Modified Landau levels, damped harmonic oscillator and two-dimensional pseudo-bosons

S. Twareque Ali1
F. Bagarello2
Jean Pierre Gazeau3

Abstract
In a series of recent papers one of us has analyzed in some details a class of elementary excitations called pseudo-bosons. They arise from a special deformation of the canonical commutation relation $[a, a^\dagger] = \mathbb{I}$, which is replaced by $[a, b] = \mathbb{I}$, with b not necessarily equal to a^\dagger. Here, after a two-dimensional extension of the general framework, we apply the theory to a generalized version of the two-dimensional Hamiltonian describing Landau levels. Moreover, for this system, we discuss coherent states and we deduce a resolution of the identity. We also consider a different class of examples arising from a classical system, i.e. a damped harmonic oscillator.

1Department of Mathematics and Statistics, Concordia University, Montréal, Québec, CANADA H3G 1M8
\texttt{e-mail: stali@mathstat.concordia.ca}

2Dipartimento di Metodi e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, ITALY
\texttt{e-mail: bagarell@unipa.it} \ Home page: www.unipa.it/~bagarell

3Laboratoire APC, Université Paris 7-Denis Diderot, 10, rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France
I Introduction
In a series of recent papers [1, 2, 3, 4], one of us (FB) has investigated some mathematical aspects of the so-called pseudo-bosons, originally introduced by Trifonov in [5]. They arise from the canonical commutation relation \([a, a^\dagger] = 1\) upon replacing \(a^\dagger\) by another (unbounded) operator \(b\) not (in general) related to \(a\): \([a, b] = 1\). We have shown that \(N = ba\) and \(N^\dagger = a^\dagger b^\dagger\) can be both diagonalized, and that their spectra coincide with the set of natural numbers (including 0), \(\mathbb{N}_0\). However the sets of related eigenvectors are not orthonormal (o.n) bases but, nevertheless, they are automatically biorthogonal. In all the examples considered so far, they are bases of the Hilbert space of the system, \(\mathcal{H}\), and, in some cases, they turn out to be Riesz bases.

To our knowledge, not many physical consequences of this construction have been discussed up to now. For this reason, extending what two of us (STA and FB) have already done in [6], we will construct here a two-dimensional model which fits the main assumptions of the construction given in [1] and which is physically motivated. We will further consider a second example, again physically motivated, arising from the quantization of the damped harmonic oscillator, [7].

This paper is organized as follows: in the next section we introduce and discuss two-dimensional pseudo-bosons analyzing some of their mathematical properties and their related coherent states. In Section III we introduce the generalized Landau levels (GLL) and we discuss them in the context of Section II. Section IV is devoted to our analysis of the quantum damped harmonic oscillator, while Section V contains our conclusions.

II The commutation rules
In this section we will construct a two-dimensional (2-D) version of what originally proposed in [1], to which we refer for further comments on the 1-D situation.

Let \(\mathcal{H}\) be a given Hilbert space with scalar product \(\langle ., . \rangle\) and related norm \(|| . ||\). We introduce two pairs of operators, \(a_j\) and \(b_j\), \(j = 1, 2\), acting on \(\mathcal{H}\) and satisfying the following commutation rules
\[
[a_j, b_j] = 1, \quad \text{and} \quad [a_1^\dagger, a_2^\dagger] = [a_1^\dagger, b_2^\dagger] = [b_1^\dagger, b_2^\dagger] = 0,
\]
(2.1)
where \(x^\dagger\) stands for \(x\) or \(x^\dagger\) \((x = a_j, b_j)\). Of course, they collapse to the CCR’s for independent modes if \(b_j = a_j^\dagger, j = 1, 2\). It is well known that \(a_j\) and \(b_j\) are unbounded operators, so they cannot be defined on all of \(\mathcal{H}\). Following [1], and writing \(D^\infty(X) := \cap_{p\geq0} D(X^p)\) (the common
domain of all the powers of the operator \(X\), we consider the following:

Assumption 1.– there exists a non-zero \(\varphi_{0,0} \in \mathcal{H}\) such that \(a_j \varphi_{0,0} = 0, j = 1, 2,\) and \(\varphi_{0,0} \in D^\infty(b_1) \cap D^\infty(b_2)\).

Assumption 2.– there exists a non-zero \(\Psi_{0,0} \in \mathcal{H}\) such that \(b_j^\dagger \Psi_{0,0} = 0, j = 1, 2,\) and \(\Psi_{0,0} \in D^\infty(a_1^\dagger) \cap D^\infty(a_2^\dagger)\).

Under these assumptions we can introduce the following vectors in \(\mathcal{H}\):

\[
\varphi_{n,l} = \frac{1}{\sqrt{n!!l!!}} b_1^n b_2^l \varphi_{0,0} \quad \text{and} \quad \Psi_{n,l} = \frac{1}{\sqrt{n!!l!!}} (a_1^\dagger)^n (a_2^\dagger)^l \Psi_{0,0}, \quad n, l \geq 0. \tag{2.2}
\]

Let us now define the unbounded operators \(N_j := b_j a_j\) and \(\mathfrak{N}_j := N_j^\dagger = a_j^\dagger b_j^\dagger, j = 1, 2.\) It is possible to check that \(\varphi_{n,l}\) belongs to the domain of \(N_j, D(N_j),\) and \(\Psi_{n,l} \in D(\mathfrak{N}_j),\) for all \(n, l \geq 0\) and \(j = 1, 2.\) Moreover,

\[
N_1 \varphi_{n,l} = n \varphi_{n,l}, \quad N_2 \varphi_{n,l} = l \varphi_{n,l}, \quad \mathfrak{N}_1 \Psi_{n,l} = n \Psi_{n,l}, \quad \mathfrak{N}_2 \Psi_{n,l} = l \Psi_{n,l}. \tag{2.3}
\]

Under the above assumptions it is easy to check that \(\langle \Psi_{n,l}, \varphi_{m,k} \rangle = \delta_{n,m} \delta_{l,k} \langle \Psi_{0,0}, \varphi_{0,0} \rangle\) for all \(n, m, l, k \geq 0,\) which, if we chose the normalization of \(\Psi_{0,0}\) and \(\varphi_{0,0}\) in such a way that \(\langle \Psi_{0,0}, \varphi_{0,0} \rangle = 1,\) becomes

\[
\langle \Psi_{n,l}, \varphi_{m,k} \rangle = \delta_{n,m} \delta_{l,k}, \quad \forall n, m, l, k \geq 0. \tag{2.4}
\]

This means that the sets \(\mathcal{F}_\Psi = \{\Psi_{n,l}, n, l \geq 0\}\) and \(\mathcal{F}_\varphi = \{\varphi_{n,l}, n, l \geq 0\}\) are biorthogonal and, because of this, the vectors of each set are linearly independent. If we now call \(\mathcal{D}_\varphi\) and \(\mathcal{D}_\Psi\) respectively the linear span of \(\mathcal{F}_\varphi\) and \(\mathcal{F}_\Psi,\) and \(\mathcal{H}_\varphi\) and \(\mathcal{H}_\Psi\) their closures, then

\[
f = \sum_{n,l=0}^{\infty} \langle \Psi_{n,l}, f \rangle \varphi_{n,l}, \quad \forall f \in \mathcal{H}_\varphi, \quad h = \sum_{n,l=0}^{\infty} \langle \varphi_{n,l}, h \rangle \Psi_{n,l}, \quad \forall h \in \mathcal{H}_\Psi. \tag{2.5}
\]

What is not in general ensured is that the Hilbert spaces introduced so far all coincide, i.e. that \(\mathcal{H}_\varphi = \mathcal{H}_\Psi = \mathcal{H}.\) Indeed, we can only state that \(\mathcal{H}_\varphi \subseteq \mathcal{H}\) and \(\mathcal{H}_\Psi \subseteq \mathcal{H}.\) However, motivated by the examples already discussed in the literature and anticipating the discussion in Section III, we make the

Assumption 3.– The above Hilbert spaces all coincide: \(\mathcal{H}_\varphi = \mathcal{H}_\Psi = \mathcal{H},\)

which was introduced in \([1]\). This means, in particular, that both \(\mathcal{F}_\varphi\) and \(\mathcal{F}_\Psi\) are bases of \(\mathcal{H}.\) Let us now introduce the operators \(S_\varphi\) and \(S_\Psi\) via their action respectively on \(\mathcal{F}_\Psi\) and \(\mathcal{F}_\varphi:\)

\[
S_\varphi \Psi_{n,k} = \varphi_{n,k}, \quad S_\Psi \varphi_{n,k} = \Psi_{n,k}. \tag{2.6}
\]
for all $n,k \geq 0$, which also imply that $\Psi_{n,k} = (S_\Psi S_\varphi)\Psi_{n,k}$ and $\varphi_{n,k} = (S_\varphi S_\Psi)\varphi_{n,k}$, for all $n,k \geq 0$. Hence
\[S_\varphi S_\Psi = S_\Psi S_\varphi = \mathbb{1} \quad \Rightarrow \quad S_\Psi = S_\varphi^{-1}. \] (2.7)

In other words, both S_φ and S_Ψ are invertible and one is the inverse of the other. Furthermore, we can also check that they are both positive, well defined and symmetric, [1]. Moreover, at least formally, it is possible to write these operators in the bra-ket notation as
\[S_\varphi = \sum_{n,k=0}^{\infty} |\varphi_{n,k}><\varphi_{n,k}|, \quad S_\Psi = \sum_{n,k=0}^{\infty} |\Psi_{n,k}><\Psi_{n,k}|. \] (2.8)

These expressions are only formal, at this stage, since the series may not converge in the uniform topology and the operators S_φ and S_Ψ could be unbounded. This aspect was exhaustively discussed in [1], where the role of Riesz basis\(^1\) in relation with the boundedness of S_φ and S_Ψ has been discussed in detail. We shall come back to this aspect later. However, we shall not assume here, except when explicitly stated, what has been called Assumption 4 in [1], since in most examples considered so far, and in what we are going to discuss in Section III, this assumption is not satisfied.

It is interesting to remark that, as in [1], even these two-dimensional pseudo-bosons give rise to interesting intertwining relations among non self-adjoint operators, see [3] and references therein. In particular it is easy to check that
\[S_\Psi N_j = \mathfrak{M}_j S_\Psi \quad \text{and} \quad N_j S_\varphi = S_\varphi \mathfrak{M}_j, \] (2.9)

$j = 1, 2$. This is related to the fact that the spectra of, say, N_1 and \mathfrak{M}_1 coincide and that their eigenvectors are related by the operators S_φ and S_Ψ, in agreement with the literature on intertwining operators, [8, 9], and on pseudo-Hermitian quantum mechanics, see [10] and references therein.

\section*{II.1 Coherent states}

As it is well known there exist several different, and not always equivalent, ways to define \textit{coherent states}, [11, 12]. In this paper we will adopt the following definition, generalizing [1].

\(^1\)Recall that a set of vectors $\varphi_1, \varphi_2, \varphi_3, \ldots$, is a Riesz basis of a Hilbert space \mathcal{H}, if there exists a bounded operator V, with bounded inverse, on \mathcal{H}, and an orthonormal basis of \mathcal{H}, $\varphi_1, \varphi_2, \varphi_3, \ldots$, such that $\varphi_j = V \varphi_j$, for all $j = 1, 2, 3, \ldots$.

Let z_1 and z_2 be two complex variables, $z_1, z_2 \in \mathcal{D}$ (some domain in \mathbb{C}), and let us introduce the following operators:

$$U_j(z_j) = e^{z_j b_j - \frac{1}{2} a_j}, \quad V_j(z_j) = e^{z_j a_j^\dagger - \frac{1}{2} b_j^\dagger}, \quad j = 1, 2,$$

and the following vectors:

$$\varphi(z_1, z_2) = U(z_1, z_2) \varphi_{0,0}, \quad \Psi(z_1, z_2) = V(z_1, z_2) \Psi_{0,0}. \quad (2.12)$$

Remarks:

1. Due to the commutation rules for the operators b_j and a_j, we clearly have $[U_1(z_1), U_2(z_2)] = [V_1(z_1), V_2(z_2)] = 0$.

2. Since the operators U and V are, for generic z_1 and z_2, unbounded, definition (2.12) makes sense only if $\varphi_{0,0} \in D(U)$ and $\Psi_{0,0} \in D(V)$, a condition which will be assumed here. In \(\mathbb{U}\) it was proven that, for instance, this is so when \(\mathcal{F}_\varphi\) and \(\mathcal{F}_\psi\) are Riesz bases.

3. The set \mathcal{D} could, in principle, be a proper subset of \mathbb{C}.

It is possible to write the vectors $\varphi(z_1, z_2)$ and $\Psi(z_1, z_2)$ in terms of the vectors of \mathcal{F}_φ and \mathcal{F}_ψ as

$$\varphi(z_1, z_2) = e^{-(|z_1|^2 + |z_2|^2)/2} \sum_{n,l=0}^{\infty} \frac{z_1^n z_2^l}{\sqrt{n! l!}} \varphi_{n,l}, \quad \Psi(z_1, z_2) = e^{-(|z_1|^2 + |z_2|^2)/2} \sum_{n,l=0}^{\infty} \frac{z_1^n z_2^l}{\sqrt{n! l!}} \Psi_{n,k}. \quad (2.13)$$

These vectors are called **coherent** since they are eigenstates of the lowering operators. Indeed we can check that

$$a_j \varphi(z_1, z_2) = z_j \varphi(z_1, z_2), \quad b_j^\dagger \Psi(z_1, z_2) = z_j \Psi(z_1, z_2), \quad (2.14)$$

for $j = 1, 2$ and $z_j \in \mathcal{D}$. It is also a standard exercise, putting $z_j = r_j e^{i\theta_j}$, to check that the following operator equalities hold:

$$\frac{1}{\pi^2} \int_{\mathbb{C}} dz_1 \int_{\mathbb{C}} dz_2 |\varphi(z_1, z_2)><\varphi(z_1, z_2)| = S_\varphi, \quad \frac{1}{\pi^2} \int_{\mathbb{C}} dz_1 \int_{\mathbb{C}} dz_2 |\Psi(z_1, z_2)><\Psi(z_1, z_2)| = S_\psi, \quad (2.15)$$

as well as

$$\frac{1}{\pi^2} \int_{\mathbb{C}} dz_1 \int_{\mathbb{C}} dz_2 |\varphi(z_1, z_2)><\Psi(z_1, z_2)| = \frac{1}{\pi^2} \int_{\mathbb{C}} dz_1 \int_{\mathbb{C}} dz_2 |\Psi(z_1, z_2)><\varphi(z_1, z_2)| = \mathbb{I}, \quad (2.16)$$

5
which are written in convenient bra-ket notation. It should be said that these equalities are, most of the times, only formal results. Indeed it is not difficult to construct examples in which something goes wrong and, for instance, the resolution of the identity for the pair \(\varphi(z_1, z_2) \) and \(\Psi(z_1, z_2) \) does not hold as expected. As the following theorem will show, this is a reflection of the fact that the operators \(S_\varphi \) and \(S_\Psi \) are unbounded, or, equivalently, of the fact that \(F_\varphi \) and \(F_\Psi \) are not Riesz bases. Indeed we have the following general result, which was essentially stated in \([2]\) for a concrete example of 1-D pseudo-bosons, and which we extend here to the general setting.

Theorem 1 Let \(a_j, b_j, F_\varphi, F_\Psi, \varphi(z_1, z_2) \) and \(\Psi(z_1, z_2) \) be as above. Let us assume that (1) \(F_\varphi, F_\Psi \) are Riesz bases; (2) \(F_\varphi, F_\Psi \) are biorthogonal. Then \((2.16)\) holds true.

The proof of this theorem does not differ significantly from that given in \([2]\), so that it will not be repeated here. The meaning of the theorem is the following: suppose that following the above construction the coherent states we get do not produce a resolution of the identity. Then, since \(F_\varphi \) and \(F_\Psi \) are automatically biorthogonal, they cannot be Riesz bases (neither one of them)! However, this theorem does not hold in general for other types of coherent states. We will come back on this point in the next section.

III Generalized Landau levels

The Hamiltonian of a single electron, moving on a two-dimensional plane and subject to a uniform magnetic field along the \(z \)-direction, is given by the operator

\[
H'_0 = \frac{1}{2} \left(p + \vec{A}(r) \right)^2 = \frac{1}{2} \left(p_x - \frac{y}{2} \right)^2 + \frac{1}{2} \left(p_y + \frac{x}{2} \right)^2,
\]

(3.1)

where we have used minimal coupling and the symmetric gauge \(\vec{A} = \frac{1}{2}(-y, x, 0) \).

The spectrum of this Hamiltonian is easily obtained by first introducing the new variables

\[
P'_0 = p_x - y/2, \quad Q'_0 = p_y + x/2.
\]

(3.2)

In terms of \(P'_0 \) and \(Q'_0 \) the single electron hamiltonian, \(H_0 \), can be rewritten as

\[
H'_0 = \frac{1}{2} (Q'_0^2 + P'_0^2).
\]

(3.3)
On a classical level, the transformation (3.2) is part of a canonical map from the phase space variables \((x, y, p_x, p_y)\) to \((Q_0, P_0, Q'_0, P'_0)\), where

\[
P_0 = p_y - x/2, \quad Q_0 = p_x + y/2,
\]

which can be used to construct a second Hamiltonian \(H_0 = \frac{1}{2}(Q_0^2 + P_0^2)\).

The corresponding quantized operators satisfy the commutation relations:

\[
[x, p_x] = [y, p_y] = i, \quad [x, p_y] = [y, p_x] = [x, y] = [p_x, p_y] = 0,
\]

and

\[
[Q_0, P_0] = [Q'_0, P'_0] = i, \quad [Q_0, P_0'] = [Q'_0, P_0] = [Q_0, Q'_0] = [P_0, P'_0] = 0,
\]

so that \([H_0, H'_0] = 0\).

We refer to \([13]\) and references therein for a discussion on how the corresponding wave functions look in different representations. In \([6]\) two of us (STA and FB) have considered, in the context of supersymmetric (SUSY) quantum mechanics, an extended version of \(H'_0\), an extension needed due to the fact that for the Hamiltonian of the standard Landau levels (SLL) there is essentially no difference between \(H'_0\) and its SUSY partner Hamiltonian.

The extension constructed in \([6]\) is very natural and simple: introducing the vector valued function \(\vec{W}_0 = -\frac{1}{2}(x, y, 0) = (W_{0,1}, W_{0,2}, 0)\), we may rewrite the operators in (3.2) and (3.4) as

\[
P'_0 = p_x + W_{0,2}, \quad Q'_0 = p_y - W_{0,1}, \quad P_0 = p_y + W_{0,1}, \quad Q_0 = p_x - W_{0,2}.
\]

This definition was extended in \([6]\) as follows:

\[
p' = p_x + W_2, \quad q' = p_y - W_1, \quad p = p_y + W_1, \quad q = p_x - W_2,
\]

introducing a vector superpotential \(\vec{W} = (W_1, W_2, 0)\).

Here, since we are interested in constructing 2-D pseudo-bosons, it is convenient to introduce two (in general) complex and different vector superpotentials (this is a slight abuse of language!) \(\vec{W} = (W_1, W_2)\) and \(\vec{V} = (V_1, V_2)\), and we put

\[
P' = p_x + W_2, \quad Q' = p_y - W_1, \quad P = p_y + V_1, \quad Q = p_x - V_2.
\]

Our notation is the following: all operators with suffix 0 are related to the SLL. The same operators, without the 0, have to do with our generalized model, i.e. with the GLL. Notice that these operators are, in general, not self-adjoint. Hence, while for example \(P_0 = P_0^\dagger\), we
may have $P \neq P^\dagger$, depending on the choice of V_1. The superpotentials should also be chosen in such a way that, first of all, Q, P, Q' and P' satisfy the same commutation rules (3.5) as their 0-counterparts:

$$[Q, P] = [Q', P'] = i, \quad [Q, P'] = [Q', Q] = [P, P'] = 0.$$ (3.9)

These impose certain conditions on \vec{V} and \vec{W}:

$$W_{1,x} = V_{2,y}, \quad W_{2,x} = -V_{2,x}, \quad W_{1,y} = -V_{1,y}, \quad W_{2,y} = V_{1,x},$$ (3.10)

as well as

$$V_{1,x} + V_{2,y} = W_{1,x} + W_{2,y} = -1.$$ (3.11)

The subscripts x, y denote differentiation with respect to that variable. Hence, as it was already clear at the beginning, the two different vector superpotentials must be related to each other. Notice that the standard choice trivially satisfies all these conditions. We now introduce the following operators:

$$A' = \alpha'(Q' + iP'), \quad B' = \gamma'(Q' - iP'), \quad A = \alpha(Q + iP), \quad B = \gamma(Q - iP),$$ (3.12)

where $\alpha \gamma = \frac{1}{2}$ and $\alpha' \gamma' = \frac{1}{2}$. Incidentally, we recall that for the SLL the same linear combinations as in (3.12) hold with $\alpha = \alpha' = \gamma = \gamma' = \frac{1}{\sqrt{2}}$ and with the operators Q, P, Q' and P' replaced respectively by Q_0, P_0, Q'_0 and P'_0. Thus, the operators generalizing the Landau Hamiltonians in [6] are

$$h' = \frac{1}{2} (p_x + W_2)^2 + \frac{1}{2} (p_y - W_1)^2, \quad h = \frac{1}{2} (p_x - V_2)^2 + \frac{1}{2} (p_y + V_1)^2,$$ (3.13)

which can be rewritten as

$$h' = B'A' - \frac{1}{2} \mathbb{I}, \quad h = BA - \frac{1}{2} \mathbb{I}.$$ (3.14)

The operators in (3.12) are pseudo-bosonic since they satisfy the following commutation rules:

$$[A, B] = [A', B'] = \mathbb{I},$$ (3.15)

while all the other commutators are trivial. It is important to observe that, since $A^\dagger = \overline{\alpha}(Q^\dagger - iP^\dagger)$, and since Q and P are not necessarily self-adjoint, in general $B \neq A^\dagger$. Analogously, in general $B' \neq A'^\dagger$. Similar conclusions can be deduced starting from the pairs B^\dagger, A^\dagger and B'^\dagger, A'^\dagger.

8
At this stage it is interesting to say few words on the physical meaning of our model. In other words: what is the physical meaning of going from the SLL to these GLL? The answer is the following: suppose we interpret \vec{W} and \vec{V} in (3.13) as two different (but related) vector potentials describing two possibly different magnetic fields. These potentials are $\vec{A}_1 = (W_2, -W_1, 0)$ for h' and $\vec{A}_1 = (-V_2, V_1, 0)$ for h (the reason for this notation will be clear in a moment). Now, computing the associated magnetic fields from these vectors we get

$$\vec{B}_\uparrow = \vec{\nabla} \wedge \vec{A}_\uparrow = -\hat{k}(\partial_x W_1 + \partial_y W_2) = \hat{k}, \quad \vec{B}_\downarrow = \vec{\nabla} \wedge \vec{A}_\downarrow = \hat{k}(\partial_x V_1 + \partial_y V_2) = -\hat{k},$$

because of the equalities in (3.11). Hence, for any possible choice of superpotentials, h' and h respectively describe an electron in an up and in a down uniform magnetic field, as the original hamiltonians H_0' and H_0. Incidentally this suggests that we should further analyze this model in the light of the modular structure, recently considered in [14] in the context of SLL.

The following are some possible choices of \vec{W} and \vec{V}:

Choice 1 (SLL). Let us take $V_1(x, y) = W_1(x, y) = -\frac{x}{2}$, $V_2(x, y) = W_2(x, y) = -\frac{y}{2}$. If we further take $\alpha = \gamma = \alpha' = \gamma' = \frac{1}{\sqrt{2}}$ we recover exactly the usual situation, [6]. Moreover, we go back to bosonic rather than pseudo-bosonic commutation relations.

Choice 2 (Perturbations of the SLL). First we consider a symmetric perturbation. For that we take $V_1(x, y) = -\frac{x}{2} + v_1(y)$, $V_2(x, y) = -\frac{y}{2} + v_2(x)$, where v_1 and v_2 are arbitrary (but sufficiently regular) functions. Hence we get, apart from inessential additive constants, $W_1(x, y) = -\frac{x}{2} - v_1(y)$, $W_2(x, y) = -\frac{y}{2} - v_2(x)$. In order not to trivialize the situation, it is also necessary to take $v_1(y)$ and $v_2(x)$ complex (at least one of them): this is the way to get pseudo-bosons rather than simple bosons.

A non symmetric version of this perturbation can be constructed by just taking $V_1(x, y) = -a_1 x + v_1(y)$, $V_2(x, y) = -a_2 y + v_2(x)$, with $a_1 + a_2 = 1$.

Choice 3 (A general solution). We take $V_1(x, y) = -x + v_1(y) + \int \frac{\partial V_2(x, y)}{\partial y} dx$, where $V_2(x, y)$ is any function for which this definition makes sense. In particular, for instance, if we take $V_2(x, y) = e^{xy}$ then $V_1(x, y) = -x + v_1(y) + \frac{1}{y}(x y - 1) e^{xy}$ and, consequently, $W_1(x, y) = -v_1(y) - \frac{1}{y}(x y - 1) e^{xy}$ and $W_2(x, y) = -y - e^{xy}$.

If we rather take $V_2(x, y) = x^n y^k$, $n, k = 1, 2, 3, \ldots$, then $V_1(x, y) = -x + v_1(y) - \frac{k}{n+1} x^{n+1} y^{k-1}$, and so on.
III.1 A perturbation of the SLL

We will now focus our attention on Choice 2 above, with an explicit choice of \(v_1(y) \) and \(v_2(x) \), and apply the construction given in Section II. Let

\[
W_1(x, y) = -\frac{x}{2} - ik_1y, \quad W_2(x, y) = -\frac{y}{2} - ik_2x, \tag{3.16}
\]

with \(k_1 \) and \(k_2 \) real and not both zero (not to go back to SLL). In this case the operators in \((3.12)\) assume the following differential expressions:

\[
\begin{align*}
A' &= \alpha' \left(\partial_x - i\partial_y + \frac{i}{2}(1 + 2k_2) - \frac{i\nu}{2}(1 - 2k_1) \right), \\
B' &= \gamma' \left(-\partial_x - i\partial_y + \frac{i}{2}(1 - 2k_2) + \frac{i\nu}{2}(1 + 2k_1) \right), \\
A &= \alpha \left(-i\partial_x + \partial_y - \frac{i}{2}(1 + 2k_2) + \frac{i\nu}{2}(1 - 2k_1) \right), \\
B &= \gamma \left(-i\partial_x - \partial_y + \frac{i}{2}(1 - 2k_2) + \frac{i\nu}{2}(1 + 2k_1) \right).
\end{align*}
\tag{3.17}
\]

In order to check Assumptions 1 and 2 of the previous section, we first look for vectors \(\varphi_{0,0}(x, y) \) and \(\Psi_{0,0}(x, y) \) satisfying \(A\varphi_{0,0}(x, y) = 0 \) and \(B^\dagger\Psi_{0,0}(x, y) = 0 \). We get

\[
\begin{align*}
\varphi_{0,0}(x, y) &= N_\varphi \exp \left\{ -\frac{x^2}{4}(1 + 2k_2) - \frac{y^2}{4}(1 - 2k_1) \right\}, \\
\Psi_{0,0}(x, y) &= N_\Psi \exp \left\{ -\frac{x^2}{4}(1 - 2k_2) - \frac{y^2}{4}(1 + 2k_1) \right\},
\end{align*}
\tag{3.18}
\]

where \(N_\varphi \) and \(N_\Psi \) are normalization constants which are chosen in such a way that \(\langle \varphi_{0,0}, \Psi_{0,0} \rangle = 1 \). Of course, in order for this result to make sense, the two functions must belong to the Hilbert space \(\mathcal{H} \) we are considering here, i.e. \(\mathcal{L}^2(\mathbb{R}^2) \). This imposes some constraints on \(k_1 \) and \(k_2 \):

\(-\frac{1}{2} < k_j < \frac{1}{2}, \ j = 1, 2.\)

It is possible to check that the same functions also satisfy \(A'\varphi_{0,0}(x, y) = 0 \) and \(B'^\dagger\Psi_{0,0}(x, y) = 0 \). It is now evident that Assumptions 1 and 2 are satisfied. Indeed the action of, say, \(B_n^l \) on \(\varphi_{0,0}(x, y) \) simply produces some polynomial (see (3.21) below) of the \(n \)-th degree times a gaussian: this resulting function belongs clearly to \(\mathcal{L}^2(\mathbb{R}^2) \) for all \(n \). This fact allows us to define the following functions

\[
\begin{align*}
\varphi_{n,l}(x, y) &= \frac{B_n^l}{\sqrt{n!l!}} \varphi_{0,0}(x, y), \quad \text{and} \quad \Psi_{n,l}(x, y) = \frac{(A'^\dagger)^n(A'^\dagger)^l}{\sqrt{n!l!}} \Psi_{0,0}(x, y), \tag{3.19}
\end{align*}
\]

where \(n, l = 0, 1, 2, 3, \ldots \). As we have seen in the previous section, the sets \(\mathcal{F}_\varphi = \{ \varphi_{n,l}(x, y), \ n, l \geq 0 \} \) and \(\mathcal{F}_\Psi = \{ \Psi_{n,l}(x, y), \ n, l \geq 0 \} \) are biorthogonal. In fact, with our previous choice of the normalization constants, we have

\[
\langle \Psi_{n,l}, \varphi_{m,k} \rangle = \delta_{n,m} \delta_{l,k}, \quad \forall n, m, l, k \geq 0. \tag{3.20}
\]
Of course these vectors diagonalize the operators $h = N - \frac{1}{2} \mathbb{I}$ and $h' = N' - \frac{1}{2} \mathbb{I}$, as well as their adjoints $h^\dagger = N - \frac{1}{2} \mathbb{I}$ and $h'^\dagger = N' - \frac{1}{2} \mathbb{I}$, where $N = BA$, $N' = B'A'$, $N = N^\dagger$ and $N' = N'^\dagger$. We find:

$$h' \varphi_{n,l} = \left(n - \frac{1}{2}\right) \varphi_{n,l}, \quad h \varphi_{n,l} = \left(l - \frac{1}{2}\right) \varphi_{n,l},$$

and

$$h'^\dagger \Psi_{n,l} = \left(n - \frac{1}{2}\right) \Psi_{n,l}, \quad h^\dagger \Psi_{n,l} = \left(l - \frac{1}{2}\right) \Psi_{n,l}.$$

The next step consists in proving that the sets \mathcal{F}_φ and \mathcal{F}_ψ are complete in \mathcal{H}. This is a consequence of the fact that (a.) the set $\mathcal{F}_h := \{h_{n,m}(x,y) := x^n y^m \varphi_{0,0}(x,y), n, m \geq 0\}$ is complete in $L^2(\mathbb{R}^2)$; (b.) each function of \mathcal{F}_h, can be written as a finite linear combination of some $\varphi_{i,j}(x,y)$. Then it is clear that, if by assumption $f \in \mathcal{H}$ is such that $\langle f, \varphi_{i,j} \rangle = 0$ for all i and j, then $\langle f, h_{n,m} \rangle = 0$ for all n and m, so that $f = 0$. Of course the same argument allows us to prove that \mathcal{F}_ψ is complete in \mathcal{H}.

This result implies that also Assumption 3 of Section II is satisfied. Now we could introduce the intertwining operators S_φ and S_ψ and check, among other properties, if they are bounded or not. This is related to the fact that, as we will first show, the set \mathcal{F}_h is complete in $\mathcal{L}^2(\mathbb{R}^2)$, [6],

$$\mathcal{F}_{\varphi}^{(0)} := \left\{ \varphi_{n,l}^{(0)}(x,y) := \frac{B_0^n B_l^l}{\sqrt{n! l!}} \varphi_{0,0}(x,y), \quad n, m \geq 0 \right\},$$

where $\varphi_{0,0}(x,y) = \frac{1}{\sqrt{2\pi}} e^{-(x^2+y^2)/4}$ is the vacuum of $A_0 = \frac{1}{\sqrt{2}}(Q_0 + iP_0)$ and $A'_0 = \frac{1}{\sqrt{2}}(Q'_0 + iP'_0)$. Recall that, for SLL, $B'_0 = A'_0$ and $B_0 = A_0^\dagger$.

To prove now that \mathcal{F}_φ is not a Riesz basis, we will show that an operator T_φ exists mapping $\mathcal{F}_{\varphi}^{(0)}$ into \mathcal{F}_{φ}, that T_φ is invertible, but T_φ and/or T_φ^{-1} are not bounded. Finding this operator is simple. Indeed it is easy to first check that

$$\varphi_{n,0}^{(0)}(x,y) = \frac{1}{\sqrt{2^n n!}} (x + iy)^n \varphi_{0,0}(x,y), \quad \varphi_{0,l}^{(0)}(x,y) = \frac{i^l}{\sqrt{2^l l!}} (x - iy)^l \varphi_{0,0}(x,y) \quad (3.21)$$

and

$$\varphi_{n,0}(x,y) = \frac{\gamma^n}{\sqrt{n!}} (x + iy)^n \varphi_{0,0}(x,y), \quad \varphi_{0,l}(x,y) = \frac{(i\gamma)^l}{\sqrt{l!}} (x - iy)^l \varphi_{0,0}(x,y), \quad (3.22)$$

for all $n, l \geq 0$. Similar formulae are deduced for $\Psi_{n,0}(x,y)$ and $\Psi_{0,l}(x,y)$. From a comparison between (3.21) and (3.22) it is clear that T_φ can exist only if $\gamma = \gamma' = \frac{1}{\sqrt{2}}$. Assuming this to
be so, we have

\[
\frac{\varphi_{n,0}(x, y)}{\varphi_{n,0}^{(0)}(x, y)} = \frac{\varphi_{0,l}(x, y)}{\varphi_{0,l}^{(0)}(x, y)} = \frac{\varphi_{0,0}(x, y)}{\varphi_{0,0}^{(0)}(x, y)}, \tag{3.23}
\]

for all \(n, l \geq 0\). This suggest that we define \(T_\varphi\) as the ratio in the right-hand side of this equality:

\[
T_\varphi = \frac{\varphi_{0,0}(x, y)}{\varphi_{0,0}^{(0)}(x, y)} = \sqrt{2\pi}N_\varphi e^{-\frac{x^2}{4}k_2+y^2k_1}. \tag{3.24}
\]

Of course we have still to check that with this definition \(\varphi_{n,l}(x, y) = T_\varphi\varphi_{n,l}^{(0)}(x, y)\) holds also if both \(n\) and \(l\) are not zero. This can be proven observing that, for all \(n \geq 0\), the following intertwining relation holds:

\[
B^nT_\varphi = T_\varphi(A_0^{(1)})^n. \tag{3.25}
\]

Therefore, since

\[
\varphi_{n,l}(x, y) = T_\varphi\varphi_{n,l}^{(0)}(x, y) \quad \Leftrightarrow \quad B^n\varphi_{n,l} = T_\varphi(A_0^{(1)})^n\varphi_{0,l}^{(0)} \quad \Leftrightarrow \quad B^nT_\varphi\varphi_{n,l}^{(0)} = T_\varphi(A_0^{(1)})^n\varphi_{0,l}^{(0)},
\]

our claim immediately follows. Formula (3.25) can be proved by induction on \(n\). The inverse of \(T_\varphi\) is \(T_\varphi^{-1} = \frac{1}{\sqrt{2\pi}N_\varphi} e^{\frac{x^2}{4}k_2-y^2k_1}.\) It is clear that both \(T_\varphi\) and/or \(T_\varphi^{-1}\) are unbounded on \(L^2(\mathbb{R}^2)\) for all possible choices of \(k_1\) and \(k_2\) in \((-\frac{1}{2}, \frac{1}{2})\), except when \(k_1 = k_2 = 0\), i.e., in the case of the SLL. Hence, for well known general reasons, \([15, 16]\), \(F_\varphi\) cannot be a Riesz basis.

Essentially the same arguments also show that \(F_\Psi\) is not a Riesz basis, either. Indeed, an operator \(T_\Psi\) mapping \(F_\varphi^{(0)}\) into \(F_\Psi\) can be found and it is

\[
T_\Psi = \frac{\Psi_{0,0}(x, y)}{\varphi_{0,0}^{(0)}(x, y)} = \sqrt{2\pi}N_\Psi e^{\frac{x^2}{2}k_2-y^2k_1}. \tag{3.26}
\]

This operator satisfies \(\Psi_{n,l}(x, y) = T_\Psi\varphi_{n,l}^{(0)}(x, y)\) for all possible choices of \(n\) and \(l\) greater or equal to zero. Therefore, since \(\varphi_{n,l}(x, y) = T_\varphi\varphi_{n,l}^{(0)}(x, y) = (T_\varphi T_\Psi^{-1})\Psi_{n,l}(x, y)\), the operators \(S_\varphi\) and \(S_\Psi\) in (2.6) can be easily identified and look like

\[
S_\varphi = T_\varphi T_\Psi^{-1} = \frac{N_\varphi}{N_\Psi} e^{-x^2k_2+y^2k_1}, \quad S_\Psi = S_{\varphi}^{-1} = T_\Psi T_\varphi^{-1} = \frac{N_\Psi}{N_\varphi} e^{x^2k_2-y^2k_1}. \tag{3.27}
\]

Notice that for any choice of \(k_1\) and \(k_2\) in \((-\frac{1}{2}, \frac{1}{2})\), other than when \((k_1, k_2) = (0, 0)\), at least one of these operators is unbounded.

We will now construct a set of \textit{bicoherent states} for our GLL. However, rather than using the definitions in (2.12), it is convenient to look for solutions in the \((x, y)\)-space of the eigenvalue
\[
\begin{align*}
A \tilde{\varphi}(x, y; z, z') &= z \tilde{\varphi}(x, y; z, z') \\
A' \tilde{\varphi}(x, y; z, z') &= z' \tilde{\varphi}(x, y; z, z') \\
B^\dagger \tilde{\Psi}(x, y; z, z') &= z \tilde{\Psi}(x, y; z, z') \\
B'^\dagger \tilde{\Psi}(x, y; z, z') &= z' \tilde{\Psi}(x, y; z, z')
\end{align*}
\] (3.28)

where, as suggested by our previous results, we take \(\alpha = \alpha' = \gamma = \gamma' = \frac{1}{\sqrt{2}}\) in (3.17). The square integrable solutions of the differential equations in (3.28) are

\[
\begin{align*}
\tilde{\varphi}(x, y; z, z') &= N_A(z, z') e^{-\frac{(1+2k_2)x^2-(1-2k_1)y^2)}{4} e^{\frac{1}{\sqrt{2}}[(z'+iz)x+(z+iz')y]} \\
\tilde{\Psi}(x, y; z, z') &= N_B(z, z') e^{-\frac{(1-2k_2)x^2-(1+2k_1)y^2)}{4} e^{\frac{1}{\sqrt{2}}[(z'+iz)x+(z+iz')y]} ,
\end{align*}
\] (3.29)

where \(z\) and \(z'\) are complex parameters.

The normalization is fixed by requiring that

\[
\left\langle \tilde{\varphi}(x, y; z, z'), \tilde{\Psi}(x, y; z, z') \right\rangle_{L^2(\mathbb{R}^2)} = \left\langle \varphi(z, z'), \Psi(z, z') \right\rangle_{\mathcal{H}},
\]

where in the rhs the coherent states introduced in (2.12), and living in the Hilbert space \(\mathcal{H}\), appear. Notice that \(\left\langle \varphi(z, z'), \Psi(z, z') \right\rangle_{\mathcal{H}} = 1\) for all \(z\) and \(z'\) in \(\mathcal{D}\). Then we find, with a suitable choice of phases,

\[
N_A(z, z')N_B(z, z') = \frac{1}{2\pi} e^{-|z-i z'|^2}.
\]

Notice that these states reduce to the standard two dimensional gaussian \(\frac{1}{\sqrt{2\pi}} e^{-(x^2+y^2)/4}\) when \(z = z' = k_1 = k_2 = 0\), i.e., for the SLL and for eigenvalues of the lowering operators both equal to zero. It is now a straightforward computation to check the resolution of the identity for these states

\[
\frac{1}{\pi^2} \int_{\mathbb{C}^2} dzd' |\tilde{\varphi}(x, y; z, z') \rangle \langle \tilde{\varphi}(x, y; z, z')| = \mathbb{I}
\] (3.30)

where \(\mathbb{I}\) is the identity in \(L^2(\mathbb{R}^2)\).

This result is by no means in disagreement with the theorem stated in Section II. The first reason is that it is not clear that the functions \(\tilde{\varphi}(x, y; z, z')\) and \(\tilde{\Psi}(x, y; z, z')\) coincide with \(\varphi(z, z')\) and \(\Psi(z, z')\), for which the theorem was stated. Secondly, and more important, that theorem gives only a sufficient condition. Hence, if we would be able to prove that \(\tilde{\varphi}(x, y; z, z') = \varphi(z, z')\) and \(\tilde{\Psi}(x, y; z, z') = \Psi(z, z')\), this computation will provide a nice counterexample showing that the conditions of the theorem are, in fact, only sufficient and not necessary. This is work in progress.
IV Damped harmonic oscillator

An interesting example of two-dimensional pseudo-bosons is provided by the damped harmonic oscillator (DHO). In [7] the authors have discussed a possible approach to the quantization of the DHO. This is a non conservative system, so that a Hamiltonian approach requires a certain amount of care. The approach which was proposed already in 1977, [17], is to consider the DHO as a part of a larger system, involving also a second oscillator which is forced and which takes the energy lost by the DHO, so that this larger system is conservative. The original equation of motion, \(m\ddot{x} + \gamma \dot{x} + kx = 0 \), is therefore complemented by a second virtual equation, \(m\ddot{y} - \gamma \dot{y} + k\dot{y} = 0 \), and the classical lagrangian for the system looks like \(L = \frac{m}{2} (\dot{x}^2 + \dot{y}^2) + \frac{1}{2} (p_x + \gamma \dot{y}) (p_y - \gamma \dot{y}) + kxy \), where \(p_x = \frac{\partial L}{\partial \dot{x}} \) and \(p_y = \frac{\partial L}{\partial \dot{y}} \) are the conjugate momenta. The introduction of pseudo-bosons is based on two successive changes of variables and on a canonical quantization. First of all we introduce the new variables \(x_1 \) and \(x_2 \) via \(x = \frac{1}{\sqrt{2}} (x_1 + x_2) \), \(y = \frac{1}{\sqrt{2}} (x_1 - x_2) \). Then \(L = \frac{1}{2} m (\dot{x}_1^2 - \dot{x}_2^2) + \frac{\gamma}{2} (x_2 \dot{x}_1 - x_1 \dot{x}_2) - \frac{k}{2} (x_1^2 - x_2^2) \) and \(H = \frac{1}{2m} (p_1 - \gamma \dot{x}_2)^2 + \frac{1}{2m} (p_2 + \gamma \dot{x}_1)^2 + \frac{k}{2} (x_1^2 - x_2^2) \).

The second change of variable is the following:

\[
\begin{align*}
 p_+ &= \sqrt{\frac{\omega_+}{2m}} p_1 + i \sqrt{\frac{m \Omega}{2}} x_2, \\
 p_- &= \sqrt{\frac{\omega_-}{2m}} p_1 - i \sqrt{\frac{m \Omega}{2}} x_2, \\
 x_+ &= \sqrt{\frac{m \Omega}{2\omega_+}} x_1 + i \sqrt{\frac{1}{2m \Omega \omega_+}} p_2, \\
 x_- &= \sqrt{\frac{m \Omega}{2\omega_-}} x_1 - i \sqrt{\frac{1}{2m \Omega \omega_-}} p_2,
\end{align*}
\]

(4.1)

where we have introduced \(\Omega = \sqrt{\frac{1}{m} (k - \frac{\gamma^2}{4m})} \) and the two following complex quantities \(\omega_\pm = \Omega \pm i \frac{\gamma}{2m} \). In the rest of the section we will assume that \(k \geq \frac{\gamma^2}{4m} \), so that \(\Omega \) is real. Up to now, we are still at a classical level, so that \(\overline{\omega}_+ = \omega_- \), \(\overline{p}_+ = p_- \), \(\overline{x}_+ = x_- \), and consequently, see below, \(\overline{H}_+ = H_- \) and \(\overline{H} = H \). Hence \(H \) is a real Hamiltonian. Indeed, with these definitions, the Hamiltonian looks like the Hamiltonian of a two-dimensional harmonic oscillator

\[
H = \frac{1}{2} (p_+^2 + \omega_+^2 x_+^2) + \frac{1}{2} (p_-^2 + \omega_-^2 x_-^2) =: H_+ + H_- \]

at least formally.

At this stage we quantize canonically the system, [7]: we require that the following commutators are satisfied:

\[
[x_+, p_+] = [x_-, p_-] = i \mathbb{I},
\]

(4.2)
all the other commutators being trivial. We also have to require that \(p_+^\dagger = p_- \) and that \(x_+^\dagger = x_- \), which are the quantum version of the compatibility conditions above. The pseudo-bosons now appear:

\[
\begin{align*}
 a_+ &= \sqrt{\frac{\omega}{2}} \left(x_+ + i \frac{p_x}{\omega} \right), \\
 a_- &= \sqrt{\frac{\omega}{2}} \left(x_- + i \frac{p_x}{\omega} \right), \\
 b_+ &= \sqrt{\frac{\omega}{2}} \left(x_+ - i \frac{p_x}{\omega} \right), \\
 b_- &= \sqrt{\frac{\omega}{2}} \left(x_- - i \frac{p_x}{\omega} \right),
\end{align*}
\]

and indeed we have \([a_+, b_+] = [a_-, b_-] = 1\), all the other commutators being zero. Notice also that \(b_+ = a_+^\dagger \) and \(b_- = a_-^\dagger \). Moreover \(H \) can be written in term of the operators \(N_\pm = b_\pm a_\pm \) as

\[
H = \omega N_+ + \omega N_- + \frac{\omega_1 + \omega_2}{2} I.
\]

So the hamiltonian of the quantum DHO is simply written in terms of pseudo-bosonic operators.

IV.1 About Assumptions 1-3

This system provides a non trivial example of pseudo-bosonic operators which do not satisfy any of the Assumptions 1-3 of Section II. To show this, we first observe that a possible representation of the operators in (4.2) is the following

\[
\begin{align*}
 x_+ &= \frac{1}{\Gamma \delta - \delta \Gamma} \left(\Gamma p_y + \delta x \right), \\
 x_- &= \frac{\delta^{-1}}{\Gamma \delta - \delta \Gamma} \left(\Gamma p_y + \delta x \right), \\
 p_+ &= \Gamma p_x + \delta y, \\
 p_- &= \Gamma p_x + \delta y,
\end{align*}
\]

for all choices of \(\Gamma \) and \(\delta \) such that \(\Gamma \delta \neq \delta \Gamma \). Here \(x, y, p_x \) and \(p_y \) are pairwise conjugate self-adjoint operators: \([x, p_x] = [y, p_y] = iI\). Notice that these operators also satisfy the compatibility conditions \(p_+^\dagger = p_- \) and \(x_+^\dagger = x_- \). Hence it is natural to represent \(x \) and \(y \) as the standard multiplication operators and \(p_x \) and \(p_y \) as \(-i \frac{\partial}{\partial x} = -i \partial_x \) and \(-i \frac{\partial}{\partial y} = -i \partial_y \). Then we get

\[
\begin{align*}
 a_+ &= \sqrt{\frac{\omega}{2}} \left\{ \left(\beta x + i \frac{\delta}{\omega} y \right) + \left(\frac{\Gamma}{\omega_x} \partial_x - i \alpha \partial_y \right) \right\}, \\
 a_- &= \sqrt{\frac{\omega}{2}} \left\{ \left(\beta x + i \frac{\delta}{\omega} y \right) - \left(\frac{\Gamma}{\omega_x} \partial_x - i \alpha \partial_y \right) \right\}, \\
 b_+ &= \sqrt{\frac{\omega}{2}} \left\{ \left(\beta x - i \frac{\delta}{\omega} y \right) - \left(\frac{\Gamma}{\omega_x} \partial_x + i \alpha \partial_y \right) \right\}, \\
 b_- &= \sqrt{\frac{\omega}{2}} \left\{ \left(\beta x - i \frac{\delta}{\omega} y \right) + \left(\frac{\Gamma}{\omega_x} \partial_x + i \alpha \partial_y \right) \right\},
\end{align*}
\]

15
where, to simplify the notation, we have introduced \(\alpha = \frac{\Gamma}{\Gamma - \delta \Gamma} \) and \(\beta = \frac{\Gamma}{\Gamma - \delta \Gamma} \).

Remark: A different representation of \(x_\pm \) and \(p_\pm \) could be deduced using the results of Section III. However, while the pseudo-bosonic commutation rules would be easily recovered, the compatibility conditions \(x_+^\dagger = x_- \) and \(p_+^\dagger = p_- \) would be lost. Hence this choice is not compatible with our requirements.

Assumption 1 of Section II requires the existence of a square-integrable function \(\varphi_{0,0}(x, y) \) such that, first of all, \(a_+ \varphi_{0,0}(x, y) = a_- \varphi_{0,0}(x, y) = 0 \). Analogously, Assumption 2 requires the existence of a (possibly different) square-integrable function \(\Psi_{0,0}(x, y) \) such that, first of all, \(b_\dagger \Psi_{0,0}(x, y) = b_- \Psi_{0,0}(x, y) = 0 \). However, since \(b_\dagger = a_-^\dagger \) and \(b_- = a_\dagger \), these two functions, if they exist, satisfy the same differential equations. Hence, apart from a normalization constant, we can choose them to be coincident. It is possible to check that a solution of \(a_+ \varphi_{0,0}(x, y) = a_- \varphi_{0,0}(x, y) = 0 \) is the following:

\[
\varphi_{0,0}(x, y) = N_0 \exp \left\{ -\frac{\beta \omega_+}{2 \Gamma} x^2 + \frac{\delta}{2 \alpha} \frac{\omega_-}{\omega_+} y^2 \right\}.
\] (4.6)

Notice that, in order for this function to be a solution of both \(a_+ \varphi_{0,0}(x, y) = 0 \) and \(a_- \varphi_{0,0}(x, y) = 0 \) it is necessary and sufficient to have the following identity satisfied: \(\frac{\omega_+}{\omega_-} = -\frac{\delta}{\beta} \frac{\Gamma}{\Gamma - \delta \Gamma} \). This is not a big requirement, clearly. What is crucial, on the other hand, is that the function \(\varphi_{0,0}(x, y) \), and \(\Psi_{0,0}(x, y) \) should consequently be square integrable. This is possible only if \(\Re \left(\frac{\beta \omega_+}{2 \Gamma} \right) > 0 \) and if, at the same time, \(\Re \left(\frac{\delta}{\alpha \omega_+} \right) < 0 \). Now, it is not hard to check that these two conditions are incompatible: if one is verified, the other is not. Therefore the conclusion is that, following the procedure we have considered so far, Assumptions 1 and 2 are violated and, of course, Assumption 3 cannot even be considered since it is meaningless. Of course this does not mean that for the quantum DHO the construction proposed in Section II cannot be considered. It only means that with the choices we have considered here, this is not possible. It could be possible, however, to look for some different representation of the operators, satisfying the compatibility condition, and see if it is possible to satisfy Assumptions 1, 2 and 3. This is work in progress.

V Conclusions

In this paper we have constructed a physically motivated two-dimensional family of pseudo-bosons arising from a generalized version of the Landau levels. This generalization has been
shown to be essentially a gauge transformation. Coherent states have been constructed and the
resolution of the identity has been proved.

We have also considered a quantum damped harmonic oscillator: this provides a nice ex-
ample of a pseudo-bosonic system for which all the assumptions of Section II are violated. In
conclusion, many examples exist, see Section III and references [1, 2, 3, 5] among the others,
in which Assumptions 1-3, and sometimes Assumption 4, are satisfied. But other examples
exist as well for which, even if pseudo-bosonic commutation rules are recovered, none of the
Assumptions hold true. This suggests to take care explicitly of these Assumptions when dealing
with pseudo-bosons.

Acknowledgements

The authors would like to acknowledge financial support from the Università di Palermo through
Bando CORI, cap. B.U. 9.3.0002.0001.0001. One of us (STA) would like to acknowledge a grant
from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

[1] F. Bagarello, Pseudo-bosons, Riesz bases and coherent states, J. Math. Phys., 50,
DOI:10.1063/1.3300804, 023531 (2010) (10pg)

[2] F. Bagarello Construction of pseudo-bosons systems, J. Math. Phys., 51,
doi:10.1063/1.3300804, 023531 (2010) (10pg)

[3] F. Bagarello Mathematical aspects of intertwining operators: the role of Riesz bases, J.
Phys. A, doi:10.1088/1751-8113/43/17/175203, 43, 175203 (2010) (12pp)

[4] F. Bagarello, Examples of Pseudo-bosons in quantum mechanics, Phys. Lett. A, in press

[5] D.A. Trifonov, Pseudo-boson coherent and Fock states, quant-ph/0902.3744

[6] Ali S.T., Bagarello F., Supersymmetric associated vector coherent states and generalized
Landau levels arising from two-dimensional supersymmetry, J. Math Phys., 49, DOI:
10.1063/1.2898117, (2008)

[7] R. Banerjee, P. Mukherjee A canonical approach to the quantization of the damped har-
monic oscillator, J. Phys. A, 35, 5591 (2002)

17
[8] Kuru S., Tegmen A., Vercin A., *Intertwined isospectral potentials in an arbitrary dimension*, J. Math. Phys., 42, No. 8, 3344-3360, (2001); Kuru S., Demircioglu B., Onder M., Vercin A., *Two families of superintegrable and isospectral potentials in two dimensions*, J. Math. Phys, 43, No. 5, 2133-2150, (2002); Samani K. A., Zarei M., *Intertwined hamiltonians in two-dimensional curved spaces*, Ann. of Phys., 316, 466-482, (2005).

[9] F. Bagarello *Extended SUSY quantum mechanics, intertwining operators and coherent states*, Phys. Lett. A, DOI: 10.1016/j.physleta.2008.08.047 (2008), F. Bagarello *Vector coherent states and intertwining operators*, J. Phys. A., doi:10.1088/1751-8113/42/7/075302, (2009), F. Bagarello, *Intertwining operators between different Hilbert spaces: connection with frames*, J. Math. Phys., DOI: 10.1063/1.3094758, 50, 043509 (2009) (13pp)

[10] A. Mostafazadeh, *Pseudo-hermitian quantum mechanics*, quant-ph/0810.5643, C. Bender, *Making Sense of Non-Hermitian Hamiltonians*, Rep. Progr. Phys., 70, 947-1018 (2007)

[11] S.T. Ali, J-P. Antoine and J-P. Gazeau, *Coherent States, Wavelets and Their Generalizations*, Springer-Verlag, New York, 2000.

[12] J-P. Gazeau, *Coherent states in quantum physics*, Wiley-VCH, Berlin 2009

[13] J.P. Antoine, F. Bagarello, *Localization properties and wavelet-like orthonormal bases for the lowest Landau level*, in *Advances in Gabor Analysis*, H.G. Feichtinger, T. Strohmer, Eds., Birkhäuser, Boston, 2003.

[14] S.T. Ali, F. Bagarello, G. Honnouvo, *Modular Structures on Trace Class Operators and Applications to Landau Levels*, J. Phys. A, doi:10.1088/1751-8113/43/10/105202, 43, 105202 (2010) (17pp)

[15] Young R., *An introduction to nonharmonic Fourier series*, Academic Pree, New York, (1980)

[16] Christensen O., *An Introduction to Frames and Riesz Bases*, Birkhäuser, Boston, (2003)

[17] H. Feshbach, Y. Tikochinsky, N.Y. Acad. Sci., 38, 44 (1977)

[18] F. Bagarello, *Examples of Pseudo-bosons in quantum mechanics*, Phys. Lett. A, 374, 3823-3827 (2010)