Genes Associated with Thoracic Aortic Aneurysm and Dissection
An Update and Clinical Implications

Adam J. Brownstein, BA1, Bulat A. Ziganshin, MD1, Helena Kuivaniemi, MD, PhD2, Simon C. Body, MD, MPH3, Allen E. Bale, MD4, John A. Elefteriades, MD1*

1 Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
2 Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
3 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
4 Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA

Abstract
Thoracic aortic aneurysm (TAA) is a lethal disease, with a natural history of enlarging progressively until dissection or rupture occurs. Since the discovery almost 20 years ago that ascending TAAs are highly familial, our understanding of the genetics of thoracic aortic aneurysm and dissection (TAAD) has increased exponentially. At least 29 genes have been shown to be associated with the development of TAAD, the majority of which encode proteins involved in the extracellular matrix, smooth muscle cell contraction or metabolism, or the transforming growth factor-β signaling pathway. Almost one-quarter of TAAD patients have a mutation in one of these genes. In this review, we provide a summary of TAAD-associated genes, associated clinical features of the vasculature, and implications for surgical treatment of TAAD. With the widespread use of next-generation sequencing and development of novel functional assays, the future of the genetics of TAAD is bright, as both novel TAAD genes and variants within the genes will continue to be identified.

Key Words:
Thoracic aortic aneurysm and dissection (TAAD) • Genetics • Aortic aneurysm

Thoracic aortic aneurysms (TAAs), which have an estimated annual incidence of 10.4 per 100,000 people [1], are typically clinically silent yet potentially fatal, as their natural history is to progressively expand until dissection or rupture occurs. Our genetic understanding of thoracic aortic aneurysm and dissection (TAAD) has rapidly advanced since the identification of the FBN1 gene as the cause of Marfan syndrome in 1991 [2] and the discovery of the familial nature of TAAD in the late 1990s. While studies demonstrate that 20% of individuals with non-syndromic TAAD have a positive family history [3, 4], this percentage is most likely a marked underestimation, as not all family members of affected individuals undergo routine aortic imaging [5]. Of the 29 TAAD-associated genes identified to date, the majority encode proteins involved in the extracellular matrix, smooth muscle cell contraction or...
Table 1. Genes associated with syndromic and non-syndromic thoracic aortic aneurysm and dissection, associated vascular characteristics, and size criteria for elective surgical intervention.

Gene	Protein	Animal model leading to vascular phenotype?	Syndromic TAAD	Non-syndromic TAAD	Associated disease/syndrome	Associated clinical characteristics of the vasculature	Ascending aorta size (cm) for surgical intervention	Mode of inheritance	OMIM
ACTA2	Smooth muscle α-actin	No [30]	+	+	RAAS + multisystemic smooth muscle dysfunction + MYMYS	TAAD, early aortic dissection*, CAD, stroke (moyamoya disease), PDA, pulmonary artery dilation, BAV [6, 9]	4.5-5.0* [10, 31, 32]	AD	611788
BGN	Biglycan	Yes [33]	+	-	Meester-Loeys syndrome	ARD, TAAD, pulmonary artery aneurysm, IA, arterial tortuosity [34]	Standard X-linked	X-linked	300989
COL1A2	Collagen 1 α2 chain	No	+	-	EDS, arthrochalasia type (VIIb) + cardiac valvular type	Borderline aortic root enlargement [9, 35]	Standard AD + AR	130060	
COL3A1	Collagen 3 α1 chain	Yes [36]	+	-	EDS, vascular type (IV)	TAAD, early aortic dissection*, visceral arterial dissection, vessel fragility, IA [29, 37, 38]	5.0* [29]	AD	130050
COL5A1	Collagen 5 α1 chain	No*	+	-	EDS, classic type (I)	ARD, rupture/dissection of medium-sized arteries [39-41]	Standard AD	130000	
COL5A2	Collagen 5 α2 chain	No*	+	-	EDS, classic type (II)	ARD	Standard AD	130000	
EFEMP2	Fibulin-4	Yes [42, 43]	+	-	Cutis laxa, AR type Ib	Ascending aortic aneurysm, other arterial aneurysm, arterial tortuosity and stenosis	Standard AR	614437	
ELN	Elastin	No	+	-	Cutis laxa, AD	ARD, ascending aortic aneurysm/dissection, BAV, IA possibly associated with SVAS [44-46]	Standard AD	123700	
EMILIN1	Elastin microfibril interfacere 1	No	+	-	Unidentified CTD	Ascending and descending aortic aneurysm [47]	Standard AD	Unassigned	
FBN1	Fibrillin-1	Yes [48-52]	+	+	Marfan syndrome	ARD, TAAD, AAA, other arterial aneurysm, pulmonary artery dilatation, arterial tortuosity [53]	5.0 [10, 28]	AD	154700
FBN2	Fibrillin-2	No	+	-	Contractural arachnodacty	Rare ARD and aortic dissection [54], BAV, PDA	Standard AD	121050	

* (table continues)
| Gene | Protein | Animal model leading to vascular phenotype? | Syndromic TAAD | Non-syndromic TAAD | Associated disease/syndrome | Associated clinical characteristics of the vasculature | Ascending aorta size (cm) for surgical intervention | Mode of inheritance | OMIM |
|----------|----------------------------------|---|---------------|-------------------|---|---|---|---------------------|------------|
| FLNA | Filamin A | Yes [55, 56] | + | - | Periventricular nodular heterotopia | Aortic dilatation/aneurysm, peripheral arterial dilatation [57], PDA, IA [58], BAV | Standard | XLD | 300049 |
| FOXE3 | Forkhead box 3 | Yes [59] | - | + | AAT11 | ARD, TAAD (primarily type A dissection) [59] | Standard | AD | 617349 |
| LOX | Lysyl oxidase | Yes [60–63] | - | + | AAT10 | TAAD, AAA, hepatic artery aneurysm, BAV, CAD | Standard | AD | 617168 |
| MAT2A | Methionine adenosyltransferase II alpha | No[64] | - | + | FTAA | Thoracic aortic aneurysm, BAV [64] | Standard | AD | Unassigned |
| MFAP5 | Microfibril-associated glycoprotein 2 | Partially[65] | - | + | AAT9 | ARD, TAAD | Standard | AD | 616166 |
| MYH11 | Smooth muscle myosin heavy chain | Partially[66] | - | + | AAT4 | TAAD, early aortic dissection*, PDA, CAD, peripheral vascular occlusive disease, carotid IA | 4.5-5.0 [10, 67] | AD | 132900 |
| MYLK | Myosin light chain kinase | No[68] | - | + | AAT7 | TAAD, early aortic dissection* | 4.5-5.0* [10, 68] | AD | 613780 |
| NOTCH1 | NOTCH1 | No | - | + | AOVD1 | BAV/TAAD [69, 70] | Standard | AD | 109730 |
| PRKG1 | Type 1 cGMP-dependent protein kinase | No | - | + | AAT8 | TAAD, early aortic dissection*, AAA, coronary artery aneurysm/dissection, aortic tortuosity, small vessel CVD | 4.5-5.0 [71] | AD | 615436 |
| SKI | Sloan Kettering proto-oncoprotein | No[69] | + | - | Shprintzen-Goldberg syndrome | ARD, arterial tortuosity, pulmonary artery dilation, other (splenic) arterial aneurysm [72] | Standard | AD | 182212 |
| SLC2A10 | Glucose transporter 10 | No[70] | + | - | Arterial tortuosity syndrome | ARD [73], ascending aortic aneurysm [73], other arterial aneurysm, arterial tortuosity, elongated arteries, aortic/pulmonary artery stenosis | Standard | AR | 208050 |

Table continues
Gene	Protein	Animal model leading to vascular phenotype?	Syndromic TAAD	Non-syndromic TAAD	Associated disease/syndrome	Associated clinical characteristics of the vasculature	Ascending aorta size (cm) for surgical intervention	Mode of inheritance	OMIM
SMAD2	SMAD2	No	+	-	Unidentified CTD with arterial aneurysm/dissection	ARD, ascending aortic aneurysm, vertebral/ carotid aneurysm/dissection [74]	Standard	AD	Unassigned
SMAD3	SMAD3	Partially^[75]	+	+	LDS type 3	ARD, TAAD, early aortic dissection*, AAA, arterial tortuosity, other arterial aneurysm/dissection, IA, BAV [76, 77]	4.0-4.2 [10, 28]	AD	613795
SMAD4	SMAD4	Yes [78]	+	-	JP/HHT syndrome	ARD, TAAD, AVM, IA [79, 80]	Standard	AD	175050
TGFB2	TGF-β2	Yes [81]	+	+	LDS type 4	ARD, TAAD, arterial tortuosity, other arterial aneurysm, BAV [81, 82]	4.5-5.0^[83]	AD	614816
TGFB3	TGF-β3	No^[n]	+	-	LDS type 5	ARD, TAAD, AAA/dissection, other arterial aneurysm, IA/dissection [84]	Standard	AD	615582
TGFBR1	TGF-β receptor type 1	Yes [85]	+	+	LDS type 1 + AAT5	TAAD, early aortic dissection*, AAA, arterial tortuosity, other arterial aneurysm/dissection, IA, PDA, BAV [86]	4.0-4.5^[10, 26, 28]	AD	609192
TGFBR2	TGF-β receptor type 2	Yes [78, 85]	+	+	LDS type 2 + AAT3	TAAD, early aortic dissection*, AAA, arterial tortuosity, other arterial aneurysm/dissection, IA, PDA, BAV [86]	4.0-4.5^[10, 26, 28]	AD	610168

It is important to note that as mutations in many of these genes are rare and have only recently been implicated in TAAD, there are a lack of adequate prospective clinical studies. Therefore, it is difficult to establish threshold diameters for intervention for TAA, and each individual must be considered on a case-by-case basis, taking into account the rate of change in aneurysm size (> 0.5 cm per year is considered rapid) and any family history of aortic dissection.

A "-" symbol in the syndromic or non-syndromic TAAD column indicates that mutations in the gene have been found in patients with syndromic or non-syndromic TAAD, respectively. A "+" symbol in the syndromic or non-syndromic TAAD column indicates that mutations in the gene have not been found in patients with syndromic or non-syndromic TAAD, respectively. A reference is provided for each of the associated vascular characteristics not reported in the OMIM entry for that gene.

(table continues)
Individuals with MYLK and ACTA2 mutations have been shown to have aortic dissections at a diameter of 4.0 cm [31, 68].

There are no data to set threshold diameters for surgical intervention for EDS Type IV [28]. The Canadian guidelines recommend surgery for aortic root sizes of 4.0-5.0 cm and ascending aorta sizes of 4.2-5.0 cm, though these patients are at high risk of surgical complications due to poor-quality vascular tissue [87].

Park et al. illustrated that mice heterozygous for a null allele in Col5a1 exhibit decreased aortic compliance and reduced tensile strength compared to wildtype mice [91].

Wenstrup et al. found that mice heterozygous for an inactivating mutation in Col5a1 exhibit decreased aortic compliance and tensile strength relative to wildtype mice. [91]

D. Park et al. found that knockdown of mat2a1 in zebrafish led to defective aortic arch development [64].

Park et al. illustrated that mice heterozygous for a null allele in Col5a2 exhibited increased aortic compliance and reduced tensile strength compared to wildtype mice [92].

Guo et al. found that knockdown of mat2a1 in zebrafish led to defective aortic arch development [64].

Combs et al. demonstrated that mice heterozygous for a null allele in Col5a2 exhibited increased aortic compliance and reduced tensile strength compared to wildtype mice [92].

Wang et al. demonstrated that SMC-specific knockdown of Mylk in mice led to histopathological changes (increased pools of proteoglycans) and altered gene expression consistent with medial degeneration of the aorta, though no aneurysm formation was observed [94].

Doyle et al. found that knockdown of paralogs of mammalian SKI in zebrafish led to craniofacial and cardiac anomalies, including failure of cardiac looping and malformations of the outflow tract [72]. Berk et al. showed that mice lacking Ski exhibit craniofacial, skeletal muscle, and central nervous system abnormalities, which are all features of Shprintzen-Goldberg syndrome, but no evidence of aneurysm development was reported. [94].

Mice with homozygous missense mutations in Sck2a10 have not been shown to have the vascular abnormalities seen with arterial tortuosity syndrome [55], though Cheng et al. did demonstrate that such mice do exhibit abnormal elastogenesis within the aortic wall [86].

Wang et al. demonstrated that SMC-specific knockdown of Mylk in mice led to histopathological changes (increased pools of proteoglycans) and altered gene expression consistent with medial degeneration of the aorta, though no aneurysm formation was observed [94].

Wang et al. demonstrated that SMC-specific knockdown of Mylk in mice led to histopathological changes (increased pools of proteoglycans) and altered gene expression consistent with medial degeneration of the aorta, though no aneurysm formation was observed [94].
metabolism, or the transforming growth factor (TGF-B)-β signaling pathway (Table 1) (reviewed in [6-14]). Almost one-quarter of patients with TAAD possess a mutation in one of these genes [6], the majority of which are inherited in an autosomal dominant fashion with reduced penetrance and variable expressivity [15, 16]. It is of interest to note that most genetic risk factors for aneurysms in other locations of the body (e.g., in intracranial arteries or the abdominal aorta) are different from those for TAAD [17-19].

TAAD has been classified into syndromic (associated with abnormalities of other organ systems) and non-syndromic (manifestations restricted to the aorta) [12, 20] categories, yet there is significant overlap in the genetic basis of syndromic and non-syndromic familial TAAD. Mutations in FBN1 and Loey-Dietz syndrome (LDS) type 1-4 genes (TGFBR1, TGFBR2, SMAD3, and TGFBR2) are estimated to account for 10% of familial non-syndromic TAAD [6]. Also, mutations in ACTA2 are estimated to cause 12-21% of familial TAAD, whereas mutations in other genes may each account for only 1-2% or less of non-syndromic TAAD [6]. The identification of specific mutated genes in patients with TAAD is crucial because it permits targeted genetic testing of apparently unaffected but currently undiagnosed family members. Furthermore, genetic information helps determine the patient’s risk for aortic dissection and rupture, especially mutations associated with vascular events at an ascending aorta size < 5.0 cm (Figure 1), which does not usually necessitate aortic resection in the absence of such mutations, a family history of aortic dissection, or rapid aneurysmal growth (> 0.5 cm/year). Identification of specific genetic variants associated with TAAD clinical outcomes may help predict how aortic disease will manifest and estimate the risk of other vascular diseases [6] (Table 1). Moreover, genotype-phenotype correlations have been established for both syndromic (FBN1, COL3A1, TGFBR1, and TGFBR2) and non-syndromic (ACTA2) TAAD, meaning that the specific genetic variant in TAAD-affected individuals can help predict the course and severity of disease [21-27].

![Figure 1. Simplified schematic illustration of ascending aorta dimensions for prophylactic surgical intervention divided by gene category: ECM genes, SMC contractile unit and metabolism genes, and TGF-β signaling pathway genes (data derived from Table 1). ECM, extracellular matrix; LDS, Loey-Dietz syndrome; MFS, Marfan syndrome; SMC, smooth muscle cell; EDS, Ehlers-Danlos syndrome.](image)
As stated in the most recent United States and European guidelines [28, 29], personalized care based on underlying genetic mutations is and will continue to be a critical aspect of high-quality patient care. As genetic testing becomes more widespread, individuals at genetic risk for TAAD may be identified so that prophylactic medical and surgical intervention can be implemented to avert potentially fatal complications of TAAD. Furthermore, the utilization of next-generation sequencing could lead to the development of a comprehensive library of pathogenic genetic variants. As the genetic basis of TAAD is still a highly dynamic and burgeoning field, we present the most up-to-date list of genes associated with TAAD (Table 1). We plan to update this report annually, adding new genes, intervention criteria, and management recommendations as they become available.

Acknowledgements

AJB was supported by the Richard K. Gershon, M.D., Student Research Fellowship and the Yale University School of Medicine Medical Student Research Fellowship.

Conflict of Interest

The authors have no conflict of interest relevant to this publication.

References

1. Ramanath VS, Oh JK, Sundt TM, 3rd, Eagle KA. Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin Proc. 2009;84:465-481. DOI: 10.1016/j.mayocp.2009.04.012
2. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352:337-339. DOI: 10.1038/352337a0
3. Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg. 1997;25:506-511. DOI: 10.1016/S0741-5214(97)70261-1
4. Coady MA, Davies RR, Roberts M, Goldstein LJ, Rogalski MJ, Rizzo JA, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg. 1999;134:361-367. DOI: 10.1001/archsurg.134.4.361
5. Elefteriades JA, Farkas EA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol. 2010;55:841-857. DOI: 10.1016/j.jacc.2009.08.084
6. Milewicz D, Hostetler E, Wallace S, Melior-Crummey L, Gong L, Pannu H, et al. Precision medical and surgical management for thoracic aortic aneurysms and acute aortic dissections based on the causative mutant gene. J Cardiovasc Surg (Torino). 2016;57:172-177. PMID: 26837258
7. Karimi A, Milewicz DM. Structure of the elastin-contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Can J Cardiol. 2016;32:26-34. DOI: 10.1016/j.jcc.2015.11.004
8. Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection. Circulation. 2016;133:2516-2528. DOI: 10.1161/CIRCULATIONAHA.116.009762
9. Bradley TJ, Bowdin SC, Morel CF, Pyeritz RE. The expanding clinical spectrum of extracardiovascular and cardiovascular manifestations of heritable thoracic aortic aneurysm and dissection. Can J Cardiol. 2016;32:86-99. DOI: 10.1016/j.cjca.2015.11.007
10. Andelfinger G, Loos B, Dietz H. A decade of discovery in the genetic understanding of thoracic aortic disease. Can J Cardiol. 2016;32:13-25. DOI: 10.1016/j.cjca.2015.10.017
11. Luyckx I, Loes BL. The genetic architecture of non-syndromic thoracic aortic aneurysm. Heart. 2015;101:1678-1684. DOI: 10.1136/heartjnl-2014-306381
12. Pomianowski P, Elefteriades JA. The genetics and genomics of thoracic aortic disease. Ann Cardiothorac Surg. 2013;2:271-279. DOI: 10.3978/jissn.2225-319X.2013.05.12
13. Gillis E, Van Laer L, Loos BL. Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-beta signaling and vascular smooth muscle cell contractility. Circ Res. 2013;113:327-340. DOI: 10.1161/CIRCRESAHA.113.300675
14. Elefteriades JA, Pomianowski P. Practical genetics of thoracic aortic aneurysm. Prog Cardiovasc Dis. 2013;56:57-67. DOI: 10.1016/j.pcad.2013.08.002
15. Albornoz G, Coady MA, Roberts M, Davies RR, Tranquilli M, Rizzo JA, et al. Familial thoracic aortic aneurysms and dissections - Incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006;82:1400-1406. DOI: 10.1016/j.athoracsur.2006.04.090
16. Milewicz DM, Chen H, Park ES, Petty EM, Zaghi H, Shashidhar G, et al. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am J Cardiol. 1998;82:474-479. DOI: 10.1016/S0002-9149(98)00364-6
17. Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther. 2015;13:975-987. DOI: 10.1586/14779072.2015.1074861
18. Tromp G, Weinsheimer S, Ronkainen A, Kuivaniemi H. Molecular basis and genetic predisposition to intracranial aneurysms. Ann Med. 2014;46:597-606. DOI: 10.3109/07853890.2014.949299
19. Jones GT, Tromp G, Kuivaniemi H, Greetsdottir S, Baas AF, Giusti B, et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ Res. 2017;120:341-353. DOI: 10.1161/CIRCRESAHA.116.308765
20. El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol. 2009;6:771-786. DOI: 10.1038/nrcardio.2009.191
21. Franken R, Groenink M, de Waard V, Feenstra HM, Scholte AJ, van den Berg MP, et al. Genotype impacts survival in Marfan syn-
25. Pepin MG, Schwarze U, Rice KM, Liu M, Mazzella JM, Bal-Theoleyre L, et al. The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers-Danlos syndrome. Eur J Hum Genet. 2015;23:1657-1664. DOI: 10.1038/ejhg.2015.32

26. Shahin WA, Alman BA, Costantini F, Bouffard MM, Uricchio LF, Buyske JD, et al. Molecular diagnosis in vascular Ehlers-Danlos syndrome predicts pattern of arteriovenous involvement and outcomes. J Vasc Surg. 2014;60:160-169. DOI: 10.1016/j.vjsc.2014.01.070

27. Pepin MG, Schwarz U, Rice KM, Liu M, Leistritz D, Byers PH. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med. 2014;16:881-888. DOI: 10.1038/gim.2014.72

28. Jondeau G, Rogers J, Regalado E, Braverman A, Evangelista A, Teixeiro G, et al. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (Montalcino Aortic Consortium). Circ Cardiovasc Genet. 2016;9:548-558. DOI: 10.1161/CIRCGENETICS.116.001485

29. Coldman AS, Guo DC, Prakash S, Bensend TA, Flynn K, Estrera A, et al. Aortic disease presentation and outcome associated with ACTA2 mutations. Circ Cardiovasc Genet. 2015;8:457-464. DOI: 10.1161/CIRCGENETICS.114.000943

30. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/ACR/ASCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J Am Coll Cardiol. 2010;55:e27-e129. DOI: 10.1016/j.jacc.2010.02.015

31. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2873-2926. DOI: 10.1093/eurheartj/ehu281

32. Schildmeyer LA, Braun R, Taffet G, DeBiasi M, Burns AE, Bradley A, et al. Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEBJ. 2000;14:2213-2220. DOI: 10.1096/fj.99-0927com

33. Disabella G, Grasso M, Gambarin FI, Narula N, Dore R, Favalli V, et al. Risk of dissection in thoracic aortic aneurysms associated with mutations of smooth muscle alpha-actin 2 (ACTA2). Heart. 2011;97:321-326. DOI: 10.1136/heart.2010.204388

34. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488-1493. DOI: 10.1038/ng.2007.6

35. Heegaard AM, Corsi A, Danielsen CC, Nielsen KL, Jorgensen HL, Rinnimucci M, et al. Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation. 2007;115:2731-2738. DOI: 10.1161/CIRCULATIONAHA.106.653980

36. Meester JA, Vandeweyer G, Pintelon I, Lamens M, Van Hoorick L, De Belder S, et al. Loss-of-function mutations in the X-linked biglycan gene that activate the nonsense-mediated RNA decay pathway. Am J Hum Genet. 2010;86:583-592. DOI: 10.1111/j.1755-0874.2010.07081.x

37. Schwarze U, Hata R, McKusick VA, Shinkai H, Leistritz D, Byers PH. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Orphanet J Rare Dis. 2007;2:32. DOI: 10.1038/njhg.2016.126

38. Smith LB, Hadoke PW, Dyer E, Denvir MA, Cafe J, Crepeau MW, et al. Familial Ehlers-Danlos syndrome with lethal arterial events caused by a mutation in COL5A1. Am J Med Genet A. 2015;167:1196-1203. DOI: 10.1002/ajmg.a.36997

39. Mehta S, Dhar SU, Birnbaum Y. Common iliac artery aneurysm and spontaneous dissection with contralateral iatrogenic common iliac artery dissection in classic Ehlers-Danlos syndrome. Int J Angiol. 2012;21:167-170. DOI: 10.1055/s-0032-1325118

40. Wenstrup RJ, Meyer RA, Lyle JS, Hoechstetter L, Rose PS, Levy HP, et al. Prevalence of aortic root dilation in the Ehlers-Danlos syndrome. Genet Med. 2002;4:112-117. DOI: 10.109700125817-200205000-00003

41. Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA, et al. Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res. 2010;106:583-592. DOI: 10.1161/CIRCRES.109.207852

42. Igoucheva O, Alexeev V, Halabi CM, Adams SM, Stoolov I, Sakasi T, et al. Fibulin-4 E57K knock-in mice recapitulate cutaneous, vascular and skeletal defects of recessive cutis laxa 1B with both elastic fiber and collagen fibril abnormalities. J Biol Chem. 2015;290:21443-21459. DOI: 10.1074/jbc.M115.640425

43. Jelsig AM, Urban Z, Huchtagovar V, Nissen H, Ousager LB. Novel ELN mutation in a family with supravalvular aortic stenosis and intracranial aneurysm. Eur J Med Genet. 2017;60:110-113. DOI: 10.1016/j.ejmg.2016.11.004

44. Callowert B, Renard M, Huchtagovar V, Albrecht B, Hausser I, Blair E, et al. New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum Mutat. 2011;32:445-455. DOI: 10.1002/humu.21462

45. Szabó Z, Crepeau MW, Mitchell AL, Stefani MJ, Puntel RA, Yin Loke K, et al. Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. Eur J Hum Genet. 2017;25:1180-1186. DOI: 10.1111/ejhg.2016.11.004

46. Capuano A, Bucciotti F, Farwell KD, Tipper DM, Mroske C, Kulick PJ, et al. Diagnostic exome sequencing identifies a novel gene, EMILIN1, associated with autosomal-dominant hereditary connective tissue disease. Hum Mutat. 2016;37:84-97. DOI: 10.1002/humu.22920

47. Capuano A, Bucciotti F, Farwell KD, Tipper DM, Mroske C, Kulick PJ, et al. Diagnostic exome sequencing identifies a novel gene, EMILIN1, associated with autosomal-dominant hereditary connective tissue disease. Hum Mutat. 2016;37:84-97. DOI: 10.1002/humu.22920
Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in Filamin A. Eur J Hum Genet. 2013;21:494-502. DOI: 10.1038/ejhg.2012.209

58. Lange M, Kasper B, Bohring A, Rutsch F, Kluger G, Hoffjan S, et al. 47 patients with FLNA associated periventricular nodular heterotopia. Orphanet J Rare Dis. 2015;10:134. DOI: 10.1186/s13023-015-0331-9

59. Kuang SQ, Medina-Martinez O, Guo DC, Gong L, Regalado ES, Reynolds CL, et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin Invest. 2016;126:948-961. DOI: 10.1172/JCI83778

60. Lee VS, Halabi CM, Hoffman EP, Carman ME, Vidali L, Nakamura F, et al. Filamin A (FLNA) is required for cell-cell contact and function at the adult stage. Pflugers Arch. 2016;468:1151-1160. DOI: 10.1007/s00424-016-1813-x

61. Hornstra IK, Birge S, Starcher B, Bailey AJ, Maki JM, Rasanen J, Tikkanen H, et al. Generation of a mouse model of Marfan syndrome. Science. 2006;312:117-1121. DOI: 10.1126/science.1124287

62. Lima BL, Santos EJ, Fernandes GR, Merkel C, Mello MR, Gomes JP, et al. A new mouse model for marfan syndrome presents phenotypic variability associated with the genetic background and overall levels of FBN1 expression. PloS ONE. 2010;5:e14136. DOI: 10.1371/journal.pone.0014136

63. Takeda N, Morita H, Fujita D, Inuzuka R, Taniguchi Y, Imai Y, et al. Congenital contractual arachnodactyly complicated with aortic dilatation and dissection: case report and review of literature. Am J Med Genet A. 2015;167A:2382-2387. DOI: 10.1002/ajmg.a.37162

64. Combs MD, Knutsen RH, Broekelmann TJ, Toenies HM, Brett TJ, Miller CA, et al. Microfibril-associated glycoprotein 2 (MAGP2) loss of function has pleiotropic effects in vivo. J Biol Chem. 2013;288:28869-28880. DOI: 10.1074/jbc.M113.497727

65. Bellini C, Wang S, Milewicz DM, Humphre J. Myh11(R247C/R247C) mutations increase thoracic aortic vulnerability to intramural damage despite a general biomechanical adaptivity. J Biomech. 2015;48:113-121. DOI: 10.1016/j.jbiomech.2014.10.031

66. Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet. 2007;16:2453-2462. DOI: 10.1093/hmg/ddm201

67. Brownstein, A. J. et al. Genes Associated With TAAD

68. Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010;87:701-707. DOI: 10.1016/j.ajhg.2010.01.006

69. McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM, 3rd. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007;134:290-296. DOI: 10.1016/j.jtcvs.2007.02.041

70. Proost D, Vandeweyer G, Meester JA, Salemnik S, Kempers M, Ingram C, et al. Performant mutation identification using targeted next-generation sequencing of 14 thoracic aortic aneurysm genes. Hum Mutat. 2015;36:808-814. DOI: 10.1002/humu.22802

71. Guo DC, Regalado E, Casteel DE, Santos-Cortez RL, Gong L, Kim JJ, et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am J Hum Genet. 2013;93:398-404. DOI: 10.1016/j.ajhg.2013.06.019

72. Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME, Schepers D, et al. Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet. 2012;44:1249-1254. DOI: 10.1038/ng.2421

73. Callewaert BL, Willaert A, Kerstjens-Frederikse WS, De Backer J, Devriendt K, Albrecht B, et al. Arterial tortuosity syndrome clinical and molecular findings in 12 newly identified families. Hum Mutat. 2008;29:150-158. DOI: 10.1002/humu.20623

74. Micha D, Guo DC, Hilhorst-Hofstee Y, van Kooten F, Atmajia D, Overwater E, et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum Mutat. 2010;31:1145-1149. DOI: 10.1002/humu.22854

75. Tan CK, Tan EH, Luo B, Huang CL, Loo JS, Choong C, et al. SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of INOS. J Am Heart Assoc. 2013;2:e000269. DOI: 10.1161/JAHA.113.000269

76. van der Linde D, van de Laar IM, Bertoli-Avella AM, Oldenburg RA, Bekkers JA, Mattae-Crascio FJ, et al. Aggressive cardiovascular phenotype of aortaneurysms-osteoarthritis syndrome caused by pathogenic SMAD3 variants. J Am Coll Cardiol. 2012;60:397-
77. van de Laar IM, van der Linde D, Oei EH, Bos PK, Beinstra SM, et al. Phenotypic spectrum of the SMAD3-related aorta-aneurysms-osteoporosis syndrome. J Med Genet. 2012;49:47-57. DOI: 10.1136/jmedgenet-2011-100382
78. Zhang P, Hou S, Chen J, Zhang J, Lin F, Ju R, et al. SMAD4 deficiency in smooth muscle cells initiates the formation of aortic aneurysm. Circ Res. 2016;118:388-399. DOI: 10.1161/CIRCRESAHA.115.308040
79. Heald B, Riegels C, Moran R, LaGuardia L, van de Laar IM, van der Linde D, Oei EH, et al. Phenotypic spectrum of the SMAD3-related aorta-aneurysms-osteoporosis syndrome. J Clin Invest. 2014;124:448-460. DOI: 10.1172/JCI69666
80. MacCarrick G, Black JH, 3rd, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrero PA, Guerriero AL, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16:576-587. DOI: 10.1016/j.gim.2014.11.002
81. Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Wain KE, Ellingson MS, McDonald J, Gammon A, Roberts M, Pichurin P, et al. Phenotypic spectrum of the SMAD3-related aorta-aneurysms-osteoporosis syndrome. J Am Coll Cardiol. 2015;66:1324-1336. DOI: 10.1016/j.jacc.2015.01.040
82. Gallo EM, Loch DC, Habashi JP, Calderon IF, Chen Y, Bedja D, et al. Angiotensin II-dependent TGF-beta signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J Clin Invest. 2014;124:448-460. DOI: 10.1172/JCI69666
83. MacCarrick G, Black JH, 3rd, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrero PA, Guerriero AL, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16:576-587. DOI: 10.1016/j.gim.2014.11.002