Background. Respiratory syncytial virus (RSV) infection presents a significant health challenge in young children, elderly and immunocompromised patients. To date, there are no effective treatments available. EDP-938 was designed to meet this unmet medical need and is currently in Phase 2 clinical trials. Herein we report its preclinical pharmacokinetic (PK) and pharmacodynamic (PD) properties.

Methods. The pharmacokinetics of EDP-938 following single intravenous and oral doses were determined in mice, rats, dogs, and monkeys. In vitro cellular permeability and metabolic stability were assayed using Caco-2 cells and human liver microsomes, respectively. In vivo pharmacodynamic efficacy of EDP-938 was conducted in the African green monkey model, in which animals experimentally challenged with RSV were orally dosed twice daily with 100 mg/kg EDP-938 for 6 days starting 24 hours prior to infection.

Results. EDP-938 was well absorbed in the preclinical species with oral bioavailability values ranging from 27.1% in dogs, 35.4% in mice, 35.7% in rats, and 39.5% in monkeys, after a single oral dose when formulated in 0.5% methylcellulose. EDP-938 showed a moderate in vitro permeability of 3.6 × 10⁻⁶ cm/sec in Caco-2 cells. Based on the outcome of these absorption studies, EDP-938 was projected to have good oral absorption in humans. EDP-938 had low intrinsic clearance of 5 mL/minute/kg in human liver microsomes. Moreover, EDP-938 demonstrated potent antiviral efficacy in an African green monkey model of RSV infection. In untreated monkeys the RSV RNA viral load in the bronchoalveolar lavage fluid peaked at 10⁶ copies/mL on day 5 post-infection, by comparison in animals treated with EDP-938 the viral load was below the limit of detection by day 3 post-infection. The PK/PD modeling suggested that plasma trough concentrations ≥0.01 EC₅₀ led to >4-log viral load reduction in EDP-938 treated monkeys.

Conclusion. The favorable preclinical PK and PD properties of EDP-938 support its further clinical development as a novel treatment for RSV infection.

Disclosures. All authors: No reported disclosures.

668. Quality of Life Changes in Patients with Clostridium difficile Infection (CDI): A Randomized, Double-Blind Trial of Ridinilazole (RDZ) Compared with Vancomycin (VAN)
Sumita Paul, MD; 1 Richard Vickers, PhD; 2 Kevin W. Garey, PharmD, MS, FASHIP; 3 Summit Therapeutics, Cambridge, Massachusetts; 4 Summit Therapeutics Plc, Abingdon, UK; 5 University of Houston College of Pharmacy, Houston, Texas

Session: 68. Novel Antimicrobials and Approaches Against Resistant Bugs Thursday, October 3, 2019: 12:15 PM

Background. C. difficile is the most frequent hospital-acquired bacteria in the United States. CDI is associated with significant morbidity and mortality; and a 40% lower mean EQ-5D-3L Index of Health-Related Quality of Life (HRQoL) compared with the general population. However, data on the impact of antibiotic treatment for CDI on HRQoL are lacking.

Methods. RDZ is a novel, narrow-spectrum antibiotic with targeted activity against C. difficile, under development for the treatment of CDI and prevention of recurrence. We evaluated HRQoL prospectively with the EQ-SD-3L in 69 patients enrolled in a Phase 2 randomized, double-blind trial comparing RDZ (n=36) with VAN (n=33). EQ-SD-3L was obtained at five time points (baseline, days 5, 10, 12, and 40) with summary index values calculated using US weights (Shaw 2005) evaluating raw scores for mobility, self-care, usual activities, pain/discomfort, and anxiety/depression, and visual analog scale (VAS) scores.

Results. As early as Day 5, CDI patients on RDZ had significant improvements in mean change from baseline in index scores (P = 0.008) and VAS scores (P = 0.001) but no significant improvements were seen in patients on VAN. Time to resolution of diarrhea also occurred sooner with RDZ with a hazard ratio 1.19 in favor of RDZ (90% CI: 0.76, 1.87). Mean changes in index scores in the VAN group took longer to improve significantly compared with baseline and became higher on VAN on Day 12 and Day 40. Treatment-related improvements in pain/discomfort and anxiety/depression are shown in Figures 1 and 2. The mean change from baseline in EQ-SD-3L domains showed the highest (significant) improvements in the pain/discomfort domain for both treatment groups across all time points. However, by Day 40, anxiety/depression improved significantly more with RDZ than with VAN (P = 0.039).

Conclusion. We believe this is the first study to document improvements in HRQoL after antimicrobial treatment for CDI. Patients receiving ridinilazole experienced greater improvements in HRQoL sooner than those on VAN. Anxiety/depression and pain/discomfort improved significantly with treatment. HRQoL should be evaluated in Phase 3 interventional studies for CDI. These results will need to be validated in the ongoing Phase 3 randomized, double-blind, global trials comparing RDZ to VAN for the treatment of CDI.

Disclosures. All authors: No reported disclosures.

669. Twelve-Month Durability of Microbiota-Based Therapy RBX2660 for Prevention of Recurrent Clostridium difficile Infection
Courtney Jones, BA; 1 Sarah Mische, PhD; 2 Ken Blount, PhD; 1 Bill Shannon, PhD MBA; 1 Rebiotix Inc., Roseville, Minnesota; 3 BioRankings, LLC, St. Louis, Missouri

Session: 68. Novel Antimicrobials and Approaches Against Resistant Bugs Thursday, October 3, 2019: 12:15 PM

Background. Recurrent C. difficile infections (rCDI) are a public health threat with insufficient treatment options at present. Two Phase 2 clinical studies have reported the efficacy of RBX2660, a standardized, stabilized microbiota-based drug, in preventing rCDI. For one of these trials, we report herein the durability of clinical response (lack of CDI recurrence) and microbiome restoration to 12 months after RBX2660 treatment.

Methods. Data were drawn from an interim analysis of a multicenter, open-label Phase 2 study in which participants with multi-recurrent rCDI received up to 2 doses of RBX2660 delivered via enema 7 days apart; this analysis includes data to 12 months after treatment, with follow-up ongoing. Efficacy was defined as the absence of CDI recurrence to 56 days after the last dose; and durability is defined as a continued lack of recurrence. Participant stool samples collected prior to and at 1, 7, 30, 60 days and 6 and 12 months after treatment were sequenced using a shallow shotgun method, with only treatment responders reported herein. Operational taxonomic unit (OTU) data were used to calculate relative abundance at the class level and Microbiome Health Indices.

Results. This study included 149 RBX2660-treated participants and 110 historical control patients, in the United States and Canada. As previously reported, the efficacy of RBX2660 in preventing rCDI (79.9%; 119/149) was higher than CDI-free rates in the historical control group (51.8%; 57/110; P < 0.001). Of 109 participants who had a 6-month follow-up, 97.2% (106/109) remained CDI-free, and no new CDI recurrences were reported at 12 months. Among treatment responders, the microbiome composition was restored after treatment to predominance by Bacteriodia- and Clostridia-class bacteria, and these compositions remained stable to 12 months after treatment. Participants who provided samples.

Conclusion. RBX2660, a microbiota-based drug, was efficacious for preventing rCDI, with clinical and microbiome restoration durability to at least 12 months after treatment. The follow-up of efficacy, safety, and microbiome restoration are ongoing.

Disclosures. All authors: No reported disclosures.

670. VRE Clearance in Patients with Recurrent Clostridium difficile Infection Following Treatment with Microbiota-Based Drug RBX2660
Heidi Hau, PhD; Sarah Mische, PhD; Sarah Klein, BA; Ken Blount, PhD; Rebiotix, Inc., Roseville, Minnesota

Session: 68. Novel Antimicrobials and Approaches Against Resistant Bugs Thursday, October 3, 2019: 12:15 PM

Background. VRE infections (rCDI) are a public health threat with insufficient treatment options at present. Two Phase 2 clinical studies have reported the efficacy of RBX2660, a standardized, stabilized microbiota-based drug, in preventing rCDI. For one of these trials, we report herein the durability of clinical response (lack of CDI recurrence) and microbiome restoration to 12 months after RBX2660 treatment.

Methods. Data were drawn from an interim analysis of a multicenter, open-label Phase 2 study in which participants with multi-recurrent rCDI received up to 2 doses of RBX2660 delivered via enema 7 days apart; this analysis includes data to 12 months after treatment, with follow-up ongoing. Efficacy was defined as the absence of CDI recurrence to 56 days after the last dose; and durability is defined as a continued lack of recurrence. Participant stool samples collected prior to and at 1, 7, 30, 60 days and 6 and 12 months after treatment were sequenced using a shallow shotgun method, with only treatment responders reported herein. Operational taxonomic unit (OTU) data were used to calculate relative abundance at the class level and Microbiome Health Indices.

Results. This study included 149 RBX2660-treated participants and 110 historical control patients, in the United States and Canada. As previously reported, the efficacy of RBX2660 in preventing rCDI (79.9%; 119/149) was higher than CDI-free rates in the historical control group (51.8%; 57/110; P < 0.001). Of 109 participants who had a 6-month follow-up, 97.2% (106/109) remained CDI-free, and no new CDI recurrences were reported at 12 months. Among treatment responders, the microbiome composition was restored after treatment to predominance by Bacteriodia- and Clostridia-class bacteria, and these compositions remained stable to 12 months after treatment. Participants who provided samples.

Conclusion. RBX2660, a microbiota-based drug, was efficacious for preventing rCDI, with clinical and microbiome restoration durability to at least 12 months after treatment. The follow-up of efficacy, safety, and microbiome restoration are ongoing.