AFFINE TRANSFORMATIONS OF CIRCLE AND SPHERE

IRINA BUSJATSKAJA AND YURY KOCHETKOV

Abstract. A non-degenerate two-dimensional linear operator φ transforms the unit circle into ellipse. Let p be the length of its bigger axis and q — the smaller. We can define the deformation coefficient $k(\varphi)$ as q/p. Analogously, if φ is a non-degenerate three-dimensional operator, then it transforms the unit sphere into ellipsoid. If $p > q > r$ are lengths of its axes, then deformation coefficient $k(\varphi)$ will be defined as r/p. In this work we compute the mean value of deformation coefficient in two-dimensional case and give an estimation of the mean value in three-dimensional case.

1. Introduction

This work is a continuation of the work [1], where we study the deformation of angles under the action of a linear operator in \mathbb{R}^2. Here we study the deformation of the unit circle and also made some comments about three-dimensional case.

Let φ be a non-degenerate linear operator in \mathbb{R}^2 and

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad ad - bc \neq 0$$

be its matrix in standard base. Operator φ transforms unit circle C into ellipse with canonical equation

$$\frac{x'^2}{p^2} + \frac{y'^2}{q^2} = 1, \quad p \geq q$$

in appropriate coordinate system (x', y'). The number $q/p \leq 1$ will be called the deformation coefficient $k(\varphi)$ of operator φ.

In Section 2 we compute the deformation coefficient $k(\varphi)$.

Theorem 2.1.

$$k(\varphi) = \sqrt{\frac{a^2 + b^2 + c^2 + d^2 - \sqrt{(a^2 + b^2 + c^2 + d^2)^2 - 4(ad - bc)^2}}{a^2 + b^2 + c^2 + d^2 + \sqrt{(a^2 + b^2 + c^2 + d^2)^2 - 4(ad - bc)^2}}}$$

In Section 3 compute the mean value \overline{k}_2 of coefficients $k(\varphi)$.

Theorem 3.1. $\overline{k}_2 = 3 - 4 \ln(2)$.

In Section 4 we demonstrate how to obtain a coarse upper bound for \overline{k}_2: $\overline{k}_2 < \frac{1}{2}$ (Theorem 4.1) with the aim to generalize this result to three dimensional case: $\overline{k}_3 < \frac{1}{3}$ (Theorem 5.1).
2. Deformation coefficient in two-dimensional case

Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be a non-degenerate linear operator and

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

be its matrix in the standard base. Operator φ transforms unit circle into ellipse with axes p and q, $p > q$.

Theorem 2.1.

$$k(\varphi) = \frac{q}{p} = \sqrt{a^2 + b^2 + c^2 + d^2 - \sqrt{(a^2 + b^2 + c^2 + d^2)^2 - 4(ad - bc)^2}}.$$

Proof. If φ^* is the conjugate operator, then A^t is its matrix in the standard base. p^2 and q^2 are eigenvalues of operator $\varphi^* \varphi$ with matrix

$$A^t A = \begin{pmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{pmatrix}.$$

Thus, p^2 and q^2 are roots of $A^t A$ characteristic polynomial

$$s(x) = x^2 - (a^2 + b^2 + c^2 + d^2) x + (ad - bc)^2 :$$

$$p = \sqrt{\frac{a^2 + b^2 + c^2 + d^2 - \sqrt{(a^2 + b^2 + c^2 + d^2)^2 - 4(ad - bc)^2}}{2}};$$

$$q = \sqrt{\frac{a^2 + b^2 + c^2 + d^2 - \sqrt{(a^2 + b^2 + c^2 + d^2)^2 - 4(ad - bc)^2}}{2}}.$$

The change of variables simplifies these formulas. Put

$$a := x + y, \quad b := x - y, \quad c := z + t, \quad d := z - t.$$

In new variables

$$k(\varphi) = \sqrt{\frac{x^2 + y^2 + z^2 + t^2 - \sqrt{(x^2 + y^2 + z^2 + t^2)^2 - (x^2 + z^2 - y^2 - t^2)^2}}{x^2 + y^2 + z^2 + t^2 - \sqrt{(x^2 + y^2 + z^2 + t^2)^2 - (x^2 + z^2 - y^2 - t^2)^2}}}.$$

The next change of variables

$$x := r \sin(\alpha), \quad z := r \cos(\alpha), \quad y := \rho \sin(\beta), \quad t := \rho \cos(\beta)$$

allows us the further simplification:

$$k(\varphi) = \frac{|r - \rho|}{r + \rho}.$$
3. Computation of the mean value

Theorem 3.1. \(k_2 = 3 - 4 \ln(2) \).

Proof. Without loss of generality we can assume that \(|A| > 0\), i.e. \(ad - bc > 0 \). In new variables this condition can be rewritten as
\[
x^2 + z^2 - y^2 - t^2 > 0 \text{ or } r > \rho.
\]
We will compute the mean value of \(k(\phi) \) in the domain \(ad - bc > 0 \), i.e. in the domain
\[
r > \rho > 0, \quad 0 \leq \alpha \leq 2\pi, \quad 0 \leq \beta \leq 2\pi.
\]
We have
\[
\bar{k}_2 = \lim_{R \to \infty} \left(4\pi^2 \int_0^R r \, dr \int_0^r \frac{\rho}{r + \rho} \, d\rho \right) = \lim_{R \to \infty} \left(\int_0^R \left(-\frac{1}{2} \rho^2 + 2\rho r - 2r^2 \ln(r + \rho) \right) \right) = 3 - 4 \ln 2 \approx 0.227411278.
\]

4. Upper bound for deformation coefficient

Let \(y \) and \(z \), \(y \geq z \), be lengths of vector-columns of matrix \(A \) and \(S \leq yz \) be the area of parallelogram, generated by these vectors. Characteristic polynomial of the matrix \(A'tA \) can be written in the following way:
\[
s(x) = x^2 - (y^2 + z^2) x + S^2.
\]
As
\[
p^2, q^2 = \frac{y^2 + z^2 \pm \sqrt{(y^2 + z^2)^2 - 4S^2}}{2},
\]
then
\[
q^2 \leq z^2 \leq y^2 \leq p^2, \text{ and } k(\phi) = \frac{q}{p} \leq \frac{z}{y}.
\]

Theorem 4.1. \(\bar{k}_2 < \frac{1}{2} \).

Proof. We have
\[
\bar{k}_2 < \int_0^1 dy \int_0^y \frac{z}{y} \, dz \int_0^1 dy \int_0^y dz = \frac{1}{2}.
\]
5. Three-dimensional case

Let A be the matrix of linear operator $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$, $u, v, w, u \leq v \leq w$, be lengths vector-columns of this matrix, S_1, S_2, S_3 be areas of parallelograms, generated by pairs of vector-columns and V be the volume of parallelepiped, generated by vector-columns. Then characteristic polynomial s of the operator $\varphi^*\varphi$ is of form

$$s(x) = x^3 - (u^2 + v^2 + w^2)x^2 + (S_1^2 + S_2^2 + S_3^2)x - V^2.$$

Proposition 5.1. Let x_1, x_2, x_3, $x_1 \leq x_2 \leq x_3$, be (real) roots of s. Then $x_1 \leq u^2 \leq w^2 \leq x_3$.

Proof. Computer assisted check. □

Thus,

$$k(\varphi) = \frac{x_1}{x_3} \leq \frac{u}{w},$$

and we have the following estimation of the mean value \overline{k}_3 of three-dimensional deformation coefficient.

Theorem 5.1. $\overline{k}_3 < \frac{1}{3}$.

Proof.

$$\overline{k}_3 < \int_{0}^{1} dw \int_{0}^{w} dv \int_{0}^{v} \frac{u}{w} du \int_{0}^{1} dw \int_{0}^{w} dv \int_{0}^{v} du = \frac{1}{3}.$$ □

Remark 5.1. Actual value of \overline{k}_3 is quite difficult to compute. We have a rather coarse estimation: $\overline{k}_3 \approx 0.15$.

References

[1] Busjatskaja Irina, Kochetkov Yury, *Affine transformations of the plane and their geometrical properties*, arXiv 1603.02938v1.

[2] Halmos Paul, *Finite dimensional vector spaces*, Springer, 1974.

[3] Lang Serge, *Linear algebra*, Springer, 1987.

E-mail address: ibusjatskaja@hse.ru, yukochetkov@hse.ru