A new phylogeny of *Anelosimus* and the placement and behavior of *Anelosimus vierae* n. sp. from Uruguay (Araneae: Theridiidae)

Ingi Agnarsson: University of Puerto Rico, Faculty of Natural Sciences, Department of Biology, San Juan, P.R. 00931, USA. E-mail: iagnarsson@gmail.com

Abstract. Available evidence suggests that sociality in the spider genus *Anelosimus* Simon has evolved as a gradual transition from short-term maternal care to permanent sociality. The discovery and description of new species displaying various intermediate levels of sociality deepens our understanding of this transition. Here I use five molecular loci (28S, ITS2, COI, 16S, ND1) to phylogenetically place specimens of an intermediate-social population from Uruguay, previously and tentatively identified as the widespread and common *A. studiosus* (Hentz 1850). The Chinese *A. chongnicus* Zhu 1998 is also phylogenetically placed for the first time, and new sequences from four additional *Anelosimus* species and two theridid genera (*Auditia* Keyserling, *Tekellina* Levi) are all combined with previously published data to reconstruct a novel phylogeny of *Anelosimus* spiders. This phylogeny recaptures previously well-established groups and reiterates well-known themes such as the multiple origin of sociality. The Uruguayan specimens nest outside of *A. studiosus*, and I therefore describe these as a new species, *Anelosimus vierae* n. sp. and summarize existing data on its behavior in the context of social evolution. I also synonymize *A. tungurahua* Agnarsson 2006 with *A. studiosus* new synonymy. Finally, I define the subfamily Anelosiminae, containing *Anelosimus* and *Kochiura* Archer; *Anelosiminae* is sister to the diverse Theridiinae.

Keywords: Cobweb spiders, intermediate social, social evolution, subsocial

Only a few of the over 41,000 described spiders (Platnick 2010) are social, and most of them occur in a few clusters of phylogenetically closely-related species (Avilés 1997; Agnarsson et al. 2006a; Avilés et al. 2006; Lubin & Bilde 2007; Johannesen et al. 2007, 2009). The cobweb spider genus *Anelosimus* Simon 1891, for example, contains the majority of all cooperative spiders, and recent work has uncovered many new *Anelosimus* species (Agnarsson et al. 2005, 2006; Agnarsson & Kutner 2005; Agnarsson & Zhang 2006; Agnarsson et al. 2010). *Anelosimus* species display a range of social behavior from solitary with short-term maternal care (Agnarsson et al. 2006b) to permanent, highly social species (Vollrath 1986; Avilés 1997; Avilés et al. 2001). The majority of *Anelosimus* species are subsocial with single-female nests, involving sibling cooperation until adulthood, followed by dispersal and outbreeding, and equal sex ratios (Avilés 1997). Eight species are permanently social with multi-female nests showing adult cooperation and successive generations remaining in the natal nests, with inbreeding and interdemic selection resulting in strongly female-biased sex ratios (Avilés 1993, 1997; Avilés et al. 2007). The phylogenetic relationships among these species suggest multiple, gradual, transformations from subsocial to permanently social (Agnarsson et al. 2006a, 2007a), as also seen in the distantly related *erisid* spiders, genus *Stegodyphus* Simon 1873 (Bilde et al. 2005; Johannesen et al. 2007, 2009). This transition presumably occurs via the various intermediate social stages (occurrence of multi-female nests, partial outbreeding, intermediate sex ratio bias) (Powers & Avilés 2003; Avilés & Bukowski 2006) that are displayed by a few existing species, such as *A. jabaquara* Levi 1956, *A. dubiosus* (Keyserling 1891) and certain populations of *A. studiosus* (Hentz 1850) (Marques et al. 1998; Vasconcelos-Neto & Mello 1998; Jones & Parker 2000, 2002; Gonzaga & Vasconcellos-Neto 2001, 2002; Jones et al. 2007). Thus the discovery and phylogenetic placement of further species with intermediate social structures will deepen the understanding of social evolution in spiders.

I recently revised the American *Anelosimus* species (Agnarsson 2005, 2006) based on an examination of material from all major museums worldwide containing American material. Concurrently, behavioral data were being collected for some of the potentially new species (by L. Avilés and coworkers) which greatly helped species delimitation. Nevertheless, I concluded that these revisions were incomplete, not only because future sampling would likely uncover new species, but also because, in some cases, examination of morphology alone seemed insufficient to adequately delimit species from existing material (Agnarsson 2006). The first molecular phylogeny (Agnarsson et al. 2007a) showed good congruence with morphological taxonomy in general, especially for taxonomic decisions that were based on morphological and behavioral data combined, but this study also pointed to some potential problems. For example, *A. tungurahua* Agnarsson 2006 had seemed subtly distinct from *A. studiosus* morphologically, but nested within *A. studiosus* in gene trees of multiple loci (Agnarsson et al. 2007a). Further, a specimen from Uruguay tentatively identified as 'A. studiosus' did not group close to *A. studiosus* in preliminary analyses (I. Agnarsson unpublished data). Now, several studies on the behavior of this Uruguayan population have been conducted, demonstrating some differences from the behavior of *A. studiosus*, and have highlighted that this population shows an intermediate social structure (Albo et al. 2007; Viera et al. 2006, 2007a, b, c; Viera & Albo 2008). For example, in the Uruguayan population multi-female nests are not uncommon, and primary sex ratios are female-biased 2:1 (Viera et al. 2007a).

Here, I add three specimens of the Uruguayan population and additional sequences from five other *Anelosimus* species (*A. analyticus* (Chamberlin 1924), *A. chongnicus* Zhu 1998, *A. ethicus* (Keyserling 1884), *A. octavius* (Agnarsson 2006), *A. rapunzeli* Levi 1956), and two new outgroups (*Auditia* Keyserling 1884 and *Tekellina* Levi 1957) to the molecular phylogenetic analyses of Agnarsson et al. (2007a, 2010) and, following the phylogenetic results, describe the Uruguayan
population as a new species. Finally, I summarize what is known about its behavior, in the context of social evolution.

METHODS

Phylogenetics.—Specimens were collected in the field (from Montevideo, Uruguay, 34°53′15″S, 56°08′33″W) by C. Viera and collaborators, and fixed in 95% ethanol. I obtained sequences of mitochondrial (16S, ND1, COI) and nuclear (28S, ITS2) loci from three individuals of *A. vierea*, using primers and settings as described in Agnarsson et al. (2007a) and Agnarsson (2010). I also obtained for the first time sequences from three specimens of *A. chonganicus* and additional sequences from three specimens of *A. analytica* and *A. octavius*, two specimens of *A. rupununi*, and one specimen of *A. ethicus* and species of the genera *Audifia* sp. and *Tekellina* sp. I then combined these new sequences with previously published sequences from Agnarsson et al. (2007a, 2010). Genbank accession numbers of new sequences are not yet available. The total dataset contains 86 terminals, comprising 18 outgroups from across Theridiidae and 68 individuals representing 25 out of the 54 currently recognized *Anelosimus* species. Most of the missing *Anelosimus* species are outside the ‘eximius lineage’ (Agnarsson 2006), which contains most of the American species, including *A. studiosus* and relatives, and thus are not critical to the placement of the Uruguayan population. The data matrix is available from the author and will be submitted to the Dryad database (online at http://datadryad.org/).

I aligned and analyzed the molecular data using the same methods and settings as in previous studies (Agnarsson et al. 2007a, 2010). In summary, I aligned sequences in Clustal W (Thompson et al. 1994) with gap opening and extension costs of 24/6, followed by minor manual adjustments. I then concatenated the genes into a single five-gene matrix in Mesquite (Maddison & Maddison 2010) and exported them for model selection and analyses. The matrix was partitioned by gene, and for protein coding genes (COI, ND1), additionally by codon position, for a total of 9 partitions. The appropriate model for each partition was chosen in jModeltest 0.1.1 (Posada 2008), selecting only among the 24 methods and settings as in previous studies (Agnarsson et al. 2004). Further investigation of the placement of new species in these genera will deepen our understanding of social evolution and its causes and consequences. Because many aspects of the behavior of *A. vierea* are already studied, describing and phylogenetically placing this new species will contribute to the phylogenetic ancestral character reconstruction of the various components of social behavior in spiders. Furthermore, *A. vierea* is a close relative of the socially polymorphic *A. studiosus* and will thus represent a good model to complement recent studies on social polymorphism and its origin and consequences (Jones and Parker 2000, 2002; Jones et al. 2007; Pruitt et al. 2008, 2010; Pruitt & Riechert 2009; Duncan et al. 2010).
Figure 1.—Results of Bayesian phylogenetic analysis of the concatenated dataset for the genus *Anelosimus*. The new species *A. vierae* does not group with *A. studiosus*, where the Uruguayan specimens were tentatively placed before. Permanently social species are marked with ★.
All recent studies corroborate the ‘maternal care route to sociality’ (Avilés 1997; Agnarsson 2002, 2004; Bilde et al. 2005; Johannesen et al. 2007, 2009; Agnarsson et al. 2010), in which maternal care precedes subsociality, which in turn precedes quasisociality in evolutionary time. The study of intermediate social (subsocial) species is thus fundamental to understanding the evolution of quasisociality (e.g. see Powers & Avilés 2003).

Natural history.—This section summarizes previous work on the natural history and behavior of this species (Viera et al. 2006, 2007a, b, c; Albo et al. 2007; Viera & Albo 2008). *Anelosimus vierae* is a subsocial species, the mother of which cares for her young, and the juveniles show a lack of conspecific aggression, but rather cooperate in the natal nest until dispersal, near or at adulthood (Albo et al. 2007). Absence of aggression is nearly complete for motile instars; females cannibalize some eggs, but never eat larvae or nymphs (Viera et al. 2007c). Maternal care involves many elements, starting with egg-sac guarding and then opening the egg sac to release the young. The larvae are not able to break out of the egg sac by themselves (Viera et al. 2007c). Mothers open the egg sac based on time since laying the egg (21 days), but the mothers’ actions are also triggered by the movement of nymphs within the egg sac (Viera et al. 2007c). The mother then feeds her offspring via regurgitation (Viera et al. 2005). The mother dies as the juveniles reach instars IV–VI. A very interesting feature of this species is that the juveniles then continue to feed each other via regurgitation (Viera et al. 2005). As a result of these altruistic acts, there is an equalizing of food distribution among colony members, which may prevent starvation and result in more individuals reaching adulthood. Although this remains to be observed in other species, it seems likely that juvenile food sharing may represent an evolutionary ‘stepping-stone’ towards permanent sociality.

In general, males of *A. vierae* mature earlier and consistently disperse, while females mature asynchronously and may or may not disperse from the natal nest. The consequence of this dispersal pattern is the formation of some multi-female nests. The occurrence of multi-female nests, in turn, implies a somewhat intermediate social structure, or social polymorphism, as seen in certain populations of *A. studiosus* in North America (Jones & Riechert 2008; Pruitt et al. 2008). In fact, the primary sex ratio in this species is also slightly female biased (2:1) (Viera et al. 2007a), implying some interdemic selection (Avilés 1993, 1997). Hence, *A. vierae* could be characterized as an intermediate social species, showing levels of sociality somewhere close to *A. jabaquara* (Marques et al. 1998).

The early-maturing males court and guard both subadult and adult females and fight other males, indicating competition for paternity among males (Albo et al. 2007). Fights can be repeated and males winning first fights may eventually lose to other males. Males court females using vibration, silk thread plucking, and touching the female until she adopts a copulation position. Males that lose fights may still remain as satellites around the nest and opportunistically mate with her later. This implies that strict first male priority need not be the rule in *A. vierae*, and this implication was recently confirmed through a gamma radiation sterilization experiment, showing that first and second males have about equal levels of paternity success (Lorio et al. 2010).
Figures 2-8. — *Anelosimus vierae* sp. n. genitalia and habitus of specimens from Sierra de Minas, Lavalleja, Uruguay. 2, 3: Male palp, ectal, ventral; 4, 5: Female epigynum, ventral, dorsal cleared; 6, 7: Male habitus, ectal, dorsal; 8: Female habitus, dorsal. Upper scale bar for Figs. 2-5, lower scale bar for Figs. 6-8.

Etymology. — The species epithet is a noun in apposition; a patronym after Carmen Viera, whose work on this species has revealed some fascinating behaviors, and inspired further investigation into its phylogenetic placement.

Diagnosis. — Males can be diagnosed from other *Anelosimus* species except *A. studiosus* by the sharp constriction of the embolic division b (Eb) centrally (Fig. 3), and from *A. studiosus* by longer distal arm of the Eb, and wider lightly sclerotized area separating the Eb from the ectal tegular margin. Females differ from all other *Anelosimus* species, except others in the *studiosus* group, by having the strongly sclerotized portion of the copulatory duct (see Agnarsson 2006) directly ventral to the spermathecae (Fig. 5). However, females are difficult to diagnose from other species of the *studiosus* group, except using molecular data.

Description. — Male (Sierra de Minas, Uruguay): Total length 2.80. Cephalothorax 1.35 long, 1.05 wide, 0.80 high, brown. Abdomen 1.45 long, 1.00 wide, 1.15 high. Pattern as in Figs. 6, 7. Eyes subequal in size, about 0.08 in diameter. Chelicerae with one large and two small prolateral teeth, three to four denticles retrolaterally. Leg I femur 1.70, patella 0.45, tibia 1.65, metatarsus 1.35, tarsus 0.70. Femur not noticeably thickened, ventral thickened hairs on metatarsus one absent. Leg formula 1243. Leg base color light yellowish-brown, with distal tip of femora and tibia darker. Four to five small trichobothria dorsally on all tibia. Trichobothria on metatarsi I–III proximal (about 0.35–0.40), absent on metatarsus IV. Palp (Figs. 2, 3) as in other species of the *studiosus* group, smaller and with less voluminous sclerites than species of the *jucundus* group. Embolus spiral runs along mesal margin of palp terminating in a ridged bifurcation, embolus with a simple flat, embolic division b, which is narrow distally. The basal lobe of the embolus is oriented toward the subconductor, from which a small and translucent conductor arises. Median apophysis simple, without ducts, interacting with cymbial hood. TTA hooked and ridged distally.

Female (Sierra de Minas, Uruguay): Total length 3.70. Cephalothorax 1.80, long, 1.40 wide, 1.00 high, brown. Abdomen 2.10 long, 1.55 wide, 1.30 high. Pattern as in Fig. 8. Eyes subequal in size, about 0.10 in diameter. Chelicerae with one large and two small prolateral teeth, three denticles retrolaterally. Leg I femur 1.70, patella 0.65, tibia 1.80, metatarsus 1.70, tarsus 0.90. Leg formula 1243. Leg base color light yellowish-brown, with distal tip of tibia darkened. Four to seven small trichobothria dorsally on all tibia. Trichobothria on metatarsi I–III central or slightly...
proximal (about 0.45–0.50), absent on metatarsus IV. Four to
five dorsal trichobothria on female palpial tibia. Epigynum
externally a lightly ridged plate, internally with simple short
copulatory and fertilization ducts, copulatory ducts strongly
sclerotized and situated directly below the ectalmost margin of
the spermathecae (Figs. 4, 5).

Variation. Female total length 3.60–4.20, male total length
2.5–2.85.

ACKNOWLEDGMENTS

I am grateful to Matjaž Kuntner, Carmen Viera, Mark Harvey,
and Jeremy Miller for comments on a draft of this manuscript,
and special thanks to Michael Rix for a thorough and detailed
review that uncovered a number of errors and greatly improved
the manuscript. I also thank Carmen Viera for discussion and
for supplying specimens for this study. Further specimens came from
Wayne P. Maddison. Funding for this work was provided by the
University of Puerto Rico, and a Slovenian Research Agency
research fellowship ARRS Z1-9799-0618-07.

LITERATURE CITED

Agnarsson, I. 2002. Sharing a web: on the relation of sociality and
kleptoparasitism in theridiid spiders (Theridiidae, Araneae).
Journal of Arachnology 30:181–188.

Agnarsson, I. 2004. Morphological phylogeny of cobweb spiders and
their relatives (Araneae, Araneoidea, Theridiidae). Zoological
Journal of the Linnean Society 141:447–626.

Agnarsson, I. 2005. Revision and phylogenetic analysis of American
ethicus and rupununi groups of Anelosimus (Araneae, Theridi-
idae). Zoologica Scripta 34:389–413.

Agnarsson, I. 2006. A revision of the New World eximius lineage of
Anelosimus (Araneae, Theridiidae) and a phylogenetic analysis
using worldwide exemplars. Zoological Journal of the Linnean
Society 146:453–593.

Agnarsson, I. 2010. The utility of ITS2 in spider phylogenetics: notes
on prior work and an example from Anelosimus. Journal of
Arachnology 38:377–382.

Agnarsson, I., L. Aviles, J.A. Coddington & W.P. Maddison. 2006a.
Sociality in theridiid spiders: repeated origins of an evolutionary
dead end. Evolution 60:2342–2351.

Agnarsson, I., G. Barrantes & L.J. May-Collado. 2006b. Notes on the
biology of Anelosimus pacificus Levi. 1963 (Theridiidae, Araneae) -
evidence for an evolutionary reversal to a less social state. Journal
of Natural History 40:2681–2687.

Agnarsson, I., W.P. Maddison & L. Aviles. 2007a. The phylogeny of
the social Anelosimus spiders (Araneae: Theridiidae) inferred from
six molecular loci and morphology. Molecular Phylogenetics and
Evolution 43:833–851.

Agnarsson, I., J.A. Coddington & B. Knollfach. 2007b. Morphology
and evolution of cobweb spider male genitalia (Araneae: Theridi-
idae). Journal of Arachnology 35:334–395.

Agnarsson, I. & M. Kuntner. 2005. Madagascar: an unexpected
hotspot of social Anelosimus spider diversity (Araneae: Theridi-
idae). Systematic Entomology 30:575–592.

Agnarsson, I., M. Kuntner, J.A. Coddington & T.A. Blackledge.
2010. Shifting continents, not behaviours: independent coloniza-
tion of solitary and subsocial Anelosimus spider lineages on
Madagascar (Araneae, Theridiidae). Zoologica Scripta 39:75–87.

Agnarsson, I. & J.X. Zhang. 2006. New species of Anelosimus
(Araneae: Theridiidae) from Africa and Southeast Asia, with notes
on sociality and color polymorphism. Zootaxa 1147:1–34.

Albo, M.J., C. Viera & F.G. Costa. 2007. Pseudocopulation and male-
male conflict elicited by subadult females of the subsocial spider
Anelosimus cf. studiosus (Theridiidae). Behaviour 144:1217–1234.

Avilés, L. 1993. Interdemic selection and the sex-ratio - a social spider
perspective. American Naturalist 142:320–345.

Avilés, L. 1997. Causes and consequences of cooperation and perma-
rent-sociality in spiders. Pp. 476–498. In The Evolution of Social
Insects and Arachnids... (J.C. Choe & B.J. Crepfi, eds.).
Cambridge University Press, Cambridge, UK.

Avilés, L., I. Agnarsson, P.A. Salazar, J. Purell, G. Iurralde, E.C.
Yip, K.S. Powers & T.C. Bukowski. 2007. Altitudinal patterns of
spider sociality and the biology of a new midelevation social
Anelosimus species in Ecuador. American Naturalist 170:783–792.

Avilés, L. & T.C. Bukowski. 2006. Group living and inbreeding
depression in a subsocial spider. Proceedings of the Royal Society
B-Biological Sciences 273:157–163.

Avilés, L., W.P. Maddison & I. Agnarsson. 2006. A new indepen-
dently derived social spider with explosive colony proliferation and
a female size dimorphism. Biotropica 38:743–753.

Avilés, L., W.P. Maddison, P.A. Salazar, G. Estevez, P. Tufino & G.
Canas. 2001. Social spiders of the Ecuadorian Amazonia, with
notes on six previously undescribed social species. Revista Chilena
de Historia Natural 74:619–638.

Avilés, L., J. McCormack, A. Cutter & T. Bukowski. 2000. Precise,
highly female-biased sex ratios in a social spider. Proceedings of
the Royal Society of London Series B-Biological Sciences 267:1445–1449.

Bilde, T., K.S. Coates, K. Birkholzer, T. Bird, A.A. Maklakov, Y.
Lubin & L. Aviles. 2007. Survival benefits select for group living in
a social spider despite reproductive costs. Journal of Evolutionary
Biology 20:2412–2426.

Bilde, T., Y. Lubin, D. Smith, J.M. Schneider & A.A. Maklakov.
2005. The transition to social inbred mating systems in spiders: role
of inbreeding tolerance in a subsocial predecessor. Evolution 59:160–174.

Bukowski, T.C. & L. Aviles. 2002. Asynchronous maturation of the
sexes may limit close inbreeding in a subsocial spider. Canadian
Journal of Zoology 80:193–198.

Duncan, S.I., S.E. Riechert, B.M. Fitzpatrick & J.A. Fordyce. 2010.
Relatedness and genetic structure in a socially polymorphic
population of the spider Anelosimus studiosus. Molecular Ecology
19:810–818.

Gonzaga, M.O. & J. Vasconcellos-Neto. 2001. Female body
size, fecundity parameters and foundation of new colonies in
Anelosimus jabaquara (Araneae, Theridiidae). Insectes Sociaux
48:94–100.

Gonzaga, M.O. & J. Vasconcellos Neto. 2002. Collective prey capture
and feeding behaviours of Anelosimus jabaquara Levi 1956
(Araneae: Theridiidae). Behaviour 139:573–584.

Huelsenbeck, J.P. & R. Ronquist. 2001. MRBAYES: Bayesian
inference of phylogenetic trees. Bioinformatics 17:754–755.

Johannesen, J., A. Hennig, B. Dommermuth & J.M. Schneider. 2002.
Mitochondrial DNA distributions indicate colony propagation by
single matri-lineages in the social spider Stegodyphus domicola
(Eresidae). Biological Journal of the Linnean Society 76:591–600.

Johannesen, J., Y. Lubin, D.R. Smith, T. Bilde & J.M. Schneider.
2007. The age and evolution of sociality in Stegodyphus spiders: a
molecular phylogenetic perspective. Proceedings of the Royal
Society B-Biological Sciences 274:231–237.

Johannesen, J., W. Wickler, U. Seibt & R.F.A. Moritz. 2009.
Population history in social spiders repeated: colony structure
and lineage evolution in Stegodyphus mimosarum (Eresidae).
Molecular Ecology 18:2812–2818.

Jones, T.C., S.E. Riechert, S.E. Dalrymple & P.G. Parker. 2007.
Fostering model explains variation in levels of sociality in a spider
system. Animal Behaviour 73:195–204.

Jones, T.C. & P.G. Parker. 2000. Costs and benefits of foraging
associated with delayed dispersal in the spider Anelosimus studiosus
(Araneae, Theridiidae). Journal of Arachnology 28:61–69.
Jones, T.C. & P.G. Parker. 2002. Delayed juvenile dispersal benefits both mother and offspring in the cooperative spider Anelosimus studiosus (Araneae: Theridiidae). Behavioral Ecology 13:142–148.

Jones, T.C. & S.E. Riechert. 2008. Patterns of reproductive success associated with social structure and microclimate in a spider system. Animal Behaviour 76:2011–2019.

Kuntner, M. & I. Agnarsson. 2006. Are the Linnean and phylogenetic nomenclatural systems combinable? Recommendations for biological nomenclature. Systematic Biology 55:774–784.

Loriêto, V., S. Ghione & C. Viera. 2010. An indirect approach to study sperm precedence in a subsocial spider. Ethology, Ecology & Evolution 22:295–304.

Lubin, Y. & T. Bilde. 2007. The evolution of sociality in spiders. Advances in the Study of Behavior 37:83–145.

Maddison, W.P. & D.R. Maddison. 2010. Mesquite: a modular system for evolutionary analysis. Version 2.73. Online at http://mesquiteproject.org

Marques, E.S.A., J. Vasconcelos-Netto & M. Britto-de-Mello. 1998. Life history and social behavior of Anelosimus jabaquara and Anelosimus dubiosus (Araneae, Theridiidae). Journal of Arachnology 26:227–237.

Platnick, N.I. 2010. The World Spider Catalog, Version 11.0. American Museum of Natural History, New York. Online at http://research.amnh.org/entomology/spiders/catalog/index.html.

Posada, D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25:1253–1256.

Powers, K.S. & L. Avilés. 2003. Natal dispersal patterns of a subsocial spider Anelosimus cf. jucundus (Theridiidae). Ethology 109:725–737.

Powers, K.S. & L. Avilés. 2007. The role of prey size and abundance in the geographical distribution of spider sociality. Journal of Animal Ecology 76:995–1003.

Pratt, J.N. & S.E. Riechert. 2009. Frequency-dependent success of cheaters during foraging bouts might limit their spread within colonies of a socially polymorphic spider. Evolution 63:2966–2973.

Pratt, J.N., S.E. Riechert & T.C. Jones. 2008. Behavioural syndromes and their fitness consequences in a socially polymorphic spider, Anelosimus studiosus. Animal Behaviour 76:871–879.

Pratt, J.N., S.E. Riechert, G. Iturralde, M. Vega, B.M. Fitzpatrick & L. Avilés. 2010. Population differences in behaviour are explained by shared within-population trait correlations. Journal of Evolutionary Biology 4:748–756.

Purcell, J. & L. Avilés. 2007. Smaller colonies and more solitary living mark higher elevation populations of a social spider. Journal of Animal Ecology 76:590–597.

Ronquist, F. & J.P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.

Thompson, J.D., D.G. Higgins & T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680.

Vasconcelos-Netto, J. & M.B.D. Mello. 1998. Life history and social behavior of Anelosimus jabaquara and Anelosimus dubiosus (Araneae, Theridiidae). Journal of Arachnology 26:227–237.

Viera, C. & M.J. Albo. 2008. Males of a subsocial spider choose among females of different ages and the same reproductive status. Ethology, Ecology & Evolution 20:35–41.

Viera, C., F.G. Costa, S. Ghione & M.A. Benamu-Pino. 2007a. Progeny, development and phenotype of the sub-social spider Anelosimus cf. studiosus (Araneae, Theridiidae) from Uruguay. Studies on Neotropical Fauna and Environment 42:145–153.

Viera, C., S. Ghione & F.G. Costa. 2007b. Post-embryonic development of the sub-social spider Anelosimus cf. studiosus (Araneae, Theridiidae). Bulletin of the British Arachnological Society 14:30–32.

Viera, C., S. Ghione & F.G. Costa. 2006. Anelosimus cf. studiosus (Theridiidae): Are males favored? Journal of Arachnology 34:258–260.

Viera, C., S. Ghione & F.G. Costa. 2007c. Mechanisms underlying egg-sac opening in the subsocial spider Anelosimus cf. studiosus (Araneae Theridiidae). Ethology, Ecology & Evolution 19:61–67.

Vollrath, F. 1986. Eusociality and extraordinary sex ratios in the spider Anelosimus extimus (Araneae: Theridiidae). Behavioral Ecology and Sociobiology 18:283–287.

Yip, E.C., K.S. Powers & L. Avilés. 2008. Cooperative capture of large prey solves scaling challenge faced by spider societies. Proceedings of the National Academy of Sciences USA 105:11818–11822.

Manuscript received 4 August 2010, revised 25 October 2010.
Agnarsson, Ingi. 2012. "A new phylogeny of Anelosimus and the placement and behavior of Anelosimus vierae n. sp. from Uruguay (Araneae: Theridiidae)." The Journal of arachnology 40(1), 78–84. https://doi.org/10.1636/ha10-49.1.