Numerical Solution of the SEIR Model for Online Game Addiction Problem by Homotopy Perturbation Methods in Students of Junior High School

S Side†, A Saman‡, M I Pratama¶, N R Ramadhan∥, and W Sanusi§

1 Mathematics Department, Universitas Negeri Makassar, Indonesia
2 Department of Educational Psychology and Guidance, Universitas Negeri Makassar, Indonesia
3 Department of Mathematics, Bosowa University, Indonesia

*Email: Syafruddin@unm.ac.id

Abstract. The purpose of this study was to obtain a numerical solution to the Suspected-Exposed-Infected-Recovered (SEIR) model for the problem of online game addiction in Junior High School 3 Makassar students. The SEIR model is built based on assumptions, then performs an analysis to determine the stability of the model and simulation to get a prediction of the number of students online games addiction. This research is an applied research, the method used to obtain the numerical solution of the SEIR model is the Homotopy Perturbation Method and uses secondary data. The results of this study are the numerical solution of the SEIR model of online game addiction with the homotopy perturbation method in Junior High School 3 Makassar students, the solution obtained shown that the number of students who are online games addiction can be suppressed by increasing parental supervision and also providing guidance and counseling. The results of the analysis shown that online game addiction as a result of online learning has increased, but can be suppressed with supervision from students' parents.

Keywords: Online, problem, students

1. Introduction

Online games are games that are played online through the internet [1]. Games with online facilities via the internet not only offer fun game facilities, but players can communicate with other players around the world through chat and have translation facilities which greatly facilitate communication between players [2]. Online game fans in Indonesia reach 6 million people and around 40% are teenagers, which turns out to have a negative impact on them because they are unable to stop playing. A total of 64.45% of teenage boys and 47.85% of teenage girls aged 12-22 years who play online games stated that they are online games addiction [3]. Playing excessive games can cause death, in some cases people have died due to sitting in front of the computer for too long after playing games for an excessive period of time [4,5].

Research on online game addiction has been carried out by [6,7] which discusses online gaming problems from a social perspective but has not considered it from a mathematical point of view, then research on mathematical modelling has been carried out by [8, 9, 10, 11, 12, 13, 14, 15, 16, 17], but focuses on models of infectious diseases transmission. such as dengue fever, malaria, hepatitis, tuberculosis and covid-19.
Research on the mathematical model of online game addiction has been carried out by [18,19], but only focuses on models and simulations, then numerical solutions have been carried out using the homotopy perturbation method [20,21]. That studies have not examined the numerical solution to the problem of online game addiction using the homotopy perturbation method (MPH), then this study examines the numerical solution of the SEIR model [18] for the online game addiction problem of junior high school students using the homotopy perturbation method; model analysis and prediction of the number of online game addiction students can provide an overview of the parameters that have an effect on reducing the number of cases for online game addiction.

2. Research method

This research is an applied research. The SEIR model [15] on the problem of online game addiction was developed by analysing and finding a numerical model solution using the homotopy perturbation method [20,21]. The data used is secondary data on the number of online game addiction cases of Junior High School 3 Makassar students. The initial study of this research is to examine the SEIR model for the problem of online game addiction, then analyse the model to determine the stability of the system and the final part is to find a numerical solution for the SEIR model on the online game addiction problem of Junior High School 3 Makassar students with MPH to determine the prediction of the number of students online games addiction.

3. Result

The SEIR model on the problem of online game addiction can be interpreted in Figure 1, while the definitions and values of the variables and parameters used in the model are presented in Table 1:

\begin{align}
\frac{dS}{dt} &= \mu_1 N - (\alpha + \mu_2)S \\
\frac{dE}{dt} &= \alpha S - (\beta + \mu_2)E \\
\frac{dI}{dt} &= \beta E - (\gamma + \theta + \mu_2)I \\
\frac{dR}{dt} &= (\gamma + \theta)I - \mu_2 R \\
\end{align}

Where \(N = S + E + I + R \) is the total number of students in the population.

Figure 1 can also be interpreted into a mathematical model which is a nonlinear differential equation in system Equation (1)
3.1. SEIR model numerical solution using homotopy perturbation method (MPH)

The homotopy perturbation method is a combination of two methods, namely the perturbation method and the homotopy method, where both methods take an analytical approach to solve a non-linear problem, it's just that the linear factor in the perturbation method is not needed in the homotopy method. The steps to get a numerical solution using the homotopy perturbation method on the SEIR mathematical model of online game addiction are:

Given the initial conditions as in Equation (2):
\[
S(0) = x_0(t) = V_{1,0}(t) = x(0) \\
E(0) = u_0(t) = V_{2,0}(t) = u(0) \\
I(0) = y_0(t) = V_{3,0}(t) = y(0) \\
R(0) = z_0(t) = V_{4,0}(t) = z(0)
\]
(2)

Based on the theory of the perturbation homotopy method [20], a homotopy is built for the online game addiction model that satisfies the relationship as in Equation (3):
\[
V_1' + x_0' + P(x_0' - \mu_1 + (\alpha + \mu_2)V_{1,0}) = 0 \\
V_2' + u_0' + P(u_0' - ax + (\beta + \mu_2)V_{2,0}) = 0 \\
V_3' + y_0' + P(y_0' - \beta V_{2,0} + (y + \theta + \mu_2)V_{3,0}) = 0 \\
V_4' + z_0' + P(z_0' - (y + \theta)V_{3,0} + \mu_2 V_{4,0}) = 0
\]
(3)

and has an initial approximation like Equation (4):
\[
V_1 = V_{1,0} + PV_{1,1} + P^2 V_{1,2} + P^3 V_{1,3} + P^4 V_{1,4} + \cdots, \\
V_2 = V_{2,0} + PV_{2,1} + P^2 V_{2,2} + P^3 V_{2,3} + P^4 V_{2,4} + \cdots, \\
V_3 = V_{3,0} + PV_{3,1} + P^2 V_{3,2} + P^3 V_{3,3} + P^4 V_{3,4} + \cdots, \\
V_4 = V_{4,0} + PV_{4,1} + P^2 V_{4,2} + P^3 V_{4,3} + P^4 V_{4,4} + \cdots.
\]
(4)

Substituting Equations (2) and (4) into Equation (3), we get Equation (5):
\[
V_{1,0}' + PV_{1,1}' + P^2 V_{1,2}' + P^3 V_{1,3}' + P^4 V_{1,4}' + x_0' + P(x_0' - \mu_1 + (\alpha + \mu_2)V_{1,0}) = 0 \\
V_{2,0}' + PV_{2,1}' + P^2 V_{2,2}' + P^3 V_{2,3}' + P^4 V_{2,4}' + u_0' + P(u_0' - ax + (\beta + \mu_2)V_{2,0}) = 0
\]
(5)
\[V'_{3,0} + PV'_{3,1} + P^2V'_{3,2} + P^3V'_{3,3} + \beta^\prime V'_{3,4} + y_0 + P(y_0 - \beta V_{2,0} + (\gamma + \theta + \mu_2)V_{3,0}) = 0 \\
V'_{4,0} + PV'_{4,1} + P^2V'_{4,2} + P^3V'_{4,3} + \beta' V'_{4,4} + z_0' + P(z_0' - (\gamma + \theta)V_{3,0} + \mu_2 V_{4,0})^3 = 0 \\
\]

Furthermore, grouping the same form of \(P\), so that Equations (6), (7), (8), and (9) is obtained:

\[P(V'_{1,0} - \mu_1 + (\alpha + \mu_2)V_{1,0}) = 0 \]
\[P(V'_{2,1} - \alpha V_{1,0} + (\beta + \mu_2)V_{2,0}) = 0 \]
\[P(V'_{3,1} - \beta V_{2,0} + (\gamma + \theta + \mu_2)V_{3,0}) = 0 \]
\[P(V'_{4,1} - (\gamma + \theta)V_{3,0} + \mu_2 V_{4,0}) = 0 \]

\[p^2(V'_{1,2} - \mu_1 + (\alpha + \mu_2)V_{1,1}) = 0 \]
\[p^2(V'_{2,2} - \alpha V_{1,1} + (\beta + \mu_2)V_{2,1}) = 0 \]
\[p^2(V'_{3,2} - \beta V_{2,1} + (\gamma + \theta + \mu_2)V_{3,1}) = 0 \]
\[p^2(V'_{4,2} - (\gamma + \theta)V_{3,1} + \mu_2 V_{4,1}) = 0 \]

\[p^3(V'_{1,3} - \mu_1 + (\alpha + \mu_2)V_{1,2}) = 0 \]
\[p^3(V'_{2,3} - \alpha V_{1,2} + (\beta + \mu_2)V_{2,2}) = 0 \]
\[p^3(V'_{3,3} - \beta V_{2,2} + (\gamma + \theta + \mu_2)V_{3,2}) = 0 \]
\[p^3(V'_{4,3} - (\gamma + \theta)V_{3,2} + \mu_2 V_{4,2}) = 0 \]

\[p^4(V'_{1,4} - \mu_1 + (\alpha + \mu_2)V_{1,3}) = 0 \]
\[p^4(V'_{2,4} - \alpha V_{1,3} + (\beta + \mu_2)V_{2,3}) = 0 \]
\[p^4(V'_{3,4} - \beta V_{2,3} + (\gamma + \theta + \mu_2)V_{3,3}) = 0 \]
\[p^4(V'_{4,4} - (\gamma + \theta)V_{3,3} + \mu_2 V_{4,3}) = 0 \]

The solution to the differential equation is presented in Equation (10):

\[V_{1,1} = \int_0^t (\mu_1 - (\alpha + \mu_2)V_{1,0}) ds \\
V_{2,1} = \int_0^t (\alpha V_{1,0} - (\beta + \mu_2)V_{2,0}) ds \\
V_{3,1} = \int_0^t (\beta V_{2,0} - (\gamma + \theta + \mu_2)V_{3,0}) ds \\
V_{4,1} = \int_0^t ((\gamma + \theta)V_{3,0} - \mu_2 V_{4,0}) ds \\
V_{1,2} = \int_0^t (\mu_1 - (\alpha + \mu_2)V_{1,1}) ds \\
V_{2,2} = \int_0^t (\alpha V_{1,1} - (\beta + \mu_2)V_{2,1}) ds \\
V_{3,2} = \int_0^t (\beta V_{2,1} - (\gamma + \theta + \mu_2)V_{3,1}) ds \\
V_{4,2} = \int_0^t ((\gamma + \theta)V_{3,1} - \mu_2 V_{4,1}) ds \\
V_{1,3} = \int_0^t (\mu_1 - (\alpha + \mu_2)V_{1,2}) ds \\
V_{2,3} = \int_0^t (\alpha V_{1,2} - (\beta + \mu_2)V_{2,2}) ds \\
V_{3,3} = \int_0^t (\beta V_{2,2} - (\gamma + \theta + \mu_2)V_{3,2}) ds \\
V_{4,3} = \int_0^t ((\gamma + \theta)V_{3,2} - \mu_2 V_{4,2}) ds \\
V_{1,4} = \int_0^t (\mu_1 - (\alpha + \mu_2)V_{1,3}) ds \\
V_{2,4} = \int_0^t (\alpha V_{1,3} - (\beta + \mu_2)V_{2,3}) ds \\
V_{3,4} = \int_0^t (\beta V_{2,3} - (\gamma + \theta + \mu_2)V_{3,3}) ds \\
V_{4,4} = \int_0^t ((\gamma + \theta)V_{3,3} - \mu_2 V_{4,3}) ds \\
\]
and we have a special solution formula from the SEIR model homotopy perturbation method for online game addiction problem is obtained in Equations (11)-(14):

\[S(t) = \sum_{j=0}^{4} v_{1,j} = 72 - 38.11t + 20.79t^2 - 10.71t^3 + 6.14t^4 \] \hspace{1cm} (11)

\[E(t) = \sum_{j=0}^{4} v_{2,j} = 77 + 16.21t - 19.91t^2 + 13.07t^3 - 7.29t^4 \] \hspace{1cm} (12)

\[I(t) = \sum_{j=0}^{4} v_{3,j} = 18 - 12.81t + 16.35t^2 - 20.81t^3 + 25.22t^4 \] \hspace{1cm} (13)

\[R(t) = \sum_{j=0}^{4} v_{4,j} = 9 + 18.04t - 15.21t^2 + 18.66t^3 - 23.68t^4 \] \hspace{1cm} (14)

The MPH method of the SEIR model for online game addiction is calculated until the 10th iteration or more so as to produce a logical solution. The iteration results of SEIR model are presented in Table 2:

t	Suspected	Exposed	Infected	Recovered
0	72	77	18	9
1	71.25	77.32	17.75	9.35
2	70.51	77.62	17.51	9.70
3	69.79	77.90	17.29	10.03
4	69.08	78.18	17.07	10.35
5	68.39	78.43	16.86	10.67
6	67.71	78.68	16.67	10.97
7	67.04	78.91	16.48	11.27
8	66.39	79.13	16.30	11.56
9	65.76	79.34	16.12	11.84
10	65.13	79.54	15.96	12.12
11	64.52	79.73	15.80	12.39
12	63.92	79.90	15.65	12.65
13	63.33	80.07	15.50	12.91
14	62.76	80.23	15.36	13.16
15	62.19	80.37	15.22	13.41
16	61.64	80.51	15.09	13.65
17	61.10	80.64	14.96	13.89
18	60.57	80.76	14.84	14.12
19	60.04	80.88	14.72	14.35
20	59.53	80.98	14.60	14.57
21	59.03	81.08	14.49	14.79
22	58.54	81.17	14.39	15.00
23	58.06	81.26	14.28	15.21
24	57.59	81.34	14.19	15.42
25	57.13	81.41	14.10	15.62
26	56.68	81.48	14.01	15.81
27	56.23	81.54	13.93	15.99
28	55.80	81.59	13.87	16.16
29	55.38	81.64	13.81	16.33
30	54.97	81.69	13.77	16.47
Figure 2. The number prediction of potential students (S) and starting to play online games (E)

The iteration results also be in the form of a graph shown in Figure 2 and Figure 3.

Figure 3. The number Prediction of students addicted (I) and quitting to online game addiction (R)

Based on Table 2 it is shown that using the homotopy perturbation method, the number of students who have the potential and addiction to online games continues to decreasing for the next days, on the contrary, the number of students who only try and stop playing online games continues to increasing for the next days. This shown that parental supervision and counseling guidance as parameters in the SEIR model for junior high school students are quite effective in reducing the number of students who are online games addiction.

In line with the explanation of Table 2, Figure 2 explains the same thing, the number of students who are potentially online games addiction as many as 72 students, then decreasing to 55 students a month later. Meanwhile, the number of students who started trying to play online games was 77 students and increasing to 82 students the following month. While Figure 3 explains that the number of students who are online games addiction is 18 students and decreasing to only 14 students in the following month, while the number of students who stop playing online games is 9 students and continues to increase to 17 students for the next month.

4. Discussion
Research on online game addiction problems that has been carried out by [6] shown that the lower the level of depression, the lower the level of online game addiction, and vice versa. Research results SEIR and SEIRS mathematical model for online game addiction by [18,19] focuses on model construction and model simulation where the model is derived from assumptions that form a system of differential equations. The results of this study focus on advanced analysis of the model [18] and the model numerical solutions by using the homotopy perturbation method where this method is able to provide solutions and predict the number of potential junior high school students, starting to try and become...
online games addiction. The results of the study also given that the number of junior high school students who are online games addiction can be reduced by maximizing parental supervision and counseling guidance.

5. Conclusion
The concluded that the homotopy perturbation method can solve the SEIR model for the online game addiction problem of Junior High School 3 Makassar students. The results of the numerical solution of the SEIR model conclude that the number of student’s online games addiction that occurs in students of Junior High School 3 Makassar tends to decrease significantly if parental supervision and counselling are carried out optimally. It can also be concluded that students who are online games addiction do not cause other students to become online games addiction.

Acknowledgements
We would like thank to PD DIKTI No: 127/SP2H/LT/DRPM/2021 for financial support, and also thanks to UNM for supporting this research.

References
[1] Syahran, R. 2015. Ketergantungan Online Game dan Penanganannya. Jurnal Psikologi Pendidikan dan Konseling, 1(1), 84-92. [assessed, 28 June 2021].
[2] Jaya, E. S., 2012. WHO Tetapkan Kecanduan Game Sebagai Gangguan Mental, Bagaimana “Gamer” Indonesia Bisa Sembuh?. https://theconversation.com/who-tetapkan-kecanduan-game-sebagai-gangguan-mental-bagaimana-gamer-indonesia-bisa-sembuh-99029. [accessed, 29 June 2021].
[3] Feprinca, D. 2014. Hubungan Motivasi Bermain Game Online Pada Masa Dewasa Terhadap Perilaku Kecanduan Game Online Defence of The Ancient. Skripsi. Malang: Universitas Brawijaya.
[4] Putri, G. S. 2018. WHO Resmi Tetapkan Kecanduan Game Sebagai Gangguan Mental. https://sains.kompas.com/read/2018/06/19/192900123/who-resmi-tetapkan-kecanduan-game-sebagai-gangguan-mental. Diakses 10 Juni 2019.
[5] Ramadhani, A. 2013. Hubungan Motif Bermain Game Online dengan Perilaku Agresifitas Remaja Awal. Ejournal Ilmu Komunikasi, Vol.1, No.1.
[6] Mulyani, R. D. 2018. Hubungan Antara Depresi dan Kecanduan Online game Pada Mahasiswa di Yogyakarta. Skripsi. Yogyakarta: Universitas Islam Indonesia.
[7] Suplig, M. A. 2017. Pengaruh Kecanduan Game Online Siswa SMA Kelas X Terhadap Kecerdasan Sosial Sekolah Kristen Swasta di Makassar. Jurnal Jaffray, Vol.15, No.2.
[8] S Side, Irwan, U Mulbar, W Sanusi, 2017. SEIR model simulation for Hepatitis B AIP Conference Proceedings 1885 (1), 020185
[9] B Poerwanto, RY Fa’rifah, W Sanusi, S Side, 2018. A matlab code to compute prediction of survival trends in patients with DHF. Journal of Physics: Conference Series 1028 (1), 012113
[10] H Maryam, M Abdy, S Side, 2021. SEIAS-SEI model on asymptomatic and super infection malaria with imperfect vaccination. Journal of Physics: Conference Series 1918 (4), 042028
[11] S Side, M Abdy, F Arwadi, W Sanusi, 2021. SEIRI Model analysis using the mathematical graph as a solution for Hepatitis B disease in Makassar. Journal of Physics: Conference Series 1899 (1), 012091
[12] S Syafuddin, MS Noorani, 2013. Lyapunov Functions of SIR and SEIR Model for Transmission of Dengue Fever Disease. International Journal Simulation and Process Modeling, 177-184
[13] Alice Zwerling, Sourya Shrestha, and David W. Dowdy, 2015. Mathematical Modelling and Tuberculosis: Advances in Diagnostics and Novel Therapies. Advances in Medicine. Vol(2015).
[14] S Side, 2015. A susceptible-infected-recovered model and simulation for transmission of tuberculosis. Advanced Science Letters 21 (2), 137-139
[15] Pakwan Riyapan, Sherif Eneye Shuaib, and Arthit Intarasit, 2021. A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand. *Computational and Mathematical Methods in Medicine*. Vol (2021).

[16] M Abdy, S Side, S Annas, W Nur, W Sanusi, 2021. An SIR epidemic model for COVID-19 spread with fuzzy parameter: the case of Indonesia. Advances in difference equations 2021 (1), 1-17.

[17] S Annas, MI Pratama, M Rifandi, W Sanusi, S Side, 2020. Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos, Solitons & Fractals 139, 110072.

[18] S Side, NA Muzakir, D Pebriani, SN Utari, 2021. Model SEIR Kecanduan Game Online pada Siswa di SMP Negeri 3 Makassar. Sainsmat: Jurnal Ilmiah Ilmu Pengetahuan Alam 9 (1), 91-102.

[19] Azwan Anwar, R Syam, MI Pratama, S Side, 2021. SEIRS model analysis for online game addiction problem of mathematics students. Journal of Physics: Conference Series 1918 (4), 042024.

[20] Ramadhan, N. R., Side, S., Sidjara, S., Irwan., & Sanusi, W. Numerical Solution of SIRS Model for Transmission of Dengue Fever using Homotopy Perturbation Method in Makassar. *AIP Conference Proceedings* 2192, 060015 (2019).

[21] S Side, MS Wahyuni, M Rifki, 2020. Solusi Numerik Model SIR pada Penyebaran Penyakit Hepatitis B dengan Metode Perturbasi Homotopi di Provinsi Sulawesi Selatan. JMathCos (Journal of Mathematics, Computations, and Statistics) 3 (2), 79-87.