1. INTRODUCTION

Gamma-ray bursts (GRBs) have been thought to be non-repeatable events from both observation and theoretical understanding. The general picture of a GRB is as follows. (1) A “central engine” consisting of a rapidly rotating black hole (BH) and a nuclear-density accretion disk is formed from a progenitor system, which invokes either the core collapse of a massive star (Woosley 1993; MacFadyen & Woosley 1999; Fryer et al. 2007) or the merger of two compact stellar objects such as NS–NS or BH–NS (Paczynski 1986, 1991; Eichler et al. 1989; Narayan et al. 1992). (2) Relativistically expanding ejecta composed of many mini-shells with a wide range of Lorentz factors are launched by the central engine. Internal shocks (Rees & Mészáros 1994) are formed during the collisions of these shells and produce the observed prompt GRB emission (mostly in gamma-ray band). Observationally, this is the phase when GRBs trigger gamma-ray band detectors. (3) The ejecta are further decelerated by an ambient medium (e.g., interstellar medium (ISM)) and produce a long-term broadband afterglow through an external-forward shock (Mészáros & Rees 1997; Sari et al. 1998) and/or external-reverse shock (Mészáros & Rees 1997, 1999; Sari & Piran 1999a, 1999b). (4) In some cases, the central engine can be restarted during the afterglow phase and X-ray flares are produced through dissipation of a late wind launched from a long-lasting central engine (Burrows et al. 2005; Zhang et al. 2006; Fan & Wei 2005; Ioka et al. 2005; Wu et al. 2005; Falcone et al. 2006; Romano et al. 2006a; Lazzati & Perna 2007; Lei et al. 2008; Maxham & Zhang 2009; see Zhang 2007 for review). Although X-ray flares are generally regarded to arise from the same physical region as prompt emission, they release their energy mostly in the soft X-ray band.

GRB 110709B triggered the Burst Alert Telescope (BAT) on board Swift (Gehrels et al. 2004) twice. Each of the triggers, separated by 11 minutes, consists of an otherwise typical long GRB light curve in the hard X-ray/gamma-ray band. X-ray observations during the second burst show that this event also produced bright soft X-ray emission. This provides a rare opportunity to conduct a detailed broadband study of the central engine properties.

In this paper, we first report the Swift and Konus-WIND observations of GRB 110709B in Section 2. Then we present multi-wavelength spectroscopy and timing studies in Section 3. The physical implications for the central engine properties are discussed in Section 4. In Section 5, we discussed the possibility of it being a lensed burst and the similarity between this GRB and other GRBs with precursors or huge X-ray flares or long quiescent gaps. We summarized our results in Section 6.

2. OBSERVATIONS AND DATA ANALYSIS

2.1. Swift Data

GRB 110709B first triggered the BAT (Barthelmy et al. 2005) on board Swift at 21:32:39 UT on 2011 July 9 (Cummings et al. 2011a). Swift slewed immediately to the burst. The two narrow-field instruments, the X-ray Telescope (XRT; Burrows et al. 2005b) and the Ultraviolet Optical Telescope (UVOT; Roming et al. 2005) on board Swift began to observe the field at $T_0 = 80.5$ s and $T_0 + 91$ s, respectively, where T_0 is the BAT trigger time. A bright X-ray afterglow was localized at R.A.$(J2000) = 10^h58^m37^s.08$, decl.$(J2000) = -23\degree27\arcmin17\arcsec6$ with an uncertainty of 1\degree4 (90% confidence; Beardmore et al. 2011). No reliable optical source was found within the XRT error circle (Holland & Cummings 2011a, 2011b).

Interestingly, at 21:43:25 UT on 2011 July 9, 11 minutes after the first trigger, the BAT was triggered again and located...
a second event from the same location (Barthelmy et al. 2011). The second outburst has comparable intensity and light curve characteristics to the first outburst. Regarding the two outbursts as two episodes of a single burst, the separation (11 minutes) is the longest compared to other multi-episode GRBs measured by Swift. In this paper, we use the term “double burst” to stress the unusual nature of this double-trigger GRB. We will use the term “the first sub-burst” to refer to the first outburst and “the second sub-burst” to refer to the second outburst. However, as we will show below, the two events are clearly related, indicating that they originated from the same physical progenitor system (see Drago & Pagliara 2007 for a statistical study of similar GRBs with long quiescent phases).

We processed the Swift/BAT data using standard HEAsoft tools (version 6.11). As shown in Figure 1, the first sub-burst lasted from $T_0 - 28$ s to $T_0 + 55$ s with $T_{90,1st} = 55.6 \pm 3.2$ s. The second sub-burst lasted from $T_0 - 550$ s to about $T_0 + 865$ s with $T_{90,2nd} = 259.2 \pm 8.8$ s (Cummings et al. 2011). There was no flux detectable in BAT from about $T_0 + 180$ s to about $T_0 + 550$ s. We extracted the BAT spectra in several slices. The lower panel in Figure 1 shows the photon indices obtained by fitting the spectra with a simple power-law model. It is obvious that both sub-bursts have strong hard-to-soft spectral evolution. The photon indices range from ~ 1.25 to ~ 1.75. The BAT band (15–150 keV) fluences of the first and second sub-bursts are $8.95^{+0.29}_{-0.62} \times 10^{-6}$ erg cm$^{-2}$ and $1.34^{+0.05}_{-0.07} \times 10^{-5}$ erg cm$^{-2}$, respectively.

We processed the Swift/XRT data using our own IDL codes which employ the standard HEAsoft analysis tools. For technical details, please refer to Zhang et al. 2007. Figure 2 shows the XRT light curve and spectral evolution. The prolonged and energetic flaring activity continues up to $T_0 + 2000$ s, which corresponds to the second sub-burst time period. The light curve after the flare can be fitted by a broken power law with $\alpha_1 = 0.98 \pm 0.08$, $\alpha_2 = 1.6 \pm 0.13$ and a break time $t_b = 5.9 \pm 4.1 \times 10^4$ s ($\chi^2/\text{dof} = 338.6/279$). Assuming GRB 110709B is at the average redshift ($z \sim 2$) of Swift GRBs, its rest-frame break time, $t_{0,\text{rest}}$ ($= t_b/(1 + z) \sim 2.0 \times 10^5$ s), and the corresponding X-ray luminosity, $L_{X,\text{b}}$ ($\sim 5 \times 10^{46}$ erg s$^{-1}$), are consistent with the $t_{0,\text{rest}} - L_{x,\text{b}}$ correlation of previous Swift GRBs (Dainotti et al. 2010). The X-ray spectrum can be fitted with an absorbed power law with total column $N_{H} = 2.14^{+0.23}_{-0.21} \times 10^{21}$ cm$^{-2}$, which includes the Galactic foreground $N_{H} = 5.6 \times 10^{20}$ cm$^{-2}$ (D’Elia et al. 2011). Strong spectral evolution was observed in the second sub-burst phase, where the photon indices vary significantly from $\Gamma \sim 0.9$ to $\Gamma \sim 2.6$. The spectrum after $T_0 + 4000$ s has no significant evolution, with an average photon index $\Gamma \sim 2.1$. The total fluence in XRT band (0.3–10 keV) is $4.07 \pm 0.56 \times 10^{-6}$ erg cm$^{-2}$.

In order to check whether the break in the XRT light curve is due to curvature caused by an incorrect reference time T_0 effect (e.g., Yamazaki 2009 and Liang et al. 2009, 2010), we plotted the XRT light curve in reference to the trigger time of the second sub-burst. We found that the t_b, α_1, and α_2 do not significantly change within 1σ range. We thus conclude that the break is intrinsic.

2.2. Konus-WIND Data

GRB 110709B triggered detector S1 of the Konus-WIND gamma-ray spectrometer (Aptekar et al. 1995) at 21:32:44.567 s UT on 2011 July 9 (Golenetskii et al. 2011). Konus-WIND recorded the first sub-burst with high-resolution data. The T_{90} of the first sub-burst in the Konus-WIND energy band (20 keV–5 MeV) is 51.3 ± 7.6 s. The fluence in the same energy range is $2.6 \pm 0.2 \times 10^{-5}$ erg cm$^{-2}$. The second sub-burst fell into a telemetry gap but was recorded by the instrument’s spare count rate measurement channel (Figure 3). The overlap detection of the first sub-burst allows a BAT+Konus-WIND multi-wavelength study.

3. MULTI-WAVELENGTH TIMING AND SPECTROSCOPY PROPERTIES

3.1. Joint Spectral Fit

As shown in Figure 3, the first sub-burst was simultaneously observed by Konus-WIND and Swift/BAT, so we are able to perform joint spectral fitting using the spectra of those two instruments. We divide the time period of the first sub-burst into five time slices. The exact time ranges of each slice are listed in Table 1. For the first four slices, the best-fit model is a cutoff power law ((CPL) cutoffpl in Xspec 12). For the fifth slice, the best-fit model is a simple power law ((PL) powerlaw in Xspec 12). The time-dependent fitting results are presented in Table 1. The time-integrated spectrum (3.594–44.810 s) can also be fitted with a cutoff power-law model with $\alpha = 1.17 \pm 0.04$, $E_c = 311^{+45}_{-38}$, and $\chi^2/\text{dof} = 125/129$ (Figure 4). The second sub-burst was simultaneously observed by Swift/BAT and

![Figure 1](https://example.com/figure1.png)

Figure 1. BAT count rates (upper panel) and photon index evolution (lower panel) of GRB 110709B. The spectral model is a simple power law.

Time Interval (s)	Model	α	E_c (keV)	χ^2/dof	Instrument
(3.594, 12.042)	CPL	$1.03^{+0.06}_{-0.06}$	301^{+77}_{-37}	127/128	BAT+WIND
(12.042, 20.230)	CPL	1.0 ± 0.06	272^{+53}_{-41}	135/128	BAT+WIND
(20.230, 28.426)	CPL	$1.1^{+0.07}_{-0.06}$	247^{+56}_{-38}	156/128	BAT+WIND
(28.426, 36.618)	CPL	1.1 ± 0.08	258^{+54}_{-33}	111/128	BAT+WIND
(36.618, 44.810)	PL	1.55 ± 0.05	\cdots	$132/129$	BAT+WIND
(3.594, 44.810)	CPL	1.17 ± 0.04	311^{+45}_{-38}	125/129	BAT+WIND
(550, 600)	CPL	0.80 ± 0.05	109^{+53}_{-29}	263/303	BAT+WIND
(600, 650)	CPL	0.82 ± 0.03	112^{+32}_{-23}	360/418	BAT+WIND
(650, 700)	CPL	0.92 ± 0.03	99^{+6}_{-9}	343/365	BAT+WIND
(700, 800)	CPL	1.22 ± 0.02	78^{+16}_{-15}	438/456	BAT+WIND
(800, 1000)	CPL	1.33 ± 0.02	72^{+17}_{-13}	512/501	BAT+WIND
(550, 1000)	CPL	1.12 ± 0.01	116^{+6}_{-8}	687/679	BAT+WIND

Note. a Low energy photon index α is defined by $C(E) \propto E^{-(2 + \alpha)}/E_{\gamma}$ for CPL and $C(E) \propto E^{-\alpha}$ for PL. Errors are given at the 1σ level.
Swift/XRT. Similar to the first sub-burst, we are able to perform joint spectral fitting using the spectra of those two instruments. We divide the time period of the second sub-burst into five slices (listed in Table 1). We fit the spectrum of each slice using absorbed cutoff power-law model. An underlying simple power-law decaying component was also taken into account and subtracted using the same strategy as in Falcone et al. 2007.

The time-dependent fitting results are presented in Table 1. The time-averaged (550–1000 s) BAT+XRT spectra are well fitted by the absorbed cutoff power-law model with \(\alpha = 1.12 \pm 0.04, \) \(E_p = 116^{+9}_{-8}, \) and \(\chi^2/\text{dof} = 687/679 \) (Figure 5).

The spectral evolution during the whole double burst shows an overall hard-to-soft trend. In Figure 6, we plot the modeled spectral energy distribution (SED) in different time intervals, which demonstrates the intrinsic spectral shape evolution. Figures 7 and 8 show the evolution of \(E_p \) and \(\alpha \), respectively. Although strong spectral evolution is exhibited by both sub-bursts, their time-dependent behaviors are very different. For example,
Figure 5. Joint fitting to the time-averaged Swift/BAT+Swift/XRT spectra between 550 and 1000 s. Red: Swift/XRT spectrum. Black: Swift/BAT spectrum. Solid lines are the best-fit model. Lower panel plots the residuals in terms of sigmas.

Figure 6. Modeled spectral energy distribution in different time intervals of the whole double burst period. Time intervals in seconds after T_0 are given in the legend.

Figure 7. E_p as a function of time. Dashed lines indicate the simple power-law fit. For the first sub-burst (filled circles), $E_p \propto t^{-0.13}$ while for the second sub-burst (filled circles), $E_p \propto t^{-1.9}$. Open circles show the E_p evolution of the second sub-burst if T_0 is shifted to the trigger time of the second sub-burst, in which case $E_p \propto t^{-0.31}$.

Figure 8. Spectral index of the cutoff power-law model, α, as a function of time.

as shown in Figure 7, the E_p of the first sub-burst decays to $\propto t^{-0.13}$, while the E_p of the second sub-burst decays to $\propto t^{-1.9}$ (or $\propto t^{-0.31}$ if we shift reference time of the second sub-burst to its trigger time). The different time-dependent spectral of the two sub-bursts may suggest that the two sub-bursts are from different stages of the same central engine (see Section 4 for further discussion).

3.2. E_p–$E_{\gamma, \text{iso}}$ Relation and Implication for Redshift

There has been no redshift measurement for GRB 110709B, so the rest-frame peak energy, $E_p(1+z)$, and the isotropic energy, $E_{\gamma, \text{iso}}$, are unknown. On the other hand, one can assume it has a redshift z_r and plot the corresponding $E_p(z_r)$ and $E_{\gamma, \text{iso}}(z_r)$ on the E_p–$E_{\gamma, \text{iso}}$ (Amati relation; Amati et al. 2002) diagram. The well-known Amati relation suggests that most long (or type II) bursts follow the $E_p \propto E_{\gamma, \text{iso}}^{1/2}$ track (Amati et al. 2002; Zhang et al. 2009). Since GRB 110709B is obviously a long burst (especially with two long sub-bursts), in principle it should fall into the same track as other typical long (type II) bursts. In Figure 9, we assign GRB 110709B onto the E_p–$E_{\gamma, \text{iso}}$ diagram by assuming its redshift is in the range of $z_r = 0.01$–7. It is interesting to note that, at the average redshift ($z \sim 2$) of Swift GRBs, GRB 110709B is well consistent with the previous Amati relation.

3.3. Spectral Lag

Spectral lags, which are caused by the fact that softer gamma-ray photons usually arrive later than hard photons, are always significant in long (type II) GRBs (Norris et al. 2000; Gehrels et al. 2006; Liang et al. 2006; Zhang et al. 2009), but are typically negligible for short (type I) GRBs (Norris & Bonnell 2006; Zhang et al. 2009). In order to get a high signal-to-noise ratio, we only select the brightest part (Episodes I and II, as...
shown in Figure 3 and listed in Table 2) of each sub-burst to calculate lags. For the first sub-burst, we extracted 32 ms binned light curves in the following four BAT energy bands: 15–25 keV, 25–50 keV, 50–100 keV, and 100–150 keV and 64 ms binned light curves in the following three Konus-WIND bands: 25–95 keV, 95–380 keV, and 380–1435 keV. Then, using the cross-correlation function (CCF; Norris et al. 2000; Ukwatta et al. 2010) method, we calculate the lags between any two light curves in the neighboring and next-to-neighbor energy bands within each instrument in Episode I. The uncertainty of lags are estimated by Monte Carlo simulation (see, e.g., Peterson et al. 1998; Ukwatta et al. 2010) and are illustrated in Figures 10 and 11. For the second sub-burst, we extracted 32ms-binned light curves in the same four BAT energy bands as mentioned above and three XRT energy bands: 0.3–1 keV, 1–4 keV, and 4–10 keV. Then using the same method we calculated the spectral lags between these energy bands. Our results are shown in Table 2. Some lags are not well constrained possibly due to low signal-to-noise levels and the combination of multiple pulses. Yet the typical values of 201 ± 52 ms between 25–50 keV and 50–100 keV for the first sub-burst are similar with other long (type II) GRBs (Zhang et al. 2009). In Figure 12, we plot the luminosity–lag diagram by assuming the double burst is at redshift z_z. Background blue data points are type II GRBs in Zhang et al. (2009). Background red and green data points are type I and “other short-hard bursts” in Zhang et al. (2009). The dashed blue line represents the best linear fitting to type II bursts.
3.4. A Dark Burst?

There is no optical counterpart or host galaxy observed by UVOT or any other ground telescopes for GRB 110709B. Furthermore, no cataloged extragalactic galaxy was found within 1′ radius in the NASA/IPAC Extragalactic Database (NED). Using the optical afterglow upper limits reported by Fong & Berger (2011), we plot the optical-to-X-ray SED at $t = 3.2$ hr and $t = 4.1$ days (t is relative to trigger time T_0) in Figure 13. The corresponding β_{OX} (spectral index β is defined by $F_\nu \propto \nu^{-\beta}$) are <-0.27 and <-0.29 for the two epochs. Since bursts with $\beta_{OX} < 0.5$ are defined as “dark” (Jakobsson et al. 2004; van der Horst et al. 2009; Greiner et al. 2011), GRB 110709B is clearly an unusual dark burst with an even lower negative β_{OX} ($t = 3.2$ hr). Furthermore, the EVLA detection of the radio counterpart of GRB 110709B gives further support that GRB 110709B is a dark burst (Zauderer & Berger 2011). With a large extragalactic soft X-ray absorption (Section 2.1), the absence of the optical afterglow detection probably indicates a very dusty ISM environment of GRB 110709B so its optical afterglow is highly extinguished. Alternatively, it may also indicate a high-redshift origin (Fong & Berger 2011). We found that the assumed proto-neutron star could reach rotational energies as high as several 10^{52} erg. Here spectral index β is defined by $F_\nu \propto \nu^{-\beta}$, β is calculated between the optical upper limits and peak X-ray flux. Solid lines are the power-law components fitted to XRT data only.

4. IMPLICATIONS FOR THE CENTRAL ENGINE

Long-term central engine activities have been proved by the commonly detected X-ray flares which occur at hundreds of seconds after the burst trigger. This double burst GRB 110709B suggests that the long-term active central engine not only powers X-ray flares but also can power a second burst. Generally speaking, in order to produce a second “burst” as is observed in GRB 110709B, the central engine must restart with comparable or even larger energy. This is challenging for the following popular theoretical X-ray flare models.

1. Fragmentation in the massive star envelope. The collapse of a rapidly rotating stellar core leads to fragmentation (King et al. 2005). If the delayed accretion of fragmented debris leads a second burst, the debris must have comparable masses with the materials in the initial major accretion. This behavior has not been seen to date in numerical simulations (e.g., Masada et al. 2007; Lee et al. 2009; Metzger et al. 2008).

2. Fragmentation in the accretion disk. Fragmentation of an accretion disk and subsequent accretion of the fragmented blobs may power X-ray flares in both short and long GRBs (Perna et al. 2006). In order to power a second burst instead of X-ray flares, the fragmented out part of the disk should have a comparable mass to that of the inner part of the disk, which is difficult to achieve. This model also predicts that later accretion (accretion of a blob farther away from the BH) tends to spread in a longer duration, which is suitable to interpret X-ray flares, but not the double burst.

3. Magnetic barrier around the accretor. Proga & Zhang (2006) argued that a magnetic barrier near the BH may act as an effective modulator of the accretion flow. The delayed outflow can power the X-ray flares. It is difficult for this model to account for the extreme energetics of the second sub-burst, since it is expected that a magnetic barrier can only block a smaller accretion rate, and hence, can only power a less violent episode such as X-ray flares. On the other hand, the long quiescent gap between the two sub-bursts leads us to re-think the two-stage fallback collapsar scenario that has been used to interpret GRB precursors (Wang & Mészáros 2007). In that scenario, the precursor is produced by a weak jet formed during the initial core collapse, possibly related to MHD processes associated with a short-lived proto-neutron star, while the main burst is produced by a stronger jet fed by fallback accretion onto the BH resulting from the collapse of the neutron star. We found that the assumed proto-neutron star rotational energy of a few times 10^{51} erg in Wang & Mészáros (2007) would also be sufficient, when beaming is taken into account, to power the first sub-burst of GRB 110709B. In fact, simple estimates indicate that maximally rotating proto-neutron stars could reach rotational energies as high as several 10^{52} erg. Here, we propose a magnetar-to-BH scenario as follows.

A magnetar is formed and produces the first sub-burst by releasing its rotation energy via electromagnetic and gravitational radiation in $\sim 10-20$ s (rest frame). A magnetar, rather than a lower field neutron star, is required not only to produce the high luminosity ($L_{\gamma, iso} \sim 10^{52}$ erg s$^{-1}$)
and \(E_{p,\text{rest}} \sim (0.6-1 \text{ MeV}) \) of the first sub-burst (Zhang & Mészáros 2001; Metzger et al. 2011), but also to overcome the ram pressure of the fallback matter (Wang & Mészáros 2007). For a typical magnetar with proton-neutron star radius \(R_{\text{PNS}} \sim 50 \text{ km} \) and mass \(M_0 \sim 1.4 \, M_\odot \), the ram pressure can be written as \(P_{\text{ram}} = (M v_{\text{rf}}/4 \pi R_{\text{PNS}}^2) \geq 5 \times 10^{28} M_0^{-2/3} R_{\text{PNS}}^{-5/2} \text{erg s}^{-1} \), where \(v_{\text{rf}} = (2 GM/R_{\text{PNS}})^{1/2} \) is the free-fall velocity and \(M \) is the mass infalling rate in units of \(M_\odot \text{ s}^{-1} \). The magnetic field pressure can be written as \(P_B = B_f^2/8\pi \geq 4 \times 10^{26} B_f^{2,15} \text{erg s}^{-1} \). Comparing the two, one \(^{12}\) can get \(B_f \gtrsim 10^{14} \). Such a magnetized jet internally dissipates and powers the observed gamma-ray emission (e.g., Zhang & Yan 2011; Metzger et al. 2011).

2. After the magnetar slows down, the magnetic outflow stresses decrease, so the ram pressure of the infalling matter becomes dominant. Thus the activity of the magnetar is suppressed during the accretion process. The accretion onto the magnetar does not lead to GRB emission, since the hot NS likely launches a dirty neutrino-driven wind with heavy baryon loading. In order to form a BH, a total accreting mass of \(1 \, M_\odot \) is needed. Assuming a redshift \(z = 2 \), the accretion rate is about \(M \sim (1 \, M_\odot / (500 \text{ s} / (1 + z))) \simeq 0.006 \, M_\odot \text{ s}^{-1} \), which is consistent with theoretical predictions in the supernova fallback scenario (see, e.g., MacFadyen et al. 2001).

3. The accretion finally leads the magnetar to collapse to a BH. The second sub-burst is produced either from a baryonic or a magnetic jet. The spectrum will be softer either because the accretion leads the gas near the central engine to be more baryon-loaded so that the jet is slower or because the pre-existing channel from the first sub-burst may not have time to close so that the wide channel results in a slower jet and a softer spectrum. The spectral evolution of the two stages would be expected to be different, since they are due to different physical process. These model features appear to be in concordance with the observed facts (see Figure 7).

5. DISCUSSION
5.1. A Lensed Burst?

The similarity of the two sub-bursts raises the question of whether they could be produced by gravitational lensing of a single GRB located behind a foreground galaxy. To investigate this possibility, we first examined the Chandra observations of GRB 110709B at 14:15:04 UT on 2011 July 23 (day 14; 15.05 ks exposure time; Observation ID 12921) and at 19:50:34 UT on 2011 October 31 (day 114; 10 ks exposure time; Observation ID 14237). We downloaded the public Chandra data from the Chandra archive\(^{13}\) and processed them using the standard CIAO tools (version 4.3). The first Chandra observation has two X-ray point sources in the field of GRB 110709B, with nearly identical brightness \((3.7 \times 10^{-3} \text{ s}^{-1}, 0.2-8 \text{ keV})\) and separated by only 3.4 arcsec (Figure 14). Source 1 is located 0.67 arcsec from the refined XRT position, within the refined XRT error circle. Both sources are within the XRT point-spread function (18 arcsec Half-Power-Diameter), and the sum of their fluxes is consistent with the total XRT flux measured during the first epoch, while the flux of Source 1 is consistent with the extrapolation of the XRT light curve (Figure 2). The field was unobservable by both Chandra and Swift from about 2011 August 8 until 2011 October 28. In the second Chandra observation, taken shortly after the field emerged from the Chandra Sun (pitch angle) constraint, Source 1 has vanished, while Source 2 is still present, with a slightly lower count rate of \(\sim 2.7 \times 10^{-3} \text{ s}^{-1} \) \((0.2-8 \text{ keV})\), consistent with being a background X-ray source such as an active galactic nucleus (AGN). The upper limit for the Source 1 flux is still consistent with the extrapolation of the XRT light curve (Figure 2). The fact that Source 1 vanished while Source 2 did not clearly rules out any possibility that the two Chandra X-ray sources in the double burst field are due to gravitational lensing.

On the other hand, assuming the time delay \((\sim 11 \text{ minutes})\) between two sub-bursts is caused by gravitational lensing, we calculated that the angular separation of the two lensed images would be \(\sim 10^{-2} \text{ arcsec} \) (Walker & Lewis 2003), which is beyond Chandra’s best resolution capacity \((\sim 0.5 \text{ arcsec})\). We found that a typical dwarf galaxy at \(z \sim 1 \) would be able to serve as the massive lensing object and cause such a separation. In this scenario, the difference between the pulse structure of the two sub-bursts can be understood by taking into account a structured jet and the so-called nanolensing effect (Walker & Lewis 2003). However, the different \(E_p \) and spectral evolution (see Section 3) of the two sub-bursts are still difficult to explain. We thus disfavor the gravitational lensing explanation for this burst.

5.2. A Huge Precursor, a Huge X-Ray Flare, or a Long Quiescent Gap?

GRB 110709B is a unique event. It is 1 out of 613 GRBs detected by Swift/XRT so far (as of 2011 December 30; Evans et al. 2009, 2011). Since nearly half of Swift/GRBs have X-ray flares (Maxham & Zhang 2009), it is roughly one out of \(\sim 300 \) GRBs with flares.

Comparing with other GRBs, one may wonder whether this is a burst with a huge precursor (the first sub-burst), a huge X-ray flare (the second sub-burst), or simply a long GRB that has an extremely long quiescent gap in between. We address these possibilities in turn.

1. A huge precursor? A good fraction\(^{14}\) of GRBs have a precursor leading the main burst. A precursor is generally defined as an emission episode whose peak intensity is much lower than that of the main episode and with a quiescent separation period from the main episode (Koshut et al. 1995; Burlon et al. 2008, 2009; Troja et al. 2010). Precursors may or may not trigger the gamma-ray detectors (Lazzati 2005). Moreover, the peak energy \((E_p, v F_v) \) spectrum of the

\(^{12}\) Generally speaking, a relatively weaker magnetic field or a relatively longer initial rotation period leads to a longer magnetar spin-down timescale, and hence, the emission duration (Zhang & Mészáros 2001). For comparison, to interpret the long plateau \((\sim 16 \text{ ks})\) in the X-ray light curve of GRB 070110, the magnetic field of a millisecond-period magnetar needs to be \(B_f \sim 3 \times 10^{13} \) (Troja et al. 2007). For the case of GRB 060218 the initial spin-down period should be longer (e.g., \(\sim 10 \text{ ms} \) instead of \(\sim 1 \text{ ms} \)) due to the low GRB energy constraint (Soderberg et al. 2006; Mazzali et al. 2006; Toma et al. 2007). See Lyons et al. (2010), Rowlinson et al. (2010), and Fan et al. (2011) for more individual examples.

\(^{13}\) http://cda.harvard.edu/chaser

\(^{14}\) Observationally, this fraction is highly dependent on the definition of precursor and may suffer from instrumental bias. For example, Koshut et al. (1995) search a BATSE (Burst Alert and Transient Source Experiment) GRB sample and found that the fraction is \(\sim 35\% \). On the other hand, by using a different definition, Lazzati (2005) analyzed a sample of bright, long BATSE GRBs and found that the fraction is \(\sim 20\% \).
precursors is almost always softer than the emission. Some good examples of GRBs with typical precursors are GRBs 041219A (Götz et al. 2011), 050820A (Cenko et al. 2006), and 06012415 (Romano et al. 2006b). By contrast, the first sub-burst of GRB 110709B has a comparable intensity and harder E_p than the second sub-burst, which is very different from a precursor. Nonetheless, some precursor models (e.g., Wang & Mészáros 2007) may give hints to the theoretical explanation of the double emission episode behavior of GRB 110709B (see Section 4).

2. A giant X-ray flare? As discussed in Section 1, X-ray flares are generally thought to be related to late time central engine activities. The shapes of X-ray flares are always soft in spectrum and smooth ($\delta t/t \geq 1$) in time profile (Burrows et al. 2005a; Chincarini et al. 2007; Falcone et al. 2007). In contrast, the X-ray emission from the second sub-burst of GRB 110709B shows a spiky time profile and a higher E_p (up to ~ 100 keV) than those of a typical X-ray flare. Its X-ray fluence is comparable ($\sim 50\%$) to the BAT fluence of the first sub-burst. The only giant X-ray flare that reaches a fluence comparable to prompt emission was GRB 050502B (Burrows et al. 2005a; Falcone et al. 2006). However, the flare of GRB 050502B was much softer and smoother. We thus regard the X-ray emission from the second sub-burst as more analogous to prompt emission. Using the popular X-ray flare model to interpret the second sub-burst is challenging as discussed in Section 4.

3. A long quiescent gap? GRB 110709B has a very long quiescent gap (~ 500 s). We note that this gap is unusual but not unprecedented. For example, significant long quiescent periods have been observed in some other long GRBs, such as GRB 070721B ($t_{\text{gap}} \sim 200$ s; Ziaeepour et al. 2007) and GRB 091024B ($t_{\text{gap}} \sim 500$ s; Gruber et al. 2011). On the other hand, GRB 110709B is unique in the sense that the two sub-bursts separated by the gap have somewhat similar pulse shapes, comparable emission durations, comparable peak intensities, and comparable fluences. We thus regard GRB 110709B as a unique double burst. Nevertheless, there are still some similarities between it and other bursts with long gaps (especially GRB 091024, which has three comparable emission episodes). The model we propose in Section 4 might be applicable to those bursts as well.

6. SUMMARY

GRB 110709B is the first GRB with two Swift/BAT triggers. We present in this paper a comprehensive study on gamma-ray and X-ray observations of this unusual GRB and its afterglow. No optical afterglow or host galaxy has been detected for this burst. By putting this burst at redshift ~ 2 (average redshift of Swift GRBs), we found that it can be a typical long (Type II) burst which follows previous empirical relations (such as Amata relation and lag–luminosity relation) quite well. The dark burst nature of GRB 110709B may suggest a very dusty environment, a high-redshift origin, or different radiation mechanisms between X-ray and optical band. Although separated by 11 minutes, the two sub-bursts may physically originate from the same central engine, which apparently requires extreme two-step activities that may be related to magnetar-to-BH accretion.

We thank John Nousek, Judith L. Racusin, Alexander J. Van Der Horst, Peter Veres, Hao-Ning He, Mark Walker, Davide Burlon, David Gruber, Eveline Helder, Jonathan Gelbord, Zach Prieskorn, En-Wei Liang, Suk Yee Yong, and Fuwen Zhang for helpful comments. This work is partially supported by the following grants: NASA SAO SV4-74018 (B.B.Z.), NASA NASS-00136 (D.N.B.), NASA NNX08AL40G (P.M.), NSF PHY-0757155 (P.M.), NSF AST-0908362 (B.Z.), NASA NNX10AD48G (B.Z.), ASI grants I/009/10/0 (G.S.), NSFC 10973008 (X.Y.W.), and the 973 program 2009CB824800 (X.Y.W.). The Konus-WIND experiment is supported by the

15 We note that the pulse structures of the main emission phase ($t > 400$ s) of GRB 060124 and the second sub-burst of GRB 110709B are quite similar, namely, a short duration pulse followed by the main emission, then an extra soft X-ray flare. See Figure 4 in Romano et al. (2006b) for comparison.

Figure 14. Chandra (upper left: $T_o + 14$ days; lower left: $T_o + 114$ days) and Swift/XRT (upper right: $T_o + 0$ day; lower right: $T_o + 114$ days) images of 110709B. Black circles (radius = 1") indicate the Chandra source extraction regions at the locations of R.A.($J2000$) = $10^\circ58'37''$.121, decl.($J2000$) = $-23^\circ27'17.08''$ and R.A.($J2000$) = $10^\circ58'37''$.003, decl.($J2000$) = $-23^\circ27'20'.24''$. The red circle is the enhanced XRT error circle (Beardmore et al. 2011) of the afterglow. The blue circle indicates the preliminary XRT error circle (based on the on board centroid of the first 2.5 s of data) that was reported by Cummings et al. (2011b).
