Charge-carrier mobility in hydrogen-terminated diamond field-effect transistors

Yosuke Sasama,¹ 2 Taisuke Kageura,¹ Katsuyoshi Komatsu,¹ Satoshi Moriyama,¹
Jun-ichi Inoue,¹ Masataka Imura,³ Kenji Watanabe,³ Takashi Taniguchi,³
Takashi Uchihashi,¹ and Yamaguchi Takahide¹ 2

¹) International Center for Materials Nanoarchitectonics,
National Institute for Materials Science, Tsukuba 305-0044,
Japan

²) University of Tsukuba, Tsukuba, 305-8571, Japan

³) Research Center for Functional Materials, National Institute for Materials Science,
Tsukuba 305-0044, Japan

(Dated: 3 February 2020)

Diamond field-effect transistors (FETs) have potential applications in power electronics and high-output high-frequency amplifications. In such applications, high charge-carrier mobility is desirable for a reduced loss and high-speed operation. We have recently fabricated diamond FETs with a hexagonal-boron-nitride gate dielectric and observed a high mobility above 300 cm²V⁻¹s⁻¹. In this study, we examine which scattering mechanism limits the mobility of our FETs through theoretical calculations. Our calculations reveal that the dominant carrier scattering is caused by surface charged impurities with the density of ≈1×10¹² cm⁻², and suggest a possible increase in mobility over 1000 cm²V⁻¹s⁻¹ by reducing the impurities.
I. INTRODUCTION

Diamond has attracted much attention as a next-generation semiconducting material because of its excellent properties such as a wide-band gap, high thermal conductivity, high breakdown electric field, and high mobility. These properties enable field-effect transistors (FETs) to operate at high temperature with low-energy loss, to resist a high voltage, and to be reduced in size. Previously, an FET operation at 400°C and a high breakdown voltage above 2000 V were reported. Diamond FETs in previous studies were often fabricated using hydrogen-terminated diamond surface, which exhibits a p-type surface conductivity.

The p-type surface conductivity appears on hydrogen-terminated diamond after air exposure even if the diamond is non-doped. The surface conductivity can be explained by a transfer doping model. The valence band maximum of hydrogen-terminated diamond is higher than the lowest unoccupied states of impurities adsorbed on the diamond surface by air exposure. The electrons in the valence bands of diamond are therefore transferred to the impurities and holes are induced at the diamond surface, resulting in the surface conductivity. It is known that the transfer doping is also caused by the exposure to NO gas and the deposition of a solid insulator with a high electron affinity such as V$_2$O$_5$.

The mobility of the surface conductivity of hydrogen-terminated diamond is typically 10-100 cm2V$^{-1}$s$^{-1}$ at room temperature. This value is more than one order of magnitude lower than the intrinsic mobility of bulk diamond (\approx4000 cm2V$^{-1}$s$^{-1}$). Recently, Li et al. calculated the mobility of the surface conductivity of hydrogen-terminated diamond as a function of temperature and carrier density. They pointed out that the major scattering source was the surface impurity.

The mobilities of the hydrogen-terminated diamond FETs are almost the same as or less than that of the surface conductivity of hydrogen-terminated diamond. This suggests that the charged impurities also exist in the gate insulator. In fact, it was suggested that Al$_2$O$_3$ film deposited by the atomic layer deposition (ALD) method contains oxygen point defects and aluminum vacancies, and electrons trapped in these defects are balanced with hole carriers in diamond. Other gate insulators such as SiO$_2$ and CaF$_2$ were formed by vacuum evaporation or sputter deposition, but these films are amorphous and may also contain charged impurities and traps.

Recently, we fabricated diamond FETs using a monocrystalline hexagonal boron nitride
(h-BN) as a gate insulator and observed a high mobility above 300 cm²V⁻¹s⁻¹. The high mobility is presumably due to a low density of charged impurities in h-BN. In this study, we calculated the room-temperature mobility of diamond FETs as a function of carrier density to reveal the mobility limiting factor in our FETs.

II. MODELING

The equations we used for calculating the scattering rate were basically the same as those used in the paper by Li et al. There are, however, two major differences between our calculation and theirs. First, Li et al. assumed that the density of surface charged impurities was the same as the carrier density. This is reasonable for the surface conductivity of hydrogen-terminated diamond because negative charges of the surface impurities are balanced with the positive charges of holes in diamond according to the transfer doping model. In diamond FETs, however, the density of surface charged impurity is independent of the carrier density because the carrier density can be controlled by the gate voltage. We therefore treated the density of surface charged impurities as a constant. This treatment causes a qualitative difference between the carrier density dependence of mobility in our calculation and that in the paper of Li et al.

The second different point is the way to treat three valence bands. Li et al. used a single equivalent isotropic band model. That is, they assumed a single effective band with the density-of-state mass $m^*_d = ((m^{1H})^{3/2} + (m^{HH})^{3/2} + (m^{SO})^{3/2})^{2/3}$, and the conduction mass $m^*_c = ((m^{1H})^{3/2} + (m^{HH})^{3/2} + (m^{SO})^{3/2})/((m^{1H})^{1/2} + (m^{HH})^{1/2} + (m^{SO})^{1/2})$. (They used the heavy hole (HH) mass $m^{HH} = 0.588m_0$, the light hole (LH) mass $m^{1H} = 0.303m_0$, and the split-off (SO) hole mass $m^{SO} = 0.394m_0$, m_0 being the rest mass.) In contrast, we distinguished the three bands and performed the calculation of the mobilities for the three bands separately. The distribution of the carrier densities to the HH, LH, and SO bands was determined by solving Schrödinger and Poisson equations self-consistently:

$$\left[-\frac{\hbar^2}{2m^*_i} \frac{d^2}{dz^2} + e\phi(z)(+\Delta^{SO}) - E^i_n \right] \Psi^i_n(z) = 0, \quad (1)$$

$$\frac{d^2\phi(z)}{dz^2} = -\frac{1}{\epsilon_0\epsilon_s} \left[eN_{\text{depl}} + e \sum_{i,n} n^i_n \left| \Psi^i_n(z) \right|^2 \right], \quad (2)$$

$$n^i_n = \frac{m^i/k_B T}{\pi\hbar^2} \ln \left[1 + \exp \left(\frac{E_F - E^i_n}{k_B T} \right) \right], \quad (3)$$
Here, e is the elementary charge, ϵ_0 is the vacuum permittivity, ϵ_s is the static dielectric constant of diamond, $e\phi(z)$ is the potential energy, $N_{\text{depl}} = N_D - N_A$, N_D and N_A are the ionized donor and acceptor concentration in the diamond substrate, E_n^i is the maximum energy of the nth sub-band, $\Psi_n^i(z)$ is the wave function corresponding to E_n^i, n_n^i is the sheet hole density of the nth sub-band, E_F is the Fermi level, k_B is the Boltzmann constant, and T is the absolute temperature. We did not consider the band mixing of the HH, LH, and SO subbands. The carrier density (n_{HH}^i, n_{LH}^i, and n_{SO}^i) for HH, LH, and SO holes were obtained by the summation of densities over the seven lowest subbands ($n_{\text{max}} = 7$). The summation of the 1st HH, LH, and SO subbands reaches >89% of the total carrier density ($n_{\text{tot}} = n_{\text{HH}} + n_{\text{LH}} + n_{\text{SO}}$) in the range of a total carrier density between 1×10^{11} and 1×10^{14} cm$^{-2}$ (Fig. 1(b)). Δ_{SO} is the spin-orbit gap energy and is taken into account only in the calculation for split-off holes. Δ_{SO} of diamond is 6 meV11 A secondary ion mass spectrometry measurement on a diamond substrate similar to the ones we used for fabricating the FETs indicated that the concentration of nitrogen which works as a donor is 0.5 ppm and that of boron which works as an acceptor is 5 ppb. Although there may be some defects (e.g. vacancies) that influence the value of N_{depl}, we assumed $N_{\text{depl}} = 0.5$ ppm. We used the following values of effective masses obtained from Luttinger parameters12 for the (111) diamond surface:

\begin{align*}
m_{z}^{\text{HH}} / m_0 &= 1/(\gamma_1 - 2\gamma_3) = 0.763, \\
m_{z}^{\text{LH}} / m_0 &= 1/(\gamma_1 + 2\gamma_3) = 0.248, \\
m_{z}^{\text{SO}} / m_0 &= 1/\gamma_1 = 0.375, \\
m_{//}^{\text{HH}} / m_0 &= 1/(\gamma_1 + \gamma_3) = 0.299, \\
m_{//}^{\text{LH}} / m_0 &= 1/(\gamma_1 - \gamma_3) = 0.503, \\
m_{//}^{\text{SO}} / m_0 &= 1/\gamma_1 = 0.375.
\end{align*}

m_{z}^i is the effective mass along the z direction perpendicular to the diamond surface, and $m_{//}^i$ is the effective mass parallel to the diamond surface.

We then calculated the scattering rate for the heavy-, light-, and split-off holes. We considered three scattering mechanisms for calculating the scattering rate: the surface impurity scattering, acoustic phonon scattering, and surface roughness scattering. The optical phonon
scattering was not considered because the optical phonon energy is as large as 165 meV and the occupation number of optical phonons is small at room temperature in diamond[13]. The effect of background ionized impurities is small and also neglected. (The contribution of the background ionized impurities to mobility is more than one order of magnitude smaller than that of surface charged impurities for the carrier density larger than $1 \times 10^{12} \text{cm}^{-2}$.) We note that the donors and acceptors should be fully ionized near the surface because of the band bending.

The equations of the scattering rate for three different scattering mechanisms are described below.

1. Surface charged impurity scattering

The carriers are scattered by the Coulomb potential arising from charged impurities on the surface. The scattering rate caused by the surface charged impurities is given by

$$
\frac{1}{\tau_{\text{imp}}^{i}} = n_{\text{imp}} \frac{m_{i}^{\text{eff}}}{2\pi\hbar^{3}(k_{F}^{i})^{3}} \left(\frac{e^{2}}{2\epsilon_{0}\epsilon_{s}} \right)^{2} \int_{0}^{2k_{F}^{i}} \frac{\exp(-2qd)}{[q + q_{TF}^{i}G(b^{i}, q)]^{2} \left(\frac{b^{i}}{b^{i} + q} \right)^{6}} \frac{q^{2}dq}{\sqrt{1 - (q/2k_{F}^{i})^{2}}} \right). \quad (11)
$$

n_{imp} is the density of surface charged impurity, \hbar is the reduced Planck constant, $q_{TF}^{i} = m_{i}^{\text{eff}} e^{2}/(2\pi\epsilon_{0}\epsilon_{s} \hbar^{2})$ is the Thomas-Fermi screening wave vector, $G(b^{i}, q) = 1/8\{2[b^{i} / (b^{i} + q)]^{3} + 3[b^{i} / (b^{i} + q)] + 3[b^{i} / (b^{i} + q)]^{2} \}$ is a form factor, $b^{i} = [33\pi m_{i}^{\text{eff}} e^{2} n^{i} / (2\hbar^{2}\epsilon_{0}\epsilon_{s})]^{1/3}$ is a parameter in a Fang-Howard wave function, $k_{F}^{i} = \sqrt{2\pi n^{i}}$ is the Fermi wave vector, and d is the distance between carriers and surface charged impurities.

2. Acoustic phonon scattering

Phonon is a quantum of lattice vibration and causes carrier scattering. There are two modes in the lattice vibrations: acoustic and optical modes. The room-temperature mobility of diamond is mainly affected by acoustic phonons[8]. The scattering rate caused by acoustic phonon is given by

$$
\frac{1}{\tau_{\text{ac}}^{i}} = \frac{3m_{\text{eff}}^{i} k_{B} T D_{\text{ac}}^{2}}{16\rho u_{l}^{2} \hbar^{5}}. \quad (12)
$$

D_{ac} is the acoustic deformation potential, ρ is the crystal mass density, and u_{l} is the velocity of longitudinal acoustic phonons. The deformation potential of diamond was calculated to be 8 eV by Cardona \textit{et al.} using the Linear combination of muffin tin orbitals (LMTO) method[14] This value is consistent with the temperature dependence of mobility of boron-doped diamond in the study by Pernot \textit{et al.}[13] ρ and u_{l} of diamond are 3515 kgm$^{-3}$ and 17536 ms$^{-1}$, respectively[13].

5
3. Surface roughness scattering

The surface roughness induces the disorder in the electric potential and leads to the carrier scattering. The scattering rate caused by the surface roughness is given by

$$\frac{1}{\tau_i} = \frac{\Delta^2 \Lambda^2 e^4 m_i^i}{(\epsilon_0 \epsilon_s)^2 \hbar^2 (n_{tot})^2} \int_0^1 u^4 \exp[-(k_F u)^2 \Lambda^2 u^2] \frac{u + G(b^i, q)q_{TF}/(2k_F)^2}{\sqrt{1 - u^2}} du. \quad (13)$$

The surface roughness is characterized by the average roughness (Δ) and correlation length (Λ).

The total scattering rate is calculated using the Mathiessen rule,

$$\frac{1}{\tau_i} = \frac{1}{\tau_{imp}^i} + \frac{1}{\tau_{ac}^i} + \frac{1}{\tau_{r}^i}, \quad (14)$$

and the mobility for $i=\text{HH}, \text{LH}, \text{SO}$ is obtained from $\mu^i = e\tau_i^i/m_i^i$. We finally calculated the carrier density and mobility of the FET using the formula for the multi-carrier Hall effect, because our experimental results are obtained from low magnetic field Hall effect measurements.

$$\mu = \frac{n^{\text{HH}}(\mu^{\text{HH}})^2 + n^{\text{LH}}(\mu^{\text{LH}})^2 + n^{\text{SO}}(\mu^{\text{SO}})^2}{n^{\text{HH}}\mu^{\text{HH}} + n^{\text{LH}}\mu^{\text{LH}} + n^{\text{SO}}\mu^{\text{SO}}}, \quad (15)$$

$$n = \frac{(n^{\text{HH}}\mu^{\text{HH}} + n^{\text{LH}}\mu^{\text{LH}} + n^{\text{SO}}\mu^{\text{SO}})^2}{n^{\text{HH}}(\mu^{\text{HH}})^2 + n^{\text{LH}}(\mu^{\text{LH}})^2 + n^{\text{SO}}(\mu^{\text{SO}})^2}. \quad (16)$$

III. RESULTS AND DISCUSSION

Figure 2 shows the carrier density dependence of mobility of our three diamond FETs with a h-BN gate dielectric. The figure also shows the mobilities of diamond FETs reported by other groups and the mobility of surface conductivity of hydrogen-terminated diamond surfaces exposed to air. The mobilities of our FETs exceed 300 cm2V$^{-1}$s$^{-1}$, and they are only weakly dependent on the carrier density. This contrasts with the mobilities of the surface conductivity induced by the air exposure, which decreases monotonically with carrier density.

Here let us consider which scattering mechanism limits the mobility of our FETs. The carrier density dependence of the mobility limited by acoustic phonon scattering can be calculated only using material-dependent parameters such as the deformation potential and phonon velocity. As shown in Fig. 2, the calculated acoustic-phonon-limited mobility is more than one order of magnitude higher than the experimental one, and therefore, acoustic...
phonon is not the dominant scattering source in our FETs. The high acoustic-phonon-limited mobility is due to the high phonon velocity and the large crystal mass density in diamond.

The analytical formula for the surface roughness scattering contains device-dependent parameters, Δ and Λ, which characterize the magnitude of surface roughness. Here, we assume $\Delta = 0.3$ nm and $\Lambda = 2$ nm. The validity of these values is described below. The calculated mobility limited by the surface roughness scattering is also higher than the experimental one, and it is a strongly decreasing function of carrier density. Therefore, the surface roughness scattering cannot explain the overall behavior of the mobility of our FETs, either.

The surface impurity scattering with a constant impurity density leads to a slow increase of the mobility with carrier density if the distance between the impurities and the two-dimensional hole gas is small. (Fig. 3) We calculate the mobility limited by surface charged impurities for different n_{imp} by assuming $d = 0$. The total mobility calculated with $n_{\text{imp}} = (0.8-1.3) \times 10^{12}$ cm$^{-2}$ agrees reasonably well with the experimental mobility as shown in Fig. 2. The comparison between the experimental and calculated mobilities indicates that the surface impurity scattering is the dominant mechanism that limits the mobility of our FETs.

We assumed $\Delta=0.3$ nm and $\Lambda=2$ nm for the calculation of surface roughness scattering rate as described above. Taking different values of Λ does not influence the carrier density dependence of mobility considerably for the carrier density lower than 5×10^{12} cm$^{-2}$ (Fig. 4(a)). $\Lambda = 2$ nm is the same as that obtained by Li et al. from the comparison between experimental data and calculations. This value is also comparable with those used for explaining the mobility in a Si MOSFET15 and an AlGaN/GaN heterostructure16. The value of Δ, in contrast, affects the carrier density dependence of the mobility significantly as shown in Fig. 4(b). If Δ is larger than 1 nm, mobility decreases rapidly with increasing carrier density. Such a rapid decrease is inconsistent with the experimental results. The experimental mobility can be explained most reasonably with $\Delta \approx 0.3$ nm. This is within a typical range of the surface roughness of polished diamond substrates.

As shown in Fig. 2 the calculated mobility of heavy holes (μ^{HH}) is almost the same as the total mobility (μ) calculated from Eq. (15), indicating the dominant role of heavy holes in the carrier transport. This is reasonable because the proportion of the density of heavy
holes is the largest and their effective mass parallel to the surface is the lightest.

We also examined the mobility of the surface conductivity of the hydrogen-terminated surface exposed to air. The monotonic decrease in mobility with increasing carrier density (Fig. 2) can be explained nearly quantitatively by the surface impurity scattering with \(n_{\text{imp}} = n_{2D} \), as was reported by Li et al.\(^8\). As the increase in carrier density means the increase in the density of charged impurities, the mobility monotonically decreases with carrier density. In the carrier density range between \(10^{11} \) and \(10^{14} \) cm\(^{-2}\), the surface impurity scattering leads to the lower mobility than those limited by acoustic phonon and surface roughness; therefore, the surface impurity scattering is dominant. We note that our calculation is performed using the effective masses for (111) surface, although Fig. 2 also shows the experimental results for both (100) and (111) surfaces. The difference in calculated mobility between (100) and (111) surfaces is less than 30\% and is within the variation of the experimental mobilities. We also note that the contribution of \(N_{\text{depl}} \) is not considered here; more accurately, \(n_{\text{imp}} \) should equal \(n_{2D} + n_{\text{depl}} \) (\(n_{\text{depl}} = N_{\text{depl}} z_{\text{depl}} \), where \(z_{\text{depl}} \) is the depletion-layer thickness). We do not know \(n_{\text{depl}} \) in the diamond samples in the literature from which the mobility of the surface conductivity are taken for Fig. 2. The above Schrödinger-Poisson calculations show that \(n_{\text{depl}} = 7 \times 10^{11} \) cm\(^{-2}\) for \(N_{\text{depl}} = 1.76 \times 10^{16} \) cm\(^{-3}\) (0.1 ppm) and \(n_{\text{depl}} = 2.3 \times 10^{12} \) cm\(^{-2}\) for \(N_{\text{depl}} = 1.76 \times 10^{17} \) cm\(^{-3}\) (1 ppm). If \(n_{\text{depl}} \) is taken into account, the calculated mobility for \(n_{2D} \ll n_{\text{depl}} \) is lower than that shown in Fig. 2 because \(n_{\text{imp}} \approx n_{\text{depl}} \) for \(n_{2D} \ll n_{\text{depl}} \).

The above comparison between the experimental and calculated mobility indicates that the surface impurity scattering is the dominant mechanism that limits the mobility of our FETs. This is consistent with our recent finding that the quantum and transport lifetime, which are estimated from Shubnikov-de Hass oscillations at low temperatures, are nearly the same.\(^{17}\) The surface charged impurities may be adsorbed when the diamond surface is exposed to air before it is laminated by a flake of h-BN.\(^{10}\) Most of the heterostructures consisting of graphene and h-BN are also created by stacking the layers with their surfaces exposed to air. The interfaces of the layers can nevertheless be free from the adsorbates due to a unique self-cleansing effects.\(^{15}\) However, such self-cleansing effects seem to be ineffective for the interface between the hydrogen-terminated diamond and h-BN. For improving the mobility of the FETs, it would be important to reduce the density of adsorbates, for example, by a vacuum annealing.\(^{10}\) As shown in Fig. 2, our calculation suggests that decreasing the
density of charged impurities down to $\approx 1 \times 10^{11}$ cm$^{-2}$ would lead to the mobility above 1000 cm2V$^{-1}$s$^{-1}$ at room temperature. The surface roughness scattering should also be reduced for improving the mobility for carrier densities higher than $\approx 4 \times 10^{12}$ cm$^{-2}$. For this purpose, it will be effective to use the atomically flat diamond surface prepared by the chemical vapor deposition with a low methane concentration on a mesa structure.20,21

IV. CONCLUSIONS

In conclusion, we calculated the carrier density dependence of mobility of hydrogen-terminated diamond FET considering three scattering mechanisms: the surface impurity scattering, acoustic phonon scattering, and surface roughness scattering. The calculated mobility agrees with the mobility of our diamond FETs with a h-BN gate dielectric if we assume a constant surface impurity density $n_{\text{imp}} = (0.8 - 1.3) \times 10^{12}$ cm$^{-2}$, an average surface roughness $\Delta = 0.3$ nm and a correlation length $\Lambda = 2$ nm. Decreasing the surface impurity density below $\approx 1 \times 10^{11}$ cm$^{-2}$ will lead to a mobility exceeding 1000 cm2V$^{-1}$s$^{-1}$. Such a high mobility outperforms that of p-type Si MOSFET significantly and will be useful for developing electronic devices that operate with a low loss and a high speed.

ACKNOWLEDGMENTS

We thank T. Teraji and S. Koizumi for useful discussions. This study was supported by Grants-in-Aid for Scientific Research (Grants No. 25287093, No. 26630139, and No. 19H02605) and the Nanotechnology Platform Project of MEXT, Japan.

REFERENCES

1. C. J. H. Wort and R. S. Balmer, “Diamond as an electronic material,” Mater. Today 11, 22–28 (2008).
2. H. Kawarada, H. Tsuboi, T. Naruo, T. Yamada, D. Xu, A. Daicho, T. Saito, and A. Hiraiwa, “C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation,” Appl. Phys. Lett. 105, 013510 (2014).
3. Y. Kitabayashi, T. Kudo, H. Tsuboi, T. Yamada, D. Xu, M. Shibata, D. Matsumura, Y. Hayashi, M. Syamsul, M. Inaba, A. Hiraiwa, and H. Kawarada, “Normally-off C-H
diamond MOSFETs with partial C-O channel achieving 2-kV breakdown voltage,” IEEE Electron Device Lett. **38**, 363–366 (2017).

4F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, “Origin of surface conductivity in diamond,” Phys. Rev. Lett. **85**, 3472–3475 (2000).

5M. Kasu, “Diamond field-effect transistors for RF power electronics: Novel NO$_2$ hole doping and low-temperature deposited Al$_2$O$_3$ passivation,” Jpn. J. Appl. Phys. **56**, 01AA01 (2017).

6C. Verona, F. Arciprete, M. Foffi, E. Limiti, M. Marinelli, E. Placidi, G. Prestopino, and G. Verona Rinati, “Influence of surface crystal-orientation on transfer doping of V$_2$O$_5$/H-terminated diamond,” Appl. Phys. Lett. **112**, 181602 (2018).

7J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High carrier mobility in single-crystal plasma-deposited diamond,” Science **297**, 1670–1672 (2002).

8Y. Li, J.-F. Zhang, G.-P. Liu, Z.-Y. Ren, J.-C. Zhang, and Y. Hao, “Mobility of two-dimensional hole gas in H-terminated diamond,” Physica Status Solidi (RRL) - Rapid Research Letters **12**, 1700401 (2018).

9H. Kawarada, T. Yamada, D. Xu, H. Tsuboi, Y. Kitabayashi, D. Matsumura, M. Shibata, T. Kudo, M. Inaba, and A. Hiraiwa, “Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications,” Sci Rep **7**, 42368 (2017).

10Y. Sasama, K. Komatsu, S. Moriyma, M. Imura, T. Teraji, K. Watanabe, T. Taniguchi, T. Uchihashi, and Y. Takahide, “High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric,” APL Materials **6**, 111105 (2018).

11R. Winkler, *Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems* (Springer-Verlag Berlin Heidelberg, 2003).

12N. Naka, K. Fukai, Y. Handa, and I. Akimoto, “Direct measurement via cyclotron resonance of the carrier effective masses in pristine diamond,” Physical Review B **88**, 035205 (2013).

13J. Pernot, P. N. Volpe, F. Omnès, P. Muret, V. Mortet, K. Haenen, and T. Teraji, “Hall hole mobility in boron-doped homoepitaxial diamond,” Physical Review B **81**, 205203 (2010).
14M. Cardona and N. Christensen, “Deformation potentials of the direct gap of diamond,” Solid state communications 58, 421–424 (1986).

15T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Reviews of Modern Physics 54, 437–672 (1982).

16D. Zanato, S. Gokden, N. Balkan, B. K. Ridley, and W. J. Schaff, “The effect of interface-roughness and dislocation scattering on low temperature mobility of 2D electron gas in GaN/AlGaN,” Semiconductor Science and Technology 19, 427–432 (2004).

17Y. Sasama, K. Komatsu, S. Moriyama, M. Imura, S. Sugiura, T. Terashima, S. Uji, K. Watanabe, T. Taniguchi, T. Uchihashi, and Y. Takahide, “Quantum oscillations in diamond field-effect transistors with a h-BN gate dielectric,” Physical Review Materials 3, 121601(R) (2019).

18A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14, 3270–3276 (2014).

19M. Inaba, H. Kawarada, and Y. Ohno, “Electrical property measurement of two-dimensional hole-gas layer on hydrogen-terminated diamond surface in vacuum- gap-gate structure,” Applied Physics Letters 114, 253504 (2019).

20N. Tokuda, H. Umezawa, S.-G. Ri, M. Ogura, K. Yamabe, H. Okushi, and S. Yamasaki, “Atomically flat diamond (111) surface formation by homoepitaxial lateral growth,” Diamond and Related Materials 17, 1051–1054 (2008).

21Y. Takahide, H. Okazaki, K. Deguchi, S. Uji, H. Takeya, Y. Takano, H. Tsuboi, and H. Kawarada, “Quantum oscillations of the two-dimensional hole gas at atomically flat diamond surfaces,” Phys. Rev. B 89, 235304 (2014).
FIG. 1. (a) The calculated density profile of the lowest subbands of heavy- (HH), light- (LH), and split-off (SO) holes and the 2nd subband of heavy holes (HH2) for the total carrier density of $1.0 \times 10^{13} \text{cm}^{-2}$ at $T = 300$ K. z is the depth from the diamond surface. N_{depl} is assumed to be 0.5 ppm. (b) The calculated population of heavy holes, light holes, and split-off holes as a function of total carrier density at $T = 300$ K.
FIG. 2. The carrier density dependence of mobility. Solid lines show the calculated results for hydrogen-terminated diamond FET. Dotted lines show the calculated results for the surface conductivity of hydrogen-terminated diamond. The figure also shows that the experimental results[10] of our h-BN/diamond FETs, other group’s diamond FETs and surface conductivities. Squares, circles, and triangles represent (111), (100), and (110) diamond surfaces, respectively. The rhombus represents a polycrystalline diamond.

FIG. 3. The calculated carrier density dependence of mobility limited by surface impurity scattering. The density of surface charged impurity n_{imp} is 1.3×10^{12} cm$^{-2}$. d is the distance between the charged impurities and the two-dimensional hole gas.
FIG. 4. (a) The calculated carrier density dependence of mobility for different Λ values. Here, Δ is 0.3 nm and n_{imp} is 1.3×10^{12} cm$^{-2}$. (b) The calculated carrier density dependence of mobility for different Δ values. Λ is 2 nm and n_{imp} is 1.3×10^{12} cm$^{-2}$.