The Econometrics of Financial Duration Modeling

GIUSEPPE CAVALIEREa, THOMAS MIKOSCHb, ANDERS RAHBKc
AND FREDDERIK VILANDTc

November 21, 2022

Abstract

We establish new results for estimation and inference in financial durations models, where events are observed over a given time span, such as a trading day, or a week. For the classical autoregressive conditional duration (ACD) models by Engle and Russell (1998, Econometrica 66, 1127–1162), we show that the large sample behavior of likelihood estimators is highly sensitive to the tail behavior of the financial durations. In particular, even under stationarity, asymptotic normality breaks down for tail indices smaller than one or, equivalently, when the clustering behavior of the observed events is such that the unconditional distribution of the durations has no finite mean. Instead, we find that estimators are mixed Gaussian and have non-standard rates of convergence. The results are based on exploiting the crucial fact that for duration data the number of observations within any given time span is random. Our results apply to general econometric models where the number of observed events is random.

Keywords: Financial durations; autoregressive conditional duration (ACD); tail index; quasi maximum likelihood; mixed normality.

1 Introduction

In the seminal papers by Engle and Russell (1998) and Engle (2000), autoregressive conditional duration (ACD) models were introduced for modeling durations, or waiting times, between financial events, and to analyze liquidity in financial markets. Financial events are observed over a given period of time, such as a (trading) day, a week, or a year; hence, both the size and the number of durations are random variables. As we demonstrate, the randomness of the number of events has a major impact on asymptotics and inference in dynamic duration models. Moreover, as detailed below, existing results cover alone the case where the number of events is non-random and therefore are not applicable to estimation of ACD models over a given time span. In this paper, we provide the missing asymptotic analysis for likelihood-based estimators. We specifically show that the randomness of the number of events plays a crucial role and leads to a new distributional theory (at non-standard rates of convergence) for likelihood estimators and related test statistics. The derivation of these novel results requires non-standard asymptotic arguments, combining new results on the tail behavior of the durations with renewal theory.

aDepartment of Economics, University of Bologna, Italy and Department of Economics, University of Exeter, UK.
bDepartment of Mathematical Sciences, University of Copenhagen, Denmark.
cDepartment of Economics, University of Copenhagen, Denmark.
Correspondence to: Giuseppe Cavaliere, Department of Economics, University of Bologna, email giuseppe.cavaliere@unibo.it.
The ACD models are by now quite popular in financial econometrics; see e.g. Hautsch (2012) and Fernandes, Medeiros and Veiga (2016) for applications and theory in the context of high-frequency data and Pacurar (2008) for a general survey. Applications of dynamic duration models such as the ACD are extensively used also in different areas of economics; see e.g. Hamilton and Jordà (2002) or Aquilina, Budish and O’Neill (2022).

Let \([0, T]\) denote the observation period, where we observe \(n\) event times \(\{t_i\}_{i=1}^n\), \(0 < t_1 < t_2 < \cdots < t_n \leq T\), with corresponding durations \(x_i = t_i - t_{i-1}\), \(i = 1, \ldots, n\), \(t_0 = 0\). As noted in Engle and Russell (1998), \(n\) is the realization at time \(t = T\) of the stochastic counting process \(N_t, t \geq 0\), given by

\[
N_t = \#\{k \geq 1 : t_k = x_1 + \cdots + x_k \leq t\}. \tag{1.1}
\]

In particular, the number of events \(N_T\), in the observation period \([0, T]\), is as mentioned a random variable.

The most known dynamic duration model is the ACD of Engle and Russell (1998) which in its simplest version (ACD of order one) is given by

\[
x_i = \psi_i(\theta) \varepsilon_i, \quad \psi_i(\theta) = \omega + \alpha x_{i-1}, \quad i = 1, \ldots, N_T, \tag{1.2}
\]

where \(\theta = (\omega, \alpha)'\) and \(\psi_i(\theta)\) is the conditional (duration) rate of the \(i\)th waiting time \(x_i\), i.e., conditional on \(\mathcal{F}_{i-1} = \sigma(x_{i-1}, x_{i-2}, \ldots)\). The innovations \(\{\varepsilon_i\}\) are assumed i.i.d., strictly positive, with unit mean, \(E[\varepsilon_i] = 1\). If \(\varepsilon_i\) is exponentially distributed this is referred to as exponential ACD (EACD).

With parameters \(\theta = (\omega, \alpha)\), for \(\omega > 0\), \(\alpha \geq 0\), and observation period \([0, T]\), the EACD log-likelihood function is given by

\[
L_T(\theta) = -\sum_{i=1}^{N_T} \left[\log \psi_i(\theta) + \frac{x_i}{\psi_i(\theta)} \right], \quad T \geq 0. \tag{1.3}
\]

Then \(\hat{\theta}_T = \arg \max_{\theta} L_T(\theta)\) denotes the maximum likelihood estimator (MLE) of \(\theta\) in the case of i.i.d. exponentially distributed \(\{\varepsilon_i\}\), otherwise we refer to it as a quasi maximum likelihood estimator (QMLE).

Engle and Russell (1998) note that the log-likelihood function in (1.3) has the same form as the log-likelihood function for the autoregressive conditional heteroskedastic (ARCH) model with Gaussian innovations, and quote standard asymptotic theory from ARCH models in Lee and Hansen (1996); see also Fernandes and Grummig (2006), Hautsch (2012, Theorem 5.2), Allen, Felix, McAleer and Peiris (2008) and Sin (2014) for a similar approach to inference. Importantly, this approach treats \(N_T\) as deterministic; that is, sampling is by number of durations and not over a fixed, predetermined observation period \([0, T]\). Importantly, the results for deterministic \(N_T\) cannot be applied to the case of random \(N_T\), as analyzed here.

To give an idea of the difference in arguments between the two different sampling schemes, a key insight is that the fact that the number of observations \(N_T\) is random implies that classical laws of large numbers (LLNs) and central limit theorems (CLTs) are no longer directly applicable to likelihood-related quantities such as score and information. For instance, it is known from renewal process theory (see e.g. Gut, 2009) that \(N_T \to \infty\) is not sufficient for the LLN or the CLT to apply to series of the form \(Y_T = \sum_{i=1}^{N_T} \xi_i\), where both \(N_T\) and the random variables
\{\xi_i\} are defined in terms of the durations \{x_i\}; such series appear repeatedly in the asymptotic theory for ACD. In contrast to the deterministic \(N_T\) case, the large sample behaviour of \(Y_T\) is intimately related to the large sample properties of the counts \(N_T\), which, again, depends on the tail properties (and existence of moments) of the marginal distribution of the stationary and ergodic duration \(x_i\). Such dependence leads to a novel asymptotic theory, based on non-standard arguments.

Specifically, as we show in this paper, the asymptotic theory for the MLE crucially depends on the tail behavior and existence of moments for the ergodic and stationary durations \(\{x_i\}\), with the tail behaviour characterized by the tail index \(\kappa > 0\) of the marginal distribution of \(x_i\); \(P(x_i > z) \sim c_\kappa z^{-\kappa}\) as \(z \to \infty\) for some constant \(c_\kappa > 0\). We show that while asymptotic normality holds for \(\kappa > 1\), or equivalently, when the durations have finite mean, asymptotic normality breaks down for \(\kappa < 1\). This is a crucial fact, given that a wide range of tail indices is witnessed in empirical applications on duration data. Thus, for example, Hill estimation of \(\kappa\) yields \(\hat{\kappa} = 2.1 > 2\) for the IBM transaction data analyzed in Engle and Russell (1998) and \(\hat{\kappa} = 2.5 > 2\) on the durations between tweets in Cavaliere, Lu, Rahbek and Stærk-Ostergaard (2022). Moreover, \(\hat{\kappa} = 1.4 \in (1, 2)\) for the DJIA data from Embrechts, Liniger and Lin (2011), while \(\hat{\kappa} = 0.7 < 1\) on SPY transaction data over a single trading day (2019:07:31). Notably, while asymptotic normality holds for \(\kappa > 1\), the Gaussian finite sample approximation is poor for the case of infinite variance \(\kappa < 2\) and indeed invalid for the case of infinite mean where \(\kappa < 1\).

A preview of our results is as follows. In classic settings, with \(\{x_i\}\) i.i.d. with finite mean, the number of events per unit of time \(N_T/T\) converges in probability to a strictly positive constant, in which case LLNs and CLTs for \(\sum_{i=1}^{N_T} \xi_i\) can usually be verified; see e.g. Gut (2009) for a survey. In the ACD setting, whether this holds depends on the tail index \(\kappa\). On the one hand, if \(\kappa > 1\), hence \(E[x_i] = \mu \in (0, \infty)\), and \(N_T/T\) is such that \(N_T/T = 1/\mu + o(1)\) a.s. However, even in this simpler case, existing (renewal) theory does not include stationary and ergodic \(x_i\), and we provide the needed extensions to the theory here. On the other hand, if \(\kappa < 1\), hence \(E[x_i] = \infty\), then \(N_T/T\) converges (a.s.) to zero as \(T \to \infty\) and neither the classic LLN nor the CLT apply to \(\sum_{i=1}^{N_T} \xi_i\). New tools are required for the asymptotic theory and, in particular, we establish the novel result that \(N_T/T^\kappa\) converges in distribution to a random variable with an unfamiliar distribution, and for which we provide an explicit expression in terms of a \(\kappa\)-stable random variable.

These convergence results for \(N_T\) are essential for establishing the asymptotic distribution of the QMLE. Specifically, we show that, provided \(\mu = E[x_i] < \infty\), \(\hat{\theta}_T - \theta_0\) (with \(\theta_0\) denoting the true value) is indeed asymptotically Gaussian when normalized by the standard deterministic \(\sqrt{T}\)-rate. However, while \(E[x_i] < \infty\) is indeed sufficient for \(\sqrt{T}\)-convergence to the Gaussian distribution, the quality of the Gaussian approximation in finite samples is demonstrated to be very poor when \(E[x_i^2] = \infty\), or \(\kappa < 2\), and deteriorating as the tail index \(\kappa\) approaches one. Hence even when \(E[x_i] < \infty\) these results question the usefulness of the \(\sqrt{T}\)-Gaussian approximation for likelihood estimators in ACD models. In the case \(\kappa < 1\), the fact that \(N_T/T^\kappa\) converges in distribution – and not in probability – to a non-standard random variable implies that the derivation of the limiting distribution of \(\hat{\theta}_T - \theta_0\) is non-standard. In particular we show that the information is random in the limit, and that this results in a limiting mixed Gaussian
distribution of $\hat{\theta}_T - \theta_0$ with a convergence rate which depends on the value of tail index $\kappa < 1$. A further, novel result that follows from our results is that the t ratio for (univariate) hypotheses on θ is asymptotically normal provided $\kappa > 1$ or $\kappa < 1$. The local power function of the test, however, crucially depends on κ. The case $\kappa = 1$ is not covered by our theorem, and hence particular attention should be paid to applications where estimated parameters are close to the boundary case $E x_i = \infty$.

To sum up, our results show that, in contrast to ARCH models where the marginal distribution of the data does not play any role in the asymptotic theory, for ACD models this is indeed crucial, as the tail index of the duration determines the speed of convergence of the estimators as well as their asymptotic distribution. As already mentioned this is of empirical relevance, as both the case of infinite and finite mean durations ($\kappa < 1$ and $\kappa > 1$, respectively) are found in applications. Moreover, our findings are not specific to ACD models, but apply to general econometric method where the number of observations over a given time span needs being treated as a random process; see also Section 4.

The paper is structured as follows. In Section 2 we discuss the tail behavior of ACD processes, and provide new results for the related counting process N_T, $T \geq 0$. In Section 3 we present the main asymptotic theory. A discussion about the implications for inference and some concluding remarks are given in Section 4. All proofs are provided in the Appendix. In the following, $p \rightarrow$, $a.s. \rightarrow$, and $d \rightarrow$ refer to convergence in probability, almost surely and in distribution, respectively, in all cases when $T \rightarrow \infty$. A generic element of a strictly stationary sequence $\{y_i\}$ is denoted by y.

2 Preliminaries

In this section we derive the required results on the tail properties of the durations and on the asymptotic behaviour of the random number of durations N_T. Results of this kind are neither present nor required in the classical ARCH case, where N_T is deterministic.

2.1 Tail behavior of the ACD

We consider the sequence $x_i = \psi_i \varepsilon_i$, $i \in \mathbb{Z}$, given as the solution to the ACD equation (1.2), and state explicit conditions for stationarity and geometric ergodicity of $\{x_i\}$ as well as for power-law tails of x with index κ. The range of the values κ will be crucial for our asymptotic theory.

The results are initially stated for general positive i.i.d. distributed innovations $\{\varepsilon_i\}$.

Lemma 2.1 (ACD properties) Consider $\{x_i\}$ given by (1.2) with a strictly positive i.i.d. sequence $\{\varepsilon_i\}$ with density f_ε, and for which $E[\varepsilon] = 1$ and $s^2 = E[\varepsilon^2] < \infty$. Then $\{x_i\}$ is geometrically ergodic and has a stationary representation for $\alpha \in (0, a_u)$, $a_u = \exp (-E[\ln(\varepsilon)]) > 1$. Moreover, if the unique positive solution $\kappa = \kappa(\alpha) > 0$ to the equation $E[(\alpha \varepsilon)^\kappa] = 1$ exists, then $P(x > z) \sim c_\kappa z^{-\kappa}$, $z \to \infty$, for some positive constant c_κ given in (A.2). In particular, we have

\[
\begin{cases}
2 < \kappa < \infty, & \text{for } \alpha \in (0, 1/s) \\
\kappa = 2, & \text{for } \alpha = 1/s \\
1 < \kappa < 2, & \text{for } \alpha \in (1/s, 1) \\
\kappa = 1, & \text{for } \alpha = 1 \\
0 < \kappa < 1, & \text{for } \alpha \in (1, a_u)
\end{cases}
\]
The results in Lemma 2.1 complement existing results on ARCH processes; see e.g. Embrechts, Klüppelberg and Mikosch (1997), Buraczewski, Damek and Mikosch (2016), and allow in particular one to assess the existence of moments of ACD processes. Thus, we find that for \(\alpha < 1 \) the mean is finite, \(\mathbb{E}[x] < \infty \), while the variance \(\mathbb{V}[x] \) is finite for \(\alpha \) in the smaller region \((0, 1/s)\), where \(s^2 = \mathbb{E}[\varepsilon^2] \). For \(1 < \alpha < a_u \), while \(\{x_i\} \) is a strictly stationary and geometrically ergodic sequence, only fractional moments (of order less than one) of \(x \) are finite.

Next, we consider the benchmark model where \(\varepsilon \) is exponentially distributed (EACD).

Lemma 2.2 (EACD Properties) Consider \(\{x_i\} \) given by (1.2) with an i.i.d. sequence \(\{\varepsilon_i\} \) exponentially distributed with \(\mathbb{E}[\varepsilon] = 1 \). The equation (1.2) has a strictly stationary geometrically ergodic solution \(\{x_i\} \) if and only if \(\alpha \in [0, a_u) \), with \(a_u = \exp(\gamma) \approx 1.8 \), where \(\gamma \) is Euler’s constant. The remaining results in Lemma 2.1 hold with \(s^2 = \mathbb{E}[\varepsilon^2] = 2 \); with \(\Gamma \) denoting the Gamma function, the equation \(\mathbb{E}[(\alpha \varepsilon)^\kappa] = 1 \) has in this case a unique implicit solution given by

\[
\alpha = \left[\Gamma(\kappa + 1)\right]^{-1/\kappa}.
\]

(2.1)

In particular, we observe the surprisingly simple explicit relationship between \(\alpha \) and \(\kappa = \kappa(\alpha) \) in (2.1) which comes from the properties of the exponential distribution. Such a simple relationship does not exist for general distributions of \(\varepsilon \) and more general functional forms of \(\psi_i \).

2.2 Asymptotics for the ACD counting process

In Lemma 2.3 below we collect some novel asymptotic results for the counting process \(N_T, T \geq 0 \), which are needed for the asymptotic analysis of the QMLE of the ACD process.

Our results are general and of independent interest, in particular as the dependence of the durations sequence is an uncommon condition in the literature on renewal theory; there it is typically assumed that the durations are i.i.d. or at most \(m \)-dependent (e.g. finite moving average); see e.g. Gut (2009), Janson (1983). Moreover, and also new with respect to existing theory, we present results for the convergence of the counting process \(N_T \) when durations have a tail index \(\kappa < 1 \).

Recall initially that \(N_T \) is defined in terms of the dependent sequence \(\{x_i\} \), cf. (1.1), with \(x_i \) defined in (1.2). As in Lemma 2.1 we consider here the general case of positive i.i.d. innovations \(\{\varepsilon_i\} \) with unit mean. The following result provides convergence rates for \(N_T \) as \(T \to \infty \).

Lemma 2.3 Consider a strictly stationary geometrically ergodic positive solution \(\{x_i\} \) to (1.2) with tail index \(\kappa > 0 \) and \(\{\varepsilon_i\} \) an i.i.d. sequence with \(\varepsilon > 0 \), \(\mathbb{E}[\varepsilon] = 1 \). Then the following results hold for the counting process \(N_T, T \geq 0 \), defined in (1.1).

(i) For \(\kappa > 1 \),

\[
N_T/T \xrightarrow{a.s.} 1/\mu, \quad \text{where } \mu = \mathbb{E}[x] < \infty.
\]

(ii) For \(\kappa > 2 \), the CLT holds:

\[
T^{1/2}((N_T/T - 1/\mu) \xrightarrow{d} N(0, \sigma^2/\mu^3)),
\]

where \(\sigma^2 = \mathbb{E}[(1 + T_\infty)^2 - T_\infty^2] \mathbb{V}[x] \) and \(T_\infty = \sum_{i=1}^\infty \alpha^i(\prod_{j=1}^i \varepsilon_j) \). For \(\kappa = 2 \) the CLT holds with normalization \(c \sqrt{T \ln T} \) for some positive constant \(c \), and a standard normal limit distribution.
(iii) For $1 < \kappa < 2$,

$$T^{(\kappa-1)/\kappa}(N_T/T - 1/\mu) \xrightarrow{d} \gamma_\kappa = (c_\kappa \mathbb{E}[(1 + T_\infty)^\kappa - T_\infty^\kappa]/\mu)^{1/\kappa} \eta_\kappa,$$

where η_κ is a totally skewed to the right κ-stable random variable whose characteristic function is given in (A.6), and c_κ is defined in (A.2).

(iv) For $0 < \kappa < 1$, $N_T/T \xrightarrow{a.s.} 0$ and

$$\frac{N_T}{T^\kappa} \xrightarrow{d} \lambda_\kappa = (c_\kappa \mathbb{E}[(1 + T_\infty)^\kappa - T_\infty^\kappa])^{-1} \eta_\kappa^{-\kappa}, \quad (2.2)$$

where η_κ is a totally skewed to the right κ-stable random variable whose characteristic function is given in (A.6), and c_κ is defined in (A.2).

It is worth noticing that for all cases (i)–(iv), $N_T \to \infty$ a.s. as a consequence of the ergodic theorem. However, the convergence rates are quite distinct, depending on κ. Thus, $N_T/T \to 1/\mu$ a.s. for $\kappa > 1$, while, for $\kappa < 1$, $N_T/T - 1/\mu$ satisfies the CLT with standard \sqrt{T}-rate, while for $1 < \kappa < 2$, the rate $T^{(\kappa-1)/\kappa}$ gets slower as κ gets closer to 1. We also note that the κ-stable limiting random variable η_κ has power-law tail with index κ. Importantly, for the novel result on the distributional convergence of N_T/T^κ for $\kappa < 1$, the limiting variable λ_κ has exponentially decaying tails; cf. Theorem 2.5.2 in Zolotarev (1986).

3. Asymptotic Theory for the QMLE

In this section we derive the asymptotic properties of the (Q)MLE $\hat{\theta}_T = \arg \max_\theta L_T(\theta)$, with $L_T(\theta)$ defined in (1.3). Note that, as is common practice, $L_T(\theta)$ is defined without the additional term corresponding to the fact that no events are observed in the end-period $(t_{N_T}, T]$. We show in Appendix B that this term has no influence on the asymptotic results.

We start in Section 3.1 by discussing the behavior of the score and information, which is key to the asymptotic analysis. Then, in Section 3.2 we present the main results on the asymptotic behavior of $\hat{\theta}_T$.

3.1 Convergence of the score and information

With the likelihood function $L_T(\theta)$ as given in (1.3), the corresponding score and information functions, evaluated at the true value $\theta = \theta_0$, are given by

$$S_T = \frac{\partial L_T(\theta)}{\partial \theta} \bigg|_{\theta = \theta_0} = \sum_{i=1}^{N_T} \xi_i, \quad \xi_i = (\varepsilon_i - 1) v_i, \quad v_i = (1, x_{i-1})' / \psi_i, \quad (3.1)$$

$$I_T = -\frac{\partial^2 L_T(\theta)}{\partial \theta \partial \theta'} \bigg|_{\theta = \theta_0} = \sum_{i=1}^{N_T} \zeta_i, \quad \zeta_i = (2 \varepsilon_i - 1) v_i v_i', \quad (3.2)$$

where $\psi_i = \psi_i(\theta_0)$. In what follows, we always assume that the conditions of Lemma 2.1 are satisfied. In particular, (1.2) has a strictly stationary geometrically ergodic solution $\{x_i\}$ with tail index $\kappa > 0$.

Consider first the case $\kappa > 1$, where we have the following result on the large sample behavior of S_T and I_T at standard rates of convergence.

6
Lemma 3.1 Assume that for \(\theta_0 = (\omega_0, \alpha_0)' \), \(\omega_0 > 0 \) and \(\alpha_0 > 0 \) such that \(\{x_i\} \) in (1.2) is stationary and ergodic, with \(\kappa > 1 \). With \(\tau = \mathbb{V}[\varepsilon] \) and \(\Omega = \mathbb{E}[\mathbf{v}_1\mathbf{v}_1'] \) we have
\[
T^{-1/2}S_T \xrightarrow{d} \left(\tau \Omega/\mu \right)^{1/2} Z \quad \text{and} \quad T^{-1}I_T \xrightarrow{a.s.} \Omega/\mu,
\]
where \(Z \) is a bivariate standard Gaussian vector. Moreover, \(N_T^{-1}I_T \xrightarrow{a.s.} \Omega \).

Next turn to the case \(\kappa < 1 \) such that \(\mathbb{E}[x] = \infty \). As shown in the next, the score and information converge at slower rates than usual. More specifically, turning to the information, it follows by Lemma 2.3 that
\[
N^{-1}_T I_T \xrightarrow{d} \lambda_\kappa \Omega.
\]
That is, the rate of convergence is indeed slower than standard when \(\kappa < 1 \), and the observed information is random in the limit due to the random variable \(\lambda_\kappa \). Similarly, non-standard convergence rates as a function of \(\kappa \) also apply to the score as we state the following lemma for the EACD.

Lemma 3.2 Assume that for \(\theta_0 = (\omega_0, \alpha_0)' \), \(\omega_0 > 0 \) and \(\alpha_0 > 0 \), such that \(\{x_i\} \) in (1.2) is stationary and ergodic with \(\kappa < 1 \), and \(\varepsilon_i \) exponentially distributed with \(\mathbb{E}[\varepsilon] = 1 \). With \(\Omega \) defined in Lemma 3.1 we have
\[
(T^{-\kappa/2}S_T, T^{-\kappa}I_T) \xrightarrow{d} \left((\lambda_\kappa \Omega)^{1/2} Z, \lambda_\kappa \Omega \right),
\]
where \(Z \) a bivariate standard Gaussian vector, independent of \(\lambda_\kappa \) defined in (2.2). Moreover, \(N_T^{-1}I_T \xrightarrow{a.s.} \Omega \).

3.2 Limit Theorems for the QMLE

We are now in the position to state the asymptotic distribution of the QMLE \(\hat{\theta}_T \) of \(\theta \). As for the score, the limit behavior of the QMLE depends on the tail behavior of the durations \(\{x_i\} \). As mentioned, the influence of the right power-law tail of \(x \) on the QMLE is in contrast to QMLE theory for ARCH and GARCH processes where the shape of the unconditional distribution does not matter. We show here that for ACD processes the power-law tails determine the limiting distribution of the QMLE \(\hat{\theta}_T \) as well as the rate of convergence. This result appears surprising, given that, apart from the random summation index, the ACD (log-)likelihood function is identical to the ARCH Gaussian likelihood function.

Specifically, while \(\sqrt{T} \)-asymptotic normality holds when the tail index \(\kappa \) is above one, when \(\kappa < 1 \), the speed of convergence and the limiting distribution are non-standard. In particular, for the case \(\kappa > 1 \) the following result holds.

Theorem 3.1 Under the assumptions of Lemma 3.1, with probability tending to one, there exists a local maximum \(\hat{\theta}_T \) of \(L_T(\theta) \) which satisfies \(\hat{\theta}_T \xrightarrow{p} \theta_0 \) and \(\partial L_T(\theta)/\partial \theta |_{\theta = \hat{\theta}_T} = 0 \). Moreover,
\[
T^{1/2}(\hat{\theta}_T - \theta_0) \xrightarrow{d} (\Omega/\mu)^{-1/2} \tau^{1/2} Z,
\]
with \(Z \) a bivariate standard Gaussian vector and \(\mu = \mathbb{E}[x] \).
Figure 1: Finite mean case, \(\kappa > 1 \). Q-Q plots of \(T^{1/2}(\hat{\alpha}_T - \alpha_0)/\sigma_\alpha \), with \(\sigma_\alpha \) the asymptotic variance of \(\hat{\alpha}_T \), against the \(N(0,1) \) distribution for different values of \(T \) (rows) and \(\kappa_0 = \kappa(\alpha_0) \) (columns), finite mean case (\(\kappa > 1 \)). \(M = 10^4 \) Monte Carlo replications.

Theorem 3.1, which is based on combining classic likelihood expansions with the results for a random summation index \(N_T \) in Section 2, shows that asymptotic normality at the \(\sqrt{T} \)-rate holds even if the durations have infinite variance, \(\mathbb{E}[x^2] = \infty \). However, it can be shown that the quality of the asymptotic approximation deteriorates as the tail index \(\kappa = \kappa(\alpha_0) \) approaches one. This reflects the fact that the asymptotic results for the QMLE when \(\kappa > 1 \) are essentially derived by replacing the random indices \(N_T \) in the likelihood function (and its derivatives) by the deterministic function \(T/\mu \); this replacement, however, happens with a much larger error term for \(\kappa \in (1,2) \) than in the finite variance case (\(\kappa > 2 \)), due to slow convergence rates of \(N_T/T - 1/\mu \) (cf. Lemma 2.3) and the widespread limit distribution.

As an explanation to the fact that while the rate of convergence is standard \(\sqrt{T} \) for all \(\kappa > 1 \), the convergence to the Gaussian limit for \(\kappa \in (1,2) \) slows down when compared to the (finite variance) case \(\kappa > 2 \), consider here the score \(S_T \). By Lemma 2.3 (iii),

\[
T^{-1/2} S_T = [T^{(1-\kappa)/\kappa} \tilde{\gamma}_\kappa/(2\sqrt{\mu}) + 1/\sqrt{\mu} + o_p(1)] \tilde{Z}_T,
\]

where \(\tilde{\gamma}_\kappa = T^{(\kappa-1)/\kappa} (N_T/T - 1/\mu) \to_d \gamma_\kappa \) (a \(\kappa \)-stable random variable) and \(\tilde{Z}_T = N_T^{-1/2} S_T \to_d (\tau \Omega)^{1/2} Z \). Additionally, \(\gamma_\kappa \) is non-standard distributed with a power-law tail with index \(\kappa \), and is more widespread as \(\kappa \) diminishes. Thus, as \(\kappa \) approaches one, \(T^{(1-\kappa)/\kappa} \tilde{\gamma}_\kappa/(2\sqrt{\mu}) \) converges to zero at a slower speed, and the convergence (in distribution) of \(T^{-1/2} S_T \) to the Gaussian distribution slows down. This is in contrast to the case \(\kappa > 2 \), where by Lemma 2.3 (ii),

\[
T^{-1/2} S_T = [T^{-1/2} \tilde{\eta}_T/(2\sqrt{\mu}) + 1/\sqrt{\mu} + o_p(1)] \tilde{Z}_T, \quad \text{with} \quad \tilde{\eta}_T = T^{1/2}(N_T/T - 1/\mu) \text{ asymptotically Gaussian.}
\]

In particular, the rate is independent of \(\kappa \) in this case.

We illustrate this in Figure 1, where we report Q-Q plots of \(T^{1/2}(\hat{\alpha}_T - \alpha_0) \) against the Gaussian distribution when the data follows an EACD process with \(\mathbb{E}[x] = 1 \), for different values of \(T \) and \(\kappa \). The figure clearly shows how the tail index of the durations influences the quality of the Gaussian approximation in finite time intervals. It can also be seen that as \(\kappa \) gets closer
Figure 2: Infinite mean case, $\kappa = 0.5$. Q-Q plots against the $N(0,1)$ distribution. Upper panel: $T^{\kappa/2}(\hat{\alpha}_T - \alpha_0)$ (normalized by empirical variance). Lower panel: t-ratios. $M = 10^4$ Monte Carlo replications.

to one, the asymptotic approximation requires larger values of T to be accurate.

For $\kappa < 1$, as previously emphasized, $\hat{\theta}_T - \theta_0$ is not asymptotically Gaussian distributed.

Theorem 3.2 Under the assumptions of Lemma 3.2, with probability tending to one, there exists a local maximum $\hat{\theta}_T$ of $L_T(\theta)$ which satisfies $\hat{\theta}_T \xrightarrow{P} \theta_0$ and $\partial L_T(\theta)/\partial \theta|_{\theta = \hat{\theta}_T} = 0$. Moreover,

$$T^{\kappa/2}(\hat{\theta}_T - \theta_0) \xrightarrow{d} (\lambda_\kappa \Omega)^{-1/2} Z,$$

(3.5)

with Z a bivariate standard Gaussian vector, independent of λ_κ defined in (2.2).

Thus for $\kappa < 1$, the estimators are asymptotically mixed Gaussian; moreover the rate of convergence $T^{\kappa/2}$ is lower than the standard $T^{1/2}$ rate and depends on the value of κ. The non-Gaussianity in (3.5) is clearly illustrated in the upper panel of Figure 2 which reports Q-Q plots of $T^{\kappa/2}(\hat{\alpha}_T - \alpha_0)$ against a zero-mean Gaussian distribution for $\kappa = 0.5$ and different values of T (ω_0 is selected such that the median of x_i is about one).

4 Discussion and implications for inference

In the previous section we have shown that, for the case of a finite mean of the durations, the (Q)MLE is indeed asymptotically normal at the standard \sqrt{T}-rate while, for the case of infinite mean, the limiting distribution is a mixture and convergence attains at a lower rate.

In terms of inference, from the Theorems 3.1 and 3.2 we can derive the following new result, which shows that t-ratios (or quasi likelihood ratio statistics) are asymptotically standard Gaussian (χ^2) distributed, irrespectively of the tail index of the durations κ being above or below unity. That is, while κ affects the distributional theory for of (Q)MLE, asymptotic inference based on t tests (or likelihood ratio tests) is standard, and asymptotic validity holds irrespective of the tail index of the marginal distribution of the durations $\{x_i\}$.

Corollary 4.1 For $\kappa > 1$, and under the assumptions of Theorem 3.1, and, for $\kappa < 1$ and under the assumptions of Theorem 3.2, the t ratio $t_n = \text{se}_T^{-1}(\hat{\alpha}_T - \alpha_0)$, where se_T^2 is the entry of $I_T(\hat{\theta}_T) = -\frac{\partial^2 L_T(\theta)}{\partial \theta \partial \theta'}|_{\theta = \hat{\theta}_T}$ corresponding to α, is standard normal as $T \to \infty$.
Convergence of the t ratios to the Normal distribution is illustrated in the lower panel of Figure 2, where Q-Q plots of t_n against the $N(0,1)$ distribution are reported for increasing sample sizes and for $\kappa < 1$. The figure clearly shows that extremely large observation periods are required for the normal asymptotic approximation to be accurate. This implies that in empirical applications, and differently from inference in ARCH models, inspection of the tails of the marginal distribution of the data is a key step to be taken prior to any empirical analysis.

Finally, we note that, in terms of theory, the result in Corollary 4.1 for $\kappa < 1$ is similar to the mixed Gaussian limit results, as employed e.g. in the cointegration analysis of non-stationary variables; see Johansen (1991) and Phillips (1991).

5 CONCLUSIONS

Our new results demonstrate the sensitivity of the limiting distribution of the QMLE in ACD models to the tail behaviour, or equivalently finiteness of moments, of the durations. This clearly contrasts the previous asymptotic results which, by treating the number of durations as deterministic and hence referring to ARCH asymptotic theory, does not depend on the finiteness of moments, nor on the tail behaviour. Stated differently, sampling over a fixed period of time (hence implying a random number of events) leads to new non-standard theory, while sampling over a fixed number of events (hence implying a random length of observation period) leads to standard theory from ARCH models.

All results can be generalized to more general ACD models, in particular to the much applied ACD model where $\psi_i = \omega + \alpha x_i - 1 + \beta \psi_{i-1}$, that is, the ACD analogue of the GARCH(1,1), as well as its extensions. We have refrained from doing so here to keep the presentation simple, and thereby focus on the main new insights.

Finally, it is worth noticing that our findings and arguments, are not specific to the models for time series of durations. Indeed, they apply to any econometric method where the number of observations needs being treated as random. For example, asymptotic theory for daily realized volatility, see Li, Mykland, Renault, Zhang and Zheng (2013), treats summations such as $\sum_{t=1}^{N_T} (p_t - p_{t-1})^2$, where p_t is the (log-)price at time t; since the number of trades within a day, N_T, is random, our results could be applied to cases where $x_i = t_i - t_{i-1}$ have heavy tails.

ACKNOWLEDGEMENTS

We are grateful to Federico Bandi, Marcelo Fernandes, Nikolaus Hautsch and Marcelo Medeiros for comments and discussions. We also thank participants at the SoFiE 2022 conference (U Cambridge), the Aarhus Workshop in Econometrics (Aarhus U), the 3rd High Voltage Econometrics meeting and the Bologna/Rome-Waseda Time Series Workshop. We also thank Roberto Renò for providing the SPY duration data. A. Rahbek and G. Cavaliere gratefully acknowledge support from the Danish Council for Independent Research (DSF Grant 015-00028B). Part of G. Cavaliere’s research was supported by the Italian Ministry of University and Research (PRIN 2020 Grant 2020B2AKFW). Thomas Mikosch’s research is partially supported by Danmarks Frie Forskningsfond Grant No 9040-00086B.
Allen, D., Felix, C., McAleer, M. and Peiris, S. (2008) Finite sample properties of the QMLE for the log-ACD model: Application to Australian Stocks. *Journal of Econometrics*, 147:163–185.

Aquilina, M., Budish, E. and O’Neill, P. (2022) Quantifying the high-frequency trading “Arms Race”. *Quarterly Journal of Economics* 137:493–564.

Billingsley, P. (1999) *Convergence of Probability Measures*. Wiley, NY.

Bingham, N., Goldie, C. and Teugels, J. (1987) *Regular Variation*. Cambridge University Press, Cambridge UK.

Buraczewski, D., Damek, E. and Mikosch, T. (2016) *Stochastic Models with Power-Law Tails*. Springer, NY.

Cavaliere, G., Lu, Y., Rahbek, A. and Stærk-Østergaard, J. (2022) Bootstrap inference for Hawkes and general point processes. *Journal of Econometrics*, in press.

Daley, D.J. and Vere-Jones, D. (2008) *An Introduction to the Theory of Point Processes*, Volume II: General Theory and Structure. Springer, Berlin.

Embrechts, P., Klüppelberg, C. and Mikosch, M. (1997) *Modelling Extremal Events: For Insurance and Finance*. Springer, Berlin.

Embrechts, P., Liniger, T. and Lin, L. (2011) Multivariate Hawkes processes: an application to financial data. *Journal of Applied Probability*, 48:367–378.

Engle, R.F. (2000) The econometrics of ultra-high-frequency data. *Econometrica*, 68:1–22.

Engle, R.F. and Russell, J.R. (1998) Autoregressive conditional duration: a new model for irregularly spaced transaction data. *Econometrica*, 66:1127–1162.

Fernandes, M. and Grammig, J. (2006) A family of autoregressive conditional duration models. *Journal of Econometrics*, 130: 1–23.

Fernandes, M., Mедeiros, M.C., A. and Veiga (2016) The (semi-)parametric functional coefficient autoregressive conditional duration model. *Econometric Reviews* 35:1221–1250.

Guivarc’h, Y. and Le Page, E. (2008) On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks. *Ergodic Theory and Dynamical Systems*, 28:423–446.

Gut, A. (2009) *Stopped Random Walks: Limit Theorems and Applications*. Springer, NY.

Hamilton, J.D. and Ö. Jordà (2002): A Model of the Federal Funds Rate Target. *Journal of Political Economy*, 110:1135–1167.

Hautsch, N. (2012) *Econometrics of Financial High-Frequency Data*. Springer, Berlin.

Janson, S. (1983) Renewal theory for m-dependent variables. *Annals of Probability*, 11:558–568.

Jensen, S.T. and Rahbek, A. (2004) Asymptotic normality of the QMLE estimator of ARCH in the nonstationary case. *Econometrica*, 72:641–646.

Krengel, U. (1985) *Ergodic Theorems*. De Gruyter, Berlin.
JOHANSEN, S. (1991) Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. *Econometrica*, 59:1551–1580.

KRISTENSEN, D. AND RAHBEK, A. (2010) Likelihood-based inference for cointegration with nonlinear error-correction. *Journal of Econometrics*, 158:78–94.

LEE, S. AND HANSEN, B. (1994) Asymptotic theory for the GARCH(1,1) quasi-maximum likelihood estimator. *Econometric Theory*, 10:29–52.

LI, Y., MYKLAND, P.A., RENAULT, E., ZHANG, L., AND ZHENG, X. (2014) Realized volatility when sampling times are possibly endogenous. *Econometric Theory*, 30:580–605.

PACURAR, M. (2008) Autoregressive conditional duration models in finance: a survey of the theoretical and empirical literature. *Journal of Economic Surveys*, 22:711—751.

PHILLIPS, P.C.B. (1991) Optimal inference in cointegrated systems, *Econometrica*, 59:283–306.

SIN, C. (2014) QMLE of a standard exponential ACD model: Asymptotic distribution and residual correlation. *Annals of Financial Economics*, Vol. 09: Issue 2.

SWEETING, (1980) Uniform asymptotic normality of the maximum likelihood estimator. *Annals of Statistics*, 8:1375–1381.

ZOLOTAREV, V.M. (1986) *One-Dimensional Stable Distributions*. American Mathematical Society, Providence, Rhode Island.

APPENDIX

A PROOFS

Proof of Lemma 2.1

Observe that the ACD equation (1.2) can be formulated as a stochastic recurrence equation (SRE):

\[x_i = A_i x_{i-1} + B_i, \quad i \in \mathbb{Z}, \]

(A.1)

with a sequence \((A_i, B_i) = (\omega, \alpha) \varepsilon_i, i \in \mathbb{Z}\), of random vectors with i.i.d. positive \(\{\varepsilon_i\}\). Using the SRE representation, it follows that \(\{x_i\}\) is strictly stationary geometrically ergodic if and only if \(E[\ln(\alpha \varepsilon)] < 0\) by Theorem 2.1.3 and Proposition 2.2.4 in Burczewski, Damek and Mikosch (2016), BDM henceforth. The power-law tail behavior \(P(x > z) \sim c_{\kappa} z^{-\kappa}\) follows from Theorem 2.4.4 in BDM, and it holds that \(c_{\kappa}\) is given by

\[c_{\kappa} = \frac{E[(\omega + (\alpha \varepsilon)x)^{\kappa} - (\alpha \varepsilon)^{\kappa}]}{\kappa E[\alpha \varepsilon^{\kappa} \ln(\alpha \varepsilon)]}. \]

(A.2)

\[\square \]

Proof of Lemma 2.2

The results hold by Lemma 2.1, noting that for the exponential case,

\[1 = E[(\alpha \varepsilon)^{\kappa}] = \alpha^{\kappa} \int_0^{\infty} x^{\kappa} \exp(-x) \, dx = \alpha^{\kappa} \Gamma(\kappa + 1). \]

(A.3)

\[\square \]
Proof of Lemma 2.3

Convergence a.s. for $\kappa > 1$. Since $\kappa > 1$ we have $\mu = \mathbb{E}[x] < \infty$. We follow the argument in Theorem 5.1 in Gut (2009). Since $\{x_i\}$ is ergodic $T_n/n = \sum_{i=1}^{n} x_i/n \overset{a.s.}{\rightarrow} \mu$, hence $\nu_T \rightarrow N_T + 1 \overset{a.s.}{\rightarrow} \infty$ and $T_{\nu_T}/\nu_T \overset{a.s.}{\rightarrow} \mu$. But $T < T_{\nu_T} \leq T + x_{\nu_T}$ and

$$0 < T_{\nu_T}/\nu_T - T/\nu_T \leq x_{\nu_T}/\nu_T \overset{a.s.}{\rightarrow} 0,$$

hence $\nu_T/T \overset{a.s.}{\rightarrow} 1/\mu$.

Convergence in distribution for $\kappa \geq 2$. We start with $\kappa > 2$. We have

$$T^{-1/2}(T_N - \mu N_T) \leq T^{-1/2}(T - \mu T) + T^{-1/2}x_{\nu_T}.$$ \hfill (A.4)

First, we prove that $T^{-1/2}x_{\nu_T} \overset{p}{\rightarrow} 0$. For $M, \delta > 0$ we have

$$\mathbb{P}(T^{-1/2}x_{\nu_T} > M) \leq \mathbb{P}(T^{-1/2}x_{\nu_T} > M, |\nu_T/T - 1/\mu| > \delta) + \mathbb{P}(T^{-1/2}x_{\nu_T} > M, |\nu_T/T - 1/\mu| \leq \delta)
= I_1 + I_2.$$

But $I_1 \to 0$ as $T \to \infty$ for every $\delta > 0$ by virtue of the first part of the proof. On the other hand, by stationarity,

$$I_2 \leq \mathbb{P}\left(\max_{T(1/\mu-\delta) \leq s \leq T(1/\mu+\delta)} x_s > T^{1/2} M \right) \leq \mathbb{P}\left(T^{-1/2} \max_{s \leq T \delta T} x_s > M \right).$$

The right-hand side converges to zero since $T^{-1/\kappa} \max_{s \leq T} x_s$ converges in distribution to a Fréchet distribution; see BDM, Theorem 3.1.1.

In view of (A.4) we thus proved that the distributional limits of $T^{-1/2}(T_N - \mu N_T)$ and $T^{-1/2}(T - \mu T)$ coincide if they exist. However, Theorem 3.3.1 in BDM yields $n^{-1/2}(T_n - \mu n) \overset{d}{\rightarrow} N(0, \sigma^2)$ as $n \to \infty$ with $\sigma^2 = \mathbb{E}[(1 + T\infty)^2 - T_\infty^2]V[x]$ and $T\infty = \sum_{i=1}^{\infty} \alpha^i(\prod_{j=1}^{i} \epsilon_j)$.

In what follows, we will frequently abuse notation: when sums are involved and their index is not a natural number we understand these expressions as taken at their integer parts. Abusing notation, we then have as $T \to \infty$,

$$T^{-1/2} \left(T_{T/\mu} - T \right) = \mu^{1/2} (T/\mu)^{-1/2} \sum_{i=1}^{T/\mu} (x_i - \mu) \overset{d}{\rightarrow} N \left(0, \frac{\sigma^2}{\mu} \right).$$

Then the CLT for $T^{-1/2}(T_N - \mu N_T)$ will follow if we can prove that for every $M > 0$,

$$I = \mathbb{P}\left(T^{-1/2} \left| (T_N - \mu N_T) - (T_{T/\mu} - T) \right| > M \right) \to 0.$$

We apply an Anscombe argument; see Gut (2009). For given $M, \delta > 0$ we have

$$I \leq \mathbb{P}(|N_T/T - 1/\mu| > \delta) + \mathbb{P}\left(T^{-1/2} \left| (T_N - \mu N_T) - (T_{T/\mu} - T) \right| > M, |N_T/T - 1/\mu| \leq \delta \right) = I_3 + I_4.$$
As before, $I_3 \to 0$ as $T \to \infty$. On the other hand, by stationarity,

$$I_4 \leq \mathbb{P} \left(\max_{T(1/\mu - \delta) \leq s \leq T(1/\mu + \delta)} \left| T_s - T_{T/\mu} - \mu(s - T/\mu) \right| > T^{1/2} M \right)$$

$$\leq 2 \mathbb{P} \left(\max_{u \leq \delta} |T_u T - \mu u T| > T^{1/2} M \right).$$

Since $\{x_i\}$ is geometrically ergodic we can apply the functional CLT with Brownian limit and the continuous mapping theorem; see Theorem 19.1 in Billingsley (1999). Then the right-hand side vanishes by first letting $T \to \infty$ and then $\delta \to 0$.

The case $\kappa = 2$ is similar but we have to replace the normalization $T^{1/2}$ by $C(T \ln T)^{1/2}$ for a suitable constant $C > 0$. The proof of $x_{\nu T}/(T \ln T)^{1/2} \overset{D}{\to} 0$ follows in the same way since $n^{-1/2} \max_{t=1,\ldots,n} x_t$ converges in distribution to a Fréchet distribution; see BDM, Theorem 3.1.1. A functional CLT with Brownian limit and normalization $(T \ln T)^{1/2}$ is given in Guivarc’h and Le Page (2008).

Convergence in distribution for $1 < \kappa < 2$. Similar to the case of $\kappa > 2$, the starting point is the inequalities,

$$T^{-1/\kappa}(N_T - \mu N_T) \leq T^{-1/\kappa}(T - \mu N_T) \leq T^{-1/\kappa}(N_T - \mu N_T) + T^{-1/\kappa} x_{\nu T}. \quad (A.5)$$

We observe that for $M, \delta > 0$, by stationarity,

$$\mathbb{P}(x_{\nu T} > T^{1/\kappa} M) \leq \mathbb{P}(|\nu T/T - \mu| > \delta) + \mathbb{P}(T^{-1/\kappa} x_{\nu T} > M, |\nu T/T - \mu| \leq \delta)$$

$$\leq o(1) + \mathbb{P} \left(T^{-1/\kappa} \max_{s \leq MT} x_s > M \right),$$

and the right-hand side converges to zero by first letting $T \to \infty$ and then $\delta \to 0$. In the last step one uses the Fréchet convergence of $T^{-1/\kappa} \max_{i=1,\ldots,T} x_i$.

Next we observe that by BDM, Theorem 3.3.4,

$$(c_\kappa n)^{-1/\kappa}(N_T - \mu n) \overset{d}{\to} (\mathbb{E} [(1 + T_\infty)^\kappa - T_\infty^\kappa])^{1/\kappa} \eta_\kappa,$$

where c_κ is the constant in $[A.2]$, T_∞ is defined in the lemma and η_κ is κ-stable with characteristic function

$$\varphi_{\eta_\kappa}(s) = \exp \left(- \int_0^\infty \left(\exp(isy) - 1 - isy \mathbb{I}(|y| < 2) \right) \kappa y^{\kappa - 1} dy \right), \quad s \in \mathbb{R}. \quad (A.6)$$

It remains to show that for every $M > 0$.

$$J = \mathbb{P} \left(T^{-1/\kappa} \left| (N_T - \mu N_T) - (T_{T/\mu} - T) \right| > M \right) \to 0.$$

We have for every $\delta > 0$,

$$J \leq o(1) + \mathbb{P} \left(T^{-1/\kappa} \left| (N_T - \mu N_T) - (T_{T/\mu} - T) \right| > M, |N_T/T - 1/\mu| \leq \delta \right) = o(1) + J_1.$$

Abusing notation, we have

$$J_1 \leq \mathbb{P} \left(\max_{T(1/\mu - \delta) \leq s \leq T(1/\mu + \delta)} \left| T_s - T_{T/\mu} - \mu(s - T/\mu) \right| > T^{1/\kappa} M \right) \leq 2 \mathbb{P} \left(\max_{u \leq \delta} |T_u - \mu u| > T^{1/\kappa} M \right).$$
On one hand, we observe that for fixed $\tilde{\varepsilon} > 0$,
\[P \left(\max_{u \leq T \delta} |T_u - \mu u| > T^{1/\kappa} M, \max_{s \leq T \delta} x_s > T^{1/\kappa} \tilde{\varepsilon} \right) \leq \delta T P(x > \tilde{\varepsilon} T^{1/\kappa}) \sim \text{const} \delta \tilde{\varepsilon}^{-\kappa}, T \to \infty. \]
The right-hand side converges to zero as $\delta \to 0$. Next we mimic the proof of Theorem 4.5.2 in BDM. Write
\[X_T = \bar{X}_T + \tilde{X}_T, \quad \bar{X}_T = X_T f(T^{-1/\kappa} X_T), \quad \tilde{T}_n = \sum_{i=1}^n \bar{X}_i, \]
with $f(x) \in [0, 1]$ smooth, $\text{supp} f \subset \{x : |x| \leq \tilde{\varepsilon}\}$, and $f(x) = 1$ for $|x| \leq \tilde{\varepsilon}/2$. Then
\[P \left(\max_{u \leq T \delta} |T_u - \mu u| > T^{1/\kappa} M, \max_{s \leq T \delta} x_s \leq T^{1/\kappa} \tilde{\varepsilon} \right) \leq P \left(\max_{u \leq T \delta} |T_u - u E[\bar{X}]| + \delta T E[\bar{X}] > T^{1/\kappa} M \right) \]
By Karamata’s theorem (see Bingham, Goldie and Teugels, 1987) for large T,
\[\delta T^{1-1/\kappa} E[\bar{X}] \geq \text{const} \delta \tilde{\varepsilon}^{1-\kappa} E[x/(\tilde{\varepsilon} T^{1/\kappa})\mathbb{I}(x > \tilde{\varepsilon} T^{1/\kappa})] \sim \text{const} \delta \tilde{\varepsilon}^{1-\kappa} \to 0 \text{ as } \delta \to 0. \]
Therefore it is suffices to show that the following quantity vanishes by first letting $T \to \infty$ and then $\delta \to 0$:
\[Q = P \left(\max_{u \leq T \delta} |T_u - u E[\bar{X}]| > T^{1/\kappa} M \right). \]
With $s(T) = \delta T^{1-\beta}$ for $\beta \in (0, 1)$, (Here we assume without loss of generality that $s(T)$ is an integer).
\[Q \leq P \left(\max_{k=1, \ldots, s(T)} |\tilde{T}_{kT^{\beta}} - kT^{\beta} E[\bar{X}]| > T^{1/\kappa} M \right) \\
+ P \left(\max_{k=1, \ldots, s(T)} \max_{u \in \{(k-1)T^{\beta} + 1, \ldots, kT^{\beta}\}} |(T_u - \tilde{T}_{(k-1)T^{\beta}}) - (s - (k-1)T^{\beta}) E[\bar{X}]| > T^{1/\kappa} M \right) \\
= Q_1 + Q_2, \]
ignoring the last incomplete block of indices as it does not contribute to the asymptotic theory. Observe that $T^{\beta-1/\kappa} E[\bar{X}] \to 0$ as $T \to \infty$ for $\beta < 1/\kappa$. Hence by stationarity and for large T,
\[Q_2 \leq s(T) P \left(\max_{u \leq T^{\beta}} |T_u - u E[\bar{X}]| > T^{1/\kappa} M \right) \leq s(T) P(\tilde{T}_{T^{\beta}} > T^{1/\kappa} M/2) \\
\leq s(T) P(\tilde{T}_{T^{\beta}} - E[\tilde{T}_{T^{\beta}}] > T^{1/\kappa} M/3) \leq \text{const} \delta T^{(1-(2/\kappa))(1-\beta)} V[\tilde{T}^{-\beta/\kappa} \tilde{T}_{T^{\beta}}]. \]
By the calculations on p. 211 in BDM, the variance on the right-hand side is bounded. Hence $Q_2 \to 0$.
Now we turn to Q_1. For $k \leq s(T)$ we have for $\lambda > 0$,
\[P(|\tilde{T}_{kT^{\beta}} - kT^{\beta} E[\bar{X}]| > \lambda) \leq \lambda^{-2} V[(kT^{\beta})^{-1/\kappa} \tilde{T}_{kT^{\beta}}] k^{2/\kappa} T^{2\beta/\kappa} \leq \text{const} \lambda^{-2} k^{2/\kappa} T^{2\beta/\kappa}, \]
where we again used the variance bounds on p. 211 in BDM. An application of Theorem 10.2 in Billingsley (1999) yields
\[Q_1 \leq \text{const} M^{-2} T^{-2/\kappa} T^{2\beta/\kappa} (\delta T^{1-\beta})^{2/\kappa} = \text{const} M^{-2} \delta^{2/\kappa} \to 0, \quad \delta \to 0. \]
This finishes the proof in the case $\kappa \in (1, 2)$.

Convergence in distribution for $0 < \kappa < 1$. Using Theorem 3.3.4 in BDM, for $z > 0$

\[
\mathbb{P}(T^{-\kappa}N_T \leq z) = \mathbb{P}(T_\infty > T) = 1 - \mathbb{P}(T_\infty \leq T) = 1 - \mathbb{P}\left((c_\kappa z T_\infty)^{-1/\kappa} T_\infty \leq (c_\kappa z)^{-1/\kappa}\right)
\]

\[
\to 1 - \mathbb{P}\left((\mathbb{E}[(1 + T_\infty)^\kappa - T_\infty])^{1/\kappa} \eta_\kappa \leq (c_\kappa z)^{-1/\kappa}\right)
\]

\[
= \mathbb{P}\left(1/(c_\kappa \mathbb{E}[(1 + T_\infty)^\kappa - T_\infty])^{1/\kappa} \eta_\kappa \leq z\right),
\]

where η_κ has characteristic function $\{A.6\}$. \[\square \]

Proof of Lemma 3.1

The results for the score hold by using Lemma 2.3(i) and establishing, $T^{-1/2}S_T = T^{-1/2}S(T/\mu) + o_\mathbb{P}(1)$, where $S(u) = \sum_{i=1}^{[u]} \xi_i$. To see that $T^{-1/2}S_T - T^{-1/2}S(T/\mu) = o_\mathbb{P}(1)$, note that for every $M, \delta > 0$,

\[
\mathbb{P}\left(T^{-1/2}[S_T - S(T/\mu)] > M\right) = \mathbb{P}\left(T^{-1/2}[S_T - S(T/\mu)] > M, |N_T/T - 1/\mu| > \delta\right)
\]

\[
+ \mathbb{P}\left(T^{-1/2}[S_T - S(T/\mu)] > M, |N_T/T - 1/\mu| \leq \delta\right)
\]

\[
= K_1 + K_2
\]

Here, $K_1 \leq \mathbb{P}(|N_T/T - \mu| > \delta) \to 0$, while, by stationarity,

\[
K_2 \leq \mathbb{P}\left(T^{-1/2}\max_{T(1/\mu + \delta) \leq s \leq T(1/\mu + \delta)} |S(s) - S(T/\mu)| > M\right)
\]

\[
\leq 2 \mathbb{P}\left(T^{-1/2}\max_{u \leq T} |S(u)| > M\right) \to 2 \mathbb{P}\left(\max_{s \leq \delta} |B(s)| > M/2\right),
\]

as $T \to \infty$, where B is a Brownian motion. The right-hand side converges to zero as $\delta \to 0$.

The result for the score then holds as $T^{-1/2}S(T/\mu) \xrightarrow{d} (\tau \Omega/\mu)^{1/2} \mathbf{Z}$ by standard application of a CLT for martingale differences.

Turning to the information, then by the ergodic theorem and as $N_T \xrightarrow{a.s.} \infty$ it follows that $N_T^{-1}I_T \xrightarrow{a.s.} \Omega$; see Embrechts et al. (1997), Lemma 2.5.3. On the other hand, we have by Lemma 2.3(i), $N_T/T \xrightarrow{a.s.} 1/\mu$. Thus $T^{-1}I_T \xrightarrow{a.s.} \Omega/\mu$. \[\square \]

Proof of Lemma 3.2

Write

\[
I_T(\theta) = -\partial^2 L_T(\theta) = \sum_{i=1}^{N_T} \left(2 \varepsilon_i \frac{\psi_1(\theta_0)}{\psi_i(\theta)} - 1\right) \mathbf{v}_i(\theta)\mathbf{v}_i'(\theta),
\]

where $\mathbf{v}_i(\theta) = (1, x_{i-1})' / \psi_i(\theta)$. The summands constitute a strictly stationary ergodic sequence with values in the space \mathbb{C} of continuous functions of θ in a neighbourhood $\mathcal{N}(\theta_0)$ of θ_0 equipped with the uniform distance. It is not difficult to see that the sup-norm of these summands has finite expected value. Therefore the summands obey the ergodic theorem in \mathbb{C}; see Theorem 2.1 in Section 4.2 of Krengel (1985). Since $N_T \xrightarrow{a.s.} \infty$ we conclude that uniformly over $\theta \in \mathcal{N}(\theta_0)$,

\[
N_T^{-1}I_T(\theta) \xrightarrow{a.s.} \mathbb{E}\left[\left(2 \frac{\psi_1(\theta_0)}{\psi_1(\theta)} - 1\right) \mathbf{v}_1(\theta)\mathbf{v}_1'(\theta)\right].
\]
Moreover, together with Lemma 2.3 (iv) we conclude that, uniformly over \(\theta \in \mathcal{N}(\theta_0) \),
\[
T^{-\kappa} I_T(\theta) = (N_T/T^\kappa) (N_T^{-1} I_T(\theta)) \overset{d}{\rightarrow} W(\theta) = \lambda_\kappa \mathbb{E}\left[\left(2 \frac{\psi_1(\theta_0)}{\psi_1(\theta)} - 1 \right) \mathbf{v}_1(\theta) \mathbf{v}_1(\theta)' \right].
\]
If \(\theta - \theta_0 = O(T^{-\kappa/2}) \) then we also have
\[
\sup_\theta |T^{-\kappa} (I_T(\theta) - I_T(\theta_0))| = (N_T/T^\kappa) \sup_\theta |N_T^{-1} (I_T(\theta) - I_T(\theta_0))| \rightarrow 0,
\]
in probability. Thus we verified conditions C1 and C2 in Sweeting (1980) and, in turn, Theorem 1 applies, yielding
\[
\left(T^{-\kappa/2} S_T(\theta), T^{-\kappa} I_T(\theta) \right) \overset{d}{\rightarrow} \left((\lambda_\kappa \Omega)^{1/2} \mathbf{Z}, \lambda_\kappa \Omega \right)
\]
for a bivariate standard Gaussian vector \(\mathbf{Z} \) independent of \(\lambda_\kappa \).

Proof of Theorem 3.1

The result follows by applications of Lemmas 11 and 12 in Kristensen and Rahbek (2010). With the notation there, set \(Q_T(\theta) = T^{-1} L_T(\theta) \), \(U_T = 1 \), and \(v_T = T \); then conditions (i),(ii) and (iv) of Lemmas 11 and 12 in Kristensen and Rahbek (2010) hold by Lemma 3.1 above, as \(\partial^2 Q_T(\theta_0) / \partial \theta \partial \theta' \overset{P}{\rightarrow} \Omega/\mu \), and \(\partial Q_T(\theta_0) / \partial \theta \overset{d}{\rightarrow} (\tau \Omega/\mu)^{1/2} \mathbf{Z} \). Next, consider condition (iii) of Lemma 11 in Kristensen and Rahbek (2010); see also Jensen and Rahbek (2004). It follows that in a compact neighborhood \(\mathcal{U}(\theta_0) \) of \(\theta_0 \),
\[
\sup_{\theta \in \mathcal{U}(\theta_0)} \left| \frac{\partial^3 Q_T(\theta)}{\partial \alpha^3} \right| \leq T^{-1} \sum_{i=1}^{N_T} \left[2 \frac{x_i x_{i-1}^3}{\psi_1^3(\theta)} + 3 \left(2 \frac{x_i x_{i-1}^3}{\psi_1^4(\theta)} + \frac{x_i^3}{\psi_1^3(\theta)} \right) \right] \tag{A.7}
\]
\[
\leq \text{const} \ T^{-1} \sum_{i=1}^{N_T} (1 + \varepsilon_i),
\]
and condition (iii) holds as \(N_T/T \) and \(T^{-1} \sum_{i=1}^{N_T} \varepsilon_i \) are \(O_P(1) \). For the remaining third-order derivatives similar arguments apply.

Proof of Theorem 3.2

Similar to the proof of Theorem 3.1 set \(Q_T(\theta) = T^{-\kappa} L_T(\theta) \), \(U_T = 1 \), and \(v_T = T^\kappa \). As there, conditions (i),(ii) and (iv) of Lemmas 11 and 12 in Kristensen and Rahbek (2010) hold by Lemma 3.2. Likewise as in (A.7),
\[
\sup_{\theta \in \mathcal{U}(\theta_0)} \left| \frac{\partial^3 Q_T(\theta)}{\partial \alpha^3} \right| \leq \text{const} \ T^{-\kappa} \sum_{i=1}^{N_T} (1 + \varepsilon_i),
\]
and condition (iii) holds since \(N_T/T^\kappa \) and \(T^{-\kappa} \sum_{i=1}^{N_T} \varepsilon_i \) are \(O_P(1) \).

Proof of Corollary 4.1

For \(\kappa > 1 \) the result follows from Theorem 3.1 by standard arguments. For \(\kappa < 1 \), the result holds by the proof of Theorem 3.2 and Corollary 1 in Sweeting (1980).
B The remainder term

We noticed in Section 3 that the likelihood function in (1.3) in addition to the observed durations \(\{x_i\}_{i=1}^{N_t} \) in \([0, T]\) misses out on a term for \(t_{N_t} < T \), i.e., the term containing the information about no events occurring in \([t_{N_t}, T]\) is ignored. Thus, strictly speaking, \(\hat{\theta}_T \) is not the MLE. While it is common practice to ignore this likelihood contribution in the ACD literature (as standard ARCH software is typically applied for estimation), this term is usually included in the related point process literature; cf. Daley and Vere-Jones (2008). By using the point process representation of the ACD process, as originally noted in Engle and Russell (1998), it holds that the ACD conditional intensity \(\lambda(t|\{x_i\}_{i=0}^{N_t}) = 1/\psi_{N_t+1} \) which implies that the remainder term missing in (1.3), \(R_T (\theta) \) say, is given by

\[
R_T (\theta) = -\frac{T-t_{N_t}}{\psi_{N_t+1}}. \tag{B.1}
\]

We now establish that under geometric ergodicity \(R_T (\theta) \) is asymptotically negligible.

Lemma B.1 Consider the remainder term \(R_T (\theta) \) given by (B.1). Then for \(\{x_i\} \) strictly stationary and geometrically ergodic, we have \(R_T (\theta) T^{-1/2} \overset{p}{\to} 0 \) for \(\kappa > 1 \), and \(R_T (\theta) T^{-\kappa/2} \overset{p}{\to} 0 \) for \(\kappa < 1 \).

Proof. With \(\nu_T = N_T + 1 \) we have \(t_{N_T} < T < t_{\nu_T} \),

\[
\max (t_{\nu_T} - T, T - t_{N_T}) < x_{\nu_T},
\]

and \(R_T(\theta) = (T - t_{N_T})/\psi_{\nu_T} \leq \varepsilon_{\nu_T} \).

For \(\kappa > 1 \), \(\lim_{T \to \infty} \nu_T/T = \lim_{T \to \infty} N_T/T = 1/\mu \) a.s. and for \(\gamma > 0 \)

\[
\mathbb{P}(\varepsilon_{\nu_T} > \sqrt{T}) = \mathbb{P}(\varepsilon_{\nu_T} > \sqrt{T}, |\nu_T/T - 1/\mu| > \gamma) + \mathbb{P}(\varepsilon_{\nu_T} > \sqrt{T}, |\nu_T/T - 1/\mu| \leq \gamma)
\]

\[
= I_1 + I_2.
\]

For every \(\gamma > 0 \), \(I_1 \leq \mathbb{P}(|\nu_T/T - 1/\mu| > \gamma) \to 0 \), while for small \(\gamma \),

\[
I_2 \leq \mathbb{P} \left(\max_{(1/\mu-\gamma) \leq s \leq (1/\mu+\gamma)} \varepsilon_s > \sqrt{T} \right) \leq \mathbb{P} \left(\max_{s \leq \sqrt{T}} \varepsilon_s > \sqrt{T} \right)
\]

\[
\leq 3 \gamma T \mathbb{P}(\varepsilon > \sqrt{T}) \to 0.
\]

Next, for \(\kappa < 1 \), \(\nu_T/T^\kappa \) and \(N_T/T^\kappa \) converge in distribution to \(\lambda_\kappa \), and hence

\[
\mathbb{P}(\varepsilon_{\nu_T} > T^{\kappa/2}) = \mathbb{P}(\varepsilon_{\nu_T} > T^{\kappa/2}, \nu_T/T^\kappa > M) + \mathbb{P}(\varepsilon_{\nu_T} > T^{\kappa/2}, \nu_T/T^\kappa \leq M)
\]

\[
= K_1 + K_2.
\]

Here \(K_1 \leq \mathbb{P}(\nu_T/T^\kappa > M) \) is arbitrarily small for large \(M \) as \(T \to \infty \) while

\[
K_2 \leq \mathbb{P} \left(\max_{s \in 3MT^\kappa} \varepsilon_s > T^{\kappa/2} \right) \leq 3MT^\kappa \mathbb{P}(\varepsilon > T^{\kappa/2}) \leq \text{const} T^\kappa \mathbb{P}(\varepsilon > T^{\kappa/2}) \to 0,
\]

as desired. \(\square \)