Electrical conductivity and local structure of iron-containing lithium barium vanadate glass

S Kubuki¹, Y Tomota¹, R Yoshimura¹, Z Homonnay², K Sinkó³, E Kuzmann⁴ and T Nishida⁵

¹Department of Chemical and Biological Engineering, Ube National College of Technology, Tokiwadai 2-14-1, Ube, Yamaguchi, 755-8555, JAPAN
²Laboratory of Nuclear Chemistry, Eötvös Loránd University, Pázmány P. s., 1/A 1117 Budapest, HUNGARY
³Institute of Chemistry, Eötvös Loránd University, Pázmány P. s., 1/A 1117 Budapest, HUNGARY
⁴Laboratory of Nuclear Chemistry, HAS CRC, Eötvös Loránd University, 1518 Budapest, HUNGARY
⁵Department of Biologival and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, Kayanomori 11-6, Iizuka, Fukuoka, 820-8555, JAPAN

E-mail: kubuki@ube-k.ac.jp

Abstract. A relationship between the local structure and electrical conductivity of lithium barium iron vanadate glass with a composition of \(x\)Li\(_2\)O·(20-x)BaO·10Fe\(_2\)O\(_3\)·70V\(_2\)O\(_5\), abbreviated as \(x\)LBFV glass, was investigated by means of \(^{57}\)Fe-Mössbauer spectroscopy, differential thermal analysis (DTA), as well as DC four-probe method. When the Li\(_2\)O content increased from 0 to 20 mol\%, a constant isomer shift (\(\delta\)) value of 0.35±0.01 mm s\(^{-1}\) and a decreasing quadrupole splitting (\(\Delta\)) value from 0.71 to 0.67±0.01 mm s\(^{-1}\) were observed in the Mössbauer spectra. From the DTA curves, decrease in both glass transition temperature (\(T_\text{g}\)) and crystallization temperature (\(T_\text{c}\)) was confirmed from 317 to 236±5 °C and from 374 to 299±2 °C, respectively. A large slope value of 1560 °C/mm s\(^{-1}\) was estimated from ‘\(T_\text{g}-\Delta\) plot’, showing that the Fe\(^{3+}\) acts as a network former (NWF). When the \(x\)LBFV glass with ‘\(x\)’ of 20 was heated up to 125 °C, a larger increase in the electric conductivity (\(\sigma\)) was observed from 3.2×10\(^{-5}\) to 1.3×10\(^{-3}\) S cm\(^{-1}\). It was found that replacement of Li\(^+\) for Ba\(^{2+}\) reduces the local distortion of FeO\(_4\) (\(T_\text{d}\)), and increases the temperature dependence of electrical conductivity.

1. Introduction

Vanadate glass is known as a semiconducting oxide glass with an electrical conductivity (\(\sigma\)) of 10\(^{-7}\)-10\(^{-5}\) S cm\(^{-1}\), caused by 3d electron hopping from V\(^{VI}\) to V\(^{V}\) [1]. Nishida et al. reported that a drastic increase in \(\sigma\) was observed after annealing of K\(_2\)O-V\(_2\)O\(_3\)-Fe\(_2\)O\(_3\) and Li\(_2\)O-Fe\(_2\)O\(_3\)-V\(_2\)O\(_5\)-P\(_2\)O\(_5\) glasses [2,
3]. Barium iron vanadate glass, BaO-Fe$_2$O$_3$-V$_2$O$_5$, has already been registered as a Japanese patent [4], with a trade mark of ‘NTA glassTM’. Recently, Kubuki et al. revealed that ‘NTA glassTM’ has a σ of 1 S cm$^{-1}$ after a prolonged heat treatment, owing to a structural relaxation [5].

In the present study, substitution of Li$^{+}$ for Ba$^{2+}$ in NTA glassTM was investigated in order to achieve higher electrical conductivity. A relationship between the local structure and electrical conductivity of iron-containing lithium barium vanadate glasses was investigated by means of 57Fe-Mössbauer spectroscopy, differential thermal analysis (DTA) and electrical conductivity measurement.

2. Experimental

New vanadate glass expressed by xLi$_2$O·(20-x)BaO·10Fe$_2$O$_3$·70V$_2$O$_5$, hereafter abbreviated as xLBFV glass, was prepared by a conventional melt-quenching method. Li$_2$O content (x) was changed from 0 to 20 mol %. Weighed amounts of Li$_2$CO$_3$, BaCO$_3$, V$_2$O$_5$ and Fe$_2$O$_3$ of a reagent grade were well mixed in an agate mortar and heated at 1100 °C for 1 h with a platinum crucible. Dark brown glass samples were obtained by dipping the bottom of the crucible into ice-cold water. For Mössbauer measurement, enriched isotope of 57Fe$_2$O$_3$ (57Fe = 95.54 %) was used. Mössbauer spectra were recorded by a constant acceleration method with a source of 57Co(Rh). DTA was conducted from RT to 500 °C by changing the heating rate from 5 to 10, 15, 20 and 30 K min$^{-1}$. α-Al$_2$O$_3$ was used as a reference of the temperature. The electrical conductivity (σ) was measured by a dc-four probe method at temperatures ranging from RT to 125 °C.

3. Results and Discussion

Mössbauer spectra of xLBFV glass with ‘x’ of 0, 5, 10, 15 and 20 were shown in Figure 1. All the spectra were composed of paramagnetic doublet due to the tetrahedral FeIII. When the Li$_2$O content increased, a constant isomer shift (δ) value was obtained for 0.35 (±0.01) mm s$^{-1}$, together with a small decrease in the quadrupole splitting (Δ) value from 0.71 to 0.69, 0.68, 0.67 and 0.66 (±0.01) mm s$^{-1}$. These results indicate that Fe-O bond strength remained constant, and that the local distortion of FeO$_4$ tetrahedra became smaller by substituting Li$^{+}$ for Ba$^{2+}$.

![Figure 1. Mössbauer spectra of xLBFV glass with ‘x’ of 0, 5, 10, 15 and 20.](image)

DTA curves of xLBFV glass are depicted in Figure 2. Both glass transition temperature (T_g) and crystallization temperature (T_c) decreased from 317 to 284, 274, 258 and 236 (±5) °C, and from 374 to 346, 331, 314 and 299 (±2) °C, respectively. These results show that the thermal durability was
lowered by the introduction of Li$_2$O. A linear relationship between T_g and Δ for oxide glasses, discovered by Nishida [6], and denominated as ‘T_g-Δ rule’, is expressed by:

$$T_g = a \Delta + b$$

When Fe$^{3+}$ ion is located at a network former (NWF) site, slope ‘a’ becomes more than 680 $^\circ$C/mm s$^{-1}$. While a smaller ‘a’ value of 35 $^\circ$C/mm s$^{-1}$ is obtained when Fe$^{3+}$ acts as a network modifier (NWM).

As shown in Figure 3, a large ‘a’ value of 1560 $^\circ$C/mm s$^{-1}$, obtained from the ‘T_g-Δ plot’, indicates that the Fe$^{3+}$ plays a role of NWF. The activation energy for crystallization (E_a) can be calculated by Kissinger equation [7], i. e.,

$$\ln \left(\frac{T_c^2}{\alpha} \right) = \frac{E_a}{R} T_c + \text{const.}$$

where, α and R are heating rate and gas constant, respectively. The E_a value of xLBVF glass was varied from 2.3 to 1.7, 1.6, 1.9 and 2.3 (\pm0.2) eV with an increase of Li$_2$O content. Because the chemical bond energy of V-O is reported to be 3.9-4.9 eV [8]. It can be considered that the glass skeleton structure composed by VO$_4$ and VO$_5$ was not affected by the introduction of Li$_2$O.
A temperature dependence of the electric conductivity (σ) of the xLBFV glass is shown in Figure 4. Along with an increase in the measuring temperature from RT to 125 °C, σ value was increased from 3.2×10^{-5} to 1.3×10^{-3} S cm$^{-1}$ in xLBFV glass with ‘x’ of 20 (figure 4(c)), while a smaller increase in σ value was observed from 2.8×10^{-5} to 2.4×10^{-4} S cm$^{-1}$ when ‘x’ was 0 (figure 4(a)). It is noteworthy that the temperature dependence of σ value is increased by substituting Li$^+$ for Ba$^{2+}$ because of higher ionic mobility of Li$^+$. Temperature dependence of electric conductivity can be expressed as Arrhenius equation, i.e.,

$$\sigma = \sigma_0 \exp \left(-\frac{W}{kT} \right)$$

(3)

where W and k are activation energy for electric conduction and Boltzmann constant, respectively. When the Li$_2$O content was increased from 0 to 10 and 20, W value gradually increased from 0.19 to 0.25 and 0.34 eV, as represented in Figure 5. This result shows that the temperature dependence in the σ value of xLBFV glass is enhanced by the introduction of Li$^+$. It can be concluded that the temperature dependence of the electrical conductivity is strongly affected by the decrease in local distortion of FeO4 tetrahedra, as reflected in the as Δ value of Mössbauer spectra.

4. Summary
A relationship between the local structure and electric conductivity of lithium barium iron vanadate glass with a composition of xLi$_2$O・(20-x)BaO・10Fe$_2$O$_3$・70V$_2$O$_5$ (xLBFV) was investigated. When the Li$_2$O content was increased, local distortion of FeO$_4$ tetrahedra was decreased; a decrease of Δ value was observed from 0.71 to 0.67 mm s$^{-1}$ in the Mössbauer spectra. In addition, both T_g and T_c values respectively decreased from 317 to 236 °C and from 374 to 299 °C, showing that the thermal durability was lowered by the introduction of Li$^+$. From the ‘T_g-\Delta’ plot, a large slope value of 1560 °C/mm s$^{-1}$ was estimated, indicating that the Fe$^{3+}$ acts as a NWF. A larger increase in the electrical conductivity from 3.2×10^{-5} to 1.3×10^{-3} S cm$^{-1}$ was observed when xLBFV glass with ‘x’ of 20 was heated from RT to 125 °C. This result indicates that the temperature dependence of the electrical conductivity was increased by substituting Li$^+$ for Ba$^{2+}$.

It is concluded that the electric conductivity is strongly affected by the local distortion of FeO$_4$, VO$_4$ and probably VO$_5$ units.

Acknowledgement
One of the authors (SK) expresses his great gratitude for the support by Electric Technology Research Foundation of Chugoku.

References
[1] Mott N F1967 Adv. Phys. 16(No. 61) 49
[2] Nishida T, Kubota J, Maeda Y, Ichikawa F and Aomine T 1996 J. Mater. Chem. 6 1889
[3] Nishida T, Yoshida Y, Takahashi Y, Okada S and Yamaki J 2008 J. Radioanal. Nucl. Chem. 275 417
[4] Nishida T 2006 Japanese Patent No. 3854985
[5] Kubuki S, Sakka H, Tsuge K, Homonnay Z, Sinkó K, Kuzmann E, Yasumitsu H and Nishida T 2007, J. Ceram. Soc. Jpn. 115 776
[6] Nishida T 1994 J. Non-Cryst. Solids 177 257
[7] Kissinger H E 1957 Anal. Chem. 29 1702
[8] Sun K H 1957 J. Am. Ceram. Soc. 30 277