Meta-analysis cum machine learning approaches address the structure and biogeochemical potential of marine copepod associated bacteriobiomes

Balamurugan Sadaiappan¹,⁵, Chinnamani PrasannaKumar¹,⁵, V. Uthara Nambiar⁴, Mahendran Subramanian²,³,⁴ & Manguesh U. Gauns¹,⁶

Copepods are the dominant members of the zooplankton community and the most abundant form of life. It is imperative to obtain insights into the copepod-associated bacteriobiomes (CAB) in order to identify specific bacterial taxa associated within a copepod, and to understand how they vary between different copepods. Analysing the potential genes within the CAB may reveal their intrinsic role in biogeochemical cycles. For this, machine-learning models and PICRUSt2 analysis were deployed to analyse 16S rDNA gene sequences (approximately 16 million reads) of CAB belonging to five different copepod genera viz., *Acartia* spp., *Calanus* spp., *Centropages* sp., *Pleuromamma* spp., and *Temora* spp.. Overall, we predict 50 sub-OTUs (s-OTUs) (gradient boosting classifiers) to be important in five copepod genera. Among these, 15 s-OTUs were predicted to be important in *Calanus* spp. and 20 s-OTUs as important in *Pleuromamma* spp.. Four bacterial s-OTUs *Acinetobacter johnsonii*, *Phaeobacter*, *Vibrio shilonii* and *Piscirickettsiaceae* were identified as important s-OTUs in *Calanus* spp., and the s-OTUs *Marinobacter*, *Alteromonas*, *Desulfovibrio*, *Limnobacter*, *Sphingomonas*, *Methylovorans*, *Enhydrobacter* and *Coriobacteriaceae* were predicted as important s-OTUs in *Pleuromamma* spp., for the first time. Our meta-analysis revealed that the CAB of *Pleuromamma* spp. had a high proportion of potential genes responsible for methanogenesis and nitrogen fixation, whereas the CAB of *Temora* spp. had a high proportion of potential genes involved in assimilatory sulphate reduction, and cyanocobalamin synthesis. The CAB of *Pleuromamma* spp. and *Temora* spp. have potential genes accountable for iron transport.

Copepods (Subphylum Crustacea; Class Hexanauplia; Subclass Copepoda) are an abundant and diverse group of zooplankton in the ocean.¹,² They play a key role in energy transfer within the pelagic food web.³ They are also well-known for their wide-ranging and flexible feeding approaches.⁴ Copepods, usually not more than a few millimetres in length, support a wide range of bacterial communities, both internally and externally (due to the release of organic and inorganic nutrients during feeding and excretion).¹⁻³ In addition, it is an already-established fact that there is an exchange of bacterial communities between the copepods and the water-column, due to their feeding behaviour,⁴ and copepods transfer microbes from the photic zone up to the middle of the twilight zone.²,⁴,⁵ The different environmental conditions between the surrounding water and copepods favour different bacterial communities.⁶,⁷,⁹

However, feeding also changes the composition of bacterial communities in the copepod gut, e.g., a high abundance of *Rhodobacteraceae* was reported in *Acartia* sp. with a full gut, in comparison with its starved counterparts.⁶ Copepods have mutualistic associations with (Gammaproteobacteria) *Pseudoalteromonas* spp.. In addition, Gammaproteobacteria was found to be more abundant in starved *Centropages* sp., *Acartia* sp.¹⁰

¹Plankton Ecology Lab, Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa 403004, India. ²Department of Bioengineering, Imperial College London, South Kensington, London SW72AZ, UK. ³Department of Computing, Imperial College London, South Kensington, London SW72AZ, UK. ⁴Faraday-Fleming Laboratory, London W148TL, UK. ⁵These authors contributed equally: Balamurugan Sadaiappan and Chinnamani PrasannaKumar. *email: gmangesh@nio.org
and *Pleuromamma* sp. A notable change was observed among bacterial communities between the diapause phase and actively-feeding *Calanus finmarchicus*. Similarly, Flavobacteriaceae was meagre in copepods during diapause and abundant in its actively-feeding counterparts. Datta et al. reported that *Marinimicrobium* (Alteromonadaceae) was relatively more abundant in deep-dwelling copepods than in its shallow counterparts, and concluded that the copepods have inter-individual microbiome variations; however, the factors driving these variations are still unknown. From these early reports, it is well-known that bacterial communities associated with copepods vary according to many factors, based on feeding, difference in stages of life, body size, and their vertical migration through the water column. Moreover, there may be a particular relationship or symbiosis, and a natural core microbiome that depends not necessarily on the food, but on the host environment. Herein, the term 'bacteriobiome' means the total bacterial composition inhabiting a specific biological niche (for example, copepods), including their genomic content and metabolic products. It is a well-known fact that host-associated microbial communities remain essential for maintaining any ecosystem, and any variation in these communities may be unfavourable. Thus, studying the specific bacterial taxa associated with copepods and its variations, as well as analysing potential genes within the copepod-associated bacteriobiomes (CAB), will help us in understanding their role in the host's health, marine food web and biogeochemical cycles.

Until now, only a few studies have sought to identify the core-bacteria associated with the copepods, using their clustering patterns and presence/absence data. From these studies, approximately eight bacterial orders, such as Actinomycetales, Bacillales, Flavobacteriales, Lactobacillales, Pseudomonadales, Rhizobiales and Vibrionales, were identified as core members in *Pleuromamma* spp., whereas the phylum Proteobacteria were identified as core operational taxonomic units (OTUs; equivalent to species), along with Actinobacteria and Bacteroidetes in *Calanus finmarchicus*.

Moreover, the gut of copepods has an acidic pH and a different oxygen gradient from the anal opening to the metasomal region; this may influence certain groups of bacteria to colonise within the copepods. These bacterial communities could be specialised in iron dissolution, anaerobic methanogenesis, nitrite reduction and anaerobic dinitrogen (N$_2$) fixation. At any given time, the abundance of CAB will be an order of two to three less than seawater, but, if we assume that there is one copepod per litre of seawater, the contribution of CAB to marine biogeochemical cycles will be significant. Already, various studies have shown that CAB has a potential role in biogeochemical processes such as nitrogen fixation, denitrification, sulphur and iron mineralisation.

The masking effect of the abundant bacterial community, associated with copepod diet, copepod life stage and environmental conditions, was considered to be the main hindrance in defining core bacterial OTUs specific to copepod genera. Herein, we combined the data from previous studies that dealt with CAB, and used machine learning algorithms to understand the core bacteria associated with the copepods at least up to the genus level. For this, we analysed 16S rDNA gene sequences (V3–V4 & V4–V5 regions; ~16 million reads) of CAB belonging to five different copepod genera (*Acartia* spp., *Calanus* spp., *Centropages* sp., *Pleuromamma* spp. and *Temora* spp.) using the Quantitative Insights into Microbial Ecology (QIIME2) package. In addition, we hypothesised that, if the copepod genera have specific OTUs, then different copepods will have a distinctive CAB, and the biogeochemical potential of the CAB will differ. We used random forest classifier, gradient boosting classifier, principal coordinate analysis (PCoA), analysis of the composition of microbiome (ANCOM), principal component analysis (PCA) and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) analysis to test this hypothesis. The present study represents one of the biggest CAB-related DNA sequence data analysed to date.

Materials and methods

Data collection. We systematically reviewed the studies related to CAB. The relevant published research articles were searched and retrieved from PubMed, Google Scholar and SCOPUS, using keywords such as copepods gut microbiome, copepod associated bacteria/microbiome, copepods gut flora, copepod microbiome and zooplankton associated microbiome on Jan 30th, 2020. Aside from the search for published research articles, we also searched in public databases (for published Ion Torrent, Pyro, and Illumina sequence data), such as the NCBI-SRA, ENA, DDBJ-DRA and Figshare, using the above-mentioned keywords.

Overall, 11 study data were retrieved for meta-analysis (Table 1) containing 514 next-generation sequence libraries. We pre-processed separately every individual file within the study and prepared a quality control (QC) report.

Pre-processing. The sequence quality was checked using the FastQC tool, and the minimum base per quality for future analysis was fixed as PHRED > 25. Based on the QC, high rates of erroneous sequences from Illumina, 454 and Ion Torrent files (Table 1) were removed from the meta-analysis. The two major reasons for exclusion were (1) erroneous sequences (of PHRED < 25) and (2) short reads (< 200 bps) screened by DADA2 while picking sub-OTUs (s-OTUs). Overall, Illumina sequences were of quality than the Ion-torrent and Pyrosequence sequences. Finally, we carried out a meta-analysis with 452 files of CAB in order to test the proposed hypothesis.

Meta-analysis. *Sequence screening and preparations for meta-analysis.* We used QIIME2 version 2019.10 for the meta-analysis. QIIME2 pipeline provides a start-to-finish workflow, beginning with demultiplexing sequence reads and finishing with taxonomic and phylogenetic profiles. The sequences from the individual study were imported to QIIME2 using CasavaOneEight format, and the quality of the sequences was checked using the default settings in QIIME. Based on the sequence quality, the sequence was trimmed, denoised, aligned and checked for chimera using DADA2 (single and paired-ends sequences were trimmed based on the length of
Table 1. List of sequence libraries representing the copepod-associated bacteriobiomes (CAB). Of these, only seven libraries (highlighted in bold) were analysed in this study.

S. no.	NCBI BioProject no.	Species name	16S rDNA region	Sequencing platform	Reference
1	PRJNA383099	Details not available	Details not available	Illumina MiSeq	No
2	PRJEB23400	Pleuromamma sp.	V3–V4	Illumina	No
3	PRJNA416766	Acartia sp. and Temora sp.	V3–V4 & V4–V5 (archaea)	Illumina MiSeq	Wage et al.
4	PRJNA341063	Pleuromamma spp.	V3–V4	Illumina MiSeq	Shoemaker and Moisander
5	PRJNA285993	Acartia longiremis, Centropages hamatus, and Calanus finmarchicus	V3–V4	Illumina MiSeq	Moisander et al.
6	PRJEB8785	Acartia tonsa and Centropages hamatus	V3–V4	454/FLX-based	Shoemaker et al.
7	PRJNA248671	Undinula vulgaris, Pleuromamma spp., Sapphirina met-alna, Pseudocalanus spp. and Tigriopus sp.	V5–V9	454 GS FLX Titanium	Shoemaker and Moisander
8	PRJEB14826	Acartia tonsa and Temora longicornis	V3–V4	Illumina MiSeq	Dorosz et al.
9	PRJNA322089	C. finmarchicus	V4	Illumina MiSeq	Datta et al.
10	PRJDB5552	Calanus sp., Paracalanus tetraconatus, Themisto sp., Evadne sp., and Oncaea sp.	V3–V4	Illumina MiSeq	De Corte et al.
11	PRJNA433804	Spaniomolgus sp.	V4–V5	Ion_Torrent	Shelyakin et al.

primer used)\(^20\). The feature table and representative sequence of each file were merged using the QIIME2 feature merge table, and representative sequences were merged.

Taxonomic classification. The merged files were aligned to phylogeny against the Greengenes reference sequence sepp-ref-gg-13-8 using q2-fragment-insertion\(^21\). Incorrect taxonomic and phylogenetic assignments, due to differences in 16S rDNA hypervariable regions and to merging of variable lengths during analysis, were solved using q2-fragment insertion technique (SATe-enabled phylogenetic placement in QIIME2 plugin)\(^21\). The core diversity was calculated before (to calculate the impact on diversity) and after removing mitochondria (mtDNA) and chloroplast (clDNA) sequences from the datasets. The mtDNA- and clDNA-filtered datasets were used for calculating diversity, taxonomy, important (core) s-OTUs, and the difference in composition estimation using QIIME2 and the diversity graph was plotted within QIIME2. We used Unweighted, Weighted UniFrac and Jaccard distance matrices to compute the beta diversity, and the outcomes were envisaged using PCoA in QIIME2. A permutational multivariate analysis of variance (PERMANOVA)\(^22\) through the Unweighted, Weighted UniFrac, along with Jaccord distance-based beta-diversity, was calculated within QIIME2. We used a standard pre-trained Greengenes reference dataset (gg_13_8_99_OTU_full-length)\(^23\), SILVA reference database (SILVA_188_99_OTUs full-length)\(^24\) and a fragment-insertion reference dataset (ref-gg-99-taxonomy). We then decided to discuss the results from the fragment-insertion reference dataset.

We also implemented ANCOM\(^25\) in QIIME2 plugin to identify the significantly different bacteria between the copepod genera. ANCOM used F-statistics and W-statistics to determine differences, where W represents the vigour of the ANCOM test for the tested number of species and F represents the measure of the effect size difference for a particular species between the groups (copepods). In order to predict the important bacteria associated with the copepods, we used a sophisticated supervised machine learning classifier (SML): Random-Forest Classifier (RFC)\(^26\) and Gradient Boosting Classifier (GBC)\(^27\) using built-in QIIME2. RFC is one of the most accurate for managing large and noisy datasets. This learning algorithm often manages unbalanced sample distributions, and is less susceptible to overfitting and generating unbiased classifiers\(^28\). The gradient boosting method involves the use of several weak learners by taking the loss function from the previous tree and using it to enhance the classification. This technique is less prone to overfitting and does not suffer from the dimensionality curse, but is susceptible to noisy data and outliers\(^29\).

The mtDNA and clDNA filtered feature table and representative sequences were also used as an input for predicting CAB potential metabolic function using PICRUSt\(^19\). The output abundance KEGG data were analysed in statistical analysis of metagenomic profile (STAMP), which includes PCA\(^20\), to find the significant difference in potential functions of CAB between the copepod genera using the Kruskal–Wallis H-test\(^31\) with Tukey–Kramer parameter\(^32\). The KEGG metabolic maps\(^33–35\) were used as a reference from which to draw the figure representing the copepod genera with a high proportion of potential functional genes.

Copepod phylogeny. The 18S rDNA gene sequences of five copepod genera (used in the present study) were extracted from the Genbank (NCBI). These sequences were aligned and the consensus representative sequence from each genus was obtained using Mega X version 10.1.7. These consensus sequences were used for studying the phylogenetic relationship between the copepods at genera level, using neighbour-joining tree in Mega X\(^36\).

Results

The present study represents one of the largest CAB-related DNA sequence data analyses to date. New bioinformatics tools have been created to cope with data generated by the next-generation sequencers. To overcome the bias in the tools, we used standard, well-recognised pipelines, such as FastQC and QIIME2 demultiplexing
Table 2. Details of the number of Illumina files, sequences extracted, quality filtered (Phred score < 25) and non-chimeric sequences. RP indicates ‘relative proportion’.

Species	No. of files	RP of files (%)	Gross Sequences	RP of gross sequences (%)	Net. no. of sequences after DADA2 denoise	Net. no. of non-chimeric seqs (%)	RP of non-chimeric seqs	Net. no. of seqs lost after DADA2 chimera filter	RP of seqs loss after DADA2 chimera filter (%)	
Acartia spp.	30	6.63	2,583,086	16.18	2,278,085	14.27	2,013,811	12.61	569,275	3.56
Calanus spp.	246	54.42	6,658,845	41.71	5,837,666	36.56	5,418,497	33.94	1,240,348	7.76
Pleuromamma spp.	148	32.74	4,310,670	27.00	3,204,613	20.07	2,995,684	18.76	1,314,986	8.23
Centropages spp.	12	2.65	798,974	5.00	783,422	4.90	752,340	4.71	46,634	0.29
Temora spp.	16	3.53	1,612,300	10.09	1,340,853	8.39	959,666	6.01	652,634	4.08
Total	452		15,963,875		13,444,639		12,139,998		3,823,877	

DNA sequence data analysis. From the 452 raw files, we analysed ~16 million V3–V4 regions, (except 18 files of V4-V5 archaea specific primer files from Wage et al., Table 1) of bacterial 16S rDNA gene sequences belonging to five copepod genera: Acartia spp., Calanus spp., Centropages sp., Pleuromamma spp. and Temora spp. After quality filtering through the DADA2 package, between 0.29 and 8.23% of sequences were removed (Table 2), and a total of 12,139,998 non-chimeric sequences were used for downstream analysis.

CAB alpha diversity. From the bacterial diversity Shannon (‘H’) indices for the five copepod genera, Calanus spp. showed the maximum (median, Q1–Q3: 5.85, 4.58–6.29) abundance and evenness of CAB, followed by Centropages sp. (5.13, 4.81–5.41) and the least was observed in Temora spp. (2.62, 2.36–2.89) (Fig. 1a).

The Kruskal–Wallis analysis revealed that the H index of the CAB within the Acartia spp. was significantly different from that of Calanus spp., Centropages sp., Temora spp. and Pleuromamma spp., with a p-value ranging between 0.000002 and 0.023779 (Fig. 1a). The H index of the CAB within the Temora spp. was significantly different from that of Centropages sp. (p = 0.0012) and Pleuromamma spp. (p = 0.000209). The H index of the CAB within the Calanus spp. was significantly different from that of Centropages sp., Pleuromamma spp. and Temora spp., with a p-value ranging between 0.000008 and 0.05.

Evenness indices showed that the CAB of the Calanus spp. (0.82, 0.67–0.86) have a high evenness index, followed by Centropages sp. (0.74, 0.71–0.77), Pleuromamma spp. (0.73, 0.57–0.82), and least in Temora spp. (0.65, 0.51–0.68) (Fig. 1b).

The Kruskal–Wallis analysis of CAB evenness index was calculated for all copepod genera (pairwise). There was a significant different evenness (p-value ≤ 0.05) between the CAB within Calanus spp. and Acartia spp., Pleuromamma spp., and Temora spp. In addition, Centropages sp. was significantly different from Temora spp. (Fig. 1b). The Faith’s Phylogenetic Diversity (Faith’s_PD) index of CAB was higher in the Pleuromamma spp. (50.75, 16.41–73.45), and the CAB of Temora spp. had lower Faith’s_PD, (3.59, 2.45–7.26), respectively (Fig. 1c).

The variation in the Faith’s_PD index of CAB was assessed using the Kruskal–Wallis test, which revealed that different copepod genera had a highly significant and phylogenetically distinct bacteriobiome (Fig. 1c). Only the CAB within Acartia spp. was not significantly different from Centropages sp.

CAB beta diversity. A consensus phylogram of the five copepod genera was constructed (Fig. 2a) (original phylogenetic tree in Fig. S1), and compared with the Unweighted UniFrac distance matrix of CAB using a PCoA plot. In the present study, from the beta-diversity (PERMANOVA P-value 0.001) patterns, phylogenetically closer Pleuromamma spp. and Calanus spp. harboured CAB expressing a mere 7.604% (axis 1) dissimilarity (Fig. 2b); however, the CAB composition still varied between and within copepod genera. As we closely investigated, Unweighted UniFrac distance matrix showed the CAB of Pleuromamma spp. and Calanus spp. separated into two different clusters (Fig. 2b), whereas the CAB of Calanus spp. was clustered into a single large cluster in a Weighted UniFrac distance matrix (Fig. 2c). In addition, in the Jaccard distance matrix PCoA revealed that Calanus spp. had three distinct CAB clusters (Fig. 2d).

On the other hand, the CAB of the phylogenetically closer Centropages sp. and Temora spp. did show some clustering pattern, but not so distinctive (Fig. 2b).

Differential abundance of CAB revealed through ANCOM. ANCOM results showed that a total of 23 CAB phyla, viz., Acidobacteria, Actinobacteria, Bacteroidetes, Chlamydiae, Chlorobi, Crenarchaeota, Cyanobacteria, Elusimicrobia, Euryarchaeota, Firmicutes, Fusobacteria, Gemmatimonadetes, GN02, OD1, [Parvarchaeota], Planctomycetes, Proteobacteria, SBR1093, Spirochaetes, [Thermi], TM6, Verrucomicrobia, and WPS-2, were significantly different between copepod genera, with W and Centred Log-Ratio (clr) statistics ranging...
between 40–30 and 53–2.6, respectively (Table S1). The 23-CAB phyla consisted of 32 classes, 78 orders, 145 families and 240 genera, which were significantly different between copepod genera. From these 240 CAB genera, those in the top two percentile (W and clr statistical values are given in Supplementary File Table S2) were chosen to explain the percentile compositional difference of CAB between copepod genera. CAB taxa, viz., *Pseudomonas*, *Anaerospora*, *HTCC2207*, *Acinetobacter*, *Ochrobactrum* family *Cryomorphaceae*, *Flavobacteriaceae* and *Methylobacteriaceae* (W and clr-statistical values are given in Supplementary File Table S2) were found in high percentages within *Calanus* spp. (Fig. 3).

Furthermore, from ANCOM, the CAB taxa, viz., *Paulinella*, RS62, *Candidatus Portiera*, *Planktotalea*, *Segetibacter*, *Octadecabacter*, family *Rhodobacteraceae* and order *Bacteroidales*, were found in high percentages within *Acartia* spp. (Fig. 3). In the case of *Centropages* sp. the CAB genera, such as *Alteromonas*, *Pseudalteromonas*, *Flavicola*, *Oleispira*, *Ralstonia* and family *Colwelliaceae*, were found in high percentages. In addition, *Temora* spp. appeared to contain a high percentage of *Comamonas*, *Planctomyces*, *Flavobacterium*, *Synechococcus*, *Chryseobacterium* and *Nitrosopumilus*. Only four CAB genera, *Bradyrhizobium*, *Marinobacter*, *Photobacterium*, and *Vibrio*, were significantly high in *Pleuromamma* spp. (Fig. 3).

Machine learning-based models to predict important s-OTUs. The overall accuracy of the RFC model was 0.923 with an accuracy ratio of 1.68, indicating high reliability (Fig. 4a). However, the GBC model showed better prediction accuracy, with accuracy of 0.967 and an accuracy ratio of 1.76 (Fig. 4b). The accuracy of RFC in predicting important bacterial s-OTUs in copepod genera was within the range of 0.0–1 (Fig. 4a) and the accuracy of GBC in predicting important s-OTUs in the copepod genera was in the range of 0.5–1 (Fig. 4b). The prediction accuracy of important s-OTUs predicted in *Calanus* spp. and *Pleuromamma* spp. by both supervised machine learning (SML) (RFC and GBC) classifiers was high (1.00), unlike the prediction accuracy for *Acartia* spp. (0.5 in RFC and 0.66 in GBC), *Temora* spp. (0.0 in RFC and 0.66 in GBC) and *Centropages* sp. (0.5 in RFC and 0.5 in GBC). The graphical representation of the machine learning models’ Receiver Operating Characteristic (ROC) curve was within the range of 0.98–1 for both RFC and GBC (Fig. 4c,d). This shows the high positive prediction rate and low false prediction rate for both SML classifiers (RFC and GBC).
Figure 2. (a) 18S rDNA consensus phylogenetic tree of five copepod genera used in the study. (b) Unweighted UniFrac distance matrix (community dissimilarity that incorporates phylogenetic relationships between the features); (c) Weighted UniFrac distance matrix (community dissimilarity that incorporates phylogenetic relationships between the features); (d) Jaccord distance-based beta-diversity. The CAB of representative copepods are colour-coded.

Figure 3. Top two percentages of the CAB-bacterial genera observed in the copepods obtained via ANCOM.
Figure 4. (a) Confusion matrix for the RFC model; (b) Confusion matrix for the GBC model; (c) ROC and AUC for the RFC model; (d) ROC and AUC for the GBC model; (e) Heatmap of the predicted important s-OTUs in the five copepod genera using RFC; (f) Heatmap of the predicted important s-OTUs in the five copepod genera using GBC.
RFC predicted 25 bacterial taxa and one archaeal taxon in five copepod genera as being important s-OTUs, with differential hierarchical resolutions ranging from the family to species level. From the RFC prediction accuracy values, only the s-OTUs predicted as important s-OTUs for the *Calanus* spp. and *Pleuromamma* spp. are considered, due to the low prediction accuracy for *Acartia* spp., *Temora* spp. and *Cetrophyges* sp.. The following s-OTUs were predicted as important by RFC only for *Calanus* spp.: *Photobacterium*, *Vibrio shilonii*, *Acinetobacter johnsonii*, *Acinetobacter schindleri*, *Micrococcus*, *Micrococcus luteus*, *Anaerospira*, and *Methylobacteriaceae*. Specific important s-OTUs for the three other genera of copepod were not evident (Fig. 4e).

In the case of GBC, a total of 28 taxa and one archaeal taxon were predicted as important s-OTUs for the five copepod genera (Fig. 4f). From the GBC prediction accuracy values, the only s-OTUs predicted as important were for the *Calanus* spp. and *Pleuromamma* spp., which can further be considered due to the low prediction accuracy for *Acartia* spp., *Temora* spp. and *Centropages* sp., similar to the RFC prediction. The following s-OTUs were predicted as important by GBC only for *Calanus* spp.: *Acinetobacter johnsonii*, *Vibrio shilonii*, *Phaeobacter* and *Piscirickettsiaceae*. In *Pleuromamma* spp., s-OTUs of *Marinobacter*, *Alteromonas*, *Pseudoalteromonas*, *Desulfovibrio*, *Limbobacter*, *Sphingomonas*, *Methyloversatilis*, *Enhydrobacter* and *Coriobacteriaceae* were predicted as important.

Principal component analysis reveals that copepod genera host functionally distinct bacterial diversity. From the PCA plot on the potential functional genes of CAB, clusters were found for three copepod genera: *Calanus* spp., *Pleuromamma* spp. and *Centropages* sp. (Fig. 5). The potential functional genes of CAB within *Calanus* spp. clustered from the rest of the copepod genera, with Principal Component (PC) values of 28.4% in axis 1 and 16.7% in axis 2, whereas the potential functional genes of CAB within *Pleuromamma* spp. showed variations of 28.4% in axis PC1 and 9.2% in axis PC3. *Centropages* sp. had unique CAB functional diversity, with variations of 28.4% in axis PC1 and 9.2% in axis PC3, whereas the potential functional genes of CAB within *Acartia* spp. and *Temora* spp. were scattered.

Biogeochemical potentials of CAB. Potential methanogenesis by CAB: evidence of interlinking methanogenesis, DMSP degradation and phosphate utilisation. The genes responsible for the reduction of methyl phosphonate into methane (MPn genes -phnL, phnM, phnJ, phnI, phnH and phnG) were relatively high in the CAB of *Pleuromamma* spp. and *Calanus* spp. (Fig. S2). In addition, based on the present analysis, the CAB of the *Centropages* sp. had the highest proportion of mttB genes, followed by *Acartia* spp. and *Calanus* spp. One should note that these mttB genes are involved in the oxidation of trimethylamine (TMA) to methyl-CoM (Fig. S2).
CAB of Pleuromamma spp. and Calanus spp. contained some proportion of dmd-tmd (tri/dimethylation to methylamine) genes, whereas there was little or no proportion of this gene in the CAB of Temora spp., Centropages sp. and Acartia spp. (Fig. S2). The proportion of DmmD gene was highest in the CAB of Centropages sp., followed by Acartia spp. and Temora spp., while the CAB of Pleuromamma spp. had the lowest proportion. The proportion of dmsA (DMSP to S-methylmethionine) was found to be highest in the CAB of Acartia spp., followed by Centropages sp. and Calanus spp., whereas the proportion was lowest in the CAB of Temora spp.

In addition, the dthl gene (DMS to methyl thioether) was found to be high in the CAB of Centropages sp. and Acartia spp. and low in the CAB of Temora spp. However, the dmsA gene which converts dimethyl sulfoxide (DMSO) to methyl thioether was found to be highest in the CAB of Pleuromamma spp. followed by Centropages sp. and phosphoenolpyruvate carboxylase (ppc) gene is involved in carbon fixation in prokaryotes. This gene was comparatively similar to the other bio-geochemical genes observed in the CAB. Based on our analysis, in all copepod genera assimilatory sulphate reduction (ASR) pathway genes were predominant, rather than the dissimilatory sulphate reduction (DSR) pathway genes. CAB of Temora spp. contained a higher number of sulphite reductase ferredoxin components (Fig. S3a), whereas CAB of Centropages sp. contained flavoprotein sulphite reductase genes in high proportion (Fig. S3b).

Nitrogen fixation. The CAB of the copepod genera was screened for the nifH, nifD and nifK genes responsible for nitrogen fixation. CAB of Pleuromamma spp. had the highest proportion of nifH gene followed by Calanus spp. whereas Temora spp. had a lower proportion (Fig. S4).

Denitrification. Genes involving in all steps of denitrification (nitrate reductions [narG, napA and napB], nitrite reduction [nirK and nirS], nitric oxide reduction [norB, C] and nitrous oxide reduction [nosZ]) were observed in the CAB of all five copepod genera; however, their relative proportions varied between genera. The CAB of Temora spp. was found to have the highest proportion of potential denitriﬁcation genes, especially narG, napA and napB genes, followed by the CAB of Pleuromamma spp., Centropages sp., Calanus spp. and Acartia spp. (Fig. S4).

Among the potential nitrite reductase genes, the proportion of nirK gene was higher than the nirS gene in the CAB of all copepod genera (Fig. S4). Furthermore, the proportion of nirK gene was high in the CAB of Temora spp. and Acartia spp., whereas a high proportion of nirS was found in Pleuromamma spp. and Calanus spp. (Fig. S4).

The next step in denitrification is the reduction of nitric oxide to nitrous oxide by norB and norC genes. From the present analysis, we observed that the CAB of Temora spp. had the highest proportion of norB gene followed by Acartia spp., whereas the proportion was lowest in the CAB of Pleuromamma spp. and Calanus spp. (Fig. S4). In contrast, the gene norC was found highest in Pleuromamma spp. followed by Calanus spp., and low in Temora spp. (Fig. S4). The final reaction is denitrification, i.e., reduction of nitrous oxide to nitrogen by nosZ gene. The CAB of Acartia spp. followed by Calanus spp. contained a high proportion of nosZ gene (Fig. S4).

Anaerobic nitric oxide reduction. The norV (anaerobic nitric oxide reductase) and norW (flavoreductin reductase) gene proportions were high in the CAB of Pleuromamma spp., compared to that of (descending order) Centropages sp., Acartia spp., Calanus spp. and Temora spp. (Fig. S4).

Dissimilatory nitrate reduction into ammonia. The nrfA gene involves in the final step of dissimilatory nitrate reduction into ammonia (DNRA), i.e., reduction of nitrite to ammonia was higher in the CAB of Calanus spp., whereas the CAB of Pleuromamma spp. and Centropages sp. had almost similar proportions of this gene (Fig. S4).

Carbon processes. The phosphoenolpyruvate carboxylase (ppc) gene is involved in carbon fixation in prokaryotes. This gene was comparatively similar to the other bio-geochemical genes observed in the CAB. While the CAB of Centropages sp. had a high proportion of the ppc gene, the CAB of Pleuromamma spp., Temora spp., Acartia spp. and Calanus spp. had proportions in descending order (Fig. S5a). In addition, the CAB of
Centropages sp. had a high proportion of chitinase gene [EC:3.2.1.14], with the least observed in the CAB of *Calanus* spp. (Fig. S5b).

Role of CAB in iron remineralization. The sequence analysis of CAB showed that the five copepod genera had different proportions of the *feoA* gene, responsible for ferrous iron transport protein A. The CAB of *Temora* spp. have the highest proportion of *feoA* gene, followed by *Pleuromamma* spp., *Acartia* spp. and *Calanus* spp. (Fig. S6a). The other gene (*hulH*2) involved in ferric iron reduction was found to be high in the CAB of *Pleuromamma* spp. (Fig. S6b).

CAB as a source of cyanocobalamin synthesising prokaryotes. Among the CAB of the five copepod genera analysed, the relative proportion of potential cobalamin-synthesising gene in copepod genera descended in the following order: *Temora* spp., *Acartia* spp., *Calanus* spp., *Pleuromamma* spp., and *Centropages* sp. (Fig. S7). However, from the present study, high proportions of cobalamin-synthesising genes in the CAB of *Temora* spp. may be due to the presence of genus *Nitrosopumilus* (phyta Thaumarchaeota). We found that the CAB may also be one of the potential sources of cyanocobalamin production in the ocean. The limitation of the present study could be the fact that all the CAB sequences were from the Atlantic Ocean.

Discussion

CAB diversity between the copepod genera. *Calanus* spp. are filter feeders and mostly herbivores, but do feed on ciliates and other heterotrophic protists during reproduction and energy shortfalls2,3. This may be the reason for their high H index. Most of the gene sequences used for this meta-analysis were from *Calanus finmarchicus*; however, *Centropages* sp. feeds on different sources, from microalgae to fish larvae40. *Acartia* spp. are primarily omnivorous (with a high degree of carnivore behaviour), feeding on phytoplankton, rotifers, and occasionally ciliates41, whereas *Temora* spp. frequently switches its feeding behaviour, *i.e.*, from omnivore to herbivore, based on season and on food availability42. The bacterial alpha diversity analysis in the *Temora* spp. revealed a significantly lower Shannon diversity. However, in an earlier study, no difference was reported in alpha diversity between the *Temora* sp. and *Acartia* sp.27. This can be explained based on the source of copepods involved for the study by Wega et al.37, which was based only on a single source, *i.e.*, the central Baltic sea; however, in our case the CAB sequences for *Acartia* spp. were from the central Baltic sea25 as well as the Gulf of Maine1. The occurrence of high Faith's PD in *Pleuromamma* spp. may be due to their range distribution in the water column, and few species within *Pleuromamma* spp. are known to migrate vertically25,43, or possibly due to their food uptake, which includes phytoplankton, microzooplankton (ciliates and flagellates) and detritus11,44.

The consensus phylogram revealed that, at the genera level, *Calanus* spp. was phylogenetically closer to *Pleuromamma* spp. and formed two distinct clusters in the PCoA plot. Furthermore, the difference in dissimilarity percentage of CAB between *Pleuromamma* spp. and *Calanus* spp. may be attributed to the difference in vertical migration, life stages and feeding behaviour between the two copepod genera. *Pleuromamma* spp., an omnivore-feeder11,44, can migrate vertically up to 1000 m11,43 whereas *Calanus* spp., mostly herbivores but occasional omnivores36,37, can migrate up to 600 m45,46. This may also be due to the difference in the life stage of *Calanus* sp. (the microbial communities varied between diapausing and active feeding)2.

ANCOM. In an early report, bacterial members belonging to the Gammaproteobacteria were observed to be dominant in *Calanus finmarchicus*, followed by members of Alphaproteobacteria10. However, in the present ANCOM, the presence of Gamma and Alphaproteobacteria were equal (three genera each) in *Calanus* spp. (Fig. 3). Similar to our results, the unclassified genus of Rhodobacteracea was reported to be abundant in *Acartia longiremis*30. Colwelliaceae was reported to be abundant in *Calanus finmarchicus*30; however, in the present analysis, family Colwelliaceae was found in a high percentage in *Centropages* sp. An abundance of Flavobacteriaceae was observed, along with phytoplankton and diatoms in the gut of *Calanus finmarchicus* containing food2; whereas *Sediminicola* sp. (Flavobacteriaceae) was observed to be dominant in *Acartia longiremis*, *Calanus finmarchicus* and *Centropages hamatus*10. In addition, Dorosz et al.47 reported that *Flavobacterium* was more dominant in *Temora longicornis* than in *Acartia tonsa*; whereas, in our case, Flavobacteriaceae was found in a high percentage in *Calanus* spp.. Upon comparison of the present ANCOM and previous reports, *Pseudoalteromonas* sp. appeared in high percentage not only within *Centropages* sp.10 but also in consistent and abundant bacteria in *Acartia*, and *Calanus* sp. The prevalence of *Pseudomonas* has been observed in *Pleuromamma* sp.11, whereas this was not the case in our analysis (Fig. 3). Similarly, Creegen11 analysed the bacteriobiome of *Pleuromamma* sp. and observed the dominance of *Alteromonas*, but, from our meta-analysis, a higher abundance of *Alteromonas* was observed in *Centropages* sp. compared to other genera, including *Pleuromamma* sp. (Fig. 3).

From our analysis, *Nitrosopumilus* was observed contain a high amount of *Temora* spp., but the abundance of *Nitrosopumilus* was reported to show no difference between the particle-associated in the water column and within *Temora* sp.7; thus, the high percentage observed in our analysis may be due to the exchange of *Nitrosopumilus* from seawater. Vibrionales was identified as a core member in the gut of *Pleuromamma* spp.4, similar to the present analysis, wherein *Vibrio* percentage was found to be high in the CAB of *Pleuromamma* spp.. The copepods were reported to have a selective niche of *Vibrio* capable of degrading chitin140. In the present analysis, seven bacterial taxa were found to be in high percentages in *Centropages* sp. and, among those seven, four taxa belong to the Gammaproteobacteria. A high proportion of Gammaproteobacteria in *Centropages* sp. was also reported previously10.
Machine learning-based prediction. The masking effect of the abundant bacterial community associated with the copepod diet and ambient water column should not hinder the detection of core OTUs, as evidenced by previous studies\(^2\). QIIME2 core_abundance algorithms used in the present study did not predict single bacterial s-OTUs (data not presented). Hence, we used machine learning approaches to detect important core s-OTUs specific to copepod genera.

From our SML classifier results, the important s-OTUs predicted in *Calanus* spp. and *Pleuromamma* spp. were found to have high prediction accuracy (area under the curve (AUC) = 1.00). Therefore, we discuss the important s-OTUs predicted for these two copepod genera (*Calanus* spp. and *Pleuromamma* spp.). To begin with, among the important s-OTUs predicted in *Calanus* spp. from the present analysis (both SML models: RFC and GBC), Gammaproteobacteria was a dominant member (15 and 9 s-OTUs from RFC and GBC, respectively) followed by Alphaproteobacteria, which represents 6 and 3 s-OTUs from RFC and GBC, respectively. This observation was similar to that in an earlier study, where Gammaproteobacteria and Alphaproteobacteria were reported as core OTUs in *Calanus* finmarchicus\(^7\). In addition, within the Gammaproteobacteria, seven (RFC) and five (GBC) s-OTUs representing the *Acinetobacter* (Moraxellaceae) were predicted as important s-OTUs in the present study, similar to an earlier study in which Moraxellaceae was reported to be closely associated with *Calanus* finmarchicus\(^8\). Moreover, four s-OTUs of *Acinetobacter* (Moraxellaceae) were also reported as core OTUs in *Calanus* finmarchicus\(^9\). In addition to the present analysis, three s-OTUs from both SML classifiers (RFC and GBC) belonging to Vibrio shilonii were predicted as important s-OTUs in *Calanus* spp. Comparably, four OTUs of Vibrioaceae (three OTUs of Vibrio sp. and one similar to *Vibrio harveyi*) were observed in *Calanus* finmarchicus\(^2\).

In the present SML analysis, one genus *Bradyrhizobium* (order Rhizobiales), was predicted as an important s-OTU in *Pleuromamma* spp. by GBC classifiers. Moreover, in the present ANCOM, *Bradyrhizobium* was found in a high percentage within *Pleuromamma* spp. This *Bradyrhizobium* is also known to contain nifH gene, as they usually occur in seawater\(^10\) and SML-GBC also predicted this genus as an important s-OTU in *Calanus* spp.. *Bradyrhizobiaceae* was also found to be the most abundant OTU, contained in 79 of the total 137 sequences in the negative control in a similar analysis\(^1\). Thus, in the case of *Bradyrhizobium*, a further investigation is required in order to come to a meaningful conclusion.

Moreover, in a previous study, order Vibrionales was also predicted as a core member (based on presence/absence) in *Pleuromamma* spp.\(^1\). The genus *Pseudoalteromonas* was also already reported as occurring in high abundance in *Pleuromamma* spp.\(^1\). However, in the present analysis, GBC predicted five s-OTUs of Pseudoalteromonas as important s-OTUs in *Pleuromamma* spp., whereas RFC predicted two s-OTUs of Pseudoalteromonas as important s-OTUs in *Acartia* spp., *Calanus* spp., and Centropages spp. (Fig. 4e). This is similar to Pseudoalteromonas, which is reported as a constant and stable OTU in *Acartia* spp.\(^2\), *Calanus* sp.\(^2\) and *Centropages* spp.\(^10\). Thus, it is unwise to consider *Pseudoalteromonas* as being specific to one copepod genera.

In the present study, the GBC model predicted three s-OTUs of Alteromonas and two s-OTUs of Marinobacter as important ones in *Pleuromamma* spp., and ANCOM also showed that the genus Marinobacter proportion was high in *Pleuromamma* spp.. Comparably, both Alteromonas and Marinobacter were reported as common in *Pleuromamma* sp.\(^1\). Though the abundance of genus Sphingomonas was low, it was reported to appear consistently in *Pleuromamma* sp.\(^1\), and our analysis predicted this genus as an important s-OTU of *Pleuromamma* spp. (from GBC) (Fig. 4f).

In the present study, the GBC model predicted Limnobacter as an important s-OTU in *Pleuromamma* spp., and ANCOM also showed that the proportion of genus Limnobacter was high in *Pleuromamma* spp.. Moreover, in a previous study, *Limnobacter* was reported to occur in high abundance in, as well as being unique to, copepods (*Pleuromamma* spp.)\(^9\). Also, the genera Methyloversatilis was reported to be low in abundance in *Pleuromamma* spp., whereas the SML-GBC model in this study predicted this genus to be an important s-OTU in *Pleuromamma* spp. (Fig. 4f). The order Pseudomonadales was reported as a core member in *Pleuromamma* spp.\(^1\); however, our GBC model predicted the bacterial genera Enhydrobacter (Pseudomonadales) as an important s-OTU in *Pleuromamma* spp. (Fig. 4f). In addition, from ANCOM, this genus Enhydrobacter was found in high percentage in *Pleuromamma* spp., but was also reported to be high in proportion in calanoid copepods\(^8\). One another important s-OTU predicted in *Pleuromamma* spp. by our GBC model was Desulfovibrio, and ANCOM also showed that the proportion of genus Desulfovibrio was found to be high in *Pleuromamma* spp..

HTCC2207 (Gammaproteobacteria) was predicted as an important s-OTU in *Calanus* spp. by both SML models. Also, from ANCOM, HTCC2207 was found in a high percentage in *Calanus* spp.. HTCC2207 is usually more abundant in seawater, and has been reported as present in *Acartia longiremis*, *Calanus finmarchicus* and *Centropages hamatus* with a full gut\(^10\). Due to their known proteorhodopsin gene and being free water—living bacteria\(^19\), the probability of detecting this bacterium in the copepod gut may be determined by food ingestion. *Sediminibacterium* (*Chitinophagaceae*) was reported to be in low abundance but regularly present in *Pleuromamma* sp.\(^11\). However, in the present analysis, the RFC model predicted Sediminibacterium as important s-OTUs in *Acartia* spp., *Calanus* spp. and *Temora* spp. (Fig. 4e,f), whereas the GBC model predicted Sediminibacterium as important s-OTUs in *Acartia* spp. and *Temora* spp. (Fig. 4). *Chitinophagaceae* was reported to be associated with calanoid copepods in the North Atlantic Ocean\(^8\). Earlier studies showed that the genus Photobacterium (*Phylum: Proteobacteria*) was abundant in *Pleuromamma* sp.\(^11\), *Centropages* sp.\(^10\), and *Calanus* finmarchicus\(^2\). Herein, Photobacterium was detected as an important s-OTU in *Calanus* spp. by the RFC model only. Furthermore, in the present analysis, Nitrosopumilus was predicted as an important s-OTU in *Acartia* spp. and *Temora* spp. by both the SML models, and this genus was also reported to be in high percentage in *Acartia* sp. and *Temora* sp.\(^27\).

Furthermore, RFC predicts Pelomonas as an important s-OTU in *Acartia* spp., *Centropages* sp. and *Calanus* spp.. However, in a previous study, *Pelomonas* was ruled out as a core OTU in *Calanus* spp.\(^2\). The GBC predicted two s-OTUs of RS62 and one s-OTUs of Planctomycetes as important ones in *Acartia* spp., and *Temora* spp.. RS62 belongs to the order Burckholderiales, and though this order was reported to be abundant, abundance varied.
between individual copepods (Acartia sp. and Temora sp.)\(^7\). Burkholderiales was also reported as a main copepod-associated community\(^7\). However, in the present study, the genus Comamonas belonging to Burkholderiales was predicted as an important s-OTU in Acartia spp., and Temora spp. by both SML models.

Approximately 25 taxa detected by the RFC approach were also found in high percentages from ANCOM. Among them, five s-OTUs, viz., Anaerospira, Micrococcus, Micrococcus luteus, Vibrio shilonii and Methylobacteria, were predicted as important s-OTUs in Calanus spp. in our report, for the first time (Fig. 4f). From the 28 taxa detected by the GBC model, four s-OTUs, viz., Phaeobacter, Acinetobacter johnsonii, Vibrio shilonii, and Piscirickettsia, were predicted as important s-OTUs in Calanus spp. in our report, for the first time (Fig. 4f). In addition, eight s-OTUs, viz., Marinobacter, Limnobacter. Methyloversatilis, Desulfovibrio, Enhydrobacter, Sphingomonas, Alteromonas and Coriobacteriaceae, were predicted as important s-OTUs in Pleurormamma spp. in the GBC model, for the first time.

Potential biogeochemical genes of CAB and their variation and abundance. Bacterial communities exploit copepods as microhabitat by colonising copepods’ internal and external surfaces, and mediate marine biogeochemical processes\(^7\). CABs also metabolise organic compounds, such as chitin, taurine, and other complex molecules in and around the copepod, which may be a hotspot for the biogeochemical process\(^7\). In an earlier analysis, potential functional genes in the water column of the Southern Ocean were processed using Parallel-Meta3 software\(^7\); herein, we have used a more advanced PICRUSt2 analysis to screen for the potential functional genes.

Methanogenesis. In the present analysis, the bacterial taxa involved in methane production, viz. methanogenises, methylphosphonate, DMSP and DMSO, were observed in all copepod genera but relative proportion varied between genera. A similar observation in Acartia sp. and Temora sp. has been reported\(^7\).

In the present analysis, we found that CAB has a complete set of aerobic methanogenesis genes (PhnL, M, J, H and G) which convert methylphosphonate (MPn) to methane (CH\(_4\))\(^7\). Some copepods, like Acartia sp. and Temora sp., were reported to associate with bacteria involved in CH\(_4\) production from MPn\(^7\). De Corte et al.\(^7\) suggested that different copepod species have different CAB, and only some copepods have the specific CAB for methanogenesis and other biogeochemical cycles.

A previous study (with 14 C-labelled experiments) observed high methane production in Temora longicornis compared to Acartia spp.\(^7\). In addition, the methanogenic archaee i.e., Methanobacterium bryantii-like sequences, Methanogenium organophilum, Methanohalobus vulcanti-like sequences and Methanogenium organophilum were noted in Acartia clausi and Temora longicornis faecal pellets\(^34\). In the present study, we observed that Pleurormamma spp. has a high proportion of the mcrA gene (Fig. S2).

T. longicornis fed with a high content of TMA-/DMA-rich phytoplankton produced the maximum amount of CH\(_4\), suggesting that this production may be due to the micro-niches inside the copepods\(^35\). However, in our analysis, CAB of Pleurormamma sp. was found to have a high proportion of the dmdA gene.

In our meta-analysis, Acartia sp. was found to have a high proportion of the dmdA gene. The taxa detected in the present study, such as Pelagibacteraceae, some Alpha and Gammaproteobacteria, are known to have dmdA genes\(^36\).

Copepods feeding on phytoplankton liberate DMSP, which, in turn, is utilised by the DMSP-consuming bacteria in the gut (Acartia tonsa)\(^37\), leading to methane production\(^37\). Moreover, the methane enrichment in the Central Baltic Sea is due to the dominant zooplankton Temora longicornis feeding on the DMSP-/DMSO-rich Dinophyceae, resulting in methane release\(^37\).

Instead of analysing faecal pellets\(^37\) and anaerobic incubation experiments\(^38\), further research should also consider CAB-mediated aerobic methanogenesis as one factor with which to solve the ‘ocean methane paradox’.

Methanotrophic potential of CAB. The present analysis showed that the CABs of Pleurormamma spp. and Centropages sp. were had a high proportion of methanol dehydrogenase genes (mxaF and mxaI) (Fig. S2). This may be due to the presence of Proteobacteria that involves methane oxidation, viz., Beijerinckia, Methylcoccales, Methylcostaceae and Verrucomicrobia (Supplementary File Table S3)\(^9\).

Assimilatory sulphate reduction. A relative abundance of taxa such as Synechococcus and the Deltaproteobacteri-al family (unclassified genera in Desulfovibrioaceae), Rhodobacteraceae and Flavobacterium (Supplementary File Table S3) were observed in the CAB of Temora spp., which may be responsible for the ASR pathway, as these taxa are known to have ferredoxin-sulphite reductase activity (Supplementary File Table S3).

Nitrogen fixation. A high abundance of nifH gene was reported in copepods collected from the coastal waters of Denmark (Øresund) (mostly contributed by Acartia spp.), with Vibrio sp. as dominant members\(^16\). However, in the present study, the nifH gene was found to be high in the CAB of Pleurormamma spp. (Fig. S4), and one should note that this may be due to the high abundance of genus Vibrio in the CAB of Pleurormamma spp. (Supplementary File Table S3). Vibrio attached to the exoskeleton and gut lining of copepods\(^43\), using chitin as both a carbon and energy source was previously reported\(^19\). Furthermore, copepods are reported to be a hotspot for nitrogen fixation at a rate of 12.9–71.9 μmol N dm\(^{-3}\) copepod biomass per day\(^19\). The abundance of nifH gene in the CAB of Pleurormamma spp. may be due to the presence of genera including Synechococcus, Prochlorococcus, Bradyrhizobium, Microcystis, and Trichodesmium (Supplementary File S3).
Denitrification. In our analysis, the CAB of Temora spp. were found to have the highest proportion of napA and napB genes (Fig. S4), followed by Pleuromamma spp., whereas an abundance of napA and narG genes were reported in North Atlantic copepods contributed by Calanus spp. and Paraeuchaeate sp.9. However, in the present analysis, the CAB of Temora spp. was found to have a high proportion of narG (Fig. S4). Bacterial genera including Pseudoalteromonas, Actinobacterium and Shewanella also contain the nirS gene, as reported in both live and dead Calanus finmarchicus.14. Likewise, from our analysis, both Pseudoalteromonas and Actinobacteria were found in Calanus spp.. A metagenome analysis of copepod-associated microbial community reported them having genes responsible for denitrification and DNRA.9.

Anaerobic nitric oxide reduction. Families including Aeromonadaceae and Enterobacteriaceae were observed in the CAB of Pleuromamma spp. and Calanus spp., in relatively higher proportion than in other copepods. The genera Aeromonas (family Aeromonadaceae)61 and Escherichia coli (family Enterobacteriaceae)62 are known to contain norV genes. The presence of these bacterial taxa in Pleuromamma spp. may be due to feeding of ciliates, flagellates, and detritus particles11,44. This may be one reason for a high proportion of norV and norW genes in these copepods (Fig. S4).

Carbon processes. Bacterial taxa like Colwelliaceae10,63 Flavobacterium, Arthrobacter, Serratia, Bacillus, Enterobacter, Vibrio64, Pseudoalteromonas63 and Achromobacter65 produce chitinase. The presence of chitinase gene in CAB is unsurprising, as their foregut and hindgut are both made up of chitin11. The overall outline of CAB-mediated biogeochemical pathways is represented in Fig. 6.

Role of CAB in iron remineralization. Pleuromamma spp. carries a similar proportion of ferric iron reductase (fhuF) and ferrous iron transport protein A (feoA) genes (Fig. S6a,b). The presence of a high proportion of ferric iron reductase gene fhuF in Pleuromamma spp. requires detailed investigation. It was reported that acidic and
low-oxygen conditions in the copepod gut may assist iron dissolution and remineralisation, forming soluble Fe(II)33,36. This increases the iron bioavailability in the surroundings, promoting phytoplankton growth36. In addition, bacterial community associated with the zooplankton, such as Bacteroidetes, Alphaproteobacteria and Gammaproteobacteria, are known to carry genes involved in iron metabolism36.

In an early study on *Thalassiosira pseudonana* fed to *Acartia tonsa* iron was found in the faecal pellets67. However, in the present analysis, *Acartia* spp. was found to have a lower proportion of the *feoA* gene compared to *Temora* spp. and *Pleuromamma* spp.. Moreover, genes involved in iron metabolism were reported to be high in zooplankton-associated microbiome69.

The differential iron contributions of different copepod genera were unknown until now. For organisms that must combat oxygen limitation for their survival (*Pleuromamma* spp.), pathways for the uptake of ferrous iron are essential. Nevertheless, the meta-analysis performed here showed that *Pleuromamma* spp. may be a significant contributor to both iron bioavailability and nitrogen fixation.

CAB as a source of cyanocobalamin-synthesising prokaryotes. Organisms within all domains of life require the cofactor cobalamin (vitamin B12), which is usually produced only by a subset of bacteria and archaea68. Previous studies reported that the cobalamin in ocean surface water is due to de novo synthesis by Thaumarchaeota. Moreover, few members of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes genomes were reported to contain the cobalamin-synthesising gene68. In our analysis, the CAB of *Temora* spp. was found to have a high proportion of Thaumarchaeota, whereas Alpha-gammaproteobacteria content was found to be high in the CAB of *Acartia* spp., *Calanus* spp. and *Pleuromamma* spp.. In this regard, further studies on CAB diversity from different ocean realms would shine a light on the actual potential of CAB in global biogeochemical cycles.

Conclusion

Herein, five copepod genera, viz., *Acartia* spp., *Calanus* spp., *Centropages* spp., *Pleuromamma* spp., and *Temora* spp., and their associated bacteriobiomes were investigated. The use of meta-analysis in the present study reveals the difference in bacterial diversity indices within the alpha and beta-diversity. To be more specific, the meta-analysis showed significant variations in the alpha diversity between the copepod genera. Moreover, it was revealed that *Calanus* spp. have high Shannon index (H-index), and *Pleuromamma* spp. have high Faith’s Phylogenetic Diversity. Furthermore, the meta-analysis revealed that the CAB within the phylogenetically closer *Pleuromamma* spp. and *Calanus* spp. expressed a mere 7.604% (axis 1) dissimilarity distance in PCoA analysis (Unweighted UniFrac distance matrix, based on the phylogenetic index). Likewise, from the meta-analysis, we were able to identify the bacterial taxa which are significantly abundant in each copepod genera in comparison with others.

In earlier studies, the core bacterial OTUs were identified based on their presence/absence1, as well as by using distribution-based clustering (DBC) algorithms2. Herein, machine learning models were used to predict the important copepod-associated bacterial genera within the five different copepod genera. In specific, we used supervised machine learning models to predict the important bacterial s-OTUs. We predicted 28 bacterial taxa and one archaeal taxon (SML-GBC) as important s-OTUs in the five copepod genera. Among the predicted bacterial genera and families, *Vibrio shilonii*, *Acinetobacter johnsonii*, *Phaeobacter* and *Desulfovibrio*, *Enhydrobacter*, *Sphingomonas*, *Alteromonas* spp. and *Acinetobacter johnsonii* were reported to contain the cobalamin-synthesising gene68. In our analysis, the CAB of *Temora* spp. was found to have a high proportion of Thaumarchaeota, whereas Alpha-gamma-proteobacteria content was found to be high in the CAB of *Acartia* spp., *Calanus* spp. and *Pleuromamma* spp.. Among the predicted s-OTUs in *Pleuromamma* spp., and *Pleuromamma* spp., and *Temora* spp., and their associated bacteriobiomes were investigated. The use of meta-analysis in the present study reveals the difference in bacterial diversity indices within the alpha and beta-diversity. To be more specific, the meta-analysis showed significant variations in the alpha diversity between the copepod genera. Moreover, it was revealed that *Calanus* spp. have high Shannon index (H-index), and *Pleuromamma* spp. have high Faith’s Phylogenetic Diversity. Furthermore, the meta-analysis revealed that the CAB within the phylogenetically closer *Pleuromamma* spp. and *Calanus* spp. expressed a mere 7.604% (axis 1) dissimilarity distance in PCoA analysis (Unweighted UniFrac distance matrix, based on the phylogenetic index). Likewise, from the meta-analysis, we were able to identify the bacterial taxa which are significantly abundant in each copepod genera in comparison with others.

In earlier studies, the core bacterial OTUs were identified based on their presence/absence1, as well as by using distribution-based clustering (DBC) algorithms2. Herein, machine learning models were used to predict the important copepod-associated bacterial genera within the five different copepod genera. In specific, we used supervised machine learning models to predict the important bacterial s-OTUs. We predicted 28 bacterial taxa and one archaeal taxon (SML-GBC) as important s-OTUs in the five copepod genera. Among the predicted bacterial genera and families, *Vibrio shilonii*, *Acinetobacter johnsonii*, *Phaeobacter* and *Desulfovibrio*, *Enhydrobacter*, *Sphingomonas*, *Alteromonas* spp. and *Coriobacteriaceae* were predicted as important s-OTUs in *Pleuromamma* spp., for the first time. Additionally, the prediction accuracy (for *Calanus* spp. and *Pleuromamma* spp.) of the machine learning models used here showed high accuracy, indicative of the reliability of the predicted important s-OTUs in the copepod genera. Notably, from the machine learning-based classification it was evident that specific bacterial s-OTUs do exist for copepods.

Furthermore, our meta-analysis revealed that the five copepod genera have bacterial communities that are capable of mediating methanogenesis (with evidence of interlinking of methane production, DMSP degradation and phosphate utilisation) and methane oxidation. We also found the five copepod genera to have more potential ASR microbial communities than DSR communities within the CAB. Likewise, bacterial communities with potential genes involved in nitrogen fixation, denitrification and DNRA were also observed among the CAB of these five copepod genera. We also found the potential genes that perform carbon fixation, iron remobilisation and cyanocobalamin (vitamin B12) synthesis in the CAB of the five copepod genera.

Received: 25 August 2020; Accepted: 12 January 2021
Published online: 08 February 2021

References

1. Shoemaker, K. M. & Moisander, P. H. Seasonal variation in the copepod gut microbiome in the subtropical North Atlantic Ocean. *Environ. Microbiol.* 19, 3087–3097 (2017).
2. Datta, M. S. et al. Inter-individual variability in copepod microbiomes reveals bacterial networks linked to host physiology. *ISME J.* 12, 2103–2113. https://doi.org/10.1038/s41396-018-0182-1 (2018).
3. Steinberg, D. K. et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. *Deep Sea Res. Part I* 47, 137–158 (2000).
4. Chen, M., Kim, D., Liu, H. & Kang, C.-K. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in the Sargasso Sea. *Deep Sea Res. Part II* 59, 2055–2073 (2012).
5. Tang, K. Copepods as microbial hotspots in the ocean. *Aquat. Microb. Ecol.* 80, 31–40 (2015).
6. De Corte, D. et al. Linkage between copepods and bacteria in the North Atlantic Ocean. *Aquat. Microb. Ecol.* 72, 215–225 (2014).
7. Grossart, H. P., Drilalis, C., Leunert, F. & Tang, K. W. Bacteria dispersal by hitchhiking on zooplankton. *Proc. Natl. Acad. Sci. U. S. A.* 107, 11959–11964 (2010).
8. Chen, M., Kim, D., Liu, H. & Kang, C.-K. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in the Sargasso Sea. *Deep Sea Res. Part II* 59, 2055–2073 (2012).
54. Ditchfield, A. et al. Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets. *Aquat. Microb. Ecol.* 67, 151–160 (2012).

55. de Angelis, M. A. & Lee, C. Methane production during zooplankton grazing on marine phytoplankton. *Limnol. Oceanogr.* 39, 1298–1308 (1994).

56. Howard, E. C., Sun, S., Biers, E. J. & Moran, M. A. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. *Environ. Microbiol.* 10, 2397–2410 (2008).

57. Tang, K. W., Visscher, P. T. & Dam, H. G. DMSP-consuming bacteria associated with the calanoid copepod *Acartia tonsa* (Dana). *J. Exp. Mar. Biol. Ecol.* 256, 185–198 (2001).

58. Ploug, H., Kühn, M., Buchholz-Cleven, B. & Jørgensen, B. Anoxic aggregates - an ephemeral phenomenon in the pelagic environment?. *Aquat. Microb. Ecol.* 13, 285–294 (1997).

59. Tasmas, I., Smirnova, A. V., He, Z. & Dunfeld, P. F. The (d)evolution of methanotrophy in the Beijerinckiaaceae—a comparative genomics analysis. *ISME J.* 8, 369–382 (2013).

60. Rawlings, T. E., Kuiz, G. M. & Colwell, R. R. Association of *Vibrio cholerae* O1 El Tor and O139 Bengal with the Copepods *Acartia tonsa* and *Eurytemora affinis*. *AEM* 73, 7926–7933 (2007).

61. Liu, J. et al. Diverse effects of nitric oxide reductase NorV on *Aeromonas hydrophila* virulence-associated traits under aerobic and anaerobic conditions. *Vet. Res.* https://doi.org/10.1186/s11557-019-0683-3 (2019).

62. Gardette, M., Daniel, J., Loukiadis, E. & Jubelin, G. Role of the nitric oxide reductase NorVW in the survival and virulence of enterohaemorrhagic *Escherichia coli* during infection. *Pathogens* 9, 683 (2020).

63. Cottrell, M. T., Wood, D. N., Yu, L. & Kirchman, D. L. Selected chitinase genes in cultured and uncultured marine bacteria in the α- and γ-subclasses of the proteobacteria. *Appl. Environ. Microbiol.* 66, 1195–1200 (2000).

64. Donderski, W. & Trzebiatowska, M. Influence of physical and chemical factors on the activity of chitinases produced by planktonic bacteria isolated from Jeziorak Lake. *Pol. J. Environ. Stud.* 9(2), 77–82 (2000).

65. Subramanian, K. et al. Bioconversion of chitin and concomitant production of chitinase and N-acetylgalcosamine by novel *Achrobacter xylosoxidans* isolated from shrimp waste disposal area. *Sci. Rep.* https://doi.org/10.1038/s41598-020-68772-y (2020).

66. Schmidt, K. et al. Zooplankton gut passage mobilizes lithogenic iron for ocean productivity. *Carr. Biol.* 26, 2667–2673 (2016).

67. Hutchins, D. A., Wang, W.-X. & Fisher, N. S. Copepod grazing and the biogeochemical fate of diatom iron. *Limnol. Oceanogr.* 40, 898–994 (1995).

68. Doxey, A. C., Kurtz, D. A., Lynch, M. D., Sauder, L. A. & Neufeld, J. D. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. *ISME J.* 9, 461–471 (2014).

69. Skovgaard, A., Castro-Mejia, J. L., Hansen, L. H. & Nielsen, D. S. Host-Specific and pH-dependent microbiomes of copepods in an extensive rearing system. *PLoS ONE* 10, e0132516 (2015).

70. Shoemaker, K. M. & Moisander, P. H. Microbial diversity associated with copepods in the North Atlantic subtropical gyre. *FEMS Microbiol. Ecol.* https://doi.org/10.1002/1618-0964 (2015).

71. Shelyakin, P. V. et al. Microbiome of gall-inducing copepod crustaceans from the corals *Stylophora pistillata* (Scleractinia) and *Gorgonia ventaila* (Alcyonacea). *Sci. Rep.* https://doi.org/10.1038/s41598-018-29953-y (2018).

Acknowledgements
The authors thank the Director, CSIR-NIO, for encouraging this work. BS, PC, UVN and MG received the financial assistance from the Council of Scientific & Industrial Research, Government of India, under projects OLP2005 & MLP1802. MS is also funded by the Engineering and Physical Sciences Research Council, UK, and Imperial College London (EP/N509486/1: 1,979,819). We thank our funders. We also thank the High-performance computing facility “Pravah” to carry out the bioinformatics and Machine Learning work. This is also deposited in the Figshare repository and is free to download from the following link (https://doi.org/10.6084/m9.figshare.c.5087183.v3). Anyone can download and reuse this data for their analysis.

Author contributions
The authors’ BS, MS, PC and MG designed the work. BS executed out the meta-analysis and machine learning approach., PC helped in constructing the copepod phylogenetic tree. UN and PC helped in data arrangement and review of the literature. MS helped in executing machine learning approach. BS, MS, and PC wrote the initial draft. Editing and rewriting were performed by MS and MG.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-82482-z.

Correspondence and requests for materials should be addressed to M.U.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
