Conotruncal heart defect/microphthalmia syndrome: delineation of an autosomal recessive syndrome

M C Digilio, B Marino, A Giannotti, B Dallapiccola

Abstract
We report on three sibs born to healthy parents, one livebirth and two terminated pregnancies, presenting with a malformation complex characterised by conotruncal heart defect (CTHD), microphthalmia, genital anomalies, and facial dysmorphism. The recurrence of the association of CTHD, particularly truncus arteriosus, and microphthalmia in sibs has previously been reported in rare instances, but a correlation between the single descriptions has never been noted. CTHDs are included among the cardiac malformations characteristically associated with the group of syndromes caused by the microdeletion of chromosome 22q11, but no detectable hemizygosity has been found in our family. An autosomal recessive gene seems to be involved in syndromic patients with the combination of CTHD and microphthalmia. The map location of this gene is at present unknown, but autosomal recessive inheritance must be considered in genetic counselling of families with children presenting with this malformation complex.

Keywords: congenital heart defect; truncus arteriosus; tetralogy of Fallot; microphthalmia

Case reports
CASE 1
The infant, a female, was born by caesarean section at 38 weeks of gestation. Ultrasonic examination in the 18th week of pregnancy indicated retarded fetal growth and cardiac malformation was diagnosed in the 20th week. Birth weight was 1510 g, length 39 cm, and OFC 22 cm. Apgar scores were 3 at one minute and 5 at five minutes. Clinical evaluation showed bilateral microphthalmia, hypertelorism, a small mouth, narrow palate, dysmorphic ears, webbed neck, and bilateral rocker bottom feet.

Ophthalmological examination showed microphthalmos. The pupillary light reactions were normal, the anterior chambers were shallow, and the optic discs were pale. There was no evidence of coloboma of the iris, retina, choroid, or optic disc. Echocardiography showed trilatrogy of Fallot and cerebral ultrasound examination indicated periventricular leucomalacia. Renal ultrasonography showed an ectopic right kidney and a normal left kidney. Chromosomal analysis on peripheral lymphocytes showed a normal female karyotype. Fluorescent in situ hybridisation with probe Sc11.1 was performed to identify a 22q11 microdeletion. Slight thrombocytopenia, ranging from 70-85 x 10^3/l, was detected in the first week of life. The baby died at 35 days because of severe hypoxia. Necropsy confirmed cerebral, ocular, cardiac, and renal anomalies. Bilateral streak ovaries were also found. Owing to the detection of thrombocytopenia, historical examination of spinal bone marrow was performed and showed normal quantitative representation of all cellular maturation stages.

FAMILY HISTORY
The proband was the third pregnancy of healthy, non-consanguineous parents. The mother was 24 years old at the time of birth and the father 27. Both were born in a small village and the paternal grandparents were first cousins. There were two previous pregnancies, which were voluntarily terminated because of multiple fetal malformations. The clinical features of the sibs are summarised in table 1 and information about the older sibs is given below.

CASE 2
The pregnancy was complicated by threatened abortion in the second month. Fetal ultrasonography at 18 and 21 weeks showed...
reduced retardation at birth and cardiac malformation consisting of a truncus arteriosus type II was diagnosed in the 18th week. Chromosomal analysis on amniocytes showed a normal male karyotype (46,XY). The pregnancy was terminated in another institution in the 25th week. Necropsy showed a microbrachycephalic skull, bilateral severe microphthalmia, epicanthic folds, flat nasal bridge, micrognathia, small and low set ears, short neck with loose skin, bilateral cryptorchidism, and malpositioned toes. Cardiac malformations consisted of truncus arteriosus type II, infundibular ventricular septal defect, and hypoplastic pulmonary arteries. No cerebral, lung, gastrointestinal, or renal abnormalities were detected.

CASE 3

This pregnancy was also terminated in another institution at 24 weeks of gestation after ultrasound detection of congenital malformations. Necropsy showed a male fetus with facial dysmorphism, including bilateral microphthalmia and microretrognathia. The lungs were hypoplastic and truncus arteriosus type II was also present. No additional anomalies were detected.

Discussion

To our knowledge, the combination of TA and microphthalmia has been previously reported in two sibships, independently described as affected by a new genetic condition. Furthermore, microphthalmia associated with tetralogy of Fallot has been noted in an additional family. The major clinical findings of these patients are summarised in Table 1. We believe that CTHDs and microphthalmia, often associated with other congenital malformations, are the cardinal features of a genetic syndrome inherited as an autosomal recessive trait.

Microphthalmia is a congenital malformation affecting 1.2-1.8 in 10,000 births. Three aetiological classes have been identified, including microphthalmia resulting from monoclonal and chromosomal genetic disorders, prematurely acquired diseases, and associations such as CHARGE and VATER.

TA is included among the cardiac malformations characteristically associated with DiGeorge syndrome. Chromosome 22q11 microdeletion is a frequent cause of CTHD in the setting of DiGeorge and velocardiofacial syndromes. In addition, around 20% of patients with TA have hemizygosity for 22q11. However, no detectable 22q11 deletion has been found in our family. Interestingly, this chromosomal anomaly has never been detected in families with recurrence of non-syndromic CTHD in sibs. The existence of an autosomal recessive gene presumably not located in the 22q11 region causing CTHD is possible, and this is further corroborated by the report of parental consanguinity in some instances of recurrent TA.

An autosomal recessive gene also seems to be involved in syndromic patients affected by the combination of TA and microphthalmia, although the map location of this presumed gene is at present unknown. The autosomal recessive inheritance must be taken into consideration in genetic counselling of families with isolated CTHD, but particularly in those with TA and associated extracardiac anomalies not resulting from 22q11 microdeletion. The types of CTHD observed in the present family confirm the pathogenetic similarities between TA and tetralogy of Fallot.

The study of families with recurrent CTHDs must be continued, with particular regard to familial cases without del(22q11). Different genes involved in the morphogenesis of CTHDs may be identified, as well as their connection with neural crest abnormalities, which is now the best known pathogenetic mechanism to be related to anomalies of the outflow tracts of the heart. Since genes different from those located in chromosomal region 22q11 can cause CTHDs, two alternative pathogenetic pathways can be hypothesised: (1) this new gene/gene could influence the neural crest following mechanisms similar to those suggested for deletion 22q11, and (2) this new gene/gene could cause the CTHDs by different and unknown pathogenetic mechanisms.

Characteristics	Gardner et al.	Thomas et al.	Figueroa et al.	Present cases						
Sex	F	M	F	M	M	F	F	F	M	M
Microphthalmia	+	+	+	+	+	+	+	+	+	+
Craniofacial anomalies	+	+	+	+	+	+	+	+	+	+
Congenital heart defect	VSD	TA+MA	TA	TA	TF	-	-	TF	TA	TA
Renal anomaly	-	+	-	-	-	-	-	-	-	-
Genital anomaly	-	-	+	+	+	+	+	+	+	+
Camptodactyly	-	-	+	+	+	+	+	+	+	+
Club foot	-	+	-	-	-	-	-	-	-	-
Thrombocytopenia	+	+	+	+	+	+	+	+	+	+

VSD=ventricular septal defect, TA=truncus arteriosus, MA=mirtal atresia, TF=tetralogy of Fallot.
Conotruncal heart defect/microphthalmia syndrome

Rein AJJT, Dollberg S, Gale R. Genetics of conotruncal malformations: review of the literature and report of a consanguineous kindred with various conotruncal malformations. Am J Med Genet 1990;36:353-5.

Wulfberg EA, Zizza EJ, Moore JW. The inheritance of conotruncal malformations: a review and report of two siblings with tetralogy of Fallot with pulmonary atresia. Clin Genet 1991;40:12-16.

Pacileo G, Musewe NN, Calabro R. Tetralogy of Fallot in three siblings: a familial study and review of the literature. Eur J Pediatr 1992;151:726-7.

Rein AJJT, Sheffer R. Genetics of conotruncal malformations: further evidence of autosomal recessive inheritance. Am J Med Genet 1994;50:302-3.

Gardner RJM, Morrison PS, Abbott GD. A syndrome of congenital thrombocytopaenia with multiple malformations and neurological dysfunction. J Pediatr 1983;102:600-2.

Thomas IT, Jewett T, Raines KA, Gash C, Garber P. New lethal syndrome of fetal akinesis with characteristic facial appearance, severe microphthalmia, microtia, and truncus arteriosus in two male sibs. Am J Med Genet 1993;46:180-1.

Figuera LE, Ramirez-Duenas ML, Rangel-Villalobos H, Cantú JM. Microphthalmia, mental retardation and failure to thrive: a new syndrome with probable autosomal recessive inheritance. Am J Hum Genet Suppl 1996;90-A93.

Pizzuti A, Novelli G, Mari A, et al. Human homologue sequences to the Drosophila dishevelled segment polarity gene are deleted in the DiGeorge syndrome. Am J Hum Genet 1996;58:722-9.

Warburg M. Classification of microphthalmos and coloboma. J Med Genet 1993;30:664-9.

Van Mierop LHS, Kutsche LM. Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am J Cardiol 1986;58:135-7.

Driscoll DA, Salvin J, Sellinger B, et al. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J Med Genet 1993;30:813-17.

Webber SA, Hatchwell E, Barber JCK, et al. Importance of microdeletions of chromosomal region 22q11 as a cause of selected malformations of the ventricular outflow tracts and aortic arch: a three-year prospective study. J Pediatr 1996;129:26-32.

Digilio MC, Marino B, Giannotti A, Dallapiccola B. Chromosome 22q11 microdeletion and isolated conotruncal heart defects. Arch Dis Child 1997;76:79-81.

Debrus S, Berger G, de Meeus A, et al. Familial non-syndromic conotruncal defects are not associated with a 22q11 microdeletion. Hum Genet 1996;97:138-44.

Debrus S, Berger G, de Meeus A, et al. Familial non-syndromic conotruncal defects are not associated with a 22q11 microdeletion. Hum Genet 1996;97:138-44.

Van Praagh R, Van Praagh S. The anatomy of common aortico-pulmonary trunk (truncus arteriosus communis) and its embryologic implications: a study of 57 necropsied cases. Am J Cardiol 1965;16:400-14.

Clark EB, Takao A. Developmental cardiology: morphogenesis and function. Mt Kisco, NY: Futura Publishing, 1990.