STATISTICAL PROPERTIES OF GAMMA-RAY BURST POLARIZATION

KENJI TOMA 1,2, TAKANORI SAKAMOTO 3,4, BING ZHANG 5, JOANNE E. HILL 3,6, MARK L. MCCONNELL 7, PETER F. BLOSER 7, RYO YAMAZAKI 8, KUNIHIITO IOKA 9, AND TAKASHI NAKAMURA 10

accepted for publication in ApJ

ABSTRACT

The emission mechanism and the origin and structure of magnetic fields in gamma-ray burst (GRB) jets are among the most important open questions concerning the nature of the central engine of GRBs. In spite of extensive observational efforts, these questions remain to be answered and are difficult or even impossible to infer from the spectral and lightcurve information currently collected. Polarization measurements will lead to unambiguous answers to several of these questions. Recent developments in X-ray and γ-ray polarization techniques have demonstrated a significant increase in sensitivity enabling several new mission concepts, e.g., POET (Polarmeters for Energetic Transients), providing wide field of view and broadband polarimetry measurements. If launched, missions of this kind would finally provide definitive measurements of GRB polarizations. We perform Monte Carlo simulations to derive the distribution of GRB polarizations in three emission models; the synchrotron model with a globally ordered magnetic field (SO model), the synchrotron model with a small-scale random magnetic field (SR model), and the Compton drag model (CD model). The results show that POET, or other polarimeters with similar capabilities, can constrain the GRB emission models by using the statistical properties of GRB polarizations. In particular, the ratio of the number of GRBs for which the polarization degrees can be measured to the number of GRBs that are detected (N_m/N_d) and the distributions of the polarization degrees (Π) can be used as the criteria. If N_m/N_d > 30% and Π is clustered between 0.2 and 0.7, the SO model will be favored. If instead N_m/N_d < 15%, then the SR or CD model will be favored. If several events with Π > 0.8 are observed, then the CD model will be favored.

Subject headings: gamma rays: bursts — magnetic fields — polarization — radiation mechanisms: non-thermal

1. INTRODUCTION

Gamma-ray bursts (GRBs) are brief, intense flashes of γ-rays originating at cosmological distances, and they are the most luminous objects in the universe. They also have broad spectral and lightcurve information currently collected. The burst is produced by internal dissipation within the relativistic jet that is launched from the center of the explosion, and the afterglow is the synchrotron emission of electrons accelerated in a collisionless shock driven by the interaction of the jet with the surrounding medium (for recent reviews, Piran 2005; Meszaros 2006; Zhang et al. 2007).

Electronic address: toma@astro.psu.edu

1 Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
2 Division of Theoretical Astronomy, National Astronomical Observatory of Japan (NAOJ), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
3 CRESST and NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
4 Joint Center for Astrophysics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
5 Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
6 Universities Space Research Association, 10211 Wincopin Circle, Suite 500, Columbia, MD, 21044-3432, USA
7 Space Science Center, University of New Hampshire, Durham, NH 03824, USA
8 Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
9 Theory Division, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba 305-0801, Japan
10 Department of Physics, Kyoto University, Kyoto 606-8502, Japan

In spite of extensive observational and theoretical efforts, several key questions concerning the nature of the central engines of the relativistic jets and the jets themselves remain poorly understood. In fact, some of these questions are very difficult or even impossible to answer from the spectral and lightcurve information currently collected. On the other hand, polarization information, if retrieved, would lead to unambiguous answers to these questions. In particular, polarimetric observations of GRBs can address the following:

Magnetic composition of GRB jets – It is highly speculated that strong magnetic fields are generated at the GRB central engine, and may play an essential role in the launch of the relativistic jets. However, it is unclear whether the burst emission region is penetrated by a globally structured, dynamically important magnetic field, and whether the burst is due to shock dissipation or magnetic reconnection (e.g., Spruit et al. 2001; Zhang & Mészáros 2002; Lyutikov et al. 2004).

Emission mechanisms of the bursts – The leading model for the emission mechanism of the prompt burst emission is synchrotron emission from relativistic electrons in a globally ordered magnetic field carried from the central engine, or random magnetic fields generated in situ in the shock dissipation region (Rees & Meszaros 1994). Other suggestions include Compton drag of ambient soft photons (Shaviv & Dar 1995; Eichler & Levinson 2003; Levinson & Eichler 2004; Lazzati et al. 2004), synchrotron self-Compton emission (Panaitescu & Mészáros 2000), and the combination of a thermal component from the photosphere and a non-thermal component (e.g., synchrotron) (Panaitescu & Mészáros 2000), and the combination of a thermal component from the photosphere and a non-thermal component (e.g., synchrotron) (Ryde et al. 2006; Thompson et al. 2007; Ioka et al. 2007).

Geometric structure of GRB jets – Although it is generally believed that GRB outflows are collimated, the distribution of the jet opening angles, the observer’s viewing direction, and whether there are small-scale structures within the global jet...
are not well understood (Zhang et al. 2004; Yamazaki et al. 2004; Toma et al. 2005).

To date, robust positive detections of GRB polarization have been made only in the optical band in the afterglow phase. Varying linear polarizations have been observed in several optical afterglows several hours after the burst trigger, with a level of $\sim 1\% - 3\%$, which is consistent with the synchrotron emission mechanism of GRB afterglow (for reviews, see Covino et al. 2004; Lazzati 2006). An upper limit (< 8%) has been obtained for the early ($t \sim 200 \ s$) optical afterglow of GRB 060418 (Mundell et al. 2007). Also for radio afterglows, we have several upper limits for the polarization degree (Taylor et al. 2003; Granot & Taylor 2005) for some implications, see Toma et al. 2008. As for the prompt burst emission, strong linear polarization of the γ-ray emission at a level of $\Pi = 80 \pm 20\%$ was claimed for GRB 021206 based on an analysis of RHESI data (Coburn & Bogg 2003), although this claim remains controversial because of large systematic uncertainties (Rutledge & Fox 2004; Wigger et al. 2004). Several other reports of high levels of polarization in the prompt burst emission are also statistically inconclusive (Willis et al. 2005; Kalemci et al. 2007; McGivern et al. 2007).

Recently, more sensitive observational techniques for X-ray and γ-ray polarimetry have been developed, and there are several polarimeter mission concepts. These include Polarimeters for Energetic Transients (POET, Hill et al. 2008; Bloser et al. 2008), Polarimeter of Gamma-ray Observer (PoGO, Mizuno et al. 2005), POLAR (Produit et al. 2005), Advanced Compton Telescope (ACT, Boggs et al. 2006), Gravity and Extreme Magnetism (GEMS, Jahoda et al. 2007) XPOL (Costa et al. 2007), Gamma-Ray Burst Investigation via Polarimetry and Spectroscopy (GRIPS, Greiner et al. 2008), and so on.

Several of these missions, if launched, would provide definitive detections of the burst polarizations and enable us to discuss the statistical properties of the polarization degrees and polarization spectra. Although there are several polarimeter mission concepts described in the literature, POET is the only one to date that incorporates a broadband capability for measuring the prompt emission from GRBs, and for this reason it provides a good case study for our simulations. POET will make measurements with two different polarimeters, both with wide fields of view. The Gamma-Ray Polarimeter Experiment (GRAPE) will fly on a sub-orbital balloon in 2011, and the Gamma-Ray Burst Polarimeter (GRBP, a smaller version of LEP) will fly on a sounding rocket.

Theoretically, it has been shown that similarly high levels of linear polarization can be obtained in several GRB prompt emission models; the synchrotron model with a globally ordered magnetic field, the synchrotron model with a small-scale random magnetic field (Granot 2003; Lyutikov et al. 2003; Nakar et al. 2003), and the Compton drag model (Lazzati et al. 2004; Eichler & Levinson 2003; Levinson & Eichler 2004; Shaviv & Dar 1995). Thus the detections of GRB prompt emission polarization would support these three models. In this paper, we show that these models can be distinguished by their statistical properties of observed polarizations. We performed detailed calculations of the distribution of polarization degrees by including realistic spectra of GRB prompt emission and assuming realistic distributions of the physical parameters of GRB jets, and show that POET, or other polarimeters with similar capabilities, can constrain the GRB emission models. We use the limits of POET for GRB detection and polarization measurements as realistic and fiducial limits. This paper is organized as follows. We first introduce the POET mission concept in § 2. In § 3 we summarize the properties of the observed linear polarization from uniform jets within the three emission models. Based on these models, we perform Monte Carlo simulations of observed linear polarizations and show how the statistical properties of observed polarization may constrain GRB emission mechanisms in § 4. A summary and discussion are given in § 5.

2. PROPERTIES OF POET SATELLITE

POET (Polarimeters for Energetic Transients) is a Small Explorer (SMEX) mission concept, that will provide highly sensitive polarimetric observations of GRBs and can also make polarimetry measurements of solar flares, pulsars, soft gamma-ray repeaters, and slow transients. The payload consists of two wide field of view (FoV) instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the 2-15 keV energy range and a high energy polarimeter (Gamma-Ray Polarimeter Experiment; GRAPE) that will measure polarization in the 60-500 keV energy range. POET can measure GRB spectra from 2 keV up to 1 MeV. The POET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space and spacecraft rotation provides a means of effectively dealing with systematics in the polarization response. POET provides sufficient sensitivity and sky coverage to detect up to 200 GRBs in a two-year mission.

LEP and GRAPE determine polarization by measuring the number of events versus the event azimuth angle (EAA) as projected onto the sky. This is referred to as a modulation profile and represents a measure of the polarization magnitude and direction of polarization for the incident beam. Depending on the type of polarimeter, the EAA is either the direction of the ejected photoelectron (LEP) or the direction of the scattered photon (GRAPE). The response of a polarimeter to 100% polarized photons can be quantified in terms of the modulation factor, μ, which is given by:

$$\mu = \frac{C_{\text{max}} - C_{\text{min}}}{C_{\text{max}} + C_{\text{min}}}$$

Where C_{max} and C_{min} are the maximum and minimum of the modulation profile, respectively. The polarization fraction (Π) of the incident flux is obtained by dividing the measured modulation by that expected for 100% polarized flux. The polarization angle (Φ_{0}) corresponds either to the maximum of the modulation profile (LEP) or the minimum of the modulation profile (GRAPE). To extract these parameters from the data, the modulation histograms are fit to the functional form:

$$C(\Phi) = A + B \cos^2(\Phi - \Phi_0)$$

The sensitivity of a polarimeter is defined in terms of the minimum detectable polarization (MDP), which refers to the minimum level of polarization that is detectable with a given observation (or, equivalently, the apparent polarization arising from statistical fluctuations in unpolarized data). The precise value of the MDP will depend on the source parameters (fluence, spectrum, etc.) and the polarimeter characteristics. At the 99% confidence level, the MDP can be expressed as:

$$\text{MDP} = \frac{4.29}{\mu R_f} \sqrt{\frac{R_f + R_0}{t}}.$$
where \(R \) is the observed source strength (cts s\(^{-1}\)), \(R_p \) is the total observed background rate (cts s\(^{-1}\)), and \(t \) is the observing time (s). The ultimate sensitivity, however, may not be limited by statistics but by systematic errors created by false modulations that arise from azimuthal asymmetries in the instrument.

At energies from \(\sim 50 \) keV up to several MeV, photon interactions are dominated by Compton scattering. The operational concept for GRAPE is based on the fact that, in Compton scattering, photons are preferentially scattered at a right angle to the incident electric field vector (the polarization vector) \(\langle \text{Bloser et al. 2008, 2006, Jason et al. 2005} \rangle \). If the incident beam of photons is polarized, the azimuthal distribution of scattered photons will be asymmetric. The direction of the polarization vector is defined by the minimum of the scatter angle distribution. The GRAPE performance characteristics are shown in Table 1. The design of the GRAPE instrument is very modular, with 62 independent polarimeter modules and 2 spectroscopy modules. Each polarimeter module incorporates an array of optically independent 5x5x50 mm\(^3\) non-hygrosopic scintillator elements aligned with and optically coupled to the 8x8 scintillation light sensors of a 64-channel MAPMT. Two types of scintillators are employed. Low-Z plastic scintillator is used as an effective medium for Compton scattering. High-Z inorganic scintillator (Bismuth Germanate, BGO) is used as a calorimeter, for absorbing the full energy of the scattered photon. The arrangement of scintillator elements within a module has 28 BGO calorimeter elements surrounding 32 plastic scintillator scattering elements. Valid polarimeter events are those in which a photon Compton scatters in one of the plastic elements and is subsequently absorbed in one of the BGO elements. These events can be identified as a coincident detection between one plastic scintillator element and one BGO calorimeter element. The azimuthal scatter angle is determined for each valid event by the relative locations of hit scintillator elements. It is not necessary to know where within each element the interaction takes place (e.g., the depth of interaction). It is sufficient to know only the lateral location of each element to generate a histogram of photon scatter angles.

At energies below \(\sim 50 \) keV, the most sensitive technique for broadband polarimetry is the photoelectric effect. The LEP measures the polarization of incident photons with the innovative operation of a Time Projection Chamber (TPC) \(\langle \text{Black et al. 2007} \rangle \). The LEP polarimeter enclosure consists of four dual-readout detector modules each with an isolated gas volume contained by a Be X-ray window. Each detector module contains two 6 x 12 x 24 cm\(^3\) (LxWxH) TPCs that share a single X-ray transparent drift electrode. Each TPC is comprised of a micropattern proportional counter, consisting of a shared drift electrode and a high-field gas electron multiplier (GEM) positioned 1 mm from a strip readout plane. When an X-ray is absorbed in the gas between the drift elec-

trode and the GEM, a photoelectron is ejected in a preferential direction with a \(\cos^2 \theta \) distribution, where \(\Phi \) is the azimuthal angle measured from the X-ray polarization vector. As the photoelectron travels through the gas it creates a path of ionization that drifts in a moderate, uniform field to the GEM where an avalanche occurs. The charge finally drifts to the strip detector where it is read out.

To estimate realistic MDPs for GRBs detected by GRAPE and LEP, we perform an analytical calculation for LEP and a Monte Carlo simulation for GRAPE using the current instrument configuration (Table 1). The input spectrum in the calculation and the simulation is a typical GRB spectrum which can be described as a smoothly broken power-law spectrum characterized by photon energy at the \(\nu F_\nu \) spectral peak, \(E_{p, \text{obs}} \), and lower and higher indices of the \(F_\nu \) spectrum, \(\alpha \) and \(\beta \), respectively \(\langle \text{Band et al. 1993} \rangle \). We treat the spectral indices of the specific energy flux \(F_\nu \), while \(\langle \text{Band et al. 1993} \rangle \) define \(\alpha_B \) and \(\beta_B \) as the indices of the photon number flux, i.e., \(\alpha = (\alpha_B + 1) \) and \(\beta = (\beta_B + 1) \), since we will calculate the net polarizations by using specific energy fluxes (equation 7)). The various \(E_{p, \text{obs}} \) and time-averaged flux in 2-400 keV, \(F_\nu \), are investigated with fixed \(\alpha = -0.2 \), \(\beta = 1.2 \), and a burst duration of \(T = 20 \) s. We also assume the incident angle of bursts to be 30 degree off-axis. We interpret simulated events with \(\Pi > \text{MDP} \) as ‘\(\Pi \)-measurable events’. Figure 1 shows the contour of the MDP values in the \(E_{p, \text{obs}}-F_\nu \) plane for GRAPE and LEP. As can be seen in the figure, with the combination of LEP and GRAPE, it is possible to measure the polarization of GRBs with \(E_{p, \text{obs}} \) ranging from a few keV to MeV with reasonable sensitivity.

3. THEORETICAL MODELS

We calculate the linear polarization for instantaneous emission from a thin spherical shell moving radially outward with a bulk Lorentz factor \(\gamma \gg 1 \) and an opening angle \(\theta \). The comoving-frame emissivity has the functional form of \(\langle \text{j}_\nu \rangle = A_0 f(\nu') \delta(t'-t') \delta(\nu' - \nu'_0) \), where \(A_0 \) is the normalization which may depend on direction in the comoving frame and other physical quantities of the shell and \(f(\nu') \) represents the spec-
tral shape. A prime represents the physical quantities in the comoving frame. The delta functions describe the instantaneous emission at $t = t_0$ and $r = r_0$. The normalization, A_0, has units of erg cm$^{-2}$ str$^{-1}$ Hz$^{-1}$. Using the spherical coordinate system (r, θ, ϕ) in the lab frame, where θ is the line of sight, we obtain the spectral fluence (Granot et al. 1999; Woods & Loeb 1999; Ioka & Nakamura 2001):

$$I_\nu = \frac{1+z}{d_L^2} \int d\phi \int (\cos \theta) d\nu \frac{A_0 f(\nu')}{\gamma^2(1-\beta \cos \theta)^2}, \quad (4)$$

where z and d_L are the redshift and the luminosity distance of the source, respectively, and $\nu' = (1+z)\nu(1-\beta \cos \theta)$. The integration is performed within the jet cone, so that it depends on the viewing angle θ_0, i.e., the angle between the jet axis and the line of sight. The corresponding Stokes parameters of the local emission (i.e., the emission from a given point on the shell) are given by $j_\nu^{eO} = j_\nu^{eO} \Pi'_0 \cos(2\chi')$ and $j_\nu^{eO} = j_\nu^{eO} \Pi'_0 \sin(2\chi')$, where Π'_0 and χ' are the polarization degree and position angle of the local emission measured in the comoving frame, respectively. The Stokes parameters of the emission from the whole shell can be obtained by integrating those of the local emission similarly to the intensity I_ν:

$$\Pi = \sqrt{Q^2 + U^2}$$

The polarization degree is Lorentz invariant, i.e., $\Pi_0' = \Pi_0$. The position angle χ is calculated by taking account of the Lorentz transformation of the electromagnetic waves, and it is measured from a fixed direction, which we choose to be the direction from the line of sight to the jet axis. Then by calculating $\{Q_\nu, U_\nu\} = \int \nu d\nu \{I_\nu, Q_\nu, U_\nu\}$, we obtain the time-averaged linear polarization in the given wavebands $[\nu_1, \nu_2]$:

$$\Pi = \left(\frac{Q^2 + U^2}{I} \right)^{1/2}$$

We consider synchrotron and Compton drag (CD) mechanisms for the GRB prompt emission. In the synchrotron case, the magnetic field consists of a globally ordered field, B_{ord}, and small-scale random field, B_{rnd}. The field B_{ord} may originate from the central engine, while B_{rnd} may be produced in the emission region itself. Here we consider two extreme cases; synchrotron model with an ordered field (SO), in which $B_{ord} \gg (B_{rnd}^2)$, and a synchrotron model with a random field (SR), in which $B_{ord}^2 \ll (B_{rnd}^2)$. For the SO model, in particular, we assume a toroidal magnetic field. In the following sub-sections, we describe A_0, $f(\nu')$, Π_0, and χ as functions of (θ, ϕ) for each model, and calculate the linear polarization for given parameters γ, θ_0, and ϕ.

3.1. SO model: synchrotron with ordered field

The prompt emission of GRBs could be explained by synchrotron emission from accelerated electrons that have a non-thermal energy spectrum by some dissipation process within the jet, e.g., internal shocks. Synchrotron emission from the relativistically moving shell within a globally ordered magnetic field results in a net observed linear polarization, reflecting the direction of the field (Lyutikov et al. 2003; Nakar et al. 2003). Let us assume that the jet is permeated by a toroidal field. This is a likely configuration if a magnetic field is advected by the jet with a constant speed from the central engine (e.g., Spruit et al. 2001; Fendt & Ouyed 2004).

A general formula for calculating the observed linear polarization for synchrotron emission from a uniform jet, in which the electrons have a single power-law energy spectrum and an isotropic pitch angle distribution and the magnetic field is ordered globally, is derived by Granot (2003) and Granot & Taylor (2005). Here we adopt their formulation and extend it for the electrons having a broken power-law energy spectrum in order to reproduce the typical observed spectra of GRBs (Band et al. 1993). We adopt the following form for the radiation spectrum:

$$f(\nu') = f(x) \quad \text{where} \quad x = \nu'/\nu_0 \quad \text{and} \quad f(x) = \left\{ \begin{array}{ll} x^{2-\alpha} & \text{for} \quad x \leq \beta - \alpha \\ x^{2-\beta} & \text{for} \quad x \geq \beta - \alpha. \end{array} \right. \quad (7)$$

where ν'_0, α, and β are the break frequency and low-energy and high-energy spectral indices of the comoving spectrum, respectively.\footnote{In our model the radiation spectrum is thought to be produced by the broken power-law energy spectrum of electrons: $N(\gamma) \sim \gamma^{-p_1}$ for $\gamma < \gamma_0$ and $N(\gamma) \sim \gamma^{-p_2}$ for $\gamma > \gamma_0$, where $\alpha = (p_1 - 1)/2$ and $\beta = (p_2 - 1)/2$. This formulation also includes the case of $p_1 < 1/3$, in which $\alpha = -1/3$, $A_0 \propto (\sin \theta_B^{\prime 2})/\nu_0^{3/2}$, and $\Pi_0^{\text{syn}} = 1/2$ for $x \leq \beta - \alpha$ (Granot 2003).}

For a globally ordered magnetic field, the Faraday depolarization effect may be strong within the emitting region (e.g., Toma et al. 2008; Matsumiya & Ioka 2003; Sagiv et al. 2004), but we neglect it here for simplicity. By using a new variable $\gamma = (\gamma \theta)^2$, we obtain (see Appendix A.1):

$$\sin \theta_B' = \left[\frac{(1-\gamma^2)^2 + 4y}{(1+y)^2 + a^2 - 2a \cos \phi} \right]^{1/2},$$

$$\chi = \phi + \arctan \left(\frac{1-y \sin \phi}{1+y \cos \phi} \right),$$

where $a = \theta/\theta_0$. Then the formulation of the net polarization degree in the observed frequency region $[\nu_1, \nu_2]$ becomes:

$$\Pi_0 = \Pi_0^{\text{syn}} \equiv \left\{ \begin{array}{ll} (\alpha + 1)/\alpha + \beta & \text{for} \quad x \leq \beta - \alpha \\ (\beta + 1)/\beta + \alpha & \text{for} \quad x \geq \beta - \alpha. \end{array} \right. \quad (8)$$

The polarization degree, Π, in the waveband $[\nu_1, \nu_2]$ can be calculated if the geometrical parameters, ν_1, ν_2, the spectral parameters, ν_0', α, β, and the redshift, z, are given.
the polarization degree at the plateau for α, β, where α is the viewing angle of the observer and β is the jet opening angle, for several values of $\gamma_j = (\gamma \theta)^2$, calculated in the SO model (synchrotron model with globally ordered magnetic field). The other parameters are $\gamma \nu_0^3 = 350 \text{ keV}$, $\alpha = -0.2, \beta = 1.2$, and $z = 1$.

Figure 2 shows the polarization degree in the 60–500 keV band as a function of $q = \theta_j / \theta_j$, where θ_j is the viewing angle of the observer and θ_j is the jet opening angle, for several values of $\gamma_j = (\gamma \theta)^2$, calculated in the SO model (synchrotron model with globally ordered magnetic field). The other parameters are $\gamma \nu_0^3 = 350 \text{ keV}$, $\alpha = -0.2, \beta = 1.2$, and $z = 1$.

This is caused mainly by the dependence of the synchrotron radiation on the spectral indices (equation 8). The maximum polarization degree is determined only by the emission from the bright region. The magnetic field is quite ordered in the bright region. The local polarization degree is negligible for $\beta \gg 1$, is wholly within the jet cone. However, if the observer views the jet from an off-axis angle and the symmetry is broken a high level of polarization remains (Waxman 2003; Sari 1999; Ghisellini & Lazzati 1999).

Similarly to the SO model, we adopt the broken power-law form of the spectrum: $f(\nu') = f(x)$, where $(\nu' / \nu_0) = 1 + y_j^2 / \gamma_j^2$ and $f(x)$ is given by equation (7). We assume that the energy distribution of the electrons and the strength of the magnetic field are uniform in the emitting shell. The local Stokes parameters are given by averaging them with respect to the magnetic field directions within the shock plane (see Appendix A.2). Thus we may write $A_0 = (\sin \theta' B^\alpha) / (\sin \theta' B^\alpha)$, where γ_j represents the average. The local polarization degree is given by $\Pi_0 = \Pi_0^\alpha + (\sin \theta' B^\alpha) (\sin \theta' B^\alpha) / (\sin \theta' B^\alpha)$, where:

$$\langle (\sin \theta' B^\alpha) \rangle = \frac{1}{\pi} \int_0^\pi d\eta' \left[1 - \frac{4y}{1+y^2} \cos^2 \eta' \right]^{(\alpha+1)/2},$$ (14)

$$(\sin \theta' B^\alpha) (\cos \theta' B^\alpha) = \frac{1}{\pi} \int_0^\pi d\eta' \left[1 - \frac{4y}{1+y^2} \cos^2 \eta' \right]^{(\alpha+1)/2} \times \sin^2 \eta' - \left(\frac{1}{1+y^2} \right)^2 \cos^2 \eta'.$$ (15)

The local polarization position angle measured in the lab frame is given by $\chi = \phi$, therefore we obtain the formulation for the net polarization in the observed frequency region $[\nu_1, \nu_2]$:

$$\Pi = \int_{\nu_1}^{\nu_2} d\nu \int_0^{(1+y_j^2) / \gamma_j} d\nu' \left[\left(\sin \theta' B^\alpha \right) \sin(2\Delta \phi(y)) \right] \times \left[\left(\sin \theta' B^\alpha \right) (\cos \theta' B^\alpha) \right] 2 \Delta \phi(y) \right]^{-1},$$ (16)

where $q = \Delta \phi / \theta_j$, $y_j = (\gamma \theta) / \gamma$, $x = (1+z) \nu(1+y_j^2) / 2 \gamma \nu_0^3$, and Π_0^α and $\Delta \phi(y)$ are given by equations (8) and (13), respectively.

Figure 3 shows the polarization degree in the 60–500 keV band as a function of q for several values of γ_j. The other parameters are $\gamma \nu_0^3 = 350 \text{ keV}$, $\alpha = -0.2, \beta = 1.2$, and $z = 1$.

The results of our calculations for the case of $\alpha = \beta$ and $\gamma_j \geq 100$ are consistent with those of Granot (2003) and Nakar et al. (2003).

If the magnetic field is produced at the shock itself within the jet, the directions of the field would be random on a scale as small as the plasma skin depth (Gruzinov & Waxman 1999; Medvedev & Loeb 1999). It is quite plausible that the directions of the magnetic field are uniform in the emitting shell. The local Stokes parameters are given by averaging them with respect to the magnetic field directions within the shock plane. However, if the observer views the jet from an off-axis angle and the symmetry is broken a high level of polarization remains (Waxman 2003; Sari 1999; Ghisellini & Lazzati 1999).

Similarly to the SO model, we adopt the broken power-law form of the spectrum: $f(\nu') = f(x)$, where $(\nu' / \nu_0) = 1 + y_j^2 / \gamma_j^2$ and $f(x)$ is given by equation (7). We assume that the energy distribution of the electrons and the strength of the magnetic field are uniform in the emitting shell. The local Stokes parameters are given by averaging them with respect to the magnetic field directions within the shock plane (see Appendix A.2). Thus we may write $A_0 = (\sin \theta' B^\alpha) / (\sin \theta' B^\alpha)$, where γ_j represents the average. The local polarization degree is given by $\Pi_0 = \Pi_0^\alpha + (\sin \theta' B^\alpha) (\sin \theta' B^\alpha) / (\sin \theta' B^\alpha)$, where:

$$\langle (\sin \theta' B^\alpha) \rangle = \frac{1}{\pi} \int_0^\pi d\eta' \left[1 - \frac{4y}{1+y^2} \cos^2 \eta' \right]^{(\alpha+1)/2},$$ (14)

$$(\sin \theta' B^\alpha) (\cos \theta' B^\alpha) = \frac{1}{\pi} \int_0^\pi d\eta' \left[1 - \frac{4y}{1+y^2} \cos^2 \eta' \right]^{(\alpha+1)/2} \times \sin^2 \eta' - \left(\frac{1}{1+y^2} \right)^2 \cos^2 \eta'.$$ (15)

The local polarization position angle measured in the lab frame is given by $\chi = \phi$, therefore we obtain the formulation for the net polarization in the observed frequency region $[\nu_1, \nu_2]$:

$$\Pi = \int_{\nu_1}^{\nu_2} d\nu \int_0^{(1+y_j^2) / \gamma_j} d\nu' \left[\left(\sin \theta' B^\alpha \right) \sin(2\Delta \phi(y)) \right] \times \left[\left(\sin \theta' B^\alpha \right) (\cos \theta' B^\alpha) \right] 2 \Delta \phi(y) \right]^{-1},$$ (16)

where $q = \Delta \phi / \theta_j$, $y_j = (\gamma \theta) / \gamma$, $x = (1+z) \nu(1+y_j^2) / 2 \gamma \nu_0^3$, and Π_0^α and $\Delta \phi(y)$ are given by equations (8) and (13), respectively.

Figure 3 shows the polarization degree in the 60–500 keV band as a function of q for several values of γ_j. The other parameters are $\gamma \nu_0^3 = 350 \text{ keV}$, $\alpha = -0.2, \beta = 1.2$, and $z = 1$.

The results of our calculations for the case of $\alpha = \beta$ and $\gamma_j \geq 100$ are consistent with those of Granot (2003) and Nakar et al. (2003). The local Stokes parameters are given by averaging them with respect to the magnetic field directions within the shock plane. However, if the observer views the jet from an off-axis angle and the symmetry is broken a high level of polarization remains (Waxman 2003; Sari 1999; Ghisellini & Lazzati 1999).

Similarly to the SO model, we adopt the broken power-law form of the spectrum: $f(\nu') = f(x)$, where $(\nu' / \nu_0) = 1 + y_j^2 / \gamma_j^2$ and $f(x)$ is given by equation (7). We assume that the energy distribution of the electrons and the strength of the magnetic field are uniform in the emitting shell. The local Stokes parameters are given by averaging them with respect to the magnetic field directions within the shock plane (see Appendix A.2). Thus we may write $A_0 = (\sin \theta' B^\alpha) / (\sin \theta' B^\alpha)$, where γ_j represents the average. The local polarization degree is given by $\Pi_0 = \Pi_0^\alpha + (\sin \theta' B^\alpha) (\sin \theta' B^\alpha) / (\sin \theta' B^\alpha)$, where:

$$\langle (\sin \theta' B^\alpha) \rangle = \frac{1}{\pi} \int_0^\pi d\eta' \left[1 - \frac{4y}{1+y^2} \cos^2 \eta' \right]^{(\alpha+1)/2},$$ (14)

$$(\sin \theta' B^\alpha) (\cos \theta' B^\alpha) = \frac{1}{\pi} \int_0^\pi d\eta' \left[1 - \frac{4y}{1+y^2} \cos^2 \eta' \right]^{(\alpha+1)/2} \times \sin^2 \eta' - \left(\frac{1}{1+y^2} \right)^2 \cos^2 \eta'.$$ (15)

The local polarization position angle measured in the lab frame is given by $\chi = \phi$, therefore we obtain the formulation for the net polarization in the observed frequency region $[\nu_1, \nu_2]$:
polarizations are canceled out if the line of sight is within the jet cone. If the jet is observed from an off-axis angle, the net polarization remains. The local polarization degree is highest for emission where \(\theta = \gamma^{-1} \), so that the net polarization has a maximum value. The maximum II is higher for smaller \(y_j \), because the contribution of the emission from high latitude points (\(\theta > \gamma^{-1} \)) with a low level of local polarization, is smaller.

Similarly to the SO model, the polarization is higher for softer spectra, mainly because of the dependence of the local polarization degree on frequency (equation [5]). For example, for \(y_j = 1 \), \(\gamma \nu_0 = 350 \) keV, and \(z = 1 \), the maximum polarization is \(\simeq 0.32 \) for \(\alpha = -0.5 \) and \(\beta = 0.9 \), while it is \(\simeq 0.49 \) for \(\alpha = 0.4 \) and \(\beta = 1.8 \). For \(y_j \geq 0.01 \), \(\alpha \leq 0.4 \), and \(\beta \leq 1.8 \), the maximum polarization degree in the SR model is \(\simeq 0.8 \).

3.3. CD model: Compton drag model

The prompt emission from GRBs could be produced by bulk inverse Comptonization of soft photons from the relativistic jet (Lazzati et al. 2004; Eichler & Levinson 2003; Levinson & Eichler 2004; Shaviv & Dar 1995). The local polarization position angles are symmetric around the line of sight, similarly to the SR model. Therefore this model also requires an off-axis observation of the jet to achieve a high level of polarization. However, the CD model is different from the SR model in the fact that the CD model can in principle achieve II \(\sim \) under the most optimistic geometric configurations, whereas the maximum II is \(\sim (\beta + 1)/(\beta + \frac{1}{2}) \) \(\simeq 0.8 \) in the SR model.

We assume that the seed radiation is unpolarized and has a nonthermal, isotropic spectrum, and the scattered radiation has the broken power-law spectrum \(f(\nu') = f(\nu) \), where \(\nu = \nu' / \nu_0' \) and \(f(\nu) \) is given by equation (7). If the intensity of the seed radiation and the electron number density of the shell are assumed to be uniform then we may write \(A_0 = (1 + \cos^2 \theta') / 2 \), and \(I_0 = (1 - \cos^2 \theta') / (1 + \cos^2 \theta') \) (Rybicki & Lightman 1979; Begelman & Sikora 1987). The polarization vectors in the co-moving frame are perpendicular to both incident and scattering directions of photons, so that we obtain \(\chi = \phi + \frac{q}{2} \) in the lab frame. Therefore we achieve the formulation for the net linear polarization in the observed frequency region \([\nu_1, \nu_2]\):

\[
II = \left[\int_{\nu_1}^{\nu_2} d\nu \int d\nu' \left(f(\nu) \frac{d\nu}{d\nu'} \sin(2\Delta \phi(y)) \right) \right] \left[\int_{\nu_1}^{\nu_2} d\nu \int d\nu' \left(f(\nu) \frac{d\nu}{d\nu'} \sin(2\Delta \phi(y)) \right)^{-1} \right],
\]

(17)

where \(q = \theta / \theta_j \), \(y_j = (\gamma \theta_j)^2 \), \(x = (1 + z)\nu(1 + y)/2\gamma \nu_0' \), and \(\Delta \phi(y) \) is given by equation (13).

Figure 4 shows the polarization degree in the 60–500 keV band as a function of \(\theta_j \) for several values of \(y_j \). The other parameters are \(\gamma \nu_0' = 350 \) keV, \(\alpha = -0.2 \), \(\beta = 1.2 \), and \(z = 1 \). The results of our calculations for the case of \(\alpha = \beta \) are consistent with those of Lazzati et al. (2004). The results are similar to those of the SR model, but the polarization degree is higher than in the SR model.

The polarization is higher for softer spectra, although the local polarization degree is not dependent on the frequency in this model. For instance, for \(y_j = 1 \), \(\gamma \nu_0' = 350 \) keV, and \(z = 1 \), the maximum polarization is \(\simeq 0.66 \) for \(\alpha = -0.5 \) and \(\beta = 0.9 \), while it is \(\simeq 0.71 \) for \(\alpha = 0.4 \) and \(\beta = 1.8 \). The variation is smaller than for the synchrotron models (see § 3.1 and 3.2). This variation is caused by the kinematic effect. The local polarization degree is a maximum for \(\theta = \gamma^{-1} \) (i.e., \(\theta' = \pi / 2 \)).

Thus the net polarization is higher when the contribution of the emission from higher latitude than \(\theta > \gamma^{-1} \) is smaller. The high latitude emission is dimmer as the radiation spectrum is softer. Therefore the net polarization is higher when the spectrum is softer. This effect also arises in the SO and SR models, although in those models the intrinsic dependence of polarization on the spectrum (equation [8]) is rather strong (see § 3.1 and 3.2). For \(y_j \geq 0.01 \), \(\alpha \leq 0.4 \), and \(\beta \leq 1.8 \), the maximum polarization degree for the CD model is \(\simeq 1.0 \).

4. STATISTICAL PROPERTIES

In this section we show the results of our Monte Carlo simulation of the GRB prompt emission polarization. First, in § 4.1 we give the values of the model parameters so that the observed fluences and peak energies of simulated bursts are consistent with the data obtained with the HETE-2 satellite. In § 4.3 we examine the properties of the polarization distribution of bursts detectable by the POET satellite, regardless of instrument MDP. Next, in § 4.4 we show the distribution of polarization that can be measured by POET, and discuss how we may constrain the emission models.

4.1. Model parameters

We performed Monte Carlo simulations to obtain the distribution of the observed spectral energies and fluences in the three emission models. Such simulations have been developed to discuss the empirical correlation between spectral peak energies in the cosmological rest frame and isotropic \(\gamma \)-ray energies among GRBs and X-ray flashes in several models of geometrical structure of GRB jets (Zhang et al. 2004; Yamazaki et al. 2004; Dai & Zhang 2005; Toma et al. 2005; Donahey et al. 2006). We generated 10,000 GRB jets with Lorentz factor, \(\gamma \), and opening angle, \(\theta_j \), and a random viewing angle for each jet according to the probability distribution of \(\sin \theta_j d \theta_j d \phi_j \) with \(\theta_j < 0.22 \) rad. For each burst generated we calculate the \(\nu I_\nu \) spectrum to obtain the spectral peak energy, \(E_\nu \), and the fluence, \(F \), in the 2–400 keV range by using equation (4). Since \(E_\nu \) and \(F \) are calculated for each \(q = \theta_j / \theta_j \) in the three models are different only by factors less than 0.22 rad.

\[0.02 \]
than 2, $E_{p,\text{obs}}$'s and Γ's of the simulated bursts may be calculated using just one model, for which we chose the CD model.

The distribution of γ and θ_0 for GRB jets are highly uncertain. We make a simple assumption for the distribution and in §4.3 we perform some simulations for different assumptions. We fix $\gamma = 100$. We assume the distribution of θ_j as

$$f(\theta_j)d\theta_j \propto \left\{ \begin{array}{ll}
q_1^q d\theta_j & \text{for } 0.001 \leq \theta_j \leq 0.02 \\
q_2^q d\theta_j & \text{for } 0.02 \leq \theta_j \leq 0.2,
\end{array} \right.$$

where $q_1 = 0.5$ and $q_2 = -2.0$. The value of $q_2 = -2$ is inferred from the observations of the steepening breaks (i.e., jet breaks) of some optical afterglows (Frail et al. 2001; Zeh et al. 2006) and from analysis of BATSE data using some empirical relations (Yonetoku et al. 2005). There are several suggestions of events with very small θ_j (e.g., Schady et al. 2007). Racusin et al. (2008), although the value of q_j is highly uncertain. The spectral parameters r_A^2, $\gamma\nu_0$, θ_j, and β are assumed as follows. The first two parameters are given so that the rest-frame spectral peak energies and isotropic γ-ray energies calculated for a jet viewed at $\theta_j = 0$ are consistent with those of typical GRBs. Such an on-axis emission has approximately $E_\nu = 2\gamma\nu_0$ and $E_\nu = 16\pi^2 r_A^2 \gamma_0 \gamma\nu_0$. The parameters r_A^2 and $\gamma\nu_0$ are given through the empirical relations $E_\nu \rho_2^2/2 = 10^{13}\xi_0^{\dagger} \text{erg}$ and $E_\nu = 80\gamma_0 (E_\nu/10^{52} \text{erg})^{1/2} \text{keV}$ (e.g., Frail et al. 2001; Amati et al. 2002). We assume that the coefficients ξ_0 and ξ_2 obey the log-normal distribution (Ioka & Nakamura 2002) with averages of 1 and logarithmic variances of 0.3 and 0.15, respectively. The last two parameters are fixed by $\alpha = -0.2$ and $\beta = 1.2$, which are typical values for GRB prompt emission (Preece et al. 2000; Sakamoto et al. 2005). The distribution of the source redshift, z, is assumed to be in proportional to the cosmic star formation rate. We adopt the model SF2 in Porciani & Madau (2001), i.e., the comoving GRB rate density is assumed to be proportional to

$$R(z) = \frac{\exp(3.4z)}{\exp(3.4z) + 22} \frac{\sqrt{\Omega_M (1+z) + \Omega_\Lambda}}{(1+z)^{3/2}}.$$

We take the standard cosmological parameters of $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_M = 0.3$, and $\Omega_\Lambda = 0.7$.

Figure 5 shows the results of $E_{p,\text{obs}}$ and time-averaged flux, F. The time-averaged flux is calculated by $F = I/T$, where T is the duration of a burst. We fix $T = 20 \text{ s}$, which is a typical value for long GRBs (e.g., Sakamoto et al. 2005). We show only the simulated bursts that have fluxes above the detectable limit of the HETE-2 satellite. They are consistent with the data obtained by HETE-2 (Sakamoto et al. 2005). The scatter of the simulated bursts is due both to the scatter of the assumed jet parameters and the viewing angle effect (Yamazaki et al. 2004; Donaghy 2006).

4.2. Properties of polarization distribution

We calculated the linear polarization, Π, by using equations (11, 16, and 17) to obtain the polarization distribution of the simulated bursts that can be detected by GRAPE and LEP. The detection limits of GRAPE and LEP are set to be the MDP contours of 1.0 (see Figure 1). Figures 6 and 7 show the $E_{p,\text{obs}}-\Pi$ diagrams of all the simulated bursts that can be detected by GRAPE and LEP, respectively, in the SO (red open circles), SR (green filled circles), and CD (blue plus signs) models. In the SO model, most of the detectable bursts have $0.3 < \Pi < 0.5$ in the GRAPE band (60-500 keV), while they have $0.2 < \Pi < 0.3$ in the LEP band (2-15 keV). In the SR and CD models, most of the detectable bursts have $\Pi > 0.1$ in both GRAPE and LEP bands. The events with $\Pi > 0.1$ are distributed uniformly with $\Pi < 0.4$ and $\Pi < 0.9$ for the SR and CD models, respectively.

This result can be roughly explained by the polarizations calculated as functions of γ_0 and $q = \theta_j/\theta_0$ for $\gamma\nu_0 = 350 \text{ keV}$ and $z = 1$ (see Figures 2, 3, 4) and the distribution of θ_j and q for the detectable bursts in this simulation, shown in Figure 8. The detectable events are dominated by the events with $q < 1$, since events with $q < 1$ are much brighter than those with $q > 1$ because of the relativistic beaming effect. For events with $q > 1$, narrower jets are easier to detect since they have intrinsically higher emissivities by our assumption. Most of the detectable events have $q < 1$ and $\theta_j > 0.02$ (i.e., $y_j > 4$).

Yamazaki et al. (2004) showed a deviation from the Amati relation ($E_P \propto E_{\nu,\text{iso}}^{0.8}$) for $E_P < 10 \text{ keV}$ in the uniform jet model, but the $E_{p,\text{obs}}-F$ diagram we derive is still consistent with the observed dataset.

The detection limits of GRAPE and LEP for signal-to-noise ratio > 5 are similar but not identical to the MDP contours of 1.0. Thus our setting for the detection limits is just for simplicity.
For these events the SO model gives $0.3 < \Pi < 0.5$ in most cases, while the SR and CD models give $\Pi < 0.1$, for the GRAPE band as shown in Figures 2, 3, and 4. The remaining detectable events mainly have $q > 1$ and $\theta_j > 0.005$ (i.e., $y_j > 0.25$). These events have $\Pi < 0.6$ in the SO model, $\Pi < 0.5$ in the SR model, and $\Pi < 0.9$ in the CD model, for the GRAPE band as shown in Figures 2, 3, and 4. The results for the LEP band can be explained similarly.

In all the three models, the results show $\Pi(60–500 \text{ keV}) > \Pi(2–15 \text{ keV})$ for almost all the detectable bursts with $\Pi > 0.1$. This is due to the fact that typically the contribution of the high-energy photons with spectral index β is larger in the GRAPE band than in the LEP band. The emission with softer spectrum has higher polarization because of the intrinsic property of the synchrotron polarization (equation 5) for the SO and SR models and the kinematic effect for the CD model (see § 3.3), respectively.

In the SO model, the polarization of GRBs with $q < 1$ is higher for lower $E_{\gamma,\text{obs}}$ for the GRAPE band. This is because the contribution from high-energy photons, with energy spectral index β, is larger. In the SR and CD models, the higher Π GRBs can be obtained for smaller θ_j. The maximum Π is obtained for $\theta_j \simeq 0.002$.

4.3. Cumulative distribution of measurable polarizations

We obtain the distribution of polarization that can be measured, by using the MDP values we derived for $\alpha = -0.2$, $\beta = 1.2$, and $T = 20$ s (see § 2). We interpret the simulated events with $\Pi > \text{MDP}$ as ‘II-measurable events’. Figure 9 shows the cumulative distribution of Π that can be measured by GRAPE and LEP in the SO, SR, and CD models. We have set the number of detectable events $N_d = 200$. Since the polarization in the LEP band is lower than in the GRAPE band for almost all the cases as discussed in § 4.2, the number of events for which polarization can be measured by LEP is smaller than for GRAPE. In the SO model, the number of II-measurable bursts is $N_m > 60$, and the cumulative distribution of measurable Π varies rapidly at $0.3 < \Pi < 0.4$ for the GRAPE band. In the SR model, $N_m < 10$, and the maximum polarization is $\Pi_{\text{max}} < 0.4$. In the CD model, $N_m < 30$, and $\Pi_{\text{max}} < 0.8$.

To investigate general properties of the cumulative distribution that do not depend on the model parameters, we performed simulations for other values of γ, q_1, and q_2, the Lorentz factor of the jets and the power-law indices of the distribution of the opening angles of the jets, respectively. We refer to the parameters adopted for the above simulation as ‘typical’ parameters. We now consider a range of parameters: $\gamma \geq 100$, $q_1 \geq 0.5$, and $q_2 \geq -3.0$, which are quite reasonable for GRBs (e.g., Lithwick & Sarl 2001; Yonetoku et al. 2005). Within these parameter ranges we obtain the lower (upper) limit of N_m/N_d for the SO model (the SR/CD models).

Figure 10 shows the results for $\gamma = 300$ and the same ‘typical’ values for the other parameters. The number N_m is larger in the SO model and smaller in the SR and CD models than the case of $\gamma = 100$. As γ is larger, the beaming effect is stronger and the ratio of the bursts with $q < 1$ for detectable bursts is larger. Thus the number of bursts with a high degree of polarization is larger in the SO model and smaller in the SR and CD models. Figure 11 shows the results for $q_1 = 1.0$ and the same ‘typical’ values for the other parameters. Since the ratio of the number of the bursts with smaller y_j to that of detectable bursts is smaller, N_m is slightly smaller than that for the ‘typical’ parameters in the SR and CD models. Figure 12 shows the results for $q_2 = -3.0$ and the ‘typical’ values for the other parameters. In this case N_m is slightly larger than that for the ‘typical’ parameters in the SR and CD models. The number N_m in the SO model is similar for Figure 9, 11, and 12 in the GRAPE band. To summarize, for the parameters $\gamma \geq 100$, $q_1 \geq 0.5$, $q_2 \geq -3.0$, $\alpha = -0.2$ and $\beta = 1.2$, we can say that $N_m/N_d > 30\%$ for GRAPE and the cumulative distribution of measurable Π varies rapidly from $0.3 < \Pi < 0.4$ in the SO model. For the SR model, $N_m/N_d < 5\%$ for GRAPE, with a maximum polarization $\Pi_{\text{max}} < 0.4$. For the CD model, $N_m/N_d < 15\%$ for GRAPE, and $\Pi_{\text{max}} < 0.8$.

Since the dependence of the polarization degree on the spectral indices is relatively large in the SO and SR models, we should take account of the distribution of α and β. The observed spectral parameters α and β are distributed roughly as $-0.5 < \alpha < 0.4$ and $0.9 < \beta < 1.8$ (Preece et al. 2000; Sakamoto et al. 2005). Within these ranges of α and β, the polarization degree for $y_j > 10$, $q < 1$, and $50 < E_{\gamma,\text{obs}} < 10^3$ keV is $0.2 < \Pi < 0.7$ in the SO model. Thus the measurable polarizations are clustered at $0.2 < \Pi < 0.7$. The maximum polarization obtained in the SO model for $y_j \geq 0.01, \alpha \leq 0.4$, and $\beta \leq 1.8$ is ≈ 0.8 (see § 3.1). In this case N_m/N_d will be larger than 30%. In the CD model, the result will not be significantly different from the case of
fixed α and β. In the SR model, the polarization degree does not exceed those calculated in the CD model, and thus $N_{m}/N_{d} < 15\%$. The maximum polarization obtained in the SR model for $y_{j} \geq 0.01$, $\alpha \leq 0.4$, and $\beta \leq 1.8$ is ≈ 0.8 (see §3.2).

In conclusion, we can constrain the emission mechanism of GRBs by using the cumulative distribution obtained by GRAPE. If $N_{m}/N_{d} > 30\%$, the SR and CD models may be ruled out, and in this case if the measured polarizations are clustered at $0.2 < \Pi < 0.7$, the SO model will be favored. If $N_{m}/N_{d} < 15\%$, the SO model may be ruled out, but we cannot distinguish between the SR and CD models with different distributions of y_{j}, α, and β. If several bursts with $\Pi > 0.8$ are detected, however, the CD model which includes adequate number of small y_{j} bursts will be favored.

5. SUMMARY AND DISCUSSION

Recently there has been an increasing interest in the measurement of X-ray and γ-ray polarization, and the observational techniques can now achieve significant sensitivity in the relevant energy bands. Several polarimetry mission concepts, such as POET, are being planned. The POET concept has two polarimeters, GRAPE (60-500 keV) and LEP (2-15 keV) both of which have wide fields of view. If launched, missions of this type would provide the first definitive detection of the polarization of GRB prompt emission. This would enable the discussion of the statistical properties of the polarization degree and polarization spectra, which will give us diagnostic information on the emission mechanism of GRBs and the nature of the GRB jets that cannot be obtained from current spectra and lightcurve observations. We have performed Monte Carlo simulations of the linear polarization from GRB jets for three major emission models: synchrotron model with globally ordered magnetic field (SO model), synchrotron model with small-scale random magnetic field (SR model), and Compton drag model (CD model). We assumed that the physical quantities for the emission of the jets are uniform on the emitting surface and that the jets have sharp edges. Our jet angle distribution allows the detections of GRBs with very small opening angles (i.e., smaller than 1 degree) as suggested by several Swift bursts (Schady et al. 2007, Racusin et al. 2008). We have shown that the POET mission or other polarimeters with similar capabilities, i.e., broadband spectral capabilities for the determination of $E_{p,obs}$ and sensitive broadband polarimetric capabilities to minimize MDP, can constrain the emission models of GRBs. Furthermore, these simulations indicate that an increase in the LEP effective area would be beneficial to compensate for the lower expected polarization at lower energies.

As shown in Figures 2-4 and 6, the SR and CD models require off-axis observations of the jets to achieve a high level of polarization, while the SO model does not. In this sense the SR and CD models are categorized as geometric models, and the SO model as an intrinsic model (Waxman 2003, Lazzati 2006). The distribution of observed polarizations obtained by our simulations show that the geometric SR/CD models will be ruled out if the number ratio of the Π-measurable bursts to detected bursts is larger than 30\%, and in this case the SO model will be favored if the measurable polarizations are clustered at $0.2 < \Pi < 0.7$. If the number ratio is smaller than 15\%, the SO model may be ruled out, but we cannot distinguish between the SR and CD models with different distributions of $y_{j} = (\gamma \theta_{j})^{2}$, α, and β, where γ and θ_{j} are the bulk Lorentz factor and the opening angle of the GRB jet, respectively, and α and β are lower and higher indices of the energy spectrum. However, if several bursts with $\Pi > 0.8$ are detected, the CD model which includes an adequate number of small y_{j} bursts will be favored.

If the cumulative distribution of the measurable polarizations favors the SO model, the globally ordered magnetic field would be advected from the central engine. If we understand the strength of the magnetic field in the emitting region from the luminosity and the spectrum of the emission, we can constrain the strength of the field at the central engine. If the geometric SR/CD models are favored by the observations, it will be established, independently of the afterglow observations, that GRB outflows are not spherical but highly collimated. If the CD model is favored by the observations, we may constrain the distribution of the parameter $y_{j} = (\gamma \theta_{j})^{2}$ of GRB jets. The CD model needs a dense optical/UV photon field interacting within the relativistic jets (Lazzati et al. 2000, Eichler & Levinson 2003).

We have made some simplifications in our simulations, and there are some caveats. We have assumed that the jets are uniform on the emitting surfaces and have sharp edges. To compare the simulations and the observations further, more sophisticated modeling is required (e.g., Zhang et al. 2004, Toma et al. 2005).

We have interpreted bursts as a simple combination of pulses, without taking account of the temporal variation of the Lorentz factor γ of the jet. If this is accounted for, each pulse may have different $y_{j} = (\gamma \theta_{j})^{2}$ but the same $q = \theta_{j}/\gamma$. We should then average the polarization with respect to fluence of each pulse having different y_{j} (Granot 2003, Nakar et al. 2003). However, in the SO model, the cumulative distribution of measurable Π will not be changed significantly as long as $y_{j} > 10$, because Π is clustered into a small range for $q < 1$ and $y_{j} > 10$. To average the polarization in the case of $q > 1$, the relation between the luminosity and the Lorentz factor for each pulse is required to predict the polarization distribution.

For the SR model we have assumed that the directions of the magnetic field are confined within the shock plane. They may be more isotropic in reality, in which case the polarization degree in the SR model will be reduced.

In the synchrotron model with a combination of the globally ordered magnetic field and the locally random field, $B = B_{ord} + B_{rnd}$, the linear polarization can be calculated by $\Pi = (Q_{ord} + Q_{rnd})/(I_{ord} + I_{rnd}) \approx (\Pi_{ord} + \pi_{ord})/(1 + \eta)$, where $\{I, Q\}_{ord}$ and $\{I, Q\}_{rnd}$ are the Stokes parameters from the ordered and random fields, respectively. Π_{ord} and π_{ord} are described by equations (11) and (16), and $\eta \equiv (B_{rnd}/B_{ord})^{1/3}$. This model will reduce the number ratio of Π-measurable bursts to detected bursts to less than 30% and the clustering of measurable polarizations will be at $\Pi < 0.7$.

This work is supported in part by the Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, No.19047004 (RY, KI, and TN), No.18740153 (RY), No.18740147 (KI), and in part by the Grant-in-Aid for the global COE program The Next Generation of Physics, Spun from Universality and Emergence from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. BZ acknowledges NASA NNG05GB67G and NN08AE57A (Nevada NASA EPSCoR program) and KT acknowledges NASA NNX08AL40G for partial supports.
a constant speed, the strength of magnetic field with radial direction scales as $\beta = 1$

Covino, S., Ghisellini, G., Lazzati, D., & Malesani, D. 2004, in ASP Conf.

Costa, E., et al. 2007, in Proc. of SPIE Vol.6686, 30

Coburn W., & Boggs, S. E. 2003, Nature, 423, 415

Boggs, S. E., et al. 2006, arXiv:astro-ph/0608532

Black, J. K., et al. 2007, NIMA, 581, 755

Begelman, M. C., & Sikora, M. 1987, ApJ, 322, 650

Band, D. L., et al. 1993, ApJ, 413, 281

Amati, L. 2002, A&A, 390, 81

Mundell, C. G., et al. 2007, Science, 315, 1822

Nakar, E., Piran, T., & Waxman, E. 2003, JCAP, 10, 5

Panaitescu, A., & Mészáros, P. 2000, ApJ, 544, L17

Piran, T. 2005, Rev. Mod. Phys., 76, 1143

Porciani, C., & Madau, P. 2001, ApJ, 548, 522

Preece, R. D., et al. 2000, ApJS, 126, 19

Produit, N., et al. 2005, Nucl. Instrum. Methods. Phys. Res. Sec. A, 550, 616

Racusin, J. L., et al. 2008, Nature, 455, 183

Rees, M. J., & Mészáros, P. 1994, ApJ, 430, L93

Rutledge, R. E., & Fox, D. B. 2004, MNRAS, 350, 1288

Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics (New York: Wiley Interscience)

Ryde, F., et al. 2006, ApJ, 652, 1400

Sagiv, A., Waxman, E., & Loeb, A. 2004, ApJ, 615, 366

Sakamoto, T., et al. 2005, ApJ, 629, 311

Sari, R. 1999, ApJ, 524, L43

Schady, P., et al. 2007, MNRAS, 380, 1041

Shaviv, N. J., & Dar, A. 1995, ApJ, 447, 863

Spruit, H. C., Daigne, F., & Drenkhahn, G. 2001, A&A, 369, 694

Stan, K. Z., et al. 2003, ApJ, 591, L17

Taylor, G. B., Frail, D. A., Berger, E., & Kulkarni, S. R. 2004, ApJ, 609, L1

Taylor, G. B., Momjian, E., Philstrom, Y., Ghosh, T., & Salter, C. 2005, ApJ, 622, 986

Thompson, C., Mészáros, P., & Rees, M. J. 2007, ApJ, 666, 1012

Toma, K., Yamazaki, R., Nakamura, T. 2005, ApJ, 635, 481

Toma, K., Ioka, K., & Nakamura, T. 2008, ApJ, 673, L123

Uhm, Z. L., & Beloborodov, A. M. 2007, ApJ, 665, L93

Waxman, E. 2003, Nature, 423, 388

Wigger, C., et al. 2004, ApJ, 613, 1088

Willis, D. R., et al. 2005, A&A, 439, 245

Woods, E., & Loeb, A. 1999, ApJ, 523, 187

Yamazaki, R., Ioka, K., & Nakamura, T. 2004, ApJ, 606, L33

Yonetoku, D., Yamazaki, R., Nakamura, T., & Murakami, T. 2005, MNRAS, 362, 1114

Zeh, A., Klose, S., & Kann, D. A. 2006, ApJ, 637, 889

Zhang, B., & Mészáros, P. 2002, ApJ, 581, 1236

Zhang, B., Dai, X., Lloyd-Ronning, N. M., & Mészáros, P. 2004, ApJ, 601, L119

Zhang, B. 2007, Chin. J. Astron. Astrophys., 7, 1

APPENDIX

SOME NOTES ON SYNCHROTRON POLARIZATION

The SO model: synchrotron with ordered field

We consider the synchrotron radiation from the shell moving radially outward with a bulk Lorentz factor $\gamma \gg 1$, and the magnetic field in the shell is globally ordered within the plane parallel to the shock plane. If the matter of the shell expands with a constant speed, the strength of magnetic field with radial direction scales as R^{-2} while that with transverse direction scales as

![Graph](image-url)
Thus the field advected with the shell is likely to have the direction parallel to the shock plane.

We set the line of sight (i.e., the direction from the central engine to the earth) in the lab frame to be z axis, and the direction of the magnetic field on a given point of the shell, projected onto the plane perpendicular to z axis, to be \hat{x} axis. The given point can be described by spherical coordinates (θ, φ). Then the components of the velocity vector of the given point and the unit wave vector can be described by the right-handed coordinate system $\hat{x}\hat{y}\hat{z}$ as $\beta = (\beta \sin\theta \cos\varphi, \beta \sin\theta \sin\varphi, \beta \cos\theta)$ and $\hat{k} = (0, 0, 1)$, respectively. The unit wave vector in the comoving frame is

$$\hat{k}' = \frac{1}{\gamma(1 - \beta \cdot \hat{k})} \left[\hat{k} + \beta \left(\frac{\gamma^2}{\gamma + 1} \beta \cdot \hat{k} - \gamma \right) \right]. \tag{A1}$$

Since the direction of the magnetic field in the comoving frame is perpendicular to the velocity vector of the fluid, $\mathbf{B}' = \mathbf{B} = \beta \mathbf{B}$. Therefore, the field in the comoving frame will be $\mathbf{B} = \beta \mathbf{B}$, which is just the field scaled by the factor β.
configuration. We set the direction from the line of sight to the jet axis to be equation can be rewritten as using the azimuthal angle Then we obtain

\[\sin \theta'_B \approx \left(\frac{1 - \gamma^2 \theta^2}{1 + \gamma^2 \theta^2} \right) \cos^2 \varphi + \sin^2 \varphi \] (A2)

in the limit \(\gamma \gg 1 \).

The direction of the polarization vector of the synchrotron radiation is calculated by \(\mathbf{e}' \parallel \mathbf{B}' \times \hat{k}' \). Then we obtain the direction of the polarization vector in the lab frame by

\[\mathbf{e} = \gamma(1 + \beta \cdot \hat{k})\mathbf{e}' - (\beta \cdot \mathbf{e}') \left(\frac{\gamma^2}{\gamma + 1} \beta + \gamma \hat{k}' \right). \] (A3)

The results are \(e_z = 0 \) and

\[\tan \chi_B \equiv \frac{e_y}{e_x} = \tan \varphi - \frac{\beta - \cos \theta}{\beta \sin^2 \theta} \frac{1}{\sin \varphi \cos \varphi}. \] (A4)

The angle \(\chi_B \) is the polarization position angle measured from the axis \(\hat{x} \) (i.e., the direction of the local magnetic field). The above equation can be rewritten as \(\chi_B \approx \varphi + \arctan((1 - \gamma^2 \theta^2) \cot \varphi / (1 + \gamma^2 \theta^2)) \). This result is consistent with that of Granot (2003).

Based on the above results, we consider the case that the magnetic field is axisymmetric around the jet and has a toroidal configuration. We set the direction from the line of sight to the jet axis to be \(\hat{x} \) axis. Below we will rewrite the above results by using the azimuthal angle \(\phi \) measured from \(x \) axis. In the coordinate system of \(\text{xyz} \), the jet axis and the coordinates of a given point on the shell are described as \(\mathbf{J} = (\sin \theta_j, \cos \theta_j, \cos \phi) \), and \(\mathbf{R} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \), respectively. The magnetic field at the given point is given by \(\mathbf{B}' = \mathbf{R} \times \mathbf{J} / |\mathbf{R} \times \mathbf{J}| \). Let the unit vectors of the directions of \(\mathbf{R} \) and \(\mathbf{B}' \) projected onto \(\text{xy} \) plane be \(\mathbf{r} \) and \(\hat{b} \), and \(\cos \varphi = \hat{b} \cdot \mathbf{r} \). Then we obtain

\[\cos^2 \varphi \approx \frac{\sin^2 \phi}{1 + a^2 - 2a \cos \phi}, \] (A5)

where \(a \equiv \theta / \theta_j \). Equation (9) is given by inserting equation (A5) into equation (A2). If we measure the position angle from the \(x \) axis, we obtain equation (10), i.e., \(\chi = \chi_B - \varphi + \phi \). These results are consistent with those of Granot & Taylor (2005).

The SR model: synchrotron with random field

Here we consider that the directions of the magnetic fields are confined within the plane parallel to the shock plane and that they are completely random. This field configuration is possible if the field is generated by the shock. In the comoving frame of the shell, we set the direction of \(\hat{k}' \) to be axis 3, and set a right-handed coordinate system 123. Let the polar and azimuthal angles of \(\mathbf{B}' \) be \(\theta'_B \) and \(\phi'_B \), respectively. In this coordinate system, the Stokes parameters of synchrotron emissivity are given by

\[j^{Q'}_{\mu'} = -j_{\mu'}^{I} \Pi_0 \cos(2 \phi'_B), \quad j^{U'}_{\mu'} = -j_{\mu'}^{I} \Pi_0 \sin(2 \phi'_B). \] (A6)

Next we set another right-handed coordinate system \(\text{xyz} \) of which \(z \) axis is along the velocity vector of the fluid and \(xz \) plane includes \(\hat{k}' \). Then the angle between \(\hat{k}' \) and \(\hat{z} \) axis is \(\theta' \). Here the magnetic field \(\mathbf{B}' \) is confined within \(\text{xy} \) plane. Let the azimuthal angle of \(\mathbf{B}' \) be \(\eta' \), and we obtain the relations between the components of \(\mathbf{B}' \) in the systems 123 and \(\text{xyz} \).

\[\begin{align*}
\sin \theta'_B \sin \phi'_B &= \cos \theta' \cos \eta', \\
\sin \theta'_B \cos \phi'_B &= \sin \theta' \sin \eta', \\
\cos \theta'_B &= \sin \theta' \cos \eta'.
\end{align*} \] (A7)

Then we obtain

\[\sin \theta'_B = \left[1 - \frac{2 \sin 2 \eta'}{(1 + 2a \cos \eta')} \cos^2 \eta' \right]^{1/2}, \]

\[\cos(2 \phi'_B) = \frac{2}{\sin^2 \phi'_B} \left[\sin^2 \eta' - \left(\frac{1 - 2 a \cos \eta'}{1 + 2 a \cos \eta'} \right) \cos^2 \eta' \right]. \] (A8)

To obtain the polarization degree of synchrotron radiation from the random field, we average the Stokes parameters with respect to \(\eta' \). This leads to \(\langle j^{Q'}_{\mu'} \rangle = 0 \). Then we can calculate the polarization degree by \(\Pi_0 = \langle j^{Q'}_{\mu'} \rangle / \langle j^{I'}_{\mu'} \rangle = \Pi_0^{\eta'} \langle \sin \theta'_B \cos(2 \phi'_B) / \sin \theta'_B \rangle^{\eta'} \rangle \), and the polarization vector is along axis 1, i.e., the direction perpendicular to \(\mathbf{k}' \) and within the plane including \(\mathbf{k}' \) and \(\beta \).