Marine Drugs 2011, 9, 2316-2368; doi:10.3390/md9112316

ISSN 1660-3397 www.mdpi.com/journal/marinedrugs

Review

Brominated Compounds from Marine Sponges of the Genus Aplysina and a Compilation of Their 13C NMR Spectral Data

Narlize Silva Lira 1, Ricardo Carneiro Montes 1, Josean Fechine Tavares 1, Marcelo Sobral da Silva 1, Emidio V. L. da Cunha 2, Petronio Filgueiras de Athayde-Filho 1, Luis Cezar Rodrigues 1, Celidarque da Silva Dias 1,* and Jose Maria Barbosa-Filho 1,*

1 Laboratory of Pharmaceutical Technology, Federal University of Paraiba, Joao Pessoa 58051-900, PB, Brazil; E-Mails: narlizelira@yahoo.com.br (N.S.L.); ricsony_79@yahoo.com.br (R.C.M.); josean@ltf.ufpb.br (J.F.T.); marcelosobral@ltf.ufpb.br (M.S.d.S.); athayde-filho@quimica.ufpb.br (P.F.d.A.-F.); lcezar@ltf.ufpb.br (L.C.R.)

2 Department of Pharmacy, State University of Paraiba, Campina Grande 58100-000, PB, Brazil; E-Mail: emidio@ltf.ufpb.br

* Authors to whom correspondence should be addressed; E-Mails: celidarquedias@ltf.ufpb.br (C.d.S.D.); jbarbosa@ltf.ufpb.br (J.M.B.-F); Tel./Fax: +55-83-32167364 (J.M.B.-F).

Received: 18 August 2011; in revised form: 24 October 2011 / Accepted: 31 October 2011 / Published: 10 November 2011

Abstract: Aplysina is the best representative genus of the family Aplysinidae. Halogenated substances are its main class of metabolites. These substances contribute greatly to the chemotaxonomy and characterization of the sponges belonging to this genus. Due to their pharmacological activities, these alkaloids are of special interest. The chemistry of halogenated substances and of the alkaloids has long been extensively studied in terrestrial organisms, while the number of marine organisms studied has just started to increase in the last decades. This review describes 101 halogenated substances from 14 species of Aplysina from different parts of the world. These substances can be divided into the following classes: bromotyramines (A), cavernicolins (B), hydroverongiaquinols (C), bromotyrosineketals (D), bromotyrosine lactone derivatives (E), oxazolidones (F), spiroisoxazolines (G), verongiabenzenoids (H), verongiaquinols (I), and dibromocyclohexadienes (J). A compilation of their 13C NMR data is also part of the review. For this purpose 138 references were consulted.

Keywords: Aplysina; marine sponges; halogenated substances; 13C NMR; review
1. Introduction

Marine sponges have been known and used by mankind since antiquity. They were included in the first classification of living organisms, written in 350 BC by Aristotle in Greece. At first thought to be plants, their animal nature was only recognized by the end of the XVIII century. However, great naturalists of the time such as Lamarck, Linnaeus and Cuvier classified them as Zoophytes. The elevation of the Porifera to the level of phylum was suggested by Huxley in 1875 and by Sollas in 1884, and was only accepted at the beginning of the XX century [1].

Sponges belong to the phylum Porifera and are the most primitive of multicelled animals, having existed for roughly 700–800 million years. They have a very simple physiology of construction. They are aquatic organisms growing mostly in temperate salt waters but may also be found in fresh water. When reaching adult form, they are found in solid substrates in places that allow adequate conditions for their growth. Some, when in their primary states, may be mobile [2–4]. They are easily found in all marine environments, from the intertidal zones to the ocean depths of 8500 m in tropical and polar seas. Despite their wide distribution in terms of different oceans and depths, the rocky non-polluted coastline areas show greater populations of sponges which are also known for being rich in secondary metabolites [5–9].

The sponges are filtering animals, which utilize flagellate cells called coenocytes for promoting the circulation of the water through a system of canals existing in this phylum only called aquifer system, around which their body is built. This water flow brings organic particles and microorganisms which are filtered and eaten [10]. Of all the known sponges, only 1% grow in fresh water [11].

There are basically three classes of sponges, Calcarea (5 orders and 24 families), Desmospongiae (15 orders and 92 families) and Hexactinellida (6 orders and 20 families). So far, about 15,000 species of sponges have been described, their diversity however is believed to be much bigger than this [4,12]. Being sessile simple organisms, they evolved chemical defense mechanisms to protect themselves against predators and competitors, as well as against infectious microorganisms. Studies show that secondary metabolites in sponges carry out a crucial role in their survival in the marine ecosystem [13,14].

Because of their potential for the production of new substances of pharmacological interest, sponges have been one of the most chemically studied organisms. In the past 20 years, hundreds of substances have been isolated from them and many of those substances have already been identified, and present interesting biological and pharmacological (such as antibacterial, anticoagulant, antifungal, antimalarial, antituberculosis, antiviral, immunosuppressive and neuro-suppressor) activities [15–23]. The main reported activities for the *Aplysina* genus are antibacterial, antiyeast, antifungal, antiviral, cytotoxic and hyperglycemic activities, which can be seen in Table 1.
Table 1. Bioactivities of marine sponges of the *Aplysina* genus.

Activity/Species Name	Type of Extract	Bioassays Models, Organism, Dose or Route of Administration	Result	Ref.
Antibacterial activity				
Aplysina archeri	MeOH Ext.	Agar plate-*Bacillus subtilis*; *Escherichia coli*-1.0 mg/Disc	Active	[24]
Aplysina fistularis	MeOH Ext.		Active	[25]
	MeOH-Toluene		Active	[26]
	Chromatographic Fraction		Active	[26]
		Staphylococcus aureus; *Sarcina lutea*; *Klebsiella pneumonia*; *Proteus vulgaris*; *Bacteroides fragilis*; *Clostridium perfringens*; *Mycobacterium avium*		
Aplysina lacunosa	MeOH Ext.	Agar plate-*Bacillus subtilis*; *Escherichia coli*	Active	[25]
	MeOH Ext.	Agar plate-*Bacillus subtilis*; *Escherichia coli*-1.0 mg/Disc	Active	[24]
Aplysina laevis	Acetone Ext.	Agar plate-*Bacillus subtilis*; *Escherichia coli*	Active	[27]
Aplysina mollis	Ether Ext.	Agar plate-*Staphylococcus aureus*-0.2 µL/Disc	Active	[28]
	Ether Ext.	Agar plate-*Escherichia coli*; *Pseudomonas aeruginosa*-0.2 µL/Disc	Inactive	[28]
	CHCl₃ Ext.	Agar plate-*Staphylococcus aureus*-0.2 µL/Disc	Active	[28]
	CHCl₃ Ext.	Agar plate-*Escherichia coli*; *Pseudomonas aeruginosa*-0.2 µL/Disc	Inactive	[28]
	Acetone Ext.	Agar plate-*Staphylococcus aureus*-0.2 µL/Disc	Inactive	[28]
	ETOH (95%) Ext.	Agar plate-*Staphylococcus aureus*; *Escherichia coli*; *Pseudomonas aeruginosa*-0.2 µL/Disc	Inactive	[28]
Aplysina species	Ether Ext.	Agar plate-*Staphylococcus aureus*; *Escherichia coli*; *Pseudomonas aeruginosa*-0.2 µL/Disc	Inactive	[28]
	Acetone Ext.	Agar plate-*Staphylococcus aureus*; *Escherichia coli*; *Pseudomonas aeruginosa*-0.2 µL/Disc	Inactive	[28]
	ETOH (95%) Ext.	Agar plate-*Staphylococcus aureus*; *Escherichia coli*; *Pseudomonas aeruginosa*-0.2 µL/Disc	Inactive	[28]
Table 1. Cont.

Activity Type	Species	Extractants	Assay Type	Activity	Source
Antibacterial activity	Aplysina species	Benzene Ext.	Agar plate- *Staphylococcus aureus*; *Escherichia coli*; *Pseudomonas aeruginosa*	0.2 µL/Disc	Inactive [28]
		CHCl₃ Ext.			
Antiyeast activity	Aplysina archeri	MeOH Ext.	Agar plate- *Saccharomyces cerevisiae*	1.0 mg/Disc	Inactive [24]
	Aplysina lacunosa	MeOH Ext.	Agar plate- *Saccharomyces cerevisiae*	1.0 mg/Disc	Weak Activity [24]
Antifungal activity	Aplysina archeri	MeOH Ext.	Agar plate- *Penicillium atrovenetum*	1.0 mg/Disc	Inactive [24]
	Aplysina lacunosa	MeOH Ext.	Agar plate- *Penicillium atrovenetum*	1.0 mg/Disc	Inactive [24]
Antiviral activity	Aplysina archeri	MeOH-Toluene	Cell culture- *Virus-Feline Leukemia*		Active [29]
Cytotoxic activity	Aplysina cauliformis	CHCl₃-MeOH Ext. (1:1)	Cell culture- *Cells-Cho K-1*		Active [30]
	Aplysina fistularis	MeOH Ext.	Cell culture- *Leuk L-1210*	ED₅₀ 50 mcg/mL	Active [25]
		MeOH-Toluene	Cell culture- *CA-9KB*		Active [26]
		Chromatographic Fraction	Cell culture- *Leuk L-1210*	IC₅₀ 0.14 mcg/mL	Active [26]
	Aplysina fulva	Isopropanol Ext.	Cell culture- *CA-9KB*	ED₅₀ 20 mcg/mL	Active [31]
		Isopropanol Ext.	Cell culture- *Leuk L-1210*	ED₅₀ 20 mcg/mL	Active [31]
		Isopropanol Ext.	Cell culture- *Leuk P-388*	ED₅₀ 20 mcg/mL	Active [31]
	Aplysina lacunosa	MeOH Ext.	Cell culture- *Leuk L-1210*	ED₅₀ 8.2 mcg/mL	Inactive [25]
Hyperglycemic activity	Aplysina mollis	ETOH (95%) Ext.	Mouse-Intragastric-Dose	200 mg/kg	Active [32]
The pioneer investigative work in the field of sponge chemistry published by Bergmann and Feeney in the beginning of the 1950s led to the discovery of Cryptothetys crypta bioactive nucleosides spongothymidine and spongouridine [21]. These nucleosides were the basis for the synthesis of Ara-C, the first marine derivative anticancer agent, and antiviral drug Ara-A [22]. Today, Ara-C is used in the routine treatment of patients suffering from leukemia and lymphomas. One of its derivatives was also approved for use in patients with cancer of the pancreas, lungs and breast [23].

The Genus Aplysina

The genus Aplysina, formerly known as Verongia and reclassified to Aplysina, is one of the richest in terms of secondary metabolites, described in 14 species of the family Aplysinidae, there are 2 species from the Mediterranean Sea, 8 from the Caribbean, 3 from the Pacific Coast of Mexico and 15 in the Brazilian coast. Of the above species, 8 have only been recently identified. From the Mediterranean Sea, the two described species of the genus Aplysina are: A. aerophoba (Schmidt, 1862) and A. cavernicola (Vacelet, 1959). From the Caribbean, among others we find A. fistularis insularis, A. fistularis form fulva, A. archeri, A. cauliformis and A. Lacunosa [33].

Like other genera of the order Verongida, Aplysina stands out for its unique biochemical characteristics. They show low terpene content, and possess a moderately high percentage of sterols, mostly within the aplystan skeleton. They also produce a significant series of brominated derivatives of tyrosine metabolites considered peculiar to species of this order. The sponges of this order are also known for their high phenotypic variability [34].

Marine organisms produce a cocktail of halogenated metabolites with potential commercial value. The structures found in these compounds go from linear chain acyclic, to complex polycyclic molecules [35,36]. The research of halogenated metabolites has been more focused on marine algae than on sea sponges [37–41]. Though many compounds have been discovered recently, many sponges species are poorly screened and the need for new drugs keeps this field open.

In a previous paper our research group evaluated crude algae, sponge extracts and chemically determined molecules from northeastern Brazil [42–48] with database survey [49–62].

In this paper we review halogenated substances from the genus Aplysina. A compilation of the 13C NMR spectral data of the selected natural products is also provided. This type of genus and species investigation is helpful in the identification and capture of halogenated substances from the genus.

2. Methodology

An extensive bibliographic review was carried out to identify studies of halogenated substances isolated from the genus Aplysina. The present review covers the period of 1967 thru 2010. The search was performed using the following databases: NAPRALERT (Natural Products Alert at the University of Illinois, Chicago), Chemical Abstracts, and the Brazilian online scientific literature search system called “Periodical CAPES” (Coordination for the Improvement of Graduate Level Personnel).

Tables 2 and 3 respectively show the halogenated substance distribution in the genus Aplysina, and the basic skeletons of those substances. Table 4 shows the different substituents for the diverse classes of halogenated substances. Table 5 describes the position of the substituents for the 101 substances isolated from each species. Finally Tables 6–14 show a compilation of 13C NMR data of the substances.
Table 2. Distribution of the halogenated substances in the genus *Aplysina*.

Species	Halogenated Substances	Substance Code	Nucleus	Ref.
A. aerophoba (Schmidt, 1862)	Aeroplysinine 2	25	E₁	[63]
	Aplysinadiene	26	E₁	[64]
	(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone	29	F₁	[65]
	(R,R)-5[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)] methoxyphenyl]-2-oxazolidone	31	F₁	[64]
	Aerothionin	41	G₁	[34]
	Homoaoerothionin	47	G₂	[66]
	Isofistularin-3	48	G₂	[67]
	Aerophobin-1	76	G₇	[68]
	2-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl) acetamide	84	H	[69]
	3,5-Dibromo-4-methoxyphenol	85	H	[64]
	Methyl 2-(3,5-dibromo-2-hydroxy-4-methoxyphenyl) acetate	86	H	[69]
	Dibromoverongiaquinol or dienone or 3,5-dibromo-1-hydroxy-4-oxocyclohexa-2,5-diene-1-acetamide	94	I₁	[64]
	Aeroplysinin 1	100	J	[66,70]
A. archeri (Higgin, 1875)	(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone	29	F₁	[71]
	11,19-Dideoxyfistularin 3	33	G₁	[72]
	Archerine	43	G₁	[73]
	Fistularin-3	46	G₂	[29]
	11-Ketofistularin 3	51	G₂	[29]
	Aplysina compound 1 or 1-Oxa-2-azaspiro[4,5]deca-2,6-diene-3-carboxamide, N,N’-(2-oxo-1,4-butanediyl)bis[7,9-dibromo-10-hydroxy-8-oxo, [5R-[5α(S'R*,9'R*,10'S*),9α,10β]]-(9CI)	57	G₄	[74]
	Aeroplysinin 1	100	J	[74]
A. archeri				

(Higgin, 1875)				
(+) Aeroplysinin 1	100	J	[71]	
(−) Aeroplysinin 1	100	J	[71]	
A. caissara				
(Pinheiro & Hajdu, 2001)				
2-(3,5-Dibromo-4,4-dimethoxy-1-hydroxy-2,5-cyclohexadien-1-yl) acetamide	21	D₁	[75]	
Caissarine C	42	G₁	[76]	
Caissarine B	53	G₂	[75]	
Agelocaissarine A1	58	G₄	[76]	
Agelocaissarine A2	59	G₄	[76]	
Agelocaissarine B1	60	G₄	[76]	
Agelocaissarine B2	61	G₄	[76]	
Caissarine A	79	G₈	[75]	
A. cauliformis				
(Carter, 1882)				
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl)acetamide	21	D₁	[71]	
(7S*,11R*)-5-[3,5-Dibromo-4-[2-oxo-5-oxazolidinyl]methoxyphenyl]-2-oxazolidinone	29	F₁	[71]	
11-Oxoaoerothionin	52	G₂	[77]	
Aplysinametabolite or Methyl 4-((5S,10R)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro-[4.5]deca-2,6,8-triene-carboxamido)-2-oxobutylcarbamate	64	G₇	[78]	
Methyl 4-((5S,10R)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro-[4.5]deca-2,6,8-triene-carboxamido)-3-oxobutylcarbamate or Aplysina compound 13	65	G₇	[78]	
Methyl 4-((5S,10R)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-carboxamido)butylcarbamate or Aplysina metabolite 14	66	G₇	[78]	
Aplysinamisine-1	67	G₇	[30]	
Aplysinamisine-2	68	G₇	[30]	
Aplysinamisine-3	69	G₇	[30]	
Aeroplysinin 1	100	J	[78]	
A. cavernicola (Vacelet, 1959)			
Cavernicolin-1	5	B₁	[79,80]
5-Bromo-7α-chlorocavernicolin	7	B₂	[81]
5-Bromo-7β-chlorocavernicolin	8	B₂	[81]
7β-Bromo-5-chlorocavernicolin	9	B₂	[81]
7α-Bromo-5-chlorocavernicolin	10	B₂	[81]
Monobromocavernicolin or 5-Bromocavernicolin	11	B₂	[81]
5-Chlorocavernicolin	12	B₂	[81,82]
7-Bromocavernicoleneone	13	B₃	[82]
7-Chlorocavernicoleneone	14	B₃	[63]
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl) acetamide	21	D₁	[63]
Aeroplysinine 2	25	E₁	[63]
11,19-Dideoxyfistularin 3	33	G₁	[63]
12(R)-Hydroxy-11-oxoaerothionin	36	G₁	[63]
Aerothionin	41	G₁	[63]
Oxohomoaerothionin	44	G₁	[63]
11-Deoxyfistularin-3	45	G₂	[63]
Homoaerothionin	47	G₂	[63]
Isofistularin 3	48	G₂	[63]
11-Oxoaerothionin	52	G₂	[63]
(+) 3-Bromo-5-chloroverongiaquinol or (+)-3-Bromo-5-chloro-1-hydroxy-4-oxo-2,5-cyclohexadiene-1-acetamide	91	I₁	[81]
(+) 3-Bromoverongiaquinol or (+)-3-Bromo-1-hydroxy-4-oxo-2,5-cyclohexadiene-1-acetamide	92	I₁	[81]
(DL) 5-Bromoverongiaquinol	93	I₁	[81]
Dichloroverongiaquinol	95	I₁	[80]
Aeroplysinin 1	100	J	[63]
A. conulosa			
(Pulitzer-Finali, 1986)	**Aeroplysine 2**	25	**E1**
---	---	---	---
Aplysamine 1	1	A	[84]
Aplysamine 2	2	A	[84]
Aplysifistularine	4	A	[46]
5-Amino-2,6-dichloro-4-hydroxycyclohex-2-enone acetic acid lactam	15	B4	[26]
5-Amino-2-bromo-6-chloro-4-hydroxy-cyclohex-2-enone acetic acid lactam (5-bromo-7-chlorocavernicolin)	16	B4	[26]
5-Amino-2-6-dibromo-4-hydroxy-cyclohex-2-enone acetic acid lactam or Cavernicolin	17	B4	[26]
4,6-Dibromohomogentisamide	18	C	[85]
3,5-Dibromohydroquinone-2-acetamide	19	C	[86]
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl) acetamide	21	D1	[87]
Aeroplysine 2	25	E1	[88]
(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone	29	F1	[71]
Aerothionin	41	G1	[88,89]
Fistularin-3	46	G2	[88]
Homoaerothionin	47	G2	[89]
11-Oxoaerothionin	52	G2	[88]
Purealidin-L	78	G7	[90]
2-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl) acetamide	84	H	[26,69]
2,6-Dibromo-1,4-benzoquinone	87	I1	[91]
2,6-Dichloro-4-hydroxycyclohexa-2,5-dienone-4-acetamide	89	I1	[26]
2-Bromo-6-chloro-4-hydroxycyclohexa-2,5-dienone-4-acetamide	90	I1	[26]

| **A. fistularis**
(Pallas, 1766)	Aeryoplysine 2	25	**E1**	[83]
Aplysamine 1	1	A	[84]	
Aplysamine 2	2	A	[84]	
Aplysifistularine	4	A	[46]	
5-Amino-2,6-dichloro-4-hydroxycyclohex-2-enone acetic acid lactam	15	B4	[26]	
5-Amino-2-bromo-6-chloro-4-hydroxy-cyclohex-2-enone acetic acid lactam (5-bromo-7-chlorocavernicolin)	16	B4	[26]	
5-Amino-2-6-dibromo-4-hydroxy-cyclohex-2-enone acetic acid lactam or Cavernicolin	17	B4	[26]	
4,6-Dibromohomogentisamide	18	C	[85]	
3,5-Dibromohydroquinone-2-acetamide	19	C	[86]	
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl) acetamide	21	D1	[87]	
Aeroplysine 2	25	E1	[88]	
(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone	29	F1	[71]	
Aerothionin	41	G1	[88,89]	
Fistularin-3	46	G2	[88]	
Homoaerothionin	47	G2	[89]	
11-Oxoaerothionin	52	G2	[88]	
Purealidin-L	78	G7	[90]	
2-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl) acetamide	84	H	[26,69]	
2,6-Dibromo-1,4-benzoquinone	87	I1	[91]	
2,6-Dichloro-4-hydroxycyclohexa-2,5-dienone-4-acetamide	89	I1	[26]	
2-Bromo-6-chloro-4-hydroxycyclohexa-2,5-dienone-4-acetamide	90	I1	[26]	
Table 2. Cont.

A. fistularis (Pallas, 1766)			
Dibromoverongiaquinol or dienone or 3-5-dibromo-1-hydroxy-4-oxocyclohexa-2-5-diene-1-acetamide	94	I₁	[61–65,92–96]
Aeroplysinin 1	100	J	[96]
Cavernicolin-1	5	B₁	[83,97]
Cavernicolin-2	6	B₁	[83,97]
3,5-Dibromohydroquinone-2-acetamide	19	C	[34]
2′-(3,5-Dibromo-4-hydroxyphenyl) acetamide	20	C	[97]
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl) acetamide	21	D₁	[97]
Aeroplysinine 2	25	E₁	[34]
(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone	29	F₁	[97]
11-Epi-fistularin-3	34	G₁	[98]
11-Hydroxyfistularin-3	35	G₁	[99]
12(R)-Hydroxy-11-oxoaerothionine	36	G₁	[34]
12(S)-Hydroxy-11-oxoaerothionine	37	G₁	[34]
Aerothionin	41	G₁	[34,83,97]
Fistularin-3	46	G₂	[31,34,83,97]
Homoaerothionin	47	G₂	[34]
11-Hydroxyaerothionin	50	G₂	[34,97]
11-Oxoaerothionin	52	G₂	[34,97]
Aplysinamisine-1	67	G₇	[97]
AraplysillinN⁹-sulfamate	70	G₇	[99]
Fistularin-1	72	G₇	[34]
Fistularin-2	73	G₇	[31]
N-[5S,10R]-7,9-Dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxy]-4-aminobutanoic acid	74	G₇	[99]
Aerophobin-1	76	G₇	[97]

A. fulva (Pallas, 1766)			
Cavernicolin-1	5	B₁	[83,97]
Cavernicolin-2	6	B₁	[83,97]
3,5-Dibromohydroquinone-2-acetamide	19	C	[34]
2′-(3,5-Dibromo-4-hydroxyphenyl) acetamide	20	C	[97]
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl) acetamide	21	D₁	[97]
Aeroplysinine 2	25	E₁	[34]
Table 2. Cont.

Species	Compound	N°	Source
A. fulva (Pallas, 1766)	Aerophobin-2	77	G_7
	Aeroplysinin 1	100	J
	Aplysinafulvin	101	J
A. gerardogreeni (Gomes & Bakus, 1992)	Aerothionin	41	G_1
	Homoaerothionin	47	G_2
	Aplysinone A	54	G_3
	Aplysinone D	55	G_3
	Aplysinone B	56	G_4
	Calafianin	62	G_5
	Aplysinone C	63	G_6
	2-(3,5-dibromo-2-hydroxy-4-methoxyphenyl) acetic acid	83	H
A. insularis (Duchassaing & Michelotti, 1864)	5-((2,6-Dibromo-4-(2-oxooxazolidin-5-yl)-phenoxy)-methyl)-5-methoxyoxazolidin-2-one	32	F_3
	11,19-Dideoxyfistularin 3	33	G_1
	Aerothionin	41	G_1
	Fistularin-3	46	G_2
	Homoaerothionin	47	G_2
	11-Dihydroaerothionin	49	G_2
	11-Oxoaerothionin	52	G_2
	Aplysina metabolite 14	66	G_7
	14-Oxoaerophobin-2	75	G_7
	Aerophobin-1	76	G_7
	Aerophobin-2	77	G_7
	(5S,10R)-Methyl 7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxylate	80	G_9
	2-(3-Dibromo-4-hydroxyphenyl)-N,N,N-trimethylethanaminium	82	H
Table 2. Cont.

A. lacunose	**A. laevis**	**A. species**		
(7S\(^*\),11R\(^*\))-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl) methoxyphenyl]-2-oxazolidinone	(1'R,5'R,6'S)-2-(3','5'-Dibromo-1',6'-dihydroxy-4'-oxo-cyclohex-2'-enyl) acetonitrile	2-(3,5-Dibromo-4-ethoxy-1-hydroxy-4-methoxy-2,5-cyclohexadien-1-yl)-ethanamide		
29	98	22		
	F\(_1\)	D\(_2\) [71,84,106]		
(7R\(^*\),11S\(^*\))-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl) methoxyphenyl]-2-oxazolidinone	(1'R,5'S,6'S)-2-(3','5'-Dibromo-1',6'-dihydroxy-4'-oxo-cyclohex-2'-enyl) acetonitrile	[71]		
30	99			
	F\(_2\)			
11,19-Dideoxyfistularin-3	(1'R,5'R,6'S)-2-(3','5'-Dibromo-1',6'-dihydroxy-4'-oxo-cyclohex-2'-enyl) acetonitrile	Aeroplysinine 2		
33	100	25		
	G\(_1\)	E\(_1\) [106]		
Aerothionin	(+) Aeroplysinin 1	Aeroplysinine 2		
41	100	25		
	G\(_1\)	E\(_1\) [106]		
Fistularin-3		(7R\(^*\),11S\(^*\))-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl) methoxyphenyl]-2-oxazolidinone		
46	30	30		
	G\(_2\) [104]	F\(_2\) [71]		
11-Hydroxyaerothionin		(R,R)-5[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl) methoxyphenyl]-2-oxazolidone		
50	38	33		
	G\(_2\) [104]	F\(_1\) [106]		
11-Oxoaerothionin		11,19-Dideoxyfistularin-3		
52	38	33		
	G\(_2\) [104]	G\(_1\) [72]		
		11-Oxofistularin-3		
		19-Deoxy-11-oxofistularin		
		39		
		G\(_1\) [72]		
Species	Compound Description	PubChem CID	Location	Notes
------------------	--	-------------	----------	---------------------
A. species	19-Deoxyfistularin-3	40	G₁	[72]
	Aerothionin	41	G₁	[107]
	Hemifistularin-3	71	G₇	[72]
	(10R)-Ethyl-7,9-dibromo-10-hydroxy-8-methyl-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-			
	carboxylate	81	G₉	[106]
	2-(3-Bromo-4-hydroxyphenyl)-N,N,N-trimethylethanaminium	82	H	[108]
A. thiona	Aplysinketal A	23	D₁	[109]
(Laubenfels,	Aplysinketal B	24	D₁	[109]
1950)	Aplysinolide	27	E₂	[109]
	Aplysinimine	28	E₂	[109]
	(7R*,11S*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]-methoxyphenyl]-2-			
	oxazolidinone	30	F₂	[109]
	Aerothionin	41	G₁	[109]
	Homo Aerothionin	47	G₂	[109]
	2-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl)-acetamide	84	H	[109]
	2,6-Dibromo-4-acetamide-4-hydroxycyclohexadienone	88	I₁	[109]
	Aplysina hydroxydienone or Dibromo compound 10	96	I₁	[109]
	Aplysina hydroxydienoic methyl ester	97	I₁	[109]
Table 3. Basic skeletons of the halogenated substances isolated from sponges of the *Aplysina*.

Halogenated Substances (with Its Respective Codes)	
Bromotyramines	
![Bromotyramines](image1)	Code A
Cavernicolins	
![Cavernicolins](image2)	Code B1
![Cavernicolins](image3)	Code B2
![Cavernicolins](image4)	Code B3
![Cavernicolins](image5)	Code B4
Hydroverongiaquinols	
![Hydroverongiaquinols](image6)	Code C
Code	Structure
------	-----------
D1	![Structure D1](image1)
D2	![Structure D2](image2)

Bromotyrosine Lactone Derivatives

Code	Structure
E1	![Structure E1](image3)
E2	![Structure E2](image4)

Oxazolidones

Code	Structure
F1	![Structure F1](image5)
F2	![Structure F2](image6)
F3	![Structure F3](image7)
Code	Spiroisoxazolines
------	--
G1	![Code G1](image1)
G2	![Code G2](image2)
G3	![Code G3](image3)
G4	![Code G4](image4)
G5	![Code G5](image5)
G6	![Code G6](image6)
G7	![Code G7](image7)
G8	![Code G8](image8)

Table 3. Cont.
Table 3. Cont.

Spiroisoxazolines	Verongiabenzenoids	Verongiaquinols	Dibromocyclohexadienes
![Spiroisoxazolines](image1.png) Code G9	![Verongiabenzenoids](image2.png) Code H	![Verongiaquinols](image3.png) Code I1	Code I2
![Dibromocyclohexadienes](image4.png) Code J			
Table 4. Substituent groups of the halogenated substances.

Bromotyramines	Bromotyrosine Lactone Derivatives	Oxazolidones
![Bromotyramines structure](image)	![Bromotyrosine Lactone Derivatives structure](image)	![Oxazolidones structure](image)
(E) BrMeOPhCH₂CNOHCO-	(E) CH₂=CH=CH=CH-	-CH₂(R)oxz
Br₂MeOPhCH₂CHN(CH₃)₂CO-		-CH₂(S)oxz
-CH₂MeOoxz		-CH₂MeOoxz
Table 4. Cont.

Spiroisoaxazolines
\(-\text{CH}_2\text{OBr}_2\text{Ph(CH}_2\text{)}_2-\)
\(-\text{CH}_2\text{OBr}_2\text{Ph(R)CHOHCH}_2-\)
Spiroisoxazolines
--
![Chemical Structure 1] ![Chemical Structure 2]
![Chemical Structure 3] ![Chemical Structure 4]
![Chemical Structure 5] ![Chemical Structure 6]
![Chemical Structure 7] ![Chemical Structure 8]

Table 4. Cont.
Table 4. Cont.

Spiroisoxazolines
![Molecular Structure 1]
-(CH₂)₃OBr₂PhCHOHCH₂⁻
![Molecular Structure 3]
-(CH₂)₅⁻
![Molecular Structure 5]
-CH₂(CHOH)₂CH₂⁻
![Molecular Structure 7]
-CH₂CH₂O(CH₂)₂⁻
Spiroisoaxazolines
--
![Chemical Structure](image1)
![Chemical Structure](image3)
![Chemical Structure](image5)
![Chemical Structure](image7)
![Chemical Structure](image9)

Table 4. Cont.
Spiroisoxazolines	Spiroisoxazolines
![Spiroisoxazolines](image1)	![Spiroisoxazolines](image2)
![Spiroisoxazolines](image3)	![Spiroisoxazolines](image4)

Spiroisoxazolines	Spiroisoxazolines
![Spiroisoxazolines](image5)	![Spiroisoxazolines](image6)

Verongiabenzenoids	Verongiabenzenoids
![Verongiabenzenoids](image7)	![Verongiabenzenoids](image8)
![Verongiabenzenoids](image9)	![Verongiabenzenoids](image10)
Table 4. Cont.

Verongiaquinols

![Verongiaquinols](image)

Table 5. Halogenated substances found in the genus *Aplysina*.

Halogen Compound	R¹	R²	R³	R⁴	R⁵	R⁶	R⁷	R⁸	R⁹	Nucleus
1	Me	Me	-	-	-	-	-	-	-	A
2	H	(E) BrMeOPhCH₂CNHO-	-	-	-	-	-	-	-	A
3	H	Br₂MeOPhCH₂CHN(CH₃)₂CO-	-	-	-	-	-	-	-	A
4	Me	Me	H	Br	-	-	-	-	-	A
5	Br	H	Br	-	-	-	-	-	-	B₁
6	H	Br	Br	-	-	-	-	-	-	B₁
7	Cl	H	Br	-	-	-	-	-	-	B₂
8	H	Cl	Br	-	-	-	-	-	-	B₂
9	Br	H	Cl	-	-	-	-	-	-	B₂
10	H	Br	Cl	-	-	-	-	-	-	B₂
11	H	H	Br	-	-	-	-	-	-	B₃
12	H	H	Cl	-	-	-	-	-	-	B₂
13	Br	-	-	-	-	-	-	-	-	B₃
14	Cl	-	-	-	-	-	-	-	-	B₃
15	H	Cl	Cl	-	-	-	-	-	-	B₄
16	H	Cl	Br	-	-	-	-	-	-	B₄
17	H	Br	Br	-	-	-	-	-	-	B₄
18	OH	H	Br	OH	Br	-	-	-	-	C
19	Br	OH	Br	OH	H	OH	-	-	-	C
20	H	Br	OH	Br	H	OH	-	-	-	C
21	Me	Me	-	-	-	-	-	-	-	D₁
22	Et	Me	-	-	-	-	-	-	-	D₁
23	Me	Butyl	-	-	-	-	-	-	-	D₁
24	Me	Pentyl	-	-	-	-	-	-	-	D₁
25	MeO	OH	H	-	-	-	-	-	-	E₁
Table 5. Cont.

26	H	Br	(E) CH₂=CH=CH=CH-	OH	Br	-	-	-	E₁				
27	Br	OMe	CH₃CCH₃	Br	H	-	-	-	E₂				
28	Br	OMe	H	Br	H	-	-	-	E₂				
29	-CH₃(S)oxz	-	-	-	-	-	-	-	F₁				
30	-CH₃(C)oxz	-	-	-	-	-	-	-	F₁				
31	-CH₃(R)oxz	-	-	-	-	-	-	-	F₁				
32	-CH₂MeOoxz	-	-	-	-	-	-	-	F₁				
33	-(CH₂)₃OBr₂Ph(CH₂)₂-	-	-	-	-	-	-	-	G₁				
34	-(CH₂)(R)CHOHCH₂OBr₂PhCHOHCH₂⁻	-	-	-	-	-	-	-	G₁				
35	-(CH₂)₂OBr₂Ph(R)CHOHCH₂⁻	-	-	-	-	-	-	-	G₁				
36	O	-CH₂CCHOH(R)(CH₂)-	-	-	-	-	-	-	G₁				
37	O	-CH₂CCHOH(S)(CH₂)-	-	-	-	-	-	-	G₁				
38	O	-CH₂CCH₂OBr₂PhCHOHCH₂⁻	-	-	-	-	-	-	G₁				
39	O	-CH₂CCH₂OBr₂Ph(CH₂)₂⁻	-	-	-	-	-	-	G₁				
40	-(CH₂)(R)CHOHCH₂OBr₂Ph(CH₂)₂⁻	-	-	-	-	-	-	-	G₁				
41	-(CH₂)₄⁻	-	-	-	-	-	-	-	G₁				
42	-(CH₂)₄⁻	-	-	-	-	-	-	-	G₁				
43	-(CH₂)₂CH(imz)₂(CH₂)₃⁻	-	-	-	-	-	-	-	G₁				
44	O	-CH₂C(CH₂)₃⁻	-	-	-	-	-	-	G₁				
45	-(CH₂)₃OBr₂PhCHOHCH₂⁻	-	-	-	-	-	-	-	G₂				
	Structure								G2				
---	---	---	---	---	---	---	---	---	-----				
46	-CH$_2$(S)CHOHCH$_2$OBr$_2$PhCHOHCH$_2$-												
47	-(CH$_2$)$_3$-												
48	-CH$_2$CHOHCH$_2$OBr$_2$PhCHOHCH$_2$-												
49	-CH$_2$(CHOH)$_2$CH$_2$-												
50	-CH$_2$CHOH(CH)$_2$-												
51	-CHOHCH$_2$OBr$_2$PhCHOHCH$_2$-								G2				
52	-(CH$_2$)$_3$O(CH$_2$)$_2$-												
53	-(CH$_2$)$_3$COHCH$_2$-												
54	-(CH$_2$)$_3$-												
55	-(CH$_2$)$_4$-												
56	-(CH$_2$)$_5$-	H	Br	OH	H	Br	H	H	OH	G4			
57	-(CH$_2$)$_3$O(CH$_2$)$_2$-	Br	H	H	OH	H	Br	OH	H	G4			
58	-CH$_2$CHOH(CH)$_2$-	H	Br	OH	H	Br	H	OH	G4				
59	-CH$_2$CHOH(CH)$_2$-	Br	H	OH	H	Br	H	OH	G4				
60	-CH$_2$CHOH(CH)$_2$-	H	Br	OH	H	Br	H	OH	G4				
61	-CH$_2$CHOH(CH)$_2$-	Br	H	OH	H	Br	H	OH	G4				
62	-(CH$_2$)$_3$-												
63	-(CH$_2$)$_4$-												
64	-CHOHCH$_2$NCOCH$_3$												
65	-(CH$_2$)$_2$CHOH$_2$NCOOMe												
66	-(CH$_2$)$_2$NCOOMe												
67	-CH$_2$(Z)(CH)$_2$imzNH$_2$												
68	-(CH$_2$)$_3$gnd												
69	-(CH$_2$)$_3$OBr$_2$PhCHOHCH$_2$NHAc												
70	-(CH$_2$)$_3$OBr$_2$Ph(CH$_2$)$_2$NHSO$_3$Na												
No.	Structure	71	72	73	74	75	76	77	78	79	80	81	82
-----	--	----	----	----	----	----	----	----	----	----	----	----	----
71	-CH$_2$CHOHBr$_2$PhOH												
72	-(CH$_2$)$_3$OBr$_2$Phoxz												
73	-CH$_2$Br$_2$PhOoxz												
74	-(CH$_2$)$_3$COH												
75	-(CH$_2$)$_2$imzONH$_2$												
76	-(CH$_2$)$_2$imz												
77	-(CH$_2$)$_2$imzNH$_2$												
78	-(CH$_2$)$_4$gnd												
79	-CH$_2$CHOH(CH$_2$)$_2$gnd												
80	Me												
81	Et												
82	-(CH$_2$)$_2$N(Me)$_3$												H
83	O												
84	-(CH$_2$)$_3$CHOH												
85	-(CH$_2$)$_3$CNH$_2$												
86	-(CH$_2$)$_3$COCH$_3$												
87	Br												
88	Br												
89	Cl												
90	Br												

Table 5. Cont.
No	Atom(s) 1	Atom(s) 2	Atom(s) 3	Atom(s) 4	Atom(s) 5	Atom(s) 6	References
91	Br	OH	OH	O	Cl		I₁
92	Br	OH	OH	Br	H		I₁
93	H	OH	OH	Br	H		I₁
94	Br	H	OH	Cl	H		I₁
95	Cl	H	OH	Br	H		I₁
96	Br	H	OH	Br	H		I₁
97	Br	H	OH	Br	O	CH₂CH₂OCH₃	I₁
98	OH	OH	OH	OH	-		I₂
99	OH	OH	OH	CH₂CN	-		I₂
100	OH	OH	CH₃CN	-	-	-	J
101	MeO	OH	CH₂CONH₂	-	-	-	J

gnd = Guanidine; imz = Imidazole; oxz = Oxazolidinone.
Table 6. Compilation of the 13C NMR data of the halogenated substances from the genus *Aplysina*. *Bromotyramines.*

Position	1	2	3	4
1	140.3	140.3	137.94	138.58
2	134.4	134.4	132.78	132.80
3	118.7	118.7	117.74	118.02
4	152.1	152.1	150.87	151.30
5	118.7	118.7	117.74	118.02
6	134.4	134.4	132.78	132.80
7	35.2	35.2	34.20	32.26
8	41.3	41.3	39.81	60.20
9	-	165.8	170.82	-
10	-	152.9	69.84	-
11	-	28.7	31.57	-
12	-	113.1	137.66	-
13	-	134.7	133.21	-
14	-	130.3	117.58	-
15	-	155.8	152.34	-
16	-	112.1	117.58	-
17	-	131.7	133.21	-
1’	71.7	71.7	69.71	71.00
2’	26.4	26.4	25.38	26.79
3’	56.9	56.9	55.41	55.77
MeO	-	56.7	60.39	-
$^+$N(Me)$_2$	43.7/43.6	43.7	41.51/42.92	44.06
$^+$N(Me)$_3$	-	-	-	44.74

Table 7. Compilation of the 13C NMR data of the halogenated substances from the genus *Aplysina*. *Cavernicolins.*

Position	5	6	9	11	12	13	14
1	184.0	184.0	183.4	188.91	188.89	80.90	82.7
2	56.9	53.1	58.0	39.78	40.08	-	-
3	68.7	64.7	67.9	58.60	58.56	168.30	171.4
4	76.6	75.7	74.4	74.15	73.41	43.1	44.0
5	149.9	149.0	146.3	150.07	145.84	69.5	69.5
6	120.8	120.8	127.4	122.45	130.18	156.90	153.2
7	43.0	45.1	42.4	43.58	43.78	118.80	129.5
8	173.9	173.9	173.6	172.65	172.72	187.8	188.9
9	-	-	-	-	-	46.6	47.6
Table 8. Compilation of the 13C NMR data of the halogenated substances from the genus *Aplysina*. *Hydroverongiaquinols*.

Position	20
1	130.0
2	133.0
3	111.0
4	150.0
5	111.0
6	133.0
2'	40.0
3'	173.4

Table 9. Compilation of the 13C NMR data of the halogenated substances from the genus *Aplysina*. *Bromotyrosineketals*.

Position	22	23
1	71.3	123.55
2	140.3	123.55
3	124.1	142.11
4	96.7	71.92
5	124.1	142.11
6	140.3	123.55
7	44.2	45.03
8	173.2	172.99
9	51.3	51.04
10	60.2	63.98
11	15.4	32.34
12	-	20.04
13	-	14.10
14	-	-

Table 10. Compilation of the 13C NMR data of the halogenated substances from the genus *Aplysina*. *Bromotyrosine Lactone Derivatives*.

Position	25	26	27	28
1	89.1	148.85	154.29	161.3
2	135.5	109.12	100.74	106.7
3	119.3	103.75	161.97	155.2
4	151.2	147.16	111.80	110.8
5	107.6	103.75	125.75	135.2
6	77.0	113.68	122.35	117.0
7	42.2	146.35	117.53	40.6
8	173.7	165.91	165.23	164.0
9	-	144.60	-	-
10	-	128.12	150.75	-
11	-	128.12	25.21	-
12	-	19.79	23.69	-
MeO	61.5	-	61.0	60.8
Table 11. Compilation of the 13C NMR data of the halogenated substances from the genus *Alysina. Oxazolides*.

Position	29	30	31	32
1	153.5	151.6	142.3	140.45
2	119.3	117.6	118.2	118.63
3	131.9	130.7	130.8	131.45
4	140.6	138.9	140.0	152.60
5	131.9	130.7	130.8	131.45
6	119.3	117.6	142.3	118.63
7	76.3	74.3	54.3	75.78
8	47.9	46.9	47.0	48.42
9	159.8	158.5 or 158.2	157.8	159.05
10	75.0	73.0	53.0	72.05
11	75.5	73.5	53.5	
12	41.7	41.1	41.47	46.97
13	160.2	161.35	158.4	161.35
MeO	-	-	-	50.25

Table 12. Compilation of the 13C NMR data of the halogenated substances from the genus *Alysina. Spiroisoxazolines*.

Position	33	34	35	36	37	38	39	40	41
1	75.28	75.0	75.42	75.47	75.47	75.29	75.11	75.09	75.5
2	122.07	122.0	122.74	114.14	114.14	122.11	122.11	122.10	114.2
3	148.77	148.6	149.28	149.28	149.28	148.82	148.73	148.75	149.3
4	113.81	113.7	114.16	122.78	122.78	113.85	113.85	113.78	122.7
5	132.37	132.0	132.24	132.23	132.23	132.24	132.27	132.28	133.2
6	91.67	91.8	92.48	92.64	92.64	90.04	91.95	91.56	92.6
7	40.13	39.8	40.13	40.09	40.09	39.99	39.87	40.03	40.1
8	155.24	154.9	155.27	155.12	155.12	154.80	154.79	155.14	155.5
9	160.07	160.4	161.81	161.93	161.93	160.29	160.24	160.00	161.6
1'	75.28	75.1	75.42	75.47	75.47	75.29	75.18	75.20	75.5
2'	122.07	122.1	122.74	114.14	114.14	122.11	122.11	122.10	114.2
3'	148.77	148.6	149.28	149.28	149.28	148.82	148.74	148.75	149.3
4'	113.81	113.7	114.16	122.78	122.78	113.85	113.85	113.78	122.7
5'	132.30	132.1	132.16	132.23	132.31	132.23	132.28	132.28	133.2
6'	91.67	91.8	92.48	92.54	92.54	91.86	91.95	91.76	92.6
7'	40.09	39.9	40.04	40.03	40.03	39.89	40.09	40.08	40.1
8'	155.14	155.0	154.12	154.92	154.92	155.16	155.16	155.16	155.5
9'	160.01	160.5	161.55	161.80	161.80	160.48	160.03	160.41	161.6
10	37.47	43.4	37.94	49.87	49.87	47.52	47.46	43.49	38.4
11	30.55	69.7	30.59	207.84	207.84	200.82	200.87	69.68	26.1
12	72.16	75.7	71.61	75.73	75.73	76.52	76.48	75.79	26.1
13	152.30	152.5	153.56	43.43	43.43	151.93	151.23	151.97	38.4
14	118.48	118.3	118.99	-	-	118.11	118.07	118.31	-
15	134.06	131.3	131.69	-	-	131.55	134.21	134.14	-
16	139.63	142.9	143.06	-	-	143.93	140.53	139.88	-
Table 12. Cont.

Position	42	43	44	45	46	49	50	51	52
1	72.4	75.41	75.50	74.60	74.73	73.55	73.8	74.67	73.55
2	119.6	114.24	120.80	121.66	121.80	120.81	121.4	121.85	120.88
3	145.9	149.29	149.31	147.92	148.06	147.15	147.7	148.06	147.13
4	111.9	122.75	114.15	115.16	115.20	113.09	113.1	115.20	113.08
5	130.1	132.30	131.32	132.15	132.36	131.25	130.6	132.30	131.20
6	89.0	92.39	92.63	91.72	91.87	90.32	91.9	91.87	90.50
7	38.5	40.26	40.21	40.27	40.30	42.53	38.7	40.30	39.70
8	153.3	155.34	155.29	155.10	155.17	154.47	153.9	155.18	154.37
9	157.4	161.44	161.81	160.05	160.52	158.98	160.0	160.46	159.11
1’	72.4	75.51	75.50	74.67	74.73	73.55	73.8	74.67	73.55
2’	119.6	114.24	120.80	121.66	121.80	120.81	121.4	121.85	120.84
3’	145.9	149.29	149.31	147.92	148.06	147.15	147.7	148.06	147.11
4’	111.9	122.75	114.15	115.16	115.20	113.09	113.1	115.20	113.08
5’	130.1	132.30	132.25	132.31	132.36	131.25	130.6	132.30	131.20
6’	88.9	92.45	92.36	91.78	91.93	90.32	91.8	91.13	90.24
7’	38.5	40.26	40.04	40.27	40.30	42.53	38.7	40.16	39.45
8’	153.4	155.41	154.93	155.23	155.25	154.47	153.9	154.77	154.05
9’	157.4	161.57	161.81	160.44	160.52	158.98	160.0	160.56	158.86
10	44.2	39.07	49.17	37.13	43.95	39.04	36.2	47.49	48.52
11	67.2	33.92	206.18	30.37	69.47	71.04	68.0	201.34	204.43
12	30.6	33.51	37.57	71.51	76.13	71.04	45.0	76.32	38.59
13	24.0	135.87	24.11	152.27	152.29	39.02	33.6	151.22	33.82
14	35.0	150.68	39.61	118.35	118.42	-	-	118.06	-
15	-	111.32	-	130.90	131.09	-	-	131.10	-
16	-	126.67	-	143.35	143.52	-	-	144.23	-
17	-	149.52	-	130.90	131.09	-	-	131.10	-
18	-	126.09	-	118.35	118.42	-	-	118.06	-
19	-	23.09	-	70.70	69.47	-	-	70.70	-
20	-	30.10	-	47.99	48.15	-	-	48.01	-
21	-	40.03	-	-	-	-	-	-	
MeO	58.4	60.44	60.38	59.75	59.86	59.63	60.0	59.86	59.63

Position	53	54	55	56	57	58	59	60	61
1	74.1	75.3	75.2	75.0	74.73	74.5	74.0	74.5	68.5
2	113.5	113.9	113.9	57.4	57.11	57.2	55.0	57.2	54.6
3	147.6	148.7	148.7	183.7	183.51	184.1	184.1	184.2	183.0
4	121.2	122.0	122.0	122.5	122.45	122.7	123.0	122.7	123.2
Table 12. Cont.

Position	62	63	64	65	66	67	68	69	70
1	56.9	75.3	73.55	73.56	73.57	75.45	73.44	75.40	73.6
2	53.0	113.8	120.80	120.79	120.86	122.68	120.64	122.72	120.8
3	186.0	149.0	147.13	147.12	147.16	149.23	147.07	149.23	147.3
4	122.8	122.0	113.04	113.04	113.11	114.12	113.00	114.10	113.1
5	143.7	132.4	131.19	131.21	131.23	132.21	131.22	132.14	131.2
6	84.0	91.5	90.16	90.24	90.52	92.39	90.12	92.55	90.2
7	43.6	40.2	39.50	39.50	39.33	40.19	39.50	40.06	39.3
8	154.9	155.3	154.34	154.34	154.08	155.32	154.44	155.11	154.3
9	158.3	159.3	158.37	158.87	159.13	161.33	158.82	161.61	158.9
1'	56.9	58.1	-	-	-	-	-	-	-
2'	53.0	54.2	-	-	-	-	-	-	-
3'	186.0	186.0	-	-	-	-	-	-	-
4'	122.8	124.1	-	-	-	-	-	-	-
5'	143.7	144.1	-	-	-	-	-	-	-
6'	84.0	85.3	-	-	-	-	-	-	-
7'	43.6	44.5	-	-	-	-	-	-	-
8'	154.9	155.6	-	-	-	-	-	-	-
9'	158.3	159.9	-	-	-	-	-	-	-
Table 12. Cont.

	71	74	75	76	79	80	81		
10	38.6	39.8	33.83	49.89	48.58	39.49	38.53	37.86	36.2
11	26.4	29.7	38.29	205.66	205.75	123.47	28.23	30.76	29.4
12	26.4	24.7	205.66	38.29	39.75	122.33	23.28	72.30	71.2
13	38.6	29.7	49.89	33.83	35.21	130.81	27.99	153.61	150.8
14	-	-	156.98	156.98	157.03	151.45	40.65	118.94	117.0
15	-	-	-	-	118.11	157.20	131.66	133.0	
16	-	-	-	-	-	142.82	140.6		
17	-	-	-	-	-	131.66	133.0		
18	-	-	-	-	-	-	118.94	117.0	
19	-	-	-	-	-	-	71.64	33.7	
20	-	-	-	-	-	47.62	44.7		
21	-	-	-	-	-	173.29	-		
22	-	-	-	-	-	-	47.62	-	
23	-	-	-	-	-	-	22.68	-	
MeO-C₃	-	60.2	59.60	59.60	59.79	60.42	59.56	60.42	59.6
MeO-C₁₄	-	-	51.54	51.54	51.28	-	-	-	

Position 71 74 75 76 79 80 81

1 75.21 73.4 75.5 73.57 76.4 76.3 75.1
2 122.15 120.8 114.1 120.87 115.1 114.9 113.8
3 148.78 147.0 149.3 147.18 150.2 150.1 149.0
4 113.90 113.3 122.8 113.08 123.7 123.5 122.3
5 132.27 131.2 132.3 131.21 133.2 133.0 132.3
6 91.84 90.1 92.3 90.33 93.4 93.2 92.6
7 40.08 39.7 40.2 39.26 41.0 40.1 40.0
8 155.14 154.8 155.3 154.37 156.0 159.5 153.3
9 160.42 158.9 161.6 159.10 162.8 162.5 161.0
10 47.71 39.4 39.9 37.66 44.7 40.5 63.0
11 71.43 24.5 29.8 24.12 78.4 - 14.4
12 138.5 34.5 25.6 130.79 25.7 - -
13 111.38 174.7 61.9 133.84 40.2 - -
14 130.90 - 190.6 116.21 157.5 - -
15 150.72 - 171.4 - - - -
16 111.38 - - - - - -
17 130.90 - - - - - -
| MeO-C₃ | 60.22 | 59.6 | 60.4 | 59.63 | 61.3 | 59.2 | 60.8 |

Although the isoxazoline alkaloids are the group with more 13C NMR data, some chiral centers of this group continue with an undefined stereochemistry due to the incompatibility of using X-ray crystallography techniques, possessing sometimes non-crystalline characteristic [98]. Some positions with 12C NMR data had to be revised because there were mistakes in the numbering of the carbon skeleton in the attribution of values of some positions in this group of alkaloids.
Table 13. Compilation of the 13C NMR data of the halogenated substances from the genus *Aplysina. Verongiabenzenoids*.

Position	82	83
1	154.87	152.19
2	111.18	117.30
3	134.63	133.35
4	129.20	135.92
5	130.33	133.35
6	117.68	117.30
7	29.07	26.88
8	68.51	65.07
OMe	59.88	60.31
(Me)$_3$N$^+$	53.77	52.23

Table 14. Compilation of the 13C NMR data of the halogenated substances from the genus *Aplysina. Verongiaquinol*.

Position	90	97	98
1	172.6	183.0	183.0
2	119.9	122.7	123.7
3	153.2	151.7	146.6
4	70.8	75.5	74.2
5	148.8	78.4	78.9
6	127.6	56.1	57.1
1'	-	116.9	116.9
2'	-	28.4	28.4
CH$_2$	45.1	-	-
CONH$_2$	169.4	-	-

Table 15. Compilation of the 13C NMR data of the halogenated substances from the genus *Aplysina. Dibromocyclohexadiene*.

Position	101
1	86.3
2	109.1
3	149.7
4	113.6
5	140.4
6	76.5
7	42.1
8	172.8
9	60.2
10	60.3

3. Discussion

The genus *Aplysina* belongs to the order Verongida, sponges with a wide variety of metabolites. Sterols [110,111], carotenoids [112], amino acids [113] and rare fatty acids [114] have all been
isolated from this order. However, the peculiarity of this order is from the ecological and medicinal points of view, in that great production of halogenated substances originates from the metabolism of amino acids such as phenylalanine and tyrosine.

The halogenated substances found in the marine sponges of the genus *Aplysina* can be classified as: (A) Bromotyramines, (B) Cavernicolins, (C) Hydroverongiaquinols, (D) Bromotyrosineketals, (E) Bromotyrosine lactone derivatives, (F) Oxazolidones, (G) Spiroisoxazolines, (H) Verongiabenzenoids, (I) Verongiaquinols and (J) Dibromociclohexadiens.

3.1. Chemotaxonomy Importance of *Aplysina* Sponges

Although in the past, it was suspected that bromotyrosine compounds were not present in Brazilian *Aplysina* species [69], nowadays numerous studies have shown the presence of these chemical biomarkers, not only in Brazilian species, but in almost all the Verongida order.

In order to classify the large number of halogenated compounds reviewed in Table 2, for each sponge species, we listed the halogenated compounds under the correlated species. Considering the taxonomic species diagnosis of morphologic variation of spongin fibers is difficult [33], chemical composition can be used as a tool for a more accurate identification. The distribution of the halogenated compounds is widespread in *Aplysina* genre, and studies show that mainly bromoisoxazoline alkaloids have been found in almost all species. This family of metabolites was usefully employed as a chemical marker for the distinction of some taxa as *Aplysina aerophoba* and *Aplysina cavernicola*, two very physically similar species [63], but biochemically different. In another situation, majority of aerothionine was key to identify two subspecies of *A. fistularis*, which split into *A. fulva* and *A. insularis* [115].

The similarity between agelorins A and B, isolated from *Agelas oroides* and produced by *Aplysina caissara*, was essential to show the two genera, *Aplysina* and *Agelas*, have a phylogenetic relationship [76] and 11-epi-fistularin-3 was yielded by *Aplysina fulva* [98].

The presence of stereo metabolites isolated from *Aplysina* sponges as derivatives of fistularin-3 discussed by Rogers *et al.*, 2005 [98], provides evidence that enzymatic pathways are non-stereoselective in these sponges.

As can be seen, each kind of genus adds a different profile of metabolites. However, even with a different chemical profile, *Aplysina* sp. has compounds that give a clue to their evolutionary origin.

3.2. Bromotyramines

The substances aplyzanzine A, aplysamine-1 and aplysamine-2 present a dibromotyramine structural portion, and probably originated in accordance with Evan *et al.* [82], by amidation with other bromotyrosinated radicals. Moloka’inamine [116] and purealidin C isolated from *Psammaphyllis pura* [90] are examples of metabolites isolated from sponges of the order Verongida, having dibromotyramine in their structures. According to Carney, free phenolic groups are important precursors nitrile phenolic [96], hence the similarity between methoxylated compound, aplysamine-2, and hydroxylated analogue, psammaplin-A [84], observed by Xynas and Capon, 1989, shows that psammaplin-A may be important precursor aplysimines as much of the fistularin and its derivatives
3.3. Cavernicolins

Figure 1. Metabolism of the bromotyrosine derived metabolites (→ For the steps clarified in previous studies and ↔ For the biogenesis hypothesis).
Cavernicolines are γ and δ-lactames formed by a residual halogenated tyrosine precursor [81] and also having a bi-cyclic system. The junction of the rings occurs in carbons C-3 and C-4 in ortho position, while in the 7-bromocavernicolenone and in the 7-chlorocavernicolenone, this junction occurs in carbons C-2 and C-4. They can be defined as haloperoxidases with the role of converting either the 3-chloro (V) ortho 3-bromotyrosine (IV) in residues of 3,5-dichloro (VIII) or 3,5-dibromotyrosine (VI) or 3-chloro-5-bromotyrosine (VII) or 3-bromo-5-chlorotyrosine (IX), respectively [80]. These substances have a chiral center at C-2 and their R and S enantiomers are obtained in racemic mixtures, or relatively pure from the genus *Aplysina*. In the formation of cavernicolines, as to the substitution pattern (ortho or para) it is suggested that the biosynthesis pathway has either a halo-tyrosine (XV, XVI, XVIII and XIX) or a halo-dopa (XIV and XVVI) intermediary which will form a spirolactone precursor (XXII and XXIII), allowing the formation of intermediaries in racemic or quasi-racemic mixtures. The absence of control in the absolute stereochemistry of this class is intrinsic to phenol oxidative coupling [81,117]. It is noteworthy that experimental observations [118] show that 3, 5-dibromo-4-methoxyphenylalanine methyl ester (XX) in reaction in an anodic oxidative medium form a more appropriate intermediary (XXI) than the spirolactone, originating derivatives similar to the stereoisomers of the cavernicolines with considerable yields (See Figure 1).

3.4. Hydroverongiaquinols

The hydroverongiaquinols are 2,6-bromotyrosine phenolic derivatives. Both the hydroverongiaquinols and the verongiabenzenoids are important mediators in biosynthesis of other classes of bromotyrosine metabolites. The verongiabenzenoids are part of the biosynthesis of isoxazoline alkaloids, and hydroverongiaquinols are important precursors in the formation of metabolites which need free phenolic groups to convert themselves into α-oximine substances, such as the phenolic nitriles. However, phenolic nitriles have not been found in the genus *Aplysina*, they are found in the genus *Ianthella* where substances like the bastadins, are important chemotaxonomic markers for the genus [119].

3.5. Bromotyrosineketals

The bromotyrosineketals have a 3,5-dibromocyclohexa-2,5-dienyl ketal skeleton system. Literature shows that the dimethoxy and methoxy-ethoxy ketals (XXXII) isolated from *Aplysina fistularis* and from *Aplysina cauliformis* [92,93,120], are artifacts formed by the oxidation of dienone, since the dimethoxy form is obtained as a mixture of diastereoisomers [94,95], both showing antibacterial activity. Further evidence that they are artifacts is the formation of dimethoxy and methoxy-ethoxy ketals which can be explained as being formed from an arene (dienone intermediary XII), which suffers 1,4 additions of methanol, water or ethanol (Figure 2), and displayed a reaction described by Kasperek et al. [94,95,121]. However, the methoxy-butoxy and methoxy-pentoxy ketals isolated from *Aplysina thiona* [109] are not considered reaction products. Aplysinketal A was isolated only in the form of diastereoisomers, and the absence of the dimethoxy ketal indicates the non-existence of reactions during the extraction process [109]. It has been suggested that the formation of the C₄ and C₅ chains are formed via lysine and ornithine respectively (Figure 2) [104,114].
3.6. Bromotyrosine Lactone Derivatives

The bromotyrosine lactone derivatives, with the exception of aplysinimine which is an imine, are five member lactones condensed with 3,5-dibromotyrosine residues (XXIV). Aeroplysinin-2 is different from the others because it has a cyclodiene group instead of an aromatic ring, while aplysinadiene presents a cis-trans diene side chain. It is proposed that the biosynthesis of this class of substances has an imine-ether (XXXIV) as initial intermediary, a hydroxylated derivative of aplysinimine. This derivative will either suffer a tertiary alcohol dehydration to form aplysinimine [109,120] or will follow other biosynthetic pathways similarly to bromotyrosine lactones as aeroplysinin-2, or the verongiabenzenoids and verongiaquinols, in this case the intermediary suffers dehydroxylation and demethylation and can form artifacts such as dimethoxys and methoxy-ethoxy ketals. [122]. Aplysinolide is considered an artifact, since it possesses an α,β-unsaturated side chain which is uncommon to find linked to a lactone ring. In accordance to Cruz et al. [109] this substance can be formed by combining aplysinimine with Me₂CO during the purification process (see Figure 1).
3.7. Oxazolidones

Oxazolidones are very common in *Aplysina*, but just two types are found: diastereoisomers of bisoxazolidone and methoxy derivative. This derivative presents two chiral centers with different stereochemistries for different species. Studies show that these bisoxazolidone’s isomers have a relative configuration of 75*, 11R* [97] and 11R*, 75* [106], as determined by comparison with bisoxazolidone isolated from Ascidia *Clavelina oblonga* [123] and an absolute configuration R, R [64] obtained by X-ray crystallography. There are evidences that fistularin-3 degradation promotes bisoxazolidone and aeroplysinin-1 production [13].

3.8. Spiroisoxazolines

The spiroisoxazolines also known as isoxazoline alkaloids form the biggest group of *Aplysina* and Verongid order metabolites. They are divided into two structure types: mono-spirocyclohexadienylisoxazolines and bis-spirocyclohexadienylisoxazolines [124].

The chemical structure of mono-spirocyclohexadienylisoxazolines (nuclei G7, G8) have essentially one spirocyclohexadienylisoxazoline ring bonded to a 1–6 carbon side chain with exception of the spiroisoxazoline acid ester (nucleus G9) [83] considered an artifact of ethanolic condensation from spiroisoxazoline acid [125]. The bis-spirocyclohexadienylisoxazolines (nuclei G1, G2) can present the same ring, which in the more common example is bonded to a 3–11 carbon side chain. This side chain is bonded to another spirocyclohexadienylisoxazoline ring [124]. In other spiroisoxazolines, the rings suffer oxidation of the methoxy group forming a cyclohexenone (nuclei G3, G4) [74,76,101]. Cyclohexenone also suffers hydroxyl or bromine oxidations originating cyclohexenone epoxide between carbons 1 and 2 and forming oxaspirocyclohexenonylisoxazolines (nuclei G5, G6) [100].

The biosynthetic pathway for spiroisoxazolines needs tyrosine intermediates with *O*-methyl groups (XXVII), which are metabolized to form oxime grouped intermediates (XXVIII) and shortly thereafter form other intermediaries with arene oxide (XXIX). The nucleophilic attack of the oxime over either the epoxide or the phenol originates by breaking the epoxide which forms the isoxazole ring (XXX) [96]. The C₄ or C₅ side chains that extend out of the ring such as in aerothionin and inhomoaerothionin are produced via ornithine and lysine respectively (Figure 2) [70,94,95,126]. However, when the side chains present a 4-aminobutanoic substituent it is suspected that the amino acid involved is glutamic acid (Figure 2) [99]. In some spiroisoxazolines such as fistularin-3, and araplysillm N⁹-sulfamate, there is a 3-amino-1-propanol connector which binds itself to other structures and probably has as a precursor of its biosynthesis a decarboxylated product of the uncommon amino acid, homoserine. This amino acid is an intermediary for the enzyme S-adenosylmethionine (SAM). It is suggested that the SAM is involved in S₈N₂ substitutions of hydroxyl of 3,5-dibromotyrosine (DBT) (XXIV), making it susceptible to the formation of methoxyl groups by methyltransferase and *O*-alkylated bonds via other enzymes. The enzyme responsible for *O*-alkylations is putative *C³* alanil-methyltransferase which allows 3-amino-1-propanol connector bonding to the DBT residue, forming spiroisoxazoline residue complexes with large molecular masses (XXV) which are then incorporated in the isoxazoline rings [99]. The alkaloid archerine, a dimer of two imidazole rings, is probably formed by oxidative coupling [1 + 1] of two aerophobin-2 molecules [73].
In sponges of the order Verongida, the spherule cells have the capacity of stocking and secreting isoxazoline alkaloids, which are modified by enzymes located in distinct locations [127, 128]. The extracts of the majority of the sponges belonging to the genus *Aplysina*, when tested, show that their enzymes convert brominated isoxazoline alkaloids into aeropylinin-1 and dienones. Sponges of other orders are unable to perform this biotransformation [129]. Puyana *et al.* [130] demonstrated that there is no aeropylinin-1 and dienones production when there is a decrease in the amount of spiroisoxazolines. The ecological function of this enzymatic activation is microbial pathogen growth inhibition and the repellent odor, which decreases the predatory search by fishes [129].

Although the agelocaissarines A1, A2, B1 and B2 were initially considered production artifacts as pairs of stereoisomers, this was later modified by the observation of in vitro experiments showing the absence of substances with relative stereochemistries different to those found in the work [76]. In therapeutics these substances demonstrate tumor cell cytotoxic [22], antimicrobial [15] and antihistamine [73] activity.

Spiroisoxazolines vary in different species, but also inside the single species. While *A. fulva* produces aerothionin as its major component (0.11%) [34], this same substance is not present in *A. insularis* [74] and in *A. fulva* it appears with a larger amount (0.52%) [102]. Nuñez *et al.* [97], affirms that this chemical variation may be due to either different extraction and isolation techniques, or to biological diversity of the areas in which the sponges are collected. This chemical distinction led to reinforce the hypothesis that *Aplysina aerophoba* and *Aplysina carvernicola* have metabolic differences and that *A. aerophoba*, erroneously identified in the work of Cimino *et al.* [67], was in fact *Aplysina cavernicola*.

The presence of hemi-fistularin, isolated together with 11-oxofistularin-3, begs us to question whether the first is a precursor of 11-oxofistularin-3 biogenesis, or a degradation product [72]. Fistularin-3 shows another type of variability. Besides having stereoisomers of (+) fistularin-3, such as (+)-isofistularin-3 and 11-epi-fistularin-3, the chemical composition of sponges contains them in irregular proportions, which makes it difficult to determine through optical rotation. In order to determine the absolute configuration of fistularin-3 and its stereoisomers, a microscale analysis with Marfey’s reagent, has been used that led to the formation of stable reaction products analyzed by LC-MS [98].

3.9. Verongiabenzenoids

The verongiabenzenoids are aromatic methoxylated substances which present a skeleton with a 2,6-dibromomethoxybenzene nucleus. Biogenetically methoxylated, some verongiabenzenoids can form isoxazolines [13] or epoxide intermediaries from the arene oxide, which leads to forming other verongiabenzenoids [96].

3.10. Verongiaquinols

The chemical structure of the verongiaquinols is either a cyclohexadien-2-one or cyclohexadien-2,6-one system, with either bromine or chlorine substituents in positions 2 and 6 and hydroxyls on carbons C-3 and C-4. They also may suffer ramifications on carbon C-4. The verongiaquinols seem to be related to degradation steps of tyrosine metabolism, as is the case of
dienone (XII). The degradation of bromotyrosine substances such as iso-fistularin-1 and aerophobin-2 after mechanical injury led to the formation of aeroplysinin-1 (XXXII) and (XII). It is also noteworthy that the extraction of frozen sponges and consequent exposure to alkaline sea water will form dienones (XII) [97,130,131]. Besides being integrated at the metabolic level, dienone and aeroplysinin-1 have an important defense role for sponges: cytotoxic, algicidic, molluscidic and antibacterial activity have been reported [131,132].

Other verongiaquinols such as 2,6-dibromoquinone have been reported to inhibit the enzyme RNA polymerase II, blocking the initiation of the chain, but not its elongation [133].

It is not known for sure if (1'R,5'S,6'S) and (1'R,5'R,6'S)-2-(3'-5'-dibromo-1'-6'-dihydroxy-4'-oxocyclohex-2'-enyl)-acetonitrile are simple artifacts, as aeroplysinin-1 is able to form them in the presence of acetone by keto-enol tautomerism. However, these acetonitriles are not normally produced as metabolites of aeroplysinin-1 (XXXII) in other species [27].

3.11. Dibromocyclohexadienes

This group is comprised of two substances which present a 1,2-dihydroarene-1,2-diol and may have their biogenesis via an arene oxide (XXXI) in agreement with their stereochemistry [94,95]. Aeroplysinin-1 (XXXII) is a nitrilated substance found in dextro and levorotatory forms. The dextrorotatory isomer (+) aeroplysinin-1, has been obtained from *Aplysina aerophoba* [70], *Aiolocroia crassa*, *Verongula rigida*, *Aplysina archeri* [71] and *Psammoposilla purpurea* [134]. (−) Aeroplysinin-1 has been found in *Ianthella ardis* [135] and *Verongula gigantean* [71]. The metabolic degradation of bis-oxazolidone, isofistularin-3, aplysinamisin-1 and aerophobin-2 is known to be an important source of aeroplysinin-1 [13]. In terms of pharmacological activity, aeroplysinin-1 is a versatile substance which has demonstrated cytotoxic [134], antiprotozoal [136] and antiangiogenic [137] activities.

Aplysifulvin is one of the most recently isolated substances from the sponge *A. fulva* [97]. It possesses only two methoxies and no ethoxies, and since no ethoxy derivatives were detected, the possibility that aplysifulvin is an artifact has been discarded. Hypothetically, the chemical structure of aplysifulvin suggests that the 3,3-dialkoxy ketals (with OMe and OEt groups) previously described are artifacts [97].

3.12. Structural Elucidation

This section describes the compilation of the 13C chemical shifts of halogenated compounds of the genus *Aplysina*. All compounds compiled in this review—bromotyramines (1–4), cavernicolins (5–17), hydroverongiaquinols (18–20), bromotyrosineketals (21–24), bromotyrosine lactone derivatives (25–28), oxazolidones (29–32), spiroisoxazolines (33–81), verongiabenzenoids (82–86), verongiaquinols (87–99) and dibromocyclohexadienes (100–101)—have in common 3,5-halotyrosine or halophenylalanine derivatives.

Research data shows that works from the decades of 1970, 1980 and 1990 show little or no information of 13C NMR as compounds (95–97) whose structural elucidation was done by mass spectrometry (MS) and 1H NMR spectroscopy analysis and reactions of structural identification.

The bromotyramine family skeleton can be recognized by the typical 1H-NMR signals, as for example, in the case of compound 1: a singlet for aromatic protons H-2 and H-6 (δ 7.62) and four
triples (δ 3.02, 2H, 8.0 Hz; δ 3.50, 2H, 8.0 Hz; δ 4.12, 2H, 5.5 Hz; δ 3.22, 2H, 5.5 Hz) attributed to H-7, H-8, H-1’, H-3’ respectively [84]. When NH-3’ has low electron density as compound 1 positively charged and compound 2 close to electrophilic oxime group, the 13C-NMR signals shift to downfield compared to compounds 3 and 4, whose substituents are methyl groups [84].

Typical 1H NMR data from the cavernicolin class are, in the case of compound 5, for H-3 δ 4.05 (dd, J = 10.1 Hz and J = 1.5 Hz), a singlet for H-5 at δ 7.3 and the signals for NH and OH at 6.9 (s) and 4.4 (s) respectively [83]. 13C NMR data shows that chlorinated carbon have their signals at downfield shifts in relation to bromine carbons as it can be seen, for example, comparing compounds 5 and 6 with 9 and compound 11 with 12.

Biosynthetically, verongiaquinol metabolites are the oxidized form of hydroverongiaquinols, considered as a hydroquinone precursor [124,138]. Therefore, the basic difference in the 13C NMR between these two classes is the downfield signal of ketone carbon C-1 (δ 172.6) of compound 91 compared with hydroxylated C-1 (δ 150.0) of compound 20 [97].

Data analysis of the 13C NMR bromotyrosine lactone family brominated aromatic show carbon signals have more shielded signals compared to the other aromatic signals of the ring. The more is the unsaturated side branching at C-7, more deshielded are the signals of the lactone ring, with the increasing order of introducing the compounds 28, 27 and 26 [64,109].

The carbons of the spiroisoxazolinic system of most compounds with cores G1, G2, G7, G8 and G9 acquire values which become a standard set of values, with the exception of carbons C-2 and C4 values, which seem to be mistakenly exchanged one for another at δ 120 or δ 114, being the correct value of δ 120 for carbon C-2 due to the proximity of the hydroxyl and the C-4 for δ 114.

The mono and bis-spiroisoxazolinic ring systems could be distinguished by double 1H-NMR shield and deshield signals for the two rings, for example, compound 50 shows signals at δ 4.16 (1H, d, J = 8.3 Hz) for H-1 and δ 4.58 (1H, d, J = 7.9 Hz) for H 1’. A typical methylene signal at δ 4.43; 3.47 (2H, ABq, J = 18.2) is attributed to the isoxazol ring protons H-7, 7’ for this compound [29]. Today the most used techniques to elucidate absolute stereochemistry of the rings are 1H-NMR spectrum analysis and molecular modeling using both MM2 and MOPAC protocols of the Chem3D software [76], and also NOE-difference spectroscopy studies [100].

13C data reveals spiroisoxazoline ring systems have distinguished shifts. The difference between cyclohexadienone (G1, G2, G7, G8 and G9) and cyclohexenone (G3 and G4) systems are two chemical shifts at downfield for C-3’ and C-5’ (54–55) and one at upfield for C-2’ in G3 (56–61), and the same shifts for C-3, -3’, C-5, -5’, C-2, -2’ in G4 (56–61). The epoxide group in G5 and G6 can be characterized by the same shifts plus two differences: a strong shift at downfield for C-3 and C-3’ in G5 and C-3’ in G6. The other difference involves three chemical shifts at upfield for C-1, 1’, C-2, 2’ and C-6, 6’ of 62 and for C-1’, C-2’ and C-6’ of 63. Some 13C data as δ 67.2 and δ 65.7 attributed to chiral C-11 of compound 42 still remain with its stereochemistry unsolved [76].

According to Kossuga, 2004 [123], to determine the configuration of the relative stereochemistry of bis-oxazolidone uses [α] of (7R,11R) bis-oxazolidone with absolute stereochemistry [64]. It was possible to determine the relative configuration of bis-oxazolidinones (7*R,11*S) and (11*R,7*S) isolated in previous works as can be seen in Table 2 [63,65,109].
4. Conclusions

The genus *Aplysina* is one of the richest in secondary metabolites, which have been cataloged in 14 species from the Aplysinidae family. Most classes of compounds mentioned here present themselves brominated, and, despite the large number of species of the genus *Aplysina*, many have not been studied chemically. The halogenated compounds found in marine sponges of this genus were classified into: (A) Bromotyramines, (B) Cavernicolins, (C) Hydroverongiaquinols, (D) Bromotyrosineketals, (E) Bromotyrosine Lactone derivatives, (F) Oxazolidones, (G) Spiroisoxazolines, (H) Verongiabenzenoids, (I) Verongiaquinols and (J) Dibromocyclohexadiens.

In view of their potential for producing new compounds of pharmacological interest, sponges have been one of the most studied organisms from a chemical point of view. Over the past 20 years, hundreds of substances have been isolated from sponges, many of which have been identified and show interesting biological and pharmacological activities, as for example, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, antiviral, immunosuppressive and neurosuppressive activities.

The species of the genus *Aplysina* also show a wide structural variety of nitrogen compounds, present only in marine sponges. Therefore they are a rich source for research of new structural models for future therapeutic applications. With the information provided in this review, we hope to facilitate research in the field and to contribute to a better understanding and knowledge of the phytochemistry of this genus.

Acknowledgements

The authors thank the University of Illinois in Chicago, U.S.A., for the use of the NAPRALERT database for this study. Financial support was provided by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), PgPNBS (Pós-Graduação em Produtos Naturais e Sintéticos Bioativos), and PRONEX-FAPESQ-PB (Programa de Apoio a Núcleos de Excelência-Fundação de Apoio a Pesquisa do Estado da Paraíba). We also thank Mr. Raimundo Nonato da Silva Filho for technical help.

References

1. Sponge. Available online: http://www.britannica.com (accessed on 5 October 2010).
2. Hentschel, U.; Hopke, J.; Horn, M.; Friedrich, A.B.; Wagner, M.; Hacker, J.; Moore, B.S. Molecular evidence for a uniform microbial community in sponges from different oceans. *Appl. Environ. Microbiol.* **2002**, *68*, 4431–4440.
3. Radjasa, O.K.; Sabdono, A.; Junaidi, J.; Zocchi, E. Richness of secondary metabolite-producing marine bacteria associated with sponge *Haliclona* sp. *Int. J. Pharmacol.* **2007**, *3*, 275–279.
4. Thomas, T.R.A.; Kavlekar, D.P.; LokaBharathi, P.A. Marine drugs from sponge-microbe association—a review. *Mar. Drugs* **2010**, *8*, 1417–1468.
5. Ebada, S.S.; Lin, W.; Proksch, P. Bioactive sesquiterpenes and triterpenes from marine sponges: Occurrence and pharmacological significance. *Mar. Drugs* **2010**, *8*, 313–346.
6. Andavan, G.S.B.; Lemmens-Gruber, R. Cyclodepsipeptides from marine sponges: Natural agents for drug research. *Mar. Drugs* **2010**, *8*, 810–834.

7. Balan, V.; Nangia-Makker, P.; Raz, A. Galectins as cancer biomarkers. *Cancers* **2010**, *2*, 592–610.

8. Exposito, J.-Y.; Valcourt, U.; Cluzel, C.; Lethias, C. The fibrillar collagen family. *Int. J. Mol. Sci.* **2010**, *11*, 407–426.

9. Longeon, A.; Copp, B.R.; Quévrain, E.; Roué, M.; Kientz, B.; Cresteil, T.; Petek, S.; Deitus, C.; Bourguet-Kondracki, M.-L. Bioactive indole derivatives from the south pacific marine sponges *Rhopaloeides odorabile* and *Hyrtios* sp. *Mar. Drugs* **2011**, *9*, 879–888.

10. Lee, Y.K.; Lee, J.-H.; Lee, H.K. Microbial symbiosis in marine sponges. *J. Microbiol.* **2001**, *39*, 254–264.

11. Belarbi, E.H.; Gómez, A.C.; Chisti, Y.; Camacho, F.G.; Grima, E.M. Producing drugs from marine sponges. *Biotechnol. Adv.* **2003**, *21*, 585–598.

12. Fieseler, L.; Horn, M.; Wagner, M.; Hentschel, U. Discovery of the novel candidate phylum “Poribacteria” in marine sponges. *Appl. Environ. Microbiol.* **2004**, *70*, 3724–3732.

13. Thoms, C.; Ebel, R.; Proksch, P. Activated chemical defense in *Aplysina* sponges revisited. *J. Chem. Ecol.* **2006**, *32*, 97–123.

14. Thakur, N.L.; Müller, W.E.G. Biotechnological potential of marine sponges. *Curr. Sci. India* **2004**, *86*, 1506–1512.

15. Erpenbeck, D.; van Soest, R. Status and perspective of sponge chemosystematics. *Mar. Biotechnol.* **2007**, *9*, 2–19.

16. Fusetani, N.; Matsunaga, S. Bioactive sponge peptides. *Chem. Rev.* **1993**, *93*, 1793–1806.

17. Sagar, S.; Kaur, M.; Minneman, K.P. Antiviral lead compounds from marine sponges. *Mar. Drugs* **2010**, *8*, 2619–2638.

18. Koopmans, M.; Martens, D.; Wijffels, R. Towards commercial production of sponge medicines. *Mar. Drugs* **2009**, *7*, 787–802.

19. Sepčić, K.; Kauferstein, S.; Mebs, D.; Turk, T. Biological activities of aqueous and organic extracts from tropical marine sponges. *Mar. Drugs* **2010**, *8*, 1550–1566.

20. Esteves, A.I.S.; Nicolai, M.; Humanes, M.; Goncalves, J. Sulfated polysaccharides in marine sponges: Extraction methods and anti-HIV activity. *Mar. Drugs* **2011**, *9*, 139–153.

21. Alvarez, B.; Crisp, M.D.; Driver, F.; Hooper, J.N.A.; van Soest, R.W.M. Phylogenetic relationships of the family Axinellidae (Porifera: Demospongiae) using morphological and molecular data. *Zool. Scr.* **2000**, *29*, 169–198.

22. Proksch, P.; Edrada, R.; Ebel, R. Drugs from the seas—Current status and microbiological implications. *Appl. Microbiol. Biot.* **2002**, *59*, 125–134.

23. Sipkema, D.; Franssen, M.; Osinga, R.; Tramper, J.; Wijffels, R. Marine sponges as pharmacy. *Mar. Biotechnol.* **2005**, *7*, 142–162.

24. Tymiak, A.A.; Rinehart, K.L., Jr.; Bakus, G.J. Constituents of morphologically similar sponges: *Aplysina* and *Smenospongia* species. *Tetrahedron* **1985**, *41*, 1039–1047.

25. Rinehart, K.L., Jr.; Shaw, P.D.; Shield, L.S.; Gloer, J.B.; Harbour, G.C.; Koker, M.E.S.; Samain, D.; Schwartz, R.E.; Tymiak, A.A.; Weller, D.L.; *et al*. Marine natural products as sources of antiviral, antimicrobial and antineoplastic agents. *Pure Appl. Chem.* **1981**, *53*, 795–817.
26. Goo, Y.M. Antimicrobial and antineoplastic tyrosine metabolites from a marine sponge, *Aplysina fistularis*. *Arch. Pharm. Res.* 1985, 8, 21–30.
27. Capon, R.; Macleod, J. Two epimeric dibromo nitriles from the Australian sponge *Aplysina laevis*. *Aust. J. Chem.* 1987, 40, 341–346.
28. Ajabnoor, M.A.M.; Tilmisany, A.K.; Taha, A.M.; Antonius, A. Isolation of antibiotic principles from some red sea sponges. *Egypt. J. Pharm. Sci.* 1991, 32, 797–815.
29. Gunasekera, S.P.; Cross, S.S. Fistularin 3 and 11-ketofistularin 3. Feline leukemia virus active bromotyrosine metabolites from the marine sponge *Aplysina archeri*. *J. Nat. Prod.* 1992, 55, 509–512.
30. Rodríguez, A.D.; Piña, I.C. The structures of aplysinamisines I, II, and III: New bromotyrosine-derived alkaloids from the Caribbean sponge *Aplysina cauliformis*. *J. Nat. Prod.* 1993, 56, 907–914.
31. Gopichand, Y.; Schmitz, F.J. Marine natural products: Fistularin-1, -2 and -3 from the sponge *Aplysina fistularis* forma fulva. *Tetrahedron Lett.* 1979, 20, 3921–3924.
32. Ajabnoor, M.A.M.; Tilmisany, A.K.; Taha, A.M.; Antonius, A. Effect of red sea sponge extracts on blood glucose levels in normal mice. *J. Ethnopharmacol.* 1991, 33, 103–106.
33. Pinheiro, U.S.; Hajdu, E.; Custódio, M.R. *Aplysina nardo* (Porifera, Verongida, Aplysinidae) from the Brazilian coast with description of eight new species. *Zootaxa* 2007, 1609, 1–51.
34. Ciminiello, P.; Costantino, V.; Fattorusso, E.; Magno, S.; Mangoni, A.; Pansini, M. Chemistry of Verongida sponges, II. Constituents of the Caribbean sponge *Aplysina fistularis* forma fulva. *J. Nat. Prod.* 1994, 57, 705–712.
35. Pauletti, P.M.; Cintra, L.S.; Braguine, C.G.; Filho, A.A.S.; Silva, M.L.A.; Cunha, W.R.; Januário, A.H. Halogenated indole alkaloids from marine invertebrates. *Mar. Drugs* 2010, 8, 1526–1549.
36. Aiello, A.; Fattorusso, E.; Imperatore, C.; Menna, M.; Müller, W. Iodocionin, a cytotoxic iodinated metabolite from the Mediterranean Ascidian *Ciona edwardsii*. *Mar. Drugs* 2010, 8, 285–291.
37. Cabrita, M.T.; Vale, C.; Rauter, A.P. Halogenated compounds from marine algae. *Mar. Drugs* 2010, 8, 2301–2317.
38. Vairappan, C.S.; Ishii, T.; Lee, T.K.; Suzuki, M.; Zhaoqi, Z. Antibacterial activities of a new brominated diterpene from Borneon *Laurencia* spp. *Mar. Drugs* 2010, 8, 1743–1749.
39. La Barre, S.; Potin, P.; Leblanc, C.; Delage, L. The Halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. *Mar. Drugs* 2010, 8, 988–1010.
40. Güven, K.C.; Percot, A.; Sezik, E. Alkaloids in marine algae. *Mar. Drugs* 2010, 8, 269–284.
41. Genovese, G.; Tedone, L.; Hamann, M.; Morabito, M. The Mediterranean red alga *Asparagopsis*: A source of compounds against Leishmania. *Mar. Drugs* 2009, 7, 361–366.
42. Matta, C.B.B.; Souza, E.T.; Queiroz, A.C.; Lira, D.P.; Araújo, M.V.; Cavalcante-Silva, L.H.A.; Miranda, G.E.C.; Araújo-Júnior, J.X.; Barbosa-Filho, J.M.; Santos, B.V.O.; et al. Antinociceptive and anti-inflammatory activity from algae of the genus *Caulerpa*. *Mar. Drugs* 2011, 9, 307–318.
43. Almeida, C.L.F.; Falcão, H.S.; Lima, G.R.M.; Montenegro, C.A.; Lira, N.S.; Athayde-Filho, P.F.; Rodrigues, L.C.; Souza, M.F.V.; Barbosa-Filho, J.M.; Batista, L.M. Bioactivities from marine algae of the genus *Gracilaria*. *Int. J. Mol. Sci.* 2011, 12, 4550–4573.

44. Souza, E.T.; Lira, D.P.; Queiroz, A.C.; Silva, D.J.C.; Aquino, A.B.; Mella, E.A.C.; Lorenzo, V.P.; Miranda, G.E.C.; Araújo-Júnior, J.X.; Chaves, M.C.O.; et al. The Antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus *Caulerpa*. *Mar. Drugs* 2009, 7, 689–704.

45. Queiroz, T.M.; Machado, N.T.; Furtado, F.F.; Oliveira-Filho, A.A.; Alustau, M.C.; Figueiredo, C.S.; Miranda, G.E.C.; Barbosa-Filho, J.M.; Braga, V.A.; Medeiros, I.A.; Vasorelaxation induced by *Dictyota pulchella* (Dictyotaceae), a brown alga, is mediated via inhibition of calcium influx in rats. *Mar. Drugs* 2011, 9, 2075–2088.

46. Lira, N.S.; Monte-Neto, R.L.; Marchi, J.G.B.; Lins, A.C.S.; Pinheiro, U.S.; Tavares, J.F.; Silva, M.S.; Cunha, E.V.L.; Braz Filho, R.; Santos, C.F.; et al. Aplysfistularine: A novel dibromotyrosine derivative isolated from *Aplysina fistularis*. *Mar. Drugs* 2011, submitted.

47. Lúcio, A.S.S.C.; Almeida, J.R.G.S.; Barbosa-Filho, J.M.; Pita, J.C.L.R.; Castello Branco, M.V.S.; Diniz, M.F.F.M.; Agra, M.F.; Cunha, E.V.L.; Silva, M.S.; Tavares, J.F. Azaphenathrene alkaloids with antitumoral activity from *Anaxagorea dolichocarpa* Sprague & Sandwith (Annonaceae). *Molecules* 2011, 16, 7125–7131.

48. Bitencourt, M.A.O.; Dantas, G.R.; Lira, D.P.; Barbosa-Filho, J.M.; Miranda, G.E.C.; Santos, B.V.O.; Souto, J.T. Aqueous and methanolic extracts of *Caulerpa mexicana* suppress cell migration and ear edema induced by inflammatory agents. *Mar. Drugs* 2011, 9, 1332–1345.

49. Alves, J.S.; Castro, J.C.M.; Freire, M.O.; da-Cunha, E.V.L.; Barbosa-Filho, J.M.; Silva, M.S. Complete assignment of the 1H and 13C NMR spectra of four triterpenes of the ursane, artane, lupane and friedelane groups. *Magn. Reson. Chem.* 2000, 38, 201–206.

50. Andrade, N.C.; Cunha, E.V.L.; Silva, M.S.; Agra, M.F.; Barbosa-Filho, J.M. Terpenoids of the Annonaceae: Distribution and Compilation of 13C NMR Data. In *Recent Research Developments in Phytochemistry*; Pandalai, S.G., Ed.; Research Signpost: Kerala, India, 2003; Volume 7, pp. 1–85.

51. Sena-Filho, J.G.; Duringer, J.; Maia, G.L.A.; Tavares, J.F.; Xavier, H.S.; Silva, M.S.; da-Cunha, E.V.L.; Barbosa-Filho, J.M. Ecdysteroids from *Vitex* species: Distribution and compilation of their 13C-NMR spectral data. *Chem. Biodivers.* 2008, 5, 707–713.

52. Oliveira, S.L.; Silva, M.S.; Tavares, J.F.; Sena-Filho, J.G.; Lucena, H.F.S.; Romero, M.A.V.; Barbosa-Filho, J.M. Tropane alkaloids from *Erythroxylum* genus: Distribution and compilation of 13C-NMR spectral data. *Chem. Biodivers.* 2010, 7, 302–326.

53. Almeida, R.N.; Navarro, D.S.; Barbosa-Filho, J.M. Plants with central analgesic activity. *Phytomedicine* 2001, 8, 310–322.

54. Silva, J.S.; Moura, M.D.; Oliveira, R.A.G.; Diniz, M.F.F.; Barbosa-Filho, J.M. Natural product inhibitors of ovarian neoplasia. *Phytomedicine* 2003, 10, 221–232.

55. Falcão, H.S.; Mariath, I.R.; Diniz, M.F.F.M.; Batista, L.M.; Barbosa-Filho, J.M. Plants of the American continent with antiulcer activity. *Phytomedicine* 2008, 15, 132–146.
56. Sousa, F.C.F.; Melo, C.T.V.; Citó, M.C.O.; Félix, F.H.C.; Vasconcelos, S.M.M.; Fonteles, M.M.F.; Barbosa Filho, J.M.; Viana, G.S.B. Plantas medicinais e seus constituintes bioativos: Uma revisão da bioatividade e potenciais benefícios nos distúrbios da ansiedade em modelos animais. Rev. Bras. Farmacogn. 2008, 18, 642–654.

57. Falcão, H.S.; Leite, J.A.; Barbosa-Filho, J.M.; Athayde-Filho, P.F.; Chaves, M.C.O.; Moura, M.D.; Ferreira, A.L.; Almeida, A.B.A.; Souza-Brito, A.R.M.; Diniz, M.F.F.M.; et al. Gastric and duodenal antiulcer activity of alkaloids: A review. Molecules 2008, 13, 3198–3223.

58. Mota, K.S.L.; Dias, G.E.N.; Pinto, M.E.F.; Luiz-Ferreira, A.; Souza-Brito, A.R.S.; Hiruma-Lima, C.A.; Barbosa-Filho, J.M.; Batista, L.M. Flavonoids with gastroprotective activity. Molecules 2009, 14, 979–1012.

59. Mariath, I.R.; Falcão, H.S.; Barbosa-Filho, J.M.; Sousa, L.C.F.; Tomaz, A.C.A.; Batista, L.M.; Diniz, M.F.F.M.; Athayde-Filho, P.F.; Tavares, J.F.; Silva, M.S.; et al. Plants of the American continent with antimalarial activity. Rev. Bras. Farmacogn. 2009, 19, 158–191.

60. Ribeiro Filho, J.; Falcao, H.S.; Batista, L.M.; Barbosa-Filho, J.M.; Piuvezam, M.R. Effects of Plant Extracts on HIV-1 Protease. Curr. HIV Res. 2010, 8, 531–544.

61. Lima, G.R.M.; Montenegro, C.A.; Almeida, C.L.F.; Athayde-Filho, P.F.; Barbosa-Filho, J.M.; Batista, L.M. Database survey of anti-inflammatory plants in South America: A review. Int. J. Mol. Sci. 2011, 12, 2692–2749.

62. Silva, F.L.; Fischer, D.C.H.; Tavares, J.F.; Silva, M.S.; Athayde-Filho, P.F.; Barbosa-Filho, J.M. Compilation of secondary metabolites from Bidens pilosa L. Molecules 2011, 16, 1070–1102.

63. Ciminiello, P.; Fattorusso, E.; Forino, M.; Magno, S.; Pansini, M. Chemistry of verongida sponges VIII-bromocompounds from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. Tetrahedron 1997, 53, 6565–6572.

64. Norte, M.; Rodriguez, M.L.; Fernández, J.J.; Eguren, L.; Estrada, D.M. Aplysinadiene and (R,R) 5 [3,5-dibromo-4-[2-oxo-5-oxazolidinyl]-methoxyphenyl]-2-oxazolidinone, two novel metabolites from Aplysina aerophoba Synthes. Tetrahedron 1988, 44, 4973–4980.

65. Borders, D.B.; Morton, G.O.; Wetzel, E.R. Structure of a novel bromine compound isolated from a sponge. Tetrahedron Lett. 1974, 15, 2709–2712.

66. Fattorusso, E.; Minale, L.; Sodano, G. Aeroplysinin-1, a new bromo-compound from Aplysina aerophoba. J. Chem. Soc. Chem. Comm. 1970, 751–752.

67. Cimino, G.; De Rosa, S.; De Stefano, S.; Self, R.; Sodano, G. The bromo-compounds of the true sponge Verongia aerophoba. Tetrahedron Lett. 1983, 24, 3029–3032.

68. Gunasekera, M.; Gunasekera, S.P. Dihydroxyaerothionin and aerophobin 1. Two brominated tyrosine metabolites from the deep water marine sponge Verongula rigida. J. Nat. Prod. 1989, 52, 753–756.

69. Kelecom, A.; Kannengiesser, G.J. Chemical constituents of Verongia sponges, II—Struture of two dibrominated compounds isolated from the Mediterranean sponge Verongia aerophoba. Ann. Acad. Braz. Sci. 1979, 51, 639–641.

70. Fattorusso, E.; Minale, L.; Sodano, G. Aeroplysinin-1, an antibacterial bromo-compound from the sponge Verongia aerophoba. J. Chem. Soc. Perk. Trans. 1 1972, 16–18.
71. Makarieva, T.N.; Stonik, V.A.; Alcolado, P.; Elyakov, Y.B. Comparative study of the halogenated tyrosine derivatives from Demospongiae (Porifera). Comp. Biochem. Phys. B 1981, 68, 481–484.

72. Mancini, I.; Guella, G.; Laboute, P.; Debitus, C.; Pietra, F. Hemifistularin 3: A degraded peptide or biogenetic precursor? Isolation from a sponge of the order Verongida from the coral sea or generation from base treatment of 11-oxofistularin 3. J. Chem. Soc. Perk. Trans. 1 1993, 3121–3125.

73. Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Magno, S. Archerine, a novel anti-histaminic bromotyrosine-derived compound from the Caribbean marine sponge Aplysina archeri. Eur. J. Org. Chem. 2001, 2001, 55–60.

74. Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Magno, S.; Carrano, L.; Pansini, M. Chemistry of Verongida sponges. VII bromomolecules from the Caribbean sponge Aplysina archeri. Tetrahedron 1996, 52, 9863–9868.

75. Saeki, B.M.; Granato, A.C.; Berlinck, R.G.S.; Magalhães, A.; Schefer, A.B.; Ferreira, A.G.; Pinheiro, U.S.; Hajdu, E. Two unprecedented dibromotyrosine-derived alkaloids from the Brazilian endemic marine sponge Aplysina caissara. J. Nat. Prod. 2002, 65, 796–799.

76. Lira, T.O.; Berlinck, R.G.S.; Nascimento, G.G.F.; Hajdu, E. Further dibromotyrosine-derived metabolites from the marine sponge Aplysina caissara. J. Braz. Chem. Soc. 2006, 17, 1233–1240.

77. Rodríguez, A.D.; Akee, R.K.; Scheuer, P.J. Two bromotyrosine-cysteine derived metabolites from a sponge. Tetrahedron Lett. 1987, 28, 4989–4992.

78. Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Magno, S.; Pansini, M. Chemistry of Verongida sponges. 9. Secondary metabolite composition of the Caribbean sponge Aplysina cauliformis. J. Nat. Prod. 1999, 62, 590–593.

79. D’Ambrosio, M.; Guerriero, A.; Traldi, P.; Pietra, F. Cavernicolin-1 and cavernicolin-2, epimeric dibromolactams from the Mediterranean sponge Aplysina (Verongia) cavernicola. Tetrahedron Lett. 1982, 23, 4403–4406.

80. D’Ambrosio, M.; Guerriero, A.; de Clauser, R.; de Stanchina, G.; Pietra, F. Dichloroverongiaquinol, a new marine antibacterial compound from Aplysina cavernicola. Isolation and synthesis. Cell. Mol. Life Sci. 1983, 39, 1091–1092.

81. D’Ambrosio, M.; Guerriero, A.; Pietra, F. Novel, racemic or nearly-racemic antibacterial bromo-and chloroquinols and γ-lactams of the verongiaquinol and the cavernicolin type from the marine sponge Aplysina (= Verongia) cavernicola. Helv. Chim. Acta 1984, 67, 1484–1492.

82. D’Ambrosio, M.; Mealli, C.; Guerriero, A.; Pietra, F. 7-Bromocavernicolone, a new α-bromoenone from the Mediterranean sponge Aplysina (=Verongia) cavernicola. Helv. Chim. Acta 1985, 68, 1453–1460.

83. Pereira, F.R.; Marques, S.O.; Nascimento, A.M.; Gandolfi, R.C.; Hajdu, E.; Peixinho, S.; Custódio, M.R.; Berlinck, R.G.S. Metabolitos Derivados da Dibromotirosina das Esponjas Aplysina fulva, A. comulosa (sp. n.) and A. fistularis. In XXIX Reunião Anual da Sociedade Brasileira de Química; Sociedade Brasileira de Química: Águas de Lindóia, Brazil, 2006; p. 335.

84. Xynas, R.; Capon, R.J. Two new bromotyrosine-derived metabolites from an Australian marine sponge, Aplysina sp. Aust. J. Chem. 1989, 42, 1427–1433.
85. Tymiak, A.A. Structure elucidation and biosynthesis of selected bioactive marine natural products. *Dissert. Abs. Int. B* **1985**, *43*, 3990–3991.
86. Rinehart, K.L., Jr.; Johnson, R.D.; Paul, I.C.; McMillan, J.A.; Siuda, J.F.; Krejcarek, G.E. Identification of Compounds in Selected Marine Organisms by Gas Chromatography-Mass Spectrometry, Field Desorption Mass Spectrometry, and Other Physical Methods. In *Food—Drugs from the Sea: Proceedings, 1974*; Webber, H.H., Ruggieri, G.D., Eds.; Marine Technology Society: Columbia, MD, USA, 1976.
87. Sharma, G.M.; Vig, B.; Burkholder, P.R. Antimicrobial substances of sponges. IV. Structure of a bromine-containing compound from a marine sponge. *J. Org. Chem.* **1970**, *35*, 2823–2826.
88. Gandolfi, R.C.; Medina, M.B.; Berlineck, R.G.S.; Lira, S.P.; Galetti, F.C.S.; Silva, C.L.; Veloso, K.; Ferreira, A.G.; Hajdu, E.; Peixinho, S. Metabólitos secundários das esponjas *Aplysina fistularis* e *Dysidea* sp. e atividade antituberculose da 11-cetofistularina-3. *Quim. Nova* **2010**, *33*, 1853–1858.
89. Walker, R.P.; Thompson, J.E.; Faulkner, D.J. Exudation of biologically-active metabolites in the sponge *Aplysina fistularis*. II. Chemical evidence. *Mar. Biol.* **1985**, *88*, 27–32.
90. Kobayashi, J.I.; Tsuda, M.; Agemi, K.; Shigemori, H.; Ishibashi, M.; Sasaki, T.; Mikami, Y. Purealidins B and C, new bromotyrosine alkaloids from the Okinawan marine sponge *Psammaplysilla purea*. *Tetrahedron* **1991**, *47*, 6617–6622.
91. Krejcarek, G.E.; White, R.H.; Hager, L.P.; McClure, W.O.; Johnson, R.D.; Rinehart, K.L.; McMillan, J.A.; Paul, I.C.; Shaw, P.D.; Brusca, R.C. A rearranged dibromotyrosine metabolite from *Verongia aurea*. *Tetrahedron Lett.* **1975**, *16*, 507–510.
92. Sharma, G.M.; Burkholder, P.R. Studies on antimicrobial substances of sponges. I. Isolation, purification, and properties of a new bromine-containing antibacterial substance. *J. Antibiot.* **1967**, *20*, 200–203.
93. Sharma, G.M.; Burkholder, P.R. Studies on the antimicrobial substances of sponges II. Structure and synthesis of a bromine-containing antibacterial, compound from a marine sponge. *Tetrahedron Lett.* **1967**, *8*, 4147–4150.
94. Minale, L. Natural product chemistry of the marine sponges. *Pure Appl. Chem.* **1976**, *48*, 7–23.
95. Minale, L.; Cimino, G.; de Stefano, S.; Sodano, G. Natural products from Porifera. *Fortschr. Chem. Org. Naturst.* **1976**, *33*, 1–72.
96. Carney, J.R.; Rinehart, K.L. Biosynthesis of brominated tyrosine metabolites by *Aplysina fistularis*. *J. Nat. Prod.* **1995**, *58*, 971–985.
97. Nuñez, C.V.; Almeida, E.V.R.; Granato, A.C.; Marques, S.O.; Santos, K.O.; Pereira, F.R.; Macedo, M.L.; Ferreira, A.G.; Hajdu, E.; Pinheiro, U.S.; et al. Chemical variability within the marine sponge *Aplysina fulva*. *Biochem. Syst. Ecol.* **2008**, *36*, 283–296.
98. Rogers, E.W.; Oliveira, M.F.; Berlinck, R.G.S.; König, G.M.; Molinski, T.F. Stereochimical heterogeneity in Verongid sponge metabolites. absolute stereochemistry of (+)-fistularin-3 and (+)-11-epi-fistularin-3 by microscale LCMS-Marfey’s analysis. *J. Nat. Prod.* **2005**, *68*, 891–896.
99. Rogers, E.W.; Molinski, T.F. Highly polar spiroisoxazolines from the sponge *Aplysina fulva*. *J. Nat. Prod.* **2007**, *70*, 1191–1194.
100. Encarnación, R.D.; Sandoval, E.; Malmstrøm, J.; Christophersen, C. Calafianin, a bromotyrosine derivative from the marine sponge *Aplysina gerardogreeni*. *J. Nat. Prod.* **2000**, *63*, 874–875.
101. Hernández-Guerrero, C.J.; Zubía, E.; Ortega, M.J.; Carballo, J.L. Cytotoxic dibromotyrosine-derived metabolites from the sponge *Aplysina gerardogreeni*. *Bioorg. Med. Chem.* 2007, 15, 5275–5282.

102. Fendert, T.; Wray, V.; van Soest, R.W.M.; Proksch, P. Bromoisoxazoline alkaloids from the Caribbean sponge *Aplysina insularis*. *Z. Naturforsch.* 1999, 54c, 246–252.

103. Compagnone, R.S.; Avila, R.; Suárez, A.I.; Abrams, O.V.; Rangel, H.R.; Arvelo, F.; Piña, I.C.; Merentes, E. 11-Deoxyfistularin-3, a new cytotoxic metabolite from the Caribbean sponge *Aplysina fistularis insularis*. *J. Nat. Prod.* 1999, 62, 1443–1444.

104. Acosta, A.L.; Rodríguez, A.D. 11-Oxoaerothionin: A cytotoxic antitumor bromotyrosine-derived alkaloid from the Caribbean marine sponge *Aplysina lacunosa*. *J. Nat. Prod.* 1992, 55, 1007–1012.

105. Evan, T.; Rudi, A.; Ilan, M.; Kashman, Y. Aplyzanzine A, a new dibromotyrosine derivative from a Verongida sponge. *J. Nat. Prod.* 2001, 64, 226–227.

106. Kossuga, M.H.; Lira, S.P.; Nascimento, A.M.; Gambardella, M.T.P.; Berlinck, R.G.S.; Torres, Y.R.; Nascimento, G.G.F.; Pimenta, E.F.; Silva, M.; Thiemann, O.H.; *et al.* Isolamento e atividades biológicas de produtos naturais das esponjas *Monanchora arbuscula*, *Aplysina* sp. *Petromica ciocalyptoides* e *Topsentia ophiraphidites*, da ascídia *Didemnum ligulum* e do octocoral *Carijoa riisei*. *Quim. Nova* 2007, 30, 1194–1202.

107. Kashman, Y.; Groweiss, A.; Carmely, S.; Kinamoni, Z.; Czarkie, D.; Rotem, M. Recent research in marine natural products from the red sea. *Pure Appl. Chem.* 1982, 54, 1995–2010.

108. Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Magno, S.; Pansini, M. Chemistry of Verongida sponges. 10. Secondary metabolite composition of the Caribbean Sponge *Verongula gigantea*. *J. Nat. Prod.* 2000, 63, 263–266.

109. Cruz, F.; Quijano, L.; Gómez-Garibay, F.; Rios, T. Brominated metabolites from the sponge *Aplysina* (=*Verongia*) *thiona*. *J. Nat. Prod.* 1990, 53, 543–548.

110. Ayanoglu, E.; Djerassi, C.; Erdman, T.R.; Scheuer, P.J. Minor and trace sterols in marine invertebrates V. isolation, structure elucidation and synthesis of 3[beta]-hydroxy-26,27-bisnorcholest-5-en-24-one from the sponge *Psammaplysilla purpurea*. *Steroids* 1978, 31, 815–822.

111. Carballeira, N.M.; Bou, C.R. The sterol composition of the marine sponge *Aplysina* (=*Verongia*) *archeri*: A comparative study of the Verongidae. *Comp. Biochem. Phys. B* 1989, 93, 175–179.

112. Hertzberg, S.; Bergquist, P.; Liaaen-Jensen, S. Further occurrence of sulphated carotenoids in *Ianthella* species (Desmospongia). *Biochim. Biol. Acta* 1989, 17, 51–53.

113. Nichols, S.A. An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. *Mol. Phylogenet. Evol.* 2005, 34, 81–96.

114. Lawson, M.; Thompson, J.; Djerassi, C. Localization of long-chain fatty acids and unconventional sterols in spherulous cells of a marine sponge. *Lipids* 1988, 23, 1037–1048.

115. Ciminiello, P.; Fattorusso, E.; Magno, S.; Pansini, M. Chemistry of Verongida sponges VI. Comparison of the secondary metabolic composition of *Aplysina insularis* and *Aplysina fulva*. *Biochem. Syst. Ecol.* 1996, 24, 105–113.
116. Hamann, M.T.; Scheuer, P.J.; Kelly-Borges, M. Biogenetically diverse, bioactive constituents of a sponge, order Verongida: Bromotyramines and sesquiterpene-shikimate derived metabolites. *J. Org. Chem.* **1993**, *58*, 6565–6569.

117. D’Ambrosio, M.; Guerrero, A.; Pietra, F. N-Carbamoylpyrrolidine and 7-chlorocavernicolenone, two new metabolites of the Mediterranean sponge *Aplysina (=Verongia) cavernicola*. *Comp. Biochem. Phys. B* **1986**, *83*, 309–312.

118. Cavazza, M.; Guella, G.; Nucci, L.; Pergola, F.; Bicchierini, N.; Pietra, F. Anodic oxidation of 3,5-dihalogenotyrosines as a model reaction for the biogenesis of the cavernicolins, metabolites of the Verongid sponge *Aplysina cavernicola*. *J. Chem. Soc. Perk. Trans. 1* **1993**, *3117–3120.

119. Calcul, L.; Inman, W.D.; Morris, A.A.; Tenney, K.; Ratnam, J.; McKerrow, J.H.; Valeriote, F.A.; Crews, P. Additional insights on the bastadins: Isolation of analogues from the sponge *Ianthella reticulata* and exploration of the oxime configurations. *J. Nat. Prod.* **2010**, *73*, 365–372.

120. Andersen, R.J.; Faulkner, D.J. A novel antibiotic from a sponge of the genus *Verongia*. *Tetrahedron Lett.* **1973**, *14*, 1175–1178.

121. Kasperek, G.J.; Bruice, T.C.; Yagi, H.; Kaubsich, N.; Jerina, D.M. Solvolytic chemistry of 1,4-dimethylbenzene oxide. A new and novel mechanism for the NIH shift. *J. Am. Chem. Soc.* **1972**, *94*, 7876–7882.

122. Huang, X.-P.; Deng, Z.-W.; van Soest, R.W.M.; Lin, W.-H. Brominated derivatives from the Chinese sponge *Pseudoceratina* sp. *J. Asian Nat. Prod. Res.* **2008**, *10*, 239–242.

123. Kossuga, M.H.; MacMillan, J.B.; Rogers, E.W.; Molinski, T.F.; Nascimento, G.G.F.; Rocha, R.M.; Berlinck, R.G.S. (2S,3R)-2-Aminododecan-3-ol, a new antifungal agent from the Ascidian *Clavelina oblonga*. *J. Nat. Prod.* **2004**, *67*, 1879–1881.

124. Peng, J.; Li, J.; Hamann, M.T. The Marine Bromotyrosine Derivatives. In *The Alkaloids: Chemistry and Biology*; Cordell, G.A., Ed.; Academic Press: Gulf Breeze, FL, USA, 2005; Volume 61, p. 59.

125. Aiello, A.; Fattorusso, E.; Menna, M.; Pansini, M. Chemistry of Verongida sponges—V. Brominated metabolites from the Caribbean sponge *Pseudoceratina* sp. *Biochem. Syst. Ecol.* **1995**, *23*, 377–381.

126. Moody, K.; Thomson, R.H.; Fattorusso, E.; Minale, L.; Sodano, G. Aerothionin and homoaerothionin: Two tetrabromo spirocyclohexadienylisoxazoles from *Verongia* sponges. *J. Chem. Soc. Perk. Trans 1* **1972**, *1*, 18–24.

127. Bergquist, P.R. *Sponges*; University of California Press: Berkeley and Los Angeles, CA, USA, 1978.

128. Teeyapant, R.; Proksch, P. Biotransformation of brominated compounds in the marine sponge *Verongia aerophoba*—Evidence for an induced chemical defense? *Naturwissenschaften* **1993**, *80*, 369–370.

129. Ebel, R.; Brenzinger, M.; Kunze, A.; Gross, H.J.; Proksch, P. Wound Activation of protoxins in marine sponge *Aplysina aerophoba*. *J. Chem. Ecol.* **1997**, *23*, 1451–1462.

130. Puyana, M.; Fenical, W.; Pawlik, J.R. Are there activated chemical defenses in sponges of the genus *Aplysina* from the Caribbean? *Mar. Ecol. Prog. Ser.* **2003**, *246*, 127–135.

131. Weiss, B.; Ebel, R.; Elbrächter, M.; Kirchner, M.; Proksch, P. Defense metabolites from the marine sponge *Verongia aerophoba*. *Biochem. Syst. Ecol.* **1996**, *24*, 1–7.
132. Koulman, A.; Proksch, P.; Ebel, R.; Beekman, A.C.; van Uden, W.; Konings, A.W.T.; Pedersen, J.A.; Pras, N.; Woerdenbag, H.J. Cytoxicity and mode of action of aeroplysinin-1 and a related dieneone from the sponge *Aplysina aerophoba*. *J. Nat. Prod.* **1996**, *59*, 591–594.

133. Nagaraja, K.V.; Shaw, P.D. Inhibition of wheat germ RNA polymerase II by 2,6-dibromobenzoquinone and related compounds from *Aplysina fistularis*. *Arch. Biochem. Biophys.* **1982**, *215*, 544–550.

134. Chang, C.W.J.; Weinheimer, A.J. 2-Hydroxy, 3,5-dibromo, 4-methoxyphenylacetamide. A dibromotyrosine metabolite from *Psammopilla purpurea*. *Tetrahedron Lett.* **1977**, *18*, 4005–4007.

135. Fulmor, W.; Van Lear, G.E.; Morton, G.O.; Mills, R.D. Isolation and absolute configuration of the aeroplysinin I enantiomorph pair from *Ianthella ardis*. *Tetrahedron Lett.* **1970**, *11*, 4551–4552.

136. Gutiérrez, M.; Capson, T.L.; Guzmán, H.M.; González, J.; Ortega-Barría, E.; Quínoa, E.; Riguera, R. Antiprotozoal activity against *Plasmodium falciparum* and *Trypanosoma cruzi* of aeroplysinin-1 isolated from the new sponge *Aplysina chiriquensis*. *Pharm. Biol.* **2005**, *43*, 762–765.

137. Córdoba, R.; Tormo, N.S.; Medarde, A.F.; Plumet, J. Antiangiogenic versus cytotoxic activity in analogues of aeroplysinin-1. *Bioorg. Med. Chem.* **2007**, *15*, 5300–5315.

138. Simões, C.M.O.; Petrovick, P.R. *Farmacognosia: Da Planta ao Medicamento*, 6 ed.; Editora da UFSC: Santa Catarina, Brasil, 2010.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).