Characteristics of methicillin-resistant Staphylococcus aureus carrying the toxic shock syndrome toxin gene: high prevalence of clonal complex 22 strains and the emergence of new spa types t223 and t605 in Iran

M. Goudarzi1, M. Razeghi2, A. Salimi Chirani1, M. Fazeli3, Z. Tayebi4 and R. Pouriran5

1) Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, 2) Department of Biology, Science and Research Branch, Islamic Azad University, 3) Department of Virology, Pasteur Institute of Iran, 4) Microbiology Department, Tehran Medical Sciences Branch, Islamic Azad University and 5) School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) strains that carry the tst gene are disseminated worldwide with varying regional incidences and different genetic backgrounds. The data on molecular characteristics of these strains is insufficient in Iran. The present study aimed to assess the characteristics and distribution of spa types of tst-positive MRSA strains. We investigated 89 MRSA isolates carrying the tst gene with spa typing, resistance gene detection and in vitro antimicrobial susceptibility. Of the 89 tested isolates, 61 (68.5%) were confirmed as multidrug resistant (MDR). The isolates were distributed across seven clonal complexes (CCs) including CC22 (42.7%), CC8 (28.1%), CC5 (11.2%), CC59 (5.6%), CC30 (4.5%) and CC15 (3.4%), spa typing identified 11 distinct types, with t223 (16.9%) and t790 (15.7%) being the most prevalent. All high-level mupirocin-resistant strains belonged to t002 (n = 8) and low-level mupirocin-resistant strains belonged to t790 (n = 6) spa types. Fusidic-acid-resistant isolates belonged to t437 (n = 3). iMLSb phenotype was observed in t005 (6.7%), t002 (3.6%), t790 (3.4%), and t030, t044 and t084 (each 2.2%). It was found that in the tst-carrying MRSA strains, there were genetic diversities with a majority of the t223 spa type. Indeed, there is a necessity for more constructive surveillance/infection control strategies to address the prevalence and prevention of the emerging spa types.

© 2020 The Author(s). Published by Elsevier Ltd.

Keywords: Methicillin-resistant Staphylococcus aureus, PCR, spa typing, Staphylococcus aureus, toxic shock syndrome toxin

Original Submission: 28 February 2020; Revised Submission: 21 April 2020; Accepted: 10 May 2020
Article published online: 15 May 2020

Introduction

Staphylococcus aureus is one of the principal nosocomial pathogens with substantial morbidity and mortality. Unfortunately, recent reports described a continuous and heavy burden of hospital-acquired S. aureus infections around the world [1,2]. Currently, S. aureus has become an emerging problem in health-care settings and is becoming a great threat to public health. Infections caused by this bacterium are further exacerbated by the widespread circulation and emergence of drug-resistant strains; particularly, methicillin-resistant S. aureus (MRSA) [2]. Initial reports of MRSA strains indicated an increasing rate of their prevalence in some Asian countries [1]. Recently, a systematic review and meta-analysis reported a 43% prevalence of MRSA strains in Iran [3]. Emerging simultaneous resistance to multiple antibacterial agents among MRSA strains has significantly limited the availability of chemotherapeutic agents for the treatment of staphylococcal infections and leads to deterioration of disease [1-3].

Staphylococcus aureus produces cell-wall-associated virulence determinants and a broad spectrum of extracellular proteins, which are related to the severity of the infection [2]. A major virulence factor is toxic shock syndrome toxin-1 (TSST-1, encoded by the gene tst). When TSST, a protein of 29.1 kDa, enters the blood it causes the release of tumour necrosis...
factor-α, non-specific T-cell proliferation, and interleukin-1 and interleukin-2 production, which can lead to a variety of severe and life-threatening diseases [4,5]. In the absence of proper treatment, a lethal shock could occur within 24 h after the onset of symptoms [2,4,6,7]. Therefore, particular attention should be paid to MRSA strains carrying the tst gene. Although, recent studies have been focused on better understanding of molecular epidemiology and detection of virulence genes of MRSA isolates carrying the tst gene, epidemiological data on tst-carrying MRSA in Iran is not sufficient. Accordingly, the present study was designed to describe the phenotypic resistance pattern, and the presence of the virulence factors. spa typing which was used to characterize the genotype of the MRSA carrying tst gene.

Materials and methods

Study design, isolation of bacterial isolates and ethics statement
In this cross-sectional study, 89 non-duplicated MRSA isolates carrying the tst gene were isolated from various clinical samples from five teaching hospitals in Tehran, Iran. The experiment was carried out from February 2018 to January 2019. Clinical specimens included wound (35.9%), blood (30.4%), pus (10.9%), urine (8.7%), sputum (5.4%), conjunctivitis (5.4%) and body fluids (3.3%) from both genders and different age groups. The Ethics Committee of the Shahid Beheshti University of Medical Sciences in Tehran, Iran certify the protocol of this project (IR. SBMU. MSP.REC. 1397.711). Preliminary detection of S. aureus isolates used standard microbiological and biochemical techniques [8]. Positive isolates were verified by PCR targeting the S. aureus species-specific nuc gene [7]. MRSA screening was performed by the disc-diffusion method by using cefoxitin (30 μg) discs in Mueller–Hinton agar (Merck, Darmstadt, Germany) and also by detection of the mecA gene [8,9]. The entire strains were also analysed for the presence of the tst gene by PCR assay according to the previously published method [9].

Criteria for identifying hospital and community-onset
Hospital-onset (HO) S. aureus was established if the positive culture of S. aureus was obtained 96 hours or more after admission to a hospital. Community-onset (CO) infection was defined as when the culture was obtained before 4 days of hospitalization by having one or more of the following criteria: (a) a history of hospitalization, surgery, dialysis, or residence in a long-term care facility in 12 months before the culture date, or (b) the presence of a central vascular catheter within 2 days before S. aureus culture [8].

Antimicrobial susceptibility testing
The Kirby–Bauer disc-diffusion method on Mueller–Hinton agar was used to test the susceptibility of the isolates against amikacin, gentamicin, tobramycin, kanamycin, tetracycline, erythromycin, clindamycin, linezolid, teicoplanin, ciprofloxacin, rifampicin, quinupristin-dalfopristin and trimethoprim-sulfamethoxazole (Mast Co., Bootle, UK) based on the CLSI guideline. Susceptibility to vancomycin, mupirocin, tigecycline and fusidic acid was assessed by the broth microdilution method to determine the MIC titre. The European Committee for Antimicrobial Susceptibility Testing (EUCAST) breakpoints was used to determine MIC titres of fusidic acid and tigecycline (EUCAST 2018). The results of other antibiotics were interpreted by using the CLSI 2018 breakpoints. Low-level and high-level mupirocin resistance (LLMUPR, HLMUPR), inducible macrolide-lincosamide-streptogramin group B (iMLS B) and constitutive (cMLS B) macrolide-lincosamide-streptogramin group B were identified based on the CLSI guideline. Susceptibility testing was quality controlled using S. aureus ATCC 25923, ATCC 43300 and ATCC 29213 strains. Powders of antibiotics were all obtained from Sigma Chemical Co. (St Louis, MO, USA).

DNA extraction and amplification of resistance-related genes
Genomic DNA was extracted from pelleted bacteria using the phenol–chloroform extraction method. The genes encoding the mecA, mecC, vanA, vanB, mupB, mupA, fusA, fusB, fusC, msr(A), msr(B), erm(A), erm(B), erm(C), tet(M), ant(4’)-Ia, aac(6’)-Ie/aph (2’)+ and aph(3’)-lIIa were detected by PCR [10–12].

Staphylococcus aureus protein a locus (spa) typing
The S. aureus isolates underwent spa typing as recommended by Harmsen et al. [13]. It was amplified by PCR with forward (5’-AGACGATCCTTCGGTGAGC-3’) and reverse (5’-GCTTTTGCAATGTCATTTACTG-3’) primers. The PCR products were sequenced and then edited. The Ridom SpaServer database (http://www.spaserver.ridom.de) was applied to determine the strain’s spa type.

Results
A total of 89 S. aureus strains carrying the tst-encoding gene were recovered from 350 S. aureus isolates, which were all methicillin-resistant and enrolled in the current research. Of the 89 tst-positive MRSA isolates, 16 were from hospital A (18%), 18 from hospital B (20.2%), 19 from hospital C (21.3%), 21 from hospital D (23.6%) and 15 from hospital E (16.9%). The
tst-positive MRSA isolates accounted for 64% and 36% of HO (57/89), and CO (32/89) cases, respectively. Fig. 1 summarizes the distribution of HO and CO cases across hospitals.

Our findings revealed that linezolid, teicoplanin and vancomycin had the most desirable antimicrobial activity; whereas gentamicin (78.7%), tetracycline (77.5%) and erythromycin (62.9%) exhibited the poorest antimicrobial activity. Eight isolates indicated resistance to three or more classes of antibiotics and were confirmed as MDR strains. (see Table 1).

The analysis of resistance-encoding genes among tst-positive MRSA strains indicated that the most prevalent gene was tet(M) in 56 strains (62.9%), followed by ant(4’)-la in 52 (58.4%), ermA in 36 (40.4%), erm(C) in 20 (22.5%), erm(A) in 19 (21.3%), aac (6’)-le-aaph(2’) in 18 (20.2%), msr(B) in 14 (15.7%), mupA in 8 (9%) and fusB in 3 (3.4%). Our findings indicated that the overall prevalence of HO-MRSA to tested antibiotics was higher. All the fusidic-acid-resistant isolates belonged to hospital C and the sources for the isolation of them included wound (two isolates) and pus (one isolate). In total, 61 isolates (68.5%) indicated resistance to three or more classes of antibiotics and were confirmed as MDR strains. (see Table 1).

The results exhibited seven clonal complexes (CCs), which were produced in the studied isolates, namely CC22 (42.7%, 38/89), CC8 (28.1%, 25/89), CC5 (11.2%, 10/89), CC59 (5.6%, 5/89), CC30 (4.5%, 4/89), CC80 (4.5%, 4/89) and CC15 (3.4%, 3/89). The tst-positive MRSA isolates exhibited 11 different spa types with t223 as the most prevalent (16.9%), followed by t790 (15.7%), t037 (14.6%), t002 (11.2%), t005 (10.1%), t030 (7.9%), t388, t437 (5.6% each), t044, t605 (4.5% each) and t084 (3.4%). All HLMUPR strains belonged to t002 (n = 8); additionally, LLMUPR strains belonged to t790 (n = 6) spa types. Fusidic-acid-resistant isolates belonged to t437 (n = 3). MS phenotypes were distributed in t002 (5.6%, 5/89) and t790 (3.4%, 3/89). iMLSB was observed in t005 (6.7%, 6/89), t002 (5.6%, 5/89), t790 (3.4%, 3/89), t030, t044, t084 (each 2.2%, 2/89); whereas cMLSb phenotypes were genetically diverse and distributed among almost all spa types. Resistance profile and the distribution of spa types in MRSA associated with clinical samples are presented in Table 2.

Strains of MRSA carrying the TSST-encoding gene are particularly associated with wound and blood infections; in recent years, special attention has been given to these strains [5,9]. A recent systematic review and meta-analysis in Iran indicated that the overall prevalence of TSST-harbouring S. aureus clinical isolates was 21.3%, ranging from 0% to 68% in S. aureus clinical isolates [5]. According to the current findings, among the 350 tested S. aureus, 25.4% (89/350) carried the tst-encoding gene. Different prevalences for tst among S. aureus have been reported: from Turkey (14.2%) [14], Brazil (46.7%) [15], Korea (25.5%) [16] and China (31.4%) [17]. Contrary to Motamedifar et al., they indicated a higher frequency of tst in methicillin-susceptible S. aureus (MSSA) (18%) versus MRSA (11.6%) isolates [9]. The present data showed that all tst-harbouring isolates were methicillin resistant. Shams-Abadi et al. [5] showed that the prevalence of tst-harbouring MRSA strains in clinical isolates was 73.9%. The high prevalence of tst-carrying MRSA strains was also reported in studies from Japan (75.7%) [18] and Taiwan (75%) [19]. These differences may be a result of the type of sample and dissemination of specific clones [9,20,21].

In the present study, overall prevalence of resistance to mupirocin was found to be 15.7%. Recent studies in India [22], Jordan [23] and the USA [24] have noted mupirocin-resistance rates of 5%, 2.6% and 13.3%, respectively. Furthermore, we also observed that 9% of examined isolates were HLMUPR, which was lower than the two previous reports in Iran by Shahsavari et al. (25%) [25] and Abbasi-Montazeri et al. (17%) [26]. Differences were observed regarding the resistance to mupirocin, which may arise from the study design, dissemination of specific

FIG. 1. Distribution of hospital-onset and community-onset cases among studied hospitals.

Discussion
type among patients and unrestricted policies in taking mupirocin.

In the current investigation, the frequency of iMLS phenotypes was found to be 22.5%. Reports of prevalence of inducible resistance from Iran range from 4.1% to 20.7% [27,28] Despite the discrepancies, our data was similar to previous reports by Moosavian et al. from Iran which had shown the prevalence of 32.3% [29]. Remarkably, a high prevalence of iMLS phenotypes was also reported from Jordan (76.7%) [30].

Recently published data from Asian countries indicated a low prevalence of resistance to fusidic acid (<10%) [29,31]. We noted a low prevalence (3.4%) of resistance to fusidic acid among our isolates. Rahimi et al. found similar rates of fusidic acid resistance among MRSA (3%) [32]. Different resistance rates to fusidic acid have been described in many countries: Greece (62.4%), Ireland (19.9%), Australia (7.0%), Canada (7.0%) and the USA (0.3%) [33].

As illustrated in Table 2, 11 different spa types were detected in this work, which were distributed in seven CCs. In agreement with data that indicated CC22 as the most common type in in Gaza, Palestine [6], the present research reported a prevalence of this CC in 42.7% of isolates. In this study, CC22 had three important spa types (t223 in 16.9% of isolates, t790 in 15.7% of isolates and t005 in 10.1% of isolates). This finding supports previous results from Gaza from which t223 was the predominant spa type, accounting for 16.7% of isolates [6]. A recent report from Kuwait also indicated that t223 was one of the common spa types detected in MRSA strains investigated from 1992 to 2010 (4.7%) [34]. t790 was the other spa type identified in CC22 (15.7%). This spa type is one of the most successful and persistent types reported from Saudi Arabia [35] and Jordan [36]. A contradictory result was reported by Boswah et al. in Kuwait [34]. A study by Japoni-Najed et al. in Iran [37] also indicated the low frequency of t790 among their tested isolates. Although virulence determinants and antibiotic resistance profiles in t790 isolates were found to be varied, t790 carriage resistance to mupirocin in t790 strains have been by several researchers [8,38]. The attainment data demonstrated that 10.1% of isolates were related to spa type t005. These findings are similar to those reported in Iran by Khademi et al. [39], that indicated a 7.1% prevalence rate of spa type among S. aureus isolated from clinical samples. Contrastingly, other studies have demonstrated spa type t005 as the most frequent spa type (47.4%) detected among Panton–Valentine leucocidin-positive MSSA strains [40].

Isolates of CC8 corresponded to t037 (14.6%), t030 (7.9%) and t388 (5.6%). According to the evidence, spa type t388 and t037 are associated with health-care-associated MRSA, which was found in Europe, Asia and America [34,38]. Observed frequencies of these spa types were similar to a previous report by Ohadian Moghadam et al. from Iran on 66 S. aureus strains, which recognized 11 different spa types with the most prominent spa types being t037 and t030, and low frequency of t388 [41]. The spa type t030 was previously reported as one of the most common types from different countries [34,38]. Notably, most t030 MRSA isolates were resistant to fluoroquinolones and tetracycline; a finding that was in accordance with Li’s study; furthermore, they indicated that all of the tested isolates were resistant to tetracycline, rifampicin and fluoroquinolones [42].

The present work confirmed that CC30 (to which t605 belongs) was detected in four isolates (4.5%). tst-positive CC30 strains have been described in Iran [8,41], Kuwait [34] and Palestine [6]. In a 700-bed tertiary teaching hospital in Greece, it was documented that among 18 tst-positive MSSA strains obtained, CC30 was the predominant clone in the intensive care unit accounting for 55.5% (10/18) and the remaining eight strains were classified into three additional sequence types including ST2123 (33.3%), ST27 (5.6%) and ST45 (5.6%) [7].

In this study, CC80 and spa type t044 ranked sixth among tst-positive MRSA isolates, accounting for 4.5% of isolates. This observation is supported by a study conducted in Gaza, Palestine during 2008 and 2012, which documented the presence of CC80 and spa type t044 in tst-positive MRSA isolates. This would suggest the potential for greater numbers of isolates harbouring both toxin-encoding genes [6]. Also, several studies have reported the presence of this spa type in S. aureus isolates from Iran. Mirzaii et al. analysed 37 S. aureus

Table 1. Antimicrobial resistance patterns of methicillin-resistant Staphylococcus aureus isolates carrying the tdr genes

Antibiotic	Hospital onset	Community onset	Total, n (%)
Gentamicin	49 (70)	21 (30)	70 (78.7)
Tetracycline	42 (60.9)	27 (39.1)	69 (77.5)
Erythromycin	39 (69.6)	17 (30.4)	56 (62.9)
Clindamycin	7 (20)	28 (80)	35 (39.3)
Kanamycin	28 (68.3)	13 (31.7)	41 (46.1)
Aminocillin	30 (76.9)	9 (23.1)	39 (43.8)
Ciprofloxacin	25 (52.1)	23 (47.9)	48 (53.9)
Tobramycin	19 (100)	0 (0)	19 (40.5)
Rifampin	11 (52.4)	10 (47.6)	21 (23.6)
Trimethoprim	12 (66.7)	6 (33.3)	18 (20.2)
Sulfamethoxazole	15 (100)	0 (0)	15 (16.9)
Quinupristin-Dallopocrin	9 (64.3)	5 (35.7)	14 (15.7)
Mupirocin	3 (100)	0 (0)	3 (3.4)
Fucidic acid	2 (100)	0 (0)	2 (2.2)
Tigecycline	57 (64)	32 (36)	89 (100)

© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 36 (1), 00695
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
strains isolated from different sources and found that only four isolates (10.8%) isolated from the hands and nose of personnel and also from the environment of the intensive care unit belonged to spa type t044 [43]. Asadollahi et al. also demonstrated that the t044 spa type was one of the most common spa types in 11 countries [44].

The other CC detected among tst-positive MRSA strains was CCS (11.2%) assigned to single spa type t002. As stated in previous documents, CCS is distributed in both community and hospital environments. Recent studies have shown the presence of CCS/t002 clones in Asian and European countries, such as Iran, Japan, Korea, the United Arab Emirates, Kuwait, Ireland and Australia [34,38]. Based on our analysis, all HLMUPR strains belonged to spa type t002 (n = 8). Similarly, in an experiment conducted in 2016 in Spain, María González-Dominguez et al. revealed resistance to mupirocin in CCS5-tspa t002 strains. The present survey indicated that all HLMUPR CCS/t002 isolates were positive for the mupA gene. This finding contradicted previous studies stating that CCS/t002 isolates could not carry the mupA gene [45].

Based on the evidence, CCS9 (to which t437 belongs) has limited geographical spread. The present study showed that CC59 was present in five isolates, accounting for 5.6%. These findings correspond to previous reports from other countries including Australia, Ireland, the UK, Korea, Kuwait and Taiwan. Notably, resistance to fusidic acid encoded by fus8 was also detected in three isolates. This finding is consistent with Shore et al. in Ireland [46].

As mentioned, the frequency of CC15/t084 was found to be 3.4%; in fact, two isolates were confirmed as iMLSB. Sangvik et al. [47] reported that t012 (8.8%), t084 (5.6%) and t065 (5.2%) were the most common spa types in north Norway. It was previously thought that t084 could be detected only in MRSA; nonetheless, there are reports indicating high distribution of this type among MSSA strains [34,38]. To the best of our knowledge, this is the first report regarding the emergence of spa types t223 and 605 in Iran.

In conclusion, this study is the first report regarding the molecular characteristics of tst-positive MRSA strains in Iran. These strains belonged to diverse genetic backgrounds with a predominance of CC22. Our investigation revealed the high prevalence of MDR patterns that highlighted the rational usage of antibiotics to minimize the spread of S. aureus with MDR in Iran; however, some resistance patterns were related to certain

Table 2. Distribution of spa types and resistance profiles of MRSA carrying tst gene

CC	spa types	Phenotypic resistance profile	Genetic resistance profile (n, %)	Hospitals (n, %)	n (%)
22	223	T, GM, E, CD, K, AK, CIP (5, 33.3)	MecA (15, 100), tet(M) (12, 80), ant (4'-lo) (6, 40), aph (3')-illa (2, 13.3), oac (6'-leth) (27, 46.7), erm(C) (5, 33.3), erm(A) (3, 20), mtr(B) (8, 53.3)	A (5, 33.3), B (4, 26.7), D (6, 40)	15 (16.9)
790	GP, T, E, AK, MUP, RI (5, 35.7)	MecA (14, 100), tet(M) (10, 71.4), ant (4'-lo) (10, 71.4), aph (3')-illa (4, 28.6), oac (6'-leth) (27, 35.7), erm(C) (6, 49.2), erm(A) (3, 21.4), mtr(B) (10, 53.7)	A (2, 14.3), B (1, 7.1), C (5, 14 (1.5), ant (4'-lo) (10, 71.4), aph (3')-illa (4, 28.6), oac (6'-leth) (27, 35.7), erm(C) (6, 49.2), erm(A) (3, 21.4), mtr(B) (10, 53.7)	21 (4.5)	
005	T, GM, AK, CIP, TS, E (6, 66.7)	MecA (9, 100), tet(M) (7, 77.8), ant (4'-lo) (8, 88.9), aph (3')-illa (5, 55.6), oac (6'-leth) (2, 22.2), erm(A) (2, 22.2)	A (3, 33.3), B (3, 33.3), C (2, 22.2), D (1, 11.1)	9 (10.1)	
8	037	T, GM, E, CD, K, AK, CIP (4, 30.8)	MecA (13, 100), tet(M) (9, 69.2), ant (4'-lo) (8, 88.9), aph (3')-illa (5, 55.6), oac (6'-leth) (2, 22.2), erm(A) (2, 22.2)	A (2, 15.4), B (4, 30.8), C (3, 22.1), D (4, 30.8)	13 (14.6)
030	T, GM, AK, CIP, TS, E (2, 26.8)	MecA (7, 100), tet(M) (4, 57.1), ant (4'-lo) (6, 85.7), aph (3')-illa (5, 71.4), oac (6'-leth) (2, 14.3)	B (2, 28.6), D (2, 28.6), E (3, 7 (7.9)	2 (4.5)	
388	T, GM, E, CD, K, AK, CIP (3, 60)	MecA (5, 100), tet(M) (2, 40), ant (4')-C (2, 40), E (3, 60)	B (3, 60), aph (3')-illa (2, 40), erm(A) (3, 60)	5 (5.6)	
30	605	No resistance (1, 14.3)	MecA (4, 100), tet(M) (1, 25), ant (4'), E (2, 50)	C (2, 50), erm(A) (1, 25)	4 (4.5)
80	044	T, GM, AK, CIP, TS, E (2, 50)	MecA (4, 100), tet(M) (2, 50), ant (4'), B (1, 25), E (2, 50), D (1, 25)	C (2, 50), erm(A) (1, 25)	4 (4.5)
15	084	No resistance (1, 14.3)	MecA (1, 100), tet(M) (1, 33.3), aph (3')-illa (2, 66.7)	C (2, 66.7), D (1, 11.1)	3 (3.4)
59	437	T, GM, AK, CIP, TS, E (2, 20)	MecA (1, 100), tet(M) (1, 33.3), aph (3')-illa (2, 66.7)	C (2, 66.7), D (1, 11.1)	3 (3.4)
5	002	No resistance (1, 20)	MecA (10, 100), mupA (8, 80), tet(M) (4, 40), B (2, 20), D (3, 11.2)	C (2, 40), mupA (8, 80), ant (4')-lo (6, 60), aph (3')-illa (30), E (1, 10)	10 (11.2)

E, erythromycin; T, tetracycline; CD, clindamycin; GM, gentamicin; TS, trimethoprim-sulfamethoxazole; FC, fusidic acid; CIP, ciprofloxacin; SYN, quinupristin-dalfopristin; TIG, tigecycline; TN, tobramycin; AK, amikacin; RI, rifampicin; K, kanamycin; MUP, mupirocin.

© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 16, 100695

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spa types. Our results ought to be further investigated in other health-care settings in Iran to keep track of the emerging spa types.

Funding

This study was supported financially by a grant (No. 16027) from Research Department of the School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. The funder had no role in study design, data collection, and analysis or preparation of the manuscript.

Conflict of interest

All authors declare that they have no conflict of interest.

References

[1] Chuang Y-Y, Huang Y-C. Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in Asia. Lancet Infect Dis 2013;13:698–708.
[2] Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28:603–61.
[3] Dadashi M, Nasiri MJ, Fallah F, Owlia P, Hajkhani B, Emaneini M, Mirpour M. Methicillin-resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis. J Glob Antimicrob Resist 2018;12:96–103.
[4] Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol 2014;17:32–7.
[5] Shahini Shams-Abadi M, Halaji M, Hoseini-Alfatemi S, Gholipour A, Otto M. Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus aureus, with emphasis on coagulase-negative staphylococci. Microbiol Immunol 2007;51:381–90.
[6] Kim YG, Lee HS, Kang SK, Chang KS, Hwang SM. Correlation between the prevalence of superantigenic toxin genes and coagulase serotypes of Staphylococcus aureus isolates. J Bacterial Virol 2011;41:57–64.
[7] He W, Chen H, Zhao C, Zhang F, Li H, Wang Q, Wang X, Wang H. Population structure and characterisation of Staphylococcus aureus from bacteremia at multiple hospitals in China: association between antimicrobial resistance, toxin genes and genotypes. Int J Antimicrob Agents 2013;42:211–9.
[8] Nagoz M, Okamoto A, Yamada K, Hasegawa T, Hasegawa Y, Ohta M. Variations in amount of TSST-1 produced by clinical methicillin resistant Staphylococcus aureus (MRSA) isolates and allelic variation in accessory gene regulator (agr) locus. BMC Microbiol 2009:9:52.
[9] Lee S-C, Lee C-W, Shih H-J, Chiu MJ, See L-C, Siu L. Clinical features and risk factors of mortality for bacteremia due to community-onset healthcare-associated methicillin-resistant S. aureus. Diagn Microbiol Infect Dis 2013;76:86–92.
[10] Wang L, Liu Y, Yang Y, Huang G, Wang C, Deng L, Zheng Y, Fu Z, Li C, Zhang Y. Multidrug-resistant clones of community-associated methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients and personnel in a burn center. Burns 2012;38:378–85.
[11] Baghizadeh M, Hashemi AF, Ghasemi M, Bakhshi M. Prevalence of nasal carriage of methicillin-resistant Staphylococcus aureus (MRSA) in a burn hospital. Jundishapur J Microbiol 2017;10:1–9.
[12] Chen C-M, Huang M, Chen H-F, Ke S-C, Li C-R, Wang J-H, Wu L-T. Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC Microbiol 2011;11:98. 1–8.
[13] Harnsen D, Claus H, Witee V, Rothganger J, Claus H, Turnwald D, Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 2003;41:5442–8.

© 2020 The Author(s). Published by Elsevier Ltd. NMNI, 36, 100695
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
Japoni-Nejad A, Rezazadeh M, Kazemian H, Fardmousavi N, van Al-Bakri A, Al-Hadithi H, Kasabri V, Othman G, Kriegeskorte A, Monecke S, Skakni L, Hasan R, Ruppelt A, Ghazal SS, Hakawi A, Boswihi SS, Udo EE, Al-Sweih N. Shifts in the clonal distribution of Inducible clindamycin resistance in clinical isolates of Staphylococcus aureus due to erm genes. Iran. Iran J Microbiol 2016;4:421–7.

Da Jarajreh, Aqel A, Alzoubi H, Al-Zereini W. Prevalence of inducible clindamycin resistance in methicillin-resistant Staphylococcus aureus: the first study in Jordan. J Infect Dev Ctries 2017;11:350–4.

Wang J-L, Tang H-J, Hsieh P-H, Chiu F-Y, Chen Y-H, Chang M-C, Huang C-T, Liu C-P, Lau Y-j, Hwang K-P. Fusidic acid for the treatment of bone and joint infections caused by methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2012;40:103–7.

Rahimi F, Bouzari M, Katooli M, Pourshafee MR. Prophage and antibiotic resistance profiles of methicillin-resistant Staphylococcus aureus strains in Iran. Arch Virol 2012;157:1807–11.

Deotale V, Mendiratta D, Raut U, Narang P. Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Indian J Med Microbiol 2010;28:124–6.

Bowshi SS, Udo EE, Al-Sweih N. Shifts in the clonal distribution of methicillin-resistant Staphylococcus aureus in Kuwait hospitals: 1992–2010. PLoS One 2016;11:1–21.

Monecke S, Skakni L, Hasan R, Ruppelt A, Ghazal SS, Hakawi A, Slickers P, Ehrlicht R. Characterisation of MRSA strains isolated from patients in a hospital in Riyadh, Kingdom of Saudi Arabia. BMC Microbiol 2012;12:146–9.

Al-Bakri A, Al-Hadithi H, Kasabri V, Othman G, Kriegeskorte A, Becker K. The epidemiology and molecular characterization of methicillin-resistant staphylococci sampled from a healthy Jordanian field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 2011;6:1–24.

Khadiemi F, Ghanbari F, Melmann A, Najafzadeh MJ, Khaledi A. Phylodynamic relationships among Staphylococcus aureus isolated from clinical samples in mashhad, Iran. J Infect Public Heal 2016;9:639–44.

Otukunefor K, Sloan T, Kearns AM, James R. Molecular characterization and Panton–Valentine leucocidin typing of community-acquired methicillin-sensitive Staphylococcus aureus clinical isolates. J Clin Microbiol 2012;50:3069–72.

Ohadian Moghadam S, Pourmard MR, Mahmoudi M, Sadighian H. Molecular characterization of methicillin-resistant Staphylococcus aureus: characterization of major clones and emergence of epidemic clones of sequence type (st) 36 and st 121 in Tehran, Iran. FEMS Microbiol Lett: 2015. 362:1–5.

Li S, Sun S, Yang C, Chen H, Yin Y, Li H, Zhao C, Wang H. The changing pattern of population structure of Staphylococcus aureus from bacteremia in China from 2013 to 2016: st239-030-mrsa replaced by st59-437. Front Microbiol 2018;9:1–9.

Mirzaei M, Emaneini M, Jabalameli F, Halimi S, Taherikalani M. Molecular investigation of Staphylococcus aureus isolated from the patients, personnel, air and environment of an ICU in a hospital in Tehran. J Infect Public Heal 2018;5:202–6.

Asadollahi P, Farahani NN, Mirzaei M, Khoramroozi SS, Van Belkum A, Asadollahi K, Dadashi M, Darban-Sarokhalil D. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and susceptible Staphylococcus aureus around the world: a review. Front Microbiol 2018;9:1–16.

González-Domínguez M, Seral C, Potel C, Sáenz Y, Álvarez M, Torres C, Castillo FJ. Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) clones with high-level mupirocin resistance. Diag Microl Infec 2016;85:213–7.

Shore AC, Tecklenborg SC, Brennan GI, Ehrlich R, Monecke S, Coleman DC. Panton-valetine leucocidin-positive Staphylococcus aureus in Ireland from 2002 to 2011: 21 clones, frequent importation of clones, temporal shifts of predominant methicillin-resistant S. aureus clones, and increasing multiresistance. J Clin Microbiol 2014;52:859–70.

Sangvik M, Olsen RS, Olsen K, Simonsen GS, Furberg A-S, Sollid JUE. Age-and gender-associated Staphylococcus aureus spa types found among nasal carriers in a general population: the Tromsø staph and skin study. J Clin Microbiol 2011;49:4213–8.