Miospores, fish fauna and probably megaflora concur to assign a Lower Carboniferous age to the Waaipoort Formation (Witteberg Group), thus supporting the suggestion that the Devonian-Carboniferous boundary in South-Africa lies at the level of the conspicuous lithological reversal represented by the Witpoort/Kweekvlei contact. All the evidence displayed indicates overriding of the Dwyka glaciers relatively shortly after deposition of the uppermost Witteberg sediments.

Introduction

Recognition of the Devonian-Carboniferous boundary in South Africa has always been problematical. In an earlier paper Theron (1994) delineated the available information and discussed all the major aspects involved. The importance of this boundary for regional mapping purposes was stressed as well as the fact that it would give a reliable age for the advent of the earliest glacial episodes of the late Palaeozoic Dwyka Group in South Africa. These latter deposits rest unconformably on a glacigenic surface which is constituted of the uppermost Cape Supergroup (Witteberg Group) south of latitude 32°50’S (Figure 1). The duration of this hiatus between the Witteberg and Dwyka beds has always been problematical and the variable and often contradictory fossil evidence from these units adds to the confusion.

The indisputable Devonian age for the underlying Bokkeveld Group as well as the major portion of the Witteberg Group, is evident from their fossil faunal content (Boucot et al., 1983; Hiller and Theron, 1988; Theron and Johnson, 1991). Additionally, the plant genus *Archaeopteris* from the upper part of the Witpoort Formation in the Eastern Cape at Grahamstown (130 km northeast of Port Elizabeth) supports a late Devonian age (Taylor and Hiller, 1992; Anderson et al., 1995). These rocks have also been dated as Late Devonian (see later), on the basis of sea-level curves (Cooper, 1986), a conclusion supported also by the presence of a distinctive placoderm assemblage comprising *Bothriolepis*, groenlandaspids and phyllolepids (Young, 1989; Anderson et al., 1995).

The evidence with respect to the age of the uppermost portion of the Witteberg Group, the Waaipoort Formation, is contradictory however. Gardiner (1969) correlated the fish fauna (actinopterigians, chondrichthyans and acanthodians), which characterizes the Waaipoort Formation throughout its outcrop, with Lower Carboniferous (Viséan) actinopterigian Scottish families. Additionally, the conspicuous lithological replacement of the markedly arenitic whiteweathering Witpoort Formation by the overlying dark grey pelitic Kweekvlei Formation over more than 700 km, clearly represents a major transgressive event. Application of sequence stratigraphical dating to the Devonian Bokkeveld and Witteberg sequence induced Cooper (1986) to relate the extensive quartz-shoal sedimentation of the Witpoort Formation to the prominent Famennian regression of the northern hemisphere. The Kweekvlei Formation would then reflect the following Tournaisian transgressive cycle. On the other hand, according to Plumstead (1967), the “Upper Witteberg Series” (Waaipoort Formation) contain, aside from many unidentifiable stems, the lycopod *Protolepidodendron eximium* Frenguelli, believed at that time, to belong to the upper part of the Middle Devonian. This age was later corroborated by Stapleton (1977a and b) on the basis of a palynological analysis from a very poorly preserved assemblage extracted from one of the fish-bearing nodules. The megaflora identified by Plumstead and the nodule studied by Stapleton were collected from the Eastern Cape near Willowmore.

In view of this uncertainty and contradictory evidence, a palynological investigation of the uppermost Witteberg units was undertaken. Increased tectonic deformation associated with the Cape Fold Belt south and eastwards suggested that the most worthwhile results for extraction of spores would be from outcrops in the southwestern Cape (Figure 2). Some samples were, however, also collected between Prince Albert and Willowmore to evaluate Stapleton’s results. A total of 25 samples were macerated from the Kweekvlei and the Waaipoort Formations (Table 1). Investigation of the Kweekvlei Formation’s samples has not yielded any identifiable spores owing to the high thermal maturity of the rocks (see also Theron, 1994, page 299). In the Waaipoort Formation most of the samples, which were largely obtained from fossiliferous nodules, also revealed that the thermal maturity was so high that it was impos-
Miospores from the Waaipoort Formation

All the samples were treated by the usual maceration technique with hydrochloric and hydrofluoric acids followed by sieving (12 µ) processes. Although different treatments of oxidation (dry Schulze 2 seconds to a few minutes; wet Schulze a few minutes to several days) were also applied to these samples, most of the spores remained opaque even in sample 94/2. Translucent miospores (no megaspores) were isolated only from this sample (see Plate 1). This result concurs with that of Stapleton whose data were obtained for the first time in the Waaipoort Formation translucent material, of which the most diagnostic taxa are cited and illustrated in this preliminary paper.

Reevaluation of Stapleton’s results

Many new species and detailed zonations have appeared since Stapleton’s analyses were published in 1977. A reevaluation of his work is therefore necessary, but could be based here only on the examination of the illustrations he provided (Stapleton, 1977b). Some determinations given by this author are too poorly documented to be credible: as, for example, the so-called Anycyropsora ancyrea var. spinobraciculata (Pl. V, Figure 1). Others cannot be ascertained only on SEM pictures: for instance, Geminospora antaxios (Pl. IV, Figure 4) cannot be separated from Spelaeotriletes div. sp. if the degree of cavitation of the central body is not observable. The same is true for Verrucos-tisporites pulvinatus (Pl. I, Figure 6) seems to have eventually the statement by Stapleton (1977, p. 428) that “Specimens are much smaller than is usual for Devonian spores. The following species are well known from the Tournaisian of Ireland (Higgs et al., 1988) and Belgium (Higgs et al., 1992). Their stratigraphic ranges (see Table 2) are listed below:

Table 1 Samples investigated for palynological analysis

Formation	Loc.	Sample
Kweekvlei	1	89/1
	2	89/2-6
Waaipoort	3	96/1-6
	4	96/7-11
	5	94/1-2
	6	94/3-4
	7	94/5
	8	94/6-8

The following species are well known from the Tournaisian of Ireland (Higgs et al., 1988) and Belgium (Higgs et al., 1992). Their stratigraphic ranges (see Table 2) are listed below:

Genus	Species	Stratal range
Umbonatisporites	S. pretiosus	Zones PC to CM
	S. crustatus	Zones LL to PC
	S. pretiosus	Zones CM to BP
Verrucosisporites	cf. delicatus	Zones HD to CM
	cf. delicatus	Zones HD to CM
	cf. delicatus	Zones HD to CM

Ireland (Higgs et al., 1988) and Belgium (Higgs et al., 1992). Their stratigraphic ranges (see Table 2) are listed below:

Table 2 Compared stratigraphical distribution of miospore and conodont zones in western Europe (based on Higgs et al., 1988, 1992).

Systems	Devonian / Carboniferous
Miospore zones | S. crustatus, S. obtusus, S. polyptycha, S. delicatus, S. pretiosus
Conodont zones | S. crassatus, S. obtusus, S. polyptycha, S. delicatus, S. pretiosus
Reevaluation of the age suggested by the presence of *P. eximium* in the Waaipoort Formation

Plumstead (1967, pages 31–32) described stems of fossil lycopods found in the “Upper Witteberg Series”, the Waaipoort Formation, as *Protolepidodendron eximium* Frenguelli, which were known at that time mainly from the upper part of the Middle Devonian of Argentina. This identification was however challenged by some later authors (for instance, Anderson & Anderson, 1985) and moreover even reassessed by others (for instance, Arrondo et al., 1991). Obviously, whether the African material may be assigned to the South American species, can only be determined by a revision of the actual specimens described by Plumstead, a work well beyond the scope of the present paper. It is additionally not intended to discuss here the successive assignments of the South American species to the genera *Protolepidodendron* by Frenguelli (1954), *Drepanophycus* by Menendez (1965), *Eleutherophyllum?* by Cuerda et al. (1968), *Lepidodendropsis* by Sessarego & Césari (1989) or *Frenguellia* by Arrondo et al. (1991). Of more interest for the purpose of the present paper is the opinion of Cuerda et al. (1968) who, based on the evolutionary level of the flora originally described by Frenguelli, suggested an Early Carboniferous age instead of a Middle Devonian age. Later, the rock sequence studied by Frenguelli was incorporated into the Maliman Formation which contains a Lower Carboniferous goniatitid fauna referred to *Protocanites*. Moreover, since the first discovery made by Frenguelli, *P. eximium* have been found in many localities believed to be of Lower Carboniferous age in South America (Sessarego & Césari, 1989) where it characterizes the biozone AL (*Archaeosigillaria-Lepidodendropsis*). Therefore, the material described by Plumstead (1967) from the Waaipoort Formation is no longer confirmation of a Devonian age for this formation.

Plate 1

Legend of Plate 1

Location of specimens on the slides with England Finder grid.
Slides are stored in the Palynological Laboratory of the University of Liège, Belgium.
Magnification: see scale bars in µm.

1. *Spelaeoitriletes crustatus* Higgs 1975, slide 34405, grid F42
2. *Spelaeoitriletes obtusus* Higgs 1975, slide 34407, grid M49/1
3. *Spelaeoitriletes balteatus* (Playford) Higgs 1975, slide 34401, grid W53/4
4. *Schopfites cf. delicatus* Higgs 1988, slide 34401, grid N53/2
5–6. *Umbonatisporites sp.*, slide 34401, grid F36
7–8. *Vallatisporites cf. banffensis* Staplin & Jansonius 1964,
7. slide 34401, grid M38/2; 8. slide 34401, grid T53
9. *Spelaeoitriletes pretiosus* (Playford) Neves & Belt 1970, slide 34407, grid T42/2
10. *Rugospora polyptycha* Neves & Ioanides 1974, slide 34401, grid G52
11. *Hystrichospore*, slide 34401, grid P44/4
Age of the Waaipoort Formation and its bearing on the position of the Devonian-Carboniferous boundary and the start of the Dwyka glaciation

In conclusion, the miospores, fish fauna and megaflora (if the plant fossils described from South Africa and South America are conspecific) now concur to assign a Lower Carboniferous age to the Waaipoort Formation. This age is not older than the Middle Tournaisian, thus supporting the suggestion that the Devonian-Carboniferous boundary in South Africa lies at the level of the conspicuous lithological reversal represented by the Witpoort/Kweekvlei contact. In the southern part of the basin the degree of glacial erosion of the uppermost Witteberg units was on a small scale and localized. Of major significance in this regard are dropstones in the uppermost Witteberg beds as well as calm sediment detropicalization features ascribed to glacial action, sporadic variable erosional features from different localities and the presence of a limited amount of debris of Cape Supergroup derivation in the basal tillite towards the north. Furthermore, northwards older (i.e., stratigraphically lower), Witteberg units are gradually exposed immediately beneath the above-mentioned glacigenic surface. All the evidence displayed indicates overriding of the glaciers relatively shortly after deposition of the uppermost Witteberg sediments.

Acknowledgements

We would like to thank Sergio Archangelsky who provided information on the South American megaflora as well as Kenneth Higgs and Stanislas Lobozziak for helping the miospore identification.

References

Anderson, J. and Anderson H.M., 1985, Paleoflora of Southern Africa: Prodromus of Southern African Megaforras, Devonian to Lower Cretaceous: AA Balkema, Rotterdam, pp. 1-423.
Anderson, H.M., Hiller, N. and Gess, R.W., 1995, Archaeopteris (Progonospermopsida) from the Devonian of southern Africa: Botanical Journal of the Linnean Society, v. 117, pp. 305-320.
Arrondo, O., Cáceres, S.N. and Gutierrez, P.R., 1991, Frenguellia, a new genus of lycopods from the Early Carboniferous of Argentina: Review of Palaeobotany and Palynology, v. 70, pp. 187-197.
Boucot, A.J., Brunton, C.H.C. and Theron, J.N., 1983, Implications for the age of South African Devonian rocks in which Trilepidolepites (Braichiptoda) has been found: Geological Magazine, v. 120, pp. 51-58.
Braman, D.R. and Hills, L.V., 1992, Upper Devonian and Lower Carboniferous miospores, western district of Mackenzie and Yukon Territory, Canada: Palaeontographica Canadiana, n° 8, pp. 1-97.
Cooper, M.R., 1986, Facies shifts, sea-level changes and event stratigraphy in the Devonian of South Africa: South African Journal of Science, v. 82, pp. 255-258.
Cuerda, A., Wagner, R. and Arrondo, O., 1968, Observaciones sobre algunas formas del Carboniforme argentino: Ameghiniana, v. 5, n° 7, pp. 265-269.
Daenon, R.F., 1974, Palinomorphos-Guias do Devoniano Superior e Carboniforme Inferior das Bacias do Amazonas e Paraíba: An. Acad. brasile. Ciênc. v. 46 n° 3/4, pp. 549-587.
Freguellia, I., 1954, Plantas devonicas de la Quebrada de la Chavela, en la Precordillera de San Juan: Notas Fac. Cs. Nat. Mus. La Plata, v. 18(102), pp. 359-376.
Gardiner, B.G., 1969, New Palaeoniscoiid fish from the Witteberg Series of South Africa: Zoological Journal of the Linnean Society, v.48, pp. 423-452.
Higgs, K., Clayton, G. and Keegan, J.B., 1988, Stratigraphic and systematic palynology of the Tournaissian rocks of Ireland: The Geological Survey of Ireland, Special paper n° 7, pp. 1-93.
Higgs, K., Dresens, R., Dusar, M. and Street, M., 1992, Palynostratigraphy of the Tournaissian (Hastarian) rocks in the Namur Synclinorium, West Flan-

ders, Belgium: Review of Palaeobotany and Palynology, v. 72, pp. 149-158.
Hiller, N. and Theron, J.N., 1988, Benthic communities in the South African Devonian, in McMillan, N.J., Embrey, A.F. and Glass, D.J., eds, Devonian of the world, v. III, palaeontology, palaeoecology and biostratigraphy: Mem. 14, Canadian Society Petroleum Geologists, pp. 229-242.
Lanzoni, E. and Maglione, L., 1969, Associations palynologiques et leurs applications stratigraphiques dans le Dévonien supérieur et Carbonifère inférieur du Grand Erg occidental (Sahara algérien): Revue de l’Institut français du Pétrole, v. 24 n° 4, pp. 441-469.
Menéndez, C., 1965, Drepanophycus eximius (Frenguellix) nov. comb. del Devonico de la Quebrada de Chavela, San Juan: Ameghiniana, v. 4, n° 4, pp. 139-140.
Plumstead, E.P., 1967, A general review of the Devonian plants found in the Cape System of South Africa: Palaeoentologica Africana, v. 10, pp. 1-83.
Sessarego, H.L. and Césarí, S.N., 1989, An Early Carboniferous flora from Argentina. Biostratigraphic implications: Review of Palaeobotany and Palynology, v. 57, pp. 247-264.
Stapleton, R.P., 1977a, Carboniferous unconformity in southern Africa: Nature, v. 268, pp. 222-223.
Stapleton, R.P., 1977b, Carbonized Devonian Spores from South Africa: Pollen et Spores, v. 19, n° 3, pp.427-440.
Taylor, F.F. and Hiller, N., 1992, New Devonian plant macrofossils from the Witteberg Group near Grahamstown (abs): 7th biennial conf., Palaeontological Society South Africa, p. 41.
Theron, J.N., 1994, The Devonian-Carboniferous Boundary in South Africa: Annales de la Société géologique de Belgique, T. 116, n° 2, pp.291-300.
Theron, J.N. and Johnson, M.R., 1991, Bokkeveld Group (including the Ceres, Bidouw and Traka Subgroups), in Johnson M.R., ed, SACS Cata-
logue of South African Lithostratigraphic Units, 3, pp. 3-5.
Young, G.C., 1989, The Aztec fish fauna (Devonian) of Southern Victoria Land: Evolutionary and biogeographic significance, in Crame J.A., ed, Origins and evolution of the Antarctic biota, London: Geological Society Special Publication, n° 47, pp. 43-62.