Host specificity and geographical distribution of *Eubothrium* in European salmonid fish

T. Scholz¹*, R. Kuchta², A.P. Shinn³, V. Šnábel⁴ and V. Hanzelová⁴

¹Institute of Parasitology, Academy of Sciences of the Czech Republic and ²Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic: ³Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK: ⁴Parasitological Institute, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic

Abstract

The host specificity and distribution of *Eubothrium crassum* (Bloch, 1779) and *Eubothrium salvelini* (Schrank, 1790), morphologically fairly similar pseudophyllidean tapeworms parasitizing salmonid fish, were critically assessed on the basis of morphological and genetic evaluation of extensive material collected from different definitive hosts and geographical regions in Europe. *Eubothrium crassum* occurs in fish of the genera *Salmo*, i.e. salmon (*S. salar* – both freshwater and marine), sea trout (*S. trutta trutta*), brown trout (*S. trutta fario*), and lake trout (*S. trutta lacustris*), and also in Danubian salmon (*Hucho hucho*) and vendace (*Coregonus albula*). *Eubothrium salvelini* parasitizes Arctic char (*Salvelinus alpinus*) and brook trout (*Salvelinus fontinalis*) in Europe, and also whitefish (*Coregonus xantusii*). Rainbow trout (*Oncorhynchus mykiss*), which is not a native European fish species, was found to be a suitable definitive host for both *Eubothrium* species, which may occur simultaneously in the same fish. Previous records of *E. crassum* in Arctic char and brook trout, and those of *E. salvelini* in fish of the genus *Salmo* were most probably misidentifications. Most studies of *Eubothrium* have involved salmonids from the northern part of Europe, with few records from southern and south-eastern Europe. This study also confirmed the reliability of the morphology of the apical disc for the discrimination of *E. crassum* and *E. salvelini*.

Introduction

Cestodes of the genus *Eubothrium* Nybelin, 1922 (Pseudophyllidea) represent a unique group of fish helminths because some species occur in the sea, whilst others are exclusively freshwater and one species, *E. crassum* (Bloch, 1779), lives in both environments (Kennedy, 1978a,b; Andersen & Kennedy, 1983). Despite these differences in biology and ecology, *Eubothrium* tapeworms may be difficult to identify due to the uniform morphology and close similarity of most species (Andersen & Kennedy, 1983). Problems in the identification of two of the most common species, *E. salvelini* (Schrank, 1790) and *E. crassum*, parasitizing salmonid fish in the Holarctic Region (Protasova, 1977; Kennedy, 1978a,b), have contributed to an unsatisfactory knowledge of the spectrum of definitive hosts, host specificity, and geographical distribution of these parasites.

Eubothrium crassum is a typical cestode of salmon (*Salmo salar* L.), sea and brown trout (*Salmo trutta trutta* L. and *S. trutta fario* L.) (Kennedy, 1978a,b; Andersen & Kennedy, 1983), but it has also been reported from a wide spectrum of other salmonid fish of the genera *Brachymystax*, *Coregonus*, *Hucho*, *Oncorhynchus*, *Salmo*, *Salvelinus* and *Thymallus* (see table 1 for references). In Europe, *E. salvelini*...
occurs most frequently in Arctic char (*Salvelinus alpinus* (L.)) (Kennedy, 1978a), but it has been found in other salmonids, including those serving as the definitive hosts of *E. crassum* (table 1).

In the present study, the host spectrum of *E. crassum* and *E. salvelini* in Europe was critically examined on the basis of an evaluation of extensive material collected from different hosts (both freshwater and marine, wild and cultured) and regions of Europe. Besides numerous recently collected specimens of *Eubothrium*, voucher specimens from museum collections were also examined, with an emphasis on cestodes from ‘atypical’ or less common fish hosts.

Materials and methods

Freshly collected cestodes from the following hosts and localities were studied:

1. Salmon (*Salmo salar* L.) – marine (cared in cages): Loch Fyne near Cairndoun; Isle of Arran; Firth of Clyde at Durnoon, all Scotland, UK, collected in March 2001; Tighnabruaich, Scotland, September 2002; marine (wild population): Kursiu Marios, Curonian Bay, Lithuania, October 1999; River Tay and River Forth, both Scotland, September 2002; freshwater (smolt from cage culture): Skogseidvatn Lake, Norway, January 2001; Loch Arkaig, Scotland, UK, March 2001.
2. Sea trout (*Salmo trutta trutta* L.) – Kursiu Marios, Curonian Bay, Lithuania, October 1999; Myrlandsvatnet, Norway, October 1999; Isetfjord, Denmark, January 2001; River Esk, Scotland, September 2002.
3. Brown trout (*Salmo trutta fario* L.) – Vougians water reservoir, Jura, France, November 1999; Hafravatn, Iceland, November 2000; Loch Leven, Scotland, March 2001; Loch Doyn and Loch Earn, Scotland, September 2002.
4. Lake trout (*Salmo trutta lacustris* L.) – Lake Annecy and Lake Bourget, France; Lake Geneva, France and Switzerland, 1997–2000.
5. Rainbow trout (*Oncorhynchus mykiss* (Walbaum)) – Sko generally, Norway, March 2000; Loch Awe and Loch Earn (both cage culture); Loch Leven (wild population), all Scotland, UK, March and April 2001.
6. Arctic char (*Salvelinus alpinus* (L.)) – Røye, Norway, February 1988; Lake Annecy and Lake Bourget, France; Lake Geneva, France and Switzerland, 1997–2000; Hafravatn, Iceland, November 2000; Loch Doyn and Loch Earn, Scotland, September 2002.
7. Brook trout (*Salvelinus fontinalis* (Mitchill)) – Fuschlsee, Austria, August 1995.

Specimens for morphological evaluation were fixed in hot 4% formaldehyde solution (Scholz & Hanzelová, 1998; Hanzelová et al., 2002).

Specimens for isoenzyme analysis were frozen in liquid nitrogen, stored at −70°C and then analysed by the isoelectrofocusing (IEF) technique as described by Šnábel et al. (1998). Isoelectric focusing was conducted on an LKB Multiphor 2177 system equipped with an LKB 2177 power supply. Gels were cast using ampholytes with the pH ranges 3.5–9.5 and 4.0–6.5. Three enzyme systems were used as genetic markers (see Král’ová & Šnábel, 2000): acid phosphatase (ACP, EC 3.1.3.2), phosphoglucomutase (PGM, EC 5.4.2.2), and glucose-phosphate isomerase (GPI, EC 5.3.1.9). Isoenzymes were designated in order of mobility from the cathode; the number 100 was given to the commonest signal.

Species identification was based on the following characters:

1. The morphology of the apical disc (see Andersen, 1979; Andersen & Kennedy, 1983; Chubb et al., 1987; Hanzelová et al., 2002): only two dorsoventral grooves (incisions) in *E. salvelini* versus at least four grooves, including two on the lateral sides of the disc, in *E. crassum* (fig. 1). Each scolex was unmounted and the number of grooves was counted under the light microscope in the en face view. Some scoleces were then prepared for scanning electron microscopy (SEM) using standard procedures (see Scholz et al., 1998) and observed with a Jeol JSM 6300.
2. The position of the vitelline follicles (Andersen & Kennedy, 1983): cortical in *E. crassum* and medullary in *E. salvelini* (see fig. 3 in Hanzelová et al., 2002). The position of the follicles was observed in 10 μm paraffin sections stained with Heidenhain’s haematoxylin-eosin.
3. The presence of species-specific alleles found at *Acp, Pgm* and *Gpi* loci that code for the above-mentioned enzymes (Král’ová & Šnábel, 2000).

The identification of museum specimens was based on the morphology of the apical disc (see above) and strobilar characters described by Hanzelová et al. (2002).

The possibility of simultaneous infections in individual fish hosts with both cestode species was tested in a sample of 91 *Eubothrium* tapeworms from ten rainbow trout collected in Loch Awe in June 2001. Each specimen was treated separately, the scolex and posterior part of the strobila were fixed for morphological evaluation (morphology of 77 scolices and topology of vitelline follicles in cross sections of 28 specimens were examined), and the middle part of the body was frozen for isoenzyme analysis (88 tapeworms).

In addition to freshly collected tapeworms, the following specimens from museum collections were evaluated:

1. The Natural History Museum, Vienna (Naturhistorisches Museum Wien – NMW), Austria: *E. crassum* from asp *Aspis aspis* (Collection Nos. 3010 and 16153 (7)), eel *Anguilla anguilla* (Nos. 3009a, 3009f and 16153 (20, 35, 37 and 40)), whitefish *Coregonus artedi* (Nos. 3040 (35) and 16172), and Danubian salmon *Salmo salar* (036/012/4, INVE 17858, 19002, 28077), and *S. alpinus* from *Hucho hucho* (=*Hucho hucho*) (No. 2617), all specimens from Austria.
2. The Natural History Museum, London, UK (BMNH): *E. crassum* from vendace *Coregonus albula* (1981.5.7.29–33), from *Coregonus* sp. (1981.5.7.28), both from Finland, and *S. alpinus* from Spitzbergen, Norway (1924.3.11.86–90); *E. salvelini* from *Salmo trutta* (1986.2.21.16–18); and *Eubothrium* sp. from pike *Esox lucius* (1986.2.21.19; 1989.1.24.52–59), both from Ireland.
3. The Natural History Museum, Geneva (Muséum d’Histoire Naturelle, LMNH; MHN), Switzerland: *E. crassum* from *S. salar* (002/097–9); *S. trutta lacustris* (036/012/4, INVE 17858, 19002, 28077), and *Coregonus* sp.
Table 1. Records of adults of *Eubothrium crassum* and *E. salvelini* from salmonid fish in Europe, including specimens from museum collections studied by the present authors (findings of immature tapeworms in paratenic hosts omitted). Records considered doubtful and requiring confirmation in italics and marked with a question mark.

Host	*E. crassum*	*E. salvelini*
Acantholingua ohridana	Hristovski et al. 1999 (?)	
Coregonus albula	Andersen & Kennedy 1983; present study	
Coregonus fera	Vik 1963; Dorovskikh 2000	
Coregonus lavaretus	Zandt 1924; Kritscher 1990 (?)	
Coregonus wartmanni	BMNH 1981.5.7.28-33; MNHG 036/067	
Hucho hucho	Holčík et al. 1988; NMW 2617 – present study	
Oncorhyncus mykiss	Kane 1966; Wootten 1972; Ingham & Arne 1973; Otto & Köbring, 1973; Kennedy 1974; Andersen 1979; Andersen & Kennedy 1983; Kennedy et al. 1991; Engelhardt & Mirle 1993; Buchmann et al. 1995; present study	
Salmo letna	Stojanowski et al. 1998	
Salmo salar	Nybelin 1922; Markowski 1933; Joyeux & Baer 1936; Mukahy & Kennedy 1970; Rokicki 1975; Kennedy 1978b; Dorovskikh 2000; Petkevičiūtė & Bondarenko 2001 (for other records – see Kennedy 1978b); MNHG 002/097-099; present study	Stojanowski et al. 1998 (?)
Salmo trutta trutta	Nybelin 1922; Chappell & Owen 1969; Wootten 1972; Campbell 1974; Rokicki 1975; Kennedy 1978b; Fahy 1980; Buchmann 1987; Molloy et al. 1993; Byrne et al. 1999, 2002 (for other records – see Kennedy 1978b); “E. salvelini” (BMNH 1986.2.21.16-18); present study	
Salmo trutta fario and S. trutta lacustris	Heitz 1918; Rosen 1918; Zandt 1924; Dogiel & Petrushevska 1935; Joyeux & Baer 1936; Wootten 1972; Rokicki 1975; Özelik & Deufel 1989; Hartvigsen & Kennedy 1993; Kennedy, 1996; Hanzelová et al. 1999; Král’ová et al. 2001 (for other records – see Kennedy 1978b); MNHG 036/012/4, INVE 17858, 19002, 28077; present study	
Salvelinus alpinus	Zandt 1924 (?); Półanski 1966 (?); Mukahy & Kennedy 1970 (?) (misidentification of *E. salvelini* according to Kennedy, 1978b)	Nybelin 1922; Vik 1963; Chappell & Owen 1969; Kennedy 1977, 1978a; Andersen 1979; Conneely & McCarthy 1984; Rydlo 1985; Hoffmann et al. 1986; Giovannazzo 1989; Kritscher 1991; Due & Curtis 1995; Gendeaux et al. 1995; Knudsen et al. 1997; Hanzelová et al. 1999 (for other records – see Kennedy 1978b); “Eubothrium sp.” (MNHG INVE 26301, 29413-4); ZMC; present study
Salvelinus fontinalis	Zandt 1924 (?)	
Thymallus thymallus	Zandt 1924 (?); Kane 1966 (?)	Nybelin 1922 (?)

Host specificity and distribution of *Eubothrium* in salmonids
(036/067); *Eubothrium* sp. from *S. alpinus* (INVE 26301, 29413–4), all from Switzerland.

4. The Zoological Museum, Copenhagen (Zoologisk Museum, København), Denmark (ZMC): *E. salvelini* from *S. alpinus* from several localities in Greenland (Grønland, Denmark).

Results

Principal definitive hosts of *E. crassum* and *E. salvelini*

Salmon (*Salmo salar*), both freshwater and marine from cage culture and wild populations (fig. 1A,B), sea trout (*S. trutta trutta*) (fig. 1C), brown trout (*S. trutta fario*) (fig. 1D), and lake trout (*S. trutta lacustris*) were infected exclusively with *E. crassum*. *Eubothrium salvelini* was found in Arctic char (*Salvelinus alpinus*) (fig. 1G) and brook trout (*S. fontinalis*) (fig. 1H).

Eubothrium in rainbow trout (*Oncorhynchus mykiss*)

Both cestode species were found in rainbow trout from Scotland. In rainbow trout from Loch Awe, *E. crassum* and *E. salvelini* (fig. 1I) occurred simultaneously, but *E. crassum* predominated. Mixed infections occurred in five fish, four hosts harboured exclusively *E. crassum*, and one rainbow trout was infected with *E. salvelini*. Rainbow trout from Loch Earn were infected with *E. salvelini* only (fig. 1F), whereas rainbow trout from Loch Leven (fig. 1E; both localities in Scotland) and Norway were infected with *E. crassum*. Thus, rainbow trout seems to be a suitable (but not specific) definitive host of *E. crassum* and *E. salvelini*.

Other definitive hosts of *E. crassum* and *E. salvelini*

Eubothrium crassum has also been found in Danubian salmon (*Hucho hucho*) from Austria and vendace
Host specificity and distribution of *Eubothrium* in salmonids

(Coregonus albula) from Finland. *Eubothrium salvelini* was recorded from whitefish (*Coregonus wartmanni*) from Austria.

Examination of other museum specimens has shown several misidentifications (see table 1). Tapeworms identified as 'E. salvelini' from Salmo trutta trutta from Ireland (BMNH 1986.2.21.16–18) actually belong to *E. crassum* and 'E. salvelini' from C. wartmanni from Austria (NMW 3040 and 16172) is *E. salvelini*. Identifications of *E. crassum* from *Coregonus* sp. from Finland (BMNH 1981.5.7.28–33), from *Salmo salar* (MNHG 002/097–9), *Salmo trutta lacustris* (MNHG 036/012/4, INVE 17858, 19002, 28077), and *Coregonus* sp. (MNHG 036/067), all from Switzerland, are considered to be correct. 'Eubothrium' sp. from *Salvelinus alpinus* from Switzerland (NMW Nos. 3010 and 16153) were identified as *E. salvelini* and 'E. salvelini' from the same host from Greenland, Denmark (ZMC) was also correctly identified.

'Eubothrium crassum' from *Salvelinus alpinus* from Spitzbergen, Norway (BMNH 1924.3.11.86–90) was represented by sections of insufficient quality to identify them. 'Eubothrium sp.' from *Esox lucius* from Ireland (BMNH 1986.2.21.19; 1989.1.24.52–59), and 'E. crassum' from *Aspius aspius* (NMH Nos. 3010 and 16153) were juvenile specimens, which prevented their reliable identification. 'E. crassum' from *Anguilla anguilla* from Austria (NM 3009a, 3009f and 16153), reported by Kritscher (1988), actually represents *Bothriocephalus claviceps* (Goze, 1782), a pseudophyllidean tapeworm specific to eels (see Scholz, 1997).

Geographical distribution of *E. crassum* and *E. salvelini* in Europe

The present data (asterisk), supplemented by reliable published records (see table 1), indicate the presence of *E. crassum* in the following European countries: Austria*, Azerbaijan, Denmark*, Estonia, Finland*, France*, Germany, Iceland*, Ireland*, Lithuania*, Macedonia, Norway*, Poland, Russia, Sweden, Switzerland*, UK*, Ukraine, and Yugoslavia; *E. salvelini* has been recorded in salmonids in Austria*, Denmark* including Greenland*, France*, Germany, Iceland*, Ireland, Italy, Macedonia, Norway*, Russia, Sweden, Switzerland*, UK*, and Yugoslavia. No recent records of the occurrence of either *Eubothrium* species exist from the Iberian Peninsula, the Netherlands, Belgium, Czech Republic, Slovakia, Hungary, most countries of the Balkan Peninsula, and Transcaucasian republics (Armenia, Georgia).

Identification of *E. crassum* and *E. salvelini*

This study confirmed the suitability of the morphology of the apical disc observed en face (in unmounted specimens) for the differentiation of mature *E. crassum* and *E. salvelini* (see Andersen, 1979; Chubb et al., 1987). Species discrimination was confirmed independently by isoenzyme analyses and examination of sections of respective specimens. It was found, however, that immature worms of *E. crassum* with poorly developed incisions (grooves) on the apical disc may sometimes be difficult to identify.

Enzyme	*E. crassum*	*E. salvelini*
GPI	106, 108, 110	100, 102, 104
PGM	105, 111, 117	97, 100
ACP	90, 100	94

Fig. 2. Profile of glucose-phosphate isomerase obtained using isoelectrofocusing. Lanes 1, 2, 4, 5, 6, 7, *Eubothrium crassum* isolates; lane 3, *E. salvelini* isolate. All screened samples were recovered from rainbow trout in Loch Awe.

Electrophoretical comparison of *E. crassum* and *E. salvelini*

Using GPI, PGM and ACP enzyme systems, the two species were readily discernible at the genetic level. With GPI and PGM, alleles attributed to *E. salvelini* migrated more cathodically compared to *E. crassum* alleles. GPI gave either single- or triple-banded phenotypes in *E. salvelini*, while three isoenzymes of different mobility were detected in *E. crassum* (fig. 2). The PGM generated pattern was characterized by two isoenzymes in *E. salvelini* and a more complex pattern displaying three electromorphs in *E. crassum*. ACP produced three patterns (represented by heterozygous and alternative homozygous forms) in *E. salvelini*, unlike the single monomorphic band expressed by *E. crassum* isolates. The mobility values of major bands scored for each enzyme are listed in table 2.

Discussion

The results of the present study correspond with the observations of some previous authors (Vik, 1963; Kennedy, 1978b; Hanzelova et al., 1999, 2002) in that *E. crassum* was found in fish of the genus *Salmo* (salmon, sea, brown, and lake trout), whereas *E. salvelini* occurred predominantly in Arctic char (*Salvelinus alpinus*), even in those localities where these fish lived sympatrically. Although extensive *Eubothrium* material from different regions of Europe was evaluated (table 1), no *E. crassum* were found in species of *Salvelinus* and, vice
versa, _E. salvelini_ never infected any species of _Salmo_. It can be concluded, therefore, that _E. crassum_ and _E. salvelini_ show a strict specificity to their salmonid fish hosts. In Europe, these fish are infected with only one species of _Eubothrium_, either _E. crassum_ or _E. salvelini_.

To date, all but one sample of _Eubothrium_ from rainbow trout in Europe were identified as _E. crassum_ (see table 1). The present study has shown, however, that rainbow trout, which is not native to Europe (see Froese & Pauly, 2001), may harbour both _Eubothrium_ species and become infected simultaneously. In mixed infections (Loch Awe), _E. crassum_ was more abundant than _E. salvelini_. In Loch Earn, _E. salvelini_ was the only _Eubothrium_ species occurring in rainbow trout and its identification was confirmed by DNA-based methods (Král'ová-Hromadová et al., 2003).

The common occurrence of _E. salvelini_ in rainbow trout in Scotland raises the question as to whether this species has been overlooked or misidentified during previous surveys of fish parasites in the UK (see Kennedy, 1974; Holland & Kennedy, 1997), or whether it has appeared only recently in British populations of rainbow trout. The latter have been stocked in Loch Earn and Loch Awe for the past 15–20 years and it is possible that _E. salvelini_, previously occurring in resident populations of char, colonized rainbow trout for the first time. In Loch Leven, famous for its unique strain of brown trout, rainbow trout were first stocked as recently as 1994, which may explain the absence of _E. salvelini_ from rainbow trout in this locality.

The susceptibility of rainbow trout to simultaneous infection with _E. crassum_ and _E. salvelini_ may reflect the phylogenetic relationships of this fish with other salmonids, given that members of the genus _Oncorhynchus_ form an intermediate clade between those including species of _Salmo_ and _Salvelinus_ (Phillips & Oakley, 1997). Rainbow trout occurred originally in the Russian Far East and the north-western part of North America, where salmonids of the genus _Oncorhynchus_ harbour both _Eubothrium_ species (Andersen & Kennedy, 1983).

Results of examining museum deposited specimens have provided evidence that _E. crassum_ and _E. salvelini_ may occur in other salmonid genera, such as _Hucho_ (_E. crassum_) and _Coregonus_ (_E. crassum_ and _E. salvelini_). A critical evaluation of these specimens has also shown numerous misidentifications of _Eubothrium_ and confirmed the suggestions of Kennedy (1978a) and Andersen & Kennedy (1983) about the unreliability of previous records from ‘atypical’ hosts (see table 1).

Available data demonstrate that _Eubothrium_ occur in the northern part of Europe, apparently reflecting the geographical distribution of salmonid fish. The absence of recent records of _E. crassum_ and _E. salvelini_ in some countries where native salmonids occur (e.g. Balkan Peninsula) may reflect the lack of parasitological surveys rather than the absence of these cestodes. _Eubothrium crassum_ seems to be more widely distributed in Europe, which may be related to the wider spectrum of its definitive hosts. In some countries, such as the Czech Republic (see Moravec, 2001), _E. crassum_ disappeared at the beginning of the 20th century: the Atlantic salmon stopped upstream migration as a consequence of the construction of barrages and weirs on rivers.

The usefulness of isoenzyme patterns as species-specific markers (see Král’ová & Snábel, 2000) was demonstrated in a study of _Eubothrium_ from a mixed infection of rainbow trout from Loch Awe (fig. 2; table 2). The enzyme systems used appeared to be suitable for species discrimination and results obtained were congruent with those based on morphological characters, i.e. the morphology of the apical disc and the position of vitelline follicles in cross sections.

Acknowledgements

The authors are indebted to the following persons who kindly provided specimens: Karin Andersen, University of Oslo, Norway; Björn Berland, University of Bergen, Norway; Thomas Bjære and Kurt Buchmann, Royal Veterinary and Agricultural University, Copenhagen, Denmark; Ivica Král’ová-Hromadová, Parasitological Institute, Slovak Academy of Sciences, Košice, Slovakia; Romualda Petkevičiūtė, Institute of Ecology, Lithuanian Academy of Sciences, Vilnius, Lithuania; and Jim Treasurer, Fort William, Scotland. Thanks are also due to Eileen Harris and David I. Gibson, The Natural History Museum, London, UK; Alain de Chambrier and Claude Vaucher, Natural History Museum, Geneva, Switzerland; Helmut Sattmann, Natural History Museum, Vienna, Austria; and Reinhardt Kristensen, Zoological Museum, Copenhagen, Denmark, for the loan of specimens from museum collections. The stay of T.S. and R.K. at the Institute of Aquaculture, University of Stirling, Scotland, was supported by the Access to Research Infrastructure Action of the Improving Human Potential Programme of the European Community (contract HPRI-CT-1999-00106). The authors are indebted to Christina Sommerville, head of the Laboratory of Parasitology, and Rod Wooten, Deputy Director, Institute of Aquaculture, for their support and providing necessary facilities. This study was partially supported by the Grant Agency of the Czech Republic (project No. 524/01/0314) and the Slovak Grant Agency VEGA (project No. 2/1020/21).

References

Andersen, K.I. (1979) Studies on the scolex morphology of _Eubothrium_ spp. with emphasis on characters usable in species discrimination and with brief references on the scolecids of _Bothriocephalus_ sp. and _Triaenophorus_ spp. (Cestoda; Pseudophyllidea). Zeitschrift für Parasitenkunde 60, 147–156.

Andersen, K.I. & Kennedy, C.R. (1983) Systematics of the genus _Eubothrium_ Nybelin (Cestoda Pseudophyllidea), with partial re-description of the species. Zoologica Scripta 12, 95–105.

Buchmann, K. (1987) Cestodes of migratory trout (_Salmo trutta_) from the Baltic Sea. Bulletin of the European Association of Fish Pathology 7, 115–117.

Buchmann, K., Uldal, A. & Lyholt, H.C.K. (1995) Parasite infections in Danish trout farms. Acta Veterinaria Scandinavica 36, 283–298.

Byrne, C.J., Holland, C. & Tully, O. (1999) Metazoan parasite community structure of sea trout on the west coast of Ireland. Journal of Fish Biology 55, 127–134.
Byrne, C.J., Poole, W.R., Dillane, M.G. & Whelan, K.F. (2002) The Irish sea trout enhancement programme: an assessment of the parr stocking programme into the Burrishloe catchment. *Fisheries Management and Ecology* 9, 329–341.

Campbell, A.D. (1974) The parasites of fish in Loch Leven. *Proceedings of the Royal Society of Edinburgh* (B) 74, 347–364.

Chappell, H.L., Poole, D.W. & Veltkamp, C.J. (1995) A key to the species of cestodes (tapeworms) parasitic in British and Irish freshwater fishes. *Journal of Fish Biology* 31, 517–543.

Conneely, J.J. & McCarthy, T.K. (1984) The metazoan parasites of freshwater fishes in the Corrib catchment area, Ireland. *Journal of Fish Biology* 24, 563–575.

Dogiel, V.A. & Petrushevski, G. (1935) Preliminary ecological study of parasitofauna of White Sea salmon. *Problemy Ekologii Biotsenozov*, Leningrad 1, 137–169 (in Russian).

Dorovskikh, G.N. (2000) Results of the study of fish parasites in river basins of the north-east of the European part of Russia (Cestoda). *Parazitologiya* 34, 441–456 (in Russian).

Due, T.T. & Curtis, M.A. (1995) Parasites of freshwater resident anadromous Arctic char (*Salvelinus alpinus*) in Greenland. *Journal of Fish Biology* 46, 578–592.

Engelhardt, A. & Mirle, C. (1993) On the formation of the cestode fauna of rainbow trout (*Oncorhynchus mykiss*) in a recently emerged rest water from an open-cast mine. *Applied Parasitology* 34, 33–49.

Fahy, E. (1980) *Eubothrium crassum* in migratory trout, *Salmo trutta* L., in the sea. *Journal of Fish Biology* 16, 99–104.

Froese, R. & Pauly, D. (Eds) (2001) *FishBase*. World Wide Web electronic publication. www.fishbase.org, 5 December 2001.

Gerdeaux, D., Fillon, M.A. & Van Overmeire, L. (1995) Arctic char, *Salvelinus alpinus*, of lake Annecy: yield, growth and parasitism by *Eubothrium salvelini*. *Nordic Journal of Freshwater Research* 71, 245–251.

Giovinazzo, G. (1989) Il salmerino (*Salvelinus alpinus L.*) del Lago di Tovel: osservazioni su parasitismo ed alimentazione. *Rivista di Idrobiologia* 28, 59–62.

Hanzelova, V., Scholtz, T., Gerdeaux, D. & de Chambrier, A. (1999) Endoparasitic helminths of fishes in three alpine lakes in France and Switzerland. *Revue Suisse de Zoologie* 106, 581–590.

Hanzelová, V., Scholtz, T., Gerdeaux, D. & Kuchtta, R. (2002) A comparative study of *Eubothrium crassum* (Bloch, 1779) and *E. salvelini* (Schrank, 1790) (Cestoda: Pseudophyllidea), parasites of salmonid fishes in Alpine lakes. *Environmental Biology of Fishes* 64, 245–256.

Hartvigsen, R. & Kennedy, C.R. (1993) Patterns in the compartmentation and richness of helminth communities in brown trout (*Salmo trutta*), in a group of reservoirs. *Journal of Fish Biology* 43, 603–615.

Hoffmann, R., Kennedy, C.R. & Meder, J. (1986) Effects of *Eubothrium salvelini* Schrank, 1790 on Arctic char, *Salvelinus alpinus* (L.), in an alpine lake. *Journal of Fish Diseases* 9, 153–157.

Holčík, J., Hensel, K., Nieslanik, J. & Škácel, L. (1988) *The Eurasian huchen*, Hucho hucho, largest salmon of the World. Boston, Kluwer Academic Publisher Group.

Holland, C.V. & Kennedy, C.R. (1997) A checklist of parasitic helminth and crustacean species recorded in freshwater fish from Ireland. *Biology and Environment: Proceedings of the Royal Irish Academy* 97B, 225–243.

Hristovski, N., Stojanovski, S., Kulišić, Z., Cakić, P. & Hristovski, M. (1999) Parasitofauna of the ohrid belvica (*Acantholinguina ohridana* Hadzisic, 1961) from Lake Ohrid (Macedonia). *Acta Veterinaria* (*Beograd*) 49, 35–83.

Ingham, L. & Arme, C. (1973) Intestinal helminths in rainbow trout, *Salmo gairdneri* (Richardson): absence of effect on nutrient absorption and fish growth. *Journal of Fish Biology* 5, 309–313.

Joyeux, C. & Baer, J.G. (1936) *Cestodes*. Faune de France. Vol. 30, Paris, Paul Lechevalier et Fils.

Kane, M.B. (1966) Parasites of Irish fishes. *Scientific Proceedings of the Royal Dublin Society* 18, 205–220.

Kennedy, C.R. (1974) A checklist of British and Irish freshwater fish parasites with notes on their distribution. *Journal of Fish Biology* 6, 613–644.

Kennedy, C.R. (1977) Distributional and zoogeographical characteristic of the parasite fauna of char *Salvelinus alpinus* in Arctic Norway, including Spitsbergen and Jan Mayen Islands. *Asterete* 10, 49–55.

Kennedy, C.R. (1978a) Studies on the biology of *Eubothrium salvelini* and *Eubothrium crassum* in resident and migratory *Salvelinus alpinus* and *Salmo trutta* and in *S. salar* in North Norway and the islands of Spitsbergen and Jan Mayen. *Journal of Fish Biology* 12, 147–162.

Kennedy, C.R. (1978b) The biology, specificity and habitat of the species of *Eubothrium* (Cestoda: Pseudophyllidea), with reference to their use as biological tags: a review. *Journal of Fish Biology* 12, 393–410.

Kennedy, C.R. (1996) Establishment, survival and site selection of the cestode *Eubothrium crassum* in brown trout, *Salmo trutta*. *Parasitology* 112, 347–355.

Kennedy, C.R., Hartvigsen, R. & Halvorsen, O. (1991) The importance of fish stocking in the dissemination of parasites throughout a group of reservoirs. *Journal of Fish Biology* 38, 541–552.

Knudsen, R., Kristoffersen, R. & Amundsen, P.A. (1997) Parasite communities in two sympatric morphs of Arctic char, *Salvelinus alpinus* (L.), in northern Norway. *Canadian Journal of Zoology* 75, 2003–2009.

Král’ová, I. & Snábél, V. (2000) Molecular discrimination of fish tapeworms *Eubothrium crassum* and *E. salvelini* (Cestoda: Pseudophyllidea), Abstracts from VIII European Multicolloquium of Parasitology, Poznań. *Acta Parasitologica* 45, 157.

Král’ová, I., Hanzelová, V., Scholtz, T., Gerdeaux, D. & Špakulová, M. (2001) A comparison of the internal transcribed spacer of ribosomal DNA for *Eubothrium*
crassum and Eubothrium salvelini (Cestoda: Pseudophyllidea), parasites of salmonid fish. International Journal of Parasitology 31, 93–96.

Kral’ová-Hromadová I., Scholz, T., Shinn, A.P., Cunningham, C.O., Wootten, R., Hanelzová, V. & Sommerville, C. (2003) A molecular study of Eubothrium rugosum (Batsch, 1786) (Cestoda: Pseudophyllidea) using ITSrDNA sequences, with notes on the distribution and intra-specific sequence variation of Eubothrium crassum (Bloch, 1779). Parasitology Research 89, 473–479.

Kritscher, E. (1988) Die Fische des Neusiedlersees und ihre Parasiten. VI. Cestoidea. Annalen des Naturhistorischen Museums Wien 90/B, 183–192.

Kritscher, E. (1991) Beiträge zur Kenntnis der Parasiten ihres Parasiten. VI. Cestoidea. Annalen des Naturhistorischen Museums Wien 91/B, 225–241.

Kritscher, E. (1991) Beitrag zur Kenntnis der Parasiten des Seesaibling Salaria spinulosa L. (Pisces: Salmonidae) aus dem Attersee (Österreich). Annalen des Naturhistorischen Museums Wien 92/B, 257–265.

Markowski, S. (1933) Die Eingeweidewürmer der Fische des polnischen Balticums (Trematoda, Cestoda, Nematoda, Acanthocephala). Archivum Hydrobiologice i Rybactwa 7, 1–58.

Molloy, S., Holland, C. & Poole, R. (1993) Helminth parasites of brown and sea trout Salmo trutta L. from the west coast of Ireland. Biology and Environment: Proceedings of the Royal Irish Academy 93, 137–142.

Moravec, F. (2001) Check list of the metazoan parasites of fishes of the Czech Republic and the Slovak Republic (1873–2000). Praha, Academia.

Mulcahy, M.F. & Kennedy, C.R. (1970) Eubothrium crassum (Bloch) (Cestoda: Pseudophyllidea) in salmon parr. Irish Naturalist Journal 16, 312–313.

Nybelin, O.N. (1922) Anatomiisch-systematischen Studien über Pseudophyllidien. Göteborgs Kungl. Vetenskap- och Vitterhets Samhälles Handlingar 26, 1–228.

Otto, F. & Körting, W. (1973) Sektionsbericht zu einen Endoparasitenbefall bei Regenbogenforellen. Veterinärmedizinische Nachrichten 2, 103–110.

Özel, A. & Deufel, J. (1989) Untersuchungen über fischparasitäre Würmer im Bodensee. Zeitschrift für Angewandte Zoologie 76, 27–59.

Petkevičiūtė, R. & Bondarenko, S.K. (2001) Comparative karyological studies on the species of Eubothrium Nybelin, 1922 (Cestoda: Pseudophyllidea). Systematic Parasitology 50, 127–134.

Phillips, R.B. & Oakley, T.H. (1997) Phylogenetic relationships among the Salmoninae based on nuclear and mitochondrial DNA sequences. pp. 145–159 in Kocher, T.D. & Stepnien, C.A. (Eds) Molecular systematics of fishes. San Diego, Academic Press.

Polynskii, Y.I. (1966) Parasites of the fish of the Barents Sea. Jerusalem, International Programme of Scientific Translations.

Protasova, E.N. (1977) Bothriocephalids – tapeworm helminths of fish. Essentials of Cestodology, Vol. 8 (in Russian) Moscow, Nauka.

Rokicki, J. (1975) Helminth fauna of fishes of the Gdańsk Bay (Baltic Sea). Acta Parasitologica Polonica 23, 37–84.

Rosen, F. (1918) Recherches sur le développement des cestodes. I. Le cycle évolutif des Bothriocephales. Bulletin de la Société Neuchâteloise des Sciences Naturelles 43, 241–300.

Rydlo, M. (1985) Die Bedeutung von Parasiten als Indikator für die Ernährungsweise des Wirtes am Beispiel von Seeleebe (Chalcalburnus chalcoides mento), Rusnase (Vimba vimba elongata) und Seesaibling (Salvelinus alpinus). Österreichs Fischart 38, 279–283.

Scholz, T. (1997) Life-cycle of Bothriocephalus claviceps, a specific parasite of eels. Journal of Helminthology 71, 241–252.

Scholz, T. & Hanelzová, V. (1998) Tapeworms of the genus Proteocephalus Weinalnd, 1858 (Cestoda: Proteocephalidae), parasites of fishes in Europe. Studie AV ČR, 2/98 Praha, Academia.

Scholz, T., Drábek, R. & Hanelzová, V. (1998) Scolex morphology of Proteocephalus tapeworms (Cestoda: Proteocephalidae), parasites of freshwater fish in the Palaearctic Region. Folia Parasitologica 45, 27–43.

Stojanovski, S., Kulišić, Z., Cakic, P., Hristovski, N. & Hristovski, M. (1998) Parasitofauna of the ohrid trout Salmo letnica Karaman, 1924) from Lake Ohrid (Macedonia). Acta Veterinaria (Beograd) 48, 357–366.

Snabel, V., Várády, M., Christensen, C.M., Bjorn, H., Nansen, P., Čorba, J. & Dubinsky, P. (1998) Genetic diversity in porcine Oesophagostomum dentatum and O. quadrispinulatum and their delineation by isoenzyme analysis. Parasitology Research 84, 112–116.

Vik, R. (1963) Studies of the helminth fauna of Norway. IV. Occurrence and distribution of Eubothrium crassum (Bloch, 1779) and Eubothrium salvelini (Schrank, 1790) (Cestoda) in Norway, with notes on their life cycles. Nytt Magazin di Zoologi 11, 47–73.

Wootten, R. (1972) Occurrence of Eubothrium crassum (Bloch, 1779) (Cestoda: Pseudophyllidea) in brown trout Salmo trutta L., and rainbow trout S. gairdneri Richardson, 1836, from Hanningfield Reservoir, Essex. Journal of Helminthology 46, 327–339.

Zandt, F. (1922) Fischparasiten des Bodensees. Centralblatt der Bakteriologie, Mikrobiologie und Parasitologie 192, 225–271.

(Accepted 27 February 2003) © CAB International, 2003