Supplementary

MiRenSVM: Towards Better Prediction of MicroRNA Precursors
Using an Ensemble SVM Classifier with Multi-loop Features

Jiandong Ding¹, Shuigeng Zhou¹§ and Jihong Guan²§

¹Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China.
²Department of Computer Science and Technology, Tongji University, Shanghai 201804, China.

§Corresponding author

Email addresses:

Jiandong Ding: jdding@fudan.edu.cn
Shuigeng Zhou: sgzhou@fudan.edu.cn
Jihong Guan: jhguan@tongji.edu.cn
Table S1: Homo sapiens pre-miRNAs with multi-loops secondary structure [1]:

Database	Num_loops	Num_total	Proportion(%)
miRBase 5.0	14	207	6.76
miRBase 8.2	36	462	7.79
miRBase 13.0	34	715	4.76
Total:	**84**	**1384**	**6.07**

Num_loops: number of *hsa* pre-miRNA with multi-loop secondary structure

Num_total: number of *hsa* pre-miRNA in the database
Table S2: Homo sapiens pre-miRNAs in miRBase13.0 [2] whose MFE is higher than -16kal/mol (predicted by RNAfold [3] under the default parameters)

miRNA	Precursor sequence	MFE (kal/mol)
hsa-mir-1973	UUAUGUCUCAAUGGCCCAUAGGUAUCCUGACCGUGCAAGGAUGCAUA	(-10.80)
hsa-mir-1978	UAGACGGGCUCACAUCACCAAAUAACCAAUAGGUGUUGCCCUAGCCUUUCUA	(-13.70)
hsa-mir-2052	CUGUUGUCAAUACAGUAOGUCCCGUAAGUGUCAAAGUACCAGCUAUACAAAACAA	(-10.69)
hsa-mir-2054	UCAUUGUCCAGGGGGAAUGGUUCCUGUAUUGUUCUUCUAUGAGUAUAAGGA	(-15.44)
hsa-mir-384	UCUUUUGUCAGCGGGAAAGAAACUAACCAGGAUCCCUCAGUAUGCCGAGGUG	(-13.00)
hsa-mir-923	AAUAGAGUCUUGUGAUGUCUUGCUUAAGGGCCAUCCAACCUAGAGUCUACAAC	(-12.30)
hsa-mir-1279	AUAAUUGCACAAAUUCAIUUGCUCUUCUUAUUGGAGAAAGAAAGAUAUGAUAUGAAGACUUC	(-12.10)
hsa-mir-1308	CCCCAGCAUGGGUGUUCAGGGCAUUAUCUCUAAGUGGAAACCCCAUAUCC	(-12.60)
hsa-mir-1321	ACAGUUUGGACAGAUGUAUACUCCGUGUUAACUAAAGAGAAUAAACUCAGGGGUGUGAAUGAUAAGAAAGAUAUG	(-11.60)
hsa-mir-1322	AGUUUCAUGAUAGAAACCUACUAUUAUCAUAGUAAGAAGGUGAUGUGCCUAGAUGCUAGU	(-11.30)
Table S3: Sequences of 14 *hsa* and 13 *aga* pre-miRNA whose identity is lower than 90% (predicted by CD-HIT [4])

13 *aga* pre-miRNAs:	
>aga-mir-137 M0010601	AAAACUUGGGUCCCACGUAUUCUUGGUAACACACCUAUCUGUAGAACAGUGUUGGUGAUA
>aga-mir-190 M0010594	UGUGUGUGGUGGAGACCUUUGGUGAGAUAGUUUGUAGAUAACCUCUGUUGUGUGAUAAGUAGAUAU
>aga-mir-263b M0010605	UGACAAUUAGGGCCACUUGGAGAAGAAUCACAGUGUUAUGGGUAGGAAUUUGGCAUCGGUAG
>aga-mir-286 M0010606	GCC
>aga-mir-309 M0010607	AAGUGCCGACAAUCCCGCCAGGCGUGUGCGAUAUAGACACUGUGGAAAGUUGGGCAUA
>aga-mir-927 M0010596	UAGUUAAGUGUUGUUAAGAUAUCGUACCUAGCGCUUAGACAGGGGCUAAAGGGAAC
>aga-mir-929 M0010595	CGGAAGUAAUCGACGAAUUCUGAAGGGG
>aga-mir-957 M0010600	CGAAGUAAAUCGACGAAUUCUGUAAAGGGG
>aga-mir-965-1 M0010602	CGAAAGAAAUCGACGAAUUCGUAAAGGGG
>aga-mir-970 M0010599	AUGCUGGACGGAGAAGCCGCUAGCAGGGG
>aga-mir-988 M0010598	CGAAGGAAAGCAGUAGGGAAGGGGCAGGCUAGGGAAGG
>aga-mir-993 M0010597	UGACUGUGGAGUAGACACACGGG
>aga-mir-1000 M0010604	CCUCAGCUUGCACUUGCAGUAGGAGGA

14 *hsa* pre-miRNAs:	
>hsa-mir-1204 M0006337	ACCUCGUGCCUGCUCAUAUUUGAGAAGGUAACUCUGGAGGGAGGAGCUUGCUGCUGG
>hsa-mir-192 M00109982	UAUAAGGUCACUCUCAGUCUUGCAGG

13 *hsa* pre-miRNAs:
miRenSVM: Towards Better Prediction of MicroRNA Precursors Using An Ensemble SVM Classifier with Additional Multi-loop Features

>hsa-mir-1973 MI0009983
UAUGUUCACGGGCAUGUACUGCCGUGCAAGGUAAGCAUA

>hsa-mir-1974 MI0009984
UGGUCCUGUAGUUGUAAAUCAACAGAUGGUGUUUUCUAUCAUUGGUGGUGUGUGUGUAGUCGGUCUGAGAAUA

>hsa-mir-1975 MI0009985
AGUGUGGUGCAAGUGUGUGGUGUAAUGUGAAUUGAGAUAACAGUGUGUCUCCCCCAAACCUGGCUGACGUACU

>hsa-mir-1976 MI0009986
GCACGAAGGAGGAGGGUGCUAAAGGUGUCUCCUCUCCCUCUCUGCU

>hsa-mir-1977 MI0009987
UGUAGGGUGGUUACGUUAAACUAAGUGUUGUUGGUUGGUAAGUGUCCAUUGGUGUCUGUAGGCUUAGCGUUAA

>hsa-mir-1978 MI0009988
UAGACGGGUCUACUACCCCCAUAAACAAAUAGGGUGUCUCCUAGCCUCA

>hsa-mir-1979 MI0009989
UCUUACUCCACGCUUAAACGUAAGCGGUUGUUUGAGAAUGGAUGGAGAGAAGG

>hsa-mir-2052 MI0010486
CUUGGUGUAACAGUAAAGGUGGGUUAAGUCAAACAGUAAACACUA

>hsa-mir-2053 MI0010487
CUUGGCAAGAAAAGCAUUUAAUAAACAUAGUGGCAAGCGUAAAGCAAAACUUAA

>hsa-mir-2054 MI0010488
CUUGAAUAUAUAUAAUAAAUACUAAACAUAGUGGCAAGCGUAAAGCAAAACUUAA

>hsa-mir-2110 MI0010629
CAAGCCGGGUUGGGAAACCGGUGAGGUGCGCGUGUGUUGUCACCCGCGUCUUGCUCUCUCCACUCUG

>hsa-mir-2113 MI0003939
UUUUCAGCCAGUGUGUAGACGGUACAGGAGAGAUAUGUUGUGUGUGGUCUGGUGUAGGCUCAUGCACUUGAAA
Table S4: Results of miRenSVM on animal pre-miRNAs published in miRBase13.0.

Species (Animal)	Evaluated pre-miRNAs	Correctly Predicted	Accuracy (%)
Apis mellifera	64	60	93.75
Branchiostoma floridae	74	62	83.78
Bombyx mori	61	58	95.08
Bos taurus	359	341	94.99
Capitella sp. 1	72	59	81.94
Caenorhabditis briggsae	98	89	90.82
Caenorhabditis elegans	155	148	95.48
Canis familiaris	325	317	97.54
Ciona intestinalis	25	25	100
Ciona savignyi	27	26	96.30
Drosophila melanogaster	152	138	90.79
Drosophila pseudoobscura	73	70	95.89
Danio rerio	337	331	98.22
Fugu rubripes	133	132	99.25
Gallus gallus	471	437	92.78
Lottia gigantea	57	46	80.70
Monodelphis domestica	119	115	96.64
Macaca mulatta	458	417	91.05
Mus musculus	568	521	91.73
Nematostella vectensis	49	43	87.76
Ornithorhynchus anatinus	344	307	89.24
Pan troglodytes	599	528	88.15
Rattus norvegicus	286	271	94.76
Schmidtea mediterranea	79	75	94.94
Sus scrofa	55	54	98.18
Tribolium castaneum	55	53	96.36
Tetraodon nigroviridis	143	140	97.90
Total	**5238**	**4863**	**92.84**
Features:

Triplet element (32):

Triplet structure-sequence element is proposed by Xue et al. [5]. The detail of these features has already been well described in the main article.

Base pair feature (15):

11 of these features have been used in previous miRNA gene predicting methods [6, 7]

Four new features relevant to loop number in the predicted secondary structure are introduced:

- dP/n_{loops}, where n_{loops} is the number of loops in secondary structure.
- $%(A-U)/n_{loops}$, $%(G-C)/n_{loops}$, $%(G-U)/n_{loops}$, $%(X-Y)/n_{loops}$, where $%(X-Y)$ is the ratio of X-Y base pairs in the secondary structure.

Thermodynamics features (18):

6 MFE related features; 8 other global thermodynamics features and 4 statistically significant features are chosen from previous research [6, 7, 8].

The definitions of other features already used by existing pre-miRNA classification methods are available in [7]’s supplementary data.

References:

1. Jiang P, Wu H, Wang W, et al.: MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. *Nucleic acids research* 2007, 35:W339-44.

2. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. *Nucleic acids research* 2008, 36:D154-8.

3. Hofacker IL: Vienna RNA secondary structure server. *Nucleic acids research* 2003, 31:3429-31.

4. Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 2006, 22:1658-9.

5. Xue C, Li F, He T, et al.: Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. *BMC bioinformatics* 2005, 6:310.

6. Ng KL, Mishra SK: De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. *Bioinformatics* 2007, 23:1321-30.

7. Batuwita R, Palade V: microPred: effective classification of pre-miRNAs for human miRNA gene prediction. *Bioinformatics* 2009, 25:989-95.

8. Freyhult E, Gardner PP, Moulton V: A comparison of RNA folding measures. *BMC bioinformatics* 2005, 6:241.