Comparative Ergonomic Review Study of common Road-transport Drivers

Soumyajit Das

Department of Industrial Engineering and Management

Maulana Abul Kalam Azad University of Technology, West Bengal

Abstract

Road transport is a critical fountain of both wellbeing and ecological concerns. As more remote correspondence, diversion and driver help frameworks multiply the vehicle market, the rate of interruption related accidents is relied upon to heighten. In any case, there is a real concern in regards with the impacts of such gadgets on street wellbeing – both according to the perspective of progress in driving styles, just as potential interruption brought about by the in-vehicle criticism. This paper gives an audit of momentum research on in-vehicle driver pose and a few workstation specifically, given that this gadget has gotten the best consideration in the writing. The point of this exploration is to give a thought regarding viewpoint perspective on different vehicle and a similar report on their drivers. Various versatile vehicle we find in our everyday life. The examination showed an outline of normal vehicle driver's issues and ergonomic ramifications on driving. This examination gives a topical perspective on vehicle drivers wellbeing plan combination and a few writing audit underlined the issues and intriguing proposals.

Keywords: Ergonomic study, Drivers workstation, Health related issues, automobile transport

1. Introduction

1.1 Background of the study

The individuals who drive vehicles professionally are bound to experience the ill effects of diagnosable back inconvenience - like prolapsed intervertebral plate - than the remainder of the populace. It is a word related peril. Any individual who experiences back inconvenience needs a capacity to bear torment over the normal in the event that the person is to stick at the specific employment. The individuals who foster extreme back inconvenience frequently need to quit any pretense of driving and discover other work. This can cause a difficult issue, especially for the transporter who spends longest in the driver's seat and who gives off an impression of being more powerless. Aside from singular vulnerability to back inconvenience, which is a major issue in itself, the causes would seem, by all accounts, to be mechanical:

i. postural pressure;
ii. Vibratory pressure;
iii. Strong exertion; and
iv. Stun or sway.

All include weight on the spine in various modes, and any of them may prompt back torment. Nonetheless, the components are between related [1].

The reasons for auto collisions incorporate vehicle drivers' sleepiness, chronic weakness condition, incapacitation, negative passionate express, the absence of consideration, and deficient driving method. To the drivers who spend a huge extent of their time traveling, there is an expanding interest for solace [2]. Besides, drivers' stances are not static and change over the long haul [3]. There are a few techniques have been uncovered to decide drivers' stance changing which is one of drivers' systems to keep away from discomfort[4]. Accordingly, pose changing can be considered as a pointer of distress. The more inconvenience drivers experience, the more often they change poses; the more weariness drivers gather, consequently, the chance of auto collision is higher.

All around the world, LBP is the main source of inability, which is expanding in low and centre pay nations during recent many years [5]. It is the main source of action constraint and work nonappearance everywhere on the world with the point commonness going from 19% to 39% [6]. Work related lower back torment (WLBP) due to lifting, winding, drawn out sitting or standing, coming to at or above shoulder level, and working in an off-kilter position is extremely normal [7] Seated labourers, for example, vehicle drivers habitually experience LBP brought about by extended periods of driving in a confined stance, vehicle vibration or stuns from streets [8].

1.2 Study significance

In the problem of the expanding number of private vehicles and different methods of transportation for the public masses, public utility of vehicle actually stay the most reasonable method of transportation in the country. What's more, in delivering a higher pay yield, factors concerning the climate of the driver, particularly concerning security and client reasonableness, are ignored. The workspace plan of the driver was really concocted without
contemplations in solace, making drivers go through different off-kilter working conditions [9]. Also, in spite of the low-evaluated procurement cost and transport limit of these vehicles, it is as yet imperative to consider the states of the driver while moving the vehicle, as this work ordinarily continues for quite a long time of static stance during various climate conditions, awkward condition of driving and the auto vehicle's usage of an open-window ventilation rather than a cooling framework [10]. Accordingly, it is just fundamental for this examination to assess these conditions and, upon legitimate execution, help car transport drivers play out their work with relevant wellbeing both on the part of street security and their wellbeing [11].

This investigation plans to give significance in the thought of the driving states of the auto vehicle driver. Additionally, this investigation will actually want to think about different car transport as a required method for transportation by people, driving states of the vehicle transport drivers consequently dispensing with the chance of hazard decrease in drivers.

1.3 Problem statement

Since public auto vehicles fabricated in the Indian areas are delivered at least expense, auto vehicles do not go through legitimate plan arranging techniques that other higher-evaluated vehicles are exposed to, hence coming about to ineffectively planned workspace and bothersome driving conditions hindering to the wellbeing of the drivers [11].

2. Study objective

This ergonomic examination will zero in on improving the work environment design of the both 2 and 4-wheeler driver and their driving conditions. This investigation means to introduce a contextual analysis on the Indian vehicle drivers. In particular, this examination expects to:

• Ergonomically evaluate the work environment design of auto vehicle drivers taking the course.

• Identify ergonomic risks that are basic for the work execution of drivers and the improvement of their driving conditions, and

• Develop and suggest an improved vehicle transport driver's working environment design to eliminate avoidable distresses to the driver and to oblige their interests.

3. Work Explanation

3.1 Work and work-related issues of Bus Drivers

A work described by a study on public and small school Bus drivers associates [12]-[14] set up the conceivably harmful nature of expert transport driving, a reality that to a great extent remains today. Various related audits have been embraced in this space [15] - [18] with the Journal of Occupational Psychology committing a whole issue in 1998, to investigations of metropolitan mass-travel administrators. This paper thinks about a portion of the later examination just as endeavouring to combine the prior investigations with respect to the work, work stressors and results for transport drivers and administrators. Key arbitrators and go between in the pressure interaction for transport drivers are likewise examined, alongside thought of future bearings for exploration and practice. Studies have shown that there are checked wellbeing contrasts for metropolitan transport driving contrasted with different occupations. [19] An investigation of 14,677 Norwegian people matured somewhere in the range of 40 and 49 drawn from a gathering of various occupations. Transport drivers were one of the callings with most noticeably terrible wellbeing, in light of a scope of wellbeing pointers (e.g., serum cholesterol levels, systolic circulatory strain, and body weight) [20] [21]. All the more explicitly, the writing demonstrates three striking classifications of grimness conspicuous in populaces of transport drivers; cardiovascular infection, gastrointestinal issues, and musculoskeletal issues [22] - [25]. A transport driver is generally obliged to the drivers’ lodge, which does not bear the cost of much space for flexing and development of appendages. A static stance exasperates amassed muscle strain with little delivery. This is additionally deteriorated from broadened hours in the driver's seat. As effectively settled [21] – [24], spinal pain specifically is a regularly detailed stressor for drivers, however different spaces of agony beginning from the neck, shoulder and knee are additionally apparent [26]. The advancement of musculoskeletal issues (MSDs) largely identify with a people actual turn of events, cardiovascular infection, gastrointestinal issues, and musculoskeletal issues [22] - [25]. A transport driver is generally obliged to the drivers’ lodge, which does not bear the cost of much space for flexing and development of appendages. A static stance exasperates amassed muscle strain with little delivery. This is additionally deteriorated from broadened hours in the driver's seat. As effectively settled [21] – [24], spinal pain specifically is a regularly detailed stressor for drivers, however different spaces of agony beginning from the neck, shoulder and knee are additionally apparent [26]. The advancement of musculoskeletal issues (MSDs) largely identify with a people actual turn of events, just as wellbeing status, psychosocial and physical (amount and quality) load. Actual specialists, for example, entire body vibration combined with static stances and regular bending of the spine add to bring down back torment [24][27][28][29]. Neck torment has been credited to the continuous sharp turns of the head to one side and right when boarding travellers and driving [30].

3.2 Work and work-related issues of Truck Drivers

An examination announced that about 38% of drivers surpass 14 hours of driving, and 51% surpass 14 hours of driving in addition to other non-driving work. About 12% of drivers detailed under 4 hours of rest on at least one working days in the week going before the meeting. These drivers are probably going to be working their vehicles while having a critical rest obligation. About 20% of drivers detailed under 6 hours rest prior to beginning their flow venture, however almost 40% of perilous occasions that happened on the excursion were accounted for by
these drivers [31], an investigation of Beckman, about 70% of the drivers had experienced musculoskeletal torment during the most recent month. Altogether, 40% of the drivers experienced regularly had back difficulty [32]. Netterson in an examination in Denmark revealed the predominance of continuous low back torment was 57% among transport drivers [33]. This outcome is in concurrence with different perceptions in drivers and official labourers [34]-[36]. High commonness of musculoskeletal infection specific low back torment is conceivable due to draw out sitting position and nonappearance of enough exercise among transporters [37].

3.3 Work and work-related issues of Taxicab Drivers

Many components make old cabbies unmistakable from different callings in term of openness esteems when working with MSD-related positions. Right off the bat, it is the time factor; the past investigation expressed that the vast majority of the cabbies invested longer energy in driving contrasted with other driving calling - proficient driver; truck driver, transport driver, train driver [38]. A few scientists [39-42] tracked down that other word related factors like entire - body vibration, long working hours, restricted traveling space, all out mileage, significant distance driving, repetitive driving, time utilized as a cabbie, work disappointment, and occupation stress may contribute wounds on low back torment and cabbie, work disappointment, and occupation stress during driving. Lower back is likewise another basic driving circumstance while the inconvenience is related with biomechanical factors like stances, joint points, pressure conveyance during seating, and the strong compressions [53]. Muscles, tendons and joints are influenced throughout some undefined period because of unusual driving body stances [54] [55] [56].

3.5 Work and work-related issues of Cycle rickshaw Pullers

A pedal-worked cart is an adjusted bike, which is utilized widely as a method of transport for conveying travellers and baggage. Tricycle begins in Japan and goes back around 1868. A cycle cart is frequently seen as a climate amicable and a more affordable method of transportation. Since it is viewed as a conventional Indian customary vehicle, it very well may be seen in all aspects of India; in towns, unassuming communities, metros, legacy destinations and so on it is, notwithstanding, a disorderly area of transport in India. In metros, cycle carts are utilized inside institutional regions, commercial centres and, likewise, in limited and swarmed paths where there is an openness issue for vehicles. A cycle cart is accessible in different kinds relying upon their planned use i.e., for conveying travellers, baggage or product [57].

3.6 Work and work-related issues of Auto and E-Rickshaw Drivers

As per study [58], in West Bengal, 0.26 million individuals are occupied with this occupation which is 30% of complete cycle cart pullers (0.86 million) of India. Cart pullers (RP) need to do difficult exercise during work for extended periods; there is no fixed time for their work. They are presented to limits of the climate conditions in various seasons alongside other perilous substances from car fumes. An investigation from ROHC [59] revealed different medical conditions of the cycle cart pullers. Various examinations on energy admission and consumption were done in India in individuals with various occupations [60] [61].

---

Comparative Ergonomic Review Study of common Road-transport Drivers
An overview was led to track down the ergonomic danger among auto-cart drivers; auto-cart drivers stay situated in their seat for a few hours and perform assignments that are dynamic in nature [62]. A review was led to discover the different ergonomic dangers for spool lifting, moving and mounting action in India plant and other created countries [63]. Electric auto carts are getting more mainstream since 2008 in the urban areas as an option in contrast to auto cart and hand-pulled carts. E-carts are being acknowledged as an option in contrast to diesel/petroleum/CNG auto carts. These are the three wheelers, which are pulled by an electric engine of 650-1400 watts [64].

3.7 Work and work-related issues of Ambulance or Emergency vehicle Drivers

Study distinguished different variables that add to the appearance and improvement of back issues of Ambulance drivers, the two generally significant of which are postural pressure and long haul openness to entire body vibrations [65]. It has likewise been seen that protracted openness to static stances can prompt issues in the neck and shoulders just as to torment in the lower back locale [66] [67] [68] [69] [70]. Strong pressure partner with the word related treatment of vehicles with a high predominance of lower back torment [71]. An investigation [72] attest that elements causing torment are different and incorporate a drawn out sitting stance, helpless stance, openness to entire body vibration, just as different elements not identified with the driving of vehicles, for example, lifting objects, terrible eating routine, and other psychosocial factors. The drivers are limited to little lodges with little space for adaptability or leg developments. This static stance and helpless opportunity of development disturb the solid strain that is aggregated during work [73] [74]. Significant components that limit the event of musculoskeletal issues are social association with peers, director support, and a quiet work environment [75] [68]. These elements are hard for drivers to accomplish in light of their low degree of connection with different drivers, the pressing factor and stress to which they are oppressed because of the idea of their work and by their directors, and their helpless work ergonomics, all of which advance musculoskeletal issues [76] [77] [78] [65] [69].

4. Predictive method

4.1 Route selection

The information assortment from a substantial vehicle or clogged region would be chosen to take test and investigation of expert drivers. Analysts utilized non-likelihood testing [79], to get the example. The reaction rate determined measurably. The choice of members was helped out through the social and business organization. Members should be acknowledged as an option in contrast to diesel/petroleum/CNG auto carts. These are the three wheelers, which are pulled by an electric engine of 650-1400 watts [64].

4.2 Questionnaire summary

The overall point of poll review is to foster a prescient model for the musculoskeletal issues of expert drivers utilizing the accompanying markers: Age, Gender, Seat Comfort, Seat Suspension, Adjustable Lumbar Support for the driver's seat, Driving Hours, Sleep quality, Driver Stress, Irritation, Hardiness, Burnout, Safety Behaviours and Impulsivity, time of driving [80]. In reality, survey dependent on powerful loads (cutting undertakings), dynamic burdens (get together errands), and workspace condition and power effort [81].

4.3 Muscular effect measuring instruments

The Musculoskeletal Problems Scale [82], which was adjusted from [83] to assess musculoskeletal issues and vibrations. This scale contains 9 things and two variables: "F1. Musculoskeletal perspectives", which alludes to the body (for example the shoulders) (α = 0.72); and "F2. Limits" (for example the knees), where the vibrations considered show Seat Comfort and lumbar change (α = 0.70).

The instrument involves a five-point Likert scale going from (1 = Never to 5 = Always). The Groningen Sleep Scale [84] [61] is the Spanish variant of the GSQS-15 [85]. It assesses emotional characteristics of rest, like general nature of rest, absence of rest, trouble in nodding off, issues dozing, and not resting. It has a unifactorial structure (α = .90). Everything has six potential answers going from 1 (Strongly dissent) to 6 (Strongly concur). An illustration of a thing is: "1. the previous evening I rested sufficiently".

To assess pressure in driving we utilized the Trans Driver Stress [86], which was made from the 59 things of the Bus Driver Stress [87]. The TDS has a 6-point Likert scale and includes 5 factors each containing 3 things. The primary factor is Relaxed driving (RD; α = 0.70), which alludes to the driver's condition of unwinding or pressure during, when driving. The second is Preventing Hazards (PH; α = 0.71), which demonstrates the exertion made while driving and the risks that might be experienced while driving out. The third is Alertness and Vigilance (AV; α = 0.70), which alludes to the straightforwardness with which the driver can unwind while driving or subsequent to driving. The fourth is Thrill Seeking (TS; α = 0.76), which alludes to the way of driving (dangerous versus reasonable).
Finally, the fifth factor is Fatigue and Anxiety (FA; \(\alpha = 0.70\)), which shows the driver's degree of weakness and condition of apprehension while driving. Every thing has six potential answers going from one (Strongly dissent) to six (Strongly concur).

The Spanish variant \[88\] of Dickman's Impulsivity Inventory Scale \[89\] involves 23 things and 2 subscales and has a dichotomous reaction design (1 = valid/0= bogus). "F1. Utilitarian impulsivity" evaluates hastiness that is useful and assists one with adjusting to unforeseen circumstances that require a speedy reaction. This is comprised of 11 things (\(\alpha = 0.77\)) (for example "5. More often than not I can focus on my work rapidly"). "F2. Broken impulsivity" alludes to rashness that, a long way from aiding us, might be counterproductive. It is comprised of 12 things (\(\alpha = 0.76\)) (for example "2. I often say the principal thing that comes into my head without really thinking about it").

The TRANS-18 Scale \[90\] distinguishes Safety Behaviours (individual and in-vehicle) and psychophysiological messes. It is comprised of 18 things (3 subscales). "F1. Psychophysiological Disorders" of the driver (\(\alpha = 0.81\)) is identified with things the driver may experience the ill effects of and alludes to the presence of tension, stress, stomach related and musculoskeletal issues, misery and hypertension (for example "11. I have had episodes of misery brought about by my work"). "F2. Individual Safety Behaviours" (\(\alpha = 0.80\)) alludes to keeping away from driving subsequent to drinking liquor or eating a major dinner just as to not eating or drinking while at the same time driving (for example "7. I abstain from driving when I'm smoking and I don't hold a cigarette, stogie … in my grasp"). "F3. Vehicle Safety Behaviours" (\(\alpha = 0.70\)) alludes to putting on work gloves to perform work errands, realizing how to utilize quenchers, being ready while driving, and resting the required number of hours (for example "3. I use work gloves when I handle and burden cargo, replace a tire, etc.").

The Hardiness \[91\] scale includes 21 things and 3 measurements each containing 7 things. "F1. Control" is the sensation members have with respect to impacting occasions (for example "I do everything I can to ensure I have authority over my work results"; \(\alpha = 0.74\)). "F2. Responsibility" is characterized as the propensity to foster practices that involve individual association or the inclination to relate to what one does (for example "1. I get genuinely associated with what I do on the grounds that it is the most ideal approach to achieve my own objectives"; \(\alpha = 0.79\)). "F3. Challenge" demonstrates that possibly focusing on boosts are seen as promising circumstances for development (for example "5. In my work I am particularly drawn to advancements and new improvements in systems"; \(\alpha = 0.83\)). The reactions are on a 4-point Likert scale and reach from 1 (thoroughly deviate) to 4 (absolutely concur).

The Burnout scale \[92\] assesses burnout and contains 15 things (3 subscales). "Fatigue" (\(\alpha = 0.87\)) contains 5 things (for example "6. I'm 'wore out' by work"). "Negativity" (\(\alpha = 0.85\)) contains 5 things (for example "9. I have lost energy for my work"). "Proficient effectiveness" (\(\alpha = 0.78\)) involves 6 things (for example "12. I have accomplished numerous important things in this situation") with a 7-point Likert scale going from 0 (Never/Any an ideal opportunity) to 6 (Always/consistently). We likewise gathered information on Age, Seat Comfort, Seat Suspension, Driver's seat movable for lumbar help, and Weekly long periods of driving. This information were acquired through explicit things.

5. Muscular effect study

5.1 Postural analysis

Drivers' seats, for example, seat container, seat

![Figure 1: Postural load distribution [94]](image)

tendency, sitting without amble support and off-kilter body pose bowing during driving were ordinarily detailed in MSD on lower back torment. Quite possibly the main commitments that ergonomics can give to the auto plan measure is data of the actual size of driver, and his/her favoured stance \[93\]. An agreeable and safe driver's seat assumes a vital part in vehicle plan and manufacture. As referenced from past research, drivers' solace was as significant as the practical and stylish plan of cars since clients (older) were more worried about wellbeing and happy with driving. The utilization of ergonomics in guaranteeing agreeable and safe stance for older cabbies to guarantee better way of life and limit the medical condition on business related MSD.

5.2 Seat Structure design consideration
The expression "seat solace" is normally used to characterize the transient impact of a seat on a human body. Seating uneasiness has been analysed from various alternate points of view. The issue with assessing solace concerning pressure or some other factor is that, solace is extremely emotional and not effectively measured. Seating inconvenience fluctuates from one subject to another and relies upon the job that needs to be done. Solace, nevertheless, is an unclear idea and emotional in nature. It is largely characterized as absence of uneasiness [95].

Driving is a blend of ABC measure for example Speed increase Braking and grasping. In the event that any miscommunication occurs, it might prompt mishap. Hence, it of an excellent significance to consider the drivers solaces to keep up the fixation during driving. As indicated by investigation of information identified with torment region and other anthropometric body measurements, it is seen that after factors are vital for plan a seat for transporter [94].

Figure 2: Seat design consideration [96]

- Backrest Width, Height
- Cushion Width, Length
- Seat Height
- Lumbar Support
- Neck height
- Thigh height
- Backbone height
- Back angle must be around 90 – 115 degree
- Visibility must be clear in all sense

Eight of the predictor variables were related to seat interface pressure [97]. They were:

- Cushion Contact Area (cm²)—CCA
- Cushion Total Force (N)—CTF
- Cushion Load at the Centre of Force (g/cm²)—CCF
- Cushion Peak Pressure (g/cm²)—CPP
- Seatback Contact Area (cm²)—BCA
- Seatback Total Force (N)—BTF
- Seatback Load at the Centre of Force (g/cm²)—BCF
- Seatback Peak Pressure (g/cm²)—BPP

Two additional predictor variables were anthropometric in nature. They were:

- Stature (cm)—HT
- Body Mass (kg)—WT

Chang et al. [98] fostered a pragmatic technique for estimating seat skillet and seatback shapes and a graphical show for visual assessment. Seat originators can utilize this technique for assessing seat solace like help, wellness and convenience. Cho and Yoon [99] fostered a biomechanical model of people on a seat with a backrest for assessing the vehicular ride quality. Rakheja et al. [100] fostered a model to examine the situated tenant collaborations with seat backrest and dish, and biodynamic reaction under vertical vibration. Wang et al. [101] contemplated the part of seat calculation and stance on the mechanical energy retention attributes of situated tenants under vertical vibration. The outcomes show that the ingested power amount increments roughly quadratic ally with the openness level by the individual. The outcomes likewise uncover that the assimilated power is emphatically reliant upon the individual anthropometry factors, for example, weight, fat and mass file. Yet, there is no genuine evidence of the factors given. Coelho and Dahlman [102] led a pilot assessment and test concentrate on vehicle seat side help. The presentation of side backings is irritating the issue of planning a seat to fit each person in the scope of convenience focused in the seat's plan. The side help is implicit in the two sides of the seat and individuals with fluctuating body widths should be obliged. Three seat configuration factors were controlled: the cover's contact properties, the distance between the rival side backings and the side help's size at the hip lower middle level [103].

6. Exposure to Vibration

Strategies for evaluating entire body vibration openness are characterized in ISO 2631-1: 1997 [104]. This standard expresses that the primary quantity or communicating vibration size is the weighted root-mean-square (R.M.S.) speed increase. However, it demonstrates that R.M.S. sizes will think little of movements highlighting high pinnacles. This standard likewise dense extra strategies entitled the "running R.M.S. strategy" and the "fourth power vibration portion technique". It is momentous
Comparative Ergonomic Review Study of common Road-transport Drivers

and befuddling that the standard does not give signs regarding which strategies ought to be chosen, as they are not same and give various outcomes. The "running R.M.S. technique depends on the most noticeably awful stun happening during 1 s and is unaffected by other movements or stuns. Alert is required when utilizing this measure since it rates a solitary disconnected stun as being really that serious of openness to different stuns happening inside broad vibration openness. It is accepted that openness to entire body vibration (WBV) is related with a few antagonistic wellbeing results including low-back agony and driver weakness, which may add to vehicle-related mishaps [105]. To lessen WBV openness and alleviate potential antagonistic wellbeing results, trucks are progressively fitted with greater vibration-damping seat advancements. One such seat is a functioning suspension truck seat, which has been appeared to lessen WBV openings up to half comparative with the business standard air-suspension seat [106].

7. Recommendation

Anthropometry has common sense applications in planning first, the vehicle inhabitant bundle and second, the seat. Great seat configuration begins with a decent inhabitant bundle on the grounds that the essential capacity of the seat is guaranteeing the administrator can access and utilize the controls [71]. This allows us to reach two determinations:

- If the components are ineffectively orchestrated it could be difficult to plan an agreeable seat. [82]
- The seat should then be planned in view of its essential capacity - driving the vehicle.

Thusly, a seat cannot be planned without information on the restrictions of the inside bundle and the client. It should supplement and no more significantly meddle with the main role. Seat plan and tenant bundling is a progression of compromises between the measure of vehicle inside space accessible and inhabitant solace. This is delineated by Jung et al, in which they portray a four-stage cycle of planning seats for Korean rapid trains [58]. They start with postural examination and anthropometry. Stage two characterizes the basic scopes of seat flexibility

important to oblige the predetermined populace. When the models and assessments are finished in stage three, they at that point address the format issues, augmenting the utilization of room with insignificant impacts to comfort.

7.1 Design of seat

Planning agreeable seats requires a comprehension of a populace's emotional reaction [108] however; it likewise requires use of fitting anthropometric measures. A large number of the seat properties that influence the inhabitant including seat back width, lumbar help tallness, pad length, and pad width [108] can be related with explicit anthropometric body fragments.

| Seat Design Variable   | Anthropometric Measure               |
|------------------------|-------------------------------------|
| Seat Back Width        | Chest Breadth Bi-deltoid             |
| Lumbar Support         | L1-L5 Ht                             |
| Cushion Length         | Buttock to Popliteal Length          |
| Cushion Width          | Hip Breadth                          |

The seating ergonomics is provided with the angle adjustment arrangement provide at the back. The two rollers are used to set the angle of bottom rest and back rest of seat as per the requirement of driver [94].

7.2 Entrance of driver

The driver's passage is altogether satisfactory for a normal size driver to go all through the jeep. In any case, the drivers for the most part utilize the travellers' side to go all through the portable vehicle primarily due to the extra tire that hangs close to the driver's passageway. The specialists suggest moving the extra tire where it would not hinder any piece of the driver's passageway. Portions of the versatile vehicles really place their extra tire in a little compartment under, where the plate number on the rear of the versatile vehicle is connected. This is best than the typical spot of the extra tire which is adjacent to the driver.
7.3 Mirror angle

Setting up proper view angle obviously mandatory factor during driving.

7.4 Work Environment

To design the interior of an automobile drivers’ cabin for buyer markets it is necessary to benchmark the mobile-transport available in the market. Ashok Leyland, the flagship firm of Hinduja Group plans to bring out Avia D series trucks to India by 2010-11. Currently, the D-line series are marketed in Czech Republic, Hungary, the UK, Ireland and Spain from the head quarter of Avia Ashok Leyland Motors in Prague. The acquisition of Avia by Ashok Leyland Motors in 2006 is expected to have a good quality product in market [109].

![Figure 5: Driver workstation (Ashok Leyland) [109]](image)

7.5 Steering wheel and horn

To plan the inside of an auto drivers’ lodge for purchaser markets it is important to benchmark the versatile vehicle accessible on the lookout. Ashok Leyland, the lead firm of Hinduja Group intends to bring out Avia D arrangement trucks to India by 2010-11. Presently, the D-line arrangement are advertised in Czech Republic, Hungary, the UK, Ireland and Spain from the head quarter of Avia Ashok Leyland Motors in Prague. The securing of Avia by Ashok Leyland Motors in 2006 is relied upon to have a decent quality item in market [109].

8. Conclusion

The achievability of a multifaceted test convention for the evaluation of postural and seat solace has been depicted along with the primary discoveries acquired on a set number of subjects of the greater percentiles. The convention might be applied to models and business vehicles to acquire information both in static conditions and during genuine driving movement [110]. From this static investigation on an Alfa Romeo 155 mock-up with just two movable guidelines (seat anteroposterior position and backrest tendency) when the subject is approached to expect to be his/her own most open to directing posture, the most fascinating result is the likelihood to consider the lumbar flexion point as a marker of the postural solace (it is almost steady for all the guinea pigs); the technique likewise proposes the subjective characterization of the sitting modalities through the noticed pressing factor maps. In some cases less data on, eg, the functioning stance will be vital; subsequently the advantages of the utilization of TRAC proposed above ought to consistently be considered regarding the expense of a subsequent spectator. Besides, with work comprising of fundamentally static assignments one spectator may conceivably have the option to record a greater number of factors than just those unsettling working postures [111]. Genuine noticed driving stances were contrasted and proposals in the writing. Both trunk, thigh point and knee point were more prominent than the reaches in the writing. There was a distinction in the arm act during driving as per sex, however very little contrast in the storage compartment pose. These outcomes showed that there was a distinction in favoured driving stances between territorial drivers. Thus, the acquired outcomes could be applied to the vehicle inside plan for drivers [112]. This examination researched openness to driving stance, MMH and vibration, as dangers for advancement of LBP among city transport drivers and the outcomes demonstrated the requirement for efficient perception of the openings close by any abstract poll evaluation, especially driving length and every day work time. The accompanying ends are made.

a. Usual vehicle drivers clock up impressive long stretches of day-by-day work time, and invest about 60% of the energy really driving. They frequently drive with the middle straight or unsupported, perform periodic and light MMH, and experience discomforting stun/snapping vibration occasions.

b. LBP is common among drivers, however generally transient and gentle LBP, which is not probably going to meddle with work or standard degrees of action.

c. Taking ordinary breaks from sitting during driving and fitting transports with distantly worked withdrawing evaluate slopes and lift stages and utilization of versatile vehicle with manual transmissions rather programmed transmissions are techniques that can help control precipitation of LBP.

References

[1] Troup, J. D. G. (1978). Driver’s back pain and its prevention. Applied Ergonomics, 9(4), 207–214.
[2] Yang, C.-M., Wu, C.-C., Chou, C.-M., & Yang, T.-L. (2009). Vehicle driver’s ECG and sitting posture monitoring system. 2009 9th International
Comparative Ergonomic Review Study of common Road-transport Drivers

[3] S. Adler, A. Friedrichs, and R. Blickhan, "Analysis of Driver Seated Posture to Objectively Measure Long-term Discomfort", Proc. of 6th World Congress on Ergonomics, Maastricht, the Netherlands, 2006.

[4] C. F. Tan, W. Chen, F. Delbressine, and M. Rautenberg, "Objectifying Discomfort Seat Measurement for Next Generation Truck Driver’s Seat", Proceedings of FISITA 2008 World Automotive Congress, Munich, Germany. 15 - 17 September 2008, paper no. F2008-SC-028.

[5] Hartvigsen J, Hancock MJ, Kongsted A, Louw Q, Ferreira ML, Genevay S, Hoy D, Karppinen J, Pransky G, Sieper J, SMEETS RJ, Underwood M, Lancet Low Back Pain Series Working Group. Lancet. 2018 Jun 9; 391(10137):2356–2367.

[6] Manchikanti L, Singh V, Falco FJ, Benyamin RM, Hirsch JA. Neuromodulation. 2014 Oct; 17 Suppl 2():3-10.

[7] Miyamoto M, Konno S, Gembun Y, Liu X, Minami K, Ito H Ind Health. 2008 Apr; 46(2):112-7.

[8] Arslan, S. A., Hadian, M. R., Olyaei, G., Talebian, S., Yekaninejad, M. S., & Hussain, M. A. (2019). Comparative effect of driving side on low back pain due to Repetitive Ipsilateral Rotation. Pakistan journal of medical sciences, 35(4), 1018–1023.

[9] JSeva et al. (2011). Workplace Efficiency Improvement for Jeepney Drivers in Metro Manila. Ergonomics Australia – HFESA 2011 Conference Edition 2011.

[10] Coz, M. C., Flores, P. J., Hernandez, K. L., & Portus, A. J. (2015). An Ergonomic Study on the UP-Diliman Jeepney Driver’s Workspace and Driving Conditions. Procedia Manufacturing, 3, 2597–2604.

[11] Gkikas, Nikolaos. (2013) Automotive Ergonomics. Florida: CRC Press

[12] Morris, J. N., Heady, J. A., Raffle, P. A. B., Roberts, C. G., & Parks, J. W. (1953a). Coronary heart-disease and physical activity of work. The Lancet, 2, 1053–1057.

[13] Morris, J. N., Heady, J. A., Raffle, P. A. B., Roberts, C. G., & Parks, J. W. (1953b). Coronary heart-disease and physical activity of work. The Lancet, 2, 1111–1120.

[14] Morris, J. N., Kagan, A., Pattison, D. C., Gardner, M. J., & Raffles, P. A. B. (1966). Incidence and prediction of ischaemic heart-disease in London busmen. The Lancet, 2, 553–559

[15] Evans, G. W. (1994). Working on the hot seat: Urban bus operators. Accident Analysis and Prevention, 26, 181–193.

[16] Evans, G. W., & Carre’re, S. (1991). Traffic congestion, perceived control, and psychophysiological stress among urban bus drivers. Journal of Applied Psychology, 76, 658–663.

[17] Evans, G. W., & Johansson, G. (1998). Urban bus driving: An international arena for the study of occupational health psychology. Journal of Occupational Health Psychology, 3, 99–111.

[18] Evans, G. W., Palsane, M. N., & Carre’re, S. (1987). Type A behavior and occupational stress: A cross-cultural study of blue-collar workers. Journal of Personality and Social Psychology, 52, 1002–1007.

[19] Hamed, M. M., Jaradat, A. S., & Easa, S. M. (1998). Analysis of commercial mini-bus accidents. Accident Analysis and Prevention, 30, 555–567.

[20] Hedberg, G. E., Jacobsson, K. A., Janlert, U., & Langendeno, S. (1993). Risk indicators of ischemic heart disease among male professional drivers in Sweden. Scandinavian Journal of Work, Environment and Health, 19, 326–333.

[21] Hennessy, D. A., & Wiesenthal, D. L. (1997). The relationship between traffic congestion, driver stress and direct versus indirect coping behaviours. Ergonomics, 40, 348–361.

[22] Backman, A.-L. (1983). Health survey of professional drivers. Scandinavian Journal of Work, Environment and Health, 9, 30–35.

[23] Backman, A.-L., & Ja’rvinen, E. (1983). Turnover of professional drivers. Scandinavian Journal of Work, Environment and Health, 9, 36–41.

[24] Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182.

[25] Barton, J., & Folkard, S. (1991). The response of day and night nurses to their work schedules. Journal of Occupational Psychology, 64, 207–218.

[26] Kompier, M. A. J. (1996). Bus drivers: Occupational stress and stress prevention. Working paper CONDI/T/ WP.2/1996. Geneva: International Labour Office (Conditions of Work & Welfare Facilities Branch).

[27] Bovenzi, M., & Zadini, A. (1992). Self-reported low back symptoms in urban bus drivers exposed to whole-body vibration. Spine, 17, 1048–1059.

[28] Duffy, C. A., & McGoldrick, A. E. (1990). Stress and the bus driver in the UK transport industry. Work & Stress, 4, 17–27.

[29] Blom, D. H. J., Pokorny, M. L. I., & van Leeuwen, P. (1987). The role of age and experience in bus drivers accidents. International Journal of Epidemiology, 16, 35–43.

[30] Aronsson, G., & Barklo¨f, K. (1987). Type A behavior and occupational stress: A cross-cultural study of blue-collar workers. Journal of Personality and Social Psychology, 52, 1002–1007.
[31] Arnold, P. K., Hartley, L. R., Corry, A., Hochstadt, D., Penna, F., & Feyer, A. M. (1997). Hours of work, and perceptions of fatigue among truck drivers. Accident Analysis & Prevention, 29(4), 471–477.

[32] Backman A. Health survey of professional drivers. Scand J Work Environ Health 1983;9(1):30-5

[33] Xu L, Wang ZL, Song TB, et al. Survey on prevalence of occupational musculoskeletal disorders among workers in a shipyard.

[34] Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2011;29(3):180-3. 33.

[35] Szeto GP, Lam P. Work-related musculoskeletal disorders in urban bus drivers of Hong Kong. J Occup Rehabil 2007;17(2):181-98.

[36] Porter JM, Gyi DE. The prevalence of musculoskeletal troubles among car drivers. Occup Med (Lond) 2002;52(1):4-12

[37] Angela Maria Lis, Katia M. Black, et al. Association between sitting and occupational LBP. Eur Spine J 2007;16(2):283-98.

[38] Figà-Talamanca, I., Cini, C., Varricchio, G. C., Dondero, F., Gandini, L., Lenzi, A.,... & Patacchioli, F. R. (1996). Effects of prolonged autovehicle driving on male reproductive function: a study among taxi drivers. American journal of industrial medicine,30(6), 750-758.5

[39] Bovenzi, M., & Zadini, A. (1992). Self-reported low back symptoms in urban bus drivers exposed to whole-body vibration.Spine,17(9), 1048-1059.6.

[40] Chen, J. C., Chang, W. R., Chang, W., & Christiani, D. (2005). Occupational factors associated with low back pain in urban taxi drivers. Occupational Medicine,55(7), 535-540.

[41] Funakoshi, M., Taoda, K., Tsujimura, H., & Nishiyama, K. (2004). Measurement of whole-body vibration in taxi drivers. Journal of occupational health,46(2), 119-124.

[42] Tamrin, S. B. M., Yokoyama, K., Jalaludin, J., Aziz, N. A., Jemoin, N., Nordin,R., ... & Abdullah, M. (2007). The association between risk factors and low back pain among commercial vehicle drivers in peninsular Malaysia: a preliminary result. Industrial health,45(2), 268-278

[43] Yang, Y., Fan, X. S., Tian, C. H., Zhang, W., Li, J., &Li, S. Q. (2014). Health status, intention to seek health examination, and participation in health education among taxi drivers in jinan, china.Iranian Red Crescent Medical Journal,16(4)

[44] Koushik Balaji, K., Alphin, M.S., 2016. Computer-aided human factors analysis of the industrial vehicle driver cabin to improve occupational health. Int. J. Inj. Contr. Saf. Promot. 23 (3), 240–248.

[45] Roseiro, L.M., Neto, M.A., Amaro, A.M., Alcobia, C.J., Paulino, M.F., 2016. Hand-arm and whole body vibrations induced in cross motorcycle and bicycle drivers. Int. J. Ind. Ergon. 56, 150–160.

[46] Walker, G.H., Stanton, N.A., Young, M.S., 2006. The ironies of vehicle feedback in car design. Ergonomics 49 (2), 161–179.

[47] Ramasamy, S., Adalarasu, K., Patel, T.N., 2017. Evaluation of driving-related musculoskeletal disorders in motorbike riders using quick exposure check (QEC). Biomed.Res. 28 (5), 1962–1968.

[48] Tushar, J.P., Arijit, K.D., Venus, K.P., 2015. A comparative study between core stabilization and superficial strengthening’s exercises for the treatment of low back pain in two wheeler riders. Int. J. Pharm. Biol. Sci. 6, 168–176.

[49] Kar, S., Bhagat, M., Routray, A., 2010. EEG signal analysis for the assessment and quantification of driver’s fatigue. Transport. Res. F Traffic Psychol. Behav. 13, 297–306.

[50] Roberts, D.P., Manal, K., Buchanan, T.S., 2006. Optimal penannal angle of the primary ankle planatar and dorsiflexors: variations with sex, contraction intensity, and limb. J. Appl. Biomech. 22, 255–263.

[51] Roseiro, L.M., Neto, M.A., Amaro, A.M., Alcobia, C.J., Paulino, M.F., 2016. Hand-arm and whole body vibrations induced in cross motorcycle and bicycle drivers. Int. J. Ind. Ergon. 56, 150–160.

[52] Thamsuwan, O., Blood, R.P., Ching, R.P., Boyle, L., Johnson, P.W., 2013. Whole body vibration exposures in bus drivers: a comparison between a high-floor coach and a low-floor city bus. Int. J. Ind. Ergon. 43, 9–17.

[53] Balasubramanian, V., Jagannath, M., 2014. Detecting motorcycle rider local physical fatigue and discomfort using surface electromyography and seat interface pressure. Transport. Res. F Traffic Psychol. Behav. 22, 150–158.

[54] Jirápure, S.C., Andure, M.W., Mohod, S.W., 2012. Ergonomic design of a bicycle A bike of rural people. In: International Conference on Emerging Frontiers in Technology for Rural Area (EFITRA) 2012 Proceedings Published in International Journal of Computer Applications® (IJCA).

[55] Balasubramanian, V., Jagannath, M., 2014. Detecting motorcycle rider local physical fatigue and discomfort using surface electromyography and seat interface pressure. Transport. Res. F Traffic Psychol. Behav. 22, 150–158.

[56] Bridge, R., 2008. Introduction to Ergonomics. Crc Press.

[57] Pradhan, CK, Thakur, S, Mukherjee, AK, and Royehowdhury, A., 2004. Physiological assessment of cycle rickshaw pullers. Indian J Physiology and Allied Sciences, 58: 113-118.

[58] Vijayanunni M. Census of India, Series 1 – India, Part III B – B Series, Economic Tables, Volume – 8 (Part – 1, Part – 2 & Part – 3), Table B – 19 (F), India, States & Union Territories, Govt. of India, 1991.

[59] ROHC. Evaluation of Occupational Health Problems of Cycle Rickshaw pullers and Re-design
of Cycle Rickshaw on Ergonomic Principles. Kolkata: Regional Occupational Health Centre, 2009.

[60] Rajalakshmi R. Perspectives in Nutrition. Baroda: M S University of Baroda, 1972.

[61] Pradhan, CK, Thakur, S, Mukherjee, A, and Roychowdhury A. Energy expenditure of cycle rickshaw pullers in different places in India. Ergonomics 2008, 51: 1407–1417.

[62] Agarwal P. K et al. 2015."Ergonomic risk assessment and postural analysis of Indian auto-rickshaw drivers using RULA and REBA", proceedings at musculoskeletal disorders conference.

[63] Ganesh S. Jadhav et al. October 2014."Ergonomics evaluation tools RULA and REBA analysis", proceeding at The national conference on industrial engineering and technology management, NITIE, Mumbai.

[64] N. A Ansari and Dr M J sheikh, Jul-Aug 2014." Evaluation of work posture by RULA and REBA : case study, Journal of civil and mechanical engineering (IOSR-JCME), vol 11, pp. 18-23.

[65] J. Auvinen T, Liitsyn D. Study of Paramedic Staff Safety Comparing Greater Manchester and Finland (bachelor thesis) [Internet]. Lappeenranta: Saimaa University of Applied Sciences Health Care and Social Services; 2017.

[66] Wnukowski K., Kopaliński Z., Sianos G. 'Specificity of work of paramedic'. JHC. 2015;3:2–9. Polish.

[67] PN-EN 1789+A2:2015-01 [Medical vehicles and their equipment – Road ambulances]. Warszawa: Polish Committee for Standardization; 2015. Polish.

[68] Gałązkowski R, Binkowska A, Samoliński K. Occupational injury rates in personnel of emergency medical service. Ann Agricult Environ Med. 2015;22(4):625–9.

[69] Dickman, S.J., 1990. Functional and dysfunctional impulsivity: personality and cognitive correlates. J. Personal. Soc. Psychol. 58 (1), 95–102. https://doi.org/10.1037/0022-3514.58.1.95.

[70] Dorn, L., Stephen, L., af Wahlberg, A., Gandolfi, J., 2010. Development and validation of a self reported measure of bus driver behavior. Ergonomics 53 (12), 1420–1433. https://doi.org/10.1080/00140139.2010.532882.

[71] Evans, G.W., 1994. Working on the hot seat: urban bus operators. Accid. Anal. Prev. 26 (2), 181–193.

[72] Fernández-D’Pool, J., Vélez, F., Brito, A., D’Pool, C., 2012. Síntomas musculoesqueléticos en conductores de buses de una institución universitaria. Investig. Clin. 53, 125–137.

[73] Fletcher, A., Dawson, D., 2001. Field-based validations of a work-related fatigue model based on hours of work. Transport. Res. F Traffic Psychol. Behav. 4 (1), 75–88.

[74] Galindo-Estupiñan, Z.T., Maradei-García, M.F., Espinel-Correal, F., 2016. Percepción del dolor lumbar debido al uso de un asiento dinámico en postura sedente prolongada. Rev.Salud Publica 18, 412–424. https://doi.org/10.15446/rsap.v18n3.42897.

[75] Göbel, M., Springer, J., Scherff, J., 1998. Stress and strain of short haul bus drivers: psychophysiology as a design oriented method for analysis. Ergonomics 41 (5), 563–580.

[76] Gómez-Ortiz, V., Cendales, B., Useche, S., Bocarejo, J.P., 2018. Relationships of working conditions, health problems and vehicle accidents in bus rapid transit (BRT) drivers. Am. J. Ind. Med. 61 (4), 336–343.

[77] Gómez, M., Cremades, L.V., Montoya, J., 2015. Evaluación de los desórdenes musculoesqueléticos (DMEs) mediante el método ERIN: caso de los conductores de autobús de la Universidad del Quindio. 15th International Conference on Occupational Risk Prevention, vol. 5. pp. 1–10.

[78] Hair, J., Anderson, R., Tatham, R., Black, W., 1999. Analysis Multivariante, fifth ed. Pearson Education, Madrid. Hannerz, H., Tüchsen, F., 2001. Hospital admissions among male drivers in Denmark. Occup. Environ. Med. 58, 253–260.

[79] Serrano-Fernández, M.-J., Boada-Grau, J., Robert-Sentis, L., & Vigil-Colet, A. (2019). Predictive variables for musculoskeletal problems in professional drivers. Journal of Transport & Health, 14, 100576.

[80] Hashim, A. M., Dawal, S. Z. M., & Yusoff, N. (2012). Ergonomic evaluation of postural stress in school workshop. Work, 41(Supplement 1), 827-831.

[81] Robb, M.J.M., Mansfield, N.J., 2007. Self-reported musculoskeletal problems amongst professional truck drivers. Ergonomics 50 (6), 814–827.

[82] Santos, J.A., Lu, J.L., 2016. Occupational safety conditions of bus drivers in Metro Manila, the Philippines. Int. J. Occup. Saf. Ergon. 22 (4), 508–513.

[83] Serrano-Fernández, M.J., Boada-Grau, J., Robert-Sentis, L., Boada-Cuerva, M., Assens-Serra, J., Vigil-Colet, A., 2018. Trans Driver Stress scale (TDS-15): short scale for stress detection in professional drivers. Transport. Res. F Traffic Psychol. Behav. 58, 807–815.

[84] Serrano-Fernández, M. J., Boada-Grau, J., Robert-Sentis, L., Boada-Cuerva, M., Assens-Serra, A., & Assens-Serra, J. (n.d.). Spanish Adaptation of the Groningen Sleep Quality Scale (GSQS-8). Universitat Rovira i Virgili; Tarragona (Spain).

[85] Sluiter, J.K., Van Der Beek, A.J., Frings-Dresen, M.H.W., 1999. The influence of work characteristics on the need for recovery and experienced health: a study on coach drivers. Ergonomics 42, 573–583.

[86] Useche, S., Ortiz, V.G., Cendales, B.E., 2017. Stress-related psychosocial factors at work, fatigue, and risky driving behavior in bus rapid
transport (BRT) drivers. Accid. Anal. Prev. 104, 106–114
[87] Dorn, L., Stephen, L., af Wahlberg, A., Gandolfi, J., 2010. Development and validation of a self reported measure of bus driver behavior. Ergonomics 53 (12), 1420–1433.
[88] Fletcher, A., Dawson, D., 2001. Field-based validations of a work-related fatigue model based on hours of work. Transport. Res. F Traffic Psychol. Behav. 4 (1), 75–88.
[89] Dickman, S.J., 1990. Functional and dysfunctional impulsivity: personality and cognitive correlates. J. Personal. Soc. Psychol. 58 (1), 95–102
[90] Kim, J.H., Zigman, M., Dennerlein, J.T., Johnson, P.W., 2018. A randomized controlled trial of a truck seat intervention: Part 2 - associations between whole-body vibration exposures and health outcomes. Ann.WorK. Exposures. Health 62 (8), 1000–1011
[91] Gómez-Ortiz, V., Cendales, B., Useche, S., Bocarejo, J.P., 2018. Relationships of working conditions, health problems and vehicle accidents in bus rapid transit (BRT) drivers. Am. J. Ind. Med. 61 (4), 336–343
[92] Durkin, J. L., Harvey, A., Hughson, R. L., & Callaghan, J. P. (2006). The effects of lumbar massage on muscle fatigue, muscle oxygenation, low back discomfort, and driver performance during prolonged driving. Ergonomics, 49(1), 28–44.
[93] Chimote, K., & Gupta, M. (2013, December). Integrated approach of ergonomics and fem into truck drivers seat comfort. In 1st International and 16th National Conference on Machines and Mechanisms, IIT Roorkee (pp. 183-188).
[94] Shen, W. and Vertiz, A. (1997) Redefining Seat Comfort. SAE Paper 970597.
[95] Makhsoos, M., Hendrix, R., Crowther, Z., Nam, E., & Lin, F. (2005). Reducing whole-body vibration and musculoskeletal injury with a new car seat design. Ergonomics, 48(9), 1183–1199.
[96] M. Kolich & SM Taboun (2004) Ergonomics modelling and evaluation of automobile seat comfort, Ergonomics, 47:8, 841-863
[97] Chang, S. R., Son, K. and Choi, Y. S. (1996) Measurement and three-dimensional graphic representations of Korean seatpan and seatback contours. International Journal of Industrial Ergonomics, 18:147-152
[98] Cho, Y. and Yoon, Y. S. (2001) Biomechanical model of human on seat with backrest for evaluating ride quality. International Journal of Industrial Ergonomics, 27:331-345.
[99] Rakheja, S., Sthiru, I., Zhang, H. and Boileau, P. E. (2006) Seated occupant interactions with seat backrest and pan, and biodynamic response under vertical vibration. Journal of Sound and Vibration, 298:651-671.
[100] Wang, W., Rakheja, S. and Boileau, P. E. (2006) The role of seat geometry and posture on the mechanical energy absorption characteristics of seated occupants under vertical vibration. International Journal of Industrial Ergonomics, 36:171-184.
[101] Coelho, D. A. and Dahlman, S. (1999) A pilot evaluation of car seat side support: leading to a redefinition of the problem. International Journal of Industrial Ergonomics, 24:201-210.
[102] Fai, T. C., Delbressine, F., & Rauterberg, M. (2007, August). Vehicle seat design: state of the art and recent development. In Proceedings world engineering congress (pp. 51-61).
[103] INTERNATIONAL ORGANISATION FOR STANDARDISATION 1997 ISO 2631-1. Guide for the evaluation of human exposure to whole-body vibration. Part I: general requirements.
[104] Conway, G. E., Szalma, J. L., & Hancock, P. A. (2007). A quantitative meta -analytic examination of whole - body vibration effects on human performance. Ergonomics, 50(2), 228 -245.
[105] Blood, R., & Johnson, P. (2011). Quantifying whole body vibration exposures in metropolitan bus drivers: An evaluation of three seats. Noise & Vibration Worldwide, 42(2), 22 -29
[106] DONATI, P. (2002). SURVEY OF TECHNICAL PREVENTATIVE MEASURES TO REDUCE WHOLE-BODY VIBRATION EFFECTS WHEN DESIGNING MOBILE MACHINERY. Journal of Sound and Vibration, 253(1), 169–183.
[107] Kolich, Mike. Automobile Seat Comfort: Occupant Preferences vs Anthropometric Accommodation. Applied Ergonomics Vol. 34 p177-184, 2003.
[108] Powar, K., Majumdar, S., & Unakal, P. (2009). Interior design of long haul truck cabin for improved Ergonomics and Comforts. Sastech Journal, 8, 47-54.
[109] Andreoni, G., Santambrogio, G. C., Rabuffetti, M., & Pedotti, A. (2002). Method for the analysis of posture and interface pressure of car drivers. Applied Ergonomics, 33(6), 511–522. doi:10.1016/s0003-6870(02)00069-8
[110] Van der Beek, A. J., van Gaalen, L. C., & Frings-Dresen, M. H. W. (1992). Working postures and activities of lorry drivers: a reliability study of on-site observation and recording on a pocket computer. Applied Ergonomics, 23(5), 331–336. doi:10.1016/0003-6870(92)90294-6
[111] Park, S. J., Kim, C.-B., Kim, C. J., & Lee, J. W. (2000). Comfortable driving postures for Koreans. International Journal of Industrial Ergonomics, 26(4), 489–497.
[112] Okunribido, O. O., Shimblie, S. J., Magnusson, M., & Pope, M. (2007). City bus driving and low back pain: a study of the exposures to posture demands, manual materials handling and whole-body vibration. Applied ergonomics, 38(1), 29-38.