Link between aging and the nucleolus

Leonard Guarente1

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA

Our ancient ancestors recognized events of nature, like the sporadic appearance of comets and lightning, the periodic display of stars, planets, and the moon, and biological processes like birth, development, and aging. The rapid progress of science has formulated a firm basis for understanding many of these phenomena, but aging has remained a conspicuous exception. Recently, however, a concerted effort has been made to get at the scientific basis of what cellular and molecular events might cause aging. This perspective will begin with an introduction into new approaches being used to study aging. The main body will focus on two independent studies in a model system that both point to the cell as a probable unit of aging and the nucleolus as a key player in the aging process. Finally, these recent findings will be placed into a context of human aging, which considers a possible interplay between telomeres and the nucleolus, as well as the relationship between dividing and nondividing (postmitotic) cells.

Background

How do we define aging? There are two reliable measures of aging, the first statistical, and the second descriptive (but amenable to quantitation). In the 1820s, a statistician, Gompertz (1825), noted that human mortality rates increase exponentially with age, giving rise to a survival curve depicted in Figure 1A. These kinetics are indicative of a progressive degenerative process and are observed in many organisms, including mammals, flies, worms, plants, and yeast mother cells. These kinetics contrast with stochastic death, for example, by predation, which would give rise to a curve similar to the decay of a radioisotope (Fig. 1B). The second definition of aging is changes in phenotype that occur in all of the individuals over time. In humans it is relatively clear whether someone is young, middle aged, or elderly by their appearance. The above definitions apply to organisms that age, and they both will be used in this paper.

How can one study aging to identify root causes? A useful analogy here is cancer. Twenty years ago, many differences between cancer cells and normal cells had been cataloged, but a fundamental cause of cancer remained elusive. Molecular causes of cancer were brought to light by the identification of oncogenic mutations in normal cellular genes that caused a loss of growth control. Likewise in aging research, there has recently been a concerted effort to identify genes that alter the rate of aging, when mutated.

Studies of the genetics of aging are possible in model systems. In Caenorhabditis elegans, mutations have been identified that allow the animal to live longer than wild type. These mutations fall into two categories. The first is mutations that activate the Dauer larvae pathway (Kenyon et al. 1993). Typically, worms will enter a dormant state termed Dauer when they are nutritionally limited at a time early in development. They can exist in this state for months, much longer than their typical 2-week life span. Mutations in daf-2 or age-1/daf-23 (Friedman and Johnson 1988; Morris et al. 1996) can turn on the Dauer pathway at a time in development of the experimenter’s choice. By activating the Dauer pathway in adults, worms can be made to live twice as long as wild type. The sequence of daf-2 and daf-23 reveals an insulin-like receptor (Kimura et al. 1997) and a phosphatidylinositol-3-OH (PI3) kinase (Morris et al. 1996), respectively, suggesting that the Dauer pathway may be determined by an intercellular signaling pathway that slows metabolism in Dauer animals. It is thus possible that the activation of this pathway in adults also slows metabolism, giving rise to a long life span, although metabolic effects are not readily observable in these daf adults.

Another model system is the budding yeast Saccharomyces cerevisiae. The asymmetric cell division in budding yeast gives rise to a large mother cell and a small daughter cell arising from the bud (Fig. 2). At least some of the components of the daughter, such as the cell surface, are newly synthesized during the budding process. Thus, the mother is a repository for many cellular constituents that get older with each budding. By following
the mother cell through multiple rounds of division microscopically, it was demonstrated that they divided a relatively fixed number of times (Mortimer and Johnston 1959) and that they displayed Gompertz kinetics of death (Pohley 1987). Yeast mother cells may therefore be assigned an average and maximum life span, which varies from strain to strain. Furthermore, mother cells adopt characteristic phenotypes with age, such as an increase in cell size and a slowing of the cell cycle. Thus, mother cells meet both the statistical and phenotypic definitions of aging.

Using this system, Jazwinski and colleagues have identified genes that are preferentially expressed in young or old cells, and some of these, such as LAG1 (D'Mello et al. 1994), are important determinants of life span, although their function is not yet known. The yeast RAS genes are another determinant of life span, suggesting that a link between metabolism and life span is also present in yeast (Sun et al. 1994).

In addition to model systems, nature may have provided another genetic clue about aging. Certain human diseases cause a pheno-copy of premature aging in a variety of organ systems. These include Hutchinson–Guilford’s progeria, a sporadic disease affecting young children, and Werner’s Syndrome, a heritable disease affecting young adults (Salk et al. 1985). Werner’s Syndrome is attributable to recessive, loss-of-function mutations in the WRN gene (Epstein et al. 1966; Goto et al. 1992). Werner’s individuals display phenotypes including cataracts, hair loss and graying, loss of subcutaneous fat cells, aging of the skin, atherosclerosis, osteoporosis, diabetes, and cancer (Salk et al. 1985). Their average life span is ~45 years. The WRN gene (Yu et al. 1996) is homologous to a group of DNA helicases, including recQ of Escherichia coli, SGS1 of S. cerevisiae (Gangloff et al. 1995), rqh1 of Schizosaccharomyces pombe (Stewart et al. 1997), and BLM, mutations of which cause Bloom’s Syndrome (Ellis et al. 1995). The symptoms of Werner’s and Bloom’s Syndromes are quite different, suggesting that some aspect of specificity of the WRN helicase may lie at the core of the aging phenotypes (Lombard and Guarente 1996).

This paper will focus on one of the many promising new directions in the field of aging—a possible link between aging and changes in the nucleolus. This study is but one of many that use model systems to reveal molecular features of aging that may be relevant to human aging.

Two independent experimental paths to the nucleolus

Redistribution of the Sir complex to the nucleolus

Mutations in two genes that extend yeast mother cell life span have been characterized. One gene, SIR4, encodes a protein that exists in a complex with Sir2p and Sir3p, which mediates transcriptional silencing at telomeres and HM loci (Rine and Herskowitz 1987; Gottschling et al. 1990; Aparicio et al. 1991). Immunolocalization in yeast nucleoli displays the Sir2/3/4p complex bound to telomeres in several perinuclear clusters (Palladino et al. 1993). In addition, Sir2p functions alone at the rDNA repeats to lower the rate of recombination in that tandem array (Gottlieb and Esposito 1989). Immunolocalization shows that Sir2p is present at both the rDNA and telomeres (Gotta et al. 1997).

The SIR4-42 mutation extends life span 50% and
causes sterility due to loss of silencing of α and a mating genes at HML and HMR (Kennedy et al. 1995). A null mutation in SIR4 also causes sterility, but actually shortens life span (Table 1). Thus, SIR4-42 is a gain-of-function mutation for life-span extension. What function has this mutant gained? We initially argued on genetic grounds that the SIR4-42 mutation prevented recruitment of the Sir complex to telomeres and HM loci and freed the complex to go to a novel genomic site important in life span. Consistent with this view, the mutation truncated the protein to remove a carboxyl terminus that may anchor the wild-type Sir complex to telomeres and HM loci.

Subsequent immunolocalization revealed that the SIR4-42 complex no longer resided at telomeres but was relocated to the nucleolus (Kennedy et al. 1997). The nucleolus is a region of the nucleus containing rRNA, proteins, and ~120–200 tandem copies of rDNA on chromosome 12. It is the site of ribosome synthesis and assembly. This finding provided an initial clue that nucleolar changes might be important in aging.

Another gene identified in the screen was UTH4 (Kennedy et al. 1995). The expression level of UTH4 dictates life span; null mutants have short life spans, and hyperexpression strains have unusually long life spans (Table 1) (Kennedy et al. 1997). A genetic link exists between UTH4 and SIR4. The SIR4-42 mutation is an allele-specific suppressor of a frameshift mutation in UTH4 that is a naturally occurring polymorphism in some yeast strains. UTH4 is homologous to two other genes in the yeast genome, YGL023 and YLL013, as well as to the Drosophila gene pumilio. UTH4 requires the integrity of the Sir complex to affect life span, indicating that it functions by regulating some aspect of the Sir complex. Indeed, the nucleolar localization of the SIR4-42 complex is abolished in strains mutant in both UTH4 and YGL023 (Kennedy et al. 1997). In another study, it was found that Sir3p goes to the nucleolus when SIR4 is deleted and that this nucleolar localization also requires UTH4 (Gotta et al. 1997). Thus, our findings on SIR4-42 and UTH4 suggest the following model. Damage to the nucleolus might accumulate in mother cells to cause aging. This may be partially counteracted by the redistribution of the SIR4-42 complex to promote longevity.

What function might nucleolar localization of Sir complexes play in the life span of wild-type cells? We speculated that the SIR4-42 mutation mimicked and strengthened a response that normally occurred in wild-type old mother cells—redistribution of the Sir complex to the nucleolus to promote longevity. Strikingly, this turned out to be the case. When wild-type cells that had completed about two-thirds of their life span were isolated and immunostained, Sir3p was found to be redistributed from telomeres and HM loci to the nucleolus (Fig. 3A, B) (Kennedy et al. 1997). This finding explained our earlier observation that old cells adopt the aging phenotype of sterility as a result of a loss of silencing at HM loci (Smeal et al. 1996). Thus, both aging-specific sterility and longevity appear to be attributable to the same molecular event—the redistribution of the Sir complex to the nucleolus.

The yeast WRN homolog SGS1 and life span

Why do Werner’s individuals show symptoms that phenocopy premature aging? It is likely that these symptoms arise at the cellular level because of one or more

Table 1. Properties of SIR4 and UTH4 alleles

Allele	Sterility	Location of Sir complex	Life span
Wild type	no	telomeres	medium
Δsir4	yes	none	short
SIR4-42	yes	nucleolus	long^a
Δuth4	no	telomeres	short
↑UTH4	no	telomeres	long

^aThe extension of life span by SIR4-42 occurs in a strain with a partially defective allele of UTH4, i.e., SIR4-42 is a suppressor of this uth4 allele (Kennedy et al. 1997).
defects in chromosome biology (Guarente 1996). This view suggests that aging may be caused by defects that occur at the cellular level rather than a breakdown solely in some organismal (e.g., endocrinological or immunological) process. As one approach to identifying the cellular function of WRN, the study of WRN homologs in model systems offers promise. The yeast homolog Sgs1p was identified because loss-of-function mutations suppress the slow growth in top3 (topoisomerase 3) mutants (Gangloff et al. 1994). Sgs1p was shown to bind to topoisomerases 2 and 3 and to affect recombination (including at the rDNA loci) and chromosome segregation (Gangloff et al. 1994; Watt et al. 1995, 1996).

To determine whether Sgs1p was involved in yeast life span, the gene was disrupted (Sinclair et al. 1997). Mutants were found to age prematurely by three criteria: (1) Their average life span was shortened by 60%; (2) mother cells became sterile over their shortened life span as a result of loss of silencing at HM loci; and (3) the Sir complex redistributed to the nucleolus in old cells. Premature aging was specific to sgs1 mutants because other randomly chosen yeast mutations either did not shorten life span, or, if they did, did not cause the appearance of sterility in aging mother cells.

Sgs1p was immunolocalized to the nucleus, with a concentration in the nucleolus (Sinclair et al. 1997). This prompted an examination of the nucleoli in old sgs1 mothers. Whereas in young sgs1 or wild-type cells the nucleolus is a crescent-shaped structure at one side of the nucleus, strikingly, in old sgs1 mother cells the nucleolus was enlarged and fragmented (Fig. 3C) (Sinclair et al. 1997). These changes caused the nucleolus to occupy at least 50% of the nuclear volume in most cells. In cells with these fragmented nucleoli, the Sir complex redistributed to all of the nucleolar bodies. Significantly, similar changes were found in nucleoli of very old wild-type cells, indicating that they are not a consequence of the sgs1 mutation per se. Thus, like the analysis of the Sir complex above, the study of SGS1 also suggests that nucleolar changes might be important in the aging of yeast mother cells.

Finally, the relationship between the fragmentation of the nucleolus and the redistribution of the Sir complex was examined. Assuming that the fragmentation of the nucleolus is relevant to aging, there are two extreme possibilities. The first is that the redistribution of the Sir complex delays the fragmentation of the nucleolus and thus provides longevity. The second possibility is that the redistribution of Sir proteins causes the fragmentation of the nucleolus, and these fragments do not cause aging but promote longevity. Two experiments suggest that the first possibility is correct (Sinclair et al. 1997). In one experiment, old cells were examined in a sir3 mutant, and the nucleoli were found to be fragmented. Thus, fragmentation does not require the Sir complex. In the second experiment, age-matched cells of 12 generations were obtained from wild-type and sir3 mutant strains, and fragmentation was found much more commonly in the sir3 mutant. This finding suggests that the Sir complex could function to delay fragmentation in wild-type cells.

A model for aging in dividing cells—the nucleolus and telomeres

The above findings begin to provide a model for aging that draws on the idea that cells undergo cumulative damage to chromosomes, most likely focused on the rDNA (Guarente 1996). The rDNA may be the Achilles’ heel of the cell because it comprises a potentially unstable array of tandemly repeated DNA sequences. A loss of the ability to maintain this stability may lie at the heart of aging. Evolution may have selected for counteacting response mechanisms to forestall this damage and promote longevity, as exemplified by the redistribution of the Sir complex to the nucleolus in aging yeast mother cells. The life span of an organism is then the sum of the rate of accumulation of this damage and the robustness of the response mechanism (Guarente 1997).

Three key questions must be addressed in the near term regarding this mechanism of aging. First, what is the precise nature of the changes that occur in the yeast nucleolus, and how might these alterations cause aging of mother cells? Second, how does the redistribution of the Sir complex to the rDNA forestall these changes? Third, how general are these mechanisms in the aging of other organisms, particularly in mammals?

A telomere-rDNA balancing act

The functional role of Sir protein positioning at yeast telomeres has remained obscure. No telomeric yeast genes are known to be subject to silencing in wild-type strains. In contrast, silencing at the rDNA does occur and is mediated by Sir2p (Bryk et al. 1997; Smith and Boeke 1997). It has been proposed that telomeres might serve as a reservoir or sink for the silencing factors (Mallet et al. 1996; Marcand et al. 1996). Our findings suggest that these reserves of the Sir complex are released from telomeres as yeast cells age to provide longevity (Fig. 4). Indeed, if telomere length is manipulated to a new steady-state length by genetically altering telomerase or the telomeric protein Rap1p, we find that shortened telomeres increase life span and elongated telomeres decrease life span (Austriaco and Guarente 1997). We imagine that the shortened telomeres facilitate the redistribution of the Sir complex, whereas elongated telomeres have the opposite effect. However, because yeast telomeres do not normally shorten in aging mother cells (D’Mello and Jazwinski 1991; Smeal et al. 1996), we imagine that there must be some novel mechanism causing redistribution of the Sir complex. One possibility is that old cells signal a post-translational modification of one or more Sir proteins that prevents their recruitment to telomeres and HM loci and thus elicits redistribution to the rDNA (Fig. 4).

In human dividing somatic cells, telomeres do shorten with age because the somatic lacks telomerase (Alsup et al. 1992). We have suggested that this shortening may aid in the release of telomere-bound proteins to another chromosomal locus, perhaps the nucleolus, to promote longevity (Austriaco and Guarente 1997; Kennedy et al.)
Aging in yeast mother cells provides a rather different picture, in which changes in the nucleolus appear to be paramount. The fact that mutation in the yeast SGS1 gene, a homolog of WRN, causes premature aging and nucleolar changes in yeast mother cells (Sinclair et al. 1997) suggests that phenocopies of premature aging can be elicited in both yeast and humans by the same mechanism. Werner’s Syndrome has been termed a segmental aging disease because only some organs are affected (Salk et al. 1985). Interestingly, affected organs generally consist of dividing cells, and at least one organ with postmitotic cells, the brain, is not affected in Werner’s individuals. Thus, aging in dividing cells of normal mammals may be caused at least in part by a mechanism involving changes in the rDNA.

Finally, it has been noted that cultured human cells (fibroblasts) divide a relatively fixed number of times and then senesce (Hayflick 1965). Interestingly, fibroblasts from a variety of different animals divide a number of times roughly proportional to the life span of the animal (Finch 1990). Thus, it has been proposed that in vitro senescence of primary fibroblasts is a model for aging. This view is buttressed by the fact that cells from Werner’s individuals divide fewer times in culture (Tollefsbol et al. 1984; Salk et al. 1985). In addition, cellular markers of senescence have been reported in both senescent fibroblasts and elderly animals (Campisi 1996). Although aging in cultured cells is an attractive model, there are reasons to believe that fibroblast senescence may be mechanistically distinct from aging in the animal. One incongruity is that cells from the severe Hutchinson-Guilford’s progeroids divide more times in vitro than cells from Werner’s individuals (Tollefsbol et al. 1984). Furthermore, fibroblasts from individuals with other nonaging-related diseases can display a reduced number of cell divisions in vitro (Weksberg et al. 1979). Thus, it remains to be demonstrated that there is a mechanistic relationship between in vitro senescence and aging.

A pervasive view holds that aging is a many-faceted process that will not conform to any single mechanistic cause. A corollary of this view is that many cellular processes break down at roughly the same time because there has been no selection for any greater duration of maintenance. Studies in the model systems of yeast and C. elegans argue against this idea because mutations in single genes can exert substantial extensions in the life span of the organism. Thus, there may be a limited number of cellular events that figure most prominently in aging, perhaps including fragmentation of the nucleolus. Once the Achilles’ heel(s) of the cell has been precisely identified, one can imagine interventions to slow changes that occur with aging. Meeting the challenges of aging and its accompanying infirmities has been a primary undertaking of biomedical research in the twentieth century. A search for the causes of aging will continue this mission into the next century. The spirit of Ponce de Leon lives on!
References

Allsopp, R.C., H. Vaziri, C. Patterson, S. Goldstein, E.V. Yun-
gai, A.B. Futcher, C.W. Greider, and C.B. Harley. 1992. Telomere lengths predicts replicative capacity of human fi- broblasts. Proc. Natl. Acad. Sci. 89:10114–10118.
Aparicio, O.M., B.L. Billington, and D.E. Gottschling. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287.
Austriaco, N.R. and L. Guarente. 1997. Changes of telomere length cause reciprocal changes in the life span of mother cells in S. cerevisiae. Proc. Natl. Acad. Sci. 94:9768–9772.
Bryk, M., M. Banerjee, M. Murphy, K.E. Knudsen, D.J. Garfinkle, and M.J. Curcio. 1997. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes & Dev. 11:255–269.
Campisi, J. 1996. Replicative senescence: An old lives’ tale? Cell 84:497–500.
D’mello, N.P. and S.M. Jazwinski. 1991. Telomere length cons- tancy during aging of Saccharomyces cerevisiae. J. Bacteri- olog. 173:6709–6713.
D’mello, N.P., A.M. Childress, D.S. Franklin, S.P. Kale, C. Pins- wasdi, and S.M. Jazwinski. 1994. Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J. Biol. Chem. 269:15451–15459.
Ellis, N.A., J. Groden, T. Ye, J. Straughen, D.J. Lennon, S. Ciocci, M. Protycheva, and J. German. 1995. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83:655–666.
Epstein, C.J., G.M. Martin, A.L. Schultz, and A.G. Motulsky. 1966. Werner’s syndrome: A review of its symptomatology, natural history, pathologic features, genetics, and relationship to the natural aging process. Medicine 45:177–221.
Ewbank, J.J., T.M. Barnes, B. Lakowski, M. Lussier, H. Bussey, and S. Hekimi. 1997. Structural and functional conservation of the Caenorhabditis elegans aging gene product is homologous to RecQ helicases. Science 275:980–983.
Finch, C.E. 1990. Longevity, senescence, and the genome. Uni- versity of Chicago Press, Chicago, IL.
Friedman, D.B. and T.E. Johnson. 1988. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86.
Gangloff, S., J.P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein. 1994. The yeast type I topoisomerase Top3 inter- acts with Sgs1, a DNA helicase homolog: A potential eu- karyotic reverse gyrase. Mol. Cell. Biol. 14:8391–8398.
Gompertz, B. 1825. On the nature of the function expressive of the natural aging process. Phil. Trans. Roy. Soc. 115:513–585.
Gottloib, S. and R.E. Esposito. 1989. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recom- bination in ribosomal DNA. Cell 56:771–776.
Gottschling, D.E., O.M. Aparicio, B.L. Billington, and V.A. Za- kian. 1990. Position effect at s Sir2 in yeast telomeres. Revers- ible repression of pol II transcription. Cell 63:751–762.
Guarente, L. 1996. Do changes in chromosomes cause aging? Cell 86:9–12. ———. 1997. What makes us tick? Science 275:943–944.
Hayflick, L. 1965. The limited in vitro lifetime of human dip- loid cell strains. Exp. Cell Res. 37:614–636.
Johnson, T. 1996. Cellular aging and cell death (ed. N. Hol- brook, G. Martin, and R. Lockshin), pp. 1–17. Wiley-Liss, New York, NY.
Kennedy, B.K., N.R. Austriaco, J., Z. Zhang, and L. Guarente. 1995. Mutation in the silencing gene Sir4 can delay aging in S. cerevisiae. Cell 80:485–496.
Kennedy, B.K., M. Gotta, D.A. Sinclair, K. Mills, D.S. McNabb, M. Murthy, S.M. Pak, T. Laroche, S.M. Gasser, and L. Guarente. 1997. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89:381–391.
Kenyon, C., J. Chang, E. Gensch, A. Rudner, and R. Tabtiang. 1993. A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464.
Kimura, K.D., H.A. Tissenbaum, Y. Liu, and G. Ruvkun. 1997. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946.
Lakowski, B. and S. Hekimi. 1996. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:1010–1013.
Lombard, D.B. and L. Guarente. 1996. Cloning the gene for Werner’s Syndrome, a disease with many symptoms of pre- mature aging. Trends Genet. 12:283–286.
Maillet, L., C. Boscheron, M. Gotta, S. Marcand, E. Gilson, and S.M. Gasser. 1996. Evidence for silencing compartments within the yeast nucleus: A role for telemere proximity and Sir protein concentration in silencer-mediated repression. Genes & Dev. 210:1796–1811.
Marcand, S., S.W. Buck, P. Moretti, E. Gilson, and D. Shore. 1996. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap1 protein. Genes & Dev. 10:1297–1309.
Morris, J.Z., H.A. Tissenbaum, and G. Ruvkin. 1996. A phos- phatidylinositol-3-OH kinase family member regulating lon- geity and diapause in Caenorhabditis elegans. Nature 382:536–539.
Mortimer, R.K. and J.R. Johnston. 1959. Life span of individual yeasts. Cell 116:751–762.
Palladino, F., T. Laroche, E. Gilson, A. Axelrod, L. Pillus, and S.M. Gasser. 1992. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75:543–555.
Pohley, H.-J. 1987. A formal mortality analysis for populations of unicellular organisms. Mech. Aging Dev. 38:231–243.
Proft, M., P. Kotter, D. Hedges, N. Bojunga, and K.-D. Entian. 1995. CATS, a new gene necessary for derepression of glu- cose-regulated enzymes in Saccharomyces cerevisiae. EMBO J. 14:6116–6126.
Rine, J. and I. Herskowitz. 1987. Four genes responsible for a position effect on expression from HML and HMR in Sac- charomyces cerevisiae. Genetics 116:9–22.
Salk, D., Y. Fujiwara, and G.M. Martin, eds. 1985. Werner’s Syndrome and human aging. Plenum Press, New York, NY.
Sinclair, D.A., K. Mills, and L. Guarente. 1997. Accelerate aging and nucleolar fragmentation in yeast Sgs1 mutant. Science 277:1313–1316.
Smith, J.S. and J.D. Boeke. 1997. An unusual form of tran- scriptional silencing in yeast ribosomal DNA. Genes & Dev. 11:241–254.

Stewart, E., C.R. Chapman, F. Al-Khodairy, A.M. Carr, and T. Enoch. 1997. rqh1+, a fission yeast gene related to the Bloom’s and Werner’s syndrome genes, is required for reversible S phase arrest. EMBO J. 16: 2682–2692.

Sun, J., S.P. Kale, A.M. Childress, C. Pinswasdi, and S.M. Jazwinski. 1994. Divergent roles of RAS1 and RAS2 in yeast longevity. J. Biol. Chem. 269: 18638–18645.

Tollefsbol, T.O. and H.J. Cohen. 1984. Werner’s Syndrome: An underdiagnosed disorder resembling premature aging. Age 7: 75–88.

Watt, P.M., E.J. Louis, R.H. Borts, and I.D. Hickson. 1995. Sgs1: A eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81: 253–260.

Watt, P.M., R.H. Hickson, R.H. Borts, and E.J. Louis. 1996. SGS1, a homologue of the Bloom’s and Werner’s Syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144: 935–945.

Weksberg, R., M. Buchwald, P. Sargent, M. Thompson, and L. Siminovitch. 1979. Cellular defects in patients with Fanconi anemia. J. Cell Physiol. 101: 311–324.

Wong, A., P. Boutis, and S. Hekimi. 1995. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139: 1247–1259.

Yu, C.-E., J. Oshima, Y.-H. Fu, E.M. Wijsman, F. Hisama, R. Alisch, S. Matthews, J. Nakura, T. Miki, S. Ouais, G.M. Martin, J. Mulligan, and G.D. Schellenberg. 1996. Positional cloning of the Werner’s syndrome gene. Science 272: 258–262.
Link between aging and the nucleolus

Leonard Guarente

Genes Dev. 1997, 11:
Access the most recent version at doi:10.1101/gad.11.19.2449