Title
Hepcidin, serum iron and transferrin saturation in full term and premature infants
during the first month of life: A state-of-the-art review of existing evidence in humans

Authors
James H Cross¹, Andrew M Prentice¹, Carla Cerami¹.

Affiliations
¹Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia

*Corresponding Author
Dr Carla Cerami, email: ccerami@mrc.gm

Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia (+220 787 5756)

Short running head
Hepcidin, iron and TSAT in the neonatal period

Abbreviations
AGA Appropriate for gestational age
CI Confidence Interval
CRP C-reactive protein
DFID Department for International Development
DMT-1 Divalent metal transporter 1
EIA Enzyme immunoassay
ELISA Enzyme-linked immunosorbent assays
EPO Erythropoietin
3.1 ABSTRACT

Neonates regulate iron at birth and in early postnatal life. We reviewed literature from PubMed and Ovid Medline containing data on umbilical cord and venous blood concentrations of hepcidin, iron and transferrin saturation (TSAT) in human neonates from 0-1 month of age. Data from 59 studies were used to create reference ranges for hepcidin, iron and TSAT for full-term neonates over the first month of life. In full-term neonates,
venous hepcidin increases 2-3-fold over the first month of life (to reach 61.1 ng/mL; CI: 20.1-102.0 ng/mL) compared to umbilical cord blood (29.7 ng/mL; CI: 21.1-38.3 ng/mL). Cord blood has high levels of serum iron (28.5 μmol/L; CI: 26.0-31.1 μmol/L) and TSAT (51.7%; CI: 46.5-56.9%). Following a short-lived immediate postnatal hypoferremia, iron and TSAT rebounded to approximately half the levels in the cord by the end of the first month. There was insufficient data to formulate reference ranges for preterm neonates.

KEYWORDS: Nutritional immunity, host-pathogen interaction, hepcidin, neonates, hypoferremia, transferrin, serum iron

3.2 INTRODUCTION

Iron homeostasis during pregnancy

Three important mediators of hepcidin synthesis: iron status, inflammation, and erythropoiesis, are all altered during pregnancy.(1–4) Iron demand on the mother increases significantly to support expanded maternal erythropoiesis and iron requirements of the growing fetus.(5–9) During pregnancy, the placenta transfers ~270mg of iron from the mother to the fetus via the placenta.(10,11) Syncytiotrophoblasts in the placental villi take up transferrin-bound iron from the maternal circulation by endocytosis via transferrin receptor 1 (TFR1) (Figure 1).(12,13) As reviewed in Cao et al.(14) and Fisher et al.,(15) iron is released from TFR1 and transferred from the acidified endosome into the syncytiotrophoblast cytoplasm by DMT-1,(13) ZIP8,(16) and ZIP14,(17). Ferroportin transports iron out of placental syncytiotrophoblasts, and then ceruloplasmin, hephaestin, and zyklopen assist in the oxidization of Fe^{2+} to Fe^{3+} helping it pass through the endothelium to reach the fetal circulation.(18–20)
Maternal control of fetal and early neonatal iron metabolism

Increases in maternal dietary iron uptake and placental iron transfer occur in the second and third trimester,(21,22) when maternal hepcidin decreases to trigger increased duodenal iron absorption,(23) splenic macrophage iron recycling, and the release of maternal hepatic iron stores.(24–26) The resulting increased circulating maternal iron is then freely available for transfer to the fetus. Factors that are thought to contribute to maternal hepcidin suppression in the second and third trimester include maternal iron deficiency, erythropoiesis in the mother or fetus,(26) oestrogen,(27) and progesterone receptor membrane component-1.(28) Conflicting evidence now exists as to whether pregnancy-induced plasma dilution may also play a role.(15,29)

Fetal control of fetal and early neonatal iron metabolism

Eighty percent of all the iron transferred from the mother to the fetus occurs in the last trimester.(30) An illustration of the fetal demand for iron (amounting to 1.6-2.0 mg/kg per day(31)) is that umbilical cord blood contains a higher serum iron concentration than in the maternal circulation and at delivery babies have higher total body iron per kilo than that measured in their mothers or in healthy adults.(32–43) This pattern is seen even in anemic mothers and their babies.(31,42,44,45) The relative roles of maternal and fetal hepcidin levels in controlling placental iron transport are unclear and may change during the course of gestation.(24,25,29,41,43,44,46–53) As iron becomes more available in the last months of pregnancy, the fetus synthesizes hepcidin probably to control the rate of placental iron transfer and thereby to protect itself from iron-overload.(15,29,54) Evidence showing the importance of fetal hepcidin includes: 1) umbilical cord hepcidin concentrations at birth are higher than maternal levels before and during delivery(24,25,43,52,55,56) and 2) in pregnancies with multiple gestations, differences in cord hepcidin between siblings
explained a greater fraction of variability in cord hemoglobin, serum ferritin, sTfR, and EPO than maternal hepcidin levels. (48)

Placental control of fetal and early neonatal iron metabolism

The placenta may also independently regulate iron transfer to the fetus in some scenarios. (57) A reduction of ferroportin expression on the apical fetal-facing membrane of placental syncytiotrophoblasts during maternal iron deficiency, in addition to increased expression of TFR1 on the maternal-facing side supports this hypothesis. (29) Sangkhae et al. propose that during maternal iron deficiency, iron is held in the placenta to ensure that its metabolic homeostasis is maintained. Placental protein synthesis and critical transfer mechanisms can then continue, ensuring the more detrimental condition of placental dysfunction does not occur. These findings were observed in murine and *in vivo* human trophoblast models, but not in respect to the human pregnancies analysed. (29)

Impact of labor and delivery on hepcidin

Childbirth is an intensely stressful event. Inflammatory pathways (including IL-6 mediated pathways) are induced at the onset of human labor, even in the absence of intrauterine infection. (58–65) Initiating stimuli for IL-6 production and release could involve the endocrine events of labor, (64–66) mechanical distension of the membranes and cervix (smooth muscle), (58,66–69) placental hypoxia and/or hypo-perfusion, (66,70) fetal hypoxia-acidemia, (71) pain (72) or exposure to infective agents. (63,65,66,73) The production of IL-6 leads to an increase in hepcidin levels along with a massive influx of immune cells (predominantly neutrophils) into the cervix, decidua, myometrium, chorioamnionic membranes and amniotic fluid. (64,74) This further exacerbates the rise in IL-6 and other cytokines. (72,75) The increase in post-delivery maternal hepcidin concentrations is larger with caesarean section deliveries (5.5-fold increase) as compared to standard vaginal deliveries (3-fold increase). (76) This is most likely due to the surgical procedure and the subsequent inflammation. Similar increases in serum hepcidin are seen postoperatively
during other abdominal surgeries. The effect of this maternal rise in hepcidin before, during and immediately after childbirth on the late fetal/early neonatal iron status is unknown, although like IL-6, hepcidin is not thought to cross the placenta.

Effects of infection on neonatal serum hepcidin levels

Intra-amniotic infections can cause an increase in fetal hepcidin. Multiple studies have documented an association between chorioamnionitis, perinatal acidosis and neonatal sepsis with high umbilical cord hepcidin concentrations. For example, an extremely high cord concentration (437.6 ng/mL) was found in a neonate with confirmed *Enterococcus faecalis* early-onset sepsis. Similarly, very-low birth weight, premature neonates with late-onset culture-confirmed sepsis, exhibit elevated levels of hepcidin. Nevertheless, despite the well-documented regulatory pathways of infection and inflammation on iron regulation, it is important to note that multiple publications have shown a lack of correlation between hepcidin, IL-6 and CRP in sick neonates. This is likely due to differences in the biochemical kinetics of these molecules. IL-6 concentrations spike very early in the course of perinatal infection, whereas the rise of CRP is delayed.

Standardizing hepcidin measurements

Multiple assays, including mass spectrometry (MS) and immunochemistry ELISA methods, are available to quantify hepcidin in various body fluids (urine, serum and plasma). However, in the studies included in this state-of-the-art review, none of these methods are calibrated using the same standards and, as a result, there are significant differences in hepcidin values between studies.

In 2016, Van der Vorm *et al.* harmonized many of the available hepcidin ELISA assays using native, lyophilized plasma with cyrolyoprotectant as a commutable candidate reference material. Linear equations were formulated to standardize the hepcidin assays. These equations can now be used to conduct post-hoc standardization of non-calibrated test
results, aiding the retrospective comparison of data from previous publications. We have used these equations in this state-of-the-art review to generate standardized hepcidin values (Supplementary Table 1). The production of standardized reference material, which was refined in 2019, is available for purchase allowing hepcidin measurements to be standardized in all laboratories (89).

To our knowledge, this is the first time that retrospective comparisons have been made between serum hepcidin concentrations in different studies, using post-hoc standardized values to produce calculated weighted mean averages in umbilical cord and venous blood. This state-of-the-art review contributes this comparative analysis and also offers an example for how other authors could approach retrospective comparisons of hepcidin levels from different studies.

3.3 METHODS

In March 2019, we reviewed the literature searching two databases: PubMed and Ovid Medline with no restrictions on language. The original search was for human studies only published between the date range of 1st January 1975 to 1st December 2019. Corresponding authors of extracted publications were not contacted. One individual carried out the inclusion/exclusion process of the retrieved studies, and there was no assessment of bias or the quality of studies as seen in a systematic review process. Table 1 displays the search strategy used. Figure 2 shows the flow diagram of the literature search. The search generated publications containing data on cord and venous concentrations of hepcidin, serum iron and transferrin saturation in the neonatal period. Studies that analyzed healthy neonates were included. Mean, median or range of the gestational age of the study population was a requirement for inclusion. Neonates >37 weeks at delivery were regarded as full-term neonates (FTB). Studies or study groups with a gestational <37 weeks were
classed as premature (PTB) neonates. Retrieved publications had to report a mean time of bleed 0-720 hours post-delivery to be analyzed. Mean (SD or 95% CI), or median (range, IQR, or 95% CI) data were extracted from the included publications. Studies reporting mean (95% CI) were included in the calculation of weighted means (95% CI) and the associated Figures 3-5. Reference ranges for adults and children were presented for comparison. Many retrieved publications did not stratify results by birthweight; as a result, this variable was not recorded in Tables 2-7. Publications were not stratified by sample type (serum or plasma) due to the overall lack of studies. If multiple publications on the same study population were retrieved, only one was included in the analysis.

The standardization of hepcidin values using different ELISA assays was performed using the slopes and intercepts from Van der Vorm et al. This was performed for studies that used ELISA test kits from DRG (hepcidin-25 (human) EIA Kit, DRG, USA), Bachem (hepcidin-25 EIA Kit, Bachem, USA) and Intrinsic Lifesciences (Intrinsic Hepcidin ELISA Kit, Intrinsic Lifesciences, USA). It was not possible to standardize hepcidin values acquired using the ELISA from Hangzhou Eastbiopharm (Hangzhou Eastbiopharm Co. Ltd., Hangzhou, Zhejiang, China) and mass spectroscopy (MCProt Biotechnology, Kanazawa, Japan), used in Basu et al. and Ichinomiya et al., respectively. Prohepcidin was not included in the analysis as it is a poor proxy for biochemically active hepcidin-25.

The software Stata IC version 15 (StataCorp LP, College Station, Texas, USA) and R (R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2020, https://www.R-project.org) were used to analyze data. To calculate the confidence interval (CI) around the weighted mean, the weighted variance was calculated using the wtd.var function from the R package Hmisc. The standard error derived from this weighted variance was then used to calculate the t-statistic (i.e. weighted mean divided by weighted standard error), from which the 95% CI was derived. GraphPad Prism version 8
3.4 RESULTS

The initial search of two electronic databases for three different iron markers yielded 13,931 publications. After the exclusion of duplicated studies and selection criteria filtering, 20 publications were included in the analysis for hepcidin, 23 publications for TSAT and 51 publications for serum iron. Many of these studies were found to contain information on multiple parameters of interest. Overall, we identified 59 publications containing data on hepcidin, serum iron or TSAT in FTB neonates. Sixteen publications were found to contain data on PTB neonates.

In publications detailing the effects of cord clamping interventions, all retrieved cord blood values were from groups that underwent 60 seconds of delayed cord clamping. This is consistent with current WHO policy. Cord blood weighted mean values are generated in Tables 2-7, and are represented by a dashed line in Supplementary Figures 1-3 and α (95% CI) in Figures 3-5.

Hepcidin

Standardized weighted mean umbilical cord blood hepcidin levels were higher in FTB neonates (29.7 ng/mL; CI: 21.1-38.3 ng/mL) vs PTB neonates (8.4 ng/mL; CI: 2.0-14.7 ng/mL) (Supplementary Figure 1A and 1B and Tables 2 and 3). Full-term cord blood hepcidin levels were 2-fold higher than in adult male (13.1 ng/mL; CI: 1.4-43.2 ng/mL) and female (10.6 ng/mL; CI: 1.4-43 ng/mL) references ranges (Table 2). FTB standardized venous hepcidin levels increased (61.1 ng/mL; CI: 20.1-102.0 ng/mL) over the first four days of life (Figure 3A). This trend is unclear for PTB neonates due to the lack of studies. (Table
3 and Figure 3B). No studies were retrieved that assessed post-delivery venous blood samples >77 hours in FTB or >168 hours in PTB.

TSAT

The weighted mean TSAT in cord blood was higher in FTB neonates (51.7%; CI: 46.5-56.9%) compared to PTB neonates (36.5%; CI: 0.8-72.1%) (Tables 4 and 5 and Supplementary Figure 2). Cord blood TSAT in FTB neonates was double the reference levels found in adults (23.5%; CI: 12-38.8%) and children aged 1-5 years (19.4%; CI: 8.2-32.9%) (Table 4). The weighted mean average of TSAT decreased 2-fold from cord blood to venous blood in FTB neonates (down to 25.2%; CI: 20.1-30.3%) (Figure 4A). This hypoferremic response in FTB neonates was followed by a steady increase from 21.8% (CI: 18.8-24.7%) to 44.2% (CI: 32.1-57.8%). No trend was identifiable in PTB neonates due to the lack of data (Table 5 and Figure 4B).

Serum Iron

Unlike TSAT values, serum iron levels in cord blood were higher in PTB (46.8 μmol/L; CI: 29.7-63.8 μmol/L) neonates compared to FTB neonates (28.5 μmol/L; CI: 26.0-31.1 μmol/L) (Supplementary Figure 3). Like TSAT, a similar 2-fold decrease in the weighted mean average of venous blood compared to cord blood is seen in FTB (13.8 μmol/L; CI: 10.8-16.9 μmol/L) (Table 6), and PTB neonates (16.2 μmol/L; CI: 15.3-17.0 μmol/L) (Table 7). Figure 5 suggests that after the initial reduction (in the first 48 hours of life), levels of serum iron remain consistent over the first month of life in FTB (A) and PTB neonates (B). Serum iron was lowest between 0-48 hours post-delivery (Table 6 and Table 7).
3.5 DISCUSSION

Hypoferremia in FTB neonates

The weighted mean average for cord blood hepcidin was calculated using data from 11 studies. Almost all included studies reported a mean value between 11-41ng/mL, apart from Kulik-Rechberger et al. This study reported a much higher cord blood hepcidin value (67.9ng/mL; CI: 59.3-76.5ng/mL) as seen in Supplementary Figure 1A. In addition, this study also recorded higher hepcidin levels in venous samples collected at 72 hours (92.9ng/mL; CI: 83.3-102.3ng/mL), compared to those collected by Prentice et al. at 77 hours (55.6ng/mL; CI: 47.1-65.5ng/mL).

When all the data are reviewed together (Figure 3A), hepcidin increases from within the first 2-11 hours of life and then continues to increase up to 82 hours post-delivery. At all times the hepcidin levels are much higher than those recorded in adults. This excess hepcidin production may provide a quick, comprehensive and relatively long-lasting (0-3 days) hypoferremic response to aid protection during this vulnerable period. After the first few days, TSAT gradually increases as do serum iron levels, eventually reaching a plateau at approximately 1 month of age.

Iron metabolism biomarker data gaps in first month of life in full-term babies

Gaps in the time course of the concentration of hepcidin, TSAT and serum iron in the first month of life in full-term neonates still exist. This hinders our understanding of neonatal iron metabolism, particularly because hepcidin, TSAT and serum iron are transient and dynamic iron parameters. At the point in which hypoferremia is believed to be maximal, publications detailing the concentration in early (<12 hours) venous samples are lacking in both groups.
(FTB n=2, PTB n=1). Further research at this time point is required to fully elicit the strength and consistency of this response, as well as understanding the process in greater detail.

Lack of data on preterm neonates during the first 24 hours

After analysis of the current literature, the extent of the role that hypoferremia plays in neonates with a gestational age less than 37 weeks is still unclear. This is primarily due to the limited number of publications documenting hepcidin (n=5), TSAT (n=6) and serum iron (n=13) in the first month of life in preterm neonates. The variability between the studies is vast and further complicated by the complex, intensive and inconsistent care of premature neonates worldwide.

Data analysis of the retrieved publications suggests that preterm neonates have lower cord hepcidin than in full-term neonates, infants and healthy adults. Weighted cord mean values are 3-fold higher in full-term (29.7ng/mL; CI: 21.1-38.3ng/mL) neonates compared to preterm (8.4ng/mL; CI: 2.0-14.7ng/mL) neonates. We speculate that this could be due to very early preterm neonates (<30 weeks’ gestation) possessing circulatory monocytes with decreased surface expression of TLR4, lower mRNA expression of TLR4 and reduced cytokine production.(100) An effect on the production of IL-6 at delivery, might then lead to a reduced ability to stimulate hepcidin expression as suggested in full-term babies.

Our analysis proposes that peripheral venous hepcidin values in preterm neonates increase to 44ng/mL at 168 hours. However, decreases in TSAT between the cord and venous samples are not observed (36.5% to 45.6%). We propose that this is due to a lack of data on TSAT levels in preterm neonates over the first hours of life, potentially due to the complex ethical questions around bleeding preterm neonates so early in postnatal life. This results in the collection of skewed data, focusing only on later time points in the first month of life.
Limitations

The aim of this state-of-the-art review was to evaluate our current knowledge on neonatal iron homeostasis in preterm and full-term neonates. As a result of the dearth of publications detailing the parameters of interest during this period, our review has several limitations discussed below. First, we were unable to stratify by geographical location. Many studies do not stratify their study groups by gestational age (preterm: <37 weeks, full term: >37 weeks). Subsequently, we have had to assign each study group or population by the mean gestational age. This will result in a reduction of any natural variation potentially caused by gestational age between the reviewed populations. This is also the case with respect to birth weight and hemoglobin concentration.

Similarly, the studies on preterm neonates are made up of multiple small sample size subgroups with different gestational ages. Due to the lack of preterm studies, we have had to combine these study groups to formulate weighted means and figures. This in itself, could distort the impact of gestational age on our results, since data from the very early preterm newborns is combined with that from the late preterm neonates.

The retrieval of gestational age was a crucial aspect of the search strategy; however, few studies document the method used. There are large differences in the accuracy of different techniques.(101)

Post-hoc standardization of different hepcidin ELISA kits has, to our knowledge, never been completed before with retrospective data. However, care should be given to the accuracy of the standardized values, as standardization was only possible for DRG, Bachem and Intrinsic Lifesciences ELISA test kits. Studies that used alternative methods(102) were not included in summary statistics.
An essential criterion of inclusion in this publication was that all neonatal data came from healthy newborns. However, documentation of labor practices (including mode of delivery) and postnatal care, along with postnatal medication lack detail in the publications retrieved. Vaginal delivery is occasionally referred to as the method of delivery; however, the use of inflammation-inducing forceps, cesarean section or vacuum delivery is not consistently reported in each publication.

Conclusion

Currently available data suggests that hepcidin, serum iron and TSAT levels for adults and infants are much lower than those found in cord blood and venous blood from neonates during the first month of life. We have strengthened the evidence that full-term neonates possess the ability to produce a hepcidin-mediated hypoferremic response post-delivery. Whether this mechanism is found in PTB neonates is still unclear. This is predominately due to the lack of studies on healthy preterm neonates during the first hours of life. If premature or low birthweight neonates are unable to mount a hypoferremic response, this could enhance their risk of early neonatal infections. Conversely, if the hypoferremic response is seen in both preterm and full-term neonates, it will further support the hypothesis that regulation of iron distribution plays a fundamental role as an innate mechanism of protection against infection.

In summary, serum hepcidin is likely triggered by the inflammatory effect of labor and delivery. We suggest that this intrinsic mechanism of protection protects newborns with immature immune systems to transition from a semi-allogeneic, protected fetal setting to a microbe-rich extrauterine environment. (103,104) Hepcidin-induced hypoferremia then potentially provides a broad action innate bacteriostatic action to invading micro-organisms, when physiological adaption to postnatal life is so critical for survival.
Acknowledgements:

We thank Dr. Andrew Armitage for his advice and support in formulating standardized hepcidin values.

3.6 REFERENCES

1. Ganz T, Nemeth E. Hepcidin and Disorders of Iron Metabolism. Annu Rev Med [Internet]. 2011 [cited 2019 Oct 17];62:347–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20887198

2. Choi JW, Pai SH. Change in erythropoiesis with gestational age during pregnancy. Ann Hematol [Internet]. Springer-Verlag; 2001 [cited 2019 Oct 17];80:26–31. Available from: http://link.springer.com/10.1007/s0027700000229

3. Belo L, Santos-Silva A, Rocha S, Caslake M, Cooney J, Pereira-Leite L, Quintanilha A, Rebelo I. Fluctuations in C-reactive protein concentration and neutrophil activation during normal human pregnancy. Eur J Obstet Gynecol Reprod Biol [Internet]. Elsevier; 2005 [cited 2019 Oct 17];123:46–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16260340

4. Scholl TO, T.O. S. Iron status during pregnancy: Setting the stage for mother and infant. Am J Clin Nutr [Internet]. Narnia; 2005 [cited 2019 Oct 17];81:1218S-1222S. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L41741764%5Cnhttp://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=00029165&id=doi:&atitle=Iron+status+during+pregnancy:+Setting+the+stage+for+mother+and+infant&stitle=Am.+J.+Clin.+Nutr.&

5. Barrett JF, Whittaker PG, Williams JG, Lind T. Absorption of non-haem iron from food during normal pregnancy. BMJ [Internet]. BMJ Publishing Group; 1994 [cited 2019...
6. Milman N. Iron and pregnancy—a delicate balance. Ann Hematol [Internet]. 2006 [cited 2019 Oct 3];85:559–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16691399

7. Hubbard AC, Bandypadhyay S, Wojczyk BS, Spitalnik SL, Hod EA, Prestia KA. Effect of dietary iron on fetal growth in pregnant mice. Comp Med [Internet]. 2013 [cited 2019 Oct 3];63:127–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23582419

8. Lin W-J, Kirksey A. Effects of Different Levels of Dietary Iron on Pregnancy Superimposed upon Growth in the Rat. J Nutr [Internet]. 1976 [cited 2019 Oct 3];106:543–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/943479

9. Gao G, Liu S-Y, Wang H-J, Zhang T-W, Yu P, Duan X-L, Zhao S-E, Chang Y-Z. Effects of Pregnancy and Lactation on Iron Metabolism in Rats. Biomed Res Int [Internet]. Hindawi; 2015 [cited 2019 Oct 3];2015:1–9. Available from: http://www.hindawi.com/journals/bmri/2015/105325/

10. Bothwell TH. Iron requirements in pregnancy and strategies to meet them. Am J Clin Nutr [Internet]. Narnia; 2000 [cited 2019 Oct 3];72:257S-264S. Available from: https://academic.oup.com/ajcn/article/72/1/257S/4729643

11. Cao C, O’Brien KO. Pregnancy and iron homeostasis: an update. Nutr Rev [Internet]. 2013 [cited 2019 Oct 3];71:35–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23282250

12. Bastin J, Drakesmith H, Rees M, Sargent I, Townsend A. Localisation of proteins of iron metabolism in the human placenta and liver. Br J Haematol [Internet]. 2006 [cited 2019 Oct 3];134:532–43. Available from: http://doi.wiley.com/10.1111/j.1365-2141.2006.06216.x

13. Georgieff MK, Wobken JK, Welle J, Burdo JR, Connor JR. Identification and Localization of Divalent Metal Transporter-1 (DMT-1) in Term Human Placenta. Placenta [Internet]. W.B. Saunders; 2000 [cited 2019 Oct 3];21:799–804. Available
from: http://www.ncbi.nlm.nih.gov/pubmed/11095929

14. Cao C, Fleming MD. The placenta: the forgotten essential organ of iron transport. Nutr Rev [Internet]. 2016 [cited 2019 Mar 30];74:421–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27261274

15. Fisher AL, Nemeth E. Iron homeostasis during pregnancy. Am J Clin Nutr [Internet]. 2017 [cited 2019 Mar 30];106:1567S-1574S. Available from: http://ajcn.nutrition.org/lookup/doi/10.3945/ajcn.117.155812

16. Gálvez-Peralta M, He L, Jorge-Nebert LF, Wang B, Miller ML, Eppert BL, Afton S, Nebert DW, Galvez-Peralta M, He L, et al. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. Schmidt J V., editor. PLoS One [Internet]. United States: Public Library of Science; 2012 [cited 2019 Apr 5];7:e36055. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med9&NEWS=N&AN=22563477

17. Hojo S, Fukada T, Shimoda S, Ohashi W, Bin B-H, Koseki H, Hirano T. The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS One [Internet]. Public Library of Science; 2011 [cited 2019 Oct 14];6:e18059. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21445361

18. Chen H, Attieh ZK, Syed BA, Kuo Y-M, Stevens V, Fuqua BK, Andersen HS, Naylor CE, Evans RW, Gambling L, et al. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J Nutr [Internet]. American Society for Nutrition; 2010 [cited 2019 Oct 14];140:1728–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20685892

19. Guller S, Buhimschi CS, Ma YY, Huang STJ, Yang L, Kuczynski E, Zambrano E, Lockwood CJ, Buhimschi IA. Placental expression of ceruloplasmin in pregnancies complicated by severe preeclampsia. Lab Invest [Internet]. NIH Public Access; 2008 [cited 2019 Oct 14];88:1057–67. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/18679377

20. Li Y-Q, Bai B, Cao X-X, Yan H, Zhuang G-H. Ferroportin 1 and hephaestin expression in BeWo cell line with different iron treatment. Cell Biochem Funct [Internet]. 2012 [cited 2019 Oct 14];30:249–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22170436

21. Hallberg L, Rossander-Hultén L. Iron requirements in menstruating women. Am J Clin Nutr [Internet]. 1991 [cited 2019 Oct 14];54:1047–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1957820

22. Guo Y, Zhang N, Zhang D, Ren Q, Ganz T, Liu S, Nemeth E. Iron homeostasis in pregnancy and spontaneous abortion. Am J Hematol [Internet]. NIH Public Access; 2019 [cited 2019 Oct 14];94:184–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30394565

23. Whittaker PG, Lind T, Williams JG. Iron absorption during normal human pregnancy: a study using stable isotopes. Br J Nutr [Internet]. 1991 [cited 2019 Oct 17];65:457–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1878359

24. Rehu M, Punnonen K, Ostland V, Heinonen S, Westerman M, Pulikki K, Sankilampi U. Maternal serum hepcidin is low at term and independent of cord blood iron status. Eur J Haematol [Internet]. England; 2010 [cited 2019 Apr 5];85:345–52. Available from: http://doi.wiley.com/10.1111/j.1600-0609.2010.01479.x

25. Kulik-Rechberger B, Kościesza A, Szponar EEE, Domosud J, Kosciesza A, Szponar EEE, Domosud J, Kościesza A, Szponar EEE, Domosud J. Hepcidin and iron status in pregnant women and full-term newborns in first days of life. Ginekol Pol [Internet]. Poland; 2016 [cited 2019 Apr 5];87:288–92. Available from: http://www.journalssystem.com/gp/Hepcydyna-a-wybrane-wskazniki-gospodarki-zelazem-u-ciezarnych-kobiet-i-donoszonych-noworodkow-w-pierwszych-dniach-zycia,62202,0,2.html

26. Koenig MD, Tussing-Humphreys L, Day J, Cadwell B, Nemeth E. Hepcidin and iron homeostasis during pregnancy [Internet]. Nutrients Aug 4, 2014 p. 3062–83. Available
27. Hou Y, Zhang S, Wang L, Li J, Qu G, He J, Rong H, Ji H, Liu S. Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene [Internet]. 2012 [cited 2019 Oct 17];511:398–403. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23041085

28. Li X, Rhee DK, Malhotra R, Mayeur C, Hurst LA, Ager E, Shelton G, Kramer Y, McCulloh D, Keefe D, et al. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J Clin Invest [Internet]. 2015 [cited 2019 Oct 17];126:389–401. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26657863

29. Sangkhae V, Fisher AL, Wong S, Koenig MD, Tussing-Humphreys L, Chu A, Lelić M, Ganz T, Nemeth E. Effects of maternal iron status on placental and fetal iron homeostasis. J Clin Invest. 2020;

30. Widdowson EM, Spray CM. Chemical development in utero. Arch Dis Child [Internet]. BMJ Publishing Group; 1951 [cited 2019 Oct 14];26:205–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14857788

31. Fletcher J, Suter PE. The transport of iron by the human placenta. Clin Sci [Internet]. 1969 [cited 2019 Oct 15];36:209–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5772100

32. Awadallah SM, Abu-Elteen KH, Elkarmi AZ, Qaraein SH, Salem NM, Mubarak MS, S.M. A, K.H. A-E, A.Z. E, S.H. Q, et al. Maternal and Cord Blood Serum Levels of Zinc, Copper, and Iron in Healthy Pregnant Jordanian Women. J Trace Elem Exp Med [Internet]. S.M. Awadallah, Department of Medical Technology, Faculty of Allied Health Sciences, Hashemite University, P.O. Box 330077, Zarqa, 13133, Jordan. E-mail: sawad@index.com.jo: Wiley-Liss Inc. (111 River Street, Hoboken NJ 07030-5774, United States); 2004;17:1–8. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed8&NEWS=N&AN=38129758

33. Agrawal RMD, Tripathi AM, Agarwal KN, R.M.D. A, A.M. T. Cord blood haemoglobin,
iron and ferritin status in maternal anaemia. Acta Paediatr Scand [Internet]. Paediatr.
Haematol. Unit, Dep. Paediatr., Inst. Med. Sci., Banaras Hindu Univ., Varanasi
221005 India; 1983 [cited 2019 Apr 5];72:545–8. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/6624429

34. Lee HS, Kim MSH, Kim MSH, Kim YJ, Kim WY. Iron status and its association with
pregnancy outcome in Korean pregnant women. Eur J Clin Nutr [Internet]. England;
2006 [cited 2019 Apr 5];60:1130–5. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/16639418

35. Prema K. Predictive value of serum copper and zinc in normal and abnormal
pregnancy. Indian J Med Res [Internet]. 1980 [cited 2019 Oct 16];71:554–60.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/7390594

36. Rougereau A, Goré J, N’diaye M, Person O. Ferritin and iron status in Senegalese
women. Am J Clin Nutr [Internet]. 1982 [cited 2019 Oct 15];36:314–8. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/7102587

37. Singla PN, Chand S, Agarwal KN. Cord serum and placental tissue iron status in
maternal hypoferrremia. Am J Clin Nutr [Internet]. United States; 1979 [cited 2019 Oct
15];32:1462–5. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med1&NEWS=N&AN
=453061

38. Kocylowski R, Lewicka I, Grzesiak M, Gaj Z, Oszukowski PPP, von Kaisenberg C,
Suliburska J, Kocyłowski R, Lewicka I, Grzesiak M, et al. Evaluation of Mineral
Concentrations in Maternal Serum Before and After Birth and in Newborn Cord Blood
Postpartum-Preliminary Study. Biol Trace Elem Res [Internet]. United States; 2018
[cited 2019 Apr 5];182:217–23. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med15&NEWS=N&A
N=28762093

39. Milman N, Ibsen KK, Christensen JM. Serum Ferritin and Iron Status in Mothers and
Newborn Infants. Acta Obstet Gynecol Scand [Internet]. United States: John Wiley &
40. Lao TTT, Loong EPLP, Chin RKH, Lam CWWK, Lam YMM, T.T. L, E.P.L. L, R.K.H. C, C.W.K. L. Relationship between newborn and maternal iron status and haematological indices. Biol Neonate [Internet]. E.P.L. Loong, Dept Obstetrics/Gynaecology, Chinese Univ. of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, Hong Kong: S. Karger AG (Allschwilerstrasse 10, P.O. Box, Basel CH-4009, Switzerland); 1991 [cited 2019 Apr 5];60:303–7. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed4&NEWS=N&A N=22032430

41. Kelly AM, MacDonald DJ, McDougall AN. Observations on maternal and fetal ferritin concentrations at term. Br J Obstet Gynaecol [Internet]. 1978 [cited 2019 May 8];85:338–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/646968

42. Choi JW, Kim CS, Pai SH, J.W. C, C.S. K. Erythropoietic activity and soluble transferrin receptor level in neonates and maternal blood. Acta Paediatr [Internet]. Norway: Blackwell Publishing Ltd (9600 Garsington Road, Oxford OX4 2XG, United Kingdom); 2000;89:675–9. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN =10914961

43. Lee S, Guillet R, Cooper EM, Westerman M, Orlando M, Kent T, Pressman E, O’Brien KO. Prevalence of anemia and associations between neonatal iron status, hepcidin, and maternal iron status among neonates born to pregnant adolescents. Pediatr Res [Internet]. United States; 2016 [cited 2019 Apr 5];79:42–8. Available from: http://www.nature.com/articles/pr2015183

44. Batey R. Iron and Pregnancy. Br J Haematol [Internet]. 1978 [cited 2019 Aug 16];38:427–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/638089

45. Glasser S, Wright C, Heysssel R. Transfer of iron across the placenta and fetal membranes in the rat. Am J Physiol Content [Internet]. 1968 [cited 2019 Oct
46. Sturgeon P. Studies of iron requirements in infants and children. I. Normal values for serum iron, copper and free erythrocyte protoporphyrin. Pediatrics [Internet]. American Academy of Pediatrics; 1954 [cited 2016 Sep 12];13:107–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13133559

47. Wallenburg HC, van Eijk HG. Effect of oral iron supplementation during pregnancy on maternal and fetal iron status. J Perinat Med [Internet]. Germany; 1984 [cited 2019 Aug 16];12:7–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6726596

48. Ru Y, Pressman EK, Guillet R, Katzman PJ, Vermeylen F, O'Brien KO. Umbilical Cord Hepcidin Concentrations Are Positively Associated with the Variance in Iron Status among Multiple Birth Neonates. J Nutr [Internet]. Oxford University Press; 2018 [cited 2018 Dec 29];148:1716–22. Available from: https://academic.oup.com/jn/article/148/11/1716/5105880

49. Briana DD, Boutsikou T, Baka S, Boutsikou M, Stamati L, Hassiakos D, Gourgiotis D, Malamitsi-Puchner A. Perinatal role of hepcidin and iron homeostasis in full-term intrauterine growth-restricted infants. Eur J Haematol [Internet]. England: John Wiley & Sons, Ltd (10.1111); 2013 [cited 2019 Apr 5];90:37–44. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med9&NEWS=N&AN=23110713

50. Basu S, Kumar N, Srivastava R, Kumar A. Maternal and Cord Blood Hepcidin Concentrations in Severe Iron Deficiency Anemia. Pediatr Neonatol [Internet]. Singapore; 2016 [cited 2019 Apr 5];57:413–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S187595721600022X

51. Merhi ZO, Seifer DB, Weedon J, Adeyemi O, Holman S, Anastos K, Golub ET, Young M, Karim R, Greenblatt R, et al. Circulating vitamin D correlates with serum antimüllerian hormone levels in late-reproductive-aged women: Women’s Interagency HIV Study. Fertil Steril. 2012;98:228–34.

52. Dao MC, Sen S, Iyer C, Klebenov D, Meydani SN. Obesity during pregnancy and fetal
iron status: is Hepcidin the link? J Perinatol [Internet]. NIH Public Access; 2013 [cited 2019 Mar 30];33:177–81. Available from: http://www.nature.com/articles/jp201281

53. Puolakka J, Jänne O, Vihko R, J. P, O. J, Puolakka J, Janne O, Vihko R. Evaluation by serum ferritin assay of the influence of maternal iron stores on the iron status of newborns and infants. Acta Obstet Gynecol Scand Suppl [Internet]. Denmark, Denmark; 1980;95:53–6. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med2&NEWS=N&AN=6935912

54. Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, Siritomo, Sawadogo M, Kahn A, Vaulont S. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci [Internet]. National Academy of Sciences; 2002 [cited 2019 Mar 30];99:4596–601. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11930010

55. Van Santen S, Wiegerinck ET, Swinkels DW, de Mast Q, Luty AJF, Van der Ven AJAM, Wiegerinck ET, Van der Ven AJAM, Swinkels DW, S. VS, et al. Iron Homeostasis in Mother and Child during Placental Malaria Infection. Am J Trop Med Hyg [Internet]. United States: American Society of Tropical Medicine and Hygiene (111 Deer Lake Road, Suite 100, Deerfield, Illinois 60015, United States); 2011 [cited 2019 Mar 30];84:148–51. Available from: http://www.ajtmh.org/content/journals/10.4269/ajtmh.2011.10-0250

56. Garcia-Valdes L, Campoy C, Hayes H, Florido J, Rusanova I, Miranda MT, McArdle HJ, L. G-V, C. C, H. H, et al. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. Int J Obes [Internet]. England; 2015 [cited 2019 Apr 5];39:571–8. Available from: http://www.nature.com/articles/ijo20153

57. Parrow NL, Fleming RE. The selfishly selfless placenta [Internet]. Journal of Clinical Investigation American Society for Clinical Investigation; Feb 3, 2020 p. 590–2. Available from: https://doi.org/10.1172/JCI134272.
58. Santhanam U, Avila C, Romero R, Viguet H, Ida N, Sakurai S, Sehgal PB. Cytokines in normal and abnormal parturition: elevated amniotic fluid interleukin-6 levels in women with premature rupture of membranes associated with intrauterine infection. Cytokine [Internet]. 1991 [cited 2019 Oct 7];3:155–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1888885

59. Opsjøn S-LL, Wathen NC, Tingulstad S, Wiedswang G, Sundan A, Waage A, Austgulen R. Tumor necrosis factor, interleukin-1, and interleukin-6 in normal human pregnancy. Am J Obstet Gynecol [Internet]. 1993 [cited 2019 Oct 7];169:397–404. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8362955

60. Liechty KW, Koenig JM, Mitchell MD, Romero R, Christensen RD. Production of interleukin-6 by fetal and maternal cells in vivo during intraamniotic infection and in vitro after stimulation with interleukin. Pediatr Res. 1991;29:1–4.

61. Hillier SL, Witkin SS, Krohn MA, Watts DH, Kiviat NB, Eschenbach DA. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol. 1993;81:941–8.

62. Austgulen R, Lien E, Liabakk NB, Jacobsen G, Arntzen KJ. Increased levels of cytokines and cytokine activity modifiers in normal pregnancy. Eur J Obstet Gynecol Reprod Biol. 1994;57:149–55.

63. Cox SM, Casey ML, MacDonald PC. Accumulation of interleukin-1β and interleukin-6 in amniotic fluid: A sequela of labour at term and preterm. Human Reproduction Update. 1997. p. 517–27.

64. Christiaens I, Zaragoza DB, Guilbert L, Robertson SA, Mitchell BF, Olson DM. Inflammatory processes in preterm and term parturition. Journal of Reproductive Immunology. 2008. p. 50–7.

65. Keelan JA, Blumenstein M, Helliwell RJA, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition - A review. Placenta. W.B. Saunders Ltd; 2003;24.
66. Bowen JM, Chamley L, Mitchell MD, Keelan JA. Cytokines of the placenta and extra-placental membranes: Biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta. W.B. Saunders Ltd; 2002. p. 239–56.

67. El Maradny E, Kanayama N, Halim A, Maehara K, Terao T. Stretching of fetal membranes increases the concentration of interleukin-8 and collagenase activity. Am J Obstet Gynecol. Mosby Inc.; 1996;174:843–9.

68. Maehara K, Kanayama N, Maradny EE, Uezato T, Fujita M, Terao T. Mechanical stretching induces interleukin-8 gene expression in fetal membranes: a possible role for the initiation of human parturition. Eur J Obstet Gynecol Reprod Biol [Internet]. 1996 [cited 2019 Nov 19];70:191–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9119102

69. Sivarajasingam SP, Imami N, Johnson MR. Myometrial cytokines and their role in the onset of labour. Journal of Endocrinology. BioScientifica Ltd.; 2016. p. R101–19.

70. Pierce BT, Pierce LM, Wagner RK, Apodaca CC, Hume RF, Nielsen PE, Calhoun BC. Hypoperfusion causes increased production of interleukin 6 and tumor necrosis factor α in the isolated, dually perfused placental cotyledon. Am J Obstet Gynecol. 2000;183:863–7.

71. Chiesa C, Pellegrini G, Panero A, et al. Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur J Clin Invest [Internet]. 2003 [cited 2019 Nov 19];33:352–8. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L36461485

72. Saito S, Kasahara T, Kato Y, Ishihara Y, Ichijo M. Elevation of amniotic fluid interleukin 6 (IL-6), IL-8 and granulocyte colony stimulating factor (G-CSF) in term and preterm parturition. Cytokine [Internet]. 1993 [cited 2019 Oct 7];5:81–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7683506

73. Gotsch F, Romero R, Kusanovic JP, Mazaki-Tovi S, Pineles BL, Erez O, Espinoza J, Hassan SS. The fetal inflammatory response syndrome. Clinical Obstetrics and
74. Osman I, Young A, Ledingham MA, Thomson AJ, Jordan F, Greer IA, Norman JE. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Molecular Human Reproduction. 2003. p. 41–5.

75. Stallmach T, Hebisch G, Joller-Jemelka HL, Orban P, Schwaller J, Engelmann M. Cytokine production and visualized effects in the feto-maternal unit. Quantitative and topographic data on cytokines during intrauterine disease. Lab Invest [Internet]. 1995 [cited 2019 Oct 7];73:384–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7564271

76. Gyarmati B, Szabó E, Szalay B, Czuczy N, Toldi G, Cseh Á, Vásárhelyi B, Takáts Z. Serum maternal hepcidin levels 3 days after delivery are higher compared to those measured at parturition. J Obstet Gynaecol Res [Internet]. 2011 [cited 2019 Oct 14];37:1620–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21733041

77. Park KH, Sawada T, Kosuge T, Kita J, Shimoda M, Tomosugi N, Kubota K. Surgical Inflammation Induces Hepcidin Production after Abdominal Surgery. World J Surg [Internet]. 2012 [cited 2019 Oct 14];36:800–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22350482

78. Aaltonen R, Heikkinen T, Hakala K, Laine K, Alanen A. Transfer of Proinflammatory Cytokines Across Term Placenta. Obstet Gynecol [Internet]. 2005 [cited 2019 Oct 7];106:802–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16199639

79. Hoppe M, Hulthén L, Samuelson G. Is cord blood hepcidin influenced by the low-grade acute-phase response occurring during delivery? A small-scale longitudinal study. Journal of Maternal-Fetal and Neonatal Medicine. 2018;

80. Tabbah SM, Buhimschi CS, Rodewald-Millen K, Pierson CR, Bhandari V, Samuels P, Buhimschi IA, S.M. T, C.S. B, K. R-M, et al. Hepcidin, an Iron Regulatory Hormone of Innate Immunity, is Differentially Expressed in Premature Fetuses with Early-Onset Neonatal Sepsis. Am J Perinatol. 2018;
81. Ichinomiya K, Maruyama K, Inoue T, Koizumi A, Inoue F, Fukuda K, Yamazaki Y, Arakawa H, K. I, K. M, et al. Perinatal Factors Affecting Serum Hepcidin Levels in Low-Birth-Weight Infants. Neonatology [Internet]. Switzerland: S. Karger AG; 2017 [cited 2019 Apr 5];112:180–6. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN=28601871

82. Wu TW, Tabangin M, Kusano R, Ma Y, Ridsdale R, Akinbi H et al. The utility of serum hepcidin as a biomarker for late-onset neonatal sepsis. J Pediatr [Internet]. 2013 [cited 2019 Apr 5];162:67–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22796049

83. Lorenz L, Herbst J, Engel C, Peter A, Abele H, Poets CF, Westerman M, Franz AR. Gestational Age-Specific Reference Ranges of Hepcidin in Cord Blood. Neonatology [Internet]. Switzerland: Karger Publishers; 2014 [cited 2016 Sep 12];106:133–9. Available from: https://www.karger.com/Article/FullText/360072

84. Muller KF, Lorenz L, Poets CF, Westerman M, Franz AR, Müller KF, Lorenz L, Poets CF, Westerman M, Franz AR. Hepcidin concentrations in serum and urine correlate with iron homeostasis in preterm infants. J Pediatr [Internet]. United States: Elsevier; 2012 [cited 2019 Apr 5];160:949-53.e2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22284565

85. Cizmeci MN, Kara S, Kanburoglu MK, Simavli S, Duvan CI, Tatli MM, M.N. C, S. K, M.K. K, S. S, et al. Detection of cord blood hepcidin levels as a biomarker for early-onset neonatal sepsis. Med Hypotheses [Internet]. United States; 2014 [cited 2019 Apr 5];82:310–2. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med10&NEWS=N&AN=24424393

86. R Franz, G Steinbach, M Kron, F Poh A, Steinbach G, Kron M, Pohlandt F. Interleukin-8: a valuable tool to restrict antibiotic therapy in newborn infants. Acta Paediatr [Internet]. 2001 [cited 2019 Oct 17];90:1025–32. Available from:
87. Kroot JJC, Laarakkers CMM, Geurts-Moespot AJ, Grebenchtchikov N, Pickkers P, van Ede AE, Peters HPE, van Dongen-Lases E, Wetzels JFM, Sweep FCGJ, et al. Immunochemical and Mass-Spectrometry-Based Serum Hepcidin Assays for Iron Metabolism Disorders. Clin Chem [Internet]. 2010 [cited 2019 Oct 14];56:1570–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20739637

88. van der Vorm LN, Hendriks JCM, Laarakkers CM, Klaver S, Armitage AE, Bamberg A, Geurts-Moespot AJ, Girelli D, Herkert M, Itkonen O, et al. Toward Worldwide Hepcidin Assay Harmonization: Identification of a Commutable Secondary Reference Material. Clin Chem [Internet]. Clinical Chemistry; 2016 [cited 2019 Sep 20];62:993–1001. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27173010

89. Diepeveen LE, Laarakkers CMM, Martos G, Pawlak ME, Uğuz FF, Verberne KESA, van Swelm RPL, Klaver S, de Haan AFJ, Pitts KR, et al. Provisional standardization of hepcidin assays: creating a traceability chain with a primary reference material, candidate reference method and a commutable secondary reference material. Clin Chem Lab Med [Internet]. 2019 [cited 2019 Oct 14];57:864–72. Available from: http://www.degruyter.com/view/j/cclm.2019.57.issue-6/cclm-2018-0783/cclm-2018-0783.xml

90. U.S. Centers for Disease Control. National Report on Biochemical Indicators of Diet and Nutrition in the U.S. Population 1999-2002 - National Health and Nutriton Examination Survey [Internet]. [cited 2019 Oct 26]. Available from: https://www.cdc.gov/nutritionreport/99-02/pdf/nr_ch3.pdf

91. Radboudumc. Reference values [Internet]. [cited 2019 Oct 26]. Available from: http://www.hepcidinanalysis.com/provided-service/reference-values/

92. Balogh Á, Szabó M, Kelen D, Bokodi G, Prechtl J, Bösze S, Vásárhelyi B, Balogh A, Szabo M, Kelen D, et al. Prohepcidin levels during human perinatal adaptation. Pediatr Hematol Oncol [Internet]. England: Taylor & Francis; 2007 [cited 2019 May 10];24:361–8. Available from:
93. Frazer DM, Anderson GJ. Hepcidin compared with prohepcidin: An absorbing story. American Journal of Clinical Nutrition. 2009;89:475–6.

94. Słomka A, Korbal P, Piekus N, Zekanowska E, Słomka A, Korbal P, Piekus N, Zekanowska E, Słomka A, Korbal P, et al. The use of cluster and principal component analysis in the estimation of iron status in term newborns. J Matern Fetal Neonatal Med [Internet]. England; 2013 [cited 2019 Apr 5];26:482–6. Available from: http://www.tandfonline.com/doi/full/10.3109/14767058.2012.735999

95. Sasu BJ, Li H, Rose MJ, Arvedson TL, Doellgast G, Molineux G. Serum hepcidin but not prohepcidin may be an effective marker for anemia of inflammation (AI). Blood Cells Mol Dis [Internet]. 2010 [cited 2019 Oct 27];45:238–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20800515

96. Beirão I, Almeida S, Swinkels D, Costa PMP, Moreira L, Fonseca I, Freitas C, Cabrita A, Porto G. Low serum levels of prohepcidin, but not hepcidin-25, are related to anemia in familial amyloidosis TTR V30M. Blood Cells Mol Dis [Internet]. [cited 2019 Oct 27];41:175–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18544472

97. Young MF, Glahn RP, Ariza-Nieto M, Inglis J, Olbina G, Westerman M, O’Brien KO. Serum hepcidin is significantly associated with iron absorption from food and supplemental sources in healthy young women. Am J Clin Nutr. 2009;89:533–8.

98. WHO | Delayed umbilical cord clamping for improved maternal and infant health and nutrition outcomes. WHO. World Health Organization; 2018;

99. Prentice S, Jallow AT, Sinjanka E, Jallow MW, Sise EA, Kessler NJ, Wegmuller R, Cerami C, Prentice AM. Hepcidin mediates hypoferremia and reduces the growth potential of bacteria in the immediate postnatal period in human neonates. Sci Rep. Nature Publishing Group; 2019:9.

100. Förster-Waldl E, Sadeghi K, Tamandl D, Gerhold B, Hallwirth U, Rohrmeister K, Hayde M, Prusa AR, Herkner K, Boltz-Nitulescu G, et al. Monocyte toll-like receptor 4
expression and LPS-induced cytokine production increase during gestational aging.

Pediatr Res [Internet]. United States: Lippincott Williams and Wilkins (351 West Camden Street, Baltimore MD 21201-2436, United States); 2005 [cited 2019 Nov 21]:58:121–4. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=15879290

101. Macaulay S, Buchmann EJ, Dunger DB, Norris SA. Reliability and validity of last menstrual period for gestational age estimation in a low-to-middle-income setting. J Obstet Gynaecol Res [Internet]. 2019 [cited 2019 Nov 21];45:217–25. Available from:
http://doi.wiley.com/10.1111/jog.13801

102. Basu S, Kumar N, Srivastava R, Kumar A. Effect of Severe Maternal Iron Deficiency Anemia on Neonatal Platelet Indices. Indian J Pediatr [Internet]. India; 2015;82:1091–6. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med11&NEWS=N&AN=25980502

103. de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, Parkhill J, Charnock-Jones DS, Smith GCS. Human placenta has no microbiome but can contain potential pathogens. Nature [Internet]. Nature Publishing Group; 2019 [cited 2019 Aug 16];572:329–34. Available from: http://www.nature.com/articles/s41586-019-1451-5

104. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol [Internet]. BioMed Central; 2016 [cited 2019 Aug 16];16:86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27475754

105. Armitage AE, Agbla SC, Betts M, Sise EA, Jallow MW, Sambou E, Darboe B, Worwui A, Weinstock GM, Antonio M, et al. Rapid growth is a dominant predictor of hepcidin suppression and declining ferritin in Gambian infants. Haematologica [Internet]. 2019 [cited 2019 Apr 5];104:haematol.2018.210146. Available from:
106. Cao C, Pressman EK, Cooper EM, Guillet R, Westerman M, O’Brien KO. Placental heme receptor LRP1 correlates with the heme exporter FLVCR1 and neonatal iron status. REPRODUCTION [Internet]. 2014 [cited 2019 Mar 30];148:295–302. Available from: https://rep.bioscientifica.com/view/journals/rep/148/3/295.xml

107. Cao C, Pressman EK, Cooper EM, Guillet R, Westerman M, O’Brien KO, O’Brien KO, O’Brien KO, O’Brien KO, et al. Prepregnancy Body Mass Index and Gestational Weight Gain Have No Negative Impact on Maternal or Neonatal Iron Status. Reprod Sci [Internet]. United States: SAGE Publications Inc.; 2016 [cited 2019 Mar 30];23:613–22. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med12&NEWS=N&AN=26423600

108. Delaney KM, Guillet R, Fleming RE, Ru Y, Pressman EK, Vermeulen F, Nemeth E, O’Brien KO, K.M. D, R. G, et al. Umbilical cord serum ferritin concentration is inversely associated with umbilical cord hemoglobin in neonates born to adolescents carrying singletons and women carrying multiples. J Nutr [Internet]. K.O. O’Brien, Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States. E-mail: koo4@cornell.edu: Oxford University Press; 2019 [cited 2019 Apr 5];149:406–15. Available from: http://jn.nutrition.org

109. Dosch NC, Guslits EF, Weber MB, Murray SE, Ha B, Coe CL, Auger AP, Kling PJ. Maternal Obesity Affects Inflammatory and Iron Indices in Umbilical Cord Blood. J Pediatr [Internet]. United States: Mosby Inc.; 2016 [cited 2019 Mar 30];172:20–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022347616001852

110. Ru Y, Pressman EK, Guillet R, Katzman PJ, Bacak SJ, O’Brien KO, O’Brien KO, O’Brien KO. Predictors of anemia and iron status at birth in neonates born to women carrying multiple fetuses. Pediatr Res [Internet]. 2018 [cited 2019 Apr 5];84:199–204. Available from: http://www.nature.com/articles/s41390-018-0044-6

111. Young MF, Griffin I, Pressman E, McIntyre AW, Cooper E, McNanley T, Harris ZL,
Westerman M, O’Brien KO. Maternal Hepcidin Is Associated with Placental Transfer of Iron Derived from Dietary Heme and Nonheme Sources. J Nutr [Internet]. United States; 2012 [cited 2019 Mar 30];142:33–9. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=22113871

12. Uijterschout L, Domellöf M, Berglund SK, Abbink M, Vos P, Rövekamp L, Boersma B, Lagerqvist C, Hudig C, van Gouwdeber JB, et al. Serum hepcidin in infants born after 32 to 37 wk of gestational age. Pediatr Res [Internet]. 2016 [cited 2019 Apr 5];79:608–13. Available from: http://www.nature.com/articles/pr2015258

13. Al-Tawil MM, Abdel-Aal MR, Kaddah MA. A randomized controlled trial on delayed cord clamping and iron status at 3-5 months in term neonates held at the level of maternal pelvis. J Neonatal Perinatal Med. 2012;

14. Ali FN, Josefson J, Mendez AJ, Mestan K, Wolf M. Cord Blood Ferritin and Fibroblast Growth Factor-23 Levels in Neonates. J Clin Endocrinol Metab [Internet]. United States; 2016 [cited 2019 Apr 5];101:1673–9. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med12&NEWS=N&AN=26859104

15. Andersson O, Hellström-Westas L, Andersson D, Domellof M, Hellström-Westas L, Andersson D, et al. Effect of delayed versus early umbilical cord clamping on neonatal outcomes and iron status at 4 months: A randomised controlled trial. BMJ [Internet]. 2011 [cited 2019 Apr 5];343:d7157–d7157. Available from: http://www.bmj.com/cgi/doi/10.1136/bmj.d7157

16. El-Farrash RA, Ismail EAR, Nada AS. Cord blood iron profile and breast milk micronutrients in maternal iron deficiency anemia. Pediatr Blood Cancer [Internet]. United States; 2012 [cited 2019 Apr 5];58:233–8. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=21548016

17. Ervasti M, Kotisaari S, Sankilampi U, Heinonen S, Punnonen K. The relationship
between red blood cell and reticulocyte indices and serum markers of iron status in the cord blood of newborns. Clin Chem Lab Med [Internet]. Germany: Walter de Gruyter and Co. (Genthiner Strasse 13, Berlin D-10785, Germany); 2007;45:1000–3. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=17579565

118. Hågå P, Haga P, Hågå P. Plasma ferritin concentrations in preterm infants in cord blood and during the early anaemia of prematurity. Acta Paediatr Scand [Internet]. Sweden, Sweden; 1980 [cited 2019 May 17];69:637–41. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med2&NEWS=N&AN=7234384

119. Kalem M.N, Kalem Z, Akgun N, Yuce E, Aktas H. Investigation of possible maternal and fetal factors which affect umbilical coiling index. J Matern Neonatal Med [Internet]. M. Namli Kalem, Obstetrics and Gynecology, Liv Hospital, Ankara, Turkey. E-mail: muberranamli@hotmail.com: Taylor and Francis Ltd; 2019;32:954–60. Available from: https://www.tandfonline.com/loi/ijmf20

120. Kitajima J, Ohga S, Kinjo T, Ochiai M, Takahata Y, Honjo S, Hara T. Serum prohepcidin concentrations at birth and 1 month after birth in premature infants. Pediatr Blood Cancer [Internet]. United States; 2011 [cited 2019 Apr 5];56:267–72. Available from: http://doi.wiley.com/10.1002/pbc.22773

121. Kleven KJ, Blohowiak SE, Kling PJ, K.J. K, S.E. B. Zinc protoporphyrin/heme in large-for-gestation newborns. Neonatology [Internet]. Switzerland: S. Karger AG (Allschwilerstrasse 10, P.O. Box, Basel CH-4009, Switzerland); 2007;92:91–5. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&NEWS=N&AN=47230734

122. Mashako L, Preziosi P, Nsibu C, Galan P, Kapongo C, Potier de Courcy G, Nsaka T, Hercberg S, L. M, P. P, et al. Iron and folate status in Zairian mothers and their...
newborns. Ann Nutr Metab [Internet]. Switzerland, Switzerland: S. Karger AG (Allschwilerstrasse 10, P.O. Box, Basel CH-4009, Switzerland); 1991;35:309–14. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med3&NEWS=N&AN=1781669

123. Rios E, Lipschitz DA, Cook JD, Smith NJ. Relationship of Maternal and Infant Iron Stores as Assessed by Determination of Plasma Ferritin. Pediatrics [Internet]. United States; 1975 [cited 2019 May 17];55:694–9. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med1&NEWS=N&AN=1128991

124. Yamada R, Leone CR. Hematological and iron content evolution in exclusively breastfed late-preterm newborns. Clinics [Internet]. 2014 [cited 2019 Apr 5];69:792–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286666/?report=classic

125. NHANES. National Health and Nutrition Examination Survey, 1999-2002 | Iron-Status Indictors. 2003;

126. Celik HT, Yurdakok M, Korkmaz AA, Yigit S, et al. Serum prohepcidin levels in premature newborns with oxygen radical diseases. J Matern Neonatal Med [Internet]. England; 2015 [cited 2019 Apr 5];28:2228–33. Available from: http://www.tandfonline.com/doi/full/10.3109/14767058.2014.983064

127. Lackmann GM, Schnieder C, Bohner J. Gestational Age-Dependent Reference Values for Iron and Selected Proteins of Iron Metabolism in Serum of Premature Human Neonates. Neonatology. Switzerland; 1998;74:208–13.

128. Ahlsten G, Tuvemo T, Gebre-Medhin M. Selected trace elements and proteins in serum of apparently healthy newborn infants of mothers who smoked during pregnancy. Acta Paediatr Scand [Internet]. Sweden: Scandinavian University Press (P.O. Box 2959, Toyen, Oslo N-0608, Norway); 1989;78:671–6. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed4&NEWS=N&A
129. Amarnath UM, Ophoven JJ, Mill MM, Murphy EL, Georgieff MK, et al. The relationship between decreased iron stores, serum iron and neonatal hypoglycemia in large-for-date newborn infants. Acta Paediatr Scand. 1989;

130. Bastida S, Vaquero MP, Veldhuizen M, Sanchez-Muniz FJ. Selected trace elements and minerals in cord blood: association with lipids and lipoproteins at birth. Acta Paediatr [Internet]. Norway; 2000;89:1201–6. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE(reference&D=med4&NEWS=N&AN=11083376

131. Bermudez L, Garcia-Vicent C, Lopez J, Torro MI, Lurbe E, et al. Assessment of ten trace elements in umbilical cord blood and maternal blood: association with birth weight. J Transl Med [Internet]. England: BioMed Central Ltd. (E-mail: info@biomedcentral.com); 2015 [cited 2019 Apr 8];13:291. Available from: http://www.translational-medicine.com/content/13/1/291

132. Busarira MO, Alasbaly E, Mbark MS. Effect of Delayed versus Early Cord Clamping on Neonatal Outcomes and Iron Status at 4 Months. Open J Obstet Gynecol. 2019;

133. Chong SK, Thompson MJ, Shaw JE, Barltrop D. Free erythrocyte protoporphyrin as an index of perinatal iron status. J Pediatr Gastroenterol Nutr [Internet]. United States; 1984;3:224–9. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE(reference&D=med2&NEWS=N&AN=6707842

134. Ertekin AA, Nihan Ozdemir N, Sahinoglu Z, Gursoy T, Erbil N, Kaya E. Early versus delayed cord clamping: Effects on hematologic status in term infants. J Matern neonatal Med. 2015;

135. Gruccio. Biochemical Profiling Study in Umbilical Cord Blood as Predictors of Neonatal Damage. Int J Clin Pediatr. 2014;

136. Mezdoud A, Agli A-N, Oulamara H. [Relationships between umbilical vein and mother iron status]. Nutr Hosp [Internet]. Spain; 2017 [cited 2019 Apr 5];34:562–7. Available
137. Mukhopadhyay K, Yadav RK, Kishore SS, Garewal G, Jain V, Narang A. Iron status at birth and at 4 weeks in preterm-SGA infants in comparison with preterm and term-AGA infants. J Matern Fetal Neonatal Med [Internet]. England: Taylor & Francis; 2012 [cited 2019 Apr 5];25:1474–8. Available from: http://www.tandfonline.com/doi/full/10.3109/14767058.2011.643328

138. Murata K, Toyoda N, Ichio T, Ida M, Sugiyama Y, et al. Cord transferrin and ferritin values for erythropoiesis in newborn infants of diabetic mothers. Endocrinol Jpn [Internet]. Department of Obstetrics and Gynecology, Mie University School of Medicine, 2-174 Edobashi, Tsu Japan: Japan Endocrine Society (Yoshida Kawaramachi 14, Sayko-ku, Kyoto-shi, Kyoto 606-8305, Japan); 1989;36:827–32. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed4&NEWS=N&AN=20174886

139. Oliveira F de CC, Assis KF, Martins MC, Prado MRMC do, Ribeiro AQ, Sant’Ana LF da R, Priore SE, Franceschini S do CC. [Timing of clamping and factors associated with iron stores in full-term newborns]. Tempo clampeamento e fatores Assoc a Reserv ferro neonatos a termo [Internet]. Brazil; 2014;48:10–8. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med11&NEWS=N&AN=24789632

140. Ozkiraz S, Kilicdag H, Gokmen Z, Ecevit A, Tarcan A, Ozbek N. Serum prohepcidin levels and iron parameters in term small-for-gestational-age newborns. J Matern Fetal Neonatal Med [Internet]. England; 2011 [cited 2019 Apr 5];24:1437–9. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med7&NEWS=N&AN=21627553

141. Patidar S, Shrivastava J, Dwivedi R. Assessment of iron status and red cell parameters in healthy full term small for gestational age neonates at birth. J Clin Neonatol [Internet]. Medknow; 2013 [cited 2019 Apr 5];2:121. Available from:
142. Sweet DG, Savage GA, Tubman R, Lappi TRJ, Halliday HL. Cord blood transferrin receptors to assess fetal iron status. Arch Dis Child Fetal Neonatal Ed [Internet]. England: BMJ Publishing Group (Tavistock Square, London WC1H 9JR, United Kingdom); 2001 [cited 2019 Apr 5];85:F46-8. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed7&NEWS=N&AN=32634826

143. Szabo M, Vasarhelyi B, Balla G, Szabo T, Machay T, Tulassay T, Szabó M, Vásárhelyi B, Balla G, Szabó T, et al. Acute postnatal increase of extracellular antioxidant defence of neonates: The role of iron metabolism. Acta Paediatr [Internet]. Norway, Norway: Blackwell Publishing Ltd (9600 Garsington Road, Oxford OX4 2XG, United Kingdom); 2001 [cited 2016 Sep 12];90:1167–70. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11697429

144. Tiker F, Celik B, Tarcan A, Kilicdag H, Özbek N, Gurakan B, Ozbek N, Gurakan B, Özbek N, Gurakan B. Serum pro-hepcidin levels and relationships with iron parameters in healthy preterm and term newborns. Pediatr Hematol Oncol [Internet]. 2006 [cited 2019 Apr 5];23:293–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16621770

145. Tsuzuki S, Morimoto N, Hosokawa S, Matsushita T. Associations of Maternal and Neonatal Serum Trace Element Concentrations with Neonatal Birth Weight. Denning PW, editor. PLoS One [Internet]. United States; 2013 [cited 2019 Apr 5];8:e75627. Available from: https://dx.plos.org/10.1371/journal.pone.0075627

146. Yapakçi E, Tarcan A, Çelik B, Özbek N, Gürakan B, et al. Serum pro-hepcidin levels in term and preterm newborns with sepsis. Pediatr Int [Internet]. Australia; 2009 [cited 2016 Sep 12];51:289–92. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med7&NEWS=N&AN=19405934
147. Schiza V, Giapros V, Pantou K, Theocharis P, Challa A, Andronikou S. Serum transferrin receptor, ferritin, and reticulocyte maturity indices during the first year of life in “large” preterm infants. Eur J Haematol [Internet]. England; 2007 [cited 2019 Apr 5];79:439–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17916083

148. Lipiński P, Styś A, Starzyński RR. Molecular insights into the regulation of iron metabolism during the prenatal and early postnatal periods. Cell Mol Life Sci [Internet]. Switzerland: SP Birkhäuser Verlag Basel; 2013 [cited 2016 Sep 12];70:23–38. Available from: http://link.springer.com/10.1007/s00018-012-1018-1

Funding:
The research was undertaken with a research grant provided by the Bill & Melinda Gates Foundation (OPP1152353). The funding agency had no role in the design of this state-of-the-art review, and did not have any in the collection, management, analyses or interpretation of the data nor in the preparation, review, or approval of the manuscript. The Nutrition Theme of the MRC Unit The Gambia at LSHTM are supported by core funding MCA760-5QX00 to the MRC Unit The Gambia/MRC International Nutrition Group by the UK MRC and the UK Department for the International Development (DFID) under the MRC/DFID Concordat agreement.

Authors’ Contributions:
J.H.C., A.M.P. and C.C. designed the research; J.H.C. conducted the search strategy and analyzed data; J.H.C., A.M.P. and C.C. wrote the paper. All authors reviewed the final manuscript prior to submission.

Consent for Publication:
Not applicable.
Parameter	Database	Search Strategy
Hepcidin	Ovid Medline	(Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR "umbilical cord".mp.) AND (hepcidin OR prohepcidin.mp.)
	PubMed	(Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR "umbilical cord") AND (hepcidin OR prohepcidin)
TSAT	Ovid Medline	(Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR "umbilical cord".mp.) AND ("transferrin saturation" OR TSAT.mp.)
	PubMed	(Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR "umbilical cord") AND ("transferrin saturation" OR TSAT)
Serum Iron	Ovid Medline	(Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR "umbilical cord".mp.) AND ("serum iron" OR iron.mp.)
	PubMed	(Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR "umbilical cord") AND ("serum iron" OR iron)

Searches conducted via PubMed and Ovid Medline.
Table 2: Hepcidin concentration (ng/mL) in full-term newborns over the neonatal period.

Publication	Refere ence	Ye ar	Locatio n	n	Test Type	Hemoglobin (g/dL)*	Hepcidin (ng/mL)	Standardized Hepcidin (ng/mL)*	
						Mean (SD or 95% CI)	Median (IQR)	Mean (SD 95% CI)	Mean (SD or 95% CI)
Ambrus et al. (106)	(106)	2016	Greece	10	ELISA (DRG)	17.6 (±2.0)	17.65 (4.75- 69.2)	24.1 (3.1-48.2)	
Ambrus et al. (54)	(107)	2016	Poland	98	ELISA (Intrinsic)	14.8 (±2.8)	18.5 (7.0-36.8)	38.3 (8.9-103.2)	
Dehaye et al. (106)	(108)	2016	USA	7	ELISA (Bachem)	15.3 (±1.3)	14.6 (4.1-41.6)	29.2 (7.6-95.2)	
Doshi et al. (106)	(109)	2016	USA	47	ELISA (DRG)	14.6 (±1.8)	18.5 (5.4-36.9)	21.8 (5.4-92.2)	
Garcia-Valdez et al.	(110)	2016	Spain	52	ELISA (DRG)	15.9 (±2.1)	16.0 (4.1-69.5)	21.8 (5.4-92.2)	
Hepper et al. (111)	(111)	2016	Sweden	15	ELISA (Bachem)	38.5 (±19.8)	38.5 (±19.8)	38.5 (±19.8)	
Kato-Reichberger et al.	(112)	2016	Poland	44	ELISA (DRG)	46.6 (±8.3)	47.2 (18.3-101.7)	67.9 (28.3-140.5)	
Lee et al.	(113)	2016	USA	10	ELISA (Intrinsic)	14.9 (±2.8)	14.9 (±2.8)	31.2 (±9.0)	
Lorenz et al. (114)	(114)	2016	Germany	10	ELISA (Bachem)	15.9 (±2.0)	15.9 (±2.0)	38.3 (±9.0)	
Prudent et al. (115)	(115)	2016	Sweden	81	ELISA (Bachem)	32.9 (±4.7)	32.9 (±4.7)	32.9 (±4.7)	
Rentu et al. (116)	(116)	2016	Finland	11	ELISA (Intrinsic)	33.0 (8.8- 52.2)	33.0 (8.8- 52.2)	33.0 (8.8- 52.2)	
Ru et al.	(117)	2016	Poland	50	ELISA (Bachem)	17.8 (±1.7)	17.8 (±1.7)	17.8 (±1.7)	
Sironius et al. (118)	(118)	2016	Poland	54	ELISA (DRG)	16.6 (±3.1)	16.6 (±3.1)	16.6 (±3.1)	
Young et al. (119)	(119)	2016	USA	19	ELISA (Intrinsic)	13.4 (±2.0)	13.4 (±2.0)	13.4 (±2.0)	

ELISA, enzyme-linked immunosorbent assay; CI, confidence interval; IQR, interquartile range.

- Not determined as not applicable to the calculation of weighted mean hepcidin or standardized hepcidin values.

1Values from Basu et al (102) were not standardized because the study used the Hangzhou Eastbiopharm ELISA, which was not part of the Van der Vorm et al. analysis. (88)

2Extracted standard deviations were converted to 95% confidence intervals.
3Median (IQR or 95% CI) were not included in weighted means.

4Reference ranges for adults (male and female) and infants are displayed for comparison. (91)

5Hepcidin standardization was conducted using the linear equations documented in Supplementary Table 1.

6Hemoglobin concentrations are provided to aid interpretation of neonatal iron status.

Table 3: Hepcidin concentration (ng/mL) in preterm newborns over the neonatal period.

Publication	Reference	Year	Location	n	Test Type	Type of Sample	Study Group	Mean (SD or 95% CI)	Median (IQR or 95% CI)	Weighted Mean (Cord)	Weighted Mean (Venous)
Delaney et al.	(114)	2019	USA	6	ELISA	Cord (Serum)	1	15.3 (±2.3)	15.78 (13.6-14)	13.1	13.1
Ichinomiya et al.	(81)	2017	Japan	9	Mass Spec	Cord (Serum)	1	7.3 (2.85-16.36)	26.9 (13.5-63.1)	-	-
Lorenz et al.	(87)	2014	Germany	4	ELISA	Cord (Plasma)	24-29 wks	16.8 (15.1-18.0)	26.9 (13.5-63.1)	14.7 (8.0-23.7)	14.7 (8.0-23.7)
				1	ELISA	Cord (Plasma)	30-36 wks	16.1 (±2.2)	48.5 (24.7-74.5)	-	-
Ru et al.	(110)	2018	USA	9	ELISA	Cord (Serum)	1	15.1 (±0.3)	12.1 (3.5-15.7)	7.8 (5.9-10.1)	114.8
Uijtersout et al.	(112)	2016	Netherlands	16	ELISA	Venous - 168 hours (Serum)	1	16.5 (12.0-21.3)	69.6 (14.6-180.1)	114.8	-
Male Adultsa	(91)							14.4 (2.9)	44.4	114.8	-
Female Adultsa	(91)							10.6 (1.4-40)	44.4	114.8	-
Infantsa	(91)							11.9 (3.3-37.7)	44.4	114.8	-

ELISA, enzyme-linked immunosorbert assay; CI, confidence interval; IQR, interquartile range; Mass Spec, mass spectrometry.

- Not determined as not applicable to the calculation of weighted mean hepcidin or standardized hepcidin values.

* Ichinomiya et al.(81) was not standardized because the study used a mass spectrometry...
based method that was not part of the van der Vorm et al. analysis.\(^{(88)}\)

\(^1\)Extracted standard deviations were converted to 95% confidence intervals.

\(^2\)Median (IQR or 95% CI) were not included in weighted means.

\(^3\)Reference ranges for adults (male and female) and infants are displayed for comparison.\(^{(91)}\)

\(^4\)Hepcidin standardization was conducted using the linear equations documented in Supplementary Table 1.

\(^5\)Hemoglobin concentrations are provided to aid interpretation of neonatal iron status.

Table 4: Transferrin saturation (%) in full-term newborns over the neonatal period.

Publication	Reference	Year	Location	n	Type of Sample	Mean (SD or 95% CI)	Median (IQR or 95% CI or Range)	Mean (95% CI)\(^1\)	Median (IQR or 95% CI or Range)\(^2\)
Al-Tawil et al.	(113)	2012	Egypt	9	Venous - 24 hours	19.6 (±3.8)	19.6 (±3.8)	25 (24.6-25.4)	19.5 (18.9-20.1)
Ali et al.	(114)	2016	USA	6	Cord	15.95 (13.4-20.7)	15.95 (13.4-20.7)	55.5 (52.4-57.6)	15.95 (13.4-20.7)
Anderson et al.	(115)	2007	Sweden	10	Venous - 48 hours	18.9 (±1.7)	18.9 (±1.7)	23 (21.9-24.1)	18.9 (±1.7)
Balogh et al.	(92)	2007	Hungary	9	Cord	15.95 (13.4-20.7)	15.95 (13.4-20.7)	60.5 (14-90)	15.95 (13.4-20.7)
Basu et al.	(102)	2016	India	15	Cord	16.3 (±1.6)	16.3 (±1.6)	61.6 (54.7-68.9)	16.3 (±1.6)
El-Farrash et al.	(116)	2012	Egypt	3	Cord	17.7 (±1.4)	17.7 (±1.4)	49.5 (42.4-56.5)	17.7 (±1.4)
Ervasti et al.	(117)	2007	Finland	9	Cord	15.9 (±1.5)	15.9 (±1.5)	55 (52.4-57.6)	15.9 (±1.5)
Haga et al.	(118)	2007	Norway	9	Cord	15.9 (±1.5)	15.9 (±1.5)	55 (52.4-57.6)	15.9 (±1.5)
Kalem et al.	(119)	2019	Turkey	8	Cord	15.9 (±1.5)	15.9 (±1.5)	55.8 (54.8-56.9)	15.9 (±1.5)
Kelly et al.	(41)	1978	Scotland	1	Cord	15.9 (±1.5)	15.9 (±1.5)	58.8 (55.6-62)	15.9 (±1.5)
Kitajima et al.	(120)	2011	Japan	8	Venous - 720 hours	15.1 (8.3-27.5)	15.1 (8.3-27.5)	44.2 (32.1-57.8)	15.1 (8.3-27.5)
Kleven et al.	(121)	2007	USA	2	Cord	15.7 (±1.0)	15.7 (±1.0)	42 (32.4-51.6)	15.7 (±1.0)
Mashako et al.	(122)	1919	DRC	1	Cord	15.7 (±1.0)	15.7 (±1.0)	42 (32.4-51.6)	15.7 (±1.0)
Milman et al.	(39)	1987	Denmark	7	Cord	16.1 (14.3-18.2)	16.1 (14.3-18.2)	48 (32-71)	16.1 (14.3-18.2)
Study	Year	Country	Area	Age	Sample Size	Cord (Mean ± SD)	Venous (Mean ± SD)	Reference Ranges	
------------------------	------	---------	----------	-------	-------------	------------------	-------------------	------------------	
Prentice et al.	1999	The Gambia				17.6 (17.1-18.2)	19.2 (18.3-20.0)	21.8-23.2	
Puolakka et al.	1980	Finland				15.1 (±1.2)	16.1 (±1.5)	15.1-16.1	
Rehu et al.	2010	Finland				16.1 (±1.5)	16.0 (±1.8)	15.5-16.5	
Rois et al.	1975	USA				16.1 (±1.5)	16.0 (±1.8)	15.5-16.5	
Slomka et al.	2013	Poland				16.1 (±1.5)	16.0 (±1.8)	15.5-16.5	
Yamada et al.	2014	Brazil				16.0 (±1.8)	16.0 (±1.8)	15.5-16.5	

Weighted Mean (Cord):

- Adults: 23.5 (12-38.8)
- Infants: 39.8 (44.9) (19.4-32.9)

TSAT; transferrin saturation; CI, confidence interval; IQR, interquartile range.

- Not determined as not applicable to the calculation of weighted mean hepcidin or standardized hepcidin values.

1. Extracted standard deviations were converted to 95% confidence intervals.

2. Median (IQR or 95% CI) were not included in weighted means.

3. Reference ranges for adults and infants are taken from the National Health and Nutrition Examination Survey, 1999–2000.(125)

4. Hemoglobin concentrations are provided to aid interpretation of neonatal iron status.
Table 5: Transferrin saturation (%) in preterm newborns over the neonatal period.

Publication	Reference	Ye	Location	n	Type of Sample	Study Group	Mean (SD or 95% CI)	Median (IQR or 95% CI or Range)	Weighted Mean (Cord)	Weighted Mean (Venous)
Celik et al.	(126)	20	Turkey	4	Venous - 648 hours	AGA Group	13.4 (±4.0)	46.5 (41.2-51.8)	36.5 (8.2-32.9)	23.5 (12.6-36.8)
Haga et al.	(118)	19	Norway	2	Cord	SGA Group	48 (39.8-56.2)	41 (23.4-58.6)		
Ichinomiya et al.	(81)	20	Japan	3	Cord		87.2 (68.3-100)			
Kitajima et al.	(120)	20	Japan	1	Cord		64.3 (15.8-88.9)			
Lackmann et al.	(127)	19	Germany	1	Venous - <1 hour	<32 wks	39 (5-83)			
				2	Venous - <1 hour	33-34 wks	36 (7-87)			
				4	Venous - <1 hour	35-36 wks	31 (13-68)			
Yamaeda et al.	(124)	20	Brazil	1	Cord	15.7 (±1.8)	24.8 (18.5-31.1)			
				2	Venous - 720 hours	10.8 (±1.3)	44.1 (37.3-50.9)			

Mean (95% CI)	Median (IQR or 95% CI or Range)
	36.5 (8.2-32.9)

| Reference ranges for adults and infants are taken from the National Health and Nutrition Examination Survey, 1999–2000. (125) |

- Not determined as not applicable to the calculation of weighted mean hepcidin or standardized hepcidin values.

1 Extracted standard deviations were converted to 95% confidence intervals.

2 Medians (IQR or 95% CI) were not included in weighted means.

3 Reference ranges for adults and infants are taken from the National Health and Nutrition Examination Survey, 1999–2000. (125)

4 Hemoglobin concentrations are provided to aid interpretation of neonatal iron status.

a AGA group of Haga et al. (1980) can be identified in Supplementary Figure 2B.

b SGA group of Haga et al. (1980) can be identified in Supplementary Figure 2B.
Table 6: Serum iron concentration (μmol/L) in full-term newborns over the neonatal period.

Publication	Reference Year	Country	Sample Type	Mean (95% CI)	Median (IQR or Range)
Ahlsen et al.	(128) 1989	Sweden	Cord	38 (34.9-41.1)	
Ali et al.	(114) 2016	USA	Cord	26.8 (24.4-29.2)	
Amarnath et al.	(129) 1989	USA	Cord	24.1 (21-27.2)	
Anderson et al.	(115) 2011	Sweden	Venous - 48 hours	18.9 (18.7)	
Armitage et al. (VA)	(105)	The Gambia	Cord	13.7 (12.4-14.6)	18.8 (15.4-22.3)
Armitage et al. (VPM)	(105)	The Gambia	Cord	16.0 (12.7-18.7)	
Awadallah et al.	(32) 2004	Jordan	Cord	20.7 (20.1-21.3)	
Balogh et al.	(92) 2007	Hungary	Cord	15.95 (13.4-20.7)	25.5 (8-43)
Bastida et al.	(130) 2000	Spain	Cord	41.5 (38.3-44.7)	
Basu et al.	(50) 2016	India	Cord	23.8 (22.2-25.4)	
Basu et al.	(102) 2015	India	Cord	26.5 (25.3-27.5)	
Bermudez et al.	(131) 2015	Spain	Cord	6.26 (5.37-7.15)	
Briana et al.	(49) 2013	Greece	Cord	24.14 (22.4-25.9)	
Busariri et al.	(132) 2009	Libya	Cord	23.69 (23.5-23.9)	
Cao et al.	(107) 2016	USA	Cord	39.73 (35-44.4)	
Chong et al.	(133) 1984	UK	Cord	41.1 (29.6-52.6)	
Delaney et al.	(114) 2019	USA	Cord	40.8 (37.3-44.3)	
El-Farrash et al.	(116) 2012	Egypt	Cord	26.29 (25.6-31)	
Ertikin et al.	(134) 2015	Turkey	Cord	26.1 (24.1-28.1)	
Ervasli et al.	(117) 2007	Finland	Cord	27.4 (26.9-28.5)	
Giucio et al.	(135) 2014	Argentina	Cord	27.03 (25.7-28.4)	
Haga et al.	(118) 1980	Norway	Cord	27.1 (24.2-30.0)	
Kelly et al.	(41) 1978	Scotland	Cord	27.0 (25.8-28.4)	
Kleven et al.	(121) 2007	USA	Cord	44.1 (32.2-56)	
Korylowski et al.	(38) 2018	Poland	Cord	35.1 (33.2-37)	
Lao et al.	(40) 1991	Hong Kong	Cord	35.8 (32-38.9)	
Lee et al.	(34) 2006	South Korea	Cord	31.3 (28.4-34.2)	
Lee et al.	(43) 2016	USA	Cord	35.4 (32.9-32)	
Meddoud et al.	(136) 2017	Algeria	Cord	20.1 (19.1-21.3)	
Milman et al.	(39) 1987	Denmark	Cord	16.1 (14.3-18.2)	28 (19-39)
Muhopadhyay et al.	(137) 2011	India	Cord	29 (25.8-32.2)	
Murata et al.	(138) 1989	Japan	Cord	28.5 (26.7-30.3)	
Oliveria et al.	(139) 2014	Brazil	Cord	24.6 (23.5-25.7)	
Ozkiran et al.	(140) 2011	Turkey	Venous - 216 hours (96-336)	14.0 (±1.3)	16.4 (13.8-19)

Type of Sample: Venous - 39 hours (18-114), Venous - 120 hours (19-31), Cord.
Patidar et al. (141) 2013 India 50 Venous - 8 hours (1-23) 15.0 (±2.0) 19.4 (17.2-21.6)
Prentice et al. (99) 2019 The Gambia 81 Cord 14.4 (13.8-14.9) 24.7 (22.5-26.9)
Venous - 6 hours (2-11) 17.6 (17.1-18.2) 13.6 (12.0-15.2)
Venous - 29 hours (26-34) 19.2 (18.3-20.0) 11.6 (10.1-13.1)
Venous - 77 hours (74-80) 17.9 (17.0-18.7) 14.5 (13.1-16.0)
Puolakka et al. (53) 1980 Finland 47 Cord 15.1 (±1.2) 28.8 (26.2-31.4)
Rois et al. (123) 1975 USA 26 Cord 16.1 (±1.5) 6.19 (6.18-6.20)
Venous - 6 hours (2-11) 17.6 (17.1-18.2) 13.6 (12.0-15.2)
Venous - 29 hours (26-34) 19.2 (18.3-20.0) 11.6 (10.1-13.1)
Venous - 77 hours (74-80) 17.9 (17.0-18.7) 14.5 (13.1-16.0)
Ruos et al. (110) 2018 USA 49 Cord 15.3 (±0.4) 48.3 (39.3-59.1)
Sormina et al. (94) 2013 Poland 49 Cord 16.1 (±1.7) 22.4 (20.5-24.3)
Sweat et al. (142) 2001 UK 68 Cord 16.1 (±1.7) 26 (24.2-27.8)
Szabó et al. (143) 2009 Hungary 10 Cord 23.2 (16.3-30.1)
Venous - 47 hours 7.2 (6.15-8.25)
Tiker et al. (144) 2006 Turkey 16 Venous - 209 hours (96-288) 13.9 (±22.1-17.1) 19.9 (12.7-28.4)
Tsuzuki et al. (145) 2013 Japan 30 Cord 31.1 (±27.3-34.9)
Venous - 120 hours 19.5 (16.4-22.6)
Yamada et al. (124) 2014 Brazil 21 Cord 16.0 (±1.8) 23.9 (19.4-28.4)
Venous - 720 hours 12.0 (±2.0) 16.7 (14.8-18.5)
Venous - 211 hours (±46) 14.0 (±1.4) 19.9 (17.9-21.9)
Yapakci et al. (146) 2009 Turkey 16 Venous - 211 hours (±46) 14.0 (±1.4) 19.9 (17.9-21.9)

| Weighted Mean (Cord) | - | - | 28.5 (26.0-31.1) | - |
| Weighted Mean (Venous) | - | - | 13.8 (10.8-16.9) | - |

Adults (125)

Infants (125)

CI, confidence interval; IQR, interquartile range.

- Not determined as not applicable to the calculation of weighted mean hepcidin or standardized hepcidin values.

1 Extracted standard deviations were converted to 95% confidence intervals.

2 Median (IQR or 95% CI) were not included in weighted means.

3 Reference ranges for adults and infants are taken from the National Health and Nutrition Examination Survey, 1999–2000.(125)

4 Hemoglobin concentrations are provided to aid interpretation of neonatal iron status.
Table 7: Serum iron concentration (μmol/L) in preterm newborns over the neonatal period.

Publication	Reference	Year	Location	Type of Sample	Study Group	Mean (SD or 95% CI)	Median (IQR or 95% CI or Range)
Celik et al.	(126)	2015	Turkey	Venous - 648 hours (288-1872)	AGA Group^a	13.4 (±4.0)	15.6 (13.3-17.9)
Delaney et al.	(114)	2019	USA	Cord	AGA Group^a	15.3 (±2.3)	53.1 (49.8-56.4)
Haga et al.	(118)	2019	Norway	Cord	AGA Group^a	16.8 (13.2-20.4)	
Ichinomiya et al.	(81)	2019	Japan	Cord	AGA Group^a	17.8 (11.2-25.4)	
Lackmann et al.	(127)	1988	Germany	Venous - <1 hour	AGA Group^a	23.27 (15.2-32.4)	
Ru et al.	(110)	2018	USA	Cord	AGA Group^a	15.1 (±0.3)	73.4 (57.3-93.1)
Ru et al.	(48)	2018	USA	Cord	AGA Group^a	15.3 (±2.1)	53.7 (50.1-60.8)
Schiza et al.	(147)	2007	Greece	Venous - 336 hours	AGA Group^a	30.36 (24.9-39.2)	
Sweet et al.	(142)	2005	UK	Cord	AGA Group^a	15.8 (±2.1)	20.8 (18.4-23.2)
Tikier et al.	(144)	2006	Turkey	Venous - 67 hours (24-144)	AGA Group^a	14.9 (10.5-18.5)	15.81 (4.83-33.48)
Tsuchi et al.	(145)	2013	Japan	Cord	AGA Group^a	24.9 (16.3)	17.4 (13.3-21.5)
Yamada et al.	(124)	2014	Brazil	Cord	AGA Group^a	15.7 (13.3-21.5)	19.26 (6.8-39.2)
Yapalci et al.	(146)	2009	Turkey	Venous - 336 hours (36-720)	AGA Group^a	12.7 (±2.2)	17.63 (11.2-20.3)

Weighted Mean (Cord)

- **Mean (95% CI or Range)**
 - Adults: 15.2 (8.1-24.5)
 - Infants: 12.5 (5.5-20.6)

CI, confidence interval; IQR, interquartile range; AGA, appropriate for gestational age; SGA, small for gestational age.

- Not determined as not applicable to the calculation of weighted mean hepcidin or standardized hepcidin values.

^Extracted standard deviations were converted to 95% confidence intervals.
Median (IQR or 95% CI) were not included in weighted means.

Reference ranges for adults and infants are taken from the National Health and Nutrition Examination Survey, 1999–2000. (125)

Hemoglobin concentrations are provided to aid interpretation of neonatal iron status.

AGA group of Haga et al. (1980) can be identified in Supplementary Figure 3B.

SGA group of Haga et al. (1980) can be identified in Supplementary Figure 3B.

Ru et al. (2018) can be identified in Supplementary Figure 3B. (110)

Ru et al. (2018) can be identified in Supplementary Figure 3B. (48)

30–36 wks group of Sweet et al. (2001) can be identified in Supplementary Figure 3B.

24–29 wks group of Sweet et al. (2001) can be identified in Supplementary Figure 3B.
Figure 1: Placental iron transfer between mother and fetus. Fe^{2+} = ferrous iron, Fe^{3+} = ferric iron, Tf = transferrin, Apo-Tf = unsaturated transferrin, Fetal Tf = fetal-derived transferrin, NTBI = non-transferrin bound iron. Syncytiotrophoblasts in the placental villi take up transferrin-bound iron from the maternal circulation by endocytosis via transferrin receptor 1 (TFR1). Iron is released from TFR1 in acidified endosomes and transferred into the syncytiotrophoblast cytoplasm. Ferroportin transports iron out of placental syncytiotrophoblasts, and then ceruloplasmin, hephaestin, and zyklopen oxidize Fe^{2+} to Fe^{3+} helping it pass through the endothelium to reach the fetal circulation. It is still unclear as to whether newly transported iron enters the fetal circulation as NTBI or bound to fetal transferrin. Fetal-derived hepcidin is believed to regulate ferroportin expression on the fetal basal-side of placental syncytiotrophoblasts. (12,26) Maternal-derived hepcidin is believed to play a role in regulating TFR1 expression on the maternal-side of the placental syncytiotrophoblasts (148).
Figure 2: Flow diagram of the literature search and selection criteria. Retrieving publications on hepcidin, TSAT or serum iron in neonates over the first month of life.
Figure 3: Standardized hepcidin (ng/mL) over the neonatal period: (A) full term neonates, α shows the weighted mean (95%CI) for all studies seen in Supplementary Figure 1A. β, χ and ε shows Prentice et al.(99) δ shows Kulik-Rechberger et al.(25). (B) preterm neonates, α shows the weighted mean (95%CI) for all studies seen in Supplementary Figure 1B. β shows Uijterschout et al.(112)
Figure 4: Transferrin saturation (%) over the neonatal period: (A) full term neonates, α shows the weighted mean (95%CI) for all studies seen in Supplementary Figure 2A. β shows Prentice et al.(99) χ shows Al-Tawil et al.(113) δ shows Prentice et al.(99) ε shows Balogh et al.(92) Φ shows Anderson et al.(115) γ shows Prentice et al.(99) η shows Milman et al.(39) τ shows Kitajima et al.(120) φ shows Yamada et al.(124). (B) preterm neonates, α...
shows the weighted mean (95%CI) for all studies seen in Supplementary Figure 2B. β shows Lackmann et al. (127) χ shows Celik et al. (126) δ shows Yamada et al. (124) ε shows Kitajima et al. (120) All values are mean (95%CI), unless marked with ◊ median (range) and • median (95%CI). Lackmann et al, 1998 (β) data from the three study groups (<32 wks, 33-34 wks and 35-36 wks) was averaged as all groups are classed as PTB neonates and are bled at the same time of life. (127)
Figure 5: Serum iron (μmol/L) over the neonatal period: (A) full term neonates, α shows the weighted mean (95%CI) for all studies seen in Supplementary Figure 3A. β shows Prentice et al.(99) χ shows Patidar et al.(141) δ shows Prentice et al.(99) ε shows Balogh et al.(92) ϕ shows Szabo et al.(143) γ shows Anderson et al.(115) η shows Prentice et al.(99) τ shows Milman et al.(39) ψ shows Tsuzuki et al.(145) κ shows Tiker et al.(144) λ shows
Yapakci et al. (146) μ shows Ozkiraz et al. (140) ν shows Yamada et al. (124). (B) preterm neonates, α shows the weighted mean (95%CI) for all studies seen in Supplementary Figure 3B. β shows Lackmann et al. (127) χ shows Tiker et al. (144) δ shows Tiker et al. (144) ε shows Tsuzuki et al. (145) φ shows Schiza et al. (147) γ shows Yapakci et al. (146) η shows Celik et al. (126) ι shows Yamada et al. (124) All values are mean (95%CI), unless marked with * mean (range), ° median (range) and • median (95%CI). Lackmann et al, 1998 (β) data from the three study groups (<32 wks, 33-34 wks and 35-36 wks) was averaged as all groups are classed as PTB neonates and are bled at the same time of life. (127)