Chimeric vaccine against multi-drug resistant *Mycobacterium tuberculosis* using *in silico* reverse vaccinology approach

Arpita Batta¹², Vineeta Singh¹, Bhartendu Nath Mishra¹*, Tapankumar N. Dhole², Prahlad Kishore Seth³

¹Department of Biotechnology, Institute of Engineering and Technology, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, India.
²Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
³Biotech Park, Lucknow, India.

ARTICLE INFO

Received on: 22/07/2021
Accepted on: 14/02/2022
Available Online: 05/06/2022

Key words: Vaccine, tuberculosis, drug resistance, *in silico*, epitope, IEDB.

ABSTRACT

The aim of this study was to predict promiscuous vaccine candidates against *Mycobacterium tuberculosis* (MTb) using *in silico* reverse vaccinology. Antigenic peptides from selected MTb strain LJ319 (4,025 proteins) were analyzed by various immunoinformatics tools; from which 165 outer membrane proteins (OMPs) suitable for vaccine designing were predicted. Further antigenicity, allergenicity, transmembrane α-helices, and solubility filters refine this number to 16 OMPs common in other members of Tb complex. By further analysis, T-cell and B-cell epitopes were predicted and subjected to characterization studies. After characterization, 26 promiscuous Epitopic peptides (MHC I: 4, MHC II: 7, and B cell: 15) were screened and joined to form 3 possible vaccine constructs (VC1, VC2, and VC3). To enhance immunomodulating effect of these constructs adjuvants (Accession No. WP_003403353.1, WP_031737436.1, and WP_094028633.1), and PADRE sequence (AKV AAWTLKAAAC) were added. The physiochemical characterization and molecular docking studies of vaccine constructs with HLA genes revealed VC1 can be further studied to control host and Tb interactions as it had the highest binding score was also a safe and immunogenic construct. Further studies are needed to ensure the expression and translation efficiency of the potential vaccine construct.

INTRODUCTION

The worldwide escalation of mycobacterial resistance (Dookie *et al.*, 2018; Nguyen *et al.*, 2019) [pulmonary and extrapulmonary tuberculosis (Tb)] to conventional vaccines and antibiotics poses a serious concern to modern medicine (Castan *et al.*, 2014). In 2019, the World Health Organization’s Global Tuberculosis Report estimates the occurrence of 10 million Tb cases globally. Besides this, 484,000 new cases of resistance to rifampin were also reported in a year, from which 78% of cases had multiple drug-resistant (MDR-Tb) (WHO, 2020a). It decreases the effectiveness of current treatments and causes thousands of deaths. Therefore, the need to brainstorm for this disease and its remedies still persist.

Tuberculous meningitis (TbM) is severe form of extrapulmonary Tb which is associated with high mortality of around 13% to 57% even after 12 months of anti-tubercular treatment (Donovan *et al.*, 2019; Rohlwink *et al.*, 2019; Soria *et al.*, 2019; Thwaites *et al.*, 2013). *Mycobacterium tuberculosis* (MTb) causing TbM in human is creating serious condition globally including in India as the estimated mortality is 627,000 annually (WHO, 2020b). Neuro-inflammation is a key pathological process that eventually forms millary TbM, increasing endovascular pressure, cranial nerve infarction, and obstruction in hydrocephalus that can be observed in computed tomography scan or magnetic resonance imaging (Donovan *et al.*, 2019). Other clinical signs and symptoms of TbM include recurrent periods of chills and fever, headache, abdominal pain, vomiting, altered cautiousness, nausea, hepatomegaly, and hypertension (Rohlwink *et al.*, 2019). Various host genetic factors regulating immunological pattern recognition molecules, such as Toll-like receptors polymorphisms were found to render susceptibility to TbM (Faksri *et al.*, 2018; Gagneux *et al.*, 2006; Thuong *et al.*, 2007).

*Corresponding Author
Bhartendu Nath Mishra, Department of Biotechnology, Institute of Engineering and Technology, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, India. E-mail: prof.bnmishra.iet@gmail.com

© 2022 Arpita Batta *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Vaccine and antibiotics currently used in the treatment are also facing their limitations such as increase in the probability of the emergence of MDR Mycobacterium strains which is due to long treatment duration and improper administration of drugs (Cresswell et al., 2019; Singh et al., 2019). The main drawbacks of current conventional anti-tubercular agents are the hepatotoxicity, various adverse side effects and development of MDR (Singh et al., 2019). Drug-resistant bacteria require higher doses of antibiotics that often cause intolerable toxicity (Dookie et al., 2018). Similarly, a vaccine that is currently used to cure Tb is bacillus Calmette–Guérin (BCG) produced from the live, attenuated Mycobacterium bovis. It induces some immune-activating factors and prevents TbM in children, but provide a limited contribution to the cure of patient suffering from pulmonary and latent Tb (Barry et al., 2009). Thus, to overcome the limitations of BCG and to reduce the Tb infection at initial stages, more efficient vaccines are required (Andersen and Doherty, 2005; Darrah et al., 2019; Nguipdop et al., 2016; Nieuwenhuizen and Kaufmann, 2018). The advent of reverse vaccine technology has reduced the time duration and cost of vaccine production over conventional methods. Although many vaccines including whole-cell derived vaccines, recombinant BCGs (Honda et al., 2008; WHO, 2017), recombinant viral vectors, mycobacterial extracts, protein-adjuvant combinations, and reverse vaccine-derived epitope vaccines are produced but they are still in pre-clinical phase or different phases of clinical trials (Sable et al., 2020). Two anti-Tb agent’s bedaquiline (class: diarylquinoline) and delamanid (class: nitroimidazoles) have been introduced to the market (Evans et al., 2016; Grzelak et al., 2019), but soon during the retrospective study on 24 cases of MTb in Iraq, Ghajavand et al. (2019) reported their resistant strain (Polsfuss et al., 2019; Veziris et al., 2017). Therefore, there remains an urgent need to discover new anti-Tb drugs that can shorten the treatment period and overcome the growing problem of drug resistance (Young et al., 2019).

Recently, the epitope-based vaccine designing technique has successfully used in finding the control of infectious diseases like shigellosis (Pahl et al., 2017). In this way, epitope-based vaccine designing is becoming a powerful tool in the stimulation of cellular and humoral immunity against infectious diseases (Majid and Andleeb, 2019).

Outer membrane and secreted proteins of MTb are required for membrane integrity, protection from toxins and are also necessary for pathogenicity and virulence. These proteins help in nutrition uptake as well as guide the bacterial multidrug-efflux pump to extrude the therapeutic drugs thus, enabling resistance in MTb strain when it is inside the host macrophage (Young et al., 2019). Goldberg et al. (2012) in their study discussed that the virulence decreased in peptidoglycan [outer membrane protein (OMP)] mutated strains. In another study by Stamm et al. (2019) they depicted that exoprotoome consisting of membrane as well as secreted proteins of MTb that interacts with the eukaryotic membrane to induce host dependent interaction with the Tb bacterium. Therefore, it was hypothesized that OMPs prove to be efficient target for vaccine designing.

In the present study, comparative proteome analysis and reverse-vaccine based techniques have been applied to design a chimeric multi-epitope vaccine against drug-resistant MTb.

MATERIALS AND METHODS

The complete protocol of the study is summarized as a flow chart in Figure 1.

Proteome selection

The genome of drug-sensitive and multidrug-resistant clinical strains of MTb along with reference strains of pathogenic (MTB H37rv), as well as of non-pathogenic (MTB H37ra) and BCG Bovine were retrieved from NCBI. To select a suitable genome sequence, an online database Public database for
molecular typing and microbial genome diversity (PubMLST) (Zeng et al., 2017) was used. The proteome of selected strain was retrieved from NCBI and in-silico reverse vaccinology techniques were applied in identifying the potential vaccine targets.

Prediction of novel antigenic proteins and their localization

Vaxign server (He et al., 2010) (http://www.violinet.org/vaxign/index.php) [genome and proteome-based vaccine prediction server using filters like transmembrane regions (TM), subcellular localization, adhesion properties] was used for predicting the consensus vaccine candidates (antigenic proteins). The complete proteome of the selected strain in the FASTA format was subjected and the experimental threshold value was assigned as 0.51. All the proteins with values ≥0.51 were considered to possess good adhesion property and selected as consensus antigens. To reduce any cross-reactivity between the developed vaccine and human cell, only non-homologous proteins were considered as vaccine candidates. For this, BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) analysis was carried out and the sequences having an expectation value (E-value) ≤ 10^-4 were considered as homologous sequences and were excluded from the study. Furthermore, the localization of the non-homologous above-identified proteins was sorted as extracellular, periplasmic, OMPrs (Laal and Zolla-Pazner, 2010), inner membrane, or cytoplasmic using PSORTb 3.0.2 (database for subcellular location of proteins) (Yu et al., 2010), and CELLO (predictive software determining the protein cellular location of bacteria based on support vector machine based on n-peptide composition) (Yu et al., 2006) servers.

Prediction of signal peptide antigens

Signaling nature [classical, non-classical secreted proteins as well as proteins with GPI (Glycosylphosphatidylinositol)-anchor] of the above-selected proteins were predicted by SignalP 4.1, SecretomeP 2.0, and PredGPI (Angala et al., 2014; Pierleoni et al., 2008), respectively. Based on the Sec-dependent pathway, SignalP 4.1 (Henrik, 2017) server was applied for the prediction of the classical group of secretory proteins. The positional limit for prokaryote organisms was set as 70 residues truncation and for remaining parameters, default values were considered. SecretomeP version 2.0 (Bendtsen et al., 2004, 2005) was used for the prediction of non-classical groups of secretory proteins by selecting the default values/options and all the proteins having N–N score ≥ 0.5 were considered as non-classical secreted proteins. Similarly, PredGPI (Angala et al., 2014; Pierleoni et al., 2008) was also used to predict both the presence of the GPI-anchor and the position of the ω-site using default values.

Antigenicity and allergenicity prediction of the screened proteins

After getting insight into the signaling nature of the above-selected proteins, VaxJen and AntigenPro web servers were used for the screening of consensus antigenic proteins (Doytchinova and Flower, 2007; Magnan et al., 2010) using the default parameter (threshold value > 0.7). Proteins predicted as positive by both the tools were considered as consensus antigens and were subjected to Allergen FP v.1.0 (Dimitrov et al., 2014) tool to investigate the allergic nature of the selected proteins employing the default parameters.

Characterization of physicochemical properties of proteins

TM of the non-allergic proteins were checked using the Transmembrane hidden Markov model (TMHMM) method (Krogh et al., 2001). ABTGP PRO server (Cheng et al., 2005) (http://scratch.proteomics.ics.uci.edu/) was used to characterize whether a selected protein sequence belongs to transmembrane protein or not. This server also described the probabilities of TM as an alpha-helical or a beta barrel transmembrane protein. As the protein should be soluble in the cytoplasm during over expression in Escherichia coli during large scale vaccine production; therefore, the SOLPRO (Magnan et al., 2009) tool was used to depict the solubility of the selected proteins. Finally, the sequence similarity between the selected OMPs of MTb and its intraspecies, i.e., MTb complex (MTbC) was also observed by the Ortho MCL database (Chen, 2006).

T-cell (MHC-I, MHC-II) and B-cell epitopes prediction

For potent epitopes identification, T-cell epitope analysis was performed using four servers (i) Immune Epitope Database (IEDB) Major Histocompatibility Complex (MHC-I) prediction server, (ii) Peptides Naturally Processed by Major Histocompatibility Complex (MHC-NP), (iii) NetCTLPan1.1, and (iv) NetMHCpan 3.0. The IEDB (http://tools.immuneepitope.org/processing/) MHC-I prediction server with default parameters was used to identify the epitopes having the possibility to interact with MHC-I proteins. MHC elution-pattern-based server MHC-NP (http://tools.immuneepitope.org/mhcnp/) was used to predict the probability of a selected peptide can be processed naturally or not. Similarly, the NetCTLPan1.1 server (http://www.cbs.dtu.dk/services/NetCTLPan/) was used to predict the cytotoxic lymphocyte epitopes of proteins. Finally, NetMHCpan3.0 server (http://www.cbs.dtu.dk/services/NetMHCpan/) was used to predict the ability of peptide-MHC class I binding.

Consensus T-cell epitopes having the binding ability to MHC class II molecules were identified by four prediction servers like IEDB, MHC Class-II (http://tools.iedb.org/mhcii/), Propred (https://webs.iiitd.edu.in/raghava/propred/index.html), and NetMHC-II (http://tools.iedb.org/services/NetMHCIId-2.2/) under default parameter conditions.

Similarly, B-cell epitopes prediction was done by ABCPred (https://webs.iiitd.edu.in/raghava/abcpred/ABCsubmission.html), the BCpred (https://webs.iiitd.edu.in/raghava/bcpred/bcpred_submission.html), and IEDB server (http://tools.iedb.org/bcell/) with cut-off score value >0.8. Common epitopes in all three servers were considered for further studies.

Epitope characterization

Above predicted epitopes were compared and the common antigenic epitopes were subjected to the IEDB server to identify the epitopes having immunogenic property. The epitopes showing a positive immunogenicity score were shortlisted for antigenic analysis using VaxJen version 2.0 (Doytchinova and Flower, 2007). According to the criteria described by Khan et al. (2019), peptides showing score value ≥1.0 were selected for the toxicity prediction by the ToxinPred tool.
For the chimeric vaccine, epitopes should be hydrophilic (present on the surface), otherwise they will not be able to initiate the immune reaction in the host cell. The epitope hydropathy was analyzed through the grand average of hydropathy (GRAVY) score analysis through the ProtParam tool. The GRAVY value of epitope was calculated by using the following calculation:

\[G = \frac{\varepsilon}{N} \]

\(G = \) grand average of hydropathy value; \(\varepsilon = \) hydropathy values of amino acids; \(N = \) number of amino acid residues in a given protein

A positive value of GRAVY score indicates the hydrophobic nature and a negative value suggests the hydrophilic nature of proteins.

“MHC restricted allele prediction tool” of the IEDB server was used to identify the MHC class I and II-restricted epitopes. Identified epitopes were further crosschecked by the MHCellucrator 2.0 server to confirm the above prediction (Thomsen et al., 2013).

Construction of chimeric vaccine

The chimeric vaccine sequences were designed manually using the results of epitopes analysis. Overlapping sequences of epitopes were merged and three chimeric vaccine candidates (VC1, VC2, and VC3) were constructed by the protocol described by Solanki et al. (2019). Briefly, all the selected epitopes were joined using universal amino acid linker sequences (HEYGAEALERAG and GGGG). Further to enhance the Immunogenicity of constructs distinct adjuvant were added using “EAAAK” linkers at both the termini (N and C). The adjuvant used for VC1, VC2 and VC3 were 50s ribosomal L7/L12 protein (Lee et al., 2014), beta-defensin and HBHA respectively. Further to enhance the vaccine competence, a sequence of 13 amino acid universal epitope (AKVAAWTLKAAC) also known as non-natural pan-DR (PADRE) (Alexander et al., 2000) was used.

Characterization of vaccine constructs

The above three vaccine constructs were analyzed according to antigenicity, allergenicity, and solubility prediction. For the prediction of allergenic nature, the AlgPred server (Marti et al., 2007) was used, whereas the antigenicity of the constructs was predicted using ANTIGENpro (Magnan et al., 2010) and VaxiJen 2.0 server. Solubility and corresponding probability (>=0.5) of the vaccine constructs were predicted by the SOLpro server (Magnan et al., 2009).

Physiochemical properties [amino acids count, Isoelectric Point (PI) values, their molecular weight, hydropathicity GRAVY score, aliphatic, and instability index] of the vaccine constructs were characterized using the Expsys ProtParam server (Gasteiger et al., 2005). The 2nd structure of all three vaccine constructs was predicted by PSIPRED v3.3 program (McGuffin et al., 2000). Furthermore, the tertiary structures of the vaccine constructs (VC1, VC2, and VC3) were predicted by the Phyre2 (Kelley et al., 2015) online tool. The structures were saved in .pdb file format.

Molecular docking study

Interaction studies of vaccine constructs (VC1, VC2, and VC3) with 10 different HLA alleles (Axelsson et al., 2015) [(HLA-A*02:01(6EQA), HLA-A*24:02 (4F7M), HLA-B*15:01 (1XR8), HLA-B*35:01 (1A1N), HLA-B*39:01 (4O2E), HLA B*44:02 (1N2R), HLA-B*58:01 (5IM7), HLA-DR2 (DRA*0101, DRB1*1501) (1BX2), HLA-DRA1*0101/DRB5*0101 (1H15) and HLA-DQ2.3 (DQA1*03:01/DQB1*02:01) (4D8P)] was performed using the PatchDock server. 3D structures of all the HLA alleles were obtained from the protein data bank Research Collaboratory for Structural Bioinformatics - Protein Data Bank (RCSB-PDB) and saved in the .pdb file format. The best 10 solutions to the PatchDock were further refined by FireDock.

Codon optimization and in-silico cloning of vaccine construct

Codon optimization was performed by Java Codon Adaptation Tool (JCAT) to enhance the production of heterologous protein (vaccine construct) in E. coli (Chauhan et al., 2019). During optimization, the rho-independent transcription terminators, prokaryotic ribosomal binding sites, and few restriction sites were kept constant. The expression of the vaccine construct was predicted by the Snapgene tool after cloning the gene sequence of a construct in E. coli pET28a vector (Solanki et al., 2019).

RESULTS AND DISCUSSION

Comparative subtractive proteomic approach to screen the MTb strains

The complete genome sequences of seventeen MTb strains were compared by PubMLST and the results are summarized in Table 1. Out of 17 strains, 6 having drug-resistance were found suitable for the study. Furthermore, among the six selected strains, only three clinical strains showing their isolation source from the cerebrospinal fluid sample having a greater possibility to possess MTb virulence were screened. The proteome of possible three clinical strains were further analyzed for similar proteins using multiple alignment tools (data not shown). Finally, to reduce redundancy and based on alignment, MLST values, proteome size the MTb strain LJ319 (NZ_CP026742.1) having 4,025 proteins was selected for the study (Hatolkar et al., 2018).

Prediction of novel antigens

To identify the potential proteins for vaccine construct, all the 4,025 proteins of reference proteome (LJ319) were filtered according to their subcellular localization using vaxign, CELLO and PSORTb tool. Out of 4,025 proteins, 982 different proteins having their localization either in the periplasmic or the extracellular or outer membrane of the bacterial cell were found suitable for the study (data not shown). The rest of the proteins that were present either in the cytoplasm or inner cytoplasmic membrane region were excluded from the study. Cellular localization of bacterial Possibly surface exposed (PSEs) and outer membrane plays an essential role in pathogenesis such as drug efflux pumps, permeability barrier; membrane protein also helps in integrity, active transport, and diffusions of nutrients (Angala et al., 2014). Sajjad et al. (2020) during the study of Acinetobacter nosocomialis also used the above tool for designing multi epitope vaccine which depicts the authenticity of the results obtained through the tools.

Above screened 982 proteins were examined for their adhesion nature through vaxign server, and only 165 OMPs were found to possess the adhesion property. Adhesion and signal
Table 1. Complete genome sequences of seventeen M. tuberculosis strains compared by PubMLST (Multi Locus Sequence Typing).

S.No.	Accession No.	Strain Name	Isolated Location	Sample Type	Drug Resistants	Proteome	MLST
1	NC_000962.3	H37Rv	USA	Sputum	-	3906	ST215
2	NC_009525.1	H37Ra	USA	Sputum	-	4127	ST215
3	NC_008769.1	M. bovis BCG Pasteur 1173P2	France	Bovine	-	3977	ST268
4	NC_017522.1	CCDC5180	China-Beijing Family Lineage	Sputum	+	4048	ST276
5	NZ_AP018033.1	HN-024	Vietnam-East African-Indian Family Lineage	Sputum	-	4062	ST215
6	NZ_CP028428.1	CAS	India	CSF	+	4014	ST276
7	NZ_CP026742.1	LJ319	India	CSF	+	4025	ST276
8	NZ_CP010968.1	PR10	Malaysia	CSF	+	4015	ST215
9	NZ_CP019612.1	H107	Hong Kong	CSF	-	4118	ST215
10	NZ_CP010895.1	PR08	Malaysia	CSF	-	3951	ST215
11	NZ_CP009186.1	TRS2	USA	CSF	-	4066	ST215
12	NZ_CP023170.1	C3	India	CSF	-	3922	ST215
13	NZ_CP029065.1	TBMENG-03	India	Sputum/CSF	-	4045	ST215
14	NZ_CP018778.1	DK9897	Denmark	Sputum	-	4098	ST319
15	NZ_CP029326.1	LJ338	India	Sputum	+	4023	ST276
16	NZ_CP023169.1	S3	India	Sputum	-	3980	ST215
17	NC_017524.1	CTRI-2	Russia	Sputum	+	4098	ST279

Table 4. Results of SignalP, SecretomeP 2.0, and PredGPI for the study; summarized in Table 2.

Characterization of physiochemical properties of proteins

The identification of TM α-helices by TMHMM method suggests that all the 36 OMPs containing either 0 or 1 helix, confirming their presence in the outer membrane region (Supplementary Table 3). Hence, the results of the TMHMM method validate the finding of vaxign, CELLO and PSORTb tool. Furthermore, when all the 36 OMPs were subjected to the AllergenPro web server to find out if their exist any allergic tendency, then 1 OMP (WP_003401880.1) was found to pose allergic behavior in the host cell, and therefore excluded from the further studies. The solubility of the above OMPs were examined through SOLPro suggesting that out of 35 OMPs, 22 OMPs were soluble whereas, rest 13 OMPs having insoluble nature during overproduction in vitro were excluded from the race of potential vaccine candidates (Supplementary Table 3).

To reduce the pathogenesis of TbM infection, a potential vaccine candidate should have a tendency to also identify the associated intra-pathogenic species. Therefore, the presence of the orthologous sequences of the MTbC in the above selected 22 OMPs were detected by the Ortho MCL server and the results are summarized in Supplementary Table 4. Results suggest that out of 22 OMPs, 6 proteins (WP_031663355.1, WP_031661316.1, WP_016330440.1, WP_009938581.1, WP_003910913.1 and WP_003900236.1) were not common in all the 5-members of MTbC, therefore, were excluded from the potential vaccine candidates list and the filtered 16 OMPs were selected for further studies. Palucci et al. (2016) observed that even a few GGA-GGN repeats of PE/PPE proteins can play an important role in Tb pathogenesis and provide immunity to host by activating the TLR2-dependent MTb entry into macrophages. Hence, suggests that the family group such as PPE, PE and PE_PGRS proteins influences the antigenic variation and immune system evasion. In another study Ocampo et al. (2014) depicted that antigen Rv1911c (LppC), are lipoproteins representing an important protein present on the cell envelope thereby enhancing MTb pathogen’s virulence. Therefore, considering their important feature these proteins were
Table 2: Proteome analysis of LJ319 (NZ_CP026742.1) strain of *M. tuberculosis* and outer membrane protein characterization using different servers. 1: Localization using CELLO, PSORBTb; 2: Adhesion property using Vaxign server; 3,4,5: Protein signaling and GPI-anchor by SignalP, SecretomeP and PredGPI; 6,7: Antigenicity prediction using Vaxijen, AntigenPro; 8: Allergenicity by AllergenPro Server.

S.No.	Protein Accession	Protein Name	Localization1	Adhesin Probability2	SignalP3	SecretomeP4	PredGPI5	VaxiJen6	AntigenPro7	AllergenPro8
1	WP_104857305.1	PE family protein	Cytoplasmic	0.651	0.476	-	-	1.375	0.716	NON-ALLERGEN
2	WP_104857303.1	CAP domain-containing protein	Unknown	0.530	0.781	0.609	-	0.737	0.915	NON-ALLERGEN
3	WP_078800718.1	MULTISPECIES: PE family protein, partial	Cytoplasmic Membrane	0.695	0.495	-	-	1.013	0.769	NON-ALLERGEN
4	WP_031744040.1	PE family protein, partial	Cytoplasmic Membrane	0.637	-	0.519	0.341	1.192	0.732	NON-ALLERGEN
5	WP_031666010.1	PE family protein	Cytoplasmic Membrane	0.651	0.567	0.857	-	1.983	0.734	NON-ALLERGEN
6	WP_031663355.1	YncE family protein, partial	Extracellular	0.533	-	0.868	-	1.273	0.867	NON-ALLERGEN
7	WP_031661316.1	MULTISPECIES: hypothetical protein	Unknown	0.661	0.494	-	-	Y	0.871	0.928439
8	WP_031647515.1	PE domain-containing protein	Cytoplasmic Membrane	0.610	0.595	0.641	-	0.873	0.922	NON-ALLERGEN
9	WP_016330440.1	PE family protein	Cytoplasmic Membrane	0.717	0.472	0.870	-	2.222	0.893	NON-ALLERGEN
10	WP_010886074.1	MULTISPECIES: PE family protein	Cytoplasmic Membrane	0.680	-	0.839	-	1.985	0.727	NON-ALLERGEN
11	WP_009938654.1	MULTISPECIES: PE family protein	Unknown	0.686	0.475	0.926	-	2.081	0.750	NON-ALLERGEN
12	WP_009938581.1	PE family protein	Extracellular	0.722	-	0.871	-	2.114	0.765	NON-ALLERGEN
13	WP_003918025.1	Mce associated membrane protein	Unknown	0.551	-	0.754	-	0.809	0.937	NON-ALLERGEN
14	WP_003910913.1	MULTISPECIES: PE family protein	Extracellular	0.701	0.566	0.831	-	2.093	0.817	NON-ALLERGEN
15	WP_003910446.1	MULTISPECIES: PE family protein	Extracellular	0.709	-	0.885	-	1.905	0.704	NON-ALLERGEN
16	WP_003909110.1	MULTISPECIES: hypothetical protein	Unknown	0.563	-	0.886	-	0.786	0.957	NON-ALLERGEN
17	WP_003905853.1	resuscitation-promoting factor rpfE	Unknown	0.593	0.716	0.759	-	0.794	0.928	NON-ALLERGEN
18	WP_003901898.1	DUF3060 domain-containing protein	Extracellular	0.575	0.638	0.827	-	0.961	0.894	NON-ALLERGEN
19	WP_003901751.1	MULTISPECIES: type VII secretion system ESX-1 associated protein EspJ	Unknown	0.696	-	0.833	-	0.743	0.949	NON-ALLERGEN
20	WP_003901367.1	hypothetical protein	Unknown	0.608	0.564	0.871	-	0.815	0.915	NON-ALLERGEN
21	WP_003900461.1	hypothetical protein	Unknown	0.516	-	0.619	-	0.817	0.865	NON-ALLERGEN

Continued
S.No.	Protein Accession	Protein Name	Localization	Adhesin Probability	SignalP3	SecretomeP4	PredGPI5	VaxiJen6	AntigenPro7	AllergenPro8
22	WP_003900236.1	MULTISPECIES: phosphate-binding protein PstS	Unknown	0.555	0.578	0.632093	Y	0.7332	0.860693	NON-ALLERGEN
23	WP_003900226.1	MULTISPECIES: PPE family protein PPE13	Cytoplasmic Membrane	0.573	-	0.714397	-	0.7535	0.650685	NON-ALLERGEN
24	WP_003898733.1	MULTISPECIES: hypothetical protein	Cytoplasmic Membrane	0.552	-	0.751933	-	0.7079	0.917996	NON-ALLERGEN
25	WP_003898652.1	MULTISPECIES: phosphate-binding protein PstS	Extracellular	0.689	0.567	0.882589	-	0.7777	0.938864	NON-ALLERGEN
26	WP_003420544.1	MULTISPECIES: hypothetical protein	Unknown	0.565	0.578	0.821116	-	1.1519	0.954752	NON-ALLERGEN
27	WP_003416124.1	MULTISPECIES: hypothetical protein	Cytoplasmic Membrane	0.584	-	0.971893	-	0.7155	0.890375	NON-ALLERGEN
28	WP_003409568.1	MULTISPECIES: hypothetical protein	Unknown	0.661	-	0.669988	-	0.8804	0.908044	NON-ALLERGEN
29	WP_003409409.1	MULTISPECIES: hypothetical protein	Cytoplasmic Membrane	0.550	0.588	0.605829	Y	0.7521	0.891223	NON-ALLERGEN
30	WP_003407152.1	MULTISPECIES: membrane protein	Unknown	0.569	-	0.939834	-	0.7517	0.938426	NON-ALLERGEN
31	WP_003405142.1	MULTISPECIES: FmdB family transcriptional regulator	Unknown	0.692	-	0.854831	-	1.2480	0.765297	NON-ALLERGEN
32	WP_003404775.1	MULTISPECIES: phosphate-binding protein PstS	Unknown	0.622	0.546	0.876684	-	0.8066	0.936169	NON-ALLERGEN
33	WP_003402239.1	MULTISPECIES: PPE family protein PPE10	Cytoplasmic Membrane	0.558	-	0.742658	-	0.7709	0.863596	NON-ALLERGEN
34	WP_003401880.1	MULTISPECIES: hypothetical protein	Extracellular	0.602	-	0.918108	-	2.1849	0.893926	ALLERGEN
35	WP_003400534.1	MULTISPECIES: single-stranded DNA-binding protein	Cytoplasmic	0.574	-	0.541185	-	0.7244	0.841163	NON-ALLERGEN
36	WP_003399940.1	MULTISPECIES: type VII secretion system ESX-1 WXG100 family target CFP-10	Extracellular	0.512	-	0.855303	-	0.7826	0.891476	NON-ALLERGEN
Table 3. Screening of potential vaccine candidates for transmembrane regions1,2 and solubility property3 during over-expression in plasmid vector in *E. coli* during vaccine production.

S.No.	Protein Accession	THMHH1	Trans-membrane helices	SolPro3
1	WP_104857305.1	Non Transmembrane protein	0	SOLUBLE
2	WP_104857303.1	Non Transmembrane protein	0	INSOLUBLE
3	WP_078800718.1	Non Transmembrane protein	0	SOLUBLE
4	WP_031744040.1	Non Transmembrane protein	0	SOLUBLE
5	WP_031666010.1	Non Transmembrane protein	0	INSOLUBLE
6	WP_031663355.1	Non Transmembrane protein	0	SOLUBLE
7	WP_031661316.1	Non Transmembrane protein	0	SOLUBLE
8	WP_031647515.1	Non Transmembrane protein	0	SOLUBLE
9	WP_016330440.1	Non Transmembrane protein	0	SOLUBLE
10	WP_010886074.1	Non Transmembrane protein	0	INSOLUBLE
11	WP_009938654.1	Non Transmembrane protein	0	SOLUBLE
12	WP_009938581.1	Non Transmembrane protein	0	SOLUBLE
13	WP_003918025.1	Non Transmembrane protein	0	INSOLUBLE
14	WP_003910913.1	Non Transmembrane protein	0	SOLUBLE
15	WP_003910446.1	Non Transmembrane protein	0	SOLUBLE
16	WP_003901367.1	Non Transmembrane protein	0	SOLUBLE
17	WP_003905853.1	Non Transmembrane protein	0	SOLUBLE
18	WP_003901898.1	Non Transmembrane protein	0	INSOLUBLE
19	WP_003901751.1	Non Transmembrane protein	0	INSOLUBLE
20	WP_003901367.1	Non Transmembrane protein	0	SOLUBLE
21	WP_003900461.1	Non Transmembrane protein	0	SOLUBLE
22	WP_003900236.1	Non Transmembrane protein	0	SOLUBLE
23	WP_003900226.1	Non Transmembrane protein	0	SOLUBLE
24	WP_003898733.1	Non Transmembrane protein	0	INSOLUBLE
25	WP_003898652.1	Non Transmembrane protein	0	INSOLUBLE
26	WP_003420544.1	Non Transmembrane protein	0	INSOLUBLE
27	WP_003416124.1	Non Transmembrane protein	1	SOLUBLE
28	WP_003409568.1	Non Transmembrane protein	0	SOLUBLE
29	WP_003409409.1	Non Transmembrane protein	1	SOLUBLE
30	WP_003407152.1	Alpha Helical Transmembrane protein	1	INSOLUBLE
31	WP_003405142.1	Non Transmembrane protein	0	SOLUBLE
32	WP_003404775.1	Non Transmembrane protein	0	SOLUBLE
33	WP_003402239.1	Non Transmembrane protein	0	INSOLUBLE
34	WP_003401880.1	Non Transmembrane protein	0	INSOLUBLE
35	WP_003400534.1	Non Transmembrane protein	0	INSOLUBLE
36	WP_003399940.1	Non Transmembrane protein	0	INSOLUBLE
including among above selected 16 OMPs (Abraham et al., 2018; Kavvas et al., 2018; Phelan et al., 2016).

T-cell (MHC-I, MHC-II) and B-cell epitopes prediction

All the 16 OMPs when subjected to IEDB server for epitopes prediction, then based on higher affinity [Inhibitory Concentration (IC) < 50 nM] and good percentile rank (≤0.2), 221 MHC-I, 69 MHC-II, and 81 B-cell epitopes were filtered. To further refine the IEDB prediction for MHC-I and II binding epitopes, MHC-NP, netCTL, netMHC, and Propred tools were used. As a result, 159 MHC-I and 41 MHC-II epitopes, found common in the results of these tools were selected for characterization studies. Similarly, B-cell epitopes were filtered by IEDB, BepiPred linear epitope prediction servers, BCPREDS and ABCPred tools suggesting 31 common B-cell epitopes were suitable for the study.

Epitope characterization

Immunogenicity, antigenicity and toxicity prediction of epitopes

The above selected MHC-I (159), MHC-II (41), and B cell epitopes (31) were subjected to the IEDB immunogenicity prediction tool to check immunological behavior of the epitopes. Using immunogenicity score (>0.038 cutoff value), 98 and 34 MHC-I and MHC II epitopes respectively out of 159 MHC-I and 41 MHC-II epitopes, were picked for further studies that showed higher potency to stimulate naïve T cells and also to induce cell-mediated immunity, results are in (Supplementary Table 5). Furthermore, the antigenicity of selected MHC I and II epitopes was evaluated by the VaxiJen web server. A total of 51 (29 MHC-I + 22 MHC-II) epitopes containing antigenicity values more than 0.7 were considered as the potent epitopes (Supplementary Table 5). Similarly, out of 31 B-cell epitopes, only 19 were found immunogenic and antigenic epitopes (Supplementary Table 5).

In the next step, cross-reactivity induced by epitopes in the host tissue was figured out through the ToxinPred server and all the 70 epitopes were found to be non-toxic.

Physiochemical analysis of epitopes

The physiochemical properties of epitopes were explored by GRAVY analysis through the ProtParam tool. According to the considered criteria, 40 epitopes (13 from MHC I, 12 from MHC II, and 15 from B cell) having VaxiJen score value >1.0 were subjected to the GRAVY analysis. Among 40 epitopes, only 26 epitopes (MHC I: 4, MHC II: 7, and B cell: 15) having negative score values were predicted as hydrophilic. Above screened hydrophilic epitopes are possibly present in the outer surface, and therefore have a greater tendency to initiate the immunogenicity

Table 4: Screening of orthologs associated intra-pathogenic species in the Mycobacterium tuberculosis complex (MTbC) using OrthoMCL.

S.No.	Protein Accession	M. bovis	M. africanum	M. kansasii	M. microti	M. canettii
1	WP_104857305.1	A0A0H3M749	A0A1201X13	X7ZDK8	A0A1201WV9	G0TP77
2	WP_078800718.1	A0A1R3XWC7	A0A1201ZZ7	X7Y8A8	A0A109SL38	G0TN80
3	WP_021744040.1	A0A1A9E8H7	A0A109SXX1	A0A1X0KMN3	A0A109SPU3	G0TM4
4	WP_021663355.1	A0A1A9E4Q1	A0A109SVA7	-	A0A109SLK3	G0TG89
5	WP_021661316.1	A0A1A9E4Q4	A0A109SV94	X7ZK8	A0A109SLK3	G0TG89
6	WP_021664515.1	A0A1A9EC74	-	U5WT40	A0A109SM93	G0TG84
7	WP_021630440.1	A0A1A9EC53	A0A109T0N7	U5WT45	A0A109SRH6	L0PZ0
8	WP_009938654.1	A0A1A9EA0	-	A0A163RQ5L8	A0A109SCH3	G0TPF2
9	WP_009938581.1	A0A1A9E9H2	A0A109SYL6	U5WZ44	-	G0TPW3
10	WP_003910913.1	A0A1A9E7G2	A0A1201J183	X7Z3E9	A0A109SNF0	G0RK73
11	WP_009091110.1	A0A0H3MAA2	A0A109T229	A0A1V3WW93	A0A1201Z35	G0TL77
12	WP_00905853.1	A0A109S8N2	A0A109SYLO	A0A164DV1	A0A1201X77	G0TPD7
13	WP_00901367.1	A0A1A9E8T0	A0A1201T3	X7Z041	A0A109SPE4	G0TN11
14	WP_00900461.1	A0A1A9E6X4	A0A109SYE1	A0A1X0KN27	A0A1201X73	G0TMK9
15	WP_00900236.1	A0A1A9E5M0	A0A109SUZ4	-	B2MV3	G0TFS8
16	WP_0090226.1	A0A0A9E4C7	A0A109SV30	X7ZLG4	A0A109SM5	G0TFM5
17	WP_003146124.1	A0A0H3ME00	A0A1202P4	A0A1X0KXC9	A0A109SRH5	G0TGV5
18	WP_003409568.1	P67225	A0A1201C8	X7XDD2	A0A109SNM9	G0TLM5
19	WP_003409490.1	A0A0KHXD6	A0A109SX79	X7ZX04	A0A1201WZ7	G0TLE4
20	WP_003405142.1	A0A0H3M4Y6	A0A109SV46	A0A1X0KR97	A0A109SLQ5	G0TGA3
21	WP_003404775.1	A0A0H3MBK5	A0A109SUV6	A0A1X0KR45	A0A109SLR5	G0TFS2

[Note: The table includes orthologs associated with intra-pathogenic species in the Mycobacterium tuberculosis complex (MTbC) using OrthoMCL.]
in the host cell. Hence, chimeric vaccine constructs were designed using all the 26 epitopes.

MHC restriction and cluster analysis of selected epitopes

After physiochemical analysis, the selected epitopes were further validated for the MHC interaction using the MHC cluster and the results are shown as a heat map (Fig. 2) and dynamic tree. The epitopes are clustered according to the interaction with HLA. The red color suggests strong interaction, while the yellow color indicates weak interaction. Selected 4 MHC I and 7 MHC II epitopes showed strong interaction with HLA genes.

Construction of chimeric vaccine

All the shortlisted 26 epitopes {4 MHC I epitopes (\texttt{CESGGNWSI}, \texttt{WPIRAPSRL}, \texttt{HYRFTLYHL}, and \texttt{RADRARNTY}), 7 MHC II epitopes (\texttt{YGNGGPGGA}, \texttt{WIYGHGGHG}, \texttt{VEGHTHTIS}, \texttt{IEGDDTDRR}, \texttt{VEGHTHTIS}, \texttt{YGNGGPGGA}, and \texttt{VEGHTHTIS}), and 15 B-cell epitopes (\texttt{AGAIGNGGDGGNGGTS}, \texttt{GSGGDGGNGGNAGLIG}, \texttt{GTGGNGGLLLGFNGTN}, \texttt{GGAGGNGGWLYGNGGP}, \texttt{GLLYGNGGNGGAGDTA}, \texttt{GGAGGAGGRGGWLVGN}, \texttt{GHAGGAGGAGGAGGRG}, \texttt{GGTGGDGGDGGHAGTG}, \texttt{NGGIGGDGAGGGNATS}, \texttt{GGNGGAGGDAGHGGTG}, \texttt{GGAGGNGATGGTGVGN}, \texttt{AGGGGGGTTPTGYLGP}, \texttt{GAGGGDVGGGGAGGTT}, \texttt{GNGNDGNTNFGSGNAG}, and \texttt{GGVGNARADRA RNTYT113)} were used to design the chimeric vaccine. Two linkers HEYGAERALER and GGGS were used to join the epitopes. 50S ribosomal protein L7/L12 (rplL) (Accession no. WP_003403353.1), beta-defensin (Accession no. WP_031737436.1), HBHA (Accession no. WP_094028633.1), and PADRE (AKVAWTLKAAAC) were successfully used as adjuvant (Lee et al., 2014) and linker (Alexander et al., 2000), respectively, for the construction of vaccine candidates by a linker “EAAAK” at both termini (N and C). Satyam et al. (2020) also used same adjuvant during the vaccine construction against Mycobacteroids. VC1, VC2, and VC3 prove their efficacy through their antigenic, allergenic, and toxicity analysis.

Characterization of vaccine constructs

Antigenicity, allergenicity, and solubility prediction

Antigenicity, allergenicity, and solubility of VC1, VC2, and VC3 were predicted by the ANTIGENpro, VaxiJen 2.0, AlgPred, and SOLpro server. The antigenicity score value >0.569 in ANTIGENpro and >1.5596 in VaxiJen 2.0 indicates a satisfactory antigenic property of all the three vaccines constructs. AlgPred server predicted the non-allergenic behavior of VC1, VC2, and VC3. Similarly, SOLpro showed good solubility (>0.9820) of these vaccine constructs during their heterologous expression in the \textit{E. coli}.

Physicochemical analysis of designed vaccine constructs

ProtParam server suggests the molecular weight of all vaccine constructs ranges between 59 and 72 kDa. All three vaccine constructs are steady in the corresponding pH (Table 6). A negative value (−0.544) of GRAVY (a hydrophilic index) analysis suggests...
Table 5. Identification of potent MHC I, MHC II and B cell epitopes and their characterization such as antigenicity, immunogenicity toxicity and hydrophilicity was performed using various servers.

S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score			
1	WP_104857305.1	108	116	AINAPTLAL	HLA-B*07:02 0.26	H-2-Db 0.8179	HLA-B*07:02 0.80	HLA-A*32:01 0.2	198.9	1.1606	0.07651	Non-Toxin	1.3			
					HLA-A*02:03 1.2	HLA-B*07:02 0.5356	HLA-B*07:02 0.4701	HLA-B*15:01 0.8179	0.2							
					HLA-B*44:03 0.2369	HLA-B*53:01 0.3353	HLA-A*01:01:10 0.4631	HLA-B*15:01 0.1159	0.11							
					HLA-B*35:01 0.0648	HLA-A*02:01 0.1017	HLA-A*01:01:10 0.4631	HLA-B*35:01 0.0582	25.7	1.2638	0.10203	Non	0.66			
2	WP_078800718.1	79	87	ALSAGGAY	HLA-B*15:01 0.07	HLA-B*15:01 0.7221	HLA-B*15:01 0.10	HLA-A*01:07 0.80	10.7	0.7437	0.11191	Non-Toxin	1.56			
					HLA-B*35:01 0.38	HLA-B*53:01 0.3556	HLA-B*15:01 0.0210	HLA-A*01:10 0.40	15.58							
					HLA-B*44:03 0.3559	HLA-B*53:01 0.3082	HLA-A*26:01 0.30	HLA-A*01:10 0.40	0.7437	0.11191						
3	WP_031744040.1	46	54	EVSVAISAL	HLA-B*53:01 0.53	HLA-B*53:01 0.5559	HLA-B*15:01 0.10	HLA-A*26:01 0.0785	154.2	0.7269	0.03446	Non	1.69			
					HLA-B*35:01 0.3559	HLA-B*44:03 0.3559	HLA-A*26:01 0.30	HLA-A*01:10 0.40	0.7437	0.11191						
					HLA-B*07:02 0.0542	HLA-B*07:02 0.0542	HLA-A*26:01 0.30	HLA-A*01:10 0.40	0.7437	0.11191						
S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score			
-------	---------------	-------	------	----------	-------	--------	-----------	-----------	------	---------	------------	----------	-------------			
47		55		VSVAISALF	HLA-B*44:03 0.48	HLA-B*58:01 0.05	HLA-B*15:01 0.20	HLA-B*44:03 0.4831	H-2-Db 0.4565	HLA-B*53:01 0.4089	HLA-B*57:01 0.2049	H-2-Kb 0.1861	HLA-B*35:01 0.0636	HLA-B*53:01 0.0412	HLA-B*15:01 0.2037	2.39
127		135		ALNAGAGSY	HLA-B*44:03 0.29	HLA-B*53:01 0.62	HLA-B*35:01 0.15	HLA-B*44:03 0.7629	H-2-Db 0.3628	HLA-B*35:01 0.1000	H-2-Kb 0.0703	H-2-Kb 0.0638	HLA-B*44:03 0.5490	HLA-B*53:01 0.0533	HLA-B*35:01 0.0463	0.31
8	WP_009938654.1	43	51	GADEVSAAL	HLA-B*44:03 0.27	HLA-B*07:02 0.61	HLA-B*53:01 0.5490	HLA-B*44:03 0.2987	H-2-Db 0.2455	HLA-A*02:01 0.1771	HLA-B*07:02 0.0761	H-2-Kb 0.0592	HLA-B*35:01 0.0533	HLA-B*39:01 0.4096	0.58	
210		218		GAGGAAGLW	HLA-B*53:01 0.08	HLA-B*58:01 0.24	HLA-B*53:01 0.9008	HLA-B*58:01 0.80	HLA-B*53:01 0.9008	HLA-B*58:01 0.80	HLA-B*57:01 0.2541	HLA-B*44:03 0.5451	HLA-B*57:01 0.2541	HLA-B*58:01 0.2554	0.74	
S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score			
-------	---------------	-------	------	----------	----------	--------------------	-----------	-----------	------	---------	------------	----------	-------------			
79	WP_003910461	66	74	ALTGAGSY	HLA-B*44:03:02	HLA-B*44:03	HLA-B*15:01	48.3	1.1445	0.04864		0.38				
67	WP_003905853.1	96	104	ELSAHAVAF	HLA-B*53:01:07	HLA-B*53:01	HLA-A*26:01	590.8	0.8438	0.1117	n	0.97				
117	WP_003901367.1	106	114	CESGGNWSI	HLA-B*53:01:05	HLA-B*53:01	HLA-B*40:01	72.6	0.9465	0.12073	n	-0.78				
13		113	121	WSINTGNGY	HLA-A*26:01:02	HLA-B*15:01	HLA-A*15:01	72.6	0.9465	0.12073	n	-0.78				
S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score			
-------	---------------	-------	------	--------------	--------	--------------	-----------	-----------	-------	---------	-----------	----------	-------------			
15	WP_003900461.1	105	113	ALSGALGGV	HLA-A*02:01 0.28	HLA-A*02:01 0.2358	HLA-A*02:01 0.40	HLA-A*02:01 0.4591	34.6	0.8589	0.05646	n	1.49			
17		25		RPGPVPLAL	HLA-B*07:02 0.26	HLA-B*07:02 0.5260	HLA-B*07:02 0.10	HLA-B*07:02 0.0182	8.8	0.9348	0.0431	n	0.43			
98	WP_003900461.1	104	112	RAATAHPAL	HLA-A*02:01 0.40	HLA-B*07:02 0.80	HLA-B*07:02 0.2968	HLA-B*39:01 0.2162	100.2	1.0803	0.19336	Non-Toxic	1.31			
409	WP_003900461.1	417		WRTRATTAR	HLA-B*27:05 0.80	HLA-B*27:05 0.1382	HLA-B*27:05 0.80	HLA-B*27:05 0.4276	129.2	0.8849	0.19494	Non-Toxic	-1.43			
S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score			
-------	--------------	-------	------	----------	------	--------	-----------	-----------	------	---------	------------	----------	-------------			
398	WP_003416124.1	24	32	VPRAFLAV	HLA-B*44:03 0.28	HLA-B*44:03 0.2598	HLA-A*02:01 0.80	HLA-A*02:01 0.1168	10.0	1.0189	0.24437 Non-Toxic	3.19				
92	GAKAAAAY	100	100	WPRAFLAV	HLA-B*44:03 0.65	HLA-B*44:03 0.6895	HLA-B*15:01 0.30	HLA-B*15:01 0.1807	36.8	0.9617	0.10144 Non-Toxic 0.84					
18	WP_003409568.1	25	33	WPRAFLAV	HLA-B*53:01 0.51	HLA-B*53:01 0.6969	HLA-B*53:01 0.40	HLA-B*53:01 0.2441	40.0	1.2067	0.21277 Non-Toxic 2.62					
19	WP_003409568.1	158	166	WPRAFLAV	HLA-B*44:03 0.35	HLA-B*44:03 0.2455	HLA-A*24:02 0.15	HLA-A*24:02 0.1941	89.9	1.2841	0.1777 Non-Toxic -0.42					
MHC I Epitopes

S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score					
20	WP_003409409.1	104	112	RADRANTRY		HLA-B*53:01	0.96	HLA-B*53:01	0.5906	HLA-A*01:01	0.30	HLA-A*01:01	0.373	1013.7	945.8	Non-Toxic	-2.1	
22	WP_003404775.1	313	321	ATYEIVCSKK		HLA-B*44:03	0.25	HLA-B*44:03	0.5864	HLA-A*01:02	0.05	HLA-A*01:02	0.20	32.0	0.8318	0.12585	Non-Toxic	0.31
						H-2-Kb	0.1714	H-2-Db	0.1228									
121		129		SPAWNLPVV		HLA-B*07:02	0.20	HLA-B*07:02	0.2927	HLA-B*07:02	0.40	HLA-B*07:02	0.1510	42.7	1.4014	0.23361	Non-Toxic	0.62
131		139		GPIAVTYNL		HLA-B*53:01	0.88	HLA-B*53:01	0.0880									

MHC II Epitopes

S.No.	Accession No.	Start	Stop	Epitopes	IEDB	NetMHC II	Propred	EpiTop	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score				
1	WP_104857305.1	149	157	MLYGAGGVG	DQA10301 - DQB10301		DRB1*0301	0.20	DRB1*0301	0.22	DRB1*0301	0.68	27.4	0.9209	0.15562	Non-Toxic	0.98
S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score				
-------	---------------	-------	------	----------	----------	------------	-----------	-----------	------	---------	------------	----------	--------------				
3	WP_031744040.1	2	10	FVIAAPEVM	DRB1_0102 0.08	DRB1_0101 0.72	DRB1_0101 48.00	DRB1_0101 0.72	7.1	0.8767	0.21885	Non-Toxic	1.79				
					DQA1*0301/ DQBI*0302 0.42	DRB1_0101 0.72	DQA1*0301/ DQBI*0302 0.42	DQA1*0301/ DQBI*0302 0.42									
					DRB1_0301 0.22	DRB1_0102 48.00	DRB1_0102 48.00	DRB1_0102 48.00									
					DRB1_0301 42.11	DRB1_0301 42.11	DRB1_0301 42.11	DRB1_0301 42.11									
					DRB1_1311 16.87	DRB1_1311 16.87	DRB1_1311 16.87	DRB1_1311 16.87									
					DRB1_0101 34.69	DRB1_0101 34.69	DRB1_0101 34.69	DRB1_0101 34.69									
					DQA1*0301/ DQBI*0302 0.80	HLA-DQA10301- DQB10301 0.20	HLA-DQA10301- DQB10301 0.20	HLA-DQA10301- DQB10301 0.20	70.1	2.2643	0.10296	Non-Toxic	-0.73				
184	192	193	201	YGGNGPGGA	DQA1*0301/ DQBI*0301 0.80	DQA1*0301/ DQBI*0301 0.80	DQA1*0301/ DQBI*0301 0.80	DQA1*0301/ DQBI*0301 0.80									
					DRB1_0305 0.02	DRB1_0301 11.58	DRB1_0305 23.08	DRB1_0305 23.08									
6	WP_031647515.1	193	201	VGGIGGAGG	DRB1*0701 0.24	HLA-DQA10301- DQB10301 0.32	HLA-DQA10301- DQB10301 0.32	HLA-DQA10301- DQB10301 0.32	39.4	2.0089	0.26264	Non-Toxic	0.9				
					DRB1_0410 6.38	DRB1_0410 6.38	DRB1_0410 6.38	DRB1_0410 6.38									
					DRB1_1506 10.20	DRB1_1506 10.20	DRB1_1506 10.20	DRB1_1506 10.20									
					DRB1_1301 21.59	DRB1_1301 21.59	DRB1_1301 21.59	DRB1_1301 21.59									
179	187	193	201	LARAGTAGG	DRB1_1301 21.59	DQA1*0501/ DQBI*0301 0.64	DQA1*0501/ DQBI*0301 0.64	DQA1*0501/ DQBI*0301 0.64	71.7	0.9301	0.17853	Non-Toxic	0.31				
					DRB1_0301 20.00	HLA-DQA10301- DQB10301 0.31	HLA-DQA10301- DQB10301 0.31	HLA-DQA10301- DQB10301 0.31									
					DRB1_0423 18.18	HLA-DQA10301- DQB10301 0.31	HLA-DQA10301- DQB10301 0.31	HLA-DQA10301- DQB10301 0.31									
					DRB1_1301 21.59	HLA-DQA10301- DQB10301 0.31	HLA-DQA10301- DQB10301 0.31	HLA-DQA10301- DQB10301 0.31									
					DQA1*0501/ DQBI*0301 0.64	HLA-DQA10301- DQB10301 0.31	HLA-DQA10301- DQB10301 0.31	HLA-DQA10301- DQB10301 0.31									
					DRB1*0901 7.061	DQA1*0102/ DQBI*0602 6.628	DQA1*0102/ DQBI*0602 6.628	DQA1*0102/ DQBI*0602 6.628									
					DRB1*0901 7.061	DQA1*0102/ DQBI*0602 6.628	DQA1*0102/ DQBI*0602 6.628	DQA1*0102/ DQBI*0602 6.628									
					DRB1*0101 7.334	DRB1*0101 7.334	DRB1*0101 7.334	DRB1*0101 7.334									
S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score				
-------	---------------	-------	------	---------------	-----------------------	----------------------------------	--------------------	------------	-------	--------	-----------	----------	-------------				
8	WP_009938654.1	179	187	LIGDGA VGT	DQA1*0501/	HLA-DQA10501-	DRB1_0301	34.74		1.1340	0.15779	Non-Toxic	0.99				
					DQB1*0301	DQB1*0301	0.26	DRB1_0421	0.26								
					DRB1_0305	17.58	DRB1_0241	14.22									
		194	202	IGGNAIVAG	DRB1*1501	DRB1_0403	0.08	DRB1_0421	10.89								
					0.51	DRB1_1102	4.76										
11	WP_003910446.1	333	341	LVGNGGAGG	DQA1*0501/	HLA-DQA10301-	DRB1_0102	20.67		54.7	2.3016	Non-Toxic	0.48				
					DQB1*0301	DQB1*0301	0.84	DRB1_0421	0.42								
					DRB1_0102	20.67	DRB1_0421	12.22									
		203	211	WIYGHGGHG	DQA1*0301-	DRB1_0402	0.32	DRB1_1502	16.33								
					DQB1*0301	0.70	DRB1_0402	6.436									
					DQA1*0401/	HLA-DQA10301-	DQA1*0501/	42.3		1.8502	0.1438	Non-Toxic	-0.63				
					DQB1*0402	DQB1*0301	0.70	DQB1*0301	0.27								
					0.32	DRB1_0402	6.436										
					0.70	DRB1_0402	6.436										
					7.149	DRB1_0101	7.488										
					7.129	DRB1*0101	7.488										
					7.574	DRB1*0101	7.574										

References:

Batta et al. / Journal of Applied Pharmaceutical Science 12 (06); 2022: 086-114
MHC I Epitopes

S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immuneogen	Toxicity	GRAVY Score
123	WP_003909110.1	196	204	WGAGGGGG	DQA1*0102/	DRB1_0301	0.50	DRB1_1302	0.79	DQA1*0102/	DQB1*0602	6.968	0.46
205	WP_003901367.1	7	15	VRIVAVGATS	DRB1_0301	0.46	HLA-DPA10103/	DRB1_1301	74.9	HLA-DPA10201/	DPB1*0405	6.648	0.88

Note: S.No. refers to sequence number, Accession No. to the accession number, Start and Stop to the start and stop positions of the epitope, Epitopes to the epitope sequence, IEDB to the source of the data, MHC-NP to the MHC class I molecules, NetCTLpan and NetMHCpan to the prediction scores, IC50 to the half-maximal inhibitory concentration, Vaxijen to the vaccine score, Immuneogen to the immunogenicity, Toxicity to the toxicity score, and GRAVY Score to the grand average of hydrophobicity score.
S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score					
51	59	VEGHTHTIS			DRB1*1302 0.32	DRB1_0402 0.34	HLA-DQA10201-DQB10303 0.46	DRB1_0301 12.63	DRB1_0402 9.38	DRB1_1102 17.86	DRB1*0103/DBB1*0301 7.963			0.22232	Non-Toxic	-0.42		
15	WP_003900461.1	57	65	IEGDDTDRR	DPA1*0201/DPB1*0101 0.30	H-2-Iak 0.26	DRB1_0301 34.74	DRB1_0305 8.79	DRB1_0421 31.11	DPA1*0103/DBB1*0301 7.202	DPA1*0201/DBB1*0101 6.134	3362.2	2.3721	0.14042	Non-Toxic	-2.18		
174	182	VGGGGAGGT			DRB1_0301 0.42	DRB1*0701 0.49	HLA-DQA10301-DQB10301 0.49	DRB1_1107 1.10	DRB1_1501 5.10	DRB1_0301 8.42	DQA1*0102/DQB1*0601 6.816	DQA1*0501/DQB1*0301 6.829	DRB1*0101 7.077	29.2	4.2556	0.16333	Non-Toxic	0.32
17	WP_003900226.1	28	36	VAWDGLAAE	DQA1*0102/DBB1*0602 0.24	DRB1_0309 0.40	DRB1_0301 12.63	DQA1*0101/DQB1*0501 6.874	DQA1*0102/DQB1*0602 7.184	DRB1*0101 6.905	661.9	0.7727	0.17266	Non-Toxic	0.57			
408	416	WRTRATTAR			DRB1*0101 0.84	DRB1*0405 0.36	HLA-DQA10201-DQB10402 0.81	DRB1_0301 23.16	DRB1_0309 12.63	DPA1*0103/DBB1*0301 7.874	DPA1*0301/DBB1*0402 6.284	9.1	0.8849	0.19494	Non-Toxic	-1.43		

MHC I Epitopes
MHC I Epitopes

S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score		
18	WP_003416124.1	90	98	VSSPETTD	DRB1*0701	0.47	HLA-DQA10201-DQB10202	DRB1_0405 10.64	DRB1*0701	5.397	342.8	1.1017	0.17472	Non-Toxic	-0.99
29	LAVWWIYET	37	52	VSPPETTD	DRB1_1301	23.64	HLA-DQA10501-DQB10402	DRB1_1102 5.95	DRB1_1301	13.64	342.8	1.1017	0.17472	Non-Toxic	-0.99
20	WP_003409409.1	54	62	YRTIDIRNH	DRB1*0101	0.84	HLA-DQA10201-DQB10402	DRB1_0305 28.35	DRB1_0401	28.45	25.9	1.0538	0.3333	Non-Toxic	-1.36

B cell Epitopes

S.No.	Accession No.	Start	Stop	Epitopes	IEDB	ABCPred	BCPred	IC50	Vaxijen	Immunogen	Toxicity	GRAVY Score	
1	WP_104857305.1	177	192	AGAIGNGDDG	GNGGTS	-	-	2.8149	0.4038	Non-Toxic	-0.44		
197	GSGGDGGNNGG	NAGLIG	-	-	-	-	-	2.9137	0.3245	Non-Toxic	-0.3		
231	GTGGNGGLLL	GFNIGHTN	-	-	-	-	-	1.4744	0.26459	Non-Toxic	-0.03		
2	WP_078800718.1	123	138	PGTGANGG	GGWLIGN	-	-	0.8741	0.53708	Non-Toxic	-0.28		
3	WP_031744040.1	175	190	GGAGGNGGW	LGNNGGP	-	-	1.2080	0.41611	Non-Toxic	-0.55		
132	GLLYGNGNG	GAGDTA	-	-	-	-	-	2.1567	0.25648	Non-Toxic	-0.26		
S.No.	Accession No.	Start	Stop	Epitopes	IEDB	MHC-NP	NetCTLpan	NetMHCpan	IC50	Vaxigen	Immunogen	Toxicity	GRAVY Score
-------	---------------	--------	--------	---------------------------	------	--------	-----------	-----------	--------	---------	-----------	----------	-------------
6	WP_031647515.1	118	133	RKLIGDGAHGAPGTTQ	-	-	-	-	0.8585	0.43228	Non-Toxic	-0.69	
8	WP_009938654.1	355	370	GGAGGAGGREGWLVGN	-	-	-	-	2.0259	0.5602	Non-Toxic	-0.06	
		349	364	GHAGGAGGAGGAGGRG	-	-	-	-	3.6489	0.41684	Non-Toxic	-0.28	
11	WP_003910446.1	495	510	GGAGGGNGATGGTG	-	-	-	-	3.3778	0.37274	Non-Toxic	-0.26	
12	WP_003909110.1	199	214	AGGGGGGTTPGYLGP	-	-	-	-	2.3354	0.28666	Non-Toxic	-0.26	
13	WP_003905853.1	123	138	GGQLQTAFTWGTNARNGGS	-	-	-	-	0.8303	0.48705	Non-Toxic	-0.4	
15	WP_003900461.1	169	184	GAGGGDVGGGGAGGTT	-	-	-	-	3.9887	0.39318	Non-Toxic	-0.07	
17	WP_003900226.1	263	278	GNGNDGNTFNGSGNAG	-	-	-	-	2.3171	0.11949	Non-Toxic	-1.27	
19	WP_003409568.1	110	125	VHHVWTGIAHSGSTA	-	-	-	-	0.8218	0.26058	Non-Toxic	0.69	
20	WP_003409409.1	98	113	GGVGNARADRRNTRYT	-	-	-	-	1.5330	0.35281	Non-Toxic	-1.14	
Table 6. Vaccine construct and their physiochemical characterization.

Construct Name	Adjuvant Accession No.	Vaccine Construct	A.A Length	Mol Weight	pI	instability index	Aliphatic index	GRAVY	Vaxijen Proteins	Immunogen	SolPro	AlgPred	Negative/positive residues	
VC1	WP_003403353.1	EAAKMAKLSTDELL-	697	63286.82	5.25	23.5	50.6	-0.425	2.1003	0.840546	11.82166	SOLUBLE	NON ALLERGEN 67 / 46	
Construct Name	Vaccine Construct Name	A.A Accession No.	Mol Weight	pI	Instability Index	Aliphatic Index	GRAVY	ProImmunogen	SolPro	AlgPred	Antigen	Soluble/Non-Allergen		
----------------	------------------------	------------------	------------	----	------------------	----------------	-------	---------------	--------	---------	----------	---------------------		
VC2	WP_01737336.1	717	66356.75	5.16	30.66	-0.536	2.092	0.851725	2.092	2.092	13.52716	SOLUBLE ALLERGEN		
Construct Name	Adjuvant Accession No.	Vaccine Construct	A.A Length	Mol Weight	pI	instability index	Alphatic index	GRAVY	Vaxijen	Antigen Pro	Immunogen	SolPro	AlgPred	Negative/positive residues
----------------	------------------------	-------------------	------------	------------	----	------------------	----------------	--------	----------	-------------	------------	--------	---------	---------------------------
VC3	WP_09402863.3.1	EAAAAKMAENPID-DLPPELLALGAAD-LALATYNLIALRE-RAEETRAETRTRVEER-RARLTKFQDLPEQFIELRDKFTTEEL-RKAAEGYLEAATNRY-NEVEREAAAQLRL-RQJATFEDASARAE-GYIYDQAVELTQEAEL-GTVAQTTRAVGER-AAKLVGEIEAAAKA-KFVAATLKAAAHEY-GAEALERAGYNGG-PGGAGGSGCESGNN-WSIIQNGSAGAIGNGG-DGGNGGTSGGGGSWL-YGHGJHGGGSSNG-NDGNTNFSGNAGG-GGSRVIRGRATRTG-GGAAPQGGSYIHHGG-HGGAGGSGSGDDGG-NGNAGLIGGGSGTT-GGNGLLLGFNGTNG-GGSTDHVREADDANID-DLLPGGSGAGGNG-GWLYGNGGPGGGS-GLLYGNGGNGAG-DTAGGSVEGHIT-HISGGGSGAGAG-GRGGWLNNGGGG-SIEGDODRRGGGSDHDH-VREADDAINDGGGS-RADRARNTYGGGS-GHAGGGAGGAGG-GRGGGSGGTTGDD-GDGGAHTGGGGSVSP-PETTDGGGSWPIAPS-RLGGSGGSGDG-GAGGGNATSGGGSHY-RFTLYHLGGSGGNG-GAGDAGHGGTG-GGSGGAAGNGATGT-GVGNNGGSSYRTDIRN-HGGSSAGGGGGGTTP-GYLGPGGGSGGVGNNRA-ADRARNTYGGGS-GAGGDDVGGGAGGT-THEYGAEALERAG-FVAATLKAAAHEY-GAEALERAG												
the hydrophilic character of the designed constructs which indicates strong interactions with water molecules. Further, the aliphatic index ranges from 49.85 to 59.07 for all vaccines construct suggest protein stability in a defined temperature range. Instability score of all vaccine constructs is <40 showed indicates the good stability of protein to commence an immunogenic reaction. The non-toxic and non-allergenic vaccine may be the good immunotherapy against the pathogenic MTb (Solanki et al., 2019). Based on physiochemical behavior, the shortlisted vaccine constructs (VC1, VC2, and VC3) were subjected for interaction studies.

Figure 3. Secondary structure prediction of vaccine constructs using PSIPRED. (a) Vaccine construct 1 (VC1) secondary structure shows helix, β-sheets and turns; (b) Vaccine construct 2 (VC2) secondary structures shows helix and β-sheets; (c) Vaccine construct 3 (VC3) secondary structures shows only helix.

Figure 4. (a) Tertiary structure prediction of vaccine constructs VC1 using Phre2. (b) Ramachandran plot analysis of VC1 vaccine construct using RAMPAGE with 90.3% amino acids in most favored region and 8.9% in allowed region.

The interaction of vaccine constructs with HLA allele’s protein

To observe the interaction of vaccine constructs with different HLA alleles of human, vaccine constructs (VC1, VC2, and VC3) were docked with 10 different HLA allele’s retrieved from literature and the results are summarized in Table 7. VC1 have the least global binding energy value with different HLA alleles, i.e., 6EQA (HLA-A*02:01); −35.39, 4F7M (HLA-A*24:02); −21.04, 1XR8 (HLA-B*15:01); −23.17, 1A1N (HLA-B*35:01); −8.29, 4O2E (HLA-B*39:01); −7.69, 1N2R (HLA B*44:02); −11.42,
Table 7. Vaccine constructs [VC1, VC2 and VC3] were docked with 10 different HLA allele’s proteins that correspond to *M. tuberculosis* susceptibility or pathogenicity.

S.No.	HLA Allele	PDB ID	Vaccine Constructs
1	HLA-A*02:01	6EQA	VC1: -35.39, VC2: -9.28, VC3: -12.08
2	HLA-A*24:02	4F7M	
3	HLA-B*15:01	1XR8	
4	HLA-B*35:01	1A1N	
5	HLA-B*39:01	4O2E	
6	HLA-B*44:02	1N2R	
7	HLA-B*58:01	5IM7	
8	HLA-DR2 (DRA*01:01-DRB1*15:01)	1BX2	VC1: -32.5, VC2: 2.13, VC3: -40.98
9	HLA-DRA1*0101/DRB5*0101	1H15	VC1: -28.08, VC2: 1.89, VC3: -9.82
10	HLA-DQ2.3 (DQA1*03:01/DQB1*02:01)	4D8P	VC1: -1.64, VC2: 1.46, VC3: 9.04

5IM7 (HLA-B*58:01); -16.4, 1BX2 (HLA-DR2 (DRA*01:01-DRB1*15:01)); -32.5, 1H15 (HLA-DRA1*0101/DRB5*0101); -28.08, and 4D8P (HLA-DQ2.3 (DQA1*03:01/DQB1*02:01)); -1.64.

Docking analysis elucidates the efficacy of the designed vaccine in term of binding affinity with HLA alleles. Based on docking analysis, the VC1 was screened as a potential vaccine construct having a tendency to stimulate the immune response as and when required in the host cell. Different adjuvants were also used in the designing process to improve the immune response. Through docking studies, the interaction of VC1 with TLR4/MD2 complex was validated. Satyam et al. (2020) also used TLR4/MD2 complex to predict the efficacy off the vaccine construct. TLR4/MD2 complex has a role in activating Dendritic Cells against a role in Tb.

Best docking was with HLA-A*02:01, HLA-A*24:02, HLA-B*15:01, and HLA-DR2 (DRA*01:01-DRB1*15:01) having binding energies -35.39, -21.04, -23.17, and -32.5 respectively; having interactions of alanine (ALA15) and serine of (SER42 and SER132) amino acids (data not shown); docking results are shown in Supplementary Figure 5a–d (Red depicts vaccine construct VC1 3D structure and blue-green depicts HLA protein 3D structure).

In-silico cloning of VC1 construct for its heterologous expression in E. coli

JCAT was used for cloning and expression prediction of constructed vaccine within the pET28a vector. For in silico cloning experiment the required cDNA sequences were obtained through reverse translation. Codon optimization results suggest 77.50% of constructs was made up of Guanine and Cytosine (GC) content. For the heterologous expression of VC1 in *E. coli*, its sequences was in-silico cloned into pET28a vector using EcoRI and NdeI restriction enzyme for the addition at 5′ and 3′ ends respectively (Fig. 6). The Codon Adaptation Index (CAI) value (1.0 for VC1) indicates the efficient heterologous expression of VC1 in *E. coli* cell.

CONCLUSION

The work performed is the stepwise proteomic screening for the identification of a multi-epitope chimeric vaccine targeting the MTb. Filters like subcellular localization, antigenicity, allergenicity, transmembrane α-helices, and solubility were utilized and three vaccine constructs (VC1, VC2, and VC3) were designed. Their secondary and tertiary structures were established through online tools. Based on in silico interaction studies with 10 HLA alleles, the VC-1 construct was found most potential. An in silico cloning studies using pET-28a (+) vector suggests the satisfactory expression and translation efficiency of the VC-1. The proposed anti-tubercular vaccine construct VC1 seems capable to initiate the immune response in the host cell and interact efficiently with HLA alleles. During the designing of VC1, besides, adjuvant (L7/L12 ribosomal protein) linker and PADRE epitopes were also added to enhance the anti-tubercular immune responses. Therefore, vaccine construct VC1, possess all the possible factors which are required to bring about the immunogenicity and feasibility against MTb. Further in vitro and in vivo expression studies in wet lab are needed to validate long-term immunological efficacy of predicted vaccine candidate. Further studies are also needed to detect the vaccine interaction with cell mediated and humoral immunity of the host.

CONFLICT OF INTERESTS

The authors declare no conflict of interests.

FUNDING

None.

REFERENCES

Abraham PR, Devalraju KP, Jha V, Valluri VL, Mukhopadhyay S. PPE17 (Rv1168c) protein of *Mycobacterium tuberculosis* detects individuals with latent TB infection. PLoS One, 2018; 13:e0207787.

Alexander J, del Guercio MF, Maewal A, Qiao L, Fikes J, Chesnut RW, Paulson J, Bundle DR, DeFrees S, Sette A. Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses. *J Immunol*, 2000; 164:1625–33.

Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of *Mycobacterium tuberculosis*. *Crit Rev Biochem Mol Biol*, 2014; 49:361–99.
Andersen P, Doherty TM. The success and failure of BCG—implications for a novel tuberculosis vaccine. Nat Rev Microbiol, 2005; 3:656–62.

Axelson-Robertson R, Ju JH, Kim HY, Zumbal A, Maeruer M. Mycobacterium tuberculosis-specific and MHC class I-restricted CD8+ T-cells exhibit a stem cell precursor-like phenotype in patients with active pulmonary tuberculosis. Int J Infect Dis, 2015; 32:13–22.

Bendtsen JD, Kiemer L, Fausboll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol, 2005; 5: doi;10.1186/1471-2180-5-58

Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel, 2004; 17:349–56.

Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol, 2009; 7:845–55.

Castan P, De Pablo A, Fernández-Romero N, Rubio JM, Cobb BD, Mingorance J, Toro C. Point-of-care system for detection of Mycobacterium tuberculosis and rifampin resistance in sputum samples. J Clin Microbiol, 2014; 52:502–7.

Chauhan V, Rungta T, Goyal K, Singh MP. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci Rep, 2019; 9:1–15.

Cheng J, Randall AZ, Sweredoski MJ, Baldi P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res, 2005; 33:72–6.

Chen F. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res, 2006; 34:D363–8.

Cresswell FV, Te Brake L, Atherton R, Ruslami R, Dooley KE, Aarnoutse R, Van Crevel R. Intensified antibiotic treatment of tuberculosis meningitis. Expert Rev Clin Pharmacol, 2019; 12:267–88.

Darrah PA, DiFazio RM, Mailet P, Gideon HP, Myers AJ, Rodgers MA, Hackney JA, Lindenstrom T, Evans T, Scanga CA, Prihodko V, Andersen P, Lin PL, Lardy D, Roederer M, Seder RA, Flynn JAL. Boosting BCG with proteins or rAd5 does not offer protection against tuberculosis in rhesus macaques. NPJ Vaccines, 2019; 4:1–3.

Dimitrov I, Naneva L, Doychinova I, Bangov I. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics, 2014; 30:846–51.

Donovan J, Figaji A, Imran D, Phu NH, Rohlwink U, Thwaites GE. The neurocritical care of tuberculous meningitis. Lancet Neurol, 2019; 18:771–83.

Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naiedo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother, 2018; 73:1138–51.

Doychinova IA, Flower DR. Vaxijen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform, 2007; 8:1–7.

Evans TG, Schrager L, Thole J. Status of vaccine research and development of vaccines for tuberculosis. Vaccine, 2016; 34:2911–4.

Fakiri K, Xia E, Ong RTH, Tan JH, Nganphithath D, Makhao N, Thanmongdee N, Thanomchait V, Phurattanakomkul A, Rattanarangsee S, Ratanjaraya C, Suriyaphol P, Prammananan T, Teo YY, Chaiapraset A. Comparative whole-genome sequence analysis of Mycobacterium tuberculosis isolated from tuberculosis meningitis and pulmonary tuberculosis patients. Sci Rep, 2018; 8:1–10.

Gagneux S, Gasteiger JR, Kato-Maeda M, DeRiemer K, Van T, Kato-Maeda M, De Jong BC, Barbieri A, Böttger EC, Boshoff HI, Dartois V, Dick T, Fauqueau S, Franchblau SG, Gjekke AS, Jeffers A, Julian Martin J, Minion DC, Park Y, Park YM, Platt DE, Puoti M, Roach WC, Saavedra H, Schreiber S, Selleri C, Vazquez, Vazquez-Bolhuis A, van der Ende A, van der Poel L, Baldi P. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 2010; 26:2936–43.

Goldberg DE, Siliciano RF, Jacobs WR Jr. Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell, 2012; 148:1271–83.

Gudiakande EM, Choules MP, Gao W, Cai G, Wan B, Wang Y, McAlpine JB, Cheng J, Jin Y, Lee H, Suh JW, Pauli GF, Franzblau SG, Jaki BU, Cho S. Strategies in anti-Mycobacterium tuberculosis drug discovery based on phenotypic screening. J Antibiot (Tokyo), 2019; 72:719–28.

Hatafukah SM, Misra RN, Mahato R, Jadhav S. Whole-genome sequencing and annotation of a drug-resistant extrapulmonary clinical isolate of Beijing genotype Mycobacterium tuberculosis from Pune, India. Genome Announc, 2018; 6:e00504–18.

He Y, Xiang Z, Mobley HLT. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J Biomed Biotechnol, 2010; 2010:297505.

Henrik N. Predicting secretory proteins with SignalP. Methods Mol Biol, 2017; 1611:73.

Hirona M, Matsuo K, Kanekiyo M, Promthukhaew D. Recombinant BCG vaccine. US7670610B2 (Google Patents). 2008. Available via https://patents.google.com/patent/US7670610B2/en (Accessed 2 January 2020).

Kavvas ES, Catou H, Mih N, Yurkovich JT, Seif Y, Dillon N, Heckmann B, Hanan G, Mullins L, Monk JM, Palsson BM. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat Commun, 2018; 9:1–9.

Kelley LA, Mezulis S, Yates CM, Wann M, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc, 2010; 5:845–58.

Khan F, Srivastava V, Kumar A. Computational identification and characterization of potential T-Cell epitope for the utility of vaccine design against enterotoxigenic Escherichia coli. Int J Pept Res Ther, 2019; 25:289–302.

Krogg A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001; 305:567–80.

Laal S, Zolla-Pazner S. Immunodominant Mycobacterium tuberculosis peptides from cell wall proteins for early diagnosis and immunization. EP2281198B1 (Google Patents). 2010. (Accessed 31 December 2019).

Lee SJ, Shin SJ, Lee MH, Lee MG, Kang TH, Park, Soh BY, Park JH, Shin YK, Kim HW, Yun CH, Jung ID, Park YM. A potential protein adjuvant derived from Mycobacterium tuberculosis Rv0652 enhances dendritic cells-based tumor immunotherapy. PLoS One, 2014; 9:e104351.

Majid M, Andleeb S. Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach. Sci Rep, 2019; 9:1–15.

Magnan CN, Randell A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics, 2009; 25:2200–7.

Magnan CN, Zeller M, Kayala MA, Vijgl A, Randell A, Felgner PL, Baldi P. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 2010; 26:2936–43.

Martín P, Truffer R, Stadler MB, Keller-Ganschi E, Cramer R, Mari A, Schmid-Grendelmeier P, Miescher SM, Stadler BM, Vogel M. Allergen motifs and the prediction of allergenicity. Immunol Lett, 2007; 109:47–55.

McGuffin LI, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics, 2000; 16:404–5.

Ngupaidop-Djomo P, Heldal E, Rodrigues LC, Abubakar I, Mangtani P. Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: a retrospective population-based cohort study. Lancet Infect Dis, 2016; 16:219–26.

Nguyen TNA, Anton-Le Berre V, Baãuls AL, Nguyen TVA. Molecular diagnosis of drug-resistant tuberculosis; a literature review. Front Microbiol, 2019; 10:794.
Nieuwenhuizen NE, Kaufman SHE. Next-generation vaccines based on Bacille Calmette-Guérin. Front Immunol, 2018; 9:121.

Ocampo M, Curtidor H, Vanegas M, Patarroyo MA, Patarroyo ME. Specific interaction between Mycobacterium tuberculosis lipoprotein-derived peptides and target cells inhibits Mycobacterial entry in vitro. Chem Biol Drug Des, 2014; 84:626–41.

Pahil S, Taneya N, Ansari HR, Raghava GPS. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity. PLoS One, 2017; 12:e0180505.

Palucci I, Camassa S, Cascioferro A, Sali M, Anosheev S, Zumbo A, Minerva M, Iantosmari R, De Maio F, Di Sante G, Ria F, Sanguinetti M, Palù G, Brennan MJ, Manganelli R, Delogu G. PE_PGRS33 contributes to Mycobacterium tuberculosis entry in macrophages through interaction with TLR2. PLoS One, 2016; 11:e0150800.

Phelan JE, Coll F, Bergvall I, Anthony RM, Warren R, Sampson SL, Gey van Pittius NC, Gyllen J, Crampin AC, Alves A, Bessa TB, Campino S, Dheda K, Grandjean L, Hasan R, Hasan Z, Miranda A, Moore D, Panaioitov S, Perdigao J, Portugal I, Sheen P, de Oliveira Sousa E, Streicher EM, van Helden PD, Vieites M, Hibberd ML, Pain A, McNerney R, Clark TG. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics, 2016; 17:1–12.

Pierleoni A, Martelli P, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinform, 2008; 9:1–11.

Polsfluss S, Hofmann-Thiel S, Merker M, Krieger D, Niemann S, Rüssmann H, Schönfeld N, Hoffmann H, Kranzer K. Emergence of low-level delamanid and bedaquiline resistance during extremely drug-resistant tuberculosis treatment. Clin Infect Dis, 2019; 69:1229–31.

Rohlwink UK, Figaji A, Wilkinson KA, Horswell S, Sesay AK, Deffur A, Enslin N, Hoffmann H, Kranzer K. Polyspecific microparticle assays for detection of tuberculosis infection. J Clin Microbiol, 2020; 58:6116–22.

Sable SB, Posey JE, Scriba TJ. Tuberculosis vaccine development: progress in clinical evaluation. Clin Microbiol Rev, 2020; 33:e00100–19.

Sajjad R, Ahmad S, Azam SS. In silico screening of antigenic B-cell derived T-cell epitopes and designing of a multi-epitope peptide vaccine for Acinetobacter nosocomialis. J Mol Graph Model, 2020; 94:107477.

Satyam R, Bhardwaj T, Jha NK, Jha SK, Nand P. Toward a chimeric vaccine against multiple isolates of Mycobacteroides—an integrative approach. Life Sci, 2020; 250:117541.

Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol, 2019; 127:1547–67.

Solanki V, Tiwari M, Tiwari V. Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Sci Rep, 2019; 9:1–19.

Soria J, Meicăl T, Mori N, Newby RE, Montano SM, Huaroto L, Ticona E, Zunt JR. Mortality in hospitalized patients with tuberculous meningitis. BMC Infect Dis, 2019; 19:99.

Stamm CE, Pasko BL, Chaisavaneyakorn S, Franco LH, Nair VR, Weigele BA, Alto NM, Shiloh MU. Screening Mycobacterium tuberculosis secreted proteins identifies Mpt64 as a eukaryotic membrane-binding bacterial effector. mSphere, 2019; 4(3):e00354–19.

Thuang NTT, Hawn TR, Thwaites GE, Chau TTH, Lan NTT, Quy HT, Hieu NT, Aderem A, Hien TT, Farrar JJ, Dunstan SJ. A polymorphism in human HLA TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun, 2007; 8:422–8.

Thomsen M, Lundegaard C, Buus S, Lund O, Nielsen M. MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics, 2013; 65:655–65.

Thwaites GE, van Toorn R, Schoeman J. Tuberculous meningitis: more questions, still too few answers. Lancet Neurol, 2013; 12:999–1010.

Veziris N, Bernard C, Guglielmetti L, Le Du D, Marigot-Outandy D, Jaspard M, Caumes E, Lerat I, Rioux C, Yazdanpanah Y, Tiotiu A, Lemaître N, Brossier F, Jarlier V, Robert J, Sougakoff W, Aubry A. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J, 2017; 49:1601719.

Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol, 2019; 13:190–204.

WHO. BCG vaccines 1 report on BCG vaccine use for protection against mycobacterial infections including tuberculosis, leprosy, and other nontuberculous mycobacteria (NTM) infections. SAGE Working Group on BCG Vaccines, WHO Secretariat, 2017.

WHO. Tuberculosis. 2020a. Available via https://www.who.int/news-room/detail/tuberculosis (Accessed 2 January 2020).

WHO. Country profiles for 30 high tb burden countries 20 high TB burden countries based on absolute number of incident cases 10 high TB burden countries based on severity of disease burden (incidence per capita). 2020b. Available via www.who.int/tb/data (Accessed 2 January 2020).

Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao PC, Cenk Sahinalp S, Ester M, Foster LJ, Brinkman FSL. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 2010; 26:1608–15.

Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins Struct Funct Genet, 2006; 64:643–51.

Zeng LB, Wang D, Hu NY, Zhu Q, Chen K, Dong K, Zhang Y, Yao YF, Guo XK, Chang YF, Zhu YZ. A novel pan-genome reverse vaccinology approach employing a negative-selection strategy for screening surface-exposed antigens against leptospirosis. Front Microbiol, 2017; 8:396.

How to cite this article:
Batta A, Singh V, Mishra BN, Dhole TN, Seth PK. Chimeric vaccine against multi-drug resistant tuberculosis using in silico reverse vaccinology approach. J Appl Pharm Sci, 2022; 12(06):086–114.