Exploiting Non-Linear Redundancy for Neural Model Compression

Muhammad Ahmed Shah, Raphael Olivier, Bhiksha Raj
Outline

• Motivation and Background
• Method: Lossless Redundancy Elimination
• Evaluation and Results
• Analysis
• Conclusion
Overparameterized Models – The New Norm

Number of Parameters and Top-1 Accuracy on ImageNet For SOTA Models in Each Year

Data from: https://paperswithcode.com/sota/image-classification-on-imagenet
Current Methods For Model Compression

• **Structural Pruning**
 • Remove structural units from the model
 • Does not rely on sparse matrix operations – operationally more efficient
 • Produces compact representations
 • Selection Criteria:
 • Heuristics – magnitude of the unit’s output
 • Regularization - assign weights to filter, prune filters with low weights
 • Heuristics can be misleading
Current Methods For Model Compression

• Structural Pruning
 • For example – two units have identical outputs and identical incoming and outgoing weights
 • Suppose they have sufficiently high activations (relative to the other units)
 • Both neurons will have an equal and significant impact on downstream outputs
 • Thus most magnitude-based heuristics would retain both neurons
 • Ideally, achieve lossless compression by removing one of the neurons and doubling the other neuron’s outgoing weights

The significance of a neuron is how (un)predictable its output is given the outputs of the other neurons in the layer!
Outline

• Motivation and Background
• Method: Lossless Redundancy Elimination
• Evaluation and Results
• Analysis
• Conclusion
Lossless Redundancy Elimination

• Consider this network

\[y_1 = w_{11}z_1 + w_{12}z_2 + w_{13}z_3 \]
\[y_2 = w_{21}z_1 + w_{22}z_2 + w_{23}z_3 \]
Lossless Redundancy Elimination

• Suppose $z_1 = \alpha z_2 + \beta z_3$

• In this case

 $y_1 = (w_{12} + \alpha w_{11})z_2 + (w_{13} + \beta w_{11})z_3$

 $y_2 = (w_{22} + \alpha w_{21})z_2 + (w_{23} + \beta w_{21})z_3$
Lossless Redundancy Elimination

• Suppose \(z_1 = \alpha z_2 + \beta z_3 \)

• In this case
 \[
 y_1 = (w_{12} + \alpha w_{11})z_2 + (w_{13} + \beta w_{11})z_3 \\
 y_2 = (w_{22} + \alpha w_{21})z_2 + (w_{23} + \beta w_{21})z_3
 \]

• We can remove \(z_1 \)

• And readjust weights
 \[
 \begin{align*}
 w_{12} &\leftarrow w_{12} + \alpha w_{11} \\
 w_{13} &\leftarrow w_{13} + \beta w_{11} \\
 w_{22} &\leftarrow w_{22} + \alpha w_{21} \\
 w_{23} &\leftarrow w_{23} + \beta w_{21}
 \end{align*}
 \]
LRE-AMC

- We modify an existing technique called Annealed Model Contraction (AMC)
- We do the following to compress a single layer:
 1. Compute the predictability of the units (neurons/conv filters) using OLS regression
 2. Remove $\gamma\%$ of the most predictable units.
 3. Fine tune the network.
 4. Measure the accuracy of the model and repeat if accuracy is recovered.
Outline

• Motivation and Background
• Method: Lossless Redundancy Elimination
• Evaluation and Results
• Analysis
• Conclusion
Experimental Setup

• In each compression iteration we remove 25% of the neurons in the layer.
• We keep compressing as long as the validation accuracy does not deteriorate by more than $\varepsilon \%$.
Results

- LRE-AMC can drastically shrink the model
- Effective on large/complex datasets as well like ImageNet
- TD shrinking is more effective for param reduction
- RR shrinking is more effective for FLOP reduction
- Comparison with prior work:
 - Closest competitor [1] removes 4% fewer params but 5% more FLOPs
 - LRE-AMC preferable if memory is constrained.

Dataset	Param Reduction (%)	FLOP Reduction (%)	Accuracy Reduction (%)	ϵ
CIFAR10	97.4	80.2	1.8	0
CIFAR10-[1]	94.3	85.0	0.5	-
CIFAR10-[2]	93.6	65.0	0.6	-
CIFAR10-[3]	64.0	64.0	2.1	-
Caltech256	81.7	65.2	1.7	1
ImageNet	11.8	20.0	1.6	2
ImageNet	19.1	26.0	3.0	3

$\text{CF10} = \text{CIFAR 10}$ $\text{CT256} = \text{Caltech 256}$ $\text{IN} = \text{ImageNet}$

1. L. Liebenwein +, “Provable filter pruning for efficient neural networks,” 2019.
2. Z. Zhuang+, “Discrimination-aware channel pruning for deep neural networks,” in NeurIPS 2018,
3. J.-H. Luo+, “Thinet: A filter level pruning method for deep neural network compression,” ICCV, 2017,
Outline

• Motivation and Background
• Method: Lossless Redundancy Elimination
• Evaluation and Results
• Analysis
• Conclusion
Effect of Weight Re-adjustment

- $\epsilon = 5\%$
- Improves param and FLOP reduction for Caltech-256
 - More complex data, fewer redundant neurons
- More beneficial under Top Down
 - Allows us to compress under low redundancy
Effect of Weight Re-adjustment

- Output of the final convolutional layer in VGG-16 on CIFAR10
- Weight readjustment separates classes more cleanly
 - Classes 1, 2, 7 and 8
Accuracy vs. Compression Trade Off

- Almost linear relationship between reduction in FLOPs and Accuracy
- Accuracy is more resistant to reduction in parameters
 - Accuracy does not depend on how many parameters are removed, rather which parameters are removed.
Outline

- Motivation and Background
- Method: Lossless Redundancy Elimination
- Evaluation and Results
- Analysis
- Conclusion
Conclusion

• We have presented LRE-AMC, a technique to identify and eliminate non-linear dependencies between neurons.
• LRE-AMC can remove more than 97% of the model parameters and 80% of the FLOPs from a VGG-16 trained on CIFAR-10.
• Our analysis indicates that our weight adjustment technique, LRE, yields better compression and maintains the intermediate representations.
Thank You

Questions?