Coordinated MT-\((s_1, s_2)\)-Convex Functions and Their Integral Inequalities of Hermite–Hadamard Type

Hua Mei,1 Aying Wan,2 and Bai-Ni Guo3

1College of Mathematics and Physics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China
2College of Mathematics and Statistics, Hulunbuir University, Hailaer, Hulunbuir 021008, Inner Mongolia, China
3School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, Henan, China

Correspondence should be addressed to Bai-Ni Guo; bai.ni.guo@hotmail.com

Received 26 January 2021; Revised 11 April 2021; Accepted 15 April 2021; Published 29 April 2021

1. Motivations

At first, we recall several kinds of convex functions as follows.

Definition 1 (see [1]). Let \(I \subseteq \mathbb{R}\) be an interval. A nonnegative function \(f: I \rightarrow \mathbb{R}_0 = [0, \infty)\) is said to be MT-convex if the inequality
\[
f(tx + (1 - t)y) \leq \frac{\sqrt{t}f(x) + \sqrt{1 - t}f(y)}{2\sqrt{1 - t}} \quad (1)
\]
holds for all \(x, y \in I\) and \(t \in (0, 1)\).

Definition 2 (see [2, 3]). Let \(s \in (0, 1]\) be a real number. A function \(f: \mathbb{R} \rightarrow \mathbb{R}_0\) is said to be \(s\)-convex in the second sense if
\[
f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y), \quad (2)
\]
for all \(x, y \in I\) and \(t \in [0, 1]\).

Definition 3 (see [4, 5]). A function \(f: \Delta = [a, b] \times [c, d] \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}\) is said to be convex on the coordinates on \(\Delta\) if
\[
f(tx + (1 - t)y, \lambda z + (1 - \lambda)\omega) \leq tf(x, y) + t(1 - \lambda)f(x, \omega) + (1 - t)\lambda f(z, y) + (1 - t)(1 - \lambda)f(z, \omega) \quad (3)
\]
holds for all \(t, \lambda \in [0, 1]\) and \((x, y), (z, \omega) \in \Delta\). If the inequality (3) is reversed, then \(f\) is said to be concave on the coordinates on \(\Delta\).

Definition 4 (see [6]). We say that a function \(f: \Delta = [a, b] \times [c, d] \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}_0\) is MT-convex on the coordinates on \(\Delta\) with \(a < b\) and \(c < d\), if the inequality
\[
f(tx + (1 - t)\lambda z + (1 - \lambda)\omega) \leq tf(x, y) + t(1 - \lambda)f(x, \omega) + (1 - t)\lambda f(z, y) + (1 - t)(1 - \lambda)f(z, \omega)
\]
holds for all \(t, \lambda \in [0, 1]\) and \((x, y), (z, \omega) \in \Delta\). If the inequality (3) is reversed, then \(f\) is said to be concave on the coordinates on \(\Delta\).
\[f(tx + (1-t)z, \lambda y + (1-\lambda)w) \leq \frac{\sqrt{\lambda}}{4\sqrt{(1-t)(1-\lambda)}} f(x, y) + \frac{\sqrt{(1-\lambda)}}{4\sqrt{t(1-\lambda)}} f(x, w) \]
\[+ \frac{\sqrt{(1-t)}}{4\sqrt{t(1-\lambda)}} f(z, y) + \frac{\sqrt{t(1-\lambda)}}{4\sqrt{\lambda}} f(z, w) \]

(4)

is valid for all \(t, \lambda \in (0, 1) \) and \((x, y), (z, w) \in \Delta\). In the papers [7-12] and closely related references therein, the HT-convexity, GT-convexity, and the \((s; m)\)-P-convexity on the coordinates were introduced and investigated.

Proposition 1. Let \(\Delta \). From this, we conclude as follows:

Proposition 1. Let \((s_1, s_2) \in (0, 1)^2 \) and \(f: \Delta = [a, b] \times [c, d] \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}_0 \) be nonnegative and convex on the coordinates on \(\Delta \), then \(f \) is a MT-convex function on \(\Delta \).

Example 1 (see [13], p. 104). When \(p \in (0, 1/1000) \), the functions \(f(x) = x^p \) and \(g(x) = (1 + x)^p \) for \(x \in \Delta_1 = (1, \infty) \) are MT-convex, but they are not convex on \(\Delta_1 \).

Example 2 (see [6], p. 259). When \(p \in (0, 1/1000) \), the function \(h(x) = (1 + x^2)^m \) for \(x \in [1, 3/2] \) is MT-convex, but it is not convex on [1, 3/2].

Combining the structures of Definitions 2 and 4, we introduce the notion of coordinated MT- \((s_1, s_2)\)-convex functions as follows.

Definition 5. For \((s_1, s_2) \in (0, 1)^2 \), a function \(f: \Delta = [a, b] \times [c, d] \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}_0 \) is said to be MT- \((s_1, s_2)\)-convex on the coordinates on \(\Delta \) with \(a < b \) and \(c < d \), if the inequality

\[f(tx + (1-t)z, \lambda y + (1-\lambda)w) \leq \frac{s_1^{1/2} s_2^{1/2}}{4\sqrt{(1-t)(1-\lambda)}} f(x, y) + \frac{s_1^{1/2} s_2^{1/2}}{4\sqrt{t(1-\lambda)}} f(x, w) \]
\[+ \frac{s_1^{1/2} s_2^{1/2}}{4\sqrt{t(1-\lambda)}} f(z, y) + \frac{s_1^{1/2} s_2^{1/2}}{4\sqrt{t(1-\lambda)}} f(z, w) \]

(5)

holds for all \(t, \lambda \in (0, 1) \) and \((x, y), (z, w) \in \Delta\). In inequality (5) is reversed, then \(f \) is said to be a MT- \((s_1, s_2)\)-concave function on the coordinates on \(\Delta \).

2. Simple Properties of MT- \((s_1, s_2)\)-Convex Functions

After introduced Definition 5, now we are in a position to investigate in this section simple properties of MT- \((s_1, s_2)\)-convex functions on the coordinates on \(\Delta \).

Proposition 2. Let \((s_1, s_2) \in (0, 1)^2 \) and \(f: \Delta = [a, b] \times [c, d] \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}_0 \). If \(f \) is nonnegative and convex on the coordinates on \(\Delta \), then \(f \) is MT-convex on the coordinates on \(\Delta \), while \(f \) is also MT- \((s_1, s_2)\)-convex on the coordinates on \(\Delta \).

Proof. This follows from \(t^{1/2}/2\sqrt{1-t} \geq t^{1/2}/2\sqrt{1-t} \), for all \(t \in (0, 1) \).

\[\varphi(tx + (1-t)y) = \left(\frac{x+y+c}{2}\right)^p > \left(\frac{x+c+y+c}{2}\right)^p = \frac{\sqrt{1-t}}{2\sqrt{1-t}} \varphi(x) + \frac{\sqrt{1-t}}{2\sqrt{1-t}} \varphi(y) \]

(6)

Accordingly, the function \(\varphi(x) \) is not MT-convex on \(I \).

Remark 1. We now discuss Examples 1 and 2 mentioned above.

For \(0 < p < 1, c \geq 0, \) and \(I \subseteq (0, \infty) \) being a nonempty interval, the function \(\varphi(x) = (x+c)^p \) is concave on \(I \). Therefore, for \(t = 1/2 \) and all \(x, y \in I \) with \(x \neq y \), we have

(1) For \(p \in (0, 1/1000) \), the functions \(f(x) = x^p \) and \(g(x) = (1 + x)^p \) with respect to \(x \in \Delta_1 \) are not MT-convex on \(\Delta_1 \).

(2) For \(m \in (0, 1/1000) \), the function \(h(x) = (1 + x^2)^m \) with respect to \(x \in [1, 3/2] \) is not MT-convex, but it is convex on \([1, 1/\sqrt{1-2m}] \) and is concave on \([1/\sqrt{1-2m}, 3/2] \).

(3) For \(p \in (0, 1/1000) \), the function \(f(x, y) = x^p + y^p \) with respect to \((x, y) \in \Delta_1 \) is not MT-convex on the coordinates on \(\Delta_1 \).

Remark 1. We now discuss Examples 1 and 2 mentioned above.

For \(0 < p < 1, c \geq 0, \) and \(I \subseteq (0, \infty) \) being a nonempty interval, the function \(\varphi(x) = (x+c)^p \) is concave on \(I \). Therefore, for \(t = 1/2 \) and all \(x, y \in I \) with \(x \neq y \), we have

(1) For \(p \in (0, 1/1000) \), the functions \(f(x) = x^p \) and \(g(x) = (1 + x)^p \) with respect to \(x \in \Delta_1 \) are not MT-convex on \(\Delta_1 \).

(2) For \(m \in (0, 1/1000) \), the function \(h(x) = (1 + x^2)^m \) with respect to \(x \in [1, 3/2] \) is not MT-convex, but it is convex on \([1, 1/\sqrt{1-2m}] \) and is concave on \([1/\sqrt{1-2m}, 3/2] \).

(3) For \(p \in (0, 1/1000) \), the function \(f(x, y) = x^p + y^p \) with respect to \((x, y) \in \Delta_1 \) is not MT-convex on the coordinates on \(\Delta_1 \).
Proof. For \(s_1 = 0.5 \) and \(s_2 = 0.02 \), for \(t, \lambda \in (0, 1) \), and for \((x, y), (z, w) \in \mathbb{R}_1^2 \), by Definition 5, we deduce

\[
\left[tx + (1-t)z \right]^{1/2} = z^{1/2} \left[tu + (1-t) \right]^{1/2} < 1.4z^{1/2} \left[\frac{t^{0.5/2}}{2^{1/2}} u^{1/2} + \frac{(1-t)^{0.5/2}}{2} \right]
\]

This means that the function \(f(x, y) \) is MT-(0.5, 0.02)-convex on the coordinates on \(\mathbb{R}_1^2 \).

For \((x, y), (z, w) \in \mathbb{R}_1^2 \) with \(x \neq z \), taking \(t = \lambda = 1/2 \) in Definition 5 leads to

\[
f(tx + (1-t)z, \lambda y + (1-\lambda)w) = \left(\frac{x+y}{2} \right)^{1/2} > \frac{\lambda^{1/2} + z^{1/2}}{2}
\]

\[
= \frac{\sqrt{\lambda}}{4\sqrt{(1-t)(1-\lambda)}} f(x, y) + \frac{\sqrt{t(1-\lambda)}}{4\sqrt{(1-t)}} f(x, w)
\]

\[
+ \frac{\sqrt{(1-t)\lambda}}{4\sqrt{t(1-\lambda)}} f(z, y) + \frac{\sqrt{(1-t)(1-\lambda)}}{4\sqrt{t\lambda}} f(z, w).
\]

This means that the function \(f(x, y) \) is not MT-convex on the coordinates on \(\mathbb{R}_1^2 \). The proof of Proposition 2 is complete.

3. A Lemma

In order to establish integral inequalities of the Hermite–Hadamard type for MT- \((s_1, s_2) \)-convex functions on the coordinates on \(\Delta \), we need the following lemma.

Lemma 1. Let \(f: \Delta = [a, b] \times [c, d] \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) have partial derivatives of the second order and let \(a < b \) and \(c < d \). If

\[
\frac{\partial^2 f}{\partial x \partial y} \in L_1(\Delta),
\]

then

\[
I(f) = f(b, d) - \frac{1}{b-a} \int_a^b f(x, d)dx - \frac{1}{d-c} \int_c^d f(b, y)dy
\]

\[
+ \frac{1}{(b-a)(d-c)} \int_c^d \int_a^b f(x, y)dxdy
\]

\[
= (b-a)(d-c) \int_0^1 \int_0^1 (1-t)(1-\lambda) \frac{\partial^2 f}{\partial x \partial y} (ta + (1-t)b, \lambda c + (1-\lambda)d) \, dt \, d\lambda.
\]

Proof. Integrating by parts gives
\[
\int_0^1 \int_0^1 (1-t)(1-\lambda) \frac{\partial^2 f}{\partial x \partial y} (ta + (1-t)b, \lambda c + (1-\lambda)d) \, dt \, d\lambda \\
= \frac{1}{a-b} \int_0^1 (1-\lambda) \left[\int_0^1 (1-\lambda) \frac{\partial f}{\partial y} (ta + (1-t)b, \lambda c + (1-\lambda)d) \bigg|_{r=0}^{1} \right] \, d\lambda \\
= \frac{1}{a-b} \left[\int_0^1 (\lambda-1) \frac{\partial f}{\partial y} (b, \lambda c + (1-\lambda)d) \, d\lambda + \int_0^1 \int_0^1 (1-\lambda) \frac{\partial f}{\partial y} (ta + (1-t)b, \lambda c + (1-\lambda)d) \, dt \, d\lambda \right] \\
= \frac{1}{(a-b)(c-d)} \left[f(b,d) - \int_0^1 f(b, \lambda c + (1-\lambda)d) \, d\lambda \\
+ \int_0^1 \int_1^1 f(ta + (1-t)b, \lambda c + (1-\lambda)d) \, dt \, d\lambda \right] \\
= \frac{f(b,d)}{b-a} \int_a^b f(x,d) \, dx - \frac{1}{d-c} \int_c^d f(b,y) \, dy \\
+ \frac{1}{b-a} \int_c^b f(x,y) \, dx \, dy.
\]

The proof of Lemma 1 is complete.

4. Integral Inequalities of the Hermite–Hadamard Type

In this section, we prove some new inequalities of the Hermite–Hadamard type for co-ordinated MT-(s_1, s_2)-convex functions.

\[
\frac{1}{2^{2-(s_1+s_2)}} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{2^{2-(s_1+s_2)}} \left[\frac{1}{b-a} \int_a^b f\left(x, \frac{c+d}{2}\right) \, dx + \frac{1}{d-c} \int_c^d f\left(\frac{a+b}{2}, y\right) \, dy \right] \\
\leq \frac{1}{b-a} \int_c^b f(x,y) \, dx \, dy \\
\leq \frac{1}{2} \left[B\left(\frac{(s_1+2)/2}{1/2}\right) \right] \frac{b-a}{2^{(s_1+1)/2}} \int_a^b \left[f(x,c) + f(x,d) \right] \, dx + \frac{B\left((s_1+2)/2\right), (1/2)}{2^{(s_1+1)/2}} \int_c^d \left[f(a,y) + f(b,y) \right] \, dy \\
\leq B\left(\frac{(s_1+2)/2}{1/2}\right) \frac{b-a}{2^{(s_1+2)/2+1}} \left[f(a,c) + f(b,c) + f(a,d) + f(b,d) \right].
\]
where $B(\alpha, \beta)$ denotes the well-known beta function which may be defined by

$$B(\alpha, \beta) = \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt, \quad \Re(\alpha), \Re(\beta) > 0. \quad (13)$$

Proof. For all $0 < t < 1$, we have

$$\frac{a + b}{2} = \frac{ta + (1-t)b + (1-t)a + tb}{2}, \quad \frac{c + d}{2} = \frac{1}{2} \left(\frac{c + d}{2} + \frac{c + d}{2} \right). \quad (14)$$

Integrating the above inequality over t on $[0,1]$ and utilizing the change of the variable $x = ta + (1-t)b$ for $0 < t < 1$ result in

$$f\left(\frac{a + b + c + d}{2}\right) \leq \frac{1}{2^{(s_1+s_2)/2}} \int_0^1 f\left(\frac{ta + (1-t)b, c + d}{2}\right) + f\left(\frac{(1-t)a + tb, c + d}{2}\right) dt$$

$$= \frac{1}{2^{(s_1+s_2)/2-1}} (b-a) \int_a^b f\left(\frac{x, c + d}{2}\right) dx. \quad (16)$$

By the MT-(s_1, s_2)-convexity of f, we obtain

$$\frac{1}{b-a} \int_a^b f\left(\frac{x, c + d}{2}\right) dx \leq \frac{1}{2^{(s_1+s_2)/2}} \int_0^1 \int_a^b [f(x, \lambda c + (1-\lambda)d) + f(x, (1-\lambda)c + \lambda d)] d\lambda dx$$

$$= \frac{1}{2^{(s_1+s_2)/2-1}} (b-a)(d-c) \int_c^d \int_a^b f(x, y) dx dy. \quad (17)$$

From (16) and (17), it follows that

$$\frac{1}{2^{2-(s_1+s_2)}} f\left(\frac{a + b + c + d}{2}\right) \leq \frac{1}{2^{2-(s_1+s_2)}} \frac{1}{(b-a)(d-c)} \int_c^d \int_a^b f(x, y) dx dy$$

$$\leq \frac{1}{(b-a)(d-c)} \int_c^d \int_a^b f(x, y) dx dy. \quad (18)$$

Similarly, we have

Letting $x = ta + (1-t)b$, $z = (1-t)a + tb$, and $z = w = c + d/2$ in (4) and using the MT-(s_1, s_2)-convexity of f, we obtain

$$\frac{1}{2^{2-(s_1+s_2)}} f\left(\frac{a + b + c + d}{2}\right) \leq \frac{1}{2^{2-(s_1+s_2)}} \frac{1}{(b-a)(d-c)} \int_c^d f\left(\frac{a + b + c + d}{2}\right) dy$$

$$\leq \frac{1}{(b-a)(d-c)} \int_c^d f(x, y) dx dy. \quad (19)$$

A combination of (18) and (19) gives the desired inequality (12).

Putting $y = \lambda c + (1-\lambda)d$ for all $0 < \lambda < 1$ and using the MT-(s_1, s_2)-convexity of f reveals
\[
\frac{1}{(b-a)(d-c)} \int_c^d \int_a^b f(x, y) \, dx \, dy = \frac{1}{b-a} \int_0^1 \int_a^b f\left(\frac{x + x}{2}, \lambda c + (1 - \lambda)d\right) \, dx \, d\lambda \\
\leq \frac{1}{2^{(s+1)/2}(b-a)} \int_0^1 \int_a^b \left[\frac{\lambda^{s/2}}{\sqrt{1-\lambda}} f(x, c) + \frac{(1-\lambda)^{s/2}}{\sqrt{1-\lambda}} f(x, d) \right] \, dx \, d\lambda \\
= B((s_2 + 2)/2, (1/2) \left[f(x, c) + f(x, d) \right] dx.
\]

Applying inequalities between (19) and (22) arrives at

\[
\frac{1}{b-a} \int_a^b f(x, c) \, dx = \int_0^1 f\left((1-t)b, \frac{d + c}{2} \right) \, dt \\
\leq \frac{1}{2^{(s+1)/2}} \int_0^1 \left[\frac{t^{s/2}}{\sqrt{1-t}} f(a, c) + (1-t)^{s/2} \sqrt{f(b, c)} \right] \, dt \\
= \frac{B((s_1 + 2)/2), (1/2)}{2^{(s+1)/2}} [f(a, c) + f(b, c)],
\]

(21)

\[
\frac{1}{b-a} \int_a^b f(x, d) \, dx \leq \frac{B((s_1 + 2)/2), (1/2)}{2^{(s+1)/2}} [f(a, d) + f(b, d)].
\]

(22)

\[
\frac{1}{b-a}(d-c) \int_0^1 \int_a^b f(x, y) \, dx \, dy \leq \frac{B((s_1 + 2)/2), (1/2)}{2^{(s+1)/2}(b-a)} \int_a^b [f(x, c) + f(x, d)] \, dx \\
\leq \frac{B\left(\left(\frac{s_2+2}{2}\right), (1/2)\right) B\left(\left(\frac{s_2+2}{2}\right), (1/2)\right)}{2^{(s_1+s_2)/2+1}} [f(a, c) + f(b, c) + f(a, d) + f(b, d)].
\]

(23)

By similar argument, we can find

\[
\frac{1}{b-a}(d-c) \int_a^b f(x, y) \, dx \, dy \leq \frac{B\left(\left(\frac{s_1+2}{2}\right), (1/2)\right) B\left(\left(\frac{s_1+1}{2}\right), (1/2)\right)}{2^{(s_1+s_2)/2+1}} [f(a, y) + f(b, y)] \, dy \\
\leq \frac{B\left(\left(\frac{s_1+2}{2}\right), (1/2)\right) B\left(\left(\frac{s_1+2}{2}\right), (1/2)\right)}{2^{(s_1+s_2)/2+1}} [f(a, c) + f(b, c) + f(a, d) + f(b, d)].
\]

(24)

The proof of Theorem 1 is complete. \qed

Corollary 1. Under the conditions of Theorem 1, if \(s_1 = s_2 = s \), then
\[
\frac{1}{2^{2(1-s)}} f\left(\frac{a+b+c+d}{2}\right) \leq \frac{1}{2^{2-s}} \left[\frac{1}{b-a} \int_a^b f\left(\frac{x}{2}\right)dx + \frac{1}{d-c} \int_c^d f\left(\frac{a+b}{2}, y\right)dy \right]
\]
\[
\leq \frac{1}{(b-a)(d-c)} \int_c^d f(x, y)dxdy
\]
\[
\leq B((s+2)/2), (1/2)) \left[\frac{1}{b-a} \int_a^b [f(x, c) + f(x, d)]dx + \frac{1}{d-c} \int_c^d [f(a, y) + f(b, y)]dy \right]
\]
\[
\leq \frac{[B(((s+2)/2), (1/2))]^2}{2^{s+1}} [f(a, c) + f(b, c) + f(a, d) + f(b, d)].
\]

Theorem 2. Let \(f: \Delta = [a, b] \times [c, d] \subseteq \mathbb{R}^2 \rightarrow \mathbb{R} \) for \(a < b \) and \(c < d \) have the second partial derivatives and \((\partial^2 f/\partial x \partial y) \in L_1(\Delta) \) and let \((s_1, s_2) \in (0, 1]^2\). If

\[
|I(f)| \leq (b-a)(d-c) \left[\frac{B((s_1+2)/2), (3/2))B((s_2+2)/2), (3/2))}{4} \right]^{1/q}
\]
\[
\times \left[\frac{(s_2+2) \left(\frac{\partial^2 f(a,c)}{\partial x \partial y} \right)^q + (s_1+2) \left(\frac{\partial^2 f(a,d)}{\partial x \partial y} \right)^q + (s_1+2)(s_2+2) \left(\frac{\partial^2 f(b,d)}{\partial x \partial y} \right)^q}{4^{1+1/q}} \right]^{1/q}
\]

where \(B(a, \beta) \) is the Beta function.

Proof. From Lemma 1 and Hölder’s integral inequality, it follows that

\[
|I(f)| \leq (b-a)(d-c) \left[\int_0^1 \int_0^1 (1-t)(1-\lambda)dt d\lambda \right]^{1-1/q}
\]
\[
\times \left[\int_0^1 \int_0^1 (1-t)(1-\lambda) \left(\frac{\partial^2 f(ta+(1-t)b, \lambda c+(1-\lambda)d)}{\partial x \partial y} \right)^q dt d\lambda \right]^{1/q}
\]
\[
= \frac{(b-a)(d-c)}{4^{1+1/q}} \left[\int_0^1 \int_0^1 (1-t)(1-\lambda) \left(\frac{\partial^2 f(ta+(1-t)b, \lambda c+(1-\lambda)d)}{\partial x \partial y} \right)^q dt d\lambda \right]^{1/q}
\]

By the coordinated MT-\((s_1, s_2)\)-convexity of \(|(\partial^2 f/\partial x \partial y)|^q\), we have

\[
\int_0^1 \int_0^1 (1-t)(1-\lambda) \left(\frac{\partial^2 f(ta+(1-t)b, \lambda c+(1-\lambda)d)}{\partial x \partial y} \right)^q dt d\lambda \leq (b-a)(d-c) \left[\frac{B((s_1+2)/2), (3/2))B((s_2+2)/2), (3/2))}{4} \right]^{1/q}
\]
\[\int_0^1 \int_0^1 (1-t)(1-\lambda) \left| \frac{\partial^2 f (ta + (1-t)b, \lambda c + (1-\lambda)d)}{\partial x \partial y} \right|^q \, dt \, d\lambda \]
\[\leq \frac{1}{4} \int_0^1 \int_0^1 (1-t)(1-\lambda) \frac{t^{s_1/2} \lambda^{s_2/2}}{\sqrt{(1-t)(1-\lambda)}} \left| \frac{\partial^2 f (a,c)}{\partial x \partial y} \right|^q \]
\[+ \frac{t^{s_1/2} (1-\lambda)^{s_2/2}}{\sqrt{(1-t) \lambda}} \left| \frac{\partial^2 f (a,d)}{\partial x \partial y} \right|^q + \frac{t^{s_1/2} \lambda^{s_2/2}}{\sqrt{(1-t) \lambda}} \left| \frac{\partial^2 f (b,c)}{\partial x \partial y} \right|^q \]
\[+ \frac{(1-t)^{s_1/2} (1-\lambda)^{s_2/2}}{\sqrt{\lambda}} \left| \frac{\partial^2 f (b,d)}{\partial x \partial y} \right|^q \, dt \, d\lambda \]
\[= \frac{B((s_1+2)/2, (3/2)) B((s_2+2)/2, (3/2))}{4} \left| \frac{\partial^2 f (a,c)}{\partial x \partial y} \right|^q + \left(s_2 + 2 \right) \left| \frac{\partial^2 f (a,d)}{\partial x \partial y} \right|^q \]
\[+ \left(s_1 + 2 \right) \left| \frac{\partial^2 f (b,c)}{\partial x \partial y} \right|^q + \left(s_1 + 2 \right) \left(s_2 + 2 \right) \left| \frac{\partial^2 f (b,d)}{\partial x \partial y} \right|^q . \]

Combining (27) and (28) results in (26). Theorem 2 is thus proved.

\[\text{Corollary 2. Under the assumptions of Theorem 2, if } s_1 = s_2 = s, \text{ then} \]

\[|I(f)| \leq \frac{(b-a)(d-c)}{4^{q+1/q}} \left[\frac{B(s_1+2/2, 3/2)}{2} \right]^{2q} \]
\[\left[\left| \frac{\partial^2 f (a,c)}{\partial x \partial y} \right|^q + \left(s_2 + 2 \right) \left| \frac{\partial^2 f (a,d)}{\partial x \partial y} \right|^q + \left(s_2 + 2 \right)^2 \left| \frac{\partial^2 f (b,c)}{\partial x \partial y} \right|^q \right] \right]^{1/q} . \]

\[\text{Theorem 3. Let } f: \Delta = [a, b] \times [c, d] \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}, \text{ for } a < b \text{ and } c < d \text{ have the second partial derivatives and } \partial^2 f / \partial x \partial y \in L_1(\Delta) \text{ and let } s_1, s_2 \in (0, 1]^2. \text{ If } |(\partial^2 f / \partial x \partial y)|^q \]

\[|I(f)| \leq \frac{(b-a)(d-c)}{4^{1/q}} \left(\frac{q-1}{2q-1} \right)^{2-2q} \left[B\left(\frac{s_1+2}{2} \frac{1}{2} \right) B\left(\frac{s_2+2}{2} \frac{1}{2} \right) \right]^{1/q} \]
\[\times \left[\left| \frac{\partial^2 f (a,c)}{\partial x \partial y} \right|^q + \left| \frac{\partial^2 f (a,d)}{\partial x \partial y} \right|^q + \left| \frac{\partial^2 f (b,c)}{\partial x \partial y} \right|^q + \left| \frac{\partial^2 f (b,d)}{\partial x \partial y} \right|^q \right] \right]^{1/q} . \]

where \(B(\alpha, \beta) \) is the Beta function.

\[\text{Proof. From Lemma 1, Hölder’s integral inequality, and the coordinated MT- } (s_1, s_2)-\text{convexity of } |(\partial^2 f / \partial x \partial y)|^q, \text{ it follows that} \]

\[|I(f)| \leq (b-a)(d-c) \left(\int_0^1 \int_0^1 \frac{[(1-t)(1-\lambda)]^{q/(q-1)}}{\partial x \partial y} \right)^{1-1/q} \]
\[\times \left[\int_0^1 \int_0^1 \frac{\partial^2 f(ta + (1-t)b, \lambda c + (1-\lambda)d)}{\partial x \partial y} \right]^{1/q} \]
\[= (b-a)(d-c) \left(\frac{q-1}{2q-1} \right)^{2-2q} \left[\int_0^1 \int_0^1 \frac{\partial^2 f(ta + (1-t)b, \lambda c + (1-\lambda)d)}{\partial x \partial y} \right]^{1/q} \]
\[\leq \frac{(b-a)(d-c)}{4^{1/q}} \left(\frac{q-1}{2q-1} \right)^{2-2q} \left(B\left(\frac{s + 2}{2}\right) B\left(\frac{s + 2}{2}\right) \right)^{1/q} \]
\[\times \left[\frac{\partial^2 f(a,c)}{\partial x \partial y} + \frac{\partial^2 f(a,d)}{\partial x \partial y} + \frac{\partial^2 f(b,c)}{\partial x \partial y} + \frac{\partial^2 f(b,d)}{\partial x \partial y} \right]^{1/q}. \]

Theorem 3 is thus proved. □

Corollary 3. Under the conditions of Theorem 3, if \(s_1 = s_2 = s \), then
\[|I(f)| \leq \frac{(b-a)(d-c)}{4^{1/q}} \left(\frac{q-1}{2q-1} \right)^{2-2q} \left(B\left(\frac{s + 2}{2}\right) \right)^{2q} \]
\[\times \left[\frac{\partial^2 f(a,c)}{\partial x \partial y} + \frac{\partial^2 f(a,d)}{\partial x \partial y} + \frac{\partial^2 f(b,c)}{\partial x \partial y} + \frac{\partial^2 f(b,d)}{\partial x \partial y} \right]^{1/q}. \]

5. Conclusion

In this paper, we conclude the following:

1. From Definition 5, we introduced a new concept of MT-\((s_1, s_2)\)-convex functions on the coordinates on the rectangle \(\Delta \) of the plane \(\mathbb{R}^2 \).
2. From Propositions 1 and 2, we investigated simple properties of MT-\((s_1, s_2)\)-convex functions on the coordinates on \(\Delta \).
3. With the help of the integral identity in Lemma 1, via Theorems 1, 2, and 3, and via Corollaries 1, 2, and 3, we established some new Hermite–Hadamard type inequalities for MT-\((s_1, s_2)\)-convex functions on the coordinates on \(\Delta \).

Data Availability

No data were used to support this study.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant No. 12061033), by the Natural Science Foundation of Inner Mongolia (Grants Nos. 2018MS01023 and 2019MS01007), and by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (Grant No. NJZY2019).

References

[1] M. Tunc and H. Yıldırım, “On MT-convexity,” 2012, https://arxiv.org/abs/1205.5453.
[2] W. W. Breckner, “Stetigkeitsaussagen für eine Klasse verallgemeinerner konvexer Funktionen in topologischen linearen Räumen,” Publications de l’Institut Mathématique (Beograd) (N. S.), vol. 23, no. 37, pp. 13–20, 1978, German.
[3] H. Hudzik and L. Maligranda, “Some remarks ons-convex functions,” Aequationes Mathematicae, vol. 48, no. 1, pp. 100–111, 1994.
[4] S. S. Dragomir, “On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane,”
[5] S. S. Dragomir and C. E. M. Pearce, “Selected topics on Hermite–Hadamard type inequalities and applications,” RGMIA Monographs, Victoria University, Footscray, Australia, 2000, http://rgmia.org/monographs/hermite_hadamard.html.

[6] P. O. Mohammed, “Some new Hermite–Hadamard type inequalities for MT-convex functions on differentiable coordinates,” Journal of King Saud University-Science, vol. 30, no. 2, pp. 258–262, 2018.

[7] S.-P. Bai, S.-H. Wang, and F. Qi, “On HT-convexity and Hadamard-type inequalities,” Journal of Inequalities and Applications, vol. 3, p. 12, 2020.

[8] S. I. Butt, A. O. Akdemir, A. O. Akdemir et al., “\((m, n)\)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates,” AIMS Mathematics, vol. 6, no. 5, pp. 4677–4690, 2021.

[9] S. I. Butt, A. Kashuri, M. Nadeem, A. Aslam, and W. Gao, “Approximately two-dimensional harmonic \((p_1, h_1)\)-(\(p_2, h_2\))-convex functions and related integral inequalities,” Journal of Inequalities and Applications, vol. 230, p. 34, 2020.

[10] J. Cao, H. M. Srivastava, and Z.-G. Liu, “Some iterated fractional \(q\)-integrals and their applications,” Fractional Calculus and Applied Analysis, vol. 21, no. 3, pp. 672–695, 2018.

[11] S.-H. Wang, X.-W. Sun, and B.-N. Guo, “On GT-convexity and related integral inequalities,” AIMS Math, vol. 5, no. 4, 2020.

[12] Y. Wu, F. Qi, Z.-L. Pei, and S.-P. Bai, “Hermite–Hadamard type integral inequalities via \((s,m)\)-\(P\)-convexity on co-ordinates,” J. Nonlinear Sci. Appl, vol. 9, no. 3, pp. 876–884, 2016.

[13] M. Tunç, Y. Subas, and I. Karabayir, “On some Hadamard type inequalities for MT-convex functions,” International Journal of Open Problems in Computer Science and Mathematics, vol. 6, no. 2, pp. 101–113, 2013.