FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR A CLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS

A.A. AMOURAH

ABSTRACT. In the present paper, we were mainly concerned with obtaining estimates for the general Taylor-Maclaurin coefficients for functions in a certain general subclass of analytic bi-univalent functions. For this purpose, we used the Faber polynomial expansions. Several connections to some of the earlier known results are also pointed out.

1. Introduction

Let \(A \) denote the class of all analytic functions \(f \) defined in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \) and normalized by the conditions \(f(0) = 0 \) and \(f'(0) = 1 \). Thus each \(f \in A \) has a Taylor-Maclaurin series expansion of the form:

\[
 f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (z \in U).
\]

(1.1)

Further, let \(S \) denote the class of all functions \(f \in A \) which are univalent in \(U \) (for details, see [9]; see also some of the recent investigations [3, 4, 5, 21, 23]).

Two of the important and well-investigated subclasses of the analytic and univalent function class \(S \) are the class \(S^*(\alpha) \) of starlike functions of order \(\alpha \) in \(U \) and the class \(K(\alpha) \) of convex functions of order \(\alpha \) in \(U \). By definition, we have

\[
 S^*(\alpha) := \left\{ f : f \in S \text{ and } \Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha, \quad (z \in U; 0 \leq \alpha < 1) \right\}, \quad (1.2)
\]

and

\[
 K(\alpha) := \left\{ f : f \in S \text{ and } \Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \alpha, \quad (z \in U; 0 \leq \alpha < 1) \right\}. \quad (1.3)
\]

It is clear from the definitions (1.2) and (1.3) that \(K(\alpha) \subset S^*(\alpha) \). Also we have

\[
 f(z) \in K(\alpha) \iff zf'(z) \in S^*(\alpha),
\]

and

\[
 f(z) \in S^*(\alpha) \iff \int_{0}^{z} \frac{f(t)}{t} dt = F(z) \in K(\alpha).
\]

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. Faber polynomials, bi-univalent functions, analytic functions, upper bound.
It is well-known that, if \(f(z) \) is an univalent analytic function from a domain \(D_1 \) onto a domain \(D_2 \), then the inverse function \(g(z) \) defined by

\[
g(f(z)) = z, \quad (z \in D_1),
\]
is an analytic and univalent mapping from \(D_2 \) to \(D_1 \). Moreover, by the familiar Koebe one-quarter theorem (for details, see \([9]\)) we know that the image of \(U \) under every function \(f \in S \) contains a disk of radius \(\frac{1}{4} \).

According to this, every function \(f \in S \) has an inverse map \(f^{-1} \) that satisfies the following conditions:

\[
f^{-1}(f(z)) = z, \quad (z \in U),
\]
and

\[
f(f^{-1}(w)) = w, \quad (|w| < r_0(f); r_0(f) \geq \frac{1}{4}).
\]

In fact, the inverse function is given by

\[
f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots. \tag{1.4}
\]

A function \(f \in A \) is said to be bi-univalent in \(U \) if both \(f(z) \) and \(f^{-1}(z) \) are univalent in \(U \). Let \(\Sigma \) denote the class of bi-univalent functions in \(U \) given by (1.1). Examples of functions in the class \(\Sigma \) are

\[
z - z, -\log(1 - z), \frac{1}{2} \log\left(\frac{1 + z}{1 - z}\right), \cdots.
\]

It is worth noting that the familiar Koebe function is not a member of \(\Sigma \), since it maps the unit disk \(U \) univalently onto the entire complex plane except the part of the negative real axis from \(-1/4\) to \(-\infty\). Thus, clearly, the image of the domain does not contain the unit disk \(U \). For a brief history and some intriguing examples of functions and characterization of the class \(\Sigma \), see Srivastava et al. \([19]\), Frasin and Aouf \([11]\), and Yousef et al. \([24]\).

In 1967, Lewin \([17]\) investigated the bi-univalent function class \(\Sigma \) and showed that \(|a_2| < 1.51 \). Subsequently, Brannan and Clunie \([6]\) conjectured that \(|a_2| \leq \sqrt{2} \). On the other hand, Netanyahu \([18]\) showed that \(\max_{f \in \Sigma} |a_2| = \frac{1}{3} \). The best known estimate for functions in \(\Sigma \) has been obtained in 1984 by Tan \([20]\), that is, \(|a_2| < 1.485 \). The coefficient estimate problem for each of the following Taylor-Maclaurin coefficients \(|a_n| \) \((n \in \mathbb{N} \setminus \{1, 2\})\) for each \(f \in \Sigma \) given by (1.1) is presumably still an open problem.

In this paper, we use the Faber polynomial expansions for a general subclass of analytic bi-univalent functions to determine estimates for the general coefficient bounds \(|a_n| \).

The Faber polynomials introduced by Faber \([10]\) play an important role in various areas of mathematical sciences, especially in geometric function theory. The recent publications \([12]\) and \([13]\) applying the Faber polynomial expansions to meromorphic bi-univalent functions motivated us to apply this technique to classes of analytic bi-univalent functions. In the literature, there are only a few works determining the general coefficient bounds \(|a_n| \) for the analytic bi-univalent functions given by (1.1) using Faber polynomial expansions (see for example, \([14]\) \([15]\) \([16]\)). Hamidi and Jahangiri \([14]\) considered the class of analytic bi-close-to-convex functions. Jahangiri and Hamidi \([16]\) considered the class defined by
Frasin and Aouf [11], and Jahangiri et al. [15] considered the class of analytic bi-univalent functions with positive real-part derivatives.

2. The class $B_{\Sigma}^{\mu}(\alpha, \lambda, \delta)$

Firstly, we consider a comprehensive class of analytic bi-univalent functions introduced and studied by Yousef et al. [25] defined as follows:

Definition 2.1. (See [25]) For $\lambda \geq 1$, $\mu \geq 0$, $\delta \geq 0$ and $0 \leq \alpha < 1$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $B_{\Sigma}^{\mu}(\alpha, \lambda, \delta)$ if the following conditions hold for all $z, w \in \mathbb{U}$:

\[
\text{Re} \left((1 - \lambda) \left(\frac{f(z)}{z} \right)^\mu + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu-1} + \xi \delta z f''(z) \right) > \alpha \tag{2.1}
\]

and

\[
\text{Re} \left((1 - \lambda) \left(\frac{g(w)}{w} \right)^\mu + \lambda g'(w) \left(\frac{g(w)}{w} \right)^{\mu-1} + \xi \delta w g''(w) \right) > \alpha, \tag{2.2}
\]

where the function $g(w) = f^{-1}(w)$ is defined by (1.4) and $\xi = \frac{2\lambda + \mu}{2\lambda + 1}$.

Remark 2.2. In the following special cases of Definition 2.1 we show how the class of analytic bi-univalent functions $B_{\Sigma}^{\mu}(\alpha, \lambda, \delta)$ for suitable choices of λ, μ and δ lead to certain new as well as known classes of analytic bi-univalent functions studied earlier in the literature.

(i) For $\delta = 0$, we obtain the bi-univalent function class $B_{\Sigma}^{\mu}(\alpha, \lambda, 0) := B_{\Sigma}^{\mu}(\alpha, \lambda)$ introduced by Çağlar et al. [8].

(ii) For $\delta = 0$ and $\mu = 1$, we obtain the bi-univalent function class $B_{\Sigma}^{1}(\alpha, \lambda, 0) := B_{\Sigma}(\alpha, \lambda)$ introduced by Frasin and Aouf [11].

(iii) For $\delta = 0$, $\mu = 1$, and $\lambda = 1$, we obtain the bi-univalent function class $B_{\Sigma}^{1}(\alpha, 1, 0) := B_{\Sigma}(\alpha)$ introduced by Srivastava et al. [19].

(iv) For $\delta = 0$, $\mu = 0$, and $\lambda = 1$, we obtain the well-known class $B_{\Sigma}^{0}(\alpha, 1, 0) := S_{\Sigma}(\alpha)$ of bi-starlike functions of order α.

(iv) For $\mu = 1$, we obtain the well-known class $B_{\Sigma}^{1}(\alpha, \lambda, \delta) := B_{\Sigma}(\alpha, \lambda, \delta)$ of bi-univalent functions.
3. COEFFICIENT ESTIMATES

Using the Faber polynomial expansion of functions \(f \in A \) of the form \([1,1]\), the coefficients of its inverse map \(g = f^{-1} \) may be expressed as in \([1]\):

\[
g(w) = f^{-1}(w) = w + \sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}(a_2, a_3, \ldots) w^n,
\]

where

\[
K_{n-1} = \frac{(-n)!}{(-2n+1)!(n-1)!} a_2^{n-1} + \frac{(-n)!}{(2(-n+1))(n-3)!} a_2^{n-3} a_3 + \frac{(-n)!}{(-2n+3)(n-4)!} a_2^{n-4} a_4 \\
+ \frac{(-n)!}{(2(-n+2))(n-5)!} a_2^{n-5} [a_5 + (-n+2) a_3^2] + \frac{(-n)!}{(-2n+5)(n-6)!} a_2^{n-6}
\]

\[
[a_6 + (-2n+5) a_3 a_4] + \sum_{j \geq 7} a_2^{n-j} V_j,
\]

such that \(V_j \) with \(7 \leq j \leq n \) is a homogeneous polynomial in the variables \(a_2, a_3, \ldots, a_n \) \([2]\).

In particular, the first three terms of \(K_{n-1}^{-1} \) are

\[
K_1^{-2} = -2a_2, \quad K_2^{-3} = 3 (2a_2^2 - a_3), \quad K_3^{-4} = -4 (5a_2^3 - 5a_2 a_3 + a_4).
\]

In general, for any \(p \in \mathbb{N} := \{1, 2, 3, \ldots\} \), an expansion of \(K_n^p \) is as in \([1]\),

\[
K_n^p = p a_n + \frac{p(p-1)}{2} D_2 + \frac{p!}{(p-3)!} D_3 + \cdots + \frac{p!}{(p-n)!} D_n,
\]

where \(D_n^p = D_n^p(a_2, a_3, \ldots) \), and by \([22]\), \(D_n^m(a_1, a_2, \ldots, a_n) = \sum_{i_1 \ldots i_n} a_1^{i_1} \cdots a_n^{i_n} \) while \(a_1 = 1 \), and the sum is taken over all non-negative integers \(i_1, \ldots, i_n \) satisfying \(i_1 + i_2 + \cdots + i_n = m \), \(i_1 + 2i_2 + \cdots + ni_n = n \), it is clear that \(D_n^m(a_1, a_2, \ldots, a_n) = a_1^m \).

Consequently, for functions \(f \in \mathcal{B}_\Sigma^\mu(\alpha, \lambda, \delta) \) of the form \([1,1]\), we can write:

\[
(1 - \lambda) \left(\frac{f(z)}{z} \right)^\mu + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu-1} + \xi \delta z f''(z) = 1 + \sum_{n=2}^{\infty} F_{n-1} (a_2, a_3, \ldots, a_n) z^{n-1},
\]

where

\[
F_1 = (\mu + \lambda + 2\xi\delta) a_2, \quad F_2 = (\mu + 2\lambda + 6\xi\delta) \left[\frac{\mu-1}{2} a_2^2 + \left(1 + \frac{6\delta}{2\lambda+1} \right) \right] a_3.
\]

In general,

\[
F_{n-1} (a_2, a_3, \ldots, a_n) = [\mu + (n-1) \lambda + n(n-1) \xi \delta] \times [(\mu - 1)!] \times \left[\sum_{\substack{i_1 \cdots i_n \geq 2 \atop i_1 \geq 1}} \frac{a_1^{i_1} a_2^{i_2} \cdots a_n^{i_n}}{i_1! i_2! \cdots i_n! [\mu - (i_1 + i_2 + \cdots + i_n-1)]!} \right]
\]

is a Faber polynomial of degree \((n-1)\).

Our first theorem introduces an upper bound for the coefficients \(|a_n|\) of analytic bi-univalent functions in the class \(\mathcal{B}_\Sigma^\mu(\alpha, \lambda, \delta) \).
Theorem 3.1. For $\lambda \geq 1$, $\mu \geq 0$, $\delta \geq 0$ and $0 \leq \alpha < 1$, let the function $f \in \mathcal{B}_{\Sigma}^{\mu}(\alpha, \lambda, \delta)$ be given by (1.1). If $a_k = 0$ ($2 \leq k \leq n - 1$), then

$$|a_n| \leq \frac{2 (1 - \alpha)}{\mu + (n - 1) \lambda + n (n - 1) \xi \delta} \quad (n \geq 4).$$

Proof. For the function $f \in \mathcal{B}_{\Sigma}^{\mu}(\alpha, \lambda, \delta)$ of the form (1.1), we have the expansion (3.5) and for the inverse map $g = f^{-1}$, we obtain

$$(1 - \lambda) \left(\frac{g(w)}{w} \right)^{\mu} + \lambda g'(w) \left(\frac{g(w)}{w} \right)^{\mu - 1} + \xi \delta wg''(w) = 1 + \sum_{n=2}^{\infty} F_{n-1} (A_2, A_3, \ldots, A_n) w^{n-1}, \quad (3.7)$$

with

$$A_n = \frac{1}{n} K_{n-1}^{-\mu} (a_2, a_3, \ldots). \quad (3.8)$$

On the other hand, since $f \in \mathcal{B}_{\Sigma}^{\mu}(\alpha, \lambda, \delta)$ and $g = f^{-1} \in \mathcal{B}_{\Sigma}^{\mu}(\alpha, \lambda, \delta)$, by definition, there exist two positive real-part functions $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \in \mathcal{A}$ and $q(w) = 1 + \sum_{n=1}^{\infty} d_n w^n \in \mathcal{A}$, where Re $[p(z)] > 0$ and Re $[q(w)] > 0$ in \mathbb{U} so that

$$(1 - \lambda) \left(\frac{f(z)}{z} \right)^{\mu} + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu - 1} + \xi \delta z f''(z) = \alpha + (1 - \alpha) p(z) = 1 + (1 - \alpha) \sum_{n=1}^{\infty} K_n^1 (c_1, c_2, \ldots, c_n) z^n \quad (3.9)$$

and

$$(1 - \lambda) \left(\frac{g(w)}{w} \right)^{\mu} + \lambda g'(w) \left(\frac{g(w)}{w} \right)^{\mu - 1} + \xi \delta wg''(w) = \alpha + (1 - \alpha) q(w) = 1 + (1 - \alpha) \sum_{n=1}^{\infty} K_n^1 (d_1, d_2, \ldots, d_n) w^n \quad (3.10)$$

Note that, by the Caratheodory lemma (e.g., [9]), $|c_n| \leq 2$ and $|d_n| \leq 2$ ($n \in \mathbb{N}$). Comparing the corresponding coefficients of (3.5) and (3.9), for any $n \geq 2$, yields

$$F_{n-1} (a_2, a_3, \ldots, a_n) = (1 - \alpha) \sum_{n=1}^{\infty} K_n^1 (c_1, c_2, \ldots, c_{n-1}), \quad (3.11)$$

and similarly, from (3.7) and (3.10) we find

$$F_{n-1} (A_2, A_3, \ldots, A_n) = (1 - \alpha) \sum_{n=1}^{\infty} K_n^1 (d_1, d_2, \ldots, d_{n-1}). \quad (3.12)$$

Note that for $a_k = 0$ ($2 \leq k \leq n - 1$), we have

$$A_n = - a_n$$

and so $[\mu + (n - 1) \lambda] a_n = (1 - \alpha) c_{n-1}$ and $- [\mu + (n - 1) \lambda] a_n = (1 - \alpha) d_{n-1}$.
Taking the absolute values of the above equalities, we obtain
\[
|a_n| = \frac{(1-\alpha)|c_{n-1}|}{\mu + (n-1)\lambda + n(n-1)\xi\delta}
\]
\[
= \frac{(1-\alpha)|d_{n-1}|}{\mu + (n-1)\lambda + n(n-1)\xi\delta} \leq \frac{2(1-\alpha)}{\mu + (n-1)\lambda + n(n-1)\xi\delta},
\]
which completes the proof of (3.1).

The following corollary is an immediate consequence of the above theorem.

Corollary 3.2. For \(\lambda \geq 1, \delta \geq 0\) and \(0 \leq \alpha < 1\), let the function \(f \in \mathcal{B}_\Sigma(\alpha, \lambda, \delta)\) be given by (1.1). If \(a_k = 0\) \((2 \leq k \leq n-1)\), then
\[
|a_n| \leq \frac{2(1-\alpha)}{1 + (n-1)\lambda + n(n-1)\xi\delta} \quad (n \geq 4).
\]

Theorem 3.3. For \(\lambda \geq 1, \mu \geq 0\), \(\delta \geq 0\) and \(0 \leq \alpha < 1\), let the function \(f \in \mathcal{B}^\mu(\alpha, \lambda, \delta)\) be given by (1.1). Then one has the following
\[
|a_2| \leq \left\{ \begin{array}{ll}
\sqrt{\frac{4(1-\alpha)}{2(1-\alpha)}} & \text{if } 0 \leq \alpha \leq \frac{\mu + 2\lambda - \lambda^2}{(\mu + 2\lambda + 6\xi\delta)(\mu + 1)}, \\
\mu + 2\lambda + 2\xi\delta & \text{if } \frac{\mu + 2\lambda - \lambda^2}{(\mu + 2\lambda + 6\xi\delta)(\mu + 1)} \leq \alpha < 1.
\end{array} \right.
\]

(3.13)
\[
|a_3| \leq \left\{ \begin{array}{ll}
\min \left\{ \frac{4(1-\alpha)^2}{(\mu + \lambda + 2\xi\delta)^2} + \frac{2(1-\alpha)}{\mu + 2\lambda + 6\xi\delta}, \frac{4(1-\alpha)}{(\mu + 2\lambda + 6\xi\delta)(\mu + 1)} \right\} & \text{if } 0 \leq \mu < 1, \\
\mu + 3 & \text{if } \mu \geq 1
\end{array} \right.
\]

(3.14)
and
\[
\left|a_3 - \frac{\mu + 3}{2}a_2^2\right| \leq \frac{2(1-\alpha)}{\mu + 2\lambda + 6\xi\delta}.
\]

Proof. If we set \(n = 2\) and \(n = 3\) in (3.11) and (3.12), respectively, we get
\[
(\mu + \lambda + 2\xi\delta) a_2 = (1-\alpha) c_1,
\]

(3.15)
\[
(\mu + 2\lambda + 6\xi\delta) \left[\left(\frac{\mu - 1}{2}\right) a_2^2 + \left(1 + \frac{6\delta}{2\lambda + 1}\right) a_3 \right] = (1-\alpha) c_2,
\]

(3.16)
\[
- (\mu + \lambda) a_2 = (1-\alpha) d_1,
\]

(3.17)
\[
(\mu + 2\lambda + 6\xi\delta) \left[\frac{\mu + 3}{2} a_2^2 - \left(1 + \frac{6\delta}{2\lambda + 1}\right) a_3 \right] = (1-\alpha) d_2.
\]

(3.18)
From (3.15) and (3.17), we find (by the Carathéodory lemma)
\[
|a_2| = \frac{(1-\alpha)|c_1|}{\mu + \lambda + 2\xi\delta} = \frac{(1-\alpha)|d_1|}{\mu + \lambda + 2\xi\delta} \leq \frac{2(1-\alpha)}{\mu + \lambda + 2\xi\delta}.
\]

(3.19)
Also from (3.16) and (3.18), we obtain
\[
(\mu + 2\lambda + 6\xi\delta) (\mu + 1) a_2^2 = (1-\alpha) (c_2 + d_2).
\]

(3.20)
Using the Carathéodory lemma, we get \(|a_2| \leq \sqrt{\frac{4(1-\alpha)}{(\mu + 2\lambda + 6\xi\delta)(\mu + 1)}}\), and combining this with inequality (3.19), we obtain the desired estimate on the coefficient \(|a_2|\) as asserted in (3.13).

Next, in order to find the bound on the coefficient \(|a_3|\), we subtract (3.18) from (3.16).
We thus get
\[
(\mu + 2\lambda + 6\xi\delta) \left(-2a_2^2 + 2 \left(1 + \frac{6\delta}{2\lambda + 1} \right) a_3 \right) = (1 - \alpha) (c_2 - d_2).
\]
or
\[
a_3 = a_2^2 + \frac{(1 - \alpha) (c_2 - d_2)}{2 (\mu + 2\lambda + 6\xi\delta)}.
\] (3.21)

Upon substituting the value of \(a_2^2\) from (3.15) into (3.21), it follows that
\[
a_3 = \frac{(1 - \alpha)^2 c_1^2}{(\mu + \lambda + 2\xi\delta)^2} + \frac{(1 - \alpha) (c_2 - d_2)}{2 (\mu + 2\lambda + 6\xi\delta)}.
\]

We thus find (by the Caratheodory lemma) that
\[
|a_3| \leq \frac{4 (1 - \alpha)^2}{(\mu + \lambda + 2\xi\delta)^2} + \frac{2 (1 - \alpha)}{\mu + 2\lambda + 6\xi\delta}.
\] (3.22)

On the other hand, upon substituting the value of \(a_2^2\) from (3.20) into (3.21), it follows that
\[
a_3 = \frac{(1 - \alpha)}{2 (\mu + 2\lambda + 6\xi\delta) (\mu + 1)} [(\mu + 3) c_2 + (1 - \mu) d_2].
\]

Consequently (by the Caratheodory lemma), we have
\[
|a_3| \leq \frac{1 - \alpha}{(\mu + 2\lambda + 6\xi\delta)(\mu + 1)} [(\mu + 3) + |1 - \mu|].
\] (3.23)

Combining (3.22) and (3.23), we get the desired estimate on the coefficient \(|a_3|\) as asserted in (3.14). Finally, from (3.18), we deduce (by the Caratheodory lemma) that
\[
\left| a_3 - \frac{\mu + 3}{2} a_2 \right| = \frac{(1 - \alpha) |d_2|}{\mu + 2\lambda + 6\xi\delta} \leq \frac{2 (1 - \alpha)}{\mu + 2\lambda + 6\xi\delta}.
\]

This evidently completes the proof of 3.3. \(\Box\)

By setting \(\mu = 1\) in 3.3, we obtain the following consequence.

Corollary 3.4. For \(\lambda \geq 1, \delta \geq 0\) and \(0 \leq \alpha < 1\), let the function \(f \in \mathfrak{B}_\Sigma(\alpha, \lambda, \delta)\) be given by (1.1). Then one has the following
\[
|a_2| \leq \left\{ \begin{array}{ll}
\sqrt{\frac{2(1 - \alpha)}{(1 + 2\lambda + 6\xi\delta)}} , & 0 \leq \alpha \leq \frac{1 + 2\lambda - \lambda^2}{2(1 + 2\lambda + 6\xi\delta)} \\
1 + 2\lambda + 6\xi\delta , & \frac{1 + 2\lambda - \lambda^2}{2(1 + 2\lambda + 6\xi\delta)} \leq \alpha \leq 1
\end{array} \right.
\]
\[
|a_3| \leq \frac{2 (1 - \alpha)}{1 + 2\lambda + 6\xi\delta},
\]
and
\[
|a_3 - 2a_2^2| \leq \frac{2 (1 - \alpha)}{1 + 2\lambda + 6\xi\delta}.
\]
By setting $\lambda = 1$ in Theorem 3.3, we obtain the following consequence.

Corollary 3.5. For $\mu \geq 0$, $\delta \geq 0$ and $0 \leq \alpha < 1$, let the function $f \in \mathcal{B}_2^\mu(\alpha, \delta)$ be given by (1.1). Then one has the following

$$|a_2| \leq \left\{ \begin{array}{ll}
\frac{\sqrt{4(1-\alpha)(\mu+6\delta+2)(\mu+1)}}{\mu+2\delta+1}, & 0 \leq \alpha \leq \frac{1}{\mu+6\delta+2} \\
\frac{1}{\mu+6\delta+2} \leq \alpha \leq 1
\end{array} \right.$$

$$|a_3| \leq \left\{ \begin{array}{ll}
\min \left\{ \frac{4(1-\alpha)^2}{\mu+2\delta+1}, \frac{2(1-\alpha)}{\mu+6\delta+2}, \frac{4(1-\alpha)}{(\mu+6\delta+2)(\mu+1)} \right\}, & 0 \leq \mu < 1 \\
\frac{2(1-\alpha)}{\mu+6\delta+2}, & \mu \geq 1
\end{array} \right.$$

Remark 3.6. As a final remark, for $\delta = 0$ in

(i) Theorem 3.1 we obtain Theorem 1 in \cite{7}.

(ii) Theorem 3.3 we obtain Theorem 2 in \cite{7}.

(iii) Corollary 3.2 we obtain Theorem 1 in \cite{16}.

(iv) Corollary 3.4 we obtain Theorem 2 in \cite{16}.

(v) Corollary 3.5 we obtain Corollary 3 in \cite{7}.

References

[1] H. Airault, A. Bouali, *Differential calculus on the Faber polynomials*, Bull. Sci. Math. 130 (3) (2006) 179–222.

[2] H. Airault, J. Ren, *An algebra of differential operators and generating functions on the set of univalent functions*, Bull. Sci. Math. 126 (5) (2002) 343–367.

[3] A.A. Amourah, F. Yousef, T. Al-Hawary, M. Darus, *A certain fractional derivative operator for p-valent functions and new class of analytic functions with negative coefficients*, Far East Journal of Mathematical Sciences 99(1) (2016) 75-87.

[4] A.A. Amourah, F. Yousef, T. Al-Hawary, M. Darus, *On a class of p-valent non-Bazilevič functions of order $\mu + i\beta$*, International Journal of Mathematical Analysis 10(15) (2016) 701-710.

[5] A.A. Amourah, F. Yousef, T. Al-Hawary, M. Darus, *On $H_3^\mu(p)$ Hankel determinant for certain subclass of p-valent functions*, Ital. J. Pure Appl. Math 37 (2017) 611-618.

[6] D.A. Brannan, J.G. Clunie, *Aspects of contemporary complex analysis* (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 120, 1979), Academic Press, New York and London, 1980.

[7] S. Bulut, *Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions*, Comptes Rendus Mathematique, 352 (6) (2014) 479-484.

[8] M. Çağlar, H. Orhan, N. Yağmurlu, *Coefficient bounds for new subclasses of bi-univalent functions*, Filomat 27(7) (2013) 1165-1171.

[9] P.L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[10] G. Faber, *Über polynomische entwicklungen*, Mathematische Annalen 57(3) (1903) 389-408.

[11] B.A. Frasin, M.K. Aouf, *New subclasses of bi-univalent functions*, Appl. Math. Lett. 24(9) (2011) 1569–1573.

[12] S.G. Hamidi, S.A. Halim, J.M. Jahangiri, *Coefficient estimates for a class of meromorphic bi-univalent functions*, C. R. Acad. Sci. Paris, Ser. I 351 (9–10) (2013) 349–352.

[13] S.G. Hamidi, T. Janani, G. Murugusundaramoorthy, J.M. Jahangiri, *Coefficient estimates for certain classes of meromorphic bi-univalent functions*, C. R. Acad. Sci. Paris, Ser. I 352 (4) (2014) 277–282.
[14] S.G. Hamidi, J.M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 352 (1) (2014) 17–20.

[15] J.M. Jahangiri, S.G. Hamidi, S.A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc., in press, http://math.usm.my/bulletin/pdf/acceptedpapers/2013-04-050-R1.pdf

[16] J.M. Jahangiri, S.G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013), Article ID 190560, 4 p.

[17] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967) 63–68.

[18] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z| < 1$, Arch. Rational Mech. Anal. 32 (1969) 100–112.

[19] H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10) (2010) 1188–1192.

[20] D.L. Tan, Coefficient estimates for bi-univalent functions, Chin. Ann. Math. Ser. A 5 (1984) 559–568.

[21] T. Al-Hawary, B.A. Frasin, F. Yousef, Coefficients estimates for certain classes of analytic functions of complex order, Afrika Matematika (2018) 1–7.

[22] P.G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1) (1991) 268–276.

[23] F. Yousef, A.A. Amourah, M. Darus, Differential sandwich theorems for p-valent functions associated with a certain generalized differential operator and integral operator, Italian Journal of Pure and Applied Mathematics 36 (2016) 543-556.

[24] F. Yousef, B.A. Frasin, T. Al-Hawary, Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials, arXiv preprint [arXiv:1801.09531] (2018).

[25] F. Yousef, S. Alroud, M. Ilfale, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, arXiv preprint [arXiv:1808.06517] (2018).

A.A. AMOURAH: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, IRBID NATIONAL UNIVERSITY, IRBID, JORDAN.

E-mail address: alaammour@yahoo.com.