Silencing BMP-2 expression inhibits A549 and H460 cell proliferation and migration

Heying Chu1, Hailan Luo2, Huaqi Wang1, Xiaonan Chen3, Ping Li1, Yong Bai1, Furui Zhang1, Ruirui Cheng1, Shanshan Chen1, Yuanyuan Wang3, Guoqiang Zhao3* and Guojun Zhang1*

Abstract

Background: Bone morphogenetic protein 2 (BMP-2) is a member of the TGF-β superfamily that is closely correlated with many malignancies, particularly lung cancer. However, the effects of silenced BMP-2 on lung cancer cell proliferation and migration are not clear.

Methods: Using quantitative real-time RT-PCR, BMP-2 mRNA expression was detected in 61 non-small cell lung cancer (NSCLC) samples. Survival curves were generated using follow-up data. Relationships between clinical or pathological characteristics and prognosis were analyzed. Cell viability assays and transwell migration assays were used to evaluate the effects of BMP-2 silencing on cell proliferation and migration of A549 and H460 cells.

Results: BMP-2 mRNA expression was higher in NSCLC tissues compared to matched adjacent normal tissues (P < 0.01). High BMP-2 expression levels were significantly associated with the occurrence of lymph node metastases and tumor stage (P < 0.05). There were significant differences in survival curves between groups with metastatic lymph nodes and non-metastatic lymph nodes, as well as between groups with low BMP-2 expression and groups with high BMP-2 expression. In addition, we observed decreased proliferation and migration rates of the NSCLC-derived cell lines A549 and H460 that were transfected with siBMP-2 (P < 0.05).

Conclusion: BMP-2 mRNA is overexpressed in NSCLC samples and is a risk factor for survival in patients with NSCLC. BMP-2 silencing can significantly inhibit A549 and H460 cell proliferation and migration.

Virtual slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/426325447129866

Keywords: Non-small cell lung cancer (NSCLC), BMP-2, siRNA, Proliferation, Migration

Background

Lung cancer is one of the most common causes of cancer-related deaths, and its incidence is increasing [1-3]. Approximately 80% of diagnosed lung cancer cases are non-small-cell lung cancer (NSCLC) [4,5]. Despite improvements in diagnosis and treatment, the long-term survival rate has only marginally improved.

Bone morphogenetic protein 2 (BMP-2) was originally identified as an osteoinductive cytokine, and was subsequently reported to have an important role in cell migration, proliferation, and differentiation [6,7]. Serum BMP-2 levels from NSCLC samples were higher compared to healthy controls, and positively correlated with poor prognosis, stage, and metastatic burden [8,9]. BMP-2 protein expression in human NSCLC is higher than in normal lung tissue, and recombinant BMP-2 promotes cell migration and invasiveness [10]. Additionally, tumor growth was promoted in nude mice that were injected with A549 cells that were transfected with recombinant BMP-2 [11]. Finally, BMP-2 is overexpressed in the majority of lung carcinomas and stimulates the growth and progression of lung tumors [12]. However, the effects of silencing BMP-2 on lung cancer cell proliferation and migration were not clear.

In this study, we used siRNA to silence BMP-2 to observe the effect on proliferation and migration of the lung cancer cell lines A549 and H460. Moreover, we analyzed
the correlation between BMP-2 mRNA expression and the clinicopathological characteristics of 61 patients with NSCLC.

Methods

Clinical sample collection
In this study, 61 patients with NSCLC from the First Affiliated Hospital of Zhengzhou University were enrolled between 2003 and 2008. Patients who had recurrent or primary NSCLC but received chemoradiotherapy before surgery were excluded. Of the 61 patients, 32 were female and 29 were male. Twenty-eight cases had lymph node metastases, whereas 33 cases did not. We obtained paired NSCLC and adjacent non-tumor lung tissues (located more than 5 cm away from the tumors) from 61 patients who underwent primary surgical resection of NSCLC. All patients provided informed consent. Both tumor and non-tumor samples were confirmed as such by pathological examinations. These samples were snap-frozen in liquid nitrogen after resection. The Human Research Ethics Committee of Zhengzhou University approved this study (Table 1).

Cell lines and cell culture
The human lung cancer cell lines A549 and H460 were maintained in DMEM supplemented with 10% fetal bovine serum (FBS; Gibco), 100 units/mL penicillin, and 100 μg/mL streptomycin in a humidified incubator of 5% CO₂ at 37°C.

Main materials
DMEM (Corning, USA); Cell Counting Kit-8 (Dojindo Laboratories, Japan); hematoxylin (sigma, USA); quantitative real time PCR assay kit (SYBR Premix Ex Taq) (TaKaRa, Japan); Trizol (Invitrogen, USA); AMV reverse transcriptase (Promega, USA); the first antibody of BMP-2, β-actin (Santa Cruz Corp, USA); the goat anti-rabbit horseradish peroxidase-labeled secondary antibody (Bio-Rad, USA); chemiluminescence substrate kit (Amersham, USA); NSCLC-derived cell lines A549 and H460 were obtained from (ATCC, USA).

RNA oligo-ribonucleotides and cell transfection
siBMP-2 and negative control (NC) sequences were as follows: siBMP-2: sense: 5'-AATAGCAGTTTCCATCACC GA-3'; anti-sense: 3'-TTATCGTCAAAGGTAAGTGGCT-5'; negative control: sense: 5'-ATACTATTTCCGAGCGAC ATAC-3'; anti-sense: 3'-TA TGATAAGGCTCGCTGTAT G-5'. Sequences were chemically synthesized by Shanghai GenePharma Co., Ltd. A549 and H460 cells were seeded into six-well plates (2 × 10⁵ cells/well). Transfection was performed by electroporation. Three groups were generated for the ensuing experiments: non-transfected group (blank control), siRNA negative control-transfected group (NC), and siBMP-2 transfected group (siRNA BMP-2). Cells were harvested for experiments 24–48 h post-transfection.

Cell counting kit-8 assays
We used the Cell Counting Kit-8 (Dojindo Laboratories, Japan) according to the manufacturer’s instructions to determine cell viability. Briefly, cells were seeded at a density of 2 × 10³ cells/well in 96-well plates (in three replicate wells) and treated daily for 4 consecutive days with 10 μl/well of Cell Counting Kit-8 solution. Optical density was measured at 450 nm to estimate the number of viable cells.

Transwell migration assays
We assayed the migration ability of cells using 6.5 mm diameter transwell chambers with 8 μm membranes (Corning, USA). Twenty-four hours post-transfection, A549 and H460 cells were seeded in the upper chambers, and the bottom wells were coated with 1 mg/ml matrigel for migration assays. Media containing 10% FBS were added to the bottom chambers. After 24 h at 37°C in a 5% CO₂ humidified atmosphere, cells in the upper chamber were carefully scraped off using a cotton swab, and cells that had migrated to the basal side of the membrane were fixed in methanol, stained with hematoxylin, and counted. Each test was performed in triplicate.
RNA extraction and quantitative real-time RT-PCR

We isolated total RNA from tissue samples and transfected cells using Trizol, and cDNAs were generated using AMV reverse transcriptase. BMP-2 primers were designed using Oligo 7.0 software according to the BMP-2 mRNA sequence (NM_001200). Sequences were as follows: BMP-2 forward 5′-ATAGCAGTTTCATACCCGAA-3′, reverse 5′-ATCTCCACAGGAT CCAT-3′; β-actin forward 5′-AAAGACCTGTAGCACAACACA-3′, reverse 5′-CGATC CACACGGAGTACTC GC-3′. Primers were synthesized by Sangon Biotech (Shanghai) Co., Ltd. Real-time RT-PCR was performed in triplicate on the ABI 7500 Fast Real-time PCR system. Cycling parameters were 35 denaturation cycles of 95°C for 15 s, annealing at 55°C for 30 s, and elongation at 72°C for 30 s. Gene expression was quantified using the comparative CT method, normalizing CT values to the housekeeping gene β-actin. After amplification, melting curve analyses were performed to ensure the specificity of the products.

Western blotting

Total protein was extracted from transfected cells, and protein concentrations were measured using Bradford assays. Protein lysates (25 μg) were subjected to SDS-PAGE. Electrophoresed proteins were transferred to nitrocellulose membranes (Whatman, USA). After blocking in 5% non-fat milk, membranes were washed at room temperature and incubated with the following primary antibodies: BMP-2 (1:1000; Santa Cruz Biotechnology, USA) and β-actin (1:1000; Santa Cruz Biotechnology). Following extensive washing, membranes were incubated for 1 h with the goat anti-rabbit horseradish peroxidase-labeled secondary antibody (1:3000; Bio-Rad, USA). An enhanced chemiluminescence substrate kit (Amersham, USA) was used to detect signals with autoradiography film (Amersham).

Statistical analyses

Statistical analyses were performed using SPSS 17.0 software (SPSS Inc., USA). Data are expressed as the mean ± standard deviation (SD). Student’s t-tests were used to compare the mean between two samples. Logistic analyses were used in the correlation of lymph node metastasis with BMP-2 mRNA expression. Follow-up data were analyzed using the Kaplan–Meier method and log-rank tests. P-values less than 0.05 were considered statistically significant.

Results

BMP-2 mRNA is overexpressed in NSCLC samples

To explore the relationship between BMP-2 mRNA expression and NSCLC clinopathological characteristics, we retrospectively analyzed 61 NSCLC patients. We evaluated the expression of BMP-2 mRNA using quantitative real time RT-PCR, and explored the relationship between BMP-2 mRNA levels and TNM stage, node status, gender, age, differentiation, and tumor stage. Our data analyses showed that the relative expression levels of BMP-2 mRNA in cancer tissues (61 samples, 0.8545 ± 0.14650) were significantly higher compared to matched adjacent normal tissues (61 samples, 0.1386 ± 0.0285) (P = 0.000). In addition, there were higher BMP-2 mRNA levels in NSCLC samples with lymph node metastasis (28 samples, 0.8994 ± 0.15196) compared to NSCLC samples without lymph node metastasis (33 samples, 0.8164 ± 0.13218) (P = 0.026), as well as in tumor stage T3–4 samples (12 samples, 0.9632 ± 0.1066) compared to tumor stage T1 samples (18 samples, 0.8260 ± 0.13904) or T2 samples (31 samples, 0.8290 ± 0.14797) (P = 0.014) (Table 1). These results indicate that BMP-2 expression positively correlates with tumor stage and lymph node metastasis in NSCLC patients.

BMP-2 mRNA expression level is a risk factor for survival in patients with NSCLC

Survival curves were generated using the Kaplan–Meier method. Log-rank tests indicated that there were significant differences in survival curves from groups expressing different BMP-2 mRNA levels (χ² = 27.108, P = 0.000, Figure 1A), as well as between the lymph node metastatic group and non-metastatic group (χ² = 8.372, P = 0.004, Figure 1F). However, there were no significant differences between male and female patients (χ² = 1.037, P = 0.309, Figure 1B), patients ≥60 years versus patients <60 years old (χ² = 0.064, P = 0.8, Figure 1C), or patients with well differentiated tumors versus those with moderately to poorly differentiated tumors (χ² = 0.857, P = 0.355, Figure 1D). Similarly, there were no significant differences among the TNM stage I, II, and III groups (χ² = 1.317, P = 0.518, Figure 1E). Logistic regression analysis indicated that the relative expression level of BMP-2 mRNA was a risk factor for lymph node metastasis in patients with NSCLC.

Effects of siRNA-BMP-2 on cell proliferation

RT-PCR results showed that the mRNA expression of BMP-2 in A549 and H460 cells transfected with siBMP-2 was decreased compared to cells transfected with NC and blank control (P < 0.05, Figure 2A). Further, we examined BMP-2 protein expression using western blot analyses and found the results were consistent with the mRNA data (P < 0.05, Figure 2B). These results demonstrate the silencing effect of BMP-2 siRNA. According to the CCK-8 assay results, the absorbance of A549 and H460 cells transfected with siBMP-2 was significantly reduced after 2, 3, and 4 days compared with the control cells (NC and blank) (P < 0.05, Figure 3). These results demonstrate that silencing BMP-2 significantly inhibits A549 and H460 cell proliferation.
Effects of siBMP-2 expression on cell migration

In order to explore the effect of BMP-2 siRNA on cell migration, we performed transwell migration assays. We found that the number of siBMP-2-transfected A549 or H460 cells that traveled through the micropore membrane was lower compared to the control groups (NC and blank) ($P < 0.05$; Figure 4A, B). This result indicates that downregulation of BMP-2 inhibits the migratory ability of A549 and H460 cells in vitro.

Discussion

Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and are aberrantly expressed in many types of carcinoma cells, including prostate, lung,
breast, gastric, and ovarian [13-16]. BMP-2 is known to stimulate proliferation, differentiation, and migration during embryonic development [6,17-21]. BMP-2 abrogated the fibrogenic function of TGF-β in pancreatic stellate cells via the Smad1 signaling pathway [22]. Moreover, high concentrations of BMP-2 strongly enhanced gastric cancer cell motility and invasiveness [23]. BMP-2 upregulation caused epithelial dysfunction and hyperpermeability [24], and enhanced the neovascularization of developing lung tumors. BMP-2 is aberrantly expressed in approximately 98% of lung carcinomas [25]. BMP-2 is highly overexpressed in human NCSLC compared with normal lung tissue and benign lung tumors, and high BMP-2 levels enhanced tumor cell migration and invasion, thereby promoting tumor growth [10,11,26,27]. Thus, these data indicate that BMP-2 has important biological activity in lung carcinomas and a potential marker of lung carcinomas. Up to now, several lung carcinomas potential markers had reported, such as Tiam1, MAT3, DNA methylome [28-30].

In this study, we observed that the mRNA expression of BMP-2 in tumor tissue was significantly higher than in matched adjacent normal tissues ($P < 0.01$). Furthermore, we found that BMP-2 expression was related to lymph node metastasis, tumor stage, and survival time. These results suggest that BMP-2 may play a role in tumor metastasis.

High levels of BMP-2 promote tumorigenesis. However, downregulation of BMP-2 reduced tumor growth. For example, inhibition of BMP-2 activity using either recombinant Noggin or a BMP-2 antibody caused a reduction in lung tumor growth [10]. Blocking BMP signaling with the inhibitor DMH1 reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells [31]. BMP-2 knockdown by adenovirus inhibited growth and invasion of human lung adenocarcinoma cells by blocking PI3K/AKT signaling [32]. In this study, we suppressed BMP-2 activity by siRNA. These data show that suppressing BMP-2 expression significantly inhibited lung tumor cell proliferation and migration (Figures 3 and 4). This outcome is in accordance with previous studies and further confirms the biological function of BMP-2 in lung cancer.

Previous studies of BMP-2 have focused on the expression of BMP-2 in tumor tissues and its function in tumor cell proliferation, invasion, and migration. However, for the first time, we investigated and assessed the relationship between BMP-2 expression and clinicopathological characteristics. Our analyses found significant correlations between BMP-2 expression and lymph node metastasis, tumor stage, and survival time. This study provides a potential marker for lung carcinoma and further confirms the biological function of BMP-2 in lung cancer.
metastasis, TNM stage, tumor stage, and survival time (Figure 1). Transwell migration assays also showed that the number of siBMP-2-transfected cells that migrated decreased. This result suggests that BMP-2 expression is closely related to lung tumor metastasis.

Conclusion
In summary, our data show that BMP-2 silencing in the lung cancer cell lines A549 and H460 suppressed their proliferation and migration, thereby suggesting that BMP-2 might be a novel therapeutic strategy for human NSCLC.

Abbreviations
NSCLC: Non-small-cell lung cancers; BMP-2: Bone morphogenetic protein 2.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GJZ, HYC and GQZ: conceived of the study, and participated in its design and coordination and helped to draft the manuscript. HYC, HLL, YB, FZR, RRC, SSC and YYW: collected the samples. HYC, HLL, HQW, XNC and PL: carried out part of experiments and wrote the manuscript. HVC, YWW, GJZ and GQZ performed the statistical analysis. All authors read and approved the final manuscript.

Author details
1Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. 2Department of Medical Biology, Luoho Medical College, Luoho, Henan 462002, China. 3College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou 450001, China.

Received: 16 May 2014 Accepted: 13 June 2014
Published: 19 June 2014

References
1. Siegel R, Naishadham D, Jemal A: Cancer statistics. CA Cancer J Clin 2013, 63:11–30.
2. Jemal A, Siegel R, Xu J, Ward E: Cancer statistics. CA Cancer J Clin 2010, 60(5):277–300.
3. Minna JD, Roth JA, Gazdar AF: Focus on lung cancer. Cancer Cell 2002, 1(1):49–52.
4. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics. CA Cancer J Clin 2009, 59(4):224–249.
5. Spira A, Ettinger DS: Multidisciplinary management of lung cancer. N Engl J Med 2004, 350(4):379–392.
6. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Koz RW, Ross NJ, Wang EA: Novel regulators of bone formation: molecular clones and activities. Science 1986, 228(4702):1528–1534.
7. Hogan BL: Bone morphogenetic proteins: Multifunctional regulators of vertebrate development. Genes Dev 1996, 10:1580–1594.
8. Fei Zh, Yao CY, Yang XL, Huang XE, Ma SL: Serum BMP-2 Up-regulation as an indicator of poor survival in advanced non-small cell lung cancer patients. Asian Pac J Cancer Prev 2013, 14(9):5293–5299.
9. Choi YJ, Kim ST, Park KH, Oh SC, Seo JH, Shin SW, Kim JS, Kim YH: The serum bone morphogenetic protein-2 level in non-small-cell lung cancer patients. Med Oncol 2012, 29(2):582–588.
10. Langenfeld EM, Calvano SE, Abou-Nukta F, Lowry SF, Amenta P, Langenfeld J: The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis 2003, 24(14):1445–1454.
11. Langenfeld EM, Kong Y, Langenfeld J: Bone morphogenetic protein 2 stimulation of tumor growth involves the activation of Smad-1/5. Oncogene 2006, 25(65):685–692.
12. Langenfeld EM, Langenfeld J: Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors. Mol Cancer Res 2004, 2:141–149.
13. Katsumo Y, Hanyu A, Kanda H, Ishikawa Y, Aikyama F, Iwase T, Ogata E, Ehata S, Miyazono K, Imamura T: Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 2008, 27:6322–6333.
14. Ye L, Lewis-Russell JM, Ryanston HK, Jiang WG: Bone morphogenetic proteins and their receptor signaling in prostate cancer. Histol Histopathol 2007, 22:1129–1147.
15. Alamo El, Kallioniemi A: Bone morphogenetic proteins in breast cancer: dual role in tumourigenesis? Endocr Relat Cancer 2010, 17(1):R13–R39.
16. Thavani JP, Wang AC, Than KD, Lin CY, La Marca F, Park P: Bone morphogenetic proteins and cancer: review of the literature. Neurosurgery 2010, 66:239–246.
17. Willette RN, Gu JL, Lysoy PG, Anderson KM, Minehart H, Yue T: BMP-2 gene expression and effects on human vascular smooth muscle cells. J Vasc Res 1999, 36:120–125.
18. Cunningham NS, Paralkar V, Rehedi AH: Osteogenin and recombinant bone morphogenetic protein 28 are chemotactic for human monocytes and stimulate transforming growth factor beta 1 mRNA expression. Proc Natl Acad Sci USA 1992, 89:11740–11744.
19. An J, Rosen V, Cox K, Beauchemin N, Sullivan AK: Recombinant human bone morphogenetic protein-2 induces a hematopoietic microenvironment in the rat that supports the growth of stem cells. Exp Hematol 1996, 24:268–75.
20. Kim WI, Mohan RR, Wilson SE: Effect of PDGF, IL-1alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea. Invest Ophthalmol Vis Sci 1999, 40:1364–1372.
21. Miyawaki K, Shinozaki M, Hara T, Furuya T, Miyazono K: Two major Smad pathways in TGF-b superfamily signaling. Genes Cells 2002, 7:1191–204.
22. Gao X, Cao Y, Yang W, Yuan C, Aronson JP, Rastellini C, Chao C, Helliwell MR, Ko TC: BMP2 inhibits TGF-β-induced pancreatic stellate cell activation and extracellular matrix formation. Ann J Physiol Gastrointest Liver Physiol 2013, 304(9):G804–G813.
23. Kang MH, Kim JS, Seo JH, Oh SC, Yoo YA: BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp Cell Res 2010, 316(1):24–37.
24. Heibling T, Hernal H, Hornstein A, Wintrich S, Heinke J, Grundmann S, Patterson C, Bode C, Moser M: Inhibition of BMP activity protects endothelial barrier function in lung injury. J Pathol 2013, 231(1):105–116.
25. Langenfeld EM, Kong Y, Langenfeld J: Bone morphogenetic protein-2-induced transformation involves the activation of mammalian target of rapamycin. Mol Cancer Res 2005, 3(12):679–684.
26. Langenfeld EM, Bohajkowski J, Perone J, Langenfeld J, Langenfeld BS: Expression of bone morphogenetic proteins in human lung carcinomas. Ann Thorac Surg 2005, 80:1028–1032.
27. Bieniasz M, Osajca K, Eusebio M, Koroljak J, Bartkowiak J, Siermaz J: The positive correlation between gene expression of the two angiogenic factors: VEGF and BMP-2 in lung cancer patients. Lung Cancer 2009, 66:319–326.
28. Liu SJ, Li YQ, Zha W, Zhao Y, Huang A, Sheng W, Lei B, Lin P, Zhu H, Li W, Shen H: Expression of Tiam1 predicts lymph node metastasis and poor survival of lung adenocarcinoma patients. Diagn Pathol 2014, 9:69.
29. Zheng S, Du Y, Chu H, Chen X, Li P, Wang Y, Ma Y, Wang H, Zhang W, Zhang G, Zhao G: Analysis of MAT3 gene expression in NSCLC. Diagn Pathol 2013, 8:166.
30. Liu F, Zhou Y, Zhou J, Yan L, Huang A, Sheng W, Lei B, He L, Zhan L, Liu Y: Whole DNA methylene profiling in lung cancer cells before and after epithelial-to-mesenchymal transition. Diagn Pathol 2014, 9:66.
31. Hao J, Lee N, Chang A, Fan J, Labib C, Parsa C, Orlando R, Andresen B, Huang Y: DM1H, a small molecule inhibitor of BMP type I receptors, suppresses growth and invasion of lung cancer. PLoS One 2014, 9(8):e70478.1–6.
32. Ye XY, Niu XM, Tang NW, Xu YH, Li ZM, Yu YF, Lu S, Chen SW: Adenovirus mediated knockdown of bone morphogenetic protein 2 inhibits human lung cancer growth and invasion in vitro and in vivo. Int J Immunopathol Pharmacol 2012, 25(4):967–976.