Is endovascular treatment with multilayer flow modulator stent insertion a safe alternative to open surgery for high-risk patients with thoracoabdominal aortic aneurysm?

Carolline Pinto, George Garas*, Leanne Harling, Ara Darzi, Roberto Casula, Thanos Athanasiou

Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London, United Kingdom

HIGHLIGHTS

- There is a paucity of evidence on the subject with complete absence of RCTs.
- The studies support MFMS as a safe alternative in the management of high-risk TAAA.
- MFMS maintains branch vessel patency when used in accordance to the IFU.
- MFMS should not be used outside the IFU as undesirable outcomes have been reported.
- A personalised approach is advised considering patient comorbidities and wishes.

ABSTRACT

A best evidence topic in cardiothoracic and vascular surgery was written according to a structured protocol. The question addressed was whether endovascular treatment with multilayer flow modulator stents (MFMS) can be considered a safe alternative to open surgery for high-risk patients with thoracoabdominal aortic aneurysm (TAAA). Altogether 27 papers were identified using the reported search, of which 11 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes, results, and study limitations are tabulated. The outcomes of interest were all-cause survival, aneurysm-related survival, branch vessel patency and major adverse events. Aneurysm-related survival exceeded 78% in almost all studies, with the exception of one where the MFMS was inserted outside the instructions for use. In that study the aneurysm-related survival was 28.9%. The branch vessel patency was higher than 95% in 10 studies and not reported in one. At 12-month follow-up, several studies showed a low incidence of major adverse events, including stroke, paraplegia and aneurysm rupture. We conclude that MFMS represent a suitable and safe treatment for high-risk patients with TAAA maintaining branch vessel patency when used within their instructions for use. However, a number of limitations must be considered when interpreting this evidence, particularly the complete lack of randomised controlled trials (RCTs), short follow-up in all studies, and heterogeneity of the pathologies among the different populations studied. Further innovative developments are needed to improve MFMS safety, expand their instructions for use, and enhance their efficacy.

© 2017 The Author(s). Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A best evidence topic was constructed according to a structured protocol. This is fully described in a previous publication [1].

2. Clinical scenario

You have been referred an 85-year-old man with an asymptomatic thoracoabdominal aortic aneurysm (TAAA) type II (Crawford's classification) diagnosed on computed tomography angiogram with a maximum diameter of 68 mm in the descending aorta. Comorbidities include chronic obstructive pulmonary disease (COPD), obesity, diabetes mellitus type II, hypertension, and
chronic renal failure. The patient tells you that in view of his age and comorbidities he is keen for a minimally invasive approach and asks you whether endovascular treatment with insertion of multilayer flow modulator stents (MFMS), a new treatment which his family read about on Google, would be a suitable option for him. To confirm the therapeutic option and achieve the best possible outcome in this high-risk patient, you perform a literature review yourself.

3. Three-part question

In [high-risk patients with thoracoabdominal aortic aneurysm] are [multilayer flow modulator stents] a safe alternative to open surgery for achieving [better survival and lower morbidity]?

4. Search strategy

A literature search was performed using PubMed, Ovid, Embase, and Cochrane databases using the terms (“aortic aneurysm, thoracic”[MeSH Terms] OR (“aortic”[All Fields] AND “aneurysm”[All Fields] AND “thoracic”[All Fields]) OR “thoracic aortic aneurysm”[All Fields] OR (“thoracoabdominal”[All Fields] AND “aortic”[All Fields] AND “aneurysm”[All Fields]) OR “thoracoabdominal aortic aneurysm”[All Fields]) AND multilayer[All Fields] AND flow[All Fields] AND (“stents”[MeSH Terms] OR “stents”[All Fields] OR “stent”[All Fields]).

In addition, the reference lists of the relevant papers were searched. The search was current as of 23rd January 2017.

5. Search outcome

Twenty seven papers were identified using the reported search. Two authors (C.P. and G.G.) independently assessed the titles and abstracts of the identified articles to determine potential relevance. Any disagreement was resolved by discussion or with the opinion of the senior author (T.A.) After reviewing the abstracts, 21 papers were selected to be fully appraised in view of relevance and methods used. From these, 2 were short communications, 2 involved overlap of patient groups (the most recent was included), 6 were irrelevant, one was a narrative review, and one article was in French (all excluded except for the latter). Inclusion criteria included studies of any size, prospective or retrospective in design that assessed outcomes for patients with thoracoabdominal aneurysm. All patients included had to have received appropriate treatment. Exclusion criteria included studies reporting on patients with peripheral or visceral aneurysms. Narrative review articles and studies where the patients had not been subgrouped according to the anatomical site of the aneurysm to allow distilling of the evidence specifically for thoracoabdominal aneurysms were also excluded. Based on design, number of patients and origin (high volume/specialised centres and national registries) 11 papers were chosen as representative to answer the clinical question.

6. Results

The results of the 11 papers (one meta-analysis, 4 prospective studies, and 6 retrospective studies) are summarised in Table 1.

7. Discussion

In 2016, Hynes et al. [2] published a meta-analysis of MFMS reviewing data on 171 patients with complex aortic pathology (59.1% had TAAA). They found that the aneurysm-related survival rate was 78.7% at 1 year and 66.6% at 18 months. At 18 months, this rate was 93.3% within the instructions for use (IFU) subgroup in contrast to a rate of 25.6% for patients treated outside the IFU. Technical success was 76.6%, with 95.5% of technical failures occurring in cases performed outside the IFU. All-cause survival rate was 53.7% at 1 year and 37.4% at 18 months. There were no cases of spinal cord ischemia, renal insult or stroke.

Lowe et al. [3] analysed the outcomes of MFMS in 14 patients. Among these, 50% had TAAA. All-cause, aneurysm-related and growth-free survivals were 79%, 86% and 28.5% respectively at 1 year. The 30-day mortality was 7% whilst at a mean follow-up of 22.8 months it reached 50% with one rupture. There were MFMS dislocations in 28.6% of patients with 35% of cases requiring reintervention.

In their prospective study, Bouayed et al. [4] assessed the effects of use of MFMS in 41 aortic lesions. Among these, 20 were TAAA. 30-day mortality was 5.26% due to aneurysmal rupture and myocardial infarction whilst 12-month mortality was 23.68%. The aneurysmal sac was not supplied in 30% of TAAA cases and poorly supplied in 70%. Visceral patency was 100%.

Vaisic et al. [5] evaluated one-year outcomes following the use of MFMS in 23 patients with type II and III TAAA. At 12 months, all-cause mortality was 4%, complete sac thrombosis was achieved in 75% of patients and branch patency rate was 96.5%. Moreover, at 12 months there were reinterventions in 22% of patients and the aneurysm diameter increased in 10% whilst remained stable in 90%.

Sultan et al. [6] presented the results of 103 patients treated with MFMS under IFU. Among the cases, 72.8% had TAAA. At 1 year, aneurysm-related survival was 91.7% (no rupture occurred), all-cause survival was 86.8% and the covered branch patency was 95.3%. The incidence of stroke and paraplegia were 1.9% and 0.99% respectively at 12 months.

In another study, Sultan et al. [7] appraised the consequences of treatment with MFMS outside the IFU in 38 patients, among which 39.5% had TAAA. During the follow up (10.0 ± 6.9 months), all-cause mortality was 89.5%, of which 71.1% were aneurysm-related. At 18 months, overall survival, freedom from aneurysm-related death and rupture-free survival were 17.5%, 25.0% and 31.5% respectively. Visceral branch occlusions were observed in 21% of patients. There were no reported cases of stroke or paraplegia.

Sultan and Hynes [8] retrospectively reviewed 1-year results of 55 patients, of which 56.4% had TAAA, treated with MFMS. At 1 year, aneurysm-related survival was 93.7% (no rupture occurred), all-cause survival was 84.8%, intervention-free survival was 92.4%, and all side branches were patent. Complications included bleeding (7.3%), stroke (3.6%) and reintervention (7.3%).

Henry et al. [9] analysed the use of MFMS in 18 patients (55.5% of which had TAAA). Technical success was 100% and 30-day mortality was 0%. At 8 months, aneurysm-related and all-cause survivals were 100% and 83.3% respectively, with branch patency rate being 100%. In the TAAA group, the mean aneurysm diameter decreased at 6 months.

Pane et al. [10], Debing et al. [11], and Polyzorou et al. [12] all reported similar outcomes following treatment of TAAA with MFMS. They concluded that use of the medical device is feasible and seems to be a solution for the management of TAAA. The authors also inferred that MFMS can stabilise aneurysm diameter and ensure the patency of collateral vessels.

When looking collectively at the existing evidence, there are certain important points for consideration. First and foremost, there is a complete absence of randomised controlled trials (RCTs) on the subject. Secondly, there are no long-term follow-up studies. Thirdly, a significant amount of heterogeneity exists in terms of the variety concerning both the anatomy (location) and pathology (type) of aneurysms treated with MFMS. As a result, certain studies contradict others, especially when it comes to reporting mid-term results with some authors concluding that “the treatment of
Author, date and country	Patient Group	Study type (level of evidence)	Outcomes	Key results	Comments
Hynes et al. [2], Ireland	171 patients (mean age 68.8 years)	Meta-analysis of observational non-comparative studies and case series (level 2b)	Primary endpoint	Mean follow-up was 9 months	MFMS technology is able to treat thoracoabdominal pathology safely
	TAAA - 59.1% (type I 7.6%; type II 14%; type III 16.4%; type IV 9.5%; unclassified 11.1%) Descending thoracic aortic aneurysm - 0.6% AAs - 22.2% Type B dissections - 11.7% Saccular aneurysms - 8.2% Arch aneurysms - 4.7%		Aneurysm-related survival	Aneurysm-related survival was 78.7% at 1 year and 66.6% at 18 months (mean follow-up 9 months, mean aneurysm diameter 6.7 ± 1.6 cm)	Poor outcomes were explained by a lack of appreciation of the device’s limitations and its application outside the IFU
	Secondary endpoints				Randomised clinical trials, registries and continued assessment are essential before the MFMS can be widely disseminated
	Technical success				
	All-cause survival				
	Neurologic complications				
	Renal impairment				
	Visceral ischemia				
	Branch vessel patency				
	Aneurysm expansion				
	Mean follow-up of 22.8 months				
	At 1 year:	Mean follow-up was 9 months			
	All-cause survival - 79%				
	Aneurysm - related survival - 86% (one rupture, one perioperative death)				
	Growth-free survival - 28.5%				
	Visceral branch patency rate of 98% at 1 year (no embolic episodes or symptoms of ischemia)				
	Median increase in aneurysm size of 9 mm at 12 months, and of 11 mm at mean follow up				
	Branch patency rate of 97.8%				
	30-day mortality - 7%				
	At mean follow-up 50% of patients died: Rupture - 7.1% Myocardial infarction - 14.3% (7.1% procedure-related and 7.1% unrelated at 17 months) COPD/pneumonia (not device or procedure-related) - 7.1% Multigorgan failure post implantation - 7.1% Unknown - 14.3%				
	MFMS dislocation in 28.6% of patients				
	Reinterventions in 35% of patients, with 7% of post-re-intervention death Mean follow-up was 12 months (1–20 months) “Initial technical success” was 100% with no cases of paraplegia, stroke, or mesenteric ischemia				
	Conclusions				
Lowe et al. [3], United Kingdom	Fourteen patients with mean age of 74.6 years	Prospective cohort study (level 2a)	Growth-free survival	At 1 year: All-cause survival - 79% Aneurysm - related survival - 86% (one rupture, one perioperative death) Growth-free survival - 28.5% Visceral branch patency rate of 98% at 1 year (no embolic episodes or symptoms of ischemia) Median increase in aneurysm size of 9 mm at 12 months, and of 11 mm at mean follow up Branch patency rate of 97.8% 30-day mortality - 7% At mean follow-up 50% of patients died: Rupture - 7.1% Myocardial infarction - 14.3% (7.1% procedure-related and 7.1% unrelated at 17 months) COPD/pneumonia (not device or procedure-related) - 7.1% Multigorgan failure post implantation - 7.1% Unknown - 14.3% MFMS dislocation in 28.6% of patients Reinterventions in 35% of patients, with 7% of post-re-intervention death Mean follow-up was 12 months (1–20 months) “Initial technical success” was 100% with no cases of paraplegia, stroke, or mesenteric ischemia	MFMS had little influence on the natural history of complex aortic aneurysms The device was unstable and dislocated frequently None of the aneurysms treated shrank and the majority of aneurysms in patients who survived over 12 months continued to grow The role of MFMS remains unclear Small number of patients Variety of pathologies
	Varieties of pathologies				
	Conclusions				
Bouayed et al. [4], Algeria	Thirty eight patients on which 41 procedures were performed on 41 lesion locations	Prospective cohort study (level 2a)	Aneurysm location	Conclusions	Multilayer stents may represent a treatment option for dissection and complex aortic aneurysms in frail patients which would (continued on next page)
Table 1 (continued)

Author, date and country	Patient Group	Study type (level of evidence)	Outcomes	Key results	Comments	
			Month			
			all-cause mortality	Mean length of hospital stay was 7 days (4–14 days)		
			Complications	Complications		
			Need for open conversion	Three complications relating to the surgical approach occurred, all treated surgically “with success”		
			Length of hospital stay	Two patients developed post-operative renal failure, one of them requiring haemodialysis (2.63%)		
				There was no need for open conversion		
				Mortality		
				30-day mortality was 5.26% One patient died due to aneurysmal rupture in the first postoperative day and one died following a massive myocardial infarction after the procedure		
				12-month mortality was 23.68% (9 deaths, none related to the aneurysm)		
				Limitations		
				Small number of patients		
				Heterogeneous groups (in terms of aneurysm type and location)		
				No controls		
				Single centre study		
Vaislic et al. [5], France	Twenty-three high surgical risk patients with mean age of 75.8 years	Prospective multicentre non-randomised trial (level 2a)	Primary endpoints	Follow-up of 12 months		
				All-cause mortality		
				Complete sac thrombosis		
				Branch vessel patency		
				Secondary endpoints		
				Major adverse events		
				Reintervention		
				Technical endpoints		
				Technical success		
				Change in aneurysm sac size		
				Volume Analysis		
					Conclusions	
					Successful endovascular treatment with MFMS	
					Radiographic evidence of progressive sac thrombus formation	
					No cases of spinal cord ischemia, aneurysm rupture, device migration and reported systemic complications	
					Limitations	
					Non-randomised trial	
					12 months of follow up (longer time expected for sac shrinkage in large TAAA involving visceral branches)	

Mean aneurysm diameter 6.5 ± 0.9 cm
Sultan S et al. [6], Ireland
One hundred and three patients with mean age of 69.2 years
Crawford TAAA - 72.8% of the presented pathologies:
Type I - 10.7%
Type II - 13.6%
Type III - 25.2%
Type IV - 23.3%
Arch aneurysms - 6.8%
AAA - 14.6%
Stanford type-B dissection - 5.8%
Mean aneurysm diameter 6.4 ± 1.66 cm
Crawford TAAA - 72.8% of the presented pathologies:
Type I - 10.7%
Type II - 13.6%
Type III - 25.2%
Type IV - 23.3%
Arch aneurysms - 6.8%
AAA - 14.6%
Stanford type-B dissection - 5.8%
Mean aneurysm diameter 6.4 ± 1.66 cm

Primary endpoints at 1 year
Rupture and aneurysm-related survival
All cause survival
Patency of visceral branches
Incidence of stroke and paraplegia

Technical endpoints
Aneurysm sac volume modulation at 1 year

Technical success
One-year freedom from reintervention

Mean follow-up was 11.6 ± 3.31 months
(median = 6 months)
At 1 year:
Aneurysm related survival - 91.7% (no rupture)
All-cause survival - 86.8%
Covered branch patency - 95.3%
Incidence of stroke - 1.9%
Incidence of paraplegia - 0.99%
Total volume increased - 6.79%
Thrombus volume increased - 21.3%
Maximum sac volume increased - 12.6%
Residual flow volume decreased - 11.78%
Total average increase in sac volume - 5.07%

Mean aneurysm diameter 6.4 ± 1.66 cm

Sultan et al. [7], Ireland
Thirty-eight patients with mean age of 71 years treated with MFMS outside the IFU
Crawford TAAA - 39.5% of the presented pathologies:
Type I - 2.6%
Type II - 18.4%
Type III - 13.2%
Type IV - 5.3%
66.7% of TAAA were ruptured at presentation
Mean aneurysm diameter 7.1 ± 1.1 cm
Crawford TAAA - 39.5% of the presented pathologies:
Type I - 2.6%
Type II - 18.4%
Type III - 13.2%
Type IV - 5.3%
66.7% of TAAA were ruptured at presentation
Mean aneurysm diameter 7.1 ± 1.1 cm

Primary endpoints
Rupture
Aneurysm-related death
All-cause mortality
Occlusion of visceral branches
Stroke
Paraplegia

Technical endpoints
Change in mean aneurysm diameter
Freedom from leaks
Technical success
Freedom from reintervention

Mean follow-up of 10.0 ± 6.9 months:
Aneurysm-related deaths - 71.1%
All-cause mortality - 89.5%
Freedom from aneurysm-related death was 37.5% at 12 months and 25% at 18 months
Rupture-free survival estimates were 39% at 12 months and 31.5% at 18 months
Overall survival was 29% at 12 months and 17.5% at 18 months
Visceral branch occlusions were observed in 21.0% of patients (pre-existing side branch stenosis >50% with calcification in all of the side branches that experienced postoperative complications)
No stroke and paraplegia
The average growth rate of aneurysm diameter was 0.12 ± 0.16 cm/month
Sac expansion occurred in all cases
No sac stabilization or shrinkage
Technical success was zero (in 81.6% of the cases there was a failure to land the device)
Reinterventions were required in 28.9% of patients for endoleak (failure modes I and II) or stent foreshortening
Factors with significance influence on the risk of aneurysm-related death: maximum aneurysm diameter (p = 0.025), previous TEVAR (p = 0.03) and inadequate overlap between MFMS devices (p < 0.002)

Conclusions
Increasing sac volume, thrombus or diameter size was not associated with rupture
MFMS implantation instigates a process of aortic remodelling involving initial thrombus deposition, which slows between 6 and 12 months
MFMS is associated with less operative trauma, shorter procedure time and reduced hospital stay
The study has demonstrated the proof of concept of this disruptive technology
Limitations
Brevity of follow-up study
Variation in the pathologies and anatomies of patients
Conclusions
MFMS is a safe technique, at least in the short term (no perioperative complications), which reflects its simplicity of use
The MFMS is not a solution for patients living on borrowed time and should not be used indiscriminately in patients in whom other modalities of aortic repair are not feasible
The use of MFMS must adhere to the IFU
This technology commands further innovative developments and robust scientific and clinical data

(continued on next page)
Author, date and country	Patient Group	Study type (level of evidence)	Outcomes	Key results	Comments
Sultan et al. [8],	Fifty-five patients with mean age of 64.3 years	Retrospective multicentre cohort study (level 2b)	Primary endpoint	Mean follow-up was 8.2 ± 5.3 months (median 6, range 3–18)	Conclusions
Ireland	Crawford TAAA - 56.4% of the presented pathologies: Type I - 14.3% Type II - 5.3% Type III - 16.4% Type IV - 20%		Aneurysm related survival and rupture at 1 year	Aneurysm related survival at 1 year - 93.7% (no rupture occurred) All cause survival at 1 year - 84.8% Intervention free survival at 1 year - 92.4%	
	Mean aneurysm diameter 6.04 ± 1.66 cm		Secondary endpoints	Covered branch patency rate of 100% at 1 year	
	Mean follow-up was 8.2 ± 5.3 months (median 6, range 3–18)		All-cause survival	Adverse Events at 1 year Bleeding - 7.3% Stroke - 3.6%	Increase sac size did not lead to rupture
			Reintervention	Reintervention at 1 year - 7.3%	The MFMS offers promise for resolution of complex thoracoabdominal pathology with off-the-shelf availability
Henry et al. [9],	Eighteen high surgical risk patients (mean age 67 years)	Retrospective case series (level 3)	Technical endpoints	Technical success of 98.2%	Further development and technical refinement is required
France	Crawford TAAA - 55.5% (mean age 56 year-old) Type I - 22.2% Type II - 11.1% Type IV - 22.2%		Technical success	30-day mortality Technical success of 100%	Long-term follow-up of the registry patients is mandatory before establishing a randomised controlled study
	Aneurysm diameter - 60 –130 mm		Rates of change in total sac, thrombus and flow volumes	The ratio of thrombus to total volume stayed almost constant over the 12 months at 0.48 (p = 0.743) The ratio of flow to total volume fell from 0.21 to 0.12 at 12 months (p = 0.069)	
Pane et al. [10], Italy	Eight patients with mean age of 75.5 years	Retrospective case series (level 3)	Technical success	Mean follow-up of 8 months	Conclusions
	Aortic Aneurysms - 50% TAAA type II - 25% TAAA type IV - 12.5% JAAA - 12.5%		Mortality	Technical success of 87.5%	MFMS can help prevent aneurysm-related mortalities while maintaining branch vessel patency
	Mean follow-up was 22.1 months		30-day mortality	Technical success of 100%	Treatment with MFMS leads to progressive aneurysm sac thrombosis and shrinkage
			At mean follow-up:	Aneurysm- related survival of 100% All-cause survival of 83.3% Intervention-free survival of 100% Branch patency rate of 100%	Additional study and follow up needed
			Aneurysm	TAAA group Mean diameter reduction at 6 months (17.25 mm reduction for transverse diameter (p = 0.009) and 13.83 mm for the anteroposterior diameter (p = 0.011)) Mean follow-up was 22.1 months	Limitations
	Mean follow-up was 22.1 months		Aneurysm diameter	Mean diameter reduction at 6 months (17.25 mm reduction for transverse diameter (p = 0.009) and 13.83 mm for the anteroposterior diameter (p = 0.011))	Small number of patients
			All-cause survival	All-cause survival of 100%	
			All-cause survival	All-cause survival of 100%	
			All-cause survival	All-cause survival of 100%	
			All-cause survival	All-cause survival of 100%	

Limitations

- Brevity of follow-up study
- Variation in the pathologies and anatomies of the patients treated
- Issues of registry: data collection, patient compliance and the variety of follow-up protocols and pharmacotherapies

Conclusions

- MFMS implantation instigates a process of aortic remodelling involving initial thrombus deposition
- The MFMS offers promise for resolution of complex thoracoabdominal pathology with off-the-shelf availability
- Further development and technical refinement is required
- Long-term follow-up of the registry patients is mandatory before establishing a randomised controlled study
- MFMS can help prevent aneurysm-related mortalities while maintaining branch vessel patency
- Treatment with MFMS leads to progressive aneurysm sac thrombosis and shrinkage
- Additional study and follow up needed
- Small number of patients

MFMS may represent a viable alternative to the endovascular approach in treating aortic conditions

MFMS can stabilize aneurysm diameter and ensure the patency of collateral vessels

Limitations
Mean max aneurysm diameter	complications	MFMS and branch patency rate of 100% during follow up	Small series - results must be confirmed by larger series and longer follow-up studies
6.9 cm	Patency of collateral vessels	No secondary endovascular or open surgical procedures	
	Volume analysis	In aortic aneurysms, the total aneurysm volume increased 7.6% at 12 months	
		Overall trend to increase in thrombosis was observed in all cases	

Debing et al. [11], Belgium

Six patients with mean age of 74 years	Technical success	Median follow-up was 10 months	Conclusions	
Prospective case series (level 3)	Technical success	30-day mortality	Technical success of 100%	
	Aneurysm-related survival	30-day mortality	16.7%	
	All-cause survival	Aneurysm-related survival	83.3% (16.7% of patients died due to aneurysm rupture)	
	Side branch patency	Branch patency rate	100%	
	Volume analysis	66.7% of aneurysms were completely thrombosed between 1 and 6 months after the procedure		
	Reintervention	At 6 months, the sac volume was decreased in 33.3% of patients, increased in 33.3% patients and remains stable in 16.7%		
		No stent migrations, retractions, thrombosis, fractures, or reinterventions		
		Mean follow-up for the thoracic aneurysm was 28 months, for the aortic aneurysms was 12 months and for thoracoabdominal aneurysm 12 months		
		Technical success of 100%		
		30-day mortality	9.1%	
		All-cause survival	Aneurysm-related survival and all-cause survival	90.9%
		Side branch patency	The 6 and 12 month follow up CT angiograms showed patent arterial side branches, thrombus inside the sac or shrinkage of the sac	
		Adverse Events	Adverse events Stroke	4.5%
			Myocardial Infarction	4.5%
			No vascular or systematic complications	

Polydorou et al. [12], Greece

Twenty-two high risk patients with mean age of 67 years	Technical success	Median follow-up was 10 months	Conclusions
Retrospective case series (level 3)	Technical success	30-day mortality	Technical success of 100%
	Aneurysm-related survival	30-day mortality	9.1%
	All-cause survival	Aneurysm-related survival and all-cause survival	90.9%
	Side branch patency	The 6 and 12 month follow up CT angiograms showed patent arterial side branches, thrombus inside the sac or shrinkage of the sac	
	Adverse Events	Adverse events Stroke	4.5%
		Myocardial Infarction	4.5%
		No vascular or systematic complications	

Abbreviations: MFMS — multilayer flow modulator stent; TAAA — thoracoabdominal aortic aneurysm; TAA — thoracic aortic aneurysm; AAA — abdominal aortic aneurysm; JAAA — juxtarenal abdominal aortic aneurysm; IFU — indications for use; TEVAR — thoracic endovascular aortic repair; COPD — chronic obstructive pulmonary disease; SMA — superior mesenteric artery.
aneurysms with MFMS seems to have encouraging mid-term results" [10] whilst others reporting that “the role of MFMS remains unclear” [3]. Despite the many limitations in the literature, there seems to be a consensus that MFMS, when used within their IFU, may represent a valuable option in those patients where open surgery is deemed high-risk. Finally, existing studies also concur that in addition to robust scientific and clinical data, further innovative developments are needed to improve MFMS safety, expand their instructions for use, and enhance their efficacy.

8. Clinical bottom line

In addition to the mortality associated with open TAAA repair, fundamental risks include compromising the blood flow to the spinal cord and/or viscera. In this context, MFMS appear to represent a safe alternative in the management of complex aneurysms. In this paper, the outcomes in patients with TAAA undergoing endovascular repair with MFMS were evaluated. Several studies showed that the use of MFMS in the treatment of TAAA is associated with a low incidence of complications, including stroke, paraplegia and aneurysm rupture. In addition, these studies demonstrated acceptable rates of aneurysm-related survival and visceral branch patency. On the other hand, undesirable outcomes have been reported when the MFMS is used outside the IFU.

Thus, we conclude that endovascular treatment with MFMS insertion is a safe treatment for TAAA in high-risk patients, associated with maintenance of branch vessel patency, provided they are used in accordance to the IFU. However, a number of limitations must be considered when interpreting this evidence. Firstly, the complete lack of RCTs, secondly, the absence of long-term follow-up studies, and thirdly, the heterogeneity of the pathologies among the different populations studied. Despite these limitations, MFMS appear to offer a suitable and safe alternative to open surgery for TAAA cases where open surgery is deemed high-risk.

Ethical approval

Not required.

Sources of funding

Dr. George Garas holds an Imperial College London Onassis Foundation Doctoral Research Fellowship (Grant number F ZM 014-1/2016-2017).

Author contribution

C Pinto — conducted literature search and co-wrote article with G Garas.
G Garas — conducted literature search and co-wrote article with C Pinto.
L Harling — assisted in writing of article.
A Darzi — assisted in writing of article.

R Casula — conceived paper with T Athanasiou and assisted in writing of article.
T Athanasiou — conceived paper with R Casula and assisted in writing of article.

Conflicts of interest

None.

Trial registry number — ISRCTN

Not applicable.

Research registration unique identifying number (UIN)

Not applicable.

Guarantor

George Garas.

References

[1] O.A. Khan, J. Dunning, A.C. Parvaz, R. Agha, D. Rosin, K. Mackway-Jones, Towards evidence-based medicine in surgical practice: best bets, Int. J. Surg. 9 (2011) 585–588.
[2] N. Hynes, S. Sultan, A. Elhelali, et al., Systematic review and patient-level meta-analysis of the streamliner multilayer flow modulator in the management of complex thoracoabdominal aortic pathology, J. Endovasc. Ther. 23 (3) (2016) 501–512.
[3] C. Lowe, A. Worthington, F. Serracino-Inglott, R. Ashleigh, C. McCollum, Multilayer flow-modulating stents for thoraco-abdominal and peri-renal aneurysms: the UK pilot study, Eur. J. Vasc. Endovasc. Surg. 51 (2) (2016) 225–231.
[4] M. Bouayed, L. Bouziane, Notre experience dans le traitement des pathologies complexes de l’aorte par les stents multicouches, Angéiologie 66 (2014) 5–14.
[5] S.D. Vaislic, J.N. Fabiani, S. Chocron, et al., One-year outcomes following repair of thoracoabdominal aneurysms with the Multilayer Flow Modulator: report from the STRATO trial, J. Endovasc. Ther. 21 (1) (2014) 85–95.
[6] S. Sultan, M. Sultan, N. Hynes, Early mid-term results of the first 103 cases of multilayer flow modulator stent done under indication for use in the management of thoracoabdominal aortic pathology from the independent global MFM registry, J. Cardiovasc. Surg. 55 (1) (2014) 21–32.
[7] S. Sultan, N. Hynes, M. Sultan, MFM Collaborators., when not to implant the Multilayer Flow Modulator: lessons learned from application outside the indications in patients with thoraco-abdominal pathologies, J. Endovasc. Ther. 21 (1) (2014) 96–112.
[8] S. Sultan, N. Hynes, One-year results of the Multilayer Flow Modulator Stent in the management of thoracoabdominal aortic aneurysms and type B dissec- tions, J. Endovasc. Ther. 20 (3) (2013) 366–377.
[9] M. Henry, A. Benjellout, I. Henry, G. Wheatley, The multilayer flow modulator stent for the treatment of arterial aneurysms, J. Cardiovasc. Surg. 54 (6) (2013) 763–783.
[10] B. Pane, G. Spinella, C. Perfumo, D. Palombo, A Single-Center experience of aortic and iliac artery aneurysm treated with multilayer flow modulator, Ann. Vasc. Surg. 30 (2016) 166–174.
[11] E. Debing, D. Aerden, S. Gallala, F. Vandenbroucke, P. Van den Brande, Stenting complex aorta aneurysms with the Cardiatis multilayer flow modulator: first impressions, Eur. J. Vasc. Endovasc. Surg. 47 (6) (2014) 604–608.
[12] A. Polydorou, M. Henry, I. Bellenis, et al., Endovascular treatment of aortic aneurysms: the role of the multilayer stent, Hosp. Chron. 7 (1) (2012) 157–159.