Efficient Compressive Sensing Using Mixed Adaptive-Random Measurements

Jun Yang, Wei E. I. Sha, Member, IEEE and OSA, Hongyang Chao, Member, IEEE, Zhu Jin

Abstract—A novel framework to construct an efficient sensing (measurement) matrix, called mixed adaptive-random (MAR) matrix, is introduced for directly acquiring a compressed image representation. The mixed sampling (sensing) procedure hybridizes adaptive edge measurements extracted from a low-resolution image with uniform random measurements predefined for the high-resolution image to be recovered. The mixed sensing matrix seamlessly captures important information of an image, and meanwhile approximately satisfies the restricted isometry property. To recover the high-resolution image from MAR measurements, the total variation algorithm based on the compressive sensing theory is employed for solving the Lagrangian regularization problem. Both peak signal-to-noise ratio and structural similarity results demonstrate the MAR sensing framework shows much better recovery performance compared to completely random sensing one. The work is particularly helpful for high-performance and lost-cost data acquisition.

Index Terms—Data acquisition, Mixed adaptive-random sampling, Total variation, Compressive sensing.

I. INTRODUCTION

A novel and revolutionary sensing (sampling) paradigm, compressive sensing (CS) theory has attracted much interest over the past few years. Now one can recover certain signals and images after directly acquiring far fewer samples or measurements in comparison with massive amounts of data collected in traditional data acquisitions [1]–[4]. The sensing (measurement) matrix is essential to CS framework and must capture important information about the object of interest.

Literature [5] proves that the sensing matrix satisfying the Johnson-Lindenstrauss lemma also holds true for the restricted isometry property (RIP) in compressive sensing. Furthermore, a sparse random projection [6], which is almost as accurate as the conventional random projection, is proposed to reduce computational cost in the measurement process. Moreover, a structurally random matrix (SRM) [7] is also constructed for fast and efficient CS, where SRM and sparsifying transforms have a comparable incoherence to that of completely random sensing matrix and the transforms. However, all the measurement processes above are nonadaptive, i.e., the sensing matrix is predefined or fixed. On one hand, the predefined random sampling obeys the incoherence condition (RIP); and is a fascinating character of CS as well, where all the measurements are equally important. On the other hand, a completely random sampling pattern capturing information of object aimlessly becomes inefficient for reconstructing high-resolution data. For example, the completely uniform random sampling [4], [8] in k-space for magnetic resonance imaging application performs worse than the nonuniform random sampling, where low frequency components are densely sampled. Physically, the adaptive and nonadaptive properties of data acquisition can be regarded as an analogy of wave-particle duality of light.

Could one acquire more important information of object in spatial (time) domain with fewer measurements? Could one improve the completely random sampling in spatial domain? Motivated by previous literatures and the analogy of wave-particle duality, we involve object-dependent and ‘most important’ edge information of object, which can be extracted from a low-cost sampling procedure with much lower sampling rate, into the sensing matrix. In this work, the novel mixed adaptive-random (MAR) sensing hybridizes adaptive edge measurements obtained from a low-resolution image with uniform random measurements predefined for the high-resolution image to be reconstructed. This is the basic idea of the paper and also our new contribution. To the best of our knowledge, it is the first time we have introduced the mixed sensing framework over the completely random sensing one.

II. MIXED SAMPLING PROTOCOL

Fig. 1. The schematic diagram for the mixed adaptive-random sampling protocol.

Fig.1 shows the schematic diagram for the MAR sampling protocol. Here we assume the image \(f(x, y) \) as a function in
2D Hilbert space $L(R) \times L(R)$. The MAR sensing matrix can be constructed by the following procedures:

Step 1, sampling a low-resolution image f_{l} with extremely low cost to predict the edge information of the high-resolution image f to be recovered. Regarding practical hardware implementation, the low-resolution image requires much fewer photosensitive elements (such as 128×128 instead of millions (such as 1024×1024) required in convolutional data acquisitions for high-resolution image. Mathematically, we have

$$
\Gamma(f) \approx \Gamma(f_{p}) = \Gamma(I(f_{l}))
$$

(1)

where $\Gamma(f) = 1$ for the edge pixels of f, otherwise $\Gamma(f) = 0$. The interpolation operator I maps the low-resolution image f_{l} to the predicted high-resolution one f_{p}. The Δ denotes the edge detection operator that can be implemented with the Sobel edge detector [9, 10] and binary thresholding. As a result, real edges of the high-resolution image $\Gamma(f)$ can be approximated by the predicted edges $\Gamma(f_{p})$.

Step 2, due to possible inaccuracy of the predicted edges, morphology operations can be used to generate an adaptive sampling pattern around the edges of f.

$$
S_{a} = M_{p}(\Gamma(f_{p}))
$$

(2)

where S_{a} is the adaptive sampling pattern and M_{p} is the binary morphology operator on the edges of the predicted image f_{p}. The morphology operator involves dilation M_{d} and closing M_{c} (dilation followed by erosion). Additionally, M_{p} suggests no morphology operation is executed. After understanding the function of image edges in computer vision and image processing, we suppose that the image pixels located at edges or near the edges are more important than those located at smooth regions. Consequently, involve the adaptive sampling pattern into the sensing procedure is highly reasonable.

Step 3, generating the random sampling pattern S_{r} with a 2D uniform distribution $U(0, 1) \times U(0, 1)$ and binary thresholding. The completely random sampling, which acquires pixels at edges and smooth regions uniformly, captures the image profile information and guarantees the RIP and incoherence condition.

Step 4, we mix the random and adaptive sampling patterns via a union operation to get the new MAR sampling pattern (sensing matrix with $0/1$ elements).

$$
S_{m} = S_{a} \cup S_{r} \cup S_{l}
$$

(3)

where S_{l} is the low-resolution sampling pattern corresponding to f_{l}. In other words, we reuse (do not resample) the pixels of f_{l} obtained at the Step 1 for saving the measurements.

To physically acquire the pixels corresponding to the MAR sensing matrix S_{m}, we may use integrated circuits to control reset transistors (or switches) in complementary metal-oxide-semiconductor (CMOS) camera. As a result, only a portion of photodetectors and amplifiers (with respect to S_{l} and $S_{m}\setminus S_{l}$) are turned on. Compared to traditional image acquisitions, the MRA sensing saves electrical power and extends lifetime of image sensors. More importantly, the MRA sensing can be generalized to other data acquisitions where the most important information of object is adaptively extracted and reused via a low-cost sampling.

For convenience, the sensing ratio of the MAR sensing matrix η_{1} is defined as the number of nonzero elements of S_{m} over the dimension of S_{m} (i.e. image size of f). The adaptive sampling ratio η_{2} is defined as the number of nonzero elements of $S_{m}\setminus S_{r}$, which is the complement of S_{r} in S_{m}, over that of S_{m}.

$$
\eta_{1} = \frac{\sum_{i,j} S(i,j)}{\text{Dim}(S_{m})}, \quad \eta_{2} = 1 - \frac{\sum_{i,j} S_{r}(i,j)}{\sum_{i,j} S_{m}(i,j)}
$$

(4)

The sensing ratio η_{1} could be considerably smaller and thus measurement cost can be reduced. In addition, the adaptive sampling ratio η_{2} cannot be too large to satisfy the RIP and incoherence condition.

III. Recovery Algorithm

After using the MAR sensing matrix to directly acquire a compressed image representation, the recovery algorithm plays a key role to reconstruct a high-quality image with a high resolution. The greedy pursuit algorithm [11–13] offers a ℓ_{0} minimization for sparse reconstruction. Linear programming [8] and other convex optimization algorithms [8, 14–16] have been proposed to solve the ℓ_{1}-minimization also. The TV regularizer was introduced by Rudin, Osher and Fatemi in [17] and became popular in recent years [18–19].

For reconstructing the high-resolution image f from the measurements (compressed image representation) g, a Lagrangian regularization problem should be solved, i.e.

$$
\min_{f} \left\{ \int (g - S_{m}f)^{2} dx dy + \alpha \int \sqrt{\left(\frac{d f}{d x}\right)^{2} + \left(\frac{d f}{d y}\right)^{2}} \ dx dy + \beta \int \sqrt{(T f)^{2}} dx dy \right\}
$$

(5)

where S_{m} is the MAR sensing operator, and α and β are Lagrangian multipliers. The second term is the TV regularizer; and the third-term relates to ℓ_{1}-minimization with a sparsifying transform operator T. According to the variational principle, we have

$$
\frac{\delta O(f)}{\delta f} = 2 S_{m}^{*}(g - S_{m}f) - \alpha \frac{d}{d x} \left(\frac{d f / d x}{\sqrt{(d f / d x)^{2} + (d f / d y)^{2}}} \right) - \frac{d}{d y} \left(\frac{d f / d y}{\sqrt{(d f / d x)^{2} + (d f / d y)^{2}}} \right) + \beta T^{*} \left(T f \right)
$$

(6)

where $O(f)$ is the objective functional given in (5); and S_{m}^{*} and T^{*} are adjoint operators of S_{m} and T, respectively. In this work, we did not focus on the recovery algorithm and set β to zero for fast and simple reconstruction. With the help of nonlinear conjugate gradient method [17, 20] and (6), the Lagrangian regularization problem (5) can be solved.

IV. Numerical Results

In this section, numerical performances of the proposed MAR sensing matrix will be evaluated. Without loss of generality, we assume $\text{Dim}(S_{m}) = \text{Dim}(f) = 256 \times 256$. The
sensing ratio η_1 and adaptive sampling ratio η_2 defined in [4] can be tunable with modifying binary thresholds in Steps 1 and 3 of Section 2. We will demonstrate that incorporation of edge information to the sensing procedure can pronouncedly improve the recovery performance. In the beginning, the MAR sensing performance for different edge extraction methods are investigated. Then, we compare recovery results by the MAR sensing matrix to those by the completely random sensing matrix. Finally, we will discuss the influence of η_2 on the recovery performance.

The low-resolution image f_l is numerically generated by downsampling the original high-resolution image f by a factor of 4, i.e. Dim(f_l) = 64 × 64. Using the bicubic interpolation method [21], we can get the predicted image f_p (Step 1 of Section 2). The edges of f and f_p can be extracted by the Sobel method (Step 1 of Section 2). For simple notations, M_m, M_d and M_c correspond to the edges of f with null morphology operation, dilation and closing. Similarly, M_m, M_d and M_c correspond to the edges of f_p (Step 2 of Section 2). Moreover, we use abbreviations of S_r and S_m to denote sensing methods using the completely random matrix and MAR matrix, respectively (Step 4 of Section 2).

Using the Phantom image, Fig. 2 shows the peak signal-to-noise ratio (PSNR) as a function of the sensing ratio η_1. We observe: (1) the convergence of all the methods are comparable; (2) the performance of S_m sensing is much better than that of S_r; (3) the best PSNR is achieved by the S_m sensing involving the dilated edge information. This also suggests the pixels around edges contain very important information of image. Fig. 3 shows the sensing performance of the Phantom. After comparing Figs. 2(g.k.o) to Figs. 3(h.l.p), $S_m + M_{n,d,c}$ shows better recovery results than $S_m + M_{n,d,c}$. However, the MAR sensing matrix incorporating predicted edges followed by $M_{n,d,c}$ operations still achieves impressively high PSNR values (such as 29.93 dB with the sensing ratio $\eta_1 = 29.94\%$) in contrast to completely random sensing matrix (21.77 dB with the sensing ratio $\eta_1 = 30.24\%$). Using standard images, Fig. 4 and Table 1 demonstrate significant advantages of the MAR sensing matrix not only on PSNR but also on structural similarity (SSIM).

![Fig. 2. PSNR performance as a function of the sensing ratio η_1 for the completely random sensing S_r and MAR sensing S_m.](image)

![Fig. 3. Reconstructed Phantom images with sensing ratios of 30.24%, 29.41%, 29.16%, 29.85%, 29.94%, 28.87% and 28.01% respectively for S_r, $S_m + M_{n,d,c}$, $S_m + M_d$, $S_m + M_d$, $S_m + M_{n,d,c}$ and $S_m + M_{n,d,c}$.](image)

Image	PSNR (dB)	SSIM	η_1	η_2	
Phantom	S_r	21.7653	0.9486	30.24%	
	$S_m + M_{n,d,c}$	72.4857	1.0000	29.81%	43.76%
	$S_m + M_d$	25.5346	0.9712	30.24%	26.64%
Fruits	S_r	25.6011	0.8336	30.46%	
	$S_m + M_{n,d,c}$	33.6908	0.8767	30.30%	68.11%
	$S_m + M_d$	27.0509	0.8409	30.28%	23.00%
Lena	S_r	25.5683	0.8634	30.18%	
	$S_m + M_{n,d,c}$	31.3728	0.8845	29.82%	68.55%
	$S_m + M_d$	27.5257	0.8714	29.82%	37.38%
Boat	S_r	24.4288	0.7433	29.85%	
	$S_m + M_{n,d,c}$	28.7316	0.7715	29.81%	84.69%
	$S_m + M_d$	25.0184	0.7513	29.82%	36.02%

Too much edge information in the MAR sensing matrix will destroy the RIP and incoherence condition of the CS framework. This situation appears at extremely high adaptive sampling ratios η_2, where the MAR sensing breaks down.
Fig. 4. Reconstructed Phantom, Fruits, Lena and Boat images using S_r, $S_m + M_d^p$ and $S_m + M_c^p$ strategies. (a–d): The original images; (e–h), (i–l) and (m–p) are corresponding reconstructed images for S_r, $S_m + M_d^p$ and $S_m + M_c^p$, respectively. The corresponding key parameters are listed in Table II. Finally, we evaluate the optimum value of η_2 for different η_1 as illustrated in Fig. 5. Using morphology operations, better reconstruction results are achieved by the MAR sensing even if the number of adaptive sampling is larger than that of random sampling (the optimum $\eta_2^{opt} \approx 80\%$ for $S_m + M_d^p$).

V. CONCLUSION

A novel MAR sensing protocol is proposed to acquire a compressed image representation in space domain. Incorporating adaptive edge information that can be trivially extracted from a low-resolution sampling, the MAR measurements show much better reconstruction results in comparison with the completely random measurements. The RIP and incoherence condition of the MAR sensing matrix can be satisfied by balancing the number of adaptive sampling with that of completely random sampling. The mixed sensing concept opens up a bright and unexplored way for high-resolution and lost-cost data acquisition.

ACKNOWLEDGMENT

Dr. Sha acknowledges Ms. Qing Ye to motivate the compressive sensing work.

REFERENCES

[1] J. Romberg, “Sensing by random convolution,” in Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMP 2007. 2nd IEEE International Workshop on. IEEE, 2007, pp. 137–140.

[2] E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406–5425, 2006.

[3] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
[4] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application of compressed sensing for rapid mr imaging,” *Magnetic Resonance in Medicine*, vol. 58, no. 6, pp. 1182–1195, 2007.

[5] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” *Constructive Approximation*, vol. 28, no. 3, pp. 253–263, 2008.

[6] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,” in *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, 2006, pp. 287–296.

[7] T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran, “Fast and efficient compressive sensing using structurally random matrices,” *IEEE Transactions on Signal Processing*, vol. 60, no. 1, pp. 139–154, 2012.

[8] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” *IEEE Transactions on Information Theory*, vol. 52, no. 2, pp. 489–509, 2006.

[9] J. R. Parker, *Algorithms for Image Processing and Computer Vision*. New York: John Wiley & Sons, Inc., 1997.

[10] J. Canny, “A computational approach to edge detection,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. PAMI-8, no. 6, pp. 679–698, 1986.

[11] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” *IEEE Transactions on Information Theory*, vol. 53, no. 12, pp. 4655–4666, 2007.

[12] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” *IEEE Transactions on Information Theory*, vol. 55, no. 5, pp. 2230–2249, 2009.

[13] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit,” *IEEE Transactions on Information Theory*, vol. 58, no. 2, pp. 1094–1121, 2012.

[14] E. T. Hale, W. Yin, and Y. Zhang, “Fixed-point continuation for ℓ_1-minimization: Methodology and convergence,” *SIAM Journal on Optimization*, vol. 19, no. 3, pp. 1107–1130, 2008.

[15] E. Van Den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solutions,” *SIAM Journal on Scientific Computing*, vol. 31, no. 2, pp. 890–912, 2008.

[16] Q. I. Dai and W. E. I. Sha, “The physics of compressive sensing and the gradient-based recovery algorithms,” *arXiv:0906.1487*, 2009.

[17] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” *Physica D: Nonlinear Phenomena*, vol. 60, no. 1, pp. 259–268, 1992.

[18] S. Alliney and S. Ruzinsky, “An algorithm for the minimization of mixed l_1 and l_2 norms with application to bayesian estimation,” *IEEE Transactions on Signal Processing*, vol. 42, no. 3, pp. 618–627, 1994.

[19] S. Osher, A. Solé, and L. Vese, “Image decomposition and restoration using total variation minimization and the h^{-1} norm,” *Multiscale Modeling & Simulation*, vol. 1, no. 3, pp. 349–370, 2003.

[20] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient methods,” *Pacific journal of Optimization*, vol. 2, no. 1, pp. 35–58, 2006.

[21] R. Keys, “Cubic convolution interpolation for digital image processing,” *IEEE Transactions on Acoustics, Speech and Signal Processing*, vol. 29, no. 6, pp. 1153–1160, 1981.