Evaluation of Regional Logistics Competitiveness of Wuhan’s "1+8" Urban Circle Based on SPSS

Rong Zhou¹ and Rui Chen¹,*

¹Hubei University of Chinese Medicine, Huangjiahu west road, Hongshan District, Wuhan, Hubei Province, China

*Corresponding author: 906480609@qq.com

Abstract. In this paper, 8 cities in the "1+8" urban circle of Wuhan were taken as research objects to construct the evaluation system of regional logistics competitiveness. Based on relevant data in 2017, the competitiveness of regional logistics in 8 cities was compared by factor analysis. Based on cluster analysis, the development level of regional logistics in the 8 cities was revealed. Finally, we put forward several suggestions to improve regional logistics competitiveness for the 8 different cities.

Keywords: Wuhan, Urban Circle, Regional Logistics Competitiveness, SPSS, Principal Component Analysis, Clustering Analysis

1 Introduction

The Wuhan urban circle, also known as the "1+8" urban circle of Wuhan, is a pilot area for the comprehensive reform of building a resource-conserving and environment-friendly society in China, approved by the national development and reform commission on December 14, 2007. It means to take Wuhan as the center of the circle and covering 8 medium-sized cities, including Huangshi, Ezhou, Huanggang, Xiaogan, Xianning, Xiantao, Qianjiang and Tianmen. The area of Wuhan urban circle is less than one third of that of Hubei Province, but it has concentrated more than half of the population of the province and more than 60% of the total GDP.

Regional logistics competitiveness means the logistics of a region can provide more competitive than other regions in terms of development ability of service economy, improvement of comprehensive economic strength and sustainable development ability in market competition.[1-3] With the further development of economic integration of urban circle, the demand of logistics integration has been generated. The development of regional logistics has important practical significance for optimizing regional economic structure, improving urban environment. The main purpose of this paper is that the government can understand the competitiveness level of urban logistics, and make the development plan of urban logistics according to the comparison results, so as to lay the foundation for the stability of urban logistics.

In China, there are few documents related to the logistics competitiveness of Wuhan urban circle, and there is not a mature evaluation index system of regional logistics competitiveness. Foreign scholars mainly focus on the micro level evaluation from the perspective of logistics supply chain. The
evaluation of regional logistics competitiveness is a complex process. Commonly used evaluation methods include factor analysis, DEA, clustering analysis, grey system method, etc. On the basis of relevant theories, this paper selected factor analysis and cluster analysis.

2 Construct of Evaluation System of Regional Logistics Competitiveness

2.1 Analysis and Selection of Index System
The authoritative views on the connotation of competitiveness mainly include Porter's diamond theory and international competitiveness theory. International competitiveness theory points out that the international competitiveness of a country (or region) includes not only the existing comprehensive strength, but also the internal growth ability of long-term sustainable development, that is, the potential for future growth. This paper uses the theory of international competitiveness to construct the evaluation index system shown as table 1.

| Table 1. Evaluation index system of regional logistics competitiveness |
|-----------------------------|-----------------------------|
| Primary indices | Secondary indices |
| Competitive strength of urban logistics | X11 Highway mileage (Kilometer), X12 Total number of civilian vehicles, X13 Number of employees in transportation, warehousing, postal services, X14 Total fixed assets investment in transportation, warehousing and postal services (Ten thousand Yuan) |
| Industrial scale | X5 Ton-kilometers (0.1 Billion ton-kilometers), X2 GDP of transportation, warehousing and postal services (0.1 Billion Yuan) |
| Economic development level | X1 Per capita GDP (Yuan), X3 Total imports and exports (0.1 Billion Yuan) |
| Information-based level | X8 Internet users of computer broadband (10 thousand), X7 Mobile-telephone users (10 thousand), X6 Postal services (0.1 Billion Yuan) |
| Logistics support factors | X10 Total urban population (10 thousand), X4 Retail sales (0.1 Billion ton-kilometers), X9 Annual number of invention patents per ten thousand people in a city |

2.2 Data Sources
The data used in this paper are all from the 2018 Statistical Yearbooks of each state and city of Hubei Province.[4-6] The data is the actual data of the city in 2017, and the specific data is shown in Table 2. Because there are big differences in quantity and dimension of each index data, in order to get more accurate analysis results, we do non dimensional treatment for the original data of each index by SPSS19.0 first of all.
Table 2. Logistics evaluation data of each city in Wuhan Urban circle in 2017

Cities	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13	X14
Ezhou	844	42	37	336	71.9	3.	102.	28	2	107.	3726	6086	546	1858
Huang	303	35	54	1083	371.	9	445.	94	2	634.	3050	1062	988	1863
Gang	56	59	6	.16	22	97	1	4	36	1	0	834	3	080
Huang	599	72	22	723.	4984	9	212.	57	5	247.	7047	2003	895	1482
Shi	43	84	8.1	28	.32	1	66	6	7	0.5	804	53	2	042
Qian	697	20	20	232.	64.4	1	77.9	16	8	96.5	3190	8747	401	3946
Jiang	31	73	9	31	4	4	6	38	56	78	8	8	48	
Xian	627	20	53	332.	75.1	1	141.	24	1	154.	4498	8904	251	6166
Tao	92	7	1	55	3	86	1	63	5	3	7	0	8	2
Xian	487	38	34	497.	116.	5	260.	69	5	253.	1606	3089	111	1419
Ning	98	7	2	24	75	81	05	86	47	51	4.58	0.5	47	200
Xiao	354	48	74	973.	851.	6	397.	116	4	94.1	1689	2632	194	1735
Gan	86	31	3	29	54	69	331	64	47	5	0	21	76	043
Tian	411	12	8.4	322.	54.1	1	73.3	15	1	1.28	4331	7975	128	1101
Men	07	87	8	07	8	79	4	83	77	35	45	7	1	16

3 Comprehensive Evaluation of Logistics Competitiveness of Wuhan Urban Circle

3.1 Principal Component Analysis

It can be seen from table 3 that the cumulative contribution rate of the extracted three factors reaches 88.825%. It shows that the extracted three factors can reflect 88.825% of the information of the original indexes. The 14 indicators above can be integrated into three factors as F1, F2 and F3. The calculation method is shown in Formula (1):

\[
F = \frac{59.496 \times f1 + 22.003 \times f2 + 7.326 \times f3}{59.496 + 22.003 + 7.326} \tag{1}
\]

Table 3. Characteristic value and cumulative contribution rate of some main factors

Factors	Initial variances	Extract the sum of square and load				
Total	Varnaces (%)	Accumulation(%)	Total	Varnaces (%)	Accumulation(%)	
1	8.329	59.496	59.496	8.329	59.496	59.496
2	3.080	22.003	81.499	3.080	22.003	81.499
3	1.026	7.326	88.825	1.026	7.326	88.825

The component matrix obtained after rotation is shown in Table 4. The first main factor has a higher load on X8, X4, X7, X6, X10, X11, X12, X13, X14 and X1. These can be regarded as factors reflecting the economic foundation and logistics industrial environment of a regional city. The second main factor has a higher load on X5, X3, X2. These can be regarded as the development level factors of logistics industry. The third principal component has a high load on X9. It can be regarded as the supporting factor of scientific and technological innovation.[7-9]
Table 4. The component matrix after rotation

Factors	Components		
	1	2	3
Total number of internet users of computer broadband	.975	-.072	.071
Retail sales	.972	-.038	-.081
Mobile-telephone users	.967	-.212	.020
Total amount of postal services	.945	.251	-.120
Total urban population	.940	-.285	-.025
Highway mileage	.897	-.413	.048
Total number of civilian vehicles	.809	-.406	-.121
Total investment in fixed assets of transportation, storage and postal services	.768	.230	.256
Per capita GDP	-.654	.476	.168
Ton-kilometers	.335	.859	-.306
Total imports and exports	.410	.837	-.316
GDP of transportation, warehousing and postal services	.591	.782	.017
Annual number of invention patents per ten thousand people in a city	-.023	.452	.717

The scores of main factors, comprehensive scores and rankings of logistics competitiveness of each region are shown in Table 5.

Table 5. The scores of main factors, comprehensive scores and rankings of logistics competitiveness of each region

Cities	F1	Rankings	F2	Rankings	F3	Rankings	F	Rankings
Ezhou	-0.606	5	0.374	2	0.253	4	-0.292	5
Huanggang	1.612	1	-1.161	8	-0.572	5	0.744	2
Huangshi	0.551	3	2.162	1	-0.853	6	0.842	1
Qianjiang	-1.031	8	0.075	3	1.404	1	-0.560	6
Xiantao	-0.847	6	-0.397	6	-1.037	7	-0.750	7
Xianning	0.283	4	-0.221	5	1.008	2	0.215	4
Xiaogana	0.986	2	-0.042	4	0.846	3	0.718	3
Tianmen	-0.949	7	-0.790	7	-1.049	8	-0.917	8

3.2 Clustering Analysis
In order to reflect the logistics competitiveness level of Wuhan urban circle more clearly, SPSS19.0 is used for clustering analysis in this paper.

It can be found that Huangshi is the city in the first category. We can see from its main component score that the city's economic foundation, logistics industry environment and development of logistics industry are all relatively high, but the scores on supporting factors of scientific and technological innovation is relatively low and so that there is still room for its improvement. Xiaogan and Huanggang are the cities in the second category. From the results, Huanggang and Xiaogan's scores on the first principal component are the first and the second respectively, indicating that their economic foundation and logistics industry environment are relatively high, but the scores on the second principal component are relatively low. It shows that their logistics industry development level still has a lot of room for improvement. The five other cities are in the third category and their scores on the three principal components are relatively low. Belonging to areas with weak logistics competitiveness, the main reason is that the cities' economic foundation is relatively lag behind, so it is worth studying to explore their own advantages and improve the competitiveness of regional logistics.[10]

4 Policy Recommendations

4.1 Improve the Unbalanced Development

In this paper, 14 indexes were selected to comprehensively evaluate and rank the regional logistics competitiveness of Wuhan "1 + 8" urban circle by using principal component analysis and clustering analysis. The final sorting result was that Huangshi, Huanggang, Xiaogan, Xianning, Ezhou, Qianjiang, Xiantao, Tianmen. Based on the above analysis, this paper puts forward the following suggestions.

To overcome the gap, the government should take system optimization as the core and take the balance of them into account in order to promote the agglomeration effect of logistics resources in the urban circle in the process of improving logistics competitiveness.

4.2 Create Beneficial Economic Environment for Logistics Development

From the evaluation results, the areas with high level of logistics competitiveness are all cities with developed regional economy. This reflects the dependency of logistics industry. Therefore, we must speed up the economic development, strengthening the construction of infrastructure facilities, so that we can create the conditions for higher level logistics and so as to provide better services for future regional development.

4.3 Develop Their Own Advantages

The logistics competitiveness of Huangshi ranks in the front row, which is inseparable from its resource endowments. For Huangshi, we should give full play to its own advantages and linkage role so as to promote the development of Huanggang and Ezhou nearby. Other relatively undeveloped areas can make full use of the strategic opportunity of the country's strong promotion of "One belt one road" and the construction of the Yangtze economic zone. Huanggang can develop its manufacturing industry to drive its logistics industry, Xiaogan can attach importance to its commercial and logistics industry. For Qianjiang, Xiantao and Tianmen, they can use their own advantages of agricultural products to promote the synergetic development of electronic commerce and express logistics because they are geographically similar. Xianning can strengthen the railway-river combined transportation and build it into a regional logistics center.

References
[1] Dusidi,Wu Lixia: Current situation and Countermeasures of green logistics development in Wuhan Urban Circle. Industry and Technology Forum 17(18), 27–33(2018).(in Chinese).
[2] SI Wen-feng:Comparative Research of City Logistics Competitiveness in Two-type Society

5
Pilot Area–Based on the Comparison of Chang-Zhu-Tan Urban Cluster and Wuhan City Circle. Logistics Sci-Techb10,109–115(2015). (in Chinese).

[3] Changjoo Kim. Infrastructure Design and Cost Allocation in Hub and Spoke and Point-to-Point Network. The Ohio State University, 2004.

[4] Tang Zhongming: Empirical research on logistics efficiency evaluation to low carbon economy. Logistics Engineering And Management 9(38),01-04 (2016). (in Chinese).

[5] Hickman R, Ashiru, Banister: Transport and climate change: Simulating the options for carbon reduction in London. Transport Policy 17(2), 110-125(2010).

[6] Alan C Mckinnon: Product - level Carbon Auditing of Supply Chains Environmental Imperative or Wasteful Distraction. International Journal of Physical Distribution & Logistics Management 40(1), 42 -60(2010).

[7] Hubei Provincial Bureau of Statistics. http://tjj.hubei.gov.cn/tjsj/sjkscx/tjnj/gsztj/whs/

[8] Li Jialing, Liao Zhigao: Logistics efficiency of 11 western provinces under low carbon constraints. Analysis of Journal of Guangxi University of science and technology 3, 99-105 (2015). (in Chinese).

[9] Li Jin: Multi objective fuzzy programming of low carbon logistics network design based on credibility Problem. System engineering theory and practice 6, 1482-1492 (2015). (in Chinese).

[10] Wang Hao: Research on the development of logistics industry in Wuhan City Circle. Economic Research Guide 40,115–119 (2009). (in Chinese).