On the nonexistence of Einstein metric on 4-manifolds

Chanyoung Sung
National Institute for Mathematical Sciences
385-16 Doryong-dong Yuseong-gu Daejeon Korea

Abstract
By using the gluing formula of the Seiberg-Witten invariant, we show the nonexistence of Einstein metric on manifolds obtained from a 4-manifold with nontrivial Seiberg-Witten invariant by performing sufficiently many connected sums or appropriate surgeries along circles or homologically trivial 2-spheres with closed oriented 4-manifolds with negative definite intersection form.

1 Introduction
A smooth Riemannian manifold \((M, g)\) is called Einstein if it satisfies

\[Ric_g = cg, \]

where \(Ric_g\) denotes the Ricci curvature of \(g\), and \(c\) is a constant. When the dimension of \(M\) is less than 4, any Einstein manifold is a space form whose classification is well-known. In higher dimensions, it is in general difficult to decide whether a manifold admits an Einstein metric. Unlike the dimension greater than 4 where no topological obstruction is known, any closed orientable 4 manifold \(M\) admitting an Einstein metric must satisfy the Hitchin-Thorpe inequality \([3, 6, 13]\)

\[2\chi(M) + 3|\tau(M)| \geq 0 \]

*email address: cysung@nims.re.kr Key Words: Einstein metric, Seiberg-Witten theory MS Classification(2000): 53C25,57R57, 57M50
with equality held only by a quotient of $K3$ surface or 4-torus, where $\chi(M)$ and $\tau(M)$ respectively denote the Euler characteristic and the signature of M. This well-known inequality is the consequence of the 4-dimensional Chern-Gauss-Bonnet formula.

Since the 4-dimensional geometry is complicated by the possible existence of many smooth structures, the condition for the existence of Einstein metric on 4-manifolds inevitably involve the underlying smooth structure. It was the Seiberg-Witten theory that has brought a remarkable improvement of the Hitchin-Thorpe condition. LeBrun exploited the curvature estimate coming from the Seiberg-Witten theory to derive that any closed Einstein 4-manifold M with a monopole class satisfies

$$\chi(M) \geq 3\tau(M)$$

with equality held only by a compact complex hyperbolic 2-space or a flat 4-manifold ([7]), and

Theorem 1.1 (LeBrun [9]) Let M be a smooth closed oriented 4-manifold with a nontrivial Seiberg-Witten invariant. Then $M \# k\mathbb{C}P^2 \# l(S^1 \times S^3)$ does not admit Einstein metric if $k + 4l > 0$ and $k + 4l \geq \frac{1}{3}(2\chi(M) + 3\tau(M))$.

In this article, we generalize this theorem to :

Theorem 1.2 Let M be a smooth closed oriented 4-manifold with a nontrivial Seiberg-Witten invariant and N be a smooth closed oriented 4-manifold with $b_2^+(N) = 0$. Then $M \# N$ does not admit Einstein metric if

$$b_2(N) + 4b_1(N) > 0$$

and

$$b_2(N) + 4b_1(N) \geq \frac{1}{3}(2\chi(M) + 3\tau(M)).$$

Definition 1 Let M_1 and M_2 be smooth n-manifolds and suppose that k-spheres c_1 and c_2 are embedded into M_1 and M_2 respectively with trivial normal bundle. A surgery of M_1 and M_2 along c_i‘s are defined as the result of deleting tubular neighborhood of each c_i and gluing the remainders by identifying two boundaries $S^k \times S^{n-k-1}$ using a diffeomorphism of S^k and the reflection map of S^{n-k-1}.
Note that the surgery on M with $(S^1 \times S^3) \# N$ along a null-homotopic circle in M and a circle representing $[S^1] \times \{\text{pt}\} \in H_1(S^1 \times S^3, \mathbb{Z})$ gives $M \# N$. More generally, we will prove:

Theorem 1.3 Let M be a smooth closed oriented 4-manifold with a nontrivial Seiberg-Witten invariant and N_i be a smooth closed oriented 4-manifold with $b_2^+(N_i) = 0$ and $b_1(N_i) \geq 1$ for $i = 1, \cdots, m$. Suppose that $c_i \subset N_i$ is an embedded circle nontrivial in $H_1(N_i, \mathbb{R})$ for $i = 1, \cdots, m$, and \tilde{M} is a manifold obtained from M by performing a surgery with $\bigcup_{i=1}^m N_i$ along $\bigcup_{i=1}^m c_i$.

Then \tilde{M} does not admit Einstein metric if

$$\sum_{i=1}^m (b_2(N_i) + 4(b_1(N_i) - 1)) > 0$$

and

$$\sum_{i=1}^m (b_2(N_i) + 4(b_1(N_i) - 1)) \geq \frac{1}{3} (2\chi(M) + 3\tau(M)).$$

Most generally, we can also allow surgeries along homologically trivial 2-spheres to give:

Theorem 1.4 Let M be a smooth closed oriented 4-manifold with a nontrivial Seiberg-Witten invariant, and N_i, \tilde{N}_j for $i = 1, \cdots, m$ and $j = 1, \cdots, n$ be smooth closed oriented 4-manifolds such that $b_2^+(N_i) = b_2^+(\tilde{N}_j) = 0$ and $b_1(N_i) \geq 1$. Suppose that $c_i \subset N_i$ for $i = 1, \cdots, m$ is an embedded circle nontrivial in $H_1(N_i, \mathbb{R})$, and $F_j \subset M$ and $\tilde{F}_j \subset \tilde{N}_j$ for $j = 1, \cdots, n$ are embedded 2-spheres trivial in $H_2(M, \mathbb{R})$ and $H_2(\tilde{N}_j, \mathbb{R})$ respectively.

If \tilde{M} is a manifold obtained from M by performing a surgery with $\bigcup_{i=1}^m N_i$ along $\bigcup_{i=1}^m c_i$, and with $\bigcup_{j=1}^n \tilde{N}_j$ along $\bigcup_{j=1}^n F_j$ and $\bigcup_{j=1}^n \tilde{F}_j$, then \tilde{M} does not admit Einstein metric if

$$\sum_{i=1}^m (b_2(N_i) + 4(b_1(N_i) - 1)) + \sum_{j=1}^n (b_2(\tilde{N}_j) + 4(b_1(\tilde{N}_j) + 1)) \geq \frac{1}{3} (2\chi(M) + 3\tau(M)).$$

2 Computation of Seiberg-Witten invariant

We will give a brief definition of the Seiberg-Witten invariant. Let M be a smooth oriented Riemannian 4-manifold and \mathfrak{s} be a Spinc structure on it.
We assume that M is closed or noncompact with a cylindrical-end metric. Let $A(M)$ be the graded algebra over \mathbb{Z} defined by

$$\mathbb{Z}[H_0(M; \mathbb{Z})] \otimes \wedge \ast H_1(M; \mathbb{Z})$$

with $H_0(M; \mathbb{Z})$ grading two and $H_1(M; \mathbb{Z})$ grading one. An element in $A(M)$ canonically gives a cocycle of the Seiberg-Witten moduli space, i.e. the solution space modulo gauge transformations of the Seiberg-Witten equations of (M, s). Thus the evaluation on the fundamental cycle of the moduli space is the Seiberg-Witten invariant as a function

$$SW_{M,s} : A(M) \to \mathbb{Z}.$$

When $b^+_2(M) > 1$, this is independent of a Riemannian metric and a perturbation term, thus giving a topological invariant. (If $b^+_2(M) = 1$, it may depend on the chamber.) The first Chern class of a Spinc structure on M whose Seiberg-Witten invariant is nontrivial is called a basic class of M. For more details on the Seiberg-Witten invariant, the readers are referred to [10, 11, 12].

We will need the following gluing formulae of the Seiberg-Witten invariant.

Lemma 2.1 Let N be a closed oriented smooth 4-manifold with negative-definite intersection form Q. Then there exists a Spinc structure s' on N satisfying $c_1^2(s') = -b_2(N)$.

Proof. By the Donaldson’s theorem, Q is diagonalizable. (The original Donaldson’s theorem [4] is stated for the simply-connected case, but a simple application of the Mayer-Vietoris argument gives this generalization.) Let $\{\alpha_1, \cdots, \alpha_{b_2(N)}\}$ be a basis of $H^2(N, \mathbb{Z}) \otimes \mathbb{Q}$ diagonalizing Q.

We have to show that there exists an element $x \in H^2(N, \mathbb{Z})$ such that $Q(x, x) = -b_2(N)$, and x is characteristic, i.e. $Q(x, \alpha) \equiv Q(\alpha, \alpha) \mod 2$ for any $\alpha \in H^2(N, \mathbb{Z})$. This is done by taking $x = \sum_{i=1}^{b_2(N)} \pm \alpha_i$.

Theorem 2.2 Let M and N be smooth closed oriented 4-manifolds such that $b^+_2(M) > 0$, $b^+_2(N) = 0$, and $b_1(N) \geq 1$. Let $c \subset N$ be an embedded circle nontrivial in $H_1(N, \mathbb{R})$ and \tilde{M} be the manifold obtained by performing a surgery on M with N along c.

If \(\tilde{s} \) is the Spin\(^c\) structure on \(\tilde{M} \) obtained by gluing a Spin\(^c\) structure \(s \) on \(M \) and a Spin\(^c\) structure \(s' \) on \(N \) satisfying \(c^2_1(s') = -b_2(N) \), then

\[
SW_{\tilde{M}, \tilde{s}}(a \cdot [d_1] \cdots [d_{b_1(N)-1}]) = \pm SW_{M, s}(a)
\]

for \(a \in A(M) \), where \([d_1], \cdots, [d_{b_1(N)-1}]\) along with \(r[c] \) for some \(r \in \mathbb{Q} \) form a basis for the non-torsion part of \(H_1(N, \mathbb{Z}) \).

Proof. See [12].

Theorem 2.3 Let \(M \) and \(N \) be smooth closed oriented 4-manifolds such that \(b_2^+(M) > 0 \), and \(b_2^+(N) = 0 \). Suppose that \(F \subset M \) and \(\tilde{F} \subset N \) are embedded 2-spheres trivial in \(H_2(M, \mathbb{R}) \) and \(H_2(N, \mathbb{R}) \) respectively, and \(\tilde{M} \) is the manifold obtained by performing a surgery on \(M \) with \(N \) along \(F \) and \(\tilde{F} \).

If \(\tilde{s} \) is the Spin\(^c\) structure on \(\tilde{M} \) obtained by gluing a Spin\(^c\) structure \(s \) on \(M \) and a Spin\(^c\) structure \(s' \) on \(N \) satisfying \(c^2_1(s') = -b_2(N) \), then

\[
SW_{\tilde{M}, \tilde{s}}(a \cdot [\gamma] \cdot [d_1] \cdots [d_{b_1(N)}]) = \pm SW_{M, s}(a)
\]

for \(a \in A(M) \), where \(\gamma \) is a circle \(\{ \text{pt} \} \times D^2 \) in a small tubular neighborhood \(F \times D^2 \) of \(F \), and \([d_1], \cdots, [d_{b_1(N)}]\) form a basis for the non-torsion part of \(H_1(N, \mathbb{Z}) \).

Proof. Perform a surgery on \(M \) with \(S^4 \) along \(F \) to obtain \(M' \). In the same way, we get \(N' \). The surgery on \(M' \) with \(N' \) along the circle \(\gamma \) gives \(\tilde{M} \).

Lemma 2.4 Let \(\tilde{M} \) be the manifold obtained from \(M \) by deleting a small tubular neighborhood of \(F \). Then

\[
H_1(M', \mathbb{R}) \cong H_1(\tilde{M}, \mathbb{R}) \cong H_1(M, \mathbb{R}) \oplus \mathbb{R},
\]

and

\[
H_2(M', \mathbb{R}) \cong H_2(\tilde{M}, \mathbb{R}) \cong H_2(M, \mathbb{R}),
\]

where the additional \(\mathbb{R} \)-factor is generated by \([\gamma]\), and the isomorphisms are induced by the obvious inclusions. Likewise for \(N' \).
Proof. Obviously \(H_1(M', \mathbb{R}) \simeq H_1(\hat{M}, \mathbb{R}) \), because \(\pi_1(M') \simeq \pi_1(\hat{M}) \) by the Seifert-Van Kampen theorem. To see \(H_1(\hat{M}, \mathbb{R}) \simeq H_1(M, \mathbb{R}) \oplus \mathbb{R} \), it is enough to show that \(i_* \) in the following commutative diagram of exact sequences is injective.

\[
\begin{array}{ccccccccc}
H_2(\hat{M}, \partial\hat{M}) & \xrightarrow{\partial_*} & H_1(\partial\hat{M}) & \xrightarrow{i_*} & H_1(\hat{M}) \\
P D & & & & & & & & P D \\
H^2(\hat{M}) & \xrightarrow{i^*} & H^2(\partial\hat{M}) & \xrightarrow{\partial^*} & H^3(\hat{M}, \partial\hat{M}).
\end{array}
\]

Suppose not. Then \(i^* \) in the above diagram is surjective. This means that there exists a nonzero element in \(H^2(M) \), which is dual to \([F]\), yielding a contradiction. This also means that \([F]\) is zero in \(H_2(M, \mathbb{R}) \), which will be used just below.

The fact \(H_2(\hat{M}, \mathbb{R}) \simeq H_2(M, \mathbb{R}) \) follows from the exact sequence

\[
H_2(\partial\hat{M}) \xrightarrow{i_*} H_2(\hat{M}) \oplus H_2(S^2 \times D^2) \xrightarrow{\phi} H_2(M) \to 0,
\]

and similarly the fact \(H_2(\hat{M}, \mathbb{R}) \simeq H_2(M', \mathbb{R}) \) follows from the exact sequence

\[
H_2(\partial\hat{M}) \xrightarrow{i_*} H_2(\hat{M}) \oplus H_2(D^3 \times S^1) \xrightarrow{\phi} H_2(M') \to 0,
\]

where the sequences end with 0, because \(i_* : H_1(\partial\hat{M}) \to H_1(\hat{M}) \) is injective.

Note that \(s \) and \(s' \) restrict to be trivial on \(F \) and \(\bar{F} \) respectively. Thus we abuse the notation to let \(s \) and \(s' \) be the induced Spin\(^c\) structures on \(M' \) and \(N' \) respectively. By Ozsváth and Szabó [11],

\[
SW_{M', s}(a \cdot [\gamma]) = \pm SW_{M, s}(a)
\]

for \(a \in \mathbb{A}(M) \). Applying the previous theorem [2.2],

\[
SW_{M', s}(a \cdot [\gamma]) = \pm SW_{\tilde{M}', \tilde{s}}(a \cdot [\gamma] \cdot [d_1] \cdots [d_{b_1(N)}])
\]

for \(a \in \mathbb{A}(M) \).
3 Proof of Theorem 1.3

We need to have a basic class on \(\tilde{M} \). Let \(s \) be the \(\text{Spin}^c \) structure on \(M \) with a nontrivial Seiberg-Witten invariant. Applying theorem 2.2 successively, \(\tilde{M} \) has nontrivial Seiberg-Witten invariant for \(\tilde{s} \). Write \(c_1(\tilde{s}) \) as \(c_1(s) + E \) where \(E = c_1(s') \) coming from \(\cup_{i=1}^m N_i \).

Then the proof proceeds in a similar way to [9]. First,

\[
\chi(\tilde{M}) = \chi(M) + \sum_{i=1}^m \chi(N_i)
= \chi(M) + \sum_{i=1}^m (2 - 2b_1(N_i) + b_2(N_i)),
\]

and

\[
H_2(\tilde{M}, \mathbb{Z}) \cong H_2(M, \mathbb{Z}) \oplus (\oplus_{i=1}^m H_2(N_i, \mathbb{Z}))
\]

by a simple Mayer-Vietoris argument. (Here, we use the fact that \(c_i \)'s are all non-torsion.) Thus

\[
2\chi(\tilde{M}) + 3\tau(\tilde{M}) = 2\chi(M) + 3\tau(M) - \sum_{i=1}^m (b_2(N_i) + 4(b_1(N_i) - 1)).
\]

Lemma 3.1 Any Riemannian metric \(g \) on \(\tilde{M} \) satisfies

\[
\frac{1}{4\pi^2} \int_{\tilde{M}} \left(\frac{s_g^2}{24} + 2|W_g|^2 \right) \, d\mu_g \geq \frac{2}{3} \left(2\chi(M) + 3\tau(M) \right).
\]

Proof. Since \(c_1(\tilde{s}) + E \) and \(c_1(\tilde{s}) - E \) are basic classes of \(\tilde{M} \), LeBrun’s estimate [9] gives

\[
\frac{1}{4\pi^2} \int_{\tilde{M}} \left(\frac{s_g^2}{24} + 2|W_g|^2 \right) \, d\mu_g \geq \frac{2}{3} \left((c_1(\tilde{s}) \pm E)^+ \right)^2,
\]

where \((\cdot)^+\) denotes the self-dual harmonic part. On the other hand,

\[
((c_1(\tilde{s}) \pm E)^+)^2 = (c_1(\tilde{s})^+ \pm E^+)^2 \\
= (c_1(\tilde{s})^+)^2 \pm 2c_1(\tilde{s})^+ \cdot E^+ + (E^+)^2 \\
\geq (c_1(\tilde{s})^+)^2 \pm 2c_1(\tilde{s})^+ \cdot E^+.
\]

7
Thus at least one of \(((c_1(s) + E)^+)\) and \(((c_1(s) - E)^+)\) should be greater than or equal to \((c_1(s)^+)\). Say \(((c_1(s) + E)^+) \geq (c_1(s)^+)\). Then

\[
((c_1(s) + E)^+) \geq c_1^2(s) \geq 2\chi(M) + 3\tau(M),
\]

where we used the fact that \(d(s) := \frac{1}{4}(c_1^2(s) - (2\chi(M) + 3\tau(M)))\), the dimension of the Seiberg-Witten moduli space of \((M, s)\) is nonnegative. □

Now suppose that \(g\) is an Einstein metric on \(\tilde{M}\). Then the Chern-Gauss-Bonnet formula gives:

\[
2\chi(\tilde{M}) + 3\tau(\tilde{M}) = \frac{1}{4\pi^2} \int_{\tilde{M}} \left(\frac{s^2}{24} + 2|W^+|^2 + \frac{|\tilde{r}|^2}{2} \right) d\mu_g
\]

\[
= \frac{1}{4\pi^2} \int_{\tilde{M}} \left(\frac{s^2}{24} + 2|W^+|^2 \right) d\mu_g
\]

\[
\geq \frac{2}{3} (2\chi(M) + 3\tau(M)).
\]

Combined with (1), it follows that

\[
\frac{1}{3} (2\chi(M) + 3\tau(M)) \geq \sum_{i=1}^{m} (b_2(N_i) + 4(b_1(N_i) - 1)) . \quad (3)
\]

It remains to deal with the equality case in the above inequality. Suppose the equality holds. Then from the above we have

\[
((c_1(s) + E)^+) = c_1^2(s) = 2\chi(M) + 3\tau(M). \quad (4)
\]

Suppose \(\sum_{i=1}^{m} (b_2(N_i) + 4(b_1(N_i) - 1)) > 0\), which implies

\[
((c_1(s) + E)^+) \geq 0
\]

by (3) and (4).

From the the equality in (2), LeBrun’s result [9] says that \((\tilde{M}, g)\) must be almost-Kähler with almost-Kähler form a multiple of \((c_1(s) + E)^+\) such that the basic class \(c_1(s) + E\) being the anti-canonical class of the associated almost-complex structure, and the almost-Kähler form is an eigenvector of \(W^+\) everywhere.
Applying Armstrong’s result \cite{Armstrong} that any closed almost-Kähler Einstein 4-manifold whose almost-Kähler form is an eigenvector of W_+ everywhere is Kähler, or Apostolov-Armstrong-Drăghici’s result \cite{Apostolov-Armstrong-Drăghici} that any closed almost-Kähler 4-manifold which saturates (2) and whose Ricci tensor is invariant under the almost-complex structure is Kähler, we conclude that (\tilde{M}, g) is Kähler.

Since (\tilde{M}, g) is Kähler-Einstein, we can apply the Enriques-Kodaira classification of compact complex surfaces. Since \tilde{M} has a nontrivial Seiberg-Witten invariant, its Kodaira dimension is nonnegative. Then it is minimal, because it admits a Kähler-Einstein metric.

Now the anti-canonical class is non-torsion, because $c_2^1(s) > 0$ from (4). Then the basic classes of such a minimal Kähler surface are numerically equivalent to $rc_1(K)$, where $|r| \leq 1$ is a rational number, and K is the canonical line bundle. (See \cite{Wu}.) But $\pm(c_1(s) \pm E)$ are basic classes of \tilde{M}. This means that $E = 0$, implying that

$$b_2(N_i) = 0 \quad \forall i.$$

Finally using Wu’s formula \cite{Wu} for a closed almost-complex 4-manifold, and (4),

$$0 = (c_1(s) + E)^2 - (2\chi(\tilde{M}) + 3\tau(\tilde{M}))$$

$$= c_1(s)^2 - \sum_{i=1}^{m} b_2(N_i) - (2\chi(M) + 3\tau(M) - \sum_{i=1}^{m} (b_2(N_i) + 4(b_1(N_i) - 1)))$$

$$= -\sum_{i=1}^{m} 4(b_1(N_i) - 1),$$

implying that

$$b_1(N_i) = 1 \quad \forall i.$$

Thus $\sum_{i=1}^{m} (b_2(N_i) + 4(b_1(N_i) - 1)) = 0$, yielding a contradiction.

4 Proof of Theorem 1.4

By successively applying theorem 2.2 and 2.3 the Seiberg-Witten invariant of (\tilde{M}, \tilde{s}) is nontrivial, where \tilde{s} is the Spinc structure gotten by gluing s on M which has nontrivial Seiberg-Witten invariant and s' on $(\bigcup_{i=1}^{m} N_i) \cup (\bigcup_{j=1}^{n} \bar{N}_j)$ such that $c_2^1(s'|_{N_i}) = -b_2(N_i)$ and $c_2^1(s'|_{\bar{N}_j}) = -b_2(\bar{N}_j)$ for all i, j.

9
As before, we have

\[
\chi(\tilde{M}) = \chi(M) + \sum_{i=1}^{m} \chi(N_i) + \sum_{j=1}^{n} (\chi(\tilde{N}_j) - 4)
\]

\[
= \chi(M) + \sum_{i=1}^{m} (2 - 2b_1(N_i) + b_2(N_i)) + \sum_{j=1}^{n} (-2 - 2b_1(\tilde{N}_j) + b_2(\tilde{N}_j)),
\]

and

\[
H_2(\tilde{M}, \mathbb{R}) \simeq H_2(M, \mathbb{R}) \oplus (\oplus_{i=1}^{m} H_2(N_i, \mathbb{R})) \oplus (\oplus_{j=1}^{n} H_2(\tilde{N}_j, \mathbb{R}))
\]

by a simple Mayer-Vietoris argument. (Here, we use the fact that c_i’s are non-torsion, and F_j’s and \bar{F}_j’s are all torsion.) Thus

\[
2\chi(\tilde{M}) + 3\tau(\tilde{M}) = 2\chi(M) + 3\tau(M) - \sum_{i=1}^{m} (b_2(N_i) + 4(b_1(N_i) - 1))
\]

\[
- \sum_{j=1}^{n} (b_2(\tilde{N}_j) + 4(b_1(\tilde{N}_j) + 1)).
\]

Now proceeding in the same way as theorem 1.3, the existence of an Einstein metric on \tilde{M} dictates that

\[
\frac{1}{3}(2\chi(M) + 3\tau(M)) \geq \sum_{i=1}^{m} (b_2(N_i) + 4(b_1(N_i) - 1)) + \sum_{j=1}^{n} (b_2(\tilde{N}_j) + 4(b_1(\tilde{N}_j) + 1)),
\]

and if the equality holds, then the left hand side of the above inequality is positive, and the same argument as theorem 1.3 gives that

\[b_2(N_i) = b_2(\tilde{N}_j) = 1 \quad \forall i, j,\]

and

\[
\sum_{i=1}^{m} 4(b_1(N_i) - 1) + \sum_{j=1}^{n} 4(b_1(\tilde{N}_j) + 1) = 0
\]

which is a contradiction.
References

[1] V. Apostolov, J. Armstrong, and T. Drăghici, Local rigidity of certain classes of almost Kähler 4-manifolds, Ann. Glob. Anal. Geom. 21 (2002) 151–176.

[2] J. Armstrong, An ansatz for almost-Kähler, Einstein 4-manifolds, J. Reine Angew. Math. 542 (2002) 53–84.

[3] A. Besse, Einstein Manifolds, Springer-Verlag (1987).

[4] S. Donaldson, An application of gauge theory to four dimensional topology, J. Diff. Geom. 18 (1983), 279–315.

[5] F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156–172.

[6] N. Hitchin, On compact four-dimensional Einstein manifolds, J. Diff. Geom. 9 (1974), 435–441.

[7] C. LeBrun, Einstein metrics and Mostow rigidity, Math. Res. Lett. 2 (1995), 1–8.

[8] C. LeBrun, Four manifolds without Einstein metrics, Math. Res. Lett. 3 (1996), 133–147.

[9] C. LeBrun, Ricci curvature, minimal volumes, and Seiberg-Witten theory, Invent. Math. 145 (2001), 279–316.

[10] J. Morgan, The Seiberg-Witten Equations and applications to the topology of smooth four-manifolds, Princeton University Press, 1996.

[11] P. Ozsváth and Z. Szabó, Higher type adjunction inequalities in Seiberg-Witten theory, J. Diff. Geom. 55 (2000), 385–440.

[12] C. Sung, Surgery, Yamabe invariant, and Seiberg-Witten theory, to appear, arXiv:0710.2375

[13] J. Thorpe, Some remarks on the Gauss-Bonnet integral, J. Math. Mech. 18 (1969), 779–786.

[14] W.-T. Wu, Sur le classes caractéristique des structures fibrées sphériques, Actualités Sci. Ind. 1183 (1952), 1–89.