Molecular pathology of Usher 1B patient-derived retinal organoids at single cell resolution

Yeh Chwan Leong,1 Valentina Di Foggia,1 Hema Pramod,1 Maria Bitner-Glindzicz,1 Aara Patel,1 and Jane C. Sowden1,∗
1UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
*Correspondence: j.sowden@ucl.ac.uk
https://doi.org/10.1016/j.stemcr.2022.09.006

SUMMARY

Usher syndrome-associated retinitis pigmentosa (RP) causes progressive retinal degeneration, which has no cure. The pathomechanism of Usher type 1B (USH1B)-RP caused by MYO7A mutation remains elusive because of the lack of faithful animal models and limited knowledge of MYO7A function. Here, we analyzed 3D retinal organoids generated from USH1B patient-derived pluripotent stem cells. Increased differential gene expression occurred over time without excessive photoreceptor cell death in USH1B organoids compared with controls. Dysregulated genes were enriched first for mitochondrial functions and then proteasomal ubiquitin-dependent protein catabolic processes and RNA splicing. Single-cell RNA sequencing revealed MYO7A expression in rod photoreceptor and Müller glial cells corresponding to upregulation of stress responses in NRL+ rods and apoptotic signaling pathways in VIM+ Müller cells, pointing to the defensive mechanisms that mitigate photoreceptor cell death. This first human model for USH1B-RP provides a representation of patient retina in vivo relevant for development of therapeutic strategies.

INTRODUCTION

Usher syndrome (USH) is an autosomal-recessive hereditary disease that causes sensorineural hearing loss, vestibular dysfunction, and retinitis pigmentosa (RP). It is the most common hereditary disease that causes deaf-blindness, affecting 1 to 4 in 25,000 newborns (Parker and Bitner-Glindzicz, 2015). Three major USH clinical types (I–III) have been identified. USH1 is the most severe causing profound congenital hearing loss, RP beginning in the first decade of life, and balance issues. RP is characterized by progressive loss of rod photoreceptors in the retina, resulting in night blindness and tunnel vision, followed by cone photoreceptor loss, affecting central vision and eventually leading to legal blindness (Bonnet and El-Amraoui, 2012). MYO7A gene mutation (USH1B subtype) accounts for 40%–55% of all USH1 cases, with >2,000 disease-causing variants reported (Whatley et al., 2020). Although hearing loss can be effectively compensated for with cochlear implants, no treatments are currently available for USH1B-RP.

MYO7A is a class 7 myosin protein with an N-terminal motor domain and distinct properties (Heissler and Manstein, 2012). Like other members of the myosin superfamily, it binds actin filaments triggering ATP hydrolysis to energise its translocation. No faithful animal or human cell models of USH1B-associated RP are available to date. Myo7a mutant mouse models, such as shaker1, recapitulate hearing loss and vestibular dysfunction but not the USH1B retinal phenotype (Gibson et al., 1995). Studies using shaker1 identified rhodopsin mislocalization and showed MYO7A in the connecting cilium along the axonemal actin, where it facilitates rhodopsin transport from the photoreceptor inner segment (IS) to the outer segment (OS) (Liu et al., 1999). The same model showed the absence of MYO7A disrupted melanosome translocation to the apical processes of retinal pigment epithelium (RPE) cells and OS phagocytosis (Gibbs et al., 2003). Soni et al. (2005) demonstrated disrupted interaction of MYO7A with lysosomes in a human RPE cell line. In addition, contrasting findings of RPE resistance (Lopes et al., 2011) and rod vulnerability (Peng et al., 2011) to light exposure were reported in shaker1.

Subsequent studies in humans, non-human primates, and amphibians showed MYO7A and other USH1 proteins form a linkage between the OS and calyceal processes (CP), the actin filament-filled extensions sprouting from the IS to surround the base of OS (Sahly et al., 2012). Knockout of protocadherin-15 (USH1F) and cadherin-23 (USH1D) in frogs compromised the CP structural support, causing distortion of the OS shape (Schiëtroma et al., 2017). Notably, Myo7a knockout frogs acquired developmental defects hampering further study. The lack of CP in the mouse retina plus other differences compared with the human eye, such as eye size, high rod-to-cone ratio, and the absence of a macula could explain the absence of a USH1B retinal phenotype in mouse models. A study in dogs also failed to observe retinal phenotypes (Webb et al., 2019), while vestibular dysfunction and deafness were present. Pigs with MYO7A mutation showed balance difficulties and suspected hearing loss, but retinal phenotypes were not studied (Derks et al., 2021). Like the frog
### Monolayer 2D culture

- **D-2**: iPSCs
- **D0**: >90% confluence
- **D2**: 2D differentiation culture

### Suspension 3D culture

- **W4/W5**: 3D retinal organoids
- **W7**: RDM
- **W10**: RDM1
- **W12**: RDM2

#### Legend
- **IPSCs**: <90% confluence iPSC culture
- **2D differentiation culture**: Emerging retinal organoid
- **Retinal organoid in suspension**: Mature organoids with “brush layer”
- **Organoids with stratified layers**: Organoids with stratified layers

**A**

#### B

- **RCVRN**: pan-photoreceptors
- **VOSX2**: bipolar cells
- **BRN3A**: ganglion cells
- **CRALBP**: Müller cells
- **Phalloidin**: F-actin
- **OLM**: outer limiting membrane
- **SPY**: outer plexiform layer (OPL)
- **PRKCA**: rod bipolar cells
- **TFAP2A**: amacrine cells

#### C

- **Early photoreceptor**
- **Early/mature rod**
- **Early/mature cone**

#### D

- **Control 1**: 21 days
- **Control 2**: 25 days
- **USH1B 1.25%**: 21 days

**Scale bars:** 500 nm, 200 nm, 400 nm & 2 μm
model, piglets with a homozygous nonsense MYO7A mutation died soon after birth.

In addition to the lack of faithful animal models, there is a wider lack of understanding of the molecular pathways leading to photoreceptor cell death that are triggered by the disease-causing mutations. Modeling USH1B with patient-derived induced pluripotent stem cells (iPSCs) offers an alternative route with potential to understand the early consequences of MYO7A mutation in human retinal cells. Tang et al. (2016) reported the first human USH1B cochlear hair cell model derived from iPSCs of a patient suffering sensorineural hearing loss (non-syndromic USH1B), but retinal cells have not previously been studied. Rod photoreceptor cells are highly metabolically active requiring high oxygen consumption. In RP, elevated oxidative stress is thought to accelerate rod photoreceptor cell loss and secondary cone photoreceptor death. The sensitivity of photopigments to light stress and the high turnover of OS contribute to the production and accumulation of reactive oxygen species (ROS), leading to lipid, protein and DNA damage in animal models (Punzo et al., 2012; Gallenga et al., 2021). In addition, antioxidants slow photoreceptor cell death in animal models (Komeima et al., 2006). Increased markers of oxidative stress, including elevation of endoplasmic reticulum (ER) stress markers, have been reported in non-USH1 RP patient iPSC-derived retinal cells grown in two-dimensional (2D) cultures (Jin et al., 2011, 2012; Yoshida et al., 2014) or in organoids (Tucker et al., 2013). Here, we report the first three-dimensional (3D) retinal organoid model of USH1B generated from patient-derived iPSCs. The iPSC-derived organoids did not show evidence of cell degeneration in culture at fetal retina-equivalent stage, consistent with the onset of USH1B in childhood. However, bulk RNA sequencing (RNA-seq) and Gene Ontology (GO) enrichment analysis revealed increased aberrantly expressed genes in patient-derived cells over time. Single-cell RNA sequencing (scRNA-seq) analysis of 35 week organoids identified adaptive responses to stress specifically in USH1B rods, and enrichment for apoptotic signaling pathways in USH1B Müller cells. Together these findings indicate the presence of a mutation-induced molecular pathology in patient-derived retinal cells and provide evidence of increased adaptive responses in patient cells that maintain cellular homeostasis and prevent photoreceptor cell death in the in vitro organoid system.

RESULTS

Derivation of USH1B patient iPSCs

Dermal skin fibroblasts were collected from three USH1B patients for reprogramming to iPSCs. We confirmed that the generated USH1B-iPSCs harbored the same MYO7A mutations identified in their fibroblast counterparts using Sanger sequencing (Figure S1). Patient 2 (USH1B.2) and patient 3 (USH1B.3) are siblings, both harboring a c.6070C>T (p.Arg2024*) nonsense mutation and a c.223G>C (p.Asp75His) missense mutation. Patient 1 (USH1B.1) harbored a c.1996C>T (p.Arg666*) nonsense mutation and an acceptor splice site mutation, c.133-2A>G, in intron 3 (IVS3-2A-G) p.(=), causing the skipping of canonical acceptor splice site and shortening of exon 4 by seven highly conserved amino acids (Figure S1). All iPSCs showed characteristics of pluripotent cells in culture and expressed pluripotency markers as shown by immunohistochemistry (IHC), while maintaining genome integrity as indicated by SNP array (Figure S2).

Generation of 3D retinal organoids from control and USH1B iPSCs

USH1B and control iPSCs were differentiated to 3D retinal organoids in vitro using a published protocol (Cuévas et al., 2021; Gonzalez-Cordero et al., 2017) (Figure 1A). By 21 weeks, organoids contained stratified neuroepithelium with multiple cell layers that were characterized using IHC (Figure 1B). Photoreceptors in the outer nuclear layer (ONL) stained for RCVRN. The inner nuclear layer (INL) stained for VSX2, marking bipolar cells (BCs), and the ganglion cell layer (GCL) was identified by BRN3A. Müller cells...
(MCs) were identified using IHC for CRALBP and SOX9. F-actin (phalloidin) staining confirmed the presence of outer limiting membrane (OLM) and the outer apical polarity of the organoid. Synaptophysin (SYP) staining indicated the outer plexiform layer (OPL). Rod BCs (PRKCA) and amacrine cells (ACs) (TFAP2A) were also present. At 35 weeks, both control and USH1B photoreceptors expressed pan-photoreceptor (RCVRN and CRX), rod (NRL), and cone (ARR3) markers, as well as rod-specific (RHO) and cone-specific (L/M-opsin) photopigments (Figure 1C). Photoreceptors acquired subcellular features, such as connecting cilium (ARL13B and PCNT), and rod (PRPH2) or cone (GNAT2) outer segment structures by 28 weeks of differentiation (Figure S2). Transmission electron micrographs of organoids showed the presence of OLM, mitochondria-rich IS, developing OS containing disc membrane-like structures, connecting cilia, basal body and centrioles (with 9 + 0 microtubule arrangement) (Figure 1D). Overall, USH1B iPSCs differentiated as effectively as control iPSCs to produce retinal organoids that resembled native human retina.

**Absence of RP degenerative features in USH1B retinal organoids**

To determine if USH1B organoids reproduce degenerative phenotypes in patients, first, we compared the size of USH1B and control organoids from 7 to 19 weeks. Using 7 weeks as a baseline we found that although control and USH1B organoid size changed at variable rates, no USH1B-specific abnormality was observed (Figure 2A). To assess whether USH1B organoids lost photoreceptors to degeneration by 21 weeks, we determined the level of photoreceptor gene expression and quantified the thickness of the ONL (where photoreceptor nuclei reside). No significant differences were observed in expression of CRX, RCVRN, NRL, ARR3 and RHO (Figure 2B). Similarly, we found no aberrant ONL thinning in USH1B organoids, suggesting excessive photoreceptor death was not present (Figures 2C and 2C). To assess if USH1B organoids showed increased cellular stress, we analyzed expression of γH2AX and 8-hydroxydeoxyguanosine (8-OHdG) (DNA damage/stress), NQO1 (oxidative stress), BiP (ER stress), acrolein (lipid oxidation), and CASP3 (apoptosis) using IHC (Figure 2D). Each marker was co-stained with CRX. Overall, stress markers were scarce. When present, they rarely colocalized with CRX, suggesting that stressed cells were not photoreceptors. No significant elevation was observed in USH1B organoids (Figure 2D). We did not detect any cells positive for 8-OHdG and acrolein (data not shown).

Reactive gliosis is a secondary event to photoreceptor loss in RP, characterized by overexpression of glial fibrillary acidic protein (GFAP) and the disruption of OLM integrity. It was reported in iPSC-derived retinal organoids from RP patients harboring RPRG mutation (Deng et al., 2018) and in an RpgR−/− mouse model (Megaw et al., 2017). We quantified GFAP protein levels using western blot and distribution using IHC of 21 week organoids (figures 2E and 2F). One patient line (USH1B.3) showed a significantly higher level of GFAP. However, IHC revealed restricted expression of GFAP within inner retina (at the pseudo-GCL and occasionally INL), resembling the pattern in healthy mouse retina (Hippert et al., 2021), in both control and USH1B organoids (including USH1B.3). Overall, USH1B patient organoids did not display marked characteristics of degeneration, photoreceptor cell death, oxidative stress or reactive gliosis.

**RNA sequencing analysis showed resemblance of late-stage retinal organoids to fetal retina**

To investigate the development of retinal organoids and the “closeness” of their global transcriptomes to native retina, we performed bulk RNA sequencing analysis on control and USH1B iPSCs (day 0), early-stage (7 weeks), mid-stage

---

**Figure 2. Comparison of USH1B and control retinal organoids to identify USH1B-associated degenerative features**

(A) Top: bright-field images show organoid growth; images from Control.1. Changes in organoid size over time relative to 7 weeks. Independent-samples t test was performed at each time point. *p < 0.001, control > USH1B when in blue, USH1B > control when in red. (B) qRT-PCR analysis of photoreceptor marker expression by 21 week patient and control organoids. One-way ANOVA with Dunnett correction. Fold change relative to GAPDH expression and normalized to Control.3. N = 3, n = 2–3. (C and C’) Quantification of ONL thickness in 21 week USH1B and control organoids. Representative images show one field of view. IHC for ARR3 defined the ONL. N = 2, n = 2. Data points are measurements from one field of view. Independent-samples t test. (D) Oxidative stress marker expression in 21 week organoids. Representative images showing one field of view. Insets show colocalization of stress markers with CRX (empty arrow, not colocalized; filled arrow, colocalized). (D’) Quantification of double-positive cells for CRX and stress markers. Data point, number of organoids. N = 2. One-way ANOVA with Dunnett correction. (E) GFAP expression in 21 week organoids. Quantification of GFAP expression with immunoblotting; fold change relative to ACTB expression and normalized to Control.1. N = 3, n = 5–8. (E’) Representative images of IHC of GFAP, with RHO, VSX2, and NRL. Observed in >3 organoids per iPSC line. In (A), bars denote mean ± SEM; in (B)-(E), bars denote mean ± SD. N, independent differentiation per iPSC line; n, organoids per differentiation; ns, not significant.
In (F)–(I), mean fold change or mean log2CPM of MYO7A, 254 kDa; ACTB, 42 kDa. N = 3 independent differentiations per line; n = 5–8 organoids per differentiation.

Expression of proliferative cells.

Principal-component analysis (PCA) revealed close correlation of organoids across in vivo developmental stages, we compared the 28 weeks organoids with a published bulk RNA-seq dataset of human embryonic eye, fetal, and infant retina (Table S3) (Mellough et al., 2019). Figure S3 shows that the 28 weeks organoids were more mature than embryonic eye and were similar to fetal/infant retina with respect to retinal cell marker expression. MYO7A expression showed a similar upward trend across in vivo developmental stages (Figure 3H), with higher levels in 28 weeks organoids compared with embryonic eyes. As difference in MYO7A mRNA level was not apparent between USH1B and control organoids, we sought to investigate MYO7A protein levels in order to validate the predicted effect of MYO7A mutations on protein synthesis. Immunoblotting of 21 weeks organoids (Figures 3I and 3J) with an antibody (DSHB 138-1) that targets amino acids 927–1203 of MYO7A should detect products from both alleles (if translated; p.Asp75His, p.Arg2024*) of USH1B.2 and USH1B.3 but only one allele (splice site mutation c.133-2A>G) of USH1B.1 (Figure S3). Residual MYO7A expression (fold change 0.30 ± 0.05) was detected in USH1B.2 and USH1B.3 by the p.Asp75His allele, while mRNA products from the p.Arg2024* allele were not detected suggesting nonsense-mediated mRNA decay. The USH1B.1 allele did not give rise to detectable protein.

To summarize, we showed that USH1B and control organoids developed and matured to acquire global transcriptomes at 28 weeks, largely similar to fetal retina. Profiles of expression of retinal cell markers were similar to adult retina suggesting completion of retinal histogenesis. Considering the onset of USH1B in childhood, the similarity to fetal retina is consistent with the absence of signs of photoreceptor cell degeneration in the USH1B organoids.

RNA-seq analysis revealed dysregulated GO terms in mid- and late-stage USH1B retinal organoids

To identify mutation-induced transcriptomic defects in USH1B organoids, we performed differential expression (DE) analysis comparing the transcriptomes of control and USH1B organoids (control versus USH1B). A total of 803, 1,866, 3,999, and 9,184 differentially expressed genes (DEGs) (adjusted p value < 0.05) were identified at day 0, 7 weeks, 14 weeks, and 28 weeks, respectively (Figure 4A; Table S4), suggesting that control and USH1B organoids became more different over time, coinciding with the rise of MYO7A expression. Indeed, PCA and Pearson’s correlation coefficient showed clear separation of control and USH1B 28 week organoids (Figures 4B and 4C). Considering RP is progressive, we hypothesised that aberrant transcriptional patterns, if present, should persist, if not

Figure 3. RNA-seq analysis showed similarity of 28 week retinal organoid to fetal retina

(A) The number of organoids collected at four different time points of retinal differentiation of USH1B and control iPSC lines: day 0, 7 weeks, 14 weeks, and 28 weeks, for bulk RNA-seq. (B and C) PCA shows similarity of transcriptomes of organoids and human retina. Dotted arrow indicates the path of retinal differentiation. (D and E) Heatmap of pluripotency (D) and photoreceptor (E) marker gene expression in organoids and human retina; control, black; USH1B, green. (F) Gene expression of markers of specific retinal cell types indicated, bipolar, horizontal, amacrine, Müller, retinal ganglion, RPE, and proliferative cells. (G) Expression of MYO7A in organoids at different time points and in human retina. (H) Expression of MYO7A in 28 weeks organoids compared with human embryonic eye (EE), fetal and infant retina (GEO: GSE98370). (I and I’) Western blot of MYO7A in 28 weeks organoids. Fold change shown relative to ACTB expression and normalized to Control.1. MYO7A, 254 kDa; ACTB, 42 kDa. N = 3 independent differentiations per line; n = 5–8 organoids per differentiation. In (F)–(I), mean fold change or mean log2CPM ± SD; one-way ANOVA with Dunnett correction.
increase, at later time points. Therefore, to investigate the onset of molecular pathology associated with MYO7A mutation preceding degeneration, we performed GO enrichment analysis on DEGs shared across (1) all four time points (110 DEGs), (2) 7 weeks onward (280 DEGs), (3) 14 week onward (1,579 DEGs), and (4) unique DEGs for 28 weeks (6,491 DEGs), hereafter referred to as shared DEGs-1 to DEGs-3 and 28 weeks unique DEGs (Figure 4A; Table S4). The top five DEGs for each group are shown in Figure 4D (Table S4 indicates links of these top five genes to retina and/or neurodegeneration).

No GO enrichment (q < 0.05) was identified in shared DEGs-1 and shared DEGs-2 (Table S4). Shared DEGs-3 showed enrichment for biological process terms chiefly relating to mitochondria functions, Wnt signaling pathway, protein localization, and cell cycle (Figure 4E). DEGs unique to 28 weeks were enriched for protein ubiquitination, RNA splicing, cellular transport, and organelle

**Figure 4. Differential expression analysis comparing control and USH1B iPSCs, 7, 14, and 28 week retinal organoids**

(A) Venn diagram shows number of significant (adjusted p value < 0.05) DEGs between control and patient at four different time points and number of overlapped DEGs.

(B and C) PCA (B) and heatmap of Pearson’s correlation coefficient matrix (C) (control in black and USH1B in green) indicate clear separation of control and patient 28 weeks retinal organoids on the basis of global transcriptional profiles.

(D) The expression of the top five DEGs (ranked by adjusted p value) in four overlapped gene lists log2CPM ± SD.

(E and F) Top 20 most significantly enriched (by adjusted p value) GO biological processes terms analyzing (E) shared DEGs-3 and (F) 28 weeks unique DEGs.
identified four distinct clusters, Müller cells (MCs), bipolar cells (BCs), rods and cones (F); violin plots show the expression of the top three markers (dashed boxes) by each of the four clusters (G).

Figure 5. Single-cell RNA sequencing of control and USH1B patient 35 weeks retinal organoids
(A) UMAP shows the presence of 25 clusters, encompassing 7 major retinal cell types on the basis of the transcriptomes of 39,934 single cells.
(B) Bar plot represents the number of cells from each organoid sample in each single-cell cluster.
(C) Heatmap shows the expression of the known Usher syndrome causative genes across 25 clusters.
(D) Dot plot illustrates the expression of the top two markers (by adjusted p value) by each cluster.
(E–G) UMAPs show the distribution of 756 MYO7A+ single cells across 25 clusters identified in Figure 5A (E); re-clustering of these 756 cells identified four distinct clusters, Müller cells (MCs), bipolar cells (BCs), rods and cones (F); violin plots show the expression of the top three markers (dashed boxes) by each of the four clusters (G).
not detected when analyzing 3,013 \( \text{ARR3}\) (cone arrestin) cones, suggesting that molecular pathology was limited to rods (Figures S6A–S6C; Table S5).

In view of the new interest in MCs as a \( \text{MYO7A} \)-expressing cell type, we performed the same analysis on a total of 5,207 vimentin (VIM*) MCs (2,392 control and 2,815 USH1B) (Figures 6D–6F; Table S5). DE analysis identified 255 DEGs, which were enriched for biological process terms for regulation of apoptotic signaling pathways (Table S5). Last, we analyzed 2,277 BCs identified by expression of \( \text{GRIK1} \) (1,136 cells) and \( \text{PCP2} \) (1,141 cells) (Figures 6D–S6F). A total of 157 DEGs were identified, which were not enriched in either apoptotic- or stress response-related GO terms (Table S5). We noted that the abundant presence of ribosomal genes and ribosome-related GO terms in the \( \text{ARR3}\) and \( \text{PCP2}/\text{GRIK1}\) cell-specific GO enrichment analyses might represent technical artifacts previously reported as common to scRNA-seq (Nowakowski et al., 2017).

In summary, we identified stress responses in rods, but not cones, consistent with clinical observations that the former is first to degenerate in USH1B-RP. Analysis of VIM* MCs showed USH1B MC exhibited apoptotic pathway-related transcription activities. These results suggest our organoid model reproduces a pre-death mutation-induced state of rod photoreceptors \( \text{in vitro} \). It is also instrumental for further investigation into the vulnerability of MC.

DISCUSSION

By coupling iPSC technology and \( \text{in vitro} \) retinal differentiation protocols, we established the first retinal organoid disease model for USH1B. Bulk RNA-seq analysis revealed the transcriptomes of USH1B patient organoids were progressively distinct from controls after extended time in culture, coinciding with the gradual rise of \( \text{MYO7A} \) expression. Dysregulation of genes associated with mitochondrial function were followed by genes enriched for protein ubiquitination, RNA splicing, and cellular transport functions. Elevated cellular responses to stress were detected exclusively in USH1B rods, suggesting organoids were modeling a molecular pathology underlying early RP manifestations. This is the first such analysis reported. By identifying mutation-induced altered transcriptomes in patient-derived retinal cells that predispose rods to cell stress, this study provides the first clues into molecular mechanisms underlying USH1B-RP.

Limitations of USH1B patient-derived 3D retinal organoid model

Recent studies comparing retinal organoids with human retina suggested \( \text{in vitro} \) differentiation recapitulates the rate of retina development \( \text{in vivo} \) (Cowan et al., 2020). Consistently, bulk and scRNA-seq as well as mapping of the 11 USH genes to specific retinal cell types demonstrated the faithfulness of our organoid model as a surrogate for USH1B disease modeling. Despite these similarities, the level of \( \text{MYO7A} \) expression in 28 weeks control organoids was lower than that of the adult retina. This may be due to a reduction or absence of cellular activities involving \( \text{MYO7A} \) in the organoids. For example, the absence of juxtaposition of RPE to photoreceptors precludes OS phagocytosis. In addition, immature electrophysiological responses commonly reported in retinal organoids suggest attenuated phototransduction, possibly due to reduced protein trafficking and lack of the visual cycle (Hallam et al., 2018). Last, a lack of development of CP could abolish the need for Ush1 protein linkage formation between OS and CP. The lack of retinal vasculature, blood supply and resident microglia in the organoid model also limits modeling of mutation-induced inflammatory responses, which may be important for understanding the notable identification of dysregulation of genes associated with neutrophil activation pathways in the USH1B rods and MC in this study (Table S5). In summary, although organoids provide valuable new insights into retinal disease pathology, further improvement on complexity and functionality of the model could improve representation of disease conditions \( \text{in vivo} \).

![Figure 6. Single-cell RNA-seq identified early signs of degeneration in rods and Müller cells](image-url)

(A) UMAP shows distribution of 5,352 \( \text{NRL}\) cells only in the clusters in the “photoreceptor island” (mostly rod clusters) identified in Figure 5A (inset).

(B) Dot plot shows top 20 significantly enriched GO biological processes terms on the basis of analysis of 207 DEGs comparing control and \( \text{NRL}\) cells.

(C) Table shows details of five significantly enriched biological process GO terms associated with stress response ranked by adjusted p value Table S5.

(D) UMAP shows localization of 5,207 \( \text{VIM}\) cells in the clusters identified as MC in Figure 5A (inset).

(E) Dot plot shows top 20 significantly enriched biological processes GO terms on the basis of analysis of 255 DEGs comparing control and USH1B \( \text{VIM}\) cells.

(F) Table shows details of the top five significantly enriched GO biological processes terms associated with apoptotic signaling (ranked by adjusted p value) Table S5.
Retinal cell types expressing MYO7A
Previous studies of USH1B focused entirely on the role of MYO7A in rods and the RPE on the basis of the clinical phenotype and distribution pattern of MYO7A in animal models. Analysis of MYO7A+ cells in this study identified the majority of them as MCs, followed by BCs, rods, and cones. This raises the question of why, when MYO7A is mutated, rods are the first cell type to degenerate, which is typical of all RP clinically. Significantly, our scRNA-seq data showed heightened defensive responses against stress exclusively by rods, modeling their clinical susceptibility.

In addition, we found activation of apoptotic signaling pathways in USH1B patient MCs. MC death has not been widely studied or considered a primary event in RP. However, OCT examination of USH1B patient retina identified increased OLM visibility likely attributed to MC response to nearby photoreceptor cell stress or death (Jacobson et al., 2009). The same study also attributes OPL and INL thickening in USH1B patient retina to MC hypertrophy or hyperreactivity. Interrogating the role of MYO7A in the various cell types in which it is expressed would be important to further understand USH1B disease mechanism. To date we have not been able to confirm MYO7A protein localization in MCs using IHC with three different antibodies (Table S2) (data not shown), suggesting post-transcriptional control mechanisms and/or low or transient protein.

Dysregulated GO terms over time: Potential disease markers of mutation-induced state
Over time in culture, USH1B organoids displayed increased numbers of DEGs associated with the ubiquitin-proteosome system (UPS), which is known to function in response to stress. Notably we found TOPORS and UBR1 dysregulated in the USH1B organoids (GO:00010498; Figure 4F; Table S4); mutation of the former is a cause of autosomal dominant RP (Chakarova et al., 2007), and the latter promotes rhodopsin protein degradation in the OS via the UPS during retinal inflammation (Ozawa et al., 2008).

Altered protein trafficking of rhodopsin with a P23H mutation overpowers the proteasome machinery due to UPS inefficiency in degrading the variant, leading to malfunction in various cellular pathways (Illing et al., 2002). The 28 weeks DEGs were also enriched for RNA splicing (GO:0008380). More than 25% of retinal disease-causing mutations alter splicing patterns (Bacchi et al., 2014). Mutation of the ubiquitously expressed pre-mRNA processing factors (PRPFs) accounts for 15% of autosomal-dominant RP (Wang et al., 2019). Several members of PRPFs (PRPF18, PRPF31 and PRPF39) were dysregulated in the USH1B organoids (Table S4). A recent study showed that USH1G (SANS) interacts with PRPFs to facilitate the transport of small nuclear ribonucleoprotein during pre-RNA splicing (Yildirim et al., 2021). PRPF31 mutation causes autosomal-dominant RP (RP11) and adversely affects primary cilia formation in photoreceptors and RPE function (Buskin et al., 2018). Last, with regard to cellular transport, KIF3A and KIF3B (a RP gene) along with other members of the kinesin family (GO:0048193) as well as components of the intraflagellar transport system (GO:0030705), including IFT20 were dysregulated in USH1B organoids.

Antioxidant enzymes differentially expressed between the control and patient retinal cells
Single-cell analysis of USH1B patient cells showed elevation of defensive cellular responses exclusively in rods. One interpretation of these findings is that patient cells were more sensitive to cellular stress compared with controls. Antioxidant enzymes including members from the peroxiredoxins (PRDXs) and superoxide dismutase (SOD) families were upregulated in rods. PRDX isoforms have previously been reported in different retinal cell types and organelles (Chidlow et al., 2016) and implicated in neurodegenerative and retinal diseases (Zheng et al., 2012; Kubo et al., 2009; Kim et al., 2001). However, PRDXs are not known to be expressed in rods under normal physiological conditions, and the absence of H2O2 scavenging PRDXs may contribute to susceptibility of rods to degeneration. Sod1−/− mouse retina showed mitochondrial degeneration in both INL and ONL and AMD-like phenotypes (Hashizume et al., 2008). BNIP3 was another notable dysregulated defensive gene identified as part of the cellular response to oxidative stress in NRL+ rods in patient organoids (GO:0034599; Figure 6C). BNIP3 encodes a pro-apoptotic factor that interacts with anti-apoptotic proteins. A HIF-1α/BNIP3 pathway is neuroprotective against inner retinal neurodegeneration (Kunimi et al., 2021), whereas overexpression of BNIP3/FUNDCl signaling reversed cell stress and death caused by HIF-1α inhibition in an hypoxic retinal model (Sun et al., 2021).

Cellular responses in rods against stress: One-hit model
A cumulative damage model is often used to describe cell death in neurodegenerative disorders, whereby gene mutation causes the accumulation of secondary damage in cells, increasing the likelihood of a cell dying over time. In contrast, the one-hit model described by Clarke et al. (2000) proposes that the risk of a cell’s dying remains constant. Cells harboring gene mutations acquire a nearly normal homeostatic state called the mutant steady state (MSS), whereby a critical, but not lethal, alteration of gene activity that regulates pre-death reactions is present. Initiation of cell death only occurs when rare and random...
catastrophic events cause a surge of pre-death molecules to pass a critical cell-death threshold. The altered transcriptomes of USH1B cells are consistent with an MSS being established in organoids. The enrichment of cell death-related pathways and cellular stress pathways (pre-death markers) may reflect the deployment of stress-mitigating enzymes to maintain the MSS and suppress cells from reaching the cell-death threshold. We speculate that the ample supply of nutrients in vitro and minimal exposure to light damage may limit the occurrence of catastrophic events leading to significant levels of cell death. The introduction of various stressors that an individual would normally experience in life, including exposure to natural light, free radicals, and reactive oxygen species, into the organoid system may better mimic the aging USH1B degenerative disease state.

**EXPERIMENTAL PROCEDURES**

Additional details are provided in the supplemental information.

**iPSC generation**

The study was approved by the National Research Ethics Committee London-Dulwich (11/LO/1243). Fibroblasts from USH1B patients and controls were reprogrammed to iPSC using Sendai virus. Details of mutations are given in Figure S1.

**Retinal organoid differentiation and analysis**

iPSCs were grown to 90% confluency before switching to embryoid body (EB) medium on day 0, neural induction medium (NIM) on day 2, followed by retinal differentiation medium (RDM) containing various supplements (RDM1–3) for retinal maturation and long-term culture of organoids. EB, NIM, RDM, and RDM1–3 are described in Table S1. Organoids were analyzed using RT-PCR, transmission electron microscopy (TEM), and western blot as described in supplemental information.

**Immunohistochemistry**

Retinal organoids were fixed with 4% paraformaldehyde (PFA) solution and cryosections of frozen organoids analyzed using immunohistochemistry. Primary and secondary antibodies are listed in the Table S2.

**Bulk RNA sequencing**

RNA (100 ng) from organoids was processed using the KAPA mRNA Hyper-Prep Kit (KK8580; Roche) and libraries sequenced on a S1 flow cell on a NovaSeq 6000 system (Illumina). FASTQ files from 20 million reads per sample were aligned to the human genome UCSC hg38 using RNA-STAR 2.5.2b. Differential expression analysis was performed using limma-voom with cut-off of adjusted p value < 0.05 for statistical significance. Package clusterProfiler (version 3.0.4) was used for GO enrichment analysis.

**Single-cell RNA sequencing**

Single-cell RNA libraries were generated using the Chromium Single Cell 3′ Reagent Kits version 3 (10X Genomics) and analyzed on an Illumina sequencing platform with 10X Genomics Cell Ranger software to generate digital gene expression matrices. Data from 39,934 cells were analyzed using Seurat. The “FindMarkers” function was used to identify differentially expressed genes between control and patient cells globally or in a cell/cluster-specific manner.

**Statistical analysis**

Data were analyzed and graphs created using GraphPad Prism (version 9.2.0) or Microsoft Excel (version 2110). One-way ANOVA with Dunnett correction was performed on data from at least three independent experiments, represented as mean ± SD, unless stated otherwise. A p value < 0.05 or an adjusted p value < 0.05 was considered to indicate statistical significance. Graphical abstract and schematics were created in BioRender.com.

**Data and code availability**

RNA-seq data have been deposited in ArrayExpress under accession numbers ArrayExpress: E_MTAB-11405 (Bulk RNA-seq) and ArrayExpress: E-MTAB-11990 (single-cell RNA-seq).

**SUPPLEMENTAL INFORMATION**

Supplemental information can be found online at https://doi.org/10.1016/j.stemcr.2022.09.006.

**AUTHOR CONTRIBUTIONS**

Conceptualisation, J.C.S., V.D.F., and Y.C.L.; Methodology, Y.C.L. and J.C.S.; Investigation, Y.C.L. and V.D.E.; Collection of Patient Samples, M.B.G.; Data Analysis and Interpretation, Y.C.L., A.P., V.D.E., and J.C.S.; Single-Cell Library Preparations, A.P.; Resources, H.P., A.P., M.B.G., and J.C.S.; Validation, Y.C.L.; Writing, Y.C.L. and J.C.S.; Final Approval of Manuscript, J.C.S.; Supervision, J.C.S.; Funding, J.C.S.

**ACKNOWLEDGMENTS**

This work was supported by the National Institute for Health Research (NIHR) Great Ormond Street Hospital (GOSH) Biomedical Research Centre, Medical Research Council (MRC/S036237/1), GOSH Children’s Charity and Newlife the Charity for Disabled Children. The views expressed are those of the authors and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health. This paper is dedicated to the memory of Professor Maria Bitner-Glindzicz, who died on September 20, 2018. We thank the individuals who donated samples for this study; D. Moulding at the Great Ormond Street Institute of Child Health (GOSICH) for assistance with microscopy; K. Venner at University College London (UCL) for transmission electron microscopy; D. Kelberman, UCL Genomics and Genewiz (Azenta Life Science) for RNA sequencing; and all other colleagues at UCL GOSICH who provided expert technical support and resources for this project.
CONFLICT OF INTERESTS

The authors declare no competing interests.

REFERENCES

Bacchi, N., Casarosa, S., and Denti, M.A. (2014). Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter. Invest. Ophthalmol. Vis. Sci. 55, 3285–3294. https://doi.org/10.1167/iovs.14-14544.

Bonnet, C., and El-Amraoui, A. (2012). Usher syndrome (sensorineural deafness and retinitis pigmentosa): pathogenesis, molecular diagnosis and therapeutic approaches. Curr. Opin. Neurol. 25, 42–49. https://doi.org/10.1097/WCO.0b013e32834e8h52.

Buskin, A., Zhu, L., Chichagova, V., Basu, B., Mozaffari-Jovin, S., Dolan, D., Droop, A., Collin, J., Bronstein, R., Mehrotra, S., et al. (2018). Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat. Commun. 9, 4234. https://doi.org/10.1038/s41467-018-06448-y.

Campello, L., Esteve-Rudd, J., Cuenca, N., and Martin-Nieto, J. (2013). The ubiquitin-proteasome system in retinal health and disease. Mol. Neurobiol. 47, 790–810. https://doi.org/10.1007/s12035-012-8391-5.

Chakarova, C.F., Papaioannou, M.G., Khanna, H., Lopez, I., Wa-seem, N., Shah, A., Theis, T., Friedman, J., Maubaret, C., Bujakow-ska, K., et al. (2007). Mutations in TOPORS cause autosomal recessive deafness and retinitis pigmentosa: pathogenesis, molecular diagnosis and therapeutic approaches. Curr. Opin. Neurol. 20, 42–49. https://doi.org/10.1097/WCO.0b013e32834e8h52.

Clark, G., Collins, R.A., Leavitt, B.R., Andrews, D.F., Hayden, M.R., Lumsden, C.J., and McInnes, R.R. (2000). A one-hit model of cell death in inherited neuronal degenerations. Nature 406, 195–199. https://doi.org/10.1038/35018098.

Cowan, C.S., Renner, M., De Gennaro, M., Gross-Scherf, B., Goldblum, D., Hou, Y., Munz, M., Rodrigues, T.M., Krol, J., Szirka, T., et al. (2020). Cell types of the human retina and its organoids at single-cell resolution. Cell 182, 1623–1640.e34. https://doi.org/10.1016/j.cell.2020.08.013.

Deng, W.L., Gao, M.L., Lei, X.L., Lv, J.N., Zhao, H., He, K.W., Xia, X.X., Li, L.Y., Chen, Y.C., Li, Y.P., et al. (2018). Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Rep. 10, 2005. https://doi.org/10.1016/j.stemcr.2018.05.012.

Derks, M.E.L., Megens, H.J., Giacomini, W.L., Groenen, M.A.M., and Lopes, M.S. (2021). A natural knockout of the MYO7A gene leads to pre-weaning mortality in pigs. Anim. Genet. 52, 514–517. https://doi.org/10.1111/age.13068.

Gallenga, C.E., Lonardi, M., Pacetti, S., Violi, S.S., Tassinari, P., Di Virgilio, E., Tognon, M., and Perri, P. (2021). Molecular mechanisms related to oxidative stress in retinitis pigmentosa. Antioxidants 10. https://doi.org/10.3390/antiox10060848.

Gibbs, D., Kitamoto, J., and Williams, D.S. (2003). Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc. Natl. Acad. Sci. USA 100, 6481–6486. https://doi.org/10.1073/pnas.1130432100.

Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K.A., Antonio, M., Beisel, K.W., Steel, K.P., and Brown, S.D.M. (1995). A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64. https://doi.org/10.1038/374062a0.

Gonzalez-Cordero, A., Kruczek, K., Naeem, A., Fernando, M., Kloc, M., Ribeiro, J., Goh, D., Duran, Y., Blackford, S.J.I., Abelelira-Hervas, L., et al. (2017). Recapitulation of human retinal development from pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep. 9, 820–837. https://doi.org/10.1016/j.stemcr.2017.07.022.

Hallam, D., Hilgen, G., Dorgau, B., Zhu, L., Yu, M., Bojic, S., Hewitt, P., Schmitt, M., U teng, M., Kustermann, S., et al. (2018). Human-induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency. Stem Cell. 36, 1535–1551. https://doi.org/10.1002/stem.2883.

Hashizume, K., Hirasawa, M., Imamura, Y., Noda, S., Shimizu, T., Shinoda, K., Kurihara, T., Noda, K., Ozawa, Y., Ishida, S., et al. (2008). Retinal dysfunction and progressive retinal cell death in SOD1-deficient mice. Am. J. Pathol. 172, 1325–1331. https://doi.org/10.2353/ajpath.2008.070730.

Heissler, S.M., and Manstein, D.J. (2012). Functional characterization of the human myosin-7a motor domain. Cell. Mol. Life Sci. 69, 299–311. https://doi.org/10.1007/s00018-011-0749-8.

Hippert, C., Graca, A.B., Basche, M., Kalargyrou, A.A., Georgiadis, A., Ribeiro, J., Matsuyama, A., Aghaiu, N., Bainbridge, J.W., Smith, A.J., et al. (2021). RNAi-mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Muller glial cell hypertrophy in progressive retinal degeneration. Glia 69, 2272–2290. https://doi.org/10.1002/glia.24034.

Illing, M.E., Rajan, R.S., Bence, N.F., and Kopito, R.R. (2002). A single-cell resolution. Cell 122, 34150–34160.https://doi.org/10.1016/j.cell.2005.10.013.

Jacobson, S.G., Aleman, T.S., Sumaroka, A., Cideciyan, A.V., Roman, A.J., Windsor, E.A.M., Schwartz, S.B., Rehm, H.L., and Kimberling, W.J. (2009). Disease boundaries in the retina of patients with Usher syndrome caused by MYO7A gene mutations. Invest. Ophthalmol. Vis. Sci. 50, 1886–1894. https://doi.org/10.1167/iovs.08-3122.
Jin, Z.B., Okamoto, S., Osakada, F., Homma, K., Assawachananont, J., Hirami, Y., Iwata, T., and Takahashi, M. (2011). Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6, e17084. https://doi.org/10.1371/journal.pone.0017084.

Jin, Z.B., Okamoto, S., Xiang, P., and Takahashi, M. (2012). Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl. Med. 1, 503–509. https://doi.org/10.5966/sctm.2012-0005.

Kim, S.H., Fountoulakis, M., Cairns, N., and Lubeck, G. (2001). Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. J. Neural. Transm. Suppl. 223–235. https://doi.org/10.1007/s00702-000-018.

Komeika, K., Rogers, B.S., Lu, L., and Campochiaro, P.A. (2006). Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 103, 11300–11305. https://doi.org/10.1073/pnas.0604056103.

Kubo, E., Singh, D.P., Fatma, N., and Akagi, Y. (2009). TAT-mediated peroxiredoxin 5 and 6 protein transduction protects against high-glucose-induced cytotoxicity in retinal pericytes. Life Sci. 84, 857–864. https://doi.org/10.1016/j.lfs.2009.03.019.

Kunimi, H., Lee, D., Ibuki, M., Katada, Y., Negishi, K., Tsubota, K., and Kurihara, T. (2021). Inhibition of the HIF-1α/BNIP3 pathway has a retinal neuroprotective effect. FASEB J. 35, e21829. https://doi.org/10.1096/fj.202100572r.

Liu, X., Udovichenko, I.P., Brown, S.D., Steel, K.P., and Williams, D.S. (1999). Myosin VIIa plays in optic transport through the photoreceptor cilium. J. Neurosci. 19, 6267–6274. https://doi.org/10.1523/jneurosci.19-15-06267.1999.

Lopes, V.S., Gibbs, D., Libby, R.T., Aleman, T.S., Welch, D.L., Lillo, C., Jacobson, S.G., Radu, R.A., Steel, K.P., and Williams, D.S. (2011). The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle protein RPE65. Hum. Mol. Genet. 20, 2560–2570. https://doi.org/10.1093/hmg/ddr155.

Megraw, R., Abu-Arafeh, H., Jungnickel, M., Mellough, C., Gurniak, C., Witke, W., Zhang, W., Khanna, H., Mill, P., Dhillon, B., et al. (2017). Gelsolin dysfunction causes photoreceptor loss in induced pluripotent cell and animal retinitis pigmentos models. Nat. Commun. 8, 271. https://doi.org/10.1038/s41467-017-00111-8.

Mellough, C.B., Bauer, R., Co.Ilin, J., Dorgau, B., Zerti, D., Dolan, D.W.P., Jones, C.M., Izougu, O.G., Yu, M., Hallam, D., et al. (2019). An integrated transcriptional analysis of the developing human retina. Development 146, dev169474. https://doi.org/10.1242/dev.169474.

Nowakowski, T.J., Bhaduri, A., Pollen, A.A., Alvarado, B., Mostajo-Radji, M.A., Di Lullo, E., Haeussler, M., Sandoval-Espinosa, C., Liu, S.J., Velmeshev, D., et al. (2017). Spatiotemporal gene expression trajectory reveals developmental hierarchies of the human cortex. Science 358, 1318–1323. https://doi.org/10.1126/science.aap8809.

Ozawa, Y., Nakao, K., Kurihara, T., Shimazaki, T., Shimmura, S., Ishida, S., Yoshimura, A., Tsubota, K., and Okano, H. (2008). Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation. J. Biol. Chem. 283, 24561–24570. https://doi.org/10.1074/jbc.m802238200.

Parker, M., and Bitner-Glindzicz, M. (2015). Genetic investigations in childhood deafness. Arch. Dis. Child. 100, 271–278. https://doi.org/10.1136/archdischild-2014-30699.

Peng, Y.W., Zalocchi, M., Wang, W.M., Delimont, D., and Cosgrove, D. (2011). Moderate light-induced degeneration of rod photoreceptors with delayed transducin translocation in shaker1 mice. Invest. Ophthalmol. Vis. Sci. 52, 6421–6427. https://doi.org/10.1167/iovs.10-6557.

Punzo, C., Xiong, W., and Cepko, C.L. (2012). Loss of daylight vision in retinal degeneration: are oxidative stress and metabolic dysregulation to blame? J. Biol. Chem. 287, 1642–1648. https://doi.org/10.1074/jbc.r111.304428.

Sahly, I., Dufour, E., Schietroma, C., Michel, V., Bahloul, A., Perfetti, I., Penmans, E., Estivalet, A., Carette, D., Aghaie, A., et al. (2012). Localization of Usher 1 proteins to the photoreceptor ciliary processes, which are absent from mice. J. Cell Biol. 199, 381–399. https://doi.org/10.1083/jcb.201202012.

Schietroma, C., Parain, K., Estivalet, A., Aghaie, A., Boutej De Monvel, J., Picaud, S., Sahel, J.A., Perron, M., El-Amraoui, A., and Petit, C. (2017). Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment. J. Cell Biol. 216, 1849–1864. https://doi.org/10.1083/jcb.201612030.

Soni, L.E., Warren, C.M., Bucc, C., Orten, D.J., and Hasson, T. (2005). The unconventional myosin-VIIa associates with lysosomes. Cell Motil Cytoskeleton 62, 13–26. https://doi.org/10.1002/cm.20080.

Sun, Y., Wen, F., Yan, C., Su, L., Luo, J., Chi, W., and Zhang, S. (2021). Mitophagy protects the retina against anti-vascular endothelial growth factor therapy-driven hypoxia via hypoxia-inducible factor-1α signaling. Front. Cell Dev. Biol. 9, 727822. https://doi.org/10.3389/fcell.2021.727822.

Tang, Z.H., Chen, J.R., Zheng, J., Shi, H.S., Ding, J., Qian, X.D., Zhang, C., Chen, J.L., Wang, C.C., Li, L., et al. (2016). Genetic correction of induced pluripotent stem cells from a deaf patient with MYO7A mutation results in morphologic and functional recovery of the derived hair cell-like cells. Stem Cells Transl. Med. 5, 561–571. https://doi.org/10.5966/sctm.2015-0252.

Tucker, B.A., Mullins, R.F., Streb, L.M., Anfinsen, K., Eyestone, M.E., Kaalberg, E., Riker, M.J., Drack, A.V., Braun, T.A., and Stone, R.J., and Wong, E.Y.M. (2020). Usher syndrome: genetics and molecular links of hearing loss and directions for therapy. 2436 Stem Cell Reports | Vol. 17 | 2421–2437 | November 8, 2022
Yi, W., Lu, Y., Zhong, S., Zhang, M., Sun, L., Dong, H., Wang, M., Wei, M., Xie, H., Qu, H., et al. (2021). A single-cell transcriptome atlas of the aging human and macaque retina. Natl. Sci. Rev. 8, nwaa179. https://doi.org/10.1093/nsr/nwaa179.

Yildirim, A., Mozaffari-Jovin, S., Wallisch, A.K., Schafer, J., Ludwig, S.E.J., Urlaub, H., Luhrmann, R., and Wolfrum, U. (2021). SANS (USH1G) regulates pre-mRNA splicing by mediating the intra-nuclear transfer of tri-snRNP complexes. Nucleic Acids Res. 49, 5845-5866. https://doi.org/10.1093/nar/gkab386.

Yoshida, T., Ozawa, Y., Suzuki, K., Yuki, K., Ohyama, M., Akamatsu, W., Matsuzaki, Y., Shimmura, S., Mitani, K., Tsubota, K., and Okano, H. (2014). The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Mol. Brain 7, 45. https://doi.org/10.1186/1756-6606-7-45.

Zheng, Q., Ren, Y., Tzekov, R., Zhang, Y., Chen, B., Hou, J., Zhao, C., Zhu, J., Zhang, Y., Dai, X., et al. (2012). Differential proteomics and functional research following gene therapy in a mouse model of Leber congenital amaurosis. PLoS One 7, e44855. https://doi.org/10.1371/journal.pone.0044855.