The Graph Structure of the Generalized Discrete Arnold’s Cat Map

Chengqing Li, Kai Tan, Bingbing Feng, Jinhu Lü

Abstract—Chaotic dynamics is an important source for generating pseudorandom binary sequences (PRNS). Much efforts have been devoted to obtaining period distribution of the generalized discrete Arnold’s Cat map in various domains using all kinds of theoretical methods, including Hensel’s lifting approach. Diagonalizing the transform matrix of the map, this paper gives the explicit formulation of any iteration of the generalized Cat map. Then, its real graph (cycle) structure in any binary arithmetic domain is disclosed. The subtle rules on how the cycles (itself and its distribution) change with the arithmetic precision ϵ are elaborately investigated and experimentally verified. The results will facilitate research on dynamics of variants of the Cap map in any domain and its effective application in cryptography. In addition, the used methodology can be used to evaluate randomness of PRNS generated by iterating any other maps.

Index Terms—cycle structure, chaotic cryptography, fixed-point arithmetic, generalized Cat map, period distribution, PRNS, pseudorandom number sequence.

I. INTRODUCTION

PERIOD and cycle distribution of chaotic systems are fundamental characteristics measuring their dynamics and function, and supporting their practical values [1], [2]. As the most popular application form, various digitized chaotic systems were constructed or enhanced as a source of producing random number sequences: Tent map [3], Logistic map [4], Cat map [5], Chebyshev map of even degree [7], piecewise linear map [8], and Chua’s attractor [9]. Among them, Arnold’s Cat map

$$f(x, y) = (x + y, x + 2y) \mod 1$$

is one of the most famous chaotic maps, named after Vladimir Arnold, who heuristically demonstrated its stretching (mixing) effects using an image of a Cat in [10, Fig. 1.17]. Attracted by the simple form but complex dynamics of Arnold’s Cat map, it is adopted as a hot research object in various domains: quadratic field [11], two-dimensional torus [11], [13], [14], finite-precision digital computer [15], [16], quantum computer [17]–[19]. In [20], Cat map is used as an example to define a microscopic entropy of chaotic systems. The nice properties of Cat map demonstrated in the infinite-precision domains seemingly support that it is widely used in many cryptographic applications, e.g. chaotic cryptography [21], image encryption [22], image privacy protection [23], [24], hashing scheme [25], PRNG [11], [26], random perturbation [27], designing unpredictable path flying robot [28].

Recently, the dynamics and randomness of digital chaos are investigated from the perspective of functional graphs (state-mapping networks) [29]. In [20], how the structures of Logistic map and Tent map change with the implementation precision ϵ is theoretically proved. Some properties on period of a variant of Logistic map over Galois ring \mathbb{Z}_3^e are presented [31], [32]. In [33], the phase space of cat map is divided into some uniform Ulam cells, and the associated directed complex network is built with respect to mapping relationship between every pair of cells. Then, the average path length of the network is used to measure the underlying dynamics of Cat map. In [34], the elements measuring phase space structures of Cat map, fixed points, periodic orbits and manifolds (stable or unstable), are detected with Lagrangian descriptors. In [35], the functional graph of general linear maps over finite fields is studied with various network parameters, e.g. the number of cycles and the average of the pre-period (transient) length. To quickly calculate the maximal transient length, fixed points and periodic limit cycles of the functional graph of digital chaotic maps, a fast period search algorithm using a tree structure is designed in [36].

The original Cat map (1) can be attributed to the general matrix form

$$f(x) = (\Phi \cdot x) \mod N,$$

where N is a positive integer, x is a vector of size $n \times 1$, and Φ is a matrix of size $n \times n$. The determinant of the transform matrix Φ in Eq. (2) is one, so the original Cat map is area-preserving. Keeping such fundamental characteristic of Arnold’s Cat map unchanged, it can be generalized or extended via various strategies: changing the scope (domain) of the elements in Φ [37]; extending the transform matrix to 2-D, 3-D and even any higher dimension [6], [38]; modifying the modulo N [39]; altering the domain of some parameters or variables [40].

Among all kinds of generalizations of Cat map, the one in 2-D integer domain received most intensive attentions due to its direct application on permuting position of elements of...
The whole analyses are divided into three parts according to theorems about Fibonacci numbers are used to obtain the upper and lower bounds of the period of Cat map (3), i.e.

\[
C = \begin{bmatrix} 1 & p \\ q & 1 + p \cdot q \end{bmatrix},
\]

where \(p, q, N \in \mathbb{Z}^+ \).

In this paper, we refer to the generalized Cat map (3) as Cat map for simplicity. In [41], the upper and lower bounds of the period of Cat map (3) with \((p, q) = (1, 1)\) are theoretically derived. In [42], the corresponding properties of Cat map (3) with \((p, q, N)\) satisfying some constrains are further disclosed. In [15], [16], [43], [44], F. Chen systematically analyzed the precise period distribution of Cat map (3) with any parameters. The whole analyses are divided into three parts according to influences on algebraic properties of \((\mathbb{Z}_N, +, \cdot)\) imposed by \(N\): a Galois field when \(N\) is a prime [43]; a Galois ring when \(N\) is a power of a prime [15], [16]; a commutative ring when \(N\) is a common composite [44]. According to the analysis methods adopted, the second case is further divided into two sub-cases \(N = p^e\) and \(N = 2^e\), where \(p\) is a prime larger than or equal to 3 and \(e\) is an integer. From the viewpoint of real applications in digital devices, the case of Galois ring \(\mathbb{Z}_{2^e}\) is of most importance since it is isomorphic to \(\mathbb{F}_p\) for simplicity. In [41], the upper and lower bounds of the period of Cat map (3) derived. In [42], the corresponding properties of Cat map (3) over Galois ring \(\mathbb{Z}_{2^e}\), shown in Property 1. Furthermore, the relationship between \(T\) and the number of different Cat maps possessing the period, \(N_T\), is precisely derived:

\[
N_T = \begin{cases}
1 & \text{if } T = 1; \\
3 & \text{if } T = 2; \\
2^{e+1} + 12 & \text{if } T = 4; \\
2^{e-1} + 2^e & \text{if } T = 6; \\
2^{e+k-2} + 3 \cdot 2^{2k-2} & \text{if } T = 2^k, k \in \{3, 4, \cdots, e-1\}; \\
2^{e-2} & \text{if } T = 2^2; \\
2^{e+k-1} & \text{if } T = 3 \cdot 2^k, k \in \{0, 2, 3, \cdots, e-2\},
\end{cases}
\]

where \(e \geq 4\).

Property 1. The representation form of \(T\) is determined by parity of \(p\) and \(q\):

\[
T = \begin{cases}
2^k, & \text{if } 2 \mid p \text{ or } 2 \mid q; \\
3 \cdot 2^k, & \text{if } 2 \nmid p \text{ and } 2 \nmid q.
\end{cases}
\]

where \(k \in \{0, 1, \cdots, e\}, k' \in \{0, 1, \cdots, e-2\}\).

When \(e = 3\),

\[
N_T = \begin{cases}
1 & \text{if } T = 1; \\
3 & \text{if } T = 2; \\
2^{e-1} & \text{if } T = 3; \\
2^{e+1} + 12 & \text{if } T = 4; \\
2^{e-1} + 2^e & \text{if } T = 6; \\
2^{2e-2} & \text{if } T = 8,
\end{cases}
\]

which cannot be presented as the general form [6] as [16] Table III, e.g. \(2^{2e-2} \neq 2^{e+k-2} + 3 \cdot 2^{2k-2}\) when \(e = k = 3\). From Eq. (6), one can see that there are \((1 + 3 + 2^{e-1} + 2^{e+1} + 12 + 2^{e-1} + 2^{e-2}) = 2^{e+2} + 16\) generalized Arnold’s maps whose periods are not larger than 6, which is a huge number for ordinary digital computer, where \(e \geq 32\).

The generating function of the sequence generated by iterating Cat map (3) over \(\mathbb{Z}_{2^e}\) from initial point \((x_0, y_0)\) can be represented as

\[
X(t) = \frac{g_e(t)}{f(t)}
\]

and

\[
Y(t) = \frac{g_y(t)}{f(t)},
\]

where

\[
\begin{bmatrix} g_x(t) \\ g_y(t) \end{bmatrix} = \begin{bmatrix} -1 - p \cdot q & p \\ q & -1 \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \cdot t + \begin{bmatrix} x_0 \\ y_0 \end{bmatrix},
\]

and

\[
f(t) = t^2 - ((pq + 2) \text{ mod } 2^e) \cdot t + 1.
\]
TABLE I: The conditions of \((p, q)\) and the number of their possible cases, \(N_T^f\), corresponding to a given \(T\).

\(T\)	\(p\)	\(q\)	\(N_T^f\)
1	\(p \mod 2^e = 2^{e-1}\)	\(q \mod 2^e = 2^{e-1}\)	1
2	\(p \equiv 1 \mod 2\)	\(q \mod 2^e = 2^{e-1}\)	2
3	\(p \equiv 1 \mod 2\)	\(q \equiv p^{-1}(2^e - 3) \mod 2^e\)	2^{e-1}
4	\(p \equiv 0 \mod 2, p \neq 0 \mod 4\)	\(q \equiv (p/2)^{-1}(2^e - 1) \mod 2^e\)	2^{e-1}
6	\(p \equiv 1 \mod 2\)	\(q \equiv (p/2)^{-1}(2^e - 1) \mod 2^e\)	2^{e-1}
\(2^k, k \in \{3, 4, \ldots, e-1\}\)	\(p \equiv 1 \mod 2\)	\(q \equiv (p/2)^{-1}(2^e - 1) \mod 2^e\)	2^{e-1}
\(2^e\)	\(p \equiv 0 \mod 2\)	\(q \equiv 1 \mod 2\)	2^{e-3}
\(3 \cdot 2^k, k \in \{2,3, \ldots, e-2\}\)	\(p \equiv 1 \mod 2\)	\(q \equiv p^{-1}(2^e - 1) \mod 2^e\), \(l \equiv 1 \mod 2, l \in [0, 2^{k-1} - 1]\)	2^{e-1+k}

Referring to Property [2] when \(p\) and \(q\) are not both even, the period of Cat map is equal to the period of \(f(t)\). So the period problem of Arnold’s Cat map becomes that of a decomposition part of its generation function. First, the number of distinct problem of Arnold’s Cat map becomes that of a decomposition of the period of any other points. A. Properties of functional graph of Cat map over \(\mathbb{Z}_{2^e}\) are given, respectively. Finally, the graph of Cat map over \(\mathbb{Z}_{2^e}\) is disclosed with the properties of two parameters of Cat map’s explicit presentation matrix.

III. THE STRUCTURE OF CAT MAP OVER \((\mathbb{Z}_{2^e}, +, \cdot)\)

First, some intuitive properties of Cat map over \((\mathbb{Z}_{2^e}, +, \cdot)\) are presented. Then, some general properties of Cat map over \((\mathbb{Z}_N, +, \cdot)\) and \((\mathbb{Z}_{2^e}, +, \cdot)\) are given, respectively. Finally, the regular graph structures of Cat map over \((\mathbb{Z}_{2^e}, +, \cdot)\) are disclosed with the properties of two parameters of Cat map’s explicit presentation matrix.

A. Properties of functional graph of Cat map over \((\mathbb{Z}_{2^e}, +, \cdot)\)

Functional graph of Cat map \((f)\) can provide direct perspective on its structure. The associate functional graph \(F_e\) can be built as follows: the \(N^2\) possible states are viewed as \(N^2\) nodes; the node corresponding to \(x_1 = (x_1, y_1)\) is directly linked to the other one corresponding to \(x_2 = (x_2, y_2)\) if and only if \(x_2 = f(x_1)\) or \(y_2 = f(y_1)\). To facilitate visualization as a 1-D network data, every 2-D vector in Cat map \((f)\) is transformed by a bijective function \(z_n = x_n + (y_n \cdot N)\). To describe how the functional graph of Cat map \((f)\) change with the arithmetic precision \(e\), let

\[
z_{n,e} = x_{n,e} + (y_{n,e} \cdot 2^e),
\]

where \(x_{n,e}\) and \(y_{n,e}\) denote \(x_n\) and \(y_n\) of Cat map \((f)\) with \(N = 2^e\), respectively.

As a typical example, we depicted the functional graphs of Cat map \((f)\) with \((p, q) = (1, 1)\) in four domains \(\{\mathbb{Z}_{2^e}\}^4_{e=1}\) in Fig. [1], where the number inside each circle (node) is \(z_{n,e}\) in \(F_e\). From Fig. [1] one can observe some general properties of functional graphs of Cat map \((f)\). Especially, there are only cycles, no any transient. The properties on permutation are concluded in Properties [3, 4].

Property 3. Cat map \((f)\) defines a bijective mapping on the set \((0, 1, 2, \ldots, N^2 - 1)\).

Proof. As Cat map \((f)\) is area-preserving on its domain, it defines a bijective mapping on \(N^2\), which is further transformed into a bijective mapping on \(\mathbb{Z}_{N^2}\) by conversion function \((g)\).

Property 4. As for a given \(N\), any node of functional graph of Cat map \((f)\) belongs one and only one cycle, a set of nodes such that Cat map \((f)\) iteratively map them one to the other in turn.

Proof. Referring to [45, Theorem 5.1.1], the set \((0, 1, 2, \ldots, N^2 - 1)\) is divided into some disjoint subsets such that Cat map \((f)\) is a cycle on each subset.

As the period of a Cat map in a domain is the least common multiple of the periods of its cycles, the functional graph of a Cat map possessing a large period may be composed of a great number of cycles of very small periods. The whole graph shown in Fig. [1] is composed of 16 cycles of period 12, 10.
We found that there exists strong evolution relationship between F_e and F_{e+1}. A node $z_{n,e} = x_{n,e} + y_{n,e}2^e$ in F_e is evolved to

$$z_{n,e+1} = (x_{n,e} + a_n2^e) + (y_{n,e} + b_n2^e)2^{e+1}$$

$$= z_{n,e} + (a_n2^e + y_{n,e}2^e + b_n2^{e+1}),$$

(9)

where $a_n, b_n \in \{0, 1\}$. The relationship between iterated node of $z_{n,e}$ in F_e and the corresponding evolved one in F_{e+1} is described in Property 5. Furthermore, the associated cycle is expanded to up to four cycles as presented in Property 6.

Assign (a_{n_0}, b_{n_0}) with one element in set (15), one can obtain the corresponding cycle in F_{e+1} with the steps given in Property 5. Then, the other element in set (15) can be assigned to (a_{n_0}, b_{n_0}) if it does not ever exist in the set in Eq. (14) corresponding to every assigned value of (a_{n_0}, b_{n_0}). Every cycle corresponding to different (a_{n_0}, b_{n_0}) can be generated in the same way.

Property 5. If the differences between inputs of Cat map (3) with $N = 2^e$ and that of Cat map (3) with $N = 2^{e+1}$ satisfy

$$\begin{bmatrix}
 x_{n,e+1} - x_{n,e} \\
 y_{n,e+1} - y_{n,e}
\end{bmatrix} = \begin{bmatrix} a_n \\ b_n \end{bmatrix} \cdot 2^e,$$

(10)

one has

$$\begin{bmatrix}
 a_{n+1} \\
 b_{n+1}
\end{bmatrix} = \begin{bmatrix} 1 & p \\ q & 1 + p \cdot q \end{bmatrix} \cdot \begin{bmatrix} a_n \\ b_n \end{bmatrix} + \begin{bmatrix} k_x \\ k_y \end{bmatrix} \mod 2,$$

(11)

$a_n, b_n \in \{0, 1\}$, $k_x = [k_x' / 2^e]$, $k_y = [k_y' / 2^e]$, and

$$\begin{bmatrix}
 k_x' \\
 k_y'
\end{bmatrix} = \begin{bmatrix} 1 & p \\ q & 1 + p \cdot q \end{bmatrix} \cdot \begin{bmatrix} x_{n,e} \\ y_{n,e} \end{bmatrix}.$$

(12)
According to the linearity of Cat map (3), one can get

Proof. According to the linearity of Cat map (3), one can get

\[
\begin{align*}
\begin{bmatrix} x_{n+1,e+1} - x_{n+1,e} \\ y_{n+1,e+1} - y_{n+1,e} \\ \end{bmatrix} & = \begin{bmatrix} 1 & p & \\ q & 1 + p \cdot q & \end{bmatrix} \begin{bmatrix} x_{n,e+1} - x_{n,e} \\ y_{n,e+1} - y_{n,e} \\ \end{bmatrix} + 2^e \begin{bmatrix} k_x \\ k_y \end{bmatrix} \mod 2^{e+1}. \quad (13)
\end{align*}
\]

As \(k \cdot a \equiv k \cdot a' \pmod{m} \) if and only if \(a \equiv a' \pmod{\gcd(m,k)} \) and \(a_{n+1,e}, b_{n+1,e} \in \{0,1\} \), the property can be proved by putting condition \((10)\) into equation \((13)\) and dividing its both sides and the modulo by \(2^e\).

Property 6. Given a cycle \(Z_e = \{ z_{n,e} \}_{n=0}^{T_e-1} \) in \(F_e \) and its any point \(z_{n_0,e} \), one has that the cycle to which \(z_{n_0,e+1} \) belongs in \(F_{e+1} \) is

\[
Z_{e+1} = (z_{n_0,e+1})_{n=n_0}^{n_0+kT_{e+1}-1},
\]

where

\[
k = \#\{ (a_{n_0}, b_{n_0}), (a_{n_0+T_e}, b_{n_0+T_e}), (a_{n_0+2T_e}, b_{n_0+2T_e}), (a_{n_0+3T_e}, b_{n_0+3T_e}) \}, \quad (14)
\]

\(z_{n,e} = z_{n',e} \) for \(n \geq T_e \), \(n' = n \mod T_e \), \(\{ (a_{n_0}, b_{n_0}) \}_{n=n_0}^{n_0+3T_e} \) are generated by iterating Eq. \((11)\) for \(n = n_0 \sim n_0 + 3T_e \), and \#(·) returns the cardinality of a set.

Proof. Given a node in a cycle, \((k_x, k_y) \) in Eq. \((11)\) is fixed, so Eq. \((11)\) defines a bijective mapping on set

\[
\{(0, 0), (0, 1), (1, 0), (1, 1)\}
\]

as shown in Fig. 4 So, \(z_{n,e+1} \) may fall in set \(\{ z_{j,e+1} \}_{j=n_0}^{n_0+kT_e-1} \) when and only when \((n - n_0) \mod T_e = 0 \) and \(n > n_0 \), i.e. the given cycle is went through one more times.
holds if and only if
\[
C^i \cdot \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \mod 2^e = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}.
\]

So \(G' = \{C^i \cdot (2X) \mod 2^{e+1}\}_{i=1}^{Te}\) also composes a group with respect to operator \(\hat{\circ}\), where \(q_1 \hat{\circ} q_2 = (C^{i_1} \cdot (2X)) \mod 2^{e+1}\), \(q_1 = (C^{i_1} \cdot (2X)) \mod 2^{e+1}\). Therefore, the two groups are isomorphic with respect to bijective map \(y = (2X) \mod 2^{e+1}\).

The period distribution of cycles in \(F_e\) follows a power-law distribution of fixed exponent one when \(e\) is sufficiently large. The number of cycles of any length is monotonically increased to a constant with respect to \(e\), which is shown in Table II where the dashline marked the case corresponding to the threshold value.

In [16], it is assumed that \(e \geq 3\) “because the cases when \(e = 1\) and \(e = 2\) are trivial”. On the contrary, the structure of functional graph of Cat map (3) with \(e = 1\), shown in Fig. 2, plays a fundamental role for that with \(e \geq 3\), e.g. the cycles of length triple of 3 in \(F_e\) (if there exist) are generated by the cycle of length 3 in \(F_1\).

Table II: The number of cycles of period \(T_c\) in \(F_e\) with \((p,q) = (9,14)\)

\(N_{T_c,e}\)	1	2	3	4	5	6	7	8	9	10	11	12	13
\(T_c\) mod 2\(^e\)	0	0	0	0	0	0	0	0	2\(^2\)	2\(^3\)	2\(^4\)	2\(^5\)	2\(^6\)
1	2	3	6	15	63	255	1023	4095	16383	4095	16383	4095	
2	2	1	1	1	1	1	1	1	1	1	1	1	

\(B.\) Properties on iterating Cat map over \((\mathbb{Z}_N,+,\cdot)\)

Diagonalizing the transform matrix of Cat map (3) with its eigenmatrix, the explicit representation of \(n\)-th iteration of the map can be obtained as Theorem I which serves as basis of the analysis of this paper.

The necessary and sufficient condition for the least period of Cat map (3) over \((\mathbb{Z}_N,+,\cdot)\) is given in Proposition I. Considering the even parity of \(G_n\), the condition can be simplified as Corollary I. Based on the property of \(H_n\) in Lemma 2 the inverse of the \(n\)-th iteration of Cat map is obtained as shown in Proposition 2.
Proof. If the period of Cat map (3) over \((\mathbb{Z}_N, +, \cdot)\) is \(T\), \(C^T \cdot X \equiv X \mod N\) exists for any \(X\). Setting \(X = [1, 0]^\top\) and \(X = [0, 1]^\top\) in order, one can get

\[
C^n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N
\]

(21)
when \(n = T\). Incorporating Eq. (16) into the above equation, one can assure that Eq. (20) exists when \(n = T\). As \(T\) is the least period, \(T\) is the minimum possible value of \(n\) satisfying Eq. (20). The condition is therefore necessary. If \(T\) is the minimum possible value of \(n\) satisfying Eq. (20), Eq. (21) holds, which means that \(T\) is a period of Cat map (3) over \((\mathbb{Z}_N, +, \cdot)\). As Eq. (21) does no exist for any \(n < T\), \(T\) is the least period of Cat map (3) over \((\mathbb{Z}_N, +, \cdot)\). So the sufficient part of the proposition is proved.

Lemma 1. For any positive integer \(m\), the parity of \(G_{2^m}\) is the same as that of \(G_s\), and

\[
\frac{1}{2}G_{2^m} \equiv 1 \mod 2
\]
if \(G_s\) is even, where \(s\) is a given positive integer.

Proof. Referring to Eq. (17), one has

\[
G_{2^m} = \left(\frac{A + B}{2} \right)^{2^m \cdot s} + \left(\frac{A - B}{2} \right)^{2^m \cdot s}
\]

\[
= \left(\left(\frac{A + B}{2} \right)^{2^{m-1} \cdot s} + \left(\frac{A - B}{2} \right)^{2^{m-1} \cdot s} \right)^2
\]

\[
-2 \left(\frac{A^2 - B^2}{4} \right)^{2^{m-1} \cdot s}
\]

\[
= (G_{2^{m-1}})^2 - 2.
\]

(22)
When \(m = 1\), \(G_{2s} = (G_s)^2 - 2\). So the parity of \(G_{2s}\) is the same as that of \(G_s\) no matter \(G_s\) is even or odd. In case \(G_s\) is even, \(\frac{1}{2}G_{2s} = \frac{1}{2}(G_s)^2 - 1 \equiv 1 \mod 2\). Proceed by induction on \(m\) and assume that the lemma hold for any \(m\) less than a positive integer \(k \geq 1\). When \(m = k\), \(G_{2^k} = (G_{2^{k-1}})^2 - 2\), which means that the parity of \(G_{2^k}\) is the same as that of \(G_{2^{k-1}}\), no matter \(G_{2^{k-1}}\) is even or odd. If \(G_s\) is even, \(\frac{1}{2}G_{2s} = \frac{1}{2}(G_{2^{k-1}})^2 - 1 \equiv 1 \mod 2\) also holds.

Corollary 1. If \(G_n\) is even, condition (20) is equivalent to

\[
\begin{cases}
 p \cdot H_n \equiv 0 \mod N, \\
 q \cdot H_n \equiv 0 \mod N, \\
 \frac{1}{2}p \cdot q \cdot H_n \equiv 0 \mod N, \\
 \frac{1}{2}G_n \equiv 1 \mod N.
\end{cases}
\]

(23)

Proof. If \(G_n\) is even, \(\frac{1}{2}G_n\) is an integer. As \(\frac{1}{2}G_n \pm \frac{1}{2}p \cdot q \cdot H_n\) is an integer, \(\frac{1}{2}G_n - \frac{1}{2}p \cdot q \cdot H_n\) is also an integer. So, one can get \(\frac{1}{2}p \cdot q \cdot H_n \equiv 0 \mod N\) and \(\frac{1}{2}G_n \equiv 1 \mod N\) from the last two congruences in condition (20).

Lemma 2. Sequence \(\{H_n\}_{n=1}^\infty\) satisfies

\[
H_{2^n \cdot s} = H_s \cdot \prod_{j=0}^{m-1} G_{2^j \cdot s},
\]

(24)
where \(m\) and \(s\) are positive integers.

Proof. This Lemma is proved via mathematical induction on \(m\). When \(m = 1\),

\[
H_{2s} = \frac{1}{B} \left(\left(\frac{A + B}{2} \right)^{2s} - \left(\frac{A - B}{2} \right)^{2s} \right)
\]

\[
= H_s \cdot G_s.
\]

(25)
Now, assume the lemma is true for any \(m\) in Eq. (24) less than \(k\). When \(m = k\),

\[
H_{2^k \cdot s} = \frac{1}{B} \left(\left(\frac{A + B}{2} \right)^{2^k \cdot s} - \left(\frac{A - B}{2} \right)^{2^k \cdot s} \right)
\]

\[
= \frac{1}{B} \left(\left(\frac{A + B}{2} \right)^{2^{k-1} \cdot s} - \left(\frac{A - B}{2} \right)^{2^{k-1} \cdot s} \right)
\]

\[
\cdot \left(\left(\frac{A + B}{2} \right)^{2^{k-1} \cdot s} + \left(\frac{A - B}{2} \right)^{2^{k-1} \cdot s} \right)
\]

\[
= H_{2^{k-1} \cdot s} \cdot G_{2^{k-1} \cdot s}.
\]

(26)
The above induction completes the proof of the lemma.

Proposition 2. The inverse of the \(n\)-th iteration of Cat map matrix

\[
C^{-n} = \begin{bmatrix}
\frac{1}{2}G_n + \frac{A-2}{2}H_n \\
- q \cdot H_n
\end{bmatrix},
\]

(27)

Proof. Referring to Eq. (22) and Lemma 2, one has

\[
C^{2n} = \begin{bmatrix}
\frac{1}{2}G_{2n} - \frac{A-2}{2}H_{2n} \\
q \cdot H_{2n}
\end{bmatrix}
\]

\[
= \frac{1}{2}G_n - 1 + \frac{A-2}{2}H_n G_n \\
q \cdot H_n G_n
\]

\[
= G_n \cdot C^n + \begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix}.
\]

So, the \(2n\)-th iteration of Cat map matrix (4) satisfies

\[
G_n \cdot C^n - C^{2n} = C^n \cdot (G_n \cdot I_2 - C^n)
\]

\[
= I_2.
\]

Substituting \(C^n\) in the above equation with Eq. (16), one can get Eq. (27).

C. Properties on iterating Cat map over \((\mathbb{Z}_{2^e}, +, \cdot)\)

In this sub-section, how the graph structure of Cat map changes with the binary implementation precision are disclosed. To study the change process with the incremental increase of the precision \(e\) from one, let \(\hat{e}\) denote the given implementation precision instead, which is the upper bound of \(e\).
Using Proposition 1 and Lemma 2 on the greatest common divisor of three integers, the necessary and sufficient condition for the least period of Cat map \((3) \) over \((\mathbb{Z}_{2^e}, +, \cdot)\) is simplified as Proposition 3 Then, Lemmas 3, 4, 5, and 6 describe how the two parameters of the least period of Cat map, \(\frac{1}{2}G_n \) and \(H_n \), change with the implementation precision.

Proposition 3. The least period of Cat map \((3) \) over \((\mathbb{Z}_{2^e}, +, \cdot)\) is \(T \) if and only if \(T \) is the minimum value of \(n \) satisfying

\[
\begin{cases}
\frac{1}{2}G_n = 1 \mod 2^e, \\
H_n = 0 \mod 2^{e-h_e},
\end{cases}
\]

where

\[
h_e = \begin{cases}
-1 & \text{if } e_p + e_q = 0; \\
\min(e_p, e_q) & \text{if } e > \min(e_p, e_q), e_p + e_q \neq 0; \\
e & \text{if } e \leq \min(e_p, e_q),
\end{cases}
\]

\(e_p = \max\{x \mid p \equiv 0 \mod 2^e \}, e_q = \max\{x \mid q \equiv 0 \mod 2^e \}, e \geq 1, \) and \(p, q \in \mathbb{Z}_{2^e} \).

Proof. Setting \(N = 2^e \) in Eq. \((23)\), its last congruence becomes Eq. \((28)\). Referring to Corollary 1 one can see that this proposition can be proved by demonstrating that Eq. \((29)\) is equivalent to the first three congruences in Eq. \((23)\).

Combining the first two congruences in Eq. \((23)\), one has

\[
H_n = 0 \mod 2^{e-h_{e,1}},
\]

where

\[
2^{e-h_{e,1}} = \text{lcm} \left(\frac{2^e}{\gcd(2^e, p)}, \frac{2^e}{\gcd(2^e, q)} \right).
\]

Referring to Lemma 3 one can get \(h_{e,1} = \max\{x \mid \gcd(p, q) \equiv 0 \mod 2^e \} \) as

\[
\text{lcm} \left(\frac{2^e}{\gcd(2^e, p)}, \frac{2^e}{\gcd(2^e, q)} \right) = \frac{2^e}{\gcd(\gcd(2^e, p), \gcd(2^e, q))}.
\]

The third congruence in Eq. \((23)\) is equivalent to

\[
H_n = \begin{cases}
0 \mod \frac{1}{2}G_{2^{e-s}} & \text{if } e_p + e_q = 0; \\
0 \mod \frac{2^e}{\gcd(2^e, p)} & \text{if } e_p + e_q > 0.
\end{cases}
\]

Combining Eq. \((31)\) and Eq. \((32)\), one can get \(h_e = \min(h_{e,1}, h_{e,2}) \) to assure that Eq. \((29)\) is equivalent to the first three congruences in Eq. \((23)\), where

\[
h_{e,2} = \begin{cases}
\min(e, e_p + e_q) - 1 & \text{if } e_p + e_q = 0; \\
\min(e, e_p + e_q - 1) & \text{if } e_p + e_q > 0.
\end{cases}
\]

From the definition of \(h_{e,1} \) and \(h_{e,2} \), one has

\[
h_{e,1} = \begin{cases}
\min(e_p, e_q) & \text{if } e > \min(e_p, e_q); \\
e & \text{if } e \leq \min(e_p, e_q),
\end{cases}
\]

and

\[
h_{e,2} = \begin{cases}
e_p + e_q - 1 & \text{if } e \geq e_p + e_q; \\
e & \text{if } e < e_p + e_q.
\end{cases}
\]

So,

\[
h_e = \begin{cases}
\min(\min(e_p, e_q), e_p + e_q - 1) & \text{if } e \geq e_p + e_q; \\
\min(\min(e_p, e_q), e) & \text{if } \min(e_p, e_q) < e < e_p + e_q; \\
e & \text{if } e \leq \min(e_p, e_q).
\end{cases}
\]

One can verify that

\[
\min(\min(e_p, e_q), e_p + e_q - 1) = \begin{cases}
\min(e_p, e_q) & \text{if } e_p + e_q > 0; \\
-1 & \text{if } e_p + e_q = 0.
\end{cases}
\]

If \(\min(e_p, e_q) < e \), one has \(\min(\min(e_p, e_q), e) = \min(e_p, e_q) \). So, \(h_e \) can be calculated as Eq. \((30)\).

Lemma 3. For any integers \(a, b, n \), one has

\[
\gcd(\gcd(d^n, a), \gcd(d^n, b)) = d^n s,
\]

where

\[
n_s = \max\{x \mid \gcd(a, b) \equiv 0 \mod d^s \},
\]

\(d \) is a prime number; \(\text{lcm} \) and \(\gcd \) denote the operator solving the least common multiple and greatest common divisor of two numbers, respectively.

Proof. Let \(a_d = \max\{x \mid a \equiv 0 \mod d^s \}, b_d = \max\{x \mid b \equiv 0 \mod d^s \}, \) so \(\min(\min(a_d, b), \min(n, a_d, b_d)) = \max\{x \mid \gcd(a, b) \equiv 0 \mod d^s \}. \)

Then, one has

\[
\gcd(\gcd(d^n, a), \gcd(d^n, b)) = \gcd(\gcd(d^n, d^s), \gcd(d^n, d^s)) = d^\min(\min(n, a_d), \min(n, b_d)) = d^n s.
\]

Lemma 4. Given an integer \(e > 1 \), if \(m \) and \(s \) satisfy

\[
\begin{align*}
\frac{1}{2}G_{2^{m-s}} &\equiv 1 \mod 2^e, \\
\frac{1}{2}G_{2^{m-s}} &\not\equiv 1 \mod 2^{e+1},
\end{align*}
\]

one has

\[
\begin{align*}
\frac{1}{2}G_{2^{m+1-s}} &\equiv 1 \mod 2^{e+2l-1}, \\
\frac{1}{2}G_{2^{m+1-s}} &\not\equiv 1 \mod 2^{e+2l},
\end{align*}
\]

where \(s \) and \(l \) are positive integers and \(m \) is a non-negative integer.

Proof. This lemma is proved via mathematical induction on \(l \). From condition \((34)\), one can get \(\frac{1}{2}G_{2^{m-s}} = 1 + a_e \cdot 2^e \), where \(a_e \) is an odd integer. Then, one has

\[
\begin{align*}
\frac{1}{2}G_{2^{m+1-s}} &= \frac{1}{2}(G_{2^{m-s}} - 2) \\
&= \frac{1}{2}((2 + a_e \cdot 2^{e+1})^2 - 2) \\
&= 2^{e+2} \cdot a_e \cdot (a_e \cdot 2^{e-1} + 1) + 1.
\end{align*}
\]

As \(a_e \cdot (a_e \cdot 2^{e-1} + 1) \) is odd, condition \((35)\) exists for \(l = 1 \). Assume that condition \((35)\) hold for \(l = k \), namely
where \(T_1 \) is the least period of Cat map \([3] \) over \((\mathbb{Z}_2, +, \cdot)\).

Proof. Depending on the parity of \(p, q \), the proof is divided into the following three cases:

- When \(p, q \) are both odd:
 \[
 C \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod 2.
 \]
 One can calculate \(T_1 = 3 \). From Eq. (17), one has
 \[
 G_3 = \left(\frac{A + B}{2} \right)^3 + \left(\frac{A - B}{2} \right)^3
 = \frac{2A^3 + 6A \cdot B^2}{8}
 = A^3 - 3A.
 \]
 As \(A = p \cdot q + 2 \) is odd, \(G_{T_1} \) is even.

- When only \(p \) or \(q \) is odd: \(C \equiv [1 \ 1] \mod 2 \) if \(p \) is odd; \(C \equiv [1 \ 0] \mod 2 \) if \(q \) is odd. In either sub-case, \(T_1 = 2 \) and \(A \) is even. As
 \[
 G_2 = \left(\frac{A + B}{2} \right)^2 + \left(\frac{A - B}{2} \right)^2
 = A^2 - 2,
 \]
 one has \(G_{T_1} \) is even.

- When \(p, q \) are both even: \(T_1 = 1 \). So \(G_{T_1} = A \) is also even.

Substituting \(A = p \cdot q + 2 \) into \(G_{T_1} \), in each above case, one can obtain Eq. (45).

Property 8. The length of any cycle of Cat map \([3] \) implemented over \((\mathbb{Z}_2, +, \cdot)\) comes from set \(\{1\} \cup \{2^k \cdot T_1\}_{k=0}^{l-1} \)

where

\[
T_1 = \begin{cases}
3 & \text{if } p \text{ and } q \text{ are odd;} \\
2 & \text{if only } p \text{ or } q \text{ is odd;} \\
1 & \text{if } p \text{ and } q \text{ are even,}
\end{cases}
\]

and \(\hat{e} \geq 2 \).

Proof. As

\[
\left[\begin{array}{c} p \\ q \end{array} \right] \equiv \left(\begin{array}{c} x \\ y \end{array} \right) \mod 2^e = \left[\begin{array}{c} \hat{x} \\ \hat{y} \end{array} \right]
\]

if and only if

\[
\begin{cases}
q \cdot x \equiv 0 \mod 2^e, \\
p \cdot y \equiv 0 \mod 2^e,
\end{cases}
\]

1 is the length of the cycles whose nodes satisfying condition (46). From Fig. 2 one can see that

\[
\left[\begin{array}{c} 1 \\ p \end{array} \right] \cdot \left(\begin{array}{c} x \\ y \end{array} \right) \mod 2 = \left[\begin{array}{c} x \\ y \end{array} \right]
\]

exists for any \(x, y \in \mathbb{Z}_2 \) if Eq. (46) does not hold for \(e = 1 \) and \(T_1 \neq 1 \). From Fig. 3 one has

\[
\left[\begin{array}{c} 1 \\ p \\ q \end{array} \right] \cdot \left(\begin{array}{c} x \\ y \end{array} \right) \mod 2^2 = \left[\begin{array}{c} x \\ y \end{array} \right]
\]
always holds for any \(x, y \in \mathbb{Z}_{2^n} \) when \(n = 2 \cdot T_1 \) if Eq. (48) does not hold for \(n = T_1 \). As \(G_{2T_1} \) and \(H_{2T_1} \) are both even, then an equivalent form (49) can be reserved for any possible values of \(n \).

\[
\begin{bmatrix}
1 & p \\
q & 1 + p \cdot q
\end{bmatrix}^n \cdot \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^n = \begin{bmatrix} x \\ y \end{bmatrix}
\]

can be presented as the equivalent form

\[
\begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 2 \cdot p \cdot y - p \cdot q \cdot x \\ 2 \cdot q \cdot x + p \cdot q \cdot y \end{bmatrix} \equiv \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^n = 0 \tag{49}
\]

when \(n = 2T_1 \). If Eq. (49) does not hold for \(n = 2T_1 \) and \(e \geq 3, n = 2^2T_1 \) is the least number of \(n \) satisfying Eq. (49) (See Lemmas 4 and 6). Referring to Lemmas 1 and 2, \(n \) is a non-negative integer.

\[
\text{Proof.} \quad \text{When} \quad e = 1, \text{one has}
\]

\[
\begin{cases}
\frac{1}{2} G_{T_1} \equiv 1 \mod 2 \\
H_{T_1} \equiv 0 \mod 2^{l-h_1},
\end{cases}
\]

from Proposition 3. From Eq. (52), one can get \(e_{s,h} \), the minimal number of \(e \) satisfying

\[
\begin{cases}
H_{T_1} \equiv 0 \mod 2^e, \\
H_{T_1} \not\equiv 0 \mod 2^{e+1},
\end{cases}
\]

\(e \geq 1 - h_1 \).

From Lemma 5 one can get the minimum positive number of \(e \) satisfying

\[
\begin{cases}
\frac{1}{2} G_{2^{m_0}T_1} \equiv 1 \mod 2^e, \\
\frac{1}{2} G_{2^{m_0}T_1} \not\equiv 1 \mod 2^{e+1},
\end{cases}
\]

\(e_{s,g} \), by increasing \(e \) from 1, where

\[
m_0 = \begin{cases}
1 & \text{if } \frac{1}{2} G_{T_1} \not\equiv 1 \mod 2^2; \\
0 & \text{otherwise}.
\end{cases}
\]

Referring to Proposition 4 \(G_{T_1} \) is even. So, one can get

\[
\begin{cases}
\frac{1}{2} G_{2^{m_0+x}T_1} \equiv 1 \mod 2^{e_{s,g}+2x} \\
H_{2^{m_0+x}T_1} \equiv 0 \mod 2^{m_0+x+e_{s,h}}
\end{cases}
\]

by referring to Lemmas 6 and 4 where \(x \) is a non-negative integer. Note that \(h_x \) is monotonically increasing with respect to \(e \) and fixed as \(h_e \) when \(e \geq \min(e_0, e) \) (See Eq. (30)), where

\[
h_e = \begin{cases}
-1 & \text{if } e_0 + e < 0; \\
\min(e_0, e) & \text{otherwise}.
\end{cases}
\]

Set \(e_s = (e_{s,h} + m_0 + h_e) + x_0 \), one has

\[
\begin{cases}
\frac{1}{2} G_{2^{m_0+x_0}T_1} \equiv 1 \mod 2^{e_{s,g}+2x_0} \\
\frac{1}{2} G_{2^{m_0+x_0}T_1} \not\equiv 1 \mod 2^{e_{s,g}+2x_0+1}
\end{cases}
\]

and

\[
\begin{cases}
H_{2^{m_0+x_0}T_1} \equiv 0 \mod 2^{e_{s,-h_e}} \\
H_{2^{m_0+x_0}T_1} \not\equiv 0 \mod 2^{e_{s,+1-h_e}}
\end{cases}
\]

where

\[
x_0 = \begin{cases}
(e_{s,h} + m_0 + h_e) - e_{s,g} & \text{if } e_{s,g} < e_{s,h} + m_0 + h_e; \\
0 & \text{otherwise}.
\end{cases}
\]

Referring to Lemma 4, one has

\[
\frac{1}{2} G_{2^{m_0+x_0+l}T_1} \equiv 1 \mod 2^{e_{s,g}+2x_0+2l}.
\]

Combing Lemma 6

\[
\begin{cases}
\frac{1}{2} G_{2^{m_0+x_0+l}T_1} \equiv 1 \mod 2^{e_{s,l}} \\
H_{2^{m_0+x_0+l}T_1} \equiv 0 \mod 2^{e_{s,l}-h_e}
\end{cases}
\]
as \(e_{s,g} + 2x_0 + 2l \geq e_s + l \) for any non-negative integer \(l \). Hence, by Proposition 3,

\[
T_{e+l} = 2^l \cdot T_c = 2^{m_0+x_0+l} \cdot T_1,
\]

when \(e \geq e_s \).

From the proof of Theorem 2 one can see that the value of \(e_s \) in Eq. (54) is conservatively estimated to satisfy the required conditions (The balancing conditions may be obtained when \(h_x \) is still not approach \(h_x \). In practice, there exists another real threshold value of \(e \), \(e_s' \leq e_s \), satisfying

\[
T_{e_s'+l} = 2^l \cdot T_{e_s'},
\]

which is verified by Table III.

Theorem 3. When \(T_x > T_{e_s} \),

\[
2N_{T_{x},e} = N_{2T_{x},e+1},
\]

where \(N_{T_{x},e} \) is the number of cycles with period \(T_c \) of Cat map

\[
[1
\]

over \(\mathbb{Z}_{2^e} \). \(+, \cdot \).

Proof. As for any point \((x, y)\) of a cycle with the least period \(T_c \) in \(F_c \), one has

\[
\begin{align*}
C^{T_c} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^e & = \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^e, \\
C^{2T_c} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^e & \neq \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^e
\end{align*}
\]

by referring to Property 2 and Table I Referring to Eq. (55) and Eq. (57), one has

\[
\begin{align*}
e_{g,n} & = e_{s,g} + 2x_0 + 2l, \\
e_{h,n} & = e_s - h_x + l,
\end{align*}
\]

where \(e_{g,n} = \max \{ x \mid \frac{1}{2} G_n \equiv 1 \mod 2^e \} \), \(e_{h,n} = \max \{ x \mid H_n \equiv 0 \mod 2^e \} \), \(n = 2^l \cdot T_{e_s} \), \(l \) is a non-negative integer. So, one can get

\[
\begin{aligned}
x \cdot \frac{2 \cdot p \cdot y - p \cdot q \cdot x}{q \cdot x + \frac{1}{2} p \cdot q \cdot y} \cdot \begin{bmatrix} G_n - 1 \\ H_n \end{bmatrix} \mod 2^{e+1} = 0
\end{aligned}
\]

from Eq. (49). Setting \(n = T_c \),

\[
C^{2T_c} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^{e+1} = \begin{bmatrix} x \\ y \end{bmatrix}.
\]

Referring to Lemma 2 and \(G_n \) is even,

\[
C^{2n} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^{e+1} = \left(G_n \cdot C^n - I_2 \right) \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^{e+1} = \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^{e+1}.
\]

Therefore,

\[
C^{2n} \cdot \begin{bmatrix} a \cdot 2^e \\ b \cdot 2^e \end{bmatrix} \mod 2^{e+1} = \left(G_n \cdot C^n \begin{bmatrix} a \cdot 2^e \\ b \cdot 2^e \end{bmatrix} \right) \mod 2^{e+1} = \begin{bmatrix} a \cdot 2^e \\ b \cdot 2^e \end{bmatrix} \mod 2^{e+1},
\]

where \(a, b \in \{ 0, 1 \} \). Combining Eq. (63) and Eq. (65) with \(n = T_c \), one can get

\[
C^{2T_c} \cdot \begin{bmatrix} x + a \cdot 2^e \\ y + b \cdot 2^e \end{bmatrix} \mod 2^{e+1} = \begin{bmatrix} x + a \cdot 2^e \\ y + b \cdot 2^e \end{bmatrix}.
\]

Setting \(n = \frac{T_c}{2} \) in the left-hand side of Eq. (62), one has

\[
C^{T_c} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^{e+1} \neq \begin{bmatrix} x \\ y \end{bmatrix}
\]

from Eq. (60) as \(\frac{T_c}{2} \geq T_{e_s} \). Combining the above inequalities with Eq. (65), one has

\[
C^{T_c} \cdot \begin{bmatrix} x + a \cdot 2^e \\ y + b \cdot 2^e \end{bmatrix} \mod 2^{e+1} \neq \begin{bmatrix} x + a \cdot 2^e \\ y + b \cdot 2^e \end{bmatrix}.
\]
Fig. 5: The cycle distribution of Cat map (3) over \mathbb{Z}_2^e, $e = 1 \sim 19$: a) $(p, q) = (7, 8)$; b) $(p, q) = (6, 7)$; c) $(p, q) = (5, 7)$; d) $(p, q) = (12, 14)$.

So, $2T_c$ is the least period of $(x + a \cdot 2^e, y + b \cdot 2^e)$ in F_{e+1} for any $a, b \in \{0, 1\}$. When $T_c > T_e$, from Property 6 one has

$$4 \cdot N_{T_c,e} \cdot T_c = N_{2T_c,e+1} \cdot 2 \cdot T_c,$$

namely $2N_{T_c,e} = N_{2T_c,e+1}$.

Lemma 7. As for any point (x, y) in a cycle of length n of Cat map (3) over $(\mathbb{Z}_2^e, +, \cdot)$,

$$(G_n - 2) \cdot \begin{bmatrix} x \\ y \end{bmatrix} \mod 2^e = 0,$$

where $n > 1$.

Proof. Substituting

$$\begin{bmatrix} \frac{1}{2}G_{2n} - 1 \\ H_{2n} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}G^2_n - 2 \\ G_nH_n \end{bmatrix}$$

$$= G_n \begin{bmatrix} \frac{1}{2}G_n - 1 \\ H_n \end{bmatrix} + \begin{bmatrix} G_n - 2 \\ 0 \end{bmatrix}$$

into Eq. (62), one can obtain Eq. (66).

Lemma 8. When $e > e_0$, any point (x, y) in a cycle of length T_c of Cat map (3) over $(\mathbb{Z}_2^e, +, \cdot)$ satisfies

$$\begin{bmatrix} x \\ y \end{bmatrix} \mod 2 = 0,$$

where

$$e_0 = \begin{cases} \max(e_p, e_q) & \text{if } T_c = 1; \\ e_s, g + 1 & \text{if } l_c = 0, T_1 \neq 1; \\ e_s, g + 2 \cdot l_c - 1 & \text{if } 1 \leq l_c \leq s + 1, \end{cases}$$

$2^{l_c} \cdot T_1 = T_c$, and $2^s \cdot T_1 = T_{e_c}$.

Proof. When $T_c = 1$ and $e \geq \max(e_p, e_q) + 1$, condition (67) should exist to satisfy Eq. (66). Setting $m_0 = 0$ in Eq. (53), one has

$$\begin{cases} \frac{1}{2}G_{T_1} \equiv 1 \mod 2^{e_1}, \\ \frac{1}{2}G_{T_1} \not\equiv 1 \mod 2^{e_1+1}, \end{cases}$$

where

$$e_1 = \begin{cases} e_s, g & \text{if } \frac{1}{2}G_{T_1} \equiv 1 \mod 2^2; \\ 1 & \text{otherwise}, \end{cases}$$

\square
Referring to Lemma \(7\), if \(T_1 \neq 1\) and \(e \geq e_{s,g} + 2 \geq e_1 + 2\), any point of a cycle of length \(T_1\) should satisfy condition \(67\) to meet Eq. \(66\). Setting \(m_0 = 1\) in Eq. \(53\), one has

\[
\begin{align*}
&\frac{1}{2} G_{2T_1} \equiv 1 \text{ mod } 2^{e-s-g}, \\
&\frac{1}{2} G_{2T_1} \not\equiv 1 \text{ mod } 2^{e-s+1}.
\end{align*}
\]

Referring to Lemma \(4\) one can further get

\[
\begin{align*}
&\frac{1}{2} G_{2l_{e+1}+1T_1} \equiv 1 \text{ mod } 2^{e_{s,g}+2l_c} \\
&\frac{1}{2} G_{2l_{e+1}+1T_1} \not\equiv 1 \text{ mod } 2^{e_{s,g}+2l_c+1}
\end{align*}
\]

for \(l_c = 1 \sim s+1\). Referring to Lemma \(7\) if \(e \geq e_{s,g}+2 \cdot l_c\), any point of a cycle of length \(2^{l_c} \cdot T_1\) should satisfy condition \(67\) to meet Eq. \(66\). □

From Theorem \(3\), one can see that the number of cycles of various lengths in \(F_e\) can be easily deduced from that of \(F_{e_s}\) when \(e > e_s\). As for any cycle with length \(T_c \leq T_{e_s}\), the threshold values of \(e\) in condition \(68\) are given to satisfy Eq. \(69\). As for the cycles with length \(T_c > T_{e_s}\), the threshold values can be directly calculated with Theorem \(3\). As shown in Theorem \(4\), if for every possible length of cycle, the number of the cycles of the length become a fixed number when \(e\) is sufficiently large. The strong regular graph patterns demonstrated in Table \(\text{II}\) and Fig. \(\text{F}\) are rigorously proved in Theorems \(3\) \(4\). Now, we can see that the exponent value of the distribution function of cycle lengths of \(F_e\) is fixed two when \(e\) is sufficiently large.

Theorem 4.

When

\[
e \geq \begin{cases}
\max(e_p, e_q) & \text{if } T_c = 1; \\
e_{s,g} + 1 & \text{if } l_c = 0, T_1 \neq 1; \\
e_{s,g} + 2 \cdot l_c - 1 & \text{if } 1 \leq l_c \leq s + 1; \\
e_{s,g} + s + 1 + l_c & \text{if } l_c \geq s + 2,
\end{cases}
\]

one has

\[
N_{T_c,e} = N_{T_{c,e+l}},
\]

where \(2^{l_c} \cdot T_1 = T_c\), \(2^s \cdot T_1 = T_{e_s}\), and \(l\) is any positive integer.

Proof. From Property \(7\), one can conclude that the number of cycles of length \(T_c\) in \(F_{e+1}\) is larger than or equal to that in \(F_{e+1}\), i.e. \(N_{T_c,e} \leq N_{T_{c,e+l}}\) for any \(e\).

Referring to Lemma \(6\) as for any point \((x, y)\) in a cycle of length \(T_c = 2^{l_c} \cdot T_1\),

\[
\begin{align*}
&\left(\frac{1}{2} \cdot 2 \cdot p \cdot \frac{y}{2} - p \cdot q \cdot \frac{x}{2} \right), \\
&\left(\frac{1}{2} \cdot 2 \cdot q \cdot \frac{y}{2} + p \cdot q \cdot \frac{x}{2} \right)
\end{align*}
\]

\[\mod 2^{e-1} = 0\]

if \(e\) satisfy condition \(68\), meaning that \(N_{T_c,e} \geq N_{T_{c,e+l}}\). So \(N_{T_c,e} = N_{T_{c,e+l}}\). \(N_{2T_{c,e}} = N_{2T_{c,e+l}}\) for any \(l\). From Theorem \(3\) when \(l_c \geq s + 2\), \(e \geq e_{s,g} + 2s + 2 + l_c - s - 1 = e_{s,g} + s + 1 + l_c\),

\[
N_{T_c,e} = 2^{l_c-s-1} \cdot N_{T_{c,e+l}} = N_{T_{c,e+l}}.
\]

IV. APPLICATION OF THE CYCLE STRUCTURE OF CAT MAP

In this section, we briefly discuss application of the obtained results on the cycle structure of Cat map in theoretical analysis and cryptographical application.

The infinite number of unstable periodic orbits (UPO’s) of a chaotic system constitute its skeleton [47]. In a finite-precision domain, any periodic orbit is a cycle (See Property \(4\)). Its stability is dependent on change trend of its distance with the neighboring states in the phase space. To show the relative positions among different cycles, we depicted real image of the SMN shown in Fig. \(\text{F}\) in Fig. \(\text{G}\). Note that some states may be located in different cycles due to the finite-precision effect. The main result obtained in [16], i.e. Eq. \(6\), describes the number of different possible Cat maps owning a specific period, which has no any relationship with the number of cycles and distance between a cycle and its neighboring states. So, it cannot help to identify unstable periodic orbits of the original chaotic Cat map at all.

![Fig. 6: Portrait of Cat map \(3\) with \(N = 2^3\) where \((p, q) = (1, 3)\)](image)

But, knowledge of the cycle structure of Cat map can be used in the following aspects:

- Disclosing some skeleton of Cat map in other domains. As shown in Fig. \(\text{F}\) when \(p\) and \(q\) are both odd, there is a cycle of period 3 in SMN of Cat map implemented in Galois ring \(\mathbb{Z}_{2^3}\). This agree with the classic statement “Period three implies Chaos” given in [48].

- Discarding the initial conditions corresponding to very short period. This problem is vitally important in real applications in [26], [28].

- Avoiding the points resulting in collision. As shown in Fig. \(\text{F}\) different points in the same cycle may evolve into the same point, which may result in collision for the hashing scheme proposed in [25].

- Severing as a prototype for analyzing dynamics degradation in chaotic maps implemented in digital computer discussed in [49].

V. CONCLUSION

This paper analyzed the structure of the 2-D generalized discrete Arnold’s Cat map by its functional graph. The explicit formulation of any iteration of the map was derived. Then,
the precise cycle distribution of the generalized discrete Cat map in a fixed-point arithmetic domain was derived perfectly. The seriously regular patterns of the phase space of Cat map implemented in digital computer were reported to dramatically different from that in the infinite-precision torus. There exists non-negligible number of short cycles no matter what the period of the whole Cat map is. The analysis method can be extended to higher-dimensional Cat map and other iterative chaotic maps.

REFERENCES

[1] I. Percival and F. Vivaldi, “Arithmetical properties of strongly chaotic motions,” Physica D: Nonlinear Phenomena, vol. 25, no. 1, pp. 105–130, 1987.
[2] D. Shi, L. L. u, and G. Chen, “Totally homogeneous networks,” National Science Review, p. ar. no. nwz050, 2019.
[3] H. C. Papadopoulos and G. W. Womell, “Maximum-likelihood-estimate of a class of chaotic signals,” IEEE Transactions on Information Theory, vol. 41, no. 1, pp. 312–317, Jan 1995.
[4] S.-L. Chen, T. Hwang, and W.-W. Liu, “Randomness enhancement using digitalized modified logistic map,” IEEE Transactions on Circuits and Systems I: Express Briefs, vol. 57, no. 12, pp. 996–1000, Dec 2010.
[5] M. García-Bosque, A. Pérez-Resa, C. Sánchez-Azqueta, C. Aldea, and S. Celma, “Chaos-based bitwise dynamical pseudorandom number generator on FPGA,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 1, pp. 291–293, 2018.
[6] Z. Hua, S. Yi, Y. Zhou, C. Li, and Y. Wu, “Designing hyperchaotic cat maps with any desired number of positive lyapunov exponents,” IEEE Transactions on Cybernetics, vol. 48, no. 2, pp. 463–473, Feb 2018.
[7] T. Kohda and A. Tsuneda, “Statistics of chaotic binary sequences,” IEEE Transactions on Information Theory, vol. 43, no. 1, pp. 104–112, Jan 1997.
[8] K. Umeno and A.-H. Sato, “Chaotic method for generating q-gaussian random variables,” IEEE Transactions on Information Theory, vol. 59, no. 5, pp. 3199–3209, May 2013.
[9] N. Wang, C. Li, H. Bao, M. Chen, and B. Bao, “Generating multi-scroll Chua’s attractors via simplified piecewise-linear Chua’s diode,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 6, 2019.
[10] V. I. Arnol’d and A. Avez, Mathematical methods of classical mechanics. New York: W. A. Benjamin, 1968.
[11] L. Barash and L. Shchur, “Periodic orbits of the ensemble of Sinai-Arnold cat maps and pseudorandom number generation,” Physical Review E, vol. 73, no. 3, p. ar. no. 036701, 2006.
[12] O. B. Isaeva, A. Y. Jalnine, and S. P. Kuznetsov, “Arnold’s cat map dynamics in a system of coupled nonautonomous van der Pol oscillators,” Physical Review E, vol. 74, no. 4, p. ar. no. 046207, 2006.
[13] L. Ermann and D. L. Shepelyansky, “The Arnold cat map, the Ulam method and time reversal,” Physica D-Nonlinear Phenomena, vol. 241, no. 5, pp. 514–518, 2012.
[14] R. Okayasu, “Entropy for c^*-algebras with tracial rank zero,” Proceedings of the American Mathematical Society, vol. 138, no. 10, pp. 3609–3621, 2010.
[15] F. Chen, K.-W. Wong, X. Liao, and T. Xiang, “Period distribution of generalized discrete Arnold cat map for $N = 2^p$,” IEEE Transactions on Information Theory, vol. 58, no. 1, pp. 445–452, Jan 2012.
[16] ——, “Period distribution of the generalized discrete Arnold cat map for $N = 2^p$. IEEE Transactions on Information Theory, vol. 59, no. 4, pp. 3249–3255, May 2013.
[17] P. Kurlberg and Z. Rudnick, “On the distribution of matrix elements for the quantum cat map,” Annals of Mathematics, vol. 161, no. 1, pp. 89–2005, 2005.
[18] M. Horvat and M. D. Espositi, “The erogor property in perturbed cat maps,” Journal of Physics A—Mathematical and Theoretical, vol. 40, no. 32, pp. 9771–9781, 2007.
[19] S. Moudgalya, T. Devakul, C. W. von Keyserlingk, and S. L. Sondhi, “Operator spreading in quantum maps,” Physical Review B, vol. 99, no. 9, p. ar. no. 094312, 2019.
[20] O. Penrose, “Entropy and irreversibility in dynamical systems,” Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, vol. 371, no. 2005, p. ar. no. 20120349, 2013.
[21] M. Farajallah, S. E. Assad, and O. Defforges, “Fast and secure chaos-based cryptosystem for images,” International Journal of Bifurcation and Chaos, vol. 26, no. 2, p. ar. no. 1650021, 2016.
[22] L. Chen and S. Wang, “Differential cryptanalysis of a medical image cryptosystem with multiple rounds,” Computers in Biology and Medicine, vol. 65, pp. 77–91, 2015.
[23] C. Li, D. Lin, B. Peng, J. Liu, and F. Hao, “Cryptanalysis of a chaotic image encryption algorithm based on information entropy,” IEEE Access, vol. 6, pp. 75834–75842, 2018.
[24] C. Li, Y. Zhang, and E. Y. Xie, “When an attacker meets a cipher-image in 2018: A Year in Review,” Journal of Information Security and Applications, vol. 48, p. ar. no. 102361, 2019.
[25] A. Kanso and M. Ghobbar, “A structure-based chaotic hashing scheme,” Nonlinear Dynamics, vol. 81, no. 1, pp. 27–40, 2015.
[26] M. Falcioni, L. Palatella, S. Pigolotti, and A. Vulpiani, “Properties making a chaotic system a good pseudo random number generator,” Physical Review E, vol. 72, no. 1, p. ar. no. 016220, 2005.
[27] T. Yarmola, “An example of a pathological random perturbation of the Cat Map,” Ergodic Theory and Dynamical Systems, vol. 31, no. 6, pp. 1865–1887, 2011.
[28] ——, “On some properties of the Logistic map over the finite field and its applications,” Signal Processing, vol. 153, pp. 231–242, 2018.
[29] ——, “An analysis of digraphs and period properties of the logistic map on $z(p^n)$,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 33, no. 3, p. ar. no. 1959010, 2019.
[30] G. H. Hardy and E. M. Wright, “Operator spreading in quantum maps,” The Theory of Numbers (6th ed.). Oxford OX2 6DP, UK: Oxford University Press, 2008.
[31] G. Chen, Y. Mao, and C. K. Chui, “A symmetric image encryption scheme based on 3D chaotic cat maps,” Chaos Solitons & Fractals, vol. 21, no. 3, pp. 749–761, 2004.
[32] C. Fan and Q. Ding, “Analysing the dynamics of digital chaotic maps via a new period search algorithm,” Nonlinear Dynamics, vol. 97, no. 1, pp. 831–841, 2019.
[33] V. García-Garrido, F. Balibrea-Iniesta, S. Wiggins, A. M. Mancho, and C. Lopesino, “Detection of phase space structures of the Cat map with Lagrangian descriptors,” Regular and Chaotic Dynamics, vol. 23, no. 6, pp. 751–766, 2018.
[34] D. Panaro and L. Reis, “The functional graph of linear maps over finite fields and applications,” Designs, Codes and Cryptography, vol. 87, no. 2-3, pp. 457–453, 2019.
[35] F. Chen, K.-W. Wong, X. Liao, and T. Xiang, “The ergor property in perturbed cat maps,” Journal of Physics A—Mathematical and Theoretical, vol. 36, no. 32, pp. 9771–9781, 2007.
[36] S. Moudgalya, T. Devakul, C. W. von Keyserlingk, and S. L. Sondhi, “Operator spreading in quantum maps,” Physical Review B, vol. 99, no. 9, p. ar. no. 094312, 2019.
[48] T.-Y. Li and J. A. Yorke, “Period three implies chaos,” *The American Mathematical Monthly*, vol. 82, no. 10, pp. 985–992, 1975.

[49] B. M. Boghosian, P. V. Coveney, and H. Wang, “A new pathology in the simulation of chaotic dynamical systems on digital computers,” *Advanced Theory and Simulations*, 2019.