Measuring and Modelling Crowd Flows - Fusing Stationary and Tracking Data

Martin Treiber TGF 15, Nootdorp, Holland
Rennsteiglauf (a German Marathon)
Inline-skating event (Dresden)
Pedestrian streams at the Hajj
"Stationary Detector Data" (SDD)

- Each athlete has an RFID chip
- When passing the starting line, the start time will be recorded
- When passing stations (refreshments), split times are taken
- At the finish, the final time is recorded

=> Passage times (and some socioeconomic data and the starting wave) are known at fixed locations xDet_i
Speed distributions (Vasaloppet 2012)

Between stations 1 and 2: Gaussian

Between stations 2 and 3: the slowest wave 10 is not Gaussian: evidence for congestion!
Live GPS-Tracking for Events

Simply with Racemap » App. For spectators, athletes and organizers.

With Racemap you do easy and flexible live GPS-tracking for your sports event. Racemap streams your competition live on the Internet, on smartphones and Facebook.

Do you want to broadcast your sports event live on the internet and on smartphones?

Create Event now
New York City Marathon

November 1, 2015
Simulation approach I: dedicated, fully microscopic multilane model

► Time: about 1 minute

► Time: about 10 minutes

Movsim.org
Simulation approach II: macroscopic hybrid dispersion-transport-LWR model

► Fast athletes remain fast, and slow remain slow: dispersion-transport equation instead of diffusion-transport equation

► Speed distribution of each block k is Gaussian:

\[V_k \sim N(\mu_k, \sigma_k^2) \]

► If traffic demand (athletes per second) exceeds the local capacity, traffic breaks down and congested traffic is described by a LWR model with a triangular fundamental diagram

► In jams, everybody is equal – there are no longer block differences
Simulation approach III: effectively 1d microscopic model: IDM with flow-conserving bottlenecks
Pedestrian stop-and-go traffic in the IDM

bottleneck
Determining the flow-conserving bottleneck: characteristics of the track

- Vertical profile
- Width profile
- Local capacity

Detector station S1, S2, S3, S4, S5, S6, S7

w [lanes]

K [athletes/s]

bottleneck 1
Model-based jam detection/prediction using the LWR with diagonal fundamental diagram

3 parameters: select three from V_0, c, T, ρ_{max}, and Q_{max}

Usage I: Congested component of the macroscopic hybrid crowd-flow model

Usage II: Real-time jam detection and short-term prediction

=> check on vehicular flow data: proof of robustness

=> apply to pedestrian/athlete SDD and FAD generated by the IDM: proof of concept for the application to crowd flow
Real-time determination/short-term prediction of the upstream jam front

Flow (and density):

\[Q(x, t) = \begin{cases}
Q_d(x, t) & \text{free traffic (demand)} \\
Q_s(x, t) & \text{jam due to a bottleneck (supply)}
\end{cases} \]

Front propagation:

\[\frac{dx_{up}}{dt} = \frac{Q_s(x_{up}, t) - Q_d(x_{up}, t)}{\rho_s(x_{up}, t) - \rho_d(x_{up}, t)} \]

Congested flow and density:

\[Q_s(x, t) = K \left(x_B, {t-(x-x_B)} \right), \]
\[\rho_s(x, t) = \left(1 - \frac{Q_s(x,t)}{K(x)} \right) \rho_{max}(x) \]

Jam dissolution:

\[\frac{dx_{up}}{dt} > 0, \quad x_{up} = x_B \]

Estimation method:

\[Q_s(x, t) = Q_{D2} \left(\frac{t-(x-x_{D2})}{c} \right), \quad Q_d(x, t) = Q_{D1} \left(\frac{t-(x-x_{D1})}{V_0} \right) \]
Schematic dynamics

Shockwave formula: \(c_{12} = \frac{(Q_1 - Q_2)}{(\rho_1 - \rho_2)} \) plus propagation velocities \(V_0 \) and \(c \)
Application to vehicular traffic flow: calibrating the parameters

Data: only one-minute flows from stationary detectors

- parameters: Q_{max}, V_0, and c

- objective function: 1-norm of positional errors of front
Validation: Apply calibrated model to another congestion on the other direction

Congestion on the A5-South with LWR prediction as calibrated by the A5-North jam of the previous slides
Application to an athlete crowd flow, e.g., Marathon, cross-country ski, inline skating
Calibration using six FA trajectories

V_0 = 9 km/h
\(c = -4.5 \text{ km/h} \)
Q_{max} = 2300/h
Validation to another simulated jam

\(V_0 = 9 \text{ km/h} \)
\(c = -4.5 \text{ km/h} \)
\(Q_{\text{max}} = 2300/\text{h} \)
Dynamic calibration 1 using the second FA trajectory

V0 = 9 km/h
\(c = -4.0 \text{ km/h} \)
Qmax = 2300/h
Dynamic calibration 2

\[V_0 = 9 \text{ km/h} \]
\[c = -4.0 \text{ km/h} \]
\[Q_{\text{max}} = 2350/\text{h} \]
Dynamic calibration 3

\[V_0 = 9.5 \text{ km/h} \]
\[c = -4.2 \text{ km/h} \]
\[Q_{\text{max}} = 2420/\text{h} \]
Conclusions

- Unidirectional crowd flow (running, cross-country skiing, and inline-skating) including jam formation can be simulated macroscopically by a **simple dispersion-transport-LWR model** and microscopically by the **reparameterized IDM with flow-conserving bottlenecks**.

- The complete LWR model with tridiagonal FD and location-dependent local capacity can be applied to **detect and short-term predict** jam fronts of crowd and vehicular flow by using two stationary counting detectors.

- The detection algorithm can be **calibrated in real-time** by **Floating-Athlete (FA) trajectories** e.g., taken by smartphones. A few athletes/vehicles per hour is sufficient.
Passage time distributions: Dispersion-transport model

\[f_T^k(T|x) = \frac{x f_v^k \left(\frac{x}{T} \right)}{T^2}, \]

\[f_v^k(v) \propto \exp \left[\frac{(v-\mu_k)^2}{2\sigma_k^2} \right] \]

Rennsteig Half Marathon 2012 at finish
Between stations 1 and 2: skewness > 0

Between stations 2 and 3: evidence for congestion!
Traffic demand as predicted by the dispersion-transport model

► Partial flow and density of block k at distance x and time t after the start of this block:

\[Q_d^k(x, t) = n_k f_T^k(t | x), \]
\[\rho_d^k(x, t) = \frac{Q_d^k(x, t)}{x/t} \]

► Total demand and density (free flow):

\[Q_d(x, t) = \sum_k Q_d^k(x, t - \Delta t_k) \]
\[\rho_d(x, t) = \sum_k \rho_d^k(x, t - \Delta t_k) \]
Breakdown to congested traffic

- Local capacity:

\[K(x) = K_{\text{spec}}(\alpha(x)) \, w(x) \]

- Breakdown condition:

\[Q(x, t) > K(x) \]

- The bottleneck location \(x = x_B \) is the position where the breakdown condition is satisfied for the first time:

K [athletes/s]

[Diagram showing local capacity with three bottlenecks]
II What Can a Traffic Flow Modeler Do?

► 1. Optimize the spatial configuration of the starting field
Thank you for your attention!

www.movsim.org

www.traffic-simulation.de www.verkehrsdynamik.de
Overview

- “Traffic Jams” in Mass Sports Events
- What Can a Traffic Flow Modeler Do?
- A Macroscopic Model
- Simulation of Three Events
- Discussion
II What Can a Traffic Flow Modeler Do?

1. Optimize the spatial configuration of the starting field, part II

No blocks
(athletes can take positions by self-assessment)
III. Modelling

Geometrical Class

- **Unidirectional and lane-based:**
 Vehicular traffic, cross-country skiing
 (classic style)

- **Unidirectional and non-lane-based:**
 Vehicular traffic in developing countries
 (mixed traffic), cross-country skiing
 (skating style), running, inline skating,
 pedestrian traffic with a definite target

- **Neither unidirectional nor lane-based:**
 Pedestrian traffic in city centers

Model Class

- micro, macro
- micro, macro
- only micro!
Jizerska Padesatka (Czech Republic)
Optimize the temporal course of action in the starting phase

- simultaneous mass start
- Block/wave start

Wave 2: Delay 5 minutes
Wave 3: Delay 10 minutes
Wave 4: Delay 15 minutes
Wave 5: Delay 20 minutes