Prone position in COVID 19-associated acute respiratory failure

Aileen Kharat a,b, Marie Simon c and Claude Guérin c,d,e

Purpose of review
Prone position has been widely used in the COVID-19 pandemic, with an extension of its use in patients with spontaneous breathing ('awake prone'). We herein propose a review of the current literature on prone position in mechanical ventilation and while spontaneous breathing in patients with COVID-19 pneumonia or COVID-19 ARDS.

Recent findings
A literature search retrieved 70 studies separating whether patient was intubated (24 studies) or nonintubated (46 studies). The outcomes analyzed were intubation rate, mortality and respiratory response to prone. In nonintubated patient receiving prone position, the main finding was mortality reduction in ICU and outside ICU setting.

Summary
The final results of the several randomized control trials completed or ongoing are needed to confirm the trend of these results. In intubated patients, observational studies showed that responders to prone in terms of oxygenation had a better survival than nonresponders.

Keywords
acute respiratory distress syndrome, awake prone position, coronavirus disease 2019, mechanical ventilation, prone position

INTRODUCTION
During the coronavirus disease 2019 (COVID-19) pandemic, the use of prone position has been exponential. A rate of use of prone as high as 70% or more has been reported in large prospective cohorts [1,2,3], to be compared with less than 20% before the pandemic [4,5]. This finding was observed even though the level of evidence and the strength of recommendation had not changed [6]. With the COVID-19 pandemic, prone position has reached its true significance. Furthermore, proning was offered to patients not intubated. Even though this option started before the COVID-19, its use in nonintubated COVID-19 patients also increased dramatically and a new terminology was created: awake prone position (aPP) or self-proning. Moreover, it was carried out in the non-ICU environment. The rationale of using pronation in intubated and nonintubated patients differ. In the former, the benefits of prone position are oxygenation improvement, drainage of respiratory secretions, stabilization/improvement of hemodynamics and prevention of ventilator-induced lung injury, all these are mechanisms by which proning can improve survival [7]. In the nonintubated patients, the expected benefit is to improve oxygenation and hence to avoid intubation, and therefore, prevent the ICU resources from over-crowding. It is speculated that aPP could prevent self-induced lung injury by decreasing the swing of respiratory muscle pressure during inspiration. Although we are awaiting for the publication of several trials on pronation in nonintubated patients (NCT04325906, NCT04347941, NCT04358939, NCT04395144, NCT04391140, and NCT04477655), prospective studies have shown that this strategy was feasible and tolerated in most of the cases in a non-ICU environment [8,9] with seldom adverse effects described.

a Service de Pneumologie, Hôpitaux Universitaires de Genève, b Université de Genève, Switzerland, c Médecine Intensive-Réanimation, Hôpital Edouard Herriot, Lyon, d Université de Lyon, Lyon and e Institut Mondor de Recherches Biomédicales, INSERM 955, CNRS 7200, Créteil, France

Correspondence to Claude Guérin, MD, PhD, Médecine Intensive-Réanimation, Hôpital Edouard Herriot, 5 Place d’Arsonval 69003 Lyon, France. Tel: +33 671126583; e-mail: claude.guerin@chu-lyon.fr

Curr Opin Crit Care 2022, 28:57–65
DOI:10.1097/MCC.0000000000000900

1070-5295 Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
www.co-criticalcare.com
Furthermore, these studies confirm that prone position can improve oxygenation in these patients.

The goal of the present study is to review the available literature on prone position in patients with COVID-19. Nonintubated and intubated patients were analyzed separately. For the nonintubated patients, the primary end-points are intubation and mortality outcomes, and hence we used the articles, which provided a control group in the supine position. For the intubated patients, the main end-point is the patient mortality and the secondary end-point the physiological response to prone. We, therefore, used articles, which provided a control group in the supine position to address the main end-point, and the articles, which analyzed responders and non-responders in the prone position. We also considered articles, which compared COVID and non-COVID patients in whom prone position was used. Indeed, it has been claimed that the pathophysiology of COVID-19-related acute respiratory syndrome (ARDS) may be different from the classic ARDS \(10^*,11,12\), casting some doubt about the usefulness of prone position in patients without severe impairment of respiratory system compliance \(10^*\).

METHODS

PICOS

The medical question according to the PICOS method involved the following:

1. Patients: patients with COVID-19 hospitalized for acute respiratory failure.
2. Intervention: intervention is the prone position whether the patient is intubated or not.
3. Comparison: comparison is the supine position or the non-COVID patients.
4. Outcomes: in nonintubated patients the outcomes are intubation, mortality (at ICU, hospital discharge or at the latest time point reported), and physiological response of proning on oxygenation and respiratory mechanics. In intubated patients, the outcomes are mortality (at ICU, hospital discharge, or at the latest time point reported) and physiological response of proning on oxygenation and respiratory mechanics.
5. Study design includes prospective or retrospective, observational or randomized or quasi-randomized controlled trials.

Literature search

The literature search was performed in PubMed by entering the following words: (((((Prone) OR (Prone position) OR (pronation) OR (pronation)) AND COVID-19) to any field. The literature search was done from inception to 10 April 2021. To be selected, the articles had to meet all the following inclusion criteria: being an original research, being a prospective or a retrospective study, being an observational or a randomized or a quasi-randomized controlled trial, dealing with prone position in intubated or in nonintubated patients, having included adult patients with a suspected or confirmed COVID-19 pneumonia, and written in English. Articles were excluded for any of the following noninclusion criteria: case reports (five or less), narrative or systematic reviews or meta-analysis, articles not specifically dedicated to prone position, that is, reporting on the overall rate of proning in a cohort of patients, or on prone position during patient transport, or during cardiac arrest, or during ECMO, or dealing with the feasibility of echocardiography in prone position or with the correct position of EKG leads, editorial or viewpoint or expert(s) opinion papers, articles without abstract, not written in English in the main text. A snowball strategy was also applied to the retrieved articles by reading the references.

The retrieved articles were further excluded first by reading the title (level 1), then by reading the abstract and the whole text (level 2).

Case record form

A specific case record form was set up and included for each included article the following information: first author name, journal name, year of publication, kind of patients (mild, moderate or severe COVID-19), ARDS (Berlin definition), location of prone position delivery (ICU or outside); Sequential Organ Failure Assessment (SOFA), Simplified Acute Physiology Score (SAPS), Acute Physiology and Chronic Health Evaluation (APACHE), at time of ICU admission; baseline characteristics (before proning): length of COVID-19 before admission, age, sex, BMI; kind of respiratory support [intubation, oxygen, high-flow oxygen nasal cannula, noninvasive ventilation...}
(NIV), continuous positive airway pressure (CPAP)), ventilator settings [tidal volume, respiratory rate, positive-end expiratory pressure (PEEP), FiO\textsubscript{2}]; respiratory rate, Fi\textsubscript{O\textsubscript{2}}, PaO\textsubscript{2}/Fi\textsubscript{O\textsubscript{2}} measured at baseline, before proning, during proning and after proning; characteristics of proning; mean duration of proning sessions, number of proning sessions; date and status (intubation or not in patients nonintubated, alive or dead) at ICU, hospital discharge and at specific time points (longest reported follow-up, which varied from D14 to D90). If not available, SpO\textsubscript{2}/Fi\textsubscript{O\textsubscript{2}} was computed as equal to 64 + 0.84 × PaO\textsubscript{2}/Fi\textsubscript{O\textsubscript{2}} according to Rice et al. [13].

Data analysis
The continuous variables were expressed as mean values. If the original article provided the median, we used published equations to translate it into mean. When the continuous data were not available as numbers in the main text or in tables but available as points in figures, we extracted them by using the WebPlotDigitizer 4.4 version free software.

The pooled data were expressed as mean difference [95% confidence intervals (CI)] for the continuous variables and odds ratio (OR) [95% CI] for the binary variables. A random effects model was used. The heterogeneity was assessed by using I2 statistic. The overall effect was tested with the z score. The data were displayed as Forrest plots. For the primary outcomes (intubation and mortality), contour-enhanced funnel plots were used to detect publication bias and to assess causes of funnel plot asymmetry. Subgroup analysis were performed: we compared the ICU versus the non-ICU application of prone position for the nonintubated patients. A P value less than 0.05 was deemed as statistically significant. The analysis was performed by using the meta package of the R software version 4.0.3.

RESULTS
The literature search retrieved 947 articles of which 717 were excluded after reading the title (Figure 1 Supplemental Material, http://links.lww.com/COCC/A40). Among the remaining 230, 164 were further excluded after reading the abstract and the manuscript. Therefore, 70 articles were analyzed, 24 in intubated and 46 in nonintubated patients, that is, nearly twice higher number of articles were dedicated to nonintubated than to intubated patients, which is worth mentioning (Figure 1 Supplemental Material, http://links.lww.com/COCC/A40) and reflects the current trend of using prone position outside ICU. All data retrieved from the studies included were reviewed by authors (A.K., C.G.) and differences were discussed during several distant meetings and a consensus made. The quality of the observational articles was evaluated based on QUIPS criteria [14]. Overall, the studies had a moderate-to-high risk of bias (Table 1 Supplemental Material, http://links.lww.com/COCC/A38).

Prone position in nonintubated patients
Seventeen studies (12 observational, 9 retrospective [15–23] and 3 prospective [24–26], and 5 RCTs [27–31]) met our inclusion criteria (Table 1). Six studies were done in the ICU and 11 outside the ICU (Table 1). The baseline respiratory support was mixed. At baseline, supine and prone groups were similar except for age and SpO\textsubscript{2}/Fi\textsubscript{O\textsubscript{2}} ratio, the patients in the prone group being younger and more hypoxemic than those in the supine group (Table 2 Supplemental Material, http://links.lww.com/COCC/A39). The pooled analysis found that the intubation rate was not different between supine and prone groups, overall (OR 0.74 [0.49–1.12]) (Fig. 1). However, when prone position was applied outside the ICU, the intubation rate was significantly lower than in the supine group (Fig. 1). In nonintubated patients, the mean number and duration of proning sessions were 3 and 14 h, respectively.

By contrast, the mortality measured at the latest time recorded was significantly lower in the prone than in the supine group [OR 0.44 (0.35–0.55)], the benefit being observed in the patients managed in the ICU but not outside (Fig. 2). The funnel plots were asymmetrical, which suggested a publication bias for both intubation and mortality outcomes (Fig. 3). In particular, the funnel plot in Fig. 3 suggests missing publications that would have been favoring the effect of prone for preventing intubation risk (superior quadrant). Clearly, there is strong need to acknowledge the results of the RCT previously mentioned.

No severe adverse complication was reported.

There was only three studies that categorized prone position effect as responders and nonresponders [8**,9**,32]. The definition of responders was variable, such as prepost prone lung ultrasound (LUS) score reduction, PaO\textsubscript{2} increase and SpO\textsubscript{2}/Fi\textsubscript{O\textsubscript{2}} increase.

In responders vs. nonresponders, intubation rate was of 0% (0/16) and 50% (3/6), respectively in Avdeev et al. [32], and 30% (7/23) and 26% (6/23) in Coppo et al. [8**].

Prone position in intubated patients
As discussed above, all the studies on prone position in intubated COVID-19 are observational.
Study rank, first author	Country	Kind of study	Inclusion	Location	Oxygen	HFNC	NIV	CPAP	Other	Criteria to prone	Planned proning session duration	N prone	N supine
1. Barker UK	O,R	March–June 2020	S, ICU	4	0	16	0	0	Not defined	As long as possible	10	10	
2. Ferrando Spain	O,P	March–June 2020	M, ICU	0	199	0	0	0	Not defined	16 h	55	144	
3. Jagan USA	O,R	March–May 2020	S, Other	NA	NA	NA	NA	NA	Not defined	NA	40	65	
4. Jayakumar RCT India	NA	March–May 2020	M, Other	56	1	2	0	1	SpO₂ >92%	6 h	30	30	
5. Johnson USA RCT	November	April–August 2020	S, Other	11	0	0	0	0	Not defined	2 h	15	15	
6. Jouffroy France	O,R	February–April 2020	M, ICU	2	37	0	1	0	Clinician discretion	3 h	40	339	
7. Kharat Switzerland	RCT	April 2020	M, Acute Care	27	0	0	0	0	SpO₂ 90–92%	As long as possible	10	17	
8. Liu China	O,R	January–March 2020	S, Other	NA	NA	NA	NA	NA	Not defined	10–14 h	13	16	
9. Padrao Brazil	O,R	March–April 2020	S, ER	93	72	0	0	0	Not defined	4 h	57	109	
10. Prudhomme France	O,R	March–April 2020	M, ER	NA	NA	NA	NA	NA	Not defined	3 h	48	48	
11. Perez Mexico/Ecuador	O,R	May–June 2020	M, ER & ICU	744	83	0	0	0	Clinician discretion	2 h	505	322	
12. Rosen Sweden	RCT	October 2020–February 2021	M, Other	0	60	15	0	0	PaO₂/FIO₂ ≤50 mmHg	16 h	36	39	
13. Simioli Italy	O,R	March–April 2020	S, Step Down	0	6	0	23	0	Not defined	10 h	18	11	
14. Szyma India	O,P	NA	ICU	42	1	2	0	0	Not defined	8 h	30	15	
15. Taylor USA RCT	June–August 2020	M, Other	38	0	1	0	0	SpO₂ <93% or	As long as possible	27	13		
16. Tonelli Italy	O,R	March–June 2020	M, ICU	0	69	19	25	0	Not defined	3 h	38	76	
17. Zhang China	O,P	February–April 2020	S, ICU	0	15	15	0	0	Not defined	3–8 h	23	37	

CPAP, continuous positive airway pressure; ER, emergency room; HFNC, high flow nasal cannula; M, multicenter; NA, not available; NIV, noninvasive ventilation; O, observational; P, prospective; R, retrospective; RCT, randomized controlled trial; S, single center.
FIGURE 1. Forrest plot for intubation at the latest recording time. CI, confidence interval; GLMM, general linear mixed model.

FIGURE 2. Forrest plot for mortality at the latest recording time. CI, confidence interval; GLMM, general linear mixed model.
Studies comparing prone to supine position in intubated coronavirus disease 2019 patients

Three studies compared COVID-19-related ARDS patients who were proned to patients who were not [3**,33,34]. The mortality was not significantly different between groups [OR 0.45 (0.09–2.18)] but the heterogeneity was extremely high ($I^2 = 91\%$).

Physiological response to prone position in intubated coronavirus disease 2019 patients

On the basis of respiratory physiology and COVID-19 infection specificity, it is thought that not all patients respond in the same manner to prone positioning. Therefore, the aim to identify patient who will respond most positively to prone position is crucial. Fifteen studies had PaO$_2$/FiO$_2$ data available before and during proning [3**,35–48]. The ratio increased by 52 (38–66) mmHg ($P < 0.01$), when the heterogeneity was significant ($I^2 = 93\%$). Except in two studies only, the mean increase in PaO$_2$/FiO$_2$ ratio in prone was more than 20 mmHg from its value before proning, a common threshold used to define responders. The rate of responders ranged from 9 to 77%. Seven studies provided data on static compliance of the respiratory system in supine pre-prone and in prone in intubated patients [3**,35,37,42,45–48]. It significantly increased after a few hours in prone by 2 ml/cmH$_2$O on average ($z = -2.68$, $P < 0.01$) ($I^2 = 30\%$). Therefore, in present analysis, the short-term physiological response is consistent with what is known in the classic non-COVID-19 ARDS.

An important finding came up regarding the mortality of patients based on their response to prone in terms of oxygenation, a question that was subjected to debate in the classic ARDS. Three studies in intubated COVID-19 patients found that the outcome was better in responders than in non-responders [OR 0.44 (0.27–0.71), $P < 0.01$] without any heterogeneity ($I^2 = 0\%$) [3**,49,50**]. One study compared prone position in intubated COVID-19 patients...
and non-COVID-19 patients [51]. This is the only study describing spontaneous breathing in intubated and mechanically ventilated patients. The authors conclude that the use of prone position in pressure support ventilation mode reduced the use of neuromuscular blockade agents.

DISCUSSION

During the current pandemic, prone position was widely used in patients admitted with COVID-19 pneumonia and ARDS. This was based on the known evidence that prone position reduces mortality in intubated patients with moderate-to-severe non-COVID-19 ARDS [7]. Nevertheless, while there is no strong medical evidence supporting the effect of prone position in mild-to-moderate intubated and in nonintubated patients, numerous studies were carried out on prone position in those specific settings during the ongoing COVID-19 pandemic.

Even though patients with COVID-19 present the same respiratory disorder, the severity of disease, the setting of management and the pathophysiology, were also a source of heterogeneity, as discussed previously.

In nonintubated patients, the pooled results in our present review do not show a beneficial effect of proning on intubation. The potential risk of broadened use of aPP is delaying intubation, therefore, invasive and protective mechanical ventilation. This aspect could potentially counter-balance the beneficial effect of prone position in ICU patient as suggested by the study of Ferrando et al. [24]. The fact that intubation would not be done in the appropriate time when needed could be a concern with the prone position applied outside the ICU. Whereas our results cannot answer this question, present findings do not support a harmful effect of prone position performed outside the ICU.

In our review, there is an effect on mortality of aPP whether it is performed in or outside ICU. This could be because of the fact that proning could avoid immediate mortality from severe hypoxemia. However, it should be pointed out that this result was obtained after merging RCTs and observational studies and that mortality was recorded at different times across the studies. An important meta-trial merging the above-mentioned RCTs is undergoing review for imminent publication to assess the effect of aPP on intubation rate and mortality. We are impatiently awaiting those results to establish more precisely the expected effect of this treatment.

In intubated patients, those who exhibited a positive response to prone in term of oxygenation had a lower mortality than those who did not. The authors would like to thank Chiara Robba MD, Jie Li MD, Rohit Khullar MD, Prateek Prasanna MD, Sujith Cherian MD for sharing some of their data with us for this review.

CONCLUSION

Prone position and awake prone position are therapies developing rapidly in the management of COVID-19 pneumonia. This review of the available literature on the subject in intubated and nonintubated patient focuses on patient’s centered outcomes, such as intubation and death. The main finding is that the use of aPP might be associated with lower mortality. High-quality studies on aPP will be available very soon and should confirm beneficial effect of aPP on COVID-19 patient’s outcome.

In intubated patients, those who exhibited a positive response to prone in term of oxygenation had a lower mortality than those who did not.

Acknowledgements

The authors would like to thank Chiara Robba MD, Jie Li MD, Rohit Khullar MD, Prateek Prasanna MD, Sujith Cherian MD for sharing some of their data with us for this review.

Financial support and sponsorship

None.

Conflicts of interest

There are no conflicts of interest.
Respiratory system

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Covid-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4424 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med 2021; 47:60–73.

A large prospective multicenter study in France describing the practice of mechanical ventilation in COVID-19 patients.

2. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, et al. COVID-19 Spanish ICU Network. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med 2020; 46:2200–2211.

A large prospective multicenter study in France on intubated patients with COVID-related ARDS describing mechanical ventilation settings, respiratory mechanics and outcome.

3. Langer T, Brioni M, Guzzardella A, et al. Prone position in intubated, mechanically ventilated patients with COVID-19: a multicentric study of more than 1000 patients. Crit Care 2021; 25:128.

A large multicenter study in Italy describing the practice of invasive mechanical ventilation in COVID ARDS. In addition, a subset of patients was analyzed based on their response to prone position. The mortality was lower in responders than in non-responders.

4. Guerin C, Beuret P, Constantin JM, et al. Investigators of the APRONET Study Group, the REVA Network, the Réseau recherche de la Société française d'anesthésie-réanimation (SFAR-recherche) and the EICM Trials Group. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET ARDS Prone Position Network study. Intensive Care Med 2018; 44:1270–1280.

Bellani G, Laffey JG, Pham T, et al. LUNG SAFE Investigators, ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315:788–800.

Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care 2019; 9:69.

6. Guerin C, Reigner J, Richard J-C, et al. PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. New Engl J Med 2013; 368:2109–2118.

7. Cipri A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in nonintubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020; 8:765–774.

A large prospective study on awake prone position in COVID patients concluding to the feasibility and defining responders and non-responders to prone in terms of oxygenation.

8. Elharrar X, Trigui Y, Dols AM, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxic acute respiratory failure. JAMA 2020; 323:2033–2038.

One of the earliest reports of use of awake prone position in COVID patients.

9. Gattinoni L, Coppola S, Chiesa-Monfardini A, et al. COVID-19 does not lead to a ‘typical’ acute respiratory distress syndrome. Am J Respir Crit Care Med 2020; 201:1299–1300.

Chiumello D, Busana M, Coppola S, et al. Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Med 2020; 46:2187–2196.

A study that compared COVID ARDS to non-ARDS ARDS matched by oxygenation and compliance. In both matched analyses, the authors found that the amount of intra-pulmonary shunt was not related to the amount of non-aerated lung mass in COVID when it was in non COVID patients. This finding suggests that the distribution of pulmonary blood flow is impaired in COVID and that this impairment explains the severity of hypoxia by mismatching ventilation to perfusion throughout the lungs.

10. Rice TW, Wheeler AP, Bernard GR, et al. National Institutes of Health, National Heart, Lung, and Blood Institute ARDS Network. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest 2007; 132:410–417.

11. Hayden JA, van der Windt DA, Oertli M, et al. Assessing bias in studies of prognostic factors. Ann Intern Med 2013; 158:280–286.

Barker J, Pan D, Koeckerling D, et al. Effect of serial awake prone positioning on oxygenation in patients admitted to intensive care with COVID-19. Postgrad Med J 2021. doi: 10.1136/postgradmedj-2020-139631.

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

Volume 28 • Number 1 • February 2022

www.co-criticalcare.com
42. Clarke J, Geoghegan P, McEvoy N, et al. Prone positioning improves oxygenation and lung recruitment in patients with SARS-CoV-2 acute respiratory distress syndrome; a single centre cohort study of 20 consecutive patients. BMC Res Notes 2021; 14:20.

43. Douglas IS, Rosenthal CA, Swanson DD, et al. Safety and outcomes of prolonged usual care prone position mechanical ventilation to treat acute coronavirus disease 2019 hypoxic respiratory failure. Crit Care Med 2021; 49:490–502.

44. Gleissman H, Forsgren A, Andersson E, et al. Prone positioning in mechanically ventilated patients with severe acute respiratory distress syndrome and coronavirus disease. Acta Anaesthesiol Scand 2021; 65:360–363.

45. Robba C, Ball L, Battaglini D, et al., collaborators. Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome: a prospective observational study. Crit Care 2021; 25:111.

46. Sang L, Zheng X, Zhao Z, et al. Lung recruitment, individualized PEEP, and prone position ventilation for COVID-19-associated severe ARDS: a single center observational study. Front Med (Lausanne) 2020; 7:603943.

47. Vollenberg R, Matern P, Nowacki T, et al. Prone position in mechanically ventilated COVID-19 patients: a multicenter study. J Clin Med 2021; 10:1046.

48. Weiss TT, Cerda F, Scott JB, et al. Prone positioning for patients intubated for severe acute respiratory distress syndrome (ARDS) secondary to COVID-19: a retrospective observational cohort study. Br J Anaesth 2021; 126:48–55.

49. Mathews KS, Soh H, Shafi S, et al., STOP-COVID Investigators. Prone positioning and survival in mechanically ventilated patients with coronavirus disease 2019-related respiratory failure. Crit Care Med 2021; 49:1026–1037.

50. Scaramuzzo G, Gamberini L, Tonetti T, et al., ICU-RER COVID-19 Collaboration. Sustained oxygenation improvement after first prone positioning is associated with liberation from mechanical ventilation and mortality in critically ill COVID-19 patients: a cohort study. Ann Intensive Care 2021; 11:69.

A large prospective multicenter study in Italy comparing responders to nonresponders to prone in terms of oxygenation once the patients were moved back to supine. The mortality was significantly lower in responders than in nonresponders.

51. Wiart A, Castanares-Zapatero D, Wittebole X, et al. Prone positioning in spontaneously breathing subjects with moderate or severe ARDS during invasive ventilation. Respir Care 2021; 66:724–732.

52. Ehrmann S, Li J, Ibarra-Estrada M, et al., Awake Prone Positioning Meta-Trial Group. Awake prone positioning for COVID-19 acute hypoxemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial. Lancet Respir Med 2021. doi: 10.1016/S2213-2600(21)00356-8.