Synthesis, Characterizations and Biological Screening of Tetrahydro-Quinazoline Analogues

Hiren Doshi¹, *, Maitreya Bhatt¹, Sampark Thakkar², Arabinda Ray²

¹Ashok & Rita Patel Institute of Integrated Study & Research in Biotechnology and Allied Sciences (ARIBAS), Sardar Patel University, New V. V. Nagar, 388121, Gujarat, India
²P. D. Patel Institute of Applied Sciences (PDPIAS), CHARUSAT, Changa, 388421, Gujarat, India

Abstract Quinazoline and their fused-ring systems are well known for their potential biological activity. In the present study a new Tetrahydro -quinazoline analogues (MB I-V) were synthesized. The newly synthesized compounds were characterized by IR, NMR and C, H, N, S analyses. All newly synthesized compounds were screened for their antibacterial (Pseudomonas aurigenosa Bacillus subtilis and Escherichia coli) studies. The results revealed that all synthesized compounds have a significant biological activity against the tested microorganisms.

Keywords Tetrahydro-Quinazoline, Antibacterial Activity, Isophorone

1. Introduction

During the ancient era the isolation of various compounds was done by the process of extraction. But this process was time consuming as well as laborious. Moreover the yield was very low and the process of isolation required large amount of the starting material. Today the process of isolation has been replaced by the synthetic routes. A large number of compounds can be synthesized by using small amount of chemicals. More over the Synthetic routes take less amounts of time and can easily be carried out. Quinazoline derivatives hold a place of significant in todays world for their important application in chemical, clinical and biological spheres. Medicinally quinazoline has been used in various areas especially as an analgesic[1, 2], anti-oxidant[3-5], anti-cancer drugs[6-10], anti-inflammatory[y[11,12], anti-convulsant[13], anti-bacterial[14], anti-fungal[15] and anti-mycobacterial agents[16, 17]. It has also been found in the treatment of malaria[18, 19]. Considering the vast potential of quinazoline, it was thought appropriate to synthesized, characterized quinazoline analogues and investigates their biological activity. In this investigation, we have prepared tetrahydro quinazoline analogues and characterized them using spectral data. Biological screenings of these compounds were also reported also reported here.

2. Result and Discussion

2.1. Chemistry

Intermediates, 5,5,7-trimethyl-4-aryl-3,4,5,6-tetrahydro quinazoline -2-thiols (S I-V) synthesized from isophorone, different aromatic aldehydes and thiourea (Scheme Ia,b). Tetrahydroquinazoline analogues (MB I-V) synthesized from intermediates S I-V (Scheme IIa,b). The purity of the compounds was monitored by ascending thin layer chromatography (TLC) on silica gel-G coated on aluminum plates.

Developing solvents used in TLC were ethyl acetate: hexane (1:2) and the plates were viewed under UV light 254 nm and 265 nm respectively. Melting points were determined by the open capillary tubes equipped in electro thermal melting point apparatus. All the melting points are uncorrected. The yields of all the compounds reported are of crystallized form. The elemental analysis was studied by C, H, N, S analyzer on Perkin Elmer (U.S.A, 2400 Series II). Infrared (IR) spectra were recorded for the compounds on Perkin Elmer Spectrum GX using KBr pellet disc technique. The structure will further be elucidated by recording its mass spectra on Shimadzu LCMS 2010 eV. NMR was recorded in Torrent pharmaceuticals Ltd Research centre on Bruker Avance FT- NMR 400 MHz.

The M.P. of synthesized compounds were found between 258-300°C, while for the some analogues it was more than 300°C. The mol. wt. of the synthesized compound were in range of 271-427 g mole⁻¹.

* Corresponding author:
dhirendoshi@yahoo.co.in (Hiren Doshi)
Published online at http://journal.sapub.org/ajoc
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved
The IR peaks obtained in study was correlated with the standard IR frequency of the vibration mode given by Nakamoto[20]. The IR spectra showed the presence of C=C stretching between 1580-1615 cm\(^{-1}\), C-C stretching between 1030-1350 cm\(^{-1}\), C-H stretching at ~3080 cm\(^{-1}\), C -O stretching (1° alcohol) at 1123 cm\(^{-1}\), C=N stretching between 1080-1360 cm\(^{-1}\), N-H stretching between 3380-3400 cm\(^{-1}\), C-N stretching between 1150-1210 cm\(^{-1}\), C-S stretching between 685-710 cm\(^{-1}\), -NO2 stretching at ~1528 cm\(^{-1}\), -OH stretching at ~3426 cm\(^{-1}\) for intermediates S I-V and final products MB I-V. In addition, \(^1\)H NMR spectra of the synthesized compounds showed the characteristic signals at ~ 6.1 δ due to SH group. Further the spectra of the intermediates (S I-V) showed a signal ~ 4.1 δ due to NH of pyrimidine ring and disappearance of these signals in synthesized compounds (MB I-V) established that attachment of piperidine moiety with pyrimidine NH group. The structures of synthesized compounds were supported by mass spectrum; it showed the molecular ion peaks in between range of 285 - 428 (M+1).

2.2. Antibacterial Activity
In present study the five compounds are screen for antibacterial activity against gram positive and gram negative bacteria. The result of antibacterial activities are comparatively studied (Table 1) and are recorded on the basis of the presence or absence of inhibition zone on media plate. The antibacterial activity against *Bacillus subtilis* was seen in all the compounds (MB I-V) used. The compound MB I showed high activity against *Bacillus subtilis* due to presence of OH group. All the compounds (MB I-V) did not show activity on *Pseudomonas auri genosa* as well as the standard drug did not show any activity. The compound MB II showed high activity against *Escherichia coli*. This could be due to the presence of -NO2 group at R1 position of tetrahydroquinazoline derivatives.

Sample	Zonal Inhibition in mm
MB I	23 20
MB II	22 23
MB III	21 20
MB IV	18 21
MB V	16 15
Ciprofloxacin	46 20
DMSO	- -

This activity of any compound is directly correlated with their zone of inhibition on the medium. More than 20 mm of inhibition zone is called high activity, More than 10 mm of inhibition is called good activity, inhibition zone between 6-9 mm moderate activity and least activity is assign between 1-5 mm of inhibition zone[21].

3. Experimental
The raw materials used were of synthetic grade from Sigma Aldrich & Loba chemicals Ltd. Solvents used were distilled and dried. The TLC plates were from Merck. Melting points were determined by the open capillary tubes equipped reported are of crystalized form in electro thermal melting point apparatus. All the melting points are uncorrected. The elemental analysis was studied by C, H, N, S analyzer on Perkin Elmer (U.S.A, 2400 Series II). Infrared (IR) spectra were recorded for the compounds on Perkin Elmer Spectrum GX using KBr pellet disc technique. The structure will further be elucidated by recording its mass spectra on Shimadzu LCMS 2010 eV. NMR was recorded in
5.5,7-trimethyl-4-(pyridin-4-yl)-3,4,5,6-tetrahydroquinazoline-2-thiol (S V): Yield: 77%; Colour: Yellow; m.p.: 278°C; IR (KBr, cm\(^{-1}\)): 1667 (Ar C=C), 1467 (Ar C=C), 3406 (N-H), 2853 (Ar C-H), 1367 (CH\(_3\)), 1599 (C=N), 1254 (C-S); \(^1\)H NMR (DMSO): 1.26 δ (6H, s, CH\(_3\)), 1.82 δ (3H, s, CH\(_3\)), 2.22 δ (2H, s, CH\(_2\)), 4.19 δ (1H, d, N-H), 4.61 δ (1H, d, CH), 5.72 δ (1H, s, CH), 6.05 δ (1H, s, S-H), 7.35 δ (2H, d, CH), 8.55 δ (2H, d, CH), DMSO 2.51 δ & 3.53 δ; MS, m/z: 285.15[M+1]. Anal.: Calc. for C, 67.33; H, 6.71; N, 14.72; S, 11.23. Found: C, 67.28; H, 6.56; N, 14.51; S, 11.02.

3.2. General Procedure for Synthesis of 4-Aryl-5, 5-Dimethyl-7-(2'Piperidin-1'-Yl-Ethyl)-2-Thiol-3,4, 5,6-Tetrahydroquinazolines (MB I-V)

A mixture of 0.01 moles appropriate intermediate (S I-V), Piperidine & formaldehyde in DMF were stirred for 2 hours in cooling conditions. Then the resulting reaction mixture was poured in ice bath. The obtain product (Scheme-Ia & Ib) was filtered, dried & recrystallized by 95% Ethanol.[20]

5-(2-mercapto-5,5,7-trimethyl-3,4,5,6-tetrahydroquinazolin-4-yl)-2-methoxyphenol (S I): Yield: 85%; Colour: Brown; m.p.: >300°C; IR (KBr, cm\(^{-1}\)): 1663 (Ar C=C), 1467 (Ar C=C), 3406 (N-H), 2852 (Ar C-H), 1368 (CH\(_3\)), 1599 (C=N), 1254 (C-S); \(^1\)H NMR (DMSO): 1.26 δ (6H, s, CH\(_3\)), 1.82 δ (3H, s, CH\(_3\)), 2.19 δ (2H, s, CH\(_2\)), 3.83 δ (3H, s, OCH\(_3\)), 4.28 δ (1H, d, N-H), 4.60 δ (1H, d, CH), 5.35 δ (1H, s, OH), 5.7δ (1H, s, CH), 6.3 δ (1H, s, S-H), 6.68 δ (1H, d, CH), 6.70 δ (1H, d, CH), 6.86 δ (1H, s, CH), DMSO 2.52 δ & 3.50 δ; MS, m/z: 317.34[M+1]. Anal.: Calc. for C, 65.42; H, 6.71; N, 8.48; S, 9.70. Found: C, 65.21; H, 6.50; N, 8.29; S, 9.35.

5,5,7-trimethyl-4-(3-nitrophenyl)-3,4,5,6-tetrahydroquinazolin-2-thiol (S II): Yield: 80%; Colour: Brown; m.p.: >300°C; IR (KBr, cm\(^{-1}\)): 1664 (Ar C=C), 1468 (Ar C=C), 3383 (N-H), 3040 (Ar C-H), 1384 (CH\(_3\)), 1619 (C=N), 1246 (C-S), 1528 (N-O); \(^1\)H NMR (DMSO): 1.26 δ (6H, s, CH\(_3\)), 1.82 δ (3H, s, CH), 1.98 δ (2H, s, CH\(_2\)), 4.12 δ (1H, d, N-H), 4.59 δ (1H, d, CH), 5.61 δ (1H, s, CH), 5.8 δ (1H, s, S-H), 7.62 δ (1H, CH), 7.59 δ (1H, d, CH), 8.07 δ (1H, d, CH), 8.12 δ (1H, s, CH), DMSO 2.48 δ & 3.47 δ; MS, m/z: 329.23[M+1]. Anal.: Calc. for C, 61.98; H, 5.81; N, 12.76; S, 9.73. Found: C, 61.75; H, 5.75; N, 12.50; S, 9.60.

5,5,7-trimethyl-4-phenyl-3,4,5,6-tetrahydroquinazoline-2-thiol (S III): Yield: 86%; Colour: Brown; m.p.: 258°C; IR (KBr, cm\(^{-1}\)): 1662 (Ar C=C), 1464 (Ar C=C), 3438 (N-H), 2848 (Ar C-H), 1378 (CH\(_3\)), 1617 (C=N) 1286 (C-S); \(^1\)H NMR (DMSO): 1.24 δ (6H, s, CH\(_3\)), 1.83 δ (3H, s, CH\(_3\)), 2.2 δ (2H, s, CH\(_2\)), 4.01 δ (1H, d, N-H), 4.62 δ (1H, d, CH), 5.68 δ (1H, s, CH), 5.9 δ (1H, s, S-H), 7.25 δ (2H, t, CH), 7.28 δ (1H, t, CH), 7.34 δ (2H, t, CH), DMSO 2.52 δ & 3.53 δ; MS, m/z: 328.10[M+1]. Anal.: Calc. for C, 71.79; H, 7.09; N, 9.85; S, 11.27. Found: C, 71.50; H, 6.95; N, 9.67; S, 11.01.

5,5,7-trimethyl-4-(pyridin-4-yl)-3,4,5,6-tetrahydroquinazoline-2-thiol (S IV): Yield: 91%; Colour: Orange; m.p.: 285°C; IR (KBr, cm\(^{-1}\)): 1652 (Ar C=C), 1462 (Ar C=C), 3192 (N-H), 2955 (Ar C-H), 1381 (CH\(_3\)), 1612 (C=N), 1249 (C-S); \(^1\)H NMR (DMSO): 1.26 δ (6H, s, CH\(_3\)), 1.82 δ (3H, s, CH\(_3\)), 2.20 δ (2H, s, CH\(_2\)), 3.88 δ (6H, s, OCH\(_3\)), 4.11 δ (1H, d, N-H), 4.59 δ (1H, d, CH), 5.69 δ (1H, s, CH\(_3\)), 6.01 δ (1H, s, S-H), 6.76 δ (1H, d, CH), 6.67 δ (1H, d, CH), 6.73 δ (1H, s, CH), DMSO 2.5 δ & 3.51 δ; MS, m/z: 344.40[M+1]. Anal.: Calc. for C, 66.25; H, 7.02; N, 8.13; S, 9.31. Found: C, 65.99; H, 6.88; N, 8.04; S, 9.15.
Yield: 65%; Colour: Orange; m.p.: >300°C

4-(3,4-dimethoxyphenyl)-5,5,7-trimethyl-3-(piperidin-1-ylmethyl)-3,4,5,6-tetrahydroquinazoline-2-thiol (MB IV): Yield: 78%;

IR (KBr, cm⁻¹): 1646 (Ar C=C), 1425 (Ar C -C), 2858 (Ar C -H), 1068 (C -N), 3443 (N -H), 1227 (Ester C -O), 1360 (CH₃), 1258 (C -S), 1629 (C=N); 1H NMR (DMSO): 6.06 δ (1H, d, CH), 7.36 δ (1H, d, CH), 7.37 δ (1H, d, CH), 7.76 δ (1H, s, CH), DMSO 2.50 δ & 3.52 δ; MS, m/z: 382.22[M+1].

Anal.: Calc. for C, 69.07; H, 7.90; N, 14.65; S, 8.38. Found: C, 68.92; H, 7.76; N, 14.49; S, 8.13.

5,5,7-trimethyl-3-(piperidin-1-ylmethyl)-4-(pyridin-4-yl)-3,4,5,6-tetrahydroquinazoline-2-thiol (MB V): Yield: 78%;

IR (KBr, cm⁻¹): 1372−1376, 2006.

ACKNOWLEDGEMENTS

We thank Charutar Vidya Mandal, New Vallabhi Vidyanagar for providing facility and financial support to undertake the research work. The authors are also gratefully acknowledged the support of Torrent pharmaceuticals Ltd Research centre, Ahmedabad, Gujarat, India.

REFERENCES

[1] Amin K M, Kamel M M, and Anwar M M. European Journal of Medicinal Chemistry. 45, 2117–2131, 2010.
[2] Alagarsamy V, Raja Solomon V, Dhanabal K. Bioorganic & Medicinal Chemistry. 15, 235–241, 2007.
[3] Vijaynathappa J, Bhojraj S. Journal of health sciences. 54, 524-528, 2008.
[4] Gaur K, Kori M.L. Academic J. of Plant Sci. 2, 60-64, 2009.
[5] Kerri, Rao M N A. Oxygen radical scavenging activity of curcumin, Int.J.pharma. 58, 237-240, 1990.
[6] Manishankar P, Sridhar V. Indian journal of chemistry. 48B, 840-847, 2009.
[7] Al-Obaid A M, Abdel-Hamide S G, El-Kashef H A. European Journal of Medicinal Chemistry. 44, 2379–2391, 2009.
[8] Chandregowda V, Kush A.K, Chandrasekara Reddy G. European Journal of Medicinal Chemistry. 44, 3046-55, 2009.
[9] Giri R S, Thaker H M, Giordano T. Bioorganic & Medicinal Chemistry. 18, 2796–2808, 2010.
[10] Qian L, Shen Y, Chen J. Acta Phys. -Chim. Sin. 22, 1372–1376, 2006.
[11] Giri R S, Thaker H M, Giordano T. European Journal of Medicinal Chemistry. 44, 2184–2189, 2009.
[12] Laddha S S, Bhatnagar S P. Bioorg. & Med. Chem. 17, 6796-02, 2009.

[13] Jatav V, Mishra P, Kashaw S, Stables J P. European Journal of Medicinal Chemistry. 43, 1945-1954, 2008.

[14] Vachala D, Unnissa H. Indian journal of heterocyclic chemistry. 17, 347-350, 2008.

[15] Guang-Fang Xu, Bao-An Song, Bhadury P S. Bio organic & Medicinal Chemistry. 15, 3768–3774, 2007.

[16] Kabri Y, Nadine A, Dume tre A L. European Journal of Medicinal Chemistry. 45, 616–622, 2010.

[17] Subramaniam A, Faaleolea E R, Goldman R C, Tuberculosis. 89, 334–353, 2009.

[18] Ashraf A. Khalil, Sami G. Abdel Hamide, Abdulrahman M. Al-Obaid, Hussein I. El-Subbagh; Substituted Quinazolines, Part 2. Synthesis and In-Vitro Anticancer Evaluation of New 2-Substituted Mercapto-3H-quinazoline Analogs; Arch. Pharm. Pharm. Med. Chem., 2, 95–103, 2003.

[19] Guan J, Zhang Q, O'Neil M, Obaldia N 3rd, Ager A, Gerena L, Lin A J. Antimalarial activities of new pyrrolo[3, 2-f] quinazoline-1, 3-diamine derivatives. Antimicrob Agents Chemother. Dec; 49(12):4928-33, 2005.

[20] Nakamoto K. IR of inorganic and coordination compound, John Willey & Sons, pp 54, 1963.

[21] Honkanen E, Pipuri A, Kairisalo P, Nore P, Karppaness H and Paakari I, J. Med. Chem.; 26; 143, 1983.

[22] Saundane A. Rudresh K. Satyanarayan N. Hiremath S. Pharmacological screening of 6H, 11H-Indolo {3, 2-C} isoquinolin-5-ones & their derivatives. J Ind pharm sci., 60, 379-383, 1998.