THE COMPLETION THEOREM IN TWISTED EQUIVARIANT K-THEORY FOR PROPER ACTIONS.

NOÉ BÁRCENAS AND MARIO VELÁSQUEZ

Abstract. We compare different algebraic structures in twisted equivariant K-Theory for proper actions of discrete groups. After the construction of a module structure over untwisted equivariant K-Theory, we prove a completion Theorem of Atiyah-Segal type for twisted equivariant K-Theory. Using a Universal coefficient Theorem, we prove a cocompletion Theorem for Twisted Borel K-Homology for discrete Groups.

The Completion Theorem in equivariant K-theory by Atiyah and Segal [6] had a remarkable influence on the development of topological K-theory and computational methods related to it.

Twisted equivariant K-theory for proper actions of discrete groups was defined in [9] and further computational tools, notably a version of Segal’s spectral sequence have been developed by the authors and collaborators in [10], and [11].

In this work, we examine Twisted equivariant K-theory with the above mentioned methods as a module over its untwisted version and prove a generalization of the completion theorem by Atiyah and Segal.

It turns out that in the case of groups which admit a finite model for the classifying space for proper actions EG, the ring defined as the zeroth (Untwisted) G-equivariant K-theory ring $K^0_G(EG)$ is Noetherian. Hence, usual commutative algebraic methods can be applied to deal with completion problems on noetherian modules over it, as it has been done in other contexts in the literature, [6], [21], [14], [18].

Using a universal coefficient theorem developed in the analytical setting [23], we prove a version of the co-completion theorem in twisted Borel Equivariant K-homology, thus extending results in [17] to the twisted case.

This work is organized as follows:

In section 1 we collect results on the multiplicative (twist-mixing) structures on twisted equivariant K-theory following its definition in [9]. We also recall in this section the spectral sequence of [10] and the needed notions of Bredon-type cohomology and G-CW complexes.

In section 2 we examine the ring Structure over the ring $K^0_G(EG)$, and establish the noetherian condition for certain relevant modules over it given by twisted equivariant K-theory groups.

The main theorem, 3.6 is proved in section 3.

Theorem. Let G be a group which admits a finite model for EG, the classifying space for proper actions. Let X be a finite, proper G-CW complex. Then, the pro-homomorphism

$$
\varphi_{n,p} : \left\{ K^*_G(X,P)/I_G,EG^n K^*_G(X,P) \right\} \rightarrow \left\{ K^*_G(X \times EG^{n-1}, P^*(P)) \right\}
$$

is a pro-isomorphism. In particular, the system $\left\{ K^*_G(X \times EG^{n-1}, P^*(P)) \right\}$ satisfies the Mittag-Leffler condition and the \lim^1 term is zero.

Finally, section 4 deals with the proof of the cocompletion theorem 4.6 involving Twisted Borel K-homology.
Theorem. Let G be a discrete group. Assume that G admits a finite model for EG. Let X be a finite G-CW complex and $P \in H^3(X \times G, EG, \mathbb{Z})$. Let $I_{G,EG}$ be the augmentation ideal. Then, there exists a short exact sequence

$$
\text{colim}_{n \geq 1} \text{Ext}^1_{\mathbb{Z}}(K^*_G(X, P) / I_{G,EG}, \mathbb{Z}) \rightarrow K^*_*(X \times G, EG, p^*(P)) \rightarrow \text{colim}_{n \geq 1} K^*_n(X, P) / I_{G,EG}^n
$$

Contents

Aknowledgments 2

1. Preliminaries on (twisted) Equivariant K-theory for Proper and Discrete actions

Twisted equivariant K-Theory.

1.1. Topologies on the space of Fredholm Operators

1.2. Additive structure

1.3. Multiplicative structure

Bredon Cohomology and its Čech Version

2. Module Structure for twisted Equivariant K-theory 10

3. The completion Theorem 11

4. The cocompletion Theorem 13

References 15

Aknowledgments. The first author thanks the support of a CONACYT Postdoctoral Fellowship. The second author thanks the support of a UNAM Postdoctoral Fellowship.

The first and second author thank Université Toulouse III Paul Sabatier, as well as the Laboratoire International Solomon Lefschetz (LAISLA) for support during a visit to Toulouse, where parts of this work were written.
1. Preliminaries on (twisted) Equivariant K-theory for Proper and Discrete actions

Definition 1.1. Recall that a G-CW complex structure on the pair (X, A) consists of a filtration of the G-space $X = \cup_{-1 \leq n} X_n$ with $X_1 = \emptyset$, $X_0 = A$ where every space is inductively obtained from the previous one by attaching cells in pushout diagrams

\[
\begin{array}{c}
\prod_i S^{n-1} \times G/H_i \longrightarrow X_{n-1} \\
\prod_i D^n \times G/H_i \longrightarrow X_n
\end{array}
\]

We say that a proper G-CW complex is finite if it is constructed out of a finite number of cells $G/H \times D^n$.

We recall the notion of the classifying space for proper actions:

Definition 1.2. Let G be a discrete group. A model for the classifying space for proper actions is a G-CW complex EG with the following properties:

- All isotropy groups are finite.
- For any proper G-CW complex X there exists up to G-homotopy a unique G-map $X \to EG$.

The classifying space for proper actions always exists, it is unique up to G-homotopy and admits several models. The following list contains some examples. We remit to [19] for further discussion.

- If G is a compact group, then the singleton space is a model for EG.
- Let G be a group acting properly and cocompactly on a Cat(0) space X. Then X is a model for EG.
- Let G be a Coxeter group. The Davis complex is a model for EG.
- Let G be a mapping class group of a surface. The Teichmüller space is a model for EG.

Let G be a discrete group. A model for the classifying space for free actions EG is a free contractible G-CW complex. Given a model EG for the classifying space for proper actions, the space BG is the CW-complex EG/G.

The following result is proved in [17], lemma 26 in page 6.

Lemma 1.3. Let X be a finite proper G-CW complex. Then $X \times_G EG$ is homotopy equivalent to a CW complex of finite type.

Twisted equivariant K-Theory. Twisted Equivariant K-Theory for proper actions of discrete groups was introduced in [9]. In what follows we will recall its definition using Fredholm bundles and its properties following the above mentioned article. The crucial difference to [9] is the use of graded Fredholm bundles, which are needed for the definition of the multiplicative structure.

Let \mathcal{H} be a separable Hilbert space and

\[
\mathcal{U}(\mathcal{H}) := \{ U : \mathcal{H} \to \mathcal{H} \mid U \circ U^* = U^* \circ U = \text{Id} \}
\]

the group of unitary operators acting on \mathcal{H}. Let $\text{End}(\mathcal{H})$ denote the space of endomorphisms of the Hilbert space and endow $\text{End}(\mathcal{H})_{c.o.}$ with the compact open topology. Consider the inclusion

\[
\mathcal{U}(\mathcal{H}) \to \text{End}(\mathcal{H})_{c.o.} \times \text{End}(\mathcal{H})_{c.o.}
\]

\[
U \mapsto (U, U^{-1})
\]

and induce on $\mathcal{U}(\mathcal{H})$ the subspace topology. Denote the space of unitary operators with this induced topology by $\mathcal{U}(\mathcal{H})_{c.o.}$ and note that this is different from the usual
compact open topology on $\mathcal{U}(\mathcal{H})$. Let $\mathcal{U}(\mathcal{H})_{c.g}$ be the compactly generated topology associated to the compact open topology, and topologize the group $\mathcal{P}U(\mathcal{H})$ from the exact sequence

$$1 \to S^1 \to \mathcal{U}(\mathcal{H})_{c.g} \to \mathcal{P}U(\mathcal{H}) \to 1.$$

Let \mathcal{H} be a Hilbert space. A continuous homomorphism a defined on a Lie group G, $a : G \to \mathcal{P}U(\mathcal{H})$ is called stable if the unitary representation $\tilde{\mathcal{H}}$ induced by the homomorphism $\tilde{a} : \tilde{G} = a^* \mathcal{U}(\mathcal{H}) \to \mathcal{U}(\mathcal{H})$ contains each of the irreducible representations of \tilde{G}

Definition 1.4. Let X be a proper G-CW complex. A projective unitary G-equivariant stable bundle over X is a principal $\mathcal{P}U(\mathcal{H})$-bundle

$$\mathcal{P}U(\mathcal{H}) \to P \to X$$

where $\mathcal{P}U(\mathcal{H})$ acts on the right, endowed with a left G action lifting the action on X such that:

- the left G-action commutes with the right $\mathcal{P}U(\mathcal{H})$ action, and
- for all $x \in X$ there exists a G-neighborhood V of x and a G_x-contractible slice U of x with V equivariantly homeomorphic to $U \times_{G_x} G$ with the action

$$G_x \times (U \times G) \to U \times G, \quad k \cdot (u, g) = (ku, gk^{-1}),$$

together with a local trivialization

$$P|_V \cong (\mathcal{P}U(\mathcal{H}) \times U) \times_{G_x} G$$

where the action of the isotropy group is:

$$G_x \times ((\mathcal{P}U(\mathcal{H}) \times U) \times G) \to (\mathcal{P}U(\mathcal{H}) \times U) \times G$$

$$(k, ((F, y), g)) \mapsto ((f_x(k)F, ky), gk^{-1})$$

with $f_x : G_x \to \mathcal{P}U(\mathcal{H})$ a fixed stable homomorphism.

Definition 1.5. Let X be a proper G-CW complex. A G-Hilbert bundle is a locally trivial bundle $E \to X$ with fiber on a Hilbert space \mathcal{H} and structural group the group of unitary operators $\mathcal{U}(\mathcal{H})$ with the strong* operator topology. Note that in $\mathcal{U}(\mathcal{H})$ the strong* operator topology and the compact open topology are the same \[25\]. The_bundle of Hilbert-Schmidt operators with the strong topology between Hilbert Bundles E and F will be denoted by $L_{HS}(E, F)$.

The following result resumes some facts concerning projective unitary stable G-equivariant bundles.

Lemma 1.6.

(i) Given a projective unitary, stable G-equivariant Bundle P, there exists a G-Hilbert bundle $E \to X$ such that the bundle $\text{End}_{L_{HS}}(E, E)$ has an associated $\mathcal{P}U(\mathcal{H})$ principal, stable G-equivariant bundle isomorphic to P, where $\mathcal{P}U(\mathcal{H})$ carries the *-strong topology.

(ii) Given projective unitary stable G-equivariant bundles P_1 and P_2, the isomorphism class of the $\mathcal{P}U(\mathcal{H})$ bundle associated to $L_{HS}(E_1^*, E_2)$ does not depend on the choice of the Hilbert bundles E_1.

Proof.

(i) Given a central extension $1 \to S^1 \to \tilde{G} \to G \to 1$ of G, consider the Hilbert space $L^2_{\tilde{G}}(\tilde{G}) \subset L^2(\tilde{G})$ defined as the closure of the direct sum of all V-isotypical subspaces, where V is a \tilde{G}-representation where S^1 acts by multiplication. Form the completed sum \mathcal{H} indexed by isomorphism classes of S^1-central extensions \tilde{G} of G. In symbols:

$$\mathcal{H} = \bigoplus_{\tilde{G} \in \text{Ext}(G, S^1)} L^2_{\tilde{G}}(\tilde{G}) \otimes l^2(\mathbb{N}),$$
and consider the trivial bundle $E = X \times \mathcal{H} \to X$. Form the Bundle of Hilbert endomorphisms $\text{End}_{\mathcal{H}}(E, E)$ in the $*$-strong topology \[\text{[25]} \].

The stability of the projective unitary bundle P gives a group homeomorphism between $P(\mathcal{U}(\mathcal{H}))$ and the structural group of the bundle $\text{End}_{\mathcal{H}}(E, E^*)$, which is $P(\mathcal{U}(\mathcal{H}))$.

(ii) Follows from the reduction of the structural group $\mathcal{U}(\mathcal{H})$ in the $*$-strong topology to $\mathcal{PU}(\mathcal{H})$ (in the $*$-strong topology, since the central S^1 acts trivially on $L_{\mathcal{H}}(E_1, E_2)$). The equivalence of principal bundles and associated bundles, as well as the classification of projective unitary, stable G-equivariant bundles from \[\text{[3]} \] finish the argument.

\[\square \]

Definition 1.7. Define $P_1 \otimes P_2$ as the principal $\mathcal{PU}(\mathcal{H})$-bundle associated to $L_{\mathcal{H}}(E_1, E_2)$.

In \[\text{[3]} \], Theorem 3.8, the set of isomorphism classes of projective unitary stable G-equivariant bundles, denoted by $\text{Bun}_{\mathcal{PU}}^G(X, \mathcal{PU}(\mathcal{H}))$ was seen to be in bijection with the third Borel cohomology groups with integer coefficients $H^3(X \times_G EG, \mathbb{Z})$.

Proposition 1.8. The map $\text{Bun}_{\mathcal{PU}}^G(X, \mathcal{PU}(\mathcal{H})) \to H^3(X \times_G EG, \mathbb{Z})$ is an abelian group isomorphism if the left hand side is furnished with the tensor product as additive structure.

Proof. In \[\text{[3]} \], a classifying G-space \mathcal{B}, a universal projective unitary stable G-equivariant bundle $\mathcal{E} \to \mathcal{B}$, as well as a homotopy equivalence $f : \text{Maps}(X, \mathcal{B})^G \to \text{Maps}(X \times_G EG, \mathcal{PU}(\mathcal{H}))$ were constructed in Theorem 3.8. (This was only stated for π_0 there, but the argument goes over to higher homotopy groups). On the other hand, Theorem 3.8 in \[\text{[3]} \] gives an isomorphism of sets to the equivalence classes of projective unitary stable G-equivariant bundles $\text{Bun}_{\mathcal{PU}}^G(X, \mathcal{PU}(\mathcal{H}))$. On the isomorphic sets $\pi_0(\text{Maps}(X, \mathcal{B})^G) \cong \pi_0(\text{Maps}(X \times_G EG, \mathcal{PU}(\mathcal{H})))$ define the operations

- The operation $*$, given by the unique H-space structure in $\mathcal{PU}(\mathcal{H}) = K(\mathbb{Z}, 3)$, and
- The operation $*$, defined in $\pi_0(\text{Maps}(X, \mathcal{B})^G)$ as follows. Given maps f_0 and f_1 consider the projective unitary stable G-equivariant bundles $f_i^*(\mathcal{E})$, where \mathcal{E} is the universal bundle and form the classifying map ψ of the projective unitary stable, G-equivariant bundle $f_1^*(\mathcal{E}) \otimes f_2^*(\mathcal{E})$. Define $f_1 * f_2 = \psi$.

The classification of bundles yields that these operations are mutually distributive and associative, and have a common neutral element given by the constant map. The two operations agree then because of the standard Lemma, see for example Lemma 2.10.10, page 56 in \[\text{[1]} \].

\[\square \]

Definition 1.9. Let X be a proper G-CW complex and let \mathcal{H} be a separable Hilbert space. The space $\text{Fred}(\mathcal{H})$ consists of pairs (A, B) of bounded operators on \mathcal{H} such that $AB - 1$ and $BA - 1$ are compact operators. Endow $\text{Fred}(\mathcal{H})$ with the topology induced by the embedding

\[
\text{Fred}(\mathcal{H}) \to B(\mathcal{H}) \times B(\mathcal{H}) \times K(\mathcal{H}) \times K(\mathcal{H})
\]

\[
(A, B) \mapsto (A, B, AB - 1, BA - 1)
\]

where $B(\mathcal{H})$ denotes the bounded operators on \mathcal{H} with the compact open topology and $K(\mathcal{H})$ denotes the compact operators with the norm topology.
We denote by $\tilde{\mathcal{H}} = \mathcal{H} \oplus \mathcal{H}$ a \mathbb{Z}_2-graded, infinite dimensional Hilbert space.

Definition 1.10. Let $U(\tilde{\mathcal{H}})_{c.g.}$ be the group of even, unitary operators on the Hilbert space $\tilde{\mathcal{H}}$ which are of the form

$$
\begin{pmatrix}
u_1 & 0 \\ 0 & \nu_2
\end{pmatrix},
$$

where ν_i denotes a unitary operator in the compactly generated topology defined as before.

We denote by $PU(\tilde{\mathcal{H}})$ the group $U(\tilde{\mathcal{H}})_{c.g.} / S^1$ and recall the central extension

$$
1 \to S^1 \to U(\tilde{\mathcal{H}}) \to PU(\tilde{\mathcal{H}}) \to 1
$$

Definition 1.11. Let X be a proper G-CW complex. The space $\text{Fred}''(\tilde{\mathcal{H}})$ is the space of pairs (\tilde{A}, \tilde{B}) of self-adjoint, bounded operators of degree 1 defined on $\tilde{\mathcal{H}}$ such that $\tilde{A}\tilde{B} - I$ and $\tilde{B}\tilde{A} - I$ are compact.

Given a $\mathbb{Z}/2$-graded, stable Hilbert space $\hat{\mathcal{H}}$, the space $\text{Fred}''(\hat{\mathcal{H}})$ is homeomorphic to $\text{Fred}'(\mathcal{H})$.

Definition 1.12. We denote by $\text{Fred}^{(0)}(\tilde{\mathcal{H}})$ the space of self-adjoint degree 1 Fredholm operators A in $\tilde{\mathcal{H}}$ such that A^2 differs from the identity by a compact operator, with the topology coming from the embedding $A \mapsto (A, A^2 - I)$ in $\mathcal{B}(\mathcal{H}) \times K(\mathcal{H})$.

The following result was proved in [3], Proposition 3.1:

Proposition 1.13. The space $\text{Fred}^{(0)}(\tilde{\mathcal{H}})$ is a deformation retract of $\text{Fred}''(\tilde{\mathcal{H}})$.

The above discussion can be concluded telling that $\text{Fred}^{(0)}(\tilde{\mathcal{H}})$ is a representing space for K-theory. The group $U(\tilde{\mathcal{H}})_{c.g.}$ of degree 0 unitary operators on $\tilde{\mathcal{H}}$ with the compactly generated topology acts continuously by conjugation on $\text{Fred}^{(0)}(\tilde{\mathcal{H}})$, therefore the group $PU(\tilde{\mathcal{H}})$ acts continuously on $\text{Fred}^{(0)}(\tilde{\mathcal{H}})$ by conjugation. In [3] twisted K-theory for proper actions of discrete groups was defined using the representing space $\text{Fred}'(\mathcal{H})$, but in order to have multiplicative structure we proceed using $\text{Fred}^{(0)}(\tilde{\mathcal{H}})$.

Let us choose the operator

$$
\hat{I} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}
$$

as the base point in $\text{Fred}^{(0)}(\tilde{\mathcal{H}})$.

Choosing the identity as a base point on the space $\text{Fred}'(\mathcal{H})$, gives a diagram of pointed maps

$$
\begin{array}{ccc}
\text{Fred}^{(0)}(\tilde{\mathcal{H}}) & \xrightarrow{i} & \text{Fred}''(\tilde{\mathcal{H}}) & \xrightarrow{f} & \text{Fred}'(\mathcal{H}) \\
& & r & & \\
& & \text{Fred}^{(0)}(\tilde{\mathcal{H}})
\end{array}
$$

where i denotes the inclusion, r is a strong deformation retract and f is a homeomorphism. Moreover, the maps are compatible with the conjugation actions of the groups $U(\tilde{\mathcal{H}})_{c.g.}$, $U(\mathcal{H})_{c.g.}$ and the map $U(\tilde{\mathcal{H}})_{c.g.} \to U(\mathcal{H})_{c.g.}$.

Let X be a proper compact G-ANR and let $P \to X$ be a projective unitary stable G-equivariant bundle over X. Denote by \tilde{P} the projective unitary stable bundle obtained by performing the tensor product with the trivial bundle $\mathbb{P}(\tilde{\mathcal{H}})$, $\tilde{P} = P \otimes \mathbb{P}(\tilde{\mathcal{H}})$.
The space of Fredholm operators is endowed with a continuous right action of the group $PU(\hat{H})$ by conjugation, therefore we can take the associated bundle over X

$$\text{Fred}^{(0)}(\hat{P}) := \hat{P} \times_{PU(\hat{H})} \text{Fred}^{(0)}(\hat{H}),$$

and with the induced G action given by

$$g \cdot ([\lambda, A]) := ([g\lambda, A])$$

for g in G, λ in \hat{P} and A in $\text{Fred}^{(0)}(\hat{H})$. Denote by

$$\Gamma(X; \text{Fred}^{(0)}(\hat{P}))$$

the space of sections of the bundle $\text{Fred}^{(0)}(\hat{P}) \to X$ and choose as base point in this space the section which chooses the base point \hat{I} on the fibers. This section exists because the $PU(\hat{H})$ action on \hat{I} is trivial, and therefore

$$X \cong \hat{P}/PU(\hat{H}) \cong \hat{P} \times_{PU(\hat{H})} \{\hat{I}\} \subset \text{Fred}^{(0)}(\hat{P});$$

let us denote this section by s.

Definition 1.14. Let X be a connected G-space and P a projective unitary stable G-equivariant bundle over X. The **Twisted G-equivariant K-theory** groups of X twisted by P are defined as the homotopy groups of the G-equivariant sections

$$K^{P}_{G}(X; P) := \pi_{P} \left(\Gamma(X; \text{Fred}^{(0)}(\hat{P}))^{G}, s \right).$$

where the base point $s = \hat{I}$ is the section previously constructed.

1.1. **Topologies on the space of Fredholm Operators.** In [24] a Fredholm picture of twisted K-theory is introduced, using the strong-* operator topology on the space of Fredholm Operators. For the sake of completeness, we establish here the isomorphism of these twisted equivariant K-theory groups with the ones described here.

Denote by $\text{Fred}'(\mathcal{H})_{ss}$ the space whose elements are the same as $\text{Fred}'(\mathcal{H})$ but with the strong *-topology on $B(\mathcal{H})$.

Definition 1.15. [24] Thm. 3.15] Let X be a connected G-space and P a projective unitary stable G-equivariant bundle over X. The **Twisted G-equivariant K-theory** groups of X (in the sense of Tu-Xu-Laurent) twisted by P are defined as the homotopy groups of the G-equivariant strong*-continuous sections

$$K^{P}_{G}(X; P) := \pi_{P} \left(\Gamma(X; \text{Fred}'(P))^{G}, s \right).$$

The bundle $\text{Fred}'(P)_{ss}$ is defined in a similar way as $\text{Fred}'(P)$.

We will prove that the functors $K^{P}_{G}(-, P)$ and $K^{*}_{G}(-, P)$ are naturally equivalent.

Lemma 1.16. The spaces $\text{Fred}'(\mathcal{H})$ and $\text{Fred}'(\mathcal{H})_{ss}$ are $PU(\mathcal{H})$-weakly homotopy equivalent.

Proof. The strategy is to prove that $\text{Fred}'(\mathcal{H})_{ss}$ is a representing of equivariant K-theory. The same proof for $\text{Fred}'(\mathcal{H})$ in [3] Prop. A.22 applies. In particular $GL(\mathcal{H})_{ss}$ is G-contractible because the homotopy h_{t} constructed in [3] Prop. A.21] is continuous in the strong*-topology and then the proof applies. \qed

Using the above lemma one can prove that the identity map defines an equivalence between (twisted) cohomology theories $K^{P}_{G}(-, P)$ and $K^{*}_{G}(-, P)$. Then we have that the both definitions of twisted K-theory are equivalents. Summarizing
Theorem 1.17. For every proper G-CW-complex X and every projective unitary stable G-equivariant bundle over X. We have an isomorphism

$$K^*_G(X; P) \cong K^*_G(X; P).$$

Remark 1.18. In order to simplify the notation from now on we denote by \mathcal{H} a \mathbb{Z}_2-graded separable Hilbert space and we denote by $\text{Fred}^{(0)}(P)$ the bundle $\text{Fred}^{(0)}(\hat{P})$.

1.2. Additive structure. There exists a natural map

$$\Gamma(X; \text{Fred}^{(0)}(\hat{P})^G) \times \Gamma(X; \text{Fred}^{(0)}(\hat{P}))^G \to \Gamma(X; \text{Fred}^{(0)}(\hat{P})^G),$$

inducing an abelian group structure on the twisted equivariant K-theory groups, which we will define below. Consider for this the following commutative diagram.

$$
\begin{array}{ccc}
\text{Fred}^{(0)}(\hat{H}) \times \text{Fred}^{(0)}(\hat{H}) & \xrightarrow{i} & \text{Fred}^{(0)}(\hat{H}) \\
\downarrow & & \downarrow \\
\text{Fred}^{(0)}(\hat{H}) & \xleftarrow{f^{-1} \sigma} & \text{Fred}^{(0)}(\hat{H})
\end{array}
$$

where the vertical map denotes composition. As the maps involved in the diagram are compatible with the conjugation actions of the groups $U(\hat{H})_{\cdot, g}$, respectively $U(\hat{H})_{\cdot, g}$ and G, for any projective unitary, stable G-equivariant bundle P, this induces a pointed map

$$\Gamma(X; \text{Fred}^{(0)}(\hat{P})^G, s) \times (\Gamma(X; \text{Fred}^{(0)}(\hat{P}))^G, s) \to (\Gamma(X; \text{Fred}^{(0)}(\hat{P})^G, s).$$

Which defines an additive structure in $K^*_G(X; P)$.

1.3. Multiplicative structure. We define an associative product on twisted K-theory.

$$K^*_G(X; P) \times K^*_G(X; P') \to K^*_G(X; P \otimes P')$$

Induced by the map

$$\langle A, A' \rangle \mapsto A \hat{\otimes} I + I \hat{\otimes} A'$$

defined in $\text{Fred}^{(0)}(\hat{H})$, and $\hat{\otimes}$ denotes the graded tensor product, see [7] in pages 24-25 for more details. We denote this product by \bullet.

Let 0 be the projective unitary, stable G-equivariant bundle associated to the neutral element in $H^4(X \times_G EG, \mathbb{Z})$. The groups $\pi_2(\text{Fred}(0))$ define un twisted, equivariant, representable K-Theoy in negative degree for proper actions. The extended version via Bott periodicity agrees with the usual definitions of untwisted, equivariant K-theory groups for compact G-CW complexes [22], [21] as a consequence of Theorem 3.8, pages 8-9 in [10].

Bredon Cohomology and its Čech Version. (Untwisted) Bredon cohomology has been an useful tool to approximate equivariant cohomology theories with the use of spectral sequences of Atiyah-Hirzebruch type [15], [10].

We will recall a version of Bredon cohomology with local coefficients which was introduced in [10] and compared there to other approaches. These approaches fit all into the general approach of spaces over a category [15], [8].

Let $\mathcal{U} = \{ U_\sigma \mid \sigma \in I \}$ be an open cover of the proper G-CW complex X which is closed under intersections and has the property that each open set U_σ is G-equivariantly homotopic to an orbit $G/H_\sigma \subset U_\sigma$ for a finite subgroup H_σ. The existence of such a cover, sometimes known as contractible slice cover, is guaranteed for proper G-ANR’s by an appropriate version of the slice Theorem (see [2]).
Definition 1.19. Denote by $\mathcal{N}_G\mathcal{U}$ the category with objects \mathcal{U} and where a morphism is given by an inclusion $U_\sigma \rightarrow U_\tau$. A twisted coefficient system with values on R-Modules is a contravariant functor $\mathcal{N}_G\mathcal{U} \rightarrow R\text{-Mod}$.

Definition 1.20. Let X be a proper G-space with a contractible slice cover \mathcal{U}, and let M be a twisted coefficient system. Define the Bredon equivariant homology groups with respect to U as the homology groups of the category $\mathcal{N}_G\mathcal{U}$ with coefficients in M,

$$H^n_{\mathcal{G}}(X,\mathcal{U}; M) := H^n(\mathcal{N}_G\mathcal{U}, M).$$

These are the homology groups of the chain complex defined as the R-module

$$C^\mathcal{Z}_\ast(\mathcal{N}_G\mathcal{U}) \otimes_{\mathcal{N}_G\mathcal{U}} M,$$

given as the balanced tensor product of the contravariant, free $\mathcal{Z}_\ast\mathcal{N}_G\mathcal{U}$-chain complex $C^\mathcal{Z}_\ast(\mathcal{N}_G\mathcal{U})$ and M. This is the R-module

$$\bigoplus_{U_\sigma \in \mathcal{N}_G\mathcal{U}} R \otimes_R M(U_\sigma)/K$$

where K is the R-module generated by elements

$$r \otimes x - r \otimes i^\ast(x),$$

for an inclusion $i : U_\sigma \rightarrow U_\tau$.

Remark 1.21 (Coefficients of twisted equivariant K-Theory on contractible Covers). Let $i_\sigma : G/H_\sigma \rightarrow U_\sigma \rightarrow X$ be the inclusion of a G-orbit into X and consider the Borel cohomology group $H^3(EG \times_G G/H_\sigma, \mathbb{Z})$. Given a class $P \in H^3(EG \times_G X, \mathbb{Z})$, we will denote by $H^3_{P_\sigma}$ the central extension $1 \rightarrow S^1 \rightarrow H^3_{P_\sigma} \rightarrow H_\sigma \rightarrow 1$ associated to the class given by the image of P under the maps

$$\omega_\sigma : H^3(EG \times X, \mathbb{Z}) \overset{i_\ast}{\rightarrow} H^3(EG \times_G G/H_\sigma, \mathbb{Z}) \overset{\sim}{\rightarrow} H^3(BH_\sigma, \mathbb{Z}) \overset{\sim}{\rightarrow} H^2(BH_\sigma, S^1).$$

Restricting the functors $K^p_G(X, P)$ and $K^1_G(X, P)$ to the subsets U_σ gives contravariant functors defined on the category $\mathcal{N}_G\mathcal{U}$.

As abelian groups, the functors $K^p_G(X, P)$ satisfy:

$$K^p_G(U_\sigma, P) = \begin{cases} R_{S^1}(H^3_{P_\sigma}) & \text{if } j = 0 \\ 0 & \text{if } j = 1 \end{cases}$$

The Symbol $R_{S^1}(H^3_{P_\sigma})$ denotes the subgroup of the abelian group of isomorphisms classes of complex $H^3_{P_\sigma}$-representations, where S^1 acts by complex multiplication.

We recall the key result from [10], proposition 4.2

Proposition 1.22. spectral sequence associated to the locally finite and equivariantly contractible cover \mathcal{U} and converging to $K^p_G(X, P)$, has for second page $E_2^{p,q}$ the cohomology of $\mathcal{N}_G\mathcal{U}$ with coefficients in the functor $K^q_G(?, P|?)$ whenever q is even, i.e.

$$E_2^{p,q} := H^p(\mathcal{N}_G\mathcal{U}; K^q_G(?)),$$

and is trivial if q is odd. Its higher differentials

$$d_r : E_r^{p,q} \rightarrow E_r^{p+r,q-r+1}$$

vanish for r even.
2. Module Structure for Twisted Equivariant K-theory

Let \(X \) be a proper \(G \)-CW complex, and let \(P \) be a stable projective unitary \(G \)-equivariant bundle over \(X \). Recall that up to \(G \)-equivariant homotopy, there exists a unique map \(\lambda : X \rightarrow EG \). The map \(\lambda \) together with the multiplicative structure give an abelian group homomorphism

\[
K^0_G(EG) \rightarrow K^0_G(X, P),
\]

which gives \(K^0_G(X, P) \) the structure of a module over the ring \(K^0_G(EG) \).

We will analyze the structure of \(K^0_G(EG) \) as a ring. The results in the following lemma are proved inside the proofs of Theorem 4.3, page 610 in [21], and Theorem 6.5, page 21 in [20].

Proposition 2.1. Let \(G \) be a group which admits a finite model for the classifying space for proper actions \(EG \). Then,

- \(K^0_G(EG) \) is isomorphic to the Grothendieck Group of \(G \)-equivariant, finite dimensional complex vector bundles.
- The ring \(K^0_G(EG) \) is noetherian.
- Let \(\mathcal{O}_{FZN}(G) \) be the orbit category consisting of homogeneous spaces \(G/H \) with \(H \) finite and \(G \)-equivariant maps. Denote by \(R(?) \) the contravariant \(\mathcal{O}_{FZN}(G) \)-module given by assigning to an object \(G/H \) the complex representation ring \(R(H) \) and to a morphism \(G/H \rightarrow G/K \) the restriction \(R(K) \rightarrow R(H) \). Then, there exists a ring homomorphism

\[
K^0_G(EG) \rightarrow \lim_{\mathcal{O}_{FZN}(G)} R(?)
\]

which has nilpotent kernel and cokernel.

- Given a prime number \(p \), there exists a vector bundle \(E \) of dimension prime to \(p \), such that for every point \(x \in EG \), the character of the \(G_x \) representation \(E \mid_x \) evaluated on an element of order not a power of \(p \) is 0.

Proof.

- This is proved in [21], [22], [16], 3.8 in pages 8-9.
- Given a finite proper \(G \)-CW complex \(X \), there exists an equivariant Atiyah-Hirzebruch spectral sequence abutting to \(K^*_G(X) \) with \(E_2 \) term given by \(E_2^{p,q} = H^p_{Z\mathcal{O}_{FZN}(G)}(X, K^q(G/\Sigma^?)) \), where the right hand side denotes untwisted Bredon cohomology, defined over the Orbit Category \(\mathcal{O}_{FZN}(G) \) rather than over the category \(\mathcal{N}\mathcal{O}H \).

The group \(E_2^{p,q} \) can be identified with Bredon cohomology with coefficients on the representation ring if \(q \) is even and is zero otherwise. Since the Bredon cohomology groups of the spectral sequence are finitely generated if \(EG \) is a finite \(G \)-CW complex, this proves the first assumption.

- The edge homomorphism of the Atiyah-Hirzebruch spectral sequence of [15] gives a ring homomorphism \(K^*_G(X) \rightarrow H^*_\mathcal{O}_{FZN}(G)(X, R) \). The right hand side can be identified with the ring \(\lim_{\mathcal{O}_{FZN}(G)} R(?) \). The rational collapse of the equivariant Atiyah-Hirzebruch spectral sequence gives the second part.

- Let \(m \) be the least common multiple of the orders of isotropy groups \(H \) in \(EG \). For any finite subgroup \(H \), pick up a homomorphism \(\alpha_H : H \rightarrow \Sigma_m \) corresponding to a free action of \(H \) on \(\{1, \ldots, m\} \). Let \(n \) be the order of the group \(\Sigma_m/Symp(\Sigma_m) \) and let \(\rho : \Sigma_m \rightarrow U(n) \) be the permutation representation. Consider the element \(\{V_H\} = \{C^n[\rho \circ \alpha_H]\} \) in the inverse limit \(\lim_{\mathcal{O}_{FZN}(G)} R(?) \). According to the second part, there exists a vector bundle \(E \) which is mapped to some power \(\{V_H \otimes \} \). The Vector bundle satisfies the required properties.
Lemma 2.2. Let G be a discrete group admitting a finite model for EG and P be a stable projective unitary G-bundle over a finite G-CW complex X. Then, the $K^0_G(EG)$-modules $K^i_G(X, P)$ are noetherian for $i = 0, 1$.

Proof. There exists ([10], Theorem 4.9 in page 14), a spectral sequence abutting to $K^*_G(X, P)$. Its E_2 term consists of groups $E_2^{q,p}$, which can be identified with a version of Bredon cohomology associated to a compact, open, G-invariant cover U consisting of open sets which are G-homotopy equivalent to proper orbits.

These groups are denoted by $H^q_{\text{NCG}}(X, K^0_G(U))$ and are zero if q is odd. Since X is a proper, compact G-CW complex, the cover can be assumed to be finite. Given an element of the cover U, the group $K^0_G(U)$ is a finitely generated, free abelian group, as it is seen from A.3.4, page 40 in [9], where the groups $K^0_G(U)$ are identified with groups of projective complex representations. Compare also remark ([12]).

In particular the groups $H^q_{\text{NCG}}(X, K^0_G(U))$ in the spectral sequence abutting to $K^*_G(X, P)$ are finitely generated. By induction, the groups $E_2^{q,p}$ are finitely generated for all r and hence the term E_∞. Hence $K^*_G(X, P)$ is it for $i = 0, 1$. Since $K^*_G(E_G)$ is a noetherian ring, the result follows. □

3. The Completion Theorem

Definition 3.1 (Augmentation ideal). Let G be a discrete group. Given a proper G-CW complex, the augmentation ideal $I_{G,X} \subset K^0_G(X)$ is defined to be the kernel of the homomorphism

$$K^0_G(X) \to K^0_G(X_0) \to K^0_{(e)}(X_0)$$

defined by restricting to the zeroth skeleton and restricting the acting group to the trivial group.

Proposition 3.2. Let X be an n-dimensional proper G-CW complex. Then, any product of $n+1$ elements in $I_{G,X}$ is zero.

Proof. This is proved in [21], lemma 4.2 in page 609. □

We fix now our notations concerning pro-modules and pro-homomorphisms.

Let R be a ring. A pro-module indexed by the integers is an inverse system of R-modules:

$$M_0 \xleftarrow{\alpha_0} M_1\xleftarrow{\alpha_1} M_2 \xleftarrow{\alpha_2} M_3, \ldots$$

We write $\alpha_n = \alpha_{n+1} \circ \ldots \circ \alpha_n$.

A strict pro-homomorphism $\{M_n, \alpha_n\} \to \{N_n, \beta_n\}$ consists of a collection of homomorphisms $\{f_n : M_n \to N_n\}$ such that $\beta_n \circ f_n = f_{n+1} \circ \alpha_n$ holds for each $n \geq 2$. A pro R-module $\{M_n, \alpha_n\}$ is called pro-trivial if for each $m \geq 1$ there is some $n \geq m$ such that $\alpha_n = 0$. A strict homomorphism f as above is called a pro isomorphism if $\ker(f)$ and $	ext{coker}(f)$ are both pro-trivial. A sequence of strict homomorphisms

$$\{M_n, \alpha_n\} \xrightarrow{f_n} \{M'_n, \alpha'_n\} \xrightarrow{g_n} \{M''_n, \alpha''_n\}$$

is called pro-exact if $g_n \circ f_n = 0$ holds for $n \geq 1$ and the pro-R-module $\ker(g_n)/\text{im}(f_n)$ is pro-trivial. The following lemmas are proved in [5], Chapter 10, section 2, see also [21]:

Lemma 3.3. Let $0 \to \{M', \alpha'_n\} \to \{M_n, \alpha_n\} \to \{M''_n, \alpha''_n\} \to 0$ be a pro-exact sequence of pro-R-modules. Then there is a natural exact sequence
for any exact sequence

Fix any commutative noetherian ring

Lemma 3.4. Let

Theorem 3.6. Let

\[\{M\}' \rightarrow M \rightarrow M'' \] of pro-R-modules is pro-exact.

Definition 3.5 (Completion Map). Let \(X \) be a proper \(G \)-CW complex. Let \(p : X \times EG \rightarrow X \) be the projection to the first coordinate. The up to \(G \)-homotopy unique map \(\lambda : X \rightarrow EG \), combined with Proposition 3.2 defines a pro-homomorphism

\[\varphi_{\lambda,p} : \left\{ K_G^*(X,P)/I_G EG^nK_G^*(X,P) \right\} \rightarrow \left\{ K_G^*(X \times EG^{n-1},p^*(P)) \right\} \]

Theorem 3.6. Let \(G \) be a group which admits a finite model for \(EG \), the classifying space for proper actions. Let \(X \) be a finite, proper \(G \)-CW complex. Then, the pro-homomorphism

\[\varphi_{\lambda,p} : \left\{ K_G^*(X,P)/I_G EG^nK_G^*(X,P) \right\} \rightarrow \left\{ K_G^*(X \times EG^{n-1},p^*(P)) \right\} \]

is a pro-isomorphism. In particular, the system \(\{K_G^*(X \times EG^{n-1},p^*(P))\} \) satisfies the Mittag-Leffler condition and the \(\text{lim}^1 \) term is zero.

Proof. Due to propositions 2.1 and 2.2 we are dealing with a noetherian ring

and the noetherian modules \(K_G^*(X,P) \) over it. Hence, we can use lemmas 3.3 and 3.4 and the 5-lemma for pro-modules and pro-homomorphisms to prove the result by induction on the dimension of \(X \) and the number of cells in each dimension.

Assume that \(X = G/H \) for a finite group \(H \). Then, the completion map fits in the following diagram

\[\begin{array}{ccc}
K_G^*(G/H,P)/I_G EG & \rightarrow & K_G^*(G/H \times EG^{n-1},p^*(P)) \\
\text{ind}_{H \rightarrow G} \cong & & \cong \text{ind}_{H \rightarrow G} \\
\left\{ K_H^*(\{\bullet\},P|_{eH})/J^n \right\} & \rightarrow & \left\{ K_H^*(EH^{n-1},p^*(P)) \right\} \\
\downarrow & & \downarrow = \\
\left\{ K_H^*(\{\bullet\},P|_{eH})/I_{H,\{\bullet\}} \right\} & \rightarrow & \left\{ K_H^*(EH^{n-1},p^*(P)) \right\}
\end{array} \]

The higher vertical maps are induction isomorphisms, and the ideal \(J \) is generated by the image of \(I_G EG \) under the map \(\text{ind}_{H \rightarrow G} \circ \lambda \). The lower horizontal map
is a pro-isomorphism as a consequence of the Atiyah-Segal Completion Theorem for Twisted Equivariant K-theory of finite groups, Theorem 1, page 1925 in [18], where it is proved even for compact Lie groups. We will analyze now the lower vertical map and verify that it is a pro-isomorphism of pro-modules. This amounts to prove that \(I_H, (\star) / J \) is nilpotent. Since the representation ring of \(H \), \(R(H) \) is noetherian, this holds if every prime ideal which contains \(J \) also contains \(I_H, (\star) \).

For an element \(v \in H \), denote by \(\chi_v \) the characteristic function of the conjugacy class of \(v \). Let \(H \) be a finite group. Let \(\zeta \) be the primitive \(|H|\)-root of unity given by \(e^{2\pi i/|H|} \). Put \(A = \mathbb{Z}[\zeta] \).

Recall [3], lemma 6.4 in page 63, that given a finite group \(H \), and a prime ideal of the representation ring \(\mathcal{P} \), there exists a prime ideal \(p \subset A \) an an element in \(H \), \(v \) such that \(\mathcal{P} = \chi_v^{-1}(p) \).

Let \(\mathcal{P} \) be a prime ideal containing \(J \). We can assume that there exist \(s, t \in H \) with \(\chi_v^{-1}(t) \in p \) and such that if \(p \) is the characteristic of the field \(A/p \), then the order of \(s \) is prime to \(p \).

According to part 3 of proposition 2.1, there exists a complex vector bundle \(E \) over \(EG \) such that \(p \) is prime to \(\dim_C E \), and the character \(\chi_E|_v \) is zero after evaluation at the conjugacy class of \(s \). Let \(k = \dim_E \). Then, \(C^k \mid \chi|_{(G/H)} \) is in \(I_H, (\star) \). It follows that \(\mathcal{P} \) contains \(I_H, (\star) \).

This proves that the lower horizontal arrow is a pro-isomorphism, the \(\lim^1 \) term is zero, and the theorem holds for 0-dimensional G-CW complexes \(X \). Assume that the theorem holds for all \(n-1 \)-dimensional, finite proper G-CW complexes. Given a \(k \)-dimensional, finite, proper G-CW complex, \(X \) there exists a pushout

\[
\begin{array}{ccc}
\coprod S^{k-1} \times G/H & \longrightarrow & \coprod D^k \times G/H \\
\downarrow & & \downarrow \\
Y & \longrightarrow & X
\end{array}
\]

where \(Y \) is a \(k \)-dimensional, finite proper G-CW complex. The Mayer-Vietoris sequence for twisted equivariant K-theory gives pro-homomorphisms

\[
\cdots \left\{ K_G^*(X, P)/I_{G, EG^n} \right\} \longrightarrow \\
\left\{ K_G^*(Y, P)/I_{G, EG^n} \right\} \bigoplus \bigoplus \left\{ K_G^*(D^k \times G/H, P)/I_{G, EG^n} \right\} \longrightarrow \\
\bigoplus \left\{ K_G^*(S^{k-1} \times G/H, P)/I_{G, EG^n} \right\} \longrightarrow \left\{ K_G^{n+1}(X, P)/I_{G, EG^n} \right\} \cdots
\]

By induction, the completion maps for the \(n-1 \)-dimensional G-CW complexes are isomorphisms. By the 5-lemma for pro-groups, the completion map for \(X \) is an isomorphism.

\[\square\]

Corollary 3.7. Let \(G \) be a discrete group with a finite model for \(EG \). Let \(P \in H^3(BG, \mathbb{Z}) \cong H^3(EG \times_G EG, \mathbb{Z}) \) be a discrete torsion twisting. Consider \(I = I_G(EG) \) Then,

\[K^*(BG, p^*(P)) \cong K_G^*(EG, P)_I \]

4. The cocompletion Theorem

Given a CW complex \(X \), and a class \(P \in H^3(X, \mathbb{Z}) \), the twisted K-homology groups are defined in terms of Kasparov bivariant groups involving continuous trace
algebras. We remit the reader for preliminaries on Kasparov KK-Theory and its relation to K-homology and Brown-Douglas-Fillmore Theory of extensions to [12], Chapter VII.

Let H be a separable Hilbert space. Let K be the C^*-algebra of compact operators in H. Recall that the automorphism group of the C^*-algebra K consists of the unitary operators with the norm topology $U(H)$ and the inner automorphisms can be identified with the central S^1. Hence, there is an action of the group $PU(H) = U(H)$ on the algebra K.

Remark 4.1. The norm topology and the compactly generated topology agree on compact operators, hence, there is also a conjugation action of the group $U(H)_{c.g}$ of unitary operators in the compactly generated topology, as well as a group homomorphism $PU(H) \rightarrow \text{out}(K)$ to the outer automorphism group of the C^*-algebra K.

Definition 4.2 (Continuous trace Algebras). Let X be a CW complex. Given a cohomology class in the third cohomology group, $H^3(X, \mathbb{Z})$, represented by a principal projective unitary bundle $P : E \rightarrow X$, the continuous trace algebra associated to P is the algebra AP of continuous sections of the bundle $K \times_{PU(H)} E \rightarrow X$.

Definition 4.3 (KK-picture of twisted K-homology). Let X be a locally compact space and P be a $P(U(H))$-principal bundle. The twisted equivariant K-homology groups associated to the projective unitary principal bundle P are defined as the KK-groups

$$K_*(X, P) = KK_*(AP, \mathbb{C})$$

Continuous trace algebras, used in the operator theoretical definition of twisted K-theory and K-homology belong to the Bootstrap class [13] Proposition IV.1.4.16, in page 334. Hence, the following form of the Universal Coefficient Theorem for KK-Groups holds. It was proved in [23], page 439, Theorem 1.17:

Theorem 4.4 (Universal coefficient Theorem for Kasparov KK-Theory). Let A be a C^*-algebra belonging to the smallest full subcategory of separable nuclear C^*-algebras and which is closed under strong Morita equivalence, inductive limits, extensions, ideals, and crossed products by \mathbb{R} and \mathbb{Z}. Then, there is an exact sequence

$$0 \rightarrow \text{Ext}_{\mathbb{Z}}(K^*(A), K^*(B)) \rightarrow KK_*(A, B) \rightarrow \text{Hom}_{\mathbb{Z}}(K^*(A), K^*(B)) \rightarrow 0$$

Where K^* denotes the topological K-theory groups for C^*-algebras.

Specializing to the algebras AP one has:

Theorem 4.5. Let X be a locally compact space and P be a $P(U(H))$-principal bundle. Then, there is an exact sequence

$$0 \rightarrow \text{Ext}_{\mathbb{Z}}(K^{*-1}(X, P), \mathbb{Z}) \rightarrow K_*(X, P) \rightarrow \text{Hom}_{\mathbb{Z}}(K^*(X, P), \mathbb{Z}) \rightarrow 0$$

We will prove the following cocompletion Theorem, inspired by the methods and results of [17].

Theorem 4.6. Let G be a discrete group. Assume that G admits a finite model for EG. Let X be a finite G-CW complex and $P \in H^3(X \times_G EG, \mathbb{Z})$. Let $I_{G,EG}$ be the augmentation ideal. Then, there exists a short exact sequence

$$\text{colim}_{n \geq 1} \text{Ext}_{\mathbb{Z}}^n(K_G^*(X, P)/I_G^n EG, \mathbb{Z}) \rightarrow K_*(X \times_G EG, p^*(P)) \rightarrow \text{colim}_{n \geq 1} K_G^*(X, P)/I_G^n EG$$
Proof. Choose a CW complex Y of finite type and a cellular homotopy equivalence $f : Y → X \times_G EG$. Let $f^n : Y^n → X \times_G EG^n$ be the map restricted to the skeletons. The pro-homomorphisms

\[\left\{ K^*(X \times_G EG^n, p^*(P)) \right\} \longrightarrow \left\{ K^*(Y^n, p^*(P) \mid Y_n) \right\} \]

are a pro-isomorphism of abelian pro-groups. On the other hand, due to the completion theorem, there is a pro-isomorphism

\[\varphi_{\lambda,P} : \left\{ K^*_G(X,P)/I_G,EG^nK^*_G(X,P) \right\} \longrightarrow \left\{ K^*_G(X \times_G EG^{n-1}, p^*(P)) \right\} \]

Using [13] one gets the exact sequence

\[0 → \text{Ext}_G(K_{*+1}(Y, p^*(P)), \mathbb{Z}) → K^*(Y, p^*(P)) → \text{Hom}_{\mathbb{Z}}(K_*(Y, p^*(P)), \mathbb{Z}) → 0. \]

Combining this exact sequence with the pro-isomorphisms given previously, one has the exact sequence

\[\text{colim}_{n≥1} \text{Ext}^1_G(K^*_G(X,P)/I_G,EG^n,\mathbb{Z}) → K^*_G(X \times_G EG, p^*(P)) → \text{colim}_{n≥1} K^*_G(X,P)/I_G,EG \]

□

REFERENCES

[1] M. Aguilar, S. Gitler, and C. Prieto. Algebraic topology from a homotopical viewpoint. Universitext. Springer-Verlag, New York, 2002. Translated from the Spanish by Stephen Bruce Sontz.

[2] S. A. Antonyan and E. Elfving. The equivariant homotopy type of G-ANR’s for proper actions of locally compact groups. In Algebraic topology—old and new, volume 85 of Banach Center Publ., pages 155–178. Polish Acad. Sci. Inst. Math., Warsaw, 2009.

[3] M. Atiyah and G. Segal. Twisted K-theory. Ukr. Mat. Visn., 1(3):287–330, 2004.

[4] M. F. Atiyah. Characters and cohomology of finite groups. Inst. Hautes Études Sci. Publ. Math., (9):23–64, 1961.

[5] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[6] M. F. Atiyah and G. B. Segal. Equivariant K-theory and completion. J. Differential Geometry, 3:1–18, 1969.

[7] M. F. Atiyah and I. M. Singer. Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math., (37):5–26, 1969.

[8] N. Bárceunas. Brown representability and spaces over a category. Rev. Colombiana Mat., 48(1):55, 2014.

[9] N. Bárceunas, J. Espinoza, M. Joachim, and B. Uribe. Universal twist in equivariant K-theory for proper and discrete actions. Proc. Lond. Math. Soc. (3), 108(5):1313–1350, 2014.

[10] N. Barcenas, J. Espinoza, B. Uribe, and M. Velasquez. Segal’s spectral sequence in twisted equivariant K-theory for proper and discrete actions. preprint, ArXiv:1307.1003 [Math.KT], 2013.

[11] N. Bárceunas and M. Velásquez. Twisted equivariant K-theory and K-homology of $\mathrm{SL}_3 \mathbb{Z}$. Algebr. Geom. Topol., 14(2):823–852, 2014.

[12] B. Blackadar. K-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge, second edition, 1998.

[13] B. Blackadar. Operator algebras, volume 122 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2006. Theory of C^*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.

[14] J. Cantarero. Twisted K-theory for actions of Lie groupoids and its completion theorem. Math. Z., 268(1-2):559–583, 2011.

[15] J. P. Davis and W. Lück. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. K-Theory, 15(3):201–252, 1998.

[16] H. Emerson and R. Meyer. Equivariant representable K-theory. J. Topol., 2(1):124–156, 2009.

[17] M. Joachim and W. Lück. Topological K-(co)homology of classifying spaces of discrete groups. Algebr. Geom. Topol., 13(1):1–34, 2013.
[18] A. Lahtinen. The atiyah-segal completion theorem in twisted k-theory. *AGT*, 12(4):1925–1940, 2012.

[19] W. Lück. Survey on classifying spaces for families of subgroups. In *Infinite groups: geometric, combinatorial and dynamical aspects*, volume 248 of *Progr. Math.*, pages 269–322. Birkhäuser, Basel, 2005.

[20] W. Lück and B. Oliver. Chern characters for the equivariant K-theory of proper G-CW-complexes. In *Cohomological methods in homotopy theory (Bellaterra, 1998)*, volume 196 of *Progr. Math.*, pages 217–247. Birkhäuser, Basel, 2001.

[21] W. Lück and B. Oliver. The completion theorem in K-theory for proper actions of a discrete group. *Topology*, 40(3):585–616, 2001.

[22] N. C. Phillips. Equivariant K-theory for proper actions, volume 178 of *Pitman Research Notes in Mathematics Series*. Longman Scientific & Technical, Harlow, 1989.

[23] J. Rosenberg and C. Schochet. The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor. *Duke Math. J.*, 55(2):431–474, 1987.

[24] J.-L. Tu, P. Xu, and C. Laurent-Gengoux. Twisted K-theory of differentiable stacks. *Ann. Sci. École Norm. Sup. (4)*, 37(6):841–910, 2004.

[25] B. Uribe and J. Espinoza. Topological properties of the unitary group. ArXiv:1407.1869, 2014.

Centro de Ciencias Matemáticas. UNAM, Ap. Postal 61-3 Xangari. Morelia, Michoacán MÉXICO 58089

E-mail address: barcenas@matmor.unam.mx
URL: http://www.matmor.unam.mx/~barcenas

Centro de Ciencias Matemáticas. UNAM, Ap. Postal 61-3 Xangari. Morelia, Michoacán MÉXICO 58089

E-mail address: mavelasquezm@gmail.com
URL: https://sites.google.com/site/mavelasquezm/