STABILITY OF THE COSINE-SINE FUNCTIONAL EQUATION ON AMENABLE GROUPS

AJEBBAR OMAR AND ELQORACHI ELQORACHI

Abstract. In this paper we establish the stability of the functional equation

\[f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y), \quad x, y \in G, \]

where \(G \) is an amenable group.

1. Introduction

The stability problem of functional equations go back to 1940 when Ulam [14] proposed a question concerning the stability of group homomorphisms. Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’s Theorem was generalized by Aoki [3] for additive mappings and by Rassias [10] for linear mappings by considering an unbounded Cauchy difference. The stability problem of several functional equations have been extensively investigated by a number of authors. An account on the further progress and developments in this field can be found in [5, 7, 8].

In this paper we investigate the stability of the trigonometric functional equation

\[(1.1) \quad f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y), \quad x, y \in G \]
on amenable groups.

The continuous solutions of the trigonometric functional equations

\[(1.2) \quad f(xy) = f(x)g(y) + g(x)f(y), \quad x, y \in G \]

and

\[(1.3) \quad f(xy) = f(x)f(y) - g(x)g(y), \quad x, y \in G \]

are obtained by Poulsen and Stetkær [9], where \(G \) is a topological group that need not be abelian. Regular solutions of \((1.2) \) and \((1.3) \) were described by Aczél [1] on abelian groups. Chung et al. [4] solved the functional equation \((1.1) \) on groups. Recently, Ajebbar and Elqorachi [2] obtained the solutions of the functional equation \((1.1) \) on a semigroup generated by its squares. The stability properties of the functional equations \((1.2) \) and \((1.3) \) have been obtained by Székelyhidi [13] on amenable groups.

The aim of the present paper is to extend the Székelyhidi’s results [13] to the functional equation \((1.1) \).

Key words and phrases. Hyers-Ulam stability; Semigroup; Amenable group; Cosine equation; Sine equation; Additive function; Multiplicative function.

2010 Mathematics Subject Classification. Primary 39B82; Secondary 39B32.
2. Definitions and preliminaries

Throughout this paper G denotes a semigroup (a set with an associative composition) or a group. We denote by $B(G)$ the linear space of all bounded complex-valued functions on G. We call $a : G \to \mathbb{C}$ additive provided that $a(xy) = a(x) + a(y)$ for all $x, y \in G$ and call $m : G \to \mathbb{C}$ multiplicative provided that $m(xy) = m(x)m(y)$ for all $x, y \in G$.

Let V be a linear space of complex-valued functions on G. We say that the functions $f_1, \ldots, f_n : G \to \mathbb{C}$ are linearly independent modulo V if $\lambda_1 f_1 + \cdots + \lambda_n f_n \in V$ implies that $\lambda_1 = \cdots = \lambda_n = 0$ for any $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. We say that the linear space V is two-sided invariant if $f \in V$ implies that that the functions $x \mapsto f(xy)$ and $x \mapsto f(yx)$ belong to V for any $x \in G$.

Notice that the linear space $B(G)$ is two-sided invariant.

3. Basic results

Throughout this section G denotes a semigroup and V a two-sided invariant linear space of complex-valued functions on G.

Lemma 3.1. Let $f, g, h : G \to \mathbb{C}$ be functions. Suppose that f, g and h are linearly independent modulo V. If the function

$$ x \mapsto f(xy) - f(x)g(y) - g(x)f(y) - h(x)h(y) $$

belongs to V for all $y \in G$, then there exist two functions $\varphi_1, \varphi_2 \in V$ such that

$$ \psi(x, y) = \varphi_1(x)f(y) + \varphi_2(x)h(y) $$

for all $x, y \in G$, where

$$ \psi(x, y) := f(xy) - f(x)g(y) - g(x)f(y) - h(x)h(y) $$

for $x, y \in G$.

Proof. We use a similar computation as the one of the proof of [13, Lemma 2.1]. Since the functions f, g and h are linearly independent modulo V so are f and h, then f and h are linearly independent. Then there exist $y_0, z_0 \in G$ such that $f(y_0)h(z_0) - f(z_0)h(y_0) \neq 0$, which implies that that $f(y_0)h(z_0) \neq 0$ or $f(z_0)h(y_0) \neq 0$. We can finally assume that $f(y_0) \neq 0$ and $h(z_0) \neq 0$. By applying (3.2) to the pair (x, y_0) we derive

$$ g(x) = \alpha_0 f(x) + \alpha_1 h(x) + \alpha_2 f(xy_0) - \alpha_2 \psi(x, y_0) $$

for all $x \in G$, where $\alpha_0 := -f(y_0)^{-1}g(y_0) \in \mathbb{C}$, $\alpha_1 := -f(y_0)^{-1}h(y_0) \in \mathbb{C}$ and $\alpha_2 := f(y_0)^{-1} \in \mathbb{C}$ are constants. Similarly, by applying (3.2) to pair (z, x_0), we get that

$$ h(x) = \beta_0 f(x) + \beta_1 g(x) + \beta_2 f(xz_0) - \beta_2 \psi(x, z_0) $$

for all $x \in G$, where $\beta_0 := -h(z_0)^{-1}g(z_0) \in \mathbb{C}$, $\beta_1 := -h(z_0)^{-1}f(z_0) \in \mathbb{C}$ and $\beta_2 := h(z_0)^{-1} \in \mathbb{C}$ are constants. Let $x \in G$ be arbitrary. Substituting (3.4) in (3.3) we obtain

$$ g(x) = \alpha_0 f(x) + \alpha_1 \left[\beta_0 f(x) + \beta_1 g(x) + \beta_2 f(xz_0) - \beta_2 \psi(x, z_0) \right] + \alpha_2 f(xy_0) - \alpha_2 \psi(x, y_0) $$

$$ = (\alpha_0 + \alpha_1 \beta_0) f(x) + \alpha_1 \beta_1 g(x) + \alpha_1 \beta_2 f(xz_0) - \alpha_1 \beta_2 \psi(x, z_0) $$

$$ + \alpha_2 f(xy_0) - \alpha_2 \psi(x, y_0). $$
So that
\[
(1 - \alpha_1\beta_1) g(x) = (\alpha_0 + \alpha_1\beta_0) f(x) + \alpha_1\beta_2 f(xz_0) - \alpha_1\beta_2 \psi(x, z_0)
\]
(3.5)
\[+ \alpha_2 f(xy_0) - \alpha_2 \psi(x, y_0).\]
Since \(f(y_0)h(z_0) - f(z_0)h(y_0) \neq 0\) and \(f(y_0)h(z_0) \neq 0\) we get that \(\alpha_1\beta_1 \neq 1\). So, \(x\) being arbitrary, we derive from (3.5) that there exist \(\gamma_0, \gamma_1, \gamma_2 \in \mathbb{C}\) such that
\[
g(x) = \gamma_0 f(x) + \gamma_1 f(xy_0) + \gamma_2 f(xz_0) - \gamma_1 \psi(x, y_0) - \gamma_2 \psi(x, z_0)
\]
(3.7)
for all \(x \in G\). Similarly we prove that there exist \(\delta_0, \delta_1, \delta_2 \in \mathbb{C}\) such that
\[
h(x) = \delta_0 f(x) + \delta_1 f(xy_0) + \delta_2 f(xz_0) - \delta_1 \psi(x, y_0) - \delta_2 \psi(x, z_0)
\]
(3.8)
for all \(x \in G\). Let \(x, y, z \in G\) be arbitrary. In the following we compute \(f(xyz)\) first as \(f((xy)z)\) and then as \(f(x(yz))\). By applying (3.2) to the pair \((xy, z)\), and taking (3.6) and 3.7 into account, we obtain
\[
f((xy)z) = f(xy)g(z) + g(xy)f(z) + h(xy)h(z) + \psi(xy, z)
\]
\[= [f(x)g(y) + g(x)f(y) + h(x)h(y) + \psi(x, y)]g(z)
\]
\[+ \gamma_0 f(xy_0) + \gamma_1 f(xz_0) - \gamma_1 \psi(xy, y_0) - \gamma_2 \psi(xy, z_0)f(z)
\]
\[+ \delta_0 f(xy_0) + \delta_1 f(xz_0) - \delta_1 \psi(xy, y_0) - \delta_2 \psi(xy, z_0)h(z)
\]
+ \(\psi(xy, z)\).
So that
\[
f((xy)z) = f(xy)g(z) + \gamma_0 f(y)g(z) + \gamma_0 g(y)f(z) + \gamma_1 g(y)g(y_0)f(z) + \gamma_2 g(yz_0)f(z)
\]
\[+ \delta_0 f(y)h(z) + \delta_1 g(y)g(y_0)h(z) + \delta_2 g(yz_0)h(z)\]
\[+ g(x)f(y)g(z) + \gamma_1 f(yz_0)f(z) + \gamma_2 f(xz_0)f(z)
\]
\[+ \delta_0 f(y)h(z) + \delta_1 f(y)h(z) + \delta_2 f(y)h(z)\]
\[+ h(x)h(y)g(z) + \gamma_0 h(y)h(z) + \gamma_1 h(y)g(y_0)f(z) + \gamma_2 h(yz_0)f(z)
\]
\[+ \delta_0 h(y)h(z) + \delta_1 h(y)h(z) + \delta_2 h(y)h(z)\]
\[+ [\gamma_0 \psi(x, y) + \gamma_1 \psi(x, y_0) + \gamma_2 \psi(xy, z_0) - \gamma_1 \psi(xy, y_0)
\]
\[\gamma_2 \psi(xy, z_0)]f(z) + \psi(x, y)g(z) + [\delta_0 \psi(x, y) + \delta_1 \psi(x, y_0)
\]
\[+ \delta_2 \psi(x, z_0) - \delta_1 \psi(xy, y_0) - \delta_2 \psi(xy, z_0)]h(z) + \psi(xy, z).
\]
\[
(3.8)
\]
On the other hand, by applying (3.2) to the pair \((x, yz)\) we get that
\[
f(x(yz)) = f(x)g(yz) + g(x)f(yz) + h(x)h(yz) + \psi(x, yz)
\]
(3.9)
Now, let \(y, z \in G \) be arbitrary. By assumption the functions
\[
x \mapsto \psi(x, y), x \mapsto \psi(x, yz), x \mapsto \psi(x, yz_0), x \mapsto \psi(x, y)
\]
belong to \(\mathcal{V} \). Moreover, since the linear space \(\mathcal{V} \) is two sided invariant the functions
\[
x \mapsto \psi(xy, y), x \mapsto \psi(xy, z), x \mapsto \psi(xy, z_0)
\]
belong to \(\mathcal{V} \). Hence, by using \((3.8)\), \((3.9)\) and the fact that \(f, g \) and \(h \) are linearly independent modulo \(\mathcal{V} \), we get that
\[
(3.10) \quad f(yz) = f(y)g(z) + [\gamma_0 f(y) + \gamma_1 f(yy_0) + \gamma_2 f(yz_0)]f(z)
\]
\[+ [\delta_0 f(y) + \delta_1 f(yy_0) + \delta_2 f(yz_0)]h(z).\]
From \((3.10)\), \((3.7)\) and \((3.11)\) we get
\[
f(yz) = f(y)g(z) + [\gamma_0 f(y) + \gamma_1 \psi(y, y_0) + \gamma_2 \psi(y, z_0)]f(z)
\]
\[+ [\delta_0 f(y) + \delta_1 \psi(y, y_0) + \delta_2 \psi(y, z_0)]h(z) = f(y)g(z) + g(y)f(z) + h(y)h(z) + [\gamma_1 \psi(y, y_0) + \gamma_2 \psi(y, z_0)]f(z)
\]
\[+ [\delta_1 \psi(y, y_0) + \delta_2 \psi(y, z_0)]h(z).
\]
Hence, by using \((3.9)\), we obtain
\[
\psi(y, z) = [\gamma_1 \psi(y, y_0) + \gamma_2 \psi(y, z_0)]f(z) + [\delta_1 \psi(y, y_0) + \delta_2 \psi(y, z_0)]h(z).
\]
So, \(y \) and \(z \) being arbitrary, we deduce \((3.1)\) by putting
\[
\varphi_1(x) := \gamma_1 \psi(x, y_0) + \gamma_2 \psi(x, z_0)
\]
and
\[
\varphi_2(x) := \delta_1 \psi(x, y_0) + \delta_2 \psi(x, z_0)
\]
for all \(x \in G \). This completes the proof of Lemma 3.1. \(\square \)

Lemma 3.2. Let \(f, g, h : G \rightarrow \mathbb{C} \) be functions. Suppose that \(f \) and \(h \) are linearly independent modulo \(\mathcal{V} \) and \(g \in \mathcal{V} \). If the function
\[
x \mapsto f(xy) - f(x)g(y) - g(x)f(y) - h(x)h(y)
\]
belongs to \(\mathcal{V} \) for all \(y \in G \), then \(g \) is multiplicative.

Proof. Let \(y, z \in G \) be arbitrary. By using the same computation as the one of the proof of Lemma 3.1 we obtain from \((3.8)\) and \((3.9)\), with the same notations, the following identity
\[
f(x)g(yz) + g(x)f(yz) + h(x)h(yz) + \psi(x, yz)
\]
\[
= f(x)[g(y)g(z) + \gamma_0 g(y)f(z) + \gamma_1 g(yy_0)f(z) + \gamma_2 g(yz_0)f(z) + \delta_0 g(y)h(z)
\]
\[+ \delta_1 g(yy_0)h(z) + \delta_2 g(yz_0)h(z)] + g(x)[f(y)g(z) + \gamma_0 f(y)f(z) + \gamma_1 f(yy_0)f(z)
\]
\[+ \gamma_2 f(yz_0)f(z) + \delta_0 f(y)h(z) + \delta_1 f(yy_0)h(z) + \delta_2 f(yz_0)h(z)] + h(x)[h(y)g(z)
\]
\[+ \gamma_0 h(y)f(z) + \gamma_1 h(yy_0)f(z) + \gamma_2 h(yz_0)f(z) + \delta_0 h(y)h(z) + \delta_1 h(yy_0)h(z)
\]
\[+ \delta_2 h(yz_0)h(z)] + [\gamma_0 \psi(x, y) + \gamma_1 \psi(x, yy_0) + \gamma_2 \psi(x, yz_0) - \gamma_1 \psi(xy, y_0)
\]
\[- \gamma_2 \psi(xy, z_0)]f(z) - \psi(x, y)g(z) + [\delta_0 \psi(x, y) + \delta_1 \psi(x, yy_0) + \delta_2 \psi(x, yz_0)
\]
\[- \delta_1 \psi(xy, y_0) - \delta_2 \psi(xy, z_0)]h(z) + \psi(xy, z)
for all $x \in G$. So that
\begin{equation}
(3.11)
f(x)[g(y)g(z) + \gamma_0 g(y)f(z) + \gamma_1 g(yz_0)f(z) + \gamma_2 g(yz_0)f(z) + \delta_0 g(y)h(z)
+ \delta_1 g(yz_0)h(z) + \delta_2 g(yz_0)h(z) - g(yz)] + h(x)[h(y)g(z) + \gamma_0 h(y)f(z)
+ \gamma_1 h(yz_0)f(z) + \gamma_2 h(yz_0)f(z) + \delta_0 h(y)h(z) + \delta_1 h(yz_0)h(z)
+ \delta_2 h(yz_0)h(z) - h(yz)]
= -g(x)[f(y)g(z) + \gamma_0 f(y)f(z) + \gamma_1 f(yz_0)f(z) + \gamma_2 f(yz_0)f(z) + \delta_0 f(y)h(z)
+ \delta_1 f(yz_0)h(z) + \delta_2 f(yz_0)h(z) - f(yz)] - \gamma_0 \psi(x, y) + \gamma_1 \psi(x, yz_0)
+ \gamma_2 \psi(x, yz_0) - \gamma_1 \psi(xy, y_0) - \gamma_2 \psi(xy, z_0)]f(z)
- [\delta_0 \psi(x, y) + \delta_1 \psi(x, yz_0) + \delta_2 \psi(x, yz_0) - \delta_1 \psi(xy, y_0) - \delta_2 \psi(xy, z_0)]h(z)
- \psi(xy, z) + \psi(x, yz)
\end{equation}

for all $x \in G$. Since $g \in V$, the function $x \mapsto \psi(x, t)$ belongs to V for all $t \in G$ and V is a two-sided-invariant linear space of complex-valued functions on G, we get that the right hand side of the identity (3.11) belongs to V as a function in x, so does the left hand side of (3.11). Since f and h are linearly independent modulo V, then we get that
\begin{equation}
(3.12)
g(y)g(z) + \gamma_0 g(y)f(z) + \gamma_1 g(yz_0)f(z) + \gamma_2 g(yz_0)f(z) + \delta_0 g(y)h(z)
+ \delta_1 g(yz_0)h(z) + \delta_2 g(yz_0)h(z) - g(yz) = 0.
\end{equation}

So, y and z being arbitrary, then we get that
\begin{equation}
(3.13)
g(yz) - g(y)g(z) = [\gamma_0 g(y) + \gamma_1 g(yz_0) + \gamma_2 g(yz_0)]f(z)
+ [\delta_0 g(y) + \delta_1 g(yz_0) + \delta_2 g(yz_0)]h(z)
\end{equation}

for all $y, z \in G$. Now, let $y \in G$ be arbitrary. Since $g \in V$ and V is a two-sided-
invariant linear space of complex-valued functions on G, we derive from (3.13) that the function
\[z \mapsto [\gamma_0 g(y) + \gamma_1 g(yz_0) + \gamma_2 g(yz_0)]f(z) + [\delta_0 g(y) + \delta_1 g(yz_0) + \delta_2 g(yz_0)]h(z)\]
belongs to V. Hence, seeing that f and h are linearly independent modulo V, we get that $\gamma_0 g(y) + \gamma_1 g(yz_0) + \gamma_2 g(yz_0) = 0$ and $\delta_0 g(y) + \delta_1 g(yz_0) + \delta_2 g(yz_0) = 0$. Substituting this back into (3.13) we obtain $g(yz) = g(y)g(z)$ for all $z \in G$. So, y being arbitrary, we deduce that g is multiplicative. This completes the proof of Lemma 3.2. \qed

Lemma 3.3. Let $f, g, h : G \to \mathbb{C}$ be functions. Suppose that f and h are linearly
dependent modulo V. If the function
\[x \mapsto f(xy) - f(x)g(y) - g(xy)f(y) - h(x)h(y)\]
belongs to V for all $y \in G$, then we have one of the following possibilities:
(1) $f = 0$, g is arbitrary and $h \in V$;
(2) $f, g, h \in V$;
(3) $g + \frac{\lambda^2}{4} f = m - \lambda \varphi$, $h - \lambda f = \varphi$, where $\lambda \in \mathbb{C}$ is a constant, $\varphi \in V$ and $m : G \to \mathbb{C}$ is a multiplicative function such that $m \in V$;
(4) $f = \alpha m - \alpha b$, $g = \frac{1 - \alpha^2}{2} m + \frac{1 + \alpha^2}{2} b - \lambda \varphi$, $h = \alpha \lambda m - \alpha \lambda b + \varphi$, where $\alpha, \lambda \in \mathbb{C}$ are constants, $m : G \to \mathbb{C}$ is a multiplicative function and $b, \varphi \in V$;
that the function g is the result (5) of Lemma 3.3 for a constant α multiplicative function and (iii) f is arbitrary and the function $x \mapsto h(x)h(y)$ belongs to V for all y in G. Hence $h \in V$. The result occurs in (1) of Lemma 3.3. In what follows we assume that $f \neq 0$. We have the following cases

Case 1: $h \in V$. Then the function $x \mapsto h(x)h(y)$ belongs to V for all y in G. So that the function $x \mapsto f(xy) - f(x)g(y) - g(x)f(y)$ belongs to V for all y in G. So, according to [13, Lemma 2.2] and taking into account that $f \neq 0$, we get that one of the following possibilities holds

(i) $f, g, h \in V$ which occurs in (2) of Lemma 3.3.
(ii) $g = m$ and $h = \varphi$, where $\varphi \in V$ and $m : G \to C$ is a multiplicative function such that $m \in V$. This is the result (3) of Lemma 3.3 for $\lambda = 0$.
(iii) $f = \alpha m - \alpha b, g = \frac{1}{2}m + \frac{1}{2}b, h = \varphi$, where $\alpha \in C$ is a constant, $m : G \to C$ is a multiplicative function and $b, \varphi \in V$. This is the result (4) of Lemma 3.3 for $\lambda = 0$.
(iv) $f(xy) = f(x)g(y) + g(x)f(y)$ for all $x, y \in G$ and $h = \varphi$, where $\varphi \in V$, which is the result (5) of Lemma 3.3 for $\lambda = 0$.

Case 2: $h \notin V$. If $f \in V$ then the function $x \mapsto f(xy)$ belongs to V for all y in G, because the linear space V is two-sided invariant. As the function $x \mapsto \psi(x, y)$ belongs to V for all $y \in G$ we get that the function $x \mapsto g(x)f(y) + h(x)h(y)$ belongs to V for all $y \in G$. Since $h \notin V$ we have $h \neq 0$. We derive that there exist a constant $\alpha \in C \setminus \{0\}$ and a function $k \in V$ such that

\begin{equation}
(3.14) \quad h = \alpha g + k,
\end{equation}

so that

\begin{align*}
\psi(x, y) &= f(xy) - f(x)g(y) - g(x)f(y) - (\alpha g(x) + k(x))(\alpha g(y) + k(y)) \\
&= f(xy) - f(x)g(y) - g(x)f(y) - \alpha^2 g(x)g(y) - \alpha g(x)k(y) - \alpha k(x)g(y) - k(x)k(y) \\
&= f(xy) - k(x)k(y) - g(x)[f(y) + \alpha^2 g(y) + \alpha k(y)] - g(y)[f(x) + \alpha k(x)] \\
&= f(xy) - k(x)k(y) - g(x)[f(y) + \alpha h(y)] - g(y)[f(x) + \alpha k(x)]
\end{align*}

for all $x, y \in G$. Since the functions $x \mapsto f(xy), x \mapsto k(x)k(y), x \mapsto g(y)[f(x) + \alpha k(x)]$ and $x \mapsto \psi(x, y)$ belong to V for all $y \in G$, we derive from the identity above that the function $x \mapsto g(x)[f(y) + \alpha h(y)]$ belongs to V for all $y \in G$, which implies that $g \in V$ or $f(y) + \alpha h(y) = 0$ for all $y \in G$. Hence, since $\alpha \in C \setminus \{0\}$, we get that $g \in V$ or $h = -\frac{1}{\alpha} f$. So, taking (3.14) into account, we get that $h \in V$; which contradicts the assumption on h, hence $f \notin V$. As f and h are linearly dependent modulo V we infer that there exist a constant $\lambda \in C \setminus \{0\}$ and a function $\varphi \in V$ such that

\begin{equation}
(3.15) \quad h = \lambda f + \varphi.
\end{equation}
So we get from (3.2) that
\[
\psi(x, y) = f(xy) - f(x)g(y) - g(x)f(y) - (\lambda f(x) + \varphi(x))(\lambda f(y) + \varphi(y))
\]
\[
= f(xy) - f(x)g(y) - g(x)f(y) - \lambda^2 f(x)f(y) - \lambda f(x)\varphi(y) - \lambda \varphi(x)f(y)
\]
\[
- \varphi(x)\varphi(y)
\]
\[
= f(xy) - \varphi(x)\varphi(y) - f(x)[g(y) + \frac{\lambda^2}{2} f(y) + \lambda \varphi(y)]
\]
\[
- [g(x) + \frac{\lambda^2}{2} f(x) + \lambda \varphi(x)]f(y).
\]
for all \(x, y \in G\), which implies that that
\[
(3.16) \quad \psi(x, y) + \varphi(x)\varphi(y) = f(xy) - f(x)\phi(y) - \phi(x)f(y)
\]
for all \(x, y \in G\), where
\[
(3.17) \quad \phi := g + \frac{\lambda^2}{2} f + \lambda \varphi.
\]
Since \(\varphi \in V\) and the function \(x \mapsto \psi(x, y)\) belongs to \(V\) for all \(y \in G\) we get from (3.16) that the function
\[
x \mapsto f(xy) - f(x)\phi(y) - \phi(x)f(y)
\]
belongs to \(V\) for all \(y \in G\). Moreover \(V\) is a two-sided invariant linear space of complex-valued function. Hence, according to [13, Lemma 2.2] and taking into account that \(f, h \not\in V\), we have one of the following possibilities:

(i) \(\phi = m\) where \(m \in V\) is multiplicative. Then we get, from (3.17) and (3.15), that
\[
g + \frac{\lambda^2}{2} f = m - \lambda \varphi \quad \text{and} \quad h - \lambda f = \varphi, \quad \text{where} \quad \varphi \in V.
\]
The result occurs in (3) of Lemma 3.3.

(ii) \(f = \alpha m - \alpha b, \phi = \frac{1}{2} m + \frac{1}{2} b\), where \(m : G \to \mathbb{C}\) is multiplicative, \(b : G \to \mathbb{C}\) is in \(V\) and \(\alpha \in \mathbb{C}\) is a constant. Taking (3.17) and (3.15) into account, we obtain respectively
\[
g = \frac{1}{2} m + \frac{1}{2} b - \frac{\lambda^2}{2} (\alpha m - \alpha b) - \lambda \varphi
\]
\[
= \frac{1 - \alpha \lambda^2}{2} m + \frac{1 + \alpha \lambda^2}{2} b - \lambda \varphi
\]
and
\[
h = \alpha \lambda m - \alpha \lambda b + \varphi.
\]
So the result (4) of Lemma 3.3 holds.

(iii) \(f(xy) = f(x)\phi(y) + \phi(x)f(y)\) for all \(x, y \in G\). The result (5) of Lemma 3.3 holds easily by using the identities (3.15) and (3.17). This completes the proof of Lemma 3.3. \(\square\)

Lemma 3.4. Let \(f, g, h : G \to \mathbb{C}\) be functions. Suppose that \(f\) and \(h\) are linearly independent modulo \(V\). If the functions
\[
x \mapsto f(xy) - f(x)g(y) - g(x)f(y) - h(x)h(y)
\]
and
\[
x \mapsto f(xy) - f(yx)
\]
belong to \(V\) for all \(y \in G\), then we have one of the following possibilities:

(1) \(f = -\lambda^2 f_0 + \lambda^2 \varphi, \quad g = \frac{1+\rho^2}{2} f_0 + \rho g_0 + \frac{1-\rho^2}{2} \varphi, \quad h = \lambda \rho f_0 + \lambda g_0 - \lambda \rho \varphi, \quad \text{where} \)

\[
\lambda, \rho \in \mathbb{C}, \quad \lambda \neq 0, \quad \lambda \rho = 1.
\]
Subcase A.1

for all \(x, y \in G \);

(2)

for all \(x, y \in G \),

\[
g = \frac{1}{2} \beta^2 f + \beta h + m
\]

and

\[
\beta f + h = \lambda M - \lambda m,
\]

where \(\beta \in \mathbb{C}, \lambda \in \mathbb{C} \setminus \{0\} \) are constants, \(m, M : G \to \mathbb{C} \) are multiplicative functions such that \(m \in \mathcal{V}, M \notin \mathcal{V} \) and \(\psi \) is the function defined in \((3.2)\);

(3)

\[f(xy) = f(x)m(y) + m(x)f(y) + H(x)H(y) + \psi(x,y),\]

\[g = \frac{1}{2} \beta^2 f + \beta h + m\]

and

\[H(xy) - m(x)H(y) - H(x)m(y) = \eta_1 \psi(x,y) + \eta_2 m(x)L_1(y) + \eta_3 m(x)L_2(y)
+ \eta_4 \psi(x,l_1(y)) + \eta_5 \psi(x,l_2(y)) + \eta_6 L_1(xy) + \eta_7 L_2(xy)\]

for all \(x, y \in G \), where \(\beta, \eta_1, \cdots, \eta_7 \in \mathbb{C} \) are constants, \(m : G \to \mathbb{C} \) is a multiplicative function in \(\mathcal{V}, L_1, L_2 \in \mathcal{V}, l_1, l_2 : G \to G \) are mappings, \(H = \beta f + h \) and \(\psi \) is the function defined in \((3.2)\);

(4) \(f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y) \) for all \(x, y \in G \).

Proof. We split the discussion into the cases \(f, g, h \) are linearly dependent modulo \(\mathcal{V} \) and \(f, g, h \) are linearly independent modulo \(\mathcal{V} \).

Case A: \(f, g, h \) are linearly dependent modulo \(\mathcal{V} \). Since \(f \) and \(h \) are linearly independent modulo \(\mathcal{V} \) we get that there exist a function \(\varphi \in \mathcal{V} \) and two constants \(\alpha, \beta \in \mathbb{C} \) such that

(3.18)

\[g = \alpha f + \beta h + \varphi.\]

By substituting \((3.18)\) in \((3.2)\) we obtain

\[
\psi(x,y) = f(xy) - f(x)[\alpha f(y) + \beta h(y) + \varphi(y)] - [\alpha f(x) + \beta h(x) + \varphi(x)]f(y)
- h(x)h(y)
= f(xy) - 2 \alpha f(x)f(y) - f(x)\varphi(y) - \varphi(x)f(y) - \beta f(x)h(y) - \beta h(x)f(y)
- h(x)h(y),
\]

for all \(x, y \in G \), which implies that

(3.19)

\[
\psi(x,y) = f(xy) - (2 \alpha - \beta^2) f(x)f(y) - f(x)\varphi(y) - \varphi(x)f(y)
- h(x)h(y)]
\]

for all \(x, y \in G \). We have the following subcases

Subcase A.1: \(2 \alpha \neq \beta^2 \). Let \(x, y \in G \) be arbitrary and let \(\delta \in \mathbb{C} \setminus \{0\} \) such that

(3.20)

\[\delta^2 = -(2 \alpha - \beta^2).\]
Multiplying both sides of (3.19) by $-\delta^2$ and then adding $\varphi(xy) - \varphi(x)\varphi(y)$ to both sides of the identity obtained we derive

$$-\delta^2 \psi(x, y) + \varphi(xy) - \varphi(x)\varphi(y) = -\delta^2 f(xy) + \varphi(xy) - [\delta^4 f(x)f(y) - \delta^2 f(x)\varphi(y) - \delta^2 \varphi(xy) - \varphi(x)\varphi(y)] + \delta^2 [\beta f(x) + h(x)][\beta f(y) + h(y)].$$

So, x and y being arbitrary, we get from the identity above that

$$-\delta^2 \psi(x, y) + \varphi(xy) - \varphi(x)\varphi(y) = f_0(xy) - f_0(x)f_0(y) + g_0(x)g_0(y),$$

for all $x, y \in G$, where

$$f_0 := -\delta^2 f + \varphi$$

and

$$g_0 := \delta (\beta f + h).$$

Notice that f_0 and g_0 are linearly independent modulo \mathcal{V} because f and h are. Now, let y be arbitrary. As $\varphi \in \mathcal{V}$ the function $x \mapsto \varphi(x)\varphi(y)$ belongs to \mathcal{V}, and since the linear space \mathcal{V} is two-sided invariant, we get that the function $x \mapsto \varphi(xy)$ belongs to \mathcal{V}. Moreover, by assumption the function $x \mapsto \psi(x, y)$ belongs to \mathcal{V}. Hence the left hand side of the identity (3.21) belongs to \mathcal{V} as a function in x. So that the function

$$x \mapsto f_0(xy) - f_0(x)f_0(y) + g_0(x)g_0(y)$$

belongs to \mathcal{V}. On the other hand, by using (3.22), we have

$$f_0(xy) - f_0(yx) = -\delta^2 (f(xy) - f(yx)) + \varphi(xy) - \varphi(yx)$$

for all $x \in G$. So, y being arbitrary, the function $x \mapsto f_0(xy) - f_0(yx)$ belongs to \mathcal{V} for all $y \in G$ because the functions $x \mapsto f(xy) - f(yx)$ and $x \mapsto \varphi(xy) - \varphi(yx)$ do. Moreover f_0 and g_0 are linearly independent modulo \mathcal{V}. Hence we get, according to [13] Lemma 3.1, that

$$f_0(xy) = f_0(x)f_0(y) - g_0(x)g_0(y)$$

for all $x, y \in G$. By putting $\lambda = \frac{1}{\delta}$ we get, from (3.22), that

$$f = -\lambda^2 f_0 + \lambda^2 \varphi.$$

By putting $\rho = \beta \lambda$ we get, from (3.23), that $h = \lambda g_0 - \beta (-\lambda^2 f_0 + \lambda^2 \varphi)$, which implies that

$$h = \lambda \rho f_0 + \lambda g_0 - \lambda \rho \varphi.$$

So, we derive from (3.18), (3.21) and (3.25) that

$$g = \alpha (-\lambda^2 f_0 + \lambda^2 \varphi) + \beta (\lambda \rho f_0 + \lambda g_0 - \lambda \rho \varphi) + \varphi$$

$$= (-\alpha \lambda^2 + \beta \lambda \rho) f_0 + \beta \lambda g_0 + (\alpha \lambda^2 - \beta \lambda \rho + 1) \varphi$$

$$= (-\alpha \lambda^2 + \rho^2) f_0 + \rho g_0 + (\alpha \lambda^2 - \rho^2 + 1) \varphi$$

Using (3.20) we find, by elementary computations, that $\alpha \lambda^2 = \frac{1}{2} \rho^2 - \frac{1}{2}$. Hence, from the identity above, we get that

$$g = \frac{1 + \rho^2}{2} f_0 + \rho g_0 + \frac{1 - \rho^2}{2} \varphi.$$
The result obtained in this case occurs in (1) of Lemma 3.4.

Subcase A.2: $2\alpha = \beta^2$. In this case the identity (3.19) becomes

\[(3.26) \quad \psi(x, y) = f(xy) - f(x)\varphi(y) - \varphi(x)f(y) - H(x)H(y)\]

for all $x, y \in G$, where

\[(3.27) \quad H := \beta f + h.\]

Since f and h are linearly independent modulo \mathcal{V} so are f and H. Moreover $\varphi \in \mathcal{V}$.

Hence, according to Lemma 3.2, there exists a multiplicative function $m : G \rightarrow \mathbb{C}$ in \mathcal{V} such that $\varphi = m$. So the identities (3.18) and (3.26) become respectively

\[(3.30) \quad g = \frac{1}{2}\beta^2 f + \beta h + m.\]

and

\[(3.31) \quad \psi(x, y) = f(xy) - f(x)m(y) - m(x)f(y) - H(x)H(y)\]

for all $x, y \in G$. We use similar computations to the ones in the proof of [4, Theorem]. Let $x, y, z \in G$ be arbitrary. First we compute $f(xyz)$ as $f(xyz)$ and then as $f((xy)z)$. From (3.24) we get that

\[f(xyz) = f(xy)\psi(y, z) + m(xy)\psi(f, z) + m(x)f(y) + m(x)H(y)H(z)\]

On the other hand

\[f((xy)z) = f(xy)m(z) + m(xy)f(z) + H(x)H(y) + \psi(x, z)\]

so that

\[(3.32) \quad f((xy)z) = f(x)m(z) + m(x)f(y) + m(xy)f(z) + m(x)H(y)H(z)\]

From (3.30) and (3.31) we get that

\[(3.33) \quad f(z_1)H(z_2) - f(z_2)H(z_1) \neq 0.\]

Let $x, y \in G$ be arbitrary. By putting $z = z_1$ and then $z = z_2$ in (3.32) we get respectively

\[(3.34) \quad H(x)k_i(y) - H(z_i)(H(xy) - H(x)m(y) - m(x)H(y)) = \psi_i(x, y)\]

where

\[k_i(y) := H(yz_i) - H(y)m(z_i) - m(y)H(z_i)\]
\[(3.35) \quad \psi_i(x, y) := m(z_i)\psi(x, y) - m(x)\psi(y, z_i) - \psi(x, yz_i) + \psi(xy, z_i) \]

for \(i = 1, 2 \). Multiplying both sides of \((3.33)\) by \(f(z_2) \) for \(i = 1 \) and by \(f(z_1) \) for \(i = 2 \), and subtracting the identities obtained we get that

\[(3.36) \quad H(x)k_3(y) + [f(z_1)H(z_2) - f(z_2)H(z_1)]|H(xy) - H(x)m(y) - m(x)H(y)| = \psi_3(x, y), \]

where

\[k_3(y) := f(z_2)k_1(y) - f(z_1)k_2(y) \]

and

\[(3.37) \quad \psi_3(x, y) := f(z_2)\psi_1(x, y) - f(z_1)\psi_2(x, y). \]

So, \(x \) and \(y \) being arbitrary, we get, taking \((3.33)\) and \((3.36)\) into account, that

\[(3.38) \quad H(xy) - H(x)m(y) - m(x)H(y) = H(x)k(y) + \Phi(x, y) \]

for all \(x, y \in G \), where

\[k(x) := -[f(z_1)H(z_2) - f(z_2)H(z_1)]^{-1}k_3(x) \]

and

\[(3.39) \quad \Phi(x, y) := [f(z_1)H(z_2) - f(z_2)H(z_1)]^{-1}\psi_3(x, y) \]

for all \(x, y \in G \). Substituting \((3.38)\) into \((3.32)\) we get that

\[
H(x)[H(y)k(z) + \Phi(y, z)] - H(z)[H(x)k(y) + \Phi(x, y)]
\]

\[= m(z)\psi(x, y) - m(x)\psi(y, z) + \psi(xy, z) - \psi(x, yz), \]

which implies that

\[(3.40) \quad H(x)[H(y)k(z) - H(z)k(y) + \Phi(y, z)] = H(z)\Phi(x, y) + m(z)\psi(x, y) \]

\[- m(x)\psi(y, z) + \psi(xy, z) - \psi(x, yz) \]

for all \(x, y, z \in G \). Now let \(y, z \in G \) be arbitrary. Since \(\mathcal{V} \) is a two-sided invariant linear space of complex-valued functions on \(G \), and the functions \(x \mapsto m(x) \) and \(x \mapsto \psi(x, y) \) belong to \(\mathcal{V} \), we deduce from \((3.35)\), \((3.37)\), and \((3.39)\) that the functions \(x \mapsto \Phi(x, y) \) and \(x \mapsto \psi_i(x, y) \) belong to \(\mathcal{V} \) for \(i = 1, 2, 3 \). Hence the right hand side of \((3.40)\) belongs to \(\mathcal{V} \) as a function in \(x \). It follows that the left hand side of \((3.40)\) belongs to \(\mathcal{V} \) as a function in \(x \). As \(f \) and \(H \) are linearly independent modulo \(\mathcal{V} \), we derive, from \((3.40)\), that \(H(y)k(z) - H(z)k(y) + \Phi(y, z) = 0 \). So, \(y \) and \(z \) being arbitrary, we get that

\[(3.41) \quad H(z)k(x) = H(x)k(z) + \Phi(x, z) \]

for all \(x, z \in G \).

On the other hand we deduce from \((3.33)\) that \(f(z_1)H(z_2) \neq 0 \) or \(f(z_2)H(z_1) \neq 0 \), so we can assume, without loss of generality, that \(H(z_1) \neq 0 \). Replacing \(z \) by \(z_1 \) in the identity \((3.41)\) we derive that

\[(3.42) \quad k(x) = \gamma H(x) + \Phi_1(x) \]

for all \(x \in G \), where \(\gamma := H(z_1)^{-1}k(z_1) \) and

\[(3.43) \quad \Phi_1(x) := H(z_1)^{-1}\Phi(x, z_1) \]

for all \(x \in G \). From \((3.38)\) and \((3.42)\) we get that

\[(3.44) \quad H(xy) = H(x)m(y) + m(x)H(y) + \gamma H(x)H(y) + H(x)\Phi_1(y) + \Phi(x, y) \]
for all \(x, y \in G \). Since the functions \(m \) and \(x \mapsto \Phi(x, y) \) belongs to \(V \) for all \(y \in G \) we get, from (3.44), that the function
\[
(3.45) \quad x \mapsto H(xy) - H(x)[m(y) + \Phi_1(y) + \gamma H(y)]
\]
belongs to \(V \) for all \(y \in G \). As \(H \notin V \) we get from (3.45), according to [12, Theorem], that there exists a multiplicative function \(M : G \to \mathbb{C} \) such that
\[
(3.46) \quad m + \Phi_1 + \gamma H = M.
\]
We have the following subcases

Case A.2.1: \(\gamma \neq 0 \). Putting \(\lambda = \frac{1}{\gamma} \in \mathbb{C} \setminus \{0\} \) we obtain from (3.46) the identity
\[
(3.47) \quad H = \lambda M - \lambda m - \lambda \Phi_1.
\]
Let \(x, y \in G \) be arbitrary. Since \(m \) and \(M \) are multiplicative we get from the identity above that \(H(xy) - H(yx) = \lambda \Phi_1(yx) - \lambda \Phi_1(xy) \). Taking (3.44) into account we get that
\[
H(x)\Phi_1(y) - H(y)\Phi_1(x) + \Phi(x, y) - \Phi(y, x) = \lambda \Phi_1(yx) - \lambda \Phi_1(xy).
\]
So, \(x \) and \(y \) being arbitrary, we get for all \(x, y \in G \), \(H(x)\Phi_1(y) = H(y)\Phi_1(x) + \Phi(x, y) - \Phi(y, x) - \lambda \Phi_1(yx) + \lambda \Phi_1(xy)\) (3.48)
\[
\text{for all } x, y \in G. \text{ Now let } y \text{ be arbitrary. As seen early the functions } \Phi_1 \text{ and } x \mapsto \Phi(x, y) - \Phi(y, x) \text{ belong to } V. \text{ So, } V \text{ being a two-sided invariant linear space of complex-valued functions on } G, \text{ we get from (3.48) that the function } x \mapsto H(x)\Phi_1(y) \text{ belongs to } V. \text{ Taking into account that } f \text{ and } H \text{ are linearly independent, we get } \Phi_1(y) = 0. \text{ So, } y \text{ being arbitrary, we obtain } \Phi_1 = 0. \text{ Hence, using (3.47), we get that }
\[
(3.49) \quad H = \lambda M - \lambda m.
\]
Substituting this back into (3.29) we get, by an elementary computation, that
\[
(3.50) \quad f(xy) - \lambda^2 M(xy) = (f(x) - \lambda^2 M(x))m(y) + m(x)(f(y) - \lambda^2 M(y)) + \lambda^2 m(xy) + \psi(x, y),
\]
for all \(x, y \in G \). We conclude from (3.27), (3.28), (3.49) and (3.50) that the result (2) of Lemma 3.4 holds.

Case A.2.2: \(\gamma = 0 \). Let \(y \in G \) be arbitrary. The identity (3.32) implies that \(k = \Phi_1 \). Hence we derive from (3.41) that
\[
H(x)\Phi_1(y) = H(y)\Phi_1(x) - \Phi(x, y),
\]
for all \(x \in G \). Since the function \(x \mapsto \Phi(x, y) \) belongs to \(V \) we get, taking the identity above and (3.43) into account, that the function \(x \mapsto H(x)\Phi_1(y) \) belongs to \(V \). As \(f \) and \(H \) are linearly independent modulo \(V \) we infer that \(\Phi_1(y) = 0 \). So, \(y \) being arbitrary, we get that \(\Phi_1 = 0 \). Hence the identity (3.44) becomes
\[
(3.51) \quad H(xy) = m(x)H(y) + H(x)m(y) + \Phi(x, y).
\]
On the other hand, by using (3.35), (3.37) and (3.39) we derive, using the same notations, that there exist \(\eta_i \in \mathbb{C} \) with \(i = 1, \cdots, 7 \) such that
\[
\Phi(x, y) = \eta_1 \text{ } \Psi(x, y) + \eta_2 \text{ } m(x)\Psi(y, z_1) + \eta_3 \text{ } m(x)\Psi(y, z_2) + \eta_4 \text{ } \psi(x, yz_1) + \eta_5 \text{ } \psi(x, yz_2) + \eta_6 \text{ } \psi(xy, z_1) + \eta_7 \text{ } \psi(xy, z_2)
\]
x, y \in G. We get that
\[
(3.52) \quad \Phi(x, y) = \eta_1 \text{ } \Psi(x, y) + \eta_2 \text{ } m(x)\Psi_1(y) + \eta_3 \text{ } m(x)\Psi_2(y) + \eta_4 \text{ } \psi(x, l_1(y))
\]
+ \eta_5 \text{ } \psi(x, l_2(y)) + \eta_6 \text{ } L_1(xy) + \eta_7 \text{ } L_2(xy).
for all \(x, y \in G \), where

\[L_i(x) := \psi(x, z_i) \]

for \(i = 1, 2 \) and for all \(x \in G \), and \(l_i : G \to G \) is defined for \(i = 1, 2 \) by \(l_i(x) = xz_i \) for all \(x \in G \). Hence we get from (3.51) and (3.48) the identity

\[(3.53) \]

\[H(xy) - m(x)H(y) - H(x)m(y) = \eta_1 \psi(x, y) + \eta_2 m(x)L_1(y) + \eta_3 m(x)L_2(y) + \eta_4 \psi(x, l_1(y)) + \eta_5 \psi(x, l_2(y)) + \eta_6 L_1(xy) + \eta_7 L_2(xy) \]

for all \(x, y \in G \).

We conclude from (3.27), (3.28), (3.29) and (3.53) that the result (3) of Lemma 3.4 holds.

Case B. \(f, g \) and \(h \) are linearly independent modulo \(\mathcal{V} \). Then, according to Lemma 3.1, there exist two functions \(\varphi_1, \varphi_2 \in \mathcal{V} \) satisfying (3.1), where \(\psi \) is the function defined in (3.2). Let \(y \in G \) be arbitrary. Since the functions \(x \mapsto \psi(x, y) \) and \(x \mapsto f(xy) - f(yx) \) belong to \(\mathcal{V} \) by assumption, so does the function \(x \mapsto \psi(y, x) \). Seeing that \(\psi(y, x) = \varphi_1(y)f(x) + \varphi_2(y)h(x) \), and that \(f \) and \(h \) are linearly independent modulo \(\mathcal{V} \), we get that \(\varphi_1(y) = \varphi_2(y) = 0 \). So, \(y \) being arbitrary, we deduce that \(\psi(x, y) = 0 \) for all \(x, y \in G \). Then the result (4) of Lemma 3.4 holds. This completes the proof of Lemma 3.4.

\[\square \]

4. Stability of the Cosine-Sine Functional Equation on Amenable Groups

Throughout this section \(G \) is an amenable group with an identity element that we denote by \(e \). We will extend the Székelyhidi’s results [13, Theorem 2.3], about the stability of the functional equation (1.2), to the functional equation (1.1).

Theorem 4.1. Let \(f, g, h : G \to \mathbb{C} \) be functions. The function

\[(x, y) \mapsto f(xy) - f(x)g(y) - g(x)f(y) - h(x)h(y) \]

is bounded if and only if one of the following assertions holds:

1. \(f = 0, g \) is arbitrary and \(h \in \mathcal{B}(G) \);
2. \(f, g, h \in \mathcal{B}(G) \);
3. \(\left\{ \begin{array}{l} f = am + \varphi, \\ g = (1 - \frac{\varphi}{a})m - \lambda b - \frac{\varphi}{a} \varphi, \\ h = \lambda a m + b + \lambda \varphi, \end{array} \right. \)
 where \(\lambda \in \mathbb{C} \) is a constant, \(a : G \to \mathbb{C} \) is an additive function, \(m : G \to \mathbb{C} \) is a bounded multiplicative function and \(b, \varphi : G \to \mathbb{C} \) are two bounded functions;
4. \(\left\{ \begin{array}{l} f = \alpha m - \alpha b, \\ g = \frac{1-\alpha \lambda^2}{2} m + \frac{1+\alpha \lambda^2}{2} b - \lambda \varphi, \\ h = \alpha \lambda m - \alpha \lambda b + \varphi, \end{array} \right. \)
 where \(\alpha, \lambda \in \mathbb{C} \) are two constants, \(m : G \to \mathbb{C} \) is a multiplicative function and \(b, \varphi : G \to \mathbb{C} \) are two bounded functions;
5. \(\left\{ \begin{array}{l} f = f_0, \\ g = g = g_0 - \frac{\lambda^2}{2} f_0 - \lambda b, \\ h = \lambda f_0 + b, \end{array} \right. \)
where \(\lambda \in \mathbb{C} \) is a constant, \(b : G \to \mathbb{C} \) is a bounded function and \(f_0, g_0 : G \to \mathbb{C} \) are functions satisfying the sine functional equation

\[
f_0(xy) = f_0(x)g_0(y) + g_0(x)f_0(y), \quad x, y \in G;
\]

(6)

\[
\begin{aligned}
 f &= -\lambda^2 f_0 + \lambda^2 b, \\
g &= \frac{1 + \lambda^2}{2} f_0 + \rho g_0 + \frac{1 - \rho^2}{2} b, \\
h &= \lambda \rho f_0 + \lambda g_0 - \lambda \rho b,
\end{aligned}
\]

where \(\rho \in \mathbb{C}, \lambda \in \mathbb{C} \setminus \{0\} \) are two constants, \(b : G \to \mathbb{C} \) is a bounded function and \(f_0, g_0 : G \to \mathbb{C} \) are functions satisfying the cosine functional equation

\[
f_0(xy) = f_0(x)f_0(y) - g_0(x)g_0(y), \quad x, y \in G;
\]

(7)

\[
\begin{aligned}
f &= \lambda^2 M + a m + b, \\
g &= \beta \lambda(1 - \frac{1}{2}\beta \lambda)M + (1 - \beta \lambda) m - \frac{1}{2} \beta^2 a m - \frac{1}{2} \beta^2 b, \\
h &= \lambda(1 - \beta \lambda) M - \lambda m - \beta a m - \beta b,
\end{aligned}
\]

where \(\beta \in \mathbb{C}, \lambda \in \mathbb{C} \setminus \{0\} \) are two constants, \(m, M : G \to \mathbb{G} \) are two multiplicative functions such that \(m \) is bounded, \(a : G \to \mathbb{C} \) is an additive function and \(b : G \to \mathbb{C} \) is a bounded function;

(8)

\[
\begin{aligned}
f &= \frac{1}{2} a^2 m + \frac{1}{2} a_1 m + b, \\
g &= -\frac{1}{2} \beta^2 a^2 m + \beta a m - \frac{1}{2} \beta^2 a_1 m + m - \frac{1}{2} \beta^2 b, \\
h &= -\beta a^2 m + a m - \frac{1}{2} \beta a_1 m - \beta b,
\end{aligned}
\]

where \(\beta \in \mathbb{C} \) is a constant, \(m : G \to \mathbb{C} \) is a nonzero bounded multiplicative function, \(a, a_1 : G \to \mathbb{C} \) are two additive functions such that \(a \neq 0 \) and \(b : G \to \mathbb{C} \) is a bounded function;

(9) \(g = -\frac{1}{2} \beta^2 f + (1 + \beta a)m + \beta b \) and \(h = -\beta f + a m + b \), where \(\beta \in \mathbb{C} \) is a constant and \(a : G \to \mathbb{C} \) is an additive function, \(m : G \to \mathbb{C} \) is a nonzero bounded multiplicative function and \(b : G \to \mathbb{C} \) is a bounded function such that the function

\[
(x, y) \mapsto f(xy)m((xy)^{-1}) - \frac{1}{2} a^2(xy) - (f(x)m(x^{-1}) - \frac{1}{2} a^2(x)) - (f(y)m(y^{-1}) - \frac{1}{2} a^2(y)) - a(x)b(y)m(y^{-1}) - a(y)b(x)m(x^{-1})
\]

is bounded;

(10) \(f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y) \) for all \(x, y \in G \).

Proof. First we prove the necessity. Applying the Lemma 3.3(1), Lemma 3.3(2), Lemma 3.3(4), Lemma 3.3(5), Lemma 3.4(1) and Lemma 3.4(4) with \(V = B(G) \) we get that either one of the conditions (1), (2), (4), (5), (6), (10) in Theorem 4.1 is satisfied, or we have one of the following cases:

Case A:

\[
g + \frac{\lambda^2}{2} f = m - \lambda b
\]

and

\[
h - \lambda f = b,
\]
where $\lambda \in \mathbb{C}$ is a constant, $b : G \to \mathbb{C}$ is a bounded function and $m : G \to \mathbb{C}$ is a bounded multiplicative function. From (3.2) and the identities above we obtain, by an elementary computation,

\[(4.1)\quad g = -\frac{\lambda^2}{2} f + m - \lambda b,\]

\[(4.2)\quad h = \lambda f + b\]

and

\[(4.3)\quad f(xy) - f(x)m(y) - m(x)f(y) = \psi(x, y) + b(x)b(y)\]

for all $x, y \in G$. If $m \neq 0$ then, by multiplying both sides of (4.3) by $m((xy)^{-1})$, and using the fact that m is a bounded multiplicative function, and that the functions b and ψ are bounded, we get that the function $(x, y) \mapsto f(xy)m((xy)^{-1}) - f(x)m(x^{-1}) - f(y)m(y^{-1})$ is bounded. Notice that we have the same result if $m = 0$. So, according to Hyers’s theorem [11, Theorem 3.1], there exist an additive function $a : G \to \mathbb{C}$ and a function $\varphi_0 \in \mathcal{B}(G)$ such that $f(x)m(x^{-1}) - a(x) = b_0(x)$ for all $x \in G$. Then, by putting $\varphi = m\varphi_0$, we get that $f = a + \varphi$ with $\varphi \in \mathcal{B}(G)$. Substituting this back into (4.1) and (4.2) we obtain, by an elementary computation, that $g = (1 - \frac{\lambda^2}{2} a)m - \lambda b - \frac{\lambda^2}{2} \varphi$ and $h = \lambda a + b + \lambda \varphi$. So the result (3) of Theorem 4.1 holds.

Case B:

\[
f(xy) - \lambda^2 M(xy) = (f(x) - \lambda^2 M(x))m(y) + m(x)(f(y) - \lambda^2 M(y)) + \lambda^2 m(xy) + \psi(x, y)\]

for all $x, y \in G$,

\[
g = \frac{1}{2} \beta^2 f + \beta h + m\]

and

\[
\beta f + h = \lambda M - \lambda m,\]

where $\beta \in \mathbb{C}$, $\lambda \in \mathbb{C} \setminus \{0\}$ are constants, $M : G \to \mathbb{C}$ are multiplicative functions such that $m \in \mathcal{B}(G)$, $M \notin \mathcal{B}(G)$ and ψ is the function defined in (3.2). If $m \neq 0$ then, by multiplying both sides of the first identity above by $m((xy)^{-1})$ and using that m is multiplicative, we get that

\[
(f(xy) - \lambda^2 M(xy))m((xy)^{-1}) = (f(x) - \lambda^2 M(x))m(x^{-1}) + (f(y) - \lambda^2 M(y))m(y^{-1}) + \lambda^2 + m((xy)^{-1})\psi(x, y)\]

for all $x, y \in G$. Since the functions m and ψ are bounded, then we get from the identity above that

\[
(x, y) \mapsto (f(xy) - \lambda^2 M(xy))m((xy)^{-1}) - (f(x) - \lambda^2 M(x))m(x^{-1}) - (f(y) - \lambda^2 M(y))m(y^{-1})\]

is bounded. Notice that we have the same result if $m = 0$. So, according to Hyers’s theorem [11, Theorem 3.1], there exist an additive function $a : G \to \mathbb{C}$ and a function $b_0 \in \mathcal{B}(G)$ such that

\[
(f(x) - \lambda^2 M(x))m(x^{-1}) - a(x) = b_0(x)\]

for all $x \in G$. Then, by putting $b = m b_0$, we derive that

\[
f = \lambda^2 M + a m + b\]
with $b \in \mathcal{B}(G)$. As $g = \frac{1}{2} \beta^2 f + \beta h + m$ and $\beta f + h = \lambda M - \lambda m$, we obtain

$$h = -\beta(\lambda^2 M + a m + b) + \lambda M - \lambda m$$

$$= \lambda(1 - \beta \lambda) M - \lambda m - \beta a m - \beta b$$

and

$$g = \frac{1}{2} \beta^2 (\lambda^2 M + a m + b) + \beta(\lambda(1 - \beta \lambda)M - \lambda m - \beta a m - \beta b) + m$$

$$= \beta \lambda(1 - \frac{1}{2} \beta \lambda) M + (1 - \beta \lambda)m - \frac{1}{2} \beta^2 a m - \frac{1}{2} \beta^2 b.$$

The result occurs in (7) of Theorem 4.1.

Case C:

$$f(xy) = f(x)m(y) + m(x)f(y) + H(x)H(y) + \psi(x,y),$$

$$H(xy) - H(x)m(y) - m(x)H(y) = \eta_1 \psi(x,y) + \eta_2 m(x)L_1(y) + \eta_3 m(x)L_2(y)$$

$$+ \eta_4 \psi(x,l_1(y)) + \eta_5 \psi(x,l_2(y)) + \eta_6 L_1(xy) + \eta_7 L_2(xy)$$

for all $x, y \in G$,

$$g = \frac{1}{2} \beta^2 f + \beta h + m$$

and

$$H = \beta f + h$$

and where $\beta, \eta_1, \cdots, \eta_7 \in \mathbb{C}$ are constants, $m : G \to \mathbb{C}$ is a bounded multiplicative function, $L_1, L_2 \in \mathcal{B}(G)$, $l_1, l_2 : G \to G$ are mappings, and ψ is the function defined in [3,2].

If $H \in \mathcal{B}(G)$ then f and h are linearly dependent modulo $\mathcal{B}(G)$. So, according to Lemma 3.3, on of the assertions (1)-(5) of Theorem 4.1 holds.

In what follows we assume that $H \notin \mathcal{B}(G)$. Since the functions m, L_1, L_2 and ψ are bounded, we get from the above second identity that the function

$$(x, y) \mapsto H(xy) - H(x)m(y) - m(x)H(y)$$

is bounded. Hence $m \neq 0$ because $H \notin \mathcal{B}(G)$. Then, according to [13, Theorem 2.3] and taking the assumption on H into account, we have one of the following subcases:

Subcase C.1: $H = am + b$, where $a : G \to \mathbb{C}$ is additive and $b \in \mathcal{B}(G)$. Then $\beta f + h = am + b$, which implies that

$$h = -\beta f + am + b.$$

Moreover, since $g = \frac{1}{2} \beta^2 f + \beta h + m$ we get that

$$g = -\frac{1}{2} \beta^2 f + m + \beta am + \beta b.$$

Let $x, y \in G$ be arbitrary. By using the first identity in the present case, we get that

$$\psi(x,y) = f(xy) - f(x)m(y) - m(x)f(y) - (a(x)m(x) + b(x))(a(y)m(y) + b(y))$$

$$= f(xy) - f(x)m(y) - m(x)f(y) - a(x)a(y)m(xy) - m(x)a(x)b(y)$$

$$- m(y)a(y)b(x) - b(x)b(y).$$
Since m is a nonzero multiplicative function on the group G we have $m(xy) = m(x)m(y) \neq 0$ and $m((xy)^{-1}) = m(x^{-1})m(y^{-1}) = (m(x))^{-1}(m(y))^{-1}$. Hence, by multiplying both sides of the identity above we get that

$$m((xy)^{-1})[\psi(x,y)b(x)b(y)] = f(xy)m((xy)^{-1}) - f(x)m(x^{-1}) - f(y)m(y^{-1})$$

$$- a(x)a(y) - a(x)b(y)m(y^{-1}) - a(y)b(x)m(x^{-1})$$

$$= (f(xy)m((xy)^{-1}) - \frac{1}{2}a^2(xy)) - (f(x)m(x^{-1}) - \frac{1}{2}a^2(x))$$

$$- (f(y)m(y^{-1}) - \frac{1}{2}a^2(y)) - a(x)b(y)m(y^{-1}) - a(y)b(x)m(x^{-1}).$$

So, x and y being arbitrary, and the functions m, b and ψ are bounded, we deduce that the function

$$(x, y) \mapsto f(xy)m((xy)^{-1}) - \frac{1}{2}a^2(xy) - (f(x)m(x^{-1}) - \frac{1}{2}a^2(x))$$

$$- (f(y)m(y^{-1}) - \frac{1}{2}a^2(y)) - a(x)b(y)m(y^{-1}) - a(y)b(x)m(x^{-1})$$

is bounded. The result occurs in (9) of the list of Theorem 4.1.

Subcase C.2: $H(xy) = H(x) + H(y)m(x)$ for all $x, y \in G$. Since m is a nonzero multiplicative function on the group G we have $m(x) \neq 0$ for all $x \in G$. Then, in view of $H \notin B(G)$, we get from the last functional equation that there exists a nonzero additive function $a : G \to \mathbb{C}$ such that $H = a m$. Substituting this back in the first identity in the present case and proceeding exactly as in Subcase C.1, we get that the function

$$(x, y) \mapsto 2f(xy)m((xy)^{-1}) - a^2(xy) - (2f(x)m(x^{-1}) - a^2(x))$$

$$- (2f(y)m(y^{-1}) - a^2(y))$$

is bounded. Hence, according to Hyers’s theorem [11, Theorem 3.1], there exist an additive function $a_1 : G \to \mathbb{C}$ and a function $b_0 \in B(G)$ such that $2f(x)m(x^{-1}) - a^2(x) = a_1(x) + b_0(x)$ for all $x, y \in G$. So, by putting $b = \frac{1}{2}m b_0$ we deduce that $b \in B(G)$ because $m, b_0 \in B(G)$ and

$$(4.4) \quad f = \frac{1}{2}a^2 m + \frac{1}{2}a_1 m + b.$$

Since $H = \beta f + h$ and $g = \frac{1}{2} \beta^2 f + \beta h + m$ we get, by using (4.4) and an elementary computation, that $g = -\frac{1}{4}\beta^2 a^2 m + \beta a m - \frac{1}{2}\beta^2 a_1 m + m - \frac{1}{2}\beta^2 b$ and $h = -\frac{1}{2}\beta a^2 m + a m - \frac{1}{2}\beta a_1 m - \beta b$. The result occurs in (8) of the list of Theorem 4.1.

Conversely, we check by elementary computations that if one of the assertions (1)-(10) in Theorem 4.1 is satisfied then the function $(x, y) \mapsto f(xy) - f(x)g(y) - g(x)f(y) - h(x)h(y)$ is bounded. This completes the proof of Theorem 4.1.

Acknowledgments. The authors are grateful to referees for the thorough review of this paper.

References

[1] Aczél, J.: Lectures on functional equations and their applications. In: Aczél, J. (ed.) Mathematics in Sciences and Engineering, vol. 19. Academic Press, New York (1966)

[2] Ajeabbar, O. and Elporachi, E.: The Cosine-Sine functional equation on a semigroup with an involutive automorphism. Aequ. Math. 91(6), 1115-1146 (2017)
[3] Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64-66 (1950)
[4] Chung, J.K., Kannappan, Pl. and Ng, C.T.: A generalization of the Cosine-Sine functional equation on groups. Linear Algebra and Appl. 66, 259-277 (1985)
[5] Czerwik, S.: Functional equations and inequalities in several variables. World Scientific. Hackensacks, New Jersey (2002)
[6] Hyers, D.H.: On the stability of linear functional equation. Proc. Nat. Acad. Sci. USA, 27, 222-224 (1941)
[7] Hyers, D.H., Isac, G. and Rassias, Th.M.: Stability of functional equations in several variables. Progr. Nonlinear Differentiel Equations Appl., 34, Birkhäuser, Boston, (1998)
[8] Jung, S.-M: Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis. Springer Optimization and its Applications 48 (2010)
[9] Poulsen, T.A. and Stetkær, H.: On the trigonometric subtraction and addition formulas. Aequ. Math. 59, (1-2), 84-92 (2000)
[10] Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72, 297-300 (1978)
[11] Székelyhidi, L.: Fréchet’s equation and Hyers’s theorem on noncommutative semigroup. Ann. Polon. Math. 48, 183-189 (1988)
[12] Székelyhidi, L.: On a theorem of Baker, Lawrence and Zorzitto. Proc. Amer. Math. Soc. 84(1), 95-96 (1982)
[13] Székelyhidi, L.: The stability of the sine and cosine functional equations. Proc. Amer. Math. Soc. 110, 109-115 (1990)
[14] S.M. Ulam: A collection of Mathematical Problems. Interscience Publ., New York (1960)

Omar Ajebbar, Department of Mathematics, Ibn Zohr University, Faculty of Sciences, Agadir, Morocco
E-mail address: omar-ajb@hotmail.com

Elhoucien Elqorachi, Department of Mathematics, Ibn Zohr University, Faculty of Sciences, Agadir, Morocco
E-mail address: elqorachi@hotmail.com