\textbf{\textit{\(\mu-\tau\) reflection symmetry and radiative corrections}}

Ye-Ling Zhou *

\textit{Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China}

Abstract

The \(\mu-\tau\) reflection symmetry is compatible with current neutrino oscillation data and easily realized under family symmetries. We prove that this symmetry preserves \(\theta_{23} = 45^\circ\), \(\delta = \pm 90^\circ\), \(\rho, \sigma = 0, 90^\circ\), and can be embedded into the seesaw mechanism. The \(\mu-\tau\) reflection symmetry preserved at a high energy scale \(\Lambda_{FS}\) will be broken by radiative corrections and result in deviations of \(\theta_{23}\) from 45\(^\circ\) and \(\delta\) from \(\pm 90^\circ\) at the electroweak scale. We develop an analytical method to derive the corrections to all the mixing parameters. We perform a numerical analysis in the MSSM for \(\delta = -90^\circ\) at \(\Lambda_{FS}\), and observe that \(\theta_{23} > 45^\circ\) in the normal mass ordering, \(\theta_{23} < 45^\circ\) in the inverted mass ordering, and the sizable correction to \(\delta\) prefers a negative sign. These deviations have definite directions and can be tested in the future neutrino oscillation experiments.

PACS number(s): 14.60.Pq, 13.15.+g, 25.30.Pt

*E-mail: zhouyeling@ihep.ac.cn
1 Introduction

Although neutrino oscillation experiments have greatly developed our knowledge of neutrino masses and lepton flavor mixing [1], there are still some mysteries: the neutrino mass ordering (normal $m_1 < m_2 < m_3$ or inverted $m_3 < m_1 < m_2$), the octant of the atmospheric mixing angle θ_{23} ($\theta_{23} < 45^\circ$ or $\theta_{23} > 45^\circ$) and the value of the Dirac CP-violating phase δ. The undergoing and upcoming neutrino oscillation experiments aim to solve these problems.

Physicists have made much effort for understanding the lepton flavor mixing. A μ-τ exchange symmetry under the transformation $\nu_{\mu L} \leftrightarrow \nu_{\tau L}$ is often assumed [2]. Under this symmetry, the Majorana neutrino mass matrix takes the form

$$M_\nu = \begin{pmatrix} a & b & b \\ b & c & d \\ b & d & c \end{pmatrix}$$

in the flavor basis where the charged lepton mass matrix is diagonal. It simultaneously results in $\theta_{23} = 45^\circ$ and $\theta_{13} = 0$. More symmetries imposed on the mass texture in Eq. (1) can lead to the bimaximal mixing [3], tri-bimaximal mixing [4], et al.

Combining the μ-τ exchange symmetry with CP symmetry, we achieve the following texture:

$$M_\nu = \begin{pmatrix} a & b & b^* \\ b & c & d \\ b^* & d & c^* \end{pmatrix}$$

It was first suggested and realized in the family symmetry A_4 by Babu, Ma, and Valle [5]. This texture is invariant under a combination of the μ-τ exchange and CP conjugate transformations [6]:

$$\nu_{eL} \rightarrow \nu_{eL}^c, \quad \nu_{\mu L} \rightarrow \nu_{\tau L}^c, \quad \nu_{\tau L} \rightarrow \nu_{\mu L}^c,$$

which is regarded as a typical kind of generalized CP transformations [7, 8]. In Ref. [9], Harrison and Scott gave it the name “μ-τ reflection”. Although only Dirac neutrinos were assumed in their original paper, the concept of μ-τ reflection has been inherited and used in the literature, e.g., see [7, 10]. In Ref. [11], it is also called the generalized μ-τ transformation. The observation of a sizable reactor angle $\theta_{13} \simeq 8.8^\circ$ [12] and the hint for the maximal CP violation $\delta \sim -90^\circ$ [13] indicate that the μ-τ reflection symmetry may be an approximate symmetry in the neutrino sector [14]. Later we will prove that $\theta_{23} = 45^\circ$, $\delta = \pm 90^\circ$, and $\rho, \sigma = 0, 90^\circ$ must be required by the μ-τ reflection symmetry, and θ_{12} and θ_{13} are left arbitrary. One can further constrain θ_{12} and θ_{13} by requiring more relations, e.g., the connection with TM$_1$ and TM$_2$ [15]. More discussions on the μ-τ reflection symmetry in the general case can be found in Ref. [16].

The μ-τ reflection symmetry can be realized under family symmetries. Typically in the framework of generalized CP symmetries [7], it is easily realized by requiring a combination of the family symmetry and CP symmetry $G_f \times CP$ breaking to remnant symmetries Z_n and $Z_2 \times CP$ in the charged lepton and neutrino sectors, respectively. In addition, θ_{12} and θ_{13} are constrained and dependent upon a single parameter. There are a lot of model-independent analyses of how to derive this symmetry in A_4 [17], S_4 [8, 18], $\Delta(48)$ [19], and $\Delta(96)$ [20]. For explicit models constructed in generalized CP, please see [17, 18, 21, 22]. The Friedberg-Lee symmetry can also lead to this mass texture and constrain the mixing angles θ_{12} and θ_{13} [23].
The renormalization group (RG) running effect will contribute to the neutrino mass matrix and modify mass eigenvalues and mixing parameters \[24, 25, 26, 27\]. Even if the \(\mu\)–\(\tau\) reflection symmetry is explicitly preserved at a high energy scale, it must be broken due to the RG equations running down to a low energy scale. And the mixing angle \(\theta_{23}\) and the Dirac phase \(\delta\) deviate from \(45^\circ\) and \(\pm 90^\circ\), respectively. Recently, the RG running effect of a \(\mu\)–\(\tau\) symmetry at the PMNS matrix level has been shown schematically \[28\]. In their paper, the assumption of the PMNS matrix elements \(|U_{\mu i}| = |U_{\tau i}|\) (for \(i = 1, 2, 3\)) has been made, which results in \(\theta_{23} = 45^\circ\), \(\delta = \pm 90^\circ\), but leaves \(\rho\), \(\sigma\) arbitrary. In the present paper, we will give a general discussion of \(\mu\)–\(\tau\) reflection symmetry and an analytical description of its RG running effects.

The rest of our paper is organized as follows. Section 2 is devoted to the basic feature of flavor mixing in the \(\mu\)–\(\tau\) reflection symmetry and an extended discussion of how to embed it to the seesaw mechanism. In section 3, we systematically analyze the RG running effects in both analytical and numerical approaches. In general, these effects can be divided into two parts: \(\mu\)–\(\tau\) symmetric and anti-symmetric. We summarize our results in section 4.

2 \(\mu\)–\(\tau\) reflection symmetry

2.1 Flavor mixing

Given any neutrino mass matrix \(M_\nu\) in the form of Eq. (2) that preserves the \(\mu\)–\(\tau\) reflection symmetry, we do the following transformation

\[
U_{23}^\dagger M_\nu U_{23} = \begin{pmatrix}
 a & \sqrt{2}\text{Im}(b) & \sqrt{2}\text{Re}(b) \\
\sqrt{2}\text{Im}(b) & d - \text{Re}(c) & \text{Im}(c) \\
\sqrt{2}\text{Re}(b) & \text{Im}(c) & d + \text{Re}(c)
\end{pmatrix}
\]

with

\[
U_{23} = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & i\sqrt{2} & 1 \\
 0 & -i\sqrt{2} & 1
\end{pmatrix}
\]

and “Re” and “Im” denoting the real and imaginary parts, respectively. We see that the RHS of Eq. (4) is a real matrix. It can be diagonalized by a real orthogonal matrix \(O\) with

\[
O = \begin{pmatrix}
 \eta_1 & 0 & 0 \\
 0 & \eta_2 & 0 \\
 0 & 0 & \eta_3
\end{pmatrix} \begin{pmatrix}
 1 & 0 & 0 \\
 0 & c_1 & s_1 \\
 0 & -s_1 & c_1
\end{pmatrix} \begin{pmatrix}
 c_2 & 0 & s_2 \\
 0 & 1 & 0 \\
 -s_2 & 0 & c_2
\end{pmatrix} \begin{pmatrix}
 c_3 & s_3 & 0 \\
 -s_3 & c_3 & 0 \\
 0 & 0 & 1
\end{pmatrix},
\]

in which \(c_i = \cos \theta_i\) and \(s_i = \sin \theta_i\). Here \(\eta_{1,2,3} = \pm 1\) are used to guarantee \(0 \leq \theta_i \leq 90^\circ\). The diagonalized mass matrix can be presented by

\[
O^T U_{23}^\dagger M_\nu U_{23} O = \tilde{M}_\nu \equiv \eta' \text{diag}\{\eta_{\rho} m_1, \eta_{\sigma} m_2, m_3\},
\]

where \(m_i\) are the absolute neutrino masses in the neutrino mass eigenstates, and \(\eta', \eta_{\rho,\sigma} = \pm 1\) are used to guarantee positive masses \(m_i \geq 0\).
Based on the above discussion, we can derive the PMNS matrix which is compatible with μ-τ reflection symmetry

$$U(\Lambda_{FS}) = U_{23}O \sqrt{\eta^T} \text{diag}\{\sqrt{\eta_\rho}, \sqrt{\eta_\sigma}, 1\}$$

$$= \eta_3 \sqrt{\eta^T} \left(\begin{array}{ccc}
\eta_1 & 0 & 0 \\
\eta_3 & 0 & e^{i\theta_3} \\
0 & e^{-i\theta_1} & 0
\end{array} \right) \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right) \left(\begin{array}{ccc}
c_2 & 0 & s_2 \\
0 & -i\eta & 0 \\
-s_2 & 0 & c_2
\end{array} \right) \left(\begin{array}{ccc}
c_3 & s_3 & 0 \\
-\eta & c_3 & 0 \\
0 & 0 & 1
\end{array} \right) \left(\begin{array}{ccc}
\sqrt{\eta_\rho} & 0 & 0 \\
0 & \sqrt{\eta_\sigma} & 0 \\
0 & 0 & 1
\end{array} \right),$$

where $\eta_\delta = -\eta_2/\eta_3 = \pm 1$. We use the convention of the PMNS matrix as follows:

$$U = \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array} \right) \left(\begin{array}{ccc}
c_{13} & 0 & s_{13} \\
0 & e^{-i\theta} & 0 \\
-s_{13} & 0 & c_{13}
\end{array} \right) \left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-\eta & c_{12} & 0 \\
0 & 0 & 1
\end{array} \right) \left(\begin{array}{ccc}
e^{i\rho} & 0 & 0 \\
0 & e^{i\sigma} & 0 \\
0 & 0 & 1
\end{array} \right),$$

where $c_{ij} = \cos\theta_{ij}$, $s_{ij} = \sin\theta_{ij}$, δ is the Dirac CP-violating phase, ρ, σ are Majorana CP-violating phases, and $-180^\circ \leq \delta \leq 180^\circ$, $0 \leq \rho, \sigma < 180^\circ$ are required. Comparing Eq. (8) with this convention and ignoring the unphysical phases, we obtain the predicted lepton mixing parameters

$$\theta_{23} = 45^\circ, \quad \delta = \eta_\delta 90^\circ = \pm 90^\circ, \quad \theta_{12} = \theta_3, \quad \theta_{13} = \theta_2,$$

$$\rho = \arg \sqrt{\eta_\rho} = \begin{cases} 0, & \eta_\rho = +1 \\ 90^\circ, & \eta_\rho = -1 \end{cases}, \quad \sigma = \arg \sqrt{\eta_\sigma} = \begin{cases} 0, & \eta_\sigma = +1 \\ 90^\circ, & \eta_\sigma = -1 \end{cases},$$

exactly. We see that if the neutrino mass matrix maintains the μ-τ reflection symmetry, θ_{23} and all the CP-violating phases δ, ρ, σ take definite values. The parameters $\eta_\delta, \eta_\rho, \eta_\sigma = \pm 1$ have physical meaning and the two discrete values ± 1 cannot be determined by the symmetry. Finally, θ_1 becomes an unphysical phase which can be rotated away by redefinition of the phases of charged leptons.

We would like to emphasize the phenomenological importance of the μ-τ reflection symmetry. The atmospheric mixing angle $\theta_{23} = 45^\circ$ and the Dirac phase $\delta = -90^\circ$ are not far away from their best-fit values of current global-fit data of neutrino oscillations, and they keep unchanged when constant matter effects are taken into account for long-baseline neutrino oscillation experiments due to the Toshev relation [29][30]. The Majorana phases ρ, σ are fixed at 0 or 90°, which reduce the parameter space of the effective neutrino mass term $\langle m \rangle_{ee}$ in neutrinoless double-beta decay experiments.

2.2 μ-τ reflection under the seesaw mechanism

To explain tiny neutrino masses, we take account of the type-I seesaw mechanism. This subsection is devoted to an approach which combines the μ-τ reflection symmetry with the type-I seesaw mechanism. We give the neutrino mass terms in the basis where the charged lepton mass matrix is diagonal,

$$- \mathcal{L}_{\text{mass}} = \bar{\nu}_T M_D N_R + \frac{1}{2} \bar{N}_R^c M_R N_R + \text{h.c.},$$

in which $\nu_L = (\nu_{eL}, \nu_{\mu L}, \nu_{\tau L})^T$, $N_R = (N_{eR}, N_{\mu R}, N_{\tau R})^T$ are the left-handed and right-handed neutrinos, respectively. The extended μ-τ reflection transformation can be defined as

$$\nu_{eL} \rightarrow \nu_{eL}^c, \quad \nu_{\mu L} \rightarrow \nu_{\tau L}^c, \quad \nu_{\tau L} \rightarrow \nu_{\mu L}^c, \quad N_{eR} \rightarrow N_{\tau R}^c, \quad N_{\mu R} \rightarrow N_{e R}^c, \quad N_{\tau R} \rightarrow N_{\mu R}^c.$$
This definition is not unique in the type-I seesaw mechanism. One can assume another generalized CP transformation different from that in Eq. (12) in the right-handed neutrino sector N_R. The different generalized CP transformation just corresponds to a different choice of the right-handed neutrino flavor basis, if there is no other special flavor structure imposed on the right-handed neutrino sector.

The Dirac mass matrix M_D and the right-handed Majorana mass matrix M_R invariant under the above transformation must take the following forms:

$$M_D \equiv \begin{pmatrix} a & b & b^* \\ b' & c & d \\ b'^* & d^* & c^* \end{pmatrix}, \quad M_R \equiv \begin{pmatrix} A & B & B^* \\ B & C & D \\ B^* & D & C^* \end{pmatrix}. \quad (13)$$

Note that M_D is not necessarily a symmetric matrix, where only a is real and b, b', c, d are complex. M_R is a symmetric matrix in the same form as in Eq. (2), in which both A, D are real and B, C are complex. The mass textures in Eq. (13) are the most general form invariant under the extended ν-\tau reflection transformation. In the case that $M_R \gg M_D$, we integrate out right-handed neutrinos and obtain the tiny masses for the left-handed neutrinos through the seesaw mechanism $M_\nu = -M_DM_RM_D^\dagger$.

In the following, we will prove that M_ν satisfies the μ-\tau reflection symmetry. Applying a similar transformation as shown in Eq. (4), we derive

$$U_{23}^\dagger M_D U_{23} = \begin{pmatrix} a & \sqrt{2}\text{Im}(b) & \sqrt{2}\text{Re}(b) \\ \sqrt{2}\text{Im}(b') & \text{Re}(d) - \text{Re}(c) & \text{Im}(c) + \text{Im}(d) \\ \sqrt{2}\text{Im}(b'^*) & \text{Im}(c) - \text{Im}(d) & \text{Re}(d) + \text{Re}(c) \end{pmatrix},$$

$$U_{23}^\dagger M_R U_{23} = \begin{pmatrix} A & \sqrt{2}\text{Im}(B) & \sqrt{2}\text{Re}(B) \\ \sqrt{2}\text{Im}(B') & \text{Re}(C) - \text{Re}(B) & \text{Im}(C) \\ \sqrt{2}\text{Im}(B'^*) & \text{Im}(C) - \text{Im}(B) & \text{Re}(B) + \text{Re}(C) \end{pmatrix}. \quad (14)$$

Since both $U_{23}^\dagger M_D U_{23}$ and $U_{23}^\dagger M_R U_{23}$ are real, they can be diagonalized by real orthogonal matrices:

$$O_D^\dagger U_{23}^\dagger M_D U_{23} O_D' = \tilde{M}_D \equiv \text{diag}\{k_1 m_1, k_2 m_2, k_3 m_3\},$$

$$O_R^\dagger U_{23}^\dagger M_R U_{23} O_R = \tilde{M}_R \equiv \text{diag}\{k_1 M_1, k_2 M_2, k_3 M_3\}, \quad (15)$$

where O_D, O_D', O_R are real orthogonal matrices, O_D' is not necessarily equal to O_D since $U_{23}^\dagger M_D U_{23}$ may not be symmetric, m_i, M_i are the absolute neutrino masses in the neutrino mass eigenstates, and $k_i, K_i = \pm 1$ are used to guarantee the mass eigenvalues m_i, M_i to be positive, respectively. Finally, we arrive at $U_{23}^\dagger M_\nu U_{23} = M'$ with

$$M' = -[O_D \tilde{M}_D O_D'^{-1}] \tilde{M}_R^{-1} [O_D \tilde{M}_D O_D'^{-1}]^T. \quad (16)$$

Since M' is a real symmetric matrix, we can follow the procedure in the above and affirm that the μ-\tau reflection symmetry is preserved in M_ν.

3 RG running effects of μ-\tau reflection symmetry

3.1 General formulism

We assume that the μ-\tau interchange symmetry in the neutrino sector is explicitly preserved as a remnant symmetry after a certain flavor symmetry breaks at a sufficiently high energy scale $\Lambda \sim \Lambda_{\text{FS}}$.

\[5\]
The neutrino mass matrix takes the form

\[
M_\nu(\Lambda_{FS}) = M_{\text{sym},0} \equiv \begin{pmatrix}
 a_0 & b_0 & b_0^* \\
 b_0 & c_0 & d_0 \\
 b_0^* & d_0 & c_0^*
\end{pmatrix}
\]

(17)

in the flavor basis, in which \(a_0, d_0\) are real and \(b_0, c_0\) are complex parameters. Without specified, any parameter \(p_0\) or \(p_{\star,0}\) in this paper stands for the running value at the scale \(\Lambda_{FS}\).

The RG equations of neutrino masses correct the structure of the neutrino mass matrix and break the \(\mu-\tau\) reflection symmetry when the energy scale comes down. We write out the neutrino mass matrix at the electroweak scale \(\Lambda_{EW}\) in the integral form [26]

\[
M_\nu(\Lambda_{EW}) = I_a \begin{pmatrix} I_e & 0 & 0 \\
0 & I_\mu & 0 \\
0 & 0 & I_\tau \end{pmatrix} M_\nu(\Lambda_{FS}) \begin{pmatrix} I_e & 0 & 0 \\
0 & I_\mu & 0 \\
0 & 0 & I_\tau \end{pmatrix},
\]

(18)

where

\[
I_a = \exp \left[-\frac{1}{16\pi^2} \int_{\ln\Lambda_{FS}}^{\ln\Lambda_{EW}} a(t) dt \right],
\]

\[
I_l = \exp \left[-\frac{C}{16\pi^2} \int_{\ln\Lambda_{FS}}^{\ln\Lambda_{EW}} y_l^2(t) dt \right].
\]

(19)

In the SM and the minimal supersymmetric model (MSSM), \(C\) and \(a\) are given by

\[
C_{\text{SM}} = -\frac{3}{2}, \quad a_{\text{SM}} \approx -3g_2^2 + \lambda + 6y_t^2,
\]

\[
C_{\text{MSSM}} = 1, \quad a_{\text{MSSM}} \approx \frac{6}{5}g_1^2 - 6g_2^2 + 6y_l^2,
\]

(20)

respectively, where \(g_1, g_2\) denote the gauge couplings, \(\lambda\) denotes the quartic Higgs coupling in the SM, and \(y_l, y_\mu\) (for \(l = e, \mu, \tau\)) are Yukawa couplings of the top quark and charged leptons, respectively.

We see that in Eq. (18), \(I_a\) is an overall factor affecting the magnitudes of the absolute neutrino masses, and \(I_l\) are flavor-dependent corrections which may modify the mass structure and flavor mixing. Due to the different signs of \(C\) in Eq. (20), the flavor-dependent corrections go to opposite directions in the SM and MSSM. The Yukawa couplings \(y_\tau, y_{\mu,\tau}\) are too small as compared with \(y_\tau, y_{\mu,\tau}\), and thus \(I_e\) and \(I_\mu\) can be approximately set to be identities. We parameterize \(I_\tau\) as \(1 + \epsilon\), where

\[
\epsilon = I_\tau - 1 \approx -\frac{C}{16\pi^2} \int_{\ln\Lambda_{FS}}^{\ln\Lambda_{EW}} y_\tau^2(t) dt \approx -\frac{C}{16\pi^2} y_{\tau,EW}^2 \ln \frac{\Lambda_{FS}}{\Lambda_{EW}}
\]

(21)

with \(y_{\tau,EW}\) being the \(\tau\)-lepton Yukawa coupling at the electroweak scale. With the help of this parametrization, we can divide \(M_\nu(\Lambda_{EW})\) into two parts: the \(\mu-\tau\) symmetric part \(M_{\text{sym}}\) and the \(\mu-\tau\) anti-symmetric part \(M_{\text{asym}}\), i.e.,

\[
M_\nu(\Lambda_{EW}) = M_{\text{sym}} + M_{\text{asym}},
\]

\[
M_{\text{sym}} = I_a \begin{pmatrix}
 a_0 & (1 + \epsilon/2) b_0 & (1 + \epsilon/2) b_0^* \\
 (1 + \epsilon/2) b_0 & c_0 & d_0 \\
 (1 + \epsilon/2) b_0^* & d_0 & c_0^*
\end{pmatrix}
\]

\[
= \begin{pmatrix} a & b & b^* \\
 b & c & d \\
 b^* & d & c^* \end{pmatrix},
\]

\[
M_{\text{asym}} = I_a \frac{\epsilon}{2} \begin{pmatrix}
 0 & -b_0 & b_0^* \\
 -b_0 & 0 & 2c_0 \\
 b_0^* & 0 & 2c_0^*
\end{pmatrix}
\]

\[
= \frac{\epsilon}{2} \begin{pmatrix} 0 & -b & b^* \\
 -b & 0 & -2c \\
 b^* & -2c & 0 \end{pmatrix} + O(\epsilon^2).
\]

(22)
In the following, we will regard \(\epsilon \) as a small parameter and establish the corrections to neutrino masses and mixing parameters through perturbation theory. Only the leading corrections in \(\epsilon \) will be listed analytically. The \(\mu-\tau \) symmetric and anti-symmetric contributions will be calculated separately.

\(\mu-\tau \) symmetric corrections

Since \(M_{\text{sym}} \) guarantees the \(\mu-\tau \) reflection symmetry, the specific values \(\theta_{23} = 45^\circ \), \(\delta = \pm 90^\circ \), and \(\rho,\sigma = 0,90^\circ \) keep unchanged. We can use the diagonalization method given in section 2 for both \(M_{\text{sym}} \) and \(M_{\text{sym},0} \). However, the RG running effect modifies the mixing angles \(\theta_{12},\theta_{13} \) and the absolute neutrino masses \(m_i \) at the energy scale \(\Lambda_{\text{EW}} \) from their original values \(\theta_{13,0}, \theta_{12,0} \), and \(m_{i,0} \) at the scale \(\Lambda_{\text{FS}} \). To see the connections of these parameters between two energy scales, we first apply the transformation of \(U_{23} \) and get two real mass matrices

\[
U_{23}^\dagger M_{\text{sym}} U_{23} = I_\alpha (1 + \frac{\epsilon}{2}) U_{23}^\dagger M_{\text{sym},0} U_{23}^* + \frac{\epsilon}{2} \begin{pmatrix}
-a & 0 & 0 \\
0 & d - \text{Re} c & \text{Im} c \\
0 & \text{Im} c & d + \text{Re} c \\
\end{pmatrix}.
\]

(23)

The first term of the RHS in Eq. (23) corresponds to an overall factor \(I_\alpha (1 + \epsilon/2) \) multiplying to the absolute neutrino masses and have no influence on the mixing parameters, and the second term may modify both masses and flavor mixing. Using the relation in Eq. (23) and taking \(\epsilon \) as a small parameter, we can perturbatively obtain relations of the absolute neutrino masses between two energy scales

\[
m_1 = m_{1,0} I_\alpha \left[1 + \epsilon (1 - c_{13}^2 c_{12}^2) \right], \\
m_2 = m_{2,0} I_\alpha \left[1 + \epsilon (1 - c_{13}^2 s_{12}^2) \right], \\
m_3 = m_{3,0} I_\alpha \left[1 + \epsilon c_{13}^2 \right].
\]

(24)

We also connect the mixing angles \(\theta_{13}, \theta_{12} \) with \(\theta_{13,0}, \theta_{12,0} \) as

\[
\theta_{13} = \theta_{13,0} - \frac{\epsilon}{2} c_{13} s_{13} \left[c_{12}^2 \zeta_{31} + s_{12}^2 \zeta_{32} \right], \\
\theta_{12} = \theta_{12,0} - \frac{\epsilon}{2} c_{12} s_{12} \left[s_{13}^2 (\zeta_{31} - \zeta_{32}) + c_{13}^2 \zeta_{31} \right],
\]

(25)

where

\[
\zeta_{ij} = \frac{m_i - m_j}{m_i + m_j},
\]

(26)

and \(\eta_\rho \) and \(\eta_\sigma \) take only two discrete values \(\pm 1 \). Note that all the mixing angles and mass parameters in the RHS of Eqs. (24) and (25) should stand for the parameters at \(\Lambda_{\text{FS}} \) and take the subscript “ 0 “. For those multiplied by \(\epsilon \), since we list only the leading corrections, we can safely replace them with the parameters at \(\Lambda_{\text{EW}} \) and abandon the subscript “ 0 “.

\(\mu-\tau \) anti-symmetric corrections

The RG-induced \(\mu-\tau \) anti-symmetric corrections is characterized by \(M_{\text{asym}} \). We do the following
We perturbatively diagonalize M, perturbatively diagonalize M, and get an imaginary mass matrix

$$U_{23}^\dagger M_{\text{asym}} U_{23}^* = i \frac{\epsilon}{2} \begin{pmatrix} 0 & -\sqrt{2} \text{Re} b & \sqrt{2} \text{Im} b \\ -\sqrt{2} \text{Re} b & -2 \text{Im} c & -2 \text{Re} c \\ \sqrt{2} \text{Im} b & -\text{Re} c & 2 \text{Im} c \end{pmatrix}. \tag{27}$$

We perturbatively diagonalize M, around the $\mu-\tau$ symmetric part M_{sym}, and obtain

$$\theta_{23} = 45^\circ + \eta_\beta \frac{\epsilon}{2} \left(s^2_{12} \eta_{31} + c^2_{12} \eta_{32} \right),$$

$$\delta = \eta_\beta 90^\circ + \frac{\epsilon}{2} \left[\frac{c_{12} s_{12}}{s_{13}} (\eta_{31} - \eta_{32}) + \frac{s_{13}}{c_{12} s_{12}} \left(c^4_{12} \eta_\nu - s^4_{12} \eta_\nu + \eta_\nu \eta_\tau \right) \right]. \tag{28}$$

The octant of θ_{23} depends on the sign of η_β, ϵ, and the neutrino mass ordering (i.e., the signs of ζ_{31} and ζ_{32}). The correction $\theta_{23} - 45^\circ$ should be $\lesssim 10\%$ due to current neutrino oscillation data and $\gtrsim 1\%$ such that it can be measured in the future experiment. The Majorana phases are also corrected by ϵ

$$\rho = \text{arg} \sqrt{\eta_\rho} + \frac{\epsilon}{2} \left[\frac{c^2_{13} c_{12} s_{12}}{s_{13}} (\eta_{32} - \eta_{31}) - \frac{s_{13}}{c_{12}} (\eta_{31} - \eta_{32}) \right],$$

$$\sigma = \text{arg} \sqrt{\eta_\sigma} + \frac{\epsilon}{2} \left[\frac{c^2_{13} c_{12} s_{12}}{s_{13}} (\eta_{32} - \eta_{31}) - \frac{s_{13}}{c_{12}} (\eta_{31} - \eta_{32}) \right]. \tag{29}$$

We also calculate the corrections to $\theta_{12,0}$, $\theta_{13,0}$ and absolute neutrino masses from the $\mu-\tau$ asymmetric part, and find that they are in the order ϵ^2, which can be safely neglected.

Note that the RG-induced corrections to masses in Eq. (24) and mixing parameters in Eqs. (25), (28), (29) hold only for $\epsilon c_{ij}^{-1} \lesssim 1$. In other word, they become invalid if neutrinos have degenerate masses with $\zeta_{ij} \lesssim \epsilon$. To be compatible with experimental data, the correction $\theta_{23} - 45^\circ$ should be $\lesssim 10\%$, and thus the conditions $\zeta_{31} > \epsilon$ and $\zeta_{32} > \epsilon$ hold. However, we do not have such a constraint on ζ_{21}. In most cases, it is very tiny due to the degenerate masses m_1 and m_2, especially in the inverted mass ordering, such that $\zeta_{21} \lesssim \epsilon$ is possible. Later we will see that it happens in some cases of the MSSM with large $\tan \beta$. Therefore, we should turn into the perturbative calculation with degenerate eigenvalues, which can be divided into two pieces. We list their leading results in the following:

(A) $\eta_\rho = \eta_\sigma = \pm 1$.

Formulae of m_3, θ_{23}, θ_{13}, δ, ρ and σ keep unchanged, but those of m_1, m_2 and θ_{12} are modified:

$$m_1 = \frac{1}{2} (m_{1,0} + m_{2,0}) I_a \left[1 + \frac{\epsilon}{2} (2 - c^2_{13}) - \frac{h}{2} \right],$$

$$m_2 = \frac{1}{2} (m_{1,0} + m_{2,0}) I_a \left[1 + \frac{\epsilon}{2} (2 - c^2_{13}) + \frac{h}{2} \right],$$

$$\theta_{12} = \theta_{12,0} - \frac{1}{2} \arcsin \left(\frac{\epsilon}{h} c^2_{13} \sin 2\theta_{12,0} \right), \tag{30}$$

where

$$h = \sqrt{(\zeta_{21} + \epsilon c^2_{13} \cos 2\theta_{12,0})^2 + (\epsilon c^2_{13} \sin 2\theta_{12,0})^2} \tag{31}$$

is in the same order of ϵ. We see that the correction to $\theta_{12,0}$ is not suppressed by ϵ.

8
(B) $\eta_\rho = -\eta_\sigma = \pm 1$.

This case is more complicated than (A). Only formulae of m_3, θ_{23} and θ_{13} in the above are valid. Those of the mass eigenvalues m_1 and m_2 are given by

$$m_1 = \frac{1}{2}(m_{1,0} + m_{2,0}) I_a \left[1 + \frac{\epsilon}{2} (2 - c_{13}^2) - \sqrt{\left(\xi_{21} + \frac{\epsilon}{2} c_{13}^2 \cos 2 \theta_{12,0} \right)^2 + \epsilon^2 s_{13}^2} \right],$$

$$m_2 = \frac{1}{2}(m_{1,0} + m_{2,0}) I_a \left[1 + \frac{\epsilon}{2} (2 - c_{13}^2) + \sqrt{\left(\xi_{21} + \frac{\epsilon}{2} c_{13}^2 \cos 2 \theta_{12,0} \right)^2 + \epsilon^2 s_{13}^2} \right]. \tag{32}$$

The leading order corrections to the other mixing parameters are expressed as

$$\sin \theta_{12} = \sqrt{s_{12,0}^2 c_\delta^2 + c_{12,0}^2 s_\delta^2},$$

$$\tan \delta = \eta_\delta \sin 2 \theta_{12,0} \cot 2 \theta,$$

$$\tan \rho = (\tan \theta_{12,0} \tan \theta)^{\eta_\rho},$$

$$\tan \sigma = (\tan \theta_{12,0} \cot \theta)^{\eta_\sigma}, \tag{33}$$

where

$$\tan 2 \theta = \frac{4\epsilon s_{13}}{2 \xi_{21} + \epsilon c_{13}^2 \cos 2 \theta_{12,0}}. \tag{34}$$

3.2 Basic features of the RG-induced μ-τ reflection symmetry breaking

The signs of the parameters η_δ, η_ρ and η_σ cannot be determined by the μ-τ reflection symmetry. In our following discussion, we will choose $\eta_\delta = -1$, since current neutrino data hint $\delta \sim -90^\circ$ \cite{31,32}. The RG behavior in the case $\eta_\delta = 1$ can be easily figured out with the help of the analytical expressions of mixing parameters and neutrino masses. Then, there are 4 different cases:

- case I , $\eta_\rho = \eta_\sigma = 1$;
- case II , $\eta_\rho = \eta_\sigma = -1$;
- case III , $\eta_\rho = -\eta_\sigma = 1$;
- case IV , $\eta_\rho = -\eta_\sigma = -1$.

The RG behaviors are different in these cases. From Eq. (28), we see that θ_{23} has the largest deviation from 45$^\circ$ in case II, and δ may get larger deviation from -90° in cases III and IV due to the enhancement of ξ_{21}^{-1}. Based on the analytical calculation in the above section, we will discuss the basic features of the μ-τ reflection symmetry breaking in these cases in this subsection and the numerical result in the next subsection.

The corrections to the mixing parameters are mainly dependent upon two sets of parameters: ϵ and ξ_{ij}. In order to prove the μ-τ symmetry breaking from the RG evolution in the future neutrino oscillation experiments, the relative corrections θ_{23} and δ in Eq. (28) should be in the order $O(1\%)$ or even $O(10\%)$. In the standard model, the Yukawa coupling y_τ is sufficiently small, $y_\tau \sim 0.01$. If we set the flavor symmetry breaking scale Λ_{FS} below but very close to the canonical seesaw scale $\Lambda_{FS} \sim 10^{14}$ GeV, we will get a very tiny $\epsilon \sim 10^{-5}$. Naively, we have two ways to enhance the corrections:

- One way is to enhance the mass parameters ξ_{ij}^{-1}. We show the magnitude of ξ_{ij}^{-1} as a function of the lightest neutrino mass for both the normal mass ordering (NMO) and inverted mass ordering
For the lightest neutrino mass around 1 eV, ζ_{21}^{-1} gains a 5×10^4 enhancement and $|\zeta_{31}^{-1}|$, $|\zeta_{32}^{-1}|$ gain 1.6×10^3 enhancements, which are large enough for significant large corrections to the μ-τ reflection symmetry in the SM. However, such large masses are not compatible with the cosmological constraint. Planck sets the limit of the sum of neutrino masses less than 0.23 eV at 95% [33], corresponding to the lightest neutrino mass $\lesssim 0.07$ eV. In this case, $|\zeta_{31}^{-1}|$, $|\zeta_{32}^{-1}| \lesssim 10$, which are not big enough to contribute an observable correction to θ_{23} and δ. Moreover, which parameters can get large corrections are strongly dependent upon the signs of η_{ρ} and η_{σ}, since the corrections are always proportional to $\frac{\zeta_{21}^{\pm} \eta_{\rho} \eta_{\sigma}}{21}$, $\frac{\zeta_{21}^{\pm} \eta_{\rho}}{21}$ or $\frac{\zeta_{21}^{\pm} \eta_{\sigma}}{21}$.

The other way is to extend the standard model to some new physics, such as the supersymmetric model and the more general two-Higgs doublet model [27]. Since charged leptons may couple to a Higgs field different from the SM Higgs field, the magnitude of y_τ could be much larger than that in the SM. For example, in the MSSM, we have $y_\tau \sim 0.01 \times \tan \beta$. Given $\tan \beta = 30$, ϵ can be enhanced by a factor of 30^2, i.e., $\epsilon \sim 0.01$, and thus can reach the capability of the future neutrino oscillation experiments. From the theoretical point of view, a large part of models have been constructed in the framework of supersymmetry since it is helpful to solve the vacuum alignment problem of flavon fields [34]. And models of generalized CP are usually realized in the supersymmetry, for instance, see [17, 18, 21]. In the following, we will discuss radiative corrections in the MSSM in detail.

![Figure 1: ζ_{ij}^{-1} as a function of the lightest neutrino mass m_1 in the NMO or m_3 in the IMO. $\Delta m_{21}^2 = 7.50 \times 10^{-5}$ eV2 and $\Delta m_{31}^2 = 2.457 \times 10^{-3}$ eV2 for NMO ($\Delta m_{23}^2 = 2.449 \times 10^{-3}$ eV2 for IMO) from global-fit data [32] have been used as inputs.](image)

3.3 Numerical results

We perform the numerical illustration for RG corrections in the MSSM. We fix $\theta_{23} = 45^\circ$, $\delta = -90^\circ$, $\rho, \sigma = 0, 90^\circ$, and keep $m_1, \Delta m_{21}^2, \Delta m_{31}^2, \theta_{12}, \theta_{13}$ as varying numbers at the flavor symmetry breaking scale Λ_{FS}. After the energy scale runs down to the electroweak scale Λ_{EW}, we require all oscillation parameters $\Delta m_{21}^2, \Delta m_{31}^2, \theta_{23}, \theta_{13}, \theta_{12}$ should be compatible with the global-fit data in Ref. [31][32] in 3σ range. In order to see to what extent the μ-τ reflection symmetry is broken, we set $\tan \beta = 10, 30, 50$, with the results shown in Tables [1][2][3] respectively.
Table 1: Radiative corrections of the μ-\tau reflection symmetry in the MSSM with $\tan \beta = 10$. We fix $\theta_{23} = 45^\circ$, $\delta = -90^\circ$, $\rho, \sigma = 0, 90^\circ$, and relax $m_1, \Delta m_{21}^2, \Delta m_{31}^2, \theta_{12}, \theta_{13}$ at the flavor symmetry breaking scale Λ_{FS}. After the energy scale runs down to the electroweak scale Λ_{EW}, we require all oscillation parameters $\Delta m_{21}^2, \Delta m_{31}^2, \theta_{23}, \theta_{13}, \theta_{12}$ should be compatible with the global-fit data in Ref. [31, 32] in 3σ range.

NMO, $m_1 \sim 0.05$ eV	Case I	Case II	Case III	Case VI
$m_1[10^{-2}\text{eV}]$	9.62	4.999	9.62	4.999
$\Delta m_{21}^2[10^{-5}\text{eV}^2]$	28.6	7.476	28.6	7.475
$\Delta m_{31}^2[10^{-3}\text{eV}^2]$	8.94	2.406	8.94	2.406
$\theta_{12}[^\circ]$	33.5	35.96	33.5	35.97
$\theta_{13}[^\circ]$	8.8	8.837	8.8	8.801
$\theta_{23}[^\circ]$	45	45.01	45	45.25
$\delta[^\circ]$	-90	-90.00	-90	-89.99
$\rho[^\circ]$	0	0.00	90	90.06
$\sigma[^\circ]$	0	0.00	90	89.98

IMO, $m_3 \sim 0.05$ eV	Case I	Case II	Case III	Case VI
$m_3[10^{-2}\text{eV}]$	9.62	4.995	9.62	4.995
$\Delta m_{21}^2[10^{-5}\text{eV}^2]$	30.0	7.468	30.0	7.470
$\Delta m_{23}^2[10^{-3}\text{eV}^2]$	8.94	2.413	8.94	2.413
$\theta_{12}[^\circ]$	33.5	33.15	33.5	33.13
$\theta_{13}[^\circ]$	8.8	8.763	8.8	8.799
$\theta_{23}[^\circ]$	45	44.99	45	44.76
$\delta[^\circ]$	-90	-90.00	-90	-89.95
$\rho[^\circ]$	0	0.00	90	89.99
$\sigma[^\circ]$	0	0.00	90	90.07

- For $\tan \beta = 10$, the RG running effect is very weak, and the corrections to θ_{23} and the CP-violating phases are less than 0.3° and 5°, respectively. Since $\epsilon < 0$ and we have chosen $\eta_\delta = -1$, the octant of θ_{23} is dependent upon the neutrino mass ordering. As shown in Eq. [28], the NMO corresponds to $\bar{\zeta}_{31}, \bar{\zeta}_{32} > 0$, and θ_{23} belongs to the second octant ($\theta_{23} > 45^\circ$). The deviation of δ from -90° is in general dependent upon the cancellation of $\bar{\zeta}_{ij}$. In cases III and IV, since $\eta_\rho = -\eta_\sigma$ and $\bar{\zeta}_{21} \gg \bar{\zeta}_{31}, \bar{\zeta}_{32}$ holds in most cases, the corrections to δ are negative, and much larger than those in cases I and II. RG behaviors of the Majorana phases are similar to those of the Dirac phase.

- For $\tan \beta = 30$, the deviation of θ_{23} can maximally reach 2.5°. We remind that $\bar{\zeta}_{21}$ and ϵ are in the same order in this scenario, such that the corrections to some of the mixing parameters can be very large. In cases I and II, a large RG correction can push them to be compatible with data even if θ_{12} is sufficiently small $\simeq 11.4^\circ$ at Λ_{FS}, which is consistent with Eq. [30]. In cases III and
Table 2: Radiative corrections of the μ-τ reflection symmetry in the MSSM with $\tan \beta = 30$. The same requirements are taken from Table 1.

MSSM, $\tan \beta = 30$	Case I	Case II	Case III	Case VI				
NMO, $m_1 \sim 0.05$ eV	Λ_{FS}	Λ_{EW}	Λ_{FS}	Λ_{EW}	Λ_{FS}	Λ_{EW}	Λ_{FS}	Λ_{EW}
$m_1 [10^{-2}$ eV$]$	9.62	5.045	9.62	5.045	10.14	5.036	10.14	5.035
$\Delta m^2_{21} \left[10^{-5}$ eV$^2\right]$	28.6	7.513	28.6	7.397	40.5	7.311	40.5	7.582
$\Delta m^2_{31} \left[10^{-3}$ eV$^2\right]$	8.94	2.406	8.94	2.413	10.16	2.421	10.16	2.419
θ_{12} [°]	33.5	34.56	33.5	35.68	33.5	34.21	33.5	34.07
θ_{13} [°]	8.8	9.178	8.8	8.802	8.8	9.112	8.8	8.982
θ_{23} [°]	45	45.06	45	47.51	45	46.78	45	45.78
δ [°]	-90	-90.02	-90	-89.93	-90	-102.81	-90	-115.54
ρ [°]	0	0.00	90	90.59	0	0.970	90	77.70
σ [°]	0	179.98	90	89.78	90	82.87	0	160.27

MSSM, $\tan \beta = 30$	Case I	Case II	Case III	Case VI				
IMO, $m_3 \sim 0.05$ eV	Λ_{FS}	Λ_{EW}	Λ_{FS}	Λ_{EW}	Λ_{FS}	Λ_{EW}	Λ_{FS}	Λ_{EW}
$m_3 [10^{-2}$ eV$]$	10.14	4.991	10.14	4.988	10.14	4.989	10.14	4.990
$\Delta m^2_{21} \left[10^{-5}$ eV$^2\right]$	71.8	7.398	71.8	7.191	46.2	7.627	46.2	7.217
$\Delta m^2_{31} \left[10^{-3}$ eV$^2\right]$	9.82	2.392	9.82	2.399	9.82	2.429	9.82	2.424
θ_{12} [°]	11.4	33.70	11.4	33.30	33.5	35.18	33.5	35.62
θ_{13} [°]	8.8	8.426	8.8	8.782	8.8	8.588	8.8	8.742
θ_{23} [°]	45	44.93	45	42.57	45	43.31	45	44.21
δ [°]	-90	-90.00	-90	-89.92	-90	-131.38	-90	-120.17
ρ [°]	0	179.99	90	89.78	90	82.87	0	160.27
σ [°]	0	0.01	90	90.72	90	59.76	0	161.55

IV, the deviation of the Dirac phase δ can be as large as $30°$ to $40°$, and the other CP-violating phases also acquire large corrections, which are confirmed in Eq. (33).

- For $\tan \beta = 50$, the large ϵ leads to a large correction to the neutrino mass-squared difference Δm^2_{21}, which is not consistent with neutrino oscillation data, expect that the lightest neutrino mass is small enough. In this scenario, we decrease the output lightest neutrino mass to $\sim 10^{-3}$ eV. The largest deviation of θ_{23} is around $4.5°$, and θ_{12} at Λ_{FS} can be as small as $6.6°$, smaller than θ_{13}. There is no solution in cases III and IV for the IMO due to the large correction to Δm^2_{21}.

In short, we have found that radiative corrections in the MSSM have definite directions: $\theta_{23} > 45°$ in the NMO and $\theta_{23} < 45°$ in the IMO, and the large correction to δ always results in $\delta < -90°$. It is interesting to compare these results with current global analysis of neutrino oscillation data, where the best-fit values for θ_{23} and δ are

$$\theta_{23} = \begin{cases} 48.9°, & \text{for NMO} \\ 49.2°, & \text{for IMO} \end{cases}, \quad \delta = \begin{cases} -119° & \text{for NMO} \\ -94° & \text{for IMO} \end{cases} \quad \text{from [31]},$$

$$\theta_{23} = \begin{cases} 42.3°, & \text{for NMO} \\ 49.5°, & \text{for IMO} \end{cases}, \quad \delta = \begin{cases} -54° & \text{for NMO} \\ -106° & \text{for IMO} \end{cases} \quad \text{from [32]}.\]
Table 3: Radiative corrections of the μ-τ reflection symmetry in the MSSM with $\tan \beta = 50$. In the last two cases, there are no solutions to obtain correct values compatible with experimental data, so we use "−" instead. The same requirements are taken from Table 1.

MSSM, $\tan \beta = 50$	Case I	Case II	Case III	Case VI
NMO, $m_1 \sim 10^{-3}$ eV	Λ_{FS}	Λ_{EW}	Λ_{FS}	Λ_{EW}
$m_1 [10^{-3}$eV$]$	2.8	1.002	2.8	1.002
$\Delta m^2_{21} [10^{-5}$eV$^2]$	61.08	7.494	61.08	7.495
$\Delta m^2_{31} [10^{-3}$eV$^2]$	20.2	2.410	20.2	2.425
θ_{12} [$^\circ$]	33.5	34.46	33.5	34.31
θ_{13} [$^\circ$]	8.8	9.094	8.8	9.138
θ_{23} [$^\circ$]	45	46.29	45	49.50
δ [$^\circ$]	-90	-89.82	-90	-89.79
ρ [$^\circ$]	0	178.78	90	101.76
σ [$^\circ$]	0	178.19	90	100.06

MSSM, $\tan \beta = 50$	Case I	Case II	Case III	Case VI
IMO, $m_3 \sim 10^{-3}$ eV	Λ_{FS}	Λ_{EW}	Λ_{FS}	Λ_{EW}
$m_3 [10^{-3}$eV$]$	2.9	0.999	2.9	0.998
$\Delta m^2_{21} [10^{-5}$eV$^2]$	238.0	7.369	238.0	7.394
$\Delta m^2_{31} [10^{-3}$eV$^2]$	20.2	2.424	20.2	2.424
θ_{12} [$^\circ$]	6.6	34.02	6.6	33.79
θ_{13} [$^\circ$]	8.8	8.534	8.8	8.555
θ_{23} [$^\circ$]	45	43.41	45	43.28
δ [$^\circ$]	-90	-89.82	-90	-89.79
ρ [$^\circ$]	0	179.84	90	89.83
σ [$^\circ$]	0	0.34	90	90.38

The future neutrino oscillation experiments will determine the neutrino mass order, the octant of θ_{23} and the Dirac phase δ. After that we will have more concrete ideas for the μ-τ reflection symmetry and its breaking. For example, if the NMO, $\theta_{23} < 45^\circ$ and δ close to but $< -90^\circ$ are finally verified, we would conclude that the μ-τ reflection symmetry is an approximate symmetry, but there should be another mechanism beyond radiative corrections in the MSSM to break it.

We have also performed the numerical illustration in the SM. Since $\epsilon > 0$ in the SM, we arrive at $\theta_{23} < 45^\circ$ in the NMO and $\theta_{23} > 45^\circ$ in the IMO at Λ_{EW}. However, to obtain sufficiently large correction to θ_{23} around 0.5° to 5°, the lightest neutrino mass should be around 1 eV. For $m_i \lesssim 0.07$ eV, the RG-induced μ-τ reflection symmetry breaking is unobservable in the SM.

4 Conclusion

The μ-τ reflection symmetry can be regarded as an approximate symmetry due to its consistence with current neutrino experimental data and convenience for model building. In this paper, we have considered some basic properties of the μ-τ reflection symmetry and its RG-induced correction. We
assume the μ-τ reflection symmetry as a remnant symmetry from an underlying family symmetry broken at sufficiently high energy scale. After the energy scale runs down to the electroweak scale, the μ-τ reflection symmetry must be broken due to the radiation corrections.

We prove that the exact μ-τ reflection symmetry guarantees $\theta_{23} = 45^\circ$, $\delta = \pm 90^\circ$ and $\rho, \sigma = 0, 90^\circ$. In the seesaw mechanism, the μ-τ reflection transformation can be extended to the sector of right-handed neutrinos. After right-handed neutrinos are integrated out, the left-handed neutrinos acquire masses, and the μ-τ reflection symmetry is still preserved.

The radiative corrections to the μ-τ reflection symmetry can be divided into two parts: μ-τ symmetric and anti-symmetric parts. The μ-τ symmetric part modifies the values of neutrino masses m_i, the corresponding mass-squared differences Δm^2_{21} and Δm^2_{31}, and the mixing angles θ_{12}, θ_{13}, but preserves the mixing angle $\theta_{23} = 45^\circ$, the Dirac phase $\delta = \pm 90^\circ$ and Majorana phases $\rho, \sigma = 0, 90^\circ$ explicitly. The μ-τ anti-symmetric part violates the μ-τ reflection symmetry. As a consequence, θ_{23} and δ deviate from 45° and $\pm 90^\circ$, respectively, both in the order of ϵ. The Majorana phases ρ, σ also gain corrections at the same level, but the corrections to absolute neutrino masses m_i and mixing angles θ_{12}, θ_{13} are in general very tiny, in the order ϵ^2.

We point out that the RG-induced μ-τ reflection symmetry breaking is negligibly small in the SM, but may be sizable in the MSSM depending on $\tan \beta$. The octant of θ_{23} after radiative corrections is determined by the neutrino mass ordering. $\theta_{23} > 45^\circ$ for the NMO and $\theta_{23} < 45^\circ$ for the IMO in the MSSM if δ takes the value around its current best-fit result -90°. The corrections to all CP-violating phases δ, ρ, σ in case III and IV are negative and much greater than those in cases I and II for both NMO and IMO. For large $\tan \beta$, current data of θ_{12} could be an accidental result from a small angle at the flavor symmetry breaking scale, even smaller than θ_{13}. Since the deviations of θ_{23} and δ have definite directions, they can be tested in the future neutrino oscillation experiments.

Acknowledgements

The author would like to thank Prof. Zhi-zhong Xing for reading this manuscript and helpful suggestions. This work is supported in part by the National Natural Science Foundation of China under Grant No. 11135009.
References

[1] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38, 090001 (2014).

[2] T. Fukuyama and H. Nishiura, hep-ph/9702253; R. N. Mohapatra and S. Nussinov, Phys. Rev. D 60, 013002 (1999) [hep-ph/9809415]; E. Ma and M. Raidal, Phys. Rev. Lett. 87, 011802 (2001) [Erratum-ibid. 87, 159901 (2001)] [hep-ph/0102255]; C. S. Lam, Phys. Lett. B 507, 214 (2001) [hep-ph/0104116]; K. R. S. Balaji, W. Grimus and T. Schwetz, Phys. Lett. B 508, 301 (2001) [hep-ph/0104035]; E. Ma, Phys. Rev. D 66, 117301 (2002) [hep-ph/0207352].

[3] F. Vissani, hep-ph/9708483; V. D. Barger, S. Pakvasa, T. J. Weiler and K. Whisnant, Phys. Lett. B 437, 107 (1998) [hep-ph/9806387].

[4] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530, 167 (2002) [hep-ph/0202074]; Z. Z. Xing, Phys. Lett. B 533, 85 (2002) [hep-ph/0204049]; P. F. Harrison and W. G. Scott, Phys. Lett. B 535, 163 (2002) [hep-ph/0203209]; X. G. He and A. Zee, Phys. Lett. B 560, 87 (2003) [hep-ph/0301092].

[5] K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552, 207 (2003) [hep-ph/0206292]; E. Ma, Mod. Phys. Lett. A 17, 2361 (2002) [hep-ph/0211393].

[6] W. Grimus and L. Lavoura, Phys. Lett. B 579, 113 (2004) [hep-ph/0305309].

[7] F. Feruglio, C. Hagedorn and R. Ziegler, JHEP 1307, 027 (2013) [arXiv:1211.5560 [hep-ph]].

[8] M. Holthausen, M. Lindner and M. A. Schmidt, JHEP 1304, 122 (2013) [arXiv:1211.6953 [hep-ph]].

[9] P. F. Harrison and W. G. Scott, Phys. Lett. B 547, 219 (2002) [hep-ph/0210197].

[10] Y. Farzan and A. Y. Smirnov, JHEP 0701, 059 (2007) [hep-ph/0610337].

[11] S. Zhou, arXiv:1205.0761 [hep-ph]; S. Gupta, A. S. Joshipura and K. M. Patel, JHEP 1309, 035 (2013) [arXiv:1301.7130 [hep-ph]].

[12] F. P. An et al. [Daya Bay Collaboration], Phys. Rev. Lett. 108, 171803 (2012) [arXiv:1203.1669 [hep-ex]].

[13] K. Abe et al. [T2K Collaboration], Phys. Rev. Lett. 112, 061802 (2014) [arXiv:1311.4750 [hep-ex]].

[14] Z. Z. Xing and S. Zhou, Phys. Lett. B 737, 196 (2014) [arXiv:1404.7021 [hep-ph]].

[15] Z. Z. Xing and S. Zhou, Phys. Lett. B 653, 278 (2007) [hep-ph/0607302]; C. S. Lam, Phys. Rev. D 74, 113004 (2006) [hep-ph/0611017]; C. H. Albright and W. Rodejohann, Eur. Phys. J. C 62, 599 (2009) [arXiv:0812.0436 [hep-ph]]. C. H. Albright, A. Dueck and W. Rodejohann, Eur. Phys. J. C 70, 1099 (2010) [arXiv:1004.2798 [hep-ph]]; Z. h. Zhao, arXiv:1405.3022 [hep-ph].

[16] I. Aizawa, T. Kitabayashi and M. Yasue, Phys. Rev. D 72, 055014 (2005) [hep-ph/0504172]; I. Aizawa, T. Kitabayashi and M. Yasue, Nucl. Phys. B 728, 220 (2005) [hep-ph/0507332]; T. Baba and M. Yasue, Phys. Rev. D 75, 055001 (2007) [hep-ph/0612034]; T. Baba and M. Yasue, Phys. Rev. D 77, 075008 (2008) [arXiv:0710.2713 [hep-ph]].
[17] G. J. Ding, S. F. King and A. J. Stuart, JHEP 1312, 006 (2013) [arXiv:1307.4212 [hep-ph]].

[18] G. J. Ding, S. F. King, C. Luhn and A. J. Stuart, JHEP 1305, 084 (2013) [arXiv:1303.6180 [hep-ph]].

[19] G. J. Ding and Y. L. Zhou, arXiv:1312.5222 [hep-ph]; G. J. Ding and Y. L. Zhou, JHEP 1406, 023 (2014) [arXiv:1404.0592 [hep-ph]].

[20] G. J. Ding and S. F. King, Phys. Rev. D 89, 093020 (2014) [arXiv:1403.5846 [hep-ph]].

[21] F. Feruglio, C. Hagedorn and R. Ziegler, Eur. Phys. J. C 74, 2753 (2014) [arXiv:1303.7178 [hep-ph]].

[22] W. Grimus and L. Lavoura, Fortsch. Phys. 61, 535 (2013) [arXiv:1207.1678 [hep-ph]]. R. N. Mohapatra and C. C. Nishi, Phys. Rev. D 86, 073007 (2012) [arXiv:1208.2875 [hep-ph]].

[23] R. Friedberg and T. D. Lee, HEP&NP 30, 591 (2006), hep-ph/0606071; Z. Z. Xing, H. Zhang and S. Zhou, Phys. Lett. B 641, 189 (2006) [hep-ph/0607091].

[24] P. H. Chankowski and Z. Pluciennik, Phys. Lett. B 316, 312 (1993) [hep-ph/9306333]; K. S. Babu, C. N. Leung and J. T. Pantaleone, Phys. Lett. B 319, 191 (1993) [hep-ph/9309223]; S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Phys. Lett. B 519, 238 (2001) [hep-ph/0108005].

[25] N. Haba, N. Okamura and M. Sugiura, Prog. Theor. Phys. 103, 367 (2000) [hep-ph/9810471]; J. A. Casas, J. R. Espinosa, A. Ibarra and I. Navarro, Nucl. Phys. B 573, 652 (2000) [hep-ph/9910420]; S. Antusch, J. Kersten, M. Lindner and M. Ratz, Nucl. Phys. B 674, 401 (2003) [hep-ph/0305273]; S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, JHEP 0503, 024 (2005) [hep-ph/0501272]; J. w. Mei, Phys. Rev. D 71, 073012 (2005) [hep-ph/0502015].

[26] J. R. Ellis and S. Lola, Phys. Lett. B 458, 310 (1999) [hep-ph/9904279]; H. Fritzsch and Z. z. Xing, Prog. Part. Nucl. Phys. 45, 1 (2000) [hep-ph/9912358]; Z. Z. Xing, Phys. Rev. D 63, 057301 (2001) [hep-ph/0011217]; J. w. Mei and Z. Z. Xing, Phys. Rev. D 69, 073003 (2004) [hep-ph/0312167].

[27] S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Phys. Lett. B 525, 130 (2002) [hep-ph/0110366].

[28] S. Luo and Z. Z. Xing, arXiv:1408.5005 [hep-ph].

[29] S. Toshev, Mod. Phys. Lett. A 6, 455 (1991).

[30] Z. Z. Xing and Y. L. Zhou, Phys. Lett. B 693, 584 (2010) [arXiv:1008.4906 [hep-ph]]; Y. L. Zhou, Phys. Rev. D 84, 113012 (2011) [arXiv:1110.5023 [hep-ph]].

[31] D. V. Forero, M. Tortola and J. W. F. Valle, arXiv:1405.7540 [hep-ph].

[32] M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, arXiv:1409.5439 [hep-ph].

[33] P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5076 [astro-ph.CO].

[34] G. Altarelli and F. Feruglio, Nucl. Phys. B 741, 215 (2006) [hep-ph/0512103].