Trends of cardiovascular disease risk factors were evaluated through comparison of three national surveys in Japan, 1971-1990. Data from three Japanese national surveys on circulatory disorders, conducted in 1971, 1980, and 1990, were analyzed. Variables common to the three national surveys were selected for analysis. Serum total cholesterol was also examined only in 1980 and 1990. Age- and sex-specific mean values, standard deviations, median values, and proportions in extreme categories were determined for all continuous variables and proportions in categories interest for all discrete variables. Trends from 1971-1990 and 1980-1990 were estimated by linear regression analysis for continuous variables, and logistic regression analysis for binary variables. Systolic blood pressure was decreasing constantly during three surveys in both men and women (β=-0.22 in men and -0.34 in women, p<0.01 in both). Total cholesterol was increasing rapidly in both men and women between 1980 and 1990 (β=1.27 in men and 1.41 in women, p<0.01 in both). For other risk factors, the results were less consistent among age- or sex-specific groups. Continued monitoring of risk factor trends in Japan will be important for predicting and explaining future trends in the occurrence of coronary heart disease and stroke in this population.

cardiovascular disease risk factors, trends, serum total cholesterol, systolic blood pressure, Japan

Atherosclerotic and hypertensive cardiovascular diseases are a major cause of death in both developed and developing countries. A great deal of interest in their prevention has been expressed, nevertheless, preventive efforts remain insufficient since cardiovascular risk factors, such as high blood pressure, adverse lipid profiles, cigarette smoking, and obesity are highly prevalent in many populations.

In Japan, cerebrovascular mortality, though falling, is still relatively high, while that for coronary heart disease is the lowest for any industrialized country and has declined since 1970. These changes have been thought to result primarily from high blood pressure control, including both primary and secondary preventive measures, and from dietary changes reflected, for example, by reduced frequency of extremely low serum total cholesterol concentrations, which have been associated with the risk of cerebral hemorrhage. On the other hand, the role of serum total cholesterol as a major risk factor of coronary heart disease requires that changes in its distribution be carefully monitored. Okayama et al. reported previously, on increasing serum cholesterol concentrations in Japan. Several studies have also reported increases in the prevalence of diabetes mellitus in Japan, a trend suggesting increased, and not decreased, cardiovascular disease risks. The Ni-Hon-San Study showed that Japanese suffer from coronary heart disease at a higher rate when exposed to western culture, and although the incidence is still not as high as that of Americans in general, Japanese are clearly susceptible to the effects of adverse risk factor changes.

Understanding the trends of cardiovascular disease risk factors in Japan is important if potentially epidemic coronary heart disease is to be prevented. Previously, Ueshima et al. showed the trends of coronary risk factors based sex and age specific mean values from the National Nutrition Survey and other national surveys between 1956 and 1980. They found that decline in blood pressure levels and in prevalence of hypertension and increasing treatment rate for cardiovascular disease might contribute to declining mortality from ischemic heart disease. Okayama et al. showed changes in total cho-
Design of the surveys

The Ministry of Health and Welfare in Japan conducted National Surveys on Circulatory Disorders in 1971 and 1972, 1980, and 1990. The 1972 survey was a follow-up of participants in the study of 1971 and is therefore excluded from the present analysis.

Two-hundred districts were selected randomly from the total of 420 National Health Survey districts, which were selected randomly from 10,787 census districts, for the survey in 1971. These districts represented all Japan; however, three districts could not contribute to the survey. All 19,128 individuals who resided in these districts and were 30 years of age or older as of September 30 were regarded as eligible subjects for the study. The survey was conducted on October 14 and October 20. The questionnaires were collected from 18,401 individuals, 96.2% (18,401/19,128) of all subjects. The main reasons for non-response were reporting of being “busy” (55.3% of non-respondents) or “sick at home” (7.7%). Being “busy” was more frequent in the younger age groups, and being “sick at home” was more frequent in the older age groups. Due to incomplete answer and inadequate data collection, the number of data suitable for analysis was 12,964, 67.8% of total eligible subjects (12,964/19,128). The exact frequencies of available data by sex and age were not obtainable, but the estimated response rates in the age groups 50-59 and 60-69 were three to four percent higher and those in the age groups 30-39 and 70+ were two to three percent lower than the average. The survey consisted of a questionnaire and a health examination. The questionnaire included the medical history of the examinees and family members, subjective symptoms, smoking status, drinking status, and other variables. The health examination included height, weight, skin fold thickness, blood pressure, urinary protein, urinary glucose, electrocardiogram (ECG), an examination of the fundus of the eye, and a general examination by a physician.

Data were collected mainly by medical and paramedical staff of health centers, such as physicians, public health nurses, and laboratory technicians, all trained in advance of the survey. The questionnaire was conducted by the trained public health workers. The blood pressure was measured by a mercury sphygmomanometer on the right upper arm in a seated position. The diastolic blood pressure was recorded at phase V of the Korotkoff sounds. Urinary protein and glucose were determined by paper colorimetry using respective standard color charts. Slight color changes between positive and negative findings were classified as false positive.

The survey in 1980 was conducted on November 1 and 30 in three hundred survey districts selected randomly from the health statistics survey districts of 1980, which were selected from whole census districts. If the residents of the districts were 30 years or older as of November 1980, then they were regarded as subjects for the study. The total number of eligible residents by the same age criterion as in 1971 was 13,771. The survey methods were generally the same as in 1971, except that a blood examination, which included serum total cholesterol, total protein, albumin, uric acid, creatinine, and blood glucose, was introduced. The main reasons for non-response in 1980 were reports of being “busy” (41.2% of non-respondents) or “being out for a long period” (13.5%). The participation rates were 79.1% (10,897/13,771) as a whole, 73.5% for men and 84.2% for women. The rates by age were 76.8%, 79.1%, 82.6%, 84.1%, and 74.0% for ages 30-39, 40-49, 50-59, 60-69, and 70+, respectively. The regional participation rate was the highest in Hokuriku-Tokai (87.5%) and the lowest in Minami Kanto (67.3%).

For the survey in 1990, 300 districts were drawn at random from 1,040 districts designated for the 1990 National Livelihood Survey of households and house members, which were randomly selected from census districts in all parts of Japan. The total number of eligible residents by the same criterion as in 1971 and 1980 was 10,956. The number of individuals who were examined was 8,926 and the participation rate was 81.5% (8,926/10,956). The main reasons for non-response were, as in 1971, reports of being “busy” (59.0% of non-respondents), or being “sick at home” (6.5%). The participation rates by sex were 76.1% for men and 86.0% for women. The rates by age were 77.7%, 79.0%, 82.9%, 86.7%, and 82.9% for ages 30-39 through 70+ as in 1980, respectively.

The methods of examination were described in the report of the survey. Blood tests were conducted for 11 items: hemoglobin, GOT, GPT, GTP, total cholesterol, HDL-cholesterol, total protein, blood glucose, fructosamine, creatinine, and uric acid. For this survey, cooperation was obtained from the Department of Epidemiology and Mass Examination for Cardiovascular Diseases, Osaka Medical Center for Cancer.
and Cardiovascular Diseases, which has 16 years of experience in the U.S. CDC-NHLBI Lipid Standardization Program of the Centers for Disease Control. This quality control program showed that the lipid determinations in the 1980 and 1990 surveys were comparable.

Statistical Methods

Variables to these three national surveys were selected for analysis: smoking rate, height, weight, systolic and diastolic blood pressure, urinary protein and glucose, and certain broad classes of ECG abnormalities. Serum total cholesterol was added for 1980 and 1990. Information on alcohol consumption was excluded from the analysis because the data were not comparable across surveys. Analysis was performed separately by sex and age or was age-adjusted in multivariate analysis.

First, sex- and age-specific mean, standard deviation, and median values by survey year were determined for each continuous variables: systolic blood pressure (mm Hg), diastolic blood pressure (mm Hg), serum total cholesterol concentration (mg/dl), and body mass index (kg/m²). The prevalence ratios for high systolic blood pressure (140 mm Hg and over and 160 mm Hg and over), high diastolic blood pressure (90 mm Hg and over and 100 mm Hg and over), low serum total cholesterol concentration (lower than 150 mg/dl), high cholesterol (220 mg/dl and over and 260 mg/dl and over), and high body mass index (25 kg/m² and over and 30 kg/m² and over) also were calculated. Second, age-specific prevalence ratios were estimated for each categorical variable: smoking rate, ECG findings, urinary protein, and urinary glucose. Cigarette smoking status was analyzed in three categories: non-smokers, smokers, and ex-smokers. Urinary protein and glucose findings were classified as negative, false positive, and positive according to the results of paper colorimetry. ECG abnormalities were classified as none, minor, and major, in accordance with the Minnesota Code (Appendix).

The trends of continuous variables were analyzed by multiple linear regression models to control age effects, by use of the SAS REG procedure. Year was coded as 0, 9, and 19 for 1971, 1980, and 1990, respectively, to calculate the trends over the survey period. In every age group in both men and women, smoking rates increased and decreases in prevalence were calculated. Second, age-specific prevalence ratios were estimated for each categorical variable: smoking rate, ECG findings, urinary protein, and urinary glucose. Cigarette smoking status was analyzed in three categories: non-smokers, smokers, and ex-smokers. Urinary protein and glucose findings were classified as negative, false positive, and positive according to the results of paper colorimetry. ECG abnormalities were classified as none, minor, and major, in accordance with the Minnesota Code (Appendix).

The trends of continuous variables were analyzed by multiple linear regression models to control age effects, by use of the SAS REG procedure. Year was coded as 0, 9, and 19 for 1971, 1980, and 1990, respectively, to calculate the trends over the survey period. In every age group in both men and women, smoking rates increased and decreases in prevalence were calculated. Second, age-specific prevalence ratios were estimated for each categorical variable: smoking rate, ECG findings, urinary protein, and urinary glucose. Cigarette smoking status was analyzed in three categories: non-smokers, smokers, and ex-smokers. Urinary protein and glucose findings were classified as negative, false positive, and positive according to the results of paper colorimetry. ECG abnormalities were classified as none, minor, and major, in accordance with the Minnesota Code (Appendix).

The changes in the distributions of risk factors by sex and age groups are summarized in Table 1 through Table 8.

Mean and median values of systolc blood pressure by age and the prevalence of high systolic blood pressure, at 140 mm Hg and over and 160 mm Hg and over, are shown in Table 1. In every age group in both men and women, mean systolic blood pressure declined over the survey period, especially at older ages, and in most age-sex groups the decrease in mean values was greater than in median values. The prevalence of high systolic blood pressure at 140 mm Hg and over and especially at 160 mm Hg and over also declined remarkably, in every age-sex group.

The mean and median values of diastolic blood pressure by age and the prevalence of high diastolic blood pressure, at 90 mm Hg and over and 100 mm Hg and over, are shown in Table 2. These results are contrary to those for systolic blood pressure: mean values of diastolic blood pressure did not decrease consistently among age-sex groups and increased in some; prevalence ratios for high diastolic pressure did generally decrease, but not for men at ≥90 mm Hg.

Mean and median values of serum total cholesterol concentration by age and prevalence ratios for values lower than 150 mg/dl, 220 mg/dl and over, and 260 mg/dl and over are shown in Table 3. In every age group in both men and women, marked increases were observed, except for the decreasing prevalence of values below 150 mg/dl in every age-sex group.

Mean and median values of body mass index by age and the prevalence of body mass index of 25 kg/m² and over and 30 kg/m² and over are shown in Table 4. In men, mean body mass index increased in every age group; the prevalence of 25 kg/m² and over also increased in all but the youngest men over the period of the three surveys, but the prevalence ratio for 30 kg/m² and over did not. In women, changes in body mass index varied with age: in the age groups younger than 50 years and median values decreased and increased in older women, but all changes were small. For women under age 60, percentages with high body mass index decreased.

The prevalence of smokers and ex-smokers by sex and age group is shown in Table 5. The prevalence of smoking in men decreased consistently in all age groups. In women, smoking rates increased in the age groups younger than 50 years, and decreased in the age groups 50 years and older. At all ages, smoking was much less frequently reported by women than by men.

The prevalence of abnormal ECG findings by sex and age is shown in Table 6. The prevalence of major abnormal findings decreased in all but the oldest men and in every age group of women. In both men and women, the proportions with normal ECGs were greatest in 1990, in all age groups.

The prevalence of positive tests for urinary protein by sex and age group over the survey years is shown in Table 7. In men, the percent positive increased slightly in all but the youngest age group. In women, decreases in prevalence...
Table 1. Changes in systolic blood pressure (mm Hg) by sex and age

Sex	Age (years)	Survey year	n	Mean ± SD	Median	≥140 mm Hg (%)	≥160 mm Hg (%)
Men	30-39	71	1692	128.9	128	23.8	4.5
	80	1262	127.9	14.6	126	19.2	3.9
	90	670	126.2	13.4	126	14.5	1.9
	40-49	71	1489	134.8	130	36.1	12.4
	80	1245	134.5	18.7	130	36.6	10.5
	90	853	132.2	16.9	130	30.3	6.9
	50-59	71	1006	142.1	140	51.6	23.0
	80	1066	141.3	20.9	140	52.5	18.7
	90	807	139.4	19.8	138	46.3	16.0
	60-69	71	863	151.6	150	65.8	38.1
	80	711	148.1	21.6	146	65.1	28.6
	90	714	145.4	20.9	144	59.5	24.4
	70+	71	537	158.3	158	76.2	49.7
	80	511	153.9	22.9	152	75.0	39.5
	90	494	148.4	20.9	148	68.0	29.6
Women	30-39	71	2230	122.0	120	12.2	2.5
	80	1656	120.2	13.8	120	8.0	1.5
	90	1043	118.3	14.0	118	7.2	1.2
	40-49	71	1934	132.6	130	34.2	10.6
	80	1541	129.9	18.3	128	27.5	8.2
	90	1192	127.8	17.0	126	24.1	5.5
	50-59	71	1491	143.2	140	50.7	25.2
	80	1357	138.7	20.6	138	47.7	16.4
	90	1056	136.7	19.5	136	43.1	12.4
	60-69	71	1057	152.3	150	68.1	38.0
	80	946	145.0	22.3	144	63.0	27.2
	90	928	143.5	19.1	142	59.2	21.3
	70+	71	665	160.0	160	77.4	53.2
	80	602	152.0	24.3	150	72.1	37.9
	90	713	148.8	20.1	150	69.0	31.8

occurred for all but the 40-49 year age group.

The prevalence of positive tests for urinary glucose by sex and age group over survey years is shown in Table 8. Increases were observed except in men aged 30-39 and women aged 40-49.

Trends of Risk Factors over the Survey Periods

Table 9 shows the trends of systolic blood pressure, diastolic blood pressure, and body mass index by multiple regression analysis with control for age over the three surveys. Systolic blood pressure decreased significantly in both men and women over the period; however, diastolic blood pressure increased for men and decreased for women. Body mass index increased
in men but did not change in women.

Table 10 shows the trends of systolic blood pressure, diastolic blood pressure, total cholesterol, and body mass index between 1980 and 1990. The trend of systolic blood pressure between 1980 and 1990 was the same as that over the three surveys. For diastolic blood pressure in men, no significant change was found between 1980 and 1990. Total cholesterol increased significantly in both men and women from 1980 to 1990. Body mass index again showed no significant trend in women, as in the three-survey analysis, above.

Trends of smoking rate, the prevalence of major abnormal findings on ECG, the prevalence of positive tests for urinary
Table 3. Changes in total cholesterol (mg/dl) by sex and age

Sex	Age (years)	Survey year	n	Mean ± SD	Median	<150 mg/dl (%)	≥220 mg/dl (%)	≥260 mg/dl (%)	
Men	30-39	80	1240	186.7	30.8	184.0	11.0	13.8	1.8
		90	620	196.4	35.1	191.0	6.5	22.7	5.5
	40-49	80	1219	188.4	33.5	186.0	12.2	17.8	2.5
		90	788	204.2	36.5	200.0	4.2	31.1	6.2
	50-59	80	1046	188.6	34.8	186.0	10.5	16.4	2.9
		90	758	200.0	36.5	197.0	7.1	29.3	6.1
	60-69	80	696	185.1	32.1	183.0	13.1	14.5	1.6
		90	674	197.4	37.7	194.0	7.7	26.3	6.5
	70+	80	489	177.8	31.3	175.0	19.2	9.6	0.8
		90	456	191.2	36.6	186.5	11.2	22.2	4.2
Women	30-39	80	1632	176.9	29.7	174.0	16.5	8.2	1.2
		90	992	185.9	31.9	183.0	11.1	13.1	2.5
	40-49	80	1507	185.7	30.7	183.0	10.7	12.3	1.9
		90	1124	200.0	34.5	197.0	4.7	25.5	4.8
	50-59	80	1329	202.7	33.0	201.0	4.2	30.0	4.8
		90	995	218.0	36.8	216.0	2.0	46.1	12.0
	60-69	80	927	203.1	35.4	201.0	4.4	30.3	6.8
		90	870	222.6	37.9	221.0	2.0	52.5	15.4
	70+	80	578	199.8	34.5	197.5	4.3	25.6	4.8
		90	629	214.9	41.9	212.0	3.8	42.0	13.7

protein, and the prevalence of positive tests for urinary glucose over the three surveys are presented in Table 11. The trends were estimated using multiple logistic regression models to control age effects. The smoking rate declined in men, but not in women, over the three surveys. The prevalence of major abnormal findings on ECG decreased in both men and women. The trend of the prevalence of the positive tests for urinary protein in women was significantly negative. The prevalence of positive tests for urinary glucose increased in both men and women.

The decrease in the smoking rate in women between 1980 and 1990 became significant in contrast to the change from 1971 (Table 12). The trend of the prevalence of major abnormal findings on ECG was no longer significant in men between 1980 and 1990. The urinary glucose positivity rate in men between 1980 and 1990 was no longer significant.

DISCUSSION

This study, based on individual data from three national surveys in 1971, 1980, and 1990, shows that cardiovascular disease risk factors in Japan are changing in a complex manner.

The observed decrease in systolic blood pressure is consistent with other studies. Treatment of high blood pressure has become popular in Japan since the 1960s, because the Health Insurance Law became effective in 1961, and every Japanese has been covered under the insurance. The main reason for the decline seems to be the treatment of high blood pressure. It should be noted, however, that for systolic blood pressure the median values decreased and this measure, unlike the mean, would not be expected to reflect treatment effects at the upper extreme of the distribution. Changes in salt intake may partly explain the changes in systolic pressure, yet per
CVD Risk Factor Changes in Japan

Table 4. Changes in body mass index (kg/m²) by sex and age

Sex	Age (years)	Survey year	n	Mean ± SD	Median	≥25 kg/m² (%)	≥30 kg/m² (%)
Men	30-39	71	1677	22.5 ± 3.9	22.0	16.4	1.6
	80	1264	22.6 ± 2.8	22.4	13.0	0.7	
	90	753	22.9 ± 3.0	22.7	16.0	1.5	
	40-49	71	1469	22.5 ± 3.4	21.9	16.8	1.2
	80	1247	23.1 ± 2.9	22.9	17.1	0.9	
	90	947	23.4 ± 2.9	23.2	19.5	1.5	
	50-59	71	991	22.3 ± 3.3	21.8	17.6	1.6
	80	1069	22.6 ± 2.8	22.3	15.6	0.7	
	90	870	23.3 ± 2.8	23.1	20.2	0.8	
	60-69	71	851	21.8 ± 3.2	21.4	12.8	1.2
	80	710	22.0 ± 2.9	21.8	12.0	0.5	
	90	745	22.6 ± 3.1	22.5	15.8	1.5	
	70+	71	536	21.0 ± 3.8	20.5	9.9	0.9
	80	508	21.3 ± 2.9	21.1	8.7	0.5	
	90	507	22.0 ± 3.1	21.9	14.3	0.7	
Women	30-39	71	2207	22.4 ± 3.6	21.9	16.1	2.0
	80	1657	22.1 ± 3.1	21.7	12.8	1.4	
	90	1081	21.8 ± 3.0	21.3	11.5	1.5	
	40-49	71	1914	23.1 ± 3.6	22.7	23.1	3.1
	80	1545	23.2 ± 3.4	22.9	20.7	3.3	
	90	1234	22.8 ± 3.2	22.4	18.2	2.4	
	50-59	71	1483	23.2 ± 4.5	22.7	26.7	4.3
	80	1356	23.3 ± 3.4	23.0	25.4	2.8	
	90	1084	23.4 ± 3.2	23.3	24.9	2.8	
	60-69	71	1048	22.8 ± 3.8	22.5	25.7	3.7
	80	947	23.0 ± 3.6	22.8	20.9	3.5	
	90	946	23.5 ± 3.5	23.2	27.9	3.9	
	70+	71	651	22.2 ± 4.0	21.8	20.9	2.4
	80	597	22.5 ± 3.5	22.2	15.5	1.9	
	90	738	22.7 ± 3.5	22.5	21.3	2.1	

Capita salt intake has been rising since 1987\(^{28}\).

The trends of diastolic blood pressure in men showed a different pattern from that of women. The reason is still unknown; however, several factors may be considered. First, the difference of the treatment for hypertension between men and women may explain the difference in the trends between men and women. The treatment rate is higher in women than in men\(^{7}\). Second, body mass index is increasing in men, but it is not increasing in women. It is well known that obesity is related to hypertension\(^{28}\). Third, the increase in alcohol consumption may partly explain the discrepancy. Alcohol consumption as ethyl alcohol was 6870 ml per capita in 1970 in adults and 8290 ml in 1990\(^{30}\). The rate of increase over the last 20 years was 20.7%. In Japan, 55.4% of men and 6.5% of women were habitual drinkers in 1990\(^{21}\). Therefore, men are subject to the influence of alcohol more than women by the increase of alcohol consumption. However, it is uncertain whether these factors affected systolic blood pressure and diastolic blood pressure differently.

Serum total cholesterol concentrations increased remarkably in both men and women between 1980 and 1990. Since elevated total cholesterol concentration is a major risk factor for
This trend may be critical for strategies to prevent cardiovascular diseases in Japan in the years ahead. The Ni-Hon-San Study showed men of Japanese ancestry living in Hawaii and California as of the early 1960s to have higher cholesterol concentrations than men living in Japan, consistent with different dietary intakes of saturated fat, animal protein, and dietary cholesterol. The fact that the per capita intake of animal protein in Japan has been increasing is similarly in accord with the increase in total cholesterol shown in the present study.

 Although the prevalence of obesity in Japan (defined by body mass index equal or higher than 25 kg/m²) is still low compared with other countries, the upward trend for men especially notable because of the concomitant increases in serum total cholesterol concentrations and the prevalence of diabetes mellitus. A possible explanation of the discrepancy between men and women in trends of body mass index is cosmetic preference for leaner appearance in younger women.

The smoking rates in men, though decreasing, are still high in comparison with those in other countries. In women, the

Sex	Age (years)	Survey year	n	Non-smoker (%)	Smoker (%)	Ex-smoker (%)
Men	30-39	71	1692	22.70	69.15	8.16
	80	1736	18.78	68.55	12.67	
	90	754	21.88	63.93	14.19	
	40-49	71	1487	13.38	77.54	9.08
	80	1604	19.89	62.97	17.14	
	90	947	25.87	57.13	17.00	
	50-59	71	1006	15.71	72.96	11.33
	80	1925	14.75	66.95	18.30	
	90	871	29.28	50.40	20.32	
	60-69	71	862	22.39	64.85	12.76
	80	814	17.94	59.21	22.85	
	90	745	17.99	51.81	30.20	
	70+	71	537	32.40	53.82	13.78
	80	626	25.08	47.44	27.48	
	90	509	24.95	39.10	35.95	
Women	30-39	71	2228	92.68	6.06	1.26
	80	1872	85.58	11.81	2.62	
	90	1082	85.21	10.91	3.88	
	40-49	71	1934	91.47	7.34	1.19
	80	1727	88.59	9.32	2.08	
	90	1236	87.22	11.41	1.38	
	50-59	71	1490	85.77	12.21	2.01
	80	1482	87.52	10.12	2.36	
	90	1085	90.32	8.29	1.38	
	60-69	71	1056	86.27	12.03	1.70
	80	1048	83.30	12.79	3.91	
	90	946	88.48	8.35	3.17	
	70+	71	665	86.32	11.58	2.11
	80	775	85.03	10.19	4.77	
	90	741	88.12	7.29	4.59	
smoking rates are low but increasing among those younger than 50 years. For both men and women, smoking prevention and cessation are needed to reduce risk of cardiovascular diseases, cancers, and respiratory diseases. Therefore, every effort should be made to eradicate the smoking habit.

Major abnormal findings on ECG are important indicators to trends in cardiovascular diseases, whose decrease in men was no longer significant between 1980 and 1990. In this period, age-specific trends were slightly upward in men younger than 60 years, coronary heart disease or other heart diseases may be starting to increase in frequency in Japan.

The trend of decreasing prevalence proteinuria in women but not in men generally could reflect multiple factors: the differences in control of high blood pressure; possible increases in the use of antibiotics in the early stages of urinary tract infection; and the increase in prevalence of diabetes in the older men.

So far, only urinary glucose data are available as a crude index of trends of diabetes mellitus in Japan. The urinary glucose positive rate showed a substantial increase in both men

| Sex | Age (years) | Survey year | n | 62.15 | 31.76 | 3.09 | 60-69 | 60.55 | 30.44 | 9.01 | 50-59 | 71.06 | 31.51 | 14.81 | 60.71 | 33.27 | 11.02 | 63.24 | 24.47 | 12.30 | 53.68 | 31.54 | 14.80 | 45.76 | 31.48 | 22.76 | 48.19 | 31.35 | 20.46 | 59.76 | 21.62 | 18.62 | 36.69 | 30.17 | 33.15 | 44.70 | 21.22 | 34.09 | 77.55 | 12.75 | 9.70 | 78.00 | 14.79 | 7.21 | 84.68 | 9.09 | 6.23 | 71.92 | 13.34 | 14.74 | 74.43 | 14.12 | 11.45 | 85.59 | 6.54 | 7.87 | 56.92 | 16.60 | 26.48 | 64.29 | 17.43 | 18.28 | 74.53 | 10.31 | 15.16 | 49.72 | 20.59 | 29.70 | 54.96 | 18.28 | 26.76 | 69.66 | 10.23 | 20.11 | 36.54 | 20.60 | 42.86 | 41.12 | 19.16 | 39.72 | 51.98 | 11.40 | 36.63 |

*Classification according to Appendix.
Table 7. Changes in positive tests for urinary protein by sex and age

Sex	Age (years)	Survey year	n	Negative (%)	False positive (%)	Positive (%)
Men	30-39	71	1686	94.96	3.20	1.84
		80	1251	94.96	3.12	1.92
		90	642	96.11	2.96	0.93
	40-49	71	1487	93.68	4.37	1.95
		80	1232	93.83	4.22	1.95
		90	817	94.12	3.06	2.82
	50-59	71	1004	91.93	5.28	2.79
		80	1061	92.08	4.62	3.30
		90	774	93.54	2.97	3.49
	60-69	71	858	90.68	5.83	3.50
		80	702	90.46	5.13	4.42
		90	688	93.02	2.76	4.22
	70+	71	533	84.99	9.76	5.25
		80	500	86.80	6.00	7.20
		90	469	89.13	3.41	7.46
Women	30-39	71	2221	94.55	3.83	1.62
		80	1672	93.92	3.81	2.27
		90	1004	97.21	1.89	0.90
	40-49	71	1924	92.78	4.94	2.29
		80	1509	93.44	4.57	1.99
		90	1144	95.10	2.53	2.36
	50-59	71	1488	93.15	4.10	2.76
		80	1351	94.74	3.18	2.07
		90	1032	95.83	2.62	1.55
	60-69	71	1053	88.41	6.93	4.65
		80	935	92.62	4.71	2.67
		90	900	94.56	3.33	2.11
	70+	71	660	85.91	7.27	6.82
		80	581	88.47	6.20	5.34
		90	681	92.36	5.14	2.50

and women, although the increase in men between 1980 and 1990 was not significant. The prevalence of diabetes mellitus based on the fructosamine and hemoglobin A1c of the same subjects in 1990 was estimated to be 9% to 18% in men and 7% to 15% in women.\(^{39}\) This estimate also suggests an increase in prevalence of diabetes.\(^{11-13}\) Based on the next national survey of circulatory disorders, improved estimates of trends in diabetes will become possible.

Two advantage of this study over previous reports are the random selection of survey districts from the whole country and comparability of methods across surveys.

One possible bias of this study is the participation rate of the study: 67.8%, 79.1%, 81.5% for 1971, 1980, 1990, respectively. It is possible that those who did not visit the examination
Table 8. Changes in positive tests for urinary glucose by sex and age

Sex	Age (years)	Survey year	n	Negative (%)	False positive (%)	Positive (%)
Men	30-39	71	1688	94.79	2.61	2.61
	80	1251	97.76	0.56	1.68	
	90	642	97.98	1.09	0.93	
	40-49	71	1486	94.55	3.16	2.29
	80	1232	95.70	1.30	3.00	
	90	817	94.00	1.71	4.28	
	50-59	71	1004	91.83	2.99	5.18
	80	1061	93.87	1.51	4.62	
	90	774	90.70	2.45	6.85	
	60-69	71	858	92.66	3.61	3.73
	80	702	92.17	1.71	6.13	
	90	688	90.26	2.47	7.27	
	70+	71	533	94.75	2.06	3.19
	80	500	92.20	0.80	7.00	
	90	469	88.91	4.26	6.82	
Women	30-39	71	2223	98.65	0.45	0.90
	80	1627	98.40	0.31	1.29	
	90	1004	97.91	1.00	1.10	
	40-49	71	1925	98.03	0.36	1.61
	80	1509	98.48	0.40	1.13	
	90	1144	97.64	1.14	1.22	
	50-59	71	1488	98.52	0.40	1.08
	80	1351	98.08	0.37	1.55	
	90	1032	96.32	0.58	3.10	
	60-69	71	1053	97.34	0.76	1.90
	80	934	96.68	0.75	2.57	
	90	900	95.33	1.11	3.56	
	70+	71	660	97.27	1.52	1.21
	80	581	97.25	0.34	2.41	
	90	681	95.30	1.32	3.38	

Affected the results of observation; however, the effect would not be a serious bias for the trends of major risk factors because the participation rates by age showed a similar pattern over the three surveys, and the trends were mostly similar to other studies. 6,8,10,40-42.

Finally, those who were inpatients were excluded from the subjects of the surveys. The prevalence of a rare risk factor could be affected considerably, although the inpatient rate in 1993 was 1.15%. 43. As a design feature common to the three surveys, this factor could not affect the estimation of trends in the non-institutionalized population.

Another possible limitation is the quality of the data. Although most of the examiners were workers of public health centers and had experience for the survey, because of the large number of examiners, the problem of interobserver variability must be considered. To improve the quality of data, strict training is desirable. 44,45. In addition, the examination of blood pressure was performed only once. In order to reduce the intraindividual variation, it is desirable to measure twice or more. 46. Nevertheless, since the survey methods were common over the three surveys, trends themselves would not be distorted.
Table 9. Trends of systolic blood pressure, diastolic blood pressure, and body mass index by sex after controlling for age over three surveys in 1971, 1980, and 1990

Parameter	β*	SE	P	β	SE	P
Systolic blood pressure (mm Hg)	-0.219	0.023	<0.001	-0.342	0.019	<0.001
Diastolic blood pressure (mm Hg)	0.066	0.014	<0.001	-0.031	0.012	0.009
Body mass index (kg/m²)	0.044	0.004	<0.001	0.000	0.003	0.920

*Parameter estimates by linear regression models.

Table 10. Trends of systolic blood pressure, diastolic blood pressure, total cholesterol, and body mass index by sex after controlling for age between 1980 and 1990

Parameter	β*	SE	P	β	SE	P
Systolic blood pressure (mm Hg)	-0.260	0.042	<0.001	-0.230	0.036	<0.001
Diastolic blood pressure (mm Hg)	-0.027	0.027	0.313	-0.063	0.022	0.005
Total cholesterol (mg/dl)	1.271	0.079	<0.001	1.407	0.068	<0.001
Body mass index (kg/m²)	0.050	0.006	<0.001	-0.006	0.006	0.349

*Parameter estimates by linear regression models.

Table 11. Trends of smokers, major abnormal findings on ECG, positive tests for urinary protein, positive tests for urinary glucose by sex after controlling for age over three surveys in 1971, 1980, and 1990

Parameter	β*	SE	P	β	SE	P
Smokers / others	-0.034	0.002	<0.001	0.003	0.003	0.369
Major abnormal findings on ECG / others	-0.010	-0.004	0.003	-0.030	0.003	<0.001
Urinary protein positive tests / others	0.009	0.007	0.157	-0.030	0.007	<0.001
Urinary glucose positive tests / others	0.021	0.006	<0.001	0.028	0.008	<0.001

*Parameter estimates by logistic regression models.

Table 12. Trends of smokers, major abnormal findings on ECG, positive tests for urinary protein, positive tests for urinary glucose by sex after controlling for age between 1980 and 1990

Parameter	β*	SE	P	β	SE	P
Smokers / others	-0.035	0.004	<0.001	-0.013	0.006	0.031
Major abnormal findings on ECG / others	-0.003	0.007	0.650	-0.027	0.006	<0.001
Urinary protein positive tests / others	-0.000	0.013	0.992	-0.037	0.014	0.007
Urinary glucose positive tests / others	0.020	0.011	0.063	0.031	0.014	0.026

*Parameter estimates by logistic regression models.
So far controlling systolic blood pressure seems to have been successful; however, Japanese people are about to face a new problem, hypercholesterolemia, and still have high prevalence of smokers in men. Careful monitoring of these factors is essential. Further studies including children and adolescents are needed to detect more precise changes of risk factors and to provide effective preventive measures against cardiovascular diseases.

ACKNOWLEDGMENTS

We would like to express our appreciation to Dr. Hiroshi Yanagawa, Chief of Special Committee on Circulatory Disorder Survey, for permitting us to analyze the data.

REFERENCES

1. Uemura K, Pisa Z. Trends in cardiovascular disease mortality in industrialized countries since 1950. World Health Stat Q 1988; 41: 155-178.
2. WHO MONICA Project. A worldwide monitoring system for cardiovascular diseases. World Health Statistics Annual 1989: 27-149.
3. WHO Expert Committee on Prevention of Coronary Heart Disease. Prevention of coronary heart disease. WHO Technical Report Series 678. Geneva: World Health Organization, 1982.
4. International Heart Health Conference Advisory Board. The Victoria Declaration on Heart Health. Victoria: International Heart Health Conference, 1992.
5. Statistics and Information Department, Minister’s Secretariat, Ministry of Health and Welfare. Vital Statistics 1960-92. Tokyo: Kosei Tokei Kyoukai, 1962-94 (in Japanese).
6. Ueshima H, Tatara K, Asakura S. Declining mortality from ischemic heart disease and changes in coronary risk factors in Japan, 1956-1980. Am J Epidemiol 1987; 25: 62-72.
7. Ueshima H, Tatara K, Asakura S, Okamoto M. Declining trends in blood pressure level and the prevalence of hypertension, and changes in related factors in Japan, 1956-1980. J Chron Dis 1987; 40: 137-147.
8. Shimamoto T, Komachi Y, Inada H, et al. Trends for coronary heart disease and stroke and their risk factors in Japan. Circulation 1989; 79: 503-505.
9. The Pooling Project Research Group. Relationship of blood pressure, serum cholesterol, smoking habit, relative weight and ECG abnormalities to incidence of major coronary events: final report of the pooling project. J Chron Dis 1978; 31: 201-206.
10. Okayama A, Ueshima H, Marmot M, et al. Changes in total serum cholesterol and other risk factors for cardiovascular disease in Japan, 1980-1989. Int J Epidemiol 1993; 22: 1038-1047.
11. Kuzuya T. Prevalence of diabetes mellitus in Japan compiled from literature. Diabetes Res Clin Pract 1994; 24: S15-S21.
12. Ito C. Trends in the prevalence of diabetes mellitus among Hiroshima atomic bomb survivors. Diabetes Res Clin Pract 1994; 24, S29-S35.
13. Ohmura T, Ueda K, Kiyohara Y, et al. Prevalence of Type 2 (non-insulin-dependent) diabetes mellitus and impaired glucose tolerance in the Japanese general population: the Hisayama study. Diabetologia 1993; 36: 1198-1203.
14. Worth RM, Kato H, Rhoads GG, Kagan A, Syme SL. Epidemiologic Studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: mortality. Am J Epidemiol 1975; 102: 481-490.
15. Marmot MG, Syme SL, Kagan A, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: prevalence of coronary and hypertensive heart disease and associated risk factors. Am J Epidemiol 1975; 102: 514-525.
16. Robertson TL, Kato H, Rhoads GG, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: incidence of myocardial infarction and death from coronary heart disease. Am J Cardiol 1977; 39: 239-243.
17. Yano K, MacLean CJ, Reed DM, et al. A comparison of the 12-year mortality and predictive factors of coronary heart disease among Japanese men in Japan and Hawaii. Am J Epidemiol 1988; 127: 476-487.
18. Gordon T, Garcia-Palmieri MR, Kagan A, Kannel WB, Schifftman J. Differences in coronary heart disease in Framingham, Honolulu and Puerto Rico. J Chron Dis 1974; 27: 329-344.
19. Public Health Bureau, Ministry of Health and Welfare. National Survey of Adult Disease 1971 and 1972. Tokyo: Ministry of Health and Welfare, 1976 (in Japanese).
20. Public Health Bureau, Ministry of Health and Welfare. National Survey on Circulatory Disorders 1980. Tokyo: Ministry of Health and Welfare, 1983 (in Japanese with English summary).
21. Health Service Bureau, Ministry of Health and Welfare. National Survey on Circulatory Disorders 1990. Tokyo: Ministry of Health and Welfare, 1993 (in Japanese with English summary).
22. Nakamura M, Kuruma S, Kuritani C, et al. The evaluation and the results of cooperative cholesterol and triglyceride standardization programs by WHO-CDC. Rinsho Byori 1982; 30: 412-422 (in Japanese).
23. Nakamura M, Misu K, Kuruma S, et al. The validity and reliability in the measurement of serum lipid in the '80, '89, and '90 National Survey. Nippon Kosyu Eisei Zasshi 1992; 39: 507 (in Japanese).
24. SAS/STAT User’s Guide Release 6.03 Edition. Cary,
25. SAS Technical Report P-200 SAS/STAT Software: CALIS and LOGISTIC Procedures Release 6.04. Cary, NC: SAS Institute Inc., 1990.

26. Horibe H, Kasagi F, Yoshinaga A, Mui K. Levels and trends of major risk factors of ischemic heart disease in Japan. Kokyu-To-Junkan 1990; 38:109-114 (in Japanese).

27. Kaneko A, Kimura T, Mori K, et al. A 10-year field surveillance in Hinohara Village of Tokyo Prefecture from 1981 to 1990. Nippon Eiseigaku Zasshi 1994; 49:762-772 (in Japanese with English abstract).

28. Ministry of Health and Welfare. National Nutrition Survey 1992. Tokyo: Daiichi Shuppan Publisher, 1994.

29. INTERSALT Cooperative Research Group. INTERSALT: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Br Med J 1988; 297:319-328.

30. Health and Welfare Statistics Association. Alcohol. Kousei-No-Shihyou 1995; 42:101 (in Japanese).

31. Stamler J, Wentworth D, Neaton J, for the MRFIT Research Group. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986; 256:2823-2828.

32. Fraser GE. Preventive Cardiology. New York: Oxford University Press, 1986.

33. Kato H, Tillotson J, Nichaman MZ, Rhoads GG, Hamilton HB. Epidemiologic studies of coronary heart disease in Japanese men living in Japan, Hawaii, and California: serum lipid and diet. Am J Epidemiol 1973; 97:372-385.

34. Nichaman MZ, Hamilton HB, Kagan A, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: distribution of biochemical risk factors. Am J Epidemiol 1975; 102:491-501.

35. Hegsted DM, Ausman LM, Johnson JA, Dallal GE. Dietary fat and serum lipids: an evaluation of the experimental data. Am J Clin Nutr 1993; 57:875-883.

36. Fielding JE. Smoking: health effects and control. In: Last JM, Wallace RB, eds. Maxcy-Rosenau-Last. Public Health & Preventive Medicine. Norwalk and San Mateo: Appleton & Lange, 1992: 715-740.

37. Novotny TE. Tobacco use. In: Brownson RC, Remington PL, Davis JR, eds. Chronic Disease Epidemiology and Control. Washington, DC: American Public Health Association, 1993: 199-220.

38. Hoy WE, FitzSimmons SC. Renal and urinary tract diseases. In: Last JM, Wallace RB, eds. Maxcy-Rosenau-Last. Public Health & Preventive Medicine. Norwalk and San Mateo: Appleton & Lange, 1992: 859-872.

39. Nagai M, Sakata K, Yanagawa H, et al. Prevalence estimates for non-insulin dependent diabetes mellitus (NIDDM) in Japan from National Survey of Circulatory Disorders 1990 data. Nippon Kosyu Eisei Zasshi 1994; 41:720-723 (in Japanese with English abstract).

40. Ueda K, Omae T, Hirota Y, et al. Decreasing trend in incidence and mortality from stroke in Hisayama residents, Japan. Stroke 1981; 12:154-160.

41. Ueshima H. Changes in dietary habits, cardiovascular risk factors and mortality in Japan. Acta Cardiol 1990; 45:311-327.

42. Kodama K. Stroke trends in Japan. Ann Epidemiol 1993; 3:524-528.

43. Health and Welfare Statistics Association. The number of patients. Kousei-No-Shihyou, 1995; 42:453 (in Japanese).

44. Curb JD, Labarthe DR, Cooper SP, Cutter GR, Hawkins CM. Training and certification of blood pressure observers. Hypertension 1983; 5:610-614.

45. Frolich ED, Grim C, Labarthe DR, et al. Recommendations for human blood pressure determination by sphygmomanometers. Report of a special task force appointed by the steering committee, American Heart Association. Hypertension 1988; 11:209A-222A.

46. Drizd T, Dannenberg AL, Engel A. Blood pressure levels in persons 18-74 years of age in 1976-80, and trends in blood pressure from 1960 to 1980 in the United States. Vital & Health Statistics, Series 11, No. 234. 1986: 1-68.
Appendix. Classification of electrocardiographic results

Classification	Electrocardiographic findings	Minnesota Code
Normal	No abnormality, RR' pattern not indicative of incomplete right bundle branch block. Either of miscellaneous items (IX-codes)	1-0, 7-5, 9-1 to 9-5
Minor abnormality	Code 3 Q, QS pattern, QRS axis deviation, high R, prolonged PQ, WPW syndrome, short PQ, incomplete right bundle branch block, incomplete left bundle branch block, sinus tachy-bradycardia, other arrhythmia	1-3-1 to 1-3-6, 2-1 to 2-5, 3-1 to 3-3, 6-3 to 6-5, 7-3, 7-6, 8-7 to 8-9
Major abnormality A	Code 2 Q, QS pattern, depressed ST<0.5 mm I pattern, depressed ST≥1 mm J pattern, negative T<1 mm, T/R<1/20, 1/20≤T/R<1/10, atrioventricular node rhythm	1-2-1 to 1-2-8, 4-3 to 4-4, 5-3 to 5-5, 8-6
Major abnormality B	0.5 mm ≤ depressed ST<1 mm, 1mm ≤ negative T<5 mm, second degree atrioventricular block, complete right bundle branch block, intraventricular block, frequent extrasystoles (10% or more), ventricular tachycardia, atrial fibrillation, supraventricular tachycardia, atrioventricular rhythm	4-2, 5-2, 6-2, 7-2, 8-1 to 8-5
Major abnormality C	Code 1 Q, QS pattern, depressed ST≥1 mm (I pattern), negative T≥5 mm, third degree atrioventricular block, complete left bundle branch block, complication by two or more types of arrhythmia	1-1-1 to 1-1-7, 4-1, 5-1, 6-1, 7-1, two or more of code 8