Interaction of Thioamides, Selenoamides, and Amides With Diiodine

Sotiris K. Hadjikakou and Nick Hadjiliadis

Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

Received 25 June 2006; Revised 27 August 2006; Accepted 8 September 2006

We review the results of our work on the iodine interaction with thioamides, selenoamides, and amides. Complexes with (i) "spoke" or "extended spoke" structures, D · I₂ and D · I₂ · I₂, respectively, (D is the ligand donor) (ii) iodonium salts of \([\{D_2-I\}_n\}^+\) \((n = 3, 7)\) and \([\{D_2-I\}_n^+[FeCl_4]^-\) formulae and (iii) disulfides of the categories (a) \([D-D]\), (b) \([D-DH]^+[I_3^-]\) have been isolated and characterized. A compound of formula \([\{D_2-I\}_n\}^+[D · I_2]\) containing both types of complexes (i) and (ii) was also isolated. The interaction of diiodine with selenium analogs of the antithyroid drug 6-n-propyl-2-thiouracil (PTU), of formulae RSeU (6-alkyl-2-Selenouracil) results in the formation of complexes with formulae \([(RSeU)I_2]\). All these results are correlated with the mechanism of action of antithyroid drugs. Finally, we review here our work on the diiodine interaction with the amides (LO).

Copyright © 2006 S. K. Hadjikakou and N. Hadjiliadis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The perturbation of the I—I bond when diiodine binds to heterocycles such as thioamides or selenoamides results to novel complexes containing iodine [1–13]. Various types of such complexes have been obtained thus far, including charge transfer (ct) complexes with the so-called "spoke" or "extended spoke" structures \((DS · I_2)\) or \((DS · I_2 · I_2)\) \((D\) is the ligand donor) [6], the “T-shape” structures, iodine(I) coordinated to two thioamides to form “iodonium salts” \(([DS · I · DS]^+ · I_3^-)\) [6], oxidation products of formulae \((DS · I)^+\) [6], dications of formulae \(([DS · SD])^{2+}(I_6^-)\), [6] and monocations of formulae \(([DS · SDH]^+ · I_3^-)\) [6] \((DS\) or \(D\) = S, a thioamide ligand donor).

The interest in studying I₂ interaction with thioamides and selenoamides arises from their application in both biological chemistry and material sciences. Thus, (i) thioamides, like 6-n-propyl-thiouracil (PTU), N-methyl-imidazoline-2-thione (methimazole, MMI), 3-methyl-2-thioxo-4-imidazoline-1-carboxylate (carbimazole) (CBZ), are known antithyroid drugs [14] against hyperthyroidism, while thiazolidine-2-thione (TZD) and 1,3-bis(hydroxymethyl)-benzimidazoline-2-thione (BHBZIM) were also used as such, in the past. Hyperthyroidism (Grave’s disease) is characterized by the overproduction of T4 and T3 hormones. The way that the above and other similar thioamides interact with I₂ is of great importance, in an attempt to approximate the elucidation of their mechanism of action, since I₂ is involved in the synthesis of both T4 and T3 hormones [15–17]; (ii) iodine chemistry is recently proving to be of considerable interest because of the discovery of low-temperature, semi- and superconducting polyiodides, which quickly led to the deliberate doping of conjugated polymers with elemental iodine [13]. The ability of iodine to catenate leads to the formation of polyiodides of various structures [13] reviewed recently by Boyle et al, Deplano et al, and Svensson et al [10–13]. The structural variety of polyiodides ranges from the simple I₇ through the linear I₄⁺, the V-shaped I₅, three-pronged structures of I₇, I₄, I₆, and I₁₂, the Z-shaped I₇, I₄, the branched I₁₆, and the S-shaped and linear I₁₄ species to infinite chains [5]. The size and shape of the polyiodide ions have been found to depend in an unpredictable way on the size and shape of the counter ion.

In this paper, we review the results of our work on the iodine interaction with thioamides. Complexes of the so-called “spoke” and “extended spoke” structures, D · I₂ and D · I₂ · I₂, respectively, (D is the ligand donor) (ii) iodonium salts of \([\{D_2-I\}_n^+[I_3^-]\) \((n = 3, 7)\) and \([\{D_2-I\}_n^+[FeCl_4]^-\)
Scheme 1: Ligands used in our work.

RESULTS AND DISCUSSION

Synthesis of thioamide-diiodine complexes

Charge transfer complexes with “spoke” or “extended spoke” structures

Reactions between diiodine and the thioamides (1)–(5) (Scheme 1) lead to the formation of charge transfer (ct) complexes with the so-called “spoke” or “extended spoke” structures (DS·I₂ or DS·I₂···I₂) according to the general reaction shown in Scheme 2.

Thus, reaction of diiodine with (1), (2), (3), or (4) in a molar ratio 1 : 1 (I₂ : L) results to the formation of ct complexes of formulae [(BZT)I₂] (17) [1], [(PTU)I₂] (18) [3], [(CBZT)I₂] (19) [3], and [(NMBZT)I₂] (20) [6] with spoke structures (Scheme 3). Reactions of diiodine with (1) or (5) in 2 : 1 (I₂ : L) molar ratio form ct complexes of extended spoke structures with formulae [(BZT)I₂I₂] (21) [1] and [(BZIM)I₂H₂O] (22) [1] (Scheme 3).

Table 1 summarizes bond distances and angles of importance of our ct complexes with spoke and extended spoke structures.
The I—I bond distances are varying from 2.79 Å, in case of complexes with weak I—S interaction, to 3.08 Å, as a result of a strong I—S interaction. The corresponding I—I bond is subsequently elongated with respect to the corresponding distance in free I—I in the solid state [19] (2.717 Å at 110 K [20]). Bigoli et al [21] has classified iodine adducts of sulfur donors into three classes, depending on I—I bond order (n), calculated from Pauling’s equation $d(I—I) = d_0 - 0.85 \cdot \log(n)$ (1) [where d is I—I interatomic distance of the adduct, d_0 is the I—I bond distance of gas phase I$_2$ (2.67 Å), and n is the I—I bond order] [18]. When $n \geq 0.6$ and $d(I—I) < 2.85$ Å, the adduct is type A, and when $n \leq 0.4$ and $d(I—I) > 3.01$ Å, it is type C. Compounds with intermediate values were classified as type B. Thus, compounds (18) and (20) are classified into A type, compounds (19), (21), and (22) into B type, whereas compound (17) is C type.

The behavior has been already explained [22]. The S—I—I group has a linear structure with an angle of almost 180°. The N—C—S—I torsion angle is also found almost equal to 180° indicating an almost coplanar arrangement of the I$_2$ towards C=S bond except the case of [(PTU)I$_2$] complex, where it is found to be -95.93°. In fact, [(PTU)I$_2$] complex is the first ct complex with perpendicular arrangement of I$_2$ towards C=S characterized by X-ray crystallography [3].
Table 1: Selected bond distances and angles of spoke and extended ct complexes.

Complex	I—I(I₂) (Å)	I—I(S) (Å)	I–S (Å)	I–I–S (°)	N–C–S—I–I–(°)	n (e*) bond order	Type
[(BZT)I₂] (17)	—	3.077(2)	2.728(6)	174.18(14)	166.40	0.33	C
[(PTU)I₂] (18)	—	2.826(1)	2.780(1)	175.85(2)	−95.93	0.65	A
[(CBZT)I₂] (19)	—	2.920(1)	2.633(1)	173.78(4)	167.88	0.51	B
[(NMBZT)I₂] (20)	—	2.7912(3)	2.808(3)	176.94(7)	172.90	0.72	A
[(BZT)I₂I₂] (21)	2.7504(18)	2.969(2)	2.587(5)	177.78(13)	174.71	0.44	B
[(BZIM)I₂H₂O] (22)	2.767(3)	2.989(2)	2.571(6)	176.76(14)	2.95	0.42	B

*The I–I bond order calculated from Pauling’s equation d(I–I) = d₀ − 0.85 · log(n) (where d is I–I interatomic distance of the adduct, d₀ is the I–I bond distance of gas phase I₂ (2.67 Å), and n is the I–I bond order) [18].

![Figure 1: Correlation between d(I–S) and d(I–I) found for spoke and extended spoke ct complexes of diiodine, [(BZT)I₂] (17), [(PTU)I₂] (18), [(CBZT)I₂] (19), [(NMBZT)I₂] (20), [(BZT)I₂] (21), and [(BZIM)I₂H₂O] (22).](image)

![Scheme 4: 1D intermolecular network of complex [(BZT)I₂].](image)

An extended intermolecular 1D network through hydrogen bonding interaction is also formed in complex [(BZT)I₂] (17) with N · · · I = 3.597(18) Å (Scheme 4).

Iodonium salt complexes

Reaction between diiodine and thioamides such as TZD (6) or BZIM (5) leads to the formation of iodonium salt complexes of [{(TZD)₂I⁺} · I⁻ · 2I₂] (23) (Scheme 5) and [{(BZIM)₂I⁺} · 3I⁻] (24) (Scheme 5) formulae according to the reaction in Scheme 2.

The two I–S bond distances are 2.654(6) Å in (23) and in case of (24) they are 2.597(4) Å and 2.702(4) Å, respectively. The I–I bond distances in I⁺ counter anions are found to be equal (I–I = 2.9165(14) Å) in case of (23). In case of (24) two types of I⁺ counter anions are observed, one is symmetric with I(1)–I(2) = 2.9300(12) Å while the other is not since it participates in hydrogen bonding (I(1A)–I(2A)= 2.880(6) Å and I(1A)–I(3A) = 3.058(5) Å, resp) and better described as I⁻, interacting with I₂(I · · · I₂) [11]. The two hydrogen bonding interactions are taking place between the I⁺ and the hydrogen atoms of the amide nitrogen atoms (H[N] · · · I = 2.9336(6) Å) in case of (23) (Scheme 5) and I(I1) · · · H–N(I1)’’ of 3.20 Å in case of (24) (Scheme 6).

Ab initio quantum mechanical methods and density functional theory (DFT) techniques applied on the iodonium part of (24) suggested that the conformations obtained in the crystalline state result from an intermolecular electrostatic interaction between the positively charged iodine and the negatively charged NH (total group (NH) charges calculated −0.005 e for N(11)”’, −0.014 e for N(21)”’, −0.004 e for N(13)”’, and −0.012 e for N(23)”’ [6] (Scheme 6).

When (NMBZT) (4) reacts with diiodine in the presence of FeCl₃ in a molar ratio of 3 : 6 : 1 (NMBZT : I₂ : FeCl₃) (1), complex [[(NMBZT)₂I⁺ · [FeCl₄]⁻] (25) (Scheme 7) together with [[((NMBZT)₂I⁺)] · I⁻] were formed [6]. The I–S bond distances are I–S = 2.5961(15) Å and 2.6596(14) Å, respectively, with an almost linear S–I–S arrangement (S–I–S = 177.77(5)°).

3NMBZT + 6I₂ + FeCl₃ → \(\left(\frac{1}{2} \right) \) [[(NMBZT)₂I⁺ [FeCl₄]⁻]] + [[(NMBZT)₂I⁺] · [I⁻]] + unidentified products.

Monocationic and neutral disulfides

The reaction of 2-mercaptopyridine (PYSH) (7) with diiodine in a molar ratio of 1 : 2 led to the oxidation and dimerization of the ligand and produced {[(PYSH)₂]⁺ · I⁻} (26) (Scheme 8). The structure of the compound consists of two residues; one cationic (PYSH)⁺, containing the S–S bond linking the two 2-mercapto-pyridine molecules.
(I(1)-I(2) = 2.9195(14) Å)

$[(\text{TZD})_{2}I^+] \cdot I^- \cdot 2I_2]

([\text{BZIM})_{2}I^{+}] \cdot I_7 \cdot [\text{BZIM}I_{2}])

Scheme 5

Scheme 6: Hydrogen bonding interactions taking place in (24).

Scheme 7: $\{(\text{NMBZT})_{2}I^+ \cdot \text{[FeCl}_4]^-\}$(25).
Moreover, when MNA (8), MBA (9), or PMT (10) reacts with diiodine under the same experimental conditions as in the case of the preparation of complex (7), (see above), neutral disulfides were produced with formulae [(MNA)₂] (27), [(MBA)₂] (28), and [(PMT)₂] (29) according to the reaction shown in Scheme 2. Scheme 9 shows the disulfide formed in case of (10) with formula [(PMT)₂] (29).

Complex (24) isolated from the reaction of (5) and I₂ reveals the cocrystallization of both a "spoke" structure and an iodonium salt structure. This leads to the conclusion that the equilibrium of Scheme 10 is established in solution.

It has also been shown that the disproportionation reaction, with the generation of the ionic compound from thioamide-iodine complexes, exhibits pressure dependence [2]. A pressure increase leads to the ionic iodonium salt (iii) from (ii) (Scheme 10). The favoring of \{[(MBZIM)₂]I⁺[I₃]⁻\} (24a) formation is also proved by computational studies, based on energetic grounds [6].

The conductivity measurements indicate that when diiodine is added to a solution of BZIM (5) (D=S), initially both the neutral (I) and the ionic (IIa) compounds are formed as it is shown in Scheme 11(a). Further addition of diiodine results to the ionic complex (IIa). In the case of NMBZT (Scheme 11(b)) a cocrystallization of both the spoke and iodonium complexes takes place producing only the iodonium complex, in excess of I₂.

For the mechanism of action of antithyroid drugs the reaction scheme shown in Scheme 12 is followed.

Our results strongly indicate that the antithyroid drugs PTU (2) and N-Methyl-2-mercapto-imidazoline (MMI) have a different way of action. Thus, (2) together with NM-BZT (4) forming weak S–I ctc complexes (Table 1) may interfere either by inhibiting TPO activity [26] or by inhibiting deiodinase (ID-1) enzyme which is responsible for the formation of T3 from T4 hormone.
Synthesis of selenoamide-diiodine complexes

Since thyroid deiodinase contains selenocysteine [27], the seleno-analog of PTU (PSeU) is expected to exhibit a higher antithyroid activity than PTU, because of the easier formation of Enzyme-Se-Se-PSeU species than Enzyme-Se-S-PTU due to the higher nucleophilicity of Se. To examine this possibility we have extended our studies to the interaction of I₂ with selenoamides. Scheme 1 shows the ligand used in this work. Ligands (11)–(14) were synthesized according the reactions shown in Scheme 13.

Reactions of alkyl-selenoamides with diiodine in a 1 : 1 molar ratio in dichloromethane solutions result in the formation of [(RSeU)I₂] [R = methyl-, ethyl-, n-propyl-, i-propyl-] (Scheme 14). [(n-PrSeU)I₂] (30) was found to be a charge transfer complex with an Se−I bond. The I−I interatomic distance of 2.8928(10) Å is longer than that in either the gas phase (2.677 Å) or crystalline diiodine (2.717 Å at 110 K) presumably owing to the Se···I interaction. It is, however, the shortest such distance measured for a diiodine-selenoamide complexes suggesting a minimal perturbation resulting from the Se···I contact, which is the longest measured thus far [7]. The I−I bond order of 0.547 calculated for [(n-PrSeU)I₂] from Pauling’s equation d(I−I) = d₀ − 0.85·log(n) (1) (where

\[
d(I−I) = d₀ − 0.85 \cdot \log(n)
\]
\[\text{Scheme 15: } [\text{N-(6-}n\text{-Pr-4-pyrimidone})(6-}n\text{-Pr-SeU)}_2]\] (32).

\[\begin{align*}
\text{Scheme 16}
\end{align*} \]

d is I–I interatomic distance of the adduct, \(d_0\) is the I–I bond distance of gas phase \(I_2\) (2.67 Å) and \(n\) is the I–I bond order \([18]\) is the highest such bond order for selenoamide-diiodine complexes. All these data are consistent with a weak Se···I interaction, the weakest ever found. According to Bigoli et al. classification, complex (30) is classified in the B type of adduct. It is interesting to note that the corresponding \([\text{(PTU)}I_2]\) complex forms a weaker ct complex, with an I–I bond order of 0.65e \([3]\) compared to the 0.547e found for \([n-\text{Pr–SeU}]I_2]\) which implies a weaker S···I interaction. With the same classification the former complex is of A type, while the latter of B type. Interestingly, there is a linear correlation between the Se···I and I–I distances (see Table 1 and Figure 2).

The diselenides \([\text{N-(6-Et-4-pyrimidone)}(6-\text{Et-SeU}_2]]\) (31) and \([\text{N-(6-}n\text{-Pr-4-pyrimidone)}(6-}\text{Pr-SeU}_2]\) (32) (Scheme 15) were produced upon recrystallization of \([n-\text{PrSeU}I_2]\) (30) and \(([n-\text{EtSeU}]I_2]\) (33) from acetone, as oxidation products. On the other hand, deselenation with the formation of 6-\text{-propyl-2-uracil} (6-Pr–U) (34) was observed when (30) was recrystallized from methanol/acetonitrile solutions \([7]\).
In conclusion, while 6-alkyl-2-selenouracil compounds (RSeU) (Scheme 16) are stable in various solvents, including water and other polar or nonpolar solvents, “spoke” ct complexes of formulae [(RSeU)I2] are formed in dichloromethane solutions, but are unstable in methanol/acetonitrile and/or acetone solutions (Scheme 16). [(RSeU)I2] is transformed to 6-alkyl-2-uracil in methanolic/acetonitrile solutions (Scheme 16). Upon recrystallization of the compound in acetone the diselenides containing also a covalent C−N bond with an adjacent PTU molecule are formed possibly through the formation of a substituted selenouracil as indicated by 1H, 13C NMR spectra, and ESI-MS spectra. The whole process may be hydrolytic (Scheme 16).

Synthesis of amide-diiodine complexes

The reaction of 2-pyridone (PYOH) (15) with diiodine in a molar ratio of 2 : 1 and 1 : 2, respectively, resulted to the formation of \{[(PYOH)3]2[(PYOH)]+I3−\} (35) and \{[(PYOH)6] · [(PYOH)2]2+ · (1/2)I− · (3/2)I2 · (I2)\} (36) complexes (Scheme 17). The reactions were carried out in dichloromethane solutions.

The reaction of 2-pyrimidone (PMOH + 2 Cl−) (15) with diiodine in a molar ratio of 1 : 1 resulted to the formation of \{[LOH]+Cl−I2\} (37) complex.

In case of complex (36) the counter anions form a polyiodine network. Figure 3 shows the polyiodine network established by weak halogen-halogen interactions, in the distance range 3.51 Å−3.58 Å, between I− and I2···I−···I2 ions in the \{(PYOH)6 · [(PYOH)2]2+ · (1/2)I− · (3/2)I2 · (I2)\}.

In conclusion, structures containing polyiodide anions with cationic aromatic ligands as counterparts of formulae \{[(L)(HL+)] · (I−n)\} are known to be synthesized by the treatment of the appropriate amide with HI [28–30]. In contrast, the complexes with PYOH, in the present case, were formed by the direct reaction of 2-hydroxy-pyridine with diiodine in a molar ratio of 2 : 1 and 1 : 2. This is a redox reaction, where 2-hydroxy-pyridine firstly is oxidized to pyridinone-2 radical cation. In the case of 2-hydroxy-pyridine, however, peroxide structures are not formed like disulfides in the case of PYSH. Polyiodide anions are simultaneously produced in this case. This should be a consequence of redox differences between −SH and OH groups and may be proven a useful pathway for the synthesis of polyiodide materials.
REFERENCES

[1] Daga V, Hadjikakou SK, Hadjiiliadis N, Kubicki M, dos Santos JHZ, Butler IS. Synthesis, spectroscopic and structural characterization of novel diiodine adducts with the heterocyclic thioamides, thiazolidine-2-thione (tzdh1), benzothiazole-2-thione (btzdh1) and benzimidazole-2-thione (bimzh1). European Journal of Inorganic Chemistry. 2002;2002(7):1718–1728.

[2] dos Santos JHZ, Butler IS, Daga V, Hadjikakou SK, Hadjiiliadis N. High-pressure Fourier transform micro-Raman spectroscopic investigation of diiodine-heterocyclic thioamide adducts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2002;58(12):2725–2735.

[3] Antoniadis CD, Corban G, Hadjikakou SK, et al. Synthesis and characterization of (PTU) I2 (PTU = 6-n-propyl-2-thiouracil) and (CMBZT) I2 (CMBZT = 5-chloro-2-mercaptopbenzotiazole) and possible implications for the mechanism of action of anti-thyroid drugs. European Journal of Inorganic Chemistry. 2003;2003(8):1635–1640.

[4] Antoniadis CD, Hadjikakou SK, Hadjiiliadis N, Kubicki M, Butler IS. Synthesis, X-ray characterisation and studies of the new ionic complex [Bi(pyridin-2-yl)] disulphide triiodide, obtained by oxidation of 2-mercaptoppyridine with I2 - implications in the mechanism of action of antithyroid drugs. European Journal of Inorganic Chemistry. 2004;2004(21):4324–4329.

[5] Antoniadis CD, Hadjikakou SK, Hadjiiliadis N, Kubicki M, Butler IS. Synthesis and characterization of novel diiodine adducts with the heterocyclic thioamides N-methylbenzothiazole-2-thione and benzimidazole-2-thione: implications with the mechanism of action of antithyroid drugs. Inorganic Chemistry. 2005;29(1):714–720.

[6] Corban GJ, Hadjikakou SK, Hadjiiliadis N, et al. Synthesis, structural characterization, and computational studies of novel diiodine adducts with the heterocyclic thioamides containing donors and di-iodine: solution studies. Coordination Chemistry Reviews. 1999;184(1):271–290.

[13] Svensson PH, Kloo L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chemical Reviews. 2003;103(5):1649–1684.

[14] Reynolds JEF, Prasad AB, eds. Martindale: The Extra Pharmacopoeia. 28th ed. London, UK: The Pharmaceutical Press; 1982.

[15] Aragoni MC, Arca M, Demartin F, et al. Anti-thyroid drug methimazole: X-ray characterization of two novel ionic disulfides obtained from its chemical oxidation by I2. Journal of the American Chemical Society. 2002;124(17):4538–4539.

[16] du Mont W-W, Mugesh G, Wismach C, Jones PG. Reactions of organoselenenyl iodides with thiouracil drugs: an enzyme mimetic study on the inhibition of iodothyronine deiodinase. Angewandte Chemie International Edition. 2001;40(13):2486–2489.

[17] Taurog A. Endocrinology. London, UK: Academic Press; 1979. Edited by DeGroot L; vol 1.

[18] Pauling L. The Nature of the Chemical Bond. 3rd ed. Ithaca, NY: Cornell University Press; 1960.

[19] Purcell KF, Kotz JC. An Introduction to Inorganic Chemistry. Philadelphia, Pa: Saunders College; 1980.

[20] van Bolhuis F, Koster PB, Mijchelsen T. Refined structure of the crystal structure of iodine at 110 K. Acta Crystallographica. 1967;23(1):90–91.

[21] Bigoli F, Deplano P, Ienco A, et al. Structure and bonding of diiodine adducts of the sulfur-rich donors 1,3-dithiacyclohexane-2-thione (ptc) and 4,5-ethylendithio-1,3-dithiole-2-thione (ttb). Inorganic Chemistry. 1999;38(21):4626–4636.

[22] Aragoni MC, Arca M, Demartin F, et al. DFT calculations, structural and spectroscopic studies on the products formed between IBr and N,N′-dimethylbenzimidazole-2-(3H)-thione and -2(3H)-selenone. Journal of the Chemical Society, Dalton Transactions. 2005;11:2252–2258.

[23] Cristiani F, Demartin F, Devillanova FA, Isia F, Lippolis V, Verani G. Charge-transfer complexes of N-methylthiazolidine-2(3H)-selenone (1) and N-methylbenzothiazole-2(3H)-selenone (2) with Ianh and IBr: crystal structures of 1·I2, 1·Br2, 2·2I2, and 2·2IBr. Inorganic Chemistry. 1994;33(26):6315–6324.

[24] Demartin F, Devillanova FA, Isia F, Lippolis V, Verani G. Reaction of N,N′-dithymethylimidazolide-2-selenole (L) with I2. Crystal structure of the mixed-valence (L)I2(L)2-selnone. Inorganic Chimica Acta. 1997;255(1):203–205.

[25] Aragoni MC, Arca M, Demartin F, et al. C.T.complexes and related compounds between S and Se containing donors and I2, Br2, IBr, ICl. Trends in Inorganic Chemistry. 1999;6:1–18.

[26] Corban G, Hadjikakou SK, Hadjiiliadis N. In preparation.

[27] Berry MJ, Banu L, Larsen R. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature. 1991;349(6308):438–440.

[28] Herbstein FH, Kapon M, Schwotzer W. Crystal structure of tetrakis (phenacetin) dihydrogenetriiodide dihydrate [{H5C2OC6H4N(H)C(CH3)2}2I4·H2I4·2H2O]. Helvetica Chimica Acta. 1983;66(1):35–43.

[29] Herbstein FH, Kapon M. The crystal structures of the polyyodides salts (phenacetin)2·H2I4 and (theobromine)2·H2I4. Philosophical Transactions of the Royal Society of London. Series A. 1979;291(1379):199–218.

[30] Reddy JM, Knox K, Robin MB. Crystal structure of {H5C2OC6H4N(H)C(CH3)2}2·2C6H5CONH2: a model of the starch—iodine complex. The Journal of Chemical Physics. 1964;40(4):1082–1089.