Outcomes of Elective Major Cancer Surgery During COVID 19 at Tata Memorial Centre

Implications for Cancer Care Policy

Shailesh V. Shrikhande, MS, MD, FRCS,* Prathmesh S. Pai, MS, DNB, * Manish S. Bhandare, MS, MCh,* Ganesh Bakshi, MS, MCh,* Devendra A. Chaukar, MS,* Pankaj Chaturvedi, MS,* Mahesh Goel, MS, * Ashish Gulia, MS, MCh,* Sajid S. Qureshi, MS,* Amita Maheshwari, MD, * Aliasgar Moiyadi, MS, MCh,* Sudhir Nair, MS, MCh,* Nita S. Nair, MS, MCh,* George Karimundackal, MS, MCh,* Avanish P. Saklani, MS, FRCS,* Vinay K. Shankhadhar, MS, MCh,* Vani Parmar, MS,* Jigeeshu V. Divatia, MD,* ‡ Pramesh CS, MS, FRCS,* Ajay Puri, MS,* and Rajendra A. Badwe, MS,* on behalf of all collaborators from Department of Surgical Oncology

Background: Overburdened systems and concerns of adverse outcomes have resulted in deferred cancer surgeries with devastating consequences. In this COVID pandemic, the decision to continue elective cancer surgeries, and their subsequent outcomes, are sparsely reported from hotspots.

Methods: A prospective database of the Department of Surgical Oncology was analysed from March 23rd to April 30th, 2020.

Findings: Four hundred ninety-four elective surgeries were performed (377 tested and 117 tested for Covid 19 before surgery). Median age was 48 years with 13% (n = 64) above the age of 60 years. Sixty-eight percent (n = 284) of patients were male. Average hospital stay was 1 to 9 days across specialties. Postoperatively, 26 patients were tested for COVID 19 and 6 tested positive. They all had higher grade surgeries but none required escalated or intensive care treatment related to COVID infection.

Interpretation: A combination of scientific and administrative rationale contributed to favorable outcomes after major elective cancer surgeries. These results support the continuation of elective major cancer surgery in regions with Covid 19 trends similar to India.

Keywords: cancer care, cancer surgery, Covid 19, oncologic surgery, outcomes, pandemic

Health systems have been under duress due to pandemic caused by SARS coronavirus 2 (SARS-CoV-2). Based on information suggesting that India was faring better compared to the west* and that oncology patients were likely to get deferred care with significant implications,** the department of surgical oncology took a conscious decision to continue offering elective cancer surgeries albeit deescalated by approximately 50% (and continues to do so till date of submission of manuscript). Outcome data of elective cancer resections are sparsely reported from Covid hotspots around the world. We aimed to analyze and report outcomes of 494 elective cancer surgeries and discuss the implications of our decision.

METHODS

A prospective database of the Department of Surgical Oncology was analysed from March 23rd to April 30th, 2020.

Screening and Selection of Patients for Surgery

Patients likely to benefit from potentially curative cancer surgery were given the highest priority. Younger patients with fewer comorbidities were preferred. Asymptomatic patients were not tested preemptively for COVID 19 unless there was history of contact or international travel in the initial part of the study (23rd March – 18th April 2020). In the last 2 weeks of the study (19th – 30th April) with increasing concern of community spread, routine preoperative COVID 19 testing was instituted. The test was performed on nasopharyngeal and the oropharyngeal swabs by TaqMan probe-based real-time reverse
TABLE 1. Patient Characteristics, Surgical Procedures, and Overall Postoperative Outcomes (n = 494)

| Age (yrs) | 48 (range, 27–85) |
|----------|------------------|
| Sex (M: F) | 173:321 (35%-65%) |
| ASA status | 337 (68.2%) |
| II | 148 (30%) |
| III | 9 (1.8%) |
| Cancer surgery site | 204 (41.3%) |
| Modified/radical mastectomy | 118 |
| Breast conservation surgery | 78 |
| Others | 08 |
| Head & Neck Oncology | 87 (17.6%) |
| Oral cavity composite resections | 26 |
| Wide excision ± neck dissection | 31 |
| Thyroidectomy/maxillectomy | 11 |
| Others | 10 |
| Gastrointestinal and HPB Oncology | 84 (17%) |
| Anterior/inter-sphincteric/abdomino-perineal resection | 31 |
| Colorectomy | 07 |
| Radical gastrectomy (distal/total) | 09 |
| Pancreatico-duodenectomy | 12 |
| Cholecystectomy (simple/radical) | 09 |
| Liver resection | 02 |
| Others | 14 |
| Gynaec Oncology | 28 (5.7%) |
| Primary/interval cytoreduction | 14 |
| Radical hysterectomy | 04 |
| Others | 10 |
| Bone & Soft tissue Tumors | 27 (5.5%) |
| Bone en-bloc excision ± reconstruction | 19 |
| (femur/tibia/humerus) | |
| Sarcoma excision | 05 |
| Others | 03 |
| Thoracic Oncology | 23 (4.7%) |
| Thoracoscopic esophagectomy | 07 |
| Partial oesophago-gastronomy | 03 |
| Lung resection (lobectomy) | 03 |
| Lung metastastectomy | 05 |
| Others | 05 |
| Uro-Oncology | 20 (4%) |
| Radical nephrectomy/adrenalecctomy | 11 |
| Partial/radical cystectomy | 04 |
| Others | 05 |
| Paediatric Oncology | 12 (2.4%) |
| Excision of Wilm’s tumor/Retropertioneal Sarcoma | 06 |
| Others | |
| Neuro-oncology | 09 (1.8%) |
| Excision of CNS tumors | 05 |
| Shunts and other procedures | 04 |
| Head & Neck surgeries | 87 |
| Plastic reconstructive procedure performed | 30 (34.4%) |
| Elective tracheotomy added | 07 (8%) |
| Coelomic Surgeries | 165 |
| Open | 125 (85.6%) |
| Laparoscopic | 40 (24.2%) |
| Grade of Surgery | |
| I | 04 (0.8%) |
| II | 11 (2.2%) |
| III | 56 (11%) |
| IV | 266 (53.8%) |
| V | 95 (19.2%) |
| VI | 62 (12.6%) |
| Readmissions | 12 (2.4%) |
| Complications | |
| Overall | 132 (26.7%) |
| Minor (CD grade I/II) | 113 (22.9%) |
| Major (CD grade III/IV) | 29 (5.8%) |
| Reexplorations | 13 (2.6%) |
| Mortality | None |

ASA indicates American Society of Anesthesiologist.
CD grade, Clavein Dindo grade.
HPB, Hepato-pancreatico-biliary.

transcriptase polymerase chain reaction (RT-PCR) method. Irrespective of preoperative testing, all patients were considered as COVID positive and the operating room staff had to adhere to full precautions.

Data Recording and Analysis

The electronic clinical data were reviewed and documented. Surgeries were graded (grade I – grade VI) with increasing surgical complexity. All perioperative parameters were documented in detail. Statistical analyses were performed using Statistical Product and Service Solutions (SPSS), IBM Corp, for Windows version 21.0, (SPSS Inc. Armonk, NY). Descriptive analysis was performed to identify distribution of variables under study and continuous variables were presented as median with interquartile range.

The study was approved by the Institutional Ethics Committee.

RESULTS

During the study period, 520 surgeries were performed of which 494 (95%) cases were elective surgeries whereas 26 (5%) were emergency surgeries. Demographic and operative outcomes are provided in Table 1.

Of all patients undergoing elective surgery, 181 (36.6%) were residents of Mumbai or Maharashtra state and rest from other parts of India (63.4%).

As per the surgical complexity grading, 71 (14.4%) cases were of lower grade (I-III) and 423 (85.6%) were higher grade surgeries (IV–VI). Breast cancer surgeries constituted 41.3% (n = 205), followed by head and neck (87 cases; 17.6%) and GI cancer surgeries (84 cases; 17%). Plastic reconstructive procedures were required in 34.4% of the Head & Neck resections. Postoperative major morbidity (Clavein Dindo grade ≥ III) occurred in 28 (5.6%) patients and there were no deaths. Perioperative outcomes across cancer sites are presented in Table 2. Sixty-four patients were above 60 years age, of which 9.3% developed major complications compared to 5.2% in <60 years (P value =0.169). Grade IV to VI surgeries accounted for more than 85% of cases in both groups.

None of the patients undergoing surgery had clinical suspicion for COVID 19, based on symptoms or contact history, and initial 377 surgeries were performed without any testing. One hundred seventeen surgeries were carried out after testing for subclinical COVID 19 infection. Postoperatively, 26 patients were tested in view of specific symptoms or contact history from the community (to patients or their kins) and 6 tested positive. All these patients had undergone grade IV to VI surgeries (Buccal mucosa composite resection - 3, total thyroidectomy with neck dissection - 1, pancreatico-duodenectomy - 1, distal femur resection with total knee replacement - 1). None of these patients required escalated or intensive care treatment related to COVID infection. All of them recovered well from surgery and COVID infection.

DISCUSSION

The reasons for our decision to continue elective major cancer surgery were not easy. Mumbai, is currently rated as a COVID 19 hotspot. The population of Mumbai is approximately 21 million with a population density of 21,000 people per square kilometre.3 It is pertinent to note that despite good testing rates (1221/million, the one million new cancer cases in India, with case fatality rate of about 3%,4 the cancer mortality in absence
Our strategy may well be applicable to regions where mortality is less than 10 million population (such as China, Japan, Russia, South Korea, Australia, Saudi Arabia, Singapore etc) but may not be applicable for countries like USA with high number of COVID-19 cases (3498 per million) and a high death rate.

Although our results possibly represent the largest series published on elective cancer surgeries during the ongoing pandemic, there are certain limitations to this study. Not all patients and the staff associated with their treatment delivery were tested preoperatively. The possibility of asymptomatic carriers remains a concern; however all have been monitored closely even after discharge from the hospital and outcome measures for patients and staff alike have been very encouraging. The applicability of our experience to the larger population of patients, especially the elderly and those with comorbidities is yet to be fully established. Finally, the prevalence of COVID-19 in India could have been truncated to a large extent by the national lockdown, and the trajectory of infection rates after restrictions are lifted is as yet, unknown.

### CONCLUSIONS AND FUTURE PERSPECTIVES

Cancer surgeons are currently facing a dilemma. Whereas world awaits definitive treatment options, new information about the virus will continue to impact decisions. Our results would not only serve as a springboard for a good action plan for nations with a pandemic profile similar to that of India, but also help resolve the conundrum of continuing cancer surgeries in health systems worldwide that may well have to learn to live with COVID-19. The philosophy that regardless of COVID-19, cancer centres and specialists are available to care for their patients, should gain ground as we attempt to move ahead in this pandemic.

### ACKNOWLEDGMENTS

Dr. Rajesh Dikshit, Director, Centre for Cancer Epidemiology, Mrs. Swapna Joshi, Professor and Nursing Superintendent, Mrs. Sindhu Nair, Assistant Nursing Superintendent, Sister Veena Prakash Thorat, Operating Theatre in charge, Ms. Mangesh Kadam, CSSD (Central Sterile Supply Department), Mrs. Nisha Goel and her team of Kevats (patient navigators) and all our fearless and dedicated operating room, intensive care staff and resident doctors of the Tata Memorial Centre, Mumbai.
REFERENCES
1. Retrieved from http://www.emedinexus.com/post/17753/. [Accessed May 7, 2020]
2. The Lancet Oncology. COVID-19: global consequences for oncology. Lancet Oncol. 2020;21:467.
3. Retrieved from https://indiapopulation2020.in/population-of-mumbai-2020.html. [Accessed May 7, 2020]
4. Retrieved from https://www.covid19india.org/state/MH. [Accessed May 7, 2020]
5. Dhillon PK, Mathur P, Nandakumar A, et al. The burden of cancers and their variations across the states of India: the Global Burden of Disease Study 1990-2016. Lancet Oncol. 2018;19:1289–1306.
6. Pramesh CS, Badwe RA. Cancer management in India during Covid-19. N Engl J Med. 2020;382:e61. doi:10.1056/NEJMc2011595.
7. Gupta S, Maheshwari A, Parab P, et al. Neoadjuvant chemotherapy followed by radical surgery versus concomitant chemotherapy and radiotherapy in patients with stage IB2, IIA, or IIB squamous cervical cancer: a randomized controlled trial. J Clin Oncol. 2018;36:1548–1555.
8. Shrikhande SV, Shinde RS, Chaudhari VA, et al. Twelve hundred consecutive pancreato-duodenectomies from single centre: impact of centre of excellence on pancreatic cancer surgery across India. World J Surg. 2019. doi: 10.1007/s00268-019-05235-0. [Epub ahead of print].
9. D’Cruz AK, Vaish R, Kapre N, et al. Elective versus therapeutic neck dissection in node-negative oral cancer. N Engl J Med. 2015;373:521–529.
10. Puri A, Byregowda S, Gulia A, et al. A study of 853 high grade osteosarcomas from a single institution—are outcomes in Indian patients different? J Surg Oncol. 2018;117:299–306.
11. Coccolini F, Tartaglia D, Puglisi A, Lodato M, Chiarugi M. SARS-CoV-2 is present in peritoneal fluid in COVID-19 patients. Annals of Surgery. Retrieved from https://journals.lww.com/annalsofsurgery/Documents/SARS-CoV-2%20in%20peritoneal%20fluid%20in%20COVID-19%20patients.pdf.
12. Rosenbaum L. The untold toll—the pandemic’s effects on patients without Covid-19. N Engl J Med. 2020 (published online April 17.).