EDITORIAL COMMENT

Treatment of idiopathic membranous nephropathy in adults: KDIGO 2012, cyclophosphamide and cyclosporine A are out, rituximab is the new normal

Jorge Enrique Rojas-Rivera1,2,3, Sol Carriazo1,2,3 and Alberto Ortiz1,2,3

1IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain, 2Fundacion Renal Inigo Alvarez de Toledo-IRSIN, Madrid, Spain and 3REDINREN, Madrid, Spain

Correspondence to: Alberto Ortiz; E-mail: aortiz@fjd.es

ABSTRACT

The 2012 Kidney Disease: Improving Global Outcomes (KDIGO) clinical practice guidelines for glomerulonephritis shed light on the complex world of glomerulonephritis therapy. However, they may no longer apply to idiopathic membranous nephropathy, as recently concluded by the KDIGO 2019 Working Group. This is due to the discovery of autoantibodies such as anti-phospholipase A2 receptor (anti-PLA2R) that allow disease monitoring as well as to results from recent clinical trials, comparative cohort studies and meta-analyses. Perhaps the most disruptive of them is the Membranous Nephropathy Trial of Rituximab (MENTOR) trial comparing rituximab with cyclosporine A, which supports the superiority of rituximab in efficacy and safety. Furthermore, rituximab results compared favourably with the short-term results of classical clinical trials that supported the KDIGO 2012 recommendation of immunosuppressive cyclophosphamide-based regimens as first choice for active treatment of idiopathic membranous nephropathy. Thus, the KDIGO recommendations for cyclophosphamide-based regimens or calcineurin inhibitors as the first line of active treatment regimens for idiopathic membranous nephropathy with nephrotic syndrome may no longer apply. By contrast, rituximab-based regimens or other B-cell-targeted therapies appear to represent the present and future of membranous nephropathy therapy.

Keywords: calcineurin inhibitors, cyclophosphamide, cyclosporine, membranous nephropathy, rituximab, treatment

INTRODUCTION

Idiopathic membranous nephropathy is the most common cause of nephrotic syndrome in white adults [1]. The autoantibody responsible for the characteristic immune deposits has been identified as anti-phospholipase A2 receptor (anti-PLA2R) in >70% of cases. Less frequently, the disease is caused by anti-thrombospondin type-1 domain-containing 7A (anti-THSD7A) (7%) or as yet unidentified antibodies [2]. Despite advances in understanding the pathogenesis, therapy remains controversial. As it is a rare disease, clinical trials are usually small and with a short follow-up. Additionally, the natural course is very variable, ranging from spontaneous remission to severe nephrotic syndrome progressing to end-stage kidney disease (ESKD). In July 2019, the results of the Membranous Nephropathy Trial of Rituximab (MENTOR) trial comparing rituximab versus cyclosporine A were published [3]. These results support the superiority of rituximab in efficacy for achieving remission of proteinuria and in safety. We believe this will bring a major paradigm shift in how the disease is treated, rendering the Kidney Disease: Improving Global Outcomes (KDIGO) 2012
recommendations obsolete [4]. We now comment on the potential impact of MENTOR on routine clinical management of idiopathic membranous nephropathy and try to anticipate future changes in international guidelines.

WHAT DID KDIGO 2012 SAY ABOUT THERAPY OF IDIOPATHIC MEMBRANOUS NEPHROPATHY IN ADULTS?

The KDIGO 2012 recommended that initial therapy with immunosuppressants be started only in patients with nephrotic syndrome AND when at least one of the following conditions is met [4]:

(i) Urinary protein excretion persistently exceeds 4 g/day AND remains at >50% of the baseline value, AND does not show progressive decline during antihypertensive and antiglomerular therapy during an observation period of at least 6 months.

OR

(ii) Presence of severe, disabling or life-threatening symptoms related to the nephrotic syndrome.

OR

(iii) Serum creatinine (sCr) has risen by ≥30% within 6–12 months from the time of diagnosis but the estimated glomerular filtration rate (eGFR) is not lower than 25–30 mL/min/1.73 m² AND this change is not explained by superimposed complications.

Thus, immunosuppressants may be initiated immediately if there is severely symptomatic nephrotic syndrome; otherwise, a waiting period of 6–12 months is suggested, and immunosuppressants are only initiated if there is persistently very high proteinuria despite antiproteinuric therapy for 6 months or sCr increases ≥30% (e.g. from 0.6 to 0.8 mg/dL or from 1.8 to 2.4 mg/dL, with 2.4 mg/dL being equivalent to 30 and 23 mL/min/1.73 m² in a 50-year-old male and female, respectively) spontaneously in these 6–12 months (Figure 1A). Antiproteinuric therapy implies renin–angiotensin system (RAS) blockade. However, KDIGO 2012 recommended that immunosuppressive therapy should not be used in patients with an sCr persistently >3.5 mg/dL (equivalent to eGFR 19 mL/min/1.73 m² or 14 mL/min/1.73 m² in a 50-year-old white male and female, respectively) or an eGFR <30 mL/min/1.73 m² AND reduced kidney size on ultrasound (e.g. <8 cm in length) OR those with concomitant severe or potentially life-threatening infections.

The initial recommended therapy was a 6-month course of alternating monthly cycles of oral and intravenous (i.v.) corticosteroids, and oral alkylating agents, and further suggested using cyclophosphamide rather than chlorambucil as initial alkylating agent. Then KDIGO 2012 recommended that patients be managed conservatively for at least 6 months following the completion of this regimen before being considered a treatment failure if there was no remission, unless kidney function was deteriorating or severe, disabling or potentially life-threatening symptoms related to the nephrotic syndrome were present. There was a suggestion to adjust the dose of cyclophosphamide or chlorambucil according to the patient’s age and eGFR. It further suggested that continuous daily (non-cyclical) use of oral alkylating agents may also be effective but can be associated with greater risk of toxicity, particularly when administered for >6 months.

As alternative regimens for initial therapy, KDIGO recommended calcineurin inhibitors (CNIs) cyclosporine A or tacrolimus for at least 6 months in patients who choose not to receive the cyclical corticosteroid/alkylating agent regimen or who have contraindications to this regimen. It further suggested that CNIs be discontinued in patients who do not achieve complete or partial remission after 6 months of treatment. It further suggested that the dosage of CNI be reduced at intervals of 4–8 weeks to a level of ~50% of the starting dosage, provided that remission is maintained, and no treatment-limiting CNI-related nephrotoxicity occurs for at least 12 months.

For the treatment of idiopathic membranous nephropathy resistant to recommended initial therapy, KDIGO 2012 suggested using the alternative regimen. It further suggested that relapses of nephrotic syndrome be treated by re-introduction of the same therapy that resulted in initial remission. If a 6-month cyclical corticosteroid/alkylating agent regimen was used for initial therapy, the regimen was suggested to be repeated only once for treatment for a relapse.

Thus, KDIGO 2012 does not consider rituximab, despite successful experiences reported since 2002, as these were not part of formal clinical trials [5], but considers cyclophosphamide/corticosteroids or CNIs as potential first-line, alternative regimens.

WHAT WAS THE EVIDENCE TO RECOMMEND ALKYLATING AGENTS AND TO SUGGEST CYCLOPHOSPHAMIDE AS THE PREFERRED IMMUNE-SUPPRESSIVE AGENT?

The KDIGO 2012 provides a table summary of the evidence supporting the recommendation [4]. Since MENTOR conclusively demonstrated the superiority of rituximab over cyclosporine A, let us review the evidence supporting the recommendation of cyclophosphamide/corticosteroids. A meta-analysis mixing different alkylating regimens, randomized controlled trials (RCTs) testing chlorambucil and one RCT using cyclophosphamide are cited as evidence for recommending alkylating agents and for suggesting the use of cyclophosphamide. From our point of view, different drugs with different dosing regimens, different safety profile and very different follow-up periods should not be mixed in a meta-analysis, even if both are alkylating agents. This was useful in the face of scarce evidence available consisting of small trials with short follow-up, but is no longer admissible when other drugs have provided solid evidence of efficacy in well-run RCTs with an active comparator. Thus, we focus on the individual evidence supporting the use of cyclophosphamide/corticosteroids.

The open-label randomized study cited by KDIGO 2012 to support cyclophosphamide use compared the experimental regimen (methylprednisolone i.v. 1 g/day for three consecutive days followed by oral prednisolone 0.5 mg/kg/day for 27 days in the first, third and fifth months and oral cyclophosphamide at 2 mg/kg/day in the second, fourth and sixth months, with an approximate total dose of 13.5 g) versus supportive therapy (dietary sodium restriction, diuretics and antihypertensive agents excluding RAS blockade) in adults with nephrotic syndrome (proteinuria >3.5 g/day) caused by biopsy-proven idiopathic membranous nephropathy of ≥6-month duration, and patients were followed for at least 10 years [6] (Table 1). The article states that ‘study endpoints were doubling of sCr, development of ESRD, or mortality’, but it does not indicate which were primary and which were secondary endpoints. The Results section
suggestions that this may be a combined endpoint. Although it is stated that the analysis was performed with an intention-to-treat (ITT) basis, patients who were lost in follow-up from 18 to 48 months were excluded from analysis and no baseline or even short-term remission results were reported. One hundred and four patients were recruited from 1993 to 1995: 53 control and 51 active therapy, but 11 were lost in follow-up and were not analysed (11% of the initial sample). Thus, the analysis cannot be considered either ITT or modified ITT. The power of the study and sample size calculations were not specified. Whether there was a pre-specified follow-up is also unclear from the report. The cohort was younger (mean age 37–38 years) than European or American cohorts. There was no apparent exclusion criterion based on eGFR. Initial remission (<2 g/day or <50% of baseline, along with normal sCr) was achieved within 1 year of randomization in 5/53 (9%) and 15/51 (29%) of ITT patients in control and experimental groups, respectively, and ever remission in 16/53 (30%) and 34/51 (67%), respectively. Of these, 5/53 (9%) and 15/51 (29%) were complete remissions at 10 years. Thus, overall, cyclophosphamide/steroids achieved a complete remission in an additional 20% of patients, on top of spontaneous complete remissions observed with supportive therapy that initially excluded RAS blockade (Figure 2A and B; Supplementary data, Figure S1). Complete remissions on active therapy were observed in <10% of patients at 12 months. The proportion of patients on complete remission continued to increase up to ~40 months and then stabilized (Figure 2C and D). Relapses occurred in 4/16 (25%) and 8/34 (24%) for control and cyclophosphamide/steroids patients, respectively, 5.4 ± 6.2 months after the first remission in those on cyclophosphamide/steroids (Figure 2E). These patients were treated with addition of RAS blockade. A total of 13/53 (25%) supportive therapy patients and 30/51 (59%) cyclophosphamide/steroids patients were in remission until the time of final follow-up. However, these and safety data were confounded by prescription of immunosuppressive regimen 24 months after randomization in 15/53 (28%) supportive therapy patients. Treatment of the control cohort would not have been considered standard today since RAS blockade was prohibited initially and only prescribed to 17/53 (32%) at 2 years and this increased to 32/53 (60%) at 10 years.

The trial also reported long-term outcomes. For the first 7 years, the incidence of renal replacement therapy was low and there were no differences between the groups (<5% in both groups). However, the 10-year dialysis-free survival was 65% and 89% of the analysed patients in the control and treatment groups, respectively (P = 0.016). The combined endpoint was significantly more frequent in the control analysed patients and started to diverge at ~6 years. At 20 months of follow-up, eGFR was similar in both groups but then diverged. At 1 year, proteinuria in the analysed patients of the intervention group was >3 g/day. Timing considerations are important when interpreting results from other therapeutic regimens that lack the long-term follow-up.

It is also worth mentioning a prior Ponticelli et al. study [7] of cyclophosphamide/steroids with primary endpoint not specified and a shorter follow-up, without clarification of whether there was a pre-specified follow-up, in which the comparator was chlorambucil/steroids and no ITT data were presented. Excellent overall remission results were observed at 1 year and they continued to improve up to 5 years, but these results were at odds with other cyclophosphamide/steroids studies and the difference may likely be traced back to the inclusion of patients

FIGURE 1: The KDIGO 2012 recommendations for treatment of idiopathic membranous nephropathy in adults and the 2019 MENTOR-based shift of paradigm. (A) The KDIGO 2012 recommendations for treatment of idiopathic membranous nephropathy [4]. Two alternative immunosuppressive regimens are proposed if there is no initial response to antiproteinuric therapy for 6 months. Immunosuppression may be started earlier if nephrotic syndrome is very symptomatic or eGFR decreases. Cyclophosphamide/steroids are preferable as the first choice over CNIs. Cyclophosphamide/steroids are maintained for 6 months but are not considered to have failed until Month 12. If at this point in time there is failure, CNIs are the alternative. CNI therapy is considered a failure if no remission is achieved within 6 months, at which point, cyclophosphamide/steroids are proposed as an alternative. If remission is achieved, CNI should be maintained for at least 12 months. Given the high recurrence rate upon withdrawal, CNI dose is decreased over time. (B) The 2019 MENTOR-based change of paradigm for treatment of idiopathic membranous nephropathy [3]. Rituximab is administered as two consecutive 1 g doses separated by 2 weeks that may be repeated at 6 months when there has been no response to antiproteinuric therapy for 3 months. This regimen was shown to be superior in efficacy achieving remission and safety, maintaining better renal function than cyclosporine A, a CNI. (C) Alternative proposal for rituximab-based idiopathic membranous nephropathy therapy. Based on the lag-time to complete remission since initial rituximab dosing and the safety profile of rituximab, this proposal is aimed at minimizing complications from nephrotic syndrome. The use of a single dose of rituximab may limit the economic impact of rituximab, and the earlier start of rituximab may result in a shorter nephrotic syndrome exposure. RASi, renin–angiotensin system inhibitors; IIS-FJD, Instituto Investigación Sanitaria Fundación Jiménez Díaz.
just after diagnosis in Ponticelli et al. study [7] without a prior expectant attitude towards spontaneous remission (Table 1). Indeed, the rate of complete remission was lower and in line with Jha et al. [6] (Figure 2C and D). The use of RAS blockade was discouraged and the relapse rate of 25% for cyclophosphamide/steroids was in line with the study by Jha et al. [6, 7] (Figure 2E).

As a summary of the evidence supporting the prescription of cyclophosphamide/steroids, these RCTs would be hardly admissible as evidence under current standards, given the outdated methodology used, without clarification of pre-specified endpoints or follow-up time; the suboptimal symptomatic therapy, which discouraged or prohibited RAS blockade; and other peculiarities of the studies, such as the younger than usual population or the lack of an expectant, symptomatic therapy period before initiation of immunosuppression. In any case, the short-term information gathered from these cyclophosphamide/steroids studies can be summarized as follows: induction of complete remission in 20–25% of patients at 24 months, a peak complete remission of 30–35% in months 40–60 of follow-up (for the study that had a control comparator, this represents 20% above the control group) and a relapse rate of 25% (Table 1; Figure 2A–E).

WHAT DO RECENT META-ANALYSES SHOW?

In a 2017 network meta-analysis of RCTs (thus excluding rituximab), cyclophosphamide, cyclosporine A or tacrolimus...
significantly increased the rate of complete or partial remissions as compared with non-immunosuppressive treatment, but there were no significant differences in the probability of remission between cyclosporine A and cyclophosphamide, while drug withdrawal was more likely with cyclophosphamide than with cyclosporine A or tacrolimus [9]. Compared with non-immunosuppressive treatment, of these drugs only cyclophosphamide significantly reduced the risk of a composite outcome of mortality or ESKD [odds ratio = 0.31, 95% confidence interval 0.12–0.81], but there were no significant differences between cyclophosphamide and CNIs. This result may have been biased by the lack of long-term studies with CNIs that had a follow-up of 12–18 months, which limits the ability to test impact on these long-term outcomes (differences in mortality or ESKD versus antihypertensive therapy were not observed for cyclophosphamide-based regimens in the first 6–7 years of follow-up) [6].

WHAT DID KDIGO 2019 SAY?
The recent report of the KDIGO controversies conference on management and treatment of glomerular diseases concluded
that nearly all of the KDIGO 2012 membranous nephropathy recommendations should be revisited based on the discovery of podocyte antigen targets of circulating antibodies and on recent clinical studies and trials [4, 10]. We agree with this assessment.

WHAT DID THE MENTOR TRIAL OF RITUXIMAB VERSUS CYCLOSPORINE A SHOW?

In July 2019, the MENTOR trial of rituximab versus cyclosporine A for idiopathic membranous nephropathy in adults was published [3]. MENTOR randomized 130 membranous nephropathy patients with proteinuria \(\geq 5 \text{g/d} \) despite at least 3 months of RAS blockade, and an eGFR \(\geq 40 \text{mL/min/1.73 m}^2 \) to receive oral cyclosporine A for 12 months or two rituximab infusions, 1000 mg each, administered 14 days apart and repeated at 6 months in case of partial response. The primary outcome was a composite of complete or partial remission of proteinuria at 24 months (Table 1). At 24 months, 39/65 patients (60%) in the rituximab group and 13/65 (20%) in the cyclosporine A group had a complete or partial remission \((P < 0.001)\). Additionally, at 24 months, 23 rituximab patients (35%) and no cyclosporine A patient had a complete remission (Figure 2A–D). Among patients who achieved remission, the decline in anti-PLA2R antibodies was faster and larger in the rituximab group, suggesting that rituximab-induced immunological remission precedes kidney remission. Serious adverse events tended to be less common with rituximab [11/65 (17%) versus 20/65 (31%); \(P = 0.06)\], which better preserved kidney function.

While MENTOR did not directly compare rituximab with cyclophosphamide, the results were similar to or better than historical RCTs that formed the basis of the KDIGO 2012 recommendation of alkylating agents and preferably cyclophosphamide in association with steroids as the first line of therapy for idiopathic membranous nephropathy (Figure 2A–E) [6, 7]. Thus, although the onset of complete remissions induced by rituximab may have a lag time of at least 6 months from the start of therapy (Figure 2C), both the overall rate of complete remissions at 24 months and the excess rate of complete remissions over controls were higher for rituximab than for key prior cyclophosphamide/steroids trials and the relapse rate on rituximab at 5% was well below that reported previously for cyclophosphamide/steroid studies (Table 1; Figure 2A–E). However, the different definitions of remission used complicate the interpretation of these data. Although we lack long-term follow-up data.
for rituximab, both the higher percentage of complete remissions and the lower relapse rate bode well for long-term outcomes.

WHAT WERE THE SHORTCOMINGS OF THE GEMRITUX TRIAL OF RITUXIMAB VERSUS CONVENTIONAL ANTI-PROTEINURIC TREATMENT ALONE?

GEMRITUX was a prior, recent and smaller (n = 75) trial with shorter follow-up (6 months for the primary endpoint) of rituximab versus conventional antiproteinuric treatment [8]. All patients received conventional antiproteinuric treatment and rituximab was administered in two 375-mg/m² i.v. infusions 7 days apart to 37 patients. From an evidence-based medicine point of view, GEMRITUX was disappointing since it missed the primary endpoint: at Month 6, 13 (35%) patients on rituximab and 8 (21%) patients on conventional antiproteinuric treatment achieved a complete or partial remission (P = 0.21). Thus, rituximab appeared no different than antiproteinuric therapy alone. However, the design of this study was severely flawed and not adjusted to the current understanding of the pathogenesis of membranous nephropathy and the mechanism of action of rituximab (Figure 3) [18]. Thus, rituximab reduces the number of B cells and this results in a progressive decrease in circulating antibody titers, the same antibodies that are deposited in the sub-epithelial space. However, even if antibody deposition ceases suddenly, sub-epithelial deposits are long-lived, so a slow and progressive decrease in deposits and proteinuria is expected [19]. Thus, the 6-month time point was unrealistic for therapeutic success as further supported by zero complete remissions observed in MENTOR at this time point (Figure 4A). Fortunately,
Table 2. Dose and administration regimens of rituximab for idiopathic membranous nephropathy

Design	NICE [20]	MENTOR [3]	GEMRITUX [20]	GEMRITUX [8]
N for rituximab group	Retrospective cohort (observational)	RCT	RCT	RCT
Initial rituximab dose	28	65	27^a	37
Mean age (years)	63	52	51	53
Baseline proteinuria (g/g)^b	5.9	6.2	8.4	7.7
Overall remissions 6 months, n/N (%)	18/28 (64)	23/65 (35)	8/27 (30)	13/37 (35)
Complete remission 6 months, n/N (%)	5/28 (18)	0/65 (0)	0/27 (0)	No data
Overall remissions end of follow-up, n/N (%)	24/28 (86) at median 15 months	39/65 (60) at 24 months	18/27 (67) at median 24 months	24/37 (65) at median 17 months
Complete remissions end of follow-up, n/N (%)	9/28 (32) at median 15 months	23/65 (35) at 24 months	6/27 (22) at median 24 months	7/37 (19) No statistically significant difference versus NICE or MENTOR

Data from clinical trials and an observational cohort. Note that age was similar for MENTOR and GEMRITUX, GFR was similar for all groups (not shown). NICE, National Institute for Health and Care Excellence.

^aOnly anti-PLA2R-positive patients in this analysis.

^bFor MENTOR, please note that in Table 2, proteinuria is expressed in g/g urinary creatinine but in Table 1 it is expressed in g/day.

Table 3. Unmet clinical needs and unanswered questions in the treatment of primary membranous nephropathy

- Relative position of rituximab versus cyclophosphamide/steroids as the first-line therapy
- Long-term rituximab outcomes: preservation of renal function and progression to ESKD
- Timing of initial rituximab indication
- Optimal dosing of rituximab
- Adjuvant therapy to accelerate remission while the disease-modifying effect of rituximab sets in
- Alternative regimens for rituximab treatment failures or improve rituximab efficacy record without compromising safety
- Role of serum anti-PLA2R antibodies specificity or titer in the individualization of immunosuppressive therapy

the study provided a post hoc observational follow-up of a median of 17 months from inclusion. At the end of this period, 24 of 37 (65%) rituximab and 13 of 38 (34%) conventionally treated patients were on remission (P < 0.01). Complete remissions were observed in 7/37 (19%) and 1/38 (3%) rituximab and anti-proteinuric patients, respectively (P = 0.03). These numbers are in line with the MENTOR data (Figures 2B and C, and 4A; Supplementary data, Figure S1). Median times to remission were 7.0 (interquartile range 5.5–10.5) months (n = 24) and 7.0 (4.0–13.0) months (n = 13) in the rituximab and the anti-proteinuric treatment groups, respectively. There were no safety differences between the two regimens, further supporting, together with MENTOR, the safety of rituximab.

RITUXIMAB DOSE OPTIMIZATION

Both MENTOR and GEMRITUX tested a multiple dose rituximab regimen: two consecutive 1-g doses separated by 2 weeks and two consecutive 375-mg/m² doses separated by 1 week, respectively [3, 8] (Figure 4A). Rituximab was originally authorized to treat lymphoma and later rheumatoid arthritis at doses of 375 mg/m² weekly for 4 weeks (total dose of 1.73 m² individual: 2.6 g = 4 × 0.65 g) for lymphoma and 1 g repeated 2 weeks later (total dose 2 g) for rheumatoid arthritis. Idiopathic membranous nephropathy regimens and RCTs just copied and adapted these authorized and tested regimens. However, the key question is whether the repeated initial dosing is necessary for membranous nephropathy. This is a question worth asking since one of the limitations to a more widespread use of rituximab is cost, even though cost analysis has concluded that rituximab may be cost-effective in the short and medium terms compared with cyclophosphamide/steroids [21]. However, health and hospital authorities quite often focus on the short-term and local hospital drug costs, and would put up barriers to prescribing rituximab when cyclophosphamide is cheaper. Additionally, a lower rituximab dose may be safer, although both MENTOR and GEMRITUX evidenced an excellent safety profile, similar to conventional antiproteinuric therapy and better than cyclosporine A. The Italian pioneers of rituximab for membranous nephropathy, Ruggerenti et al. [22], have long advocated a single-dose regimen termed as B-cell-driven rituximab treatment, in which a second single dose is prescribed based on B-cell depletion and proteinuria response [22]. In this regard, most membranous nephropathy patients will clear circulating B cells within 24 h of a single 375-mg/m² rituximab dose, questioning the need for initial repetitive dosing [23, 24]. Thus, the single-dose regimen may achieve long-term complete remission, or may be followed by a second single dose if B cells are not depleted or following recurrence or partial remission (Figure 4B).

Although a rituximab dose-response effect on the timing and frequency of remission was recently suggested based on comparison of independent studies (an observational study and
the anti-PLA2R positive patients in GEMRITUX) using different individual doses and timings between doses [20], inclusion of the MENTOR data in the comparison argues against such a dose–response relationship (Table 2; Figure 4A). Earlier, a higher rate of complete and/or overall remission was reported in the observational study using a total dose of 2 g with a 2-week interval between two 1 g doses than with a total dose of 1.45 g (375 mg/m² × 2) with a 1-week interval between doses in GEMRITUX (Table 2) [20]. The combination of higher dose and lower epitope spreading (a measure of how many epitopes in the PLA2R are recognized by anti-PLA2R antibodies in individual patients) was associated with remission [20]. However, when comparing GEMRITUX with MENTOR, which used the (higher dose) 1 × 2-g protocol, these putative differences in remission rates or timings were not apparent (Figure 4A).

ANY MORE NEWS ON THE HORIZON?

The RI-CYCLO trial, estimated to be completed by December 2019, is assessing the efficacy (primary endpoint complete remission at 1 year) and safety of rituximab versus cyclophosphamide/steroids in 76 patients with membranous nephropathy [25]. Another major trial, Sequential therapy with TACrolimus and Rituximab in primary MEmbranous Nephropathy (STARMEN), was completed on 30 June 2019 [26]. STARMEN randomized 86 patients to sequential therapy with tacrolimus for 6–9 months plus single dose of rituximab (1000 mg i.v.) or cyclophosphamide/steroids. The primary endpoint was the proportion of patients reaching either complete or partial remission at 24 months. Other relevant endpoints were the time to achieve remission, number of relapses, doubling of SCr and the prognostic value of anti-PLA2R antibodies. The results of this trial are to be made public in late 2019 or 2020.

CONCLUSION

In conclusion, the MENTOR trial provided conclusive evidence of the higher efficacy of rituximab in inducing remission and its better safety than cyclosporine A, one of the regimens recommended by KDIGO 2012. These results should be a game changer and the future guidelines may likely recommend rituximab over CNIs.

However, unsolved issues remain (Table 3). One is the relative position of rituximab versus cyclophosphamide/steroids. Based on the published trials with cyclophosphamide/steroids, we believe that rituximab efficacy and safety compare favourably with these regimens. Although long-term trials are missing for rituximab, but available for cyclophosphamide/steroids, the success in inducing complete remission with rituximab is likely to result in improved long-term outcomes, although this remains to be demonstrated conclusively. In this regard, the long-term clinical trial of cyclophosphamide/steroids, on which the KDIGO 2012 recommendations are based, would probably not meet current management standards for proteinuric kidney disease in the placebo arm and the current RCT design and reporting standards [6]. Thus, this trial should be considered outdated. The results of ongoing or recently completed trials, RI-CYCLO and STARMEN, comparing cyclophosphamide/steroids with rituximab or rituximab/tacrolimus are awaited. For STARMEN, the complexity of the rituximab arm, which additionally includes tacrolimus, may impair its ability to represent the impact of rituximab alone.

Another unsolved issue is the optimal dosing of rituximab. The MENTOR regimen will likely become the standard approach to membranous nephropathy, given that it is supported by a clinical trial. However, regimens currently in use in membranous nephropathy are derived from those used in malignancy, and dosing could be further optimized. A lower optimized dose would entail significant cost savings and help to extend use of rituximab to more economically deprived healthcare systems.

Finally, treatment failure was observed in MENTOR in 26 (40%) rituximab patients and 52 (80%) cyclosporine A patients by 24 months. Thus, the current first-line therapeutic approaches fail to help a large number of patients. New B-cell–targeting therapies and other promising therapeutic approaches have been reviewed recently [18]. Additionally, an unmet clinical need is co-adjuvant therapy that may accelerate complete remission to a >3-month window, to be used in the time window that it takes for rituximab or other disease-modifying regimens to induce immunological remission and for this immunological remission to translate to clinical remission. In this regard, given the lag time from initiation of therapy to a response, the potential adverse consequences of persistent nephrotic syndrome and the safety profile of rituximab, an argument could be made to initiate therapy as soon as idiopathic membranous nephropathy is diagnosed (Figure 1C).

A similar argument was made to justify immediate initiation of cyclophosphamide/steroids or chlorambucil/steroids, which represent a less safe alternative, >20 years ago [7].

SUPPLEMENTARY DATA

Supplementary data are available at ckj online.

FUNDING

Research by the authors was supported by FIS CP14/00133, PI16/02057, P118/01366, P119/00588, P119/00815, DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071), ISCIII-RETIC REDinREN RD016/0009 Fondos FEDER, FRIAT, Sociedad Española de Nefrología, Comunidad de Madrid B2017/BMD-3686 CIFRA2-CM.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Couser WG. Primary membranous nephropathy. Clin J Am Soc Nephrol 2017; 12: 983–997
2. Tomas NM, Beck LH, Meyer-Schwesinger C et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 2014; 371: 2277–2287
3. Fervenza FC, Appel GB, Barbouj SJ et al. Rituximab or cyclosporine in the treatment of membranous nephropathy. N Engl J Med 2019; 381: 36–46
4. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl 2012; 2: 139–274
5. Remuzzi G, Chiurcu C, Abbate M et al. Rituximab for idiopathic membranous nephropathy. Lancet 2002; 360: 923–924
6. Jha V, Ganguli A, Saha TK et al. A randomized, controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J Am Soc Nephrol 2007; 18: 1899–1904
1. Ponticelli C, Altieri P, Scolari F et al. A randomized study comparing methylprednisolone plus chlorambucil versus methylprednisolone plus cyclophosphamide in idiopathic membranous nephropathy. *J Am Soc Nephrol* 1998; 9: 444–450

2. Dahan K, Debiec H, Plaisier E et al. Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up. *J Am Soc Nephrol* 2017; 28: 348–358

3. Ren S, Wang Y, Xian L et al. Comparative effectiveness and tolerance of immunosuppressive treatments for idiopathic membranous nephropathy: a network meta-analysis. *PLoS One* 2017; 12: e0184398

4. Floege J, Barbour SJ, Cattran DC et al. Management and treatment of glomerular diseases (part 1): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. *Kidney Int* 2019; 95: 268–280

5. Jang E, Cho WS, Cho ML et al. Foxp3+ regulatory T cells control humoral autoimmunity by suppressing the development of long-lived plasma cells. *J Immunol* 2011; 186: 1546–1553

6. Cerny T, Borisch B, Introna M et al. Mechanism of action of rituximab. *Anticancer Drugs* 2002; 13 (Suppl 2): S3–S10

7. Rosenzwajg M, Languille E, Debiec H et al. B- and T-cell subpopulations in patients with severe idiopathic membranous nephropathy may predict an early response to rituximab. *Kidney Int* 2019; 95: 268–280

8. Seitz-Polski B, Dahan K, Debiec H et al. High-dose rituximab and early remission in PLA2R1-related membranous nephropathy. *Clin J Am Soc Nephrol* 2019; 14: 1173–1182

9. Hamilton P, Kanigicherla D, Venning M et al. Rituximab versus the modified Ponticelli regimen in the treatment of primary membranous nephropathy: a health economic model. *Nephrol Dial Transplant* 2018; 33: 2145–2155

10. Ruggenenti P, Cravedi P, Remuzzi G. Rituximab for membranous nephropathy and immune disease: less might be enough. *Nat Clin Pract Nephrol* 2009; 5: 76–77

11. Cravedi P, Ruggenenti P, Sghirlanzoni MC, et al. Titrating rituximab to circulating B cells to optimize lymphocytolytic therapy in idiopathic membranous nephropathy. *Clin J Am Soc Nephrol* 2007; 2: 932–937

12. Reddy H, Duffy A, Holtzman NG et al. The role of β-elimination for the clinical activity of hypomethylating agents and cyclophosphamide analogues. *Am J Cancer Ther Pharmacol* 2016; 3: 1–8

13. Wachsmuth LP, Patterson MT, Eckhaus MA et al. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. *J Clin Invest* 2019; 129: 2357–2373

14. Pasquier E, Kavallaris M, André N. Metronomic chemotherapy: new rationale for new directions. *Nat Rev Clin Oncol* 2010; 7: 455–465

15. Mathieson PW. Proteinuria and immunity – an overstated relationship? *N Engl J Med* 2008; 359: 2492–2494

16. Ruggenenti P, Fervenza FC, Remuzzi G. Treatment of membranous nephropathy: time for a paradigm shift. *Nat Rev Nephrol* 2017; 13: 563–579

17. Makker SP, Kanalas JJ. Course of transplanted Heymann nephritis kidney in normal host. Implications for mechanism of proteinuria in membranous glomerulonephropathy. *J Immunol* 1989; 142: 3406–3410

18. Mathieson PW. Proteinuria and immunity – an overstated relationship? *N Engl J Med* 2008; 359: 2492–2494

19. Ruggenenti P, Fervenza FC, Remuzzi G. Treatment of membranous nephropathy: time for a paradigm shift. *Nat Rev Nephrol* 2017; 13: 563–579

20. Mathieson PW. Proteinuria and immunity – an overstated relationship? *N Engl J Med* 2008; 359: 2492–2494

21. Ruggenenti P, Fervenza FC, Remuzzi G. Treatment of membranous nephropathy: time for a paradigm shift. *Nat Rev Nephrol* 2017; 13: 563–579

22. Mathieson PW. Proteinuria and immunity – an overstated relationship? *N Engl J Med* 2008; 359: 2492–2494

23. Mathieson PW. Proteinuria and immunity – an overstated relationship? *N Engl J Med* 2008; 359: 2492–2494

24. Mathieson PW. Proteinuria and immunity – an overstated relationship? *N Engl J Med* 2008; 359: 2492–2494

25. Mathieson PW. Proteinuria and immunity – an overstated relationship? *N Engl J Med* 2008; 359: 2492–2494