Low-Complexity Variable Forgetting Factor
Constrained Constant Modulus RLS Algorithm for
Adaptive Beamforming✩

Boya Qin, Yunlong Cai∗, Benoit Champagne, Rodrigo C. de Lamare, Minjian Zhao

Abstract

In this paper, a recursive least squares (RLS) based blind adaptive beamforming algorithm that features a new variable forgetting factor (VFF) mechanism is presented. The beamformer is designed according to the constrained constant modulus (CCM) criterion, and the proposed adaptive algorithm operates in the generalized sidelobe canceler (GSC) structure. A detailed study of its operating properties is carried out, including a convexity analysis and a mean squared error (MSE) analysis of its steady-state behavior. The results of numerical experiments demonstrate that the proposed VFF mechanism achieves a superior learning and tracking performance compared to other VFF mechanisms.

Keywords: Adaptive beamforming, constrained constant modulus, recursive least square, variable forgetting factor.

1. Introduction

 Numerous adaptive beamforming algorithms for application to wireless communication receivers have been reported in the literature in the last few decades [1, 2, 3, 4]. In this application, blind adaptation is highly desirable for the digital receivers equipped with an antenna array, since it operates without the training sequences and leads to a good solution. The constrained constant modulus

✩This work was supported by the Fundamental Research Funds for the Central Universities, the National Science Foundation of China (NSFC) under Grant 61101103 and the Scientific Research Fund of Zhejiang Provincial Education Department under Grant Y201122655.

*Corresponding author

Email addresses: qby666@zju.edu.cn (Boya Qin), ylcai@zju.edu.cn (Yunlong Cai), benoit.champagne@mcgill.ca (Benoit Champagne), rcdl500@ohm.york.ac.uk (Rodrigo C. de Lamare), mjzhao@zju.edu.cn (Minjian Zhao)
(CCM) criterion [10] is often considered as one of the most promising design criterions for blind beamforming. It takes advantage of the constant modulus (CM) property of the source modulation, while subject to a constraint on the array response to the desired user [3], [11]. The work in [16] investigates the CCM-RLS algorithms, which combine the use of RLS adaptation with the CCM criterion, for different applications and shows that the CCM based algorithms generally outperform the ones based on constrained minimum variance (CMV).

The superior performance of the RLS-based blind beamformers is often demonstrated under the assumption of stationarity, where an ideal choice of the forgetting factor can be made. However in reality, it is difficult or even impractical to compute a predetermined value for the forgetting factor [32]. Hence, the use of a variable forgetting factor (VFF) mechanism is an attractive choice to overcome this shortcoming. Among such mechanisms, the most common one proposed in [11] is the gradient-based variable forgetting factor (GVFF), which is varied according to the measured square error at the beamformer output. Recently, the authors in [32] have extended the conventional GVFF scheme to the CCM-RLS blind beamformer for direct sequence code division multiple access (DS-CDMA) receiver. In particular, they have proposed a new VFF mechanism that leads to a superior performance yet with a reduced complexity.

The problem formulation using the CCM criterion can be broken down into constrained and unconstrained components that give rise to the generalized sidelobe canceler (GSC) [11] structure. The latter uses a main branch consisting of a fixed beamformer steered towards the desired user, in parallel with adaptive auxiliary branches that have the ability to block the signal of interest; they produce an output which ideally consists only of interference and is subtracted from that of the main branch. To the best of our knowledge, the study of effective VFF mechanisms for CCM-RLS beamformers developed around the GSC structure has not been addressed in the technical literature.

In this work, we present an extension of the method reported in [32] for the direct-form beamformer (DFB) structure to the more practical GSC structure. The difference between these two structures has a major influence on the derivations and expressions of the adaptive weight vectors. In the GSC context, the proposed time-averaged variable forgetting factor (TAVFF) mechanism employs the time average of the CM cost function to automatically adjust the forgetting factor. Then convexity and convergence analysis of the resulting CCM-RLS al-
algorithm with TAVFF are carried out and expressions to predict the steady-state mean squared error (MSE) are obtained. Simulation results are presented to show that the proposed TAVFF mechanism leads to a superior performance of the CCM-RLS beamformer in the GSC structure.

2. System model and GSC beamformer design

We consider a wireless communication scenario in which $K$ narrowband user signals impinge on a uniform linear array (ULA) comprised of $M$ identical omnidirectional antennas. Let $\lambda_c$ denote the wavelength and $d_s = \lambda_c/2$ be the inter-element spacing of the ULA. Assuming that the $k$th user signal impinges on the array with direction of arrival $\theta_k$, we can write the normalized corresponding steering vector $a(\theta_k) = \frac{1}{\sqrt{M}}[1, e^{-j2\pi \frac{d_s}{\lambda_c} \cos \theta_k}, \ldots, e^{-j2\pi \frac{d_s}{\lambda_c} \cos \theta_k (M-1)}]^T$.

Then the sampled array output vector (or snapshot) at discrete time $i \in \mathbb{N}$ can be modeled as

$$r(i) = A(\theta)b(i) + n(i), \quad i = 0, 1, 2, \ldots$$

where $A(\theta) = [a(\theta_0), \ldots, a(\theta_{K-1})]$ is the matrix of steering vectors, $b(i) = [b_0(i), \ldots, b_{K-1}(i)]^T$ is the data vector and $n(i)$ is an additive vector of sensor noise with zero-mean and covariance matrix $\sigma^2 I$, where $\sigma^2$ denotes the variance and $I$ is an identity matrix of order $M$. We assume the sequence of transmitted symbols by the desired and interference users are independent and identically distributed (i.i.d.) random processes, with values taken from a constant modulus modulation format.

The GSC structure, illustrated in Fig. 1, converts the constrained optimization problem into an unconstrained one. Its output is given by $y(i) = (v a(\theta_0) - B w(i))^H r(i)$, where $v$ is a real scalar, the signal blocking matrix $B$ is orthogonal to the steering vector $a(\theta_0)$ and $w(i)$ is the complex adaptive weight vector. In this work, $w(i)$ is optimized in an adaptive manner according to the CM cost function

$$J_{CM}(w(i)) = E[(|y(i)|^2 - 1)^2].$$

The CCM design have its convexity enforced by adjusting the parameter $v$, as will be discussed along with the analysis in Section V. The objective of the design based on the CM cost function (2) is to minimize the expected deviation of the
square modulus of the beamformer output from a constant while maintaining the contribution from $\theta_0$ constant, i.e., $(v_{a}(\theta_0) - Bw(i))^H a(\theta_0) = v$.

3. Blind adaptive CCM-RLS-GSC algorithm

For the GSC structure depicted in Fig. 1 by employing the time-averaged estimation, we obtain the following CM cost function

$$J_{CM}(w(i)) = \sum_{n=1}^{i} \lambda^{i-n} \left( |(v_{a}(\theta_0) - Bw(i))^H r(n) - 1 |^2 - 1 \right)^2,$$

where the forgetting factor $\lambda$ should be chosen as a positive constant. By taking the gradient of (3) with respect to $w^*(i)$ and equating it to zero, we have

$$\frac{\partial J_{CM}(w(i))}{\partial w^*} = \sum_{n=1}^{i} \lambda^{i-n} (x(n)x^H(n)w(i) - x(n)d^*(n)) = 0,$$

where $x(n) = B^H \tilde{r}(n)$, $\tilde{r}(n) = y^*(n)r(n)$ and $d(n) = v_{a}^H(\theta_0)\tilde{r}(n) - 1$. Defining the correlation matrix $Q(i) = \sum_{n=1}^{i} \lambda(n)^{i-n}x(n)x^H(n)$, and cross-correlation vector $p(i) = \sum_{n=1}^{i} \lambda(n)^{i-n}x(n)d^*(n)$, it follows from (4) that $w(i) = Q^{-1}(i)p(i)$. This expression for $w(i)$ has the same form as the well-known weighted least-square solution, and hence we can directly obtain the RLS equations [11]

$$w(i) = w(i-1) + k(i)e^*(i),$$

where $k(i) = \frac{Q^{-1}(i-1)x(i)}{x(i)x^H(i)Q^{-1}(i-1)x(i)}$, and $e(i) = d(i) - w^H(i-1)x(i)$. These equations with proper initialization define the CCM-RLS blind beamforming algorithm for the GSC structure.

4. Proposed TAVFF scheme

4.1. Blind TAVFF mechanism

Motivated by the variable step size (VSS) mechanism for the least mean square (LMS) algorithm [11] and the original work in [32], we introduce a new variable quantity which is updated by the instantaneous CM cost function, as follows:

$$\phi(i) = \alpha \phi(i-1) + \beta \left( |(v_{a}(\theta_0) - Bw(i))^H r(i) - 1 |^2 - 1 \right)^2,$$
where $0 < \alpha < 1$ and $\beta > 0$. The updated quantity $\phi(i)$ changes more or less rapidly with time and can track the average deviation from the CM property. In particular, large deviations from CM in (3) will cause $\phi(i)$ to increase, which in turn can be exploited to reduce the forgetting factor $\lambda$ for a faster tracking, thereby alleviating the deleterious effects of sudden changes. Conversely, in the case of small deviation from CM, $\phi(i) \approx 0$ and a larger value of $\lambda$ should be employed. That is, $\lambda$ should vary in an inverse way to $\phi(i)$, while remaining within a reasonable range $0 < \lambda^− \leq \lambda \leq \lambda^+ < 1$. Using $\phi(i)$ and based on the work in [32], we can update $\lambda$ through the non-linear operation

$$\lambda(i) = \left[ \frac{1}{1 + \phi(i)} \right]_{\lambda^−}^{\lambda^+}, \quad (7)$$

where $[.]_{\lambda^−}^{\lambda^+}$ denotes truncation to the limits of the range $[\lambda^−, \lambda^+]$. The proposed low-complexity TAVFF is given by (6) and (7). A summary of CCM-RLS blind beamformer for the GSC structure with the TAVFF is given in Table I.

It can be shown in Table II that the computational complexity of this TAVFF mechanism has been reduced significantly compared with GVFF mechanism which is detailed in [32]. Specifically, the GVFF requires $12M^2 - 12M + 3$ multiplications and $5M^2 - 8M + 5$ additions per iteration, while the proposed TAVFF only requires 5 multiplications and 3 additions.

4.2. Steady-state properties of TAVFF

We start by considering the CM cost function where we take the additive white Gaussian noise into consideration, which has not been addressed in [32]. Since $0 < \alpha < 1$, by taking the expectation of (6) we obtain

$$\mathbb{E}[\phi(i)] = \frac{\beta\mathbb{E}[|(va(\theta_0) - Bw(i))^H r(i)|^2 - 1]^2}{1 - \alpha}. \quad (8)$$

Then, we rewrite the CM cost function as follows

$$J_{CM}(w(i)) = \mathbb{E}[(|va(\theta_0) - Bw(i))^H r(i)|^2 - 1)^2] = \mathbb{E}[(|y(i)|^2 - 1)^2], \quad (9)$$

---

1As an alternative to (4), we have experimented with different formulas combining reciprocal, subtraction, power, etc. However, simulation results have demonstrated that the proposed formula in (4) can achieve the best performance among the various approaches investigated.
To simplify this expression, it is convenient to introduce the modified weight vector $\tilde{w}(i) = v\mathbf{a}(\theta_0) - Bw(i)$, in terms of which we have $y(i) = \tilde{w}(i)^H \mathbf{A}(\theta)^H b(i) + \tilde{w}(i)^H n(i)$. Since $b(i)$ is an i.i.d. sequence of random vectors with zero-mean and identity covariance matrix, which is independent of the noise $n(i)$, it follows according to [17] that the CM cost function can be expressed as

$$J_{\text{CM}}(w(i)) = J_1(\tilde{w}(i)) + \sigma^2 J_2(\tilde{w}(i)), \tag{10}$$

$$J_1(\tilde{w}(i)) = 2(u^H u) - \sum_{k=0}^{K-1} u_k^4 - 2u^H u + 1, \tag{11}$$

$$J_2(\tilde{w}(i)) = (4u^H u - 2 + 3\sigma^2 \tilde{w}^H \tilde{w}) \tilde{w}^H \tilde{w}. \tag{12}$$

In these expressions, vector $u$ is defined as $u \equiv u(i) = [u_0, \ldots, u_{K-1}]^T = \mathbf{A}(\theta)^H \tilde{w}(i)$, where we have dropped the time index $i$ to simplify the notations.

We assume that $\lim_{i \to \infty} J_1(\tilde{w}(i)) = J_1(\tilde{w}_{\text{opt}})$ is approximately equal to the steady-state noiseless value of the CM cost function where $\tilde{w}_{\text{opt}} = v\mathbf{a}(\theta_0) - Bw_{\text{opt}}$ denotes the optimal beamformer, and $\lim_{i \to \infty} \sigma^2 J_2(\tilde{w}(i)) = J_{\text{ex}}(\infty)$ contributes to the steady-state noisy component. Taking the high signal-to-noise-ratio (SNR) into account in our common environment [32, 17], we have $J_1(\tilde{w}_{\text{opt}}) \gg J_{\text{ex}}(\infty)$.

Following the steps of analysis as in [32], we can obtain

$$\mathbb{E}[\phi(\infty)] \approx \frac{\beta J_1(\tilde{w}_{\text{opt}})}{1 - \alpha}, \quad \mathbb{E}[^2(\infty)] \approx \frac{2\alpha \beta \mathbb{E}[\phi(\infty)] J_1(\tilde{w}_{\text{opt}})}{1 - \alpha^2}. \tag{13}$$

Using [17] and with the aid of Taylor’s formula, we can have the expressions of the first and second order moments of the VFF in steady-state:

$$\mathbb{E}[\lambda(\infty)] \approx 1 - \frac{(1 - \alpha^2)\beta J_1(\tilde{w}_{\text{opt}}) - 2\alpha \beta^2 J_1(\tilde{w}_{\text{opt}})^2}{(1 - \alpha)(1 - \alpha^2)}, \tag{14}$$

$$\mathbb{E}[\lambda^2(\infty)] \approx 1 - \frac{2(1 - \alpha^2)\beta J_1(\tilde{w}_{\text{opt}}) - 6\alpha \beta^2 J_1(\tilde{w}_{\text{opt}})^2}{(1 - \alpha)(1 - \alpha^2)}. \tag{15}$$

5. Analysis of the CCM-RLS blind GSC beamformer

5.1. Convexity of the optimization problem

Without loss of generality, we let user 0 be the desired user and we define $D = u_0 u_0^T = v^2$, $\bar{A} = [\mathbf{a}(\theta_1), \ldots, \mathbf{a}(\theta_{K-1})]$ and $\bar{u} = [u_1, \ldots, u_{K-1}]^T = \bar{A}^H \tilde{w}$. It is
then possible to express the CM cost function as

\[ J_{CM}(\mathbf{w}(i)) = J_1(\hat{\mathbf{w}}) + \sigma^2 J_2(\hat{\mathbf{w}}), \quad (16) \]

\[ J_1(\hat{\mathbf{w}}) = 2(D + \hat{\mathbf{u}}^H \hat{\mathbf{u}})^2 - (D^2 + \sum_{k=1}^{K-1} |u_k|^2) - 2(D + \hat{\mathbf{u}}^H \hat{\mathbf{u}}) + 1, \quad (17) \]

\[ J_2(\hat{\mathbf{w}}) = (4(D + \hat{\mathbf{u}}^H \hat{\mathbf{u}}) - 2 + 3 \sigma^2 \hat{\mathbf{w}}^H \hat{\mathbf{w}}) \hat{\mathbf{w}}^H \hat{\mathbf{w}}. \quad (18) \]

To study the convexity of \( J_{CM}(\mathbf{w}(i)) \), we compute its Hessian matrix using the rule

\[ H = \frac{\partial}{\partial \hat{\mathbf{w}}} \frac{\partial J_{CM}}{\partial \hat{\mathbf{w}}}. \]

This yields

\[ H = H_1 + \sigma^2 H_2, \]

where

\[ H_1 = 4\overline{\mathbf{A}}((D - 1/2)\mathbf{I} + \mathbf{u}^H \mathbf{u} + \mathbf{u} \mathbf{u}^H - \text{diag}(|u_1|^2, ..., |u_{K-1}|^2))\overline{\mathbf{A}}^T, \quad (19) \]

\[ H_2 = (4D - 2)\mathbf{I} + 6\sigma^2 (\hat{\mathbf{w}}^H \hat{\mathbf{w}} \mathbf{I} + \hat{\mathbf{w}} \hat{\mathbf{w}}^H) + 4(\hat{\mathbf{w}}^H \overline{\mathbf{A}} \overline{\mathbf{A}}^H \hat{\mathbf{w}} \mathbf{I} + (\overline{\mathbf{A}} \overline{\mathbf{A}}^H)^T \hat{\mathbf{w}}^H \hat{\mathbf{w}} + (\hat{\mathbf{w}} \hat{\mathbf{w}}^H \overline{\mathbf{A}} \overline{\mathbf{A}}^H)^T + (\hat{\mathbf{w}} \hat{\mathbf{w}}^H \overline{\mathbf{A}} \overline{\mathbf{A}}^H \hat{\mathbf{w}}^H \hat{\mathbf{w}}). \quad (20) \]

For \( H_1 \) in (19), the second, third and fourth terms yield the positive definite matrix

\[ 4\overline{\mathbf{A}}(\hat{\mathbf{u}} \hat{\mathbf{u}}^H + \text{diag}(|u_k|^2, ..., |u_{K-1}|^2))\overline{\mathbf{A}}^T, \]

while the first term provides the condition \( D = v^2 \geq 1/2 \), which ensures the convexity of \( J_1(\hat{\mathbf{w}}) \).

Since \( H_2 \) in (20) is a smooth, differentiable function of \( \hat{\mathbf{w}} \), it follows that for small values of \( \sigma^2 \), the cost function \( J_{CM}(\mathbf{w}(i)) \) in (16) remains convex under perturbation from the noise-free case by the term \( \sigma^2 J_2(\hat{\mathbf{w}}) \) [17]. For larger values of \( \sigma^2 \), the constant \( v \) can be adjusted to a sufficiently large value such that \( H_2 \) is positive definite in any bounded region. We conclude that by properly selecting \( v \), \( H \) can be made positive definite, this implies that the cost function \( J_{CM}(\mathbf{w}(i)) \) is strictly convex and therefore, the algorithm can reach the global minimum.

5.2. Convergence of the mean weight vector

The weight vector update equation \( \mathbf{w}(i) = \mathbf{w}(i-1) + \mathbf{k}(i)e^*(i) \), has the same form as in the well-known RLS solution, which makes it convenient to analyze the convergence performance. This similarity results from employing the GSC structure instead of DFB structure as in [32]. Before taking the analysis further, we should note that while the input data in the conventional RLS algorithm is the array output vector \( \mathbf{r}(i) \), in our proposed CCM-RLS algorithm the input data is \( \mathbf{x}(i) = \mathbf{B}^H \mathbf{g}^*(i) \mathbf{r}(i) \). Despite this difference, we can still employ the
principle of orthogonality between the optimum error and the data, which give
\[ E[x(i)e_{\text{opt}}^*(i)] = 0, \]
where \( e_{\text{opt}}(i) = d(i) - w_{\text{opt}}^H x(i) \) denotes the optimum error.
By following the convergence analysis of the mean weight vector for the RLS solution and recalling that \( 0 < E[\lambda(i)] < 1 \), we can finally obtain
\[ \lim_{i \to \infty} E[w(i) - w_{\text{opt}}] = 0. \quad (21) \]
This shows that the expected weight error converges to zero as \( i \to \infty \).

5.3. Convergence of MSE

Next we discuss the convergence of the MSE for the proposed CCM-RLS algorithm and provide an analytical expression to predict its steady-state value.
It can be shown that the steady-state MSE is given by
\[ \lim_{i \to \infty} \xi_{\text{mse}}(i) = \lim_{i \to \infty} E[|b_0(i) - \tilde{w}^H(i)r(i)|^2] \]
\[ = (1 - 2v) + E[\tilde{w}_{\text{opt}}^H R(i)\tilde{w}_{\text{opt}}] + \lim_{i \to \infty} E[tr[R(i)\tilde{e}(i)\tilde{e}^H(i)]] \]
where \( \tilde{e}(i) = \tilde{w}(i) - \tilde{w}_{\text{opt}} \). We shall define \( \Theta(i) = E[\tilde{e}(i)\tilde{e}^H(i)] \) and neglect the dependence among \( e_{\text{opt}}(i), x(i) \) and \( Q^{-1}(i) \) in the limit as \( i \to \infty \) [11]. We obtain
\[ \Theta(i) = E[|e_{\text{opt}}(i)|^2] \Theta(i - 1) + \sigma_{\text{opt}}^2 B E[Q^{-1}(i)] E[x(i)x^H(i)] E[Q^{-1}(i)] B^H, \quad (23) \]
where \( \sigma_{\text{opt}}^2 = E[|e_{\text{opt}}(i)|^2] \). It converges since \( \lambda(i) < 1 \). At steady-state we have
\[ \lim_{i \to \infty} \Theta(i) \approx \frac{\sigma_{\text{opt}}^2(1 - E[\lambda(\infty)])^2}{(1 - E[\lambda^2(\infty)])E[|y_{\text{opt}}(i)|^2]} B(B^H R B)^{-1} B^H, \quad (24) \]
where \( y_{\text{opt}}(i) = \tilde{w}_{\text{opt}}^H r(i) \), \( R = E[r(i)r^H(i)] \), and \( E[\lambda(\infty)] \) and \( E[\lambda^2(\infty)] \) are given in [14] and [15]. Finally, based on (22) and (24), we can derive the expressions to predict the steady-state MSE.

6. Simulations

In this section, we evaluate the performance of the proposed TAVFF with the blind adaptive CCM-RLS-GSC beamformer. On the TX side, the BPSK modulation is employed to keep the CM property, and the source power is normalized. On the RX side, the uniform linear array is composed of \( M = \)
16 sensor elements. In our simulations, an experiment is made up of 1000 independent runs and for each such experiment, the DOAs of the users are randomly generated with a uniform distribution between 0 and 180 degrees and kept fixed for all the runs. The exact DOA of the desired user is assumed to be known by the beamformer. There are $K = 5$ users including the desired one and four interferers in a static environment and the input SNR is fixed at 15dB unless otherwise indicated. The performance is not sensitive to the initial values, accordingly, we set $v = 1$, $Q^{-1}(0) = \delta^{-1}I$, generate $w(0)$ randomly.

The result in Fig. 2 (a) show that as the number of snapshots increases, the MSE value converges and reaches a steady-state level which is in good agreement with the analytical result given by (22). In Fig. 2 (b), we further compare the simulation and theoretical results by showing the steady-state MSE versus SNR. We compute the MSE value at snapshot 1000 for each run, and 1000 independent runs are averaged to get the final result for each exact SNR. We find that the results agree well with each other over the considered SNR range.

In the experiment of Fig. 3, we evaluate the beamformer SINR performance against the number of snapshots. In all cases, the output SINR values increase to the steady-state as the number of snapshots increases. The graph illustrates that the CCM-RLS-GSC beamformer with the proposed TAVFF achieves the fastest convergence and the best performance. We list the observed SINR value at snapshot 800 in the steady-state regime in Table III, where the results show that the performance improvements with TAVFF are statistically significant.

In Fig. 4, we assess the SINR performance of the proposed TAVFF and fixed forgetting factor against the number of snapshots for both the DFB and GSC structures. The resulting curves show that for both structures, the performance of the CCM-RLS algorithm with TAVFF is significantly better than the corresponding with fixed forgetting factor. The GSC structure leads to an improved performance compared to the DFB, especially a much faster initial convergence. The observed steady-state SINR values at snapshot 800 are listed in Table IV.

At last, we evaluate the SINR convergence performance in a nonstationary scenario. The system starts with $K = 5$ users, after 1000 snapshots, two more interferers having the same power enter the system. From the results in Fig. 5, we can see the abrupt change at 1000 snapshot reduces the output SINR and

\footnote{$\delta = 10$ for $SNR = 0dB$, $\delta = 0.1$ for $SNR = 20dB$ and $\delta = 1$ for $SNR = 5, 10, 15dB$.}
degrades the performance of all the algorithms. However, TAVFF can quickly track this change and recover faster to a new and larger steady-state. To make this clear, we have measured the rates of convergence (in dB per iteration) and SINR standard deviation of the various algorithms over time. The results, listed in Table V and VI, show that while all the presented algorithms recover from the newly introduced interference, TAVFF mechanism exhibits the fastest convergence rate, smallest standard deviation and the best performance.

7. Conclusion

In this paper, we developed a CCM-RLS-based blind adaptive beamforming algorithm that features a new proposed low-complexity TAVFF mechanism and operates within the GSC structure for its realization. The convergence properties of this algorithm were analyzed, including the study of convexity and steady-state MSE behavior. The simulation results were in good agreement with the theoretical ones and showed that the proposed TAVFF mechanism outperforms other VFF mechanisms previously developed for CCM-RLS blind adaptive beamforming.

References

[1] L. C. Godara, “Application of antenna arrays to mobile communications, part I: Performance improvement, feasibility, and system considerations,” Proc. IEEE, vol. 85, no. 7, pp. 1031–1060, Jul. 1997.

[2] L. C. Godara, “Application of antenna arrays to mobile communications, part II: Beamforming and direction-of-arrival considerations,” Proc. IEEE, vol. 85, no. 8, pp. 1195–1245, Aug. 1997.

[3] P. Stoica Jian Li, Robust Adaptive Beamforming. Wiley, Hoboken, NJ, 2006.

[4] M. Honig, U. Madhow, and S. Verdu, “Blind adaptive multiuser detection,” IEEE Trans. Inf. Theory, vol. 41, no. 4, pp. 944–960, Jul. 1995.

[5] R. C. de Lamare and R. Sampaio-Neto, “Low-complexity variable step-size mechanisms for stochastic gradient algorithms in minimum variance CDMA receivers” IEEE Transactions on Signal Processing, vol. 54, no. 6, pp. 2302-2317, June 2006.
[6] R. C. de Lamare, L. Wang and R. Fa, “Adaptive Reduced-Rank LCMV Beamforming Algorithm Based on Joint Iterative Optimization of Filters: Design and Analysis”, Signal Processing, vol. 90, no. 2, pp. 640-652, February 2010.

[7] R. Fa, R. C. de Lamare and L. Wang, “Reduced-rank STAP schemes for airborne radar based on switched joint interpolation, decimation and filtering algorithm”, IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4182-4194, August 2010.

[8] R. Fa and R. C. de Lamare, “Reduced-rank STAP algorithms using joint iterative optimization of filters”, IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 3, pp. 1668-1684, July 2011.

[9] Z. Yang, R. C. de Lamare and X. Li, “L1 regularized STAP algorithm with a generalized sidelobe canceler architecture for airborne radar”, IEEE Transactions on Signal Processing, vol. 60, no. 2, pp. 674-686, February 2012.

[10] R. Gooch and J. Lundell, “The CM array: An adaptive beamformer for constant modulus signals,” in Proc. 1986 Conf. Acoustics, Speech, Signal Processing, 1986, vol. 11. pp. 2523–2526, Apr. 1986.

[11] S. Haykin, Adaptive Filter Theory, 4th edition. Prentice-Hall, NJ, 2003.

[12] M. Yukawa, R. C. de Lamare and R. Sampaio-Neto, “Efficient acoustic echo cancellation with reduced-rank adaptive filtering based on selective decimation and adaptive interpolation”, IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 4, pp. 696-710, May 2008.

[13] R. C. de Lamare and R. Sampaio-Neto, Adaptive reduced-rank processing based on joint and iterative interpolation, decimation, and filtering, IEEE Trans. Signal Process., vol. 57, no. 7, July 2009, pp. 2503-2514.

[14] R.C. de Lamare and R. Sampaio-Neto, “Reduced-rank spacetime adaptive interference suppression with joint iterative least squares algorithms for spread-spectrum systems”, IEEE Transactions on Vehicular Technology, vol. 59, no. 3, pp. 1217-1228, March 2010.

[15] R.C. de Lamare and R. Sampaio-Neto, Adaptive reduced-rank equalization algorithms based on alternating optimization design techniques for MIMO systems, IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2482-2494, July 2011.
[16] L. Wang and R. C. de Lamare, “Constrained constant modulus RLS-based blind adaptive beamforming algorithm for smart antennas,” in *Int. Symp. on Wireless Communication Systems*, pp. 657–661, Oct. 2007.

[17] C. Xu, G. Feng, and K. S. Kwak, “A modified constrained constant modulus approach to blind adaptive multiuser detection,” *IEEE Trans. Commun.*, vol. 49, no. 9, pp. 1642–1648, Sep. 2001.

[18] R. C. de Lamare and R. Sampaio-Neto, Adaptive reduced-rank MMSE filtering with interpolated FIR filters and adaptive interpolators, IEEE Signal Processing Letters, vol. 12, no. 3, pp. 177-180, March 2005.

[19] R. C. de Lamare and R. Sampaio-Neto, “Adaptive Interference Suppression for DS-CDMA Systems Based on Interpolated FIR Filters With Adaptive Interpolators in Multipath Channels”, *IEEE Transactions on Vehicular Technology*, vol. 56, no. 5, pp. 2457-2474, May 2007.

[20] R. C. de Lamare and R. Sampaio-Neto, “Blind adaptive code-constrained constant modulus algorithms for CDMA interference suppression in multipath channels”, IEEE Communications Letters, vol. 9, no. 4, pp. 334-336, April 2005.

[21] R. C. de Lamare and R. Sampaio-Neto, “Blind adaptive and iterative algorithms for decision-feedback DS-CDMA receivers in frequency-selective channels”, *IEEE Transactions on Vehicular Technology*, vol. 56, no. 2, pp. 605-618, March 2007.

[22] R. C. de Lamare, M. Haardt, R. Sampaio-Neto, “Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression”, IEEE Trans on Signal Processing, vol. 56, no. 6, pp. 2470-2482, June 2008.

[23] L. Wang, R. C. de Lamare and Y. Cai, “Low-complexity adaptive step size constrained constant modulus SG algorithms for adaptive beamforming”, *Signal processing*, vol. 89, no. 12, pp. 2503-2513, December 2009.

[24] R. C. de Lamare and R. Sampaio-Neto, “Blind adaptive MIMO receivers for space-time block-coded DS-CDMA systems in multipath channels using the constant modulus criterion”, *IEEE Transactions on Communications*, vol. 58, no. 1, pp. 21-27, January 2010.
[25] L. Wang, R. C. de Lamare and M. Yukawa, “Adaptive reduced-rank constrained constant modulus algorithms based on joint iterative optimization of filters for beamforming”, IEEE Transactions on Signal Processing, vol.58, no. 6, pp. 2983-2997, June 2010.

[26] L. Wang and R. C. de Lamare, “Adaptive constrained constant modulus algorithm based on auxiliary vector filtering for beamforming”, IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5408-5413, October 2010.

[27] L. Wang and R. C. de Lamare, “Constrained adaptive filtering algorithms based on conjugate gradient techniques for beamforming”, IET Signal Processing, vol. 4, no. 6, pp. 686-697, December 2010.

[28] P. Clarke and R. C. de Lamare, “Low-complexity reduced-rank linear interference suppression based on set-membership joint iterative optimization for DS-CDMA systems”, IEEE Transactions on Vehicular Technology, vol. 60, no. 9, pp. 4324-4337, November 2011.

[29] S. Li, R. C. de Lamare and R. Fa, “Reduced-rank linear interference suppression for DS-UWB systems based on switched approximations of adaptive basis functions”, IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 485-497, February 2011.

[30] R. C. de Lamare, R. Sampaio-Neto and M. Haardt, “Blind adaptive constrained constant-modulus reduced-rank interference suppression algorithms based on interpolation and switched decimation”, IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 681-695, February 2011.

[31] S. Li and R. C. de Lamare, “Blind reduced-rank adaptive receivers for DS-UWB systems based on joint iterative optimization and the constrained constant modulus criterion”, IEEE Transactions on Vehicular Technology, vol. 60, no. 6, pp. 2505-2518, July 2011.

[32] Y. Cai, R. C. de Lamare, M. Zhao, and J. Zhong, “Low-complexity variable forgetting factor mechanism for blind adaptive constrained constant modulus algorithms,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 3988–4002, Aug. 2012.

[33] R. C. de Lamare and P. S. R. Diniz, “Blind Adaptive Interference Suppression Based on Set-Membership Constrained Constant-Modulus Algorithms
With Dynamic Bounds”, IEEE Transactions on Signal Processing, vol. 61, no. 5, pp. 1288-1301, May 2013.

[34] N. Song, R. C. de Lamare, M. Haardt and M. Wolf, “Adaptive widely linear Reduced-Rank interference suppression based on the multistage wiener filter”, IEEE Transactions on Signal Processing, vol. 60, no. 8, pp. 4003-4016, August 2012.
Initialization: Initialize $Q^{-1}(0), w(0)$.

Update for each time index $i$

Coefficient updating:
\[
\hat{w}(i-1) = v a(\theta_0) - Bw(i-1), \quad y(i) = \hat{w}^H(i-1)r(i),
\]
\[
\hat{r}(i) = y^*(i)r(i), \quad x(i) = B^H\hat{r}(i), \quad d(i) = v a^H(\theta_0)r(i) - 1,
\]

Adaptation gain computation:
\[
k(i) = \frac{1}{\lambda + x^H(i)Q^{-1}(i-1)x(i)},
\]
\[
Q^{-1}(i) = \lambda^{-1}(i-1)Q^{-1}(i-1) - \lambda^{-1}(i-1)k(i)x^H(i)Q^{-1}(i-1),
\]

Forgetting factor updating:
\[
\phi(i) = \alpha\phi(i-1) + \beta(|y(i)|^2 - 1)^2, \quad \lambda(i) = \left[\frac{1}{1 + \phi(i)}\right]^{\lambda^+},
\]

Weight vector calculation:
\[
e(i) = d(i) - w(i-1)\lambda(x(i)), \quad w(i) = w(i-1) + k(i)e^*(i).
\]

Table I: The CCM-RLS-GSC-TAVFF algorithm

| Mechanism       | Multiplications | Additions |
|-----------------|-----------------|-----------|
| TAVFF           | 5               | 3         |
| Blind GVFF      | $12M^2 - 12M + 3$ | $5M^2 - 8M + 5$ |

Table II: Additional Computational Complexity

Table III: SINR steady-state values in Fig. 3

| Algorithm          | SINR (dB, 95% confidence interval) |
|--------------------|-----------------------------------|
| CMV                | $10.31 \pm 0.05$                   |
| CCM                | $10.84 \pm 0.04$                   |
| CCM-GVFF           | $11.68 \pm 0.02$                   |
| CCM-TAVFF          | $12.19 \pm 0.01$                   |

Table IV: SINR steady-state values in Fig. 4

| Algorithm          | SINR (dB, 95% confidence interval) |
|--------------------|-----------------------------------|
| DFB                | $10.22 \pm 0.05$                   |
| GSC                | $10.80 \pm 0.03$                   |
| DFB-TAVFF          | $11.70 \pm 0.03$                   |
| GSC-TAVFF          | $12.21 \pm 0.01$                   |
Table V: SINR Convergence Rate (dB/iteration)

| snapshot | CMV  | CCM  | CCM-GVFF | CCM-TAVFF |
|----------|------|------|-----------|------------|
| 0        | 5.341| 6.512| 7.510     | 8.488      |
| 40       | 0.158| 0.265| 0.272     | 0.278      |
| 80       | 0.094| 0.134| 0.138     | 0.143      |
| 120      | 0.069| 0.091| 0.093     | 0.096      |
| 1000     | 6.346| 8.094| 8.545     | 9.868      |
| 1040     | 0.221| 0.237| 0.248     | 0.268      |
| 1080     | 0.118| 0.124| 0.129     | 0.138      |
| 1120     | 0.081| 0.085| 0.088     | 0.093      |

Table VI: SINR Standard Deviation (dB)

| snapshot | CMV  | CCM  | CCM-GVFF | CCM-TAVFF |
|----------|------|------|-----------|------------|
| 400      | 0.89 | 0.49 | 0.40      | 0.21       |
| 600      | 0.88 | 0.49 | 0.40      | 0.17       |
| 800      | 0.87 | 0.49 | 0.40      | 0.14       |
| 999      | 0.86 | 0.48 | 0.39      | 0.13       |
| 1400     | 0.86 | 0.53 | 0.44      | 0.20       |
| 1600     | 0.82 | 0.53 | 0.44      | 0.18       |
| 1800     | 0.80 | 0.53 | 0.44      | 0.17       |
| 1999     | 0.79 | 0.52 | 0.43      | 0.17       |

Figure 1: GSC structure for blind beamforming
Figure 2: Analytical MSE versus simulated performance for the CCM-RLS-GSC algorithm with the TAVFF mechanism (number of users $K = 5$, input $SNR = 15$dB).

Figure 3: Output SINR against the number of snapshots (number of users $K = 5$, input $SNR = 15$dB).
Figure 4: Output SINR against the number of snapshots (number of users $K = 5$, input $SNR = 15$dB).

Figure 5: SINR performance in a nonstationary environment (For the first stage, number of users is $K = 5$, for the second stage, number of users is $K = 7$, input $SNR = 15$dB).