Title
Binding and inhibition studies on lipocortins using phosphatidylcholine vesicles and phospholipase A2 from snake venom, pancreas, and a macrophage-like cell line.

Permalink
https://escholarship.org/uc/item/6x06x669

Journal
The Journal of biological chemistry, 265(10)

ISSN
0021-9258

Authors
Davidson, FF
Lister, MD
Dennis, EA

Publication Date
1990-04-01

DOI
10.1016/s0021-9258(19)39404-9

Peer reviewed
Studies are reported on the inhibition of phospholipase A$_2$ (PLA$_2$) from porcine pancreas, cobra (Naja naja) venom, and the P388D$_1$ macrophage-like cell line by human recombinant lipocortin I and bovine lung calpain I. Membrane vesicles prepared from 1-stearoyl,2-arachidonoyl phosphatidylcholine (PC) and other PCs were utilized as substrate. Binding studies using sucrose flotation gradients showed that both lipocortin I and calpain I bind to these vesicles although less tightly than to vesicles prepared from anionic phospholipids or fatty acids. Binding to PC was somewhat enhanced by Ca$^{2+}$. Inhibition of cobra venom PLA$_2$ was not observed when PC vesicles were used as substrate but was when dipalmityl phosphatidylethanolamine was used. Both the pancreatic and macrophage enzymes were inhibited when acting on PC. Interestingly, the inhibition of the macrophage enzyme toward PC depended on the fatty acid attached to the sn-2 position of PC with arachidonate $>$ oleate $>$ palmitate. Inhibition was also highest at low [PC]; these inhibition results can be explained by the “substrate depletion model” (Davidson, F. F., Dennis, E. A., Powell, M., and Glenney, J. (1987) J. Biol. Chem. 262, 1698–1705). Experimental and theoretical considerations suggest the following: Inhibition by lipocortins of this macrophage PLA$_2$ from a cell that makes lipocortin and is active in prostaglandin production is due to effects on substrate availability rather than direct inhibition.

Recent progress in the structural characterization of lipocortins I–VI (1) has shown that the species equivalents of lipocortin I and calpain I (lipocortin II) are present in rat lymphoid organs and are expressed in murine macrophage cell lines including J774 and P388D1. Following our previous studies on “substrate depletion” (2), we have now investigated the ability of human recombinant lipocortin I and bovine lung calpain I to inhibit phospholipase A$_2$ (PLA$_2$)3 from porcine pancreas, cobra venom (Naja naja), and a partially purified PLA$_2$ from the mouse macrophage-like cell line P388D$_1$ (4), using phosphatidylcholine (PC) vesicles as substrate. The ability of calpain I and lipocortin I to bind to PC and to fatty acid was also investigated.

Studies of the effects of “lipocortins” on porcine pancreatic PLA$_2$ hydrolysis of Escherichia coli phospholipids or PC in deoxycholate mixtures have indicated that PLA$_2$ inhibition in those systems may be accounted for by depletion by the inhibitor of either substrate, or the cofactor of the enzyme, and may be complicated by inhibitor-induced phase changes in the substrate (2, 5). However, there have also been reports of inhibition of the pancreatic PLA$_2$ by various lipocortins when PC is used as substrate (6–10) or with PE using several different PLA$_2$s (11). Although the physical form of the phospholipid was not specified in any of these studies, neither detergent nor sonication was mentioned, and it can therefore be assumed that the phospholipids were in some kind of multibilayer structure. In one case (9), the essential cofactor Ca$^{2+}$ was not included in the assay, making it likely that the lipocortin inhibited solely by binding up the trace amounts of cofactor. However, the other reports were intriguing since calpain I and lipocortin I have been reported not to bind PC (12, 13).

Lipocortins are proposed to be important in in vivo anti-inflammatory reactions due to the fact that purified proteins in this family added to prelabeled cells and tissues appear to decrease the release of [3H]arachidonic acid or thromboxane in response to stimuli (14, 15). The mechanism of PLA$_2$ inhibition by these proteins in the only other commonly used in vitro assay system (phospholipid vesicles) therefore warranted further study. In particular, it could be ascertained whether in vitro inhibition always involves depletion effects or sometimes works by a different mechanism then perhaps more progress could be made toward quantitating the effect and determining the likely relevance of these proteins as inhibitors of PLA$_2$s as discussed in a recent commentary (16).

In the present studies, in all cases in which inhibition was observed, the bulk concentration of substrate was very low, confirming our earlier findings with E. coli substrate (2) and subsequent studies by Aarsman et al. (11). Furthermore, the potency of inhibition of the macrophage enzyme depended on which type of long chain PC was employed as substrate, and the inhibition could be overcome by raising the PC concentration. Inhibition of the N. naja PLA$_2$ toward PC, its preferred substrate, was not seen although the pancreatic enzyme was inhibited. However, when other substrates were used on which the N. naja PLA$_2$ exhibited lower rates of hydrolysis, inhibition by calpain I and lipocortin I was achieved. The results indicate that inhibition by lipocortin on this substrate...
involves competition for binding of PC. A preliminary report has appeared (17).

EXPERIMENTAL PROCEDURES

Materials—1,2-Dipalmitoyl-sn-glycerol phosphorylcholine (dipalmitoyl PC), 1,2-dipalmitoyl-sn-glycerol phosphatidylethanolamine (dipalmitoyl PE), 1,2-dipalmitoyl-sn-glycerol-phosphorylethanolamine (dipalmitoyl-phosphoethanolamine) and 1,2-distearoyl-sn-glycerol-phosphorylcholine (distearoyl-phosphocholine) were purchased from Avanti Polar Lipids, Inc. (Birmingham, AL). Liposomes were prepared from dipalmitoyl PC and dipalmitoyl PE by the method of E. J. Donaldson. Liposomes were stored as lyophilized powders and are stable in this state for at least several months. Lyophilized BE-II was dissolved in enzyme buffer and stored as a lyophilized powder and is stable in this state for at least several months. Lyophilized BE-II was dissolved in enzyme buffer (50 mM Tris-Cl, pH 8.0) to a concentration of either 0.32 or 0.64 mg/ml. Freshly dissolved aliquots were used for the kinetic studies.

Binding of calpain I and lipocortin I to PC and free fatty acid was done using sucrose flotation gradients essentially as described previously (2). The lipid was dried in vacuo and then resuspended by sonication in 10 mM imidazole, pH 6.8, 40 mM KCl to a final concentration of 33 mM in a total volume of 0.5 ml. The PC used was 1,2-stearoyl-2-[[1-14C]arachidonoyl PC (1.12 mCi) mixed with unlabeled 1-stearoyl,2-arachidonoyl PC to achieve the desired concentration. [14C]Palmitic acid (10 PCi) was added to a concentration and volume. Aliquots of 25 μl of the lipid sonicates were combined with 5 μl of inhibitor protein and concentrated buffer to achieve a final volume of 47 μl containing 10 mM imidazole, pH 6.8, 40 mM KCl, 2 mM MgCl2, and the desired concentration of CaCl2. For zero free Ca2+, 10 mM EGTA was added. For 2 and 10 mM Ca2+, no EGTA was added, only CaCl2. The mixtures were allowed to remain at room temperature for 35 min; 78 μl of 80% sucrose solution in the same buffer was then added to each sample, and 100 μl of each of these mixtures was placed on the bottom of a centrifuge tube (Beckman Ultra-Clear, 5 x 20 mm). This layer was overlaid with 150 μl of 80% sucrose and 40, 50, 60, 70, and 90% sucrose in the same buffer and finally with 150 μl of buffer alone. The gradients were centrifuged for 5.5 h at 50,000 rpm in a Beckman SW-Ti 55 rotor at 4 °C and allowed to come to a halt without using a brake (which took approximately 30 min). Each gradient was quickly frozen by immersion in liquid N2 and then sliced with a razor into eight equal fractions that were fixed and stained as described elsewhere (4). The supernatants were removed for scintillation counting and SDS-polyacrylamide gel electrophoresis. Each sample for SDS-polyacrylamide gel electrophoresis was combined with 5 μl of standard 4 × reducing sample buffer plus an additional 1 μl of 10% SDS. Samples were run on 14% gels at 30 mA for 5 h. Gels were fixed and stained according to the procedure of Oakley et al. (20). Developed gels were subjected to densitometry using a Bio-Rad densitometer.

Assay of Porcine and Cobra Venom PLA2—The purification of the PLA2 from the FSSLD, phosphomycine-take cell line is discussed in detail elsewhere (4). The enzyme preparation used herein was that obtained from the P388D1 macrophage-like cell line is discussed in detail elsewhere (4). The enzyme preparation used herein was that obtained from lyophilized venom obtained from the Miami Serpentarium (Miami, FL). All other reagents were analytical reagent grade or better.

RESULTS

Binding to Phosphatidylincholine and Fatty Acid—The binding of calpain I and lipocortin I to sonicated PC vesicles and to free fatty acid was tested using sucrose flotation gradients similar to those described previously (2) for PS/PE liposomes. However, the PC vesicles were not as buoyant as

Lipocortin Binding and Inhibition 5603

mM CaCl2 and 10 μM sonicated PC in vesicles. If an inhibitor protein was included, it was added to the assay solution and allowed to equilibrate with the substrate for 10 min at 40 °C before beginning the assay by the addition of 10 μl of PLA2. The final concentration of both PLA2s was 0.1 ng/500-μl assay. With the porcine pancreatic PLA2, the assay was allowed to proceed for 60 min at 40 °C, and hydrolysis of 1-stearoyl-2-[1-14C]arachidonoyl PC in the absence of MgCl2 was measured. The background was determined by control samples without calpain I and not more than 8% under any conditions. With the cobra venom PLA2, the reaction was allowed to proceed for 2 min at 40 °C, and hydrolysis was 2-4% above background (<1%). All reactions were stopped by the addition of 300 μl of chloroform/methanol/acidic acid (157:14:29, v/v), and the chloroform extracts containing substrate and products were removed (about 5 min), dried in vacuo, and subjected to thin layer chromatography as described below.

Assays using sonicated PE were carried out in a total volume of 0.2 ml in 20 mM Tris-HCl, pH 8.0, containing 5 mM CaCl2 and 1.3 μM PE. The [14C]dipalmitoyl PC was used unlabeled with cold PE, and a concentrated stock solution was made by drying the [14C]PE in vacuo and resuspending by sonication in the assay buffer. The PE was difficult to resuspend; so after sonication for 5 min, an aliquot was subjected to scintillation counting to determine the true concentration in the stock solution from which dilutions were made. Calpain I (6.4 μg/200-μl assay) was added 10 min prior to starting the assay with 5 ng of PLA2. Duplicate reactions were stopped by the addition of Dole reagent (1). Reactions were terminated after 15 min in the case of cobra venom PLA2 and 30 min in the case of pancreatic PLA2, and extracted by a modified Dole procedure. In 30 min, the pancreatic enzyme hydrolyzed about 14% of the PE above background (which was 4%). In 15 min, the cobra enzyme hydrolyzed roughly 8% above the background, indicating similar activities of both enzymes on the substrate. PLA2 activities on H-labeled autochline E, coli cells were assayed as described previously (2). The assays were started by the addition of [3H]labeled E. coli cells and stopped after 5 min at 0 °C by the addition of bovine serum albumin (20 mg/ml) and 2 N HCl. The supernatants were removed for scintillation counting after spinning down the cells, and the average of duplicates, corrected for blanks, is reported.

Assay of BE-II PLA2—The standard assay conditions included 2 μM CaCl2, 20 mM Tris-HCl, pH 8.0, and 10 μM PC containing about 100,000 cpm of sn-2-1-14C-fatty acyl PC. PC was prepared as vesicles by sonication the phospholipid in buffer and Ca2+ using an M2000-watt probe sonicator until the lipid suspension clarified (which took approximately 30 min). The reaction was started by the addition of the enzyme solution (16 μg of protein) to give a final volume of 0.5 ml. The assays were then incubated at 40 °C for 90 min.

For experiments in which the substrate concentration dependence was determined, it was necessary to vary the time of incubation in order to have hydrolysis of less than 5% of total substrate, where the enzymatic rate was found previously to be linear with time (21). The time was varied from 15 min (low substrate) to 150 min (high substrate). At the lowest substrate concentrations tested, radiolabeled phospholipid could not be diluted with unlabeled phospholipid, and samples contained 20,000–30,000 cpm. All times were adjusted to generate at least 1,000 cpm of product to ensure accuracy.

Enzymatic reactions were stopped by the addition of 0.5 ml of chloroform/methanol/acetic acid (2:4:1, v/v). The entire sample was subjected to a lane (2 cm width) of a 10 x 20-cm thin layer chromatography plate, and the lipid components were separated over the 10-cm length by elution with chloroform/methanol/water (65:25:4, v/v). The lipids were visualized by exposure to I2 vapor, and the zones corresponding to fatty acid and PE were scraped directly into scintillation vials to which 6 ml of scintillation fluid was added. Blanks were obtained by substituting enzyme buffer for the freshly prepared enzyme solution and incubating for the duration of the assay. The background hydrolysis was found to be less than 0.5%. Averages of duplicate assays are reported with blanks subtracted.

RESULTS

Binding to Phosphatidylincholine and Fatty Acid—The binding of calpain I and lipocortin I to sonicated PC vesicles and to free fatty acid was tested using sucrose flotation gradients similar to those described previously (2) for PS/PE liposomes. However, the PC vesicles were not as buoyant as
PS/PE liposomes, as might be the result of the lower propensity of PC to form very large fused phases. Therefore, it was necessary to centrifuge the PC-containing gradients for longer times (6 h instead of 2 h) in order to obtain all of the phospholipid in the top several fractions of the tubes. Calpactin I and lipocortin I stayed in the bottom two or three fractions of the gradients in the absence of lipid (data not shown). In pilot assays, calpactin I was tested for binding to PC at a phospholipid concentration equal to that used with PS/PE liposomes in previous experiments (2) (1.2 mM, 50 μg of total phospholipid/gradient). However, under conditions in which calpactin I would have been expected to bind tightly to PS/PE liposomes, PC caused smearing of the protein throughout the gradient (data not shown). This is indicative of a looser binding phenomenon than was seen with PS. The concentration of PC was therefore raised, and at a 10-fold higher amount of PC (Fig. 1), both calpactin I and lipocortin I were found in discrete zones in the gradients, with approximately 30% of the protein associated with PC and the remainder at the bottom of the tube.

The effect of [Ca²⁺] on the binding of calpactin I to 1-stearoyl,2-arachidonoyl PC was also investigated. When EGTA was present, very little protein was bound to PC (Fig. 2A). There appeared to be a weak dependence on [Ca²⁺] because as it was increased (B and C), so too was the binding of calpactin I to a maximum of about 30% at 10 mM Ca²⁺. In all the binding experiments, the preparation of the gels for densitometry was done by silver staining. All the fractions of a single gradient were run together in one gel in order to assess their relative intensities because the extent of development of the silver stain could vary in different preparations, and the absolute intensities of bands containing the same amount of protein sometimes differed in gels developed at different times. Interestingly, the light chain of calpactin I always developed color much more quickly than did the heavy chain (the light chain is not stained at all by Coomassie Blue). Therefore, if the amount of heavy chain was very low in a given lane, it may not have been possible to visualize it before overdevelopment of the rest of the gel became imminent, and the reaction was stopped. This may account for some of the apparent variations in heavy to light chain ratios as the [Ca²⁺] was raised in the gradients, and more protein became associated with the upper phosphatidylcholine-containing fractions.

In marked contrast to the extent of binding of both proteins to phosphatidylcholine, binding of calpactin I and lipocortin I to fatty acid under the same conditions (Fig. 3) was complete. In the experiment shown in Fig. 3, palmitic acid was used at a molar concentration equal to that of the phosphatidylcholine used in the previous experiments. OLEIC acid gave similar results, but arachidonic acid was retained at the bottom of the gradients with calpactin I (data not shown). Although binding of calpactin I and lipocortin I to palmitic acid at 10 mM Ca²⁺ was more extensive than to PC, it was probably not as efficient as to PS/PE liposomes, judging from preliminary experiments at lower concentrations of fatty acid.

Lipocortin Effects on the Hydrolysis of Sonicated Phosphatidylincholine Vesicles by the Secreted Phospholipases A₂—In Fig. 4, dose-response curves are shown for calpactin I inhibition of pancreatic and cobra venom (N. naja) PLA₂ toward 10 μM 1-stearoyl,2-arachidonoyl PC vesicles. Initial activation followed by inhibition was seen with the pancreatic enzyme. However, the cobra venom PLA₂ was not inhibited at all under the conditions used and was, if anything, slightly activated. The apparent IC₅₀ for the pancreatic PLA₂ was approximately 10 μg/ml or 0.1 μM calpactin I holoprotein, and the
enzymes were each present at 0.5 ng/ml or 0.94 nM. For the pancreatic PLA₂, reactions were allowed to proceed for 60 min at 40 °C, resulting in 5.8 ± 0.2% hydrolysis in the PLA₂ controls. The cobra venom PLA₂ is much more active than the pancreatic enzyme on PC, and after 2 min, hydrolysis in the controls was 1.8 ± 0.3%. This would indicate a difference in rate of approximately 10-fold, consistent with the different rates for these enzymes typically observed with PC under other conditions (e.g. Ref. 22). It should be noted, however, that under the conditions used here, control time courses of hydrolysis by the cobra venom enzyme were not linear but curved over, reaching a maximum of about 7.5% hydrolysis in about 7.5 min. The pancreatic PLA₂ time courses showed a brief lag period and then were roughly linear until a little over 6% hydrolysis after which they too curved over. Although the calpactin I did not inhibit the cobra venom PLA₂ toward phosphatidylcholine, it was able to inhibit this enzyme when other substrates were used (Table I). When sonicated dipalmitoyl PE was used as the substrate, under conditions in which the cobra venom and pancreatic PLA₂ gave approximately equal rates of hydrolysis, a 39% inhibition of the cobra venom enzyme was seen (Table I), whereas the pancreatic PLA₂ was 54% inhibited (data not shown). The cobra venom PLA₂ was also inhibited by calpactin I and lipocortin I when ³H-labeled E. coli cells were used as substrate. Therefore, the lack of inhibition of the cobra venom PLA₂ in Fig. 4 cannot be taken to imply a unique specificity of the calpactin I for the pancreatic enzyme but rather shows that the inhibition depends on which substrate is used for a given PLA₂. Notably, the cobra venom enzyme was not inhibited toward the substrate on which it normally gives its best rates, whereas the pancreatic enzyme, for which PC is a poor substrate, was inhibited. Switching to a substrate on which the cobra venom PLA₂ also acts poorly (PE or E. coli) allows inhibition of both enzymes to be observed under identical conditions. These results are similar to those of Rothut et al. (14), who found that N. naja PLA₂ could be inhibited by a 32-kDa lipocortin toward phosphatidic acid but not phosphatidylcholine, and those of Aarsman et al. (11), who saw inhibition of several PLA₂s, including pancreatic, toward PE.

Effects on PLA₂ from P388D₁ Cells—Both lipocortin I and calpactin I were found to inhibit a partially purified PLA₂ from the mouse macrophage-like cell line P388D₁. The substrate used in Fig. 5 was 10 μM sonicated 1-stearoyl,2-arachidonoyl PC, and the approximate IC₅₀ of both inhibitors was 5 μg/ml (approximately 0.1 μM in 38-kDa chains). Fig. 6 shows the effect on the inhibition of the macrophage PLA₂ by calpactin I when different PCs were used as substrates. At the highest concentration of calpactin I used, less than 20% inhibition was seen using dipalmitoyl PC as substrate. About 80% inhibition was seen with that same amount of calpactin I and at that same concentration of substrate when 1-palmityl,2-oleoyl PC and 1-stearoyl,2-archidonoyl PC were used. However, the IC₅₀ in the presence of oleoyl-containing PC was higher than that observed with the more unsaturated, longer chain arachidonoyl-containing phosphatidylcholine: 13 μg/ml (0.3 μM 38-kDa chain) and 3.3 μg/ml (0.09 μM), respectively.

The dependence of the inhibition on substrate concentration was examined for PLA₂ hydrolysis of 1 stearoyl,2 arachidonoyl PC at three different concentrations of calpactin I, and the results are shown in Fig. 7. In this experiment, the concentration of calpactin I was held constant as the concentration of substrate was raised. In a previous report (21) it was shown that the macrophage enzyme exhibits different types of kinetics depending on the range of substrate concentrations used. In the concentration range used here (<10 μM), the PLA₂ activity was shown previously to give hyperbolic velocity versus S curves, and Michaelis-Menten kinetics were assumed. At concentrations above 10 μM substrate, the velocity versus S curves indicated cooperativity of some sort. In the experiment shown in panel A, the actual velocity curves are shown in panel A and are replotted as the double reciprocals in panel B. Within the accuracy of the assay and given the uncertainties of the macrophage PLA₂ mechanism, it is not possible to distinguish whether or not the inhibited samples give genuinely linear double-reciprocal plots that would fit better to Michaelis-Menten kinetics than other models (see "Discussion"). Similar substrate dependence of the inhibition by calpactin I can also be seen when 1-palmityl-2-oleoyl PC is used as substrate, as shown in Fig. 8. At 1 μM substrate, about 60% inhibition is observed, and this is reduced to about 15% when the substrate concentration is raised to 5 μM.

DISCUSSION

Binding to PC—Although it had been reported previously that calpactin I and lipocortin I do not bind to PC under

Table I

Inhibition by lipocortins of cobra venom PLA₂ acting toward different substrates

Inhibitor	Substrate	[Phospholipid]	[Inhibitor]	PLA₂	Inhibition
Calpactin I	Dipalmitoyl PE	1 × 10⁻⁸	3 × 10⁻⁹	2 × 10⁻⁹	39 ± 15
Calpactin I	[³H]E. coli cells	8 × 10⁻⁸	5 × 10⁻⁷	1 × 10⁻⁷	61 ± 10
Lipocortin I	[³H]E. coli cells	1 × 10⁻⁶	2 × 10⁻⁷	3 × 10⁻⁸	62 ± 10

*The buffer was 100 mM Tris-HCl, pH 8.5, containing 10 mM CaCl₂.

*The buffer was 350 mM Tris-HCl, pH 8.5, containing 30 mM CaCl₂.
Lipocortin Binding and Inhibition

FIG. 5. Dose-response curve showing the effect of calpactin I (○) and lipocortin I (●) on macrophage phospholipase A₂ activity toward 1-stearoyl-2-arachidonoyl PC under standard assay conditions.

FIG. 6. Dose-response curve showing the effect of calpactin on macrophage phospholipase A₂ activity toward □, dipalmitoyl PC; ○, 1-palmitoyl-2-oleoyl PC; and ●, 1-stearoyl-2-arachidonoyl PC. Standard assay conditions were used.

FIG. 7. Velocity versus S plot of macrophage phospholipase A₂ activity with 1-stearoyl-2-arachidonoyl PC. A, the activity of the enzyme was measured in the presence of ●, 0 µg/ml; ○, 1 µg/ml; and □, 5 µg/ml calpactin I. Standard assay conditions were employed. B, double-reciprocal plots of the data shown in A.

FIG. 8. Velocity versus S plot of phospholipase A₂ activity as a function of 1-palmitoyl-2-oleoyl PC concentration in the absence (○) and the presence (●) of 5 µg/ml calpactin I.

conditions in which PS was bound (13, 14), we have found that the proteins do bind to PC albeit with a lower affinity than is exhibited for PS. At a 10-fold greater concentration of PC than was used with PS and using a 5-fold lower concentration of protein and much higher [Ca²⁺], 30% of the protein was bound to lipids compared with 100% when PS/PE liposomes were used (2). The results obtained are consistent with those of Schlaepfer and Haigler (12), who looked for but did not find binding of 125I-lipocortin I to large thin walled PC vesicles using sedimentation. At the concentration of PC and Ca²⁺ used by these authors, significant binding would not have been detected with sonicated PC vesicles in the sucrose flotation assay either, although it should be noted that the calpactins may have different affinities for PC in different structures. These results imply that the binding of lipocortin I and calpactin I to PC-sonicated vesicles is weaker than to anionic lipids. A dependence for binding on the concentration of Ca²⁺ was also seen with PC but over a millimolar rather than micromolar range. The Ca²⁺ requirement of calpactin I has been shown to be dependent on the concentration of PS/PE liposomes (13), and at high enough lipid (about half of the concentration of the PC used in Fig. 1), no Ca²⁺ is required for binding to that phospholipid. It has also been observed that the Ca²⁺ affinity of lipocortin I is increased by PS but not by PC (12). Under conditions in which PS increases the affinity of the calpactin for Ca²⁺ and vice versa, PS/Ca²⁺ complexes are probably formed. PC, as a zwitterion, does not bind Ca²⁺ to its surfaces as tightly or as extensively as does PS, nor does Ca²⁺ induce phase changes of PC. This difference may be at the root of the lower affinity of the lipocortin protein for PC as well as the broader Ca²⁺ concentration dependence for binding.

It is possible that the nature of the calpactin-phospholipid complex differs for PC and PS or else is the same but harder to assume with PC. Calpactin I and lipocortin I cause aggregation of PS/PE liposomes (13, 18), resulting in an extended protein/phospholipid phase that sediments easily from aqueous solution upon centrifugation and floats in sucrose solutions. The aggregation phenomenon is not surprising since negatively charged phospholipids have a natural tendency to form nonbilayer phases such as hexagonal and cubic phases under a variety of conditions. Sonicated PC vesicles, on the other hand, are generally small, far less easily aggregated, and cannot be quantitatively sedimented in the absence of protein even by ultracentrifugation. It is presumably because of their smaller size, resulting in higher relative densities, that they float less easily than PS in sucrose gradients. Binding of calpactin to sonicated PC vesicles may not induce
aggregation of the vesicles, in which case binding might not be detectable by either light scattering or sedimentation from aqueous solution, and this could account for the results of previous studies in which those detection methods were used (13). Also, if no significant aggregation occurs, the protein-PC complex may tend to be more dense than allowable for flotation of both components. Thus, as the centrifugal force displaces the light lipid phase upward in the gradient, the normal on/off equilibrium of the protein bound to lipid might be shifted more to "off," as the buoyancy of the lipid is increased upon dissociation of the protein. Thus, with PC it may be necessary to have a higher total ratio of phospholipid to bound protein than is the case with PS in order to prevent dissociation of the protein as it rises through the gradient. This could explain the smearing of protein at lower PC:calpactin I ratios. For reasons such as these, another assay for PC binding is needed in order to obtain K_D values.

Fatty Acid Effects—The ability of calpactin I and lipocortin I to bind to free fatty acid may influence the kinetic results of PLA$_2$ assays. Therefore, inhibition of porcine pancreatic PLA$_2$ by lipocortin binding of fatty acid, which is the enzyme's activator on PC, was considered but seemed unlikely in the assays performed here because of the low percent hydrolysis in all assays. The macrophage PLA$_2$ is inhibited by free fatty acid not activated by it (23), and it was also inhibited by lipocortin. However, the potential for fatty acid binding must be considered at the higher percentages of hydrolysis which are frequently reported for control PLA$_2$ samples. Furthermore, the ability to bind fatty acids and their metabolites may impinge on the choice of techniques for the measurement of levels of these molecules in any system in which lipocortins are present.

Substrate Dependence of the Inhibition by Lipocortins—The inhibition reported herein of pancreatic and macrophage PLA$_2$ hydrolysis of PC vesicles supports previous reports of inhibition of pancreatic PLA$_2$s by calpactin I and uteroglobin on PC substrates (6, 10). However, it is evident from the results with pancreatic, cobra venom, and the macrophage PLA$_2$s that the degree of inhibition depends on which substrate is used and its concentration. The following data indicate that inhibition involves competitive substrate-binding constants: (i) the lack of inhibition on a substrate that N. naja PLA$_2$ hydrolyzes efficiently, although inhibition was observed on a poorer substrate of the enzyme; (ii) the different K_{IC} values obtained with the macrophage PLA$_2$ and different PCs even though this PLA$_2$ has similar K_D values on all three PCs used (21); and (iii) the dependence of the inhibition on substrate concentration, an effect that has been observed previously for these inhibitors with other PLA$_2$s and other substrates (2, 11). What is not clear in the case of PC is whether there is competition between the inhibitor and substrate for the active site of the PLA$_2$ (classical competitive inhibition, K_c versus K_D), competition between the inhibitor and enzyme for substrate (substrate depletion, K_d versus K_{IC}), or whether one is actually dealing with a partition coefficient (K) of the inhibitor between solution and bilayers, with the result that the inhibitor in the surface confers a physical effect on the phospholipid phase or change in T_m which consequently changes the enzyme's K_c or K_{IC} on the substrate.

Competitive and substrate depletion inhibition can only be distinguished kinetically under certain conditions, as illustrated by Fig. 9. The velocity equation of a system in which substrate depletion is occurring is

$$v = \frac{V_{max}}{K_c + [S]}$$

FIG. 9. Theoretical velocity versus S plots generated using the equations for simple substrate depletion kinetics (see "Discussion"). K_c, the binding constant of a protein inhibitor to substrate phospholipid, is given the hypothetical values of A, 0.1; B, 1; C, 10; and D, 100. K_D, the binding constant of an enzyme to its substrate, is given the hypothetical value of 10; and I, the inhibitor concentration, is varied from 0 to 25 μM as the curves proceed from left to right: none (---), 1 μM (-----), 5 μM (-----), 10 μM (-----), and 25 μM (-----).

where S represents the concentration of free substrate available for combination with the enzyme (assuming one inhibitor molecule binds to one substrate molecule, no cooperative effects are involved, and the enzyme displays simple Michaelis-Menten kinetics on the substrate). The $[S]$ can be calculated for any total substrate ([S]$_0$) and total inhibitor ([I]$_0$) concentrations using the following equation.

$$[S] = \sqrt{\frac{(I) - [S] + K_D^2 + 4 K_D [S] - ([I] - [S] + K_D)}{2}}$$

Therefore, if K_D, K_c, and V_{max} are established, then the velocity curve as a function of substrate concentration can be calculated. In Fig. 9, we have held the V_{max} and K_c constant at arbitrarily chosen values and plotted the velocity curves for four different relative K_D values in order to illustrate the effect of these ratios on the shapes of the inhibition curves as a function of substrate concentration. As can be seen, as the inhibitor's affinity for substrate (K_D) approaches the enzyme's K_c for substrate, the potency of the inhibitor decreases, and the shape of the inhibited curve becomes less and less sigmoidal, to the point where the plots resemble competitive inhibition. If K_D is sufficiently high on a given substrate relative to the enzyme's K_c, then inhibition may not be observed unless massive quantities of inhibitor are used. Such phenomena could explain the kinetic plots obtained for inhibition of the macrophage PLA$_2$ toward different PCs.

On the other hand, in the PC assay system, in which there is less affinity of the lipocortins for the substrate and in which more lipocortin or calpactin must be used in order to obtain inhibition than was the case with anionic lipids, competitive protein binding could be important. The ultracentrifugation data of Ahn et al. (24), which show lipocortin K_D values of about 10^{-5} M for pancreatic PLA$_2$s and other studies reporting K_{IC} values of 10^{-8} M for uteroglobin (10) to 10^{-7} M for calpactin I (6) with pancreatic PLA$_2$s on PC bilayers could all be consistent with such a hypothesis. However, even though the shape of the kinetic curves in Fig. 7 may be consistent with active site competitive inhibition, they are also consistent with a substrate depletion mode of inhibition in the case in which $K_D \approx K_c$ as just described, particularly given the error of the assays for the PLA$_2$s and limitations on the amounts of inhibitor protein available. Interestingly, the K_{IC} values of the macrophage PLA$_2$ on all the PCs used herein are on the order of 10^{-5} M (21).
Observations that support the hypothesis of a direct phase effect on substrate by calpain I and lipocortin I include the following. First, association of these proteins with PC has now been demonstrated under some conditions. Furthermore, significant binding under assay conditions would require a K_D of only about 10^{-6} M, which is conceivable by comparison with other's estimations of K_D values for PS (25) and the relative affinities observed here. In addition, lipocortin by itself has been reported to have some surfactant properties (cited in Ref. 1 as a personal communication). If this is so, then it is logical to assume that partitioning into lipid bilayers is possible. If that happened, then as the PC:lipocortin ratio was raised, the protein would become diluted in the surface, and localized phase effects could diminish. Surfactant-like effects could also explain the often observed activation of PLAz by lipocortin I and calpain I in some concentration regimes. That is, phase changes have the potential either to activate or to inhibit PLAzs depending upon the enzyme and substrate under study (26–29).

Another line of evidence supportive of lipocortin-induced substrate effects concerns the stoichiometries of protein to phospholipid when inhibition is achieved. The distinction between dissociation constants and stoichiometries should first be noted, however. In competitive inhibition, it is the concentrations of all three components S, E, and I, and the values of K_e and K_i that determine the extent of inhibition. Similarly, in substrate depletion inhibition, it is the concentrations of the three components and K_e and K_i. In neither case is stoichiometry the main operative factor, but rather it is the absolute concentrations relative to the appropriate dissociation constants that are definitive. Second, it must be noted that the concentration of phospholipid added to an assay is not the concentration that the enzyme initially “sees” unless a solubilizing detergent is added. The maximum amount of surface phospholipid in vesicles will be as much as 60% of the total if small single-walled vesicles are used or as low as 10% or less of the total if multimellar vesicles (liposomes) are used. Thus, if concentrations are to be compared from one assay to the next, it is important to state the method of preparation of the phospholipid and what kind of vesicles were obtained. (The PC used in this study was sonicated and therefore is expected to be a mixture of small multimellar and unimellar vesicles.) Given these caveats, it appears that in all the PC systems of which we know in which a purified lipocortin-type protein was used and Ca$^{2+}$ was in excess (this study and Refs. 6 and 10), the maximum probable surface PC/total inhibitor molar ratio at the I$_{50}$ was as low as stoichiometric and not higher than 8:1. In making this calculation, the extreme case was assumed in which 60% of the lipid was on the surface. This recurring range of stoichiometries at the I$_{50}$ values lends weight to the argument that inhibition may be due to a direct effect on substrate structure.

Considering the large size of these proteins compared with lipid, molecular weight 38,000 versus about 300–800, it is not unreasonable to assume that the binding of one lipocortin I or calpain I molecule could effectively cover many more than one lipid headgroup in the surface at any given instant. However, the stoichiometries just cited would suggest substrate depletion as opposed to phase effects only if the K_i for the substrate were low enough to have enough inhibitor bound to the surface to cover a sufficient number of phospholipid headgroups so as to coat the surface. On the other hand, a partition coefficient that favors insertion of most of the inhibitor protein into the outermost phospholipid layer at micromolar PC would also be consistent with the observed stoichiometries if the insertion of protein caused appropriate perturbations of the phospholipid phase so as to inactivate the phospholipase A_2. To distinguish these, more sensitive techniques for quantifying lipid binding are necessary. At present, the results obtained herein could be explained equally well by competitive or substrate depletion mechanisms or by surface-active partitioning of the inhibitor. However, if the inhibition appears to be competitive, the next question is whether the apparent dissociation constants indicate a probability that the inhibitor would be a significant one in vivo. So far, we have no evidence of a tight association of a lipocortin protein with any phospholipase A_2. The natural corollary is the question of which PLAz is appropriate to test (as discussed in more detail elsewhere (16)). We have employed herein a partially purified phospholipase A_2 from macrophage-like cells but see no indication of specificity. Other phospholipases A_2 do occur in these cells and might also be tested once they are further purified and characterized. No matter which enzymes or inhibitors are investigated, however, the experience of our laboratory and others shows that substrate dependencies must be examined under conditions in which the time courses of reactions are observed. (The need for time courses is dictated by the complexity of phospholipase A_2 action toward many substrates.) If there were no dependence of the inhibition on substrate concentration, then direct protein binding by inhibitor would seem likely. However, such behavior has not yet been documented for any of the lipocortins.

Conclusion—It appears now that all the biochemical investigations into the effects of lipocortins on the activities of various phospholipases A_2 could be explained by substrate depletion or surfactant effects. These inhibitors/activators appear to bind only weakly to PLAzs, yet the inhibition that arises from their effects on membranes in in vitro assays may be a reflection of intrinsic properties that give rise to membrane-modulating effects in vivo. In this case, there would be the potential to inhibit many more physiological components than just PLAz. We must stress, however, that there is as yet no evidence for such a link and the membranes of cells are more complicated than PC or even PS bilayers. In summary, it seems that the most intense research in the mode of action of the proposed members of the lipocortin family should now center on the biological studies and the basic questions of which, if any, lipocortins are induced and where; whether a PLAz or some other enzyme involved in eicosanoid biosynthesis is being affected; and whether the apparent antiinflammatory effect of some of these proteins is due to a more generalized mechanism such as an effect on Ca$^{2+}$ transport.

Acknowledgments—We thank Dr. Blake Pepinsky of Biogen Corporation for the generous gift of recombinant human lipocortin I employed in some of the studies reported herein. We thank Ray Deems for help with the theoretical velocity versus substrate curves.

REFERENCES

1. Pepinsky, R. B., Tizard, R., Mattaliano, R. J., Sinclair, L. K., Miller, G. T., Browning, J. L., Chow, E. P., Byrne, C., Huang, K.-S., Pratt, D., Wachter, L., Hessin, C., Frey, A. Z., and Wallner, R. P. (1988) J. Biol. Chem. 263, 10799–10811
2. Davidson, F. F., Dennis, R., and Glenny, J. R. J. (1987) J. Biol. Chem. 262, 1698–1705
3. Dennis, R. A. (1983) in The Enzymes (Boyer, P., ed) 3rd Ed., Vol. 16, pp. 397–333, Academic Press, New York
4. Ulevitch, R. J., Watanabe, Y., Sano, M., Lister, M. D., Deems, R. A., and Dennis, E. A. (1988) J. Biol. Chem. 263, 3079–3085
5. Haigler, H. T., Schluepf, D. D., and Burgoon, W. H. (1987) J. Biol. Chem. 262, 6921–6930
6. Khanna, N. C., Hee-Chong, M., Severson, D. L., Tokuda, M., Chung, S. M., and Waisman, D. M. (1990) Biochem. Biophys. Res. Commun. 193, 455–460
7. Cloix, J. F., Colard, O., Rothrut, B., and Russo-Marie, F. (1983) Br. J. Pharmacol. 79, 313–321
8. Blackwell, G. J., Carnuccio, R., DiRosa, M., Flower, R. J., Langham, C. S. J., Parente, L., Persico, P., Russell-Smith, N. C., and Stone, D. (1982) Br. J. Pharmacol. 76, 185–194
9. Hirata, F. (1981) J. Biol. Chem. 256, 7730–7733
10. Levin, S. W., Butler, J. D., Schumacher, U. K., Wightman, P. D., and Mukherjee, A. B. (1986) Life Sci. 38, 1813–1819
11. Aarsman, A. J., Mynheek, G., van den Bosch, H., Rothrut, B., Prieur, B., Comera, C., Jordan, L., and Russo-Marie, F. (1987) FEBS Lett. 219, 176–180
12. Schlaepfer, D. D., and Haigler, H. T. (1987) J. Biol. Chem. 262, 6931–6938
13. Powell, M. A., and Glenney, J. R. (1987) Biochem. J. 247, 321–328
14. Rothrut, B., Comera, C., Prieur, B., Errasfa, M., Minassian, G., and Russo-Marie, F. (1987) FEBS Lett. 219, 169–175
15. Cirino, G., Flower, R. J., Browning, J. L., Sinclair, L. K., and Pepinsky, R. B. (1987) Nature 328, 270–272
16. Davidson, F. F., and Dennis, E. A. (1989) Biochem. Pharmacol. 38, 3645–3651
17. Davidson, F. F., Lister, M. D., Glasser, K. B., and Dennis, E. A. (1989) J. Cell Biol. 107, 425 (Abstr. 2426)
18. Glenney, J. R., Jr., Tack, B., and Powell, M. A. (1987) J. Cell Biol. 104, 503–511
19. Hazlett, T. L., and Dennis, E. A. (1985) Toxicon 23, 457–466
20. Oakley, B. R., Kirsch, D. R., and Morris, N. R. (1980) Anal. Biochem. 105, 361–363
21. Lister, M. D., Deems, R. A., Watanabe, Y., Ulevitch, R. J., and Dennis, E. A. (1988) J. Biol. Chem. 263, 7506–7513
22. Pliickthun, A., and Dennis, E. A. (1985) J. Biol. Chem. 260, 11099–11106
23. Lister, M. D., Glasser, K. B., Ulevitch, R. J., and Dennis, E. A. (1989) J. Biol. Chem. 264, 8520–8528
24. Ahn, N. G., Teller, D. C., Bienkowski, M. J., McMullen, B. A., Lipkin, E. W., and de Haen, C. (1988) J. Biol. Chem. 263, 18657–18663
25. Tait, J. F., Sakata, M., McMullen, B. A., Miao, C. H., Funakoshi, T., Hendrickson, L. E., and Fujikawa, K. (1988) Biochemistry 27, 6269–6276
26. Lichtenberg, D., Romero, G., Menashe, M., and Biltonen, R. L. (1986) J. Biol. Chem. 261, 5334–5340
27. Romero, G., Thompson, K., and Biltonen, R. L. (1987) J. Biol. Chem. 262, 13476–13482
28. Kensil, C. R., and Dennis, E. A. (1979) J. Biol. Chem. 254, 5843–5848
29. Kensil, C. R., and Dennis, E. A. (1985) Lipids 20, 80–83
Binding and inhibition studies on lipocortins using phosphatidylcholine vesicles and phospholipase A2 from snake venom, pancreas, and a macrophage-like cell line.

F F Davidson, M D Lister and E A Dennis

J. Biol. Chem. 1990, 265:5602-5609.

Access the most updated version of this article at http://www.jbc.org/content/265/10/5602

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/265/10/5602.full.html#ref-list-1