Update on the efficacy of cognitive rehabilitation following moderate to severe traumatic brain injury: a scoping review.

Adeline Julien, MSc\textsuperscript{a,b}, Lola Danet, PhD\textsuperscript{a,b}, Mallaury Loisel, MSc\textsuperscript{b}, David Brauge, MD\textsuperscript{b,c}, Jérémie Pariente, MD-PhD\textsuperscript{a,b}, Patrice Péran, PhD\textsuperscript{b}, Mélanie Planton, PhD\textsuperscript{a,b}

\textsuperscript{a}Department of Neurology, Toulouse University Hospital, place du Dr Baylac, 31059 Toulouse cedex, France
\textsuperscript{b}Toulouse Neuroimaging Center, Université de Toulouse, Inserm, UPS, place du Dr Baylac, 31059 Toulouse cedex, France
\textsuperscript{c}University Sports Clinic, Toulouse University Hospital, place du Dr Baylac, 31059 Toulouse cedex, France

Conflicts of interest: Jérémie Pariente: Scientific board, Biogen. The other authors have nothing to disclose.

Corresponding author:

Adeline JULIEN
Update on the efficacy of cognitive rehabilitation following moderate to severe traumatic brain injury: a scoping review

Abstract

Objectives: To identify, categorize and analyze the methodological issues of cognitive rehabilitation of patients with moderate to severe traumatic brain injury and its efficacy.

Data sources: Pubmed and PsycINFO were searched for studies published between 2015 and 2021 using keywords for cognitive intervention and traumatic brain injury.

Study selection: Two independent reviewers selected articles concerning cognitive rehabilitation for adults with traumatic brain injury. Of 458 studies, 97 full text articles were assessed and 46 met the inclusion criteria.

Data extraction: Data were analyzed by one reviewer according to criteria concerning the methodological quality of studies.
**Data synthesis:** Results showed a large scope of 7 cognitive domains targeted by interventions, delivered mostly in individual sessions (83%) with an integrative cognitive approach (48%). Neuroimaging tools as a measure of outcome remained scarce, featuring in only 20% of studies. Forty-three studies reported significant effects of cognitive rehabilitation, among which 7 fulfilled a high methodological level of evidence.

**Conclusions:** Advances and shortcomings in cognitive rehabilitation have both been highlighted and led us to develop methodological key points for future studies. The choice of outcome measures, the selection of control interventions and the use of combined rehabilitation should be investigated in further studies.

**Keywords:** Brain injuries; Cognitive Remediation; Rehabilitation; Review.

**List of abbreviations:**

CRTF: cognitive rehabilitation task force

DAI: diffuse axonal injury

DMN: default mode network

EEG: electroencephalography

ECN: executive control network

fMRI: functional magnetic resonance imaging
Cognitive disorders after a traumatic brain injury (TBI) have been well described over the last decades. Long-term memory, attention, processing speed, executive functions and self-awareness disorders are frequent and related to the high frequency of temporal and frontal lesions \(^1\). Cognitive sequelae commonly persist
several years after a moderate to severe TBI \(^2,3\), impacting vocational integration and quality of life \(^4,5\). Cognitive rehabilitation aims to decrease acquired neurocognitive impairment and disability using various and complementary approaches \(^6\). Interventions could aim to train or strengthen impaired cognitive functions and/or to implement compensatory mechanisms in addition to external aids \(^6\). Metacognitive strategies are also trained in order to facilitate the transfer to different environmental contexts \(^7–9\).

Over the last years, the literature has provided quantitative data about cognitive rehabilitation after TBI, leading to a better understanding of the underlying cerebral mechanisms and the development of new interventions. Results were reported across reviews, systematic reviews, meta-analyses and scoping reviews. The most consequent systematic review was conducted by the Cognitive Rehabilitation Task Force (CRTF) of the American Congress of Rehabilitation Medicine \(^10\). Since 2000, Cicerone and colleagues have published 4 successive systematic reviews on the cognitive rehabilitation of patients with TBI or stroke and established evidence-based clinical recommendations \(^6,10–12\). Four hundred ninety-one studies have now been reviewed and classified according to the level of evidence, including 109 studies in class I, 68 in class II and 314 in class III. For each cognitive domain, Cicerone et al. \(^10\) provided several levels of recommendations: Practice Standards, Practice Guidelines and Practice Options. Practice Standards, derived from the strongest evidence, have been identified for treatment of attention deficits, left visual neglect, apraxia, mild memory impairments, language and social communication deficits, mild to moderate executive functions deficits and holistic neuropsychological rehabilitation. They concluded that future research could investigate the impact of
individual characteristics, especially the role of psychological insight, residual
cognitive reserve and the presence of associated psychiatric comorbidities. They
also recommended including the frequency and intensity of cognitive rehabilitation as
covariates in statistical models. Furthermore, several scoping reviews addressed
complementary aspects of TBI, such as societal dimensions, neurological and
neuropsychological patterns, psychological conditions associated with TBI,
delivery mode of rehabilitation and state of scientific research on clinical
rehabilitation. Two scoping reviews have reported the effects of cognitive
rehabilitation on two very specific approaches that focused on driving
rehabilitation and the use of repeated transcranial magnetic stimulation on
cognitive functioning.

The literature about cognitive rehabilitation following TBI is vast. Reviews on this
subject usually analyze the content of rehabilitation to derive recommendations for
clinical practice. Here, we chose to focus on methodological criteria to determine the
level of scientific evidence of these studies. The most recent substantial systematic
review on this subject includes published articles up to 2014. In this paper, we
aimed to review the scope of interventions in cognitive rehabilitation since 2015.
Moreover, we chose to select studies including only patients with TBI and to exclude
the stroke population in order to limit the heterogeneity of the underlying
physiopathology of cognitive disorders. We also excluded the mild TBI population
because the functional and cognitive outcomes differ from moderate to severe TBI.
Scoping review was an appropriate approach to map the scope and nature of
research in cognitive rehabilitation after TBI, summarize research findings and
identify gaps in the existing literature. In order to guide our search, we addressed
four main questions: (i) Which cognitive domains does cognitive rehabilitation focus on? (ii) What are the characteristics of interventions in cognitive rehabilitation? (iii) What are the outcome measures used by authors? (iv) What is the efficacy of cognitive rehabilitation?

Methods

The scoping review was based on the framework developed by Arksey & O’Malley \(^{27}\) including the successive stages described below.

1.1. Search strategy

A systematic search of publications listed in the Pubmed (via Medline) and PsycINFO databases was conducted in August 2021 using the keywords “cognitive rehabilitation” (OR “cognitive remediation,” “cognitive intervention,” “cognitive training,” “cognitive treatment”) AND “traumatic brain injury.” The following terms were excluded from the systematic search: “children,” “pediatric,” “concussion,” “mild” and “animal.” The scope of the search went from January 1, 2015, to July 31, 2021.
1.2. Inclusion and exclusion criteria

Inclusion criteria were: (i) studies including adults or adolescents, no younger than 15 years old, with moderate to severe TBI. The Mayo Classification System criteria were used to define moderate to severe TBI: loss of consciousness lasting 30 minutes or more and/or post-traumatic anterograde amnesia lasting 24 hours or more and/or worst Glasgow Coma Scale score less than 13 in the first 24 hours and/or imaging evidence of intracranial pathology (intracerebral hematoma, subarachnoid hemorrhage, cerebral contusion, etc...)\(^{28}\). We also reported for each article if brain lesions were identified by authors through computed tomography / magnetic resonance scanning (Table 1). In a context of mixed samples including several acquired brain injuries, moderate to severe TBI should be the most represented group; (ii) patients had to be included at least 3 months after the onset; (iii) interventions had to investigate the rehabilitation of cognitive functions; (iv) effects of cognitive rehabilitation had to be documented by quantitative or qualitative comparisons throughout follow-up; (v) interventions had to be conducted in a rehabilitation center, ambulatory care or at home.

Reviews and study protocols were excluded from this research, as were those not written in the English language. Then, for all citations, two authors (AJ, ML) conducted an abstract review and excluded articles that did not meet the eligibility criteria. All remaining citations underwent a full text review.
1.3. Data analysis

For each of the four research questions, criteria of analysis were defined and collected in order to classify the characteristics and level of evidence of the reviewed studies.

1.3.1. Cognitive domains targeted by cognitive rehabilitation

All cognitive functions targeted by rehabilitation were listed. When several cognitive functions were trained, we registered all of them. We consider interventions to be “global training” interventions when they focused on three or more cognitive functions, or when the aim was defined with the generic term “cognitive skills.”

1.3.2. Characteristics of cognitive rehabilitation

Types of cognitive rehabilitation were divided into three categories of interventions. *Cognitive training* was defined as repetitive exercises without any explicit mention of metacognitive strategy training. *Integrative cognitive intervention* referred to interventions that explicitly combined the training of cognitive functions and
metacognitive strategies. Finally, external aids training corresponded to the use of external compensatory mechanisms such as notebooks, cell phone applications and alarms.

We also identified combined approaches, which referred to cognitive rehabilitation associated with other interventions like pharmacotherapy or non-invasive brain stimulation (NIBS).

Three other parameters of cognitive interventions were analyzed: the delivery mode including group versus individual sessions, the length and the intensity. Length was studied by distinguishing very short (1 week or less), short (1 week to 1 month), moderate (1 to 3 months) and high (more than 3 months) duration. Intensity was classified as low (1 session per week), moderate (2 sessions per week) or high (3 or more sessions per week).

1.3.3. Behavioral examination and neuroimaging as outcome measures

Concerning behavioral outcome measures, four types of assessment were distinguished: (i) neuropsychological examination including standardized neuropsychological tests; (ii) ecological neuropsychological examination including standardized tests and/or experimental ecological tasks with reference to daily life situations; (iii) self-reporting of cognitive complaints, social participation in everyday activities and quality of life; (iv) relative-reporting of patient’s difficulties in daily life.
We also counted the number of these types of assessment for each study in order to attest to the exhaustiveness of the assessment.

Neuroimaging outcome measures were classified as structural and/or functional imaging and/or electroencephalography (EEG).

1.3.4. Efficacy of cognitive rehabilitation

The efficacy of cognitive rehabilitation was analyzed according to three main criteria and associated sub-criteria detailed below. A coding grill was used for the extraction of these methodological criteria.

The outcome measures were the first criteria. We first pointed out the results showing a significant improvement in at least one of the outcome measures defined by the authors. Quantitative and qualitative improvements were coded when collected. Second, if a significant and/or clinically relevant change was reported, we distinguished whether it was in the primary or secondary outcome measures.

The internal validity of reviewed studies was assessed as secondary criteria, based on the classification used by Cicerone et al. in systematic reviews. According to this classification, studies were classified as class I when they were well designed, prospective, randomized controlled trials. Class II referred to prospective, nonrandomized cohort studies, retrospective, non-randomized case-control studies or multiple baseline studies that allowed a direct comparison between treatment
conditions. Class III included clinical series without concurrent controls or single-subjects designs. In a second step, we also detailed the control group design, distinguishing active, passive or no control group. We considered it an active control group when patients participated in usual care or unspecific activities. A passive control group referred to a waiting list or a no-treatment phase.

The statistical analysis was the third criteria. As proposed by Cicerone et al. \(^\text{29}\), comparisons of between-group treatment conditions were considered as a higher level of methodological quality compared to within-group comparisons. We also identified whether or not the authors applied an intention-to-treat (ITT) analysis. Finally, we analyzed whether the effect size and measures of variability such as confidence intervals were reported.

1.4. Charting the data

In accordance with the PRISMA-Scr guidelines \(^\text{30}\), a flow diagram was used in order to illustrate study selection (Figure 1). The level of evidence for the efficacy of cognitive rehabilitation was also charted (Figure 2). Figure 2 details the number of studies that met each pre-cited methodological criterion and associated sub-criteria. For each study, the key characteristics of TBI participants, cognitive rehabilitation, experimental design, intervention, neuropsychological outcome measures and significant main results were collected and summarized in Table 1.
Results

Between January 2015 and July 2021, 458 studies were published in the Pubmed (via Medline) and PsycINFO databases. We found 31 duplicates across the two databases and removed them (Figure 1). Four hundred twenty-seven records were reviewed by title and abstract and 330 were excluded based on the inclusion and exclusion criteria. Ninety-seven articles were assessed by full text review. In the end, 46 studies were included in the scoping review.

2.1. Cognitive domains targeted by cognitive rehabilitation

The results showed a large scope of 7 cognitive functions targeted by interventions: executive functions (n=14, 30%), attention (n=14, 30%), memory (n=7, 15%), communication (n=4, 9%), social cognition (n=1, 2%), topographic orientation (n=1, 2%) and verbal auditory perception (n=1, 2%). Global training was proposed in 12 out of the 46 studies (26%).

2.2. Characteristics of cognitive rehabilitation
2.2.1. Type of cognitive interventions

In this review, integrative cognitive interventions concerned 48% of studies (n=22), cognitive training was reported in 37% of studies (n=17) and external aids training was described in 11% (n=5). Two studies (4%) did not detail the type of intervention. The effects of combined interventions were examined in 4 studies, in which cognitive rehabilitation was associated with pharmacotherapy, repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS).

2.2.2. Methodological parameters of cognitive rehabilitation

Among the 46 reviewed studies, we showed that individual sessions were used in 83% of the studies (n=38), whereas group sessions were only used in 11% (n=5). Six percent (n=3) of the studies combined individual and group sessions.

Furthermore, the length of interventions was heterogeneous, ranging from 5 days to 15 months. Fifty-four percent of studies (n=25) proposed an intervention which lasted between 1 and 3 months. Shorter interventions lasting 1 week to 1 month were found in 24% of studies (n=11). Finally, cognitive rehabilitation interventions including...
a duration of less than 1 week or longer than 3 months were found in 1 (2%) and 8 studies (18%), respectively. In one study (2%), this methodological feature was not detailed.

Concerning the intensity of interventions, 26% of the reviewed studies (n=12) proposed two sessions per week and 44% (n=20) proposed three or more sessions per week. Conversely, 11% (n=5) included only one session per week. In one study, the intensity was variable and progressively decreased among each phase of cognitive rehabilitation. Finally, 17% (n=8) did not describe this methodological point.

Our results indicated that 9 out of the 46 studies (20%) did not detail both the length and intensity of the interventions. Among studies that detailed length and intensity, the most common design combined 3 or more sessions per week over 1 to 3 months and was found, in this scoping review, in 10 studies.

2.3. Behavioral examination and neuroimaging as outcome measures

The effects of cognitive rehabilitation were mostly measured with standardized neuropsychological tests in 41 out of the 46 studies (89%). Ecological neuropsychological examination was used in 35% of studies (n=16). Fifty percent (n=23) included a self-report questionnaire, whereby cognitive complaint was assessed in 16 studies (70%) and quality of life was measured in 7 studies (30%). Finally, reporting by relatives was used in 35% of studies (n=16).
Thirty-seven percent of studies (n=17) used one of these 4 types of measures, 28% of studies (n= 13) used 2 types of measures and 24% (n=11) used 3 types of measures. In contrast, 11% of studies (n=5) proposed an exhaustive evaluation with these 4 types of measures.

Neuroimaging outcome measures used as brain markers of cognitive rehabilitation were reported in 20% (n=9) of studies, whereas EEG was performed in only two studies 38,40. More specifically, resting state functional magnetic resonance imaging (fMRI) 41, regional cerebral blood flow 33 and brain activation during an fMRI cognitive task 34,42 were analyzed in 4 studies. Structural MRI data were reported in 4 studies 43–46. Only one paper combined diffusion tensor imaging, attention-related fMRI and resting-state fMRI sequences 47.

2.4. Efficacy of cognitive rehabilitation

According to Cicerone’s criteria for evidence-based classes 6, 41% (n= 19) of reviewed studies were classified as class I, 13% (n=6) 39,46,62–65 as class II and 46% (n= 21) 31–33,35,37,40,41,43,45,47,66–76 as class III.

Ninety-three percent of studies reported significant cognitive improvement on at least one outcome measure, among which 19 studies described clinical improvement on the primary outcome independently of statistical change (Figure 2). Within these studies, 10 were classified as class I and involved an active control group 34,36,42,44,48,49,52–54,56. Then, with regard to statistical analysis, these 10 studies applied
between-groups comparisons to assess the efficacy of treatment, among which 7 used an intention-to-treat analysis (15% of reviewed studies)\textsuperscript{34,42,44,49,52,53,56}. Medium to large effect sizes were reported in 5 out of these 7 studies\textsuperscript{44,49,52,53,56} and the confidence interval was reported in only one out of these 7 studies\textsuperscript{49}.

**Discussion**

This scoping review was conducted starting with 2015, after the most recent systematic review\textsuperscript{10}, in order to identify and characterize studies evaluating cognitive rehabilitation following a moderate to severe TBI, to summarize the cognitive approach used and the domains investigated and to analyze their efficacy.

Memory, attention and executive functions were most often targeted in individual sessions adopting an integrative cognitive approach. Cognitive interventions were mainly temporally distributed with 3 or more sessions per week over 1 to 3 months. One or two behavioral outcome measures were mostly preferred by authors to assess the efficacy of intervention, while neuroimaging outcome measures were rarely used. The review found clinically significant effects of cognitive rehabilitation after a moderate to severe TBI in a very large part of reviewed studies (93%), among which 41% described an improvement on the primary outcome measure. The high number of positive published results could be the sign of a publication bias according to Dwan and colleagues’ conclusions in 2013\textsuperscript{77}. Nevertheless, when methodological criteria for the level of evidence were controlled (outcome measures, internal validity
and statistical analysis) a significant decrease was observed, from 93% to 15%. This significant decrease is unsatisfactory and highlights the methodological requirements for future studies. Challenges in TBI rehabilitation imply that cognitive interventions must be based on a robust experimental design to prove their efficacy and to replicate the findings on which recommendations for clinical practice could be finally derived. Therefore, this scoping review provides a complementary approach to prior systematic reviews 6,10–12 by identifying five key methodological points.

3.1. **Specific experimental designs for cognitive rehabilitation of TBI patients**

In this scoping review, 41% of reviewed studies were classified as class I. This result highlights a continuing upward trend of randomized controlled trials in cognitive rehabilitation. Indeed, Cicerone et al. reported a percentage of class I studies ranged from 17%6,12 to 20%11 until 2008, which increased to 36% between 2009 and 2014. RCTs were crucial for evidence-based studies but not always relevant in rehabilitation practice, where double blind was sometimes not feasible11 because the therapist was systematically aware of the hypothesis underlying the contents of intervention. Furthermore, experimental and control groups have to share common methodological parameters such as delivery mode, length and intensity of rehabilitation to allow between-groups comparisons78. A major advance in the literature is the presence of an active control group to attest to the specificity of the experimental intervention and to rule out the nonspecific effects of global cognitive
stimulation, such as treatment effect, motivational or novelty effect and Hawthorne effect. Statistically, the efficacy of interventions cannot be only demonstrated using within-group analysis. Improvements must be specific to the experimental intervention and thereby confirmed with between-group comparisons. Effect sizes, rarely presented in reviewed studies, are also a supplementary indicator of the efficacy of cognitive interventions and should be systematically added in the future. All these methodological points were controlled in one study, in which the authors investigated the added effects of psychoeducation and metacognitive strategy training in an experimental group compared to an active control group with cognitive rehabilitation including non-training-oriented tasks, with a positive effect for patients. Finally, a challenge for further group studies may be the individualization of the cognitive intervention regarding cognitive profiles and complaints in order to compensate for the clinical heterogeneity of TBI. Two main solutions could be proposed for greater methodological relevance. The first is to constitute toolboxes for each cognitive domain, including standardized exercises with increasing levels of difficulty, like those developed by Visch-Brink et al. and Van Rijn et al. in aphasia therapy. For a single cognitive function rehabilitated, the therapist will be able to choose the modalities of presentation of the most relevant exercise to work on. The second solution is the use of single-case experimental design (SCED). Multiple baseline design includes a small number of patients (i.e. classically at least 3 participants), has high feasibility and allows for an individualized approach. The high level of evidence of SCED lies in the repeated measurements performed during the baseline and intervention phases in order to control for intra-individual variance. The participant corresponds to their own control, comparing their performance at the
baseline and after the intervention. Visual and statistical analysis are used to measure the efficacy of intervention. Visual and statistical analysis are used to measure the efficacy of intervention. Visual and statistical analysis are used to measure the efficacy of intervention. Visual and statistical analysis are used to measure the efficacy of intervention.

3.2. Combined cognitive interventions as an attractive perspective

Combined interventions are interesting to potentiate significant individual benefits of each therapy on cognitive functioning and to promote the generalization of improvements to daily functioning. Regarding the results of the present scoping review, combination may be considered at three levels: within interventions, between delivery modes of interventions and between interventions.

Forty-eight percent of the reviewed studies used integrative rehabilitation combining both cognitive and metacognitive training. For example, Emmanouel et al. 52, in a randomized controlled trial of 18 TBI patients, showed the benefits of goal management training associated with working memory training (GMT + WM group) in comparison with an isolated WM group on multistep everyday tasks and ecological executive measures, with small to large effects sizes for the combined approach.

The second level of combination was between group and individual sessions. Even if, in this scoping review, results showed that individual interventions remained the majority (83%), a combined approach of these two delivery modes was proposed in 3 studies, but its specific benefits were not analyzed 61,73,74.
The third level concerned the use of combined interventions. Only 4 studies proposed combined rehabilitation with pharmacotherapy\textsuperscript{36} or NIBS\textsuperscript{33–35}. The heterogeneous designs and the low statistical power of these studies call for replication.

3.3. Specific effects of length and intensity of cognitive rehabilitation

The main temporality reported by this scoping review included a moderate duration (i.e. ranging between 1 and 3 months) with a high intensity (i.e. 3 or more sessions per week). This choice seems related to clinical relevance and feasibility in clinical research protocols. As mentioned by Cicerone et al.\textsuperscript{10}, the intensity and length of the cognitive interventions must be studied in order to determine their respective contribution to the efficacy of the rehabilitation and thus have to be integrated into statistical models. None of these two parameters were analyzed across all reviewed studies. Furthermore, Chiaravalotti et al.\textsuperscript{49} have investigated the use of monthly booster sessions proposed over 5 months, after memory training with 10 sessions over 5 weeks. These focused on applying trained memory strategies in daily life. Although the authors reported no effect of these booster sessions during follow-up, it seems very useful to check the implementation and efficacy of trained cognitive strategies in daily living.
In addition to length and intensity parameters, future studies should investigate the severity of cognitive impairment at inclusion, the delay from the injury or fatigability as contributing variables in determining the dynamic of the intervention.

3.4. **Selection of outcome measures as a key experimental point**

The choice of outcome measures is a key methodological point as well as the categorization into classes I to III for evidence-based medicine. Assessment using standardized neuropsychological examination was the most frequently reported (89%), followed by self-report questionnaires (50%), ecological neuropsychological assessment (35%) and relative-report questionnaires (35%). An exhaustive neuropsychological examination of all cognitive domains could contribute to demonstrating the benefits of therapy on trained as well as on untrained functions. Moreover, after a wash-out period, a follow-up assessment may show maintained benefits of rehabilitation. However, it has been well described that standardized pencil-paper neuropsychological performance test could not exactly reflect those obtained in daily contexts, especially in executive functions assessment \(^{85}\). In this way, an ecological cognitive assessment could be a sensitive measure to predict real-life performance \(^{86}\). Ecological tests such as the Test of Everyday Attention \(^{87}\) or the Rivermead Behavioral Memory Test \(^{88}\) were frequently proposed in the reviewed studies but remained in non-ecological environments and encompassed a restricted representation of daily life tasks. Conversely, the Multiple Errands Test (MET) \(^{85}\),
which was not reported here, implies daily life activities, takes place outside of the rehabilitation sites and offers a more sensitive image of executive disorders. MET should be combined with person-centered assessment to improve the clinical relevance of the evaluation. The Goal Attainment Scaling (GAS), derived from occupational therapy, makes it possible to set personalized goals with the patient as well as 5 levels of predicted attainment for a sensitive evaluation of progress.

In the scoping review, two authors developed ecological experimental tasks to assess the effect of executive rehabilitation. Emmanouel et al. proposed multistep daily activities such as sending a text message or buy an airplane ticket. The number of correct steps was counted and compared among parallel scripts before and after cognitive rehabilitation. After sessions of goal management training, Gracey et al. defined with each participant several daily life intentions, such as making sure their mobile phone is with them, charged and switched on. The daily proportion of intentions achieved by patients was studied.

Finally, several studies used cognitive complaint and quality of life questionnaires to investigate views of patients and their family in addition to the standardized neuropsychological examination. After cognitive rehabilitation, these reports provided an update on the cognitive complaint and metacognitive abilities.

Exhaustiveness and specificity of assessment constitutes a methodological key point contributing to the level of evidence of interventions. Complete outcome measures (i.e. standardized examination, ecological assessment, self- and relative-reports) were reported in only 5 studies.
3.5. **Multiple contributions of neuroimaging in cognitive interventions**

Magnetic resonance imaging was used in 20% of reviewed studies. The use of neuroimaging tools still remained scarce in recent years, which is in agreement with Galetto and Sacco\(^91\), who reported only 11 studies between 1985 and 2016 that used neuroimaging techniques to attest to neuroplastic changes after cognitive rehabilitation in TBI. For instance, Chiaravalotti et al.\(^42\) reported BOLD signal changes during word learning and recognition tasks, with patterns of increased and decreased cerebral activation in the frontal and parietal lobes after 10 sessions of memory rehabilitation. Some authors have suggested a disengagement of the executive control network (ECN) and an activation of the default mode network (DMN) after cognitive rehabilitation to explain cognitive improvement, suggesting that memory tasks became less cognitively demanding after cognitive rehabilitation. Nevertheless, no details were given about cognitive scores on task-related functional activation.

Brain imaging constituted a promising method but further research is needed to identify potential contributions. Structural and functional MRI continue to contribute to a better understanding of TBI physiopathology. These techniques illustrate the brain reorganization and the dynamics of plasticity mechanisms that could be associated with short and long-term cognitive changes.

Brain imaging may also participate in the identification of potential modulators of recovery trajectories after TBI\(^92\) such as brain reserve, including measures of
specific patterns of gray matter volume, cortical thickness, synaptic integrity or white matter microstructural properties. Neuroimaging could make multiple contributions but at this time its use as a measure of the efficacy of an intervention should be done in combination with cognitive measures.

3.6. Study limitations

A few main limitations were identified in the scoping review. The first concerned the search strategy, which focused on only two databases and did not include the gray literature. As reported, the impact of publication biases could contribute to an inaccurate picture of the literature on cognitive rehabilitation. Second, only one reviewer performed data extraction and analysis. While we made efforts to define criteria precisely to assess the methodological quality of the reviewed studies, there may be subjective interpretation involved in this process.

Conclusions

This scoping review highlights the persistent and growing interest in cognitive rehabilitation with major methodological improvements in the design of studies for
moderate to severe TBI since 2015. In consequence, this led to higher number of studies that show an improvement in the primary outcome measures after cognitive rehabilitation. Our findings make it possible to identify three methodological criteria and sub-criteria for determining the level of evidence of cognitive interventions and could be used in future studies. Our approach is complementary to the prior systematic reviews \(^6,10–12\) which were mainly focused on the content of interventions. Methodological efforts must be continued, and combined interventions studies must be proposed. Individualized cognitive rehabilitation also remains a challenge. Outcome measures must be well selected, including neuropsychological tests in ecological and non-ecological environments, patient- and relative-reports. Rehabilitation of social cognition and emotion regulation should be better investigated. The results of this scoping review now need to be confronted with systematic reviews and meta-analyses.

1. Yeates KO, Levin HS, Ponsford J. The Neuropsychology of Traumatic Brain Injury: Looking Back, Peering Ahead. *J Int Neuropsychol Soc*. 2017;23(9-10):806-817. doi:10.1017/S1355617717000686

2. Azouvi P, Arnould A, Dromer E, Vallat-Azouvi C. Neuropsychology of traumatic brain injury: An expert overview. *Rev Neurol*. 2017;173(7-8):461-472. doi:10.1016/j.neurol.2017.07.006

3. Jourdan C, Bayen E, Pradat-Diehl P, et al. A comprehensive picture of 4-year outcome of severe brain injuries. Results from the PariS-TBI study. *Ann Phys Rehabil Med*. 2016;59(2):100-106. doi:10.1016/j.rehab.2015.10.009

4. Gorgoraptis N, Zaw-Linn J, Feeney C, et al. Cognitive impairment and health-related quality of life following traumatic brain injury. *NeuroRehabilitation*. 2019;44(3):321-331. doi:10.3233/NRE-182618

5. Manoli R, Delecroix H, Daveluy W, Moroni C. Impact of cognitive and behavioural functioning on vocational outcome following traumatic brain injury: a systematic review. *Disabil Rehabil*. Published online December 22, 2019:1-10. doi:10.1080/09638288.2019.1706105
6. Cicerone KD, Dahlberg C, Kalmar K, et al. Evidence-based cognitive rehabilitation: Recommendations for clinical practice. *Arch Phys Med Rehabil.* 2000;81(12):1596-1615. doi:10.1053/apmr.2000.19240

7. Ponsford J, Bayley M, Wiseman-Hakes C, et al. INCOG Recommendations for Management of Cognition Following Traumatic Brain Injury, Part II: Attention and Information Processing Speed. *J Head Trauma Rehabil.* 2014;29(4):321-337. doi:10.1097/HTR.0000000000000072

8. Tate R, Kennedy M, Ponsford J, et al. INCOG Recommendations for Management of Cognition Following Traumatic Brain Injury, Part III: Executive Function and Self-Awareness. *J Head Trauma Rehabil.* 2014;29(4):338-352. doi:10.1097/HTR.0000000000000068

9. Velikonja D, Tate R, Ponsford J, McIntyre A, Janzen S, Bayley M. INCOG Recommendations for Management of Cognition Following Traumatic Brain Injury, Part V: Memory. *J Head Trauma Rehabil.* 2014;29(4):369-386. doi:10.1097/HTR.0000000000000069

10. Cicerone KD, Goldin Y, Ganci K, et al. Evidence-Based Cognitive Rehabilitation: Systematic Review of the Literature From 2009 Through 2014. *Arch Phys Med Rehabil.* 2019;100(8):1515-1533. doi:10.1016/j.apmr.2019.02.011

11. Cicerone KD, Dahlberg C, Malec JF, et al. Evidence-Based Cognitive Rehabilitation: Updated Review of the Literature From 1998 Through 2002. *Arch Phys Med Rehabil.* 2005;86:1681-1692. doi:https://doi.org/10.1016/j.apmr.2005.03.024

12. Cicerone KD, Langenbahn DM, Braden C, et al. Evidence-Based Cognitive Rehabilitation: Updated Review of the Literature From 2003 Through 2008. *Arch Phys Med Rehabil.* 2011;92(4):519-530. doi:10.1016/j.apmr.2010.11.015

13. Mantell A, Simpson GK, Vungkhanching M, Jones KF, Strandberg T, Simonson P. Social work-generated evidence in traumatic brain injury from 1975 to 2014: A systematic scoping review. *Health Soc Care Community.* 2018;26(4):433-448. doi:10.1111/hsc.12476

14. Omar S, James L, Colantonio A, Nixon SA. Integrated care pathways for Black persons with traumatic brain injury: a protocol for a critical transdisciplinary scoping review. *Syst Rev.* 2020;9(1):124. doi:10.1186/s13643-020-01323-8

15. O’Keefe S, Stanley M, Adam K, Lannin NA. A Systematic Scoping Review of Work Interventions for Hospitalised Adults with an Acquired Neurological Impairment. *J Occup Rehabil.* 2019;29(3):569-584. doi:10.1007/s10926-018-9820-8

16. Poulsen I, Langhorn L, Egerod I, Aadal L. Sleep and agitation during subacute traumatic brain injury rehabilitation: A scoping review. *Aust Crit Care.* 2021;34(1):76-82. doi:10.1016/j.aucc.2020.05.006
17. Gandhi P, Tobin S, Vongphakdi M, Copley A, Watter K. A scoping review of interventions for adults with dysarthria following traumatic brain injury. *Brain Inj.* 2020;34(4):466-479. doi:10.1080/02699052.2020.1725844

18. Shorland J, Douglas J, O’Halloran R. Cognitive-communication difficulties following traumatic brain injury sustained in older adulthood: a scoping review. *Int J Lang Commun Disord.* 2020;55(6):821-836. doi:10.1111/1460-6984.12560

19. Higgins C, Rooney K, O’Connell B, Waldron B, Linehan C. Attempted suicide leading to acquired brain injury: a scoping review. *Brain Inj.* 2020;34(2):160-170. doi:10.1080/02699052.2019.1686771

20. Patterson F, Fleming J, Doig E. Group-based delivery of interventions in traumatic brain injury rehabilitation: a scoping review. *Disabil Rehabil.* 2016;38(20):1961-1986. doi:10.3109/09638288.2015.1111436

21. O’Neil J, van Ierssel J, Sveistrup H. Remote supervision of rehabilitation interventions for survivors of moderate or severe traumatic brain injury: A scoping review. *J Telemed Telecare.* 2020;26(9):520-535. doi:10.1177/1357633X19845466

22. Sveen U, Guldager R, Soberg HL, Andreassen TA, Egerod I, Poulsen I. Rehabilitation interventions after traumatic brain injury: a scoping review. *Disabil Rehabil.* Published online June 13, 2020:1-8. doi:10.1080/09638288.2020.1773940

23. Gerber LH, Bush H, Cai C, et al. Scoping review of clinical rehabilitation research pertaining to traumatic brain injury: 1990-2016. *NeuroRehabilitation.* 2019;44(2):207-215. doi:10.3233/NRE-182599

24. Pink AE, Williams C, Alderman N, Stoffels M. The use of repetitive transcranial magnetic stimulation (rTMS) following traumatic brain injury (TBI): A scoping review. *Neuropsychol Rehabil.* Published online December 27, 2019:1-27. doi:10.1080/09602011.2019.1706585

25. Imhoff S, Lavalliere M, Teasdale N, Fait P. Driving assessment and rehabilitation using a driving simulator in individuals with traumatic brain injury: A scoping review. *NeuroRehabilitation.* 2016;39(2):239-251. doi:10.3233/NRE-161354

26. Dikmen SS, Corrigan JD, Levin HS, Machamer J, Stiers W, Weisskopf MG. Cognitive Outcome Following Traumatic Brain Injury. *J Head Trauma Rehabil.* 2009;24(6):430-438. doi:10.1097/HTR.0b013e3181c133e9

27. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. *Int J Soc Res Methodol.* 2005;8(1):19-32. doi:10.1080/1364557032000119616

28. Malec JF, Brown AW, Leibson CL, et al. The Mayo Classification System for Traumatic Brain Injury Severity. *J Neurotrauma.* 2007;24(9):1417-1424. doi:10.1089/neu.2006.0245
29. Cicerone KD, Azulay J, Trott C. Methodological Quality of Research on Cognitive Rehabilitation After Traumatic Brain Injury. *Arch Phys Med Rehabil.* 2009;90(11):S52-S59. doi:10.1016/j.apmr.2009.05.019

30. Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. *Ann Intern Med.* 2018;169(7):467-473. doi:10.7326/M18-0850

31. Kim JM, Woo SB, Lee Z, Heo SJ, Park D. Verbal auditory agnosia in a patient with traumatic brain injury: A case report. *Medicine.* 2018;97(11):e0136. doi:10.1097/MD.0000000000010136

32. Kumar DS, Reisman DS, Galloway JC. Go baby go café: a case study on an immersive rehabilitation environment to improve functional outcomes and quality of life. *Disabil Rehabil.* 2018;40(19):2343-2350. doi:10.1080/09638288.2017.1334235

33. Hara T, Abo M, Sasaki N, et al. Improvement of higher brain dysfunction after brain injury by repetitive transcranial magnetic stimulation and intensive rehabilitation therapy: case report. *NeuroReport.* 2017;28(13):800-807. doi:10.1097/WNR.0000000000000830

34. Sacco K, Galetto V, Dimitri D, et al. Concomitant Use of Transcranial Direct Current Stimulation and Computer-Assisted Training for the Rehabilitation of Attention in Traumatic Brain Injured Patients: Behavioral and Neuroimaging Results. *Front Behav Neurosci.* 2016;10. doi:10.3389/fnbeh.2016.00057

35. Eilam-Stock T, George A, Charvet LE. Cognitive Telerehabilitation with Transcranial Direct Current Stimulation Improves Cognitive and Emotional Functioning Following a Traumatic Brain Injury: A Case Study. *Arch Clin Neuropsychol.* 2021;36(3):442-453. doi:10.1093/arclin/acaa059

36. McDonald BC, Flashman LA, Arciniegas DB, et al. Methylphenidate and Memory and Attention Adaptation Training for Persistent Cognitive Symptoms after Traumatic Brain Injury: A Randomized, Placebo-Controlled Trial. *Neuropsychopharmacol.* 2017;42(9):1766-1775. doi:10.1038/npp.2016.261

37. Pinard S, Bottari C, Laliberté C, et al. Design and usability evaluation of COOK, an assistive technology for meal preparation for persons with severe TBI. *Disabil Rehabil Assist Technol.* Published online December 17, 2019:1-15. doi:10.1080/17483107.2019.1696898

38. Dundon NM, Dockree SP, Buckley V, et al. Impaired auditory selective attention ameliorated by cognitive training with graded exposure to noise in patients with traumatic brain injury. *Neuropsychologia.* 2015;75:74-87. doi:10.1016/j.neuropsychologia.2015.05.012

39. Kanchan A, Singh AR, Akhtar Khan N, Jahan M. Neuropsychological rehabilitation of patients with Traumatic Brain Injury. *Acta Neuropsychologica.* 2016;14(3). doi:10.5604/17307503.1222836
40. Arroyo-Ferrer A, Noreña D de, Serrano JI, Ríos-Lago M, Romero JP. Cognitive rehabilitation in a case of traumatic brain injury using EEG-based neurofeedback in comparison to conventional methods. *J Integr Neurosci*. 2021;20(2):449. doi:10.31083/j.jin2002047

41. Sacco K, Gabbatore I, Geda E, et al. Rehabilitation of Communicative Abilities in Patients with a History of TBI: Behavioral Improvements and Cerebral Changes in Resting-State Activity. *Front Behav Neurosci*. 2016;10. doi:10.3389/fnbeh.2016.00048

42. Chiaravalloti ND, Dobryakova E, Wylie GR, DeLuca J. Examining the Efficacy of the Modified Story Memory Technique (mSMT) in Persons With TBI Using Functional Magnetic Resonance Imaging (fMRI): The TBI-MEM Trial. *J Head Trauma Rehabil*. 2015;30(4):261-269. doi:10.1097/HTR.0000000000000164

43. Wu X Li, Liu L xu, Yang L yu, Zhang T. Comprehensive rehabilitation in a patient with corpus callosum syndrome after traumatic brain injury: Case report. *Medicine*. 2020;99(28):e21218. doi:10.1097/MD.0000000000021218

44. Siponkoski ST, Martínez-Molina N, Kuusela L, et al. Music Therapy Enhances Executive Functions and Prefrontal Structural Neuroplasticity after Traumatic Brain Injury: Evidence from a Randomized Controlled Trial. *J Neurotrauma*. 2020;37(4):618-634. doi:10.1089/neu.2019.6413

45. Vander Linden C, Helena Verhelst, Deschepper E, Vingerhoets G, Deblaere K, Caeyenberghs K. Exploration of gray matter correlates of cognitive training benefit in adolescents with chronic traumatic brain injury. *Neuroimage Clin*. 2019;23:101827. doi:10.1016/j.nicl.2019.101827

46. Verhelst H, Giraldo D, Vander Linden C, Vingerhoets G, Jeurissen B, Caeyenberghs K. Cognitive Training in Young Patients With Traumatic Brain Injury: A Fixel-Based Analysis. *Neurorehabilit Neural Repair*. 2019;33(10):813-824. doi:10.1177/1545968319868720

47. Ramanathan P, Turner HA, Stevens MC. Intensive cognitive rehabilitation therapy for chronic traumatic brain injury: a case study of neural correlates of functional improvement. *Aphasiology*. 2019;33(3):289-319. doi:10.1080/02687038.2018.1461801

48. Jones C, Richard N, Thaut M. Investigating music-based cognitive rehabilitation for individuals with moderate to severe chronic acquired brain injury: A feasibility experiment. Thaut M, ed. *NeuroRehabilitation*. 2021;48(2):209-220. doi:10.3233/NRE-208015

49. Chiaravalloti ND, Sandry J, Moore NB, DeLuca J. An RCT to Treat Learning Impairment in Traumatic Brain Injury: The TBI-MEM Trial. *Neurorehabilit Neural Repair*. 2016;30(6):539-550. doi:10.1177/1545968315604395

50. De Luca R, Maggio MG, Maresca G, et al. Improving Cognitive Function after Traumatic Brain Injury: A Clinical Trial on the Potential Use of the Semi-Immersive Virtual Reality. *Behavioural Neurology*. 2019;2019:1-7. doi:10.1155/2019/9268179
51. Elbogen EB, Dennis PA, Van Voorhees EE, et al. Cognitive Rehabilitation With Mobile Technology and Social Support for Veterans With TBI and PTSD: A Randomized Clinical Trial. *J Head Trauma Rehabil.* 2019;34(1):1-10. doi:10.1097/HTR.0000000000000435

52. Emmanouel A, Kontrafouri E, Nikolaos P, Kessels RPC, Fasotti L. Incorporation of a working memory strategy in GMT to facilitate serial-order behaviour in brain-injured patients. *Neuropsychol Rehabil.* 2020;30(5):888-914. doi:10.1080/09602011.2018.1517369

53. Fitzgerald MCC, O’Keeffe F, Carton S, Coen RF, Kelly S, Dockree P. Rehabilitation of emergent awareness of errors post traumatic brain injury: A pilot intervention. *Neuropsychol Rehabil.* 2019;29(6):821-843. doi:10.1080/09602011.2017.1336102

54. Gracey F, Fish JE, Greenfield E, et al. A Randomized Controlled Trial of Assisted Intention Monitoring for the Rehabilitation of Executive Impairments Following Acquired Brain Injury. *Neurorehabilit Neural Repair.* 2017;31(4):323-333. doi:10.1177/1545968316680484

55. Hart T, Vaccaro MJ. Goal intention reminding in traumatic brain injury: A feasibility study using implementation intentions and text messaging. *Brain Inj.* 2017;31(3):297-303. doi:10.1080/02699052.2016.1251612

56. Hwang HF, Chen CY, Wei L, Chen SJ, Yu WY, Lin MR. Effects of Computerized Cognitive Training and Tai Chi on Cognitive Performance in Older Adults With Traumatic Brain Injury. *J Head Trauma Rehabil.* 2020;35(3):187-197. doi:10.1097/HTR.0000000000000533

57. Powell LE, Wild MR, Glang A, et al. The development and evaluation of a web-based programme to support problem-solving skills following brain injury. *Disabil Rehabil: Assist Technol.* 2019;14(1):21-32. doi:10.1080/17483107.2017.1389999

58. Vakili A, Langdon R, Mobini S. Cognitive rehabilitation of attention deficits in traumatic brain injury using action video games: A controlled trial. *Cogent Psychol.* 2016;3(1):1143732. doi:10.1080/23311908.2016.1143732

59. Välimäki M, Mishina K, Kaakinen JK, et al. Digital Gaming for Improving the Functioning of People With Traumatic Brain Injury: Randomized Clinical Feasibility Study. *J Med Internet Res.* 2018;20(3):e77. doi:10.2196/jmir.7618

60. Westerhof-Evers HJ, Visser-Keizer AC, Fasotti L, et al. Effectiveness of a Treatment for Impairments in Social Cognition and Emotion Regulation (T-ScEmo) After Traumatic Brain Injury: A Randomized Controlled Trial. *J Head Trauma Rehabil.* 2017;32(5):296-307. doi:10.1097/HTR.0000000000000332

61. Leśniak MM, Mazurkiewicz P, Iwański S, Szutkowska-Hoser J, Seniów J. Effects of group versus individual therapy for patients with memory disorder after an acquired brain injury: A randomized, controlled study. *J Clin Exp Neuropsychol.* 2018;40(9):853-864. doi:10.1080/13803395.2018.1441379
62. Constantinidou F. Effects of Systematic Categorization Training on Cognitive Performance in Healthy Older Adults and in Adults with Traumatic Brain Injury. *Behavioural Neurology*. 2019;2019:1-17. doi:10.1155/2019/9785319

63. Dymowski AR, Ponsford JL, Willmott C. Cognitive training approaches to remediate attention and executive dysfunction after traumatic brain injury: A single-case series. *Neuropsychol Rehabil*. 2016;26(5-6):866-894. doi:10.1080/09602011.2015.1102746

64. Maggio MG, Torrisi M, Buda A, et al. Effects of robotic neurorehabilitation through lokomat plus virtual reality on cognitive function in patients with traumatic brain injury: A retrospective case-control study. *Int J Neurosci*. 2020;130(2):117-123. doi:10.1080/00207454.2019.1664519

65. Vander Linden C, Verhelst H, Deschepper E, Vingerhoets G, Deblaere K, Caeyenberghs K. Cognitive training benefit depends on brain injury location in adolescents with traumatic brain injury: a pilot study. *Eur J Phys Rehabil Med*. 2019;55(5). doi:10.23736/S1973-9087.18.05548-X

66. de la Rosa-Arredondo T, Choreno-Parra JA, Corona-Ruiz JA, et al. Beneficial effects of a multidomain cognitive rehabilitation program for traumatic brain injury–associated diffuse axonal injury: a case report. *J Med Case Reports*. Published online 2021:6. doi:10.1186/s13256-020-02591-7

67. Boccia M, Bonavita A, Diana S, Di Vita A, Ciurli MP, Guariglia C. Topographical Disorientation: Clinical and Theoretical Significance of Long-Lasting Improvements Following Imagery-Based Training. *Front Hum Neurosci*. 2019;13:322. doi:10.3389/fnhum.2019.00322

68. Bosco FM, Parola A, Angeleri R, Galetto V, Zettin M, Gabbatore I. Improvement of Communication Skills after Traumatic Brain Injury: The Efficacy of the Cognitive Pragmatic Treatment Program using the Communicative Activities of Daily Living. *Arch Clin Neuropsychol*. 2018;33(7):875-888. doi:10.1093/arclin/acy041

69. Buccellato KH, Nordstrom M, Murphy JM, et al. A Randomized Feasibility Trial of a Novel, Integrative, and Intensive Virtual Rehabilitation Program for Service Members Post-Acquired Brain Injury. *Mil Med*. Published online July 3, 2019:e203-e211. doi:10.1093/milmed/usz150

70. Cho YS, Sohlberg MM. Training Adults with Brain Injury How to Help-seek when Lost: A Pilot Study. *Brain Impair*. 2015;16(2):90-103. doi:10.1017/Brlmp.2015.4

71. Douglas JM, Knox L, De Maio C, Bridge H, Drummond M, Whiteoak J. Effectiveness of Communication-specific Coping Intervention for adults with traumatic brain injury: preliminary results. *Neuropsychol Rehabil*. 2019;29(1):73-91. doi:10.1080/09602011.2016.1259114

72. Gabbatore I, Sacco K, Angeleri R, Zettin M, Bara BG, Bosco FM. Cognitive Pragmatic Treatment: A Rehabilitative Program for Traumatic Brain Injury Individuals. *J Head Trauma Rehabil*. 2015;30(5):E14-E28. doi:10.1097/HTR.0000000000000087
73. Goodwin RA, Lincoln NB, Bateman A. Dysexecutive symptoms and carer strain following acquired brain injury: Changes measured before and after holistic neuropsychological rehabilitation. Parente R, ed. NeuroRehabilitation. 2016;39(1):53-64. doi:10.3233/NRE-161338

74. Leśniak MM, Iwański S, Szutkowska-Hoser J, Seniów J. Comprehensive cognitive training improves attention and memory in patients with severe or moderate traumatic brain injury. Appl Neuropsychol Adult. 2020;27(6):570-579. doi:10.1080/23279095.2019.1576691

75. Raskin SA, Smith MP, Mills G, Pedro C, Zamroziewicz M. Prospective memory intervention using visual imagery in individuals with brain injury. Neuropsychol Rehabil. 2019;29(2):289-304. doi:10.1080/09602011.2017.1294082

76. Verhelst H, Vander Linden C, Vingerhoets G, Caeyenberghs K. How to Train an Injured Brain? A Pilot Feasibility Study of Home-Based Computerized Cognitive Training. Games Health J. 2017;6(1):28-38. doi:10.1089/g4h.2016.0043

77. Dwan K, Gamble C, Williamson PR, Kirkham JJ, the Reporting Bias Group. Systematic Review of the Empirical Evidence of Study Publication Bias and Outcome Reporting Bias — An Updated Review. Boutron I, ed. PLoS ONE. 2013;8(7):e66844. doi:10.1371/journal.pone.0066844

78. Krasny-Pacini A, Chevignard M. Considérations pratiques sur les difficultés méthodologiques inhérentes aux protocoles de rééducation chez l’enfant. Approche neuropsychologique des apprentissages chez l’enfant. 2017;146:41-48.

79. Visch-brink EG, Bajema IM, Sandt-Koenderman MEVD. Lexical semantic therapy: Box. Aphasiology. 1997;11(11):1057-1078. doi:10.1080/02687039708249427

80. Van Rijn M, Booy L, Visch-Brink E. FIKS, een fonologisch therapieprogramma. In: Swets Zeitlinger.; 2000.

81. Nouwens F. Efficacy of early cognitive-linguistic treatment for aphasia due to stroke: A randomised controlled trial (Rotterdam Aphasia Therapy Study-3). Eur Stroke J. 2017;2(2):126-136. doi:10.1177/2396987317698327

82. Krasny-Pacini A, Evans J. Single-case experimental designs to assess intervention effectiveness in rehabilitation: A practical guide. Ann Phys Rehabil Med. 2018;61(3):164-179. doi:10.1016/j.rehab.2017.12.002

83. Gertler P, Tate RL. Behavioural activation therapy to improve participation in adults with depression following brain injury: A single-case experimental design study. Neuropsychol Rehabil. 2021;31(3):369-391. doi:10.1080/09602011.2019.1696212

84. Lane-Brown A, Tate R. Evaluation of an Intervention for Apathy After Traumatic Brain Injury: A Multiple-Baseline, Single-Case Experimental Design. J Head Trauma Rehabil. Published online 2010:11. doi:10.1097/HTR.0b013e3181d98e1d
85. Shallice T, Burgess PW. Deficits in strategy application following frontal lobe damage in man. *Brain.* 1991;114(2):727-741. doi:10.1093/brain/114.2.727

86. Burgess PW, Alderman N, Forbes C, et al. The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. *J Int Neuropsychol Soc.* 2006;12(2):194-209. doi:10.1017/S1355617706060310

87. Robertson IH, Ward T, Ridgeway V, Nimmo-Smith I. The structure of normal human attention: The Test of Everyday Attention. *J Int Neuropsychol Soc.* 1996;2(6):525-534. doi:10.1017/s1355617700001697

88. Malec J, Zweber B, DePompolo R. The Rivermead Behavioral Memory Test, laboratory neurocognitive measures, and everyday functioning. *J Head Trauma Rehabil.* 1990;5(3):60-68.

89. Ottenbacher KJ, Cusick A. Goal Attainment Scaling as a Method of Clinical Service Evaluation. *Am J Occup Ther.* 1990;44(6):519-525. doi:10.5014/ajot.44.6.519

90. Grant M, Ponsford J. Goal Attainment Scaling in brain injury rehabilitation: Strengths, limitations and recommendations for future applications. *Neuropsychol Rehabil.* 2014;24(5):661-677. doi:10.1080/09602011.2014.901228

91. Galetto V, Sacco K. Neuroplastic Changes Induced by Cognitive Rehabilitation in Traumatic Brain Injury: A Review. *Neurorehabil Neural Repair.* 2017;31(9):800-813. doi:10.1177/1545968317723748

92. Stern Y, Arenaza-Urquijo EM, Bartres-Faz D, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. *Alzheimer’s & Dementia.* 2020;16(9):1305-1311. doi:10.1016/j.jalz.2018.07.219
List of figure legends

**Figure 1**: Flow diagram for the scoping review process with PRISMA-Scr guidelines.
**Figure 2:** Flow diagram for the level of evidence in the efficacy of cognitive rehabilitation in the reviewed studies.
Table 1: Summary of reviewed studies on cognitive rehabilitation post-traumatic brain injury

For each study, all cognitive functions targeted by rehabilitation were listed. If several cognitive functions were trained, all were registered, but each study was classified according to the main cognitive function trained.

| Authors and level of evidence | Participants | Cognitive rehabilitation characteristics | Design | Intervention characteristics | Neuropsychological outcome measures | Significant main results |
|-------------------------------|-------------|------------------------------------------|--------|-----------------------------|-----------------------------------|-------------------------|
| Cho et al. Class III          | 3 TBI, including 2 severe TBI Ages: 24, 51 and 52 years old | 60 minutes per week Over 6 weeks Total of 6 sessions | Intra-individual comparison: help-seeking scores before vs. after CR. Group sessions | NICE training protocol (Noticing you have a problem, Identifying the information you need for help, Compensatory strategies, Evaluating progress). Intervention protocol targeting help-seeking behaviors during wayfinding. | Ecological executive assessment (Executive function route-finding task). Structured role-plays with a four-point social behavior rating scale. | - Absence of statistical analysis - Improvements for all three patients of ecological measures and structured role-plays. |
| Class I | Class II |
|---|---|
| **Constandinidou et al.**<sup>52</sup> | **Elbogen et al.**<sup>51</sup> |
| 15 moderate to severe TBI | 112 TBI with PTSD, including 57% moderate to severe TBI |
| Age: 28.13 (9.21) | Age: 36.52 (8.42) |
| 60 minutes | 60-90 minutes |
| 2 to 4 per week | 3 home visits at 0, 2, 4 months |
| 10-12 weeks | Over 6 months |
| Average total of 27 sessions | |
| Intergroup comparison: Categorization performance (CP) training in young adults with TBI vs. CP training in young healthy adults vs. CP training in older adults vs. no training in healthy older adults. | Intergroup comparison: CR with a cognitive application for life management (CALM) vs. active control intervention including psychoeducation. |
| Individual sessions | Individual sessions |
| Categorization performance training. | CALM: Goal management training plus mobile devices and attentional control. |
| Two categorization tests designed for this study. | Scores on executive functions tests. |
| No intergroup differences. | Improvement on executive performance. |
| No improvement on behavioral, emotional and PTSD symptoms. | Improvement on multistep everyday tasks. |
| Improvements on multistep everyday tasks for the intervention group compared to the control group (medium to large effect sizes). | No interaction effects between treatment and time for all other neuropsychological measures. |
| Executive functioning questionnaires (self- and relative-reports). | Executive ecological assessment. |

| Class I | Class I |
|---|---|
| **Emmanouel et al.**<sup>52</sup> | 18 brain-injured patients, including 11 moderate to severe TBI |
| Severity: Period of loss of consciousness ranging from 12 to 33 days | Total of 11 sessions |
| Age: 35 (9) | 30 minutes |
| 3 to 4 per week | 3 to 4 per week |
| Intergroup comparison: CR combining goal management training (GMT) + working memory training (WMT) vs. control intervention including GMT only. | Experimental tasks: Multistep everyday tasks. |
| Individual sessions | Scores on executive function, memory, working memory and language tests. |
| Goal management training combined with working memory Training. | Executive functioning questionnaires (self- and relative-reports). |
| Study                  | Class     | Patients, including injuries | Total number of sessions | Intensive phase                                                                 | Intra-individual comparison: | Individual and group sessions | Executive functioning and behavioral questionnaire (self- and relative-reports). | Lower number of self-reported and relative-reported dysexecutive symptoms. |
|------------------------|-----------|-----------------------------|--------------------------|--------------------------------------------------------------------------------|------------------------------|--------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Goodwin et al. 73       | Class III | 66 ABI patients, 50 traumatic injuries (46 closed head injuries and 4 open head injuries) | 24 sessions              | 4 full days a week over 12 weeks                                               | Dysexecutive scores before vs. after CR. | Holistic neuropsychological rehabilitation including 2 phases: Intensive phase. | Education, practical tasks, facilitated discussion and homework. Re-integration phase. |                                                                |
|                        |           |                             |                          | Re-integration phase: 2 or 3 full days a week over 12 weeks                    |                              | Individual and group sessions |                                                                                      |                                                                |
|                        |           |                             |                          | Total of 24 sessions                                                          |                              |                                                                                      |                                                                                      |                                                                |
| Gracey et al. 54       | Class I   | 59 acquired non-progressive brain injuries, 27 patients with TBI | 90 to 120 minutes        | Total number of sessions varied depending on the abilities of the participant | Longitudinal intergroup comparison - Cross-over design: Assisted intention monitoring vs. control intervention (information and games). | Individual sessions Assisted intention monitoring (AIM): Brief GMT combined with periodic SMS text messages. | Proportion of daily intentions achieved by participant. | Improvement of achievement intentions after the intervention phase compared to the control condition (medium effect sizes). |
| Study                        | Class | Severity             | Age (Range) | Intergroup Comparison | Goal Intention Intervention | Individual Sessions | Assessment of Emotional Function, Social Participation and Goal Attainment Scaling Scores | Improvement for the Experimental Group on Self- and Relative-Reports for Social Participation and Social Relation Compared to Control Group (Medium to Large Effect Sizes) |
|-----------------------------|-------|----------------------|-------------|-----------------------|-----------------------------|---------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hart et al.                 | Class I | Moderate to Severe TBI | 23.8 (4.3)  | 8 weeks               | Goal intention intervention (with text messaging) vs. active control group (who received unspecified text messages) | Goal intention intervention: Implementation of intentions with reminder messages. | No more details.                                                                 | Improvement for the experimental group on self- and relative-reports for social participation and social relation compared to control group (medium to large effect sizes). |
| Powell et al.               | Class I | 23 ABI (including 14 motor vehicle crashes, 1 fall and 2 assaults) | 44 (15)   | 60 minutes Over 8 weeks Total of 6 sessions | Intra-individual comparison: problem solving, self-efficacy and life satisfaction self-report scores before vs. after CR. | Individual sessions: Implementation of web-based program (ProSolv program) for problem solving in daily life. | No information regarding severity.                                                                 | No difference.                                                                 |
| Siponkoski et al.           | Class I | Moderate to Severe TBI | 41.3 (13.3) | 60 minutes 2 times per week Over 3 months Total of 20 sessions | Longitudinal intergroup comparison - Cross-over design: intervention phase vs. control phase (standard care). | Individual sessions: Neurological music therapy: intervention adapted from 2 existing music therapies (functionally oriented music therapy and music-supported training). | Scores on executive function, memory, attention and reasoning tests. | Improvement of Cognitive Functioning in the AB Group. Increase in Gray Matter Volume (Right Inferior Frontal Gyrus) in Both Groups during Intervention and Control Periods. |
| Vander Linden et al.        | Class III | Moderate to Severe TBI | 15 years 8 months (1) | 40 minutes 5 per week Over 8 weeks Total of 40 sessions | Intergroup comparison: changes in gray matter volume in regions of interest related to executive functions after cognitive | Individual sessions: Brain games software: Home-based cognitive training program | Scores on Working Memory, Executive Function, Attention and Processing Speed Tests. | No difference on Frontal Gray Matter Volume after Training. Significant Negative |
year 7 months) training vs. changes in gray matter volume in control regions. targeting executive functions and attention. correlation between changes in processing speed score and gray matter volume of putamen area.

Vander Linden et al. 65

Class II

16 moderate to severe TBI ‡

Age: 15 years 8 months (1 year 7 months)

40 minutes
5 per week
Over 8 weeks
Total of 40 sessions

Intergroup comparison: computerized cognitive training vs. healthy control group (no training).

Individual sessions
Brain games software: Home-based cognitive training program targeting executive functions and attention.

Scores on working memory, executive functions, attention and processing speed tests.

At 6-month follow-up, lower effect from training on executive functions was found in adolescents with diffuse axonal injuries in the deep brain nuclei compared to adolescents without diffuse axonal injuries in this area.

Verhelst et al. 76

Class III

5 moderate to severe TBIs ‡

Age: 16 (9 months)

40 minutes
5 per week
Over 8 weeks
Total of 40 sessions

Intra-individual comparison: executive performances before and after CR.

Individual sessions
Brain games software: Home-based cognitive training program targeting executive functions and attention.

Scores on attention, working memory and executive function tests.

Small to large effect size of intervention on all neuropsychological measures.

Results maintained or increased at 6-month follow-up.

Verhelst et al. 46

Class II

16 moderate to severe TBIs ‡

Age: 15 (1.8)

40 minutes
5 per week
Over 8 weeks
Total of 40 sessions

Intergroup comparison: white matter changes in TBI patient group vs. healthy control group.

Individual sessions
Brain games software: Home-based cognitive training program targeting executive functions and attention.

Scores on attention, working memory and executive function tests.

Time X group interaction effects on one attention score and on one executive function score (small to moderate effect sizes).
### Attention

| Study | Participants | Age | Intervention Details | Outcome |
|-------|--------------|-----|----------------------|---------|
| Arroyo-Ferrer et al. (2010) | 20-year-old man with TBI ‡ | 40-50 years | Individual sessions: EEG-based neurofeedback (EEG-NFB) targeting inhibition of theta frequency band in frontal areas during exercises in virtual environments. | Improvement of visuospatial abilities, attention and executive functions after EEG-NFB intervention compared to after neuropsychological intervention. |
| Class III | Axonal damage was diagnosed using MRI | 20-year-old man with TBI ‡ | Case report: Total of 16 sessions | Scores on executive function, memory, attention and visuospatial ability tests. |
| Dundon et al. (2018) | 26 TBI | Not detailed | Intergroup comparison: adaptive training group vs. non-adaptive training group vs. no training control group. | Scores on attention and memory tests. |
| Class I | Information regarding regions of damage for 23/26 participants. | Age: 37.3 (±9.8) | Individual sessions: Dichotic listening training task. | Self-report questionnaires of global cognitive disorders. |
| Dymowski et al. (2014) | 3 severe TBI ‡ | 38 years | Single case design repeated across subjects: baseline phase vs. attention training phase, and attention training phase vs. individualized strategies training phase. | Scores on processing speed and attention tests. |
| Class II | Ages: 21, 27 and 53 | 60 minutes | Individual sessions: Computerized attention training: Attention process training 3 (APT-3) | Questionnaire of attentional complaint (self- and relative-reports). |
| Study                  | Class | TBI Type                  | Age Details | Intervention Duration | Interventions                                                                                     | Outcome Measures                                                                 | Results                                                                 |
|-----------------------|-------|--------------------------|-------------|----------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Fitzgerald et al.     | I     | 11 moderate to severe TBI | Min. mean age: 27.2 (5.6) | 40 minutes Intergroup comparison: error awareness training vs. no feedback group. | Individual sessions Computer-based intervention program for improving error awareness: participants received feedback on errors. | Improvement of error awareness scores (large effect size in the experimental group). | No change in group who did not receive feedback.                     |
| McDonald et al.       | I     | 72 TBI: 36 mild, 8 complicated mild, 8 moderate, 23 severe | Min. mean age: 37.2 (12.0) | 50 minutes Intergroup comparison: cognitive behavioral therapy vs. repetitive cognitive tasks combined with methylphenidate or placebo. | Individual sessions Memory and attention adaptation training (MAAT): metacognitive intervention. | Scores on memory, attention, executive function and processing speed tests. | Improvement in scores for learning, working memory and divided attention after combined MAAT/ methylphenidate intervention. Better memory improvement scores after MAAT compared to ABT intervention. |
| Sacco et al.          | I     | 32 severe TBI            | Age: 37.7 (10.4) | 60 minutes Intergroup comparison: real tDCS group vs. placebo tDCS group. | Individual sessions Computerized rehabilitation of divided attention combined with unilateral or bilateral tDCS on dorsolateral prefrontal cortex (depending on the hemispheric | Scores on visuospatial, semantic fluency, divided attention, working memory and long-term memory tests. | Improvement in divided attention score in experimental group. No change over the pretreatment phase and within the control. |
| Study            | Sample Size | Intervention Details                                                                 | Outcome Measures                                                                 |
|------------------|-------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Vakili et al. [58] | 31 TBI      | Intergroup comparison: group sessions with video games and psychoeducational program  | Improvement in game performance, attentional blink and attentional task, implying processing speed. |
|                  |             |                                                                                      | No change in behavioral and self-efficacy scales scores.                         |
| Class I          |             | Reorganization of neuronal activations on fMRI.                                       |                                                                                  |
| Class I          | 15 ABI, including 9 moderate to severe TBI | Intergroup comparison: music attention control training group (MACT) vs. attention process training (APT) | Improvement in one of the three attention and executive tests (TMT B) after the intervention for the MACT group compared to the APT group. |
|                  |             |                                                                                      |                                                                                  |
|                  |             | Age: Detailed for each group. Not for total sample.                                   |                                                                                  |
|                  |             | Min. mean age: 27.73 (11.43)                                                        |                                                                                  |
|                  |             | Max. mean age: 28.63 (6.54)                                                         |                                                                                  |
| Class I          |             | Age: Detailed for each group. Not for total sample.                                   |                                                                                  |
|                  |             | Min. mean age: 51.9 (11.02)                                                         |                                                                                  |
|                  |             | Max. mean age: 55.4 (10.54)                                                         |                                                                                  |
|                  |             | Sustained, selective, alternating and divided                                          |                                                                                  |
|                  |             | APT: Computer-based tasks to address focused, sustained, selective, alternating and divided |                                                                                  |
| Class I | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Scores on memory tests. | Improvement in prose recall compared to placebo group. |
|---------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|
| Age: Detai ded for each group. Not for total sample. | Individual sessions Modified story memory technique, involving the training of mental imagery and the use of the source/context of learned information. | fMRI: Changes in activation in executive control network and default mode network (Bonferroni correction). | |
| Min. mean age: 42.22 (14.12) | Total 10 sessions | | |
| Max. mean age: 45.78 (10.53) | | | |

| Class I | Intergroup comparison: treatment group vs. placebo control group (non-training-oriented tasks). | Scores on memory tests. | Improvement in prose recall compared to placebo group. |
|---------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|
| Age: Detai ded for each group. Not for total sample. | Individual sessions Modified story memory technique, involving the training of mental imagery and the use of the source/context of learned information. | Ecological scores on the Rivermead Behavioural Memory Test. | |
| Min. mean age: | Total 10 sessions | | |
| | | | |

| Class I | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Scores on memory tests. | Improvement in prose recall compared to placebo group. |
|---------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|
| Age: Detai ded for each group. Not for total sample. | Individual sessions Modified story memory technique, involving the training of mental imagery and the use of the source/context of learned information. | Cognitive and behavioral executive questionnaires (self- and relative-reports). | |
| Min. mean age: | Total 10 sessions | | |
| | | | |

| Class I | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Scores on memory tests. | Improvement in prose recall compared to placebo group. |
|---------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|
| Age: Detai ded for each group. Not for total sample. | Individual sessions Modified story memory technique, involving the training of mental imagery and the use of the source/context of learned information. | | |
| Min. mean age: | Total 10 sessions | | |
| | | | |

**Chiaravallotti et al.**

**Memory**

Class I

| 18 TBI: 3 mild, 3 moderate, 12 severe | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | BOLD signal on fMRI, word learning task and word recognition task. |
| Class I | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class II**

| 69 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (non-training-oriented tasks). | Individual sessions | Scores on memory tests. |
| -------------------------|------------------|--------------------------------------------------------------------------------|---------------------------|---------------------------|
| Age: Detai ded for each group. Not for total sample. | Twice per week | Modified story memory technique, involving the training of mental imagery and the use of the source/context of learned information. | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class III**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class III | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class IV**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class IV | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class V**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class V | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class VI**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class VI | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class VII**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class VII | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class VIII**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class VIII | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class IX**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class IX | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class X**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class X | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class XI**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class XI | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class XII**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class XII | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class XIII**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class XIII | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class XIV**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class XIV | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class XV**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class XV | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class XVI**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class XVI | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class XVII**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class XVII | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class XVIII**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class XVIII | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |

**Class XIX**

| 46 moderate to severe TBI | 45 to 60 minutes | Intergroup comparison: treatment group vs. placebo control group (memory exercises but not exposed to critical components of training). | Individual sessions | Improvement in prose recall compared to placebo group. |
| Class XIX | Twice per week | | | |
| Over 5 weeks | Total 10 sessions | | | |
| Class | Mean Age (SD) | Memory Test in the Experimental Group Compared to Placebo Group |
|-------|---------------|---------------------------------------------------------------|
| Class III | 40.68 (11.28) | - Absence of statistical analysis - 2-point gain on the MMSE. |
| Hara et al. | 67-year-old man who sustained a diffuse axonal injury | Case report | Individual sessions | rTMS (2400 pulses once a day) combined with CR (training program focused on memory and attention disorders). | Everyday memory assessment scores on Rivermead Behavioural Memory Test. | |
| Lesniak et al. | 65 ABI including 30 TBI, 27 CVA, 4 encephalitis | Intergroup comparison: Individual therapy group vs. group therapy group vs. no therapy group. | Individual and group sessions | Increased awareness of memory deficits and learning of global strategies for everyday memory. | Ecological memory scores (RBMT). | Self-report of everyday memory complaint. | No difference between groups. | In individual therapy group, significant improvements on computerized memory, attention and working memory tests. | In group therapy group, decrease of memory failures in daily life (relatives-report). |

**Age Details:**
- Detailed for each group.
- Not for total sample.

| Min. Mean Age | Max. Mean Age |
|---------------|---------------|
| 39.6 (15)     | 40.68 (11.28) |
| Study             | Class III | Age               | Session Frequency       | Session Duration | Duration          | Treatment Design                                                                 | Interventions                                                                                     | Improvement                                                                                      |
|-------------------|-----------|-------------------|------------------------|------------------|------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Lesniak et al.    | Class III | 26.2 (7.6)        | 5 individual and 5 group sessions per week |                 | Over 3 weeks     | Intergroup comparison: comprehensive therapeutic program vs. waiting list control condition | Group and group sessions: Internal memory strategy training and implementation of external aids. Discussion about memory problems and their respective compensatory strategies. | Improvement of cognitive scores (small to moderate effect sizes). |
| Raskin et al.     | Class III | 42.11 (13.21)     | 1 or 2 per week        | 60 minutes       | Over 6 months    | Longitudinal intergroup comparison: Cross-over design: active treatment condition vs. no treatment phase at baseline and at 1-year follow-up. | Individual sessions: Metacognitive technique using mental imagery. Prospective memory scores. Scores on attention, retrospective memory and executive function tests. | Improvement of prospective memory measure after active treatment phase only. Improvement on self-report questionnaire for everyday memory. Improvement maintained at 1-year follow-up for all previous results. |
| Buccellato et al. | Class III | 42.11 (13.21)     | 3 to 40 minutes        | 30 to 40 minutes | Over 6 weeks     | Longitudinal comparison - Cross-over within-subjects design: Global cognitive training phase with the Brainer Virtual | Individual sessions: Virtual reality training using Bright Brainer Virtual Rehabilitation software (global) | Scores on sustained attention, processing speed, working memory and visuospatial tests. No significant difference between phases. |
De la Rosa-Arredondo et al. 66
Class III

26-year-old woman with severe TBI

1 time per week

Case report

Individual sessions

Scores on attention, working memory, memory, visuospatial and abstract reasoning tests.

- Absence of statistical analysis -

Improvement in selective attention, verbal fluency, visuospatial ability and executive function scores.

De Luca et al. 50
Class I

100 mild to moderate TBI

60 minutes

Intergroup comparison:

Scores on global scale, executive functions and attention tests.

Improvements on cognitive and mood scores for both traditional and virtual reality training.

Improvements on cognitive flexibility for virtual reality training.

Eilam-Stock et al. 35
Class III

29-year-old man with a moderate TBI

30 minutes per day

Case report

Scores on attention, working memory, processing speed, executive function and memory tests.

- Absence of statistical analysis -

Improvement in several cognitive domains: attention, working memory, processing speed and semantic fluency.
Hwang et al.56

Class I

96 TBI

Once a week

Over 6 months

49% of participants with positive CT scan findings

No classification of severity.

Scores on global cognitive scales and executive function tests.

Intergroup comparison:

Computerized cognitive training (CCT) group or tai chi (TC) group vs. usual care group.

Individual sessions

Computerized cognitive training using Rehacom software (attention, memory, speed of processing, executive functioning).

Improvement in emotional functioning: mood, sleep and fatigue.

Improvement on attention, memory scales and global cognitive scale scores after the intervention for the CCT group compared to usual care.

No difference at 6-month follow-up.

Kanchan et al.39

Class II

10 moderate to severe TBI

45 min

1 to 5 times per week

Over 6 months

Individual sessions

Brainwave-R software: cognitive strategies and techniques for brain injury

Scores on cognitive battery (Luria Nebraska Neuropsychological Battery Adults - Form I).

Improvement for all impaired cognitive areas in the experimental group.

Differences between CCT and TC were not investigated.
rehabilitation (attention, visual processing, information processing, memory, executive functions).

Differences between experimental group and passive control group after training.

Kumar et al. 32

Class III

34-year-old woman with severe TBI ‡

20-40 session not specified

2 hours 3 per week

Over 2 months

Total of 18 sessions

Case report

Individual sessions

Immersive environment (coffeehouse) targeting practice job activities, which involved motor, social and cognitive skills.

Score on executive function tests.

Self-report quality of life.

- Absence of statistical analysis

- Improvement on TMT B score after intervention compared to baseline.

Maggio et al. 64

Class II

56 TBI ‡

3 hours 5 times per week

Over 8 weeks

Total of 40 sessions

Intergroup comparison: Lokomat training with virtual reality vs. Lokomat without virtual reality.

Individual sessions

Lokomat training with or without virtual reality.

Score on general cognitive status, frontal ability and attention tests.

Improvements on global cognitive scores, executive and attention scores for the experimental group.

Age: 35.5 (5.5)

Pinard et al. 37

Class III

3 severe TBI

Over 15 months

Length varied for each user

Ages ranged between 39 and 57 years

Total session not detailed

Case report

Individual sessions

Implementation and training to use a cognitive assistive technology for meal preparation called COOK (Cognitive Orthosis for coOKing).

Qualitative scores of numbers of meals prepared per week with the stove, number of warnings, number of interventions of security modules.

- Absence of statistical analysis -

For two of three participants, increased number of meals prepared per week.

Ramanathan et al. 47

54-year-old man with

2.5 hours per day 4 times per

Case report

Individual sessions

CR including

Scores on executive functions, attention and communication

Improvement on executive and attentional scores and quality of life
| Class III severe TBI ‡ | 90 TBI ‡ |
|------------------------|---------|
| Over 3 weeks           | 30 minutes per day |
| Total of 12 sessions   | Over 8 weeks |
| attention and           | Intergroup comparison: |
| prospective            | Rehabilitation gaming group vs. entertainment gaming (PlayStation 3) group vs. passive control group (no gaming). |
| memory training         | Individual sessions |
| and metacognitive       | Rehabilitation gaming with Cognit software (cognitive training platform with three categories of exercises: memory, spatial and mental planning). |
| strategy instructions. | Scores on processing speed, visuomotor tasks, attention, executive functions and working memory tests. |
| tests.                 | Executive self-report |
| scale.                 | No difference between the three groups. |

Self-report of quality of life. Cerebral activation task: Increased activation in middle and inferior frontal gyrus and superior temporal gyrus.

Resting state: greater functional integration of frontal and parietal cortices, visual and auditory association areas and portions of the cerebellar vermis.

Structural (DTI-measured FA; p < 0.01 uncorrected): increased FA in white matter tracts throughout the brain. Especially in tracts serving the prefrontal, occipito-parietal and temporal association cortices and cerebellum.
and sequelae of injuries to the head (ICD-10)

Age: 41

Wu et al. 43

Class III

50-year-old man, TBI with multiple contusions and lacerations, diffuse axonal injury and scattered cerebral hemorrhages ‡

30 minutes
5 times per week
Over 1 month
Total of sessions not specified

Case report

Individual sessions

Comprehensive multifaceted intervention including computer-assisted cognitive impairment rehabilitation system targeting memory, attention and visuospatial defects.

Score on general cognitive status.

- Absence of statistical analysis -

Global improvement of cognitive performance.

DTI neuroimaging:

Number and length of callosal fiber bundle increased, especially for fibers connecting the bilateral hemispheres.

Communication

Douglas et al. 71

Class III

13 severe TBI

Age: 35.2 (9.3)

Twice per week
Over 6 weeks
Total of 12 sessions

Intra-individual comparison: communication scores before vs. after intervention vs. 3-month follow-up.

Individual sessions and with communication partner

CommCope-I program: Communication-specific coping intervention.

Communication-specific coping scores.

Scores on functional communication abilities scale.

Improvements in communication-specific coping strategies scores (moderate to medium effect sizes).

Improvements in functional communication scores (moderate effect size).
| Study                      | Sample Size | Treatment Details | Outcome Measures                                                                 |
|----------------------------|-------------|-------------------|-----------------------------------------------------------------------------------|
| Bosco et al. 68            | 19 severe TBI | 1.5 hours        | Longitudinal comparison - Cross-over within-subjects design:                      |
|                            |             | Twice per week   | Cognitive pragmatic treatment vs. unspecified activities phase.                   |
|                            |             | Over 12 weeks    | Group sessions                                                                 |
|                            |             | Total of 24 sessions | Cognitive pragmatic treatment: rehabilitation training program for communicative-pragmatic abilities. |
|                            |             |                   | Scores on attention, memory, executive function and logical reasoning tests.     |
|                            |             |                   | Overall improvement in pragmatic scores.                                         |
|                            |             |                   | Scores remained stables at 3-month follow-up.                                   |

| Study                      | Sample Size | Treatment Details | Outcome Measures                                                                 |
|----------------------------|-------------|-------------------|-----------------------------------------------------------------------------------|
| Gabbatore et al. 72        | 15 severe TBI ‡ | 1.5 hours        | Longitudinal comparison - Cross-over within-subjects design:                      |
|                            |             | Twice per week   | Cognitive pragmatic treatment vs. unspecified activities phase.                   |
|                            |             | Over 12 weeks    | Group sessions                                                                 |
|                            |             | Total of 24 sessions | Cognitive pragmatic treatment: Rehabilitation training program for communicative-pragmatic abilities. |
|                            |             |                   | Scores on communicative pragmatic tests.                                         |
|                            |             |                   | Improvement in comprehension and production scores.                              |
|                            |             |                   | Improvement in long-term verbal memory and cognitive flexibility.                 |
|                            |             |                   | Scores on theory of mind test.                                                   |

| Study                      | Sample Size | Treatment Details | Outcome Measures                                                                 |
|----------------------------|-------------|-------------------|-----------------------------------------------------------------------------------|
| Sacco et al. 41            | 8 severe TBI | 1.5 hours        | Longitudinal comparison - Cross-over within-subjects design:                      |
|                            |             | Twice per week   | Cognitive pragmatic treatment vs. unspecified activities phase.                   |
|                            |             | Over 12 weeks    | Group sessions                                                                 |
|                            |             | Total of 24 sessions | Cognitive pragmatic treatment: Rehabilitation training program for communicative-pragmatic abilities. |
|                            |             |                   | Scores on communicative pragmatic tests.                                         |
|                            |             |                   | Improvement in comprehension and production scores.                              |

Improvements on stress scores (moderate effect size).
### Social Cognition

**Westerhof-Evers et al.**

**Class I**

- **Age:** 43.2 (13)
- **Moderate to severe TBI**
- **Session details:**
  - Intergroup comparison:
    - Social cognition and emotional regulation protocol training vs. active control treatment (computerized cognitive training).
  - Individual sessions:
    - T-ScEmo protocol including 3 modules (i. enhancing emotion perception, ii. perspective taking and theory of mind, iii. basic and goal-directed social behavior).
- **Total of 16 to 20 sessions**
- **Duration:** 60 minutes
- **Frequency:** 1 or 2 per week
- **Outcome:**
  - Improvement for the experimental group on facial affect recognition, theory of mind compared to the control group.
  - Improvement in relative-reported empathic behavior, and societal participation.

### Topographic orientation

**Boccia et al.**

**Class III**

- **49-year-old man with extensive head trauma and a coma (period of 1 week)**
- **Duration:** Over 8 weeks
- **Case report:**
  - No information regarding intensity
- **Intervention:**
  - Imagery-based treatment including two phases (i. imagery training in order to rapidly generate mental images, ii. generating and retrieving mental images).
- **Scores on working memory, cognitive map test and 3D mental rotation tests.**
- **Ecological navigational tasks in real environment.**
- **Outcome:** Improvement of topographic skills and episodic memory scores.

### Verbal auditory perception

**Kim et al.**

**Class III**

- **65-year-old patient with TBI**
- **Duration:** Over 2 months
- **Case report:**
  - No information regarding intensity
- **Intervention:**
  - Speech therapy and cognitive rehabilitation (cognitive domains not specified).
- **Scores on global cognitive scale and aphasia test.**
- **Outcome:** Improved isolated-word verbal comprehension.
- **No change in sentence comprehension.**
* Participants: n, TBI severity, mean age in years (SD)

† Cognitive rehabilitation characteristics: Length for each session; intensity (e.g. number of cognitive rehabilitation sessions per week and number of weeks), total of sessions.

‡ Brain lesions were identified by authors through computed tomography / magnetic resonance scanning for all included patients.

ABI: acquired brain injury
BOLD: blood-oxygen-level dependent
CR: cognitive rehabilitation
CT scan: computed tomography scan
CVA: cerebral vascular accidents
DTI: diffusion tensor imaging
FA: fractional anisotropy
ICD: international classification of diseases
MMSE: mini mental state examination
PTSD: post-traumatic stress disorder