CELLULOLOYTIC MICROORGANISMS: DIVERSITY AND ROLE IN CONVERSION OF RICE STRAW TO BIOETHANOL

PARDEEP KAUR,* MONICA SACHDEVA TAGGAR** and JASPREET KAUR***

*Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, India
**Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana-141004, India
***Department of Biochemistry, Punjab Agricultural University, Ludhiana-141004, India
✉ Corresponding author: P. Kaur, pardeepkaur2108@gmail.com

Received December 25, 2019

Lignocellulosic biomass is considered to be an inexhaustible biopolymer known to mankind. For the successful exploitation of lignocellulosic biomass, such as rice straw, as a substrate for the production of industrially significant value-added products, such as bioethanol, its conversion into fermentable sugars, sugar acids and phenolics is the most imperative step. Enzymatic hydrolysis of lignocelluloses is performed by cellulases, a complex enzyme system comprising endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase and β-D-glucosidase. Cellulases are produced by a diverse range of microorganisms, including bacteria, fungi, actinomycetes, algae, insects and mollusks. However, the cost of cellulase is a major economic barrier for ethanol production. To economize the ethanol production process for its successful utilization at the industrial scale, genetic improvement of microorganisms, and other industrially relevant strategies of enzyme production and recycling need to be adopted.

Keywords: lignocellulose, rice straw, cellulases, hydrolysis, bioethanol

INTRODUCTION

A spurt in industrialization, booming population growth, injudicious utilization of natural resources over the past few decades have compelled us to exploit alternative renewable energy resources to meet the upsurging energy demands. Lignocellulosic biomass like rice straw is a widely available, cheap, polymeric, renewable resource and has attracted wide interest in the search of alternative ways to meet future energy demands. The chemical composition of rice straw, with 32-47% cellulose, 19-27% hemicelluloses and 5-24% lignin, makes it an ideal substrate for ethanolic fermentation. Complete and efficient hydrolysis of cellulose requires an enzyme complex called cellulase enzyme complex, involving the synergistic action of different enzymes, viz. exo-glucanases, endoglucanases and β-glucosidase. Cellulases belong to the glycoside hydrolase family of enzymes and act by cleaving β,1-4 glycosidic bonds of polysaccharides and oligosaccharides. Cellulases are produced by diverse types of microorganisms, including bacteria, fungi, actinomycetes, algae, insects and mollusks. However, the major impediment in the successful commercialization of cellulase is its exorbitant cost. A wide array of strategies, such as the isolation of potential cellulase producing microorganisms, use of low-cost substrates, such as rice bran, rice straw, wheat bran, coconut coir pith etc., and solid substrate fermentation as a mode of enzyme production, improved cellulase synthesis by genetic engineering, and recycling of cellulase by immobilization, could appreciably bring down the cost of the saccharification process. The present review synthesizes available information on cellulose, its structure and the historical background of its research, as well as on cellulase complexes, their structure and catalytic mechanisms, the microbial sources of cellulases and their role in the conversion of lignocellulosic biomass (rice straw) to ethanol. Also, the review discusses some challenges in the way of ethanol production and proposes future research directions.
CELLULOSE – FUNDAMENTAL ASPECTS AND HISTORICAL BACKGROUND

Cellulose is known to be the most abundant and almost inexhaustible biopolymer. As per estimations, 10^{11}-10^{12} tons of cellulose is synthesized annually through photosynthesis, either in pure form or in combination with lignin and other polysaccharides, such as hemicelluloses. The trend towards these kinds of resources and their customization to obtain novel products to be used for the welfare of mankind has led to a resurgence of integrative cellulose research and an immense interest in using this biopolymer. Cellulose as a polymeric raw material has been used for a wide variety of purposes for centuries, e.g. for the production of paper products, such as cotton, rayon and linen for clothes. Cellulose also acts as a precursor for many chemical conversions involved in the production of stable cellulose derivatives, e.g. nitrocellulose for explosives and cellulose acetate for films. The name ™cellulose was coined by Payen, as early as in 1838, who was the first to recognize it as a definitive substance. Important landmarks in the field of cellulose research were the discovery of cellulose nitrate by Schönbein, Schweizer’s reagent (cuprammonium hydroxide solution) as the first cellulose solvent in 1857 (Schweizer, 1856, 1857, 1859), and cellulose acetate synthesis. The fundamental experiments of Staudinger16-17 on the acetylation and deacetylation of cellulose led to the evolution of cellulose chemistry as a branch of polymer research.

Diversity of cellulose

Cellulose is derived from lignocellulosic materials, such as agricultural residues, plant fibers, grasses and wood. Lignocellulosic biomass is primarily composed of cellulose, hemicellulose, and lignin, the composition of which may vary depending on the type of biomass, e.g. corn stover, straw, wheat straw, algae and others (Table 1). Cellulose is synthesized by a multitude of microorganisms, bacterial species, e.g., Acetobacter, Rhizobium and Agrobacterium. Besides, some pathogenic bacteria have also been found to synthesize cellulose. Cyanobacteria, which represent the most primitive forms of life on the earth, also synthesize cellulose. Eukaryotic organisms like fungi, amoebae, cellular slime molds, and green algae, are also known to produce cellulose. In fact, green alga Valonia ventricosa is known to produce one of nature’s most perfect crystalline forms of cellulose. Cellulose is also synthesized by marine and freshwater algae, including land plants, such as mosses, ferns, angiosperms, and gymnosperms, and even by some animals, such as the tunicates.

Structure of cellulose

Cellulose exists in nature in two states: crystalline and non-crystalline. The crystalline state has further six different polymorphs: cellulose I, II, IIIβ, IIIγ, IVα, and IVβ. Cellulose I and II are prevalent and the other polymorphs can be obtained artificially employing chemical or heat treatments. Cellulose I is more abundantly present than cellulose II, and has two allomorphs denominated as Iα and Iβ. Based on its structure, cellulose can be defined as a linear homopolymer made up of β-D-glucopyranos units, linked by β-1,4-glycosidic bonds with anhydroglucose (C$_6$H$_{10}$O$_5$)n, as its monomeric unit (Fig. 1).

The dimeric form of cellulose, cellobiose is a structural repetitive unit of the cellulose chain, which is made up of two glucose residues linked by β-1,4 linkage. The degree of polymerization of cellulose, n, is dictated by the number of monomers present in the cellulose chain and varies between 10,000 to 15,000. Cellulose is an amphiphilic structure with a clear demarcation of polar (OH) and nonpolar (CH) patches. The β-(1,4) linkage between glucose residues confers unique structural characteristics to cellulose. Cellulose exists in the form of microfibrils, with approximately 36 glucose chains stabilized by intra- and inter-hydrogen bonding, which impart greater stability to microfibrils. These microfibrils are further organized into superassemblies, such as cell walls, fibers, and pellicles.

Cellulose fibers present in the natural environment lack pure crystallinity. This deviation is believed to be variable and has resulted in the genesis of a notion called “lateral order distribution” of crystallinity, comprising purely crystalline to purely amorphous cellulose fibers with all intermediary degrees of order. The cellulose fibers contain various types of indentations, such as kinks or twists, or voids such as surface micropores and capillaries. In addition to imparting a greater surface area to the cellulose fiber, the structural heterogeneity within the fiber results in partial hydration by water on immersion into aqueous media and also permits the penetration of relatively large molecules like...
cellulolytic enzymes via the micropores and capillaries.⁴²

Table 1
Chemical composition of different lignocellulosic biomass

Lignocellulosic biomass	Cellulose (%)	Hemicellulose (%)	Lignin (%)	References
Hardwood				
Oak	40.4	35.9	24.1	[24]
Eucalyptus	54.1	18.4	21.5	[24]
Hardwood bark	22-40	20-38	30-35	[24]
Hardwood stems	40-45	18-40	18-28	[25]
Softwood				
Pine	42-50	24-27	20	[24]
Douglas fir	44	11	27	[24]
Spruce	45.5	22.9	27.9	[24]
Softwood stem	34-50	21-35	28-35	[25]
Wheat straw	35.0-39.0	23.0-30.0	12.0-16.0	[26]
Barley hull	34.0	36.0	13.8-19.0	[24]
Rice straw	29.2-34.7	23.0-25.9	17.0-19.0	[27,28]
Barley straw	36.0-43.0	24.0-33.0	6.3-9.8	[29]
Sugarcane bagasse	25.0-45.0	28.0-32.0	15.0-25.0	[30]
Sorghum straw	32.0-35.0	24.0-27.0	15.0-21.0	[24]
Corn cobs	33.7-41.2	31.9-36.0	6.1-15.9	[31]
Corn shank	33.8	20.1	31.1	[32]
Corn stover	37.4-42	20-28	18-22	[33]
Areca nut shell	38.4	17.2	25.1	[32]
Areca nut sheath	17.8	10.4	20.2	[32]
Bamboo	45.7	26.5	21.1	[31]
Grasses				
Grasses	25.0-40.0	25.0-50.0	10.0-30.0	[24]
Switchgrass	35.0-40.0	25.0-30.0	15.0-20.0	[34]
Bermuda grass	25.0	35.7	9-18	[32]
Miscanthus	40	18	23	[35]
Others				
Waste papers from chemical pulps	12-20	50-70	6-10	[36]
Newspaper	40-55	25-40	18-30	[36]
Manure solid fibres	8-27	12-22	2-13	[37]

![Figure 1: Structure of cellulose](image)

CELLULASE COMPLEXES

The cellulase is the chief enzyme involved in the breakdown of cellulose into simple sugars. Cellulases act by hydrolyzing the β-1,4 linkages in the cellulose chains. The families of catalytic modules of cellulases have been classified based on amino acid sequences and crystal structures.⁴³ Cellulases also consist of non-catalytic...
carbohydrate-binding modules (CBMs) and modules of known or unknown functions, located at the N- or C-terminus of a catalytic module.

Cellulolytic microorganisms have evolved different strategies for cellulose degradation, these microorganisms have either discrete uncomplexed cellulases or complexed cellulases. In general, most aerobic cellulolytic microorganisms degrade cellulose by secreting a set of individual cellulases, each of which contains a CBM adhered to the catalytic module by a flexible linker peptide. In the case of anaerobic microorganisms, large multi-enzyme complexes (approx. 1 million molecular mass), called cellulosomes, are present.

Three-dimensional cellulase structure

The function of cellulase enzymes has been unravelled with the help of crystal structures of glycoside hydrolase (GH). It has been elucidated that CBM and a catalytic domain (CD), connected by a non-structured linker peptide are the two domains present in the endo-cellulases and exo-cellulases. CBMs are non-catalytic, functionally independent domains connected to the catalytic domain of many GHs. Based on fold and carbohydrate recognition, 68 families of CBMs have been classified. The binding of CBM to the cellulose fibers possibly helps to localize the catalytic modules on crystalline cellulosic substrates and target specific carbohydrate structures, as well as aids in the disintegration of lignocelluloses. As the catalytic domain of cellulase contains the active site, it must be able to bind, orient, and hydrolyze the β-(1, 4)-glycosidic bond. Interestingly, the presence of a tunnel-like structure around the active site seems to be important in the determination of the enzyme’s processivity. One such highly processive enzyme is Cel7A, with an enclosed “tunnel” that accommodates a single cellulose chain threaded through the active site. On the other hand, less processive enzymes, which lack these tunnels around their active sites, allow cellulases to bind and arbitrarily release cellulose chains.

Catalytic mechanisms

There are two major catalytic mechanisms for glycosidic bond hydrolysis: retaining and inverting. During the retaining mechanism, glycosidic oxygen is initially protonated via the acid/base catalyst, along with the formation of a glycosyl-enzyme intermediate through the nucleophile. The further step involves the subsequent hydrolysis of the intermediate via attack by a water molecule, generating a product with the same stereochemistry as that of the substrate (Fig. 2a). During the inverting mechanism, single-step protonation of the glycosidic oxygen via the acid/base catalyst takes place, along with the nucleophile activated attack of a water molecule, generating a product with the opposite stereochemistry as that of the substrate (Fig. 2b). The type of mechanism, retaining or inverting, is conserved for a given glycoside hydrolase family and is dictated by various factors, such as the architecture of active-site and atomic distance between the acid/base and nucleophilic residues, such as aspartic and/or glutamic acids.

ENZYME SYSTEM FRAMEWORKS IN MICROORGANISMS

Free enzyme system

In nature, complete cellulase hydrolysis is mediated by the collaborative action of three principal enzymes, viz., endoglucanase (EC 3.2.1.4), exoglucanase including cellobiohydrolases (CBHs) (EC 3.2.1.91) and β-glucosidase (EC 3.2.1.21). The amorphous (internal) regions of the fibrils are preferentially hydrolyzed by endoglucanases, by randomly cleaving β-glycosidic bonds; cellobiohydrolases are exoglucanases, which act to release the cellobiose from the termini of cellulose chains, while β-glucosidases hydrolyze cellobiose and other cellodextrins into glucose units, thus completing the degradation process. The free cellulases are produced by fungi, bacteria, protozoans, plants and animals, and belong to the glycoside hydrolase (GH) families (Table 2). More than 48,000 CBM sequences have been classified into 71 CBM families based on sequence similarity, and the structures of 271 representative CBMs have been reported until now. Based on the structure and potential to affect the function of associated catalytic domain, three types of CBMs (types A, B and C) have been identified. Type A CBMs interact with the planar surfaces of cellulose by aromatic amino acid side chains of Trp, Tyr and Phe. Type B CBMs interact with amorphous regions of cellulose and hemicelluloses by an open cleft associated with it. Type C CBMs are believed to bind short soluble oligosaccharides. Due to the variable binding strategies of these CBMs,
they have great effects on the catalytic rates of the attached enzyme.

Endoglucanase

Endoglucanase or carboxymethyl cellulases arbitrarily hydrolyze carboxymethyl cellulose (CMC), resulting in a rapid shortening of cellulose and a gradual increase in reducing sugar concentration. Both the reducing and non-reducing ends of the cellulose chains are exposed by the activity of endoglucanases. Different catalytic modules belonging to families 5–9, 12, 44, 45, 48, 51 and 74 are produced by archaea, bacteria, fungi, plants and animals. Generally, fungal endoglucanases contain a catalytic module, with or without a CBM, while bacterial endoglucanases may contain multiple catalytic modules, CBMs, and other modules with unknown function. A cleft/grove-shaped active site is the characteristic feature present in the catalytic modules of most endoglucanases. The cleft-like structure aids in binding and cleaving the cellulose chain and consequently generates an array of small and insoluble cellulose fragment. However, some endoglucanases act “processively”, based on their ability to hydrolyze crystalline cellulose and generate cellobiose or longer cellodextrins as the major products.

Exoglucanase

Exoglucanase acts at the non-reducing end of the cellulose chain and degrades it by splitting the cellobiose units. Exoglucanases are known to act on swollen, partially degraded amorphous substrates and cellodextrins, but are incapable of hydrolyzing the soluble derivatives of cellulose like carboxymethyl cellulose and hydroxyethyl cellulose. Cellobiohydrolase (CBH) is the most-studied exoglucanase. Different CBHs are produced by many bacteria and fungi, with catalytic modules belonging to families 5, 6, 7, 9, 48 and 74 glycoside hydrolases. Aerobic fungal CBHs are in families 6 and 7 only; aerobic bacterial CBHs in families 6 and 48; anaerobic fungal CBHs are in family 48; and anaerobic bacterial CBHs are in family 9, as well as 48.

β-D-glucosidase

β-Glucosidases (BG’s) hydrolyze soluble cellodextrins and cellobiose to glucose. β-Glucosidases do not contain a carbohydrate-binding module (CBM). Their activity of BG on insoluble cellulose is negligible. Different BGs are produced by various archaea, bacteria, fungi, plants, and animals, with different catalytic modules belonging to families 1, 3 and 9.

![Figure 2: Major catalytic mechanism of glycosidic bond hydrolysis; a) retaining mechanism, b) inverting mechanism](image-url)
Table 2
Glycosidic families exhibiting cellulase activity

GH family	Enzymes	Catalytic mechanism	Commercial enzyme provider
GH1	β-Glucosidase, β-galactosidase, β-mannosidase, and β-glucuronidase; but not β-xylosidase activity	Retaining	Megazyme; Nzytech; Prozomix
GH3	β-Glucosidase and β-xylosidase activities; glucan 1,3-β-glucosidase, glucan 1,4-β-glucosidase and exo-1,3(4)-glucanase activities	Retaining	Megazyme; Prozomix
GH5	Cellulase and hemicellulase activities, including endoglucanase, xylanase, 1,3-mannanase; β-mannosidase, glucan 1,3-β-glucosidase, glucan endo-1,6-β-glucosidase, endo-1,6-β-galactanase, and xyloglucan-specific endo-1,4-β-glucanase activities	Retaining	Megazyme; Nzytech; Prozomix
GH6	Cellulase activities in both aerobic bacteria and fungi: both endo- and exo-glucanase activities	Inverting	-
GH7	Cellulase activities (fungi): both endo- and exo-glucanase activities	Retaining	-
GH8	Major cellulase family, with members exhibiting lichenanase and xylanase activities	Inverting	Nzytech; Prozomix;
GH9	Endo-, processive endo-, and exoglucanase activities in bacteria, plants and fungi (rare in archaea)	Inverting	-
GH12	Endoglucanase, xyloglucanase, and 1,3(4)-β-glucanase in the three domains of life (archaea, bacteria and eukarya)	Retaining	Megazyme
GH44	Endoglucanase and xyloglucanase activities, mainly in bacteria	Retaining	Nzytech; Prozomix
GH45	Endoglucanase activity, mainly in fungi (some bacteria)	Inverting	-
GH48	Celllobiohydrolases acting from the reducing ends of cellulose and endoprocessive cellulases; mainly in bacteria	Inverting	Nzytech
GH74	Xyloglucanase and endoglucanase activities	Inverting	Nzytech
GH124	Endoglucanase	Inverting	-

Based on experimental data or structural homology analysis, it has been established that the stereochemistry of families 1 and 3 BGs is of the retaining type, while that of family 9 BG is of inverting type. Most of the time, aerobic fungi produce extracellular BGs, and anaerobic bacteria restrict the BGs to the cytoplasm. The BGs consist of a pocket-shaped active site, which allows to bind a non-reducing glucose unit and clip off the glucose from cellobiose or cellodextrin.63

Self-assembling, aggregated enzyme complex

Some bacteria, such as *Clostridium thermocellum*, and a few rumen bacteria, such as *Fibrobacter succinogenes* and *Ruminococcus albus*, as well as fungi, have evolved an alternative plant cell wall-degrading enzyme paradigm that involves large, multienzyme complexes commonly bound to the cell surface by long linker peptides and large glycoproteins, called scaffoldins. In contrast to monofunctional enzyme systems, a gigantic, multifunctional mega-Dalton-sized complex, called cellulosome is present in many anaerobic bacteria, produced as a result of non-covalent linkage of a multitude of enzymes to scaffoldin. Cellulosome producing bacterial species are known to be present in diverse ecosystems, including forest and pasture soils, hot spring pools, sewage sludge, compost piles, and the microbiota of both vertebrates and invertebrates.64,65 The first cellulosome complex was discovered in the early 1980s, in the highly cellulolytic thermophilic anaerobe *Clostridium thermocellum*.66 Cellulosomes are mainly made up of two building blocks: dockerin containing enzymes or ancillary protein, and cohesin containing structural proteins, called as
scaffoldins (Fig. 3). The complementary modules – cohesins and dockerins – are tightly bound to each other and their high-affinity, type- and species-specific, non-covalent interaction dictates the integration of enzymes into the complex, as well as its final architecture. Scaffolds also contain a dockerin module, which may bind to other scaffoldins and a CBM, which is joined by a short polylinker region to the catalytic domain at the N-terminal. The function of the CBM is to direct the entire cellulosome complex to the target site, i.e., cellulbioic biomass. The CBM is composed of approximately 35 amino acids, while the polylinker region is predominantly made up of serine and threonine. Cellulosomes are either attached to the bacterial cell surface or are released as cell-free cellulosomes. Amongst the bacterial species, mesophiles such as Clostridium cellulolyticum, Clostridium cellulovorans, Clostridium josui1, Clostridium papyrosolvens, Ruminococcus albus and Ruminococcus bromii, are known to produce simple cellulosome systems, with a single scaffoldin incorporating up to nine enzymatic subunits depending on the number of cohesin modules on the scaffoldin. The cellulosome complex has also been found in anaerobic fungi belonging to the genera Piromyces, Orpinomyces and Neocallimastix, but are markedly different from bacterial cellulosomes as they lack authentic cohesins and bona fide dockerins. In gram-positive bacteria, some enzymes, e.g., a family 5 cellulase from Caldicellulosiruptor, a family 5 endoglucanase from Clostridium josui, are connected directly to the cell wall by a specialized type of module, the SLH (S-layer homology) module. Though the modular architecture of such enzymes is complicated due to the presence of different modules in a single polypeptide chain, it helps in judicious degradation of insoluble substrates.

Designer cellulosomes

Artificial enzymatic complexes or designer cellulosomes, which are known to efficiently degrade crystalline cellulose, have caught the attention of researchers over the past few decades. There has been a spurt in designer cellulosome related research, as it tends to enhance biomass waste solutions and biofuel production at a worldwide scale. A chimeric scaffoldin containing 6 cohesins is the largest designer cellulosome reported to date. The scaffoldin is regarded with certain technical considerations like limits to the cohesin additions, as a large number of it can result in unstable scaffoldin polypeptide and low expression levels, besides limits to the numbers of available cohesin-dockerin specificities. Each enzyme in designer cellulosomes interacts specifically with one of the cohesin modules of the chimeric scaffoldin via the dockerin module. A cellulose-specific carbohydrate-binding module of artificial scaffolding helps to translocate the enzyme complex to the desired cellulbioic biomass. As an outcome of differential specificity, cohesin modules from different natural cellulosomal species interact with desired matching dockerin-bearing enzymes, e.g., type I cohesins will bind type I dockerins of some species, but not others. Designing cellulosomes can be achieved by assembling the components of native and non-native cellulosomes, as well as chimeric monofunctional enzymes possessing relevant
MICROORGANISMS

DIVERSITY OF CELLULOLYTIC MICROORGANISMS

Cellulolytic microorganisms, which include bacteria, fungi and protozoans, are known to be present in diverse habitats and perform their characteristic activities, e.g. free-living microbes convert the cellulosic biomass to the assimilable form of sugars, are present in the digestive tract of ruminants, in the guts of wood-degrading termites and worms, in soils, swamps, marshes, water bodies and seawater sediments, in rotting grasses, leaves, wood, in cotton bales, sewage sludge, silage and compost heaps, in muds and decaying vegetable matter, in extreme environments, like hot and volcanic acid, and alkaline springs. They are also known to be present in symbiotic association with secondary microorganisms.

Cellulolytic actinomycetes

The past few decades have witnessed an increase in the interest for the isolation of cellulolytic actinomycetes. Actinomycetes are known to efficiently degrade lignocellulosic biomass, as they produce a host of extracellular hydrolases, like cellulases, hemicellulases, xylanases, proteases, pectinases and amylases. The cellulase producing actinomycetes have been reported to belong to the following genera: Cellulomonas, Streptomyces, Micromonospora, Actinoplanes, Nocardia, Microbispora, Thermobifida, Saccharopolyspora, Streptovercillium, Pseudonocardia, Actinopolyspora, Streptosporangium, Intrasporangium and Thermoactinomycetes. In most of the actinomycetes, cellulases are secreted extracellularly, using specific secretion pathways, i.e., Sec general secretion system and sec independent twin-arginine translocation (TAT) systems, discovered in Thermobifida.

Cellulolytic bacteria

There has been tremendous interest in the exploration of bacterial species for their cellulolytic activities, as compared to other microorganisms due to several reasons, like high growth rate and ability to inhabit distinctly wide types of habitats that produce cellulolytic enzymes resistant to environmental stresses. Most of the bacterial species can catalyze the conversion of soluble derivatives or amorphous regions of crystalline cellulose. However, a few cellulolytic bacteria called “true cellulolytic” can bring out the extensive hydrolysis of the crystalline cellulose, whereas those bacterial species that do not produce a complete cellulase system are called “pseudocellulolytic”. The best characterized aerobic cellulolytic bacteria species are Cellulomonas biazotea, Cellvibrio gilvus, Microbispora bispora and Bacillus sp., while anaerobic cellulolytic bacteria are Acetivibrio cellulolyticus, Clostridium thermocellum.
Cellulase

Ruminococcus albus and Fibrobacter succinogenes. Several cellulolytic bacterial genera dwelling in the marine environment have also been identified. Saccharophagus degradans 2-40T is reported to be the first marine bacterium capable of degrading cellulosic algae and higher plant material.58 The genomic analysis of S. degradans 2-40T revealed that its genome codes 15 have exceptionally long polypeptides in the range of 274 to 1600 kD.99

Cellulolytic fungi

Among all the microorganisms, fungi are considered to be the most versatile cellulolytic microorganisms, contributing to cellulose breakdown to the level of 80 percent on the earth.100 The cellulolytic fungi are predominantly the members of ascomycota, basidiomycota, and deuteromycota, as well as some chytrids present in the rumen of some animals. The fungal species are preferred for the production of cellulase, as they secrete highly adaptive, extracellular cellulase in large quantities.101 Fungal cellulases can hydrolyze lignocellulosic biomass by secreting a diverse set of hydrolytic and oxidative enzymes.102 The white-rot fungus, e.g. Phanerochaete chrysosporium, and soft-rot fungi, e.g. Fusarium solani, Penicillium funiculosum, Talaromyces emersonii, Trichoderma koningii and Trichoderma reesei, are the best characterized cellulolytic fungus. The most accepted commercial microbes with highly cellulolytic potential are Aspergillus fumigatus, Aspergillus nidulans, Aspergillus aculeatus, Aspergillus niger, Aspergillus oryzae, Melanocorpus albumyces, Trichoderma koningii, Trichoderma viride, Penicillium funiculosum, Talaromyces emersonii, Humicola grisea, H. insolens, Fusarium solani, Irpex lacteus, Sclerotium rolfsii etc.101,103 The crude enzymes produced by Trichoderma and Aspergillus are widely available commercially, as they are known to be copious producers of cellulase.104-106

Cellulolytic gastropod mollusks

One of the most diverse groups of living organisms, comprising up to 50,000 species, is constituted by Phylum mollusca. The phylum is divided into seven classes, i.e. a aplacophora, polyplacophora, monoplacophora, gastropoda, cephalopoda, pelecypoda and scaphopoda, of which gastropods constitute the largest group (80 percent).107 The most dominant species of gastropoda are slugs and snails, e.g. Achatina fulica, Achatina achatina and Archachatina marginata. Their evolutionary successful invasion is attributable to their ability to feed on a great variety of organic matter, including lignocellulosic biomass, not only by the action of their enzymatic reservoir, but also by the activity of characteristic and highly adaptive microbiota that is present in their gut as symbiont.108 The gut microbiota consists of bacteria, such as Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus and some fungi, which are responsible for the degradation of plant cell walls constituents like cellulose and hemicelluloses.109,110 The metagenomic analysis of the microbiota of giant land snail Achatina fulica revealed the presence of coding sequences for oligosaccharide-degrading enzymes, as well as for novel cellulase and hemicellulase.111 Pinheiro et al.112 demonstrated the presence of cellulolytic flora belonging to Aeromonas species in the gastrointestinal tract of snail Achatina fulica. Pawar et al.113 reported the presence of members of Enterobacteriaceae in the gastrointestinal (GI) tract of Achatina fulica exhibiting potential CMCase and/or avicelase activity.

Cellulolytic insects

Insects represent a highly variable group of organisms, with about 9 million different kinds of living insects, an estimated biomass of 1019 approximately.114 However, their niche and food source varies widely. Over time, insects have been able to evolve strategies for effective degradation of lignocellulosic biomass as source of energy.115 Termites (order: Isoptera), includes seven families: Serritermitidae, Termitidae, Kalotermitidae, Mastotermitidae, Termopsidae, Rhinotermitidae, Hodotermitidae, Serritermitidae, Termitidae, with about 2,300 species belonging to 200 genera.116 The gut of termites is a rich source of diverse microorganisms, like bacteria, fungi, and protozoans, which have the potential to efficiently degrade cellulose and hemicelluloses.117 The first insect cellulase was discovered in 1998 in termite Reticulitermes speratus, encoding an endo-β(1,4)-glucanase by the activity of RsSEG.118 The cellulase producing genes are also known to be found in Hymenoptera (wasps, honeybees), Hemiptera (aphids) and Phthiraptera (lice).119 There have been numerous reports on the cellulolytic activity of various insects, such as Reticulitermes flavipes,120 Anoplophora glabripennis,121 Tenebrio molitor,122 Pachnoda...
marginata,23 Zootermopsis angusticollis,24 silver cricket Lepisma sp.,25 Tipula abdominalis,26 Superda vestita, Dendroctonus frontalis,27 and Pachnoda marginata.28

Cellulolytic microalgae
In 2012, it was experimentally established that not only heterotrophic organisms, but also photosynthetic microalga Chlamydomonas reinhardtii can utilize cellulose for growth in C-sources limiting conditions by secreting endocellulases.129 It has been found that the sequences of catalytic domains (CDs) of algae belong to the inverting GH9 family of CAZymes (carbohydrate-active enzymes). Glucanases (GH family 9) are the most conserved cellulases and are prevalently found in bacteria, fungi, amoebozoa, invertebrate metazoans, mosses, ferns, gymnosperms and angiosperms.130 Guerrero et al.131 reported that CDs of all algal enzymes have endoglucanase and mixed exo/endo types of activities, along with the presence of novel CBMs and PS-rich linkers, which make them an ideal candidate for cellulosic biomass degradation.

Cellulolytic rumen microorganisms
The ruminant stomach contains crude fiber, such as cellulose, starch and xylan, not completely converted to animal products.132 These materials are fermented by the microbial community, including bacteria, fungi and protozoa.133 Rumen microbial ecosystem comprised 10^10-10^11 bacterial cells/mL, 10^5-10^6 protozoan cells/mL, and 10^1-10^5 anaerobic fungi zoospores/mL.134 The predominant cellulolytic bacteria present in the rumen are Bacillus, Paenibacillus, Pseudomonas, Clostridium, Cellulomonas, Thermomonospora, Ruminococcus, Bacteroides, Erwinia, Acetivibrio, Methanobrevibacter, Gluconacetobacter, Rhodobacter, Fibrobacter, Ruminococcus.135-141

Cellulolytic thermophiles
There has been a manifold increase in the demand for thermostable enzymes lately, which has proved to be a major thrust for the intensive research on such enzymes. There are several advantages of using thermostable enzymes, particularly cellulase, at the industrial scale – for instance, at higher temperatures cellulose swells up, facilitating its easy breakdown and thus significantly improving the overall economy of the process.142,143 A large number of bacterial and fungal species have been reported to produce thermostable cellulase.

Thermophilic cellulolytic bacteria
A large number of bacterial species, both aerobic and anaerobic like Bacillus and Clostridium, have been reported to produce thermostable cellulase enzymes.144 A thermostable cellulase with optimal activity at 60 °C has been reported to be produced by Bacillus strains isolated from hot springs, India.145 Archaebacteria, like Pyrococcus furiosus and Pyrococcus horikoshii, have been reported to produce thermostable cellulases with optimal activity at 102-105 °C.146 Sulfolobus solfataricus MT4, Sulfolobus acidocaldarius and Sulfolobus shibatae have been shown to produce significant amounts of thermostable β-glucosidases.147 Highly thermostable cellulases acting at 95 °C have been reported from Thermotoga maritima MSB8.148 Thermotoga sp. FjSS3-B1 also produces highly thermostable cellulase active at 115 °C.149 Endocellulase with maximal activity at 85-95 °C was isolated from the thermophile Anaerocellum thermophilum.150 A thermophilic strain Stenotrophomonas maltophilia isolated from Nambor reserve forest reported maximum cellulase activity of 0.43 IU/mL.151 A thermophilic cellulase-producing bacterium isolated from a hot spring showed maximum activity at 60 °C.152

Thermophilic cellulolytic fungi
Thermophilic fungi grow at a maximum temperature of 50 °C or above, and a minimum of 20 °C or above.60 The best source of cellulases is Trichoderma sp., however, the major bottleneck with Trichoderma cellulases is that it produces very low β-glucosidase activity and the enzyme is subject to product inhibition. Kalogeris et al.153 reported that thermophilic fungus Thermoascus aurantiacus under optimal growth conditions resulted in 1572 U of endoglucanase and 101.6 U of β-glucosidase per g of carbon source. Myceliophthora thermophila JCP 1-4 on solid-state fermentation using lignocellulosic materials as substrates produced endoglucanase (357.51 Ug/L), β-glucosidase (45.42 Ug/L), xylanase (931.11 Ug/L) and avicelase (3.58 Ug/L), found to be active at 55-70 °C and stable at 30-60 °C.154 Reddy et al.155 isolated thermophilic robust cellulolytic fungal strains identified as A. niger, A. flavus, Nigrospora sphaerica, Chaetomium globosum, Cladosporium
cladosporides, Trichoderma sp. and Penicillium from different soil samples. Chaetomium thermophilum, Sporotrichum thermophile, T. emersonii and Thermoascus aurantiacus grew well and decomposed cellulose very rapidly by producing thermostable cellulases. Table 3 presents an overview of microbial cellulases and their cellulase activity.

Table 3
An overview of microbial cellulases and their cellulase activity

Microorganism	Enzyme activity	Fermentation type	Reference
Fungi			
T. harzianum MTCC 8230	Exoglucanase, endoglucanase and celllobiase activities of 0.127 IU/mL, 0.15 IU/mL and 1.65 IU/mL, respectively	SmF	[157]
T. reesei ZU-02	5.48 IU/mL (FPase)	SmF	[158]
A. fumigatus Z5	4.94 IU/mL (β-glucosidase)	SmF	[159]
A. flavus BS1	5408.5 IU/g (FPase)	SfF	[156]
Bacteria			
Paenibacillus terrae	2.08 IU/mL (CMCase)	SmF	[160]
Pseudomonas flodegens E. coli	0.48 IU/mL, 0.56 IU/mL, 0.54 IU/mL and 0.58 IU/mL (CMCase)	SmF	[161]
Bacillus subtilis, and Serratia marcescens*	60 IU/mL (CMCase)	SmF	[162]
Cellulomonas sp.Y15	246 IU/mg protein (CMCase)	SmF	[164]
Bacillus sp.	2655 IU/mg protein (CMCase)	SmF	[165]
Thermophilic Bacteria			
Callophilus cellulovorans	32 IU/mL (CMCase)	SmF	[166]
Bacillus licheniformis C55	0.13 IU/mL (CMCase)	SmF	[167]
Cald cellulosiruptor owensensis	532.4 mU/mg (β-D-glucosidase)	SmF	[168]
Bacillus vallismortis RG-07	4105 IU/mL (CMCase)	SmF	[169]
Thermophilic fungi			
Myceliophthora thermophila	Endoglucanase (357.51 IU/g), β-glucosidase (45.42 IU/g), xylanase (931.11 IU/g) and avicelase (3.58 IU/g)	SSF	[170]
JCP 1-4	Xylanase (7238 IU/g) and β-glucosidase (40.4 IU/g) by *A. fumigatus* M.7.1; 1044.6 IU/g of xylanase and 54 IU/g of CMCase by *M. thermophilia* M.7.7	SSF	[171]
Aspergillus fumigatus JCM 10253	CMCase (26.2 IU/mL), FPase (18.2 IU/mL), and xylanase (2.6 IU/mL)	SSF	[172]
Actinomycetes			
Streptomyces argenteolus	0.42 IU/mL (CMCase)	SmF	[174]
AE58P			
Streptomyces ruber	25.6 IU/mL (CMCase)	SmF	[175]
Streptomyces sp.	0.26 IU/mL (CMCase); 18.54 IU/mL (Xylanase)	SmF	[176]
Streptomyces g12 strain	0.1 IU/mL (CMCase)	SmF	[177]
Streptomyces longispororuber	25.08 IU/mL (CMCase)	SmF	[178]

CONVERSION OF RICE STRAW INTO BIOETHANOL

The depletion of fossil fuel, global warming, and the reduction of natural resources have directed the research attention to bioethanol production from lignocellulosic biomass as an alternative energy source. Although, extensive research has been carried out on ethanol production from rice straw, the manufacturing process of the ethanol has not been realized yet, because of the high costs involved in collection and preservation from rice field ridge, high cost of...
cellulase, fermentation system, etc. Therefore, the development of effective and cost-efficient ethanol production systems from rice straw is the need of the hour to achieve the aim of novel energy supply.181

Bioethanol: an eco-friendly fuel

Bioethanol is one of the largest sources of renewable and sustainable energy due to its unique economic and environmental benefits. Bioethanol holds high prospects for mitigating the problem of greenhouse gas emission as it represents a closed carbon dioxide cycle (Fig. 4). It also plays an important role at the community level by boosting the income of smallholder farmers, as farmers can cultivate energy crops that yield an income, while meeting their food needs at the same time.182 The bioethanol contains 35\% oxygen, complete combustion of which results in exhaust emissions with less toxicity as compared to conventional fuels.183 It has been estimated that gasoline blending with ethanol has reduced CO\textsubscript{2} equivalent greenhouse gas emissions from the transportation sector by 55.1 million metric tons in 2018.184 Although bioethanol is currently produced worldwide, the United States is the world's leader in bioethanol production (Fig. 5).185

Generations of bioethanol

There are various generations of bioethanol categorized as first through fourth (Fig. 6). First-generation biofuels are produced from starch or sugar-based feedstocks.186 However, first-generation biofuels are replete with serious setbacks, as they pose a stiff competition to food production.187 Thus, the focus has been shifted to second-generation biofuels that are produced from lignocellulosic feedstock. The lignocellulosic biomass consists of forest, agricultural and municipal wastes, including non-food and dedicated energy crops.188,189 The third generation of biofuels is based on microalgae or unicellular microorganisms derived from eukaryotes and prokaryotes, including cyanobacteria, such as *Chlorella, Nanochloropsis* or *Botryococcus*.190

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{biofuel_cycle.png}
\caption{Biofuel carbon cycle}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{ethanol_production.png}
\caption{Global fuel ethanol production in 2019 by country85}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{bioethanol_generations.png}
\caption{Schematic representation of different generations of bioethanol}
\end{figure}
Fourth-generation biofuels are also called photobiological solar fuels and electrofuels. Photobiological solar fuels are based on direct conversion of solar energy into fuel, using inexhaustible, cheap, and widely available raw materials. The revolutionary development of photobiological solar fuels depends on the synthetic biology of algae and cyanobacteria, and requires the discovery of new-to-nature solutions, construction of the synthetic living factories, and designer microorganisms. Likewise, electrobiofuels are based on the combination of photovoltaics or inorganic water-splitting catalysts with metabolically engineered microbial fuel production pathways.

Rice straw: an ideal feedstock for cellulase and bioethanol production

Rice straw has been widely acclaimed as the most attractive feedstock for bioethanol production. According to the Food and Agriculture Organization (FAO), approximately 1140 million tons of rice straw is generated globally. About half of this waste is burnt in the fields, resulting in massive amounts of obnoxious gases, such as carbon monoxide, nitrous oxides, volatile organic compounds, and, suspended particulate matter. Thus, the problem to this solution lies in the conversion of surplus rice straw into value-added products like bioethanol. Rice straw predominantly comprises cellulose (32-47%), hemicelluloses (19-27%) and lignin (5-24%), with 18.8% ashes. However, to disrupt the recalcitrant structure of rice straw, in which hard and crystalline cellulose is entangled with lignin and hemicelluloses, physical and/or chemical pretreatment or a combination of these processes is required as a prerequisite step (Fig. 7). The physical treatment includes steaming, steam explosion, grinding and milling, and irradiation. The chemical treatment includes alkali, acids, and ammonia treatment. The biological pretreatment has been carried out using white-rot fungi, e.g., *Phanerochaete chrysosporium*, *Ceriporiopsis subvermispora* and *Pleurotus ostreatus*, which can metabolize lignin by secreting a set of ligninolytic enzymes like manganese peroxidase, lignin peroxidase, and laccase. Likewise, several actinomycetes produce enzymes involved in lignocellulose degradation. The combined processes involve two-step pretreatment with dilute sulfuric acid and aqueous ammonia, microwave with acid and alkali, ultrasonic radiation and ionic liquids.
Apart from utilizing rice straw as a feedstock for bioethanol production, it can also serve as a promising substrate for cellulase production. The rice straw as a substrate not only provides solid support for fungal growth, but also acts as a viable source of carbon and nutrients. As reported by Singla et al., the addition of soybean pod husk to paddy straw in equal proportions resulted in significantly higher filter paper, CMCase, cellobiase, and xylanase activities, of 89.54 nmol/min/gds, 405.37 nmol/min/gds, 171.26 nmol/min/gds and 3765.76 nmol/min/gds, 72 hours after incubation by Aspergillus fumigatus CST2. Kogo et al. evaluated rice straw as a carbon source for Trichoderma reesei and Humicola insolens, to produce enzymes for rice straw hydrolysis. The authors reported that the enzyme activity of T. reesei cultivated in medium containing NH₄OH-treated rice straw was 4-fold higher than enzyme from cultures grown in Avicel (form of refined cellulose) medium. Rice straw pre-treated with sodium hypochlorite (NaClO) resulted in the highest FPase activity of 24.14 U by Phanerochaete chrysosporium on the 5th day of incubation. In contrast to the above findings, untreated rice straw showed higher activity of FPase, CMCase, β-glucosidase and xylanase with values of 6.25 g/substrate, 111.31 g/substrate, 173.31 g/substrate and 433.75 g/substrate, respectively, as compared to 1.72 g/substrate, 23.01 g/substrate, 2.18 g/substrate and 45.46 g/substrate for FPase, CMCase, β-glucosidase and xylanase, respectively, for 0.5% (w/v) NaOH pre-treated rice straw. The authors opined the lower activity in pre-treated rice straw is due to the decline in absolute crystallinity of cellulose owing to alkali pretreatment, which is otherwise required for the induction of cellulase enzyme.

Role of cellulase in the conversion of rice straw to bioethanol

Post pretreatment, hydrolysis of biomass results in the conversion of cellulose and hemicelluloses into simple sugars. The cellulose contains glucans, whereas hemicelluloses contain polymers of several sugars, such as xylan, galactan, mannan and arabinan. Consequently, glucose is the predominant product of cellulose hydrolysis, whereas the hemicelluloses yield pentoses and hexoses. The hydrolysis process can be accomplished in two ways; enzymatically by (hemi)cellulolytic enzymes or chemically by sulphuric or other acids. However, enzymatic hydrolysis is a preferred mode as it offers several advantages such as the generation of compounds with lower toxicity, hyper-production of desired product, low input of chemicals and energy, and subtle environmental conditions. Table 4 presents the enzymatic hydrolysis of various feedstock using indigenous cellulases. The overall schematic of bioethanol production from rice straw is presented in Figure 8.

CHALLENGES IN CELLULOSIC ETHANOL PRODUCTION AND FUTURE RESEARCH

The cellulosic ethanol production faces several technical and economic hindrances, such as the need for year-round availability of feedstock, efficient and economical pretreatment and saccharification technology, as well as potent ethanologenic strains. The cost of cellulase production and the development of more efficient, specific and stable cellulases are the real objectives of future research on cellulases. Though a large number of culturable, cellulytic microorganisms have been isolated from diverse sources, such as compost piles, decomposed organic matter, faeces of ruminants, and hot springs, many habitats, such as synthetic extreme environments, e.g. carwash effluent tanks and drains, which could be potential sources of cellulytic microorganisms, remain unexplored. Besides, non-culturable microbes are also an excellent source of cellulytic genes. The most widely recognized approach to exploit these microbes is to construct a metagenomic library, followed by its functional screening. The cost of cellulase, which greatly contributes to the overall process cost, can be cut short by recycling or immobilization of cellulases. Previous studies point to immobilization of cellulase on non-porous and porous silica, with a retention of >50% activity for at least four rounds of recycling, and to recycling of endocellulases immobilized on activated carbon, zeolite, ion exchange resin, and polystyrene in two different shapes (drop or sheet) and mixtures thereof. The enhancement of cellulase production is another strategy being attempted consistently for reducing the cost of cellulases.
Pretreatment	Cellulase source	Enzyme dose	Process conditions	Outcome	Reference
2% (w/v) NaOH	*T. harzianum* SNRS3	FPase, 6.25 IU/gs; CMCase 111.31 IU/gs and β-glucosidase 173.71 IU/gs	Substrate conc. 5% (w/v); incubation temp. 50 °C and agitation 150 rpm; incubation period 96 h	29.87 g/L reducing sugars	[213]
2% (w/v) NaOH	*Aspergillus* CP1	FPase, 0.62 IU/mL, CMCase 5.9 IU/mL and β-glucosidase 1.11 IU/mL	Substrate conc. 12% (w/v); incubation temp. 55 °C and agitation 150 rpm; incubation period 36 h	159.1 g/L sugars	[214]
Untreated	*Aspergillus* niger	10 FPU/g substrate	Substrate conc. 12% (w/v); agitation 150 rpm; incubation temp. 45 °C, incubation period 96 h	3.62 g/L fermentable sugars	[215]
2% NaOH	*Trichoderma reesei* ZM4-F3	10⁶ spores/mL at the rate of 2% (v/v)	Substrate conc. 3% (w/v); temp. 35 °C, agitation 180 rpm	2.23 g/L reducing sugars	[216]
1% Sodium hydroxide	*Trichoderma reesei* F-418	1.2 FPU/mL	Substrate conc. 5% (w/v), incubation period 16 h, agitation 100 rpm	1.07% glucose	[102]
Steam treatment by autoclaving	*Aspergillus terreus* F98	2.0 mL spore suspension (Spore count =10⁶ spores/mL)	Saccharification under SSF conditions, Incubation temp. 30 °C, incubation period 7 days	17.0 g/L total reducing sugar, 44.0% saccharification	[217]
Phenarocheate chrysosporium NCIM 1197	*Aspergillus* niger	1x10⁵ conidia/mL	Substrate conc. 5% (w/v), agitation 180 rpm, incubation temp. 28 °C, incubation period 24 h	480 mg/g reducing sugars	[218]
0.5 M NaOH at 121 °C for 1 hour at the ratio of 1:10 (w/v)	*Aspergillus fumigatus* NITDGPKA3	40 IU/g CMCase	Substrate conc. 2% (w/v), incubation temp. 50 °C, agitation 120 rpm, incubation period 36 h	0.522 g reducing sugar/g dry substrate	[219]
0.5 M KOH for 4 h followed by 0.1 N H₂SO₄ for 1 h (bath ratio 1:10), at room temp.	*Aspergillus niger* BK01	2% (v/v) (12.0 U/gds CMCase)	Substrate conc. 10% (w/v), incubation temp. 40 °C, incubation period 2.5 h	23.78% sugars; 35.96% saccharification	[220]
Milled and sieved (100 µm)	*Bacillus carboniphilus* CAS 3	250 U/mL CMCase	Substrate conc. 2% (w/v) incubation temp. 50 °C; agitation 100 rpm, incubation period 96 h	15.56 g/L of reducing sugars	[221]
The use of lignocellulosic biomass for enzyme production, co-culture or consortium-mediated cellulase production, the development of recombinant strains by genetic engineering, protein engineering for remodeling the cellulolytic systems in the microbes, random mutagenesis by chemical or physical mutagens, innovative bioreactor geometries and process strategies, e.g. biomass conversion at high-solids loads, submerged fermentation (SmF) are popular techniques for achieving enhanced synthesis or secretion of cellulases in microbial strains.

CONCLUSION
An overwhelming demand for natural products has elevated the significance of industrial enzymes; among which, cellulases occupy a pivotal position. In the environment, microbes (i.e., fungi and bacteria) are essential for the deconstruction of complex carbohydrates (e.g., cellulose). The most actively investigated application of cellulase is the production of biofuels, especially bioethanol, from lignocellulosic biomass like rice straw. Cellulases actively convert cellulose renewable resources into glucose and other simple fermentable sugars that can be used as substrates for the production of bioethanol. However, the cost of cellulases is a major bottleneck in the economic production of cellulosic ethanol. Several approaches, such as non-culturable cellulolytic microbes, genetic and protein engineering, etc., can be employed to achieve economic and industrial dividends.

REFERENCES
1. M. Dashtban, H. Schraft and W. Qin, *IJBS*, 5, 578 (2009), https://doi.org/10.7150/iijbs.5.578
2. G. Garrote, H. Dominguez and J. C. Parajo, *Food Eng. J.*, 52, 211 (2001), https://doi.org/10.1016/s0260-8774(01)00108-x
3. S. Sajith, P. Priji, S. Sreedevi and S. Benjamin, *J. Nutr. Food Sci.*, 6, 1 (2016), https://doi.org/10.1186/1743-7075-12-4
4. X. Z. Zhang and Y. H. P. Zhang, “Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers”, Wiley, Hoboken, 2013, p. 131
5. G. Yao, R. Wu, Q. Kan, L. Gao, M. Liu et al., *Biotechnol. Biofuels*, 9, 78 (2016), https://doi.org/10.1186/s13068-016-0491-4
6. Y. Sun and J. Cheng, *Bioresour. Technol.*, 83, 1 (2002), https://doi.org/10.1016/S0960-8524(01)00212-7
7. D. F. Silva, A. F. A. Carvalho, T. Y. Shinya, G. S. Mazali, R. D. Herculado et al., *Enzym. Res.*, 2017, 1 (2017), https://doi.org/10.1155/2017/4362704
8. D. Ciolacu and V. I. Popa, “Cellulose Allomorphs: Structure, Accessibility and
51 E. A. Bayer, J. P. Belaïch, Y. Shoham and R. Lamed, *Annu. Rev. Microbiol.*, **58**, 521 (2004), https://doi.org/10.1146/annurev.micro.57.030502.0 91022
52 S. N. Chinedu, V. Okochi, H. Smith and O. Omidiij, *Int. J. Mediated Health Sci.*, **1** (2005), http://eprints.covenantuniversity.edu.ng/id/eprint/64
53 G. A. Youssef, *Afric. J. Microbiol. Res.*, **5**, 1311 (2011), https://doi.org/10.5897/AJMR11.164
54 B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard et al., *Nucleic Acids Res.*, **37**, 233 (2009), https://doi.org/10.1093/nar/gkn663
55 A. B. Boraston, B. W. McLean, G. Chen, A. Li, R. A. Warren et al., *Mol. Microbiol.*, **43**, 187 (2002), https://doi.org/10.1042/BJ20040892
56 J. Tormo, *EMBO J.*, **15**, 5739 (1996), https://doi.org/10.1109/annals.1419.026
57 A. B. Boraston, D. N. Bolam, H. J. Gilbert and G. J. Davies, *Biochem. J.*, **382**, 769 (2004), https://doi.org/10.1042/BJ20040892
58 D. W. Abbott, J. M. Eirín-Lopez and A. B. Boraston, *Mol. Biol. Evol.*, **25**, 155 (2008), https://doi.org/10.1093/molbev/msm243
59 D. Gao, S. P. S. Chandawat, A. Sethi, V. Balan, S. Gnanakaran et al., *Proc. Natl. Acad. Sci. USA*, **110**, 10922 (2013), https://doi.org/10.1073/pnas.1213426110
60 A. Gupta and J. P. Verma, *Reruit. Sust. Energ. Rev.*, **41**, 550 (2015), https://doi.org/10.1016/j.rser.2014.08.032
61 Y. Li and D. B. Wilson, *Biotecnol. Bioeng.*, **100**, 644 (2008), https://doi.org/10.1002/bit.21808
62 A. Magrey, S. Sahay and R. Gothwal, *Int. J. Recent Trends Sci. Technol.*, **2018**, 17 (2018)
63 X. Z. Zhang and Y. H. P. Zhang, “Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers”, Wiley, Hoboken, 2013, p. 131
64 M. E. Himmel, Q. Xu, Y. Luo, S. Y. Ding, R. Lamed et al., *Biofuels*, **1**, 323 (2010), https://doi.org/10.4155/bfs.09.25
65 E. A. Bayer, Y. Shoham and R. Lamed, “Prokaryotic Physiology and Biochemistry Rosenberg”, edited by E. F. Delong, S. Lory, E. Stackebrandt and F. Thomson, Springer, New York NY, 2013, p. 215
66 E. A. Bayer, R. Kenig and R. Lamed, *J. Bacteriol.*, **156**, 818 (1983)
67 L. Bensoussan, S. Morais, B. Dassa, N. Friedman, B. Henrissat et al., *Environ. Microbiol.*, **19**, 185 (2016), http://dx.doi.org/10.1111/1462-2920.13561
68 R. C. Kuhad, R. Gupta and A. Singh, *Enzyme Res.*, **201**, 1 (2011), https://doi.org/10.4061/2011/280696
69 Q. Xu, M. G. Resch, K. Podkaminer, S. Yang and J. O. Baker, *Sci. Adv.*, **2**, e1501254 (2016), https://doi.org/10.1126/sciadv.1501254
70 S. Pagès, A. Bélaïch, H. P. Fierobe, C. Tardif, C. Gaudin et al., *J. Bacteriol.*, **18**, 1801 (1999)
71 O. Shoseyov, M. Takagi, M. A. Goldstein and R. H. Doi, *Proc. Natl. Acad. Sci. USA*, **89**, 3483 (1992), https://doi.org/10.1073/pnas.89.8.3483
72 M. Pohlksröder, S. B. Leshine and E. Canale-Parola, *J. Bacteriol.*, **176**, 70 (1994), https://doi.org/10.1128/jb.176.1.70-76.1994
73 X. Ze, S. H. Duncan, P. Louis and H. J. Flint, *ISME J.*, **6**, 1535 (2012), https://doi.org/10.1038/ismej.2012.4
74 X. Ze, B. Y. David, J. A. Laverde-Gomez, B. Dassa, P. O. Sheridan et al., *MBio*, **6**, e01058 (2015), https://doi.org/10.1128/mBio.01058-15
75 S. P. Gilmore, J. K. Henske and M. O’Malley *Bioengineered*, **6**, 204 (2015), https://doi.org/10.1080/21655979.2015.1060379
76 D. J. Saul, C. C. Williams, R. A. Grayling, L. W. Chamley, D. R. Love, et al., *Appl. Environ. Microbiol.*, **56**, 3117 (1990)
77 K. H. Jung, K. M. Lee, H. Kim, K. H. Yoon, S. H. Park et al., *Biochem. Mol. Biol. Int.*, **44**, 283 (1998), https://doi.org/10.1080/152164980201302
78 A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker et al., *J. Bacteriol.*, **176**, 1224 (1994), https://doi.org/10.1128/jb.176.5.1224-1233.1994
79 I. Ozdemir, S. E. Blumer-Schuette and R. M. Kelly, *Appl. Environ. Microbiol.*, **78**, 768 (2012), https://doi.org/10.1128/AEM.07031-11
80 S. Morais, E. Morag, Y. Barak, D. Goldman, Y. Hadar et al., *MBio*, **3**, e00508 (2012), https://doi.org/10.1128/mBio.00233-11
81 Y. Vazan, S. Morais, Y. Barak, R. Lamed and E. A. Bayer, *Methods Enzymol.*, **510**, 429 (2012), https://doi.org/10.1016/B978-0-12-415931-0.00023-9
82 S. Y. Ding, Q. Xu, M. Crowley, Y. Zeng, M. Nimlos et al., *Curr. Opin. Biotechnol.*, **19**, 218 (2008), https://doi.org/10.1016/j.copbio.2008.04.008
83 Y. Vazan, Y. Barak, T. Unger, Y. Peleg, M. Shamshoum et al., *Biofuels*, **6**, 82 (2013), https://doi.org/10.1186/1754-6834-6-182
84 J. Stern, S. Morais, R. Lamed and E. A. Bayer, *MBio*, **7**, e00083 (2016), https://doi.org/10.1128/mBio.00083-16
85 A. Kahn, S. Morais, A. P. Galanopoulou, D. Chung, N. S. Sarai et al., *Biotechnol. Biofuels*, **12**, 44 (2019), https://doi.org/10.1186/s13068-019-1386-y
86 L. Artzi, B. Dassa, I. Borovok, M. Shamshoum, R. Lamed et al., *Biotechnol. Biofuels*, **7**, 100 (2014), https://doi.org/10.1186/1754-6834-7-100
87 R. H. Doi and A. Kosugi, *Nat. Rev. Microbiol.*, **2**, 541 (2004), https://doi.org/10.1038/nrmicro925
88 J. M. Yardrough, R. Zhang, A. Mittal, T. V. Wall, Y. J. Bomble et al., *ACS Nano*, **11**, 3101 (2017), https://doi.org/10.1021/acsnano.7b00086
89 F. Stutzenger, “Bacterial Cellulose”, edited by W. M. Forgartrty and C. T. Kelly, 2nd ed., Elsevier Applied Science, London, 1990, p. 37
PARDEEP KAUR et al.

204 C. Y. Yang and T. J. Fang, Bioresour. Technol., 164, 198 (2014), https://doi.org/10.1016/j.biortech.2014.05.004
205 R. R. Singhania, A. K. Patel, C. R. Soccol and A. Pandey, Biochem. Eng. J., 44, 13 (2009), https://doi.org/10.1016/j.bej.2008.10.019
206 D. Singla, M. S. Taggar, G. S. Kocher and A. Kalia, Cellulose Chem. Technol., 52, 803 (2018), https://www.cellulosechemotechnol.ro/pdf/CCCT9-10(2018)/p.803-813.pdf
207 T. Kogo, Y. Yoshida, K. Koganei, H. Matsumoto, T. Watanabe et al., Bioresour. Technol., 233, 67 (2017), https://doi.org/10.1016/j.biortech.2017.01.075
208 S. S. H. Sarabana, Middle East J. Agric. Res., 6, 1417 (2017), http://www.currewsweb.com/mejar/mejar/2017/1417-1425.pdf
209 M. Rahnama, S. Mamat, U. K. Md Shah, F. H. Ling, N. A. A. Rahman et al., Bioresources, 8, 2881 (2013), http://ncsu.edu/bioresources
210 M. J. Taherzadeh and C. Niklasson, ACS Symp. Ser., 889, 49 (2004), https://doi.org/10.1021/bk-2004-0889.ch003
211 Z. Zhang, B. Liu and Z. K. Zhao, Polym. Degrad. Stabil., 97, 573 (2012), https://doi.org/10.1016/j.polymdegradstab.2012.01.010
212 A. Kuila, V. Sharma and V. K. Garlapati, Adv. Biofeedstocks Biofuels, 1, 85 (2016), https://doi.org/10.1002/9781119117322.ch4
213 N. Rahnama, H. L. Foo, N. A. A. Rahman, A. Ariff and U. K. M. Shah, BMC Biotechnol., 14, 103 (2014), https://doi.org/10.1186/s12896-014-0103-y
214 C. Pasha, B. C. Shekhar, B. Srinivas, K. Balakrishna and A. Hanumalal, J. Sci. Ind. Res., 71, 616 (2012), http://hdl.handle.net/123456789/14632
215 L. G. A. Ong, C. H. Chan and A. L. Chew, J. Med. Bugs., 1, 14 (2012), https://doi.org/10.1016/S0960-8524(96)00169-1
216 Q. Z. Zhang and W. M. Caia, Biomass Bioenerg., 32, 1130 (2008), https://doi.org/10.1016/j.biombioe.2008.02.006
217 M. A. Abo-State, A. M. E. Ragab, N. S. Eldengy, L. A. Farahat and H. R. Madian, Sci. Res., 3, 19 (2014), https://doi.org/10.4236/soft.2014.32003
218 P. R. Mohan, B. Ramesh and O. V. S. Reddy, Res. J. Microbiol., 7, 1 (2012), https://doi.org/10.3932/jm.2012.1.12
219 N. Sarkar and K. Aikat, Int. J. Chem. Eng., https://doi.org/10.1155/2014/959845(2014), https://doi.org/10.1155/2014/959845
220 N. K. Aggarwal, V. Goyal, A. Saini, A. Yadav and R. Gupta, 3 Biotech., 7, 158 (2017), https://doi.org/10.1007/s13205-017-0755-0
221 N. Annamalai, M. V. Rajeswari and T. Balasubramanian, Biomass Bioenerg., 68, 151 (2014), https://doi.org/10.1016/j.biombioe.2014.06.018
222 A. Singh, S. Namita and N. R. Bishnoi, J. Sci. Ind. Res., 69, 232 (2010), http://hdl.handle.net/123456789/7385
223 M. Maki, K. T. Leung and W. Qin, Bioresour. Technol., 1130 (2018), https://doi.org/10.3390/biom4010117
224 Y. Ikeda, A. Parashar, M. Chae and D. C. Bressler, J. Thermodyn. Catal., 6, 1 (2015), https://doi.org/10.4172/2157-7544.1000149
225 J. L. Adrio and A. L. Demain, Bioeng. Bugs., 1, 116 (2010), https://doi.org/10.3390/biom4010117
226 S. Ellila, L. Fonseca, C. Uchima, J. Cota, G. H. Goldman et al., Biotechnol. Biofuels, 10, 30 (2017), https://doi.org/10.1186/s13068-017-0717-0
227 M. Maki, K. T. Leung and W. Qin, Int. J. Biol. Sci., 5, 550 (2009), https://doi.org/10.7150/ijbs.5.500
228 Q. Wang, L. Chen, D. Yu, H. Lin, Q. Shen et al., Sci. Total Environ., 609, 3129 (2017), https://doi.org/10.1016/j.scitotenv.2017.07.212