DYNAMICAL INVARIANTS AND BERRY’S PHASE FOR GENERALIZED DRIVEN HARMONIC OSCILLATORS

BARBARA SANBORN, SERGEI K. SUSLOV, AND LUC VINET

Abstract. We present quadratic dynamical invariant and evaluate Berry’s phase for the time-dependent Schrödinger equation with the most general variable quadratic Hamiltonian.

1. Introduction

In the previous Letter [24], the exact wave functions for generalized (driven) harmonic oscillators [2], [4], [20], [26], [29], [53], [55], [56] have been constructed in terms of Hermite polynomials by transforming the time-dependent Schrödinger equation into an autonomous form [57]. Relationships with certain Ermakov and Riccati-type systems have been investigated. A goal of this Letter is to find the corresponding dynamical invariants and to evaluate Berry’s phase [1], [2], [40], [52] for quantum systems with general variable quadratic Hamiltonians as an extension of the works [3], [12], [18], [21], [22], [26], [36], [35], [46] (see also references therein).

2. Generalized Driven Harmonic Oscillators

We consider the one-dimensional time-dependent Schrödinger equation

$$i \frac{\partial \psi}{\partial t} = H \psi,$$

(2.1)

where the variable Hamiltonian $H = Q(p, x)$ is an arbitrary quadratic of two operators $p = -i \partial / \partial x$ and x, namely,

$$i \psi_t = -a(t) \psi_{xx} + b(t) x^2 \psi - ic(t) x \psi_x - id(t) \psi - f(t) x \psi + ig(t) \psi_x$$

(2.2)

(a, b, c, d, f and g are suitable real-valued functions of time only). We shall refer to these quantum systems as the generalized (driven) harmonic oscillators. A general approach and known elementary solutions can be found in Refs. [4], [5], [6], [7], [10], [14], [15], [16], [24], [29], [30], [33], [42], [53] and [56]. In addition, a case related to Airy functions is discussed in [25] and Ref. [8] deals with another special case of transcendental solutions.

In this Letter, we shall use the following result established in [24].

Lemma 1. The substitution

$$\psi = \frac{e^{i(\alpha(t) x^2 + \beta(t) x + c(t))}}{\sqrt{\mu(t)}} \chi(\xi, \tau), \quad \xi = \beta(t) x + \varepsilon(t), \quad \tau = \gamma(t)$$

(2.3)

Date: August 26, 2011.

1991 Mathematics Subject Classification. Primary 81Q05, 35C05. Secondary 42A38.

Key words and phrases. The time-dependent Schrödinger equation, generalized harmonic oscillators, Green’s function, dynamical invariants, Berry’s phase, Ermakov-type system.
transforms the non-autonomous and inhomogeneous Schrödinger equation (2.2) into the autonomous form

\[-i\chi_t = -\chi_{xx} + c_0\xi^2\chi \quad (c_0 = 0, 1)\]

(2.4)

provided that

\[\frac{d\alpha}{dt} + b + 2c\alpha + 4a\alpha^2 = c_0a\beta^4,\]

(2.5)

\[\frac{d\beta}{dt} + (c + 4a\alpha)\beta = 0,\]

(2.6)

\[\frac{d\gamma}{dt} + a\beta^2 = 0\]

(2.7)

and

\[\frac{d\delta}{dt} + (c + 4a\alpha)\delta = f + 2g\alpha + 2c_0a\beta^3\varepsilon,\]

(2.8)

\[\frac{d\varepsilon}{dt} = (g - 2a\delta)\beta,\]

(2.9)

\[\frac{d\kappa}{dt} = g\delta - a\delta^2 + c_0a\beta^3\varepsilon^2.\]

(2.10)

Here

\[\alpha = \frac{1}{4a} \frac{\mu'}{\mu} - \frac{d}{2a}.\]

(2.11)

The substitution (2.11) reduces the inhomogeneous equation (2.5) to the second order ordinary differential equation

\[\mu'' - \tau (t) \mu' + 4\sigma (t) \mu = c_0 (2a)^2 \beta^4 \mu,\]

(2.12)

that has the familiar time-varying coefficients

\[\tau (t) = \frac{a'}{a} - 2c + 4d, \quad \sigma (t) = ab - cd + d^2 + \frac{d}{2} \left(\frac{a'}{a} - \frac{d'}{d} \right).\]

(2.13)

When \(c_0 = 0\), equation (2.5) is called the \textit{Riccati nonlinear differential equation} [50], [51] and the system (2.5)–(2.10) shall be referred to as a \textit{Riccati-type system}. (Similar terminology is used in [44], [45] for the corresponding parabolic equation.) If \(c_0 = 1\), equation (2.12) can be reduced to a generalized version of the \textit{Ermakov nonlinear differential equation} (see, for example, [6], [13], [27], [46] and references therein regarding Ermakov’s equation) and we shall refer to the corresponding system (2.5)–(2.10) with \(c_0 \neq 0\) as an \textit{Ermakov-type system}. Throughout this Letter, we use the notations from Ref. [24] where a more detailed bibliography on the quadratic systems can be found.

Using standard oscillator wave functions for equation (2.4) when \(c_0 = 1\) (for example, [17], [23] and/or [34]) results in the solution

\[\psi_n (x, t) = e^{i(\alpha x^2 + \delta x + \kappa) + i(2n+1)\gamma} \frac{e^{-(\beta x + \varepsilon)^2/2}}{\sqrt{2^n n! \mu \sqrt{\pi}}} H_n (\beta x + \varepsilon),\]

(2.14)

where \(H_n (x)\) are the Hermite polynomials [39] and the general real-valued solution of the Ermakov-type system (2.5)–(2.10) is available in Ref. [24] — Lemma 3, Eqs. (42)–(48).

The Green function of generalized harmonic oscillators has been constructed in Ref. [41]. (See also important previous works [11], [31], [53], [56], [57] and references therein for more details.)
The corresponding Cauchy initial value problem can be solved (formally) by the superposition principle:

$$\psi(x, t) = \int_{-\infty}^{\infty} G(x, y, t) \psi(y, 0) \, dy$$

(2.15)

for some suitable initial data $$\psi(x, 0) = \varphi(x)$$ (see Refs. [4], [42] and [46] for further details). The corresponding eigenfunction expansion can be written in terms of the wave functions (2.14) as follows

$$\psi(x, t) = \sum_{n=0}^{\infty} c_n \psi_n(x, t),$$

(2.16)

where the time-independent coefficients are given by

$$c_n = \frac{\int_{-\infty}^{\infty} \psi_n^*(x, t) \psi(x, 0) \, dx}{\int_{-\infty}^{\infty} |\psi_n(x, 0)|^2 \, dx}.$$

(2.17)

This expansion complements the integral form of solution (2.15).

The maximum symmetry group of the autonomous Schrödinger equation (2.4) is studied in [37] and [38] (see also [49] and references therein).

3. Dynamical Invariants for Generalized Driven Harmonic Oscillators

A concept of dynamical invariants for generalized harmonic oscillators has been recently revisited in Refs. [6] and [46] (see [9], [10], [11], [31], [32] and references therein for classical works). In this Letter, we would like to point out a simple extension of the quadratic dynamical invariant to the case of driven oscillators:

$$E(t) = \lambda(t)^2 \left[\hat{a}(t) \hat{a}^\dagger(t) + \hat{a}^\dagger(t) \hat{a}(t) \right]$$

(3.1)

$$= \frac{\lambda(t)}{2} \left[\frac{(p - 2\alpha x - \delta)^2}{\beta^2} + (\beta x + \varepsilon)^2 \right], \quad \frac{d}{dt}(E) = 0.$$

(See also [12], [18], [35] and [55].) Here, $$\lambda(t) = \exp\left(-\int_0^t (c(s) - 2d(s)) \, ds\right)$$ and the corresponding time-dependent annihilation $$\hat{a}(t)$$ and creation $$\hat{a}^\dagger(t)$$ operators are explicitly given by

$$\hat{a}(t) = \frac{1}{\sqrt{2}} \left(\beta x + \varepsilon + i \frac{p - 2\alpha x - \delta}{\beta} \right),$$

(3.2)

$$\hat{a}^\dagger(t) = \frac{1}{\sqrt{2}} \left(\beta x + \varepsilon - i \frac{p - 2\alpha x - \delta}{\beta} \right)$$

(3.3)

with $$p = i^{-1} \partial / \partial x$$ in terms of solutions of the Ermarov-type system (2.5)–(2.10). These operators satisfy the canonical commutation relation:

$$\hat{a}(t) \hat{a}^\dagger(t) - \hat{a}^\dagger(t) \hat{a}(t) = 1.$$

(3.4)
The oscillator-type spectrum of the dynamical invariant E can be obtained in a standard way by using the Heisenberg–Weyl algebra of the raising and lowering operators (a “second quantization” [28], the Fock states):

$$\hat{a} (t) \Psi_n (x,t) = \sqrt{n} \Psi_{n-1} (x,t), \quad \hat{a}^\dagger (t) \Psi_n (x,t) = \sqrt{n+1} \Psi_{n+1} (x,t), \quad (3.5)$$

$$E (t) \Psi_n (x,t) = \lambda (t) \left(n + \frac{1}{2} \right) \Psi_n (x,t). \quad (3.6)$$

The corresponding orthogonal time-dependent eigenfunctions are given by

$$\Psi_n (x,t) = e^{i \left(\frac{\alpha x^2 + \delta x + \kappa}{2} \right) - \frac{\beta x + \epsilon}{2}} H_n (\beta x + \epsilon), \quad \langle \Psi_m, \Psi_n \rangle = \delta_{mn} \lambda^{-1} \quad (3.7)$$

(provided that $\beta (0) \mu (0) = 1$, when $\beta \mu = \lambda$ [24]) in terms of Hermite polynomials [39] and

$$\psi_n (x,t) = e^{i (2n+1) \gamma (t)} \Psi_n (x,t) \quad (3.8)$$

is the relation to the wave functions (2.14) with

$$\varphi_n (t) = - (2n + 1) \gamma (t) \quad (3.9)$$

being the Lewis phase [18], [26], [28].

The dynamic invariant operator derivative identity [6], [46]:

$$\frac{dE}{dt} = \frac{\partial E}{\partial t} + i^{-1} (EH - H^\dagger E) = 0 \quad (3.10)$$

can be verified in the following fashion. Introducing new linear momentum and coordinate operators in the form

$$P = \frac{\lambda}{\beta} (p - 2\alpha x - \delta), \quad Q = \lambda (\beta x + \epsilon), \quad (3.11)$$

when $[Q, P] = i\lambda^2$ (a generalized canonical transformation), one can derive the simple differentiation rules

$$\frac{dP}{dt} = -2c_0 a \lambda^2 Q, \quad \frac{dQ}{dt} = 2a \lambda^2 P. \quad (3.12)$$

(It is worth noting that if $c_0 = 0$, the operator P becomes the linear invariant of Dodonov, Malkin, Manko and Trifonov [10], [11], [32], [55] for generalized driven harmonic oscillators.)

Then

$$E = \frac{\lambda^{-1}}{2} \left(P^2 + c_0 Q^2 \right) \quad (c_0 = 0, 1) \quad (3.13)$$

and it is useful to realise that E is just the original Hamiltonian H after the canonical transformation [26]. The required operator identity (3.10) can be formally derived with the aid of product rule (3.7) of Ref. [46] (quantum calculus):

$$2 \frac{dE}{dt} = \frac{d}{dt} \left(\lambda^{-1} P^2 \right) + c_0 \frac{d}{dt} \left(\lambda^{-1} Q^2 \right) \quad (3.14)$$

$$= \lambda^{-1} \left(\frac{dP}{dt} P + P \frac{dP}{dt} \right) + c_0 \lambda^{-1} \left(\frac{dQ}{dt} Q + Q \frac{dQ}{dt} \right)$$

and by (3.12):

$$\lambda \frac{dE}{dt} = c_0 a \lambda^2 (-QP - PQ + PQ + QP) = 0, \quad (3.15)$$

which completes the proof.
Remark 1. The kernel
\[K(x, y, t) = \frac{1}{\sqrt{\mu}} e^{i \left(\alpha x^2 + \beta xy + \gamma y^2 + \delta x + \epsilon y + \kappa \right)} \] (3.16)
is a particular solution of the Schrödinger equation (2.2) for any solution of the Riccati-type system (2.5)–(2.11) with \(c_0 = 0 \) [4]. A direct calculation shows that this kernel is an eigenfunction of the linear dynamical invariant [46].

4. Evaluation of Berry’s Phase

The holonomic effect in quantum mechanics known as Berry’s phase ([1], [2]) had received considerable attention over the years (see, for example, [3], [12], [19], [20], [21], [22], [26], [35], [36], [35], [40], [48], [52], [54] and references therein). The solution of the time-dependent Schrödinger equation (2.2) has the form (2.16) with the oscillator-type wave functions (2.14) [24]:
\[\psi_n(x, t) = e^{-i \phi_n(t)} \Psi_n(x, t) \] (4.1)
where \(\phi_n(t) \) is the Lewis (or dynamical) phase and \(\Psi_n(x, t) \) is the eigenfunction of quadratic invariant (3.6). (In the self-adjoint case, one chooses \(c = 2d \) when \(\lambda = 1 \).)

Then
\[i \int_{\mathbb{R}} \psi_n^* \frac{\partial \psi_n}{\partial t} \, dx = \lambda^{-1} \frac{d \phi_n}{dt} + i \int_{\mathbb{R}} \Psi_n^* \frac{\partial \Psi_n}{\partial t} \, dx \] (4.2)
and Berry’s phase \(\theta_n \) is given by
\[\lambda^{-1} \frac{d \theta_n}{dt} = \text{Re} \left(i \int_{\mathbb{R}} \Psi_n^* \frac{\partial \Psi_n}{\partial t} \, dx \right) = \text{Re} \left(i \left\langle \Psi_n, \frac{\partial \Psi_n}{\partial t} \right\rangle \right). \] (4.3)
Here, the eigenfunction \(\Psi_n \) is a \(\gamma \)-free part [26] of the wave function (2.14), namely
\[\Psi_n = \lambda^{-1/2} e^{i \left(\alpha x^2 + \delta x + \kappa \right)} \Phi_n(x, t), \] (4.4)
and \(\Phi_n \) is, essentially, the real-valued stationary orthonormal wave function for the simple harmonic oscillator with respect to the new variable \(\xi = \beta x + \varepsilon \) (see (3.7) and (4.5)). The integral (4.3) can be evaluated as in Refs. [22] and [26]:
\[\lambda \left\langle \Psi_n, \frac{\partial \Psi_n}{\partial t} \right\rangle = i \left\langle \Phi_n, \left(\frac{d\alpha}{dt} x^2 + \frac{d\delta}{dt} x + \frac{d\kappa}{dt} \right) \Phi_n \right\rangle + \frac{1}{2} (c - 2d) + \left\langle \Phi_n, \frac{\partial \Phi_n}{\partial t} \right\rangle \]
\[= i \frac{d\alpha}{dt} \left\langle \Phi_n, x^2 \Phi_n \right\rangle + i \frac{d\delta}{dt} \left\langle \Phi_n, x \Phi_n \right\rangle + i \frac{d\kappa}{dt} \left\langle \Phi_n, \Phi_n \right\rangle + \frac{1}{2} (c - 2d) + \left\langle \Phi_n, \frac{\partial \Phi_n}{\partial t} \right\rangle, \]
where the last term is zero due to the normalization condition
\[\int_{-\infty}^{\infty} \Phi_n^2 \, dx = 1. \] (4.5)
Moreover,
\[\left\langle \Phi_n, x^2 \Phi_n \right\rangle = \beta^{-3} \int_{-\infty}^{\infty} \left(\xi^2 + \varepsilon^2 \right) \Phi_n^2 \, d\xi = \beta^{-2} \left(\varepsilon^2 + n + \frac{1}{2} \right), \]
\[\left\langle \Phi_n, x \Phi_n \right\rangle = -\varepsilon \beta^{-2} \int_{-\infty}^{\infty} \Phi_n^2 \, d\xi = -\varepsilon \beta^{-1}. \]
with the help of
\[\beta^{-1} \int_{-\infty}^{\infty} \xi \Phi_n^2 \, d\xi = 0, \quad \beta^{-1} \int_{-\infty}^{\infty} \xi^2 \Phi_n^2 \, d\xi = n + \frac{1}{2}. \] (4.6)

As a result,
\[\frac{d\theta_n}{dt} = -\beta^{-2} \left(\varepsilon^2 + n + \frac{1}{2} \right) \frac{d\alpha}{dt} + \varepsilon \beta^{-1} \frac{d\delta}{dt} - \frac{d\kappa}{dt} \] (4.7)

and the phase \(\theta_n \) can be obtained by integrating (4.7). Our observation reveals the connection of Berry’s phase with the Ermakov-type system (2.5)–(2.11), whose general solution is found in Ref. [24].

When \(c - 2d = f = g = 0 \), one may choose \(\delta = \varepsilon = \kappa = 0 \) and our expression (4.7) simplifies to
\[\frac{d\theta_n}{dt} = -\mu^2 \left(n + \frac{1}{2} \right) \frac{d\alpha}{dt} \] (4.8)

with the help of (2.11). The function \(\mu \) is a solution of the Ermakov equation (2.12)–(2.13) with \(c_0 = 1 \) and \(\beta = \mu^{-1} \). This result is consistent with Refs. [12] and [26], where the original expression of Ref. [36] has been corrected.

5. An Alternative Derivation of Berry’s Phase

In view of (2.1) and (4.1)–(4.3), we get
\[\lambda^{-1} \left(\frac{d\theta_n}{dt} + \frac{d\varphi_n}{dt} \right) = \text{Re} \langle \psi_n, H \psi_n \rangle = \text{Re} \langle \Psi_n, H \Psi_n \rangle, \] (5.1)

because the Hamiltonian in (2.1)–(2.2) does not involve time differentiation. Here,
\[H = \alpha p^2 + bx^2 + \frac{c}{2} (px + xp) + \frac{i}{2} (c - 2d) - fx - gp \] (5.2)

and the position and linear momentum operators are given by
\[x = \frac{1}{\beta} \left[\frac{1}{\sqrt{2}} (\hat{a} + \hat{a}^\dagger) - \varepsilon \right], \] (5.3)
\[p = \frac{\beta}{i \sqrt{2}} (\hat{a} - \hat{a}^\dagger) + \frac{\sqrt{2} \alpha}{\beta} (\hat{a} + \hat{a}^\dagger) + \delta - \frac{2 \alpha \varepsilon}{\beta} \] (5.4)
in terms of the creation and annihilation operators (3.2)–(3.3). After the substitution, the Hamiltonian takes the form

\[H = \left[\frac{a}{2} \left(\frac{4 \alpha^2}{\beta^2} - \beta^2 \right) + \frac{b + 2 \alpha \varepsilon}{\beta^2} - \frac{i}{2} (c + 4 a \alpha) \right] (\hat{a})^2 + \left[\frac{a}{2} \left(\frac{4 \alpha^2}{\beta^2} - \beta^2 \right) + \frac{b + 2 \alpha \varepsilon}{\beta^2} + \frac{i}{2} (c + 4 a \alpha) \right] (\hat{a}^\dagger)^2 + \frac{1}{2} \left[a \left(\beta^2 + \frac{4 \alpha^2}{\beta^2} \right) + \frac{b + 2 \alpha \varepsilon}{\beta^2} \right] (\hat{a}^\dagger \hat{a} + \hat{a} \hat{a}^\dagger) + \frac{i}{2} (c - 2d) \] (5.5)
\[+ \sqrt{2} \left[\frac{4a\alpha + c}{2\beta} \left(\delta - \frac{2\alpha\varepsilon}{\beta} \right) - \frac{\varepsilon}{\beta^2} \left(b + c\alpha \right) - \frac{f + 2g\alpha}{2\beta} \right. \\
+ i \left(\frac{\beta}{2} (g - 2a\delta) + \frac{\varepsilon}{2} (c + 4a\alpha) \right) \right] \hat{a} \]
\[+ \sqrt{2} \left[\frac{4a\alpha + c}{2\beta} \left(\delta - \frac{2\alpha\varepsilon}{\beta} \right) - \frac{\varepsilon}{\beta^2} \left(b + c\alpha \right) - \frac{f + 2g\alpha}{2\beta} \right. \\
- i \left(\frac{\beta}{2} (g - 2a\delta) + \frac{\varepsilon}{2} (c + 4a\alpha) \right) \right] \hat{a}^\dagger \]
\[+ a \left(\delta - \frac{2\alpha\varepsilon}{\beta} \right)^2 + \left(\frac{\varepsilon}{\beta} \left(f + \frac{b\varepsilon}{\beta} \right) - \left(\delta - \frac{2\alpha\varepsilon}{\beta} \right) \left(g + \frac{c\varepsilon}{\beta} \right) \right). \]

Here,

\[J_+ = \frac{1}{2} (\hat{a}^\dagger)^2, \quad J_- = \frac{1}{2} (\hat{a})^2, \quad J_0 = \frac{1}{4} (\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a}) \] (5.6)

are the generators of a non-compact $SU(1,1)$ algebra:

\[[J_0, J_\pm] = \pm J_\pm, \quad [J_+, J_-] = -2J_0 \] (5.7)

and, therefore, a use can be made of the group properties of the corresponding discrete positive series D_\pm^1 for further investigation of Berry’s phase. (This is a ‘standard procedure’ for quadratic Hamiltonians — more details can be found in Refs. [3], [19], [29], [31], [33], [39], [41], [48] and/or elsewhere.) Together, the linears and bilinears in \hat{a} and \hat{a}^\dagger realize the semi-direct sum of the $SU(1,1)$ and the Heisenberg algebra (3.4) (see Ref. [49] for more details).

Thus

\[\lambda \text{Re} \langle \Psi_n, H\Psi_n \rangle = \left(n + \frac{1}{2} \right) \left[a \left(\beta^2 + \frac{4\alpha^2}{\beta^2} \right) + \frac{b + 2c\alpha}{\beta^2} \right] \]
\[+ a \left(\delta - \frac{2\alpha\varepsilon}{\beta} \right)^2 + \left(\frac{\varepsilon}{\beta} \left(f + \frac{b\varepsilon}{\beta} \right) - \left(\delta - \frac{2\alpha\varepsilon}{\beta} \right) \left(g + \frac{c\varepsilon}{\beta} \right) \right) \] (5.8)

by (3.5)–(3.6).

Finally, from (3.9) and (5.1) we arrive at a different formula for Berry’s phase

\[\frac{d\theta_n}{dt} = \left(n + \frac{1}{2} \right) \left[a \left(\frac{4\alpha^2}{\beta^2} - \beta^2 \right) + \frac{b + 2c\alpha}{\beta^2} \right] \]
\[+ a \left(\delta - \frac{2\alpha\varepsilon}{\beta} \right)^2 + \left(\frac{\varepsilon}{\beta} \left(f + \frac{b\varepsilon}{\beta} \right) - \left(\delta - \frac{2\alpha\varepsilon}{\beta} \right) \left(g + \frac{c\varepsilon}{\beta} \right) \right), \] (5.9)

which is consistent with the previous expression (4.7) for any solution of the Ermakov-type system (2.5)–(2.10) ($c_0 = 1$).

Acknowledgments. We thank Carlos Castillo-Chávez and Vladimir I. Man’ko for valuable discussions and encouragement. One of us (SKS) is grateful to the organizers of the 12th ICSSUR (Foz do Iguaçu, Brazil, May 02–06, 2011) for their hospitality.
References

[1] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London, A392 (1984) # 1802, 45–57.
[2] M. V. Berry, Classical adiabatic angles and quantum adiabatic phase, J. Phys. A: Math. Gen. 18 (1985) # 1, 15–27.
[3] J. M. Cerveró and J. D. Lejarreta, SO (2,1)-invariant systems and the Berry phase, J. Phys. A: Math. Gen. 22 (1989), L663–L666.
[4] R. Cordero-Soto, R. M. Lopez, E. Suazo and S. K. Suslov, Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields, Lett. Math. Phys. 84 (2008) #2–3, 159–178.
[5] R. Cordero-Soto, E. Suazo and S. K. Suslov, Models of damped oscillators in quantum mechanics, Journal of Physical Mathematics, 1 (2009), S090603 (16 pages).
[6] R. Cordero-Soto, E. Suazo and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians, Ann. Phys. 325 (2010) #9, 1884–1912.
[7] R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators, Theoretical and Mathematical Physics 162 (2010) #3, 286–316; see also arXiv:0808.3149v9 [math-ph] 8 Mar 2009.
[8] R. Cordero-Soto and S. K. Suslov, The degenerate parametric oscillator and Ince’s equation, J. Phys. A: Math. Theor. 44 (2011) #1, 015101 (9 pages); see also arXiv:1006.3362v3 [math-ph] 2 Jul 2010.
[9] V. V. Dodonov, Universal integrals of motion and universal invariants of quantum systems, J. Phys. A: Math. Gen. 33 (2000), 7721–7738.
[10] V. V. Dodonov, I. A. Malkin and V. I. Man’ko, Integrals of motion, Green functions, and coherent states of dynamical systems, Int. J. Theor. Phys. 14 (1975) # 1, 37–54.
[11] V. V. Dodonov and V. I. Man’ko, Invariants and correlated states of nonstationary quantum systems, in: Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of Lebedev Physics Institute, vol. 183, pp. 71-181, Nauka, Moscow, 1987 [in Russian]; English translation published by Nova Science, Commack, New York, 1989, pp. 103-261.
[12] M. H. Engineer and G. Ghosh, Berry’s phase as the asymptotic limit of an exact evolution: an example, J. Phys. A: Math. Gen. 21 (1988), L95–L98.
[13] V. P. Ermanakov, Second-order differential equations. Conditions of complete integrability, Universita Izvestia Kiev, Series III 9 (1880), 1–25; see also Appl. Anal. Discrete Math. 2 (2008) #2, 123–145 for English translation of Ermanakov’s original paper.
[14] R. P. Feynman, The Principle of Least Action in Quantum Mechanics, Ph. D. thesis, Princeton University, 1942; reprinted in: “Feynman’s Thesis – A New Approach to Quantum Theory”, (L. M. Brown, Editor), World Scientific Publishers, Singapore, 2005, pp. 1–69.
[15] R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20 (1948) # 2, 367–387; reprinted in: “Feynman’s Thesis – A New Approach to Quantum Theory”, (L. M. Brown, Editor), World Scientific Publishers, Singapore, 2005, pp. 71–112.
[16] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw–Hill, New York, 1965.
[17] S. Flügge, Practical Quantum Mechanics, Springer–Verlag, Berlin, 1999.
[18] X-Ch. Gao, J-B. Xu and T-Zh. Qian, The exact solution for the generalized time-dependent harmonic oscillator and its adiabatic limit, Ann. Phys. 204 (1990), 235–243.
[19] C. C. Gerry, Berry’s phase in the degenerate parametric amplifier, Phys. Rev. A 39 (1989) #6, 3204–3207.
[20] J. H. Hannay, Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian, J. Phys. A: Math. Gen 18 (1985) # 2, 221–230.
[21] D. H. Kobe, Invariance of the generalized Berry phase under unitary transformations: application to the time-dependent generalized harmonic oscillator, J. Phys. A: Math. Gen. 23 (1990), 4249–4268.
[22] D. H. Kobe, Generalized Berry phase for the most general time-dependent damped harmonic oscillator, J. Phys. A: Math. Gen. 24 (1991), 2763–2773.
[23] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Pergamon Press, Oxford, 1977.
[24] N. Lanfear, R. M. Lopez and S. K. Suslov, Exact wave functions for generalized harmonic oscillators, to appear in the Proceedings of 12th ICSSUR, Journal of Russian Laser Research; see also arXiv:11002.5119v2 [math-ph] 20 Jul 2011.
[25] N. Lanfear and S. K. Suslov, The time-dependent Schrödinger equation, Riccati equation and Airy functions, arXiv:0903.3608v5 [math-ph] 22 Apr 2009.
[26] P. G. L. Leach, *Berry’s phase and wave functions for time-dependent Hamiltonian systems*, J. Phys. A: Math. Gen 23 (1990), 2695–2699.

[27] P. G. L. Leach and K. Andriopoulos, *The Ermakov equation: a commentary*, Appl. Anal. Discrete Math. 2 (2008) #2, 146–157.

[28] H. R. Lewis, Jr., and W. B. Riesenfeld, *An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field*, J. Math. Phys. 10 (1969) #8, 1458–1473.

[29] C. F. Lo, *Coherent-state propagator of the generalized time-dependent parametric oscillator*, Europhys. Lett. 24 (1993) #5, 319–323.

[30] R. M. Lopez and S. K. Suslov, *The Cauchy problem for a forced harmonic oscillator*, Revista Mexicana de Física, 55 (2009) #2, 195–215; see also arXiv:0707.1902v8 [math-ph] 27 Dec 2007.

[31] I. A. Malkin and V. I. Man’ko, *Dynamical Symmetries and Coherent States of Quantum System*, Nauka, Moscow, 1979 [in Russian].

[32] I. A. Malkin, V. I. Man’ko and D. A. Trifonov, *Linear adiabatic invariants and coherent states*, J. Math. Phys. 14 (1973) #5, 576–582.

[33] M. Meiler, R. Cordero-Soto and S. K. Suslov, *Solution of the Cauchy problem for a time-dependent Schrödinger equation*, J. Math. Phys. 49 (2008) #7, 072102: 1–27; see also arXiv: 0711.0559v4 [math-ph] 5 Dec 2007.

[34] E. Merzbacher, *Quantum Mechanics*, third edition, John Wiley & Sons, New York, 1998.

[35] D. B. Monteoliva, H. J. Korsch and J. A. Núñez, *On geometric phases and dynamical invariants*, J. Phys. A: Math. Gen. 27 (1994), 6897–6906.

[36] D. A. Morales, *Correspondence between Berry’s and Lewis’s phase for quadratic Hamiltonians*, J. Phys. A: Math. Gen. 21 (1988), L889–L892.

[37] U. Niederer, *The maximal kinematical invariance group of the free Schrödinger equations*, Helv. Phys. Acta 45 (1972), 802–810.

[38] U. Niederer, *The maximal kinematical invariance group of the harmonic oscillator*, Helv. Phys. Acta 46 (1973), 191–200.

[39] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, *Classical Orthogonal Polynomials of a Discrete Variable*, Springer–Verlag, Berlin, New York, 1991.

[40] B. Simon, *Holonomy, the quantum adiabatic theorem, and Berry’s phase*, Phys. Rev. Lett. 51 (1983) #24, 2167–2170.

[41] Yu. F. Smirnov and K. V. Shitikova, *The method of K harmonics and the shell model*, Soviet Journal of Particles & Nuclei 8 (1977) #4, 344–370.

[42] E. Suazo and S. K. Suslov, *Cauchy problem for Schrödinger equation with variable quadratic Hamiltonians*, under preparation.

[43] E. Suazo and S. K. Suslov, *Soliton-like solutions for nonlinear Schrödinger equation with variable quadratic Hamiltonians*, arXiv:1010.2504v4 [math-ph] 24 Nov 2010.

[44] E. Suazo, S. K. Suslov and J. M. Vega-Guzmán, *The Riccati equation and a diffusion-type equation*, New York J. Math. 17a (2011), 225–244.

[45] E. Suazo, S. K. Suslov and J. M. Vega-Guzmán, *The Riccati system and a diffusion-type equation*, arXiv:1102.4630v1 [math-ph] 22 Feb 2011.

[46] S. K. Suslov, *Dynamical invariants for variable quadratic Hamiltonians*, Physica Scripta 81 (2010) #5, 055006 (11 pp); see also arXiv:1002.0114v6 [math-ph] 11 Mar 2010.

[47] S. K. Suslov, *On integrability of nonautonomous nonlinear Schrödinger equations*, to appear in Proc. Amer. Math. Soc.; see also arXiv:1012.3661v3 [math-ph] 16 Apr 2011.

[48] L. Vinet, *Invariant Berry connections*, Phys. Rev. D 37 (1988) #8, 2369–2372.

[49] L. Vinet and A. Zhedanov, *Representations of the Schrödinger group and matrix orthogonal polynomials*, J. Phys. A: Math. Theor. 44 (2011) #35, 355201 (28 pages)

[50] G. N. Watson, *A Treatise on the Theory of Bessel Functions*, Second Edition, Cambridge University Press, Cambridge, 1944.

[51] E. T. Whittaker and G. N. Watson, *A Course of Modern Analysis*, Fourth Edition, Cambridge University Press, Cambridge, 1927.

[52] F. Wilczek and A. Zee, *Appearance of gauge structure in simple dynamical systems*, Phys. Rev. Lett. 52 (1984) #24, 2111–2114.

[53] K. B. Wolf, *On time-dependent quadratic Hamiltonians*, SIAM J. Appl. Math. 40 (1981) #3, 419–431.
[54] D. Xiao, M-Ch. Chang and Q. Niu, *Berry phase effects on electronic properties*, Rev. Mod. Phys. 82 (2010) #July–September, 1959–2007.

[55] J-B. Xu and X-Ch. Gao, *Squeezed states and squeezed-coherent states of the generalized time-dependent harmonic oscillator*, Physica Scripta 54 (1996), 137–139.

[56] K-H. Yeon, K-K. Lee, Ch-I. Um, T. F. George and L. N. Pandey, *Exact quantum theory of a time-dependent bound Hamiltonian systems*, Phys. Rev. A 48 (1993) #4, 2716–2720.

[57] A. V. Zhukov, *Exact quantum theory of a time-dependent system with quadratic hamiltonian*, Phys. Lett. A 256 (1999) #5–6, 325–328.

Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063, U.S.A.

E-mail address: barbara.sanborn@wwu.edu

School of Mathematical and Statistical Sciences & Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287–1804, U.S.A.

E-mail address: sks@asu.edu

URL: http://hahn.la.asu.edu/~suslov/index.html

Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Centre-ville Station, P.O. Box 6128, Canada H3C 3J7.

E-mail address: luc.vinet@umontreal.ca