Removal of perchlorate by a lab-scale constructed wetland using achira (*Canna indica* L.)

Dongqin Li · Bingqian Li · Haishuo Gao · Xinyu Du · Junhao Qin · Huashou Li · Hongzhi He · Guikui Chen

Received: 9 December 2020 / Accepted: 14 August 2021 / Published online: 30 August 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract Achira (*Canna indica* L.) has not yet been tested for its potential in removing perchlorate (ClO$_4^-$) from wastewater. In this study, constructed wetlands with and without achira were used to investigate the removal efficiency and removal mechanism of perchlorate. The results showed that more ClO$_4^-$ was removed by the wetlands with achira relative to those without. Perchlorate removal in the wetlands without achira decreased with time, whereas perchlorate in the wetlands with achira was stably removed. In terms of ClO$_4^-$ content, the achira tissues were in the descending order of: leaf > aerial stem > flower or rhizome > root. Perchlorate was concentrated in leaves (more than 55.8%) rather than in root (less than 0.67%). Mass balance calculation showed that plant uptake accounted for 5.81–7.34% of initial ClO$_4^-$ input, while microbial degradation accounted for 29.39–62.48%. The wetlands with achira were favorable for soil microorganism growth and proliferation and in turn ClO$_4^-$ biodegradation.

Furthermore, the effluent pH increased in achira wetland columns and in turn promoting ClO$_4^-$ removal. The results indicating that the wetlands with achira promote ClO$_4^-$ removal by improving the rhizosphere environment.

Keywords Perchlorate · Biodegradation · Constructed wetland · Achira · Microorganism

Introduction

Used in such industrial productions as fireworks, rubber, and paint manufacturing, perchlorate has emerged as a contaminant in soil, water, and food. United State Environmental Protection Agency (U.S. EPA) reported that perchlorate concentrations up to 2000 mg/kg, 3700 mg/L, 120 mg/L, and 811 μg/L have been documented in soil, groundwater, surface water, and drinking water, respectively (U.S. EPA 2005), as well as airborne particulate matter (Wang et al. 2017). In addition, perchlorate has also been detected in food stuffs, breast milk, baby formulas, soft drinks, and human body fluids (Her et al. 2010; Abt et al. 2016; Zhang et al. 2010; Kirk et al. 2012; Shelor et al. 2012; Calderón et al. 2017). In 2009, the US EPA identified perchlorate as a drinking water contaminant (U.S. EPA 2019), and the State of California controls the maximum contaminant level of perchlorate at 6 μg/L in drinking water (Xie et al.
This has caused a major concern due to the health effects of perchlorate, which is documented to inhibit iodine uptake by the thyroid gland, decrease thyroid production, and lead to thyroid disease (Abt et al. 2016; Kumarathilaka et al. 2016).

As perchlorate ion (ClO$_4^-$) is of low reactivity and high mobility, it is very stable and persistent in the environment (Sevda et al. 2018). Physico-chemical and biological methods have been used for ClO$_4^-$ remediation (Choe et al. 2013; Sevda et al. 2018; Nair et al. 2020). Bioremediation, e.g., perchlorate reduction by perchlorate-reducing bacteria (PRB) or chlorate-reducing bacteria (CRB) to chloride (Cl$^-$), has been proven to be more environmentally friendly and economical (Bardiya and Bae 2011).

Phytoremediation is a bioremediation technology where perchlorate is reduced via plant uptake, phytodegradation, and rhizo-degradation (Yifru and Nzengung 2008; Bhaskaran et al. 2013). Plant uptake and phytodegradation are slow processes, whereas rhizo-degradation is more rapid (Tan et al. 2004a, b; Tan et al. 2005). Utilizing dissolved organic carbon as a carbon and energy source, PRB can rapidly reduce perchlorate to nontoxic chloride (Dahan et al. 2017; Yifru and Nzengung 2008).

In a constructed wetland system, plants play an important role in pollutant removal. Plants can bind pollutants on their roots and remove pollutants from the water. In addition, plants can mediate redox transformation of pollutants in their oxygen-rich rhizosphere. Therefore, plant species is an important factor influencing a wetland’s performance. Our previous research has demonstrated that achira (Canna indica L.), a wetland species with beautiful flowers, is tolerant to perchlorate stress (He et al. 2013). Therefore, perchlorate-contaminated waters might be effectively treated by a constructed wetland using achira.

In this study, the main objectives of this work were to explore perchlorate removal potential of achira in vertical flow constructed wetlands. The selected plant species has not yet been tested for use in treatment of wastewaters containing ClO$_4^-$; Furthermore, achira is a beautiful plant with ornamental value, easily reproductive and has the ability to absorb nutrient contaminants. The present work studied the accumulation of ClO$_4^-$ in soil layer, roots, stem and leaves of achira in order to know the removal mechanism and mobility of ClO$_4^-$ in constructed wetlands. According to previous reports (Tan et al. 2004b; Seyfferth and Parker 2008; Yifru and Nzengung 2008), microbial and plant degradation may play a more important role than plant uptake in ClO$_4^-$ degradation in natural wetland system. Thus, microbial populations, NO$_3^-$ in water which proved as a potential competitive electron acceptor with ClO$_4^-$ were also discussed. The findings of this study are expected to provide support for high efficient wastewater treatment using constructed wetlands of high ornamental value.

Materials and methods

Preparation of constructed wetland columns

Wetland columns were prepared using cylindrical ceramic pots (30 cm height and 26 cm inner diameter) (Fig. 1). For each pot, there was a side opening at the bottom connected to a tube for effluent collecting. Each pot was first filled with a 5-cm layer of cobble (4 kg/pot) and then a 20-cm layer of soil (8 kg/pot). The cobbles, white 1–3 cm diameter, purchased from Goldstone Powder Materials Co., LTD (China), which had been washed with tap water before use. The soil was collected from the surface layer of a paddy field in the Experimental Farm of the South China Agricultural University, air dry and through 2 mm sieve before use. The main properties of the soil are shown in Table 1.

Plant species

The wetland plant species, achira, was selected for its large biomass and high tolerance to perchlorate (He et al. 2013). Plants of the same size at their three-leaf stage were collected from a local nursery. The seedlings height were about 10–15 cm.
Experimental details

Constructed wetland columns with or without plants (achira) were prepared to treat waters containing 0 ($C_0$), 40 ($C_{40}$), or 100 mg/L ($C_{100}$) perchlorate. For the three treatments with achira, two achira seedlings at three-leaf stage were transplanted to each wetland column.

Before the experiment started, the columns were first flooded with 6 L tap water for 7 days, drained, and let stand for 1 day. Then, they were fed with 6 L tap water from the top containing 0, 40, or 100 mg/L perchlorate. Water was added every day for 7 days to compensate for evaporation loss. Then, effluents were collected on the 8th day, and the plant and soil samples were collected at the end of the experiment. During the whole experiment (53 days), the 18 wetland columns were sheltered from rain. The properties of the tap water used in the experiment are shown in Table 2.

Sample preparation

The collected effluent samples were stored in plastic bottles and kept in a refrigerator until analysis. The plants including roots were washed with tap water and blotted dry. After plant height, root length, and fresh weights of shoot and root were measured, shoots and roots were dried, ground into powder, and sieved through a 35-mesh (0.5 mm) sieve. Soil samples were freeze-dried, ground, and homogenized with a 35-mesh (0.5 mm) stainless steel sieve.

For ClO$_4^-$ concentration determination, the soil and plant samples were processed as described by He et al. (2013). Briefly, 2.0 g of plant powder were added

---

Table 1  Physical and chemical properties of the soil used in this study

| pH | Eh (mV) | Organic matter (g/kg) | Total nitrogen (g/kg) | Total phosphorus (g/kg) | Total potassium (g/kg) | Available nitrogen (mg/kg) | Available phosphorus (mg/kg) | Available potassium (mg/kg) | Cl$^-$ (mg/kg) | ClO$_3^-$ (mg/kg) | ClO$_4^-$ (mg/kg) |
|----|---------|-----------------------|-----------------------|------------------------|------------------------|---------------------------|----------------------------|----------------------------|---------------|-----------------|------------------|
| 5.94 | 66.4 | 20.92 | 0.932 | 0.954 | 18.67 | 56.41 | 71.91 | 229.96 | 60.82 | n.d | n.d |

n.d. not detected
into a 50-mL conical flask with 30 mL Milli-Q water (Milli-Q Water System, Millipore Corporation, Bedford, MA), shaken at 200 rpm and room temperature for 3 h, and centrifuged at 6000 rpm for 25 min. The supernatant was vacuum filtered through a 0.22 μm polyethersulfone filter (Millipore Corp., Bedford, MA) and passed through a pre-conditioned ENVI-18 solid-phase extraction (SPE) cartridge (Supelco, Bellefonte, PA) to remove organic materials. The first 1.0 mL filtrate is discarded and the remaining aliquots are used for analysis. Soil sample (5.0 g) was weighed into a 50-mL conical flask with 20 mL deionized water, shaken at 200 rpm and room temperature for 3 h, and centrifuged at 6000 rpm for 25 min. The supernatant was filtered through a 0.22 μm polyethersulfone membrane filter, an OnGuard H cartridge, and an OnGuard RP successively to remove solid substances, metallic ions, and hydrophobic compounds, respectively.

Enumeration of soil microbial populations

Populations of culturable bacteria, fungi, and actinomycetes in the rhizosphere samples were estimated using the serial dilution technique. Ten gram soil were mixed with 100 mL sterile water, shaken for 20 min, let stand for 3–5 min, serially diluted, and plated onto 1/10-strength beef-protein agar (BPA), potato dextrose agar (PDA), and starch nitrate agar (SNA) for enumeration of bacteria, fungi, and actinomycetes, respectively.

Statistical analysis

The experiment adopted a completely randomized design in triplicates. Data were analyzed using the analysis of variance (ANOVA) and Duncan’s multiple range tests with SPSS-13 statistical package (SPSS Inc., Chicago, IL, USA) at a significant level of \( P < 0.05 \). Results are presented as mean ± standard error. The calculation of perchlorate removal rate was according to Tan et al. (2004b) and modified, computed as follows:

\[
\text{Removal rate} = \frac{C_0 \times V_0 - C_i \times V_i}{C_0 \times V_0} \times 100\% ,
\]

where \( C_0 \) is the initial perchlorate concentration (mg/L); \( V_0 \) is the initial volume (L); \( C_i \) is perchlorate concentration at day \( i \) (mg/L); and \( V_i \) is the volume at day \( i \) (L).

Results and discussion

Perchlorate removal by the constructed wetland columns

Differences in perchlorate removal were observed in the different treatments (Fig. 2). In terms of average \( \text{ClO}_4^- \) removal rate, the treatments were in the order
of: planted \( C_40 \) (68.29\%) > planted \( C_{100} \) (52.22\%) > unplanted \( C_40 \) (48.16\%) > unplanted \( C_{100} \) (35.71\%). For a same perchlorate level in influent, significantly more perchlorate was removed by the planted columns than by the unplanted columns. Furthermore, perchlorate removal in the unplanted columns diminished noticeably with running time. By contrast, perchlorate removal in the planted columns did not show a clear reduction, but increased significantly at the sixth period, being 78.46\% and 55.25\% in the planted columns of \( C_40 \) and \( C_{100} \), respectively. In comparison, only 41.52\% and 20.20\% of perchlorate were removed from the influent at day 53 in the unplanted \( C_40 \) and \( C_{100} \) columns, respectively.

Tan et al. (2004a, b) also demonstrated that perchlorate removal by wetland columns planted with Bulrush (\textit{Scirpus} sp.) was higher as compared with columns without plants. Plants are a key component of constructed wetlands and their presence is known to improve pollutant removal (Ballesteros et al. 2016). Plants absorb nutrients, heavy metals, and toxic substances from waters. In addition, they introduce an aerobic root zone and increase aerobic processes as compared with unplanted “wetlands” (Faulwetter et al. 2009). Furthermore, wetland plant roots secrete such substances as enzymes, organic acids, and organic carbon, which are favorable for microbial metabolism, growth, and reproduction (Wu et al. 2017). The degradation of perchlorate by rhizosphere microorganisms requires electron donors and carbon sources. Root exudates can provide electron donors and carbon sources for perchlorate-reducing bacteria (PRB) to degrade perchlorate (Tan et al. 2004a, b). In addition, plant-secreted enzymes play a catalytic role in the process of perchlorate biodegradation (Seyfferth et al. 2008a, b; Tan et al. 2004a, b; Hutchison et al. 2013).

### Plant uptake

Plant height, and plant biomass in columns \( C_40 \) and \( C_{100} \) were significantly lower as compared with column \( C_0 \) (Table 3), indicating that achira growth was inhibited by \( \text{ClO}_4^- \). However, the results also demonstrated that achira could tolerate high \( \text{ClO}_4^- \) (100 mg/L). Perchlorate content in the achira tissues increased with increasing perchlorate level in the wetland system (Table 4). These findings are in line with previous findings for other wetland plants (Seyfferth and Parker 2008).

Perchlorate content in the above-water tissues (aerial stem, leaf, and flower) of achira was much

![Figure 2: Percent removal of perchlorate in different constructed wetland columns](image-url)

**Table 3** Some growth parameters of achira (\textit{Canna indica} L.) in the different wetland columns

| Treatment | Root length (cm) | Plant height (cm) | Fresh weight (g/plant) | Plant biomass (kg DW/m²) |
|-----------|------------------|-------------------|------------------------|-------------------------|
|           |                  |                   | Root                   | Above-water             |
|           |                  |                   | Root                   | Above-water             |
| \( C_0 \) | 45.87 ± 3.82a    | 88.27 ± 0.69a     | 51.80 ± 2.36a          | 206.59 ± 4.56a          | 1.87 ± 0.14a            | 7.28 ± 0.36a            |
| \( C_{40} \) | 30.87 ± 2.78b    | 75.80 ± 1.31b     | 39.42 ± 2.89b          | 181.63 ± 6.85b          | 1.36 ± 0.11b            | 6.27 ± 0.21b            |
| \( C_{100} \) | 26.67 ± 1.32b   | 64.23 ± 1.86c     | 38.85 ± 2.85b          | 178.11 ± 7.07b          | 1.26 ± 0.08b            | 6.09 ± 0.23b            |

\( DW \) dry weight

The data are presented as mean ± standard error (\( n = 3 \)). Different lowercase letters in a same column indicate significant differences between treatments (Duncan’s multiple range tests, \( P < 0.05 \))
higher than that in the underwater tissues (root and rhizome). The order of perchlorate content in different tissues of achira was: leaf > aerial stem > flower or rhizome > root. Perchlorate content in achira leaf was 2868.51 and 10,441.06 mg/kg DW (dry weight) in column C_40 and C_100, respectively. In contrast, lower perchlorate content in root was observed, 141.03 and 703.51 mg/kg DW in column C_40 and C_100, respectively. It is evident that perchlorate mainly accumulated in leaf (more than 55.80%) rather than in root (less than 0.67%). Similar results have been reported in other plants (Tan et al. 2004b).

On the basis of dry weight, perchlorate bioconcentration factor (BCF) of achira leaf was calculated to be 71.71 and 104.41 in column C_40 and C_100, respectively (Table 4). The BCF of achira in the present study is close to that of other aquatic plants, such as smart-weed (Polygonum sp.), watercress (Nasturtium sp.), and bulrush (Scirpus sp.) (Tan et al. 2004a, b).

### Mass balance analysis

The contribution of each component to the overall ClO_4^- removal by the wetland system was evaluated by mass balance analysis. The non-volatile ClO_4^- can be degraded to innocuous Cl^- Assuming steady-state conditions, the following mass balance equation can be derived for perchlorate in the planted wetland columns:

Table 4 Distribution of perchlorate in different tissues of achira (Canna indica L.) at the end of the experiment

| Treatment | ClO_4^- content (mg/kg DW) | Bio-concentration factor (BCF) | ClO_4^- accumulation (mg/pot DW) | Fraction (%) |
|-----------|---------------------------|-------------------------------|---------------------------------|-------------|
|           | C_40          | C_100           | C_40          | C_100           | C_40          | C_100           | C_40          | C_100           |
| Root      | 141.03 ± 4.98d  | 703.51 ± 12.06d | 3.53          | 7.04          | 0.34          | 1.78          | 0.41          | 0.67          |
| Rhizome   | 1456.39 ± 39.00c | 3541.41 ± 38.58c | 36.41         | 35.41         | 6.96          | 14.65         | 8.31          | 5.53          |
| Aerial stem | 1767.26 ± 77.40b | 5296.25 ± 181.24b | 44.18         | 52.96         | 27.32         | 81.46         | 32.63         | 30.73         |
| Leaf      | 2868.51 ± 114.45a | 10,441.06 ± 631.59a | 71.71         | 104.41        | 46.72         | 162.32        | 55.8          | 61.25         |
| Flower    | 1517.06 ± 44.07c | 3371.75 ± 87.61c | 37.93         | 33.72         | 2.39          | 4.82          | 2.85          | 1.82          |

\[ \text{DW dry weight} \]

The data are presented as mean ± standard error (n = 3). In a same column, different lowercase letters indicate significant differences between tissues (Duncan’s multiple range tests, P < 0.05).

Bioconcentration factor (BCF) was calculated according to the following equation: BCF = perchlorate in plant/perchlorate in soil.

Table 5 Mass balance estimation of perchlorate for different wetland columns

| Treatment | ClO_4^- mass (mg/pot) | Percent of initial input (%) |
|-----------|-----------------------|-----------------------------|
|           | Total influent | Column effluent | Plant uptake | Sorption by substrate | Degradation^a | Column effluent | Plant uptake | Sorption by substrate | Degradation^a |
| Unplanted | 1440       | 746.58       | –            | 32.48          | 660.94       | 51.85           | –            | 2.26          | 45.90          |
| C_40      |                        |                       |                        |               |               |                  |                        |               |               |
| Unplanted | 3600       | 2314.36      | –            | 227.68         | 1057.96      | 64.29           | –            | 6.32          | 29.39          |
| C_100     |                        |                       |                        |               |               |                  |                        |               |               |
| Planted   | 1440       | 456.62       | 83.73        | 0              | 899.65       | 31.71           | 5.81         | 0             | 62.48          |
| C_40      |                        |                       |                        |               |               |                  |                        |               |               |
| Planted   | 3600       | 1720.22      | 265.03       | 57.20          | 1557.54      | 47.78           | 7.36         | 1.59          | 43.27          |
| C_100     |                        |                       |                        |               |               |                  |                        |               |               |

^aDegradation = mass (influent) – mass (effluent) – plant uptake – sorption by substrate

–: not applicable
\[ M_{\text{in}} = M_{\text{out}} + M_p + M_b + M_s, \]

where \( M_{\text{in}} \) is total \( \text{ClO}_4^- \) input to the wetland system (g), \( M_{\text{out}} \) is \( \text{ClO}_4^- \) output with the effluent from the wetland system (g), \( M_p \) is the part absorbed by the plants (g), \( M_b \) is biodegraded, the part degraded by microbial and plant (g), and \( M_s \) is the part adsorbed by the soil and cobbles.

As shown in Table 5, less than 6.32% of \( \text{ClO}_4^- \) input was adsorbed by the soil or cobbles in any of the treatments, about 5.81–7.34% was uptaked by achira in the planted columns, and more than 29.39% was degraded by biodegraded in any of the treatments. Tan et al. (2004b) reported that 0–14.30% of initial \( \text{ClO}_4^- \) input (32 mg/L) was absorbed by plants, whereas 48.40–99.90% was biodegraded in planted columns. Nzengung et al. (1999) concluded that phytodegradation contributed to approximately 11.00% perchlorate removal in their 26-day experiment. Previous findings in the literature (Tan et al. 2004a, b) and our mass data (Table 5) indicated that microbial perchlorate reduction instead of plant uptake plays a major role in perchlorate removal by planted wetland systems.

A significantly higher percentage of the initial \( \text{ClO}_4^- \) input was biodegraded in the planted columns than in the unplanted columns. Of the initial \( \text{ClO}_4^- \) input, 62.48% and 43.27% was biodegraded in the planted \( C_{40} \) and \( C_{100} \) treatments, respectively. In comparison, 45.90% and 29.39% was biodegraded in the unplanted \( C_{40} \) and \( C_{100} \) columns, respectively. Interestingly, achira greatly increased the proportion of perchlorate being biodegraded, indicating that plants play an important role by creating a more favorable environment for microbial growth and activity. In this study, no external carbon was supplied to the wetland columns. Carbon required by the perchlorate-reducing microbes must be self-supplied in the wetland systems. Therefore, it is expected that plant would play a more important role with time in such wetland systems as it provides both habitat and food for the indigenous perchlorate-reducing microorganisms.

Microbial populations in the constructed wetlands

As shown in Table 6, the CFUs of culturable bacteria, fungi, and actinomycetes in rhizosphere decreased with running time of the wetland systems, indicating that microbial growth and reproduction was inhibited.

### Table 6: Microbial number in rhizosphere of different treatments at different times

| Treatment  | 17th day DW | 35th day DW | 53rd day DW | 17th day CFU | 35th day CFU | 53th day CFU | 17th day Actinomycetes | 35th day Actinomycetes | 53th day Actinomycetes | 17th day Bacteria | 35th day Bacteria | 53th day Bacteria | 17th day Fungi | 35th day Fungi | 53th day Fungi |
|------------|-------------|-------------|-------------|--------------|--------------|-------------|------------------------|------------------------|------------------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|
| Unplanted  |             |             |             |              |              |             |                        |                        |                        |                 |                 |                 |                 |                 |                 |
| C0         | 2.96 ± 0.035b | 2.55 ± 0.003c | 2.26 ± 0.010d | 2.96 ± 0.035b | 2.55 ± 0.003c | 2.26 ± 0.010d |
| C40        | 2.51 ± 0.017e | 2.45 ± 0.012f | 2.47 ± 0.014g | 2.51 ± 0.017e | 2.45 ± 0.012f | 2.47 ± 0.014g | 2.51 ± 0.017e | 2.45 ± 0.012f | 2.47 ± 0.014g | 2.51 ± 0.017e | 2.45 ± 0.012f | 2.47 ± 0.014g | 2.51 ± 0.017e | 2.45 ± 0.012f | 2.47 ± 0.014g | 2.51 ± 0.017e |
| C100       | 1.76 ± 0.050f | 1.78 ± 0.120g | 1.78 ± 0.050f | 1.76 ± 0.050f | 1.78 ± 0.120g | 1.78 ± 0.050f | 1.76 ± 0.050f | 1.78 ± 0.120g | 1.78 ± 0.050f | 1.76 ± 0.050f | 1.78 ± 0.120g | 1.78 ± 0.050f | 1.76 ± 0.050f | 1.78 ± 0.120g | 1.78 ± 0.050f | 1.76 ± 0.050f |
| Planted    |             |             |             |              |              |             |                        |                        |                        |                 |                 |                 |                 |                 |                 |
| C0         |             |             |             |              |              |             |                        |                        |                        |                 |                 |                 |                 |                 |                 |
| C40        |             |             |             |              |              |             |                        |                        |                        |                 |                 |                 |                 |                 |                 |
| C100       |             |             |             |              |              |             |                        |                        |                        |                 |                 |                 |                 |                 |                 |

The data are presented as mean ± standard error (n = 3). In a same column, different lowercase letters indicate significant differences between treatments (Duncan’s multiple range tests, \( P < 0.05 \)).
by perchlorate and the inhibiting effect became more prominent with time. Sha et al. (2020) also showed that microbial community changed when exposed to perchlorate. For a same perchlorate input level, bacterial, fungal, and actinomycete counts were greater in the planted columns than in the unplanted ones, suggesting that achira helped to improve microbial growth in the wetland systems. Correlation analysis showed that there was a significant positive correlation between perchlorate removal and the microbial counts (Table 7). Additionally, bacteria were prevalent over fungi and actinomycetes in the wetland columns no matter with plants or not. Taken together, contaminants are removed in constructed wetlands under the synergistic action of plant-soil-microorganism, and the symbiotic interaction between microorganisms and animals and plants plays a central role (Lee et al. 2009). Microbial species and population in a constructed wetland directly affect the performance of the system.

Effluent pH value in the constructed wetlands

As shown in Table 8, the differences in effluent pH between treatments became bigger with running time, especially after the 44th day, when effluent pH in the planted columns was significantly higher than that in the unplanted columns, suggesting that achira helped to raise pH value in the wetland systems. Furthermore, in the later periods, the effluent pH values of the columns, planted or not, were in the order of: $C_0 > C_{40} > C_{100}$. Correlation analysis showed that there was a significant positive correlation between perchlorate removal and effluent pH (Table 7). Seyfferth et al. (2008a) demonstrated that increasing pH significantly reduced the amount of $\text{ClO}_4^-$ taken up by vegetables, for the reason is $\text{ClO}_4^-/\text{H}^+$ cotransport across the plasma membrane. The pH variation in the constructed wetland directly affected the perchlorate removal efficiency.

Table 7 Correlation coefficients between $\text{ClO}_4^-$ removal and some wetland properties

| Correlation coefficient | ClO$_4^-$ removal | pH | NO$_3^-$ | Fungus | Bacteria | Actinomycetes |
|-------------------------|------------------|----|----------|--------|---------|--------------|
| ClO$_4^-$ removal       | 1.000            |    |          |        |         |              |
| pH                      | 0.803**          | 1.000 |          |        |         |              |
| NO$_3^-$                | -0.398           | -0.465* | 1.000 |        |         |              |
| Fungus                  | 0.833**          | 0.508 | -0.204 | 1.000  |         |              |

Table 8 Effluent pH of every period

| Treatment | 8th day | 17th day | 26th day | 35th day | 44th day | 53th day |
|-----------|---------|----------|----------|----------|----------|----------|
| Unplanted $C_0$ | 7.43 ± 0.02a | 7.46 ± 0.06a | 7.33 ± 0.04ab | 7.34 ± 0.03c | 7.35 ± 0.04bc | 7.38 ± 0.01c |
| Unplanted $C_{40}$ | 7.47 ± 0.15a | 7.29 ± 0.05b | 7.24 ± 0.13b | 7.30 ± 0.03c | 7.29 ± 0.04c | 7.37 ± 0.07c |
| Unplanted $C_{100}$ | 7.58 ± 0.09a | 7.04 ± 0.01c | 7.01 ± 0.01c | 7.08 ± 0.02d | 7.10 ± 0.01d | 7.02 ± 0.06d |
| Planted $C_0$ | 7.51 ± 0.21a | 7.55 ± 0.02a | 7.55 ± 0.03a | 7.72 ± 0.06a | 7.73 ± 0.03a | 7.83 ± 0.04a |
| Planted $C_{40}$ | 7.63 ± 0.10a | 7.46 ± 0.01a | 7.56 ± 0.02a | 7.58 ± 0.02b | 7.66 ± 0.01a | 7.73 ± 0.09ab |
| Planted $C_{100}$ | 7.61 ± 0.02a | 7.24 ± 0.08b | 7.23 ± 0.09b | 7.35 ± 0.01c | 7.42 ± 0.02b | 7.56 ± 0.03b |

**DW** dry weight

The data are presented as mean ± standard error ($n = 3$). In a same column, different lowercase letters indicate significant differences between treatments (Duncan’s multiple range tests, $P < 0.05$)
Table 9 The concentration of NO$_3^-$ in effluent of every period (mg/L)

| Treatment | 8th day    | 17th day   | 26th day   | 35th day   | 44th day   | 53th day   | Average   |
|-----------|------------|------------|------------|------------|------------|------------|-----------|
| Unplanted C$_0$ | 3.58 ± 0.75c | 10.48 ± 0.34b | 5.47 ± 1.52a | 4.19 ± 0.23c | 2.35 ± 0.04c | 1.15 ± 0.05b | 4.54 ± 0.76 |
| Unplanted C$_{40}$ | 1.81 ± 0.03 cd | 3.07 ± 0.06e | 3.09 ± 0.10ab | 5.35 ± 0.39b | 4.95 ± 0.38b | 1.72 ± 0.01b | 3.34 ± 0.35 |
| Unplanted C$_{100}$ | 3.26 ± 0.48c | 16.81 ± 0.04a | 6.04 ± 1.66a | 11.89 ± 0.19a | 8.51 ± 0.03a | 4.19 ± 0.66a | 8.45 ± 1.17 |
| Planted C$_0$ | 7.87 ± 1.02b | 4.84 ± 0.06d | 0.99 ± 0.44b | 0.60 ± 0.14d | 0.48 ± 0.01d | 0.80 ± 0.01b | 2.60 ± 0.70 |
| Planted C$_{40}$ | 1.20 ± 0.64d | 7.16 ± 0.70c | 1.34 ± 0.62b | 0.96 ± 0.08d | 0.44 ± 0.02d | 0.83 ± 0.19b | 1.99 ± 0.59 |
| Planted C$_{100}$ | 15.68 ± 0.15a | 8.02 ± 0.06c | 3.24 ± 0.12ab | 1.14 ± 0.11d | 0.47 ± 0.02d | 1.20 ± 0.19b | 4.96 ± 1.31 |

$DW$ dry weight

The data are presented as mean ± standard error ($n = 3$). In a same column, different lowercase letters indicate significant differences between treatments (Duncan’s multiple range tests, $P < 0.05$)

Variation of NO$_3^-$ in the constructed wetlands

Perchlorate-contaminated water often contains high nitrate (NO$_3^-$). Studies have demonstrated that simultaneous removal of perchlorate and nitrate is feasible at low nitrate level (Ziv-El and Rittmann 2009; Bardiya and Bae 2011). High nitrate level (above 5 mg/L) was found to inhibit ClO$_4^-$ biodegradation (Tan et al. 2004b). In the present study, NO$_3^-$ concentration in the effluent decreased gradually with the operation continuing, but increased with increasing ClO$_4^-$ concentration in both the unplanted and planted columns (Table 9). Effluent NO$_3^-$ concentration in the planted columns was significantly lower than that in the unplanted columns after 17 days of operation (Table 9). And as shown in Fig. 2, for a same perchlorate level in influent, significantly more perchlorate was removed by the planted columns than by the unplanted columns. Thus, the results demonstrated that simultaneous ClO$_4^-$ and NO$_3^-$ removal was achieved in the constructed wetlands, and achira played an important role in it. Correlation analysis showed that there was a negative, though not significant, correlation ($r = -0.398$, $P = 0.054$) between ClO$_4^-$ and NO$_3^-$ concentrations in effluent. This might be that ClO$_4^-$ may share an ion carrier or transport pathways with NO$_3^-$ (Seyfferth et al. 2008a).

Nitrate is one of the important nutrients for the growth of plants and microorganisms. In higher plants, ClO$_4^-$ and NO$_3^-$ may share transporters or transport pathways (Seyfferth et al. 2008b). Some findings have also shown that perchlorate-respiring organisms can grow with nitrate as terminal electron acceptor, and vice versa (Ziv-El and Rittmann 2009). Although interference between NO$_3^-$ and ClO$_4^-$ was observed, simultaneous removal was achieved in our wetland system. Therefore, natural achira wetlands can be used to treat perchlorate-contaminated eutrophic water. However, the design of a constructed wetland system with achira for co-treatment of perchlorate and nitrate should take nitrate concentration into account.

Conclusions

In summation, we demonstrated the constructed achira wetlands have the potential to treated ClO$_4^-$ contaminated wastewaters. Biodegradation raise played a major role in overall removal of perchlorate, plant uptake and transformation only contributed to a relatively small portion, but planting achira could greatly improve ClO$_4^-$ biodegradation in this wetland system. As plants can provide a continuous carbon source and support medium for microbe growth, plants will play a more important role in long term wetland treatment systems.

Acknowledgements The study was supported by the National Natural Science Foundation of China (Grant No. 41877334), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515012177), the Young Innovative Talents Project in General Colleges and Universities in Guangdong Province (Grant No. 2018 KQNCX147), and Yanling Excellent Young Teacher Program of Lingnan Normal University.

Author contributions DL: Conduct an experiment, writing—original draft preparation; HG: conduct an experiment; JD: visualization, software; JQ: supervision, methodology; HL: data
curation; HH: supervision, conceptualization; GC: writing—reviewing and editing, validation.

**Declarations**

**Conflict of interest** All authors claim that they do not have any actual or potential conflict of interest including any financial, personal, or other relationships with other people or organizations.

**References**

Abdel-Mohsein HSA, Feng M, Fukuda Y, Tada C (2020) Remarkable removal of antibiotic-resistant bacteria during dairy wastewater treatment using hybrid full-scale constructed wetland. Water Air Soil Pollut 231:397

Abt E, Spungen J, Pouillot R, Siebers MG, Wirtz M (2016) Update on dietary intake of perchlorate and iodine from U.S. food and drug administration’s total diet study: 2008–2012. J Expos Sci Environ Epidemiol 28(1):21–30

Ballesteros F Jr, Vuong TH, Secondes MF, Tuand PD (2016) Removal efficiencies of constructed wetland and efficacy of plant on treating benzene. Sustain Environ Res 26:93–96

Bardiya N, Bae J (2011) Dissimilatory perchlorate reduction: a review. Microbiol Res 166:237–254

Bhaskaran K, Vijaya NA, Tumbath S, Babu SL, Gangadharan PVP (2013) Phytoremediation of perchlorate by free floating macrophytes. J Hazard Mater 260:901–906

Bilgin M, Şimşek I, Tulun Ş (2014) Treatment of domestic wastewater using a lab-scale activated sludge/vertical flow subsurface constructed wetlands by using Cyperus alternifolius. Ecol Eng 70:362–365

Caldeirón R, Godoy F, Escudey M, Palma P (2017) A review of perchlorate (ClO4−) occurrence in fruits and vegetables. Environ Monit Assess 189(2):82

Calheiros CSC, Quitério PVB, Silva G, Crispim LFC, Brix H, Moura SC, Castro PML (2012) Use of constructed wetland systems with Arundo donax and Sarcocornia for polising high salinity tannery wastewater. J Environ Manag 95:66–71

Choe JK, Mehnerd MH, Guest JS, Strathmann TJ, Werth CJ (2013) Comparative assessment of the environmental sustainability of existing and emerging perchlorate treatment technologies for drinking water. Environ Sci Technol 47:4644–4652

Choudhary PK (2012) Breastfed infants metabolize perchlorate. Environ Sci Technol 46:5151–5159

Choudhary PK, Camper AK, Stein OR (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35:987–1004

He H, Gao H, Chen G, Li H, Lin H, Shu Z (2013) Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues. Environ Sci Pollut Res 20:7301–7308

Her N, Kim J, Yoon Y (2010) Perchlorate in dairy milk and milk-based powdered infant formula in South Korea. Chemosphere 81:732–737

Kirk AB, Kroll M, Dyke JV, Ohira S, Dias RA, Dasgupta PK (2012) Perchlorate, iodine supplements, iodized salt and breast milk iodine content. Sci Total Environ 420:73–78

Kumarathilaka P, Oze C, Indraratne SP, Vithanage M (2016) Perchlorate as an emerging contaminant in soil, water and food. Chemosphere 150:667–677

Lee C, Fletcher TD, Sun G (2009) Nitrogen removal in constructed wetland systems. Eng Life Sci 9:11–22

Nair RR, Russel JG, Pradeep S, Ajay S, Krishnakumar B (2020) A novel ex-situ bio-remediation process for perchlorate contaminated soil. Chemosphere 247:125947

Nzengung VA, Wang C, Harvey G (1999) Plant-mediated transformation of perchlorate into chloride. Environ Sci Technol 33:1470–1478

Sehar S, Nasser HAA (2019) Wastewater treatment of food industries through constructed wetland: a review. Int J Environ Sci Technol 16:6453–6472

Seva S, Sreekishnan TR, Pous N, Puig S, Pant D (2018) Bio-electroremediation of perchlorate and nitrate contaminated water: a review. Bioresour Technol 255:331–339

Seyfferth AL, Parker DR (2008) Uptake and fate of perchlorate in higher plants. Adv Agron 99:101–123

Seyfferth AL, Henderson MK, Parker DR (2008a) Effects of common soil anions and pH on the uptake and accumulation of perchlorate in lettuce. Plant Soil 302:139–148

Seyfferth AL, Sturchio NC, Parker DR (2008b) Is perchlorate metabolized or re-translocated within Lettuce leaves? A stable-isotope approach. Environ Sci Technol 42:9437–9442

Sha J, Wu J, Bi C, Chen C, Su Q, Wang S, Wang C, Zhou Y (2020) Responses of microbial community to different concentration of perchlorate in the Qingyi River. J Biotech 10(1):21

Shelor CP, Kirk AB, Dasgupta PK, Kroll M, Campbell CA, Choudhary PK (2012) Breastfed infants metabolize perchlorate. Environ Sci Technol 46:5151–5159

Shenboli TA, Jackson WA (2005) Temporal and spatial variation of perchlorate in streambed sediments: results from in-situ dialysis samplers. Environ Pollut 136(2):283–291

Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK, Stein OR (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35:987–1004
U.S. EPA (United State Environmental Protection Agency) (2005) Perchlorate treatment technology update for perchlorate. EPA 542-R-05-015. www.epa.gov/tio/tsp

Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20

Wang C, Zhai Y, Zhu Y, Li X, Li C, Zeng G (2017) Concentration and exposure evaluation of perchlorate in size-segregated airborne particulate matter from Changsha, China. Water Air Soil Pollut 228:369–379

Wu H, Wang X, He X, Zhang S, Liang R, Shen J (2017) Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Sci Tot Environ 598:697–703

Yifru DD, Nzengung VA (2008) Organic carbon biostimulates rapid rhizodegradation of perchlorate. Environ Toxicol Chem 27:2419–2426

Zhang T, Wu Q, Sun HW, Rao J, Kannan K (2010) Perchlorate and iodide in whole blood samples from infants, children, and adults in Nanchang, China. Environ Sci Technol 44:6947–6953

Ziv-El MC, Rittmann BE (2009) Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor. Water Res 43:173–181

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.