Supplement of

Simulated impacts of vertical distributions of black carbon aerosol on meteorology and PM$_{2.5}$ concentrations in Beijing during severe haze events

Donglin Chen et al.

Correspondence to: Hong Liao (hongliao@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.
Table S1. The values of hs for each flight.

Flight date and time	hs value
2016/12/11 16:20	N/A
2016/12/12 13:05	0.82
2016/12/12 15:39	0.96
2016/12/16 15:47	0.53
2016/12/17 15:59	0.35
2016/12/18 14:22	0.79
2016/12/19 16:09	0.48
Table S2. Statistical metrics for PM$_{2.5}$, SO$_2$, NO$_2$, CO and O$_3$ on clean days and in two haze events.

Periods	Variables	SIM	OBS	R	MB	NMB	MFB
Clean days	PM$_{2.5}$ (μg m$^{-3}$)	64.4	35.3	0.15	29.1	82.5%	84.1%
	SO$_2$ (ppbv)	5.5	3.6	-0.02	1.9	53.4%	18.8%
	NO$_2$ (ppbv)	28.8	20.8	0.55	7.9	38.0%	38.5%
	CO (ppmv)	11.0	14.2	0.64	-3.1	-22.0%	-50.7%
	O$_3$ (ppbv)	0.9	0.7	0.18	0.2	30.0%	37.6%
	PM$_{2.5}$ (μg m$^{-3}$)	186.1	179.8	0.64	6.3	3.5%	8.0%
Two haze events	SO$_2$ (ppbv)	9.1	9.9	0.29	-0.7	-7.4%	-13.5%
	NO$_2$ (ppbv)	57.2	48.2	0.70	8.9	18.5%	12.5%
	CO (ppmv)	4.6	3.2	0.88	1.4	43.0%	-39.4%
	O$_3$ (ppbv)	2.2	2.4	0.30	-0.2	-9.3%	-8.4%
Table S3. Statistical analyses of the performance of CTRL (with original BC vertical profiles) and that of VerBC_obs (with modified BC vertical profiles) in simulating meteorological parameters. The values in RED indicate better performance in VerBC_obs than in CTRL.

Obs/Sim	Obs	CTRL	VerBC_obs	MB	NMB
T2 (°C)	0.2	0.4	0.2	0.2	0.0
RH2 (%)	65.5	65.6	67.7	0.0	2.2
WS10 (m s⁻¹)	1.8	1.4	1.8	-0.4	-0.1
WD10 (°)	105.2	109.0	116.1	3.8	10.9
PBLH (m)	152.2	197.2	181.2	45.0	29.0
T2 (°C)	-1.1	0.0	0.2	1.2	1.3
RH2 (%)	65.3	55.2	57.3	-10.1	-8.0
WS10 (m s⁻¹)	1.4	1.4	1.1	0.0	-0.3
WD10 (°)	196.2	165.7	173.0	-30.5	-23.2
PBLH (m)	101.9	145.6	135.8	43.7	33.9

The first pollution event

The second pollution event
Table S4. Statistical analyses of the performance of CTRL (with original BC vertical profiles) and that of VerBC_obs (with modified BC vertical profiles) in simulating PM$_{2.5}$ concentrations. The values in RED indicate better performance in VerBC_obs than in CTRL.

Obs/Sim	Obs	CTRL	VerBC_obs	CTRL	VerBC_obs	CTRL	VerBC_obs	MB	NMB
Dec 11	159.7	214.1	235.9	0.81	0.93	54.4	76.2	34.1%	47.7%
Dec 12	212.3	185.9	189.6	0.04	0.24	-26.4	-22.7	-12.4%	-10.7%
Dec 16	100.7	117.7	115.3	0.56	0.65	17.0	14.6	16.9%	14.5%
Dec 17	184.7	190.8	192.9	0.63	0.82	6.0	8.2	3.3%	4.4%
Dec 18	219.5	190.4	199.8	0.38	0.38	-29.1	-19.6	-13.2%	-9.0%
Dec 19	208.4	217.8	220.5	0.84	0.89	9.4	12.1	4.5%	5.8%
Figure S1. The calculated percentage of BC mass column burden in each layer below 2488 m in the model during the severe haze events by observed BC vertical profiles (a-f) and different exponential decline functions (g-l).
Figure S2. Observed (black dot) and simulated (red line) temperature (°C) profiles in Beijing at 8 am and 8 pm LT during 11-19 December 2016.
Figure S3. Horizontal distribution of observed and simulated AOD at 550 nm averaged 11-19 December 2016.
Figure S4. Comparisons of simulated hourly T_2 (°C), hourly RH_2 (%), 3-hourly PBL height (m), 6-hourly WS_{10} (m s$^{-1}$) and daily WD_{10} (°) from CTRL (original BC vertical profiles; red lines) and VerBC_obs (modified BC vertical profiles; green lines) experiments with observations (black circles) in Beijing during two pollution events (11-12 December and 16-19 December 2016).
Figure S5. Direct radiations of BC at the surface (SUF), in the atmosphere (ATM) and at the top of atmosphere (TOA) in Beijing averaged 12 and 16-19 December in six sensitivity experiments (VerBC_hs1-6).
Figure S6. The spatial distributions of changes in wind at 10 m due to BC DRE with two exponential functions (VerBC_hs1,6 minus NoBCrad) and one observed transport vertical profile (VerBC_RT minus NoBCrad) average 0:00-11:00 LT (a, d, g), 12:00-18:00 LT (b, e, h), and 19:00-23:00 LT (c, f, i).