AMELIORATIVE EFFECT OF PHOENIX DACTYLIFERA ON ADVERSE EFFECTS OF LINEZOLID IN MALE ALBINO RATS

MAHMOUD AHMED ABD®, SAYED A. AZIZ, SAMEH M. ELNABTITY

Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Egypt. Email: ph.mahmoud.91@gmail.com

Received: 19 February 2019, Received and Accepted: 14 March 2019

ABSTRACT

Objective: This study aimed to investigate the adverse effects of linezolid (LZD) on biochemical and hematological parameters and some organs including bone marrow, brain, and kidneys and to investigate the possibility of methanolic extract of Phoenix dactylifera (MEPD) to counteract the adverse effects of LZD.

Methods: Forty-eight adult male albino rats were allocated into four equal groups (each of 12 animals). The first group received Tween 80 orally. The second group received was given 0.5 ml of LZD suspension 4% in Tween 80 (100 mg/kg body weight) orally. The third group received the same dose of LZD suspension followed by 1 ml of MEPD orally. The rats in the last group were given 1 ml of MEPD (1000 mg/kg body weight) orally. Rats were sacrificed and blood samples were collected for hematological and biochemical study. Femur bones, brain, and kidneys were dissected and kept in a jar containing 10% formalin to perform the histopathological investigation.

Results: The dose of LZD administered for 14 successive days induced a mild-to-moderate hematomal abnormalities including decrease in hemoglobin content (7.88±0.18 g/L) on day-1 post-treatment. Significant increase in serum urea (59.75±0.85) and serum creatinine was observed (1.69±0.04). On day-14 post-treatment, LZD induced mild-to-moderate cellular abnormalities in bone marrow, brain, and kidneys. The concurrent oral administration of MEPD and LZD for the same period corrected the hematological, biochemical, and histopathological alterations induced by LZD.

Conclusion: It was concluded that MEPD clearly ameliorated these damaging effects induced by LZD.

Keywords: Phoenix dactylifera, Linezolid, urea, Creatinine, Brain, Bone marrow.

INTRODUCTION

The oxazolidinones represent a new synthetic class of antibacterial agents with activity against Gram-positive organisms [1]. Studies have shown that the oxazolidinones: Linezolid (LZD) and epezolid are active against vancomycin-resistant staph aureus and penicillin-resistant Streptococcus pneumoniae [2].

LZD is entering Phase III clinical trials as a therapeutic agent that is effective against skin infections, bacteremia, and pneumonia caused by Gram-positive pathogenic bacteria, the antimicrobial activities of the oxazolidinones were first described by scientists at Dupont de Nemours Co., Inc., USA [3].

LZD was discovered in the 1990s and first approved for use in 2000. It was the first commercially available 1,3-oxazolidinone antibiotic, although others are in development. As a protein synthesis inhibitor, it stops the growth of bacteria by disrupting their production of proteins, that is, a bacteriostatic agent, not bactericidal. Although many antibiotics work this way, the exact mechanism of the action of LZD appears to be unique in that it blocks the initiation step of protein production and not one of the later steps [4]. Resistance to LZD is extremely rare [5].

In Japan, the use of LZD for MRSA infections was approved in April 2006. Because the mechanism of the action of LZD differs from that of current protein synthesis inhibitors, it is considered to have no cross-resistance with existing antimicrobial agents [6].

Data on long-term use are limited, but serious neuropathies (e.g., peripheral and optic neuropathies), myelosuppression, and hyperlactatemia have been observed [7] and are considered to be related to the inhibition of mitochondrial protein synthesis [8].

Phoenix dactylifera (PD) is also known as date palm. It is a monocotyledon plant within the palm tree family and they can be found mostly in North Africa and the Middle East region [9]. They are among a few plants that could survive the harsh arid environment and thus are highly regarded for the nutritional value that the palm tree fruit provides. In these arid regions, where foods are scarce, date palm serves as a good food source as they are rich in carbohydrates and they have even become a part of Arabian diet. Aside from a common food source, date palm fruits have been used traditionally to treat various types of ailments and it has been regarded that consumption of the fruit is good for health [10].

Traditional medicines are gaining importance and nowadays are being studied to find the scientific basis of their therapeutic actions. The use of herbal medicine has become increasingly popular worldwide, especially in the Asian and African countries. The various parts of PD are widely used in traditional medicine for the treatment of various disorders which include memory disturbances, fever, and inflammation [11].

Muslims believe that “he who eats seven dates every morning will not be affected by poison or magic on the day he eats them” [12].

The aim of this study is to investigate the possible adverse effects of LZD on different biological functions in rats and to find out the possible role of PD methanolic extract in countering these possible adverse effects.

MATERIALS AND METHODS

Drugs
LZD® (Global Napi, Egypt), available as tablets (600 mg/tablet). Dose: 100 mg/kg b.wt [13].
Tween 80 (Al-Gomhoria Co. Ltd., Egypt).

Tween
Methyl alcohol (Al-Gomhoria Co. Ltd., Egypt). PD (Siwa oasis, Egypt).

PD fruits

Dose: 1000 mg/Kg (as 25% solution) [14].

Methods

Method of methanolic extraction of PD fruits

About 1 Kg of fresh fruits of PD and pits were prepared and the fresh PD fruit (PDFs) seeds were removed. The known weight of flesh PDFs (FPDFs) was soaked in 1 L methanol (79%) and left for 3 h; then, the mixture was blended in a stainless steel blender and the blended mixture was sieved twice by narrow mesh stainless steel sieve and the sieved part was then added to 2 L of methyl alcohol 79%. The mixture was then filtered through sterile absorbent gauze. The residual part of dates was soaked in 3 L of methanol 79% and left for 2 h at 20°C, and then rebledened and refrigerated using the clean gauze. The filtrate was added to the previous prepared filtrate and the residual non-filtered part was weighed and discarded. The clean part of the supernatant was put in the rotary evaporator and adjusted to 42°C, then left for methanol to be evaporated. Finally, the resultant crude dates methanolic extract was then measured, weighed, and kept in the lab refrigerator till needed to be administered orally to male albino rats.

Animals and experimental design

Before starting the experiment, we obtained ethical approval from Zagazig University, Egypt. Forty-eight adult male albino rats Wistar strain weighing 180–200 g were allocated into four equal groups; each of 12 animals. The first group was left as control and was given 0.5 ml Tween 80 orally using the stomach tube daily for 14 consecutive days. The second group was given 0.5 ml of LZD (100 mg/kg body weight) suspension 4% in Tween 80 PO daily for 14 consecutive days. The third group received 0.5 ml of LZD (100 mg/kg body weight) suspension 4% in Tween 80 followed by 1 ml of methanolic extract of PD (MEPD) (1000 mg/Kg) orally using the stomach tube daily for 14 consecutive days. The rats in the last group were administered 1 ml of PD methanolic extract (1000 mg/Kg) daily for 14 consecutive days by oral gavage using the stomach tube.

Sampling

On day-1, 7, and 14 post-treatment, four rats from each group were sacrificed and two blood samples were collected into two test tubes (EDTA test tube to be used for hematological studies and plain test tube needed to be administered orally to male albino rats.

Hematological studies

Hematological autoanalyzer (Automatic cell counter: Sysmex KX 21 N. Sysmex Co., Japan) was used to determine hematological parameters such as red blood cells (RBCs), white blood cells (WBCs), hemoglobin (HGB), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCH), mean corpuscular hemoglobin concentration (MCHC), and platelets (PLT) [15].

Biochemical study

Serum urea and creatinine were measured using diagnostic kits (Spectrum Diagnostics, Oubour City, Egypt) [16,17].

Histopathological studies

The formalin preserved the bone marrow, brain, and kidney tissues and they were processed in an automated tissue processor. The processing consisted of an initial two-step fixation and dehydration. Fixation comprising tissue immersion in 10% buffered formalin for 48 h followed by removal of fixative in distilled water for 30 min. Dehydration was then carried out by running the tissues through a graded series of alcohol (70%, 90%, and 100%). The tissue was initially exposed to 70% alcohol for 120 min followed by 90% alcohol for 90 min and then two cycles of absolute alcohol, each for 1 h. Dehydration was then followed by clearing the samples in several changes of xylene. It consisted of tissue immersion for an hour in a mixture comprising 50% alcohol and 50% xylene followed by pure xylene for 1½ h. Samples were then impregnated with molten paraffin wax, then embedded and blocked out. Paraffin sections (4.5–5 µm) were stained with hematoxylin and eosin [18]. Stained sections were examined for inflammatory reactions, degenerative, necrotic, apoptotic changes, and any other pathological lesions in the examined tissues of experimental rats.

Statistical analysis

Data were analyzed using computerized SPSS programs version 21 (2001). The results were expressed as mean ± standard error of mean. The total variation was analyzed by performing one-way analysis of variance. Duncan test was used for determining significance. p<0.05 was considered statistically significant [19].

RESULTS AND DISCUSSION

It has been revealed that the oral administration of various treatments given daily for 14 days to male albino rats in their recommended doses induced non-significant change in thin-layer chromatography except with LZD which induced a significant increase (p<0.05) along the entire period of the study compared with control group. This elevation may be due to posterior leukocenophilopathy induced by LZD [20]. Arshad et al. [21] supported our results because they reported that MEPD fruits decreased total leukocytic count due to its anti-inflammatory effect. LZD is known to cause oxidative stress; this oxidation results in increased total leukocytic count, Table 1[22].

Regarding the HGB concentration, it is clear that the administration of LZD, MEPD, and their combination for 14 days displayed non-significant change during the entire period of the study related to control group except with LZD after the 1st day and its combination with MEPD after 7 days post-treatment which showed a significant decrease and increase (p<0.05), respectively, corresponding to control group. A significant decrease was observed on day-1 post-treatment with LZD; similar results were previously recorded by Birmingham et al. [23] and MacDougall and Chambers [24], who reported that one of the adverse effects induced by LZD is anemia. Regarding the group received LZD with MEPD that was agreeable with Uklele et al. [25], who reported that MEPD seeds raised the HGB concentration in Wistar rats stating the hematopoietic effect of PD.

MCV and MCH value of all groups was not significantly affected along the entire course of the study in response to various treatments except with LZD after the 1st day post-treatment which displayed a significant decrease (p<0.05) compared with control group that coordinated with Kofteridis et al. [26], who stated that LZD decreased MCV, PCV, MCH, and MCHC. No significant change occurred in MCHC of LZD-treated animals and its combination with MEPD in their recommended doses and had a significant decrease when compared with control group and a significant decrease when compared with LZD or its combination after 7 and 14 days post-treatment, Table 2.

Serum urea of LZD-treated group has significantly raised in comparison to control group, while the oral administration of LZD and its combination with MEPD in their recommended doses and time elicited a non-significant change compared with control group, whereas the administration of MEPD alone induced non-significant changes when compared with control group and a significant decrease when compared with LZD or its combination after 7 and 14 days post-treatment, Table 2.

\[4^{th}\] International Conference on Pharmacy and Pharmaceutical Science (ICPPS) 2019
On day-1 post-treatment, the dose of LZD given daily for 14 days caused a significant increase in serum creatinine. However, various treatments induced non-significant changes when compared with control group except combination of LZD and MEPD which induced a significant decrease compared to control group and LZD-treated group. On day-14, several treatments induced a significant increase when compared with control group except MEPD alone which induced a non-significant change with control group and a significant decrease when compared with LZD alone and its combination with MEPD.

Our results of the kidney function tests agreed with those established by Natsuno et al. [29], who reported that LZD increased serum creatinine level in patients received LZD for 7 weeks and this contributes to that LZD can cause interstitial nephritis after 3 days as reported by Nayak et al. [30]. On administration of LZD and PD combination, our recorded results showed a significant decrease in creatinine level, this suggested that PD fruits have nephroprotective effect as investigated by Al-Qarawi et al. [31], who studied the effect of an extract of the flesh and pits of PD on gentamicin-induced nephrotoxicity in rats were effective in reducing the increased serum creatinine. Furthermore, our results informed that LZD caused a significant increase in the serum urea; these results agreed with Lin et al. [32], who stated that LZD mildly elevated urea 14 days after administration in patients with renal impairment.

Histopathological results

Bone marrow
The bone marrow section of the control group showed numerous megakaryocytes with white blood cell and RBCs (Fig. 1a). After 7 days post-treatment, the bone marrow section showed hypocellular bone

Table 1: Effects of oral administration of linezolid (100 mg/Kg body wt), PD methanolic extract (1000 mg/kg body wt), and their combination given daily for 14 successive days in some hematological parameters of rats on day-1, 7, and 14 post-treatment. (Mean±SE) (n=4)

Parameter	Group	Period	Day-1	Day-7	Day-14
	Control				
TLC (µl)	9.60±1.20³	6.83±0.26³	57.50±2.61³	57.50±2.61³	57.50±2.61³
HGB (g/l)	12.93±0.36³	8.03±0.27³	12.08±0.5³	12.08±0.5³	12.08±0.5³
RBCs count (µl)	5.38±1.08³	5.4±1.06³	7.93±0.10³	7.93±0.10³	7.93±0.10³
MCV (f)	18.03±0.22³	17.98±0.25³	31.25±0.46³	31.25±0.46³	31.25±0.46³
MCH (pg)	31.05±0.27³	26.62±0.53³	30.65±0.94³	30.65±0.94³	30.65±0.94³
PLT (µl)	70.75±3.94³	57.75±15.94³	62.25±3.12³	62.25±3.12³	62.25±3.12³

Means within the same column carrying different superscripts are significantly different at p<0.05. LZD: Linezolid, PD: Phoenix dactylifera, TLC: Thin-layer chromatography, MCH: Mean corpuscular hemoglobin concentration, PLT: Platelets, RBCs: Red blood cells, MCV: Mean corpuscular volume, MCH: Mean corpuscular hemoglobin

Table 2: Effects of oral administration of LZD (100 mg/Kg body wt), PD methanolic extract (1000 mg/kg body wt), and their combination given daily for 14 successive days on serum urea and creatinine of rats on day-1, 7, and 14 post-treatment. (Mean±SE) (n=4)

Parameter	Serum urea (mg/dl)	Serum creatinine (mg/dl)		
	Time-post-treatment			
	1st day	7th day	14th day	
Group	Control	LZD	LZD+MEPD	PD
	27.00±0.71³	36.75±1.44³	37.75±2.95³	31.00±2.12³
	27.00±0.71³	42.68±1.38³	44.65±5.01³	27.77±0.83³
	45.50±1.04³	59.75±0.95³	48.75±1.11³	41.00±1.58³
	0.75±0.06³	1.23±0.04³	1.16±0.09³	0.97±0.10³
	0.75±0.06³	0.74±0.01³	0.57±0.02³	0.75±0.06³
	0.85±0.02³	1.99±0.04³	1.35±0.02³	0.96±0.05³

Means within the same column carrying different superscripts are significantly different at p<0.05. LZD: Linezolid, PD: Phoenix dactylifera
The renal tissue showed moderately dilated vascular space filled with RBCs. After the 1st day post-treatment with LZD and Phoenix at day 1 post-treatment showed mild aggregates of inflammatory cells (H and E, ×200). (b) Photomicrograph of brain tissue from rats treated with LZD and Phoenix showing normal neuron cells and neurofilliary material (H and E, ×200). (c) Photomicrograph of normal rat renal tissue of control group showing renal glomeruli and renal tubules (H and E, ×200). (d) Photomicrograph of renal tissue from rats 7 days post-treatment with LZD showing moderately dilated congested vascular space and mild aggregates of inflammatory cells in between the glomeruli and tubules (H and E, ×200). (e) Photomicrograph of renal tissue from rats treated with LZD and Phoenix 7 days post-treatment showing normal glomeruli and tubules (H and E, ×200). (f) Photomicrograph of renal tissue treated with Phoenix showing normal glomeruli and tubules (H and E, ×200) of inflammatory cells. This results agreed with Agbon et al. [14], who concluded that PD fruits have neuroprotective effect due to its antioxidant properties.

Kidney
The kidney section of the control group showed normal renal glomeruli and renal tubules (Fig. 2c). The renal tissue showed moderately dilated congested vascular space and mild aggregates of inflammatory cells in between glomeruli and renal tubules on day 7 post-treatment with LZD alone (Fig. 2d). The combination of both LZD and MEPD led to the absence of inflammatory cells with return of the renal tissue to its normal state on day 7 post-treatment (Fig. 2f). On day-7, PD treated group showed that the renal tissue showed normal structure (Fig. 2e). These results were in accordance with Ahmed et al. [36], who concluded that the protection of PD seeds extract could be attributed to the total phenol/proanthocyanidin content, which can suppress the oxidative stress induced by xenobiotic-generating free radicals with the subsequent restoration of the physiological and histological features of the susceptible organs.

CONCLUSION
The current study reported that the oral administration of the therapeutic dose of LZD to male albino rats for 14 consecutive days resulted in damaging effects on the bone marrow, brain, and kidneys. It was evident that the concurrent oral administration of PD methanolic extract (1000 mg/kg b wt.) with LZD (100 mg/kg b wt.) clearly counteracted the cellular and biological damaging effects of LZD.

CONFLICTS OF INTEREST
All authors have no affiliations to any funded organization.
REFERENCES

1. Brickner SJ, Hutchinson DK, Barbachyn MR, Manninen PR, Ulanowicz DA, Garmon SA, et al. Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. J Med Chem 1996;39:673-9.

2. Ford CW, Hanel JC, Wilson DM, Moerman JK, Stapert D, Yancey RJ Jr., et al. In vivo activities of U-100592 and U-100766, novel oxazolidinone antimicrobial agents, against experimental bacterial infections. Antimicrob Agents Chemother 1996;40:1508-13.

3. Daly JS, Eliopoulos GM, Willey S, Moellering RC Jr. Mechanism of action of linezolid and in vitro and in vivo activities of S-6123, a new oxazolidinone compound. Antimicrob Agents Chemother 1998;32:1341-6.

4. Swaney SM, Aoki H, Ganoza MC, Shnaburger DL. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 1998;42:3251-5.

5. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233-9.

6. Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001;357:1179.

7. Di Paolo A, Malacarne P, Guidotti E, Danesi R, Del Tacca M. Pharmacological issues of linezolid: An updated critical review. Clin Pharmacokinet 2010;49:439-47.

8. Beekmann SE, Gilbert DN, Polgreen PM; IDSA Emerging Infections Network. Toxicity of extended courses of linezolid: Results of an infectious diseases society of America emerging infections network survey. Diagn Microbiol Infect Dis 2008;62:407-10.

9. Baliga MS, Bantwal R., Vittaldas B, Shaun MK, Harshith PB, et al. The beneficial effects of human erythropoietin in mice. Eur J Exp Biol 2002;46:936-7.

10. De Ley J, Lenders M. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001;357:1179.

11. Abedi A, Parviz M, Karimian SM, Rodsari S. The effect of aqueous extract of Phoenix dactylifera L. on the prevention of diabetes via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity. Int J Exp Clin Med 2014;7:483-91.

12. Dzudziska E, Gryzinska M, Ognik K, Gil-Kulik P, Kopec J. Oxidative stress and effect of treatment on the oxidation product decomposition processes in IBD. Oxid Med Cell Longev 2018;2018:7918261.

13. Birmingham MC, Rayner CR, Meagher AK, Flavin SM, Batts DH, Schentag JJ. Linezolid for the treatment of multidrug-resistant, gram-positive infections: Experience from a compassionate-use program. Clin Infect Dis 2003;36:159-68.

14. MacDougall C, Chambers HF. Protein synthesis inhibitors and miscellaneous antibacterial agents. In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 12th. ed. New York: McGraw Hill; 2011. p. 1537-8.

15. Ufelle SA, Achukwu PU, Ghasi SI. Myelo-protective and haematopoietic effects of seed extract fractions of Phoenix dactylifera in wistar rats. Afr J Pharm Pharmacol 2016;10:936-44.