On 1–qubit channels

Armin Uhlmann

Institut f. Theoretische Physik, Universität Leipzig
Augustusplatz 10/11, D-04109 Leipzig

Abstract

The entropy $H_T(\rho)$ of a state with respect to a channel T and the Holevo capacity of the channel require the solution of difficult variational problems. For a class of 1-qubit channels, which contains all the extremal ones, the problem can be significantly simplified by associating an Hermitian anti-linear operator ϑ to every channel of the considered class. The channel’s concurrence C_T can be expressed by ϑ and turns out to be a flat roof. This allows to write down an explicit expression for H_T. Its maximum would give the Holevo (1–shot) capacity.

PACS numbers: 03.67-a, 03.65.Ta

1 Introduction

Given two Hilbert spaces, \mathcal{H}^in and \mathcal{H}^out, of finite dimension, a quantum channel is a completely positive and trace preserving linear map,

$$ T : \rho^\text{in} \longrightarrow \rho^\text{out} := T(\rho^\text{in}) \quad (1) $$

from the operators of \mathcal{H}^in into those of \mathcal{H}^out. To shorten notations, we skip the in and out superscripts mostly. The rank of T is the maximal rank within all output density operators $T(\rho)$.

An important device to estimate, how effectively a channel works, is the quantity

$$ H_T(\rho) = \max \sum p_j S[T(\rho) \parallel T(\rho_j)] \quad (2) $$

In this variational problem one has to compare all convex decompositions

$$ \rho = \sum p_j \rho_j, \quad p_j \geq 0 \quad (3) $$

of the input density operator ρ into other input density operators ρ_j, and $S(\cdot \parallel \cdot)$ abbreviates the relative entropy. According to Holevo [1], the quantity (2) can be interpreted as the maximum of mutual information between the input and the
output of T for a given ensemble average ρ. In Benatti \cite{2} it is identified with the maximal accessible information for all quantum sources with ensemble average ρ. In Schumacher and Westmoreland \cite{3}, where the problem is considered even in a more general context, this maximum is denoted by χ^*, and an ensemble saturating χ^* is called an optimal signal ensemble. One gets the Holevo or one shot capacity by

$$C(T) = \max_{\rho} H_T(\rho)$$

On the other hand, \cite{2} is a decisive tool for the construction of the CNT–entropy of Connes, Narnhofer and Thirring \cite{4}. In this context it is called entropy of ρ^{in} with respect to the channel T, an appropriate generalization of the entropy of ρ with respect to subalgebra, \cite{5}. (I apologize for the change in notation: In \cite{4} and \cite{6} the quantity $H_T(\rho)$ has been called $H_\rho(T)$.) By the von Neumann entropy

$$S_T(\rho) = S[T(\rho)]$$

of $T(\rho)$, \cite{2} can be rewritten as

$$H_T(\rho) = S_T(\rho) - \min \sum p_j S_T(\rho_j)$$

The concavity of S allows to restrict the convex decompositions \cite{4} to the extremal ones, i. e. to those consisting of pure input states only. This simple observation implies that we may write

$$H_T(\rho) = S_T(\rho) - E_T(\rho)$$ \hspace{1cm} (4)

where

$$E_T(\rho) = \min \sum p_j S_T(\pi_j), \quad \pi_j \text{ pure}$$ \hspace{1cm} (5)

under the condition $\rho = \sum p_j \pi_j$. The simplification is not only by the restriction of the original variation to decompositions with pure states. E_T enjoys in addition the roof property: If one can find an optimal decomposition of ρ into pure states saturating \cite{4}, then E_T is convexly linear on the convex subset generated by the pure input states π_j (provided $p_j > 0$). Moreover, E_T is convexly linear on the convex set generated by the union of all those pure input states π which can occur in any optimal decomposition of a given input density operator ρ, see \cite{6} or \cite{8} for more details.

For the 1–qubit channel, which substitutes the off–diagonal elements of ρ by zeros, the first published computation of E_T and H_T I know is by Levitin, \cite{7}. He explicitly points to the constancy of E_T along the straight lines of density operators parallel to the 3–axis with fixed off–diagonal elements. But before knowing Levitin’s work I have seen this surprising feature by a computer program of R. F. Werner (Vienna 1994). An instructive example, how this observation can be used to compute parts of E_T of the same problem but for rank three, is in Benatti et all, \cite{9} and \cite{10}.

On the other hand, if T is the relative trace to the states of one part in a bipartite system, E_T is the entanglement of formation of Bennett et all \cite{13}. These authors
compute E_T for Werner states \[12\] in 2-by-2 dimensions. Higher dimensional Werner states are treated in Terhal and Vollbrecht \[14\] and Vollbrecht and Werner \[15\]. As a heuristic guide, one may think of $E_T(\rho)$ a measure of entanglement of ρ with respect to an arbitrary channel T.

The convex roof extension, E_T, is the largest convex function on the input density operators coinciding with S_T for pure states $\pi = \pi^\text{in}$. As $-E_T$ is concave, the computation of H_T can be paraphrased as following:

Add to S_T the smallest concave function of the input states such that the sum vanishes at pure input states. One obtains H_T.

Now I pass to a quite different topic. In certain cases one can effectively compute channel characteristics by anti-linear operators. An anti-linear operator ϑ acts on kets according to

$$\vartheta \sum a_j |j\rangle = \sum a^*_j \vartheta |j\rangle$$

With respect to a basis, ϑ is completely described by its matrix elements $\langle j | \vartheta | k \rangle$ and, to distinguish its matrix representation from the linear situation, I add an index *anti* to it. Hence, in two dimension, let us write

$$\vartheta = \begin{pmatrix} \alpha_{00} & \alpha_{01} \\ \alpha_{10} & \alpha_{11} \end{pmatrix}_\text{anti}$$

for the matrix representation based on $|0\rangle$ and $|1\rangle$. As a merit we easily can compute matrix products. For instance

$$\{\alpha_{jk}\}_\text{anti} \cdot \{a_{li}\} = \{\sum_k \alpha_{jk} a^*_{ki}\}_\text{anti}$$

represents the product of an anti-linear and a linear operator, which is again anti-linear. The hermitian adjoint, ϑ^\dagger, of an anti-linear ϑ is again anti-linear and defined by the rule

$$\langle j | \vartheta^\dagger | k \rangle = \langle k | \vartheta | j \rangle$$

The Hermitian conjugate thus changed the matrix elements of an anti-linear operator from α_{jk} to α_{kj}. It follows that $\vartheta \rightarrow \vartheta^\dagger$ is a *linear* operation for anti-linear operators, quite in contrast to the linear case. We shall mostly need Hermitian (i.e. self-adjoint) anti-linear operators. The matrix entries for these operators are characterized by the symmetry condition $\alpha_{jk} = \alpha_{kj}$, and by nothing else.

There are some warnings concerning the use of anti-linear operators and maps. Two of them are: 1) Do not apply them to bras, i.e. from right to left: An expression like $\langle y | = \langle x | \vartheta$ is ill-defined. 2) One cannot tensor an anti-linear operator with a linear one.

Next, $\vartheta \vartheta^\dagger$ and $\vartheta^\dagger \vartheta$ are positive linear operators with equal eigenvalues. The eigenvalues of an anti-linear operator itself, however, fill some circles, see Wigner \[11\] for more details. Therefore, the determinant is defined only up to a phase factor. The trace is undefined for anti-linear operators.
2 Rank two channels

Let us now assume \(\dim \mathcal{H}_{\text{out}} = 2 \). Then there is only one free variable on which \(S_T(\rho) \) depends. This fact has been used already in [13] and, with a very remarkable result, in Hill and Wootters [16] and Wootters [17], to compute the entanglement of formation in the 2–qubit case.

Following [13], the first issue is to start with a suitable expression for \(S_T \). With

\[
h(x) = -x \ln_2 x - (1 - x) \ln_2(1 - x)
\]

one defines

\[
f(y) := h\left(\frac{1 + \sqrt{1 - y^2}}{2}\right)
\]

which is increasingly monotone in \(0 \leq y \leq 1 \) from 0 to 1, and convex in
\(-1 \leq y \leq 1 \). (One checks that the first derivative, \(f' \), is increasing.) For a 2-by-2 density operator \(\omega \) with eigenvalues \(\mu_1 \geq \mu_2 \) one gets

\[
S(\omega) = h(\mu_1) = f(y), \quad y = 2\sqrt{\det \omega}
\]

which can be seen from

\[
1 - y^2 = (\mu_1 + \mu_2)^2 - 4\mu_1\mu_2 = (\mu_1 - \mu_2)^2
\]

It follows

\[
S_T(\rho) = f[2\sqrt{\det T(\rho)}]
\]

Our next task is to define the convex roof \(C_T \) to be the largest convex function on \(\mathcal{H}_{\text{in}} \) which coincides for pure input states \(\pi \) with \(\sqrt{\det T(\pi)} \). The letter \(C \) and the name concurrence of \(T \) for \(C_T \) I borrowed from [13] and from [17]. To give an equation,

\[
C_T(\rho) = \min \sum p_j \sqrt{\det T(\pi_j)}
\]

the minimum is running through all convexly linear decompositions \(\sum p_j \pi_j \) of \(\rho \) with pure input states. As a matter of fact, one cannot beat this minimum in allowing the \(\pi_j \) to become mixed. This is due to the concavity of \(\sqrt{\det \omega} \) in two dimensions. (In the language of convex analysis: The convex hull of a concave function is a roof, see [4], appendix.) As a by–product

\[
C_T(\rho) \leq \sqrt{\det T(\rho)}
\]

The range of \(C_T \) is from 0 to 0.5, and it is convex by definition. Because \(f \) in (6) is convex and increasing, the function

\[
\rho \mapsto f[2C_T(\rho)]
\]

is a convex function which equals \(S_T \) for pure states. Though \(C_T \) is a roof, this is not sufficient for proving the equality of (10) with \(E_T \). Why should a function of a
roof remain a roof? There is no general reason for that. There exists, however, one special case not burden with the mentioned difficulty: Let us call C_T flat if there is, for every ρ, an optimal pure state decomposition

$$\rho = \sum p_j \pi_j, \quad C_T(\rho) = \sum p_j C_T(\pi_j)$$

such that

$$C_T(\pi_1) = C_T(\pi_2) = \ldots = C_T(\pi_j) = \ldots$$

(11)

If this takes place, every ρ is contained in a convex subset which is generated by pure input states, and on which the roof is not only linear but even constant. Thus, if we would know the flatness of C_T, every function of it must be a roof, though not necessarily a convex one. But the convexity of (10) has been stated already. Altogether one arrives at

Lemma 1: If the roof C_T is flat then

$$E_T(\rho) = f[2C_T(\rho)]$$

(12)

We are faced with two problems: How to compute C_T, and how to check whether it is a flat roof. The next aim is to give a large class of rank two channels fulfilling the desired flatness condition.

3 1–qubit channels of length two

Let \mathcal{H} be of dimension two, and T a quantum channel of the form

$$T(\rho) = A\rho A^\dagger + B\rho B^\dagger$$

(13)

The set of channels mapping the 1–qubit density operators into themselves is convex. Its structure is well described in King and Ruskai [18] and in Ruskai et al. [19], where a complete list of all its extremal maps has been given. As shown in [19], every extremal 1–qubit channel has a representation (13). We may, for example, choose

$$A = \begin{pmatrix} a_{00} & 0 \\ 0 & a_{11} \end{pmatrix}, \quad B = \begin{pmatrix} 0 & b_{01} \\ b_{10} & 0 \end{pmatrix}$$

(14)

To be trace preserving one has to have

$$|a_{00}|^2 + |b_{10}|^2 = |a_{11}|^2 + |b_{01}|^2 = 1$$

According to [19], one can choose A and B in (14) with real entries to get all the extremal maps up to unitary equivalence. We are going to prove:

For all quantum channels of the form (13) C_T is flat, and there exist explicit expressions for C_T, E_T, and H_T. One of the two key observations is
Theorem 2: Given a super-operator as in (13). There is an Hermitian anti-linear operator, \(\vartheta \), such that

\[
\det T(\pi) = \text{tr} \pi (\vartheta \pi \vartheta) \tag{15}
\]

is true for all pure density operators \(\pi \).

Proof. The proof of the theorem goes in three steps. In the first two, both sides of (15) are computed. The last one is a comparison of the results.

Let be \(a_{jk}, j, k = 0, 1 \), the matrix elements of \(A \) with respect of a reference basis. Accordingly let us write \(B = \{b_{jk}\} \). The application of \(A \) and \(B \) to a vector \(\{x_0, x_1\} \) is called \(\{z_0, z_1\} \) and \(\{w_0, w_1\} \) respectively. Hence

\[
T\left(\begin{array}{cc}
x_0^* x_0 & x_0^* x_1 \\
x_1^* x_0 & x_1^* x_1
\end{array}\right) = \left(\begin{array}{cc}
z_0 z_0^* + w_0 w_0^* & z_0 z_1^* + w_0 w_1^* \\
z_1 z_0^* + w_1 w_0^* & z_1 z_1^* + w_1 w_1^*
\end{array}\right)
\]

The determinant is given by

\[
\det T\left(\begin{array}{cc}
x_0^* x_0 & x_0^* x_1 \\
x_1^* x_0 & x_1^* x_1
\end{array}\right) = (z_0 w_1 - z_1 w_0)(z_0 w_1 - z_1 w_0) \tag{16}
\]

From \(z_0 = a_{00} x_0 + a_{01} x_1, w_1 = b_{10} x_0 + b_{11} x_1 \), and so on, we get the \(w_j \) by using the coefficients \(b_{jk} \). Hence

\[
z_0 w_1 - z_1 w_0 = c_{00} x_0^2 + c_{11} x_1^2 + (c_{01} + c_{10}) x_0 x_1 \tag{17}
\]

where

\[
c_{00} = a_{00} b_{10} - a_{10} b_{00}, \quad c_{11} = a_{01} b_{11} - a_{11} b_{01}, \quad c_{01} + c_{10} = a_{00} b_{11} + a_{01} b_{10} - a_{10} b_{01} - a_{11} b_{00} \tag{18}
\]

Let us now consider step two of the proof. An anti-linear operator, \(\vartheta \), can be characterized by the entries of its matrix representation in a given reference basis. Let us denote \(\vartheta \) and its Hermitian adjoint by

\[
\vartheta = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}_{\text{anti}}, \quad \vartheta^\dagger = \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix}_{\text{anti}}. \tag{19}
\]

For a general density operator, \(\rho \), with entries \(\rho_{jk} \) in the reference basis, one obtains

\[
\vartheta^\dagger \rho \vartheta = \begin{pmatrix} \rho_{00} \alpha \alpha^* + \rho_{10} \alpha \gamma^* + \rho_{01} \alpha^* \gamma + \rho_{11} \gamma \gamma^* & \rho_{00} \alpha \beta^* + \rho_{10} \alpha \delta^* + \rho_{01} \gamma \beta^* + \rho_{11} \gamma \delta^* \\ \rho_{00} \beta \alpha^* + \rho_{10} \beta \gamma^* + \rho_{01} \delta \alpha^* + \rho_{11} \delta \gamma^* & \rho_{00} \beta \beta^* + \rho_{10} \beta \delta^* + \rho_{01} \delta \beta^* + \rho_{11} \delta \delta^* \end{pmatrix}
\]

It follows

\[
\vartheta^\dagger \left(\begin{array}{cc}
x_0^* x_0 & x_0^* x_1 \\
x_1^* x_0 & x_1^* x_1
\end{array}\right) \vartheta = \left(\begin{array}{cc}
(\alpha x_0^* + \gamma x_1^*)(\alpha^* x_0 + \gamma^* x_1) & (\alpha x_0^* + \gamma x_1^*)(\beta^* x_0 + \delta^* x_1) \\
(\beta x_0^* + \delta x_1^*)(\alpha^* x_0 + \gamma^* x_1) & (\beta x_0^* + \delta x_1^*)(\beta^* x_0 + \delta^* x_1)
\end{array}\right)
\]

and, finally,

\[
\text{tr} \left(\begin{array}{cc}
x_0^* x_0 & x_0^* x_1 \\
x_1^* x_0 & x_1^* x_1
\end{array}\right) \vartheta^\dagger \left(\begin{array}{cc}
x_0^* x_0 & x_0^* x_1 \\
x_1^* x_0 & x_1^* x_1
\end{array}\right) \vartheta = |x_0 (\alpha^* x_0 + \gamma^* x_1) + x_1 (\beta^* x_0 + \delta^* x_1)|^2 \tag{20}
\]
Comparing with (18) the determinant of $T(\pi)$ is equal to the trace (20) if

$$\alpha^* = c_{00}, \quad \beta^* + \gamma^* = c_{01} + c_{10}, \quad \delta^* = c_{11} \quad (21)$$

With this choice we have

$$z_0 w_1 - w_1 z_0 = \langle \phi | \vartheta | \phi \rangle^* \quad (22)$$

Now we impose hermiticity. ϑ is Hermitian if and only if $\beta = \gamma$. We see from (21) that there is exactly one Hermitian anti-linear ϑ with which (15) is satisfied. This proves the theorem.

Before going ahead, let us write down ϑ for the subset of channels with Kraus operators (14). Denoting the matrix entries as in (19) we get $\beta = \gamma = 0$ and

$$\alpha = a_{00}^* b_{10}^*, \quad \delta = -a_{11}^* b_{01}^* \quad (23)$$

To get the last piece of the puzzle I recall, as an adoption of [17], a definition of [8]. Define, for two general density operators ω_1 and ω_2,

$$C(\omega_1, \omega_2) := \max\{0, \lambda_1 - \sum_{j>1} \lambda_j\} \quad (24)$$

where the lambdas are the decreasingly ordered eigenvalues of

$$(\sqrt{\omega_1} \omega_2 \sqrt{\omega_1})^{1/2}$$

If ω_1 and ω_2 are both of rank two, there are not more than two non-zero eigenvalues. This reduces (24) to $|\lambda_1 - \lambda_2|$, and one obtains, [8], the expression

$$C(\omega_1, \omega_2)^2 = \text{tr} \omega_1 \omega_2 - 2\sqrt{\det \omega_1 \det \omega_2} \quad (25)$$

There is a general feature of (24), so to say the door for the key given by theorem 2, and which is proved in [8]:

Theorem 3: Let ϑ be an anti-linear Hermitian operator in an Hilbert space. The function

$$\omega \rightarrow C(\omega, \vartheta \omega \vartheta) \quad (26)$$

is a flat convex roof on the set of density operators.

Now, returning to our 1-qubit channels, let us look for the values of (26) for a pure state $\pi = |\phi \rangle \langle \phi |$. By (25) it is really easy to see that

$$C(\pi, \vartheta \pi \vartheta)^2 = \text{tr} \pi \vartheta \pi \vartheta = |\langle \phi | \vartheta | \phi \rangle|^2 \quad (27)$$

By combining theorems 2 and 3 the structure of E_T for the channels (13) becomes evident. By theorem 2 we find

$$\det T(\pi) = C(\pi, \vartheta \pi \vartheta)^2$$
and, finally,

\[C_T(\rho)^2 = C(\rho, \vartheta \rho \vartheta)^2 = \text{tr} (\rho \vartheta \rho \vartheta) - 2 \det \rho \sqrt{\text{det}(\vartheta^2)}, \]

(28)

\[E_T(\rho) = f[2C(\rho, \vartheta \rho \vartheta)], \]

(29)

and this is the solution of the variational problem we looked for.

Examples. For the channels with Kraus operators (13) the expression (28) can be made more explicit. In this case the matrix representation of \(\vartheta \) is diagonal with entries (23). Hence

\[\vartheta \rho \vartheta = \left(\begin{array}{cccc} \rho_{00} & 0 & 0 & 0 \\ 0 & \rho_{10} & 0 & 0 \\ 0 & 0 & \rho_{01} & 0 \\ 0 & 0 & 0 & \rho_{11} \end{array} \right) \]

\[\text{tr}(\rho \vartheta \rho \vartheta) = \rho_{00}^2 \alpha \alpha^* + \rho_{10}^2 \alpha \delta^* + \rho_{01}^2 \delta \alpha^* + \rho_{11}^2 \delta \delta^* \]

This we have to insert in (28), reminding that we have to subtract \(\det \rho \) multiplied with twice the absolute value \(|\alpha \delta| \) of \(\alpha \delta \). We take a root of \(\alpha \delta^* \) and choose its complex conjugate as the root of \(\alpha^* \delta \). With this convention the following is unambiguous.

\[C_T^2(\rho) = (|\alpha|\rho_{00} - |\delta|\rho_{11})^2 + (\sqrt{\alpha \delta^*} \rho_{01} + \sqrt{\alpha^* \delta} \rho_{10})^2 \]

(30)

At first let us treat the degenerate case with

\[A = \left(\begin{array}{cc} 1 & 0 \\ 0 & \sqrt{t} \end{array} \right), \quad B = \left(\begin{array}{cc} 0 & \sqrt{1-t} \\ 0 & 0 \end{array} \right) \]

(31)

and \(1 \geq t > 0 \). Then (30) reduces to

\[C_T(\rho) = \sqrt{t(1-t)} \rho_{11} \]

(32)

The foliation of the set of density operators induced by \(C_T \) and \(E_T \) is given by the intersections of the Bloch ball with the planes perpendicular to the 3–axis. \(S_T \) is the von Neumann entropy of

\[T(\rho) = \left(\begin{array}{cc} 1 - t \rho_{11} & \sqrt{t} \rho_{01} \\ \sqrt{t} \rho_{10} & t \rho_{11} \end{array} \right) \]

(33)

The determinant of \(T(\rho) \), given \(\rho_{11} \), is maximal for \(\rho_{01} = 0 \), and so does \(S_T \). Therefore, on a given leaf with constant \(C_T \), the maximum of \(S_T \) is \(h(t \rho_{11}) \). It follows

\[H_T(\rho) \leq h(t \rho_{11}) - h\left(\frac{1 + \sqrt{1 - 4t(1-t)\rho_{11}^2}}{2} \right) = H_T(\rho') \]

on the plane containing the density operators with given \(\rho_{11} \). \(\rho' \) is the diagonal part of the density operator \(\rho \). Hence

\[C(T) = \max_{0 \leq r \leq 1} \left[h(rt) - h\left(\frac{1 - \sqrt{1 - 4t(1-t)r^2}}{2} \right) \right] \]

(34)
Smolin [20] has shown that the maximum is not achieved for orthogonal input states. (The first but more complicated example is by Fuchs [21].) Indeed, as long \(\rho_{11} \neq 1/2 \), there are no pairs of orthogonal states in the leaves dictated by \(C_T \).

Switching to the not degenerate case, the leaves of constant concurrence \(C_T \) are the intersection of straight lines with the Bloch ball. We get such a line by first fixing a plane of operators with constant diagonal entries. A second plane is obtained by constraining the off-diagonal entries to

\[
\sqrt{\alpha \delta^* \rho_{01}} + \sqrt{\alpha^* \delta \rho_{01}^*} = r
\]

where \(r \) is real. The intersection of the planes defines a line. \(C_T \) remains constant on its intersection with the Bloch ball.

\(C_T \) is zero if both terms in (30) vanish. The line segment cuts the Bloch sphere necessarily at pure states. That there are one or two pure states in the range of the channels (13) is proved in [19].

4 A special class of 1–qubit channels

We would like to extend the computations to some channels with more than two Kraus operators. It has been proved above that we can associate to every pair of operators, interpreted as Kraus operators, an anti-linear Hermitian one,

\[
\{ A, B \} \rightarrow \vartheta
\]

One may ask whether one can change the super-operator (1) without changing \(\vartheta \) and, hence, without changing \(C_T \) and \(E_T \). To do so, we first observe that the trace one condition is irrelevant for theorem 2. This fact simplifies the following a bit, and we can allow slightly more: After changing the Kraus operators, \(\vartheta \), and hence \(C_T \), may become scaled.

The answer is in the somehow surprising identity

\[
(A \otimes B - B \otimes A) |\phi \otimes \phi \rangle = \langle \phi | \vartheta |\phi \rangle^* (|01\rangle - |10\rangle)
\]

in which

\[
|\phi \otimes \phi \rangle = x_0^2 |00\rangle + x_0 x_1 (|01\rangle + |10\rangle) + x_1^2 |11\rangle
\]

Consequently, if the super-operator \(T' \) comes with Kraus operators \(A' \) and \(B' \), and if

\[
A' = \mu_{11} A + \mu_{12} B, \quad B' = \mu_{21} A + \mu_{22} B
\]

then the left hand side of (37) changes by a factor only. The factor is the determinant of the transformation (38). Remembering the definition of \(C_T \), it results

\[
C_{T'} = |\mu_{11} \mu_{22} - \mu_{12} \mu_{21}| C_T
\]
Now let us go a step farther and consider a channel

\[T'(\rho) = \sum_{j=1}^{m} A_j \rho A_j^\dagger \]

(40)

For a small class of these channels \(C_T \) and, therefore, \(E_T \) can be computed explicitly.

Theorem 4: If the linear span of the Kraus operators \(A_1, \ldots, A_m \) in (40) is at most 2–dimensional, there is an anti-linear and Hermitian \(\vartheta' \) satisfying

\[\det T'(\pi) = \text{tr} \, \pi (\vartheta' \pi \vartheta') \]

(41)

for pure \(\pi \), and \(C_{T'} \) is a flat roof.

Proof. We use the identity

\[\det \sum (a_i c_i a_i d_i) = \sum_{j<k} (a_i b_k - a_k b_i) (c_i d_k - c_k d_i) \]

(42)

to compute the determinant of \(Y = \det T(\pi) \),

\[Y = \sum \begin{pmatrix} y_{i0} y_{i0}^* & y_{i0} y_{i1}^* \\ y_{i1} y_{i0}^* & y_{i1} y_{i1}^* \end{pmatrix} \]

(43)

where \(\pi = |\phi\rangle \langle \phi|, \phi = x_0 |0\rangle + x_1 |\phi\rangle \), and

\[A_i \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} y_{i0} \\ y_{i1} \end{pmatrix} \]

(44)

From (42) we obtain

\[\det T(\pi) = \sum_{j<k} |y_{i0} y_{i1} - y_{i1} y_{i0}|^2 \]

(45)

We choose \(A \) and \(B \) in (13) of the channel \(T \) as linear generators of the linear span of the \(A_j \) in (11). There are numbers \(\mu^j_l \) fulfilling

\[A_j = \mu^j_1 A + \mu^j_2 B, \quad j = 1, \ldots, m \]

(46)

and allowing to rewrite

\[|y_{i0} y_{i1} - y_{i1} y_{i0}| = |\mu^j_1 \mu^k_2 - \mu^j_2 \mu^k_1| \cdot |z_0 w_1 - z_1 w_0| \]

By the help of (22) we finally obtain

\[\det T(\pi) = (\text{tr} \pi \vartheta \pi \vartheta) \sum_{j<k} |\mu^j_1 \mu^k_2 - \mu^j_2 \mu^k_1|^2 \]

(47)

Hence, \(\vartheta' = \mu \vartheta \), where \(|\mu|^2 \) can be read off from (47), does the job required by theorem 4.

It seems, theorem 4 exhausts the possibilities to compute \(C_T \) and \(E_T \) by an anti-linear and Hermitian \(\vartheta \) for 1–qubit channels in the manner of the present
paper. There are simple examples where the linear span of the Kraus operators is of dimension larger than two and for which one cannot find an appropriate ϑ. For instance, the well known depolarizing channels

$$T_t(\rho) = \left((\text{tr}\rho) \mathbf{1} + s\rho \right) (s + \text{dim} \mathcal{H})^{-1}$$

which are positive for $-1 \leq s$ and completely positive for $-(\text{dim} \mathcal{H})^{-1} \leq s$ belong to them. The determinant of $T(\pi)$ is constant for pure states. Consequently, C_T is constant everywhere and, trivially, a flat roof. But if this constant is different from zero, i.e. $s \neq 0$, it cannot be represented as (41) for all pure π even if the dimension of \mathcal{H} is two.

References

[1] A. S. Holevo, *Probl. Perdeachi Inf.* 9 3 (1973)

[2] F. Benatti, *J. Math. Phys.* 37 5244 (1996)

[3] B. Schumacher, M. D. Westmoreland, Optimal signal ensembles. quant-ph/9912122

[4] A. Connes, H. Narnhofer, W. Thirring, *Comm. Math. Phys.* 112 681 (1987)

[5] H. Narnhofer, W. Thirring, *Fizika* 17 257 (1985)

[6] A. Uhlmann, *Open Sys. Information. Dyn.* 5 209 (1998)

[7] L. B. Levitin, *Open Sys. Information. Dyn.* 2 209 (1994)

[8] A. Uhlmann, *Phys.Rev. A*, 62 032307 (2000)

[9] F. Benatti, H. Narnhofer, A. Uhlmann, *Rep. Math. Phys.* 38 123 (1996)

[10] F. Benatti, *J. Math. Phys.* 37 5244 (1996)
 F. Benatti, H. Narnhofer, A. Uhlmann, *Lett. Math. Phys.* 47 237 (1999)

[11] E. P. Wigner, *J. Math. Phys.* 1 409 (1960)

[12] R. F. Werner *Phys. Rev. A* 40 4277 (1989)

[13] C. Bennett, D. P. Vincenzo, J. Smolin, and W. Wootters, *Phys. Rev. A*, 54 3824 (1996)

[14] B. M. Terhal, K. G. Vollbrecht, The entanglement of formation for isotropic states. quant-ph/0005062

[15] K. G. Vollbrecht, R. F. Werner, Entanglement Measures under Symmetry. quant-ph/0005095
[16] S. Hill and W. Wooters. *Phys. Rev. Lett.* **78** 5022 (1997)

[17] W. Wooters. *Phys. Rev. Lett.* **80** 2245 (1997)

[18] Ch. King, M. B. Ruskai, Minimal Entropy of States Emerging from Noisy Quantum Channels. quant-ph/9911079

[19] M. B. Ruskai, S. Szarek, E. Werner, A characterization of completely–positive trace–preserving maps on \mathcal{M}_2. quant-ph/0005004

[20] Private communication by C. Fuchs, (1998)

[21] C. Fuchs, *Phys. Rev. Lett.* **79** 1162 (1997)