PRODUCTS OF COMPRESSIONS OF kth–ORDER SLANT TOEPLITZ OPERATORS TO MODEL SPACES

BARTOSZ LANUCHA, MALGORZATA MICHALSKA

Abstract. In this paper we investigate intertwining relations for compressions of kth–order slant Toeplitz operators to model spaces. We then ask when a product of two such compressions is a compression itself.

1. Introduction

Let $L^2 = L^2(\mathbb{T}, m)$ and $L^\infty = L^\infty(\mathbb{T}, m)$, where $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ is the unit circle and m is the normalized Lebesgue measure on \mathbb{T}. Fix a positive integer k. A kth–order slant Toeplitz operator with symbol $\varphi = \sum_{n=\infty}^{+\infty} a_n z^n \in L^\infty$ is the operator $U_\varphi : L^2 \to L^2$ represented with respect to the standard monomial basis by the doubly infinite matrix $[a_{ki-j}]_{i,j \in \mathbb{Z}}$ (a_n being the n–th Fourier coefficient of φ). Clearly, for $k = 1$ such matrix is a doubly infinite Toeplitz matrix (has constant diagonals) and so in that case $U_\varphi = M_\varphi$ is the classical multiplication operator, $M_\varphi f = \varphi f$.

It is known that the kth–order slant Toeplitz operator U_φ can be expressed as

$$U_\varphi f = W_k M_\varphi f, \quad f \in L^2,$$

where

$$W_k(z^n) = \begin{cases} z^m & \text{if } \frac{n}{k} = m \in \mathbb{Z}, \\ 0 & \text{if } \frac{n}{k} \notin \mathbb{Z}. \end{cases}$$

Moreover, U_φ can be defined as above for any $\varphi \in L^2$, in which case it is densely defined (its domain contains L^∞). However, U_φ extends boundedly to L^2 if and only if $\varphi \in L^\infty$.

A systematic study of kth–order slant Toeplitz operators for $k = 2$ (called simply slant Toeplitz operators) was started by M. C. Ho [21] (see also [22][24]). He also considered compressions of slant Toeplitz operators to the classical Hardy space H^2 in the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Such compressions were then investigated by T. Zegeye and S. C. Arora [38]. Slant Toeplitz operators have connections with wavelet theory and dynamical systems (see, e.g., [19][22][36]).

Generalized slant Toeplitz operators, that is, kth–order slant Toeplitz operators for $k \geq 2$, were introduced and studied by S. C. Arora and R. Batra [1][2]. Compressions to H^2 were also considered there.

Recall that the compression $V_\varphi : H^2 \to H^2$ of kth–order slant Toeplitz operator U_φ is defined by

$$V_\varphi f = PU_\varphi f, \quad f \in H^2,$$
where P is the Szegő projection. Again, V_{φ} is densely defined for $\varphi \in L^2$ (its domain contains $H^\infty = H^2 \cap L^\infty$) and extends boundedly to H^2 if and only if $\varphi \in L^\infty$. For $k = 1$, $V_{\varphi} = T_{\varphi}$ is the classical Toeplitz operator, $T_{\varphi}f = P(\varphi f)$.

The more recent papers [12, 13] deal with slant Toeplitz operators in multivariable setting, while in [27, 28] the authors investigate commutativity of k^{th}-order slant Toeplitz operators.

In recent years, compressions of multiplication operators are intensely studied. In particular, compressions to model spaces, that is, subspaces of the form $K_\alpha = H^2 \ominus \alpha H^2$, where α is a nonconstant inner function: $\alpha \in H^\infty$ and $|\alpha| = 1$ a.e. on \mathbb{T} (if α is constant, then $K_\alpha = \{0\}$). These subspaces are the non–trivial subspaces of H^2 which are invariant for the backward shift operator $S^* = T_{\bar{z}}$. They are also important in view of their connection with topics such as the B. Sz.-Nagy–C. Foias model theory [33, Chapter VI].

Since the model space K_α is a closed subspace of H^2, the functional $f \mapsto f^{(n)}(w)$ is bounded on K_α for each $n \in \mathbb{N}_0$ and $w \in \mathbb{D}$. Therefore, there exists a kernel function $k_{w,n}^\alpha \in K_\alpha$ such that $f^{(n)}(w) = \langle f, k_{w,n}^\alpha \rangle$ for all $f \in K_\alpha$. It is not difficult to see that $k_{w,n}^\alpha = P_\alpha k_{w,n}$, where $k_{w,n}(z) = \frac{\bar{\alpha} \alpha(z)}{1 - \bar{\alpha} \alpha}$ is in H^2 and P_α is the orthogonal projection from L^2 onto K_α. Recall that $P_\alpha = P - M_\alpha P M_\alpha^*$ (see [15, Corollary 14.13]). In particular, $k_w(z) = k_{w,0}(z) = \frac{1}{1 - \bar{\alpha} \alpha}$ and $k_\alpha^w = P_\alpha k_{w,0}$ is given by

\begin{equation}
(1.1) \quad k_\alpha^w(z) = \frac{1 - \alpha \alpha(z)}{1 - \bar{\alpha} \alpha}, \quad z \in \mathbb{D}.
\end{equation}

Note that k_α^w belongs to H^∞ for each $w \in \mathbb{D}$ and so $K_\alpha^\infty = K_\alpha \cap H^\infty$ is a dense subset of K_α.

It is well known that K_α is preserved by the antilinear, isometric involution $C_\alpha : L^2 \to L^2$ (a conjugation) defined by

$$C_\alpha f(z) = \alpha(z) \overline{f(z)}, \quad |z| = 1,$$

(see [17] and [16, Chapter 8]). The function $\tilde{k}_{w,n}^\alpha = C_\alpha k_{w,n}^\alpha$ is called the conjugate kernel function. In particular, $\tilde{k}_w^\alpha = \tilde{k}_{w,0}^\alpha$ and a.e. on \mathbb{T},

$$\tilde{k}_w^\alpha(z) = C_\alpha k_\alpha^w(z) = \frac{\alpha(z) - \alpha(w)}{z - w}$$

(the above formula is true also for all $z \in \mathbb{D} \setminus \{w\}$ with $\tilde{k}_w^\alpha(w) = \alpha'(w)$).

Finally, note that K_α is the set of all polynomials of degree at most $n - 1$. In that case $\dim K_\alpha = n$ and $\{1, z, \ldots, z^{n-1}\}$ is an orthonormal basis for K_α. More details on properties and structure of model spaces can be found in [16] and [15].

For two inner functions α, β an asymmetric truncated Toeplitz operator $A_{\varphi}^{\alpha,\beta}$ with symbol $\varphi \in L^2$ is defined by

$$A_{\varphi}^{\alpha,\beta} f = P_\beta(\varphi f), \quad f \in K_\alpha^\infty.$$

Note that $A_{\varphi}^{\alpha,\beta}$ is densely defined since K_α^∞ is a dense subset of K_α. Denote

$$T(\alpha, \beta) = \{A_{\varphi}^{\alpha,\beta} : \varphi \in L^2 \text{ and } A_{\varphi}^{\alpha,\beta} \text{ extends boundedly to } K_\alpha\}$$

and $T(\alpha) = T(\alpha, \alpha)$.

Truncated Toeplitz operators, i.e., operators $A_{\varphi}^{\alpha} = A_{\varphi}^{\alpha,\alpha}$ gained attention in 2007 with D. Sarason’s paper [31]. Under intensive study ever since, truncated Toeplitz operators proved to be a rich and interesting topic with many deep results and applications (see
Asymmetric truncated Toeplitz operators were introduced later in [39] and [5]. They were then studied for example in [7,20,25,26,29,30].

In this paper we continue the study of compressions of k^{th}-order slant Toeplitz operators to model spaces. Fix $k \in \mathbb{N}$. For two inner functions α, β and for $\varphi \in L^2$ we define

$$U_{\varphi}^{\alpha,\beta}f = P_{\beta}U_{\varphi}f = P_{\beta}W_{\alpha}(\varphi f), \quad f \in K_{\alpha}^{\infty},$$

and denote

$$S_k(\alpha, \beta) = \{U_{\varphi}^{\alpha,\beta} : \varphi \in L^2 \text{ and } U_{\varphi}^{\alpha,\beta} \text{ extends boundedly to } K_{\alpha}\}.$$

Clearly, $S_1(\alpha, \beta) = \mathcal{T}(\alpha, \beta)$.

The class $S_k(\alpha, \beta)$ was first introduced in [31] where some basic algebraic properties of its elements were investigated. Here we focus on some commuting relations for operators from $S_k(\alpha, \beta)$ and on products of this kind of operators. Products of truncated Toeplitz and asymmetric truncated Toeplitz operators were considered in [10] and [37], respectively.

In Section 2 we introduce a shift invariance analogue which can be used to characterize operators from $S_k(\alpha, \beta)$.

In Section 3 we investigate some intertwining relations involving operators from $S_k(\alpha, \beta)$ and compressed shifts.

Sections 4–5 are devoted to products of operators from $S_k(\alpha, \beta)$ and related problems.

In what follows we will say that an inner function β divides α if $\alpha/\beta = \alpha/\beta$ is also an inner function. In that case we will write $\beta \leq \alpha$. Moreover, for arbitrary inner functions α, β we will denote by $\gcd(\alpha, \beta)$ and $\text{lcm}(\alpha, \beta)$ their greatest common divisor and their least common multiple, respectively. See [3] for more details on the arithmetic of inner functions.

2. Shift invariance for operators from $S_k(\alpha, \beta)$

Recall that a bounded linear operator $A : K_{\alpha} \to K_{\beta}$ is shift invariant if

$$\langle Af, g \rangle = \langle Sf, Sg \rangle$$

for all $f \in K_{\alpha}$, $g \in K_{\beta}$ such that $Sf \in K_{\alpha}$ and $Sg \in K_{\beta}$. For $\alpha = \beta$ this notion was considered by D. Sarason in [33]. He proved that a bounded linear operator $A : K_{\alpha} \to K_{\alpha}$ is a truncated Toeplitz operator if and only if it is shift invariant. For the asymmetric case the notion of shift invariance was considered in [5] ($\beta \leq \alpha$), [29] (α, β - finite Blaschke products) and [20]. There it was proved that the operators from $\mathcal{T}(\alpha, \beta)$ are also characterized by shift invariance. Here we prove the following generalization of this result.

Theorem 2.1. Let α, β be two nonconstant inner functions and let $U : K_{\alpha} \to K_{\beta}$ be a bounded linear operator. Then $U \in S_k(\alpha, \beta)$, $k \in \mathbb{N}$, if and only if

$$\langle U S^k f, Sg \rangle = \langle U f, g \rangle$$

for all $f \in K_{\alpha}$, $g \in K_{\beta}$ such that $S^k f \in K_{\alpha}$ and $Sg \in K_{\beta}$.

As in the case of truncated Toeplitz operators, the proof is based on a characterization of operators from $S_k(\alpha, \beta)$ in terms of operators S_{α} and S_{β}. It was proved in [31] that a bounded linear operator $U : K_{\alpha} \to K_{\beta}$ belongs to $S_k(\alpha, \beta)$ if and only if there exist $\chi \in K_{\alpha}$ and $\psi_0, \ldots, \psi_{k-1} \in K_{\beta}$ such that

$$U - S_{\alpha}^k S_{\beta}^k = \tilde{k}_{\alpha}^0 \otimes \chi + \sum_{j=0}^{k-1} \psi_j \otimes \tilde{k}_{0,j}^\alpha.$$
We also need the following lemma.

Lemma 2.2. Let α be a nonconstant inner function and let $m \in \mathbb{N}$. For each $f \in K_\alpha$ we have

(a) $S_\alpha^m f(z) = z^m f(z) - \sum_{j=0}^{m-1} \frac{1}{j!} \langle f, \tilde{k}_{0,j}^\alpha \rangle \alpha z^{m-1-j}, |z| = 1$;

(b) $(S_\alpha^*)^m f(z) = \overline{z}^m f(z) - \sum_{j=0}^{m-1} \frac{1}{j!} \langle f, \tilde{k}_{0,j}^\alpha \rangle \overline{z}^{m-j}, |z| = 1$.

Proof. Let $f \in K_\alpha$. Since $S_\alpha^m f = A_{zm}^\alpha$ and $P_\alpha = P - M_\alpha P M_\pi$, we get

$S_\alpha^m f = A_{zm}^\alpha = f - \alpha P(\overline{\alpha} z^m f)$.

Now

$$P(\overline{\alpha} z^m f) = P(z^{m-1} \overline{\alpha} zf) = P(z^{m-1} \overline{C_\alpha} f) = P\left(\sum_{j=0}^{\infty} (\overline{C_\alpha} f, \overline{z}^j) z^{m-1-j} \right)$$

$$= \sum_{j=0}^{m-1} \frac{1}{j!} (\overline{C_\alpha} f, \overline{z}^j) z^{m-1-j} = \sum_{j=0}^{m-1} \frac{1}{j!} (f, C_\alpha P_\alpha (\overline{z}^j)) z^{m-1-j}$$

$$= \sum_{j=0}^{m-1} \frac{1}{j!} \langle f, \tilde{k}_{0,j}^\alpha \rangle z^{m-1-j}$$

and (a) follows. Part (b) follows from Lemma 2(a) in [31] and the fact that for $f \in K_\alpha$ we have $(S_\alpha^*)^m f = (S_\alpha^*)^m f$.

Recall that for $f \in K_\alpha$ we have $Sf = zf \in K_\alpha$ if and only if $f \perp \tilde{k}_{0}^\alpha$. On the other hand, for $f \in K_\alpha$ we always have $S^* f \in K_\alpha$ and $\overline{zf} \in K_\alpha$ if and only if $f \perp \tilde{k}_{0}^\alpha$.

Corollary 2.3. Let α be a nonconstant inner function, let $m \in \mathbb{N}$ and let $f \in K_\alpha$. Then

(a) $z^m f(z) \in K_\alpha$ if and only if $f \perp \text{span}\{\tilde{k}_{0,j}^\alpha : j = 0, 1, \ldots, m-1\}$;

(b) $\overline{z}^m f(z) \in K_\alpha$ if and only if $f \perp \text{span}\{k_{0,j}^\alpha : j = 0, 1, \ldots, m-1\}$.

Proof of Theorem 2.1. Let $U \in S_k(\alpha, \beta)$ and take $f \in K_\alpha$, $g \in K_\beta$ such that $S^k f \in K_\alpha$, $Sg \in K_\beta$. By [31] Cor. 6] there are $\chi \in K_\alpha$ and $\psi_0, \ldots, \psi_{k-1} \in K_\beta$ such that (2.2) is satisfied. It follows from Corollary 2.3 that $f \perp \text{span}\{k_{0,j}^\alpha : j = 0, 1, \ldots, k-1\}$ and $g \perp \tilde{k}_{0}^\beta$, and therefore

$$\langle U f, g \rangle - \langle U S^k f, S g \rangle = \left\langle (U - S^* S^k) f, g \right\rangle = \left\langle \left(\tilde{k}_{0}^\beta \otimes \chi + \sum_{j=0}^{k-1} \psi_j \otimes \tilde{k}_{0,j}^\alpha \right) f, g \right\rangle$$

$$= \langle f, \chi \rangle \cdot \langle \tilde{k}_{0}^\beta, g \rangle + \sum_{j=0}^{k-1} \langle f, \tilde{k}_{0,j}^\alpha \rangle \cdot \langle \psi_j, g \rangle = 0.$$

Assume now that U satisfies (2.1). As above, for each $f \in K_\alpha$, $g \in K_\beta$ we have

$$\langle U f, g \rangle - \langle U S^k f, S g \rangle = \langle (U - S^* S^k) f, g \rangle.$$
Hence (2.1) means that the operator \(T = U - S^*_\beta US^k_\alpha \) maps \(f \perp M = \operatorname{span}\{\tilde{k}_{0,j}^\alpha : j = 0, 1, \ldots, k - 1\} \) to a function \(Tf \in N = \mathbb{C} \cdot \tilde{k}_0^\beta \). Thus

\[
(2.3) \quad P_{N^\perp}TP_{M^\perp} = 0,
\]

where \(P_{N^\perp} \) and \(P_{M^\perp} \) are orthogonal projections onto \(N^\perp = K_\beta \ominus N \) and \(M^\perp = K_\alpha \ominus M \), respectively. Clearly,

\[
P_{N^\perp} = I_{K_\beta} - c \cdot (\tilde{k}_0^\beta \otimes \tilde{k}_0^\beta)
\]

where \(c = \|\tilde{k}_0^\beta\|^{-1} \).

It can be verified that there exist complex numbers \(a_{i,j} \), \(0 \leq i, j \leq k - 1 \), such that

\[
P_{M^\perp} = I_{K_\alpha} - \sum_{i,j=0}^{k-1} a_{i,j} \cdot (\tilde{k}_{0,i}^\alpha \otimes \tilde{k}_{0,j}^\alpha).
\]

Note that not only \(\{\tilde{k}_{0,j}^\alpha : j = 0, \ldots, k - 1\} \) are not orthogonal but they might not even be linearly independent, so it might happen that \(a_{i,j} = 0 \) for some \(i \) and \(j \). Still, (2.3) can be written as

\[
0 = (I_{K_\beta} - c \cdot (\tilde{k}_0^\beta \otimes \tilde{k}_0^\beta)) T \left(I_{K_\alpha} - \sum_{i,j=0}^{k-1} a_{i,j} \cdot (\tilde{k}_{0,i}^\alpha \otimes \tilde{k}_{0,j}^\alpha) \right)
\]

\[
= (I_{K_\beta} - c \cdot (\tilde{k}_0^\beta \otimes \tilde{k}_0^\beta)) \left(T - \sum_{i,j=0}^{k-1} a_{i,j} \cdot (T\tilde{k}_{0,i}^\alpha \otimes \tilde{k}_{0,j}^\alpha) \right)
\]

\[
= T - \sum_{i,j=0}^{k-1} a_{i,j} \cdot (T\tilde{k}_{0,i}^\alpha \otimes \tilde{k}_{0,j}^\alpha) - c \cdot (\tilde{k}_0^\beta \otimes T^*\tilde{k}_0^\beta) + c \sum_{i,j=0}^{k-1} a_{i,j} \cdot (T\tilde{k}_{0,i}^\alpha \tilde{k}_0^\beta) \cdot (\tilde{k}_0^\beta \otimes \tilde{k}_{0,j}^\alpha).
\]

Hence

\[
U - S^*_\beta US^k_\alpha = T = \tilde{k}_0^\beta \otimes (cT^*\tilde{k}_0^\beta) + \sum_{j=0}^{k-1} \left(\sum_{i=0}^{k-1} a_{i,j} \cdot (T\tilde{k}_{0,i}^\alpha - c\langle T\tilde{k}_{0,i}^\alpha, \tilde{k}_0^\beta \rangle \cdot \tilde{k}_0^\beta) \right) \otimes \tilde{k}_{0,j}^\alpha
\]

and \(U \) satisfies (2.2) with

\[
\chi = cT^*\tilde{k}_0^\beta \quad \text{and} \quad \psi_j = \sum_{i=0}^{k-1} a_{i,j} \cdot (T\tilde{k}_{0,i}^\alpha - c\langle T\tilde{k}_{0,i}^\alpha, \tilde{k}_0^\beta \rangle \cdot \tilde{k}_0^\beta).
\]

Thus by [31, Cor. 6], \(U \in \mathcal{S}_k(\alpha, \beta) \).

Note that if \(\dim K_\alpha \leq k \), then the set \(\{\tilde{k}_{0,j}^\alpha : j = 0, 1, \ldots, k - 1\} \) spans \(K_\alpha \) and so \(f \perp \operatorname{span}\{\tilde{k}_{0,j}^\alpha, j = 0, 1, \ldots, k - 1\} \) if and only if \(f = 0 \).

Corollary 2.4. Let \(\alpha, \beta \) be two nonconstant inner functions and assume that \(\dim K_\alpha = m < +\infty \). If \(k \geq m \), then every bounded linear operator from \(K_\alpha \) into \(K_\beta \) belongs to \(\mathcal{S}_k(\alpha, \beta) \).

3. Intertwining Properties for Operators from \(\mathcal{S}_k(\alpha, \beta) \)

Let \(\alpha \) and \(\beta \) be two nonconstant inner functions. By D. Sarasons commutant lifting theorem each bounded linear operator \(A : K_\alpha \to K_\alpha \) commuting with the compressed shift \(S_\alpha \) is of the form \(A = A^*_\varphi \) with \(\varphi \in H^\infty \). More generally, a bounded linear operator \(A : K_\alpha \to K_\beta \) satisfies

\[
(3.1) \quad S_\beta A = AS_\alpha
\]
if and only if \(A = A_{\varphi}^{\alpha,\beta} \) with \(\varphi \in H^\infty \) such that \(\beta \leq \alpha \varphi \) (see [3] Theorem III.1.16]). Recently, the authors in [6] proved using basic methods that \(A : K_\alpha \to K_\beta \) satisfies (3.1) if and only if \(A = A_{\varphi}^{\alpha,\beta} \) with \(\varphi \in \frac{\beta}{\gcd(\alpha,\beta)} K_{\gcd(\alpha,\beta)} \).

Here our goal is to describe (for any fixed positive integer \(k \)) all bounded linear operators \(U : K_\alpha \to K_\beta \) that satisfy

\[
S_\beta U = U S_\alpha^k.
\]

We use a reasoning similar to the one used in [6]. First recall that \(U : K_\alpha \to K_\beta \) belongs to \(S_k(\alpha, \beta) \) if and only if

\[
S_\beta U - U S_\alpha^k = k_0^\beta \otimes \chi + \sum_{j=0}^{k-1} \psi_j \otimes \tilde{k}_0^\alpha
\]

for some \(\chi \in K_\alpha \) and \(\psi_0, \ldots, \psi_{k-1} \in K_\beta \) [31 Corollary 8(b)]. Thus each \(U \) satisfying (3.2) clearly belongs to \(S_k(\alpha, \beta) \). We therefore describe the operators from \(S_k(\alpha, \beta) \) satisfying (3.2).

Proposition 3.1. Let \(\alpha \) and \(\beta \) be two nonconstant inner functions and let \(\varphi \in L^2 \). Then

\[
(a) \quad S_\beta U_\varphi^{\alpha,\beta} - U_\varphi^{\alpha,\beta} S_\alpha^k = \sum_{j=0}^{k-1} \frac{1}{j!} P_\beta W_k(\alpha \varphi \varphi^k-1-j) \otimes \tilde{k}_0^\alpha - k_0^\beta \otimes P_\alpha(\varphi^k \varphi),
\]

\[
(b) \quad S_\beta U_\varphi^{\alpha,\beta} - U_\varphi^{\alpha,\beta} (S_\alpha^*)^k = \sum_{j=0}^{k-1} \frac{1}{j!} P_\beta W_k(\varphi \varphi^k-1-j) \otimes \tilde{k}_0^\alpha - k_0^\beta \otimes P_\alpha(\varphi \cdot W_\beta^k),
\]

where both equalities hold on \(K_\alpha^\infty \).

Proof. Let \(f \in K_\alpha^\infty \) and \(g \in K_\beta^\infty \). Then

\[
\langle S_\beta U_\varphi^{\alpha,\beta} f, g \rangle = \langle P_\beta W_k(\varphi f), S_\beta^* g \rangle = \langle W_k(\varphi f), S_\beta^* g \rangle = \langle \varphi f, W_\beta^* S_\alpha^* g \rangle
\]

\[
= \langle \varphi f, W_k(\varphi g - zg(0)) \rangle = \langle \varphi f, \tilde{z} W_\beta^* g \rangle - \langle \varphi f, \tilde{z} g(0) \rangle
\]

\[
= \langle \varphi \varphi^k f, W_\beta^* g \rangle - \langle f, \varphi \varphi^k \rangle g(0) = \langle \varphi \varphi^k f, W_\beta^* g \rangle - \langle f, P_\alpha(\varphi \varphi^k) \circ k_0^\beta, g \rangle
\]

\[
= \langle \varphi \varphi^k f, W_\beta^* g \rangle - \left((k_0^\beta \otimes P_\alpha(\varphi \varphi^k)) f, g \right).
\]

Moreover, using Lemma 2.2(a), we get

\[
\langle U_\varphi^{\alpha,\beta} S_\alpha^k f, g \rangle = \langle \varphi S_\alpha^k f, W_\beta^* g \rangle = \langle \varphi \varphi^k f, W_\beta^* g \rangle - \sum_{j=0}^{k-1} \frac{1}{j!} \langle f, \tilde{k}_0^\alpha \rangle \cdot \langle \varphi \varphi^k-1-j, W_\beta^* g \rangle
\]

\[
= \langle \varphi \varphi^k f, W_\beta^* g \rangle - \sum_{j=0}^{k-1} \frac{1}{j!} \langle f, \tilde{k}_0^\alpha \rangle \cdot P_\beta W_k(\varphi \varphi^k-1-j, g)
\]

\[
= \langle \varphi \varphi^k f, W_\beta^* g \rangle - \left(\left(\sum_{j=0}^{k-1} \frac{1}{j!} P_\beta W_k(\varphi \varphi^k-1-j) \otimes \tilde{k}_0^\alpha \right) f, g \right).
\]

This completes the proof of (a).
To prove (b) note that, by Lemma \(2.2\)(a), \(S_\beta g = zg - \langle g, \tilde{k}_0^\beta \rangle \beta\). Hence, for \(f \in K_\alpha^\infty\) and \(g \in K_\beta^\infty\), we have

\[
\langle S_\beta^U \varphi_{\alpha, \beta} f, g \rangle = \langle W_k(\varphi f), S_\beta g \rangle = \langle W_k(\varphi f), zg \rangle - \langle W_k(\varphi f), \beta \rangle \cdot \langle g, \tilde{k}_0^\beta \rangle \\
= \langle \varphi f, W_k^* (zg) \rangle - \langle \varphi f, W_k^* \beta \rangle \cdot \langle g, \tilde{k}_0^\beta \rangle \\
= \langle \varphi \bar{z}^k f, W_k^* g \rangle - \left(\langle f, P_\alpha(\varphi \cdot W_k^* \beta) \rangle \tilde{k}_0^\beta, g \right) \\
= \langle \varphi \bar{z}^k f, W_k^* g \rangle - \left(\langle \tilde{k}_0^\beta \otimes P_\alpha(\varphi \cdot W_k^* \beta) \rangle, f \right, g \rangle.
\]

Moreover, by Lemma \(2.2\)(b),

\[
\langle U^\alpha_{\varphi} (S_{\alpha}^k) f, g \rangle = \langle \varphi (S_{\alpha}^k) f, W_k^* g \rangle = \langle \varphi \bar{z}^k f, W_k^* g \rangle - \sum_{j=0}^{k-1} \frac{1}{j!} \langle f, k_{0,j}^\alpha \rangle \cdot \langle \varphi \bar{z}^{k-j}, W_k^* g \rangle \\
= \langle \varphi \bar{z}^k f, W_k^* g \rangle - \sum_{j=0}^{k-1} \frac{1}{j!} \langle f, k_{0,j}^\alpha \rangle \cdot \langle P_\beta W_k (\varphi \bar{z}^{k-j}), g \rangle \\
= \langle \varphi \bar{z}^k f, W_k^* g \rangle - \left(\sum_{j=0}^{k-1} \frac{1}{j!} P_\beta W_k (\varphi \bar{z}^{k-j}) \otimes k_{0,j}^\alpha \right, f \rangle, g \rangle.
\]

and (b) follows. \(\square\)

Corollary 3.2. Let \(\alpha\) and \(\beta\) be two nonconstant inner functions and let \(\varphi \in H^2\).

(a) If \(W_k^* \beta \leq \alpha\) and \(U^\alpha_{\varphi} \in S_{k}(\alpha, \beta)\), then

\[
S_\beta U^\alpha_{\varphi} = U^\alpha_{\varphi} S_{\alpha}^k.
\]

(b) If \(\alpha \leq W_k^* \beta\) and \(U^\alpha_{\varphi} \in S_{k}(\alpha, \beta)\), then

\[
S_\beta U^\alpha_{\varphi} = U^\alpha_{\varphi} (S_{\alpha}^k)^k.
\]

Proof. Let \(\varphi \in H^2\).

(a) Since \(\overline{\varphi z^k} \in zH^2\), we have \(P_\alpha(\overline{\varphi z^k}) = 0\). If \(W_k^* \beta \leq \alpha\), then by \([31\text{, Lemma } 2.1(\text{g})]\) for each \(0 \leq j \leq k - 1\) we get

\[
P_\beta W_k (\alpha \varphi z^{k-1-j}) = W_k W_k^* (\alpha \varphi z^{k-1-j}) = 0,
\]

since here \(\alpha \varphi z^{k-1-j} \in (W_k^* \beta) \cdot H^2\). Thus (3.3) holds by Proposition 3.1(a).

(b) Here \(\overline{\varphi z^k} \in zH^2\) for each \(0 \leq j \leq k - 1\) and so

\[
P_\beta W_k (\overline{\varphi z^{k-j}}) = P_\beta P W_k (\overline{\varphi z^{k-j}}) = P_\beta W_k P(\overline{\varphi z^{k-j}}) = 0.
\]

Moreover, if \(\alpha \leq W_k^* \beta\), then \(W_k^* \beta \cdot \varphi \in \alpha H^2\) and so \(P_\alpha(W_k^* \beta \cdot \varphi) = 0\). Hence (3.4) follows from Proposition 3.1(b) (with \(\overline{\varphi}\) in place of \(\varphi\)). \(\square\)

Note that for \(k = 1\) the above corollary is Proposition 3.3 from [5].

In what follows we assume that \(\dim K_\alpha \geq k\) (if \(\dim K_\alpha \leq k\), then \(S_{k}(\alpha, \beta)\) contains all bounded linear operators from \(K_\alpha\) into \(K_\beta\)).

Let \(U = U^\alpha_{\varphi} \in S_{k}(\alpha, \beta)\) with \(\varphi \in L^2\). By Proposition 3.1, \(U\) satisfies (3.2) if and only if

\[
\sum_{j=0}^{k-1} \frac{1}{j!} P_\beta W_k (\alpha \varphi z^{k-1-j}) \otimes \tilde{k}_{0,j}^\alpha = k_0^\beta \otimes P_\alpha(\overline{\varphi z^k}).
\]
Since \(\dim K_\alpha \geq k \), \((3.5)\) holds if and only if there exist numbers \(c_0, c_1, \ldots, c_{k-1} \in \mathbb{C} \) such that
\[
\frac{1}{j!} P_\beta W_k(\alpha \varphi z^{k-1-j}) = c_j \cdot k_0^\beta \quad \text{for each } j \in \{0, 1, \ldots, k-1\}
\]
and
\[
P_\alpha(\varphi \psi) = \sum_{j=0}^{k-1} C_j k_0^\alpha.
\]
Note that \((3.7)\) happens if and only if
\[
P_\alpha(\alpha \varphi z^{k-1}) = P_\alpha C_\alpha(\varphi \psi) = C_\alpha P_\alpha(\varphi \psi) = C_\alpha \left(\sum_{j=0}^{k-1} C_j k_0^\alpha \right) = \sum_{j=0}^{k-1} C_j k_0^\alpha,
\]
that is, if and only if
\[
P_\alpha \left(\alpha \varphi z^{k-1} - \sum_{j=0}^{k-1} j! c_j z^j \right) = 0.
\]
This condition can be expressed as
\[
\alpha \varphi z^{k-1} - \sum_{j=0}^{k-1} j! c_j z^j \perp K_\alpha.
\]
Let us now consider \((3.6)\), which can be equivalently expressed as
\[
P_\beta \left(W_k(\alpha \varphi z^{k-1-j}) - j! c_j \right) = 0 \quad \text{for each } j \in \{0, 1, \ldots, k-1\},
\]
i.e.,
\[
W_k(\alpha \varphi z^{k-1-j}) - j! c_j \perp K_\beta \quad \text{for each } j \in \{0, 1, \ldots, k-1\}.
\]
For each \(0 \leq j \leq k-1 \) denote
\[
\varphi_j = z^j W_k^* W_k(\alpha \varphi z^{k-1-j}).
\]
Observe that
\[
\varphi_j = M_{\psi_j} W_k^* \left(W_k(\alpha \varphi z^{k-1-j}) - j! c_j \right) + j! c_j z^j.
\]
Since \(M_{\psi_j} \) and \(W_k^* \) are isometries, \((3.9)\) is equivalent to
\[
\psi_j := \varphi_j - j! c_j z^j \perp z^j W_k^* K_\beta \quad \text{for each } j \in \{0, 1, \ldots, k-1\}.
\]
Recall that \(W_k^* W_k \) is the orthogonal projection from \(L^2 \) onto the closed linear span of \(\{ z^{km} : m \in \mathbb{Z} \} \). Hence the functions \(\psi_0, \psi_1, \ldots, \psi_{k-1} \) are pairwise orthogonal. The same is true for the subspaces \(W_k^* K_\beta, z W_k^* K_\beta, \ldots, z^{k-1} W_k^* K_\beta \). Moreover,
\[
W_k^* K_\beta \oplus z W_k^* K_\beta \oplus \ldots \oplus z^{k-1} W_k^* K_\beta = K_{W_k^*}
\]
(see \[31\] for details). It follows that \((3.10)\) is equivalent to
\[
\sum_{j=0}^{k-1} \psi_j = \sum_{j=0}^{k-1} \varphi_j - \sum_{j=0}^{k-1} j! c_j z^j \perp K_{W_k^*}.
\]
It is not difficult to verify that for each \(f \in L^2 \)
\[
f = \sum_{j=0}^{k-1} z^j W_k^* W_k(\varphi_j f).
\]
In particular,
\[\sum_{j=0}^{k-1} \varphi_j = \sum_{j=0}^{k-1} z^j W_k^* W_k (z^j \alpha \varphi z^{k-1}) = \alpha \varphi z^{k-1}, \]
and (3.11) can be expressed as
\[\alpha \varphi z^{k-1} - \sum_{j=0}^{k-1} j^1 c_j z^j \perp K_{W_k^*}. \]

Summing up, \(U = U_{\varphi}^{\alpha, \beta} \) satisfies (3.2) if and only if there exist \(c_0, c_1, \ldots, c_{k-1} \) such that (3.8) and (3.12) hold. Equivalently,
\[\alpha \varphi z^{k-1} - \sum_{j=0}^{k-1} j^1 c_j z^j \in \text{span}\{K_\alpha, K_{W_k^*}\} = K_{\text{lcm}(\alpha, W_k^*)}, \]
that is,
\[\alpha \varphi z^{k-1} - \sum_{j=0}^{k-1} j^1 c_j z^j \in \overline{zH^2 + \text{lcm}(\alpha, W_k^*)H^2}. \]

In other words, \(U_{\varphi}^{\alpha, \beta} \) satisfies (3.2) if and only if
\[
\varphi \in \alpha z^{k-1} K_{z^k} + \alpha z^k H^2 + \alpha z^{k-1} \text{lcm}(\alpha, W_k^*)H^2 = \alpha K_{z^k} + \alpha z^k H^2 + \frac{W_k^* \beta}{\gcd(\alpha, W_k^*)} H^2
= \alpha H^2 + z^{k-1} \frac{W_k^* \beta}{\gcd(\alpha, W_k^*)}, \text{lcm}(\alpha, W_k^*)H^2 + K_{\text{gcd}(\alpha, W_k^*)})
= \alpha H^2 + z^{k-1} (W_k^* \beta)H^2 + \frac{W_k^* \beta}{\gcd(\alpha, W_k^*)} K_{\text{gcd}(\alpha, W_k^*)}
\]
(\(K_{z^k} = \text{span}\{1, \ldots, z^{k-1}\} \)). We have thus proved

Theorem 3.3. Let \(\alpha, \beta \) be two nonconstant inner functions and let \(k \leq \dim K_\alpha \). Operator \(U = U_{\varphi}^{\alpha, \beta} \in \mathcal{S}_k(\alpha, \beta) \) satisfies
\[S_\beta U_{\varphi}^{\alpha, \beta} = U_{\varphi}^{\alpha, \beta} S_\alpha^k \]
if and only if
\[\varphi \in \alpha H^2 + z^{k-1} (W_k^* \beta)H^2 + \frac{W_k^* \beta}{\gcd(\alpha, W_k^*)} K_{\text{gcd}(\alpha, W_k^*)}. \]

As \(U_{\varphi}^{\alpha, \beta} = 0 \) for \(\varphi \in \alpha H^2 + z^{k-1} (W_k^* \beta)H^2 \) we get

Theorem 3.4. Let \(\alpha, \beta \) be two nonconstant inner functions, let \(k \leq \dim K_\alpha \) and let \(U : K_\alpha \to K_\beta \) be a bounded linear operator. Then
\[S_\beta U = US_\alpha^k \]
if and only if \(U \in \mathcal{S}_k(\alpha, \beta) \) and \(U = U_{\varphi}^{\alpha, \beta} \) with
\[\varphi \in \frac{z^{k-1} W_k^* \beta}{\gcd(\alpha, W_k^*)} K_{\text{gcd}(\alpha, W_k^*)}. \]

Note that for \(k = 1 \) we obtain Corollary 3.7 and Theorem 3.9 from [5]. Recall that in that case \(S_\beta A = AS_\alpha \) if and only if \(A \in \mathcal{T}(\alpha, \beta) \) and \(A = A_{\varphi}^{\alpha, \beta} \) with \(\varphi \in \frac{W_k^* \beta}{\gcd(\alpha, W_k^*)} K_{\text{gcd}(\alpha, \beta)}. \) In particular, each operator intertwining \(S_\beta \) and \(S_\alpha \) is an asymmetric truncated Toeplitz operator with an analytic symbol. Note that for \(k > 1 \) analicity of the symbol is not guaranteed.
Example 3.5. For any $k > 1$ let $a \in \mathbb{D} \setminus \{0\}$. Put $\alpha(z) = z^{2k}$ and $\beta(z) = z^2$. Then

$$W^*_k \beta = z^{2k} = \alpha = \gcd(\alpha, W^*_k \beta)$$

and

$$\alpha H^2 + \bar{z}^{-1} (W^*_k \beta) H^2 + \bar{z}^{-1} \frac{W^*_k \beta}{\gcd(\alpha, W^*_k \beta)} K_{\gcd(\alpha, W^*_k \beta)} = \bar{z}^{2k} H^2 + z^{k+1} H^2 + \bar{z}^{-1} K_{z^{2k}}.$$

Hence $S_\beta U^{\alpha, \beta}_\varphi = U^{\alpha, \beta}_{\varphi} S^k_\alpha$ if for example $\varphi(z) = \bar{z}^{-k} - 1$.

Corollary 3.6. Let α, β be two nonconstant inner functions, $k \leq \dim K_\beta$ and let $U : K_\alpha \to K_\beta$ be a bounded linear operator. Then

$$(S^*_\beta)^k U = US^*_\alpha$$

if and only if $U^* \in S_k(\beta, \alpha)$ and $U = (U^{\beta, \alpha}_\varphi)^*$ with

$$\varphi \in \mathbb{C}^{k-1} \frac{W^*_\alpha}{\gcd(\beta, W^*_\alpha)} K_{\gcd(\beta, W^*_\alpha)}.$$

Theorem 3.7. Let α, β be two nonconstant inner functions and let $k \leq \dim K_\alpha$. Operator $U = U^{\alpha, \beta}_\varphi \in S_k(\alpha, \beta)$ satisfies

$$S^*_\beta U^{\alpha, \beta}_\varphi = U^{\alpha, \beta}_\varphi (S^*_\alpha)^k$$

if and only if

$$\varphi \in \alpha H^2 + \bar{z}^{-1} (W^*_k \beta) H^2 + \left(\frac{\alpha}{\gcd(\alpha, W^*_k \beta)} K_{\gcd(\alpha, W^*_k \beta)} \right).$$

Proof. Let $U = U^{\alpha, \beta}_\varphi \in S_k(\alpha, \beta)$, where $\varphi \in L^2$. By Proposition 3.1, U satisfies (3.13) if and only if

$$\sum_{j=0}^{k-1} \frac{1}{j} P_{k} W_k (\varphi \bar{z}^{k-j}) \otimes k^0_{0,j} = \tilde{K}^\beta_0 \otimes P_\alpha (\bar{\varphi} \cdot W^*_k \beta).$$

Since $\dim K_\alpha \geq k$, (3.14) holds if and only if there exist numbers $c_0, c_1, \ldots, c_{k-1} \in \mathbb{C}$ such that

$$\frac{1}{j} P_{k} W_k (\varphi \bar{z}^{k-j}) = c_j \cdot \tilde{K}^\beta_0$$

for each $j \in \{0, 1, \ldots, k-1\}$

and

$$P_\alpha (\bar{\varphi} \cdot W^*_k \beta) = \sum_{j=0}^{k-1} \tau_j k^\alpha_{0,j}.$$

Equality (3.16) happens if and only if

$$\bar{\varphi} \cdot W^*_k \beta - \sum_{j=0}^{k-1} j! c_j z^j \perp K_\alpha.$$

Moreover, (3.15) holds if and only if

$$W_k (\varphi \bar{z}^{k-j}) - j! c_j \beta \bar{z} \perp K_\beta$$

for each $j \in \{0, 1, \ldots, k-1\}$,

which is equivalent to

$$W_k W_k (\varphi \bar{z}^{k-j}) - j! c_j (W^*_k \beta) \bar{z}^k \perp W^*_k K_\beta$$

for each $j \in \{0, 1, \ldots, k-1\}$,

or

$$z^{k-j} W_k W_k (\varphi \bar{z}^{k-j}) - j! c_j (W^*_k \beta) \bar{z}^j \perp z^{k-j} W^*_k K_\beta$$

for each $j \in \{0, 1, \ldots, k-1\}$.
It follows that
\[\varphi - (W_k^* \beta) \sum_{j=0}^{k-1} j! c_j z^j \perp zK_{W_k^*} \beta \]
and
\[(W_k^* \beta) \varphi - \sum_{j=0}^{k-1} j! c_j z^j \perp (W_k^* \beta)zK_{W_k^*} = K_{W_k^*}, \]
which can also be expressed as
\[(3.18) \]
\[(W_k^* \beta) \varphi - \sum_{j=0}^{k-1} j! c_j z^j \perp K_{W_k^*}. \]
Summing up, \(U = U_{\varphi, \beta}^\alpha \) satisfies (3.13) if and only if there exist \(c_0, c_1, \ldots, c_{k-1} \) such that (3.17) and (3.18) hold, that is,
\[(W_k^* \beta) \varphi - \sum_{j=0}^{k-1} j! c_j z^j \perp \text{span}\{K_\alpha, K_{W_k^*}\} = K_{\text{lcm}(\alpha, W_k^*)}. \]
Equivalently,
\[(W_k^* \beta) \varphi \in K_{\cdot k} + \overline{zH^2 + \text{lcm}(\alpha, W_k^*)H^2}. \]
Thus, \(U_{\varphi, \beta}^\alpha \) satisfies (3.13) if and only if
\[\varphi \in (W_k^* \beta)K_{\cdot k} + (W_k^* \beta)zH^2 + W_k^* \beta \cdot \text{lcm}(\alpha, W_k^*)H^2 \]
\[= \overline{z^{k-1}(W_k^* \beta)K_{\cdot k} + z^{k-1}(W_k^* \beta)z^kH^2 + \frac{\alpha}{\text{lcm}(\alpha, W_k^*)H^2}} \]
\[= \overline{z^{k-1}(W_k^* \beta)H^2 + \frac{\alpha}{\text{gcd}(\alpha, W_k^*)} \left(\text{gcd}(\alpha, W_k^*)H^2 + K_{\text{gcd}(\alpha, W_k^*)} \right)} \]
and so
\[\varphi \in \overline{\alpha H^2 + z^{k-1}(W_k^* \beta)H^2 + \frac{\alpha}{\text{gcd}(\alpha, W_k^*)} \left(K_{\text{gcd}(\alpha, W_k^*)} \right)}, \]
which completes the proof.

Since \(U_{\varphi}^\alpha, \beta = 0 \) for \(\varphi \in \overline{\alpha H^2 + z^{k-1}(W_k^* \beta)H^2} \) and
\[\left(\frac{\alpha}{\text{gcd}(\alpha, W_k^*)} \right) \left(K_{\text{gcd}(\alpha, W_k^*)} \right) = \overline{\alpha} \cdot \text{gcd}(\alpha, W_k^*) \left(K_{\text{gcd}(\alpha, W_k^*)} \right) = \overline{\alpha zK_{\text{gcd}(\alpha, W_k^*)}} \]
we get

Theorem 3.8. Let \(\alpha, \beta \) be two nonconstant inner functions, let \(k \leq \dim K_\alpha \) and let \(U : K_\alpha \to K_\beta \) be a bounded linear operator. Then
\[S_{\beta}^k U = U(S_{\alpha}^*)^k \]
if and only if \(U \in S_k(\alpha, \beta) \) and \(U = U_{\varphi}^\alpha, \beta \) with
\[\varphi \in \overline{\alpha zK_{\text{gcd}(\alpha, W_k^*)}}. \]

Corollary 3.9. Let \(\alpha, \beta \) be two nonconstant inner functions, let \(k \leq \dim K_\beta \) and let \(U : K_\alpha \to K_\beta \) be a bounded linear operator. Then
\[S_{\beta}^k U = US_{\alpha} \]
if and only if \(U^* \in S_k(\beta, \alpha) \) and \(U = (U_{\varphi}^\beta, \alpha)^* \) with
\[\varphi \in \overline{\beta zK_{\text{gcd}(\beta, W_k^*)}}. \]
4. Products of operators from $S_k(\alpha, \beta)$ with analytic or anti-analytic symbols

In this section we consider products of operators with analytic or anti-analytic symbols, which belong to $S_k(\alpha, \beta)$. We start with some auxiliary results.

Recall that for a nonconstant inner function α we have (see [34]):

\begin{equation}
I_{K_\alpha} - S_\alpha S_\alpha^* = k_0^\alpha \otimes k_0^\alpha
\end{equation}

and

\begin{equation}
I_{K_\alpha} - S_\alpha^* S_\alpha = \tilde{k}_0^\alpha \otimes \tilde{k}_0^\alpha.
\end{equation}

In what follows we will use the following lemma.

Lemma 4.1. Let α be a nonconstant inner function and let $m \in \mathbb{N}$. Then

\begin{equation}
I_{K_\alpha} - S_\alpha^m (S_\alpha^*)^m = \sum_{j=0}^{m-1} P_\alpha(z^j) \otimes P_\alpha(z^j) = \sum_{j=0}^{m-1} \left(\frac{1}{j!}\right)^2 (k_0^\alpha \otimes k_0^\alpha),
\end{equation}

\begin{equation}
I_{K_\alpha} - (S_\alpha^m) S_\alpha^m = \sum_{j=0}^{m-1} C_\alpha P_\alpha(z^j) \otimes C_\alpha P_\alpha(z^j) = \sum_{j=0}^{m-1} \left(\frac{1}{j!}\right)^2 (\tilde{k}_0^\alpha \otimes \tilde{k}_0^\alpha).
\end{equation}

Proof. To prove (4.3) observe that from (4.1) we have

\begin{equation*}
S_\alpha^j (S_\alpha^*)^j - S_\alpha^j (S_\alpha^*)^{j+1} = (S_\alpha^j k_0^\alpha) \otimes (S_\alpha^j k_0^\alpha)
\end{equation*}

for any nonnegative integer j. Adding the above equalities for $j = 0, 1, \ldots, m - 1$ we get

\begin{equation*}
I_{K_\alpha} - S_\alpha^m (S_\alpha^*)^m = \sum_{j=0}^{m-1} (S_\alpha^j k_0^\alpha) \otimes (S_\alpha^j k_0^\alpha),
\end{equation*}

where $S_\alpha^0 k_0^\alpha = k_0^\alpha$. Moreover, for any positive integer j,

\begin{equation}
S_\alpha^j k_0^\alpha = A_\alpha^j k_0^\alpha = P_\alpha(z^j - \overline{\alpha(0)}\alpha z^j) = P_\alpha(z^j) = \frac{1}{j!} P_\alpha(j! z^j) = \frac{1}{j!} k_0^\alpha
\end{equation}

and thus (4.3) holds. To prove (4.4) we apply C_α to (4.3) and use C_α-symmetry of S_α ($C_\alpha S_\alpha C_\alpha = S_\alpha^*$, see [17]).

Let k and m be two arbitrary fixed positive integers.

Proposition 4.2. Let α, β and γ be nonconstant inner functions and let $\varphi, \psi \in H^2$.

(a) Assume that $U^\beta_\varphi \gamma \in S_m(\beta, \gamma)$ and $U^\alpha_\psi \beta \in S_k(\alpha, \beta)$. If $W^*_{m, \gamma} \leq \beta$ and $W_k^* \beta \leq \alpha$, then $U = U^\beta_\varphi U^\alpha_\psi \beta \in S_{km}(\alpha, \gamma)$ and $U = U^\alpha_\psi \gamma \beta \in S_{km}(\alpha, \gamma)$ with

\[\eta = \sum_{j=0}^{km-1} \frac{1}{j!} (W^*_{km, \gamma} k_0^\alpha) z^j. \]

(b) Assume that $U^\beta_\varphi \gamma \in S_m(\beta, \gamma)$ and $U^\alpha_\psi \beta \in S_k(\alpha, \beta)$. If $\alpha \leq W_k^* \beta$ and $\beta \leq W^*_{m, \gamma}$, then $U = U^\beta_\varphi U^\alpha_\psi \beta \in S_{km}(\alpha, \gamma)$ and $U = U^\alpha_\psi \gamma \beta \in S_{km}(\alpha, \gamma)$ with

\[\zeta = \sum_{j=0}^{km-1} \frac{1}{j!} (W^*_{km, \gamma} \tilde{k}_0^\alpha) z^{j+1}. \]
Before giving a proof of Proposition 4.2, note that if a bounded linear operator $U : K_\alpha \to K_\beta$ satisfies (2.2) with some $\chi \in K_\alpha$ and $\psi_0, \ldots, \psi_{k-1} \in K_\beta$, then $U = U^{\alpha, \beta}_\varphi$ with

\[(4.6) \quad \varphi = (W^*_k \beta)z^d \chi + \alpha \sum_{j=0}^{k-1} (W^*_k \psi_j) j! z^{j+1}\]

(Theorem 1). Similarly, operators from $S_k(\alpha, \beta)$ can be characterized as follows (Corollary 7): $U \in S_k(\alpha, \beta)$ if and only if there exist functions $\chi \in K_\alpha$ and $\psi_0, \ldots, \psi_{k-1} \in K_\beta$ such that

\[(4.7) \quad U - S_\beta U(S_\alpha^*)^k = k_0^\beta \otimes \chi + \sum_{j=0}^{k-1} \psi_j \otimes k_0^\alpha, j.
\]

In that case, $U = U_{\alpha, \beta}^{\varphi}$ with

\[(4.8) \quad \varphi = \chi + \sum_{j=0}^{k-1} (W^*_k \psi_j) j! z^j\]

(Corollary 4).

Proof of Proposition 4.2. (a) Let $U = U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi$. By Corollary 3.2(a) and formula (4.3) (Lemma 4.1), we have

\[
U - S_\gamma U(S_\alpha^*)^{km} = U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi - S_\gamma U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi (S_\alpha^*)^{km} = U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi - U^{\beta, \gamma}_\varphi S_\beta^m U^{\alpha, \beta}_\psi (S_\alpha^*)^{km}
\]

\[
= U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi - U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi S_\alpha^{km} (S_\alpha^*)^{km} = U(I_{K_\alpha} - S_\alpha^{km} (S_\alpha^*)^{km})
\]

\[
= U \left(\sum_{j=0}^{km-1} \left(\frac{1}{j!} \right)^2 (k_{0,j}^\beta \otimes k_{0,j}^\alpha) \right) = \sum_{j=0}^{km-1} \left(\frac{1}{j!} \right)^2 (U k_{0,j}^\beta \otimes k_{0,j}^\alpha).
\]

Therefore $U = U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi = U^{\alpha, \gamma}_\eta \in S_{km}(\alpha, \gamma)$ (see (4.7)) where, by (4.8),

\[
\eta = \sum_{j=0}^{km-1} \frac{1}{j!} (W_{km} U k_{0,j}^\alpha) z^j.
\]

(b) Let $U = U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi$. By Corollary 3.2(b) and formula (4.4),

\[
U - S_\gamma^* U S_\alpha^{km} = U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi - S_\gamma^* U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi S_\alpha^{km} = U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi - U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi (S_\alpha^*)^{km} S_\alpha^{km}
\]

\[
= U(I - (S_\alpha^*)^{km} S_\alpha^{km}) = \sum_{j=0}^{km-1} \left(\frac{1}{j!} \right)^2 (U k_{0,j}^\alpha \otimes \tilde{k}_{0,j}^\alpha).
\]

Thus $U^{\beta, \gamma}_\varphi U^{\alpha, \beta}_\psi = U^{\alpha, \gamma}_\zeta \in S_{km}(\alpha, \gamma)$ (see (2.2)) where, by (4.6),

\[
\zeta = \bar{\pi} \sum_{j=0}^{km-1} \frac{1}{j!} (W^*_k U \tilde{k}_{0,j}^\alpha) z^{j+1}.
\]

\[\square\]

Corollary 4.3. Let α, β and γ be nonconstant inner functions and let $\varphi, \psi \in H^2$.
(a) Assume that \(U_{\varphi}^{\beta, \gamma} \in \mathcal{S}_m(\beta, \gamma) \) and \(U_{\psi}^{\alpha, \beta} \in \mathcal{S}_k(\alpha, \beta) \). If \(W_m^* \gamma \leq \beta \) and \(W_k^* \beta \leq \alpha \), then \(U = U_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} \in \mathcal{S}_{km}(\alpha, \gamma) \) and \(U = U_{\eta}^{\alpha, \gamma} \) with
\[
\eta = \sum_{j=0}^{km-1} W_{km}^* W_{km} P_{W_{km}^* \gamma}(W_k^* \varphi) P_{W_k^* \beta}(\psi z^j) \cdot \bar{\zeta}^j.
\]

(b) Assume that \(U_{\varphi}^{\beta, \gamma} \in \mathcal{S}_m(\beta, \gamma) \) and \(U_{\psi}^{\alpha, \beta} \in \mathcal{S}_k(\alpha, \beta) \). If \(\alpha \leq W_k^* \beta \) and \(\beta \leq W_m^* \gamma \), then \(U = U_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} \in \mathcal{S}_{km}(\alpha, \gamma) \) and \(U = U_{\zeta}^{\alpha, \gamma} \) with
\[
\zeta = \alpha \sum_{j=0}^{km-1} W_{km}^* W_{km} P_{W_{km}^* \gamma}(\overline{W_k^* \varphi} \psi P_{\alpha}(\alpha \bar{\zeta}^{j+1})) \cdot \bar{z}^{j+1}.
\]

Proof. (a) Let \(U = U_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} \), where \(\varphi, \psi \in H^2 \), \(U_{\varphi}^{\beta, \gamma} \in \mathcal{S}_m(\beta, \gamma) \) and \(U_{\psi}^{\alpha, \beta} \in \mathcal{S}_k(\alpha, \beta) \). Then for each \(f \in K_{\gamma}^* \),

\[
\langle \frac{1}{j!} U_{k_{0,j}}^\alpha, f \rangle = \langle U_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} P_{\alpha}(z^j), f \rangle = \langle U_{\varphi}^{\beta, \gamma} P_{\alpha}(z^j), (U_{\varphi}^{\beta, \gamma})^* f \rangle
\]
\[
= \langle P_{W_k}(\psi P_{\alpha}(z^j)), P_{\beta}(\overline{W_m^* f}) \rangle = \langle \psi P_{\alpha}(z^j), W_k^* P_{\beta}(\overline{W_m^* f}) \rangle
\]
\[
= \langle P_{\alpha}(z^j), \overline{\psi P_{W_k^* \beta}(\overline{W_m^* f})} \rangle = \langle z^j, P_{\alpha}(\overline{\psi P_{W_k^* \beta}(\overline{W_m^* f})}) \rangle.
\]

Recall that \(W_k^* \beta \leq \alpha \), which implies that \(P_{W_k^* \beta}(\overline{W_m^* f}) \in K_{\alpha} \). Since \(\psi \in H^2 \), we see that \(P_{\alpha}(\overline{\psi P_{W_k^* \beta}(\overline{W_m^* f})}) \) is orthogonal to \(\alpha H^2 \) and so

\[
P_{\alpha}(\overline{\psi P_{W_k^* \beta}(\overline{W_m^* f})}) = P_{\alpha}(\overline{\psi P_{W_k^* \beta}(\overline{W_m^* f})} W_k^* W_m^* f) = P_{\alpha}(\overline{\psi P_{W_k^* \beta}(\overline{W_m^* f})} W_k^* W_m^* f).
\]

Hence, using the fact that \(W_k^* W_m^* = W_{km}^* \), we obtain

\[
\langle \frac{1}{j!} U_{k_{0,j}}^\alpha, f \rangle = \langle z^j, P_{\alpha}(\overline{\psi P_{W_k^* \beta}(\overline{W_m^* f})} W_{km}^* f) \rangle = \langle \psi z^j, W_{km}^* P_{\alpha}(\overline{\psi P_{W_k^* \beta}(\overline{W_m^* f})} W_{km}^* f) \rangle
\]
\[
= \langle W_k^* \varphi P_{\alpha}(z^j), W_{km}^* f \rangle = \langle P_{\gamma} W_{km}(W_k^* \varphi) P_{W_k^* \beta}(\psi z^j), f \rangle.
\]

Thus

\[
\frac{1}{j!} W_{km}^* U_{k_{0,j}}^\alpha = W_{km}^* P_{\gamma} W_{km}(W_k^* \varphi) P_{W_k^* \beta}(\psi z^j)
\]
\[
= W_{km}^* W_{km} P_{W_{km}^* \gamma}(W_m^* \varphi) P_{W_k^* \beta}(\psi z^j).
\]

By Proposition 1.2(a), \(U = U_{\eta}^{\alpha, \gamma} \in \mathcal{S}_{km}(\alpha, \gamma) \) with
\[
\eta = \sum_{j=0}^{km-1} W_{km}^* W_{km} P_{W_{km}^* \gamma}(W_m^* \varphi) P_{W_k^* \beta}(\psi z^j) \cdot \bar{\zeta}^j.
\]

(b) Let \(U = U_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} \), where \(\varphi, \psi \in H^2 \), \(U_{\varphi}^{\beta, \gamma} \in \mathcal{S}_m(\beta, \gamma) \) and \(U_{\psi}^{\alpha, \beta} \in \mathcal{S}_k(\alpha, \beta) \). Then for each \(f \in K_{\gamma}^* \),

\[
\langle \frac{1}{j!} U_{k_{0,j}}^\alpha, f \rangle = \langle U_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} C_{\alpha} P_{\alpha}(z^j), f \rangle = \langle U_{\varphi}^{\beta, \gamma} C_{\alpha} P_{\alpha}(z^j), (U_{\varphi}^{\beta, \gamma})^* f \rangle
\]
\[
= \langle P_{W_k}(\psi C_{\alpha} P_{\alpha}(z^j)), P_{\beta}(\varphi W_m^* f) \rangle = \langle \psi C_{\alpha} P_{\alpha}(z^j), W_k^* P_{\beta}(\varphi W_m^* f) \rangle
\]
\[
= \langle \psi C_{\alpha} P_{\alpha}(z^j), P_{W_k^* \beta}(\varphi W_m^* f) \rangle = \langle P_{W_k^* \beta}(\psi C_{\alpha} P_{\alpha}(z^j)), W_k^* W_m^* f \rangle.
\]
Here \(\alpha \leq W_k^* \beta \), which implies that
\[
P_{W_k^* \beta}(\overline{\psi C_{\alpha} P_{\alpha} z^j}) = P(\overline{\psi C_{\alpha} P_{\alpha} z^j}),
\]
and so
\[
\langle \frac{1}{j!} \overline{U_{\alpha}^k_{0,j}} f \rangle = \langle P(\overline{\psi C_{\alpha} P_{\alpha} z^j}), (W_k^* \varphi)W_k^*W_m^* f \rangle = \langle (W_k^* \varphi)\overline{\psi C_{\alpha} P_{\alpha} z^j}, W_m^* f \rangle = \langle P_{U_m} (\overline{W_k^* \varphi})\overline{P_{\alpha} C_{\alpha} z^j}, f \rangle.
\]
Thus
\[
\frac{1}{j!} W_k^* U_{\alpha}^k_{0,j} = W_k^* P_{U_m} (\overline{W_k^* \varphi})\overline{P_{\alpha} C_{\alpha} z^j}) = W_k^* W_m^* P_{U_m} W_{m^\gamma} ^* (\overline{W_k^* \varphi})\overline{P_{\alpha} (\alpha z^{j+1})}.
\]
By Proposition 4.3 b), \(U = U_{\varphi}^\alpha \gamma \in S_{km}(\alpha, \gamma) \) with
\[
\zeta = \frac{\alpha}{\alpha} \sum_{j=0}^{km-1} W_k^* W_m^* P_{U_m} W_{m^\gamma} ^* (\overline{W_k^* \varphi})\overline{P_{\alpha} (\alpha z^{j+1})} \cdot z^{j+1}.
\]

\[\square\]

Corollary 4.4. Let \(\alpha, \beta \) and \(\gamma \) be nonconstant inner functions and let \(\varphi, \psi \in H^2 \).
(a) Assume that \(A_{\varphi}^{\beta, \gamma} \in T(\beta, \gamma) \) and \(U_{\psi}^{\alpha, \beta} \in S_k(\alpha, \beta) \). If \(\gamma \leq \beta \) and \(W_k^* \beta \leq \alpha \), then
\[
U = A_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} = U_{\varphi}^{\alpha, \gamma} \in S_k(\alpha, \gamma) \text{ with } \eta = \sum_{j=0}^{k-1} W_k^* W_m^* P_{U_m} W_{m^\gamma} ^* (\overline{W_k^* \varphi})\overline{P_{\alpha} (\alpha z^{j+1})} \cdot z^{j+1}.
\]
(b) Assume that \(U_{\varphi}^{\beta, \gamma} \in S_m(\beta, \gamma) \) and \(A_{\varphi}^{\alpha, \beta} \in T(\alpha, \beta) \). If \(W_m^* \gamma \leq \beta \leq \alpha \), then \(U = U_{\varphi}^{\beta, \gamma} A_{\varphi}^{\alpha, \beta} = U_{\varphi}^{\alpha, \gamma} \in S_m(\alpha, \gamma) \text{ with } \eta = \sum_{j=0}^{m-1} W_m^* W_m^* P_{U_m} W_{m^\gamma} ^* (\overline{W_m^* \varphi})\overline{P_{\alpha} (\alpha z^{j+1})} \cdot z^{j+1}.
\]
(c) Assume that \(A_{\varphi}^{\beta, \gamma} \in T(\beta, \gamma) \) and \(U_{\varphi}^{\alpha, \beta} \in S_k(\alpha, \beta) \). If \(\alpha \leq W_k^* \beta \) and \(\beta \leq \gamma \), then
\[
U = A_{\varphi}^{\beta, \gamma} U_{\varphi}^{\alpha, \beta} = U_{\varphi}^{\alpha, \gamma} \in S_k(\alpha, \gamma) \text{ with } \zeta = \alpha \sum_{j=0}^{k-1} W_k^* W_k^* P_{U_m} W_{m^\gamma} ^* (\overline{W_k^* \varphi})\overline{P_{\alpha} (\alpha z^{j+1})} \cdot z^{j+1}.
\]
(d) Assume that \(U_{\varphi}^{\beta, \gamma} \in S_m(\beta, \gamma) \) and \(A_{\varphi}^{\alpha, \beta} \in T(\alpha, \beta) \). If \(\alpha \leq \beta \leq W_m^* \gamma \), then \(U = U_{\varphi}^{\beta, \gamma} A_{\varphi}^{\alpha, \beta} = U_{\varphi}^{\alpha, \gamma} \in S_m(\alpha, \gamma) \text{ with } \zeta = \alpha \sum_{j=0}^{m-1} W_m^* W_m^* P_{U_m} W_{m^\gamma} ^* (\overline{W_m^* \varphi})\overline{P_{\alpha} (\alpha z^{j+1})} \cdot z^{j+1}.
\]
Note that under the assumptions from Proposition 4.2 a) for \(U = U_{\varphi}^{\gamma} U_{\psi}^{\alpha, \beta} \) we also have
\[
U - S_{\eta}^* U S_{\alpha}^{km} = U_{\varphi}^{\beta, \gamma} U_{\varphi}^{\alpha, \beta} - S_{\varphi}^* U_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} S_{\alpha}^{km} = (I - S_{\varphi}^* S_{\psi}) U_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} = (\overline{K_0} \otimes \overline{K_0}) U
\]
which implies that \(U = U_{\varphi}^{\beta, \gamma} U_{\psi}^{\alpha, \beta} = U_{\eta}^{\alpha, \gamma} \in S_{km}(\alpha, \gamma) \text{ with } \eta = (W_{km}^* \gamma) z^{km} U_{\varphi}^{\alpha, \gamma} \).

15
Now for \(f \in K_0^\infty \) we have
\[
\langle U^*k_0^\gamma, f \rangle = \langle (U^\alpha)^*(U^\beta)^*k_0^\gamma, f \rangle = \langle (U^\alpha)^*k_0^\gamma, U^\alpha f \rangle
\]
\[
= \langle P_\beta(\varphi W_m^\star k_0^\gamma), P_\beta W_k(\psi f) \rangle = \langle W_k P_\beta(\varphi W_m^\star k_0^\gamma), \psi f \rangle
\]
\[
= \langle \psi P W_k^\star \beta W_k(\varphi W_m^\star k_0^\gamma), f \rangle = \langle P_\alpha(\psi P W_k^\star \beta((W_k^\star \varphi), W_{km}^\star k_0^\gamma), f \rangle
\]
\[
= \langle P_\alpha(\psi P W_k^\star \beta((W_k^\star \varphi) \cdot \bar{z}^{km} W_{km}^\star k_0^\gamma)), f \rangle = \langle P(\psi P W_k^\star \beta((W_k^\star \varphi) \cdot \bar{z}^{km} W_{km}^\star k_0^\gamma)), f \rangle.
\]

The last equality follows from the fact that \(\psi \in H^2 \) and \(W_k^\star \beta \leq \alpha \). Thus
\[
\eta = (W_k^\star \beta)\bar{z}^{km} P(\psi P W_k^\star \beta((W_k^\star \varphi) \cdot \bar{z}^{km} W_{km}^\star k_0^\gamma)).
\]

Analogously, under assumptions from part (b) of Proposition 4.2 for \(U = U^\beta^\varphi U^\alpha^\psi \) we have
\[
U - S_\gamma U(S_{\alpha}^* k_0^\beta = k_0^\gamma \otimes U^* k_0^\gamma
\]
and so \(U = U^\alpha^\gamma \in S_{km}(\alpha, \gamma) \) with
\[
\zeta = \overline{U^* k_0^\gamma}.
\]

Here for \(f \in K_0^\infty \) we have
\[
\langle U^* k_0^\gamma, f \rangle = \langle (U^\alpha)^*(U^\beta)^*k_0^\gamma, f \rangle = \langle (U^\alpha)^*k_0^\gamma, U^\alpha f \rangle
\]
\[
= \langle P_\beta(\varphi W_m^\star k_0^\gamma), P_\beta W_k(\psi f) \rangle = \langle \varphi W_m^\star k_0^\gamma, W_k P_\beta(\psi f) \rangle
\]
\[
= \langle W_k^\star(\varphi W_m^\star k_0^\gamma), P_\beta(\psi f) \rangle = \langle (W_k^\star \varphi) W_{km}^\star k_0^\gamma, P(\psi f) \rangle
\]
\[
= \langle \psi W_k^\star(\varphi) W_{km}^\star k_0^\gamma, f \rangle = \langle P_\alpha(\psi(\varphi) W_k^\star(\varphi)(1 - \gamma(0)W_{km}^\star k_0^\gamma), f \rangle
\]
\[
= \langle P_\alpha(\psi(\varphi)), f \rangle.
\]

This time we used the fact that \(\alpha \leq W_k^\star \beta \) (line 3) and \(\alpha \leq W_k^\star \beta \leq W_{km}^\star k_0^\gamma \) (the last equality). Thus
\[
\zeta = \overline{P_\alpha(\psi(\varphi))}.
\]

Corollary 4.5. Let \(\alpha, \beta \) and \(\gamma \) be nonconstant inner functions and let \(\varphi, \psi \in H^2 \).

(a) Assume that \(U^\alpha^\beta \in S_m(\beta, \gamma) \) and \(U^\alpha^\beta \in S_k(\alpha, \beta) \). If \(W_k^\star \gamma \leq \beta \) and \(W_k^\star \beta \leq \alpha \), then \(U = U^\beta^\gamma U^\alpha^\beta \in S_{km}(\alpha, \gamma) \) and \(U = U^\alpha^\gamma \) with
\[
\eta = (W_k^\star \beta)\bar{z}^{km} P(\psi P W_k^\star \beta((W_k^\star \varphi) \cdot \bar{z}^{km} W_{km}^\star k_0^\gamma)).
\]

(b) Assume that \(U^\beta^\gamma \in S_m(\beta, \gamma) \) and \(U^\alpha^\beta \in S_k(\alpha, \beta) \). If \(\alpha \leq W_k^\star \beta \) and \(\beta \leq W_m^\star \gamma \), then \(U = U^\beta^\gamma U^\alpha^\beta \in S_{km}(\alpha, \gamma) \) and \(U = U^\alpha^\gamma \) with
\[
\zeta = \overline{P_\alpha(\psi(\varphi))}.
\]

Corollary 4.6. Let \(\alpha, \beta \) and \(\gamma \) be nonconstant inner functions and let \(\varphi, \psi \in H^2 \).

(a) Assume that \(A^\beta^\gamma \in T(\beta, \gamma) \) and \(U^\alpha^\beta \in S_k(\alpha, \beta) \). If \(\gamma \leq \beta \) and \(W_k^\star \beta \leq \alpha \), then \(U = A^\beta^\gamma U^\alpha^\beta = U^\alpha^\gamma \in S_k(\alpha, \gamma) \) with \(\eta = (W_k^\star \gamma)\bar{z}^{km} P(\psi P W_k^\star \beta((W_k^\star \varphi) \cdot \bar{z}^{km} W_k^\star k_0^\gamma)).
\]

(b) Assume that \(A^\beta^\gamma \in S_m(\beta, \gamma) \) and \(U^\alpha^\beta \in T(\alpha, \beta) \). If \(W_m^\star \gamma \leq \beta \leq \alpha \), then \(U = A^\beta^\gamma U^\alpha^\beta = U^\gamma^\alpha \in S_m(\alpha, \gamma) \) with \(\eta = (W_m^\star \gamma)\bar{z}^{km} P(\psi P W_k^\star \beta((W_k^\star \varphi) \cdot \bar{z}^{km} W_{km}^\star k_0^\gamma)).
\]
(c) Assume that $A^{\beta,\gamma}_{\nu} \in \mathcal{T}(\beta, \gamma)$ and $U^{\alpha,\beta}_{\nu} \in S_{k}(\alpha, \beta)$. If $\alpha \leq W^*_k \beta$ and $\beta \leq \gamma$, then
\[U = A^{\beta,\gamma}_{\nu} U^{\alpha,\beta}_{\nu} = U^{\alpha,\gamma}_{\zeta} \in S_{k}(\alpha, \gamma) \] with $\zeta = P_\alpha(\psi(W^*_k \varphi))$.

(d) Assume that $U^{\beta,\gamma}_{\nu} \in S_m(\beta, \gamma)$ and $A^{\alpha,\beta}_{\psi} \in \mathcal{T}(\alpha, \beta)$. If $\alpha \leq \beta \leq W^*_m \gamma$, then
\[U = U^{\beta,\gamma}_{\nu} U^{\alpha,\beta}_{\psi} = U^{\alpha,\gamma}_{\zeta} \in S_m(\alpha, \gamma) \] with $\zeta = P_\alpha(\psi \varphi)$.

Finally, we can consider the case when $k = m = 1$ (see [37, Proposition 1]).

Corollary 4.7. Let α, β and γ be nonconstant inner functions and let $\varphi, \psi \in H^2$.

(a) Assume that $A^{\beta,\gamma}_{\nu} \in \mathcal{T}(\beta, \gamma)$ and $A^{\alpha,\beta}_{\psi} \in \mathcal{T}(\alpha, \beta)$. If $\gamma \leq \beta \leq \alpha$, then $A = A^{\beta,\gamma}_{\nu} A^{\alpha,\beta}_{\psi} = A^{\alpha,\gamma}_{\eta} \in \mathcal{T}(\alpha, \gamma)$ with $\eta = P_\gamma(\varphi P_\beta(\psi))$.

(b) Assume that $A^{\beta,\gamma}_{\nu} \in \mathcal{T}(\beta, \gamma)$ and $A^{\alpha,\beta}_{\psi} \in \mathcal{T}(\alpha, \beta)$. If $\gamma \leq \beta \leq \alpha$, then $A = A^{\beta,\gamma}_{\nu} A^{\alpha,\beta}_{\psi} = A^{\alpha,\gamma}_{\eta} \in \mathcal{T}(\alpha, \gamma)$ with $\eta = \gamma z P_\beta(\psi P_\alpha(\varphi))$.

(c) Assume that $A^{\beta,\gamma}_{\nu} \in \mathcal{T}(\beta, \gamma)$ and $A^{\alpha,\beta}_{\psi} \in \mathcal{T}(\alpha, \beta)$. If $\alpha \leq \beta \leq \gamma$, then $A = A^{\beta,\gamma}_{\nu} A^{\alpha,\beta}_{\psi} = A^{\alpha,\gamma}_{\zeta} \in \mathcal{T}(\alpha, \gamma)$ with $\zeta = \alpha z P_\beta(\psi P_\alpha(\varphi))$.

(d) Assume that $A^{\beta,\gamma}_{\nu} \in \mathcal{T}(\beta, \gamma)$ and $A^{\alpha,\beta}_{\psi} \in \mathcal{T}(\alpha, \beta)$. If $\alpha \leq \beta \leq \gamma$, then $A = A^{\beta,\gamma}_{\nu} A^{\alpha,\beta}_{\psi} = A^{\alpha,\gamma}_{\zeta} \in \mathcal{T}(\alpha, \gamma)$ with $\zeta = P_\alpha(\psi \varphi)$.

5. Products of operators from $S_k(\alpha, \beta)$ with L^2 symbols

Let α, β be two nonconstant inner functions and fix $k \in \mathbb{N}$ such that $k \leq \dim K_\alpha$. Recall that in that case $U^{\alpha,\beta}_{\psi} = 0$ if and only if $\varphi \in \overline{\alpha H^2 + H^2 \mathcal{P}_{\beta}(\psi)}$. It follows that every operator from $S_k(\alpha, \beta)$ has a symbol of the form $\varphi_+ \varphi_-$, where $\varphi_+ \in K_\alpha$ and $\varphi_- = \sum_{j=1}^{k} z^j (W^*_k \varphi_j) \in z K W^*_k \beta$ for some $\varphi_j \in K_\beta$, $1 \leq j \leq k$. To see this note that
\[L^2 = \overline{H^2} \oplus z H^2 = \overline{\alpha H^2} \oplus K_\alpha \oplus z (W^*_k \beta) H^2 \oplus z K W^*_k \beta. \]

Decomposing an arbitrary symbol $\varphi \in L^2$ accordingly as
\[\varphi = \overline{\alpha h + \varphi_-} + (W^*_k \beta) zg + z \chi \quad (h, g \in H^2, \varphi_- \in K_\alpha, \chi \in K W^*_k \beta) \]
we get
\[U^{\alpha,\beta}_{\psi} = U^{\alpha,\beta}_{\varphi_- + z \chi} \]

since
\[z (W^*_k \beta) H^2 = \overline{\varphi_-} (W^*_k \beta) z H^2 \subset \overline{\varphi_-} (W^*_k \beta) H^2. \]

Now by the decomposition
\[K W^*_k \beta = W^*_k (K_\beta) \oplus z W^*_k (K_\beta) \oplus \ldots \oplus z^{k-1} W^*_k (K_\beta) \]
(see formula (4.3) from [31]), there are functions $\varphi_1, \ldots, \varphi_k \in K_\beta$ such that $\chi = \sum_{j=1}^{k} z^{j-1} (W^*_k \varphi_j)$ and so

\[(5.1) \quad \varphi_- + \varphi_+ = \overline{\varphi_-} + z \chi = \overline{\varphi_-} + \sum_{j=1}^{k} z^j (W^*_k \varphi_j). \]
Observe that this decomposition is orthogonal. Moreover, it can be shown that if \(U \in S_k(\alpha, \beta) \) has a symbol given by (5.1), then

\[
U - S_\beta U(S_\alpha^*)^k = k_0^\beta \otimes \varphi_- + \sum_{j=0}^{k-1} \frac{1}{j!} (S_\beta P_\beta W_k(z^{k-j} \varphi_+)) \otimes k_{0,j}^\alpha
\]

\[
= k_0^\beta \otimes \varphi_- + \sum_{j=0}^{k-1} \frac{1}{j!} (S_\beta \varphi_{k-j}) \otimes k_{0,j}^\alpha.
\]

See the proof of Theorem 2 in [31] for more detailed computations.

Theorem 5.1. Let \(\alpha, \beta \) and \(\gamma \) be nonconstant inner functions and let \(k, m \) be two fixed positive integers such that \(k \leq \dim K_\alpha \) and \(m \leq \dim K_\beta \). Assume that \(A = U^\beta_{\varphi_- + \varphi_+} \in S_m(\beta, \gamma) \) for some \(\varphi_- \in K_\beta, \varphi_+ \in zK_{W^m_\gamma} \) and \(B = U^\alpha_{\psi_- + \psi_+} \in S_k(\alpha, \beta) \) for some \(\psi_- \in K_\alpha, \psi_+ \in zK_{W^k_\beta} \). Then \(AB \in S_{km}(\alpha, \gamma) \) if and only if there exist \(\tau_p \in K_\gamma, p = 0, 1, \ldots, mk-1, \) and \(v \in K_\alpha \) such that

\[
\sum_{n=0}^{m-1} \frac{1}{n!} \langle Ak_{0,n}^\beta, S_\alpha^{kn} \varphi_- \rangle - \sum_{j=0}^{k-1} \left(\frac{1}{j!} (S_\gamma A\tilde{A}_{0,j}^\beta) \otimes (S_\alpha^k B^*\tilde{A}_{0,j}^\beta) \right) + \sum_{j=0}^{k-1} \frac{1}{j!} (S_\gamma A\tilde{A}_{0,j}^\beta) \otimes (S_\alpha^k B^*\tilde{A}_{0,j}^\beta)
\]

\[
= k_0^\gamma \otimes v + \sum_{p=0}^{km-1} \tau_p \otimes k_{0,p}^\alpha.
\]

In that case \(AB = U^\alpha_{\xi} \) with

\[
\xi = v + B^* \varphi_- - \sum_{n=0}^{m-1} \langle S_\beta^k k_0^\beta, S_\alpha^{kn} \varphi_- \rangle S_\alpha^{kn} \varphi_- - \sum_{n=0}^{m-1} \frac{1}{n!} \langle S_\beta^{n+1} P_\beta W_k(z^{k-l} \varphi_+), \varphi_- \rangle S_\alpha^{kn} k_{0,l}^\alpha
\]

\[
+ \sum_{p=0}^{km-1} (W_{km}^* \tau_p) \Re^p + \sum_{p=0}^{km-1} \sum_{n=0}^{m-1} (W_{km}^* \tau_p) \Re^p + \sum_{p=0}^{km-1} \sum_{n=0}^{m-1} (W_{km}^* \tau_p) \Re^p
\]

\[
- \sum_{p=0}^{km-1} \sum_{n=0}^{m-1} \left(\sum_{j=0}^{k-1} \frac{1}{j!} \langle S_\beta^{n+1} P_\beta W_k(z^{k-l} \varphi_+), k_{0,j}^\beta \rangle S_\gamma P_\gamma W_m(z^{m-j} \varphi_+) \right) \Re^p.
\]

Proof. Let \(A = U^\beta_{\varphi_- + \varphi_+} \in S_m(\beta, \gamma) \) with \(\varphi_- \in K_\beta, \varphi_+ \in zK_{W^m_\gamma} \) and \(B = U^\alpha_{\psi_- + \psi_+} \in S_k(\alpha, \beta) \) with \(\psi_- \in K_\alpha, \psi_+ \in zK_{W^k_\beta} \). As mentioned above, we then have

\[
A - S_\gamma A(S_\beta^*)^m = k_0^\gamma \otimes \varphi_- + \sum_{j=0}^{m-1} \frac{1}{j!} (S_\gamma P_\gamma W_m(z^{m-j} \varphi_+)) \otimes k_{0,j}^\alpha
\]

and

\[
B - S_\beta B(S_\alpha^*)^k = k_0^\beta \otimes \psi_- + \sum_{l=0}^{k-1} \frac{1}{l!} (S_\beta P_\beta W_k(z^{k-l} \varphi_+)) \otimes k_{0,l}^\alpha.
\]
By (5.3), for any nonnegative integer \(n \) we have

\[
S^n_\beta B(S^*_\alpha)^{kn} - S^{n+1}_\beta B(S^*_\alpha)^{(n+1)k} = (S^n_\beta k^{\beta}_0) \otimes (S^k_\alpha \psi_-) + \sum_{l=0}^{k-1} \frac{1}{l!} S^{n+1}_\beta P_\beta W_k(z^{k-l} \psi_+) \otimes S^k_\alpha k^{\alpha}_{0,l}.
\]

Adding the above for \(n = 0, 1, 2, \ldots, m-1 \), we obtain

(5.4)

\[
B - S^m_\beta B(S^*_\alpha)^{km} = \sum_{n=0}^{m-1} (S^n_\beta k^{\beta}_0) \otimes (S^k_\alpha \psi_-) + \sum_{n=0}^{m-1} \sum_{l=0}^{k-1} \frac{1}{l!} S^{n+1}_\beta P_\beta W_k(z^{k-l} \psi_+) \otimes S^k_\alpha k^{\alpha}_{0,l},
\]

Now the product \(AB \) belongs to \(S_{km}(\alpha, \gamma) \) if and only if there exist \(\Psi \in K_{\alpha} \) and \(\Phi_j \in K_{\gamma}, j = 0, 1, \ldots, km - 1 \), such that

(5.5)

\[
AB - S_\gamma AB(S^*_\alpha)^{km} = k^\gamma_0 \otimes \Psi + \sum_{j=0}^{km-1} \Phi_j \otimes k^{\alpha}_{0,j}.
\]

By Lemma 4.1, we have

\[
S_\gamma AB(S^*_\alpha)^{km} = S_\gamma A(S^*_\alpha)^m S^m_\beta B(S^*_\alpha)^{km} + S_\gamma A(I_{K_\beta} - (S^*_\alpha)^m S^m_\beta) B(S^*_\alpha)^{km} = S_\gamma A(S^*_\alpha)^m S^m_\beta B(S^*_\alpha)^{km} + S_\gamma A \left(\sum_{j=0}^{m-1} \left(\frac{1}{j!} \right)^2 (k^{\gamma}_{0,j} \otimes k^{\alpha}_{0,j}) \right) B(S^*_\alpha)^{km} = S_\gamma A(S^*_\alpha)^m S^m_\beta B(S^*_\alpha)^{km} + \sum_{j=0}^{m-1} \left(\frac{1}{j!} \right)^2 (S_\gamma A k^{\gamma}_{0,j} \otimes (S^k_\alpha B^* S^{kn}_{0,j})).
\]

Using (5.2) and (5.4) we obtain

\[
S_\gamma A(S^*_\alpha)^m S^m_\beta B(S^*_\alpha)^{km} = AB - \sum_{n=0}^{m-1} (AS^n_\beta k^{\beta}_0) \otimes (S^k_\alpha \psi_-) - \sum_{n=0}^{m-1} \sum_{l=0}^{k-1} \frac{1}{l!} AS^{n+1}_\beta P_\beta W_k(z^{k-l} \psi_+) \otimes S^k_\alpha k^{\alpha}_{0,l}
\]

\[
- k^\gamma_0 \otimes B^* \varphi_- - \sum_{j=0}^{m-1} \frac{1}{j!} (S_\gamma P_\gamma W_m(z^{m-j} \varphi_+)) \otimes B^* k^{\beta}_{0,j}
\]

\[
+ \sum_{n=0}^{m-1} (S^n_\beta k^{\beta}_0, \varphi_-) k^\gamma_0 \otimes (S^k_\alpha \psi_-)
\]

\[
+ \sum_{n=0}^{m-1} \sum_{l=0}^{k-1} \frac{1}{l!} (S^{n+1}_\beta P_\beta W_k(z^{k-l} \psi_+), \varphi_-) k^{\gamma}_0 \otimes S^k_\alpha k^{\alpha}_{0,l}
\]

\[
+ \sum_{j=0}^{m-1} \sum_{n=0}^{m-1} \frac{1}{j!} (S^n_\beta k^{\beta}_0 k^{\beta}_{0,j}) (S_\gamma P_\gamma W_m(z^{m-j} \varphi_+)) \otimes (S^k_\alpha \psi_-)
\]

\[
+ \sum_{n=0}^{m-1} \sum_{l=0}^{m-1} \sum_{j=0}^{m-1} (S^{n+1}_\beta P_\beta W_k(z^{k-l} \psi_+), k^{\beta}_{0,l}) (S_\gamma P_\gamma W_m(z^{m-j} \varphi_+)) \otimes S^k_\alpha k^{\alpha}_{0,l}.
\]

Note that

\[
S^k_\alpha k^{\alpha}_{0,l} = \frac{n}{(kn+l)!} k^\alpha_{0, kn+l}.
\]
It follows that

\[AB - S_\gamma AB(S_\alpha^*)^{km} \]

\begin{align*}
&= k_0^\gamma \otimes \left(B^* \psi_+ - \sum_{n=0}^{m-1} \langle S_\beta^n k_0^\beta, \varphi_- \rangle S_\alpha^{kn} \psi_+ - \sum_{n=0}^{m-1} \sum_{l=0}^{k-1} \frac{1}{l!} \langle S_\beta^{n+1} P_\beta W_k(z^{k-l} \psi_+), \varphi_- \rangle S_\alpha^{kn} k_0^\alpha \right) \\
&\quad + \sum_{n=0}^{m-1} \sum_{l=0}^{k-1} \frac{1}{(kn+l)!} \sum_{j=0}^{n} \left(S_\beta^{n+1} P_\beta W_k(z^{k-j} \psi_+) \right) \otimes k_0^\alpha \\
&\quad - \sum_{n=0}^{m-1} \sum_{l=0}^{k-1} \frac{1}{(kn+l)!} \sum_{j=0}^{n} \left(S_\beta^{n+1} P_\beta W_k(z^{k-j} \psi_+) \right) \otimes k_0^\alpha \\
&= k_0^\gamma \otimes \sum_{p=0}^{k-1} \tau_p \otimes k_0^\alpha.
\end{align*}

Formula for the symbol of \(AB \) follows from (4.8). \(\square \)

Corollary 5.2. Let \(\alpha, \beta \) and \(\gamma \) be nonconstant inner functions and let \(k \) be a fixed positive integer such that \(k \leq \dim K_\alpha \). Assume that \(A = A_\alpha^\beta \varphi_+^\beta \in \mathcal{T}(\beta, \gamma) \) for some \(\varphi_- \in K_\beta, \varphi_+ \in zK_\gamma \) and \(B = U_{\varphi_-^\beta + \varphi_+}^\alpha \in S_k(\alpha, \beta) \) for some \(\psi_- \in K_\alpha, \psi_+ \in zK_{W_\beta^*}^* \). Then \(AB \in S_k(\alpha, \gamma) \) if and only if there exist \(\tau_p \in K_\gamma, p = 0, 1, \ldots, k-1 \), and \(v \in K_\alpha \) such that

\[Ak_0^\beta \otimes \psi_- - S_\gamma A\tilde{k}_0^\beta \otimes S_\alpha^k B^* \tilde{k}_0^\beta + (S_\gamma P_\gamma(z \varphi_+)) \otimes (B^* k_0^\beta - \langle k_0^\beta, k_0^\beta \rangle \psi_-) \]

\[= k_0^\gamma \otimes v + \sum_{p=0}^{k-1} \tau_p \otimes k_0^\alpha. \]
In that case \(AB = U^{\alpha,\beta} \) with
\[
\xi = \overline{\nu + B^*\psi_0} - \langle k_0^\alpha, \varphi_0 \rangle \psi_0 - \sum_{l=0}^{k-1} \frac{1}{l!} \langle S_{\beta} P_{\beta} W_k(z^{k-l}\psi_0), \varphi_0 \rangle k_{0,l}^\alpha \\
+ \sum_{p=0}^{k-1} (W_k^* \tau_p) p! \overline{\xi^p} + \sum_{p=0}^{k-1} (W_k^* A S_{\beta} P_{\beta} W_k(z^k \psi_0)) \overline{\xi^p} \\
- \sum_{p=0}^{k-1} \langle P_{\beta} W_k(z^{k-p}\psi_0), k_0^\beta \rangle S_{\gamma} P_{\gamma}(z\varphi_+ \overline{\xi^p}).
\]

Corollary 5.3. Let \(\alpha, \beta \) and \(\gamma \) be nonconstant inner functions and let \(m \) be a fixed positive integer such that \(m \leq \dim K_\beta \). Assume that \(A = U^{\beta,\gamma}_{\varphi_0+zK} \in S_m(\beta, \gamma) \) for some \(\varphi_0 \in K_\beta \), \(\varphi_+ \in zK W_{n+1} \) and \(B = A^{\alpha,\beta}_{\varphi_0+z\varphi_+} \in T(\alpha, \beta) \) for some \(\varphi_0 \in K_\alpha, \varphi_+ \in zK_\beta \). Then \(AB \in S_m(\alpha, \gamma) \) if and only if there exist \(\tau_p \in K_\gamma, p = 0, 1, \ldots, m - 1 \), and \(v \in K_\alpha \) such that
\[
\sum_{n=0}^{m-1} \frac{1}{n!} (A k_{0,n}^\beta) \otimes (S_{\alpha}^n \psi_-) - \sum_{n=0}^{m-1} \left(\frac{1}{n!} \right) \cdot (S_{\gamma} A k_{0,j}^\beta) \otimes (S_{\alpha}^n B^* k_{0,j}^\beta) \\
+ \sum_{j=0}^{m-1} \frac{1}{j!} (S_{\gamma} P_{\gamma} W_m(z^{m-j}\varphi_+)) \otimes \left(B^* k_{0,j}^\beta - \sum_{n=0}^{m-1} \langle S_{\beta} k_{0,n}^\beta, k_{0,j}^\beta \rangle S_{\alpha}^n \psi_- \right) \\
= k_0^\gamma \otimes v + \sum_{p=0}^{m-1} \tau_p \otimes k_{0,p}^\alpha.
\]

In that case \(AB = U^{\alpha,\beta,\gamma} \) with
\[
\xi = \overline{\nu + B^*\psi_0} - \langle S_{\alpha}^n k_{0,n}^\beta, \varphi_- \rangle S_{\alpha}^n \overline{\psi_-} - \sum_{n=0}^{m-1} \langle S_{\beta} P_{\beta} W_k(z^k \psi_0), \varphi_- \rangle S_{\alpha}^n k_{0,n}^\alpha \\
+ \sum_{p=0}^{m-1} (W_m^* \tau_p) p! \overline{\xi^p} + \sum_{p=0}^{m-1} (W_m^* A S_{\beta} P_{\beta} W_k(z^k \psi_0)) \overline{\xi^p} \\
- \sum_{p=0}^{m-1} \sum_{j=0}^{m-1} \left(\frac{1}{j!} \right) \langle S_{\beta}^n P_{\beta}(z^{m-j}\psi_0), k_{0,j}^\beta \rangle S_{\gamma} P_{\gamma} W_m(z^{m-j}\varphi_+) \overline{\xi^p}.
\]

References

[1] S. C. Arora and Ruchika Batra, *On generalized slant Toeplitz operators*, Indian J. Math. **45** (2003), no. 2, 121–134. MR2035900

[2] ———, *Generalized slant Toeplitz operators on \(H^2 \)*, Math. Nachr. **278** (2005), no. 4, 347–355, DOI 10.1002/mana.200310244. MR2121563

[3] Hari Bercovici, *Operator theory and arithmetic in \(H^\infty \)*, Mathematical Surveys and Monographs, vol. 26, American Mathematical Society, Providence, RI, 1988. MR954383

[4] Albrecht Böttcher and Bernd Silbermann, *Analysis of Toeplitz operators*, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. Prepared jointly with Alexei Karlovich. MR2223704

[5] Crisina Câmara, Joanna Jurasik, Kamila Klíš-Garlicka, and Marek Ptak, *Characterizations of asymmetric truncated Toeplitz operators*, Banach J. Math. Anal. **11** (2017), no. 4, 899–922, DOI 10.1215/17358787-2017-0029. MR3708535
[6] M. Cristina Câmara, Kamila Kliš-Garlicka, Bartosz Lanucha, and Marek Ptak, *Intertwining property for compressions of multiplication operators*, Results Math. **77** (2022), no. 4, Paper No. 140, 20, DOI 10.1007/s00025-022-01673-w. MR4423597

[7] M. Cristina Câmara, Kamila Kliš-Garlicka, and Marek Ptak, *Asymmetric truncated Toeplitz operators and conjugations*, Filomat **33** (2019), no. 12, 3697–3710. MR4040358

[8] M. Cristina Câmara and Jonathan R. Partington, *Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol*, J. Operator Theory **77** (2017), no. 2, 455–479, DOI 10.7900/jot.2016apr27.2108. MR3634513

[9] , *Spectral properties of truncated Toeplitz operators by equivalence after extension*, J. Math. Anal. Appl. **433** (2016), no. 2, 762–784, DOI 10.1016/j.jmaa.2015.08.019. MR3398735

[10] Isabelle Chalendar and Dan Timotin, *Commutation relations for truncated Toeplitz operators*, Oper. Matrices **8** (2014), no. 3, 877–888, DOI 10.7153/oam-08-49. MR3257897

[11] Isabelle Chalendar, Emmanuel Fricain, and Dan Timotin, *A survey of some recent results on truncated Toeplitz operators*, Recent progress on operator theory and approximation in spaces of analytic functions, Contemp. Math., vol. 679, Amer. Math. Soc., Providence, RI, 2016, pp. 59–77. MR3589670

[12] Gopal Datt and Shesh Kumar Pandey, *Slant Toeplitz operators on the Lebesgue space of n-dimensional torus*, Hokkaido Math. J. **49** (2020), no. 3, 363–389, DOI 10.14492/hokmj/1607936533. MR4187113

[13] , *Compression of slant Toeplitz operators on the Hardy space of n-dimensional torus*, Czechoslovak Math. J. **70**(145) (2020), no. 4, 363–389, DOI 10.14492/cmj.2020.0088-19. MR4181792

[14] Peter L. Duren, *Theory of H^p spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR0268655

[15] Emmanuel Fricain and Javad Mashreghi, *The theory of H(b) spaces*. Vol. 1, New Mathematical Monographs, vol. 20, Cambridge University Press, Cambridge, 2016. MR3497010

[16] Stephan Ramon Garcia, Javad Mashreghi, and William T. Ross, *Introduction to model spaces and their operators*, Cambridge Studies in Advanced Mathematics, vol. 148, Cambridge University Press, Cambridge, 2016. MR3526203

[17] Stephan Ramon Garcia and Mihai Putinar, *Complex symmetric operators and applications*, Trans. Amer. Math. Soc. **358** (2006), no. 3, 1285–1315, DOI 10.1090/S0002-9947-05-03742-6. MR2187654

[18] Stephan Ramon Garcia and William T. Ross, *Recent progress on truncated Toeplitz operators*, Blaschke products and their applications, Fields Inst. Commun., vol. 65, Springer, New York, 2013, pp. 275–319, DOI 10.1007/978-1-4614-5341-3_15. MR3052299

[19] T. N. T. Goodman, Charles A. Micchelli, and J. D. Ward, *Spectral radius formulas for subdivision operators*, Recent advances in wavelet analysis, Wavelet Anal. Appl., vol. 3, Academic Press, Boston, MA, 1994, pp. 335–360. MR1244611

[20] Caixing Gu, Bartosz Lanucha, and Małgorzata Michalska, *Characterizations of asymmetric truncated Toeplitz and Hankel operators*, Complex Anal. Oper. Theory **13** (2019), no. 3, 673–684, DOI 10.1007/s11785-018-0783-8. MR3940385

[21] Mark C. Ho, *Properties of slant Toeplitz operators*, Indiana Univ. Math. J. **45** (1996), no. 3, 843–862, DOI 10.1512/iumj.1996.45.1973. MR1422109

[22] , *Spectra of slant Toeplitz operators with continuous symbols*, Michigan Math. J. **44** (1997), no. 1, 157–166, DOI 10.1307/mmj/1029005627. MR1439675

[23] , *Adjoint of slant Toeplitz operators*, Integral Equations Operator Theory **29** (1997), no. 3, 301–312, DOI 10.1007/BF01320703. MR1477322

[24] , *Adjoint of slant Toeplitz operators. II*, Integral Equations Operator Theory **41** (2001), no. 2, 179–188, DOI 10.1007/BF01295304. MR1847171

[25] Joanna Jurasik and Bartosz Lanucha, *Asymmetric truncated Toeplitz operators equal to the zero operator*, Ann. Univ. Mariae Curie-Skłodowska Sect. A **70** (2016), no. 2, 51–62. MR3592981

[26] , *Asymmetric truncated Toeplitz operators on finite-dimensional spaces*, Oper. Matrices **11** (2017), no. 1, 245–262, DOI 10.7153/oam-11-17. MR3602642

[27] Chaomei Liu and Yufeng Lu, *Product and commutativity of kth-order slant Toeplitz operators*, Abstr. Appl. Anal. (2013), Art. ID 473916, 11. MR3045038

[28] Yufeng Lu, Chaomei Liu, and Jun Yang, *Commutativity of kth-order slant Toeplitz operators*, Math. Nachr. **283** (2010), no. 9, 1304–1313, DOI 10.1002/mana.200710100. MR2731135
Bartosz Lanucha, On rank-one asymmetric truncated Toeplitz operators on finite-dimensional model spaces. J. Math. Anal. Appl. 454 (2017), no. 2, 961–980, DOI 10.1016/j.jmaa.2017.05.033. MR3658807

[30] ______, Asymmetric truncated Toeplitz operators of rank one, Comput. Methods Funct. Theory 18 (2018), no. 2, 259–267, DOI 10.1007/s40315-017-0219-x. MR3806546

[31] Bartosz Lanucha and Małgorzata Michalska, Compressions of kth-order slant Toeplitz operators to model spaces, Lith. Math. J. 62 (2022), no. 1, 69–87, DOI 10.1007/s10986-021-09548-3. MR4383335

[32] Rubén A. Martínez-Avendaño and Peter Rosenthal, An introduction to operators on the Hardy-Hilbert space, Graduate Texts in Mathematics, vol. 237, Springer, New York, 2007. MR2270722

[33] Béla Sz.-Nagy, Ciprian Foias, Hari Bercovici, and László Kérchy, Harmonic analysis of operators on Hilbert space, Revised and enlarged edition, Universitext, Springer, New York, 2010. MR2760647

[34] Donald Sarason, Algebraic properties of truncated Toeplitz operators, Oper. Matrices 1 (2007), no. 4, 491–526, DOI 10.7153/oam-01-29. MR2363975

[35] ______, Generalized interpolation in H^∞, Trans. Amer. Math. Soc. 127 (1967), 179–203, DOI 10.2307/1994641. MR208383

[36] Lars F. Villemoes, Wavelet analysis of refinement equations, SIAM J. Math. Anal. 25 (1994), no. 5, 1433–1460, DOI 10.1137/S0036141092228179. MR1289147

[37] Ameur Yagoub, Products of asymmetric truncated Toeplitz operators, Adv. Oper. Theory 5 (2020), no. 1, 233–247, DOI 10.1007/s43036-019-00014-z.

[38] Taddesse Zegeye and S. C. Arora, The compression of slant Toeplitz operator to $H^2(\partial D)$, Indian J. Pure Appl. Math. 32 (2001), no. 2, 221–226. MR1820862

Bartosz Lanucha,
Institute of Mathematics,
Maria Curie-Skłodowska University,
pl. M. Curie-Skłodowskiej 1,
20-031 Lublin, Poland
Email address: bartosz.lanucha@mail.umcs.pl

Małgorzata Michalska,
Institute of Mathematics,
Maria Curie-Skłodowska University,
pl. M. Curie-Skłodowskiej 1,
20-031 Lublin, Poland
Email address: malgorzata.michalska@mail.umcs.pl