Supplementary Materials and Methods

Figure S1. The growth curve of SM10λπ, PAO1 and EC600 under indoles. Cells (1 × 10^7 CFU/ml) were cultured in the presence of indicated concentrations of indoles and isometric solvent ethyl alcohol at 37°C for 6 h. Values are means ± SEMs from at least three independent experiments.

Figure S2. Validation of constructed strains. Indicated strains in the logarithmic phase were collected for extracellular indoles, cell optical density measurement and real-time PCR analysis of tnaA expression. The indoles expression level was indicated in terms of extracellular indoles production (µM) divided by cell optical density (OD600). Values are means ± SEMs from at least three independent experiments. ***, P < 0.001.

Table S1. Minimal inhibitory concentration (MIC) of SM10λπ against ciprofloxacin.

No.	1	2	3	4	5	6	7	8	9	10	11	12
First	-	-	-	-	-	-	-	+	+	+	+	+
Second	-	-	-	-	-	-	-	+	+	+	+	+
Third	-	-	-	-	-	-	-	+	+	+	+	+
CIP (µg/ml)	2^0	2^-1	2^-2	2^-3	2^-4	2^-5	2^-6	2^-7	2^-8	2^-9	2^-10	2^-11

Table S2. The information of strains and plasmids used in this work.
Strains/plasmids	Genotype or characteristics	Source
Escherichia coli		
SM10λπ	thi thr leu tonA lacY supE recA::RP4-2-Tc::Mu Km λpir	(1)
SM10λπ ΔtnaA	Mutants of *E. coli* SM10λπ deficient in *tnaA* gene	This work
ΔtnaA-vector	SM10λπ ΔtnaA with pSTV28 vector introduced	This work
ΔtnaA-TnaA	SM10λπ ΔtnaA with pSTV28-TnaA introduced	This work
SM10λπ-TnaA	*E. coli* SM10λπ with pSTV28-TnaA introduced	This work
EC600	LacZ-, Gm^S^, Rif^R^	Our lab

| **Pseudomonas aeruginosa** | | |
| PAO1 | Wild-type strain, Gm^S^, Amp^R^ | (2) |

Plasmids		
pSTV28	Control plasmid, containing P_{lac} promoter, Cm^R^	Our lab
pSTV28-tnaA	pSTV28 derivative, *Escherichia coli* SM10λπ <i>tnaA</i> overexpression plasmid, controlled by the constitutive P_{lac} promoter, Cm^R^	This work
pUCP24T	370 bp oriT fragment from pCVD442 cloned into pUCP24, ori1600, Gm^R^	Our lab
pKD3	oriR6K, FRT::cat::FRT template plasmid Cm^R^, Amp^R^	(3)
pKD46	oriR101 repA101ts P-araB-gam-bet-exo Amp^R^	(3)
pCP20	pSC101 temperature-sensitive replicons, Flp (λ Rp), cI857, Cm^R^, Amp^R^	(3)

Gm^R^, Rif^R^, Amp^R^ and Cm^R^ stand for gentamycin, rifampin, ampicillin and chloramphenicol resistance, respectively.

Table S3. Sequences of RNA and DNA oligonucleotides.

Name	Sense primer (5′-3′)	Antisense primer (5′-3′)	Source
Promers for qPCR			
<i>tnaA</i>	TCACCCGCGAAACCTACAAA	GTCTTTTCATGCACAGCAGGC	Our lab
<i>korA</i>	GCTTACCGAAAGCCAGTTCCAG	GCAAGTTCCTTGCTTCGGAACGC	(4)
<i>korB</i>	AAGGAAAAGGCCGCGAAGGAG	TCGATGAGCGCGACCAGTTTC	(4)
<i>trbA</i>	TGGAACCTCCCCTACCTCTTT	CCACACTGATGCGTTCGTAT	(5)
<i>trbB</i>	CGCGGTGCGCATCTTCACG	TGCCCGAGCCAGTACCAGCAATG	(6)
<i>rtaA</i>	GAAGCCCATCGCGTGCCCTGTAG	GCCGACGATGACGAAGGACGG	(5)
<i>rtaI</i>	ATCACGAAAGGAACCATCCTT	TTGAACCTGTGGTGCGGTTGAC	(7)
<i>rtaJ</i>	CGAACGAAAGAGCGATGAGG	TCGTGGTGAGCCAGAAGTTT	This work
<i>rpoD</i>	TATCTGCTGGAACAGTACGATGTG	TGTTGTACATCGCGGCTCG	(8)

Primers for <i>tnaA</i> promoter cloning

Name	Sense primer (5′-3′)	Source
<i>tnaA</i>	TATGACCATGATTACGAATTTCGGT, ATAGCAGATG	This work

Plasmids construction
For construction of TnaA-expressing plasmid, TnaA coding region was amplified by PCR from *E. coli* SM10λπ chromosomal DNA. Amplified fragments were purified by gel extraction kit (ShengGong, Shanghai, China), then digested with *Hind III* and *BamH I* (Takara, Dalian, Liaoning, China), and cloned into the corresponding sites of pET32a (+).

Construction of *E. coli* SM10λπ tnaA deficient mutants

Construction of *E. coli* SM10λπ tnaA mutant followed the same steps described by Datsenko *et al* (3) except 100 mM L-arabinose was used to induce *P*araB promoter of pKD46. Briefly, the insert fragments were amplified with primer D-*tnaA*-F (TGTAATTTACAGGGATCACTGTAATTAAAATAAATGAAGGATTATGTATG TGGCTGGAGCTGCTTCG) and D-*tnaA*-R (TGTAGGGTAAAGAGTGGCTAACATCCTTATAGCCACTCTGTAGTATAAAT GGAATTAGCCATGCTTC). Afterwards, 100 μL cells were transfected with 1000ng PCR products using electroporation according to the manufacturer's instructions. Recombinants were selected on LB agar (Cm, 15μg/mL) and then transformed with pCP20 to eliminate FRT-flanked *cat* gene. Both mutants were verified by PCR (primers C-*tnaA*-F: TTTGCCCTTCTGTAGCCATC and C-*tnaA*-R: ACCATAACACCCCCAAATGC) and DNA sequencing.

1. Simon R, Priefert U, Pühler A. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. *Bio/Technology* (1983) 1:784-91.
2. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of *Pseudomonas aeruginosa PAO1*, an opportunistic pathogen. *Nature* (2000) 406(6799):959-64.
3. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* (2000) 97(12):6640-5.
4. Zatyka M, Bingle L, Jones AC, Thomas CM. Cooperativity between KorB and TrbA repressors of broad-host-range plasmid RK2. *J Bacteriol* (2001) 183(3):1022-31.
5. Qiu Z, Yu Y, Chen Z, Jin M, Yang D, Zhao Z, et al. Nanoalumina promotes the horizontal transfer of multi-resistance genes mediated by plasmids across genera. *Proc Natl Acad Sci U S A* (2012) 109(13):4944-9.
6. Wang Q, Mao D, Luo Y. Ionic Liquid Facilitates the Conjugative Transfer of Antibiotic Resistance Genes Mediated by Plasmid RP4. *Environ Sci Technol* (2015) 49(14):8731-40.
7. Balzer D, Pansegrau W, Lanka E. Essential motifs of relaxase (TraI) and TraG proteins involved in conjugative transfer of plasmid RP4. *J Bacteriol* (1994) 176(14):4285-95.
8. Savli H, Karadenizli A, Koyal F, Gundes S, Ozbek U, Vahaboglu H. Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of *Pseudomonas aeruginosa* by real-time quantitative RT-PCR. *J Med Microbiol* (2003) 52(Pt 5):403-8.