Large pinning forces and matching effects in YBa$_2$Cu$_3$O$_{7-\delta}$ thin films with Ba$_2$Y(Nb/Ta)O$_6$ nanoprecipitates

Lars Opherden1,2,3, Max Sieger1, Patrick Pahlke3,4, Ruben Hühne1, Ludwig Schultz2,5, Alexander Meledin4, Gustaaf Van Tendeloo4, Rainer Nast5, Bernhard Holzapfel5, Marco Bianchetti6, Judith L. MacManus-Driscoll6 & Jens Hänisch1,5

The addition of mixed double perovskite Ba$_2$Y(Nb/Ta)O$_6$ (BYNTO) to YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 G/N/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.

YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) based coated conductors have large potential in such diverse applications as wires/cables, motors/generators, high-field coils, and superconducting permanent magnets, each of them with a certain range of temperature and magnetic field and a certain need in magnitude and isotropity in critical current density J_c. In order to use the full potential of YBCO, it is mandatory to tailor its transport properties for the envisaged application. It is therefore necessary to understand how the critical current density J_c behaves over wide ranges of magnetic field strength H, temperature T and angle θ between H and the crystallographic c-axis. The $J_c(H,T,\theta)$ dependence, being determined by the underlying pinning landscape in a complex way1, can be raised and adjusted by the creation of artificial defects within the superconductor which act as pinning centers. This can be achieved by e.g. irradiation2, substrate decoration3,4, rare-earth substitution5,6, and incorporation of secondary phases. The latter one is relatively inexpensive and easy and therefore commonly used. After initial studies on naturally growing nanoparticles in YBCO thin films, such as Y$_2$O$_3$ (recently investigated again more closely as artificial pinning centers8,9), first investigations on artificial nanoparticles were made on BaZrO$_3$10. J_c could be strongly improved through incorporating this or related barium perovskites BaMO$_3$ (M transition metal) because they grow as globular or columnar structures which act as pinning centers. This has been reported for various techniques such as pulsed laser deposition (PLD)$^{11-15}$ or metal-organic chemical vapor deposition (MOCVD)16. In chemical deposition methods (CSD, MOD), usually randomly oriented, more or less isotropic nanoparticles are formed$^{17-19}$. Secondary phases can furthermore introduce concurrent defects in the YBCO matrix. Strong positive correlations between nanostrain and J_c for example suggest that nanostrain and strain-induced defects such as stacking faults20 or dislocations21 act as pinning centers. Nanoincclusions of the double perovskites Ba$_2$YNbO$_6$ (BYNO) and Ba$_2$YTaO$_6$ (BYTO) have been suggested22 as promising pinning centers due to several advantages compared to BZO. Nb or Ta ions are less likely to substitute for Y in YBCO, which should lead to a smaller T_c.
BYNTO:YBCO thin films grown under various deposition conditions on J-aligned BYNO nanocolumns24,25 even at high deposition rates26. BYTO27 and Ba\textsubscript{2}Y(Nb/Ru)O\textsubscript{6} have a larger mobility on the substrate surface and within the film during growth than Zr-O, leading to well of the applied magnetic field but rather on its -component.

Results and Discussion

The growth of self-assembled nanocolumns is not only driven by interfacial energies and strain34–36 but also by diffusion of the respective atomic species, which can be controlled by temperature37–40, time (i.e. laser repetition rate)41,13 and diffusion lengths (i.e. distances between deposited material). Furthermore, secondary phases39 as well as growth direction (vicinality of the substrate)42 influence the growth kinetics of nanocolumns.

As shown by Ercolano et al.39, double-doping of YBCO with BYNO and BYTO leads to a further improvement of the transport properties. Furthermore, these mixed-double perovskite Ba\textsubscript{2}Y(Nb/Ta)O\textsubscript{6}-doped YBCO films (BYNTO:YBCO) seem to show a more complex \(J \) anisotropy than single-doped samples. Related structures are the so-called 2411-phases, Cu-containing mixed double perovskites, which also were shown to improve \(J \), however with less chemical stability and less tendency to form nanocolumns31–33. A deeper investigation of the material system BYNTO:YBCO is needed to provide a better understanding of its complex pinning landscape and the resulting effects on \(J \) (\(H, T, \theta \)). This detailed study shows the influence of the microstructure of such BYNTO:YBCO thin films grown under various deposition conditions on \(J \) and \(N \)-value anisotropy as well as the field dependence of the pinning force density, \(F_p(H) \), at liquid nitrogen temperatures. We explain the appearance of symmetric shoulders in \(J_c(\theta) \) and \(N(\theta) \) by a matching effect which does not depend on the absolute magnitude of the applied magnetic field but rather on its \(c \)-component.

Microstructure

The YBCO matrix shows epitaxial growth on the STO substrates for all prepared films. As an example, Fig. 1 shows the \(\Theta-2\Theta \) scan for the film grown with a laser repetition rate of 1 Hz. For YBCO and BYNTO, just (00\(\ell \)) and (00 2\(\ell \)) peaks are visible, respectively. \(Y_2O_3 \) could be found by the appearance of its (004) peak and \(Y_{1.9}BaCuO_4 \) by its (220) peak. BYNTO nanoparticles are aligned cube-on-cube with the YBCO for all samples. This was confirmed by selected area electron diffraction (SAED) as well as pole figure measurements of YBCO (102) and BYNTO (220), Supp. Fig. S1. The intensity of the BYNTO (00\(\ell \)) peaks and therefore the amount of biaxially incorporated BYNTO is increasing with decreasing \(f_{\text{Dep}} \) (Supp. Fig. S2). TEM cross section images of the films grown at 1 Hz (Fig. 2a,b and Supp. Fig. S4) and 5 Hz (Supp. Fig. S3) show three types of defects: BYNTO nanocolumns (horizontal), \(Y_2O_3 \) plates (vertical) and defects in the YBCO lattice like stacking faults (extra Y or CuO\(_2\) planes) or anti-phase boundaries (APB). The density and morphology of the nanoparticles depend strongly on the laser repetition rate. With increasing \(f_{\text{Dep}} \) the density of the nanorods increases (1 Hz: 1 column per 29.9 nm, 5 Hz: 1 column per 14.5 nm), their diameter decreases (1 Hz: (10 ± 2) nm, 5 Hz: (8 ± 4) nm), and the density of \(Y_2O_3 \) plates seems to increase. Fig. 2c shows a large-area TEM cross section of 3200 nm width of the 1 Hz sample. Some of the nanorods seem to start or end within the film (red dots). However, if all columns are counted (black arrows plus red dots) an average column distance of \(d = 29.9 \) nm is calculated. This corresponds nicely to the value \(d = 30.5 \) nm obtained by plain-view TEM (Supp. Fig. S6). Therefore, we conclude that for \(f_{\text{Dep}} \) up to 5 Hz, most of the nanorods are penetrating the whole film and some are slightly inclined and cut by the lamella preparation. The components, BYNTO nanorods and \(Y_2O_3 \) particle, were further confirmed by EDX mapping of the contained elements (Supp. Fig. S5).
Critical current density and Pinning force

Films grown at \(f_{\text{Dep}} \) of 1 Hz or 1/2 Hz show a transition temperature \(T_c \) of \(\sim 90 \) K, which is in the experimental range of undoped samples (90…92 K). In general, \(T_c \) decreases for higher repetition rates (Fig. 3), while the transition width \(\Delta T_c \) (error bars in inset of Fig. 3) is increasing by a factor of 7 (\(\Delta T_c \) (1 Hz) = 0.5 K, \(\Delta T_c \) (50 Hz) = 3.3 K). The reduction in \(T_c \) might be avoidable by adjusting other PLD parameters such as deposition temperature, energy density, oxygen partial pressure and target-substrate distance. Whereas the samples with 1 Hz and 1/2 Hz are similar in their current carrying capability, the samples grown at 5 Hz or higher show much smaller \(J_c \) values at 77 K (Fig. 4a and Table 1). This reduction is mainly due to the reduced \(T_c \) value because the decrease in \(J_c \) is smaller at lower temperatures such as 30 K, Fig. 4b.

The critical current density in self field \(J_{c,\text{sf}} \) at 77 K reaches values of 3.2 MA/cm\(^2\) (1 Hz) and 4.0 MA/cm\(^2\) (1/2 Hz) and decreases in an external field as it is expected for a high-temperature superconductors in the strong...
pinning limit\(^4\).\(^3\) \(J_{c,sf}\) values at 30 K as high as 28 MA/cm\(^2\) can be achieved in BYNTO:YBCO films grown with laser repetition rates of 1 Hz or below. The critical current density is above 1 MA/cm\(^2\) even for an external magnetic field of 9 T for all samples at this temperature (Fig. 4). The field dependence of \(\frac{J_c}{J_c} \) at 77 K shows an unusual behavior of samples with \(f_{Dep} = \frac{1}{2} \) Hz and \(\frac{1}{2} \) Hz (Fig. 4a and Supp. Fig. S7). Above approx. 500 mT, \(J_c \) stays almost constant for increasing fields. The field dependence of the pinning force density is equally unusual. For these BYNTO:YBCO thin films, it is not possible to describe \(F_P(H) \) alone as it is possible for a YBCO film without any additions (bold green line in Fig. 4c). The field \(B_{max} = \mu_0 H_{irr}(H_{P_{max}}) \) at which the maximum pinning force density is reached increases with laser repetition rate (1.6 T for 1/2 Hz, 2.3 T for 1 Hz and 3.2 T for 5 Hz). Similar \(\frac{J_c}{J_c} \) curves have recently been reported for BaHfO\(_3\)(BHO)-doped SmBa\(_2\)Cu\(_3\)O\(_7\)\(_{−}\delta\)\(^4\).\(^5\). The pinning force density maximum for the 1 Hz sample (25 GN/m\(^3\) for the 250 nm thick film at 77 K), Fig. 4c, is among the highest values in YBCO at 77 K measured so far (e.g. 240 nm BaSnO\(_3\)-doped: 28.3 GN/m\(^3\) \(^1\) 28.3 GN/m\(^3\) at 75.5 K\(^2\), 200 nm BaZrO\(_3\)-doped: 21 GN/m\(^3\) \(^1\) 17). Other REBCO films with slightly higher \(T_c \) values doped with BHO (370 nm GdBCO: 23.5 GN/m\(^3\) \(^1\) 46, 300 nm SmBCO: 28 GN/m\(^3\) \(^1\) 45) show similar \(F_{P, max} \) values at 77 K. The previously mentioned plateaus in \(\frac{J_c}{J_c} \) at 77 K also end at these fields \(B_{max} \). Furthermore, \(B_{max} \) is temperature independent as can be seen by the dashed lines in Fig. 4c,d for the pinning force density at 77 K and 30 K (see also Supp. Fig. S8). Therefore, this plateau can be explained by a matching effect. Up to this field, every flux line can be pinned by an individual BYNTO column. The mean column distance of \(d = 29.9 \) nm, as observed in TEM for the 1 Hz sample, corresponds to a matching field \(B_{m} \) of approx. 2.3 T which corresponds quite well to the end position of the constant \(J_c \) region, respective peak position in \(F_P(H) \), dashed black line Fig. 4c,d (2.3 T). This value was also confirmed by a TEM plain view image.

Figure 4. \(J_c \) versus applied magnetic field, \(H \), at 77 K (a) and 30 K (b) for the BYNTO:YBCO samples grown at 1/2 Hz, 1 Hz and 5 Hz as well as the corresponding \(F_P(H_{P_{max}}) \) at 77 K (c) and 30 K (d). The thickness of these films is around 250 nm. Green datapoints belong to a pure YBCO film without any additions. In this case \(F_P(H_{P_{max}}) \) at 77 K can be described with equation 1 (bold green line in (c), \(p = 0.5, q = 2 \)).

Table 1. Overview of the superconductivity properties of the discussed films. \(\Delta T_c \) was determined by taking the difference of \(T_{c,90} \) and \(T_{c,10} \); \(H_{irr} \) was estimated through the fit of equation (1).
where 312 columns are visible in a 0.289 \(\mu \text{m}^2 \) wide area which leads to a matching field of (2.23 \pm 0.14) T (Supp. Fig. S6). The same correspondence between end of \(J_\text{c} \) plateau, \(B_{\text{max}} \) and \(B_m \) has been observed for BHO-doped \(\text{SmBa}_2\text{Cu}_3\text{O}_7 \) LAO\(\beta \) and \(\text{GdBa}_2\text{Cu}_3\text{O}_7 \) IBAD-MgO\(\beta \).

The N value

The electric field-current density characteristics \(E(J) \) are well described by a power-law dependence, \(E \sim J^p \), over a wide electric-field range in the vicinity of \(J_\text{c} \). The \(N \) value has, in general, statistical and microscopic explanations. In inhomogeneous superconductors, \(1/N \) is proportional to the variance in \(J_\text{c} \) as described by e.g. Warner and Larbalestier\(^{46} \) in statistical models. The good reproducibility of \(N \) and \(J_\text{c} \) in our measurements however points to a microscopic explanation for \(N \). It has been shown by Griessen et al. that in high-\(T_c \) superconductors \(N \) is strongly influenced if not determined by flux creep processes. Here, the flux creep rate \(S = \frac{\text{d}M}{\text{d}t} \sim \frac{1}{N-1} (M \ldots \text{magnetization})^{48} \). Strictly, this relation only holds if \(S \) and \(N \) are measured at the same electrical field \(E \). In general, \(N \) values determined from creep rates (equation above) are larger than from magnetization measurements\(^{49} \) and those are larger than determined from transport \(E(J) \) curves\(^{50} \) due to the negative curvature of \(E(J) \) below the glass-liquid transition. For the considerations below, this effect can be ignored, however.

For flux creep processes determined by the pinning potential \(U_0 \gg k_B T \) and under the assumption of a logarithmic \(J \)-dependence of \(U_0 \)\(^{51} \), \(N = U_0 / k_B T \) and, hence, \(S = k_B T / U_0 \) for \(N \gg 1 \) (i.e. neglecting a log. time dependence term). This in turn means that \(J_\text{c} \), being determined itself by \(U_0 \), scales with \(N \). This is indeed found on a variety of samples in a wide range of \(N \)-values with an empirical relation \((N-1)^{1.19} \). The origin of this power law is beyond the scope of this paper. As observed in magnetization measurements however points to a microscopic explanation for \(N \).

![Figure 5.](image)

Critical current density anisotropy

The anisotropy of the critical current density \(J_c(\theta) \) at 77 K shows a maximum at 90° due to the electronic anisotropy of YBCO\(^{56} \) and one at 180° due to \(c \)-axis correlated pinning\(^{57} \) for all BYNTO:YBCO samples. Besides...
Figure 6. Anisotropy of the critical current density at 77 K at several fields for samples grown at low f_{Dep}: red 0.5 Hz and black 1 Hz. Large arrows indicate the position of the main off-axis maximum, where $B \cdot \cos(\theta)$ equals B_m (2.0 T for the red arrows and 2.7 T for the black arrows), small arrows indicate a second off-axis maximum.

these well understood features of $I_c(\theta)$ additional maxima are visible. They appear as pairs which are oriented symmetrically around the c-axis peak similar to the shoulder formation seen by Ercolano et al.30 but more pronounced. The shoulder position with respect to the c-axis depends on the used laser repetition rate as well as the applied field, Fig. 6. Only the samples grown at a laser repetition rate of 1 Hz and 1/2 Hz will be discussed in the following. Because of the lower I_c values, the shoulders of the 5 Hz sample are barely visible. The appearance and the position of these shoulders becomes comprehensible if N value and I_c are plotted versus the c-axis component of the applied magnetic field, $B^c = \mu_0 H \cdot \cos(\theta)$, Fig. 7a,b. For both samples, the N value maxima (and hence minima in S) appear once B^c reaches the matching field B_m just the same as for I_c at $H_{||}$. A similar effect has recently been observed by Trastoy et al.38 on YBCO films with a periodic square pattern of artificial pin holes produced by ion irradiation. They have seen strong matching effects with $\mu_0 H \cdot \cos(\theta)$ in field and angular dependence of resistivity and glass-liquid transition, concurrent with an increased mass anisotropy due to partial deoxygenation and a 2D glass-liquid transition. Our results show that this type of matching is independent of dimensionality (our samples are 3D) and periodicity (the BYNTO nanocolumns show a certain degree of density variance).

As calculated by Paulius et al.39 for correlated irradiation defects and described by e.g. Ercolano et al.30 and Jha et al.60 for nanocolumns, the vortex is not pinned by one column alone but rather by several columns through a staircase-like path for angles θ smaller than a certain trapping or accommodation angle30. The flux line segments in between the vortices are pinned by additional defects, such as Y$_2$O$_3$, stacking faults and antiphase boundaries, as observed in TEM. The specific position B_m where the $I_c(\theta)$ curves have their maximum in $I_c(B^c)$ is slightly raised compared to the matching field and the maxima in the N value (2.0 T for $f_{\text{Dep}} = 1/2$ Hz and 2.7 T for $f_{\text{Dep}} = 1$ Hz, Fig. 7c,d). Apparently, the extrema in creep rate S and hence the N value are determined solely by the occupation of the c-axis aligned correlated defects. Therefore, they appear at the matching field B_m. Additional intermediate defects contribute to I_c for field directions closer to c and lead to a further increase in I_c in a small region of $B_m < B^c < B_m$. This region (shaded area in Fig. 7) shows again anti-correlation between N and I_c (i.e. creep rate S not determined by pinning potential U_p). However, this configuration is different from the case $H_{||}$, since here the anti-correlation appears above B_m, whereas it appears below B_m for $H_{||}

Besides the strongly pronounced shoulders, a second pair of shoulders can be seen for fields up to 8 T (Fig. 6, small arrows). They have a much smaller amplitude and their position is much closer to 90°. The position of those peaks does not scale with the c-axis component of the applied magnetic field, B^c. A possible scenario for those peaks might be a combined effect of fractional occupation of the correlated defects and anisotropic pinning of the flux line segments at intermediate extended defects. This has to be investigated in more detail in future studies.

Conclusion
BYNTO-doped YBCO films were successfully grown using different laser repetition rates. Only for sufficiently long diffusion times ($f_{\text{Dep}} = 1$ Hz or lower), very high critical current densities were achieved. All films have a rich microstructure consisting of pinning centers with different size, shape and orientation distribution. The interplay between strongly c-axis correlated BYNTO nanocolumns, ab-stacking faults, c-axis oriented APBs, atomic disorder and biaxially oriented but randomly distributed Y$_2$O$_3$ nanoparticles leads to additional new features in $F_s(H)$.
and $J_c(\theta)$. The critical current density shows almost constant values for magnetic fields up to several Tesla. The field where this plateau ends and where $F_p(H)$ has its highest value are equal to the matching field determined by TEM. A pinning force density of 25 GN/m3 at 77 K at the matching field of 2.3 T was achieved for the film grown at 1 Hz, which is among the highest values reported for YBCO. At 30 K, deposition rates up to $f_{\text{Dep}} = 5$ Hz lead to critical current densities of more than 1 MA/cm2 even in external fields of up to 9 T for H_c.

The field dependence of the N value (the exponent of the $E(J)$ curves) and its scaling behavior with the corresponding J_c value clearly show different regions of flux depinning mechanisms, being dominated by the creation of half loop and double kink structures below the matching field and by usual flux creep processes due to weaker, uncorrelated, pinning centers above the matching field.

The anisotropy of the critical current density $J_c(\theta)$ as well as $N(\theta)$ are composed of two additional shoulder formations besides the maxima at 0° and 90° which appear at different angles if the applied magnetic field strength is changed. The existence of these shoulders can be explained by a staircase-like path of the vortices and additional pinning at intermediate defects. At a certain angle, the magnetic fields c-axis component $\mu_0 H \cdot \cos \theta$ reaches the matching field B_m which is accompanied by a maximum of the N value. Because of further contribution of intermediate defects to J_c but not to N, the maximum at the critical current density anisotropy B_m^{crit} is slightly higher than the matching field B_m.

Due to their ability to grow as very uniformly sized, distributed and oriented nanocolumns, Ba$_2$Y(Nb/Ta)O$_6$ nano-precipitates in YBa$_2$Cu$_3$O$_{7-\delta}$ thin films are not only effective artificial pinning centers for increased J_c and F_p values but also a model system to study matching effects and flux creep.

Methods

BYNTO:YBCO films were prepared by pulsed laser deposition (PLD) using a YBCO target with 2.5 mol% BYNO and 2.5 mol% BYTO. The target was prepared by mixing the precursor oxides (barium oxide, yttrium oxide, tantalum oxide and niobium oxide) in the appropriate amount with YBCO powder and grinding the mixture in an agate mortar. The powder was pressed in pellets and sintered at 950°C in flowing O$_2$ for 24h. A Lambda Physics LPX305i KrF excimer laser ($\lambda = 248$ nm, $t_{\text{pulse}} = 25$ ns) was used with an energy density of 1.6 J/cm2 at the target surface to grow BYNTO:YBCO films of approx. 250 nm thickness on single crystalline (100)-oriented SrTiO$_3$ (STO). An oxygen partial pressure of 0.4 mbar was maintained during the deposition process. The substrate temperature was set to 840°C and checked with a HEITRONICS ceramic pyrometer. The laser repetition rate f_{Dep} was...
c and exponent J_0 at $770 \, ^\circ \text{C}$. A silver cap layer of several nm thickness was deposited afterwards to improve the contact resistance.

Parallel-beam geometry for the probe-forming lens as well as a high-brightness gun was used for high-resolution transmission electron microscopy (HAADF STEM) and energy dispersive X-ray spectroscopy (EDX). FEI Titan ‘cubed’ electron microscope operated at 300 kV, equipped with an aberration corrector for the probe-forming lens as well as a high-brightness gun was used for high-resolution transmission electron microscopy (HRTEM). X-ray diffraction was carried out on a Bruker D8 Advance with a Cu anode in a modified parallel-beam geometry for $\Theta - 2\Theta$ scans. Pole figures were measured at a Philips X’Pert PW3040 with a Cu anode in Bragg-Brentano geometry.

Bridges of 800 nm length and approx. 20 μm width for transport current measurements were prepared by laser cutting. Field and angular dependences of critical current density J_c and exponent N of the $V(I)$ curves were measured in a four-point assembly in magnetic fields up to 9 T with a Quantum Design physical properties measurement system (PPMS). J_c was defined by an electrical field criterion of 1 μV/cm on $V(I)$ curves fitted as $E \sim J_c^N$ in the first decade of E above E_c. The angular dependence of the critical current density was measured under maximum Lorentz force configuration. To correct for small heating effects, the absolute value of some of those measurements were corrected to the value measured at $H/2$ where thermal contact was better.

References

1. Foltyn, S. R. et al. Materials science challenges for high-temperature superconducting wire. Nature Materials 6, 631–642 (2007).
2. Namba, M., Awaji, S., Watanabe, K., Nojima, T. & Okayasu, S. c-Axis-correlated pinning properties in heavy-ion-irradiated Y123 films. Physica C 468, 1652–1655 (2008).
3. Aytug, T. et al. Enhanced flux pinning and critical currents in YBa$_2$Cu$_3$O$_{7−δ}$ films by nanoparticle surface decoration: Extension to coated conductor templates. J. Appl. Phys. 104, 043906 (2008).
4. Abellan, P. et al. Interaction between solution derived BaZrO$_3$ nanodot interfacial templates and YBa$_2$Cu$_3$O$_7$ films leading to enhanced critical currents. Acta Mat. 59, 2075 (2011).
5. MacManus-Driscoll, J. L. et al. Systematic enhancement of in-field critical current density with rare-earth ion size variance in superconducting rare-earth barium cuprate films. Appl. Phys. Lett. 84, 5324 (2004).
6. Miura, M. et al. Rare earth substitution effects and magnetic field dependence of critical current in $Y_{1−x}$RE$_x$Ba$_2$Cu$_3$O$_y$, coated conductors with nanoparticles ($RE=Sm$, Gd). Appl. Phys. Exp. 2, 023002 (2009).
7. Selind, T. et al. Yttrium oxide inclusions in YBa$_2$Cu$_3$O$_y$, thin films: Enhanced flux pinning and relation to copper oxide surface particles. Physica C 202, 69–74 (1992).
8. Xu, A., Jaroszyński, J., Kametani, F. & Larbaletier, D. Broad temperature range study of J_c and H_{c2} anisotropy in YBa$_2$Cu$_3$O$_y$, thin films containing either Y$_2$O$_3$, nanoparticles or stacking faults. Appl. Phys. Lett. 106, 052603 (2015).
9. Mele, P. et al. High pinning performance of YBa$_2$Cu$_3$O$_y$ films added with Y$_2$O$_3$, nanoparticulate defects. Supercond. Sci. Technol. 28, 024002 (2015).
10. MacManus-Driscoll, J. L. et al. Strongly enhanced current densities in superconducting coated conductors of YBa$_2$Cu$_3$O$_{7−δ}$ + BaZrO$_3$. Nature Materials 3, 439–443 (2004).
11. Hänisch, J., Cai, C., Hühne, R., Schultz, L. & Holzapfel, B. Formation of nano-sized BiO_3 precipitates and their contribution to flux pinning in Ir-doped YBa$_2$Cu$_3$O$_{7−δ}$ quasi-multilayers. Appl. Phys. Lett. 86, 122508 (2005).
12. Mele, P. et al. Ultra-high flux pinning properties of BaMgO$_2$-doped YBa$_2$Cu$_3$O$_{7−δ}$, thin films ($M=Zr$, Sn). Supercond. Sci. Technol. 21, 032002 (2008).
13. Maiorov, B. et al. Synergetic combination of different types of defect to optimize pinning landscape using BaZrO$_3$-doped YBa$_2$Cu$_3$O$_y$. Nature Materials 8, 398–404 (2009).
14. Sieger, M. et al. BaHfO$_3$-doped thick YBa$_2$Cu$_3$O$_{7−δ}$, films on highly alloyed textured Ni-W tapes. IEEE Trans. Appl. Supercond. 25, 6602604 (2015).
15. Zhao, R. et al. Precise tuning of (YBa$_2$Cu$_3$O$_{7−δ}$)$_2$-(BaZrO$_3$)$_x$, thin film nanocomposite structures. Adv. Funct. Mater. 24, 5240–5245 (2014).
16. Xu, A. et al. Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd, Y)-Ba$_2$CuO$_x$ superconducting tapes. APL Materials 2, 046111 (2014).
17. Gutiérrez, J. et al. Strong isotropic flux pinning in solution-derived YBa$_2$Cu$_3$O$_{7−δ}$, nanocomposite superconductor films. Nat. Matter. 6, 367–371 (2007).
18. Miura, M. et al. Mixed pinning landscape in nanoparticle-introduced YgdBa$_2$Cu$_3$O$_{7−δ}$ films grown by metal organic deposition. Phys. Rev. B 83, 184519 (2011).
19. Erbe, M. et al. BaHfO$_3$ artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films. Supercond. Sci. Technol. 28, 114002 (2015).
20. Llordés, A. et al. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat. Matter. 11, 329–336 (2010).
21. Wimbush, S. C. et al. Interfacial strain-induced oxygen disorder as the cause of enhanced critical current density in superconducting thin films. Adv. Funct. Mater. 19, 833–841 (2009).
22. Ercolano, G., Harrington, S. A., Wang, H., Tsai, C. F. & MacManus-Driscoll, J. L. Enhanced flux pinning in YBa$_2$Cu$_3$O$_{7−δ}$, thin films using Nb-based double perovskite additions. Supercond. Sci. Technol. 23, 022003 (2010).
23. AbdullaUah, M. & Tan, B. Superconducting properties of niobium-doped Y-Ba-Cu-Nb-O superconductors. Sol. Stat. Commun. 93, 93 (1995).
24. Wee, S. H. et al. Formation of self-assembled, double-perovskite, Ba$_2$YNbO$_6$ nanocomposites and their contribution to flux-pinning in Y$_{1-2x}$Ba$_2$Cu$_3$O$_x$ films. Appl. Phys. Express 3, 023101 (2010).
25. Feldmann, M. D. et al. Improved flux pinning in YBa$_2$Cu$_3$O$_y$ with nanorods of the double perovskite Ba$_2$YNbO$_6$. Supercond. Sci. Technol. 23, 095004 (2010).
26. Ercolano, G. et al. Strong correlated pinning at high growth rates in YBa$_2$Cu$_3$O$_{7−δ}$, thin films with Ba$_2$YNbO$_6$, additions. J. Appl. Phys. 116, 033915 (2014).
27. Wee, S. H. et al. Enhanced flux pinning and critical current density via incorporation of self-assembled rare-earth barium tantalate nanocomposites within YBa$_2$Cu$_3$O$_{7−δ}$ films. Phys. Rev. B 81, 140503 (2010).
28. Holesinger, T. G. et al. Nanorod self-assembly in high J_c YBa$_2$Cu$_3$O$_{7−δ}$, films with Ru-based double perovskites. Materials 4, 2042 (2011).
29. Coll, M. et al. Solution-derived YBa2Cu3O6 nanocomposite films with a BaY2TaO5 secondary phase for improved superconducting properties. Supercond. Sci. Technol. 26, 015001 (2013).
30. Ercolano, G. et al. State-of-the-art flux pinning in YBa2Cu3O7−δ by the creation of highly linear, segmented nanorods of Ba2(Y/Gd)(Nb/Ta)O6 together with nanoparticles of (Y/Gd)O and (Y/Gd)Ba2CuOx. Supercond. Sci. Technol. 24, 095012 (2011).
31. Siraj, K. et al. Enhanced self-field critical current density of nano-composite YBa2Cu3O6 thin films grown by pulsed-laser deposition. Europ. Phys. Lett. 82, 57006 (2008).
32. AwangKechik, M. et al. Artificial pinning centres in YBa2Cu3O7−δ thin films by GdBa2CuWO8 nanophas e inclusions. Supercond. Sci. Technol. 22, 034020 (2009).
33. Reich, E. et al. Structural and pinning properties of Y0.1Ba0.2Cu2M0.8 (M = Nb, Zr)/YBa2Cu3O7−δ quasi-multilayers fabricated by off-axis pulsed laser deposition. Supercond. Sci. Technol. 22, 105004 (2009).
34. MacManus-Driscoll, J. L. Self-assembled heteropetalaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).
35. Wei, S. H. et al. Self-assembly of nanostructured, complex, multicraton films via spontaneous phase separation and strain-driven ordering. Adv. Funct. Mater. 23, 1912 (2013).
36. Wu, J. Z. et al. The effect of lattice strain on the diameter of BaZrO3 nanorods in epitaxial YBa2Cu3O7−δ films. Supercond. Sci. Technol. 27, 044010 (2014).
37. Kiesling, A. et al. Nano-columns in YBa2Cu3O7−δ/BaZrO3 quasi-multilayers: formation and influence on superconducting properties. Supercond. Sci. Technol. 24, 055018 (2011).
38. Feldmann, D. M. et al. Influence of growth temperature on critical current and magnetic flux pinning structures in YBa2Cu3O7−δ. Appl. Phys. Lett. 91, 162501 (2007).
39. Baca, F. J. et al. Interactive growth effects of rare-earth nanoparticles on nanorod formation in YBa2Cu3O7−δ. Appl. Funct. Mater. 23, 4826 (2016).
40. Ichino, Y. et al. Determinant for self-organization of Ba2MgO3 nanorods included in vapor-phase grown REBa2Cu3O7 films. IEEE Trans. Appl. Supercond. 25, 6604506 (2015).
41. Harrington, S. A. et al. Understanding nanoparticle self-assembly for a strong improvement in functionality in thin film nanocomposites. Nanotechnology 21, 095604 (2010).
42. Baca, F. J. et al. Control of Ba2ZrO3 nanorod alignment in YBa2Cu3O7−δ thin films by microstructural modulation. Appl. Phys. Lett. 94, 102512 (2009).
43. van der Beek, C. J. et al. Flux pinning in PrFeAsO and NdFeAsO1−xFx superconducting crystals. Phys. Rev. B 81, 174517 (2010).
44. Dew-Hughes, D. Flux pinning mechanisms in type II superconductors. Phil. Magazine 30, 293–305 (1974).
45. Miura, S. et al. Vortex pinning at low temperature under high magnetic field in SmBa2Cu3O7−δ superconducting films with high number density and small size of BaHfO3 nano-rods. Supercond. Sci. Technol. 28, 114006 (2015).
46. Arai, S. et al. High-performance irreversibility field and flux pinning force density in BaHo1−δ doped GdBa2Cu3O7−δ tape prepared by pulsed laser deposition. Appl. Phys. Express 8, 023101 (2015).
47. Warnes, W. H. & Larbalestier, D. C. Analytical technique for deriving the distribution of critical currents in a superconducting wire. Appl. Phys. Lett. 48, 1403 (1986).
48. Griessen, R. Relaxation effects, I–V curves and irreversibility lines in high-Tc superconductors. Physica C 215, 175–312 (1991).
49. Yamasaki, H. & Masurari, Y. Current-voltage characteristics of melt-textured YBCO obtained from the field-sweep rate dependence of magnetization. IEEE Trans. Appl. Supercond. 9, 2651 (1999).
50. Thompson, J. R. et al. Wide-range characterization of current conduction in high-Tc coated conductors. Appl. Phys. Lett. 93, 042506 (2008).
51. Zeldov, E. et al. Flux creep characteristics in high-temperature superconductors. Appl. Phys. Lett. 56, 680 (1990).
52. Niebieskikwiat, D. et al. Suppression of matching field effects by splay and pinning energy dispersion in YBa2Cu3O7−δ with columnar defects. Phys. Rev. B 63, 144504 (2001).
53. Miu, D. et al. Inhibition of the detrimental double vortex-kink formation in thick YBa2Cu3O7−δ films with Ba2ZrO3 nanorods. Supercond. Sci. Technol. 26, 045008 (2013).
54. Haberkorn, N. et al. High-temperature change of the creep rate in YBa2Cu3O7−δ films with different pinning landscapes. Phys. Rev. B 85, 174504 (2012).
55. Rouco, V. et al. Vortex creep in TFA–YBCO nanocomposite films. Supercond. Sci. Technol. 27, 115008 (2013).
56. Blatter, G., Feigelman, M. Y., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).
57. Civale, L. et al. Angular-dependent vortex pinning mechanisms in YBa2Cu3O7−δ coated conductors and thin films. Appl. Phys. Lett. 84, 2121–2123 (2004).
58. Trastoy, J. et al. Unusual magneto-transport of YBa2Cu3O7−δ films due to the interplay of anisotropy, random disorder and nanoscale periodic pinning. New Journal of Physics 15, 103022 (2013).
59. Paulius, L. M. et al. Effects of 1-GeV uranium ion irradiation on vortex pinning in single crystals of the high-temperature superconductor YBa2Cu3O7−δ. Phys. Rev. B 56, 913 (1997).
60. Iha, A. K. et al. Tailoring the vortex pinning strength of YBCO thin films by systematic incorporation of hybrid artificial pinning centers. Supercond. Sci. Technol. 28, 114004 (2015).

Acknowledgements
The authors gratefully acknowledge J. Scheiter, U. Besold, and U. Fiedler for technical assistance. This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7 / 2007–2013) under Grant Agreement no. 280432.

Author Contributions
L.O. and M.S. deposited the samples and conducted the electrical transport measurements as well as XRD, I.H. and R.H. designed the experiment, B.H. and L.S. supervised parts of the project, A.M. and G.V.T. prepared the TEM images, M.B. and J.L.M.D. devised the compositions and prepared the PLD targets, P.P. deposited the silver layer, R.N. prepared microbridges by laser cutting. The manuscript was prepared by L.O. and J.H. All authors took part in discussion and analysis of results and contributed to and reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Opherden, L. et al. Large pinning forces and matching effects in YBa2Cu3O7−δ thin films with BaY(Nb/Ta)O6 nano-precipitates. Sci. Rep. 6, 21188; doi: 10.1038/srep21188 (2016).
