APPLICATIONS OF DNA AMPLIFICATION TECHNIQUES IN VETERINARY DIAGNOSTICS

M. PFEFFER, M. WIEDMANN AND C.A. BATT

Corresponding author: Institute for Medical Microbiology, Infectious and Epidemic Diseases, Ludwig-Maximilians University, Veterinaerstrasse 13, 80539 Munich, Germany;
Department of Food Science, Cornell University, Ithaca, NY, USA
These two authors contributed equally to this review and are listed in alphabetical order.

ABSTRACT

Pfeffer, M., Wiedmann, M. and Batt, C.A., 1995. Applications of DNA amplification techniques in veterinary diagnostics. Veterinary Research Communications, 19 (5), 375-407

An overview of the principles of the polymerase chain reaction, ligase chain reaction, self-sustained sequence replication and Qβ replicase is given. The application of these methods for the diagnosis of veterinary infectious and hereditary diseases as well as for other diagnostic purposes is discussed and comprehensive tables of reported assays are provided. Specific areas where these DNA-based amplification methods provide substantial advantages over traditional approaches are also highlighted. With regard to PCR-based assays for the detection of viral pathogens, this article is an update of a previous review by Belák and Ballagi-Pordány (1993).

Keywords: diagnosis, LCR, ligase chain reaction, PCR, polymerase chain reaction, Qβ replicase, self-sustained sequence replication, 3SR

Abbreviations: 3SR, self-sustained sequence replication; BHV, bovine herpesvirus; BLAD, bovine leukocyte adhesion deficiency; cDNA, complementary DNA; CFU, colony-forming units; EHV, equine herpesvirus; ELISA, enzyme-linked immunosorbent assay; FHV, feline herpesvirus; LCR, ligase chain reaction; PCR, polymerase chain reaction; PRV, pseudorabies virus; RAPD, random amplified polymorphic DNA; RFLP, restriction fragment length polymorphism; RT, reverse transcriptase; rRNA, ribosomal RNA; wt, wild-type

INTRODUCTION

The polymerase chain reaction (PCR) is an in vitro enzymatic method which allows several million-fold amplification of a specific DNA sequence. Since its introduction in 1985, PCR has facilitated the development of a variety of nucleic acid-based detection systems for bacterial, viral and other pathogens, as well as for genetic disorders (Erlich et al., 1991). Owing to its high sensitivity, specificity and speed, PCR offers advantages over conventional diagnostic methods. While a variety of PCR-based assays have been described in the literature for the detection of infectious agents affecting man and animals, their application is not yet routine, even in large diagnostic laboratories. Problems with contamination, as well as cost- and time-intensive post-PCR detection methods, currently hamper its widespread use.
However, despite its current limitations, PCR already finds relatively broad use in the routine diagnosis of hereditary diseases in animals, such as bovine leukocyte adhesion deficiency (BLAD) and porcine malignant hyperthermia syndrome (see Shuster et al., 1992).

Other recently developed DNA amplification methods, such as the ligase chain reaction (LCR), self-sustained sequence replication (3SR) and Qβ replicase amplification have so far found only limited applications, but show promise for specific diagnostic applications. While PCR and LCR rely on temperature cycling and therefore require some investment in the appropriate equipment, 3SR and Qβ replicase amplification are isothermal methods of DNA amplification, so making potential ‘field’ use feasible.

This review gives a short overview of the principles of the different DNA amplification techniques, with emphasis on current technical developments which will facilitate their use in veterinary diagnostics in the near future. Examples of diagnostic tests which show promise for more widespread application are also given.

PRINCIPLES OF NUCLEIC ACID AMPLIFICATION METHODS

The DNA amplification methods will be described briefly. More detailed reviews on the principles and technical details of the different methods can be found in Barany (1991), Erlich and colleagues (1991), Fahy and colleagues (1991), Wolcott (1992), Abramson and Meyers (1993) and Wiedmann and colleagues (1994b).

Polymerase chain reaction

PCR is defined by repetitive cycles, each consisting of three steps performed at different temperatures. In the first step, the double-stranded target DNA is denatured at high temperatures, resulting in single-stranded molecules. Two oligonucleotide primers each hybridize to their respective complementary DNA strands in the second step (annealing step), thus defining a region of the target DNA. In the last step, the 3’ ends of these bound primers are extended by a thermostable DNA polymerase. During each cycle, the complementary DNA strands are copied by the sequential elongation of the two primers (see Figure 1). Newly synthesized DNA molecules can serve as templates in the next cycle, thus resulting in exponential amplification. A variety of parameters can affect the reaction kinetics and the success of amplification (for details see Xu and Larzul, 1991).

The specificity of the amplification depends on the primer design. Mispriming can be minimized by using a ‘hot-start’, whereby an essential PCR component (usually Taq polymerase) is added only after the annealing temperature is reached (Chou et al., 1992).

The most common source of false positive results is carry-over contamination from previous PCRs (Kwok and Higushi, 1989). A variety of methods have been developed to minimize carry-over contamination, which currently seems to be one of the major problems for the application of PCR in a routine diagnostic setting (Kwok, 1990).

Amplification of RNA sequences, e.g. RNA viruses or mRNAs, requires
transcription into cDNA using reverse transcriptase (RT). In order to avoid additional manipulations and to diminish the risk of contamination, a single-tube RT-PCR format has been developed (Sellner et al., 1992). Some thermostable DNA polymerases possess RT activity, so making a single-tube RT-PCR more feasible, allowing reduced manipulation time and minimizing carry-over contamination. Moreover, since reverse transcription is carried out at higher temperatures, longer cDNA molecules can be made, especially from RNAs with extensive secondary structures (Myers et al., 1994).

Figure 1. A schematic representation of the polymerase chain reaction. Template DNA is shown by solid lines, newly synthesized DNA strands are shown by broken lines, and primers are indicated by boxes. One cycle, consisting of the three steps of denaturing, primer annealing and elongation, is indicated by brackets. For details see the section in the text on the polymerase chain reaction
Figure 2. A schematic representation of the ligase chain reaction (adapted from Barany, 1991). Template DNA is shown by solid lines and the four primers are represented by hatched boxes. The site of the discriminating nucleotide is shown as a gap between one primer pair at the annealing step. Each primer pair can only be ligated when the overlapping 3' end of the light hatched primers contains the matching complementary nucleotide to the template. One cycle, consisting of a denaturing, a primer annealing and a ligation step, is indicated by brackets. For details see the section in the text on the ligase chain reaction.
PCR amplification products, termed amplicons, can be detected in several ways. Verification of the amplicon size by agarose gel electrophoresis using a molecular weight standard is applied in most cases. The PCR amplicon can also be digested with restriction endonucleases to confirm internal restriction enzyme sites. PCR in combination with restriction fragment length polymorphism (RFLP) is often used to type a group of pathogens or to define different alleles in the detection of hereditary diseases. A more time-consuming method is Southern blotting in which, after gel electrophoresis and blotting on a membrane, the PCR product is hybridized with a specific probe to verify homology.

Ligase chain reaction

The principle of LCR is based in part upon the ligation of two adjacent oligonucleotide primers, which uniquely hybridize to one strand of the target DNA (see Figure 2). The junction of the two primers is usually positioned such that the nucleotide at the 3' end of the upstream primer coincides with a known single base pair difference in the target sequence. This single base pair difference may define two different alleles, species or other phenotypic differences. If the target nucleotide at that site complements the nucleotide at the 3' end of the upstream primer, the two adjoining primers can be covalently joined by the ligase. The unique feature of LCR is a second pair of primers, almost entirely complementary to the first pair, which are designed with the nucleotide at the 3' end of the upstream primer, denoting the sequence difference. In a cycling reaction, using a thermostable DNA ligase, both ligated products can then serve as templates for the next reaction cycle, leading to an exponential amplification, analogous to PCR. If there is a mismatch at the primer junction, this structure will not be recognized by the thermostable ligase and the primers will not be ligated. The absence of the ligated product therefore indicates at least a single base pair change in the target sequence (Barany, 1991; Wiedmann et al., 1994b). LCR is often utilized in conjunction with primary PCR amplification. Such a PCR-coupled LCR combines the sensitivity of PCR with the specificity of LCR for detection of each possible single base pair change.

Self-sustained sequence replication (3SR) and Qβ replicase amplification

3SR allows an exponential amplification of either RNA or DNA molecules, which are defined by two specific DNA primers. These primers are complementary to the target at their 3' ends and incorporate a promoter recognized by T7 RNA polymerase at the 5' end. Amplification is performed at a constant temperature and, where RNA is the template, a RT first produces a complementary DNA strand. This newly synthesized strand will be copied again by the RT, resulting in two newly synthesized DNA strands with a T7 promoter sequence at the 5' end. Therefore, T7 RNA polymerase can initiate synthesis of multiple copies (10-1000 per cycle) of complementary RNA strands. These RNA molecules can then be reverse transcribed to produce more DNA molecules. Only in an RNA-DNA hybrid will the RNA strand then be degraded by a third enzyme, RNaseH. The DNA strands are therefore free to initiate more RNA synthesis, which ensures continuation of the amplification (Fahy et al., 1991). A schematic diagram of this process is shown in Figure 3.
Figure 3. A schematic representation of the self-sustained sequence replication (3SR) procedure, as used for the amplification of an RNA template (thin line). Primer and primer sequences are shown as hatched boxes, the T7 RNA polymerase promotor sequence is shown by a zigzag line. Digested RNA strands are shown by dotted lines and newly synthesized DNA strands are indicated by bold lines. One cycle, consisting of two primer annealing steps, two reverse transcription steps, the RNA digestion, and the synthesis of antisense RNA transcripts by the T7 RNA polymerase, is indicated by brackets. For details see the section in the text on the 3SR procedure.
Figure 4. A schematic representation of Qβ replicase-based probe amplification. A Qβ replicase substrate, which contains the target-specific probe region (shown as a molecule with three stem-loops), specifically hybridizes to the target RNA (bold line). After unbound molecules have been removed, Qβ replicase is added, resulting in amplification of the probe molecule. For details see the section in the text on Qβ replicase amplification.
Qβ replicase amplification utilizes the replicase from Qβ bacteriophage, an RNA-dependent RNA polymerase, to self-replicate an RNA template designated MDV-1. In this assay, unlike in PCR, a reporter RNA rather than the actual target is amplified. Specificity is achieved by inserting a target-specific probe sequence in MDV-1. After hybridization of the probe-MDV-1 sequence to the target, unbound probe is removed and the remaining probe is amplified after addition of Qβ replicase (see Figure 4). The resulting amplified probe-MDV-1 sequences can be visualized in ethidium bromide-stained gels or by use of a secondary probe complementary to MDV-1 sequences. An example of a sensitive non-isotopic Qβ replicase assay for detecting an infectious agent (*Chlamydia trachomatis*) has recently been reported (Shah et al., 1994).

Both 3SR and Qβ replicase have the advantage of being isothermal, and therefore do not require thermal cyclers. This offers potential for use outside well-equipped laboratories and might make these procedures especially useful for some veterinary applications.

EXAMPLES OF DNA AMPLIFICATION-BASED VETERINARY DIAGNOSTIC TESTS

Viral pathogens

PCR has proved to be a very valuable technique for the detection of many infectious agents, among which viruses form the largest group. Table I lists PCR-based assays for the diagnosis of veterinary viral pathogens. Owing to the very large number of publications which appear every year, only those that have been published since the last review by Belák and Ballagi-Pordány (1993) are included. The herpesviruses have been selected here as a relevant example of how DNA amplification-based assays can be applied to veterinary diagnostic problems.

Animal herpesviruses are known to cause severe losses in livestock. While the acute form of the diseases can easily be diagnosed by virus isolation, there is at present no direct method for detecting the latent state of infection. During latency, infectious virus cannot be isolated because only the herpesviral DNA persists within the cells and no viable virus is produced. In contrast to human herpesviruses, latency-associated transcripts have not been found in any of the animal herpesviruses, apart from pigs infected with pseudorabies virus (PRV; Cheung, 1989). However, using PCR, the trigeminal ganglion has been shown to be one location for latent equine herpesvirus type 1 (EHV-1; Slater et al., 1994), for PRV in pigs (Belák et al., 1989) and for feline herpesvirus (FHV) in cats (Reubel et al., 1993). The virus, however, can be reactivated by superinfection or immunosuppression. It is therefore of epidemiological importance to identify carriers in order to vaccinate or to cull them.
Organism	Assay/target gene	Reference
African horse sickness virus	RT-PCR/major core protein gene (VP3); S8 gene	Sakamoto et al. (1994); Stone-Marschat et al. (1994)
	RT-PCR/VP7 gene	Zientara et al. (1993, 1994)
African swine fever virus	PCR/p72 gene	Carrillo et al. (1994)
Avian leukosis virus	PCR/endogenous viral elements (ev15 repeat)	Benkel and Smith (1993)
Avian reticuloendotheliosis virus (REV)	PCR/long terminal repeat	Aly et al. (1993)
Bluetongue virus (BTV)	RT-PCR/VP3 gene	Akita et al. (1993)
	RT-PCR/VP1 gene	MacLachlan et al. (1994)
	Nested RT-PCR/NS1 protein gene	Wilson (1994)
	Nested and multiplex RT-PCR/NS1 and VP2 genes	Katz et al. (1993a)
		Wilson and Chase (1993)
Borna disease virus	Nested RT-PCR	Zimmermann et al. (1994)
Bovine herpesvirus type 1	PCR/gC gene	van Engelenburg et al. (1993)
	PCR/gpIV gene	Wiedmann et al. (1993b)
	PCR/g1 gene	Vilecek et al. (1994b)
Bovine immunodeficiency virus (BIV)	PCR/gag and pol genes	Nadin-Davis et al. (1993b)
Bovine leukaemia virus (BLV)	PCR/env gene	Mirsky et al. (1993); Agresti et al. (1993);
		Eaves et al. (1994)
	RT-PCR/pol gene	Poon et al. (1993)
	PCR/gag gene	Kelly et al. (1993)
	Nested PCR/gp51 gene	Klintevall et al. (1994)
Bovine respiratory syncytial virus (BRSV)	PCR/F fusion protein gene	Vilecek et al. (1994a); Oberst et al. (1993a,b)
Bovine rotavirus	RT-PCR/VP4 and VP7 genes	Isegawa et al. (1993); Parwani et al. (1993);
		Suzuki et al. (1993); Brüssow et al. (1994)
Bovine viral diarrhoea virus (BVDV)	RT-PCR/p125 gene	Gruber et al. (1993)
	Nested RT-PCRs/3' end	Alansari et al. (1993)
	RT-PCR/3' end and 5' end	Schmitt et al. (1994)
	RT-PCR-RFLP/3' end and 5' end	Vilecek et al. (1994e)
	p54 and p80 genes	
	RT-PCR/5' end	Easton et al. (1994)
Canine distemper virus	RT-PCR/nucleocapsid gene	Mee et al. (1993)
Organism	Assay/target gene	Reference
---	--	---------------------------------
Canine parvovirus	PCR/capsid protein gene, PCR/VP2 gene	Mochizuki et al. (1993)
		Truyen et al. (1994)
Caprine arthritis encephalitis virus (CAEV)	PCR/gag gene	Rimstad et al. (1993)
	PCR/gag and pol genes	Reddy, P.G. et al. (1993);
		Barlough et al. (1994)
Chicken infectious anaemia virus (CIAY)	PCR/two DNA fragments uncharacterized	Soine et al. (1993)
	PCR/DNA fragment uncharacterized	Tham and Stanislawek (1992)
Eastern equine encephalomyelitis virus (EEEV)	RT-PCR/capsid gene	Vodkin et al. (1993)
Epizootica haemorrhagic disease (EHD) virus	RT-PCR/NS1 gene	Wilson (1994)
Equine arteritis virus	RT-PCR/ORF1b, 3, 4 and 7	St. Laurent et al. (1994)
Equine herpesvirus types 1 and 4	PCR/glycoprotein gB gene, Nested PCR/gB gene, Multiple PCR/gB gene, PCR/gC gene	Wagner et al. (1992); Borchers and Slater (1993); Kirisawa et al. (1993); Gilkerson et al. (1994)
Equine herpesvirus type 4		
Equine influenza virus A	RT-PCR/matrix gene (segment 7)	Donofrio et al. (1994)
Feline coronavirus	RT-PCR/S (spike protein) gene	Li and Scott (1994)
Feline herpesvirus type 1	PCR/thymidine kinase gene	Reubel et al. (1993)
Feline immunodeficiency virus (FIV)	PCR/gag and pol genes	Greene et al. (1993); Lawson et al. (1993); Momoi et al. (1993)
Feline leukaemia virus (FeLV)	PCR/gag gene	Papenhausen & Overbaugh (1993);
		Jackson et al. (1993)
Fish lymphocystis disease virus	PCR/major capsid protein gene	Schnitzler and Darai (1993)
Foot and mouth disease virus	RT-PCR/VP1 gene	Saiz et al. (1993); Amaral-Doel et al. (1993); Höfner et al. (1993); Prato-Murphy et al. (1994)
Hog cholera virus (HCV)	RT-PCR and multiplex RT-PCR	Wirz et al. (1993)
	Nested RT-PCR/5'-genomic terminus and major envelope protein gene, RT-PCR/p45-p75 boundary of p120 gene	Katz et al. (1993b); HARDING ET AL. (1994)
Organism	Assay/target gene	Reference
--	--	-------------------------------
Infectious bronchitis virus (IBV)	PCR-RFLP/S1-glycoprotein gene	Kwon et al. (1993a,b)
Infectious bursal disease virus	RT-PCR/VP2 gene	Lin et al. (1993)
Infectious haematopoietic virus (IHNV)	RT-PCR/N-gene	Arakawa et al. (1990)
Infectious laryngotracheitis virus	PCR/thymidine kinase gene	Scholz et al. (1994)
Infectious pancreatic necrosis virus (IPNV)	RT-PCR/VP2 gene	Lopez-Lastra et al. (1994)
Marek's disease virus	PCR/thymidine kinase gene / PCR/132 bp repeat	Rong-Fu et al. (1993); Becker et al. (1993)
Newcastle disease virus (NDV)	RT-PCR/F0 fusion protein gene	Collins et al. (1993c)
Orthopoxviruses	PCR-RFLP/ATI gene / PCR-coupled LCR/ATI gene	Meyer et al. (1994); Pfeffer et al. (1994)
Ovine herpesvirus type 2	PCR/tegument protein gene	Baxter et al. (1993); Wiyono et al. (1994)
Ovine lentivirus (maedi visna virus)	PCR/pol gene and long terminal repeat	Brodie et al. (1993, 1994)
Porcine parvovirus	PCR/VP2 gene	Gradil et al. (1994a)
Porcine reproductive and respiratory syndrome virus (Lelystad virus)	PCR/nucleocapsid protein gene (ORF 7)	Suarez et al. (1994); Mardassi et al. (1994)
Pseudorabies virus (Aujeszky's disease virus)	PCR/γ1 and gp50 genes / PCR/gp63 gene / PCR/gp50, γ1 and gp63 genes / Nested PCR/γ1 and thymidine kinase genes	Schang and Osorio (1993); Banks (1993); Hasebe et al. (1993); Glass et al. (1994)
Rabies virus	Nested RT-PCR/nucleocapsid gene / RT-PCR-RFLP/nucleocapsid gene	Kamolvarin et al. (1993); Nadin-Davis et al. (1993a); Kulonen and Boldina (1993)
Striped jack nervous necrosis virus (SJJNV)	RT-PCR/RNA2	Nishizawa et al. (1994)
Swine influenza virus (H1)	RT-PCR/haemagglutinin gene	Noble et al. (1993)
Transmissible gastroenteritis virus (TGEV)	RT-PCR/S, Orf 3a-3b genes	Britton et al. (1993)
Vesicular stomatitis virus (VSV)	RT-PCR/phosphoprotein gene / Hemi-nested RT-PCR/L gene	Rodriguez et al. (1993); Höfner et al. (1994)
During campaigns to eradicate animal herpesviruses, genetically altered modified live vaccines (so-called 'marker vaccines') have been employed to combat and displace wild-type (wt) viruses. Vaccine strains of PRV have been generated that lack one of the four non-essential glycoproteins, i.e. gp63 (Petrovski et al., 1986), gI (Quint et al., 1987), gIII (Kit et al., 1987), and gX (Marchioli et al., 1987). ELISAs with monoclonal antibodies, which distinguish between wt and vaccine virus, were used for screening wt PRV carriers, but gave some false positive results (Annelli et al., 1991). Consequently, a panel of PCR-based assays has been developed to replace these ELISAs and to minimize false positives (see Beláková and Ballagi-Pordány, 1993; and Table I). Recently, a BHV-1 gE deletion mutant has been developed as a potential modified live vaccine (Kaashoek et al., 1994). PCR would be suitable to screen for wt BHV-1 carriers in BHV-1 eradication programmes. A deletion mutant of EHV-1 (strain RacH) is widely used as a vaccine strain in Europe. Owing to the lack of monoclonal antibodies which discriminate between the vaccine and wt EHV-1 strains, RacH-induced abortions of vaccinated mares could not be excluded. To allow specific screening for the vaccine strain, a PCR assay which discriminates RacH from EHV-1 and EHV-4 field strains has been developed (Osterrieder et al., 1994).

PCR has been successfully applied to the detection of EHV-1 and EHV-4 in nasal swabs (Sharma et al., 1992; Gilkerson et al., 1994) and in aborted fetuses, replacing time-consuming virus isolation and immunofluorescence detection methods (Hardt et al., 1992; Borchers and Slater, 1993; Kirisawa et al., 1993; Osterrieder et al., 1994). PCR assays have also been developed to detect bovine herpesvirus type 1 (BHV-1; e.g. Vilcek, 1993), type 3 (BHV-3, formerly named BHV-4; e.g. Naeem et al., 1991) and ovine herpesvirus type 2 (OHV-2; Wiyono et al., 1994). Direct detection by PCR of BHV-1 from nasal swabs from cattle showing respiratory tract diseases has also been described (van Engelenburg et al., 1993; Vilcek et al., 1994b).

Direct diagnosis of herpesviruses by virus isolation from some biological materials, such as semen, has proved to be difficult owing to cytotoxic components which interfere with tissue culture tests. Nevertheless, to control the transmission and spread of BHV-1 through semen, practicable PCR protocols have been developed for amplification of BHV-1 sequences (van Engelenburg et al., 1993; Wiedmann et al., 1993b).

Methods for isolating DNA or RNA from fixed tissues have been improved (Kallio et al., 1991; Koopmans et al., 1993). While viral proteins are usually no longer immunologically detectable and viable virus cannot be isolated from formalin-fixed material, PCR often allows a retrospective diagnosis of viral infections using such pathological specimens (Rimstad and Evensen, 1993; Osterrieder et al., 1994).

Bacterial and fungal pathogens

Overviews of PCR and other DNA amplification-based assays for detecting veterinary bacterial and fungal pathogens are given in Tables II and III, respectively. In general, references have only been included in these tables if they describe specific veterinary applications. Only in cases where no veterinary assays have been described for a given pathogen are one or two other examples included.
TABLE II
DNA amplification-based assays for veterinary bacterial pathogens

Organism	Assay/target gene	Reference
Actinobacillus pleuropneumoniae A. lignieresii	PCR/1.5 kb DNA fragment	Sirois et al. (1991)
Aeromonas salmonicida	PCR/vapA gene	Gustafson et al. (1992)
	PCR/DNA fragment, uncharacterized	Hiney et al. (1992)
Bordetella avium	PCR/DNA fragment, uncharacterized	Savelkoul et al. (1993)
Bordetella bronchoseptica	PCR-RFLP/pertussis toxin gene	Reizenstein et al. (1993)
Borrelia burgdorferi	PCR/ospA gene	Malloy et al. (1990)
Borrelia corriaceae	PCR/55-60 kDa protein gene	Zingg and LeFebvre (1994)
Brucella spp.	PCR/OMP gene	Kulakov et al. (1992)
Campylobacter jejuni	PCR/ftaA gene	Oyofo et al. (1992); Wegmüller et al. (1993)
Clostridium perfringens	PCR/epsilon toxin gene	Havard et al. (1992)
Coxiella burnetii	PCR/QpH1, QpRS plasmid, 16S rRNA gene, CbbE gene	Willems et al. (1993, 1994)
Chlamydia psittaci	PCR/16S rRNA gene	Pollard et al. (1989); Thiele et al. (1992)
	PCR/MOMP gene	Domeika et al. (1994)
Dichelobacter nodusus	PCR/16S rRNA gene	La Fontaine et al. (1993)
Ehrlichia canis	PCR/16S rRNA gene	Iqbal et al. (1994); Iqbal and Rikihisa (1994)
Ehrlichia risticii	PCR/DNA fragment, uncharacterized	Biswas et al. (1991, 1994)
Erysipelothrix rhusiopathiae	PCR/16S rRNA gene	Makino et al. (1994)
Escherichia coli	PCR/enterotoxin STIa, LTI; verotoxins VT1+2	Woodward et al. (1992)
	PCR/verotoxin VT2	Gradij et al. (1994b)
Leptospira spp.	PCR/16S rRNA gene	Merien et al. (1992)
	PCR/DNA fragment, uncharacterized	van Eys et al. (1989); Gerritsen et al. (1991)
	PCR/repetitive element	Woodward et al. (1991); Savio et al. (1994)
	PCR/repetitive element	Kee et al. (1994)
Listeria monocytogenes	PCR/iap gene	Jaton et al. (1992)
	PCR/hly gene	Bsat and Batt (1993); Wiedmann et al. (1994a)
Mycobacterium paratuberculosis	PCR/IS900	Collins et al. (1993a,b)
	PCR/IS900	Sanderson et al. (1992); Challans et al. (1994)
TABLE II (cont)

Organism	Assay/target gene	Reference
Mycoplasma sp. strain F38 *(contagious caprine pleuropneumonia)*	PCR/16S rRNA gene	Ros Bascunana et al. (1994)
Mycoplasma bovis	PCR/DNA fragment, uncharacterized	Hotzel et al. (1993)
Mycoplasma gallisepticum	PCR/DNA fragment, uncharacterized	Nascimento et al. (1991); Kempf et al. (1993, 1994b)
Mycoplasma hyorhinis	PCR/16S rRNA gene	Dussurget and Roulland (1994); Rawadi et al. (1993)
Mycoplasma iowae	PCR/16S rRNA gene	Kempf et al. (1994a)
Mycoplasma mycoides subsp. *mycoides*	PCR/Cap21 sequence and DNA fragment, uncharacterized	Dedieu et al. (1994)
Mycoplasma synoviae	PCR/16S rRNA gene	Lauerman et al. (1993)
Pasturella multocida	PCR/23S rRNA gene	Lew and Desmarchelier (1994)
Renibacterium salmoninarum	PCR/p57 gene	Brown et al. (1994)
	PCR/DNA fragment, uncharacterized	Leon et al. (1994)
	RT-PCR/16S rRNA gene	Magnusson et al. (1994)
Salmonella spp.	PCR/DNA fragment, uncharacterized	Cohen et al. (1994a, b, c)
	PCR/invA, invE genes	Stone et al. (1994)
	PCR/spvR gene	Mahon and Lax (1993)
	PCR/DNA fragment, uncharacterized	Nguyen et al. (1994)
Serpulina hyodysenteriae	PCR/DNA fragment, uncharacterized	Elder et al. (1994)
Staphylococcus aureus	PCR/gyrA gene	Zambardi et al. (1994)
	PCR/mec gene	Brakstad et al. (1992)
Streptococcus uberis	PCR/23S rRNA gene	Harland et al. (1993)
S. parauberis	PCR/16S rRNA gene	Bleumink-Pluym et al. (1994)

 войны the PCR assays listed detect one or more pathogenic *Leptospira* spp., some of them are specific for a certain serovar; for more details on the specificity of the particular PCR refer to the respective reference.

Detection systems for pathogenic bacteria and fungi based on PCR or other DNA amplification techniques usually depend upon the availability of well characterized, genus- or species-specific target sequences. This strategy is easily applied to well-documented bacterial and fungal pathogens, where the sequence of one or more genes is known (e.g. *Listeria monocytogenes, Salmonella* spp.). However, for many
animal pathogens there is not sufficient information available for the design of species-specific PCR primers. The 16S rRNA gene, encoding part of the prokaryotic rRNA, consists of both highly conserved and variable regions. The latter regions usually contain at least single base pair differences that are species-specific or longer stretches of genus-specific differences. A general method for PCR amplification and sequencing of this gene has been described by Weisburg and colleagues (1991). Other methods, such as direct sequencing of the 16S rRNA using reverse transcriptase, are also available, although this technique does not always seem to be sufficiently accurate (Collins et al., 1991). After determination of the 16S rRNA gene nucleotide sequence for the organism of interest, species- or genus-specific sequences can be determined by alignment with sequences present in the 16S rRNA database and, where necessary, by sequencing the 16S rRNA for closely related species. Currently, 16S rRNA sequence data are available for more than 1500 bacterial species (Olsen et al., 1994).

TABLE III
DNA amplification-based assays for veterinary fungal pathogens

Organism	Assay/target gene	Reference
Aspergillus spp.	PCR/18S rRNA gene	Melchers et al. (1994)
Aspergillus fumigatus	PCR/alkaline protease gene	Tang et al. (1993)
	PCR/26S RNA, intergenic spacer region genes	Spreadbury et al. (1993)
	PCR/Aspfl1 gene	Reddy, L.V. et al. (1993)
Candida albicans	PCR/EO3 (uncharacterized DNA fragment)	Miyakawa et al. (1992)
	PCR/rRNA	Holmes et al. (1994)
Cryptococcus neoformans	PCR/5.8S rRNA and internal transcribed spacer genes	Mitchell et al. (1994)

While the design of genus-specific PCR primers based on 16S rRNA sequences is relatively easy (see Bleumink-Pluem et al., 1994; Iqbal et al., 1994), the development of species-specific assays is usually more difficult. In many cases, closely related species within the same genus differ only by a single base pair difference in one of the variable regions of the 16S rRNA. Restriction fragment length polymorphism (RFLP) of a PCR amplicon offers one possibility for discriminating these single base pair differences, but only if a suitable restriction site is present. PCR-RFLP is, however, a fairly cumbersome technique which does not lend itself to automation. PCR assays for discriminating single base pair differences have also been described, but such an allele-specific PCR often does not allow reliable discrimination of any single base pair difference (Kwok et al., 1990). A different approach to achieving specific detection of a bacterial pathogen based on species-specific 16S rRNA sequences has been reported by Wiedmann and colleagues (1992). After initial sequencing of the 16S rRNA genes of various *L. monocytogenes*, and of the closely related non-pathogenic bacterium *L. innocua*, consistent single base pair differences specific for *L. monocytogenes* were located (Czajka et al., 1993). These sequences were used to
design LCR primers able to specifically identify *L. monocytogenes*. To improve the sensitivity of this LCR, a set of flanking PCR primers was employed to initially amplify the segment containing the specific single base pair difference (Wiedmann *et al.*, 1992). This PCR-coupled LCR was shown to be highly specific for *L. monocytogenes* and was able to detect a minimum of 10 colony-forming units using a non-isotopic detection method (Wiedmann *et al.*, 1993a).

DNA amplification-based systems can be used simply to detect a bacterial species, as well as to obtain information about the characteristics of these bacteria. For example, in human medical diagnostics, PCR probes have been developed to detect *Staphylococcus aureus* using 16S rRNA or gyrA primers and to assess methicillin resistance (Geha *et al.*, 1994; Zambardi *et al.*, 1994). These probes can be employed in a multiplex PCR to identify methicillin resistant and sensitive *S. aureus* strains in a single PCR reaction.

The differentiation of vaccine strains from wild-type strains of the same species can also be achieved using PCR. An example is the detection of the *Mycoplasma gallisepticum* F-vaccine strain using primers for fMGF-1 (Nascimento *et al.*, 1993).

Suitable target sequences for the detection of fungal pathogens are often more difficult to define than those for bacterial pathogens. The characterization of virulence genes in fungi is more demanding, since tools to analyse their genetics are less advanced and their genetic structure is more complex. However, for fungi, cloning and sequencing of the rRNA genes (5S, 5.8S, 18S and 23S), their internal transcribed spacers and non-transcribed spacers can be achieved using PCR primers targeting conserved regions. This genetic information can then be used to achieve a genus- or species-specific detection system analogous to the system described above for the detection of specific 16S rRNA genes in bacteria (see Check, 1994).

The detection of bacterial and fungal pathogens using DNA amplification-based techniques leads to results which have to be interpreted differently from those obtained using cultural methods. PCR and other similar techniques detect DNA from the targeted organism, whether this organism is alive or not. This is of particular concern with regard to the direct detection of microorganisms from environmental samples, where organisms killed by disinfectants might still give positive results by PCR. The detection of non-viable bacteria might, however, offer an advantage over cultural methods if animals treated with antibacterial or antifungal substances are to be tested. In such cases, DNA amplification-based methods might allow diagnosis 'after the fact', where cultural methods would give negative results.

Parasites

The application of DNA amplification methods for diagnosing parasitic infections is still limited, for various reasons. Diagnosis of ectoparasitic diseases can often be achieved by clinical examination of the animal and, in most cases, the parasite can be identified macroscopically or microscopically. Therefore, there is no substantial need for PCR or other DNA amplification methods as a diagnostic tool for ectoparasites. However, in two areas amplification methods are applicable to ectoparasites. PCR has been applied to detect veterinary pathogens carried by these parasites. Examples include the detection of *Borrelia burgdorferi*, the agent of Lyme disease, in *Ixodes* ticks
Organism	Assay/target gene	Reference
Anaplasma marginale	PCR/DNA fragment, uncharacterized	Figueroa et al. (1993)
Basbiesia bigemina	PCR/DNA fragment, uncharacterized	Figueroa et al. (1992)
	PCR/DNA fragment, uncharacterized	Figueroa et al. (1993)
Babesia bovis	PCR/merozoite surface protein gene	Figueroa et al. (1994)
	PCR/DNA fragment, uncharacterized	Figueroa et al. (1993)
	PCR/apocytochrome b gene	Fahrimal et al. (1992)
Cowdria ruminantium	PCR/pCS20 (uncharacterized DNA fragment)	Mahan et al. (1992)
Cryptosporidium parvum	PCR/DNA fragment, uncharacterized	Webster et al. (1993)
	PCR-RFLP/18S rRNA gene	Awad-El-Kariem et al. (1994)
Echinococcus spp.	PCR-RFLP/internal transcribed spacer 1 or rDNA	Bowles and McManus (1993)
Echinococcus granulosus	PCR/conserved gene segment	Bowles et al. (1992)
Echinococcus multilocularis	PCR/U1 snRNA gene	Bretagne et al. (1993)
Eimeria spp.	RAPD/whole DNA	MacPherson & Gajadhar (1993)
Eimeria tenella	PCR/5S rRNA gene	Stucki et al. (1993)
Haemonchus contortus	PCR/β-tubulin gene	Roos and Grant (1993)
	PCR/small subunit ribosomal DNA	Zarlenga et al. (1994)
Haemonchus placei	PCR/small subunit ribosomal DNA	Zarlenga et al. (1994)
Leishmania spp.	PCR/small subunit rRNA gene	van Eys et al. (1992)
Neospora caninum	PCR-RFLP/small subunit rRNA gene	Brindley et al. (1993)
Onchocerca ochengi (O. volvulus)	PCR/0-150 repeat sequence	Zimmerman et al. (1993)
Taenia saginata	PCR/DNA fragment, uncharacterized	Gottstein et al. (1991)
Theileria annulata	PCR/small rRNA gene	De Kok et al. (1993)
Theileria parva	PCR/repetitive sequence, sporozoite antigen gene	Bishop et al. (1992,1993)
	PCR/intraerythrocytic piroplasm surface protein	Tanaka et al. (1993)
Toxoplasma gondii	PCR/rRNA gene	Guay et al. (1993)
	PCR-RFLP/SAG1, SAG2 and ROP1 locus	Howe and Sibley (1994)
	PCR/B1 and S48 genes	Wastling et al. (1993)
TABLE IV (cont)

Organism Assay/target gene	Reference
Trichinella spp. RAPD/whole DNA	Dupouy-Camet et al. (1994)
PCR/53 kDa antigen and 1.6 kb repetitive sequence	Dick et al. (1992); Soule et al. (1993)
Trypanosoma spp. MVR-PCR/whole DNA	Majiwa et al. (1994); Masiga et al. (1992)
RAPD/whole DNA	Steindel et al. (1993)
Trichomonas fetus PCR/DNA fragment, uncharacterized	Ho et al. (1994)
Trichostrongylus colubriformis PCR/β-tubulin gene	Roos and Grant (1993)

(Persing, 1991) and of arthropod-borne viruses, which are transmitted by mosquitoes, ticks and other blood-feeding arthropods (Ward et al., 1990; Vodkin et al., 1993, 1994). PCR allows easy screening of large numbers of samples and is therefore helpful for detecting infected vectors in epidemiological surveys. Another application for PCR-based techniques is the determination of phylogenetic relationships among species of parasites, which enables reassessment of their current taxonomic classification (Brindley et al., 1993). Owing to the complexity of these organisms and the lack of sufficient sequence information, modified PCR techniques have been applied for DNA fingerprint analysis in parasites. These include amplification of minisatellite repeats (MVR-PCR; for review see Arnot et al., 1994), random amplified polymorphic DNA (RAPD; MacPherson and Gajadhar, 1993; Dupouy-Camet et al., 1994) or the amplified polymorphic-PCR (AP-PCR; McClelland and Welsh, 1994).

PCR-based fingerprinting techniques have also been applied to helminths and protozoan parasites (see Table IV). An increasing number of purely diagnostic applications of PCR techniques have been described, mostly for protozoan parasites (Wilson, 1991; van Eys et al., 1992; Webster et al., 1993; Awad-El-Kariem et al., 1994; Figueroa et al., 1994; Howe and Sibley, 1994; Majiwa et al., 1994). Because of the intracellular localization of most protozoans, accurate identification of the infective agent is difficult by conventional methods. Molecular approaches, such as DNA hybridization assays, have been applied, but they are sometimes not sufficiently sensitive (MacPherson and Gajadhar, 1993). Conversely, the sensitivity of a diagnostic test is not an important issue for a wide variety of diarrhoea-causing protozoans, because they are usually shed in high numbers. Rather, rapid and convenient identification of different *Coccidia* spp. often proves difficult because unequivocal morphological markers are missing (Brindley et al., 1993). The identification of more virulence genes and of specific DNA markers for all kinds of pathogenic parasites will probably facilitate the development of further DNA-based assays for veterinary parasites in the near future. This has been done for human parasites, e.g. *Plasmodia, Trypanosoma* and *Leishmania*. Nevertheless, application of such assays will only be important for routine diagnostic purposes where conventional methods cannot provide either the necessary sensitivity or a quick and reliable identification of the species.
Hereditary diseases

Over the last few years, a variety of hereditary diseases in animals have been traced back to the respective genes and mutations responsible for the biochemical defects and clinical syndromes. PCR facilitated the use of this information for rapid diagnostic assays which allow the screening of large numbers of animals. The majority of hereditary diseases are caused by single base pair mutations, which in many cases result in the loss or acquisition of a restriction enzyme recognition site. Most assays for the detection of these single base pair mutations are based on primary PCR amplification of a region containing the polymorphic site, followed by a restriction digest of the PCR product with a suitable restriction enzyme, such as PCR-RFLP. Current assays for BLAD, citrullinaemia and hyperkalaemic periodic paralysis provide examples of this type of assay (see Table V). For some hereditary diseases, routine diagnosis now involves DNA sequencing after primary PCR amplification of mRNA or of the afflicted exon (Zheng et al., 1994). This approach is usually applied where no specific single base pair change can be linked to a hereditary condition or where no change in a restriction site coincides with a given mutation (Zheng et al., 1994).

While PCR-RFLP provides a good diagnostic system for detecting carriers of many disease alleles, this system has two major disadvantages. First, not all potential single base pair mutations lead to a change in a restriction site. Second, although screening of large numbers of animals can be performed by PCR-RFLP, the technique is very cumbersome and time-consuming and cannot easily be integrated into an automated format. Recently, a non-isotopic LCR assay has been described for the detection of BLAD which overcomes these disadvantages (Batt et al., 1994).

A list of DNA amplification-based assays for the detection of hereditary diseases is given in Table V.

Other diagnostic applications

The application of DNA amplification methods is not limited to the diagnosis of infectious or hereditary diseases. This section gives an overview of other applications in veterinary diagnostics, excluding purely research-oriented areas, such as the detection of mRNA for cytokines or other immunomediators.

PCR or PCR-RFLP analysis is often used in animal breeding to determine the genotype of animals for specific production traits, e.g. the genotype for certain milk proteins. Examples include typing for \(\beta \)-lactoglobulin alleles in sheep (Schlee et al., 1993) or for \(\alpha \)-S1-casein, \(\beta \)-casein, \(\kappa \)-casein, \(\beta \)-lactoglobulin or \(\alpha \)-lactalbumin alleles in cattle (Pinder et al., 1991; Schlieben et al., 1991; Sulimova et al., 1991; David and Deutch, 1992; Rottmann and Schlee, 1992; Schlee and Rottmann, 1992; Wilkins and Kuys, 1992). Another example of a PCR application in animal breeding is an assay for the sex-linked late-feathering gene in chickens (Iraqi and Smith, 1994).

Only the advent of PCR allowed preimplantation sex determination in embryo transfer. Usually, male sex is determined using primers specific for the sex-determining region on the Y chromosome (SRY). Such PCR assays have been described for cattle, goats, sheep, pigs and a variety of other animals (Miller, 1991; Bredbacka and Peippo, 1992; Kageyama et al., 1992; Rao and Totey, 1992; Utsumi et
TABLE V
DNA amplification-based assays for the detection of animal hereditary diseases

Hereditary disease	Assay	Reference
Bovine leukocyte adhesion deficiency (BLAD)	PCR-RFLP	Shuster et al. (1992)
	PCR-coupled LCR	Batt et al. (1994)
Canine mucopolysaccharidosis I	PCR-RFLP	Menon et al. (1992)
Canine rod-cone dysplasia type 1 (rcd1)	PCR-RFLP and PCR double stranded conformational polymorphism	Ray et al. (1994,1995)
Canine X-chromosome-linked hereditary nephritis	PCR DNA-sequencing	Zheng et al. (1994)
Citrullinaemia	PCR-RFLP	Dennis et al. (1989)
Congenital hypothyroidism	PCR-RFLP	Schwerin et al. (1994)
Deficiency of uridine monophosphate synthetase (DUMPS)	PCR-RFLP	Schwenger et al. (1993)
Hyperkalaemic periodic paralysis	PCR-RFLP	Rudolph et al. (1992)
Malignant hyperthermic syndrome (MHS)		Brening & Brem (1992); Brem & Brening (1993); Otsu et al. (1992)

al., 1992; Horvat et al., 1993; Saitoh and Totsukawa, 1993; Kawarasaki et al., 1994). Recently, a multiplex PCR has been described which can be used to screen bovine preimplanted embryos for sex and four genetic diseases (Schwerin et al., 1994). PCR has also been used to prescreen microinjected bovine embryos for the presence of a transgene construct (Horvat et al., 1993). Another application of PCR with male sex-specific primers is the determination of bovine chimerism in female calves co-twin to a male (so-called ‘freemartins’) (Grobet et al., 1992; Lipkin et al., 1993).

Forensic veterinary applications of DNA amplification-based systems include the species determination of meat and carcasses. Species-specific primers have been described for sheep, goats and cattle (Chikuni et al., 1994; Wagner et al., 1994). Species-specific primers for the amplification of regions containing a variable number of tandem repeats have been used to determine parentage in most domestic animal species (Buitkamp et al., 1994).

CONCLUSIONS AND OUTLOOK

Nucleic acid-based technology will have a large impact on the diagnosis and monitoring of many animal diseases. High demands have been placed on DNA amplification techniques. With regard to speed, reliability and cost, these techniques,
and in particular PCR, are often superior to conventional diagnostic methods. However, in contrast to ELISA systems, there are only a few PCR kits for human or veterinary pathogens commercially available.

A patent covering the PCR process and patents for specific products, such as purified thermostable enzymes, are held by Hoffman-LaRoche. This means that the user of the PCR process needs to be properly licensed. For research and development applications, PCR can be performed if licensed enzymes and licensed instruments are used. In contrast, when a PCR assay is to be routinely used in commercial veterinary diagnostics, an end-user ‘service license’ has to be acquired. The contract with Hoffman-LaRoche includes a royalty obligation and enables the licensee to perform any kind of veterinary diagnostic testing. The royalty rate varies between 5% and 15%, depending on the application (A. Junosza-Jankowski, PCR Licensing Manager, Roche Diagnostic Systems, personal communication, 1995).

In veterinary diagnostics, the application of PCR is currently restricted to fully equipped diagnostic laboratories. Its implementation by veterinary practitioners under field conditions is not straightforward, but nor is it insurmountable (Barker, 1994). Recent developments allow the detection of amplification products by a system which uses microtitre plates. Labelling of the primers with digoxigenin, biotin or different fluorogens has been successfully applied in LCR and PCR (e.g. Wiedmann et al., 1993a). While the ligand group is captured by an immobilized ‘receptor’ (e.g. biotin-streptavidin), the reporter group on the other end of the amplicon can be used for the detection. Other approaches use microtitre plates coated with a probe to capture the PCR product, which is then detected by a second probe. Very recently, a new approach for the detection and quantification of PCR products has become commercially available. Taqman™ (Perkin Elmer/Applied Biosystems Division) uses a probe which is located between the PCR primers. This probe is labelled with a fluorescent reporter and quencher dye. The fluorescence emitted by the reporter dye is normally quenched by the quencher dye but increases upon hydrolysis of the probe, an event that only occurs during amplification of the target DNA. This system has the potential to allow detection and quantification of PCR products in a microtitre plate in less than 10 minutes (Lee et al., 1993; Anonymous, 1994).

We believe that DNA amplification-based methods will replace conventional methods in some fields of diagnostics, such as hereditary diseases where the dysfunctional genes are known and viral diseases of persistently infected animals. In other areas, DNA amplification methods will be used to complement conventional diagnostics.

ACKNOWLEDGEMENTS

M.W. is supported by a Spencer T. and Ann W. Olin Fellowship. The authors thank K. Ray (J.A. Baker Institute for Animal Health, Cornell University) for providing manuscripts in press.
REFERENCES

Abramson, R.D. and Meyers, T.W., 1993. Nucleic acid amplification technologies. *Current Opinion in Biotechnology*, 4, 41–47.

Agresti, A., Ponti, W., Rocchi, M., Meneveri, R., Marozzi, A., Cavallari, D., Peri, E., Poli, G. and Ginelli, E., 1993. Use of polymerase chain reaction to diagnose bovine leukemia virus infection in calves at birth. *American Journal of Veterinary Research*, 54, 373–378.

Akita, G.Y., Glenn, J., Castro, A.E. and Osburn, B.I., 1993. Detection of bluetongue virus in clinical samples by polymerase chain reaction. *Journal of Veterinary Diagnostic Investigation*, 5, 154–158.

Alansari, H., Brock, K.V. and Potgieter, L.N., 1993. Single and double polymerase chain reaction for the detection of bovine viral diarrhea virus in tissue culture and sera. *Journal of Veterinary Diagnostic Investigation*, 5, 148–153.

Aly, M.M., Smith, E.J. and Fadly, A.M., 1993. Detection of reticuloendotheliosis virus infection using the polymerase chain reaction. *Avian Pathology*, 22, 543–554.

Amiral-Doel, C.M., Owen, N.E., Ferris, N.P., Kitching, R.P. and Doel, T.R., 1993. Detection of foot-and-mouth disease viral sequences in clinical specimens and ethyleneimine-inactivated preparations by the polymerase chain reaction. *Vaccine*, 11, 415–421.

Anelli, J.F., Morrison, R.B., Goyal, S.M., Bergland, M.E., Mackay, W.J. and Thawley, D.G., 1991. Pig herds having a single reactor to serum antibody tests to Aujeszky's disease virus. *Veterinary Record*, 128, 49–53.

Anonymous, 1994. Taqman™ PCR Reagent Kit Protocol. The Perkin Elmer Corporation.

Arakawa, C.K., Deering, R.E., Higman, K.H., Oshima, K.H., O'Hara, P.J. and Winton, J.R., 1990. Polymerase chain reaction (PCR) amplification of a nucleoprotein gene sequence of infectious hematopoietic necrosis virus. *Diseases of Aquatic Organisms*, 8, 165–170.

Arnot, D.E., Roper, C. and Sultan, A.A., 1994. MVR-PCR analysis of hypervariable DNA sequence variation. *Parasitology Today*, 10, 324–327.

Awad-El-Kariem, F.M., Warhurst, D.C. and McDonald, V., 1994. Detection and species identification of *Cryptosporidium oocysts* using a system based on PCR and endonuclease restriction. *Parasitology*, 109, 19–22.

Banks, M., 1993. DNA restriction fragment length polymorphism among British isolates of Aujeszky's disease virus: use of the polymerase chain reaction to discriminate among strains. *British Veterinary Journal*, 149, 155–163.

Barany, F., 1991. The ligase chain reaction (LCR) in a PCR world. *PCR Methods and Applications*, 1, 5–16.

Barker, R.H., Jr., 1994. Use of PCR in the field. *Parasitology Today*, 10, 117–119.

Bartough, J., East, N., Rowe, J.D., Van Hoosear, K., DeRock, E., Bigornia, L., and Rimstad, E., 1994. Double-nested polymerase chain reaction for detection of caprine arthritis-encephalitis virus proviral DNA in blood, milk and tissues of infected goats. *Journal of Virological Methods*, 50, 101–113.

Batt, C.A., Wagner, P., Wiedmann, M., Luo, J. and Gilbert, R., 1994. Detection of bovine leukocyte adhesion deficiency by nonisotopic ligase chain reaction. *Animal Genetics*, 25, 95–98.

Baxter, S.I., Pow, I., Bridgen, A. and Reid, H.W., 1993. PCR detection of the sheep-associated agent of malignant catarrhal fever. *Archives of Virology*, 132, 145–159.

Becker, Y., Tabor, E., Asher, Y., Davidson, I., Malkinson, M. and Witter, R.L., 1993. PCR detection of amplified 132 bp repeats in Marek's disease virus type 1 (MDV-1) DNA can serve as an indicator for critical genomic rearrangement leading to the attenuation of the virus. *Virus Research*, 7, 277–287.

Belák, S. and Ballagi-Pordány, A., 1993. Application of the polymerase chain reaction (PCR) in veterinary diagnostic virology. *Veterinary Research Communications*, 17, 55–72.

Belák, S. and Ballagi-Pordány, A., Flensburg, J. and Virtanen, A., 1989. Detection of pseudorabies virus sequences by the polymerase chain reaction. *Archives of Virology*, 108, 279–286.

Benkel, B.F. and Smith, E.J., 1993. Research note: a rapid method for the detection of the Rous-associated endogenous solitary long terminal repeat, evf5. *Poultry Science*, 72, 1601–1605.

Bishop, R., Sohanpal, B., Kariuki, D.P., Young, A.S., Neve, V., Baylis, H., Allsopp, B.A., Spooner, P.R., Dolan, T.T. and Morzaria, S.P., 1992. Detection of a carrier state in equine monocytic ehrlichiosis, Potomac horse fever. *Veterinary Record*, 130, 53–61.

Biswas, B., Vemulapalli, R. and Dutta, S.K., 1994. Detection of *Ehrlichia risticii* from feces of infected horses by immunomagnetic separation and PCR. *Journal of Clinical Microbiology*, 32, 2147–2151.
Cohen, N.D., Wallis, D.E., Neibergs, H.L., McElroy, A.P., McGruder, E.D., Detoach, J.R., Corrier, D.E. and Hargis, B.M., 1994c. Comparison of the polymerase chain reaction using genus-specific oligonucleotide primers and microbiologic culture for the detection of Salmonella in drag-swabs from poultry houses. Poultry Science, 73, 1276–1281

Collins, D.M., Stephens, D.M. and de Lisle, G.W., 1993a. Comparison of polymerase chain reaction tests and fecal culture for detecting Mycobacterium paratuberculosis in bovine faeces. Veterinary Microbiology, 36, 289–299

Collins, D.M., Hilbink, F., West, D.M., Hosie, B.D., Cooke, M.M. and de Lisle, G.W., 1993b. Investigation of Mycobacterium paratuberculosis in sheep by fecal culture, DNA characterization and the polymerase chain reaction. Veterinary Record, 133, 599–600

Collins, M.D., Wallbanks, S., Lane, D.J., Shah, J., Neitupski, R., Smida, J., Dorsch, M. and Stackebrandt, E., 1991. Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. International Journal of Systematic Bacteriology, 41, 240–246

Collins, M.S., Bashiruddin, J.B. and Alexander, D.J., 1993c. Deduced amino acid sequences at the fusion protein cleavage site of Newcastle disease viruses showing variation in antigenicity and pathogenicity. Archives of Virology, 128, 363–370

Czajka, J., Bsat, N., Piani, M., Russ, W., Sultana, K., Wiedmann, M., Whitaker, R. and Batt, C.A., 1993. Differentiation of Listeria monocytogenes and Listeria innocua by 16S rDNA and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms. Applied and Environmental Microbiology, 59, 304–308

David, V.A. and Deutch, A.H., 1992. Detection of bovine alpha-s-1 casein genomic variants using the allele-specific polymerase chain reaction. Animal Genetics, 23, 425–429

Dedieu, L., Mady, V. and Lefevre, P.C., 1994. Development of a selective polymerase chain reaction assay for the detection of Mycoplasma mycoides subsp. mycoides S.C. (Contagious bovine pleuropneumonia agent). Veterinary Microbiology, 42, 327–340

De Kok, J.B., D’Oliveira, C. and Jongejan, F., 1993. Detection of the protozoan parasite Theileria annulata in Hyalomma ticks by the polymerase chain reaction. Experimental and Applied Acarology, 17, 839–846

Dennis, J.A., Healy, P.J., Beaudet, A.L. and O’Brien, W.E., 1989. Molecular definition of bovine argininosuccinate synthase deficiency. Proceedings of the National Academy of Sciences of the USA, 86, 7947–7951

Dick, T.A., Lu, M., de Vos, T. and Ma, K., 1992. The use of the polymerase chain reaction to identify porcine isolates of Trichinella. Journal of Parasitology, 78, 145–148

Domeika, M., Ganusauskas, A., Bassiri, M., Fröman, G. and Mardh, P.-A., 1994. Comparison of polymerase chain reaction, direct immunofluorescence, cell culture and enzyme immunoassay for the detection of Chlamydia psittaci in bull semen. Veterinary Microbiology, 42, 273–280

Donofrio, J.C., Coonrod, J.D. and Chambers, T.M., 1994. Diagnosis of equine influenza by the polymerase chain reaction. Journal of Veterinary Diagnostic Investigation, 6, 39–43

Dupouy-Camet, J., Robert, F., Guillou, J.P., Vallet, C., Perret, C. and Soulé, C., 1994. Identification of Trichinella isolates with random amplified polymorphic DNA markers. Parasitology Research, 80, 358–360

Dussurget, O. and Roulland, D.D., 1994. Rapid, sensitive PCR-based detection of mycoplasmas in simulated samples of animal sera. Applied and Environmental Microbiology, 60, 953–959

Easton, L.A., Vilcek, S. and Nettleton, P.F., 1994. Evaluation of a ‘one-tube’ reverse transcription-polymerase chain reaction for the detection of ruminant pestiviruses. Journal of Virological Methods, 50, 343–348

Eaves, F.W., Molloy, J.B., Dimmock, C.K. and Eaves, L.E., 1994. A field evaluation of the polymerase chain reaction procedure for the detection of bovine leukemia proviral DNA in cattle. Veterinary Microbiology, 39, 313–321

Elder, R.O., Duhamel, G.E., Schafer, R.W., Mathiesen, M.R. and Ramanathan, M., 1994. Rapid detection of Serpulina hydysenteriae in diagnostic specimens by PCR. Journal of Clinical Microbiology, 32, 1497–1502

Ertlich, H.A., Gelfand, D. and Sninsky, J.J., 1991. Recent advances in the polymerase chain reaction. Science, 252, 1643–1650

Fahrimal, Y., Gogg, W.L. and Jasmer, D.P., 1992. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA. Journal of Clinical Microbiology, 30, 1374–1379

Fahy, E., Kwoh, D.Y. and Gingeras, T.R., 1991. Self-sustained sequence replication (3SR): an isothermal transcription based amplification system alternative to PCR. PCR Methods and Applications, 1, 25–33

Figueroa, J.V., Chieves, L.I., Johnson, G.S. and Buening, G.M., 1992. Detection of Babesia bigemina infected carriers by polymerase chain reaction amplification. Journal of Clinical Microbiology, 30, 2576–2582
Figueroa, J.V., Chieves, L.P., Johnson, G.S. and Buening, G.M., 1993. Multiplex polymerase chain reaction based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. *Veterinary Parasitology*, 50, 69–81.

Figueroa, J.V., Chieves, L.P., Johnson, G.S., Goff, W.L. and Buening, G.M., 1994. Polymerase chain reaction-based diagnostic assay to detect cattle chronically infected with Babesia bovis. *Revista Latinoamericana de Microbiologia*, 36, 47–55.

Geha, D.J., Uhl, J.R., Gustafetto, C.A. and Persing, D.H., 1994. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. *Journal of Clinical Microbiology*, 32, 1768–1772.

Gerritsen, M.J., Olyhock, T., Smits, M.A. and Bokhout, B.A., 1991. Sample preparation method for polymerase chain reaction-based semiquantitative detection of *Leptospira interrogans* serovar hardjo subtype hardjobovis in bovine urine. *Journal of Clinical Microbiology*, 29, 2805–2808.

Gilkerson, J., Jorm, L.R., Love, D.N., Lawrence, G.L. and Whalley, J.M., 1994. Epidemiological investigation of equid herpesvirus-4 (EHV-4) excretion assessed by nasal swabs taken from thoroughbred foals. *Veterinary Microbiology*, 39, 275–283.

Glass, C.M., McLean, R.G., Katz, J.B., Cropp, C.B., Kirk, L.J., McKiernan, A.J. and Evermann, J.F., 1994. Isolation of pseudorabies (Aujeszky's disease) virus from a Florida panther. *Journal of Wildlife Disease*, 30, 180–184.

Gottstein, B., Deplazes, P., Tanner, I. and Skaggs, J.S., 1991. Diagnostic identification of *Taenia saginata* with the polymerase chain reaction. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 85, 248–249.

Gradil, C.M., Harding, M.J. and Lewis, K., 1994a. Use of polymerase chain reaction to detect porcine parvovirus associated with swine embryos. *American Journal of Veterinary Research*, 55, 344–347.

Gradil, C.M., Sampath, M. and Eaglesome, M.D., 1994b. Detection of verotoxigenic *Escherichia coli* in bull semen using the polymerase chain reaction. *Veterinary Microbiology*, 42, 239–244.

Greene, W.K., Meets, J., Chadwick, B., Carnegie, P.R. and Robinson, W.F., 1993. Nucleotide sequences of Australian isolates of the feline immunodeficiency virus: comparison with other feline lentiviruses. *Archives of Virology*, 132, 369–379.

Grobet, L., Charlier, C., Schwers, A. and Hanset, R., 1992. Détection du freemartinisme à l'aide d'empreintes génétiques et d'une sonde Y-spécifique bovine. *Annales de Medicine Vétérinaire*, 136, 41–49.

Gruber, A.D., Greiser-Wilke, I.M., Haas, L., Hewicker-Trautwein, M. and Moennig, V., 1993. Detection of bovine viral diarrhea virus RNA in formalin-fixed, paraffin-embedded brain tissue by nested polymerase chain reaction. *Journal of Virological Methods*, 43, 309–319.

Guay, J.-M., Dubois, D., Morency, M.-J., Gagnon, S., Mercier, J. and Levesque, R.C., 1993. Detection of the pathogenic parasite *Toxoplasma gondii* by specific amplification of ribosomal sequences using comultiplex polymerase chain reaction. *Journal of Clinical Microbiology*, 31, 203–207.

Gustafson, C.E., Thomas, C.J. and Trust, T.J., 1992. Detection of *Aeromonas salmonicida* from fish by using polymerase chain reaction chain reaction of the virulence surface array protein gene. *Applied and Environmental Microbiology*, 58, 3816–3825.

Harding, M., Lutze-Wallace, C., Preud'Homme, I., Zhong, X. and Role, J., 1994. Reverse transcriptase-PCR assay for detection of hog cholera virus. *Journal of Clinical Microbiology*, 32, 2600–2602.

Hardt, M., Teifke, J.P. and Weiss, E., 1992. Die Polymerasekettenreaktion (PCR) zum Nachweis von DNA der Equinen Herpesviren 1 und 4. *Berliner und Muenchner Tierarztliche Wochenschrift*, 105, 52–55.

Harland, N.M., Leigh, J.A. and Collins, M.D., 1993. Development of gene probes for the specific identification of *Streptococcus uberis* and *Streptococcus parauberis* based upon large subunit rRNA gene sequences. *Journal of Applied Bacteriology*, 74, 526–531.

Hasebe, H., Wheeler, J.G. and Osorio, F.A., 1993. Gene specific assay to differentiate strains of pseudorabies virus. *Veterinary Microbiology*, 34, 221–231.

Havard, H.L., Hunter, S.E.C. and Titball, R.W., 1992. Comparison of the nucleotide sequence and development of a PCR test for the epsilon toxin gene of *Clostridium perfringens* type b and type d. *FEBS Microbiology Letters*, 97, 77–81.

Hiney, M., Dawson, M.T., Heery, D.M., Smith, P.R., Gannon, F. and Powell, R., 1992. DNA probe for *Aeromonas salmonicida*. *Applied and Environmental Microbiology*, 58, 1039–1042.

Ho, M.S.Y., Conrad, P.A., Conrad, P.J., LeFebvre, R.B., Perez, E. and Bondurant, R.H., 1994. Detection of bovine trichomoniasis with a specific DNA probe and PCR amplification system. *Journal of Clinical Microbiology*, 32, 98–104.

Höfner, M.C., Carpenter, W.C. and Donaldson, A.I., 1993. Detection of foot-and-mouth disease virus RNA in clinical samples and cell culture isolates by amplification of the capsid coding region. *Journal of Virological Methods*, 42, 53–61.
Höfner, M.C., Carpenter, W.C., Ferris, N.P., Kitching, R.P. and Ariza Botero, F., 1994. A hemi-nested PCR assay for the detection and identification of vesicular stomatitis virus nucleic acid. *Journal of Virological Methods*, **50**, 11–20

Holmes, A.R., Cannon, R.D., Shepherd, M.G. and Jenkinson, H.F., 1994. Detection of *Candida albicans* and other yeasts in blood by PCR. *Journal of Clinical Microbiology*, **32**, 228–231

Horvat, S., Medrano, J.F., Behboodi, E., Anderson, G.B. and Murray, J.D., 1993. Sexing and detection of gene construct in microinjected bovine blastocysts using the polymerase chain reaction. *Transgenic Research*, **2**, 134–140

Hotzel, H., Demuth, B., Sachse, K., Pflichta, A. and Pfuetzner, H., 1993. Detection of *Mycoplasma bovis* using in vitro deoxyribonucleic acid amplification. *Revue Scientifique et Technique de l’Office International des Epizooties*, **12**, 581–591

Howe, D.K. and Sibley, I.D., 1994. *Toxoplasma gondii*: Analysis of different laboratory stocks of the RH strain reveals genetic heterogeneity. *Experimental Parasitology*, **78**, 242–245

Iqbal, Z. and Rikitisha, Y., 1994. Application of the polymerase chain reaction for the detection of *Ehrlichia canis* in tissues of dogs. *Veterinary Microbiology*, **42**, 281–288

Iqbal, Z., Chaichanasiwithaya, W. and Rikitisha, Y., 1994. Comparison of PCR and other tests for early diagnosis of canine ehrlichiosis. *Journal of Clinical Microbiology*, **32**, 1658–1662

Iraqi, F. and Smith, E.J., 1994. Determination of the zygosity of ev21-K in late-feathering male White Leghorns using the polymerase chain reaction. *Poultry Science*, **73**, 939–946

Isegawa, Y., Nakagomi, O., Nakagomi, T., Ishida, S., Uesugi, S. and Ueda, S., 1993. Determination of bovine rotavirus G and P serotypes by polymerase chain reaction. *Molecular and Cellular Probes*, **7**, 277–284

Jackson, M.L., Haines, D.M., Meric, S.M. and Misra, V., 1993. Feline leukemia virus detection by immunohistochemistry and polymerase chain reaction in formalin-fixed, paraffin-embedded tumor tissues from cats with lymphosarcoma. *Canadian Journal of Veterinary Research*, **57**, 269–276

Jaton, K., Sahli, R. and Bille, J., 1992. Development of polymerase chain reaction assays for detection of *Listeria monocytogenes* in clinical cerebrospinal fluid samples. *Journal of Clinical Microbiology*, **30**, 1931–1936

Kaashoek, M.J., Moerman, A., Madic, J., Rijswijk, F.A., Quak, J., Gielkens, A.L. and van Oirschot, J.T., 1993a. Colorimetric diagnosis of tick-borne encephalitis. *American Journal of Veterinary Research*, **54**, 2021–2026

KEMPf, I., Blanchard, A., Gesbert, F., Guittet, M. and Bennejean, G., 1993. The polymerase chain reaction for *Mycoplasma gallisepticum* detection. *Avian Pathology*, **22**, 739–750

KEMPf, I., Blanchard, A., Gesbert, F., Guittet, M. and Bennejean, G., 1994a. Comparison of antigenic and pathogenic properties of *Mycoplasma iowae* strains and development of a PCR-based detection assay. *Research in Veterinary Science*, **56**, 179–185

KEMPf, I., Gesbert, F., Guittet, M. and Bennejean, G., 1994b. *Mycoplasma gallisepticum* infection in drug-treated chickens: comparison of diagnosis methods including polymerase chain reaction. *Journal of Veterinary Medicine B*, **41**, 597–602

Kibenge, F.S. and Qian, B., 1994. Sequence conservation in the RNA polymerase gene of infectious bursal disease virus. *Archives of Virology*, **134**, 441–449
Kirisawa, R., Endo, A., Iwai, H. and Kawakami, Y., 1993. Detection and identification of equine herpesvirus-1 and -4 by polymerase chain reaction. *Veterinary Microbiology*, 36, 57–67

Kit, S., Sheppard, M., Ichimura, H. and Kit, M., 1987. Second-generation pseudorabies vaccine with deletions in thymidine kinase and glycoprotein genes. *American Journal of Veterinary Research*, 48, 780–793

Klintevall, K., Ballagi-Pordfiny, A., Näslund, K. and Belák, S., 1994. Bovine leukaemia virus: Rapid detection of proviral DNA by nested PCR in blood and organs of experimentally infected calves. *Veterinary Microbiology*, 42, 191–204

Koopmans, M., Monroe, S.S., Coffield, L.M. and Zaki, S.R., 1993. Optimization of extraction and PCR amplification of RNA extracts from paraffin-embedded tissues in different fixatives. *Journal of Virological Methods*, 43, 189–204

Kulakov, Y.K., Gorelov, V.N., Motin, V.L., Brukhanskii, G.V. and Skavronskaia, A.G., 1992. Highly sensitive non-isotopic DNA hybridization system using amplification polymerase chain reaction for identification and indication of *Brucella* *Molekulyarnaya Genetika Mikrobiologiya i Virologiya*, 7–8, 23–27

Kulonen, K. and Boldina, I., 1993. Differentiation of two rabies strains in Estonia with reference to recent Finnish isolates. *Journal of Wildlife Disease*, 29, 209–213

Kwok, S., 1990. Procedures to minimize PCR-product carry-over. In: M.A. Innes, D.H. Gelfand, J.J. Sninsky, J.J. and T.J. White (eds), *PCR Protocols. A Guide to Methods and Applications*, (Academic Press, San Diego) 142–145

Kwok, S. and Higushi, R., 1989. Avoiding false positives with PCR. *Nature*, 339, 237–238

Kwok, S., Kellogg, D.E., Spasic, D., Goda, L., Levenson, C. and Sninsky, J.J., 1990. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. *Nucleic Acids Research*, 18, 999–1005

Kwon, H.M., Jackwood, M.W. and Gelb, J. Jr., 1993a. Differentiation of infectious bronchitis virus serotypes using polymerase chain reaction and restriction fragment length polymorphism analysis. *Avian Disease*, 37, 194–202

Kwon, H.M., Jackwood, M.W., Brown, T.P. and Hilt, D.A., 1993b. Polymerase chain reaction and a biotin-labeled DNA probe for detection of infectious bronchitis virus in chickens. *Avian Disease*, 37, 149–156

La Fontaine, S., Egerton, J.R. and Rood, J.L., 1993. Detection of *Dichelobacter nodosus* using species-specific oligonucleotides as PCR primers. *Veterinary Microbiology*, 35, 101–117

Lauerman, L.H., Hoerr, F.J., Sharpston, A.R., Shahe, S.M. and Van, S.V.L., 1993. Development and application of a polymerase chain reaction assay for *Mycoplasma synoviae*. *Avian Diseases*, 37, 829–834

Lawson, M., Meers, J., Blechynden, L., Robinson, W., Greene, W. and Carnegie, P., 1993. The detection and quantification of feline immunodeficiency provirus in peripheral blood mononuclear cells using the polymerase chain reaction. *Veterinary Microbiology*, 38, 11–21

Lee, L.G., Connell, C.R. and Bloch, W., 1993. Allelic discrimination by nick-translation PCR with fluorogenic probes. *Nucleic Acids Research*, 21, 3761–3766

Leon, G., Maulen, N., Figueroa, J., Villanueva, J., Rodriguez, C., Vera, M.I. and Krauskopf, M., 1994. A PCR-based assay for the identification of the fish pathogen *Renibacterium salmoninarum*. *FEMS Microbiology Letters*, 115, 131–136

Lew, A.E. and Desmarchelier, P.M., 1994. Detection of *Pseudomonas pseudomallei* by PCR and hybridization. *Journal of Clinical Microbiology*, 32, 1326–1332

Li, X. and Scott, F.W., 1994. Detection of feline coronavirus in cell cultures and in fresh and fixed feline tissues using polymerase chain reaction. *Veterinary Microbiology*, 42, 65–78

Lin, Z., Kato, A., Otaki, Y., Nakamura, T., Sasmaz, E. and Ueda, S., 1993. Sequence comparison of a highly virulent infectious bursal disease virus prevalent in Japan. *Avian Disease*, 37, 315–323

Lipkin, E., Nikoschinsky, Y., Arbel, R., Sharoni, D., Soller, M. and Friedmann, A., 1993. Early PCR amplification test for identifying chimerism in female calves co-twin to a male in cattle. *Animal Biotechnology*, 4, 195–201

Lopez-Lastra, M., Gonzalez, M., Jashes, M. and Sandino, A.M., 1994. A detection method for infectious pancreatic necrosis virus (IPNV) based on reverse transcription (RT)-polymerase chain reaction (PCR). *Journal of Fish Diseases*, 17, 269–282

McGelland, M. and Welsh, J., 1994. DNA fingerprinting by arbitrarily primed PCR. *PCR Methods and Applications*, 4, S59–865

MacLachlan, N.J., Nunamaker, R.A., Katz, J.B., Sawyer, M.M., Akita, G.Y., Osburn, B.I. and Tabachnick, W.J., 1994. Detection of bluetongue virus in the blood of inoculated calves: comparison of virus isolation, PCR assay, and in vitro feeding of *Culicoides varitans*. *Archives of Virology*, 136, 1–8

MacPherson, J.M. and Gajadhar, A.A., 1993. Differentiation of seven *Eimeria* species by random amplified polymorphic DNA. *Veterinary Parasitology*, 45, 257–266
Schnitzler, P. and Darai, G., 1993. Identification of the gene encoding the major capsid protein of fish lymphocystis disease virus. *Journal of General Virology*, 74, 2143–2150.

Scholz, E., Porter, R.E. and Guo, P., 1994. Differential diagnosis of infectious laryngotracheitis from other avian respiratory diseases by a simplified PCR procedure. *Journal of Virological Methods*, 50, 313–321.

Schwenger, B., Schober, S. and Simon, D., 1993. DUMPS cattle carry a point mutation in the uridine monophosphate synthase gene. *Genomics*, 16, 241–244.

Schwerin, M., Parkanyi, V., Roschlu, K., Kanitz, W. and Brockmann, G., 1994. Simultaneous genetic typing at different loci in bovine embryos by multiplex polymerase chain reaction. *Animal Biotechnology*, 5, 47–63.

Sellner, L.N., Coelen, R.J. and Mackenzie, J.S., 1992. Reverse transcriptase inhibits Taq polymerase activity. *Nucleic Acids Research*, 20, 1487–1490.

Shah, J.S., Liu, J., Smith, J., Popoff, S., Radcliffe, G., O’Brien, W.J., Serpe, G., Olive, D.M. and King, W., 1994. Novel, ultrasensitive, Q-beta replicase-amplified hybridization assay for detection of *Chlamydia trachomatis*. *Journal of Clinical Microbiology*, 32, 2718–2724.

Sharma, P.C., Cullinane, A.A., Onions, D.E. and Nicolson, L., 1992. Diagnosis of equid herpesviruses-1 and -4 by polymerase chain reaction. *Equine Veterinary Journal*, 24, 20–25.

Shuster, D.E., Kehrli, M.E. Jr., Ackermann, M.R. and Gilbert, R.O., 1992. Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. *Proceedings of the National Academy of Sciences of the USA*, 89, 9225–9229.

Siros, M., Lemire, E.G. and Levesque, R.C., 1991. Construction of a DNA probe and detection of *Actinobacillus pleuropneumoniae* by using polymerase chain reaction. *Journal of Clinical Microbiology*, 29, 1183–1187.

Slater, J.D., Borchers, K., Thackray, A.M. and Field, H.J., 1994. The trigeminal ganglion is a location for equine herpesvirus 1 latency and reactivation in horse. *Journal of General Virology*, 75, 2007–2016.

Soine, C., Watson, S.K., Rybicki, E., Lucio, B., Nordgren, R.M., Parrish, C.R. and Schat, K.A., 1993. Determination of the detection limit of the polymerase chain reaction for chicken infectious anemia virus. *Avian Disease*, 37, 467–476.

Soulé, C., Guillou, G.P., Dupouy-Camet, J., Vallet, C. and Pozio, E., 1993. Differentiation of *Trichinella* isolates by polymerase chain reaction. *Parasitology Research*, 79, 461–465.

Spreadbury, C., Holden, D., Aufauvre, B.A., Bainbridge, B. and Cohen, J., 1993. Detection of *Aspergillus fumigatus* by polymerase chain reaction. *Journal of Clinical Microbiology*, 31, 615–621.

Steindel, M., Días Neto, E., de Menezes, C.L.P., Romana, A.J. and Simpson, A.J.G., 1993. Random amplified polymorphic DNA analysis of *Trypanosoma cruzi* strains. *Molecular and Biochemical Parasitology*, 60, 71–79.

St. Laurent, G., Morin, G. and Archambault, D., 1994. Detection of equine arteritis virus following amplification of structural and nonstructural viral genes by reverse transcription-PCR. *Journal of Clinical Microbiology*, 32, 658–665.

Stone, G.G., Oberst, R.D., Hays, M.P., McVey, S. and Chengappa, M.M., 1994. Detection of *Salmonella* serovars from clinical samples by enrichment broth cultivation-PCR procedure. *Journal of Clinical Microbiology*, 32, 1742–1749.

Stone-Marschat, M., Carville, A., Skowronek, A. and Laegreid, W.W., 1994. Detection of African horse sickness virus by reverse transcription-PCR. *Journal of Clinical Microbiology*, 32, 697–700.

Stucki, U., Braun, R. and Roditi, I., 1993. *Eimeria tenella* characterization of a SS ribosomal RNA repeat unit and its use as a species-specific probe. *Experimental Parasitology*, 76, 68–75.

Suarez, P., Zardoya, R., Prieto, C., Solana, A., Tabares, E., Bautista, J.M. and Castro, J.M., 1994. Direct detection of the porcine reproductive and respiratory syndrome (PRRS) virus by reverse polymerase chain reaction (RT-PCR). *Archives of Virology*, 135, 89–99.

Sulimova, G.E., Shaikhhaev, G.O., Berberov, Z.M., Markaryan, A.Y. and Kandalova, L.G., 1991. Genotyping bovine kappa casein locus using the polymerase chain reaction (PCR) technique. *Genetika*, 27, 2053–2062.

Suzuki, Y., Sanetaka, T., Sato, M., Tajima, K., Matsuda, Y. and Nakagomi, O., 1993. Relative frequencies of G (VP7) and P (VP4) serotypes determined by polymerase chain reaction assays among Japanese bovine rotaviruses isolated in cell culture. *Journal of Clinical Microbiology*, 31, 3046–3049.

Tanaka, M., Onoe, S., Matsuba, T., Katayama, S., Yamazaka, M., Yonenichi, H., Hiramatsu, K., Baek, B.K., Sugimoto, C. and Onuma, M., 1993. Detection of *Theileria sergenti* infection in cattle by polymerase chain reaction amplification of parasite-specific DNA. *Journal of Clinical Microbiology*, 31, 2565–2569.

Tang, C.M., Holden, D.W., Aufauvre, B.A. and Cohen, J., 1993. The detection of *Aspergillus spp.* by the polymerase chain reaction and its evaluation in bronchoalveolar lavage fluid. *American Review of Respiratory Disease*, 148, 1313–1317.

Tham, K.M. and Stanislavsk, W.L., 1992. Detection of chicken anaemia agent DNA sequences by the polymerase chain reaction. *Archives of Virology*, 127, 245–255.
Thiele, D., Wittenbrink, M.M., Fischer, D. and Krauss, H., 1992. Evaluation of the polymerase chain reaction (PCR) for detection of *Chlamydia psittaci* in abortion material from ewes. Zentralblatt für Bakteriologie, 277, 446–453

Truyen, U., Platzer, G., Parrish, C.R., Häniichen, T., Hermanns, W. and Kaaden, O.-R., 1994. Detection of canine parvovirus DNA in paraffin-embedded tissues by polymerase chain reaction. *Journal of Veterinary Medicine Series B*, 41, 148–152

Utsumi, K., Kawamoto, T., Kim, J.H., Iritani, A., Sakai, A. and Komano, T., 1992. Sex determination of bovine embryos by the polymerase chain reaction using y-specific primers. *Journal of Reproduction and Development*, 38, 35–43

van Engelenburg, F.A., Maes, R.K., van Oirschot, J.T., and Rijswijck, F.A., 1993. Development of a rapid and sensitive polymerase chain reaction for detection of bovine herpesvirus type 1 in bovine semen. *Journal of Clinical Microbiology*, 31, 3129–3135

van Eys, G.J.J.M., Gravekamp, C., Gerritsen, M.J., Quint, W., Cornelissen, M.T.E., Ter Schegget, J. and Terpstra, W.J., 1989. Detection of leptospiries in urine by polymerase chain reaction. *Journal of Clinical Microbiology*, 27, 2258–2262

Vilcek, S., 1993. Detection of bovine herpesvirus-1 (BHV-1) genome by PCR. *Journal of Virological Methods*, 41, 245–248

Vilcek, S., Elvander, M., Ballagi-Pordány, A. and Belák, S., 1994a. Development of nested PCR assays for detection of bovine respiratory syncytial virus in clinical samples. *Journal of Clinical Microbiology*, 32, 2225–2231

Vilcek, S., Nettleton, P.F., Herring, J.A. and Herring, A.J., 1994b. Rapid detection of bovine herpesvirus 1 (BHV 1) using the polymerase chain reaction. *Veterinary Microbiology*, 42, 53–64

Vilcek, S., Herring, A.J., Herring, J.A., Lowings, J.P., Paton, D.J. and Nettleton, P.F., 1994c. Pestiviruses isolated from pigs, cattle and sheep can be separated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis. *Archives of Virology*, 136, 309–323

Vodkin, M.H., McLaughlin, G.L., Day, J.F., Shope, R.E. and Novak, R.J., 1993. A rapid diagnostic assay for eastern equine encephalomyelitis viral RNA. *American Journal of Tropical Medicine and Hygiene*, 49, 772–776

Vodkin, M.H., Streit, T., Mitchell, C.J., McLaughlin, G.L. and Novak, R.J., 1994. PCR-based detection of arboviral RNA from mosquitoes homogenized in detergent. *Biotechniques*, 17, 114–116

Wagner, V., Schilt, T.A. and Geldermann, H., 1994. Application of polymorphic DNA sequences to differentiate the origin of decomposed bovine meat. *Forensic Science International*, 64, 89–95

Wagner, W.N., Bogdan, J., Haines, D., Townsend, H.G. and Misra, V., 1992. Detection of equine herpesvirus and differentiation of equine herpesvirus type 1 from type 4 by the polymerase chain reaction. *Canadian Journal of Microbiology*, 38, 1193–1196

Ward, V.K., Marriott, A.C., Booth, T.F., El-Ghorr, A.A. and Nuttal, P.A., 1990. Detection of an arbovirus in an invertebrate and a vertebrate host using polymerase chain reaction. *Journal of Virological Methods*, 30, 291–300

Wastling, J.M., Nicoll, S. and Buxton, D., 1993. Comparison of two gene amplification methods for the detection of *Toxoplasma gondii* in experimental infected sheep. *Journal of Medical Microbiology*, 38, 360–365

Webster, K.A., Pow, J.D.E., Giles, M., Catchpole, J. and Woodward, M.J., 1993. Detection of *Cryptosporidium parvum* using a specific polymerase chain reaction. *Veterinary Parasitology*, 50, 35–44

Wegmüller, B., Luthy, J. and Candrian, U., 1993. Direct polymerase chain reaction detection of *Campylobacter jejuni* and *Campylobacter coli* in raw milk and dairy products. *Applied and Environmental Microbiology*, 59, 2161–2165

Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J., 1991. 16S ribosomal DNA amplification for phylogenetic study. *Journal of Bacteriology*, 173, 697–703

Wiedmann, M., Czajka, J., Barany, F. and Batt, C.A., 1992. Discrimination of *Listeria monocytogenes* from other *Listeria* species by ligase chain reaction. *Applied and Environmental Microbiology*, 58, 3443–3447

Wiedmann, M., Barany, F. and Batt, C.A., 1993a. Detection of *Listeria monocytogenes* with a nonisotopic polymerase chain reaction-coupled ligase chain reaction. *Applied and Environmental Microbiology*, 59, 2743–2745

Wiedmann, M., Brandon, R., Wagner, P., Dubovi, E.J. and Batt, C.A., 1993b. Detection of bovine herpesvirus-1 in bovine semen by a nested PCR assay. *Journal of Virological Methods*, 44, 129–140

Wiedmann, M., Czajka, J., Bsat, N., Bodis, M., Smith, M.C., Divers, T.J. and Batt, C.A., 1994a. Diagnosis and epidemiological association of *Listeria monocytogenes* strains in two outbreaks of listerial encephalitis in small ruminants. *Journal of Clinical Microbiology*, 32, 991–996

Wiedmann, M., Wilson, W.J., Czajka, J., Luo, J., Barany, F. and Batt, C.A., 1994b. Ligase chain reaction (LCR) – overview and applications. *PCR Methods and Applications*, 3, S51–S64
Wilkins, R.J. and Kuys, Y.M., 1992. Rapid beta lactoglobulin genotyping of cattle using the polymerase chain reaction. *Animal Genetics*, 23, 175–178

Willems, H., Thiele, D. and Krauss, H., 1993. Plasmid based differentiation and detection of *Coxiella burnetti* in clinical samples. *European Journal of Epidemiology*, 9, 411–418

Willems, H., Thiele, D., Fröhlich-Ritter, R. and Krauss, H., 1994. Detection of *Coxiella burnetti* in cow's milk using the polymerase chain reaction (PCR). *Journal of Veterinary Medicine B*, 41, 580–587

Wilson, S.M., 1991. Nucleic acid techniques and the detection of parasitic diseases. *Parasitology Today*, 7, 255–259

Wilson, W.C., 1994. Development of a nested-PCR test based on the sequence analysis of epizootic hemorrhagic disease viruses non-structural protein 1 (NS1). *Virus Research*, 31, 357–365

Wilson, W.C. and Chase, C.C., 1993. Nested and multiplex polymerase chain reaction for the identification of bluetongue virus infection in the biting midge, *Culicoides variipennis*. *Journal of Virological Methods*, 45, 39–47

Wirz, B., Tratschin, J.D., Muller, H.K. and Mitchell, D.B., 1993. Detection of hog cholera virus and differentiation from other pestiviruses by polymerase chain reaction. *Journal of Clinical Microbiology*, 31, 1148–1154

Wiyono, A., Baxter, S.I.F., Saepulloh, M., Damayanti, R., Daniels, P. and Reid, H.W., 1994. PCR detection of ovine herpesvirus-2 DNA in Indonesian ruminants – normal sheep and clinical cases of malignant catarrhal fever. *Veterinary Microbiology*, 42, 370–386

Wolcott, M.J., 1992. Advances in nucleic acid-based detection methods. *Clinical Microbiological Reviews*, 5, 209–221

Woodward, M.J., Sullivan, G.J., Palmer, N.M.A., Woolley, J.C. and Redstone, J.S., 1991. Development of a PCR test specific for *Leptospira hardjo* genotype bovis. *Veterinary Record*, 128, 282–283

Woodward, M.J., Carroll, P.J. and Wray, C., 1992. Detection of entero and verocyto-toxin genes in *Escherichia coli* from diarrhoeal disease in animals using the polymerase chain reaction. *Veterinary Microbiology*, 31, 251–261

Xu, L.Z. and Larzul, D., 1991. The polymerase chain reaction: Basic methodology and applications. *Comparative Immunology, Microbiology and Infectious Diseases*, 14, 209–221

Zambardi, G., Reverdy, M.E., Bland, S., Bes, M., Freney, J. and Fleurette, J., 1994. Laboratory diagnosis of oxacillin resistance in *Staphylococcus aureus* by a multiplex-polymerase chain reaction assay. *Diagnostic Microbiology and Infectious Diseases*, 19, 25–31

Zarlenga, D.S., Stringfellow, F., Nobary, M. and Lichtenfels, J.R., 1994. Cloning and characterization of ribosomal RNA genes from three species of *Haemonchus* (Nematoda: Trichstrongyloidea) and identification of PCR primers for rapid differentiation. *Experimental Parasitology*, 78, 28–36

Zhao, S. and Yamamoto, R., 1993. Detection of *Mycoplasma synoviae* by polymerase chain reaction. *Avian Pathology*, 22, 533–542

Zheng, K., Thorner, P.S., Marrano, P., Baumal, R. and McInnes, R.R., 1994. Canine X chromosome-linked hereditary nephritis: A genetic model for human X-linked hereditary nephritis resulting from a single base mutation in the gene encoding the alpha-5 chain of collagen type IV. *Proceedings of the National Academy of Sciences of the USA*, 91, 3989–3993

Zientara, S., Sailleau, C., Moulay, S., Plateau, E. and Cruciere, C., 1993. Diagnosis and molecular epidemiology of the African horse sickness virus by the polymerase chain reaction and restriction patterns. *Veterinary Research*, 24, 385–395

Zientara, S., Sailleau, C., Moulay, S. and Cruciere, C., 1994. Diagnosis of the African horse sickness virus serotype 4 by a one-tube, one manipulation RT-PCR reaction from infected organs. *Journal of Virological Methods*, 46, 179–188

Zimmerman, P.A., Toe, L. and Unnasch, T.R., 1993. Design of onchocerca DNA probes based upon analysis of a repeated sequence family. *Molecular and Biochemical Parasitology*, 58, 259–267

Zimmermann, W., Durrwald, R. and Ludwig, H., 1994. Detection of Borna disease virus RNA in naturally infected animals by a nested polymerase chain reaction. *Journal of Virological Methods*, 46, 133–143

Zingg, B.C. and LeFebvre, R.B., 1994. Polymerase chain reaction for detection of *Borrelia burgdorferi*, putative agent of epizootic bovine abortion. *American Journal of Veterinary Research*, 55, 1509–1515

(Accepted: 24 May 1995)