Assembly of Multicomponent Nano-bioconjugates

Composed of Mesoporous Silica Nanoparticles, Proteins and Gold Nanoparticles

Giulia Rossella Delpianoa, Maria F. Casulaa,b, Marco Piluduc, Riccardo Corpinod, Pier Carlo Riccid, María Vallet-Regíe, Enrico Sanjuste, Maura Monduzzia, Andrea Salisa,*

a Department of Chemical and Geological Sciences, University of Cagliari, CSGI, INSTM and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042- Monserrato (CA), Italy;

b Current address: Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo, 3, I-09123 Cagliari, Italy;

c Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042- Monserrato (CA), Italy;

d Department of Physics, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042- Monserrato (CA), Italy;

e Departamento de Quimica Inorganica y Bioinorganica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Instituto de Investigacion Sanitaria Hospital 12 de Octubre i+12 ; Centro de Investigacion Biomedica en Red de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.

\textsuperscript{*CORRESPONDING AUTHORs FOOTNOTE. Tel.: +39 070 675 4362. Fax: +39 070 675 4388 Email: asalis@unica.it
The purpose of this work was the assembly of multicomponent nano-bioconjugates based on mesoporous silica nanoparticles (MSNs), proteins (Bovine Serum albumin, BSA, or lysozyme, LYZ), and gold nanoparticles (GNPs). These nano-bioconjugates may find application in nanomedicine as theranostic devices. Indeed, MSNs can act as drug carriers, proteins stabilize MSNs within the bloodstream, or may have therapeutic or targeting functions. Finally, GNPs can either be used as contrast agents for imaging or for photothermal therapy. Here, amino-functionalized MSNs (MSN-NH$_2$) were synthesized and characterized through various techniques (SAXS TEM, N$_2$ adsorption/desorption isotherms, and TGA). BSA or lysozyme were then grafted on the external surface of MSN-NH$_2$ to obtain MSN-BSA and MSN-LYZ bioconjugates, respectively. Protein immobilization on MSNs surface was confirmed by FTIR spectroscopy, zeta potential, and TGA which also allowed to estimate protein loading. The MSN-protein samples were then dispersed in a GNP solution to obtain MSN-protein-GNPs nano-bioconjugates. TEM analysis showed the occurrence of GNPs on the MSN-protein surface whereas almost no GNPs occurred in the protein-free control samples. Fluorescence and Raman spectroscopies suggested that proteins-GNP interactions involve tryptophan residues.

Keywords: mesoporous silica nanoparticles; gold nanoparticles; bovine serum albumin; lysozyme; nano-bioconjugates; tryptophan.
1. Introduction

Nanomedicine is a branch of medicine based on the use of diagnostic and therapeutic nanodevices.1–3 Nanodevices take advantage of the specific physico-chemical properties of matter at the nanoscale and thus behave differently from their bulk counterparts.4 There is a wide range of biomedical nanodevices and various combinations of them. A relevant example is provided by mesoporous silica nanoparticles (MSNs)5 which are very promising drug delivery systems.6–9 MSNs, besides being highly stable and biocompatible10, combine a high external surface to volume ratio with extended inner surface area and tailored porosity. These features can be exploited for the immobilization and the controlled release of drugs11–18 or biological macromolecules19–21. External surface functionalization plays a key role to promote targeting13 and to enhance the biocompatibility of MSNs.23,24 Indeed, if the external surface of MSNs is functionalized with a charged biopolymer, as for instance hyaluronic acid, a high degree of cell internalization - which is likely mediated by CD44 receptor in peculiar kind of cell membranes – can be observed.25,26

Several previous studies focused on the interactions between mesoporous silica-based materials and enzymes/proteins.27–29 These bioconjugates can be engineered for biocatalytic or biomedical applications depending on the fact that either an enzyme or a therapeutic protein is used.30–32 Micrometric mesoporous silica particles, such as SBA-15 (pore size 6-9 nm), can adsorb proteins/enzymes on the internal surface,33,34 whereas MSNs, of the type MCM-41 (pore size \approx 2 nm) mainly address protein adsorption on the external surface. Coating by specific proteins is used to stabilize nanoparticles in body fluids thus MSNs can be injected in the bloodstream.35,36 To this purpose, blood plasma’s proteins, such as serum albumins, are the most widely used.37,38 Other proteins, such as antibodies, as well as nucleic acids or simple peptides, are able to carry out a targeting function,39,40 dragging nanoparticles to target receptors of cells or organs and, therefore, reducing side effects and administration doses.41,42 Additionally, plasma proteins are naturally adsorbed on nanoparticles surface forming a “protein corona”.26,43 This natural phenomenon affects the surface charge and hence the colloidal stability of the nanoparticles which can either be favored
or unfavored depending, for example, on the sign of the electric charge of the externally grafted biopolymer.26

Gold nanoparticles (GNPs) are other nanodevices widely exploited in nanomedicine. GNP\(s\) are characterized by a surface plasmon frequency in the visible range, which makes them suitable for a wide range of applications, ranging from therapeutic treatments (i.e. photothermal therapy44) to diagnostic imaging or, more interestingly, “theranostics” that is the combination between therapy and diagnostics.45–47

The purpose of this work is to combine MSNs, proteins, and GNP\(s\) within a single multicomponent system (Scheme 1). Zhan et al. used mesoporous silica-encapsulated gold nanorods bioconjugated with antibodies to create a multifunctional system for imaging of cancer cells.48 Croissant et al. prepared a pH-responsive drug delivery system constituted by negatively charged BSA-gold clusters (AuNC@BSA) which interacted with the positively charged amino functionalized mesoporous silica (MSN-NH\textsubscript{3}+) through electrostatic forces. At acidic pH the AuNC\(s\)@BSA desorbed from the silica surface thus allowing the release of the drug molecules by the pores.10 Here, we use MCM-41-type MSNs due to their ability to act as potential nanocarriers. MSNs are covalently coated by two model proteins, namely bovine serum albumin (BSA) to provide stability and biocompatibility to the MSNs within the hematic fluid, and lysozyme (LYZ) as a model antimicrobial protein.49,50 In addition, 20 nm nearly spherical GNP\(s\) are adsorbed on the protein-conjugated MSNs. The resulting multicomponent nano-bioconjugates are characterized by several physico-chemical techniques, namely small angle X-rays scattering (SAXS), transmission electron microscopy (TEM), electrophoretic light scattering (ELS), \(\text{N}_2\)-physisorption, thermogravimetric analysis (TGA), FTIR spectroscopy. In particular, fluorescence spectroscopy and surface enhanced Raman spectroscopy (SERS) allowed to shed light on the mechanism of protein-GNP interaction. The assembled multicomponent silica-protein-gold nano-bioconjugate represents a prospective nanodevice for theranostic applications.
Scheme 1. Assembly of the MSN-protein-GNP nano-bioconjugates. MSN surface is functionalized with aminopropyltriethoxysilane (APTES) to obtain MSN-NH₂. Proteins (BSA or lysozyme) are grafted, by mean of glutaraldehyde, on the external surface of MSN-NH₂ to obtain MSN-protein bioconjugates. The MSN-protein samples are dispersed in a gold nanoparticles (GNPs) solution to obtain MSN-protein-GNPs nano-bioconjugates. TEM images show the occurrence of GNPs on the MSN-protein surface, whereas almost no GNPs occur in the protein-free control samples.

2. Results and discussion

2.1 Characterization of MSN-NH₂

Amino-functionalized mesoporous silica nanoparticles (MSN-NH₂) were synthesized as a first step in the design of multicomponent nano-bioconjugates. Figure 1 shows the structural and textural characterization of MSN-NH₂ sample. TEM image displays the occurrence of nearly spherical silica particles with size of about 100-120 nm and with a well-defined porosity consisting of parallel channels with a hexagonal arrangement of pores (Figure 1A). The SAXS pattern of MSN-NH₂ sample, shown in Figure 1B, displays the typical pattern observed for hexagonal (P6mm) mesoporous structures, represented by an intense peak, due to the reflection of 1 0 plane, and two weak peaks due to the reflection of 1 1 and 2 0 planes, respectively. The resulting lattice parameter, \(a \), has a value of 46.5 Å. \(\text{N}_2 \) adsorption/desorption isotherm is of a type IV (Figure 1C) resulting in
a surface area (S_{BET}) of 942 m2/g and a pore volume (V_p) of 1.08 cm3/g. Pore size distribution (Figure 1D) has a maximum at 25.8 Å (Table S1, Supporting Information).

Figure 1. Characterization of MSN-NH$_2$ by TEM (A), SAXS (B), N$_2$-adsorption isotherm (C), pore size distribution (D).

Thermogravimetric analysis (TGA) of MSN-NH$_2$ sample was then carried out. Curves in Figure 2 show that MSN-NH$_2$ has a mass loss at about 100°C, attributed to the loss of adsorbed water, then an additional mass loss above 200°C (5.7%). This confirms the occurrence of organic functional groups on mesoporous silica surface.

Figure 2. Thermogravimetric analysis. Mass loss (%) profiles as a function of temperature of MSN-NH$_2$, MSN-GA, MSN-LYZ, and MSN-BSA samples.
2.2 Characterization of MSN-NH₂-proteins nano-bioconjugates

Amino-functionalized MSNs were conjugated with BSA and lysozyme proteins using glutaraldehyde as the linker. MSN-protein conjugation was qualitatively assessed by FTIR spectroscopy and quantitatively by TGA.

Figure S1 (Supporting information) shows the FTIR spectra of MSN-BSA and MSN-LYZ conjugates. Both samples show a peak at 1642 cm⁻¹ due to amide I, typical of C=O stretching of peptide bonds.²⁶ Usually proteins adsorbed on mesoporous silica show a more intense amide I band and a less intense amide II band.³¹ Here, the low intensity of amide I and the absence of the amide II peak are likely due to a low protein loading. This result is expected. Indeed, MSNs pore diameter (about 2 nm) is smaller than lysozyme (3.8 nm)⁵¹ and BSA (7.2 nm)⁵² size, thus adsorption can only occur at the external surface of MSNs which is only a small fraction of the whole surface area.

Figure 2 shows the mass loss (%) profiles obtained at temperatures above 200°C, which can be ascribed to the burning of organics (mass loss % values obtained at temperatures < 200°C are associated to the loss of water). Considering the progressive increase in mass loss at the different steps of bioconjugation, the amount of adsorbed proteins was calculated to be 55 mg/g and 29 mg/g for lysozyme (MSN-LYZ) and BSA (MSN-BSA), respectively (Table 1). These low loadings are consistent with FTIR spectra in Figure S1. Table 1 reports TGA and zeta potential data also for the glutaraldehyde-MSN conjugate (MSN-GA) to describe the changes in mass loss and surface charge during the various steps.
Table 1. Mass loss % values obtained by thermogravimetric analysis. Zeta potential (ζ) values of functionalized MSN samples after each step of surface functionalization. TGA and ζ data are listed also for the MSN-glutaraldehyde intermediate (MSN-GA).

Sample	mass loss (%)	ζ (mV)	Loading (mg g⁻¹)	Molar ratio (mol g⁻¹)		
	T<200°C	T>200°C	a pH = 4	b pH = 7		
MSN-NH₂	7.08	5.58	+31 ± 1	+2 ± 2	56	9.66 ∙ 10⁻⁴ (MM-C₃H₆-NH₂) = 58 g mol⁻¹
MSN-GA	9.76	14.07	+8 ± 1	-2 ± 1	85⁺	8.49 ∙ 10⁻⁴ (MM_GA) = 100.11 g mol⁻¹
MSN-BSA	11.22	16.95	+18 ± 2	-12 ± 1	29**	4.36 ∙ 10⁻⁷ (MM_BSA) = 66463 g mol⁻¹
MSN-LYZ	8.15	19.53	+29 ± 2	+1 ± 1	55**	1.90 ∙ 10⁻⁵ (MM_LYS) = 14400 g mol⁻¹

a citrate buffer 0.1M, b phosphate buffer 0.1M.
* $\frac{\text{(mass loss %)}_{\text{MSN-GA}} - \text{(mass loss %)}_{\text{MSN-NH₂}}}{100}$ (T>200°C)
** $\frac{\text{(mass loss %)}_{\text{MSN-PROTEIN}} - \text{(mass loss %)}_{\text{MSN-GA}}}{100}$ (T>200°C)

Electrophoretic light scattering (ELS) technique was used to measure zeta potential (ζ) values of MSN-based samples prior and after protein immobilization at two different pH values, neutral (pH=7) and acidic (pH=4). The acidic value of pH was chosen to provide a further proof of MSNs surface modification due to the different response of MSN-NH₂, MSN-BSA and MSN-LYZ to pH changes. As expected, we found a highly positive ζ at pH 4 (+31 mV) and almost neutral value at pH 7 (+2 mV) for MSN-NH₂. A similar trend is expected for MSN-LYZ samples due to the high isoelectric point (IEP ≈ 11) of lysozyme. Finally, due to IEP (≈ 4.7) of BSA we found a sign change for ζ going from pH 7 (-12 mV) to pH 4 (+18 mV). Hence, ζ values listed in Table 1 are consistent with the occurrence of a layer of BSA and LYZ proteins covering the MSN particles’ surface.

2.3 TEM characterization of MSN-proteins-GNPs nano-bioconjugates

Results described in the previous paragraph, particularly, the change of ζ values, demonstrate that BSA and lysozyme proteins were successfully immobilized on the external MSNs surface. The occurrence of adsorbed proteins on the surface is particularly important to achieve the goal of this work, that is the realization of nano-bioconjugates constituted by MSN-protein-GNPs. This was
done by dispersing MSN-protein conjugates in a solution of colloidal gold nanoparticles, as described in the paragraph 2.2. The obtainment of the nano-bioconjugates was then confirmed by TEM analysis. Figure 3 shows the TEM images of MSN samples treated with GNPs in the presence and in the absence (control samples) of immobilized proteins on the surface.

Figure 3. TEM images of MSN-BSA (a-f) and MSN-LYZ (a′-f′) treated with GNPs. Control samples (protein free) images are shown in Figure S2 (Supporting Information).
In particular, the nanostructures obtained by mixing a GNP solution with MSN-BSA and MSN-LYZ are shown in Figure 3 a-f and Figure 3 a’-f’, respectively. Interestingly, in this case TEM images also allow to locate the proteins attached to the silica surface, as the presence of GNPs on the silica surface indirectly indicates the presence of proteins at the same site.53 It can be observed that various GNPs, which appear as dark dots, are in contact with the MSNs surface. On the contrary, protein-free MSN-NH\textsubscript{2} samples show only few GNPs at the particle surface (Figure S2, Supporting Information). This indicates that MSN-NH\textsubscript{2} particles have very low reactivity towards GNPs. It should be noted that many reports provide evidence that amino-coated silica nanoparticles are able to interact with GNPs,54–58 and indeed this discrepancy might be due to GNP size effects. Figure 4 compares MSN-NH\textsubscript{2} when reacted with small GNPs (5 nm) and larger GNPs (20 nm), such as those investigated in this work. It appears that smaller GNPs significantly interact with aminopropyl-coated silica, whereas larger GNPs have scarce affinity for MSN-NH\textsubscript{2} (Figure 4).

Figure 4. TEM images of MSN-NH\textsubscript{2} (protein-free) particles loaded with 5 nm (top) and 20 nm (bottom) GNP.

We recently investigated the formation of the “protein corona” on biopolymer (either hyaluronic acid or chitosan) functionalized MSNs.26 The strategy for its visualization through TEM was the use
of commercial conjugates between BSA protein and GNPs. With this method the black spots in the TEM images corresponded univocally to the BSA molecules adsorbed on biopolymer functionalized MSNs surface. Here, instead, the proteins were previously immobilized on MSNs and only then GNPs were left to interact with the MSN-protein bioconjugates. The TEM images clearly suggest that large (20 nm) GNPs can interact with MSNs only in the presence of surface bound proteins. The different reactivity with GNPs observed for MSN-protein conjugates and MSN-NH$_2$ control samples suggests the involvement in the interaction of some specific amino acid residues occurring at proteins’ surface. This deserves a deeper investigation.

2.4 Spectroscopic investigation of protein-GNPs interactions in aqueous solution

Previous studies have shown that cysteine, lysine, and tryptophan residues can interact with GNPs.59 Iosin et al. used UV-Vis spectroscopy to verify protein/GNPs interactions60 by monitoring either the intensity or the position of the LSPR (localized surface plasmon resonance) band of GNPs around 420 nm. Winuprasith et al. used SERS (surface enhanced Raman spectroscopy) to observe the enhancement of Raman bands of the amino acid residues (likely cysteine, tryptophan, etc.) involved in the interaction with the GNPs.61 Finally, Vaishanav et al. used fluorescence spectroscopy to investigate protein/GNPs interactions.62 Based on these studies, we used fluorescence spectroscopy to understand the interaction between GNPs and LYZ or BSA proteins in aqueous solution. After an excitation with a 250 nm radiation, the fluorescence spectra of BSA and lysozyme solutions, at a fixed concentration of 10 mg/mL, were recorded after addition of increasing volumes of a GNP solution. The fluorescence spectra, shown in Figure 5, display a peak at the wavelength 340 nm due to the emission of tryptophan residue.60 The addition of GNPs results in a quenching of the fluorescence intensity. This effect may be ascribed to the formation of non-fluorescent GNPs-protein conjugates (static quenching) thus suggesting that the tryptophan residues are involved in the interaction with GNPs.63,64
Figure 5. Fluorescence spectra of (A) BSA/GNPs and (B) LYZ/GNPs aqueous solutions with different volume ratios. (C) Raman spectrum of LYZ/GNPs conjugate solution.

Fluorescence spectra of GNPs-BSA conjugates undergo a lower quenching compared to those of GNPs-lysozyme conjugates, for the same concentration of GNPs. This fact suggests that the GNPs could display stronger interactions with lysozyme than with BSA. This different interaction may be due to the structural difference between the two proteins. Indeed, lysozyme possesses six tryptophan residues whereas BSA only two (Figure 6). Moreover, lysozyme is smaller than BSA, thus the odds that such residues are sufficiently exposed to establish an interaction with the GNPs are considerably higher. This different abundance and availability of tryptophan residues may be the reason why the fluorescence spectra of GNPs-LYZ conjugates undergo a higher quenching compared to those of GNPs-BSA conjugates.

Figure 6. Structure of BSA (PDB file: 3V03) and Lysozyme (PDB file: 1LYZ). Tryptophan residues are colored in red. Images obtained with VMD (Visual Molecular Dynamics) software.
The effect of BSA induced by GNPs was studied through SERS by Iosin et al.67 They found that the occurrence of GNPs modifies the Raman spectrum of BSA, causing an increase in the intensity of the bands (SERS effect) of tryptophan residues. This again confirms that tryptophan is significantly involved in the interaction with GNPs. Figure 5C shows the Raman spectrum of lysozyme solution compared to that obtained after the addition of GNPs. Similarly to what observed for BSA,67 also for lysozyme the Raman signals of tryptophan are enhanced in the presence of GNPs (Figure 5C). Even other signals turned out to be enhanced, at 1583 cm-1 and 1616 cm-1, which are respectively related to phenylalanine and tyrosine.68 Nevertheless, this fact may likely be due only to the spatial proximity of the latter residues to some tryptophan amino acids. Remarkably, findings from different techniques converge to very similar conclusions.

3. Conclusions

In this work we have addressed the design of multicomponent nano-bioconjugates as a mean to expand the range of available nanostructures for possible biomedical use. In particular, we have shown that mesoporous silica nanoparticles with a hexagonal structure could be covalently conjugated to two relevant proteins, such as bovine serum albumin and lysozyme. The conjugation with BSA and lysozyme, quantified by thermogravimetric analysis, varies the surface properties as shown by zeta potential measurements. Protein conjugation also modifies surface reactivity, enabling effective interaction with gold nanoparticles. TEM clearly points out that the bare nanoparticles (MSN-NH\textsubscript{2}) poorly interact with large (20 nm) GNPs, as compared to protein-coated MSNs. TEM images of the MSN-protein-GNP nano-bioconjugates indicate a more specific interaction promoted by the protein coating. Indeed, TEM images of GNPs located on the MSNs surface provide an indirect information on protein surface location. The promising results obtained for our new nano-bioconjugates may be related to the tryptophan mediated interaction between proteins and GNPs, as demonstrated by fluorescence and Raman spectroscopies. Further work will
be needed to investigate the application of the obtained nano-bioconjugates in nanomedicine as biocompatible theranostic devices.

4. Experimental section

4.1 Chemicals

Tetraethylorthosilicate (TEOS, 98%), 3-aminopropyltriethoxysilane (APTES, 97%), glutaraldehyde (50% aqueous solution w/v), cetyltrimethylammonium bromide (CTAB), gold colloid solutions (GNP, average size 20nm and 5 nm), sodium hydroxide (NaOH, 97%), anhydrous toluene (99.8%), methanol (99.8%), acetone (99%), bovine serum albumin (BSA), disodium hydrogen phosphate (≥99%) were purchased from Sigma-Aldrich. Sodium dihydrogen phosphate was purchased from J.T. Baker.

4.2 Preparation of MSN-protein-GNPs nano-bioconjugates

Aminopropyl functionalized mesoporous silica nanoparticles (MSN-NH2) were prepared following the method reported in ref.69 Then, MSN-protein-GNP nano-bioconjugates were prepared. Preliminary studies were carried out to find the conditions which avoid the formation of MSN aggregates. A mass of 20 mg of MSN-NH2 was dispersed in 2 mL of 0.1M phosphate buffer at pH 8 with the help of an ultrasonic bath. A volume of 8 μL of glutaraldehyde (GA) was then added, and the mixture obtained was left under mild rotation (60 rpm) for 45 minutes. The suspension was centrifuged (4500 rpm for 15 minutes) and the liquid phase was removed from the solid through a Pasteur pipette. The remaining solid (MSN-GA) was washed twice with phosphate buffer solution 0.1 M at pH 8, dispersed under vigorous stirring and then recovered by centrifugation (4500 rpm for 15 minutes), and then suspended in the protein solution prepared in phosphate buffer 0.1 M at pH 8. In the case of lysozyme, 3 mL of a 5 mg/mL lysozyme solution was used, whereas 1.5 mL of a 10 mg/mL was used for BSA. The suspension was left under mild rotation (60 rpm) overnight. After centrifugation (4500 rpm for 15 minutes) the retrieved solid fraction was washed twice with phosphate buffer solution (0.1 M at pH 8) and dried under vacuum. The complete MSN-protein-
GNP nano-bioconjugates were assembled by adding 700 μL of colloidal gold solution to 2 mg of obtained MSN-protein conjugates and leaving the dispersion under rotation (60 rpm) overnight. Then, the liquid fraction was removed after centrifugation (4500 rpm for 15 minutes). The recovered solid was dried under vacuum and observed by Transmission Electron Microscopy.

4.3 Physico-chemical characterization of MSNs, MSN-protein, and MSN-protein-GNP samples.

The structure of MSN-NH₂ was verified by SAXS while specific surface area and pore size distribution, were obtained by N₂ adsorption/desorption isotherms at 77 K recorded on a Micromeritics ASAP2020 using the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Transmission electron microscopy (TEM) images were recorded on a Hitachi H-7000 equipped with a thermoionic W filament running at 100 kV. Images were collected by a AMT DVC (2048 × 2048 pixel) CCD Camera. Samples for observation were obtained by direct deposition of the finely ground powders on a carbon-coated copper grid. Thermogravimetric analysis (TGA) was carried out through a Mettler Toledo TGA/SDTA 851. The scans were collected under oxygen as reactive gas and nitrogen as carrier gas in the range 25°C-1000 °C. FTIR spectra were obtained through a Bruker Tensor 27 spectrometer equipped with a Platinum-ATR accessory and a DTGS (deuterated tri-glycine sulfate) detector. Zeta potential (ζ) of MSNs was measured using a Zetasizer Nano ZSP (Malvern Instruments) in backscatter configuration (θ = 173°), at laser wavelength of λ = 633 nm. The scattering cell temperature was fixed at 25°C, and the data were analyzed with the Zetasizer software 7.03 version. The sample was prepared by suspending MSNs (1 mg/mL) in citrate buffer solution 0.1M and phosphate buffer solution 0.1M to obtain the zeta potential values at pH 4 and pH 7, respectively. Samples were sonicated for 30 min and left under stirring overnight and then electrophoretic mobility measurements were carried out. Zeta potential values were calculated by mean of the Henry
equation using water as the dispersant medium ($\varepsilon_r = 78.5$, and $\eta = 0.89$ cP at 25°C) and $f(\kappa a) = 1.5$ (Smoluchowski approximation).

4.4 Spectroscopic characterization of GNP-protein conjugates

GNP-protein conjugates were prepared by adding to 500 μL of 10 mg/mL protein solution in 0.1M phosphate buffer at pH 7 increasing amounts of GNPs solution, 50 μL, 100 μL and 200 μL. Photoluminescence (PL) spectra of the conjugates with different GNP-protein ratio thus obtained were carried out by exciting GNP-protein samples with the emission at 250 nm of an optical parametric oscillator with frequency doubler device (Spectra Physics MOPO), seeded by a pulsed Nd-YAG laser (Spectra Physics Quanta Ray PRO-270). The excitation pulse energy was of about 1 mJ/pulse and pulse-width at half-maximum was 8 ns with 10 Hz repetition rate. PL measurements were performed in backscattering geometry, focusing the emitted light signal onto the entrance slit of a monochromator (ARC Spectra Pro 300i) with spectral band width of 12 nm. The signal was detected by a gatable intensified CCD (Princeton Instruments PIMAX). Raman scattering measurements were carried out in back scattering geometry with the 632 nm line of an He-Ne laser. Measurements were performed in air at room temperature with a triple spectrometer Jobin-Yvon Dilor integrated system with a spectral resolution of about 1 cm$^{-1}$.

Acknowledgements

FIR 2017-2018, Fondazione di Sardegna / Regione Autonoma della Sardegna (CUP F72F16003070002) are acknowledged for financial support. AS thanks FFABR 2017 (MIUR). MVR thanks the European Research Council (Advanced Grant VERDI; ERC-2015-AdG Proposal no. 694160). GRD thanks MIUR-PON-RI 2014-2020 for financing her PhD scholarship.

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website: Textural and structural parameters of MSN-NH$_2$, FTIR spectra of MSN-BSA and MSN-LYZ samples, and TEM images of MSN-NH$_2$ control samples treated with GNPs.

References

(1) Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in Cancer Therapy: Challenges, Opportunities, and Clinical Applications. *J. Control. Release* 2015, 200, 138–157.

(2) Chang, E. H.; Harford, J. B.; Eaton, M. A. W.; Boisseau, P. M.; Dube, A.; Hayeshi, R.; Swai, H.; Lee, D. S. Nanomedicine: Past, Present and Future - A Global Perspective. *Biochem. Biophys. Res. Commun.* 2015, 468, 511–517.

(3) Mondazzi, M.; Lampis, S.; Murgia, S.; Salis, A. From Self-Assembly Fundamental Knowledge to Nanomedicine Developments. *Adv. Colloid Interface Sci.* 2014, 205, 48–67.

(4) Chen, S.; Zhang, Q.; Hou, Y.; Zhang, J.; Liang, X. J. Nanomaterials in Medicine and Pharmaceuticals: Nanoscale Materials Developed with Less Toxicity and More Efficacy. *Eur. J. Nanomedicine* 2013, 5, 61–79.

(5) Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, B.; Zink, J. F.; Zink, J. I. Mesoporous Silica Nanoparticles in Biomedical Applications W. *Chem. Soc. Rev.* 2012, 41, 2590–2605.

(6) Mamaeva, V.; Sahlgren, C.; Lindén, M. Mesoporous Silica Nanoparticles in Medicine-Recent Advances. *Adv. Drug Deliv. Rev.* 2013, 66, 689–702.

(7) Argyo, C.; Weiss, V.; Bra, C.; Bein, T. Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. *Chem. Mater.* 2014, 26, 435–451.

(8) Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; et al. Mesoporous Silica Nanoparticles in Drug Delivery and Biomedical Applications. *Nanomedicine Nanotechnology, Biol. Med.* 2015, 11, 313–327.

(9) Manzano, M.; Vallet-Regí, M. Mesoporous Silica Nanoparticles in Nanomedicine Applications. *J. Mater. Sci. Mater. Med.* 2018, 29, 65.

(10) Yang, Y.-W. Towards Biocompatible Nanovalves Based on Mesoporous Silica Nanoparticles. *Med. Chem. Commun.* 2011, 2, 1033–1049.

(11) Nairi, V.; Medda, L.; Monduzzi, M.; Salis, A. Adsorption and Release of Ampicillin Antibiotic from Ordered Mesoporous Silica. *J. Colloid Interface Sci.* 2017, 497, 217–225.

(12) Croissant, J. G.; Zhang, D.; Alsaiari, S.; Lu, J.; Deng, L.; Tamanoi, F.; Almalik, A. M.; Zink, J. I.; Khashab, N. M. Protein-Gold Clusters-Capped Mesoporous Silica Nanoparticles for High Drug Loading, Autonomous Gemcitabine / Doxorubicin Co-Delivery, and in-Vivo Tumor Imaging. *J. Control. Release* 2016, 229, 183–191.

(13) Tsai, C.; Vivero-Escoto, J. L.; Slowing, I. I.; Fang, I.; Trewyn, B. G.; Lin, V. S. Biomaterials Surfactant-Assisted Controlled Release of Hydrophobic Drugs Using Anionic Surfactant Templated Mesoporous Silica Nanoparticles. *Biomaterials* 2011, 32, 6234–6244.

(14) Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin, V. S.; Memoriam, I.; Victor, P. Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. *2010, 6, 1952–
1967.

(15) Evic’, N. Z. . K.; Trewyn, B. G.; Lin, V. S.-Y. Functionalized Mesoporous Silica Nanoparticle-Based Visible Light Responsive Controlled Release Delivery System W. Chem. Commun. 2011, 47, 2817–2819.

(16) Aznar, E.; Oroval, M.; Pascual, L.; Murguía, J. R.; Martínez-Máñez, R.; Sancenón, F. Gated Materials for On-Command Release of Guest Molecules. Chem. Rev. 2016, 116, 561–718.

(17) Lou, X.; Li, Y.; Yang, Y. Gated Materials: Installing Macrocyclic Arenes-Based Supramolecular Nanovalves on Porous Nanomaterials for Controlled Cargo Release. Biotechnol. J. 2019, 14, 1800354.

(18) Wang, X.; Tan, L.-L.; Yang, Y.-W. Controlled Drug Release System Based on Mesoporous Silica Capped by Gold Nanoparticles. ACTA Chim. Sin. 2016, 74, 303–311.

(19) Hu, X.; Spada, S.; White, S.; Hudson, S.; Magner, E.; Wall, J. G. Adsorption and Activity of a Domoic Acid Binding Antibody Fragment on Mesoporous Silicates. J. Phys. Chem. B 2006, 110, 18703–18709.

(20) Prabhakar, N.; Zhang, J.; Desai, D.; Casals, E.; Gulin-Sarfraz, T.; Näreoja, T.; Westermarck, J.; Rosenholm, J. M. Stimuli- Responsive Hybrid Nanocarriers by Controllable Integration of Hyperbranched PEI on Mesoporous Silica Particles for Sustained Intracellular siRNA Delivery. Interna J. Nanomedicine 2016, 11, 6591–6608.

(21) Baeza, A.; Manzano, M.; Colilla, M.; Vallet-Regi, M. Recent Advances in Mesoporous Silica Nanoparticles for Antitumor Therapy: Our Contribution. Biomater. Sci. 2016, 4, 803–813.

(22) Maggini, L.; Cabrera, I.; Ruiz-Carretero, A.; Prasetyanto, E. A.; Robinet, E.; De Cola, L. Breakable Mesoporous Silica Nanoparticles for Targeted Drug Delivery. Nanoscale 2016, 8, 7240–7247.

(23) Beck, M.; Mandal, T.; Buske, C.; Lindén, M. Serum Protein Adsorption Enhances Active Leukemia Stem Cell Targeting of Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 18566–18574.

(24) Song, N.; Yang, Y.-W. Molecular and Supramolecular Switches on Mesoporous Silica Nanoparticles. Chem. Soc. Rev. 2015, 44, 3349–3862.

(25) Salis, A.; Fanti, M.; Medda, L.; Nairi, V.; Cugia, F.; Piludu, M.; Sogos, V.; Monduzzi, M. Mesoporous Silica Nanoparticles Functionalized with Hyaluronic Acid and Chitosan Biopolymers. Effect of Functionalization on Cell Internalization. ACS Biomater. Sci. Eng. 2016, 2, 741-751.

(26) Nairi, V.; Medda, S.; Piludu, M.; Casula, M. F.; Vallet-Regi, M.; Monduzzi, M.; Salis, A. Interactions between Bovine Serum Albumin and Mesoporous Silica Nanoparticles Functionalized with Biopolymers. Chem. Eng. J. 2018, 340, 42–50.

(27) Magner, E. Immobilisation of Enzymes on Mesoporous Silicate Materials. Chem. Soc. Rev. 2013, 42, 6213.

(28) Hartmann, M.; Kostrov, X. Immobilization of Enzymes on Porous Silicas – Benefits and Challenges. Chem. Soc. Rev. 2013, 42, 6277.
(29) Salis, A.; Medda, L.; Cugia, F.; Monduzzi, M. Effect of Electrolytes on Proteins Physisorption on Ordered Mesoporous Silica Materials. *Colloids Surfaces B Biointerfaces* 2016, 137, 77–90.

(30) Pitzalis, F.; Monduzzi, M.; Salis, A. A Bienzymatic Biocatalyst Constituted by Glucose Oxidase and Horseradish Peroxidase Immobilized on Ordered Mesoporous Silica. *Microporous Mesoporous Mater.* 2017, 241, 145–154.

(31) Steri, D.; Monduzzi, M.; Salis, A. Ionic Strength Affects Lysozyme Adsorption and Release from SBA-15 Mesoporous Silica. *Microporous Mesoporous Mater.* 2013, 170, 164–172.

(32) Medda, L.; Casula, M. F.; Monduzzi, M.; Salis, A. Adsorption of Lysozyme on Hyaluronic Acid Functionalized SBA-15 Mesoporous Silica: A Possible Bioadhesive Depot System. *Langmuir* 2014, 30, 12996–13004.

(33) Piras, M.; Salis, A.; Piludu, M.; Steri, D.; Monduzzi, M. 3D Vision of Human Lysozyme Adsorbed onto a SBA-15 Nanostructured Matrix. *Chem. Commun.* 2011, 47, 7338.

(34) Piludu, M.; Medda, L.; Cugia, F.; Monduzzi, M.; Salis, A. Silver Enhancement for Transmission Electron Microscopy Imaging of Antibody Fragment-Gold Nanoparticles Conjugates Immobilized on Ordered Mesoporous Silica. *Langmuir* 2015, 31, 9458–9463.

(35) Carrillo-carrion, C.; Bocanegra, A. I.; Arnaiz, B.; Feliu, N.; Zhu, D.; Parak, W. J. Triple-Labeling of Polymer Coated Quantum Dots and Adsorbed Proteins for Tracing Their Fate in Cell Cultures. *ACS Nano* 2019, 13, 4631–4639.

(36) Heuer-jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E.; et al. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. *Chem. Rev.* 2019, 119, 4819–4880.

(37) Shahabi, S.; Döscher, S.; Bollhorst, T.; Treccani, L.; Maas, M.; Dringen, R.; Rezwan, K. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum. *ACS Appl. Mater. Interfaces* 2015, 7, 26880–26891.

(38) Luo, Z.; Hu, Y.; Xin, R.; Zhang, B.; Li, J.; Ding, X.; Hou, Y.; Yang, L.; Cai, K. Surface Functionalized Mesoporous Silica Nanoparticles with Natural Proteins for Reduced Immunotoxicity. *J. Biomed. Mater. Res. A* 2013, 102A, 3781–3794.

(39) Mandal, T.; Beck, M.; Kirsten, N.; Lindén, M.; Buske, C. Targeting Murine Leukemic Stem Cells by Antibody Functionalized Mesoporous Silica Nanoparticles. *Sci. Rep.* 2018, 8, 2–9.

(40) Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O. C. Cancer Nanotechnology: The Impact of Passive and Active Targeting in the Era of Modern Cancer Biology. *Adv. Drug Deliv. Rev.* 2014, 66, 2–25.

(41) Sun, T.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M.; Xia, Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. *Angew. Chem. Int. Ed.* 2014, 53, 12320–12364.

(42) Xian, Y.; Xian, Y.; Zhou, L.; Wu, F.; Ling, Y.; Jin, L. Encapsulation Hemoglobin in Ordered Mesoporous Silicas: Influence Factors for Immobilization and Bioelectrochemistry. *Electrochem. commun.* 2007, 9, 142–148.

(43) Baumann, B.; Wittig, R.; Lindén, M. Mesoporous Silica Nanoparticles in Injectable
Hydrogels: Factors Influencing Cellular Uptake and Viability. *Nanoscale* **2017**, *9*, 12379–12390.

(44) Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer Cell Imaging and Photothermal Therapy in the near-Infrared Region by Using Gold Nanorods. *J. Am. Chem. Soc.* **2006**, *128*, 2115–2120.

(45) Xie, J.; Lee, S.; Chen, X. Nanoparticle-Based Theranostic Agents. *Adv. Drug Deliv. Rev.* **2010**, *62*, 1064–1079.

(46) Chanana, M.; Gil, P. R.; Correa-duarte, M. A.; Liz-Marzan, L. M.; Parak, W. J. Physicochemical Properties of Protein-Coated Gold Nanoparticles in Biological Fluids and Cells before and after Proteolytic Digestion. *Angew. Chemie Int. Ed.* **2013**, *52*, 4179–4183.

(47) Xin Wang, Li-Li Tan, Xi Li, Nan Song, Zheng Li, Jia-Na Hu, Yi-Ming Cheng, Y. W. and Y.-W. Y. Smart Mesoporous Silica Nanoparticles Gated by Pillararene-Modified Gold Nanoparticles for on-Demand Cargo Release. *Chem. Commun.* **2016**, *52*, 13775–13778.

(48) Zhan, Q.; Qian, J.; Li, X.; He, S. A Study of Mesoporous Silica-Encapsulated Gold Nanorods as Enhanced Light Scattering Probes for Cancer Cell Imaging. *Nanotechnology* **2010**, *21*, 55704.

(49) Li, L.; Wang, H. Enzyme-Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo. *Adv. Healthc. Mater.* **2013**, *2*, 1351–1360.

(50) Lee, W.; Park, E. J.; Kwak, S.; Kim, Y.; Na, D. H.; Bae, J. S. PEGylated Lysozymes with Anti-Septic Effects in Human Endothelial Cells and in Mice. *Biochem. Biophys. Res. Commun.* **2015**, *459*, 662–667.

(51) Koutsopoulos, S.; Unsworth, L. D.; Nagai, Y.; Zhang, S. Controlled Release of Functional Proteins through Designer Self-Assembling Peptide Nanofiber Hydrogel Scaffold. *Proc. Natl. Acad. Sci.* **2009**, *106*, 4623–4628.

(52) Rabbani, G.; Ahmad, E.; Khan, M. V.; Ashraf, M. T.; Bhat, R.; Khan, R. H. Impact of Structural Stability of Cold Adapted Candida Antarctica Lipase B (CaLB): In Relation to pH, Chemical and Thermal Denaturation. *RSC Adv.* **2015**, *5*, 20115–20131.

(53) Piludu, M.; Medda, L.; Monduzzi, M. Gold Nanoparticles: A Powerful Tool to Visualize Proteins on Ordered Mesoporous Silica and for the Realization of Theranostic Nanobioconjugates. *Int. J. Mol. Sci.* **2018**, *19*, 1991.

(54) Perro, A.; Meunier, F.; Schmitt, V.; Ravaine, S. Production of Large Quantities of “Janus” nanoparticles Using Wax-in-Water Emulsions. *Colloids Surfaces A Physicochem. Eng. Asp.* **2009**, *332*, 57–62.

(55) Phonthammachai, N.; Kah, J. C. Y.; Jun, G.; Sheppard, C. J. R.; Olivo, M. C.; Mhaisalkar, S. G.; White, T. J. Synthesis of Contiguous Silica - Gold Core - Shell Structures: Critical Parameters and Processes. *Langmuir* **2008**, *24*, 5109–5112.

(56) Jankiewicz, B. J.; Jamiola, D.; Choma, J.; Jaroniec, M. Silica – Metal Core – Shell Nanostructures. *Adv. Colloid Interface Sci.* **2012**, *170*, 28–47.

(57) Choma, J.; Dziura, A.; Jamiola, D.; Nyga, P.; Jaroniec, M. Physicochemical and Engineering Aspects Preparation and Properties of Silica – Gold Core – Shell Particles. *Colloids Surfaces A Physicochem. Eng. Asp.* **2011**, *373*, 167–171.
(58) Westcott, S. L.; Oldenburg, S. J.; Lee, T. R.; Halas, N. J. Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces. *Langmuir* **1998**, *14*, 5396–5401.

(59) Brewer, S. H.; Glomm, W. R.; Johnson, M. C.; Knag, M. K.; Franzen, S. Probing BSA Binding to Citrate-Coated Gold Nanoparticles and Surfaces. *Langmuir* **2005**, *21*, 9303–9307.

(60) Iosin, M.; Canpean, V.; Astilean, S. Spectroscopic Studies on pH- and Thermally Induced Conformational Changes of Bovine Serum Albumin Adsorbed onto Gold Nanoparticles. *J. Photochem. Photobiol. A Chem.* **2011**, *217*, 395–401.

(61) Winuprasith, T.; Suphantharika, M.; McClements, D. J.; He, L. Spectroscopic Studies of Conformational Changes of β-Lactoglobulin Adsorbed on Gold Nanoparticle Surfaces. *J. Colloid Interface Sci.* **2014**, *416*, 184–189.

(62) Vaishanav, S. K.; Chandraker, K.; Korram, J.; Nagwanshi, R.; Ghosh, K. K.; Satnami, M. L. Protein Nanoparticle Interaction: A Spectrophotometric Approach for Adsorption Kinetics and Binding Studies. *J. Mol. Struct.* **2016**, *1117*, 300–310.

(63) Sa, G.; Maduen, R.; Sevilla, J. M.; Bla, M.; Pineda, T. In Fl Uence of the Global Charge of the Protein on the Stability of Lysozyme – AuNP Bioconjugates. *Phys. Chem. C* **2014**, *118*, 22274–22283.

(64) Du, J.; Xia, Z. Interactions of Gold Nanoparticles and Lysozyme by Fluorescence Quenching Method. *Anal. Lett.* **2012**, *45*, 2236–2245.

(65) Majorek, K. A.; Porebski, P. J.; Dayal, A.; Zimmerman, M. D.; Jablonska, K.; Stewart, A. J.; Chruszcz, M.; Minor, W. Structural and Immunologic Characterization of Bovine, Horse, and Rabbit Serum Albumins. *Mol. Immunol.* **2012**, *52*, 174–182.

(66) Diamond, R. Real-Space Refinement of the Structure of Hen Egg-White Lysozyme. *J. Mol. Biol.* **1974**, *82*, 371–391.

(67) Iosin, M.; Toderas, F.; Baldeck, P. L.; Astilean, S. Study of Protein-Gold Nanoparticle Conjugates by Fluorescence and Surface-Enhanced Raman Scattering. *J. Mol. Struct.* **2009**, *924–926*, 196–200.

(68) Zhang, D.; Neumann, O.; Wang, H.; Yuwono, V. M.; Barhoumi, A.; Perham, M.; Hartgerink, J. D.; Wittung-Stafshede, P.; Halas, N. J. Gold Nanoparticles Can Induce the Formation of Protein-Based Aggregates at Physiological pH. *Nano Lett.* **2009**, *9*, 666–671.

(69) Nairi, V.; Magnolia, S.; Piludu, M.; Nieddu, M.; Caria, C. A.; Sogos, V.; Vallet-Regì, M.; Monduzzi, M.; Salis, A. Mesoporous Silica Nanoparticles Functionalized with Hyaluronic Acid. Effect of the Biopolymer Chain Length on Cell Internalization. *Colloids Surfaces B Biointerfaces* **2018**, *2*, 741–751.

(70) Sing, K. The Use of Nitrogen Adsorption for the Characterisation of Porous Materials. *Colloids Surfaces A Physicochem. Eng. Asp.* **2001**, *187–188*, 3–9.