Contrôle glycémique en réanimation

Jean-Charles Preiser – CHU Liège
Journées de Printemps de la SFNEP
Strasbourg, 17 juin 2010
BELGIUM IS OPEN-MINDED

The same story can be read and interpreted in different languages.
Period 3
2006-2009
Period 1: 1970-2000
Etiology of stress hyperglycemia

Dungan K, Braithwaite S, Preiser JC Lancet 2009;373:1798

Figure 1a: The etiology of hospital-related hyperglycemia is multi-factorial, incorporating patient-specific, illness-specific, and treatment-specific factors. Hyperglycemia may, in turn, exacerbate illness-specific factors and increase the need for treatment-specific factors, thus leading to a vicious cycle by which hyperglycemia begets further hyperglycemia. HPA=hypothalamic-pituitary-adrenal axis
Etiology of stress hyperglycemia
Dungan K, Braithwaite S, Preiser JC Lancet 2009;373:1798

Figure 1b. Glucose metabolism in stress hyperglycemia. Stress hyperglycemia is marked by increased whole-body glucose uptake, marked by non-insulin mediated glucose transport via GLUT-1 transporters to body tissues. Insulin-mediated glucose uptake is reduced (insulin resistance), largely due to post-receptor insulin signaling defects that result in reduced GLUT4 mediated glucose transport in insulin sensitive tissues such as liver, muscle, and fat. Muscle glycogen storage is also reduced. Glucose production is generally up-regulated, in large part a result of unregulated hepatic gluconeogenesis. Finally, once inside a target cell, glucose is oxidized readily but non-oxidative metabolism (generally glycogen storage) is impaired.
Consequences of hyperglycemia
Dungan K, Braithwaite S, Preiser JC Lancet 2009;373:1798
Hyperglycemia In The Hospital

Mortality = 16%

- 63% Normal
- 26% Diabetes
- 11% New Hyperglycemia
- Mortality = 3.0%
- Mortality = 1.7%

Umpierrez, JCEM 87: 978-982, 2002
« Admission glycemia is an independent pronostic factor » : mortality and ventricular dysfunction (180 mg/dl)
Admission glycemia 144mg/dl = 3.9 more deaths.

Cardiac surgery : blood glucose is an independent predictive factor for severe infection.

- Admission hyperglycemia is associated with a 2- or 3-fold increase in mortality following focal or global brain ischemia
- After brain trauma, a blood glucose > 200 mg/dl is an independent prognostic factor for poor outcome.
Nature of the relationship between mean hospitalization glucose and the odds of in-hospital mortality (adjusted analysis)

Association Between Mean BG and In-Hospital Mortality After Multivariable Adjustment (Reference: Mean BG 100 to <110)

Kosiborod, M. et al. Circulation 2008;117:1018-1027
Hyperglycemia-related mortality in critically ill patients

Falciglia et al Crit Care Med 2009;37:3001

N = 259,040 ICU admissions (2002-2005)
Unadjusted mortality rate 11.2%
Two-level logistic regression model used to determine a relationship between admission glycemia and predicted mortality
The evidence is clear

- Hyperglycemia is associated with poor outcome
- Treating hyperglycemia is associated with an improvement in outcome (before – after trials)
RESTORING « NORMOGLYCEMIA » IMPROVES SURVIVAL!

YES

- Observational findings
 - DIGAMI 1
 - Furnary
 - Reed
 - Krinsley
 - Finney

- Interventional data
 - Leuven 1 study
Intensive insulin therapy: Mortality

Result	Control	Intensive	%	p
1. ICU mortality (%)	8.04.6-47%	< 0.004		
First 5 d. of ICU stay (%)	1.8	1.7	NS	
ICU stay > 5d (%)	20.210.6-48%	0.005		
Diabetic pat. > 5d (%)	20.610.7-48%	0.005		
2. Hospital mortality (%)	10.97.2-34%	0.01		

Intensive treatment → 4.4 – 6.1 mmol/L versus Conventional treatment → 10.0 – 11.1 mmol/L

N Engl J Med 2001; 345 1359
CUMULATIVE RISK OF DEATH IN ICU PATIENTS

Squares: glycemia < 110 mg/dl
Circles: glycemia 110-150 mg/dl
Triangles: glycemia > 150 mg/dl

Van den Berghe Crit Care Med 2003;31:359
SECONDARY OUTCOME VARIABLES

RRR = Relative risk reduction
NNT = Number needed to treat
Intensive insulin therapy and mortality in critically ill patients

Miriam M Treggiari, Veena Karir, N David Yanez, Noel S Weiss, Stephen Daniel and Steven A Deem

Critical Care 2008, **12**:R29 (doi:10.1186/cc6807)

Cohort study comparing three consecutive time periods – total _10,456 patients_:
- period I no protocol (n = 2,366, 03/01-02/02)
- period II target BG 80-130 mg/dl (n = 3,322, 03/02-06/03)
- period III target BG 80-110 mg/dl (n = 4,786, 07/03-02/05)
NICE-SUGAR trial

![Graph showing probability of survival over days after randomization for conventional and intensive glucose control groups.]

- **Probability of Survival**
 - Conventional glucose control
 - Intensive glucose control

- **Days after Randomization**
 - Range: 0 to 90

- **No. at Risk**
 - Conventional control: 3014, 2379, 2304, 2261
 - Intensive control: 3016, 2337, 2227, 2182

- **P-value**: 0.03
A Multi-Centre Study Comparing the Effects of Two Glucose Control Regimens by Insulin in Intensive Care Unit Patients
GLUCONTROL

- 7 countries
 - Austria, Belgium, France, Israel, The Netherlands, Slovenia and Spain.
- 21 units in 19 centres
Prospective, randomised, controlled, investigator
-blinded and multicentric study

Aimed at comparing the effects of two regimens of
insulin therapy, respectively titrated to achieve a
blood sugar level

- between 7.8 and 10.0 mmol/l (140 and 180 mg/dl,
 respectively) = GROUP 1
- and between 4.4 and 6.1 mmol/l (80 and 110 mg/dl,
 respectively) = GROUP 2
Primary Outcome: absolute intensive care unit (ICU) mortality (target = 4%-decrease).

Secondary outcome variables:
- in-hospital and 28-day mortality,
- lengths of stays in ICU and in the hospital,
- length of ICU stay without life-support therapy, number and clinical signs of episodes of hypoglycaemia,
- rates of infections and organ failures,
- number of red-cells transfusions.
Planning:
- Interim analysis each 100 ICU deaths
- In order to detect a 4% decrease of absolute mortality: 3500 patients to be included

STUDY STOPPED ON MAY 29th, 2006
- Safety concern
- High rate of unintended protocol violations
Glucontrol Study

Flow chart

Admissions (n = 7,747)

Approached for consent (n = 1,108)

No consent (n = 7)

Randomly assigned (n = 1,101)

Allocated to group 1 (LIT) (n = 551)
Lost to follow-up (n = 0)
Discontinued intervention (n = 0)
Readmission (n = 9)
Analysed (n = 542)

Allocated to group 2 (IIT) (n = 550)
Lost to follow-up (n = 0)
Discontinued intervention (n = 0)
Readmission (n = 14)
Analysed (n = 536)
Characteristics at admission

	Group 1	Group 2	p value
BG target	7.8-10.0 mmol/L	4.4-6.1 mmol/L	
N	542	536	
Age (median - IQR)	64.5 (51.1-74.1)	64.8 (50.8-74.0)	0.856
Male patients (%)	333 (61.4)	345 (64.4)	0.339
Type of patients (% of each)			0.881
- Medical	219 (40.4)	226 (42.2)	
- Scheduled Surgery	174 (32.1)	162 (30.2)	
- Emergency Surgery	96 (17.7)	89 (16.6)	
- Trauma	43 (7.9)	41 (7.6)	
Measure	Group 1	Group 2	p-value
---	-------------	-------------	---------
APACHE II score (median - IQR)	15 (11-22)	15 (11-21)	0.807
SOFA score (mean ± SD (range))	6.7 ± 3.3 (0 - 16)	6.9 ± 3.1 (0 - 19)	0.454
Glasgow Coma Score (median – IQR)	15 (9-15)	15 (8-15)	0.787
Respiratory support (% of patients)			0.444
- Invasive ventilation	386 (71.2)	363 (67.7)	
- Non invasive ventilation	28 (5.2)	33 (6.2)	
Vasopressors/inotropes (% of patients)	218 (40.2)	201 (37.5)	0.359
Proportion of patients with T° > 38.5 °C (%)	51 (9.4)	52 (9.7)	0.741
Pre-existing diabetes (% of patients)	116 (21.4)	87 (16.2)	0.029
Insulin therapy

Time from admission to start of insulin drip, hours (median(IQR))	0 (0-10)	0(0-12)	0.312
Patients treated with IV insulin, % (n)*	66.2 (313)	96.3 (442)	<.0001
Rate of insulin infusion (IU/h) (median(IQR))	0.32 (0-1.27)	1.30 (0.65-2.3)	<.0001
Duration of insulin treatment in hours median (IQR)	10 (0-43)	36 (13-96)	<.0001
Days on insulin (median (IQR))	2(0-5)	5(2-9)	<.0001
Insulin-free days (median (IQR))	2(0-5)	0(0-1)	<.0001
GLUCONTROL

Blood glucose, mg/dl

Treatment, days

Median with IQR

* p < 0.001

Group 2

Group 1
Blood glucose values

![Blood glucose values chart](chart.png)

- Blood glucose values for Group 1 and Group 2 are compared.
- The p-value is less than 0.0001, indicating a significant difference between the groups.
- The chart shows the distribution of blood glucose levels for all and morning times for both groups.
Outcome data
| Outcome data | Group 1 BG target 7.8-10.0 mmol/L N=542 | Group 2 BG target 4.4-6.1 mmol/L N=536 | p value |
|-----------------------|--|--|---------|
| ICU mortality (%) | 83 (15.3) | 92 (17.2) | 0.410 |
| - Short-stayers (LOS \(\leq\) 3 days) n = 281 | 17/154 (11.0) | 17/127 (13.4) | 0.5483 |
| - Long-stayers (LOS > 3 days) n = 787 | 66/388 (17.0) | 75/399 (18.8) | 0.5135 |
| 28-day mortality (%) | 83 (15.3) | 100 (18.7) | 0.1438 |
| Patients still in ICU at D28 (n): | 33 | 34 | |
| Hospital mortality (%)| 105 (19.4) | 125 (23.3) | 0.1136 |
| ICU LOS (days) (median (IQR)) | 6 (3-13) | 6 (3-13) | 0.238 |
| Total ICU stay (LOS) | 5433 | 5090 | |
| Hospital LOS (days) (median (IQR)) | 16 (11-29) | 16 (11-29) | 0.708 |
Patient at risk
Group 1: 542 377 187 109 55 34 24 17 12 9
Group 2: 536 351 180 104 67 44 33 25 17 11

Cumulative deaths
Group 1: 0 46 67 79 83 86 86 88 89 92
Group 2: 0 48 75 85 89 96 98 99 100 101

Logrank test: p = 0.331
Hazard ratio: 1.151
(95% CI: 0.865 – 1.533)
Risk of Death

Univariable Analysis

	Crude OR	95% CI	p
Group 2	1.28	0.88 - 1.88	0.198

Multivariable Analysis

	Adjusted OR	95% CI	p
Group 2	1.31	0.88 - 1.95	0.178
Gender (male)	1.78	1.15 - 2.75	0.0093
Age, yr	1.02	1.01 - 1.04	0.0011
Apache II	1.04	1.02 - 1.07	0.0003
SOFA	1.08	1.01 - 1.16	0.0291
Corticosteroids treatment and intensive insulin therapy for septic shock in Adults
Annane et al JAMA 2010;303:341
Toward Understanding Tight Glycemic Control in the ICU
A Systematic Review and Metaanalysis
Paul E. Marik, MD, FCCP, and Jean-Charles Preiser, MD

Study name	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
Van den Berghe-2001	1.572	1.102	2.242	2.498	0.012
Van den Berghe-2006	1.057	0.826	1.353	0.441	0.659
Glucotrol-2006	0.788	0.573	1.085	-1.460	0.144
VISEP-2008	1.064	0.720	1.572	0.310	0.757
De La Rosa-2008	0.830	0.574	1.199	-0.994	0.320
Arabi-2008	0.781	0.484	1.262	-1.009	0.313
NICE-SUGAR 2009	0.918	0.812	1.038	-1.361	0.173
	0.954	0.871	1.046	-0.995	0.320

Meta Analysis
Possible reasons for discrepancies between outcome data

Marik P Preiser JC Chest 2010;137:544

- Severity (APACHE II score)
- Mean BG level
- BG variability (SD)
- Mean daily insulin dose
- Mean daily caloric intake
- Percentage of calories given IV
- Frequency of preexisting diabetes
- Frequency of sepsis
BG TARGET IS NOT ALWAYS REACHED!

Blood glucose, mg/dl

Target range (CIT)

p < 0.001
For each comparison

VISEP Leuven I Leuven II Glucontrol NICE-SUGAR
Some possible reasons for discrepancies between outcome data
Toward Understanding Tight Glycemic Control in the ICU

A Systematic Review and Metaanalysis

Paul E. Marik, MD, FCCP, and Jean-Charles Preiser, MD

CHEST 2010; 137(3):544–551

Group by	Study name	Oddsratio	Lower limit	Upper limit	Z-Value	p-Value
Nutrition						
a-TPN	Van den Berghe-2001	1.102	2.242	2.498	0.012	
a-TPN	Van den Berghe-2006	0.826	1.353	0.441	0.659	
a-TPN	Glucotrol-2006	1.203	0.962	1.474	1.789	0.074
b-ENT	VISEP-2008	0.788	0.573	1.068	-1.460	0.144
b-ENT	De La Rosa-2008	1.064	0.720	1.572	0.310	0.757
b-ENT	Arabi-2008	0.830	0.574	1.199	-0.994	0.320
b-ENT	NICE-SUGAR 2009	0.781	0.484	1.262	-1.009	0.313
b-ENT		0.918	0.812	1.038	-1.361	0.173
b-ENT		0.899	0.811	0.997	-2.025	0.043
Overall		0.954	0.871	1.046	-0.995	0.320

Meta Analysis

Toward Understanding Tight Glycemic Control in the ICU
A Systematic Review and Metaanalysis
Paul E. Marik, MD, FCCP, and Jean-Charles Preiser, MD

Regression of TPN on Log odds ratio

\[\text{Log odds ratio} \]

\[\text{TPN} \]

\[p = 0.005 \]
Intravenous glucose and hospital mortality
Van der voort Clin Endocrinol 2006;64:141

Retrospective cohort study on ICU long-stayers (7-30 d)
N = 273 (/ 2042)
Hospital mortality lower when mean BG < 8 mmol/L

Logistic multivariate regression analysis: APACHE II and mean daily amount of IV Glucose associated with lower survival (OR 0.94 (0.9-0.98) and 0.65 (0.47-0.89))
IT’S TIME TO THINK AND BOUNCE BACK!
Clinical experience with TGCIIT: pending questions and unsolved issues

Preiser Devos Crit Care Med 2007;35:S503

- Which is the meaning of «normoglycemia»?
- Non-glycemic effects of insulin?
- Is hypoglycemia life-threatening?
- Importance of glucose variability?
WHICH IS THE MEANING OF « NORMOGLYCEMIA » IN THE ICU?

- 80-110 mg/dl is considered as Normoglycemia in fasting conditions
- Stress
- Feeding
- Therapies

Commentary

Restoring normoglycaemia: not so harmless
Jean-Charles Preiser
Published: 28 February 2008
Critical Care 2008, 12:116 (doi:10.1186/cc6787)
Clinical experience with TGCIIT: pending questions and unsolved issues
Preiser Devos Crit Care Med 2007;35:S503

- Which is the meaning of «normoglycemia»?
- **Non-glycemic effects of insulin?**
- Is hypoglycemia life-threatening?
- Importance of glucose variability?
How does blood glucose control with insulin save lives in intensive care?

Greet Van den Berghe
Department of Intensive Care Medicine, Catholic University of Leuven, Leuven, Belgium.

J Clin Invest 2004; 114;1187

Metabolic effects
CHO-related (relief of glucose toxicity)
CHO-independent

Non-metabolic effects
Clinical experience with TGCIIT: pending questions and unsolved issues

- Which is the meaning of «normoglycemia»?
- Non-glycemic effects of insulin?
- Is hypoglycemia life-threatening?
- Importance of glucose variability?
Physiological response to hypoglycemia

- < 80 mg/dl: **Inhibition of insulin release**
- < 65 mg/dl:
 - **Glucagon** release to increase the release of glucose from liver
 - **Epinephrine** secretion to increase glycogenolysis and the provision of neoglucogenic substrates
 - **Growth Hormone**
- < 55 mg/dl: **Cortisol** release

P. E. Cryer
Division of Endocrinology, Diabetes and Metabolism, Washington University School of Medicine, St. Louis, Missouri, USA
102 patients with at least one episode of severe hypoglycemia (< 40 mg/dl) matched with 306 control patients from a cohort of 5,365 patients
Mortality 55.9 % in patients with severe hypoglycemia vs 39.5 in non-hypoglycemic patients (p < .01)

Multivariable logistic regression analysis identified hypoglycemia as an independent risk predictor of mortality (OR 2.3[1.4-3.7])
Relative risk of death of patients with hypoglycemia
Prospective studies

![Graph showing relative risk of death (vs non-hypoglycemic)]
Hypoglycemia and ICU mortality
Data from Glucontrol – Preiser et al Intensive Care Med 2009

ICU Mortality (%)

\[\text{Without hypoglycemia} \quad \text{N} = 1032 \]
\[\text{With hypoglycemia} \quad \text{N} = 69 \]

\[p < 0.001 \]
Multivariable analysis: hypoglycemia < 60 mg/dl

	Adjusted OR	95% CI	p
Group II	7.05	4.72 - 10.53	< 0.0001
Death	2.19	1.38 - 3.48	0.0008
Apache II	1.07	1.04 - 1.10	< 0.0001

Multivariable analysis: hypoglycemia < 40 mg/dl

	Adjusted OR	95% CI	p
Group II	4.29	2.10 - 8.76	0.0001
Death	2.26	1.15 - 2.26	0.0177
Apache II	1.07	1.03 - 1.11	0.0008
Hypoglycemia and organ failures

SOFA score

Without hypoglycemia
N = 1032

With hypoglycemia
N = 69

p < 0.01

Daily SOFA score

Without hypoglycemia

Days

With hypoglycemia

p < 0.01
Hypoglycemia and the brain

- Glucose is the obligatory metabolic fuel for the injured brain
- No cerebral stores of glucose
- Glucose diffusion from plasma to neurons and astrocytes (concentration-dependent)
- In case of severe hypoglycemia, fall of ATP and cortical activity (EEG)
- Potential roles of lactate / glycogen released from astrocytes as rescue substrates?
Impact of TGC on cerebral glucose metabolism
Oddo et al Crit Care Med 2008;36:3233

- Twenty patients monitored with microdialysis after severe brain injury
- TGC (target 80-120 mg/dl)
- Cerebral glucose and lactate/pyruvate ratio collected hourly

- **Outcome variables:**
 - ranges of BG:
 - low (< 80) - tight: (80-120), intermediate (120-180) - high (>180)
 - L/P ratio:
 - > 25: abnormal
 - > 40: brain energy failure
 - > 40 + brain glucose < 13: **Brain energy crisis**

Predictors of brain energy crisis
(multivariate logistic regression adjusted for ICP and CPP):
Serum glucose and dose of insulin
Impact of TGC on cerebral glucose metabolism
Oddo et al Crit Care Med 2008;36:3233

- Twenty patients monitored with microdialysis after severe brain injury
- TGC (target 80-120 mg/dl)
- Cerebral glucose and lactate/pyruvate ratio collected hourly

- **Outcome variables**:
 - ranges of BG:
 - low (< 80) - tight: (80-120),
 - intermediate (120-180) - high (>180)
 - L/P ratio:
 - > 25 : abnormal
 - > 40 : brain energy failure
 - 40 + brain glucose < 13 :

Brain energy crisis

Predictors of hospital mortality *(logistic regression)*
Brain energy crisis 7.4 (1.4-39.5)*
Glasgow Coma scale 1.1 (.96-1.3)
CPP 1.01 (.97-1.04)
ICP 1 (0.99-1.01)
Clinical experience with TGCIIT: pending questions and unsolved issues

Preiser Devos Crit Care Med 2007;35:S503

- Which is the meaning of «normoglycemia»?
- Non-glycemic effects of insulin?
- Is hypoglycemia life-threatening?
- **Importance of glucose variability?**
Is reducing variability of blood glucose the real but hidden target of intensive insulin therapy?

M Egi R Bellomo M Reade

Crit Care 2009 (in press)

Same average BG Variability twice lower
IS THE ISSUE OF TGCIIIT HOPELESS?
SHOULD WE LEAVE THE FIELD?
SHOULD WE CLOSE THE CHAPTER?

An unexplored hypothesis is left and appealing!

- Hypothesis: high glucose variability is possibly detrimental for critically ill patients
- Supporting data: retrospective cohort study
- Biological plausibility
Variability of Blood Glucose Concentration and Short-term Mortality in Critically Ill Patients

Moritoki Egi, M.D.,* Rinaldo Bellomo, M.D., F.J.F.I.C.M., † Edward Stachowski, M.D.,‡ Craig J. French, M.D.,§ Graeme Hart, M.D.‖

Fig. 4. Time course of the predictive ability of average and SD of blood glucose. Odds ratios (expressed with 95% confidential intervals) for glucose indexes indicate the risk change of intensive care unit mortality per 1 mmol change in each index. For example, average of blood glucose on 7 days from admission means average of entire glucose measurements during 7 days from admission. As time in intensive care unit increased, so did the ability of glucose control indices to predict outcome.
Glucose variability and mortality in patients with sepsis

Naeem A. Ali, MD; James M. O’Brien Jr, MD, MSc; Kathleen Dungan, MD; Gary Phillips, MAS; Clay B. Marsh, MD; Stanley Lemeshow, PhD; Alfred F. Connors Jr, MD; Jean-Charles Preiser, MD, PhD

Glucose Characteristic	Logistic Regression	Comparison of Mortality Discrimination				
	Mortality Crude Odds Ratio	p-value	95% CI	Area under the ROC	p-value²	95% CI
GLI	1.25 < 0.001	1.20 – 1.32	0.67	0.64 – 0.71		
MAGE	1.12 < 0.001	1.07 – 1.18	0.59 < 0.001	0.56 – 0.63		
MEAN	1.17 < 0.001	1.12 – 1.23	0.63 0.003	0.59 – 0.66		
Standard Deviation	1.16 < 0.001	1.11 – 1.21	0.62 < 0.001	0.58 – 0.65		

Ali et al Crit Care Med 2008
Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture

A. RISSO, F. MERCURI, L. QUAGLIARO, G. DAMANTE, AND A. CERIELLO

1Department of Science and Biomedical Technology, University of Udine, 2Morpurgo Hofmann Research Laboratory on Aging, and 3Department of Pathology and Experimental and Clinical Medicine, Internal Medicine, University of Udine, 33100 Udine, Italy

Am J Physiol Endocrinol Metab 281: E924–E930, 2001.

Fig. 1. Cell death of human umbilical vein endothelial cells (HUVECs) cultured with different concentrations of glucose. HUVECs were cultured in the presence of normal (5 mmol/l), high (20 mmol/l), or alternating normal/high concentrations, as described in MATERIALS AND METHODS. After 7 and 14 days, they were detached from Petri dishes, stained with 20 µg/ml of propidium iodide, and analyzed with the cytofluorimeter. Data are means ± SD of 6 independent experiments. *P < 0.05 vs. glucose 5 mmol/l; &P < 0.05 vs. glucose 20 mmol/l; #P < 0.01 vs. glucose 5 mmol/l; $P < 0.01 vs. glucose 20 mmol/l.
Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction

Ludovica Piconi

Figure 3. (A) Nitrotyrosine ELISA of HUVEC lysates, N = 5 nm glucose; H = 20 nm glucose; H/L = 5/20 nm glucose. (B) 8-OHdG content in HUVEC DNA measured with ELISA technique. § = p < 0.01 normal versus high glucose; # = p < 0.001 intermittent versus normal glucose; * = p < 0.01 intermittent versus high glucose. Bars indicate ±SD.
Activation of Oxidative Stress by Acute Glucose Fluctuations Compared With Sustained Chronic Hyperglycemia in Patients With Type 2 Diabetes

Louis Monnier, MD
Emilie Mas, PhD

Context: Glycemic disorders, one of the main risk factors for cardiovascular disease, are associated with activation of oxidative stress.

JAMA 2006; 295: 1681

Figure 2. Linear Correlation Between 24-Hour Urinary Excretion Rates of 8-Iso Prostaglandin F2α (PGF2α) and Mean Amplitude of Glycemic Excursions (MAGE)

\[r = 0.86; P < 0.001. \]
The answer: Intravascular continuous blood monitoring?
Meanwhile:

Moving beyond tight glucose control to safe effective glucose control

James S Krinsley and Jean-Charles Preiser

Critical Care 2008, **12**: 3: 149

Instead of TGC, we propose a stepwise approach defining a new standard – Safe, Effective Glycemic Control (SEGC). SEGC involves, first, adoption of a safe glycemic target appropriate to the skills, experience and available tools of the ICU that does not result in a significant increase in the rate of hypoglycemia. **A glycemic target of 80 to 150 mg/dl is not unreasonable for an ICU to choose initially; implementation can subsequently lead to downward revision of the glycemic goal.**
« TIGHT » GLUCOSE CONTROL BY INTENSIVE INSULIN THERAPY
FROM MARTIN LUTHER KING BACK TO HIPPOCRATES

I HAVE A DREAM

Primum non nocere
Endocrinology, Metabolism and Nutrition

Endocrinology in the ICU
- Endocrine alterations in the critically ill (G Van den Berghe)
- Adrenal failure in the ICU (D Mesotten)
- Current status of the ACTH test (J Groeneveld Amsterdam)
- Steroid supplementation: for which patients? (D Annané Garches)
- Safe anabolic strategies (J Takala Bern)

Metabolic changes of critical illness
- Use of substrates (M Singer London)
- Insulin resistance (S Weber-Carstens Berlin)
- Promising metabolic substrates: lactate and friends (X Leverve Paris)
- Glucose control in the ICU (J C Preiser)

Nutrition in the ICU
- Permissive underfeeding or early caloric intake adapted to match energy expenditure (R Thibault - Nantes)
- Recent lipid formulations for the critically ill (Y Carpentier Brussels)
- Optimal protein intake (J Wernerman Stockholm)
- Specialised nutrients (R Griffiths Liverpool)
- How to apply guidelines at bedside? (V Fraipont Liège)