QJ, Chen LL, Lavarra F, Rodriguez AE, Zhou LM, Ding SQ, Vichairuangthum K, Zhu YS, Yu MY, Chen C, Sheiban I, Xia Y, Tian YL, Shang ZL, Jiang Q, Zhen YH, Wang X, Ye F, Tian NL, Lin S, Liu ZZ, Chen SL. Treatment effects of systematic two-stent and provisional stenting techniques in patients with complex coronary bifurcation lesions: rationale and design of a prospective, randomised and multicentre DEFINITION II trial. BMJ Open 2018; 8: e020019 [PMID: 29511018 DOI: 10.1136/bmjopen-2017-020019]

4 Chen SL, Santosoro T, Zhang JJ, Ye F, Xu YW, Fu Q, Kan J, Zhang FF, Zhou Y, Xie DJ, Kwan TW. Clinical Outcome of Double Kissing Crush Versus Provisional Stenting of Coronary Artery Bifurcation Lesions: The 5-Year Follow-Up Results From a Randomized and Multicenter DKCRUSH-II Study (Randomized Study on Double Kissing Crush Technique Versus Provisional Stenting Technique for Coronary Artery Bifurcation Lesions). Circ Cardiovasc Interv 2017; 10. [PMID: 28122805 DOI: 10.1161/CIRCINTERVENTIONS.116.00497]

5 Beier S, Ormiston J, Webster M, Catter J, Norris S, Mediano-Graça P, Young A, Cowan B. Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries. J Biomech 2016; 49: 1570-1582 [PMID: 27062590 DOI: 10.1016/j.jbiomech.2016.03.038]

6 Ormiston JA, Webster MW, Webber B, Stewart JT, Raygrok PN, Hatrick RI. The “crush” technique for coronary artery bifurcation stenting: insights from micro-computed tomographic imaging of bench deployments. JACC Cardiovasc Interv 2008; 1: 351-357 [PMID: 19463329 DOI: 10.1016/j.jcin.2008.06.003]

7 Chen SL, Sheiban I, Xu B, Jepson N, Paiboon C, Zhang JJ, Ye F, Sansoto T, Kwan TW, Lee M, Han YL, Lv SZ, Wen SY, Zhang Q, Wang HC, Jiang TM, Wang Y, Chen LL, Tian NL, Cao F, Qiu CG, Zhang YJ, Leon MB. Impact of the complexity of bifurcation disease.

REFERENCES

The new mantra of LM stenting

Nowadays, LM stenting has gained respect as an alternative to surgical treatment22-24, but the treatment of complex LM disease distal/bifurcation disease remains a significant obstacle to overcome to achieve satisfactory results. In such disease, the double stenting technique would provide a more reliable strategy as supported by the evidence coming from both clinical and virtual studies about the benefits provided by thin strut stent technology.

The modern crush techniques such as DK-Crush and Nano-Crush are providing excellent results on mid and long-term follow up, suggesting that minimal crushing obtained using ultra-thin stents is a good way to obtain surgical-like outcomes in the treatment of complex LM bifurcation disease.
lesions treated with drug-eluting stents: the DEFINITION study (Definitions and impact of complex bifurcation lesions on clinical outcomes after percutaneous coronary intervention using drug-eluting stents). *JACC Cardiovasc Interv* 2014; 7: 1266-1276 [PMID: 25326748 DOI: 10.1016/j.jcin.2014.04.026]

8 Wang Y, Mintz GS, Gu Q, Qi Y, Wang Y, Liu M, Wu X. Meta-analysis and systematic review of intravascular ultrasound versus angiography-guided drug eluting stent implantation in left main coronary disease in 4592 patients. *BMC Cardiovasc Disord* 2018; 18: 115 [PMID: 29898668 DOI: 10.1186/s12872-018-0843-z]

9 Rab T, Sheiban I, Louvard Y, Sawaya FJ, Zhang JJ, Chen SL. Current Interventions for the Left Main Bifurcation. *JACC Cardiovasc Interv* 2017; 10: 849-865 [PMID: 28473107 DOI: 10.1016/j.jcin.2017.02.037]

10 Chen SL, Zhang JJ, Han Y, Kan J, Chen L, Qu C, Jiang T, Tao L, Zeng H, Li L, Xia Y, Gao C, Santos T, Paiboon C, Wang Y, Kwan TW, Ye F, Tian N, Liu Z, Lin S, Lu C, Wen S, Hong L, Zhang Q, Sheiban I, Xu Y, Wang L, Rab TS, Li Z, Cheng G, Cui L, Leon MB, Stone GW. Double Kissing Crush Versus Provisional Stenting for Left Main Bifurcation Lesions: DKCRUSH-V Randomized Trial. *J Am Coll Cardiol* 2017; 70: 2665-2671 [PMID: 29096915 DOI: 10.1016/j.jacc.2017.09.066]

11 Chen SL, Xu B, Han YL, Sheiban I, Zhang JJ, Ye F, Kwan TW, Paiboon C, Zhou YJ, Lv SZ, Dangas GD, Xu YW, Wen SY, Hong L, Zhang RY, Wang HC, Jiang TM, Wang Y, Sansoto T, Chen F, Yuan ZY, Li WM, Leon MB. Clinical Outcome After DK Crush Versus Culotte Stenting of Distal Left Main Bifurcation Lesions: The 3-Year Follow-Up Results of the DKCRUSH-III Study. *JACC Cardiovasc Interv* 2015; 8: 1335-1342 [PMID: 26315736 DOI: 10.1016/j.jcin.2015.05.017]

12 Rigatelli G, Dell’Avvocata F, Zuin M, Vassiliev D, Mazza A, Dinh HD. Complex coronary bifurcation recanalization by means of very minimal crushing and ultrathin biodegradable polymer DES: Feasibility and 1-year outcomes of the “Nano-crush” technique. *Cardiovasc Revasc Med* 2017; 18: 22-27 [PMID: 27566904 DOI: 10.1016/j.carrev.2016.07.003]

13 Rigatelli G, Zuin M, Dell’Avvocata F, Vassiliev D, Daggubati R, Nguyen T, Nguyen MTN, Foin N. Complex coronary bifurcation treatment by a novel stenting technique: Bench test, fluid dynamic study and clinical outcomes. *Catheter Cardiovasc Interv* 2018; [PMID: 29368394 DOI: 10.1002/ccd.27494]

14 Rigatelli G, Dell’Avvocata F, Zuin M, Giatti S, Duong K, Pham T, Tuan NS, Vassiliev D, Daggubati R, Nguyen T. Comparative Computed Flow Dynamic Analysis of Different Optimization Techniques in Left Main Either Provisional or Culotte Stenting. *J Transl Int Med* 2017; 5: 205-212 [PMID: 29304277 DOI: 10.1515/jtrim-2017-0035]

15 Colombo A. Bifurcational lesions and the “crush” technique: understanding why it works and why it doesn’t—a kiss. *Catheter Cardiovasc Interv* 2004; 63: 337-338 [PMID: 15505834 DOI: 10.1002/ccd.20148]

16 Katritsis DG, Theodorakakos A, Pantsos I, Gavaises M, Karcanias N, Efstratopoulos EP. Flow patterns at stented coronary bifurcations: computational fluid dynamics analysis. *Circ Cardiovasc Interv* 2012; 5: 530-539 [PMID: 22763345 DOI: 10.1161/CIRCINTERVENTIONS.112.968347]

17 Hu ZY, Chen SL, Zhang JJ, Shan SJ, Liu ZZ, Ye F, Kan J, Xu HM, Nguyen K, Kwan T, Nguyen T, Hoang T. Distribution and magnitude of shear stress after coronary bifurcation lesions stenting with the classical crush technique: a new predictor for in-stent restenosis. *J Interv Cardiol* 2010; 23: 330-340 [PMID: 20642479 DOI: 10.1111/j.1540-8183.2010.00571.x]

18 Lefèvre T, Haude M, Neumann FJ, Stangl K, Skurck C, Slagboom T, Sabate M, Goicoeia J, Barragan P, Cook S, Macia JC, Windecker S. Comparison of a Novel Biodegradable Polymer Sirolimus-Eluting Stent With a Durable Polymer Everolimus-Eluting Stent: 5-Year Outcomes of the Randomized BIOFLOW-II Trial. *JACC Cardiovasc Interv* 2018; 11: 995-1002 [PMID: 29798778 DOI: 10.1016/j.jcin.2018.04.014]

19 Kandzari DE, Mauri L, Koolen JJ, Massaro JM, Doros G, Garcia-Garcia HM, Bennett J, Roguin A, Gharib EG, Cutlip DE, Waksman R; BIOFLOW V Investigators. Ultrathin, biodegradable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial. *Lancet* 2017; 390: 1843-1852 [PMID: 28851504 DOI: 10.1016/S0140-6736(17)32249-3]

20 Kretes E, Naryshkin I, Baystrukov V, Grazhdankin I, Prokhorkhin A, Zubarev D, Biryukov A, Verin V, Boykov A, Malaev D, Pokushalov E, Romanov A, Bergmann MW. Three-months optical coherence tomography analysis of a biodegradable polymer, sirolimus-eluting stent. *J Interv Cardiol* 2018; 31: 442-449 [PMID: 29651802 DOI: 10.1111/joic.12510]

21 Guler A, Guler Y, Acar E, Aung SM, Efe SC, Kilicgedik A, Karabay CY, Barutcu S, Tigen MK, Pala S, Iziog A, Esen AM, Kirma C. Clinical, angiographic and procedural characteristics of longitudinal coronary stent deformation. *Int J Cardiovasc Imaging* 2016; 32: 1163-1170 [PMID: 27198891 DOI: 10.1007/s10554-016-0905-1]

22 De Rosa S, Pulimeni A, Sabatino J, Indolfi C. Long-term outcomes of coronary artery bypass grafting versus stent-PCI for unprotected left main disease: a meta-analysis. *BMC Cardiovasc Disord* 2017; 17: 240 [PMID: 28877676 DOI: 10.1186/s12872-017-0664-5]

23 Campos CM, Christiansen EH, Stone GW, Serruys PW. The EXCEL and NOBLE trials: similarities, contrasts and future perspectives for left main revascularisation. *EuroIntervention* 2015; 11 Suppl V: V15-V119 [PMID: 25983143 DOI: 10.4244/EIJV11SA26]

24 Sawaya FJ, Lefevre T, Chevalier B, Garot P, Hovasse T, Morice MC, Rab T, Louvard Y. Contemporary Approach to Coronary Bifurcation Lesion Treatment. *JACC Cardiovasc Interv* 2016; 9: 1861-1878 [PMID: 27659563 DOI: 10.1016/j.jcin.2016.06.056]

P- Reviewer: Vidal-Perez R, Akin I, Barik R S- Editor: Dou Y L- Editor: Filippida E- Editor: Wu YXJ
