A systematic review and meta-analysis of removable and fixed implant-supported prostheses in edentulous jaws: post-loading implant loss

Jaana-Sophia Kern
Thomas Kern
Stefan Wolfart
Nicole Heussen

Authors’ affiliations:
Jaana-Sophia Kern, Thomas Kern, Stefan Wolfart, Department of Prosthodontics and Biomaterials, Center for Implantology, Medical Faculty, RWTH Aachen University, Aachen, Germany
Nicole Heussen, Department of Medical Statistics, Medical Faculty, RWTH Aachen University, Aachen, Germany

Corresponding author:
Jaana-Sophia Kern, MSc
Department of Prosthodontics and Biomaterials
Center for Implantology
Medical Faculty, RWTH Aachen
Pauwelsstr. 30, D-52070 Aachen, Germany
Tel.: +0049-241-8089969
Fax: +0049-241-8082410
e-mail: jkern@ukaachen.de

Key words: edentulous mandible, edentulous maxilla, implant-supported prosthesis, meta-analysis, systematic review

Abstract
Objectives: The aim of this systematic review was to analyze post-loading implant loss for implant-supported prostheses in edentulous jaws, regarding a potential impact of implant location (maxilla vs. mandible), implant number per patient, type of prosthesis (removable vs. fixed), and type of attachment system (screw-retained, ball vs. bar vs. telescopic crown).

Material and methods: A systematic literature search for randomized-controlled trials (RCTs) or prospective studies was conducted within PubMed, Cochrane Library, and Embase. Quality assessment of the included studies was carried out, and the review was structured according to PRISMA. Implant loss and corresponding 3- and 5-year survival rates were estimated by means of a Poisson regression model with total exposure time as offset.

Results: After title, abstract, and full-text screening, 54 studies were included for qualitative analyses. Estimated 5-year survival rates of implants were 97.9% [95% CI 97.4; 98.4] in the maxilla and 98.9% [95% CI 98.7; 99.1] in the mandible. Corresponding implant loss rates per 100 implant years were significantly higher in the maxilla (0.42 [95% CI 0.33; 0.53] vs. 0.22 [95% CI 0.17; 0.27]; P = 0.0001). Implant loss rates for fixed restorations were significantly lower compared to removable restorations (0.23 [95% CI 0.18; 0.29] vs. 0.35 [95% CI 0.28; 0.44]; P = 0.0148). Four implants and a fixed restoration in the mandible resulted in significantly higher implant loss rates compared to five or more implants with a fixed restoration. The analysis of one implant and a mandibular overdenture also revealed higher implant loss rates than an overdenture on two implants. The same (lower implant number = higher implant loss rate) applied when comparing 2 vs. 4 implants and a mandibular overdenture. Implant loss rates for maxillary overdentures on <4 implants were significantly higher than for four implants (7.22 [95% CI 5.41; 9.64] vs. 2.31 [1.56; 3.42]; P < 0.0001).

Conclusions: Implant location, type of restoration, and implant number do have an influence on the estimated implant loss rate. Consistent reporting of clinical studies is necessary and high-quality studies are needed to confirm the present results.

Introduction and rationale
Complete edentulism still is a common health problem. Although oral health studies illustrated a decrease of individuals suffering from an edentate status, in Germany still 22.6% of 65- to 70-year olds were completely edentulous in the year 2005 (Micheelis & Schiffner 2006).

A complete denture is the classic therapy of full edentulism. Nowadays, this kind of rehabilitation might not be considered as the standard therapy for the lower edentulous jaw any longer. The stabilization of the lower denture with at least two endosseous implants is applied for more than 20 years and was recommended by Feine and co-workers in the McGill consensus statement as standard therapy in 2002 already (Feine et al. 2002a,b,c).

The diversity of problems caused by complete dentures is not a modern issue. Patients do not only complain about insufficient chewing abilities and articulation problems, but also experience psychic strain and social impairment (Albaker 2013). On the contrary, clinical studies investigating the potential impact of implant-supported prostheses on...
the oral health-related quality of life were able to show clear improvement after implants had been inserted (Zitzmann & Marinello 2000a; Allen & McMillan 2003; Scala et al. 2012; Zembari & Wismeijer 2014). It is worth mentioning that clear evidence of benefits for the patient is merely available for the edentulous lower jaw with two interforaminal implants and an overdenture compared to a complete denture. The few studies concerning patient-centered outcome for implant-supported prostheses in the maxilla indicate advantages for the patient. However, considering daily practice, it has to be assumed that the majority of patients with a maxillary complete denture do not articulate major problems.

This systematic review is an update of our own (Schley & Wolfart 2011) and other previously published reviews on the edentulous jaw. As a result of clinical diversity reasons, usually, only a limited number of studies were included in these reviews. Moreover, probably due to a lack of high-quality studies, most of them also included retrospective studies (Lambert et al. 2009; Slot et al. 2009; Heydecke et al. 2012), which are known to have a lower level of evidence. Furthermore, they either included the edentulous maxilla (Slot et al. 2009) or mandible (Payne & Solomon 2000; Rocuzzo et al. 2012; Papaspynidas et al. 2013) or pooled the results for both jaws (Papaspynidas et al. 2012). Two very interesting systematic reviews with meta-analysis were recently published (Papaspynidas et al. 2012, 2013). They focused on biologic and technical complications of fixed implant restorations in edentulous mandibles and implant and prosthodontic survival rates of both jaws and reported an implant survival rate of 97.3% after 10 years.

There is still a large variety of opinions on the best rehabilitation of an edentulous patient. The patient’s wish and his or her individual circumstances, which also include financial capacities, have first priority in the decision-making. The anatomic situation and the dentist’s knowledge, that is his or her internal evidence, determine the further procedure. Nowadays, the insertion and/or restoration of dental implants in edentulous jaws can considered to be one of the basic treatment modalities in a dentist’s everyday practice. Therefore, it seems to be essential to define reproducible treatment protocols that support the individual’s expertise and help to establish clear concepts in the sense of an evidence-based dentistry.

The “optimal” number of implants for edentulous jaws still seems to be debatable. Different reviews tried to address this question (Lambert et al. 2009; Slot et al. 2009; Rocuzzo et al. 2012) and a recently published clinical guideline at least provided key recommendations concerning number of implants and type of implant prosthesis for the edentulous maxilla (Schley & Wolfart 2011; Schley et al. 2013).

To the authors’ best knowledge, the potential influence of several factors (not only implant number) on the outcome of dental implants in edentulous patients has not been systematically elaborated, statistically analyzed and compared for both fixed and removable restorations for maxilla and mandible in one review.

Thus, the aim of this systematic review was to address the following focused question:

Is there an impact of implant location (maxilla vs. mandible), implant number, type of prosthesis (fixed vs. removable) and/or different anchorage systems on the implant loss rate concerning the implant-prosthodontic rehabilitation of edentulous patients?

Material and methods

Protocol
Prior to the systematic literature search, a review protocol was determined with the software Review Manager, version 5.2.

Structure of the review
The systematic review was edited according to the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) (Moher et al. 2009).

Eligibility criteria
The focused question was formulated according to the PICOS format, as suggested by the Center for Evidence-Based Medicine and served as a basis for the systematic literature search (Askig Focused Questions 2014):

Patients: edentulous patients (both jaws or either upper or lower jaw) with an implant-retained fixed or removable prosthesis;

Interventions: insertion of either machined or rough-surfaced endosseous titanium implants with a root-like or cylindrical form, irrespective of implant number, length, diameter, position, or angulation, into either local or augmented bone, prosthodontic rehabilitation with a fixed full-arch bridge, segmented reconstructions or a removable overdenture according to an immediate, early or conventional loading protocol.

Comparisons: comparison of different types of prostheses (fixed vs. removable) and/or anchorage systems (ball/locator, bar, telescopic crowns) or fixation mode (screw-retained/cemented) with different implant numbers, in one or between both jaws.

Outcomes: implant survival rate or number of implant losses after prosthetic loading after an observation period of at least 3 years.

Study design: randomized-controlled trials (RCTs) or prospective clinical studies as reported by the authors.

Definitions: A prosthesis not being detachable by the patient himself was defined as “fixed prosthesis,” that is, screw-retained or cemented fixed full-arch or segmented prostheses. An overdenture retained by different anchorage systems (bar, ball/locator or telescopic crown), and accordingly being removable by the patient, was defined as “removable prosthesis.” Regarding different implant surfaces merely a simple distinction between machined and so-called rough implant surfaces was made. A further differentiation of roughening methods or surface modifications, respectively, was not applicable. The loading protocols were defined according to Esposito et al. (2007), that is, an immediate loading was considered to be within 1 week after implant insertion, an early loading between 1 weeks and 2 months, and a conventional loading after a healing period of more than 2 months.

An implant being still in situ with a bony anchorage after the observation period was defined as “implant survival,” irrespective of hard or soft tissue condition around the implant. Prosthetic loading (immediate or after a conventional healing period) was defined as baseline, meaning, that so-called early losses, that is losses before prosthetic loading, were noted but not statistically evaluated.

Exclusion criteria: no clinical study, retrospective studies, observation period of <3 years, no mean observation period or detailed information on time of implant loss/dropout, no separate reporting of maxilla and mandible or fixed and removable prostheses, provisional implants, ceramic implants, or implants placed into the pterygomaxillary, zygomatic or palatal region, transmandibular implants, studies reporting on the same patient cohort more than once.
Information sources
The electronic databases of Medline (PubMed), Cochrane Library, and Embase were searched. A supplementary manual search in different German dental journals (Deutsche Zahnärztliche Zeitschrift, Implantologie, Quintessenz, Zeitschrift für Zahnärztliche Implantologie), reference lists of available publications, and private databases (End Note libraries) was conducted. Authors of available studies were contacted per mail in case of unclear data.

May 7, 2014 was the last date of search. (Table 1).

Search strategy
The search strategy is described in Table 1. The PubMed search complied with the PICOS question addressing Patients, Intervention, Comparison, Outcome and Study design.

Study selection
The resulting initial hits of the above-mentioned search were screened, and a first pre-screening by title was undertaken. Titles were sequentially excluded if they indicated a non-relevant content (e.g., no dental implants, animal or in vitro study). In case of any uncertainty, an additional abstract reading was performed. Abstracts of the selected titles were inspected for relevance resulting in a choice of possibly eligible full texts. If studies were published by the same author or institution several times, the according manuscripts were thoroughly read and compared to avoid the inclusion of duplicate data. After full-text selection and data extraction, it was decided whether the publication was adequate for the intended systematic review.

Study selection and data extraction were performed independently by two reviewers (JSK, TK), and any disagreement was solved by discussion. To assess consistency among the reviewers, the interviewer reliability using Cohen’s Kappa statistic was analyzed.

Data collection and data items
Extracted data were filled into pre-defined forms and included the following parameters: author, year, total number of patients/prostheses investigated, observation period, total number of implants, number and time of dropouts on implant level, number of implants per patient, type of implant prostheses, type of anchorage system, implant survival and implant losses before and after loading. Moreover, implant system, implant surface, loading protocol, and bone augmentation procedures were noted. All variables were pre-determined and no additional variables were added after the reviewing had started.

Risk of bias within and across studies
A potential risk of bias within the included studies was assessed using the methodology checklists provided by the Scottish Intercollegiate Guidelines Network (SIGN). These lists comprise the critical appraisal of the selection of subjects, the applied assessment, potential confounders, and the statistical analysis, and finally, the overall assessment of the methodological quality of the study:

- High quality: {++} Majority of criteria met. Little or no risk of bias. Results unlikely to be changed by further research.
- Acceptable quality: {+} Most criteria met. Some flaws in the study with an associated risk of bias. Conclusions may change in the light of further studies.
- Low quality: {−} Either most criteria not met, or significant flaws relating to key aspects of study design. Conclusions likely to change in the light of further studies.

Further explanations are shown as footnote of Table 2.
A special assessment of possible publication bias or selective reporting was not performed. There were no clues indicating that data within studies were missing. Several studies were industrially sponsored.

Summary measures and synthesis of results
In the majority of included studies, the investigated patients were subdivided into different groups, for example, to compare different loading protocols, anchorage systems, implant numbers or implant types. Whenever possible, data of these groups were recorded separately so that the statistical analysis incorporated more study populations than indicated by the number of included studies.

The primary outcome of the meta-analysis was the estimated implant loss rate per 100 implant years in the edentulous maxilla and mandible depending on type of prosthesis [fixed or removable], type of attachment [bar/ball/telescopic crowns, screw-retained/cemented], and implant number. This rate describes, for example, the risk of an implant loss regarding 100 implants over the course of 1 year or the risk of an implant loss regarding 10 implants over 10 years.

Based on these implant loss rates, 3- and 5-year implant survival rates were estimated.

For simplification, implant numbers were categorized for both jaws. For the mandible, these categories were as follows: one implant, two implants, four implants, and ≥5 implants. For the maxilla, a subdivision was chosen as follows: <4 implants, four implants, and ≥6 implants. Whenever information on the exact implant number per patient could not be extracted, further subcategories were chosen: 2–4 implants and 4–6 in the mandible, and 5–6 implants in the maxilla. Data of these overlapping categories were used to strengthen the overall analysis, but were not included for any comparisons. The same applies to missing or not extractable information of other categories [e.g., loading protocol or implant surface, declared as “not applicable”]. Tables 3 and 4 illustrate in detail which particular category was “not applicable”. The number of included study populations for each analysis is shown in the Tables, as well.

Ball and locator attachments were summarized in one category (“ball”). The category “bar” included all types of bars. The category “telescopic crowns” included all types of double crowns.

Additional subgroup analyses were carried out to calculate the estimated implant loss rates per 100 implant years with regard to loading protocol [immediate vs. conventional] and implant surface [rough vs. machined].

According to Pietrusson et al. [2007] implant loss rates were calculated by dividing the number of events [loss after loading] by the total exposure time of the implants. The total exposure time consisted of a) the exposure time of the implants being followed for the complete observation period, b) the exposure time of the implants until loss, and c) the exposure time until an implant dropout had occurred [withdrawal for different reasons, patient’s death/illness, patient missed recall or moved]. If the explicit information on an implant was not provided, that is time of dropout or loss, the total exposure time was calculated by multiplying the number of initially inserted implants [minus losses before loading] by the mean follow-up time. Implant loss rates were calculated for every study population by dividing the number of events [post-loading losses] by the total implant exposure time in years.

A Poisson regression models with a logarithmic link function and the logarithm of total exposure time as an offset variable were fitted to the data to obtain a cumulative estimate for the appropriate implant loss rate and a corresponding 95% confidence interval. 3- and 5-year implant survival rates and related 95% confidence limits were derived from the equation \(S(t) = e^{-\lambda t} \) where \(t \) denotes the time and \(\lambda \) the implant loss rate by assuming constant event rates over time. Comparison of loss rates in different subgroups were contrasted by descriptive \(P \)-values resulting from the correspondent Poisson regression model. Factors, which showed significant influence on implant loss in the univariate analysis, were simultaneously analyzed in a multivariate Poisson regression model. To explore possible effect modifiers, all two-way interactions between factors were evaluated within this model. The final Poisson regression model included all main effects and significant two-way interactions. \(P \)-values less than or equal to 0.05 were regarded as statistically meaningful. Due to the explorative nature of the study, no adjustment to the significance level was made. All statistical analyses were performed using the software SAS (SAS Institute Inc., Cary, NC, USA, Version 9.3).

Results

Literature search
The search strategy, as described in Figure 1 and Table 1, resulted in an initial number of 4317 titles. 3823 titles could be excluded after screening. The manual search revealed 80 further abstracts.

After filtering the abstracts and excluding the duplicates, the reviewers decided to conduct a full-text analysis of 210 publications. Fifty-six publications, describing 54 studies, could be considered for a quantitative analysis. The interreviewer agreement was found to be \(k = 0.9 \) [SD 0.098] concerning final study selection.

Study characteristics
The included clinical trials were published within an almost 20-year period (1996–2013). Ten of them investigated the edentulous maxilla, 36 the edentulous mandible, and eight investigated both jaws. Four studies were RCTs, and the rest were prospective clinical studies, sometimes described as “prospective, randomized” or “prospective, controlled” (Table 2).

In the majority of studies, observation periods between 3 and 10 years were stated, and in four studies, 11 or more years of follow-up were reported [Table 3]. Within the 54 included clinical trials, altogether 81 study populations have been investigated. Whenever subgroups were described in a study, this information is shown in Tables 4 and 5. In 30 study populations, patients were restored with fixed full-arch prostheses, and in the residual 51 study populations, patients received removable overdentures. All of the fixed, definitive prostheses had a metal framework [Au, CoCr, or Ti], veneered with acrylic resin or ceramic and were screw-retained. None of the studies reported on cemented or adhesively fixed prostheses. The removable prostheses were generally fabricated out of acrylic resin, reinforced with a metal framework or reinforcement [CoCr] and attached by different anchorage systems [ball, locator, telescopic crown as un-splitthed retention elements and different bars enabling a primary splinting].

Altogether 2368 patients received 9267 implants. Various implant types with different surface modifications were used (Table 3). All implants were titanium implants with different lengths and diameters. Implant numbers per patient varied between 1 and 6 implants in the mandible and 2 and 10 in the maxilla. The interferominal area was the preferred area for implant positioning in the mandible. If only one implant was inserted in the edentulous lower jaw, it was located in the midline symphysis, representing the absolute minimal treatment concept. In the maxilla, implant positions...
Table 2. Risk of bias within studies

Studies in alphabetical order	Study design	Overall assessment of the study*	Level of evidence†	Sponsoring/support as reported by the authors
Agliardi et al. (2012)	Prospective	+	2+	n.r.
Akca et al. (2010)	Prospective	+	2+	Partly supported by State Planning Organization, Prime Ministry, Republic of Turkey
Akoglu et al. (2011)	Prospective	++	2+++	n.r.
Arvidson et al. (1998)	Prospective	+	2+	Partly supported by Astra Tech, Sweden
Arvidson et al. (2008)	Prospective	++	2+++	Supported and sponsored by Institut Straumann AG, Basel, Switzerland
Behneke et al. (2002)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Bergendal & Engquist (1998)	Prospective	+	2+	Study was self-funded by the authors and their institution
Cehreli et al. (2010)	RCT	+	1+	Partly supported by the Prime Ministry, Republic of Turkey
Chiapasco & Gatti (2003)	Prospective	+	2+	n.r.
Collaert & De Bruyn (2008)	Prospective	+	2+	n.r.
Cooper et al. (2008)	Prospective	++	2+++	n.r.
Cordioli et al. (1997)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Covani et al. (2012)	Prospective	+	2+	n.r.
Crespi et al. (2012)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
De Bruyn et al. (2008)	Prospective	+	2+	n.r.
De Santis et al. (2012)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Degidi et al. (2010)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Ekelund et al. (2003)/	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Lindquist et al. (1996)	Prospective, randomized	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Eliasson et al. (2010)	Prospective, randomized	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Gotfredsen & Holm (2000)	Prospective, randomized	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Harder et al. (2011)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Heijdenrijk et al. (2006)	Prospective, randomized	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Heschl et al. (2013)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Jemt et al. (1996)/	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Watson et al. (1997)	RCT	+	1+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Krennmaier et al. (2008)	Prospective, randomized	+	2+	Study was self-funded by the authors and their institution
Krennmaier et al. (2011)	Prospective, randomized	+	2+	Study was self-funded by the authors and their institution
Krennmaier et al. (2012)	Prospective, randomized	+	2+	Study was self-funded by the authors and their institution
Leitner & Koenig (2011)	Prospective	+	2+	Study was self-funded by the authors and their institution
Liddelomy & Henry (2010)	Prospective	+	2+	Study was self-funded by the authors and their institution
Lorenzoni et al. (2013)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Meijer et al. (2004)	RCT	+	1+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Meijer et al. (2009a)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Meijer et al. (2009b)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Mertens et al. (2012)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Murphy et al. (2002)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Naert et al. (1998)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Nyström et al. (2009a,b)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Nyström et al. (2009a,b)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Ortorp & Jent (2012)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Rasmusson et al. (2005)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Richter & Knapp (2010)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Romero et al. (2004)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Schwarz et al. (2010)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Sjöstrom et al. (2007)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Stoker et al. (2012)	RCT	+	1+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Tertori et al. (2004)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Van de Velde et al. (2007)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Vroom et al. (2009)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Weinlander et al. (2010)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Zitzmann & Marinello (2000a,b)	Prospective	+	2+	Financially supported by FRIADENT GmbH, Germany, provided kits for IL-1 composite genotype tests
Table 2. (continued)

Studies in alphabetical order	Study design	Overall assessment of the study*	Level of evidence†	Sponsoring/support as reported by the authors
Zou et al. (2013)	Prospective	+	2+	Funded by Combined Engineering and Medical Project of Shanghai Jiao Tong University the National Natural Science Foundation of (YG2010M556), Science and Technology Commission of Shanghai Municipality (13ZR1424000), China (81100788, 31370983, 81371190), the Key Project of Chinese Ministry of Education (212080), Grants for Scientific Research of BSKY (XJ201109), and the Young Top-notch Talent Support Scheme from Anhui Medical University

*How well was the study performed to minimize the risk of bias or confounding? (+) High quality (+) Acceptable (−) Low quality.
†Level of evidence according to SIGN: 1+ = well-conducted meta-analyses, systematic reviews, or RCTs with a low risk of bias; 2+ = high-quality systematic reviews of case-control or cohort studies, high-quality case-control or cohort studies with a very low risk of confounding or bias and a high probability that the relationship is causal. 2− = well-conducted case-control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal; 3− = case-control or cohort studies with a high risk of confounding or bias and a significant risk that the relationship is not causal; 3 − Non-analytic studies, for example case reports, case series.

were often not described precisely. Only the following authors described the area of implant placement in more detail: Fischer & Stenberg (2012, 2013) located 5–6 implants from second premolar to second premolar. Agliardi et al. (2012) and Degidi et al. (2010) placed implants in the anterior area and (tilted) implants in the regions of the anterior and posterior sinus wall. De Santis et al. (2012) inserted 6–10 implants in the positions of former incisors, canines, premolars, and molars.

The results for fixed prostheses presented by Romeo et al. (2004) could not be considered, because only three patients had been provided with a fixed prosthesis. In another trial, the observation period was too short, and therefore, the “removable cases” had to be excluded (Zitzmann & Marinello 2000a, b). Covani et al. (2012) merely included six patients with an edentulous lower jaw, and hence, these cases were not regarded in this review. Some authors observed the same study population but reported on different clinical outcomes in different publications [surgical, periodontal, prosthetic] (Jemt et al. 1996; Watson et al. 1997; Fischer & Stenberg 2012, 2013). Their results were summarized.

Generally, criteria for the inclusion or exclusion of patients were pre-defined. For obvious reasons, these criteria were not consistent among the studies. Mostly, patients with severe diseases or uncontrolled diabetes, psychological problems, and heavy smokers were excluded. In general, the average age of the patients was between 50 and 60 years, although it is worth mentioning that mean ages were not always provided or sometimes not for all indications being investigated in one particular study (e.g., maxilla or mandible, edentulous or partially edentulous).

In the majority of studies, a 2-stage surgical procedure and a conventional loading protocol were carried out, but non-submerged healing (1-stage surgery) followed by immediate prosthetic loading was applied, as well (Table 3). Pre-implantological or simultaneous bone augmentation was reported in six studies and ranged from rather simple procedures (e.g., filling of post-extraction sites [Agliardi et al. 2012; Zou et al. 2013]) to complex reconstructions such as Le Fort I osteotomies with interpositional bone grafts (Nystrom et al. 2009b; De Santis et al. 2012) or onlay osteoplastics [Nystrom et al. 2009a; Sjostrom et al. 2007] either applied inlay, onlay, or interpositional grafting with free iliac grafts. Covani et al. (2012) partly carried out simultaneous sinus floor elevation with the osteotome technique. Richter & Knapp (2010) performed either bone splitting or bone spreading but no augmentation in case of heavy bone resorption. Three other studies (De Bruyn et al. 2008; Heschl et al. 2013; Lorenzoni et al. 2013) reported not to have applied augmentative or regenerative procedures. The rest of the studies cannot be commented as the authors did not make any statements about bone augmentation.

The examination of patients usually comprised the recording of several indices, that is, plaque indices, bleeding indices, and pocket depth. Implant stability was checked, sometimes by means of radio-frequency analysis or “damping capacity assessment” (Heschl et al. 2012). In the majority of the included studies, a radiographic examination was performed to measure marginal bone level changes. Several techniques were used for this, for example, standardized radiographic holders to achieve the highest possible reproducibility. In many cases, merely panoramic radiographs were compared.

Overall implant survival and loss

Results of individual patient groups

Estimated implant survival after 5 years ranged from 89.0% to 100% for fixed prostheses concerning both jaws (Tables 4 and 5). For removable prostheses, estimated survival rates of 24.9% up to 100% were calculated. The very low survival rate of 24.8%, with an associated annual implant loss rate of 27.8 per 100 implant years, is related to a very small patient group \(n = 7\) that was restored with merely 2 diameter-reduced implants and an overdenture in the edentulous maxilla (Richter & Knapp 2010).

Synthesis of results

Comparing the overall implant loss rate per 100 implant years for fixed vs. removable prostheses, a statistically significant difference could be assessed \(P < 0.0001\) if the category \(< 4\) implants [maxilla] was included (Tables 6 and 7). Excluding this latter category, there was also a significantly higher implant loss rate per 100 implant years comparing fixed and removable restorations \(0.23 [95\% \text{ CI 0.18; 0.29}] vs. 0.35 [95\% \text{ CI 0.28; 0.44}]\); \(P = 0.0148\).

Regarding different attachment types for overdentures in both jaws, no significant differences could be detected for ball vs. bar anchorage. The estimated implant loss rate per 100 implant years was similar \(0.34 [95\% \text{ CI 0.16; 0.72}]\) to \(0.35 [95\% \text{ CI 0.27; 0.46}]\) per 100 implant years; \(P = 0.9607\). The comparison of bar vs. telescopic crown and ball vs. telescopic crown was not possible (no implant losses, merely three study populations included [not regarding the study of Richter & Knapp (2010), as it belonged to the group \(< 4\) implants, see below]).
Study (Year of publication)	Study design	Jaw	Type of prosthesis	Type of anchorage	Implant system (as reported by the authors)	Loading protocol	Total number of implants	Total number of prostheses	Follow-up period (years)
Agliardi et al. (2012)	Prospective	Maxilla	Fixed	Screw-retained	Bränemark, Nobel Speedy (Nobel Biocare)	Immediate	192	32	4.6
Colaert & De Bruyn (2008)	Prospective	Maxilla	Fixed	Screw-retained	TiOblast Astra Tech (Dentsply)	Immediate	195	25	3
De Santis et al. (2012)	Prospective	Maxilla	Fixed	Screw-retained	Xive (Dentsply)	Conventional	154	20	4.3
Degidi et al. (2010)	Prospective	Maxilla	Fixed	Screw-retained	Esthetic Plus SLA (Straumann)	Immediate/ conventional	210	30	3
Fischer & Stenberg (2012)	Prospective	Maxilla	Fixed	Screw-retained	Astra Tech, Dentsply Bränemark (Nobel Biocare)	Conventional	142	24	10
Mertens et al. (2012)	Prospective	Maxilla	Fixed	Screw-retained	Conventional Bränemark (Nobel Biocare)	Conventional	106	17	11.3
Naert et al. (1998)	Prospective	Maxilla	Fixed	Screw-retained	Conventional Bränemark (Nobel Biocare)	Conventional	53	13	3
Nyström et al. (2009b)	Prospective	Maxilla	Fixed	Screw-retained	Bränemark (Nobel Biocare) Bränemark (Nobel Biocare)	Conventional	167	26	13
Nyström et al. (2009a)	Prospective	Maxilla	Fixed	Screw-retained	Bränemark (Nobel Biocare) Bränemark (Nobel Biocare)	Conventional	334	44	11
Richter & Knapp (2010)	Prospective	Maxilla	Removable	Telescopic crown, locator Screw-retained	Osseotite (Biomet 3i)	Conventional	44	27	5
Sjöström et al. (2007)	Prospective	Maxilla	Fixed	Screw-retained	Bränemark (Nobel Biocare) Bränemark (Nobel Biocare)	Conventional	222	29	3
Zitzmann & Marinello (2000b)	Prospective	Maxilla	Fixed	Screw-retained	Bränemark (Nobel Biocare) Bränemark (Nobel Biocare)	Conventional	84	10	3.3
Zou et al. (2013)	Prospective	Maxilla	Removable	Telescopic crown, bar, locator Ball	ITI (Straumann)	Conventional	120	30	3
Akoglu et al. (2011)	Prospective	Mandible	Removable	ITI (Straumann), Swiss Plus (Zimmer Dental), Astra Tech (Dentsply)	Conventional	72	36	5	
Arvidson et al. (1998)	Prospective	Mandible	Fixed	Screw-retained	Astra Tech (Dentsply) ITI Monotype SLA (Straumann)	Conventional	618	107	5
Arvidson et al. (2008)	Prospective, multicenter	Mandible	Fixed	Screw-retained	ITI Monotype SLA (Straumann)	Early	250	61	3
Behneke et al. (2002)	Prospective	Mandible	Removable	Bar	ITI (Straumann)	Conventional	340	100	5.8
Study (Year of publication)	Study design	Jaw	Type of prosthesis	Type of anchorage	Implant system (as reported by the authors)	Loading protocol	Total number of implants	Total number of prostheses	Follow-up period (years)
----------------------------	--------------	-----	-------------------	------------------	---	-----------------	------------------------	------------------------	--------------------------
Cehreli et al. (2010)	RCT	Mandible	Removable	Ball	SLA (Straumann), Branemark TiUnite (Nobel Biocare)	Early	56	28	5
Chiapasco & Gatti (2003)	Prospective	Mandible	Removable	Bar	Ha-Ti (Mathys Dental), ITI (Straumann), Branemark Conical (Nobel Biocare), Frialoc (Dentsply)	Immediate	328	82	5.2
Cooper et al. (2008)	Prospective	Mandible	Removable	Ball	Friatec (Dentsply) Biomet 3i	Conventional	118	59	5
Cordioli et al. (1997)	Prospective	Mandible	Removable	Bar	Standard Branemark (Nobel Biocare)	Conventional	21	21	5
De Bruyn et al. (2008)	Prospective	Mandible	Fixed	Screw-retained	TiOBlast Astra Tech (Dentsply)	Immediate	125	25	3
Ekelund et al. (2003)	Prospective	Mandible	Fixed	Screw-retained	Standard Branemark (Nobel Biocare)	Conventional	273	47	21.5
Eliasson et al. (2010)	Prospective, randomized	Mandible	Fixed	Screw-retained	Paragon TPS (Zimmer Dental)	Conventional	168	29	5
Elsyad et al. (2012)	RCT	Mandible	Removable	Ball	Spectra System Screw Plant (Implant Direct LLC) Standard Branemark, Branemark conical 1-piece, Branemark MK II (Nobel Biocare)	Immediate/ conventional	72	36	3
Engquist et al. (2005)	Prospective, controlled	Mandible	Fixed	Screw-retained	Standard Branemark, Branemark conical 1-piece, Branemark MK II (Nobel Biocare)	Early/ conventional	432	108	3
Gotfredsen & Holm (2000)	Prospective, randomized	Mandible	Removable	Bar, ball	Astra Tech (Dentsply) Camlog Promote screw line (Camlog)	Conventional	52	26	5
Harder et al. (2011)	Prospective	Mandible	Removable	Ball	CAMLOG Promote Screw Line (Camlog)	Conventional	11	11	3.6
Heijdenrijk et al. (2006)	Prospective, randomized	Mandible	Removable	Bar	IMZ TPS, solid screw TPS (Straumann) Xive S plus (Dentsply)	Conventional	120	60	5
Heschl et al. (2013)	Prospective	Mandible	Removable	Bar	IMZ TPS, solid screw TPS (Straumann) Xive S plus (Dentsply)	Conventional	156	39	5
Study (Year of publication)	Study design	Jaw	Type of prosthesis	Type of anchorage	Implant system (as reported by the authors)	Loading protocol	Total number of implants	Total number of prostheses	Follow-up period (years)
-----------------------------	--------------	-----	--------------------	-------------------	---	------------------	--------------------------	--------------------------	--------------------------
Krennmair et al. (2008)	Prospective, randomized	Mandible	Removable	Bar	IMZ (Dentsply), Frialoc (Dentsply), Camlog root line (Camlog)	Conventional	204	51	5
Krennmair et al. (2011)	Prospective, randomized	Mandible	Removable	Ball, telescopic crown	Camlog root line (Camlog)	Conventional	50	25	5
Krennmair et al. (2012)	Prospective, randomized	Mandible	Removable	Bar, telescopic crown	Camlog root line (Camlog)	Conventional	204	51	3
Lethaus et al. (2011)	Prospective	Mandible	Removable	Bar	SLA (Straumann)	Early	70	14	5
Liddelow & Henry (2010)	Prospective	Mandible	Removable	Ball	Implant	Immediate	32	32	3
Lorenzoni et al. (2013)	Prospective	Mandible	Removable	Bar	Xive S Plus (Dentsply)	Immediate/ conventional	160	40	5
Meijer et al. (2004)	RCT	Mandible	Removable	Bar	IMZ (Dentsply), Bränemark (Nobel Biocare)	Conventional	122	61	10
Meijer et al. (2009b)	Prospective	Mandible	Removable	Bar	IMZ TPS (Dentsply), Bränemark (Nobel Biocare), ITI solid screw TPS (Straumann)	Conventional	180	90	10
Meijer et al. (2009a)	Prospective	Mandible	Removable	Bar	IMZ TPS (Dentsply)	Conventional	180	60	10
Murphy et al. (2002)	Prospective	Mandible	Fixed	Screw-retained	Astra Tech (Dentsply)	Conventional	131	26	5
Schwarz et al. (2010)	Prospective	Mandible	Fixed	Screw-retained	Frialoc (Dentsply), Camlog root line (Camlog)	Early	158	37	4.5
Stoker et al. (2012)	RCT	Mandible	Removable	n.a.	1-stage TPS Bonefit (Straumann)	Conventional	296	110	8.3
Testori et al. (2004)	Prospective	Mandible	Fixed	Screw-retained	Osseotite, dual acid-etched, cylindrical, screw-shaped (3i)	Immediate	116	19	3.2
Study (Year of publication)	Study design	Jaw	Type of prosthesis	Type of anchorage	Implant system (as reported by the authors)	Loading protocol	Total number of implants	Total number of prostheses	Follow-up period (years)
---------------------------	-------------	-----	-------------------	------------------	--	----------------	--------------------------	---------------------------	--------------------------
Van de Velde et al. (2007)	Prospective	Mandible	Fixed	Screw-retained	Branemark Mk II/Mk IV (Nobel Biocare)	Immediate	91	18	3.8
Vroom et al. (2009)	Prospective	Mandible	Removable	Bar	Astra Tech turned/tioblasted (Dentsply)	Conventional	80	20	12
Weinländer et al. (2010)	Prospective	Mandible	Removable	Bar	IMZ cylindrical, Frialloc (Dentply), Camlog screw line (Camlog)	Conventional	252	76	5
Akca et al. (2010)	Prospective	Both jaws	Removable	Bar	ITI SLA/TPS (Straumann)	Conventional	124	35	4.9
Bergendal & Engquist (1998)	Prospective	Both jaws	Removable	Bar, ball	Branemark (Nobel Biocare)	Conventional	115	50	5.2
Covani et al. (2012)	Prospective	Both jaws	Fixed	Screw-retained	Ossean (Intra Lock Int)	Immediate	128	16	3.6
Crespi et al. (2012)	Prospective	Both jaws	Fixed	Screw-retained	PAD system (Sweden-Martina)	Immediate	176	44	3
Jemt et al. (1996)/Watson et al. (1997)	Prospective	Both jaws	Removable	Bar	Branemark (Nobel Biocare)	Conventional	315	133	5
Ortorp & Jemt (2012)	Prospective	Both jaws	Fixed	Screw-retained	Branemark (Nobel Biocare)	Conventional	728	129	10
Rasmusson et al. (2005)	Prospective	Both jaws	Fixed	Screw-retained	TiOblast Astra Tech (Dentsply)	Conventional	199	36	10
Romeo et al. (2004)	Prospective	Both jaws	Removable	n.a.	ITI SLA/TPS (Straumann)	Conventional	126	37	3.9
Table 4. Estimated implant loss rate and corresponding implant survival for edentulous maxillae with fixed and removable prostheses categorized by number of implants per patient

Study	Subgroups within study	Number of implants per patient	Total number of implants	Type of prosthesis and anchorage	Number of post-loading implant losses	Total implant exposure time (implant years)	Estimated implant loss (per 100 implant years)	Estimated implant survival after 5 years (%)
Richter & Knapp	Locator	<4*	14	Removable, BL	12	43.1	27.8	24.6
	Telocpic crowns	4*	30	Removable, TC	18	119.5	15.1	47.1
Bergendal & Engquist	Bar	<4*	29	Removable, BR	6	140.3	4.3	80.7
	Ball	<4*	18	Removable, BL	7	88.0	8.0	67.2
Romeo et al.	n.a.	<4*	42	Removable	4	246.0	1.2	94.1
Naert et al.	n.a.	4	53	Removable, BR	3	135.9	2.21	89.4
Akka et al.	n.a.	4	44	Removable, BR	1	210.7	0.5	97.6
Crespe et al.	n.a.	4	96	Fixed, SR	1	285.3	0.35	98.3
Jent/Watson et al.	n.a.	4	117	Removable, BR	21	375.5	5.6	75.0
Zou et al.	Telescopic crowns	4	40	Removable, TC	0	120.0	0	100
Agliardi et al.	n.a.	≥6	192	Fixed, SC	0	120.0	0	100
Fischer & Stenberg	n.a.	5–6	142	Fixed, SC	0	120.0	0	100
Rasmusson et al.	n.a.	5–6	91	Fixed, SC	4	1095.0	0.4	98.2
Collaert & De Bruyn	n.a.	5–6	195	Fixed, SC	0	787.0	0	100
De Santis et al.	n.a.	5–6	154	Fixed, SC	0	780.0	0	100
Degidi et al.	n.a.	5–6	210	Fixed, SC	1	630.1	0.2	99.1
Mertens et al.	n.a.	5–6	90	Fixed, SC	2	1050.9	0.2	99.1
Nytröm et al.	n.a.	5–6	157	Fixed, SC	5	2132.0	0.2	98.8
Nyström et al.	n.a.	5–6	334	Fixed, SC	4	3674.0	0.1	99.5
Sjöström et al.	n.a.	5–6	222	Fixed, SC	4	1975.5	0.1	98.3
Zitzmann & Marinello	n.a.	5–6	84	Fixed, SC	0	820.0	0	100
Covani et al.	n.a.	5–6	128	Fixed, SC	0	460.8	0	100
Ortolani et al.	n.a.	5–6	355	Fixed, SC	17	2042.5	0.8	95.9

BL, ball; BR, bar; TC, telescopic crown; SC, screw-retained; n.a., not applicable.

*This category was excluded from further statistical analysis.

Results of individual patient groups

Concerning the estimated implant survival rates of both fixed and removable implant-supported prostheses, a significantly higher implant loss rate was estimated for fixed prostheses compared to removable prostheses. This resulted in a higher estimated implant loss rate for fixed prostheses (3.9% ± 0.15) compared to removable prostheses (3.1% ± 0.12). The difference was statistically significant (P < 0.0001).

Implant survival and loss in the maxilla

The estimated implant loss rates were higher for fixed prostheses (4.0% ± 0.15) compared to removable prostheses (2.7% ± 0.12). The difference was statistically significant (P < 0.0001).

Implant survival and loss in the mandible

The estimated implant loss rates were higher for fixed prostheses (3.6% ± 0.15) compared to removable prostheses (2.3% ± 0.12). The difference was statistically significant (P < 0.0001).

Synthesis of results and subgroup analyses

The estimated implant loss rates were higher for fixed prostheses (4.0% ± 0.15) compared to removable prostheses (2.7% ± 0.12). The difference was statistically significant (P < 0.0001).
Eligibility

The study being judged with "2 prostheses, same patient cohort at earlier stage, case report, no survival rate nor implant loss, different emphasis, not edentulous, retrospective/study design unclear, no separate reporting of edentulous jaws/removable or fixed region, no clinical examination/no regular follow-up, observation higher (fixed restoration resulted in a significantly 0.14; 0.28; 0.34 [95% CI 0.16; 0.72] vs. 0.20 [95% CI 0.16; 0.27]). No statistically significant differences were shown comparing machined vs. rough (P = 0.1745) and between mandible and maxilla in the immediate loading protocol (P = 0.0986) showed no significant differences (Table 13).

Multivariate analysis

To explore the independent effects and inter-relation between factors influencing the estimated implant loss rate, a multivariate Poisson regression model was fitted to the data of univariate meaningful factors. The first model included the location of implants, the type of prosthesis, the surface of implants, the loading protocol, and the number of implants per patient and all two-way interaction terms. Due to the sparse distribution of number of implants across the remaining factors, the Poisson regression model did not converge. Thus, the final model was reduced to the location of implants, the type of prosthesis, the surface of implants, and the loading protocol as main effects. Additionally, the significant two-way interaction between location and loading protocol remained in the model. Within this model, type of prosthesis (P < 0.0001 fixed vs. removable), surface of implants (P = 0.0001 machined vs. rough), and the interaction term between jaw and loading protocol (P = 0.0006) demonstrated significant influence on the estimated implant loss rate. From the significant interaction between jaw and loading protocol, a significant difference between conventional and immediate loading in the mandible (P < 0.0001) and between mandible and maxilla in the conventional loading protocol (P < 0.0001) followed. The comparisons between conventional and immediate loading in the maxilla (P = 0.1745) and between mandible and maxilla in the immediate loading protocol (P = 0.0986) showed no significant differences (Table 13).

Bone augmentation

The analysis of a potential impact of bone augmentation on implant loss or survival was not a part of the focused question and serves as additional information.

Studies reporting on complex augmentative procedures (e.g., Le Fort I, onlay osteoplastic with iliac graft) were already described. Bone augmentation was reported for the maxilla, exclusively. Assuming that complex procedures would have been reported if executed, a comparison of post-loading implant loss per 100 implant years revealed a significantly higher rate for non-augmented (0.93 [95% CI 0.76; 1.14; 22 study populations]) vs. augmented (0.25 [95% CI 0.16; 0.40]; 4 study populations) edentulous maxillae (P < 0.0001). Corresponding 5-year implant survival estimations were 95.45% [95% CI 94.47; 96.26] for non-augmented and 98.75% [95% CI 98.00; 99.22] for augmented.
Table 5. Estimated implant loss rate and corresponding implant survival for edentulous mandible with fixed and removable prostheses categorized by number of implants per patient

Study	Number of implants per patient	Number of implants*	Type of prosthesis and anchorage	Number of post-loading implant losses	Total implant exposure time (implant years)	Estimated implant loss (per 100 implant years)	Estimated implant survival after 5 years (%)
Cordioli et al.	n.a.	1	Removable, BL	0	95.0	0	100
Harder et al.	n.a.	1	Removable, BL	0	38.9	0	100
Liddelow et al.	Machined	1	Removable, BL	0	24.2	25.1	
Akoglu et al.	Rough	2	Removable, BL	0	36.5	100	
Cehrel et al.	n.a.	2	Removable, BL	0	360.0	0	100
Cooper et al.	n.a.	2	Removable, BL	0	230.0	0	100
Elsyad et al.	Immed. load.	2	Removable, BL	0	557.0	0	100
Gottfredsen & Holm	Bar	2	Removable, BL	0	92.3	4.3	
Heijlenrijk et al.	1-stage	2	Removable, BL	0	108.0	0	100
Krennmair et al.	Ball	2	Removable, BL	0	122.0	0	100
Akoglu et al.	IMZ	2	Removable, BR	0	536.0	0.7	
Cehrel et al.	IMZ	2	Removable, BR	1	356.0	0.7	
Cooper et al.	IMZ	2	Removable, BR	4	96.0	0	100
Eskiad et al.	IMZ	2	Removable, BR	0	94.9	0	
Gotfredsen & Holm	Br	2	Removable, BR	0	100	0	
Meijer et al.	IMZ	2	Removable, BR	3	560.0	0.2	
Bergendal & Engquist	Bar	2	Removable, BR	0	108.0	0	100
Meier et al.	IMZ	2	Removable, BR	1	560.0	0.2	
Meier et al.	IMZ	2	Removable, BR	4	96.3	0.7	
Stoker et al.	IMZ	2	Removable, BR	0	97.9	0	
Romeo et al.	IMZ	2	Removable, BR	9	97.9	0	
Chiacos et al.	IMZ	2	Removable, BR	0	97.9	0	
Engquist et al.	1-stage Bra/Str	4	Fixed, SC	3	331.0	0.9	
2-stage Bra/Str	4	120	Fixed, SC	1	243.0	0.4	
1-stage Bra 1-piece	4	88	Fixed, SC	7	299.0	2.3	
1-stage Bra Mk II	4	104	Fixed, SC	0	237.6	0.7	
Lorenzoni et al.	Convent. load.	4	Fixed, SC	2	745.0	0.1	
Lorenzoni et al.	Immed. load.	4	Fixed, SC	7	745.0	0.1	
Meier et al.	IMZ	2	Removable, BR	0	852.0	0.4	
Meier et al.	IMZ	2	Removable, BR	0	94.0	0	
Tromb et al.	IMZ	2	Removable, BR	0	756.0	0	
Meier et al.	IMZ	2	Removable, BR	0	286.0	0	
Murphy et al.	IMZ	2	Removable, BR	0	635.0	0	
Schwarz et al.	IMZ	2	Removable, BR	0	693.3	1.0	
Testorl et al.	IMZ	2	Removable, BR	3	745.0	0.1	
Van de Velde et al.	IMZ	2	Removable, BR	0	94.9	0.7	
maxillae. Both groups were pooled for further analyses.

Risk of bias within and across studies

Table 2 shows the risk of bias for each study as identified by the respective SIGN check-list. According to the terms of SIGN, most of the included clinical cohort studies or RCTs were of an acceptable or high quality, meaning “some flaws in the study with an associated risk of bias” or little to no risk of bias. Selective reporting or publication bias cannot be completely ruled out, especially as some of the studies were sponsored by dental companies or a foundation being associated with a dental company.

Discussion

Summary of evidence

The objective of this systematic review and meta-analysis was to address the following question: Is there an impact of implant location (maxilla vs. mandible), implant number, type of prosthesis (fixed vs. removable) and/or different anchorage systems on the implant loss rate concerning the implant-prosthodontic rehabilitation of edentulous jaws. In summary, the data situation in each of these subgroups was comparable and did not allow for statistical analysis.

Table 5. (continued)

Study	Subgroups within study	Number of implants per patient	Total number of implants	Type of prosthesis and anchorage	Number of post-loading implant losses	Total implant exposure time (implant years)	Estimated implant loss (per 100 implant years)	Estimated implant survival after 5 years (%)
Ortorp et al.	n.a.	≤5	373	Fixed, SC	0	2200.0	0	100
Rasmussen et al.	n.a.	≥5	108	Fixed, SC	0	1054.0	0	100

BL, ball; BR, bar; TC, telescopic crown; SC, screw-retained; n.a., not applicable.

Table 6. Overall comparison

Number of study populations	Number of patients	Number of implants	Total number of post-loading implant losses	Total exposure time (implant years)	Estimated loss rate per 100 implant years [95% CI]	Estimated 3-year implant survival (%) [95% CI]	Estimated 5-year implant survival (%) [95% CI]	P-value
Maxilla vs. mandible								
Maxilla	25*	496	2850	113	0.67 [0.55; 0.80]	97.99 [97.60; 98.33]	96.68 [96.03; 97.24]	-0.0001
Mandible	56	1872	6417	77	0.42 [0.33; 0.53]	98.76 [98.43; 99.02]	97.95 [97.40; 98.38]	0.0001
Fixed vs. removable prostheses								
removable	51*	1383	3901	118	0.55 [0.46; 0.66]	98.35 [98.03; 98.62]	97.27 [96.73; 97.71]	0.0148
removable	46†	1354	3768	72	0.35 [0.28; 0.44]	98.96 [98.69; 99.17]	98.27 [97.82; 98.63]	0.0148
fixed	30	955	5306	72	0.23 [0.18; 0.29]	99.31 [99.13; 99.45]	98.84 [98.55; 99.08]	-0.0001

*Category ≤4 implants (maxilla) included.
†Category <4 implants (maxilla) excluded.

Risk of bias within and across studies

Table 2 shows the risk of bias for each study as identified by the respective SIGN check-list. According to the terms of SIGN, most of the included clinical cohort studies or RCTs were of an acceptable or high quality, meaning “some flaws in the study with an associated risk of bias” or little to no risk of bias. Selective reporting or publication bias cannot be completely ruled out, especially as some of the studies were sponsored by dental companies or a foundation being associated with a dental company.
for the completely edentulous maxilla (Schley & Wolfart 2011), the authors decided to perform a statistical analysis. Analyzing non-randomized, non-controlled studies raises a complex of problems and does not allow for a classical analysis in form of a forest plot that always intends to compare different intervention groups, that is, randomized-controlled trials. Furthermore, the inconsistent reporting of results among the studies complicates a meaningful analysis. The absence of exact information on implant/prosthesis loss or dropout and/or the absence of a mean observation period led to the exclusion of several articles. Hence, the authors adopted a frequently applied statistical method, suggested by Pjetursson et al. (2007) and Sailer et al. (2007) using the “total exposure time” of the investigated objects and estimating failure (or loss) and survival rates by Poisson regression. Recently, Pjetursson et al. (2014) applied the same method to describe the implant failure and the survival in a systematic review. Also, the present calculation of the “implant loss rate per 100 implant years” is based on the assumption of a constant event rate over time. The resulting “data distortion” is mainly caused by those studies with a very long or short observation period leading to an extrapolation or adaption of the available data, respectively. From a clinical point of view, this assumption is debatable; however, in the authors’ opinion, currently, it is the best method to compare the results of the different clinical studies with each other. To provide full information, the actual implant losses and observation periods are given in Tables 3–5.

Considering the focused question, it can be stated that all of the mentioned factors (jaw, implant number, type of prosthesis, and anchorage system) seem to have an impact on implant survival and implant loss. Generally, estimated implant survival was satisfactory for both, fixed and removable rehabilitation concepts. The risk for implant loss per 100 implant years in the edentulous mandible is significantly lower than in the maxilla [0.22 [95% CI 0.17; 0.27] vs. 0.41 [95% CI 0.32; 0.52]; P = 0.0001]. Regarding the direct comparisons of implant numbers in the mandible, higher numbers showed a clear tendency of resulting in lower implant loss rates. The therapeutic concept of one implant inserted into the midline symphysis in the edentulous lower jaw is an ongoing and intensively discussed topic. The present data of this concept are based on merely three studies and revealed a 5-year survival estimation of 92.1%, which is

Table 7. Overall comparison bar vs. ball vs. telescopic crown (category <4 implants excluded)

Number of study populations	Number of implants	Number of post-loading implant losses	Total exposure time (implant years)	Estimated loss rate per 100 implant years [95% CI]	Estimated 3-year implant survival (%) [95% CI]	Estimated 5-year implant survival (%) [95% CI]	P-value
Ball	28	507	2048.23	0.34 [0.16; 0.72]	98.31 [96.46; 99.20]	98.20 [96.46; 99.20]	0.9607
Bar	28	727	15494.73	0.35 [0.27; 0.46]	98.98 [97.87; 99.51]	98.96 [97.73; 98.66]	0.9607
Telescopic crown	3	169	15494.73	0.35 [0.27; 0.46]	98.96 [97.87; 99.51]	98.96 [97.73; 98.66]	0.9607
Ball	28	507	2048.23	0.34 [0.16; 0.72]	98.31 [96.46; 99.20]	98.20 [96.46; 99.20]	0.9607
Bar	28	727	15494.73	0.35 [0.27; 0.46]	98.98 [97.87; 99.51]	98.96 [97.73; 98.66]	0.9607

Table 8. Comparison in the maxilla

Number of study populations	Number of patients	Number of implants	Number of post-loading implant losses	Total exposure time (implant years)	Estimated loss rate per 100 implant years [95% CI]	Estimated 3-year implant survival (%) [95% CI]	Estimated 5-year implant survival (%) [95% CI]	P-value
Fixed vs. removable prostheses (category <4 implants excluded)	14	363	25	19500.26	0.28 [0.20; 0.39]	99.16 [98.84; 99.39]	99.09 [98.74; 99.35]	<0.0001
Removable: <4 implants vs. 4 implants	6	283	25	1082.10	2.31 [1.56; 3.42]	93.30 [98.91; 99.41]	93.30 [98.87; 99.38]	<0.0001
Fixed: ≥6 (no comparison feasible)	13	928	28	15060.08	0.28 [0.20; 0.39]	98.52 [97.48; 99.56]	99.09 [98.74; 99.35]	0.2476

Table 9. Overall comparison bar vs. ball vs. telescopic crown (category <4 implants excluded)

Number of study populations	Number of implants	Number of post-loading implant losses	Total exposure time (implant years)	Estimated loss rate per 100 implant years [95% CI]	Estimated 3-year implant survival (%) [95% CI]	Estimated 5-year implant survival (%) [95% CI]	P-value
Ball	13	507	2048.73	0.34 [0.16; 0.72]	98.31 [96.46; 99.20]	98.20 [96.46; 99.20]	0.9607
Bar	28	727	15494.73	0.35 [0.27; 0.46]	98.98 [97.87; 99.51]	98.96 [97.73; 98.66]	0.9607
Telescopic crown	3	169	15494.73	0.35 [0.27; 0.46]	98.96 [97.87; 99.51]	98.96 [97.73; 98.66]	0.9607
Ball	28	507	2048.73	0.34 [0.16; 0.72]	98.31 [96.46; 99.20]	98.20 [96.46; 99.20]	0.9607
Bar	28	727	15494.73	0.35 [0.27; 0.46]	98.98 [97.87; 99.51]	98.96 [97.73; 98.66]	0.9607
Telescopic crown	3	169	15494.73	0.35 [0.27; 0.46]	98.96 [97.87; 99.51]	98.96 [97.73; 98.66]	0.9607
Ball	28	507	2048.73	0.34 [0.16; 0.72]	98.31 [96.46; 99.20]	98.20 [96.46; 99.20]	0.9607
Table 9. Comparison in the mandible

Study Type	Number of Patients	Number of Implants	Number of Study Populations	Total Number of Implants	Total Exposure Time (Implant Years)	Estimated 3-Year Implant Survival (%) [95% CI]	Estimated 5-Year Implant Survival (%) [95% CI]	P-value	
Fixed vs. removable prostheses	Fixed: 4 implants vs. 5 implants	4 6	189 762	16 200	4.85	0.80 [0.49; 1.30]	97.63 [96.17; 98.54]	96.10 [93.69; 97.59]	0.0001
	Removable: 1 implant vs. 2 implants	1 4	66 66	3 182	2.81	1.64 [0.53; 5.09]	95.20 [85.94; 98.42]	92.17 [77.63; 97.38]	0.0001
	Removable: 2 implants vs. 4 implants	2 19	557 1134	24 724.90	0.33 [0.22; 0.49]	99.36 [98.53; 99.34]	98.30 [97.38; 99.31]	0.0007	
Fixed: 4 implants vs. removable prostheses	Fixed: 4 implants vs. removable prostheses	10 365	1366	8 697	1.25	0.11 [0.06; 0.23]	99.66 [99.31; 99.82]	99.42 [98.86; 99.70]	0.0001
	Removable: 2 implants vs. removable prostheses	4 10	365 1366	8 697	1.25	0.11 [0.06; 0.23]	99.66 [99.31; 99.82]	99.42 [98.86; 99.70]	0.0001

Table 10. Comparison bar vs. ball vs. telescopic crown for mandible

Study Type	Number of Patients	Number of Implants	Number of Study Populations	Total Number of Implants	Total Exposure Time (Implant Years)	Estimated 3-Year Implant Survival (%) [95% CI]	Estimated 5-Year Implant Survival (%) [95% CI]	P-value
Ball	13	257	64	2533	14526.73	98.98 [97.87; 99.51]	98.41 [97.95; 99.59]	0.1499
Bar	24	864	37	2533	14526.73	98.98 [97.87; 99.51]	98.41 [97.95; 99.59]	0.1499
Telescopic crown	24	864	37	2533	14526.73	98.98 [97.87; 99.51]	98.41 [97.95; 99.59]	0.1499
Ball	13	257	64	2533	14526.73	98.98 [97.87; 99.51]	98.41 [97.95; 99.59]	0.1499
Bar	24	864	37	2533	14526.73	98.98 [97.87; 99.51]	98.41 [97.95; 99.59]	0.1499
Telescopic crown	24	864	37	2533	14526.73	98.98 [97.87; 99.51]	98.41 [97.95; 99.59]	0.1499

© 2015 The Authors. Clinical Oral Implants Research published by John Wiley & Sons Ltd. 189 | Clin. Oral Impl. Res. 27, 2016 / 174–195

satisfactory. Nevertheless, implant loss rates for two and four implants with an overdenture were significantly lower, and data were predicated on 19 and 10 patient groups, respectively. The “gold-standard concept” of two implants with an overdenture seems to be consolidated by the analyses of this systematic review, regarding post-loading implant survival, exclusively. Only 21 studies could be included regarding the edentulous upper jaw, rendering extensive statistical comparisons difficult. However, the present analyses clearly indicate that at least four implants are needed in the edentulous maxilla, irrespective of the type of restoration. Less than four implants have been suggested not to be feasible for the edentulous maxilla in an experts’ consensus conference and is not recommendable at the time being (Schley et al. 2013). This fact was proven by the present analysis that revealed unacceptable survival estimations after 5 years (69.7% [95% CI 61.75; 76.30]) and significantly higher implant loss rates per 100 implant years when compared to implant numbers of four and more [7.22 [95% CI 5.41; 9.64] vs. 2.31 [95% CI 1.56; 3.42]; P < 0.0001). Therefore, it was decided to merely include this group for an overall survival analysis, but to exclude it from further statistical evaluations and comparisons. No statistically significant differences for post-loading implant loss could be assessed when comparing bar or ball anchorage. Estimated implant survival was very high for both attachment types (ball: 98.31% [95% CI 96.46; 99.20]; bar: 98.27 [95% CI 97.73; 98.66]). Telescopic crowns could not be evaluated, as the included number of studies was too low, and no implant losses had occurred after observation periods of 3 years. Furthermore, no statements can be made regarding cemented or adhesively luted fixed restorations as the systematic literature review did not reveal such studies. Considering the so-called all-on-4 concept, meaning four implants being restored with a fixed prosthesis, the existing literature provides sufficient evidence for the edentulous mandible. Crespi et al. (2012) also implemented this concept for the edentulous maxilla and reported an implant survival of 98.96% after 3 years. Further evidence for the edentulous upper jaw, rendering the existing literature provides sufficient evidence for the edentulous mandible. Crespi et al. (2012) also implemented this concept for the edentulous maxilla and reported an implant survival of 98.96% after 3 years. Further evidence for the edentulous maxilla, irrespective of the type of restoration. Less than four implants have been suggested not to be feasible for the edentulous maxilla in an experts’ consensus conference and is not recommendable at the time being (Schley et al. 2013). This fact was proven by the present analysis that revealed unacceptable survival estimations after 5 years (69.7% [95% CI 61.75; 76.30]) and significantly higher implant loss rates per 100 implant years when compared to implant numbers of four and more [7.22 [95% CI 5.41; 9.64] vs. 2.31 [95% CI 1.56; 3.42]; P < 0.0001). Therefore, it was decided to merely include this group for an overall survival analysis, but to exclude it from further statistical evaluations and comparisons. No statistically significant differences for post-loading implant loss could be assessed when comparing bar or ball anchorage. Estimated implant survival was very high for both attachment types (ball: 98.31% [95% CI 96.46; 99.20]; bar: 98.27 [95% CI 97.73; 98.66]). Telescopic crowns could not be evaluated, as the included number of studies was too low, and no implant losses had occurred after observation periods of 3 years. Furthermore, no statements can be made regarding cemented or adhesively luted fixed restorations as the systematic literature review did not reveal such studies. Considering the so-called all-on-4 concept, meaning four implants being restored with a fixed prosthesis, the existing literature provides sufficient evidence for the edentulous mandible. Crespi et al. (2012) also implemented this concept for the edentulous maxilla and reported an implant survival of 98.96% after 3 years. For obvious reasons, this one study could not be used for statistical comparisons. However, retrospective clinical studies demonstrate comparable results (Malo et al. 2011, 2012). Additional subgroup analyses were conducted regarding the aspects implants surface (machined vs. rough) and different loading protocols. Different surface roughness values...
Kern et al. Post-loading implant loss in edentulous jaws

Table 11. Estimated loss rates per 100 implant years [95% CI] and survival (%) [95% CI] for 4 implants excluded

Surface Modification	Overall comparison	Mandible (fixed and removable)
Machined	97.63 [97.09; 98.02]	96.94 [96.31; 97.07]
Rough	99.41 [95.24; 99.55]	98.16 [97.63; 98.38]

Limitations

The presented results have to be interpreted with the following limitations:

The estimated implant loss rates and survival estimations were mostly derived from non-comparative studies. Due to a lack of high-quality studies (i.e., RCTs), the currently best option of receiving meaningful results is to analyze the best available evidence (mostly single arm cohort studies). Our focus was on potentially influencing aspects such as implant number, loading protocol and different prosthetic treatment options. Due to the high degree of separation, a statistical analysis considering all of the potential influencing factors simultaneously was not feasible. However, a multivariate Poisson regression model concerning the location of implants, the type of prosthesis, the surface of implants, and the loading protocol as main effects, was fitted to the data of univariate meaningful factors.

Due to the observational nature of the included studies, confounding of observable, as well as unobservable factors is an intrinsic limitation of our derived results. Of course, a future aim is to analyze which combination of the above-mentioned factors is decisive, and therefore, more well-designed RCTs are needed. However, in dentistry and especially in the field of implant dentistry, several aspects such as high treatment costs, long duration of treatment, and limiting inclusion criteria (edentulous patients not being satisfied with complete overdentures) render RCTs difficult at best. It has to be recognized that CONSORT and consequently PRISMA statements or the “Cochrane Handbook” are mainly intended for medical studies and do perfectly fit for study concepts such as placebo vs. active agent. If our analysis strictly adhered to these protocols, merely a few studies would have been included thus setting a limitation, as well. In the authors’ opinion, the inclusion of 54 studies with 9267 patients can be justified (Conrad & Albrektsson 2010).

Regarding post-loading implant loss, the classical implant-prosthodontic rehabilitation concepts, that is bar- or ball-retained overdentures and screw-retained full-arch reconstructions, have shown an excellent outcome according to the present analyses. A certain number of implants seems to ensure a reliable outcome for implants with a fixed or removable restoration. However, prosthesis-related technical complications need to be taken into consideration, as well. Therefore, we plan to analyze technical complications and correlated complication-free rates for implant-supported prostheses, related to implant location and certain implant numbers, in another systematic review.
[cylindric, root-like], implant-abutment connection, bone-to-implant interface, or the difference of one- or two-piece implants could not be assessed. Furthermore, studies investigating implants in either local or augmented bone (four studies) were pooled. However, the analysis of augmented bone in the maxilla did not reveal negative results concerning estimated implant loss and corresponding survival rates. The duration of edentulism as a potential confounder could not be regarded either, but, in most studies, the “typical” completely edentate patient was subject of the investigation.

The analysis of biologic complications was not part of our focused question and explains why these complications were not evaluated in detail.

It is self-evident that the “best” choice of an implant-prosthodontic restoration, cannot simply be based on the analyzed and aforementioned aspects. Individual, patient-based circumstances determine any surgical or prosthodontic procedures. In this context, it was not possible to regard important facts such as patients’ preferences, esthetic complexity, maxillomandibular relationship, bone quality and quantity, soft tissue conditions, condition or type of restoration of the opposing jaw, or differences of treatment/manufacturing costs. Even though several authors gave information on the type of restoration in the opposite jaw (full denture, fixed or removable prosthesis), a conclusion, if implant outcome is affected by this factor, could not be evaluated.

Moreover, oral health-related quality of life (OHRQoL) is an omnipresent topic, and especially, the rehabilitation of the edentulous jaw by means of implant-prosthodontic procedures can offer a great potential of improving patients’ quality of life (Turkyilmaz et al. 2010). For the edentulous maxilla, in particular, there is a huge backlog demand for studies on OHRQoL. In this respect, Zembic & Wismeijer (2014) recently published an interesting approach. Patients received conventional complete dentures in a first step, and 2 months later, two implants were inserted – the implant-retained overdentures “provided some significant short-term improvements over conventional dentures in oral- and health-related quality of life”.

Many of the aforementioned parameters demand for a consolidated internal evidence, meaning the dentist’s experience, which serves as an important component of evidence-based medicine/dentistry. In combination with the external evidence (current state of science) and the patient’s values and

Table 12. (a) Conventional loading vs. immediate loading (category < 4 implants excluded). (b) Comparison of immediate loading vs. conventional loading for mandible/fixed and mandible/removable

Number of study populations	Number of patients	Number of implants	Total number of post-loading implant losses	Total exposure time (implant years)	Estimated loss rate per 100 implant years (95% CI)	Estimated 3-year implant survival (%) (95% CI)	Estimated 5-year implant survival (%) (95% CI)	P-value
(a) Overall comparison								
Conventional	56	1773	5968	1269.52	0.24 (0.19; 0.29)	99.79 (99.71; 99.87)		0.0151
Immediate	45	361	3966	2469.90	0.40 (0.27; 0.63)	98.79 (98.63; 98.95)		<0.0001
Fixed	17	598	1461	2891.64	0.17 (0.12; 0.23)	99.50 (99.33; 99.68)		
Conventional	9	209	3691.64	2469.90	0.27 (0.15; 0.50)	99.19 (98.50; 99.58)		
Immediate	9	209	3691.64	2469.90	0.27 (0.15; 0.50)	99.19 (98.50; 99.58)		
Removable (maxilla and mandible)	30	1175	3232	1788.03	0.32 (0.25; 0.40)	98.90 (98.65; 99.15)		
Fixed	14	3512	2546.00	1256.60	0.49 (0.38; 0.62)	98.55 (98.15; 98.97)		
Immediate	10	1143	2884.18	1288.18	0.08 (0.02; 0.32)	99.76 (99.04; 99.94)		
Removable (maxilla and mandible)	14	1175	3232	1788.03	0.32 (0.25; 0.40)	98.90 (98.65; 99.15)		
Fixed	14	3512	2546.00	1256.60	0.49 (0.38; 0.62)	98.55 (98.15; 98.97)		
Immediate	10	1143	2884.18	1288.18	0.08 (0.02; 0.32)	99.76 (99.04; 99.94)		
Maxilla (fixed and removable)	39	1175	3232	1788.03	0.32 (0.25; 0.40)	98.90 (98.65; 99.15)		
Fixed	14	3512	2546.00	1256.60	0.49 (0.38; 0.62)	98.55 (98.15; 98.97)		
Immediate	10	1143	2884.18	1288.18	0.08 (0.02; 0.32)	99.76 (99.04; 99.94)		
Mandible (fixed and removable)	5	1175	3232	1788.03	0.32 (0.25; 0.40)	98.90 (98.65; 99.15)		
Fixed	9	2394	6140	3010.98	0.64 (0.42; 0.97)	98.12 (97.71; 98.57)		
Immediate	5	2394	6140	3010.98	0.64 (0.42; 0.97)	98.12 (97.71; 98.57)		
Mandible/fix edentate	5	1175	3232	1788.03	0.32 (0.25; 0.40)	98.90 (98.65; 99.15)		
Fixed	9	2394	6140	3010.98	0.64 (0.42; 0.97)	98.12 (97.71; 98.57)		
Immediate	5	2394	6140	3010.98	0.64 (0.42; 0.97)	98.12 (97.71; 98.57)		
Mandible/fix edentate	5	1175	3232	1788.03	0.32 (0.25; 0.40)	98.90 (98.65; 99.15)		
Fixed	9	2394	6140	3010.98	0.64 (0.42; 0.97)	98.12 (97.71; 98.57)		
Immediate	5	2394	6140	3010.98	0.64 (0.42; 0.97)	98.12 (97.71; 98.57)		
wishes, a participatory decision-making process can be developed (Türp & Antes 2013). This procedure provides a reasonable degree of safety for both patient and dentist.

Conclusions

Considering the above-mentioned limitations, the following conclusions can be drawn:

- Only four of the included studies report on observation periods of more than 10 years.
- The current evaluations show a successful outcome for screw-retained fixed restorations and bar- or ball-retained overdentures in the completely edentulous jaw. Disregarding more than the included potential confounders (such as anatomic situation, bone quality, jaw relation, implant-related components) and relating to the estimated post-loading implant loss, exclusively, the following statements can be made:
 - Maxilla:
 - [a] The insertion of six or more implants for a fixed reconstruction in the maxilla reveals favorable results. Considering the “all-on-4” concept for the maxilla, one study (Crespi et al. 2012) with an acceptable level of evidence was found, revealing a satisfactory outcome. For obvious reasons, this one study could not be used for a meaningful statistical comparison.
 - [b] The insertion of four implants for a removable overdenture in the maxilla reveals satisfying results. Data on minimal concepts with <4 implants in the maxilla is scarce and demonstrated significantly worse results, calling for a cautious and controlled application of these therapeutic options.
 - Mandible:
 - [a] The insertion of four implants for a fixed restoration in the edentulous mandible reveals satisfying results. However, it has to be noticed that five or more implants showed a slightly better outcome.
 - [b] The insertion of two implants for a removable overdenture in the mandible shows favorable results. However, it has to be noticed that four implants revealed a slightly better outcome. Furthermore, four implants with a removable prosthesis had a better outcome than four implants with a fixed prosthesis in the mandible. Data on the minimal concept with only 1 implant is scarce and shows promising results. However, the results are negatively influenced when using machined-surfaced implants and an immediate loading protocol (Liddelow & Henry 2010). The application of this therapeutic option can only be recommended, when the insertion of 2 or more implants is not feasible, e.g. due to economic reasons.
 - In general:
 - [a] Implants with fixed prostheses show slightly but significantly better results than removable prostheses regarding both jaws.
 - [b] Rough-surfaced implants demonstrated favorable results compared to machined implants.

Future research

Consequential suggestions for future research: Future RCTs should investigate different attachment systems with different implant numbers, especially for 1 vs. 2 implants in the mandible and <4 implants in the maxilla. Furthermore, the comparison of 4 implants vs. >4 implants with a fixed prosthesis in the maxilla and mandible would be desirable.

General suggestions for future research: Clinical studies should not only concentrate on implant success rates but also on the patients’ benefit with regard to quality of life, improvement of mastication abilities, hygiene capability, psychological aspects, and financial considerations.

Acknowledgements: The authors would like to thank Prof. Dr. Jürgen Becker, Prof. Dr. Irena Sailer, Prof. Dr. Frank Schwarz, and Prof. Dr. Dr. Wilfried Wagner for their support.

Conflict of interest

The authors declare that they have no conflict of interest related to this article.

Source of funding

As this systematic review served as a basis for an experts’ consensus conference (7th International Expert Meeting of the CAMLOG Foundation), it was partially supported by the CAMLOG Foundation.

References

Askig Focused Questions (2014) CEBM Center for Evidence Based Medicine. www.cebm.net. Oxford: University of Oxford.

Agliardi, E.L., Pozzi, A., Stappert, C.F., Benzi, R., Romeo, D. & Gherlone, E. (2012) Immediate fixed rehabilitation of the edentulous maxilla: a prospective clinical and radiological study after 3 years of loading. Clinical Implant Dentistry and Related Research 16: 292–302.

Table 13. Estimates with corresponding standard errors and P-values resulting from the multivariate Poisson regression model

Factor/Interaction	Estimate	Standard Error	P-value
Intercept	-4.7007	0.7327	<0.0001
Jaw	0.0108	0.7610	0.9866
Type of prosthesis	-2.4227	0.1921	<0.0001
Surface of implant	0.7254	0.1913	0.0001
Loading protocol	1.0085	0.7427	0.1745
Jaw-loading protocol	-2.6806	0.7790	0.0006
Conventional vs. immediate (mandible)	-1.6721	0.2748	<0.0001
Conventional vs. immediate (maxilla)	1.0085	0.7427	0.1745
Mandible vs. maxilla (conventional)	-2.6698	0.2048	<0.0001
Mandible vs. maxilla (immediate)	-0.9976	0.2677	0.9866

Post-loading implant loss in edentulous jaws

Table 13: The estimates with corresponding standard errors and P-values resulting from the multivariate Poisson regression model.
implants: a five-year prospective study. The Journal of Prosthetic Dentistry 78: 159–165.

Cordioli, G., Majzoub, Z., Piattelli, A. &Scarano, A. (2000) Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. The International Journal of Oral and Maxillofacial Implants 15: 668–674.

Covani, U., Orlando, B., D’Ambrosio, A., Sabattini, V.B. & Barone, A. (2012) Immediate rehabilitation of completely edentulous jaws with fixed prostheses supported by implants placed into fresh extraction sockets and in healed sites: a 4-year clinical evaluation. Implant Dentistry 21: 272–279.

Crespi, R., Vinci, R., Cappare, P., Romanos, G.E. & Ghirone, E. (2012) A clinical study of edentulous patients rehabilitated according to the “all on four” immediate function protocol. The International Journal of Oral and Maxillofacial Implants 27: 428–434.

De Bruyn, H., Van de Velde, T. & Collaert, B. (2008) Immediate functional loading of TIoblást dental implants in full-arch edentulous mandibles: a 3-year prospective study. Clinical Oral Implants Research 19: 717–723.

De Santis, D., Trevisiol, L., D’Agostino, A., Cucci, A., De Gemmis, A. &Nocini, P.F. (2012) Guided bone regeneration with autogenous block grafts applied to Le Fort I osteotomy for treatment of severely resorbed maxilla: a 4- to 6-year prospective study. Clinical Oral Implants Research 23: 60–69.

Degidi, M., Nardi, D. & Piattelli, A. (2010) Immediate loading of the edentulous maxilla with a definitive restoration supported by an intraoral welded titanium bar and tilted implants. The International Journal of Oral and Maxillofacial Implants 25: 1175–1182.

Eknel, J.A., Lindquist, L.W., Carlsson, G.E. &Jemi, T. (2003) Implant treatment in the edentulous mandible: a prospective study on Branemark system implants over more than 20 years. The International Journal of Prosthodontics 16: 602–608.

Elliosso, A., Narby, B., Ekstrand, K., Hirsch, J., Johansson, A. & Weinnerberg, A. (2012) Five-year prospective clinical study of submerged and non-submerged Paragon system implants in the edentulous mandible. The International Journal of Prosthodontics, 23: 231–238.

Elsyad, M.A., Al-Mahdy, Y.F. & Fouad, M.M. (2012) Marginal bone loss adjacent to conventional and immediate loaded two implants supporting a ball-retained mandibular overdenture: a 3-year randomized clinical trial. Clinical Oral Implants Research 23: 496–503.

Engquist, B., Astrand, P., Anzén, B., Dahlgren, S., Engquist, E., Feldman, H., Karlsson, U., Nord, P.G., Salihholm, S. & Svärdström, P. (2005) Simplified methods of implant treatment in the edentulous lower jaw: a 3-year follow-up report of a controlled prospective study of one-stage versus two-stage surgery and early loading. Clinical Implant Dentistry and Related Research, 7: 95–104.

Esposito, M., Grusovin, M.G., Willings, M., Court- hard, P. & Worthington, H.V. (2007) The effectiveness of immediate, early, and conventional loading of dental implants: a Cochrane systematic review of randomized controlled clinical trials. The International Journal of Oral and Maxillofacial Implants 22: 893–904.

Feine, J.S., Carlsson, G.E., Awad, M.A., Chehade, A., Duncan, W.J., Gizani, S., Head, T., Heydecke, G., Lund, J.P., MacEntee, M., Mericske-Stern, R., Monoj, P., Morais, J.A., Naert, I., Payne, A.G., Penrod, J., Stoker, G.T., Tawe-Smith, A., Taylor, T.D., Thomason, J.M., Thomson, W.M. & Wismeijer, D. (2002a) The McGill consensus statement on overdentures. Mandibular two-implant overdentures as first choice standard of care for edentulous patients. Gerodontology 19: 3–4.

Feine, J.S., Carlsson, G.E., Awad, M.A., Chehade, A., Duncan, W.J., Gizani, S., Head, T., Lund, J.P., MacEntee, M., Mericske-Stern, R., Monoj, P., Morais, J., Naert, I., Payne, A.G., Penrod, J., Stoker, G.T., Jr, Tawe-Smith, A., Taylor, T.D., Thomason, J.M., Thomson, W.M. & Wismeijer, D. (2002b) The McGill consensus statement on overdentures. Montreal, Quebec, Canada. May 24–25, 2002. The International Journal of Prosthodontics 15: 413–414.

Fischer, K. & Stenberg, T. (2012) Prospective 10-year cohort study based on a randomized controlled trial on implant-supported full-arch maxillary prostheses. Part 1: sandblasted and acid-etched implants and mucosal tissue. Clinical Implant Dentistry and Related Research 14: 808–815.

Fischer, K. & Stenberg, T. (2013) Prospective 10-year cohort study based on a randomized controlled trial (RCT) on implant-supported full-arch maxillary prostheses. Part II: aesthetic outcomes and maintenance. Clinical Implant Dentistry and Related Research 15: 498–508.

Gottfredsen, K. & Holm, B. (2000) Implant-supported mandibular overdentures retained with ball or bar attachments: a randomized prospective 5-year study. The International Journal of Prosthodontics 13: 125–130.

Harder, S., Wolfart, S., Eggert, C. & Kern, M. (2011) Three-year clinical outcome of single implant-retained mandibular overdentures—results of preliminary prospective study. Journal of Dentistry 39: 656–661.

Heijdenrijk, K., Raghoebar, G.M., Meijer, H.H., Steegenga, B. & van der Reijden, W.A. (2006) Feasibility and influence of the microgap of two implants placed in a non-submerged procedure: a five-year follow-up clinical trial. Journal of Periodontology 77: 1051–1060.
tures in the edentulous mandible supported by implants and retained by a Dolder bar: a 5-year prospective study. Clinical Implant Dentistry and Related Research 15: 589–599.

Heschl, A., Payer, M., Platter, S., Wegscheider, W., Perli, C. & Lorenzoni, M. (2012) Immediate rehabilitation of the edentulous mandible with screw type implants: results after up to 10 years of clinical function. Clinical Oral Implants Research 23: 1217–1223.

Heydecke, G., Zwahlen, M., Nicol, A., Nisand, D., Payer, M., Renoud, F., Grohmann, F., Mühlmann, S. & Joda, T. (2012) What is the optimal number of implants for fixed reconstructions: a systematic review. Clinical Oral Implants Research 23(Suppl. 6): 217–228.

Jemt, T., Chai, J., Harnett, J., Heath, M.R., Hutton, J.E., Johns, R.B., McKenna, S., McNamara, D.C., van Steenbergh, D., Taylor, R., Watson, R.M. & Herrmann, I. (1996) A 5-year prospective multicenter follow-up report on overdentures supported by osseointegrated implants. The International Journal of Oral and Maxillofacial Implants 11: 291–298.

Krennmaier, G., Kainhofer, M. & Piehslinger, E. (2008) The influence of bar design (round versus milled bar) on prosthodontic maintenance of mandibular overdentures supported by 4 implants: a 5-year prospective study. The International Journal of Prosthodontics 21: 514–520.

Krennmaier, G., Seemann, R., Weinlander, M. & Piehslinger, E. (2011) Comparison of ball and telescopic crown attachments in implant-retained mandibular overdentures: a 5-year prospective study. The International Journal of Oral and Maxillofacial Implants 26: 598–606.

Krennmaier, G., Suto, D., Seemann, R. & Piehslinger, E. (2012) Removable four implant-supported mandibular overdentures rigidly retained with telescopic crowns or milled bars: a 3-year prospective study. Clinical Oral Implants Research 23: 481–488.

Lambert, F.E., Weber, H.P., Susarla, S.M., Belser, U.C. & Gallucci, G.O. (2009) Descriptive analysis of implant and prosthetic survival rates with fixed implant-supported rehabilitations in the edentulous maxilla. Journal of Periodontology 80: 1220–1230.

Lethaus, B., Kälber, J., Patrin, G., Brandstätter, A. & Weingart, D. (2011) Early loading of sandblasted and acid-etch titanium implants in the edentulous mandible: a prospective 5-year study. The International Journal of Oral and Maxillofacial Implants 26: 887–892.

Liddelow, G. & Henry, P. (2010) The immediately loaded single implant-retained mandibular overdenture: a 36-month prospective study. The International Journal of Prosthodontics 23: 13–21.

Lindquist, L.W., Carlsson, G.E. & Jemt, T. (1996) A prospective 15-year follow-up study of mandibular fixed prostheses supported by Osseointegrated implants. Clinical results and marginal bone loss. Clinical Oral Implants Research 7: 329–336.

Lorenzoni, M., Stopper, M., Vogl, S. & Wegscheider, W.A. (2013) Sofort und konventionell versorgte Implantate im zahnlosen Unterkiefer. Zeitschrift für Zahnärztliche Implantologie 29: 130–138.

Maló, P., de Araujo Nobre, M., Lopes, A., Francischone, C. & Rigolizzo, M. (2012) “All-on-4” immediate function concept for completely edentulous maxillae: a clinical report on the medium (3 years) and long-term (5 years) outcomes. Clinical Implant Dentistry and Related Research 14 (Suppl. 1): e139–e150.

Maló, P., Nobre, M. & Lopes, A. (2011) The rehabilitation of completely edentulous maxillae with different degrees of resorption with four or more immediately loaded implants: a 5-year retrospective study and a new classification. European Journal of Oral Implantology 4: 227–243.

Meijer, H.J., Raghoeb, G.M., Batenburg, R.H., Visser, A. & Vissink, A. (2009a) Mandibular overdentures supported by two or four endosseous implants: a 10-year clinical trial. Clinical Oral Implants Research 20: 722–728.

Meijer, H.J., Raghoeb, G.M., Batenburg, R.H. & Vissink, A. (2009b) Mandibular overdentures supported by two Branemark IMZ or ITI implants: a ten-year prospective randomized study. Journal of Periodontology 79: 799–806.

Meijer, H.J., Raghoeb, G.M., Van’t Hof, M.A. & Visser, A. (2004) A controlled clinical trial of implant-retained mandibular overdentures: 10 years’ results of clinical aspects and aftercare of IMZ implants and Branemark implants. Clinical Oral Implants Research 15: 421–427.

Mertens, C., Steveling, H.G., Stucke, K., Pretzl, B. & Meyer-Bäumer, A. (2012) Fixed implant-retained rehabilitation of the edentulous maxilla: 11-year results of a prospective study. Clinical Implant Dentistry and Related Research 14: 464–472.

Micheels, W. & Schiffer, U. (2006) Vierte Deutsche Mundgesundheitststudie (DMS IV). Ergebnisse zu oralen Erkrankungsprävalenzen, Risikogruppen und zum zahnärztlichen Versorgungsgrad in Deutschland 2005. In: (IDZ) IdDZ, ed. Vol. Materialienreihe 31 Deut- scher Zahnärzte Verlag DAV, Köln: I-502.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. & Group, P. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 6: e1000097.

Murphy, W.M., Abi, E.G., Gregory, M.C. & Williams, K.R. (2002) A prospective 5-year study of two cast framework alloys for fixed implant-supported mandibular prostheses. The International Journal of Prosthodontics 15: 133–138.

Naert, I., Gizani, S. & van Steenberghe, D. (1998) Treatment considerations for maxillary implant overdentures - Ergebnisse einer klinischen Studie. Implantologie 18: 165–174.

Nyström, E., Nilson, H., Gunn, J. & Lundgren, S. (2009a) A 9–14 year follow-up of onlay bone grafting in the atrophic maxilla. The International Journal of Oral and Maxillofacial Surgery 38: 111–116.

Nyström, E., Nilson, H., Gunn, J. & Lundgren, S. (2009b) Reconstruction of the atrophic maxilla with interpositional bone grafting/Le Fort I osteotomy and endosseal implants: a 11–16 year follow-up. The International Journal of Oral and Maxillofacial Surgery 38: 1–6.

Ortöp, A. & Jemt, T. (2012) CNC-milled titanium frameworks supported by implants in the edentulous jaw: a 10-year comparative clinical study. Clinical Implant Dentistry and Related Research 14: 88–99.

Papaspyridakos, P., Chen, C.J., Chuang, S.K. & Weber, H.P. (2014) Implant loading protocols for edentulous patients with fixed prostheses: a systematic review and meta-analysis. The International Journal of Oral and Maxillofacial Implants 29(Suppl.): 256–270.

Papaspyridakos, P., Chen, C.J., Chuang, S.K., Weber, H.P. & Gallucci, G.O. (2012) A systematic review of biologic and technical complications with fixed implant rehabilitations for edentulous patients. The International Journal of Oral and Maxillofacial Implants 27: 102–110.

Papaspyridakos, P., Mokti, M., Chen, C.J., Benic, G.I., Gallucci, G.O. & Chronopoulos, V. (2013) Implant and prostodontic survival rates with implant fixed complete dental prostheses in the edentulous mandible after at least 5 years: a systematic review. Clinical Implant Dentistry and Related Research 16: 705–717.

Payne, A.G. & Solomon, Y.F. (2000) The prostho- dontic maintenance requirements of mandibular mucosa- and implant-supported overdentures: a review of the literature. The International Journal of Prosthodontics 13: 238–243.

Pjetursson, B.E., Aegirsson, A.G., Zwahlen, M. & Sailer, I. (2014) Improvements in implant den- tistry over the last decade: comparison of survival and complication rates in older and newer publications. The International Journal of Oral and Maxillofacial Implants 29(Suppl.): 308–324.

Pjetursson, B.E., Bragger, U., Lang, N.P. & Zwahlen, M. (2007) Comparison of survival and complication rates of tooth-supported fixed dental prosthe- ses (FDPs) and implant-supported FDPs and single crowns (SCs). Clinical Oral Implants Research 18(Suppl. 3): 97–113.

Rasmusson, L., Roos, J. & Bystedt, H. (2005) A 10- year follow-up study of titanium dioxide-blasted implants. Clinical Implant Dentistry and Related Research 7: 36–42.

Richter, E.J. & Knapp, W. (2010) A review of implant maintenance requiring removal of a metal framework. Clinical Implant Dentistry and Related Research 3: 1–5.

Romeo, E., Lops, D., Margiuti, E., Ghisolfi, M., Chiapasco, M. & Vogel, G. (2004) Long-term survival and success of oral implants in the treat- ment of full and partial arches: a 7-year prospective study with the ITI dental implant system. The International Journal of Oral and Maxillofacial Implants 19: 247–259.

Sadownik, S.J. (2007) Treatment considerations for maxillary implant overdentures: a systematic review. Journal of Prosthetic Dentistry 97: 340– 348.

Sailer, I., Pjetursson, B.E., Zwahlen, M. & Hammerle, C.H. (2007) A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observa-
tion period of at least 3 years. Part II: fixed dental prostheses. Clinical Oral Implants Research 18 [Suppl. 3]: 86–96.

Scala, R., Cucchi, A., Ghensi, P. & Vartolo, F. (2012) Clinical evaluation of satisfaction in patients reabilitated with an immediately loaded implant-supported prosthesis: a controlled prospective study. The International Journal of Oral and Maxillofacial Implants 27: 911–919.

Schimmel, M., Srinivasan, M., Herrmann, F.R. & Muller, F. (2014) Loading protocols for implant-supported overdentures in the edentulous jaw: a systematic review and meta-analysis. The International Journal of Oral and Maxillofacial Implants 29(Suppl.): 271–286.

Schley, J.S., Terheyden, H., Wollart, S., Boehme, P., Gómez-Róman, G., Keese, E., Kern, M., Pilgrim, C., Reinhardt, S., Weber, A. & Schley, J.S. (2011) Which prosthetic treatment concepts present a reliable evidence-based option for the edentulous maxilla related to number and position of dental implants? European Journal of Oral Implantology 4: 31–47.

Schwarz, S., Gabbert, O., Hassel, A.J., Schmitter, M., Seche, C. & Rammelsberg, P. (2010) Early loading of implants with fixed dental prostheses in edentulous mandibles: 4.5-year clinical results from a prospective study. Clinical Oral Implants Research 21: 284–289.

Sjöström, M., Sennery, L., Nilson, H. & Lundgren, S. (2007) Reconstruction of the atrophic edentulous maxilla with free iliac crest grafts and implants: a 3-year report of a prospective clinical study. Clinical Implant Dentistry and Related Research 9: 46–59.

Slot, W., Raghoebar, C.M., Vissink, A., Huddleston Slater, J.J. & Meijer, H.J. (2009) A systematic review of implant-supported maxillary overdentures after a mean observation period of at least 1 year. Journal of Clinical Periodontology 37: 98–110.

Stoker, G., van Waas, R. & Wismeijer, D. (2012) Long-term outcomes of three types of implant-supported mandibular overdentures in smokers. Clinical Oral Implants Research 23: 925–929.

Testori, T., Fabbro, M., Galli, F., Francetti, L., Taschieri, S. & Weinstein, R. (2004) Immediate occlusal loading the same day or the after implant placement: comparison of 2 different time frames in total edentulous lower jaws. The Journal of Oral Implantology 30: 307–313.

Türkylmaz, I., Company, A.M. & McGrumphy, E.A. (2010) Should edentulous patients be constrained to removable complete dentures? The use of dental implants to improve the quality of life for edentulous patients. Gerodontology 27: 3–10.

Türp, J.C. & Antes, G. (2013) Evidenzbasierte Zahnmedizin – aktueller Stand; evidence-based dentistry – status quo. Deutsche Zahnärztliche Zeitschrift 68: 72–74.

Van de Velde, T., Collaert, R. & De Bruyn, H. (2007) Immediate loading in the completely edentulous mandible: technical procedure and clinical results up to 3 years of functional loading. Clinical Oral Implants Research 18: 295–303.

Vroom, M.G., Sipos, P., de Lange, G.L., Grundermann, L.J., Timmerman, M.E., Loos, R.G. & van der Velden, U. (2009) Effect of surface topography of screw-shaped titanium implants in humans on clinical and radiographic parameters: a 12-year prospective study. Clinical Oral Implants Research 20: 1231–1239.

Watson, R.M., Jemt, T., Chai, J., Harnett, J., Heath, M.R., Hutton, J.E., Johns, R.B., Litherne, B., McKenna, S., McNamara, D.C., Naert, I. & Taylor, R. (1997) Prosthodontic treatment, patient response, and the need for maintenance of complete implant-supported overdentures: an appraisal of 5 years of prospective study. The International Journal of Prosthodontics 10: 345–354.

Weinländer, M., Piehslinger, E. & Krennmair, G. (2010) Removable implant-prosthetodic rehabilitation of the edentulous mandible: five-year results of different prosthetic anchorage concepts. The International Journal of Oral & Maxillofacial Implants 25: 589–597.

Wennerberg, A. & Albrektsson, T. (2010) On implant surfaces: a review of current knowledge and opinions. The International Journal of Oral and Maxillofacial Implants 25: 63–74.

Zembic, A. & Wismeijer, D. (2014) Patient-reported outcomes of maxillary implant-supported overdentures compared with conventional dentures. Clinical Oral Implants Research 25: 441–450.

Zitzmann, N.U. & Marinello, C.P. (2000a) Treatment outcomes of fixed or removable implant-supported prostheses in the edentulous maxilla. Part I: patients’ assessments. Journal of Prosthetic Dentistry 83: 424–433.

Zitzmann, N.U. & Marinello, C.P. (2000b) Treatment outcomes of fixed or removable implant-supported prostheses in the edentulous maxilla. Part II: clinical findings. Journal of Prosthetic Dentistry 83: 434–442.

Zou, D., Wu, Y., Huang, W., Wang, F., Wang, S., Zhang, Z. & Zhang, Z. (2013) A 3-year prospective clinical study of telescopic crown, bar, and locator attachments for removable four implant-supported maxillary overdentures. The International Journal of Prosthodontics 26: 566–573.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. PRISMA 2009 Checklist.