Improvement in the Anal Function in Rats via Electrical Muscle Stimulation

Masahiko Nakayama¹, Shinichiro Ito¹, Fumihiko Fujita², Yusuke Inoue¹, Izumi Yamaguchi¹, Kazuma Kobayashi¹, Yuka Mine¹, Kengo Kanetaka¹, Yuichiro Honda³, Minoru Okita³, Susumu Eguchi¹

Corresponding author:
Dr. Susumu Eguchi
Professor
Department of Surgery
Nagasaki University Graduate School of Biomedical Sciences
1-7-1 Sakamoto, Nagasaki
852-8501, Japan
E-mail: sueguchi@nagasaki-u.ac.jp

INTRODUCTION

It was reported that the use of intersphincteric resection (ISR), anal-preserving surgery, could be adapted for patients with tumors localized to the lower
The physical perceptions and lifestyle could be preserved by ISR instead of permanent colostomy. Also, it has been reported that the oncological outcomes of ISR and abdominoperineal resection were comparable, and the functional assessment of ISR were reasonable (2,3). However, while fecal incontinence after ISR has improved gradually, some patients are unable to completely recover for the rest of their lives. Fecal incontinence influences the quality of daily life and thus remains a critical issue after ISR.

The therapeutic choices for fecal incontinence are usually medication, diet and surgery (4). Surgical treatment can be applied for repairing a impaired anal sphincter, especially the external anal sphincter; however, the function of the sphincter muscles become deteriorated over long-term follow up period, therefore effective therapeutic management for internal anal sphincter dysfunction are highly desired (5). Several novel therapeutic options such as bulking agents, artificial bowel sphincter etc., have been proposed, but they are not completely accepted yet. Lately, several articles have reported that mesenchymal stem cells (MSC) can improve the function of the anal sphincter after an injury in animal models, including one from our own laboratory (6,7).

One of our co-authors, M.O., previously reported the effect of transcutaneous electrical nerve stimulation (EMS) for induced muscle contracture and fibrosis in rats (8). In addition, we previously reported an experimental rat model of anal sphincter dysfunction with anal sphincter resection (9). In the present study, we attempted to use EMS to treat incontinence using our animal model of surgically induced incontinence.

MATERIALS AND METHODS

All procedures were performed in accordance with the protocols approved by the Animal Care and Use Committee of Nagasaki University.

The experiment was conducted by randomly assigning 10 animals to the electrical stimulation group (EMS group) and 10 to the control group. The animals were kept in a temperature - and humidity-well controlled environment with a 12-h light-dark cycle. They were kept in a laboratory (6,7).

Electrical stimulation was applied by attaching electrical pads around the anus of the rat using an electrical stimulator, which was provided by Alcare Co. Ltd. (Tokyo, Japan) for this experiment. The stimulation program was executed with a stimulator with a regimen of 4-mA amplitude at 50 Hz for 60 min, 3 times per week, for 56 days after the surgery, which was referred from our previous paper with some modification (10).

The anal pressure was measured and recorded immediately before resection as a baseline and on post-operative days (PODs) 1, 7, 14, 21, 28, 35, 42, 49 and 56 after the surgery (9). Under inhalation anesthesia, the resting anal pressure was measured using a catheter with a microminiature silicon strain gauge-type sensor installed at one end (CODMAN MICROSENSOR ICP Transducer; Codman, Raynham, MA, USA), connected with a low profile connector (TEC-10D cable; Millar Instruments, Houston, TX, USA), pressure control unit (TCB-500; Millar Instruments) and digital data recording system (PowerLab 4 / 30; ADInstruments, Nagoya, Japan) as described in our previous study (9). The mean pressures at each time point were emasured and compared the control group with the EMS group.

On POD 56, the animals were killed with an overdose of inhaled anesthetic agent. The histological changes in the rectum and anal canal of the both groups were investigated. The anal portion of the rats were dissected in parallel along the dorsal and ventral sides, and fixed in 4% paraformaldehyde phosphate-buffered solution (Wako Chemical Industries, Miyazaki, Japan), embedded in paraffin, sectioned (5 μm) and stained with hematoxylin and eosin (H&E).

GraphPad Prism 5.0 software (Graph Pad Software Inc., San Diego, CA, USA) was applied to analyze the current data set. Experiments were analyzed using the Mann-Whitney test. The probability of p<0.05 was considered statistically significant. All values are shown as the mean ± standard deviation.

RESULTS

Preoperatively, the resting anal pressure was 23.02 mmHg in the control group and 22.18 mmHg in the EMS group. One day after the surgery, these values dropped to 3.32 mmHg in the control group and 22.18 mmHg in the EMS group. The anal pressure in the control group remained low until eight weeks after the surgery. However, the rate of improvement of the anal pressure was significantly greater in the EMS group than in the control group (293.4% vs. 129.6%, p<0.005) (fig. 1).

Histologically, the width of whole thickest wall of the sphincter bundle did not differ significantly between the groups (fig. 1). However, the internal anal sphincter...
muscle bundles of the EMS group were significantly thicker at 2 months after the surgery (1.22 times thicker than the external ones, p<0.05) (fig. 3a) while no such change was noted in the external anal sphincter muscle bundles (fig. 3b).

DISCUSSIONS

The main result of this study was that the non-pharmacological intervention TENS resulted in improvement in the intrarectal pressure at 1 month and after partial sphincter muscle resection. These results suggest that low-intensity muscle contraction exercise is beneficial for resolving incontinence after rectal surgery.

Electrical stimulation of the anal sphincter, such as sacral neuromodulation (SNM) has the possibility to improve anal sphincter dysfunction induced by ano-rectal surgical procedure, including ISR (11-13). However, SNM requires invasive surgery to install the stimulation apparatus, which is cumbersome and expensive. In contrast, EMS, which has an external stimulation system, requires only an electrical power source, making it very safe and cost-effective. In addition, little evidence exists concerning the mechanism by which SNM resolves fecal incontinence in small animal models, as most such experiments have been done for urinary incontinence rather than fecal incontinence. Therefore, we believe that EMS could be used more simply for patients with dysfunction in anal

Figure 1 - Improvement rate of pressure.
The rate of improvement was significantly improved in EMS group. Improvement rate: (pressure of dayX / day1) x 100

Figure 2 - Histological evaluation
There was no significant difference in the width of whole anal sphincter muscles

Masahiko Nakayama et al
sphincter due to anorectal surgical procedure such as ISR.

The rate of improvement of the anal pressure was greater in the EMS group than in the control group in the present study and may improve the anal pressure significantly. The new and improved EMS protocol shown here may help make the anal sphincter thicker. However, only the internal anal sphincter muscle bundles of the EMS group became significantly thicker in the present study. An additional study is needed to reveal the reason why only the internal anal sphincter muscle bundles, and not the external ones, became thicker in this study.

Several limitations associated with the present study warrant mention. First, we did not collect any blood samples or perform muscle biopsies in the present study. Data on humoral factors, the local expression of growth factors, genetic signaling and detailed information about muscle hypertrophy obtained by these approaches may strengthen our findings. It is very important to perform massage in exercise therapy and prescription. Second, in the present study, we were unable to demonstrate that the increases in muscle mass and strength with our training method led to an improvement in the overall performance. Although it is difficult to measure muscle

Figure 3 - (a) Histological evaluation
There was a significant difference in the width of the width of internal anal sphincter bundles.
(b) There was no significant difference in the width of the width of external anal sphincter bundles.

![Figure 3](image-url)
strength in a rodent model, it could be ideal to show the improvement of muscle contraction force using mechanic approach. Third, the surgical procedure in this study was sphincterotomy by the removal of a left half of both the internal and external anal sphincters through a posterior incision. It is somewhat different from ISR for human patients with rectal cancer. Finally, combination therapy with EMS and regenerative therapy may synergistically increase the effects of each treatment (7).

CONCLUSIONS

EMS to the anal sphincter has the possibility to ameliorate dysfunction of the anal sphincter induced by anorectal surgery, including ISR.

Statement of Ethics

Ethics Committee approval whole experimental procedure and concepts.

Funding Information

This work was supported in part by a grant from JSPS KAKENHI Grant Number 17K10638 to F. Fujita. The funders had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript.

Disclosure Statement

All authors declare no conflict of interest regarding this article.

REFERENCES

1. Schiessel R, Karner-Hanusch J, Herbst F, Teleky B, Wunderlich M. Intersphincteric resection for low rectal tumours. Br J Surg. 1994;81(9):1376-8.
2. Kuo LJ, Hung CS, Wu CH, Wang W, Tam KW, Liang HHH, et al. Oncological and functional outcomes of intersphincteric resection for low rectal cancer. J Surg Res. 2011;170(1):e93-8.
3. Chamliou R, Parc Y, Simon T, Bennis M, Dehni N, Parc R, et al. Long-term results of intersphincteric resection for low rectal cancer. Ann Surg. 2007;246(6):916-21; discussion 21-2.
4. Whitehead WE, Wald A, Norton NJ. Treatment options for fecal incontinence. Dis Colon Rectum. 2001;44(1):131-42.
5. Tjandra JJ, Dykes SL, Kumar RR, Ellis CN, Gregorczyk SG, Hyman NH, et al. Practice parameters for the treatment of fecal incontinence. Dis Colon Rectum. 2007;50(10):1497-507.
6. Lorenzi B, Pessina F, Lorenzoni P, Urbani S, Vernillo R, Sgaraglì G, et al. Treatment of experimental injury of anal sphincters with primary surgical repair and injection of bone marrow-derived mesenchymal stem cells. Dis Colon Rectum. 2008;51(4):411-20.
7. Inoue Y, Fujita F, Yamaguchi I, Kioke H, Kawahara D, Sakai Y, et al. Improvement of anal function by adipose-derived stem cell sheets. Dig Surg. 2018;35(1):64-69.
8. Ishikawa K, Kajiwara Y, Sakamoto J, Sasaki R, Goto K, Honda Y, et al. Low-intensity muscle contraction exercise following the onset of arthritis improves hyperalgesia via reduction of joint inflammation and central sensitization in the spinal cord in a rat model. Neururosci Lett. 2019 Apr 24;706:18-23.
9. Yamaguchi I, Fujita F, Yamanouchi K, Mishima T, Kawahara D, Sakai Y, et al. A novel animal model of long-term sustainable anal sphincter dysfunction. J Surg Res. 2013;184(2):813-8.
10. Yoshimura A, Sakamoto J, Honda Y, Kato K, Nakano J, Okita M. Cyclic muscle twitch contraction inhibits immobilization-induced muscle contracture and fibrosis in rats. Connect Tissue Res. 2017;58(5):487-95.
11. Lagares-Tena L, Millán-Paredes L, Láaro-García L, Navarro-Luna A, Delgado-Rivilla S, Muñoz-Duyos A. Sacral neuromodulation in patients with congenital faecal incontinence. Special issues and review of the literature. Tech Coloproctol. 2018;22(2):89-95.
12. Rydningen MB, Riise S, Wilsgaard T, Lindsetmo RO, Norderval S. Sacral neuromodulation for combined faecal and urinary incontinence following obstetric anal sphincter injury. Colorectal Dis. 2018;20(1):59-67.
13. Mizrahi I, Chadi SA, Haim N, Sands DR, Gurland B, Zutshi M, et al. Sacral neuromodulation for the treatment of faecal incontinence following proctectomy. Colorectal Dis. 2017;19(S):S145-62.