Nucleon-nucleon wave function with short-range nodes and high-energy deuteron photodisintegration

N.A. Khokhlov, V.A. Knyr, and V.G. Neudatchin

1Pacific National University, 680035, Khabarovsk, Russia
2Institute of Nuclear Physics, Moscow State University, 119899, Moscow, Russia

(Dated: March 31, 2022)

We review a concept of the Moscow potential (MP) of the NN interaction. On the basis of this concept we derive by quantum inversion optical partial potentials from the modern partial-wave analysis (PWA) data and deuteron properties. Point-form (PF) relativistic quantum mechanics (RQM) is applied to the two-body deuteron photodisintegration. Calculations of the cross-section angular distributions cover photon energies between 1.1 and 2.5 GeV. Good agreement between our theory and recent experimental data confirms the concept of deep attractive Moscow potential with forbidden S- and P-states.

PACS numbers: 12.39.Pn, 13.40.-f, 13.75.Cs

I. INTRODUCTION

Opportunities to observe manifestations of quark degrees of freedom in nuclear reactions at intermediate energies attract attention of scientific community for a long time. It was noted [1] that the most suitable subject of research here is the deuteron as the simplest nucleus where the secondary rescattering has little effect on the primary process.

The deuteron photodisintegration at photon energies of \(\approx 2\) GeV generates great interest among experimentalists [1, 2, 3, 4] and theoreticians [5, 6, 7, 8, 9] with the main emphasis on the properties of the NN system which are beyond the scope of realistic mesonic NN potentials [6] and can be interpreted within quark concepts [5, 7]. First, it was shown in papers by Khar’kov group [6] that starting from mesonic potentials it is possible to explain

*Electronic address: khokhlov@fizika.khstu.ru
the $d\gamma \rightarrow np$ data at energies $E_\gamma > 1$ GeV only if a revision of electromagnetic part of the theory is done and instead of the ordinary nucleon electromagnetic form factors the essentially different ones are used with poles of third order. Second, the phenomenological theory of Regge poles was taken as a basis in Refs. with selection of dominant poles according to the quark string model. Free parameters of these theories make it possible to describe the experimental data reasonably well. Third, also giving reasonable results the hard rescattering model was developed within a semiempirical approach, when the photon is absorbed by a quark of one of the nucleons and then the hard rescattering of this quark by another nucleon takes place. The wave function amplitude of the final np-state with large relative momentum is evaluated empirically by extrapolation of the corresponding np-scattering experimental data.

In this paper we use the PF RQM to treat the deuteron photodisintegration in a Poincaré-invariant way. Modern development of the RQM and exhaustive bibliography is presented in the review by B.D. Keister and W. Polyzou. The PF is one of the three forms proposed by Dirac. Other two are the front form and instant form. These forms are associated with the different possibilities for putting interactions in generators of the Poincaré group. All the forms are unitary equivalent but each has certain advantages. Most of the calculations in nuclear physics have been performed in the instant and front form. Only in recent years important simplifying features of the PF were realized. These features are connected with the fact that in the PF all the generators of the homogeneous Lorentz group are free of interactions. Thus only in the PF the spectator (impulse) approximation (SA) preserves its spectator character in any reference frame. For an electromagnetic NN process the SA implies that the NN interaction does not affect the photon-nucleon interaction and therefore sum of the one-particle electromagnetic current operators may be taken as an electromagnetic current operator for the system of interacting nucleons. It is supposed that the SA may be valid when the process is quick due to the large momentum transfer. General covariant PF expressions for the electromagnetic current operator for composite systems are given in Refs. The PF SA was applied to calculate form factors of various composite particles with reasonable results. In our calculation of the proton-proton bremsstrahlung it was shown that the PF SA violates the continuity equation for the NN current operator, but the violation is relatively small for the considered kinematics.
In this paper we show that recent deuteron photodisintegration data at $E_\gamma = 1.5 - 2.5$ GeVconfirm the Moscow $NN$ potential model [21] characterized by deep attractive partial potentials with forbidden $S$- and $P$-states. In this study the Moscow partial potentials are reconstructed from the $NN$ PWA data within the energy range $0 \leq E_{lab} \leq 3$ GeV [24]. This reconstruction is based on our approach to the inverse-scattering problem for optical potentials [22].

The plan of the paper is as follows. In Sec. II, we review a concept of the Moscow potential (MP) of the $NN$ interaction. In Sec. III, we present the optical Moscow-type $NN$ potential derived by quantum inversion [22] within the relativistic quasipotential approach [11, 23]. We show that the modern PWA data of $NN$ scattering [24] are compatible with the concept of the MP. In Sec. IV, the formalism of PF RQM [11, 15, 20] is applied to the high-energy energy deuteron photodisintegration. Results and future prospects are discussed in Sec. V. In Appendix A we give necessary details of the calculation techniques. In Appendix B in the PF SA we derive an expression for the momentum $Q_N$ transferred to the nucleon and show that $Q_N$ is not the same as the momentum transfer seen by the deuteron. The expression is a generalization of the similar expression for the elastic electron-deuteron scattering [19].

II. POTENTIALS WITH FORBIDDEN STATES IN NUCLEAR PHYSICS

In description of systems of composite $X$ particles consisting of some $y$ particles it is a common approach to exclude explicit degrees of freedom of $y$ particles. In simplest case of the $XX$ system the microscopic Hamiltonian that includes all possible pair $yy$ interactions is substituted by an effective Hamiltonian (by sum of $X$ particle kinetic energy terms and of an effective $XX$ potential). The common requirement is that the effective Hamiltonian would give for the $XX$ system the same spectrum and the same corresponding relative motion wave functions as the initial microscopic Hamiltonian. In some cases the effective Hamiltonian has redundant eigenvalues and eigenstates, which must be disregarded. These eigenstates are called forbidden states and the effective $XX$ potential is called then "the potential with forbidden states".

For instance, in the oscillator shell model of the potential theory of $\alpha - \alpha$ scattering [26] the antisymmetric wave function of the $^8\text{Be}$ nucleus ground state (eight-nucleon configuration $s^4p^4$ and orbital permutation symmetry $[j^f]_x = [44]$) being projected onto $\alpha - \alpha$ channel
results in $4S$-wave relative motion wave function (see our review [27]). This wave function accumulates all four oscillation quanta of the system and has two nodes. Momentum distributions corresponding to such wave functions were investigated in quasielastic knock-out of $\alpha$ particles from $p$-shell nuclei by intermediate energy photons [28]. The $0S$- and $2S$-states of $\alpha - \alpha$ relative motion are forbidden as far as they correspond to the lower $s^8$ and $s^6p^2$ eight-nucleon configurations respectively, which are forbidden by the Pauli principle. Basing on these considerations, a concept of the deep attractive $\alpha - \alpha$ potential with $0S$, $2S$ and $2D$ forbidden bound eigenstates was elaborated [26]. According to the concept, there is no repulsive core in the $\alpha - \alpha$ interaction and $\alpha$ particles can penetrate into each other. Forbidden bound eigenstates take lowest energy levels. Unforbidden eigenstates (including scattering ones) being orthogonal to the forbidden eigenstates have nodal structure at short range. For instance, the $S$-wave relative motion wave function has two nodes in the region of $\alpha - \alpha$ overlap. This model is substantiated by the phase shift analysis based on the generalized Levinson theorem (GLT) [29]. For example, the $S$-wave phase shift of $\alpha - \alpha$ scattering equals $360^\circ$ at zero energy, rises up to $540^\circ$ at the energy slightly above the low-lying $4S$-resonance and then runs down with increasing energy within the broad energy range up to $E_{lab} \approx 200$ MeV where the phase shift approaches the asymptotic region of small values and becomes negative due to absorption [30]. Such picture of the $S$-wave phase shift behavior was confirmed by experiments performed in a broad energy range [31], while $D$-wave phase shift behavior shows one forbidden state. Phase shifts of higher waves do not show forbidden states (see [30] for further details).

In case of the $NN$ system, the concept of the deep attractive $NN$ potential with forbidden states appeared in 1975 [21] when we analyzed the $pp$-scattering phase shift data extended at the time up to $E_{lab} \approx 6$ GeV. It was shown that the singlet $S$-wave phase shift data with an extended gap between low- and high-energy groups of data can be interpolated by a smooth curve if the empirical low-energy group is raised $180^\circ$. This interpolation demonstrates decrease of the $S$-wave phase shift in the broad energy range from zero up to $E_{lab} \gtrsim 5$ GeV as a manifestation of the GLT. The high-energy part ($E_{lab} \approx 3 - 6$ GeV) of the interpolation for the $S$-wave remains in the asymptotic region of small values, corresponding to the Born approximation. The energy dependence of the singlet $D$-wave phase shift is smooth and there is no need to raise the initial values. Calculation showed [21] that results of this analysis are described by a deep attractive $NN$ potential with one forbidden bound $S$-wave state. The
forbidden state has a wave function without a node. As a result, the $^1S_0$-wave scattering
wave function has a short-range nodal structure instead of short-range suppression specific
to a repulsive core potential (RCP). After that, a preliminary attempt was made within the
concept of MP [32] to reconstruct $NN$ potentials for the lowest partial waves ($S$ and $P$)
from data of the $pp$ and $pn$ PWA extended at the time to intermediate energies.

At the same time the quark microscopic foundation of the MP remains the principal
problem. Unlike the nuclear shell-model picture of the $\alpha - \alpha$ interaction the lowest quark
configuration $s^6$ is not forbidden by the Pauli principle and the corresponding $0S$-wave state
of relative $NN$ motion is not forbidden either. Microscopic quark investigations of the last
two decades with various kinds of $qq$ interactions have resulted in the following short-range
properties of the $NN$ system [33]. There is a strong mixing of different six-quark configura-
tions in the overlap region of two nucleons. For the $S$-wave states the leading configurations
are $s^6$ and $s^4p^2$ with comparable weights and destructive interference. This destructive inter-
ference leads to strong short-range suppression of the $NN$ wave function. The suppression
is described effectively by an RCP [34]. The $s^4p^2[42]_x$ configuration introduced in our pa-
pers [21] and corresponding to the $2S$-state of relative $NN$ motion (i.e. to the MP) would
dominate for instance in case of strong instanton induced quark-quark interaction but this
interaction is not strong enough [35]. Further investigations [36, 37] showed that there exists
a source for strengthening of the $s^4p^2$ configuration. Namely, if coupling of the $NN$, $\Delta\Delta$
and hidden color $CC$ channels is taken into account within the resonating group method
then the symmetry structure of the highly dominant six-quark configuration $s^4p^2$ implies
the existence of a node in the $S$-wave relative motion wave function at short distances. Such
nodes are specific to the MP. In the same manner microscopic $qq$ interaction may give a
short-range node in a $P$-wave of relative $NN$ motion wave function (in case of dominant
six-quark configuration $s^3p^3[33]_x$).

In summary, the question which type of the potential (MP or RCP) would be equivalent
to the short-range quark microscopic picture of the $NN$ interaction is highly controversial.
For any RCP a phase equivalent supersymmetric partner with forbidden states (i.e. an MP)
may be constructed [38]. Therefore these potentials are indistinguishable for the $NN$ PWA.
Specific to the MP appearance of short-range nodes in $S$- and $P$-wave relative motion wave
functions is a result of complicated six-quark dynamics which is yet to be clarified. The nodal
behavior of the MP wave function means that the wave function is not suppressed at short
range as in case of an RCP. Thus the MP produces high-momentum component richer than
an RCP. This high-momentum component may be seen in electromagnetic reactions with two
nucleons. In Ref. [39] it was shown that the available MP produces too rich high-momentum
component in contradiction with the deuteron electromagnetic form factors. Thus we use
the latest high-energy PWA data to refine short-range part of the MP. In our papers [20, 40]
it was shown that the hard \( pp \rightarrow pp\gamma \) bremsstrahlung at moderate energies (\( E_{\text{lab}} \simeq 500 \) MeV) is critical to the kind of potential (MP versus RCP). The available experimental data
at smaller energy of \( E_{\text{lab}} = 280 \) MeV [41] give only preliminary indication of MP validity
[20]. Our present paper strengthens this line of phenomenological research using modern
deuteron photodisintegration data.

III. RELATIVISTIC OPTICAL \( NN \) POTENTIAL

We apply the method of inversion [22] to the analysis of \( NN \) data up to energies at
which relativistic effects are essential. We take into account these effects in the frames of
the RQM [11, 15]. A system of two particles is described by the wave function, which is an
eigenfunction of the mass operator \( \hat{M} \). In this case, we may represent this wave function
as a product of the external and internal wave functions. The internal wave function \( |\chi\rangle \)
is also an eigenfunction of the mass operator and for system of two nucleons with masses
\( m_1 = m_2 = m \) satisfies the equation

\[
\hat{M}|\chi\rangle \equiv \left[ 2\sqrt{\hat{q}^2 + m^2} + V_{\text{int}} \right]|\chi\rangle = M|\chi\rangle,
\]

(1)

where \( V_{\text{int}} \) is an operator commuting with the full angular momentum operator and acting
only through internal variables (spins and relative momentum), \( \hat{q} \) is a momentum operator
of one of the particles in the center of mass frame (relative momentum). Rearrangement of
(1) gives

\[
\left[ \hat{q}^2 + mV \right]|\chi\rangle = q^2|\chi\rangle,
\]

(2)

where \( V \) acts like \( V_{\text{int}} \) only through internal variables and

\[
q^2 = \frac{M^2}{4} - 2m^2.
\]

(3)

Eq. (2) is identical in form to the Schrödinger equation. The formally same equation may
be deduced as a truncation of the quantum field dynamics [23]. The quasicoordinate repre-
sentation corresponds to the realization \( \hat{q} = -i\frac{\partial}{\partial r}, V = V(r) \).
We applied the method of inversion \[22\] to reconstruction of the nucleon-nucleon partial potentials

\[ V(r) = (1 + i\alpha) V^{(0)}(r), \]  

for single waves and

\[ V(r) = \begin{pmatrix} (1 + i\alpha_1) V_1^{(0)}(r) & (1 + i\alpha_3) V_T^{(0)}(r) \\ (1 + i\alpha_3) V_T^{(0)}(r) & (1 + i\alpha_2) V_2^{(0)}(r) \end{pmatrix}, \]  

for coupled waves, where \( V^{(0)}(r) \) are energy-independent real and inelasticity parameters \( \alpha \) depend on energy. As input data for the reconstruction we used modern PWA data (single-energy solutions) up to 1200 MeV for isoscalar states and up to 3 GeV for isovector states of the NN system \[24\]. The deuteron properties were taken from \[25\]. These data allow us to construct Moscow-type NN partial potentials sustaining forbidden bound states. These potentials describe part of the deuteron properties and the PWA data by the construction.

According to the MP concept and the GLT some phase shift data of \[24\] are raised 180\(^\circ\). Namely, \( ^1S_0 \)-wave phase shift and all four \( ^{2S+1}P_J \)-wave phase shifts are equal to 180\(^\circ\) at zero energy, \( ^3S_1 \)-wave phase shift is equal to 360\(^\circ\) at zero energy. The mixing parameters \( \epsilon_1 \) and \( \epsilon_2 \) of the MP differ from that of a traditional RCP by sign. All phase shifts for higher waves (for \( L \geq 2 \)) are ”small”, they have zero values at zero energy. According to our model we have fitted free parameters of the inversion solutions to get nodes at \( r \simeq 0.5 \) fm in \( S \) and \( P \) waves and to make central parts of the potentials close to each other and to the Gaussian shape. The energies of forbidden states are in the range 300 – 750 MeV.

Our calculations show that the final state interaction (FSI) in the \( S \) and \( P \) waves gives by far the largest contribution to the deuteron photodisintegration cross-section comparing with FSI in other waves, so we present results of inversion only for these and for coupled to them waves. Part of results presented in Figs. 1-4 (for \( ^1S_0 \) and \( ^3SD_1 \) waves) we presented earlier in Ref. \[22\].

The reconstructed potentials \( V^{(0)}(r) \) are displayed in Fig. 1. The inelasticity multipliers \( \alpha \) are displayed in Fig. 2. Fig. 3 displays reproduction of the corresponding phase shifts and mixing parameters. In Fig. 4 the description of inelasticity parameters is shown. All the \( P \)-wave phase shifts are positive according to the GLT. Large difference between \( ^3P_0 \)-wave and \( ^3P_2 \)-wave phase shift curves reflects a large spin-orbital interaction which is attractive for the \( ^3P_2 \)-wave as we see. These features correspond to the general properties of the MP
FIG. 1: Reconstructed partial potentials for lower orbital momentum (single and coupled channels).

FIG. 2: Reconstructed inelasticity multipliers $\alpha$ for the potentials presented in Fig. 1.

(its large positive gradient in the region $r < 1$ fm). It is interesting to learn from Fig. 3 that among four lowest $pp$ phase shifts three of them ($^1S_0$, $^3P_0$ and $^3P_2$) correspond to the MP but the experimental data within the energy range $E_{lab} = 2 - 3$ GeV are contradictory for the $^3P_1$-wave phase shift. It would be important to refine the PWA data in this range using modern polarization data on $pp$-scattering. The $S$- and $D$-state wave functions of deuteron are displayed in Fig. 5. There is a node in the $S$-wave function at $r \simeq 0.5$ fm and both
wave functions are not suppressed at short-range in contrast with wave functions produced by an RCP. For continuum $S$- and $P$-wave functions the node radii equal to $0.5 - 0.9$ fm at the considered energies. All potentials and inelasticity multiplies ($\alpha$'s) can be accessed via a link to the website [42].

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig3}
\caption{Phase shifts and mixing parameters in the present optical model. PWA data are from [24]. For $^1S_0$ and $^{2S+1}P_J$ waves, the original data set from Ref. [24] is raised $180^\circ$. To leave the $S$ matrix unchanged, we change the sign of the mixing parameters $\varepsilon_1$ and $\varepsilon_2$.}
\end{figure}

It should be pointed out that in nuclear matter calculations the $NN$ potentials should be used in the following form

$$V_{\text{nud}}(r) = V^{(0)}(r) + \lambda\langle \chi_{S,L,J} \rangle$$

where operator $\langle \chi_{S,L,J} \rangle$ projects onto the forbidden state $|\chi_{S,L,J}\rangle$, positive constant $\lambda$ tends to infinity. The forbidden state $|\chi_{S,L,J}\rangle$ may be found from Eq. (2) by some numerical
FIG. 3: (Continued).

method as a bound state of the partial potential $V^{(0)}(r)$ (all bound states are forbidden except the deuteron one). Constant $\lambda$ is a large number, such that its further increase does not change results of calculation. This procedure orthogonalizes the nuclear wave function to forbidden two-nucleon states. Thus, we exclude the unphysical collapse of nuclear matter.
IV. DEUTERON PHOTODISINTEGRATION IN POINT-FORM RELATIVISTIC QUANTUM MECHANICS

Formalism of the PF is considered in detail in Refs. [11, 15], while general covariant PF expressions for the electromagnetic current operator for composite systems are given in Refs. [15, 16]. Therefore, we give only results necessary for our calculation, in notation of...
We use algorithm of [15] for calculation of the matrix elements of the electromagnetic current operator. We applied this formalism to the $pp\gamma$ process [20]. Similar approach was applied to the elastic electron-deuteron scattering [19].

We consider the $pn$ system and neglect difference of neutron and proton masses ($m_1 = m_2 = m$). Let $p_i$ be the 4-momentum of nucleon $i$, $P \equiv (P^0, \mathbf{P}) = p_1 + p_2$ be the system 4-momentum, $M$ be the system mass and $G = P/M$ be the system 4-velocity. The wave function of two particles with 4-momentum $P$ is expressed through a tensor product of external and internal parts

$$|P, \chi\rangle = U_{12} |P\rangle \otimes |\chi\rangle,$$

where the internal wave function $|\chi\rangle$ satisfies Eqs. (1)-(2). The operator

$$U_{12} = U_{12}(G, \mathbf{q}) = \prod_{i=1}^2 D[s_i; \alpha(p_i/m)^{-1}\alpha(G)\alpha(q_i/m)]$$

is the unitary operator from the "internal" Hilbert space to the Hilbert representation space of two-particle states [15]. $D[\mathbf{s}; u]$ is the representation operator of the group SU(2) corresponding to the element $u \in$SU(2) for the representation with the generators $\mathbf{s}$. Action of $D[\mathbf{s}; u]$ and matrices $\alpha$ are defined in Appendix A, $s_i = 1/2$ is spin of a nucleon. The momenta of the particles in their c.m. frame are

$$q_i = L[\alpha(G)]^{-1}p_i,$$
where $L[\alpha(G)]$ is the Lorentz transformation to the frame moving with 4-velocity $G$ ($L[\alpha(G)]^{-1}$ is the inverse transformation). It is easy to verify that $\mathbf{q}_1 = -\mathbf{q}_2$.

The external part of the wave function is defined as

$$\langle G|P' \rangle \equiv \frac{2}{M'} G' 0 \delta^3 (\mathbf{G} - \mathbf{G}') ,$$  \hspace{1cm} (10)$$

with scalar product

$$\langle P''|P' \rangle = \int \frac{d^3 G}{2 G_0} \langle P''|G \rangle \langle G|P' \rangle = 2 \sqrt{M'^2 + \mathbf{P}^2} \delta^3 (\mathbf{P}' - \mathbf{P}') ,$$  \hspace{1cm} (11)$$

The internal part of the wave function $|\chi\rangle$ is characterized by momentum $\mathbf{q} = \mathbf{q}_1 = -\mathbf{q}_2$ of one of the particles in the c.m. frame. Interaction appears according to the Bakamjian—Thomas procedure $\hat{P} = \hat{G}\hat{M}$, where $\hat{M}$ is sum of the free mass operator $M$ and of the interaction $V$: $\hat{M} = M + V_{int}$ (compare with Eq. (11)). The interaction operator acts only through internal variables. Operators $\hat{M}$, $M$, $V_{int}$ and $V$ commute with spin operator $S$ (full angular momentum) and with 4-velocity operator $\hat{G}$. Interaction term is present in all components of total 4-momentum. Generators of Lorentz boosts and generators of rotations are free of interaction. In the c.m. frame the relative orbital angular momentum and spins are coupled together as in the non-relativistic case. Moreover most non-relativistic scattering theory formal results are valid for our case of two particles [11].

The deuteron wave function $|P_i, \chi_i\rangle$ is normalized as follows

$$\langle P'_i, \chi_i|P''_i, \chi_i \rangle = 2 P'^0_i \delta^3 (\mathbf{P}'_i - \mathbf{P}''_i) .$$  \hspace{1cm} (12)$$

For one-particle wave functions normalized in the same manner the free two-particle states are normalized as

$$\langle P', \chi'|P''', \chi'' \rangle \equiv \langle p'_1|p''_1 \rangle \langle p'_2|p''_2 \rangle \delta_{\mu'_1, \mu'_2} \delta_{\mu''_1, \mu''_2} =$$

$$= 4 w(p'_1) w(p'_2) \delta^3 (p'_1 - p'_2) \delta^3 (p''_1 - p''_2) \delta_{\mu'_1, \mu'_2} \delta_{\mu''_1, \mu''_2} =$$

$$= 2 W(P') \delta^3 (P'' - P') \frac{2w^2(q)}{M(q)} \delta^3 (q'' - q') \delta_{\mu'_1, \mu''_1} \delta_{\mu'_2, \mu''_2} =$$

$$= 2 W(P') \delta^3 (P'' - P') \frac{M(q)}{2} \delta^3 (q'' - q') \delta_{\mu'_1, \mu''_1} \delta_{\mu'_2, \mu''_2}$$  \hspace{1cm} (13)$$

where $w(p) \equiv \sqrt{m^2 + \mathbf{p}^2}$, $M(q) \equiv 2 \sqrt{m^2 + q^2}$, $W(P) \equiv \sqrt{M^2 + \mathbf{P}^2}$, $G_0(G) \equiv \sqrt{1 + G^2}$, $\mu_i$ are spin projections in the c.m. frame. Multiplier $\frac{M(q)}{2}$ is a relativistic invariant, therefore...
we may normalize internal part of the scattering state wave function in the non-relativistic manner

\[
\langle P', \chi' | P'', \chi'' \rangle_{n.r.} = 2W(P') \delta^3(P'' - P') \delta^3(q'' - q') \delta S' S'' \delta \mu' \mu' ,
\]

where \( S \) and \( \mu \) are full angular momentum and its projection in the c.m. frame.

The differential cross section for the \( \gamma d \rightarrow np \) process is given by

\[
\frac{d\sigma}{d\Omega} = \frac{q_f}{64\pi^2 M_f^2 k_c} |A_{if}|^2 ,
\]

where \( q_f \) is the final asymptotic \( np \) relative momentum, \( k_c \) is photon energy in c.m. frame. The \( d\gamma \rightarrow np \) amplitude \( A_{if} \) is defined in the same manner as the \( pp\gamma \) amplitude that was used in Ref. [20]

\[
(2\pi)^4 \delta^4(P_i + k - P_f) A_{if} = \sqrt{4\pi} \int d^4x \langle P_f, \chi_f | \varepsilon_\mu \hat{J}^\mu(x) | P_i, \chi_i \rangle e^{ikx}
\]

where \( P_i \) and \( P_f \) are initial and final 4-momenta of the \( NN \) system correspondingly, \( \varepsilon_\mu \) is the photon polarization vector.

Following Ref. [15] we choose for calculation of the invariant amplitude \( A_{if} \) a special frame defined by condition

\[
G_i + G_f = 0
\]

where \( G_i = P_i / M_i \), \( G_f = P_f / M_f \) are 4-velocities of initial and final \( NN \) c.m. frames respectively (\( G_i \) and \( G_f \) are their 3-vector parts). The initial mass \( M_i \) is the deuteron mass. The final mass \( M_f \) is the invariant mass of the final \( NN \) system. These masses are different due to absorption of a photon, therefore coordinate frame corresponding to Eq. (17) is not equivalent to the Breit frame where \( P_i + P_f = 0 \). Masses \( M_i \) and \( M_f \) define also corresponding wave functions through Eq. (3) and Eq. (2).

The matrix elements of the current operator \( \hat{J}^\mu(x) \) appears especially simple in the frame defined by Eq. (17):

\[
\langle P_f, \chi_f | \hat{J}^\mu(x) | P_i, \chi_i \rangle = 4\pi^{3/2} \sqrt{M_i M_f} e^{i(P_f - P_i)^x} \langle \chi_f | \hat{J}^\mu(h) | \chi_i \rangle_{n.r.},
\]
where \( \hat{J}^\mu(h) \) is the current operator in the internal space defined in Ref. [15] as an operator \( \hat{J}(0) \) (see Eq. (A16)) in the frame (17) expressed through \( h \) and \( q \). Following Ref. [15], we use the dimensionless vector \( h = G_f^f/G_0^f \), where \( G_f \) is a 4-velocity of the final \( NN \) system in the frame defined by Eq. (17). This parameter may be expressed through the photon momentum \( k \), so that \( h = 2(M_i M_f)^{1/2}(M_i + M_f)^{-1/2} k, |h| \equiv h = (M_i - M_f)/(M_i + M_f) < 1 \).

Convenience of this parameter is illustrated in Appendix B.

The internal wave functions of the deuteron and of the final scattering state are normalized in the non-relativistic manner. The deuteron wave function is

\[
|\chi_i\rangle = |\chi_i\rangle_{n.r.} = \frac{1}{r} \sum_{l=0,2} u_l(r) |l, 1; 1M_J\rangle,
\]

with normalization \( \langle \chi_i|\chi_i\rangle_{n.r.} = 1 \), where

\[
|l, S; JM_J\rangle = \sum_m \sum_{\mu} |S, \mu\rangle Y_{lm}(\hat{n}) C_{JM_JlmS\mu}.
\]

The internal wave function of the final continuum \( np \) state is

\[
|\chi_f\rangle \equiv |\chi_f, S_f, \mu_f\rangle_{n.r.} = \sqrt{\frac{2}{\pi q_f r}} \sum_{J=0}^{\infty} \times \\
\times \sum_{J=-J}^{J} \sum_{l=J-S}^{J+S} \sum_{l'=-J}^{J} \sum_{m=-l}^{l} i^l u_{l,l'}^{JM_J}(q_f, r) Y_{lm}(\hat{n}) C^{JM_J}_{lmS\mu} |l', S_f; JM_J\rangle,
\]

with normalization \( \langle \chi_f'|\chi_f\rangle_{n.r.} = \delta(q_f' - q_f) \delta_{S_f S_f'} \delta_{\mu_f \mu_f'} \). The corresponding plane wave \( |\phi_f\rangle_{n.r.} \) is characterized by the spherical Bessel functions \( j_l(q_f, r) \delta_{ll'} \) instead of \( u_{l,l'}^{JM_J}(q_f, r) \).

The deuteron partial wave functions \( u_l(r) \) presented in Fig. 5 and partial waves of the final \( np \) states \( u_{l,l'}^{JM_J}(q_f, r) \) are calculated from Eq. (2).

We define a reduced amplitude

\[
T_{fi} = \langle \chi_f|\hat{J}^\mu_{\mu}(h)|\chi_i\rangle_{n.r.}.
\]

As a result the differential cross-section [15] can be rewritten as

\[
\frac{d\sigma}{d\Omega} = \frac{\pi^2 q_f M_i}{6k_c} \sum_i \sum_f |T_{fi}|^2.
\]

where we average over photon polarizations, spin orientations of initial deuteron and sum over spin orientations of final nucleons.
In our calculations we approximate the above matrix element
\[
\langle \chi_f | \hat{J}^\mu(h) | \chi_i \rangle_{n.r.} \approx \langle \phi_f | \hat{J}^\mu(h) | \chi_i \rangle_{n.r.} + \langle \chi_f - \phi_f | \hat{J}^\mu(h) | \chi_i \rangle_{n.r.}.
\] (24)

The first term is a plane wave approximation (PlWA) and is calculated using the exact current operator (A6). In this case the operator \( \hat{q} \) can be substituted by \( q_f \) and operator structure of \( \hat{j}^\mu(h) \) can be presented as
\[
\hat{j}^\mu(h) = j^\mu(h) + \delta j^\mu = \sum_{i=1,2} (B_{1i}^\mu + (B_{2i}^\mu \cdot s_i) + (B_{3i}^\mu \cdot s_k) + (B_{4i}^\mu \cdot s_i)(B_{5i}^\mu \cdot s_k)) I_i(h) + \delta j,
\] (25)
where \( j^\mu(h) \) is sum of the one-nucleon electromagnetic current operators (spectator approximation), addend \( \delta j^\mu \) restores the current conservation equation; \( k = 2 \), if \( i = 1 \), and, conversely, \( k = 1 \), if \( i = 2 \). \( B_{1i}^\mu \) and \( B_{mi}^\mu \), \( m \geq 2 \) are vector and tensor functions of arguments \( h \) and \( q_f \). These functions are given in Appendix A. In Appendix A we calculate addend \( \delta j^\mu \) from the current conservation equation following Ref. [15] as we did for the \( pp\gamma \) process in Ref. [20]. Obviously our phenomenological quasipotential model offers no microscopic picture of interaction that would allow us to unambiguously determine the current operator. We use the defined bellow \( \delta j^\mu \) only to estimate violation of the current conservation equation. Assuming gauge invariance (which follows from the Poincaré invariance and the current conservation equation) we use the transverse gauge
\[
\varepsilon_\mu = (0, \varepsilon), \quad (\varepsilon k) = 0.
\] (26)

Thus, we exclude the \( j^0(h) \) and \( j^\perp(h) \) (see Eq. (A21)) components of the current from Eq. (22). The Poincaré invariance is ensured by definition of the current operator \( \hat{J}^\mu(x) \) through the operator \( \hat{j}^\mu(h) \) (see details in Ref. [15]).

The use of \( (\chi(r) - \phi(r)) \) combination in Eq. (24) accelerates convergence of the partial wave expansion. This term is nonzero due to FSI of neutron and proton. It is calculated from the first order in \( h \) approximation of the current operator \( \hat{j}^\mu(h) \). This approximation calculated in the same manner as one for the \( pp \) system in Ref. [20] is given by
\[
\hat{j}(h) \approx \hat{j}(h) = \delta j + \frac{q}{w} \hat{g}^m(0) - h \hat{G}^m(0) + \frac{i}{w} \left( \frac{m}{w} \left[ S \times h \right] + \frac{1}{w(m+w)} \left[ q \times h \right] \right) \hat{G}^m(0) + \]

\begin{align}
&\left(\frac{m}{w}\left[T \times h\right] + \frac{1}{w(w + m)}[q \times h] \cdot (q \cdot T)\right) \dot{g}_{m}^{pn}(0) + \\
&\left(\frac{1}{w(w + m)}[q \times h] \cdot q \left(\frac{\dot{G}_{m}^{pn}(0)}{mw} + \frac{\dot{G}_{e}^{pn}(0)}{w(w + m)}\right) + \\
&+ \left(h \cdot [q \times T]\right) q \left(\frac{\dot{g}_{m}^{pn}(0)}{mw} + \frac{\dot{g}_{e}^{pn}(0)}{w(w + m)}\right) - (h \cdot q) q \frac{\dot{G}_{e}^{pn}(0)}{mw},
\end{align}
\tag{27}

\begin{align}
&\delta j = \left(\frac{4w}{M_f + M_i} - 1 - h\right) \frac{q}{w} \hat{g}_{e}^{pn}(0) + \\
&+ \hbar \left[q \times T\right] \left(\frac{\hat{G}_{m}^{pn}(0)}{m} - \frac{\hat{G}_{e}^{pn}(0)}{w + m}\right) - 2\hat{g}_{e}^{pn}(0) w r + [q \times S] \left(\frac{\hat{g}_{m}^{pn}(0)}{m} - \frac{\hat{g}_{e}^{pn}(0)}{w + m}\right),
\end{align}
\tag{28}

where $S = s_1 + s_2$, $T = s_1 - s_2$, $w \equiv w(q) = \sqrt{m^2 + q^2}$.

\begin{align}
\dot{g}_{e}^{pn}(0) &= G_{e}^{pn}(0)I_1(h) - G_{e}^{n}(0)I_2(h), \\
\dot{g}_{m}^{pn}(0) &= G_{m}^{pn}(0)I_1(h) - G_{m}^{n}(0)I_2(h), \\
\hat{G}_{m}^{pn}(0) &= G_{m}^{pn}(0)I_1(h) + G_{m}^{n}(0)I_2(h), \\
\dot{G}_{e}^{pn}(0) &= G_{e}^{pn}(0)I_1(h) + G_{e}^{n}(0)I_2(h),
\end{align}
\tag{29}

\begin{align}
I_i(h)\chi(q) &= \chi(d_i(q)), \\
d_i(q) &= q + (-1)^i \frac{2h}{1 - h^2} (w + (-1)^i(h \cdot q)) \approx q + (-1)^i 2hw,
\end{align}
\tag{31}

where $G_{m}(Q^2_N)$, $G_{p}(Q^2_N)$, $G_{e}(Q^2_N)$, $G^{p}_{e}(Q^2_N)$ are nucleon electromagnetic form factors parameterized according to Ref. [43].

In Ref. [19] the elastic electron-deuteron scattering was described in frames of the PF RKM. It was shown that in the PF SA that the momentum of the unstruck particle (the spectator) is unchanged, while the impulse given to the struck particle is not the impulse given to the deuteron.

Following a general approach to construction of the electromagnetic current operator for relativistic composite system [15] we define the momentum transfer $Q^2_i$ to the particle $i$ as an increment of the particle 4-momentum $q_i$ [19]

\begin{align}
Q^2_i = \left|(q'_i - q_i)^2\right|,
\end{align}
\tag{32}
For interacting particles the individual 4-momenta are not defined before photon absorption as well as after it. Therefore we introduce an operator \( Q_i^2 \) corresponding to the physical quantity of the momentum transfer \( Q_i^2 \). In Appendix B we generalize the deduction presented in Ref. [19] and show that

\[
Q_i^2 = -(q'_1 - q_1)^2 = 16(m^2 + q^2 - \frac{(q \cdot h)^2}{h^2}) \frac{h^2}{(1 - h^2)^2}.
\]

(33)

This is the general expression of the \( Q_i^2 = Q_2^2 = Q_N^2 \) in case of free two-particle states (for particles of equal masses), therefore we use this expression in the PF SA for evaluation of the current operator in Eq. (25). The parameter \( h \) does not depend on interaction and is specified by relative "position" of initial NN c.m. frame and final NN c.m. frame. In case of two interacting particles \( q \) and \( Q_i^2 \) are operators in the internal space. In impulse representation \( q \) is a variable of integration [19]. It is obvious that in action on a plane wave (for PIWA) this operator is equivalent to the multiplication by a number \( Q_N^2 > 0 \) if \( h \neq 0 \). The first order in \( h \) approximation gives \( Q_N^2 \approx 0 \) for Eq. (27). Consideration similar to that of Ref. [19] gives for the PIWA in our case of the deuteron photodisintegration

\[
Q_N^2 = E_\gamma^2 - (w'_n - w'_p)^2 = (2w'_n - m_D)(2w'_p - m_D),
\]

(34)

where \( w'_n \) and \( w'_p \) are final energies of neutron and proton in the initial c.m. frame (laboratory frame). Detailed deduction of Eq. (34) is published in Ref. [44].

**V. RESULTS AND FUTURE PROSPECTS**

Our theoretical description of the differential cross-section of \( d\gamma \rightarrow pn \) reaction is compared with recent experiment [4] in Figs. 6-8 at a few energies around \( E_\gamma = 2 \) GeV. We do not use free parameters. However, there are uncertainties in our calculation. First uncertainty is caused by uncertainty in the form factor parametrization of Ref. [43] due to errors of the experimental data on the form factors. We estimated this uncertainty at about \( \pm 15 \) per cent of the results varying parameters inside limits defined in Ref. [43]. Second uncertainty is connected with the approximation (27) used to calculate the FSI term in Eq. (24). In Eq. (27) the nucleon form factors are equal to their values at \( Q_N^2 = 0 \) and therefore the FSI term is overestimated. Fig. 7 (\( E_\gamma = 2.051 \) GeV) shows contribution of the FSI term. The PIWA term of the amplitude (24) is dominant, but the FSI is not negligible. Therefore
it is desirable to estimate the second order in $h$ correction to the approximation \[27]. We plan to do this estimation in the future. Third uncertainty is caused by uncertainty of the addend $\delta j$ that restores the current conservation equation. To estimate this uncertainty we calculated two curves for every energy of the photon. The lower curves correspond to calculations without addend $\delta j$ in the current operator and with form factors of Ref. \[43\] varied to their lower limits. The upper curves correspond to full calculations and with form factors varied to their upper limits. The FSI is included for both curves.

We see good general correspondence of the theory and experiment both in absolute values and in shape of angular dependence of the differential cross-section at various energies. Large absolute values of cross-sections in our theory in comparison with results for the RCP (Fig. \[7\] ($E_\gamma = 2.051$ GeV)) originate mainly in the nodal character of the deuteron $S$-wave functions (greater weight of the high-momentum wave function components). The ability to describe both the absolute value and the angular dependence of differential cross-sections confirms the detailed algebraic structure of our theory. A persistent forward-backward asymmetry is determined mainly by the angular dependence of the nucleon electromagnetic form factors according to Fig. \[9\] (proton knockout dominates at forward angles and neutron knockout dominates at forward angles).

To complete this line of our investigation we plan to make an analysis of polarization $d\gamma \rightarrow pn$ experiments and to consider the pionic radiative capture $pp \rightarrow d\pi^+$ at proper energies. Other actual problems are outlined in Ref. \[20\]. First of them concerns the microscopic theory of the MP. As we suppose, it is connected to the short-range quark exchange between nucleons accompanied by excitations of color dipole states of two virtual baryons with very strong attraction between them. This scenario is based on the quark configuration $s^4p^2[42]_2$ in deuteron.

As the concluding remark it should be stressed that usage of the MP instead of an RCP in the theory of complex nuclei demands accurate evaluation of $3N-$forces. Effect of these forces is much enhanced \[22\], as far as three nucleons without $NN$ core can overlap and form short-range 9q-subsystems with large probability. Recent experiments \[46\] on the knock-out of nucleon from $^3He$ nucleus may clarify the situation. In these experiments the missing momentum is great and recoil to $2N$-subsystem with large relative momentum of two spectator-nucleons is observed.

Authors are grateful to Prof. V.I. Kukulin and to Dr. N.A. Burkova for useful remarks.
FIG. 6: Angular dependence of $d\gamma \rightarrow pn$ reaction differential cross-sections for different photon energies $E_\gamma$. Our theory is compared with experiment.
FIG. 7: The same as in Fig. 6 but (for $E_\gamma = 2.051$ GeV) our theoretical results for the RCP (Paris potential [45]) is also shown (two lower dashed curves). Upper dashed curves show results of our calculations for PIWA with deuteron wave function in the initial state calculated with our MP.
FIG. 8: The same as in Fig. 6

FIG. 9: Angular dependence of 4-momentum transfer $Q^2$, and of the nucleon electromagnetic form factors for $d\gamma \to pn$ reaction calculated from Eq. (34) for the PIWA. In our calculations we use dependance of the form factors on $Q^2$ according to parametrization of J.J. Kelly [43].

APPENDIX A:

In this Sec. we explain calculation of the electromagnetic current matrix elements. The derivation is based on results of Ref. [15], where Eq. (18) and Eq. (A6) were deduced.
Let us define a matrix
\[
\alpha(g) = \frac{g^0 + 1 + \sigma \cdot \mathbf{g}}{\sqrt{2(g^0 + 1)}},
\]  
(A1)
corresponding to a 4-velocity \( g \), where \( \sigma = (\sigma_x, \sigma_y, \sigma_z) \) are the Pauli matrices. Let us define the matrix \( \tilde{\mathbf{p}} = \tilde{\mathcal{M}}(\mathbf{p}) \equiv \sigma^\mu p_\mu \) corresponding to a 4-vector \( \mathbf{p} \) (\( \sigma^0 \) is \( 2 \times 2 \) unit matrix). Operator \( \tilde{\mathcal{M}}(\mathbf{p}) \) transforms the 4-vector \( \mathbf{p} \) to \( (2 \times 2) \) matrix. The inverse transformation is defined as
\[
p_0 = \frac{1}{2}(\tilde{p}_{11} + \tilde{p}_{22}), \quad p_1 = \frac{1}{2}(\tilde{p}_{12} + \tilde{p}_{21}),
\]
\[
p_2 = \frac{1}{2i}(\tilde{p}_{21} - \tilde{p}_{12}), \quad p_3 = \frac{1}{2}(\tilde{p}_{11} - \tilde{p}_{22}),
\]  
(A2)
we denote this transformation as \( \mathbf{p} = \tilde{V}(\tilde{\mathbf{p}}) \). The boost \( \mathbf{p} \rightarrow \mathbf{L}[\alpha(g)]\mathbf{p} \) is equivalent to matrix transformation
\[
\tilde{\mathbf{p}} \rightarrow \alpha(g)\tilde{\mathbf{p}}\alpha(g)^+. \]  
(A3)
It is easy to see that \( \mathbf{L}[\alpha(g)](1,0,0,0) = \mathbf{g} \). The Poincaré group transformation \( U(a,l) \) is characterized \[15\] by the 4-shift \( a \) and 4-rotation \( l \):
\[
U(\alpha, l)\varphi(g) = e^{img'a}D[s; \alpha(g)^{-1}l\alpha(g')]\varphi(g'),
\]  
(A4)
where \( \varphi(g) \) is a normalized spinor function of a particle with mass \( p \); \( s \) is spin of the particle; and \( g' = \mathbf{L}(l)^{-1}g \). In our case of spin \( s = 1/2 \) particles, we deal with the fundamental representation \[47\], i.e. \( s_i \equiv \frac{1}{2}\sigma_i \) and
\[
D(s; \alpha(g)^{-1}l\alpha(g')) \equiv \alpha(g)^{-1}l\alpha(g').
\]  
(A5)
The "internal" electromagnetic current operator for a system of two particles in the SA is \[15\]
\[
j^\mu(h) = \sum_{i=1,2} (L^i)^\mu_\nu D_i^1 D_i^2 j^\nu(h) D_i^3 K^i I_i(h),
\]  
(A6)
where
\[
(L^i)^\mu_\nu = \mathbf{L}[\alpha(f)] \frac{q_i}{m_i} \mathbf{L}[\alpha(f')] \frac{d_i}{m_i} \mu_\nu.
\]  
(A7)
\[
D_i^1 = D[s_k; \alpha(q_k/m_k)^{-1} \alpha(f)^{-1} \alpha(f') \alpha(d_{ki}/m_k)] = \alpha_k(q_k/m_k)^{-1} \alpha_k(f)^{-1} \alpha_k(f') \alpha_k(d_{ki}/m_k),
\]  
(A8)
\[ D_2^i = D \left[ s_i; \alpha(q_i/m_i)^{-1} \alpha(f)^{-1} \alpha(z_i) \right] = \alpha_i(q_i/m_i)^{-1} \alpha_i(f)^{-1} \alpha_i(z_i), \] (A9)

\[ D_3^i = D \left[ s_i; \alpha(f'_i)^{-1} \alpha(z_i)^{-1} \alpha(f)\alpha(d_i/m_i) \right] = \alpha_i(f'_i)^{-1} \alpha_i(z_i)^{-1} \alpha_i(f)\alpha_i(d_i/m_i), \] (A10)

kinematical multipliers

\[ K^i = \frac{m_i w_i(q_i)}{w_i(d_i)} \left( \frac{M(d_i)}{M(q_i)} \right)^{3/2} \] (A11)

Here, \( k = 2 \), if \( i = 1 \), and, conversely, \( k = 1 \), if \( i = 2 \). \( L(G, G') \) denotes the Lorentz transformation \( L[\alpha(G, G')] \), and \( \alpha(G, G') \equiv \alpha((G + G')/|G + G'|) \). \( z_i = L[\alpha(f)]q_i/m_i, L[\alpha(f')]d_i/m_i \). Next,

\[ f = L(G, G')^{-1}G, \quad f' = L(G, G')^{-1}G' \] (A12)

represent the 4-velocities of the two-nucleon c.m. in the initial and final state, respectively, meaning the coordinate frame (14). The following formal aspects should be mentioned here:

\[ f^2 = f'^2 = 1, \quad f + f' = 0, \quad f^0 = f'^0 = (1+f^2)^{1/2}, \quad \mathbf{h} \equiv f/f^0; \quad L(G, G') = L(\alpha(G, G')), \quad \alpha(G, G') = \alpha((G + G')/|G + G'|); \quad d_1 = (\omega_1(d_1), d_1), \quad d_2 = (\omega_2(d_2), d_2), \quad d_{12} = L[\alpha(f')^{-1}\alpha(f)]q_2 = (\omega_2(d_1), -d_1), \quad d_{21} = L[\alpha(f')^{-1}\alpha(f)]q_1 = (\omega_1(d_2), d_2); \] last equations gives \( d_i \) also. Index \( i \) or \( k \) of matrices \( \alpha \) and \( \sigma \) means that it acts in \( i \)-th or \( k \)-th particle spin space and appears as in Eq. (A1) but with \( \sigma_i \) or \( \sigma_k \) correspondingly instead of \( \sigma \). Let \( d_1 = (\omega_1(d_1), d_1), \quad d_2 = (\omega_2(d_2), -d_2) \) and \( I_i(h) \) \( (i = 1, 2) \) be operators defined by the conditions \( I_i(h) \chi(q) = \chi(d_i). \)

\[ g'_i = L[\alpha(f)]^{\sigma_i}_{m_i}, \quad g''_i = L[\alpha(f')]^{\sigma_i}_{m_i}, \quad f_i = L[z_i]^{-1}g'_i, \quad f'_i = L[z_i]^{-1}g''_i, \quad h_i = \frac{\mathbf{f}_i}{|\mathbf{f}_i|}, \quad w_i(q) \equiv \sqrt{m_i^2 + q^2}. \]

Finally, \( j^0_i(h) \) is a 4-current of the particle \( i \),

\[ j^0_i(h) = eF^i_{m} \left( Q^2_i \right), \]

\[ j_i(h) = -\frac{ie}{\sqrt{1-\mathbf{h}_i^2}} F^i_{m} \left( Q^2_i \right) (\mathbf{h}_i \times \mathbf{s}_i), \] (A13)

where vectors \( \mathbf{h}_i \) are defined below, \( \mathbf{s}_i \equiv \sigma_i/2, \quad Q^2_i = 4m_i^2 h_i^2/\sqrt{1-\mathbf{h}_i^2} \) (see also Eq. (33)).

From (A6)(A13) it is obvious that for a plane wave final state, when operator \( q = -i\nabla \) can be substituted by vector \( q_f \), operator \( j(h) \) becomes an exterior product \( j^\nu(h) \equiv \sum_{i=1,2} A^i_{m} \otimes A^i_{k}, I_i(h); k = 2, \) if \( i = 1 \), and, conversely, \( k = 1, \) if \( i = 2 \). The \( q_f \)-dependent matrix \( A^i_{m} \).
acts in \(i\)-th particle spin space and presentation
\[
A_{\nu}^k = \sigma_i^\mu a_{\nu}^k \equiv a_{\nu 0}^k + 2(s_i \cdot a_{\nu}^k)
\]
is valid.

"Components" \(a_{\nu}\) are extracted by (A2) transformation
\[
a_{\nu i}^k = V((L_i^\mu) D_{2i}^\mu (h) D_{3i}^\mu K_i)
\]
\[
a_{\nu 0}^k = \frac{a_{\nu 0}^k}{2} \left( 2 (s_i \cdot a_{\nu 0}^k) \right) \text{ is valid.}
\]

Functions \(B\) of Eq. (25) are expressed as
\[
B_{1i}^\nu = a_{\nu i 0}^k a_{\nu 0 i}^k, \quad B_{2i}^\nu = 2a_{\nu i 0}^k a_{\nu i}^k, \quad B_{3i}^\nu = 2a_{\nu 0 i}^k a_{\nu i}^k,
\]
\[
B_{5i}^\nu = 2a_{\nu i}^k a_{\nu 0 i}^k, \quad k = 2, \text{ if } i = 1, \text{ and, conversely, } k = 1, \text{ if } i = 2.
\]

Now, we should take into account the current conservation equation
\[
\frac{\partial \hat{j}_\mu(x)}{\partial x^\mu} = 0. \quad (A15)
\]

Using also the 4-shift
\[
\hat{j}_\mu(x) = exp(i\hat{P}x)\hat{j}_\mu(0)exp(-i\hat{P}x), \quad (A16)
\]
we obtain a relation
\[
\hat{P}_\mu \hat{j}_\mu(0) - \hat{j}_\mu(0)\hat{P}_\mu = 0. \quad (A17)
\]

In terms of the internal variables of NN-system, Eq. (A17) can be reduced to the matrix element
\[
< \chi_f | M_f G_{f0} j_0^0(h) - M_f G_f j(h) - M_i G_{i0} j^0(h) + M_i G_i j(h) | \chi_i > = 0, \quad (A18)
\]
that can be rewritten in the form
\[
< \chi_f | (h \cdot \hat{j}(h)) | \chi_i > = \frac{M_f - M_i}{M_i + M_f} < \chi_f | \hat{j}_0^0(h) | \chi_i >, \quad (A19)
\]
as far as \(G_i = -h G_{i0}, G_f = h G_{f0}, P_i = M_i G_i, P_f = M_f G_f, \hat{M} | \chi_i > = M_i | \chi_i >, \hat{M} | \chi_f > = M_f | \chi_f >. \) The current [A6] does not satisfy Eq. (A22) and needs a modification. Following [15] we use the unique decomposition into longitudinal and transverse parts:
\[
\hat{j}(h) = \hat{j}(0) + \frac{h}{\hbar} \hat{j}_{||}(h) + \hat{j}_{\perp}(h), \quad (A20)
\]
where \(h j_{\perp}(h) = 0\) and
\[
\hat{j}_{||}(h) = \frac{1}{|h|} \left( h \cdot (\hat{j}(h) - \hat{j}(0)) \right),
\]
\[
\hat{j}_{\perp}(h) = \hat{j}(h) - \hat{j}(0) - \frac{h}{|h|^2} \left( h \cdot (\hat{j}(h) - \hat{j}(0)) \right). \quad (A21)
\]
To estimate violation of the current conservation equation we assume that \( NN \) interaction does not change transverse and time components of operator \( \hat{j}_j(\mathbf{h}) \). Then we can reconstruct \( \hat{j}(0) \) and \( \hat{j}_j(\mathbf{h}) \) from Eq. (A22). In the transverse gauge (20) the longitudinal component has no effect on results of our calculation and therefore we determine only matrix element of \( \hat{j}(0) \)

\[
< \chi_f | \hat{j}_j(0) | \chi_i > = \frac{M_f - M_i}{M_i + M_f} < \chi_f | \frac{\partial \hat{j}_j(\mathbf{h})}{\partial \mathbf{h}} \big|_{\mathbf{h} = 0} | \chi_i >, \tag{A22}
\]

Corresponding addend \( \delta \mathbf{j} \) that restores Eq. (A22) is given in Eq. (28).

The first term in Eq. (24) (PlWA) appears as

\[
\langle \phi_f | \hat{j}_j^\mu | \chi_i \rangle_{n.r.} = \sqrt{\frac{2}{\pi q_f}} \sum_{J=0}^{3} \sum_{l=0}^{2} \sum_{m=-l}^{l} i^J C_{lm}^{JM \mu} \left( \sum_{k=1}^{4} \sum_{i=1}^{2} \mathcal{Y}_{lm}^*(\hat{q}_i) \langle l, S; J M | L_{ki}| l, 1; 1 M \rangle U_i^l \right) + \mathcal{Y}_{lm}^*(\hat{q}_f) (1 - \delta_{0, \mu}) \left( \sum_{i=1}^{3} \langle l, S; J M | K_{i}^\mu | l, 1; 1 M \rangle U_i(q_f) \right) - 2g_f^{\mu n} w(q_f) \sum_{l', 1, 3} \langle l', 1; J M | \hat{j}_j^\mu | l, 1; 1 M \rangle \int_0^\infty \hat{j}_i(q_f r) u_i(r) dr \bigg), \tag{A23}
\]

\[
U_i^l = \frac{w(q_f)(1 - h^2)}{w(q_f)(1 + h^2) + (-1)^l 2q_f (\mathbf{h} \cdot \mathbf{q}_f)} \int_0^\infty \hat{j}_i(d_i(q_f r) u_i(r) dr,
\]

here \( L_{ki}(k = 1, 2, 3, 4) = B_{i1}^\mu, (B_{21}^\mu s_2), (B_{31}^\mu s_1) \) and \( (B_{41}^\mu s_2)(B_{51}^\mu s_1) \), respectively; \( K_{i}^\mu \) represent the \( \mu \)-components (\( \mu = 1, 2, 3 \)) of the the first three \( (i = 1, 2, 3) \) terms in Eq. (28).

The second term in Eq. (24) appears as

\[
\langle \chi_f - \phi_f | \hat{z}_j^\mu (\mathbf{h}) | \chi_i \rangle_{n.r.} = \sqrt{2} \frac{1}{\pi q_f} \sum_{J=0}^{\infty} \sum_{J=S}^{J+S} \sum_{J=S}^{J+S} \sum_{l=0}^{l} i^J C_{lm}^{JM \mu} \mathcal{Y}_{lm}^*(\hat{q}_f) \times \int_0^\infty \mathbf{d} r \langle l', S; J M | (u_{l', J}(q_f r) - \delta_{l', J} \hat{j}_i(q_f r)) \hat{z}_j^\mu (\mathbf{h}) u_L(r) | L, 1; 1 M \rangle \tag{A24}
\]

We use further the algebraic results (A24)-(A27) of Ref. [20] and obtain the final expression for the differential cross-section which is reduced to radial integrals and spherical harmonics but, unfortunately, is too much unwieldy to be exposed here.

Now, by a few examples, we illustrate the calculation technique for the matrix elements of various components of the relativistic current operator

\[
\langle l_f, S_f; J_f M_f | (\mathbf{B}_{3i}^\mu \cdot \mathbf{s}_1) | l_i, S_i; J_i M_i \rangle = (\mathbf{B}_{3i}^\mu \cdot \langle l_f, S_f; J_f M_f | s_1 | l_i, S_i; J_i M_i \rangle),
\]
\langle l_f, S_f | (s_1)_{\nu} | l_i, S_i; J_i M_i \rangle =
= (-1)^{L_i + J_f + S_f + 1} \delta_{L_i L_f} C_{1\nu}^{J_f M_i} \sqrt{2J_i + 1} \times \left\{ \begin{array}{cc} L_f & J_f \ S_f \\ 1 & S_i \ J_i \end{array} \right\} \langle S_f || s_1 || S_i \rangle,
\langle S_f || s_1 || S_i \rangle = (-1)^{S_f} \sqrt{(2S_i + 1)(6S_f + 3)}/2 \times \left\{ \begin{array}{cc} 1/2 & 1/2 \ S_f \\ 1 & S_i \ 1/2 \end{array} \right\} . \quad (A25)

(a_1 \cdot s_1)(a_2 \cdot s_2) =
\sum_{k=0}^{2} C_k \left[ [a_1 \times a_2]^{(k)} \times [s_1 \times s_2]^{(k)} \right]^{(0)},
C_k = (1, \sqrt{3}, \sqrt{5}); \quad (A26)

\langle S_f || [s_1 \times s_2]^{(k)} || S_i \rangle =
\frac{3}{2} \sqrt{(2S_i + 1)(2S_f + 1)(2k + 1)} \left\{ \begin{array}{cc} 1/2 & 1/2 \ S_f \\ 1/2 & 1/2 \ S_i \\ 1 & 1 \ k \end{array} \right\} .

(\nabla \cdot S) \nabla_{\mu} = -\frac{1}{\sqrt{3}} \left[ [\nabla \times \nabla]^{(0)} \times S \right]^{(1)}_{\mu} -
-\frac{\sqrt{5}}{3} \left[ [\nabla \times \nabla]^{(2)} \times S \right]^{(1)}_{\mu} . \quad (A27)

(\mathbf{h} \cdot [\nabla \times S]) \nabla_{\mu} =
-\frac{i\sqrt{6}}{3} \left( \frac{\sqrt{15}}{2} \left[ [\nabla \times \nabla]^{(2)} \times S \right]^{(2)}_{\mu} h \right)_{\mu}^{(1)}
+ \left[ [\nabla \times \nabla]^{(0)} \times S \right]^{(1)}_{\mu} h_{\mu}^{(1)}
-\frac{\sqrt{5}}{2} \left[ [\nabla \times \nabla]^{(2)} \times S \right]^{(1)}_{\mu} h_{\mu}^{(1)} . \quad (A28)

< L_f, S_f = 1; J_f M_f | \left[ [\nabla \times \nabla]^{(k)} \times S \right]^{(1)}_{\mu}^{(n)} f(r) | L_i, S_i = 1; J_i M_i >=
\left\{ \begin{array}{cc} L_f & 1 \ J_f \\ L_i & 1 \ J_i \\ k & 1 \ n \end{array} \right\} \sqrt{6(2J_i + 1)(2n + 1)} < L_f || [\nabla \times \nabla]^{(k)} f(r) || L_i >, \quad (A29)
\[ < L_f \| [\nabla \times \nabla ]^{(2)} \frac{f(r)}{r} \| L_i > = \]
\[ \frac{\sqrt{2L_f + 1}}{\sqrt{6}C_{L_f,0}^0} \cdot \left( \delta_{L_i, L_f} \left( -1 + \frac{3(2L_i^2 + 2L_i - 1)}{(2L_i - 1)(2L_i + 1)(2L_i + 3)} \right) \left( \frac{d^2}{dr^2} - \frac{L_i(L_i + 1)}{r^2} \right) f(r) \right) \]
\[ + \delta_{L_i, L_f}^2 \left( \frac{3(L_i + 1)(L_i + 2)}{(2L_i + 1)(2L_i + 3)(2L_i + 5)} \left( \frac{d^2}{dr^2} - \frac{(2L_i + 3)}{r} \frac{d}{dr} + \frac{(L_i + 3)(L_i + 1)}{r^2} \right) f(r) \right) \]
\[ + \delta_{L_i, L_f}^{-2} \left( \frac{3L_i(L_i - 1)}{(2L_i + 1)(2L_i - 3)(2L_i - 1)} \left( \frac{d^2}{dr^2} - \frac{(2L_i - 1)}{r} \frac{d}{dr} + \frac{(L_i - 2)}{r^2} \right) f(r) \right) \].

(A30)

In these expressions, an upper index in round brackets means a tensor rank of an operator. The first rank is omitted where it is obvious (\( \nabla \equiv \nabla^{(1)} \) etc.)

**APPENDIX B: POINT-FORM MOMENTUM TRANSFER**

In the general case there are initial NN-state with associated initial c.m. frame (i.c.m.f.) and final NN-state with associated final c.m. frame (f.c.m.f.) Suppose that the photon momentum (momentum transfer) is along the \( z \) axis. Values of photon momentum and energy in i.c.m.f. are \( |q_\gamma| \) and \( q_\gamma^0 \) correspondingly. Momentum transfer is \( Q^2 = |q_\gamma|^2 - (q_\gamma^0)^2 \).

Let \( P \) be the total 4-momentum of the NN-system, \( M \) be the mass of the NN-system, \( G = P/M \) be the system 4-velocity. Index \( i(f) \) means initial (final) state of the NN-system. Transformation from i.c.m.f. to the special frame suggested by Lev [15] (L.s.) where \( G_f + G_i = 0 \)

is defined by angle \( \Delta/2 \) such that

\[ \tanh \Delta/2 = h, \]

(B2)

where \( h = G_f/G_i \) \( |L.s.| \). The Lev frame is not equivalent to the Breit frame defined by the condition \( P_f + P_i = 0 \) if \( M_f \neq M_f \). In case of elastic electron-deuteron scattering these frames coincide.

From this point we may use a special derivation of Ref. [19] (Eqs. (B3 -B7) of the present paper).

The initial energies and z-components of momenta in L.s. are

\[ w_1 = w \cosh \Delta/2 + q_z \sinh \Delta/2 \]
\[ q_{1z} = q_z \cosh \Delta/2 + w \sinh \Delta/2 \]
\[ w_2 = w \cosh \Delta/2 - q_z \sinh \Delta/2 \]
\[ q_{2z} = -q \cosh \Delta/2 + w \sinh \Delta/2, \]  
(B3)

where \( q \) and \( w = \sqrt{q^2 + m^2} \) are center of momentum variables, \( q \) is momentum of particle one (internal variable). After the photon absorption the \( z \)-component of the internal variable and corresponding energy change

\[ q'_z = q_z \cosh \Delta \mp w \sinh \Delta \]
\[ w' = w \cosh \Delta \mp q_z \sinh \Delta, \]  
(B4)
(B5)

where the minus (plus) sign is used when particle one (two) is struck. The final energies and momenta in L.s. will then be

\[ w'_1 = w \cosh 3\Delta/2 - q_z \sinh 3\Delta/2 \]
\[ q'_{1z} = q_z 3 \cosh \Delta/2 - w \sinh 3\Delta/2 \]
\[ w'_2 = w_2; \quad q'_2 = q_{2z}, \]  
(B6)

other components do not change. Some hyperbolic trigonometry reveals that

\[ (q'_1 - q_1)^2 = 4(q_z^2 - w^2) \sinh^2 \Delta, \]  
(B7)

it follows from Eq. (B2) that

\[ \sinh \Delta = \frac{2h}{1 - h^2}. \]  
(B8)

Since

\[ q_z^2 - w^2 = -(m^2 + q_{1}^2) = -(m^2 + q^2 - \frac{(q \cdot h)^2}{h^2}), \]  
(B9)

the resulting Eq. (33) is established.

[1] R.J. Holt, Nucl. Phys. A A684, 148c (2001); S. Strauch, Nucl. Phys. A690, 89c (2001).
[2] C. Bochna et al., Phys. Rev. Lett. 81, 4576 (1998); E. C. Schulte et al., Phys. Rev. C 66, 042201 (2002).
[3] K. Wijesooriya et al., Phys. Rev. Lett. 86, 2975 (2001).
[4] M. Mirazita et al., Phys. Rev. C 70, 014005 (2004).

[5] L.A. Kondratyuk et al. Phys. Rev. C 48, 2491 (1993); V.Y. Grishina et. al., Eur. Phys. J. A19, 117 (2004).

[6] A.E.L. Dieperink and S.I. Nagorny, Phys. Lett. B456, 9 (1999).

[7] L.L. Frankfurt, G.A. Miller, M.M. Sargsian, and M.I. Strikman, Nucl. Phys. A663 and A664, 349c (2000); Phys. Rev. Lett. 84, 3045 (2000).

[8] R. Gilman and F. Gross, J. Phys. G28, R37 (2002).

[9] K.Yu. Kazakov and S.F.Shirmovskiy, Phys. Rev. C 65, 064002 (2002).

[10] A.B. Kaidalov, Z. Phys. C12, 63 (1982).

[11] B.D. Keister and W.N. Polyzou, Advanced Nuclear Physics, edited by J. W. Negele and E. W. Vogt (Plenum, New York, 1991), Vol. 20, p. 225.

[12] P.A.M. Dirac, Rev.Mod.Phys. 21, 392 (1949).

[13] Bakamdjian and L.H.Thomas, Phys.Rev. 92 (1953) 1300.

[14] T. Melde, L. Canton, W. Plessas, and R.F. Wagenbrunn, Eur. Phys. J. A 25, 97 (2005).

[15] F. Lev, Ann. Phys. (N.Y) 237, 355 (1995); [hep-ph/9403222]

[16] W. H. Klink, Phys. Rev. C 58, 3587 (1998).

[17] T. W. Allen, W. H. Klink, Phys. Rev. C 58, 3670 (1998).

[18] F. Coester, D.O. Riska, Few-Body Syst. 25, 29 (1998).

[19] T.W. Allen, W.H. Klink, and W.N. Polyzou, Phys. Rev. C63, 034002 (2001).

[20] N.A. Khokhlov, V.A. Knyr, and V.G. Neudatchin, Phys. Rev. C 68, 054002 (2003).

[21] V.G. Neudatchin, I.T. Obukhovskiy, V.I. Kukulin, and N.F. Golovanova, Phys. Rev. C 11, 128 (1975); V.G. Neudatchin, I.T. Obukhovsky, and Yu.F. Smirnov, Fiz. Elem. Chastits At. Yadra (Sov.J.Part.Nucl.) 15, 1165 (1984); V.I. Kukulin and V.N. Pomerantsev, Prog. Theor. Phys. 88, 159 (1992); L.Ya. Glozman, V.G. Neudatchin, and I.T. Obukhovsky, Phys. Rev. C 48, 389 (1993).

[22] N.A. Khokhlov, V.A. Knyr, Phys. Rev. C 73, 024004 (2006).

[23] A.A. Logunov and A.N. Tavkhelidze, Nuovo Cimento 29, 380 (1963); I.T. Todorov, Phys. Rev. D3, 2351 (1971); A.P. Martynenko and R.N. Faustov, Theor.Mat.Fiz. 64, 179 (1985); V.O. Galkin, A.Yu. Mishurov, and R.N. Faustov, Yad. Fiz. 55, 2175 (1992).

[24] R.A. Arndt, I.I. Strakovsky and R.L. Workman, Phys. Rev. C62, 034005 (2000); R.A. Arndt, W.J. Briscoe, R.L. Workman, I.I. Strakovsky , [http://lux2.phys.va.gwu.edu/]
[25] R. Machleidt. Adv. In Nucl. Phys. V. 19, 189 (1989).

[26] V.G. Neudatchin, V.I. Kukulin, V.L. Korotkikh, and V.P. Korennoy, Phys.Lett. 34B, 581 (1971); V.I. Kukulin, V.G. Neudatchin, and Yu.F. Smirnov, Nucl.Phys. A 245, 429 (1975).

[27] V.G. Neudatchin, Yu.F. Smirnov, and N.F. Golovanova, Adv. In Nucl.Phys., 11, 1 (1979).

[28] N.S. Chant and P.G. Roos, Phys.Rev. C15, 57 (1977); P.G. Roos, N.S. Chant, A.A. Cowley, ibid, p.69.

[29] S. Saito, Progr.Theor.Phys. 41, 705 (1969); W. Glockle and J. Le Tourneux, Nucl.Phys. A269, 16 (1976).

[30] V.I. Kukulin, V.G. Neudatchin, I.T. Obukhovsky, and Yu.F. Smirnov, Clusters as subsystems in light nuclei. Vieweg Verlag, Braunshweig, 1983, 160 pp.

[31] P. Darriulat, G. Igo, H.G. Pugh, and H.D. Holmgren, Phys.Rev. B137, 315 (1965); K.A.G. Rao, A. Nadasen, P.G. Roos et al. Phys.Rev. C62 014607 (2000).

[32] V.G. Neudatchin, N.P. Yudin, Yu.L. Dorodnikh, and I.T. Obukhovsky, Phys.Rev. C43, 2499 (1991).

[33] Y. Fujiwara, T. Fujita, M. Kohnj et al., Phys.Rev. C65, 014002 (2002); D.R. Entem, F. Fernandez, and A. Valcarce, Phys.Rev. C67, 014001 (2003).

[34] R. Machleidt and I. Slaus, J.Phys. G27, R69 (2001); L. Coraggio, A. Covello, R. Machleidt et al., Phys.Rev. C71, 014307 (2005).

[35] A.M. Kusainov, V.G. Neudatchin, and I.T. Obukhovsky, Phys. Rev. C 44, 2343 (1992).

[36] Fl. Stancu, S. Pepin, and L.Ya. Glozman, Phys.Rev. C56, 2779 (1997).

[37] D. Bartz and Fl. Stancu, Phys.Rev. C63, 034001 (2001).

[38] J.M. Sparenberg and D. Baye, Phys. Rev. Lett. 79, 3802 (1997); H. Leeb, S.A. Sofianos, J.M. Sparenberg and D. Baye, Phys. Rev. D 62, 064003 (2000); F. Bauer, J. Bisplinghoff, K. Büsser et al., Phys. Rev. C 71, 054002 (2005).

[39] L. Ya. Glozman, N. A. Burkova, and E. I. Kuchina, Z. Phys. A 332, 339 (1989).

[40] N.A. Khokhlov, V.A. Knyr, V.G. Neudatchin, and A.M. Shirikov, Phys. Rev. C 62, 054003 (2000).

[41] K. Michaelian et al., Phys. Rev. D 41, 2689 (1990).

[42] www.physics.khstu.ru

[43] J.J. Kelly, Phys. Rev. C 70, 068202 (2004).

[44] N. A. Khokhlov, nucl-th/0703081
[45] M. Lacomb, B. Loiseau, J.M. Richard, and R. Vinh Mau, J. Côté, P. Pirès, and R. de Tourreil, Phys. Rev. C 21, 861 (1980)

[46] M. Holtrop, Nucl. Phys. A755, 171c (2005).

[47] P. Moussa and R. Stora, Methods in Subnuclear Physics, edited by N. Nicolic (Gordon and Breach, N.Y., 1968); S. Gaziorovicz, Elementary Particle Physics, (Wiley, N.Y., 1967).