Magnetic field distribution in magnetars

Debarati Chatterjee,¹ ² Jérome Novak,²† and Micaela Oertel²‡

¹LPC, UMR6534, ENSICAEN, 14050 Caen, France
²LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France

(Dated: August 7, 2018)

Using an axisymmetric numerical code, we perform an extensive study of the magnetic field configurations in non-rotating neutron stars, varying the mass, magnetic field strength and the equation of state. We find that the monopolar (spherically symmetric) part of the norm of the magnetic field can be described by a single profile, that we fit by a simple eighth-order polynomial, as a function of the star’s radius. This new generic profile applies remarkably well to all magnetized neutron star configurations built on hadronic equations of state. We then apply this profile to build magnetized neutron stars in spherical symmetry, using a modified Tolman-Oppenheimer-Volkov system of equations. This new formalism satisfactorily reproduces the correct behavior of the neutron star total mass with increasing magnetic field. Our “universal” magnetic field profile is intended to serve as a tool for nuclear physicists to obtain estimates of magnetic field inside neutron stars, as a function of radial depth, in order to deduce its influence on composition and related properties. It possesses the advantage of being based on magnetic field distributions from realistic self-consistent computations, which are solutions of Maxwell’s equations.

I. INTRODUCTION

The macroscopic structure and observable astrophysical properties of neutron stars depend crucially on its internal composition and thus the properties of dense matter. The Equation of State (EoS) determines global quantities such as observed mass and radius. Transport properties such as thermal conductivity and bulk viscosity have an effect on cooling observations as well as emission of gravitational waves. As we enter an era of multi-messenger astronomy, it is crucial to construct consistent microscopic and macroscopic models in order to correctly interpret astrophysical observations.

There are a large number of astrophysical observations, e.g. soft-gamma repeaters (SGR) or anomalous X-ray pulsars (AXP), that indicate the existence of ultra-magnetized neutron stars or magnetars [1]. While such observations only probe the surface magnetic field, there have been several attempts to determine neutron star structure assuming an ad hoc profile of the magnetic field, without solving Maxwell equations within the TOV system (see e.g. [19–21]). To that end, many authors employ the parameterization introduced twenty years ago by Bandyopadhyay et al. [22], where the variation of the magnetic field norm \(B \) with baryon number density \(n_B \) from the centre \(B_c \) to the surface \(B_s \) of the star is given by the form:

\[
B(n_B/n_0) = B_s + B_c \left[1 - \exp\left(-\beta(n_B/n_0)^\gamma\right) \right],
\]

with two parameters \(\beta \) and \(\gamma \), chosen to obtain the desired values of the maximum field at the centre and at the surface.

Lopes and Menezes [23] later introduced a variable magnetic field, which depends on the energy density rather than on the baryon number density:

\[
B = B_c \left(\frac{\epsilon_M}{\epsilon_0} \right)^\gamma + B_s,
\]

where \(\epsilon_M \) is the energy-density of the matter alone, \(\epsilon_0 \)
is the central energy density of the maximum mass non-magnetic neutron star and a parameter $\gamma > 0$, arguing that this formalism reduces the number of free parameters from two to one. The authors put forward as additional motivation the fact that it is the energy density and not the number density that is relevant in TOV equations for structure calculations. To account for anisotropy in the shear stress tensor, they applied the above field profile in the chaotic magnetic field formalism, taking the shear stress tensor as diag$(B^2/24\pi, B^2/24\pi, B^2/24\pi)$ [24].

There have also been suggestions of the magnetic field profile being a function of the baryon chemical potential μ_B as:

$$B(\mu_B) = B_s + B_c \left[1 - \exp\left(b\frac{(\mu_B - 938)a}{938}\right) \right],$$

where $a = 2.5, b = -4.08 \times 10^{-4}$ and μ_B given in MeV. In contrast to the profiles in Eqs. (12), such a formula avoids that a phase transition induces a discontinuity in the effective magnetic field. Dexheimer et al. [25] suggested, too, a fit to the shapes of the magnetic field profiles in the polar direction as a function of the chemical potentials (as in [11]) by quadratic polynomials instead of exponential ones as

$$B(\mu_B) = \frac{a + b\mu_B + c\mu_B^2}{B_c^2} \mu,$$ \hspace{1cm} (4)

where a, b, c are coefficients determined from the numerical fit.

However, it was subsequently pointed out by Menezes and Alloy [26] that such ad hoc formulations for magnetic field profiles are physically incorrect since they do not satisfy Maxwell’s equations. In particular it is obvious that assuming such a magnetic field profile in a spherically symmetric star implies a purely monopolar magnetic vector field distribution, which is incorrect. The inconsistency of this type of approach can be seen, too, by inspecting the most general solution of the equations of hydrostatic equilibrium in general relativity for a spherically symmetric star. In Schwarzschild coordinates, $(t, \bar{r}, \theta, \varphi)$:

$$ds^2 = -e^{-2\Phi} dt^2 + \left(1 - \frac{2Gm}{\bar{r}}\right)^{-1} d\bar{r}^2 + \bar{r}^2 (d\theta^2 + \sin^2 \theta d\varphi^2),$$

the resulting coupled system of equations for the star’s structure has been derived by Bowers and Liang [27] and reads

$$\frac{dm}{d\bar{r}} = 4\pi \bar{r}^2 \varepsilon,$$

$$\frac{d\Phi}{d\bar{r}} = \left(1 - \frac{2Gm}{\bar{r}c^2}\right)^{-1} \left(\frac{Gm}{\bar{r}^2} + 4\pi G\frac{\rho r}{c^2}\right),$$

$$\frac{d\rho_r}{d\bar{r}} = -\left(\varepsilon + \frac{\rho_r}{c^2}\right) \frac{d\Phi}{d\bar{r}} + \frac{2}{\bar{r}} (\rho_\perp - \rho_r),$$

with an energy-momentum tensor of the form $T^\mu\nu = \text{diag}(\varepsilon, p_r, p_\perp, p_\perp)$, where p_r and p_\perp are the radial and tangential pressure components. This is the most general energy-momentum tensor one can use assuming spherical symmetry and it goes beyond the perfect-fluid model, for which $p_r = p_\perp$. One may be tempted to cast a general electromagnetic energy-momentum tensor assuming a perfect conductor and isotropic matter, and for a magnetic field pointing in z-direction (see e.g. [13]) into this form. However, in the case of the electromagnetic energy-momentum tensor $T^{\theta\theta} \neq T^{\phi\phi}$ (look at Eqs. (23d)-(23e) of [13]), in clear contradiction with the assumption of Bowers and Liang [6] in spherical symmetry. Another problem arises from the fact that $\lim_{r \to 0}(T^{rr} - T^{\theta\theta}) \neq 0$ and thus, the last term in Eq. (6) diverges at the origin. This discussion shows that there cannot be any correct description of the magnetic field in spherical symmetry.

In Ref. [23], a density dependent profile is applied within a perturbative axisymmetric approach à la Hartle and Thorne [24]. It remains, however, that the star’s deformation due to the magnetic field implies that such a density (or equivalent) dependent profile depends on the direction, thus will be different looking e.g. in the polar or the equatorial direction.

In view of all these intrinsic difficulties, we will not propose here a simple scheme for solving structure equations of magnetized stars – to that end we refer to the publicly available numerical codes assuming axial symmetry [13, 30]. Instead, since in many cases it might be sufficient to have an idea of the order of the value of the magnetic field strength to test its potential effect on matter properties, our aim is to provide a “universal” magnetic field strength profile from the surface to the interior obtained from the field distribution in a fully self-consistent numerical calculation from one of these codes. Further, we probe the applicability of this profile for determining the structure of magnetized neutron stars in an approximate way in spherical symmetry compared with full numerical structure calculations. As we will show, qualitatively the correct tendency can be reproduced for some NS properties, but to reproduce quantitatively correct results, the full solution has to be applied.

The paper is organized as follows. Sec. III describes our physical models, including the EoSs we use in this manuscript, together with the numerical techniques applied to solve the models. Sec. III provides the magnetic field profiles derived numerically by varying certain physical parameters, to achieve a generic profile for the monopolar part of the norm of the magnetic field. This profile is then applied in Sec. IV to a modified TOV system, to see its effect on NS masses and radii. Finally, Sec. V gives a summary of our work, together with some concluding remarks.

II. FORMALISM AND MODELS

In this section, we summarize the numerical approach for self-consistently modelling magnetized neutron stars. More details can be found in in [13, 16, 63].
Due to the high compactness of neutron stars, we consider models within the theory of general relativity and solve coupled Einstein–Maxwell partial differential equations. We follow the scheme described in Bonazzola et al. [35], who considered the general case of rotating neutron stars, with the assumptions of stationarity, axial and equatorial symmetry, and circular spacetime, where the metric is given in the quasi-isotropic gauge, different from that used in TOV systems [16], by:

\[
ds^2 = -N^2 dt^2 + C^2 r^2 \sin^2 \theta \left(d\varphi - N^\varphi dt \right)^2 + A^2 \left(dv^2 + v^2 d\theta^2 \right),
\]

where \(N, N^\varphi, A\) and \(C\) are the gravitational potentials which are, as all other fields in Secs. II, III, functions of the coordinates \((r, \theta)\) only (independent from the \(\varphi\) coordinate).

In this work, we shall restrict ourselves to the case without rotation, which in particular implies that there is no electric field in the models (perfect conductor). Nevertheless, as said in the introduction, the presence of a magnetic field induces a distortion of the stellar structure, which cannot remain spherically symmetric. Due to spacetime symmetries and circularity condition, only two magnetic field geometries can be described within this framework: a purely poloidal magnetic field (see Bocquet et al. [16]) or a purely toroidal one (see Frieben and Rezzolla [30]). In this work, we consider only purely poloidal magnetic fields, meaning that the only non-trivial components are \(B^r(r, \theta)\) and \(B^\theta(r, \theta)\). This choice results in an asymptotically dipolar magnetic field distribution.

Matter is supposed to be included in a straightforward way [15]. Matter is also assumed to be perfectly conducting and the magnetic field originates from free currents, moving independently from the perfect fluid. Equilibrium equations are obtained from the divergence-free condition of the energy-momentum tensor, and can be written as a first integral of motion. [12, 32]. It is mostly the Lorentz force term in this equilibrium equation which distorts the stellar structure and makes it deviate from spherical symmetry. To summarize, given an equation of state (EoS) for nuclear matter (see Sec. II.C hereafter), we thus solve the system of coupled Einstein–Maxwell equations, together with magnetostatic equilibrium. These models are then characterized by their gravitational mass (\(M_G\), see [32] for a definition), their EoS (see Sec. II.C and the central magnetic field, \(B_c\).

B. Numerical methods

The equations to be solved to get axisymmetric solutions form a set of six non-linear elliptic (Poisson-like) partial differential equations, coupled together with non-compact support (sources for gravitational field extend up to spatial infinity). These equations are solved using the same procedure as described in Bocquet et al. [16], employing the numerical library LORENE [37] based on spectral methods for the representation of fields and the resolution of partial differential equations (see Grandclement and Novak [38]).

Numerical accuracy of the axisymmetric solutions is checked through an independent test, the so-called relativistic virial theorem (Bonazzola and Gourgoulhon [39] and Gourgoulhon and Bonazzola [40]). This gives an upper bound on the relative accuracy of the obtained numerical solution, and we checked that it always remained lower than \(10^{-4}\) for the axisymmetric models presented in Sec. III.
C. Equations of state

The system of equations described above is closed by the EoS for nuclear matter relating the pressure p to the baryon density n_B. Our selection of EoSs for the present work has been guided by the idea to represent a large variety of different neutron star compositions and nuclear properties, derived from completely different nuclear physics formalisms. This was done in order to achieve an unbiased universal parameterization applicable to any realistic nuclear EoS. We consider a BHF calculation with chiral interactions (“BL$_{EOS}$”) [41], two non-relativistic Skyrme mean field models (“SLy9” and “SLy230a”) [42–44], two relativistic mean field models (“STOS” and “HS(DD2)”) [45–47] and one model with hyperons (“SFhoY”) [48]. Some nuclear and neutron star properties of the different EoS models are listed in Table I. All EoS data are available from the on-line database CompOSE [49].

III. GENERIC MAGNETIC FIELD PROFILE

The numerical models of neutron stars endowed with a magnetic field described in Sec. II A consider two components (B_r and B_θ) of the magnetic field vector, as measured by the Eulerian observer (see Bocquet et al. [16] for details). In the case of non-rotating stars considered here, this magnetic field is the same as that measured in the fluid rest-frame, denoted as b_r and b_θ in Chatterjee et al. [15]. As an example, the magnetic field distribution of a full neutron star model is displayed in Fig. 1 for a central value of the magnetic field $b_c = 5 \times 10^{17}$ G. The surface of the star (thick line) does not exhibit any significant deviation from spherical shape, but it is clear that the magnetic field distribution is dominated by the dipolar structure and cannot be accurately described by any spherically-symmetric model.

When trying to parameterize the magnetic field profile, the simplest approach is to consider the norm of the magnetic field, namely
\[b = \sqrt{g_{rr}(b_r)^2 + g_{\theta\theta}(b_\theta)^2} = A \sqrt{(b_r)^2 + (b_\theta)^2}, \]
(8)
where the metric potential $A(r, \theta)$ has been defined in Eq. (7). Note that b is the quantity that enters the EoSs which take into account magnetization, as explained e.g. in [15]. The central value of this magnetic field norm is denoted as $b_c = b(r = 0)$ (independent of θ). In the rest of this work, we will consider this field as the main object of our study.

1 The model calculation exist only for homogeneous matter and a crust has been added, see the CompOSE entry for details.
We therefore try to improve it and adopt a different approach, taking a multipolar expansion of the magnetic field norm ($Y_\ell^m(\theta, \varphi)$ being the spherical harmonic functions):

$$b(r, \theta) \approx \sum_{\ell=0}^{L_{\text{max}}} b_{\ell}(r) \times Y_\ell^0(\theta).$$ \hspace{1cm} (9)

In Fig. 3 we have plotted the first four non-zero terms of this multipolar decomposition as functions of the coordinate radius r. Note that, because of the symmetry with respect to the equatorial plane, odd-ℓ terms in the decomposition are all zero. It appears that, at least in the high-density central regions of the star, the monopolar term $b_0(r)$, which is spherically symmetric, is dominant over the others. It is important to stress here that, contrary to the magnetic (vector) field, which has a Lorentz force term to the equilibrium equation:

$$\frac{dm}{dr} = 4\pi\bar{r}^2 (\varepsilon + \frac{b^2}{\mu_0})$$

$$\frac{d\Phi}{dr} = \left(1 - \frac{2Gm}{\bar{r}c^2}\right)^{-1} \left(\frac{Gm}{\bar{r}^2} + 4\pi \frac{p}{c^2} + L(\bar{r})\right)$$

$L(\bar{r})$ denotes here the Lorentz force contribution, which is noted dM/dr in Bonazzola et al. [33] (see this reference for more details).

Similar to the magnetic field norm b, we found from the full numerical calculations the following parametric form

$$L(\bar{r}) = 10^{-41} \times b_{\ell}^2 \left(-3.8 x + 8.1 x^3 - 1.6 x^5 - 2.3 x^7\right),$$

IV. APPLICATION TO A TOV-LIKE SYSTEM

As discussed in the introduction, it is fundamentally inconsistent to solve spherically symmetric equations for magnetized neutron star models since it completely neglects the star’s deformation due to the electromagnetic field. It is, however, tempting, to have a simple approach at hand which allows at least to qualitatively reproduce the effects of the magnetic field on (some) neutron star properties performing calculations only slightly more complicated than solving TOV equations. To that end, we modify the TOV system by adding the contribution from the magnetic field to the energy density and a Lorentz force term to the equilibrium equation:

We then look at the behavior of the radial profile of b_0 when varying the neutron star model in Fig. 4. On the left panel, we vary the gravitational mass of the star (either 1.6 M_\odot or 2 M_\odot), as well as the amplitude of the magnetic field central value b_c (10^{15} G, 10^{17} G and 10^{18} G). These profiles are no longer displayed as functions of the quasi-isotropic coordinate radius \bar{r}, defined by the line element [3], but in view of the application to TOV-systems in Sec. IV we consider here the Schwarzschild coordinate radius \bar{r}, defined by the line element [3]. The gauge transformation is obtained numerically and profiles are displayed as function of this radius divided by the star’s mean radius r_{mean} which is such that the integrated (coordinate-independent) surface of the star reads $A = 4\pi r_{\text{mean}}^2$. Indeed, when the star gets distorted because of the magnetic field, it is difficult to define uniquely a relevant radius. In that sense, r_{mean} is directly connected to the star’s surface and some of its emission properties.

It is remarkable that, although all possible parameters defining a magnetized stellar model (mass, central magnetic field, EoS) have been varied, all profiles are quite similar and deviate one from another only by a few percent. The only case where a noticeable difference appears is when using quark matter EoS. Therefore, we make the following conjecture: the monopolar part of the norm of the magnetic field follows a universal profile, up to minor variations, when considering different neutron star models with realistic hadronic EoSs. This “universal” profile has been fitted using a simple polynomial:

$$b_0(x) = b_c \times \left(1 - 1.6x^2 - x^4 + 4.2x^6 - 2.4x^8\right),$$ \hspace{1cm} (10)

where $x = \bar{r}/r_{\text{mean}}$ is the ratio between the radius \bar{r} in Schwarzschild coordinates and the star’s mean (or areal) radius. Let us stress that the aim of the present investigation is to obtain a universal profile for realistic EoS and that we have therefore excluded polytropic EoSs. A preliminary calculation showed that the general parameterization applicable to the family of realistic EoSs is not applicable directly to the case of polytropes without specific fine tuning.

![Fig. 3. Radial profiles of the first four even multipoles ($\ell = 0, 2, 4$ and $\ell = 6$) of the magnetic field norm $b(r, \theta)$ computed for the stellar model described in Fig. 1. From symmetry argument odd multipoles are all zero.](image-url)
where \(x = \bar{r}/r_{\text{mean}} \) and the central magnetic field, \(b_c \), is given in units of G. For the magnetic field \(b \) in Eqs. (11), the profile (10) is applied.

In order to get an idea of the quality of this “TOV-like” approach, we show in Figs. (10) a comparison between results obtained with the TOV-like approach in spherical symmetry and the full numerical solution in axial symmetry. In Fig. (5) the gravitational mass vs. the mean radius is displayed for a central magnetic field of \(b_c = 10^{17} \text{ G} \) and the SLy230a EoS. As expected, deviations become larger at smaller masses since the ratio of magnetic to matter pressure increases and thus the stars are more strongly deformed and the relation between the mean radius and the radius of a spherically symmetric configuration is no longer obvious. The same is true if the central magnetic field is increased.

Masses should be less sensitive to the deformation. As can be seen in Fig. (6), indeed the TOV-like solution for the maximum gravitational mass as well as the gravitational mass for fixed baryon mass as function of the central magnetic field show the correct qualitative behavior. Both increase with \(b_c \) and the difference to the exact solution remains reasonably small up to central fields of \(b_c = 10^{18} \text{ G} \). This difference of course becomes more pronounced with increasing magnetic field since magnetic effects become more important and the limits of the TOV-like approach can be clearly seen.

Thus, although our investigations can serve as a guideline and reproduce at least for gravitational mass as function of magnetic field the correct qualitative tendency, it should be stressed that it is strongly recommended to use a correct axisymmetric approach (e.g. employing publicly available software), to determine properties of magnetized neutron stars.

V. CONCLUSIONS

Many attempts can be found in the literature trying to study strongly magnetized neutron stars and to include magnetic field effects on the matter properties. As mentioned in the introduction, most of these investigations suffer from different assumptions and approximations motivated by the complexity of the full system of equations. First, in order to avoid solving Maxwell’s equations in addition to equilibrium and Einstein equations, often an \emph{ad hoc} profile for the magnetic field is as-

FIG. 4. Monopolar part of the magnetic field profile \(b_0(r) \), normalized to its central value for different magnetized neutron star models, as functions of the radius expressed in Schwarzschild coordinates \(\bar{r} \) (see expression (6)) divided by the star’s mean radius (see text). \textit{Left panel:} all models are using SLy230a EoS (see Tab. I) but have different masses (1.6 \(M_\odot \) or 2 \(M_\odot \)) and different central magnetic fields \(b_c \) (\(10^{15} \text{ G}, 10^{17} \text{ G} \) or \(10^{18} \text{ G} \)). \textit{Right panel:} all are 2 \(M_\odot \) models, with a central magnetic field \(b_c = 5 \times 10^{17} \text{ G} \), but with different EoSs, see Tab. I for details.

FIG. 5. (color online) Gravitational mass vs. mean radius for the TOV-like solution and the exact calculation for a central magnetic field of \(b_c = 10^{17} \text{ G} \) and the SLy230a EoS.
sumed, which has no physical motivation. Second, spherical symmetry is assumed for modelling the star.

In this work, we tackle the first point: we proposed a “universal” parameterization of the magnetic field profile (Eq. 10) as a function of dimensionless stellar radius, obtained from a full numerical calculation of the magnetic field distribution. We tested this profile against several realistic hadronic EoSs, based on completely different analytic approaches, and with different magnetic field strengths in order to confirm its universality. For the case of quark matter EoSs, preliminary investigations showed that although MIT bag models conform to the universality, other quark matter EoSs may not necessarily do so. The profile is intended to serve as a tool for nuclear physicists for practical purposes, namely to obtain an estimate of the maximum field strength as a function of radial depth (within error bars), in order to deduce the composition and related properties.

We applied the proposed magnetic field profile in a modified TOV-like system of equations, that include the contribution of magnetic field to the energy density and pressure, and account for the anisotropy by introducing a Lorentz force term. Compared with full numerical structure calculations, we find that qualitatively the correct tendency is reproduced and quantitatively the agreement is acceptable for large masses and small magnetic fields. Thus, although we encourage to employ the profile proposed here to conclude about the importance of magnetic field effects on matter properties, we can only recommend the use of a full axisymmetric numerical solution for modelling magnetized neutron stars.

ACKNOWLEDGMENTS

This work was financially supported by the action “Gravitation et physique fondamentale” of Paris Observatory. DC acknowledges financial support from CNRS and technical support from LPC Caen and the Paris Observatory in Meudon where part of this study was completed.
