Abstract—Modeling of complex phenomena such as the mind presents tremendous computational complexity challenges. Modeling field theory (MFT) addresses these challenges in a non-traditional way. The main idea behind MFT is to match levels of uncertainty of the model (also, problem or theory) with levels of uncertainty of the evaluation criterion used to identify that model. When a model becomes more certain, then the evaluation criterion is adjusted dynamically to match that change to the model. This process is called the Dynamic Logic of Phenomena (DLP) for model construction and it mimics processes of the mind and natural evolution. This paper provides a formal description of DLP by specifying its syntax, semantics, and reasoning system. We also outline links between DLP and other logical approaches. Computational complexity issues that motivate this work are presented using an example of polynomial models.

I. INTRODUCTION

There are two current trends within the modeling of physical phenomena and within logic. In modeling physical phenomena, the trend is to put in additional logical structures to classical mathematical techniques, whereas in logic it is to add “dynamics” to the logic [12-17], with an aim to represent and reason about actions rather than static propositions. The subjects in this area include Action Logic, Arrow Logic, Game Logic, Semantic games, Dialogue Logic, Belief Revision, Dynamic Epistemic Logic, Hoare logic, Dynamic Logic, Linear Logic, labeled transition systems, Petri nets, Process Algebra, Automata Theory, Game Semantics, coalgebras, among others. [13].

These two complimentary trends can be very beneficial for both areas. In [13] “dynamification” of logic is developed to model quantum phenomena, and this paper develops the dynamic approach for modeling other problems where the computational complexity of finding the solution is a critical issue.

While at the global level these complimentary trends exist, for one approach to benefit the other, both need to be close enough to each other in specific tasks and goals.

We start by discussing the differences between dynamic epistemic logic [16, 19] and DLP. H. Leitgeb has pointed out that the aim of dynamic epistemic logic and the like is to put logical operators with a dynamic interpretation into one’s formal object language. The aim of DLP, however, is to specify a particular dynamics of learning and related concepts in the meta-language. So, since DLP locates the dynamics in the meta-language and dynamic epistemic logic locates them in the object language, the logical resources of dynamic epistemic logic are not yet of help to DLP [18].

To illustrate this difference, consider an example from [24]: “A man loves Annie. He is rich.” Two interpretations are possible:

1. (∃x)(man x & x loves Annie) & x is rich.
2. (∃x)(man x & x loves Annie & x is rich).

In the first sentence, the existential quantifier is applied only to the first sentence, but in the second sentence, it ranges over both. The two interpretations of “A man loves Annie. He is rich” show that the existential quantifier and operations can be dynamic, that is, they can have different interpretations within the object language. According to J. van Benthem [20], DLP follows dynamic systems tradition. This tradition can be traced to Ernst Max who viewed organisms as dynamic systems that have innate tendencies to self-regulation and equilibrium. When equilibrium is disturbed, which can happen on a variety of levels, the organism works to form a new equilibrium [21]. Note that the common tools to model such phenomena are differential equations rather than logic. A related view of dynamic systems comes from studies in Computational Theory of Mind (CMT) [22]. According to [23], cognitive processes are not rule-governed sequences of discrete symbolic states, but continuously evolving total states of dynamic systems determined by continuous, simultaneous and mutually determining states of the systems' components (i.e., state variables or parameters). In section 11, we outline a way to shrink the gap between these two basic approaches.

To provide a formal description of Dynamic Logic of Phenomena (DLP), we start by comparing the background definitions of DLP to logic model theory. Section 2 establishes concepts of uncertainty, generality, and simplicity for models, and defines evaluation criteria. Section 3 defines a partial order of models. Section 4 provides examples of uncertainty and generality of polynomial models. Section 5 formalizes similarity maximization. Section 6 defines DLP parameterization using the theory of monotone Boolean functions. Section 7 defines the search process. Section 8 presents how DLP processes can be visualized. Section 9 provides a formal description of DLP. Sections 10 and 11 outline the links between DLP and other dynamic logics. Section 12 summarizes the paper and discusses future research. The Appendix describes computation complexity issues that motivate the paper.

We start by defining the concept of empirical data relevant to modeling field theory (MFT) [8], [9], and supply an interpretation in logical terms.

Empirical data, E in MFT is any data to identify a model.

In logical terms, we define empirical data as a pair, $E=\langle A, \Omega \rangle$, where A is a set of objects, and $\Omega=\{p_i\}$ is a set
of predicates \(P_i \) of arity \(n_i \), e.g., \(P_i(x,y) \) means that length of \(x \) is no less than the length of \(y \), \(l(x) \geq l(y) \).

Definition. A pair \(<A, \Omega> \) is called an **empirical system** [6].

Definition. A pair \(<A, \Omega> \) is called a **model** in logic [7].

Often it is considered as a model of some system of axioms \(T \).

Tarski proposed the name ‘model theory’ in 1954, although a variety of other names are also used, including relational system [6], and a protocol of the experiment. We call a Tarskian models logic models or Lmodels [10] to distinguish them from models in MFT.

The concept of a model, \(M \), in MFT concerns a model of reality, which we will call a model of phenomena or Pmodel. In logical formalization, a Pmodel can be matched with an **axiom system** \(T \).

Definition. A **system of axioms** \(T \) is a set of closed formulas (sentences) in the signature of the underlying language, e.g.,

\[
\forall x_i \exists x_j P_i(x_i,x_j).
\]

The concept of model is treated very differently in MFT than it is in mathematical logic. Logic may be thought to go from a very formal (syntactical) axiomatic system \(T \) to a more real or concrete model \(A_T = <A_T, \Omega> \) of that formal system \(T \). MFT goes in the other direction, from a very informal reality to more formal models. As a result, the concepts of model are quite different in the two theories. Empirical data in MFT is a model \(\Omega \) in mathematical logic, if we interpret empirical data as an empirical system \(\Omega \) [6]. On the other hand, the model of phenomena is not a model in logic; instead, Pmodels are akin to a set of axioms about the class of logic models. This type of difference was well described in [10]:

"To model a phenomenon is to construct a formal theory that describes and explains it. In a closely related sense, you model a system or structure that you plan to build, by writing a description of it. These are very different senses of 'model' from that in model theory: the 'model' of the phenomenon or the system is not a structure but a theory, often in a formal language."

Thus, we will use terms that have been already introduced above: Pmodel for a model of phenomenon and Lmodel for a logic model.

The next MFT concept is a similarity (or correspondence) measure, \(L(M,E) \), between empirical data \(E \) and an a-priori model \(M \) that is assigned individually to each pair \((M,E) \):

\[
L: \{(M,E)\} \rightarrow R,
\]

where \(R \) is a set of real numbers. In logic the closest to it is a statement that \(<A,\Omega> \) is a model of the system of the axioms \(T \).

In logical terms, \(L \) maps a theory \(M \) and Lmodel \(E \) to \(R \).

Definition. Pair \(E = <A,\Omega> \) is an **Lmodel of the system of the axioms** \(T \) if every formula from \(T \) is true on \(E \).

Definition. Boolean similarity measure \(B(T,E) \) is defined to be equal to 1, \(B(T,E)=1 \), if \(M \) is an Lmodel of \(T \), else \(B(T,E)=0 \).

II. SEMANTIC CONCEPTS OF UNCERTAINTY, GENERALITY AND SIMPLICITY

A. Uncertainty, generality, and simplicity relations between P-models

Below we introduce the concepts of uncertainty, generality, and simplicity relations. These concepts can be specified for both logic and MFT models.

An uncertainty relation between Pmodels is denoted by \(\geq_{Mu} \) and the sentence \(M_i \geq_{Mu} M_j \) is read: “Model \(M_i \) is equal in uncertainty or more uncertain than model \(M_j \)”. In other words, model \(M_j \) is equal in certainty or more certain than model \(M_i \), and model \(M_i \) is no less certain than model \(M_j \). This relation is a partial order. If \(M_i >_{Mu} M_j \) then we simply say that \(M_j \) is more certain than \(M_i \).

A generality relation between Pmodels is denoted by \(\geq_{Mu} \) and \(M_i \geq_{Mu} M_j \) is read: “Model \(M_i \) is a specialization of the model \(M_j \)” or “Model \(M_i \) is a generalization of the model \(M_j \)”. This relation also is a partial order.

A simplicity relation between Pmodel is denoted by \(\geq_{Ms} \) and \(M_i \geq_{Ms} M_j \) is read: “Model \(M_i \) is equal in simplicity of simpler than Model \(M_j \)”. This relation also is a partial order.

For Pmodels that are represented as a system of axioms, the generality relation can be defined as follows.

Definition. \(T_i \geq_{gen} T_j \) if and only if \(T_i \subseteq T_j \), i.e., system of axioms \(T_i \) is equal to, or an extension of, the system of axioms \(T_j \) if and only if every axiom in \(T_i \) is an axiom in \(T_j \).

B. Uncertainty, generality and simplicity relations between similarity measures

An uncertainty relation between similarity measures is denoted by \(\geq_{Lu} \) and \(L_i \geq_{L_u} L_j \) is read: “Measure \(L_i \) is equal in uncertainty or more uncertain than measure \(L_j \)”. This is a partial order relation.

A generality relation between similarity measures is denoted by \(\geq_{Lg} \) and \(L_i \geq_{L_g} L_j \) is read either: “Measure \(L_j \) is a specialization of measure \(L_i \)” or equivalently, “measure \(L_i \) is a generalization of the measure \(L_j \)” This relation also is a partial order.

A simplicity relation between similarity measures is denoted by \(\geq_{Ls} \) and \(L_i \geq_{L_s} L_j \) is read: “Measure \(L_j \) is equal in simplicity of simpler than measure \(L_i \)”. This relation also is a partial order.

Definition. Mapping \(F \) between a set of Pmodels \(\{M\} \) and a set of similarity measures \(\{L\} \),

\[
F: \{M\} \rightarrow \{L\},
\]

called a matching mapping if \(F \) preserves uncertainty, generality, and simplicity relations between models and measures in the form of homomorphism from a relational system \(\{\{M\} , \geq_{Mu} , \geq_{Mu} , \geq_{Ms} \} \) to a relational system.
\[\forall M_A, M_B \quad (M_A \geq M_B \Rightarrow F(M_A) \geq F(M_B)), \]
\[\forall M_A, M_B \quad (M_A \geq M_B \Rightarrow F(M_A) \geq F(M_B)), \]
\[\forall M_A, M_B \quad (M_A \geq M_B \Rightarrow F(M_A) \geq F(M_B)). \]

II. PARTIAL ORDER OF PMODELS

Two different Pmodels can be at the same level of uncertainty \((M_1 = u M_2)\), one Pmodel can be more uncertain than another \((M_1 > u M_2)\), or Pmodels can be incomparable for uncertainty. We may define model uncertainty in such a way that two different models, \(M_1: \forall x,y \ 2x^2 + 3y = 0\) and \(M_2: \forall x,y \ 5x + 4y^2 = 0\) have the same level of uncertainty \(M_1 = u M_2\). The number of unknown coefficients is one of the possible ways to define the level of uncertainty. For \(M_1\) and \(M_2\), these numbers \(m_1\) and \(m_2\) are equal to zero. All coefficients are known and models are certain. In contrast model \(M_3: \forall x,y \ 5x + by^2 = 0\) has one unknown coefficient \(b\) and its measure of uncertainty \(m_3\) is equal to 1.

Definition. NUC measure of polynomial model uncertainty is defined as the Number of Unknown Coefficients (NUC) in the model.

Consider Pmodel \(M_1\). Based on the NUC measure, this Pmodel is more uncertain than Pmodel \(M_2, M_3 > u M_2\), because coefficient \(b\) in \(M_1\) is unknown. NUC for \(M_2\) is \(n_2=0\) and NUC for \(M_3\) is \(n_1=1\) and \(n_2>n_1\). In logical terms these Pmodels can be described as logic statements:

\[M_1: \forall x,y \ P_1(x,y), \]
\[M_2: \forall x,y \ P_2(x,y), \]
\[M_3: \forall x,y \ P_3(x,y,b). \]

The generality relation between Pmodels \(M_1\) and \(M_2\) can also be defined. For instance, it can be the highest power \(n\) of the polynomial model. Both models \(M_1\) and \(M_2\) are quadratic with \(n_1=n_2=2\) and, thus, both have the same generality.

Definition. HP measure of polynomial model generality is defined as the Highest Power \(n\) of the polynomial model.

Alternatively, we may look deeper and notice that \(M_1\) contains \(x^2\) and \(M_2\) contains \(y^2\). We may then define the generality of a polynomial model as its highest polynomial variable, which are \(x^2\) for \(M_1\) and \(y^2\) for \(M_2\).

If the interpretations of \(x\) and \(y\) are fixed and cannot be swapped, then we cannot say that one is more general than the other and we can call them incomparable in generality.

The described measures are computed separately for each individual model rather than for a pair of models to be compared. As a result, the measures may not represent an intuitive generality order relation between models. For instance, we can call model \(M_3\) more general than model \(M_2\), \(M_3 > Mg M_2\), because \(M_2\) is a specialization of \(M_3\) with \(b=4\). Similarly, intuitively Pmodel \(M_4: \forall x,y \ ax + cx^2 + by^2 = 0\) is more general than Pmodels \(M_1, M_2, M_3\), because coefficients in \(M_1, M_2\) and \(M_3\) are different numeric specializations of \(a, b, c\) in \(M_4\).

However, HP\((M_1) = HP(M_2) = HP(M_3) = HP(M_4) = 2\); that is, all of these Pmodels have the same HP generality, while \(M_4\) is intuitively more general than the other models.

Thus, alternatively, we may define the generality of a polynomial model as its highest polynomial variable, which is \(x^2\) for \(M_1\) and \(y^2\) for \(M_2\). If the interpretations of \(x\) and \(y\) are fixed and we cannot swap symbols \(x\) and \(y\), then we cannot say that one of them is more general than the other. Thus, they would be incomparable in generality.

Definition. HPV measure of polynomial model generality is defined as the Highest Power Variable (HPV) of the polynomial model.

For models \(M_1\) and \(M_2\) we have HPV\((M_1) = x^2\) and HPV\((M_2) = y^2\). If there are two HPV as in model \(M=2x^2+4x+3y^2+5y=0\), then HPV\((M)\) is a pair \((x^2,y^2)\). In the case with more than two HPVs we will have an \(n\)-dimensional vector of HPVs.

Below we discuss the advantages and disadvantages of HP and HPV measures. If we cannot fix the meaning of the variables \(x\) and \(y\), or if we cannot even agree to use only the symbols \(x\) and \(y\), then HPV may not be an appropriate measure.

Swapping symbols will lead to HPV\((M_1)=y^2\) and HPV\((M_2)=x^2\). Using other symbols such as \(z\) and \(v\) instead of \(x\) and \(y\) will make a use of HPV even more questionable.

Both HP and HPV are measures that are applied to individual models, not to pairs of models. As a result, they may likewise not represent an intuitive generality relation.
between Pmodels. For instance, we can call M 3 more general than M 2, M 3 >M 2, because M 3 is a specialization of M 2 with b=4. Similarly, intuitively model

\[M_4 : \forall x, y \ ax^2+cx^2+by^2=0 \]

is more general than models M 1, M 2, and M 3, because the coefficients in M 1, M 2 and M 3 are different numeric specializations of a, b and c in M 4.

The HPV measure captures this better with

\[\text{HPV}(M_1)=x^2, \text{HP}(M_2)=y^2, \text{HP}(M_3)=y^2, \text{HP}(M_4)=(x^2,y^2). \]

M 4 is more general than other models in HPV, but model M 1 is a more general than M 2, which is a special case of M 2 with b=4.

This is not captured by HPV,

\[\text{HPV}(M_1)>\text{HPV}(M_2)=y^2. \]

Therefore, we introduce another generality characteristic that is defined on pairs of models.

Definition. Polynomial model M i is a coefficient specialization (C-specialization) of a polynomial model M j if coefficients of M i are specializations of coefficients of M j. In other words, M i is a C-specialization of model M j.

For instance, model M 3 is a C-specialization of model M 4. Similarly, M 2 is a C-specialization of M 3, but M 1 is not a C-specialization of M 2.

Note that model M 4 is more uncertain than models M 1, M 2, and M 3, because all coefficients in M 4 are uncertain, but none of the coefficients are uncertain in M 1, M 2, and only one coefficient is uncertain in M 3.

Definition. SP measure of polynomial model simplicity is defined as the sum of powers of its variables. For instance, SP(M 1)=3 having powers 1 and 2 in 5x 1 + by 2. One model is SP-simpler than the other if its SP measure is smaller. Here M 3 is simpler than M 4, which has SP=5.

Uncertainty, generality, and simplicity relations can be isomorphic (produce the same order of Pmodels), or be quite different. In the next section, we provide a parameterization mechanism that highlights the difference.

IV. PARAMETERIZATION

Below we parameterize uncertainty and generality of polynomial models.

The first block in Table 1 shows a chain of models with increasing NUC uncertainty, (from 0 to 2), fixed PH generality, (y 2), and increasing C-generality: that is, from all known coefficients to two unknown coefficients, a and b, that substitute coefficients 3 and 4, respectively.

All these models have HP level 2 and SP simplicity level equal to 4. Other blocks in Table 1 illustrate other relations between these characteristics of the models.

Consider another example of the five models at five NUC increasing uncertainty levels, from 0 to 4:

1. Chain of models with increasing both NUC uncertainty and C-generality, with fixed HP and HPV generalities and fixed SP simplicity.

\[
\begin{align*}
&\quad \forall x, y \ ax+by+7y^2=0 \\
&\forall x, y \ ax+3y+7x=0 \\
&\quad \forall x, y \ ax+by+7x=0 \\
&\forall y \ ax^2+by^2=0
\end{align*}
\]

2. Chain of models with increasing NUC uncertainty, without increasing C-generality, and with fixed HP and HPV generalities.

\[
\begin{align*}
&\quad \forall x, y \ ax+3y+5y^2=0 \\
&\forall x, y \ ax+3y+7y^2=0 \\
&\quad \forall y \ ax^2+by^2=0
\end{align*}
\]

3. Chain of models with increasing NUC uncertainty, without increasing C-generality, and increasing HP generality, but with incomparable HPV generality.

\[
\begin{align*}
&\quad \forall x, y \ ax+3y+4y^2=0 \\
&\quad \forall y \ ax^2+by^2=0
\end{align*}
\]

4. Chain of models with increasing NUC uncertainty and SP simplicity, but with decreasing HP generality, incomparable HPV generality and without increasing C-generality (ax does not generalize 3x 2).

\[
\begin{align*}
&\quad \forall x, y \ ax+3y+4y^2=0 \\
&\quad \forall y \ ax^2+by^2=0
\end{align*}
\]

Models M 4, M 3, M 2, M 1, M 0 form an uncertainty decreasing chain on the UNC uncertainty relation defined above: M 4 >M 3 >M 2 >M 1 >M 0. These models also form a generality decreasing chain M 4 >M 3 >M 2 >M 1 >M 0. Here every model M i can be obtained by specialization of parameters of model M i+1.

Each model has four parameters, p 1, p 2, p 3, and p 4. For instance, for model M 2 parameter p 1=1 represents uncertainty of ax 2, with an unknown coefficient a. Similarly, p 2=p 3=p 4=0, because further coefficients 3, 7 and 10 are known.

Thus, each model is parameterized as a Boolean vector, \(v_i = (v_{i1}, v_{i2}, \ldots, v_{ik}, \ldots, v_{in}) \): M 4: \(v_4=1111 \); M 3: \(v_3=1110 \); M 2: \(v_2=1100 \); M 1: \(v_1=1000 \); M 0: \(v_0=0000 \).

Definition. Parametric model M i is no less general than model M j if \(v_j \geq v_i \), i.e., \(\forall k \ v_{jk} \geq v_{ik} \).

In accordance with this definition, we have

\[
1111 \geq 1110 \geq 1100 \geq 1000 \geq 0000
\]

which is isomorphic to

\[
M_4 \geq M_3 \geq M_2 \geq M_1 \geq M_0.
\]

In other words, the model with parameters (0000) is a specialization of all previous models.

Learning Operator. The intuitive idea of learning Pmodels from data is to get a more specialized model from a given Pmodel M.

Definition. Mapping C is called a learning (adaptation) operator C,

\[C(M_i,E)=M_j. \]

This operation represents a cognitive learning process C of a new model Mj from a given model Mi and data E. In other words, the process is an adaptation of model Mi to data E to produce model Mj.

A learning operator C(M E) is applied multiple times to produce a chain of models, where each subsequent model is more specific than the previous model.

| Table 1 |
|------------------|------------------|------------------|
| 1. Chain of models with increasing both NUC uncertainty and C-generality, with fixed HP and HPV generalities and fixed SP simplicity. | \(\forall x, y \ ax+by+7y^2=0 \) | \(\forall x, y \ ax+3y+7x=0 \) |
| 2. Chain of models with increasing NUC uncertainty, without increasing C-generality, and with fixed HP and HPV generalities. | \(\forall x, y \ ax+3y+5y^2=0 \) | \(\forall x, y \ ax+3y+7y^2=0 \) |
| 3. Chain of models with increasing NUC uncertainty, without increasing C-generality, and increasing HP generality, but with incomparable HPV generality. | \(\forall x, y \ ax+3y+4y^2=0 \) | \(\forall y \ ax^2+by^2=0 \) |
| 4. Chain of models with increasing NUC uncertainty and SP simplicity, but with decreasing HP generality, incomparable HPV generality and without increasing C-generality (ax does not generalize 3x 2). | \(\forall x, y \ ax+3y+4y^2=0 \) | \(\forall y \ ax^2+by^2=0 \) |
\[M_i >_{Mg} M_{i+1} >_{Mg} M_{i+2} \ldots M_{i+k-1} >_{Mg} M_{i+k} \]

Theoretically here we may have “\(\geq \)” relation instead of “\(> \)”, but non-trivial learning operator should produce more specific models, e.g., we might start from the model with all parameters uncertain (111111) and end up with a more certain model parameterized with a Boolean vector (101010):

\[111111 > 011111 > 011110 > 101010. \]

Definition. Parametric model \(M_j \) is no less general than model \(M_l \) if \(u_l \geq u_j \), i.e., \(\forall k \ u_k \geq u_k \).

Above we encoded known parameters as 1 and unknown as 0. A more detailed uncertainty parameterization is when Boolean vectors are substituted by k-valued vectors \(u_i = (u_{i1}, u_{i2}, \ldots, u_{ik}, \ldots, u_{im}) \) with \(u_{ij} \in U = \{0, 1/(k-1), 2/(k-1), \ldots, k - 2/(k-1), 1\} \).

V. SIMILARITY MAXIMIZATION

A similarity maximization problem is a major mechanism of DLP that is formalized below.

Definition. A similarity \(L_{fin} \) measure is called a final similarity measure if:

\[\forall M, E, L_i \ L_i(M, E) \geq_{L_u} L_{fin}(M, E). \]

The final similarity measure specifies the level of certainty of model similarity to the data that we want to reach.

Definition. The static model optimization problem (SMOP) is to find a model \(M_i \) such that

\[L_{fin}(M_i, E) = \max_{j \geq 1} L_{fin}(M_j, E) \] \hspace{1cm} (1)

subject to conditions (2) and (3):

\[\forall M_j \in U(M_a) \ L_{fin}(M_a, E) = L_{fin}(M_j, E) \Rightarrow M_a \geq_{M_u} M_j , \] \hspace{1cm} (2)

\[\forall M_j \in G(M_a) \ L_{fin}(M_a, E) = L_{fin}(M_j, E) \Rightarrow M_a \geq_{M_g} M_j . \] \hspace{1cm} (3)

The goal of (2) and (3) is to prevent model overfitting with data \(E \). Sets \(U(M_a) \) and \(G(M_a) \) contain Pmodels that are comparable with \(M_a \) relative to uncertainty and generality, respectively. Condition (2) means that if \(M_a \) and \(M_j \) have the same similarity measure with \(E \), then uncertainty of \(M_a \) should be no less than uncertainty of \(M_j \). Condition (3) expresses an analogous condition for the generality relation.

Too specific models can lead to overfitting.

Definition. The dynamic logic model optimization (DLMO) problem is to find a Pmodel \(M_a \) such that

\[L_d(M_a, E) = \max_{j \geq 1} L_d(M_j, E) \] \hspace{1cm} (4)

subject to conditions (5) and (6):

\[\forall M_j \in U(M_a) \ L_d(M_a, E) = L_d(M_j, E) \Rightarrow M_a \geq_{M_d} M_j , \] \hspace{1cm} (5)

\[\forall M_j \in G(M_a) \ L_d(M_a, E) = L_d(M_j, E) \Rightarrow M_a \geq_{M_d} M_j . \] \hspace{1cm} (6)

This is a non-standard optimization problem. In standard optimization problems, only models \(M_i \) are changed but the optimization criterion \(L \) is held fixed, since it does not depend on the model \(M_i \). In DLP, however, the criterion \(L \) changes dynamically with Pmodels \(M_i \).

Since the focus of DLP is cutting computational complexity (CC) of model optimization, a dual optimization problem can be formulated.

Definition. An optimization problem of finding a shortest sequence of matched pairs \((M_l, L_l)\) of Pmodels \(M_i \) and optimization criteria (similarity measures) \(L_i \) that solves the optimization problem (4)-(6) for the given data \(E \) is called a dual dynamic logic model optimization (DDLMO) problem, which finds a sequence of \(n \) matching pairs

\((M_1, L_1), (M_2, L_2), \ldots, (M_n, L_n) \),

such that

\[L_n = \max_{i \leq n} L_i(M_i, E) \]

and

\[\forall M_i, L_i = F(M_i), C(M_i, E) = M_{i+1}, \]

\[M_i \geq_{M_d} M_{i+1}, M_i \geq_{M_g} M_{i+1}, M_n = M_{as}, L_n = L_a. \]

This means finding a sequence of more specific and certain Pmodels for the given (1) data \(E \), (2) matching operator \(F \), and (3) learning operator \(C \) to maximize similarity measure \(L_i(M_i, E) \).

VI. MONOTONE BOOLEAN FUNCTIONS

Definition. A Boolean function \(f: \{0,1\}^n \rightarrow \{0,1\} \) is a monotone Boolean function if:

\[(v_1 \geq v_j \Rightarrow f(v_1) \geq f(v_j)). \]

This means that \((v_1 \geq v_j \ & f(v_1) = 0) \Rightarrow f(v_j) = 0 \) and \((v_1 \geq v_j \ & f(v_j) = 1) \Rightarrow f(v_j) = 1 \). Function \(f \) is non-decreasing. Consider fixed \(E \) and \(M_i \) that are parameterized by \(v_i \) and interpret \(L(M_i, E) \) as \(f(v_i) \), i.e., \(L(M_i, E) = f(v_i) \). Assume that \(L(M_i, E) \) has only two values (unacceptable 0, and acceptable 1). It can be generalized to a k-value case if needed. If \(L(M_i, E) \) is monotone, then \(v_1 \geq v_j \Rightarrow L(M_i, E) \geq L(M_j, E), \) e.g., if \(L(M_{3:11100}) = L(M_{2:10000}) = 0 \), then

\[(v_1 \geq v_j \ & L(M_{3:11100}) = 0) \Rightarrow L(M_{2:10000}) = 0 \] \hspace{1cm} (7)

\[(v_1 \geq v_j \ & L(M_{2:10000}) = 1) \Rightarrow L(M_{3:11100}) = 1 \] \hspace{1cm} (8)

This means that if a model with more unknown parameters \(v_i \) failed, then a model with less unknown parameters \(v_j \) will also fail. If we conclude that a quadratic polynomial model \(M_j \) is not acceptable, \(L(M_j, E) = 0 \), then a more specific quadratic model \(M_j \) also cannot be acceptable, \(L(M_j, E) = 0 \). Thus, we do not need to test model \(M_j \). This monotonicity property helps to decrease computational complexity. We use

\[(v_1 \geq v_j \ & f(v_1) = 0) \Rightarrow f(v_j) = 0 \] \hspace{1cm} (9)

for rejecting models, and

\[(v_1 \geq v_j \ & f(v_j) = 1) \Rightarrow f(v_j) = 1 \] \hspace{1cm} (10)

for confirming models. In the case of a model rejection test for data \(E \), the focus is not to quickly build a model but rather to quickly reject a model \(M \)—in the spirit of Popper’s falsification principle. In essence, the test \(L_1(M_1, E) = 0 \) means that the whole class of models \(M_1 \) with 3 unknown
parameters. Testing M_3 positively for data E requires finding 4 correct parameters. This may mean searching in a large 4-D parameter space $[-100, +100]^4$ for a single vector, say $(p_1, p_2, p_3, p_4) = (9, 3, 7, 10)$, if each parameter varies in the interval $[-100,100]$. For rejection we may need only 4 training vectors (x,y,u) from data E and 3 other test vectors. The first four vectors allow us to build a quadratic surface in 3-D as a model. We then simply test whether three test vectors from E fail to fit this quadratic surface.

VII. SEARCH PROCESS

In the optimization process, we want to keep track of model rejections and to dynamically guide what model will be tested next in order to minimize the number of tests. Formulas (9) and (10) are key equations to minimize tests, but we need the whole strategy for how to minimize the number of tests and to formalize it. This strategy is formalized as minimization of Shannon function φ [1]

$$\text{min}_{A \in \mathcal{A}} \text{max}_{f \in \mathcal{F}} \varphi(f,A),$$

where \mathcal{A} is a set of algorithms, \mathcal{F} is a set of monotone functions, and $\varphi(f,A)$ is a number of tests that algorithm A does to fully restore function f. Each test means computing a value $f(v)$ for a particular vector v. In the theory of monotone Boolean functions it is assumed that there is an oracle that is able to produce the value $f(v)$, thus each test is equivalent to a request to the oracle [1,4,5]. Minimization of the Shannon function means that we search for the algorithm that needs the smallest number of tests for its worst case (function f that needs maximum number of tests relative to other functions). This is a classic min-max criterion. It was proved in [1] that

$$\text{min}_{A \in \mathcal{A}} \text{max}_{f \in \mathcal{F}} \varphi(f,A) = \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right)^n,$$

where $\lfloor x \rfloor$ is a floor of x. The proof is based on the structure called Hansel chains. These chains cover the whole n-dimensional binary cube $\{0,1\}^n$. The steps of the algorithm are presented in detail in [3,5]. The main idea of these steps is building Hansel chains, starting from testing the smallest chains, expanding each tested value using formulas (7) and (8), testing values that are left unexpanded on the same chains, then moving to larger chains until no chains are left. The goal of the search is to find a smallest lower unit v, i.e., a Boolean vector such that $f(v)=1$ and for every $w < v$ $f(w)=0$, and for every $u > v$ $|u| > |v|$. A simpler problem could be to find any lower unit of f.

The search problem in logical terms can be formulated as a satisfiability problem: Find a system of axioms T_s such that $L_o(T_s, E)=1$ subject to the condition

$$\forall T_j \ L_o(T_s, E) = L_o(T_j, E) \Rightarrow T_j \geq_{Mo} T_s,$$

i.e., if T_s and T_j have the same similarity with E, then M_o should have a lower uncertainty than T_j, e.g., $T_j \geq_{Mo} T_s$. If a similarity measure L is defined as a probabilistic measure in $[0,1]$ then the probabilistic version of the task of finding a system of axioms T for model A that maximizes a probabilistic similarity measure is:

$$\text{Max}_{i \in \mathcal{I}} L(M_i, E).$$

VIII. DYNAMIC LOGIC VISUALIZATION

Visualization of DL helps to monitor, control, and understand the DL search process. It allows us to explore visually the relations between the verified and refuted models, and to discover dynamic patterns of model search. A model to be tested is shown as a highlighted bar (see Figure 2). When the answer (verified or refuted) is provided, this bar changes its color to red (refuted) or black (verified). Next, these bars are expanded using monotonicity automatically or by a user. A user can see simultaneously all models that have been currently tested as bars. A red bar (marked as model M_1) is a refuted model M_1 and yellow bars under M_1 are models refuted using monotonicity. Similarly, model M_2 and M_3 were tested next and refuted, which is indicated by their red bar. Colored bars below them are also refuted using monotonicity. Then model M_4 was verified and encoded by a black bar with all models verified using monotonic expansion of M_4 are shown above M_4 as grey bars. Using technique from [Kovalerchuk, Delizy, 2005], bars can be rearranged to reveal their pattern as a Pareto set/border (see figure 2).

The border is dynamically developed as more models are tested. Finally, a user will see a border between verified and refuted models and can impose additional requirements to monitor border models that satisfy such additional requirements.

IX. FORMAL DESCRIPTION OF P-DYNAMIC LOGIC

Below we describe formally our dynamic logic of models of phenomena (DLP) as a summarization of concepts introduced above. As with any logic, this logic consists of three parts: (1) a semantic part, (2) a syntactic part, and (3) a reasoning part.

A. Semantic part of DLP

At first, we define the semantic part of DLP. It consists of two related algebraic systems. The first one is as a three-sort
algebraic system [7], where \{E\} are sets of data, \{M\} are sets of Pmodels, R is the set of real numbers,

\[
EM = \langle \{E\}, \{M\}, R; \Omega_{EM}\rangle.
\]

(11)

\(\Omega_{EM}\) consists of sets of relations, \(\Omega_E, \Omega_{PM}, \Omega_R\) on \{E\}, \{M\} and R, respectively, and operators \{L\} and C that connect \{E\}, \{M\} and R,

\[
\Omega_{EM} = \langle \Omega_E, \Omega_{PM}, \Omega_R, \{L\}, C \rangle.
\]

(12)

Here \(\Omega_{PM}\) = \{\(\geq_{Mg}, \geq_{Mu}, \geq_{Ms}\) \} presents partial order relations between Pmodels relative to their generality, uncertainty and simplicity as described above. Each similarity (correspondence) measure \(L_i \in \{L\}\) is a mapping:

\[
L_i: \{M\} \times \{E\} \rightarrow R
\]

(13)

that captures numerically the similarity between data and P-models. A higher value of \(L_i(M,E)\) means that model \(M\) better fits data \(E\) than model \(M\). Property (19) means that model \(M_j\) better fits data \(E\) than model \(M_i\) relative to measures \(L_i\) and \(L_j\), which are dynamically assigned to \(M_i\) and \(M_j\) by applying \(F\) to them.

Next, a Pmodel enhancement (learning) operator \(C\) is

\[
C: \{M, E\} \rightarrow \{M\}
\]

(14)

that changes a P-model. This operator brings us dynamics of model changes. Thus, we have two types of dynamics and we need a formal way to express the change of \(L\) similar to (16) for models. This is done by introducing a two-sort algebraic system

\[
ML = \langle \{M\}, \{L\}; \Omega_{PM}, \Omega_L, F \rangle,
\]

(15)

with

\[
\Omega_{PM} = \{ \geq_{Mg}, \geq_{Mu}, \geq_{Ms} \}, \quad \Omega_L = \{ \geq_{Lg}, \geq_{Ls} \},
\]

and \(F\) as a mapping between sets \{M\} and \{L\} that preserves relations on \{M\}, \(F: \{M\} \rightarrow \{L\}\).

Algebraic systems (11) and (15) have several common components, but \{L\} has very different roles in each. In (11), \{L\} is part of \(\Omega\), i.e., it is an operator; but in (15) \{L\} is one of two base sets of the algebraic system, where the operator is \(F: \{M\} \rightarrow \{L\}\).

Thus, we cannot simply join systems (11) and (15) together to a single algebraic system because of the different roles played by \{L\} in (11) and (15). We would need a generalized multi-sort algebraic system in second order-logic to do this. Note that separately (11) and (15) are much simpler systems in first-order logic (FOL).

In addition, we can build (15) with a specific dataset \(E \in \{E\}\), because (15) does not require \{E\}. To construct (11) for a specific dataset \(E\), we would need to define \(\Omega_E\). See an extensive discussion of these issues and examples in [6,4]. Thus, the semantic part of the DLP is

\[
EMML = \langle EM, ML; W \rangle,
\]

where \(W(M_i, E, M_j)\) is the following relation that consists of three parts (17)-(19):

\[
W(M_i, E, M_j) \equiv \left(\left(C \in \Omega_{EM} \& C(M_i, E) = M_j \right) \& \left\{ (M_i \geq_g M_j) \lor (M_i \geq_M M_j) \right\} \lor \left\{ (L_j > L_i) \& L_j(M_j, E) > L_i(M_i, E) \right\} \right)
\]

(17)

(18)

(19)

Relation \(W(M_i, E, M_j)\) is true if and only if \(C\) produces a Pmodel \(M_j\) using \(E\) that is better than the input P-model \(M_i\) in at least one of its characteristics (i.e., more certain, more specific, simpler, or better fit data relative to similarity measures). In other words, a Boolean predicate \(W(M_i, E, M_j) = 1\) if \(C(M_i, E) = M_j\) produces an improved model \(M_j\), otherwise \(W(M_i, E, M_j) = 0\).

In accordance with the definitions in previous sections, in (18) \(M_i \geq_{Mu} M_i\) means that \(M_i\) is a more certain model than \(M_i\). Similarly, \(M_i \geq_{Ms} M_i\) means that \(M_i\) is a more specific, and \(M_i \geq_{Mu} M_i\) means that \(M_i\) is simpler than \(M_i\). Property (19) means that model \(M_j\) better fits data \(E\) than model \(M_i\) relative to measures \(L_j\) and \(L_i\), which are dynamically assigned to \(M_j\) and \(M_i\) by applying \(F\) to them.

Not every operator that produces another model can be called a learning operator. Relation \(W\) sets up a semantic criterion for operator \(C\) to be a learning operator for P-models \(M_i, M_j\) and data \(E\). Note that (17) and (18) in \(W\) can be checked having only \(EM\), but (19) requires \(ML\) too.

Now we want to discuss how to compute truth-values of predicates and outputs of operators in \(EM\) and \(ML\). For \(EM\) and \(ML\) we gave some examples of \(\Omega_M\) and \(\Omega_L\) \{L\}, \(C\) and \(F\). An extensive set of examples of similarity measures \(L\) and learning operators \(C\) are given in [8]. For \(ML\) in addition we need to compute \(F\). For instance, if \(M(c,r)\) is a model that represents a circle with center \(c\) and radius \(r\), then \(F(M(c,r)) = L = M(c, r+e)\) that accepts all models with radiiuses no greater than \(r+e\).

In general a library of such matching operators \(F\) and relations \(\Omega_M\) and \(\Omega_L\) should be created that will be available to researchers. Thus, we have a semantic part of the P-dynamic logic identified.

B. Syntactic part of P-Dynamic Logic

Now we need to explore which part of this semantic machinery can be transferred to the syntactic level so that we can do reasoning without semantic knowledge to get at least some non-trivial inferences and conclusions.

To distinguish the syntactic level from the semantic level, we will use low-case notation \(em\) and \(ml\) to define the syntactic structure of \(EM\) and \(ML\), respectively. We do this for all components; thus,

\[
em = \langle \{e\}, \{m\}, r; \omega_{em} \rangle.
\]

(20)

The \(\omega_{em}\) consists of sets of relations \(\omega_e, \omega_m, \omega_r\) on \{e\}, \{m\} and \(r\), respectively, and operators \{l\} and \(c\) that connect \{e\}, \{m\} and \(r\),

\[
\omega_{em} = \langle \omega_e, \omega_m, \omega_r, \{l\}, c \rangle
\]

(21)
Similarly, we define
\[ml = \{ \{ m \}, \{ l \} \}; \omega_m, \omega_l, f \] (22)
that includes
\[\omega_n = \{ \geq_{m_n}, \geq_{m_m}, \geq_{m_e} \}, \omega_l = \{ \geq_{l_N}, \geq_{l_m} \} \] (23)
Similarly, we define \(\text{emml} = \langle \text{em}, \text{ml}; w, \rangle \), where
\[w(m_e, e, m_j) \equiv (c \in \omega_m \& c(m_e, e) = m_j) \] (24)
\[([m_j > m_m] \& (m_j > m_e) \& (m_j > m_e)) \] (25)
\[[l_f = f(m_j) \& l_f = f(m_j) \& (l_f > l_f)] \] (26)

C. Reasoning part of DLP

Now we will discuss the reasoning part of DLP. To build a reasoning deductive system for DL we need a set \(\Lambda \) of logical axioms, a set \(\Sigma \) of non-logical axioms, and a set \(\{ \Gamma, \phi \} \) of rules of inference.

It will be interesting to explore if it is complete, i.e., for all formulas \(\phi \),
\[\text{If } \Sigma \models \phi \text{ then } \Sigma \models \phi. \]
If this system is actually incomplete, then we will have statement \(\phi \) such that neither \(\phi \) nor \(\neg \phi \) can be proved from the given set of axioms. In contrast, in a complete system, all true statements (made true by the set of axioms) are provable.

We also need to know the validity of the inference rules that is, that the conclusion follows the premises. The soundness of these rules needs to be clarified too; that is, it needs to be shown that the conclusion follows from the premises when the premises are in fact true.

While all these are interesting research issues, at this stage of formalization of DLP it is more important to have a rich set of useful non-logical axioms \(\Sigma \) first.

To clarify this issue we need to answer the following questions: “What reasoning is possible in DLP?” What could be the most interesting part of syntactic reasoning for a specific practical problem?”

Assume that we already have a knowledge base (KB). This KB contains \(m_1, \ldots, m_n \), and \(e \) that are called facts in this KB \((m_1, \ldots, m_n) \text{ are interpreted semantically as } \text{Pmodels and } e \text{ as data})\. KB also contains some expressions, e.g., \(w(m_e, e, m_j) \) (interpreted semantically as \(\text{Pmodel } m_j \) is an improved \(\text{Pmodel } m_j \)).

For the first series of questions we have common first-order reasoning with logical axioms \(\Lambda \) that use \(\land, \lor, \neg \), and \(\Rightarrow \) operators.

Non-logical axioms \(\Sigma \) include the disjunction axiom (DA) and conjunction axiom (CA) and mixed CDA axiom:

- **CA**: \(w(m_e, e_1, m_j) \lor w(m_e, e_2, m_j) \Rightarrow w(m_e, e_1 \lor e_2, m_j) \)
- **DA**: \(w(m_e, e_1, m_j) \land w(m_e, e_2, m_j) \Rightarrow w(m_e, e_1 \land e_2, m_j) \)
- **DCA**: \(w(m_e, e_1, m_j) \land w(m_e, e_2, m_j) \Rightarrow w(m_e, e_1 \land e_2, m_j) \)

The last axiom is redundant if we add the inclusion axiom (IA):

- **IA**: \(w(m_e, e_1 \land e_2, m_j) \Rightarrow w(m_e, e_1 \land e_2, m_j) \)

Together DA and IA produce DCA. The real world interpretation of these axioms will assume some regularity in data and learning operators. They should be “reasonable.”

Next we want to know if \(w(m_e, e, m_j) \) can be inferred purely syntactically knowing that \(w(m_e, e, m_j) \) and \(w(m_e, e, m_k) \) are in the KB but without using a semantic interpretation of \(w(m_e, e, m_k) \). Having this we will have useful syntactic reasoning in this DL. In fact, such transitivity axiom (TA) can be established as a part of a set of non-logical axioms \(\Sigma \).

TA: \(w(m_e, e, m_j) \land w(m_e, e, m_k) \Rightarrow w(m_e, e, m_j) \)

It follows from the semantics of relation \(W \) that it is transitive, thus we can postulate transitivity for \(w \). As a result of this postulate we can infer \(w(m_e, e, m_k) \) purely syntactically having \(w(m_e, e, m_j) \) and \(w(m_e, e, m_k) \) in KB without going to the semantic level and computing \(W(M_e, E, M_k) \), which can be computationally challenging for a large dataset \(E \). This is a major advantage of using DLP syntactic reasoning instead of computations at the semantic level.

The reasoning mechanism \(T \in \text{em} \) in \(\text{em} \) is a first-order logic with terms in its signature. Similarly, \(T \in \text{ml} \) is a first-order logic in terms of its signature. In \(\langle \text{em}, \text{ml}; w \rangle \), we have \(T \in \text{emml} \) that is also a first-order logic reasoning with \(w \), but if we substitute \(w \) with its components (24)-(26), we will have second-order logic reasoning. Thus, the complete description of the dynamic logic of phenomena models is

\[DL = \langle DL \in \text{em}, DL \in \text{ml}, DL \in \text{emml} \rangle \]

where
\[DL \in \text{em} = \langle \text{em}, T \in \text{em}; EM \rangle \]
\[DL \in \text{ml} = \langle \text{ml}, T \in \text{ml}; ML \rangle \]
\[DL \in \text{emml} = \langle \text{emml}, T \in \text{emml}; EMML \rangle \]

D. Learning operator

Now we want to elaborate the concept of a learning operator, \(C \). There is an important question about this operator: “How sophisticated should \(C \) be relative to a brute force algorithm that computes \(L(M, E) \) for every P-model \(M \) and selects \(M \) that provides \(\text{min } L(M, E) \)?”

It will be very advantageous to get a simple and quite universal operator, \(C \), which will allow us to use it for solving a wide variety of problems. Let us consider a direct modification of brute force algorithm to the situation with dynamic change of correspondence (similarity) measures \(L \), which is assumed in the dynamic logic. The next assumption is that the space of highly uncertain models is relatively small. Thus, a brute force algorithm can work for these models in a reasonable time. Next, the best model \(M_1 \) found at this step will produce a new correspondence measure \(L \) and this measure will be applied to a new set of models produced by \(M_1 \) for evaluation (e.g., with a more dense grid around \(M_1 \) or in another location if \(L(M_1) \) is low). To produce new models we introduce a new operator, \(H \), that we will call a specialization operator, as follows:
Step 1. Select initial Pmodel \(M_0 \).
Step 2. Produce set of Pmodels \(H(M_0) \).
Step 3. Compute $L_0(M, E)$ for every M from $H(M_0) = \{M\}$ and find model $M_1 = \arg \min_M L_0(M, E)$.

Step 4. Test if $L_0(M_1, E) > T$, i.e., is above the needed correspondence threshold. Stop if it is true, else go to step 5.

Step 5. Repeat steps 1-4 until all models tested or time limit reached.

More complex strategies for the H operator can be based on breadth-first, depth-first, and branch-and-bound strategies.

X. RELATIONS WITH OTHER DYNAMIC LOGICS

A link with the Dynamic Logic for Belief Revision [15] is feasible to explore. The transition from model M_i to model M_j using partial orders between models can be viewed as a belief revision.

At a very general level, the link between Dynamic Logic of Phenomena and either Propositional or First-Order Dynamic Logic [26, 27] follows from the fact that Dynamic Logic of Phenomena contains static components (propositional/first-order formulas), and dynamic components (actions/programs). A formula can change when actions are applied, and actions can be repeated and applied consecutively. Thus, the Dynamic Logic of Phenomena can be viewed as a special case of Propositional or First-Order Dynamic Logics with special types of “programs” described in this paper.

Below we follow [13] in summarizing the Propositional Dynamic Logic that has been useful for capturing important properties of programs, such as correctness. The basic concept of this logic is the state S of a system. Each state S has its properties expressed as a propositional formula ϕ. These properties are changed when a program (action) π is applied to S with a given precondition a. Thus, program π can produce S with property ψ starting with S with property ϕ and precondition a,

$$\pi(S, a) = \psi.$$

Propositional formulas are static components of this logic and actions/programs are dynamic components. Actions can be applied consecutively and repeated, which is expressed syntactically as π, π' and π^*, respectively. An action also can be taken randomly from a set of actions, $\pi \cup \pi'$. One of the actions is testing, denoted as ψ. It tests if property ϕ is true or false for system S.

There is also an order relation \succeq on the set of preconditions $[a]$. It expresses the relative strength (weakness) of the precondition. The statement $a_1 \succeq a_2$ means that a_1 is weaker than a_2. $[\pi]\psi$ is the weakest precondition ψ that leads to postcondition ϕ after performing π on S. Also $[\phi ?]\psi$ denotes the classical implication $\psi \rightarrow \phi$, that is if S satisfies ψ then it satisfied ϕ, too.

In DLP, the concept similar to the concept of system S in the Propositional Dynamic Logic is a Pmodel M and data E pair, $<M, E>$. Actions are operations that allow us to produce a new Pmodel from M and E.
XI. CONSEQUENCES VERSUS CONDITIONALS

Hypothesis

A test of a hypothesis of size \(\alpha \) that yields a significant result suggests that the hypothesis is true. For respecting the distinction, robustness is a measure of the probability of the hypothesis. A formula \(\alpha \) in a first-order language with the capacity for expressing \(\rightarrow \) or \(\sim \) through \(-\text{acceptability} \), and DLP can be expressed for monotone classical systems. Models of classical modal logic \([35] \), and belief revision operators can be defined for monotone classical systems without C \([36] \), as well as rudimentary measures of robustness \([37] \).

A connection between Dynamic Epistemic Logic, expanded with \(\varepsilon \)-acceptability, and DLP can be expressed through a \textit{similarity} (or \textit{correspondence}) \textit{measure}, \(L: \{\text{M,E}\} \rightarrow \mathbb{R} \), which serves a role similar to probability in Epistemic logic with \(\varepsilon \)-acceptability.

XI. CONSEQUENCES VERSUS CONDITIONALS

As we observed in the introduction, DLP locates dynamics in the \textit{meta-language} rather than in the \textit{object language}, which is in contrast to Dynamic Epistemic Logic. We considered ways to bridge these two approaches in the last section, closing with a description of a qualitative modeling of \(\varepsilon \)-accepted “risky knowledge.” In that case the modal techniques of revision, common to dynamic epistemic logic, were harnessed for a specific purpose, to evaluate the robustness of \(\varepsilon \)-accepted sentences. Here we observe reasons for respecting the distinction.

The object-language/meta-language distinction is important to observe \([40] \), since there is a difference between procedural rules and declarative sentences that often needs to be preserved rather than ameliorated. For while declarative sentences take truth values and can be embedded in complex formulas, procedural rules often do not. However, the question of whether an “if…then…” construction is better viewed as a conditional formula than as a conditional rule, or whether there is little difference between the two and an analogue of the deduction theorem can be used, is not always clear cut, and will depend on the purpose of the formalization.

To illustrate, input/output logic \([41, 42] \) was conceived as a response to deontic logics handling of norms and declarative statements. Norms, unlike statements, may be respected or flouted, and may be judged from the standpoint of other norms but are not typically evaluated as “true” or “false”. Input/output logic conceives of a norm as an ordered pair of formulas, and a \textit{normative system} is a set G of norms. The task for an input/output logic, then, is to prepare information to be passed into G, and to unpack the resulting output. So, abstractly, the set G is a transformation devise for information, and we may characterize an “output” operator ‘Out’ by logical properties typical of consequence operators. A formula x is a “simple-minded output” of G in \textit{context a}, written \(x \in \text{Out}(G,a) \), if there is a set of norms \((a_1, x_1), \ldots, (a_n, x_n) \) in G such that each \(a_i \in Cn(a) \) and \(x \in Cn(x_1 \land \ldots \land x_n) \), where \(Cn(a) = \{ a_i \mid a \models a_i \} \) is the classical semantic consequence set of a that is a set of all contexts \(a_i \) such that every model of \(a \) is also a model of \(a_i \) [41].

Out(G,a) satisfies three rules: writing \((a,x) \) for \(x \in \text{Out}(G,a) \), they are \textit{strengthening input} (SI), \textit{conjoining output} (AND), and \textit{weakening output} (WO):

- From \((a,x) \) to \((b,x) \), whenever \(a \in Cn(b) \). (SI)
- From \((a,x), (a,y) \) to \((a, x \land y) \). (AND)
- From \((a,x),(a,y) \) to \((a, x \land y) \), whenever \(y \in Cn(x) \). (WO)

The weakening input means that if context a leads to output \(x \) then a stronger context \(b \) also leads to \(x \). Similarly, weakening output means that if context a leads to output \(x \) then context \(a \) also leads to a weaker output \(y \), \(x \models y \), that is \(y \in Cn(x) \).

Here the idea is that, while classical logic may be used to process the input and to ‘unpack’ the output, the operator Out itself does not have either an associated language or a proof theory. Even so, Out may enjoy structural properties commonly attributed to consequence operators. Simple-minded output is the most general characterization of Out, but stronger input/output operators have been studied \([41] \), including a characterization of Poole’s default system \([43] \) and a system similar to Reiter’s default logic \([25] \).

Example \([44] \) Suppose there are two community norms governing social benefits, one which maintains that poor citizens receive a housing subsidy, and the other that elderly citizens receive health insurance, i.e., \(G = \{ \text{Poor, SubsidizedHousing}, \text{Elderly, HealthInsurance} \} \). Then, the community should also provide a housing subsidy if no-income implies poor is included in the theory, i.e.,

\[
\text{SubsidizedHousing} \in \text{Out}(G, (\text{NoIncome} \rightarrow \text{Poor}) \land \text{NoIncome}),
\]

Then, \(\text{Poor} \in Cn((\text{NoIncome} \rightarrow \text{Poor}) \land \text{NoIncome}) \) and \(\text{SubsidizedHousing} \in Cn(\text{SubsidizedHousing}) \).

While one may agree that deontic logic has traditionally mishandled norms, it is not clear that there is anything essential about norms, which would preclude them from being represented by a statement within a language. The point instead is that we must first understand the system we wish to model before defining the language we need, rather than the other way around.

A good illustration of this point is the theory of causal modeling \([45, 46] \), since “if…then…” statements have long been thought to express a causal relationship between events. Whereas in normative systems the main issue is the apparent non-truth-functional character of norms, the issues with causal modeling concern the asymmetrical nature of
causal relationships and, more importantly, the role that intervention plays in our understanding of causal relationships. Certainly, logics of conditionals have abounded; most attempt to ground conditionals of this kind in the semantic features of the mood, aspect, and tense of natural language conditional statements. And some philosophical theories of causality have attempted to build from these studies in formal semantics.

However, in the case of causal modeling, success came once the order of inquiry was reversed. While both equational and causal models rely upon symmetrical equations to describe a system, causal models in addition impose asymmetries by assuming that each equation corresponds to an independent mechanism, which may be manipulated. The theory of causal Bayesian networks [45,46] supplied the mathematical framework for causal modeling, and it did so by ignoring the task of formulating a calculus and focused instead on getting the right mathematical framework. Only recently has there been a proposal for a calculus, and the clarity of Judea Pearl’s causal algebra of ‘doing’ [44] relies upon this background theory.

XII. CONCLUSION AND FUTURE WORK

This paper has introduced a formalization of the dynamic logic of phenomena in the terms of first-order logic, logic model theory, and the theory of Monotone Boolean functions. This formalization covers the main idea of DLP -- matching levels of uncertainty of the problem/model to levels of uncertainty of the evaluation criterion, which dramatically decreases computation complexity of finding a model.

The core of the formalization is a partial order on the phenomena models and similarity measures with respect to their uncertainty, generality, and simplicity. These partial orders are represented using a set of Boolean parameters within the theory of monotone Boolean functions and can be visualized in line with [3] to monitor and guide the search in the Boolean parameter space in the DL setting.

Further studies are needed to establish a richer set of non-logic axioms and to explore validity, soundness, and completeness of expanded DLP. Such studies may reveal deeper links with classical logic problems such as decidability, completeness, and consistency.

Further theoretical studies may find deeper links with classical optimization search processes, and may significantly advance them by adding an extra layer of optimization criteria constructed dynamically. This work also gives a new perspective for machine learning [2,4] to develop learning algorithms that can learn evaluation criteria and models simultaneously. We expect that deep links with a known Dynamic Logic of programs [12] motivated by logical analysis of computer programs will also be established.

The proposed formalization creates a framework for developing specific applications and modeling tools. We envision a modeling tool that will consist of sets of models, matching similarity measures, processes for testing them and model learning processes for specific problems in pattern recognition, data mining, optimization, cognitive process modeling, and decision making.

From our viewpoint, the most interesting and useful future DLP research is discovering a mechanism for changing models and similarity measures. Humans have demonstrated capabilities to switch evaluation criteria instantaneously in dynamic environments [11]. This is the area where logic, mathematical modeling, and cognitive science can provide mutual benefits in discovering mechanisms for changing models and changing similarity measures.

APPENDIX 1: COMPUTATIONAL COMPLEXITY

E. Polynomial complexity case

Below we describe two examples that give computational motivation to our research on building a logical formalism for representing the dynamic logic of phenomena. The first example is about finding a model to fit a hidden circle in noisy data when the level of noise is so high that a direct human observation does not allow a visual clue about the location of the circle within the image. In the second example, the shape of the object (model) to be found is more complex (see Figure 3 on the right). To identify the circle we need two points, and to identify the second (parabolic) shape we need 4 points A, B, D and G (see Figure 3), that is models with 2 and 4 parameters, respectively.

To solve the first example we assume:
1. The hidden shape to be discovered is a circle.
2. The density of the points in the circle is higher than outside of the circle W, but it is so subtle that it is below of the human perception abilities.
3. The center c=(x_c, y_c) of the circle is not known, but its range is known: x_c ∈ [x_min,x_max], y_c ∈ [y_min,y_max].
4. The resolution of x and y are known, e_x and e_y, that is x has a finite set of n_x values, x_min, x_min+e_x,…, x_min+ke_x,…,x_max and y has a finite set of n_y values, y_min, y_min+e_y,…,y_min+ke_y,…,y_max.
5. The radius R of W is not known.
6. The radius R accuracy resolution is e_r =min(e_x,e_y).
7. More than one circle can be in the area and the number of the circles is not known.
8. Different circles may or may not overlap.
9. The circles’ area is less than 1/3 of the whole area.

![Figure 3. Modeled shapes](image-url)
The brute force algorithm for example 1 conducts Density Difference Test for every node \(C=(x_c,y_c)\) and every \(R\) on the grid. It returns 1 if \(D(R) = D(\neg R) > T\), else 0, that is if density \(D(W)\) in circle \(W\) is greater than \(D(\neg W)\) with threshold \(T\), where \(D(\neg W)\) is density outside \(W\). Here

The Computational Complexity (CC) of this algorithm with the base operation as Density Difference Test (\(C,R\)) is \(O(n^4)\) on a square grid \(n \times n\).

The CC of Density Difference Test function is defined by the total number \(m\) of given points with the base operation as testing \((x_i-x_c)^2+(y_i-y_c)^2 \leq R^2\), that is if the point is inside of the circle. The total computational complexity of the brute force algorithm is \(O(n^4m)\). If input points covers the whole grid, then \(m=n^2\) and CC is equal to \(O(n^6)\). If \(m=n^{10}/10\), then we still have \(O(n^6)\).

Now we will change our assumption 1, i.e., that the hidden shape to be discovered is produced by two quadratic curves shown in Figure 3. Three points, A, B, and G, are sufficient to identify the first curve, and three points, A, D, and G, are sufficient to identify the second curve. Thus, in total 4 points are sufficient to identify both curves. In the case of the circle, we need only two points, center \(C\), and any point \(H\) on the circle. To solve the task for a new parabolic shape, we keep the same assumptions as we had for the circle. We assume the unknown number of shapes of unknown sizes, locations, and orientations. Complexity of a brute force algorithm is \(O(n^6)\) which is greater than for Example 1 due to a greater number of parameters involved. The density difference test has the same complexity \(O(m)\) as above for the circle, but is more complex for points inside of the shape. However, this test's time grows linearly with \(m\). For each point, it computes two quadratic forms and tests if the point is in or out of the shape based on these values. This time is limited by a constant for each given point. Thus, the total complexity is \(O(n^6m)\), and if \(m\) would reach \(n\), then it will be \(O(n^{12})\). While these algorithms are polynomial, they have limited applicability for data of practical sizes as we show below.

Assume that \(m=n^{10}/10\), thus our complexity functions for examples 1 and 2 are \(k_1(n^5/10)\) and \(k_2(n^5/1)\). We also assumed \(10^9\) base operations/sec in these computations. Note that this base operation is a part of the Density Difference Test computed for each of \(m\) inputs.

Tables 1 and 2 show computational complexity under these assumptions for search of circles and parabolic shapes. A computer screen grid of pixels is about \(1000\times1000\) and images from current cameras are larger. Only for a single screen with 100 input points, finding the circle has an acceptable time (100 sec) which also can be too slow for real time applications. Finding a more complex parabolic shape needs 28 hours for the same 100 input points. Increasing \(m\) to 1000 or 10000 input points leads to many years as table 2 shows. Real objects, such as aircrafts, have shapes that are more complex. Thus, more critical points are needed to identify their models and CC will be greater. Therefore, fundamentally different approaches are needed to deal with such huge computational complexity issues.

This example illustrates a computational motivation of this paper -- building the dynamic logic formalism for a computationally efficient dynamic logic process.

E. Exponential complexity case

Above we considered a situation where we needed to test a polynomial number of models. This was a result of the assumption that models are simple circles or parabolic shapes defined by \(n^2\) points on the grid.

Objects with more complex shapes (e.g., long and nonlinear tracks) may require identifying more parameters and their combinations that can grow exponentially.

TABLE 1. COmputational time for search of circles in noisy data

Grid size \(n\)	Points \(m\)	Computational Complexity \(n^m\)	Time for \(10^6\) base operations per sec
10	1	10000	0.0000001 sec
100	10	1E+7	0.01 sec
1000	100	1E+11	100 sec
10000	1000	1E+15	277.8 hours
100000	100000	1E+19	126.8 years
1000000	1000000	1E+23	1.27 million years

TABLE 2. Computation time for search of parabolic shapes in noisy data

Grid size \(n\)	Points \(m\)	Computational Complexity \(n^m\)	Computational Complexity \(n^m\)
10	1	10000	0.000001 sec
100	10	1E+9	1 sec
1000	100	1E+14	28 hours
10000	1000	1E+19	317.1 years
100000	100000	1E+24	31.7 million years
1000000	1000000	1E+29	3.17E+12 years

APPENDIX 2: EXAMPLE OF PDL PROCESS

Consider a situation with a single unknown object that is described as an interval \([a,b]\) in the total interval \([0,10]\). We need a process that will find \(a\) and \(b\). The model of the object is \([a,b]\), which is highly uncertain because both values \(a\) and \(b\) are unknown and only limited by the interval \([0,10]\). Thus, the first class of models is \(M=\{[a,b]: a,b \in [0,10]\}\).

To be specific assume that the unknown object (model) is the interval \([0,4]\). This model has center \(c=2\) and radius \(r=2\), and can be written as \([a,b]=m(c,r)\). Let also \(M(c,R)=\{m(c,r)\}\) be a set of all models with center \(c\) and radiuses \(r\) that are no greater than \(R\). Consider a set of all models (intervals) \(M(c,5)\) with all radiuses \(r\leq 5\). Here \(c\) and \(r\) are also highly uncertain.

Now we build at first a very uncertain evaluation measure (criterion) \(L_0\) for this class of models \(M(c,R)\) and data \(E\) as a kernel function. For instance, consider a Gaussian distribution, \(N(5,10)\), where \(c=5\) is a mean and \(r=10\) is a standard deviation. This standard deviation is two times greater than the largest \(R=5\) in the \([0,10]\) interval, thus it covers \(M(c,5)\) models (intervals) and should not fail for this class of models. This means that the result of applying \(L_0\) based on \(N(5,10)\) to \(M(c,5)\) is positive, \(L_0(M(c,5))=1\). This
indicates that an object exists in [0,10], but its location is uncertain. We still do not know exactly c and r, but the class of models $M(c,5)$ is confirmed because we have $L_0(M(c,5)) = 1$.

Having this positive result, the next step is to change the similarity measure L to make it less uncertain, by substituting $L_0 = N(5,10)$ by say L_1 based on $N(5,7)$. This process of changing L and M is repeated until it reaches the level of maximum certainty of models that is possible on available data. This process is much faster than a brute force approach described in previous examples in this appendix. Here for simplicity of exposition we assumed that L takes binary values. For more complex non-binary L see [8,9].

For the actual use of the DLP methodology, elaborated classes of models and criteria need to be developed at the matched level of uncertainty. Some of them are already developed in likelihood function terms [8,9].

REFERENCES

[1] G. Hansel, G., (1966) “Sur le nombre des fonctions Booleanes monotones de n variables” C.R. Acad. Sci. Paris, v. 262, n. 20, 1088-1090.
[2] Luc De Raedt. (2006), From Inductive Logic Programming to Multi-Relational Data Mining. Springer.
[3] B. Kovalerchuk, F. Delizy, (2005), “Visual data mining using monotone Boolean functions”, In: Visual And Spatial Analysis: Advances In Data Mining, Reasoning, And Problem Solving, Kovalerchuk, B, Schwing, J, (Eds), Springer, pp. 387-406.
[4] B. Kovalerchuk, Vityaev E., (2000), Data Mining in Finance: Advances in Relational and Hybrid Methods, Kluwer.
[5] B. Kovalerchuk, Triantaphyllou, E., Despande, A., Vityaev, E., (1996), “Interactive Learning of Monotone Boolean Function”. Information Sciences, Vol. 94(1-4): 87-118
[6] D. H. Krantz, R. D. Luce, P. Suppes, A. Tversky. Foundations of Measurement. New York, London: Academic Press, 1971-1990
[7] A. Malcev. (1973), Algebraic Systems: Springer-Verlag.
[8] L. Perlovsky, (2000), Neural Networks and Intellect: Using Model-Based Concepts, Oxford University Press.
[9] L. Perlovsky, (2006), “Toward physics of the mind: Concepts, emotions, consciousness, and symbols”, Physics of Life Rev. 3, 23–55.
[10] W. Hodes (2005), “First-order Model Theory,” Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/modeltheory-fo/
[11] L. Perlovsky, (2007), Evolution of language, Consciousness, and Cultures, IEEE Computational Intelligence Magazine, 8, pp. 25-39.
[12] D. Harel, D. Kozen, and J. Tiuryn, (2000), Dynamic Logic, MIT Press.
[13] A. Baltag, S. Smets, (2008), A Dynamic-Logical Perspective on Quantum Behavior. Studia Logica, 89: 187–211.
[14] J. van Benthem, (1996), Exploring Logical Dynamics, Studies in Logic, Language and Information, CSLI Publications, Stanford, 1996.
[15] J. van Benthem, (2007), “Dynamic logic for belief revision”, Journal of Applied Non-Classical Logics. Volume 17 – No. 2
[16] H.P. van Ditmarsch, W., van der Hoek, B.P. Kooi, (2007), Dynamic Epistemic Logic. Synthese Library, volume 337. Springer.
[17] H. Leitgeb, K.Segerberg, (2007) “Dynamic doxastic logic: why, how, and where to?”, Synthese 155:167–190.
[18] H. Leitgeb, (2009), personal communications.
[19] V.Hendricks, J. Symons, (2006), “Epistemic Logic,” Stanford encyclopedia of philosophy, http://plato.stanford.edu/entries/logic-epistemic/
[20] J. van Benthem, (2009), personal communications.
[21] P. Pojman, (2009), “Ernst Mach,” Stanford encyclopedia of philosophy, http://plato.stanford.edu/entries/ernst-mach/
[22] D.Pitt, (2008), “Mental Representation,” Stanford encyclopedia of philosophy, 2008. http://plato.stanford.edu/entries/mental-representation/
[23] T. Van Gelder, (1995), “What Might Cognition Be, if not Computation?”, Journal of Philosophy XCI: 345-381.
[24] J. C. King, (2004), “Context Dependent Quantifiers and Donkey Anaphora,” New Essays in the Philosophy of Language and Mind, Canadian Journal of Philosophy Supplementary Volume 30, Ezcurdia, M., R. Stainton and C. Viger (eds.), University of Calgary Press, Calgary, Alberta, Canada, 97-127.
[25] R. Reiter (1980). “A logical framework for default reasoning,” Artificial Intelligence 13: 81-132.
[26] P. Balbiani, (2007), Propositional Dynamic Logic, Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/logic-dynamic/
[27] V. Pratt, (1978), “A practical decision method for propositional dynamic logic”, In Proceedings of the 10th Annual ACM Symposium on Theory of Computing, 326-337.
[28] K. Segerberg, J-J. Meyer, (2009), The Logic of Action, Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/logic-action/
[29] A. Baltag, =, (1999), “A Logic of Epistemic Actions”, in W. van der Hoek, J-J. Meyer, and C. Witteveen (eds.), Foundations and Applications of Collective Agent-Based Systems (Proceedings of the Workshop at the 11th European Summer School in Logic, Language, and Computation, Utrecht, 1999), [Available online in PDF].
[30] A. Baltag, and Moss, L. S., (2004), “Logics for Epistemic Programs”, Synthese, 139: 165–224.
[31] V. Hendricks, (2006), Epistemic Logic, Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/logic-epistemic/
[32] Hintikka, J. and Halonen, I. (1998). “Epistemic Logics’, Routledge Encyclopedia of Philosophy, volume 1. London: Routledge: 752-3
[33] H. Arlo-Costa, (2002). “First order extensions of classical systems of modal logic: the role of the Barcan schemas”, Studia Logica 71(1): 87-118.
[34] H. E. Kyburg, Jr. and CM Teng (2001). “The Logic of Risky Knowledge”, Electronic Notes in Theoretical Computer Science, Elsevier, volume 67
[35] B. Chellas,(1980). Modal Logic. Cambridge University Press.
[36] G. Wheeler (2010). “AGM belief revision in monotone modal logics”, International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-16), Short paper proceedings, eds. Ed Clarke and Andrei Boronkov.
[37] CM Teng and G. Wheeler (2010). “Robustness of Evidential Probability”, International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-16), Short paper proceedings, eds. Ed Clarke and Andrei Boronkov.
[38] H. Kyburg and CM Teng (2001). Uncertain Inference. Cambridge University Press.
[39] T. Swift and G. Wheeler (forthcoming), “Extending description logics to support statistical information,” International Journal of Approximate Reasoning.
[40] H. E. Kyburg, Jr., CM Teng, CM, and G. Wheeler (2007). “Conditionalities and consequences,” Journal of Applied Logic: 5(4): 638-650.
[41] D. Makinson, and L. van der Torre, (2000) “Input/output logics,” Journal of Philosophical Logic, 29: 383-408.
[42] D. Makinson, and L. van der Torre, (2001) “Constraints for input/output logics,” Journal of Philosophical Logic, 30: 155-185.
[43] D. Poole (1988), “A logical framework for default reasoning,” Artificial Intelligence 36: 27-47.
[44] G. Boella, G. Pigozzi, and L. van der Torre, (2009) “Normative framework for normative system change”, Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009).
[45] J. Pearl (2000) Causality: Models, Reasoning, and Inference. Cambridge University Press.
[46] P. Spirites, C. Glymour, R. Scheines, (2000), Causation, Prediction, and Search (2nd Edition), MIT Press.