HYDROLYTIC CLEAVAGE OF THE PYRIMIDINE RING IN 2-ARYL-[1,2,4]TRIAZOLE[1,5-c]QUINAZOLINES: PHYSICO-CHEMICAL PROPERTIES AND THE HYPOGLYCEMIC ACTIVITY OF THE COMPOUNDS SYNTHESIZED

S.V.Kholodnyak, K.P.Schabelnyk, G.O.Zhernova, T.Yu.Sergeieva, V.V.Ivchuk, O.Yu.Voskoboynik, S.I.Kovalenko, S.D.Trzhetsinskii, S.I.Okovytyy, S.V.Shishkina

Zaporizhzhia State Medical University
Dnepropetrovsk National University
Kryvyi Rih National University
SSI “Institute for Single Crystals”, National Academy of Sciences of Ukraine

Key words: 2-aryl-[1,2,4]triazolo[1,5-c]quinazolines; hydrolytic cleavage; hypoglycemic activity

It has been shown that 2-aryl-[1,2,4]triazolo[1,5-c]quinazolines under the action of nucleophilic agents (hydrazine hydrate, sodium hydroxide, sodium methoxide, hydrochloric acid) undergo hydrolytic cleavage followed by formation of [2-(3-aryl-1H-1,2,4-triazol-5-yl)-phenyl]amines. The rational synthetic protocols for the compounds mentioned above, namely heating in the hydrochloric acid solution at 90-95°C for 60 min, have been proposed. It has been found that substituents in position 2 of the triazoloquinazoline moiety do not significantly affect duration of the reaction and the yields of products. Purity and the structure of the compounds synthesized have been proven by the corresponding physico-chemical methods, namely: elemental analysis, LC-MS, 1H, 13C NMR-spectrometry and X-ray structural study. The azole-azole prototropic tautomery has been substantiated using physico-chemical analytical methods. According to the data obtained in gas or DMSO medium compounds 2 exist as tautomer A or C, while in the crystal lattice the anilines mentioned exist as A-form. It has been determined that 2-(3-aryl-1H-1,2,4-triazol-5-yl)phenylamines (2.1, 2.8, 2.14) in the dose of 10 mg/kg are as good as reference-drugs Metformin (in the doses of 50 and 200 mg/kg) and Gliclazide (in the dose of 50 mg/kg) by their hypoglycemic activity when assessing specific pharmacological activities in oral glucose tolerance test (OGTT), rapid insulin and adrenaline test models.

Recent publication describes hydrolytic cleavage of azole and azine condensed cycles under the action of nucleophiles [1, 3, 6, 4, 9, 11, 12, 15, 17, 20, 25, 26, 28, 29]. It is known that kinetics of the reactions mentioned depends on basic properties of nucleophilic reagents. Strong nucleophiles (hydroxides and alkoxides of alkaline metals, hydrazine hydrate) easily react with the given substrates in the water or alcohol-water medium for 1 h and form products with high yields [4, 15, 20, 25, 26, 28, 29]. Moreover, water may play the role of a nucleophile in hydrolytic cleavage reactions. In this case the reaction proceeds for 1 h and needs acidic catalysis [1, 6]. It has been noted that cleavage of the pyridine cycle of 2-aryl-[1,2,4]triazolo[1,5-c]quinazoline is insufficiently known in spite of potentially bioactive products of this transformation. In addition, products of the reactions mentioned may take a worth place in the process of development of approaches for forming new heterocyclic systems and drug discovery [2, 8, 13, 18, 19, 23, 24].

Moreover, we found reports where the hypoglycemic activity of derivatives of 1,2,4-triazole were described. Thus, A.K.Mohammed Iqbal and co-authors discussed in their research the hypoglycemic and hypolipidemic action of novel compounds, which molecules contained the thiazolidone fragment attached to the triazole cycle via phenoxyethenthio “linker” groups [14]. 4-Methyl-3-(R-phenyl-,1-methyl-1H-indol-4(5)-yl)-5-(R-phenyl)-4H-1,2,4-triazoles as selective inhibitors of 11β-hydroxy-steroid dehydrogenase 1 were described as prospective glucose-lowering agents by Susan D. Aster and co-authors [7], and “ELI LILLY and COMPANY” applied for patent series of 2-R,-4-R,-5-alkaryl-(alkheteryl-, aryl-(heteryl-)oxy-, aryl-(heteryl)-thio-, aryl-(heteryl-)amino-)-2,4-dihydro-3H-1,2,4-triazol-3-ones(thiones) with high affinity to nuclear hormonal receptors. They may be used for treating diabetes, cardiovascular disorders, obesity, X-syndrome and gastrointestinal disorders [21, 22], etc.

Thus, the aims of the present research were to study the peculiarities of the given type of the reaction, elucidation of the effect of o-, m-, p-substituted aryl moiety in position 2 of [1,2,4]triazolo[1,5-c]quinazolines on the process of the pyrimidine cycle hydrolytic cleavage, as well as the hypoglycemic action of the compounds synthesized.

Experimental Part

I. Chemistry

1.1. General method. Melting points were determined in open capillary tubes and were uncorrected. The ele-
mental analyses (C, H, N, S) were performed using an ELEMENTAR vario EL Cube analyzer (USA). Analyses were indicated by the symbols of the elements or functions within ±0.3% of the theoretical values. 1H NMR spectra (400 MHz) and 13C NMR spectra (100 MHz) were recorded on a Varian-Mercury 400 (Varian Inc., Palo Alto, CA, USA) spectrometer with TMS as an internal standard in DMSO-d6 solution. LC-MS were recorded using the chromatography/mass spectrometric system consisting of high performance liquid chromatographer “Agilent 1100 Series” (Agilent, Palo Alto, CA, USA) equipped with a diode-matrix and a mass-selective detector “Agilent LC/MSD SL” (atmospheric pressure chemical ionization – APCl). Electron impact mass spectra (EI-MS) were recorded on a Varian 1200 L instrument at 70 eV (Varian, USA).

Substances 1.1-1.16 were synthesized according to the procedures reported [16]. Other starting materials and solvents were obtained from commercially available sources and used without additional purification.

1.2. The general procedure for the synthesis of 2-[3-aryl-1H-1,2,4-triazole-5-yl]penylamine (2.1-2.17). Add 1-2 ml of concentrated hydrochloric acid to 10 mmol of 2-aryl-[1,2,4]triazole-[1,5-c]quiazolines (1.1-1.17) in 10 ml of the water-alcohol mixture (1:1). Reflux the mixture obtained for 60 min. Then dilute the mixture with water and add 5% solution of sodium acetate to form the solution with pH 5-6. Filter the precipitates of compounds 2.1-2.17 and dry. Crystallize the compounds from methanol.

2-[3-(Phenyl-1H-1,2,4-triazole-5-yl)penyl]amine (2.1). EI-MC, m/z (Irel, %): 237(15.6), 236(M+•, 100), 198(8.3), 197(8.3), 196(9.6), 137(14.5), 136(21.8), 135(14.0), 104(7.3), 103(7.3), 102(6.9), 91(17.4), 90(17.4), 78(17.1), 77(26.6), 76(8.3), 75(10.7), 69(7.1), 65(6.2), 52(7.0), 51(10.5). 1H NMR spectrum (400 MHz) and 13C NMR spectra (100 MHz) were recorded on a Varian Mercury 400 (Varian Inc., Palo Alto, CA, USA) spectrometer. Substances were indicated by the symbols of the elements or functions within ±0.3% of the theoretical values.

Experimental animals were not fed within 12 h before introduction of the compounds studied. The weight of all animals was measured before the experiments. The compounds studied were injected intragastrically as the water solution or a finely dispersed suspension stabilized by Tween 80 in the dose of 10 mg/kg. Intact and control groups received equivalent volume of water by the same way. The hypoglycemic actions were evaluated using 120 male Wistar white rats (with the weight of 260-280 g., aged 3.5 months) from nursery of PE “Biomodelservice” (Kyiv, Ukraine). Experiments on animals were done according to bioethical principles [10]. Selected after quarantine the animals were indicated by the symbols of the elements or functions within ±0.3% of the theoretical values.

2. Pharmacology

2.1. Hypoglycemia activity test. The study of the hypoglycemic action was conducted using 120 male Wistar white rats (with the weight of 260-280 g., aged 3.5 months) from nursery of PE “Biomodelservice” (Kyiv, Ukraine). Experiments on animals were done according to bioethical principles [10]. Selected after quarantine the animals were divided by random sampling in groups of 6 male rats on the assumption of the absence of the external signs of diseases and homogeneity by weight (±15%). Experimental animals were not fed within 12 h before introduction of the compounds studied. The weight of all animals was measured before the experiments. The compounds studied were injected intragastrically using atraumatic probe as the water solution or a finely dispersed suspension stabilized by Tween 80 in the dose of 10 mg/kg. Intact and control groups received equivalent volumes of water by the same way.
action of the compounds synthesized was evaluated by changes in the glucose level before and after injection of the compounds studied. Measurements of the glucose level were carried out in 2, 4, 6 and 8 h after injection.

The primary insulin resistance was induced by a daily intramuscular injection of glucocorticoid, namely dexamethasone, in the dose of 0.125 mg/kg for 13 days [5, 30]. The state of glucose homeostasis was evaluated by values of basal glycemia and carbohydrate tolerance determined by the oral test for glucose tolerance, rapid insulin test and adrenaline test [5, 30]. Metformin in the doses of 50 and 200 mg/kg and Gliclazide in the dose of 50 mg/kg were used as reference drugs.

Statistical analysis was performed using a standard software complex, namely “Microsoft Office Excel 2003” and “STATISTICA® for Windows 6.0” (StatSoft Inc., № AXXR712D833214FAN5). For each estimated value of the mean (±m) were determined. During verification of statistical hypotheses, in the null hypothesis was rejected was proven by the corresponding physico-chemical methods, namely: IR, 1H and 13C NMR, mass-spectrometry and X-ray structural analysis. In LC-MS spectra of 2.1-2.17 the high-intensive signals of quasi-molecular ions [M+1] and [M+2] corresponding to the calculated molecular weight were observed and definitely proved the fact of the pyrimidine cycle cleavage of the pyrimidine fragment in 1.1-1.17 (Tab. 1).

In 1H NMR-spectra of compounds 2.1-2.17 the signals caused by the presence of NH-group were observed. Thus, the signals mentioned were present as a broad singlet at 6.75-6.26 ppm (2.1-2.3, 2.6-2.9, 2.12, 2.14, 2.16) or absent (2.4, 2.5, 2.10, 2.11, 2.13, 2.15, 2.17) as the result of exchange processes caused by prototropic azol-azol tautomerism in 2.1-2.17 (Scheme). The absence (2.8, 2.11, 2.12, 2.14, 2.15, 2.17), doubling (2.1) or broadening (2.2-2.7, 2.9, 2.10, 2.13, 2.16) of signal caused by NH-proton of the triazole cycle may be also explained by the abovementioned phenomenon. Thus, 2-(3-R-[1,2,4]triazol-5-yl)phenyl]amines (2.1-2.17) in DMSO-d6 are subjected to tautomerism and may exist as 2H (A), 1H (C) and 4H (B) forms (Scheme).

For additional verification of the structure of the compounds synthesized, as well as for tautomeric processes 13C NMR-spectra were studied (Table 3). Signal correlations were carried out using the DEPT-method. It was found that signals caused by C1 and C5 atoms of the triazole cycle in molecules 2.1-2.17 were observed as broad singlets at 162.81-158.10 ppm and 158.86-150.79 ppm. It proves tautomeric transitions in DMSO-d6 solutions. Besides, the signal of the atom of the aniline fragment deshielded as a result of the electron effect of the amino group C1 proves hydrolytic cleavage of the pyrimidine cycle.

Mass-spectra (EI) of compounds (2.1, 2.4, 2.6, 2.12, 2.13, 2.14, 2.16, 2.17) were characterized by high molecular ions [M]+. It is important to note that a donor or acceptor affecting the aryl substituent in position 2 had a significant influence on the directions of fragmentation. Thus, for compounds containing a donor substituent (2.1, 2.6, 2.12, 2.17) two parallel directions of fragmentation were observed. The first one was caused by breaking N(2)–C(3) and C(5)–N(1) bonds followed...
The physico-chemical data of [2-(3-aryl-1H-1,2,4-triazole-5-yl)phenyl]amine (2.1-2.17)

Compd.	R	M.p.,°C	Yield, %	Calculated, N (%)	Molecular formula	Found, N (%)	LC-MS, m/z
2.1	H	188-190	99.2	23.71	C_{14}H_{12}N_{4}	23.73	237 [M+1], 238 [M+2]
2.2	2-F	195-197	89.6	22.04	C_{15}H_{13}F_{2}N_{4}	22.07	255 [M+1], 256 [M+2]
2.3	2-Cl	156-158	92.8	20.70	C_{14}H_{12}ClN_{4}	20.73	271 [M+1], 273 [M+3], 274 [M+4]
2.4	2-Br	143-145	92.9	17.78	C_{14}H_{12}BrN_{4}	17.75	316 [M+1], 317 [M+2]
2.5	2-CF_{3}	201-203	90.7	18.41	C_{14}H_{12}F_{3}N_{4}	18.38	305 [M+1], 306 [M+2]
2.6	2-OCH_{3}	135-136	90.6	21.04	C_{14}H_{12}N_{4}O_{3}	21.06	267 [M+1], 268 [M+2]
2.7	3-F	215-217	93.8	22.04	C_{14}H_{12}FN_{4}	22.01	255 [M+1], 256 [M+2]
2.8	3-Cl	196-197	95.5	20.70	C_{14}H_{12}ClN_{4}	20.67	271 [M+1], 273 [M+3], 274 [M+4]
2.9	3-Br	196-197	96.6	17.78	C_{14}H_{12}BrN_{4}	17.81	316 [M+1], 317 [M+2]
2.10	3-CF_{3}	237-239	94.2	18.41	C_{14}H_{12}F_{3}N_{4}	18.45	305 [M+1], 306 [M+2]
2.11	3-OCH_{3}	177-179	95.5	21.04	C_{14}H_{12}N_{4}O_{3}	21.09	267 [M+1], 268 [M+2]
2.12	4-CH_{3}	166-168	97.6	22.38	C_{14}H_{12}N_{4}	22.35	251 [M+1], 252 [M+2]
2.13	4-F	209-211	93.4	22.04	C_{14}H_{12}FN_{4}	22.01	255 [M+1], 256 [M+2]
2.14	4-Cl	289-291	97.3	20.70	C_{14}H_{12}ClN_{4}	20.73	271 [M+1], 273 [M+3], 274 [M+4]
2.15	4-Br	216-218	98.4	17.78	C_{14}H_{12}BrN_{4}	17.76	305 [M+1], 306 [M+2]
2.16	4-CF_{3}	252-253	94.1	18.41	C_{14}H_{12}F_{3}N_{4}	18.39	305 [M+1], 306 [M+2]
2.17	4-OCH_{3}	206-207	91.3	21.04	C_{14}H_{12}N_{4}O_{3}	21.01	267 [M+1], 268 [M+2]

\(^1\)H NMR-spectra of [2-(3-aryl-1H-1,2,4-triazole-5-yl)phenyl]amine (2.1-2.17)

Compd.	NH (bs)	H-3, (d)	H-5, (t)	H-6, (d)	NH (bs)	H-4, (t)	3-Ar
2.1	14.48/14.20	7.78 (7.7)	7.14 (7.5)	6.83 (7.7)	6.72	6.63 (7.4)	
2.2	14.36	7.87	7.15 (7.2)	6.85 (8.1)	6.75	6.65 (7.3)	
2.3	13.91	7.80 (7.2)	7.33 – 7.22 (m, 2H, H-5, H-4'), 6.74 (8.1)	6.26	6.58 (7.3)		
2.4	14.40	8.07 – 7.69 (m, 3H, H-3, H-3`, H-6')	7.14 (6.6)	6.82 (8.0)	6.76	6.63 (7.3)	
2.5	14.49	7.84 (m, 4H, H-3, H-3`, H-6'), 7.17 (t, 1H, H-4'), 6.74 (m, 3H, H-3', H-4')					
2.6	13.54	8.05 (7.5)	7.37 (7.7)	6.75 (8.1)	6.29	6.59 (7.4)	
2.7	14.42	7.94 (7.5)	7.14 (7.2)	6.84 (8.1)	6.71	6.62 (7.2)	
2.8	–	7.88 (7.8)	7.11 (7.6)	6.82 (8.2)	6.71	6.60 (7.4)	
2.9	14.15	7.75 (6.2)	7.08 (7.2)	6.79 (7.8)	6.26	6.59 (7.3)	
2.10	14.61/14.30	Overlaps on 3-Ar	7.13 (7.2)	6.83 (7.2)	–	6.61 (7.4)	
2.11	–	7.83 (5.8)	7.08 (7.5)	6.94 (8.0)	–	6.59 (7.4)	
2.12	–	7.25 (6.9)	7.06 (7.4)	6.22	6.88 (6.9)		
2.13	14.36	7.83 (7.3)	7.15 (7.3)	6.85 (7.8)	–	6.64 (7.0)	
2.14	–	8.11 (7.0)	7.57 (7.0)	7.16 (7.0)	6.84-6.63		
2.15	–	7.62 (8.0)	7.15 (7.3)	6.85 (8.0)	–	6.63 (7.3)	
2.16	14.60/14.23	Overlaps on 3-Ar	7.11 (7.6)	6.82 (7.5)	6.73	6.60 (7.4)	
2.17	–	8.04 (7.6)	7.29 (7.5)	7.13 (7.9)	–	6.96 (7.0)	

\[^{15}\]N NR-spectra of [2-(3-aryl-1H-1,2,4-triazole-5-yl)phenyl]amine (2.1-2.17)
by formation of \([M–N_2]^+\) fragmental ion; the second one by breaking N(1)–N(2) and С(3)–N(4) followed by formation of \([M–o-NH_2C_6H_4CN]^+\) ion (m/z 118). At the same time for compounds with an electron acceptor substituent (2.4, 2.13, 2.14, 2.16) only fragmentation by N(1)–N(2) and С(3)–N(4) bonds followed by formation of \([M–o-NH_2C_6H_4CN]^+\) ion (m/z 118) was typical. Moreover, all compounds studied formed \([M–o-NH_2C_6H_4-C\overline{H}N]^+\) ion (m/z 119). As we consider, formation of alternative ions with m/z 119 and 118 may be explained by existence of 1,2,4-triazol in the gas phase as two tautomeric forms (А and С).

The spectral data of 10.1-10.6 presented allowed to prove the structure of the given compounds, but for undeniable elucidation of the nature of the molecule formed, as well as for clarification of a tautomeric form in the crystal state the X-ray structural study for compound 2.15 was used.

All non-hydrogen atoms of molecule 2.15 with the exception of fluorine atoms lie in the plane within 0.02 Å (Fig. 1). Planar conformation is stabilized by the N4-H4Nb…N3 intramolecular hydrogen bond (H…N 2.05 Å N-H…N 126°) and the H14…N1 and H10…N3 attractive interactions (H…N are 2.59 Å and 2.60 Å, respectively, compared to the van der Waals radii sum [31] 2.67 Å); it may not be considered as hydrogen bonds due to too small bond angles (99° and 101°, respectively, Fig. 1). In the crystal phase molecules 2.15 form corrugated chains along the [0 1 0] crystallographic direction due to formation of N2-H…N4’ (0.5-x, y-0.5, z) H…N 2.01 Å N-H…N 161°. The participation of the lone pair of the N4 atom in this hydrogen bond results in pyramidal configuration of the amino group (the sum of bond angles centered at the N4 atom is 335°). The neighbouring chains are bonded by the N4-H4Na…N1’ (-x, 0.5+y, 0.5-z) intermolecular hydrogen bond (H…N 2.43 Å N-H…N 135°).

Thus, it was shown that 2-aryl-[1,2,4]triazolo[1,5-c]quinazolines under the action of nucleophilic agents

![Fig. 1. The molecular structure of compound 2.15 according to X-ray diffraction data.](image)
undergo hydrolytic cleavage followed by formation of [2-(3-aryl-1H-1,2,4-triazol-5-yl)phenyl]amines. The prototropic azole-azole tautomerization has been also proven using physicochemical methods. We noted that the compounds synthesized exist as A-forms in crystals and as the equilibrium system of A and C-forms in dimethylsulfoxide solutions and the gas phase.

2.2. Hypoglycemic activity

The results of the preliminary hypoglycemic activity assay are presented in Fig. 2-4. Thus, [2-(3-phenyl-1H-[1,2,4]triazolo-5-yl)phenyl]amine (2.1) decreases the blood glucose level of normoglycemic rats within the whole experiment. The glucose level was also lowered by injection of compounds 2.2, 2.3 and 2.5 containing fluorine, chlorine and trifluoromethyl substituents in position 2 of the 3-phenyl fragment (Fig. 2). At the same time compounds containing 2-bromophenyl (2.4) and 2-methoxyphenyl (2.6) moieties in position 3 of the triazole cycle increased the glucose level within the whole experiment.

Translocation of substituents in the phenyl moiety from o- (compounds 2.2-2.6) to m- (2.7-2.11) position significantly changes the action of compounds (Fig. 3). Thus, most effective glucose lowering agents were compounds 2.8 and 2.9 containing chlorine and bromine. At the same time compounds with 3-fluoro- (2.7), 3-trifluoromethyl (2.10) and 3-methoxyphenyl (2.11) increased the blood glucose level.

Further modification of the compounds synthesized, namely translocation of substituents of the phenyl moiety from position 3 (2.7-2.11) to position 4 (2.12-2.17), also led to ambiguous results. Experimental data have
shown that some compounds (2.12, 2.14) significantly decrease the level of glucose, but other 2.13, 2.15 and 2.16 have quite opposite type of action (Fig. 4).

Thus, the preliminary screening conducted showed that among the compounds synthesized the most active were 2.1, 2.8, 2.12, 2.14. It was found that anilines 2.8 and 2.12 in the phenyl moiety contained a chlorine atom. At the next stage of our investigation the hypoglycemic action of compounds 2.1, 2.8, 2.12, 2.14 was studied using the glucocorticoid-induced insulin resistance model. Resistance to insulin was formed by the injection of dexamethasone.

Evaluation of the specific hypoglycemic action (oral test for glucose tolerance) in conditions of glucocorticoid-induced insulin resistance showed that compounds 2.1, 2.8, 2.14 exhibited the hypoglycemic action, which was comparable to the activity of the reference-drugs “Metformin” (in the doses of 50 and 200 mg/kg) and Gliclazide (in the dose of 50 mg/kg, Tab. 4). At the same time compound 2.12 was inactive in the assay mentioned.

Further investigation of compounds 2.1, 2.8, 2.12, 2.14 in rats with glucocorticoid-induced insulin resistance using the rapid insulin test (Tab. 5) allowed to obtain results, which were concordant with the data of the previous experiments and showed that compounds 2.8 and 2.14 exhibited the hypoglycemic action at the

Table 4

Results of the specific pharmacologic action evaluation of the compounds synthesized (oral test for glucose tolerance)

Compd.	Initial glucose level	Glucose level in 15 min	% increase	Glucose level in 30 min	% increase	Glucose level in 60 min	% increase	Glucose level in 120 min	% increase
Control	5.9±0.1	7.7±0.3	30.5±4.4	8.7±0.2	47.3±2	9.4±0.1	58.6±4.7	6.8±0.2	15.7±2.2
Intact	5.6±0.3	7.5±0.3	35.6±6.2	7.8±0.4	39.9±7.9	6.8±0.3	23.3±7.7a	5.5±0.2	-0.03±6.4a
Metformin 200	5.5±0.2	6.8±0.1	22.9±2.2	7.5±0.1	37.0±2.9a	7.1±0.2	29.6±1.7a	6.7±0.3	22.2±1.8a
Metformin 50	5.5±0.3	6.1±0.5	9.3±2.7a	7.4±0.5	33.0±1.5a	7.6±0.6	36.5±4.2a	5.9±0.4	5.9±3.0a
Gliclazide 50	5.7±0.1	7.7±0.1	34.5±4.8	7.9±0.1	37.3±3.0a	7.3±0.3	27.8±3.02a	6.2±0.1	7.7±3.1

* significant differences (p<0.05) compared to the control group of rats;
** significant differences (p<0.05) compared to the intact group of rats.

Table 5

Results of the specific pharmacologic action evaluation of the compounds synthesized (rapid insulin test)

Compounds	Initial glucose level	Glucose level in 30 min	% decrease of the glucose level	Control	5.7±0.2	4.3±0.1	-24.6±1.1a
Intact	5.7±0.1	2.3±0.1	-60.4±0.9a				
Metformin 200	5.6±0.2	3.6±0.1	-34.6±3.7ab				
Metformin 50	5.2±0.2	3.7±0.2	-29.8±3.3a				
Gliclazide 50	5.4±0.2	3.5±0.2	-34.9±2.8a				
2.1	5.4±0.2	4.0±0.1	-25.7±3.6a				
2.8	5.0±0.5	3.6±0.8	-45.4±1.3ab				
2.12	5.0±0.3	3.3±0.2	-27.3±2.8a				
2.14	5.4±0.4	3.2±0.1	-40.4±3.7ab				

* significant differences (p<0.05) compared to the control group of rats; ** significant differences (p<0.05) compared to the intact group of rats.

Table 6

Results of the specific pharmacologic action evaluation of the compounds synthesized (adrenaline test)

Compounds	Initial glucose level	Glucose level in 30 min	% increase of the glucose level	Control	5.1±0.1	12.4±0.5	144.2±7.9a	16.7±0.2	228.9±6.1a
Intact	5.6±0.2	11.5±0.4	104.8±2.7a				13.7±0.6	144.3±5.7a	
Metformin 200	6.7±0.2	9.6±0.2	42.2±2.8ab				10.9±0.1	63.3±4.9ab	
Metformin 50	5.5±0.1	6.7±0.2	21.2±3.1ab				10.6±0.2	92.2±4.9ab	
Gliclazide 50	6.0±0.1	7.7±0.2	28.4±5.9ab				10.1±0.2	66.4±4.4ab	
2.1	5.1±0.1	9.8±0.3	93.4±1.8ab				8.8±0.7	73.5±10.3ab	
2.8	6.4±0.1	7.9±0.3	23.5±2.9ab				9.2±0.4	43.8±2.8ab	
2.12	7.1±0.4	13.8±2.4	94.5±2.44				17.5±3.3	147±3.38	
2.14	6.3±0.3	9.4±0.5	50.5±12.9ab				12.2±0.7	93.9±5.2ab	

* – significant differences (p<0.05) compared to the control group of rats; ** – significant differences (p<0.05) compared to the intact group of rats.
level similar to the reference drugs. Thus, the hypoglycemic activity of \([2-(3\text{-choloro-1}\text{-}H\text{-}[1,2,4]\text{-triazole-5-yl}]\text{phenyl}]\text{aniline} (2.8) exceeded the action of Gliclazide by 10.5-15.6%.

We noted that \([2-(3\text{-choloro-1}\text{-}H\text{-}[1,2,4]\text{-triazole-5-yl}]\text{phenyl}]\text{amine} (2.8) exhibited a high hypoglycemic activity in rats with glucocorticoid-induced insulin resistance using the adrenaline test. Thus, compound 2.8 exceeded the action of the reference drugs by 19.5-48.4% (Tab. 6).

CONCLUSIONS

According to the data of the specific pharmacologic action evaluation of the compounds synthesized (oral test for glucose tolerance, rapid insulin test and adrenaline test) the hypoglycemic activity of \(2-(3\text{-aryl}\text{-H}\text{-}1,2,4\text{-triazol-5-yl})\text{phenyl}]\text{amines} (2.1, 2.14) in the dose of 10 mg/kg is not inferior to the action of the reference drugs Metformin (in the doses of 50 and 200 mg/kg) and Gliclazide (in the dose of 50 mg/kg), moreover compound 2.8 exceeds the activity of the drugs mentioned above.

REFERENCES

1. Білий А.К., Коваленко С.І., Приходько О.Б. та ін. // Запорізький мед. журнал. – 2013. – №2 (77). – С. 83-86.
2. Волошина В.О., Литвиненко М.О., Сапегин І.Д. та ін. // Мед. хім. – 2010. – Т. 12, №3 (44). – С. 98-107.
3. Уломский Е.Н., Воронин В.В., Русинов В.Л. и др. // Известия АН. Серия химическая. – 2001. – №4. – С. 655-661.
4. Швайка О.П., Артемов В.Н. // Успехи химии. – 1972. – Т. XLI (10). – С. 1788-1822.
5. Akimkun A., Selby P.L., Ramaya K. et al. // Diab. Med. – 1992. – Vol. 9. – P. 432-437.
6. Antipenko L.N., Karpenko A.V., Kovalenko S.I. et al. // Chem. Pharm. Bull. – 2009. – Vol. 57 (6). – P. 580-585.
7. Aster S.D., Graham D.W., Kharbanda D. et al. // Bioorg. & Med. Chem. Lett. – 2008. – Vol. 18. – P. 2799-2804.
8. Berest G.G., Voskoboynic A.Yu., Kovalenko S.I. et al. // ЖОФХ. – 2010. – Т. 8, вип. 3 (31). – С. 42-52.
9. Dalpiaz A., Bertolasi V., Ferretti V. et al. // J. Chem. Crystallogr. – 1997. – Vol. 27 (1). – P. 59-66.
10. European convention for the protection of vertebrate animals used for experimental and other scientific purpose: Council of Europe. – Strasbourg, 1986. – P. 52.
11. Francis J.E., Cash W.D., Barbaz B.S. et al. // J. Med. Chem. – 1991. – Vol. 34 (1). – P. 281-290. doi: 10.1021/jm00105a044
12. Francis J.E., Cash W.D., Psychosy S. et al. // J. Med. Chem. – 1988. – Vol. 31 (5). – P. 1014-1020.
13. Gerecke M., Kyburz E., Borer R. et al. // Heterocycles. – 1994. – Vol. 39 (2). – P. 693-721.
14. Iqbal M.A. K., Khan A.Y., Kalashetti M.B. et al. // Eur. J. of Med. Chem. – 2012. – Vol. 53. – P. 308-315.
15. Karpenko A.V., Kovalenko S.I., Shishkin O.V. // Tetrahedron. – 2009. – Vol. 65 (31). – P. 5964-5972.
16. Kovalenko S.I., Antypenko L.M., Bilyi A.K. et al. // Sci. Phar. – 2013. – Vol. 81 (2). – P. 359-391. doi:10.3797/scipharm.1211-08
17. Maiboroda D., Babaev E. // J. Org. Chem. – 1997. – №62. – P. 7100-7105.
18. Moustafa H.M. // Phosphorus, Sulfur, and Silicon and the Related Elements. – 2000. – Vol. 164 (1). – P. 11-22.
19. Mustazza C., Borioni A., Sestili I. et al. // Chem. Pharm. Bull. – 2006. – Vol. 54 (5). – P. 611-622.
20. Pat. USA 4020083, Filed: 08.07.1975, Posted: 27.04.1977; [електронний ресурс], режим доступу: http://www.freepatentsonline.com/4020083.html
21. Pat. USA 20090062358, Filed: 09.11.2001; Posted: 16.05.2002; [електронний ресурс], режим доступу: http://www.freepatentsonline.com/20090062358.html.
22. Pat. WO 1996/13264 A1, Filed: 01.11.1994; Posted: 09.05.1996; [електронний ресурс], режим доступу: http://www.freepatentsonline.com/WO1996013264A1.html
23. Pat. WO/2006/063708, Filed: 05.12.2005; Posted: 22.06.2006; [електронний ресурс], режим доступу: http://www.freepatentsonline.com/WO2006063708A1.html
24. Pat. WO/2007/042421, Filed: 02.10.2006; Posted: 19.04.2007; [електронний ресурс], режим доступу: http://www.freepatentsonline.com/WO2007042421A1.html
25. Petric A., Tisler M., Stanovnik B. // Monatsh. Chem. – 1985. – Vol. 116. – P. 1309-1320.
26. Sergeieva T.Yu., Voskoboynik O.Yu., Okovytyy S.I. et al. // J. Phys. Chem. A. – 2014. – Vol. 118. – P. 1895-1905. doi.org/10.1021/jp4052616
27. Sheldrick G.M. // Acta Crystallogr., Sect. A 2008, A64, 112. doi:10.1107/S0108773107043930
28. Shishoo C.J., Devani M.B., Ullas G.V. et al. // J. Heterocyclic Chem. – 1987. – Vol. 24. – P. 1125-1131.
29. Voskoboynik A.Yu., Berest G.G., Skorina D.Yu. et al. // Chemistry & Chemical Technol. – 2011. – Vol. 5 (2). – P. 129-132.
30. Weinstein S.P., Paquin T., Pritsker A. et al. // Diabetes. – 1995. – Vol. 44. – P. 441-445.
31. Zefirov Yu.V. // Kristallographiya (Russian). – 1997. – Vol. 42. – P. 936-958.
ГІДРОЛІТИЧНЕ РОЗЩЕПЛЕННЯ ПІРІМІДІНОВОГО ЦИКЛУ
В 2-АРИЛ-[1,2,4]ТРИАЗОЛО[1,5-с]ХІНАЗОЛІНАХ: ФІЗІКО-ХІМІЧНІ ВЛАСТИВОСТІ
ТА ПІГЛОЛІКЕМІЧНА АКТИВНІСТЬ СИНТЕЗОВАНИХ СПОЛУК
С.В.Холодняк, К.П.Шабельник, Г.О.Жернова, Т.Ю.Сергеєва, В.В.Івчук, О.Ю.Воскобойнік, С.І.Коваленко, С.Д.Тржецькінський, С.І.Оковитий, С.В.Шишкіна

Ключові слова: 2-арил-[1,2,4]триазазло[1,5-с]хіназолини; гідролітичне розщеплення; гіпоглікемічна активність

Показано, що 2-арил-[1,2,4]триазазло[1,5-с]хіназолини під дією нуклеофільних реагентів (гідразин гідрат, гідроксид натрію або метилат натрію, кислота хлористоводнева) піддаються гідролітичному розщепленню з утворенням 2-(3-арил-1Н-1,2,4-триазазло-5-ил)феніламінів. Запропоновані оптимальні умови синтезу: хлористоводнева кислота, спиртово-водна середовища, температура 90-95°C, тривалість 60 хвилин. Встановлено, що за запропонованих умов синтезу не спостерігається суттєвого впливу замісника положення 2 триазазлізіномового циклу на тривалість реакції та виходи кінцевих продуктів. Індивідуальність синтезованих сполук підтверджена хроматомас-спектрометрією, будова – елементним аналізом, 1Н, 13С ЯМР-, мас-спектрами та рентгенноструктурним аналізом. З допомогою фізико-хімічних методів обґрунтована азол-азольна (прототропна) таутомерія синтезованих сполук. Показано, що у розчинах ДМСО та газовій фазі 2-(3-арил-1Н-1,2,4-триазазло-5-ил)феніламіни переважно існують у вигляді А та C-форм, тоді як у кристалічній решітці існують у вигляді А-форми. Установлено, що 2-(3-арил-1Н-1,2,4-триазазло-5-ил)феніламінії (2.1, 2.8, 2.14) в дозі 10 мг/кг при оцінці специфічної фармакологічної активності, а саме оральному тесті толерантності до глюкози (ОТТГ), короткому інсулярному та адреналіновому тесті не поступаються за гіпоглікемічною активністю референс-препаратам «Метформіну» (доза 50 та 500 мг/кг) та «Гліклазиду» (доза 50 мг/кг).