Bounds on the Concavity of Quantum Entropy

Isaac Kim
Perimeter Institute, Waterloo, Ontario, Canada N2L 2Y5
ikim@perimeterinstitute.ca

Mary Beth Ruskai
Institute for Quantum Computing, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
ruskai@member.ams.org

May 2, 2014

Dedicated to the memory of Oscar E. Lanford III

Abstract

We give new upper and lower bounds on the concavity of quantum entropy. Comparisons are given with other results in the literature.

1 Introduction

It is well-known that the von Neumann quantum entropy $S(\rho) \equiv -\text{Tr} \rho \log \rho$ is concave, where the argument ρ is a density matrix ρ, i.e., $\rho \geq 0$, $\text{Tr} \rho = 1$. Recently Kim [8] proved the following lower bound on the concavity

$$S(\rho_{\text{Av}}) - xS(\rho_1) - (1-x)S(\rho_2) \geq \frac{x(1-x)}{(1-2x)^2} \max \left\{ \frac{H(\rho_{\text{Av}}, \rho_{\text{Rev}})}{H(\rho_{\text{Rev}}, \rho_{\text{Av}})} \right\} \geq \frac{1}{2} x(1-x) \| \rho_1 - \rho_2 \|^2_1$$

where $\rho_{\text{Av}} \equiv x \rho_1 + (1-x) \rho_2$, $\rho_{\text{Rev}} \equiv x \rho_2 + (1-x) \rho_1$ and $H(\rho, \gamma) \equiv \text{Tr} \rho (\log \rho - \log \gamma)$ denotes the relative entropy. In Section 2, we present a simple proof of (2) and compare it to other possible lower bounds, particularly those resulting from recent work of Carlen and
Lieb [4]. Our results demonstrate that their methods do not always give stronger results than those obtained using Pinsker’s bound. We also consider upper bounds in Section 3. Finally, in section 4 we discuss the possibility of improved bounds using variants of the Renyi relative entropy.

2 Lower bounds

We begin with a simple proof of (2)

\[S(\rho_A) - xS(\rho_1) - (1 - x)S(\rho_2) \]

\[= x \text{Tr} \rho_1 \log \rho_1 + (1 - x) \text{Tr} \rho_2 \log \rho_2 - \text{Tr} [x \rho_1 + (1 - x) \rho_2] \log \rho_A \]

\[= xH(\rho_1, \rho_A) + (1 - x)H(\rho_2, \rho_A) \]

\[\geq \frac{1}{2} x \| \rho_1 - \rho_A \|_1^2 + \frac{1}{2} (1 - x) \| \rho_2 - \rho_A \|_1^2 \]

\[= x(1 - x) \frac{1}{2} \| \rho_1 - \rho_2 \|_1^2 \] (4)

where we used Pinsker’s bound [14] [13, Theorem 1.15]

\[H(\rho, \gamma) \geq \frac{1}{2} \| \rho - \gamma \|_1^2 \] (5)

In view of the fact that Carlen-Lieb [4] presented an inequality for subadditivity that can be stronger than Pinsker’s bound in some situations, it is interesting to see if one can use their results to improve the bound (2). We begin with the well-known observation that if

\[P_{AB} = \begin{pmatrix} x \rho_1 & 0 \\ 0 & (1 - x) \rho_2 \end{pmatrix} \] (6)

so that \(P_A = \rho_A \) and \(P_B = \begin{pmatrix} x & 0 \\ 0 & 1 - x \end{pmatrix} \), then

\[H(P_{AB}, P_A \otimes P_B) = S(P_A) + S(P_B) - S(P_{AB}) \]

\[= S(\rho_A) - xS(\rho_1) - (1 - x)S(\rho_2) \] (7)

It then follows from [4] Lemma 2.1 that

\[S(\rho_A) - xS(\rho_1) - (1 - x)S(\rho_2) \]

\[\geq -2 \log \left[1 - \frac{1}{2} \text{Tr} \left(\sqrt{P_{AB}} - \sqrt{P_A \otimes P_B} \right)^2 \right] \]

\[= -2 \log \left[1 - \frac{1}{2} \text{Tr} \left(P_{AB} + P_A \otimes P_B - 2 \sqrt{P_{AB} \sqrt{P_A \otimes P_B}} \right) \right] \]

\[= -2 \log \text{Tr} \left(\sqrt{P_{AB}} \sqrt{P_A \otimes P_B} \right) \]

\[= -2 \log \text{Tr} \left(\begin{pmatrix} x \sqrt{\rho_A} & 0 \\ 0 & (1 - x) \sqrt{\rho_A} \end{pmatrix} \right) \] (8)
\begin{align}
&= -2 \log \text{Tr} \left[x \sqrt{\rho_1} + (1 - x) \sqrt{\rho_2} \right] \sqrt{\rho_{\text{AV}}} \\
&\geq -2 \log \text{Tr} \sqrt{\rho_{\text{AV}} \rho_{\text{AV}}} = 0
\end{align}

where the last inequality uses the fact that \(f(u) = \sqrt{u} \) is a concave operator function. Note that the bound (9) could have been obtained directly from the monotonicity of the Renyi relative entropy
\[H^\text{Ren}_a(\rho, \gamma) \equiv \frac{1}{a - 1} \log \text{Tr} \rho^a \gamma^{1-a} \]
in the case
\[H(\rho, \gamma) = H^\text{Ren}_1(\rho, \gamma) \geq H^\text{Ren}_{1/2}(\rho, \gamma) \]
If one applies Pinsker’s inequality to (7), one would obtain
\[S(\rho_{\text{AV}}) - xS(\rho_1) - (1 - x)S(\rho_2) = H(P_{AB}, P_A \otimes P_B) \geq 2x^2(1 - x)^2 \]
which appears to be weaker than (9).

This raises the question of which of the lower bounds on concavity is stronger. Numerical tests show that in some cases (2) is stronger and in other cases (9) is stronger. (See the Appendix for specific examples.) Thus the Carlen-Lieb bound [4] on subadditivity does not give a stronger bound on the concavity of entropy than Pinsker’s inequality.

3 Upper bounds

It is also a well-known consequence [5, 9] of the operator monotonicity of the function \(f(u) = \log u \) that the concavity satisfies the upper bound
\[S(\rho_{\text{AV}}) - xS(\rho_1) - (1 - x)S(\rho_2) \leq -x \log x - (1 - x) \log(1 - x) \equiv h(x) \]
where \(h(x) \) denotes the binary entropy. Using the Bures metric [3, 16]
\[D^2_{\text{Bures}}(\rho, \gamma) \equiv 2 \left[1 - \text{Tr} \left(\sqrt{\rho} \sqrt{\gamma} \right)^{1/2} \right] \leq \| \rho - \gamma \|_1 \]
with the inequality due to Fuchs and van de Graph [6], the inequality
\[S(\rho_{\text{AV}}) - xS(\rho_1) - (1 - x)S(\rho_2) \leq h(x) D^2_{\text{Bures}}(\rho_1, \rho_2) \leq h(x) \| \rho_1 - \rho_2 \|_1 \]
was proved in [15]. However, because one can have \(\| \rho_1 - \rho_2 \|_1 > 1 \), (16) is not always stronger than (14).

Recently Audenaert [1, Eq. 66] obtained the stronger upper bound
\[S(\rho_{\text{AV}}) - xS(\rho_1) - (1 - x)S(\rho_2) \leq h(x) \frac{1}{2} \| \rho_1 - \rho_2 \|_1 \]
which is also stronger than (14).

A different upper bound is given in Theorem 3 below.
4 Renyi bounds

We can summarize the basic bounds as

Theorem 1 The quantum entropy satisfies the upper and lower bounds

\[
\begin{align*}
\text{h}(x)\frac{1}{2}\|\rho_1 - \rho_2\|_1 & \geq S(\rho_{A^c}) - xS(\rho_1) - (1-x)S(\rho_2) \\
& \geq \frac{1}{2}x(1-x)\|\rho_1 - \rho_2\|_1^2
\end{align*}
\]

(18)

It is natural to ask if one can use the monotonicity of either the Renyi relative entropy \((11)\) or the sandwiched Renyi entropy \(\tilde{H}_{\text{Ren}}^{a}(\rho, \gamma) \equiv \text{Tr}\left(\frac{1}{a-1}\log\left(\gamma^{\frac{1-a}{a}}\rho^{\frac{1}{a}}\right)\right)^a\) introduced independently in [12] and [17] to improve these bounds. It is well-known that the Renyi relative entropy \((11)\) is monotone in \(a\) (see, e.g., [10, 12]) and Beigi [2] (see also [12]) recent proved that this monotonicity also holds for the sandwiched Renyi entropy \((19)\) when \(a \geq \frac{1}{2}\). Because \(\tilde{H}_{\text{Ren}}^{a}(\rho, \gamma) \leq H_{\text{Ren}}^{a}(\rho, \gamma) \forall a\), it is always more advantageous to use \(\tilde{H}_{\text{Ren}}^{a}\) for upper bounds and \(H_{\text{Ren}}^{a}\) for lower bounds. Since

\[
\lim_{a \to 1} \tilde{H}_{\text{Ren}}^{a}(\rho, \gamma) = H(\rho, \gamma) = \lim_{b \to 1} H_{\text{Ren}}^{b}(\rho, \gamma)
\]

(20)

it follows that

Theorem 2 For any fixed, \(x \in (0,1)\) and \(\rho_1 \neq \rho_2\) one can find \(a_c > 1\) and \(b_c \in [\frac{1}{2}, 1)\) such that

\[
\text{h}(x)\frac{1}{2}\|\rho_1 - \rho_2\|_1 \geq x\tilde{H}_{\text{Ren}}^{a}(\rho_1, \rho_{A^c}) + (1-x)\tilde{H}_{\text{Ren}}^{a}(\rho_2, \rho_{A^c}) \forall a \geq a_c
\]

\[
\geq S(\rho_{A^c}) - xS(\rho_1) - (1-x)S(\rho_2)
\]

\[
\geq xH_{\text{Ren}}^{b}(\rho_1, \rho_{A^c}) + (1-x)H_{\text{Ren}}^{b}(\rho_2, \rho_{A^c}) \forall b \in [b_c, 1)
\]

\[
\geq \frac{1}{2}x(1-x)\|\rho_1 - \rho_2\|_1^2
\]

Except for very special situations, e.g., both \(\rho_1, \rho_2\) multiples of orthogonal projections, one would expect that one can find \(a_c, b_c\) such that all of the above bounds are strict. However, it seems unlikely that there exist \(a\) and/or \(b\) which improve the basic bounds in Theorem 1 for arbitrary \(x, \rho_1, \rho_2\). Whether or not one can obtain improved bounds if some of these parameters are fixed seems to be an open question in general.

In the special case \(x = \frac{1}{2}\), observe that

\[
\begin{align*}
\frac{1}{2}\left[H_{\text{Ren}}^{2}(\rho_1, \rho_{A^c}) + H_{\text{Ren}}^{2}(\rho_2, \rho_{A^c})\right] &= \frac{1}{2}\left[\log\text{Tr}\rho_1^2\rho_{A^c}^{-1} + \log\text{Tr}\rho_2^2\rho_{A^c}^{-1}\right] \\
&= \frac{1}{2}\left[\log(2\text{Tr}\rho_1) + \log(2\text{Tr}\rho_2)\right] = \log 2
\end{align*}
\]

(21)
where we used for $k = 1, 2$

$$\text{Tr} \, \rho_k^{-1} \rho_{\text{Av}}^{-1} = 2 \text{Tr} \, \rho_k^{1/2} \left(\rho_k^{1/2} \frac{1}{\rho_1 + \rho_2} \rho_k^{1/2} \right) \rho_k^{1/2} \leq 2 \text{Tr} \, \rho_k^{1/2} I \rho_k^{1/2} = 2 \text{Tr} \, \rho_k$$ \hspace{1cm} (22)

and the inequalities are strict if $\rho_1 \neq \rho_2$ and they are not multiples of pairwise orthogonal projections. Then we can conclude that for $x = \frac{1}{2}$,

$$h \left(\frac{1}{2} \right) = \log 2 \geq \frac{1}{2} \left[H_{\text{ren}}^a(\rho_2, \rho_{\text{Av}}) + H_{\text{ren}}^a(\rho_1, \rho_{\text{Av}}) \right]$$

$$\geq \frac{1}{2} \left[H_{\text{ren}}^a(\rho_1, \rho_{\text{Av}}) + H_{\text{ren}}^a(\rho_2, \rho_{\text{Av}}) \right]$$

$$\geq S(\rho_{\text{Av}}) - xS(\rho_1) - (1 - x)S(\rho_2)$$ \hspace{1cm} (23)

for all $a \in (1, 2]$. This led us to conjecture that a similar result could be proved for any fixed x. Milan Mosonyi [11] then proved the following slightly stronger result and kindly allowed us to include his argument here.

Theorem 3 (Mosonyi) For all $a > 1$,

$$h(x) \geq x \left[\tilde{H}_{\text{ren}}^a(\rho_1, \rho_{\text{Av}}) + (1 - x)\tilde{H}_{\text{ren}}^a(\rho_2, \rho_{\text{Av}}) \right]$$

$$\geq S(\rho_{\text{Av}}) - xS(\rho_1) - (1 - x)S(\rho_2)$$ \hspace{1cm} (24)

Proof: Note that the sandwiched Renyi divergences are monotone increasing in the parameter a, and their limit when $a \to \infty$ is the max-relative entropy

$$H_{\text{max}}(\rho, \gamma) := \inf \{ \log \omega : \rho \leq \omega\gamma \}.$$

Obviously, $\rho_1 \leq (1/x)\rho_{\text{Av}}$, and hence

$$\tilde{H}_a(\rho_1, \rho_{\text{Av}}) \leq H_{\text{max}}(\rho_1, \rho_{\text{Av}}) \leq -\log x \quad \forall \ a \in [1/2, +\infty].$$

Applying the same result to ρ_2, shows that (24) holds for every $a > 1$.

Acknowledgment: It is a pleasure to thank Koenraad Audenaert, Fumio Hiai and Milan Mosonyi for helpful correspondence on an earlier version of the manuscript. IK’s research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development and Innovation. MBR’s work was partially supported by NSF Grant CFF-1018401 which is administered by Tufts University. MBR would also like to express her appreciation for the stimulated and hospitable atmosphere at the Institute for Quantum Computing in Waterloo, where most of this work was done.
A Numerical Examples

Since all of the numerical examples were found for qubit density matrices, it is convenient to represent them using the Bloch sphere representation

$$\rho = \frac{1}{2} [I + w \cdot \sigma] = \frac{1}{2} [I + \sum_k w_k \sigma_k]$$

identify \(w_k\) with \(\rho_k\).

\[
\begin{align*}
 w_1 &= (0.2876, 0.4322, 0.3112) & w_2 &= (-0.1552, -0.0532, -0.0874) & x &= 0.7086 \\
 w_1 &= (-0.2136, 0.0702, -0.0944) & w_2 &= (-0.5204, 0.7790, -0.1772) & x &= 0.2197 \\
 w_1 &= (-0.1850, 0.7506, -0.6388) & w_2 &= (0.0254, 0.0012, 0.0114) & x &= 0.5218
\end{align*}
\]

(25a) (25b) (25c)

For Example (a), (2) yields a better bound than (9). For Example (b), (9) yields a better bound (2). It is interesting that even (11), which is stronger than (2), is sometimes weaker than (9). This is the case for Example (c) for which (9) is strictly greater than (11).

References

[1] K.M.R. Audenaert “Quantum Skew Divergence: Theory and Applications” [arXiv:1304.5935]

[2] S. Beigi “Sandwiched Rnyi Divergence Satisfies Data Processing Inequality” *J. Math. Phys.* 54, 122202 (2013.) [arXiv:1306.5920]

[3] D. Bures, “An extension of Kakutani’s theorem on infinite product measures to the tensor product of semi-finite \(\mathfrak{w}\)-algebras” *Trans. Amer. Math. Soc.* ?135 199–212 (1969).

[4] E. A. Carlen and E.H. Lieb “Remainder Terms for Some Quantum Entropy Inequalities” [arXiv:1402.3840]

[5] M. Delbrück and G. Molière Statistische quantenmechanik und thermodynamik, *Abh. Preuss. Akad. Wissenschaften* 1, 1–42 (1936).

[6] C. A. Fuchs and J. van de Graaf, “Cryptographic distinguishability measures for quantum mechanical states” *IEEE Trans. Inf. Theory* 45 1216–1227 (1999).

[7] F. Hiai, “Matrix Analysis and quantum information” *S?gaku* 65(2) 133–159 (2013) (Japanese); English translation *Sugaku Expositions* in press (2014)

[8] I. H. Kim “Convexity estimate of operator convex functions” [arXiv:1310.0746]
[9] O. E. Lanford III and D. W. Robinson, “Mean Entropy of States in Quantum Statistical Mechanics” J. Math. Phys. 94, 1120–1125 (1968.)

[10] M. Mosonyi “Renyi divergences and the classical capacity of finite compound channels” arXiv:1310.7525

[11] M. Mosonyi, private communication.

[12] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel “On quantum Renyi entropies: a new generalization and some properties” J. Math. Phys. 54, 12220e2 (2013.) arXiv:1306.3142

[13] M. Ohya and D. Petz, Quantum Entropy and Its Use, (Springer-Verlag, Heidelberg, 1993; 2nd edition 2004).

[14] M.S. Pinsker Information and Information Stability of Random Variables and Processes (Holden Day, 1964).

[15] W. Roga, M. Fannes and K. Zyczkowski “Universal bounds for the Holevo quantity, coherent information and the Jensen-Shannon divergence” Phys. Rev. Lett. 105, 040505 (2010). arXiv:1101.4105

[16] A. Uhlmann, “Density operators an an arena for differential geometry” Rep. Math. Phys. 33 253–263 (1993).

[17] M. M. Wilde, A. Winter, D. Yang “Strong converse for the classical capacity of entanglement-breaking and Hadamard channels” arXiv:1306.1586