Emerging roles of lactic acid bacteria in protection against colorectal cancer

Li Zhong, Xufei Zhang, Mihai Covasa

Li Zhong, Xufei Zhang, Mihai Covasa, Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States
Li Zhong, Xufei Zhang, Department of Cell Biology, College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
Mihai Covasa, Institut National de la Recherche Agronomique (INRA), UMR1319 Micalis, Domaine de Vilvert, 78352 Jouy-en-Josas, France
Mihai Covasa, Department of Human and Health Development, University of Suceava, Suceava 720229, Romania

Author contributions: All authors conceptualized and wrote the manuscript.

Supported by Grant No. NSFC-81272444 to Zhong L; and No. PN-II-ID-PCE-2012-4-0608 Nr. 48/02.09.2013 to Covasa M

Correspondence to: Li Zhong, Associate Professor, Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309E Second Street, Pomona, CA 91766, United States. lzhong@westernu.edu
Telephone: +1-909-4698220 Fax: +1-909-4695698
Received: November 27, 2013 Revised: March 1, 2014
Accepted: March 12, 2014
Published online: June 28, 2014

Abstract

Colorectal cancer (CRC) is the third leading cause of cancer deaths worldwide and the fourth most common cancer diagnosed among men and women in the United States. Considering the risk factors of CRC, dietary therapy has become one of the most effective approaches in reducing CRC morbidity and mortality. The use of probiotics is increasing in popularity for both the prevention and treatment of a variety of diseases. As the most common types of microbes used as probiotics, lactic acid bacteria (LAB) are comprised of an ecologically diverse group of microorganisms united by formation of lactic acid as the primary metabolite of sugar metabolism. LAB have been successfully used in managing diarrhea, food allergies, and inflammatory bowel disease. LAB also demonstrated a host of properties in preventing colorectal cancer development by inhibiting initiation or progression through multiple pathways. In this review, we discuss recent insights into cellular and molecular mechanisms of LAB in CRC prevention including apoptosis, antioxidant DNA damages, immune responses, and epigenetics. The emerging experimental findings from clinical trials as well as the proposed mechanisms of gut microbiota in carcinogenesis will also be briefly discussed.

Key words: Gut bacteria; Gastrointestinal; Carcinogenesis; Probiotics; Microbiota

Core tip: The gastrointestinal tract inhabits trillions of bacteria that interact with the host at multiple levels to maintain its normal functions. Disruptions in this complex cross-talk ecosystem result in physiological changes associated with colorectal tumorigenesis, including cell proliferation, immune responses and apoptosis. This review summarizes the role of lactic acid bacteria as anti-tumorigenic probiotics and suggests the possibility of altering gut microbiota to prevent or halt development of colorectal cancer.

INTRODUCTION

Colorectal cancer (CRC) is one of the major health challenges, representing the second cause of cancer deaths and the fourth most common cancer diagnosed among...
Table 1 List of lactic acid bacterial strains and their functions

Prevention	LAB strains	Functions
Apoptosis	Lactobacillus acidophilus	Anti-cancer cell growth and differentiation
	L. reuteri	Direct induction of Beclin-1 and GRP78
	L. acidophilus and L. rhamnosus	Proliferation (Cox-2, cyclin D1) and cell survival (Bcl-2, Bcl-xL)
	L. acidophilus and L. casei	Enhances MAPK activities including c-Jun N-terminal kinase and p38 MAPK
Antioxidant	Streptococcus thermophilus	Induce Beclin-1 and GRP78, as well as indirectly through the induction of Bcl-2 and Bak
DNA damage	L. acidophilus	5-fluorouracil apoptosis induction
Immune response	LTA-deficient L. acidophilus	Antioxidative activity, inhibiting linooleic acid peroxidation
Improvement	L. acidophilus, L. casei and B. longum	Releasing ROS protective factors
	L. casei Shirata (LeS)	Stimulates DCs to produce inflammatory cytokines IL-12 and regulatory IL-10
	B. adolescentis	Induces IL-10 in DCs, down-regulates IL-12 levels
Epigenetics	LTA-deficient L. acidophilus	Increases densities of effector Foxp3+ Tregs
New anticancer function	L. salivarius FP35	Enhance the total numbers of T cells, NK cells, MHC class II+ cells, and CD4-CD8+ T cells
	L. salivarius FP35	Induces cytokines, such as IFN-γ, interleukin-1β (IL-1β) and TNF-α
	Enterococcus faecium FP35	Increases the production of TNF-α

LAB: Lactic acid bacteria; LTA: Lipoteichoic acid; SCFA: Short-chain fatty acid; DC: Dendritic cell; NK: Natural killer; IL: Interleukin; TNF: Tumor necrosis factor.

AN OVERVIEW OF LAB IN DISEASES

As the most common types of microbes used as probiotics, LAB are comprised of an ecologically diverse group of microorganisms united by formation of lactic acid as the primary metabolite of sugar metabolism, including Lactobacillus, Streptococcus, Enterococcus, Lactococcus, Bifidobacterium and Lactococcus. Their beneficial effects were initially revealed by E. Metchnikoff (1845-1919), a Russian scientist who proposed that extended longevity of the people of Balkan could be attributed to their practice of ingesting fermented milk products[6]. Recent studies showed that LAB could be successfully used to manage diarrhea[10,11], food allergies[12], and inflammatory bowel disease (IBD)[13,14]. The potential role of LAB has been extensively reviewed elsewhere[8,15], and their beneficial effects include reinforcement of the natural defense mechanisms and protection against gastrointestinal disorders[16,17]. Several publications have indicated that LAB play an important role in prevention of CRC[16,18]. Although there is no general consensus on the role of LAB in CRC treatment, it is generally agreed that specific LAB strains can beneficially activate anticancer mechanisms, thereby regulating the host’s immune response[18].

APOPTOSIS INDUCTION BY LAB

Apoptosis is a form of genetically programmed cell death, playing a key role in the regulation of cell numbers (Figure 1)[19,20]. An important pathogenetic event in many types of cancers is the reduced ability to trigger apoptosis associated with alteration of control processes of cell proliferation[21]. The regulation of cell survival and death at molecular level on the apoptotic process can have a huge chemopreventive and therapeutic potential[22]. Several studies showed that LAB can play a role in the regulation of cell apoptosis via intrinsic and extrinsic pathways which are potentially critical mechanisms in the prevention of CRC. Chen et al.[23] analyzed the effect of oral administration of Lactobacillus acidophilus (L. acidophilus) on colorectal cancer in mice. Their results indicated that L. acidophilus reduced the severity of colorectal carcinogenesis, indicating their potential mechanisms of action.
cinogenesis and enhanced apoptosis in treated mice. It has been shown that *Lactobacillus reuteri* (*L. reuteri*) may prevent colorectal cancer via downregulating nuclear factor-kappaB (NF-κB)-dependent gene products which regulate cell proliferation (Cox-2, cyclin D1) and survival (Bcl-2, Bcl-xL)\[^{24}\]. Furthermore, *L. reuteri* suppressed tumor necrosis factors (TNF)-induced NF-κB activation including NF-κB-dependent reporter gene expression in a dose- and time-dependent manner to slow down cancer cell growth. Such activities of *L. reuteri* might be involved in the extrinsic pathway of apoptosis by which LAB act to protect against CRC (Figure 1). Other studies reported that exopolysaccharides of *Lactobacillus acidophilus* and *L. rhamnosus* were antitumourigenic against HT-29 colon cancer cells and that this activity was due to the activation of autophagic cell death promoted directly by the induction of Beclin-1 and GRP78, as well as indirectly through the induction of Bcl-2 and Bak. LAB may act to prevent cancer via downregulating nuclear factor-kappaB (NF-κB)-dependent gene products which regulate cell proliferation (Cox-2, cyclin D1) and survival (Bcl-2, Bcl-xL). The apoptosis signaling pathways can be activated by lactic acid bacteria (LAB) through the extrinsic and intrinsic pathways. The extrinsic pathway engages Fas/tumor necrosis factor receptors or other factors to induce caspase related pathway. The intrinsic pathway requires mitochondrial localization and activation of Bax and Bak that can be prevented by anti-apoptotic Bcl-2 family proteins or pharmacologic inhibitors. LAB enhanced the apoptosis induction capacity of 5-fluorouracil (5-FU) and induced the activation of autophagic cell death promoted directly by the induction of Beclin-1 and GRP78, as well as indirectly through the induction of Bcl-2 and Bak. LAB may act to prevent cancer via downregulating nuclear factor-kappaB (NF-κB)-dependent gene products which regulate cell proliferation (Cox-2, cyclin D1) and survival (Bcl-2, Bcl-xL).

Figure 1 Potential mechanisms of action of lactic acid bacteria via extrinsic and intrinsic pathways of apoptosis\[^{19,20}\]. The apoptosis signaling pathways can be activated by lactic acid bacteria (LAB) through the extrinsic and intrinsic pathways. The extrinsic pathway engages Fas/tumor necrosis factor receptors or other factors to induce caspase related pathway. The intrinsic pathway requires mitochondrial localization and activation of Bax and Bak that can be prevented by anti-apoptotic Bcl-2 family proteins or pharmacologic inhibitors. LAB enhanced the apoptosis induction capacity of 5-fluorouracil (5-FU) and induced the activation of autophagic cell death promoted directly by the induction of Beclin-1 and GRP78, as well as indirectly through the induction of Bcl-2 and Bak. LAB may act to prevent cancer via downregulating nuclear factor-kappaB (NF-κB)-dependent gene products which regulate cell proliferation (Cox-2, cyclin D1) and survival (Bcl-2, Bcl-xL).

ANTIOXIDANT ACTIVITIES OF LAB

The metabolic antioxidant activities of LAB may be assigned to reactive oxygen species (ROS) scavenging, enzyme inhibition, and reduction activity or inhibition of ascorbate autoxidation in the intestine by neutralizing free radicals\[^{27}\]. It is assumed that ROS play a key role in IBD and CRC. Several *in vitro* studies showed that LAB strains possess antioxidant properties and inactivate ROS *via* enzymatic mechanisms such as coupled NADH oxidase/peroxidase system and catalase\[^{28-31}\]. Lin *et al*\[^{32}\] showed that a strain of *Bifidobacterium longum* (*B. longum*) and *L. acidophilus* display antioxidative activity, inhibiting linoleic acid peroxidation by 28%-48% which is dominant in lipid peroxidation process. The heat-killed cells of *L. acidophilus* 606 and the soluble polysaccharide components of
defense is formed by innate immune cells that confer protection against acute inflammation [41]. de Visser et al [42] showed that intestinal inflammation parallels the development of CRC. Probiotics play an important role in this process, with several studies showing their role in increasing the production of IL-10, an anti-inflammatory cytokine [43-45]. In fact, recent studies showed that L. acidophilus stimulated innate cells to produce inflammatory and regulatory cytokines by interacting surface layer proteins with other cell surface components such as lipoteichoic acid (LTA) which is a zwitterionic glycolipid found in the cell wall of several Gram-positive bacterial strains [46-50]. LTA can stimulate DCs through Toll-like receptor 2, resulting in cytokine release [51,52]. Some specific Lactobacillus species can stimulate DCs to produce IL-12 and regulatory, inflammatory cytokine IL-10 [46,47]. However, disruption of LTA synthesis resulted in a L. acidophilus derivative that acts on intestinal immune cells to augment production of IL-10, tumor necrosis factor (TNF-α), interferon (IFN)-γ and IL-1β to inhibit tumor growth. These alterations of cell surface components of L. acidophilus provide a potential strategy for the treatment of colorectal cancer. Reinforcing the role of LTA, studies using LTA-deficient L. acidophilus (NCK2025) strain led to normalization of innate and adaptive pathogenic immune responses and caused regression of established colonic polyps. Not only IL-12 and TNF-α were down-regulated by NCK2025, several recent studies revealed prevention of oxidative DNA damage in human derived colon (HT29) cells by LAB [53]. These results indicate that the majority of strains including Streptococcus thermophilus have a protective effect against oxidative damage by releasing ROS protective factors into the medium. Furthermore, the obligatory homofermentative lactobacilli display high antioxidant activity whereas this property is highly strain-dependent among facultative and obligate heterofermentative lactobacilli [36,37]. Taken together, these studies implicate LAB as key molecules in antioxidant activity which may prevent CRC.

** IMMUNE RESPONSE IMPROVEMENT BY LAB **

The immune system plays a critical role in control of tumor promotion and progression [38]. The interaction of several elements of the immune system, such as antigen-presenting cells (APCs), different subsets of T cells, B cells, natural killer (NK) cells, and dendritic cells (DCs), is usually activated by damage, invasion or mutation [39]. Recent studies implicate LAB in immune responses critical for colorectal cancer prevention and therapeutics [40].

** LTA related protection against pro-inflammation during tumor development **

During tumor development, the first line of immune response is formed by innate immune cells that confer protection against acute inflammation [41]. L. acidophilus can stimulate T cells to release interleukin (IL)-10, IL-12 and increase effector Foxp3 RORγt Tregs. In the anticancer immune response pathway, LAB stimulate the immune cells, such as T cells, dendritic cell (DC), natural killer (NK) and MHC class II cells to induce IL-10, tumor necrosis factor (TNF-α), interferon (IFN)-γ and IL-1β to inhibit tumor growth.

![Figure 2 Immune responses induced by lactic acid bacteria. Lactic acid bacteria (LAB) can provoke immune responses via two main pathways: inflammation and anticancer immune response. The inflammation pathways involve lipoteichoic acid (LTA) which can stimulate T cells to release interleukin (IL)-10, IL-12 and increase effector Foxp3 RORγt Tregs. In the anticancer immune response pathway, LAB stimulate the immune cells, such as T cells, dendritic cell (DC), natural killer (NK) and MHC class II cells to induce IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-1β to inhibit tumor growth.](image-url)
but also IL-10 in DCs was significantly enhanced and CD4+ T-cells were activated. The mice acquired significant protection from colitis with increased densities of effector Foxp3+ RORγγ Tregs in response to oral administration of L. acidophilus NCK2025 \cite{54}(Figure 2).

Anti-tumor immune effects induced by LAB

Under pathological states, such as colon cancer, probiotics may inhibit disease via modulation of the mucosal and systemic immune response and by reduction of the inflammatory response to host microbiota \cite{41}. Another possible anti-tumor mechanism is the activation of immunity by immune cells to fight with the tumor cells, delay the onset of tumor or increase the survival rate. Galdeano et al \cite{43} analyzed the profile of cytokines induced by some LAB strains and observed that the most remarkable effect for all the probiotic strains tested is the increase in TNF-α, interferon-γ (IFN-γ) and the regulatory cytokine IL-10. LAB such as L. acidophilus, Lactobacillus casei (L. casei) and B. longum have been shown to possess immunomodulatory and antitumor effects by suppressing the proliferation of tumor cells and prolonging survival \cite{55}. The increase in survival was correlated with an increase in cellular immunity as reflected by the enhancement in the total numbers of T cells, NK cells and MHC class II+ cells, and CD4-CD8+ T cells in flow cytometry analysis. Several strains of LAB have been shown to exert powerful anti-tumor effects. For example, L. casei Shitota (LeS) has been shown to exert strong anti-metastatic effects on transplantable tumor cells and to suppress chemically-induced carcinogenesis \cite{44}. Intraperitoneal administration of LeS into tumor-bearing mice induced production of several cytokines, such as IFN-γ, interleukin-β (IL-1β) and TNF-α, inhibiting tumor growth and increasing survival \cite{46,47}. Furthermore, oral feeding of LeS significantly enhanced NK cell cytotoxicity which delayed tumor onset or suppressed tumor incidence \cite{48}. Likewise, a butanol extract of another LAB strain, B. adolescentis, significantly increased the production of TNF-α and NO, which regulate immune modulation and are cytotoxic to tumor cells \cite{49}(Figure 2). Taken together, these studies provide convincing evidence demonstrating the important role of LAB and their byproducts in the protection against carcinogenesis processes.

EPIGENETIC TARGETING PRODUCED BY LAB

The term “epigenetics” is used to describe those mechanisms which are able to modify the expression levels of selected genes without necessarily altering their DNA sequences, including DNA methylation, histone tail modifications, chromatin remodeling, as well as mechanisms mediated by non-coding RNA molecules. Epigenetic modifications are often induced by environmental factors \cite{50}. It is now clear that epigenetic phenomena occur together with gene mutation and contribute to the progression of normal colonic mucosa to CRC \cite{51}. Recently, in the field of cancer biology, increasing attention has been given to the role of epigenetic alterations in the etiology of cancer. A particularly active area of research involves histone deacetylase inhibitors (HDACi), a well known class of epigenetic drugs, used not only for cancer therapy but for cancer chemoprevention through strong anti-proliferative effects on tumor cells \cite{52,53}. Probiotic metabolites such as butyrate, a short-chain fatty acid (SCFA), are therefore an important class of therapeutic compounds. Waldenberger et al \cite{56} reported that butyrate was one of the most potent HDACi in human colon cancer cell lines, suggesting an integral role of butyrate as an anti-inflammatory derivative of microbial fermentation in the colon. In studies using folic fermentation, supernatants were found to be rich in butyrate and exhibited strong HDAC inhibitory properties in several colon cancer cell lines \cite{57}. The ability of butyrate to de-repress epigenetically silenced genes in cancer cells, such as cell cycle inhibitor p21 and the pro-apoptotic protein Bcl-2 homologous antagonist/killer, and to activate these genes in normal cells, has important implications for cancer prevention and therapy \cite{58}. It has been hypothesized that increased colonic concentration of butyrate can be an important mediator against CRC \cite{59,60}. Recently, Lightfoot et al \cite{61} tested possible epigenetic modifications induced by LTA-deficient L. acidophilus and found that oral NCK2025 enhances the expression of tumor suppressor genes. This indicates that differential epigenetic regulation of CRC-related genes by NCK2025 represents a potential therapy against CRC.

NEW LAB ANTICANCER DISCOVERIES

In addition to the anticancer properties of LAB discussed above, recent findings showed that LAB also exerts antiproliferation activities of colon cancer cells via synergistic actions between adherence to cancer cells and SCFA bioproduction. To this end, Thirabunyanon et al \cite{62} investigated probiotic action of LAB in the prevention and biotherapy of colon cancer. Four probiotic bacteria *Pediococcus pentosaceus* FP3, *Lactobacillus salivarius* (L. salivarius) FP25, L. salivarius FP35, and *Enterococcus faecium* FP31 showed antiproliferation properties at the rates of 17%-35%. The proposed mechanism of the proliferative inhibition was assigned to the synergic induction by directly adhering to colon cancer cells and triggering bioproduction of SCFA, mainly butyric and propionic acids. Using cell-free supernatants from LAB *L. casei* and *L. rhamnous* treated-cells, Escamilla et al \cite{63} showed a decrease in colon cancer cell invasion *in vitro* by inducing matrix metalloproteinase-9 activity and zona occludens-1. These properties of *L. casei* and *L. rhamnous* GG may prove useful in designing strategies for CRC prevention or treatment.

CLINICAL TRIALS, EMERGING FINDINGS

Clinical trials examining the effect of LAB or probiotics on cancer are presently ongoing. The SYNCAN project...
funded by the European Union involving a 12-wk randomized, double blind trial of a food supplement containing Lactobacillus GG, Bifidobacterium Bb-12 in adenoma patients aims at testing colon cancer risk biomarkers. It is hoped that the results of this study will provide much-needed information on the cancer protective effects of these bacterial strains. In randomized clinical trials, probiotics have been shown to decrease postoperative infectious complications in patients with CRC. Similarly, functional outcome and health-related quality of life were significantly improved in patients who underwent surgical resection of CRC following L. acidophilus and Bifidobacterium natto treatment. Although there are no clinical studies in which LAB or probiotics are shown to reduce recurrence of CRC, L. casei has been shown to decrease significantly the recurrence of other cancers such as superficial bladder cancer. Thus, based on current evidence, the effects of LAB in CRC are encouraging, although clinical as well as mechanistic studies are needed to identify the bacterial products and their interaction with the host in prevention or treatment of CRC. It is worth mentioning that some progress has been made in identification of “bacterial biomarkers” for cancer detection. In this regard, Brim et al. analyzed the SLCA5A8 gene, which encodes a transporter of butyrate, in 50 colon adenomas from patients and found that 82% of these patients displayed a high level of methylation, pointing to its potential use as a marker for early detection.

CONCLUSION

It is clear that LAB are of paramount importance in the prevention of CRC. Insights into the cellular and molecular mechanisms which include apoptosis, antioxidant, immune responses, and epigenetics opened the door for the development of novel therapeutic approaches. Although a wide range of studies have shown remarkable potential of LAB strains in interfering with colorectal carcinogenesis, conclusive clinical evidence supporting the role of probiotics in CRC treatment is still lacking. More epigenetic studies on LAB are required to demonstrate their effects in cancer prevention. Although several mechanisms of actions of LAB in carcinogenesis have been described in vitro and animal model studies, we are still far from pinpointing the exact cellular signaling responsible for their effects. Nevertheless, the demonstrated functions of LAB in repairing defective apoptotic processes or controlling cell proliferation in cancer have made them an attractive tool for helping treat CRC. For example, based on the mechanism of apoptosis, one could modify LAB such as L. reuteri, L. acidophilus and L. rhamnosus to increase their anticancer effects in vitro. Likewise, the use of individual LAB like L. acidophilus or combination of different LAB strains to strengthen the ability of the immune system against cancer development can prove useful in prevention and treatment. However, it is clear that further investigations are strongly required to uncover the usefulness of probiotics in CRC treatment in clinical settings.

REFERENCES

1. Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet 2009; 10: 353-358 [PMID: 19434079 DOI: 10.1038/nrg2574]
2. Garagnani P, Pirazzini C, Franceschi C. Colorectal cancer microenvironment: among nutrition, gut microbiota, inflammation and epigenetics. Curr Pharm Des 2013; 19: 765-778 [PMID: 23016865]
3. Daniluk U. Probiotics, the new approach for cancer prevention and/or potentialization of anti-cancer treatment? J Clin Exp Oncol 2012; 1: 1006e105
4. Rowland IR. The role of the gastrointestinal microbiota in colorectal cancer. Curr Pharm Des 2009; 15: 1524-1527 [PMID: 19442169]
5. Zhu Q, Gao R, Wu W, Qin H. The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour Biol 2013; 34: 1285-1300 [PMID: 23979454 DOI: 10.1007/s13277-013-0684-4]
6. Food and Agriculture Organization/World Health Organization. Report of Joint FAO/WHO (Food and agriculture organization/World health organization) Working group on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada: Guidelines for the evaluation of probiotics in food, 2002: 1-11
7. Fotiadis CI, Stelidis CN, Spyropoulos BG, Zografos ED. Role of probiotics, prebiotics and symbiotics in chemoprevention for colorectal cancer. World J Gastroenterol 2008; 14: 6453-6457 [PMID: 19001958]
8. Masood MI, Qadir MI, Shirazi JH, Khan IU. Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol 2011; 37: 91-98 [PMID: 21162695 DOI: 10.3109/1040841x.2010.536522]
9. Hove H, Nørgaard H, Mortensen PB. Lactic acid bacteria and the human gastrointestinal tract. Eur J Clin Nutr 1999; 53: 339-350 [PMID: 10369488]
10. Chouraqui JP, Van Egroo LD, Fichot MC. Acidified milk formula supplemented with bifidobacterium lactis: impact on infant diarrhea in residential care settings. J Pediatr Gastroenterol Nutr 2004; 38: 288-292 [PMID: 15076628]
11. Gaón D, García H, Winter L, Rodríguez N, Quintás R, González SN, Oliver G. Effect of Lactobacillus strains and Saccharomyces boulardii on persistent diarrhea in children. Medicina (B Aires) 2003; 63: 293-298 [PMID: 14518142]
12. Pohjavuori E, Vilkajän, M, Korpela R, Kuitunen M, Tiettman M, Vaarala O, Savilähti E. Lactobacillus GG effect in increasing IFN-gamma production in infants with cow’s milk allergy. J Allergy Clin Immunol 2004; 114: 131-136 [PMID: 15241356 DOI: 10.1016/j.jaci.2004.03.036]
13. Bourlioux P, Koletzko B, Guarner F, Braesco V. The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium “The Intelligent Intestine,” held in Paris, June 14, 2002. Am J Clin Nutr 2003; 78: 675-683 [PMID: 14522724]
14. Azcarate-Peril MA, Sikes M, Bruno-Bárcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 2011; 301: G401-G424 [PMID: 21709901 DOI: 10.1152/ajpgi.00110.2011]
15. del Carmen S, de LeBlanc AM, Miyoshi A, Rocha CS, Azavedo V, LeBlanc JC. Potential application of probiotics in the prevention and treatment of inflammatory bowel diseases. Ulcers 2011; 2011: 1-13
16. Rafter JJ. The role of lactic acid bacteria in colon cancer prevention. Scand J Gastroenterol 1995; 30: 497-502 [PMID: 7569753]
17. Bengmark S, Gil A. Bioecological and nutritional control of disease: prebiotics, probiotics and symbiotics. Nutr Hosp 2006; 21 Suppl 2: 72-84, 73-86 [PMID: 16771075]
18. Hirayama K, Rafter J. The role of lactic acid bacteria in colon cancer.
Zhong L et al. LAB and colorectal cancer

cancer prevention: mechanistic considerations. Antonio Van Leuvenhoek 1999; 76: 391-394 [PMID: 10532995]

19 de Vries EG, Gietema JA, de Jong S. Tumor necrosis factor-related apoptosis-inducing ligand pathway and its therapeuti-
cum. Clin Cancer Res 2006; 12: 2398-2399 [PMID: 16638843 DOI: 10.1158/1078-0432-crr-06-0352]

20 Bucor O, Ray S, Bucor MC, Almasan A. APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in pro-

21 Elmore SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005; 5: 867-885 [PMID: 16299063

Ditkoff MJ, de Nunzio M, Pompei A, Raimondi S, Rossi M, Marinaro M, Sanchez M, Strober W, Bo
cancer prevention: mechanistic considerations. Antonio Van Leuvenhoek 1999; 76: 391-394 [PMID: 10532995]

19 de Vries EG, Gietema JA, de Jong S. Tumor necrosis factor-related apoptosis-inducing ligand pathway and its therapeuti-
cum. Clin Cancer Res 2006; 12: 2398-2399 [PMID: 16638843 DOI: 10.1158/1078-0432-crr-06-0352]

20 Bucor O, Ray S, Bucor MC, Almasan A. APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in pro-

21 Elmore SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005; 5: 867-885 [PMID: 16299063

Ditkoff MJ, de Nunzio M, Pompei A, Raimondi S, Rossi M, Marinaro M, Sanchez M, Strober W, Bo
cancer prevention: mechanistic considerations. Antonio Van Leuvenhoek 1999; 76: 391-394 [PMID: 10532995]

19 de Vries EG, Gietema JA, de Jong S. Tumor necrosis factor-related apoptosis-inducing ligand pathway and its therapeuti-
cum. Clin Cancer Res 2006; 12: 2398-2399 [PMID: 16638843 DOI: 10.1158/1078-0432-crr-06-0352]

20 Bucor O, Ray S, Bucor MC, Almasan A. APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in pro-

21 Elmore SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005; 5: 867-885 [PMID: 16299063

Ditkoff MJ, de Nunzio M, Pompei A, Raimondi S, Rossi M, Marinaro M, Sanchez M, Strober W, Bo
development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 2005; 68: 917-932 [PMID: 15955865 DOI: 10.1124/mol.105.014167]

66 Marks PA, Richon VM, Miller T, Kelly WD. Histone deacetylase inhibitors. Adv Cancer Res 2004; 91: 137-168 [PMID: 15327890 DOI: 10.1016/S0065-230x(04)91004-4]

67 Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 2008; 19: 587-593 [PMID: 18064131 DOI: 10.1016/j.jnutbio.2007.08.002]

68 Waldecker M, Kautenburger T, Daumann H, Veeraiah S, Will F, Dietrich H, Pool-Zobel BL, Schrenk D. Histone-deacetylase inhibition and butyrate formation: Fecal slurry incubations with apple pectin and apple juice extracts. Nutrition 2008; 24: 366-374 [PMID: 18262392 DOI: 10.1016/j.nut.2007.12.013]

69 Dashwood RH, Ho E. Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 2007; 17: 363-369 [PMID: 17559985 DOI: 10.1016/j.semcancer.2007.04.001]

70 Bingham SA, Day NE, Ruben R, Ferrari P, Slimani N, Norat T, Clavel-Chapelon F, Kesse E, Nieters A, Boeing H, Tjønneland A, Overvad K, Martinez C, Dornonsoro M, Gonzalez CA, Key TJ, Khaw K, Adami HO, Naska A, Vineis P, Tumino R, Krogh V, Bueno-de-Mesquita HB, Peeters PH, Berglund G, Hallmans G, Lund E, Skeie G, Kaur S, Riboli E. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 2003; 361: 1496-1501 [PMID: 12737858]

71 Scharlau D, Borovicki A, Habermann N, Hofmann T, Kleen S, Miene C, Munjal U, Stein K, Glei M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 2009; 682: 59-53 [PMID: 19383551 DOI: 10.1016/j.mrr.2009.04.001]

72 Lightfoot YL, Mohamadzadeh M. Tailoring gut immune responses with lipoteichoic acid-deficient Lactobacillus acidophilus. Front Immunol 2013; 4: 25 [PMID: 23390423 DOI: 10.3389/fimmu.2013.00025]

73 Lightfoot YL, Yang T, Sahay B, Mohamadzade M. Targeting aberrant colon cancer-specific DNA methylation with lipoteichoic acid-deficient Lactobacillus acidophilus. Gut Microbes 2013; 4: 84-88 [PMID: 23137966 DOI: 10.4161/gmic.22922]

74 Thirabanayanon M, Hongwittayakorn P. Potential probiotic lactic acid bacteria of human origin induce anti-proliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl Biochem Biotechnol 2013; 169: 511-525 [PMID: 23299414 DOI: 10.1007/s12010-012-9995-y]

75 Escamilla J, Lane MA, Maitin V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr Cancer 2012; 64: 871-878 [PMID: 22830611 DOI: 10.1080/01635581.2012.707058]

76 SYNCAN. Symbiotics and cancer prevention in humans. Available from: URL: http://www.syncan.be/

77 Liu Z, Qin H, Yang Z, Xia Y, Liu W, Yang J, Jiang Y, Zhang H, Yang Z, Wang Y, Zheng Q. Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery - a double-blind study. Aliment Pharmacol Ther 2011; 33: 50-63 [PMID: 21083585 DOI: 10.1111/j.1365-2036.2010.04492.x]

78 Ohigashi Y, Soshino Y, Ohde S, Onodera H. Functional outcome, quality of life, and efficacy of probiotics in postoperative patients with colorectal cancer. Surg Today 2011; 41: 1200-1206 [PMID: 21874415 DOI: 10.1007/s00595-010-4450-6]

79 Ohashi Y, Nakai S, Tsukamoto T, Masumori N, Akaza H, Zhong L et al. LAB and colorectal cancer
Miyanaga N, Kitamura T, Kawabe K, Kotake T, Kuroda M, Naito S, Koga H, Saito Y, Nomata K, Kitagawa M, Aso Y. Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urol Int 2002; 68: 273-280 [PMID: 12053032]

Brim H, Kumar K, Nazarian J, Hathout Y, Jafarian A, Lee E, Green W, Smoot D, Park J, Nouraie M, Ashktorab H. SLC5A8 gene, a transporter of butyrate: a gut flora metabolite, is frequently methylated in African American colon adenomas. PLoS One 2011; 6: e20216 [PMID: 21687703 DOI: 10.1371/journal.pone.0020216]

P- Reviewers: DePaolo RW, Francino MP, Joseph Lau WY, Kuda T, Santoro GA S- Editor: Wen LL L- Editor: Wang TQ E- Editor: Wang CH
