RESEARCH ARTICLE

Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators

Daniel Bouyer1*, Maren Heese2*, Poyu Chen2, Hirofumi Harashima3**, Francois Roudier1mb, Christian Grüttnert2*, Arp Schnittger2*

1 Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR 8197–INSERM U1024, Paris, France,
2 University of Hamburg, Department of Developmental Biology, Hamburg, Germany,
3 RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Kanagawa, Japan

☯ These authors contributed equally to this work.
¤a Current address: Solution Research Laboratory, AS ONE Corporation, Tonomachi, Kawasaki, Japan
¤b Current address: Laboratoire Reproduction et Développement des Plantes, Université Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
* arp.schnittger@uni-hamburg.de

Abstract

Retinoblastoma (pRb) is a multifunctional regulator, which was likely present in the last common ancestor of all eukaryotes. The Arabidopsis pRb homolog RETINOBLASTOMA RELATED 1 (RBR1), similar to its animal counterparts, controls not only cell proliferation but is also implicated in developmental decisions, stress responses and maintenance of genome integrity. Although most functions of pRb-type proteins involve chromatin association, a genome-wide understanding of RBR1 binding sites in Arabidopsis is still missing. Here, we present a plant chromatin immunoprecipitation protocol optimized for genome-wide studies of indirectly DNA-bound proteins like RBR1. Our analysis revealed binding of Arabidopsis RBR1 to approximately 1000 genes and roughly 500 transposable elements, preferentially MITEs. The RBR1-decorated genes broadly overlap with previously identified targets of two major transcription factors controlling the cell cycle, i.e. E2F and MYB3R3 and represent a robust inventory of RBR1-targets in dividing cells. Consistently, enriched motifs in the RBR1-marked domains include sequences related to the E2F consensus site and the MSA-core element bound by MYB3R transcription factors. Following up a key role of RBR1 in DNA damage response, we performed a meta-analysis combining the information about the RBR1-binding sites with genome-wide expression studies under DNA stress. As a result, we present the identification and mutant characterization of three novel genes required for growth upon genotoxic stress.
Author summary

The Retinoblastoma (pRb) tumor suppressor is a master regulator of the cell cycle and its inactivation is associated with many types of cancer. Since pRb's first description as a transcriptional repressor of genes important for cell cycle progression, many more functions have been elucidated, e.g. in developmental decisions and genome integrity. Homologs of human pRb have been identified in most eukaryotes, including plants, indicating an ancient evolutionary origin of pRb-type proteins. We describe here the first genome-wide DNA-binding study for a plant pRb protein, i.e. RBR1, the only pRb homolog in Arabidopsis thaliana. We see prominent binding of RBR1 to the 5' region of genes involved in cell cycle regulation, chromatin organization and DNA repair. Moreover, we also reveal extensive binding of RBR1 to specific classes of DNA transposons. Since RBR1 is involved in a plethora of processes, our dataset provides a valuable resource for researches from different fields. As an example, we used our dataset to successfully identify new genes necessary for growth upon DNA damage exerted by drugs such as cisplatin or the environmentally prevalent metal aluminum.

Introduction

The first molecular function assigned to the human tumor suppressor Retinoblastoma (pRb) was that of a transcriptional repressor controlling entry into S-phase. It was shown that pRb binds and inhibits the function of E2F-DP transcription factors and that phosphorylation of pRb by CDK-cyclin complexes disrupts this interaction, releasing E2F-controlled genes from repression [1].

Since then, a wealth of additional functions in cell proliferation, differentiation, environmental response and genome stability have been discovered for the family of pRb related proteins in various organisms [2–5]. To date, more than 200 interactors of human pRb are listed in the BioGRID database [6], reflecting the multi-functionality of this molecular hub. Although there is evidence for a role outside the nucleus, e.g. in the cytoplasm to regulate nuclear import of viral proteins [7] and at mitochondria where pRb seems involved in the control of apoptosis [8], most functions of pRb-type proteins are chromatin associated [5].

The pRb–E2F module originated before the divergence of the plant and animal lineages, likely in the last common ancestor of all eukaryotes [9]. While there exists only one pRb homolog in C. elegans, i.e. lin-35, there are two homologs, Rfb1 and Rfb2, in Drosophila and in humans, pRb is member of a small gene family comprising pRb (p105), p107 and p130 [10]. In the model plant Arabidopsis thaliana, there is only one homolog, termed RBR1 (RETINOBLASTOMA RELATED 1) and its loss is female gametophytic lethal [11].

In their function as transcriptional regulators of the cell cycle, pRb-type proteins not only control G1-S transition in proliferating cells but also operate at other phases, i.e. as repressors of G2 and M phase genes in response to DNA damage [12] as well as in G0 to control quiescence as part of the DREAM complex.

The human DREAM complex consists of DP, pRb-like (p130 or p107), E2F and the Multivulval class B (MuvB) core-complex, comprising five additional proteins, LIN9, LIN37, LIN52, LIN54, and RBAP48. When cells exit G0 and reenter the cell cycle, the DREAM-complex is disassembled upon phosphorylation of p130/p107 and the MuvB-core-complex sequentially associates with other transcription factors, like B-Myb and Fox-M1 to activate different sets of genes important for subsequent phases of the cell cycle [13,14]. In Drosophila, a homologous complex, termed dREAM (Drosophila Rfb, E2F2 and Myb-interacting proteins), has been...
characterized but, in contrast to mammals, the fly pRb-type proteins and the only Myb transcription factor have been shown to concomitantly bind the MuvB-core complex [15,16].

Recently, different versions of an Arabidopsis DREAM-like complex were described by Kobayashi and co-workers and have been implicated in the control of mitotic genes [17]. Arabidopsis contains five three-repeat MYBs (MYB3R), that function as transcriptional activators and/or repressors of mitosis [17–19]. Since members of both classes of MYB proteins were found to interact with DREAM components, these data suggest the existence of activating and repressive DREAM-complexes depending on which MYB3R transcription factor is present [4].

In addition to its role in controlling progression through the cell cycle, RBR1, like its animal counterparts [20], is involved in developmental decisions, e.g. by interacting with non-E2F transcription factors such as SCARECROW (SCR) to control asymmetric cell divisions in the root meristem [21,22] and FAMA during stomata development [22,23]. Furthermore, RBR1 has been attributed a role in promoting the meiotic fate of the megaspore mother cell by repressing the expression of the stem cell factor WUSCHEL [24].

Like human pRb, which interacts with different chromatin modifiers, such as histone deacetylases and methyltransferases [25], the SW1-SNF complex [26,27], and the Polycomb repressive complexes (PRC) [28,29], Arabidopsis RBR1 has also been linked to chromatin modification [30]. For example, RBR1 has been shown to complex with the PRC2 subunits FIE [31] as well as MSI1 [32], and a RBR1-PRC2 cooperation has been proposed to allow the switch from late embryogenesis to autotrophic seedling development [33].

Another facet of Arabidopsis RBR1 is its role in DNA damage response (DDR) [34,35], which involves two different modes of action. On the one hand RBR1 binds to and represses DDR genes and by that likely links their regulation to activation of E2F and entry into the cell cycle [34,35]. On the other hand, RBR1 partially co-localizes with γH2AX, a marker for double strand breaks [34,35], and is required for the recruitment of the DNA repair protein RAD51 to DNA lesions [34]. In addition to its role at damage-induced double strand breaks (di-DSBs), RBR1 has also been shown to localize to SPO11-dependent foci in early meiotic prophase, most likely reflecting processed sites of programmed double strand breaks (p-DSBs), i.e. sites of cross-over formation [36].

Thus, like its animal homologs, Arabidopsis RBR1 is a multi-functional protein. However, despite several studies on specific aspects, a comprehensive view of RBR1 action has been precluded by the lack of genome-wide DNA binding data. Using an optimized ChIP protocol on Arabidopsis cell culture material, we now generated the first comprehensive collection of direct RBR1 targets. These data allowed us to obtain insights into the properties of RBR1 binding in mitotically active cells revealing the localization of RBR1 to genes and transposable elements (TEs). Furthermore, we then used this dataset to identify three new genes to be required for growth under genotoxic stress providing functional evidence for the power of our genome-wide study.

Results

Genome-wide RBR1-binding characteristics

One likely reason for the lack of genome-wide RBR1-ChIP data is the indirect binding of RBR1 to DNA, i.e. via E2F and other transcription factors/chromatin modifiers. To close this gap, we introduced several changes to our standard plant ChIP protocol [37]. Starting out from liquid nitrogen ground tissue, we performed a double fixation step using Di(N-succinimidyl) glutarate (DSG) followed by formaldehyde to fix protein-protein- as well as protein-DNA interactions, a strategy successfully applied to improve ChIP results in human cell lines
While the cross-linker Ethylene glycol bis(succinimidyl succinate) (EGS), has been used in ChIP experiments of the transcription factor CRY2 in Arabidopsis [39], we found DSG, a different length cross-linker, to work best for RBR1 among several long-range cross-linkers tested. Another important change to the standard protocol is the use of a douncer, which greatly enhances the release of nuclei prior to chromatin purification (S1A Fig, Material and Methods).

The protocol was applied to two replicates of an exponentially growing Arabidopsis cell culture (MM2d cells, S1B Fig) [40] using a RBR1-specific antibody [41]. ChIP signal to noise ratio and local resolution was high as verified by testing known RBR1 targets as well as negative controls by qPCR (S1C Fig). When analyzed on a whole genome level by pyro-sequencing, both ChIP replicates showed highly significant overlap (Fig 1, S2 Fig).

RBR1-bound domains were not only found to be associated with genes but also with transposable elements (TEs, Fig 1A). While in both replicates RBR1-binding is mainly found in the
5' region of genes, the marking of TEs does not follow an evident pattern (Figs 1A, 1C and 1D, S2 Fig). A meta-gene profile analysis revealed that the peak of RBR1-binding mostly lies within 200 bp upstream of the transcriptional start of genes, but is also often found within the 5' end of the transcribed region (Fig 1C). For further characterization of the RBR1-targeted loci, we used the overlap of both replicates (Fig 1B, S1 Table), i.e. a total of 937 genes and 475 transposons representing a robust core set of RBR1-bound elements. Since in other organisms pRb-type proteins have been shown to be associated with origins of replication (ORI) [42,43], we related our data to an ORI set of Arabidopsis [44]. While there is a small, but still significant overlap between gene-associated ORIs and our RBR1-gene set (P(X > = 66) = 3.24E-05), this is not the case for TEs (P(X > = 1) = 0.452, S3 Fig).

RBR1 binds DNA-transposons

When we addressed the binding of RBR1 to TEs in detail, a clear overrepresentation of DNA-transposons was found while retrotransposons were nearly absent (Fig 2A). At the level of individual TE families, we found a more than 10-fold enrichment of Simplehat1, Simplehat2, Simpleguy1, Arnoldy1 and Arnoldy2 in the RBR1 dataset when compared to the whole genome frequency (Table 1). These families are all Miniature Inverted–Repeat TEs (MITEs), i.e. very short elements of the non-autonomous type, which do not carry any ORF. Unless inserted into the transcribed region of another gene, we assumed these elements to be transcriptionally silent. Indeed, none of the MITEs of our list of RBR1-bound TEs showed clear transcriptional activity in the wildtype or was significantly upregulated in ddm1 or met1 mutants in a recent whole genome transcriptional study of TEs [45] (S2 Table).

We next asked if RBR1-marked MITEs, when inserted inside or close to a gene, would necessarily influence that gene's expression. However, neither AT1G65985, a gene that carries a Simpleguy1 transposon (AT1TE80690) in the second intron, nor AT1G60020, where a Simplehat2 transposon (AT1TE72980) is inserted into the upstream-region, showed upregulation in hypomorphic mutants of RBR1 (rbr1-2, Fig 2B–2D). In line with this, we do not see enrichment of RBR1-bound TEs in proximity of genes compared to the whole genome TE dataset (S3 Table).

RBR1 controls the VANB ORF of the VANDAL21 transposon Hiun

Among the significantly overrepresented RBR1-bound TE-families, there is only one autonomous DNA-transposon family, VANDAL21. Its RBR1 decorated members, including the well-characterized TE Hiun [46], show transcriptional activity which is significantly upregulated in ddm1 and met1 mutants [45] (S2 Table). Hiun has been show to carry 3 ORFs, VANA, VANB and VANC [46] (Fig 2E). VANA encodes a protein with high sequence similarities to MURA-type transposases and VANC functions as a DNA demethylation factor implicated in the escape of Hiun from epigenetic silencing. Interestingly, the RBR1-peak marks the upstream region of VANB (Fig 2E) and an analysis of VANB-expression showed a significant upregulation in rbr1-2 mutants in comparison to the wildtype (Fig 2B). So far, a biological function has not yet been assigned to VANB. However, our observation that this ORF is under RBR1 control suggests a possible connection to the cell cycle and/or cell differentiation.

E2F-consensus site enrichment in RBR1-bound TEs

A motif analysis of the RBR1 bound domains associated with TEs using the MEME-Chip software [47] detected three highly overrepresented motifs (Fig 2F, see S1 Appendix for corresponding probability matrices). The most enriched motif (TE-motif 1) fits the consensus sequence described for the Arabidopsis E2F-transcription factor family, i.e. WTTSSCSS, where
W stands for A or T and S stands for C or G [48] (S4A Fig). Matches to this more degenerate consensus motif were subsequently found in 77% of all RBR1-targeted TE associated domains.

In contrast to genes, the transposon-associated RBR1-preaks are often broad, sometimes overlapping the entire TE (S2B Fig). This finding is in accordance with the observation that...
transposon-associated E2F-sites are frequently organized in a microsatellite structure [49]. Consistently, when we quantify the number of WTTSSCSS motifs per RBR1-bound TE associated domain, we see an average of 8.6 and a median of 6 motifs per WTTSSCSS bearing domain, confirming a repetitive organization (Table 2). For comparison, the average of WTTSSCSS occurrences is 1.9 with a median of 1 in gene-associated domains.

To follow up the question if clustering is specific for TE-motif 1, we performed a MCAST-analysis (Motif Cluster Alignment and Search Tool-analysis) including all three overrepresented motifs. A total of 218 clusters were identified in the RBR1-marked TE associated domains 22 of which contained only TE-motif 1, while pure TE-motif 2 or TE-motif 3 clusters occurred merely once. In most clusters however all 3 motifs were present in a variety of different layouts (S2 Appendix).

RBR1-bound genes in proliferating cells

The S-Phase genes *PCNA1, ORC3, ORC1A, MCM5* and *MCM2*, the DNA repair genes *RAD51* and *BRCA1* as well as the cyclin-dependent kinases *CDKB1;1* and *CDKB1;2* have been shown to be RBR1 targets by gene specific RBR1-ChIP-qPCR experiments [23,24,33–35,50,51] and all of them are present in our core dataset of 937 genes (Fig 1B, S1 Table) highlighting the quality of the RBR1-ChIP result.

To get a whole genome view on RBR1-controlled processes in proliferating cells, we performed GO-term enrichment studies of the RBR1-bound genes. In agreement with an evolutionary conserved role of pRb-type proteins [5,52], several analyses using different algorithms

Table 1. TE-family distribution of RBR1 bound domains.

TE-family	TE super-family	Total genome (31095)	RBR1-ChIP (475)	% RBR1-ChIP % total	P(X > RBR1-ChIP)	Bonferroni-corrected P value
SIMPLEHAT1	DNA/HAT	56	22	25.72	9.13E-26	1.19E-24
SIMPLEGUY1	DNA/Harbinnger	116	36	20.32	4.63E-37	6.02E-36
ARNOLDY2	DNA/MuDR	288	60	13.64	6.73E-50	8.75E-49
SIMPLEHAT2	DNA/HAT	73	12	10.76	1.11E-09	1.44E-08
ARNOLDY1	DNA/MuDR	237	38	10.50	2.02E-27	2.63E-26
VANDAL21	DNA/MuDR	64	5	5.11	2.96E-03	3.85E-02
HELITRONY3	RC/Heltron	1399	88	4.12	4.41E-30	5.73E-29
TENSEPM2	DNA/En-Spm	114	5	2.87	3.09E-02	4.02E-01
BRODYAGA1	DNA/MuDR	251	5	1.30	3.38E-01	1
ATREP15	RC/Heltron	1003	16	1.04	4.66E-01	1
BRODYAGA2	DNA/MuDR	525	8	1.00	5.52E-01	1
ATREP10D	RC/Heltron	1295	18	0.91	6.92E-01	1
ATREP3	RC/Heltron	1439	19	0.86	7.74E-01	1

https://doi.org/10.1371/journal.pgen.1007797.t001

Table 2. WTTSSCSS occurrences in RBR1 bound domains.

WTTSSCSS occurrences	TE associated domains	Gene associated domains
average	6.66	1.18
average of domains with at least one motif	8.62	1.88
median	4	1
median of domains with at least one motif	6	1
maximum	42	20

https://doi.org/10.1371/journal.pgen.1007797.t002
showed highly significant enrichment of GO terms like cell cycle, DNA repair, DNA replication and chromatin organization (e.g. Table 3).

We also compared our RBR1-ChIP data with published gene lists covering different areas of interest (S5 Fig, S4 Table). These comparisons revealed that more than two-thirds of the Arabidopsis core replication machinery show RBR1-binding in our assay as well as more than one third of the main cell cycle genes, including RBR1 itself (S5A Fig and S5B Fig). A little less pronounced but still highly significant, is the overlap with genes involved in DNA repair and chromatin organization (S5C Fig and S5D Fig).

When we compared RBR1-bound loci with previously published RBR1 RNAi transcriptomes, there was considerable overlap with genes upregulated upon RBR1 depletion (Fig 3A). Almost half of the genes upregulated in roots of a RBR1-RNAi line in which an antisense RNA is specifically expressed in the root meristem [35], are bound by RBR1 in cell culture. Also the overlap with transcriptome data from young leaves using an inducible RNAi construct against RBR1 [53] is highly significant (roots, P(X > = 38) = 1.126e-33; young leaves, P(X > = 122) = 5.516e-39). For the latter dataset, representing a time-course after RNAi induction, the overlap is mainly seen with genes upregulated at 12 and 24 hours after RNAi induction (hai) but only marginally with the 3 and 6 hai-datasets (Fig 3B). Thus, it apparently takes more than 6 hours till RBR1 silencing and subsequent upregulation of direct RBR1 targets becomes evident.

Taken together, these analyses indicate that our data are a reliable whole genome representation of RBR1-controlled genes in mitotically active cells, covering the area of cell cycle, especially replication, DNA repair and chromatin organization and provide a valuable resource for further studies.
Common targets of RBR1, E2F and MYB3R transcription factors

In cell cycle regulation, RBR1, like pRb-type proteins in other organisms, has been shown to complex with E2F and MYB transcription factors [17,51,54]. Hence, we next compared the targets of these transcriptional regulators with those of RBR1. Since RBR1 is best known as a repressor of E2F-controlled genes, we first related our dataset to several published E2F-target datasets (see below) and genes having the E2F-binding consensus WTTSSCSS within 400 bp upstream of their translational start site (Fig 3C and S6 Fig). We chose 400 bp upstream of the start codon as a reasonable distance since up to that limit the WTTSSCSS motif was shown to be overrepresented in a group of E2F-DPa upregulated genes [48]. For non-protein coding genes 400 bp upstream of the beginning of the gene were used. The E2F datasets in our comparisons included two transcriptional datasets from seedlings containing genes with increased transcription upon E2F-DPa over-expression [48,55], data from technically diverse E2F binding experiments using cell culture (ChIP, Chromatin Affinity Purification (ChAP) and Tandem Chromatin Affinity Purification (TChAP)) published by Verkest et al. ([56] P (X > = 185) = 3.03E-223 and with genes showing an E2F-binding consensus site (WTTSSCSS) within 400 bp up-stream of the START-codon or beginning of the gene for non-protein coding genes (P(X > = 375) = 1.33E-106).

Several conclusions can be drawn from this comparative analysis: First, the overlap of RBR1-targets with E2F-DP responsive genes (S6B Fig and S6C Fig) as well as with genes showing direct E2F association (ChIP, ChAP, TChAP and DAP, Fig 3C, S6A Fig and S6D Fig) is very large, in accordance with an important role of E2F transcription factors in RBR1 targeting. Second, the WTTSSCSS site on its own, even if positioned in the 5′ region of a gene is not sufficient for RBR1 binding as only a fraction of all genes having a WTTSSCSS motif within 400 bp up-stream of the start codon were associated with RBR1 in our ChIP experiment. Yet, this is similar for E2F target genes (Fig 3C and S6 Fig) as noticed before [48,55–57]. The third general observation is, that RBR1 as well as E2F also bind to genes that do not contain a consensus WTTSSCSS site in their 5′ region, indicating that binding can occur to a more degenerate or even completely different motif (see below). Finally, there are WTTSSCSS containing, RBR1-bound genes which are apparently not regulated by E2F, possibly reflecting...
a dependency on the developmental context and/or control by other members of the E2F family.

In a second set of comparative analyses, we related our RBR1-ChIP with whole genome ChIP data for MYB3R3, a repressive MYB-transcription factor that has recently been shown to be part of a plant DREAM-like complex (Fig 4A) [17]. Notably, more than half of the MYB3R3 gene targets also exhibit RBR1 binding and almost a quarter bind E2Fa in addition to RBR1 based on an E2Fa dataset from Verkest et al. [56]. A meta-analysis locating the position of RBR1 binding with respect to the center of E2Fa and MYB3R3 bound sites, revealed peaks centered around the same position (S7 Fig), which is in accordance with all three proteins being part of a DREAM complex regulating the same genes. Although there is a weak preference of MYB3R3 for M-Phase associated genes (MYB3R3: \(P(X > 66) = 3.78E-52 \); RBR1: \(P(X > 48) = 1.38E-15 \)), the general picture is that both MYB3R3 and RBR1 bind to and potentially control S- as well as M-Phase genes (Fig 4B and 4C).

Next, we performed a GO-term enrichment analysis of the genes bound by RBR1 and MYB3R3 (RBR1/MYB3R3-overlap), by RBR1-only and by MYB3R3-only (S8 Fig). This revealed an enrichment of the GO-terms DNA replication, chromatin organization, chromosome segregation, DNA recombination, DNA repair and mitosis in the RBR1-only and in the RBR1/MYB3R3-overlap groups while of these GO-terms only mitosis is enriched in the MYB3R3-only class (S8B Fig). Furthermore, when we compared these three gene sets with genes upregulated in a myb3r1 myb3r3 myb3r5 triple mutant [17], we saw preferential overlap with the MYB3R3-only group (S8A Fig). Thus, there seems to be a sub-class of mitotic genes under MYB3R control that are not co-repressed by RBR1, an example being the cytokinesis specific syntaxin KNOLLE [58] (S2C Fig).

Enriched motifs in gene-associated RBR1-ChIP peaks

Since not all RBR1-bound genes appeared to be targets of E2F and/or MYB3R3 (see above), we performed a search for overrepresented motifs in our RBR1-ChIP data. A MEME-ChIP
analysis with standard settings identified six motif-clusters. The most significantly enriched motif of each cluster is shown in Fig 5 (gene-motif 1–6, see S1 Appendix for corresponding probability matrices).

To estimate the genome-wide frequency of these motifs as well as the distribution among the MYB3R3- and/or RBR1-marked protein coding genes, we performed a FIMO-analysis (FIMO, Find Individual Motif Occurrences) [59] using 400bp upstream of the start codon as target sequences. Since FIMO counts all individual motif occurrences, we also clustered overlapping sites and summed up the clusters reducing the number of counts especially for repetitive motifs like gene-motif 1 and gene-motif 3 (Table 4).

This analysis showed that sequences matching the repetitive motifs 1 and 3 occur at high frequency within 400 bp upstream of the translational start of genes on a genome-wide level. Gene-motif 1 strongly resembles the so-called GAGA-motif (see S4 Fig for motif alignments), which has been described as an element of PREs (polycomb responsive elements) in animals [61,62] and plants [63,64] while gene-motif 3, also named translocon1-motif (TL1, GAAGAA-GAA), has been shown to be bound by TBF1, a heat-shock factor-like protein associated with the expression of defense response genes [65]. Whereas RBR1 function has not yet been documented for drought stress or ABA-signaling, processes associated with the less frequent gene-motif 4 (ACGTRGC) [66,67], a very similar motif has been found enriched in plant PREs as well [64] and related to a motif called G-box (CACGTG). A third match to motifs described as relevant for PREs is gene-motif 5, which resembles the so-called telobox (AAACCCTAA) [64]. In addition, teloboxes, which consist of 1.3 units of the Arabidopsis telomere repeat, are enriched in promoters of components of the translational machinery and can be bound by

![Motif 1](https://doi.org/10.1371/journal.pgen.1007797.g005) e-value: 1.9e-108
![Motif 4](https://doi.org/10.1371/journal.pgen.1007797.g005) e-value: 3.3e-006

![Motif 2](https://doi.org/10.1371/journal.pgen.1007797.g005) e-value: 9.6e-089
![Motif 5](https://doi.org/10.1371/journal.pgen.1007797.g005) e-value: 3.2e-005

![Motif 3](https://doi.org/10.1371/journal.pgen.1007797.g005) e-value: 9.2e-050
![Motif 6](https://doi.org/10.1371/journal.pgen.1007797.g005) e-value: 2.9e-003

Fig 5. Overrepresented motifs in gene-associated RBR1-bound domains. The analysis was done using MEME-ChIP (E-value ≤ 0.01). Motifs were discovered by MEME and DREME and clustered by similarity. Only the most significant motif per cluster is shown.

https://doi.org/10.1371/journal.pgen.1007797.g005
AtPurα [68]. Noteworthy, complex formation of AtPurα and E2Fa has been documented in Arabidopsis [69] and the mammalian homolog, Purα, has been shown to directly interact with pRb [70] suppressing the transcriptional activity of E2F-1 [71].

As expected from our comparative studies with E2Fa, gene-motif 2, which matches the E2F consensus, is the strongest enriched motif in the complete RBR1 dataset as well as in the RBR1/MYB3R3 and the MYB3R3-only set from the RBR1/MYB3R3 comparison (Table 4). Furthermore, gene-motif 6, which shows very significant enrichment in the RBR1/MYB3R3 and the MYB3R3-only set, contains the core of the MSA-element (AACGG) found in the promoter of mitotic genes and known to be bound by MYB3R transcription factors [72].

RBR1 target genes in DNA damage response

Since DNA repair is among the highly enriched GO-terms in our RBR1 core dataset and since it was shown that at least a few DDR genes are under direct RBR1 transcriptional control [34,35], we decided to zoom into this role of RBR1 as a functional test case of our work.

Exposure to stresses, such as DNA damage, usually causes a cascade of transcriptional responses making it difficult to separate primary from subsequent and/or indirect effects. We hypothesized that combining the criteria "transcriptional upregulation upon DNA damage" and "gene bound by RBR1" might be a valid approach to identify so far uncharacterized, yet important DDR genes. We also postulate that "gene bound by RBR1" might be better suited than the criterion "upregulated upon loss/reduction of RBR1 activity" since the reduction of RBR1 by RNAi or the use of the hypomorphic rbr1-2 mutant only resulted in a rather weak upregulation of DDR genes [34,35].

It was previously proposed that the regulation of DDR genes by RBR1 could represent a priming mechanism, i.e. the coupling of DDR gene expression to the cell cycle might open the chromatin of these genes in dividing cells, in which DNA damage is especially critical. This opening of the chromatin would then make them easily and fast accessible for other, DDR specific transcriptional regulators, such as SOG1 [34].

For our analysis, we made use of publicly available transcriptional profiles of various Arabidopsis tissues after treatment with DNA damaging agents [73–82, GEO series GSE5620 and GSE5625]. We extracted the transcriptionally upregulated genes from 32 experiments (S5
and calculated the overlap with our RBR1-ChIP dataset as well as a reference list of genes involved in DNA repair (S4 Table). In total, 8907 genes were found to be upregulated in DNA stress experiments, 307 of which are RBR1 targets according to our analysis. As shown in Fig 6A there is an about tenfold enrichment of genes involved DNA damage repair in the RBR1 bound subset (11.1%) compared to the non-RBR bound group (0.9%) of transcriptionally upregulated genes providing proof of concept for the validity of our approach.

Fig 6B displays all genes that are upregulated under DNA stress in more than three experiments and that are also bound by RBR1. In search of genes with a not yet described role in DDR, we selected four candidates based on the availability of homozygous insertion lines, i.e. AT1G04650, AT2G45460, AT3G20490 and AT5G46740 for further analysis (Fig 6B, black label; Material and Methods). To verify if RBR1 binding to these genes indeed reflects transcriptional inhibition, we monitored their expression in the wildtype and rbr1-2 mutants using qRT-PCR. As for known DNA-damage regulators like BRCA1 and RAD51, we see a slight, yet significant upregulation of all four candidate genes in rbr1-2 mutants (S9 Fig).

After confirming the absence of full-length transcripts in mutant lines of the candidate genes (S10 Fig), we analyzed them in root growth assays on different DNA damaging agents. In a first set of experiments, we used bleomycin and cisplatin since we have previously shown that rbr1-2 mutants are sensitive both toxins [34] (Fig 7). Bleomycin induces double strand breaks, which can be repaired by non-homologous end joining (NHEJ) and homologous recombination (HR). Cisplatin also causes DNA breaks and in addition, DNA cross-links, which require homology-dependent DNA repair. In addition we tested for root-growth on hydroxy urea (HU) containing media to complement our set of DNA damaging drugs with an agent causing replication stress, which eventually leads to double strand breaks in S-Phase that can be repaired by HR as well (S11 Fig).

Whereas plants mutant for AT2G45460 grew like the wildtype on bleomycin, cisplatin as well as HU containing media, the loss of any of the other genes resulted in different patterns of hypersensitivity to these three DNA damaging drugs (Fig 7, S11 Fig). While this work was in progress, the closest rice homolog of AT1G04650 was shown to participate in meiotic recombination and designated MEICA1 (Meiotic Chromosome Association1) [83]. More recently, AT1G04650 itself was found to be an interactor of the anti-crossover factor FIDGETIN-LIKE-1 (FIGL1) in Arabidopsis and therefore named FLIP (FIDGETIN-LIKE-1 INTERACTING PROTEIN) [84]. While FLIP’s crossover limiting role in meiotic recombination has been clearly demonstrated, a likely analogous function in DNA damage repair has only been speculated on. AT3G20490 will be called KNOTEN1 (KNO1, German for “to knot, to tie together”) since the mutant shows an accumulation of DNA lesions upon genotoxic stress (see below).

Mutants in KNO1 showed a strong growth inhibition on cisplatin, were only mildly affected by HU and displayed no significant growth reduction on bleomycin at the concentrations used in our assay (Fig 7, S11 Fig). For the flip lines, we observed a clear mutant phenotype on cisplatin as well as bleomycin although the growth inhibition on cisplatin was less pronounced than for kno1. Growth of flip mutants on HU was mildly, yet significantly reduced, similar to that of kno1 plants. Mutants for UBP21 were not affected by HU, but showed a mild growth inhibition on cisplatin and bleomycin containing plates, the latter being slightly more effective.

We further tested all hypersensitive lines for recovery growth after treatment with 1.5 mM aluminum (S12 Fig). Bioavailable aluminum (e.g. as Al^{3+}) is a toxin plants are frequently exposed to on acidic soils [86] and previous work has indicated that it also induces DNA breaks [87]. Significant reduction in recovery growth was seen for the kno1 mutants from day
Fig 6. Meta-analysis of gene expression data from DNA stress experiments. (A) VENN diagram displaying the number of genes upregulated at least once in 32 DNA-stress experiments (S5 Table) in comparison with RBR1-bound genes (S1 Table) and genes known to be involved in DNA repair (S4 Table). Highly
significant enrichment (p < 0.0001, Fischer’s Exact test) of genes involved in DNA repair is seen when genes that are upregulated under DNA stress and bound by RBR1 (11.1% DNA repair genes) are compared with those that are upregulated but do not show RBR1 binding (0.9% DNA repair genes). (B) List of genes that are upregulated upon DNA stress in more than three out of 32 experiments and that are RBR1 targets according to the RBR1-ChIP experiment. The Y-axis displays the number of experiments in which a gene was found to be significantly upregulated under DNA-stress. For more detailed information, see S5 Table. Genes that are also present in the DNA-repair dataset (S4 Table) are labeled in red and the candidate genes for further investigation in black.

https://doi.org/10.1371/journal.pgen.1007797.g006

three after treatment onwards. Also the flip mutant lines showed a clear trend towards growth reduction on aluminum. However, the result was statistically significant only for line flip-3 after 4 days. In contrast, the ubp21 mutants did not show any obvious reduction in recovery growth after aluminum treatment at the conditions tested.

To analyze if the observed hypersensitivity of kno1, flip and ubp21 plants to genotoxic agents is indeed due to enhanced DNA damage, we monitored γH2AX foci as a marker for double strand breaks after short term incubation in media with and without cisplatin or bleomycin [88]. While wildtype plants only showed few γH2AX-foci upon DNA stress under these conditions, we observed an enhanced accumulation of foci in the mutant lines (Fig 8). Whereas the damage for kno1-1 and flip-2 on cisplatin was slightly more severe than the damage on bleomycin at the conditions tested, the opposite was true for ubp21-1, which showed a stronger accumulation of γH2AX-foci on bleomycin than cisplatin in agreement with its slightly higher sensitivity towards bleomycin in the root growth assay.

Next, we asked if the genes identified might be involved in signaling of DNA damage. We therefore used qRT-PCR to check the respective mutant lines for expression of the SOG1 targets CYCB1;1 and RAD51, known to be transcriptionally upregulated upon DNA lesions (Fig 9A and 9B). While expression of CYCB1;1 in ubp21-1 is at wildtype level in stressed and non-stressed plants, it’s upregulation upon cisplatin treatment is significantly less pronounced in the kno1-1 line and significantly more upregulated in flip-2 mutants when compared to the wildtype (Fig 9A). A similar trend is seen for RAD51 (Fig 9B). This result indicates that kno1-1 plants have problems in transmitting a DNA damage-induced signal, which normally leads to RAD51/CYCB1;1 upregulation, while the finding for flip-2 is in accordance with an impaired repair process, where the plant shows a compensatory response by transcriptional upregulation of repair pathway components.

Finally, we analysed RAD51 localization as a marker for the assembly of the HR repair machinery upon treatment with cisplatin or bleomycin (Fig 9C). In ubp21-1 and flip-2 mutants RAD51 localized in a wildtype-like pattern, indicating that RAD51-mediated homology search still takes place in these mutants, whereas no clear RAD51-foci were seen in kno1-1 mutants. The reason for this could be the reduced RAD51 transcription. However, since RAD51 upregulation is only reduced but not abolished in the kno1-1 line, the lack of RAD51 foci might also indicate an additional function of KNO1 in the proper recruitment of the repair machinery to lesion sites.

Taken together, using ”RBR1 binding” and ”transcriptional upregulation upon DNA stress” as combined criteria is an efficient approach to identify new genes involved in different aspects of the DNA damage response.

Discussion

Here, we present the first genome-wide RBR1-ChIP dataset for plants. Using proliferating cells of Arabidopsis, we identified a core set of 937 genes and 475 TEs marked by RBR1. The high reliability of our dataset is indicated on the one hand by the GO-term enrichment results, which are in accordance with Rbf1/Rbf2-ChIP results from flies [89–91] and ChIP results for human pRb-type proteins [92–94] and on the other hand by a strong overlap with gene sets regulated by proteins known to form a complex with RBR1, like E2Fa-DP and MYB3R3. Our
data reveal a preferential RBR1-binding to the 5’ end of genes, as expected for a transcriptional regulator and a strong enrichment of the E2F consensus sequence WTTSSCSS in the RBR1-bound domains.

However, it needs to be tested if the analysis of different tissues/cell types will complete the list of RBR1-targets, especially since previously identified RBR1-targets involved in developmental processes were not detected by our approach [21,22,50]. We assume that this discrepancy is not due to technical constraints of the established ChIP protocol, which resulted in very reproducible and strong signal enrichments, but rather indicates that RBR1 binding to, and repression of developmental targets is temporally and/or spatially restricted.

For Arabidopsis, there are several indications of interplay between RBR1 and PRC2, a chromatin associated complex implicated in the stable repression of genes turned off during developmental progression [95,96]. On the one hand, the PRC2 components MSI1 and FIE have been shown to interact with RBR1 [31,32]. However, MSI1 likely also acts independently of PRC2 since it is an essential part of the CAF-1 complex [97] and by homology to the mammalian RBBP4 it is a putative component of a plant DREAM complex [17]. In support of this notion, transcriptional control of MET1 in the endosperm depends on MSI1-RBR1 but is independent of PRC2 [32]. On the other hand, three of the DNA sequences enriched in our RBR1-ChIP, i.e. the very frequent and repetitive gene-motif 1 (GAGA) as well as gene-motif 4 (ACGTGKC) and the telobox-like gene-motif 5, resemble DNA motifs that were recently shown to contribute to PREs in plants [64]. Nevertheless, when we compared the RBR1 targets with gene sets marked by either FIE or by H3K27me3, the chromatin mark reflecting PRC2 action, we did not find significant overlap on a genome wide level. On the contrary, relating lists of RBR1 bound and H3K27me3 decorated genes, we see significantly less overlap than expected by chance indicating a mutually exclusive pattern [64,98,99] (S13 Fig). Thus, either the overrepresentation of similar motifs in RBR1 and PRC2 bound domains is due to some higher order similarity between both gene sets or concomitant/interdependent gene repression by both regulators takes place only transiently and therefore is not seen by analysis of data from different tissues.

Our ChIP data indicates that RBR1 is recruited to E2F-sites that have been picked up and amplified by TEs in Arabidopsis. It has been reported that spreading of TEs with E2F-binding sites in microsatellite structure also occurred in other Brassicaceae species [49]. Interestingly, it is not always the same TE family showing this sequence motif expansion, although there is a clear bias for DNA-transposons, more specifically MITES. This suggests that the local retention of E2F/RBR1 is beneficial regarding TE amplification, as the E2F sequence motif occurs in different TE families even in closely related species and therefore must have accumulated after their evolutionary separation (Henaff 2014). Since MITES do not carry any ORF, this advantage is likely unrelated to RBR1’s role in transcriptional control. Because replication timing correlates with chromatin accessibility [100], one possibility is, that phosphorylation of RBR1 at G1/S and thus dissociation from E2F might lead to a decompaction of chromatin structure at the start of S-phase allowing for early replication of the affected loci and thus, giving a higher chance for multiplication by transposition from a newly replicated chromatid to a yet unreplicated site. Alternatively, local RBR1 accumulation might be beneficial for DNA-repair upon transposition of MITEs. In this respect, it is noteworthy not only that the mobilization of the DNA transposon Sleeping Beauty in human cell lines depends on Xrcc3/Rad51C,
Fig 8. DNA damage analysis in the wildtype versus kno1-1, flip-2 and ubp21-1 mutants. (A) Root nuclei incubated with an anti-γH2AX antibody after 3 hr treatment of seedlings with cisplatin and bleomycin in comparison with mock treated samples. (B) Quantification of γH2AX foci, 50 nuclei were counted per line.

https://doi.org/10.1371/journal.pgen.1007797.g008
Genome-wide RBR1 binding sites in Arabidopsis

A

CYCB1;1

B

RAD51

C

Mock +CiPt +BLM

WT

Mock +CiPt +BLM

kno1-1

Mock +CiPt +BLM

flip-2

Mock +CiPt +BLM

ubp21-1
a complex that functions during homologous repair (HR), and on Ku70/Ku80, a key player in non-homologous end-joining (NHEJ), but also that Sleeping Beauty transposase directly interacts with the Ku70/Ku80 hetero-dimer [101]. Conversely, the involvement of pRb in canonical NHEJ and HR has been described, and it has been shown that pRb interacts with the ku70/ku80 hetero-dimer as well [102,103]. Also for Arabidopsis, we and others have seen that RBR1 is involved in DNA repair at the site of the lesion [34,35], partially co-localizing with RAD51, a major player in HR [34]. It is known that TEs use and modify the cellular machinery of the host at several levels to promote their own survival [104,105]. Thus, RBR1 might provide a link to the recombination/repair machinery required for stable MITE transposition in the host genome.

Additionally, in case of the non-MITE transposon Hiun, which belongs to the VANDAL21 family, we see a different example of interplay between the host machinery and the transposon, since one of the Hiun-localized ORFs is transcriptionally controlled by RBR1 and therefore potentially activated during G1/S phase, the moment when DNA transposons excise and mobilize [106].

To make further use of the information derived from our genome-wide study, we combined the core set of RBR1-bound genes with transcriptional data from DNA stress experiments. This led to the identification of three genes with so far unknown function in protection against DNA damage. At the beginning of this study, only two of the four genes analyzed had a functional annotation based on homology, i.e. AT5G46740 as ubiquitin-specific protease (UBP21) and AT2G45460 as SMAD/FHA domain-containing protein, while KNO1 (AT3G20490) and FLIP (AT1G04650) were described as genes of unknown function. With the new set of mass annotation provided by Araport11 [107], KNO1 became annotated as putative Rho GTPase-activating protein and FLIP as Holliday junction resolvase, but both annotations are still lacking experimental support in Arabidopsis. Holliday junction resolvases function in meiotic as well as somatic HR in different organisms [108] and FLIP has recently been shown to act as a suppressor of meiotic crossovers in complex with FIGL1 [84]. A role in damage induced HR has not been shown so far, yet is very likely in light of our findings.

Our results show that KNO1 is needed after DNA damage to efficiently up-regulate and probably also localize components of the HR repair machinery like RAD51. In humans genotoxin-induced DNA damage stimulates nuclear Rac1, a Rho GTPase required for the activation of stress kinases [109]. However, plants do not possess Rac1 orthologs, but a plant specific family of Rho-type GTPases (Rop) instead [110], which to our knowledge has not yet been linked to DDR. Notably, KNO1 as well as UBP21 are among 146 recently identified direct targets of the major DNA damage related transcription factor SOG1 [111], adding further support for their role in DDR. In addition, ubiquitin-specific peptidase 21 (USP21) from human, which like UBP21 of Arabidopsis is a ubiquitin carboxyl-terminal hydrolase, has been shown to de-ubiquitinate and stabilize BRCA2 to promote efficient RAD51 loading at DNA double-strand breaks [112] and it is tempting to speculate if UBP21 has a similar role. However, although we cannot exclude subtle quantitative effects, we still see RAD51 loading in ubp21 mutants. Further studies are needed to unravel the exact molecular function of Arabidopsis KNO1, FLIP and UBP21 in somatic cells to fully understand their here discovered requirement under DNA damaging conditions.

Fig 9. KNO1 is needed for RAD51 localization. Expression of (A) CYCB1;1 and (B) RAD51 in the wildtype as well as in kno1-1, flip-2, and ubp21-1 mutant seedlings as detected by qRT-PCR after 3 hr treatment with and without 50 μM cisplatin. Statistically significant differences in expression compared to the corresponding wildtype sample are marked by an asterisk (p<0.05). (C) Root cell nuclei of the wildtype and kno1-1, flip-2 and ubp21-1 mutants incubated with an anti-γH2AX antibody and an anti-RAD51 antibody after 3 hr treatment of seedlings with cisplatin and bleomycin in comparison with mock treated samples.

https://doi.org/10.1371/journal.pgen.1007797.g009
Perspective

Here we have presented the first genome wide RBR1-binding study in plants. We show, that RBR1 associates with TEs, especially MITEs, and with genes highly enriched for GO-terms like cell cycle, replication, chromatin and DNA repair in actively dividing cells. However, previously described developmental RBR1 targets remain unmarked. To investigate RBR1’s proposed role as a potential integrator of cell cycle regulation with developmental processes, genome-wide RBR1 distribution at specific developmental time points and in defined cell types will be beneficial and can be achieved by applying our optimized ChIP protocol in combination with FACS or INTACT methods [113,114].

Further, our results demonstrate a vast commonality of genes bound by E2Fa, MYB3R3 and RBR1. In this respect, it will be valuable to gain and integrate information on genome wide binding of the different MYB3R and E2F transcription factors as well as RBR1 in distinct cell types as well as upon short and long term DNA damage. Recently, an involvement in DDR has been shown for repressive MYB3R proteins, but so far only the impact on G2/M genes has been analyzed in detail [115]. A comprehensive, context-dependent analysis will reveal if specific compositions of the DREAM complex govern the expression of the same genes in different cellular contexts or if different DREAM complexes have distinctive targets.

Finally, the here presented set of RBR1-controlled genes is a valuable resource that can be exploited to identify new genes involved e.g. in cell cycle control, chromatin remodeling and DNA repair as exemplified by our successful approach to reveal new DNA damage regulators.

Material and methods

Double crosslinking ChIP

Triplicates of the Arabidopsis MM2d cell culture, ecotype Landsberg erecta [40], were collected 3 days after sub-culture and frozen at -80˚C. The material was homogenized by thorough grinding using mortar and pestle with permanent addition of liquid nitrogen. 300mg of the powder was dissolved in 10ml fixation buffer (10mM Hepes pH = 7.6, 0.5M Sucrose, 5mM KCl, 5mM MgCl2, 5mM EDTA, 14mM β-Mercapto-ethanol, 2.5mM DSG [Sigma, Di(N-succinimidyl) glutarate], protease-inhibitor [Roche, cOmplete tablets], 0.6% Triton X-100) and incubated for 1 hr at room temperature (RT) with gentle agitation (turning wheel). 300μl formaldehyde (Sigma, 37% FAA solution) was added to reach a final concentration of 1% FAA and incubated for exactly 5 min with gentle agitation. To stop the crosslinking reaction, 1ml of 2.5M Glycine was added to the solution and mixed immediately. The cross-linked material was transferred on ice and nuclear isolation was performed using a dounce tissue grinder set (Sigma, 100ml D0189). The lysate was filtered through a miracloth mesh and centrifuged in a swinging rotor using 50ml Falcon tubes at 3000g for 10 min at 4˚C. The pellet was dissolved in 300μl nuclear isolation buffer (10mM Hepes pH = 7.6, 0.5M Sucrose, 5mM KCl, 5mM MgCl2, 5mM EDTA, 14mM β-Mercapto-ethanol, protease-inhibitor [Roche, cOmplete tablets]) by gentle shaking and overlayed onto a 600μl 15% Percoll solution (HEPES pH8.0 10mM, 15% (v/v) Percoll (pH8-9), 0.5M sucrose, 5mM MgCl2, 5mM KCl, 5mM EDTA) in a 1.5ml tube. After centrifugation at 3000g for 5 min at 4˚C all supernatant was removed and the pellet was dissolved in 500μl nuclear lysis buffer (50mM Tris- HCl, pH7.5, 0.1% SDS, 10mM EDTA) without generating bubbles and vortexed thoroughly for 1 min. Sonication was carried out using a cooled Diagenode Bioruptor with a 45 sec ON– 45 sec OFF cycle for 2x15 min (water was changed between the cycles). Sonication efficiency was tested by de-crosslinking 20μl of the sonicated solution overnight and migrating on a 1.5% agarose gel. Sonication should lead to fragmentation of all gDNA to a fragment size of 200–500nt length (in case of remaining
high size gDNA the nuclei solution needs to be further sonicated and tested for proper fragmentation. 100μl of the fragmented chromatin was then incubated in 1ml ChIP dilution buffer (15mM Tris-HCl, pH7.5, 150mM NaCl, 1% Triton-X-100, 1mM EDTA) over night at 4°C using a turning wheel with magnetic beads (Merck, Magna ChIP Protein A+G Magnetic Beads), pre-incubated for 1 hr in 500ul ChIP dilution buffer at 4°C with 1μg of affinity-purified anti-RBR1 [41] and anti-E2Fa antibody [116], respectively. Beads without antibody were used as negative control. The next day the beads were washed once by resuspending/pipetting first and subsequently for 15 min on a turning wheel with 500μl of the following washing buffers: (1) at 4°C: ChIP-dilution buffer (see above), (2) at 4°C: Low Salt buffer (20 mM Tris-Cl pH 8.0, 0.1% SDS, 1% Triton X 100, 2 mM EDTA, 150 mM NaCl), (3) at 4°C: LiCl buffer (20 mM Tris, pH 8.0, 0.25 M/0.5M LiCl, 1% NP40/Ipepal, 1% deoxycholate, 1 mM EDTA), (4) at room temperature: TE. The immuno-complex was eluted from the beads using an incubation with twice 250μl elution buffer (prepare fresh: 0.1M NaHCO3, 1% SDS) for 10 min at 65°C with gentle agitation. To de-crosslink the DNA, 20μl of 5M NaCl was added and left at 65°C over night, together with the input material (1% of the quantity used in the IP, volume was adjusted to 500μl using elution buffer). The next day, Proteinase K was added (20μl Tris, pH 6.5, 10μl 0.5M EDTA, 20μg Proteinase K) and incubated at 45°C for 2 hrs. DNA was isolated using Phenol-Chloroform purification and precipitation by Na-acetate/EtOH. The pellet was re-suspended in 20–50μl TE from which 1μl was used for a single qPCR reaction.

ChIP-seq analysis

ChIP-seq analyses were performed with two biological replicates. For each replicate, 1 ng of immunoprecipitated (IP) and genomic (INPUT) DNA were used to prepare libraries with the MicroPlex Library Preparation kit (Diagenode). Quality of libraries was validated using 2100 Bioanalyzer (Agilent). Multiplexed libraries were sequenced using a HiSeq 2000 system (Illumina) with single-end 50-bp reads. Following a FASTQC (version 0.11.5) quality control, reads were mapped onto the TAIR10 Arabidopsis thaliana genome assembly using Bowtie (version 0.3 [117]) run in the sensitive mode, allowing one mismatch and randomly choosing one map position in case of multiple matching. MACS (version1.4.2 [118]) was used for peak detection including INPUT DNA as control and using the following parameters: Effective genome size = 120 Mbp, tag size = 50 bp, bandwidth = 150 bp, P value cutoff for peak detection = 1e-05, MFOLD range = 10,30. The average peak width is 930 bp (replicate 1) / 670 bp (replicate 2) and the median is at 600 bp (replicate 1) / 450 (replicate 2). Peaks were assigned to a gene or TE using an iterative procedure: (1) peak overlaps with gene or TE by at least 150 bp, (2) peak overlaps with gene or TE by at least 50 bp, (3) peak overlaps with 150 bp up-stream or downstream sequence of a gene/TE.

Data analysis

The MetaGene Profile was generated using the tool makeMetaGeneProfile.pl of the Homer Software [119]. Venn diagrams were generated using the VENN diagram generator designed by Tim Hulsen at http://www.biovenn.nl [120]. The test for statistical significance of the overlap between two groups of genes was calculated using the phyper function in R [121]. Data sources for comparative analyses are given in the text or the respective figure or table legends. GO-term enrichment analysis was done with PANTHER Version 13.0 [122], Fisher’s exact test was selected as test type and the Bonferroni correction has been applied to the P values. We used MEME SUITE [123] for Motif-analysis, i.e. the tools MEME-ChIP [47], including MEME [124] and DREME [125] for motif discovery, as well as AME [60] for calculation of motif enrichment, FIMO [59] to count individual motif occurrences and MCAST [126] to
perform a motif cluster analysis. The Integrative Genomics Viewer (IGV) [127] was used to display signal distribution over representative genes and TEs.

Root growth assay

Plants were germinated and grown on vertical plates containing half Murashige and Skoog (1/2 MS) medium under long day light conditions (16h) at 22˚C for 6 days. Chemicals used in this study are bleomycin (bleocin, Duchefa), cisplatin (Nacalai Tesque) and hydroxyurea (Sigma-Aldrich). Seedlings were transferred to medium with or without 0.3 μg/ml bleomycin, 20 μM cisplatin, 2 mM hydroxyurea or 2.5 mM hydroxyurea and grown for 6 days further. The position of the primary root tip was marked daily for each plant. After 6 days, plates were photographed and root length was measured using ImageJ software. Data are presented as mean ± SD (n > 30). Significant differences from wildtype were determined by Student’s t-test: *, p < 0.05.

For the aluminum recovery growth assay, plants were germinated and grown on vertical plates containing ½ MS medium for 6 days. Seedling were then transferred to 1.5 mM Al-containing hydroponics (water solution (pH 4.2) consisting of 1 mM KNO₃, 0.2 mM KH₂PO₄, 2 mM MgSO₄, 0.25 mM (NH₄)₂SO₄, 1 mM Ca(NO₃)₂, 1 mM CaSO₄, 1 mM K₂SO₄, 1 μM MnSO₄, 5 μM H₃BO₃, 0.05 μM CuSO₄, 0.2 μM ZnSO₄, 0.02 μM NaMoO₄, 0.1 μM CaCl₂, 0.001 μM CoCl₂) prepared as previous described [128,129] and treated for 12 hrs. Treated seedlings were planted on vertical ½ MS medium and allowed to grow for 5 days. The position of the primary root tip was marked daily for each plant. After 5 days, plates were photographed and root length was measured using ImageJ software. Data are presented as mean ± SD (n > 30). Significant differences from wildtype were determined by Student’s t-test: *, p < 0.05.

Immunofluorescence staining

10-day-old seedlings were transferred to ½ MS liquid medium containing 3μg/ml bleomycin or 50μM cisplatin. Incubation time was 3 hrs. Root tip spreads and immunostaining was subsequently performed as described earlier in Friesner et al [130]. γH2AX immunostaining was conducted with a rabbit anti-γH2AX antibody (1:600), provided by Dr. Charles White, and a goat Alexa Fluor488 anti-rabbit antibody (Life Technologies, Carlsbad, CA, USA) was used as secondary antibody in a 1:300 dilution. For the observation of RAD51, we used a rat anti-RAD51 antibody, provided by Dr. Peter Schögelhofer, in a 1:500 dilution together with a Cy3 anti-rat antibody (Thermo Fisher Scientific; Cat # A-10522) at 1:300. Imaging was done with a Leica TCS SP8 inverted confocal microscope at 40X magnification. The excitation light for the fluorophores was emitted by a diode 405 nm laser, an argon laser at 488 nm and a DPSS laser (561 nm).

Expression analysis

RNA was extracted from 10-day-old *Arabidopsis* seedlings or inflorescence material using the RNeasy Plant Mini Kit from Qiagene according to the instructions of the manufacturer. cDNA synthesis was performed using a Transcriptor First-Strand cDNA Synthesis kit for RT-PCR according to the manufacturer’s instructions (Roche). The cDNA produced was used in semi-quantitative PCR experiments to test for presence of mRNA. Quantitative PCR was performed with a Roche LightCycler 480 SYBR Green I Master with 0.5 μM specific primers and 0.1 μg of first-strand cDNAs. PCR reactions were conducted with the LightCycler 480 Real-Time PCR System (Roche) under the following conditions: 95˚C for 5 min; 45 cycles of 95˚C for 10 sec, 60˚C for 10 sec and 72˚C for 15 sec. Cq calling was done using the second
derivative maximum method. Target-specific efficiencies were calculated as the mean of all reaction-specific efficiencies for a given target. Reaction-specific efficiencies were deduced using LinRegPCR 2015.2 [131,132]. Data were quality-controlled, normalized against at least three reference genes, and statistically evaluated using qbasePLUS 3.0 [133]. Primers used for genotyping, semi-quantitative RT-PCR and qRT-PCR are listed in S6 Table.

Accession numbers

Sequence data for genes characterized in this article can be found in the EMBL/GenBank data libraries under accession numbers AT3G12280 (RBR1), AT3G20490 (KNO1), AT1G04650 (FLIP), AT5G46740 (UBP21) and AT2G45460.

The RBR1-ChIP-seq data generated in this publication have been deposited in NCBI’s Gene Expression Omnibus [77] and are accessible through GEO Series accession number GSE108741.

The mutant lines used in this study were provided by the Nottingham Arabidopsis Stock Centre (NASC [134]) and the Versailles Arabidopsis Stock Center (http://publiclines.versailles.inra.fr). They are part of the SALK line collection [135] or the FLAG line collection (http://publiclines.versailles.inra.fr), respectively.

AT3G20490 (SALK_023330C is kno1-1, SALK_023527 is kno1-2)
AT1G04650 (SALK_037387C is flip-2, SALK_119229C is flip-3)—note, that we renamed our mutant lines to be congruent with the numbering used by Fernandes et al. [84].
AT5G46740 (SALK_205928C is ubp21-1, SALK_201584C is ubp21-2)
AT2G45460 (SALK_142111C is at2g45460-1, FLAG_519A08/EHGTV204T3 is at2g45460-2).

Supporting information

S1 Fig. RBR1-ChIP workflow and quality control results. (A) Workflow of an Arabidopsis ChIP protocol optimized for proteins like RBR1, i.e. indirectly bound to DNA. (B) Flow cytometry profiles of propidium iodide-stained nuclei from MMD2 culture cells 3 (3D) and 7 days (7D) after inoculation. 3D cultures were used for the RBR1-ChIP experiment since flow cytometry showed a higher number of cells in 4n, i.e. more cells progressing through S-phase, indicative of proliferation. (C) ChIP-qPCR results for the previously confirmed E2Fa and RBR1 targets MCM5, ORC3 as well as RBR1 (E2F-consensus site) and negative controls, i.e. CDKA;1 as well as 5’- and 3’ locations of the RBR1_E2F-consensus site. ChIP was performed using an anti-RBR1 or an anti-E2Fa antibody, respectively. Bars show the average of enrichment of IP vs. input of three biological replicates and its standard deviation. (D) Genomic representation of the RBR1 locus and the corresponding qPCR fragments analyzed in (C). One bar equals 100nt length, transcripts are shown as boxes and exons as blue arrows, marking the direction of the transcript. The E2F-consensus site is indicated by an orange circle.

(PDF)

S2 Fig. Integrative Genomics Viewer (IGV) visualization of representative RBR1-ChIP-seq results. (A) Examples for RBR1-ChIP signals associated with genes (MCM5, PCNA1, RBR1, KNO1). (B) Examples for RBR1-ChIP signals over transposable elements (AT3TE91990 (Simpleguy 1), AT2TE23725 (Simplehat 2), AT5TE47555 (Simplehat 1)). (C) No significant RBR1 signal was detected upstream of the mitotic gene KNOLLE (KN). WTTSSCSS sites are indicated.

(PDF)

S3 Fig. RBR1 binding in relation to origins of replication. (A) Domains identified as origins of replication by Costas et al. [44] were compared to RBR1-bound domains (only domains
identified in both RBR1-ChIP replicates were used for comparison). (B) RBR1-marked genes show a small but statistically significant overlap with genes marked by origins of replication \((P(X > 66) = 3.24E-05) \) while this is not the case for RBR1-marked TEs \((P(X > 1) = 0.452) \).

S4 Fig. Motif alignments. Motif alignments using the TOMTOM software [138]. The \(P \) values given indicate the probability that a random motif of the same width as the target (lower motif) would have an optimal alignment with a match score as good or better than the target's. (A) TE-motif 1 aligned to the E2F consensus WTTSSCSS, \(P \) value = 1.11e-02. (B) Gene-motif 1 aligned to the GAGA-element [63], \(P \) value = 5.84e-03. (C) Gene-motif 2 aligned to TE-motif 1, \(P \) value = 9.78e-05. (D) Gene-motif 2 aligned to E2F-consensus WTTSSCSS, \(P \) value = 1.94e-02. (E) Gene-motif 3 aligned to translocon1-motif (TL1 [65]), \(P \) value 1-91e-04. (F) Gene-motif 4 aligned to the abscisic acid response element (ABRE [66,67]), \(P \) value = 9.71e-05. (G) Gene-motif 4 aligned to the G-box [64], \(P \) value = 8.20e-03. (H) Gene-motif 5 aligned to the telobox [64], \(P \) value = 3.05e-04. (I) Gene-motif 6 aligned to the MSA-core [72], \(P \) value = 6.46e-03.

S5 Fig. Overlap of RBR1 targets with genes related to replication, cell cycle, replication, DNA repair and chromatin. Venn diagrams showing overlap of RBR1-marked genes with genes involved in (A) replication, (B) cell cycle, (C) DNA repair and (D) chromatin. In each case, the overlap is highly significant.

Overlap of RBR1-ChIP with
- GO:0006260 (Replication): \(P(X > 61) = 1.37E-56 \)
- Core replication (Shultz): \(P(X > 45) = 5.16E-57 \)
- GO:0007049 (Cell cycle): \(P(X > 125) = 4.15E-79 \)
- Core cell cycle (Vandepoele): \(P(X > 24) = 8.18E-22 \)
- GO:0006281 (DNA repair): \(P(X > 70) = 6.00E-47 \)
- DNA repair (Dohmann/Britt/Girard): \(P(X > 51) = 1.27E-35 \)
- GO:0006325 (Chromatin organization): \(P(X > 48) = 1.23E-20 \)
- ChromDB/manual collection: \(P(X > 65) = 5.49E-24 \)

See S2 Table for gene lists and references used in these comparisons.

S6 Fig. Overlap of RBR1 and E2F target genes. RBR1-bound genes were compared with E2F targets identified by different techniques. In addition, the number of genes having an E2F-binding site within 400 bp upstream of the START codon (upstream of the gene for non-protein coding genes) is indicated in each comparison. Overlap of RBR1-bound genes with (A) E2Fa-bound genes identified by ChIP, ChAP and TChAP (Verkest et al. [56], \(P(X > 644) = 0^* \)), (B-C) genes upregulated in E2FaDP overexpressing lines (Vandepoele et al. [48], \(P(X > 180) = 1.76E -154 \); Naouar et al. [55], \(P(X > 286) = 1.07E -214 \)), and (D) genes identified by E2Fa DAP-seq (O’Malley et al. [57], \(P(X > 143) = 2.84E -46 \)).

Transcriptional upregulation was monitored using the *Arabidopsis* Ath1-chip (B) or the tiling *GeneChip* (C). For comparison, RBR1-ChIP data were therefore reduced to genes present on the Ath1-Chip or *GeneChip*, respectively.

* \(P \) values marked by an asterisk (*) were below the calculation limits of the software (highly significant).
S7 Fig. RBR1 distribution near E2Fa and MYB3R3 sites. (A) RBR1-ChIP fragments were mapped with respect to the center of E2Fa-binding sites identified by ChIP, ChAP and TChAP [56]. (B) RBR1-ChIP fragments were mapped with respect to the center of MYB3R3 binding sites identified by ChIP [17].

S8 Fig. Characteristics of genes bound by MYB3R3 only, RBR1 only or both MYB3R3 and RBR1. (A) Overlap of genes upregulated in leaves of 15 day old myb3r1/3/5 triple mutants with MYB3R3-bound genes (Kobayashi et al. [17], P(X > = 16) = 5.88E-16) and RBR1 targets (P(X > = 7) = 0.005626782). Transcriptional upregulation was monitored using the *Arabidopsis* tiling GeneChip genome array. For comparison, RBR1-ChIP data were therefore reduced to genes present on the GeneChip. (B) GO-term enrichment analysis of genes that show binding by MYB3R3 and RBR1 together (overlap), by RBR1 only and by MYB3R3 only.

S9 Fig. Expression of RBR1 targets in the wildtype and rbr1-2 mutants. qRT-PCR results showing relative expression of known DDR genes (BRCA1, RAD51) and candidate genes (AT3G20490 (KNO1), AT1G04650 (FLIP), AT5G46740 (UBP21) and AT2G45460) in wildtype and rbr1-2 mutant seedlings. Significant differences to the wildtype are marked by an asterisk (p<0.05).

S10 Fig. T-DNA insertion lines of RBR1-targets. Overview of the genomic region of (A) AT2G45460 (B) AT3G20490 (KNO1), (C) AT1G04650 (FLIP) and (D) AT5G46740 (UBP21). The location of the T-DNA insertions and the primers to test for mRNA expression are indicated. We tested for full-length as well as transcript before and after the insertion site. While transcript 5’ of the insertion site was present in all of the cases, in none of the insertion lines, full length mRNA or transcript 3’ of the insertion site could be detected by RT-PCR. Two independent insertion lines were used per gene. Note that the exact position of the T-DNA in kno1-2 was not determined due to masking of the T-DNA borders by vector backbone and inverted T-DNA fragments. However, we provide PCR-results from genomic DNA of kno1-2 showing that amplification the UP and DOWN fragments was possible while only the UP-fragment could be amplified from kno1-2 mutant cDNA. Primers used in this study are listed in S6 Table.

S11 Fig. Root growth of potential DDR mutants on hydroxyurea. Root growth of the wildtype and kno1-1, flip-2, ubp21-1 and at2g45460-1 mutant lines on hydroxyurea-containing media (A) Pictures were taken after 6 days of growth. (B) Root length per day. Statistically significant differences to the wildtype are indicated by asterisks (p < 0.05).

S12 Fig. Recovery root growth after aluminum treatment. Recovery root growth of the wildtype and kno1 (at3g20490), flip (at1g04650) and ubp21 (at5g46740), represented by 2 mutant alleles each, on MS medium after treatment with 1.5mM aluminum for 12 hours. (A) Pictures after 5 days of recovery growth. (B) Root length per day. Statistically significant differences to the wildtype are indicated by asterisks (p < 0.05).

S13 Fig. RBR1 bound genes in relation to PRC2 targets. Venn diagrams showing comparison of the RBR1-ChIP data with H3K27me3 and FIE ChIP data from different publications.
(Xiao et al. [64]; Deng et al. [99]; Bouyer et al., [98]). Note that the overlap with H3K27me3 is in all cases significantly smaller than expected by chance.

(A) Overlap of RBR1-ChIP with H3K27me3, 14 d seedlings (Bouyer): P(X ≤ 79) = 4.58E-14.
(B) Overlap of RBR1-ChIP with H3K27me3, 12 d seedlings (Deng): P(X ≤ 30) = 2.26E-18 and with FIE, 12 d seedlings (Deng): P(X ≤ 28) = 0.1122245, P(X > 28) = 0.9194621.
(C) Overlap of RBR1-ChIP with H3K27me3 in germinating embryos (Xiao): P(X ≤ 74) = 2.32E-11 and with FIE in germinating embryos (Xiao): P(X ≤ 40) = 0.04813777, P(X > 40) = 0.9656176.

S1 Table. RBR1-bound genes and TEs.

S2 Table. Transcriptional information for RBR1-bound TEs from Oberlin et al. [45].

S3 Table. Position of TEs with respect to gene features.

S4 Table. RBR1-bound genes linked to replication, cell cycle, DNA repair and chromatin (data source for S5 Fig).

S5 Table. RBR1-bound genes upregulated in different DNA-stress experiments (data source for Fig 6).

S6 Table. Primers used in this study.

S1 Appendix. Motifs in minimal meme format.

S2 Appendix. MCAST analysis (TE-motifs 1–3).

Acknowledgments

We thank Peter Bommert for critical reading and helpful comments to the manuscript. We acknowledge the Versailles Arabidopsis Stock Center and the Nottingham Arabidopsis Stock Centre (NASC) for providing material used in this study. We thank Charles White (CNRS, Clermont-Ferrand, France) for providing us with an anti-plant γH2AX antibody, Peter Schlögelhofer (MFPL, Vienna, Austria) for the anti-RAD51 antibody, Willhelm Gruissem (ETH, Zurich, Switzerland) for an anti-RBR1 antiserum and Lieven Deveylder (VIB, Gent, Belgium) for an anti-E2Fa antibody.

Author Contributions

Conceptualization: Daniel Bouyer, Maren Heese, Poyu Chen, Hirofumi Harashima, Francois Roudier, Arp Schnittger.

Funding acquisition: Arp Schnittger.

Investigation: Daniel Bouyer, Maren Heese, Poyu Chen, Hirofumi Harashima, Francois Roudier, Christian Grüttner.

Project administration: Arp Schnittger.
Resources: Arp Schnittger.

Supervision: Arp Schnittger.

Writing – original draft: Maren Heese, Arp Schnittger.

Writing – review & editing: Daniel Bouyer, Maren Heese, Francois Roudier, Arp Schnittger.

References

1. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995; 81: 323–330. https://doi.org/10.1016/0092-8674(95)90385-2 PMID: 7736585

2. Dyson NJ. RB1: a prototype tumor suppressor and an enigma. Genes Dev. Cold Spring Harbor Lab; 2016; 30: 1492–1502. https://doi.org/10.1101/gad.282145.116 PMID: 27401552

3. Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol. 2013; 14: 297–306. https://doi.org/10.1038/nrm3567 PMID: 23594950

4. Harashima H, Sugimoto K. Integration of developmental and environmental signals into cell proliferation and differentiation through RETINOBLASTOMA-RELATED 1. Curr Opin Plant Biol. 2016; 29: 95–103. https://doi.org/10.1016/j.pbi.2015.12.003 PMID: 26793141

5. Vélez-Cruz R, Johnson D. The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute; 2017; 18: 1776. https://doi.org/10.3390/ijms18061776 PMID: 28812991

6. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BiGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006; 34: D535–9. https://doi.org/10.1093/nar/gkj109 PMID: 16381927

7. Fulcher AJ, Dias MM, Jans DA. Binding of p110 retinoblastoma protein inhibits nuclear import of simian virus SV40 large tumor antigen. Journal of Biological Chemistry. 2010; 285: 17744–17753. https://doi.org/10.1074/jbc.M109.055491 PMID: 20356831

8. Hilgendorf KI, Leschchiner ES, Nedelcu S, Maynard MA, Calo E, Ianari A, et al. The retinoblastoma protein induces apoptosis directly at the mitochondria. Genes Dev. Cold Spring Harbor Lab; 2013; 27: 1003–1015. https://doi.org/10.1101/gad.211326.112 PMID: 23618872

9. Cao L, Peng B, Yao L, Zhang X, Sun K, Yang X, et al. The ancient function of RB-E2F Pathway: insights from its evolutionary history. Biol Direct. 2010; 5: 55–21. https://doi.org/10.1186/1745-6150-5-55 PMID: 20849664

10. Korenjak M, Brehm A. The retinoblastoma tumour suppressor in model organisms—new insights from flies and worms. CMM. 2006; 6: 705–711.

11. Ebel C, Mariconti L, Gruissem W. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature. 2004; 429: 776–780. https://doi.org/10.1038/nature02637 PMID: 15201912

12. Jackson MW. p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2. J Cell Sci. 2005; 118: 1821–1832. https://doi.org/10.1242/jcs.02307 PMID: 15827088

13. Guiley KZ, Liban TJ, Felthousen JG, Ramanan P, Litovchick L, Rubin SM. Structural mechanisms of DREAM complex assembly and regulation. Genes Dev. Cold Spring Harbor Lab; 2015; 29: 961–974. https://doi.org/10.1101/gad.257568.114 PMID: 25917549

14. Sadasivam S, DeCaprio JA. The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer. 2013; 13: 585–595. https://doi.org/10.1038/nrc3556 PMID: 23842645

15. Lewis PW, Beall EL, Fleischer TC, Georlette D, Link AJ, Botchan MR. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev. Cold Spring Harbor Lab; 2004; 18: 2929–2940. https://doi.org/10.1101/gad.1255204 PMID: 15545624

16. Korenjak M, Taylor-Harding B, Binné UK, Satterlee JS, Stevaux O, Aasland R, et al. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell. 2004; 119: 181–193. https://doi.org/10.1016/j.cell.2004.09.034 PMID: 15479636

17. Kobayashi K, Suzuki T, Iwata E, Nakamichi N, Suzuki T, Chen P, et al. Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J. EMBO Press; 2015; 34: 1992–2007. https://doi.org/10.15252/embj.201490899 PMID: 26069325
18. Ito M. and Conservation diversification of three-repeat Myb transcription factors in plants. J Plant Res. 2005; 118: 61–69. https://doi.org/10.1007/s10265-005-0192-8 PMID: 15703854

19. Haga N, Kobayashi K, Suzuki T, Maoe K, Kubo M, Ohtani M, et al. Mutations in MYB3R1 and MYB3R4 Cause Pleiotropic Developmental Defects and Preferential Down-Regulation of Multiple G2/M-Specific Genes in Arabidopsis. Plant Physiol. 2011; 157: 706–717. https://doi.org/10.1104/pp.111.180836 PMID: 21862669

20. Lipinski MM, Jacks T. The retinoblastoma gene family in differentiation and development. Nature Publishing Group; 1999; 18: 783–788. https://doi.org/10.1038/sj.onc.1203244 PMID: 10630640

21. Cruz-Ramírez A, Díaz-Triviño S, Billou I, Grieniesen VA, Sozzani R, Zamioudis C, et al. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell. 2012; 150: 1002–1015. https://doi.org/10.1016/j.cell.2012.07.017 PMID: 22921914

22. Weimer AK, Nowack MK, Bouyer D, Zhao X, Harashima H, Naseer S, et al. Retinoblastoma related1 regulates asymmetric cell divisions in Arabidopsis. THE PLANT CELL ONLINE. 2012; 24: 4083–4095. https://doi.org/10.1105/tpc.112.104620 PMID: 23104828

23. Matos JL, Lau OS, Hachez C, Cruz-Ramírez A, Scheres B, Bergmann DC. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. Elife. eLife Sciences Publications Limited; 2014; 3: e03271. https://doi.org/10.7554/eLife.03271 PMID: 25303364

24. Zhao X, Bramsiepe J, Van Durme M, Komaki S, Maruyama D, et al. RETINOBLASTOMA RELATED1 mediates germline entry in Arabidopsis. Science. American Association for the Advancement of Science; 2017; 356: eaaf6532. https://doi.org/10.1126/science.aaf6532 PMID: 28450583

25. Talluri S, Dick FA. Regulation of transcription and chromatin structure by pRB: Here, there and everywhere. Cell Cycle. Taylor & Francis; 2012; 11: 3189–3198. https://doi.org/10.4161/cc.21263 PMID: 22895179

26. Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX, et al. Exit from G1 and S Phase of the Cell Cycle Is Regulated by Repressor Complexes Containing HDAC-Rb-hSNF and Rb-hSNF/SNF. Cell. 2000; 101: 79–89. https://doi.org/10.1016/S0092-8674(00)80625-X PMID: 10778858

27. Flowers S, Beck GR, Moran E. Transcriptional Activation by pRB and Its Coordination with SWI/SNF. Nature Publishing Group; 2004; 271: 651–657. https://doi.org/10.1038/sj.onc.1203244 PMID: 10630640

28. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y. pRB family proteins are required for H3K27 tri-methylation and Polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene. Genes Dev. Cold Spring Harbor Lab; 2007; 21: 49–54. https://doi.org/10.1101/gad.1499407 PMID: 17210787

29. Blais A, van Oevelen CJC, Margueron R, Acosta-Alvear D, Dynlacht BD. Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. J Cell Biol. Rockefeller University Press; 2007; 179: 1399–1412. https://doi.org/10.1083/jcb.200705051 PMID: 18166651

30. Gutzat R, Borghi L, Gruissem W. Emerging roles of RETINOBLASTOMA-RELATED proteins in evolution and plant development. Trends Plant Sci. Elsevier Ltd; 2012; 17: 139–148. https://doi.org/10.1016/j.tplants.2011.12.001 PMID: 22240181

31. Mosquena A, Katz A, Shochat S, Greif G, Ohad N. Interaction of FIE, a polycomb protein, with pRb: a possible mechanism regulating endosperm development. Mol Genet Genomics. Springer-Verlag; 2004; 271: 651–657. https://doi.org/10.1007/s00438-004-1024-6 PMID: 15221456

32. Jullien PE, Mosquena A, Ingouff M, Sakata T, Ohad N, Berger F. Retinoblastoma and its binding partner MS11 control imprinting in Arabidopsis. Scott R, editor. Plos Biol. Public Library of Science; 2008; 6: e194. https://doi.org/10.1371/journal.pbio.0060194 PMID: 18700816

33. Gutzat R, Borghi L, Futterer J, Bischof S, Laizet Y, Hennig L, et al. RETINOBLASTOMA-RELATED PROTEIN controls the transition to autotrophic plant development. Development. 2011; 138: 2977–2986. https://doi.org/10.1242/dev.069850 PMID: 21693514

34. Biedermann S, Harashima H, Chen P, Heese M, Bouyer D, Sofroni K, et al. The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J. EMBO Press; 2017; 36: 1279–1297. https://doi.org/10.15252/embj.201694561 PMID: 28320735

35. Horvath BM, Kourova H, Nagy S, Nemeth E, Magyar Z, Papci C, et al. Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control. EMBO J. EMBO Press; 2017; 36: 1261–1279. https://doi.org/10.15252/embj.201694561 PMID: 28320736

36. Chen Z, Higgins JD, Hui JTL, Li J, Franklin FCH, Berger F. Retinoblastoma protein is essential for early meiotic events in Arabidopsis. EMBO J. 2011; 30: 744–755. https://doi.org/10.1038/emboj.2010.344 PMID: 21217641
37. Bowler C, Benvenuto G, Lafiamme P, Molino D, Probst AV, Tariq M, et al. Chromatin techniques for plant cells. Plant J. Wiley/Blackwell (10.1111); 2004; 39: 776–789. https://doi.org/10.1111/j.1365-313X.2004.02169.x PMID: 15315638

38. Nowak D, Tian B, Brasier A. Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation. Biotech. 2005; 39: 715–725. https://doi.org/10.2144/000112014 PMID: 16315372

39. Pedmale UV, Huang S-SC, Zander M, Cole BJ, Hetzel J, Ljung K, et al. Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell. 2016; 164: 233–245. https://doi.org/10.1016/j.cell.2015.12.018 PMID: 26724867

40. Menges M, Murray JAH. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J. 2002; 30: 203–212. PMID: 12000456

41. Johnston AJ, Matveeva E, Kirioukova O, Grossniklaus U, Gruissem W. A Dynamic Reciprocal RBR-PRC2 Regulatory Circuit Controls Arabidopsis Gametophyte Development. Curr Biol. Elsevier Ltd; 2008; 18: 1680–1686. https://doi.org/10.1016/j.cub.2008.09.026 PMID: 18976913

42. Bosco G, Du W, Orr-Weaver TL. DNA replication through interaction of E2F-RB and the origin recognition complex. Nat Cell Biol. 2001; 3: 289–295. https://doi.org/10.1038/35060086 PMID: 11231579

43. Mendoza-Maldonado R, Paolinelli R, Galbiati L, Giardossi S, Giacca M. Interaction of the retinoblastoma protein with Orc1 and its recruitment to human origins of DNA replication. Bryk M, editor. PLoS ONE. Public Library of Science; 2010; 5: e13720. https://doi.org/10.1371/journal.pone.0013720 PMID: 21085491

44. Costas C, la Paz Sanchez de M, Stroud H, Yu Y, Oliveros JC, Feng S, et al. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nat Struct Mol Biol. 2011; 18: 395–400. https://doi.org/10.1038/nsmb.1988 PMID: 21297636

45. Oberlin S, Sarazin A, Chevalier C, Voinnet O, Marí-Ordoñez A. A genome-wide transcriptome and translatome analysis of Arabidopsis transposons identifies a unique and conserved genome expression strategy for Ty1/Copia retroelements. Genome Res. Cold Spring Harbor Lab; 2017; 27: 1549–1562. https://doi.org/10.1101/gr.220723.117 PMID: 28784835

46. Fu Y, Kawabe A, Etcheverry M, Ito T, Toyoda A, Fujiyama A, et al. Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor. EMBO J. EMBO Press; 2013; 32: 2407–2417. https://doi.org/10.1038/emboj.2013.169 PMID: 23900287

47. Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011; 27: 1696–1697. https://doi.org/10.1093/bioinformatics/btr189 PMID: 21486936

48. Vandepoele K, Vlieghe K, Fiorquin K, Hennig L, Beemster GTS, Gruissem W, et al. Genome-wide identification of potential plant E2F target genes. Plant Physiol. American Society of Plant Biologists; 2005; 139: 316–328. https://doi.org/10.1104/pp.105.066290 PMID: 16126853

49. Hénaff E, Vives C, Desvoyes B, Chaurasia A, Payet J, Gutierrez C, et al. Extensive amplification of the E2F transcription factor binding sites by transposons during evolution of Brassicaspecies. Plant J. 2014; 77: 852–862. https://doi.org/10.1111/tpj.12434 PMID: 24447172

50. Nowack MK, Harashima H, Dissmeyer N, Zhao X, Bouyer D, Weimer AK, et al. Genetic framework of cyclin-dependent kinase function in Arabidopsis. Dev Cell. 2012; 22: 1030–1040. https://doi.org/10.1016/j.devcel.2012.02.015 PMID: 22595674

51. Magyar Z, Horvath B, Khan S, Mohammed B, Henriques R, De Veylder L, et al. Arabidopsis E2FB stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes. EMBO J. EMBO Press; 2012; 31: 1480–1493. https://doi.org/10.1038/EMBOJ.2012.13 PMID: 22307083

52. van den Heuvel S, Dyson NJ. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol. 2008; 9: 713–724. https://doi.org/10.1038/nrm2469 PMID: 18719710

53. Borghi L, Gutzat R, Fütterer J, Laizet Y, Hennig L, Gruissem W. Arabidopsis RETINOBLASTOMA-RELATED Is Required for Stem Cell Maintenance, Cell Differentiation, and Lateral Organ Production. THE PLANT CELL ONLINE. 2010; 22: 1792–1811. https://doi.org/10.1105/tpc.107.074591 PMID: 20525851

54. Magyar Z, De Veylder L, Atanassova A, Bakó L, Inzé D, Bögre L. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell. American Society of Plant Biologists; 2005; 17: 2527–2541. https://doi.org/10.1105/tpc.105.035761 PMID: 16055635

55. Naouar N, Vandepoele K, Lammens T, Casneuf T, Zeller G, van Hummelen P, et al. Quantitative RNA expression analysis with Affymetrix Tiling 1.0R arrays identifies new E2F target genes. The Plant Journal. 2009; 57: 184–194. https://doi.org/10.1111/j.1365-313X.2008.03662.x PMID: 18764924
56. Verkest A, Abeel T, Heyndrickx KS, Van Leene J, Lanz C, Van De Sijle E, et al. A generic tool for transcription factor target gene discovery in Arabidopsis cell suspension cultures based on tandem chromatin affinity purification. Plant Physiol. American Society of Plant Biologists; 2014; 164: 1122–1133. https://doi.org/10.1104/pp.114.229617 PMID: 24453163

57. O’malley RC, Huang S-SC, Song L, Lewsey MG, Bartlett A, Nery JR, et al. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell. 2016; 165: 1280–1292. https://doi.org/10.1016/j.cell.2016.04.038 PMID: 27203113

58. Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, et al. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development. 2007; 134: 1101–1110. https://doi.org/10.1242/dev.02801 PMID: 17287251

59. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011; 27: 1017–1018. https://doi.org/10.1093/bioinformatics/btr064 PMID: 21330290

60. McLeay RC, Bailey TL. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics. 2010; 11: 165. https://doi.org/10.1186/1471-2105-11-165 PMID: 20356413

61. Strutt H, Cavalli G, Paro R. Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J. EMBO Press; 1997; 16: 3621–3632. https://doi.org/10.1093/emboj/16.12.3621 PMID: 9218803

62. Ringrose L, Rehmsmeier M, Dura J-M, Paro R. Genome-Wide Prediction of Polycomb/Trithorax Response Elements in Drosophila melanogaster. Dev Cell Press; 2003; 5: 759–771. https://doi.org/10.1016/S1534-5807(03)00337-X

63. Hecker A, Brand LH, Peter S, Simoncello N, Kilian J, Harter K, et al. The Arabidopsis GAGA-binding factor BPC6 recruits PRC1 component LHP1 to GAGA DNA-motifs. Plant Physiol. American Society of Plant Biologists; 2015; 168: 1013–1024. https://doi.org/10.1104/pp.15.00409 PMID: 26025051

64. Xiao J, Jin R, Yu X, Shen M, Wagner JD, Pai A, et al. cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat Genet. 2017; 49: 1546–1552. https://doi.org/10.1038/ng.3937 PMID: 28825728

65. Pajerowska-Mukhtar KM, Wang W, Tada Y, Okamoto S, Tucker CL, Fonseca JP, et al. The HSF-like Transcription Factor TBF1 Is a Major Molecular Switch for Plant Growth-to-Defense Transition. Current Biology. 2012; 22: 103–111. https://doi.org/10.1016/j.cub.2011.12.015 PMID: 22244999

66. Guimarães-Dias F, Neves-Borges AC, Viana AAB, Mesquita RO, Romano E, de Fátima Grossi-de-Sá M, et al. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes. Genet Mol Biol. Sociedade Brasileira de Genética; 2012; 35: 222–232. https://doi.org/10.1590/S1514-47572012000200004 PMID: 22802708

67. Vandepoele K, Quimbaya M, Casneuf T, De Veylder L, de Peer Y. Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol. American Society of Plant Biologists; 2009; 150: 535–546. https://doi.org/10.1104/pp.109.136028 PMID: 19357200

68. Tremousaygue D, Manevski A, Bardet C, Lescure N, Lescure B. Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J. 1999; 20: 553–561. PMID: 10652127

69. Rossignol P, Stevens R, Perennes C, Jasinski S, Cella R, Tremousaygue D, Manevski A, et al. Association of human Pur alpha with the retinoblastoma protein, Rb, regulates binding to the single-stranded DNA Pur alpha recognition element. J Biol Chem. American Society for Biochemistry and Molecular Biology; 1995; 270: 24352–24360. https://doi.org/10.1074/jbc.270.41.24352 PMID: 7932647

70. Johnson EM, Chen PL, Krachmarov CP, Barr SM, Kanovsky M, Ma ZW, et al. Association of human Pur alpha and E2F-1 suppresses transcriptional activity of E2F-1. Oncogene. Nature Publishing Group; 1999; 18: 6398–6402. https://doi.org/10.1038/sj.onc.1203011 PMID: 10597240

71. Ito M, Iwase M, Kodama H, Lavisse P, Komamine A, Nishihama R, et al. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. Plant Cell. 1998; 10: 331–341. PMID: 9501108

72. Böhmderger G, Schleiffer A, Brunmeir R, Ferscha S, Nizhynska V, Kožák J, et al. GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis. Plant J. 2011; 67: 420–433. https://doi.org/10.1111/j.1365-313X.2011.04604.x PMID: 21481027
74. Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB. ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J. 2006; 48: 947–961. https://doi.org/10.1111/j.1365-313X.2006.02931.x PMID: 17227549

75. Liu C-H, Finke A, Díaz M, Rozhon W, Poppenberger B, Baubec T, et al. Repair of DNA Damage Induced by the Cytidine Analog 7-Eubalarine Requires ATR and ATM in Arabidopsis. THE PLANT CELL ONLINE. 2015; 27: 1788–1800. https://doi.org/10.1105/tpc.114.135467 PMID: 26023162

76. Ricaud L, Proux C, Renou J-P, Pichon O, Fochesato S, Ortet P, et al. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS ONE. 2007; 2: e430. https://doi.org/10.1371/journal.pone.0000430 PMID: 17487278

77. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30: 207–210. PMID: 11752295

78. Yan S, Wang W, Marqués J, Mohan R, Saleh A, Durrant WE, et al. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol Cell. 2013; 52: 602–610. https://doi.org/10.1016/j.molcel.2013.09.019 PMID: 2407055

79. Wang Y, Xiao R, Wang H, Cheng Z, Li W, Zhu G, et al. The Arabidopsis RAD51 paralogs RAD51B, RAD51D and XRCC2 play partially redundant roles in somatic DNA repair and gene regulation. Proc Natl Acad Sci USA. 2011; 108: 9341–9346. https://doi.org/10.1073/pnas.1018154108 PMID: 21498679

80. Missirian V, Conklin PA, Culligan KM, Huefner ND, Britt AB. Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci USA. 2011; 108: 12495–12500. https://doi.org/10.1073/pnas.1018154108 PMID: 21498679

81. Silva S. Aluminium Toxicity Targets in Plants. Journal of Botany. Hindawi; 2012; 2012: 1–8. https://doi.org/10.1155/2012/2194622 PMCID: 2194622

82. Nezames CD, Sjogren CA, Barajas JF, Larsen PB. The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. THE PLANT CELL ONLINE. 2012; 24: 608–621. https://doi.org/10.1105/tpc.112.095596 PMID: 22345493

83. Yang C, Doelling JH, Falbel TG, Durski AM, Vierstra RD. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiol. 2000; 124: 1828–1843. PMID: 11115897

84. Acharya P, Negre N, Johnston J, Wei Y, White KP, Henry RW, et al. Evidence for autoregulation and cell signaling pathway regulation from genome-wide binding of the Drosophila retinoblastoma protein. G3. Genetics Society of America; 2012; 2: 1459–1472. https://doi.org/10.1534/g3.112.004424 PMID: 23173097

85. Wei Y, Mondal SS, Mouawad R, Wilczyński B, Henry RW, Arnott DN. Genome-Wide Analysis of Drosophila RBII2 Protein Highlights the Diversity of RB Family Targets and Possible Role in Regulation of Ribosome Biosynthesis. G3. Genetics Society of America; 2015; 5: 1503–1515. https://doi.org/10.1534/g3.115.019166 PMID: 25999584
92. Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, Young R, et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell. 2004; 16: 399–411. https://doi.org/10.1016/j.molcel.2004.09.037 PMID: 15525513

93. Balciunaite E, Spektor A, Lents NH, Cam H, Riele Te H, Scime A, et al. Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells. Molecular and Cellular Biology. 2005; 25: 8166–8178. https://doi.org/10.1128/MCB.25.18.8166-8178. 2005 PMID: 16135806

94. Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S, et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell. 2007; 26: 539–551. https://doi.org/10.1016/j.molcel.2007.04.015 PMID: 17531812

95. Morao AK, Bouyer D, Roudier F. Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining. Curr Opin Plant Biol. 2016; 34: 27–34. https://doi.org/10.1016/j.pbi.2016.07.010 PMID: 27522467

96. Kuwabara A, Gruissem W. Arabidopsis RETINOBLASTOMA-RELATED and Polycomb group proteins: cooperation during plant cell differentiation and development. J Exp Bot. 2014; 65: 2667–2676. https://doi.org/10.1093/jxb/eru069 PMID: 24638900

97. Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T. FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell. 2001; 104: 131–142. PMID: 11163246

98. Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, et al. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet. Public Library of Science; 2011; 7: e1002014. https://doi.org/10.1371/journal.pgen.1002014 PMID: 21423668

99. Deng W, Buzas DM, Ying H, Robertson M, Taylor J, Peacock WJ, et al. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genomics. BioMed Central; 2013; 14: 593. https://doi.org/10.1186/1471-2164-14-593 PMID: 24001316

100. Concil L, Brooks AM, Wheeler E, Zynda GJ, Wear EE, LeBlanc C, et al. Genome-Wide Analysis of the Arabidopsis Replication Timing Program. Plant Physiol. American Society of Plant Biologists; 2018; 176: 2166–2185. https://doi.org/10.1104/pp.17.01537 PMID: 29301956

101. Izsvák Z, Stüwe EE, Fiedler D, Katzer A, Jeggo PA, Ivics Z. Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair in mammalian somatic cells. Mol Cell. 2004; 13: 279–290. PMID: 14759372

102. Yang Y, Tian S, Brown B, Chen P, Hu H, Xia L, et al. The Rb1 gene inhibits the viability of retinoblastoma cells by regulating homologous recombination. Int J Mol Med. Spandidos Publications; 2013; 32: 137–143. https://doi.org/10.3892/ijmm.2013.1374 PMID: 23670186

103. Cook R, Zoumpoulidou G, Luczynski MT, Rieger S, Moquet J, Spanswick VJ, et al. Direct involvement of retinoblastoma family proteins in DNA repair by non-homologous end-joining. Cell Rep. 2015; 10: 2006–2018. https://doi.org/10.1016/j.celrep.2015.02.059 PMID: 25818292

104. Zaratiegui M. Cross-Regulation between Transposable Elements and Host DNA Replication. Viruses. Multidisciplinary Digital Publishing Institute; 2017; 9: 57. https://doi.org/10.3390/v90402417 PMID: 28335567

105. Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007; 41: 331–368. https://doi.org/10.1146/annurev.genet.40.110405.090445 PMID: 18076528

106. Chen J, Greenblatt IM, Dellaporta SL. Molecular analysis of Ac transposition and DNA replication. Genetics. Genetics Society of America; 1992; 130: 665–676. PMID: 1312981

107. Cheng C-Y, Krishnakumar V, Chan AP, Thibaud-Nissim F, Schobel S, Town CD. Arabidopsis 11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017; 89: 789–804. https://doi.org/10.1111/tpj.13415 PMID: 27862469

108. Wyatt HDM, West SC. Holliday Junction Resolvases. Cold Spring Harb Perspect Biol. Cold Spring Harbor Laboratory; 2014; 6: a023192–a023192. https://doi.org/10.1101/cshperspect.a023192 PMID: 2583833

109. Fritz G, Henninger C. Rho GTPases: Novel Players in the Regulation of the DNA Damage Response? Biomolecules. Multidisciplinary Digital Publishing Institute; 2015; 5: 2417–2434. https://doi.org/10.3390/biom5042417 PMID: 26437439

110. Brembu T, Wing P, Bones AM, Yang Z. A RHoSe by any other name: a comparative analysis of animal and plant Rho GTPases. Cell Res. 2006; 16: 435–445. https://doi.org/10.1038/sj.cr.7310055 PMID: 16690539
111. Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, et al. Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. Plant J. Wiley/Blackwell (10.1111); 2018; 94: 439–453. https://doi.org/10.1111/tpj.13866 PMID: 29430765

112. Liu J, Kruvitz A, Dang H, Tran AD, Kwon SM, Wang XW, et al. Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nat Commun. Nature Publishing Group; 2017; 8: 137. https://doi.org/10.1038/s41467-017-00206-2 PMID: 28743957

113. Weinhofer I, Köhler C. Endosperm-specific chromatin profiling by fluorescence-activated nuclei sorting and ChIP-on-chip. Methods Mol Biol. Totowa, NJ: Humana Press; 2014; 1112: 105–115. https://doi.org/10.1007/978-1-62703-773-0_7 PMID: 24478010

114. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. BioMed Central; 2009; 10: R25. https://doi.org/10.1186/gb-2009-10-3-r25 PMID: 19261174

115. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. BioMed Central; 2008; 9: R137. https://doi.org/10.1186/gb-2008-9-9-r137 PMID: 18799882

116. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38: 576–589. https://doi.org/10.1016/j.molcel.2010.05.004 PMID: 20513432

117. Hulsen T, de Vlieg J, Alkema W. BioVenn—a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. BioMed Central; 2008; 9: 488. https://doi.org/10.1186/1471-2164-9-488 PMID: 18925949

118. R Core Team. R: A language and environment for statistical computing. www.R-project.org. 2015. Available: https://www.R-project.org/

119. Bailey TL. MEME SUITE: tools for motif discovery in transcription factor ChIP-seq data. Bioinformatics. 2011; 27: 1840–1851. https://doi.org/10.1093/bioinformatics/btr261 PMID: 21543442

120. Bailey TL, Noble WS. Searching for statistically significant regulatory modules. Bioinformatics. 2003; 19 Suppl 2: ii16–25.

121. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. Nature Publishing Group; 2011; 29: 24–26. https://doi.org/10.1038/nbt.1754 PMID: 21221095

122. Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J. Wiley/Blackwell (10.1111); 2005; 41: 353–363. https://doi.org/10.1111/j.1365-313X.2004.02306.x PMID: 15659095

123. Sjogren CA, Bolaris SC, Larsen PB. Aluminum-Dependent Terminal Differentiation of the Arabidopsis Root Tip Is Mediated through an ATR-, ALT2-, and SOG1-Regulated Transcriptional Response. THE PLANT CELL ONLINE. American Society of Plant Biologists; 2015; 27: 2501–2515. https://doi.org/10.1105/tpc.15.00172 PMID: 26320227

124. Friesner JD, Liu B, Culligan K, Britt AB. Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Molecular Biology of the Cell. American Society for Cell Biology; 2005; 16: 2566–2576. https://doi.org/10.1091/mbc.E04-10-0890 PMID: 15772150
131. Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003; 339: 62–66. PMID: 12618301

132. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJJB, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009; 37: e45–e45. https://doi.org/10.1093/nar/gkp045 PMID: 19237396

133. Helleman J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007; 8: R19. https://doi.org/10.1186/gb-2007-8-2-r19 PMID: 17291332

134. Scholl RL, May ST, Ware DH. Seed and molecular resources for Arabidopsis. Plant Physiol. American Society of Plant Biologists; 2000; 124: 1477–1480. PMID: 11115863

135. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. American Association for the Advancement of Science; 2003; 301: 653–657. https://doi.org/10.1126/science.1086391 PMID: 12893945

136. Shultz RW, Tatineni VM, Hanley-Bowdoin L, Thompson WF. Genome-wide analysis of the core DNA replication machinery in the higher plants Arabidopsis and rice. Plant Physiol. American Society of Plant Biologists; 2007; 144: 1697–1714. https://doi.org/10.1104/pp.107.101105 PMID: 17556508

137. Menges M, Hennig L, Gruissem W, Murray JAH. Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol Biol. 2003; 53: 423–442. https://doi.org/10.1023/B:PLAN.0000019059.56489.ca PMID: 15010610

138. Gupta S, Stamatyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol. BioMed Central; 2007; 8: R24. https://doi.org/10.1186/gb-2007-8-2-r24 PMID: 17324271