Compressed Supersymmetry from Gauge Coupling Unification

Martin W. Winkler

in collaboration with S. Krippendorf, H.P. Nilles, M. Ratz

Planck 2013, Bonn

May 21 2013
1 Analytic discussion of gauge coupling unification

2 Precision gauge unification in realistic models

3 Phenomenology: Implications for LHC, dark matter
Gauge coupling unification

- Gauge coupling unification provides strong motivation for Supersymmetry
 - Dimopoulos et al., Phys. Rev. D24 (1981)

- Running gauge couplings in the MSSM

![Graph showing running gauge couplings](image)

BUT:
Gauge coupling unification might not be exact in minimal models.
gauge coupling unification strong motivation for Supersymmetry
Dimopoulos et al., Phys. Rev. D24 (1981)

running gauge couplings in the MSSM

BUT: \(g_i \) miss by a few per cent in minimal models
\[
\frac{1}{g_i^2(M_{\text{GUT}})} = \frac{1}{g_i^2(M_Z)} - \frac{b_i}{8\pi^2} \ln \left(\frac{M_{\text{GUT}}}{M_Z} \right) + \frac{1}{g_i^2,\text{Thr}} + \ldots
\]

- gauge couplings at \(M_Z \)
- one-loop running
- \(b_i = \begin{cases}
33/5 &
1
-3
\end{cases} \)
- thresholds
- higher orders

- thresholds:
 - heavy Standard Model fields (top, Higgs)
 - supersymmetric particles
 - GUT thresholds
in this talk: gauge coupling unification \textbf{without GUT thresholds}

- UV models with precision unification \leftrightarrow talk by M. Ratz

- simple example: MSSM superpartners + heavy Higgs at M_{SUSY}

$$\frac{1}{g^2_{i,\text{Thr}}} = \frac{b_i - b^\text{SM}_i}{8\pi^2} \ln \left(\frac{M_{\text{SUSY}}}{M_Z} \right)$$

$\epsilon_3 = \left. \frac{g^2_3 - g^2_{1,2}}{g^2_{1,2}} \right|_{M_{\text{GUT}}}$
Precision unification in the MSSM

- in this talk: gauge coupling unification **without GUT thresholds**
- UV models with precision unification \(\rightarrow\) talk by M. Ratz
- simple example: MSSM superpartners + heavy Higgs at \(M_{\text{SUSY}}\)

\[
\frac{1}{g_{i,\text{Thr}}^2} = \frac{b_i - b_i^{\text{SM}}}{8\pi^2} \ln \left(\frac{M_{\text{SUSY}}}{M_Z} \right)
\]

\[
\epsilon_3 = \left. \frac{g_3^2 - g_{1,2}^2}{g_{1,2}^2} \right|_{M_{\text{GUT}}}
\]

precision unification for \(M_{\text{SUSY}} \sim 2\text{ TeV}\)
Realistic models

- superpartners not mass-degenerate: define effective M_{SUSY}

 Carena et al., Nucl. Phys. B406 (1993)

- interpretation: same effect on gauge couplings as if all superpartners had a common mass M_{SUSY} (up to changes of g, M_{GUT})

\[
M_{\text{SUSY}} = \frac{m_{\tilde{W}}^{32/19} m_{\tilde{h}}^{12/19} m_{H}^{3/19}}{m_{\tilde{g}}^{28/19}} \prod_{i=1...3} \left(\frac{m_{\tilde{L}_i}^{3/19}}{m_{\tilde{D}_i}^{3/19}} \right) \left(\frac{m_{\tilde{Q}_{Li}}^{7/19}}{m_{\tilde{E}_i}^{2/19} m_{\tilde{U}_i}^{5/19}} \right)
\]

- $X_{\text{sfermion}} = 1$ if sfermions mass-degenerate among SU(5) multiplets

 \rightarrow Split SUSY does not destroy gauge unification

 Arkani-Hamed et al., JHEP 0506 (2005)
Sfermion sector

- RGE running splits SU(5) multiplets
- but: effects on gauge coupling unification very small

- precision unification must be achieved in the gaugino / higgsino sector
Universal gaugino masses

- RGE running decreases $m_{\tilde{W}}/m_{\tilde{g}}$
 \rightarrow unfavorable for precision gauge unification
 Carena et al., Phys. Lett. B317 (1993), Roszkowski et al., Phys. Rev. D53 (1995)

- for models with universal $m_{1/2}$

$$M_{\text{SUSY}} \simeq 0.3 \ m_{\tilde{h}} \left(\frac{m_{1/2}^4 \ m_H^3}{m_{\tilde{h}}^7} \right)^{1/19}$$

- $M_{\text{SUSY}} \sim 2$ TeV requires super-heavy higgsinos $m_{\tilde{h}} \sim 10$ TeV
- precision unification very unnatural in models with universal gaugino mass
Compressed gaugino masses

- **mirage mediation**: mixed gravity / anomaly mediation

\[M_i = \frac{m_{3/2}}{16\pi^2} (\varrho + b_i g^2) \]

- naturally occurs in various string constructions

KKLT: Choi et al., Nucl. Phys. B718 (2005), Choi et al. JHEP 0509 (2005), Falkowski et al. JHEP 0511 (2005)

Heterotic string string: Lowen et al., Phys. Rev. D77 (2005), Krippendorf et al., Phys. Lett. B712 (2012)
Compressed gaugino masses

- **mirage mediation**: mixed gravity / anomaly mediation

\[
M_i = \frac{m_{3/2}}{16 \pi^2} (\varrho + b_i g^2)
\]

- naturally occurs in various string constructions

 - KKLT: Choi et al., Nucl. Phys. B718 (2005), Choi et al. JHEP 0509 (2005), Falkowski et al. JHEP 0511 (2005)
 - Heterotic string string: Lowen et al., Phys. Rev. D77 (2005), Krippendorf et al., Phys. Lett. B712 (2012)
Compressed gaugino masses

- **mirage mediation**: mixed gravity / anomaly mediation

\[M_i = \frac{m_3/2}{16\pi^2} (\varrho + b_i g^2) \]

- naturally occurs in various string constructions

 KKLT: Choi et al., Nucl. Phys. B718 (2005), Choi et al. JHEP 0509 (2005), Falkowski et al. JHEP 0511 (2005)
 Heterotic string string: Lowen et al., Phys. Rev. D77 (2005), Krippendorf et al., Phys. Lett. B712 (2012)
scalar masses model-dependent, but hardly affect gauge unification

- we set $m_{sfermion} = m_H = m_0$ which we fix such that $m_h = 126$ GeV
 $\Rightarrow m_0 = \mathcal{O}(10 \text{ TeV})$ (not unnatural due to focus point)

- precision unification can be achieved with small μ
- compressed spectrum

\[m_{\tilde{g}} < 2 m_{\tilde{\chi}_1} \]
Compressed spectrum at the LHC

- small mass splitting $\Delta m = m_{\tilde{g}} - m_{\tilde{\chi}_1}$
 \rightarrow gluino decay yields soft jets
- difficult to detect, initial state radiation required
 LeCompte et al., Phys. Rev. D84 (2011), Dreiner et al., Europhys. Lett. 99 (2012)
- ATLAS, CMS performed searches in simplified models assuming
 $pp \rightarrow \tilde{g}\tilde{g} \rightarrow 2 q\bar{q} + 2 \chi_1$ or
 $pp \rightarrow \tilde{g}\tilde{g} \rightarrow 2 b\bar{b} + 2 \chi_1$
 ATLAS-CONF-2012-109, CMS-PAS-SUS-13-007
- for gluino LSP: searches for stable R-hadrons
 ATLAS collaboration, Phys. Lett. B720 (2013)
many viable points with \(m_{\tilde{g}} < 1 \text{ TeV} \) we generated a large benchmark sample with random \(\varpi \approx 0.5 - 30 \), \(\varpi \mu \approx 0.1 - 2 \text{ TeV} \), \(\tan \beta \approx 10 - 50 \) required precision gauge coupling unification.
Precision unification at the LHC

- we generated a large benchmark sample with random

\[\varrho = 0.5-30 \quad m_{3/2} = \frac{40 - 200 \text{ TeV}}{\varrho} \quad \mu = 0.1-2\text{TeV} \quad \tan \beta = 10-50 \]

- required precision gauge coupling unification
we generated a large benchmark sample with random

\[\varrho = 0.5-30 \quad m_{3/2} = \frac{40-200 \text{ TeV}}{\varrho} \quad \mu = 0.1-2\text{TeV} \quad \tan \beta = 10-50 \]

required precision gauge coupling unification

many viable points with \(m_{\tilde{g}} < 1 \text{ TeV} \)
Gluino decays

\[\Gamma \propto \text{higgsino fraction} \times \frac{\Delta m^3}{m_t^2} \]

\[\Gamma \propto \text{gaugino fraction} \times \frac{\Delta m^5}{m_q^4} \]

- gluino decay pattern encodes information about SUSY spectrum

 Haber et al., Nucl. Phys. B232 (1984), Sato et al., JHEP 1211 (2012)

- strong suppression of \(\Gamma_{\tilde{g}} \) especially for gaugino-like LSP

- displaced vertices?
Displaced vertices

- distribution of $\Gamma_{\tilde{g}}$ among benchmark points with precision unification

- $\sim 10\%$ of benchmark points have $c/\Gamma_{\tilde{g}} = 10 \, \mu m - 10 \, mm$

- $\Gamma_{\tilde{g}}$ very sensitive to squark sector, could even be larger

- possibly detectable (e.g. transverse impact parameter)

- may affect b-tagging
lightest neutralino very good dark matter candidate

BUT: relic density typically too large (bino) or too small (higgsino)

Baer et al., JHEP 1010 (2010)

compressed spectrum preferred by precision gauge unification yields neutralino mixing, wino coannihilations

- relic density with mirage boundaries
 - without PGU (dashed)
Dark matter

- lightest neutralino very good dark matter candidate
- **BUT:** relic density typically too large (bino) or too small (higgsino)

Baer et al., JHEP 1010 (2010)

- compressed spectrum preferred by precision gauge unification yields neutralino mixing, wino coannihilations

![Graph showing relic density with mirage boundaries](image)

- relic density with mirage boundaries
 - \rightarrow without PGU (dashed)
 - \rightarrow with PGU (solid)
Direct detection

- neutralino-nucleon interactions dominated by Higgs exchange

\[\sigma_p \propto \text{higgsino-gaugino mixing} \]

- bino + wino coannihilation gives correct \(\Omega h^2 \) but tiny \(\sigma_p \)
 \(\rightarrow \) hides from direct detection

\[
\begin{align*}
\text{XENON 100}
\end{align*}
\]
main motivations for Supersymmetry are the hierarchy problem, gauge coupling unification and dark matter

BUT: non-observation of superpartners at the LHC

gauge couplings typically miss by a few per cent
neutralino relic density too small or too large

in mirage mediation, the reduced ratio $m_\tilde{g}/m_\tilde{W}$ improves gauge coupling unification

mirage mediation + precision unification predicts highly compressed gaugino spectrum, small $m_\tilde{g} - m_\tilde{\chi}_1$

LHC bounds relaxed, $m_\tilde{g} \sim 500$ GeV ok

neutralino LSP has “automatically” the correct relic density