The incidence of in-stent restenosis after drug-eluting stent implantation in patients on chronic hemodialysis

Masayuki Motohiro (✉ motohima@hirakata.kmu.ac.jp)
Kansai Medical University https://orcid.org/0000-0001-8382-5312

Hiroshi Sugita
Kansai Medical University

Hiroki Shibutani
Kansai Medical University

Syun Morishita
Kansai Medical University

Masami Tanaka
Kansai Medical University

Satoshi Tsujimoto
Kansai Medical University

Ichiro Shiojima
Kansai Medical University

Research article

Keywords: Follow up study, Ischemic heart disease, Hemodialysis, percutaneous coronary intervention, Drug-eluting stent, restenosis

DOI: https://doi.org/10.21203/rs.3.rs-29228/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Recently, drug-eluting stents have been widely adopted rather than bare-metal stents in patients on chronic hemodialysis (HD) based on the extrapolation of data from patients on non-HD. However, whether DES implantation is associated with a reduced rate of in-stent restenosis (ISR) is unclear. We investigated the incidence of ISR and its predictors in patients on HD after drug-eluting stent implantation.

Methods and Results: We analyzed 194 consecutive patients (331 lesions) on HD who underwent follow-up angiography after drug-eluting stent implantation. ISR was observed in 74 lesions (22.4%). Angiographically, the relative incidence of AHA/ACC type C lesion was increased (47% vs. 32%; P=0.043), the minimal lumen diameter (MLD) before DES implantation was smaller (0.82±0.49 vs. 0.97±0.45mm; P<0.01) and the lesion length (LL) was increased (30.2±16.1 vs. 24.4±12.1mm; P=0.023) in lesions with ISR compared to those without ISR. The rate of rotational atherectomy use was also increased in lesions with ISR compared to those without ISR (50% vs. 25%; P<0.01). In a multivariate analysis, the MLD before drug-eluting stent implantation (odds ratio [OR] =0.50, 95% confidence interval [CI] 0.27-0.91, P=0.024), LL (OR=1.02, 95% CI 1.00-1.04, P=0.030) and the use of rotational atherectomy (OR=2.71, 95% CI 1.55-4.72, P<0.01) were independent predictors of ISR. The incidence of ISR was similar between lesions treated with the first-generation (25.8%) and the second-generation DESs (20.4%).

Conclusion: ISR was observed in 74 lesions (22.4%). A small MLD, long LL and the use of rotational atherectomy were independent predictors of ISR after drug-eluting stent implantation in patients on HD. There was no significant difference in ISR rate between the first- and the second-generation drug-eluting stents.

Introduction

Cardiovascular disease is the principal cause of death in patients on hemodialysis (HD)1–3. Coronary artery disease is common in HD patients, and percutaneous coronary intervention (PCI) has been shown to be more effective than medical therapy in such patients4. However, although initial success rate is high both in HD and non-HD patients, relatively high restenosis rate in the follow-up period has been noted in HD patients5.

Recently, drug-eluting stents (DESs) have been widely adopted rather than bare-metal stents in HD patients based on the extrapolation of data from non-HD patients. Indeed, previous studies in non-HD patients have shown that DESs reduce the rate of repeat revascularization compared with bare-metal stents, and this superiority of DESs over bare-metal stents is preserved in patients with moderate renal insufficiency6,7. However, whether DES implantation is associated with a reduced incidence of in-stent restenosis (ISR) in HD patients is less well defined. Moreover, although a meta-analysis of 33 randomized trials in non-HD patients showed that implantation of the second-generation DESs did not reduce the risk
of repeat revascularization compared with the first-generation DESs\(^8\), data on the incidence of ISR after PCI using the second-generation DESs in HD patients are scarce.

In the present study, we investigated the incidence of ISR and its predictors in HD patients after DES implantation. We also compared the incidence of ISR between the first- and the second-generation DESs.

Methods

Study population

From January 2007 to December 2017, consecutive HD patients who underwent DES implantation and follow-up angiography at 8 to 12 months after PCI at Kansai Medical University were retrospectively selected and analyzed. The exclusion criteria were survivors of sudden cardiac death, cardiogenic shock, emergent PCI, ST segment elevation myocardial infarction, intolerance to antiplatelet drugs, ISR after DES implantation, severe valvular heart disease, and candidates for renal transplantation. The ethical committee approved our database search. Because of the retrospective nature of the study, written informed consent from the patients was waived. However, the patients who refused enrollment when contacted for follow-up were excluded.

All PCIs were performed in accordance with concurrent guidelines, and the stent choice was left to the discretion of the operator. All stents were commercially available. Before February 2010 all patients were treated with the first-generation DESs. The first-generation DESs used were a sirolimus-eluting stent (SES; Cypher\™; Cordis Corp, Johnson & Johnson, Miami Lakes, FL, USA) or a paclitaxel-eluting stent (PES; Taxus Express\™; Boston Scientific, Natick, MA, USA). From March 2010, second-generation DESs were available in Japan. The second-generation DESs used were an everolimus-eluting stent (EES; Xience; Abbott Vascular, Santa Clara, CA, USA; and Promus; Boston Scientific, Natick, MA, USA), a zotarolimus-eluting stent (ZES; Endeavor and Resolute; Medtronic Inc., Santa Rosa, CA, USA) and a biolimus-eluting stent (BES; Nobori®; Terumo, Tokyo, Japan). A rotablator was used when necessary. The use of intravascular ultrasound to confirm optimal stent expansion was encouraged. Dual antiplatelet therapy (aspirin [162 mg/day] and ticlopidine [200 mg/day] or clopidogrel [75 mg/day]) was recommended for at least 2 weeks prior to PCI after assessing each patient’s tolerance to those drugs, and patients were followed up for at least 12 months after DES implantation.

The primary endpoint was the incidence of ISR at follow-up, defined as a stent stenosis > 50% in diameter anywhere within the stent and/or within the 5-mm borders proximal or distal to the stent. The secondary endpoints included the clinical follow-up data of major adverse cardiac events (MACEs) after PCI, with MACEs defined as cardiac death, nonfatal myocardial infarction, target lesion revascularization (TLR), and stent thrombosis. Clinical follow-up data were obtained from hospital charts and telephone interviews with the patients at one year after PCI. The diagnosis of myocardial infarction was based on ST-segment changes in at least two contiguous ECG leads and creatine kinase elevation to more than twice in the normal range. Cases with stent thrombosis were judged as definite or probable according to
the definitions of Academic Research Consortium\(^9\)). TLR was defined as revascularization not only inside the stent but also within the 5-mm borders proximal or distal to the stent segment of the initial procedure.

Quantitative coronary angiography (QCA) was performed before and after PCI and at follow-up. Lesion complexity was classified according to the American Heart Association/American College of Cardiology lesion type classification\(^1\(^0\)). The angiographic measurements included proximal and distal reference diameters, the minimum lumen diameter and lesion length. Late lumen loss was defined as the difference in the minimal lumen diameter immediately after PCI and on follow-up angiography. QCA was performed using the computer-assisted automated edge detection method (QAngio XA, version 7.3; Medis Medical Imaging Systems, Leiden, the Netherlands) at Kansai Medical University. All the angiographic data were obtained by two experienced interventional cardiologists blinded to the patient data.

Statistical analyses

Continuous variables were expressed as the mean ± standard deviation (SD) and compared using Student's unpaired \(t\)-test. Categorical variables were expressed as counts and percentages, and the chi-squared test or Fisher exact tests was used for comparisons. Logistic regression analysis models were used to assess the univariate and multivariable covariates associated with ISR. Specifically, all variables significantly associated with ISR on a univariate analysis (\(P < 0.05\)) were entered into a logistic multivariable model in order to determine independent predictors. The results of a logistic multivariable model were reported as the hazard ratios with 95% confidence intervals and \(P\) values. Differences were considered significant at \(P < 0.05\). All statistical analyses of recorded data were performed using the Excel statistical software package (Ekuseru-Toukei 2012; Social Survey Research Information Co., Ltd., Tokyo, Japan).

Results

We analyzed 194 consecutive HD patients (331 lesions) who underwent follow-up angiography after DES implantation. ISR was observed in 59 patients (30.4%) / 74 lesions (22.4%). The clinical characteristics of the HD patients with and without ISR are summarized in Table 1. There were no significant differences in the characteristics between these two groups.
Characteristics	ISR (-) (n = 135)	ISR (+) (n = 59)	P value
Age (years)	65 ± 11	66 ± 7	0.95
Sex (% male)	67	78	0.71
BMI (kg/m2)	22.9 ± 3.5	23.1 ± 3.3	0.60
Risk factors	39	49	0.47
Smoking (%)	53	66	0.29
Diabetes mellitus (%)	93	95	0.58
Hypertension (%)	65	75	0.35
Hyperlipidemia (%)	5.7 ± 6.6	5.4 ± 4.5	0.41
Duration of HD (years)	61	51	0.38
Diagnosis	13	20	0.72
Stable angina (%)	26	29	0.84
ACS (%)	50	48	0.83
OMI (%)	4	3	0.96
Previous PCI (%)	97	96	0.88
Previous CABG (%)	4	2	0.93
Medication at procedure	93	93	0.88
Aspirin (%)	1	5	0.87
Ticlopidine (%)	12	14	0.93
Clopidogrel (%)	50	56	0.67
Cilostazol (%)	50	49	0.97
ACE (%)	57.0 ± 14.8	57.7 ± 14.0	0.95
ARB (%)	11.1 ± 1.5	11.1 ± 1.4	0.83
β-blocker (%)			
Statin (%)			
Ejection fraction (%)			
Hemoglobin (g/dl)			
The lesion and procedural characteristics are shown in Table 2. The relative incidence of AHA/ACC type C lesion was increased in lesions with ISR compared to those without ISR. While no significant differences were noted in the rate of lesions with severe and moderate calcification between the two groups, the rate of rotational atherectomy use was higher in lesions with ISR than those without ISR (50% vs. 25%; P < 0.01). The stents were longer in the lesions with ISR than those without ISR (31.6 ± 16.9 vs. 25.8 ± 11.8 mm; P = 0.016).			
Characteristics	ISR (-) (n = 257)	ISR (+) (n = 74)	P value
---------------------------------------	-------------------	-----------------	---------
Target vessels			
Left main (%)	34	30	0.77
Left anterior descending (%)	23	27	0.81
Left circumflex artery (%)	33	40	0.49
Right coronary artery (%)	12	0	0.007
ACC/AHA classification			
A (%)	11	14	0.77
B1 (%)	56	41	0.29
B2 (%)	33	45	0.17
C (%)	25	34	0.11
Lesion type			
Discrete (%)	40	53	0.15
Tubular (%)	4	3	0.54
Diffuse (%)	0.4	0	0.78
Angiographic calcification			
Moderate (%)	37	50	0.15
Severe (%)	18	23	0.12
Eccentric lesion (%)	11	14	0.53
Thrombus (%)			
Thrombus (%)	25	23	0.94
Dissection (%)			
Dissection (%)	20	19	0.99
Haziness (%)			
Haziness (%)	25	50	0.0003
Irregular lesion surface (%)	2.98 ± 0.40	3.0 ± 0.41	0.97
Ostial lesion (%)	25.8 ± 11.8	31.6 ± 16.9	0.016
In stent restenosis (%)			
Characteristics	ISR (-) (n = 257)	ISR (+) (n = 74)	P value
---	-------------------	------------------	---------
Chronic total occlusion (%)			
Bifurcation (%)			
Final kissing balloon technique (%)			
Rotational atherectomy (%)			
Stent size (mm)			
Total stent length (mm)			

HD: hemodialysis, ISR: in-stent restenosis

The QCA measurements of the lesions were shown in Table 3. The minimal lumen diameter before DES implantation was smaller (0.82 ± 0.49 vs. 0.97 ± 0.45 mm; P < 0.01) and the lesion length was longer (30.2 ± 16.1 vs. 24.4 ± 12.1 mm; P = 0.023) in the lesions with ISR than those without ISR. On a univariate analysis, the incidence of ISR was associated with AHA/ACC type C lesions (P = 0.013), rotational atherectomy use (P < 0.001), lesion length (P = 0.003) and the minimal lumen diameter before DES implantation (P = 0.011). On a multivariate analysis, rotational atherectomy use (odds ratio [OR]: 2.71, 95% confidence interval [CI] 1.55–4.72, P < 0.001), lesion length (OR: 1.02, 95% CI 1.01–1.04, P = 0.030) and the minimal lumen diameter before DES implantation (OR: 0.50, 95% CI 0.27–0.91, P = 0.034) were independent risk factors for ISR after DES implantation in HD patients (Table 4).
Table 3
Quantitative coronary Angiographic analysis

Characteristics	ISR (-) (n = 257)	ISR (+) (n = 74)	P value
Reference Diameter	2.46 ± 0.60	2.38 ± 0.59	0.36
Pre-procedure (mm)	2.79 ± 0.53	2.70 ± 0.52	0.24
Follow-up (mm)	0.97 ± 0.45	0.82 ± 0.49	0.009
Minimal lumen Diameter	2.46 ± 0.55	2.41 ± 0.59	0.22
Pre-procedure (mm)	2.24 ± 0.53	0.89 ± 0.53	< 0.001
Post-procedure (mm)	24.4 ± 12.1	30.2 ± 16.1	< 0.001
Follow-up (mm)	0.22 ± 0.45	1.52 ± 0.71	< 0.001
Lesion length (mm)			
Late loss (mm)			

HD: hemodialysis, ISR: in-stent restenosis

Table 4
Predictors for ISR

Predictor	Univariate analysis	Multivariate analysis				
	odds	95%CI	P value	odds	95%CI	P value
AHA/ACC type C lesion	1.95	1.15–3.30	0.013	2.71	1.55–4.72	< 0.001
rotational atherectomy use	2.95	1.73–5.05	< 0.001	1.02	1.00–1.04	0.030
Lesion length	1.03	1.01–1.05	0.003	0.50	0.27–0.91	0.024
MLD before procedure	0.47	0.27–0.84	0.011			

MLD; minimal lumen diameter

The MACEs at one year are shown in Table 5. MACEs were observed in 59 patients (30.4%). Cardiac death was observed in 2 patients (1.0%), nonfatal myocardial infarction in 8 patients (4.1%), target lesion revascularization in 59 patients (30.4%), and stent thrombosis in 2 patients (1.0%). All patients continued to take their medication without skipping doses.
Table 5
MACEs at 1 year

Number of patients	194
Major adverse cardiac events	59 (30.4%)
Cardiac death	2 (1.0%)
Nonfatal myocardial infarction	8 (4.1%)
Target lesion revascularization	58 (29.9%)
Stent thrombosis	2 (1.0%)

The first-generation DESs were implanted in 120 lesions, and the second-generation DESs were implanted in 211 lesions. The number of lesions treated with each DES type and the ISR rate are shown in Table 6. The incidence of ISR was similar between the lesions treated with the first-generation DESs (25.8%) and the second-generation DESs (20.4%) (P = 0.25). The rate of ISR was 28.9% for SESs, 13.1% for PESs, 19.4% for EESs, 15.8% for ZESs, and 30.0% for BESs. There was no significant difference in the ISR rate among different DES types.

Table 6
The number of lesions and ISR rate stratified by DES types

DES type	Number of lesions	ISR (%)
First-generation DES	120	25.8
SES	97	28.9
PES	23	13.1
Second-generation DES	211	20.4
EES	142	19.4
ZES	38	15.8
BES	30	30.0

DES: drug eluting stent SES: sirolimus-eluting stent PES: paclitaxel-eluting stent EES: everolimus-eluting stent ZES: zotarolimus-eluting stent BES: biolimus-eluting stents

Discussion

In the present study, we showed that the incidence of ISR after DES implantation in HD patients was 22.4%. Furthermore, a small minimal lumen diameter before DES implantation, a longer lesion length before DES implantation and the use of rotational atherectomy were independent predictors of ISR after DES implantation in patients on HD. PCI is widely performed in HD patients with coronary artery disease\(^4,11\). In addition, current guidelines recommend the use of DESs in HD patients\(^7\). Since previous
studies reported the ISR rate in HD patients in relatively small number of lesions12–20, our present study represents an important contribution to the literature on the angiographic outcomes of PCI in HD patients.

Compared with previous studies in non-HD patients8, we found that the incidence of ISR and MACEs was high in HD patients. In previous reports on ISR rate in HD patients12–20, the incidence of ISR was 21.2%-39.5% for SES, 13.6% for PES, and 8.7%-16.0% for EES12–20. In the present study, the incidence of ISR for all DESs was 22.4%, which was slightly higher than that reported in previous reports. Although the reasons for the higher rate of restenosis in this study are not clear, the relatively frequent use of rotational atherectomy (31%) and longer lesion length (25.6 ± 13.3 mm) may be involved.

Although this study was not designed to elucidate the mechanisms underlying the high rate of ISR in HD patients, we propose several possible explanations. First, stents in severely calcified lesions are frequently underexpanded and malapposed, which are well-known risk factors for ISR21. Second, calcification and vascular stiffness may cause stent edge dissections and increase the degree of vascular injury, thereby predisposing the lesions to restenosis22. Third, both the number and function of endothelial progenitor cells (EPCs) are reduced in patients with chronic renal failure compared with healthy patients23,24. Furthermore, HD patients tend to have traditional risk factors for coronary arteriosclerosis, such as diabetes and hyperlipidemia. These risk factors also deplete the circulating EPCs and inhibit their functions23,25,26. Because EPCs play a key role in the maintenance of vascular integrity and act as repair cells in response to endothelial injury, reduced number and function of EPCs in HD patients may contribute to higher rate of ISR. Fourth, the activation of the coagulation system, increased platelet aggregability, and the release of oxidant free radicals during dialysis sessions may contribute to the growth of neointimal hyperplasia27.

Predictors for ISR in HD patients at follow-up in this study were a small minimal lumen diameter before DES implantation, a longer lesion length before DES implantation, and the use of rotational atherectomy. These predictors of ISR differ from those in patients with normal renal function. Indeed, the typical risk factors such as diabetes, hypertension, small vessel size, or AHA/ACC type B2/C lesions showed no significant correlation with ISR in this study. A previous study reported that coronary calcification and the use of rotational atherectomy, but not a small minimal lumen diameter or long lesion length before DES implantation, were predictors of target-vessel revascularization19.

The second-generation DESs may be associated with a reduced incidence of ISR compared with the first-generation DESs, as the second-generation DESs have newer polymer coatings and thinner struts. However, in previous studies28,29,30, the incidence of ISR was not significantly different between the first- and the second-generation DESs in non-HD patients. Consistent with those studies, we found that the incidence of ISR was similar between lesions treated with the first-generation DESs (25.8%) and the second-generation DESs (20.4%) in HD patients. Although different types of stents were used in different numbers of lesion in this study, the incidence of ISR was comparable among different stents. Future studies with larger number of lesions will be needed to define the incidence of ISR in different stent types.
Study limitations

Several limitations associated with the present study warrant mention. First, the study was limited by its small sample size, its retrospective nature, and its nonrandomized fashion. Second, all patients were Japanese. A previous study reported that Japanese patients have a better prognosis than subjects in other countries\(^3\). This racial prognostic difference should be considered when interpreting our results. Third, this study analyzed lesions with QCA but not with intravascular ultrasound. Although intravascular ultrasound was performed in all patients in this study, the measurements and the actual cross-sectional area obtained on intravascular ultrasound were not considered.

Conclusions

In conclusion, DES implantation in HD patients is associated with a high incidence of ISR (22.4%) at follow-up. A small MLD, long LL and the use of rotational atherectomy were independent predictors of ISR after DES implantation in patients on HD. Furthermore, the use of the second-generation DESs was not associated with a reduced incidence of ISR in this study. Further studies in larger populations will be necessary to clarify whether the second-generation DESs in general or certain stent types of the second-generation DESs in particular offer tangible benefits in HD patients.

Abbreviations

HD: hemodialysis

PCI: percutaneous coronary intervention

DES: drug-eluting stent

ISR: in-stent restenosis

SES: sirolimus-eluting stent

PES: paclitaxel-eluting stent

EES: everolimus-eluting stent

ZES: zotarolimus-eluting stent

BES: biolimus-eluting stent

MACEs: major adverse cardiac events

TLR: target lesion revascularization

QCA: Quantitative coronary angiography
Availability of Data and Materials

The datasets used during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

This study was approved by the Kansai Medical University Ethics Committee Review Board and written informed consent was waived because of the retrospective and observational study design. The study was registered before patient enrollment at Kansai Medical University.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Funding

None.

Contributions

HS and MM did the initial idea for the study and making the protocol. HS, SM, MT and ST contributed on the acquiring data, data analysis and technical advice to research assistants. IS contributed important intellectual content during manuscript revision. All authors have checked and approved the final manuscript.

Acknowledgements

No applicable.
References

1. Herzog CA, Ma JZ, Collins AJ. Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. *N Engl J Med* 1998; **339**: 799-805.

2. Herzog CA, Ma JZ, Collins AJ. Long-term outcome of dialysis patients in the United States with coronary revascularization procedures. Kidney Int 1999; **56**: 324-32.

3. Herzog CA, Littrell K, Arko C, Frederick PD, Blaney M. Clinical characteristics of dialysis patients with acute myocardial infarction in the United States: a collaborative project of the United States Renal Data System and the National Registry of Myocardial Infarction. *Circulation* 2007; **116**: 1465-72.

4. Yasuda K, Kasuga H, Aoyama T, Takahashi H, Toriyama T, Kawade Y, et al. Comparison of percutaneous coronary intervention with medication in the treatment of coronary artery disease in hemodialysis patients. *J Am Soc Nephrol* 2006; **17**: 2322 -32.

5. Hemmelgarn BR, Ghali WA, Quan H, Brant R, Norris CM, Taub KJ, et al. Poor long-term survival after coronary angiography in patients with renal insufficiency. *Am J Kidney Dis* 2001; **37**: 64 -72.

6. Bangalore S, Kumar S, Fusaro M, Amoroso N, Attubato MJ, Bhatt DL, et al. Short and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials. *Circulation* 2012; **125**: 2873-91.

7. Garg P, Charytan DM, Novack L, Cutlip DE, Popma JJ, Moses J, et al. Impact of moderate renal insufficiency on restenosis and adverse clinical events after sirolimus-eluting and bare metal stent implantation (from the SIRIUS trials). Am J Cardiol 2010; **106**: 1436-42.

8. Navarese EP, Kowalewski M, Kandzari D, Lansky A, Görny B, Kołtowski L, et al. First-generation versus second-generation drug-eluting stents in current clinical practice: updated evidence from a comprehensive meta-analysis of randomized clinical trials comprising 31379 patients. Open Heart. 2014; 1(1): e000064.

9. Mauri L, Hsieh WH, Massaro JM, Ho KK, D’Agostino R, Cutlip DE. Stent thrombosis in randomized clinical trials of drug-eluting stents. *N Engl J Med* 2007; **356**: 1020 -9.

10. Ellis SG, Vandormael MG, Cowley MJ, DiSciascio G, Deligonul U, Topol EJ, et al. Coronary morphologic and clinical determinants of procedural outcome with angioplasty for multivessel coronary disease: implications for patient selection. Multivessel Angioplasty Prognosis Study Group. *Circulation*. 1990; **82**: 1193-202.

11. Ting HH, Tahirkheil NK, Berger PB, McCarthy JT, Timimi FK, Mathew V, et al. Evaluation of long-term survival after successful percutaneous coronary intervention among patients with chronic renal failure. *Am J Cardiol* 2001; **87**: 630 -3.

12. Ishio N, Kobayashi Y, Takebayashi H, Iijima Y, Kanda J, Nakayama T, et al. Impact of drug-eluting stents on clinical and angiographic outcome in dialysis patients. *Circ J* 2007; **71**: 1525 -9.

13. Okada T, Hayashi Y, Toyofuku M, Imazu M, Otsuka M, Sakuma T, et al. One-year clinical outcomes of dialysis patients after implantation with sirolimus-eluting coronary stents. *Circ J* 2008; **72**: 1430-
14. Aoyama T, Ishii H, Toriyama T, Takahashi H, Kasuga H, Murakami R, et al. Sirolimus-eluting stents versus bare metal stents for coronary intervention in Japanese patients with renal failure on hemodialysis. *Circ J* 2008; 72: 56-60.

15. Yachi S, Tanabe K, Tanimoto S, Aoki J, Nakazawa G, Yamamoto H, et al. Clinical and angiographic outcomes following percutaneous coronary intervention with sirolimus-eluting stents versus bare-metal stents in hemodialysis patients. *Am J Kidney Dis* 2009; 54: 299-306.

16. Ichimoto E, Kobayashi Y, Iijima Y, Kuroda N, Kohno Y, Komuro I. Long-term clinical outcomes after sirolimus-eluting stent implantation in dialysis patients. *Int Heart J* 2010; 51: 92-.

17. Higashitani M, Mori F, Yamada N, Arashi H, Kojika A, Hoshi H, et al. Efficacy of Paclitaxel-eluting stent implantation in hemodialysis patients. *Heart Vessels* 2011; 26: 582-9.

18. Sakakibara T, Ishii H, Toriyama T, Aoyama T, Takahashi H, Kamoi D, et al. Sirolimus-eluting stent vs. everolimus-eluting stent for coronary intervention in patients on chronic hemodialysis. *Circ J* 2012; 76: 351-5.

19. Ikari Y, Tanabe K, Koyama Y, Kozuma K, Sano K, Isshiki T, et al. Sirolimus eluting coronary stent implantation in patients on maintenance hemodialysis – The OUCH study -. *Circ J* 2012; 76: 1856-63.

20. Ikari Y, Kyono H, Isshiki T, Ishizuka S, Nasu K, Sano K, et al. Usefulness of everolimus-eluting coronary stent implantation in patients on maintenance hemodialysis. *Am J Cardiol* 2015; 116: 872-6.

21. Tanabe K, Kishi S, Aoki J, Tanimoto S, Onuma Y, Yachi S, et al. Impact of coronary calcium on outcome following sirolimus-eluting stent implantation. *Am J Cardiol* 2011; 108(4): 514-7.

22. Hoffmann R, Mintz GS, Mehran R, Kent KM, Pichard AD, Satler LF, et al. Tissue proliferation within and surrounding Palmaz-Schatz stents is dependent on the aggressiveness of stent implantation technique. *Am J Cardiol* 1999; 83: 1170-4.

23. Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. *N Engl J Med* 2003; 348: 593-600.

24. Choi JH, Kim KL, Huh W, Kim B, Byun J, Suh W, et al. Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. *Arterioscler Thromb Vasc Biol* 2004; 24: 1246-52.

25. Chen J, Zhang F, Tao Q, Wang X, Zhu J. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolemia. *Clin Sci (Lond)* 2004; 107: 273-80.

26. Fadini GP, Miorin M, Facco M, Bonamico S, Baesson I, Grego F, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of Type 2 diabetes mellitus. *J Am Coll Cardiol* 2005; 45: 1449-57.

27. Notohamiprodjo M, Andrassy K, Bommer J, Ritz E. Dialysis membranes and coagulation system. *Blood Purif* 1986; 4: 130-41.

28. Leon MB, Mauri L, Popma JJ, Cutlip DE, Nikolsky E, O'Shaughnessy C, et al. A randomized comparison of the Endeavor zotarolimus-eluting stent versus the TAXUS paclitaxel-eluting stent in de novo native coronary lesions 12-month outcomes from the ENDEAVOR IV trial. *J Am Coll Cardiol* 2010; 55: 543-54.
29. Park KW, Chae I-H, Lim D-S, Han K-R, Yang H-M, Lee H-Y, et al. Everolimus-eluting versus sirolimus-eluting stents in patients undergoing percutaneous coronary intervention: the EXCELLENT (Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting) randomized trial. J Am Coll Cardiol 2011; 58: 1844–54.

30. Ahn JM, Park DW, Kim YH, Song H, Cho YR, Kim WJ, et al. Comparison of resolute zotarolimus-eluting stents and sirolimus-eluting stents in patients with de novo long coronary artery lesions: a randomized LONG-DES IV trial. Circ Cardiovasc Interv 2012; 5: 633–40.

31. Bhatt DL, Eagle KA, Ohman EM, Hirsch AT, Goto S, Mahoney EM, et al. Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis. JAMA 2010; 304: 1350 – 7.