Description of a new horned toad of *Megophrys* Kuhl & Van Hasselt, 1822 (Amphibia, Megophryidae) from Zhejiang Province, China

Yanqing Wu¹⁺, Shize Li²⁺, Wei Liu², Bin Wang², Jun Wu¹

¹ Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China ² Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China ³ Lishui Baiyun Ecological Forest Farm, Lishui 323000, China

Corresponding author: Jun Wu (wujun@nies.org); Bin Wang (wangbin@cib.ac.cn)

Abstract

A new species of the Asian horned toad genus *Megophrys* is described from Zhejiang Province, China, based on multiple data. Molecular phylogenetic analyses based on mitochondrial DNA indicated the new species as an independent clade deeply clustered into the *Megophrys* clade. The new species is identified from its congeners by a combination of the following characters: body size small (SVL 28.4–32.4 mm in males); vomerine teeth absent; tongue not notched behind; tympanum distinctly visible, oval; a small horn-like tubercle present at the edge of each upper eyelid; two metacarpal tubercles distinctly visible in hand; toes without webbing; heels overlapped when thighs are positioned at right angles to the body; tibiotarsal articulation reaching the level to middle of eye when leg stretched forward; an internal single subgular vocal sac in male; in breeding male, the nuptial pads present on the dorsal base of the first two fingers.

Keywords

Molecular phylogenetic analyses, morphology, new species, taxonomy, toad

* These authors have contributed equally to this work.

Citation: Wu Y, Li S, Liu W, Wang B, Wu J (2020) Description of a new horned toad of *Megophrys* Kuhl & Van Hasselt, 1822 (Amphibia, Megophryidae) from Zhejiang Province, China. ZooKeys 1005: 73–102. https://doi.org/10.3897/zookeys.1005.58629
Introduction

The Asian horned toad *Megophrys* Kuhl & Van Hasselt, 1822 (Anura: Megophryidae Bonaparte, 1850) is widely distributed in eastern and central China, throughout southeastern Asia, and extending to the islands of the Sunda Shelf and the Philippines (Frost 2020). The generic assignment of species in the group has been controversial for decades (e.g., Tian and Hu 1983; Dubois 1987; Rao and Yang 1997; Lathrop 1997; Jiang et al. 2003; Delorme et al. 2006; Fei et al. 2009; Fei and Ye 2016; Chen et al. 2017; Deuti et al. 2017; Mahony et al. 2017; Li et al. 2020). Recent molecular phylogenetic studies proposed this group as a monophyletic group (Chen et al. 2017; Mahony et al. 2017; Li et al. 2018a; Liu et al. 2018; Liu et al. 2020; Wang et al. 2020), which was recognized as a big genus *Megophrys sensu lato* (Mahony et al. 2017; Li et al. 2018b; Liu et al. 2018; Liu et al. 2020; Lyu et al. 2020; Xu et al. 2020; Wang et al. 2020), though some studies still divided the taxa of the group into different genera and/or subgenera (Fei and Ye 2016; Chen et al. 2017; Deuti et al. 2017; Liu et al. 2018). The genus *Megophrys* currently contains 106 species, of which 52 species were described over the last decade (Frost 2020). A number of cryptic species were still indicated in the genus by molecular phylogenetic analyses (e.g., Chen et al. 2017; Liu et al. 2018).

Wuyi Mountain region, located in northern Fujian, southeastern Jiangxi and southern Zhejiang provinces of China, is a biodiversity hotspot. In this region, four *Megophrys* species have been recorded, i.e., *M. boettgeri* (Boulenger, 1899), *M. kuatunensis* Pope, 1929, *M. ombrophila* Messenger & Dahn, 2019, and *M. lishuiensis* Wang, Liu & Jiang, 2017. However, many mountains in this region, especially in southern Zhejiang Province, have been poorly investigated.

During field surveys in Qingyuan County, Zhejiang Province, China, we collected *Megophrys* specimens. Molecular phylogenetic analyses and morphological comparisons supported some of these specimens as an undescribed taxon that we describe herein as a new species.

Materials and methods

Sampling

A total of 15 specimens were sampled in this study: six adult males and one tadpole of the undescribed species and two adult males of *M. boettgeri* from Qingyuan County, Zhejiang Province, China, and one adult male of *M. ombrophila* and six adult males of *M. kuatunensis* from Wuyi Mountain, Fujian Province, China (Table 1; Fig. 1). The developmental stage of tadpole was identified following Gosner (1960). In the field, the toad and tadpole were euthanized using isoflurane, and the specimens were fixed in 75% ethanol. Tissue samples were taken and preserved separately in 95% ethanol prior to fixation. The specimens were deposited in Chengdu Institute of Biology, Chinese Academy of Sciences (*CIB, CAS*).
A new species of *Megophrys*

Table 1. Information for samples used in molecular phylogenetic analyses in this study.

ID	Species	Voucher number	Localities	GenBank accession number
1	*Megophrys baishanzuensis* sp. nov.	CIBQY20200719001	Baishanzu National Park, Qingyuan, Zhejiang, China	MW001150 MT998291
2	*Megophrys baishanzuensis* sp. nov.	CIBQY20200719002		MW001151 MT998292
3	*Megophrys baishanzuensis* sp. nov.	CIBQY20200719003		MW001152 MT998293
4	*Megophrys baishanzuensis* sp. nov.	CIBQY20200719004		MW001153 MT998294
5	*Megophrys baishanzuensis* sp. nov.	CIBQY20200719006		MW001154 MT998295
6	*Megophrys baishanzuensis* sp. nov.	CIBQY20200726001		MW001155 MT998296
7	*Megophrys baishanzuensis* sp. nov.	CIBQY20200726002		MW001156 MT998297
8	*Megophrys kuatsusennis*	CIBWY180828407	Wuyi Shan, Fujian, China	MW001157 MT998298
9	*Megophrys kuatsusennis*	CIBWY180828408		MW001158 MT998299
10	*Megophrys kuatsusennis*	SYS a001579		KJ560376 –
11	*Megophrys lini*	SYS a002370	Suichuan, Jiangxi, China	KJ560412 –
12	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
13	*Megophrys nanlingensis*	SYS a001959	Nanling Nature Reserve, Guangdong, China	MK524111 MK524142
14	*Megophrys lini*	SYS a002370	Suichuan, Jiangxi, China	KJ560412 –
15	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
16	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
17	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
18	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
19	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
20	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
21	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
22	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
23	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
24	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
25	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
26	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
27	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
28	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
29	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
30	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
31	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
32	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
33	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
34	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
35	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
36	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
37	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
38	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
39	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
40	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
41	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
42	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
43	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
44	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
45	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
46	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165
47	*Megophrys xiangnanensis*	SYS a002874	Yangming Shan, Hunan, China	MH406713 MH406165

Notes:
- COI: Control Region
- 16S: Small Subunit
- MW: GenBank accession number
- MT: GenBank accession number
| ID | Species | Voucher number | Locality | GenBank accession number |
|----|--------------------------|----------------------|---|--------------------------|
| 48 | *Megophrys jingdongensis* | KIZ-LC0805067 | Huanglianshan National Nature Reserve, Yunnan, China | KX811872, KX812131 |
| 49 | *Megophrys fansipanensis* | VNMM 2018.01 | Lao Dai, Sa Pa, Vietnam | MH514886 |
| 50 | *Megophrys huangdiensis* | VNMM 2018.02 | Lao Dai, Sa Pa, Vietnam | MH514889 |
| 51 | *Megophrys minor* | KIZ01939 | Qingcheng Shan, Sichuan, China | KX811896, KX812145 |
| 52 | *Megophrys jiangi* | CIBKKS20180722006 | Kuankuosui National Reserve, Guizhou, China | MN107743, MN107748 |
| 53 | *Megophrys chibuisiensis* | CIBCS20190518031 | Chishui National Reserve, Guizhou, China | MN954707, MN928958 |
| 54 | *Megophrys brachykolos* | ROM 16634 | Hong Kong, China | KX811897, KX812150 |
| 55 | *Megophrys gerti* | ITBCZ 1108 | Nuí Chua National Park, Ninh Thuan, Vietnam | KX811917, KX812161 |
| 56 | *Megophrys acuta* | CIBKKS20180722006 | Phong Dien Nature Reserve, Thua Thien Hue, Vietnam | KX811913, KX812155 |
| 57 | *Megophrys microstoma* | KIZ048799 | Xiaoqiaogou National Reserve, Yunnan, China | KX811914, KX812156 |
| 58 | *Megophrys pachyproctus* | KIZ010978 | Beibeng, Xizang, China | KX811908, KX812153 |
| 59 | *Megophrys nasuta* | ZMMU ABV-00454 | Bident Mountain, Lam Dong, Vietnam | KY425379 |
| 60 | *Megophrys stejnegeri* | FMNH 237694 | Gunung Kinabalu National Park, Kogopan Trail, Malaysia | KJ831310 |
| 61 | *Megophrys ligayae* | ZMMU NAP-05015 | Pasonanca Natural Park, Zamboanga, Philippines | KX811922, KX812052 |
| 62 | *Megophrys kobayashii* | UNIMAS 8148 | Gunung Kinabalu National Park, Sabah, Malaysia | KJ831313 |
| 63 | *Megophrys himalayana* | SDBDU2009.75 | East Siang Dist., Arunachal Pradesh, IN | KY022309, MH647528 |
| 64 | *Megophrys major* | SYS a002961 | Nanjiang, Sichuan, China | MH406728, MH406180 |
| 65 | *Megophrys oreocrypta* | BNHS 6046 | West Garo Hills Dist., Meghalaya | KY022306 |
| 66 | *Megophrys auralensis* | NCSM 79599 | Aural, Kampong Speu, Cambodia | KX811807 |
| 67 | *Megophrys nankiangensis*| CIB ZYC517 | Nanjiang, Sichuan, China | MH406737 |
| 68 | *Megophrys dringi* | UNIMAS 8148 | Nanling National Forest Park, Guangdong, China | KX811790, KX812079 |
| 69 | *Megophrys nannai* | ZSIA11799 | – | KX894669 |
| 70 | *Megophrys major* | SYS a002961 | – | KX894669 |
| 71 | *Megophrys major* | BNHS 6046 | – | MH406728, MH406180 |
| 72 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 73 | *Megophrys elongatus* | BNHS 6046 | – | MH406728, MH406180 |
| 74 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 75 | *Megophrys elongatus* | BNHS 6046 | – | MH406728, MH406180 |
| 76 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 77 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 78 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 79 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 80 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 81 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 82 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 83 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 84 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 85 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 86 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 87 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 88 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 89 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 90 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 91 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 92 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 93 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 94 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 95 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 96 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 97 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 98 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 99 | *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 100| *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 101| *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
| 102| *Megophrys elongatus* | UNIMAS 8148 | – | MH406728, MH406180 |
A new species of *Megophrys*

ID	Species	Voucher number	Locality	GenBank accession number
92	*Megophrys intermedia*	ZFMK 87596	U Bo, Phong Nha-Ke Bang NP, Vietnam	HQ588950 –
93	*Megophrys Montana*	LSUMZ 81916	Sukabumi, Java, Indonesia	KX811927 KX812163
94	*Megophrys lanzip*	MZB: Amp:22233	–	KY679891 –
95	*Leptobrachium boriogii*	Tissue ID: YPX37539	Emei Shan, Sichuan, China	KX811930 KX812164
96	*Leptobrachella oshanensis*	KIZ025778	Emei Shan, Sichuan, China	KX811928 KX812166

Figure 1. Sampling localities of *Megophrys baishanzuensis* sp. nov. and its relatives

1. Baishanzu National Park, Qingyuan County, Zhejiang Province, China, inhabited by *Megophrys baishanzuensis* sp. nov. and *M. boettgeri*
2. Wuyi Mountain, Wuyishan City, Fujian Province, China, inhabited by *M. boettgeri*, *M. kuatunensis*, and *M. ombrophila*.

Molecular data and phylogenetic analyses

Six adult males and one tadpole of the undescribed species, two *M. kuatunensis*, one *M. ombrophila*, and two *M. boettgeri* were included in the molecular analyses (Table 1). Total DNA was extracted using a standard phenol-chloroform extraction protocol (Sambrook et al. 1989). Two fragments of the mitochondrial 16S rRNA (16S) and cytochromeoxidase subunit I (COI) genes were amplified. For 16S, the primers P7 (5’-CGCCTGTTTTACCAAAAAACAT-3’) and P8 (5’-CCGGTCTGAACTCAGATCACGT-3’) were used following Simon et al. (1994), and for COI, Chmf4 (5’-TYTGWCAWCCAYAAAGAYATCGG-3’) and Chmr4 (5’-ACYTCTGGRTGRCCRAARAATCA-3’) were used following Che et al. (2012). Gene fragments were amplified under the
following conditions: an initial denaturing step at 95 °C for 4 min; 36 cycles of de-
naturing at 95 °C for 30 s, annealing at 52 °C (for 16S)/47 °C (for COI) for 40 s and
extending at 72 °C for 70 s. Sequencing was conducted using an ABI3730 automated
DNA sequencer in Shanghai DNA BioTechnologies Co., Ltd. (Shanghai, China). New
sequences were deposited in GenBank (for GenBank accession numbers see Table 1).

For molecular analyses, the available sequences for congeners of *Megophrys* were
downloaded from GenBank (Table 1), primarily from previous studies (Chen et al.
2017; Liu et al. 2018). For phylogenetic analyses, corresponding sequences of one
Leptobrachella oshanensis (Liu, 1950) and one *Leptobrachium boringii* (Liu, 1945) were
also downloaded (Table 1), and used as outgroups following Mahony et al. (2017).
Sequences were assembled and aligned using the Clustalw module in BioEdit v.7.0.9.0
(Hall 1999) with default settings. Alignments were checked by eye and revised manu-
ally if necessary. For phylogenetic analyses of mitochondrial DNA, the dataset concat-
enated with 16S and COI gene sequences. To avoid under- or over-parameterization
(Lemmon and Moriarty 2004; McGuire et al. 2007), the best partition scheme and the
best evolutionary model for each partition were chosen for the phylogenetic analyses
using PARTITIONFINDER v. 1.1.1 (Robert et al. 2012). In this analysis, 16S gene
and each codon position of COI gene were defined, and Bayesian Inference Criteria
was used. As a result, the analysis suggested that the best partition scheme is 16S gene/
each codon position of COI gene, and selected GTR + G + I model as the best model
for each partition. Phylogenetic analyses were conducted using maximum likelihood
(ML) and Bayesian Inference (BI) methods, implemented in PhyML v. 3.0 (Guindon
et al. 2010) and MrBayes v. 3.12 (Ronquist and Huelsenbeck 2003), respectively. For
the ML tree, branch supports were drawn from 10,000 nonparametric bootstrap rep-
lies. In BI, two runs each with four Markov chains were simultaneously run for 50
million generations with sampling every 1,000 generations. The first 25% trees were
removed as the “burn-in” stage followed by calculations of Bayesian posterior prob-
abilities (BPP) and the 50% majority-rule consensus of the post burn-in trees sampled
at stationarity. Finally, mean genetic distance between *Megophrys* species based on un-
corrected p-distance model was estimated respectively on 16S and COI genes using
MEGA v. 6.06 (Tamura et al. 2013).

Morphological comparisons

Six adult males and one tadpole of the undescribed species were measured (Table 1
and Suppl. material 1). For comparisons, six adult male specimens of *M. kuatunensis*
were also measured (Supp. material 1). The terminology and methodology followed
Fei et al. (2009). Measurements were taken with a dial caliper to 0.1 mm. Twenty-two
morphometric characters of adult specimens were measured:

- **ED** eye diameter (distance from the anterior corner to the posterior corner of the eye);
- **FIL** first finger length (distance from base to tip of finger I);
- **FIIL** second finger length (distance from base to tip of finger II);
A new species of *Megophrys*

FIIL third finger length (distance from base to tip of finger III);
FIVL fourth finger length (distance from base to tip of finger IV);
FL foot length (distance from tarsus to the tip of fourth toe);
HDL head length (distance from the tip of the snout to the articulation of jaw);
HDW maximum head width (greatest width between the left and right articulations of jaw);
HAL hand length (distance from tip of third digit to proximal edge of inner palmar tubercle);
IND internasal distance (minimum distance between the inner margins of the external nares);
IOD interorbital distance (minimum distance between the inner edges of the upper eyelids);
LAL length of lower arm and hand (distance from the elbow to the distal end of the Finger IV);
LW lower arm width (maximum width of the lower arm);
SNT distance between the nasal the posterior edge of the vent;
SVL snout-vent length (distance from the tip of the snout to the posterior edge of the vent);
SL snout length (distance from the tip of the snout to the anterior corner of the eye);
TFL length of foot and tarsus (distance from the tibiotarsal articulation to the distal end of the Toe IV);
THL thigh length (distance from vent to knee);
TL tibia length (distance from knee to tarsus);
TW maximal tibia width;
TYD maximal tympanum diameter;
UEW upper eyelid width (greatest width of the upper eyelid margins measured perpendicular to the anterior-posterior axis).

For the single tadpole of the undescribed species, eleven morphometric characters were measured:

BH maximum body height;
BW maximum body width;
IOS interocular distance (minimum distance between eye);
MW mouth width (distance between two corners of mouth);
SL snout length (distance from the tip of the snout to the anterior corner of the eye);
SS snout to spiraculum (distance from spiraculum to the tip of the snout);
SVL snout-vent length;
TAH tail height (maximum height between upper and lower edges of tail);
TAL tail length (distance from base of vent to the tip of tail);
TBW maximum width of tail base;
TOL total length (distance from the tip of the snout to the tip of tail).
To reduce the impact of allometry, the correct value from the ratio of each character to SVL was calculated, and then was log-transformed for the following morphometric analyses. Mann-Whitney U tests were conducted to test the significance of differences on morphometric characters between the undescribed species and $M. kuatunensis$. The significance level was set at 0.05. Furthermore, principal component analyses (PCA) were conducted to highlight whether the different species were separated in morphometric space.

The new species was also compared with all other $Megophrys$ species on morphology. Comparative data were obtained for related species as described in literature (Table 2).

Bioacoustics analyses

The advertisement calls of the undescribed species were recorded from the holotype specimen CIBQY20200726001 in the field on 26 July 2020 from Qingyuan County, Zhejiang Province, China. When registering the male in the stream the ambient air temperature was 21.5 °C and there was air humidity of 87%. For comparisons, the advertisement calls of $M. kuatunensis$ from Wuyi Mountain, Fujian Province, China were recorded from the specimens CIBWY18082410, CIBWY18082411 and CIBWY18082412 at an ambient air temperature of 22.0 °C and air humidity of 88% on 24 August 2018. SONY PCM-D50 digital sound recorder was used to record within 20 cm of the calling individual. The sound files in wave format were resampled at 48 kHz with sampling depth 24 bits. The sonograms and waveforms were generated by WaveSurfer software (Sjöander and Beskow 2000) from which all parameters and characters were measured. Ambient temperature was taken by a digital hygrothermograph.

Results

Phylogenetic analyses

Aligned sequence matrix of 16S+COI contains 1104 bp. ML and BI trees of the mitochondrial DNA dataset presented almost consistent topology, and as well, though relationships of many clades were unresolved (Fig. 2). In mitochondrial DNA trees, all samples of the undescribed species were clustered into one clade which was deeply clustered into the $Megophrys$ clade. The species is likely sister to $M. kuatunensis$ (bootstrap supports < 50% and BPP = 0.51) though the relationships between the two species and most other congeners were not resolved (all bootstrap supports < 50% and many BPP < 0.95).

Genetic distances based on 16S and COI genes with uncorrected p-distance model between the samples of the undescribed species were all below 0.2%. The genetic distance between the undescribed species and its closest related species $M. kuatunensis$ were 2.1% and 8.1% on 16S and COI respectively, which was higher or at the same level with those among many pairs of sister species, for example, 1.7% and 3.8% on 16S and COI respectively between $M. spinata$ and $M. sangzhiensis$ (Suppl. materials 2 and 3).
Table 2. References for morphological characters for congeners of the genus *Megophrys*.

Species	Literature obtained
M. aceras Boulenger, 1903	Boulenger 1903
M. acuta Wang, Li & Jin, 2014	Li et al. 2014
M. annecte Mahony, Teeling & Biju, 2013	Mahony et al. 2013
M. annecte Wu, Suwannapoom, Poyarkov, Chen, Pawangkhanant, Xu, Jin, Murphy & Che, 2019	Wu et al. 2019
M. auralesius Ohler, Swan & Daltry, 2002	Ohler et al. 2002
M. awadh Mahony, Kamei, Teeling, & Biju, 2020	Mahony et al. 2020
M. baluensis (Boulenger, 1899)	Boulenger 1899a
M. baolongensis Ye, Fei & Xie, 2007	Ye et al. 2007
M. binchuanensis Ye & Fei, 2001	Fei et al. 2001
M. brachykelos Inger & Romer, 1961	Inger and Romer 1961
M. carinens (Boulenger, 1889)	Boulenger 1889
M. caobangensis Nguyen, Pham, Nguyen, Luong, & Ziegler, 2020	Nguyen et al. 2020
M. cadoperta Shen, 1994	Shen. 1994
M. cheni (Wang & Liu, 2014)	Wang et al. 2014
M. chihuansisi Xu, Li, Liu, Wei & Wang, 2020	Xu et al. 2020
M. chuannanensis (Fei, Ye & Huang, 2001)	Fei et al. 2001
M. damrei Mahony, 2011	Mahony 2011
M. daweiensis Rao & Yang, 1997	Rao and Yang 1997
M. dongguanensis Wang & Wang, 2019	Wang et al. 2019b
M. dringi Inger, Stuebing & Tan, 1995	Inger et al. 1995
M. dzukou Mahony, Kamei, Teeling & Biju, 2020	Mahony et al. 2020
M. edwardinae Inger, 1989	Inger 1989
M. elfina Poyarkov, Duong, Orlov, Gogoleva, Vassilieva, Nguyen, Nguyen, Che & Mahony, 2017	Poyarkov et al. 2017
M. fansipanensis Tapley, Cutajar, Mahony, Nguyen, Dau, Luong, Le, Nguyen, Nguyen, Portway, Luong & Rowley, 2018	Tapley et al. 2018
M. feae Boulenger, 1887	Boulenger 1887
M. feii Yang, Wang & Wang, 2018	Yang et al. 2018
M. flavipunctata Mahony, Kamei, Teeling & Biju, 2018	Mahony et al. 2018
M. gerti (Ohler, 2003)	Ohler 2003
M. gigantica Liu, Hu & Yang, 1960	Liu et al. 1960
M. glandulosa Fei, Ye & Huang, 1990	Fei et al. 1990
M. hansi (Ohler, 2003)	Ohler 2003
M. himalayana Mahony, Kamei, Teeling & Biju, 2018	Mahony et al. 2018
M. hoanglienensis Tapley, Cutajar, Mahony, Nguyen, Dau, Luong, Le, Nguyen, Nguyen, Portway, Luong & Rowley, 2018	Tapley et al. 2018
M. huangshanensis Fei & Ye, 2005	Fei and Ye 2005
M. hypsiglena (Wang, Liu, Lyu, Zeng & Wang, 2017)	Wang et al. 2017a
M. intermedia Smith, 1921	Smith 1921
M. jiangi Liu, Li, Wei, Xu, Cheng, Wang & Wu, 2020	Liu et al. 2020
M. jingdongensis Fei & Ye, 1983	Fei et al. 1983
M. jinggangensis (Wang, 2012)	Wang et al. 2012
M. julianensis Wang, Zeng, Lyu & Wang, 2019	Wang et al. 2019b
M. kalimantanensis Munir, Hamidy, Matsui, Iskandar, Sidik & Shimada, 2019	Munir et al. 2019
M. kobayashii Malkmus & Matsui, 1997	Malkmus and Matsui 1997
M. koni Mahony, Foley, Biju & Teeling, 2017	Mahony et al. 2017
M. kuansanensis Pope, 1929	Pope 1929
M. lancip Munir, Hamidy, Farajallah & Smith, 2018	Munir et al. 2018
M. leishanensis Li, Xu, Liu, Jiang, Wei & Wang, 2018	Li et al. 2018
M. lekaguli Stuart, Chuyankern, Chan-ard & Inger, 2006	Stuart et al. 2006
M. linnii (Zhang, Li, Xiao, Li, Pan, Wang, Zhang & Zhou, 2017)	Zhang et al. 2017
M. linyue Taylor, 1920	Taylor 1920
Species	Literature obtained
---------	---------------------
M. lini (Wang & Yang, 2014)	Wang et al. 2014
M. lishuensis (Wang & Yang, 2014)	Wang et al. 2014
M. longipes Bouleenger, 1886	Bouleenger 1886
M. major Bouleenger, 1908	Bouleenger 1908
M. mangshanensis Fei & Ye, 1990	Fei et al. 2012
M. massonensis Bourret, 1937	Bourret 1937
M. medogensis Fei, Ye & Huang, 1983	Fei et al. 1983
M. megacephala Mahony, Sengupta, Kamei & Biju, 2011	Mahony et al. 2011
M. microtoma (Bouleenger, 1903)	Bouleenger 1903
M. minor Stejneger, 1926	Stejneger 1926
M. mirabilis Lyu, Wang & Zhao	Lyu et al. 2020
M. montana Kuhl & Van Hasselt, 1822	Kuhl and Van Hasselt 1822
M. monticola (Günther, 1864)	Günther 1864; Mahony et al. 2018
M. mufumontana Wang, Lyu & Wang, 2019	Wang et al. 2019b
M. nankiangensis Liu & Hu, 1966	Hu and Liu 1966
M. nankunensis Wang, Zeng & Wang, 2019	Wang et al. 2019b
M. nanningensis Lyu, Wang & Li, 1966	Wang et al. 2019b
M. naustia (Schlegel, 1858)	Schlegel 1858
M. nambhuanaeng Mahony, Kamei, Teeling, & Biju, 2020	Mahony et al. 2020
M. nbea Wang, Li & Zhao, 2014	Wang et al. 2014
M. ombrophila Messenger & Dahm, 2019	Messenger et al. 2019
M. omeimontis Liu, 1950	Liu 1950
M. oorecrpta Mahony, Kamei, Teeling & Biju, 2018	Mahony et al. 2018
M. oprpedion Mahony, Teeling & Biju, 2013	Mahony et al. 2013
M. orientalis Li, Lyu, Wang & Wang, 2020	Li et al. 2020
M. pachyrectus Huang, 1981	Huang and Fei 1981
M. palpebratipinna Bourret, 1937	Bourret 1937
M. parallela Inger & Iskandar, 2005	Inger and Iskandar 2005
M. parva (Bouleenger, 1893)	Bouleenger 1893
M. periata Mahony, Kamei, Teeling & Biju, 2018	Mahony et al. 2018
M. popei (Zhao, Yang, Chen, Chen & Wang, 2014)	Zhao et al. 2014
M. robusta Bouleenger, 1908	Bouleenger 1908
M. subrimal Tapley, Cutajar, Mahony, Chung, Dau, Nguyen, Luong & Rowley, 2017	Tapley et al. 2017
M. sanghiensis Jiang, Ye & Fei, 2008	Jiang et al. 2008
M. serchhipii (Mathew & Sen, 2007)	Mathew and Sen 2007
M. shappingensis Liu, 1950	Liu 1950
M. shinumatsina Lyu, Liu & Wang	Lyu et al. 2020
M. shihengensis Tian & Sun, 1995	Tian and Sun 1995
M. shihuangensis Wang, Deng, Liu, Wu & Liu, 2019	Wang et al. 2019a
M. spinata Liu & Hu, 1973	Hu et al. 1973
M. stejneri Taylor, 1920	Taylor 1920
M. synoria (Stuart, Sok & Neang, 2006)	Stuart et al. 2006
M. takensis Mahony, 2011	Mahony 2011
M. tuberogranulata Shen, Mo & Li, 2010	Mo et al. 2012
M. vegrandis Mahony, Teeling, Biju, 2013	Mahony et al. 2013
M. wawuensis Fei, Jiang & Zheng, 2001	Fei et al. 2012
M. wugongensis Wang, Lyu & Wang, 2019	Wang et al. 2019b
M. wuhuanganensis Ye & Fei, 1995	Ye and Fei 1995
M. wuhanensis Ye & Fei, 1995	Ye and Fei 1995
M. xiangduensis Wang, Wu, Peng, Shi, Lu & Wu, 2020	Wang et al. 2020
M. xianguanensis Lyu, Zeng & Wang	Lyu et al. 2020
M. yuanduensis Lyu, Zeng & Wang	Lyu et al. 2020
M. zhangi Ye & Fei, 1992	Ye and Fei 1992
M. zunhebotoensis (Mathew & Sen, 2007)	Mathew and Sen 2007
In PCA for male group, the total variation of the first two principal components was 47.5%. On the two-dimensional plots of PC1 vs. PC2, the undescribed species was almost separated from *M. kuatunensis* (Fig. 3). The first two principal component axes could separate *M. kuatunensis* from the undescribed species mainly based on limb and head characteristics, namely, HDL, HDW, IND, FIL, FIIL and FL. The results of Mann-Whitney *U* tests indicated that in males, the undescribed species was significantly different from *M. kuatunensis* on UEW and TFL (*p*-values < 0.05; Table 3).
There were two differences in sonograms and waveforms of calls between the undescribed species and *M. kuatunensis* (Fig. 4; Table 4). Firstly, the undescribed species had slower call repetition rate than the latter (0.79 call/s in the former vs. 1.18 call/s in the latter). Secondly, the undescribed species had lower dominant frequency (3.19–3.38 kHz in the former vs. 3.38–3.75 kHz in the latter).

Based on the molecular phylogenetic analyses, morphological comparisons (Supp. material 4), and bioacoustics differences, the specimens from Qiangyuan County, Zhejiang Province, China represent a new species which is described as follows.

Taxonomic accounts

Megophrys baishanzuensis sp. nov.

http://zoobank.org/563EBE4E-45FF-4956-AB3B-70467B2D338E

Figs 4A, B, E, G, H, 5–8; Tables 1–4, Suppl. materials 1–4

Holotype. CIBQY20200726001 (Figs 4A, B, E, G, H, 5), adult male, from Baishanzu National Park, Qingyuan County, Zhejiang Province, China (27.76°N, 119.18°E, ca. 1537 m a.s.l.), collected by Bin Wang on 26 July 2020.
A new species of *Megophrys*

Paratype. Five adult males collected from the same place as holotype collected by Bin Wang. CIBQY20200719001-CIBQY20200719004 collected on 19 July 2020 by Bin Wang, and CIBQY20200726002 collected by Zhonghao Luo on 26 July 2020.

Other material examined. One tadpole (CIBQY20200719005; Fig. 7) collected by Bin Wang on 19 July 2020.

Diagnosis. *Megophrys baishanzuensis* sp. nov. is assigned to the genus *Megophrys* based on molecular phylogenetic analyses and the following generic diagnostic characters: snout shield-like; projecting beyond the lower jaw; canthus rostralis distinct; chest glands small and round, closer to the axilla than to midventral line; femoral glands on rear part of thigh; vertical pupils (Fei et al. 2009).

Megophrys baishanzuensis sp. nov. could be distinguished from its congeners by a combination of the following morphological characters: body size small (SVL 28.4–32.4 mm in males); vomerine teeth absent; tongue not notched behind; tympanum distinctly visible, oval; a small horn-like tubercle at the edge of each upper eyelid; two metacarpal tubercles distinctly visible in hand; toes without webbing; heels overlapping when thighs are positioned at right angles to the body; tibiotarsal articulation reaching the level to the middle of eye when leg stretched forward.

Description of holotype. (Figs 4A, B, E, G, H, 5). SVL 28.5 mm; head width larger than head length (HDW/HDL ratio ca. 1.3); snout obtusely pointed, protruding well beyond the margin of the lower jaw in ventral view; loreal region vertical and concave; canthus rostralis well-developed; top of head flat in dorsal view; eye large, eye diameter 46.0% of head length; pupils vertical; nostril orientated laterally, closer to snout than eye; tympanum distinct, 55.8% of eye diameter; vomerine ridges present and vomerine teeth absent; margin of tongue smooth, not notched behind.
Forelimbs slender, the length of lower arm and hand 47.0% of SVL; fingers slender, relative finger lengths: I < II < IV < III; tips of digits globular, without lateral fringes; subarticular tubercle distinct at the base of each finger; two metacarpal tubercles, prominent, oval-shaped, the inner one bigger than the outer one.

Hindlimbs slender, tibia length 46.5% times of SVL; heels overlapping when thighs are positioned at right angles to the body, tibiotarsal articulation reaching the middle of eye when leg stretched forward; tibia length longer than thigh length; relative toe lengths I < II < V < III < IV; tips of toes round, slightly dilated; subarticular tubercles absent on each toes; toes without webbing but with narrow lateral fringe; inner metatarsal tubercle oval-shaped; outer metatarsal tubercle absent.

Dorsal skin rough, several large warts scattered on flanks; a small horn-like tubercle at the edge of each upper eyelid; tubercles on the dorsum forming a X-shaped ridge, two dorsolateral parallel ridges on either side of the X-shaped ridges; an inverted triangular brown speckle between two upper eyelids; several tubercles scattered on dorsal, flanks and dorsal surface of thighs and tibias; supratympanic fold distinct.

Numerous granules scattered on ventrum; pectoral and femoral glands distinct; numerous white granules on outer thighs.

Coloration of holotype in life. (Fig. 5). Dorsal brown, several pink tubercles scattered on dorsal, an inverted triangular brown speckle between the eyes; X-shaped ridges...
A new species of *Megophrys*

Figure 6. Photos of the holotype CIBQY20200726001 of *Megophrys baishanzuensis* sp. nov. in life

A dorsal view B ventral view C lateral view D ventral view of hand E ventral view of foot.

on the dorsum brown, four dark transverse bands on the dorsal surface of the thigh and shank; ventral surface of body white with brown spots; two dark brown dark bars on the flanks, throat brown; white vertical bars on lower and upper lip; ventral surface of anterior limb dark reddish purple, posterior limb orange with numerous white granules; tip of digits pale grey; inner metatarsal tubercle and two metacarpal tubercles pinkish; soles uniform dark reddish purple; pectoral glands white.

Coloration of holotype in preservation. (Fig. 4A, B, E, G, H). Color of dorsal surface fades to taupe; the inverted triangular brown speckle between the eyes and brown X-shaped ridges on dorsum are more distinct; ventral surface greyish white; creamy-white substitutes the purple grey on tip of digits; the posterior of ventral surface of body, inner of thigh and upper of tibia fades to creamy-white.

Variation. Fig. 6. Measurements and basic statistics of adult specimens are presented in Tables 3 and Supp. material 1. All specimens were similar in morphology but some individuals different from the holotype in color pattern. In CIBQY2020200719001...
Table 3. Morphometric comparisons between the adult specimens of *Megophrys baishanzuensis* sp. nov. and *M. kuatunensis*. Units given in mm. See abbreviations for the morphological characters in Materials and methods section. P-value resulted from Mann-Whitney *U* test. Significant level at 0.05.

Character	*Megophrys baishanzuensis* sp. nov.	*M. kuatunensis*	Mann-Whitney U value	P-value
	Male (N = 6)			
SVL	Ranging 28.4–32.4	Ranging 28.4–32.4	13.000	0.423
	Mean ± SD 30.5 ± 1.8	Mean ± SD 30.5 ± 1.8		
HDL	8.0–9.1	8.0–9.1	6.000	0.055
	Mean ± SD 8.6 ± 0.4	Mean ± SD 8.6 ± 0.4		
HDW	9.3–10.5	9.3–10.5	8.000	0.109
	Mean ± SD 10.2 ± 0.4	Mean ± SD 10.2 ± 0.4		
SL	3.4–4.1	3.4–4.1	16.000	0.749
	Mean ± SD 3.8 ± 0.3	Mean ± SD 3.8 ± 0.3		
SNT	1.5–2.6	1.5–2.6	18.000	1.000
	Mean ± SD 2.0 ± 0.4	Mean ± SD 2.0 ± 0.4		
IND	3.1–3.7	3.1–3.7	16.000	0.749
	Mean ± SD 3.4 ± 0.3	Mean ± SD 3.4 ± 0.3		
IOD	2.8–3.3	2.8–3.3	6.000	0.055
	Mean ± SD 3.0 ± 0.2	Mean ± SD 3.0 ± 0.2		
UEW	2.3–3.0	2.3–3.0	2.000	0.010
	Mean ± SD 2.6 ± 0.2	Mean ± SD 2.6 ± 0.2		
ED	3.7–4.0	3.7–4.0	15.000	0.631
	Mean ± SD 3.8 ± 0.1	Mean ± SD 3.8 ± 0.1		
TYD	1.5–2.1	1.5–2.1	16.000	0.749
	Mean ± SD 1.8 ± 0.2	Mean ± SD 1.8 ± 0.2		
LAL	13.4–14.6	13.4–14.6	9.000	0.150
	Mean ± SD 14.1 ± 0.5	Mean ± SD 14.1 ± 0.5		
HAL	6.6–7.9	6.6–7.9	6.000	0.055
	Mean ± SD 7.1 ± 0.5	Mean ± SD 7.1 ± 0.5		
LW	2.2–2.7	2.2–2.7	10.000	0.200
	Mean ± SD 2.4 ± 0.2	Mean ± SD 2.4 ± 0.2		
FIL	2.2–2.8	2.2–2.8	17.000	0.873
	Mean ± SD 2.5 ± 0.2	Mean ± SD 2.5 ± 0.2		
FIIL	2.4–3.0	2.4–3.0	12.000	0.200
	Mean ± SD 2.7 ± 0.2	Mean ± SD 2.7 ± 0.2		
FIHII	4.3–5.1	4.3–5.1	10.000	0.200
	Mean ± SD 4.6 ± 0.3	Mean ± SD 4.6 ± 0.3		
FIVL	2.6–3.6	2.6–3.6	15.000	0.631
	Mean ± SD 3.0 ± 0.4	Mean ± SD 3.0 ± 0.4		
THL	12.2–13.5	12.2–13.5	10.000	0.200
	Mean ± SD 12.9 ± 0.5	Mean ± SD 12.9 ± 0.5		
TL	12.8–14.9	12.8–14.9	13.000	0.423
	Mean ± SD 13.9 ± 0.9	Mean ± SD 13.9 ± 0.9		
TW	2.7–4.2	2.7–4.2	13.000	0.423
	Mean ± SD 3.3 ± 0.5	Mean ± SD 3.3 ± 0.5		
TFL	17.8–20.4	17.8–20.4	1.000	0.006
	Mean ± SD 19.4 ± 1.0	Mean ± SD 19.4 ± 1.0		
FL	11.2–12.3	11.2–12.3	13.000	0.423
	Mean ± SD 11.8 ± 0.4	Mean ± SD 11.8 ± 0.4		

the tubercles on the dorsum forming two > shaped, disconnected ridges (Fig. 6A); in CIBQY2020200719004 the tubercles on the dorsum forming a big and distinct X-shaped speckle (Fig. 6B); in CIBQY2020200719003 ventral surface of body grey with brown spots (Fig. 6C); in CIBQY2020200726002 ventral surface of body and limbs brownish red (Fig. 6D).

Tadpole description. Fig. 7. The tadpole CIBQY20200719006 (Fig. 7) was confirmed as *Megophrys baishanzuensis* sp. nov by molecular phylogenetic analyses. Measurements in mm. Stage 31. Body slender, body brownish black and tail pale brown, body height greater than tail height; dorsal fin arising behind the origin of the tail, the highest fin near mid-length, tapering gradually to the narrowly pointed tip; tail approximately 1.9 times as long as snout-vent length; tail height 13.6% of tail length; body width longer than body height (BW/BH 1.2); eyes large, lateral, nostril near eyes; spiracle on the left side of the body and distinct; oral disk terminal, lips expanded and directed upwardly into a umbelliform oral disk; flank of body brownish black with some white spots, tail fins lightly colored, with small white and black spots. TOL 22.7; SVL 8.7; BW 3.0; BH 2.7; SL 2.0; SS 4.0; IOS 1.8; TAL 14.7; TAH 2.2; TBD 1.5; MW 1.3.

Advertisement call. Fig. 4. The call description is based on recordings of the holotype CIBQY20200726001 (Fig. 4; Table 4) from a shrub leaf near the streamlet.
A new species of *Megophrys*

Call duration was 151.0–170.0 ms (mean 162.4 ± 5.7). Inter-call interval was 682.0–1869.0 ms (mean 936.8 ± 349.0). Pulse/call was 23.0–30.0 (mean 26.0 ± 2.4); pulse duration was 3.0–6.0 (mean 4.9 ± 6.0) and call repetition rate was 0.79 call/s.

Amplitude modulation within note was apparent, beginning with moderately high energy pulses, increasing to the maximum by approximately quarter, and then decreasing towards the end. The average dominant frequency was 3.36 ± 0.06 (3.19–3.38 kHz).

Secondary sexual characters. A single subgular vocal sac present in male. In breeding season, nuptial pads are present on the dorsal base of the first two fingers in males.

Comparisons. Supp. material 4. By having small body size, *Megophrys baishanzuensis* sp. nov. differs from *M. ancaea, M. auralensis, M. awuh, M. baluensis, M. baolongensis, M. binlingensis, M. boettgeri, M. caobangensis, M. carinense, M. caudoprocta, M. chishuiensis, M. chuannanensis, M. damrei, M. daweimontis, M. dzukou, M. edwardinae, M..
Table 4. Comparisons of characteristics of advertisement calls of *Megophrys baishanzuensis* sp. nov. and *M. kuatunensis*.

Call character	*Megophrys baishanzuensis* sp. nov.	*M. kuatunensis*		
	CIBQY20200726001	CIBWY2018082410	CIBWY2018082412	WY2018082411
Number of call groups measured	11	30	30	20
Number of notes measured	22	30	30	40
Call duration (ms)	151.0–170.0 (162.4 ± 5.7)	131.0–163.0 (147.2 ± 7.1)	131.0–163.0 (147.2 ± 7.1)	130.0–159.0 (120.9 ± 5.9)
Call repetition rate (calls/s)	0.79	1.18	1.13	1.3
Intercall interval (ms)	682.0–1869.0 (936.8 ± 349.0)	404–1548.0 (687.3 ± 206.8)	404–1548.0 (687.3 ± 206.8)	350.0–733.0 (458.4 ± 87.1)
Pulses/call	23.0–30.0 (26.0 ± 2.4)	25.0–36.0 (30.0 ± 2.3)	25.0–36.0 (30.0 ± 2.3)	32.0–40.4 (35.7 ± 2.3)
Dominant frequency (kHz)	3.19–3.38 (3.36 ± 0.06)	3.38–3.75 (3.46 ± 0.16)	3.38–3.75 (3.46 ± 0.16)	3.38–3.38 (3.38±0.01)
Pulse duration (ms)	3.0–6.0 (4.9 ± 0.6)	3.0–6.0 (4.4 ± 0.7)	3.0–6.0 (4.4 ± 0.7)	3.0–6.0 (4.5 ± 0.6)

M. feae, *M. flavipunctata*, *M. gigantica*, *M. glandulosa*, *M. hansi*, *M. himalayana*, *M. hoanglienis*, *M. huangshanensis*, *M. insularis*, *M. jiangi*, *M. jingdongensis*, *M. jinggangensis*, *M. kalimantanensis*, *M. kobayashii*, *M. lancip*, *M. lekaguli*, *M. liboensis*, *M. ligayae*, *M. lini*, *M. longipes*, *M. major*, *M. mangshanensis*, *M. medogensis*, *M. megacephala*, *M. mirabilis*, *M. montana*, *M. monticola*, *M. nasuta*, *M. obesa*, *M. omeimontis*, *M. orientalis*, *M. pachyprobistes*, *M. palpebralespinosa*, *M. parallela*, *M. parva*, *M. periosa*, *M. platyparietus*, *M. popei*, *M. sangzhienis*, *M. serchhipi*, *M. shangningensis*, *M. spinata*, *M. takensis*, *M. wawuensis*, and *M. xiangnanensis* (maximum SVL < 33.0 mm in the new species vs. minimum SVL > 34.0 mm in the latter).

By vomerine teeth absent, *Megophrys baishanzuensis* sp. nov. differs from *M. ancrae*, *M. baluensis*, *M. carinense*, *M. caudoprocta*, *M. chuannanensis*, *M. damrei*, *M. daoweimontis*, *M. dongguanensis*, *M. dazukou*, *M. fansipanensis*, *M. feae*, *M. flavipunctata*, *M. glandulosa*, *M. himalayana*, *M. hoanglienis*, *M. insularis*, *M. intermedia*, *M. jingdongensis*, *M. jinggangensis*, *M. jiulianensis*, *M. kalimantanensis*, *M. kobayashii*, *M. lancip*, *M. lekaguli*, *M. liboensis*, *M. ligayae*, *M. longipes*, *M. mangshanensis*, *M. maosonensis*, *M. medogensis*, *M. megacephala*, *M. montana*, *M. nankunensis*, *M. nanlingensis*, *M. nasuta*, *M. numbbumaeng*, *M. omeimontis*, *M. oreocrypta*, *M. orientalis*, *M. oropedion*, *M. pachyprobistes*, *M. palpebralespinosa*, *M. parallela*, *M. parva*, *M. periosa*, *M. platyparietus*, *M. popei*, *M. sangzhienis*, *M. serchhipi*, *M. shangningensis*, *M. spinata*, *M. takensis* *M. wawuensis*, and *M. xiangnanensis* (maximum SVL < 33.0 mm in the new species vs. minimum SVL > 34.0 mm in the latter).

By a small horn-like tubercle present at the edge of each upper eyelid, *Megophrys baishanzuensis* sp. nov. differs from *M. aceras*, *M. acuta*, *M. carinense*, *M. caudoprocta*, *M. chuannanensis*, *M. feae*, *M. gerti*, *M. hansi*, *M. intermedia*, *M. intermedia*, *M. jinggangensis*, *M. kalimantanensis*, *M. koui*, *M. lancip*, *M. liboensis*, *M. microstoma*, *M. montana*, *M. nasuta*, *M. orientalis*, *M. palpebralespinosa*, *M. platyparietus*, *M. popei*, *M. shangningensis*, *M. stejnegeri*, and *M. synoria* (vs. having a prominent and elongated tubercle in the latter).
A new species of *Megophrys* A new species of *Megophrys* 91

By tongue not notched behind, *Megophrys baishanzuensis* sp. nov. differs from *M. ancræ*, *M. baolongensis*, *M. binlingensis*, *M. boettgeri*, *M. carinense*, *M. cheni*, *M. chuan-nanensis*, *M. damrei*, *M. dringi*, *M. dzukou*, *M. fansipanensis*, *M. feae*, *M. feii*, *M. flavipunctata*, *M. gerti*, *M. glandulosa*, *M. hoanglienenis*, *M. huangshanensis*, *M. insularis*, *M. jiulianensis*. *M. jingdongensis*, *M. kalimantanensis*, *M. kuatunensis*, *M. liboensis*, *M. mangshanensis*, *M. maasonensis*, *M. medogensis*, *M. minor*, *M. nankiangensis*, *M. nanlin-genis*, *M. numbbumaeng*, *M. omeimontis*, *M. oropedion*, *M. pachyproctus*, *M. parallela*, *M. popei*, *M. robusta*, *M. sanzhiensis*, *M. shapingensis*, *M. shuichengensis*, *M. spinata*, *M. vegrandis*, *M. wawuensis*, *M. zhangi*, and *M. zunhebotoensis* (vs. notched behind in the latter).

By toes with narrow lateral fringes, *Megophrys baishanzuensis* sp. nov. differs from *M. angka*, *M. baolongensis*, *M. brachykolos*, *M. caobangensis*, *M. chishuiensis*, *M. damrei*, *M. daweimontis*, *M. dongguanensis*, *M. fansipanensis*, *M. feae*, *M. himalayana*, *M. hoanglienenis*, *M. huangshanensis*, *M. insularis*, *M. jiangi*, *M. jiulianensis*, *M. kaliman-tanensis*, *M. koui*, *M. leishanensis*, *M. lekaguli*, *M. lishuiensis*, *M. major*, *M. mangshanen-sis*, *M. medogensis*, *M. megacephala*, *M. microstoma*, *M. minor*, *M. nankunensis*, *M. obesa*, *M. ombrophila*, *M. oreocrypta*, *M. oropedion*, *M. pachyproctus*, *M. parva*, *M. periosa*, *M. shunhuangensis*, *M. takensis*, *M. tuberogranulata*, *M. wawuensis*, *M. wugongensis*, *M. wuliangshanensis* and *M. xianjvensis* (vs. lacking in the latter); and differs from *M. bin-chuanensis*, *M. boettgeri*, *M. carinense*, *M. cheni*, *M. chuan-nanensis*, *M. dringi*, *M. feii*, *M. gigantica*, *M. glandulosa*, *M. intermedia*, *M. jingdongensis*, *M. liboensis*, *M. lini*, *M. orientalis*, *M. palpebralespinosa*, *M. platyparietus*, *M. shapingensis*, *M. shuichengensis*, *M. spinata*, and *M. xiangnanensis* (vs. with wide lateral fringes in the latter).

By toes without webbing, *Megophrys baishanzuensis* sp. nov. differs from *M. brach-ykolos*, *M. carinense*, *M. flavipunctata*, *M. jingdongensis*, *M. jinggangensis*, *M. lini,
M. major, M. palpebralespinosa, M. popei, M. shuichengensis, and M. spinata (vs. at least one-fourth webbed in the latter).

By heels overlapping when thighs are positioned at right angles to the body, Megophrys baishanzuensis sp. nov. differs from M. actuta, M. brachykolo, M. dongguanensis, M. huangshanensis, M. kuatunensis, M. nankunensis, M. obesa, M. ombrophila, M. wushanensis, and M. wugongensis (vs. just meeting or not meeting in the latter).

By tibiotarsal articulation reaching to the level to the middle of eye when leg stretched forward, Megophrys baishanzuensis sp. nov. differs from M. daweimontis, M. glandulosa, M. lini, M. major, M. medogensis, M. obesa, M. sangzhiensis, and M. yangmingensis (vs. reaching the anterior corner of the eye or beyond eye or nostril and tip of snout in the latter); differs from M. mufumontana (vs. reaching tympanum in males and to the eye in females in the latter); and differs from M. chishuiensis (vs. reaching the level between tympanum and eye in the latter).

By having an internal single subgular vocal sac in male, Megophrys baishanzuensis sp. nov. differs from M. caudoprocta, M. shapingensis, and M. shuichengensis (vs. vocal sac absent in the latter).

The congeners M. boettgeri, M. lishuiensis, M. ombrophila, and M. xianjuensis all occur in Wuyi Mountains, Fujian Province and/or Zhejiang Province, China, and probably have sympatric distribution with Megophrys baishanzuensis sp. nov. (Fei et al. 2012; Wang et al. 2017b; Messenger et al. 2019; Wang et al. 2020). The new species can be distinguished from these species by a series of morphological characters as follows. The new species differs from M. boettgeri by body size smaller (adult males with 28.4–32.4 mm vs. adult males with 34.5–37.8 mm), and in breeding male nuptial pads present on the dorsal base of the first two fingers (vs. nuptial pad only on the first finger). The new species differs from M. lishuiensis by vomerine ridges present (vs. absent), toes with narrow lateral fringe (vs. without), and tibiotarsal articulation reaching the middle of eye when leg stretched forward (vs. reaching the range from tympanum to eye). The new species differs from M. ombrophila by heels overlapping when thighs are positioned at right angles to the body (vs. not meeting), vomerine ridges present (vs. absent), and toes with narrow lateral fringe (vs. without). The new species differs from M. xianjuensis by tibiotarsal articulation reaching the middle of eye when leg stretched forward (vs. reaching the range from tympanum to eye), and toes with narrow lateral fringe (vs. without).

Megophrys baishanzuensis sp. nov. is phylogenetically closest to M. kuatunensis. Megophrys baishanzuensis sp. nov. could be identified from M. kuatunensis distinctly by tibiotarsal articulation reaching the middle of eye when leg stretched forward (vs. reaching the range from tympanum to eye), heels overlapping when thighs are positioned at right angles to the body (vs. not meeting), tongue not notched behind (vs. notched feebly), the supratympanic fold more expanded in dorsal view and tympanum protruding (vs. concave), and having significantly lower ratios of UEW and TFL to SVL in males (all \(p\)-values < 0.05; Table 3). On call characters, the new species has slower call repetition rate (0.79 call/s in the new species vs. 1.18 call/s in M. kuatunensis), and has lower dominant frequency (3.19–3.38 kHz in the new species vs. 3.38–3.75 kHz in M. kuatunensis).
A new species of *Megophrys*

Distribution and habitat. *Megophrys baishanzuensis* sp. nov. is known from the type locality, Baishanzu National Park, Qingyuan County, Zhejiang Province, China, at elevations between 1400–1600 m. The individuals of the new species were frequently found in the stream surrounded by evergreen broadleaved forests (Fig. 9). *M. boettgeri* was also found in the same stream.

Etymology. The specific name *baishanzuensis* refers to the distribution of this species, Baishanzu National Park, Qingyuan County, Zhejiang Province, China. We propose the common name “Baishanzu horned toad” (English) and Bai Shan Zu Jiao Chan (百山祖角蟾, Chinese).

Discussion

Although *Megophrys baishanzuensis* sp. nov. superficially resembles *M. kuatunensis*, molecular phylogenetic analyses, detailed morphological comparisons and call data all proposed the distinct differences between them. Moreover, the breeding seasons of them are different. According to our surveys, the breeding season of *M. kuatunensis* is in April to May in Wuyi Mountain, Fujian Province, China. But in this season, we did not find any individual of *Megophrys baishanzuensis* sp. nov. in Qingyuan County,
Zhejiang Province. And, the breeding season of the new species should be later than June because in June, we only listened to the calls of one male in the type locality (< 10 °C), and, in late July, the males of the species started to call when the temperature was just higher than 18 °C (but we did not find any female individual and egg of it). Different call characteristics and breeding ecology most probably promoted separation of the two species.

During our several and extensive surveys, we only found fewer than 15 adult males of *Megophrys baishanzuensis* sp. nov., only in a small stream near the top of the mountain in Baishanzu National Park, Zhejiang Province, China, and even then, we did not find any female, and only found four tadpoles of this species. Obviously, the population of the new species is very endemic and small. Fortunately, this population is in a preserved area in Baishanzu National Park. Of course, we still should make a reinforced plan to preserve this area for this toad species.

Acknowledgements

We thank Zhonghao Luo, Yang Li and Shengchao Shi for their help with collecting samples and data. This work was supported by the Biodiversity Survey Project of Lishui, Zhejiang Province and the Project supported by the Biodiversity investigation, Observation and Assessment Program (2019–2023) of Ministry of Ecology and Environment of China.

References

Boulenger GA (1886) Description of a new frog of the genus *Megalophrys*. Proceedings of the Zoological Society of London1885: 850–850. https://doi.org/10.1111/j.1096-3642.1885.tb02927.x

Boulenger GA (1887) Description of a new frog of the genus *Megalophrys*. Annali del Museo Civico di Storia Naturale di Genova Serie 2, 4: 512–513.

Boulenger GA (1889) Description of a new batrachian of the genus *Leptobrachium*, obtain by M. L. Burma. Annali del Museo Civico di Storia Naturale di Genova. Serie 2, 7: 748–750.

Boulenger GA (1893) Descriptions of three new batrachians from Tonkin. Annals and Magazine of Natural History, Series 7 12: 186–188. https://doi.org/10.1080/00222930308678835

Boulenger GA (1899a) Descriptions of three new reptiles and a new batrachian from Mount Kina Balu, North Borneo. Annals and Magazine of Natural History, Series 7(4):1–453. https://doi.org/10.1080/00222939908678228

Boulenger GA (1899b) On a collection of reptiles and batrachians made by Mr. J. D. La Touche in N.W. Fokien, China. Proceedings of the Zoological Society of London 1899: 159–172.

Boulenger GA (1903) Report on the batrachians and reptiles. In: N Annandale and HCRobinson (Eds) Fasciculi Malayenses. Anthropological and Zoological Results of an Expedition to Perak and the Siamese Malay States 1901–1903 undertaken by Nelson Annandale and
Herbert C. Robinson under the auspices of the University of Edinburgh and the University of Liverpool. Volume 2, Zoology, Part 1, 131–176.

Boulenger GA (1908) A revision of the oriental pelobatid batrachians (genus *Megophrys*). Proceedings of the Zoological Society of London 78(2): 407–430. https://doi.org/10.1111/j.1096-3642.1908.tb01852.x

Bourret R (1937) Notes herpétologiques sur l’Indochine française. XIV. Les batraciens de la collection du Laboratoire des Sciences Naturelles de l’Université. Descriptions de quinze espèces ou variétés nouvelles. Annexe au Bulletin Général de l’Instruction Publique Hanoi, 1937: 5–56.

Che J, Chen HM, Yang JX, Jin JQ, Jiang K, Yuan ZY, Murphy RW, Zhang YP (2012) Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resource 12: 247–258. https://doi.org/10.1111/j.1755-0998.2011.03090.x

Chen JM, Zhou WW, Nikolay A, Poyarkov Jr NA, Stuart BL, Brown RM, Lathrop A, Wang YY, Yuan ZL, Jiang K, Hou M, Chen HM, Suwannapoom C, Nguyen SN, Duong TV, Papenfuss TJ, Murphy RW, Zhang YP, Che J (2017) A novel multilocus phylogenetic estimation reveals unrecognized diversity in Asia toads, genus *Megophrys* sensu lato (Anura: Megophryidae). Molecular Phylogenetics and Evolution 106: 28–43. https://doi.org/10.1016/j.ympev.2016.09.004

Delorme M, Dubois A, Grosjean S, Ohler A (2006) Une nouvelle ergotaxinomie des Megophryidae (Amphibia, Anura). Alytes 24: 6–21.

Deuti K, Grosjean S, Nicolas V, Vasudevan K, Ohler A (2017) Nomenclatural puzzle in early *Megophrys nomina* (Anura, Megophryidae) solved with description of two new species from India (Darjeeling hills and Sikkim). Alytes 34: 20–48.

Dubois A (1987) Miscellanea taxinomica batrachologica (I). Alytes 1987[1986]: 7–95.

Fei L, Hu SQ, Ye CY, Huang YZ (2009) Fauna Sinica. Amphibia. Volume 2. Anura. Science Press, Beijing, 328–481. [In Chinese]

Fei L, Ye CY, Huang YZ (1983) Two new subspecies of *Megophrys omeimontis* Liu from China (Amphibia, Pelobatidae). Acta Herpetologica Sinica. New Series, Chengdu 2(2): 49–52. [In Chinese with English abstract]

Fei L, Ye CY, Huang YZ (1990) Key to Chinese Amphibians. Publishing House for Scientific and Technological, Chongqing, 108–110. [In Chinese]

Fei L, Ye CY, Huang YZ (2001) Colour Handbook Amph. Sichuan, Science Press, Beijing, 138–139. [In Chinese]

Fei L, Ye CY (2005) Two new species of Megophryidae from China. In: Fei L (Ed.) The Key and Illustration of Chinese. Sichuan Publishing House of Science and Technology, Chongqing, 253–255. [In Chinese]

Fei L, Ye CY, Jiang JP (2012) Colored atlas of Chinese Amphibians and their distributions. Sichuan Publishing House of Science and Technology, Chengdu, 135–247. [In Chinese]

Fei L, Ye CY (2016) Genus *Liophrys* Fei, Ye and Jiang, new genus; Subgenus *Atympanophrys* (Borealophrys) Fei, Ye and Jiang, new subgenus; Subgenus *Atympanophrys* (Gigantophrys) Fei, Ye and Jiang, new subgenus; Genus *Boulenophrys* Fei, Ye and Jiang, 2016, new genus; Subgenus *Xenophrys* (Tianophrys) Fei, Ye and Jiang, new subgenus. In: Fei L, Ye CY (Eds) Amphibians of China. Volume (I). Science Press, Beijing, 611–735.
Frost DR (2020) Amphibian Species of the World: an Online Reference. Version 6.0. Electronic Database. American Museum of Natural History, New York. http://research.amnh.org/herpetology/amphibia/index.html [Accessed on 12 Sep 2020]

Günther ACLG (1864) The reptiles of British India. Ray Society, London, 414–415.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3): 07–321. https://doi.org/10.1093/sysbio/syq010

Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41(41): 95–98.

Hu SX, Zhao EM, Liu CZ (1966) A herpetological survey of the Tsinling and Ta-pa shan region. Acta Zoologica Sinica 18(1): 57–89.

Hu SX, Zhao EM, Liu CZ (1973) A survey of amphibians and reptiles in Kweichow province, including a herpetofauna analysis. Acta Zoologica Sinica 19(2): 149–171.

Huang YZ, Fei L (1981) Two new species of amphibians from Xizang. Acta Zootaxonomica Sinica 6: 211–215.

Inger RF (1989) Four new species of frogs from Borneo. Malayan Nature Journal. Kuala Lumpur 42: 229–243.

Inger RF, Romer JD (1961) A new pelobatid frog of the genus Megophrys from Hong Kong. Fieldiana. Zoology 39(46): 533–538. https://doi.org/10.5962/bhl.title.3373

Inger RF, Stuebing RB, Lian TF (1995) New species and new records of Anurans from Borneo. Raffles Bulletin of Zoology, Singapore 43(1): 115–131.

Inger RF, Iskandar DT (2005) A collection of amphibians from west Sumatra, with description of a new species of Megophrys (Amphibia: Anura). Raffles Bulletin of Zoology, Singapore 133–142.

Jiang JP, Yuan FR, Xie F, Zheng ZH (2003) Phylogenetic relationships of some species and genera in megophryids inferred from partial sequences of mitochondrial 12S and 16S rRNA genes. Zoological Research 24: 241–248. [In Chinese with English abstract]

Jiang JP, Ye CY, Fei L (2008) A new Horn Toad Megophrys sangzhiensis from Hunan, China (Amphibia, Anura). Zoological Research 29(2): 219–222. https://doi.org/10.3724/SP.J.1141.2008.00219 [In Chinese with English abstract]

Kuhl H, Van Hasselt JC (1822) Uittreksels uit breiwen van de Heeren Kuhl en van Hasselt, aan de Heeren C. J. Temminck, Th. van Swinderen en W. de Haan. Algemene Konst-en Letter-Bode 7: 99–104.

Lathrop A (1997) Taxonomic review of the megophryid frogs (Anura: Pelobatoidea). Asian Herpetological Research 7: 68–79. https://doi.org/10.5962/bhl.part.18857

Lemmon AR, Moriarty EC (2004) The importance of proper model assumption in Bayesian phyllogenetics. Systematic Biology 53(2): 265–277. https://doi.org/10.1080/10635150490423520

Li YL, Jin MJ, Zhao J, Liu ZY, Wang YY, Pang H (2014) Description of two new species of the genus Megophrys (Amphibia: Anura: Megophryidae) from Heishiding Natural Reserve, Fengkai, Guangdong, China, based on molecular and morphological data. Zootaxa 3795(4): 449–471. https://doi.org/10.11646/zootaxa.3795.4.5
Li SZ, Xu N, Lv JC, Jiang JP, Wei G, Wang B (2018a) A new species of the odorous frog genus *Odorrana* (Amphibia, Anura, Ranidae) from southwestern China. PeerJ 6(e5695): 1–28. https://doi.org/10.7717/peerj.5695

Li SZ, Xu N, Liu J, Jiang JP, Wei G, Wang B (2018b) A new species of the Asian toad genus *Megophrys sensu lato* (Amphibia: Anura: Megophryidae) from Guizhou Province, China. Asian Herpetological Research 9(4): 224–239.

Li SZ, Wei G, Xu N, Cui JG, Fei L, Jiang JP, Liu J, Wang B (2019a) A new species of the Asian music frog genus *Nidirana* (Amphibia, Anura, Ranidae) from Southwestern China. PeerJ 7: e7157. https://doi.org/10.7717/peerj.7157

Li SZ, Zhang MH, Xu N, Lv JC, Jiang JP, Liu J, Wei G, Wang B (2019b) A new species of the genus *Microhyla* (Amphibia: Anura: Microhylidae) from Guizhou Province, China. Zootaxa 4624: 551–575. https://doi.org/10.11646/zootaxa.4624.4.7

Li Y, Zhang DD, Lyu ZT, Wang J, Li YL, Liu ZY, Chen HH, Rao DQ, Jin ZF, Zhang CY, Wang YY (2020) Review of the genus *Brachytarsophrys* (Anura: Megophryidae), with revalidation of *Brachytarsophrys platyparietus* and description of a new species from China. Zoological Research 41(2): 105–122. https://doi.org/10.24272/j.issn.2095-8137.2020.033

Liu CZ (1950) Amphibians of Western China. Fieldiana. Zoology Memoires 2: 1–400. https://doi.org/10.5962/bhl.part.4737

Liu CZ, Hu SQ, Yang HH (1960) Amphibian of Yunnan collected in 1958. Acta Zoological Sinica 12(2): 149–174.

Liu ZY, Zhu TQ, Zeng ZC, Lyu ZT, Wang J, Messenger K, Greenberg A J, Gou ZX, Yang ZH, Shi SH, Wang YY (2018) Prevalence of cryptic species in morphologically uniform taxa–Fast speciation and evolutionary radiation in Asian frogs. Molecular Phylogenetics and Evolution 127: 723–731. https://doi.org/10.1016/j.ympev.2018.06.020

Liu J, Li SZ, Wei G, Xu N, Cheng YL, Wang B, Wu J (2020) A new species of the Asian toad genus *Megophrys sensu lato* (Anura: Megophryidae) from Guizhou Province, China. Asian Herpetological Research 11(1): 1–18.

Lyu ZT, Zeng ZC, Wan H, Yang JH, Li YL, Pang H, Wang YY (2019) A new species of *Amolops* (Anura: Ranidae) from China, with taxonomic comments on *A. liangshamensis* and Chinese populations of *A. marmoratus*. Zootaxa 4609: 247–268. https://doi.org/10.11646/zootaxa.4609.2.3

Lyu ZT, Li YQ, Zeng ZC, Zhao J, Liu ZL, Guo GX, Wang YY (2020) Four new species of Asian horned toads (Anura, Megophryidae, *Megophrys*) from southern China. ZooKeys 942: 105–140. https://doi.org/10.3897/zookeys.942.47983

Luo T, Xiao N, Gao K, Zhou J (2020) A new species of *Leptobrachella* (Anura, Megophryidae) from Guizhou Province, China. ZooKeys 923: 115–140. https://doi.org/10.3897/zookeys.923.47172

Mahony S (2011) Two new species of *Megophrys* Kuhl & van Hasselt (Amphibia: Megophryidae), from western Thailand and southern Cambodia. Zootaxa 2734: 23–39. https://doi.org/10.11646/zootaxa.2734.1.2

Mahony S, Sengupta S, Kamei RG, Biju SD (2011) A new low altitude species of *Megophrys* Kuhl and van Hasselt (Amphibia: Megophryidae), from Assam, Northeast India. Zootaxa 3059: 36–46. https://doi.org/10.11646/zootaxa.3059.1.2
Mahony S, Teeling EC, Biju SD (2013) Three new species of horned frogs, *Megophrys* (Amphibia: Megophryidae), from northeast India, with a resolution to the identity of *Megophrys boettgeri* populations reported from the region. Zootaxa 3722(2): 143–169. https://doi.org/10.11646/zootaxa.3722.2.2

Mahony S, Nicole MF, Biju SD, Teeling EC (2017) Evolutionary history of the Asian Horned Frogs (Megophryinae): integrative approaches to tree age dating in the absence of a fossil record. Molecular Phylogenetics and Evolution 34(3): 744–771. https://doi.org/10.1093/molbev/msw267

Mahony S, Kamei RG, Teeling EC, Biju SD (2018) Cryptic diversity within the *Megophrys major* species group (Amphibia: Megophryidae) of the Asian Horned Frogs: Phylogenetic perspectives and a taxonomic revision of South Asian taxa, with descriptions of four new species. Zootaxa 4523: 1–96. https://doi.org/10.11646/zootaxa.4523.1.1

Malkmus R, Matsui M (1997) *Megophrys kobayashii*, ein neuer pelobatider Frosch vom Mount Kinabalu. Sauria, Berlin 19: 31–37.

Mathew R, Sen N (2007) Description of two new species of *Megophrys* (Amphibia: Anura: Megophryidae) from North-east India. Cobra 1: 18–28.

McGuire JA, Witt CC, Altschuler DL, Remsen JV (2007) Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Systematic Biology 56(5): 837–856. https://doi.org/10.1080/10635150701656360

Messenger KR, Dahn HA, Liang YR, Xie P, Wang Y, Lu CH (2019) A new species of the genus *Megophrys* Günther, 1864 (Amphibia: Anura: Megophryidae) from Mount Wüyi, China. Zootaxa 4554(2): 561–583. https://doi.org/10.11646/zootaxa.4554.2.9

Mo XY, Shen YH, Li HH, Wu MS (2010) A new species of *Megophrys* (Amphibia: Anura: Megophryidae) from the northwestern Hunan Province, China. Current Zoology 56(4): 432–436. https://doi.org/10.1093/czoolo/56.4.432

Munir M, Hamidy A, Farajallah A, Smith EN (2018) A new *Megophrys* Kuhl and Van Hasselt (Amphibia: Megophryidae) from southwestern Sumatra, Indonesia. Zootaxa 4442: 389–412. https://doi.org/10.11646/zootaxa.4442.3.3

Munir M, Hamidy A, Matsui M, Iskandar DT, Sidik I, Shimada T (2019) A new species of *Megophrys* Kuhl & Van Hasselt (Amphibia: Megophryidae) from Borneo allied to *M. nasuta*. Zootaxa 4679: 1–24. https://doi.org/10.11646/zootaxa.4679.1.1

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858. https://doi.org/10.1038/35002501

Nguyen TQ, Pham CT, Nguyen TT, Luong AM, Ziegler T (2020) A new species of *Megophrys* (Amphibia: Anura: Megophryidae) from Vietnam. Zootaxa 4722: 401–422. https://doi.org/10.11646/zootaxa.4722.5.1

Ohler A, Swan SR, Daltry JC (2002) A recent survey of the amphibian fauna of the Cardamom Mountains, Southwest Cambodia with descriptions of three new species. Raffles Bulletin of Zoology, Singapore 50(2): 465–481.

Ohler A (2003) Revision of the genus *Ophryophryne* Boulenger, 1903 (Megophryidae) with description of two new species. Alytes 21(1): 23–44.
A new species of *Megophrys*

Pope CH (1929) Four new frogs from Fukien Province, China. American Museum Novitates 352: 1–5.

Poyarkov NA, Duong Jr TV, Orlov NL, Gogoleva AB, Nguyen LT, Nguyen VDH, Nguyen SN, Che J, Mahony S (2017) Molecular, morphological and acoustic assessment of the genus *Ophryophryne* (Anura, Megophryidae) from Langbian Plateau, southern Vietnam, with description of a new species. ZooKeys 672: 49–120. https://doi.org/10.3897/zookeys.672.10624

R Development Core Team (2008) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.Rproject.org

Rao DQ, Yang DT (1997) The karyotypes of *Megophryinae* (Pelobatidae) with a discussion on their classification and phylogenetic relationships. Asian Herpetological Research 7: 93–102. https://doi.org/10.5962/bhl.part.18858

Robert L, Brett C, Simon YWH, Stephane G (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Phylogenetics and Evolution 29(6): 1695–1701. https://doi.org/10.1093/molbev/mss020

Ronquist FR, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, 1659 pp.

Schlegel H (1858) Handleiding tot de Beoefening der Dierkunde. Volume 2. Koninklijke Militaire Akademie, Breda, 57 pp. https://doi.org/10.5962/bhl.title.11648

Shen YH (1994) A new pelobatid toad of the genus *Megophrys* from China (Anura: Pelobatidae). In: Zoological Society of China Editor. The 60th Anniversary of the Foundation of the Zoological Society of China, Nanking (China), September 1994. China Science and Technology Publishing House, Nanjing, 603–606.

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87(6): 651–701. https://doi.org/10.1093/aesa/87.6.651

Sjöander K, Beskow J (2000) Wavesurfer (Anura: Pelobatidae). In: Acoustical society of China Editor. The International Conference on Spoken Language Processing, Beijing (China), October 2000. Military Yiwen Publishing House, Beijing, 464–467.

Smith MA (1921) New or little-known reptiles and batrachians from southern Annam (Indo-China). Proceedings of the Zoological Society of London 1921: 423–440. https://doi.org/10.1111/j.1096-3642.1921.tb03271.x

Steenbeger L (1926) Two new tailless amphibians from western China. Proceedings of the Biological Society of Washington 39: 53–54.

Stuart BL, Chuaynkern Y, Chan-ard T, Inger RF (2006) Three new species of frogs and a new tadpole from eastern Thailand. Fieldiana Zoology, New Series 1543: 1–10. https://doi.org/10.3158/0015-0754(2006)187[1:TNSOFA]2.0.CO;2

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis, version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197
Tapley B, Cutajar T, Mahony S, Nguyen CT, Dau VQ, Nguyen TT, Luong HV, Rowley JKL (2017) The Vietnamese population of *Megophrys kuatunensis* (Amphibia: Megophryidae) represents a new species of Asian horned frog from Vietnam and southern China. Zootaxa 4344(3): 465–492. https://doi.org/10.11646/zootaxa.4344.3.3

Tapley B, Cutajar TP, Mahony S, Nguyen CT, Dau VQ, Luong AM, Le DT, Nguyen TT, Nguyen TQ, Portway C, Luong HV, Rowley JKL (2018) Two new and potentially highly threatened *Megophrys* Horned frogs (Amphibia: Megophryidae) from Indochina's highest mountains. Zootaxa 4508: 301–333. https://doi.org/10.11646/zootaxa.4508.3.1

Taylor EH (1920) Philippine Amphibia. Philippine Journal of Science 16: 213–359. https://doi.org/10.5962/bhl.part.4751

Taylor EH (1962) The amphibian fauna of Thailand. University of Kansas Science Bulletin 43: 265–599. https://doi.org/10.5962/bhl.part.13347

Tian YZ, Sun A (1995) A new species of *Megophrys* from China (Amphibia: Pelobatidae). Journal of Liupanshui Teachers College 52(3): 11–15. [In Chinese]

Tian WS, Hu QX (1983) Taxonomic study on genus *Megophrys*, with descriptions of two genera. Acta Herpetologica Sinica 2: 41–48.

Wang J, Liu ZY, Lyu ZT, Wang YY (2017a) A new species of the genus *Megophrys* (Amphibia: Anura: Megophryidae) from an offshore island in Guangdong Province, southeastern China. Zootaxa 4324(3): 541–556. https://doi.org/10.11646/zootaxa.4324.3.8

Wang YE, Liu BQ, Jiang K, Jin W, Xu JN, Wu CH (2017b) A new species of the Horn Toad of the genus *Xenophrys* from Zhejiang, China (Amphibia: Megophryidae). Chinese Journal of Zoology 52: 19–29. [In Chinese with English abstract]

Wang YY, Zhang TD, Zhao J, Sung YH, Yang JH, Pang H, Zhang Z (2012) Description of a new species of the genus *Megophrys* Günther, 1864 (Amphibia: Anura: Megophryidae) from Mount Jinggang, China, based on molecular and morphological data. Zootaxa 3546: 53–67. https://doi.org/10.11646/zootaxa.3546.1.4

Wang YY, Zhao J, Yang JH, Zhou ZM, Chen GL, Liu Y (2014) Morphology, molecular genetics, and bioacoustics support two new sympatric *Megophrys* (Amphibia: Anura Megophryidae) species in Southeast China. PLoS ONE 9: e93075. https://doi.org/10.1371/journal.pone.0093075

Wang L, Deng XJ, Liu Y, Wu QQ, Liu Z (2019a) A new species of the genus *Megophrys* (Amphibia: Anura: Megophryidae) from Hunan, China. Zootaxa 4695(4): 301–330. https://doi.org/10.11646/zootaxa.4695.4.1

Wang J, Lyu ZT, Liu ZY, Liao CK, Zeng ZC, Li YL, Wang YY (2019b) Description of six new species of the subgenus *Panophrys* within the genus *Megophrys* (Anura, Megophryidae) from southeastern China based on molecular and morphological data. ZooKeys 851: 113–164. https://doi.org/10.3897/zookeys.851.29107

Wang J, Li YL, Li Y, Chen H-H, Zeng YJ, Shen JM, Wang Y-Y (2019c) Morphology, molecular genetics, and acoustics reveal two new species of the genus *Leptobrachella* from northwestern Guizhou Province, China (Anura, Megophryidae). ZooKeys 848: 119–154. https://doi.org/10.3897/zookeys.848.29181

Wang B, Wu YQ, Peng JW, Shi SC, Lu NN, Wu J (2020) A new *Megophrys* Kuhl and Van Hasselt (Amphibia: Megophryidae) from southeastern China. ZooKeys 851: 113–164. https://doi.org/10.3897/zookeys.851.29107
A new species of *Megophrys*

Wei G, Li SZ, Liu J, Cheng YL, Xu N, Wang B (2020) A new species of the Music frog *Nidirana* (Anura, Ranidae) from Guizhou Province, China. ZooKeys 904: 63–87. https://doi.org/10.3897/zookeys.904.39161

Wu YH, Suwannaopoom C, Poyarkov Jr NA, Chen JM, Pawangkhanant P, Xu K, Jin JQ, Murphy RW, Che J (2019) A new species of the genus *Xenophrys* (Anura: Megophryidae) from northern Thailand. Zoological Research 40: 564–574. https://doi.org/10.24272/j.issn.2095-8137.2019.032

Xu N, Li SZ, Liu J, Wei G, Wang B (2020) A new species of the horned toad *Megophrys* Kuhl & Van Hasselt, 1822 (Anura, Megophryidae) from southwest China. ZooKeys 943: 119–144. https://doi.org/10.3897/zookeys.943.50343

Yang JH, Wang J, Wang YY (2018) A new species of the genus *Megophrys* (Anura: Megophryidae) from Yunnan Province, China. Zootaxa 4413: 325–338. https://doi.org/10.11646/zootaxa.4413.2.5

Ye CY, Fei L (1992) A new Pelobatid toda of the genus *Megophrys* from Xizang, China. Acta Herpetologica Sinica 1–2: 50–52. [In Chinese]

Ye CY, Fei L (1995) Taxonomic studies on the small type *Megophrys* in China including descriptions of the new species (subspecies) (Pelobatidae: genus *Megophrys*). Herpetologica Sinica 4–5: 72–81. [In Chinese]

Ye CY, Fei L, Xie F (2007) A new species of Megophryidae *Megophrys baolongensis* from China (Amphibia, Anura). Herpetologica Sinica 11: 38–41. [In Chinese]

Zhang Y, Li G, Xiao N, Li J, Pan T, Wang H, Zhang B, Zhou J (2017) A new species of the genus *Megophrys* (Amphibia: Anura: Megophryidae) from Libo County, Guizhou, China. Asian Herpetological Research 8: 75–85.

Zhao J, Yang JH, Chen GL, Chen CQ, Wang YY (2014) Description of a new species of the genus *Brachytarsophrys* Tian and Hu, 1983 (Amphibia: Anura: Megophryidae) from Southern China based on molecular and morphological data. Asian Herpetological Research 5(3): 150–160. https://doi.org/10.3724/SPJ.1245.2014.00150

Supplementary material 1

Table S1

Authors: Bin Wang

Data type: morphological measurements

Explanation note: Measurements of the adult specimens of *Megophrys baishanzuensis* sp. nov. and *M. kuatunensis*. Units given in mm. See abbreviations for the morphological characters in Materials and methods section.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/zookeys.1005.58629.suppl1
Supplementary material 2

Table S2
Authors: Bin Wang
Data type: genetic distance
Explanation note: Uncorrected p-distances between the *Megophrys* species on the 16S gene.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.1005.58629.suppl2

Supplementary material 3

Table S3
Authors: Bin Wang
Data type: genetic distance
Explanation note: Uncorrected p-distances between the *Megophrys* species on the COI gene.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.1005.58629.suppl3

Supplementary material 4

Table S4
Authors: Bin Wang
Data type: morphological comparisons
Explanation note: Diagnostic characters separating *Megophrys baishanzuensis* sp. nov. from other species of *Megophrys*.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.1005.58629.suppl4