Savin, Alexander; Meschke, Matthias; Pekola, J.P.; Pashkin, Ya.A.; Li, T.F.; Im, H.; Tsai, J.S.
Parity effect in Al and Nb single electron transistors in a tunable environment

Published in:
Applied Physics Letters

DOI:
10.1063/1.2768897

Published: 01/01/2007

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Savin, A., Meschke, M., Pekola, J., Pashkin, Y. A., Li, T. F., Im, H., & Tsai, J. S. (2007). Parity effect in Al and Nb single electron transistors in a tunable environment. Applied Physics Letters, 91(6), 1-3. [063512]. DOI: 10.1063/1.2768897
Parity effect in Al and Nb single electron transistors in a tunable environment

A. M. Savin, a) M. Meschke, and J. P. Pekola
Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 3500, FIN-02015 TKK, Finland
Yu. A. Pashkin, b) T. F. Li, c) H. Im, d) and J. S. Tsai
Nano Electronics Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501,
Japan and The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako,
Saitama 351-0198, Japan

(Received 7 June 2007; accepted 14 July 2007; published online 9 August 2007)

Two different types of Cooper pair transistors, with Al and Nb islands, have been investigated in a tunable electromagnetic environment. The device with an Al island demonstrates gate charge modulation with $2e$ periodicity in a wide range of environmental impedances at bath temperatures below 340 mK. Contrary to the results of the Al sample, the authors were not able to detect $2e$ periodicity under any conditions on similar samples with Nb island. The authors attribute this to the material properties of Nb. © 2007 American Institute of Physics. [DOI: 10.1063/1.2768897]

A Cooper pair transistor (CPT) is a basic element for a number of applications such as ultrasensitive electrometry, quantum computing, and metrology. Until now, Al, with superior characteristics of Al oxide as the tunnel barrier, has been the material of choice for a CPT. Yet, due to its higher superconducting gap Δ as compared to that of Al, Nb would be an interesting alternative for superconducting devices. Larger Δ ensures a wider range of operation in terms of the working temperature and tolerance to external noise. Moreover, the operation speed is typically proportional to the value of Δ.

A major, still largely unexplained, disadvantage in employing CPT based devices is their susceptibility to quasiparticle poisoning. Ideally, only paired electrons contribute to the charge transport in CPTs and the island parity remains preserved, resulting in $2e$ periodicity of the CPT transport. However, in a real experiment single electron, or quasiparticle, tunneling may change the parity and transport periodicity. This is the effect usually referred to as quasiparticle poisoning. In Al based devices quasiparticle poisoning can be suppressed in many cases,1–5 but there are no reports on quasiparticle-free CPTs made of Nb, although a wealth of experiments already exist on these systems.6–11 This is surprising to some extent because larger Δ should, in principle, diminish quasiparticle poisoning. Moreover, in the case of CPT with Al leads and a Nb island, the larger superconducting gap of the island should further suppress quasiparticle tunneling into the island.2–4 The question remains whether the quasiparticle poisoning in Nb structures is due to their susceptibility to environment fluctuations, or whether it is an intrinsic material property of Nb. The aim of the present work is to investigate the parity effect under identical experimental conditions in CPTs with Al leads but with either Al or Nb island. We also employ the recently developed concept of tunable environment,5,12 which should significantly suppress quasiparticle poisoning.5

The measured CPTs consist of a superconducting island (Al or Nb) coupled to two superconducting Al leads via nominally identical Josephson junctions and capacitively coupled to a gate electrode [Fig. 1(a)]. The samples are fabricated by two-angle evaporation through a suspended Ge mask supported by a thermally stable polymer.13 In both cases the first evaporated layer is Al and the tunnel barrier is formed by thermal oxidation of Al. The CPT island (15 nm thick Al or 30 nm thick Nb) with dimensions of 460 \times 130 nm2 is connected to two Al leads (25 or 15 nm thick) by two tunnel junctions whose dimensions were slightly varied around 100 \times 100 nm2 giving the charging energy of the devices, $E_C=\frac{e^2}{2C_2}$, of about 100 μeV, C_2 being the total capacitance of the island. Close to the CPT island, each of the two Al leads is split into two 22 μm long superconducting quantum interference device (SQUID) arrays consisting of 81 SQUIDs each.

The measurements are performed in a 3He/4He dilution refrigerator in a four-probe configuration for CPTs and using only two probes for SQUID arrays. All measurement lines were filtered using 1.5 m of thermocoax between 1 K plate and the sample stage and a low pass filter on the sample stage. SQUID arrays serve as additional filters and allow us to modify environmental impedance of the CPT by variation of a perpendicular external magnetic field. The parameters of

a)Electronic mail: savin@boojum.hut.fi
b)On leave from Lebedev Physical Institute, Moscow 119991, Russia.
c)Also at Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
d)Also at Department of Semiconductor Science, Dongguk University, Phil-Dong, Seoul 100-715, Korea.

FIG. 1. (a) Electron micrograph of a CPT with SQUID arrays and diagram of measurement circuit (left) and an enlarged image of the CPT island (right). (b) Current-voltage characteristics of two SQUID arrays around zero bias in sample Al-6 at $T=45$ mK for values of magnetic flux from zero to half flux quantum through each SQUID. Zero bias resistance of the arrays varies from 7 kΩ up to 5 GΩ in this case.
The CPT is biased through the SQUID arrays which means that the IV characteristics and gate modulation are measured in the current biased regime. General features of the measured all-aluminum sample (Al-6) are in agreement with the theoretical predictions for a CPT. At a high enough environmental impedance, Coulomb blockade of Cooper pair tunneling develops. At $R_0 > 10 \, \text{M}\Omega$, IV characteristics demonstrate back bending (not shown), which is a manifestation of Bloch oscillations. At $R_0 < 10 \, \text{M}\Omega$ the gate modulation of IV characteristics is 2e periodic at the bias points corresponding to the supercurrent branch and e periodic at higher current values [Fig. 2(a)]. At low voltage (supercurrent branch) the modulation period is 42 mV, which is twice larger than that at higher voltages. The smaller period coincides with that observed in the same CPT in the normal state (at high temperature or in high magnetic field), which confirms that the observed reduction of modulation period corresponds to the 2e-ϵ transition. In our case, 2e periodicity could be observed in the Al sample at all values of the environmental impedance, unlike in the experiments reported earlier. Corlevi et al. observed transitions from e to $2e$ only at rather high values of $R_0 (>5 \, \text{M}\Omega)$ using a similar Al CPT. This may reflect a difference in the impedance seen by the CPT for the same value of R_0 due to the different layouts in our experiment and in Ref. 5 or filtering of the signal lines. This is consistent with the relatively high effective noise temperature (150 mK) reported in Ref. 5. Also, the energy profile in our Al CPT (15 nm thick island and 25 nm thick leads) may be favorable for the observation of 2e periodicity. Our results for high impedance regime (IV characteristics with negative slope) are similar to those in Ref. 5: 2e modulation was observed in the Bloch regime at low bias currents and e periodicity in the Zener tunneling regime. Gate modulation of sample Al-6 at different bath temperatures and at low array impedance of $R_0=7 \, \text{k}\Omega$ is presented in Fig. 2(b). Increase of temperature leads to increased concentration of thermal quasiparticles and as a consequence to a $2e-\epsilon$ transition. Crossover temperature T^* for Al-6 sample is about 340 mK, which agrees with the theoretical prediction $T^*=[k_B\ln(N_{\text{eff}})]^{-1}$, where N_{eff} is the number of quasiparticle states on the island available for thermal excitation.

Three Nb samples with different E_j/E_C ratios were measured (see Table I). The parameters and measured characteristics of sample Nb-4 are rather similar to those of sample Al-6 described above. Samples with larger (Nb-1) and lower (Nb-7) E_j/E_C ratios were also investigated. All samples were measured over a wide range of environmental impedances and biasing currents. Like in the Al sample, the Coulomb blockade of the hybrid samples becomes more pronounced for higher environmental impedance. Gate modulation is, however, significantly weaker in all the Nb samples as compared to that in Al-6. Figure 3 gives a comparison of the gate modulation curves for Al-6 (a) and Nb-4 (b) samples at $T=40 \, \text{mK}$. They were recorded in the supercurrent branch of the CPT and at different values of R_0 of the arrays. Initially, as expected, the voltage amplitude in the gate modulation increases with R_0, and then it drops in the back-bending regime of the CPT. Under all experimental conditions the period of gate induced modulation in the Nb samples, including the normal state, is about 20 mV, which is about the same as the e period of sample Al-6. We thus conclude that all our samples with Nb island exhibit only e-periodic modulation. To explain this, one should address material properties of Nb. We believe the observed strong quasiparticle poisoning and a large subgap leakage in either Al/Nb or Nb/Nb junctions, as compared to all-Al junctions, have the same origin. With the angle evaporation technique, below 100 mK, we obtain the ratio of the subgap resistance to the normal state

Table I. Parameters of the measured CPTs.

Sample	Nb-1	Nb-4	Nb-7	Al-6
Island	Nb	Nb	Nb	Al
$2R_0$ (kΩ)	24	183	112	63.2
E_j (μeV)	116	15	25	21
E_C (μeV)	112	83	183	118
g_{min} (kΩ)	0.45	0.9	1.0	7
g_{max} (Gf)	0.75	2.1	11.0	5

FIG. 2. Gate induced CPT voltage modulation of Al-6 sample at $R_0=7 \, \text{k}\Omega$ (a) at different bias currents at $T=40 \, \text{mK}$ and (b) at different bath temperatures.
resistance of all-Al junctions of the order of 1000 while it is only about 50 for all-Nb junctions with a Nb oxide barrier. In the case of the hybrid structures studied in this work, the ratio is equal to 200, similar to that measured in trilayer Josephson junctions. The reason for the quasiparticle poisoning can be the presence of quasiparticle states in the gap of Nb. As a strong gettering material, Nb may react with the chemical residues on the substrate and/or gas impurities inside the vacuum chamber during the deposition process, and this can result in creation of subgap states. Also, the quality of the Al oxide tunnel barrier may degrade during the deposition of the top Nb layer, leading to the formation of a complex interface containing lower Nb oxides between the Al/AlO\textsubscript{x} and Nb layers and eventually to the quasiparticle leakage in the junction. Besides Nb island nonidealties, the presence of Nb in the leads may be an extra source of quasiparticles contributing to the poisoning in the hybrid structures.

In conclusion, we have presented a comparative study of the Cooper pair transistors made with either an Al or Nb island, embedded in tunable electromagnetic environments. The device with an Al island demonstrates gate charge modulation with clear 2\(e\) periodicity in a wide range of environmental impedances as long as the bath temperature is kept below 340 mK. This suggests that the Al sample is of good quality and the filtering of the measurement setup is sufficient to avoid quasiparticle poisoning. Contrary to the Al sample, the three similar samples with a Nb island measured in the same setup exhibit only \(e\) periodicity under all experimental conditions. Based on our observations, we attribute the absence of 2\(e\) periodicity in the CPTs with Nb islands to the material properties of Nb. Thus the suitability of Nb as the material for single Cooper pair devices still remains an issue.

The authors thank T. Holmqvist for assistance in the measurements and A. Abdumalikov, Y. Nakamura, and M. Watanabe for useful comments. This work was partly supported by “RSFQubit” FP6 Project of the European Union and by Japan Science and Technology Agency.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Gate induced CPT voltage modulation of (a) sample Al-6 and (b) Nb-4 at different magnetic fields and at \(T=40\) mK. Biasing point for both samples corresponds to supercurrent branch of IV characteristics. Zero bias resistance of the SQUID arrays is marked on the curves.}
\end{figure}

\begin{thebibliography}{50}
\bibitem{1} P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. \textbf{72}, 2458 (1994).
\bibitem{2} J. Aumentado, Mark W. Keller, John M. Martinis, and M. H. Devoret, Phys. Rev. Lett. \textbf{92}, 066802 (2004).
\bibitem{3} T. Yamamoto, Y. Nakamura, Yu. A. Pashkin, O. Astafiev, and J. S. Tsai, Appl. Phys. Lett. \textbf{88}, 212509 (2006).
\bibitem{4} A. J. Ferguson, N. A. Court, F. E. Hudson, and R. G. Clark, Phys. Rev. Lett. \textbf{97}, 106603 (2006).
\bibitem{5} S. Corlevi, W. Guichard, F. W. Hekking, and D. B. Haviland, Phys. Rev. B \textbf{74}, 224505 (2006).
\bibitem{6} Y. Harada, D. B. Haviland, P. Delsing, C. D. Chen, and T. Claeson, Appl. Phys. Lett. \textbf{65}, 636 (1994).
\bibitem{7} V. Patel and J. E. Lukens, IEEE Trans. Appl. Supercond. \textbf{9}, 3247 (1999).
\bibitem{8} R. Dolata, H. Scherer, A. B. Zorin, and J. Niemeyer, Appl. Phys. Lett. \textbf{80}, 2776 (2002).
\bibitem{9} N. Kim, K. Hansen, S. Paraoanu, and J. Pekola, Physica B \textbf{329-333}, 1519 (2003).
\bibitem{10} M. Watanabe, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. \textbf{84}, 410 (2004).
\bibitem{11} H. Im, Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. \textbf{88}, 112113 (2006).
\bibitem{12} M. Watanabe, Phys. Rev. B \textbf{69}, 094509 (2004).
\bibitem{13} P. Dubos, P. Charlat, Th. Crozes, P. Paniez, and P. Pannetier, J. Vac. Sci. Technol. B \textbf{18}, 122 (2000).
\bibitem{14} Gerd Schön and A. D. Zaikin, Phys. Rep. \textbf{198}, 238 (1990).
\bibitem{15} D. V. Averin and K. K. Likharev, in \textit{Mesoscopic Phenomena in Solids}, edited by B. L. Altshuler, P. A. Lee, and R. A. Webb (North-Holland, Amsterdam, 1991), Chap. 6, pp. 173–271.
\bibitem{16} A. B. Zorin, S. V. Lotkhov, Yu. A. Pashkin, H. Zangerle, V. A. Krupenin, T. Weimann, H. Scherer, and J. Niemeyer, J. Supercond. \textbf{12}, 747 (1999).
\bibitem{17} Watson Ku, C. S. Wu, J. H. Shyu, and C. D. Chen, Phys. Rev. B \textbf{74}, 184522 (2006).
\bibitem{18} M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. \textbf{74}, 1994 (1995).
\bibitem{19} J. Halbritter, Appl. Phys. A: Solids Surf. \textbf{43}, 1 (1987).
\bibitem{20} H. Im, Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, and J. S. Tsai, J. Vac. Sci. Technol. B \textbf{25}, 448 (2007).
\end{thebibliography}