Supplement of

The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture

María Cristina Casero et al.

Correspondence to: María Cristina Casero (mcristina.casero@mncn.csic.es) and Jacek Wierzchos (j.wierzchos@mncn.csic.es)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Table S1: Cyanobacterial strains isolated from cryptoendolithic, chasmoendolithic and hypoendolithic microhabitats of gypcrete from MTQ.

Microhabitat	Strain code	Taxonomical Assignment
Cryptoendolithic	UAM807	*Gloeocapsopsis* sp.
	UAM808	*Chroococcidiopsis* sp.
	UAM801	*Chroococcidiopsis* sp.
Chasmoendolithic	UAM805	*Chroococcidiopsis* sp.
	UAM806	*Gloeocapsopsis* sp.
	UAM800	*Chroococcidiopsis* sp.
Hypoendolithic	UAM802	*Chroococcidiopsis* sp.
	UAM803	*Gloeocapsa* sp.
	UAM804	*Gloeocapsa* sp.
	UAM809	*Chroococcidiopsis* sp.
	UAM810	*Chroococcidiopsis* sp.
	UAM811	*Chroococcidiopsis* sp.
Table S2: Taxonomical assignment of cyanobacterial OTUs by BLASTn to sequences belonging to uncultured and cultured material.

OTU	Uncultured cyanobacterium clone/Alchichic_AQ2_1_1C_10/Clone IGW2-36	Accession Number	Identity (%)	Environment	Accession Number	Identity (%)	Environment	
OTU18	Uncultured cyanobacterium clone 332-12	KT453633	99	Sublacustrine thermal vents Yellowstone Lake	DQ914866	99	China quartz hypoliths	
OTU11	Uncultured cyanobacterium clone FWS-B15	KC437357	100	Hot Spring	AP018254	100		
OTU854	Uncultured Gloeocapsa sp. clone HL4SH30	LN880050	97	shoots of Haloxylon in high salinity	MG822744	97		
OTU9	Uncultured cyanobacterium clone Alchichic_AQ2_1_1C_10	JN825312	99	microbialites from Alchichica alkaline lake	LC325265	99	blackened part of a surface of a building	
OTU497	Uncultured *Chroococcidiopsis* sp. clone AT4A-8-EC03	KC311895	95	soil Atacama Desert	JF810071	94	Antarctica: University Valle	
OTU420	Uncultured *Chroococcidiopsis* sp. clone IGW2-36	KP238411	98	volcanic rock ignimbrite, Atacama Desert, Lomas de Tilocalar	KY303728	97	Hypolith quartz Taklimankan desert, Xingjiang	
OTU1	Uncultured *Chroococcidiopsis* sp. clone AT4A-8-EC03	KC311895	98	soil Atacama Desert	DQ914863	96	quartz hypoliths China	
OTU4	Uncultured cyanobacterium clone IG2D-37	KP238398	98	volcanic rock ignimbrite, Atacama Desert, Lomas de Tilocalar	JF810071	99	Antarctica: University Valle	
OTU1772	Uncultured cyanobacterium clone IGW2-36	KP238411	96	volcanic rock ignimbrite, Atacama Desert, Lomas de Tilocalar	KY303728	96	Hypolith quartz Taklimankan desert, Xingjiang	
OTU98	Uncultured cyanobacterium clone AY6_21	FJ891051	99	quartz, Yungay, Atacama Desert	KY303729	95	Hypolith quartz Taklimankan desert, Xingjiang	
OTU8	Uncultured cyanobacterium clone AY6_17	FJ891047	99	quartz, Yungay, Atacama Desert	DQ914863	97	quartz hypoliths China	
OTU112	Uncultured bacterium clone BJ201305-46	KX507829	100	rain water	DQ914863	97	quartz hypoliths China	
OTU	Uncultured bacterium clone	Accession	Similarity	Location	Species	Accession	Similarity	Location Details
------	----------------------------	-----------	------------	----------	--------------------------	-----------	------------	------------------
OTU2	Uncultured bacterium clone LSS_Cyano_OTU5	KP728185	95	sinkhole lake	*Aphanocapsa muscicola* 5N-04	FR798920	94	fountain made of Sierra Elvira Stone, gray semi-dry patina on a water jet Spain: Granada, Generalife, Patio de la Sultana
OTU5	Uncultured cyanobacterium clone 3GA1-12_K89	JX127189	99	stone of castle wall Germany	*Synechococcus* sp. CIBNOR 42	AY274622	99	cyanobacterial bloom in the Urias estuary (Mazatlan, Sinaloa, Mexico) during a fish mortality event in spring 1999
OTU7	Uncultured bacterium clone Atacama-colB11	EF071511	100	Atacama Desert	*Chroococcidiopsis* sp. A789-2	JF810071	94	Antarctica: University Valley

Video S1: CT-Scan film of a colonized piece of gypcrete. 3D spatial distribution of pores (orange colour) and external view of the rock (grey colour) on lateral, front and top views of gypcrete. Porous micromorphology is capillary-shaped in vertical position due to gravity movement direction of water. https://doi.org/10.5446/50209