The association between telomere length and cancer risk in population studies

Xun Zhu1,*, Wei Han2,*, Wenjie Xue1,*, Yuxia Zou1, Cuiwei Xie1, Jiangbo Du1 & Guangfu Jin1

Telomeres are crucial in the maintenance of chromosome integrity and genomic stability. A series of epidemiological studies have examined the association between telomere length and the risk of cancers, but the findings remain conflicting. We performed literature review and meta-analysis to demonstrate the relationship between telomere length and cancer risk. A total of 23,379 cases and 68,792 controls from 51 publications with 62 population studies were included in this meta-analysis to assess the association between overall cancer or cancer-specific risk and telomere length. General association and dose-response relationship were evaluated based on two and three groups, respectively. The estimates of association were evaluated with odds ratios and 95% confidence intervals by the random-effects or fixed-effects model based on heterogeneity test. We observed a non-significant association between short telomeres and overall risk of cancer. Convincing evidence was observed for the association of short telomeres with an increased risk of gastrointestinal tumor and head and neck cancer. Significant dose-response associations were also observed for gastrointestinal tumor and head and neck cancer. Our findings indicate that telomeres may play diverse roles in different cancers, and short telomeres may be risk factors for the tumors of digestive system.

Telomeres consist of several thousand DNA repeats of TTAGGG in association with a protein complex at the ends of chromosomes in eukaryotic cells. Telomeres maintain chromosome integrity and genomic stability through prohibiting nucleolytic degradation, chromosomal end-to-end fusion and irregular recombination. In humans, the average telomere length ranges from 10 to 15 kb, and telomeric DNA shortens during each cell replication at a rate of 50–200 bp. In general, a critically short telomere length can trigger cell to enter replicative senescence with a result of cell death; alternatively, cells continue to divide if death does not occur, which results in genomic instability and chromosomal abnormality. Therefore, telomere length acts as a mitotic clock for eukaryotic cells, and potentially represents the number of cell replications undertaken by each cell during its lifespan.

Telomeres are strongly correlated between tissues, and the rates of telomere shortening are also similar. Telomere length in leukocytes is considered as useful surrogate for the other tissues. Numerous epidemiological studies have focused on analyzing the telomere length in peripheral blood cells in relation to various diseases, including multiple cancers. However, the reported findings are conflicting. In 2011, two meta-analysis pooling more than 20 studies reported that the short telomeres were associated with increased cancer risk. They also found particularly strong evidence for bladder, esophageal, gastric, and renal cancers, but the study numbers were limited for each cancer type. Afterwards, emerging studies with relatively large sample size investigated the association between telomere length and cancer risk. However, the findings are still conflicting other than conclusive, particularly for different cancer types. Nevertheless, more and larger studies may allow for stronger statistical power for meta-analysis, especially for single cancer type. Herein, we carried out a systematic review and meta-analysis on 56 relevant literatures to estimate the overall cancer risk or cancer-specific risk associated with telomere length and to evaluate potential between-study heterogeneity of these studies.

Materials and Methods

Search strategy and selection criteria. We conducted a literature review using PubMed to identify reports on an association between telomere length and cancer risk through May 31, 2015. The search terms

1Department of Epidemiology and Biostatistics, the Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China. 2Xuzhou Center for Disease Control and Prevention, Xuzhou 221003, China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to G.J. (email: guangfujin@njmu.edu.cn)
were “telomere length”, “cancer” or “carcinoma”, and “risk”. We limited the publication language to English. The criteria included: 1) a case–control or cohort study design assessing the relationship between telomere length and cancer risk; 2) sufficient information for estimating odds ratios (ORs) and their 95% confidence intervals (CIs); 3) without overlap between studies in terms of study subjects.

Data extraction. The following data was extracted from each publication: the first author, year of publication, country, ethnicity, cancer type, the number of cases and controls grouped by median, tertiles, quartiles or quintiles of relative telomere length (T/S ratio), study design, DNA source, and method for telomere length measurement. Data was extracted separately for studies including subjects from different ethnicities, multiple cancer types or independent populations if possible. Because controls were shared for multiple cancers in two publications, each publication was divided into multiple studies in the cancer-specific analysis but treated as one study by pooling all cancer cases together as compared with shared controls. When multiple publications had the same or overlapping subjects, only the largest or latest studies were included.

Quantitative data synthesis. To simplify the analysis, we firstly collected the number of cases and controls from two groups (short and long) divided by the median telomere length for each study to evaluate the association. Because some studies reported data in three or five groups based on tertile or quintile value, we treated the groups of “Q1 and Q2” or “Q1, Q2 and Q3” as the short groups, respectively, and the other groups as the long groups. In the sensitivity analysis, we also performed analysis by dividing the subjects into three groups (short, medium and long). We combined Q2 and Q3 groups as the medium group for studies including four groups (Q1, Q2, Q3, Q4), and combined Q1 and Q2 groups as the short group, and Q4 and Q5 groups as the long group for studies including five groups (Q1, Q2, Q3, Q4, Q5). Two publications providing the numbers of two groups only were excluded in this analysis. The association between the telomere length and cancer risk was examined by ORs and 95% CIs with the group of long telomeres as the reference. We performed cancer-specific analysis by cancer type and the cancer types reported in less than 3 studies were merged into the “other types of cancer” group. Gastrointestinal tumor included those diagnosed in the stomach, esophagus, colon or rectum. Cancers arising from the bladder, kidney and prostate sites were considered tumors of the urogenital system. We also performed analysis by study type (retrospective and prospective) and ethnicity (Caucasian, Asian or African American).

We obtained the telomere length data from 51 publications consisting of 23,379 cases and 68,792 controls. When pooling all eligible studies into the meta-analysis, we found a non-significant association between short telomeres and an increased risk of overall cancer risk (OR = 1.10, 95% CI: 0.98–1.23, Table 2). The directions of association were consistent among three populations from different descents (ORs = 1.08, 1.15 and 1.22 for Caucasian, Asian and African American, respectively, Table 2). The results of analysis for subgroups of different ethnicities have been shown in Table S2. However, the association was disappeared in prospective studies (OR = 1.02, 95% CI: 0.87–1.19). Moreover, we also excluded three prospective studies recruited subjects from populations of Caucasian descent, 10 studies of Asian descent, and one study of African American descent. The quantitative PCR was used to measure the relative telomere length (T/S ratio) in 55 studies, whereas fluorescence in situ hybridization (FISH)-based assays were used in 7 studies. Additionally, blood cells were main DNA source except one study based on circulating cell-free serum DNA.

Quantitative Synthesis. The χ²-based Q test was performed to evaluate between-study heterogeneity and considered significant if P < 0.10. Heterogeneity was also quantified with the I² statistic that indicates what proportion of the total variation across studies is beyond chance. The value of 0% indicates no observed heterogeneity and larger values show increasing heterogeneity. The fixed-effects model and the random-effects model were used to pool the data from different studies based on the Mantel-Haenszel method and the DerSimonian and Laird method, respectively. When the P value of the heterogeneity test was > 0.10, the fixed-effects model was used, which assumes the homogeneity of effect size across all studies. Elsewhere the random-effects model was more appropriate, which tends to provide wider confidence intervals, when the results of the constituent studies differ among themselves. Potential publication bias was evaluated with funnel plots of effect sizes versus standard errors. Begg's test was used to examine the significance of asymmetry at a significance value of 0.10. All analysis was conducted by using Review Manage (v.5.3) and R3.0.1.

Results Characteristics of Studies. A total of 56 publications were identified with an evaluation of the association between telomere length and cancer risk (Fig. 1). Five reports were excluded because they did not provide the numbers of cases and controls grouped by the relative telomere length. The remaining 51 publications contained 62 studies (Xifeng Wu's study had datasets of four different cancers; Gabriella M. Anic's studies had three datasets of different cancers and Geyu Liang's, Beatriz Sanchez-Espiridion's, and Yang Zhang's studies had two datasets of different cancers, and Jonathan N. Hofmann had two datasets of independent populations. We summarized the general information of these 62 studies in Table 1. There were 10 studies for skin cancer, and tumors of urogenital system, 9 for gastrointestinal tumor, 8 for breast cancer, 8 for lung cancer, 4 for head and neck cancer, 3 for lymphoma, and 10 for the other types of cancer.

Of interest, in prospective studies rather than retrospective studies, short telomeres were associated with an increased risk of lung cancer in prospective studies rather than retrospective studies, short telomeres were associated with an increased risk of lung cancer.
cancer (OR = 0.78, 95% CI: 0.67–0.91). There was no obvious evidence supporting the association for the other cancer types (Table 2).

To evaluate the robustness of pooling results based on dichotomized telomere length, we further divided the cases and controls into three respective groups for each study, and tested the dose-response relationship between telomere length and cancer risk by pooling the studies together. We observed a significant increased risk of overall cancer for short telomeres with a trend OR (95% CI) of 1.09 (1.01–1.19) (Table 3). In cancer-specific analysis, dose-response effects of telomere length were also detected on gastrointestinal tumor (OR = 1.29, 95% CI: 1.08–1.54), and head and neck cancer (OR = 2.30, 95% CI: 1.74–3.02), which were consistent with the above results based on dichotomized telomere length (Table 3).

Heterogeneity analyses. Substantial heterogeneity was observed among all studies for the association between telomere length and cancer risk (P < 0.001, I² = 90%, Fig. 2). We then evaluated the potential source of heterogeneity and found significant effect difference between subgroups for cancer type (P < 0.001), study design (P = 0.008), and ethnicity (P < 0.001).

Publication bias. The shape of the funnel plot seemed symmetrical (Fig. 3), and the Begg’s test did not show a significant publication bias in the current meta-analysis (P = 0.142). These indicated that bias from publications might not have a significant influence on the results of our meta-analysis on the association between telomere length and cancer risk.

Discussion
In this study, we performed the largest and most comprehensive literature review and meta-analysis on the association of telomere length and cancer risk, including a total of 23,379 cancer cases and 68,792 controls from 51 independent publications. We did not find significant association between telomere length and overall risk of cancers, but showed a robust association with gastrointestinal tumor and head and neck cancer. In addition, we also observed promising association of short telomeres with a decreased lung cancer risk in the prospective studies. Furthermore, dose-response relationships provided further evidence for the associations with gastrointestinal tumor, and head and neck cancer.

Telomeres are specialized structures that protect chromosome ends and participate in a number of processes of a great cellular relevance, which makes the telomere crucial in cellular senescence and carcinogenesis. Progressive telomere shortening occurs with each cell division up to a point termed “replicative senescence” in most human somatic cells. Basic biology studies have established that telomere shortening is a fundamental feature of dividing cells and directly related to the age of the cell lineage, and that telomere crisis in the present of defective cell-cycle control can lead to chromosomal instability and a malignant phenotype. The dysfunctional
Author [reference]	Country	Year	Cancer type	Ethnicity	No. of case/control	Study type	Control source	DNA source	Measurement methods	
Gabriella M. Anic et al., melonoma11,14	USA	2013	melanoma	Caucasian	198/372	retrospective	hospital-based	leukocyte	quantitative PCR	
Gabriella M. Anic et al., BCC14	USA	2013	basal cell carcinoma	Caucasian	185/372	retrospective	hospital-based	leukocyte	quantitative PCR	
Gabriella M. Anic et al., SCC11,14	USA	2013	squamous cell carcinoma	Caucasian	136/372	retrospective	hospital-based	leukocyte	quantitative PCR	
Hongmei Nan et al.12	USA	2011	cutaneous melanoma	Caucasian	557/579	retrospective	population-based	leukocyte	quantitative PCR	
Jiali Han et al., melonoma13	USA	2009	melanoma	Caucasian	204/222	prospective	population-based	leukocyte	quantitative PCR	
Jiali Han et al., SCC13	USA	2009	squamous cell carcinoma	Caucasian	254/273	prospective	population-based	leukocyte	quantitative PCR	
Jiali Han et al., BCC13	USA	2009	basal cell carcinoma	Caucasian	282/306	prospective	population-based	leukocyte	quantitative PCR	
Geyu Liang et al., SCC14	USA	2011	squamous cell carcinoma	Caucasian	241/241	retrospective	population-based	leukocyte	quantitative PCR	
Geyu Liang et al., BCC14	USA	2011	basal cell carcinoma	Caucasian	623/1943	retrospective	population-based	leukocyte	quantitative PCR	
Laura S. Burke et al.15	USA	2013	melanoma	Caucasian	119/208	retrospective	family-based	whole blood or EBV-transformed lymphocytes	quantitative PCR	
Xiexing Wu et al., RCC16	USA	2003	renal cell carcinoma	Caucasian	32/32	retrospective	population-based	leukocyte	Q-FISH	
Xiexing Wu et al., BLC16	USA	2003	bladder cancer	Caucasian	135/135	retrospective	population-based	leukocyte	Q-FISH	
Lisa Mirabello et al.17	USA	2009	prostate cancer	Caucasian	612/1049	retrospective	population-based	leukocyte	quantitative PCR	
B Julin et al.18	USA	2015	prostate cancer	Caucasian	922/935	retrospective	population-based	leukocyte	quantitative PCR	
Lauren M. Hurwitz et al.19	USA	2014	prostate cancer	Caucasian	112/63	retrospective	family-based	leukocyte	quantitative PCR	
Jonathan N. Hofmann et al.20	USA	2013	renal cell carcinoma	Caucasian	209/410	prospective	population-based	leukocyte	quantitative PCR	
Jonathan N. Hofmann et al., Caucasian21	USA	2011	renal cell carcinoma	Caucasian	658/550	retrospective	population-based	whole blood	quantitative PCR	
Jonathan N. Hofmann et al., African American21	USA	2011	renal cell carcinoma	African American	233/344	retrospective	population-based	whole blood	quantitative PCR	
Monica McGrath et al.22	USA	2007	bladder cancer	Caucasian	184/192	retrospective	population-based	leukocyte	quantitative PCR	
Karin Broberg et al.23	Sweden	2005	bladder cancer	Caucasian	63/93	retrospective	population-based	buccal cell	quantitative PCR	
Andrew J. Pellatt et al.24	USA	2012	colon rectal cancer	Caucasian	525/746	retrospective	population-based	whole blood	quantitative PCR	
Yong Cui et al.25	China	2012	colorectal cancer	Asian	512/549	retrospective	Population-based	leukocyte	quantitative PCR	
Qin Qin et al.26	China	2014	colorectal cancer	Asian	628/1256	retrospective	hospital-based	leukocyte	quantitative PCR	
Lifang Hou et al.27	USA	2009	gastric cancer	Caucasian	300/416	retrospective	population-based	leukocyte	quantitative PCR	
Rosa Ana Risques et al.28	USA	2007	esophageal adenocarcinoma	Caucasian	38/300	prospective	population-based	leukocyte	quantitative PCR	
Qianqian Yu et al.29	China	2014	esophageal squamous cell carcinoma	Asian	308/309	retrospective	hospital-based	lymphocyte	quantitative PCR	
Jiangbo Du et al.30	China	2015	gastric cancer	Asian	1136/1102	retrospective	population-based	leukocyte	quantitative PCR	
Xiaonian Liu et al.31	China	2009	gastric cancer	Asian	396/576	retrospective	hospital-based	leukocyte	quantitative PCR	
Jinliang Xing et al.32	China	2009	esophageal cancer	Caucasian	94/92	retrospective	hospital-based	leukocyte	quantitative PCR	
Maria M. Gramatges et al.33	USA	2010	breast cancer	Caucasian	102/50	retrospective	population-based	leukocyte	quantitative PCR	
Andrew J. Pellatt et al.34	USA	2013	breast cancer	Caucasian	728/720	retrospective	population-based	leukocyte	quantitative PCR	
Jing Shen et al.35	USA	2009	breast cancer	Caucasian	1026/1078	retrospective	population-based	leukocyte	quantitative PCR	
Immaculata De Vivo et al.36	USA	2009	breast cancer	Caucasian	896/917	retrospective	population-based	leukocyte	quantitative PCR	
Sangmi Kim et al.37	USA	2011	breast cancer	Caucasian	342/735	prospective	population-based	leukocyte	quantitative PCR	
Jing Shen et al.38	USA	2007	breast cancer	Caucasian	283/347	retrospective	family-based	leukocyte	quantitative PCR	
Yun-Ling Zheng et al.39	USA	2010	breast cancer	Caucasian	292/335	retrospective	population-based	leukocyte	Q-FISH	
Shimian Qu et al.40	USA	2012	breast cancer	Asian	601/695	prospective	population-based	leukocyte	quantitative PCR	
Xiexing Wu et al., LC16	USA	2003	lung cancer	Caucasian	54/54	retrospective	population-based	leukocyte	Q-FISH	
Min Shen et al.41	USA	2011	lung cancer	Caucasian	230/229	prospective	population-based	leukocyte	quantitative PCR	
Qing Lan et al.42	USA	2013	lung cancer	Asian	215/215	prospective	population-based	leukocyte	quantitative PCR	
Beatriz Sanchez-Espiridion et al., LAC20	USA	2014	lung adenocarcinoma	Caucasian	706/706	retrospective	hospital-based	leukocyte	quantitative PCR	
Beatriz Sanchez-Espiridion et al., LSCC24	USA	2014	lung squamous cell carcinoma	Caucasian	320/320	retrospective	hospital-based	leukocyte	quantitative PCR	
Wei Jie Seow et al.44	USA	2014	lung cancer	Caucasian	847/847	prospective	Population-based	leukocyte	quantitative PCR	
Bing Sun et al.45	USA	2015	lung cancer	Caucasian	191/207	retrospective	Population-based	hospital-based	lymphocyte	Q-FISH
Jin Sung Iang et al.46	Korea	2008	lung cancer	Asian	243/243	retrospective	hospital-based	leukocyte	quantitative PCR	
Yang Zhang et al., OCC15	USA	2013	oral cavity cancer	Caucasian	137/335	retrospective	hospital-based	lymphocyte	quantitative PCR	
Yang Zhang et al., OPC24	USA	2013	oropharyngeal squamous cell carcinoma	Caucasian	188/335	retrospective	hospital-based	lymphocyte	quantitative PCR	

Continued
Telomeres will result in chromosomal fusions, continuous “breakage-fusion-bridge” cycles, derived chromosome imbalances, gene amplifications, and ultimately the generation of complex non-reciprocal translocations, a hallmark feature of adult solid tumors and genomic instability in general \(^{24}\). At the population level, the high incidence of cancer has prompted that shortening of telomeres promotes tumor development and several studies have found that patients with shorter telomeres in peripheral blood cells have a higher risk of developing carcinomas \(^ {25}\). In this meta-analysis, although we found there is no significant association between telomere length and overall risk of cancers, but we demonstrated a significant association with gastrointestinal tumor and head and neck cancer, supporting the hypothesis that excessive telomere shortening may play an important role in accelerating tumor onset and progression. Gastrointestinal tumor and head and neck cancer is kind of epithelial malignancies in digestive system. The majority of epithelial malignancies appear to develop from morphologically defined precursor lesions termed intraepithelial neoplasia \(^ {26}\). Telomere length in more than 90% intraepithelial neoplasia is dramatically shortened \(^ {27}\). In addition, telomeres of gastrointestinal tumor may exhibit an intensified rate of shortening that is greatly accelerated as compared to the normal tissue of origin \(^ {28}\).

However, our results revealed heterogeneous association results between different cancer types. Short telomeres were convincingly associated with increased risk of gastrointestinal tumor and head and neck cancer, which, however, was not observed in other types of cancer. Of note, a significant but inverse association was shown for lung cancer in prospective studies. These inconsistent results across cancer types may reflect different carcinogenic mechanisms conferred by specific telomeres in specific cancer types. For example, several studies \(^ {29},^{30}\) found a higher risk for melanoma among individuals with longer telomeres, this may suggest that shorter telomere lengths protect against the malignant transformation of cells within melanocytic nevi by limiting proliferative capacity and triggering the entry to senescence stage. To the contrary, longer telomeres were found to be protective for basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) with the reason of that UV exposure may be more likely to induce genomic abnormalities in cells with shorter telomeres. In addition, Sanchez-Espiridion \(et al. \) \(^ {31}\) found that patients with lung adenocarcinoma had longer telomeres than controls, whereas patients with lung squamous cell carcinoma had shorter telomeres compared with controls. These findings suggest that telomere length may affect cancer risk in a histologic manner, further highlighting the distinct roles of telomere in cancer development.

Table 1. Information summary of 51 eligible studies included in this meta-analysis. *The controls were shared for different cancer types in the same publication.

In addition to the cancer-specific associations, telomere length may also involve in cancer risk in a complex manner rather than a simple linear relationship. Cui \(et al. \) \(^ {32}\) reported a U-shaped association between telomere length in peripheral blood cells and colorectal cancer (CRC) risk, and they found that both very short and very long telomeres are risk factors for colorectal cancer. Recently, we also reported a non-linear relationship between telomeres and gastric cancer risk \(^ {33}\). Similar results were also reported in pancreatic cancer \(^ {44}\), breast cancer \(^ {35}\) and glioma \(^ {36}\). These observations are also biologically plausible because telomeres may act as a double-edged sword in the development of cancer. Telomere shortening can generally lead to chromosomal instability and finally initiate the process of carcinogenesis \(^ {37}\). However, long telomeres may allow for more cell divisions and increase the chance of acquiring abnormalities for cancer development \(^ {38}\). However, due to lack of original data, we cannot evaluate this phenomenon in this study. Further studies are warranted to carefully test these findings.
There are some limitations in this meta-analysis. Firstly, some factors can affect the length of telomeres, such as age, gender, and tobacco smoking, and oxidative stress. The results of this meta-analysis were based on unadjusted estimates, because odds ratios (ORs) derived from different studies were not adjusted by the same potential confounders or only the number of cases and controls was provided without the detailed information of other variables. Secondly, we performed analysis by dividing the subjects into two or three groups simply due to lack of original data of relative telomere length, which may decrease the power to evaluate the relationship of telomere length and overall risk of cancers. In the main analysis of this study, we treated the groups of "Q1 and Q2" (for three groups) or "Q1, Q2 and Q3" (for five groups) as the short groups, and the other groups as the long groups. To address the stability of the results, we also treated the groups of "Q1" (for studies with three groups) or "Q1, and Q2" (for studies with five groups) as the short groups and the other groups as the long groups, and found that the results were similar (OR = 1.08, 95% CI: 0.96–1.22 for overall cancer risk).

In summary, our meta-analysis provided strong evidence for the association between short telomeres and increased risk of gastrointestinal tumor and head and neck cancer. In addition, the short telomeres also increased, although not significantly, the risk of overall cancer in the analysis of dichotomized variable, this association

Groups	Numbers	Heterogeneity	Associations (short vs. long)	
	Study Case/Control	P	OR(95% CI)	P
Overall	62 23379/68792	<0.001	1.10(0.99–1.23)	0.09
Populations				
Caucasian	51 18727/63183	<0.001	1.08(0.97–1.21)	0.18
Asian	10 4419/5265	<0.001	1.15(0.78–1.68)	0.49
African American	1 233/344		1.22(0.88–1.71)	0.23
Study design				
Prospective	16 7925/48662	<0.001	1.02(0.87–1.19)	0.80
Retrospective	46 15454/20130	<0.001	1.14(0.98–1.33)	0.10
Populations				
Caucasian	51 18727/63183	<0.001	1.09(0.97–1.21)	0.18
Asian	10 4419/5265	<0.001	1.15(0.78–1.68)	0.49
African American	1 233/344		1.22(0.88–1.71)	0.23

Table 2. Summary of meta-analysis results for associations between telomere length and cancer risk.

There are some limitations in this meta-analysis. Firstly, some factors can affect the length of telomeres, such as age, gender, and tobacco smoking, and oxidative stress. The results of this meta-analysis were based on unadjusted estimates, because odds ratios (ORs) derived from different studies were not adjusted by the same potential confounders or only the number of cases and controls was provided without the detailed information of other variables. Secondly, we performed analysis by dividing the subjects into two or three groups simply due to lack of original data of relative telomere length, which may decrease the power to evaluate the relationship of telomere length and overall risk of cancers. In the main analysis of this study, we treated the groups of "Q1 and Q2" (for three groups) or "Q1, Q2 and Q3" (for five groups) as the short groups, and the other groups as the long groups. To address the stability of the results, we also treated the groups of "Q1" (for studies with three groups) or "Q1, and Q2" (for studies with five groups) as the short groups and the other groups as the long groups, and found that the results were similar (OR = 1.08, 95% CI: 0.96–1.22 for overall cancer risk).

In summary, our meta-analysis provided strong evidence for the association between short telomeres and increased risk of gastrointestinal tumor and head and neck cancer. In addition, the short telomeres also increased, although not significantly, the risk of overall cancer in the analysis of dichotomized variable, this association...
Figure 2. ORs and 95% CIs for cancer risk associated with telomere length (short vs. long).

Table 3. Dose-response relationship between telomere length and cancer risk by cancer type.

Cancer type	Numbers	Heterogeneity	OR (95% CI)	OR (95% CI)
Overall	59	<0.001	1.09 (1.01–1.19)	0.037
Skin cancer	10	<0.001	1.11 (0.83–1.49)	0.496
Tumors of urogenital system	10	<0.001	1.15 (0.97–1.37)	0.113
Gastrointestinal tumor	8	<0.001	1.29 (1.08–1.54)	4.24E-03
Breast cancer	8	<0.001	0.96 (0.83–1.11)	0.403
Lung cancer	8	<0.001	1.11 (0.86–1.42)	0.415
Head and neck cancer	2	0.284	2.30 (1.74–3.02)	2.85E-09
Lymphoma	3	<0.001	0.89 (0.53–1.38)	0.970
may be influenced by the study numbers of different tumors because the effects are different between tumors. However, larger, well-designed prospective studies are needed to validate these findings, which may help to uncover the potential mechanisms of telomere dysfunction in cancer development.

References
1. de Lange, T. et al. Structure and variability of human chromosome ends. Mol Cell Biol 10, 518–27 (1990).
2. Moon, I. K. & Jarstfer, M. B. The human telomere and its relationship to human disease, therapy, and tissue engineering. Front Biosci 12, 4595–4620 (2007).
3. Czerny, C. J. & Keith, W. N. Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimica 90, 13–23 (2008).
4. Zhao, Y. et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138, 463–475 (2009).
5. Blackburn, E. H., Greider, C. W. & Szostak, J. W. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12, 1133–1138 (2006).
6. Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad Sci USA 89, 10114–8 (1992).
7. Steffens, J. P., Masi, S., D’Aiuto, F. & Spolidorio, L. C. Telomere length and its relationship with chronic diseases-new perspectives for periodontal research. Arch Oral Biol 58, 111–7 (2013).
8. Daniali, L. et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 4, 1597 (2013).
9. Wentzensen, I. M., Mirabello, L., Pfeiffer, R. M. & Savage, S. A. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 20, 1238–50 (2011).
10. Ma, H. et al. Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One. 6, e20466 (2011).
11. Anic, G. M. et al. Telomere length and risk of melanoma, squamous cell carcinoma, and basal cell carcinoma. Cancer Epidemiol. 37, 434–9 (2013).
12. Nan, H. et al. Shorter telomeres associate with a reduced risk of melanoma development. Cancer Res. 71, 6758–63 (2011).
13. Han, J. et al. A prospective study of telomere length and the risk of skin cancer. J Invest Dermatol. 129, 415–21 (2009).
14. Liang, G., Qureshi, A. A., Guo, Q., De Vivo, I. & Han, J. No association between telomere length in peripheral blood leukocytes and the risk of non-melanoma skin cancer. Cancer Epidemiol Biomarkers Prev. 20, 1043–5 (2011).
15. Burke, L. S. et al. Telomere length and the risk of cutaneous malignant melanoma in melanoma-prone families with and without CDKN2A mutations. PLoS One. 8, e71121 (2013).
16. Wu, X. et al. Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst. 95, 1211–8 (2003).
17. Mirabello, L. et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 8, 405–13 (2009).
18. Julius, B. et al. Circulating leukocyte telomere length and risk of overall and aggressive prostate cancer. Br J Cancer. 112, 769–76 (2015).
19. Hurwitz, L. M. et al. Telomere length as a risk factor for hereditary prostate cancer. Prostate. 74, 359–64 (2014).
20. Hofmann, J. N. et al. A prospective study of leukocyte telomere length and risk of renal cell carcinoma. Cancer Epidemiol Biomarkers Prev. 22, 997–1000 (2013).
21. Hofmann, J. N. et al. Risk of renal cell carcinoma in relation to blood telomere length in a population-based case-control study. Br J Cancer. 105, 1772–5 (2011).
22. McGrath, M., Wong, J. Y., Michelaud, D., Hunter, D. J. & De Vivo, I. Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev. 16, 815–9 (2007).
23. Broberg, K., Björk, J., Paulsson, K., Höglund, M. & Albin, M. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis. 26, 1263–71 (2005).
24. Pellatt, A. J., Wolff, R. K., Lundgreen, A., Cawthon, R. & Slattery, M. L. Genetic and lifestyle influence on telomere length and subsequent risk of colon cancer in a case control study. Int J Mol Epidemiol Genet. 3, 184–94 (2012).
25. Cui, Y. et al. Association of leukocyte telomere length with colorectal cancer risk: nested case-control findings from the Shanghai Women’s Health Study. Cancer Epidemiol Biomarkers Prev. 21, 1807–12 (2012).
26. Qin, Q. et al. Telomere length in peripheral blood leukocytes is associated with risk of colorectal cancer in Chinese population. PLoS One. 9, e88135 (2014).
27. Hou, L. et al. Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiol Biomarkers Prev. 18, 3103–9 (2009).
28. Risques, R. A. et al. Leukocyte telomere length predicts cancer risk in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev. 16, 2649–55 (2007).
29. Yu, Q. et al. Combined effects of leukocyte telomere length, p53 polymorphism and human papillomavirus infection on esophageal squamous cell carcinoma in a Han Chinese population. Cancer Epidemiol. 38, 569–75 (2014).

Figure 3. Funnel plot analysis to detect publication bias.
30. Du, J. et al. Telomere length, genetic variants and gastric cancer risk in a Chinese population. Carcinogenesis. 36, 963–70 (2015).
31. Liu, X. et al. Constitutive telomere length and gastric cancer risk: case-control analysis in Chinese Han population. Cancer Sci. 100, 1300–5 (2009).
32. Xing, J. et al. Short telomere length is a potential risk factor for esophageal cancer. Cancer Prev Res 2, 459–65 (Philia, 2009).
33. Gramatges, M. M., Telli, M. L., Balise, R. & Ford, J. M. Longer relative telomere length in blood from women with sporadic and familial breast cancer compared with healthy controls. Cancer Epidemiol Biomarkers Prev. 19, 605–13 (2010).
34. Pellatt, A. J., et al. Telomere length, telomere-related genes, and breast cancer risk: the breast cancer health disparities study. Genes Chromosomes Cancer. 52, 595–609 (2013).
35. Shen, J. et al. Telomere length, oxidative damage, antioxidants and breast cancer risk. Int J Cancer. 124, 1637–43 (2009).
36. De Vivo, I. et al. A prospective study of relative telomere length and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev. 18, 1152–6 (2009).
37. Kim, S. et al. Telomere length in peripheral blood and breast cancer risk in a prospective case-cohort analysis: results from the Sister Study. Cancer Causes Control. 22, 1061–6 (2011).
38. Shen, J. et al. Short telomere length and breast cancer risk: a study in sister sets. Cancer Res. 67, 5538–4 (2007).
39. Zheng, Y.-L. et al. Telomere length in blood cells and breast cancer risk: investigations in two case-control studies. Breast Cancer Res Treat. 120, 769–75 (2010).
40. Qu, S. et al. Association of leukocyte telomere length with breast cancer risk: nested case-control findings from the Shanghai Women's Health Study. Am J Epidemiol. 177, 617–24 (2013).
41. Shen, M. et al. A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer. Lung Cancer. 73, 133–7 (2011).
42. Lan, Q. et al. Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2376100 (CLPTML1-TERT) polymorphism in a prospective cohort study among women in China. PLoS One. 8, e59230 (2013).
43. Sanchez-Esparidion, B. et al. Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res. 74, 2476–86 (2014).
44. Seow, W. J. et al. Telomere length in white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res. 74, 4099–409 (2014).
45. Sun, B. et al. Telomere length variation: A potential new biomarker for lung cancer risk. Lung Cancer. 88, 297–303 (2015).
46. Jang, J. S. et al. Telomere length and the risk of lung cancer. Cancer Sci. 99, 1385–9 (2008).
47. Zhang, Y. et al. Telomere length in peripheral blood lymphocytes contributes to the development of HPV-associated oropharyngeal carcinoma. Cancer Res. 73, 5996–6003 (2013).
48. Bao, D. T. et al. Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Cancer. 119, 4277–83 (2013).
49. Lan, Q. et al. A prospective study of telomere length measured by monochrome multiplex PCR and risk of non-Hodgkin lymphoma. Clin Cancer Res. 15, 429–33 (2009).
50. Hosnijeh, F. S. et al. Prediagnostic telomere length and risk of B-cell lymphoma—Results from the EPIC cohort study. Int J Cancer. 135, 2910–7 (2014).
51. Widmann, T. A., Herrmann, M., Taha, N., König, J. & Pfirrnschuh, M. Short telomeres in aggressive non-Hodgkin’s lymphoma as a risk factor in lymphoma aggressiveness. Exp Hematol. 35, 939–46 (2007).
52. Liu, J. et al. Longer leukocyte telomere length predicts increased risk of hepatitis B virus-related hepatocellular carcinoma: a case-control analysis. Cancer. 117, 4247–56 (2011).
53. Lynch, S. M. et al. A prospective analysis of telomere length and pancreatic cancer in the alpha-tocopherol beta-carotene cancer (ATBC) prevention study. Int J Cancer. 133, 2672–80 (2013).
54. Fu, X. et al. Relative telomere length: a novel non-invasive biomarker for the risk of non-cirrhotic hepatocellular carcinoma in patients with chronic hepatitis B infection. Eur J Cancer. 48, 1014–22 (2012).
55. Campo, D. et al. Risk of multiple myeloma is associated with polymorphisms within telomerase genes and telomere length. Int J Cancer. 136, 531–8 (2015).
56. Terry, K. L. et al. Telomere length and genetic variation in telomere maintenance genes in relation to ovarian cancer risk. Cancer Epidemiol Biomarkers Prev. 21, 504–12 (2012).
57. Walcott, F. et al. Telomere length and risk of glioma. Cancer Epidemiol. 37, 935–8 (2013).
58. Prescott, J., McGrath, M., Lee, I. M., Buring, J. E. & De Vivo, I. Telomere length and genetic analyses in population-based studies of endometrial cancer risk. Cancer. 116, 4275–82 (2010).
59. Weissher, M. et al. Short telomere length, cancer survival, and cancer risk in 47102 individuals. J Natl Cancer Inst. 105, 459–68 (2013).
60. Mirellino, L. et al. Telomere length and gastric cancer risk in a population-based case-control study of ovarian cancer: a pilot study. Cancer Causes Control. 21, 77–82 (2010).
61. Willett, P. et al. Telomere length and risk of incident cancer and cancer mortality. JAMA. 304, 69–75 (2010).
62. Svensson, U. et al. Breast cancer survival is associated with telomere length in peripheral blood cells. Cancer Res. 68, 3618–23 (2008).
63. Pooley, K. A. et al. Telomere length in prospective and retrospective cancer case-control studies. Cancer Res. 70, 3170–6 (2010).
64. Skinner, H. G. et al. Telomere length and pancreatic cancer: a case-control study. Cancer Epidemiol Biomarkers Prev. 21, 1095–100 (2012).
65. Campo, D. et al. Telomere length variation in relation to breast cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev. 23, 2447–54 (2014).
66. Wang, S. et al. Association between leukocyte telomere length and glioma risk: a case-control study. Neuro Oncol. 16, 505–12 (2014).
67. Lau, J., Ioannidis, J. P. & Schmid, C. H. Quantitative synthesis in systematic reviews. Ann Intern Med. 127, 820–6 (1997).
68. Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat Med. 21, 1539–58 (2002).
69. Pettitt, D. Meta-analysis, decision analysis, and cost-effectiveness analysis. Oxford University Press (New York, 1994).
70. Blackburn, E. H. Switching and signaling at the telomere. Cell. 106, 661–72 (2001).
71. Hahn, W. C. Role of telomeres and telomerase in the pathogenesis of human cancer. J Clin Oncol. 21, 2034–43 (2003).
72. Campisi, J., Kim, S. H., Lim, C. S. & Rubio, M. Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol. 36, 1619–37 (2001).
73. DePinho, R. A. The age of cancer. Nature. 408, 248–54 (2000).
74. Desmazé, C., Soria, J. C., Freulet-Marlier, M. A., Mathieu, N. & Sabatier, I. Telomere-driven genomic instability in cancer cells. Cancer Lett. 194, 173–82 (2003).
75. Broberg, K., Bjork, J., Paulsson, K., Höglund, M. & Albin, M. Constitutional short telomeres are strong genetic markers for bladder cancer. Carcinogenesis. 26, 1263–71 (2005).
76. O'Shaughnessy, J. A. et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res. 8, 314–46 (2002).
77. Meeker, A. K. et al. Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 62, 6405–9 (2002).
78. Basu, N. et al. Telomeres and telomere dynamics: relevance to cancers of the GI tract. Expert Rev Gastroenterol Hepatol. 7, 733–48 (2013).
79. Cesare, A. J. & Reddel, R. R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 11, 319–30 (2010).
80. Njajou, O. T. et al. Telomere length is paternally inherited and is associated with parental lifespan. Proc Natl Acad Sci USA 104, 12135–9 (2007).
81. Valdes, A. M. et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 366, 662–4 (2005).

Acknowledgements
This work was supported in part by the National Basic Research Program (973) (2013CB910304); National Natural Science Foundation of China (81422042, 81373090); Natural Science Foundation for Distinguished Young Scholars in Jiangsu (BK20130042); Innovative Practice Training Project for Jiangsu Higher Education Institutions Undergraduate (201310312003Z); and Priority Academic Program for the Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine).

Author Contributions
G.J. and X.Z. conceived and designed the study; X.Z., W.H. and W.X. reviewed the literature, extracted the data, and performed analysis. Y.Z., C.X. and J.D. reviewed the literature and checked the data; G.J. and X.Z. wrote and revised the manuscript. All authors reviewed and approved the manuscript prior to submission.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhu, X. et al. The association between telomere length and cancer risk in population studies. Sci. Rep. 6, 22243; doi: 10.1038/srep22243 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/