On some new normed sequence spaces

G Pranajaya and E Herawati

1Department of Mathematics, University of Sumatera Utara, Indonesia
E-mail: 1gunturpranajaya13@gmail.com, 2herawaty.elv@gmail.com

Abstract. The sequence spaces $(c_0)_\Lambda$, c_Λ, and $(\ell_\infty)_\Lambda$ was introduced and studied by Mursaleen and Noman [11]. In the present paper, for M is a generalization of Orlicz function, we extend the spaces Mursaleen and Noman’s to $[c_0(M)]_\Lambda$, $[c(M)]_\Lambda$, and $[\ell_\infty(M)]_\Lambda$, respectively, and investigate some topological properties of these spaces. Finally, we determine the necessary and sufficient conditions of an infinite matrix A belonging to classes $(c_0(M), c_0(M))$, $(c(M), c(M))$, and $(\ell_\infty(M), \ell_\infty(M))$.

1. Introduction and Preliminaries

By ω, we denote the space of all sequences of real or complex numbers. Any linear subspace of ω is called a sequence space. We shall write c_0, c, and ℓ_∞ for the spaces of all convergent to zero, convergent, and bounded sequences, respectively.

A sequence space X is called a BK space provided X is a complete normed space and a function $p_k : X \to \mathbb{R}$ defined by $x \mapsto p_k(x) = x_k$ is continuous for all $k \in \mathbb{N}$ (see [5]).

The sequence spaces c_0, c, and ℓ_∞ are BK spaces equipped with sup-norm $\|\cdot\|_\infty$ given by

$$\|x\| = \sup_{k \in \mathbb{N}} |x_k|.$$

Let $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk}, where $n, k \in \mathbb{N}$, and X, Y be the sequence spaces. The map A from X into Y is said to be matrix transformation if $Ax = (A_n(x))$ exists in Y where

$$A_n(x) = \sum_{k=0}^{\infty} a_{nk}x_k \text{ converges for all } n \in \mathbb{N} \text{ and all } x \in X. \quad (1)$$

We denote (X, Y) as the class of all infinite matrices that map X into Y. Thus, $A \in (X, Y)$ if and only if (1) hold, and $Ax \in Y$ for all $x \in X$. The theory of matrix transformation deals with establishing necessary and sufficient conditions on the entries of a matrix to map a sequence space X into a sequence space Y.

For a sequence space X, the matrix domain of an infinite matrix A in X is a sequence space defined by

$$X_A = \left\{ x = (x_k) \in \omega : Ax \in X \right\}.$$

The idea of constructing a new sequence space by means of the matrix domain of a particular limitation method has recently been studied by several authors, e.g., Altay and Başar [1],
Mursaleen et al. [2], Mursaleen and Noman [11, 12], Malkowsky [9], Malkowsky and Savas [10]. Mursaleen and Noman [11] introduced \(\Lambda \)-matrix and constructed the matrix domains on \(\Lambda \)-matrix in the classical sequence spaces \(c_0 \), \(c \), and \(\ell_\infty \). They examined some topological properties, established inclusion relations concerning with those spaces, determined their \(\alpha \)-, \(\beta \)-, \(\gamma \)-duals, and characterized some relate matrix classes.

On the other side, Lindenstrauss and Tzafriri [7] introduced the sequence space defined by Orlicz function as follows:

\[
\Omega = \{ x = (x_k) \in \omega : (\exists \rho > 0) \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty \}
\]

which is called **Orlicz sequence space**. The space \(\Omega \) equipped with norm

\[
\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\}
\]

becomes a Banach space.

Using the matrix domain \(X_\Lambda \) defined by Mursaleen and Noman [11], in this work, we introduce \(\Lambda \)-matrix domain for the sequences generated by a generalization of Orlicz function \(M \), denoted by \([X(M)]_\Lambda \) where \(X \in \{ c_0, c, \ell_\infty \} \). Furthermore, we investigate some topological properties of these spaces over the norm spaces, and give the necessary and sufficient conditions on an infinite matrix \(A \) belonging to classes \(\{ c_0(M), c_0(M) \} \), \(\{ c(M), c(M) \} \), and \(\{ \ell_\infty(M), \ell_\infty(M) \} \).

2. Results

2.1. The Sequence Space \([X(M)]_\Lambda\)

A function \(M : \mathbb{R}^+ \to \mathbb{R}^+ \) is called a **generalization of Orlicz function** which is vanishing at zero, non decreasing, and continuous. A generalization of Orlicz function \(M \) is said to satisfy **\(\Delta_2 \)-condition** for all values of \(x \) if there exists a constant \(K > 0 \) such that \(M(2x) \leq KM(x) \) for \(x \geq 0 \). Furthermore, in [11], Mursaleen and Noman defined the infinite matrix \(\Lambda = (\lambda_{nk}) \) by

\[
\lambda_{nk} = \begin{cases} \frac{\lambda_k - \lambda_{k-1}}{\lambda_n} & ; 0 \leq k \leq n \\ 0 & ; k > n \end{cases}
\]

where \(\lambda = (\lambda_k) \) be a strictly increasing sequence of positive reals tending to infinity, that is, \(0 < \lambda_0 < \lambda_1 < \cdots \) and \(\lambda_k \to \infty \) as \(k \to \infty \). By using (2), in the present section we define the sequence space \([X(M)]_\Lambda\) where \(X \in \{ c_0, c, \ell_\infty \} \) and \(M \) is a generalization of Orlicz function, and prove that these sequence spaces according to its norm are complete normed spaces. These sequence spaces are as follows:

\[
[c_0(M)]_\Lambda = \left\{ x = (x_k) \in \omega : (\exists \rho > 0) M \left(\frac{|A_{nk}(x)|}{\rho} \right) \to 0, n \to \infty \right\},
\]

\[
[c(M)]_\Lambda = \left\{ x = (x_k) \in \omega : (\exists \rho > 0, l \in \mathbb{R}) M \left(\frac{|A_{nk}(x)|}{\rho} \right) \to l, n \to \infty \right\}, \text{ and}
\]

\[
[\ell_\infty(M)]_\Lambda = \left\{ x = (x_k) \in \omega : (\exists \rho > 0) \sup_{n \in \mathbb{N}} M \left(\frac{|A_{nk}(x)|}{\rho} \right) < \infty \right\}.
\]

Now, we may begin with the following results which is essential in the text.
2.2. Linear Topological Structure of $[X(M)]_\Lambda$

In this section, we examine some topological properties of the sequence spaces defined above.

Theorem 2.1. If M is a convex function, then the sequence space $[X(M)]_\Lambda$ for $X \in \{c_0, c, \ell_\infty\}$ is linear space over the set of real numbers \mathbb{R}.

Proof. We prove the theorem for $X = \ell_\infty$. Let $x, y \in [\ell_\infty(M)]_\Lambda$ and $\alpha, \beta \in \mathbb{R}$, then there exist some positive ρ_1 and ρ_2 such that

$$\sup_{n \in \mathbb{N}} M \left(\frac{\Lambda_n(x)}{\rho_1} \right) < \infty \text{ and } \sup_{n \in \mathbb{N}} M \left(\frac{\Lambda_n(y)}{\rho_2} \right) < \infty.$$

Take $\rho = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$, then for a convex function M we get

$$\sup_{n \in \mathbb{N}} M \left(\frac{|\Lambda_n(ax + \beta y)|}{\rho} \right) \leq \sup_{n \in \mathbb{N}} M \left(\frac{(|\alpha|\Lambda_n(x))}{2} + \frac{(|\beta|\Lambda_n(y))}{2} \right) \leq \sup_{n \in \mathbb{N}} M \left(\frac{\Lambda_n(x)}{\rho_1} \right) + \frac{1}{2} \sup_{n \in \mathbb{N}} M \left(\frac{\Lambda_n(y)}{\rho_2} \right) < \infty.$$

This proves that $[\ell_\infty(M)]_\Lambda$ is linear space. \hfill \qed

It is easy to show that $[c_0(M)]_\Lambda$ and $[c(M)]_\Lambda$ are also linear spaces.

Theorem 2.2. If M satisfy Δ_2-condition, then the space $[X(M)]_\Lambda$ for $X \in \{c_0, c, \ell_\infty\}$ is complete normed space equipped with the norm defined by

$$\|x\|_{[X(M)]_\Lambda} = \inf \left\{ \rho > 0 : \sup_{n \in \mathbb{N}} M \left(\frac{\Lambda_n(x)}{\rho} \right) \leq 1 \right\} \tag{3}$$

Proof. We prove the theorem for $X = \ell_\infty$ and the other cases will follow similarly. Let $x, y \in [\ell_\infty(M)]_\Lambda$. It is easily seen that $\|x\|_{[\ell_\infty(M)]_\Lambda} \geq 0$. Next, if $x = 0$, then obviously $\|x\|_{[\ell_\infty(M)]_\Lambda} = 0$. Conversely, suppose $\|x\|_{[\ell_\infty(M)]_\Lambda} = 0$, then for every $\epsilon > 0$ we get $\|x\|_{[\ell_\infty(M)]_\Lambda} < \epsilon$. This implies there exists some ρ_0 with $0 < \rho_0 < \epsilon$ such that

$$\sup_{n \in \mathbb{N}} M \left(\frac{\Lambda_n(x)}{\epsilon} \right) < \sup_{n \in \mathbb{N}} M \left(\frac{\Lambda_n(x)}{\rho_0} \right) \leq 1.$$

Since M is a generalization of Orlicz function, it follows that for every $\epsilon > 0$ and for every $n \in \mathbb{N}$,

$$|\Lambda_n(x)| = \left| \frac{1}{\lambda_n} \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1})x_k \right| = 0.$$

Under the assumption that $\lambda = (\lambda_k)$ is a strictly increasing sequence of positive real numbers, it is easy to check by mathematical induction that $x_k = 0$ for every $k \in \mathbb{N}$. Thus, $x = 0$.

Furthermore, let $x \in [\ell_\infty(M)]_\Lambda$ and $\alpha \in \mathbb{R}$. If $\alpha = 0$, it is clear that the homogeneous property of the norm holds. Assume $\alpha \neq 0$, we get

$$\|\alpha x\|_{[\ell_\infty(M)]_\Lambda} = |\alpha| \inf \left\{ \frac{\rho}{|\alpha|} > 0 : \sup_{n \in \mathbb{N}} M \left(\frac{\Lambda_n(x)}{\rho} \right) \leq 1 \right\}.$$
This gives $\|ax\|_{(\ell_\infty(M))_A} = |\alpha|\|x\|_{(\ell_\infty(M))_A}$.

Now, let $x, y \in [\ell_\infty(M)]_A$, then there exists some $\rho_1, \rho_2 > 0$ such that

$$\sup_{n \in \mathbb{N}} M\left(\frac{|A_n(x)|}{\rho_1}\right) \leq 1 \quad \text{and} \quad \sup_{n \in \mathbb{N}} M\left(\frac{|A_n(y)|}{\rho_2}\right) \leq 1.$$

Hence, if we choose $\rho = \rho_1 + \rho_2$, then by the properties of M, we have $M\left(\frac{|A_n(x+y)|}{\rho}\right) \leq M\left(\frac{|A_n(x)|}{\rho_1}\right) + M\left(\frac{|A_n(y)|}{\rho_2}\right)$ for all $n \in \mathbb{N}$. Consequently, $\|x + y\|_{(\ell_\infty(M))_A} \leq \|x\|_{(\ell_\infty(M))_A} + \|y\|_{(\ell_\infty(M))_A}$. Hence, $[\ell_\infty(M)]_A$ is a normed space.

Now, suppose that (x^i) be any Cauchy sequence in $[\ell_\infty(M)]_A$. Then, for each $\epsilon > 0$ there exists $i_0 \in \mathbb{N}$ and ρ_0 where $0 < \rho_0 < \epsilon$ such that

$$\sup_{n \in \mathbb{N}} M\left(\frac{|A_n(x^j - x^i)|}{\epsilon}\right) < \sup_{n \in \mathbb{N}} M\left(\frac{|A_n(x^j - x^i)|}{\rho_0}\right) \leq 1.$$

Hence, for every $\epsilon > 0$, $M\left(\frac{|A_n(x^j - x^i)|}{\rho}\right) < \epsilon$. Consequently, $|x^j - x^i| < \epsilon$ for each $\epsilon > 0$, every $j \geq i \geq i_0$, and every $k \in \mathbb{N}$, where $\lambda = (\lambda_k)$ is a strictly increasing sequence of positive real numbers. We see that (x^k) is Cauchy sequences of real numbers. Since \mathbb{R} is complete, there exists $x_k \in \mathbb{R}$ such that $x^j \rightarrow x_k$ as $j \rightarrow \infty$ for all $k \in \mathbb{N}$. Using these limits, we define $x = (x_k)$ and show that $x \in [\ell_\infty(M)]_A$ and $x^j \rightarrow x$ as $i \rightarrow \infty$ in $[\ell_\infty(M)]_A$. From (3), we have for all $i \geq i_0$

$$\sup_{n \in \mathbb{N}} M\left(\frac{|A_n(x^i - x)|}{\rho_0}\right) = \lim_{j \rightarrow \infty} \sup_{n \in \mathbb{N}} M\left(\frac{|A_n(x^j - x^i)|}{\rho_0}\right) \leq 1.$$

We obtain $\|x^i - x\| < \epsilon$ for every $i \geq i_0$. This shows that $x^i \rightarrow x$ as $i \rightarrow \infty$ in $[\ell_\infty(M)]_A$.

Since $x^i \in [\ell_\infty(M)]_A$ and M satisfy Δ_2-condition, we have

$$\sup_{n \in \mathbb{N}} M\left(\frac{|A_n(x)|}{\rho}\right) \leq \frac{K_1}{2} \sup_{n \in \mathbb{N}} M\left(\frac{|A_n(x-x^i)|}{\rho}\right) + \frac{K_2}{2} \sup_{n \in \mathbb{N}} M\left(\frac{|A_n(x^i)|}{\rho}\right) < \infty$$

for some $K_1, K_2 > 0$. It is show that $x \in [\ell_\infty(M)]_A$.

Since (x^i) was an arbitrary Cauchy sequence in $[\ell_\infty(M)]_A$, this proves completeness of $[\ell_\infty(M)]_A$. \hfill \square

Now, the following result is immediate by Theorem 2.2.

Theorem 2.3. $[X(M)]_A$ is a BK space where $X \in \{c_0, c, \ell_\infty\}$ and $[X(M)]_A$ is a AK space where $X = c_0$.

2.3. The Certain Classes of Matrix Transformations $(X(M), X(M))$

Theorem 2.4. $A \in (c(M), c(M))$ if and only if for $\rho > 0$ the following conditions are held:

(i) $\sup_{n \in \mathbb{N}} M\left(\frac{\sum_{k=0}^{\infty}|a_{nk}|}{\rho}\right) < \infty$,

(ii) $\lim_{n \rightarrow \infty} M\left(\frac{|a_{nk}|}{\rho}\right) = \alpha_k$ exists for each $k \in \mathbb{N}$, and

(iii) $\lim_{n \rightarrow \infty} M\left(\frac{\sum_{k=0}^{\infty}a_{nk}}{\rho}\right) = \alpha$ exist.
Proof. For proving the necessity, suppose that \(A \in (c(M), c(M)) \). If we choose \(x = (x_k) \) by \(x_k = \text{sgn}(a_{nk}) \) for all \(k \in \mathbb{N} \) and \(n \in \mathbb{N} \), then \(\sup_{n \in \mathbb{N}} M \left(\sum_{k=0}^{\infty} \frac{|a_{nk}|}{\rho} \right) = \sup_{n \in \mathbb{N}} M \left(\sum_{k=0}^{\infty} a_{nk} x_k \right) < \infty \). This shows that the condition (i) holds. Furthermore, if we take \(x = (x_k) \) where for all \(j \in \mathbb{N} \) and \(k \in \mathbb{N} \),

\[
x_j = e_j^{[k]} = \begin{cases} 1 & : j = k \\ 0 & : j \neq k \end{cases}
\]

Since \(Ax \in c(M) \) for every \(x \in c(M) \), there exists \(\rho > 0 \) such that \(\lim_{n \to \infty} M \left(\frac{\sum_{j=0}^{\infty} a_{nj} x_j}{\rho} \right) \) exist. Hence, for all \(k \in \mathbb{N} \), \(\lim_{n \to \infty} M \left(\frac{\sum_{j=0}^{\infty} a_{nj} x_j}{\rho} \right) = \lim_{n \to \infty} M \left(\frac{|a_{nk}|}{\rho} \right) \). It is shown that \(\lim_{n \to \infty} M \left(\frac{|a_{nk}|}{\rho} \right) \) exists for each \(k \in \mathbb{N} \), and the condition (ii) holds. Next, since \(x = (x_k) = (1, 1, 1, \cdots) \) belongs to \(c(M) \), the condition (iii) holds.

For sufficiency, let \(x_k \to r \) as \(k \to \infty \) and let the conditions (i), (ii), and (iii) hold. We write

\[
\sum_{k=0}^{\infty} a_{nk} x_k = \sum_{k=0}^{\infty} a_{nk} (x_k - r) + r \sum_{k=0}^{\infty} a_{nk} \text{ for all } n \in \mathbb{N}.
\]

Since \(M \) satisfy \(\Delta_2 \)-condition, then for some \(\rho > 0 \) we get

\[
M \left(\frac{\sum_{k=0}^{\infty} a_{nk} x_k}{\rho} \right) \leq \frac{K_0}{2} M \left(\frac{\sum_{k=0}^{\infty} a_{nk} (x_k - r)}{\rho} \right) + \frac{K_1^{m_0+1}}{2} M \left(\frac{\sum_{k=0}^{\infty} a_{nk}}{\rho} \right)
\]

for all \(n \in \mathbb{N} \) and for some \(K_0, K_1 > 0 \). By (iii), we get \(\lim_{n \to \infty} \frac{K_1^{m_0+1}}{2} M \left(\frac{\sum_{k=0}^{\infty} a_{nk}}{\rho} \right) = \alpha K^{m_0+1} \).

Further, since \(x_k \to r \) as \(k \to \infty \), we get

\[
\frac{K_0}{2} M \left(\frac{\sum_{k=0}^{\infty} a_{nk} (x_k - r)}{\rho} \right) + \frac{K_1^{m_0+1}}{2} M \left(\frac{\sum_{k=0}^{\infty} a_{nk}}{\rho} \right) \to \alpha_1 \text{ as } n \to \infty
\]

where \(\alpha_1 = \frac{\alpha K^{m_0+1}}{2} \). It is shown that \(M \left(\frac{\sum_{k=0}^{\infty} a_{nk} x_k}{\rho} \right) \to \alpha_1 \) as \(n \to \infty \). Thus, \(Ax \in c(M) \). Since for each \(x \in c(M) \) implies \(Ax \in c(M) \), we conclude that \(A \in (c(M), c(M)) \), which proves the theorem.

\[\textbf{Theorem 2.5.} \ A \in (c_0(M), c_0(M)) \text{ if and only if for } \rho > 0 \text{ the following conditions are held :}
\]

(i) \(\sup_{n \in \mathbb{N}} M \left(\sum_{k=0}^{\infty} \frac{|a_{nk}|}{\rho} \right) < \infty \), and

(ii) \(\lim_{n \to \infty} M \left(\frac{|a_{nk}|}{\rho} \right) = 0 \) for each \(k \in \mathbb{N} \).

Proof. We first derive the necessary conditions (i) and (ii). Since \(x = (x_j) = (e_j^{[k]}) \) belongs to \(c_0(M) \), then

\[
\lim_{n \to \infty} M \left(\frac{|a_{nk}|}{\rho} \right) = \lim_{n \to \infty} M \left(\frac{\sum_{j=0}^{\infty} a_{nj} x_j}{\rho} \right) = 0 \text{ for each } k \in \mathbb{N}.
\]

It is shown that (ii) holds. Further, we define \(x = (x_k) \) by \(x_k = \text{sgn}(a_{nk}) \) for all \(k \in \mathbb{N} \) and \(n \in \mathbb{N} \). Thus, for some \(\rho > 0 \) we have

\[
\sup_{n \in \mathbb{N}} M \left(\sum_{k=0}^{\infty} \frac{|a_{nk}|}{\rho} \right) = \sup_{n \in \mathbb{N}} M \left(\sum_{k=0}^{\infty} a_{nk} \right) = \sup_{n \in \mathbb{N}} M \left(\sum_{k=0}^{\infty} a_{nk} x_k \right).
\]
Since $\lim_{n \to \infty} M \left(\frac{\sum_{k=0}^{\infty} a_{nk} x_k}{\rho} \right)$ exists, then sequence $M \left(\frac{\sum_{k=0}^{\infty} a_{nk} x_k}{\rho} \right)$ is bounded. Thus, $\sup_{n \in \mathbb{N}} M \left(\frac{\sum_{k=0}^{\infty} a_{nk} x_k}{\rho} \right) < \infty$, which yields (i) holds.

For proving the sufficiency, let us take any $x \in c_0(M)$. Since M is continuous, then $x_k \to 0$ as $k \to \infty$. Thus, $\lim_{n \to \infty} M \left(\frac{\sum_{k=0}^{\infty} a_{nk} x_k}{\rho} \right) = 0$. It is shown that $Ax \in c_0(M)$. Since for each $x \in c(M)$ implies $Ax \in c(M)$, then the infinite matrix A belongs to the class $(c_0(M), c_0(M))$, which completes the proof. \hfill \Box

Theorem 2.6. $A \in (\ell_{\infty}(M), \ell_{\infty}(M))$ if and only if for $\rho > 0$

$$\sup_{n \in \mathbb{N}} M \left(\frac{\sum_{k=0}^{\infty} |a_{nk}|}{\rho} \right) < \infty.$$

Proof. For proving the necessity, suppose that $A \in (\ell_{\infty}(M), \ell_{\infty}(M))$, that is, for each $x \in \ell_{\infty}(M)$ implies $Ax \in \ell_{\infty}(M)$. Thus, $\sup_{n \in \mathbb{N}} M \left(\frac{\sum_{k=0}^{\infty} |a_{nk}| x_k}{\rho} \right) < \infty$. Then, define $x = (x_k)$ by $x_k = \text{sgn}(a_{nk})$ for all $k \in \mathbb{N}$ and $n \in \mathbb{N}$. Thus, for some $\rho > 0$ and for every $n \in \mathbb{N}$, we have

$$M \left(\frac{\sum_{k=0}^{\infty} |a_{nk}| x_k}{\rho} \right) = M \left(\frac{\sum_{k=0}^{\infty} a_{nk} x_k}{\rho} \right).$$

Since $\sup_{n \in \mathbb{N}} M \left(\frac{\sum_{k=0}^{\infty} |a_{nk}| x_k}{\rho} \right) < \infty$, then $\sup_{n \in \mathbb{N}} M \left(\frac{\sum_{k=0}^{\infty} |a_{nk}|}{\rho} \right) < \infty$.

For sufficiency, suppose $\sup_{n \in \mathbb{N}} M \left(\frac{\sum_{k=0}^{\infty} |a_{nk}|}{\rho} \right) < \infty$ and take any $x \in \ell_{\infty}(M)$. Since M is non-decreasing, there exists $N_1 > 0$ such that $|x_k| \leq N_1 = \rho N_0$ for all $k \in \mathbb{N}$. Hence, by using Hölder inequality [8], we get

$$\sup_{n \in \mathbb{N}} M \left(\frac{|A_n(x)|}{\rho} \right) \leq \sup_{n \in \mathbb{N}} M \left(\frac{\sup_{k \in \mathbb{N}} |x_k| \sum_{k=0}^{\infty} |a_{nk}|}{\rho} \right).$$

Further, by using the Archimedean property, since $N_1 \in \mathbb{R}$, then there exists $m_0 \in \mathbb{N}$ such that $N_1 \leq 2^{m_0}$. Since M satisfy Δ_2-condition, we have

$$\sup_{n \in \mathbb{N}} M \left(\frac{|A_n(x)|}{\rho} \right) \leq K^{m_0} \sup_{n \in \mathbb{N}} M \left(\frac{\sum_{k=0}^{\infty} |a_{nk}|}{\rho} \right) < \infty$$

for some $K > 0$. It is show that $Ax \in \ell_{\infty}(M)$. Since for each $x \in \ell_{\infty}(M)$ implies $Ax \in \ell_{\infty}(M)$, then the infinite matrix $A \in (\ell_{\infty}(M), \ell_{\infty}(M))$, and the proof is complete. \hfill \Box

References
[1] Altay B and Basar F 2005 *Ukrainian Math. J.* **57** 1:1-17
[2] Altay B, Basar F, Mursaleen M 2006 *Inform. Sci.* **176** 10:1450-62
[3] Aydin C and Basar F 2004 *Hokkaido Math. J.* **33** 2:383-98
[4] Aydin C and Basar F 2005 *Demonstratio Math.* **38** 3:641-56
[5] Kamthan P K and Gupta M 1981 *Sequence Spaces and Series* (New York: Marcel Dekker Inc)
[6] Kreyszig E 1978 *Introductory Functional Analysis With Applications* (America: John Wiley and Sons)
[7] Lindenstrauss J and Tzafriri L 1971 *Israel J. Math.* **10** 379-90
[8] Maddox I J 1970 *Elements of Functional Analysis* 1st ed (Cambridge: The University Press)
[9] Malkowsky E 1997 *Mat. Vesnik* **49** (3-4):187-96
[10] Malkowsky E and Savas E 2004 *Appl. Math. Comput.* **147** 2:333-45
[11] Mursaleen M and Noman A K 2010 *Thai J. Math.* **8** 2:311-29
[12] Mursaleen M and Noman A K 2011 *Filomat* **25** 2:33-51