Weakly Clean Ideal

Ajay Sharma and Dhiren Kumar Basnet
Department of Mathematical Sciences, Tezpur University, Napaam, Tezpur-784028, Assam, India.
Email: ajay123@tezu.ernet.in, dbasnet@tezu.ernet.in

Abstract: Motivated by the concept of clean ideals, we introduce the notion of weakly clean ideals. We define an ideal \(I \) of a ring \(R \) to be weakly clean ideal if for any \(x \in I \), \(x = u + e \) or \(x = u - e \), where \(u \) is a unit in \(R \) and \(e \) is an idempotent in \(R \). We discuss various properties of weakly clean ideals.

Key words: Clean ideals, weakly clean ideals, uniquely clean ideal, weakly uniquely clean ideal.

2010 Mathematics Subject Classification: 16N40, 16U99.

1 INTRODUCTION

Here rings \(R \) are associative with unity unless otherwise indicated. The Jacobson radical, set of units, set of idempotents and centre of a ring \(R \) are denoted by \(J(R) \), \(U(R) \), \(Idem(R) \) and \(C(R) \) respectively. Nicholson\(^2\) called an element \(x \) of a ring \(R \), a clean element, if \(x = e + u \) for some \(e \in Idem(R) \), \(u \in U(R) \) and called the ring \(R \) as clean ring if all its elements are clean. Weakening the condition of clean element, M.S. Ahn and D.D. Anderson\(^1\) defined an element \(x \) as weakly clean if \(x \) can be expressed as \(x = u + e \) or \(x = u - e \), where \(u \in U(R) \), \(e \in Idem(R) \). H. Chen and M. Chen\(^2\), introduced the concept of clean ideals as follows: an ideal \(I \) of a ring \(R \) is called clean ideal if for any \(x \in I \), \(x = u + e \), for some \(u \in U(R) \) and \(e \in Idem(R) \). Motivated by these ideas we define an ideal \(I \) of a ring \(R \) as weakly clean ideal if for any \(x \in I \), \(x = u + e \) or \(x = u - e \), where \(u \in U(R) \) and \(e \in Idem(R) \). Also an ideal \(I \) of a ring \(R \) is called uniquely weakly clean ideal if for each \(a \in I \), there exists unique idempotent \(e \) in \(R \) such that \(a - e \in U(R) \) or \(a + e \in U(R) \). We discuss some interesting properties of weakly clean ideals.

\(^1\)Corresponding author
2 Weakly clean ideals

Definition 2.1. An ideal \(I \) of a ring \(R \) is called weakly clean ideal in case every element in \(I \) is a sum or difference of a unit and an idempotent of \(R \).

Clearly every ideal of a weakly clean ring is weakly clean ideal. But there exists non weakly clean rings which contains some weakly clean ideals. Let \(R_1 \) be weakly clean ring and \(R_2 \) be non weakly clean ring. Then \(R = R_1 \oplus R_2 \) is not a weakly clean ring. But clearly \(I = R_1 \oplus 0 \) is weakly clean ideal of \(R \).

Lemma 2.2. If every proper ideal of a ring \(R \) is clean(weakly clean) ideal then the ring \(R \) is also clean(weakly clean) ring.

Proof. Clearly every unit of a ring is clean. Let \(x \in R \setminus U(R) \) then the ideal \(<x> \) is proper ideal of \(R \), so \(x \) is clean in \(R \).

Corollary 2.3. \(R \) is clean(weakly clean) if and only if every proper ideal of \(R \) is clean(weakly clean).

The following is an example of weakly clean ideal which is not an clean ideal.

Example 2.4. For the ring \(R = \mathbb{Z}(3) \cap \mathbb{Z}(5) \), the ideal \(<2^{11}> \) generated by \(2^{11} \) is weakly clean ideal but not a clean ideal of \(R \).

Following H. Chen and M. Chen\[2\], we define weakly exchange ideal as follows:

Definition 2.5. An ideal \(I \) of a ring \(R \) is called a weakly exchange ideal provided that for any \(x \in I \), there exists an idempotent \(e \in I \) such that \(e - x \in R(x - x^2) \) or \(e + x \in R(x + x^2) \).

Lemma 2.6. Every weakly clean ideal of a ring is a weakly exchange ideal.

Proof. Let \(I \) be a weakly clean ideal of \(R \) and \(x \in I \). Then \(x = u + e \) or \(x = u - e \), where \(u \in U(R) \) and \(e \in Idem(R) \). If \(x = u + e \) then by Lemma 1.2 \[2\], \(x \) satisfies the exchange property. If \(x = u - e \) then consider \(f = u^{-1}(1-e)u \) so that \(f^2 = f \). Now \(u(x + f) = x^2 + x \), so \(x + f \in R(x^2 + x) \).

Theorem 2.7. Let \(R \) be a ring and \(I \) an ideal in which every idempotent is central. Then the following are equivalent:

(i) \(I \) is weakly clean ideal.

(ii) \(I \) is weakly exchange ideal.
Proof. (1) ⇒ (2) is clear by Lemma 2.6.
(2) ⇒ (1) Given any \(x \in I \), we have an idempotent \(e \in Rx \) such that \(1 - e \in R(1-x) \) or \(1 - e \in R(1+x) \). If \(1 - e \in R(1-x) \) then by Theorem 1.3 \([2]\), \(x \) is clean.

\(\Rightarrow \) Suppose, \(1 - e \in R(1+x) \) then \(e = ax \) and \(1 - e = b(1+x) \), for some \(a, b \in R \). Assume that \(ea = a \) and \((1 - e)b = b \) so that \(axa = ea = a \) and \(b(1 + x)b = b \). Here \(ax, xa, b(1 + x), (1 + x)b \) all are central idempotents and \(ax \in (ax)(ax) = (ax)(xa) = x(ax)a = xa \), similarly \((1 + x)b = b(1 + x) \). Now \((a + b)(x + (1 - e)) = ax + bx + a(1 - e) + b(1 - e) = 1 \) so \(x + (1 - e) \) is a unit. Hence \(x \) is a weakly clean element.

Corollary 2.8. Every weakly exchange ideal of a ring without nonzero nilpotent elements is a weakly clean ideal.

Lemma 2.9. Let \(R \) be a commutative ring and let \(n \geq 1 \). If \(A \in M_n(R) \) and \(x \in R \), then \(\det (xE_{ij} + A) = xA_{ij} + \det(A) \).

Proof. See Lemma 7 \([3]\). \(\square \)

T. Koşan, S. Sahinkaya and Y. Zhou \([3]\), proved that for a commutative ring \(R \) and \(n \geq 2 \), \(M_n(R) \) is weakly clean if and only if \(R \) is clean. Motivated by this result we generalise the similar result for weakly clean ideals of \(M_n(R) \) as follows:

Theorem 2.10. Let \(I \) be an ideal of a commutative ring \(R \) and let \(n \geq 2 \). Then \(M_n(I) \) is weakly clean ideal of \(M_n(R) \) if and only if \(I \) is a clean ideal of \(R \).

Proof. Let \(I \) be a clean ideal of \(R \) then by Theorem 1.9 \([2]\), \(M_n(I) \) is clean ideal of \(M_n(R) \).

Conversely, Let \(M_n(I) \) is weakly clean ideal of \(M_n(R) \). If possible, assume that \(I \) is not clean ideal of \(R \). Then there exists \(x \in I \) such that \(x \neq u + e \), for any \(e \in Idem(R) \) and \(u \in U(R) \). Consider \(\mathcal{U} = \{ J \triangleleft R : \mathfrak{F} \in R/J \text{ is not clean} \} \). Notice that \(\mathcal{U} \) is non empty and \(\mathcal{U} \) is inductive set, so by Zorn’s Lemma, \(\mathcal{U} \) contains a maximal member, say \(I_1 \). The maximality of \(I_1 \) implies that \(R/I_1 \) is an indecomposable ring. So \(R/I_1 \) is an indecomposable ring and \(\mathfrak{F} \in R/I_1 \) is not clean.

For contradicting the assumption we show that \(A = xE_{11} - xE_{22} \) is not weakly clean in \(M_n(R) \). By Theorem 8 \([3]\), it is clear that \(A \in M_n(R) \) is not weakly clean in \(M_n(R) \). Hence \(I \) is clean ideal of \(R \). \(\square \)

Theorem 2.11. Let \(\{ R_\alpha \} \) be a family of rings and \(I_\alpha \)'s are ideals of \(R_\alpha \), then the ideal \(I = \prod I_\alpha \) of \(R = \prod R_\alpha \) is weakly clean ideal if and only if each \(I_\alpha \) is weakly clean ideal of \(\{ R_\alpha \} \) and at most one \(I_\alpha \) is not clean ideal.
Proof. Let \(I \) be weakly clean ideal of \(R \). Then being homomorphic image of \(I \) each \(I_\alpha \) is weakly clean ideal of \(R_\alpha \). Suppose \(I_{\alpha_1} \) and \(I_{\alpha_2} \) are not clean ideal, where \(\alpha_1 \neq \alpha_2 \). Since \(I_{\alpha_1} \) is not clean ideal, so not all elements \(x \in I_{\alpha_1} \) is of the form \(x = u - e \), where \(u \in U(R_{\alpha_1}) \) and \(e \in \text{Idem}(R_{\alpha_1}) \). As \(I_{\alpha_1} \) is weakly clean ideal of \(R_{\alpha_1} \), so there exists \(x_{\alpha_1} \in I_{\alpha_1} \) with \(x_{\alpha_1} = u_{\alpha_1} + e_{\alpha_1} \), where \(u_{\alpha_1} \in U(R_{\alpha_1}) \) and \(e_{\alpha_1} \in \text{Idem}(R_{\alpha_1}) \), but \(x_{\alpha_1} \neq u - e \), for any \(u \in U(R_{\alpha_1}) \) and \(e \in \text{Idem}(R_{\alpha_1}) \). Similarly there exists \(x_{\alpha_2} \in I_{\alpha_2} \) with \(x_{\alpha_2} = u_{\alpha_2} - e_{\alpha_2} \), where \(u_{\alpha_2} \in U(R_{\alpha_2}) \) and \(e_{\alpha_2} \in \text{Idem}(R_{\alpha_2}) \), but \(x_{\alpha_2} \neq u + e \), for any \(u \in U(R_{\alpha_2}) \) and \(e \in \text{Idem}(R_{\alpha_2}) \). Define \(x = (x_\alpha) \in I \) by

\[
x_\alpha = x_\alpha \quad \text{if} \quad \alpha \in \{\alpha_1, \alpha_2\}
\]

\[
= 0 \quad \text{if} \quad \alpha \notin \{\alpha_1, \alpha_2\}
\]

Then clearly \(x \neq u \pm e \), for any \(u \in U(R) \) and \(e \in \text{Idem}(R) \). Hence at most one \(I_\alpha \) is not clean ideal.

\((\Leftarrow)\) If each \(I_\alpha \) is clean ideal of \(R_\alpha \) then \(I = \prod I_\alpha \) is clean ideal of \(R \) and hence weakly clean ideal of \(R \). Assume \(I_{\alpha_0} \) is weakly clean ideal but not clean ideal of \(I_{\alpha_0} \) and that all other \(I_\alpha \)'s are clean ideals of \(R_\alpha \). If \(x = (x_\alpha) \in I \) then in \(I_{\alpha_0} \), we can write \(x_{\alpha_0} = u_{\alpha_0} + e_{\alpha_0} \) or \(x_{\alpha_0} = u_{\alpha_0} - e_{\alpha_0} \), where \(u_{\alpha_0} \in U(R_{\alpha_0}) \) and \(e_{\alpha_0} \in \text{Idem}(R_{\alpha_0}) \). If \(x_{\alpha_0} = u_{\alpha_0} + e_{\alpha_0} \), then for \(\alpha \neq \alpha_0 \) let, \(x_\alpha = u_\alpha + e_\alpha \) and if \(x_{\alpha_0} = u_{\alpha_0} - e_{\alpha_0} \), then for \(\alpha \neq \alpha_0 \) let, \(x_\alpha = u_\alpha - e_\alpha \) then \(u = (u_\alpha) \in U(R) \) and \(e = (e_\alpha) \in \text{Idem}(R) \), such that \(x = u + e \) or \(x = u - e \) and consequently \(I \) is weakly clean ideal of \(R \).

Next we define the concept of uniquely weakly clean ideal of a ring.

Definition 2.12. An ideal \(I \) of a ring \(R \) is called uniquely weakly clean ideal if for each \(a \in I \), there exists a unique idempotent \(e \) in \(R \) such that \(a - e \in U(R) \) or \(a + e \in U(R) \).

Lemma 2.13. Every idempotent in a uniquely weakly clean ideal is a central idempotent.

Proof. Let \(I \) be a uniquely weakly clean ideal of a ring \(R \) and \(e \) be any idempotent in \(I \). For any \(x \in R \), since \(-e = -(e + ex(1 - e)) + ex(1 - e) = (1 - (e + ex(1 - e))) - (1 - ex(1 - e)) = (1 - e) - 1 \), so \(1 - (e + ex(1 - e)) = 1 - e \Rightarrow ex = exe \). Similarly we can show that \(xe = exe \). Hence \(xe = ex \).
$m, m' \in M$ and $n, n' \in N$. These conditions ensure that the set of matrices
$\begin{pmatrix} r & n \\ m & s \end{pmatrix}$, where $r \in R$, $s \in S$, $m \in M$ and $n \in N$ forms a ring denoted by T, called the ring of the context. H. Chen and M. Chen[2], showed that for rings R and S, if T be the ring of Morita context $\begin{pmatrix} R & M \\ N & S \end{pmatrix}$ with zero pairing and I and J are clean ideals of rings R and S respectively, then $\begin{pmatrix} I & M \\ N & J \end{pmatrix}$ is a clean ideal of T. Here we prove the similar result for weakly clean ideal.

Theorem 2.14. Let $T = \begin{pmatrix} R & M \\ N & S \end{pmatrix}$ be a Morita context. If I and J be weakly clean ideals of R and S respectively and either I or J is clean ideal, then the ideal $\begin{pmatrix} I & M \\ N & J \end{pmatrix}$ is weakly clean ideal of T.

Proof. Without loss of generality, we can assume that J is clean ideal of S. To show $\begin{pmatrix} I & M \\ N & J \end{pmatrix}$ is weakly clean ideal of T. Let $A = \begin{pmatrix} a & m \\ n & b \end{pmatrix} \in \begin{pmatrix} I & M \\ N & J \end{pmatrix}$, where $a \in I$, $b \in J$, $m \in M$ and $n \in N$. As I is weakly clean ideal of R, so $a = e + u$ or $a = -e + u$, where $e \in \text{Idem}(R)$ and $u \in U(R)$.

Case I: If $a = e + u$, then set $b = f + v$, where $f \in \text{Idem}(S)$ and $v \in U(S)$. Let, $E = \begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix}$ and $U = \begin{pmatrix} u & m \\ n & v \end{pmatrix}$. It is easy to verify that $E = E^2 \in T$ and

$U \begin{pmatrix} u^{-1} & -u^{-1}mv^{-1} \\ -v^{-1}nu^{-1} & v^{-1} \end{pmatrix} = \begin{pmatrix} u^{-1} & -u^{-1}mv^{-1} \\ -v^{-1}nu^{-1} & v^{-1} \end{pmatrix} U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

So $U \in U(T)$.

Case II: If $a = -e + u$, then we set $b = -f + v$, where $f \in \text{Idem}(S)$ and $v \in U(S)$. Let, $E = - \begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix}$ and $U = \begin{pmatrix} u & m \\ n & v \end{pmatrix}$. Similar as above $E^2 = E \in \text{Idem}(T)$ and $U \in U(T)$. \qed

Let A_1, A_2 and A_3 be associative rings with identities and A_{21}, A_{31} and A_{32} be (A_2, A_1)-, (A_3, A_1)- and (A_3, A_2)-bimodules respectively. Let $\phi : A_{32} \odot A_2 \rightarrow A_{31}$ be an (A_3, A_1)-homomorphism then $T = \begin{pmatrix} A_1 & 0 & 0 \\ A_{21} & A_2 & 0 \\ A_{31} & A_{32} & A_3 \end{pmatrix}$ is a lower triangular matrix ring with usual matrix operations.
Theorem 2.15. If \(I, J \) and \(K \) are weakly clean ideals of rings \(A_1, A_2 \) and \(A_3 \) respectively, where at least two of them are clean ideals then the formal triangular matrix ideal \(\begin{pmatrix} I & 0 & 0 \\ A_{21} & J & 0 \\ A_{31} & A_{32} & K \end{pmatrix} \) is a weakly clean ideal of \(\begin{pmatrix} A_1 & 0 & 0 \\ A_{21} & A_2 & 0 \\ A_{31} & A_{32} & A_3 \end{pmatrix} \).

Proof. Assume that \(I \) and \(K \) are clean ideals \(A_1 \) and \(A_3 \) and \(J \) is weakly clean ideal of \(A_2 \). Let, \(B = \begin{pmatrix} A_2 & 0 \\ A_{32} & A_3 \end{pmatrix} \) and \(M = \begin{pmatrix} A_{21} \\ A_{31} \end{pmatrix} \). As \(J \) is weakly clean ideal of \(A_2 \) and \(K \) is clean ideal of \(A_3 \), so by Theorem 2.14, we see that \(P = \begin{pmatrix} J & 0 \\ A_{32} \end{pmatrix} \) is a weakly clean ideal of \(B \). Again by Theorem 2.14, \(\begin{pmatrix} I & 0 \\ M & P \end{pmatrix} \) is a weakly clean ideal of \(\begin{pmatrix} A_1 & 0 & 0 \\ A_{21} & J & 0 \\ A_{31} & A_{32} & K \end{pmatrix} \).

Theorem 2.16. Let \(A_1, A_2 \) and \(A_3 \) are rings. If the formal triangular matrix ideal \(\begin{pmatrix} I & 0 & 0 \\ A_{21} & J & 0 \\ A_{31} & A_{32} & K \end{pmatrix} \) is a weakly clean ideal of \(T = \begin{pmatrix} A_1 & 0 & 0 \\ A_{21} & A_2 & 0 \\ A_{31} & A_{32} & A_3 \end{pmatrix} \) then \(I, J \) and \(K \) are weakly clean ideals of \(A_1, A_2 \) and \(A_3 \) respectively.

Proof. For \(x \in I \), we have \(\begin{pmatrix} x & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \begin{pmatrix} I & 0 & 0 \\ A_{21} & J & 0 \\ A_{31} & A_{32} & K \end{pmatrix} \). Thus,

\[
\begin{pmatrix} x & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} e_1 & 0 & 0 \\ * & e_2 & 0 \\ * & * & e_3 \end{pmatrix} + \begin{pmatrix} u_1 & 0 & 0 \\ * & u_2 & 0 \\ * & * & u_3 \end{pmatrix}
\]

or

\[
\begin{pmatrix} x & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = -\begin{pmatrix} e_1 & 0 & 0 \\ * & e_2 & 0 \\ * & * & e_3 \end{pmatrix} + \begin{pmatrix} u_1 & 0 & 0 \\ * & u_2 & 0 \\ * & * & u_3 \end{pmatrix}
\]

where \(\begin{pmatrix} e_1 & 0 & 0 \\ * & e_2 & 0 \\ * & * & e_3 \end{pmatrix} \in \text{Idem}(T) \) and \(\begin{pmatrix} u_1 & 0 & 0 \\ * & u_2 & 0 \\ * & * & u_3 \end{pmatrix} \in \text{U}(T) \). It is clear that \(e_1^2 = e_1 \in \text{Idem}(A_1) \) and \(u_1 \in U(A_1) \). Also \(x = e_1 + u_1 \) or \(x = -e_1 + u_1 \), so \(I \) is
weakly clean ideal of \(A_1 \). Similarly we can show that \(J \) and \(K \) are weakly clean ideals of \(A_2 \) and \(A_3 \) respectively.

A finite orthogonal set of idempotents \(e_1, \ldots, e_n \) in a ring \(R \) is said to be complete set if \(e_1 + \cdots + e_n = 1 \).

Proposition 2.17. Let \(R \) be a ring and \(I \) an ideal of \(R \). Then the following are equivalent:

(i) \(I \) is a weakly clean ideal of \(R \).

(ii) There exists a complete set \(\{ e_1, e_2, \ldots, e_n \} \) of idempotents such that \(e_i I e_i \) is a weakly clean ideal of \(e_i R e_i \), for all \(i \) and at most one \(e_i I e_i \) is not clean ideal of \(e_i R e_i \).

Proof. (1) \(\Rightarrow \) (2) is trivial by taking \(n = 1 \) and \(e_1 = 1 \).

(2) \(\Rightarrow \) (1) It is enough to show the result for \(n = 2 \). Without loss of generality assume that \(e_1 I e_1 \) is weakly clean ideal of \(e_1 R e_1 \) and \(e_2 I e_2 \) is clean ideal of \(e_2 R e_2 \).

It is clear that \(I \cong \left(\begin{array}{cc} e_1 I e_1 & e_1 I e_2 \\ e_2 I e_1 & e_2 I e_2 \end{array} \right) \) and \(R \cong \left(\begin{array}{cc} e_1 R e_1 & e_1 R e_2 \\ e_2 R e_1 & e_2 R e_2 \end{array} \right) \) as \(\{ e_1, e_2 \} \) be a complete set. Let \(A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) \in I \). As \(e_1 I e_1 \) is weakly clean ideal, so \(a_{11} = u + e \) or \(a_{11} = u - e \), where \(e \in Idem(e_1 R e_1) \) and \(u \in U(e_1 R e_1) \). Also \(a_{22} - a_{21} u^{-1} a_{12} \in e_2 I e_2 \).

Case I: If \(a_{11} = e + u \), then we can set \(a_{22} - a_{21} u^{-1} a_{12} = f + v \), where \(f \in Idem(e_2 R e_2) \) and \(v \in U(e_2 R e_2) \) then by Proposition 1.15 [2], \(A \) is a clean element of \(\left(\begin{array}{cc} e_1 R e_1 & e_1 R e_2 \\ e_2 R e_1 & e_2 R e_2 \end{array} \right) \).

Case II: If \(a_{11} = -e + u \) then we can set \(a_{22} - a_{21} u^{-1} a_{12} = -f + v \), where \(f \in Idem(e_2 R e_2) \) and \(v \in U(e_2 R e_2) \). Set \(E = \left(\begin{array}{cc} e & 0 \\ 0 & f \end{array} \right) \) and \(U = \left(\begin{array}{cc} u & a_{12} \\ a_{21} & v + a_{21} u^{-1} a_{12} \end{array} \right) \).

By Proposition 1.15 [2], \(E^2 = E \) and \(U \) is a unit in \(\left(\begin{array}{cc} e_1 R e_1 & e_1 R e_2 \\ e_2 R e_1 & e_2 R e_2 \end{array} \right) \). Also \(A = -E + U \), as required.

\(\Box \)

Proposition 2.18. Let \(I \) be an ideal of a commutative ring \(R \). Then \(I \) is weakly clean ideal of \(R \) if and only if the ideal \(I[[x]] \) is weakly clean ideal of \(R[[x]] \).

Proof. Let \(I \) be a weakly clean ideal of \(R \). Let \(f(x) = \sum a_i x^i \in I[[x]] \), clearly \(a_0 \in I \), so \(a_0 = u_0 + e_0 \) or \(a = u_0 - e_0 \), where \(e_0 \in Idem(R) \) and \(u_0 \in U(R) \).

If \(a_0 = u_0 + e_0 \), then \(f(x) = \sum a_i x^i = e_0 + u_0 + a_1 x + a_2 x^2 + \cdots \), where \(u_0 + a_1 x + a_2 x^2 + \cdots \in U(R[[x]]) \) and \(e_0 \in Idem(R) \subseteq Idem(R[[x]]) \). Similarly for
Let R be a commutative ring and M be a R-module. Then the idealization of R and M is the ring $R(M)$ with underlying set $R \times M$ under coordinatewise addition and multiplication given by $(r, m)(r', m') = (rr', rm' + r'm)$, for all $r, r' \in R$ and $m, m' \in M$. It is obvious that if I is an ideal of R then for any submodule N of M, $I(N) = \{(r, n) : r \in I$ and $n \in N\}$ is an ideal of $R(M)$. We mention basic existing result about idempotent and unit element in $R(M)$ and study the weakly clean ideals of the idealization $R(M)$ of R and R-module M.

Lemma 2.19. Let R be a commutative ring and $R(M)$ be the idealization of R and R-module M. Then the following hold:

(i) $(r, m) \in \text{Idem}(R(M))$ if and only if $r \in \text{Idem}(R)$ and $m = 0$.

(ii) $(r, m) \in U(R(M))$ if and only if $r \in U(R)$.

Proposition 2.20. Let R be a commutative ring and $R(M)$ is a idealization of R and R-module M. Then an ideal I of R is weakly clean ideal(clean ideal) of R if and only if $I(N)$ is weakly clean ideal(clean ideal) of $R(M)$, for any submodule N of M.

Proof. (\Rightarrow) Consider $(x, n) \in I(N)$. For $x \in I$, $x = u + e$ or $x = u - e$, where $u \in U(R)$ and $e \in \text{Idem}(R)$, so $(x, n) = (e, 0) + (u, n)$ or $(x, n) = -(e, 0) + (u, n)$, where $(e, 0) \in \text{Idem}(R(M))$ and $(u, n) \in U(R(M))$, by Lemma 2.20.

(\Leftarrow) Let $r \in I$, for $(r, n) \in I(N)$, $(r, n) = (e, 0) + (u, n')$ or $(r, n) = -(e, 0) + (u, n')$, where $(e, 0) \in \text{Idem}(R(M))$, $(u, n') \in U(R(M))$ and $n, n' \in M$. Hence $r = e + u$ or $r = -e + u$, where $e \in \text{Idem}(R)$ and $u \in U(R)$ by Lemma 2.20, as required.

Theorem 2.21. Let I be an ideal of a ring R containing $J(R)$ and idempotents can be lifted modulo $J(R)$. Then I is weakly clean ideal of R if and only if $I/J(R)$ is weakly clean ideal of $R/J(R)$.

Proof. (\Leftarrow) Let, $x \in I$, so $\overline{x} = \overline{e} + \overline{u}$ or $\overline{x} = -\overline{e} + \overline{u}$, where $\overline{e} \in \text{Idem}(R/J(R))$ and $\overline{u} \in U(R/J(R))$. Hence, $x - e - u \in J(R)$ or $x + e - u \in J(R)$, so $x = e + u + r$ or $x = -e + u + r$, where $r \in J(R)$. Since idempotents can be lifted modulo $J(R)$, we may assume that e is an idempotent of R. So I is weakly clean ideal of R.

Converse is clear because if $u \in U(R)$ then $u + J(R) \in U(R/J(R))$ and $e + J(R) \in \text{Idem}(R/J(R))$, for $e \in \text{Idem}(R)$. \square
If $I + J$, sum of two ideals I and J, is weakly clean ideal of R then I and J are also weakly clean ideal of R, as $I, J \subseteq I + J$. The converse is not true as shown by the example given below.

Example 2.22. For $R = \mathbb{Z}_{(3)} \cap \mathbb{Z}_{(5)}$, the ring $R \times R$ is not weakly clean ring by Theorem 1.7 [1]. Clearly the ideals $< \frac{2}{11} >$ and $< \frac{4}{7} >$ generated by $\frac{2}{11}$ and $\frac{4}{7}$ respectively are weakly clean ideals but not clean ideals of R. Let $I_1 = < \frac{2}{11} > \times \{0\}$ and $I_2 = \{0\} \times < \frac{4}{7} >$, then I_1 and I_2 are weakly clean ideals of $R \times R$ but not clean ideals of $R \times R$. Hence $I_1 + I_2 = < \frac{2}{11} > \times < \frac{4}{7} >$ is not weakly clean ideal of $R \times R$ by Theorem 2.11.

However we have a partial converse as follows.

Proposition 2.23. If I and J are two weakly clean ideals of a ring R and any one of I and J is contained in $J(R)$ then $I + J$ is also weakly clean ideal of R.

Proof. Without loss of generality assume $J \subseteq J(R)$ and $x \in I + J$. Then $x = a + b$, where $a \in I$ and $b \in J \subseteq J(R)$. So, there exist $e \in Idem(R)$ and $u \in U(R)$ such that $a = u + e$ or $a = u - e$. Hence $x = e + u + b$ or $x = -e + u + b$, which gives x is a weakly clean element of R. \qed

References

[1] Ahn, Myung-Sook and Anderson, DD, Weakly clean rings and almost clean rings. *Rocky Mountain J. Math.*, 6(3):783 – 798, 2006.

[2] Chen, Huanyin and Chen, Miaosen, On clean ideals, *International Journal of Mathematics and Mathematical Sciences* 2003(62):3949 – 3956, 2003.

[3] Nicholson, W Keith, Lifting idempotents and exchange rings, *Transactions of the American Mathematical Society*, 229:269 – 278, 1977.

[4] Tamer Koan and Serap Sahinkaya and Yiqiang Zhou, On weakly clean rings. *Communications in Algebra*, 45(8):3494 – 3502, 2017.