On bivariate fundamental polynomials

V. Vardanyan (vahagn.vardanyan94@gmail.com)
Department of Mathematics and Mechanics
Yerevan State University
A. Manukyan St. 1
0025 Yerevan, Armenia

Abstract

An n-independent set in two dimensions is a set of nodes admitting (not necessarily unique) bivariate interpolation with polynomials of total degree at most n. For an arbitrary n-independent node set \mathcal{X} we are interested with the property that each node possesses an n-fundamental polynomial in form of product of linear or quadratic factors. In the present paper we show that each node of \mathcal{X} has an n-fundamental polynomial, which is a product of lines, if $\#\mathcal{X} \leq 2n + 1$. Next we prove that each node of \mathcal{X} has an n-fundamental polynomial, which is a product of lines or conics, if $\#\mathcal{X} \leq 2n + \lfloor n/2 \rfloor + 1$. We have a counterexample in each case to show that the results are not valid in general if $\#\mathcal{X} \geq 2n + 2$ and $\#\mathcal{X} \geq 2n + \lfloor n/2 \rfloor + 2$, respectively.

Key words: Bivariate polynomial, interpolation, fundamental polynomial, conic, n-poised, n-independent nodes.

Mathematics Subject Classification (2010):
primary: 41A05, 41A63; secondary 14H50.

1 Introduction

Let Π_n be the space of bivariate polynomials of total degree at most n:

$$\Pi_n = \left\{ \sum_{i+j \leq n} a_{ij}x^iy^j : a_{ij} \in \mathbb{R} \right\}.$$

We have that

$$N := N_n := \dim \Pi_n = \begin{pmatrix} n + 2 \\ 2 \end{pmatrix}.$$
Consider a set of distinct nodes (points)
\[X_s = \{(x_1, y_1), (x_2, y_2), \ldots, (x_s, y_s)\}. \]
The problem of finding a polynomial \(p \in \Pi_n \) which satisfies the conditions
\[p(x_i, y_i) = c_i, \quad i = 1, 2, \ldots, s, \]
(1.1)
is called interpolation problem. A polynomial \(p \in \Pi_n \) is called an \(n \)-fundamental polynomial for a node \(A = (x_k, y_k) \in X_s \) if
\[p(x_i, y_i) = \delta_{ik}, \quad i = 1, \ldots, s, \]
where \(\delta \) is the Kronecker symbol. We denote this fundamental polynomial by \(p^*_k = p^*_A = p^*_A, X_s \). Sometimes we call fundamental also a polynomial that vanishes at all nodes of \(X \) but one, since it is a nonzero constant times a fundamental polynomial.

Definition 1.1. A set of nodes \(X \) is called \(n \)-**independent** if all its nodes have fundamental polynomials. Otherwise, \(X \) is called \(n \)-**dependent**.

Fundamental polynomials are linearly independent. Therefore a necessary condition of \(n \)-independence is \(\#X \leq N \). Having fundamental polynomials of all nodes of \(X \) we get a solution of general interpolation problem (1.1) by using the Lagrange formula:
\[p(x, y) = \sum_{i=1}^{s} c_i p^*_i(x, y). \]
(1.2)
Thus we get readily that the node set \(X_s \) is \(n \)-independent if and only if it is \(n \)-solvable, meaning that for any data \(\{c_1, \ldots, c_s\} \) there exists a (not necessarily unique) polynomial \(p \in \Pi_n \) satisfying the conditions (1.1).

Definition 1.2. The interpolation problem with the set of nodes \(X_s \) is called \(n \)-**poised** if for any data \(\{c_1, \ldots, c_s\} \) there exists a unique polynomial \(p \in \Pi_n \), satisfying the conditions (1.1).

A necessary condition for \(n \)-poisedness is \(s = \#X = N \). We have also that a set \(X_N \) is \(n \)-poised if and only if it is \(n \)-independent. The following proposition is based on an elementary Linear Algebra argument.

Proposition 1.3. The interpolation problem with the set of nodes \(X_N \) is \(n \)-poised if and only if the following condition holds:
\[p \in \Pi_n, \quad p(x_i, y_i) = 0, \quad i = 1, \ldots, N \Rightarrow p = 0. \]
Now let us bring some results on n-independence we shall use in the sequel. Let us start with the following simple but important result of Severi (see [5]):

Theorem 1.4 ([5]). Any set \mathcal{X}, with $\#\mathcal{X} \leq n + 1$, is n-independent.

Remark 1.5. For each node $A \in \mathcal{X}$ here we can find n-fundamental polynomial which is a product of $\#\mathcal{X} - 1 \leq n$ lines, each of which passes through a respective node of $\mathcal{X} \setminus \{A\}$ and does not pass through A.

Next two results extend the Severi theorem to the cases of sets with no more than $2n + 1$ (see [1], Proposition 1) and $3n - 1$ (see [3], Theorem 5.3) nodes, respectively.

Theorem 1.6 ([1]). Any set \mathcal{X}, with $\#\mathcal{X} \leq 2n + 1$, is n-independent, if and only if no $n + 2$ nodes of \mathcal{X} are collinear.

Theorem 1.7 ([3]). Let \mathcal{X} be set of nodes with $\#\mathcal{X} \leq 3n$. Then the set \mathcal{X} is n-dependent if and only if one of the following hold:

i) $n + 2$ nodes of \mathcal{X} are collinear,

ii) $2n + 2$ nodes of \mathcal{X} are lying on a conic,

iii) $\#\mathcal{X} = 3$, there are curves $\gamma \in \Pi_3$ and $p \in \Pi_n$ such that $\gamma \cap p = \mathcal{X}$.

Here we use the same letter, say p, to denote the polynomial $p \in \Pi_n \setminus \Pi_0$ and the algebraic curve defined by the equation $p(x, y) = 0$. We denote lines and conics by α and β, respectively.

Note that, according to Theorem 1.3, the interpolation problem with X_N is n-poised if and only if there is no algebraic curve of degree $\leq n$ passing through all the nodes of \mathcal{X}_N.

At the end of this section let us discuss the problem we consider. In view of the Lagrange formula (1.2) it is very important to find n-independent (i.e., n-solvable) sets for which the fundamental polynomials have the simplest possible forms. In Section 2 we characterize n-independent sets for which all fundamental polynomials are products of lines. It is worth mentioning that for the natural lattice, introduced by Chung and Yao in [2], the fundamental polynomials have the mentioned forms. But in this case the nodes satisfy very special conditions. Namely, they are intersection points of some $n + 2$ given lines. In our characterization (see forthcoming Theorem 2.1 Proposition 2.2) the restrictions on the node set are much more weak. In Sections 3 we consider a much more involved problem. Here we characterize n-independent node sets for which all fundamental polynomials are products of lines or conics.
2 The fundamental polynomials as products of lines

Theorem 2.1. Let \mathcal{X} be an n-independent set of nodes with $\#\mathcal{X} \leq 2n + 1$. Then for each node of \mathcal{X} there is an n-fundamental polynomial, which is a product of lines. Moreover, this statement is not true in general for n-independent node sets \mathcal{X} with $\#\mathcal{X} \geq 2n + 2$ and $n \geq 2$.

The first statement of Theorem follows from the following result which covers more wider setting.

Proposition 2.2. Let \mathcal{X} be a set of nodes with $\#\mathcal{X} \leq 2n + 1$ and $A \in \mathcal{X}$. Then the following three statements are equivalent:
 i) The node A has an n-fundamental polynomial,
 ii) The node A has an n-fundamental polynomial, which is a product of linear factors,
 iii) No $n + 1$ nodes of $\mathcal{X} \setminus \{A\}$ are collinear together with the node A.

3 The fundamental polynomials as products of lines and conics

Theorem 3.1. Let \mathcal{X} be an n-independent set of nodes with $\#\mathcal{X} \leq 2n + \lceil n/2 \rceil + 1$. Then for each node of \mathcal{X} there is an n-fundamental polynomial, which is a product of lines and conics. Moreover, this statement is not true in general for n-independent node sets \mathcal{X} with $\#\mathcal{X} \geq 2n + \lceil n/2 \rceil + 2$ and $n \geq 3$.

The first statement of Theorem follows from the following result which covers more wider setting.

Proposition 3.2. Let \mathcal{X} be a set of nodes with $\#\mathcal{X} \leq 2n + \lceil n/2 \rceil + 1$ and $A \in \mathcal{X}$. Then the following three statements are equivalent:
 i) The node A has an n-fundamental polynomial,
 ii) The node A has an n-fundamental polynomial, which is a product of lines and conics,
 iii) a) no $n + 1$ nodes of $\mathcal{X} \setminus \{A\}$ are collinear together with A,
 b) if $n + 1$ nodes of $\mathcal{X} \setminus \{A\}$ are collinear and are lying in a line α then no n nodes of $\mathcal{X} \setminus (A \cup \alpha)$ are collinear together with A,
 c) no $2n + 1$ nodes of $\mathcal{X} \setminus \{A\}$ are lying on an irreducible conic together with A.

4
References

[1] D. Eisenbud, M. Green and J. Harris (1996)
Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc.
(N.S.), 33(3), 295–324.

[2] Chung, K. C. and Yao, T. H., On lattices admitting unique Lagrange
interpolation, SIAM J. Numer. Anal. 14 (1977), 735-743.

[3] H. Hakopian and A. Malinyan, Characterization of n-independent sets
with no more than $3n$ points, Jaén J. Approx. 4(2012), 119 – 134.

[4] J. Radon, Zur mechanischen Kubatur, Monatsh. Math. 52 (1948) 286–
300.

[5] F. Severi, Vorlesungen ¨Uber Algebraische Geometrie (Teubner, Berlin,
1921).