Environmental Research Communications

TOPICAL REVIEW

Comparing adoption determinants of solar home systems, LPG and electric cooking for holistic energy services in Sub-Saharan Africa

Vivien Kizilcec¹, Tash Perros¹, Iwona Bisaga¹ and Priti Parikh²,³,∗

¹ Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK & Engineering for International Development Research Centre, The Bartlett School of Sustainable Construction, University College London, 1-19 Torrington Place London, WC1E 7HB, United Kingdom
² Engineering for International Development Research Centre, The Bartlett School of Sustainable Construction, University College London, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
³ Geography and Environment, Loughborough University, Loughborough, LE11 3TU, UK & Engineering for International Development Research Centre, The Bartlett School of Sustainable Construction, University College London, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom

* Author to whom any correspondence should be addressed.
E-mail: vivien.kizilcec.17@ucl.ac.uk, tash.perros.19@ucl.ac.uk, I.M.Bisaga@lboro.ac.uk and priti.parikh@ucl.ac.uk

Keywords: solar home systems, LPG, electric cooking, Sub-Saharan Africa, adoption

Abstract

Globally, rates of electrification and clean cooking are low, particularly in Sub-Saharan Africa. Off-grid energy solutions have a vital role to play in accelerating clean energy access to address Sustainable Development Goal 7. For organisations aiming to provide both electricity and cooking services, there is a need for holistic studies on adoption determinants to aid market expansion. This paper presents a comprehensive literature review of the adoption determinants and barriers for liquefied petroleum gas (LPG), solar home systems (SHS) and electric cooking (e-cooking) in Sub-Saharan Africa. A total of 40 adoption determinants were identified across the 71 publications examined. Of these, 30 determinants were shared by at least two of the technologies, whilst six were specifically linked to LPG and four to SHS. Key determinants that cut across technologies included reliability of alternative technologies (such as grid supply), reliable energy supply through the technology in question, affordability, household size and location (urban/rural). The findings show that there is an overlap in the demographics that use these technologies, as urban households often use SHS as a backup to the electricity grid and their cooking needs can feasibly be met by LPG or e-cooking devices. There is a clear opportunity for e-cooking devices to be sold as appliances for SHS. E-cooking devices such as electric pressure cookers can be complementary to LPG due to their suitability for cooking different foods. Pay-as-you-go models, which have a proven track record with improving access to SHS and are beginning to also be applied to LPG, have the potential to provide a strong foundation for scaling up of LPG and e-cooking services.

1. Introduction

The world is falling behind on the energy access targets set in the Sustainable Development Goals (SDGs), and specifically SDG 7, which calls for universal energy access by 2030. There are around 759 million people globally without access to electricity and more than 2.6 billion people who primarily cook with polluting biomass fuels, such as charcoal, firewood and animal waste [1]. Access to clean, modern, affordable and reliable energy is transformative; it enables women to partake in additional employment [2] improves educational performance for children [3] and saves households time and money [4, 5]. Other wide-ranging benefits cut across sectors such as healthcare, climate change mitigation and adaptation, and livelihood creation [6].

Sub-Saharan Africa (SSA) is among the regions with the lowest rates of electrification and access to clean cooking solutions compared to other parts of the world [7, 8]. There has been relatively slow progress on the
extension of grid infrastructure in the region, partly due to the high cost of transmission, maintenance and operation costs in rural areas [9–11]. Off-grid decentralised solutions provided by the private sector, such as Solar Home Systems (SHS), offer viable means to increase electricity access and build energy resilience [12]. As defined by Bisaga [13], SHSs are ‘ […] stand-alone [DC] solar PV [photovoltaic] systems with power storage in a form of a battery (usually lithium-ion or lead-acid) which can supply sufficient power for appliances such as lighting, mobile phone charging, televisions, radios, and other small household use appliances [and which come] in a wide range of capacity: from 11Wp up to 300Wp or more’ (p. 1). Clean and modern energy cooking technologies, such as liquefied petroleum gas (LPG) and electric cooking (e-cooking) appliances, such as Electric Pressure Cookers (EPCs) or rice cookers, can significantly reduce exposure to harmful smoke and provide a safer, faster and more efficient way to prepare meals, often at a lower cost than polluting biomass alternatives [8]. Although it is a fossil fuel, LPG offers considerable public health and climate benefits and is arguably the most scalable cooking fuel in SSA in the short-term because of its minimal additional infrastructure requirements [14–17].

The pay as you go (PAYG) model of SHS provision has been behind the rapid uptake of this technology in the last decade and has the potential to act as an anchor on which PAYG cooking services could be built to cover the two main domestic energy needs: lighting and cooking [18, 19]. This would leverage the last-mile financing and distribution infrastructure already created by off-grid solar (OGS) companies [20]. The PAYG model offers customers the same level of payment flexibility as the well-known PAYG model in the telecommunications industry. There is typically a down payment to get a SHS installed, followed by daily, weekly or monthly payments, which either cover the amount of energy consumed or, more commonly, are incremental repayments of the value of the system. After a period of anything between 1–3 years, full ownership of the system is transferred to the customer - effectively making it a rent-to-own model. As a result, high barriers to entry, if there was to be a lump sum payment for a SHS, are removed [13].

In SSA, cooking with modern fuels and stoves is often complemented by traditional biomass sources such as charcoal, which are preferred for cooking energy-intensive ‘hard’ foods like beans [21–23]. Thus, e-cooking appliances that are suited to cooking these foods, such as Electric Pressure Cookers (EPCs), could be added as complementary devices to achieve a clean cooking energy stack and help fully eliminate reliance on biomass fuels [8]. However, currently there are very few examples of private sector providers offering combinations of energy services. Fenix International, an OGS company, operating in six markets in SSA, ran one of the first pilots with a PAYG LPG initiative in Uganda in 2019; it appears to have been discontinued [24]. Similarly, another OGS provider, Bboxx, have also expanded into LPG cooking services in Rwanda, Kenya and Democratic Republic of Congo [23, 25]. Two companies, Sunspot and EarthSpark, have adopted an alternative approach by providing solar electric cooking systems along with SHSs for a complete off-grid rural energy solution in Haiti [26]. Little research has been conducted to inform strategies promoting such holistic approaches to energy access provision, which would help reach net zero targets.

Understanding the different conditions under which various technology combinations are feasible, and the factors that drive their adoption, could enable more companies to expand their services to offer integrated energy access packages for households. To date, scholars have examined adoption determinants for electricity by examining users’ perceptions and fuel stacking behaviours for SHS, and access to energy for cooking by looking at adoption barriers for clean cooking solutions [27, 28]. However, there is a paucity of studies that compare adoption drivers and barriers for both types of energy access technologies. The novelty of this study is in using adoption determinants for both off-grid electricity and cook solutions to evaluate under what conditions co-provision would be feasible. This can inform market expansion strategies for the private sector and influence decision making on integrated energy planning and subsidies for policy makers. This is of particular importance in light of the recently launched Universal Integrated Energy Plans by the Sustainable Energy for All (SEforALL) initiative [29] and the Clean Cooking Planning Tool created by the World Bank’s Energy Access Sector Management Program (ESMAP) and the Modern Energy Cooking Services (MECS) programme [30], which also aims to consider electrification and clean cooking access in a joint manner. Achieving net-zero ambitions requires a shift to clean electricity and cooking solutions for which testing feasibility, acceptance and affordability will be vital.

Our study aims to fill this gap by understanding opportunities for off-grid co-provision of electricity and LPG in SSA. It contributes to the critical evidence base needed to speed up transitions to clean energy by leveraging progress made in the off-grid electricity sector. In our study, adoption includes purchase, usage and retention, which have been identified as key elements for the early and mid-stages of customer life cycles of SHS [31]. We focus on household-level off-grid solutions, namely SHS, LPG (as joint stove and fuel combination) and e-cooking appliances. These solutions are compatible with the PAYG model and have the potential to grow rapidly over the coming years. The objectives of this study are: to conduct a structured literature review to identify factors driving adoption of SHS, LPG and e-cooking in SSA; to compare demographic intersections between the three technologies; and to derive insights about how providers can expand into holistic energy
provision. Section 2 of this paper describes the methodology for the literature review. Section 3 examines factors driving or hindering adoption of the three selected energy access solutions. Section 4 discusses commonalities and differences among the adoption factors, and the final section provides recommendations.

2. Methodology

This paper consists of a comprehensive literature review on LPG, SHS and e-cooking in Sub-Saharan Africa. The search was conducted in the following databases: ScienceDirect, Web of Science and Scopus.

The inclusion criteria consisted of peer-reviewed research articles, conference or proceeding papers that were published between January 2000 and December 2020. In both Science Direct and Scopus databases the following subject areas were selected: ‘Energy’, ‘Environmental Sciences’, ‘Social Sciences’. The focus of the paper needed be predominantly on either SHS, LPG or e-cooking technologies, or a mixture of these. The article also needed to evidence at least one adoption determinant or barrier that influenced the likelihood of a household purchasing the technology. The exclusion criteria consisted of papers not written in English and review papers. Articles that did not focus on at least one Sub-Saharan African country were also excluded.

The initial search results derived from the utilised search criteria for each database and technology are highlighted in table 1.

The search was first conducted in ScienceDirect, followed by Scopus and Web of Science, where each iteration excluded duplicate papers from previous databases. This explains the considerably smaller number of papers identified through Web of Science. The screening process consisted of examining the title and paper contents to ensure that the paper satisfied the inclusion and exclusion criteria. For cross-validation, the authors swapped groups of papers and sorted these by their title before checking every fifth paper to ascertain whether they agreed with the paper’s inclusion and a consensus was reached in cases of disagreement. Following this process, 35 SHS, 31 LPG and 5 e-cooking papers remained, totalling to 71 articles. Out of these, three papers covered both SHS and LPG technologies but were included as part of the SHS group for the purposes of not double counting information about the papers. The lead author extracted the key information from each paper into an Excel spreadsheet, which included the adoption determinants for which evidence was provided and whether it had a positive, negative or no effect on the technology adoption (appendix A). To cross-validate this process, the remaining authors checked every fifth paper of their assigned sections to see whether they agreed with the data extracted from the papers. This resulted in the identification of 40 adoption factors in total.

3. Results

3.1. General information

The 71 papers were spread relatively evenly between SHS and LPG technologies with only five studies examining e-cooking (figure 1).

There has been an increase in the number of papers published for each technology in recent years (figure 2). The largest rise occurred between 2018 and 2020, with 69% of LPG, 60% of e-cooking and 52% of SHS papers published in that period. Figure 2 highlights the relative novelty of e-cooking in comparison to SHS and LPG.

The papers were categorised according to their research methodology. This analysis revealed that 63% of papers were classed as qualitative methods, with mixed and quantitative methods accounting for the remainder in a relatively even split (figure 3). The low number of quantitative studies could be due to a lack of reliable electricity and clean cooking data in the off-grid sector in SSA.

Figure 4 shows the geographical focus of the literature for e-cooking and LPG compared to SHS. There is no existing academic knowledge base for most countries in SSA. Remarkably, similar clusters of countries are covered by the two diagrams despite there being very little overlap between the technologies in the literature. This could be because of the ease of conducting research in these countries, the presence of governments that are particularly engaged in off-grid energy policies (e.g. [32]) or extensive localised private sector involvement in the off-grid space. Off-grid policies have provided an enabling environment for private sector involvement both for energy service delivery and operation and maintenance.

3.2. Adoption determinants

The literature review highlighted 40 total adoption determinants, out of which 30 were shared by at least two of the technologies (appendix A), whilst six were specifically linked to LPG (appendix B) and four to SHS (appendix C). Figure 5 highlights the 20 most common shared determinants identified by the papers and whether their effect on a household’s adoption decision for each technology was positive or negative, excluding ones which had no effect.
Technology	Database	Search criteria	Search output	First screen	Second screen
SHS	Science Direct	Article (('solar home system' or shs) and ('fuel switch' or 'fuel substitution' or adoption or purchase or 'adoption determinants' or diffusion))	869	168	24
Scopus	All ('fuel switch' or 'fuel substitution' or adoption or purchase or 'adoption determinants' or diffusion) and all ('solar home system' or shs) and (limit-to (doctype, 'ar') or limit-to (doctype, 'cp')) and (limit-to (subjarea, 'ener') or limit-to (subjarea, 'soci')) or limit-to (subjarea, 'envi'))	789	82	11	
Web of Science	(TS=('solar home system' or shs) and TS=('fuel switch' or 'fuel substitution' or adoption or purchase or 'adoption determinants' or diffusion)) and language: (English) refined by: document types: (article or proceedings paper)	292	1	0	
LPG	Science Direct	Article(('liquid petroleum gas' or lpg) and ('fuel switch' or 'fuel substitution' or adoption or purchase or 'adoption determinants' or diffusion))	3,343	151	20
Scopus	All ('fuel switch' or 'fuel substitution' or adoption or purchase or 'adoption determinants' or diffusion) and all ('liquid petroleum gas' or lpg) and (limit-to (doctype, 'ar') or limit-to (doctype, 'cp')) and (limit-to (subjarea, 'ener') or limit-to (subjarea, 'soci')) or limit-to (subjarea, 'envi'))	1,276	58	10	
Web of Science	(TS=('liquid petroleum gas' or lpg) and TS=('fuel switch' or 'fuel substitution' or adoption or purchase or 'adoption determinants' or diffusion)) and language: (English) refined by: document types: (article or proceedings paper)	295	13	1	
E-cooking	Science Direct	Article(('electric cooking' or ecook or 'e-cook') and ('fuel switch' or 'fuel substitution' or adoption or purchase or 'adoption determinants' or diffusion))	91	8	3
Scopus	All ('fuel switch' or 'fuel substitution' or adoption or purchase or 'adoption determinants' or diffusion) and all ('electric cooking' or ecook or 'e-cook') and (limit-to (doctype, 'ar') or limit-to (doctype, 'cp')) and (limit-to (subjarea, 'ener') or limit-to (subjarea, 'soci')) or limit-to (subjarea, 'envi'))	37	7	2	
Web of Science	(TS=('electric cooking' or ecook or 'e-cook') and TS=('fuel switch' or 'fuel substitution' or adoption or purchase or 'adoption determinants' or diffusion)) and language: (English) refined by: document types: (article or proceedings paper)	4	0	0	

Total search output: 6,996

First screen: 488

Second screen: 71
The factors influencing the uptake of LPG, SHS or e-cooking were found to be highly similar. The importance of technology cost and affordability is notable, with three of the top ten determinants linked to these factors. There were a few noteworthy differences between technologies on whether the determinant had a positive or negative effect. Larger households were more likely to adopt SHS and e-cooking, but less likely to use LPG. The negative effect of an urban location on the SHS adoption might be associated with the higher prevalence of grid connections in urban centres compared to rural areas, where households are less expectant of a connection and more willing to accept SHS as an alternative [33–35]. In contrast, LPG is inherently more suited to urban areas because of the complex supply chains supporting its use and the challenge of displacing free biomass in rural areas [36]. This indicates that different technologies may be more viable in different settings.

There were only a few individual adoption determinants that applied solely to LPG or SHS technologies (figure 6).

Concerns around the safety of LPG use have been identified as barriers to LPG adoption by numerous scholars across different countries and contexts [37, 38]. The association between LPG adoption and electricity access is likely due to collinearities with income and urban locations, which tend to have more advanced infrastructure; the same applies to sanitation access. Low capacity of SHS as a factor deterring households from adopting such solutions has been discussed by Chowdhury and Mourshed [39], Laufer and Schafer [40], and Azimoh et al [41] among others. This is associated with the prevalence of small SHS, which typically fall in the
10 W–50 W bracket. As these are more affordable than larger SHS (e.g. 80 W or 100 W), to date they have taken the largest market share [42] and tend to support only basic uses, such as lighting, phone charging, radios, televisions and fans.

The following sections consider the top adoption determinants for SHS, LPG and e-cooking.

3.3. SHS

The top three determinants for SHS adoption were the reliable supply of alternative fuels (e.g. grid electricity) \((n = 10)\), SHS appliance use \((n = 8)\) and income \((n = 8)\). While there is consensus in the literature that the ability to use appliances offered by SHS, such as light bulbs or phone chargers, drives the likelihood of households to adopt such solutions, the other two determinants are more complex. In particular, income and the (un)reliable supply of electricity are closely linked, as is further discussed below.

3.3.1. Reliability of SHS and alternative fuels

There are two dimensions of reliability in the literature. Firstly, the lack of reliable supply of grid electricity is a factor that motivates households to adopt SHS \((n = 9)\) [29–33]. Unreliable grid access refers to households experiencing frequent blackouts, thus compromising their ability to use appliances. Grid-connected households
sometimes adopt SHS as back-up power systems to mitigate such disruptions. In their study of Ghana, Boamah and Rothfuß [43] observed that secure electricity access was particularly valued by wealthier urban households who had elderly family members living with them. This also indicates that income determines whether households can safeguard against an unreliable grid. Low-income, grid-connected households might not be able to afford both connections, though some might opt to disconnect from the grid altogether and choose a SHS instead.

The other dimension of reliability is a comparative one between grid and SHS (n = 3), where households ultimately decide to adopt a SHS based on their experienced or perceived increased reliability [5, 44–46]. For example, a study in urban Nigeria has shown that “innovative adopters described PV as rugged, regular, uninterruptible, efficient and the most rational source of power supply” [35, p4]. However, the two dimensions are clearly interlinked, meaning that the unreliability of one power source (here mainly the grid) leads people to what they believe is a more reliable source: a SHS. Reliability is also seen as having control over one’s power source and independence from the utility network, which is associated with the sense of agency of one’s own energy access [44]. It is worth noting, however, that some studies have found that SHSs are seen as unreliable.

Figure 5. Top 20 adoption determinants.
and/or insufficient in their capacity to support a range of different appliances, especially in times of overcast weather \((n = 3)\) (e.g. [47, 48]). Low or insufficient capacity is a determinant unique to SHS.

3.3.2. SHS appliance usage

The ability to access and use appliances such as lights, phone chargers, radios and televisions is the second most common adoption factor identified in the reviewed literature \((n = 8)\) [5, 33, 49–54]. Lighting is among the most important, transformative and popular services that households adopting SHS benefit from. It enables longer productive hours in the evening and facilitates improved safety and security, especially at night due to its energy storage capacity [55]. This could be to protect from theft or other intrusion, or to provide the ability to move around in the dark without tripping over objects [53, 56]. Improved safety also stems from the elimination of lighting fuels such as candles or kerosene lanterns, which can cause fires [57]. Lighting also enables household members to spend more time socialising and it helps to shift daily practices: activities that previously needed to be performed in the early morning hours can now take place in the evening as sunlight hours no longer dictate the rhythm of the day [53]. Another common service the SHS offers is phone charging. Phone charging can have a positive effect on the overall ability to stay connected to friends, family members or job opportunities. Having phone charging at home also means that there is no longer the need to walk long distances or pay for transport to phone charging stations, and to spend money and time doing so [58]. There is also evidence showing that household members benefit from more time to read in the evening due to SHS adoption [51].

Other appliances include radios and televisions, with the latter being more aspirational due to their high price. Both appliances offer the opportunity to access new information. For example, in their study in South Africa, Gustavsson and Ellegård [41] found that ‘the possibility to use a TV set with a video machine is a major attraction’ to SHS adopters. Another study in Kenya has also found households installing SHSs with a range of appliances instead of waiting for a grid connection. This has been observed in other contexts where households were no longer willing to wait for the grid expansion despite being told it would come soon [49, 59]. While the uncertainty about the grid’s arrival can encourage SHS adoption, Green et al. [60] found that, to the contrary, it can also be a barrier, as households who have received messages from the government saying the grid would be extended to their areas ‘soon’ would hesitate to adopt SHS. This is due to the belief that it would prohibit them from accessing the more aspirational, and perceived superior, grid power.

3.3.3. Income

Our review shows that higher income has been more frequently found to be an adoption factor \((n = 7)\) than low income \((n = 1)\). As discussed above, regarding the (un)reliability of the grid, higher-income households have been observed to adopt SHS more often than lower-income households. In a study of 209 Ghanaian households, Obeng et al. [61] found that households without solar PV had less income than households with such systems. This was measured through the assessment of the overall monthly household expenditure. Among the quantitative studies, three showed a significant positive effect of high income on the adoption of SHS [34, 62, 63], two showed a non-significant positive effect [33, 64], whereas one had a non-significant negative effect of low income on SHS [65]. Our review found no studies that focused on disposable income (as opposed to

Figure 6. Adoption determinants applying only to LPG or SHS.
income more generally). This could be an important consideration for future research to better understand how households allocate their disposable income and whether and how they prioritise energy access.

Other determinants impacting the adoption of SHS identified in this review include cost of alternative fuels (n = 7), installation and usage costs of SHS (n = 7) and education (n = 7), where households with a higher level of education have been seen to be more likely to adopt SHS (e.g. [34, 62, 64]).

3.4. LPG

The top three determinants for LPG were income (n = 17), installation and usage costs (n = 17) and education (n = 17). These three factors are highly interconnected as educated households are likely to earn more money and therefore be able to afford the upfront and recurring costs of using LPG.

3.4.1. Income

There were several variations of the income variable. The majority of papers used total income or income per capita (n = 11) but others included wealth status (n = 1), socio-economic status (n = 1), affordability (n = 1), total expenditure (n = 1), economic well-being (n = 1) and whether household members were employed in high-income formal jobs (n = 1).

There was consensus across the literature that there was a positive relationship between income and likelihood of using LPG. This trend was found to be significant and positive in all cases where hypothesis testing was performed (n = 13 papers). Income variation was also acknowledged as a factor that could cause a transition backwards to cooking with traditional fuels [66]. Future studies could consider the role of disposable income in the adoption of LPG.

There was variation in the importance of income by geographical location; for example, a 20% higher income led to a change of the proportion of clean fuel use of 39% in Uganda but only 16% in Ghana [67]. The location type was also relevant, with income being less important for urban households than rural ones [67, 68]. This was attributed to clean fuels being more affordable and available in urban centres as well as the higher opportunity cost of labour in these locations.

3.4.2. Installation and usage costs

There was agreement across the examined papers on the negative relationship between the cost of cooking with LPG and the likelihood of using the fuel, but very few (n = 3) performed hypothesis testing on this variable. This was because most studies collected data from just one location, where the price of LPG was fixed, meaning it was not possible to assess the relationship between LPG adoption and LPG price.

There were three interpretations of the costs of using LPG, although papers did not always distinguish between these three dimensions, instead referring to generic affordability or cost variables that acted as barriers (e.g. [69–71]). The first was the upfront cost of equipment (stove, cylinder and in some cases also the regulator), which was relevant in seven papers [37, 66, 72–76]. The second was the transaction size, or the ability to afford to buy fuel in discrete refills, which was found to be a barrier to adoption in three papers [72, 73, 77]. The third was how the cost of cooking with LPG compared to the alternatives being displaced. This was a barrier in three papers where biomass alternatives were cheaper [66, 76, 77], although one paper found this not to be relevant [78]. Even when LPG was cheaper than the competing fuel there was not necessarily an understanding of this amongst study participants [76, 79]. As Ozoh explained: 'Monthly expenditure on LPG was significantly lower than for kerosene but kerosene was erroneously considered a cost-effective fuel choice' [63, p.11].

Like income, there was country-level variation in the relationship between cost and adoption. A 20% lower LPG price led to an increase in the proportion of clean fuel use of 11.9% in Ghana and 46.3% in Nigeria [67]. This combination of the multi-dimensionality of LPG cost, limited understanding of cost comparisons between fuels and geographical variation may explain the mixed results from the limited hypothesis testing performed on this variable, with some studies finding cost of LPG to be a significant factor [78, 80], whilst others did not [81].

3.4.3. Education

Education could refer to the highest education level of anyone in the household (n = 16), the education level of the head of household (n = 2), education level of women in the household (n = 2) or the proportion of educated members of the household (n = 1).

Households with educated members are more likely to use LPG than those with less educated members. This could be because of increased awareness about the benefits of clean fuel use amongst educated consumers or because of collinearities between higher levels of education and increased income. This association was found to be significant in 12 out of 15 papers that performed hypothesis testing on education variables. One paper found that there was negative correlation between education and LPG use, but this is an unreliable finding because only
6% of the sample used LPG [78]. Papers that differentiated between education levels found that the more educated household members were, the more likely they were to use LPG [81–83].

3.5. E-cooking

Very small sample sizes mean there is a weak evidence base for adoption determinants of e-cooking. The top determinants were income \((n = 3)\) and installation and usage costs \((n = 3)\).

There was a positive relationship between income and e-cooking that was found to be significant [84]. This is likely to be because of the high upfront costs of e-cooking devices and the relatively high costs of cooking with electricity compared to biomass alternatives. As with LPG, the literature differentiated between these categories of costs. The upfront costs of cooking devices and the perception that they are expensive to use was found to be a barrier [85]. The price of electricity had a significant negative impact on adoption of e-cooking [86, 87], whereas the price of competing fuels (e.g., firewood) had a significant positive impact [87].

4. Discussion

More action is required to meet SDG7’s goal for all households to have both sustainable and clean electricity and cooking access by 2030. The literature has largely treated lack of electricity and clean cooking as separate issues thus far. However, households often lack access to both and thus it might be possible for providers to offer products that can provide inclusive energy access services. To achieve this, providers need to understand whether the adoption determinants for different electricity and cooking technologies are similar, or whether such an expansion would require altered service offerings or the targeting of different population segments.

This review addresses this gap by providing valuable insights into the adoption determinants of SHS, LPG and e-cooking technologies. Most of the 71 papers examined focussed on SHS and LPG, whilst only a handful discussed e-cooking, which is still a nascent field in the academic literature. Only three papers discussed multiple technologies, showing that holistic considerations of energy access are in their infancy. A key finding was that 30 out of the 40 determinants identified (75%) were shared by at least two of the technologies, suggesting they have similar target markets and thus confirming that opportunities for co-distribution exist.

The most important overarching factor for all three technologies was relative affordability, which was illustrated by the way that income, technology cost and the price of alternative fuels featured heavily in the literature. Alternative fuel options vary extensively in the cooking sector, whilst there are few other electrification options to SHS in areas where they have been deployed, apart from the main grid or mini-grids [9]. The adoption likelihood of the three technologies also seems to be highly dependent on the cost comparison against alternative fuels and/or technologies.

A few key differences were identified between the technologies. A larger household size was linked to a lower likelihood of adopting LPG and a higher likelihood of purchasing a SHS. As household size increases, demand for energy may rise, which pushes households towards cheaper energy sources to satisfy demand [88]. Most clean cooking research to date has focussed on rural locations [28], where the alternative to modern cooking fuels is gathering firewood. Larger households have a lower opportunity cost of collecting biomass [89, 90], which means they are less motivated to switch to LPG. On the other hand, the ongoing costs of alternative electricity service options, such as battery-powered torches and kerosene, are more expensive than SHS [91], so the larger the household the greater the potential financial saving from using a SHS. The other key difference was location. LPG users were more likely to live in urban areas, which enable easier access to a reliable fuel supply, with distance to sale points being a crucial adoption metric [92]. SHS tend to be adopted by those residing in rural areas, partly due to the absence of an alternative fuel supply, such as an electricity grid connection. Figure 7 highlights key similarities and differences in adoption determinants between the technologies.

4.1. Opportunities for combining energy access technologies

4.1.1. SHS and LPG

There is a tension between the urban focus of LPG and rural focus of SHS. However, there is an intersection in the market, as urban households often use SHS as a backup to the electricity grid and may be interested in LPG for cooking. For rural SHS users to be able to purchase LPG stoves, the provider may need to strengthen LPG fuel supply chains. This might be more feasible in peri-urban areas, which have more infrastructure than rural ones.

LPG tends to be adopted by smaller households for reasons of affordability, whereas SHS are favoured by larger ones; therefore, we recommend targeting higher income SHS customers and providing stoves sufficient for family cooking (2–4 burner) or ‘upselling’ e-cooking appliances to those customers. However, those would need to be compatible with the adopted SHS, i.e. be able to run on DC power, and the SHS would require sufficient capacity to support such appliances.
SHS are considered as a relatively mature technology to provide off-grid electricity access, especially as many providers rely on an established PAYG technology and tariff structure to enable households to better afford the technology. LPG is the most scalable clean cooking solution for SSA but is often rendered unaffordable by the high upfront cost of equipment and the need to buy discrete cylinder refills. There is therefore a clear opportunity for LPG to tap into the PAYG infrastructure already set up for SHS and the credit history that customers have built up with providers. There are currently a number of companies selling PAYG LPG (e.g., Circle Gas, PAYGO Energy) but only one looking at combining PAYG SHS and PAYG LPG (Bboxx).

4.1.2. SHS and E-cooking
E-cooking has great potential if it can be reliably powered. There is a clear opportunity for e-cooking devices to be sold as ‘add-ons’ for SHS. SHS packages could also include financing for e-cooking devices, thus overcoming affordability adoption determinants. The inclusion of e-cooking would also benefit providers by increasing the utilisation rate of their SHS and boosting their revenue.

The challenge here is power provision: cooking requires a lot of energy and certain e-cooking devices, such as kettles, would simply be incompatible with the limited power ratings of most SHS. E-cooking devices that could be successfully combined with SHS are lower-powered ones such as electric pressure cookers (EPCs) and rice cookers. Given that larger families are more likely to adopt SHS, we recommend the provision of larger capacity (8 litre plus) devices to suit cooking needs. It is also important to deliver training and invest in marketing as these appliances are not commonplace in SSA. Therefore, there may be limited awareness of their availability, benefits and use practices.

4.1.3. LPG and E-cooking
LPG is considerably more diffused in SSA than e-cooking, which is currently only beginning to appear in SSA countries and markets [8]. Therefore, when considering co-provision of LPG and e-cooking, it is likely this would consist of introducing e-cooking to current LPG users. These tend to be the wealthier urban segment of the market (figure 7) but asset financing may still be required to make e-cooking affordable. In such scenarios, e-cooking may facilitate a ‘clean’ cooking stack by displacing biomass used for specific long-duration cooking tasks.

LPG has mostly penetrated urban areas in SSA [8] with a greater likelihood of grid electricity access [93], meaning power consumption is less of a problem if introducing e-cooking to current LPG users. Therefore, we recommend the provision of e-cooking devices that are complementary to LPG, such as kettles, EPCs, rice cookers, microwaves, which may already be perceived as aspirational. Induction stoves may have lower utility to users as they are suited to high-intensity cooking events, such as frying [94] and thus serve a similar function to LPG.

Figure 7. Similarities and differences in adoption determinants between technologies.
5. Conclusion

To address the energy access gap, a combination of grid and off-grid solutions will be needed. An improved understanding of adoption determinants for off-grid electricity and cooking solutions will enable the private and public sectors to address service gaps, funders to better finance energy services and different government factions to develop cohesive policies. Private sector have a critical role to play in scaling up off-grid solutions to address current service gaps. This study on adoption determinants would enable the private sector to focus on the high frequency adoption determinants for SHS, LPG and e-cooking for both market expansion and co-provision of energy services within those markets.

Whilst studies have explored adoption determinants for SHS and LPG and e-cooking individually, there is a gap in research on comparing demographic intersections between the technologies and how they could address needs in various settings. By combining knowledge on these adoption determinants, this study provides an opportunity to break down traditional silos between those who research electricity and those who focus on cooking, improving the evidence base for practitioners and policy makers. This will also accelerate clean energy transition pathways through improved up-take of off-grid technologies especially for last mile users and those currently bypassed by mainstream grid solutions.

In this study, we reviewed academic literature to identify 40 adoption determinants for SHS, LPG and e-cooking. These were remarkably similar, with 30 of those determinants shared by at least two of the technologies. Reliability of alternate technology options, reliability of the technology in question, affordability, household size and location (urban/ rural) were identified as determinants that cut across technologies. The uptake of LPG is currently concentrated in urban areas and SHS in rural locations. However, that does not exclude the potential of scaling up SHS in urban settings that have unreliable or unavailable grid access. There is also an opportunity to build on PAYG SHS infrastructure to improve access to clean cooking in rural settings. This could consist of financing e-cooking appliances as part of the SHS package or leveraging the customer relationship to also provide PAYG LPG.

Our study did not explore causality and there was limited published material available for e-cooking. Further piloting and research are required to understand how to effectively and simultaneously address cooking and electricity access issues, particularly with respect to critical success factors for co-distribution. For instance, there is more research needed on the co-provision of LPG and e-cooking, and how the two fuels complement or substitute each other, including in grid and mini-grid settings. Given the important role of the private sector in energy provision in SSA, there is also a need to understand how novel business models could help eliminate critical adoption barriers across both energy types, such as the high upfront costs of equipment. Potential climate change and green funds create a strong incentive for the private sector to scale up a range of off-grid solutions for electricity and clean cooking to support net zero ambitions for communities not connected to grids and using polluting cooking fuels.

Further research is also needed to understand synergies that emerge from combining technologies and productive uses of energy. For example, both SHS and LPG are associated with creating or freeing up leisure time and improved health due to the reduction in indoor air pollution. It is conceivable that the aggregate benefit of providing both technologies in combination could be greater than the sum of its parts. Similarly, offering combined electricity and cooking solutions to businesses can maximise the benefits they can yield from clean and reliable energy, and potentially extend their service offering, thus boosting revenue and income opportunities.

The world is currently not on track to achieve the Sustainable Development Goals by 2030, including on energy. With less than a decade to go, novel and ambitious approaches are needed to close the energy access gap. Combining the provision of electricity and clean cooking fuels could accelerate progress towards SDG7 by leveraging existing customer relationships, distribution channels and infrastructure. This also provides an opportunity to address net zero and climate change through scale-up of clean technologies. We hope this process will be catalysed by the novel understanding of adoption barriers and target market characteristics for SHS, LPG and e-cooking identified through this literature review, as well as future research inspired by this study.

Acknowledgments

We gratefully acknowledge the Royal Academy of Engineering, Bboxx and UCL for funding the doctoral research of the lead author and Dr Parikh’s fellowship ‘Smart solar solutions for all’ (RCSRF1819\8\38 awarded to PP).
Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix A. Shared adoption determinants

Adoption determinants	Technology	Description	Total	Authors
1. Income	LPG	More likely to adopt LPG if income is high	17	[34, 38, 67, 68, 78, 80–82], [95–99]
	E-cooking	More likely to adopt e-cooking if income is high	3	[83, 84, 87]
	SHS	More likely to adopt SHS if income is high	7	[33, 34, 50, 63–65, 100]
		Less likely to adopt SHS if income is high	1	[65]
2. Technology installation cost and usage cost	LPG	More likely to adopt if LPG cost is lower	15	[37, 66, 67], [69–77], [80, 96, 101]
		Less likely to adopt if LPG cost is lower	1	[88]
		Non-significant difference	1	[81]
	E-cooking	More likely to adopt if e-cooking device and electricity cost is lower	3	[85–87]
	SHS	More likely to adopt if SHS cost is lower	7	[44, 47, 61, 102–105]
		More likely to adopt if SHS cost is lower	26	
3. Education level	LPG	More likely to adopt LPG with higher educational level	16	[38, 68, 71, 80, 82, 83, 88, 89, 95, 96, 106, 107–109]
		Less likely to adopt LPG with higher educational level	1	[88]
	E-cooking	More likely to adopt e-cooking with higher educational level	2	[83, 84]
	SHS	More likely to adopt SHS with higher educational level	6	[34, 44, 62–65]
		Less likely to adopt SHS with higher educational level	1	[33]
4. Household size	LPG	More likely to adopt LPG if household size is large	2	[83, 107]
		Less likely to adopt LPG if household size is large	8	[68, 71, 77, 81, 82, 96]
		No difference	1	[79]
	E-cooking	More likely to adopt e-cooking if household size is large	2	[83, 84]
	SHS	More likely to adopt SHS if household size is large	4	[33, 62, 63, 65]
5. Urban location	LPG	More likely to adopt LPG if household lives in an urban location	9	[37, 71, 74, 80, 82, 98, 107, 108, 110]
		Less likely to adopt LPG if household lives in an urban location	1	[68]
	E-cooking	More likely to adopt e-cooking if household lives in an urban location	1	[85]
	SHS	More likely to adopt SHS if household lives in an urban location	2	[33, 111]
		Less likely to adopt SHS if household lives in an urban location	4	[5, 34, 62, 65]
6. Cost of alternative energy sources (e.g. biomass, electricity)	LPG	More likely to adopt LPG if alternative fuel cost is higher	6	[66, 67, 76, 77, 79]
		Less likely to adopt LPG if alternative fuel cost is higher	1	[80]
	E-cooking	More likely to adopt e-cooking if alternative fuel cost is higher	1	[87]
Adoption determinants	Technology	Description	Total	Authors
-----------------------	------------	-------------	-------	---------
7. Reliable supply of alternative fuels (e.g. charcoal, electricity)	LPG	Less likely to adopt LPG if household has access to reliable supply of alternatives	5	[37, 66, 80, 82, 98]
	SHS	More likely to adopt SHS if household has no grid electricity access or unreliable grid supply	9	[33, 34, 44, 111, 115, 52, 65, 104, 112]
		Less likely to adopt SHS if household has access to grid electricity	1	[54]
8. Age	LPG	More likely to adopt if older	4	[38, 71, 82, 107]
		Less likely to adopt if older	6	[68, 77, 79, 80, 95, 98]
	E-cooking	More likely to adopt if older	1	[87]
		Less likely to adopt if older	2	[33, 63]
		Less likely to adopt if older	2	[62, 64]
9. Gender	LPG	More likely to adopt if male	2	[68, 83]
		Less likely to adopt if male	5	[80–82, 98, 107]
	E-cooking	More likely to adopt if male	2	[83, 87]
		More likely to adopt if male	2	[33, 115]
		Less likely to adopt if male	3	[62–64]
10. Reliable supply of technology fuel	LPG	Less likely to adopt LPG if household lacks reliable access to LPG supply	12	[37, 69, 72, 76, 79–82, 98, 101]
	E-cooking	Less likely to adopt e-cooking if household lacks reliable access to fuel (electricity)	2	[85, 86]
11. Technology is easy to use/ convenient/ fast	LPG	More likely to adopt as LPG is easy to use/ convenient/ fast	14	[37, 69, 70, 73, 75–77, 79, 116, 117], [66]
		Less likely to adopt as LPG is not as easy to use/ convenient/ fast	1	[5]
	SHS	Less likely to adopt due to SHS being less easy to use/ convenient/ fast than alternatives	12	[80, 81, 97, 109]
12. Owns property	LPG	Less likely to adopt if household owns a property	5	[34, 65, 104]
		More likely to adopt if household owns a property	3	[33, 97]
		Less likely to adopt if household owns a property	2	[45]
		No difference between owners and renters	1	[45]
13. Health benefits	LPG	More likely to adopt due to health benefits of LPG compared to alternatives	8	[37, 66, 69, 73, 76, 77, 79, 116]
	SHS	More likely to adopt due to health benefits of SHS compared to alternatives	3	[5, 33, 54]
14. Technology awareness	LPG	Less likely to adopt if household does not know about LPG or how to use it	3	[71, 72, 79]
	E-cooking	Less likely to adopt if household does not know about e-cooking and how to use related devices	1	[85]
	SHS	Less likely to adopt if household does not know about SHS, its benefits or how to use it	6	[44, 45, 47, 52, 60, 105]

(Continued.)
Adoption determinants	Technology	Description	Total	Authors
15. Quick and cooks most meals	LPG	More likely to adopt if LPG can cook most meals, handle a large meal amount and cooks fast	8	[38, 66, 70, 74, 76, 96, 106, 110]
E-cooking	More likely to adopt if meal type cooking duration is short	1	[84]	
16. Access to credit/loan	LPG	More likely to adopt if household has access to credit/loan	2	[37, 76]
E-cooking	More likely to adopt if household has access to credit/loan	1	[87]	
SHS	More likely to adopt if household has access to credit/loan	5	[44, 47, 63, 104, 118]	
17. Job type	LPG	More likely to adopt if non-farmer or formal sector employee	3	[71, 73]
E-cooking	More likely to adopt if formal sector employee	1	[87]	
SHS	More likely to adopt if non-farmer or formal sector employee	2	[63, 64]	
No difference based on employment	1	[119]		
18. Neighbour/friend influence	LPG	More likely to adopt if neighbours/friends etc use LPG	1	[71]
SHS	More likely to adopt if neighbours/friends etc use SHS	6	[5, 34, 44, 46, 47, 52]	
19. Distance to market/shop	LPG	More likely to adopt LPG if short distance to market/shop	4	[73, 76, 77, 107]
Less likely to adopt LPG if short distance to market/shop	1	[71]		
No difference in distance travelled based on fuel	1	[79]		
SHS	More likely to adopt SHS if short distance to market/shop	1	[120]	
20. Asset ownership (e.g. car, telephone, television, livestock)	LPG	More likely to adopt LPG if household owns assets	3	[38, 95, 107]
SHS	More likely to adopt if household owns assets	2	[33, 63]	
Less likely to adopt SHS if owns appliances that cannot be powered by SHS	1	[48]		
21. Number of children	LPG	Less likely to adopt if large number of children	2	[68, 107]
E-cooking	More likely to adopt if large number of children	1	[87]	
SHS	More likely to adopt if large number of children	1	[64]	
22. After-sales service + maintenance	LPG	Less likely to adopt if after-sales or maintenance not present	4	[76]
SHS	Less likely to adopt if after-sales or maintenance not present	3	[47, 102, 105]	
23. Roof type	LPG	More likely to adopt if high quality roof (e.g. concrete, tiles, metal)	2	[107, 109]
SHS	More likely to adopt if low quality roof (e.g. grass)	1	[64]	
24. Seasonality/Weather	LPG	More likely to adopt/use LPG in rainy season	3	[66]
			1	[77]
Adoption determinants	Technology Description	Total	Authors	
-----------------------	------------------------	-------	---------	
Less likely to adopt/use LPG in rainy season	SHS Less likely to adopt/use SHS in rainy season	1	[50]	
LPG More likely to adopt if property has a higher number of rooms	3			
SHS More likely to adopt if property has a higher number of rooms	1	[62]		
LPG No significant difference if married	1	[79]		
SHS Less likely to adopt if married	1	[62]		
E-cooking Less likely to adopt e-cooking if live in traditional dwelling	1	[84]		
SHS More likely to adopt LPG if live in modern dwelling	1	[62]		
E-cooking More likely to adopt e-cooking as it is aspirational	1	[85]		
SHS More likely to adopt SHS as it is aspirational, increases social status	1	[44]		
LPG More likely to adopt LPG if household is facing poverty	1	[117]		
SHS Less likely to adopt SHS if household is facing poverty	1	[61]		
LPG Less likely to adopt LPG if there are few shops offering LPG equipment	1	[76]		
SHS Less likely to adopt SHS if there are few shops selling SHS	1	[105]		

Appendix B. LPG specific adoption determinants

Adoption determinants	Description	Total	Authors
Safety concerns	Less likely to adopt LPG due to safety concerns	12	[37, 66, 71, 72, 76, 77, 73–75], [79, 101, 121]
Access to Sanitation (e.g. piped water, toilet)	More likely to adopt LPG if access to sanitation	3	[38, 95, 107]
Electricity access	More likely to adopt LPG if access to electricity	5	[50, 71, 80, 82, 98]
Indoor cooking	Less likely to adopt LPG if access to electricity	1	[68]
Cook is also financial decision maker	More likely to adopt LPG if cooking inside	2	[38, 96]
	Less likely to adopt LPG if cook is also financial decision maker	1	[71]
Taste of food	No significant different	1	[79]
	More likely to adopt LPG as food tastes better than when cooked with alternative fuels	1	[77]
	Less likely to adopt LPG as food tastes worse than when cooked with alternative fuels	1	[96]
Appendix C. SHS specific adoption determinants

Adoption determinants	Description	Total	Authors
Appliance usage (e.g. lighting, phone charging)	More likely to adopt as SHS enables appliance usage	8	[5, 33, 35, 50–54]
SHS capacity	Less likely to adopt if SHS capacity is low	3	[47, 50, 60]
Environmental protection	More likely to adopt SHS due to environmental benefits compared to alternatives	3	[33, 105, 111]
SHS reliability	Less likely to adopt SHS if household does not believe they will receive reliable electricity from their SHS	3	[44, 45, 47]

ORCID iDs

Priti Parikh https://orcid.org/0000-0002-1086-4190

References

[1] SE4All SDG 7.1 - Access to Energy (https://www.seforall.org/goal-7-targets/access)
[2] Petrokovsky G, Harvey W J, Petrokovsky L and Adongo Ochering C 2021 The importance of time-saving as a factor in transitioning from woodfuel to modern cooking energy services: a systematic map Forests 12 1–20
[3] SolarAid 2015 Impact Report
[4] Simkovich S M, Williams K N, Pollard S, Dowdy D, Sinharoy S, Clasen T F, Puzzolo E and Checkley W 2019 A systematic review to evaluate the association between clean cooking technologies and time use in low- and middle-income countries International Journal of Environmental Research and Public Health 16 1–16
[5] Barrie J and Cruickshank H J 2017 Shedding light on the last mile: a study on the diffusion of pay as you go solar home systems in Central East Africa Energy Policy 107 425–36
[6] Nerini F F et al 2018 Mapping synergies and trade-offs between energy and the sustainable development goals Nat. Energy 3 10–5
[7] IEA, IRENA, UNSD, World Bank and WHO 2021 Tracking SDG 7: The Energy Progress Report. World Bank Washington, DC.
[8] ESMAP 2020 The State of Access to Modern Energy Cooking Services Washington, D.C., World Bank Group
[9] Moner-Girona M, Bódis K, Morrissey J, Kougias I, Hankins M, Huld F X, Chenene M L and Attanassov B 2018 User perceptions about clean cookstoves in Kenya and Zambia Off-Grid Energy and Economic Prosperity
[10] Perros T, Büttner P, Leary J and Parikh P 2021 Pay-as-You-Go LPG : a mixed-methods pilot study in Urban Rwanda Energy for Sustainable Development 52 128–46
[11] Mentis D et al 2017 Lighting the world: the first application of an open source, spatial electrification tool (OnSSET) on Sub-Saharan Africa Environ. Res. Lett. 12 085003
[12] Kemausuor F, Adkins E, Adu-Poku I, Brew-Hammond A and Modi V 2014 Electrification planning using network planner tool: the case of Ghana Energy for Sustainable Development 19 92–101
[13] Puranampriddhi A and Parikh D P 2021 Off-Grid Energy and Economic Prosperity London, UK
[14] Bisaga I, Parikh J, Tomei J and To L S 2021 Mapping synergies and trade-offs between energy and the sustainable development goals: a case study of off-grid solar energy in Rwanda Energy Policy 149 1–8
[15] Kizilcec V et al 2020 How digital technology can support the transition to clean cooking in Sub-Saharan Africa: A systematic review of the evidence Environ. Sci. Technol. 54 3317–27
[16] Puzzolo B E, Cloke J, Parikh J, Evans A and Pope D 2020 National scaling up of LPG to Achieve SDG7: implications for policy, implementation
[17] Bisaga I, Parikh J, Pompei J and To L S 2021 Mapping synergies and trade-offs between energy and the sustainable development goals: a case study of off-grid solar energy in Rwanda Energy Policy 149 1–8
[18] Levin T and Thomas V M 2016 Can developing countries leapfrog the centralized electrification paradigm? Energy for Sustainable Development 31 97–107
[19] Avi S 2021 Leveraging Off-Grid Solar Infrastructure for Modern Cooking, Clean Cooking Alliance
[20] Jurisso M, Lambre F and Osborne M 2018 Beyond burning: the application of service design methodology to understand adoption of clean cookstoves in Kenya Environ. Sci. Technol. 52 904–15
[21] Puzzolo B E, Cloke J, Parikh J, Evans A and Pope D 2020 National scaling up of LPG to Achieve SDG7: implications for policy, implementation
[22] Bisaga I, Parikh J, Tomei J and To L S 2021 Mapping synergies and trade-offs between energy and the sustainable development goals: a case study of off-grid solar energy in Rwanda Energy Policy 149 1–8
[23] Bboxx 2021 Bboxx Cook: Overcoming the Global Challenge of Clean Cooking
[24] EarthSpark International 2020 On- and Off-(micro)grid PV Electric Cooking: Field data for integrated energy access in Haiti MECS LEIA round I report EarthSpark International Washington, DC, US
[25] Rehfuess E, Puzzolo E, Stanisstreet D, Pope D and Bruce N G 2014 Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review
[26] ESMAP 2020 What Drives the Transition to Modern Energy Cooking Services?: A Systematic Review of the Evidence World Bank Washington, DC. (https://openknowledge.worldbank.org/handle/10986/35199)
[27] SE4All Universal Integrated Energy Plans
[28] ESMAP and MECS 2022 Clean Cooking Planning Tool
[31] Kizilcev V, Parikh P and Bisaga I 2021 Examining the journey of a pay-as-you-go solar home system customer: a case study of Rwanda Energies 14 1–26
[32] USAID 2022 Off-Grid Solar Market Assessments & Additional Resources
[33] Dugoua E and Urpelainen J 2014 Relative deprivation and energy poverty: when does unequal access to electricity cause dissatisfaction? Int. J. Energy Res. 38 1727–40
[34] Lay J, Ondracek J and Stoever J 2013 Renewables in the energy transition: evidence on solar home systems and lighting fuel choice in Kenya Energy Econ. 40 350–9
[35] Boamah F 2020 Emerging low-carbon energy landscapes and energy innovation dilemmas in the Kenyan Periphery Ann Am Assoc Geo 110 145–65
[36] Clean Cooking Alliance 2019 2019 Clean Cooking Industry Snapshot Washington DC, US
[37] Stanistreet D, Hyseni L, Puzzolo E, Higgenson J, Ronzi S, de Cuevas R A, Adekojo O, Bruce N, Ngahane B M and Pope D 2019 Barriers and facilitators to the adoption and sustained use of cleaner fuels in southwest cameroon: situating ‘lay’ knowledge within evidence-based policy and practice International Journal of Environmental Research and Public Health 16 1–18
[38] Pye A, Ronzi S, Ngahane B H M, Puzzolo E, Asu A H and Pope D 2020 Drivers of the adoption and exclusive use of clean fuel for cooking in Sub-Saharan Africa: learnings and policy considerations from Cameroon International Journal of Environmental Research and Public Health 17 1–24
[39] Chowdhrury S A and Moursheid M 2016 Off-grid electrification with solar home systems: an appraisal of the quality of components Renewable Energy 97 585–98
[40] Laufer D and Schäfer M 2011 The implementation of solar home systems as a poverty reduction strategy—a case study in Sri Lanka Energy for Sustainable Development 15 330–6
[41] Azimoh C L, Klintenberg P, Wallin F and Karlsson B 2015 Illuminated but not electrified: an assessment of the impact of solar home system on rural households in South Africa Appl. Energy 155 554–64
[42] GOGLA 2021 Global Off-Grid Solar Market Report Semi-Annual Sales and Impact Data January–June pp 1–88 Amsterdam, Netherlands
[43] Rothfuss E and Boamah F 2020 Politics and (Self)-organisation of electricity system transitions in a global North-South Perspective. Politics and Governance 8 162–72
[44] Opiyo N 2016 A survey informed PV-based cost-effective electrification options for rural Sub-Saharan Africa Energy Policy 91 1–11
[45] Ugulu A I and Aigbayobo C 2019 Motives for Solar Photovoltaic (PV) Adoption in Urban Nigeria Proc. of the IOP Conf. Series: Earth and Environmental Science 385, 012012
[46] Opiyo N N 2019 Impacts of neighbourhood influence on social acceptance of small solar home systems in Rural Western Kenya Energy Research and Social Science 52 91–8
[47] Anugwom E E, Anugwom K N and Eya O I 2020 Clean energy transition in a developing society: perspectives on the socioeconomic determinants of solar home systems adoption among urban households in Southeastern Nigeria African Journal of Science, Technology, Innovation and Development 12 653–61
[48] Stojanovski O, Thurber M and Wolak F 2017 Rural energy access through solar home systems: use patterns and opportunities for improvement Energy for Sustainable Development 37 33–50
[49] Boamah EF and Murshid N S 2019 ‘Techno-market fix’? Decoding wealth through mobile money in the Global South Geoforum 106 253–62
[50] Wamukonya N and Davis M 2001 Socio-economic impacts of rural electrification in namibia: comparisons between grid, solar and unelectrified households Energy for Sustainable Development 5 5–13
[51] Gustavsson M and Ellegård A 2004 The impact of solar home systems on rural livelihoods. experiences from the nyimba energy service company in Zambia Renewable Energy 29 1059–72
[52] Samarakoona S 2020 The troubled path to ending darkness: energy injustice encounters in Malawi’s off-grid solar market Energy Research & Social Science 69 1–10
[53] Bisaga I and Parikh P 2018 ‘To climb or not to climb?’ Investigating energy use behaviour among solar home system adopters through energy ladder and social practice lens Energy Research and Social Science 44 293–305
[54] Smit S, Musango J K and Brent A C 2019 Understanding electricity legitimacy dynamics in an urban informal settlement in South Africa: a community based system dynamics approach Energy for Sustainable Development 49 39–52
[55] Khandaker S R, Samad H, Saduzzaman M, Yusuf R and Hasan S K E 2014 Surge in Solar-Powered Homes: Experience in Off-Grid Rural Bangladesh (Washington, DC: World Bank Group) [https://doi.org/10.1596/978-1-4648-0374-1]
[56] Thomas P J M, Sandwell P, Williamson S J and Harperea P W 2021 A PESTLE analysis of solar home systems in refugee camps in Rwanda Renew. Sustain. Energy Rev. 143 1–12
[57] Scott I 2017 A business model for success: enterprises serving the base of the pyramid with off-grid solar lighting Renew. Sustain. Energy Rev. 70 50–5
[58] Groenewoudt A C, Romijn H A and Alkemade F 2020 From fake solar to full service: an empirical analysis of the solar home systems market in Uganda Energy for Sustainable Development 58 100–11
[59] Bawakyillenus S 2009 Policy and institutional failures: photovoltaic solar household system (PV/SHS) dissemination in Ghana Energy and Environment 20 927–47
[60] Green J M, Wilson M and Cavwood W 2001 Mapaphephete rural electrification (photovoltaic) programme: the constraints on the adoption of solar home systems Dev South Af 18 19–30
[61] Obeng G Y, Evers H-D, Akuffo F O, Braimah I and Brew-Hammond A 2008 Solar photovoltaic electrification and rural energy-poverty in Ghana Energy for Sustainable Development 12 43–54
[62] Back Y J, Jung T Y and Kang S I 2020 Analysis of residential lighting fuel choice in Kenya: application of multinomial probability models Frontiers in Energy Research 8 1–9
[63] Gupta D D 2018 Determinants of household adoption of solar energy technology in Rural Ethiopia J. Clean. Prod. 204 193–204
[64] Diallo A and Moussa R K 2020 The effects of solar home system on welfare in off-grid areas: evidence from Côte d’Ivoire Energy 194 116835
[65] Smith M G and Urpelainen J 2014 Early adopters of solar panels in developing countries: evidence from Tanzania Review of Policy Research 31 17–37
[66] Jewitt S, Attagora P and Clifford M 2020 ‘We cannot stop cooking’: stove stacking, seasonality and the risky practices of household cookstove transitions in Nigeria Energy Research and Social Science 61 1–10
[67] Poblete-Cazeneuve M and Pachauri S 2018 A structural model of cooking fuel choices in developing countries Energy Econ. 75 449–63
[68] Megbowon E, Mukarumbwa P, Ojo S and Olalekan O S 2018 Household cooking energy situation in Nigeria: insight from Nigeria malaria indicator survey 2015 International Journal of Energy Economics and Policy 8 284–91

[69] Fall A, Sarr S, Dafrahall T and Ndour A 2008 Modern energy access in Peri-Urban areas of West Africa: the case of Dakar, Senegal Energy for Sustainable Development 12 22–37

[70] Doggart N, Ruhinduka R, Meshack C K, Ishengoma R C, Morgan-Brown T, Abdallah J M, Spracklen D V and Salgu S M 2020 The influence of energy policy on charcoal consumption in urban households in Tanzania Energy for Sustainable Development 57 209–13

[71] Dalaba M, Alirigia R, Mesenbring E, Coffey E, Brown Z, Hannigian M, Wiedinmyer C, Oduro A and Dickinson K L 2018 Liquidified petroleum gas (LPG) supply and demand for cooking in Northern Ghana Ecol. Earthsci. 15 716–28

[72] Garulli L, Gautier D and Montagne P 2019 Household energy transition in Sahelian cities: an analysis of the failure of 30 years of energy policies Mali Energy Policy 129 1089–90

[73] Yiran G A B, Ablo A D and Asem F E 2020 Urbanisation and domestic energy trends: analysis of household energy consumption patterns in relation to land-use change in Peri-Urban Accra, Ghana Land Use Policy 99 105047

[74] Wiedinmyer C, Dickinson K, Piedrahita R, Kanyome E, Coffey E, Hannigian M, Alirigia R and Oduro A 2017 Rural–urban differences in cooking practices and exposures in Northern Ghana Environ. Res. Lett. 12 1–9

[75] Bruce N, de Cuesvas R A, Cooper J, Enonchong B, Ronzi S, Puzzolo E, MBatchou B and Pope D 2018 The government–led initiative for LPG scale-up in Cameroon: programme development and initial evaluation Energy for Sustainable Development 46 103–10

[76] Ronzi S, Puzzolo E, Hysen L, Hijjerson J, Stanisstreet D, Hugo M N R, Bruce N and Pope D 2019 Using video voice methodologies as a community-based participatory research tool to advance uptake of clean cooking and improve health: the LPG adoption in Cameroon evaluation studies Social Science & Medicine 228 30–40

[77] Abdulm A A et al 2018 Experiences with the mass distribution of LPG stoves in rural communities of Ghana Ecol. Earthsci. 15 757–67

[78] Ateba B B, Prinsloo J J and Fourie E 2018 The impact of energy fuel choice determinants on sustainable energy consumption of selected South African households Journal of Energy in Southern Africa 29 51–63

[79] Baiyegunhi L J S and Hassan M B 2014 Rural household fuel energy transition: evidence from Giwa LGA Kaduna State, Nigeria Energy for Sustainable Development 20 30–5

[80] Coley W, Eales A, Frame D, Galloway S and Archer L 2020 A market assessment for modern cooking in Malawi Development for Sustainable Development 117 266–77

[81] Alem Y, Hassen S and Kohlin G 2014 Modeling household cooking fuel choice: a panel multinomial logit approach Energy for Sustainable Development 15 1–13

[82] Sana A, Kafando B, Dramaix M, Meda N and Bouland C 2020 Household energy choice for domestic cooking: distribution and factors influencing cooking fuel preference in Ouagadougou Ecohealth 15 67–71

[83] Denning D and Thompson J 2014 Who adopts LPG as the main cooking fuel and why? Empirical evidence on Ghana based on a national survey Energy Econ. 38 110–24

[84] Ngu D, Mutua J, Osioho H and Aligula E 2011 Household energy demand in Kenya: an application of the linear approximate ideal demand system Energy Econ. 33 7084–94

[85] Alem Y, Heyene A D, Kohlin G and Mekonnen A 2016 Modeling household cooking fuel choice: a panel multinomial logit approach Energy Econ. 59 129–37

[86] Hellberg R 2004 Fuel switching: evidence from eight developing countries Energy Econ. 26 869–87

[87] Alstone P and Jacobson A 2018 LED advances accelerate universal access to electric lighting C.R. Phys. 19 146–58

[88] Shuler M et al 2021 Modelling of supply and demand-side determinants of liquefied petroleum gas consumption in Peri-Urban Cameroon, Ghana and Kenya Nat. Energy (https://doi.org/10.1038/s41550-021-00913-3)

[89] Blimpo M P and Cosgrove-Davies M 2019 Electricity access in Sub-Saharan Africa: Uptake, reliability, and complementary factors for economic impact (AfricaDevelopment Forum series) (Washington, D.C.; World Bank) (https://doi.org/10.1596/978-1-4648-1361-0)

[90] Banjerje M, Prasad R, Rehman I H and Gill B 2016 Induction stoves as an option for clean cooking in Rural India Energy Policy 88 159–67

[91] Sana A, Kafando B, Dramaix M, Meda N and Bouloud 2020 Household energy choice for domestic cooking: distribution and factors influencing cooking fuel preference in Ouagadougou Environmental Science and Pollution Research 27 13892–10

[92] Martey E 2019 Tenancy and energy choice for lighting and cooking: evidence from Ghana Energy Econ. 80 570–81

[93] Karimu A, Mensah J T and Adu G 2016 Who adopts LPG as the main cooking fuel and why? Empirical evidence on Ghana based on national survey World Development 85 43–57

[94] Panigrahy S, Mishra N K, Mishra S C and Muthukumar P 2016 Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner Energy 95 404–14

[95] Obeng G Y, Akuffo F O, Braimah I, Evers H-D and Mensah E 2008 Impact of solar photovoltaic lighting on indoor air smoke in off-grid Rural Ghana Energy for Sustainable Development 12 55–61

[96] Visacq E 2008 The supply of clean energy services to the urban and Peri-Urban Poor in South Africa Energy for Sustainable Development 12 14–21

[97] Kebede K Y, Mitsuui T and Choi E K 2014 After-sales service and local presence: key factors for solar energy innovations diffusion in developing countries Proc. of the PICMET 2014 – Portland Int. Center for Management of Engineering and Technology, Proc.: Infrastructure and Service Integration pp 3124–30

[98] Grimm M, Lenz L, Peters J and Suwitz M 2020 Demand for off-grid solar electricity: experimental evidence from Rwanda J Assoc. Environ. Resour. Econ. 7 417–54

[99] Boumah F and Rothflüe E 2018 From technical innovations towards social practices and socio-technical transition? Re-thinking the transition to decentralised solar PV electrification in Africa Energy Research & Social Science 42 1–10
[105] Gebreslassie M G 2020 Solar home systems in Ethiopia: sustainability challenges and policy directions Sustainable Energy Technologies and Assessments 42 1–11

[106] Ochieng C A, Zhang Y, Nyabwa J K, Otieno D I and Spillane C 2020 Household perspectives on cookstove and fuel stacking: a qualitative study in Urban and Rural Kenya Energy for Sustainable Development 59 151–9

[107] Rahut D B, Behera B and Ali A 2016 Patterns and determinants of household use of fuels for cooking: empirical evidence from Sub-Saharan Africa Energy 117 93–104

[108] Ifegbesan A P, Rampedi I T and Annegarn H J 2016 Nigerian households’ cooking energy use, determinants of choice, and some implications for human health and environmental sustainability Habitat International 55 17–24

[109] Castán Broto V, Arthur M D F S R and Guibrunet L 2020 Energy profiles among urban elite households in mozambique: explaining the persistence of charcoal in urban areas Energy Research & Social Science 65 1–10

[110] Treiber M U, Grimsby L K and Aune J B 2015 Reducing energy poverty through increasing choice of fuels and stoves in Kenya: complementing the multiple fuel model Energy for Sustainable Development 27 54–62

[111] Boamah F and Rothfuß E 2020 ‘Practical recognition’ as a suitable pathway for researching just energy futures: seeing like a ‘modern’ electricity user in Ghana Energy Research & Social Science 60 1–12

[112] Green J M and Zwebe D I 2006 From SHS to grid electricity in low-income rural households Journal of Energy in Southern Africa 17 10–6

[113] Lemaire X 2011 Off-grid electrification with solar home systems: the experience of a fee-for-service concession in South Africa Energy for Sustainable Development 15 277–83

[114] Gustavsson M 2007 With time comes increased loads—an analysis of solar home system use in Lundazi, Zambia Renewable Energy 32 796–813

[115] Ulsrud K 2020 Access to electricity for all and the role of decentralized solar power in Sub-Saharan Africa Norsk Geografisk Tidsskrift 74 54–63

[116] Karekezi S, Kimani J and Onguru O 2008 Energy access among the Urban Poor in Kenya Energy for Sustainable Development 12 38–48

[117] Olang T A, Esteban M and Gasparatos A 2018 Lighting and cooking fuel choices of households in Kisumu city, Kenya: a multidimensional energy poverty perspective Energy for Sustainable Development 42 1–13

[118] Abdul-Salam Y and Phimister E 2019 Modelling the impact of market imperfections on farm household investment in stand-alone solar PV systems World Development 116 66–76

[119] Jacobson A 2007 Connective power: solar electrification and social change in Kenya World Development 35 144–62

[120] Lemaire X 2009 Fee-for-service companies for rural electrification with photovoltaic systems: the case of Zambia Energy for Sustainable Development 13 18–23

[121] Ngoma R, Tambatamba A, Oyoo B, Mulongoti D, Kumwenda B and Louie H 2018 How households adapted their energy use during the Zambian energy crisis Energy for Sustainable Development 44 125–38