Age-Independent Cardiac Protection by Pharmacological Activation of Beclin-1 During Endotoxemia and Its Association With Energy Metabolic Reprograming in Myocardium—A Targeted Metabolomics Study

Matthew Kim, BS*; Azadeh Nikouee, PhD*; Raymond Zou, PhD; Di Ren, PhD; Zhibin He, PhD; Ji Li, PhD; Lu Wang, PhD; Danijel Djukovic, PhD; Daniel Raftery, PhD; Hayley Purcell, BS; Daniel Promislow, PhD; Yuxiao Sun, PhD; Mohammad Goodarzi, PhD; Qing-Jun Zhang, PhD; Zhi-Ping Liu, PhD; Qun Sophia Zang, PhD

BACKGROUND: We showed that Beclin-1-dependent autophagy protects the heart in young and adult mice that underwent endotoxemia. Herein, we compared the potential therapeutic effects of Beclin-1 activating peptide, TB-peptide, on endotoxemia-induced cardiac outcomes in young adult and aged mice. We further evaluated lipopolysaccharide (lipopolysaccharide)-induced and TB-peptide treatment-mediated alterations in myocardial metabolism.

METHODS AND RESULTS: C57BL/6J mice that were 10 weeks and 24 months old were challenged by lipopolysaccharide using doses at which cardiac dysfunction occurred. Following the treatment of TB-peptide or control vehicle, heart contractility, circulating cytokines, and myocardial autophagy were evaluated. We detected that TB-peptide boosted autophagy, attenuated cytokines, and improved cardiac performance in both young and aged mice during endotoxemia. A targeted metabolomics assay was designed to detect a pool of 361 known metabolites, of which 156 were detected in at least 1 of the heart tissue samples. Lipopolysaccharide-induced impairments were found in glucose and amino acid metabolisms in mice of all ages, and TB-peptide ameliorated these alterations. However, lipid metabolites were upregulated in the young group but moderately downregulated in the aged by lipopolysaccharide, suggesting an age-dependent response. TB-peptide mitigated lipopolysaccharide-mediated trend of lipids in the young mice but had little effect on the aged. (Study registration: Project DOI: https://doi.org/10.21228/M8K11W).

CONCLUSIONS: Pharmacological activation of Beclin-1 by TB-peptide is cardiac protective in both young and aged population during endotoxemia, suggest a therapeutic potential for sepsis-induced cardiomyopathy. Metabolomics analysis suggests that an age-independent protection by TB-peptide is associated with reprogramming of energy production via glucose and amino acid metabolisms.

Key Words: autophagy; Beclin-1; cardiac function; cardiac metabolism; endotoxemia; sepsis

Correspondence to: Qun Sophia Zang, PhD, Department of Surgery, Burn & Shock Trauma Research Institute, CTRE 321, Stritch School of Medicine, Loyola University Chicago Health Science Campus, 2160 S. 1st Ave, Maywood, IL 60153. Email: qzang@luc.edu

* M. Kim and A. Nikouee contributed equally.

Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.122.025310

© 2022 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

JAHA is available at: www.ahajournals.org/journal/jaha

J Am Heart Assoc. 2022;11:e025310. DOI: 10.1161/JAHA.122.025310
Sepsis is a life-threatening condition of organ dysfunction caused by a deregulated host response to infection. Despite improvements in antibiotic therapies and critical care techniques, sepsis remains a leading cause of death in critical care units, and its reported incidence is still increasing. Therefore, understanding the pathological mechanisms and exploring new therapeutic interventions for sepsis has become an urgent task.

Cardiomyopathy is an identified serious component of the multiorgan failure associated with sepsis. Energy expenditure is a main regulatory element of cardiac contractility, and metabolism changes dynamically with physiological and pathological conditions. The normal heart is equipped with a remarkable degree of metabolic flexibility, whereby ATP is rapidly supplied via multiple substrates, such as fatty acids, carbohydrates, ketones, and amino acids (AAs), to meet the energy demand. Failing in cardiac performance is often associated with metabolic inflexibility, under which condition the heart loses the capability of using certain commonly used substrates. In sepsis models, this problem of metabolic inflexibility is apparent in the heart, as well as in other organs and circulating immune cells. Current research in immunometabolism has revealed that disturbance in the energy metabolism of immune cells magnifies the adverse symptoms in sepsis. However, in additional to inciting overwhelming inflammation, how the disturbance of metabolic homeostasis in immune cells and in other cell types leads to multiorgan failure, such as cardiomyopathy, remains unclear.

In the heart, mitochondria occupy about 30% of the cardiomyocyte volume. Previous research in preclinical sepsis models elucidated that impairment in mitochondrial structure and function results in an overproduction of mitochondrial reactive oxygen species and a generation of mitochondria-derived danger-associated molecular patterns, inducing cardiac inflammation and functional deficiencies. As the main source of energy production in the heart, mitochondria supply 90% of the total ATP via metabolism of glucose, AAs, and fatty acids. Therefore, deficiencies in mitochondria are likely the main cause for metabolic inflexibility in septic hearts. A comprehensive understanding of alterations in mitochondria and related metabolic reprograming will help to identify novel therapeutic targets and to develop effective strategies for improving clinical outcomes.

We recently investigated the role of autophagy, a self-survival lysosome-dependent process, in the control of cardiac performance during endotoxemia. We discovered that promoting autophagy via specific activation of Beclin-1, a universally expressed autophagy initiation factor, improved cardiac contractility, protected mitochondria, and suppressed mitochondrial danger-associated molecular patterns in response to endotoxemia. Accordingly, we further examined the potential therapeutic value of TB-peptide, a cell-permeable peptide that specifically activates Beclin-1, in sepsis animal models using young adult mice. In the investigation summarized in this report, we further evaluated TB-peptide’s effects on cardiac function of aged animals during endotoxemia. In addition, we applied a targeted metabolomics approach to compare how lipopolysaccharide alters metabolic profiling in the heart of young adult and aged mice to examine whether TB-peptide reprograms cardiac metabolism in this animal model of endotoxemia.

METHODS

The data that support the findings of this study are available from the corresponding author upon reasonable request. The metabolomics analysis in this study is available at the National Institutes of Health Common Fund’s National Metabolomics Data Repository website (supported by National Institutes of Health grant U2C-DK119886), where it has been assigned Study ID ST002178. The data can be accessed directly via its Project DOI: https://doi.org/10.21228/M8K11W.

Experimental Animals

Wild-type C57BL/6 mice were obtained from Charles River laboratories (Wilmington, MA) and an in-campus...
mouse breeding core facility at the University of Texas Southwestern Medical Center. All animals were conditioned in house for 5 to 6 days after arrival with commercial diet and tap water available ad libitum. Animal work described in this study was reviewed by and conducted under the oversight of the University of Texas Southwestern Medical Center Institutional Animal Care and Use Committee and conformed to the National Research Council’s Guide for the Care and Use of Laboratory Animals when establishing animal research standards.

Endotoxemia was induced in young (10-week) and aged (24-week) male mice by lipopolysaccharide (lipopolysaccharide). Based on published results as well as observations in our laboratory, male and female mice showed significantly different susceptibility to systemic symptoms in sepsis models.24 Thus, male but not female mice were chosen for the experiments presented in this report. Lipopolysaccharide was administered intraperitoneally, and mice were weighed individually to determine the exact amount of lipopolysaccharide (MilliporeSigma, Burlington, MA; catalog number L3012) required to achieve the doses indicated in the figure legends. Sterile endotoxin-free PBS was used as a vehicle control in sham groups. In some experiments, TB-peptide, synthesized according to a published sequence25 by NonoPep (Shanghai, China), was administered intraperitoneally at a dose of 16 mg/kg in 100 µL of PBS 30 minutes post lipopolysaccharide challenge.

Echocardiography

Transthoracic echocardiograms were recorded in sedated mice using Visualsonics Vevo 2100 small animal echocardiography machine. Views were taken in planes that approximated the parasternal short-axis view and the apical long-axis view in humans. The cardiac systolic and diastolic functions of randomly selected animals from each group were assessed using the previously described protocol.18,26,27

Preparation of Serum and Tissue Lysates

When animals were euthanized, blood was collected using BD vacutainer rapid serum tubes (BD Diagnostics, Franklin Lakes, NJ) followed by immediate centrifugation at 3000g for 15 minutes at 4 °C to isolate serum. The serum preparations were then allocated and stored at −80 °C until used. Tissues were harvested, washed in PBS, snap clamp frozen, and kept at −80 °C. Tissue lysates were prepared using tissue protein extraction reagent (Thermo Fisher Scientific, Rockford, IL; catalog number 78510). Protein concentrations were quantified using detergent compatible Bradford assay kit (Thermo Fisher Scientific, Rockford, IL; catalog number 23246).

Measurements of Cytokines by ELISA

Cytokine levels in serum were measured using Bio-Plex Mouse Cytokine Panel A 6-Plex (Bio-Rad, Hercules, CA; catalog number M6000007NY) according to vendor’s instructions. Results were normalized by volume of serum samples or by the amount of protein in tissue lysate samples.

Measurement of Myocardial Lactate

The levels of lactate in heart tissue lysates were quantified by lactate assay kit (MilliporeSigma; Catalog Number MAK064) according to vendor’s instructions. Results were normalized by the amount of protein in tissue lysate samples.

Western Blots

Procedures were performed according to established protocol.18 Briefly, prepared SDS-PAGE protein samples were loaded to and run on 15% SDS-PAGE gels and transferred to polyvinylidene fluoride membranes. Membranes were blocked with 5% nonfat milk-PBS at room temperature for 1 hour and subsequently probed with antibody against LC3A/B (Cell Signaling, Danvers, MA; catalog number 4108). The membranes were then rinsed and incubated with corresponding horseradish peroxidase-conjugated antirabbit IgG (Bio-Rad, Hercules, CA; catalog number 170-6515). Antibody dilutions and incubation time were according to manufacturer’s instructions. At the end, membranes were rinsed, and bound antibodies were detected by using SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific; catalog number 34077).

Targeted Liquid Chromatography–Mass Spectrometry Metabolite Analysis

(1) Sample preparation: aqueous metabolites were extracted using a methanol-based protein precipitation method as described previously.28 Briefly, heart tissue samples were homogenized in cold water using zirconium oxide beads, methanol was added, and samples were vortexed and then stored for 30 minutes at −20 °C. Afterwards, samples were first sonicated in an ice bath for 10 minutes, centrifuged for 15 minutes at 18,000g and 4 °C, and then a fixed volume of supernatant was collected from each sample. Lastly, recovered supernatants were dried on a SpeedVac and reconstituted for liquid chromatography–mass spectrometry (LC–MS) analysis. Protein pellets that were left over from the sample prep were saved for bicinechonic acid assay. (2) LC–MS analysis: samples were analyzed on a duplex-LC–MS system composed of 2 Shimadzu UPLC pumps, CTC Analytics PAL HTC-xt temperature-controlled auto-sampler, and AB Sciex 6500+ Triple Quadrupole MS equipped
with electrospray ionization source. UPLC pumps were connected to the auto-sampler in parallel and were able to perform 2 chromatography separations independently from each other. Each sample was injected twice on 2 identical analytical columns (Waters XBridge BEH Amide XP) performing separations in hydrophilic interaction liquid chromatography mode. While one column was performing separation and MS data acquisition in electrospray (+) ionization mode, the other column was getting equilibrated for sample injection, chromatography separation and MS data acquisition in electrospray (−) ionization mode. Each chromatography separation was 18 minutes (total analysis time per sample was 36 minutes). (3) Data acquisition: MS data acquisition was performed in multiple-reaction-monitoring mode. The whole LC–MS system was controlled using AB Sciex Analyst 1.6.3 software. Measured MS peaks were integrated using AB Sciex MultiQuant 3.0.3 software. In addition to the study samples, 2 sets of quality control (QC) samples were used to monitor the assay performance as well as data reproducibility. One QC was a pooled human serum sample used to monitor system performance and the other QC was pooled study samples and this QC was used to monitor data reproducibility. Isotope labeled compounds were used to monitor sample preparation and injection. Highly reproducible MS data were generated, having an average coefficient of variance among the metabolites of 5.6%. Data for each sample were normalized according to bicinchoninic acid-based quantification of total protein count.

Statistical Analysis
Analysis was carried out using R (version 4.0.2). The targeted metabolomics assay was designed to detect 361 metabolites and was conducted at the University of Washington’s Nathan Shock Center of Excellence in the Biology of Aging and Northwest Metabolomics Research Center. A median normalization was performed to adjust the data so that samples had the same median value of the metabolite abundance post log2 transformation. Only metabolites with <20% missingness and a coefficient of variance <20% in the pooled sample QC data were considered in further analysis. Out of the possible 361 metabolites that the assay could detect, 161 metabolites passed these filtering criteria, which were included in the imputation step. We used a quantile regression approach for the imputation of left-censored missing data, which has been suggested as the favored imputation method for left-censored missing not at random data. This was implemented in the R imputeLCMD package.

A linear model fit to the normalized metabolomic data using the Bioconductor limma package was used to examine the treatment group difference within the same age group. The limma package uses empirical Bayes moderated statistics, which improves power by “borrowing strength” between metabolites to moderate the residual variance. Metabolites with a false discovery rate of 10% were selected. Two-way or 3-way Venn diagrams were generated to identify common and unique metabolites among comparisons. Pathway analysis was performed by using Shiny GAM (integrated analysis of genes and metabolites) and Cytoscape software. Signaling networks were built on pathway clustering against the small molecule pathway database using MBRole 2.0 software.

RESULTS
TB-Peptide Provides Cardiac Protection in Both Young Adult and Aged Mice During Endotoxemia
Our previous research provided evidence that stimulating Beclin-1 dependent autophagy improves cardiac performance during endotoxemia in young adult mice, and thus TB-peptide holds a promising therapeutic potential for sepsis. In this report, we examined whether TB-peptide exerts a similar protective effect on aged animals under the same condition. In our experimental setting, sham or lipopolysaccharide challenge was administered to groups of 24-month-old and 10-week-old mice at indicated dosages, followed by treatment with TB-peptide, and echocardiography was used to assess heart performance.

Consistent with literature and as expected, we observed that older mice were more susceptible to the toxic effects induced by lipopolysaccharide. The 24-month-old (aged) mice showed impaired cardiac function but were able to survive when receiving lipopolysaccharide challenged at 1 mg/kg. However, greater fatality was observed when lipopolysaccharide dose was increased to 3 mg/kg. In 10-week-old (young adult) mice, 3 mg/kg lipopolysaccharide triggered heart dysfunction without impact on survival, whereases at 10 mg/kg, we observed significant lipopolysaccharide-induced fatality in the group. Because of the different sensitivities to lipopolysaccharide between the aged and young adult mice, we were not able to choose a universal dose of lipopolysaccharide to induce cardiac dysfunction and to perform follow-up analysis in both groups. Therefore, we used the physiological function of the heart as a base for comparison in the studies performed in this report.

As shown in Figure 1A and 1B, at the levels of lipopolysaccharide challenge that inducing significant reduction in cardiac contractility in young or aged mice, administration of TB-peptide was able to rescue cardiac performance, demonstrated by its improvement in fractional shortening and ejection fraction. Further,
Figure 1. Cardiac protective effects of TB-peptide in young adult and aged mice during endotoxemia. Mice were given 5 mg/kg lipopolysaccharide intraperitoneally and TB-peptide, 16 mg/kg, was administered intraperitoneally 30 minutes post lipopolysaccharide challenge. Experiments were performed 18 hours post challenge. Cardiac function was evaluated by echocardiography in the young adult (A, 5/group) and aged (B, 6/group) mice. Circulating cytokine levels were measured in blood serum prepared from the young adult (C, 5/group) and aged (D, 5/group) groups by ELISA. In harvested heart tissue, autophagy marker LC3II was detected by Western blot using the total tissue lysates, and signals were quantified by densitometry (E, 5/group). Levels of lactate were quantified in the heart tissue lysates (F, 5/group). All data were expressed as mean±SEM of at least 3 independent experiments. Data were analyzed by 2-way ANOVA with post hoc test for comparisons of multiple groups and Student t test for comparisons between 2 groups using GraphPad Prism software. Differences were considered statistically significant as P≤0.05. Significant differences are shown as * for sham vs lipopolysaccharide and ** for with vs without the treatment of TB-peptide (A through E) or for difference between age groups (F). IFN indicates interferon; IL, interleukin; LPS, lipopolysaccharide; and TNFα, tumor necrosis factor alpha.
TB-peptide-mediated reduction in inflammation was demonstrated by its attenuation of circulating cytokines (Figure 1C and 1D). Consistent with published results in the literature from us and others, we confirmed that this TB-peptide was able to boost cardiac autophagy response in both young and old animals during...
endotoxemia, shown by enhanced signal of LC3II in the heart tissue lysates (Figure 1E). Because lactate is a metabolic intermediate mediates both glucose metabolism and fatty acid metabolism, we measured levels of lactate in the heart tissue of 10-week-old and 24-month-old mice for the purpose of testing whether

Figure 1. Continued
cardiac performance associates with myocardial metabolic changes. We observed that lipopolysaccharide challenge produced a significant increase in lactate in young mice but not in old mice (Figure 1F), suggesting that lipopolysaccharide-stimulated shifting of cardiac energy metabolism is at least partially affected by aging.

A Targeted Metabolomics Study to Compare Myocardial Metabolite Profiling in Response to Endotoxemia and to the Follow-Up Therapeutic Treatment by TB-Peptide Between Young Adult and Aged Mice

LC–MS metabolomics analysis was applied to the heart tissue samples harvested from the experimental groups of young and aged mice subjected to lipopolysaccharide challenge or sham followed by treatment with TB-peptide or vehicle (Table 1).

A targeted approach was chosen, in which profiling covers 361 known metabolites that were selected based on published results showing their association with over 50 regulatory pathways in almost all aspects of myocardial metabolisms, such as central carbon metabolism (glycolysis tricarboxylic acid cycle, pentose phosphate), AA metabolism (branched-chain AAs, urea cycle), lipid metabolism (choline, fatty acids), and purine metabolism. Evaluation of data quality, exploratory analysis, and data preprocessing are summarized in Data S1. Across a total of 43 mouse heart samples, 156 metabolites were measured with detectable abundance, having missingness <20% and coefficient of variance <20% by univariate analysis. In the comparisons between groups, changes in metabolites showing false discovery rate of 10% or less were considered having statistical significance. As summarized in Table 2, lipopolysaccharide induced similar levels of significant changes in the number of metabolites in young and aged groups, 69 versus 62 respectively. In groups receiving TB-peptide, lipopolysaccharide altered levels of 42 metabolites in the young mice versus 60 in the aged mice. When under endotoxemia, TB-peptide altered 30 metabolites in the young versus 11 in the old mice. As expected, the peptide changed little or none in the sham controls of both young and aged groups. Analysis and comparisons of changes in metabolite profiles induced by endotoxemia and by TB-peptide in young and old mice are described in detail in the following sections.

Myocardial Metabolite Profiling in Response to Endotoxemia and to the Follow-Up Therapeutic Treatment With TB-Peptide in Young Adult Mice

We first compared the metabolic profiles in the heart of young adult mice (10 weeks old) challenged with lipopolysaccharide or sham and their responses to the treatment with TB-peptide. Figure 2A summarized the interactive mean-difference plots of 4 comparison groups, including lipopolysaccharide-treated versus sham, lipopolysaccharide-challenged versus sham under the treatment of TB-peptide, sham group with peptide treatment versus untreated, and lipopolysaccharide group with peptide treatment versus untreated. Names of these metabolites, together with their values of log2-fold change (FC), average log2-abundance, and false discovery rate, are listed in Tables 3 through 5. Among the 156 targets with detectable significance, lipopolysaccharide challenge caused increases in 50 and decreases in 19 metabolites (Table 3). N-acetylglycine, a derivative of AA glycine metabolism, was shown the most increased metabolite with a 5.6-fold increase in response to lipopolysaccharide. Adenosine, whose derivatives function as energy carriers in forms of AMP, ADP, and ATP, was identified as the most significantly decreased metabolite with a change of over

Table 1. List of Animal Numbers Tested in Each Group

Age	Endotoxemia	Treatment	Number
Aged 24-mo		None	5
	Lipopolysaccharide	5	
	Sham	TB-peptide	4
	Lipopolysaccharide	5	
Young 10-wk		None	6
	Lipopolysaccharide	6	
	Sham	TB-peptide	6
	Lipopolysaccharide	6	

Table 2. List of Numbers of Metabolites With Statistically Significant Changes

Experimental groups	Comparisons	Metabolites with changes in significance (false discovery rate <0.1)
Young 10-wk	Lipopolysaccharide vs sham	69
	Lipopolysaccharide vs sham under TB-peptide	42
	With vs without TB-peptide in shams	0
	With vs without TB-peptide in lipopolysaccharide challenged	30
Aged 24-mo	Lipopolysaccharide vs sham	62
	Lipopolysaccharide vs sham under TB-peptide	60
	With vs without TB-peptide in shams	1
	With vs without TB-peptide in lipopolysaccharide challenged	11
11-fold by lipopolysaccharide. As listed in Table 4, treatment with TB-peptide reduced the scope of lipopolysaccharide-induced changes in metabolites, which included upregulation in 28 and downregulation in 14 metabolites. The treatment also decreased the levels of changes. For example, lipopolysaccharide-triggered fold changes in N-acetyl-glycine and adenosine were reduced to 2.86 and 4.14 respectively, compared with 5.6 and 11 when TB-peptide was not given. However, in the case of UDP-glucose, an intermediate of synthesis of glycogen, lipopolysaccharides, and glycosphingolipids, the fold change of downregulation was increased from 7.9 to 12.67. As expected, TB-peptide did not incite detectable changes in sham animals, whereas the treatment increased the abundance in 8 but reduced in 22 metabolites in lipopolysaccharide-challenged groups (Table 5).

To further investigate the impact of TB-peptide in myocardial metabolites during endotoxemia, we compared the TB-peptide treated groups of sham and lipopolysaccharide-challenged mice with those without the treatment. As shown in Figure 2B, 31 metabolites...
were identified as having lipopolysaccharide-associated changes regardless of the presence of TB-peptide. However, in more than half of these metabolites, lipopolysaccharide-associated fold changes were attenuated by TB-peptide, for example, in adenosine and N-acetyl-glycine. Additionally, lipopolysaccharide altered the abundance in 38 metabolites, which were not affected by TB-peptide. On the other hand, when

Metabolite	Log2 Fold Change	Log2 Fold Change
isoValerylcarbamide	-2	3-Indoxyl Sulfate
Methionine Sulfoxide	-1	Trigonelline
Asparagine	0	Citrulline
Orotate	1	Histidine
S-Methylcysteine	2	iso-Leucine/allo-leucine
Valine	-2	Tryptophan
betaAlanine	-1	Dimethylarginine (A/SDMA)
Adenylosuccinate	0	Argininosuccinate
Thiamine	1	Oxalacetate
Linoelic Acid	2	3-Methyl-3-Hydroxyglutaric Acid
Phosphocreatine	-2	
1-Methylnicotinamide	-1	
NAD	0	
trans-Aconitate	1	
Carnosine	2	
Dimethylglycine	-2	
N-Carbamoyl-B-Alanine	-1	
N-isoValerylglycine	0	
7-Methylguanidine	1	

Figure 2. Continued
receiving TB-peptide treatment, lipopolysaccharide stimulated changes in 11 metabolites, which differences were not detectable in the absence of the peptide.

Using the data of metabolic changes summarized above, we performed pathway analysis using Shiny GAM and Cytoscape software and signaling network analysis based on the small molecule pathway database. Results showed that lipopolysaccharide significantly impaired pathways of carbohydrate/glucose metabolism and AA metabolism, including the malate–aspartate shuttle, D-glutamine/D-glutamate transition, alanine-aspartate–glutamate cycling, arginine-proline synthesis, glycine-serine–threonine pathway, and purine metabolism. In the meantime, lipopolysaccharide upregulated fatty acid metabolism, such as glycolipids and linoleic acid (Figure 2C). With the treatment of TB-peptide, the metabolism via AAs and glucose pathways was significantly improved whereas elevation in
Table 3. Lipopolysaccharide-Induced Significant Changes in Myocardial Metabolites of Young Mice

Metabolite	HMDB.ID	KEGG.ID	logFC	log2 abundance	FDR
Adenosine	HMDB00050	C00212	−3.50	23.86	4.54E-06
UDP-glucose	HMDB00286	C00029	−2.98	17.63	4.86E-05
isoValeryl carnitine	HMDB0688	C20826	−2.48	18.63	4.86E-05
Adenine	HMDB00334	C00147	−2.27	21.22	1.47E-06
Glycerophosphocholine	HMDB0086	C00670	−1.93	23.04	2.19E-07
Acetylcarnitine	HMDB00201	C02571	−1.79	25.25	0.0052
Methionine	HMDB0696	C00073	−1.38	18.29	3.94E-06
Methionine sulfoxide	HMDB02005	C02989	−1.31	15.29	0.0098
Serine	HMDB00187	C00065	−1.13	21.34	3.63E-05
Pentothenate	HMDB00210	C00864	−1.05	22.35	0.0043
Asparagine	HMDB00168	C00152	−0.87	19.14	0.0003
Oxidized glutathione	HMDB03337	C00127	−0.69	21.89	0.0123
Hypoxanthine	HMDB00157	C00262	−0.62	25.19	0.0049
Arabitol/xylitol	HMDB00568	C01904	−0.62	17.20	0.0131
Guanosine	HMDB00133	C00387	−0.65	19.31	0.0151
Aspartic acid	HMDB00191	C00049	−0.61	22.58	0.0306
Orotate	HMDB00226	C00296	−0.54	15.43	0.0519
Tyrosine	HMDB00158	C00082	−0.39	20.34	0.0437
S-methylcysteine	HMDB02108	C20404	−0.33	17.81	0.0945
Phenylalanine	HMDB00159	C00079	0.38	22.24	0.0133
o-phosphoethanolamine	HMDB000224	C00346	0.44	22.96	0.0146
Arachidonate	HMDB06102	C00219	0.45	22.58	0.0306
Ribulose 5-phosphate	HMDB00618	C00199	0.49	21.67	0.0973
Valine	HMDB00883	C00183	0.50	19.00	0.0150
Ethanolamine	HMDB00149	C00189	0.58	15.45	0.0149
N-Ac-alanine	HMDB00766		0.59	17.85	0.0018
betaAlanine	HMDB00056	C00099	0.60	15.55	0.0772
Riboflavin	HMDB00244	C00255	0.62	17.08	0.0005
Anserine	HMDB00194	C01262	0.64	18.90	0.0115
Adenylosuccinate	HMDB00536	C03794	0.65	17.17	0.0437
2-Hydroxyphenylacetate	HMDB06235	C01983	0.65	14.77	0.0133
Thiamine	HMDB00235	C00378	0.66	19.02	0.0501
N2, N2-dimethylguanosine	HMDB04824	C06492	0.66	13.74	0.0039
Linoleic acid	HMDB00673	C01595	0.68	20.16	0.0020
1/3-methylhistidine	HMDB00001	C01152	0.68	17.57	0.0136
Uridine	HMDB00296	C00299	0.69	19.69	0.0026
Phosphocreatine	HMDB01311	C02305	0.70	16.42	0.0273
N6-trimethyllysine	HMDB01325	C03793	0.72	20.39	0.0193
Cystathionine	HMDB00099	C02291	0.72	14.25	0.0306
1-Methylnicotinamide	HMDB00699	C02918	0.73	17.65	0.0181
Glycerol-3-P	HMDB00126	C00063	0.77	24.48	0.0271
Lactose/trehalose	HMDB00186	C00243	0.79	18.99	0.0434
NAD	HMDB00902	C00003	0.84	17.38	0.0061
IMP	HMDB00175	C00130	0.85	26.20	0.0019
trans-Aconitate	HMDB00958	C02341	0.85	13.41	0.0784
Homocitrulline	HMDB00679	C02427	0.93	15.35	0.0306
NADP	HMDB00217	C00006	0.95	12.74	0.0924
Carnosine	HMDB00333	C00386	1.05	21.21	0.0002

(Continued)
fatty acid synthesis was attenuated (Figure 2D). These data suggest that the application of TB-peptide was able to rectify the alteration induced by lipopolysaccharide in heart of young adult mice, and thus, ameliorate cardiac function.

Myocardial Metabolite Profiling in Response to Endotoxemia and to the Follow-Up Therapeutic Treatment With TB-Peptide in Aged Mice

Similarly, the metabolic profiles in the hearts of aged mice (24 months old) from sham versus lipopolysaccharide-challenge groups and their responses to TB-peptide treatment were examined. The interactive mean-difference plots of 4 comparisons, including lipopolysaccharide-challenged versus sham, lipopolysaccharide-challenged versus sham under TB-peptide treatment, sham group with peptide treatment versus untreated, and lipopolysaccharide group with peptide treatment versus untreated, were summarized in Figure 3A. Metabolites detected with statistical significance, together with their values of fold change, average log2-abundance, and false discovery rate, are listed in Tables 6 through 8. Of the 156 metabolites, 24 targets were significantly elevated and 38 decreased by challenge with lipopolysaccharide (Table 6). Among these molecules, allantoin, the main product of uric acid oxidation, was increased the most, with a fold change of about 4.8, by lipopolysaccharide. On the other hand, as in the young mice, adenosine was identified as the most downregulated metabolite by lipopolysaccharide with a fold change of 3.2 in the heart of aged mice. In animals receiving TB-peptide, lipopolysaccharide triggered significant increases in 18 and decreases in 42 metabolites in the heart (Table 7). Under this condition, N-carbamoyl-β-alanine, a urea derivative of β-alanine, was the most upregulated metabolite with a fold-difference of 3.8, compared with the unchallenged sham controls. Lipopolysaccharide stimulated allantoin, but the fold difference was reduced to 3.3 by TB-peptide from 4.8 in the absence of the peptide treatment. Methionine sulfoxide, the oxidized form of methionine and a marker of oxidative stress, was found to be downregulated the most with a change of 2.5-fold. Interestingly, lipopolysaccharide-associated decrease in adenosine decrease was undetectable under the treatment of TB-peptide, suggesting a TB-peptide-mediated effect of improving energy production.

Table 3. Continued

Metabolite	HMDB.ID	KEGG.ID	logFC	log2 abundance	FDR
Glucosamine-6-phosphate	HMDB0001254	C00352	1.130319574	16.1179439	0.01520334
Sedoheptulose 7-phosphate	HMDB01068	C05382	1.132445025	21.99544352	0.00058224
3-Hydroxyisovaleric acid	HMDB00754	C20827	1.1786381	16.50883966	7.8683E-05
Dimethylglycine	HMDB00092	C01026	1.27381044	16.24965502	0.000174352
Uric acid	HMDB00300	C00106	1.290287028	20.86123826	2.4256E-10
Cytidine	HMDB00089	C00475	1.406732689	21.73604314	2.1474E-08
2’-Deoxycytidine	HMDB00014	C00881	1.407228732	17.49697137	4.248E-09
2-Aminoadipate	HMDB00510	C00956	1.41470616	16.87943741	0.001028555
1-Methyladenosine	HMDB00331	C02494	1.454698084	16.60747522	1.9994E-06
N-carbamoyl-β-alanine	HMDB00026	C02642	1.520205652	14.5796584	0.024131976
Allantoin	HMDB00462	C01551	1.647463659	20.63393545	0.000563337
Glutaryl carnitine	HMDB13130	C02494	1.807288491	17.65586613	1.8517E-05
n-valerylglycine	HMDB00678	C02494	1.854144069	15.57962302	0.00420179
3HBA	HMDB0000357	C01089	1.871240980	21.08722141	0.000162793
2-Hydroxyisobutyrate/2-	HMDB00729	C01089	1.941624661	18.70370022	2.1996E-07
hydroxybutyrate					
Succinyl carnitine	HMDB61717	C01089	1.957087967	23.05988206	2.1474E-08
G6P	HMDB0001401	C00902	2.126089231	26.42552439	0.000268097
7-Methylguanine	HMDB00087	C02242	2.184038818	15.9037898	2.824E-05
Pseudouridine	HMDB00767	C02067	2.241822376	19.02450924	1.9771E-05
G1P/F1P/F6P	HMDB05186	C01094	2.305984672	24.44804743	0.00017851
N-AcetylGlycine	HMDB00352	C0103	2.48696726	16.97801982	2.4256E-10

3HBA, 3-hydroxybutyric acid; FC indicates fold change; FDR, false discovery rate; G6P, glucose 6-phosphate; IMP, inosine monophosphate; NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate; and UDP, uridine diphosphate.
Table 4. Lipopolysaccharide-Induced Significant Changes in Myocardial Metabolites of Young Mice Receiving TB-Peptide

Metabolite	HMDB.ID	KEGG.ID	logFC	log2 abundance	FDR
UDP-glucose	HMDB00286	C00029	-3.663516753	17.63404042	1.11579E-05
Acetyl carnitine	HMDB00201	C02571	-2.051778059	25.2547884	0.000247391
Adenosine	HMDB00050	C00212	-1.917670301	23.86931938	0.014122908
3-indoxyl sulfate	HMDB00682	C01004	-1.70357922	17.91025929	0.026552223
Trigonelline	HMDB00875	C01904	-1.60698519	17.87022517	4.36735E-05
Adenine	HMDB00034	C00147	-1.262324222	21.22184279	0.018246811
Araarbol/xylitol	HMDB00568	C00073	-0.935467711	18.29150982	0.00168457
Methionine	HMDB00696	C00079	-0.50558362	21.03427896	0.08018539
Guanosine	HMDB00133	C00387	-0.837615621	19.31073305	0.016966526
Citrulline	HMDB00904	C00327	-0.696056936	22.13035679	0.018246811
Hypoxanthine	HMDB00157	C00262	-0.604536334	25.19458686	0.003084473
Oxidized glutathione	HMDB00337	C0127	-0.538028531	21.8909802	0.077134029
Serine	HMDB00187	C00065	-0.50558362	21.03427896	0.08018539
Histidine	HMDB00177	C00135	-0.400626334	22.92866174	0.045506999
Phenylalanine	HMDB00159	C00079	0.360855597	22.2348415	0.031563198
iso-Leucine/allo-isoleucine	HMDB00172/	C04077	0.407011027	18.72100738	0.045506999
Dimethylarginine (A/SDMA)	HMDB00139/	C03626	0.598466485	18.23516339	0.053269395
Argininosuccinate	HMDB00052	C03406	0.629467478	17.15747824	0.064830017
Ribulose 5-phosphate	HMDB00061	C00199	0.632741879	21.6725341	0.039872264
N6-Trimethyllysine	HMDB00135	C03793	0.681343752	20.39412577	0.045506999
1/3-Methylhistidine	HMDB00001	C01152	0.733773991	17.57160604	0.016966526
Oxalaceta	HMDB00223	C00036	0.772924705	13.71753688	0.012311173
2′-Deoxyctydine	HMDB00014	C00881	0.789242017	17.94961737	0.000247391
Glutaricarnitine	HMDB01330	C00079	0.79820565	17.56586613	0.068927058
Uracil	HMDB00300	C00106	0.81276773	20.86123826	1.11579E-05
Sedoheptulose 7-phosphate	HMDB01068	C05382	0.830566254	21.9954532	0.020701305
Homocitrulline	HMDB00079	C00427	0.831176457	15.35024408	0.085314121
Cytidine	HMDB00089	C00475	0.871603261	21.73604314	0.000247391
Xanthosine	HMDB00299	C01762	0.887764943	16.32577761	0.007986437
3-Methyl-3-hydroxyglutaric acid	HMDB0000355	C03761	0.91046067	12.6291266	0.030332094
Lactose/trehalose	HMDB00186	C00243	0.96657408	18.9809587	0.02591865
Glucosamine-6-phosphate	HMDB0001254	C00352	1.163982793	16.1179439	0.023982594
2-Aminoadipate	HMDB00510	C00956	1.47129853	16.87943741	0.001561702
N-AcetylGlycine	HMDB00532	1.516513784	16.97801982	2.27301E-05	
2-Hydroxyisobutyrate/2-	HMDB00729	1.533744624	18.70370022	4.36735E-05	
hydroxybutyrate	HMDB00185	C01094	2.378040124	24.44804743	0.000247391
G1P/F1P/F6P	HMDB001076	C00085	2.42346041	26.42552439	0.000141886

FC indicates fold change; FDR, false discovery rate; UDP, uridine diphosphate.
There was little effect of TB-peptide on cardiac metabolites in sham control animals; the only molecule with significant change was guanidinoacetate, showing a decrease of 2.3-fold (Table 8). In animals challenged by lipopolysaccharide, TB-peptide treatment led to decreases in 10 and an increase in 1 metabolite in aged hearts (Table 8).

The effects of TB-peptide on myocardial metabolites in aged mice during endotoxemia were also analyzed by comparing data from the TB-peptide treated groups of sham and lipopolysaccharide-challenged mice with those from animals without the treatment. As summarized in Figure 3B, 37 metabolites were identified having lipopolysaccharide-associated changes regardless of the presence of TB-peptide. However, in 18 of these molecules, lipopolysaccharide-induced fold changes were attenuated by TB-peptide. In addition, 25 metabolites that were altered by lipopolysaccharide but had little response to TB-peptide. Further, in animals given TB-peptide treatment, lipopolysaccharide altered 23 new metabolites compared with the condition of without the peptide treatment.

Metabolic profiling from the aged mice was applied to pathway analysis and network analysis as described previously. Results suggest that metabolites in pathways of glucose and amino acid metabolism were significantly downregulated in aged heart by endotoxemia (Figure 3C). Treatment with TB-peptide reversed the responses of these pathways (Figure 3D), consistent with the observations obtained in the young hearts.

There was little effect of TB-peptide on cardiac metabolites in sham control animals; the only molecule with significant change was guanidinoacetate, showing a decrease of 2.3-fold (Table 8). In animals challenged by lipopolysaccharide, TB-peptide treatment led to decreases in 10 and an increase in 1 metabolite in aged hearts (Table 8).

The effects of TB-peptide on myocardial metabolites in aged mice during endotoxemia were also analyzed by comparing data from the TB-peptide treated groups of sham and lipopolysaccharide-challenged mice with those from animals without the treatment. As summarized in Figure 3B, 37 metabolites were identified having lipopolysaccharide-associated changes regardless of the presence of TB-peptide. However, in 18 of these molecules, lipopolysaccharide-induced fold changes were attenuated by TB-peptide. In addition, 25 metabolites that were altered by lipopolysaccharide but had little response to TB-peptide. Further, in animals given TB-peptide treatment, lipopolysaccharide altered 23 new metabolites compared with the condition of without the peptide treatment.

Metabolic profiling from the aged mice was applied to pathway analysis and network analysis as described previously. Results suggest that metabolites in pathways of glucose and amino acid metabolism were significantly downregulated in aged heart by endotoxemia (Figure 3C). Treatment with TB-peptide reversed the responses of these pathways (Figure 3D), consistent with the observations obtained in the young hearts.

Table 5. TB-Peptide-Induced Significant Changes in Myocardial Metabolites of Young Mice

Metabolite	HMDB.ID	KEGG.ID	logFC	log2 abundance	FDR
Lipopolysaccharide-challenged group					
n-isovalerylglycine	HMDB00678		-2.960102541	15.97982302	8.8989E-05
7-Methylguanine	HMDB00897	C02242	-1.967084102	15.09317898	0.000298167
Pseudouridine	HMDB00767	C02067	-1.564571918	19.02450924	0.003936741
N-AcetylGlycine	HMDB00532		-1.285854526	16.97801982	0.000257584
1-Methylnicotinamide	HMDB00699	C02918	-1.226467546	17.65160318	0.000298167
Succinylcarnitine	HMDB61717		-1.214433733	23.05998206	0.000297102
1-Methyladenosine	HMDB00331	C02494	-1.192026095	16.60747522	0.000170922
Trigonelline	HMDB00875	C01004	-1.106743314	17.87022517	0.003936741
3-Hydroxyisovaleric acid	HMDB00754	C02087	-1.071695407	16.5083966	0.000594075
Phosphocreatine	HMDB01511	C02305	-0.916614511	16.42700403	0.009986574
Glycerol-3-P	HMDB00126	C00093	-0.884612321	24.48432725	0.025786544
Dimethylglycine	HMDB00092	C01026	-0.873442773	16.24965502	0.01893279
Suberic acid	HMDB00893	C08278	-0.856700702	15.9663203	0.097925558
beta-Alanine	HMDB00058	C00099	-0.809115183	15.55146758	0.031939882
Uridine	HMDB00296	C00299	-0.548756032	19.69582063	0.031939882
N2, N2-Dimethylguanosine	HMDB04824		-0.538285701	13.74037868	0.031939882
2’-Deoxyctydine	HMDB00014	C00881	-0.511896569	17.49697137	0.02535051
Cytidine	HMDB00089	C00475	-0.504341571	21.73604314	0.03623811
Linoleic acid	HMDB00673	C01595	-0.486995048	20.1608533	0.05098851
N-Ac-alanine	HMDB00766		-0.485510673	17.8530671	0.003936741
Uracil	HMDB00200	C00106	-0.45409582	20.86123826	0.009879525
Palmitic acid	HMDB000220	C00249	-0.41652477	18.77132958	0.096541724
Methionine	HMDB00696	C00073	0.660600291	18.29150982	0.031939882
Lysine	HMDB00182	C00047	0.67590058	22.74394835	0.00672983
Argininosuccinate	HMDB00052	C03408	0.764288611	17.15747824	0.00672983
Serine	HMDB00187	C00065	0.844245287	21.03427896	0.003529375
Arginine	HMDB00517	C00062	0.86584688	22.91032246	0.040308837
Asparagine	HMDB00168	C00152	0.978183481	19.14028377	0.000298167
Pentothenate	HMDB00210	C00864	1.661246962	22.34537961	8.8989E-05
Glycero phosphocholine	HMDB00086	C00670	1.888270369	23.04142803	2.39539E-06
Sham group					
None	N/A	N/A	N/A	N/A	N/A

FC indicates fold change; and FDR, false discovery rate.
However, unlike the young counterparts, lipopolysaccharide induced a decrease in fatty acid metabolism, and TB-peptide had little effect on this response.

Age-Dependent and -Independent Changes in Myocardial Metabolite Profiling in Response to Endotoxemia and to the Therapeutic Treatment by TB-Peptide

To address whether age plays an important role in altering myocardial metabolites in response to endotoxemia and to the treatment of TB-peptide, we compared compounds with significant changes between groups of young and old mice with or without lipopolysaccharide challenge and with or without the treatment of TB-peptide. As shown in Figure 4, the heatmap comparison indicates that TB-peptide mitigated lipopolysaccharide-induced impairment in amino acid biosynthesis via glutamate-aspartate pathway in both young and aged groups. A distinct age-dependent pattern was found to associate with metabolites involved in fatty acid metabolism, such as choline, phosphocholine, linolenic acid, linoleic acid, and 1-methylnicotinamide, as well as in AAs that were previously reported to be closely related to fatty acid
Figure 3. Continued

metabolism, such as isoleucine and valine. In this category of molecules, TB-peptide appeared to attenuate lipopolysaccharide-induced changes in the young mice but had moderate or little effect in the aged group.

DISCUSSION

We previously demonstrated that promoting autophagy via Beclin-1 is cardiac protective in a mouse...
model of endotoxemia. Additionally, pharmacological Beclin-1 activator TB-peptide exhibited therapeutic potential in several preclinical models including cancer chemotherapy, infection, endotoxemia, and pneumonia-induced sepsis. In the studies summarized here, we obtained results supporting that
Table 6. Lipopolysaccharide-Induced Significant Changes in Myocardial Metabolites of Old Mice

Metabolite	HMDB.ID	KEGG.ID	logFC	log2 abundance	FDR
Adenosine	HMDB00050	C00212	-1.688	23.869	0.034
Guanosine	HMDB00133	C00387	-1.296	19.310	0.0005
Homoaarginine	HMDB00670	C01924	-1.244	16.563	0.0022
Adenine	HMDB00034	C00147	-1.193	21.222	0.0303
Asparagine	HMDB00168	C00152	-1.164	19.140	0.0001
Glucose	HMDB00122	C00331	-1.149	17.517	0.0003
Acetylcarnitine	HMDB00201	C02571	-1.065	25.255	0.0692
Serine	HMDB00187	C00065	-1.056	21.034	0.0006
Methionine	HMDB00696	C00073	-1.031	18.291	0.001
Aspartic acid	HMDB00191	C00049	-1.026	22.258	0.001
Argininosuccinate	HMDB00052	C03406	-1.014	17.157	0.0003
gamma-Aminobutyrate	HMDB000112	C00334	-0.982	16.108	0.0006
Glutamic acid	HMDB000148	C00205	-0.947	25.039	0.0036
S-adenosylmethionine (SAM)	HMDB01185	C00199	-0.940	19.991	0.0046
Threonine	HMDB00167	C00188	-0.920	21.053	0.0001
Arginine	HMDB00517	C00629	-0.903	22.910	0.0001
S-Methylthioadenosine	HMDB01173	C00170	-0.840	17.593	0.0046
Glycerophosphocholine	HMDB00086	C00670	-0.820	23.041	0.0026
Inosine	HMDB00195	C00294	-0.813	24.053	0.0029
Guanidinoacetate	HMDB00128	C00581	-0.770	15.092	0.0066
Lysine	HMDB00182	C00047	-0.753	22.743	0.0039
Phosphocreatine	HMDB01511	C02305	-0.639	16.427	0.0080
Hypoxanthine	HMDB00157	C00262	-0.639	25.194	0.0033
Choline	HMDB00097	C00114	-0.630	24.401	0.0002
Linolenic acid	HMDB01388	C06427	-0.596	15.633	0.0052
Glutamine	HMDB00641	C00064	-0.586	26.152	0.0051
Guanine	HMDB00132	C00242	-0.577	14.685	0.0012
CDP	HMDB01546	C00112	-0.565	16.055	0.0070
Pyroglutamic acid	HMDB00267	C01879	-0.555	17.167	0.0026
N-acetyl-aspartate (NAA)	HMDB00812	C01042	-0.530	20.674	0.0015
Glycine	HMDB00123	C00037	-0.524	16.908	0.0027
Oxidized glutathione	HMDB00337	C00127	-0.520	21.890	0.0012
CMP	HMDB00095	C00055	-0.492	16.814	0.0007
Histidine	HMDB00177	C00135	-0.460	22.928	0.0026
Xanthine	HMDB00292	C00385	-0.460	22.758	0.0039
Ribose-5-P	HMDB01548	C00117	-0.449	23.262	0.0034
Leucine /D-norleucine	HMDB00687	C00123	-0.441	21.867	0.0044
Tryptophan	HMDB00929	C00078	-0.417	19.193	0.0089
isoLeucine/alloisoLeucine	HMDB00172/	C00407/	-0.354	18.712	0.0019
isoLeucine/alloisoLeucine	HMDB00057	C21096	-354.353	18.712	0.0019
N-Ac-alanine	HMDB00766		0.298	17.853	0.0089
Uridine	HMDB00296	C00299	0.487	19.695	0.0056
Oxalacetate	HMDB00223	C00036	0.557	13.771	0.0007
Carnosine	HMDB00033	C00386	0.582	21.161	0.0037
N2, N2-dimethylguanosine	HMDB04824		0.704	13.740	0.0056
Dimethylglycine	HMDB00092	C01026	0.707	16.249	0.0013
2'-Deoxycytidine	HMDB00014	C00881	0.744	17.496	0.0011
Uracil	HMDB00300	C00106	0.773	20.861	0.0099

(Continued)
TB-peptide provides therapeutic benefits to alleviate sepsis-induced cardiomyopathy not only in young adults but also in aged population (Figure 1). Further, because autophagy intimately interacts with metabolic regulation,37,38 we examined whether lipopolysaccharide challenge and the following TB-peptide treatment alter cardiac metabolism in young and aged mice by a targeted approach of metabolomic analysis. Our data revealed that a toxic challenge of lipopolysaccharide triggers both age-dependent and age-independent reprogramming in energy metabolism in myocardium, and the effects of TB-peptide involve mitigating lipopolysaccharide-induced disturbance of carbohydrate and AA metabolism (Figures 2 through 4).

In sepsis, energy deficits, shown by abnormal accumulation of intermediates from breakdown of carbohydrates, lipids, and protein reserves, was found to associate with worsening outcomes, especially in non-survivors.39,40 Sepsis responses such as high fever, the activation of immune cells, tachycardia, tachypnea, and the acute production of reactants demand a higher level of energy supplies. Evidence supports the hypothesis that, during the phase of early sepsis, a hypermetabolic response enables the body’s defense mechanism to meet the needs of fighting against infection. However, late-stage sepsis is accompanied by hypometabolism leading to a severe disruption of metabolic homeostasis and creating a problem of metabolic deficiency. Prolonged hypometabolism is maladaptive because it generates a variety of toxic materials that stimulate inflammation and eventually provoke cell death and multiorgan dysfunction.10,11

Because autophagy is a self-survival mechanism via its “self-eating” capacity, promoting autophagy provides an opportunity to recycle the unwanted materials, such as damaged subcellular organelles, macro- and small molecules, that are used as replenished supplies for new biosynthesis.41 Indeed, strategies that boost autophagy have been shown to have therapeutic promise in animal disease models including sepsis.18,21,25,32 Testing potential therapeutic approaches in aged subjects is generally more challenging because of significantly reduced tolerance to stress conditions, likely a result of compromised immunity. Aged hearts are characterized as having decreased autophagy, accumulated mitochondrial damage, and higher vulnerability to acute insults such as sepsis.42–44 Consistent with the hypothetical benefit of autophagy, overexpression of autophagy genes or long-term application of pharmacological autophagy inducers increased life span in various animal models.33,45 In this present study, we obtained evidence showing that activation of autophagy by TB-peptide, when given post lipopolysaccharide-challenge, was able to improve cardiac performance and mitigate cytokine production in aged mice (Figure 1). The data suggest that a short-term application of autophagy inducer may effectively control sepsis-induced cardiomyopathy not only in young adults but also in an aged population.

One critical role of autophagy is to catalytically promote metabolic homeostasis under stress or disease conditions to meet the higher energy demand. In particular, autophagy is found to mediate the availability of carbohydrates, lipids, and nucleic acids through

Table 6. Continued

Metabolite	HMDB.ID	KEGG.ID	logFC	log2 abundance	FDR
UMP	HMDB0000288	C00105	0.888752926	20.76603231	0.034403039
2-Hydroxyisobutyrate/2-Hydroxybutyrate	HMDB00729		0.925103751	18.70370022	0.013945565
isoValeric acid/4-oxobutanoate/ acetoacetate	HMDB00718/ HMDB0001259	C08262/ C00232/ C00164	0.929126079	15.83124364	0.098653456
3-Hydroxyisovaleric acid	HMDB00754	C02872	0.947558894	16.50883966	0.003901658
1-Methyladenosine	HMDB003331	C02494	1.047461411	16.60747522	0.00175991
Pimelolate	HMDB00070	C00408	1.093309517	18.29659999	0.007891768
N-AcetylGlycine	HMDB00532	C02878	1.357470336	15.9663203	0.005774246
Suberic acid	HMDB00893	C00475	1.39946568	21.73604314	1.08047E-06
Cytidine	HMDB00089	C01551	2.263705109	20.63393545	0.000125369
Azelaic acid	HMDB00784	C08261	1.596727785	18.01963077	0.007585928
3-Indoxyl sulfate	HMDB00682		1.761797821	17.91025929	0.027607025
N-Carbamoyl-B-alanine	HMDB00026	C02642	1.973807696	14.57996584	0.00957627
7-Methylguanine	HMDB00897	C02242	2.106813609	15.09317898	0.000388829
Pseudouridine	HMDB00767	C02067	2.173259529	19.02450924	0.00028785
Allantoin	HMDB00462	C01551	2.263705109	20.63393545	0.000125369

FC indicates fold change; FDR, false discovery rate; and UMP, uridine 5'-monophosphate.
Table 7. Lipopolysaccharide-Induced Significant Changes in Myocardial Metabolites of Old Mice Receiving TB-Peptide

Metabolite	HMDB.ID	KEgg.ID	logFC	log2 abundance	FDR
Methionine Sulfoxide	HMDB02005	C02989	−1.3153	0.032800624	
Guanosine	HMDB00133	C00387	−1.3184	0.002429568	
Arginine	HMDB00517	C00062	−1.2137	0.011751792	
2-Aminoisobutyric acid	HMDB01906	C03665	−1.1592	0.006785659	
Inosine	HMDB00196	C00294	−1.1140	0.001187937	
Aspartic acid	HMDB00191	C00049	−1.0665	0.002429568	
Adenine	HMDB00034	C00147	−1.0546	0.001187937	
gamma-Aminobutyrate	HMDB000112	C00334	−1.0368	0.001187937	
Glucose	HMDB00122	C00031	−0.9260	0.030927335	
Lactose/trehalose	HMDB00186	C00243	−0.8470	0.002429568	
Glutamic acid	HMDB000148	C00025	−0.8294	0.001187937	
Acetylphosphate	HMDB01494	C00227	−0.8216	0.002429568	
Serine	HMDB00187	C00065	−0.8135	0.013011786	
Ribose-5-P	HMDB01548	C00117	−0.7457	0.02328568	
Ribulose 5-phosphate	HMDB00618	C00199	−0.7045	0.013011786	
Retinol	HMDB00305	C19962	−0.7396	0.011751792	
Phosphocreatine	HMDB01511	C02305	−0.7353	0.061264672	
Hypoxanthine	HMDB000157	C00262	−0.7203	0.002865168	
Cholesterol sulfate	HMDB00653	C18043	−0.7110	0.077031359	
N6-Acetyl-lysine	HMDB00206	C02727	−0.7056	0.045328886	
Mannitol	HMDB00765	C00392	−0.6937	0.077782887	
Alanine	HMDB00161	C00041	−0.6827	0.005694127	
Adenylosuccinate	HMDB000538	C03794	−0.6796	0.079513095	
Creatine	HMDB000064	C00300	−0.6711	0.021813171	
Taurine	HMDB00251	C00245	−0.6697	0.002577699	
Asparagine	HMDB00168	C00152	−0.6544	0.030927335	
Taurocyamine	HMDB003584	C01959	−0.6497	0.033730157	
Linolenic acid	HMDB01388	C06427	−0.6426	0.050642956	
Pyroglutamic acid	HMDB00267	C01879	−0.6387	0.04969271	
Methionine	HMDB00696	C00073	−0.5937	0.077031359	
isoLeucine/alloisoLeucine	HMDB00172	C00407	−0.5777	0.021913171	
3'-Methylthioadenosine	HMDB00113	C00170	−0.5776	0.077031359	
Guanine	HMDB00132	C00242	−0.5513	0.030927335	
Nicarnamide	HMDB001406	C00153	−0.5480	0.030927335	
Hydroxyproline	HMDB00725	C01157	−0.5419	0.030927335	
CMP	HMDB00095	C00055	−0.5304	0.077031359	
N-acetyl-aspartate (NAA)	HMDB00812	C01042	−0.5151	0.030927335	
Threonine	HMDB00167	C00188	−0.5133	0.077782887	
Choline	HMDB00097	C00114	−0.4977	0.004912092	
FAD	HMDB00124	C00016	−0.4852	0.050905372	
Betaine	HMDB00043	C00719	−0.4478	0.097856148	
Xanthine	HMDB00292	C00385	−0.4100	0.032800624	
N-Ac-alanine	HMDB00766	C00881	0.4587	0.061217759	
2'-Deoxyxycytidine	HMDB00014	C00861	0.4587	0.061217759	
1-Methyladenosine	HMDB00331	C02494	0.5570	0.097733496	
Uracil	HMDB00300	C00106	0.6286	0.002429568	
Glutaric acid	HMDB00661	C00489	0.7407	0.054616457	

(Continued)
selective signaling of glycophagy, lipophagy, DNAutophagy, and RNAutophagy, respectively. Therefore, reprogramming cardiac metabolism is an expected response to the challenge of lipopolysaccharide, as well as to the treatment of TB-peptide. In this report, an established targeted metabolic approach was applied to examine major metabolic pathways of energy production using substrates of carbohydrates, AAs, and lipids. Our data suggest that endotoxemia shock caused an age-independent downregulation in glucose metabolism and AA metabolism, shown by changes in glucose, UDP-glucose, L-methionine, aspartate, and glutamate (Figures 2 and 3, Tables 3 and 6). This detected effect of endotoxemia on carbohydrate metabolism is consistent with previous report of lipopolysaccharide-induced impairment in myocardial glucose metabolism in an ex vivo perfused heart model. We also found that TB-peptide exerted a reversing effect on these lipopolysaccharide-induced changes in metabolites, resulted in improved glucose and AAs metabolisms (Figures 2 and 3, Tables 4 and 7). It is worth pointing out that TB-peptide appears to have a stronger effect on AA metabolism, as summarized in the heatmap cluster analysis in Figure 4. In particular, TB-peptide protected metabolites generated via the glutamate–aspartate pathway from declines triggered by lipopolysaccharide.

Additionally, our data suggest that lipopolysaccharide challenge and the subsequent treatment of TB-peptide incite age-dependent responses of lipid metabolism in the heart. In the young group, lipopolysaccharide elevated levels of metabolites from lipid metabolism, such as glycolipids and linoleic acid (Figures 2 and Table 3). This observation is consistent

Metabolite	HMDB.ID	KEGG.ID	logFC	log2 abundance	FDR
3-Hydroxyisovaleric acid	HMDB00754	C02867	0.786584264	16.50883966	0.030927335
Cytidine	HMDB00089	C00475	0.799060305	21.73604314	0.00352042
UMP	HMDB000288	C00105	0.965194771	20.76033231	0.033730157
Cystathionine	HMDB00099	C02291	1.059338163	14.25041028	0.013011786
Azelaic acid	HMDB00784	C08261	1.113138017	18.01963077	0.079513096
Glutaryl carnitine	HMDB13130	C00956	1.175174675	16.87943741	0.030927335
2-Amino adipate	HMDB001138	C00624	1.403529606	14.71640701	0.030927335
N-Ac-glutamate	HMDB00682	C01551	1.800469573	20.63393545	0.002865188
3-Indoxyl sulfate	HMDB00462	C02242	1.822720726	15.09317898	0.00352042
Allantoin	HMDB00697	C00624	1.924862053	19.02459212	0.002577699
7-Methylguanine	HMDB00767	C02067	1.984705127	14.57996584	0.02144052
Pseudouridine	HMDB00026	C02642	1.147225743	17.65586613	0.02110222
N-carbamoyl-B-alanine	HMDB00876	C05443	−1.374166031	14.2200854	0.063927243
Cholecalciferol	HMDB00205	C02989	−1.337128135	15.29682122	0.079081037
Methionine sulfoxide	HMDB00653	C18043	−0.943757919	19.1375507	0.063927243
Cholesteryl sulfate	HMDB01494	C00227	−0.66582046	16.39466205	0.0392488283
Acetylphosphate	HMDB00058	C00575	−0.656493835	14.58770357	0.085577179
cAMP	HMDB00064	C00300	−0.597420557	27.3962819	0.083469536
Creatine	HMDB00251	C00245	−0.578446884	25.54480293	0.0392488283
Taurine	HMDB00161	C00041	−0.547137941	22.92888413	0.063927243
Alanine	HMDB00017	C00411	−0.531313224	21.5717755	0.079081037
Hydroxyproline	HMDB00725	C01157	−0.52688538	23.26240474	0.063927243
Ribose-5-P	HMDB01548	C00117	−0.52688538	23.26240474	0.063927243
2-Aminoadipate	HMDB00510	C00956	1.263245307	16.87943741	0.063927243

FC indicates fold change; and FDR, false discovery rate.
with published results in literature. For example, a clinic investigation detected a significant lipid accumulation in the myocardium of sepsis nonsurvivors. Follow-up studies in animal models further suggest that this sepsis-associated phenomenon is likely caused by blocked fatty acid oxidation due to impaired regulation via transcription factor peroxisome proliferator-activated receptor-α. In our study presented herein, we found that the lipopolysaccharide-induced increases in lipid metabolites were attenuated by the treatment with TB-peptide (Figure 2 and Table 4). A plausible mechanism of this peptide-mediated effect is that promoting autophagy improves the clearance of wasted molecules and thus reduces lipid accumulation. In addition, a boost in autophagy may improve the overall QC of the mitochondria pool in the heart and thus enhance the use of fatty acid substrates for production of energy. However, in the aged hearts, we observed that lipopolysaccharide mediated a moderate yet significant downregulation trend in fatty acids,
with little effect of TB-peptide (Figure 3 and Tables 6 through 8).

Whether the lipopolysaccharide-mediated decrease in lipids is pathological to the aged hearts remains to be further investigated. One point to consider is that myocardial lipid accumulation and impairment of fatty acid use increase with age. Thus, because of a relatively higher baseline levels of lipids, lipid changes in the aged hearts may not be as dramatic as those in the young groups in response to external stimuli such as lipopolysaccharide. Similarly, postchallenge administration of TB-peptide to temporally induce autophagy is unlikely to affect lipid levels in the heart. Nonetheless, knowledge regarding the age-associated difference in fatty acid metabolism in septic hearts is still limited. Whether the expression and enzymatic activities of fatty acid metabolic factors alter with age, and whether these changes are reprogrammed in response to septic challenge and autophagy stimulation, are critical to better understand the mechanism-of-action of TB-peptide. Furthermore, in sepsis, dysfunctional mitochondria and disrupted lipid metabolism were also observed in mitochondria-enriched organs other than the heart, such as in muscle and liver. Measurements of levels of metabolic substrates of glucose, lactate, and pyruvate in a porcine model of endotoxemia suggest that myocardium and skeletal muscle share a similar pattern of changes. Thus, increasing autophagy capacity by activating Beclin-1 via TB-peptide may have an effect to alleviate muscle atrophy and liver dysfunction. This potential effect and its possible association with aging require further evaluation.

CONCLUSIONS

Taken together, in this report, we provided evidence showing that Beclin-1 activating TB-peptide possesses therapeutic potential for sepsis-induced cardiomyopathy in both young and aged populations. A pilot metabolic study using a targeted metabolomics analysis has linked this beneficial effect to improvements in carbohydrate and AA metabolism. Future studies are warranted to determine the functional changes of regulatory signaling factors in these events. Furthermore, given the limited number of metabolites measured in targeted metabolomic profiles (albeit with high sensitivity), application of an untargeted metabolomics approach may reveal a broader range of cardiac metabolites impactaffecteded by age, lipopolysaccharide, and TB-peptide. It is also recognized that sepsis-induced changes in metabolic homeostasis progresses with severity and depends on the context of tissue and/or cell types. For example, in a mouse model of endotoxemia, lipopolysaccharide challenge decreases lipid levels in the blood while increasing then in the liver, suggesting a possibility of transporting lipids to the liver as a potential energy source. Further, different types of shock conditions appear to stimulate distinct metabolic pathways; such difference was found in the heart and muscle when models of endotoxemia and hemorrhage shock were compared. Lastly, though the endotoxemia model has been widely used as an experimental model mimicking the overwhelming inflammation state at the initial phase of human sepsis, studies in models of infection-induced sepsis, such as cecal ligation and puncture sepsis or pneumonia sepsis, are expected to reveal more in-depth knowledge of relevance with clinical status and/or pathogen specificity. In a recent study, we obtained promising results suggesting that TB-peptide has a therapeutic potential in control of pulmonary pathology in a mouse model of pneumonia sepsis. Future evaluation of metabolic reprogramming at different sepsis models, stages of sepsis, and in different organs could help identify metabolic chemicals and/or regulatory enzymes as diagnostic markers and drug targets for sepsis. Eventually, studies in this area are expected to develop strategies for improving metabolic plasticity as potential new and effective therapies.

ARTICLE INFORMATION

Received January 7, 2022; accepted June 2, 2022.

Affiliations

Department of Surgery, Burn & Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL (M.K., A.N., O.S.Z.); Department of Biological Sciences, Rice University, Houston, TX (R.Z.); Department of Surgery, University of South Florida, Tampa, FL (D. Rein, Z.H., J.L.); Department of Environmental and Occupational Health Sciences (L.W.); and Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center (D.D., D. Raftery, H.P.), University of Washington, Seattle, WA; Department of Lab Medicine & Pathology (D.P.); and Department of Biology (D.P.), University of Washington School of Medicine, Seattle, WA; Department of Surgery (Y.S.); Department of Immunology (M.G.) and Cardiology Division, Department of Internal Medicine (Q.-J.Z., Z.-P.L.), University of Texas Southwestern Medical Center, Dallas, TX.

Sources of Funding

This work is supported by Nathan Shock Center Pilot Award (to Zang), National Institutes of Health (NIH) grant 2R01GM111295-01 (to Zang), HL109471 and CA215063 (to Liu), American Heart Association grant AHA 19TP34910172 (to Liu), NIH R01HL158515 and R01GM124108 (to Li), R01AG049494 (to Promislow), NIH P30 AG012880 (to the University of Washington Nathan Shock Center), and NIH S10 Grant 1S10OD021562-01 (to Raftery) which funded a purchase of the LC–MS system used to acquire targeted metabolomics data. The NIH Common Fund’s National Metabolomics Data Repository website, the Metabolomics Workbench, is supported by NIH grant U2C-DK119886.

Disclosures

None.

Supplemental Material

Data S1

REFERENCES

1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al.
Autophagy Alters Metabolome in Septic Hearts

Kim et al

2. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304:1787–1794. doi: 10.1001/jama.2010.1553

22. Sun Y, Cai Y, Qian S, Chiu H, Zang QS. Beclin-1 improves mitochondria-associated membranes in the heart during endotoxemia. FASEB J. 2021;35:123–135. doi: 10.1096/fj.2020-00039

23. Sud M, Fáhy E, Cotter D, Azam K, Vadivelu I, Burant C, Edison A, Fiehn O, Higashi R, Nair KS, et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016;44:D438–D470. doi: 10.1093/nar/gkw1042

24. Kadioglu A, Cuppone AM, Trappetti C, List T, Spreafico A, Pozzi G, Andrew PW, Oggoni MR. Sex-based differences in susceptibility to respiratory and systemic pneumococcal disease in mice. J Infect Dis. 2011;204:1971–1979. doi: 10.1093/infdis/jir567

25. Piroccola F, Pol J, Vaccelli E, Rao S, Enot DP, Baracco EE, Levesque S, Tosti-Foldi F, Jacquetel N, Yamazaki T, et al. Calcium restriction mitigates endotoxin-induced anti-oxidant defences and lipid peroxidation in neonatal mice. Clin Exp Pharmacol Physiol. 2016;43:151–160. doi: 10.1111/cep.13062

26. Gao S, Ho D, Varner DE, Varner SF. Echocardiography in mice. Curr Protoc Mouse Biol. 2011;71:1–83. doi: 10.1002/9780470942390.mot01030

27. Li X, Liu J, Hu H, Lu S, Lu Q, Quan N, Rouselle T, Patel MS, Li J. Dichloroacetate ameliorates cardiac dysfunction caused by ischemic insults through AMPK signal pathway-not only shifts metabolism, Toxicol Sci. 2019;167:604–617. doi: 10.1093/toxsci/kfy272

28. Miklas JW, Clark E, Levy S, Detraux D, Leonard A, Beusman K, Showalter MR, Smith AT, Hofsteen P, Yang X, et al. TFFA/HADHA is required for fatty acid beta-oxidation and cardioprotection in human cardiomyocytes. Nat Commun. 2019;10:4671. doi: 10.1038/s41467-019-12482-1

29. Wei R, Wang J, Su M, Jia E, Chen S, Chen T, Ni Y. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep. 2018;8:663. doi: 10.1038/s41598-017-19120-0

30. Ritchie ME, Shippon B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv057

31. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027

32. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494:201–206. doi: 10.1038/nature11866

33. Fernandez AF, Sebti S, Wei Y, Zou Y, Shi M, McMillan KL, He C, Ting T, Liu Y, Chiang WC, et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature. 2018;558:136–140. doi: 10.1038/s41586-018-0162-1

34. Lee S, Lee SJ, Coronata AA, Frederichsen LE, Chung SW, Perrella MA, Nakahira K, Ryter SW, Choi AM. Carbon monoxide confers protection in sepsis by enhancing beclin 1-dependent autophagy and phagocytosis. Antioxid Redox Signal. 2014;20:432–442. doi: 10.1089/ars.2013.3588

35. Bishop CA, Schulze MB, Klaus S, Weitkunat K. The branched-chain amino acids valine and leucine have differential effects on hepatic lipid metabolism. FASEB J. 2020;34:9727–9739. doi: 10.1096/fj.20200195R

36. Crown SB, Marze N, Antoniewicz MR. Catabolism of branched chain amino acids contributes significantly to synthesis of odd-chain and even-chain fatty acids in 3T3-L1 adipocytes. PLoS One. 2015;10:e0145850. doi: 10.1371/journal.pone.0145850

37. Lahiri V, Hawkins WD, Klionsky DJ. Watch what you (self-) eat: autophagic localization of tyrosine kinase Src and tyrosine phosphorylation in acute inflammation and sepsis. PLoS One. 2014;9:e85928. doi: 10.1371/journal.pone.0085928

38. Lee HC, Ikeda K, Kanegae Y, et al. Autophagy regulates lipid metabolism in mouse liver. J Physiol. 2014;592:4273–4288. doi: 10.1111/jjap.12589

39. Lee I, Hultteman M. Energy crisis: the role of oxidative phosphorylation in mammalian development and differentiation. Nat Cell Biol. 2010;12:823–830. doi: 10.1038/nclb0910-823

40. Soares MP, Gozzelino R, Weis S. Tissue damage control in disease tolerance improvement program targeting severe sepsis. Crit Care Med. 2009;37:392–397. doi: 10.1097/CCM.0b013e3283307e9a

41. Zannis VI, Goldberg IJ. Inhibition of c-Jun-N-terminal kinase increases cardiac mitochondrial damage in primary cardiomyocytes. J Clin Invest. 2007;119:2150–2155. doi: 10.1172/JCI30059

42. Balmer ML, Hess C. Starving for survival—how catabolic metabolism fuels immune function. Curr Opin Immunol. 2015;43:e47. doi: 10.1016/j.coi.2017.03.009

43. Langley RJ, Tsalik EL, van Velkinburgh JC, Glickman SW, Rice BJ, Wang C, Chen B, Carin L, Suarez A, Mohney RP, et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci Transl Med. 2013;5:195ra95. doi: 10.1126/scitranslmed.3005893

44. Nuttall AB, Carre F, Frost MT, Taylor V, Siddwill R, Rudiger A, Singer M. Succinate recovers mitochondrial oxygen consumption in septic rat skeletal muscle. Crit Care Med. 2007;35:2150–2155. doi: 10.1097/01.ccm.0000281448.00095.4d

45. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Nat Biotechnol. 2004;22:567–570. doi: 10.1038/nbt0604-567

46. Balmer ML, Hess C. Starving for survival—how catabolic metabolism fuels immune function. Curr Opin Immunol. 2015;43:e47. doi: 10.1016/j.coi.2017.03.009
42. Starr ME, Saito H. Sepsis in old age: review of human and animal studies. *Aging Dis.* 2014;5:126–136. doi: 10.14336/AD.2014.0500126
43. Shiraoka A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. Aging and autophagy in the heart. *Circ Res.* 2016;118:1563–1576. doi: 10.1161/CIRCRESAHA.116.307474
44. Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, et al. Autophagy in healthy aging and disease. *Nat Aging.* 2021;1:834–850. doi: 10.1038/s43587-021-00098-4
45. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene ND, Gema D. Metformin retards aging in *C. elegans* by altering microbial folate and methionine metabolism. *Cell.* 2013;153:228–239. doi: 10.1016/j.cell.2013.02.035
46. Ha J, Guan KL, Kim J. AMPK and autophagy in glucose/glycogen metabolism. *Mol Aspects Med.* 2015;46:46–62. doi: 10.1016/j.mam.2015.08.002
47. Adeva-Andany MM, Gonzalez-Lucan M, Donapetry-Garcia C, Fernandez-Fernandez C, Ameneiros-Rodriguez E. Glycogen metabolism in humans. *BBA Clin.* 2016;5:85–100. doi: 10.1016/j.bbapain.2016.02.001
48. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM. Czaja MJ. Autophagy regulates lipid metabolism. *Nature.* 2009;458:1131–1135. doi: 10.1038/nature07976
49. Kaushik S, Cuervo AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. *Nat Cell Biol.* 2015;17:759–770. doi: 10.1038/rcb3166
50. Kawane K, Motani K, Nagata S. DNA degradation and its defects. *Cold Spring Harb Perspect Biol.* 2014;6:a016394. doi: 10.1101/cshperspect.a016394
51. Houseley J, Tollervey D. The many pathways of RNA degradation. *Cell.* 2009;136:763–776. doi: 10.1016/j.cell.2009.01.019
52. Rossi MA, Celes MR, Prado CM, Saggioro FP. Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. *Shock.* 2007;27:10–18. doi: 10.1097/01.shk.0000235141.05528.47
53. Standage SW, Bennion BG, Knowles TO, Ledee DR, Portman MA, McGuire JK, Liles WC, Olson AK. PPARalpha augments heart function and cardiac fatty acid oxidation in early experimental polymicrobial sepsis. *Am J Physiol Heart Circ Physiol.* 2017;312:H239–H249. doi: 10.1152/ajpheart.00457.2016
54. Drosatos K. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy. *Pathobiol Aging Age Relat Dis.* 2016;6:32221. doi: 10.3402/pba.v6.32221
55. Wasyluk W, Zwolak A. Metabolic alterations in sepsis. *J Clin Med.* 2021;10:2412. doi: 10.3390/jcm10112412
56. Chew MS, Shekar K, Brand BA, Norin C, Barnett AG. Depletion of myocardial glucose is observed during endotoxemic but not hemorrhagic shock in a porcine Pmodel. *Crit Care.* 2013;17:R164. doi: 10.1186/cc12843
57. Irahara T, Sato N, Otake K, Matsumura S, Inoue K, Ishihara K, Fushiki T, Yokota H. Alterations in energy substrate metabolism in mice with different degrees of sepsis. *J Surg Res.* 2018;227:44–51. doi: 10.1016/j.jss.2018.01.021
58. Douglas JJ, Walley KR. Metabolic changes in cardiomyocytes during sepsis. *Crit Care.* 2013;17:186. doi: 10.1186/1364-8535-17-186
Data S1. Evaluation of data quality, exploratory analysis, and data preprocessing

To remove the systematic variation between samples, we performed a median normalization such that all the samples have the same median value post log2 transformation. Below are box plots of before and after normalization.
1) Date Filtering

This project used a targeted Mass Spec analysis designed to detect 361 metabolites. 199 of these metabolites were not detected in any of the samples and, therefore, had 100% missingness. The overall missingness of the remaining 162 metabolites was 1.2%. The figure below shows the percent missingness versus the mean log2-abundance for each metabolite.

We selected 156 metabolites with missingness < 20% and a coefficient of variation (CV) < 20% in the pooled sample QC data. After filtering, no missing values remained, therefore, no imputation was performed.
2) Evaluation of data quality-principal components analysis (PCA)

PCA is a method to take high dimensional data and reduce it to only a few dimensions to visualize how similar samples of the same type are. A series of PCA plots was generated using the log2 transformed, normalized, and filtered data. Potential variations driven by protein amount or run order were not observed detected.